## Problem 1



Figure 1: KNN decision boundary graphs with different k value

According to **Figure 1**, when k value increases the decision boundary becomes more and more complex. For example in the fifth graph where k = 9, there emerges a green area inside the blue area. And with a bigger k value, the boundaries begins to mix together since more data points that doesn't belongs to the class begin to influence the result.

## Problem 2

Figure 2: K-means cluster graph for digits dataset



## Problem 3

For **Decision Tree classifier**, the max node depth in the test never exceeds 20, thus there's no need to tune  $max\_depth$  parameter.

Tune **KNN** classifier with different k value:

|        | fishiris | digits |
|--------|----------|--------|
| k=4    | 96.0%    | 97.31% |
| k = 6  | 98.0%    | 97.47% |
| k = 8  | 98.0%    | 97.81% |
| k = 10 | 98.0%    | 97.31% |

Table 1: Tuning Knn classifier

Tune **K-Means classifier** with different k(algorithm usually converges after less than 20 iterations so there seems no need to tune  $max_iter$ ):

|       | fishiris | digits |
|-------|----------|--------|
| k=3   | 94.0%    | 96.3%  |
| k=5   | 96.0%    | 96.63% |
| k = 7 | 96.0%    | 96.46% |
| k=9   | 96.0%    | 97.98% |

Table 2: Tuning Knn classifier