TernGrad: Ternary Gradients to Reduce Communication in Distributed Deep Learning

Wei Wen¹, Cong Xu², Feng Yan³, Chunpeng Wu¹, Yandan Wang⁴, Yiran Chen¹, Hai (Helen) Li¹

Duke University¹, Hewlett Packard Labs², University of Nevada - Reno³, University of Pittsburgh⁴

Background - Distributed Deep Learning

Synchronized Data Parallelism for Stochastic Gradient Descent (SGD):

- 1. Training data is split to N subsets
- 2. Each worker has a model replica (copy)
- 3. Each replica is trained on a data subset
- 4. Synchronization in parameter server(s)

Scalability:

- 1. Computing time decreases with N
- 2. Communication can be the bottleneck
- 3. This work: quantizing gradient to three (i.e., ternary) levels {-1, 0, 1} (<2bits)

An Alternative Setting

Stochastic Gradients without Bias

Batch Gradient Descent

$$C(\mathbf{w}) \triangleq \frac{1}{n} \sum_{i=1}^{n} Q(\mathbf{z}_i, \mathbf{w})$$

$$\mathbf{w}_{t+1} = \mathbf{w}_t - \frac{\eta_t}{n} \sum_{i=1}^n g_t^{(i)}$$

SGD

$$\mathbf{w}_{t+1} = \mathbf{w}_t - \eta_t \cdot g_t^{(I)}$$

I is randomly drawn from [1,n]

$$\mathrm{E}\left\{g_{t}^{(I)}\right\} = \nabla C(\boldsymbol{w})$$

No bias

TernGrad

$$\begin{aligned} \boldsymbol{w}_{t+1} &= \boldsymbol{w}_t - \boldsymbol{\eta}_t \cdot ternarize\left(\boldsymbol{g}_t^{(I)}\right) \\ & \text{E}\left\{ternarize\left(\boldsymbol{g}_t^{(I)}\right)\right\} = \nabla C(\boldsymbol{w}) \end{aligned} \quad \text{No bias}$$

TernGrad is Simple

$$\tilde{\mathbf{g}}_{t} = ternarize(\mathbf{g}_{t}) = s_{t} \cdot sign(\mathbf{g}_{t}) \circ \mathbf{b}_{t}$$

$$s_{t} \triangleq ||\mathbf{g}_{t}||_{\infty} \triangleq max(abs(\mathbf{g}_{t}))$$

$$\begin{cases} P(b_{tk} = 1 \mid \mathbf{g}_{t}) = |g_{tk}|/s_{t} \\ P(b_{tk} = 0 \mid \mathbf{g}_{t}) = 1 - |g_{tk}|/s_{t} \end{cases}$$

Example:

$$g_t^{(i)}$$
: [0.30, -1.20, ..., 0.9]
 s_t : 1.20
Signs: [1, -1, ..., 1]
 $P(b_{tk} = 1 | g_t)$: $[\frac{0.3}{1.2}, \frac{1.2}{1.2}, ..., \frac{0.9}{1.2}]$
 b_t : [0,1,...,1]
 $g_t^{(i)}$: [0, -1, ..., 1]*1.20

$$\mathbf{E}_{\boldsymbol{z},\boldsymbol{b}} \left\{ \tilde{\boldsymbol{g}}_{t} \right\} = \mathbf{E}_{\boldsymbol{z},\boldsymbol{b}} \left\{ s_{t} \cdot sign\left(\boldsymbol{g}_{t}\right) \circ \boldsymbol{b}_{t} \right\}$$

$$= \mathbf{E}_{\boldsymbol{z}} \left\{ s_{t} \cdot sign\left(\boldsymbol{g}_{t}\right) \circ \mathbf{E}_{\boldsymbol{b}} \left\{ \boldsymbol{b}_{t} | \boldsymbol{z}_{t} \right\} \right\} = \mathbf{E}_{\boldsymbol{z}} \left\{ \boldsymbol{g}_{t} \right\} = \nabla_{\boldsymbol{w}} C(\boldsymbol{w}_{t})$$

No bias

Convergence

Standard SGD almost truly converges under assumptions (Fisk 1965, Metivier 1981&1983, Bottou 1998)

Assumption 1:

$$C(w)$$
 has a single minimum w^* and $\forall \epsilon > 0, \inf_{||\boldsymbol{w} - \boldsymbol{w}^*||^2 > \epsilon} (\boldsymbol{w} - \boldsymbol{w}^*)^T \nabla_{\boldsymbol{w}} C(\boldsymbol{w}) > 0$

