Differentiation

Score: 0/240 0/24 answered

Instructor Preview of All Questions

Show All Answers

Hide Intro and Between-Question Text Settings Questions

Question 1

☑ 0/10 pts ⑤ 3 ⊋ 19

Suppose that $f(x,y) = x^{-1}y^2$.

1.
$$\frac{\partial f}{\partial x}(x,y)$$
= σ ,

2.
$$\frac{\partial \overset{\sim}{\partial f}}{\partial y}(x,y)=$$

3.
$$\frac{\partial f}{\partial x}(2,3)=$$

4.
$$\frac{\partial \widetilde{f}}{\partial y}(2,3)=$$

5. The directional derivative of
$$f(x,y)$$
 in the directional (-3,3) and at the point $(x,y)=(\,-\,1,2)$ is

Submit Question

Question 2

☑ 0/10 pts ⑤ 3 ⊋ 19

Suppose that f(x,y)=xy. The directional derivative of f(x,y) in the directional (6,2) and at the point $(x,y)=(5,\,-3)$ is

☑ 0/10 pts ⑤ 3 ⇄ 19

Given $f(x,y)=\sin(x+y)$ where $x=s^6t^5, y=6s-5t.$ Find

$$f_s(x(s,t),y(s,t))$$
 = $oldsymbol{oldsymbol{\sigma}}$

$$f_t(x(s,t),y(s,t))$$
 =

Submit Question

Question 4

☑ 0/10 pts ⑤ 3 ⇄ 19

Given $f(x,y)=2x^2+3xy^4-4y^6$, find

$$f_{xx}(x,y)$$
 =

$$f_{xy}(x,y)$$
 =

Submit Question

Question 5

$$f(x,y)=\sqrt{2x^2+2y^2}$$

- 1. $f_x(1,3)$ =
- 3. $\lim_{(x,0)\to(0,0)} \frac{f(x,0)-f(0,0)}{x-0} =$

Submit Question

Question 6

☑ 0/10 pts ᠑ 3 ⇄ 19

Given $f(x,y)=6x^2+2x^2y^4-2y^6$, find

$$f_x(x,y)$$
 = $\sigma^{m{\delta}}$

$$f_y(x,y)$$
 = $lacksquare$

$$f_{xx}(x,y)$$
 =

$$f_{xy}(x,y)$$
 =

Given
$$f(x,y) = {} -5y + 4x \exp{\left(rac{x}{y}
ight)}$$
 , find

$$f(5x,5y)$$
 = $f(x,y)$ $imes$

$$f_x(x,y)$$
 =

$$f_y(x,y)$$
 =

Submit Question

Question 8

☑ 0/10 pts ⑤ 3 ⇄ 19

Given $f(x,y)=\sqrt{x^2+y^2}$ where $x=s^3t^4,y=t^3s^4.$ Find

$$f_s(x(s,t),y(s,t))$$
 =

$$f_t(x(s,t),y(s,t))$$
 =

Submit Question

Question 9

☑ 0/10 pts ⑤ 3 ⇄ 19

Given f(x,y)=x+y where $x=s^2t^4, y=t^2s^4.$ Find

$$f_s(x(s,t),y(s,t))$$
 = σ^s

$$f_t(x(s,t),y(s,t))$$
 =

☑ 0/10 pts ⑤ 3 ⇄ 19

Suppose that $f(x,y)=x^1\sin\Bigl(\dfrac{\pi y}{3}\Bigr)$. The directional derivative of f(x,y) in the directional (1,2) and at the point (x,y)=(3,1) is

Also the tangent plane of f(x,y) at (3,1) is z=a(x-3)+b(y-1)+c where a= of , b= of , c=

Submit Question

Question 11

Suppose that

$$z=rac{x^3y^2}{x^6+y^4}$$
 if $(x,y)
eq (0.0)$, and $z=0$ if $(x,y)=(0,0)$.

