Shift-Share IV

MIXTAPE TRACK

Roadmap

Motivation

Intuition

Market Access Effects

Medicaid Eligibility Effects

Formal Framework

Applications

Market Access Effects

Medicaid Eligibility Effects

Concluding Thoughts

Many treatments/instruments are SSIV-like: combining multiple sets of variation, w/ some as-good-as-randomly assigned, but not all:

 Spatial/network/GE spillover treatments: e.g. the number of neighbors selected for a randomized intervention:

Many treatments/instruments are SSIV-like: combining multiple sets of variation, w/ some as-good-as-randomly assigned, but not all:

 Spatial/network/GE spillover treatments: e.g. the number of neighbors selected for a randomized intervention:

Who got selected for the intervention & who neighbors whom

- Spatial/network/GE spillover treatments: e.g. the number of neighbors selected for a randomized intervention:
- Who got selected for the intervention & who neighbors whom
- 2. Regional growth of market access from transportation upgrades:

- Spatial/network/GE spillover treatments: e.g. the number of neighbors selected for a randomized intervention:
 - Who got selected for the intervention & who neighbors whom
- 2. Regional growth of market access from transportation upgrades:Location + timing of upgrades & location and size of markets

- Spatial/network/GE spillover treatments: e.g. the number of neighbors selected for a randomized intervention:

 Who got selected for the intervention.
 8. who neighbors who
- Who got selected for the intervention & who neighbors whom
- 2. Regional growth of market access from transportation upgrades:Location + timing of upgrades & location and size of markets
- 3. An individual's eligibility for a public program, e.g. Medicaid:

- Spatial/network/GE spillover treatments: e.g. the number of neighbors selected for a randomized intervention:
 Who got selected for the intervention & who neighbors whom
- 2. Regional growth of market access from transportation upgrades:

 Location + timing of upgrades & location and size of markets
- 3. An individual's eligibility for a public program, e.g. Medicaid: State-level policy & individual income and demographics

Many treatments/instruments are SSIV-like: combining multiple sets of variation, w/ some as-good-as-randomly assigned, but not all:

- Spatial/network/GE spillover treatments: e.g. the number of neighbors selected for a randomized intervention:
 Who got selected for the intervention & who neighbors whom
- 2. Regional growth of market access from transportation upgrades:Location + timing of upgrades & location and size of markets
- 3. An individual's eligibility for a public program, e.g. Medicaid: State-level policy & individual income and demographics

How can we just leverage the exogenous shocks to such z_i ?

1. Non-random exposure to exogenous shocks generates systematic variation which can lead to omitted variable bias.

- 1. Non-random exposure to exogenous shocks generates systematic variation which can lead to omitted variable bias.
 - → Randomizing roads ≠ random market access growth from them

- 1. Non-random exposure to exogenous shocks generates systematic variation which can lead to omitted variable bias.
 - \rightarrow Randomizing roads \Rightarrow random market access growth from them
- 2. The systematic variation can be removed via novel "recentering"

- 1. Non-random exposure to exogenous shocks generates systematic variation which can lead to omitted variable bias.
 - ightarrow Randomizing roads ightarrow random market access growth from them
- 2. The systematic variation can be removed via novel "recentering"
 - → Specify many counterfactual sets of shocks

- 1. Non-random exposure to exogenous shocks generates systematic variation which can lead to omitted variable bias.
 - ightarrow Randomizing roads ightarrow random market access growth from them
- 2. The systematic variation can be removed via novel "recentering"
 - → Specify many counterfactual sets of shocks
 - ightarrow Compute μ_i , the average z_i across counterfactuals, by simulation

- 1. Non-random exposure to exogenous shocks generates systematic variation which can lead to omitted variable bias.
 - ightarrow Randomizing roads ightarrow random market access growth from them
- 2. The systematic variation can be removed via novel "recentering"
 - → Specify many counterfactual sets of shocks
 - ightarrow Compute μ_i , the average z_i across counterfactuals, by simulation
 - the key confounder (similar to a propensity score)

