Interpola v3.0

Agustin Garcia Centro de Ciencias de la Atmosfera, UNAM

Generated by Doxygen 1.8.18

1 Interpola	1
1.1 Mass conservative interpolation in overlaping grids	2
2 Modules Index	7
2.1 Modules List	7
3 File Index	9
3.1 File List	9
4 Module Documentation	11
4.1 vars_dat Module Reference	11
4.1.1 Detailed Description	14
4.1.2 Variable Documentation	14
4.1.2.1 cday	14
4.1.2.2 cenlat	14
4.1.2.3 cenlon	15
4.1.2.4 cname	15
4.1.2.5 cunits	15
4.1.2.6 current_date	15
4.1.2.7 dix	15
4.1.2.8 djx	15
4.1.2.9 dlat	16
4.1.2.10 dlon	16
4.1.2.11 dpob	16
4.1.2.12 dx	16
4.1.2.13 dxe	16
4.1.2.14 dy	16
4.1.2.15 dye	17
4.1.2.16 ed	17
4.1.2.17 ei	17
4.1.2.18 eix	17
4.1.2.19 ejx	17
4.1.2.20 elat	17
4.1.2.21 elon	18
4.1.2.22 ename	18
4.1.2.23 epob	18
4.1.2.24 gmt	
4.1.2.25 grid_id	
4.1.2.26 isice	18
4.1.2.27 islake	19

4.1.2.30 iswater			10
4.1.2.30 iswater			
4.1.2.32 julday			
4.1.2.33 julyr			
4.1.2.34 map_proj_char			
4.1.2.35 mapproj			
4.1.2.36 mecha			
4.1.2.37 mminlu			
4.1.2.38 moadcenlat			
4.1.2.39 ndims			
4.1.2.40 nh			
4.1.2.41 num_land_cat			
4.1.2.42 pollat			
4.1.2.43 pollon			
4.1.2.44 radm			
4.1.2.45 sdim			
4.1.2.46 stdlon			
4.1.2.47 times			
4.1.2.48 title			
4.1.2.49 tpob			
4.1.2.50 trulat1			
4.1.2.51 trulat2			
4.1.2.52 tvar			
4.1.2.53 unlimdimid	 	 	23
4.1.2.54 xlat	 	 	23
4.1.2.55 xlats	 	 	23
4.1.2.56 xlon	 	 	23
4.1.2.57 xlons	 	 	24
4.1.2.58 zlev	 	 	24
5 File Decumentation			05
5 File Documentation			25
5.1 calculos.F90 File Reference			25
5.1.1 Function/Subroutine Documentation			
5.1.1.1 conversion()			
5.2 Interpola.F90 File Reference			
5.2.1 Function/Subroutine Documentation			
5.2.1.1 interpola()	 	 	26

 4.1.2.28 isoilwater
 19

 4.1.2.29 isurban
 19

5.3 lee_files.F90 File Reference	. 27
5.3.1 Function/Subroutine Documentation	. 27
5.3.1.1 check()	. 27
5.3.1.2 file_reading()	. 27
5.4 README.md File Reference	. 28
5.5 salidas.F90 File Reference	. 28
5.5.1 Function/Subroutine Documentation	. 28
5.5.1.1 crea_attr()	. 28
5.5.1.2 file_out()	. 29
5.6 vars_dat_mod.F90 File Reference	. 29
lex .	33

Chapter 1

Interpola

Emission Interpolation to a new mesh by using a conservative flux method

The new mesh is provided by the wrfinput file and the original grid with emissions are provided from wrfchem file input files:

```
wrfchemin.nc ! A 12 hours emission file to be interpolated
  (0 to 11 hour or 12 to 23 hour)
wrfinput ! Domain where emissions will be interpolated can be a ge_em.d0?.nc
  file but the name should be wrfinput.
```

output file:

wrfchemin.nc - file contain emissions starting with "E_"

Domain to interpolate

2 Interpola

Output file: wrfchemi_00z_d02
00Z based on emissions and d02 based on wrfinput

Data Min = 0.0, Max = 4856.9

30.4

10.8

50.0

1.1 Mass conservative interpolation in overlaping grids

Emissions Inventories are generatred for represent global, regional or local emissions, air quality models domains are displayed in a different grid (dimensions and location) than the emissions. On other hand, emissions are a flux and it

is necesary to use a mass conservative interpolation in order to avoid inconsistencies in the emissions. An example of overlaping grids is presented in the followgin figure.

