

(19) Europäisches Patentamt
European Patent Office
Officé européen des brevets

(11) Publication number:

0 668 058 A1

(12)

EUROPEAN PATENT APPLICATION

(21) Application number: 95101842.3

(51) Int. Cl. 6: **A61B 17/34, A61B 17/22,**
A61N 1/05, A61B 5/042

(22) Date of filing: 10.02.95

(33) Priority: 16.02.94 US 197122

(71) Applicant: NOVOSTE CORPORATION
4350 International Blvd., Suite C
Norcross, GA 30093-3207 (US)

(43) Date of publication of application:
23.08.95 Bulletin 95/34

(72) Inventor: Weldon, Thomas D.
4257 Tall Hickory Trail
Gainesville, GA 30506 (US)
Inventor: Larsen, Charles E.
6080 Cherokee Trace
Cumming, GA 30130 (US)
Inventor: Rosen, Jonathan J.
1407 Treeridge Parkway
Alpharetta, GA 30202 (US)

(84) Designated Contracting States:
DE ES FR GB IT NL

(74) Representative: Bohnenberger, Johannes, Dr.
et al
Melssner, Bolte & Partner
Postfach 86 06 24
D-81633 München (DE)

(54) Electrophysiology positioning catheter.

(57) Methods and apparatus are disclosed for treating body tissue whereby a section of tissue is drawn into contact with the open distal end of the first passageway of the apparatus. A tissue treatment fluid is introduced into the second passageway for treating the desired section of tissue retained within the first passageway. Methods and apparatus are also dis-

closed for positioning a medical device at a desired location within the heart. A portion of the apparatus is retained at a desired location of the heart and a medical device is extended through a passageway of the apparatus for contacting the heart at the desired location.

EP 0 668 058 A1

FIELD OF THE INVENTION

The present invention generally relates to catheters for use in the diagnosis or treatment of disorders found in bodily tissues in general and heart tissue in particular. More specifically, the present invention relates to novel methods and catheter apparatus for isolating and treating a selected tissue site and to novel methods and apparatus for providing a stable base for positioning a medical device at a selected location within the heart for diagnosing or treating heart tissue.

BACKGROUND ART

Catheters and catheter-like devices have been used for many years in the diagnosis or treatment of various disorders or conditions within the human body. It is become commonplace, for example, to introduce catheters through the vascular system of patient in order to diagnose or treat conditions within the human heart.

One example of a catheter for treating body tissue is described in U.S. Patent No. 4,860,744. The medical catheter described therein is used in treating internal tumors or other growths located on the internal body tissue of a patient. The catheter is inserted into the patient's body and is advanced to the area to be treated. X-rays allow the physician to monitor the progress of the catheter through the patient's body. Once the tip of the catheter reaches the area of tissue to be treated, the catheter tip is heated and applied to the tumor so as to eliminate it.

Another catheter and catheterization method are described in U.S. Patent No. 5,147,355. The catheter in that patent is also guided through a patient's blood vessels to a location within the patient's body, such as the area of the heart, so that the tip of the catheter is adjacent to the area of tissue to be treated. Once in place, the tip of the catheter is cryogenically cooled and applied to the selected area of tissue. Applying the super-cold tip of the catheter ablates the area of tissue.

A catheter for treating disorders associated with the conduction of electrical signals in cardiac tissue is described in U.S. Patent No. 4,641,649. The catheter described therein includes an antenna located at the distal tip of the catheter. The antenna receives electrical signals from the heart and transmits them to a recording device, thus purportedly allowing the physician to determine the source of the cardiac disorder. Once the source has been located, radio frequency or microwave frequency electrical energy is applied to the section of tissue through the tip of the catheter to eliminate the source of the electrical disorder.

5 Although the use of catheters for diagnosing and treating medical conditions has been long accepted, one pervasive problem is in anchoring and retaining the catheter tip at the desired section of body tissue. This problem is most common when treating organs that are subjected to repeated movements such as the heart. As described in detail below, the continuous movement of the heart muscle and pulsating flow of blood therethrough often makes it difficult for a physician to position and retain the catheter tip at a selected site within the heart long enough to perform the desired treatment procedure (e.g. ablation) or diagnosis.

10 The human heart has four chambers for receiving blood and for pumping it to various parts of the body. In particular, the two upper chambers of the heart are called atriums, and the two lower chambers are called ventricles.

15 During normal operation of the heart, oxygen-poor blood returning from the upper and lower extremities of the body enters the upper right chamber known as the right atrium. The right atrium fills with blood and eventually contracts to expel the blood through the tricuspid valve to the lower right chamber known as the right ventricle. As the right atrium relaxes, blood fills the right ventricle. Contraction of the right ventricle ejects the blood in a pulse-like manner from the right ventricle to the pulmonary artery which divides into 20 two branches, one going to each lung. As the oxygen-poor blood travels through the lungs, it becomes oxygenated (i.e. oxygen-rich).

25 The oxygenated blood leaves the lungs through the pulmonary veins and fills the upper left chamber of the heart known as the left atrium. When the left atrium contracts, it sends the blood through the mitral valve to the lower left chamber called the left ventricle. Contraction of the left ventricle, which is the stronger of the two lower chambers, forces blood through the main artery of the vascular system known as the aorta. The aorta branches into many smaller arteries and blood vessels that eventually deliver the oxygen-rich blood to the rest of the body.