- 1. Non-random exposure to exogenous shocks generates systematic variation which can lead to omitted variable bias.
 - ightarrow Randomizing roads ightarrow random market access growth from them
- 2. The systematic variation can be removed via novel "recentering"
 - → Specify many counterfactual sets of shocks
 - \rightarrow Compute μ_i , the average z_i across counterfactuals, by simulation the key confounder (similar to a propensity score)
 - \rightarrow "Recenter" z_i by μ_i (i.e. instrument with $\tilde{z}_i=z_i-\mu_i)$ or control for μ_i

- 1. Non-random exposure to exogenous shocks generates systematic variation which can lead to omitted variable bias.
 - ightarrow Randomizing roads ightarrow random market access growth from them
- 2. The systematic variation can be removed via novel "recentering"
 - → Specify many counterfactual sets of shocks
 - \rightarrow Compute μ_i , the average z_i across counterfactuals, by simulation the key confounder (similar to a propensity score)
 - ightarrow "Recenter" z_i by μ_i (i.e. instrument with $\tilde{z}_i=z_i-\mu_i$) or control for μ_i
 - → Conventional solutions (e.g. directly instrumenting with shocks or controlling for all features of exposure) are often infeasible

- 1. Non-random exposure to exogenous shocks generates systematic variation which can lead to omitted variable bias.
 - \rightarrow Randomizing roads \Rightarrow random market access growth from them
- 2. The systematic variation can be removed via novel "recentering"
 - → Specify many counterfactual sets of shocks
 - \rightarrow Compute μ_i , the average z_i across counterfactuals, by simulation the key confounder (similar to a propensity score)
 - ightarrow "Recenter" z_i by μ_i (i.e. instrument with $\tilde{z}_i=z_i-\mu_i$) or control for μ_i
 - → Conventional solutions (e.g. directly instrumenting with shocks or controlling for all features of exposure) are often infeasible
- 3. Recentering solution also can have attractive efficiency properties
 - → Leverages non-random exposure to best predict shock effects

(Some) Other Settings where these Points are Relevant

Linear shift-share IV (Autor et al. 2013, Borusyak et al. 2022)

Nonlinear shift-share IV (Boustan et al. 2013, Berman et al. 2015, Chodorow-Reich and Wieland 2020, Derenoncourt 2021)

IV based on centralized school assignment mechanisms (Abdulkadiroğlu et al. 2017, 2019, Angrist et al. 2020)

Model-implied optimal IV (Adão-Arkolakis-Esposito 2021)

Weather instruments (Gomez et al. 2007, Madestam et al. 2013)

"Free space" instruments for mass media access (Olken 2009, Yanagizawa-Drott 2014)

Roadmap

Motivation

Intuition

Market Access Effects

Medicaid Eligibility Effects

Formal Framework

Applications

Market Access Effects

Medicaid Eligibility Effects

Concluding Thoughts

Theory suggests transportation upgrades affect local outcomes (e.g. land value) of regions i by increasing their market access (MA):

$$\Delta \log V_i = eta \Delta \log M A_i + arepsilon_i,$$
 where $M A_{it} = \sum_j au(g_t, loc_i, loc_j)^{-1} pop_j,$

for road network g_t in periods t=1,2, region locations loc_j (co-determining travel cost τ), and regional population pop_j

Theory suggests transportation upgrades affect local outcomes (e.g. land value) of regions i by increasing their market access (MA):

$$\Delta \log V_i = eta \Delta \log M A_i + arepsilon_i,$$
 where $M A_{it} = \sum_j au(g_t, loc_i, loc_j)^{-1} pop_j,$

for road network g_t in periods t=1,2, region locations loc_j (co-determining travel cost τ), and regional population pop_j

Imagine an experiment randomly connecting adjacent regions by road

Theory suggests transportation upgrades affect local outcomes (e.g. land value) of regions i by increasing their market access (MA):

$$\Delta \log V_i = eta \Delta \log M A_i + arepsilon_i,$$
 where $M A_{it} = \sum_j au(g_t, loc_i, loc_j)^{-1} pop_j,$

for road network g_t in periods t=1,2, region locations loc_j (co-determining travel cost τ), and regional population pop_j

Imagine an experiment randomly connecting adjacent regions by road

Theory suggests transportation upgrades affect local outcomes (e.g. land value) of regions i by increasing their market access (MA):

$$\Delta \log V_i = eta \Delta \log M A_i + arepsilon_i,$$
 where $M A_{it} = \sum_j au(g_t, loc_i, loc_j)^{-1} pop_j,$

for road network g_t in periods t=1,2, region locations loc_j (co-determining travel cost τ), and regional population pop_j

Imagine an experiment randomly connecting adjacent regions by road

- MA only grows because of the random transportation shocks
- So can we view variation in MA growth as random and just run OLS?

