Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н.Э. Баумана

(национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ Робототехн	ники и комплексной авто	<u>матизации (РК)</u>
КАФЕДРА Системы авто	оматизированного проек	тирования (РК-6)
	АБОРАТОРНО	
по дисц	иплине: «Схемотехни	1Ka»
Студент	Журавлев Никол	тай Вадимович
Группа	РК6-62Б	
Тип задания	Лабораторная ра	абота №1
Название	«Знакомство с V	/HDL»
Вариант лабораторной работы	5	
Студент _	подпись, дата	Журавлев Н.В. фамилия, и.о.
Преподаватель _	подпись, дата	Берчун Ю.В. фамилия, и.о.
Оценка		

Москва, 2022 г.

Оглавление

Цель работы	3
Задание	3
Построение Карт Карно и получение МДНФ для каждого выхода	4
Программный код выражений, которым соответствуют МДНФ каждого выходов	
Построение временных диаграмм	6
Получение таблицы истинности	7
Заключение	8
Список литературы	9

Цель работы

Ознакомиться с системой VHDL, построить модель системы логических функций и построить временные диаграммы в данной системе.

Задание

Задано устройство, имеющее 4 входа и 3 выхода, таблицы истинности, представленной на рис. 1. Требуется с использованием карт Карно получить минимальные ДНФ или КНФ (на выбор) для каждого выхода. Затем с использованием этих выражений получить поведенческую модель на VHDL. Задержки в данном задании ставятся нулевые. Необходимо построить временную диаграмму, чтобы подтвердить, что таблица истинности реализуется правильно для всех комбинаций входных сигналов.

Для моделирования системы логических функций требуется:

- 1. Определить для каждой функции системы форму её реализации прямую или инверсную.
 - 2. Минимизировать представление функций с помощью карт Карно.
- 3. Составить поведенческую VHDL-модель, употребив логические операторы и операторы назначения сигналов.

	Вариант 5							
x1	x2	x3	x4	y1	y2	y3		
0	0	0	0	0	1	0		
0	0	0	1	0	0	0		
0	0	1	0	0	1	1		
0	0	1	1	1	1	1		
0	1	0	0	0	1	1		
0	1	0	1	1	0	0		
0	1	1	0	1	0	0		
0	1	1	1	0	0	0		
1	0	0	0	1	1	0		
1	0	0	1	0	1	0		
1	0	1	0	0	1	0		
1	0	1	1	0	0	1		
1	1	0	0	0	1	0		
1	1	0	1	0	1	0		
1	1	1	0	1	0	1		
1	1	1	1	0	0	1		

Рис 1. Исходная таблица истинности.

Построение Карт Карно и получение МДНФ для каждого выхода

Для выхода y_1 построим карту Карно:

$y_1 \sim$	-				
, ,	x_1, x_2 x_3, x_4	00	01	11	10
	00	0	0	1	0
	01	0	(1)	0	1
	11	0	0	0	1
	10	1	0	0	0

Рис 2. Карта Карно для выхода y_1 .

Из карты Карно (Рис. 2) получается следующая МДНФ:

$$y_1 = \overline{x_1} \overline{x_2} x_3 x_4 + \overline{x_1} x_2 \overline{x_3} x_4 + x_2 x_3 \overline{x_4} + x_1 \overline{x_2} \overline{x_3} \overline{x_4}$$

Для выхода у2 построим карту Карно:

x_1, x_2	00	01	11	10
00		0	1	1
01	1	0	0	0
11	1	1	0	0
10	1	1	0	1
	00 01 11	x_1, x_2 00	x_1, x_2 00 01 00 01 00 01 00 01 1 0 01 1 1 1 1	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

Рис 3. Карта Карно для выхода y_2 .

Из карты Карно (Рис. 2) получается следующая МДНФ:

$$y_2 = \overline{x_2} \, \overline{x_4} + \overline{x_3} \, \overline{x_4} + x_1 \overline{x_3} + \overline{x_1} \, \overline{x_2} x_3$$

Для выхода y_3 построим карту Карно:

y_3					
	x_1, x_2	00	01	11	10
	00	0	0	1	
	01	(1)	0	0	0
	11	0	0	1	1
	10	0	0	1	0

Рис. 4. Карта Карно для выхода y_3 .

