

Matemática A

10.º ANO DE ESCOLARIDADE

Duração: 90 minutos | **Data:** MAIO 2019

Grupo I

Na resposta aos itens deste grupo, selecione a opção correta. Escreva, na folha de respostas, o número do item e a letra que identifica a opção escolhida.

1. Considere, fixado um referencial o. n. Oxyz, o prisma quadrangular regular [ABCDEFGH].

Sabe-se que:

- os pontos D, E e G pertencem aos semieixos positivos;
- a área do quadrado [ADHE] é igual a 4;
- o volume do prisma [ABCDEFGH] é igual a 20.

Qual das opções seguintes não pode representar as coordenadas de um dos vértices do prisma?

- (A) (0,0,2)
- **(B)** (0,5,0)
- (C) (2,5,0)
- **(D)** (2,5,5)
- 2. Na figura seguinte, o gráfico de f descreve a trajetória de um projétil, lançado de um ponto coincidente com a origem do referencial.

No gráfico, relaciona-se o deslocamento do projétil (x) com a respetiva altura (y = f(x)), ambos expressos em quilómetros (km).

Sabendo que $f(x) = -\frac{1}{200}x^2 + \frac{1}{5}x$, a altura máxima, H, e o alcance, A, do projétil são, respetivamente, iguais a:

- (A) 20 e 2
- **(B)** 2 e 40
- **(C)** 20 e 40
- **(D)** 2 e 20

3. Na figura ao lado, estão representados dois vetores ($\vec{x} = \vec{y}$).

Qual é a norma do vetor $\vec{x} + \vec{y}$?

(A) 3

(B)

(C) 5

(D) 6

4. Na figura está representado, num referencial o. n. xOy, o gráfico cartesiano da função f.

Em qual das opções seguintes se apresenta o domínio de f?

- **(B)** $\mathbb{R} \setminus \{0,2\}$
- (C) $\begin{bmatrix} -2,2 \end{bmatrix}$
- **(D)** $\left[-\frac{3}{2}, \frac{7}{2}\right]$

5. Considere a função f, real de variável real, definida em \mathbb{R} por $f(x) = x^2 + (2-k)x + 1$, com $k \in \mathbb{R}$.

A função f é par se:

- $(\mathbf{A}) \qquad k = 0$
- **(B)** k = 2
- (C) k = -2
- **(D)** $k \in \{0,2\}$

Grupo II

Na resposta aos itens deste grupo apresente todos os cálculos que tiver de efetuar e todas as justificações necessárias.

6.1. Escreva uma expressão algébrica que defina a função *f*.

- **6.2.** Determine:
 - a) $f(\sqrt{5})$
 - **b)** o conjunto-solução da equação f(x) = 2.
- **6.3.** Indique:
 - a) os intervalos onde f é decrescente em sentido lato;
 - b) os máximos relativos de f e os respetivos maximizantes.
- 7. Na figura, está representada, num referencial o. n. xOy, parte da parábola que é o gráfico de uma função f.

Sabe-se que:

7.2. Determine os valores de x que satisfazem a condição $f(x) \ge 5$.

Apresente o conjunto-solução na forma de intervalo ou reunião de intervalos.

7.3. Considere a função g definida por g(x) = 2 + f(x-1).

Determine:

- a) o contradomínio de g;
- **b)** os zeros de g.

- **8.** Considere a função g, de domínio [-5,5], definida por g(x) = -|x-1| + 3.
 - **8.1.** Exprima *g* sem usar o símbolo de módulo.
 - **8.2.** Indique:
 - a) o contradomínio de g;
 - **b)** os zeros de g;
 - c) os intervalos de monotonia de g.
 - **8.3.** Utilizando processos exclusivamente analíticos, resolva a inequação g(x) < 0.
 - **8.4.** Considere a função f, definida em \mathbb{R} por f(x) = a|x-b|+c, com $a,b,c \in \mathbb{R}$, cujo gráfico cartesiano está parcialmente representado no referencial xOy da figura que se segue.

Resolva a equação f(x) = g(x).

FIM

COTAÇÕES

Grupo I

1.	2.	3.	4.	5.	Total
8	8	8	8	8	40

Grupo II

6.1.	6.2.a)	6.2.b)	6.3.a)	6.3.b)	7.1.	7.2.	7.3.a)	7.3.b)
12	8	8	8	12	14	14	10	12

8.1.	8.2.a)	8.2.b)	8.2.c)	8.3.	8.4.	Total
12	8	10	8	12	12	160

Proposta de resolução

Grupo I

1. Por exemplo:

$$A(2, 0, 2); B(2, 5, 2); C(2, 5, 0); D(2, 0, 0)$$

 $E(0, 0, 2); F(0, 5, 2); G(0, 5, 0); H(0, 0, 0)$

Resposta: (D)

2. Zeros da função f: 0 e 40

$$f(x) = 0 \Leftrightarrow -\frac{1}{200}x^2 + \frac{1}{5}x = 0 \Leftrightarrow -x^2 + 40x = 0 \Leftrightarrow$$
$$\Leftrightarrow x(-x + 40) = 0 \Leftrightarrow x = 0 \lor x = 40$$

Vértice da parábola:

$$V(20, f(20))$$
, ou seja $V(20, 2)$

Assim,
$$H = 2$$
 e $A = 40$.

