

Universidade Federal do Ceará Faculdade de Economia

Métodos Quantitativos

Vicente Lima Crisóstomo

Fortaleza, 2020

Sumário

- Introdução
- Estatística Descritiva
- Probabilidade
- Distribuições de Probabilidades
- Amostragem e Distribuições Amostrais
- Estimação
- Testes de Significância
- Análise de Variância
- Teste de Significância para Proporções
- Testes Não Paramétricos
- Correlação e Regressão

- Correlação e Regressão
 - Técnicas relacionadas
 - Fazem uma estimação
 - Correlação e Regressão
 - Estimam relações que possam existir entre variáveis da população
 - Analisam dados amostrais buscando
 - Existência e a forma de relação de uma variável com outra
 - Técnicas anteriores
 - Fazem estimação relativas a um parâmetro populacional

- Análise de Correlação
 - Avalia se há relacionamento entre variáveis
 - Encontra/calcula um número que exprime o grau de relacionamento entre duas variáveis
 - Fundamental em trabalho exploratório
 - Permite uma visão geral de relacionamentos entre variáveis
 - Avalia importância de variáveis no contexto
 - Identifica potenciais relações e respectivas "forças"

- Análise de Regressão
 - Ênfase na natureza do relacionamento
 - Busca uma Equação matemática
 - Capaz de descrever o relacionamento entre variáveis
 - Equação pode ser usada para estimar valores de uma variável com base em valores de outra(s)
 - De relevante importância em
 - Economia, administração, contabilidade

- Correlação e Regressão
 - Dados são emparelhados
 - Cada observação tem duas ou mais variáveis
 - Exemplos
 - Amostra de pessoas
 - Nome, consumo, renda, escolaridade
 - Nome, idade, altura, peso
 - Amostra de alunos
 - Nome, indicador_desempenho, horas_estudo_semanal
 - Amostra de empresas
 - Empresa, RSC, endividamento, rentabilidade, tangibilidade

Análise de Regressão

- Correlação e Regressão
 - Dados são emparelhados
 - Cada observação tem duas ou mais variáveis
 - Exemplos
 - Amostra de pessoas
 - Nome, consumo, renda, escolaridade
 - Nome, idade, altura, peso
 - Amostra de alunos
 - Nome, indicador_desempenho, horas_estudo_semanal,
 - Amostra de empresas
 - Empresa, RSC, endividamento, rentabilidade, tangibilidade

- Análise de Correlação
 - Estudo investigativo correlacional
 - Correlação Correlacionamento Co-relacionamento
 - Grau de associação entre valores de duas variáveis
 - Exemplos
 - Idade e renda?
 - Escolaridade e renda?
 - rentabilidade e qualidade da gestão da empresa?
 - Desempenho acadêmico e horas de estudo?
 - Consumo e renda?
 - Temperatura e dedicação ao trabalho?
 - Estrutura de propriedade e endividamento da empresa?

- Análise de Correlação
 - Exemplos
 - Inflação na Alemanha e criminalidade na Colômbia?
 - Renda per capta em países desenvolvidos e nível de pobreza em países pobres?
 - Satisfação do trabalhador e produtividade?
 - Nível salarial e produtividade?
 - Inflação e consumo?
 - Temperatura e venda de casacos de frio?
 - Preço e nível de venda de um bem?
 - Empreendedorismo e crescimento econômico do país?
 - Investimento empresarial e nível de emprego?

- Análise de Correlação
 - Avalia possíveis associações (ou correlacionamentos) entre variáveis
 - O resultado da análise é um indicador.
 - Um Coeficiente de Correlação
 - Valor que exprime o grau de correlação entre as duas variáveis analisadas
 - Correlação entre variáveis com dados contínuos
 - Forma mais usada de análise de correlação
 - O Coeficiente / de Pearson
 - Expressa o grau de relacionamento entre duas variáveis com dados contínuos

- Análise de Correlação
 - O Coeficiente de Correlação r de Pearson
 - Matemático Karl Pearson
 - Requisitos/supostos para validade do r de Pearson
 - As duas variáveis aleatórias e contínuas
 - Distribuição de frequência conjunta
 - das duas variáveis, i.e., pares (x, y) é normal
 - Distribuição normal bivariada

- Análise de Correlação
 - Coeficiente de Correlação r de Pearson
 - Propriedades do r de Pearson
 - Magnitude
 - [0; 1]
 - Indica o grau de correlacionamento entre as variáveis
 - Quão próximo de uma reta estão os pontos (x, y)
 - Sinal (+ ou -)
 - Equivale ao coeficiente angular de uma reta imaginária

