Why Machines Are Broken?

In [1]:

```
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
```

In [2]:

df = pd.read_csv(r"https://raw.githubusercontent.com/anshupandey/Machine_Learning_Train
ing/master/datasets/maintenance_data.csv")
df

Out[2]:

	lifetime	broken	pressureInd	moistureInd	temperatureInd	team	provider
0	56	0	92.178854	104.230204	96.517159	TeamA	Provider4
1	81	1	72.075938	183.065701	87.271062	TeamC	Provider4
2	60	0	96.272254	77.801376	112.196170	TeamA	Provider1
3	86	1	94.406461	178.493608	72.025374	TeamC	Provider2
4	34	0	97.752899	99.413492	103.756271	TeamB	Provider1
995	88	1	88.589759	112.167556	99.861456	TeamB	Provider4
996	88	1	116.727075	110.871332	95.075631	TeamA	Provider4
997	22	0	104.026778	88.212873	83.221220	TeamB	Provider1
998	78	0	104.911649	104.257296	83.421491	TeamA	Provider4
999	63	0	116.901354	99.998694	47.641493	TeamB	Provider1

1000 rows × 7 columns

In [3]:

df.size

Out[3]:

7000

In [4]:

df.shape

Out[4]:

(1000, 7)

Data Exploration

In [5]:

df.head()

Out[5]:

	lifetime	broken	pressureInd	moistureInd	temperatureInd	team	provider
0	56	0	92.178854	104.230204	96.517159	TeamA	Provider4
1	81	1	72.075938	183.065701	87.271062	TeamC	Provider4
2	60	0	96.272254	77.801376	112.196170	TeamA	Provider1
3	86	1	94.406461	178.493608	72.025374	TeamC	Provider2
4	34	0	97.752899	99.413492	103.756271	TeamB	Provider1

In [6]:

df.info()

broken 1000 non-null int64
pressureInd 996 non-null float64
moistureInd 1000 non-null float64
temperatureInd 997 non-null float64
team 1000 non-null object
provider 1000 non-null object
dtypes: float64(3), int64(2), object(2)

memory usage: 54.8+ KB

In [7]:

df.describe()

Out[7]:

	lifetime	broken	pressureInd	moistureInd	temperatureInd
count	1000.000000	1000.000000	996.000000	1000.000000	997.000000
mean	55.195000	0.397000	98.681100	111.088723	100.553499
std	26.472737	0.489521	19.879703	41.839005	19.592059
min	1.000000	0.000000	33.481917	70.928815	42.279598
25%	34.000000	0.000000	85.562282	94.532547	87.672094
50%	60.000000	0.000000	97.311091	102.844084	100.528015
75%	80.000000	1.000000	112.253190	113.532970	113.522496
max	93.000000	1.000000	173.282541	1156.493254	172.544140

Data Cleaning

In [16]:

```
# Check for duplicates
df.duplicated().sum()
```

Out[16]:

0

In [10]:

```
# Checking For Missing Values
df.isnull().sum()
```

Out[10]:

lifetime 0 broken 0 pressureInd 4 moistureInd 0 temperatureInd 3 team 0 provider 0 dtype: int64

In [12]:

```
# Replacing The missing values with mean

df.pressureInd.fillna(df.pressureInd.mean(), inplace = True)
df.isnull().sum()
```

Out[12]:

lifetime 0 broken 0 pressureInd 0 moistureInd temperatureInd 3 team 0 provider 0 dtype: int64

In [13]:

```
# Replacing The missing values with mean

df.temperatureInd.fillna(df.temperatureInd.mean(), inplace = True)

df.isnull().sum()
```

Out[13]:

lifetime 0 broken 0 pressureInd 0 moistureInd temperatureInd team 0 provider 0 dtype: int64

In [14]:

```
df.info()
```

RangeIndex: 1000 entries, 0 to 999 Data columns (total 7 columns): lifetime 1000 non-null int64 broken 1000 non-null int64 pressureInd 1000 non-null float64 1000 non-null float64 moistureInd temperatureInd 1000 non-null float64 team 1000 non-null object provider 1000 non-null object dtypes: float64(3), int64(2), object(2) memory usage: 54.8+ KB

<class 'pandas.core.frame.DataFrame'>

In [15]:

```
df.describe()
```

Out[15]:

	lifetime	broken	pressureInd	moistureInd	temperatureInd
count	1000.000000	1000.000000	1000.000000	1000.000000	1000.000000
mean	55.195000	0.397000	98.681100	111.088723	100.553499
std	26.472737	0.489521	19.839864	41.839005	19.562620
min	1.000000	0.000000	33.481917	70.928815	42.279598
25%	34.000000	0.000000	85.574091	94.532547	87.676913
50%	60.000000	0.000000	97.514448	102.844084	100.553499
75%	80.000000	1.000000	112.217466	113.532970	113.517905
max	93.000000	1.000000	173.282541	1156.493254	172.544140

