



## **Análisis Avanzado - Funciones medibles**

Primer cuatrimestre de 2021

Daniel Carando - Victoria Paternostro

Dto. de Matemática - FCEN - UBA

Escribamos el intervalo [0,1] como una unión disjunta de dos conjuntos:

$$[0,1] = A \cup B$$
 ,  $con A \cap B = \emptyset$ .

Escribamos el intervalo [0, 1] como una unión disjunta de dos conjuntos:

$$[0,1] = A \cup B$$
 ,  $con A \cap B = \emptyset$ .

Sea  $f: [0,1] 
ightarrow \mathbb{R}$  dada por

$$f(x) = \begin{cases} 2, & \text{si } x \in \underline{\underline{A}} \\ 5, & \text{si } x \in \underline{\underline{B}}. \end{cases}$$

En lo que sigue vamos a considerar I = [0, 1].

En lo que sigue vamos a considerar I = [0, 1].

La función característica de  $\underline{A} \subset \underline{I}$  es  $\chi_{\underline{A}} : \underline{I} \to \mathbb{R}$ 

$$\chi_{\mathsf{A}}(x) = \begin{cases} 1, & \operatorname{si} x \in \mathsf{A} \\ 0, & \operatorname{si} x \notin \mathsf{A}. \end{cases}$$

En lo que sigue vamos a considerar I = [0, 1].

La función característica de A  $\subset$  I es  $\chi_{A}: I \to \mathbb{R}$ 

$$\chi_{\mathsf{A}}(x) = \begin{cases} 1, & \mathsf{si}\ x \in \mathsf{A} \\ \mathsf{o}, & \mathsf{si}\ x \not\in \mathsf{A}. \end{cases}$$

#### Definición

Una partición medible de I es una familia finita  $A_1, \ldots, A_n$  de conjuntos medibles disjuntos dos a dos tales que

$$[0,1] = \bigcup_{i=1}^n A_i.$$

#### Definición

SIMPLE Una función  $f: I \to \mathbb{R}$  se dice simple medible o simple Lebesgue si existe una partición medible  $A_1, \ldots, A_n$  de I y números  $r_1, \ldots, r_n \in \mathbb{R}$  tales que

$$f(x) = \sum_{i=1}^{n} \underline{r_i} \chi_{A_i}(x).$$

$$P(x) = \begin{cases} 1 & x \in A_1 \\ 0 & x \notin A_2 \end{cases}$$

$$P(x) = \begin{cases} R_1 & x \in A_1 \\ R_2 & x \in A_2 \\ R_3 & x \in A_3 \end{cases}$$

$$P(x) = \begin{cases} R_1 & x \in A_2 \\ R_2 & x \in A_3 \end{cases}$$

$$P(x) = \begin{cases} R_1 & x \in A_1 \\ R_2 & x \in A_2 \\ R_3 & x \in A_3 \end{cases}$$

NOS INTERESAN MAS SIMPLIES NO ESCAZ

FS CALONDOS

(A; INTERVANCES

ALAI ALAL

D. Carando - V. Paternostro

#### Observación

- Si f es una función simple, entonces |f| es una función simple.
- Cualquier combinación lineal de de funciones simples da una función simple.

Análisis Avanzado D. Carando - V. Paternostro

DM-FCEN-UBA

fig simples , QUQ 2ftBg SIMPLE. MER MER, & Ais PARTIC. DE I.  $\begin{cases} p(n) = \sum_{i=1}^{m} R_i \chi_{a_i} \\ q(n) = \sum_{j=1}^{m} A_j \chi_{b_j} \end{cases}$ DI., Dm GIR, { Biling PARTIC DE ] ES PARTICION DE I.  $\{C_{ij}: i=1, m, j=1, m\}$ x+Ci; => (df+Bg)(x)=df(x)+Bg(x)=dn;+Bd;  $(2f+pg)(n) = \sum_{i=1}^{m} \sum_{j=1}^{m} (dn_i+ps_j) \propto (n)$ VALE: f.g SIMPLE dftBg simple

## Integral de Lebesgue de funciones simples

Sean  $\{A_i\}_{i=1}^n$  una partición medible de I y  $f:I\to\mathbb{R}$  dada por

$$f(x) = \sum_{i=1}^{n} r_i \, \chi_{A_i}(x)$$

#### Integral de Lebesgue de funciones simples

Sean  $\{A_i\}_{i=1}^n$  una partición medible de I y  $f:I\to\mathbb{R}$  dada por

$$f(x) = \sum_{i=1}^{n} r_i \chi_{A_i}(x)$$

Definimos la integral de Lebesgue de f como

$$\int f \, d\mu = \sum_{i=1}^{n} r_{i} \, \mu(A_{i}).$$



#### **Teorema**

La integral de Lebesgue satisface las siguientes propiedades.

(a) **Linealidad**: Si f, g son funciones simples y  $\alpha, \beta \in \mathbb{R}$ , entonces

$$\int \alpha f + \beta g \, d\mu = \alpha \int f \, d\mu + \beta \int g \, d\mu.$$

#### Teorema

La integral de Lebesgue satisface las siguientes propiedades.

