

Journal of Power Sources 97-98 (2001) 7-12

www.elsevier.com/locate/jpowsour

From gems to lithium battery electrodes: the significance of the diamond, ruby (sapphire), spinel and peridot structures

Michael M. Thackeray*

Argonne National Laboratory, Chemical Technology Division, Electrochemical Technology Program, Argonne, IL 60439, USA

Received 6 June 2000; received in revised form 29 November 2000; accepted 4 December 2000

Abstract

The materials used for the negative and positive electrodes of rechargeable "lithium-ion" batteries have host structures that can accommodate and release lithium over a wide compositional range. In these batteries, carbon and intermetallic compounds have been widely exploited as the negative electrodes, and transition metal oxides as the positive electrodes. For a lithium-ion battery to perform adequately, the structural integrity of the electrode host structures must be maintained throughout discharge and charge for many hundreds of cycles. Nature provides many examples of stable compounds that can be produced under variable conditions of temperature and pressure. As such, the mineral world can be used as a guide for the selection of materials in technological applications. This paper highlights the structural relationships that exist between precious and semi-precious gems such as diamond, ruby (sapphire), spinel and peridot and insertion electrodes for lithium batteries. © 2001 Elsevier Science B.V. All rights reserved.

Keywords: Lithium batteries; Gems; Intermetallic compounds

1. Introduction

Lithium-ion batteries operate by an electrochemical reaction during which lithium-ions are extracted from one host electrode structure and inserted into another with concomitant oxidation and reduction occurring at the two electrodes, respectively. In order to achieve high electrode capacities and good cycle life, as much lithium as possible must be inserted into and extracted from the electrodes during charge and discharge without damaging the integrity of the host electrode structures. This requirement puts a heavy emphasis on the need to use (1) host structures that are stable to lithium insertion/extraction over a wide compositional range, and (2) transition metal ions that at full charge and discharge have stable oxidation states. Lithium insertion and extraction reactions with stable host structures at room temperature tend to form metastable products. Therefore, it can be anticipated that greater stability of the lithiated and delithiated structures will lead to enhanced cycle life. In general, structural stability will be more readily maintained

with cubic structures that "breathe" isotropically on lithium insertion with minimal change to the 'a', lattice parameter, and unit cell volume. This immediately implies that host electrodes with "simple" high symmetry structures are more likely to provide the required structural stability than low symmetry structures. From a crystallographic standpoint, high-symmetry host structures provide many symmetrically equivalent sites for lithium. Crystallographically equivalent sites are energetically equivalent, they facilitate fast lithium-ion transport, provided that the activation energy for lithium transport from site-to-site is low.

The mineral world provides numerous examples of stable compounds and structure types that are produced under various conditions, such as at high temperature or high pressure, from a melt or solution, from a solid state reaction, or by ion-exchange. This large family of stable structures can, thus, be used as a guide for selecting materials for technological applications such as host electrode structures for lithium batteries. This will be particularly true if structure types that exist in nature correspond to the structures of the fully lithiated, partially lithiated and fully delithiated electrodes. This paper highlights the structural relationships between various minerals and insertion electrodes for lithium batteries.

^{*} Tel.: +1-630-252-9184; fax: +1-630-252-4176. *E-mail address*: thackeray@cmt.anl.gov (M.M. Thackeray).

2. Structural properties of gemstones and lithium battery electrodes

Table 1 shows a list of selected precious and semi-precious gemstones, ranked according to the Mohr hardness scale. The "precious" gems of diamond and the corundum family (ruby and sapphire) are the hardest known materials, both of which have simple structures. The diamond structure consists of two interlinked face-centered-cubic (carbon) arrays (space group Fd3m), whereas the corundum structure (α-Al₂O₃) has rhombohedral symmetry (R-3c) with a hexagonal-close-packed oxygen array. The mineral "spinel" (MgAl₂O₄), which is a "semi-precious" gem, has cubic symmetry (space group Fd3m) and a cubic-close-packed oxygen array. At the other extreme of the Mohr hardness scale are other "simple" structures such as that of periclase (MgO, rock-salt-type structure), fluorite (CaF₂, fluorite-type structure), and sphalerite (ZnS, zinc-blende-type structure), all of which have cubic-close-packed anion or cation arrays.

