# Supplementary material

# Phylogenetic profiles

We downloaded 453 fully sequenced genomes from the National Center for Biotechnology Information (NCBI) ftp site (ftp.ncbi.nih.gov/genomes) consisting of 20 eukaryotes, 33 archaea and 400 bacteria. However, only 78 genomes were used for the calculation of phylogenetic profiles. We used all eukaryotic and archaea genomes and selected only the 25 genetically most distant bacteria genomes in order to get an approximately equal distribution of genomes from the three kingdoms. We used the same genome subselection procedure as described in Sun et al., 2005. The method uses the NCBI taxonomy information to reconstruct an evolutionary tree and exploits hierarchical information in a top down approach to select a preferably non-redundant set of genomes. The complete set of the genomes used is listed in Tab. 1, Tab. 2 and Tab. 3.

Table 1: The selected fully sequenced eukaryotic genomes used for the calculation of phylogenetic profiles.

| Taxonomy ID | Organism name                                 |
|-------------|-----------------------------------------------|
| 3702        | Arabidopsis thaliana                          |
| 4932        | Saccharomyces cerevisiae                      |
| 5693        | Trypanosoma cruzi                             |
| 6239        | Caenorhabditis elegans                        |
| 7227        | Drosophila melanogaster                       |
| 9606        | Homo sapiens                                  |
| 10090       | Mus musculus                                  |
| 33169       | Eremothecium gossypii                         |
| 35128       | Thalassiosira pseudonana                      |
| 36329       | Plasmodium falciparum 3D7                     |
| 39947       | Oryza sativa Japonica Group                   |
| 214684      | Cryptococcus neoformans var. neoformans JEC21 |
| 280699      | Cyanidioschyzon merolae strain 10D            |
| 284590      | Kluyveromyces lactis NRRL Y-1140              |
| 284591      | Yarrowia lipolytica CLIB122                   |
| 284592      | Debaryomyces hansenii CBS767                  |
| 284593      | Candida glabrata CBS 138                      |
| 284812      | Schizosaccharomyces pombe 972h-               |
| 284813      | Encephalitozoon cuniculi GB-M1                |
| 294381      | Entamoeba histolytica HM-1:IMSS               |

Table 2: The selected fully sequenced archaea genomes used for the calculation of phylogenetic profiles.

| Taxonomy ID | Organism name                                       |
|-------------|-----------------------------------------------------|
| 64091       | Halobacterium sp. NRC-1                             |
| 69014       | Thermococcus kodakarensis KOD1                      |
| 70601       | Pyrococcus horikoshii OT3                           |
| 178306      | Pyrobaculum aerophilum str. IM2                     |
| 186497      | Pyrococcus furiosus DSM 3638                        |
| 187420      | Methanothermobacter thermautotrophicus str. Delta H |
| 188937      | Methanosarcina acetivorans C2A                      |
| 190192      | Methanopyrus kandleri AV19                          |
| 192952      | Methanosarcina mazei Go1                            |
| 224325      | Archaeoglobus fluorides DSM 4304                    |
| 228908      | Nanoarchaeum equitans Kin4-M                        |
| 243232      | Methanocaldococcus jannaschii DSM 2661              |
| 259564      | Methanococcoides burtonii DSM 6242                  |
| 263820      | Picrophilus torridus DSM 9790                       |
| 267377      | Methanococcus maripaludis S2                        |
| 269797      | Methanosarcina barkeri str. Fusaro                  |
| 272557      | Aeropyrum pernix K1                                 |
| 272569      | Haloarcula marismortui ATCC 43049                   |
| 272844      | Pyrococcus abyssi GE5                               |
| 273057      | Sulfolobus solfataricus P2                          |
| 273063      | Sulfolobus tokodaii str. 7                          |
| 273075      | Thermoplasma acidophilum DSM 1728                   |
| 273116      | Thermoplasma volcanium GSS1                         |
| 323259      | Methanospirillum hungatei JF-1                      |
| 330779      | Sulfolobus acidocaldarius DSM 639                   |
| 339860      | Methanosphaera stadtmanae DSM 3091                  |
| 348780      | Natronomonas pharaonis DSM 2160                     |
| 349307      | Methanosaeta thermophila PT                         |
| 362976      | Haloquadratum walsbyi DSM 16790                     |
| 368408      | Thermofilum pendens Hrk 5                           |
| 384616      | Pyrobaculum islandicum DSM 4184                     |
| 410358      | Methanocorpusculum labreanum Z                      |
| 415426      | Hyperthermus butylicus DSM 5456                     |