(a) **Linealidad**: Si f, g son funciones simples y  $\alpha, \beta \in \mathbb{R}$ , entonces

$$\int \alpha f + \beta g \, d\mu = \alpha \int f \, d\mu + \beta \int g \, d\mu.$$

(b) **Monotonía**: Si f y g son simples  $f(x) \le g(x)$  para todo  $x \in I$ , entonces



#### **Teorema**

La integral de Lebesgue satisface las siguientes propiedades.

(a) **Linealidad**: Si f, g son funciones simples y  $\alpha, \beta \in \mathbb{R}$ , entonces

$$\int \alpha \mathbf{f} + \beta \mathbf{g} \, \mathrm{d}\mu = \alpha \int \mathbf{f} \, \mathrm{d}\mu + \beta \int \mathbf{g} \, \mathrm{d}\mu.$$

Monotonía: Si f y g son simples  $f(x) \leq g(x)$  para todo  $x \in I$ , entonces

$$\int f d\mu \leq \int g d\mu.$$

 $\bigcirc$  Si f es simple, entonces

$$\left| \int f \, d\mu \right| \leq \int |f| \, d\mu.$$

$$\begin{array}{lll}
\rho(x) &= & \sum_{i=1}^{n} \int_{x_{i}}^{x_{i}} \int_{x_{i}}^{x_{i}} \int_{y_{i}}^{x_{i}} \int_{y_{i}}^{x_{i}$$

Análisis Avanzado

$$\begin{array}{ll}
D = d \sum_{i=1}^{m} \sum_{j=1}^{m} \mu(C_{i,j}) = d \sum_{i=1}^{m} \mu(A_{i}, nB_{i}) \\
= d \sum_{i=1}^{m} \sum_{j=1}^{m} \mu(\bigcup_{j=1}^{m} A_{i}, nB_{i}) = \\
= d \sum_{i=1}^{m} \mu(A_{i}, n(\bigcup_{j=1}^{m} B_{i})) = d \sum_{i=1}^{m} \prod_{j=1}^{m} \mu(A_{i}, nB_{i}) = \\
= d \int_{i=1}^{m} \mu(A_{i}, n(\bigcup_{j=1}^{m} B_{i})) = d \int_{i=1}^{m} \prod_{j=1}^{m} \mu(A_{i}, nB_{i}) = \\
= d \int_{i=1}^{m} \mu(A_{i}, n(\bigcup_{j=1}^{m} B_{i})) = d \int_{i=1}^{m} \prod_{j=1}^{m} \mu(A_{i}, nB_{i}) = \\
= d \int_{i=1}^{m} \mu(A_{i}, n(\bigcup_{j=1}^{m} B_{i})) = d \int_{i=1}^{m} \mu(A_{i}, nB_{i}) = \\
= d \int_{i=1}^{m} \mu(A_{i}, n(\bigcup_{j=1}^{m} B_{i})) = d \int_{i=1}^{m} \mu(A_{i}, nB_{i}) = \\
= d \int_{i=1}^{m} \mu(A_{i}, n(\bigcup_{j=1}^{m} B_{i})) = d \int_{i=1}^{m} \mu(A_{i}, nB_{i}) = d \int_{i=1}$$

3 = B \ g du

Análisis Avanzado

# Definición

Sea  $X \subset \mathbb{R}$  un subconjunto y f de X en  $\mathbb{R}$  (podemos permitir que f valga  $+\infty$  o  $-\infty$  en algunos puntos).

#### **Definición**

Sea  $X \subset \mathbb{R}$  un subconjunto y f de X en  $\mathbb{R}$  (podemos permitir que f valga  $+\infty$  o  $-\infty$  en algunos puntos). Decimos que f es medible Lebesgue si para todo  $a \in \mathbb{R}$  el conjunto

 $\{x \in X : f(x) \le a\}$ 

es medible.



fill-IR

厄二加以(-2)ひ (+2) Sea  $X \subset \mathbb{R}$  un subconjunto y f de X en  $\mathbb{R}$  (podemos permitir que f valga

 $+\infty$  o  $-\infty$  en algunos puntos). Decimos que f es medible Lebesgue si para todo  $a \in \mathbb{R}$  el coniunto

## **Ejemplo**

• Si  $f: \mathbb{R} \to \mathbb{R}$  es continua, entonces es medible.

#### Definición

Sea  $X\subset\mathbb{R}$  un subconjunto y f de X en  $\mathbb{R}$  (podemos permitir que f valga

 $+\infty$  o  $-\infty$  en algunos puntos). Decimos que f es medible Lebesgue si para todo  $a\in\mathbb{R}$  el conjunto

$$\{x \in X : f(x) \le a\}$$

es medible.

## **Ejemplo**

- ullet Si  $f:\mathbb{R} o \mathbb{R}$  es continua, entonces es medible.
  - Si  $f:\mathbb{R} o \mathbb{R}$  es creciente, entonces es medible.