Many minerals consist of silicates and alumino silicates, they include the beryl family (e.g. emerald and aquamarine, $Al_2Be_3Si_6O_{18}$), the quartz family (e.g. amethyst and citrine, α -SiO₂) and spodumene (LiAl[Si₂O₆]). These minerals tend to have more complex framework structures in which the oxygen-ions deviate markedly from close packing, their structure types are not common as host electrodes for lithium. Exceptions to this general rule exist, such as in peridot ($Mg_{2-x}Fe_xSiO_4$) with a hexagonally-close-packed olivine-type structure.

Most transition metal oxides, MO_x, that are of major interest as insertion electrodes for lithium batteries have close-packed oxygen arrays in which the M cations occupy octahedral sites [1]. The MO_x framework can accommodate lithium up to the rock-salt composition at which the total number of cations equals the number of anions. In cubic-close-packed structures such as layered-type LiCoO₂, LiNiO₂ and Li_{1.2}V₃O₈, and spinel-type LiMn₂O₄ and Li₄Ti₅O₁₂, the CoO₂, NiO₂, V₃O₈, [Mn₂]O₄ and [Ti₅Li]O₁₂ frameworks are stable to lithium insertion and extraction over a wide compositional range. By contrast, hexagonal close-packed structures are unstable to lithium insertion as the composition approaches the rock-salt stoichiometry,

they shear toward cubic-close-packing because of increasing electrostatic interactions between the incoming lithium-ions and transition metal ions in neighboring face-shared octahedral sites. Lithium ions can reside comfortably in either tetrahedral or octahedral sites of the MO_x host structure, what type of site is occupied by lithium during the electrochemical reaction strongly depends on the cation arrangement in the host and on the lithium content. Lithium diffusion in a cubic-close-packed structure such as Li_xCoO₂ is fast, because all the octahedral sites occupied by lithium are crystallographically (energetically) equivalent and because the activation energy to pass through a neighboring face-shared tetrahedral site is low.

3. Transition metal oxide positive electrodes

3.1. Fe_3O_4 and α - Fe_2O_3 — spinel and ruby/sapphire (corundum-type) structures

Iron oxides such as Fe₃O₄ (magnetite, spinel-type structure) and α-Fe₂O₃ (hematite, corundum-type (ruby/sapphire) structure) were investigated in the early 1980s as positive electrodes for high temperature lithium cells [2,3]. For example, Godshall et al. reported the equilibrium potential profile of a LiAl/LiCl, KCl/Li_xFe₃O₄ high temperature cell [3]. The voltage versus capacity plot shows several discrete voltage plateaus, each plateau corresponding to a multi-phase reaction at the Li_xFe₃O₄ electrode. The reaction occurs by lithium insertion into a cubic-close-packed oxygen array and concomitant reduction and extrusion of iron from the structure. The change in Li:Fe ratio in the electrode during discharge gives rise to several discrete structure types: (1) Fe₃O₄ (spinel), (2) LiFe₅O₈ (spinel), (3) LiFeO₂ (rock salt), and (4) Li₂O (antifluorite). These reaction products have simple, cubic structures that exist in the mineral world (Table 1), they are stable at 400°C and also at room temperature. What is remarkable about this reaction is that the oxygen array remains cubic-close-packed throughout discharge, the reaction simply involves diffusion of lithiumand iron-ions into and out of a stable network of tetrahedra and octahedra. Moreover, at 400°C, all the reaction processes

Table 1
A selected list of precious and semi-precious gems

Structure type	Crystal symmetry	Composition	Mohr hardness
Diamond	Cubic	С	10
Corundum	Rhombohedral	Al_2O_3	9
Spinel	Cubic	$MgAl_2O_4$	8
Beryl	Hexagonal	$Al_2Be_3Si_6O_{18}$	7.5–8
Alpha-quartz	Hexagonal	SiO_2	7
Spodumene	Monoclinic	LiAl(Si ₂ O ₆)	6.5–7
Olivine	Orthorhombic	$(Mg_{2-x}Fe_x)SiO_4$	6.5-7
Rock-salt	Cubic	MgO	5.5-6
Fluorite	Cubic	CaF ₂	4
Zinc-blende (diamond)	Cubic	ZnS	3.5-4
	Diamond Corundum Spinel Beryl Alpha-quartz Spodumene Olivine Rock-salt Fluorite	Diamond Cubic Corundum Rhombohedral Spinel Cubic Beryl Hexagonal Alpha-quartz Hexagonal Spodumene Monoclinic Olivine Orthorhombic Rock-salt Cubic Fluorite Cubic	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

