#### **CDF**

**Remark 1:** Note that  $Y = F_X(X) \sim \mathsf{Unif}(0,1)$  regardless of the distribution of X as long as  $F_X$  is invertible. In the case when  $F_X$  is not invertible, modifications can be made to obtain similar result.

Remark 2: Inverting the result gives  $X \sim F_X^{-1}$  (Y) where  $Y \sim \mathsf{Unif}(0,1)$ . This is useful for simulating data from a given distribution with cdf  $F_X$ . Start by sampling from  $\mathsf{Unif}(0,1)$ , and apply  $F_X^{-1}$  to the sample. The resulting sample will be from a distribution with cdf  $F_X$ .

#### **Distributions**

#### Bernoulli - Discrete

#### Likelihood:

Note that this form of the Bernoulli distribution pmf makes it especially easy to multiply; indeed, we could write

$$L_n(X_1, ..., X_n | \lambda) = L(X_1 | \lambda) ... L(X_n | \lambda)$$

$$\propto (\lambda^{X_1} (1 - \lambda)^{1 - X_1}) ... \lambda^{X_n} (1 - \lambda)^{1 - X_n}$$

$$\propto (\lambda^{X_1} ... \lambda^{X_n}) ((1 - \lambda)^{1 - X_1} ... (1 - \lambda)^{1 - X_n})$$

$$\propto \lambda^{\sum X_i} (1 - \lambda)^{n - \sum X_i}.$$

$$L_{1}\left( X_{1},p
ight) =p^{X_{1}}\left( 1-p
ight) ^{1-X_{1}}.$$

# Bernoulli

| Bornoulli          |                                                                                                                        |  |  |  |
|--------------------|------------------------------------------------------------------------------------------------------------------------|--|--|--|
| Parameters         | $0 \le p \le 1$ $q = 1 - p$                                                                                            |  |  |  |
| Support            | $k \in \{0,1\}$                                                                                                        |  |  |  |
| pmf                | $\left\{egin{array}{ll} q=1-p & 	ext{if } k=0 \ p & 	ext{if } k=1 \end{array} ight.$                                   |  |  |  |
| CDF                | $\left\{egin{array}{ll} 0 & 	ext{if } k < 0 \ 1-p & 	ext{if } 0 \leq k < 1 \ 1 & 	ext{if } k \geq 1 \end{array} ight.$ |  |  |  |
| Mean               | p                                                                                                                      |  |  |  |
| Median             | $\left\{egin{array}{ll} 0 & 	ext{if } p < 1/2 \ [0,1] & 	ext{if } p = 1/2 \ 1 & 	ext{if } p > 1/2 \end{array} ight.$   |  |  |  |
| Mode               | $\begin{cases} 0 & \text{if } p < 1/2 \\ 0, 1 & \text{if } p = 1/2 \\ 1 & \text{if } p > 1/2 \end{cases}$              |  |  |  |
| Variance           | p(1-p)=pq                                                                                                              |  |  |  |
| Skewness           | $\frac{1-2p}{\sqrt{pq}}$                                                                                               |  |  |  |
| Ex. kurtosis       | $\frac{1-6pq}{pq}$                                                                                                     |  |  |  |
| Entropy            | $-q \ln q - p \ln p$                                                                                                   |  |  |  |
| MGF                | $q+pe^t$                                                                                                               |  |  |  |
| CF                 | $q+pe^{it}$                                                                                                            |  |  |  |
| PGF                | q + pz                                                                                                                 |  |  |  |
| Fisher information | $\frac{1}{pq}$                                                                                                         |  |  |  |

#### **Poisson distribution**

- Discrete
- Counts nb of events with a fixed arrival rate lamda in a fixed time/ space
- Fisher 1/lambda

### **Poisson**



The horizontal axis is the index k, the number of occurrences.  $\lambda$  is the expected number of occurrences, which need not be an integer. The vertical axis is the probability of k occurrences given  $\lambda$ . The function is defined only at integer values of k. The connecting lines are only guides for the eye.

