CMSC 510 – L20 Regularization Methods for Machine Learning

Part 20b: Skip connections

Instructor:

Dr. Tom Arodz

Multi-layer networks

- A neural network with ReLU activation is essentially:
 - Y=ReLU(W₃ ReLU(W₂ ReLU(W₁X)))
- We see terms like $z=w_{3ij}*w_{2kl}*w_{1mn}*x$
- The derivative of z over w_{2kl} is w_{3ij}* w_{1mn} *x
- If w_{3ij} is small the gradient "signal" telling w_{2kl} in which way to change does not reach w_{2kl}

Skip connections

- = $z=w_{3ij}*w_{2kl}*w_{1mn}*features$
 - If w_{3ij} or w_{2kl} is small the gradient "signal" telling w_{1mn} in which way to change does not reach w_{1mn}
- Solution: link w_{1mn} to z directly via a skip connection

Skip connections

- Solution: link w_{1mn} to z directly via a skip connection
- Without skip connection:
 - We see terms like z=w_{3ij}*w_{2kl}*w_{1mn}*input
 - The derivative of z over w_{1mn} is $w_{3ii}^* w_{2kl}^*$ input
- With skip connection:
 - Connect w_{1mn}*x directly to z, in addition to going through w₃ and w₂
 - We have $z=w_{3ij}*w_{2kl}*w_{1mn}*input + w_{1mn}*input$ $z=(w_{3ij}*w_{2kl}+1)*w_{1mn}*input$

■ The derivative of z over w_{1mn} is w_{3ij}* w_{2kl}*input + input

ResNet

Adding skip connections makes the loss landscape smoother

$$z=(w_{3ij}^*w_{2kl}^{-1})^*w_{1mn}^*x$$

less reliance just on multiplication

Skip connections

 Modern network architectures often involve many skip connections

U-Net architecture

ConvNet: downsampling via maxpooling

U-Net architecture

- Skip connections are used in image-to-image networks
- E.g. U-Net architecture
 - Convnet downsampling (via max pooling)
 - From detail to coarse-grained
 - Upsampling
 - Generate detail from coarse-grained

U-Net architecture

Skip connections - summary

- Skip connection can help with optimization
- They can also help with preserving details (information) from earlier layers, e.g. in U-Net architecture
- Networks with skip connections are often called residual networks (ResNets)
 - They only need to learn the residual (the "delta") f(x)-x not the whole f(x) from scratch

