1 Concrete Semantics of Scheme CESK*

Syntax:

$$e \in \mathsf{Exp} ::= \varnothing \\ \quad | (\mathsf{if} \ e \ e \ e) \\ \quad | (\mathsf{let} \ (x \ e) \ e) \\ \quad | (\mathsf{prim} \ op \ e \ e...) \\ \quad | (\mathsf{call/cc} \ e) \\ \quad | (e \ e \ ...) \\ \quad \varnothing \in \mathsf{AExp} ::= lam \ | \ \mathbb{Z} \ | \ \mathsf{\#t} \ | \ \mathsf{\#f} \\ lam \in \mathsf{Lam} ::= (\lambda \ (x...) \ e) \\ \quad x \in \mathsf{Var} \qquad \mathsf{A} \ \mathsf{set} \ \mathsf{of} \ \mathsf{identifiers}$$

Semantics:

$$\varsigma \in \Sigma \triangleq \mathsf{Exp} \times Env \times Kont$$

$$\rho \in Env \triangleq \mathsf{Var} \rightharpoonup Addr$$

$$\sigma \in Store \triangleq Addr \rightharpoonup Val$$

$$v \in Val \triangleq Clo + Kont + \mathbb{Z} + \{ \mathtt{\#t}, \mathtt{\#f} \}$$

$$clo \in Clo \triangleq \mathsf{Lam} \times Env$$

$$\kappa \in Kont \triangleq \mathbf{mt} \mid \mathbf{appk}(done, todo, \rho, a) \mid \mathbf{ifk}(e, e, \rho, a) \mid \mathbf{letk}(x, e, \rho, a)$$

$$\mid \mathbf{letk}(x, e, \rho, a)$$

$$a, b, c \in Addr \quad \text{A set of addreses}$$

$$done \triangleq Val* \quad todo \triangleq \mathsf{Exp*}$$

Atomic Evaluation Function:

$$\mathcal{A}(x, \rho, \sigma) \triangleq \sigma(\rho(x))$$
$$\mathcal{A}(lam, \rho, \sigma) \triangleq (lam, \rho)$$
$$\mathcal{A}(\mathfrak{X}, \rho, \sigma) \triangleq \mathfrak{X}$$

Transition Function:

$$(\Sigma \times Store) \leadsto (\Sigma \times Store)$$

$(\varsigma \times \sigma) \leadsto (\varsigma' \times \sigma)$, where $\kappa = \sigma(a), b = alloc(\varsigma)$ proceed by matching on ς

proceed by matching on ζ	
$\overline{\langle (\text{if } e_c \ e_t \ e_f), \rho, a \rangle}$	$\langle e_c, \rho, b \rangle$
**	$\sigma[b \mapsto \mathbf{ifk}(e_t, e_f, \rho, a)] \\ \langle e_x, \rho, b \rangle$
$\overline{\langle (\text{let } (x \ e_x) \ e_b), \rho, a \rangle}$	$\langle e_x, \rho, b \rangle$
	$\sigma[b \mapsto \mathbf{letk}(x, e_b, \rho, a)]$
$\overline{\langle (\text{prim } op \ e_0 \ es), \rho, a \rangle}$	$\langle e_0, \rho, b \rangle$
	$\sigma[b \mapsto \mathbf{appk}([op], es, \rho, a)]$
$\overline{\langle (\mathtt{call/cc}\; \mathtt{e}), ho, a angle}$	$\langle e, \rho, b \rangle$
	$\sigma[b \mapsto \mathbf{appk}([\mathbf{call/cc}],[\;],\rho,a)]$
$\overline{\langle (e_f \ es), \rho, a \rangle}$	$\langle e_f, \rho, b \rangle$
	$\sigma[b \mapsto \mathbf{appk}([], e_s, \rho, a)]$
$\langle \mathfrak{X}, \rho, a \rangle$	
let $v = \mathcal{A}(x, \rho, \sigma)$	
match on κ below	
mt	ς
$\mathbf{ifk}(e_t,e_f, ho',c)$	$\langle e_f, ho', c angle$
when $v = \#f$	
ifk (e_t, e_f, ρ', c)	$\langle e_t, \rho', c \rangle$
when $v \neq \#f$	
$\mathbf{letk}(x, e_b, \rho', c)$	$\langle e_b, \rho'[x \mapsto b], c \rangle$
	$\frac{\sigma[b \mapsto v]}{\langle e_h, \rho', b \rangle}$
$\mathbf{appk}(done, e_h :: e_t, \rho', c)$, , , , , , , , , , , , , , , , , , , ,
	$\sigma[b \mapsto \mathbf{appk}(done + [v], e_t, \rho', c)]$
$\mathbf{appk}(op :: v_s, [\], \rho', c)$	$\langle v', \rho', c \rangle$
	$v' = op \text{ applied to } (v_s + [v])$
$\mathbf{appk}(clo :: v_s, [\], \rho', c)$	$\langle e_b, \rho_{\lambda}[x_{s0} \mapsto b_0x_{si} \mapsto b_i], c \rangle$
where $clo = ((\lambda (x_s) e_b), \rho_{\lambda})$	$v_s' = v_s + [v]$
1/[11/][]/)	$ \frac{\sigma[b_0 \mapsto v'_{s_0}b_i \mapsto v'_{si}]}{\langle e, \rho_{\lambda}[x \mapsto c], c \rangle} $
$\mathbf{appk}([\mathbf{call/cc}],[],\rho',c)$	$\langle e, \rho_{\lambda}[x \mapsto c], c \rangle$
where $v = ((\lambda(x) e), \rho_{\lambda})$	/ / 1\
$\mathbf{appk}([\kappa_v],[\],\rho',c)$	$\langle v, \rho', b \rangle$
	$\sigma[b \mapsto \kappa_v]$

2 Abstract Semantics of Scheme CESK*