Modeling Terms in the λ -Calculus with letrec

(by Term Graphs and Finite-State Automata)

Clemens Grabmayer

Gran Sasso Science Institute L'Aquila, Italy

Computational Logic & Applications Université de Versailles

July 1-2, 2019

Aim

- are faithful to the unfolding semantics,
- facilitate use of standard methods for term graphs and DFAs,
- stay close to the term notation:

Aim

- are faithful to the unfolding semantics,
- ▶ facilitate use of standard methods for term graphs and DFAs,
- stay close to the term notation:
 - use scope sharing,

Aim

- are faithful to the unfolding semantics,
- facilitate use of standard methods for term graphs and DFAs,
- stay close to the term notation:
 - use extended-scope sharing,

Aim

- are faithful to the unfolding semantics,
- facilitate use of standard methods for term graphs and DFAs,
- stay close to the term notation:
 - use extended-scope sharing,
 - not context sharing from optimal λ -reduction.

Aim

Explain graph representations for (abstracted) functional programs (λ -terms with recursive bindings) that:

- are faithful to the unfolding semantics,
- facilitate use of standard methods for term graphs and DFAs,
- stay close to the term notation:
 - use extended-scope sharing,
 - not context sharing from optimal λ -reduction.

Results from the interdisciplinary research project ROS (Realising Optimal Sharing, Utrecht University, 2009–2014/16), which brought together:

- term rewriters and logicians (philosophy department, UU)
 - Vincent van Oostrom, CG
- Haskell implementors (CS department, UU)
 - Doaitse Swierstra, Atze Dijkstra, Jan Rochel

Overview

- $ightharpoonup \lambda$ -calculus with letrec (λ_{letrec})
- **Expressibility** of λ_{letrec} via unfolding

• Maximal sharing of functional programs in λ_{letrec}

► Nested term graphs

- $ightharpoonup \lambda$ -calculus with letrec (λ_{letrec})
- **Expressibility** of λ_{letrec} via unfolding
 - Which infinite λ -terms are unfoldings of λ_{letrec} -terms?
- ► Maximal sharing of functional programs in λ_{letrec}
 - How can \(\lambda_{\text{letrec}}\)-terms be compressed maximally while preserving their nested scope-structure?

- ▶ Nested term graphs
 - ▶ How to get a general framework for terms with nested scopes?

- $ightharpoonup \lambda$ -calculus with letrec (λ_{letrec})
- **Expressibility** of λ_{letrec} via unfolding
 - Which infinite λ -terms are unfoldings of λ_{letrec} -terms?
 - ▶ strongly regular λ^{∞} -terms
- Maximal sharing of functional programs in λ_{letrec}
 - How can \(\lambda_{\text{letrec}}\)-terms be compressed maximally while preserving their nested scope-structure?

- ▶ Nested term graphs
 - ▶ How to get a general framework for terms with nested scopes?

- $ightharpoonup \lambda$ -calculus with letrec (λ_{letrec})
- **Expressibility** of λ_{letrec} via unfolding
 - Which infinite λ -terms are unfoldings of λ_{letrec} -terms?
 - ▶ strongly regular λ^{∞} -terms
- Maximal sharing of functional programs in λ_{letrec}
 - How can \(\lambda_{\text{letrec}}\)-terms be compressed maximally while preserving their nested scope-structure?
 - ▶ formalization as (higher-/first-order) term graphs and DFAs
 - minimization / readback / efficiency / Haskell implementation
- Nested term graphs
 - ▶ How to get a general framework for terms with nested scopes?

- $ightharpoonup \lambda$ -calculus with letrec $(\lambda_{\text{letrec}})$
- **Expressibility** of λ_{letrec} via unfolding
 - Which infinite λ -terms are unfoldings of λ_{letrec} -terms?
 - ▶ strongly regular λ^{∞} -terms
- Maximal sharing of functional programs in λ_{letrec}
 - How can \(\lambda_{\text{letrec}}\)-terms be compressed maximally while preserving their nested scope-structure?
 - ▶ formalization as (higher-/first-order) term graphs and DFAs
 - minimization / readback / efficiency / Haskell implementation
- Nested term graphs
 - ▶ How to get a general framework for terms with nested scopes?
 - term graphs with inbuilt nesting

aim/ov

The λ -Calculus with letrec

$$(\lambda f. \text{ letrec } r = f r \text{ in } r) M$$

aim/ov

The λ -Calculus with letrec

$$(\lambda f. \operatorname{let} r = f r \operatorname{in} r) M$$

The λ -Calculus

Terms in the λ -calculus

(over set Var of variables):

(variable,
$$x \in Var$$
)
(application)
(abstraction)

The λ -Calculus

Terms in the λ -calculus

(over set Var of variables):

(variable, $x \in Var$) (application) (abstraction)

$$(\lambda x. M) N \rightarrow_{\beta} M[x := N]$$
 (β -reduction step)

The λ -Calculus

Terms in the λ -calculus

(over set
$$Var$$
 of variables):

$$(\lambda x. M) N \rightarrow_{\beta} M[x := N]$$
 (\$\beta\$-reduction step)
 $\lambda x. M \rightarrow_{\alpha} \lambda y. M[x := y]$ (\$\alpha\$-conversion step)

Terms in the λ -calculus (λ _{letrec}) with letrec (over set Var of variables):

$$(\lambda x. M) N \rightarrow_{\beta} M[x := N]$$
 (\$\beta\$-reduction step)
 $\lambda x. M \rightarrow_{\alpha} \lambda y. M[x := y]$ (\$\alpha\$-conversion step)

Terms in the λ -calculus (λ _{letrec}) with letrec (over set Var of variables):

$$(\lambda x. M) N \rightarrow_{\beta} M[x := N]$$
 (β -reduction step)
 $\lambda x. M \rightarrow_{\alpha} \lambda y. M[x := y]$ (α -conversion step)

Terms in the λ -calculus (λ _{letrec}) with letrec (over set Var of variables):

Notation: letrec = let (like in Haskell).

$$(\lambda x. M) N \rightarrow_{\beta} M[x := N]$$
 (\$\beta\$-reduction step)
 $\lambda x. M \rightarrow_{\alpha} \lambda y. M[x := y]$ (\$\alpha\$-conversion step)

Terms in the λ -calculus (λ _{letrec}) with letrec (over set Var of variables):

Notation: letrec = let (like in Haskell).

$$(\lambda x. M) N \rightarrow_{\beta} M[x := N]$$
 (\$\beta\$-reduction step)
 $\lambda x. M \rightarrow_{\alpha} \lambda y. M[x := y]$ (\$\alpha\$-conversion step)

Terms in the λ -calculus (λ _{letrec}) with letrec (over set Var of variables):

Notation: letrec = let (like in Haskell).

Rewriting in λ_{letrec} :

$$(\lambda x. M) N \rightarrow_{\beta} M[x := N] \qquad (\beta\text{-reduction step})$$

$$\lambda x. M \rightarrow_{\alpha} \lambda y. M[x := y] \qquad (\alpha\text{-conversion step})$$
let $B \text{ in } M \rightarrow_{\nabla} \dots$ (unfolding steps)

For fix :=
$$\lambda f$$
. let $r = f r$ in r we find: fix

For fix :=
$$\lambda f$$
. let $r = f r$ in r we find:
fix = λf . let $r = f r$ in r

For fix :=
$$\lambda f$$
. let $r = f r$ in r we find:
fix = λf . let $r = f r$ in r
 $\rightarrow_{\nabla} \lambda f$. let $r = f r$ in $f r$

For fix := λf . let r = f r in r we find: fix = λf . let r = f r in r $\rightarrow_{\nabla} \lambda f$. let r = f r in f r $\rightarrow_{\nabla} \lambda f$. (let r = f r in f) (let r = f r in r)

For fix := λf . let r = f r in r we find: fix = λf . let r = f r in r $\rightarrow_{\nabla} \lambda f$. let r = f r in f r $\rightarrow_{\nabla} \lambda f$. (let r = f r in f) (let r = f r in r) $\rightarrow_{\nabla} \lambda f$. f (let r = f r in r)

For fix := λf . let r = f r in r we find: fix = λf . let r = f r in r $\rightarrow_{\nabla} \lambda f$. let r = f r in f r $\rightarrow_{\nabla} \lambda f$. (let r = f r in f) (let r = f r in r) $\rightarrow_{\nabla} \lambda f$. (let r = f r in r)

For fix := λf . let r = fr in r we find: fix = λf . let r = fr in r $\rightarrow_{\nabla} \lambda f$. let r = fr in fr $\rightarrow_{\nabla} \lambda f$. (let r = fr in f) (let r = fr in r) $\rightarrow_{\nabla} \lambda f$. f (let fr in fr) $\rightarrow_{\nabla} \lambda f$. f (let fr in fr) $\rightarrow_{\nabla} \lambda f$. f (let fr in fr))

For $fix := \lambda f$. let r = f r in r we find: $fix = \lambda f \cdot let r = f r in r$ \rightarrow_{∇} λf . | let r = f r in f r | \rightarrow_{∇} $\lambda f.$ (let r = f r in f) (let r = f r in r) \rightarrow_{∇} $\lambda f. f([\text{let } r = f r \text{ in } r])$ \rightarrow ∇ $\lambda f. f(f(...f([let r = f r in r])))$ \longrightarrow_{∇} $\lambda f. f(f(\dots f(\dots)))$

For $fix := \lambda f$. let r = f r in r we find: $fix = \lambda f \cdot let r = f r in r$ \rightarrow_{∇} λf . let r = f r in f r \rightarrow_{∇} $\lambda f.$ (let r = f r in f) (let r = f r in r) \rightarrow_{∇} $\lambda f. f(\text{let } r = f r \text{ in } r)$ $\rightarrow \rightarrow$ $\lambda f. f(f(\text{let } r = f r \text{ in } r))$ $\rightarrow \rightarrow \rightarrow \lambda f. f(f(\dots f(\text{let } r = f r \text{ in } r)))$ \longrightarrow_{∇} $\lambda f. f(f(\dots f(\dots)))$

For $fix := \lambda f$. let r = f r in r we find: $fix = \lambda f \cdot let r = f r in r$ \rightarrow_{∇} λf . let r = f r in f r \rightarrow_{∇} $\lambda f.$ (let r = f r in f) (let r = f r in r) \rightarrow_{∇} $\lambda f. f(\text{let } r = f r \text{ in } r)$ $\rightarrow \rightarrow$ $\lambda f. f(f(\text{let } r = f r \text{ in } r))$ $\rightarrow \rightarrow \rightarrow \lambda f. f(f(\dots f(\text{let } r = f r \text{ in } r)))$ \longrightarrow $\lambda f. f(f(...f(...)))$ $\llbracket \mathsf{fix} \rrbracket_{\lambda^{\infty}}$