30 35 40 45 Typically, diagnosis or treatment of cardiac disorders, such as cardiac arrhythmia, requires introducing a catheter into the heart as disclosed, for example, in U.S. Patent Nos. 5,147,305 and 4,641,649. However, as described above, the constant contraction and relaxation of the heart muscle, together with the pulsating flow of blood therethrough, makes accurate placement of catheter difficult even in the best of circumstances.

50 55 Because of the difficulty in accurately positioning and retaining the tip of the catheter tip at the desired location in a pumping heart, there exists today a need for suitable methods and/or apparatus that will allow the physician to anchor and retain

the catheter tip at the desired location in the heart or other body tissue during the treatment or diagnosis.

SUMMARY DISCLOSURE OF THE INVENTION

The present invention is directed, in part, to an apparatus for treating body tissue. The apparatus comprises an elongated tubular body portion that has a proximal end portion and a distal end portion. A first passageway extends through the tubular body portion between the proximal end portion and the distal end portion and has an open distal end. The apparatus includes means for drawing a desired section of tissue into contact with the open distal end of the first passageway so as to isolate the section of tissue. A second passageway also extends through the tubular body portion between the proximal and the distal end portions. The second passageway is in fluid communication with the first passageway at a location sufficiently proximate to the distal end portion so that when a treating fluid is introduced through the second passageway and flows into the first passageway, the fluid comes into contact with the tissue drawn into the open distal end portion of the first passageway. The fluid is withdrawn through the first passageway. Thus, the device is anchored at a particular location of tissue, which helps prevent inadvertent dislocation of the catheter tip by movement of the tissue or body fluids. Also, the contact between the distal end portion of the catheter and the section of tissue isolates the tissue section from the rest of the body. This allows fluid to be used to treat a desired section of tissue without generally introducing the fluid into the body or unnecessarily exposing other parts of the body to the fluid.

More particularly, the present invention is directed to an apparatus for positioning a medical device within the heart. The apparatus includes an elongated tubular body that has proximal end and a distal end portion. A passageway extends through the tubular body between the proximal end and the distal end portion and is open at the distal end portion. The apparatus also includes means for retaining the distal end portion of the apparatus at a desired location of the heart. A medical device, suitable for contacting the heart at the desired location may be inserted into the passageway exiting through the opening in the distal end portion. With the retaining means securing the tubular body at the desired section of tissue, the medical device may be positioned at a particular location for treating or diagnosing heart conditions despite the continuous movement of the heart and pulsating movement of blood therethrough.

The present invention is also directed to a method for treating body tissue. The method in-

cludes providing a catheter that has proximal end portion, a distal end portion, and first and second passageways extending between the proximal end and the distal end portions. The first passageway has an open distal end and the first and second passageways are in flow communication with each other proximate to the distal end portion. In accordance with the method, the open distal end of the first passageway is placed over a desired section of tissue. The section of tissue is drawn into contact with the open distal end of the first passageway so as to isolate the desired section of tissue. Fluid is introduced through the second passageway to contact or treat the selected area of tissue and is withdrawn through the first passageway.

Further, the present invention is directed to a method for firmly positioning a medical device within the heart. The method includes providing a catheter that has a proximal end portion, a distal end portion, and at least one passageway extending between the proximal end and the distal end portion, the passageway being open at the distal end portion. The method for positioning a medical device within the heart also includes the step of locating the distal end portion of the catheter at a selected position within the heart and securing the distal end portion to the heart tissue at the selected position. This maintains the distal end of the catheter at a relatively stable, fixed position despite heart movement and allows introduction of a medical device into the passageway and through the proximal end for contacting the desired section of heart tissue through the open distal end portion of the passageway.

These and other features of the present invention are set forth in the following detailed description of the accompanying drawings.

BRIEF DESCRIPTION OF THE DRAWINGS

Fig. 1 is a perspective view, partially broken away, of the apparatus of the present invention; Fig. 2 is a transverse cross-sectional view along line 2-2 of the apparatus of Fig. 1; Fig. 2a is a perspective view of the proximal end of one or more embodiments of the present invention; Fig. 2b is a detailed view of a portion of the proximal end of one or more embodiments of the present invention; Fig. 3 is a cross-sectional view of a human heart with the distal end of the apparatus of the apparatus of Fig. 1 disposed within the right atrium of the heart; Fig. 4 is a longitudinal cross-sectional view of the distal end of the apparatus shown in Fig. 1; Fig. 5 is a perspective view, partially broken away, of another embodiment of the apparatus

of the present invention;

Fig. 6 is a transvers cross-sectional view along line 6-6 of the apparatus of Fig. 5;

Fig. 7 is a longitudinal cross-sectional view of the distal end of the apparatus of Fig. 5;

Fig. 8 is a perspective view, partially broken away, of yet another embodiment of the apparatus of the present invention;

Fig. 9 is a transverse cross-sectional view along line 9-9 of the apparatus of Fig. 8;

Fig. 10 is a longitudinal cross-sectional view of the distal end of the apparatus of Fig. 8;

Fig. 11 is a perspective view, partially broken away, of another embodiment of the apparatus of the present invention;

Fig. 12 is a transverse cross-sectional view along line 12-12 of the apparatus shown in Fig. 11; and

Fig. 13 is a longitudinal cross-sectional view of the distal end of the catheter shown in Fig. 11.

