PATENT ABSTRACTS OF JAPAN

(11) Publication number: 07325583/ A

(43) Date of publication of application: 12.12.95

(51) Int. CI

or light.

G10H 7/08 G10H 7/00 G10L 3/02

G10L 9/14

(21) Application number: 05349245

(22) Date of filing: 28.12.93

(30) Priority:

14.04.93 US 93 48261 (71) Applicant:

YAMAHA CORP

(72) Inventor:

ZABIERU SERA KURISU UIRIAMUSU ROBAATO GUROSU AARINGU UORUDO

(54) METHOD AND DEVICE FOR ANALYZING AND SYNTHESIZING SOUND

(57) Abstract:

PURPOSE: To adopt an analytic approach and to perform excellent sound control for controlling a musical characteristic of a synthesized sound in an analytic sound synthesis technique such as partial sound synthesis, etc., based on a spectrum modeling synthesis (SMS) technique.

CONSTITUTION: Characteristics (formant, vibrato, tremolo, spectrum, pitch change, etc.) related to prescribed elements are analyzed respectively from the analysis data showing plural components constituting an original sound waveform, and the data showing the analyzed characteristics are extracted as musical parameters. The characteristics corresponding to the extracted parameters are eliminated from the analysis data, and by the combination between the revised analysis data and the musical parameters, a sound waveform is expressed. The extracted musical parameters are variable controlled, and by adding them to the analysis data, the sound waveform is reproduced and synthesized based on the analysis data adding the

controlled characteristics.

COPYRIGHT: (C)1995,JPO

(19)日本国特許庁(JP)

(12) 特 許 公 報 (B2)

(11)特許番号

第2906970号

(45)発行日 平成11年(1999) 6月21日

(24)登録日 平成11年(1999)4月2日

(51) Int Cl.⁶ 機別記号 F I G 1 0 H 7/08 G 1 0 H 7/00 5 3 2 Z 7/00 5 1 1 J 5 1 1 M

前求項の数12(全 39 頁)

(73)特許権者 000004075 (21)出願番号 特度平5-349245 ヤマハ株式会社 静岡県抵松市中沢町10番1号 (22)出顧日 平成5年(1993)12月28日 (72)発明者 ザピエル セラ スペイン, パルセロナ 08025, ジョア (65)公開番号 特開平7-325583 キム ルーイラ 10, 1イーアール 7 平成7年(1995)12月12日 (43)公開日 エー 審查請求日 平成8年(1996)2月7日 クリス ウィリアムス (31)優先権主張番号 08/048, 261 (72)発明者 アメリカ合衆国、カリフォルニア 1993年4月14日 (32)優先日 94901, サンラファエル, ウィルキンス 米国 (US) (33) 優先権主張国 ストリート アパートメントハウス (74)代理人 弁理士 飯塚 養仁 千葉 輝久 審査官 最終質に続く

(54) 【発明の名称】 サウンドの分析及び合成方法並びに装置

1

(57) 【特許請求の範囲】

【請求項1】 オリジナルサウンドを分析することにより、該オリジナルサウンド波形を構成する複数の成分を示す分析データを提供する第1のステップと、

的配分析データから所定のサウンド要素に関する特徴を 分析して、分析した該特徴を示すデータを、前配オリジ ナルサウンドにおける前配要素についての固有の特性を 示すサウンドパラメータとして抽出する第2のステップ と、

抽出されたサウンドバラメータに基づき、前記オリジナ 10 ルサウンドの分析データから<u>時変動成分を</u>取り除く第3 のステップと、

前配時変動成分が取り除かれた分析データに基づきサウンド波形を合成するステップであって、該時変動成分が 取り除かれた分析データ又は合成されたサウンド波形に 2

対して任意の時間変化を付与することで任意の時間変化 特性が付与されたサウンド波形を合成する第4のステップとを備えたサウンドを分析し合成するための方法。

【請求項2】 前配第2のステップで抽出したサウンドパラメータを変更する第5のステップを更に備え、前配第4のステップでは、前配時変動成分が取り除かれた分析データ又は合成されたサウンド波形に対して、前配第5のステップで変更したサウンドパラメータに対応する特徴を付加するようにした請求項1に配載の方法。

前配分析データから所定のサウンド要素に関する特徴を 分析して、分析した該特徴を示すデータを、前配オリジ ナルサウンドにおける前配要素についての固有の特性を

示すサウンドパラメータとして抽出する第2のステップ と、

抽出されたサウンドバラメータに基づき、前配オリジナルサウンドの分析データから時変動成分を取り除く第3 のステップと

を備え、前記時変動成分が取り除かれた分析データと、 前記サウンドバラメータとの組合せによって前記オリジ ナルサウンド波形を表現することを特徴とするサウンド を分析するための方法。