Grid with letters represents the new domain (it has coordinates dlat,dlon) and grid with numbers is the emissions (it has coordinates elat,elon). For N values in emission axis there are N+1 coordinates.

For the new domain to interpolate the emissions the following variables are set (where i is in x axis and j in y axis):

New domain	Emissions domain	Туре
ylat1=dlat(i ,j)	elat1= elat(ii,jj)	unstagged
ylat2=dlat(i,j+1)	elat2= elat(ii,jj+1)	stagged lat
xlon1=dlon(i ,j)	elon1= elon(ii,jj)	unstagged
xlon2=dlon(i+1,j)	elon2= elon(ii+1,jj)	stagged long

The following figure presents the coordinates locations in each mesh.

4 Interpola

In order to obtain the overlaped areas the following conditionals has to be evaluated:

```
if(ylat1 .le. elat2 .and. ylat2 .ge. elat1) then
   alat=(min(ylat2,elat2)-max(ylat1,elat1))/(elat2-elat1)
end if
if(xlon1 .le. elon2 .and. xlon2 .ge. elon1) then
   alon=(min(xlon2,elon2)-max(xlon1,elon1))/(elon2-elon1)
end if
```

The following procedure is followed in order to allocate the emissions in the new grid:

```
alat=(min(ylat2,elat2)-max(ylat1,elat1))
alon=(min(xlon2,elon2)-max(xlon1,elon1))
area=max(0.,alat*alon)
```


Emissions in cell:

- A are a flux emission fraction from 1, for
- B a flux fractions from 1 and 2, and for
- C fluxes from 2, 3 and 4 (not shown here),
- F fluxes from 1 and 6,
- **G** from 1, 2, 6 and 7 and
- H from 2, 3, 7, 8, 4 and 9 (not shown here), and so on.

6 Interpola

Chapter 2

Modules Index

2.1 Modules List

Here is a list of all modules with brief descriptio	Here is	a list	of all	modules	with	brief	description
---	---------	--------	--------	---------	------	-------	-------------

/ars_da	at each and a second							
	Set up variables for the mass conservative interpolation process		 			 	 	11

8 Modules Index

Chapter 3

File Index

3.1 File List

Here is a list of all files with brief descriptions:

calculos.F90				 														 			2	25
Interpola.F90				 														 			2	26
lee_files.F90				 														 			2	27
salidas.F90 .				 														 			2	28
vars_dat_mod	.F90			 														 			2	29

10 File Index

Chapter 4

Module Documentation

4.1 vars_dat Module Reference

Set up variables for the mass conservative interpolation process.

Variables

```
• integer, parameter nh =24

nh Number of hours during the day

integer polices
```

integer ndims

Number of dimension in wrfinput file.

integer zlev

Number of emissions layers (1 to 8)

• integer radm =0

number of emissions classes

• real, dimension(:,:,:,:), allocatable ei

emissions input file dimensions nx, ny,level, nh, radm

real, dimension(:,:,:,:), allocatable ed

emissions in new DOMAIN file dimensions nx, ny,level, nh, radm

• real, dimension(:,:), allocatable elat

Latitudes from input file emissions.

real, dimension(:,:), allocatable elon

Longitudes from input file emissions.

• real, dimension(:,:), allocatable epob

Density population from input file emissions.

real, dimension(:,:), allocatable dlat

Latitudes in new domain nx, ny from new domain ed.

real, dimension(:,:), allocatable dlon

Longitudes in new domain nx, ny from new domain ed.

real, dimension(:,:), allocatable dpob

Density population in new domain nx, ny from new domain ed.