Fig. 14 is a perspective view, partially broken away, of another embodiment of the apparatus of the present invention.

Fig. 15 is a transverse cross-sectional view along line 15-15 of the apparatus shown in Fig. 14; and

Fig. 16 is a longitudinal cross-sectional view of the distal end of the catheter shown in Fig. 14;

DETAILED DESCRIPTION OF THE INVENTION

Turning now to the drawings, Fig. 1 depicts a catheter or catheter-type medical instrument 10 embodying features of the present invention.

In the embodiment shown in Fig. 1, catheter 10 includes an extruded, elongated, polymeric tube 11 having a proximal end portion 12 and a distal end portion 14. As used in connection with this and the other embodiments disclosed, "distal end portion" generally means a length of the catheter tubing extending up to and including the distal tip. Specifically, for catheters and catheter-type devices used for treating heart tissue, the term "distal end portion", as used herein, is understood to mean that portion of the catheter or catheter-type device which extends into the heart. As seen in Fig. 1, catheter 10 has a first passageway 16 that extends through the polymeric tube from proximal end 12 to the distal end portion 14. A second passageway 18 also extends through the polymeric tube 11 from the proximal end 12 to the distal end portion 14 parallel to passageway 16. Common wall 19 extends substantially along the length of the tube 11 between the first and second passageways. Passageway 16 terminates in an open distal end 20. Passageway 18 is occluded, such as by a post-extrusion sealing, at the distal end tip 22 of the catheter 10 but communicates with passageway 16

through an opening in common wall 19 near open distal end 20. As seen in Fig. 2, first passageway 16 has a substantially larger cross-sectional area than passageway 18.

A source of suction such as a syringe or a vacuum pump may be associated with the first passageway 16. For example, as generally depicted in Fig. 2a, syringe 21 may be attached to passageway 16 at the proximal end of catheter 10 near luer lock hub 23. Luer lock hub 23 also includes stopcock 25. With stopcock 25 in the "open" position and by withdrawing plunger 21a of syringe 21, a suction force within passageway 16 is established. Stopcock 25 is then turned to the closed position to maintain the suction force and, thereby, firmly secure catheter tip to the tissue. As depicted in detail in Fig. 4, by introducing a suction force through passageway 16, a desired section of body tissue is drawn into open distal end 20 of catheter 10 so as to isolate the section of tissue.

Passageway 18 is attached to a controllable source of medical fluid (not shown) near proximal end portion 12 of passageway 18. The medical fluid or drug may be introduced into second passageway 18 directly or through hub 29 shown in Fig. 2a. Hub 29 may be bifurcated, as shown in Fig. 2b, so as to keep the proximal ends of passageways 16 and 18 separated from each other. Regardless of how the medical fluid is administered, fluid is introduced into passageway 18 and travels from the proximal end 12 to the distal end portion 14 and through the opening in common wall 19. As fluid enters passageway 16 through the opening in common wall 19, it contacts the section of tissue drawn into open distal end 20. The fluid and any loose tissue debris exits the catheter through passageway 16.

Although suitable for treating various different body tissues, the catheter of the present invention finds particular application in the treatment of internal body tissue such as heart tissue. In accordance with the method for treating heart tissue, a catheter of the type described above is introduced percutaneously into the vascular system of the patient and advanced to the area of the heart in a manner well known to those skilled in the art of catheterization. Typically, catheter 10 is inserted through a selected vein or artery (e.g. femoral) and directed through the circulatory system (not shown) of the patient until it eventually enters the heart. Catheter 10 may be introduced into and guided through the body by using, for example, a sheath or guide wire. Alternatively, catheter 10 may be directly introduced and guided through the body without any such guiding device.

Fig. 3 shows the distal end of the catheter 10 inside a portion of a human heart 24. The tip of the catheter 10 is positioned so that opening 20 in

passageway 16 is located over the section of tissue to be treated or diagnosed. The position of the catheter tip may be monitored by using an x-ray as described in U.S. Patent No. 4,641,649. Once the desired section of heart tissue is located, a suction force is applied through passageway 16 so as to draw the desired section of tissue into the open distal end 20. The source of the suction may be pre-attached to catheter 10 or may be attached by the physician once the tip of the catheter is located at the desired section of tissue. The suction force may be applied by withdrawing the plunger of a syringe or by another vacuum source, such as a vacuum pump as described, for example, in connection with Fig. 2a. The suction force holds the section of heart tissue tightly within the distal end of the first passageway, simultaneously retaining the distal end at that location and sealing off or isolating the section of tissue within the distal end from the rest of the tissue to permit treating of the selected section tissue if desired.

Fig. 4 shows the distal end of catheter 10 in contact with a section of heart tissue 26. As can be seen in Fig. 4, the open distal end 20 of passageway 16 is positioned against the tissue 26. The suction force applied through passageway 16 draws, retains, and isolates the desired section of tissue 26 into the open distal end 20 of passageway 16.

After suction has been applied and the desired section of tissue 26 isolated, the section of tissue 26 may be treated or ablated with an appropriate drug or other fluid introduced at the proximal end of the second passageway 18. As the fluid travels down the passageway 18 toward the distal end portion of the catheter, it is diverted by the occluded end 22, through opening 19 and into passageway 16. There, the fluid contacts the section of heart tissue drawn into the open distal end 20 of passageway 16. The fluid and any loose debris is drawn out through passageway 16 by the suction force. After completion of the treatment, the drug or medical fluid may be replaced with saline or other solution so as to rinse the catheter 10 (and the isolated section of tissue). After rinsing, the suction force is turned off and the catheter 10 is removed. Thus, a specific section of tissue may be treated with the medical fluid or drug without allowing the fluid to enter the body generally or contact any tissue other than the desired tissue.

