R para Data Science

Solução dos exercícios

To Shao Yong (邵雍), for sharing a secret joy with simple words;

月到天心处,风来水面时。 一般清意味,料得少人知。

and

To Hongzhi Zhengjue (宏智禅师), for sharing the peace of an ending life with simple words.

梦幻空华,六十七年;白鸟淹没,秋水连天。

Conteúdo

W	elcom	ne	vii
W	elcom	ne	vii
	0.1	Pendências	vii
Pr	efácio		ix
Pr	efácio		ix
I	Exp	olorar	1
1	Visu	alização de dados com ggplot2	3
	1.1	Introdução	3
	1.2	Primeiros passos	3
	1.3	Mapeamentos estéticos	8
	1.4	Problemas comuns	15
	1.5	Facetas	15
	1.6	Objetos geométricos	21
	1.7	Transformações estatísticas	27
	1.8	Ajustes de posição	33
	1.9	Sistemas de coordenadas	37
	1.10	A gramática em camadas de gráficos	39
2	Flux	to de trabalho: o básico	41
3	Tran	nsformação de dados com _{dplyr}	43
4	Flux	o de trabalho: scripts	45
			iii

iv		Contents
5	Análise exploratória de dados	47
6	Fluxo de trabalho: projetos	49
II	Wrangle	51
7	Tibbles com tibble	53
8	Importando dados com readr	55
9	Arrumando dados com tidyr	57
10	Dados relacionais com dplyr	59
11	Strings com stringr	61
12	Fatores com forcats	63
13	Datas e horas com lubridate	65
III	Programar	67
14	Pipes com magrittr	69
15	Funções	71
16	Vetores	73
17	Iteração com purrr	75
18	(PART) Modelar	77
19	O básico de modelos com modelr	79
20	Construção de modelos	81
21	Muitos modelos com purrr e broom	83
IV	Comunicar	85

Contents		
22 R Markdown	87	
23 Gráficos para comunicação com ggplot2	89	
24 Formatos R Markdown	91	
25 Fluxo de trabalho de R Markdown	93	

Welcome

0.1 Pendências

• Exercício 1.7.4;

.

Prefácio

Esta página serviu para estudo e prática com o pacote R Bookdown e contém a solução encontrada por mim para os exercícios propostos no livro R para Data Sciente, de Hadley Wickham e Garret Grolemund, publicado no Brasil em 2019 pela Alta Books Editora [Wickham and Grolemund, 2019].

Por se tratar de um produto construído durante o processo de aprendizagem, o conteúdo pode conter erros, tanto no texto em si, como na lógica utilizada para solução dos exercícios.

Dúvidas ou sugestões de melhoria podem ser encaminhadas para o e-mail jeidsan. pereira@gmail.com¹.

¹mailto:jeidsan.pereira@gmail.com

Parte I

Explorar

1

Visualização de dados com ggplot2

Para a correta execução dos códigos desse capítulo, utilizaremos algumas configurações específicas.

Inicialmente, precisaremos carregar o pacote nycflights13, que contém os dados de todos os voos da cidade de Nova York em 2013.

```
library(nycflights13)
library(gridExtra)

##
## Attaching package: 'gridExtra'

## The following object is masked from 'package:dplyr':
##
## combine
```

1.1 Introdução

Não temos exercícios nesta seção.

1.2 Primeiros passos

Exercício 1.2.1

Execute ggplot(data=mpg);. O que você vê?

Solução.

```
ggplot(data=mpg) +
  tema
```

É exibido um quadro em branco. Este quadro contém o sistema de coordenadas sobre o qual serão desenhados os grpaficos que pretendemos exibir.

Exercício 1.2.2

Quantas linhas existem em mtcars? Quantas colunas? Solução.

```
dim(mtcars)
## [1] 32 11
```

R.: Existem 32 linhas e 11 colunas.

Exercício 1.2.3

O que a variável dry descreve?

Solução. Executamos o comando ?mpg no console no R e a página de ajuda foi aberta. Nela encontramos o significado de cada variável do conjunto de dados.

