### "Targeting Inflation Expectations?"

#### Mridula Duggal

Universitat Autònoma de Barcelona Barcelona School of Economics

November 2022

#### Are Expectations Relevant?

• Modern macroeconomic theory emphasises the role of expectations for inflation.



- Policy changes are introduced to anchor expectations and communicate with the public.
- Limited information on the formation and updating of these expectations
  - Specifically, under regime changes.

### How do inflation and expectations evolve?

Figure: Colombia Inflation and Inflation Expectations



#### How do inflation and expectations evolve?

Figure: US Inflation and Inflation Expectations



#### Policy Change and Expectations

- Do agents respond to a change in monetary policy, specifically, the introduction of Inflation Targeting?
  - 1 Do agents change their priors, at the time of implementation?
    - The data suggests no.
  - ② Does anticipation (announcement) of the policy play a role in the way priors are updated?
    - In a negligible way

**Key Finding:** Inflation leads expectations.

**Policy Implication**: Focus on inflation as the sole objective.

#### Paper builds on three strands of the literature

- Inflation Targeting and Inflation Expectations (RE): Impact of a change in policy under deviations from RE. Ball and Sheridan (2004), Gürkaynak et al. (2010), Beechey et al. (2011)
- 2 Inflation Expectations and Subjective Beliefs: Survey data from 32 countries and anticipation of the policy. Coibion and Gorodnichenko (2015), Coibion et al. (2018), Carvalho et al. (2021), Gáti (2022).
- **Tredibility:** Assess the credibility of the target. Kostadinov and Roldán (2020), King et al. (2020), Duggal and Rojas (2022)

#### Roadmap

- Agents' Expectations
  - Rational Expectations
  - Subjective Expectations
- Empirical Framework
  - **1** Ifo World Economic Survey
  - Method and Strategy
- Does the target matter for expectations? (Results)
- Simulations of an alternate perceived law of motion (PLM)
- Conclusion

## Agents' Expectations

#### Timing



#### Inflation

Inflation evolves according to a univariate unobserved component model, based on Stock and Watson (2007) and Stock and Watson (2016).

$$\pi_t = \tau_t + \varepsilon_t$$
, where,  $\varepsilon_t = \sigma_{\varepsilon,t} \zeta_{\varepsilon,t}$  (1)

$$\tau_t = \tau_{t-1} + \vartheta_t$$
, where,  $\vartheta_t = \sigma_{\vartheta,t} \zeta_{\vartheta,t}$  (2)

$$\ln \sigma_{\varepsilon,t}^2 = \ln \sigma_{\varepsilon,t-1}^2 + \nu_{\varepsilon,t} \tag{3}$$

$$\ln \sigma_{\vartheta,t}^2 = \ln \sigma_{\vartheta,t-1}^2 + \nu_{\vartheta,t} \tag{4}$$

 $\zeta_t = (\zeta_{\varepsilon,t}, \zeta_{\vartheta,t}) \sim iid(0, I_2)$  and  $\nu_t = (\zeta_{\nu,t}, \zeta_{\nu,t}) \sim iid(0, \gamma I_2)$ . Moreover,  $Cov(\zeta_t, \nu_t) = 0$ . Where,  $\gamma$  is a smoothing parameter for the stochastic volatility process.

#### Rational Expectations: Jump in Expectations

- Under RE, agents have perfect knowledge about the underlying process for inflation.
- 2 Pre-inflation targeting:  $\mathbb{E}_t \pi_{t+h|t} = \tau_t$  (Alternatively, the inflation bias à la Barro-Gordon)
- **3** Post-Inflation Targeting:  $\mathbb{E}_t \pi_{t+h|t} = \pi^T$  (Full Commitment)

**Takeaway:** Expectations jump from  $\tau_t$  to  $\pi^T$ 

### Subjective Expectations: Adaptive Learning

- Agents do not know the underlying process for inflation.
- Agents behave as econometricians
  - Use past information to forecast future inflation.
- **Assumption**: Agents use an unobserved component model (constant gain learning) to forecast inflation

$$\pi_t = \beta_t + \epsilon_t \tag{5}$$

$$\beta_t = \beta_{t-1} + \eta_t \tag{6}$$

Where,  $\epsilon_t \sim ii\mathcal{N}(0, \sigma_{\epsilon}^2)$  and  $\eta_t \sim ii\mathcal{N}(0, \sigma_{\eta}^2)$  are independent of each other and jointly *iid*. Therefore,  $\mathbb{E}[(\epsilon_t, \eta_t)|\mathcal{I}_{t-1}] = 0$ .

