Knuth-Morris- חיפוש מחרוזות – אלגוריתם (KMP) Prat

סימונים

 ϵ כל המחרוזות הן מערכי תווים והמערכים מתחילים באינדקס 0. המחרוזת הריקה תסומן ב-

עבור מחרוזות X נסמן ב- X_n את המחרוזת המכילה את תווים 0 עד N-1 ב-N. (שימו לב ש-N היא המחרוזת הריקה).

הבעיה

T בתוך P בתוך (הרצופים) של P בתוך T ומחרוזת P בתוך P בתוך P בתוך T ומחרוזת P בתוך P בתוך P

.m = Length(P), n = Length(T)נסמן

 T_i בעיה שקולה: עבורם P היא סיפא של T כנ"ל רוצים למצוא את כל ה-iים עבורם P היא סיפא של

האלגוריתם

לכל C[i] באופן הבא $0 \le i \le m$ לכל

- C[0] = -1 •
- עבור P_j הוא המספר המקסימלי P_i הוא המספר המקסימלי של $0 \leq j < i$ המקסימלי הוא המספר המקסימלי שבור P_i הוא המספר המקסימלי של כל מחרוזת. זה אומר ש- P_i לכל P_i לכל P_i

. האלגוריתם מתחיל בחישוב הטבלה $\mathcal C$. נדחה את ההסבר על איך לעשות זאת ביעילות לסוף.

.P-כעת מאתחלים שני מונים i, q ל-0. i יהיה האינדקס אותו נבדוק ב-T ו-q יהיה האינדקס אותו נבדוק ב-

:כעת מבצעים

 $^{^{-1}}$ זה שונה ב-1 מההגדרה שנתתי.

יותר פשוט. $^{\perp}$ זה היה נכון בסופו של דבר. אם האינדקסים מתחילים ב-1, הניסוח יותר פשוט.

יש מימושים שקולים, כמובן.

דוגמא לריצה

P נבחר T=aaaabaabaacaabaabaacaabaabaו- P=aabaaba נבחר T=aaaabaabaacaabaabaabaו- אורך של T=aaaabaabaabaabaabaהוא T=18 והאורך של T=18

:הטבלה \mathcal{C} תהייה כדלקמן

i	0	1	2	3	4	5	6	7
C[i]	-1	0	1	0	1	2	3	4
Maximal P- prefix which is a posfix of P_i .	None		a		a	aa	aab	aaba

i=2, q=2 הפעם הראשונה בה תהייה אי התאמה היא כאשר

i: 2

T: aaaabaabaacaabaaba

P: aabaaba

q: 2

:ממשיכים להשוות q = C[q-1] + 1 = C[1] + 1 = 1

i: 23

T: aaaabaabaacaabaaba

P: aabaaba

q: 12

: נעצרים כאשר q=C[q-1]+1=C[1]+1=1 מבצעים מבצעים i=3, q=2 וממשיכים להשוות

i: 3 8

T: aa**aabaaba**acaabaaba

P: aabaaba

q: 1 6

i-m=9-7= מצאנו מופע של P ב-T. לאחר שמגדילים את i=8,q=6 ב-q מאשר q=C[q]=C[7]=4 ממשיכים להשוות:

i: 9

T: aaaabaabaacaabaaba

P: aabaaba

q: 4

נעצרים כאשר $q=\mathcal{C}[q-1]+1=\mathcal{C}[4]+1=2$ ממשיכים להשוות. i=10, q=5

i: 10

T: aaaabaabaacaabaaba

```
P:
             aabaaba
                2
q:
            :אך שוב נעצרים מייד. מבצעים להשוות. q = C[q-1] + 1 = C[1] + 1 = 1 ממשיכים מייד. מבצעים להשוות
i:
              10
T: aaaabaabaacaabaaba
P:
              aabaaba
q:
            :אך שוב נעצרים מייד. מבצעים q = \mathcal{C}[q-1] + 1 = \mathcal{C}[0] + 1 = 0 ממשיכים מייד. מבצעים
i:
               10
T: aaaabaabaacaabaaba
               aabaaba
q:
                0
                 אך שוב נעצרים מייד. היות ו-q=0, מבצעים i=i+1=1 ממשיכים להשוות:
i:
                11
T: aaaabaabaacaabaaba
P:
                 aabaaba
q:
 i-m= כאשר i=1, מצאנו מופע נוסף של התבנית. לאחר שמגדילים את i=1, מצאנו מופע נוסף של התבנית.
       (i \geq Length(T) (כי q = C[q] = C[7] = 4 ומבצעים 18 – 7 = 11
                                                                 והאלגוריתם יסתיים.
                                           לסיכום, הנה תקציר של "מה שעשה האלגוריתם:
T: aaaabaabaacaabaaba
P: aabaaba
T: aaaabaabaacaabaaba
P: aabaaba
T: aaaabaabaacaabaaba
      aabaaba
T: aaaabaabaacaabaaba
P:
         aaba<mark>ab</mark>a
T: aaaabaabaacaabaaba
             aabaaba
T: aaaabaabaacaabaaba
P:
              aabaaba
T: aaaabaabaacaabaaba
P:
               aabaaba
T: aaaabaabaacaabaaba
                 aabaaba
```

ניתן לראות כי האלגוריתם מנסה לחפש את P ב-T וכל פעם כאשר נמצאת אי התאמה (באדום), הוא מסיט את P ימינה בהיסט הקטן ביותר האפשרי בו עדיין יש התאמה בין התווים הראשונים של P לתווים האחרונים שנסרקו ב-T. אז ממשיך האלגוריתם בחיפוש מאותו מקום בו עצר לפי ההסטה של P.