This feature of the present invention has many benefits. For example, by isolating the particular tissue section and by not allowing the treating fluid to generally escape into the body, treating fluids may be used that perhaps would not ordinarily be used because of possible adverse affects on other parts of the body. There may also be benefits, not yet foreseen, to the ability to place a treating fluid,

such as a medicament or the like, at a specific location only.

An alternative embodiment of the present invention is shown in Fig. 5. Like the preferred embodiment described above and depicted in Figs. 1-2, catheter 28 includes an elongated, extruded, polymeric tube having a proximal end 30 and a distal end portion 32. The catheter 28 includes a first passageway 34 and a second passageway 36. As shown in Fig. 6, passageways 34 and 36 are coaxial. Passageway 36 of catheter 28 is open at the distal tip 31 of catheter 28. Passageway 34 is also open at end 40 but does not extend to the distal tip 31 of distal end portion 32.

The catheter 28 may be used in substantially the same way as the method for treating body tissue described above and depicted in Figs. 1-4. Catheter 28 is introduced into the body of a patient and directed to the section of heart tissue to be treated by using, for example, a sheath, guide wire or no guiding device at all. Distal tip 31 is positioned over the desired section of tissue and as shown in Fig. 7, is brought into contact with a section of heart tissue 26. As described above, a suction force is applied through one of the two passageways. In this embodiment, the suction force is applied through outer passageway 36. The suction force draws a section of heart tissue 26 into the open end 38 of the distal end portion 32 and isolate the section from the rest of the tissue. A drug or other medical fluid is then introduced through center passageway 34, thereby directly administering the fluid to the isolated section of heart tissue 26. The medical fluid or drug is then removed through passageway 36 by the suction force applied therethrough.

Figs. 8-10 show a third embodiment of the present invention. Like the embodiments described above, the catheter 42 shown in Fig. 8 includes a polymeric tube having a proximal end 44 and a distal end portion 46. Catheter 42, includes a first passageway 48 and a second passageway 50. Passageway 48 has an open distal end tip 49 whereas passageway 50 is occluded at the distal-most end of the catheter. Passageway 50, however, includes an opening in outer catheter wall 51 at a location spaced from the distal end tip 49 of the catheter 42, but generally within the distal end portion 46. The passageways 48 and 50 may be sized as needed for the suction and/or medical instrument to be inserted. As shown in Fig. 9, it is preferred that the cross-sectional area of the second passageway 50 be larger than the cross-sectional area of the first passageway 48 or, at least, large enough to accommodate a second "working" catheter as described below.

In accordance with the method of treating body tissue generally, and heart tissue in particular, cath-

eter 42 is introduced into the body of a patient and advanced to the area of the heart. As described above in connection with earlier embodiments, catheter 42 may be advanced by using a sheath, guide wire or no guiding device whatsoever. The distal end tip 49 of the distal end portion 46 is brought into contact with the section of tissue to be treated. Fig. 10 shows the distal end portion 46 of catheter 42 in contact with a section of heart tissue 26. As in the above-described embodiments, a suction force is applied through passageway 48. The suction force draws the section of tissue 26 into open distal end tip 49 of passageway 48, holding the distal end in a stable position within the heart. Once the section of tissue 26 is firmly secured to the catheter 42, a second catheter or diagnostic or surgical device 52 is then inserted through the passageway 50. Catheter 42 may also include the hub with or without the bifurcated passageway arrangement, as described previously in connection with Figs. 2a and 2b, through which surgical device 52 is introduced. In any event, surgical device 52 extends through the passageway 50 and exits passageway 50 through an opening in side wall 51. Device 52 may be any catheter or medical device used for diagnosing or treating tissue such as the catheters described in U.S. Patent Nos. 4,860,744 and 5,147,355. A rigid or hinged chute or slide 53 may be attached to the catheter near opening in side wall 51 to assist in directing the second catheter to its desired location. Alternatively, surgical device 52 may extend through passageway 48 and suction may be applied through passageway 50 so as to anchor distal end portion 46 to the body tissue 26 at the opening in catheter wall 51.

Thus, apparatus 42 serves as the "positioning" catheter which provides an anchored pathway for the second "working" catheter 52. Providing an anchored pathway for the "working" catheter ensures that the drug or medical treatment or diagnosis will occur at the desired location of the tissue, despite movement of the heart or flow of blood. It also provides means for accurately positioning commercially available catheters and surgical instruments that do not otherwise have means for securely holding the tip of the instrument in place.

Figs. 11-13 show a fourth embodiment of the present invention. In Fig. 11, a positioning catheter 54 similar to the positioning catheter described in Figs. 8-10 is shown. Catheter 54 includes an elongated polymeric tube having a proximal end 56 and a distal end portion 58. Catheter 54 includes a single passageway 60 that is occluded at its distal end tip 62 but includes an opening in side wall 63 spaced from the distal tip of the catheter. Catheter 54 further includes wire 64, the distal end of which has been conformed into an attachment device 65

such as a hook or corkscrew for securing the distal end tip 62 of catheter 54 to the tissue. Alternatively, attachment device 65 may comprise a separate piece connected to wire 64. Wire 64 extends along the top inner surface of passageway 60, through hub 59 and is attached at its proximal end to knob 61. During operation of catheter 54, rotation of knob 61 turns wire 64 with attachment device 65, thereby causing attachment device 65, which is located on the outer surface of catheter 54, to penetrate the section of tissue and secure catheter 54 to the tissue. Alternatively, the distal end tip 62 of catheter tip may be equipped with an inflation device, such as a balloon for atraumatically anchoring the catheter.

