Project #1

April 1, 2021

- Due: 11:59pm 11 Apr.
- Goal: To build the 7-segment display circuit.
- Build the circuit using the HardwareSimulator. You can download the necessary files (hdlempty.zip) from MS Teams.
 - Encoder16.tst: Test script. DO NOT modify this file.
 - Encoder16.cmp: Correct result file. DO NOT modify this file.
 - Encoder16.hdl: Complete the circuit.
 - Decoder7Seg.tst: Test script. DO NOT modify this file.
 - Decoder7Seg.cmp: Modify the output by setting all X's to correct values (1 or 0) which is the same as the truth table of (Table 2).
 - (NOTE: You should modify only the \mathtt{X} letters not other characters including white spaces. Otherwise you may get an error.)
 - Decoder7Seg.hdl: Complete the circuit.
 - Seg7.tst: DO NOT modify this file.
 - Seg7.cmp: Modify the output of the file which should be the same as the output of Decoder7Seg.cmp.
 (NOTE: You should modify only the X letters not other characters including white spaces. Otherwise you may get an error.)
 - Seg7.hdl: DO NOT modify this file.
- Seg7.hdl
 - input: 16 buttons (in[0]-in[15]) associated with numbers 0-15
 - output: a 7-segment display components (out [0] -out [6]) displaying the corresponding input (hexadecimal) numbers below. (Number 1 is aligned on the right.)

- Note that our display is different from the typical hexadecimal display, e.g., (image courtesy of Wikipedia.)

- The circuit MUST be composed of two parts:
 - * 16-to-4 encoder (Encoder16.hdl)
 - * 7-segment decoder (Decoder7Seg.hdl)

• Encoder16.hdl

- The truth table for the 16-to-4 encoder:

						j	in										01	ıt	
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	3	2	1	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	1
0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	1	0
0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	1	1
0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	1	0	0
0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	1	0	1
0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	1	1	0
0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	1	1	1
0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	1	0	0	0
0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	1	0	0	1
0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	1	0	1	0
0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	1	0	1	1
0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	1	1	0	0
0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	0	1
0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	0
1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1

⁻ For this circuit, you do not need to take care of invalid inputs not listed in the truth table.

						-	n										01	ıt		
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	3	2	1	0	
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	7 001 856 Sparced of
0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	$\begin{bmatrix} 0 \\ 0 \end{bmatrix}$	0	0	1	
0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	$\begin{vmatrix} 0 \\ 0 \end{vmatrix}$	0	1	0	
0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	$\begin{bmatrix} 0 \\ 0 \end{bmatrix}$	0	1	1	
O	O	O	J		Ü	Ü	Ü		U	U	J	*	Ü	Ü	U		J	•	-	
0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	1	0	0	
0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	1	0	1	
0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	1	1	0	
0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	1	1	1	
0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	1	0	0	0	
0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	1	0	0	1	
0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	1	0	1	0	
0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	1	0	1	1	
0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	1	1	0	0	
0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	0	1	
0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	0	
1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	

Call ni + ··· + [2] ni + [2] ni + [1] ni = [0] two out(1): in[2)+in [3] + in [6]+in[7] + in[16]+in[1]+in[18]+in[18]

oud[2]: n(+]+... + in(7) + in(12)+...+ in(15)

out (3) = in (8) + ... + in (16) m CID m

m[I]~ in[IS] & AR ENEWY: for i,je[0,15], i+j -> * XNORN >497 24544 1.

	j	in					ou	t		
3	2	1	0	6	5	4	3	2	1	0
W	ગ	A	ス	A	В	С	D) E	F	G
0	0	0	0	1	1	l	1	1	1	0
0	0	0	1	0	1	1	0	0	0	٥
0	0	1	0	1	1	0	1)	٥	l
0	0	1	1	1	l	1	1	0	0	1
0 0 0 0	1 1 1 1	0 0 1 1	0 1 0 1	0 1 1	100	! ! ! }	0 0	0 0 1 0	1 	1 1 1 0
1 1 1 1	0 0 0 0	0 0 1 1	0 1 0 1	1110	1 1 1 0)] []]	/ 0 /	1 0 1	
1 1 1 1	1 1 1 1	0 0 1 1	0 1 0 1	0 0 1 1	0110	0 1 0 0	 	! ! !	0011	/ / /

2 3 6 0 10 10 1

8 9 10 11 12 13

45 6 7 12 13 1 15

$$F_F = \overline{w}x + wxy + w\overline{x}z + \overline{x}\widehat{y}\overline{z}$$

$$= x(\overline{w} + wy) + w\overline{x}z + \overline{x}\overline{y}\overline{z}$$

$$F_{A} = \mathcal{Y}(\bar{w}\hat{x} + wx) + \mathcal{Y}\bar{z} + \bar{x}\bar{y}\bar{z} + \omega\bar{x}\bar{y} + \bar{w}xz$$

$$= \mathcal{Y}(\bar{w}\bar{x} + wx) + \bar{x}\bar{y}(w+\bar{z}) + \mathcal{Y}\bar{z} + \bar{w}xz$$

$$= \mathcal{Y}(\bar{w}\bar{x} + wx) + \bar{x}\bar{y}(w+\bar{z}) + \mathcal{Y}\bar{z} + \bar{w}xz$$

• Decoder7Seg.hdl

– The 7-segment display is composed of the following 8 segments, but we only use the 7 segments A–G below. (Do not confuse those pin names A–G with the hexadecimal numbers A–F.)

- The truth table for the 7-segment decoder (You need to complete the table yourself in Decoder7Seg.cmp.) Note that out[0]-out[6] correspond with A-G above in reverse order. See the table below.

	i	n					out			
3	2	1	0	6	5	4	3	2	1	0
				A	В	С	D	E	F	G
0	0	0	0	Х	Х	Х	Х	Х	Х	Х
0	0	0	1	Х	X	Х	X	Х	X	X
0	0	1	0	Х	X	X	X	X	X	X
0	0	1	1	Х	Х	X	Х	X	X	X
0	1	0	0	Х	X	X	X	X	X	X
0	1	0	1	Х	X	X	X	X	X	X
0	1	1	0	Х	Х	X	Х	X	X	X
0	1	1	1	Х	Х	Х	Х	Х	Х	X
1	0	0	0	Х	Х	Х	X	Х	Х	X
1	0	0	1	Х	Х	Х	Х	Х	Х	X
1	0	1	0	Х	Х	Х	Х	Х	Х	X
1	0	1	1	Х	Х	X	X	X	Х	Х
1	1	0	0	Х	X	Х	Х	X	X	X
1	1	0	1	Х	Х	Х	Х	Х	Х	X
1	1	1	0	Х	Х	Х	Х	Х	Х	X
1	1	1	1	Х	Х	Х	Х	Х	Х	Х

• Note

AND, OR, NOT, Xor

- You can use any gate provided by nand2tetris.
- You don't have to minimize the number of gates used. As long as it works, you're ok.