743- Regression and Time Series

Mamikon S. Ginovyan

Stationary Models & The Autocorrelation Function

Basic Definitions

Definition 1.

Let $\{X_t, t = 0, \pm 1, \ldots\}$ be a time series with $E[X_t^2] < \infty$.

The mean function of $\{X_t, t = 0, \pm 1, \dots, \}$ is

$$\mathbf{m}_{X}(t) = E(X_{t}), t \in Z.$$

The <u>covariance function</u> of $\{X_t, t = 0, \pm 1, \ldots\}$ is

$$g_X(r,s) = Cov(X_r, X_s) = E[(X_r - m_X(r))(X_s - m_X(s))]$$

for all $r, s \in Z$.

Basic Definitions

Definition 2.

A time series $\{X_t, t = 0, \pm 1, ...\}$ is called (weakly) stationary if

- (i) $\mu_X(t)$ is independent of t, that is, $\mu_X(t) = m = constant$, and
- (ii) $\gamma_X(t+h, t)$ is independent of t, for each $h \in Z$.

Remark 1.

In view of condition (ii), whenever we use the term covariance function with reference to a stationary time series $\{X_t, t = 0, \pm 1, \ldots\}$ we shall mean the function γ_X of one variable, defined by

$$\gamma_X(h) := \gamma_X(h, 0) = \gamma_X(t + h, t).$$

Basic Definitions

The function $\gamma_X(.)$ will be referred to as the <u>autocovariance</u> <u>function</u> and $\gamma_X(h)$ as its value at lag h.

Definition 3.

Let $\{X_t, t = 0, \pm 1, \ldots\}$ be a stationary time series.

The <u>autocovariance function</u> (ACVF) of $\{X_t, t = 0, \pm 1, \ldots\}$ at lag h is

$$g_X(h) = Cov(X_{t+h}, X_t) = Cov(X_h, X_0).$$

The <u>autocorrelation function</u> (ACF) of $\{X_t, t = 0, \pm 1, \ldots\}$ at lag h is

$$r_X(h) \equiv \frac{g_X(h)}{g_X(0)} = Cor(X_{t+h}, X_t).$$

Simple Examples: IID Noise

Example 1. (IID Noise).

If $\{X_t, t = 0, \pm 1, \ldots\}$ is *iid* noise with $E[X_t^2] = \sigma^2 < \infty$, then the first requirement of Definition 2 is obviously satisfied, since $E(X_t) = 0$ for all t.

$$g_X(t+h,t) = \begin{cases} s^2, & \text{if } h = 0 \\ 0, & \text{if } h \neq 0, \end{cases}$$

We use the notation $\{X_t\} \sim HD(0, \sigma^2)$, to indicate that the random variables X_t are independent and identically distributed random variables, each with mean 0 and variance σ^2 .

Simple Examples: White Noise

Example 2. (White noise). Definition.

A sequence of random variables $\{ \varepsilon_t = Z_t, t = 0, \pm 1, \ldots \}$ is called white noise (with mean 0 and variance σ^2):

$$\varepsilon_t \sim WN(0, \sigma^2)$$
, if $E[\varepsilon_t] = 0$, and

$$E[\boldsymbol{e}_t \boldsymbol{e}_s] = \boldsymbol{s}^2 \boldsymbol{d}_{ts} = \begin{cases} \boldsymbol{s}^2, & \text{if } t = s \\ 0, & \text{if } t \neq s. \end{cases}$$

Clearly $\{ \varepsilon_t, t = 0, \pm 1, \ldots \}$ is **stationary** with the same covariance function as IID-noise:

$$g_e(t+h,t) = s^2 d_{h0} = \begin{cases} s^2, & \text{if } h=0\\ 0, & \text{if } h \neq 0. \end{cases}$$

Properties of Autocorrelation Function (ACF) and Autocovariance Function (ACVF)

Basic Properties of ACVF and ACF

- Basic (Elementary) Properties of ACVF $\gamma(.)$:
- 1) $g(0) \ge 0$
- 2) $|g(h)| \le g(0)$ for all h,
- 3) g(h) = g(-h) for all h, that is, $g(\cdot)$ is even function.

Proof.

The first property is simply the statement that $Var(X_t) \ge 0$, since

$$g(0) = g_X(0) = Cov(X_t, X_t) = Var(X_t) \ge 0.$$

Basic (Elementary) Properties of ACVF $\gamma(.)$

The second is an immediate consequence of the fact that correlations are less than or equal to 1 in absolute value (or the Cauchy-Schwarz inequality),

$$|g_X(h)| = |Cov(X_{t+h}, X_t)| \le \sqrt{Var(X_{t+h}, X_{t+h})} \sqrt{Var(X_t, X_t)}$$

= $g_X(0) = 1$.

