CS 201 Homework 2

CPU: Intel i7 4720HQ (2.3 Ghz)

Note: ns = nanosecond, μ s = microsecond, ms = millisecond.

Linear Search:

	i)Key close to begin	ii)Key close to middle	iii)Key close to end	iv) wrong key
N = 100	55 ns	231 ns	405 ns	403 ns
N = 1000	60 ns	1809 ns	3555 ns	3547 ns
N = 10000	55 ns	20 μs	36 μs	36 μs
N = 100000	56 ns	177 μs	352 μs	353 μs
N = 1000000	57 ns	1756 μs	3516 μs	3502 μs
N = 10000000	54 ns	19 ms	36 ms	37 ms
N = 100000000	57 ns	178 ms	353 ms	352 ms

- Values grow very rapidly. It starts from nanosecond range and goes all the way up to microsecond range.

Binary Search:

	i)Key close to begin	ii)Key close to middle	iii)Key close to end	iv) wrong key
N = 100	99 ns	53 ns	96 ns	95 ns
N = 1000	124 ns	55 ns	117 ns	117 ns
N = 10000	138 ns	57 ns	149 ns	149 ns
N = 100000	182 ns	54 ns	172 ns	175 ns
N = 1000000	205 ns	56 ns	195 ns	200 ns
N = 10000000	242 ns	52 ns	229 ns	232 ns
N = 100000000	267ns	59 ns	271 ns	271 ns

- Values grow very slowly. Always stays in the nanosecond range.

Note: In order to find values in nanosecond range I run a loop $M=10^6$ times and divided the results with M to found the nanosecond values.

Plots:

Note1: Red lines are theoretical values (O(N) for linear, O(log2N) for binary).

Note2: Circles are table values that I have obtained from the c++ code.

Note3: You can check the Appendix 1 for the MATLAB code that I have used to draw plots.

IMPORTANT NOTE: I have used **logarithmic scale** since we are dealing with **large range of quantities**.

Binary Search:

Linear Search(Y axis is very large, it goes up to 20×10^7 nano seconds):

Comments:

Best case scenario: For Linear Search, it is when the key is close to beginning (it is around 54-60 ns), for Binary search when the key is exactly middle (it is around 53-59 ns). It just founds the key in first try so that it is very fast but this does not give us much information

Worst case scenario: For Linear Search, it is when the key is not found or very close to end (For biggest N it is around 352ms). For Binary search it is around 271 ns.

Worst case scenario: For Linear Search, it is when the key is not found or very close to end (For biggest N it is around 352ms). For Binary search it is around 271 ns.

Average case scenario: It is similar to worst case scenario linear search: 350ms and binary search: 270ns.

Conclusion:

We can see that the Sequential Search behaves in like O(N). It starts from low number but when the N is increased the execution times skyrockets. Binary search follows O(logN) growth. As you can see the values start from 90ns range and only goes up to 270ns range unlike sequential which goes up to millisecond range. When the N is small Sequential Search and Binary search don't have any noticeable but as the N increases, the Sequential Search becomes extremely slow. It goes from nanoseconds range to milliseconds range, grows very fast compared to binary search.

Appendix 1

```
N = [100 \ 1000 \ 10000 \ 100000 \ 1000000 \ 10000000 \ 10000000];
x = log2(N).*10;
binary1 = [99 124 138 182 205 242 267];
binary2 = [53 55 57 54 56 52 59];
binary3 = [96 117 149 172 195 229 271];
binary4 = [95 117 149 175 200 232 271];
figure(1)
semilogx(N, binary1,'o');
hold on
semilogx(N, x);
title("i) Key close to beginning");
xlabel("N");
ylabel("Nanoseconds");
grid on
figure(2)
semilogx(N, binary2,'o');
hold on
semilogx(N, 53.*ones(1, length(N)));
ylim([0 100])
title("ii) Key close to middle");
xlabel("N");
ylabel("Nanoseconds");
grid on
figure(3)
semilogx(N, binary3,'o');
hold on
semilogx(N, x);
title("iii) Key close to end");
xlabel("N");
ylabel("Nanoseconds");
grid on
figure (4)
semilogx(N, binary4,'o');
hold on
semilogx(N, x);
title("iv) Key is not found");
xlabel("N");
ylabel("Nanoseconds");
grid on
```