τ	JSN			2	21CST501		
B. E. Degree (Autonomous) Fourth Semester End Examination (SEE)							
	AUTOMATA THEORY AND COMPILER DESIGN						
	(Model Question Paper - III)						
Tin	Time: 3 Hours]			[Maximum Marks: 100			
Instructions to students: Answer 5 full questions.							
			Marks	Course Outcome s	BTL* Cognitive Level		
1	A)	Define the following terms with examples of each i) Alphabet ii) String iii) Language iv) Reverse of a string v) Length of a string	[10 M]	CO1	L1		
	B)	 Design DFA for the following languages over ∑ = { 0,1} Set of all strings not containing 110 Set of all strings with exactly 3 consecutive 0's Set of all strings containing at least two 1's Set of all strings containing not more than 3 0's OR	[10 M]	CO1	L5		
2	A)	Convert the following NFA to a DFA	[10 M]	CO1	L2		
	B)	Prove that a language is Regular if and only if it is accepted by a Finite Automata.	[10 M]	CO1	L3		
3	A)	Minimize the following DFA using table filling algorithm where A = Start state. State C is a final state. $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	[12 M]	CO2	L4		
	B)	State and prove pumping lemma for Regular Languages	[08 M]	CO2	L3		
		OR					
4	A)	Write the Table filling algorithm to find the distinguishable pairs in a DFA 'M'.	[08 M]	CO2	L1		

	B)	Show that the language $L = \{ 0^n / n \text{ is prime } \}$ is not regular.	[06 M]	CO2	L3
	C)	Using identities prove that the regular languages are closed under intersection.	[06 M]	CO2	L3
5	A)	Define the following terms with examples 1.Parse tree 2.Ambiguity	[05 M]	CO3	L1
	В)	Consider the CFG with productions: $E \rightarrow E + T/T$ $T \Box F - T/F$ $F \Box (E)/0/1$ With an example explain leftmost derivation, rightmost derivation & parse tree for the same string generated by the above grammar.	[09 M]	CO3	L2
	C)	Generate CFG for the language $1.L = \{ a^n b^n \mid n \ge 1 \}$ $2.L = \{ wCw^R \mid w \in \{a,b\}^*, w^R \text{ is the reversal of } w \}$	[06 M]	CO3	L1
		OR	<u>'</u>		•
6	A)	Formally define the language accepted by empty stack and final state method.	[08 M]	CO3	L1
	B)	Generate context free grammars for the following $i) \ L(G) = \{a \ ^nb \ ^nc \ ^m : m, n \ge 1\}$ $ii) \ L(G) = \{w : n_a(w) = n_b(w)\}$ $iii) \ L(G) = \{ \ a \ ^ib \ ^j : i \ne j \ and \ i, j \ge 0\}$ $iv) \ L(G) = \{ \ a \ ^{n+2}b \ ^n : n \ge 1\}$	[12 M]	CO3	L5
7	A)	Give the formal definition of a PDA.	[08 M]	CO4	L2
	B)	Design a PDA to accept the language L = { ww ^R } by a final state. Give the graphical representation for PDA obtained. Show the moves made by the PDA for the string aabbaa. OR	[12 M]	CO4	L5
	`		100.75		
8	a)	Explain the algorithm to convert a CFG to PDA with the help of an example.	[08 M]	CO4	L2
	b)	Obtain a PDA to accept the language $L = \{ a^n b^n n \ge 0 \}$ by empty stack. Give the graphical representation for PDA obtained. Show the moves made by the PDA for the string aabb.	[12 M]	CO4	L3
9	a)	What is a compiler? Explain the various phases of compiler with a neat diagram and show the output of each phase for the expression $a = b + c * 25$. Assume all variable are a type float.	[12 M]	CO5	L4
	b)	What are the applications of compiler? Explain	[08 M]	CO5	L3
		OR			<u> </u>
10	a)	Explain with a neat diagram the components of a typical language processing system.	[07M]	CO5	L1,L2

	b)	Explain the interaction between the lexical analyzer and parser	[07 M]	CO5	L1
		with a neat diagram.			
	c)	Differentiate between call by-value and call by-refernce of	[06M]	CO5	L2, L3
		parameter passing techniques.			
<u> </u>					