12 Module Documentation

• real, dimension(:,:,:), allocatable xlon Longitudes in emissions domain nx, ny. • real, dimension(:,:,:), allocatable xlons Longitudes staged in emissions domain nxs, ny. • real, dimension(:,:,:), allocatable xlat Latitudes in emissions domain nx, ny. • real, dimension(:,:,:), allocatable xlats Latitudes staged in emissions domain nx, nys. integer dix Number of values in longitude in new file. integer djx Number of values in latitude in new file. integer eix Number of values in longitude in emissions file. • integer ejx Number of values in latitude in emissions file. integer grid id Domain number (d01, d02, etc.) from wrfinput. · integer julyr Julian year in emissions file. · integer julday Julian day in emissions file. · integer mapproj Map projection type. · integer iswater Value for land use water. · integer islake Value for land use lake. · integer isice Value for land use ice. integer isurban Value for land use urban. · integer isoilwater Value for land use ice. integer unlimdimid ID unlimit variable (time) · real cenlat Central latitude. · real cenlon Central longitude. real dx Grid dimension in m output file x. real dy Grid dimension in m output file y. real dxe

Grid dimension in m emissions file x.

real dye

Generated by Doxygen

Grid dimension in m emissions file y.

real trulat1

True latitud lower.

real trulat2

True latitud higer.

· real moadcenlat

Mother of all domains center latitude.

· real stdlon

Standard longitude.

· real pollat

The pole latitude.

· real pollon

The pole longitude.

real gmt

GMT time.

· real num land cat

Number of land categories.

character(len=3) cday

Day type (lun, mar, mie, jue, vie, sab, dom)

• character(len=19) mminlu

Land use input description.

character(len=19) map_proj_char

Map projection description.

• character(len=19) itime

Counter for time in file.

• character(len=38) title

Title description input/output files for V4 should have V4.0.

character(len=19), dimension(1, 1) times

Start date in input emissions file.

• character(len=19) current_date

Current date in input emissions file.

• character(len=19) mecha

Chemical mechanism name.

character(len=19), dimension(:), allocatable sdim

Vector of dimensions descriptions.

• character(len=11), dimension(:), allocatable ename

Emissions description long.

• character(len=50), dimension(:), allocatable cname

Emissions name variable short.

• character(len=50), dimension(:), allocatable cunits

Units in emissions vars.

· logical, dimension(:), allocatable tvar

true if input var is an emissions variable

· logical tpob

true if input emissions files contains density population

14 Module Documentation

4.1.1 Detailed Description

Set up variables for the mass conservative interpolation process.

Author

Jose Agustin Garcia Reynoso

Date

07/01/2020, 08/28/2012.

Version

3.0

Copyright

Universidad Nacional Autonoma de Mexico.

Emissions Inventories Variables

4.1.2 Variable Documentation

4.1.2.1 cday

```
character(len=3) vars_dat::cday
```

Day type (lun, mar, mie, jue, vie, sab, dom)

4.1.2.2 cenlat

real vars_dat::cenlat

Central latitude.

4.1.2.3 cenlon

real vars_dat::cenlon

Central longitude.

4.1.2.4 cname

character(len=50), dimension(:), allocatable vars_dat::cname

Emissions name variable short.

4.1.2.5 cunits

character(len=50), dimension(:), allocatable vars_dat::cunits

Units in emissions vars.

4.1.2.6 current_date

character (len=19) vars_dat::current_date

Current date in input emissions file.

4.1.2.7 dix

integer vars_dat::dix

Number of values in longitude in new file.

4.1.2.8 djx

integer vars_dat::djx

Number of values in latitude in new file.

16 Module Documentation

4.1.2.9 dlat

```
real, dimension(:,:), allocatable vars_dat::dlat
```

Latitudes in new domain nx, ny from new domain ed.

4.1.2.10 dlon

```
real, dimension(:,:), allocatable vars_dat::dlon
```

Longitudes in new domain nx, ny from new domain ed.

4.1.2.11 dpob

```
real, dimension(:,:), allocatable vars_dat::dpob
```

Density population in new domain nx, ny from new domain ed.

4.1.2.12 dx

```
real vars_dat::dx
```

Grid dimension in m output file x.

4.1.2.13 dxe

```
real vars_dat::dxe
```

Grid dimension in m emissions file x.

4.1.2.14 dy

real vars_dat::dy

Grid dimension in m output file y.

4.1.2.15 dye

```
real vars_dat::dye
```

Grid dimension in m emissions file y.

