Due: Friday, March 21, 2003

- 1. A n^+ -p Si junction with a long p-region has the following properties: N_a =1.5x10¹⁶/cm³; μ_n = 1020 cm²/V-s; μ_p = 380 cm²/V-s; τ_n =1 μ s. If we apply 0.7 V forward bias to the junction at 300 K, what is the electric field in the p-region far from the junction? Draw a band diagram in the p-region far from the junction assuming that the junction is at x=0 and the p-side is in x>0.
- 2. Consider the following Si p-n junctions operating at 300 K.
 - (a) Using Eq. (5-8), calculate the contact potential V_o for $N_a = 5 \times 10^{14}$ and 5×10^{18} /cm 3 , with $N_d = 10^{15}$, 10^{17} , 10^{19} /cm 3 in each case and plot V_o vs. N_d .
 - (b) Plot the maximum electric field $\boldsymbol{E_0}$ vs. N_d for the junctions described in (a).
 - (c) Plot the width of the depletion region W vs. N_d for the junctions described in (a).
 - (d) Given that $N_a = 10^{14}$ (and repeat for $10^{19}/\text{cm}^3$) and $N_d = 10^{19}/\text{cm}^3$, determine the reverse bias needed to yield a maximum electric field $\mathbf{E_0}$ in the junction which exceeds 5×10^5 V/cm. and what is the depletion width under the reverse biasing?
- 3. A p^+ -n silicon diode ($V_0 = 0.926$ volts) has a donor doping of 10^{17} /cm³ and an n-region width = 1 μ m. Assume that the diode has a uniform cross sectional area of 0.001 cm². Refer to Fig. 5-22 for the following questions.
 - (a) Does it break down by avalanche or punchthrough? Determine the depletion capacitance when the breakdown happens.
 - (b) If the doping is only $1x10^{16}$ /cm³, what is the minimum n-region width for punchthrough not to take place?