

Enfriadores de aceite-aire

Dimensionamiento del entriador a aire	31
Tabla de características generales	1
ACE01	20
ACE02	21
ACE03	22
ACE04	23
ACE05	24
ACE06	25
ACE07	26
ACE08	27
ACE09	28
AF0510	2
AF1025	
AH0607	
AH0608LT	8
AH0608T	9
AH1012	10
AH1417	11
AH1470	
AH1490	13
AH1490-M	14
AH1680	15
AH1680-M	16
AH1890	17
AH2490	18
AH2490-CD	19
AW0607	4
AW0608	5
AW0608LT	6
CK10	29
CK11	30
Termostato con conexión tino TEF	31

Enfriadores aceite/aire

Este tipo de enfriadores de aceite por aire, son accionados por motores de corriente continua o alterna, son muy utilizados por su alta capacidad y calidad.

Podemos ofrecerlos en varios tipos: de placas con aletas y placas apiladas.

Material: aluminio.

Aplicaciones: sistemas de lubricación, hidráulicos, transmisión, calderas, reductores y otros fluídos y sistemas.

Temperatura del fluído 10°C a 180°C.

Temperatura ambiente -40°C a 100°C.

Recomendamos colocar una válvula de retención en paralelo como lo muestra la figura para prevenir daños en el enfriador.

Aceite de retorno Aceite de retorno Junta de tres puntos Dirección del aire

Válvula de alivio para aceite a alta presión. Usando resorte con precarga o 6 Bar.

Tabla 1: Especificaciones técnicas:

				Potencia de enfriamiento		
Modelo	Roscas de conexiones	Caudal Máximo de entrada L/min	Presión máxima contínua Bar	ΔT = 1°C	kW/°C	Potencia consumida por ventilador W
AF0510	1/2 NPT	10	10	28	0,033	38
AF1025	1/2 NPT	10	10	28	0,033	38
AW0607 •	1/2" NPT	25	20	28	0,033	38
AW0608	1/2" NPT	25	20	38	0,045	38
AW0608LT	1/2" NPT	25	20	120	0,140	38 x 2
AH0607	3/4" NPT	60	20	45	0,052	38
AH0608T	3/4" NPT	60	20	60	0,70	38
AH0608LT	3/4" NPT	50	20	120	0,140	38 x 2
AH1012 •	1" NPT	100	20	215	0,250	80
AH1417 •	1" NPT	150	20	370	0,430	160
AH1470	1.1/4" NPT	200	20	530	0,616	160
AH1490 •	1.1/2" NPT	250	20	850	0,989	160
AH1490-M	1.1/2" NPT	250	20	850	0,989	8
AH1680	1.1/2" NPT	300	20	870	1,012	250
AH1680M	1.1/2" NPT	300	20	870	1,012	S.
AH1890 •	1.1/2" NPT	400	20	1600	1,861	480
AH2490	2" NPT	600	20	3200	3,722	780
AH2490-CD	2" NPT	600	20	3200	3,722	200 x 4
ACE01	M18 x 1,5	10	20	15	0,017	14 x 2
ACE02	M18 x 1,5	15	20	33	0,038	24 x 2
ACE03	M18x1,5	25	20	68	0,079	65
ACE04	M22x1,5	30	20	92	0,107	65
ACE05	M27x2	60	20	132	0,154	90
ACE06	M27x2	100	20	200	0,233	150
ACE07	M33x2	120	20	300	0,349	90
ACE08	M33x2	160	20	400	0,465	90
ACE09	1.1/4 BSP	200	20	780	0,907	240
CK10	SAE	400			3,500	
CK11	SAE	600			5,750	

Observe los parámetros de funcionamiento de la tabla y consulte a nuestro departamento técnico en caso de dudas.

Código del pedido

Modelo AF0510

Datos técnicos:

Caudal: 10 lts/min Presión máxima: 10 bar. Alimentación: DC12V, DC24V, AC110V, AC220V.

Potencia de enfriamiento

Modelo AF1025

Datos técnicos:

Caudal: 10 lts/min Presión máxima: 10 bar. Alimentación: DC12V, DC24V AC110V, AC220V, AC380V.

Potencia de enfriamiento

Modelo AW0607

Datos técnicos:

Caudal: 25 Its/min. Presión máxima: 20 bar. Alimentación: DC12V, DC24V AC110V, AC220V, AC380V. 50/60HZ.

Potencia de enfriamiento

Modelo AW0608

Datos técnicos:

Caudal: 25 Its/min. Presión máxima: 20 bar. Alimentación: DC12V, DC24V AC110V, AC220V, AC380V. 50/60HZ.

Potencia de enfriamiento

Modelo AW0608LT

Datos técnicos:

Caudal: 25 Its/min. Presión máxima: 20 bar. Alimentación: DC12V, DC24V AC110V, AC220V, AC380V. 50/60HZ.

