Menger's Theorem for Infinite Graphs

Dominic Walsh Prize Essay Stephen Thatcher Merton College

Submitted: Michaelmas 2015

Abstract

In the Part B graph theory course we proved a formulation of Menger's theorem with a slick application of the max-flow-min-cut theorem. In this essay, we present a constructive proof of a slight generalisation of that theorem and then move to present the relevant definitions required for a rough introduction to infinite graph theory and a discussion of Aharoni and Berger's proof of a version of Menger's theorem for infinite graphs.

Acknowledgments

This essay inevitably draws greatly from the work of Aharoni and Berger found at arXiv $\,$

This essay was written in $X_{\overline{1}}E_$

Contents

1 Introduction	
Bibliography	:

Introduction

1

We begin by recounting Theorem 7.5 from [1]: Menger

Bibliography

[1] Oliver Riordan. Lecture notes for b8.5 graph theory, 2015.