【請求項4】 オリジナルサウンドの分析に基づき該オリジナルサウンド波形を構成する複数の成分を示す分析データを提供する分析手段と、

前記分析データから所定のサウンド要素に関する特徴を 分析して、分析した該特徴を示すデータをサウンドパラ メータとして抽出すると共に、抽出されたサウンドパラ メータに基づき前記オリジナルサウンドの分析データか ら時変動成分を取り除くデータ処理手段と、

前記<u>時変動成分</u>が取り除かれた分析データと前記サウンドパラメータとを記憶する記憶手段と、

前記分析データとサウンドパラメータを前記記憶手段か 20 ら読み出し、読み出した分析データとサウンドパラメータに基づきサウンド波形を合成する手段であって、該分析データ又は合成されたサウンド波形に対して任意の時間変化を付与することで任意の時間変化特性が付与されたサウンド波形を合成するサウンド合成手段とを備えたサウンド波形合成装置。

【請求項5】 部分音を示すデータを含む波形分析データであって、オリジナルサウンドの分析データから時変動成分を取り除いてなるものと、オリジナルサウンドから抽出された所定のサウンド要素に関する特徴を示すサウンドパラメータとを記憶している記憶手段と、

前記波形分析データとサウンドパラメータを前記記憶手 段から読み出す読出し手段と、

読み出されたサウンドバラメータを変更するための制御 を行なう制御手段と、

前記読み出した波形分析データを前記制御されたサウンドパラメータによって変更し、変更された波形分析データに基づきサウンド波形を合成する手段であって、該分析データ又は合成されたサウンド波形に対して任意の時間変化を付与することで任意の時間変化特性が付与されたサウンド波形を合成するサウンド合成手段とを備えたサウンド波形合成装置。

【請求項6】 オリジナルサウンドを分析することにより、該オリジナルサウンド波形を構成する複数の成分を示す分析データを提供する第1の手段と、

前配第1の手段で提供される前配分析データに含まれる 前配オリジナルサウンド波形のスペクトル分析データか ら該オリジナルサウンド波形のフォルマント構造を検出 し、検出したフォルマントを記述するフォルマントパラ メータを生成する第2の手段と、 前記スペクトル分析データから前記検出されたフォルマント構造を差引き、残余のスペクトルデータを生成する第3の手段と、

前配第1の手段で提供される前配分析データから所定の サウンド要素に関する特徴を分析して、分析した該特徴 を示すデータを、前配オリジナルサウンドにおける前配 要素についての固有の特性を示すサウンドパラメータと して抽出する第4の手段と、

抽出されたサウンドパラメータに基づき、前配オリジナルサウンドの分析データから時変動成分を取り除く第5 の手段とを備え、前配残余のスペクトルデータと前配フォルマントパラメータと前記サウンドパラメータの組合せによって前記オリジナルサウンド波形を表現することを特徴とするサウンド波形合成装置。

【請求項7】 オリジナルサウンドの分析によって得た 複数のサウンド部分を示す部分音データのセットを提供 するものであり、各部分音データは周波数データを含 み、前記部分音データのセットを時間関数で提供する第 1の手段と、

0 前記部分音データにおける周波数データの時間関数から オリジナルサウンドにおけるビブラートを検出し、検出 したビブラートを記述するパラメータを生成する第2の 手段と、

前記部分音データにおける周波数データの時間関数から 前記検出されたビブラートの特徴を取り除き、修正され た周波数データの時間関数を生成する第3の手段とを備 え、前記修正された周波数データの時間関数を含む前記 部分音データと前記パラメータとの組合せによって時間 的に変化する前記オリジナルサウンド波形を表現することを特徴とするサウンド波形合成装置。

【請求項8】 オリジナルサウンドの分析によって得た 複数のサウンド部分を示す部分音データのセットを提供 するものであり、各部分音データはマグニチュードデー タを含み、前記部分音データのセットを時間関数で提供 する第1の手段と、

前配部分音データにおけるマグニチュードデータの時間 関数からオリジナルサウンドにおけるトレモロを検出 し、検出したトレモロを配述するパラメータを生成する 第2の手段と、

前配部分音データにおけるマグニチュードデータの時間 関数から前配検出されたトレモロの特徴を取り除き、修 正されたマグニチュードデータの時間関数を生成する第 3の手段とを備え、前配修正されたマグニチュードデー タの時間関数を含む前配部分音データと前配パラメータ との組合せによって時間的に変化する前配オリジナルサ ウンド波形を表現することを特徴とするサウンド波形合 成装置。

【請求項9】 オリジナルサウンドのスペクトル構造を 示すスペクトルデータを提供する第1の手段と、

50 前記スペクトルデータに基づき、そのスペクトルエンベ

ロープに概ね適合しているただ1本のチルトラインを検 出し、検出したチルトラインの形状を示すチルトパラメ ータを生成する第2の手段と、

スペクトルの形状を制御するために、前配チルトパラメ ータを可変制御する第3の手段と、

制御されたチルトパラメータに基づき前配スペクトルデ ータのスペクトル構造を制御する第4の手段と、

制御されたスペクトルデータに基づきサウンド波形を合 成するサウンド合成手段とを備えたサウンド波形合成装 置。

【請求項10】 オリジナルサウンドを構成する部分音 のスペクトルデータを複数の時間フレームに対応して提 供する第1の手段と、

一連の時間フレームにおける前記部分音スペクトルデー タにおける周波数データに基づき前記オリジナルサウン ドの平均ピッチを検出し、ピッチデータを生成する第2 の手段と、