Theory suggests transportation upgrades affect local outcomes (e.g. land value) of regions i by increasing their market access (MA):

$$\Delta \log V_i = eta \Delta \log M A_i + arepsilon_i,$$
 where $M A_{it} = \sum_j au(g_t, loc_i, loc_j)^{-1} pop_j,$

for road network g_t in periods t=1,2, region locations loc_j (co-determining travel cost τ), and regional population pop_j

Imagine an experiment randomly connecting adjacent regions by road

- MA only grows because of the random transportation shocks
- So can we view variation in MA growth as random and just run OLS?

No. Randomizing roads \Rightarrow randomizing MA due to them!

Start from no roads, assume equal population everywhere

Randomly connect adjacent regions by road

Randomly connect adjacent regions by road and compute MA growth

Randomly connect adjacent regions by road and compute MA growth

Randomly connect adjacent regions by road and compute MA growth

Expected Market Access Growth μ_i

Some regions get systematically more MA

149 lines were built or planned (as of April 2019)

The 83 lines actually built by 2016. Suppose timing is random

A counterfactual draw of 83 lines by 2016

OVB and Recentering Solution

Systematic variation in MA growth can generate OVB

- E.g. land values fall in the periphery because of rising sea levels
- More vs less developed Chinese regions may be on different trends

OVB and Recentering Solution

Systematic variation in MA growth can generate OVB

- E.g. land values fall in the periphery because of rising sea levels
- More vs less developed Chinese regions may be on different trends

Systematic variation can be removed via "recentering":

```
\frac{\text{Recentered}}{\text{MA growth}} = \frac{\text{Realized}}{\text{MA growth}} - \frac{\text{Expected}}{\text{MA growth}}
```

OVB and Recentering Solution

Systematic variation in MA growth can generate OVB

- E.g. land values fall in the periphery because of rising sea levels
- More vs less developed Chinese regions may be on different trends

Systematic variation can be removed via "recentering":

$$\frac{\text{Recentered}}{\text{MA growth}} = \frac{\text{Realized}}{\text{MA growth}} - \frac{\text{Expected}}{\text{MA growth}}$$

Recentered MA is a valid instrument for realized MA growth

- Compares MA from actual and counterfactual shocks
- As it turns out, we can also control for expected MA growth

Classic SSIV is a special case where $z_i = \sum_n s_{in} g_n$ is linear in the exogenous shocks

Classic SSIV is a special case where $z_i = \sum_n s_{in} g_n$ is linear in the exogenous shocks

Classic SSIV is a special case where $z_i = \sum_n s_{in} g_n$ is linear in the exogenous shocks

The expected instrument is $\mu_i = E\left[\sum_n s_{in} g_n \mid s\right] = \sum_n s_{in} E\left[g_n \mid s\right]$

• If $E[g_n \mid s] = \gamma$, we need to adjust for $\gamma(\sum_n s_{in})$

Classic SSIV is a special case where $z_i = \sum_n s_{in} g_n$ is linear in the exogenous shocks

- If $E\left[\frac{g_n}{s}\mid s\right]=\gamma$, we need to adjust for $\gamma\left(\sum_n s_{in}\right)$
- Linear in the sum-of-shares $S_i = \sum_n s_{in}$; it turns out controlling for this observable is enough (recall FWL theorem!)

