917 数据与信息技术

一、考试性质

《数据与信息技术》是 2019 年全国硕士生统一入学考试[互联网+创新设计]方向专业课考试科目之

一。力求科学、公平、准确、规范地测评考生的在数理与信息技术领域的综合能力,选拔具有发展潜力的优秀人才入学。

二、考试要求

测试考生对数理与信息技术领域相关的基本概念、基础理论的掌握和运用能力。

三、考试方式与分值

本科目满分 150 分,其中,填空题(10~30 分),是非判断题、选择题(20~60 分),名词解释(20~40 分),计算及简答题(30-60 分)。

四、参考书目

- 1、软件技术基础黄迪明主编高等教育出版社,第三版(2009年7月)
- 2、信息系统基础杨孔雨主编清华大学出版社,第一版(2010年10月)
- 3、计算机网络基础及应用教程刘垚王行恒等编著清华大学出版社,第一版(2011年8月)
- 4、计算机软件技术基础马世霞主编 清华大学出版社,第一版(2010年7月)
- 5、概率论与数理统计谢安 李冬红主编 清华大学出版社,第一版(2012年7月)

参考书目供学生备考参考使用,考试范围不局限于参考书内容。

五、考试内容

(一)数理基础

1. 概率论

a) 随机事件与概率 常见随机变量及分布 b) 随机变量的数字特征 c) 2. 数理统计基本概念 a) 总体与样本 b) 统计量 (二)计算机硬件基础 1.数值(二进制、八进制、十六进制) 2.数字与字符表示和编码 3.计算机硬件组成 (三)数据结构 1.基本概念 2.线性与非线性结构 3.查找与排序 (四)软件工程方法 1.软件工程相关概念 2.软件需求分析

3.软件设计与编程

5.软件测试与维护

4.面向对象的分析与设计

- (五)数据库技术
- 1.数据库基础
- 2.结构化查询语言
- 3.关系数据库
- (六)网络软硬件技术
- 1.网络基础
- 2.网络协议
- 3.网络组建及应用
- 4.Internet 网

参考书目供学生备考参考使用,考试范围不局限于参考书内容

921 生命科学综合

一、考试性质

《生命科学综合》是 2019 年全国硕士生统一入学考试[BIO3 生命技术]方向专业课考试科目之一。力求科学、公平、准确、规范地测评考生的在生命科学领域的综合能力,选拔具有发展潜力的优秀人才入学。

二、考试要求

测试考生对生命科学领域相关的基本概念、基础理论的掌握和运用能力。

三、考试方式与分值

本科目满分 150 分,其中,填空题(10~30 分),是非判断题、选择题(20~60 分),名词解释(20~40分),论述题(30~60 分)。

四、参考书目:

- 1)吴相钰. 陈阅增《普通生物学》. 北京:高等教育出版社,第4版(2014年7月);
- 2)朱明德 《临床医学概论》 北京:人民卫生出版社,第1版 (2009年1月);

参考书目供学生备考参考使用,考试范围不局限于参考书内容。

五、考试内容

- (一) 细胞
- 1、细胞
- 2、生命的化学基础
- 3、细胞的结构和细胞的通讯
- 4、细胞代谢
- 5、细胞分裂、细胞周期与细胞分化
- (二)动物的形态、功能与疾病
- 1、脊椎动物的结构与功能

动物的动物体四类基本组织,上皮组织、结缔组织、肌肉组织和神经组织的主要特征及其主要功能;

- 2、营养与消化
- 1)营养
- 2)人的消化系统及其功能;
- 3)糖类、蛋白质、脂类在人体内的消化、吸收过程;
- 4) 营养障碍性疾病:维生素D缺乏佝偻病、蛋白-能量营养不良、小儿贫血
- 3、血液与循环

- 1)血液的构成与功能;
- 2)人体循环系统的组成与血液循环的路径,能绘出示意图
- 3)心脏的博动
- 4)血管的结构、功能与血压
- 5)循环的常见疾病:心力衰竭、动脉粥样硬化与冠心病、高血压
- 4、气体交换与呼吸
- 1)人的呼吸系统的组成,结构与功能
- 2) O2、CO2的运输交换的机理
- 3) 危害健康的呼吸系统疾病:慢性阻塞性肺病、肺炎、肺结核
- 5、内环境的控制
- 1)体温调节
- 2)渗透调节与排泄;
- 3)泌尿系统疾病:肾小球肾炎、肾病综合征
- 6、免疫系统与免疫功能
- 1)人体对感染的非特异性防卫;
- 2)淋巴系统的组成与功能;
- 3)特异性的免疫应答;
- 4) 免疫系统的功能异常;
- 7、 内分泌系统与体液调节
- 1)激素的分类、基本特征、作用、作用机制和调节机制