Then a) for $(x,y) \neq (0,0)$:

2.
$$\frac{\partial z}{\partial y} =$$

1.
$$\frac{\partial z}{\partial x} =$$

b) for
$$(x,y)=(0,0)$$
:

1. $\frac{\partial z}{\partial x}$ = $\boxed{ o^{\delta} }$

2. $\frac{\partial z}{\partial y}$ = $\boxed{ o^{\delta} }$

Submit Question

Question 12

☑ 0/10 pts ⑤ 3 ⇄ 19

Suppose that
$$F(x,y,z)=xyz-1=0$$

Then

1.
$$\frac{\partial y}{\partial x} =$$

2. $\frac{\partial y}{\partial x} \frac{\partial z}{\partial y} \frac{\partial x}{\partial z} =$

2.
$$\frac{\partial y}{\partial x} \frac{\partial z}{\partial y} \frac{\partial x}{\partial z} =$$

3. The tangent plane of
$$F(x,y,z)$$
 at $(x_0,y_0,z_0)=(1,4,0.25)$ is $G(x,y,z)=0$ where $G(x,y,z)=0$

O[©]

☑ 0/10 pts ⑤ 3 ⇄ 19

Given $f(x,y)=rac{-3xy}{5x^2+2y^2}$, find

$$\lim_{x\,=\,y\,,\,x\, o\,0}\,f(x,y)$$
 =

$$\lim_{x=\,-\,y\,,\,x\, o\,0}\,f(x,y)$$
 =

$$\lim_{y\,=\,0\,,\,x\, o\,0}\,f(x,y)$$
 =

$$\lim_{(x,y) o(0,0)}f(x,y)$$
 =

Submit Question

Question 14

☑ 0/10 pts ⑤ 3 ⇄ 19

· Warning... unquoted string DNE.. treating as string

Given
$$f(x,y)=rac{x^3y^1}{\sqrt{\left(3x^2+5y^2
ight)^4}}$$
 , find

$$\lim_{x\,,\,y\, o\,0}\,f(x,y)$$
 =

Suppose that
$$f(x,y)=rac{x^1y^3}{\sqrt{x^2+y^2}}$$
 if $(x,y)
eq (0,0)$ and $f(0,0)=0$. Which of the following statement(s) about $\lim rac{x^1y^3}{\sqrt{x^2+y^2}}$

Which of the following statement(s) about $\lim_{x,y o 0}rac{x^1y^3}{\sqrt{x^2+y^2}}$ is(are) true?

- \Box discontinuous at (0,0)
- \Box limit exists at (0,0)
- \Box continuous at (0,0)
- \Box limit exists at (1,1)

Submit Question

Question 16

Given

$$f(x,y)=rac{6x^3y+5xy^2}{2x^2+3y^2}$$
 if $(x,y)\in R^2-\{(0,0)\}$ and $f(0,0)=0.$

Which statements about f(x, y) in the following are right?

- $\Box f(x,y)$ is continuous at (0,0)
- $\Box f(x,y)$ is continuous
- $\ \Box \ f(x,y)$ is continuous at (3,2)
- \Box the limit of f(x,y) at (0,0) is 0
- \Box f(x,y) has limit at (0,0)

Submit Question

Question 17

Given

$$f(x,y)=rac{2x^2y+3x^2y^4}{2x^4+6y^4}$$
 if $(x,y)\in R^2-\{(0,0)\}$ and $f(0,0)=0.$

Which statements about f(x, y) in the following are right?

- $\Box f(x,y)$ is continuous at (0,0)
- \Box the limit of f(x,y) at (0,0) is 0
- $\Box f(x,y)$ is continuous
- $\Box f(x,y)$ is continuous at (2,4)
- \Box f(x,y) has limit at (0,0)

Submit Question

Question 18

Given

$$f(x,y)=rac{4x^2y+2x^2y^1}{2x^4+3y^4}$$
 if $(x,y)\in R^2-\{(0,0)\}$ and $f(0,0)=0.$

Which statements about f(x, y) in the following are right?