12

■ Fraca Correlação: *r* = 0,067

Quase ausência de relacionamento entre variáveis

■ Forte Correlação Positiva: *r* = +1,0

Relacionamento positivo, perfeito

■ Forte Correlação Negativa: *r* = -1,0

Relacionamento negativo, perfeito

■ Correlação Positiva: r = +0,714

Relacionamento positivo, moderado

■ Correlação Negativa: *r* = -0,798

Relacionamento negativo, moderado

■ Coeficiente de Correlação r de Pearson

- Verifica se posição, ou situação, relativa
 - das observações de um grupo estão relacionadas com
 - as posições do outro grupo
- Cálculo/medição da posição relativa em um grupo
 - Função da média e desvio padrão (DP)
 - z = (valor média) / DP
 - Padroniza cada um dos valores de cada variável
 - Assim, tornam-se comparáveis os grupos/variáveis
 - Valores padronizados (z)
 - Usados para calcular valor que meça uma situação combinada
 - Usados para calcular valor que meça posição relativa em ambos os grupos

- Coeficiente de Correlação r de Pearson
 - z = (valor média) / DP
 - Valores padronizados (z) de cada variável
 - Usados para calcular valor que meça uma situação combinada
 - Valores efetivos acima da média geram mais altos z que são positivos
 - Valores efetivos abaixo da média geram mais baixos z que são negativos
 - Produto dos dois escores padronizados

```
• Z_{x} \times Z_{y}

+ X + = +

- X - = +

- X + = -

+ X - = -
```

- Coeficiente de Correlação r de Pearson
 - Produto dos dois escores padronizados
 - z_x X z_y
 - Se variáveis estão correlacionadas positivamente
 - Escores de x (z_x) estão emparelhados com escores de y (z_y) progressivamente
 - Mais baixo z_x está emparelhado com mais baixo z_y
 - Mais alto z_x está emparelhado com mais alto z_y
 - Tendência
 - $z_x X Z_y > 0$

- Coeficiente de Correlação r de Pearson
 - Produto dos dois escores padronizados
 - z_x X z_y
 - Se variáveis estão correlacionadas negativamente
 - Escores de x (z_x) estão emparelhados com escores de y (z_y) inversamente
 - Mais baixo z_x está emparelhado com mais alto z_y
 - Mais alto z_x está emparelhado com mais baixo z_v
 - Tendência
 - $z_x X z_y < 0$

- Coeficiente de Correlação r de Pearson
 - O Coeficiente Correlação <u>r de Pearson</u>
 - É a média dos produtos dos dos escores padronizados das duas variáveis (z_x X z_y)
 - Calcula-se a soma dos produtos (z_x X z_y)
 - Divide-se pelo número de produtos
 - Observe-se
 - Valores emparelhados geram produto (z_x X z_v) positivo
 - Isto ocasiona
 - maior valor da soma dos produtos e assim
 - maior valor da média, que é o coeficiente de correlação

- Resumo do cálculo do Coeficiente Correlação <u>r</u> de Pearson
- Correlação entre variáveis x e y
 - Padronizar todos os valores (observações)

$$z_x = \frac{(x_i - \bar{x})}{s_x} \qquad \qquad z_y = \frac{(y_i - \bar{y})}{s_y}$$

 Calcular somatório dos produtos dos valores padronizados emparelhados e o Coeficiente Correlação <u>r de Pearson</u>

$$r = \frac{\sum_{i=1}^{n} z_x z_y}{n-1}$$

obsv	X	Υ	xi - med_x	zx=(xi-med_x)/dp	yi - med_y	zy=(yi-med_y)/dp	zx X zy	х.у	x2	y2
1	80	1	-9	-1,8	-1,5	-1,5	2,7	80	6400	1
2	82	1	-7	-1,4	-1,5	-1,5	2,1	82	6724	1
3	84	2,1	-5	-1	-0,4	-0,4	0,4	176,4	7056	4,41
4	85	1,4	-4	-0,8	-1,1	-1,1	0,88	119	7225	1,96
5	87	2,1	-2	-0,4	-0,4	-0,4	0,16	182,7	7569	4,41
6	88	1,7	-1	-0,2	-0,8	-0,8	0,16	149,6	7744	2,89
7	88	2	-1	-0,2	-0,5	-0,5	0,1	176	7744	4
8	89	3,5	0	0	1	1	. 0	311,5	7921	12,25
9	90	3,1	1	0,2	0,6	0,6	0,12	279	8100	9,61
10	91	2,4	2	0,4	-0,1	-0,1	-0,04	218,4	8281	5,76
11	91	2,7	2	0,4	0,2	0,2	0,08	245,7	8281	7,29
12	92	3	3	0,6	0,5	0,5	0,3	276	8464	9
13	94	3,9	5	1	1,4	1,4	1,4	366,6	8836	15,21
14	96	3,6	7	1,4	1,1	1,1	1,54	345,6	9216	12,96
15	98	4	9	1,8	1,5	1,5	2,7	392	9604	16
media	89	2,5					12,6			
dp	5	1				r =	0,9			

- Resumo do cálculo do Coeficiente Correlação <u>r de Pearson</u>
- Fórmula alternativa que dispensa padronização

$$r = \frac{n(\sum xy) - (\sum x)(\sum y)}{\sqrt{n(\sum x^2) - (\sum x)^2} \cdot \sqrt{n(\sum y^2) - (\sum y)^2}}$$

