Problem Set I

Amaan Rahman

February 23, 2023

Fundamentals

Introduction to Sets

- 1. (a) (i) $\{x \in \mathbb{Z} : |2x| < 5\} = \{-2, -1, 0, 1, 2\}$
 - (ii) $\{X : X \subseteq \{3, 2, a\} \text{ and } |X| = 2\} = \{\{3, 2\}, \{3, a\}, \{2, a\}\}\$
 - (iii) $\{X \subseteq \mathbb{N} : |X| \le 1\} = \{\emptyset, \{x\}\}, x \in \mathbb{N}$
 - (b) (i) $\{0, 1, 4, 9, 16, 25, 36\}$
 - $(1) \ \left\{ x^2 : x \in \mathbb{Z}_{\geq 0} \right\}$
 - $(2) \ \left\{ x^2 : x \in \mathbb{Z} \ \text{and} \ x \ge 0 \right\}$
 - (ii) $\{3,4,5,6,7,8\}$
 - $(1) \ \left\{ x \in \mathbb{N} : 3 \le x \le 8 \right\}$
 - (2) $\{x \in \mathbb{Z} : 3 \le |x| \le 8\}$
 - (iii) $\left\{\dots, -\pi, \frac{-\pi}{2}, 0, \frac{\pi}{2}, \pi, \frac{3\pi}{2}, 2\pi, \frac{5\pi}{2}, \dots\right\}$
 - $(1) \ \left\{ \frac{x\pi}{2} : x \in \mathbb{Z} \right\}$
 - $(2) \ \left\{ x \in \mathbb{R} : sin(x) = sign(x) \right\}$
- 2. (a) $|\mathcal{P}(\mathcal{P}(\mathcal{P}(A)))| = 2^{2^{2^m}}$
 - (b) $|\mathcal{P}(A) \times \mathcal{P}(B)| = 2^{m+n}$

(c)
$$|\{X \in \mathcal{P}(A) : |X| \le 1\}| = m + 1$$

(d)
$$|\{X \subseteq \mathcal{P}(A) : |X| \le 1\}| = 2^m + 1$$

Introduction to Mathematical Logic

- 1. (a) Proposition: 0 is an integer.

 The statement contains the word "is", which is equivalent to the "=" logical operator indicating a truth value; the statement is true because 0 is an integer.
 - Not a Proposition: To be or not to be?

 The statement indicates no truth value and is posing a philisophical question from Hamlet.
 - (b) (i) P: x = 0 and Q: y = 0 $P \land \neg Q$
 - (ii) $P: matrix \ is \ invertible \ {\rm and} \ Q: \ determinent \ is \ not \ zero \ Q \implies P$
 - (iii) $P: function \ is \ continuous \ {\rm and} \ Q: function \ is \ differentiable \ Q \implies P$
 - (iv) $P: you \ fail \ and \ Q: stop \ writing$ $P \implies Q$

Equivalent

(b)	P	Q	R	$P \lor Q$	$(P \vee Q) \wedge R$	$Q \wedge R$	$P \lor (Q \land R)$
	F	F	F	F	F	F	F
	\mathbf{F}	F	Т	F	F	F	${ m F}$
	\mathbf{F}	Т	\mathbf{F}	Т	F	F	${ m F}$
	\mathbf{F}	Т	Τ	Т	${ m T}$	Т	${ m T}$
	Τ	F	F	Т	F	F	${ m T}$
	Τ	F	Т	Т	${ m T}$	F	${ m T}$
	Τ	Т	\mathbf{F}	Т	F	F	${ m T}$
	Τ	Γ	Τ	Т	${ m T}$	Т	${ m T}$

Not Equivalent

$$\begin{array}{c|cccc} (c) & P & Q & \neg (P \implies Q) & P \land \neg Q \\ \hline F & F & T & F \\ F & T & F & F \\ T & F & T & T \\ T & T & F & F \end{array}$$

Equivalent

- 3. (a) Symbolic: a + x = x; $\exists a, \forall x \in \mathbb{R}$
 - Negation: There exists a real number x for which a + x = x is false for every real number a.
 - (b) Symbolic: $|f(x) b| < \epsilon$ and x > M; $\forall \epsilon, \exists M > 0$
 - Negation: For every positive number M there is a positive number ϵ for which $|f(x) b| \ge \epsilon$ whenever $x \le M$
 - (c) Symbolic: f = polynomial and $deg(f) > 2 \implies f'' \neq 0$
 - Negation: If f is not a polynomial or its degree is less than or equal to 2, then f' is a constant.

Advanced

- 1. (a) i. Let $a \in A$ and $r \in \mathbb{Z}$. By definition of A, a = 6r + 12 = 3(2r+4). Because $r \in \mathbb{Z}$ and $2r+4 \in Z$, $a \in B \implies A \subset B$.
 - ii. $A \neq B$ holds true if there is an element in B not in A. For instance, given that $n \in B$, lets say n = 3; then, $s = 1 \in \mathbb{Z}$. However, for $m \in A$, m cannot be 3 because there is no such $r \in \mathbb{Z}$ that satisfies 3 = 6r + 12.

- iii. Thus, A is a proper subset of B because $A \subset B$ and $A \neq B$.
- (b) False. Let $A = \{1, 2, 3\}$, $B = \{1, 2, 3, 4, 5\}$, $C = \{2, 3, 4\}$, and $D = \{2, 3, 4, 5, 6\}$. Then, $A \subseteq B$ and $C \subseteq D$. $A \setminus C = \{1, 4\}$ and $B \setminus D = \{1, 6\} \implies A \setminus C \subsetneq B \setminus D$.
- (c) Given that $\bigcup_{i=1}^{\infty} A_i = \bigcap_{i=1}^{\infty} A_i$, then all A_i 's must be equal since the the unions and intersections of A_i 's are equal.