

Q-Value Weighted Regression

Piotr Kozakowski^{1,3}, Łukasz Kaiser², Henryk Michalewski^{1,3}, Afroz Mohiuddin², Katarzyna Kańska ¹

¹ Google Cloud ² Google Brain ³ University of Warsaw

Motivation AWR: Advantage Weighted Regression Very simple: just 2 regressions. Good and stable! But not very sample efficient. Policy evaluation: $\arg\max_{V} \mathbb{E}_{(\mathbf{s}, \mathbf{a}) \sim \mathcal{D}} ||\mathcal{R}_{\mathcal{D}}^{\mathbf{s}, \mathbf{a}} - V(\mathbf{s})||^{2}$ Weighted regression towards the previously-performed actions. Policy improvement: $\arg \max_{\pi} \mathbb{E}_{(\mathbf{s}, \mathbf{a}) \sim \mathcal{D}} \left[\log \pi(\mathbf{a} | \mathbf{s}) \exp \left(\frac{1}{\beta} (\mathcal{R}_{\mathcal{D}}^{\mathbf{s}, \mathbf{a}} - V(\mathbf{s})) \right) \right]$ Figure borrowed from Peng et al, 2019. Struggles with large state spaces. However, it works offline. BitFlip: simple env with many states. **State:** *N* bits - 2^N states in total **Action:** flip one of the bits. Reward: 1 if we flipped 0 -> 1, -1 otherwise.

Our method

QWR: Q-Value Weighted Regression

Why is AWR not sample-efficient?

Recall the AWR policy update rule:

Episode terminated after 5 steps.

$$\arg \max_{\pi} \mathbb{E}_{(\mathbf{s}, \mathbf{a}) \sim \mathcal{D}} \left[\log \pi(\mathbf{a} | \mathbf{s}) \exp \left(\frac{1}{\beta} (\mathcal{R}_{\mathcal{D}}^{\mathbf{s}, \mathbf{a}} - V(\mathbf{s})) \right) \right]$$

If we have only one action for each state:

for all
$$(s, a), (s', a') \in \mathcal{D} : s = s' \implies a = a'$$

Then the policy network can learn a small replay buffer **exactly** - ignoring advantage weights!

$$\pi(\mathbf{a}|\mathbf{s}) = \mathbf{1}[(s, a) \in \mathcal{D}]$$

Which gives no policy improvement.

Solution: many actions for the same state.

Policy improvement:

$$\arg\max_{\pi} \mathbb{E}_{(\mathbf{s},\mu)\sim\mathcal{D}} \mathbb{E}_{\mathbf{a}\sim\mu(\cdot|\mathbf{s})} \left[\log\pi(\mathbf{a}|\mathbf{s}) \exp\left(\frac{1}{\beta}(Q(\mathbf{s},\mathbf{a}) - \hat{V}(\mathbf{s}))\right)\right]$$
 where $\hat{V}(\mathbf{s}) = \mathbb{E}_{\mathbf{a}\sim\mu(\cdot|\mathbf{s})} \ Q(\mathbf{s},\mathbf{a})$ Similar to AWR, but using a Q-network $Q(\mathbf{s},\mathbf{a})$.

We estimate the loss across multiple actions sampled from μ .

This **prevents overfitting** on actions - like using an infinite dataset.

Q-networks can learn improved baselines.

Policy "evaluation":

$$\arg\min_{Q} \mathbb{E}_{(\mathbf{s},\mu)\sim\mathcal{D}} \mathbb{E}_{\mathbf{a}\sim\mu(\cdot|\mathbf{s})} ||Q^{\star}(\mathbf{s},\mathbf{a}) - Q(\mathbf{s},\mathbf{a})||^{2}$$

$$Q^{\star}(\mathbf{s}, \mathbf{a}) = \mathbf{r} + \gamma \mathbb{E}_{\mathbf{a}'_{1}, \dots, \mathbf{a}'_{n} \sim \mu(\cdot \mid \mathbf{s}')} F\{Q(\mathbf{s}', \mathbf{a}'_{i}) \mid i \in \{1..n\}\}$$

$$F(X) = \tau \log \left[\frac{1}{|X|} \sum_{x \in X} \exp(x/\tau) \right]$$

With Q-networks, we can estimate the advantage of an **improved** policy μ^* using a **backup operator** F.

Similar to **Q-learning** - but with action sampling to handle continuous action spaces.

In practice, we set F = log-sum-exp.

Results

Much more sample-efficient than AWR. On-par with SAC.

Algorithm	Half-Cheetah	Walker	Hopper	Humanoid
QWR-LSE	2323 ± 332	1301 ± 445	$\boldsymbol{1758 \pm 735}$	511 ± 57
QWR-MAX	2250 ± 254	1019 ± 1185	1187 ± 345	503 ± 49
QWR-AVG	1691 ± 682	1052 ± 231	420 ± 65	455 ± 41
AWR	-0.4 ± 0	67 ± 11	110 ± 81	500 ± 4
SAC	$\textbf{5492} \pm \textbf{8}$	493 ± 6	1197 ± 175	$\textbf{645} \pm \textbf{27}$
PPO	51 ± 41	-14 ± 98	15 ± 75	72 ± 18

Scores @ 100K interactions

Works on Atari with the same hyperparameters!

Algorithm	Boxing	Breakout	Freeway	Gopher	Pong	Seaquest
QWR-LSE	4.6	8	21.2	776	-7.6	308
QWR-MAX	-1.8	0.8	16.8	580	- 2	252
QWR-AVG	-0.8	1.4	19.2	548	-9	296
PPO	-3.9	5.9	8	246	-20.5	370
Rainbow	2.5	1.9	27.9	349.5	-19.3	354.1
MPR	16.1	14.2	23.1	341.5	-10.5	361.8
MPR-aug	30.5	15.6	24.6	593.4	-3.8	603.8
SimPLe	9.1	16.4	20.3	845.6	12.8	683.3
Random	0.1	1.7	0	257.6	-20.7	68.4

Scores @ 100K interactions.

Works offline out-of-the-box, just like AWR.

Robust to hyperparameter choices.

In QWR-LSE, F = log-sum-exp. In QWR-MAX, F = max.

"margin" is the number of steps in multi-step targets for Q training.

Conclusion

QWR is a simple, yet effective RL algorithm.

- Based on AWR update rule, but with action sampling.
- Q-network critic with extra improvement similar to Q-learning.
- Much more sample-efficient than AWR, on-par with SAC on MuJoCo @ 100k.
- Better than Rainbow on Atari @ 100k.
- On-par with AWR in offline RL on MuJoCo.