The third is established by observing that

$$g(h) = Cov(X_{t+h}, X_t) = Cov(X_t, X_{t+h}) = g(-h).$$

Basic (Elementary) Properties of ACF $\rho(.)$

Remark 1.

An autocorrelation function (ACF) ρ (.) has all the properties of an autocovariance function (ACVF) γ (.), and satisfies the additional condition:

4)
$$\rho(0) = 1$$
.

In particular, we can say that a function $\rho(.)$ is the autocorrelation function (ACF) of a stationary process if and only if it is an ACVF with $\rho(0) = 1$.

Examples of ACVF and ACF: White Noise.

If $\{ \varepsilon_t, t = 0, \pm 1, \ldots \}$ is a <u>white noise</u> (with mean **0** and variance σ^2): $\varepsilon_t \sim WN(0, \sigma^2)$, then

$$g_e(h) = s^2 d_{h0} = \begin{cases} s^2, & \text{if } h = 0 \\ 0 & \text{if } |h| \neq 0. \end{cases}$$

and

$$r_e(h) = \frac{g_e(h)}{g_e(0)} = d_{h0} = \begin{cases} 1, & \text{if } h = 0 \\ 0, & \text{if } |h| \neq 0. \end{cases}$$

Examples of ACVF and ACF: MA(1) process

Find the ACVF $\gamma(.)$ and ACF $\rho(.)$ for MA(1) process, and show that MA(1) process is a stationary process.

Definition: First-order moving average or MA(1) process.

A sequence of random variables $\{X_t, t = 0, \pm 1, \ldots\}$ is called **first-order moving average or MA(1) process** if X_t satisfies the equation

$$X_{t} = Z_{t} + qZ_{t-1}, \ t = 0, \pm 1, ...,$$
 (1)

where $Z_t \sim WN(0, \sigma^2)$, and θ is a real-valued finite constant.

From (1) we see that $\mathbf{E}[X_t] = 0$; $\mathbf{E}[X_t^2] = \sigma^2(1 + \theta^2) < \infty$, and

Examples of ACVF and ACF: MA(1) process

$$\mathbf{g}_{X}(t+h,t) = \begin{cases} \mathbf{s}^{2}(1+\mathbf{q}^{2}), & \text{if } h = 0\\ \mathbf{s}^{2}\mathbf{q}, & \text{if } h = \pm 1\\ 0, & \text{if } |h| > 1. \end{cases}$$
 (2)

Thus, $\{X_t, t = 0, \pm 1, \ldots\}$ is stationary. The autocorrelation function $\{X_t\}$ is

$$r_X(h) = \frac{g_X(h)}{g_X(0)} = \begin{cases} 1, & \text{if } h = 0 \\ q/(1+q^2), & \text{if } h = \pm 1 \\ 0, & \text{if } |h| > 1. \end{cases}$$

Characterization of ACVF and ACF

Autocovariance functions have another <u>fundamental property</u>, namely that of <u>nonnegative definiteness</u>, which gives a <u>Characterization of Covariance Functions</u>.

Definition 1.

A real-valued function k(.) defined on the integers is called **nonnegative definite (nnd)** if for any $n \in N$, and $a_i \in R$,

$$\sum_{i,j=1}^{n} k(i-j)a_i a_j \ge 0 \tag{1}$$

for all positive integers n and vectors $a = (a_1, ..., a_n)$, with real-valued components a_i .

Characterization of ACVF and ACF

Theorem 1.

A real-valued function g(h), $h \in Z = \{0, \pm 1, \pm 2, ...\}$ defined on the integers is the **ACVF** of a stationary time series $\{X_t, t = 0, \pm 1, ...\}$ if and only if it is **nonnegative definite.**

Proof.

Let g(h), $h \in Z = \{0, \pm 1, \pm 2, ...\}$ be the **ACVF** of a stationary time series $\{X_t, t = 0, \pm 1, ...\}$, then $\gamma(h)$ is **nnd**.

Indeed, for any real numbers a_1, \ldots, a_n , we have

$$\sum_{i,j=1}^{n} a_{i} \mathbf{g}(i-j) a_{j} = \sum_{i,j=1}^{n} a_{i} a_{j} Cov(X_{i}, X_{j}) = Var\left(\sum_{i,j=1}^{n} a_{i} X_{i}\right) \ge 0,$$

Characterization of ACVF and ACF

To prove the <u>converse result</u>, we show that there exists a stationary time series $\{X_t, t = 0, \pm 1, \ldots\}$ with ACVF $\gamma(.)$ satisfying:

 $\gamma(.)$ is even, real-valued, and nonnegative definite,

which is difficult to establish.