4.1.2.16 ed

```
real, dimension(:,:,:,:), allocatable \ vars_dat::ed emissions in new DOMAIN file dimensions nx, ny, level, nh, radm
```

4.1.2.17 ei

```
real, dimension(:,:,:,:), allocatable vars_dat::ei
emissions input file dimensions nx, ny,level, nh, radm
```

4.1.2.18 eix

```
integer vars_dat::eix
```

Number of values in longitude in emissions file.

4.1.2.19 ejx

```
integer vars_dat::ejx
```

Number of values in latitude in emissions file.

4.1.2.20 elat

```
real, dimension(:,:), allocatable vars_dat::elat
```

Latitudes from input file emissions.

18 Module Documentation

4.1.2.21 elon

```
real, dimension(:,:), allocatable vars_dat::elon
```

Longitudes from input file emissions.

4.1.2.22 ename

```
character(len=11), dimension(:), allocatable vars_dat::ename
```

Emissions description long.

4.1.2.23 epob

```
real, dimension(:,:), allocatable vars_dat::epob
```

Density population from input file emissions.

4.1.2.24 gmt

real vars_dat::gmt

GMT time.

4.1.2.25 grid_id

```
integer vars_dat::grid_id
```

Domain number (d01, d02, etc.) from wrfinput.

4.1.2.26 isice

integer vars_dat::isice

Value for land use ice.

4.1.2.27 islake

integer vars_dat::islake

Value for land use lake.

4.1.2.28 isoilwater

integer vars_dat::isoilwater

Value for land use ice.

4.1.2.29 isurban

integer vars_dat::isurban

Value for land use urban.

4.1.2.30 iswater

integer vars_dat::iswater

Value for land use water.

4.1.2.31 itime

character(len=19) vars_dat::itime

Counter for time in file.

4.1.2.32 julday

integer vars_dat::julday

Julian day in emissions file.

20 Module Documentation

4.1.2.33 julyr

```
integer vars_dat::julyr
```

Julian year in emissions file.

4.1.2.34 map_proj_char

```
character(len=19) vars_dat::map_proj_char
```

Map projection description.

4.1.2.35 mapproj

```
integer vars_dat::mapproj
```

Map projection type.

4.1.2.36 mecha

```
character (len=19) vars_dat::mecha
```

Chemical mechanism name.

4.1.2.37 mminlu

```
character(len=19) vars_dat::mminlu
```

Land use input description.

4.1.2.38 moadcenlat

real vars_dat::moadcenlat

Mother of all domains center latitude.

4.1.2.39 ndims

integer vars_dat::ndims

Number of dimension in wrfinput file.

4.1.2.40 nh

integer, parameter vars_dat::nh =24

nh Number of hours during the day

4.1.2.41 num_land_cat

real vars_dat::num_land_cat

Number of land categories.

4.1.2.42 pollat

real vars_dat::pollat

The pole latitude.

4.1.2.43 pollon

real vars_dat::pollon

The pole longitude.

4.1.2.44 radm

integer vars_dat::radm =0

number of emissions classes

22 Module Documentation

4.1.2.45 sdim

```
character (len=19), dimension(:), allocatable vars_dat::sdim
```

Vector of dimensions descriptions.

4.1.2.46 stdlon

```
real vars_dat::stdlon
```

Standard longitude.

4.1.2.47 times

```
character(len=19), dimension(1,1) vars_dat::times
```

Start date in input emissions file.

4.1.2.48 title

```
character(len=38) vars_dat::title
```

Title description input/output files for V4 should have V4.0.

4.1.2.49 tpob

```
logical vars_dat::tpob
```

true if input emissions files contains density population

4.1.2.50 trulat1

real vars_dat::trulat1

True latitud lower.

4.1.2.51 trulat2

real vars_dat::trulat2

True latitud higer.

4.1.2.52 tvar

logical, dimension(:), allocatable vars_dat::tvar

true if input var is an emissions variable

4.1.2.53 unlimdimid

integer vars_dat::unlimdimid

ID unlimit variable (time)

4.1.2.54 xlat

real, dimension(:,:,:), allocatable vars_dat::xlat

Latitudes in emissions domain nx, ny.

4.1.2.55 xlats

real, dimension(:,:,:), allocatable vars_dat::xlats

Latitudes staged in emissions domain nx, nys.

4.1.2.56 xlon

real, dimension(:,:,:), $allocatable vars_dat::xlon$

Longitudes in emissions domain nx, ny.