- $\Box f(x,y)$ is continuous at (2,1)
- $\Box f(x,y)$ is continuous at (0,0)
- \Box f(x,y) has limit at (0,0)
- $\Box f(x,y)$ is continuous
- \Box the limit of f(x,y) at (0,0) is 0

O

Submit Question

Question 19

☑ 0/10 pts ⑤ 3 ⇄ 19

Suppose that

$$f(x,y,z)=rac{xyz}{x^2+y^2+z^2}$$
 if $(x,y,z)
eq (0,0,0)$ and $f(0,0,0)=0.$

Which of the following statement(s) about f(x,y,z) is(are) true?

- \Box discontinuous at (0,0,0)
- \Box continuous at (0,0,0)
- \Box limit exists at (1,1,-1)
- \Box limit exists at (0,0,0);

O

☑ 0/10 pts ⑤ 3 ⇄ 19

Suppose that

$$f(x,y,z)=rac{xy+yz+zx}{x^2+y^2+z^2}$$
 if $(x,y,z)
eq (0,0,0)$ and $f(0,0,0)=0.$

Which of the following statement(s) about f(x,y,z) is(are) true?

- \Box limit exists at (1,1,-1)
- \Box discontinuous at (0,0,0)
- \Box limit exists at (0,0,0);
- \Box continuous at (0,0,0)

Submit Question

Question 21

Given $f(x,y)=rac{\sqrt{x^2+y^2-3^2}}{y}$, and suppose that Ω is domain of f(x,y);

- 1. The completment of $\Omega,$ i.e. region on \mathbb{R}^2 at which is lying oustside $\Omega,$ is
- 2. The range of f(x,y) is an interval, I=
- 3. Find the statement(s) which is(are) True:
 - $\square\,\Omega$ is closed
 - ☐ None
 - $\ \square\ \Omega$ is a connected domain
 - $\square\,\Omega$ is open

O[®]

Given $f(x,y)=rac{x-y}{x+y}$, and suppose that Ω is domain of f(x,y);

1. The points, (x,y), at which is not lying in Ω , satisfis the equation:

Q

2. The range of f(x,y) is an interval, I=

3. Find the statement(s) which is(are) True:

- $\square\,\Omega$ includes two open half planes
- $\square \Omega$ is closed
- $\ \square\ \Omega$ includes two closed half planes
- ☐ None
- $\square\,\Omega$ is open
- $\square \, \Omega$ is a connected domain

O

Given $f(x,y,z)=\dfrac{x}{\sqrt{2^2-x^2-y^2-z^2}}$, and suppose that Ω is domain of f(x,y,z) , and R is the range of f(x,y,z);

- 1. The volume of Ω is
- 2. The range of f(x,y,z) is an interval, I=
- 3. Find the statement(s) which is(are) True:
 - $\square\,\Omega$ is a open cube
 - ☐ None
 - $\hfill\Box\,\Omega$ is a half sphere but neither open nor closed
 - $\square \Omega$ is a open sphere
 - $\hfill\Box\,\Omega$ is a open rectangle
 - $\square\,\Omega$ includes two connected composents in \mathbb{R}^3

O[®]

Given $f(x,y,z)=\sqrt{2^2-x^2-y^2-z^2}$, and suppose that Ω is domain of f(x,y,z), and R is the range of f(x,y,z);

- 1. The volume of Ω is ${\sigma}$.
- 2. The range of f(x,y,z) is an interval, I=
- 3. Find the statement(s) which is(are) True:
 - ☐ None
 - $\ \square \ \Omega$ is a open cube
 - $\square \Omega$ is a open rectangle
 - $\square \Omega$ is a open sphere
 - $\ \square\ \Omega$ is a half sphere but neither open nor closed
 - $\square \Omega$ is a closed sphere
 - $\square\,\Omega$ includes two connected composents in \mathbb{R}^3

O[®]