Assumption 2:

Learning rate γ_t decreases neither very fast nor very slow $\begin{cases} \sum_{t=0}^{+\infty} \gamma_t^2 < +\infty \\ \sum_{t=0}^{+\infty} \gamma_t = +\infty \end{cases}$

Assumption 3 (gradient bound):

$$\mathbf{E}\{||g||^2\} \le A + B||w - w^*||^2$$

Standard SGD almost-truly converges

Assumption 3 (gradient bound):

$$\mathbf{E}\{||g||_{\infty}\cdot||g||_{1}\} \le A+B||w-w^{*}||^{2}$$

TernGrad almost-truly converges

$$\mathbf{E}\left\{||\boldsymbol{g}||^{2}\right\} \leq \mathbf{E}\left\{||\boldsymbol{g}||_{\infty} \cdot ||\boldsymbol{g}||_{1}\right\} \leq A + B\left||\boldsymbol{w} - \boldsymbol{w}^{*}|\right|^{2}$$

Stronger gradient bound in TernGrad

Closing Bound Gap

Two methods to push the gradient bound of *TernGrad* closer to the bound of standard SGD

Layer-wise ternarizing

Gradient clipping

(More in poster session)

Integration with Manifold Optimizers

(All experiments: All hyper-parameters are tuned for standard SGD and fixed in *TernGrad*)

LeNet (total mini-batch size 64): close accuracy & randomness in TernGrad results in small variance

CIFAR-10, mini-batch size 64 pe	er worker
---------------------------------	-----------

	SGD	base LR	total mini-batch size	iterations	gradients	workers	accuracy
Adam:	Adam	0.0002	128	300K	floating <i>TernGrad</i>	2 2	86.56% 85.64% (-0.92%)
D. P. Kingma, 2014	Adam	0.0002	2048	18.75K	floating <i>TernGrad</i>	16 16	83.19% 82.80% (-0.39%)

Scaling to Large-scale Deep Learning

TernGrad: Randomness & regularization

- (1) decrease randomness in dropout or
- (2) use smaller weight decay

No new hyper-parameters added

base LR	mini-batch size	workers	iterations	gradients	weight decay	DR^\dagger	top-1	top-5
0.01	256	2	370K	floating TernGrad TernGrad-noclip ‡	0.0005 0.0005 0.0005	0.5 0.2 0.2	57.33% 57.61% 54.63%	80.56% 80.47% 78.16%
0.02	512	4	185K	floating <i>TernGrad</i>	0.0005 0.0005	0.5 0.2	57.32% 57.28%	80.73% 80.23%
0.04	1024	8	92.5K	floating <i>TernGrad</i>	0.0005 0.0005	0.5 0.2	56.62% 57.54%	80.28% 80.25%

[†] DR: dropout ratio, the ratio of dropped neurons. [‡] *TernGrad* without gradient clipping.

N. S. Keskar, et al., ICLR 2017

Scaling to Large-scale Deep Learning

base LR	mini-batch size	workers	iterations	gradients	weight decay	DR	top-5
0.04	128	2	600K	floating <i>TernGrad</i>	4e-5 1e-5	0.2 0.08	88.30% 86.77%
0.08	256	4	300K	floating <i>TernGrad</i>	4e-5 1e-5	0.2 0.08	87.82% 85.96%
0.10	512	8	300K	floating TernGrad	4e-5 2e-5	0.2 0.08	89.00% 86.47%

GoogLeNet <2% on avg.

Tune hyper-parameters for *TernGrad* may reduce accuracy gap

Performance Model

TernGrad gives higher speedup when

- 1. using more workers
- using smaller communication bandwidth (Ethernet vs InfiniBand)
- training DNNs with more fullyconnected layers (VggNet vs GoogLeNet)

Conclusion

- Communication reduction by ternary gradients TernGrad
- TernGrad can train from scratch and coverages
 - within the same epochs
 - using the same learning rate policy
- Easy to be implemented
 - https://github.com/wenwei202/terngrad
- Related work @ NIPS 2017
 - Dan Alistarh, et al. (Spotlight)
 - Xiangru Lian, et al. (Oral)

Thanks!

Poster # 127 @ Pacific Ballroom

Wed Dec 6th 06:30 -- 10:30 PM

