Outline

- Generative Models Basics
- Autoregressive Models
- Autoencoder and Variational Autoencoder
- Generative Adversarial Network
- Diffusion Models

116

Denoising Diffusion Models

Forward diffusion process (fixed)

Data

Noise

Reverse denoising process (generative)

Denoising Diffusion Models

Data

Forward Diffusion Process

Noise \mathbf{x}_T $\mathbf{x}_T \sim \mathcal{N}(\mathbf{0}, \mathbf{1})$ $q_{ heta}(\mathbf{x}_{t-1}|\mathbf{x}_t)$ Denoiser $q_{ heta}(\mathbf{x}_{t-1}|\mathbf{x}_t)$

 $\sim p(\mathbf{x}_T) \prod q_{\theta}(\mathbf{x}_{t-1}|\mathbf{x}_t)$

The formal definition of the forward process in T steps:

Forward diffusion process (fixed)

$$q(\mathbf{x}_t|\mathbf{x}_{t-1}) = \mathcal{N}(\mathbf{x}_t; \sqrt{1-\beta_t}\mathbf{x}_{t-1}, \beta_t \mathbf{I}) \rightarrow q(\mathbf{x}_{1:T}|\mathbf{x}_0) = \prod_{t=1}^T q(\mathbf{x}_t|\mathbf{x}_{t-1}) \quad \text{(joint)}$$

 eta_s controls the *noise schedule* such that $\, {f x}_T \,$ is complete noise.

Slide credit: Kreis, Gao, Vahdat, CVPR 2022 Tutorial

Data

Diffusion Kernel

 $\begin{array}{c|c} \underline{\text{Diffusion Models}} \\ \hline & \mathbf{x}_T \\ \hline & \mathbf{x}_T \sim \mathcal{N}(\mathbf{0}, \mathbf{1}) \\ \hline & q_{\theta}(\mathbf{x}_{t-1} | \mathbf{x}_t) \\ \hline & \mathbf{Denoiser} \\ \mathbf{q}_{\theta}(\mathbf{x}_{t-1} | \mathbf{x}_t) \\ \hline & \mathbf{x} \sim p(\mathbf{x}_T) \prod_{t=1}^T q_{\theta}(\mathbf{x}_{t-1} | \mathbf{x}_t) \end{array}$

119

Forward diffusion process (fixed)

$$q(\mathbf{x}_t|\mathbf{x}_0) = \mathcal{N}(\mathbf{x}_t; \sqrt{\bar{\alpha}_t}\mathbf{x}_0, (1 - \bar{\alpha}_t)\mathbf{I})$$

Define $\bar{\alpha}_t = \prod_{t=1}^t (1 - \beta_t)$

Noise

Reverse Denoising Process

Idea: Approximate $q(\mathbf{x}_{t-1}|\mathbf{x}_t)$. Use a Normal distribution if β_t is small in each forward diffusion step.

124

Slide credit: Kreis, Gao, Vahdat, CVPR 2022 Tutorial

Data

Reverse Denoising Process

Formal definition of forward and reverse processes in T steps:

Reverse denoising process (generative)

U-Net: Image-to-Image CNN network

Sample:

Training

 \mathbf{x}_0

 $oldsymbol{\epsilon} \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$

$$t \sim \text{Uniform}(\{1, \dots, T\})$$

Diffusion kernel:

Gradient update:

Add noise to clean image (with variance equivalent to t steps of noise)

Give model noisy image, ask it to predict the added noise. Train with L2 loss between predicted noise and original noise

Sampling

Sample:

$$\mathbf{x}_T \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$$

for $t = 1 \dots T$ do:

$$\mathbf{z}_t \sim \mathcal{N}(\mathbf{0}, \sigma_t \mathbf{I})$$

$$= \frac{1}{\sqrt{\alpha_t}} \left(\mathbf{x}_t - \frac{1 - \alpha_t}{\sqrt{1 - \bar{\alpha}_t}} \boldsymbol{\epsilon}_{\theta} \right) + \mathbf{z}_t$$

$$x_{t-1} = \frac{1}{\sqrt{\alpha_t}} \left(\mathbf{x}_t - \frac{1 - \alpha_t}{\sqrt{1 - \bar{\alpha}_t}} \boldsymbol{\epsilon}_{\theta} (\mathbf{x}_t, t) + \mathbf{z}_t \right)$$

Summary: Training and Sample Generation

Algorithm 1 Training

2:
$$\mathbf{x}_0 \sim q(\mathbf{x}_0)$$

3:
$$t \sim \text{Uniform}(\{1, \dots, T\})$$

4:
$$\epsilon \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$$

$$\nabla_{\theta} \left\| \boldsymbol{\epsilon} - \boldsymbol{\epsilon}_{\theta} \left(\sqrt{\bar{\alpha}_{t}} \mathbf{x}_{0} + \sqrt{1 - \bar{\alpha}_{t}} \boldsymbol{\epsilon} \right) \right\|^{2}$$
6: **until** converged

Algorithm 2 Sampling

1:
$$\mathbf{x}_T \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$$

2: **for**
$$t = T, ..., 1$$
 do

3:
$$\mathbf{z} \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$$

3:
$$\mathbf{z} \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$$
4: $\mathbf{x}_{t-1} = \frac{1}{\sqrt{\alpha_t}} \left(\mathbf{x}_t - \frac{1-\alpha_t}{\sqrt{1-\bar{\alpha}_t}} \boldsymbol{\epsilon}_{\theta}(\mathbf{x}_t, t) \right) + \sigma_t \mathbf{z}$
5: end for

6: **return**
$$\mathbf{x}_0$$

Improvements: Conditional Generation

Guided Diffusion

512 x 512 ImageNet Conditioned Samples

Dhariwal and Nichol "Diffusion Models Beat GANs on Image Synthesis" NeurIPS 2021

131

Data

Improvements: Conditional Generation

Conditional Reverse denoising process (generative)

We pass the condition (y=cat) to the noise-predicting model in addition to the noisy image and step number to "control" the generation (i.e. force the generated image to be a cat instead of a dog)

Text-to-image generation: train the diffusion model to condition on text!

Improvements: Latent Diffusion Models

Use an autoencoder to compress the data!

Original Image: 256x256x3

Latent Representation: 32x32x4

Reconstructed Image: 256x256x3

Improvements: Latent Diffusion Models

Use an **autoencoder** to compress the data!

Forward diffusion process (fixed)

Reverse denoising process (generative)

Most popular text-to-image generation models nowadays are Latent Diffusion Models

For example,

- OpenAl DALLE-2 and DALLE-3, and likely all images generated from text within ChatGPT
- Midjourney
- Imagen (by Google)

Diffusion models can also be used for text-to-video generation.

OpenAl Sora is a latent diffusion model with transformer architecture

Recap

		Pros	Cons
Autoregressive (PixelRNN, PixelCNN)	Explicit density model	Optimizes exact likelihood	Inefficient sequential generation, sample quality not the best
Variational Autoencoders (VAE)	Optimize variational lower bound on likelihood	Useful latent representation, inference queries	Sample quality not the best
Generative Adversarial Networks (GANs)	Game-theoretic approach	Great samples	Tricky and unstable to train, no inference queries
Diffusion Models	Optimize variational lower bound for denoising	Best samples! Easy to train	Inefficient sequential generation