For
$$\mbox{ fix} \coloneqq \lambda f. \mbox{ let } r = f \, r \, \mbox{ in } r \quad \mbox{ we find:}$$

$$\mbox{ fix} \, M$$

For fix :=
$$\lambda f$$
. let $r = f r$ in r we find: fix M

$$M(\operatorname{fix} M)$$

For fix :=
$$\lambda f \cdot \text{let } r = f r \text{ in } r$$
 we find:
fix $M = (\lambda f \cdot \text{let } r = f r \text{ in } r) M$

$$M(\operatorname{fix} M)$$

For fix :=
$$\lambda f$$
. let $r = f r$ in r we find:
$$\text{fix} \, M = (\lambda f . \, \text{let} \, r = f \, r \, \text{in} \, r) \, M$$

$$\rightarrow_{\beta} \quad \text{let} \, r = M \, r \, \text{in} \, r$$

$$M(\operatorname{fix} M)$$

For fix :=
$$\lambda f \cdot \det r = f r \text{ in } r$$
 we find:

$$\begin{aligned}
\text{fix} \, M &= \left(\lambda f \cdot \det r = f r \text{ in } r\right) M \\
&\to_{\beta} \quad \det r = M r \text{ in } r \\
&\to_{\nabla} \quad \det r = M r \text{ in } M r
\end{aligned}$$

$$M(\operatorname{fix} M)$$

For fix :=
$$\lambda f$$
. let $r = f r$ in r we find:
fix $M = (\lambda f .$ let $r = f r$ in r) M
 \rightarrow_{β} let $r = M r$ in r
 \rightarrow_{∇} let $r = M r$ in $M r$
 \rightarrow_{∇} (let $r = M r$ in M) (let $r = M r$ in r)

$$M(\operatorname{fix} M)$$

For
$$\operatorname{fix} := \lambda f \cdot \operatorname{let} r = f r \operatorname{in} r$$
 we find:
$$\operatorname{fix} M = (\lambda f \cdot \operatorname{let} r = f r \operatorname{in} r) M$$

$$\to_{\beta} \operatorname{let} r = M r \operatorname{in} r$$

$$\to_{\nabla} \operatorname{let} r = M r \operatorname{in} M r$$

$$\to_{\nabla} (\operatorname{let} r = M r \operatorname{in} M) (\operatorname{let} r = M r \operatorname{in} r)$$

$$\to_{\nabla} M (\operatorname{let} r = M r \operatorname{in} r)$$

$$M (\operatorname{fix} M)$$

For $fix := \lambda f$. let r = f r in r we find: $fix M = (\lambda f. let r = f r in r) M$ \rightarrow_{β} let r = M r in r \rightarrow_{∇} let r = M r in M r(let r = M r in M) (let r = M r in r) $\rightarrow_{\nabla} M(\text{let } r = M r \text{ in } r)$ \leftarrow_{β} $M((\lambda f. \text{let } r = f r \text{ in } r) M)$ M(fix M)

For $fix := \lambda f$. let r = f r in r we find: $fix M = (\lambda f. let r = f r in r) M$ \rightarrow_{β} let r = M r in r \rightarrow_{∇} let r = M r in M r(let r = M r in M) (let r = M r in r) $\rightarrow_{\nabla} M(\text{let } r = M r \text{ in } r)$ \leftarrow_{β} $M((\lambda f. \text{let } r = f r \text{ in } r) M)$ = M(fix M)

For
$$\operatorname{fix} := \lambda f \cdot \operatorname{let} r = f r \operatorname{in} r$$
 we find:
$$\operatorname{fix} M = (\lambda f \cdot \operatorname{let} r = f r \operatorname{in} r) M$$

$$\to_{\beta} \operatorname{let} r = M r \operatorname{in} r$$

$$\to_{\nabla} \operatorname{let} r = M r \operatorname{in} M r$$

$$\to_{\nabla} (\operatorname{let} r = M r \operatorname{in} M) (\operatorname{let} r = M r \operatorname{in} r)$$

$$\to_{\nabla} M (\operatorname{let} r = M r \operatorname{in} r)$$

$$\leftarrow_{\beta} M ((\lambda f \cdot \operatorname{let} r = f r \operatorname{in} r) M)$$

$$= M (\operatorname{fix} M)$$

$$\operatorname{fix} M \leftrightarrow_{\beta \nabla}^* M (\operatorname{fix} M)$$

For fix :=
$$\lambda f$$
. let $r = f r$ in r we find:
fix $M = (\lambda f .$ let $r = f r$ in r) M
 \rightarrow_{β} let $r = M r$ in r
 \rightarrow_{∇} let $r = M r$ in M (let $r = M r$ in r)
 \rightarrow_{∇} M (let $r = M r$ in r)
 \leftarrow_{β} M ($(\lambda f .$ let $r = f r$ in r) M)
 $= M$ (fix M)
fix $M \leftrightarrow_{\beta \nabla}^* M$ (fix M)
 $\leftrightarrow_{\beta \nabla}^* M$ (M (... (M (fix M))...))

For fix :=
$$\lambda f$$
. let $r = f r$ in r we find:
fix $M = (\lambda f . \operatorname{let} r = f r \operatorname{in} r) M$
 $\rightarrow_{\beta} \operatorname{let} r = M r \operatorname{in} r$
 $\rightarrow_{\nabla} \operatorname{let} r = M r \operatorname{in} M r$
 $\rightarrow_{\nabla} (\operatorname{let} r = M r \operatorname{in} M) (\operatorname{let} r = M r \operatorname{in} r)$
 $\rightarrow_{\nabla} M (\operatorname{let} r = M r \operatorname{in} r)$
 $\leftarrow_{\beta} M ((\lambda f . \operatorname{let} r = f r \operatorname{in} r) M)$
 $= M (\operatorname{fix} M)$
fix $M \leftrightarrow_{\beta \nabla}^{*} M (\operatorname{fix} M)$
 $\leftrightarrow_{\beta \nabla}^{*} M (M (\dots (M (\operatorname{fix} M)) \dots))$
 $(\rightarrow_{\beta \nabla}^{*} \leftarrow_{\beta})^{\omega} M (M (\dots (M (\dots)) \dots))$.

Expressibility of λ_{letrec} via unfolding

(joint work with Jan Rochel)

Example

let $f = \lambda x. \lambda y. f y x$ in f

Example

let $f = \lambda x. \lambda y. f y x$ in f

$$\mathsf{let} \ f = \lambda x. \, \lambda y. \, f \, y \, x \, \mathsf{in} \, f \qquad \mathop{\longrightarrow}_{\triangledown} \qquad \lambda xy. \, (\lambda xy. \, (\lambda xy. \, (\lambda xy. \, (\ldots) \, y \, x) \, y \, x) \, y \, x$$

$$\mathsf{let} \ f = \lambda x. \, \lambda y. \, f \, y \, x \, \mathsf{in} \, f \qquad \mathop{\longrightarrow}_{\triangledown} \qquad \lambda xy. \, (\lambda xy. \, (\lambda xy. \, (\lambda xy. \, (\ldots) \, y \, x) \, y \, x) \, y \, x$$

$$\mathsf{let} \ f = \lambda x. \, \lambda y. \, f \, y \, x \, \mathsf{in} \, f \qquad \mathop{\longrightarrow}_{\triangledown} \qquad \lambda xy. \, (\lambda xy. \, (\lambda xy. \, (\lambda xy. \, (\ldots) \, y \, x) \, y \, x) \, y \, x$$

$$\longrightarrow \beta$$
 $\longrightarrow \beta$

$$\mathsf{let} \ f = \lambda x. \, \lambda y. \, f \, y \, x \, \mathsf{in} \ f \qquad \Longrightarrow_{\triangledown} \qquad \lambda xy. \, (\lambda xy. \, (\lambda xy. \, (\lambda xy. \, (\ldots) \, y \, x) \, y \, x) \, y \, x \\ \qquad \qquad \qquad \lambda x. \, \lambda y. \, \mathsf{let} \ f = f \, \mathsf{in} \ f$$

let
$$f = \lambda xy$$
. $f y x$ in f

term graph syntax tree

let
$$f = \lambda xy$$
. $f y x$ in f

term graph syntax tree bindings

let
$$f = \lambda xy$$
. $f y x$ in f

term graph syntax tree bindings finite entanglement

let
$$f = \lambda xy$$
. $f y x$ in f

term graph syntax tree bindings scopes finite entanglement

let
$$f = \lambda xy$$
. $f y x$ in f

term graph syntax tree

bindings finite

entanglement

scope⁺s

scopes

let
$$f = \lambda xy$$
. $f y x$ in f

term graph syntax tree

bindings finite entanglement scopes

scope+s finite nesting

syntax tree

Not λ_{letrec} -expressible 'regular' λ^{∞} -term

syntax tree bindings

Not λ_{letrec} -expressible 'regular' λ^{∞} -term

syntax tree bindings infinitely entangled

Not λ_{letrec} -expressible 'regular' λ^{∞} -term

syntax tree bindings scopes infinitely entangled

Not λ_{letrec} -expressible 'regular' λ^{∞} -term

syntax tree bindings scopes scope⁺s infinitely entangled infinite nesting

Deconstructing/observing λ^{∞} -terms

 $()\lambda x. \lambda y. x x y$

$$()\lambda x. \lambda y. x x y \to_{\lambda} (x) \lambda y. x x y$$

$$(x_1 \dots x_n) \lambda x_{n+1} \dots M_0 \rightarrow_{\lambda} (x_1 \dots x_{n+1}) M_0$$

$$()\lambda x. \lambda y. x x y \to_{\lambda} (x) \lambda y. x x y \to_{\lambda} (xy) x x y$$

$$(x_1 \dots x_n) \lambda x_{n+1} \dots M_0 \rightarrow_{\lambda} (x_1 \dots x_{n+1}) M_0$$

$$()\lambda x. \lambda y. x x y \rightarrow_{\lambda} (x) \lambda y. x x y \rightarrow_{\lambda} (xy) x x y \rightarrow_{@_0} (xy) x x$$

$$(x_1 \dots x_n) M_0 M_1 \to_{@_i} (x_1 \dots x_n) M_i \quad (i \in \{0, 1\})$$

 $(x_1 \dots x_n) \lambda x_{n+1} M_0 \to_{\lambda} (x_1 \dots x_{n+1}) M_0$

$$()\lambda x. \lambda y. x x y \rightarrow_{\lambda} (x) \lambda y. x x y \rightarrow_{\lambda} (xy) x x y \rightarrow_{\mathbb{Q}_{0}} (xy) x x \rightarrow_{\mathbb{S}} (x) x x$$

$$()\lambda x. \lambda y. x x y \rightarrow_{\lambda} (x) \lambda y. x x y \rightarrow_{\lambda} (xy) x x y \rightarrow_{\mathbb{Q}_0} (xy) x x \rightarrow_{\mathbb{S}} (x) x x \rightarrow_{\mathbb{Q}_0} (x) x$$

$$\begin{array}{lll} (x_1 \dots x_n) \, M_0 \, M_1 \, \to_{@_i} \, (x_1 \dots x_n) \, M_i & (i \in \{0,1\}) \\ (x_1 \dots x_n) \, \lambda x_{n+1} \cdot M_0 \, \to_{\lambda} \, (x_1 \dots x_{n+1}) \, M_0 \\ (x_1 \dots x_n x_{n+1}) \, M_0 \, \to_{\mathbb{S}} \, (x_1 \dots x_n) \, M_0 & (\text{if } \lambda x_{n+1} \text{ is vacuous}) \end{array}$$

$$()\lambda x. \lambda y. xxy \rightarrow_{\lambda} (x)\lambda y. xxy \rightarrow_{\lambda} (xy)xxy \rightarrow_{@_0} (xy)xx \rightarrow_{S} (x)xx \rightarrow_{@_0} (x)x$$

 $\rightarrow_{\mathsf{reg}^+}$ -generated subterms of $\lambda x. \lambda y. xxy$ w.r.t. rewrite relation $\rightarrow_{\mathsf{reg}^+}$:

$$(x_1 \dots x_n) M_0 M_1 \to_{@_i} (x_1 \dots x_n) M_i \quad (i \in \{0, 1\})$$

 $(x_1 \dots x_n) \lambda x_{n+1} M_0 \to_{\lambda} (x_1 \dots x_{n+1}) M_0$
 $(x_1 \dots x_n x_{n+1}) M_0 \to_{S} (x_1 \dots x_n) M_0 \quad (\text{if } \lambda x_{n+1} \text{ is vacuous})$

$$()\lambda x. \lambda y. xxy \rightarrow_{\lambda} (x)\lambda y. xxy \rightarrow_{\lambda} (xy)xxy \rightarrow_{@_0} (xy)xx \rightarrow_{S} (x)xx \rightarrow_{@_0} (x)x$$

