ПАРАЛЛЕЛЬНЫЕ АЛГОРИТМЫ ПОИСКА КРАТЧАЙШИХ ПУТЕЙ НА ГРАФАХ

Выполнил: Ткаченко Г.С.

Руководитель: Корнеев Г.А.

12 мая 2015 г.

Университет ИТМО

ПРОБЛЕМА И ЗАДАЧА

РЕШАЕМАЯ ПРОБЛЕМА

- · Низкая производительность отдельных алгоритмов на специфичных графах
- · Недостаточное разнообразие параллельных алгоритмов для поиска кратчайших путей

ПОСТАНОВКА ЗАДАЧИ

- · Эффективное применение алгоритмов поиска кратчайшего пути на **многопроцессорных** архитектурах
- · Разработка алгоритмов для поиска пути от одной вершины до всех (one-to-many)
- Разработка алгоритмов для поиска пути кратчайшего расстояния между каждой парой вершин (many-to-many)

3

ЗАДАЧА ONE-TO-MANY

ОБЗОР РЕШЕНИЙ

- Алгоритм Дейкстры
- Алгоритм Беллмана-Форда
- Алгоритм Джонсона (Дейкстра с потенциалами)
- Алгоритмы А* и D*

КЛАССИЧЕСКИЙ БЕЛЛМАН-ФОРД

```
1: procedure CLASSICBELLMANFORD(G, start)
2: dist \leftarrow \{\infty...\infty\}
3: dist[start] \leftarrow 0
4: for i = 0 to |G.vertices| - 1 do
5: for e \in G.edges do
6: dist[e.to] \leftarrow min(dist[e.to], dist[e.from] + e.w)
7: return dist
```

BFS БЕЛЛМАН-ФОРД

```
1: procedure BFSBELLMANFORD(G, start)
        dist \leftarrow \{\infty...\infty\}
 2:
        dist[start] \leftarrow 0
        CurrentVertexSet \leftarrow {start}
 4.
       NextVertexSet \leftarrow \emptyset
 5:
       while CurrentVertexSet.empty() do
 6:
            NextVertexSet.clear()
 7.
           for v ∈ CurrentVertexSet do
 8:
                for e ∈ G.edgesFrom[v] do
 9.
                    if dist[e.to] > dist[e.from] + e.w then
10.
                        dist[e.to] \leftarrow dist[e.from] + e.w
11:
                        NextVertexSet.insert(e.to)
12.
            CurrentVertexSet ← NextVertexSet
13:
        return dist
14.
```

ПАРАЛЛЕЛЬНЫЙ БЕЛЛМАН-ФОРД

Три подхода

- · Параллелизация по ребрам вершины
- Параллелизация по всем ребрам
- Использование параллельного обхода в ширину

ПАРАЛЛЕЛИЗАЦИЯ ПО РЕБРАМ ВЕРШИНЫ

ПАРАЛЛЕЛИЗАЦИЯ ПО ВСЕМ РЕБРАМ

ПАРАЛЛЕЛИЗАЦИЯ ПО ВСЕМ РЕБРАМ

ИСПОЛЬЗОВАНИЕ ПАРАЛЛЕЛЬНОГО ОБХОДА В ШИРИНУ

ЗАДАЧА МАПУ-ТО-МАПУ

АЛГОРИТМ ФЛОЙДА

- · В некоторых случаях классический алгоритм оказывается медленнее наивных алгоритмов
- · Для каждой вершины можно использовать любой алгоритм поиска кратчайшего пути

НАИВНАЯ ПАРАЛЛЕЛЬНАЯ ВЕРСИЯ

```
1: procedure ALLPAIRSPAR1(G)
       return HANDLEVERTICES(G, 0, |G.vertices|)
2.
3.
   procedure HandleVertices(G, startVertex, endVertex)
       if endVertex — startVertex < threshold then
5:
          distances \leftarrow run Bellman-Ford for [startVertex, endVertex)
6.
          return distances
7.
       else
8:
9.
          midV \leftarrow (startVertex + endVertex)/2
          fork2(
10.
              HANDLEVERTICES(G, startV, midV),
              HANDLEVERTICES(G, midV, endV));
```

АЛГОРИТМ ДЛЯ ОБЪЕДИНЕННОГО ГРАФА

АЛГОРИТМ ДЛЯ СОЦИАЛЬНЫХ ГРАФОВ

- · Основан на теории "Шести рукопожатий"
- · Работает не неориентированных невзвешенных социальных графах
- · Использует идею динамического программирования

динамика для большего множества

- Посчитаем расстояние от базовой вершины до всех других
- Каждая из вершин и может находится только в [dist[base][u] — K, dist[base][u] + K] слоях
- Будем поддерживать две динамики mask и calc. Причем mask[u][i] - сабсет вершин, расстояние от которых до и равно i. В свою очередь calc[u][i] - не более i

ПЕРЕСЧЕТ ЗНАЧЕНИИ ДИНАМИКИ

$$\mathsf{mask}[v][i] = \neg \mathsf{calc}[v][i-1] \land \bigvee_{\exists (u,v) \in E} \mathsf{mask}[u][i-1] \tag{1}$$

$$calc[v][i] = calc[v][i-1] \lor mask[v][i]$$
 (2)

ПРЕИМУЩЕСТВА ПОДХОДА

- Пересчет расстояний для группы вершин выполняется быстрее за счет битовых операций.
- · Все битовые операции выполняются без выделения дополнительной памяти.
- · Нет необходимости в построении следующего фронтира по предыдущему в процессе обработки
- · Каждый из получившихся фронтиров довольно большой, что увеличивает его способность к
- Все остальные этапы также хорошо параллелятся

СРАВНЕНИЕ ПАРАЛЛЕЛЬНЫХ ВЕРСИЙ БЕЛЛМАНА-ФОРДА

Algo №	Complete			Balance	dTree	SquareGrid	
	TS	+	-	0.5	1	+	+-
1	2.43	4.65	nc	116.31	9.04	5.49	13.40
2	5.17	0.18	10.84	3.59	3.08	5.92	7.10
3	44.63	0.37	23.55	0.44	0.31	4.42	0.58

Таблица: Типичные графы

Algo №	1	ndomSp		RandomDense		
	0.5+	0.5-	0.96+	0.5+	0.5-	0.96+
1	nc		24.35			5.01
2			2.42			0.46
3	0.98	22.59	0.76	0.60	10.25	0.71

Таблица: Случайные графы

РАССТОЯНИЕ МЕЖДУ КАЖДОЙ ПАРОЙ ВЕРШИН СОЦИАЛЬНОГО ГРАФА

Алгоритм	Twitter graph		
Наивная параллельная версия	427.217		
Алгоритм для социальных графов	210.322		

Таблица: Сравнение алгоритмов

выводы