Classic SSIV is a special case where $z_i = \sum_n s_{in} g_n$ is linear in the exogenous shocks

- If $E\left[\frac{g_n}{s}\mid s\right]=\gamma$, we need to adjust for $\gamma\left(\sum_n s_{in}\right)$
- Linear in the sum-of-shares $S_i = \sum_n s_{in}$; it turns out controlling for this observable is enough (recall FWL theorem!)
- If g_n is only exogenous conditional on q_n , with $E\left[g_n\mid s,q\right]=q_n'\gamma$, we need to adjust for $\sum_n s_{in} E\left[g_n\mid s,q\right]=\gamma\left(\sum_n s_{in}q_n\right)$

Classic SSIV is a special case where $z_i = \sum_n s_{in} g_n$ is linear in the exogenous shocks

- If $E\left[\frac{g_n}{s}\mid s\right]=\gamma$, we need to adjust for $\gamma\left(\sum_n s_{in}\right)$
- Linear in the sum-of-shares $S_i = \sum_n s_{in}$; it turns out controlling for this observable is enough (recall FWL theorem!)
- If g_n is only exogenous conditional on q_n , with $E\left[g_n\mid s,q\right]=q_n'\gamma$, we need to adjust for $\sum_n s_{in} E\left[g_n\mid s,q\right]=\gamma\left(\sum_n s_{in}q_n\right)$
- Controlling for $\sum_n s_{in}q_n$ is enough (sound familiar?)

Consider the effects of individual eligilibity x_i for Medicaid:

$$y_i = \beta x_i + \varepsilon_i$$

where x_i is determined by i's state policy g_{state_i} and demographics

Consider the effects of individual eligilibity x_i for Medicaid:

$$y_i = \beta x_i + \varepsilon_i$$

where x_i is determined by i's state policy g_{state_i} and demographics

Suppose state policies are as-good-as-random

Consider the effects of individual eligilibity x_i for Medicaid:

$$y_i = \beta x_i + \varepsilon_i$$

where x_i is determined by i's state policy g_{state_i} and demographics

- Suppose state policies are as-good-as-random
- But pre-determined demographics are endogeous ⇒ OLS biased

Consider the effects of individual eligilibity x_i for Medicaid:

$$y_i = \beta x_i + \varepsilon_i$$

where x_i is determined by i's state policy g_{state_i} and demographics

- Suppose state policies are as-good-as-random
- But pre-determined demographics are endogeous \Rightarrow OLS biased

Standard "simulated instruments" solution (Currie and Gruber (1996)): use state-level variation (avgerage policy generosity across a "simulated" group of individuals) as a single IV for x_i

 This works, but is likely inefficient: the policy shocks likely have heterogeneous effects across individuals w/different demos

Consider the effects of individual eligilibity x_i for Medicaid:

$$y_i = \beta x_i + \varepsilon_i$$

where x_i is determined by i's state policy g_{state_i} and demographics

Consider the effects of individual eligilibity x_i for Medicaid:

$$y_i = \beta x_i + \varepsilon_i$$

where x_i is determined by i's state policy g_{state_i} and demographics The BH approach:

• Formalize the policy experiment as "all permutations of ${\it g}$ across states are equally likely"

Consider the effects of individual eligilibity x_i for Medicaid:

$$y_i = \beta x_i + \varepsilon_i$$

where x_i is determined by i's state policy g_{state_i} and demographics The BH approach:

- Formalize the policy experiment as "all permutations of g across states are equally likely"
- Compute μ_i = the share of states in which i would be eligible

Consider the effects of individual eligilibity x_i for Medicaid:

$$y_i = \beta x_i + \varepsilon_i$$

where x_i is determined by i's state policy g_{state_i} and demographics The BH approach:

- Formalize the policy experiment as "all permutations of g across states are equally likely"
- Compute μ_i = the share of states in which i would be eligible
- Leverage all variation in x_i but recenter by μ_i (or control for μ_i)

Consider the effects of individual eligilibity x_i for Medicaid:

$$y_i = \beta x_i + \varepsilon_i$$

where x_i is determined by i's state policy g_{state_i} and demographics The BH approach:

- Formalize the policy experiment as "all permutations of g across states are equally likely"
- Compute μ_i = the share of states in which i would be eligible
- Leverage all variation in x_i but recenter by μ_i (or control for μ_i)
- Yields efficiency gain by better first-stage prediction, e.g. by removing i who are always or never eligible

Roadmap

Motivation

Intuition

Market Access Effects

Medicaid Eligibility Effects

Formal Framework

Applications

Market Access Effects

Medicaid Eligibility Effects

Concluding Thoughts

General Setup

We have a model of $y_i = \beta x_i + \varepsilon_i$ for a fixed population $i = 1 \dots N$

 In the paper: extensions to heterogeneous effects, other controls, multiple treatments, nonlinear outcome models, panel data...