 $\rightarrow_{\mathsf{reg}^+}$ -generated subterms of $\lambda x. \lambda y. xxy$ w.r.t. rewrite relation $\rightarrow_{\mathsf{reg}^+}$:

$$\begin{array}{lll} (x_1 \dots x_n) \, M_0 \, M_1 \, \to_{@_i} \, (x_1 \dots x_n) \, M_i & (i \in \{0,1\}) \\ (x_1 \dots x_n) \, \lambda x_{n+1} \, M_0 \, \to_{\lambda} \, (x_1 \dots x_{n+1}) \, M_0 \\ (x_1 \dots x_n x_{n+1}) \, M_0 \, \to_{\mathbb{S}} \, (x_1 \dots x_n) \, M_0 & (\text{if } \lambda x_{n+1} \text{ is vacuous}) \end{array}$$

formalized as a CRS, e.g. rule:

$$\operatorname{pre}_n(\lceil x_1 \dots x_n \rceil \operatorname{abs}(\lceil x_{n+1} \rceil Z(\vec{x}))) \to \operatorname{pre}_{n+1}(\lceil x_1 \dots x_{n+1} \rceil Z(\vec{x}))$$

$$()\lambda x. \lambda y. x x y \rightarrow_{\lambda}
(x) \lambda y. x x y \rightarrow_{\lambda}
(xy) x x y \rightarrow_{\mathbb{Q}_0}
(xy) x x y \rightarrow_{\mathbb{Q}_0}
(xy) x x y \rightarrow_{\mathbb{Q}_0}
(xy) x x y \rightarrow_{\mathbb{Q}_1}
(xy) x x y$$

 $\rightarrow_{\mathsf{reg}^+}$ -generated subterms of $\lambda x. \lambda y. xxy$ w.r.t. rewrite relation $\rightarrow_{\mathsf{reg}^+}$:

formalized as a CRS, e.g. rule:

$$\operatorname{pre}_n(\lceil x_1 \dots x_n \rceil \operatorname{abs}(\lceil x_{n+1} \rceil Z(\vec{x}))) \to \operatorname{pre}_{n+1}(\lceil x_1 \dots x_{n+1} \rceil Z(\vec{x}))$$

Generated subterms

$$()\lambda x. \lambda y. x x y \rightarrow_{\lambda} (x) \lambda y. x x y \rightarrow_{\lambda} (xy) x x y \rightarrow_{@_{1}} (xy) y$$

$$\begin{array}{lll} (x_1 \dots x_n) \, M_0 \, M_1 \, \to_{@_i} \, (x_1 \dots x_n) \, M_i & (i \in \{0,1\}) \\ (x_1 \dots x_n) \, \lambda x_{n+1} . \, M_0 \, \to_{\lambda} \, (x_1 \dots x_{n+1}) \, M_0 \\ (x_1 \dots x_n x_{n+1}) \, M_0 \, \to_{\mathbb{S}} \, (x_1 \dots x_n) \, M_0 & (\text{if } \lambda x_{n+1} \text{ is vacuous}) \end{array}$$

 \rightarrow_{reg} -generated subterms w.r.t. rewrite relation \rightarrow_{reg} , rules above plus:

$$(x_1 \dots x_i \dots x_{n+1}) M_0 \rightarrow_{\mathsf{del}} (x_1 \dots x_{i-1} x_{i+1} \dots x_{n+1}) M_0$$
 (if λx_i is vacuous)

$$()\lambda x. \lambda y. x x y \rightarrow_{\lambda} (x) \lambda y. x x y \rightarrow_{\lambda} (xy) x x y \rightarrow_{@_{1}} (xy) y$$

$$()\lambda x. \lambda y. x x y \rightarrow_{\lambda} (x) \lambda y. x x y \rightarrow_{\lambda} (xy) x x y \rightarrow_{@_0} (xy) x x \rightarrow_{S} (x) x x \rightarrow_{@_0} (x) x$$

$$() \lambda x. \lambda y. x x y \rightarrow_{\lambda} (x) \lambda y. x x y \rightarrow_{\lambda} (xy) x x y \rightarrow_{@_0} (xy) x x \rightarrow_{S} (x) x x \rightarrow_{@_1} (x) x$$

$$(x_1 \dots x_n) M_0 M_1 \to_{@_i} (x_1 \dots x_n) M_i \quad (i \in \{0, 1\})$$

 $(x_1 \dots x_n) \lambda x_{n+1} M_0 \to_{\lambda} (x_1 \dots x_{n+1}) M_0$

 \rightarrow_{reg} -generated subterms w.r.t. rewrite relation \rightarrow_{reg} , rules above plus:

$$(x_1 \dots x_i \dots x_{n+1}) M_0 \rightarrow_{\mathsf{del}} (x_1 \dots x_{i-1} x_{i+1} \dots x_{n+1}) M_0$$
 (if λx_i is vacuous)

$$()\lambda x. \lambda y. x x y \rightarrow_{\lambda} (x) \lambda y. x x y \rightarrow_{\lambda} (xy) x x y \rightarrow_{@_{1}} (xy) y \rightarrow_{del} (y) y$$

$$()\lambda x. \lambda y. x x y \rightarrow_{\lambda} (x) \lambda y. x x y \rightarrow_{\lambda} (xy) x x y \rightarrow_{@_0} (xy) x x \rightarrow_{S} (x) x x \rightarrow_{@_0} (x) x$$

$$() \lambda x. \lambda y. x x y \rightarrow_{\lambda} (x) \lambda y. x x y \rightarrow_{\lambda} (xy) x x y \rightarrow_{@_0} (xy) x x \rightarrow_{S} (x) x x \rightarrow_{@_1} (x) x$$

$$(x_1 \dots x_n) M_0 M_1 \to_{@_i} (x_1 \dots x_n) M_i \quad (i \in \{0, 1\})$$

 $(x_1 \dots x_n) \lambda x_{n+1} M_0 \to_{\lambda} (x_1 \dots x_{n+1}) M_0$

 \rightarrow_{reg} -generated subterms w.r.t. rewrite relation \rightarrow_{reg} , rules above plus:

$$(x_1 \dots x_i \dots x_{n+1}) M_0 \rightarrow_{\mathsf{del}} (x_1 \dots x_{i-1} x_{i+1} \dots x_{n+1}) M_0$$
 (if λx_i is vacuous)

 $\rightarrow_{\mathsf{reg}^+}$ -generated subterms of $\lambda x. \lambda y. xxy$ w.r.t. rewrite relation $\rightarrow_{\mathsf{reg}^+}$:

$$\begin{array}{lll} (x_1 \dots x_n) \, M_0 \, M_1 \, \to_{@_i} \, (x_1 \dots x_n) \, M_i & (i \in \{0,1\}) \\ (x_1 \dots x_n) \, \lambda x_{n+1} \cdot M_0 \, \to_{\lambda} \, (x_1 \dots x_{n+1}) \, M_0 \\ (x_1 \dots x_n x_{n+1}) \, M_0 \, \to_{\mathbb{S}} \, (x_1 \dots x_n) \, M_0 & (\text{if } \lambda x_{n+1} \text{ is vacuous}) \end{array}$$

 \rightarrow_{reg} -generated subterms w.r.t. rewrite relation \rightarrow_{reg} , rules above <u>plus</u>:

$$(x_1 \dots x_i \dots x_{n+1}) M_0 \rightarrow_{\mathsf{del}} (x_1 \dots x_{i-1} x_{i+1} \dots x_{n+1}) M_0$$
 (if λx_i is vacuous)

 $\rightarrow_{\mathsf{reg}^+}$ -generated subterms of $\lambda x. \lambda y. xxy$ w.r.t. rewrite relation $\rightarrow_{\mathsf{reg}^+}$:

$$\begin{array}{lll} (x_1 \dots x_n) \, M_0 \, M_1 \, \to_{@_i} \, (x_1 \dots x_n) \, M_i & (i \in \{0,1\}) \\ (x_1 \dots x_n) \, \lambda x_{n+1} \cdot M_0 \, \to_{\lambda} \, (x_1 \dots x_{n+1}) \, M_0 \\ (x_1 \dots x_n x_{n+1}) \, M_0 \, \to_{\mathbb{S}} \, (x_1 \dots x_n) \, M_0 & (\text{if } \lambda x_{n+1} \text{ is vacuous}) \end{array}$$

 \rightarrow_{reg} -generated subterms w.r.t. rewrite relation \rightarrow_{reg} , rules above <u>plus</u>:

$$(x_1 \dots x_i \dots x_{n+1}) M_0 \rightarrow_{\mathsf{del}} (x_1 \dots x_{i-1} x_{i+1} \dots x_{n+1}) M_0$$
 (if λx_i is vacuous)

We use eager application of scope-closure rules for \rightarrow_{reg^+} and \rightarrow_{reg} .

Regularity and strong regularity

An infinite first-order term t is regular if:

t has only finitely many subterms.

Definition

- **1** A λ^{∞} -term M is strongly regular if:
 - () M has only finitely many \rightarrow_{reg^+} -generated subterms.

Regularity and strong regularity

An infinite first-order term t is regular if:

t has only finitely many subterms.

Definition

- **1** A λ^{∞} -term M is strongly regular if:
 - () M has only finitely many \rightarrow_{reg^+} -generated subterms.
- 2 A λ^{∞} -term N is regular if:
 - () N has only finitely many \rightarrow_{reg} -generated subterms.

$$()M = ()\lambda xy. Myx$$

 $M = \lambda xy. Myx$

aim/ov $\lambda_{
m letrec}$ express max-share interpret collapse readback complexity demo desid./results nest sum/res

Strongly regular λ^{∞} -term

$$()M = ()\lambda xy. Myx$$

$$\rightarrow_{\lambda} (x)\lambda y. Myx$$

 $M = \lambda xy. Myx$

()
$$M = ()\lambda xy. Myx$$

 $\rightarrow_{\lambda} (x)\lambda y. Myx$
 $\rightarrow_{\lambda} (xy) Myx$

 $M = \lambda xy. Myx$

()
$$M = ()\lambda xy. Myx$$

 $\rightarrow_{\lambda} (x)\lambda y. Myx$
 $\rightarrow_{\lambda} (xy) Myx$
 $\rightarrow_{@_{0}} (xy) My$

 $M = \lambda x y . M y x$

$$()M = ()\lambda xy. M y x$$

$$\rightarrow_{\lambda} (x)\lambda y. M y x$$

$$\rightarrow_{\lambda} (xy) M y x$$

$$\rightarrow_{@_{0}} (xy) M y$$

$$\rightarrow_{@_{0}} (xy) M$$

$$M = \lambda x y . M y x$$

$$()M = ()\lambda xy. Myx$$

$$\rightarrow_{\lambda} (x)\lambda y. Myx$$

$$\rightarrow_{\lambda} (xy)Myx$$

$$\rightarrow_{@_{0}} (xy)My$$

$$\rightarrow_{@_{0}} (xy)M$$

$$\rightarrow_{S} (x)M$$

$$M = \lambda x y . M y x$$

$$()M = ()\lambda xy. M y x$$

$$\rightarrow_{\lambda} (x)\lambda y. M y x$$

$$\rightarrow_{\lambda} (xy) M y x$$

$$\rightarrow_{\mathbb{Q}_{0}} (xy) M y$$

$$\rightarrow_{\mathbb{Q}_{0}} (xy) M$$

$$\rightarrow_{S} (x) M$$

$$\rightarrow_{S} ()M$$

$$M = \lambda x y . M y x$$

$$()M = ()\lambda xy. Myx$$

$$\rightarrow_{\lambda} (x)\lambda y. Myx$$

$$\rightarrow_{\lambda} (xy) Myx$$

$$\rightarrow_{@_{0}} (xy) My$$

$$\rightarrow_{@_{0}} (xy) M$$

$$\rightarrow_{S} (x) M$$

$$\rightarrow_{S} ()M$$
...