\_



The horizontal axis is the index *k*, the number of occurrences. The CDF is discontinuous at the integers of *k* and flat everywhere else because a variable that is Poisson distributed takes on only integer values.

| Parameters | λ > 0 (real) — rate                                                                                                                                                                                                                                                                                                                                                                                              |  |
|------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Support    | $k\in\mathbb{N}\cup\{0\}$                                                                                                                                                                                                                                                                                                                                                                                        |  |
| pmf        | $\frac{\lambda^k e^{-\lambda}}{k!}$                                                                                                                                                                                                                                                                                                                                                                              |  |
| CDF        | $\frac{\Gamma(\lfloor k+1\rfloor,\lambda)}{\lfloor k\rfloor!}, \text{ or } e^{-\lambda} \sum_{i=0}^{\lfloor k\rfloor} \frac{\lambda^i}{i!} \text{ , or } \\ Q(\lfloor k+1\rfloor,\lambda) \text{ (for } k \geq 0, \text{ where } \\ \Gamma(x,y) \text{ is the upper incomplete gamma } \\ \text{function, } \lfloor k\rfloor \text{ is the floor function, and Q is } \\ \text{the regularized gamma function)}$ |  |
| Mean       | λ                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| Median     | $pprox \lfloor \lambda + 1/3 - 0.02/\lambda  floor$                                                                                                                                                                                                                                                                                                                                                              |  |
| Mode       | $\lceil \lambda  ceil - 1, \lfloor \lambda  floor$                                                                                                                                                                                                                                                                                                                                                               |  |
| Variance   | λ                                                                                                                                                                                                                                                                                                                                                                                                                |  |

# Uniform

- Bounded support
- Between mix Xi and max Xi
- No Fisher information





# Cumulative distribution function



| Notation   | $\mathcal{U}(a,b)$ or $\mathrm{unif}(a,b)$                                                                                          |  |
|------------|-------------------------------------------------------------------------------------------------------------------------------------|--|
| Parameters | $-\infty < a < b < \infty$                                                                                                          |  |
| Support    | $x \in [a,b]$                                                                                                                       |  |
| PDF        | $\left\{egin{array}{ll} rac{1}{b-a} & 	ext{for } x \in [a,b] \ 0 & 	ext{otherwise} \end{array} ight.$                              |  |
| CDF        | $\left\{egin{array}{ll} 0 & 	ext{for } x < a \ rac{x-a}{b-a} & 	ext{for } x \in [a,b) \ 1 & 	ext{for } x \geq b \end{array} ight.$ |  |
| Mean       | $\frac{1}{2}(a+b)$                                                                                                                  |  |
| Median     | $\frac{1}{2}(a+b)$                                                                                                                  |  |
| Mode       | any value in $(a,b)$                                                                                                                |  |
| Variance   | $\frac{1}{12}(b-a)^2$                                                                                                               |  |

# **Exponential distribution**

- Continuous
- Memoryless
- Fisher = lambda^(-2)



Cumulative distribution function



| Parameters | λ > 0 rate, or inverse scale |
|------------|------------------------------|
| Support    | <i>x</i> ∈ [0, ∞)            |
| PDF        | $\lambda e^{-\lambda x}$     |
| CDF        | $1 - e^{-\lambda x}$         |
| Quantile   | -ln(1 - F) / λ               |
| Mean       | $\lambda^{-1} (= \beta)$     |
| Median     | λ <sup>-1</sup> ln(2)        |
| Mode       | 0                            |
| Variance   | $\lambda^{-2} (= \beta^2)$   |



#### Gaussian

# Gaussian density (pdf)



Figure 1: Two pdfs:  $\mathcal{N}(0,1)$  and  $\mathcal{N}(10,4)$ 

- ► Tails decay very fast (like  $e^{-\frac{x^2}{2\sigma^2}}$ ): almost in finite interval.
- ► There is no closed form for their cumulative distribution function (CDF). We use tables (or computers):

$$\mathbb{P}(\mathbf{X} \leq \mathbf{x}) = F_{\mu,\sigma^2}(x) = \frac{1}{\sigma\sqrt{2\pi}} \int_{-\infty}^{\infty} \exp\left(-\frac{(t-\mu)^2}{2\sigma^2}\right) dt$$