A slightly stronger statement can be made, namely, that under the specified conditions there exists a <u>stationary</u> Gaussian time series $\{X_t\}$ with mean 0 and ACVF $\gamma(.)$.

ARMA (p, q) Processes: AutoRegressive- Moving-Average Process

The MA(q) Process. Definition.

We say that a stationary time series is q-correlated if $\gamma(h) = 0$ whenever |h| > q.

For example,

- a white noise sequence is then **0-corrlelated**, while
- the MA(1) process is 1-correlated.
- the moving average process of order q, MA(q), defined below is q -correlated, and
- perhaps surprisingly, the **converse is also true** (see **Proposition** below).

The MA(q) Process

Definition.

A time-series $\{X_t, t = 0, \pm 1, \dots\}$ is called a <u>moving-average</u> <u>process of order</u> q (or MA(q) -process) if it satisfies the equation

$$X_{t} = Z_{t} + q_{1}Z_{t-1} + ... + q_{q}Z_{t-q}, \qquad (1)$$

where $\{Z_t = \varepsilon_t\} \sim WN(0, \sigma^2)$, and $\theta_1, \ldots, \theta_q$ are constants.

Remark 1.

It is a simple matter to check that (1) defines a stationary time series that is strictly stationary if $\{Z_t\}$ is iid noise.

The MA(q) Process

Remark 2.

The importance of MA(q) processes derives from the fact that every q-correlated process is an MA(q) process.

This is the content of the following proposition, whose proof can be found in TSTM, Section 3.2.

Proposition.

If $\{X_t, t = 0, \pm 1, \ldots\}$ is a stationary q -correlated time series with mean 0, then it can be represented as the MA(q) process:

$$X_{t} = Z_{t} + q_{1}Z_{t-1} + ... + q_{q}Z_{t-q}.$$

Remark 3.

The extension of this result to the case $q = \infty$ is essentially Wold's decomposition.

The AR(p) Process

Definition.

A stationary time-series $\{X_t, t = 0, \pm 1, ...\}$ is called **autoregressive of order p** (or AR(p) - process) if X_t satisfies the equation

$$X_{t} - f_{1}X_{t-1} - \dots - f_{p}X_{t-p} = Z_{t}, \quad t = 0, \pm 1, \dots$$
 (2)

where $\{Z_t\} \sim WN(0, \sigma^2)$, and ϕ_1, \ldots, ϕ_p are some constants.

We will show that under some conditions on constants ϕ_1 , ..., ϕ_p

there is in fact exactly one stationary solution of (2).

Definition 1.

A time-series $\{X_t, t=0, \pm 1, \dots\}$ is called **autoregressive-moving-average process of order** (p, q), or **ARMA** (p, q) -processes, if

- $\{X_t\}$ is stationary, and
- for every $t = 0, \pm 1, \ldots, X_t$ satisfies the equation

$$X_{t} - f_{1}X_{t-1} - \dots - f_{p}X_{t-p} = Z_{t} + q_{1}Z_{t-1} + \dots + q_{q}Z_{t-q},$$
 (3)

where $\{Z_t\} \sim WN(0, \sigma^2)$ and the polynomials

$$f(z) = 1 - f_1 z - \dots - f_p z^p$$
 and $q(z) = 1 + q_1 z + \dots + q_q z^q$

have no common factors.

Definition 2.

A time-series $\{Y_t, t = 0, \pm 1, ..., \}$ is called ARMA (p, q) - process with mean μ if

$$X_t := Y_t - \mu$$

is an **ARMA** (p, q) -process according to Definition 1.

Remark 1.

It is convenient to use the more concise form of (3)

$$f(B)X_t = q(B)Z_t, \qquad (4)$$

where $\Phi(.)$ and $\theta(.)$ are the **p-th** and **q-th** degree polynomials

$$f(z) = 1 - f_1 z - ... - f_p z^p$$
 and $q(z) = 1 + q_1 z + ... + q_q z^q$,

and **B** is the **backward shift operator:**

$$BX_{t} = X_{t-1}, \quad B^{j}X_{t} = X_{t-j}, \quad B^{j}Z_{t} = Z_{t-j}, \quad j = 0, \pm 1, \dots$$

Remark 2.

To study the **ARMA** (p, q) **–processes**, first we need to introduce and discuss a class of processes, called **Linear Processes**.

The class of linear time series models, which includes the class of autoregressive moving-average (ARMA) models, provides a general framework for studying stationary processes.

In fact,

every second-order stationary process is either

- a linear process or
- can be transformed to a linear process by subtracting a deterministic component.

