10. előadás

Gráfok színezése

Definíció

Egy (hurokmentes) gráf egy csúcsszínezését jólszínezésnek nevezzük, ha a szomszédos csúcsok színe különböző.

Definíció

Egy jólszínezésnél az azonos színű csúcsok halmazát színosztálynak nevezzük.

Definíció

Egy (hurokmentes) gráf k színnel (jól)színezhető, ha van jólszínezése, ami legfeljebb k különböző színt használ.

Gráfok színezése

Definíció

Egy gráf kromatikus száma az a legkisebb n természetes szám, amelyre jólszínezhető n színnel. A G gráf kromatikus számát $\chi(G)$ jelöli.

Megjegyzés

A kromatikus szám pontosan akkor 1, ha nincs éle a gráfnak. A páros gráfok kromatikus száma legfeljebb 2, és ha 2 a kromatikus szám, akkor a gráf páros. Azaz a legalább egy élet tartalmazó G gráf pontosan akkor páros, ha $\chi(G)=2$.

Definíció

A G gráf egy teljes részgráfját klikknek nevezzük. A G gráfban található legnagyobb klikk méretét (csúcsszámát) $\omega(G)$ -vel jelöljük, és a G gráf klikkszámának nevezzük.

Gráfok színezése

Definíció

A G gráf V csúcshalmazának egy olyan részhalmazát, amelynek elemei a G gráfban nem szomszédosak (semelyik kettő sincs éllel összekötve), független csúcshalmaznak nevezzük. A G gráfban található legnagyobb független csúcshalmaz méretét $\alpha(G)$ jelöli.

Megjegyzés

Egy jólszínezés esetén minden színosztály egy-egy *független halmaz*, de egyik színosztály mérete sem feltétlenül éri el $\alpha(G)$ -t.

Megjegyzés

Ha G egyszerű gráf komplementerét \overline{G} jelöli, akkor $\omega(G) = \alpha(\overline{G})$ és fordítva $\alpha(G) = \omega(\overline{G})$.

Gráfok színezése

Tétel

Minden G gráfra $\chi(G) \geq \omega(G)$.

Általában $\chi(G) \ge \chi(G')$ ha G' részgráfja G-nek.

Bizonyítás

Egy jólszínezésben bármely klikk összes pontját csupa különböző színnel kell színezni (hiszen össze vannak kötve éllel a gráfban), ez igaz a legnagyobb klikkre is.

Mycielski tétele

Minden $k \ge 2$ egész számra konstruálható olyan G_k gráf, hogy $\chi(G_k) = k$ de $\omega(G_k) = 2$.

Mycielski szerint a kromatikus szám sokkal nagyobb is lehet, mint a klikkszám. $\omega(G_k) = 2$ azt jelenti, hogy a gráfban van él, de nincs háromszög ($K_3 = C_3$).

Gráfok színezése

Mycielski konstrukció

Indukció k-ra: k=2-re G_2 a két csúcsú egy éllel összekötve. Ha már megvan a G_k (aminek n csúcsa van), akkor jelölje a csúcsait v_1,\ldots,v_n . G_{k+1} csúcshalmaza legyen G_k csúcshalmaza kibővítve n+1 további csúccsal, ezeket jelölje w_1,\ldots,w_n és u. G_{k+1} tartalmazza részgráfként G_k -t (v_i -k között pontosan azok az élek vannak behúzva, mint G_k -ban). Továbbá minden j-re w_j pontosan a v_j G_k -beli szomszédaival legyen összekötve (v_j -vel ne). Továbbá u legyen minden w_i -vel összekötve.

Például tehát $G_3 = C_5$ az öthosszú ciklus.