04/97

### Quantiles

### Definition

Let  $\alpha$  in (0,1). The quantile of order  $1-\alpha$  of a random variable X is the number  $q_\alpha$  such that

$$\mathbb{P}(X \le q_{\alpha}) = 1 - \alpha$$

K= 1 = b 9 is the 90th percentile

Let F denote the CDF of X:

- $F(q_{\alpha}) =$
- If F is invertible, then  $q_{\alpha} = F$  (  $I \sim X$ )
- $ightharpoonup \mathbb{P}(X > \P_{\bullet}) = \alpha$
- If  $X = Z \sim \mathcal{N}(0,1)$ :  $\mathbb{P}(|X| > \mathbb{Q}_2) = \alpha$

Some important quantiles of the  $Z \sim \mathcal{N}(0,1)$  are:

We get that  $\mathbb{P}(|Z| > 1) = 5\%$ 

### Distribution of Sample Variance of Gaussian: The Chi-Squared Distribution

It is also the length of vector, distance from the center (norm of a vector)

The  $\chi^2$  distribution with d degrees of freedom is by definition the distribution of

$$Z_{1}^{2}+Z_{2}^{2}\ldots+Z_{d}^{2}\qquad ext{where }Z_{i}\overset{iid}{\sim}\mathcal{N}\left(0,1
ight)$$

or equivalently the distribution of

$$\left\| \mathbf{Z} 
ight\|^2 \qquad ext{where } \mathbf{Z} \sim \mathcal{N}_d \left( \mathbf{0}, \mathbf{1} 
ight),$$

whose components are independent because the off-diagonal elements of the covariance matrix  ${\bf 1}$  are all  ${\bf 0}$ .

#### Compute quantiles in R

q <- qchisq(alpha, degreeoffreedom, lower.tail = FALSE)

#### Student's t-distribution:

The t-test is to test the mean of a Gaussian when variance is unknown.

Works when sample size n is small

T statistic = (beta\_hat - true\_beta)/ std dev of beta\_hat

```
In R
dt()
pt (q,df=degrees of freedom, lower.tail=FALSE)
qt (mass, df=degrees of freedom, lower.tail=FALSE)
rt()
```

**F-distribution**, Fisher—Snedecor distribution, is a continuous probability distribution that arises frequently as the null distribution of a test statistic, most notably in the analysis of variance (ANOVA), e.g., F-test.

#### **Beta distribution**

- Defined on the interval [0, 1]
- Parametrized by two positive shape parameters, denoted by  $\alpha$  and  $\beta$ , that appear as exponents of the random variable and control the shape of the distribution.
- Special case of the Dirichlet distribution.

Beta



| Mean     | $egin{aligned} \mathrm{E}[X] &= rac{lpha}{lpha + eta} \ \mathrm{E}[\ln X] &= \psi(lpha) - \psi(lpha + eta) \end{aligned}$ |  |
|----------|----------------------------------------------------------------------------------------------------------------------------|--|
|          | $\mathrm{E}[X\ln X] = rac{lpha}{lpha + eta}\left[\psi(lpha + 1) - \psi(lpha + eta + 1) ight]$                             |  |
|          | (see digamma function and see section: Geometric mean)                                                                     |  |
| Median   | $I_{rac{1}{2}}^{[-1]}(lpha,eta) 	ext{ (in general)}$                                                                      |  |
|          | $pprox rac{lpha - rac{1}{3}}{lpha + eta - rac{2}{3}} 	ext{ for } lpha, eta > 1$                                         |  |
| Mode     | $\frac{\alpha-1}{\alpha+\beta-2}$ for $\alpha, \beta > 1$                                                                  |  |
|          | any value in $(0,1)$ for $\alpha$ , $\beta$ = 1                                                                            |  |
|          | $\{0, 1\}$ (bimodal) for $\alpha, \beta \le 1$                                                                             |  |
|          | 0 for $\alpha \le 1$ , $\beta > 1$                                                                                         |  |
|          | 1 for $\alpha > 1$ , $\beta \le 1$                                                                                         |  |
| Variance | $\mathrm{var}[X] = rac{lphaeta}{(lpha+eta)^2(lpha+eta+1)}$                                                                |  |
|          | $	ext{var}[\ln X] = \psi_1(lpha) - \psi_1(lpha + eta)$                                                                     |  |
|          | (see trigamma function and see section: Geometric variance)                                                                |  |