前記ピッチデータを可変制御するための第3の手段と、 制御されたピッチデータに応じて前記部分音スペクトル データにおける周波数データを修正する第4の手段と、 前記修正された周波数データを含む前記部分音スペクト ルデータに基づき、可変制御されたピッチを持つサウン ド波形を合成するサウンド合成手段とを備えたサウンド 波形合成装置。

オリジナル波形を構成する部分音のス 【請求項11】 ペクトルデータを、複数の時間フレームに対応して順次 に提供するステップと、

前記複数の時間フレームのスペクトルデータ列から前記 オリジナル波形におけるビブラート変動を検出し、この 変動の少なくとも1サイクルに対応する長さを持つ1又 30 は複数の波形セグメントを指摘するデータリストを作成 するステップと、

前記データリストを参照して、任意の波形セグメントを 選択するステップと、選択した波形セグメントに対応す る前配スペクトルデータ列を前配オリジナル波形のスペ クトルデータ列から抜き出すステップと、

抜き出したスペクトルデータ列を繰り返すことにより前 記波形セグメントの繰り返しに対応するスペクトルデー タ列を作成するステップと、

前配繰り返しに対応するスペクトルデータ列を使用し て、延長された長さを持つサウンド波形を合成するステ ップとを備えたサウンドを分析し合成する方法。

【請求項12】 オリジナル波形を構成する部分音のス ペクトルデータを、複数の時間フレームに対応して順次 に提供するステップと、

前配複数の時間フレームのスペクトルデータ列から前配 オリジナル波形におけるピブラート変動を検出し、この 変動の少なくとも1サイクルに対応する長さを持つ1又 は複数の波形セグメントを指摘するデータリストを作成 するステップと、

前配データリストを参照して、任意の波形セグメントを 選択するステップと、

選択した波形セグメントに対応する前配スペクトルデー タ列を前記オリジナル波形のスペクトルデータ列から取 り去り、その前後で残された2つのスペクトルデータ列 を接続し、短縮されたスペクトルデータ列を作成するス テップと、

前記短縮されたスペクトルデータ列を使用して、短縮さ れた長さを持つサウンド波形を合成するステップとを備 10 えたサウンドを分析し合成する方法。

【発明の詳細な説明】

[0001]

【産業上の利用分野】この発明は、サウンド特に楽音あ るいは人声音などのような音楽サウンドの分析及び合成 方法並びに装置に関し、更には、スペクトル・モデリン グ・合成 (Spectral Modeling Synthesis) 技術を用い た音楽シンセサイザにおける様々な改良に関する。

[0002]

【従来の技術】スペクトル・モデリング・合成(以下、 SMSと略称する)技術を用いた音楽シンセサイザの従 来技術は、本願の発明者の一人であるザビエル・セラ (XavierSerra) の執筆に関わる「確定的成分とストカ スティック成分の分解に基づくサウンドの分析/変換/ 合成のためのシステム」("A System for Sound Analys is/Transformation/Synthesis based on a Determinist ic plus Stochastic Decomposition") と題する1989年1 0月発表のスタンフォード大学博士論文に示されてい る。また、同じくザビエル・セラの発明に関わる「確定 的波形とストカスティック波形の組合せによる音楽シン セサイザ」 ("Musical Synthesizer CombiningDetermin istic and Stochastic Waveforms") と題する米国特許 第5,029,509号にも示されており、また、上記 米国特許に対応する国際出願公開番号W090/13887にも開 示されている。

【0003】SMS技術は、サウンドが2つのタイプの 成分, すなわち確定的成分 (a deterministic componen t)とストカスティック成分 (a stochastic component; 確率的な若しくは不規則的な成分)、で構成されると考 えるモデルを使用する楽音の分析及び合成技術である。 確定的成分は、一連のシヌソイド (sinusoid: 正弦波の 形状で変化する波形)で表わされ、各シヌソイド毎に振 幅と周波数関数を持つ。つまり、確定された振幅と周波 数を持つスペクトル成分である。ストカスティック成分 は、マグニチュード・スペクトルエンペローブで表わさ れる。例えば、オリジナル波形のスペクトルから確定的 成分のスペクトルを差し引いた結果であるところの残差 スペクトルを、スペクトルエンペロープで表現したもの がストカスティック成分である。サウンドの分析と合成 は、一連の時間フレームにおける各時間フレーム毎に夫 50 々行なわれる。

【0004】各時間フレーム毎の分析データは、夫々が特定の周波数と振幅値を持つ1揃いの部分音(partial;パーシャル)と、周波数領域のエンベロープとによって、下記数1のように、表現される。