This result is known as **Wold's decomposition** and will be discussed later.

Definition.

The time series $\{X_t, t = 0, \pm 1, \ldots\}$ is called a <u>linear process</u> if it has the representation

$$X_{t} = \sum_{j=-\infty}^{\infty} y_{j} Z_{t-j}$$
 for all $t = 0, \pm 1, ...,$ (1)

where $\{Z_t\} \sim WN(0, \sigma^2)$ and $\{\psi_j\}$ is a sequence of constants satisfying $\sum_{j=-\infty}^{\infty} |y_j| < \infty.$

In terms of the backward shift operator B: $B^{j}Z_{t} = Z_{t-j}$,

(1) can be written more compactly as

$$X_t = y(B)Z_t$$
, where $y(B) = \sum_{j=-\infty}^{\infty} y_j B^j$. (2)

Definition.

A linear process is called a <u>moving average of infinite order</u>, or $\mathbf{MA}(\infty) - \mathbf{process}$, if $\psi_i = 0$ for all j < 0, that is, if

$$X_{t} = y(B)Z_{t} = \sum_{j=0}^{\infty} y_{j}Z_{t-j}.$$
 (3)

Remark 1.

The operator $\psi(B)$ can be thought of as a <u>linear filter</u>, which when applied to the <u>white noise "input"</u> series $\{Z_t\}$ produces the "output" $\{X_t\}$ (see Section 4.3).

Remark 2.

The following proposition shows that a linear filter, when applied to any stationary input series, produces a stationary output series.

Proposition 1.

Let $\{Y_t, t = 0, \pm 1, \ldots\}$ be a stationary time series with mean 0 and covariance function $\gamma_Y(h)$. If $\{\psi_j, t = 0, \pm 1, \ldots, \}$ is a sequence of real numbers satisfying

$$\sum_{j=-\infty}^{\infty} |y_j| < \infty,$$

then the time-series

$$X_{t} = \sum_{j=-\infty}^{\infty} y_{j} Y_{t-j} = y(B) Y_{t}$$
 (4)

is stationary with mean 0 and autocovariance function

$$g_X(h) = \sum_{j=-\infty}^{\infty} \sum_{k=-\infty}^{\infty} y_j y_k g_Y(h+k-j) \qquad (5)$$

Remark

In the special case where $\{X_t\}$ is a linear process, that is, $Y_t = Z_t \sim WN(0, \sigma^2)$, we have

$$\mathbf{g}_{X}(h) = \mathbf{s}^{2} \sum_{j=-\infty}^{\infty} \mathbf{y}_{j} \mathbf{y}_{j+h}. \tag{6}$$

AR(1) –process

Definition.

A time-series $\{X_t, t = 0, \pm 1, ...\}$ is called <u>centered first-order</u> <u>autoregressive</u>, or AR(1)- process if it satisfies the equation

$$X_{t} = \mathbf{j} X_{t-1} + Z_{t}, \quad t = 0, \pm 1, ...,$$
 (1)

where
$$Z_t \sim WN(0, s^2)$$
, $|f| < 1$,

and Z_t is uncorrelated with X_t for each s < t.

Find the ACVF and ACF of X_t , and show that AR(1) - process is a stationary process.

We show that there is in fact exactly one such solution of (1).

AR(1) –process

Solution.

By taking expectations on each side of (1), and using the fact that $\mathbf{E}[Z_t] = \mathbf{0}$, we see at once that $\mathbf{E}[X_t] = \mathbf{0}$.

To find the autocorrelation function (ACF), we use the fact that Z_t is uncorrelated with X_s for each s < t, that is,

$$Cov(Z_t, X_s) = 0 \quad \text{for } s < t. \tag{2}$$

We have for h > 0,

$$\begin{aligned} & g_{X}(h) = Cov(X_{t}, X_{t-h}) = Cov(fX_{t-1} + Z_{t}, X_{t-h}) \\ & = Cov(fX_{t-1}, X_{t-h}) + Cov(Z_{t}, X_{t-h}) \quad \text{(since by (2), } Cov(Z_{t}, X_{t-h}) = 0) \\ & = fg_{X}(h-1) + 0 \\ & = f^{2}g_{X}(h-2) = \mathbf{L} = f^{h}g_{X}(0). \end{aligned}$$

AR(1) –process

Observing that $\gamma(h) = \gamma(-h)$, and using definition of correlation function, we find that

$$r_X(h) = \frac{g_X(h)}{g_X(0)} = j^{|h|}, \quad h = 0, \pm 1, \dots$$
 (3)