A variável descreve o tipo de tração dos carros analisados, onde f significa tração dianteira, r significa tração traseira e 4 significa tração nas quatro rodas.

Exercício 1.2.4

Faça um gráfico de dispersão de hwy *versus* cyl. *Solução*.

```
ggplot(data = mpg) +
  geom_point(mapping = aes(x = hwy, y = cyl)) +
  tema
```


Exercício 1.2.5

O que acontece se você fizer um gráfico de dispersão de class $\it versus \, drv$? Por que esse gráfico não é útil?

Solução.

```
ggplot(data = mpg) +
  geom_point(mapping = aes(x = drv, y = class)) +
  tema
```


Apesar de serem exibidos dados no gráfico, nenhuma informação substancial é extraída, uma vez que o tipo de tração não está (a princípio) relacionado com a categoria do carro. Outro fator que torno o gráfico pouco informativo é que há, por exemplo, diversas SUVs com tração nas 4 rodas, contudo os valores ficam sobrepostos no gráfico, não dando dimensão do quanto de dados temos.

Abaixo seguem duas opções de como trazer mais informação ao gráfico:

• a primeira opção adiciona um ruído aos dados (position = jitter ou geom_jitter()) de modo que não haja sobreposição;

```
ggplot(data = mpg) +
   geom_point(mapping = aes(x = drv, y = class), position = "jitter") +
   tema
```


• a segunda opção, bem mais avançada, adiciona uma estética de size considerando a quantidade de registros.

```
mpg %>%
  group_by(class, drv) %>%
  summarize(count = n()) %>%
  ggplot(mapping = aes(x = drv, y = class, size = count)) +
      geom_point() +
      tema
```

```
## `summarise()` has grouped output by 'class'. You can override using the ## `.groups` argument.
```


1.3 Mapeamentos estéticos

Exercício 1.3.1

O que há de errado com este código? Por que os pontos não estão azuis?

```
ggplot(data = mpg) +
  geom_point(mapping = aes(x = displ, y = hwy, color = "blue")) +
  tema
```


Solução. Ao invés de atribuir uma cor aos elementos de geom_point, o atributo color foi passado como uma estética. O gráfico deveria ser construído da seguinte maneira:

```
ggplot(data = mpg) +
  geom_point(mapping = aes(x = displ, y = hwy), color = "blue") +
  tema
```


Exercício 1.3.2

Quais variáveis em $_{mpg}$ são categóricas? Quais variáveis são contínuas? Como você pode ver essa informação quando executa $_{mpg}$?

Solução. Usando ?mpg vemos que as variáveis categóricas são: manufacturer, model, trans, drv, fl e class. As variáveis contínuas são: displ, cty, hwy.

Exercício 1.3.3

Mapeie uma variável contínua para color, size e shape. Como essas estéticas se comportam de maneira diferente para variáveis categóricas e contínuas? *Solução*.

```
ggplot(data = mpg) +
   geom_point(mapping = aes(x = displ, y = hwy, color = displ)) +
   tema
```



```
ggplot(data = mpg) +
   geom_point(mapping = aes(x = displ, y = hwy, size = displ)) +
   tema
```



```
ggplot(data = mpg) +
    geom_point(mapping = aes(x = displ, y = hwy, shape = displ)) +
    tema

## Error in `geom_point()`:
## ! Problem while computing aesthetics.
## i Error occurred in the 1st layer.
## Caused by error in `scale_f()`:
## ! A continuous variable cannot be mapped to the shape aesthetic
## i choose a different aesthetic or use `scale_shape_binned()`
```

Quando possível, a biblioteca *ggplot* apesenta a estética em um gradiente, como em color e size. Porém, nem sempre isso é possível, como vemos em shape, que só pode ser utilizada com variáveis discretas ou categóricas.