[0005]

【数1】

$$an(\epsilon)$$
, $fn(\epsilon)$ $\hbar\pi t$, $n=0$,, $N-1$
 $e\pi(\epsilon)$ $\hbar\pi t$, $m=0$,, $M-1$

【0006】ここで、fは、特定のフレームを示す。 a $n(\iota)$ と f $n(\iota)$ は、フレーム ι における各部分音の振幅及び周波数を示し、確定的成分に対応する。Nは、そのフレームにおける部分音の数である。e $m(\iota)$ は、ストカスティック成分に対応するスペクトルエンベロープであり、mはブレークポイント番号、mはそのフレームにおけるブレークポイント数である。

[0007]

【発明が解決しようとする課題】このようなSMS技術に基づく楽音合成は、圧縮された分析データを使用して極めて高品質のサウンド波形を合成することができると 20いう利点を持つ。また、サウンド合成に使用する分析データを、ユーザーが自由に制御することにより、幅広い多様なニューサウンドを作り出すことができる可能性を秘めているものである。そこで、SMS技術に基づく楽音合成技術において、様々な音楽的制御のための具体的手法を確立することが望まれていた。

【0008】一方、オリジナルサウンド波形をフーリエ変換その他の技術によって分析して部分音スペクトルデータを得て、これをメモリに記憶し、メモリから読み出した部分音スペクトルデータを逆フーリエ変換することによりサウンド波形を合成する技術それ自体もよく知られている。しかし、従来知られた部分音合成技術は、単なる合成技術にすぎず、合成しようとするサウンドの音楽的特徴を制御するために分析的なアプローチを採用するものではなかった。

【0009】音楽シンセサイザにおける一つの技術的課題として、人声音を如何にして合成するかというものがある。従来知られたボーカル音合成技術の多くは、ボーカル・モデルに基づくものである。すなわち、振動信号を時変動するフィルタに通すものである。このモデルは、高品質のサウンドを生成することができず、また、融通性に欠けているものである。また、従来のボーカル音合成技術の大多数は、分析に基づくものではなく、単なる合成技術である。すなわち、或る与えられたシンガー(歌い手)に基づいてモデル形成できるものではない。また、従来の技術では、記録したシンガー音からビブラートを取り除くための方法が提案されていない。

【0010】この発明は上述の点に鑑みてなされたものであり、その1つの目的は、SMS技術に基づく楽音合成技術あるいは部分音合成技術又はその他の分析的なサ 50

ウンド合成技術において、合成しようとするサウンドの 音楽的特徴を制御するために分析的なアプローチを採用 することにより、良好なサウンド制御を達成しうるよう にすることである。また、この発明の目的は、SMS技 術を基にしたサウンドの合成及び分析において、様々な 改良を提案し、その実用性を高めることにある。

【0011】更に、この発明の他の目的は、オリジナルサウンド波形の分析データからフォルマントの特徴を抽出し、制御し、サウンド波形の合成のために利用するための技術を提供することにある。更に、この発明の他の目的は、オリジナルサウンド波形の分析データからビブラート又はトレモロの特徴を抽出し、制御し、サウンド波形の合成のために利用するための技術を提供することにある。更に、この発明の他の目的は、オリジナルサウンド波形の分析データからスペクトルチルトの特徴を抽出し、制御し、サウンド波形の合成のために利用するための技術を提供することにある。

【0012】更に、この発明の他の目的は、オリジナルサウンド波形の分析データからピッチを抽出し、制御し、可変ピッチ制御したサウンド波形を合成するために利用するための技術を提供することにある。更に、この発明の他の目的は、オリジナルサウンド波形の分析データからビブラートのような低周波域の変動を検出することにより特定の波形セグメントを抽出し、抽出した波形セグメントを制御し、発音時間長を延長又は短縮したサウンド波形を合成するために利用するための技術を提供することにある。更に、この発明の他の目的は、SMS技術とデジタルウェーブガイド技術とを融合した新規なサウンド合成技術を提供することにある。更に、この発明の他の目的は、SMS技術を使用した分析的な手法により、高品質のボーカルフレーズ音声を合成することを提案することにある。

[0013]

【課題を解決するための手段】 上述の目的を達成する ために、第1の観点に従えば、この発明に係るサウンド を分析し合成するための方法は、オリジナルサウンドを 分析することにより、該オリジナルサウンド波形を構成 する複数の成分を示す分析データを提供する第1のステ ップと、前配分析データから所定のサウンド要素に関す る特徴を分析して、分析した該特徴を示すデータを、前 即オリジナルサウンドにおける前配要素についての固有 の特性を示すサウンドパラメータとして抽出する第2の ステップと、抽出されたサウンドパラメータに基づき、 前記オリジナルサウンドの分析データから時変動成分を 取り除く第3のステップと、前配時変動成分が取り除か れた分析データに基づきサウンド波形を合成するステッ ブであって、該時変動成分が取り除かれた分析データ又 は合成されたサウンド波形に対して任意の時間変化を付 与することで任意の時間変化特性が付与されたサウンド 波形を合成する第4のステップとを備える。