<u>To find</u> the covariance function (ACF), observe that by the linearity of the covariance function in each of its arguments, and the fact that Z_t is uncorrelated with X_{t-1} , that is,

$$Cov(Z_t, X_{t-1}) = 0$$
, we find

$$\begin{split} \boldsymbol{g}_{X}(0) &= Cov(X_{t}, X_{t}) = Cov(\boldsymbol{j} \ X_{t-1} + Z_{t}, \boldsymbol{j} \ X_{t-1} + Z_{t}) \\ &= \boldsymbol{j}^{2} Cov(X_{t-1}, X_{t-1}) + \boldsymbol{j} \ Cov(X_{t-1}, Z_{t}) \\ &+ \boldsymbol{j} \ Cov(Z_{t}, X_{t-1}) + Cov(Z_{t}, Z_{t}) \\ &= \boldsymbol{j}^{2} \boldsymbol{g}_{X}(0) + \boldsymbol{s}^{2}. \end{split}$$

AR(1) -process

Thus,

$$g_X(0) = j^2 g_X(0) + s^2$$
.

Hence

$$g_X(0) = \frac{S^2}{1 - f^2}.$$
 (4)

From (3) and (4) we obtain

$$g_X(h) = r_X(h)g_X(0) = f^{|h|} \frac{S^2}{1 - f^2}, h = 0, \pm 1, ...$$

AR(1) –process Revisited

In Example 1, an AR(1) process $\{X_t, t = 0, \pm 1, ...\}$ was defined as a stationary solution of the equations

$$X_t - f X_{t-1} = Z_t, (5)$$

where $Z_t \sim WN(0, s^2)$, |f| < 1, and Z_t is uncorrelated with X_t for each s < t.

<u>To show</u> that such a solution exists and is the unique stationary solution of (5), we consider the linear process defined by

$$X_t = \sum_{j=0}^{\infty} f^j Z_{t-j} \tag{6}$$

Observe that the series (6) with coefficients ϕ^j for $j \ge 0$ is absolutely summable, since $|\phi| < 1$.

AR(1) –process Revisited

It is easy to verify directly that the process (6) is a solution of (5), and by Proposition 1, it is also stationary with mean **0** and **ACVF**

$$g_X(h) = \sum_{j=0}^{\infty} f^j f^{j+h} s^2 = \frac{s^2 f^h}{1 - f^2}, \quad \text{for } h \ge 0.$$

To show that (6) is the <u>only</u> stationary solution of (5) let $\{Y_t\}$ be <u>any</u> stationary solution.

Then, iterating (5), we obtain

$$Y_{t} = fY_{t-1} + Z_{t} = Z_{t} + fZ_{t-1} + f^{2}Y_{t-2}$$

= ...
= $Z_{t} + fZ_{t-1} + ... + f^{k}Z_{t-k} + f^{k+1}Z_{t-k-1}$

AR(1) –process Revisited

If $\{Y_t\}$ is stationary, then $E[Y_t^2]$ is finite and independent of t, so that

$$E\left(Y_{t} - \sum_{j=0}^{\infty} f^{j} Z_{t-j}\right)^{2} = f^{2k+2} E(Y_{t-k-1})^{2} \to 0 \quad \text{as} \quad k \to \infty.$$

This implies that Y_t is equal to the mean square limit

$$\sum\nolimits_{j=0}^{\infty}f^{j}Z_{t-j},$$

and hence that the process defined by (6) is the unique stationary solution of the equations (5).

Outline.

In order to fit a mathematical model to time series data, one needs to go through the following four stages:

- 1. Identification of the model
- 2. Estimation of the parameters in the model
- 3. Diagnostic checking of the fitted model
- 4. Forecasting of the future values.

We consider the ARMA(p,q) Models.

Definition 1.

Let $Z_t \sim WN(0, \sigma^2)$ and let $\theta_1, \ldots, \theta_q$ and ϕ_1, \ldots, ϕ_p be some constants.

A time series $\{X_t, t = 0, \pm 1, \ldots\}$ is called a **zero-mean** ARMA(p,q) process if it satisfies the equation

$$X_{t} - f_{1}X_{t-1} - f_{2}X_{t-2} - \mathbf{L} - f_{p}X_{t-p} = Z_{t} - q_{1}Z_{t-1} - q_{2}Z_{t-2} - \mathbf{L} q_{q}Z_{t-q}, \quad (1)$$

where the polynomials

$$f(z) = 1 - f_1 z - \dots - f_p z^p$$
 and $q(z) = 1 + q_1 z + \dots + q_q z^q$

have no common factors.

Remark.

