или $t^2+t-12=0$, откуда $t_1=-4$, $t_2=3$. Следовательно, $\operatorname{ctg}^2 2x=3$, откуда $\operatorname{tg} 2x=\pm\frac{1}{\sqrt{3}}$.

Omsem. $x = \pm \frac{\pi}{12} + \frac{\pi n}{2}, \ n \in \mathbf{Z}.$

Пример 12. Решить уравнение $8 \sin^4 x + 13 \cos 2x = 7$.

Peшение. Полагая $\cos 2x=t$ и используя формулу $2\sin^2 x=1-\cos 2x$, получаем уравнение $2t^2+9t-5=0$, имеющее корни $t_1=-5$, $t_2=\frac{1}{2}$. Следовательно, $\cos 2x=\frac{1}{2}$, откуда $x=\pm\frac{\pi}{6}+\pi n$.

Omsem. $x=\pm\frac{\pi}{6}+\pi n, \ n\in\mathbf{Z}.$

Задачи

Решить уравнение (1-21):

1.
$$\sin \frac{3x}{2} = 0$$
. 2. $\cos \frac{x}{2} = 0$.

5.
$$tg(2x+1) = \sqrt{3}$$
.

7.
$$2\sin^2 x + 3\sin x = 2$$
.

9.
$$4\cos^2 x + \sin x + 1 = 0$$
.

11.
$$\sin^2 x + \sin 2x = 0$$
.

13.
$$2\cos^2 x + 3\sin x \cos x = 5\sin^2 x$$
.

15.
$$4\sin^2 x + 3\sin x \cos x = 2$$
.

17.
$$\sin^4 x = 1 - \cos^4 x$$
.

19.
$$\frac{1}{\cos^2 x} = \frac{13}{16} + \operatorname{tg} x$$
.

21.
$$8\sin^3 x + 4\cos^2 x = 1 + 6\sin x$$
.

3.
$$\operatorname{tg} 2x = 1$$
. 4. $\cos \left(3x + \frac{\pi}{6}\right) = -\frac{1}{2}$.

6.
$$\sin\left(4x + \frac{\pi}{4}\right) = -\frac{\sqrt{3}}{2}$$
.

8.
$$3\cos^2 x + 2\cos x = 1$$
.

10.
$$2\sin x + 3\cos x = 0$$
.

12.
$$\sin 2x + \sin^2 x = \cos^2 x$$
.

14.
$$4\cos^2 x + \sin x \cos x + 3\sin^2 x = 3$$
.

16.
$$3\sin^2 3x + 5\cos^2 3x = 2(1 + \sin 6x)$$
.

18.
$$\sin^2 x + tg^2 x = 3\cos^2 x$$
.

20.
$$2\sin^2 x + \frac{1}{\cos^2 x} = 3$$
.

Ответы

1.
$$x = \frac{2\pi n}{3}$$
, $n \in \mathbb{Z}$. 2. $x = \pi + 2\pi n$, $n \in \mathbb{Z}$. 3. $x = \frac{\pi}{8} + \frac{\pi n}{2}$, $n \in \mathbb{Z}$.

4.
$$x = -\frac{\pi}{18} \pm \frac{2\pi}{9} + \frac{2\pi n}{3}$$
, $n \in \mathbb{Z}$. **5.** $x = -\frac{1}{2} + \frac{\pi}{6} + \frac{\pi n}{2}$, $n \in \mathbb{Z}$.

6.
$$x = -\frac{\pi}{16} + (-1)^{n+1} \frac{\pi}{12} + \frac{\pi n}{4}, \ n \in \mathbf{Z}.$$
 7. $x = (-1)^n \frac{\pi}{6} + \pi n, \ n \in \mathbf{Z}.$

8.
$$x = \pm \arccos \frac{1}{3} + 2\pi n$$
, $x = \pi + 2\pi n$, $n \in \mathbb{Z}$. 9. $x = -\frac{\pi}{2} + 2\pi n$, $n \in \mathbb{Z}$.

10.
$$x = -\arctan \frac{3}{2} + \pi n$$
, $n \in \mathbf{Z}$. **11.** $x = \pi n$, $x = -\arctan 2 + \pi n$, $n \in \mathbf{Z}$.

12.
$$x = \frac{\pi}{8} + \frac{\pi n}{2}$$
, $n \in \mathbb{Z}$. **13.** $x = \frac{\pi}{4} + \pi n$, $x = -\arctan \frac{2}{5} + \pi n$, $n \in \mathbb{Z}$.