$$M = \lambda x y . M y x$$

$$M = \lambda xy. Myx$$

finitely many $\rightarrow_{\text{reg}^+}$ -generated subterms $\implies M$ is strongly regular

$$N = ()\lambda a. \lambda b. (...) a$$

$$\begin{array}{rcl}
N & = & ()\lambda a. \lambda b. (...) a \\
\rightarrow_{\lambda} & (a) \lambda b. (\lambda c. ...) a
\end{array}$$

$$\begin{array}{rcl}
N & = & ()\lambda a. \, \lambda b. \, (\dots) \, a \\
& \rightarrow_{\lambda} & (a) \, \lambda b. \, (\lambda c. \, \dots) \, a \\
& \rightarrow_{\lambda} & (ab) \, (\lambda c. \, (\dots) \, b) \, a
\end{array}$$

 λ^{∞} -term N

$$\begin{array}{rcl}
N & = & ()\lambda a.\lambda b.(...) a \\
\rightarrow_{\lambda} & (a)\lambda b.(\lambda c...) a \\
\rightarrow_{\lambda} & (ab)(\lambda c.(...) b) a \\
\rightarrow_{@_{0}} & (ab)\lambda c.(\lambda d...) b
\end{array}$$

 λ^{∞} -term N

$$\begin{array}{rcl}
N & = & ()\lambda a.\lambda b.(\dots) a \\
 & \rightarrow_{\lambda} & (a)\lambda b.(\lambda c.\dots) a \\
 & \rightarrow_{\lambda} & (ab)(\lambda c.(\dots) b) a \\
 & \rightarrow_{@_{0}} & (ab)\lambda c.(\lambda d.\dots) b \\
 & \rightarrow_{\lambda} & (abc)(\lambda d.(\dots) c) b
\end{array}$$

$$\lambda^{\infty}$$
-term N

$$\begin{array}{rcl}
N & = & ()\lambda a.\lambda b.(...) a \\
& \rightarrow_{\lambda} & (a)\lambda b.(\lambda c....) a \\
& \rightarrow_{\lambda} & (ab)(\lambda c.(...) b) a \\
& \rightarrow_{@_{0}} & (ab)\lambda c.(\lambda d....) b \\
& \rightarrow_{\lambda} & (abc)(\lambda d.(...) c) b \\
& \rightarrow_{@_{0}} & (abc)\lambda d.(\lambda e....) c
\end{array}$$

$$\lambda^{\infty}$$
-term N

$$\begin{array}{rcl}
N & = & ()\lambda a. \lambda b. (...) a \\
& \rightarrow_{\lambda} & (a) \lambda b. (\lambda c. ...) a \\
& \rightarrow_{\lambda} & (ab) (\lambda c. (...) b) a \\
& \rightarrow_{@_0} & (ab) \lambda c. (\lambda d. ...) b \\
& \rightarrow_{\lambda} & (abc) (\lambda d. (...) c) b \\
& \rightarrow_{@_0} & (abc) \lambda d. (\lambda e. ...) c \\
& \rightarrow_{\lambda} & (abcd) (\lambda e. (...) d) c
\end{array}$$

$$\lambda^{\infty}$$
-term N

$$\begin{array}{rcl}
N & = & \left(\right) \lambda a. \, \lambda b. \, \left(\ldots \right) a \\
& \rightarrow_{\lambda} & \left(a \right) \lambda b. \, \left(\lambda c. \, \ldots \right) a \\
& \rightarrow_{\lambda} & \left(a b \right) \left(\lambda c. \, \left(\ldots \right) b \right) a \\
& \rightarrow_{@_{0}} & \left(a b \right) \lambda c. \, \left(\lambda d. \, \ldots \right) b \\
& \rightarrow_{\lambda} & \left(a b c \right) \left(\lambda d. \, \left(\ldots \right) c \right) b \\
& \rightarrow_{@_{0}} & \left(a b c \right) \lambda d. \, \left(\lambda e. \, \ldots \right) c \\
& \rightarrow_{\lambda} & \left(a b c d \right) \left(\lambda e. \, \left(\ldots \right) d \right) c \\
& \rightarrow_{@_{0}} & \left(a b c d \right) \lambda e. \, \left(\lambda f. \, \ldots \right) d \\
& \cdots
\end{array}$$

$$\lambda^{\infty}$$
-term N infinitely many $\rightarrow_{\mathsf{reg}^+}$ -generated subterms $\longrightarrow N$ is not strongly regular

$$N = ()\lambda a. \lambda b. (...) a$$

 λ^{∞} -term N

$$\begin{array}{rcl}
N & = & ()\lambda a. \, \lambda b. \, (\dots) \, a \\
& \rightarrow_{\lambda} & (a) \, \lambda b. \, (\lambda c. \, \dots) \, a
\end{array}$$

 λ^{∞} -term N

$$\begin{array}{rcl}
N & = & ()\lambda a. \lambda b. (...) a \\
& \rightarrow_{\lambda} & (a)\lambda b. (\lambda c. ...) a \\
& \rightarrow_{\lambda} & (ab)(\lambda c. (...) b) a
\end{array}$$

 λ^{∞} -term N

$$\begin{array}{rcl}
N & = & ()\lambda a.\lambda b.(...) a \\
& \rightarrow_{\lambda} & (a)\lambda b.(\lambda c....) a \\
& \rightarrow_{\lambda} & (ab)(\lambda c.(...) b) a \\
& \rightarrow_{@_{0}} & (ab)\lambda c.(\lambda d....) b
\end{array}$$

 λ^{∞} -term N

$$\begin{array}{rcl}
N & = & ()\lambda a.\lambda b.(...) a \\
& \rightarrow_{\lambda} & (a)\lambda b.(\lambda c....) a \\
& \rightarrow_{\lambda} & (ab)(\lambda c.(...) b) a \\
& \rightarrow_{@_{0}} & (ab)\lambda c.(\lambda d....) b \\
& \rightarrow_{\text{del}} & (b)\lambda c.(\lambda d....) b
\end{array}$$

 λ^{∞} -term N

$$\begin{array}{rcl}
N & = & ()\lambda a.\lambda b.(\dots) a \\
& \rightarrow_{\lambda} & (a)\lambda b.(\lambda c.\dots) a \\
& \rightarrow_{\lambda} & (ab)(\lambda c.(\dots) b) a \\
& \rightarrow_{@_{0}} & (ab)\lambda c.(\lambda d.\dots) b \\
& \rightarrow_{\text{del}} & (b)\lambda c.(\lambda d.\dots) b \\
& \rightarrow_{\lambda} & (bc)(\lambda d.(\dots) c) b
\end{array}$$

 λ^{∞} -term N

$$\begin{array}{rcl}
N & = & ()\lambda a. \, \lambda b. \, (\dots) \, a \\
& \rightarrow_{\lambda} & (a) \, \lambda b. \, (\lambda c. \, \dots) \, a \\
& \rightarrow_{\lambda} & (ab) \, (\lambda c. \, (\dots) \, b) \, a \\
& \rightarrow_{@_{0}} & (ab) \, \lambda c. \, (\lambda d. \, \dots) \, b \\
& \rightarrow_{\text{del}} & (b) \, \lambda c. \, (\lambda d. \, \dots) \, b \\
& \rightarrow_{\lambda} & (bc) \, (\lambda d. \, (\dots) \, c) \, b \\
& \rightarrow_{@_{0}} & (bc) \, \lambda d. \, (\lambda d. \, \dots) \, c
\end{array}$$

 λ^{∞} -term N

$$N = ()\lambda a. \lambda b. (...) a$$

$$\rightarrow_{\lambda} (a) \lambda b. (\lambda c. ...) a$$

$$\rightarrow_{\lambda} (ab) (\lambda c. (...) b) a$$

$$\rightarrow_{@_{0}} (ab) \lambda c. (\lambda d. ...) b$$

$$\rightarrow_{del} (b) \lambda c. (\lambda d. ...) b$$

$$\rightarrow_{\lambda} (bc) (\lambda d. (...) c) b$$

$$\rightarrow_{@_{0}} (bc) \lambda d. (\lambda d. ...) c$$

$$\rightarrow_{del} (c) \lambda d. (\lambda e. ...) d$$

 λ^{∞} -term N

$$\begin{array}{rcl}
N & = & \left(\right) \lambda a. \, \lambda b. \, \left(\ldots \right) a \\
& \rightarrow_{\lambda} & \left(a \right) \lambda b. \, \left(\lambda c. \, \ldots \right) a \\
& \rightarrow_{\lambda} & \left(a b \right) \left(\lambda c. \, \left(\ldots \right) b \right) a \\
& \rightarrow_{@_{0}} & \left(a b \right) \lambda c. \, \left(\lambda d. \, \ldots \right) b \\
& \rightarrow_{\text{del}} & \left(b \right) \lambda c. \, \left(\lambda d. \, \ldots \right) b \\
& \rightarrow_{\lambda} & \left(b c \right) \left(\lambda d. \, \left(\ldots \right) c \right) b \\
& \rightarrow_{@_{0}} & \left(b c \right) \lambda d. \, \left(\lambda d. \, \ldots \right) c \\
& \rightarrow_{\text{del}} & \left(c \right) \lambda d. \, \left(\lambda e. \, \ldots \right) d \\
& \rightarrow_{\lambda} & \left(c d \right) \left(\lambda e. \, \left(\ldots \right) d \right) c
\end{array}$$

 λ^{∞} -term N

$$N = ()\lambda a.\lambda b.(...) a$$

$$\rightarrow_{\lambda} (a)\lambda b.(\lambda c...) a$$

$$\rightarrow_{\lambda} (ab)(\lambda c.(...) b) a$$

$$\rightarrow_{@_{0}} (ab)\lambda c.(\lambda d...) b$$

$$\rightarrow_{del} (b)\lambda c.(\lambda d...) b$$

$$\rightarrow_{\lambda} (bc)(\lambda d.(...) c) b$$

$$\rightarrow_{@_{0}} (bc)\lambda d.(\lambda d...) c$$

$$\rightarrow_{del} (c)\lambda d.(\lambda e...) d$$

$$\rightarrow_{\lambda} (cd)(\lambda e.(...) d) c$$

$$\rightarrow_{@_{0}} (cd)\lambda e.(\lambda f...) d$$

 λ^{∞} -term N

$$\begin{array}{rcl} N & = & \left(\right) \lambda a. \, \lambda b. \, \left(\ldots \right) a \\ \\ \rightarrow_{\lambda} & \left(a \right) \lambda b. \, \left(\lambda c. \, \ldots \right) a \\ \\ \rightarrow_{\lambda} & \left(a b \right) \left(\lambda c. \, \left(\ldots \right) b \right) a \\ \\ \rightarrow_{\mathbb{Q}_{0}} & \left(a b \right) \lambda c. \, \left(\lambda d. \, \ldots \right) b \\ \\ \rightarrow_{\text{del}} & \left(b \right) \lambda c. \, \left(\lambda d. \, \ldots \right) b \\ \\ \rightarrow_{\mathbb{Q}_{0}} & \left(b c \right) \left(\lambda d. \, \left(\ldots \right) c \right) b \\ \\ \rightarrow_{\mathbb{Q}_{0}} & \left(b c \right) \lambda d. \, \left(\lambda d. \, \ldots \right) c \\ \\ \rightarrow_{\text{del}} & \left(c \right) \lambda d. \, \left(\lambda e. \, \ldots \right) d \\ \\ \rightarrow_{\lambda} & \left(c d \right) \left(\lambda e. \, \left(\ldots \right) d \right) c \\ \\ \rightarrow_{\text{del}} & \left(d \right) \lambda e. \, \left(\lambda f. \, \ldots \right) d \\ \\ \end{array}$$

→; eg-generated subterms

 λ^{∞} -term N

$$\lambda^{\infty}$$
-term N
 $\{N = \lambda xy. R(y) x, R(z) = \lambda u. R(u) z\}$

finitely many \rightarrow_{reg} -generated subterms $\implies M$ is regular

aim/ov $\lambda_{
m letrec}$ express max-share interpret collapse readback complexity demo desid./results nest sum/res

Strongly regular ⇒ regular

Proposition

- Every strongly regular λ^{∞} -term is also regular.
- lacktriangle Finite λ -terms are both regular and strongly regular.

aim/ov $\lambda_{
m letrec}$ express max-share interpret collapse readback complexity demo desid./results nest sum/re

$\lambda_{\mathsf{letrec}} ext{-}\mathsf{Expressibility}$

Proposition

- Every strongly regular λ^{∞} -term is also regular.
- Finite λ -terms are both regular and strongly regular.