In accordance with the method of treating body tissue, catheter 54 is introduced into the body of the patient and the distal end portion 58 of the catheter 54 is advanced (as described above) to a location near the section of tissue to be treated or diagnosed. The distal end tip 62 is then gently brought into contact with the tissue so as to cause shallow penetration of the heart tissue 26 by attachment device 65 located at the distal tip 62. By firmly securing the section of tissue 26 to the distal tip of catheter 54 in the manner described above, an anchored pathway for a second "working" catheter is provided. The second "working" catheter 66 or other surgical tool (as described above) is then introduced into passageway 60 of catheter 54. Working catheter 66 is directed through passageway 60 and the opening in catheter wall 63 to the section of tissue to be treated or diagnosed.

Finally, Figs. 14-16 show a fifth embodiment of the present invention. In Fig. 14, a positioning catheter 68 similar to the positioning catheter described in connection with Figs. 8-10, but utilizing an attachment device as described above in connection with Figs. 11-13, is shown. Catheter 68 includes an elongated polymeric tube having a proximal end 70 and a distal end portion 72. Catheter 68 includes a first passageway 74 and a second passageway 76, separated by wall 78. Both passageways 74 and 76 are occluded at the distal end tip 75. Passageway 76, however, includes an opening in outer catheter wall 80 at a location spaced from the distal end tip 75 of the catheter 68, but within the distal end portion. A rigid or hinged chute or slide 82 may be attached to the catheter near opening in side wall 80 to assist in directing a second "working" catheter to its desired location.

Passageway 74 includes wire 84 with an attachment device 86 at the distal end of wire 84. As described above, attachment device 86 may be provided by forming the distal end of wire into the desired shape (e.g. hook, corkscrew). Alternatively, attachment device 86 may be separately connect-

ed to wire 84. Wire 84 extends along the length of passageway 74, through hub 88, and is attached at its proximal end to knob 90. As described above in connection with Figs. 11-13, rotating knob 90 turns wire 84 with attachment device 86, thereby causing attachment device 86 to penetrate the section of tissue and secure the catheter tip to the body tissue. With the catheter 68 firmly anchored to the tissue, a second "working" catheter 92 may be introduced into passageway 76.

Although the present invention has been described in terms of the preferred embodiment, various modifications, some immediately apparent, and others apparent only after some study, may be made without departing from the present invention. The scope of the present invention is not to be limited by the detailed description of the preferred embodiment but, rather, is to be defined by the claims appended below.

Claims

1. Apparatus for treating or investigating body tissue, namely heart tissue (24, 26), comprising
 - (a) an elongated tubular body portion (10, 28, 42, 54, 68) having a proximal end portion (12, 30) and a distal end portion (14, 32, 46, 58, 72),
 - (b) at least one first passageway (16, 36, 50, 60, 76) extending through said tubular body portion (10, 28, 42, 54, 68) between said proximal and said distal end portion said first passageway (16, 36, 50, 60, 76) having an opening to the exterior (20, 38, 49) at said distal end portion,
 - (c) said opening being adapted for
 - directly contacting said body tissue (24, 26) so that an area of said tissue in contact with said opening can be treated by a fluid conducted through said first passageway,
- and/or for
- guiding a medical device (52, 66, 92) disposed within said passageway (50, 60, 76) for contacting said tissue at a desired location,
- (d) anchoring means (20, 38, 49, 65, 86) for fixing and holding said distal end portion of said elongated tubular body portion at said tissue under investigation or treatment, respectively.
2. Apparatus according to claim 1, characterized in that said anchoring means comprises an opening (20, 38, 49) at the tip (22, 31) of said elongated tubular body portion communicating with a suction device preferably with a syringe (21) by means of a pas-