Resposta: (B)

3. Seja a a medida da norma do vetor $\vec{x} + \vec{y}$.

Aplicando o Teorema de Pitágoras:

$$a^{2} = 3^{2} + 4^{2}$$

$$\Leftrightarrow a^{2} = 25$$

$$\Leftrightarrow a = \pm \sqrt{25}$$

$$\Leftrightarrow a = \pm 5$$

Como a > 0, então a = 5.

Resposta: (C)

4. Por observação do gráfico cartesiano.

Resposta: (D)

5. A função f é par se $\forall x \in D_f$, $-x \in D_f$ e f(-x) = f(x).

$$f(-x) = (-x)^{2} + (2-k)(-x) + 1$$
$$= x^{2} + (k-2)x + 1$$

Assim,
$$f(-x) = f(x) \Leftrightarrow k-2 = 2-k \Leftrightarrow 2k = 4 \Leftrightarrow k = 2$$

Resposta: (B)

Grupo II

6.1. Para
$$x \in]-\infty$$
, 0]: $y = -1$

Para
$$x \in [2, +\infty[: y=3]$$

Para
$$x \in [0, 2]$$
: $y = 2x - 1$

$$m = \frac{3 - (-1)}{2 - 0} = \frac{4}{2} = 2$$

$$b = -1$$

Assim,
$$f(x) = \begin{cases} -1 & \text{se } x \le 0 \\ 2x - 1 & \text{se } 0 < x \le 2 \\ 3 & \text{se } x > 2 \end{cases}$$

6.2. a)
$$\sqrt{5} \in]2, +\infty[, \log_0 f(\sqrt{5}) = 3]$$
 $(\sqrt{4} < \sqrt{5} < \sqrt{9} \Leftrightarrow 2 < \sqrt{5} < 3)$

b)
$$f(x) = 2 \Leftrightarrow 2x - 1 = 2 \Leftrightarrow 2x = 3 \Leftrightarrow x = \frac{3}{2}$$
; C.S. $= \left\{ \frac{3}{2} \right\}$

6.3. a) Em
$$]-\infty$$
, 0] e em $[2, +\infty[$.

b) Máximos relativos de
$$f:-1$$
 e 3

Maximizantes: Todos os números reais dos intervalos $\left]-\infty$, 0[e [2, + ∞ [

7.1. Sabe-se que
$$0$$
 e 4 são zeros de f .

Assim, a função
$$f$$
 pode ser escrita como $f(x) = a(x-0)(x-4)$.

Como f(-1) = 5 tem-se que:

$$f(-1) = 5 \Leftrightarrow a(-1-0)(-1-4) = 5$$
$$\Leftrightarrow a \times (-1) \times (-5) = 5$$
$$\Leftrightarrow 5a = 5$$
$$\Leftrightarrow a = 1$$

Então,
$$f(x) = 1(x-0)(x-4)$$
 ou seja,

$$f(x) = x(x-4) =$$

$$= x^2 - 4x$$

$$= (x-2)^2 - 4$$

7.2.
$$f(x) \ge 5 \Leftrightarrow (x-2)^2 - 4 \ge 5 \Leftrightarrow (x-2)^2 - 9 \ge 0$$

Determinam-se os zeros do polinómio e faz-se um esboço da parábola:

$$(x-2)^2 - 9 = 0 \Leftrightarrow (x-2)^2 = 9 \Leftrightarrow$$
$$\Leftrightarrow x - 2 = \pm \sqrt{9} \Leftrightarrow x - 2 = -3 \lor x - 2 = 3 \Leftrightarrow$$
$$\Leftrightarrow x = -1 \lor x = 5$$

Assim, $f(x) \ge 5 \Leftrightarrow x \in]-\infty, -1] \cup [5, +\infty[$.