are reversible despite the extrusion of metallic iron from the structure. This reaction provides an excellent example of how stable structure types play a key role in determining the cycling behavior of electrochemical cells.

Lithium insertion into α -Fe₂O₃ with the corundum-type structure exhibited by ruby and sapphire causes a shear of the hexagonal close-packed oxygen layers to cubicclose-packing in response to increased electrostatic interactions between the incoming lithium- and iron-ions in neighboring face-shared octahedral sites as described earlier, this shearing induces a phase transition to a γ -Li_{δ}Fe₂O₃ defect-spinel-type structure. Thereafter, the reaction path follows a reaction sequence similar to that given for $\text{Li}_{r}\text{Fe}_{3}\text{O}_{4}$ above [2]. The transition from $\alpha\text{-Fe}_{2}\text{O}_{3}$ to γ-Li_δFe₂O₃ highlights the greater stability of cubicclose-packed electrode structures over hexagonalclose-packed structures to lithium insertion.

3.2. $LiMn_2O_4$ — the spinel structure

The lithium spinels, LiB₂O₄, are of much greater interest to the battery industry than the iron oxide spinels because the [B₂]O₄ spinel framework provides an uninterrupted threedimensional interstitial space for Li⁺-ion transport at room temperature over a wide compositional range of x in Li_x[B₂]O₄. Many papers have been written on spinel electrodes [1,4]. Of the spinels, LiMn₂O₄ is a particularly attractive electrode material. The [Mn₂]O₄ spinel framework remains intact over the complete range of x in $Li_xMn_2O_4$, as shown in schematic illustrations of the structures for λ -MnO₂ ([Mn₂]O₄, x = 0), LiMn₂O₄ (x = 1) and Li₂Mn₂O₄ (x = 2) (Fig. 1a–c). The stability of the many spinel compounds found in nature (they are regarded as "line phases") can be understood from the electrochemical and structural properties of spinels to lithium insertion and extraction. Because the interstitial space of a stoichiometric A[B₂]O₄ spinel structure is not energetically favorable for Li⁺-ion occupation, lithium insertion induces an immediate firstorder transition during which the tetrahedral site (A) cations are displaced into neighboring octahedral sites to generate an ordered rock-salt phase LiA[B₂]O₄. For Li/Li_xMn₂O₄ electrochemical cells, lithium insertion occurs at approximately 3 V versus Li for the range $1 \le x \le 2$. On the other

hand, considerable energy is required to destabilize the spinel by removing lithium-ions from the tetrahedral sites of LiMn₂O₄, as reflected by the high voltage of Li/Li_xMn₂O₄ cells (4 V) over the range $0 < x \le 1$. Therefore, the lithium insertion and extraction reactions both emphasize the stability of the stoichiometric LiMn₂O₄ spinel composition. From a structural standpoint, the Li_xMn₂O₄ system is strongly connected to the mineral world. Lithium insertion into $LiMn_2O_4$ ($Mn^{4+/3+}$) results in $Li_2[Mn_2]O_4$ (Mn^{3+}) with an ordered rock-salt/periclase-type structure, complete extraction of lithium from the spinel structure results in λ -MnO₂ (Mn⁴⁺) with the structure type of the mineral atacamite Cu₂(OH)₃Cl [5] (see Fig. 2a-c). The stability of the Mn₂O₄ spinel framework to lithium insertion and extraction and the fact that both Mn⁴⁺ and Mn³⁺ are stable in mineral forms, such as β-MnO₂ (pyrolusite) and Mn₂O₃ (bixbyite), augers well for the future of Li_xMn₂O₄ spinel electrodes in commercial Li-ion cells, particularly when used over the high-voltage (4 V) range, over this range, the cubic symmetry of the spinel framework is maintained with a relatively small change to the unit cell volume (\sim 6%). Such crystallographic stability and structural relationships to minerals do not hold for other high-voltage lithium battery electrodes such as Li_xCoO_2 and Li_xNiO_2 ($0 \le x \le 1$).