#### **Definición**

Sea  $X \subset \mathbb{R}$  un subconjunto y f de X en  $\mathbb{R}$  (podemos permitir que f valga  $+\infty$  o  $-\infty$  en algunos puntos). Decimos que f es medible Lebesgue si para todo  $a \in \mathbb{R}$  el conjunto

$$\{x \in X : f(x) \le a\}$$

es medible.

## **Ejemplo**

- Si  $f: \mathbb{R} \to \mathbb{R}$  es continua, entonces es medible.
- Si  $f:\mathbb{R} o \mathbb{R}$  es creciente, entonces es medible.
- OFCRE TAMBIÉN
- Si f es simple medible entonces es medible. o extstyle ex

## Proposición X MEDIBLE

Sea  $f: X \to \overline{\mathbb{R}}$ . Son equivalentes:

(a) Para todo  $a \in \mathbb{R}$ , el conjunto  $\{x \in X : f(\underline{x}) \leq a\}$  es medible.  $f(x) \in \mathcal{A}$ 

# **Proposición** $X \longrightarrow \mathbb{R}$ . Son equivalentes:

- (a) Para todo  $a \in \mathbb{R}$ , el conjunto,  $\{x \in X : f(x) \le a\}$  es medible.
- (b) Para todo  $a \in \mathbb{R}$ , el conjunto  $\{x \in X : f(x) < a\}$  es medible.

## Proposición X M E DIBLE

Sea  $f: X \to \overline{\mathbb{R}}$ . Son equivalentes:

- (a) Para todo  $a \in \mathbb{R}$ , el conjunto  $\{x \in X : f(x) \le a\}$  es medible.
- (b) Para todo  $a \in \mathbb{R}$ , el conjunto  $\{x \in X : f(x) < a\}$  es medible.
- (c) Para todo  $a \in \mathbb{R}$ , el conjunto  $\{x \in X : f(x) \ge a\}$  es medible.

# Proposición X medible

Sea  $f: X \to \overline{\mathbb{R}}$ . Son equivalentes:

- $\Rightarrow$  (a) Para todo  $a \in \mathbb{R}$ , el conjunto  $\{x \in X : f(x) \le a\}$  es medible.
  - (b) Para todo  $a \in \mathbb{R}$ , el conjunto  $\{x \in X : f(x) < a\}$  es medible.
  - (c) Para todo  $a \in \mathbb{R}$ , el conjunto  $\{x \in X : f(x) \ge a\}$  es medible.
  - (d) Para todo  $a \in \mathbb{R}$ , el conjunto  $\{x \in X : f(x) > a\}$  es medible.

$$(a) \Rightarrow (b) \ \{x \in X : f(x) \geq a\} = \lim_{m \in \mathbb{N}} \{x \in f(x) \in a - \frac{1}{m}\}$$

$$f(x) \leq a \Rightarrow f(x) \leq a = \frac{1}{m}$$

$$f(x) \leq a \Rightarrow f(x) \leq a = \frac{1}{m}$$

$$f(x) \leq a \Rightarrow f(x) \leq a = \frac{1}{m}$$

$$f(x) \leq a \Rightarrow f(x) \leq a = \frac{1}{m}$$

$$f(x) \leq a \Rightarrow f(x) \leq a = \frac{1}{m}$$

$$f(x) \Rightarrow f(x) \leq a \Rightarrow$$



Combinación lineal de medibles es medible.
Producto de medibles es medible.

- Combinación lineal de medibles es medible.
- · Producto de medibles es medible.
- Supremo o ínfimo de una suc. de funciones medibles es medible.

- Combinación lineal de medibles es medible.
- · Producto de medibles es medible.
- Supremo o ínfimo de una suc. de funciones medibles es medible.
- Límite puntual de una suc. de funciones medibles es medible.

$$f_{m}: X \rightarrow 1/2 \quad \text{middle} \quad \forall m \in \mathbb{N}.$$

$$g(n) = \sup_{m \in \mathbb{N}} f_{m}(n) \cdot G = 1/2$$

$$g(n) \leq a \leq 3 = 0$$

$$g(n) \leq a \leq \max_{m \in \mathbb{N}} f_{m}(n) \leq a \leq \infty$$

$$g(n) \leq a \leq \max_{m \in \mathbb{N}} f_{m}(n) \leq a \leq \infty$$

$$g(n) \leq a \leq \max_{m \in \mathbb{N}} f_{m}(n) \leq a \leq \infty$$

$$g(n) \leq a \leq \max_{m \in \mathbb{N}} f_{m}(n) \leq a \leq \infty$$

$$g(n) \leq a \leq \infty$$

$$g(n) \leq a \leq \infty$$

$$f_{m}(n) \leq a \leq \infty$$

$$g(n) \leq a \leq \infty$$

$$f_{m}(n) \leq a \leq \infty$$

$$g(n) \leq$$

¿Cómo definimos la integral de <u>una función medible?</u>

¿Cómo definimos la integral de una función medible? Empecemos por funciones medibles, acotadas y no negativas.

$$\int_{\Gamma} \int_{\Gamma} \int_{\Gamma$$