【0014】 上述の目的を達成するために、第2の観点に従えば、この発明に係るサウンドを分析し合成するための方法は、前配第2のステップで抽出したサウンドバラメータを変更する第5のステップを更に備え、前配第4のステップでは、前配時変動成分が取り除かれた分析データ又は合成されたサウンド波形に対して、前配第5のステップで変更したサウンドバラメータに対応する特徴を付加するようにしたことを特徴とする。

【0015】 上述の目的を達成するために、第3の観点に従えば、この発明に係るサウンドを分析するための方法は、前配第1のステップと、前配第2のステップと、前配第3のステップとを備え、前配時変動成分が取り除かれた分析データと、前記サウンドパラメータとの組合せによって前記オリジナルサウンド波形を表現することを特徴とする。

【0016】 上述の目的を達成するために、第4の観 点に従えば、この発明に係るサウンド波形合成装置は、 オリジナルサウンドの分析に基づき該オリジナルサウン ド波形を構成する複数の成分を示す分析データを提供す る分析手段と、前記分析データから所定のサウンド要素 に関する特徴を分析して、分析した該特徴を示すデータ をサウンドパラメータとして抽出すると共に、抽出され たサウンドパラメータに基づき前記オリジナルサウンド の分析データから時変動成分を取り除くデータ処理手段 と、前記時変動成分が取り除かれた分析データと前記サ ウンドパラメータとを記憶する記憶手段と、前記分析デ ータとサウンドパラメータを前記記憶手段から読み出 し、読み出した分析データとサウンドパラメータに基づ きサウンド波形を合成する手段であって、該分析データ 又は合成されたサウンド波形に対して任意の時間変化を 付与することで任意の時間変化特性が付与されたサウン ド波形を合成するサウンド合成手段とを備えたことを特 徴とする。

【0017】 上述の目的を達成するために、第5の観 点に従えば、この発明に係るサウンド波形合成装置は、 部分音を示すデータを含む波形分析データであって、オ リジナルサウンドの分析データから時変動成分を取り除 いてなるものと、オリジナルサウンドから抽出された所 定のサウンド要素に関する特徴を示すサウンドパラメー タとを記憶している記憶手段と、前記波形分析データと サウンドパラメータを前記記憶手段から読み出す読出し 手段と、読み出されたサウンドパラメータを変更するた めの制御を行なう制御手段と、前記読み出した波形分析 データを前配制御されたサウンドパラメータによって変 更し、変更された波形分析データに基づきサウンド波形 を合成する手段であって、該分析データ又は合成された サウンド波形に対して任意の時間変化を付与することで 任意の時間変化特性が付与されたサウンド波形を合成す るサウンド合成手段とを備える。

_ 【0018】 上述の目的を違成するために、第6の観 50

点に従えば、この発明に係るサウンド波形合成装置は、 オリジナルサウンドを分析することにより、該オリジナ ルサウンド波形を構成する複数の成分を示す分析データ を提供する第1の手段と、前配第1の手段で提供される 前記分析データに含まれる前記オリジナルサウンド波形 のスペクトル分析データから該オリジナルサウンド波形 のフォルマント構造を検出し、検出したフォルマントを 記述するフォルマントパラメータを生成する第2の手段 と、前記スペクトル分析データから前記検出されたフォ ルマント構造を差引き、残余のスペクトルデータを生成 する第3の手段と、前配第1の手段で提供される前配分 析データから所定のサウンド要素に関する特徴を分析し て、分析した該特徴を示すデータを、前記オリジナルサ ウンドにおける前配要素についての固有の特性を示すサ ウンドパラメータとして抽出する第4の手段と、抽出さ れたサウンドパラメータに基づき、前記オリジナルサウ ンドの分析データから時変動成分を取り除く第5の手段 とを備え、前記残余のスペクトルデータと前記フォルマ ントパラメータと前記サウンドパラメータの組合せによ って前記オリジナルサウンド波形を表現することを特徴 とする。このサウンド波形合成装置は、更に、前記フォ ルマントを制御するために前配フォルマントパラメータ を可変制御する第6の手段と、前記フォルマントパラメ ータに基づきフォルマント構造を再生し、再生されたフ オルマント構造を前記残余のスペクトルデータに付加 し、制御されたフォルマント構造を有するスペクトルデ ータを作成する第7の手段と、前記第7の手段で作成さ れたスペクトルデータに基づきサウンド波形を合成する サウンド合成手段とを具備していてよい。

