FLASH-SPEICHER

Lukas Jung & Michael Wolz

15. November 2017

GRUNDLAGEN

- Genaue Bezeichnung: Flash-EEPROM
- Nicht flüchtiger Speicher mit niedrigem Energieverbrauch
- Byteweise adressierbar und blockweise beschreib- & löschbar
- Beispiele: SSDs, USB-Sticks, Speicherkarten, Smartphones

GESCHICHTE

- 1980: NOR-Flash Speicher wird von Toshiba entwickelt
- 1984: NOR-Flash Speicher wird veröffentlicht
- 1984: Intel folgt der Entwicklung
 - veröffentlicht 1988
- 1985: Erste SSD wurde in einem PC eingebaut
 - noch zu teuer für den Privatgebrauch

GESCHICHTE

Wieso Flash - Speicher?

Löschvorgang erinnerte Entwickler an Kamerablitz

FUNKTIONSPRINZIP

- Bits werden in Speichereinheit in Form von elekt.
 Ladungen gespeichert
- Zwei verschiedene Technologien:
 - Floating-Gate
 - Charge-Trapping-Speicherelement

FUNKTIONSPRINZIP

- Anfangs: ein Bit je Zelle(SLC), da nur zwei Ladungszustände unterschieden wurden
- Mittlerweile: Multi-Level-Cell(MLC) → speichern mehrerer Bits pro Transistor
 - Floating-Gates: unterschiedliche Leitfähigkeit bei versch.
 Ladungszuständen
 - Charge-Trap: ein Bit in Drain, ein Bit in Source
 - → Auslesen via Richtungsänderung des Stroms

SPEICHERN, LESEN & LÖSCHEN

ANSTEUERUNG

- Anzahl der Speicherelemente abhängig von Speichergröße
- Bytes o. Worte können einzeln adressiert werden
 - einige Architekturen einzeln beschreibar
 - Löschen ausschließlich Sektorweise (1/4, 1/8, 1/16, ...)
 - → Alle Bits werden auf 1 gesetzt
- Wiederbeschreiben erfordert immer Löschoperation

ANSTEUERUNG

- Löschen ist sehr aufwendig
 - Löschvoränge durch Dateisystem bzw. interne Microcontroller so gering wie möglich halten

ARCHITEKTUREN

A	В	NAND		Α	В	NOR
0	0	1		0	0	1
0	1	1	VS	0	1	0
1	0	1		1	0	0
1	1	0		1	1	0

Unterschiedliche interne Verschaltung der Speicherzellen hat Einfluss auf Speicherdichte und Zugriffsgeschwindigkeit

NAND-FLASH

- Reihenschaltung der Speicherzellen
- Eine Reihe bildet eine Datenleitung
- Sequentielles Lesen und Schreiben
- Platzeffizient aber langsam

NOR-FLASH

- Parallelschaltung der Speicherzellen
- Wahlfreier Zugriff
- Bietet kurze Zugriffszeiten
- Weniger kompakt

NACHTEILE

- Begrenzte Lebensdauer
- Lebensdauer abhängig von Zustand der Oxidschicht innerhalb der Transistoren, speziell am Floating-Gate
- Asymmetrie bei Lese- und Schreiboperationen

LÖSCHEN VON DATEN

- Information wird im Floating-Gate gespeichert
- Die Oxidschicht wird bei einem Löschzyklus beschädigt
- Anzahl an Löschzyklen variiert stark je nach Hersteller, Technik und Strukturgröße

DEFEKTMANAGEMENT - ANSTEUERLOGIK

- Fehlererkennungs- und Fehlerkorrekturcodes auf Block-Ebene
- Ansteuerlogik zeigt Fehler an
- Treibersoftware markiert defekte Blöcke in einer Defekttabelle
- Berechnung und Steuerung der Schutzbits innerhalb der Ansteuerlogik

DEFEKTMANAGEMENT - SOFTWARE

- Gleichmäßige Verteilung der Operationen über die Treibersoftware
- Verwendung von "Wear-Leveling-Algorithmen" zur gleichmäßigen Abnutzung
- Varianten für Treiber- und Dateisystemebene

VOR- UND NACHTEILE

VORTEILE

- Nichtflüchtiges Speichermedium
- Mechanische Robustheit
- Geringer Energieverbrauch
- Niedrige Wärmeentwicklung
- Geräuschlos
- Geschwindigkeit

	SLC NAND Flash (x8)	MLC NAND	MLC NOR Flash
		Flash (x8)	(x16)
Density	512 Mbits ¹ – 4 Gbits ²	1Gbit to 16Gbit	16Mbit to 1Gbit
Read Speed	24 MB/s^3	18.6 MB/s	103MB/s
Write Speed	8.0 MB/s	2.4 MB/s	0.47 MB/s
Erase Time	2.0 mSec	2.0mSec	900mSec
Interface	I/O – indirect access	I/O – indirect	Random access
		access	
Application	Program/Data mass	Program/Data	eXecuteInPlace
	storage	mass storage	

NACHTEILE

- Langsamer als nicht-flüchtiger Speicher
- NAND ist kompakt, aber langsam
- NOR ist nur im Schreiben langsam, aber groß
- Kosten
- Fehleranfälligkeit

VIELEN DANK FÜR IHRE AUFMERKSAMKEIT

QUELLEN

- https://de.wikipedia.org/wiki/Flash-Speicher
- https://en.wikipedia.org/wiki/Flash_memory
- http://www.itwissen.info/Flash-Speicher-flash-memory.html
- https://de.wikipedia.org/wiki/Floating-Gate-Transistor
- https://de.wikipedia.org/wiki/Charge-Trapping-Speicher
- http://www.iue.tuwien.ac.at/phd/windbacher/node14.html
- http://www.storagereview.com/introduction_ram_disks
- http://aturing.umcs.maine.edu/~meadow/courses/cos335/
 Toshiba%20NAND_vs_NOR_Flash_Memory_Technology_Overviewt.pdf