Theorem (λ_{letrec} -expressibility)

An λ^{∞} -term is λ_{letrec} -expressible if and only if it is strongly regular.

Binding-capturing chains

Definition (Melliés, van Oostrom)

```
For positions p,q,r,s: p \leadsto q : \iff \text{binder at } p \text{ binds variable occurrence at position } q r \leadsto s : \iff \text{variable occurrence at } r \text{ is captured by binding at } s
```

Binding-capturing chains: $p_0 \sim p_1 \rightarrow p_2 \sim p_3 \rightarrow p_4 \sim \dots$

Binding-capturing chains

Definition (Melliés, van Oostrom)

```
For positions p,q,r,s: p \leadsto q : \iff \text{binder at } p \text{ binds variable occurrence at position } q r \leadsto s : \iff \text{variable occurrence at } r \text{ is captured by binding at } s
```

Binding-capturing chains: $p_0 \sim p_1 \rightarrow p_2 \sim p_3 \rightarrow p_4 \sim \dots$

Main theorem (extended)

Theorem (binding-capturing chains)

For all λ^{∞} -term M:

M is strongly regular $\iff M$ is regular, and

M has only finite binding—capturing chains.

Main theorem (extended)

Theorem (binding-capturing chains)

For all λ^{∞} -term M:

M is strongly regular $\iff M$ is regular, and

M has only finite binding—capturing chains.

Theorem (λ_{letrec} -expressibility, extended)

For all λ^{∞} -terms M the following are equivalent:

- (i) M is λ_{letrec} -expressible.
- (ii) M is strongly regular.
- (iii) M is regular, and it only contains finite binding-capturing chains.

aim/ov

Maximal sharing of functional programs

(joint work with Jan Rochel)

/ov $\lambda_{
m letrec}$ express max-share interpret collapse readback complexity demo desid./results nest sum/re

Motivation, questions, and results

Motivation

- desirable: increase sharing in programs
 - code that is as compact as possible
 - avoid duplication of reduction work at run-time
- useful: check equality of unfolding semantics of programs

Questions

- (1): how to maximize sharing in programs?
- (2): how to check for unfolding equivalence?

We restrict to λ_{letrec} , the λ -calculus with letrec

as abstraction & syntactical core of functional languages

Results:

• efficient methods solving questions (1) and (2) for λ_{letrec}

/ov $\lambda_{
m | etrec}$ express max-share interpret collapse readback complexity demo desid./results nest sum/res

The method

- Methods consist of the steps:
 - 1. interpretation of λ_{letrec} -terms as term graphs
 - higher-order term graphs: λ -ho-term-graphs
 - first-order term graphs : λ -term-graphs
 - deterministic finite-state automata: λ -DFAs
 - 2. bisimilarity & bisimulation collapse of λ -term-graphs
 - implemented as: DFA-minimization of λ -DFAs
 - 3. readback of λ -term-graphs as λ_{letrec} -terms
- Haskell implementation
- Complexity

Maximal sharing: example (fix)

$$\lambda f$$
. let $r = f(f r)$ in r

1

Maximal sharing: example (fix)

$$\lambda f$$
. let $r = f(f r)$ in r

L

 L_0

$$\lambda f$$
. let $r = f r$ in r

 $L \\ \mathsf{unfold} \\ M \\ \mathsf{unfold} \\ L_0$

$$\lambda f$$
. let $r = f(f r)$ in r

L

 L_0

$$\lambda f$$
. let $r = f r$ in r

$$L_0$$

$$\lambda f$$
. let $r = f r$ in r

- 1. term graph interpretation $[\cdot]$. of λ_{letrec} -term L as:
 - a. higher-order term graph $\mathcal{G} = [\![L]\!]_{\mathcal{H}}$

$$L \stackrel{\llbracket \cdot \rrbracket_{\mathcal{H}}}{\longrightarrow} \mathcal{G} \longmapsto G$$

- 1. term graph interpretation $\llbracket \cdot \rrbracket$.
 - of $\lambda_{\mathsf{letrec}}$ -term L as:
 - a. higher-order term graph $G = [L]_{\mathcal{H}}$
 - b. first-order term graph $G = [\![L]\!]_{\mathcal{T}}$

- 1. term graph interpretation $[\cdot]$.
 - of $oldsymbol{\lambda}_{\mathsf{letrec}} ext{-term }L$ as:
 - a. higher-order term graph $\mathcal{G} = [\![L]\!]_{\mathcal{H}}$
 - b. first-order term graph $G = [\![L]\!]_{\mathcal{T}}$

- 1. term graph interpretation $[\cdot]$. of λ_{letrec} -term L as:
 - a. higher-order term graph $\mathcal{G} = [\![L]\!]_{\mathcal{H}}$
 - b. first-order term graph $G = [\![L]\!]_{\mathcal{T}}$
- 2. bisimulation collapse $\downarrow\downarrow$ of f-o term graph G into G_0

- 1. term graph interpretation $\llbracket \cdot \rrbracket$.
 - of $\lambda_{\mathsf{letrec}}$ -term L as:
 - a. higher-order term graph $G = [L]_{\mathcal{H}}$
 - b. first-order term graph $G = [\![L]\!]_{\mathcal{T}}$
- 2. bisimulation collapse $\downarrow \downarrow$ of f-o term graph G into G_0

- 1. term graph interpretation $[\cdot]$. of λ_{letrec} -term L as:
 - a. higher-order term graph $G = [\![L]\!]_{\mathcal{H}}$
 - b. first-order term graph $G = [\![L]\!]_{\mathcal{T}}$
- 2. bisimulation collapse $\downarrow \downarrow$ of f-o term graph G into G_0
- 3. readback rb of f-o term graph G_0 yielding program $L_0 = \text{rb}(G_0)$.

- 1. term graph interpretation $[\cdot]$. of λ_{letrec} -term L as:
 - a. higher-order term graph $\mathcal{G} = [\![L]\!]_{\mathcal{H}}$
 - b. first-order term graph $G = [\![L]\!]_{\mathcal{T}}$
- 2. bisimulation collapse $\downarrow \downarrow$ of f-o term graph G into G_0
- 3. readback rb of f-o term graph G_0 yielding program $L_0 = \text{rb}(G_0)$.

Unfolding equivalence: example

Unfolding equivalence: example

$$\begin{bmatrix}
L_1 \\
 \end{bmatrix}_{\lambda^{\infty}} \mathbf{?}$$

$$M \\
 \begin{bmatrix}
 \vdots \\
 \end{bmatrix}_{\lambda^{\infty}} \mathbf{?}$$

$$L_2$$

- 1. term graph interpretation $\llbracket \cdot \rrbracket$.
 - of $\lambda_{\mathsf{letrec}}$ -term L_1 and L_2 as:
 - a. higher-order term graphs $\mathcal{G}_1 = [\![L_1]\!]_{\mathcal{H}}$
 - b. first-order term graphs

$$G_1$$
 = $\llbracket L_1
rbracket_{\mathcal{T}}$

- 1. term graph interpretation $[\cdot]$. of λ_{letrec} -term L_1 and L_2 as:
 - a. higher-order term graphs $\mathcal{G}_1 = [\![L_1]\!]_{\mathcal{H}} \text{ and } \mathcal{G}_2 = [\![L_2]\!]_{\mathcal{H}}$
 - b. first-order term graphs $G_1 = \|L_1\|_{\mathcal{T}} \text{ and } G_2 = \|L_2\|_{\mathcal{T}}$

- 1. term graph interpretation $[\cdot]$. of λ_{letrec} -term L_1 and L_2 as:
 - a. higher-order term graphs $\mathcal{G}_1 = [\![L_1]\!]_{\mathcal{H}} \text{ and } \mathcal{G}_2 = [\![L_2]\!]_{\mathcal{H}}$
 - b. first-order term graphs $G_1 = \|L_1\|_{\mathcal{T}} \text{ and } G_2 = \|L_2\|_{\mathcal{T}}$
- 2. check bisimilarity $\qquad \text{of f-o term graphs } G_1 \text{ and } G_2$

n/ov $\lambda_{
m letrec}$ express max-share interpret collapse readback complexity demo desid./results nest sum/res

Interpretation

Running example

instead of:

$$\lambda f$$
. let $r = f(fr)$ in r

$$\lambda f$$
. let $r = f r$ in r

we use:

$$\lambda x$$
. λf . let $r = f(f r x) x$ in r

$$\lambda x$$
. λf . let $r = f r x$ in r

 L_0

Graph interpretation (example 1)

$$L_0 = \lambda x. \lambda f. \text{ let } r = f r x \text{ in } r$$

aim/ov \(\lambda_{\text{letrec}}\) express max-share interpret collapse readback complexity demo desid./results nest sum/res

Graph interpretation (example 1)

 $L_0 = \lambda x. \lambda f. \text{ let } r = f r x \text{ in } r$

syntax tree

Graph interpretation (example 1)

$$L_0 = \lambda x. \lambda f. \text{ let } r = f r x \text{ in } r$$

syntax tree (+ recursive backlink)

Graph interpretation (example 1)

 $L_0 = \lambda x. \lambda f. \text{ let } r = f r x \text{ in } r$

syntax tree (+ recursive backlink)

$$L_0 = \lambda x. \lambda f. \text{ let } r = f r x \text{ in } r$$

syntax tree (+ recursive backlink, + scopes)

$$L_0 = \lambda x. \lambda f. \text{ let } r = f r x \text{ in } r$$

syntax tree (+ recursive backlink, + scopes, + binding links)

$$L_0 = \lambda x. \lambda f. \text{ let } r = f r x \text{ in } r$$

first-order term graph with binding backlinks (+ scope sets)

$$L_0 = \lambda x. \lambda f. \text{ let } r = f r x \text{ in } r$$

first-order term graph with binding backlinks (+ scope sets)

$$L_0 = \lambda x. \lambda f. \text{ let } r = f r x \text{ in } r$$

first-order term graph (+ scope sets)

$$L_0 = \lambda x. \lambda f. \text{ let } r = f r x \text{ in } r$$

higher-order term graph (with scope sets, Blom [2003])

$$L_0 = \lambda x. \lambda f. \text{ let } r = f r x \text{ in } r$$

higher-order term graph (with scope sets, Blom [2003])

Graph interpretation (example 1)

$$L_0 = \lambda x. \lambda f. \text{ let } r = f r x \text{ in } r$$

higher-order term graph (with scope sets, + abstraction-prefix function)

Graph interpretation (example 1)

 $L_0 = \lambda x. \lambda f. \text{ let } r = f r x \text{ in } r$

higher-order term graph (with abstraction-prefix function)

Graph interpretation (example 1)

 $L_0 = \lambda x. \lambda f. \text{ let } r = f r x \text{ in } r$

 λ -higher-order-term-graph $[\![L_0]\!]_{\mathcal{H}}$

Graph interpretation (example 1)

 $L_0 = \lambda x. \lambda f. \text{ let } r = f r x \text{ in } r$

first-order term graph (+ abstraction-prefix function)

$$L_0 = \lambda x. \lambda f. \text{ let } r = f r x \text{ in } r$$

first-order term graph with binding backlinks (+ scope sets)

$$L_0 = \lambda x. \lambda f. \text{ let } r = f r x \text{ in } r$$

first-order term graph with scope vertices with backlinks (+ scope sets)

$$L_0 = \lambda x. \lambda f. \text{ let } r = f r x \text{ in } r$$

first-order term graph with scope vertices with backlinks

Graph interpretation (example 1)

