Factor each completely.

1)
$$3p^2 - 2p - 5$$

2)
$$2n^2 + 3n - 9$$

3)
$$3n^2 - 8n + 4$$

4)
$$5n^2 + 19n + 12$$

5)
$$2v^2 + 11v + 5$$

6)
$$2n^2 + 5n + 2$$

7)
$$7a^2 + 53a + 28$$

8)
$$9k^2 + 66k + 21$$

9)
$$15n^2 - 27n - 6$$

10)
$$5x^2 - 18x + 9$$

11)
$$4n^2 - 15n - 25$$

12)
$$4x^2 - 35x + 49$$

13)
$$4n^2 - 17n + 4$$

14)
$$6x^2 + 7x - 49$$

15)
$$6x^2 + 37x + 6$$

16)
$$-6a^2 - 25a - 25$$

17)
$$6n^2 + 5n - 6$$

18)
$$16b^2 + 60b - 100$$

Factoring Quadratic Expressions

Factor each completely.

1)
$$x^2 - 7x - 18$$

2)
$$p^2 - 5p - 14$$

3)
$$m^2 - 9m + 8$$

4)
$$x^2 - 16x + 63$$

5)
$$7x^2 - 31x - 20$$

6)
$$7k^2 + 9k$$

7)
$$7x^2 - 45x - 28$$

8)
$$2b^2 + 17b + 21$$

9)
$$5p^2 - p - 18$$

10)
$$28n^4 + 16n^3 - 80n^2$$

11)
$$3b^3 - 5b^2 + 2b$$

12)
$$7x^2 - 32x - 60$$

13)
$$30n^2b - 87nb + 30b$$

14)
$$9r^2 - 5r - 10$$

15)
$$9p^2r + 73pr + 70r$$

16)
$$9x^2 + 7x - 56$$

17)
$$4x^3 + 43x^2 + 30x$$

18)
$$10m^2 + 89m - 9$$

Critical thinking questions:

- 19) For what values of *b* is the expression factorable? $x^{2} + bx + 12$
- 20) Name four values of *b* which make the expression factorable:

$$x^{2} - 3x + b$$

Date_____ Period____

Factoring Trinomials (a > 1)

Factor each completely.

1)
$$3p^2 - 2p - 5$$

 $(3p - 5)(p + 1)$

3)
$$3n^2 - 8n + 4$$
 $(3n-2)(n-2)$

5)
$$2v^2 + 11v + 5$$

 $(2v + 1)(v + 5)$

7)
$$7a^2 + 53a + 28$$
 $(7a + 4)(a + 7)$

9)
$$15n^2 - 27n - 6$$

 $3(5n+1)(n-2)$

11)
$$4n^2 - 15n - 25$$

 $(n-5)(4n+5)$

13)
$$4n^2 - 17n + 4$$

 $(n-4)(4n-1)$

15)
$$6x^2 + 37x + 6$$

 $(x+6)(6x+1)$

17)
$$6n^2 + 5n - 6$$

 $(2n+3)(3n-2)$

2)
$$2n^2 + 3n - 9$$

 $(2n - 3)(n + 3)$

4)
$$5n^2 + 19n + 12$$
 $(5n + 4)(n + 3)$

6)
$$2n^2 + 5n + 2$$

 $(2n+1)(n+2)$

8)
$$9k^2 + 66k + 21$$

 $3(3k+1)(k+7)$

10)
$$5x^2 - 18x + 9$$

 $(5x - 3)(x - 3)$

12)
$$4x^2 - 35x + 49$$

 $(x-7)(4x-7)$

14)
$$6x^2 + 7x - 49$$

 $(3x - 7)(2x + 7)$

16)
$$-6a^2 - 25a - 25$$

 $-(2a+5)(3a+5)$

18)
$$16b^2 + 60b - 100$$

 $4(b+5)(4b-5)$

Factoring Quadratic Expressions

Factor each completely.

1)
$$x^2 - 7x - 18$$
 $(x-9)(x+2)$

3)
$$m^2 - 9m + 8$$
 $(m-1)(m-8)$

5)
$$7x^2 - 31x - 20$$

 $(7x + 4)(x - 5)$

7)
$$7x^2 - 45x - 28$$
 $(7x + 4)(x - 7)$

9)
$$5p^2 - p - 18$$

 $(5p + 9)(p - 2)$

11)
$$3b^3 - 5b^2 + 2b$$

 $b(3b-2)(b-1)$

13)
$$30n^2b - 87nb + 30b$$

 $3b(2n-5)(5n-2)$

15)
$$9p^2r + 73pr + 70r$$

 $r(p+7)(9p+10)$

17)
$$4x^3 + 43x^2 + 30x$$

 $x(x+10)(4x+3)$

Critical thinking questions:

19) For what values of *b* is the expression factorable? $x^2 + bx + 12$ 13, 8, 7, -13, -8, -7

2)
$$p^2 - 5p - 14$$
 $(p+2)(p-7)$

4)
$$x^2 - 16x + 63$$
 $(x-9)(x-7)$

6)
$$7k^2 + 9k$$

 $k(7k + 9)$

8)
$$2b^2 + 17b + 21$$

 $(2b+3)(b+7)$

10)
$$28n^4 + 16n^3 - 80n^2$$

 $4n^2(7n - 10)(n + 2)$

12)
$$7x^2 - 32x - 60$$

 $(7x + 10)(x - 6)$

14)
$$9r^2 - 5r - 10$$
Not factorable

16)
$$9x^2 + 7x - 56$$

Not factorable

18)
$$10m^2 + 89m - 9$$

 $(m+9)(10m-1)$

20) Name four values of *b* which make the expression factorable:

$$x^2-3x+b$$

Many answers. Ex: 0, 2, -4, -10, -18