Potencia de enfriamiento

Datos técnicos:

Caudal: 60 Its/min Presión máxima: 20 bar. Alimentación: DC12V, DC24V AC110V, AC220V, AC380V, AC460V. 50/60HZ.

Potencia de enfriamiento

Modelo AH0608LT

Datos técnicos:

Caudal: 60 Its/min.
Presión máxima: 20 bar.
Alimentación:
DC12V, DC24V
AC110V, AC220V, AC380V, AC460V.
50/60HZ.

Potencia de enfriamiento

Modelo AH0608T

Datos técnicos:

Caudal: 60 Its/min.
Presión máxima: 20 bar.
Alimentación:
DC12V, DC24V
AC110V, AC220V, AC380V, AC460V.
50/60HZ.

Potencia de enfriamiento

Modelo AH1012

Datos técnicos:

Caudal: 100 lts/min. Presión máxima: 20 bar. Alimentación: DC12V, DC24V AC110V, AC220V, AC380V, AC460V. 50/60HZ.

Potencia de enfriamiento

Datos técnicos:

Caudal: 150 lts/min. Presión máxima: 20 bar. Alimentación: DC12V, DC24V AC110V, AC220V, AC380V, AC460V. 50/60HZ.

Potencia de enfriamiento

Datos técnicos:

Caudal: 200 lts/min. Presión máxima: 20 bar. Alimentación: DC12V, DC24V AC110V, AC220V, AC380V, AC460V. 50/60HZ.

Potencia de enfriamiento

Datos técnicos:

Caudal: 250 lts/min.
Presión máxima: 20 bar.
Alimentación:
DC12V, DC24V
AC110V, AC220V, AC380V, AC460V.
50/60HZ.

Potencia de enfriamiento

Modelo AH1490-M con motor hidráulico

Datos técnicos:

Caudal: 250 lts/min. Presión máxima: 20 bar.

Potencia de enfriamiento

Datos técnicos:

Caudal: 300 lts/min. Presión máxima: 20 bar. Alimentación: AC110V, AC220V.

Potencia de enfriamiento

Modelo AH1680-M con motor hidráulico

Datos técnicos:

Caudal: 300 lts/min. Presión máxima: 20 bar.

Potencia de enfriamiento

Datos técnicos:

Caudal: 400 lts/min. Presión máxima: 20 bar. Alimentación: AC110V, AC220V.

Potencia de enfriamiento

Modelo AH2490

Datos técnicos:

Caudal: 600 lts/min. Presión máxima: 20 bar. Alimentación: 220V, 380V.

8- ф 13

90

180

100

Potencia de enfriamiento

Modelo AH2490-CD

Datos técnicos:

Caudal: 600 lts/min. Presión máxima: 20 bar. Alimentación: DC12V, DC24V

Potencia de enfriamiento

Modelo ACE 01

Datos técnicos:

Caudal: 10 Its/min. Presión máxima: 20 bar. Alimentación: DC12V, DC24V, AC110V, AC220V.

Potencia de enfriamiento

Datos técnicos:

Caudal: 15 lts/min. Presión máxima: 20 bar. Alimentación: DC12V, DC24V AC110V, AC220V.

Potencia de enfriamiento

Datos técnicos:

Caudal: 25 lts/min. Presión máxima: 20 bar. Alimentación: DC12V, DC24V, AC110V, AC220V.

Potencia de enfriamiento

Datos técnicos:

Caudal: 30 lts/min. Presión máxima: 20 bar. Alimentación: DC12V, DC24V AC110V, AC220V.

Potencia de enfriamiento

Modelo ACE 05

Datos técnicos:

Caudal: 60 lts/min. Presión máxima: 20 bar. Alimentación: DC12V, DC24V, AC110V, AC220V.

Potencia de enfriamiento

Datos técnicos:

Caudal: 100 lts/min. Presión máxima: 20 bar. Alimentación: DC12V, DC24V AC110V, AC220V.

Potencia de enfriamiento

Modelo ACE 07

Datos técnicos:

Caudal: 120 lts/min. Presión máxima: 20 bar. Alimentación: DC12V, DC24V, AC110V, AC220V.

Potencia de enfriamiento

Datos técnicos:

Caudal: 160 lts/min. Presión máxima: 20 bar. Alimentación: DC12V, DC24V AC110V, AC220V.

Potencia de enfriamiento

Modelo ACE 09

Datos técnicos:

Caudal: 200 lts/min. Presión máxima: 20 bar. Alimentación: AC110V, AC220V.

Potencia de enfriamiento

Modelo CK 10

Datos técnicos

Especificaciones del ventilador	Poder de enfriamiento P[Kw] Δt=40K	Factor de enfriamiento	Diámetro del ventilador [mm]	Amplitud de ruido [d(A)]	Flujo de aire [m³/h]	Volumen de aceite [l]
220V-50Hz,AC	153	5,5	900	98	11000	
400V-50Hz,AC	153	5,5	900	98	11000	31
Motor hidráulico	180	5,5	900	98	12200	

Para obtener información sobre el motor de accionamiento IEC del ventilador, contáctenos.