 $L_0 = \lambda x. \lambda f. \text{ let } r = f r x \text{ in } r$

 λ -term-graph $\llbracket L_0 \rrbracket_{\mathcal{T}}$

 $L_0 = \lambda x. \lambda f. \text{ let } r = f r x \text{ in } r$

incomplete DFA

Graph interpretation (example 1)

 $L_0 = \lambda x. \lambda f. \text{ let } r = f r x \text{ in } r$

incomplete λ -DFA

Graph interpretation (example 1)

 $L_0 = \lambda x. \lambda f. \text{ let } r = f r x \text{ in } r$

$$L = \lambda x. \lambda f. \text{ let } r = f(f r x) x \text{ in } r$$

Graph interpretation (example 2)

$$L = \lambda x. \lambda f. \text{ let } r = f(f r x) x \text{ in } r$$

syntax tree

Graph interpretation (example 2)

$$L = \lambda x. \lambda f. \text{ let } r = f(f r x) x \text{ in } r$$

syntax tree (+ recursive backlink)

Graph interpretation (example 2)

$$L = \lambda x. \lambda f. \text{ let } r = f(f r x) x \text{ in } r$$

syntax tree (+ recursive backlink)

Graph interpretation (example 2)

$$L = \lambda x. \lambda f. \text{ let } r = f(f r x) x \text{ in } r$$

syntax tree (+ recursive backlink, + scopes)

Graph interpretation (example 2)

$$L = \lambda x. \lambda f. \text{ let } r = f(f r x) x \text{ in } r$$

syntax tree (+ recursive backlink, + scopes, + binding links)

Graph interpretation (example 2)

$$L = \lambda x. \lambda f. \text{ let } r = f(f r x) x \text{ in } r$$

first-order term graph with binding backlinks (+ scope sets)

Graph interpretation (example 2)

$$L = \lambda x. \lambda f. \text{ let } r = f(f r x) x \text{ in } r$$

first-order term graph with binding backlinks (+ scope sets)

$$L = \lambda x. \lambda f. \text{ let } r = f(f r x) x \text{ in } r$$

first-order term graph (+ scope sets)

Graph interpretation (example 2)

$$L = \lambda x. \lambda f. \text{ let } r = f(f r x) x \text{ in } r$$

higher-order term graph (with scope sets, Blom [2003])

Graph interpretation (example 2)

$$L = \lambda x. \lambda f. \text{ let } r = f(f r x) x \text{ in } r$$

higher-order term graph (with scope sets, Blom [2003])

$$L = \lambda x. \lambda f. \text{ let } r = f(f r x) x \text{ in } r$$

higher-order term graph (with scope sets, + abstraction-prefix function)

Graph interpretation (example 2)

$$L = \lambda x. \lambda f. \text{ let } r = f(f r x) x \text{ in } r$$

higher-order term graph (with abstraction-prefix function)

$$L = \lambda x. \lambda f. \text{ let } r = f(f r x) x \text{ in } r$$

 λ -higher-order-term-graph $\llbracket L \rrbracket_{\mathcal{H}}$

Graph interpretation (example 2)

$$L = \lambda x. \lambda f. \text{ let } r = f(f r x) x \text{ in } r$$

first-order term graph (+ abstraction-prefix function)

Graph interpretation (example 2)

$$L = \lambda x. \lambda f. \text{ let } r = f(f r x) x \text{ in } r$$

first-order term graph with binding backlinks (+ scope sets)

Graph interpretation (example 2)

$$L = \lambda x. \lambda f. \text{ let } r = f(f r x) x \text{ in } r$$

first-order term graph with scope vertices with backlinks (+ scope sets)

aim/ov \(\lambda_{\text{lettec}}\) express max-share interpret collapse readback complexity demo desid./results nest sum/res

Graph interpretation (example 2)

$$L = \lambda x. \lambda f. \text{ let } r = f(f r x) x \text{ in } r$$

first-order term graph with scope vertices with backlinks

aim/ov \(\lambda_{\text{lettec}}\) express max-share interpret collapse readback complexity demo desid./results nest sum/re:

Graph interpretation (example 2)

$$L = \lambda x. \lambda f. \text{ let } r = f(f r x) x \text{ in } r$$

 λ -term-graph $[\![L]\!]_{\mathcal{T}}$

aim/ov \(\lambda_{\text{letrec}}\) express max-share interpret collapse readback complexity demo desid./results nest sum/res

Graph interpretation (example 2)

$$L = \lambda x. \lambda f. \text{ let } r = f(f r x) x \text{ in } r$$

incomplete DFA

aim/ov \(\lambda_{\text{lettec}}\) express max-share interpret collapse readback complexity demo desid./results nest sum/res

Graph interpretation (example 2)

 $L = \lambda x. \lambda f. \text{ let } r = f(f r x) x \text{ in } r$

Graph interpretation (example 2)

 $L = \lambda x. \lambda f. \text{ let } r = f(f r x) x \text{ in } r$

aim/ov \(\lambda_{\text{letrec}}\) express max-share interpret collapse readback complexity demo desid./results nest sum/re

Graph interpretation (examples 1 and 2)

Interpretation $\llbracket \cdot \rrbracket_{\mathcal{T}}$: properties (cont.)

interpretation $\lambda_{\mathsf{letrec}}$ -term $L \longmapsto \lambda$ -term-graph $[\![L]\!]_{\mathcal{T}}$

- ▶ defined by induction on structure of *L*
- similar analysis as fully-lazy lambda-lifting
- yields eager-scope λ -term-graphs: \sim minimal scopes

Theorem

For λ_{letrec} -terms L_1 and L_2 it holds: Equality of infinite unfolding coincides with bisimilarity of λ -term-graph interpretations:

$$[\![L_1]\!]_{\lambda^{\infty}} = [\![L_2]\!]_{\lambda^{\infty}} \iff [\![L_1]\!]_{\mathcal{T}} \stackrel{\hookrightarrow}{\longleftrightarrow} [\![L_2]\!]_{\mathcal{T}}$$

Interpretation $\llbracket \cdot \rrbracket_{\mathcal{T}}$: properties (cont.)

interpretation $\pmb{\lambda}_{\mathsf{letrec}}$ -term $\pmb{L} \longmapsto \lambda$ -term-graph $[\![L]\!]_{\mathcal{T}}$

- defined by induction on structure of L
- similar analysis as fully-lazy lambda-lifting
- yields eager-scope λ -term-graphs: \sim minimal scopes

Theorem

For λ_{letrec} -terms L_1 and L_2 it holds: Equality of infinite unfolding coincides with bisimilarity of λ -term-graph interpretations:

$$[\![L_1]\!]_{\lambda^{\infty}} = [\![L_2]\!]_{\lambda^{\infty}} \iff [\![L_1]\!]_{\mathcal{T}} \stackrel{\longleftrightarrow}{\longleftrightarrow} [\![L_2]\!]_{\mathcal{T}}$$

m/ov $\lambda_{
m letrec}$ express max-share interpret collapse readback complexity demo desid./results nest sum/res

structure constraints (L'Aquila)

_ _ _

higher-order as first-order term graphs

higher-order term graph higher-order term graph [Blom '03] (abstraction-prefix funct.)

first-order term graph

n/ov $\lambda_{
m letrec}$ express max-share interpret collapse readback complexity demo desid./results nest sum/res

Collapse

aim/ov

 $\llbracket L_0
rbracket_{\mathcal{T}}$

 $[\![L]\!]_{\mathcal{T}}$

aim/ov

aim/ov

Bisimilarity between λ -term-graphs

Functional bisimilarity and bisimulation collapse

Bisimulation collapse: property

Theorem

The class of eager-scope λ -term-graphs is closed under functional bisimilarity \geq .

 \Longrightarrow For a λ_{letrec} -term L

the bisimulation collapse of $[\![L]\!]_{\mathcal{T}}$ is again an eager-scope λ -term-graph.

/ov $\lambda_{
m |etrec}$ express max-share interpret collapse readback complexity demo desid./results nest sum/res

λ -DFA-Minimization

n/ov $\lambda_{
m letrec}$ express max-share interpret collapse readback complexity demo desid./results nest sum/res

Readback

defined with property:

defined with property:

defined with property:

Theorem

For all eager-scope λ -term-graphs G:

$$(\llbracket \cdot \rrbracket_{\mathcal{T}} \circ \mathsf{rb})(G) \simeq G$$

The readback rb is a right-inverse of $\llbracket \cdot \rrbracket_{\mathcal{T}}$ modulo isomorphism \simeq .

defined with property:

Theorem

For all eager-scope λ -term-graphs G:

$$(\llbracket \cdot \rrbracket_{\mathcal{T}} \circ \mathsf{rb})(G) \simeq G$$

The readback rb is a right-inverse of $\llbracket \cdot \rrbracket_{\mathcal{T}}$ modulo isomorphism \simeq .

idea:

- 1. construct a spanning tree T of G
- 2. using local rules, in a bottom-up traversal of T synthesize L = rb(G)

/ov $\lambda_{
m letrec}$ express max-share interpret collapse readback complexity demo desid./results nest sum/n

/ov $\lambda_{
m |etrec}$ express max-share interpret collapse readback complexity demo desid./results nest sum/n

/ov $\lambda_{
m letrec}$ express max-share interpret collapse readback complexity demo desid./results nest sum/re

/ov $\lambda_{
m letrec}$ express max-share interpret collapse readback complexity demo desid./results nest sum/re

$$(f[r = fr])r$$

$$(f[r = fr])f$$

n/ov $\lambda_{
m letrec}$ express max-share interpret collapse readback complexity demo desid./results nest sum/n

$$(v_1[] \cdots v_n[] v_{n+1}[r = ?]) r$$

$$(v_1 \cdots v_n v_{n+1}) \overset{:}{\underset{r}{\bigvee}} r$$

- 1. interpretation $\text{ of } \pmb{\lambda}_{\mathsf{letrec}}\text{-term } L \\ \text{ as } \lambda\text{-term-graph } G = [\![L]\!]_{\mathcal{T}}$
- 2. bisimulation collapse $\downarrow \downarrow$ of f-o term graph G into G_0
- 3. readback rb of f-o term graph G_0 yielding λ_{letrec} -term $L_0 = \text{rb}(G_0)$.

- 1. interpretation $\text{ of } \pmb{\lambda}_{\mathsf{letrec}}\text{-term } L \\ \text{ as } \lambda\text{-term-graph } G = [\![L]\!]_{\mathcal{T}}$
- 2. bisimulation collapse $\downarrow \downarrow$ of f-o term graph G into G_0
- 3. readback rb of f-o term graph G_0 yielding λ_{letrec} -term $L_0 = \text{rb}(G_0)$.

- 1. interpretation
 - of λ_{letrec} -term L with |L| = n as λ -term-graph $G = [\![L]\!]_{\mathcal{T}}$
- ▶ in time $O(n^2)$, size $|G| \in O(n^2)$.
- 2. bisimulation collapse $\downarrow \downarrow$ of f-o term graph G into G_0
- 3. readback rb of f-o term graph G_0 yielding λ_{letrec} -term $L_0 = \text{rb}(G_0)$.

interpretation

of
$$\lambda_{\text{letrec}}$$
-term L with $|L| = n$ as λ -term-graph $G = [\![L]\!]_{\mathcal{T}}$

- ▶ in time $O(n^2)$, size $|G| \in O(n^2)$.
- 2. bisimulation collapse \downarrow of f-o term graph G into G_0
 - $in time <math>O(|G|\log|G|) = O(n^2 \log n)$
- 3. readback rb

of f-o term graph
$$G_0$$

yielding λ_{letrec} -term $L_0 = \text{rb}(G_0)$.

1. interpretation

of
$$\lambda_{\text{letrec}}$$
-term L with $|L|=n$ as λ -term-graph $G=[\![L]\!]_{\mathcal{T}}$

- ▶ in time $O(n^2)$, size $|G| \in O(n^2)$.
- 2. bisimulation collapse \downarrow of f-o term graph G into G_0
 - $in time <math>O(|G|\log|G|) = O(n^2 \log n)$
- 3. readback rb

of f-o term graph
$$G_0$$

yielding λ_{letrec} -term $L_0 = \text{rb}(G_0)$.