- 5 sageway (16, 36, 48), and/or
- an attachment device, namely a barb, a hook, a corkscrew, or a threaded connector (65, 86) or the like adapted for shallow penetration of said tissue, preferably said attachment device (65, 86) being connected to a wire (64, 84) for rotating said attachment device and/or
- 10 an inflation device or the like for anchoring said catheter apparatus.
3. Apparatus according to claims 1 or 2, characterized in that a second passageway extending through said tubular body portion is provided.
 - 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100 105 110 115 120 125 130 135 140 145 150 155 160 165 170 175 180 185 190 195 200 205 210 215 220 225 230 235 240 245 250 255 260 265 270 275 280 285 290 295 300 305 310 315 320 325 330 335 340 345 350 355 360 365 370 375 380 385 390 395 400 405 410 415 420 425 430 435 440 445 450 455 460 465 470 475 480 485 490 495 500 505 510 515 520 525 530 535 540 545 550 555 560 565 570 575 580 585 590 595 600 605 610 615 620 625 630 635 640 645 650 655 660 665 670 675 680 685 690 695 700 705 710 715 720 725 730 735 740 745 750 755 760 765 770 775 780 785 790 795 800 805 810 815 820 825 830 835 840 845 850 855 860 865 870 875 880 885 890 895 900 905 910 915 920 925 930 935 940 945 950 955 960 965 970 975 980 985 990 995 1000 1005 1010 1015 1020 1025 1030 1035 1040 1045 1050 1055 1060 1065 1070 1075 1080 1085 1090 1095 1100 1105 1110 1115 1120 1125 1130 1135 1140 1145 1150 1155 1160 1165 1170 1175 1180 1185 1190 1195 1200 1205 1210 1215 1220 1225 1230 1235 1240 1245 1250 1255 1260 1265 1270 1275 1280 1285 1290 1295 1300 1305 1310 1315 1320 1325 1330 1335 1340 1345 1350 1355 1360 1365 1370 1375 1380 1385 1390 1395 1400 1405 1410 1415 1420 1425 1430 1435 1440 1445 1450 1455 1460 1465 1470 1475 1480 1485 1490 1495 1500 1505 1510 1515 1520 1525 1530 1535 1540 1545 1550 1555 1560 1565 1570 1575 1580 1585 1590 1595 1600 1605 1610 1615 1620 1625 1630 1635 1640 1645 1650 1655 1660 1665 1670 1675 1680 1685 1690 1695 1700 1705 1710 1715 1720 1725 1730 1735 1740 1745 1750 1755 1760 1765 1770 1775 1780 1785 1790 1795 1800 1805 1810 1815 1820 1825 1830 1835 1840 1845 1850 1855 1860 1865 1870 1875 1880 1885 1890 1895 1900 1905 1910 1915 1920 1925 1930 1935 1940 1945 1950 1955 1960 1965 1970 1975 1980 1985 1990 1995 2000 2005 2010 2015 2020 2025 2030 2035 2040 2045 2050 2055 2060 2065 2070 2075 2080 2085 2090 2095 2100 2105 2110 2115 2120 2125 2130 2135 2140 2145 2150 2155 2160 2165 2170 2175 2180 2185 2190 2195 2200 2205 2210 2215 2220 2225 2230 2235 2240 2245 2250 2255 2260 2265 2270 2275 2280 2285 2290 2295 2300 2305 2310 2315 2320 2325 2330 2335 2340 2345 2350 2355 2360 2365 2370 2375 2380 2385 2390 2395 2400 2405 2410 2415 2420 2425 2430 2435 2440 2445 2450 2455 2460 2465 2470 2475 2480 2485 2490 2495 2500 2505 2510 2515 2520 2525 2530 2535 2540 2545 2550 2555 2560 2565 2570 2575 2580 2585 2590 2595 2600 2605 2610 2615 2620 2625 2630 2635 2640 2645 2650 2655 2660 2665 2670 2675 2680 2685 2690 2695 2700 2705 2710 2715 2720 2725 2730 2735 2740 2745 2750 2755 2760 2765 2770 2775 2780 2785 2790 2795 2800 2805 2810 2815 2820 2825 2830 2835 2840 2845 2850 2855 2860 2865 2870 2875 2880 2885 2890 2895 2900 2905 2910 2915 2920 2925 2930 2935 2940 2945 2950 2955 2960 2965 2970 2975 2980 2985 2990 2995 3000 3005 3010 3015 3020 3025 3030 3035 3040 3045 3050 3055 3060 3065 3070 3075 3080 3085 3090 3095 3100 3105 3110 3115 3120 3125 3130 3135 3140 3145 3150 3155 3160 3165 3170 3175 3180 3185 3190 3195 3200 3205 3210 3215 3220 3225 3230 3235 3240 3245 3250 3255 3260 3265 3270 3275 3280 3285 3290 3295 3300 3305 3310 3315 3320 3325 3330 3335 3340 3345 3350 3355 3360 3365 3370 3375 3380 3385 3390 3395 3400 3405 3410 3415 3420 3425 3430 3435 3440 3445 3450 3455 3460 3465 3470 3475 3480 3485 3490 3495 3500 3505 3510 3515 3520 3525 3530 3535 3540 3545 3550 3555 3560 3565 3570 3575 3580 3585 3590 3595 3600 3605 3610 3615 3620 3625 3630 3635 3640 3645 3650 3655 3660 3665 3670 3675 3680 3685 3690 3695 3700 3705 3710 3715 3720 3725 3730 3735 3740 3745 3750 3755 3760 3765 3770 3775 3780 3785 3790 3795 3800 3805 3810 3815 3820 3825 3830 3835 3840 3845 3850 3855 3860 3865 3870 3875 3880 3885 3890 3895 3900 3905 3910 3915 3920 3925 3930 3935 3940 3945 3950 3955 3960 3965 3970 3975 3980 3985 3990 3995 4000 4005 4010 4015 4020 4025 4030 4035 4040 4045 4050 4055 4060 4065 4070 4075 4080 4085 4090 4095 4100 4105 4110 4115 4120 4125 4130 4135 4140 4145 4150 4155 4160 4165 4170 4175 4180 4185 4190 4195 4200 4205 4210 4215 4220 4225 4230 4235 4240 4245 4250 4255 4260 4265 4270 4275 4280 4285 4290 4295 4300 4305 4310 4315 4320 4325 4330 4335 4340 4345 4350 4355 4360 4365 4370 4375 4380 4385 4390 4395 4400 4405 4410 4415 4420 4425 4430 4435 4440 4445 4450 4455 4460 4465 4470 4475 4480 4485 4490 4495 4500 4505 4510 4515 4520 4525 4530 4535 4540 4545 4550 4555 4560 4565 4570 4575 4580 4585 4590 4595 4600 4605 4610 4615 4620 4625 4630 4635 4640 4645 4650 4655 4660 4665 4670 4675 4680 4685 4690 4695 4700 4705 4710 4715 4720 4725 4730 4735 4740 4745 4750 4755 4760 4765 4770 4775 4780 4785 4790 4795 4800 4805 4810 4815 4820 4825 4830 4835 4840 4845 4850 