10

【0019】上述の目的を達成するために、第7の観点 に従えば、この発明に係るサウンド波形合成装置は、オ リジナルサウンドの分析によって得た複数のサウンド部 分を示す部分音データのセットを提供するものであり、 各部分音データは周波数データを含み、前配部分音デー タのセットを時間関数で提供する第1の手段と、前記部 分音データにおける周波数データの時間関数からオリジ ナルサウンドにおけるビブラートを検出し、検出したビ ブラートを記述するパラメータを生成する第2の手段 と、前配部分音データにおける周波数データの時間関数 から前配検出されたビブラートの特徴を取り除き、修正 された周波数データの時間関数を生成する第3の手段と を備え、前配修正された周波数データの時間関数を含む 前配部分音データと前配パラメータとの組合せによって 時間的に変化する前配オリジナルサウンド波形を表現す ることを特徴とする。このサウンド波形合成装置は、更 に、ビブラートを制御するために前配パラメータを可変 制御する第4の手段と、前配パラメータに基づきビブラ ート関数を発生し、発生されたビブラート関数によって 前配修正された周波数データの時間関数にピプラートを 付与する第5の手段と、ビブラート付与された周波数デ ータの時間関数を含む前配部分音データに基づきサウン ド波形を合成するサウンド合成手段とを備えていてよ い。

【0020】上述の目的を達成するために、第8の観点に従えば、このサウンド波形合成装置において、前配部分音データにおけるマグニチュードデータの時間関数からオリジナルサウンドにおけるトレモロを検出し、これにより上記ピブラートの場合と同様の処理をしてもよい。そうすると、トレモロの抽出と、その可変制御、及びそれに基づくサウンド波形合成が可能である。

【0021】 上述の目的を達成するために、第9の観点に従えば、この発明に係るサウンド波形合成装置は、オリジナルサウンドのスペクトル構造を示すスペクトルデータを提供する第1の手段と、前記スペクトルデータに基づき、そのスペクトルエンベローブに概ね適合しているただ1本のチルトラインを検出し、検出したチルトラインの形状を示すチルトパラメータを生成する第2の手段と、スペクトルの形状を制御するために、前記チルトパラメータを可変制御する第3の手段と、制御されたチルトパラメータに基づき前記スペクトルデータのスペ 20クトル構造を制御する第4の手段と、制御されたスペクトルデータに基づきサウンド波形を合成するサウンド合成手段とを備え。

【0022】上述の目的を達成するために、第10の観点に従えば、この発明に係るサウンド波形合成装置は、オリジナルサウンドを構成する部分音のスペクトルデータを複数の時間フレームに対応して提供する第1の手段と、一連の時間フレームにおける前記部分音スペクトルデータにおける周波数データに基づき前記オリジナルサウンドの平均ピッチを検出し、ピッチデータを生成する第2の手段と、前記ピッチデータを可変制御するための第3の手段と、前記ピッチデータに応じて前記部分音スペクトルデータにおける周波数データを修正する第4の手段と、前記修正された周波数データを含む前記部分音スペクトルデータに基づき、可変制御されたピッチを持つサウンド波形を合成するサウンド合成手段とを備える。

【0023】上述の目的を達成するために、第11の観点に従えば、この発明に係るサウンドを分析し合成する方法は、オリジナル彼形を構成する部分音のスペクトル40データを、複数の時間フレームに対応して順次に提供するステップと、前配複数の時間フレームのスペクトルデータ列から前配オリジナル彼形におけるビブラート変動を検出し、この変動の少なくとも1サイクルに対応する長さを持つ1又は複数の彼形セグメントを指摘するデータリストを作成するステップと、前配データリストを参照して、任意の彼形セグメントを選択するステップと、選択した彼形セグメントに対応する前配スペクトルデータ列を前配オリジナル彼形のスペクトルデータ列を検50

12

り返すことにより前配波形セグメントの繰り返しに対応 するスペクトルデータ列を作成するステップと、前配繰 り返しに対応するスペクトルデータ列を使用して、延長 された長さを持つサウンド波形を合成するステップとを 備える。上記方法において、更に、前記部分音スペクト ルデータに対応する確定的成分波形を前記オリジナル波 形から引いた残りである残差成分波形に対応するストカ スティックデータを、複数の時間フレームに対応してシ リーズで提供するステップと、前記選択した波形セグメ ントに対応する前配ストカスティックデータシリーズを 前記オリジナル波形のストカスティックデータシリーズ から抜き出すステップと、抜き出したストカスティック データシリーズを繰り返すことにより前記波形セグメン トの繰り返しに対応するストカスティックデータシリー ズを作成するステップと、前配繰り返しに対応するスト カスティックデータシリーズを使用して、延長された長 さを持つストカスティック波形を合成し、これを前記サ ウンド波形に組み込むステップとを備えていてもよい。 【0024】上述の目的を達成するために、第12の観 点に従えば、この発明に係るサウンドを分析し合成する 方法は、オリジナル波形を構成する部分音のスペクトル データを、複数の時間フレームに対応して順次に提供す るステップと、前記複数の時間フレームのスペクトルデ ータ列から前記オリジナル波形におけるビブラート変動 を検出し、この変動の少なくとも1サイクルに対応する 長さを持つ1又は複数の波形セグメントを指摘するデー タリストを作成するステップと、前記データリストを参 照して、任意の波形セグメントを選択するステップと、 選択した波形セグメントに対応する前記スペクトルデー タ列を前記オリジナル波形のスペクトルデータ列から取 り去り、その前後で残された2つのスペクトルデータ列 を接続し、短縮されたスペクトルデータ列を作成するス テップと、前記短縮されたスペクトルデータ列を使用し て、短縮された長さを持つサウンド波形を合成するステ ップとを備える。上記方法において、更に、前記部分音 スペクトルデータに対応する確定的成分波形を前記オリ ジナル波形から引いた残りである残差成分波形に対応す るストカスティックデータを、複数の時間フレームに対 応して順次に提供するステップと、前配選択した波形セ グメントに対応する前配ストカスティックデータ列を前 記オリジナル波形のストカスティックデータ列から取り 去り、その前後で残された2つのストカスティックデー タ列を接続し、短縮されたストカスティックデータ列を 作成するステップと、前配短縮されたストカスティック データ列を使用して短縮された長さを持つストカスティ ック波形を合成し、これを前配サウンド波形に組み込む ステップとを更に備えていてよい。