 $in time O(|G|\log|G|) = O(n^2 \log n)$

Maximal sharing: complexity

- interpretation
 - of λ_{letrec} -term L with |L| = n as λ -term-graph $G = [\![L]\!]_{\mathcal{T}}$
 - ▶ in time $O(n^2)$, size $|G| \in O(n^2)$.
- 2. bisimulation collapse \downarrow of f-o term graph G into G_0
 - $in time <math>O(|G|\log|G|) = O(n^2 \log n)$
- 3. readback rb of f-o term graph G_0 yielding λ_{letter} -term $L_0 = \text{rb}(G_0)$.
 - $in time <math>O(|G|\log|G|) = O(n^2 \log n)$

Theorem

Computing a maximally compact form $L_0 = (\text{rb} \circ | \downarrow \circ [\![\cdot]\!]_{\mathcal{T}})(L)$ of L for a λ_{letrec} -term L requires time $O(n^2 \log n)$, where |L| = n.

1. interpretation

of
$$\pmb{\lambda}_{\mathsf{letrec}}$$
-term L_1 , L_2 as λ -term-graphs G_1 = $[\![L_1]\!]_{\mathcal{T}}$ and G_2 = $[\![L_2]\!]_{\mathcal{T}}$

2. check bisimilarity $\text{ of } \lambda\text{-term-graphs } G_1 \text{ and } G_2$

 $1. \ \ interpretation$

```
of \lambda_{\text{letrec}}-term L_1, L_2 with n = \max\{|L_1|, |L_2|\} as \lambda-term-graphs G_1 = [\![L_1]\!]_{\mathcal{T}} and G_2 = [\![L_2]\!]_{\mathcal{T}}
```

- ▶ in time $O(n^2)$, sizes $|G_1|$, $|G_2|$ ∈ $O(n^2)$.
- 2. check bisimilarity of λ -term-graphs G_1 and G_2

- 1. interpretation
 - of λ_{letrec} -term L_1 , L_2 with $n = \max\{|L_1|, |L_2|\}$ as λ -term-graphs $G_1 = [\![L_1]\!]_{\mathcal{T}}$ and $G_2 = [\![L_2]\!]_{\mathcal{T}}$
 - ▶ in time $O(n^2)$, sizes $|G_1|$, $|G_2| \in O(n^2)$.
- 2. check bisimilarity

of λ -term-graphs G_1 and G_2

ightharpoonup in time $O(|G_i|\alpha(|G_i|)) = O(n^2\alpha(n))$

- 1. interpretation
 - of λ_{letrec} -term L_1 , L_2 with $n = \max\{|L_1|, |L_2|\}$ as λ -term-graphs $G_1 = \llbracket L_1 \rrbracket_{\mathcal{T}}$ and $G_2 = \llbracket L_2 \rrbracket_{\mathcal{T}}$
 - ▶ in time $O(n^2)$, sizes $|G_1|, |G_2| \in O(n^2)$.
- 2. check bisimilarity

of λ -term-graphs G_1 and G_2

 $in time O(|G_i|\alpha(|G_i|)) = O(n^2\alpha(n))$

Theorem

Deciding whether λ_{letrec} -terms L_1 and L_2 are unfolding-equivalent requires almost quadratic time $O(n^2\alpha(n))$ for $n = \max\{|L_1|, |L_2|\}$.

Demo: console output

```
jan:~/papers/maxsharing-ICFP/talks/ICFP-2014> maxsharing running.l
λ·letrec-term:
λx. λf. let r = f (f r x) x in r
```

derivation:

```
(x f[r]) f (x f[r]) r (x) x
              (x f[r]) f r (x f[r]) x
(x f[r]) f (x f[r]) f r x
                                                           (x) x
(x f[r]) f (f r x)
                                                           (x f[r]) x
(x f[r]) f (f r x) x
                                                                           (x f[r]) r
(x f) let r = f (f r x) x in r
(x) \lambda f. let r = f(f r x) x in r
() \lambda x. \lambda f. let r = f(f r x) x in r
writing DFA to file: running-dfa.pdf
readback of DFA:
\lambda x. \lambda v. let F = v (v F x) x in F
```

----- 0

readback of minimised DFA: λx . λy . let F = y F x in F

jan:~/papers/maxsharing-ICFP/talks/ICFP-2014>

writing minimised DFA to file: running-mindfa.pdf

ov A_{letrec} express max-share interpret collapse readback complexity **demo** desid./results nest sum/re

Demo: generated λ -DFAs

ov $\lambda_{
m letrec}$ express max-share interpret collapse readback complexity demo desid./results nest sum/res

Desiderata → results: structure-constrained term graphs

 $\lambda\text{-calculus}$ with letrec under unfolding semantics $[\![\cdot]\!]_{\lambda^\infty}$

Not available: term graph semantics that is studied under ↔

▶ graph representations used by compilers were not intended for use under

Desiderata → results: structure-constrained term graphs

 $\lambda\text{-calculus}$ with letrec under unfolding semantics $[\![\cdot]\!]_{\lambda^\infty}$

Not available: term graph semantics that is studied under ±

■ graph representations used by compilers were not intended for use under ↔

Desired: term graph semantics that:

- natural correspondence with terms in λ_{letrec}
- ▶ supports compactification under
- efficient translation and readback

Desiderata → results: structure-constrained term graphs

 $\lambda\text{-calculus}$ with letrec under unfolding semantics $[\![\cdot]\!]_{\lambda^\infty}$

Not available: term graph semantics that is studied under ±

▶ graph representations used by compilers were not intended for use under ↔

Desired: term graph semantics that:

- natural correspondence with terms in λ_{letrec}
- ▶ supports compactification under <>>
- efficient translation and readback

Defined: int's $[\cdot]_{\mathcal{H}}/[\cdot]_{\mathcal{T}}$ as higher-order/first-order λ -term graphs

- ▶ closed under ⇒ (hence under collapse)
- **b** back-/forth correspondence with λ -calculus with letrec
 - efficient translation and readback
 - translation is inverse of readback

Desiderata → results: structure-constrained process graphs

Regular expressions under process semantics (bisimilarity ⇔)

```
Given: process graph interpretation [\![\cdot]\!]_P, studied under \ \ \ \  not closed under \ \ \ \ \ \ , modulo \ \ \ \ \  incomplete
```

Desiderata → results: structure-constrained process graphs

Regular expressions under process semantics (bisimilarity ⇔)

```
Given: process graph interpretation \llbracket \cdot \rrbracket_P, studied under \cong
```

▶ not closed under ⇒, and ⇔, modulo ⇔ incomplete

Desired: reason with graphs that are $[\cdot]_P$ -expressible modulo \Leftrightarrow (at least with 'sufficiently many')

understand incompleteness by a structural graph property

Desiderata → results: structure-constrained process graphs

Regular expressions under process semantics (bisimilarity ⇔)

- Given: process graph interpretation $[\cdot]_P$, studied under \Leftrightarrow
 - ▶ not closed under ⇒, and ⇔, modulo ⇔ incomplete
- Desired: reason with graphs that are [·]p-expressible modulo

 (at least with 'sufficiently many')
 - understand incompleteness by a structural graph property
- Defined: class of process graphs with LEE / (layered) LEE-witness
 - ▶ closed under ⇒ (hence under collapse)
 - ▶ back-/forth correspondence with 1-return-less expr's
 - ► contains the collapse of a process graph G $\iff G$ is $\llbracket \cdot \rrbracket_{\mathcal{D}}^{1+h^*}$ -expressible modulo \cong

Nested Term Graphs

(joint work with Vincent van Oostrom)

aim/ov

aim/ov \(\lambda_{\text{lettec}}\) express max-share interpret collapse readback complexity demo desid./results nest sum/re

Nested scopes in λ_{letrec} terms

First-order term graph over $\Sigma = \{\lambda/1, @/2, 0/0\}$

aim/ov \(\lambda_{\text{letrec}}\) express max-share interpret collapse readback complexity demo desid./results nest sum/res

Nested scopes in λ_{letrec} terms

$$\lambda x. (\lambda y. \operatorname{let} \alpha = x \alpha \operatorname{in} \alpha) (\lambda z. \operatorname{let} \beta = x (\lambda u. u) \beta \operatorname{in} \beta)$$

aim/ov \(\lambda_{\text{letrec}}\) express max-share interpret collapse readback complexity demo desid./results nest sum/re

Nested scopes in λ_{letrec} terms

$$\lambda x. (\lambda y. \operatorname{let} \alpha = x \alpha \operatorname{in} \alpha) (\lambda z. \operatorname{let} \beta = x (\lambda u. u) \beta \operatorname{in} \beta)$$

aim/ov \(\lambda_{\text{letrec}}\) express max-share interpret collapse readback complexity demo desid./results nest sum/re

Nested scopes in λ_{letrec} terms

$$\lambda x. (\lambda y. \operatorname{let} \alpha = x \alpha \operatorname{in} \alpha) (\lambda z. \operatorname{let} \beta = x (\lambda u. u) \beta \operatorname{in} \beta)$$

aim/ov \(\lambda_{\text{letrec}}\) express max-share interpret collapse readback complexity demo desid./results nest sum/re

Nested scopes in λ_{letrec} terms

$$\lambda x. (\lambda y. \operatorname{let} \alpha = x \alpha \operatorname{in} \alpha) (\lambda z. \operatorname{let} \beta = x (\lambda u. u) \beta \operatorname{in} \beta)$$

aim/ov \(\lambda_{\text{lettec}}\) express max-share interpret collapse readback complexity demo desid./results nest sum/re

Nested scopes in λ_{letrec} terms

$$\lambda x. (\lambda y. \operatorname{let} \alpha = x \alpha \operatorname{in} \alpha) (\lambda z. \operatorname{let} \beta = x (\lambda u. u) \beta \operatorname{in} \beta)$$

aim/ov \(\lambda_{\text{lettec}}\) express max-share interpret collapse readback complexity demo desid./results nest sum/re

Nested scopes in λ_{letrec} terms

$$\lambda x. (\lambda y. \operatorname{let} \alpha = x \alpha \operatorname{in} \alpha) (\lambda z. \operatorname{let} \beta = x (\lambda u. u) \beta \operatorname{in} \beta)$$

/ov $\lambda_{
m |etrec}$ express max-share interpret collapse readback complexity demo desid./results nest sum/res

Nested scopes in λ -terms

Nested scopes → nested term graph

nested term graph

 $\begin{array}{rcl} \text{gletrec} & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ f_1(X_1) & = & & & \\ \lambda x. \operatorname{let} \alpha = X_1 \alpha \operatorname{in} \alpha \\ & & & \\ f_2(X_1, X_2) & = & & \\ \lambda y. \operatorname{let} \beta = X_1(X_2 \beta) \operatorname{in} \beta \\ & & & \\ & & & \\ g() & = & & \\ \lambda z. z \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & &$

nested term graph

Signature

A signature for nested term graphs (ntg-signature) is a signature Σ that is partitioned into:

- ightharpoonup atomic symbol alphabet Σ_{at}
- nested symbol alphabet Σ_{ne}

Additionally used:

- interface symbols alphabet OI = O ∪ I
 - $O = \{o\}$ with o unary
 - $I = \{i_1, i_2, i_3, \ldots\}$ with i_j nullary

Recursive graph specification

Definition

Let Σ be an ntg-signature.