Gráfok színezése

Mycielski $\omega(G_k) = 2$ bizonyítása

Indukció k-ra. k=2-re nyilvánvaló. Tegyük fel, hogy igaz G_k -ra, azaz G_k -ban nincs háromszög. Indirekt tegyük fel, hogy G_{k+1} -ben viszont már van (nyilván nem lehet mindhárom csúcsa G_k -beli). Az állítólagos háromszögnek u sem lehet csúcsa, mert annak csak w_j -k a szomszédai, azok viszont egymással nem szomszédosak. Ugyanezért az állítólagos háromszögnek nem lehet két csúcsa a w_j -k között, csak egy. De ekkor, ha w_j háromszöget alkotna v_a és v_b csúcsokkal, az a konstrukció szerint azt jelenti, hogy v_a és v_b v_j -nek is szomszédai voltak G_k -ban, azaz v_a , v_b és v_j már G_k -ban is háromszöget alkottak volna, ami ellentmond az indukciós feltevésnek.

Mycielski $\chi(G_k) = k$ bizonyítása

Szintén indukció k-ra, és k=2-re nyilvánvalóan igaz. Tegyük fel, hogy $\chi(G_k)=k$ igaz, és indirekt tegyük fel, hogy $\chi(G_{k+1}\leq k.$

Gráfok színezése

Mycielski $\chi(G_k) = k$ bizonyítás folytatása

Ekkor $\chi(G_{k+1})=k$ is igaz, hiszen G_{k+1} részgráfként tartalmazza G_k -t. Vegyük G_{k+1} csúcsainak állítólagosan létező jólszínezését k színnel, és sorszámozzuk a színeket úgy, hogy a k-adik szín az u csúcs színe ebben a jólszínezésben (és így w_1,\ldots,w_n csúcsok biztos nem ilyen színűek). Ha a k-adik szín esetleg előfordul valamelyik v_i színeként, akkor minden ilyen v_i -t átszínezve w_i színére (és minden más csúcs színét változatlanul hagyva) a G_{k+1} részeként tartalmazott G_k részgráf csúcsainak továbbra is egy jólszínezését kapjuk. (Ami viszont már nem feltétlenül jólszínezése a G_{k+1} csúcsainak.) Ebben a színezésben a k-adik szín nem szerepel v_1,\ldots,v_n csúcsok színeként, de ekkor G_k -nak egy k-1 színt használó jólszínezését kaptuk, ellentmondva a $\chi(G_k)=k$ indukciós feltételnek.

Gráfok színezése

Definíció

Egy G gráfban a legnagyobb fokú csúcs fokszámát $\Delta(G)$ -vel, a legkisebb fokú csúcs fokszámát $\delta(G)$ -vel szokás jelölni.

Tétel

Minden G gráfra $\chi(G) \leq \Delta(G) + 1$.

Bizonyítás

Mohó algoritmussal lehet a G csúcsait legfeljebb $\Delta(G)+1$ darab színnel jól színezni. (Minden lépésben egy csúcsot színezünk, a legkisebb sorszámú olyan színnel, ami az éppen színezendő csúcs már kiszínezett szomszédjainak színei között nem szerepel. Ha esetleg egy csúcs összes szomszédja már ki van színezve, azok száma legfeljebb $\Delta(G)$, így nem foglalhatják le mind az összes $\Delta(G)+1$ színt. Így az algorimtus nem alad el.)

Gráfok színezése

A mohó algoritmus (szerencsétlen csúcssorrend esetén) sokkal több színt felhasznál, mint a kromatikus szám. De például teljes gráfra $\chi(\mathcal{K}_n) = n = \Delta(\mathcal{K}_n) + 1 = (n-1) + 1, \text{ és páratlan hosszú ciklusra}$ $\chi(\mathcal{C}_{2n+1}) = 3 = \Delta(\mathcal{C}_{2n+1}) + 1 = 2 + 1. \text{ Azaz ilyenkor a } \Delta(\mathcal{G}) + 1 \text{ pontos felső becslés}.$

Brooks tétele (itt most nem bizonyítjuk)

Ha a G egyszerű, összefüggő gráf NEM egy teljes gráf, és NEM is egy páratlan hosszú ciklus, akkor $\chi(G) \leq \Delta(G)$.

Azaz a legtöbb esetben eggyel jobb felső becslésünk van a kromatikus számra.

Síkgráfok

Állítás

Ha $G = (\varphi, E, V)$ egyszerű síkgráf, akkor

$$\delta = \min_{v \in V} d(v) \le 5.$$

Bizonyítás

Feltehető, hogy $|V| \ge 3$ (Miért?).