4855 4860 4865 4870 4875 4880 4885 4890 4895 4900 4905 4910 4915 4920 4925 4930 4935 4940 4945 4950 4955 4960 4965 4970 4975 4980 4985 4990 4995 5000 5005 5010 5015 5020 5025 5030 5035 5040 5045 5050 5055 5060 5065 5070 5075 5080 5085 5090 5095 5100 5105 5110 5115 5120 5125 5130 5135 5140 5145 5150 5155 5160 5165 5170 5175 5180 5185 5190 5195 5200 5205 5210 5215 5220 5225 5230 5235 5240 5245 5250 5255 5260 5265 5270 5275 5280 5285 5290 5295 5300 5305 5310 5315 5320 5325 5330 5335 5340 5345 5350 5355 5360 5365 5370 5375 5380 5385 5390 5395 5400 5405 5410 5415 5420 5425 5430 5435 5440 5445 5450 5455 5460 5465 5470 5475 5480 5485 5490 5495 5500 5505 5510 5515 5520 5525 5530 5535 5540 5545 5550 5555 5560 5565 5570 5575 5580 5585 5590 5595 5600 5605 5610 5615 5620 5625 5630 5635 5640 5645 5650 5655 5660 5665 5670 5675 5680 5685 5690 5695 5700 5705 5710 5715 5720 5725 5730 5735 5740 5745 5750 5755 5760 5765 5770 5775 5780 5785 5790 5795 5800 5805 5810 5815 5820 5825 5830 5835 5840 5845 5850 5855 5860 5865 5870 5875 5880 5885 5890 5895 5900 5905 5910 5915 5920 5925 5930 5935 5940 5945 5950 5955 5960 5965 5970 5975 5980 5985 5990 5995 6000 6005 6010 6015 6020 6025 6030 6035 6040 6045 6050 6055 6060 6065 6070 6075 6080 6085 6090 6095 6100 6105 6110 6115 6120 6125 6130 6135 6140 6145 6150 6155 6160 6165 6170 6175 6180 6185 6190 6195 6200 6205 6210 6215 6220 6225 6230 6235 6240 6245 6250 6255 6260 6265 6270 6275 6280 6285 6290 6295 6300 6305 6310 6315 6320 6325 6330 6335 6340 6345 6350 6355 6360 6365 6370 6375 6380 6385 6390 6395 6400 6405 6410 6415 6420 6425 6430 6435 6440 6445 6450 6455 6460 6465 6470 6475 6480 6485 6490 6495 6500 6505 6510 6515 6520 6525 6530 6535 6540 6545 6550 6555 6560 6565 6570 6575 6580 6585 6590 6595 6600 6605 6610 6615 6620 6625 6630 6635 6640 6645 6650 6655 6660 6665 6670 6675 6680 6685 6690 6695 6700 6705 6710 6715 6720 6725 6730 6735 6740 6745 6750 6755 6760 6765 6770 6775 6780 6785 6790 6795 6800 6805 6810 6815 6820 6825 6830 6835 6840 6845 6850 6855 6860 6865 6870 6875 6880 6885 6890 6895 6900 6905 6910 6915 6920 6925 6930 6935 6940 6945 6950 6955 6960 6965 6970 6975 6980 6985 6990 6995 7000 7005 7010 7015 7020 7025 7030 7035 7040 7045 7050 7055 7060 7065 7070 7075 7080 7085 7090 7095 7100 7105 7110 7115 7120 7125 7130 7135 7140 7145 7150 7155 7160 7165 7170 7175 7180 7185 7190 7195 7200 7205 7210 7215 7220 7225 7230 7235 7240 7245 7250 7255 7260 7265 7270 7275 7280 7285 7290 7295 7300 7305 7310 7315 7320 7325 7330 7335 7340 7345 7350 7355 7360 7365 7370 7375 7380 7385 7390 7395 7400 7405 7410 7415 7420 7425 7430 7435 7440 7445 7450 7455 7460 7465 7470 7475 7480 7485 7490 7495 7500 7505 7510 7515 7520 7525 7530 7535 7540 7545 7550 7555 7560 7565 7570 7575 7580 7585 7590 7595 7600 7605 7610 7615 7620 7625 7630 7635 7640 7645 7650 7655 7660 7665 7670 7675 7680 7685 7690 7695 7700 7705 7710 7715 7720 7725 7730 7735 7740 7745 7750 7755 7760 7765 7770 7775 7780 7785 7790 7795 7800 7805 7810 7815 7820 7825 7830 7835 7840 7845 7850 7855 7860 7865 7870 7875 7880 7885 7890 7895 7900 7905 7910 7915 7920 7925 7930 7935 7940 7945 7950 7955 7960 7965 7970 7975 7980 7985 7990 7995 8000 8005 8010 8015 8020 8025 8030 8035 8040 8045 8050 8055 8060 8065 8070 8075 8080 8085 8090 8095 8100 8105 8110 8115 8120 8125 8130 8135 8140 8145 8150 8155 8160 8165 8170 8175 8180 8185 8190 8195 8200 8205 8210 8215 8220 8225 8230 8235 8240 8245 8250 8255 8260 8265 8270 8275 8280 8285 8290 8295 8300 8305 8310 8315 8320 8325 8330 8335 8340 8345 8350 8355 8360 8365 8370 8375 8380 8385 8390 8395 8400 8405 8410 8415 8420 8425 8430 8435 8440 8445 8450 8455 8460 8465 8470 8475 8480 8485 8490 8495 8500 8505 8510 8515 8520 8525 8530 8535 8540 8545 8550 8555 8560 8565 8570 8575 8580 8585 8590 8595 8600 8605 8610 8615 8620 8625 8630 8635 8640 8645 8650 8655 8660 8665 8670 8675 8680 8685 8690 8695 8700 8705 8710 8715 8720 8725 8730 8735 8740 8745 8750 8755 8760 8765 8770 8775 8780 8785 8790 8795 8800 8805 8810 8815 8820 8825 8830 8835 8840 8845 8850 8855 8860 8865 8870 8875 8880 8885 8890 8895 8900 8905 8910 8915 8920 8925 8930 8935 8940 8945 8950 8955 8960 8965 8970 8975 8980 8985 8990 8995 9000 9005 9010 9015 9020 9025 9030 9035 9040 9045 9050 9055 9060 9065 9070 9075 9080 9085 9090 9095 9100 9105 9110 9115 9120 9125 9130 9135 9140 9145 9150 9155 9160 9165 9170 9175 9180 9185 9190 9195 9200 9205 9210 9215 9220 9225 9230 9235 9240 9245 9250 9255 9260 9265 9270 9275 9280 9285 9290 9295 9300 9305 9310 9315 9320 9325 9330 9335 9340 9345 9350 9355 9360 9365 9370 9375 9380 9385 9390 9395 9400 9405 9410 9415 9420 9425 9430 9435 9440 9445 9450 9455 9460 9465 9470 9475 9480 9485 9490 9495 9500 9505 9510 9515 9520 9525 9530 9535 9540 9545 9550 9555 9560 9565 9570 9575 9580 9585 9590 9595 9600 9605 9610 9615 9620 9625 9630 9635 9640 9645 9650 9655 9660 9665 9670 9675 9680 9685 9690 9695 9700 9705 9710 9715 9720 9725 9730 9735 9740 9745 9750 9755 9760 9765 9770 9775 9780 9785 9790 9795 9800 9805 9810 9815 9820 9825 9830 9835 9840 9845 9850 9855 9860 9865 9870 9875 9880 9885 9890 9895 9900 9905 9910 9915 9920 9925 9930 9935 9940 9945 9950 9955 9960 9965 9970 9975 9980 9985 9990 9995 9999