[0025]

タ列を前配オリジナル彼形のスペクトルデータ列から抜 【作用】 前配第1の観点乃至第5の観点のいずれかに を出すステップと、抜き出したスペクトルデータ列を繰 50 従う方法または装置によれば、オリジナルサウンドの分

30

析データから所定のサウンド要素に関する特徴を分析 し、分析した該特徴を示すデータをサウンドパラメータ として抽出するようにしたので、例えばフォルマントや ビブラートなどのような様々なサウンド要素に関して、 オリジナルの特徴を示している品質のよいサウンドバラ メータを得ることができる。従って、このパラメータを サウンド波形合成に際して利用すれば、品質のよい各種 音楽的特徴の合成を行なうことができる。しかも、サウ ンドパラメータとして分析データから分離抽出されてい るため、その可変制御が容易であり、ユーザーによる自 由な音楽制御に適したものである。また、抽出されたサ ウンドパラメータに基づき、前記オリジナルサウンドの 分析データから時変動成分を取り除くようにしているた め、分析データの構造が簡単化され、データ圧縮が期待 できるものである。また、時変動成分が取り除かれた分 析データ又は合成されたサウンド波形に対して任意の時 間変化を付与することで任意の時間変化特性が付与され たサウンド波形を合成するようにしているので、オリジ ナルの特徴を示している品質のよいサウンド波形に対し て任意の時間変化特性を付与することができ、品質と制 御件に優れたサウンド波形合成を行なうことができる。 このように、サウンドパラメータを分析データから抽出 分離し、時変動成分が取り除かれた分析データとサウン ドパラメータの組み合わせによってオリジナルサウンド 波形を表現するデータを提供し、これに基づきサウンド 波形を合成する技術は、種々の効果が期待できるもので ある。前記第6の観点乃至第12の観点のいずれかに従 う装置または方法によれば、各種のサウンドパラメータ (フォルマント、ビブラート、トレモロ、スペクトルな ど) の抽出とそれに基づく波形合成・制御が達成され る。

[0026]

【実施例】以下、この発明の実施例を添付図面を参照して詳細に説明しよう。

[全体説明] 図1は、この発明の一実施例に係る音楽シ ンセサイザーの全体図である。このシンセサイザーは、 大別して、オリジナルサウンドの分析を行なう分析部1 0と、分析された表現物すなわち分析データからサウン ドを合成する合成部11とを含んでいる。 オリジナルサ ウンドはマイクロフォン12によって外部からピックア 40 ップして、分析部10に入力するようにしてよいし、そ の他の適宜の方法で分析部10に導入してもよい。この シンセサイザーにおける分析と合成の両方が、前述の米 国特許第5,029,509号にその基本原理が示され たようなSMS(スペクトル・モデリング・合成)技術 を基にしているものである。なお、分析されたデータが すでにシンセサイザーのメモリ内にストアされていても よく、その場合は分析部10はオプショナルであってよ い。このシンセサイザーは、シンギング・ボイス(人の 歌声)若しくはボーカル・フレーズ(人声音フレーズ)

の分析及び合成に適しているシンギング・シンセサイザーとして構成してよい。しかし、本発明は、シンギングボイスに限らず、自然楽器音やその他の楽音/サウンドー般の分析と合成に応用可能である。

