Fundamentals of Algorithms

ESC108A Elements of Computer Science and Engineering B. Tech. 2017

Course Leaders:

Roopa G.

Ami Rai E.

Chaitra S.

Objectives

- At the end of this lecture, student will be able to
 - Explain the process of arriving at a computer solution
 - Describe the nature of a computer algorithm
 - Explain the role of memory in a computer program and hence the use of variable in algorithms

Contents

- A Problem
- Computable Algorithms
- Role of Memory and its impact on computer algorithms
- Algorithms
- Problem Solving Approach
- Some Examples of Problem Solving

A Problem

Multiply

with

Given:

X 914147324

X 914147324

<u>118690495310465768</u>

What Did You Do?

Why Do You Follow These Steps?

- General solution
 - Works for any 2 numbers
- Guarantee of solution
- Any one who has never done multiplication can also follow these steps and find the result
 - Clear, precise steps

- Computers do not know anything
 - You must tell the steps
 - It will do the job for you

Program Development

Example: Problem

Q. Design and Develop a program to find factorial of a number

$$n! = 1 \times 2 \times 3 \times ... \times (n-1) \times n$$

Example: Algorithm

```
function fact(var n:integer);
var i { loop variable },
        ret{holds the return value}: integer;
begin {check n and calculate factorial}
        \{assert : n \ge 0\}
        ret := 1;
        for i := 2 to n do
        begin
               ret: = ret * i;
        end
end
```


Example: C Program

```
* File: Factorial.c
* Author: vsarma
 * Created on 18 July, 2014, 12:11 PM
 */
#include <stdio.h>
#include <stdlib.h>
#define NUMBER 4/*The number for calculating factorial*/
/* Function fact:
 * Calculates factorial of a given number.
 * Input: A positive Integer number
 * Output: The factorial of the number or -1 in case of an error
int fact(int n){
    int i;
    int ret = 1;
    if(n<0)
        return -1;
    for(i=2;i<=n;i++)</pre>
        ret = ret * i;
    return ret;
```


Example: Executable

00000000	7f	45	4c	46	01	01	01	00	00	00	00	00	00	00	00	00	.ELF
00000010	02	00	03	00	01	00	00	00	30	83	04	98	34	00	00	00	ji
00000020	b8	0b	00	00	00	00	00	00	34	00	20	00	98	00	28	00	j4(.j
00000030	25	00	22	00	06	00	00	00	34	00	00	00	34	80	04	08	%."44
00000040	34	80	04	98	00	01	00	00	00	01	00	00	05	00	00	00	[4
00000050	04	00	00	00	03	00	00	00	34	01	00	00	34	81	04	98	j44
00000060	34	81	04	98	13	00	00	00	13	00	00	00	04	00	00	00	[4
00000070	01	00	00	00	01	00	00	00	00	00	00	00	00	80	04	98	İ
00000080	00	80	04	98	dc	05	00	00	dc	05	00	00	05	00	00	00	ji
00000090	00	10	00	00	01	00	00	00	dc	05	00	00	dc	95	04	08	jj
000000a0	dc	95	04	98	20	01	00	00	24	01	00	00	06	00	00	00	j j
000000b0	00	10	00	00	02	00	00	00	е8	05	00	00	e8	95	04	08	
000000c0	е8	95	04	98	f0	00	00	00	f0	00	00	00	06	00	00	00	jj
000000d0	04	00	00	00	04	00	00	00	48	01	00	00	48	81	04	98	jhhj
000000e0	48	81	04	98	44	00	00	00	44	00	00	00	04	00	00	00	jHDDj
000000f0	04	00	00	00	50	e5	74	64	38	05	00	00	38	85	04	08	jP.td88j
00000100	38	85	04	98	24	00	00	00	24	00	00	00	04	00	00	00	[8\$\$
00000110	04	00	00	00	51	e5	74	64	00	00	00	00	00	00	00	00	jQ.tdj
00000120	00	00	00	00	00	00	00	00	00	00	00	00	06	00	00	00	
00000130	04	00	00	00	2f	6c	69	62	2f	6c	64	2d	6c	69	6e	75	/lib/ld-linu
00000140	78	2e	73	6f	2e	32	00	00	04	00	00	00	10	00	00	00	x.so.2
00000150	01	00	00	00	47	4e	55	00	00	00	00	00	02	00	00	00	jgNUj
00000160	06	00	00	00	1a	00	00	00	04	00	00	00	14	00	00	00	
00000170	03	00	00	00	47	4e	55	00	6f	05	СС	96	62	0с	6e	10	[GNU.ob.n.]
00000180	20	7f	eb	c3	d8	с0	За	7d	f4	7d	be	b3	03	00	00	00	jj
00000190	05	00	00	00	02	00	00	00	03	00	00	00	04	00	00	00	
000001a0	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	
000001b0	01	00	00	00	02	00	00	00	04	00	00	00	01	00	00	00	
000001c0	05	00	00	00	00	20	00	20	00	00	00	00	04	00	00	00	
000001d0	ad	4b	е3	с0	00	00	00	00	00	00	00	00	00	00	00	00	.K
000001e0	00	00	00	00	29	00	00	00	00	00	00	00	00	00	00	00)
000001f0	12	00	00	00	01	00	00	00	00	00	00	00	00	00	00	00	
00000200	20	00	00	00	30	00	00	00	00	00	00	00	00	00	00	00	0
00000210	12	00	00	00	1a	00	00	00	1c	85	04	98	04	00	00	00	
00000220	11	00	10	00	00	5f	5f	67	6d	6f	6e	5f	73	74	61	72	gmon_star
00000230	74	5f	5f	00	6c	69	62	63	2e	73	6f	2e	36	00	5f	49	tlibc.so.6I
00000240	4f	5f	73	74	64	69	6e	5f	75	73	65	64	00	70	72	69	0_stdin_used.pri
	-		~~	~ ~			_	~~						~ ~			i T