3.3. LiFePO₄ — the peridot (olivine-type) structure

It was recently demonstrated that the FePO₄ framework of LiFePO₄ can provide a host structure for lithium [6]. LiFePO₄ is isostructural with the mineral peridot, $Mg_{2-x}Fe_xSiO_4$, in which the P atoms of the olivine-type structure substitute for the Si atoms and the Li and Fe atoms for Mg and Fe. Both olivine (hexagonal-close-packed) and spinel (cubic-close-packed) structures have the general formula AB₂O₄, in which the A cations occupy tetrahedral sites and the B cations octahedral sites, the difference in oxygen packing leads to different cation arrangements in the two structure types. In peridot, the Mg- and Fe-ions occupy one-half of the available octahedral sites and the Si-ions oneeighth of the tetrahedral sites. In "spinel", MgAl₂O₄, the Alions occupy one-half of the octahedral sites and the Mg-ions one-eighth of the tetrahedral sites of a cubic-close-packed oxygen array.

Fig. 1. Schematic illustrations of $\text{Li}_x \text{Mn}_2 \text{O}_4$ structures with related mineral forms: (a) λ -MnO₂ (x=0), atacamite ("Cu₂(OH)₃Cl"); (b) LiMn₂O₄ (x=1), spinel ("MgAl₂O₄"); and (c) Li₂Mn₂O₄ (x=2), (ordered) rock salt ("NaCl"), periclase ("MgO").

Fig. 2. The structures of (a) LiFePO₄ (olivine); and (b) the FePO₄ (olivine) framework.

An illustration of the LiFePO₄ olivine structure is shown in Fig. 2a. The structure may be regarded as layered, it has layers of Fe²⁺- and P⁵⁺-ions that alternate with layers of Li⁺-ions in a direction perpendicular to the close-packed oxygens. The Fe-P layers consist of alternating columns of isolated PO₄ tetrahedra and edge-shared FeO₆ octahedra. The PO₄ tetrahedra are connected to one another in their columns by interstitial octahedra. These octahedra share four of their eight faces with two occupied P tetrahedra and two Li octahedra. In the lithium layers of the LiFePO₄ structure, one-half of the octahedral sites are occupied by the Li⁺-ions, the remaining interstitial octahedra share three faces with occupied polyhedra, one with a P tetrahedron and two with Li octahedra. Thus, in the olivine structure there are two crystallographically independent sets of interstitial octahedral sites. Both sets are energetically unfavorable for additional Li occupation because they share several faces with neighboring, occupied polyhedra. In Mg_{2-x}Fe_{x-} SiO₄, the Mg- and Fe-ions can partially substitute for one another on the two sets of octahedral sites. In LiFePO₄, it is also possible for the Li⁺- and Fe²⁺-ions to partially substitute for one another. In such an instance, any Fe²⁺-ions within the lithium layers would reduce not only the Li⁺-ion conductivity but also reduce the ease with which it is possible to extract all the lithium from the structure, this limitation makes it difficult to obtain an electrode capacity close to the theoretical value (170 mAh/g). Therefore, processing conditions must be carefully controlled to ensure that a structure as close to the ideal layered configuration is achieved.

Lithium extraction from LiFePO₄ is accompanied by the concomitant oxidation of Fe^{2+} - to Fe^{3+} -ions to yield the ideal FePO₄ host framework (Fig. 2b). This reaction is analogous to the extraction of lithium from the spinel LiMn₂O₄ during which the Mn³⁺-ions are oxidized to yield λ -MnO₂. However, unlike LiMn₂O₄, which can be reduced

