

### SELECTIVE PARAMETER UPDATING - MEETING 4

Coşku Barış Coşlu

Mato Gudelj

Baykam Say

14 Jun 2023





### Contents

- 1. Plan from last meeting
- 2. LST
- 3. k-ladder LST
- 4. LR Distillation
- 5. MeZO
- 6. MeZO + LST
- 7. IA3 & LoRA Experiments
- 8. Side LoRA
- 9. Profiling and Tensorboard
- 10. Open Issues & Solutions
- 11. Plan for the Next Two Weeks



### Plan from last meeting...

- Experiment with ideas on LST and (IA)<sup>3</sup>
- Record results of those experiments to present in the next meeting
- Add performance-centric metrics to Tensorboard (memory footprint, forward pass latency, etc.)
- Brainstorm for even more approaches
- ...keep reading literature



# LST Implementation & Distillation Idea [1]

- Fixed LST implementation to work with T5
- New idea: use LST-like architecture for better distillation.
  - Do forward pass with both the teacher (backbone) and student (side) networks
  - Do backprop only on the student network
  - During backprop, combine the downsampled intermediate activations form the teacher as a soft target with the gradients from upper layers
  - Separate student from teacher for inference





### k-ladder LST idea

- Currently: i-th backbone output used as i-th ladder input
- Idea: compute input from fixed 2k+1 length window [i-k, i+k] of backbone outputs
  - Current case is a special case for k=0
  - Maybe mix/combine them with attention?
    - Positional (block-origin) encoding

### Why?

- Intermediate inputs aren't solely determined by the previous layer!
  - Ladder network has to 'guess' next backbone output
    - Additive fusion: backbone\_future + block\_out
    - Useful feature => Requires knowledge of backbone\_future
  - Solution: Allow LST to look in the "future"
  - Drawback: Can't do concurrent backbone/side inference





### **Learning Rate Distillation**

- Use distillation loss to compute learning rate for each step
- The idea: if student models outputs are close to the teacher models outputs, lower Ir (or potentially skip backprop) assuming learning more wouldn't be beneficial
- Implementation
  - Extend trainer to accommodate teacher model
  - Compute distillation loss after forward pass (between the outputs of student and teacher)
  - Modify adafactor [2] optimizer to take distillation loss into account when updating Ir



### Learning Rate Distillation - Results

- Underwhelming results, accuracy/f1 is the same as regular fine tuning in the best case with worse performance
- Hard to find a good way to use distillation loss for Ir updating







Full fine tuning with linear decay with warmup scheduler
Best LR distillation (distillation loss combined with linear decay)



## MeZO [3]: Fine-Tuning with Just Forward Passes

- Use two forward passes to estimate the gradients using Simultaneous Perturbation Stochastic Approximation (SPSA)
- Use an in-place implementation of SPSA to reduce memory costs to be same as inference as given in the MeZO paper
- Can be used in combination with other PEFT methods

**Definition 1** (Simultaneous Perturbation Stochastic Approximation or SPSA [83]). *Given a model with parameters*  $\theta \in \mathbb{R}^d$  *and a loss function*  $\mathcal{L}$ , SPSA estimates the gradient on a minibatch  $\mathcal{B}$  as

$$\widehat{\nabla} \mathcal{L}(\boldsymbol{\theta}; \mathcal{B}) = \frac{\mathcal{L}(\boldsymbol{\theta} + \epsilon \boldsymbol{z}; \mathcal{B}) - \mathcal{L}(\boldsymbol{\theta} - \epsilon \boldsymbol{z}; \mathcal{B})}{2\epsilon} \boldsymbol{z} \approx \boldsymbol{z} \boldsymbol{z}^{\mathsf{T}} \nabla \mathcal{L}(\boldsymbol{\theta}; \mathcal{B})$$
(1)

where  $z \in \mathbb{R}^d$  with  $z \sim \mathcal{N}(0, I_d)$  and  $\epsilon$  is the perturbation scale. The n-SPSA gradient estimate averages  $\widehat{\nabla} \mathcal{L}(\theta; \mathcal{B})$  over n randomly sampled z.