7.3.

a) Como
$$D_f' = [-4, +\infty[$$
, então $f(x) \ge -4 \Leftrightarrow f(x-1) \ge -4 \Leftrightarrow \Leftrightarrow 2 + f(x-1) \ge -4 + 2$
 $\Leftrightarrow g(x) \ge -2, \ \forall x \in \mathbb{R}$
Assim, $D_g' = [-2, +\infty[$.

b) Zeros de
$$g: \{x \in \mathbb{R}: g(x) = 0\}$$

$$g(x) = 0 \Leftrightarrow 2 + f(x-1) = 0 \Leftrightarrow f(x-1) = -2 \Leftrightarrow (x-1-2)^2 - 4 = -2 \Leftrightarrow$$
$$\Leftrightarrow (x-3)^2 - 2 = 0 \Leftrightarrow x - 3 = \sqrt{2} \lor x - 3 = -\sqrt{2} \Leftrightarrow$$
$$\Leftrightarrow x = 3 + \sqrt{2} \lor x = 3 - \sqrt{2}$$

Zeros de $g: 3 + \sqrt{2}$ e $3 - \sqrt{2}$

8.1.
$$D_g = [-5, 5]$$

$$g(x) = \begin{cases} -(x-1)+3 & \text{se } x-1 \ge 0 \land x \in D \\ (x-1)+3 & \text{se } x-1 < 0 \land x \in D \end{cases} \Leftrightarrow$$

$$\Leftrightarrow g(x) = \begin{cases} -x+4 & \text{se } x \ge 1 \land x \in D \\ x+2 & \text{se } x < 1 \land x \in D \end{cases}$$

$$\Leftrightarrow g(x) = \begin{cases} x+2 & \text{se } x \in [-5, 1[\\ -x+4 & \text{se } x \in [1, 5] \end{cases}$$

8.2.

a)
$$g(1) = -|1-1| + 3 = 3$$
, $g(5) = -|5-1| + 3 = -1$ e $g(-5) = -|-5-1| + 3 = -3$
 $D'_g = [-3, 3]$

b)
$$g(x) = 0 \Leftrightarrow -|x-1| + 3 = 0 \Leftrightarrow -|x-1| = -3$$

 $\Leftrightarrow |x-1| = 3 \Leftrightarrow x-1 = 3 \lor x-1 = -3$
 $\Leftrightarrow x = 4 \lor x = -2$

Zeros de g: -2 e 4

c) g é estritamente crescente em [-5,1] e estritamente decrescente em [1,5].

8.3.
$$g(x) < 0 \Leftrightarrow -|x-1| + 3 < 0 \land x \in [-5,5] \Leftrightarrow$$

 $\Leftrightarrow -|x-1| < -3 \land x \in [-5,5] \Leftrightarrow$
 $\Leftrightarrow |x-1| > 3 \land x \in [-5,5] \Leftrightarrow$
 $\Leftrightarrow (x-1 < -3 \lor x-1 > 3) \land x \in [-5,5] \Leftrightarrow$
 $\Leftrightarrow (x < -2 \lor x > 4) \land x \in [-5,5] \Leftrightarrow$
 $\Leftrightarrow x \in [-5,-2[\cup]4,5]$
 $g(x) < 0 \Leftrightarrow x \in [-5,-2[\cup]4,5]$

8.4. Por observação do gráfico cartesiano de f , sabe-se que b=2 e c=0 .

$$f(0) = 2 \Leftrightarrow a|0-2| = 2 \Leftrightarrow 2a = 2 \Leftrightarrow a = 1$$

Assim
$$f(x) = |x-2| \Leftrightarrow f(x) = \begin{cases} x-2 & \text{se } x \ge 2\\ -x+2 & \text{se } x < 2 \end{cases}$$
.

Seja h a função definida em $D_g \cap D_f = [-5, 5]$ por:

$$h(x) = f(x) - g(x)$$

 $\Leftrightarrow h(x) = |x - 2| - (-|x - 1| + 3)$

Pode recorrer-se a uma tabela para auxiliar na determinação da expressão algébrica da função h.

x	-5		1		2		5
x-2	7	-x + 2	1	-x + 2	0	x-2	3
- x-1 +3	-3	<i>x</i> + 2	3	-x + 4	2	-x + 4	-1
h(x) = x-2 - (- x-1 + 3)	10	-2x	-2	-2	-2	2x - 6	4

Então,
$$h(x) = \begin{cases} -2x & \text{se } x \in [-5, 1] \\ -2 & \text{se } x \in [1, 2] \\ 2x - 6 & \text{se } x \in [2, 5] \end{cases}$$

Para $x \in [-5, 1]$ os zeros de h são dados por $-2x = 0 \Leftrightarrow x = 0$ e para $x \in [2, 5]$ os zeros de h são dados por $2x - 6 = 0 \Leftrightarrow 2x = 6 \Leftrightarrow x = 3$.

Assim,
$$h(x) = 0 \Leftrightarrow x = 0 \lor x = 3$$
 e, consequentemente, $f(x) - g(x) = 0 \Leftrightarrow f(x) = g(x) \Leftrightarrow x = 0 \lor x = 3$.
C.S. = $\{0, 3\}$

Nota: Esta questão foi resolvida recorrendo a um processo analítico. No entanto, também pode ser resolvida por outros processos (por exemplo, pela determinação da interseção dos gráficos das duas funções).