by lithium insertion to yield the rock-salt phase Li₂Mn₂O₄, lithium insertion into the LiFePO₄ is not possible without major structural changes. First, lithium insertion into LiFePO₄ would necessitate the reduction of the Fe²⁺-ions and the extrusion of metallic iron from the oxygen array, it is most unlikely that such a reaction would be highly reversible at room temperature. Second, the interstitial octahedral sites located in the columns of PO₄ tetrahedra and in the lithium layer of the LiFePO₄ structure are not energetically favorable for Li occupation, as described above. Therefore, from a structural viewpoint, the B₂O₄ framework of Li_x[B₂]O₄ spinels is significantly more attractive as a host structure for lithium than its olivine counterpart because it provides (1) a more energetically favorable interstitial space for lithium-ion diffusion, (2) a greater structural stability over a wider compositional range of x, and (3) a superior theoretical electrode capacity ($x_{\text{max}} = 2$ for spinel and $x_{\text{max}} = 1$ for olivine).

4. Intermetallic negative electrodes

4.1. "CuSn" and InSb — the sphalerite/zinc-blende (diamond-type) framework

Intermetallic electrodes have been investigated extensively as negative electrodes for lithium batteries [7,8]. Because metals have dense structures, their reactions with lithium tend to lead to displacement reactions in which new Li_xM phases are formed with large changes in crystallographic volume. Such phenomena are well known for the binary systems Li_xAl, Li_xSi and Li_xSn. The recent announcement that certain intermetallic systems such as Cu₆Sn₅ and InSb might accommodate lithium with relatively small changes in crystallographic volume has prompted detailed investigations of nickel-arsenide- and zinc-blende-type structures [9,10].

Fig. 3. Crystallographic projections of (a) the NiAs ("CuSn") framework of Cu_6Sn_5 ; (b) Li_2CuSn ; and (c) the zinc-blende ("CuSn") framework of Li_2CuSn with a diamond-type lattice.

The Cu₆Sn₅ structure is related to that of nickel-arsenide, NiAs, as shown in a [0 0 1] projection of the structure in Fig. 3a. Lithium insertion into Cu₆Sn₅ induces a displacement of 50% of the Sn atoms to yield a lithiated zinc-blendetype structure resembling Li₂CuSn, in which the Cu and Sn atoms form a diamond network, as shown in Fig. 3b. This reaction, which results in a 59% volume expansion of the host structure, is reversible and has considerable hysteresis [9]. Nevertheless, the existence of stable compounds Li_xMM' with a zinc-blende framework MM', such as Li₂CuSn, has immediate implications for designing intermetallic electrode structures that can accommodate lithium over a wide compositional range with a relatively small isotropic change to the unit cell volume. The zinc-blende framework, shown schematically in Fig. 3c, has a diamondtype arrangement of atoms with a three-dimensional interstitial space of intersecting hexagonal channels, in the fully lithiated structure Li₂MM', as typified by Li₂CuSn (Fig. 3b), the lithium atoms occupy two crystallographically independent sites in the hexagonal channels. In this respect, Li₂CuSn is a fully saturated intermetallic structure, in much the same way as the rock-salt phase Li₂Mn₂O₄ represents a fully saturated transition metal oxide structure, i.e. both compounds have structures beyond which no further Li atoms can be accommodated without major structural rearrangements or metal extrusion.

Recent studies of the small band-gap semiconductor InSb have provided evidence that the Sb array of the zinc-blende-type structure provides a host framework for lithium [10,11]. After one "break-in" cycle, Li/InSb cells provide excellent electrochemical reversibility. Powder X-ray diffraction and EXAFS data of cycled InSb electrodes suggest that a modified $\text{Li}_{x+y}\text{In}_{1-y}\text{Sb}$ structure is formed in which x refers to interstitial sites and y to the In sites within the face-

