## **5.5 TEST MS**

| 1. | (a) | Electron pair acceptor (1)                                                                                                       |                                                                                             |                                                                   |                                                                                    |                                                                     |                 |
|----|-----|----------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|-------------------------------------------------------------------|------------------------------------------------------------------------------------|---------------------------------------------------------------------|-----------------|
|    | (b) | (b) Formula of gas  Formula of precipita                                                                                         |                                                                                             | CO <sub>2</sub> (1)                                               |                                                                                    | 1                                                                   |                 |
|    |     |                                                                                                                                  |                                                                                             | ate $V(OH)_3 \text{ or } [V(OH)_3(H_2O)_3]$ (1)                   |                                                                                    |                                                                     | [ <b>3</b> ]    |
| 2. | (a) | (i) Oxide or hydroxide dissolves (1) in both acids and alkalis (1)                                                               |                                                                                             |                                                                   |                                                                                    |                                                                     |                 |
|    |     | (ii)                                                                                                                             | Equation 1 $Cr(OH)_3(H_2O)_3 \text{ or } Cr(OH)_3 + 3H^+ \rightarrow [Cr(H_2O)_6]^{3+}$ (1) |                                                                   |                                                                                    |                                                                     |                 |
|    |     |                                                                                                                                  | Equation 1                                                                                  | $Cr(OH)_3(H_2O)_3 + 3OH^- \rightarrow [Cr(OH)_6]^{3-}$            |                                                                                    |                                                                     |                 |
|    |     |                                                                                                                                  |                                                                                             | <u>or</u><br>4                                                    | $Cr(OH)_3$                                                                         | or[Cr(OH) <sub>4</sub> (H <sub>2</sub> O) <sub>2</sub> ] $^{-}$ (1) |                 |
|    | (b) | Plan add excess (1) NaOH or NH <sub>3</sub> (1) filter (1) removes Fe(OH) <sub>2</sub> or Cr(III) in filtrate (1)                |                                                                                             |                                                                   |                                                                                    |                                                                     |                 |
|    |     | Form                                                                                                                             |                                                                                             |                                                                   | romium (III) ion<br>Cr(NH <sub>3</sub> ) <sub>6</sub> ] <sup>3+</sup> <u>or</u> [C | $(r(OH)_4(H_2O)_2)^-(1)$                                            | 5<br><b>[9]</b> |
| 3. | (a) | 3d <sup>10</sup> 4s <sup>1</sup> or reverse order (1) 3d <sup>9</sup> (1)                                                        |                                                                                             |                                                                   |                                                                                    |                                                                     |                 |
|    |     | (allow full configuration if correct; if wrong penalise once)                                                                    |                                                                                             |                                                                   |                                                                                    |                                                                     | 2               |
|    | (b) | (i)                                                                                                                              | copper(II) hy                                                                               | copper(II) hydroxide / tetraaquadihydroxycopper(II) hydroxide (1) |                                                                                    |                                                                     |                 |
|    |     |                                                                                                                                  | $Cu(OH)_2 / Cu(OH)_2(H_2O)_4$ (1)                                                           |                                                                   |                                                                                    |                                                                     | 2               |
|    |     | (ii) idea of ligand exchange ( $Cl^-$ for $H_2O$ ) (equation acceptable) (1) ligands not required, but any given must be correct |                                                                                             |                                                                   |                                                                                    |                                                                     |                 |
|    |     | $[Cu\ Cl_4]^{2-}$ (1)                                                                                                            |                                                                                             |                                                                   |                                                                                    |                                                                     |                 |
|    |     |                                                                                                                                  | tetrahedral /                                                                               | squa                                                              | re planar (1)                                                                      |                                                                     | 3               |
|    |     |                                                                                                                                  |                                                                                             |                                                                   |                                                                                    |                                                                     |                 |

[7]



6. Forms blue or pink or blue / green percipitate (1) (a) Not green of Co(H<sub>2</sub>O)<sub>4</sub>(OH)<sub>2</sub> etc (1) (Precipitate) dissolves or forms a solution (in excess ammonia) (1) Forms yellow or pale brown 'straw' (coloured solution) (1) Containing  $\left[\text{Co(NH}_3)_6\right]^{2+}$  (1) Darkens or goes brown on standing in air (1) as  $[Co(NH_3)_6]^{3+}$  formed (1) Due to oxidation (by O<sub>2</sub> in air) or by reaction with oxygen (QoL) (1) 8 Fe<sup>3+</sup> has a large charge (1) (b) and smaller size than  $Fe^{2+}$  (1) NBFe<sup>3+</sup> has a higher charge size ratio or higher surface density of charge or higher charge density scores (2) NBLose these two marks if candidates refer to either atoms or molecules Greater polariation (of water) by Fe<sup>3+</sup> or more hydrolysis occurs or Fe<sup>3+</sup> weakens the OH bond more Allow converse statement  $\mathrm{Fe}^{2+}$  higher pH than  $\mathrm{Fe}^{3+}$  or  $\mathrm{Fe}^{3+}$  more acidic or solution of Fe<sup>3+</sup> contains more H+ (1) 4 allow marks for correct hydrolysis equation i.e.  $[Fe(H_2O)_6]^{3+} \rightleftharpoons [Fe(H_2O)_5(OH)]^{2+} +$ if accompanied by a statement that this equilibrium lies further to the right for  $Fe^{3+}$  than for  $Fe^{2+}$  (1) and more  $H^{+}$ produced/pH lower (1) (Allow converse statement) Fe<sup>2+</sup> with Na<sub>2</sub>CO<sub>3</sub>; green precipitate (1) of FeCO<sub>3</sub> (1) Fe<sup>3+</sup> with Na<sub>2</sub>CO<sub>3</sub>; (rust)/brown or red/brown percipitate (Not red) (1) of  $[Fe(H_2O)_3(OH)_3]$  etc Allow  $Fe_2O_3$ . $xH_2O$  but not  $Fe_2O_3$  (1) and allow (carbon dioxide) gas evolved (1)

[17]