Mehrwertige Logiken

bν

Dr. Günter Kolousek

Arten der Logik

- Klassische Logiken
 - Aussagenlogik
 - ► Prädikatenlogik (1. Stufe)
 - Prädikatenlogik höherer Stufe
- Nichtklassische Logiken
 - mehrwertige Logiken
 - z.B., wahr, falsch, unbekannt
 - Fuzzy-Logik
 - Wenn die Körpertemperatur erhöht...
 - Modale Logiken
 - Es ist *möglich*, dass...
 - ► Es ist *notwendig*, dass...
 - Temporale Logiken
 - vorher, nachher, in 3 Wochen,...

Mehrwertige Logiken

- Prinzipien
 - kein Prinzip der Zweiwertigkeit (Bivalenzprinzip)
 - d.h. mehr Werte
 - ▶ Bedeutung der zusätzlichen Werte per se nicht definiert
 - iedoch sehr wohl: Extensionalitätsprinzip
- Anwendungen
 - Datenbanken
 - Wissensverarbeitung
 - Hardwareentwicklung

- 3 "Wahrheitswerte"
- wahr, falsch und...

- 3 "Wahrheitswerte"
- wahr, falsch und...
 - (kontingent) möglich (auch unbekannt)
 - Morgen wird eine Seeschlacht stattfinden" (→ Aristoteles)

- 3 "Wahrheitswerte"
- wahr, falsch und...
 - (kontingent) möglich (auch unbekannt)
 - Morgen wird eine Seeschlacht stattfinden" (→ Aristoteles)
 - "weder wahr noch falsch"

- 3 "Wahrheitswerte"
- wahr, falsch und...
 - (kontingent) möglich (auch unbekannt)
 - Morgen wird eine Seeschlacht stattfinden" (→ Aristoteles)
 - "weder wahr noch falsch"
 - "sowohl wahr als auch falsch"

- 3 "Wahrheitswerte"
- wahr, falsch und...
 - (kontingent) möglich (auch unbekannt)
 - Morgen wird eine Seeschlacht stattfinden" (→ Aristoteles)
 - "weder wahr noch falsch"
 - "sowohl wahr als auch falsch"
 - "bedeutungslos"

- 3 "Wahrheitswerte"
- wahr, falsch und...
 - (kontingent) möglich (auch unbekannt)
 - Morgen wird eine Seeschlacht stattfinden" (→ Aristoteles)
 - "weder wahr noch falsch"
 - "sowohl wahr als auch falsch"
 - "bedeutungslos"
 - "halb wahr"

Junktoren

► Negation

а	¬ a
0	1
1/2	1/2
1	0

- ▶ ½ ist prinzipiell ein Symbol!
- ▶ als Wert betrachtet: ¬ a = 1 a

Junktoren – 2

► Konjunktion

а	b	a∧ b
0	0	0
0	1/2	0
0	1	0
1/2	0	0
1/2	1/2	1/2
1/2	1	1/2
1	0	0
1	1/2	1/2
1	1	1

► allgemein: $a \land b = min(a, b)$

Junktoren – 3

Disjunktion

а	b	a∨ b
0	0	0
0	1/2	1/2
0	1	1
1/2	0	1/2
1/2	1/2	1/2
1/2	1	1
1	0	1
1	1/2	1
1	1	1

► allgemein: $a \lor b = max(a, b)$

Łukasiewicz-Logik L3

- ► Jan Łukasiewicz, 1920
- ▶ 3. Wahrheitswert *m* ... "möglich"
 - nicht bewiesen, aber auch nicht widerlegt
- Junktoren wie vorher gezeigt
- ► *nicht alle* Tautologien gelten
 - ▶ wie z.B. a ∨ ¬ a
- Implikation ist eigens definiert
 - ► Biimplikation (Äquivalenz) definiert als:

$$a \leftrightarrow b \Leftrightarrow (a \rightarrow b) \land (b \rightarrow a)$$

und ergibt sich damit zu:

$$a \leftrightarrow b = 1 - |a - b|$$

Antivalenz definiert als:

$$a \vee b \Leftrightarrow (a \vee b) \wedge \neg (a \wedge b)$$

Łukasiewicz-Logik L₃ – 2

Implikation

а	b	$a{\rightarrow}b$
0	0	1
0	1/2	1
0	1	1
1/2	0	1/2
1/2	1/2	1
1/2	1	1
1	0	0
1	1/2	1/2
1	1	1