centered-cubic Sb array. Although, the exact amount of lithium, δ , that can be accommodated by the InSb structure before In extrusion is not yet known, theoretical structure calculations of Li_δInSb compounds indicate that the value of δ is small [12]. Of particular significance is that the fully lithiated product, assuming complete replacement of In by Li and complete occupation of the interstitial sites by lithium, is Li₃Sb, which has a cubic unit cell only 5.6% larger than that of InSb [10]. For the InSb to Li₃Sb transition, the cubic-close-packed Sb array of the zinc-blende framework remains intact (note that this room temperature reaction is similar to that described for magnetite, Fe₃O₄, in which the oxygen array provides a stable framework for lithium insertion/iron extrusion [2,3]). Studies are in progress to elucidate the exact reaction mechanism that takes place in Li/InSb cells and to determine whether intermediate compositions between InSb and Li₃Sb, i.e. "Li_{x+v}In_{1-v}Sb", such as $\text{Li}_{1.5}\text{In}_{0.5}\text{Sb}$ (x = 1.5, y = 0.5) that has been observed at 400°C [13], exist at room temperature. These early data hold promise for fabricating intermetallic structures that operate by lithium insertion/metal displacement reactions over a wide compositional range during which there is a relatively small change in the volume of a host array of atoms. Such electrodes contrast with many conventional intermetallic electrodes that operate by multiphase reactions involving large changes in crystallographic structure and unit cell volume.

5. Conclusions

The stability of host electrode structures when accommodating lithium plays a key role in determining the cyclelife of rechargeable lithium batteries. As such, minerals can

provide a guide for the selection of electrode materials that can accommodate as much lithium as possible without compromising structural stability. From this viewpoint, the spinel system $\operatorname{Li}_x[\operatorname{Mn}_2]O_4$, which is of interest as a positive electrode, is strongly connected to the mineral world, forming an atacamite-type structure on full charge (x=0), a stoichiometric spinel structure at x=1, and a rock-salt/periclase phase on complete discharge (x=2). The zinc-blende framework with its face-centered-cubic array of atoms holds promise for generating a new class of intermetallic negative electrodes for lithium batteries.

Acknowledgements

Grateful thanks are expressed to my colleagues at CSIR, South Africa; Oxford University, UK; and Argonne National Laboratory, USA who contributed over the years to much of the information reported in this paper. Particular thanks go to J.T. Vaughey for preparing the computer illustrations of the structures. Financial support for writing this article from the Chemical Sciences Division of the Office of Basic Energy Sciences, Department of Energy under contract No. W31-109-Eng-38 is gratefully acknowledged.

References

- M.M. Thackeray, in: J.O. Besenhard (Ed.), Handbook of Battery Materials, Part III.1, Wiley-VCH, Wienheim, Germany, 1999, p. 293.
- [2] M.M. Thackeray, W.I.F. David, J.B. Goodenough, J. Solid State Chem. 55 (1984) 280.
- [3] N.A. Godshall, I.D. Raistrick, R.A. Huggins, J. Electrochem. Soc. 131 (1984) 543.
- [4] M.M. Thackeray, Prog. Solid State Chem. 25 (1997) 1.
- [5] A.F. Wells, Structural Inorganic Chemistry, 4th Edition, Clarendon Press, Oxford, 1999, Chapter 4, p. 143.
- [6] K.S. Nanjundaswamy, A.K. Pahdi, J.B. Goodenough, S. Okada, H. Ohtsuka, H. Arai, J. Yamaki, Solid State Ionics 3 (1996) 178.
- [7] R.A. Huggins, in: J.O. Besenhard (Ed.), Handbook of Battery Materials, Part III.4, Wiley-VCH, Wienheim, Germany, 1999, p. 359.
- [8] M. Winter, J.O. Besenhard, M.E. Spahr, P. Novak, Adv. Mater. 10 (1998) 725.
- [9] K.D. Kepler, J.T. Vaughey, M.M. Thackeray, Electrochem. Solid State Lett. 2 (1999) 307.
- [10] C.S. Johnson, J.T. Vaughey, M.M. Thackeray, T. Sarakonsri, S.A. Hackney, L. Fransson, K. Edstrom, J.O. Thomas, Electrochem. Commun. 2 (2000) 595.
- [11] J.T. Vaughey, C.S. Johnson, A.J. Kropf, R. Benedek, M.M. Thackeray, H. Tostmann, T. Sarakonsri, S. Hackney, L. Fransson, K. Edstrom, J.O. Thomas, J. Power Sources, 2000, this issue.
- [12] R. Benedek, J.T. Vaughey, M.M. Thackeray, L.H. Yang, R. Prasad, J. Power Sources, 2000, this issue.
- [13] W. Sitte, W. Weppner, Z. Naturforsch. 42a (1987) 1.