1.

Part (1)

In logistic_reg, the for loop terminates either iteration times reach max_iterations or when each of element in the gradient goes below the tolerance.

[w,
$$E_{in}$$
] = logistic_reg(X_{train} , y_{train} , w_{init} , max_its, η) [E_{clss_train}] = find_test_error(w, X_{train} , y_{train}) [E_{test}] = find_test_error(w, X_{test} , y_{test}) $\eta = 10^{-5}$, tolerance = 10^{-3} ,

where E_{in} : logistic regression in-sample error

 E_{clss_train} : classification error for training data set

 E_{test} : test error (classification error for testing data set)

max_iterations	10,000	100,000	1,000,000
num_its	10,000	100,000	1,000,000
E_{in}	0.5847	0.4937	0.4354
E_{clss} _train	0.3092	0.2237	0.1513
E_{test}	0.3172	0.2069	0.1310
execution_time	4.9 sec	47.9 sec	477.2 sec

What can you say about the generalization properties of the model?

E_test would be generally lower than E_in, because E_in is an estimation bounded by a loose upper bound. Then the actual E_test would be lower than the error estimation in training. Furthermore, if the gradient is not below tolerance, more iterations basically come with lower error rate.

Part (2)

	Best result(max_its = 1	glmfit function	
	million)		
E _{test}	0.1310	0.1103	
Execution Time	477.2 sec	0.0403 sec	

Part (3)

Scaling the features by subtracting the mean and dividing by the standard deviation for each

of the features:
$$Z_{train} = \frac{X_{train} - \bar{X}_{train}}{S_{_train}}$$
, $Z_{test} = \frac{X_{test} - \bar{X}_{test}}{S_{_test}}$, where S is standard deviation.

Setting tolerance to 10^{-6} . Run iterations until each element of gradient below the tolerance 10^{-6} .

[w,
$$E_{in}$$
] = logistic_reg(Z_{train} , y_train, w_init, max_its = NONE, η)
[E_{test}] = find_test_error(w, Z_{test} , y_test)

	$\eta = 10^{-5}$	$\eta = 10^{-4}$	$\eta = 10^{-3}$	$\eta = 10^{-2}$
Number of iterations	23,371,190	2,337,115	233,707	23,367
E_{in}	0.4074	0.4074	0.4074	0.4074
E_{test}	0.1034	0.1034	0.1034	0.1034
Time	12859.8 sec	1086.8 sec	111.9 sec	11.2 sec

	$\eta = 10^{-1}$	$\eta = 1$	$\eta = 3$	$\eta = 5$	$\eta = 7$
Number of iterations	2,332	229	73	41	42
E_{in}	0.4074	0.4074	0.4074	0.4074	0.4074
E_{test}	0.1034	0.1034	0.1034	0.1034	0.1034
Time	1.1 sec	0.11 sec	0.035 sec	0.02 sec	0.022 sec

^{**}when $\eta = 8$ each step is too large, it begins to bouncing around.

2. Problem 3.4

Adaptive Linear Neuron (Adaline) algorithm

(a)
$$e_n(w) = [\max(0, 1 - y_n w^T x_n)]^2 = \begin{cases} 0, & 1 - y_n w^T x_n \le 0 \\ (y_n w^T x_n)^2, & 1 - y_n w^T x_n > 0 \end{cases}$$
 when $e_n(w) = 0 \Rightarrow \lim_{(1 - y_n w^T x_n) \to 0^+} \nabla e_n(w) = 0 = \lim_{(1 - y_n w^T x_n) \to 0^-} \nabla e_n(w)$
$$\Rightarrow \nabla e_n(w) = 0$$
 when $e_n(w) = (y_n w^T x_n)^2$

$$\lim_{(1-y_nw^Tx_n)\to 0^+} \nabla e_n(w) = \lim_{(1-y_nw^Tx_n)\to 0^+} -2[1-y_nw^Tx_n]y_nx_n = 0$$

$$\lim_{(1-y_nw^Tx_n)\to 0^-} \nabla e_n(w) = \lim_{(1-y_nw^Tx_n)\to 0^-} -2[1-y_nw^Tx_n]y_nx_n = 0$$

$$\Rightarrow \lim_{(1-y_n w^T x_n) \to 0^+} \nabla e_n(w) = \lim_{(1-y_n w^T x_n) \to 0^-} \nabla e_n(w) = 0$$

$$\Rightarrow \nabla e_n(w) = 0$$

Therefore, $e_n(w)$ is continuous and differentiable.

(b)

$$\begin{aligned} & [\![sign(w^T x_n) \neq y_n]\!] = \begin{cases} 0, \ sign(w^T x_n) = y_n \\ 1, \ sign(w^T x_n) \neq y_n \end{cases} \\ & e_n(w) = [\max(0, 1 - y_n w^T x_n)]^2 \begin{cases} 0, & 1 - y_n w^T x_n \leq 0 \\ (y_n w^T x_n)^2, & 1 - y_n w^T x_n > 0 \end{cases} \end{aligned}$$

when
$$sign(w^T x_n) = y_n$$
, $\llbracket sign(w^T x_n) \neq y_n \rrbracket = 0$
 $y_n w^T x_n > 0 \Rightarrow e_n(w) = \llbracket 0, 1 \rbrace \geq \llbracket sign(w^T x_n) \neq y_n \rrbracket$

when
$$sign(w^Tx_n) \neq y_n$$
, $[sign(w^Tx_n) \neq y_n] = 1$
 $y_nw^Tx_n < 0 \Rightarrow e_n(w) > 1 = [sign(w^Tx_n) \neq y_n]$

Since for each n, $e_n(w) \ge [sign(w^Tx_n) \ne y_n]$, therefore $e_n(w)$ is upper bound of $[sign(w^Tx_n) \ne y_n]$.

$$\Rightarrow \frac{1}{N} \sum_{n=1}^{N} e_n(w) \ge \frac{1}{N} \sum_{n=1}^{N} \llbracket sign(w^T x_n) \ne y_n \rrbracket = E_{in}(w)$$

(c)

$$w(t+1) = w(t) + \eta(1 - y_n w^T x_n) y_n x_n$$

$$= w(t) + \eta(y_n - (y_n)^2 w^T x_n) x_n$$

$$= w(t) + \eta(y_n - (1) w^T x_n) x_n$$

$$= w(t) + \eta(y_n - w^T x_n) x_n$$

3. Problem 3.19

Pointing out potential problems

(a)

The potential problem is the complexity goes infinite as n goes infinite.

(b)

Same reason as part (a).

The potential problem is the complexity goes infinite as n goes infinite.

$$\Phi(\mathbf{x}) = \left\{ \phi_{i,j} \right\} \ \in \ \mathcal{R}^{(101 \times 101)}$$

Since the transformation's dimension is fixed and finite, there's no potential problem that complexity would go too large.

4. Problem 4.8

$$\begin{cases} w^T \mathbf{w} = \sum_{i=1}^n w_i^2 \\ \nabla \mathbf{w} = (2w_1, 2w_2, \dots, 2w_n) = 2w \end{cases}$$

$$E_{aug}(\mathbf{w}) = E_{in}(\mathbf{w}) + \lambda \mathbf{w}^T \Gamma^T \Gamma \mathbf{w} = E_{in}(\mathbf{w}) + \lambda \mathbf{w}^T \mathbf{w}$$

$$E_{aug}(\mathbf{w}) : \mathbf{w}(t+1) \leftarrow \mathbf{w}(t) - \eta [\nabla E_{in}(\mathbf{w}(t)) + 2\lambda \mathbf{w}(t)]$$

$$\Rightarrow \mathbf{w}(t+1) \leftarrow (1 - 2\eta\lambda)\mathbf{w}(t) - \eta \nabla E_{in}(\mathbf{w}(t))$$

5. Problem 4.25

(a)

No, because
$$E_{out} = E_{in}(g) + O(\sqrt{\frac{d}{N}\ln(N)})$$
,

and for each leaner,
$$E_{out} = E_{val}(m) + O(\sqrt{\frac{d}{N-K_m}\ln(N-K_m)})$$

Since the second term varies in each m leaner, selecting the smallest $E_{val}(m)$ doesn't guarantee the minimum E_{out} .

(b)

Yes, because for each leaner,
$$E_{out} = E_{val}(m) + O(\sqrt{\frac{d}{N-K_m}}\ln(N-K_m))$$

For every m learner, K_m are all the same, then second term is the same.

Therefore, selecting minimum validation error will lead a minimum E_{out} .

(c)

Each
$$P[E_{out}(m) > E_{val}(m) + \epsilon] \le e^{-2\epsilon^2 K_m}$$

 $P[E_{out} > E_{val} + \epsilon] \le \sum_{m=1}^{M} P[E_{out}(m) > E_{val}(m) + \epsilon]$
 $= \sum_{m=1}^{M} e^{-2\epsilon^2 K_m} = M e^{-2\epsilon^2 k(\epsilon)}$

where
$$k(\epsilon) = \frac{-1}{2\epsilon^2} \ln(\frac{1}{M} \sum_{m=1}^{M} e^{-2\epsilon^2 K_m})$$