24 Module Documentation

4.1.2.57 xlons

```
real, dimension(:,:,:), allocatable vars_dat::xlons
```

Longitudes staged in emissions domain nxs, ny.

4.1.2.58 zlev

integer vars_dat::zlev

Number of emissions layers (1 to 8)

Chapter 5

File Documentation

5.1 calculos.F90 File Reference

Functions/Subroutines

• subroutine conversion

It does the interpolation into the new Mesh.

5.1.1 Function/Subroutine Documentation

5.1.1.1 conversion()

subroutine conversion

It does the interpolation into the new Mesh.

Interpolates the emissions into new mesh conserving mass uses emission area and the fractional area between the original and new grid to set the emissions.

Computes the mass in the original mesh and compares against the new mesh, if both domains cover the same area the ratio xemis/xmas should be 1

Author

Jose Agustin Garcia Reynoso

Date

07/01/2020, 08/28/2012.

Version

3.0

hours in a day

26 File Documentation

5.2 Interpola.F90 File Reference

Functions/Subroutines

· program interpola

Conservative emission interpolation from one mesh to a new mesh.

5.2.1 Function/Subroutine Documentation

5.2.1.1 interpola()

program interpola

Conservative emission interpolation from one mesh to a new mesh.

Reads emissions from a wrfchemin file and interpolates to a new mesh provided from wrfinput.

Contains a call for tree subroutines that completes the procedure

file_reading

Reads Emission inventory and the mesh to interpolate.

conversion

Computations for emissions mass conservation into the new mesh.

file_out

Create output file and write results

Author

Jose Agustin Garcia Reynoso

Date

2012/06/20

Version

3.0

Copyright

Universidad Nacional Autonoma de Mexico 2020

5.3 lee files.F90 File Reference

Functions/Subroutines

· subroutine file_reading

Reads Emission inventory and the new Mesh to interpolate emissions.

• subroutine check (status)

Evaluation of netcdf status.

5.3.1 Function/Subroutine Documentation

5.3.1.1 check()

Evaluation of netcdf status.

In case of error prints error message description

Parameters

status | An error status that might have been returned from a previous call to some netCDF function

Date

08/28/2012

Version

1.0

5.3.1.2 file_reading()

```
subroutine file_reading
```

Reads Emission inventory and the new Mesh to interpolate emissions.

Reads from the emission wrfchemin file the variables and attributes put emissions in ei array and coordinates in xlat, xlon.

reads the new mesh from wrfinput, stores the new coordinates ${\tt dlat}, {\tt dlon}$

28 File Documentation

```
Author
```

Agustin Garcia

Date

07/01/2020, 08/28/2012.

Version

3.0

Copyright

Universidad Nacional Autonoma de Mexico.

5.4 README.md File Reference

5.5 salidas.F90 File Reference

Functions/Subroutines

subroutine file out

file_out creates the output file and writes the interpolated emissions from the new mesh Uses the attributes from wrfinput file

• subroutine crea_attr (ncid, idm, dimids, svar, cname, cunits, id_var) creates attributes for gas variables and aerosol variables

5.5.1 Function/Subroutine Documentation

5.5.1.1 crea_attr()

```
subroutine file_out::crea_attr (
    integer, intent(in) ncid,
    integer, intent(in) idm,
    integer, dimension(idm), intent(in) dimids,
    character(len=*), intent(in) svar,
    character(len=*), intent(in) cname,
    character(len=*), intent(in) cunits,
    integer, intent(out) id_var)
```

creates attributes for gas variables and aerosol variables

Author

Agustin Garcia

Date

28/08/2012

Parameters

in	ncid	netCDF ID, from a previous call to NF90_OPEN or NF90_CREATE
in	idm	Number of dimensions in dimids
out	id_var	ID from variable to store
in	dimids	Array with ID for each dimension
in	svar	Short name of variable to store
in	cname	Description of variable to store
in	cunits	Units for variable to store

5.5.1.2 file_out()

subroutine file_out

file_out creates the output file and writes the interpolated emissions from the new mesh Uses the attributes from wrfinput file

Uses current_date from wrfinput file

if geo_em_d0?.nc file is used the date comes from wrfchemin.nc

Author

Agustin Garcia

Date

07/01/2020, 08/28/2012.