Table 3: The selected fully sequenced bacteria genomes used for the calculation of phylogenetic profiles.

| Taxonomy ID | Organism name                                               |
|-------------|-------------------------------------------------------------|
| 1140        | Synechococcus elongatus PCC 7942                            |
| 1148        | Synechocystis sp. PCC 6803                                  |
| 59920       | Prochlorococcus marinus str. NATL2A                         |
| 60480       | Shewanella sp. MR-4                                         |
| 62928       | Azoarcus sp. BH72                                           |
| 62977       | Acinetobacter sp. ADP1                                      |
| 64471       | Synechococcus sp. CC9311                                    |
| 103690      | Nostoc sp. PCC 7120                                         |
| 156889      | Magnetococcus sp. MC-1                                      |
| 197221      | Thermosynechococcus elongatus BP-1                          |
| 203124      | Trichodesmium erythraeum IMS101                             |
| 232721      | Acidovorax sp. JS42                                         |
| 240292      | Anabaena variabilis ATCC 29413                              |
| 243164      | Dehalococcoides ethenogenes 195                             |
| 251221      | Gloeobacter violaceus PCC 7421                              |
| 255470      | Dehalococcoides sp. CBDB1                                   |
| 266779      | Mesorhizobium sp. BNC1                                      |
| 290400      | Jannaschia sp. CCS1                                         |
| 292414      | Silicibacter sp. TM1040                                     |
| 292459      | Symbiobacterium thermophilum IAM 14863                      |
| 296591      | Polaromonas sp. JS666                                       |
| 326442      | Pseudoalteromonas haloplanktis TAC125                       |
| 374463      | Baumannia cicadellinicola str. Hc (Homalodisca coagulata)   |
| 387662      | Candidatus Carsonella ruddii PV                             |
| 413404      | Candidatus Ruthia magnifica str. Cm (Calyptogena magnifica) |

# Gene Ontology terms

GOLoc uses only the GO terms that can be observed in the training data since for other GO terms we can not make any statements. In addition, it has the advantage that only a small portion of the over 26000 available GO terms is used. Table 4 shows the number of selected GO terms for every individual predictor. A list of selected GO terms can be obtained from the MultiLoc2 webpage.

Table 4: The selected GO terms for the individual MultiLoc2 predictors.

| MultiLoc2 version         | Training dataset | Number of selected GO terms |
|---------------------------|------------------|-----------------------------|
| MultiLoc2-LowRes Animals  | BaCelLo animals  | 712                         |
| MultiLoc2-LowRes Fungi    | BaCelLo fungi    | 508                         |
| MultiLoc2-LowRes Plants   | BaCelLo plants   | 408                         |
| MultiLoc2-HighRes Animals | MultiLoc animals | 1097                        |
| MultiLoc2-HighRes Fungi   | MultiLoc fungi   | 1075                        |
| MultiLoc2-HighRes Plants  | MultiLoc plants  | 1155                        |

### MultiLoc2-LowRes architecture

The architecture of the animal version of MultiLoc2-LowRes is shown in Fig. 1. Compared with MultiLoc2-HighRes the SVMSA subpredictor is not used because MultiLoc2-LowRes is specialized on globular proteins.



Figure 1: The architecture of MultiLoc2-LowRes (animal version). A query sequence is processed by a first layer of five subprediction methods (SVMTarget, SVMaac, PhyloLoc, GOLoc and MotifSearch). The individual output of the layer one methods are collected in the PPV which enters a second layer of SVMs producing probability estimates for each localization.

### Independent test without GO terms

The results of the simulation that no GO terms are available for all proteins of the independent data set are presented in this section. Tab. 5 shows the localization-specific performance results using sensitivity and MCC and Tab. 6 summarizes the overall performances using AVG and ACC.

