Shor's algorithm A very short introduction

Jinghong Yang

June 2, 2021

Problem to Solve

N = pq, where p, q are prime.

- ► You know N
- ▶ Want to find *p* and *q*.

Preliminary

Quantum Fourier Transform

Preliminary

Quantum Fourier Transform

How to factor N

Suppose we somehow find a number M such that

$$gcd(M, N) \neq 1$$

 $gcd(M, N) \neq N$

Then gcd(M, N) is just a non-trivial factor of N. We can find gcd(M, N) using Euclid's algorithm.

Review: Congruence

$$a \equiv b \mod N$$

Basic properties:

If $a \equiv b \mod N$ and $c \equiv d \mod N$, then

- $ightharpoonup a \pm c \equiv b \pm d \mod N$
- ightharpoonup $ac \equiv bd \mod N$

A bit of number theory

Find order r given a, N:

$$a^r \equiv 1 \mod N$$

Define function $f_{a,N}$:

$$f_{a,N}(j) := a^j \mod N$$

Clearly, we have

$$f_{a,N}(j+r) = a^{j+r} \mod N$$

$$= (a^{j} \mod N) * (a^{r} \mod N)$$

$$= (a^{j} \mod N) * 1$$

$$= f_{a,N}(j)$$

$$(1)$$

A bit of number theory

$$a^r \equiv 1 \mod N$$
 $a^r - 1 \equiv 0 \mod N$
 $\left(a^{r/2} - 1\right) \left(a^{r/2} + 1\right) \equiv 0 \mod N$

$$(2)$$

Unless $a^{r/2} \equiv -1 \mod N$, we have

$$\gcd(a^{r/2}-1,N)=p, \quad \gcd(a^{r/2}+1,N)=q$$
 (3)

Preliminary

Quantum Fourier Transform

Quantum Fourier Transform

n: the number of qubits. Definition:

$$U_{FT}|x\rangle = \sum_{\nu} \frac{1}{2^{n/2}} e^{2i\pi xy/2^n} |y\rangle \tag{4}$$

Figure 5.9 (a) The box $U_{\rm FT}$. (b) A circuit constructing $U_{\rm FT}$ in the case n=3.

Figure: Quantum Fourier Transform illustration from Bellac (2006).

$$H = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}, \quad R_d = \begin{pmatrix} 1 & 0 \\ 0 & e^{i\pi/2^d} \end{pmatrix}$$
 (5)

Preliminary

Quantum Fourier Transform

Suppose we get a quantum computer, with n+m qubits. Want to factor N ($2^n > N^2$). Given random number a. Initial state:

$$|\Phi\rangle = \frac{1}{2^{n/2}} \left(\sum_{x=0}^{2^n-1} |x\rangle_n \right) \otimes |0\cdots 0\rangle_m$$
 (6)

This step is easy; for the first n qubits, cast them in $\frac{1}{\sqrt{2}}(|0\rangle + |1\rangle)$. Next, we transform the state into

$$|\psi\rangle = \frac{1}{2^{n/2}} \left(\sum_{x=0}^{2^n-1} |x\rangle_n \right) \otimes |a^x \pmod{N}\rangle_m$$
 (7)

Then, measure the output register (last m qubits). Suppose the result is f_0 . The solution to $f_0 = f_{aN}(x) = a^x \mod N$ will have the form $x = x_0 + kr$.

Thus, after the measurement, the first n qubits are:

$$|\psi_0\rangle = \frac{1}{\sqrt{K}} \sum_{k=0}^{K-1} |x_0 + kr\rangle_n \tag{8}$$

where $K \approx 2^n/r$.

Now, do a Quantum Fourier Transform U_{FT} on $|\psi_0\rangle$.

$$\langle y|U_{FT}|\psi_0\rangle = \frac{1}{2^{n/2}} \frac{1}{\sqrt{K}} \sum_{k=0}^{K-1} e^{2i\pi y(x_0 + kr)/2^n}$$
 (9)

After the Quantum Fourier Transform, suppose you do a measurement, and you get *y*.

We will show later that if there's an integer j such that y is close to $\frac{j2^n}{r}$, you can obtain r.