Version

3.0

Copyright

Universidad Nacional Autonoma de Mexico.

5.6 vars_dat_mod.F90 File Reference

Modules

module vars_dat

Set up variables for the mass conservative interpolation process.

30 File Documentation

Variables

 integer, parameter vars dat::nh =24 nh Number of hours during the day · integer vars dat::ndims Number of dimension in wrfinput file. integer vars dat::zlev Number of emissions layers (1 to 8) integer vars_dat::radm =0 number of emissions classes • real, dimension(:,:,:,:), allocatable vars_dat::ei emissions input file dimensions nx, ny,level, nh, radm real, dimension(:,:,:,:), allocatable vars_dat::ed emissions in new DOMAIN file dimensions nx, ny,level, nh, radm real, dimension(:,:), allocatable vars_dat::elat Latitudes from input file emissions. • real, dimension(:,:), allocatable vars dat::elon Longitudes from input file emissions. real, dimension(:,:), allocatable vars dat::epob Density population from input file emissions. real, dimension(:,:), allocatable vars_dat::dlat Latitudes in new domain nx, ny from new domain ed. real, dimension(:,:), allocatable vars dat::dlon Longitudes in new domain nx, ny from new domain ed. real, dimension(:,:), allocatable vars dat::dpob Density population in new domain nx, ny from new domain ed. real, dimension(:,:,:), allocatable vars_dat::xlon Longitudes in emissions domain nx, ny. real, dimension(:,:,:), allocatable vars_dat::xlons Longitudes staged in emissions domain nxs, ny. real, dimension(:,:,:), allocatable vars_dat::xlat Latitudes in emissions domain nx, ny. real, dimension(:,:,:), allocatable vars_dat::xlats Latitudes staged in emissions domain nx, nys. integer vars_dat::dix Number of values in longitude in new file. integer vars_dat::djx Number of values in latitude in new file. integer vars dat::eix Number of values in longitude in emissions file. integer vars_dat::ejx Number of values in latitude in emissions file. integer vars dat::grid id Domain number (d01, d02, etc.) from wrfinput. integer vars_dat::julyr Julian year in emissions file.

integer vars dat::julday

Julian day in emissions file.

integer vars_dat::mapproj

Map projection type.

integer vars dat::iswater

Value for land use water.

• integer vars_dat::islake

Value for land use lake.

integer vars_dat::isice

Value for land use ice.

integer vars_dat::isurban

Value for land use urban.

• integer vars_dat::isoilwater

Value for land use ice.

integer vars_dat::unlimdimid

ID unlimit variable (time)

· real vars dat::cenlat

Central latitude.

· real vars_dat::cenlon

Central longitude.

· real vars_dat::dx

Grid dimension in m output file x.

real vars_dat::dy

Grid dimension in m output file y.

· real vars_dat::dxe

Grid dimension in m emissions file x.

real vars_dat::dye

Grid dimension in m emissions file y.

· real vars dat::trulat1

True latitud lower.

real vars_dat::trulat2

True latitud higer.

real vars_dat::moadcenlat

Mother of all domains center latitude.

· real vars dat::stdlon

Standard longitude.

real vars_dat::pollat

The pole latitude.

real vars_dat::pollon

The pole longitude.

real vars_dat::gmt

GMT time.

real vars_dat::num_land_cat

Number of land categories.

character(len=3) vars_dat::cday

Day type (lun, mar, mie, jue, vie, sab, dom)

character(len=19) vars_dat::mminlu

Land use input description.

32 File Documentation

• character(len=19) vars_dat::map_proj_char

Map projection description.

• character(len=19) vars_dat::itime

Counter for time in file.

• character(len=38) vars_dat::title

Title description input/output files for V4 should have V4.0.

• character(len=19), dimension(1, 1) vars_dat::times

Start date in input emissions file.

character(len=19) vars dat::current date

Current date in input emissions file.

character(len=19) vars_dat::mecha

Chemical mechanism name.

character(len=19), dimension(:), allocatable vars_dat::sdim

Vector of dimensions descriptions.

character(len=11), dimension(:), allocatable vars_dat::ename
 Emissions description long.

character(len=50), dimension(:), allocatable vars_dat::cname
 Emissions name variable short.

character(len=50), dimension(:), allocatable vars_dat::cunits
 Units in emissions vars.

