Дискретная математика (основной поток) Дискретная математика

Занятие 14

(Основной поток)

Домашнее задание 14

Дайте обоснованные ответы на следующие вопросы.

Д14.1. В левой доле двудольного графа 300 вершин, в правой — 400 вершин. Степени всех вершин в левой доле равны 4, а всех вершин в правой доле равны 3. Докажите, что в таком графе есть паросочетание размера 300.

Воспользуемся теоремой Холла. Докажем, что $|S|\leqslant |G(S)|$ $\forall S\subseteq L$, где L - левая доля. Дадим оценку на |G(S)|: $|G(S)|\geqslant \frac{4\cdot |S|}{3}\geqslant |S|$. Такая оценка получается при следующих рассуждениях. |G(S)| минимально, когда в каждую вершину из G(S) попало 3 ребра, исходящие из S. Всего ребер исходящих из S:n=4|S|. Получаем минимальный $|G(S)|=\frac{4|S|}{3}$

Д14.2. В неориентированном графе на 2024 вершинах (необязательно двудольном) между любыми тремя вершинами есть хотя бы два ребра. Докажите, что в графе есть совершенное паросочетание (из 1012 рёбер).

Пусть P - паросочетание, которое после всех преобразований станет совершенным. Добавим в P две вершины, между которыми есть ребро. Возьмем любые две вершины, которые еще не входят в P. Докажем, что можно расширить P с помощью новых вершин. Для этого выберем в P любые две вершины соединенные ребром. Обозначим их p_1, p_2 , а новые вершины n_1, n_2 . Если между вершинами n_1, n_2 есть ребро, просто добавим их в P (1). Пусть между новыми вершинами нет ребра. Рассмотрим вершины p_1, p_2, n_1 . Из условия следует, что существует либо ребро (p_1, n_1) , либо (p_2, n_1) . Так же существует одно из ребер $(p_1, n_2), (p_2, n_2)$. Если новые вершины "присоединены"к разным старым вершинам, то обновим P, заменим пару (p_1, p_2) на две новые пары. Пусть новые вершины "присоединены"к одной и той же старой вершине, тогда рассмотрим вершины n_1, n_2, x , где x— вершина, к которой не присоединены вершины n_1, n_2 (2). Все эти вершины образуют независимое множество (по 1 и 2), хотя между ними должно быть 2 ребра. Противоречие, значит такого случая не может быть. Таким образом, мы расширили P на 2 вершины. Продолжим процесс, пока не расширим P до совершенного паросочетания.

Д14.3. В неориентированном графе на 101 вершине есть независимое множества размера 52. Докажите, что в этом графе нет паросочетания размера 50.

Рассмотрим независимое множество размера 52, назовем его v, чтобы вершина из него входила в паросочетание, она должна быть соединена с вершиной, не входящей в v. Таких вершин 101 - 52 = 49. Получается, что таким способом можно набрать паросочетание размера 49. Если добавлять в паросочетание пары вершин, обе из которых не входят в v, то мы лишь уменьшаем размер итогового паросочетания, потому что вершины из v теперь имеют меньше вариантов, v которыми их можно соединить.

Д14.4. В неориентированном графе на n вершинах есть вершиное покрытие размера 10. Докажите, что в таком графе нет простого пути длины 21. (В простом пути все вершины разные, длина пути — количество рёбер в нём.)

Пусть существует путь размера 21. Начнем выбирать вершины, чтобы покрыть данный путь, заметим, что каждая вершина покрывает не больше 2 ребер. Таким образом, чтобы покрыть все ребра пути нужно как минимум 11 вершин, но у нас есть вершинное покрытие из 10 - противоречие.