#### MultiLoc2-LowRes

The animal prediction performance of MultiLoc2-LowRes is reduced by only one per cent regarding to AVG and ACC when predicting three classes and by two and four percent when predicting four classes. The reason is that more nuclear proteins are wrongly predicted if we discard the GO terms. The fungal prediction performance is almost unchanged which is mainly caused by the fact that on average only 34% of the fungal proteins are annotated

with GO terms by InterProScan. The plant ACCs are decreased from 83% to 80% and from 76% to 71% for the prediction of three classes and four classes respectively. This is caused by the dropping sensitivity of the nuclear proteins (from 91% to 77%). The AVGs are reduced by nine per cent which seems to be a very significant performance lost at the first view. The reason is that the SP sensitivity is reduced from 83% to 50%. Only two SP proteins are additionally wrong predicted if we neglect the GO annotation. However, these two proteins have a large impact on the AVGs because the SP cluster contains only six proteins overall.

### MultiLoc2-HighRes

Similar to the MultiLoc2-LowRes, the fungal prediction performance of MultiLoc2-HighRes is almost unchanged. This is the same for the plants in case of the prediction of four classes. The performance reduction by three per cent for the prediction of five plant classes is also moderate. However, very different to MultiLoc2-LowRes, the animal ACCs are reduced by nine percent and 11% respectively. We analyzed the additionally wrong predicted proteins and found out that this was caused by a failure in the clustering procedure performed by the curators of the data set [Casadio et al., 2008]. The nuclear data set contains 56 proteins of the protamine-P1 family. Each protein represents one cluster which biases the prediction towards this overrepresented protein class. The reason for the failed clustering could be the relatively short sequences of the proteins between 50 and 60 amino acids. Therefore, we reclustered the nuclear proteins using BLASTClust and 30% sequence identity. Now, the 56 proteins of the protamine-P1 family are clustered and the new number of clusters is 186 for the nuclear proteins and 277 for the nu/cy class. The comparison of the animal results based on the reclustered nuclear proteins delivers only a slightly performance reduction. We also applied BLASTClust on all other localizations and always received either the same number of clusters or a few more which indicates that the described clustering problem did not appear for the remaining classes.

## References

Sun, J., Xu, J., Liu, Z., Liu, Q., Zhao, A., Shi, T., Li, Y. (2005) Refined phylogenetic profiles method for predicting protein-protein interactions., Bioinformatics, 16, 3409-15.

Casadio,R., Martelli,P.,L., Pierleoni,A. (2008) The prediction of protein subcellular localization from sequence: a shortcut to functional genome annotation, *Brief Funct Genomic Proteomic.*, 7(1), 63-73.

Table 5: Comparison of the localization-specific prediction results of the MultiLoc2 predictors using an independent dataset