Potencia de enfriamiento

La potencia de enfriamiento se decide por el flujo de aceite y la diferencia de temperatura. ($\Delta t=1k$)

Con la condición de una viscosidad de aceite de 30cST

Modelo CK 11

Datos técnicos

Especificaciones del ventilador	Poder de enfriamiento P[Kw] Δt=40K	Factor de enfriamiento	Diámetro del ventilador [mm]	Amplitud de ruido [d(A)]	Flujo de aire [m³/h]	Volumen de aceite [l]
220V-50Hz,AC	231	11	1000	100	13200	
400V-50Hz,AC	231	11	1000	100	13200	55
Motor hidráulico	260	11	1000	100	14100	

Para obtener información sobre el motor de accionamiento IEC del ventilador, contáctenos.

Potencia de enfriamiento

La potencia de enfriamiento se decide por el flujo de aceite y la diferencia de temperatura. ($\Delta t=1k$)

Con la condición de una viscosidad de aceite de 30cST

30

Termostato con conexión tipo TEE

Este kit de accesorios le permite automatizar el funcionamiento del intercambiador de calor. Mediante este sensor se podrá activar el ventilador cuando la temperatura que regresa al tanque alcanza los 60 °C, enfriándola a aproximadamente 50 °C (15%).

Modelo	Rosca de Salida del intercambiador
WXTEE-G38	3/8" BSPP
WXTEE-G34	3/4" BSPP
WXTEE-G12	1/2" BSPP
WXTEE-G1	1/2" BSPP
WXTEE-G114	1 1/4" BSPP
WXTEE-G112	1 1/2" BSPP
WXTEE-G2	2" BSPP
WXTM46A1	Termostato TM 60°C

Dimensionamiento del enfriador a aire

Ej. 1: Análisis de la pérdida de energía en el sistema hidráulico ya existente.

Para este método el aumento de temperatura del fluido hidráulico es medido durante un determinado tiempo. La perdida de potencia puede ser calculada a partir de este incremento de temperatura.

1 - Datos conocidos del sistema:

Un incremento de tempratura del fluido hidráulico de 20°C hasta 45°C en 15 minutos con un depósito de 100 litros, dará que el calor a ser disipados será:

$$\begin{split} \Delta T &= 45 ^{\circ} C - 20 ^{\circ} C = 25 ^{\circ} C \\ P_{V} &= \frac{\Delta T \times c_{oil} \times \rho_{oil} \times V}{t \times 60} \\ P_{V} &= \frac{25 \times 1.88 \times 0.915 \times 100}{15 \times 60} = 4.78 \text{ [kW]} \end{split}$$

2 - Selección de un enfriador:

- Temperatura deseada: 60 °C
- Temperatura del aire ambiente: 30 °C

$$P_{01} = \frac{P_{V}}{T_{1} \cdot T_{3}}$$
 [kW/°C]
 $P_{01} = \frac{4.78}{60 \cdot 30} = 0.159$ [kW/°C]

$$P_{01} = \frac{4.78}{60 - 30} = 0.159$$
 [kW/°C]

3 - Se recomienda un margen de seguridad del 10% para considerar incrustaciones en el radiador, por lo que la potencia específica es: P01 * 1,1 = 0,175 kW/°C. La pérdida de potencia de 0,175 kW/°C deberá ser disipada por el enfriador.

Ej. 2: Análisis de pérdida de energia en sistemas hidráulicos nuevos.

La pérdida de potencia puede ser estimada de la sig. forma:

a) Si la regulación de caudal es por un sistema sin estrangulación, considerar 15 a 20% de la potencia instalada.

b) Si el sistema de regulación de caudal fuera por estrangulación, considerar 30% de la potencia instalada.

Variables de tamaño

P V = Potencia perdida [kW] 01 P = Capacidad de enfriamiento específica [kW/°C]

V = Volumen del reservorio [L]

P aceite = Densidad del aceite [kg/L] (para aceite mineral: 0.915 kg/L)

aceite = C Calor específico del fluido (para aceite mineral: 1.88 kJ/kg*°k)

ΔT = Aumento de temperatura del sistema [°C]

t = Tiempo de funcionamiento [minutos]

T1 = Temperatura de aceite deseada [°C]

T3 = Temperatura ambiente [°C]

¡Atención!

Cuando utilice un intercambiador de calor en situaciones en las que la diferencia de temperatura entre el aire ambiente y el aceite en la entrada supere los 50 °C, se debe tener cuidado de evitar que el ventilador funcione a la velocidad máxima de flujo de aire, ya que esto puede provocar un rápido cambio de temperatura en el material del radiador y puede resultar en una reducción significativa en la vida útil o directamente puede dañar el radiador por estrés térmico.