It is convenient to use the more concise form of (1)

$$\Phi(B)X_t = \theta(B)Z_t, \qquad (2)$$

where **B** is the backward shift operator

$$(B^{j}X_{t} = X_{t-j}, B^{j}Z_{t} = Z_{t-j}, j = 0,\pm 1,...).$$

A. Identification of the model

consists of selecting tentative values of p and q in equation (1) based on the observed time series data.

B. Estimation of the model

involves statistical estimation of the parameters $\theta_1, \dots, \theta_q$ and ϕ_1, \dots, ϕ_p in the model tentatively selected in Part A.

C. Diagnostic checking

implies that based on some appropriate criterion we decide whether the model selected in Part A and estimated in Part B adequately fits the given time series.

Identification of the model

Identification of the model for ARMA processes involves:

- 1. Existence and Uniqueness of the solution
- 2. Causality
- 3. **Invertibility**
- **4.** Specification of p and q
- 5. Specification of the characteristics of the process: ACVF $\gamma(h)$ and ACF $\rho(h)$.

Identification of the model

Recall:

1. A time-series $\{X_t, t = 0, \pm 1, ...\}$ is called **ARMA**(p, q) – **processes**, if $\{X_t\}$ is stationary and satisfies the equation

$$X_{t} - f_{1}X_{t-1} - \dots - f_{p}X_{t-p} = Z_{t} + q_{1}Z_{t-1} + \dots + q_{q}Z_{t-q},$$
 (1)

where $\{Z_t\} \sim WN(0, \sigma^2)$ and the polynomials

$$f(z) = 1 - f_1 z - ... - f_p z^p$$
 and $q(z) = 1 + q_1 z + ... + q_q z^q$

have no common factors.

2. A time-series $\{Y_t, t = 0, \pm 1, ...\}$ is called ARMA (p, q) - process with mean μ if $X_t := Y_t - \mu$ is an ARMA (p, q) - process according to 1.

Existence and Uniqueness

Theorem 1.

A stationary solution $\{X_t, t = 0, \pm 1, ...\}$ of equation (1) exists (and is also unique) if and only if

$$f(z) = 1 - f_1 z - \dots - f_p z^p \neq 0 \text{ for all } |z| = 1$$
 (2)

Causality

Definition.

An ARMA (p, q) process $\{X_t, t = 0, \pm 1, \ldots\}$ is called causal, or a causal function of $\{Z_t\}$, or future – independent function of $\{Z_t\}$, or more concisely a causal autoregressive process, if there exist constants $\{\psi_i, j = 0, 1, \ldots\}$ such that

$$\sum_{j=0}^{\infty} |y_j| < \infty \text{ and } X_t = \sum_{j=0}^{\infty} y_j Z_{t-j} \text{ for all } t = 0, \pm 1, \dots$$
 (3)

Theorem 2.

An ARMA (p, q) process $\{X_t, t = 0, \pm 1, ...\}$ is causal if and only if

$$f(z) = 1 - f_1 z - \dots - f_p z^p \neq 0 \text{ for all } |z| \leq 1.$$
 (4)

Causality

Remark.

The coefficients $\{\psi_i\}$ can be found from equations

$$\mathbf{y}_0 = 1$$

$$\mathbf{y}_1 - \mathbf{f}_1 \mathbf{y}_0 = \mathbf{q}_1$$

•••••

$$y_{j} - \sum_{k=1}^{p} f_{k} y_{j-k} = q_{j}, j = 0,1,...,$$
 (5)

where $q_0 := 1$; $q_j := 0$ for j > q, and $y_j := 0$ for j < 0.

Invertibility

Definition.

An ARMA (p, q) processes $\{X_t, t = 0, \pm 1, ...\}$ is called invertible if there exist constants $\{\pi_j, j = 0, 1, ...\}$ such that

$$\sum_{j=0}^{\infty} |p_{j}| < \infty$$
 and $Z_{t} = \sum_{j=0}^{\infty} p_{j} X_{t-j}$ for all $t = 0, \pm 1,$

Theorem 3.

An **ARMA** (p, q) processes $\{X_t, t = 0, \pm 1, ...\}$ is **invertible** if and only if

$$q(z) = 1 + q_1 z + ... + q_q z^q \neq 0$$
 for all $|z| \leq 1$. (6)

Invertibility

Remark.

The coefficients $\{\pi_j, j = 0, \pm 1, ...\}$ can be found from equations

$$p_{j} + \sum_{k=1}^{q} q_{k} p_{j-k} = -f_{j}, \ j = 0, 1, ...,$$
 (7)

where $f_0 := 1$; $f_j := 0$ for j > p, and $p_j := 0$ for j < 0.