Algorithms and Programs

An Algorithm

- Set of finite steps that give the solution to a problem
- a sequence of computational steps that transform the input into the output
- A procedure for solving a problem consists of
 - actions to be executed, and
 - order in which these actions are to be executed

A Computer Program

It is the algorithm to solve a problem, expressed in a programming language

Why is it called an Algorithm?

Named after Abū Abdallāh Muḥammad ibn Mūsā al-Khwārizmī (عَبْدَالله مُحَمَّد بِن مُوسَى اَلْخُوارِزْمِي)

- around 825
- On the Calculation with Hindu Numerals
- Algoritmi de numero Indorum
- 'Algorism'
 - rules of performing arithmetic
- 'Algorithm'
 - Steps to solve problems in Mathematics and Computer Science

Characteristics of an Algorithm

- Input
 - may accept zero or more inputs
- Output
 - should produce at least one output
- Precise
 - each step should be clear and precise. No ambiguity
- Finiteness
 - should end after a fixed time. No infinite loop
- Effectiveness
 - steps must be simple and can be done exactly and in a finite length of time, by person using pencil and paper

Pseudocode

- A pseudocode is neither an algorithm nor a program
- An abstract form of a program
- Consists of English like statements which perform the specific operations
- Syntax of a program is not strictly followed
- Pseudocode programs are not executed on computers

Memory, Storage and Variable

- •Computers store values in its memory
- A value is associated
 - Name (Variable)
 - Address
- Hence in Computer algorithms
 - Variables are used
 - Variables are associated with type

Variable

A name given to a location that stores a value

```
var a: integer;
{This is how a variable is declared with its type}
a := 5;
{This is called assignment operation. 5 is stored in the location that 'a' represents in the memory}
```

12	22	33	5	121		
00	01	02	03	04		1024
m	n	1	а	b	•••	

Example: Swap 2 Variables

- Swap values in two integer variables
 - Problem definition:
 - x has an integer value 'k'
 - y has an integer value 'l'
 - At end of execution
 - x must have integer value 'l'
 - y must have integer value 'k'
- APPROACH
 - No initial checks are required
 - To Swap values of variables, we need a third variable
 - Take an example: a := 10 and b := 20

Example: Swap 2 Variables contd.

Example: Swap 2 Variables contd.

Example: Swap 2 Variables contd.

Final Algorithm: Swapping two variables

```
Algorithm swap
var a,b,temp :integer; {The temporary variable}
begin
    temp := a;
    a := b;
    b := temp;
end
```


Practice Problems

- Write an algorithm to
 - Calculate the sum of two numbers
 - Calculate the area of a circle
 - Find the largest of three numbers

Summary

- An algorithm is a set of explicit and unambiguous finite steps which when carried out for a given set of initial conditions, produce the corresponding output and terminate in a finite time
- Computers programs work with memory and hence computer algorithms are written to work with variables
- Computer solutions are called programs
- A Program is a set of explicit and unambiguous instructions expressed in a programming language
- Programming is application of problem solving using a computer

References

Dromey, R. (1982) *How To Solve it By Computer.* Noida: Pearson Education Inc.

Further Reading

Dijkstra, E. (1970). On Understanding Programs. *EWD249:* notes on structured programming (1969a), available at http://www. cs. utexas. edu/users/EWD/ewd02xx/EWD249. PDF (accessed 22 July 2014).