| Skewness    | $\frac{2(\beta-\alpha)\sqrt{\alpha+\beta+1}}{2}$                                                                               |  |
|-------------|--------------------------------------------------------------------------------------------------------------------------------|--|
|             | $(lpha+eta+2)\sqrt{lphaeta}$                                                                                                   |  |
| Ex.         | $6[(\alpha-\beta)^2(\alpha+\beta+1)-\alpha\beta(\alpha+\beta+2)]$                                                              |  |
| kurtosis    | $\alpha\beta(\alpha+\beta+2)(\alpha+\beta+3)$                                                                                  |  |
| Entropy     | $\ln \mathrm{B}(lpha,eta) - (lpha-1)\psi(lpha) - (eta-1)\psi(eta)$                                                             |  |
|             | $+(\alpha+\beta-2)\psi(\alpha+\beta)$                                                                                          |  |
| MGF         | $1+\sum_{k=1}^{\infty}\left(\prod_{r=0}^{k-1}rac{lpha+r}{lpha+eta+r} ight)rac{t^k}{k!}$                                      |  |
| CF          | $_1F_1(lpha;lpha+eta;it)$ (see Confluent hypergeometric                                                                        |  |
|             | function)                                                                                                                      |  |
| Fisher      | $\lceil \operatorname{var}[\ln X] \operatorname{cov}[\ln X, \ln(1-X)] \rceil$                                                  |  |
| information | $egin{bmatrix} 	ext{var}[\ln X] & 	ext{cov}[\ln X, \ln(1-X)] \ 	ext{cov}[\ln X, \ln(1-X)] & 	ext{var}[\ln(1-X)] \end{bmatrix}$ |  |
|             | see section: Fisher information matrix                                                                                         |  |

#### **Gamma distribution**

Continuous probability distribution

Exponential distribution, Erlang distribution, Chi-squared are special cases of gamma.

Parametrization in common use:

- a shape parameter  $\alpha = k > 0$
- an inverse scale parameter  $\beta = 1/\theta$ , called a rate parameter, > 0.

No Fisher information?

### Gamma



| Mean               | $\mathrm{E}[X]=k	heta$                   | $\mathrm{E}[X] = rac{lpha}{eta}$                                                       |
|--------------------|------------------------------------------|-----------------------------------------------------------------------------------------|
| Median             | No simple closed form                    | No simple closed form                                                                   |
| Mode               | $(k-1)	heta$ for $k\geq 1$               | $rac{lpha-1}{eta} 	ext{ for } lpha \geq 1$                                             |
| Variance           | $\mathrm{Var}(X) = k 	heta^2$            | $\mathrm{Var}(X) = rac{lpha}{eta^2}$                                                   |
| Skewness           | $\frac{2}{\sqrt{k}}$                     | $\frac{2}{\sqrt{lpha}}$                                                                 |
| Excess<br>kurtosis | $\frac{6}{k}$                            | $\frac{6}{\alpha}$                                                                      |
| Entropy            | $k+\ln	heta+\ln\Gamma(k)\ +(1-k)\psi(k)$ | $egin{aligned} lpha - \ln eta + \ln \Gamma(lpha) \ + (1-lpha) \psi(lpha) \end{aligned}$ |