The time series $\{X_t, t = 0, \pm 1, \ldots\}$ is an **ARMA (1,1)** process if it is stationary and satisfies

$$X_t - \phi X_{t-1} = Z_t + \theta Z_{t-1}$$
 for every $t = 0, \pm 1, \dots,$ (8)

where $\{Z_t\} \sim WN(0, \sigma^2)$ and $\phi + \theta \neq 0$.

Using the backward shift operator notation, (8) can be written as

$$\Phi(B)X_t = \theta(B)Z_t, \qquad (9)$$

where $\Phi(B) = 1 - \Phi B$ and $\theta(B) = 1 + \theta B$ are linear filters.

Theorem 1.

1. A stationary solution of the **ARMA** (1,1) equations exists if and only if $\phi \neq \pm 1$, and the unique stationary solution $\{X_t, t = 0, \pm 1, ...\}$ of (8) is given by the **MA**(∞)-process:

$$X_{t} = Z_{t} + (f + q) \sum_{j=1}^{\infty} f^{j-1} Z_{t-j}, \quad t = 0, \pm 1, \dots$$
 (10)

2. If |f| < 1, then the unique stationary solution $\{X_t, t = 0, \pm 1, \ldots\}$, given by (10) is **causal** function of $\{Z_t\}$, since X_t can be expressed in terms of the current and past values Z_s , $s \le t$.

3. If $|\phi| > 1$ then the unique stationary solution of equation (8) is given by

$$X_{t} = -qf^{-1}Z_{t} - (f+q)\sum_{j=1}^{\infty} f^{-j-1}Z_{t+j}, \ t = 0, \pm 1, \dots \ (11)$$

The solution is **non-causal**, since X_t is then a function of Z_s , $s \ge t$.

Theorem 2.

1. If $|\theta| < 1$ then the **ARMA(1,1)** process X_t is **invertible**, and Z_t is expressed in terms of X_s , $s \le t$, by

$$Z_t = X_t - (f + q) \sum_{j=1}^{\infty} (-q)^{j-1} X_{t-j}, \quad t = 0, \pm 1, \dots$$

2. If $|\theta| > 1$ then the **ARMA(1,1)** process X_t is **non-invertible**, and Z_t is expressed in terms of X_s , $s \ge t$, by

$$Z_{t} = -fq^{-1}X_{t} + (f+q)\sum_{j=1}^{\infty} (-q)^{-j-1}X_{t+j}, \ t = 0, \pm 1, \dots$$

- 3. If $|\theta| = 1$ then the **ARMA(1,1)** process X_t is invertible in the more general sense that Z_t is a mean square limit of finite linear combinations of X_s , $s \le t$.
- 4. If the ARMA(1,1) process is non-causal or non-invertible with $|\theta| > 1$ then it is possible to find a new White Noise process W_t such that X_t is a causal and invertible ARMA(1,1) process relative to W_t (Problem 4.10, BD).

Therefore, from second-order point of view, nothing is lost by restricting attention to causal and invertible ARMA(1,1) models.

This assertion is also valid for **higher-order ARMA**(p, q) models.

Example 1: Numerical - ARMA (1,1) processes.

Consider the **ARMA**(p, q) processes $\{X_t\}$ satisfying the equation

$$X_{t} - .5 X_{t-1} = Z_{t} + .4 Z_{t-1},$$

 $\{Z_{t}\} \sim WN(0, \sigma^{2}), \Phi = .5; \theta = .4.$ (1)

Since the autoregressive polynomial $\phi(z) = 1 - .5z$ has a zero at z = 2 > 1, which is located outside the unit circle, we conclude that there exists a unique ARMA processes satisfying (1), and that is also causal.

Example 1: Numerical - ARMA (1,1) processes.

The coefficients $\{\psi_j\}$ in the **MA - representation** of $\{X_t\}$ are found directly from by formulas:

$$y_0 = 1,$$

 $y_1 = q_1 + f_1 y_0 = .4 + .5,$
 $y_2 = .5(.4 + .5),$
 $y_j = .5^{j-1}(.4 + .5),$ $j = 1, 2, ...$

Example 1: Numerical - ARMA (1,1) processes.

The MA polynomial $\theta(z) = 1 + .4z$ has a zero at z = -1/.4 = -2.5, which is also located outside the unit circle. This implies that $\{X_t\}$ is invertible with coefficients $\{\pi_j\}$ given by

$$p_0 = 1,$$
 $p_1 = -(.4 + .5),$
 $p_2 = -(.4 + .5)(-.4),$
 $p_j = -(.4 + .5)(-.4)^{j-1}.$
 $j = 1, 2, ...$

Example 2: An AR (2) processes

Let $\{X_t\}$ be an AR(2) process, a solution of equation

$$X_t = .7 X_{t-1} - .1 X_{t-2} + Z_t, \qquad \{Z_t\} \sim WN(0, \sigma^2).$$

The autoregressive polynomial for this process has the factorization

$$f(z) = 1 - .7z + .1z^2 = (1 - .5z)(1 - .2z),$$

and is therefore zero at z = 2 and z = 5.