#### Pre-Inflation Targeting

- 4  $\beta_t$  is unobserved and estimated using the **Kalman Filter**.
- 5 Therefore,  $\beta_t | \mathcal{I}_t \sim \mathcal{N}(\tilde{\beta}_t, \tilde{\sigma}^2)$ .
- 6 **Optimal updating** then implies that  $\tilde{\beta}_t$  evolves recursively according to,

$$\tilde{\beta}_t = \tilde{\beta}_{t-1} + \kappa (\pi_t - \tilde{\beta}_{t-1}) \tag{7}$$

- 7 And expectations are therefore given by,  $\mathbb{E}_t^{\mathcal{P}} \pi_{t+1} = \tilde{\beta}_t$ .
- 8  $\kappa$  is the gain and is defined as the strength with which agents update their beliefs.

#### Post-Inflation Targeting

#### Two Possibilities

• The process remains unchanged

$$\tilde{\beta}_{t \ge IT} = \tilde{\beta}_{IT} + \kappa (y_{IT} - \tilde{\beta}_{IT-1}) \tag{8}$$

- Priors adjust:  $\beta_t | \mathcal{I}_t \sim \mathcal{N}(\tilde{\beta}_{IT}, \tilde{\sigma}_{IT}^2)$ .
- 2 Alternatively, the agents incorporate the inflation target in their PLMs and the rule changes to the following,

$$\tilde{\beta}_{t \ge IT} = \tilde{\beta}_{IT} + \kappa (y_{IT} - \alpha \pi^T - (1 - \alpha) \tilde{\beta}_{IT-1})$$
(9)

### Hypothesis



## Empirical Framework

#### Ifo World Economic Survey

- Survey of professional forecasters.
- 2 Expectations about inflation six-months-ahead (two-quarters-ahead)
- Sample period: 1991Q1 2019Q4
- Data for 32 Inflation Targeting countries
- **5 Forecast Errors:**  $\underbrace{FE_t}_{\Psi_t} = \pi_{t+h} \mathbb{E}_t^{\mathcal{P}} \pi_{t+h|t}$ 
  - If  $\Psi_t < 0 \Rightarrow$  Overprediction
  - If  $\Psi_t > 0 \Rightarrow$  Underprediction
- **Announcement date:** Based on first discussion of an interest rate/Taylor rule in the monetary policy statements.
- **Implementation date:** Based on when the new memorandum comes into effect.

#### Methods

- Event study approach by Borusyak et al. (2021) to assess any change in the levels and volatility of inflation expectations, forecast errors and inflation.
- **Assumption:** Unobserved Heterogeniety is common for all countries  $(\delta_i = \bar{\delta})$ .
- **3** Assumption:  $\bar{\delta} = 0$ 
  - Otherwise, expectations would revolve around a trend unable to reach the Rational Expectation Equilibrium (REE).

Event Study

#### **Empirical Strategy: Regression**

$$\beta_{it} = \underbrace{\bar{\delta}}_{0} + \beta_{it-1} + \kappa (y_{it} - \beta_{it-1}) + \gamma_1 t + \gamma_2 \bar{\pi}_t + D_{it} \tau_{it} + \epsilon_{it}$$
 (10)

- $\beta_{it}$  are the inflation expectations from the survey.
- $y_{it}$  is the realised inflation
- $\bullet$   $\kappa$  is the Kalman gain
- $\bar{\pi}_t$  is the world inflation
- $D_{it} = 1$  if IT is active in country *i* at time *t*. Zero, otherwise
- $\tau_{it}$  is the treatment effect in country *i* at time *t*.