General Setup

We have a model of $y_i = \beta x_i + \varepsilon_i$ for a fixed population $i = 1 \dots N$

 In the paper: extensions to heterogeneous effects, other controls, multiple treatments, nonlinear outcome models, panel data...

We have a candidate instrument $z_i = f_i(g, w)$, where g is a vector of shocks; w collects predetermined variables; $f_i(\cdot)$ are known mappings

- ullet Applies to any z_i which can be constructed from observed data
- Nests reduced-form regressions: $x_i = z_i$
- Allows $g = (g_1, \dots, g_K)$ to vary at a different level than i

General Setup

We have a model of $y_i = \beta x_i + \varepsilon_i$ for a fixed population $i = 1 \dots N$

 In BH: extensions to heterogeneous effects, other controls, multiple treatments, nonlinear outcome models, panel data...

We have a candidate instrument $z_i = f_i(g, w)$, where g is a vector of shocks; w collects predetermined variables; $f_i(\cdot)$ are known mappings

Assumptions:

- 1. Shocks are exogenous: $g \perp \varepsilon \mid w$
- 2. Conditional distribution $G(g \mid w)$ is known (e.g. via randomization protocol or uniform across permutations of g)

Main Results

The expected instrument, $\mu_i = E[f_i(g, w) \mid w] \equiv \int f_i(g, w) dG(g \mid w)$, is the sole confounder generating OVB:

$$E\left[rac{1}{N}\sum_i z_i arepsilon_i
ight] = E\left[rac{1}{N}\sum_i \mu_i arepsilon_i
ight]
eq 0$$
, in general

Main Results

The expected instrument, $\mu_i = E[f_i(g, w) \mid w] \equiv \int f_i(g, w) dG(g \mid w)$, is the sole confounder generating OVB:

$$E\left[\frac{1}{N}\sum_{i}z_{i}\varepsilon_{i}\right]=E\left[\frac{1}{N}\sum_{i}\mu_{i}\varepsilon_{i}\right]\neq0,\text{ in general}$$

The recentered instrument $\tilde{z}_i = z_i - \mu_i$ is a valid instrument for x_i :

$$E\left[\frac{1}{N}\sum_{i}\tilde{z}_{i}\varepsilon_{i}\right]=0$$

Main Results

The expected instrument, $\mu_i = E[f_i(g, w) \mid w] \equiv \int f_i(g, w) dG(g \mid w)$, is the sole confounder generating OVB:

$$E\left[\frac{1}{N}\sum_{i}z_{i}\varepsilon_{i}\right]=E\left[\frac{1}{N}\sum_{i}\mu_{i}\varepsilon_{i}\right]\neq0,\text{ in general}$$

The recentered instrument $\tilde{z}_i = z_i - \mu_i$ is a valid instrument for x_i :

$$E\left[\frac{1}{N}\sum_{i}\tilde{z}_{i}\varepsilon_{i}\right]=0$$

Regressions which control for μ_i also identify β (implicitly recenter, by the FWL theorem)

Extensions

Consistency: follows when \tilde{z}_i is weakly mutually dependent across i

Robustness to heterogeneous treatment effects: \tilde{z}_i identifies a convex avg. of β_i under appropriate first-stage monotonicity

Randomization inference provides exact confidence intervals for β (under constant effects) and falsification tests

BH also characterize the **asy. efficient** recentered IV among all $f_i(\cdot)$

Roadmap

Motivation

Intuition

Market Access Effects
Medicaid Eligibility Effects

Formal Framework

Applications

Market Access Effects

Medicaid Eligibility Effects

Concluding Thoughts

App. 1: Market Access from Chinese High-Speed Rail

BH first show how instrument recentering can address OVB when estimating the effects of market access growth

Setting: Chinese HSR; 83 lines built 2008–2016, 66 yet unbuilt

- Market access: $MA_{it}=\sum_k \exp\left(-0.02\tau_{ikt}\right)p_{k,2000}$, where τ_{ikt} is HSR-affected travel time between prefecture capitals (Zheng and Kahn, 2013) and $p_{i,2000}$ is prefecture i's population in 2000
- Relate to employment growth in 274 prefectures, 2007-2016

Simple OLS Regressions Suggest a Large MA Effect

High vs. Low MA Growth is Not a Convincing Contrast!