A recursive graph specification (a rgs) $\mathcal{R} = \langle rec, r \rangle$ consists of:

specification function

$$rec: \Sigma_{\mathsf{ne}} \longrightarrow \mathsf{TG}(\Sigma \cup OI)$$

 $f/k \longmapsto rec(f) = F \in \mathsf{TG}(\Sigma \cup \{\mathsf{o}, \mathsf{i}_1, \dots, \mathsf{i}_k\})$

where F contains precisely one vertex labeled by o, the root, and one vertex each labeled by i_j , for $j \in \{1, ..., k\}$;

- nullary root symbol $r \in \Sigma_{ne}$.

aim/ov \(\lambda_{\text{letter}}\) express max-share interpret collapse readback complexity demo desid./results nest sum/res

Recursive graph specification

$$\Sigma_{at} = \{\lambda/1, @/2, 0/0\}, \Sigma_{ne} = \{r_0/0, f_2/2, g/0\}, O = \{0/1\}, I = \{i_1/0, i_2/0, \ldots\}.$$

Recursive graph specification

Definition

Let Σ be an ntg-signature.

A recursive graph specification (a rgs) $\mathcal{R} = \langle rec, r \rangle$ consists of:

specification function

$$rec : \Sigma_{ne} \longrightarrow \mathsf{TG}(\Sigma \cup OI)$$

 $f/k \longmapsto rec(f) = F \in \mathsf{TG}(\Sigma \cup \{\mathsf{o},\mathsf{i}_1,\ldots,\mathsf{i}_k\})$

where F contains precisely one vertex labeled by o, the root, and one vertex each labeled by i_i , for $i \in \{1, ..., k\}$;

- nullary root symbol $r \in \Sigma_{ne}$.

rooted dependency ARS \leftarrow of \mathcal{R} :

- \blacktriangleright objects: nested symbols in Σ_{ne}
- steps: for all $f, g \in \Sigma_{ne}$:

$$p: f \hookrightarrow q \iff q$$
 occurs in the term graph $rec(f)$ at position p

aim/ov \(\lambda_{\text{lettec}}\) express max-share interpret collapse readback complexity demo desid./results nest sum/res

Recursive graph specification

dependency ARS: $f_2 \stackrel{\multimap}{\smile} r_0 \sim g$ is a dag (but not a tree).

aim/ov $\lambda_{
m letrec}$ express max-share interpret collapse readback complexity demo desid./results nest sum/re

Nested term graph: intensional definition

Definition

Let Σ be an ntg-signature.

A nested term graph over Σ is an rgs $\mathcal{N} = \langle rec, r \rangle$ such that the rooted dependency ARS \sim is a tree.

Nested term graph (intensionally)

dependency ARS: $f_1 \rightarrow n$

 $\mathsf{f}_1 \multimap \mathsf{n} \overset{\mathsf{\longleftarrow}}{\smile} \mathsf{f}_2$

is a tree.

Nested term graph (intensionally)

dependency ARS:
$$f_1 \rightarrow n \xrightarrow{\circ} g$$
 is a tree.

aim/ov $\lambda_{
m letrec}$ express max-share interpret collapse readback complexity demo desid./results nest sum/res

Nested term graph (intensionally)

infinite λ -term (infinitely nested scopes)

\[\lambda_{\text{letrec}} \] express \[max-share \] interpret collapse readback complexity demo \[desid./results \] \[nest \] sum/res

Nested term graph (intensionally)

aim/ov

nested term graph with infinite nesting dependency ARS: $f_0 \sim f_1 \sim f_2 \sim f_3 \sim \dots$

infinite λ -term (infinitely nested scopes)

/ov $\lambda_{
m letrec}$ express max-share interpret collapse readback complexity demo desid./results nest sum/re

Nested term graph (intensionally)

aim/ov \(\lambda_{\text{lettec}}\) express max-share interpret collapse readback complexity demo desid./results nest sum/res

Nested term graph: extensional definition

Nested term graph: extensional definition

An extensional description of an ntg (an entg) over Σ is a term graph over $\Sigma \cup OI$ (not root-connected) with vertex set V enriched by:

▶ $call: V \rightarrow V$, (v with nested symbol) \mapsto (root of graph nested into v)

Nested term graph: extensional definition

An extensional description of an ntg (an entg) over Σ is a term graph over $\Sigma \cup OI$ (not root-connected) with vertex set V enriched by:

- ▶ $call: V \rightarrow V$, (v with nested symbol) \mapsto (root of graph nested into v)
- ▶ $return : V \rightarrow V$, (v with output vertex i_j) \mapsto (j-th successor of vertex into which the graph containing v is nested)

ov $\lambda_{
m letrec}$ express max-share interpret collapse readback complexity demo desid./results nest sum/re

Nested term graph: extensional definition

An extensional description of an ntg (an entg) over Σ is a term graph over $\Sigma \cup OI$ (not root-connected) with vertex set V enriched by:

- ▶ $call: V \rightarrow V$, (v with nested symbol) \mapsto (root of graph nested into v)
- ▶ $return : V \rightarrow V$, (v with output vertex i_j) \mapsto (j-th successor of vertex into which the graph containing v is nested)
- ▶ $anc: V \to V^*$ ancestor function: $v \mapsto \text{word } anc(v) = v_1 \cdots v_n \text{ of the vertices in which } v \text{ is nested}$

ov $\lambda_{
m letrec}$ express max-share interpret collapse readback complexity demo desid./results nest sum/res

Nested term graphs: intensional vs. extensional definition

Proposition

- Every nested term graph has an extensional description.
- ▶ For every entg $\mathcal G$ there is a nested term graph for which $\mathcal G$ is the extensional description.

n/ov $\lambda_{
m letrec}$ express max-share interpret collapse readback complexity demo desid./results nest sum/res

Bisimulation

aim/ov $\lambda_{
m letrec}$ express max-share interpret collapse readback complexity demo desid./results nest sum/res

Bisimulation (for intensional ntg-definition)

Let \mathcal{N}_1 and \mathcal{N}_2 be nested term graphs. Let V_1 be the disjoint union of the vertices of term graphs in \mathcal{N}_1 . Similar for V_2 w.r.t. \mathcal{N}_2 .

Bisimulation (for intensional ntg-definition)

Let \mathcal{N}_1 and \mathcal{N}_2 be nested term graphs. Let V_1 be the disjoint union of the vertices of term graphs in \mathcal{N}_1 . Similar for V_2 w.r.t. \mathcal{N}_2 .

- roots are related
- related vertices either <u>both</u> have nested labels, or <u>both</u> have interface labels, or both have the same atomic label

Bisimulation (for intensional ntg-definition)

Let \mathcal{N}_1 and \mathcal{N}_2 be nested term graphs. Let V_1 be the disjoint union of the vertices of term graphs in \mathcal{N}_1 . Similar for V_2 w.r.t. \mathcal{N}_2 .

- roots are related
- related vertices either <u>both</u> have nested labels, or <u>both</u> have interface labels, or both have the same atomic label
- progression on <u>atomic</u> vertices: as for f-o term graphs

ov $\lambda_{
m letrec}$ express max-share interpret collapse readback complexity demo desid./results nest sum/re

Bisimulation (for intensional ntg-definition)

Let \mathcal{N}_1 and \mathcal{N}_2 be nested term graphs. Let V_1 be the disjoint union of the vertices of term graphs in \mathcal{N}_1 . Similar for V_2 w.r.t. \mathcal{N}_2 .

- roots are related
- related vertices either <u>both</u> have nested labels, or <u>both</u> have interface labels, or both have the same atomic label
- progression on <u>atomic</u> vertices: as for f-o term graphs
- progression on nested vertices: interface clause

Bisimulation (for intensional ntg-definition)

Let \mathcal{N}_1 and \mathcal{N}_2 be nested term graphs. Let V_1 be the disjoint union of the vertices of term graphs in \mathcal{N}_1 . Similar for V_2 w.r.t. \mathcal{N}_2 .

- roots are related
- related vertices either <u>both</u> have nested labels, or <u>both</u> have interface labels, or both have the same atomic label
- progression on <u>atomic</u> vertices: as for f-o term graphs
- progression on <u>nested</u> vertices: <u>interface clause</u>

Bisimulation (for extensional ntg-definition)

Let \mathcal{N}_1 and \mathcal{N}_2 be nested term graphs. Let V_1 be the vertices of \mathcal{N}_1 , and let V_2 be the vertices of \mathcal{N}_2 .

- roots are related
- related vertices either <u>both</u> have nested labels, or <u>both</u> have interface labels, or both have the same atomic label
- progression on <u>atomic</u> vertices: as for f-o term graphs
- progression on <u>nested</u> vertices: interface clause

ov λ_{letrec} express max-share interpret collapse readback complexity demo desid./results nest sum/res

aim/ov \(\lambda_{\text{lettec}}\) express max-share interpret collapse readback complexity demo desid./results nest sum/res

aim/ov \(\lambda_{\text{lettec}}\) express max-share interpret collapse readback complexity demo desid./results nest sum/re

aim/ov $\lambda_{
m letrec}$ express max-share interpret collapse readback complexity demo desid./results nest sum/res

aim/ov \(\lambda_{\text{lettec}}\) express max-share interpret collapse readback complexity demo desid./results nest sum/re

Summary

• Expressibility of λ_{letrec} via unfolding

• Maximal sharing of functional programs in λ_{letrec}

► Nested term graphs

aim/ov $\lambda_{
m letrec}$ express max-share interpret collapse readback complexity demo desid./results nest sum/res

Summary

- **Expressibility** of λ_{letrec} via unfolding
 - Characterizations of infinite λ-terms that are unfoldings of λ_{letrec}-terms as:
 - strongly regular λ^{∞} -terms,
 - regular λ^{∞} -terms with finite binding-capturing chains.
- Maximal sharing of functional programs in λ_{letrec}

▶ Nested term graphs

/ov $\lambda_{
m |etrec}$ express max-share interpret collapse readback complexity demo desid./results nest sum/res

Summary

- **Expressibility** of λ_{letrec} via unfolding
 - Characterizations of infinite λ-terms that are unfoldings of λ_{letrec}-terms as:
 - strongly regular λ^{∞} -terms,
 - regular λ^{∞} -terms with finite binding-capturing chains.
- Maximal sharing of functional programs in λ_{letrec}
 - Maximal compactification of \(\lambda_{\text{letrec}}\)-terms
 while preserving their nested scope-structure, by:
 - ▶ formalization as (higher-/first-order) term graphs and DFAs
 - minimization / readback / complexity / Haskell implementation
- Nested term graphs

ov Netroc express max-share interpret collapse readback complexity demo desid./results nest sum/res

Summary

- **Expressibility** of λ_{letrec} via unfolding
 - Characterizations of infinite λ-terms that are unfoldings of λ_{letrec}-terms as:
 - strongly regular λ^{∞} -terms,
 - regular λ^{∞} -terms with finite binding-capturing chains.
- Maximal sharing of functional programs in λ_{letrec}
 - Maximal compactification of \(\lambda_{\text{letrec}}\)-terms
 while preserving their nested scope-structure, by:
 - ▶ formalization as (higher-/first-order) term graphs and DFAs
 - minimization / readback / complexity / Haskell implementation
- Nested term graphs
 - Basic ideas for a general framework
 for graph representations of terms with nested scopes

 $\lambda_{
m letrec}$ express max-share interpret collapse readback complexity demo desid./results nest sum/res

Resources

- papers and reports
 - ▶ G: Modeling Terms by Graphs with Structure Constraints
 - ▶ TERMGRAPH 2018 post-proceedings in in EPTCS 288
 - ▶ G, Rochel: Maximal Sharing in the Lambda Calculus with Letrec
 - ▶ ICFP 2014 paper, extending report arXiv:1401.1460
 - ▶ G, Rochel: Term Graph Representations for Cyclic Lambda Terms
 - TERMGRAPH 2013 proceedings, report arXiv:1308.1034
 - ▶ G, Vincent van Oostrom: Nested Term Graphs
 - TERMGRAPH 2014 post-proceedings in EPTCS 183
- thesis Jan Rochel
 - Unfolding Semantics of the Untyped λ -Calculus with letrec
 - Ph.D. Thesis, Utrecht University, 2016
- tools by Jan Rochel
 - maxsharing on hackage.haskell.org
 - port graph rewriting