### Empirical Strategy: Horizons Example

① Let country n1 be treated at time t = 2 and country n2 be treated at time t = 4. Then,

$$\tau_{it} = \begin{bmatrix} 0, & \tau_{n1,2}, & \dots, & \tau_{n1,T}, & 0, & \dots, & \tau_{n2,4}, & \tau_{n2,5}, & \dots, & \tau_{n2,T} \end{bmatrix}'$$

② To compute the effect for each horizon  $h = \{1, 2, 3, \dots\}$ 

$$au_h = rac{1}{\Omega_{1.h}} \sum au_{ih}$$

Where,  $\Omega_{1,h}$  is the number of observations that are treated in  $h = t - E_i$  periods after the policy and  $E_i$  is the date of the event.

**3** Therefore,  $\tau_1 = \frac{1}{2}(\tau_{n1,2} + \tau_{n2,4})$ .

# Fact 1: Inflation expectations do not respond to the implementation of the policy.

Figure: Inflation Expectations Around Implementation



# Fact 2: Agents over predict inflation following an introduction of IT.

Figure: Forecast Errors Around Implementation



Fact 3: Forecast errors for those countries whose central banks have single mandates are close to zero a few quarters after implementation.

Figure: Forecast Errors Around Implementation



# Fact 4: There is minimal change in inflation expectations upon announcement.

Figure: Inflation Expectations Around Announcement



# Fact 5: Controlling for Central Bank Independence and Transparency does not change the result.

Figure: Inflation Expectations After controlling for Transparency



# (Fact 6) Let there be FIRE: Forecast Revisions predict forecast errors more than before IT.

| VARIABLES                            | 1        | 2         |
|--------------------------------------|----------|-----------|
|                                      |          |           |
| Forecast Errors                      | 0.742*** | 0.844***  |
|                                      | (0.227)  | (0.156)   |
| $\text{Cons}*\mathbb{1}_{t\geq t^*}$ |          | -0.0957   |
|                                      |          | (0.214)   |
| $FE*1_{t \geq t^*}$                  |          | -1.395*** |
|                                      |          | (0.495)   |
| Constant                             | -0.176** | 0.756***  |
|                                      | (0.0846) | (0.0839)  |
| Observations                         | 115      | 115       |

Robust standard errors in parentheses

\*\*\* p<0.01, \*\* p<0.05, \* p<0.1

### Story thus far

- Rational expectations predicts expectations jump from  $\tau_t$  to  $\pi^T$ .
- 2 Agents use a constant gain model to learn.
- **3** Priors do not adjust to the inflation target  $\pi^T$ .
- Agents over predict inflation after the introduction of IT.
  - Because inflation declines post-IT.
  - Countries with single mandates lead this change.

## Alternative PLM

#### Post-Inflation Targeting

At t = IT inflation targeting is introduced.

1 Agents' beliefs about inflation are given by,

$$\pi_t = (1 - \alpha)\beta_t + \alpha \pi^T + \epsilon_t \tag{11}$$

$$\beta_t = \beta_{t-1} + \eta_t \tag{12}$$

Moreover,  $\epsilon_t \sim ii\mathcal{N}(0, \sigma_{\epsilon}^2)$  and  $\eta_t \sim ii\mathcal{N}(0, \sigma_{\eta}^2)$  are independent of each other and jointly *iid*. Therefore,  $E[(\epsilon_t, \eta_t)|I_{t-1}] = 0$ .