For now, let's look at the probability of getting each y.

$$p(y) = \frac{1}{2^{n}K} \left| \sum_{k=0}^{K-1} e^{2i\pi y(x_0 + kr)/2^n} \right|^2$$

$$= \frac{1}{2^{n}K} \left| \sum_{k=0}^{K-1} e^{2i\pi kry/2^n} \right|^2$$
(10)

$$\sum_{k=0}^{K-1} e^{2i\pi kry/2^n} = \frac{1 - e^{2i\pi Kry/2^n}}{1 - e^{2i\pi ry/2^n}} = e^{\frac{i\pi r(K-1)}{2^n}} \frac{\sin(\pi y Kr/2^n)}{\sin(\pi y r/2^n)}$$
(11)

Thus,

$$p(y) = \frac{1}{2^n K} \frac{\sin^2(\pi y K r / 2^n)}{\sin^2(\pi y r / 2^n)}$$
(12)

Suppose $\frac{2^n}{r}$ happens to be an integer, which means it is exactly equal to K. Then

$$p(y) = \frac{1}{2^n K} \frac{\sin^2(\pi y)}{\sin^2(\pi y/K)} = \begin{cases} \frac{1}{r} & \text{if } y = jK \\ 0 & \text{otherwise} \end{cases}$$
 (13)

This means $y/j = K = 2^n/r$, which means

$$\frac{j}{r} = \frac{y}{2^n} \tag{14}$$

Otherwise, we write

$$y = j\frac{2^n}{r} + \delta_y$$

$$P(y) = \frac{1}{2^{n}K} \frac{\sin^{2}\left(\pi\left(j\frac{2^{n}}{r} + \delta_{y}\right)Kr/2^{n}\right)}{\sin^{2}\left(\pi\left(j\frac{2^{n}}{r} + \delta_{y}\right)r/2^{n}\right)}$$

$$= \frac{1}{2^{n}K} \frac{\sin^{2}\left(\pi\delta_{y}Kr/2^{n}\right)}{\sin^{2}\left(\pi\delta_{y}r/2^{n}\right)}$$
(15)

We know $\frac{2}{\pi}x \le \sin x \le x$ if $0 \le x \le \frac{\pi}{2}$. Thus, when we have $|\delta_y| \le \frac{1}{2}$, we will get $\frac{1}{2}$

$$p(y) \ge \frac{4}{\pi^2} \frac{K}{2^n} \approx \frac{4}{\pi^2} \frac{1}{r} \approx 0.405 \frac{1}{r}$$
 (16)

This means we have roughly 40% chance of having y close to $j2^n/r$.

¹Recall $K \approx \frac{2^n}{n}$

Now, we have $|y - j\frac{2^n}{r}| \le \frac{1}{2}$. Thus,

$$\left|\frac{y}{2^n} - \frac{j}{r}\right| \le \frac{1}{2 * 2^n} \tag{17}$$

So j/r must lie in a region of size $1/2^n$ around $\frac{y}{2^n}$. Obviously, for fractions, unless $\frac{a}{b} = \frac{c}{d}$, we always have $\left|\frac{a}{b} - \frac{c}{d}\right| \geq \frac{1}{bd}$.

Suppose fractions $\frac{j_1}{r_1}$ and $\frac{j_2}{r_2}$ both lie in this region, and they are not equal, then ²

$$\left|\frac{\dot{j_1}}{r_1} - \frac{\dot{j_2}}{r_2}\right| \ge \frac{1}{r_1 r_2} \ge \frac{1}{N^2} \ge \frac{1}{2^n} \tag{18}$$

Thus, the value $\frac{j}{r}$ is unique.

²Recall that $2^n > N^2$; also, by number theory, we have $r \leq N$, $r \geq 1$ $r \leq N$

- M. L. Bellac. A short introduction to quantum information and quantum computation. Cambridge University Press, 1 edition, 2006. ISBN 0-521-86056-3,978-0-521-86056-7,978-0-511-22009-8,0-511-22009-X.
- P. W. Shor. Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer. *SIAM Journal on Computing*, 26(5): 1484–1509, Oct 1997. ISSN 1095-7111. doi: 10.1137/s0097539795293172. URL http://dx.doi.org/10.1137/s0097539795293172.

Questions