25

- Teste de Significância do Coeficiente de Correlação <u>r de Pearson</u>
 - r : coeficiente de correlação amostral
 - : coeficiente de correlação populacional
 - Hipóteses
 - H_0 : = 0
 - Não há correlação entre as variáveis
 - H_1 : 0
 - Há correlação entre as variáveis

- Teste de Significância do Coeficiente Correlação <u>r de Pearson</u>
 - Hipóteses
 - H_0 : = 0
 - H₁: 0
 - Estatística de teste:

$$t = \frac{r - 0}{\sqrt{\frac{(1 - r^2)}{(n - 2)}}}$$

- Graus de Liberdade: (n 2)
- Teste bilateral de t

Exemplo

■ n = 16; r = 0,067; GL = 14 (variáveis x e y);
$$t = 0,2506$$

■ n = 16; r = +0,999999999; GL = 14;
$$t = 26.457,51$$

■ n = 16; r = 0,714; GL = 14;
$$t = 3,82056292^{***}$$

■ n = 16; r = 0,798; GL = 14;
$$t = -4,961748894^{***}$$

Pontos Percentuais da Distribuicao	Pontos	Percentua	ais da	Distrib	uicao	t
------------------------------------	---------------	-----------	--------	---------	-------	---

Politos Percelitudis da Distribuicao t								
Probabilidades na cauda								
Uma Cauda		0,100	0,050	0,025	0,010	0,005	0,001	0,0005
Duas Caudas		0,200	0,100	0,050	0,020	0,010	0,002	0,001
D	1	3,078	6,314	12,710	31,820	63,660	318,300	637,000
Е	2	1,886	2,920	4,303	6,965	9,925	22,330	31,600
G	3	1,638	2,353	3,182	4,541	5,841	10,210	12,920
R	4	1,533	2,132	2,776	3,747	4,604	7,173	8,610
Е	5	1,476	2,015	2,571	3,365	4,032	5,893	6,869
Е	6	1,440	1,943	2,447	3,143	3,707	5,208	5,959
S	7	1,415	1,895	2,365	2,998	3,499	4,785	5,408
	8	1,397	1,860	2,306	2,896	3,355	4,501	5,041
O	9	1,383	1,833	2,262	2,821	3,250	4,297	4,781
F	10	1,372	1,812	2,228	2,764	3,169	4,144	4,587
	11	1,363	1,796	2,201	2,718	3,106	4,025	4,437
F	12	1,356	1,782	2,179	2,681	3,055	3,930	4,318
R	13	1,350	1,771	2,160	2,650	3,012	3,852	4,221
Е	14	1,345	1,761	2,145	2,624	2,977	3,787	4,140
Е	15	1,341	1,753	2,131	2,602	2,947	3,733	4,073
D	16	1,337	1,746	2,120	2,583	2,921	3,686	4,015
O	17	1,333	1,740	2,110	2,567	2,898	3,646	3,965
M	18	1,330	1,734	2,101	2,552	2,878	3,610	3,922

■ Fraca Correlação: *r* = 0,067

- n = 16; r = 0,067; t = 0,2506 => aceitação de H0 (= 0)
 - t menor que t crítico
- Quase ausência de relacionamento entre variáveis

Métodos Qu

■ Forte Correlação Positiva: r = +1,0

- n = 16; r = +0,99999999; t = 26.457,51 => rejeição de H0 e aceitação de H1 (0)
 - t supera t crítico

Mét

■ Forte Correlação Negativa: r = -1,0

- n = 16; r = 0,999999999 ; t = -26.457,51 => rejeição de H0 e aceitação de H1 (0)
- Relacionamento negativo, perfeito

■ Correlação Positiva: r = +0,714

- n = 16; r = 0,714; t = 3,82056292 => rejeição de H0 e aceitação de H1 (0)
- Relacionamento positivo, moderado

M

■ Correlação Negativa: r = -0,798

- n = 16; r = 0,798; t = -4,961748894 => rejeição de H0 e aceitação de H1 (0)
- Relacionamento negativo, moderado

Μé

Dados por Postos: <u>r de Spearman</u>

Dados Nominais: Coeficiente de Contingência

- Quando os dados forem medidos somente no nível ordinal eles são chamados de nãoparamétricos e a correlação de Pearson não é apropriada
- Dados por Postos: <u>r de Spearman</u>

- Dados por Postos: <u>r de Spearman</u>
- Coeficiente de correlação de Spearman
 - estatística não-paramétrica
 - pode ser usado quando os dados violarem suposições paramétricas, tais como dados não-normais
- Teste de Spearman
 - Classifica os dados em primeiro lugar e então aplicando a equação de Pearson aos dados ordenados
 - Categorias que podem ser ordenadas de maneira significativa, os dados são ordinais

- Dados por Postos: <u>r de Spearman</u>
- Coeficiente de correlação de Spearman
 - estatística não-paramétrica
 - pode ser usado quando os dados violarem suposições paramétricas, tais como dados não-normais
- Teste de Spearman
 - Classifica os dados em primeiro lugar e então aplicando a equação de Pearson aos dados ordenados
 - Categorias que podem ser ordenadas de maneira significativa, os dados são ordinais