Data Analytics

Univariate Analytics

```
In [18]:
df.columns
Out[18]:
Index(['lifetime', 'broken', 'pressureInd', 'moistureInd', 'temperatureIn
ď',
       'team', 'provider'],
      dtype='object')
In [19]:
num = ['lifetime', 'pressureInd', 'moistureInd', 'temperatureInd']
```

cats = ['broken', 'team', 'provider']

In [20]:

```
# numerics graph

for col in num:
    plt.figure(figsize=(12, 5))
    plt.scatter(np.arange(1000), df[col])
    plt.title(col)
    plt.show()
```


In [22]:

```
# categorical graph

for col in cats:
    plt.figure(figsize=(12, 5))
    sns.countplot(df[col])
    plt.title(col)
    plt.show()
```


TeamC

team

TeamB

TeamA

Bivariate Analysis

In [26]:

```
# numerical vs categorical
# lifetime vs broken
# Probablity density distribution
plt.figure(figsize = (12, 5))
sns.distplot(df.lifetime[df.broken==0])
sns.distplot(df.lifetime[df.broken==1])
plt.legend(['0', '1'])
plt.show()
```


NOTE: The graph shows that the lifetime of the machine more than 60 months are broken then the machine whose lifetime is less than 60. The reason for that being the machine gets older with time need proper maintenance after certain point.

In [27]:

```
# numerical vs categorical
# moistureInd vs broken
# Probablity density distribution
plt.figure(figsize = (12, 5))
sns.distplot(df.moistureInd[df.broken==0])
sns.distplot(df.moistureInd[df.broken==1])
plt.legend(['0', '1'])
plt.show()
```


NOTE: Machines with moisture index less than 100 has less chance of being broken, then the machine with moisture index more than 100 but less than 200. So machine with moisture index more than 100 is broken. More the moisture index, more machine gets rusty that damages the machine.

In [28]:

```
# numerical vs categorical
# pressureInd vs broken
# Probablity density distribution
plt.figure(figsize = (12, 5))
sns.distplot(df.pressureInd[df.broken==0])
sns.distplot(df.pressureInd[df.broken==1])
plt.legend(['0', '1'])
plt.show()
```


NOTE: The probablity density plot for pressure index and machine being broken is almost overlapping with the machine not being broken. Therefore, pressure index doesn't have sufficient information to say why machine is being broken.

In [29]:

```
# numerical vs categorical
# Probablity density distribution
plt.figure(figsize=(12, 5))
sns.distplot(df.temperatureInd[df.broken==0])
sns.distplot(df.temperatureInd[df.broken==1])
plt.legend(['0', '1'])
plt.show()
```


NOTE: The probablity density plot for temperature index and machine being broken is almost overlapping with the machine not being broken. Therefore, temperature index doesn't have sufficient information to say why machine is being broken

In [36]:

```
# categorical vs categorical
# team vs broken
plt.figure(figsize = (6, 3))
sns.countplot(df['team'])
plt.show()
plt.figure(figsize = (6, 3))
sns.countplot(df['team'][df.broken == 1])
plt.show()
```


NOTE: Different Team doesn't give much information about the machine being broken.

In [37]:

```
# categorical vs categorical
# provider vs broken
plt.figure(figsize = (6, 3))
sns.countplot(df['provider'])
plt.show()
plt.figure(figsize = (6, 3))
sns.countplot(df['provider'][df.broken == 1])
plt.show()
```


NOTE: Provider 1 and Provider 3 has more broken rate then the other two providers.

MultiVariate Analysis

In [38]:

```
# numerical vs categorical vs categorical - point plot
# lifetime vs provider vs broken
plt.figure(figsize = (12, 5))
sns.pointplot(x = 'lifetime', y = 'provider', hue = 'broken', data = df)
plt.show()
```


NOTE: Lifetime of Provider 2 and Provider 4 is as compared to Provider 1 and Provider 3.

In [39]:

```
# numerical vs numerical vs categorical - scatter plot
# lifetime vs moistureIND vs broken
plt.figure(figsize = (12, 5))
sns.scatterplot(x = 'lifetime', y = 'moistureInd', hue = 'broken', data = df)
plt.show()
```


NOTE: Lifetime of more than 70 months and mosisture index less than 200 has more chance of machine being broken.

In [40]:

```
cor = df.corr() # clculating correlation matrix
# plotting correlation using heatmap
# cor>0.5 v.good
# cor<-0.5 and >0.1 good
# cor>-0.5 and <-0.1 good
# cor>-0.5 and <-0.1 good
# -0.1 to +0.1 ~0 bad
plt.figure(figsize=(12, 8))
sns.heatmap(cor, annot = True, cmap = 'coolwarm')
plt.show()</pre>
```


In []: