

=====

Sequence Listing was accepted.

If you need help call the Patent Electronic Business Center at (866)
217-9197 (toll free).

Reviewer: Anne Corrigan

Timestamp: [year=2007; month=11; day=25; hr=16; min=3; sec=27; ms=634;]

=====

Application No: 10560563 Version No: 1.0

Input Set:

Output Set:

Started: 2007-11-02 20:08:17.088
Finished: 2007-11-02 20:08:18.594
Elapsed: 0 hr(s) 0 min(s) 1 sec(s) 506 ms
Total Warnings: 0
Total Errors: 0
No. of SeqIDs Defined: 57
Actual SeqID Count: 57

SEQUENCE LISTING

<110> Blackwell, T. Keith
An, Jae Hyung

<120> SKN-1 GENE AND PROTEINS

<130> 10276-093US1

<140> 10560563
<141> 2007-11-02

<150> PCT/US2004/19046
<151> 2004-06-14

<150> US 60/478,185
<151> 2003-06-13

<160> 57

<170> FastSEQ for Windows Version 4.0

<210> 1
<211> 85
<212> PRT
<213> *Caenorhabditis elegans*

<400> 1
Ala Ser Gly Gln Arg Lys Arg Gly Arg Gln Ser Lys Asp Glu Gln Leu
1 5 10 15
Ala Ser Asp Asn Glu Leu Pro Val Ser Ala Phe Gln Ile Ser Glu Met
20 25 30
Ser Leu Ser Glu Leu Gln Gln Val Leu Lys Asn Glu Ser Leu Ser Glu
35 40 45
Tyr Gln Arg Gln Leu Ile Arg Lys Ile Arg Arg Arg Gly Lys Asn Lys
50 55 60
Val Ala Ala Arg Thr Cys Arg Gln Arg Arg Thr Asp Arg His Asp Lys
65 70 75 80
Met Ser His Tyr Ile
85

<210> 2
<211> 533
<212> PRT
<213> *Caenorhabditis elegans*

<400> 2
Met Tyr Thr Asp Ser Asn Asn Arg Asn Phe Asp Glu Val Asn His Gln
1 5 10 15
His Gln Gln Glu Gln Asp Phe Asn Gly Gln Ser Lys Tyr Asp Tyr Pro
20 25 30

Gln Phe Asn Arg Pro Met Gly Leu Arg Trp Arg Asp Asp Gln Arg Met
35 40 45
Met Glu Tyr Phe Met Ser Asn Gly Pro Val Glu Thr Val Pro Val Met
50 55 60
Pro Ile Leu Thr Glu His Pro Pro Ala Ser Pro Phe Gly Arg Gly Pro
65 70 75 80
Ser Thr Glu Arg Pro Thr Thr Ser Ser Arg Tyr Glu Tyr Ser Ser Pro
85 90 95
Ser Leu Glu Asp Ile Asp Leu Ile Asp Val Leu Trp Arg Ser Asp Ile
100 105 110
Ala Gly Glu Lys Gly Thr Arg Gln Val Ala Pro Ala Asp Gln Tyr Glu
115 120 125
Cys Asp Leu Gln Thr Leu Thr Glu Lys Ser Thr Val Ala Pro Leu Thr
130 135 140
Ala Glu Glu Asn Ala Arg Tyr Glu Asp Leu Ser Lys Gly Phe Tyr Asn
145 150 155 160
Gly Phe Phe Glu Ser Phe Asn Asn Asn Gln Tyr Gln Gln Lys His Gln
165 170 175
Gln Gln Gln Arg Glu Gln Ile Lys Thr Pro Thr Leu Glu His Pro Thr
180 185 190
Gln Lys Ala Glu Leu Glu Asp Asp Leu Phe Asp Glu Asp Leu Ala Gln
195 200 205
Leu Phe Glu Asp Val Ser Arg Glu Glu Gly Gln Leu Asn Gln Leu Phe
210 215 220
Asp Asn Lys Gln Gln His Pro Val Ile Asn Asn Val Ser Leu Ser Glu
225 230 235 240
Gly Ile Val Tyr Asn Gln Ala Asn Leu Thr Glu Met Gln Glu Met Arg
245 250 255
Asp Ser Cys Asn Gln Val Ser Ile Ser Thr Ile Pro Thr Thr Ser Thr
260 265 270
Ala Gln Pro Glu Thr Leu Phe Asn Val Thr Asp Ser Gln Thr Val Glu
275 280 285
Gln Trp Leu Pro Thr Glu Val Val Pro Asn Asp Val Phe Pro Thr Ser
290 295 300
Asn Tyr Ala Tyr Ile Gly Met Gln Asn Asp Ser Leu Gln Ala Val Val
305 310 315 320
Ser Asn Gly Gln Ile Asp Tyr Asp His Ser Tyr Gln Ser Thr Gly Gln
325 330 335
Thr Pro Leu Ser Pro Leu Ile Ile Gly Ser Ser Gly Arg Gln Gln Gln
340 345 350
Thr Gln Thr Ser Pro Gly Ser Val Thr Val Thr Ala Thr Ala Thr Gln
355 360 365
Ser Leu Phe Asp Pro Tyr His Ser Gln Arg His Ser Phe Ser Asp Cys
370 375 380
Thr Thr Asp Ser Ser Ser Thr Cys Ser Arg Leu Ser Ser Glu Ser Pro
385 390 395 400
Arg Tyr Thr Ser Glu Ser Ser Thr Gly Thr His Glu Ser Arg Phe Tyr
405 410 415
Gly Lys Leu Ala Pro Ser Ser Gly Ser Arg Tyr Gln Arg Ser Ser Ser
420 425 430
Pro Arg Ser Ser Gln Ser Ser Ile Lys Ile Ala Arg Val Val Pro Leu
435 440 445
Ala Ser Gly Gln Arg Lys Arg Gly Arg Gln Ser Lys Asp Glu Gln Leu
450 455 460
Ala Ser Asp Asn Glu Leu Pro Val Ser Ala Phe Gln Ile Ser Glu Met
465 470 475 480
Ser Leu Ser Glu Leu Gln Gln Val Leu Lys Asn Glu Ser Leu Ser Glu

485 490 495
Tyr Gln Arg Gln Leu Ile Arg Lys Ile Arg Arg Arg Gly Lys Asn Lys
500 505 510
Val Ala Ala Arg Thr Cys Arg Gln Arg Arg Thr Asp Arg His Asp Lys
515 520 525
Met Ser His Tyr Ile
530

<210> 3
<211> 1602
<212> DNA
<213> *Caenorhabditis elegans*

<400> 3
atgtacacgg acagcaataa taggaacttt gatgaagtca accatcagca tcaacaagaa 60
caagatttca atggccaatc caaatatgtat tatccacaat tcaaccgtcc aatgggtctc 120
cggtggcgtg atgatcaacg gatgatggag tatttcatgt cgaatggtcc agtagaaact 180
gttccagtttgc caataact caccgagcat ccaccagcat ctccattcgg tagaggacca 240
tctacagaac gtccaaaccac atcatctcga tacgagtaca gttcgcccttc tctcgaggat 300
atcgacttga ttgatgtgct atggagaagt gatattgctg gagagaaggg cacacgacaa 360
gtggctcctg ctgatcagta cgaatgtgat ttgcagacgt tgacagagaa atcgacagta 420
gcccactca ctgccaaga gaatgctcga tatgaagatc tttcgaaaagg attctataat 480
ggattcttcg agtcgttcaa taacaatcaa tatcagcaga aacatcagca acaacaacga 540
gaacaaataa agacaccaac tcttgaacat ccaactcaaa aagccgaatt ggaagatgat 600
ctgtttgatg aagatcttgc tcagctttc gaggatgtt caagagaaga aggacaattg 660
aatcaacttt ttgataataa gcaacaacat ccagttatca ataatgttc tctgtcgaa 720
ggaattgttt ataatcaggg aaatttgacc gagatgcaag agatgcgtga ttctgtcaat 780
caagtttcca tttcaacaat tccaacaaca tcgactgctc aaccagagac ttgttcaat 840
gtaaccgatt cacagactgt cgaacagtgg cttccaacag aagttgtacc aaacgatgtg 900
ttcccaacat ccaactacgc ctacatttgcg atgcaaaacg acagtcttca agcagttgt 960
tcaaattggac agattgacta tgatcattcc tatcaatcca ctggtcagac tccactgtct 1020
cctctcatca ttggatcttc aggacgtcaa cagcagactc aaacgagccc aggaagcgtc 1080
acagtgactg caacagctac tcaatcggtt ttgcgtccat atcactcaca gagacactcg 1140
tttagtgatt gcactactga ttgcgtcatca acgtgctctc gcctcttcc ggaatctcca 1200
cgatacacgt cagagagctc aaccggaaact cacgagtctc gtttctacgg aaagttggct 1260
ccatccagtg gatcacgcta ccaacgatca tcgtctccac gttcatcaca atcttcgatt 1320
aagatcgca gagttgttcc actggccagc ggacaacgga agcgtggacg tcaatccaag 1380
gatgagcagc tcgcccagtga caacgagctt ccagtgtcgg cggtccagat ttggagatg 1440
tcattaagcg agttgcaaca agtgttgaag aacgagagtc tcagcgagta tcaaagacag 1500
ttgattcgca agattcgctcg acgcggaaag aacaagggttgc tggccgcac ttgcccgtcaa 1560
agacgcacgg atcgtaacga caagatgtcc cattacatct ga 1602

<210> 4
<211> 2615
<212> DNA
<213> *Caenorhabditis elegans*

<400> 4
aatcgttctt ctttttattt tctacagctg atgatgtttt atgaaggttt tattttcctt 60
gcttttcca ccctgttaat attatttcg atattccaa aaataattcc aaattttcag 120
tccatattca tctggatact tgcaacatca tcactgattt tggtgatcag ttcaccatcg 180
tccaaacctt caatccaatc atcgtcatac gatcggtatca cgacaaaaca tcttctggac 240
aatatatcac cgacatttag tgagtatgac ttgaaaagtgc catctgatca cttttcgagc 300
cgtttgcgtcg ctagggactt ttatgtaat cagatgtact tttcgaattt tttagagcaa 360
aagcagtagt tgacacttttg aaacttaaat taatatacaa aactatgata tatattttca 420
gaaatgtaca cggacagcaa taataggaac tttgatgaag tcaaccatca gcatcaacaa 480

gaacaagatt tcaatggcca atccaaatat gattatccac aattcaaccg tccaatgggt 540
ctccgttggc gtgatgatca acggatgatg gagtattca tgtcgaatgg tccagtagaa 600
actgttccag ttatgccaat actcaccgag catccaccag catctccatt cggtagagga 660
ccatctacag aacgtccaac cacatcatct cgatacgagt acagttcgcc ttctctcgag 720
gatatcgact tgattgatgt gctatggaga agtcatattg ctggagagaa gggcacacga 780
caagtggctc ctgctgatca gtacgaatgt gattgcaga cgttgacaga gaaatcgaca 840
gtagcgccac tcactgccga agagaatgct cgatcatgaag atcttcgaa aggattctat 900
aatggattct tcgagtcgtt caataacaat caatatcagc agaaacatca gcaacaacaa 960
cgagaacaaa taaagacacc aactttgaa catccaactc aaaaagccga attggaagat 1020
gatctgttg atgaagatct tgctcagctt ttgcaggatg tttcaagaga agaaggacaa 1080
ttgaatcaac ttttgataa taagcaacaa catccagtt tcaataatgt ttctctgtcg 1140
gaaggaattt tttataatca ggcaaatttgc accgagatgc aagagatgct tgattcctgc 1200
aatcaagttt ccattcaac aattccaaca acatcgactg ctcaaccaga gactttgttc 1260
aatgtAACCG attcacagac tgtcgaacag tggcttccaa cagaagttgt accaaacgat 1320
gtgttcccaa catccaacta cgcctacatt ggaatgcaaa acgacagtct tcaaggcgtt 1380
gtatcaaatg gacagattga ctatgatcat tcctatcaat ccactggta gactccactg 1440
tctccctcta tcattggatc ttcaaggacgt caacagcaga ctcaaacgag cccaggaagc 1500
gtcacagtga ctgcaacagc tactcaatcg ttgttcgatc catactactc acagagacac 1560
tcgttagtg attgcactac tgattcgtca tcaacgtgtc ctgcctctc ttgcgaatct 1620
ccacgataca cgtcagagag ctcaaccgga actcacgagt ctgcgttcta cggaaagttg 1680
gtccatcca gtggatcactg ctaccaacga tcacgtctc cacgttcatc acaatctcg 1740
attaagatcg cgagagttgt tccactggcc agcggacaac ggaaggctgg acgtcaatcc 1800
aaggatgagc agtcgcccag tgacaacgag cttccagtgt cggcggtcca gatttcggag 1860
atgtcattaa gcgagttgca acaagtgttgc aagaacgaga gtctcagcga gtatcaaaga 1920
cagttgattc gcaagattcg tcgacgcgga aagaacaagg ttgcgtcccc cacttgcgt 1980
caaagacgca cggatcgtca cgacaagatg tcccattaca tctgagaagc cctctttat 2040
cacataaaat ctgggtcgaa accttattaa agccacataa ttaaagataa ttaattccgc 2100
cacaataatc gttttttct tctttgcgt gtctcatttc atttgatct actctttct 2160
cccttcggat tctttgattt cccagtgaaa tacctcaccc acttcaatcc ccacaaagtg 2220
agcaaccct atcttgcac agtttatca tctttcatc ataccagtt tgataattta 2280
ttatctgatc cccatcccct tgcgcctct cattagtatac ctagttttc atttgagccc 2340
ggagctcaga ctacatctcc gaatcatcat acaaatacat agaaacgggt ctcgtgacga 2400
aagaatacgt gcaccacacg acccccccat cctgttcacc cccatacacc tgaaaaatata 2460
gatctttaca gttatttcta ttatattctc aaatctctcg taatatcgta tcaatttcct 2520
cttctttttt gtcattttca attttctca aatttctcag atctattctt tttcttgtat 2580
ttttggaaact tgtatccctc ctccatcccc agact 2615

<210> 5

<211> 23

<212> PRT

<213> *Caenorhabditis elegans*

<400> 5

Phe Ser Asp Cys Thr Thr Asp Ser Ser Ser Thr Cys Ser Arg Leu Ser

1 5 10 15

Ser Glu Ser Pro Arg Tyr Thr

20

<210> 6

<211> 933

<212> DNA

<213> *Caenorhabditis elegans*

<400> 6

atgtcacttc catctgattt tgcctcctct cttctggcat cctctaccac caccaacacc 60

accaacaccg ctccagcagc tgtcaactct tttgacgaac aagaagaaga atccaagaag 120

atactgaaca tgtacattca aatgttcaat caacaacagg tggatcaaca cggccatcat 180
caccAACATC catacgccTA ttcaggagTC tcgagcactT ttgacagAGT gttcccaaca 240
tccaactacG cctacattgg aatgcaaaAC gacagtctc aagcagTTgt atcaaATgga 300
cagattgact atgatcattc ctatcaatcc actggTCaga ctccactgTC tcctctcatc 360
attggatctt caggacgtca acagcagact caaacgagCC caggaAGCgt cacagtGact 420
gcaacagcta ctcaatcgTT gttcgatcca tatcactcac agagacactc gtttagtgat 480
tgcactactg attcgTCatc aacgtgctCT cgccTCTT cggaaTCTcc acgatacAcg 540
tcagagagCT caaccggAAC tcacgagtCT cgTTTCTAcg gaaagtggc tccatccagt 600
ggatcAcgCT accaAcgATC atcgTCTCCA cgTTcatCAC aatCTTCgt taagatcgCG 660
agagttgtTC cactggCCAG cggaAcACGG aagcgtggAC gtcaatccAA ggatgagcAG 720
ctcgCCAGTG acaacgAgCT tccagtgtCG gcgttCCAGA tttcggagat gtcattaAGC 780
gagttgcaAC aagtgttGAA gaacgagAGT ctcagcAgT atcaaAGACA gttgatTCGc 840
aagattcgTC gacgcggAAA gaacaaggTT gctgcccGCA cttgcccgtca aagacgcACg 900
gatcgTCacg acaagatgTC ccattacatc tga 933

<210> 7

<211> 310

<212> PRT

<213> *Caenorhabditis elegans*

<400> 7

Met Ser Leu Pro Ser Asp Phe Ala Ser Ser Leu Leu Ala Ser Ser Thr
1 5 10 15

Thr Thr Asn Thr Thr Asn Thr Ala Pro Ala Ala Val Asn Ser Phe Asp
20 25 30

Glu Gln Glu Glu Ser Lys Lys Ile Leu Asn Met Tyr Leu Gln Met
35 40 45

Phe Asn Gln Gln Gln Val Asp Gln His Gly His His His Gln His Pro
50 55 60

Tyr Ala Tyr Ser Gly Val Ser Ser Thr Phe Asp Arg Val Phe Pro Thr
65 70 75 80

Ser Asn Tyr Ala Tyr Ile Gly Met Gln Asn Asp Ser Leu Gln Ala Val
85 90 95

Val Ser Asn Gly Gln Ile Asp Tyr Asp His Ser Tyr Gln Ser Thr Gly
100 105 110

Gln Thr Pro Leu Ser Pro Leu Ile Ile Gly Ser Ser Gly Arg Gln Gln
115 120 125

Gln Thr Gln Thr Ser Pro Gly Ser Val Thr Val Thr Ala Thr Ala Thr
130 135 140

Gln Ser Leu Phe Asp Pro Tyr His Ser Gln Arg His Ser Phe Ser Asp
145 150 155 160

Cys Thr Thr Asp Ser Ser Ser Thr Cys Ser Arg Leu Ser Ser Glu Ser
165 170 175

Pro Arg Tyr Thr Ser Glu Ser Ser Thr Gly Thr His Glu Ser Arg Phe
180 185 190

Tyr Gly Lys Leu Ala Pro Ser Ser Gly Ser Arg Tyr Gln Arg Ser Ser
195 200 205

Ser Pro Arg Ser Ser Gln Ser Ser Ile Lys Ile Ala Arg Val Val Pro
210 215 220

Leu Ala Ser Gly Gln Arg Lys Arg Gly Arg Gln Ser Lys Asp Glu Gln
225 230 235 240

Leu Ala Ser Asp Asn Glu Leu Pro Val Ser Ala Phe Gln Ile Ser Glu
245 250 255

Met Ser Leu Ser Glu Leu Gln Gln Val Leu Lys Asn Glu Ser Leu Ser
260 265 270

Glu Tyr Gln Arg Gln Leu Ile Arg Lys Ile Arg Arg Arg Gly Lys Asn
275 280 285

Lys Val Ala Ala Arg Thr Cys Arg Gln Arg Arg Thr Asp Arg His Asp

290

295

300

Lys Met Ser His Tyr Ile

305

310

<210> 8

<211> 1590

<212> DNA

<213> Caenorhabditis elegans

<400> 8

gaatgtcaact tccatctgtat tttgcctcct ctcttctggc atcctctacc accaccaaca 60
ccaccaacac cgctccagca gctgtcaact ctttgacga acaagaagaa gaatccaaga 120
agatactgaa catgtacatt caaatgttca atcaacaaca ggtggatcaa cacggccatc 180
atcaccaaca tccatacgcc tattcaggag tctcgagcac ttttgacaga gtgttccaa 240
catccaacta cgcctacatt ggaatgcaaa acgacagtct tcaaggagtt gtatcaaatg 300
gacagattga ctatgatcat tccttatcaat ccactggtca gactccactg tctcctctca 360
tcattggatc ttcaaggacgt caacagcaga ctcaaacgag cccaggaagc gtcacagtga 420
ctgcaacagc tactcaatcg ttgttcgatc catatcactc acagagacac tcgttagtg 480
attgcactac tgattcgtca tcaacgtgct ctcgcctctc ttccggatct ccacgataca 540
cgtcagagag ctcaaccgga actcacgagt ctgcgttcta cggaaagttg gctccatcca 600
gtggatcactg ctaccaacga tcatcgtctc cacgttcatc acaatctcg attaagatcg 660
cgagagttgt tccactggcc agcggacaac ggaagcgtgg acgtcaatcc aaggatgagc 720
agctcgccag tgacaacgag cttccagtgt cggcggttca gatttcggag atgtcattaa 780
gcgagttgca acaagtgttg aagaacgaga gtctcagcga gtatcaaaga cagttgattc 840
gcaagattcg tcgacccgga aagaacaagg ttgctgccc cacttgcgtt caaagacgca 900
cgatcgtca cgacaagatg tcccattaca tctgagaagc cctctttt cacataaaat 960
ctcggtcgaa accttattaa agccacataa ttaaagataa ttaattccgc cacaataatc 1020
gttttttct tctttgcgt gtctcatttc atttgatct actcttcct cccttcggat 1080
tctttgattt cccagtgaaa tacctcaccc acttcaatcc ccacaaagtg agcaaccct 1140
atcttgcaac agtttatca tctcttcattc ataccagtt tgataattta ttatctgatc 1200
cccatccccct tgcgcctct cattagttatc ctgttttc atttgagccc ggagctcaga 1260
ctacatctcc gaatcatcat acaaatacat agaaacgggt ctgcgtgacga aagaatacgt 1320
gcaccacacg accccccccat cctgttcacc cccatacacc tgaaaaatat gatcttaca 1380
gttatttcta ttatatcctc aaatctctcg taatatcgta tcaatttcct cttctttt 1440
gtcattttca attttctca aatttctcag atctattctt tttcttgtat ttttggaaact 1500
tgtatccctc ctccatcccc agactcccc ttcccagttt ctcttgata ttttcatata 1560
tgtccatata tcgttgaat ctctcattta 1590

<210> 9

<211> 1872

<212> DNA

<213> Caenorhabditis elegans

<400> 9

atggcggtt catcacgccc tcagcgaagt acgtcggtca cgagacgaga cgataaacga 60
agacgaagac agtgcttctc ttccggtagcc gacgacgaag aagagacgac gtcaatttt 120
ggagtgctgtt ccatattcat ctggataactt gcaacatcat cactgattt ggtgatcagt 180
tcaccatcgt ccaacacacc aatccaatca tcgtcatacg atcggatcac gacaaaacat 240
cttctggaca atatatcacc gacattaaa atgtacacgg acagcaataa taggaacttt 300
gatgaagtca accatcagca tcaacaagaa caagattca atggccaatc caaatatgat 360
tatccacaat tcaaccgtcc aatgggtctc cggtggcgtg atgatcaacg gatgatggag 420
tatttcattgt cgaatggtcc agtagaaaact gttccagttt tgccaaatct caccgagcat 480
ccaccagcat ctccattcgg tagaggacca tctacagaac gtccaaaccac atcatctcga 540
tacgagtaca gttcgccctc tctcgaggat atcgacttga ttgatgtgct atggagaagt 600
gatattgctg gagagaaggg cacacgacaa gtggctcctg ctgatcagta cgaatgtgat 660