FIG.7

FIG. 8

FIG. 9

FIG. 10

FIG. 11

FIG. 12

FIG. 13

FIG. 14

FIG. 15

FIG. 16

European Patent
Office

EUROPEAN SEARCH REPORT

Application Number
EP 95 10 1842

DOCUMENTS CONSIDERED TO BE RELEVANT			
Category	Citation of document with indication, where appropriate, of relevant passages	Relevant to claim	CLASSIFICATION OF THE APPLICATION (Int.Cl.6)
X	NL-A-9 200 878 (MEIJER) * claims 1,2,5; figures 1,2 *	1-3,5-8	A61B17/34 A61B17/22 A61N1/05 A61B5/042
X	WO-A-87 04081 (LICENCIA TALALMANYOKAT ERTEKESITO) * abstract; figures 1,2 *	1	
X	DE-A-39 36 811 (STORZ) * column 4, line 15 - line 41; figures 8,9 *	1,2	
X	EP-A-0 416 793 (ANGEION) * abstract * * column 6, line 31 - line 44; figures 1,3,7 *	1,2	
A	DE-A-41 33 298 (STRÖMER) * column 2, line 44 - line 52; figure 2 *	2	
A	US-A-2 804 075 (BORDEN) * column 3, line 30 - line 47; figures 1,5 *	3-7	
A	DE-A-24 14 578 (UNISEARCH) * page 3, paragraph 3 - page 4, paragraph 1; figure 1 *	8	A61B A61N A61M
A	FR-A-1 460 776 (PORGES) * page 1, column 2, paragraph 5 - page 2, column 1, paragraph 2; figures 1-3 *	3-10	
A	FR-A-2 365 351 (BENHAIM) * page 2, line 19 - page 3, line 20; figure 1 *	9,10	
The present search report has been drawn up for all claims			
Place of search	Date of completion of the search	Examiner	
THE HAGUE	22 May 1995	Moers, R	
CATEGORY OF CITED DOCUMENTS			
X : particularly relevant if taken alone		T : theory or principle underlying the invention	
Y : particularly relevant if combined with another document of the same category		E : earlier patent document, but published on, or after the filing date	
A : technological background		D : document cited in the application	
P : non-written disclosure		L : document cited for other reasons	
I : intermediate document		& : member of the same patent family, corresponding document	