How to Find Valid Treatment-Control Contrasts?

Add controls (province FE, longitude, etc...)

- Hard to justify ex ante since MA is a variable constructed based on a structural model
- No experimental analog

How to Find Valid Treatment-Control Contrasts?

Add controls (province FE, longitude, etc...)

- Hard to justify ex ante since MA is a variable constructed based on a structural model
- No experimental analog

Find valid contrasts for one source of variation—a natural experiment

- Bartelme (2018): shocks affecting market size
- Donaldson (2018): built vs unbuilt lines
- BH application: assume random timing of observably similar lines

Built and Planned HSR Lines

BH reshuffle built & planned lines connecting the same # of regions

Expected Market Access Growth (2007–2016), μ_i

Recentered Market Access Growth (2007–2016), \tilde{z}_i

Market Access Balance Regressions

	Unadjusted	Recentered		
	(1)	(2)	(3)	(4)
Distance to Beijing	-0.292	0.069		0.089
	(0.063)	(0.040)		(0.045)
Latitude/100	-3.323	-0.325		-0.156
	(0.648)	(0.277)		(0.320)
Longitude/100	1.329	0.473		0.425
	(0.460)	(0.239)		(0.242)
Expected Market Access Growth			0.027	0.056
			(0.056)	(0.066)
Constant	0.536	0.014	0.014	0.014
	(0.030)	(0.018)	(0.020)	(0.018)
Joint RI p-value		0.489	0.807	0.536
R^2	0.823	0.079	0.007	0.082
Prefectures	274	274	274	274

Regressions of unadjusted and recentered market access growth on geographic features. Spatial-clustered standard errors in parentheses.

Recentered MA Doesn't Predict Employment Growth!

Adjusted Estimates of Market Access Effects

	Unadjusted	Recentered	Controlled
	OLS	IV	OLS
	(1)	(2)	(3)
Panel A. No Controls			. ,
Market Access Growth	0.232	0.081	0.069
	(0.075)	(0.098)	(0.094)
		[-0.315, 0.328]	[-0.209, 0.331
Expected Market Access Growth			0.318
•			(0.095)
Panel B. With Geography Controls			
Market Access Growth	0.132	0.055	0.045
	(0.064)	(0.089)	(0.092)
		[-0.144, 0.278]	[-0.154, 0.281
Expected Market Access Growth			0.213
_			(0.073)
Recentered	No	Yes	Yes
Prefectures	274	274	274

Regressions of log employment growth on log market access growth in 2007–2016.

Spatial-clustered standard errors in parentheses; permutation-based 95% CI in brackets

App. 2: Efficient Estimation of Medicaid Effects

Setting: U.S. Medicaid, partially expanded in 2014 under the ACA

- 19 of 43 states with low Medicaid coverage expanded to 138% FPL
- View expansion decisions as random across states with same-party governors, but not household demographics or pre-2014 policy
- Outcomes: Medicaid takeup and private insurance crowdout

App. 2: Efficient Estimation of Medicaid Effects

Setting: U.S. Medicaid, partially expanded in 2014 under the ACA

- 19 of 43 states with low Medicaid coverage expanded to 138% FPL
- View expansion decisions as random across states with same-party governors, but not household demographics or pre-2014 policy
- Outcomes: Medicaid takeup and private insurance crowdout

We compare two estimators, both valid under the same assumptions:

- Simulated IV: use state-level variation only (i.e. expansion dummy)
- Recentered IV: predict eligibility from expansion decisions & non-random demographics, and recenter