Exercício 1.3.4

O que acontece se você mapear a mesma variável a várias estéticas? *Solução*.

```
ggplot(data = mpg) +
    geom_point(mapping = aes(x = displ, y = hwy, size = class, color = class, shape = class)) +
    tema

## Warning: Using size for a discrete variable is not advised.

## Warning: The shape palette can deal with a maximum of 6 discrete values because
## more than 6 becomes difficult to discriminate; you have 7. Consider
## specifying shapes manually if you must have them.

## Warning: Removed 62 rows containing missing values (`geom_point()`).
```


Os valores da variável serão representados de modo a atender todas as estéticas simultaneamente, por exemplo, no gráfico acima é dada uma cor, um formato e um tamanho específicos para cada classe de veículo. Os veículos de dois lugares são exibidos como um disco rosa pequeno.

Exercício 1.3.5

O que a estética stroke faz? com que formas ela trabalha? Solução.

```
ggplot(data = mpg) +
  geom_point(mapping = aes(x = displ, y = hwy, stroke = displ)) +
  tema
```


A estética stroke controla a espessura do ponto ou elemento a ser representado.

Exercício 1.3.6

O que acontece se você mapear uma estética a algo diferente de um nome de variável, como aes(color = displ < 5)?

Solução.

```
ggplot(data = mpg) +
   geom_point(mapping = aes(x = displ, y = hwy, color = displ < 5)) +
   tema</pre>
```

15

A expressão é avaliada para cada um dos valores da variável e o resultado é utilizado para plotagem da estética no gráfico.

1.4 Problemas comuns

Não temos exercícios nessa seção.

1.5 Facetas

Exercício 1.5.1

O que acontece se você criar facetas em uma variável contínua? *Solução*.

```
ggplot(data = mpg) +
   geom_point(mapping = aes(x = displ, y = hwy)) +
   facet_wrap(. ~ displ) +
   tema
```


O ggplot se encarrega de dividir o conjunto em classes e toma o ponto médio de cada classe para realizar a quebra em facetas.

Exercício 1.5.2

O que significam as célula em branco em um gráfico com facet_grid(drv ~ cyl)? Como elas se relacionam a este gráfico?

```
ggplot(data = mpg) +
  geom_point(mapping = aes(x = displ, y = hwy)) +
  facet_grid(drv ~ cyl) +
  tema
```

1.5 Facetas

Solução. Significa que para aquela combinação de variáveis, não há nenhum valor observado. Por exemplo, não há nenhum veículo com 5 cilindros e tração nas quatro rodas.

Exercício 1.5.3

Que gráficos o código a seguir faz? O que . faz?

```
ggplot(data = mpg) +
  geom_point(mapping = aes(x = displ, y = hwy)) +
  facet_grid(drv ~ .) +
  tema
```



```
ggplot(data = mpg) +
  geom_point(mapping = aes(x = displ, y = hwy)) +
  facet_grid(. ~ cyl) +
  tema
```

1.5 Facetas

 $Solu\~{q}\~{a}$ o. São gerados os gráficos de dispersão segregados pelas variáveis drv e cyl, respectivamente. O . indica que não queremos considerar nenhuma segrega $\~{q}$ ão naquela dimensão do grid (linha ou coluna).

Exercício 1.5.4

Pegue o primeiro gráfico em facetas dessa seção.

```
ggplot(data = mpg) +
   geom_point(data = transform(mpg, class = NULL), mapping = aes(x = displ, y = hwy), color = "gray80") +
   geom_point(mapping = aes(x = displ, y = hwy)) +
   facet_wrap(~ class, nrow = 2) +
   tema
```


Quais são as vantagens de usar facetas, em vez de estética de cor? Quais são as desvantagens? Como o equilíbrio poderia mudar se você tivesse um conjunto de dados maior?

Solução. A principal vantagem no uso de facetas é que fica mais fácil analisar os dados quando eles estão separados em seu próprio contexto, contudo visualizá-los assim dificulta a comparação entre grupos.

Exercício 1.5.5

Leia ?facet_wrap. O que nrow faz? o que ncol faz? Quais outras opções controlam o layout de paineis individuais? Por que facet_grid() não tem variáveis nrowe ncol? Solução.

