Name: Jingyi Ouyang

PID: A53108909

11. $n^2 + n! = \Theta(n^n)$ False

nⁿ is always bigger than n² and n!. You can not find a constant to meet the requirement of big-Omega.

- 12. $100n^2 + n = \Theta(n^2)$ True when constant is 101, $100n^2 + n = O(n^2)$ when constant is 99, $100n^2 + n = \Omega(n^2)$
- 13. $n + (n)^{\circ}0.5 = \Theta(n)$ True when constant is 1, $n + (n)^{\circ}0.5 = \Omega(n)$ when constant is 2, $n + (n)^{\circ}0.5 = O(n)$
- 14. $n*(1/n) + \log 8 = \Theta(1)$ True when constant is $1, n*(1/n) + \log 8 = \Omega(1)$ when constant is $100, n*(1/n) + \log 8 = O(1)$
- 15. $n + logn^n = \Theta(nlogn)$ True when constant is 1, $n + logn^n = \Omega(nlogn)$ when constant is 2, $n + logn^n = O(nlogn)$