МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РФ

Федеральное государственное автономное образовательное учреждение высшего образования «Национальный исследовательский университет ИТМО»

ФАКУЛЬТЕТ ПРОГРАММНОЙ ИНЖЕНЕРИИ И КОМПЬЮТЕРНОЙ ТЕХНИКИ

ЛАБОРАТОРНАЯ РАБОТА №2

по дисциплине 'Информационные системы и базы данных'

Выполнил: Студент группы Р33312 Соболев Иван Александрович Преподаватель: Наумова Надежда Александровна

Задание:

Для отношений, полученных при построении предметной области из лабораторной работы №1, выполните следующие действия:

- опишите функциональные зависимости для отношений полученной схемы (минимальное множество);
- приведите отношения в 3NF (как минимум). Постройте схему на основе полученных отношений;
- опишите изменения в функциональных зависимостях, произошедшие после преобразования в 3NF;
- преобразуйте отношения в BCNF. Докажите, что полученные отношения представлены в BCNF;
- какие денормализации будут полезны для вашей схемы? Приведите подробное описание;

Описание функциональных зависимостей:

- Table Human
 - o humanId ->humanName
 - humanId ->profession
- Table MindOddities –
- Table Oddities
 - o odditiesId -> odditiesType
 - o odditiesId -> description
- Table City
 - o cityId -> cityName
 - o cityId ->destructionStatus
 - o cityId ->coordinateX
 - o cityId ->coordinateY
 - o coordinateX, coordinateY -> cityId
 - o coordinateX, coordinateY -> cityName
 - o coordinateX, coordinateY -> destructionStatus

- Table CityNetwork –
- Table Network
 - o networkId -> networkName
 - o networkId -> reputation

0

- Table Mind
 - o mindId -> abilityToRememberNewThings
 - o mindId -> levelOfKnowledge
 - o mindId -> humanId
 - o humanId -> abilityToRememberNewThings
 - humanId -> levelOfKnowledge
- Table PathHuman –
- Table Path
 - o pathId -> cityId
 - o pathId -> length

(cityId не определяет pathId, так как в город могут привести несколько путей)

- Table Storage
 - o storageId-> networkId
 - o storageId->storageName
 - o storageId->capacity
- Table Food
 - o foodId-> storageId
 - o foodId-> foodType
 - o foodId-> numberOfFood
- Table Weapon
 - o weaponId-> storageId
 - o weaponId-> weaponType
 - o weaponId-> numberOfWeapon
- Table Drugs
 - o drugId-> storageId
 - o drugId-> drugType
 - o drugId-> numberOfDrugs

Схема при приведении отношений в 3NF:

Первая нормальная форма (1NF):

В таблицах все данные находятся в отдельных строках, при пересечениях столбцов и строк только одно значение атрибутов в одной строке, поэтому модель соответствует первой нормальной форме.

Вторая нормальная форма (2NF):

Модель соответствует первой нормальной форме, частичные зависимости отсутствуют, везде соблюдаются полные функциональные зависимости, поэтому модель соответствует второй нормальной форме.

Третья нормальная форма (3NF):

Модель находится во второй нормальной форме, но транзитивные зависимости присутствуют в таблице City.

City		
PK	cityld integer	
	cityName varchar(255)	
	destructionStatus boolean	
	coordinateX integer	
	coordinateY integer	

Данной зависимостью является

- o coordinateX, coordinateY -> cityId
- o **cityId** -> cityName

Для того, чтобы привести модель к третьей нормальной форме необходимо разбить таблины на:

City		
PK	cityld integer	
	cityName varchar(255)	
	destructionStatus boolean	

City_location		
PK	cityld integer	
	coordinateX integer	
	coordinateY integer	

Модель находится во второй нормальной форме, транзитивные зависимости отсутствуют, поэтому модель соответствует третьей нормальной форме.

Изменения в функциональных зависимостях:

Для того, чтобы схема удовлетворяла 3НФ таблица City была разделена на две таблицы – City, City_location. Это позволило избавиться от транзитивных функциональных зависимостей.

Преобразование отношений в BCNF:

После преобразования модели в $3H\Phi$ она стала соответствовать нормальной форме Бойса-Кодда (BCNF).

Изначально же сама модель не находилась в нормальной форме Бойса-Кодда (BCNF), потому что координаты не являются ключевыми атрибутами. Следовательно, для того чтобы привести таблицу к НФБК нужно разбить ее на:

City	
PK	cityld integer
	cityName varchar(255)
	destructionStatus boolean

City_location		
PK	cityld integer	
	coordinateX integer	
	coordinateY integer	

Но интуиция подсказывает, что это лишнее разбиение, совсем не улучшает проект базы данных. И координаты могут быть отличным потенциальным составным ключом.

Денормализация:

Возможное увеличение производительности, которое можно сделать с таблицами это – объединение таблицы Mind с таблицей Human. Так как они связаны отношением 1:1, то можно значения таблицы Mind просто присвоить к объекту таблицы Human и связать Human и Oddities.

Также я считаю, что все-таки не стоит делить таблицу City на две, так как вторая таблица будет просто содержать два поля, привязанных к городу. Стоит оставить их в таблице City.

Выводы по работе:

В ходе выполнения данной лабораторной работы я узнал и описал по полученной в 1-й лабораторной работе схеме функциональные зависимости, первые три нормальные формы, нормальную форму Бойса-Кодда и денормализацию.