?facet_wrap

Os atributos ncol e nrow são utilizados pelo facet_wrap para determinar o número de colunas ou linhas (respectivamente) nas quais serão distribuídos os gráficos segregados. Esses atributos não figuram em facet_grid pelo fato deste já organizar as facetas retangularmente.

Exercício 1.5.6

Ao usar facet_grid() você normalmente deveria colocar a variável com níveis mais singulares nas colunas. Por quê?

Solução. Para melhor aproveitamento do espaço em tela.

1.6 Objetos geométricos

Exercício 1.6.1

Que *geom* você usaria para desenhar um gráfico de linha? Um diagrama de caixas (*boxplot*)? Um histograma? Um gráfico de área?

Solução.

```
ggplot(data = mpg, mapping = aes(x = displ, y = hwy)) +
    geom_line() +
    tema
```



```
ggplot(data = mpg) +
geom_boxplot(mapping = aes(y = hwy, x = class)) +
tema
```



```
ggplot(data = mpg, mapping = aes(x = hwy)) +
   geom_histogram() +
   tema
```

`stat_bin()` using `bins = 30`. Pick better value with `binwidth`.


```
ggplot(data = economics, mapping = aes(x = date, y = unemploy)) +
    geom_area() +
    tema
```


Podem ser utilizados, respectivamente as geoms: line, boxplot, histogram e area.

Exercício 1.6.2

Execute este código em sua cabeça e preveja como será o resultado. Depois execute o código no R e confira suas previsões:

```
ggplot(data = mpg, mapping = aes(x = displ, y = hwy, color = drv)) +
    geom_point() +
    geom_smooth(se = FALSE) +
    tema
```

```
## \ensuremath{\text{`geom\_smooth()`}}\ using method = 'loess' and formula = 'y ~ x'
```


Solução. O gráfico bateu com a expectativa.

Exercício 1.6.3

O que o show.legend = FALSE faz? O que acontece se você removê-lo? Por que você acha que usei isso anteriormente no capítulo?

Solução.

```
ggplot(data = mpg, mapping = aes(x = displ, y = hwy, color = drv)) +
    geom_point(show.legend = FALSE) +
    geom_smooth(se = FALSE, show.legend = FALSE) +
    tema
```

`geom_smooth()` using method = 'loess' and formula = 'y \sim x'

Ele indica que, para a camada à qual se aplica, não serão geradas as legendas de identificação.

Exercício 1.6.4

O que o argumento se para geom_smooth faz? Solução.

?geom_smooth

Esse argumento indica se o intervalo de confiança utilizado no processo de suavização da linha deve ou não ser exibido no gráfico.

Exercício 1.6.5

Esses dois gráficos serão diferentes? Por quê/por que não?

```
ggplot(data = mpg, mapping = aes(x = displ, y = hwy)) +
    geom_point() +
    geom_smooth() +
    tema

ggplot() +
    geom_point(data = mpg, mapping = aes(x = displ, y = hwy)) +
    geom_smooth(data = mpg, mapping = aes(x = displ, y = hwy)) +
    tema
```

Solução. Os gráficos serão iguais. Ao informar os parâmetros data e mapping na função ggplot essas atributos serão considerados como globais, sendo utilizado em todos as camadas do gráfico, a menos que alguma das camadas os sobrescreva. No segundo gráfico, não são definidos parâmetros globais, porém, o mesmo parâmetro é passado para ambas as camadas, sendo assim, a única diferença é o código estar duplicado.

Exercício 1.6.6

Recrie o código R necessário para gerar os seguintes gráficos:

Solução.

```
a <- ggplot(data = mpg, mapping = aes(x = displ, y = hwy)) +
        geom_point() +
        geom_smooth(se = FALSE) +
b \leftarrow ggplot(data = mpg, mapping = aes(x = displ, y = hwy)) +
        geom_point() +
        geom_smooth(mapping = aes(group = drv), se = FALSE) +
c \leftarrow ggplot(data = mpg, mapping = aes(x = displ, y = hwy, color = drv)) +
        geom_point() +
        geom_smooth(se = FALSE) +
        tema
d <- ggplot(data = mpg, mapping = aes(x = displ, y = hwy)) +</pre>
        geom_point(mapping = aes(color = drv)) +
        geom_smooth(se = FALSE) +
        tema
e <- ggplot(data = mpg, mapping = aes(x = displ, y = hwy)) +
        geom_point(mapping = aes(color = drv)) +
        geom_smooth(mapping = aes(linetype = drv), se = FALSE) +
        tema
f \leftarrow ggplot(data = mpg, mapping = aes(x = displ, y = hwy, fill = drv)) +
        geom_point(color = "white", shape = 21, size = 3, stroke = 2) +
        tema
```

1.7 Transformações estatísticas

Exercício 1.7.1

Qual é o geom padrão associado ao stat_summary()? Como você poderia reescrever o gráfico anterior usando essa função geom, em vez da função stat? Solução.

```
?stat_summary
```

```
ggplot(data = diamonds) +
    stat_summary(
        mapping = aes(x = cut, y = depth),
        fun.min = min,
        fun.max = max,
        fun = median
) +
    tema
```


A geom associada é a geom_pointrange e o gráfico poderia ser reescrito da seguinte maneira.

Exercício 1.7.2

O que geom_col() faz? Qual é a diferença entre ele e geom_bar()? Solução.

```
ggplot(data = diamonds, mapping = aes(x = cut)) +
   geom_bar() +
   tema
```


Enquanto no geom_bar a altura das barras representa uma transformação estatística relacionada às observações (como count, por exemplo), no geom_col podemos exibir o acumulado (soma) de uma variável para cada categoria exibida.

Exercício 1.7.3

A maioria dos geoms e stats vem em pares, que são quase sempre usados juntos. Leia a documentação e faça uma lista de todos os pares. O que eles têm em comum? *Solução*.

Geom	Stat
Blank	Identity
Curve	Identity
Segment	Identity
Path	Identity
Line	Identity
Step	Identity
Poligon	Identity
Raster	Identity
Rect	Identity
Tile	Identity
Ribbon	Identity
Area	Identity
Align	?
ABLine	?
HLine	?
Density	Density
	?
Freqpoly	Bin
Histogram	Bin
Col	Identity
Bar	Count
Label	Identity
Text	<u>Identity</u>
Jitter	<u>Identity</u>
Point	Identity
Quantile	Quantile
Rug	Identity
-	Boxplot
Violin	YDensity
Count	Sum
Bin 2D	Bin 2D
Density 2D	Density 2D
	Blank Curve Segment Path Line Step Poligon Raster Rect Tile Ribbon Area Align ABLine HLine Density DotPlot Freqpoly Histogram Col Bar Label Text Jitter Point Quantile Rug Boxplot Violin Count Bin 2D

#	Geom	Stat
33	Hex	Bin Hex
34	Cross Bar	Identity
35	Error Bar	Identity
36	Line Range	Identity
37	Point Range	Identity
38	Map	Identity
39	Contour	Contour
40	Contour Filled	Contour Filled

Exercício 1.7.4

Quais variáveis stat_smooth() calcula? Quais parâmetros controlam seu comportamento?

Solução.

?stat_smooth

Exercício 1.7.5

Em nosso gráfico de barra de *proportion*, precisamos configurar group = 1. Por quê? Em outras palavras, qual é o problema com esses dois gráficos?

```
ggplot(data = diamonds) +
   geom_bar(mapping = aes(x = cut, y = after_stat(prop), group = 1)) +
   tema
```


Solução.

Quando estamos trabalhando com proporções (ou estátisticas em geral), é importante destacar para o ggplot qual agrupamento ele deve considerar, caso contrário ele irá considerar um único grupo e dará uma impressão incorreta ao gráfico. No primeiro exemplo, foi utilizado group = 1 (e, na verdade, poderia ser qualquer valor) apenas para indicar que deveria ser realizado um agrupamento.