| Version              | Loc              | Nr  | ML2 | -LowRes | ML2 | -LowRes* | ML2- | HighRes | ML2        | -HighRes* |
|----------------------|------------------|-----|-----|---------|-----|----------|------|---------|------------|-----------|
|                      |                  |     | SE  | MCC     | SE  | MCC      | SE   | MCC     | $_{ m SE}$ | MCC       |
| Animals              | SP               | 75  | 97  | 0.89    | 97  | 0.88     | 87   | 0.79    | 88         | 0.60      |
|                      | mi               | 48  | 89  | 0.81    | 86  | 0.78     | 83   | 0.75    | 83         | 0.74      |
|                      | nu               | 224 | 62  | 0.57    | 56  | 0.52     | 58   | 0.54    | 36         | 0.34      |
|                      | cy               | 85  | 72  | 0.43    | 72  | 0.38     | 71   | 0.39    | 72         | 0.37      |
|                      | nu/cy            | 308 | 93  | 0.87    | 92  | 0.84     | 91   | 0.78    | 77         | 0.63      |
| Animals <sup>+</sup> | $_{\mathrm{SP}}$ | 75  | 97  | 0.89    | 97  | 0.88     | 87   | 0.82    | 88         | 0.80      |
|                      | mi               | 48  | 89  | 0.80    | 86  | 0.78     | 83   | 0.75    | 83         | 0.73      |
|                      | nu               | 186 | 54  | 0.51    | 46  | 0.44     | 52   | 0.50    | 45         | 0.43      |
|                      | cy               | 85  | 72  | 0.41    | 72  | 0.35     | 71   | 0.37    | 72         | 0.35      |
|                      | nu/cy            | 277 | 92  | 0.85    | 91  | 0.83     | 91   | 0.79    | 89         | 0.77      |
| Fungi                | $_{\mathrm{SP}}$ | 9   | 78  | 0.60    | 78  | 0.59     | 78   | 0.63    | 78         | 0.63      |
|                      | mi               | 77  | 68  | 0.62    | 66  | 0.61     | 51   | 0.52    | 54         | 0.553     |
|                      | nu               | 152 | 63  | 0.36    | 63  | 0.36     | 50   | 0.32    | 44         | 0.28      |
|                      | cy               | 180 | 54  | 0.27    | 54  | 0.27     | 56   | 0.22    | 54         | 0.18      |
|                      | nu/cy            | 332 | 92  | 0.63    | 93  | 0.66     | 84   | 0.48    | 83         | 0.47      |
| Plants               | $_{\mathrm{SP}}$ | 6   | 83  | 0.58    | 50  | 0.40     | 83   | 0.50    | 83         | 0.47      |
|                      | mi               | 6   | 67  | 0.51    | 67  | 0.45     | 67   | 0.40    | 67         | 0.42      |
|                      | $^{\mathrm{ch}}$ | 72  | 77  | 0.72    | 78  | 0.70     | 53   | 0.51    | 54         | 0.51      |
|                      | nu               | 36  | 91  | 0.77    | 77  | 0.63     | 86   | 0.74    | 79         | 0.64      |
|                      | cy               | 17  | 41  | 0.38    | 41  | 0.33     | 37   | 0.20    | 29         | 0.12      |
|                      | nu/cy            | 52  | 94  | 0.84    | 88  | 0.76     | 93   | 0.74    | 91         | 0.70      |

The sensitivity (SE) and Matthews correlation coefficient (MCC) of MultiLoc2 (ML2) are listed for each localization (Loc). The number of clusters (Nr) per localization is also shown. The results for MultiLoc2-LowRes\* and MultiLoc2-HighRes\* are obtained by simulating that for all test proteins no GO term is available. The Animals<sup>+</sup> dataset was obtained by reclustering the nuclear proteins from the original animals dataset. Changes in performance are highlighted in italic.

Table 6: Comparison of the overall performance results of the MultiLoc2 predictors using an independent dataset

| predictors using an independent dataset |         |            |             |             |              |  |  |  |
|-----------------------------------------|---------|------------|-------------|-------------|--------------|--|--|--|
| Version                                 | Classes | ML2-LowRes | ML2-LowRes* | ML2-HighRes | ML2-HighRes* |  |  |  |
| Animals                                 | 3       | 93 (93)    | 92 (92)     | 87 (89)     | 83 (80)      |  |  |  |
|                                         | 4       | 80 (73)    | 78 (69)     | 75 (68)     | 70 (57)      |  |  |  |
| Animals <sup>+</sup>                    | 3       | 93 (93)    | 91 (92)     | 87 (89)     | 87 (88)      |  |  |  |
|                                         | 4       | 78 (70)    | 75 (66)     | 73 (67)     | 72 (64)      |  |  |  |
| Fungi                                   | 3       | 79 (87)    | 79 (88)     | 71 (78)     | 72 (77)      |  |  |  |
|                                         | 4       | 66 (60)    | 65 (60)     | 59 (52)     | 58 (51)      |  |  |  |
| Plants                                  | 4       | 80 (83)    | 71 (80)     | 74 (70)     | 74 (70)      |  |  |  |
|                                         | 5       | 72 (76)    | 63 (71)     | 65 (62)     | 62 (59)      |  |  |  |

The average sensitivity and the overall accuracy (in parenthesis) of MultiLoc2 (ML2) for the prediction of three and four classes for animals and fungi and four and five classes for plants are shown. The results for MultiLoc2-LowRes\* and MultiLoc2-HighRes\* are obtained by simulating that for all test proteins no GO term is available. The Animals<sup>+</sup> dataset was obtained by reclustering the nuclear proteins from the original animals dataset. Changes in performance are highlighted in italic.