Custom T_EX commands

Size-adaptive math

	(x)	parantheses
	[x]	brackets
	x	absolute value
	$ x ^2$	absolute value squared
${}$	[x, y]	commutator
	$\langle x \rangle$	mean value

Braket Notation

	$\langle x $	bra
	$ x\rangle$	ket
{}	$\langle x y\rangle$	scalar product
{}	$ x\rangle\langle y $	ket-bra operator
\braketop(3 arguments)	$\langle x y z\rangle$	matrix element
\smallbraketop(3 arguments)	$\langle x y z\rangle$	small matrix element

Special functions

 $\delta(x)$	delta function
 $\theta(x)$	theta function
 $\exp(x)$	exponential function
 e^x	exponential function
 Re(x)	real part
 Im(x)	imaginary part

Named states

\ketPsi $|\Psi
angle$

\ketpsi	$ \psi angle$	
\ketphi	arphi angle	
		gnin un
\ketup	 ↑⟩	spin up
\ketdo	 	spin down
\ketzero	$ 0\rangle$	
\ketone	$ 1\rangle$	
\ketg	$ g\rangle$	ground state
\kete	$ e\rangle$	excited state
\vac	$ { m vac}\rangle$	vacuum
Vectors		
\vecr	\mathbf{r}	
\vecrone	$\mathbf{r_1}$	
\vecrtwo	$\mathbf{r_2}$	
\vecrn	${f r_N}$	
\vecri	$\mathbf{r_i}$	
\vecrj	$\mathbf{r_{j}}$	
\vecx	X	
\vecy	\mathbf{y}	
\vecz	${f z}$	
\vecxi	$\mathbf{x_i}$	
\vecxj	$\mathbf{x_j}$	
\veck	k	
\vecq	\mathbf{q}	
\vecp	p	
Differentiation		
	$\frac{\partial}{\partial x}$	partial differentiation
	~ ~~	

\laplace	$ abla^2$	laplace operator
Integration		
	$\int dx$	integral
\integralb(3 arguments)	$\int_{z}^{y} dz$	integral with boundaries
{}	$\int \frac{\mathrm{d}x}{y}$	integral with fraction
\intvol	$\int \! \mathrm{d}^3 r$	integral over r space
\intvolp	$\int \! \mathrm{d}^3 r'$	integral over r' space
\intvold	$\int \! \mathrm{d}^3 r \int \! \mathrm{d}^3 r'$	double integral over space
\intk	$\int \! \mathrm{d}^3 k$	integral over k space
\intkp	$\int \! \mathrm{d}^3 k'$	integral over k' space
\intkn	$\int \frac{\mathrm{d}^3 k}{(2\pi)^3}$	normalized integral over k space
\intkpn	$\int \frac{\mathrm{d}^3 k'}{(2\pi)^3}$	normalized integral over k' space
Special symbols		
\hc	h.c.	hermitian conjugate
\hamil	Ĥ	Hamilton operator
\hastobe	<u>!</u>	has to be
\eqhat	_	corresponds to, is equivalent
\id	1	identity matrix
Second quantization		
\aop	a	annihilation operator
\aopd	a^{\dagger}	creation operator
\bop	b	annihilation operator
\bopd	b^{\dagger}	creation operator
\cop	c	annihilation operator
\copd	c^{\dagger}	creation operator

\nop	n	number operator
\psiop	$\hat{\psi}$	field operator
\psiopd	$\hat{\psi}^{\dagger}$	
\PsiOp	$\hat{\Psi}$	
\PsiOpd	$\hat{\Psi}^{\dagger}$	

Differences

\Dx Δx \Dy Δy \Dt Δt

Figures

```
\igopt{..}{..}
\ig{..}{..}
\figopt(4 arguments)
\fig(3 arguments)
\doublefigopt(8 arguments)
\doublefig(7 arguments)
\figref{..}
```