- 2) 人体主要的内分泌腺, 所分泌的激素及其生理作用
- 3)高等动物的激素调节与神经调节的异同点及联系;
- 4)内分泌与代谢病:糖尿病、甲状腺疾病、肥胖症
- 8、神经系统与神经调节
- 1)神经元的结构与功能
- 2)神经系统的结构与功能
- 3)人脑的结构与功能
- 9、感觉器官与感觉
- 1)感觉的一般特性;
- 2)视觉、听觉与平衡感觉、味觉与嗅觉;
- 3)皮肤感觉
- 10、动物如何运动
- 1)动物的骨骼
- 2)人体骨骼
- 11、生殖与胚胎发育
- 1)有性生殖的定义
- 2)人类男女生殖系统的组成
- 3)精子和卵子的发生
- 4) 卵巢与子宫的周期变化
- (三) 遗传与变异

- 1.遗传的基本定律, 人类的性连锁遗传, 血友病
- 2.基因的分子生物学
- 3.基因表达的调控
- 4.重组DNA技术简介
- 5.人类基因组
- (四) 生物进化
- 1.达尔文学说与微进化
- 2.宏进化与系统发生
- 3.物种形成
- (五) 生物多样性的进化
- 1.生命的起源
- 2.原核和原生生物多样性的进化
- 3人类的进化

922 微纳米科学与工程

一、考试性质

《微纳米科学与工程》是 2019 年全国硕士生统一入学考试[BIO3 生命技术]方向专业课考试科目之一。 科目力求科学、公平、准确、规范地测评考生的在微纳米科学与技术领域的知识、技能、思维与综合运用能力,选拔具有宽厚知识基础、具备出色发展潜力的优秀人才进入本硕士培养项目。

二、考试要求

测试考生对微纳米科学与技术领域相关的基本概念、基础理论、基本技术的掌握和综合运用能力。

三、考试方式与分值

本科目满分 150 分,其中,是非判断题、选择题(40分),名词解释(50分),论述题(60分)。

四、参考书目:

- 1) 纳米科学与纳米技术(B. S. Murty 等著, 谢娟等译), 科学出版社, 2014年11月;
- 2)微纳加工技术及其应用(崔铮著)高等教育出版社,第3版,2013年4月;
- 3)纳米结构和纳米材料:合成、性能及应用(曹国忠等著,董星龙译),高等教育出版社,2012年1月;
- 4) 纳米生物技术(C.M.Niemeyer等著,马光辉等译),化学工业出版社,2008年1月;
- 5)微纳流控芯片实验室(林炳承著),科学出版社,2013年9月。

参考书目供学生备考参考使用,考试范围不局限于参考书内容。

五、考试内容

- (一)纳米材料尺度、结构与特性
- 1、表面物理化学基础:表面能、化学势、表面曲率、界面力、表面电荷分布;
- 2、纳米尺度效应:纳米尺度下力学与机械性能、热学性能、电磁性能、光学性能等;
- 3、纳米结构与材料特性:纳米晶体结构及缺陷
- 4、零维纳米材料结构与特性:纳米颗粒、量子点
- 5、一维纳米材料结构与特性:纳米线、碳纳米管
- 6、二维纳米材料结构与特性:纳米薄膜、石墨烯
- (二)微尺度流体特性
- 1、连续介质流体与微尺度流体特性

2、微尺度流体传质规律 3、微尺度流体中粒子受力、运动与操控 4、微流体驱动、控制、微混合与微反应技术 (三)微纳尺度加工工艺与材料制备 1、自上而下方法 a) 光学曝光 b) 电子束曝光 c) 刻蚀技术 纳米压印 d) e) 聚焦离子束 2、自下而上方法: a) 物理气相沉积 b) 化学气相沉积 c) 化学合成法 d) 分子自组装等 3、集成微纳米加工工艺的原理与实现 a) MEMS与NEMS工艺; 微流控芯片设计、加工与封装; b) (四)微纳结构与材料表征 1、扫描电子显微镜(SEM):电子与物质的相互作用、SEM成像机理、环境扫描电子显微镜

- 2、透射电子显微镜(TEM):TEM样品制备、TEM特性与功能、基于TEM的定量分析
- 3、扫描隧道显微镜(STM):STM成像原理、STM设备构造、STM操作模式
- 4、原子力显微镜:AFM成像原理、AFM常见模式、AFM特色
- 5、小角X射线散射技术原理与应用
- (五)微纳米材料与器件应用
- 1、微纳米化学传感器、光学传感器、荧光探针、力学传感器;
- 2、基于微纳米材料与集成器件的分析系统;
- 3、微纳米材料与器件在能源与环境领域的应用;
- 4、微纳米材料与器件在生命科学与医学研究中的应用
- a) 分子传感与分析(单分子分析、基因测序、特定生物大分子标记与检测)
- b) 细胞分析(单细胞分析与实时探测);
- c) 重大疾病检测、诊断与治疗;