1.8 Ajustes de posição

Exercício 1.8.1

Qual é o problema com este gráfico? Como você poderia melhorá-lo?

```
ggplot(data = mpg, mapping = aes(x = cty, y = hwy)) +
   geom_point() +
   tema
```


Solução. Há pontos sobrepostos. Uma melhoria poderia ser usar geom_jitter em lugar de geom_point.

```
ggplot(data = mpg, mapping = aes(x = cty, y = hwy)) +
    geom_jitter() +
    tema
```


Exercício 1.8.2

Quais parâmetros para geom_jitter controlam a quantidade de oscilação? Solução. Conforme a documentação disposta em ?geom_jitter, são utilizados os parâmetros width e height.

Exercício 1.8.3

Compare o contraste entre $geom_jitter\ e\ geom_count.$ Solução.

Para contornar o problema da sobreposição de pontos, geom_jitter adiciona um pequeno ruído aleatório aos dados, enquanto o geom_count contabiliza os pontos sobrepostos e altera o tamanho dos pontos conforme a quantidade.

Exercício 1.8.4

Qual é o ajuste de posição padrão para geom_boxplot()? Crie uma visualização do conjunto de dados mpg que demonstre isso.

Solução. Conforme pode ser visto em ?geom_boxplot, a position padrão é a dodge2.

```
ggplot(data = mpg, mapping = aes(x = class, y = hwy)) +
   geom_boxplot() +
   tema
```


1.9 Sistemas de coordenadas

Exercício 1.9.1

Transforme um gráfico de barras empilhadas em um gráfico de pizza usando co-ord_polar().

Solução.

```
ggplot(data = diamonds, mapping = aes(x = cut, fill = cut)) +
    geom_bar(show.legend = FALSE, width = 1) +
    coord_polar() +
    labs(x = NULL, y = NULL) +
    theme(aspect.ratio = 1) +
    tema
```


Exercício 1.9.2

O que labs () faz? Leia a documentação.

Solução. Usando o comando ?labs, vimos que esta função é utilizada para definir labels do gráfico, como título, subtítulo, títulos de eixos, etc.

Exercício 1.9.3

Qual é a diferença entre coord_quickmap() e coord_map()?

Solução. Usando o comando ?coord_map, notamos que a diferença é que enquanto coord_map() não preserva linhas retas, sendo assim, mais custoso computacionalmente, o coord_quickmap() o faz.

Exercício 1.9.4

O que o gráfico a seguir lhe diz sobre a relação entre mpg de cidade e estrada? Por que coord_fixed() é importante? O que geom_abline() faz?

```
ggplot(data = mpg, mapping = aes(x = cty, y = hwy)) +
  geom_point() +
  geom_abline() +
  coord_fixed(ratio = 1, xlim = c(5, 45), ylim = c(5, 45)) +
  tema
```


Solução. O gráfico mostra a relação entre a eficiência na cidade e na estrada. O coord_fixed() força que seja mantida uma proporção entre os eixos x e y, isto é, garante que uma unidade no eixo y corresponda a um número determinado de unidades no eixo x. A razão padrão é 1. Já o geom_abline() define uma linha de referência diagonal ao gráfico, no nosso caso, a linha é a reta dada por y-x=0.

1.10 A gramática em camadas de gráficos

Não temos exercícios nesta seção.

Fluxo de trabalho: o básico

Transformação de dados com aplyr

Fluxo de trabalho: scripts

Análise exploratória de dados

Fluxo de trabalho: projetos

Parte II

Wrangle

Tibbles com tibble

Importando dados com readr

Arrumando dados com tidyr

Dados relacionais com aplyr

Strings com stringr

Fatores com forcats

Datas e horas com lubridate

Parte III

Programar

Pipes com magrittr

Funções

Vetores

Iteração com purrr

(PART) Modelar

O básico de modelos com model r

Construção de modelos

Muitos modelos com purrr e broom

Parte IV

Comunicar

R Markdown

Gráficos para comunicação com ggplot2

Formatos R Markdown

Fluxo de trabalho de R Markdown

Bibliografia

Hadley Wickham and Garrett Grolemund. *R para Data Science*. Alta Books, Rio de Janeiro, 2019.