- ▶ allgemein: $a \rightarrow b = \min(1, 1 + b a)$
 - ▶ d.h. $a \to b = \left\{ \begin{array}{ll} 1 & \text{wenn } a \leq b \\ 1 + b a & \text{anderenfalls} \end{array} \right.$
 - Achtung: $a \rightarrow b \Leftrightarrow \neg a \lor b$

Kleene-Logik K₃

- ► Stephen Cole Kleene, 1938
- ▶ 3. Wahrheitswert *i* ... indeterminate (unbestimmt)
 - "weder wahr noch falsch"
- ► Implikation

а	b	$a{\rightarrow}b$
0	0	1
0	1/2	1
0	1	1
1/2	0	1/2
1/2	1/2	1/2
1/2	1	1
1	0	0
1	1/2	1/2
1	1	1

- ► Unterschied zu L₃, wenn sowohl *a* als auch *b* jeweils ½!
 - ▶ aber wie in klassischer Aussagenlogik: $a \rightarrow b \equiv \neg a \lor b$
 - ightharpoonup aber *keine* Tautologien, da auch a ightharpoonup a keine Tautologie

Priest-Logik P₃

- ► Graham Priest, 1979
- ▶ wie K₃, aber 2 designierte Wahrheitswerte!
 - Tautologie: Aussage nimmt immer einen designierten Wahrheitswert an
 - d.h. designierter Wahrheitswert in AL ist 1
 - ightharpoonup ightarrow designierte Wahrheitswerte in P₃ sind 1 und ½
- 3. Wahrheitswert ½ ... overdetermined (überbestimmt)
 - "sowohl wahr als auch falsch"
- Tautologien wie in zweiwertiger Logik!

Bochvar-Logik B₃

- Dmitri Bochvar, 1937
- ▶ 3. Wahrheitswert *m* ... meaningless
 - "bedeutungslos" oder "paradox"
 - dieser wird als contagious (infektiös, ansteckend)
- ► Idee: Umgang mit Paradoxien (z.B. Lügnerparadoxon)
 - Dieser Satz ist falsch
 - gemäß Bouchvar ist so ein Satz bedeutungslos → daher weder wahr noch falsch

Bochvar-Logik B₃ – 2

► Konjunktion

а	b	a∧ b
0	0	0
0	1/2	1/2
0	1	0
1/2	0	1/2
1/2	1/2	1/2
1/2	1	1/2
1	0	0
1	1/2	1/2
1	1	1

Bochvar-Logik B₃ – 3

Disjunktion

а	b	a∨ b
0	0	0
0	1/2	1/2
0	1	1
1/2	0	1/2
1/2	1/2	1/2
1/2	1	1/2
1	0	1
1	1/2	1/2
1	1	1

Bochvar-Logik B₃ – 4

Implikation

а	b	$a{\to}b$
0	0	1
0	1/2	1/2
0	1	1
1/2	0	1/2
1/2	1/2	1/2
1/2	1	1/2
1	0	0
1	1/2	1/2
1	1	1

Erweiterung

- mehr als 3 Werte
- z.B. Łukasiewicz-Logik L_n
 - ► Wahrheitswerte: $0, \frac{1}{n-1}, \frac{2}{n-1}, ..., \frac{n-2}{n-1}, 1$
 - ► L₃: $0, \frac{1}{2}, 1$
 - ightharpoonup L₄: 0, $\frac{1}{3}$, $\frac{2}{3}$, 1
- ► z.B. Łukasiewicz-Logik L_∞
 - ightharpoonup Wahrheitswerte: alle reellen Zahlen in [0,1]
 - d.h. infinite-valued logic
- diese Wahrheitswerte werden als Grad eines Wahrheitswertes interpretiert!