#### Post-Inflation Targeting

2 Optimal updating then implies that  $\tilde{\beta}_t$  evolves recursively according to,

$$\tilde{\beta}_t = \tilde{\beta}_{t-1} + \kappa (\pi_t - \alpha \pi^\mathsf{T} - \tilde{\beta}_{t-1} (1 - \alpha)) \tag{13}$$

3 Kalman Gain is given by,

$$\kappa = \frac{\tilde{\sigma}_{\beta}^{2}(1-\alpha)}{(1-\alpha)^{2}\tilde{\sigma}_{\beta}^{2} + \sigma_{\epsilon}^{2}}$$
 (14)

4 Variance of the prior is updated according to,

$$\tilde{\sigma}_{\beta}^{2} = \tilde{\sigma}_{\beta,0}^{2} - \kappa (1 - \alpha) \tilde{\sigma}_{\beta,0}^{2} + \sigma_{\eta}^{2}$$
(15)

### Speed of Adjustment

Figure: Change in weight to information



#### Moments

**Table: Moments** 

|                                    | Pre-IT |       | Post-IT |        |
|------------------------------------|--------|-------|---------|--------|
| Moment                             | Model  | Data  | Model   | Data   |
| $\widehat{E(\pi_t^e)}$             | 22.67  | 22.03 | 5.78    | 5.636  |
| $\widehat{\sigma_{\pi^e_t}}$       | 1.92   | 2.87  | 4.64    | 3.041  |
| $\widehat{ ho_{\pi^e_t}}$          | 0.938  | 0.447 | 0.82    | 0.780  |
| $\widehat{E(\pi_t - \pi_t^e)}$     | 0.570  | 0.684 | -0.35   | -0.366 |
| $\widehat{\sigma_{\pi_t-\pi_t^e}}$ | 0.871  | 1.65  | 0.049   | 1.395  |
| $\widehat{ ho_{\pi_t-\pi_t^e}}$    | 0.216  | 0.217 | 0.417   | 1.017  |

#### Parameters

**Table:** Parameters

| Parameters | Pre-IT | Post-IT |         |  |
|------------|--------|---------|---------|--|
|            |        | 2 years | 5 years |  |
| $\kappa$   | 0.0553 | 0.057   | 0.110   |  |
| $\alpha$   | -      | 0.10    | 0.11    |  |

#### Conclusions

- Priors do not adjust after the introduction of IT.
- Forecast errors adjust because of a change in inflation.
- Agents rely on past inflation to make forecasts ⇒ Inflation leads expectations
- Credibility of the central bank following the announcement is small  $(\alpha \approx 0.1)$ .
  - **1** Successful anchoring requires:  $\alpha \approx 1$ .
  - 2 But central banks can become credible ex-post.
- Policy should focus on a single objective even though the adjustment is not based on the anticipated channel.

## Thank You!

Feel free to send questions, comments or just a hi!

Website: https://www.mridulaecon.io

Email: mridula.duggal@bse.eu

## Appendix

# Inflation Targeting

A country is called an Inflation Targeter (Hammond et al. (2012)) when the following conditions are met.

- Price stability is recognised as the explicit goal of monetary policy.
- 2 There is a public announcement of a quantitative target for inflation.
- Monetary policy is based on a wide set of information, including an inflation forecast.
- Transparency
- Accountability mechanisms.

Research Ouestion

### Short-Run Expectations

Consider the Euler equation,

$$u'(c_t) = \beta \mathbb{E}_{t} \left[ u'(c_{t+1}) \frac{(1+i_t)}{1+\pi_{t+1}} \right]$$
 (16)

- Equation (16) explains how consumption today, adjusts to inflation expectations one-period ahead. Thus, adjustment to short run expectations leads to stimulation of consumption which further contributes to a rise in inflation.
- The objective of Inflation Targeting is respond to deviations in target irrespective of the length of time of deviations.

Agents' Expectations

### Barro-Gordon

Let's assume the following simple model of the central bank with the loss function given by,

$$\mathcal{L}^{CB} = \max_{\pi_t} \frac{1}{2} \left[ (y_t - y^*)^2 + a(\pi_t - \pi_t^*)^2 \right]$$
 (17)

Where,  $y_t$  and  $\pi_t$  are the current output and inflation levels.  $y^*, \pi^*$  are the potential output and inflation target.  $\mathcal{L}^{CB}$  represents the loss function of the central bank subject to the following constraint,

$$y_t = b(\pi_t - \pi_t^e) \tag{18}$$

(18) is the Phillips Curve, a, b > 0 and there is perfect foresight. Given there are rational expectations this would imply that  $\pi_t^e = \pi_t$ . That is, agents always know the optimal level of inflation from the central bank's loss function. Let us now consider the switch in regimes.