App. 2: Efficient Estimation of Medicaid Effects

Setting: U.S. Medicaid, partially expanded in 2014 under the ACA

- 19 of 43 states with low Medicaid coverage expanded to 138% FPL
- View expansion decisions as random across states with same-party governors, but not household demographics or pre-2014 policy
- Outcomes: Medicaid takeup and private insurance crowdout

We compare two estimators, both valid under the same assumptions:

- Simulated IV: use state-level variation only (i.e. expansion dummy)
- Recentered IV: predict eligibility from expansion decisions & non-random demographics, and recenter

Via non-random variation, recentered IV has pprox 3 times smaller SEs

Estimates with Simulated vs. Recentered IV

	Has Medicaid		Has Private Insurance		Has Employer-Sponsored Insurance	
	Simulated IV	Recentered IV	Simulated IV	Recentered IV	Simulated IV	Recentered IV
	(1)	(2)	(3)	(4)	(5)	(6)
Panel A. Eligibility	Effects					
(0.0	0.132	0.072	-0.048	-0.023	0.009	-0.009
	(0.028)	(0.010)	(0.023)	(0.007)	(0.014)	(0.005)
	[0.080, 0.216]	[0.051, 0.093]	[-0.110,0.009]	[-0.040, -0.007]	[-0.034, 0.052]	[-0.021,0.004]
Panel B. Enrollmen	nt Effects					
Has Medicaid	***		-0.361	-0.321	0.068	-0.125
			(0.165)	(0.092)	(0.111)	(0.061)
			[-0.813,0.082]	[-0.566,-0.108]	[-0.232, 0.421]	[-0.263, 0.070]
P-value: SIV=RIV			0.719		0.104	
Exposed Sample	N	Y	N	Y	N	Y
States	43	43	43	43	43	43
Individuals	2,397,313	421,042	2,397,313	421,042	2,397,313	421,042

1% ACS sample of non-disabled adults in 2013–14, diff-in-diff IV regressions using one of the two instruments. Controls include state and year fixed effects and an indicator for Republican governor interacted with year. State-clustered standard errors in parentheses; wild score bootstrap 95% CI in brackets

Roadmap

Motivation

Intuition

Market Access Effects

Applications

Market Access Effects

Medicaid Eligibility Effects

Concluding Thoughts

In both linear SSIV and more elaborate settings, the most important thing is to decide *ex ante* what identifying variation you want to use

In both linear SSIV and more elaborate settings, the most important thing is to decide *ex ante* what identifying variation you want to use

 When leveraging a natural experiment, recentering (e.g. controlling for sum-of-shares, in linear SSIV) can help

In both linear SSIV and more elaborate settings, the most important thing is to decide *ex ante* what identifying variation you want to use

- When leveraging a natural experiment, recentering (e.g. controlling for sum-of-shares, in linear SSIV) can help
- Non-experimental assumptions (e.g. parallel trends) typically require other approaches

In both linear SSIV and more elaborate settings, the most important thing is to decide *ex ante* what identifying variation you want to use

- When leveraging a natural experiment, recentering (e.g. controlling for sum-of-shares, in linear SSIV) can help
- Non-experimental assumptions (e.g. parallel trends) typically require other approaches
- The source of variation can (should?) guide inference

In both linear SSIV and more elaborate settings, the most important thing is to decide ex ante what identifying variation you want to use

- When leveraging a natural experiment, recentering (e.g. controlling for sum-of-shares, in linear SSIV) can help
- Non-experimental assumptions (e.g. parallel trends) typically require other approaches
- The source of variation can (should?) guide inference

After deciding + appropriately adjusting the analysis, try to falsify the identifying variation (ex post) – via balance or pre-trend tests

In both linear SSIV and more elaborate settings, the most important thing is to decide ex ante what identifying variation you want to use

- When leveraging a natural experiment, recentering (e.g. controlling for sum-of-shares, in linear SSIV) can help
- Non-experimental assumptions (e.g. parallel trends) typically require other approaches
- The source of variation can (should?) guide inference

After deciding + appropriately adjusting the analysis, try to falsify the identifying variation (ex post) – via balance or pre-trend tests

Much more work to be done on the various econometrics here!

Keep Calm and SSIV On!

Good luck on your future adventures with SSIV!

peter_hull@brown.edu

@instrumenthull