Robotics [IIT-Jodhpur] Practical 4: Inverse Kinematics of 3 Link Robot

- s Write a program to perform inverse kinematics of the 3-link planar robot shown in
- Fig. 1 using geometric method. Assume link lengths as $a_1 = 1$ m, $a_2 = 1$ m, $a_3 = 0.5$ m.
 - Given the end-effector pose (p_x, p_y, φ) , within the workspace, find inverse kinematics solution, i.e., joint angles $(\theta_1, \theta_2, \theta_3)$. (You can use expressions given below).
 - Sketch both configuration in the same window

- 2 Extend the inverse kinematics program developed above to follow a circular path within the workspace of the robot. Input would be center, and radius of a circle. Perform the following
 - Plot joint angles.
 - Animate the robot and trace end effector's motion