• logical, dimension(:), allocatable vars_dat::tvar

true if input var is an emissions variable

logical vars_dat::tpob

true if input emissions files contains density population

Index

calcul	os.F90, 25	ejx
С	conversion, 25	vars_dat, 17
cday		elat
٧	ars_dat, 14	vars_dat, 17
cenlat		elon
V	ars_dat, 14	vars_dat, 17
cenlor	1	ename
V	rars_dat, 14	vars dat, 18
check		epob
le	ee_files.F90, 27	vars dat, 18
cname		_ /
	rars_dat, 15	file_out
conve		salidas.F90, 29
	calculos.F90, 25	file_reading
crea_a		lee_files.F90, 27
	alidas.F90, 28	100_1110011 00, 27
cunits		gmt
	rars_dat, 15	vars_dat, 18
	ats_date	grid id
	rars dat, 15	vars_dat, 18
V	ais_uai, is	varo_dat, 10
dix		interpola
	rars_dat, 15	Interpola.F90, 26
djx	aro_dat, 10	Interpola.F90, 26
-	ars dat, 15	interpola, 26
dlat	ars_dat, 10	isice
	rars dat, 15	vars_dat, 18
dlon	ars_uat, 13	islake
	vare det 16	vars_dat, 18
	ars_dat, 16	isoilwater
dpob	ione det 10	
	ars_dat, 16	vars_dat, 19
dx	1.1.40	isurban
	ars_dat, 16	vars_dat, 19
dxe	1	iswater
	ars_dat, 16	vars_dat, 19
dy		itime
V	rars_dat, 16	vars_dat, 19
dye		
V	rars_dat, 16	julday
		vars_dat, 19
ed		julyr
V	rars_dat, 17	vars_dat, 19
ei		
٧	rars_dat, 17	lee_files.F90, 27
eix		check, 27
V	ars dat. 17	file reading, 27

34 INDEX

map_proj_char	cunits, 15
vars_dat, 20	current_date, 15
mapproj	dix, 15
vars_dat, 20	djx, 15
mecha	dlat, 15
vars_dat, 20	dlon, 16
mminlu	dpob, 16
vars_dat, 20	dx, 16
moadcenlat	dx, 16
vars dat, 20	
vais_uai, 20	dy, 16
ndims	dye, 16
vars dat, 20	ed, 17
nh	ei, 17
vars_dat, 21	eix, 17
	ejx, 17
num_land_cat	elat, 17
vars_dat, 21	elon, 17
pollat	ename, 18
·	epob, 18
vars_dat, 21	gmt, 18
pollon	grid id, 18
vars_dat, 21	isice, 18
radm	islake, 18
	isoilwater, 19
vars_dat, 21	isurban, 19
README.md, 28	
colideo E00, 20	iswater, 19
salidas.F90, 28	itime, 19
crea_attr, 28	julday, 19
file_out, 29	julyr, <mark>19</mark>
sdim	map_proj_char, 20
vars_dat, 21	mapproj, <mark>20</mark>
stdlon	mecha, 20
vars_dat, 22	mminlu, 20
	moadcenlat, 20
times	ndims, 20
vars_dat, 22	nh, 21
title	num_land_cat, 21
vars_dat, 22	pollat, 21
tpob	pollon, 21
vars_dat, 22	radm, 21
trulat1	sdim, 21
vars_dat, 22	stdlon, 22
trulat2	times, 22
vars_dat, 22	,
tvar	title, 22
vars dat, 23	tpob, 22
_ <i>.</i>	trulat1, 22
unlimdimid	trulat2, <mark>22</mark>
vars_dat, 23	tvar, 23
_	unlimdimid, 23
vars_dat, 11	xlat, 23
cday, 14	xlats, 23
cenlat, 14	xlon, 23
cenlon, 14	xlons, 23
cname, 15	zlev, 24

INDEX 35

```
vars_dat_mod.F90, 29

xlat
    vars_dat, 23

xlats
    vars_dat, 23

xlon
    vars_dat, 23

xlons
    vars_dat, 23

zlev
    vars_dat, 24
```