Indirekt tfh. $\delta \geq$ 6. Ekkor $6|V| \leq 2|E|$ (Miért?), továbbá az előző állítást használva $2|E| \leq 6|V|-12$, vagyis $6|V| \leq 6|V|-12$, ami ellentmondás.

Megjegyzés

Létezik 5-reguláris egyszerű síkgráf. (Például az ikozaéder élhálózatát le lehet rajzolni a síkba, és az pont ilyen lesz.)

Gráfok színezése

"Hatszíntétel"

Ha G SÍKgráf, akkor $\chi(G) \leq 6$.

Bizonyítás

Indukció a gráf csúcsszámára. Ha $|V| \le 6$ akkor nyilván jólszínezhető legfeljebb hat színnel. Tegyük fel, hogy $\chi(G) \le 6$ igaz minden legfeljebb n csúcsú síkgráfra, és legyen most G egy tetszőleges n+1 csúcsú síkgráf. Az előző állítás szerint G-ben van olyan csúcs, aminek legfeljebb 5 szomszédja van $(\delta(G) \le 5)$. Ezt a csúcsot jelölje w. Ha a G-ből elhagyjuk w-t (és a belőle induló éleket), a kapott gráf egy n csúcsú síkgráf lesz, ami az indukciós feltevés szerint 6 színnel jólszínezhető. Egy ilyen jólszínezés kiterjeszthető G jólszínezésévé, hiszen w-nek kevesebb, mint 6 szomszédja van, így w színezhető azzal a színnel, ami a szomszédai között nem fordul elő.

Gráfok színezése

"Otszíntétel"

Ha G SÍKgráf, akkor $\chi(G) \leq 5$.

Bizonyítás

A hatszíntétel bizonyításához hasonló indukcióval, de a legfeljebb 5 fokú w csúcs elhagyásával keletkező n csúcsú síkgráfnak nem akármilyen 5 színnel való színezése kell, hanem olyan, amiben w szomszédai között csak négy szín fordul elő. Ha $\delta(G) \leq 4$, akkor ez automatikusan igaz lesz. Ha $\delta(G) = 5$, akkor is, w-nek nem lehet minden szomszédja szomszédos egymással (ekkor lenne K_5 , sőt, K_6 is G síkgráfban, ami ellentmondás). Meggondolható, hogy w 5 szomszédja közül kettő nemszomszédosat és w-t egy csúcsba "összehúzva" még mindíg síkgráfot kapunk. (Végig síkbeli reprezentációt lehet nézni.) Az így kapott n csúcsú síkráfot 5 színnel jólszínezve az eredeti n+1 csúcsú síkgráf összes pontjának (w kivételével) egy jólszínezését kapjuk, ami w megfelelő színezésével befejezhető.

Gráfok élszínezése

Definíció

Egy (hurokmentes) gráf egy élszínezését jólszínezésnek nevezzük, ha a közös végponttal rendelkező élek színe különböző.

Definíció

Éleknek egy jólszínezésnél az azonos színű élek halmazát színosztálynak nevezzük.

Definíció

Egy (hurokmentes) gráf élei k színnel (jól)színezhetők, ha van az éleinek olyan jólszínezése, ami legfeljebb k különböző színt használ.

15.

Gráfok élszínezése

Definíció

Egy gráf élkromatikus száma (más néven kromatikus indexe) az a legkisebb n természetes szám, amelyre élei jólszínezhetők n színnel. A G gráf élkromatikus számát $\chi'(G)$ vagy $\chi_e(G)$ jelöli.

Tétel

Minden G gráfra $\chi_e(G) \geq \Delta(G)$.

Bizonyítás

Adott csúcsból kiinduló éleket különböző színűre kell színezni, igaz ez a legnagyobb fokú csúcsból induló élekre is.

Gráfok színezése

Vizing tétele (most nem bizonyítjuk)

Minden egyszerű G gráfra $\Delta(G) \leq \chi_e(G) \leq \Delta(G) + 1$.