Since these zeros lie outside the unit circle, we conclude that $\{X_t\}$ is a **causal AR(2) process** with coefficients $\{\psi_i\}$ given by

Example 2: An AR (2) processes

$$y_0 = 1,$$

 $y_1 = .7,$
 $y_2 = .7^2 - .1,$
 $y_j = .7y_{j-1} - (.1)y_{j-2}, \quad j = 2,3,...$

Remark.

While it is a simple matter to calculate ψ_j numerically for any j, it is possible also to give an explicit solution of these difference equations using the theory of linear difference equations (see TSTM, Section 3.6).

1. AR(1) Model (First-Order Autoregressive Model).

Taking p = 1 and q = 0 we get

$$X_{t} - \phi_{l} X_{t-1} = Z_{t}. \tag{1}$$

$$s_X^2 = \frac{s^2}{1 - f_1^2};$$

$$r_0 = 1; \ r_k = j_1 r_{k-1}, \ r_k = f_1^{|k|} \text{ for } k = \pm 1, \pm 2, ...$$

$$g(k) = s^2 \frac{f_1^{|k|}}{1 - f_1^2}. \text{ for } k = 0, \pm 1, \pm 2,$$

2. AR(2) Model (Second-Order Autoregressive Model).

Taking p = 2 and q = 0 we get

$$X_{t} - \phi_{1} X_{t-1} - \phi_{2} X_{t-2} = Z_{t}, \qquad (2)$$

It can be shown that equation (2) will have stationary solution if ϕ_1 and ϕ_2 satisfy the following inequalities.

$$-1 < \phi_2 < 1$$
, $\phi_1 + \phi_2 < 1$, $\phi_2 - \phi_1 < 1$.

We have

$$s_X^2 = \frac{s^2}{1 - f_1^2 - f_2^2 - 2r_1f_1f_2},$$

provided that $1 - f_1^2 - f_2^2 - 2r_1f_1f_2 > 0$;

$$r_1 = \frac{f_1}{1 - f_2}; \quad r_2 = f_2 + \frac{f_1^2}{1 - f_2};$$

$$r_k = f_1 r_{k-1} + f_2 r_{k-2}$$
, for $k = \pm 3, \pm 4, ...$

3. MA(1) Model (First-Order Moving Average Model).

Taking p = 0 and q = 1 we get

$$X_t = Z_t - \theta_1 Z_{t-1} \tag{3}$$

$$s_X^2 = s^2(1+q_1^2);$$
 $r_{\pm 1} = \frac{-q_1}{1+q_1^2};$
 $r_k = 0 \text{ for } k = \pm 2, \pm 3,$

4. MA(2) Model (Second-Order Moving Avarage Model).

Taking p = 0 and q = 2 we get

$$X_{t} = Z_{t} - \theta_{1} Z_{t-1} - \theta_{2} Z_{t-2}, \tag{4}$$

It can be shown that the **invertibility conditions** for **MA(2)** model are

$$-1 < \theta_2 < 1$$
, $\theta_1 + \theta_2 < 1$, $\theta_2 - \theta_1 < 1$.

$$s_X^2 = (1 + q_1^2 + q_2^2)s^2;$$
 $r_1 = \frac{q_1(q_2 - 1)}{1 + q_1^2 + q_2^2}; \quad r_2 = \frac{-q_2}{1 + q_1^2 + q_2^2}, \quad \text{and}$
 $r_k = 0 \quad \text{for} \quad k = \pm 3, \pm 4, \dots$

5. ARMA(1,1) Model.

Taking p = 1 and q = 1 we get

$$X_{t} - \phi_{1} X_{t-1} = Z_{t} - \theta_{1} Z_{t-1}$$
 (5)

It can be shown that under the conditions

$$-1 < \theta_1 < 1, -1 < \phi_1 < 1$$

the model is invertible and causal.

$$s_{X}^{2} = \frac{(1+q_{1}^{2})s^{2}}{1+f_{1}^{2}-2r_{1}f_{1}},$$

$$r_{1} = \frac{(f_{1}-q_{1})(1-f_{1}q_{1})}{1+q_{1}^{2}-2f_{1}q_{1}}, \text{ and}$$

$$r_{k} = f_{1}r_{k-1} \text{ for } k = \pm 2, \pm 3, \pm 4, \dots$$