#### **Pre-Inflation Targeting**

Take first order conditions and solve for optimal inflation with given inflation expectations and  $\pi^* = 0$ ,

$$\pi_t = \frac{b(\pi_t^e + y^*)}{a + b} \tag{19}$$

$$\pi_{t} = \frac{b(\pi_{t}^{e} + y^{*})}{a + b}$$

$$\pi_{t}^{e} = \frac{(a + b)\pi_{t} - by^{*}}{b}$$
(19)

Given the central bank does not have commitment and agents have rational expectations, the inflation will follow (20) which is often referred to as the inflation bias level.

#### **Post-Inflation Targeting**

Assume that the bank now has full commitment to bring reduce inflation to the target and let  $\pi_t^* \geq 0$ .

Then, following the same procedure as above we find the following,

$$\pi_t = \pi_t^* = \pi_t^e \tag{21}$$

Therefore, with rational expectations and full commitment by the central bank, inflation expectations will always be equal to the inflation target.

Agents' Expectations

# IT Countries

| Name of Country | Development Status | Mandate    | Hyper Inflation |
|-----------------|--------------------|------------|-----------------|
| Argentina       | Developing         | No-mandate | Yes             |
| Austria         | Advanced           | Dual       | No              |
| Belgium         | Advanced           | Dual       | No              |
| Brazil          | Developing         | Single     | Yes             |
| Chile           | Developing         | Single     | No              |
| Colombia        | Developing         | Single     | No              |
| Czech Republic  | Developing         | Single     | Yes             |
| Finland         | Advanced           | Dual       | No              |
| Germany         | Advanced           | Dual       | No              |
| Hungary         | Advanced           | Single     | No              |
| India           | Developing         | Single     | No              |
| Ireland         | Advanced           | Dual       | No              |
| Israel          | Developing         | Single     | No              |
| Italy           | Advanced           | Dual       | No              |
| Japan           | Advanced           | Single     | No              |
| Korea           | Developing         | Single     | No              |

| Name of Country | Development Status | Mandate | Hyper Inflation |
|-----------------|--------------------|---------|-----------------|
| Mexico          | Developing         | Single  | No              |
| Netherlands     | Advanced           | Dual    | No              |
| Norway          | Advanced           | Single  | No              |
| Paraguay        | Developing         | Single  | No              |
| Peru            | Developing         | Single  | Yes             |
| Philippines     | Developing         | Single  | No              |
| Poland          | Advanced           | Single  | Yes             |
| Russia          | Developing         | Single  | Yes             |
| South Africa    | Developing         | Single  | No              |
| Spain           | Advanced           | Dual    | No              |
| Switzerland     | Advanced           | Dual    | No              |
| Thailand        | Developing         | Single  | No              |
| Turkey          | Developing         | Single  | Yes             |
| Ukraine         | Developing         | Single  | Yes             |
| United States   | Advanced           | Dual    | No              |
| Uruguay         | Developing         | Single  | Yes             |

Survey

### REH Test

| Country          | Pre-IT  | Post-IT |
|------------------|---------|---------|
| Argentina        | .431*** | .529*** |
|                  | (.099)  | (0.069) |
| Austria          | .296*** | .659*** |
|                  | (.048)  | (0.059) |
| Belgium          | .202    | .611*** |
|                  | (.128)  | (0.511) |
| Brazil           | .410*** | .455*** |
|                  | (.046)  | (0.077) |
| Chile            | .167*** | .650*** |
|                  | (.041)  | (0.055) |
| Colombia         | .355*** | 162     |
|                  | (.062)  | (0.221) |
| <b>N.T. N.T.</b> | OF.     | 1       |