Из карты Карно (Рис. 2) получается следующая МДНФ:

$$y_3 = \overline{x_1} x_2 \overline{x_3} \overline{x_4} + \overline{x_1} \overline{x_2} x_3 + x_1 x_2 x_3 + x_1 x_3 x_4$$

Программный код выражений, которым соответствуют МДНФ каждого из выходов

В листинге 1 описан программный код, в результате исполнения которого будет построена временная диаграмма.

Листинг 1. Программный код.

```
library IEEE;
use IEEE.STD LOGIC 1164.all;
entity lab1 is
       port (
             x1 : in STD LOGIC;
             x2 : in STD LOGIC;
             x3 : in STD LOGIC;
             x4 : in STD LOGIC;
             y1 : out STD LOGIC;
             y2 : out STD LOGIC;
             y3 : out STD LOGIC
           );
end lab1;
--}} End of automatically maintained section
architecture lab1 of lab1 is
begin
y1 \le ((not(x1) and not(x2)) and (x3 and x4)) or ((not(x1) and x2))
and (not(x3) \text{ and } x4)) or ((x2 \text{ and } x3) \text{ and } not(x4)) or ((x1 \text{ and }
not(x2)) and (not(x3)) and not(x4))) after 0 ns;
y2 \le (not(x2) \text{ and } (not(x4))) \text{ or } (not(x3) \text{ and } not(x4)) \text{ or } (x1 \text{ and})
not(x3)) or ((not(x1) and not(x2)) and x3) after 0 ns;
y3 \le (((not(x1) and x2) and (not(x3)) and not(x4))) or (((not(x1)
and not(x2)) and x3)) or ((x1 and x2) and x3) or ((x1 and x3) and
x4) after 0 ns;
end lab1;
```

Построение временных диаграмм

Построив карты Карно и составив МДНФ для каждого выхода, введём выражения в систему VHDL без указания задержек, задаем им нулевые значения. Далее строим временные диаграммы. Назначим входным сигналам x_1 , x_2 , x_3 , x_4 частоты 10, 20, 40, 80 соответственно. Ввод значений входных сигналов представлен на рис. 5.

Рис. 5. Ввод значений входных сигналов.

Время моделирования примем равным 300 ns. После этого запустим симуляцию с помощью кнопки Run for 3 раза. Выведенная временная диаграмма представлена на рис. 6.

Рис. 6. Временная диаграмма.

Получение таблицы истинности

С помощью инструмента New List получим таблицу истинности по временным диаграммам. Из-за нулевых задержек некоторым входным данным будут соответствовать сразу несколько строк. Это может быть следствием мгновенного переключения сигналов, из-за чего система не понимает, к какому состоянию отнести сигнал. Эти строки нужно отбросить. Тогда полученная таблица истинности будет иметь вид, представленный на рис. 7.

Time	Delta	□ x1	⊳ x2	⊳ x3	№ x4	~ y1	⊸ y2	⊸ y3
0.000	1	0	0	0	0	0	1	0
6.250 ns	1	0	0	0	1	0	0	0
12.500 ns	1	0	0	1	0	0	1	1
18.750 ns	1	0	0	1	1	1	1	1
25.000 ns	1	0	1	0	0	0	1	1
31.250 ns	1	0	1	0	1	1	0	0
37.500 ns	0	0	1	1	0	1	0	0
43.750 ns	1	0	1	1	1	0	0	0
50.000 ns	1	1	0	0	0	1	1	0
56.250 ns	1	1	0	0	1	0	1	0
62.500 ns	0	1	0	1	0	0	1	0
68.750 ns	1	1	0	1	1	0	0	1
75.000 ns	1	1	1	0	0	0	1	0
81.250 ns	0	1	1	0	1	0	1	0
87.500 ns	1	1	1	1	0	1	0	1
93.750 ns	1	1	1	1	1	0	0	1

Рис. 7. Полученная таблица истинности.

Заключение

В ходе лабораторной работы были изучены возможности VHDL по моделированию систем логических функций. Так же были построены временные диаграммы по МДНФ каждого выхода, которые были составлены по картам Карно, и по полученным диаграммам была построена таблица истинности.

Список литературы

- 2. Берчун Ю.В. Методические указания по курсу «ЭВМ и ПУ» «Язык описания электронной аппаратуры VHDL». 2006.