איך בונים את הטבלה

בניית הטבלה נשענת על התכונה הבאה: P_{i+1} היא סיפא של P_{k+1} אם ורק אם P_i סיפא של P_i וגם P_i וגם P_i וגם רוב אוניית הטבלה נשענת באה: P_i היא סיפא של P_i היא סיפא של P_i וגם

נניח שחישבנו את $P_{C[k]}$ עבור $k \leq k$ ואנו רוצים לחשב את C[k+1]. אזי לפי הגדרת $P_{C[k]}$ היא $P_{C[k]}$ אז $P_{C[k]}$ אז $P_{C[k]}$ (לפי $P_{C[k]}$ אם $P_{C[k]}$ אם $P_{C[k]}$ אז $P_{C[k]}$ (נובע מהגדרת $P_{C[k]}$ ושוב, התכונה). אחרת, הרישא הבאה בגודלה של $P_{C[c[k]]}$ שהיא סיפא של $P_{C[c[k]]}$ היא $P_{C[c[k]]}$ אז $P_{C[c[k]]}$ אז $P_{C[c[k]]}$ אפשר להמשיך כך והתהליך יעצר כאשר נגיע אם $P_{C[k]}$ אז $P_{C[k]}$ שיכולה להיות סיפא של $P_{C[k]}$ היא $P_{C[k]}$ (מחרוזת ריקה) ואז בהכרח $P_{C[k]}$

האלגוריתם:

- C[0] = -1 .1
- C[1] = 0 .2
- k = 2, ..., m עבור.3
- .d = C[k-1] .a
- d=C[d] גם $d\geq 0$ וגם $P[d]\neq P[k-1]$.b
 - .C[k] = d + 1 .c

לדוגמא, עבור המחרוזת P=aabaabab החישוב יתבצע כדלקמן:

- .C[0] = -1 .1
 - C[1] = 0 .2
- ${\cal C}[2]=$ א תתבצע ונקבל b ולכן הלולאה ל א א א ונקבל ${\cal P}[2-1]=a$. ${\cal C}[2-1]=0$: ${\cal C}[2]=0$. ${\cal C}[2]=0$.
- d=-1 ולכן לאחר הלולאה וו- P[3-1]=b ו- d=C[3-1]=1 : C[3]=0 .4 C[3]=-1+1=0 אז נקבל C[3]=-1+1=0 אז נקבל
- P[4]=a=ט (כי a=c[5-1]=1 אז הלולאה b איז הלולאה b ו-4 אור a=c[5-1]=a ו-6 אז נקבל c=a=0 ו-8 און c=a=0 אז הלולאה b און c=a=0 ו-8 או
 - P[5]=bו. ו- ו- d=C[6-1]=2:C[6] אז הלולאה b איז הלולאה מישוב d=C[6-1]=2:C[6] אז נקבל C[6]=2+1=3 אז נקבל C[6]=2+1=3
 - P[6]= ט (כי = [7-1]= אז הלולאה לא תתבצע b ו- ו- ו- [7-1]= ו- ו- ו- [6]= פ ו- ו- ו- [6]= אז הלולאה b אז נקבל [6]= אז נקבל [6]= ו- ו- [6]= אז נקבל [6]= ו- ו- ו- [6]= אז נקבל [6]= ו- ו- ו- [6]= אז נקבל [6]= ו- ו- ו- [6]= אז הלולאה b אז נקבל [6]= ו- ו- ו- [6]= אז הלולאה b אז נקבל [6]= ו- ו- ו- [6]= אז הלולאה b אז נקבל [6]= ו- ו- ו- [6]= אז הלולאה b אז נקבל [6]= ו- ו- ו- [6]= אז הלולאה b אז נקבל [6]= אז נקבל [6]= ו- ו- [6]= אז הלולאה b אז נקבל [6]= אז הלולאה b אז נקבל [6]= אז הלולאה b אז נקבל [6]= אז הלולאה b אז הלולאה b אז נקבל [6]= אז הלולאה b אז הלולאה b
 - מתקיים . P[8-1]=b ו- ו- d=C[8-1]=4 : C[8] . מתקיים . 9 P[d]=P[4]=a P[C[d]]=P[C[4]]=P[1]=a . In the second constant P[C[d]]=P[C[4]