Newey West SE in parentheses
Targeting Inflation Expectations?

| Country        | Pre-IT  | Post-IT  |
|----------------|---------|----------|
| Czech Republic | .654*** | .269**   |
|                | (.134)  | (.142)   |
| Finland        | .401**  | .521***  |
|                | (.147)  | (.057)   |
| Germany        | .448*** | .470***  |
|                | (.038)  | (0.070)  |
| Hungary        | .054    | .290***  |
|                | (.072)  | (0.080)  |
| India          | .592*** | 1.139*** |
|                | (.150)  | (0.042)  |
| Ireland        | .695*** | .449***  |
|                | (.095)  | (0.082)  |
|                |         | -        |

| Country     | Pre-IT  | Post-IT  |
|-------------|---------|----------|
| Israel      | 2.22**  | 0.693*** |
|             | (.0672) | (0.207)  |
| Italy       | .038    | 0.411*** |
|             | (.089)  | (0.054)  |
| Japan       | .288**  | .598***  |
|             | (.094)  | (.081)   |
| Korea       | .526**  | .539***  |
|             | (.211)  | (.114)   |
| Mexico      | .041    | .396**   |
|             | (.058)  | (.135)   |
| Netherlands | .467*** | .343***  |
|             | (.130)  | (.083)   |
| NT          | · CE    | . 1      |

| Country     | Pre-IT  | Post-IT |
|-------------|---------|---------|
| Norway      | .612**  | .881*** |
|             | (.221)  | (.059)  |
| Paraguay    | .343*** | .535**  |
|             | (.086)  | (.224)  |
| Peru        | .572*** | .669*** |
|             | (.074)  | (.067)  |
| Philippines | .430*** | .547*** |
|             | (.064)  | (.107)  |
| Poland      | .034    | .262*** |
|             | (.122)  | (.059)  |
| Russia      | 367***  | .385*** |
|             | (.019)  | (.102)  |
| NT 117      | · CE ·  | .1      |

| Country      | Pre-IT  | Post-IT |
|--------------|---------|---------|
| South Africa | .355*** | .652*** |
|              | (.070)  | (.098)  |
| Spain        | .025    | .487*** |
|              | (.141)  | (.052)  |
| Switzerland  | .225*** | .401*** |
|              | (.049)  | (.077)  |
| Thailand     | .673*** | .592*** |
|              | (.145)  | (.081)  |
| Turkey       | .187    | 082     |
|              | (.130)  | (.080)  |
| Ukraine      | .564*** | .968*** |
|              | (.089)  | (.171)  |
|              | ~=      | •       |

| Country                      | Pre-IT  | Post-IT |
|------------------------------|---------|---------|
| United States                | .689*** | .791*** |
|                              | (.094)  | (.070)  |
| Uruguay                      | .130**  | .588*** |
|                              | (.041)  | (.105)  |
| Newey West SE in parentheses |         |         |

Survey

### Structural Break Test

|                                                     | $\pi_t^e$ |           | $\pi_t$  |           |
|-----------------------------------------------------|-----------|-----------|----------|-----------|
|                                                     | (1)       | (2)       | (1)      | (2)       |
| Lagged Var                                          | 0.939***  | 0.957***  | 0.944*** | 0.881***  |
|                                                     | (0.005)   | (0.008)   | (0.004)  | (0.007)   |
| $\text{Lag}{*}\mathbb{1}_{\{t\geq t^*\}}$           |           | -0.042*** |          | 0.108***  |
|                                                     |           | (0.011)   |          | (0.009)   |
| Constant                                            | 0.194***  | 0.285***  | 0.136*** | 0.718***  |
|                                                     | (0.032)   | (0.093)   | (0.028)  | (0.079)   |
| $\operatorname{Constant}\mathbb{1}_{\{t\geq t^*\}}$ |           | -0.042    |          | -0.739*** |
|                                                     |           | (0.100)   |          | (0.085)   |