## MeZO: Fine-Tuning with Just Forward Passes

Paper reports comparable performance to full fine-tuning with up to 12x memory reduction

### Our progress:

- Core MeZO algorithm implemented
- Prompt-based fine-tuning is required for MeZO to work: Next step

#### Idea: Combine with LST

- Fine-tune LST's backbone model using MeZO
- Spend more time on training
  - Issue: MeZO requires > 10x more steps
- Maybe get better accuracy in return

|           | SST-2      | SNLI       | TREC       |
|-----------|------------|------------|------------|
| Prompt    | 89.6 (1.2) | 65.1 (6.2) | 66.7 (6.2) |
| No Prompt | 51.9 (2.9) | 34.8 (2.1) | 19.5 (9.0) |



## Experiments with IA<sup>3</sup> [4] and LoRA [5] like models

- IA3-out
  - Use the linear output layer of attention instead of the feed forward layer in IA3
- Feed forward only
  - Put trainable vectors representing the linear layers of the feed forward network, freeze the whole network and train only the new layers
- LoRA for k\_v\_ffn
  - Only update key, value, and ffn layers using LoRA, freeze the rest of the layers.



# **Experiment Results**

|                        | # of<br>Trainable<br>Parameters | Accuracy | F1 Score | Train<br>Runtime |
|------------------------|---------------------------------|----------|----------|------------------|
| Full FT                | 66M                             | 90.59%   | -        | 42 min           |
| LoRA                   | 350K                            | 88.19%   | -        | 34 min           |
| (IA) <sup>3</sup>      | 28K                             | 90.02%   | -        | 14.5 min         |
| (IA) <sup>3</sup> -out | 14K                             | 88.42%   | 88.71%   | 18 min           |
| FF-only                | 23K                             | 88.76%   | 88.99%   | 16 min           |
| LoRA k-v-ffn           | 184K                            | 88.53%   | 88.96%   | 26.5 min         |



### Side LoRA Idea

- LoRA still requires to compute gradients on the original weight matrices which adds a major performance overhead
- Find a way to skip gradient calculations on the original frozen model
- Solution: merge the ideas behind LST and LoRA
  - Different from just adding LoRA to LST
  - Have two models (backbone & side network)
  - Side network is the same size as backbone but it only has low rank decompositions of matrices instead of linear layers
  - After each linear layer of the backbone, add a ladder connection to the output of low rank decomposition matrices
  - Instead of gated connections, just sum the activations
  - Calculate gradients only on the side network



## **Profiling**

- Enables a detailed look into performance characteristics
- Good tool for:
  - precise per-module latency
  - debugging (PEFT method taking longer than expected?)
  - insight into potential candidates for speedup
- Straightforward to add to codebase
- Tensorboard built-in trace viewer doesn't work with large traces
  - https://ui.perfetto.dev/



## **Profiling**





## Tensorboard: Memory Footprint

- Added memory footprint measurement
- Added forward pass latency data
- Image:
  - Gradual model freezing





## Open Issues & Solutions

- Issues
  - Current ideas are underwhelming
    - No working novel idea
- Solutions
  - Find and implement new ideas
    - k-ladder LST
    - MeZO + LST
    - Side LoRA
    - Find some variables to decide whether to skip weight updating per step basis (and only update biases)



### Plan for the Next Two Weeks

- Implement k-ladder LST and record some results
- Implement MeZO + LST
- Implement Side LoRA
- Start working on the report
- Brainstorm more approaches
- ...keep reading literature



### References

- [1] Yi-Lin Sung, Jaemin Cho, Mohit Bansal: "LST: Ladder Side-Tuning for Parameter and Memory Efficient Transfer Learning", 2022; arXiv:2206.06522
- [2] Shazeer, Noam, and Mitchell Stern. 'Adafactor: Adaptive Learning Rates with Sublinear Memory Cost'. arXiv [Cs.LG], 2018; arXiv:1804.04235
- [3] Malladi, Sadhika, et al. 'Fine-Tuning Language Models with Just Forward Passes'. *arXiv* [Cs.LG], 2023; arXiv:2305.17333
- [4] Haokun Liu, Derek Tam, Mohammed Muqeeth, Jay Mohta, Tenghao Huang, Mohit Bansal, Colin Raffel: "Few-Shot Parameter-Efficient Fine-Tuning is Better and Cheaper than In-Context Learning", 2022; arXiv:2205.05638
- [5] Hu, Edward J., et al. 'LoRA: Low-Rank Adaptation of Large Language Models'. ArXiv [Cs.CL], 2021; arXiv:2106.09685