Note: HAC Robust standard errors in parenthesis.

$$*p < 0.10, **p < 0.05, ***p < 0.01.$$



# Event Study

- For all untreated observations in  $\Omega_0$ , compute  $\beta_{it}$  by OLS. Thus, for this paper the regression is given by equation 10 to estimate  $\hat{\kappa}$ ,  $\hat{\gamma}_1$ ,  $\hat{\gamma}_2$ .
- ② For all the treated observations in  $\Omega_1$  and  $w_{it} \neq 0$  compute  $\beta_{it}(0) = \bar{\alpha} + \beta_{it-1} + \hat{\kappa}(y_{it} \beta_{it-1}) + \hat{\gamma}_1 t + \hat{\gamma}_2 \bar{\pi}_t + \epsilon_{it}$ .
- **3** Compute,  $\beta_{it} \beta_{it}(0) = \tau_{it}$  which gives us the treatment effect.
- Finally, the effect for each period after the treatment is computed as per  $w_{it} = \frac{1}{\Omega_{1,h}}$  where  $\Omega_{1,h} = \{it : K_{it} = h\}$  and  $K_{it} = t E_i$  which is the relative time since the adoption of the policy.

Methods

# Fact A1: Inflation expectations do not respond to the implementation of the policy.

Figure: Inflation Expectations Around Implementation



# Fact A2: No change in expectations for advanced economies.

Figure: Inflation Expectations Around Implementation





# Fact A3: Statistically insignificant decline in expectations for developing economies

Figure: Inflation Expectations Around Implementation



# Fact A4: No change in expectations for those who adopted targeting in the 2000s

Figure: Inflation Expectations Around Implementation



# Fact A5: No change in expectations even prior to the 2000s

Figure: Inflation Expectations Around Implementation





#### References I

- Ball, L. M. and Sheridan, N. (2004). Does inflation targeting matter? In *The inflation-targeting debate*, pages 249–282. University of Chicago Press.
- Beechey, M. J., Johannsen, B. K., and Levin, A. T. (2011). Are long-run inflation expectations anchored more firmly in the euro area than in the united states? *American Economic Journal: Macroeconomics*, 3(2):104–29.
- Borusyak, K., Jaravel, X., and Spiess, J. (2021). Revisiting event study designs: Robust and efficient estimation. *arXiv preprint arXiv:2108.12419*.
- Carvalho, C., Eusepi, S., Moench, E., and Preston, B. (2021). Anchored inflation expectations. *Available at SSRN 3018198*.
- Coibion, O. and Gorodnichenko, Y. (2015). Information rigidity and the expectations formation process: A simple framework and new facts. *American Economic Review*, 105(8):2644–78.

### References II

- Coibion, O., Gorodnichenko, Y., Kumar, S., and Pedemonte, M. (2018).

  Inflation expectations as a policy tool? Technical report, National Bureau of Economic Research.
- Duggal, M. and Rojas, L. E. (2022). (dis)inflation targeting. Working paper, Barcelona.
- Gáti, L. (2022). Monetary policy & anchored expectations: an endogenous gain learning model.
- Gürkaynak, R. S., Levin, A., and Swanson, E. (2010). Does inflation targeting anchor long-run inflation expectations? evidence from the us, uk, and sweden. *Journal of the European Economic Association*, 8(6):1208–1242.
- Hammond, G. et al. (2012). State of the art of inflation targeting. Handbooks.

### References III

- King, R. G., Lu, Y. K., et al. (2020). Managing expectations in the new keynesian model. Technical report, HKUST Center for Economic Policy.
- Kostadinov, R. and Roldán, F. (2020). *Credibility Dynamics and Disinflation Plans*. International Monetary Fund.
- Stock, J. H. and Watson, M. W. (2007). Why has us inflation become harder to forecast? *Journal of Money, Credit and banking*, 39:3–33.
- Stock, J. H. and Watson, M. W. (2016). Core inflation and trend inflation. *Review of Economics and Statistics*, 98(4):770–784.