14

【0027】以下で説明する実施例においては、SMS 分析に関して或るいくつかの改良がなされている。その ような改良は、シンギング・ボイス若しくはボーカル・ フレーズの分析と合成に適しているものであるが、サウ ンド一般の分析と合成にも適するものである。そのよう な改良の1つとして、SMS分析データから所定のサウ ンド要素に関する特徴を分析し、分析した特徴を示すデ ータをサウンドパラメータとして抽出するための処理が 分析部10で行なわれる。このサウンドパラメータを以 下では音楽パラメータという。抽出された音楽パラメー タは、合成部11に与えられ、サウンド合成の際にユー ザーによって操作することができるようになっている。 すなわち、ユーザーは、合成しようとするサウンドを好 みに応じて変更制御しようとする場合、特殊なSMS分 析データのフォームからなるパラメータで相互作用する 必要がなく、なじみの深い従前の音楽制御情報に対応す るフォームからなる音楽パラメータで相互作用すればよ いことになり、便利である。そのような音楽パラメータ とは、例えば、トーンピッチ、ピブラート、トレモロ、 などのような音楽要素又は楽音要素に対応するパラメー タである。そのために、相互作用的な編集機器群13や 音楽コントローラ群14を装備していてよい。

【0028】編集機器群13は、各種のコンピュータ端末機器(入力キーボードや、ディスプレイ、マウスその他)であってよい。音楽コントローラ群14は、音階音を指定するためのキーボードや、音色を選択若しくは設定するためのパネルスイッチ群や、各種の楽音効果を選択制御するためのスイッチ群や、ユーザーの自由な意志に従って楽音制御を行なうための各種の操作子群などを含んでいてよい。この音楽コントローラ群14の中には、ユーザーのボイス(人の音声)で楽音を制御するものを含んでいてもよいし、ボディアクションやブレスで制御するものを含んでいてもよい。ユーザーにより操作可能なこれらの編集機器群13及びコントローラ群14と、合成部11との間には、音楽パラメータインターフェース部15が設けられ、パラメータのやり取りや情報の翻訳が適切に行なわれる。

【0029】以下、図2以降の図を参照して、このシンセサイザーの詳細例を更に詳しく説明するが、提示した各部の詳細図は機能ブロック図である。図示された各機能を実現する手段を、ディスクリート回路によって構成してもよいし、マイクロコンピュータを使用したソフトウェア処理によって構成してもよい。また、このシンセサイザーは、以下で説明する改良に関わる全ての機能を併せ持っている必要はなく、任意の1つの機能のみ持っているだけでもよい。

【0030】(分析部の説明)図2は、分析部10の一例を示すブロック図である。オリジナルサウンド信号が入力されるSMS分析器20は、前述の米国特許第5,029,509号に示されたようなSMS分析技術に従ってオリジナルサウンドのSMS分析を行なうものである。このSMS分析器20の具体的構成としては、例えばその米国特許の第1図に示されたような構成を参照することができる。しかし、便宜のために、SMS分析器20の基本構成例をブロック20内に概略的に示す。

【0031】-SMS分析器-

SMS分析器20において、入力サウンド信号は、最初に時間窓処理部20aで処理される。ここでは、入力サウンド信号を、時間窓と言われる一連の時間フレームに分ける処理が行なわれる。次の周波数分析部20bでは、各時間フレーム毎のサウンド信号を分析し、1組のマグニチュードスペクトルデータを発生する。例えば、高速フーリエ変換器(FFT)による分析により、複素数スペクトルを発生し、複素数-実数変換器でこれをマグニチュードスペクトルに変換するようにしてもよいし、その他の周波数分析方法を使用してもよい。

【0032】線スペクトル抽出部20cでは、分析され たオリジナルサウンドの1組のマグニチュードスペクト ルから部分音の線スペクトルを抽出する。例えば、分析 されたオリジナルサウンドの1組のマグニチュードスペ クトルにおけるピークを検出し、これらのピークに対応 する特定の周波数と振幅値すなわちマグニチュード値を 持つスペクトルを線スペクトルとして抽出する。これら の抽出された線スペクトルが確定的成分に対応する。抽 出された1つの線スペクトルすなわち確定的成分は、特 定の周波数を示すデータと、その振幅値すなわちマグニ 30 チュード値を示すデータのペアからなっていてよいし、 更にはそのデータペアに位相を示すデータが加わってい てもよい。これらの部分音の線スペクトルデータは、各 時間フレームに対応して時系列的に得られるものであ り、そのような時系列的な線スペクトルデータセットを 夫々周波数トラジェクトリ(trajectory: 軌跡若しくは 遍歴)、マグニチュードトラジェクトリ、位相トラジェ クトリと呼んでいる。

【0033】残差スペクトル生成演算部20dでは、各時間フレーム毎に、オリジナルサウンドの1組のマグニ 40チュードスペクトルから、前配抽出された線スペクトルを引算し、残差スペクトルを生成する。この場合、前配米国特許に示されているように、前配抽出された線スペクトルに基づき確定的成分の波形を合成し、これを再分析して線スペクトルの再抽出を行ない、再抽出した線スペクトルをオリジナルサウンドの1組のマグニチュードスペクトルから引算する処理を行なってもよい。

【0034】次の残差スペクトルエンベローブ発生器2 0eでは、各時間フレーム毎に、残差スペクトルをエン ベローブによって表現する処理を行なう。この残差スペ 50 16

クトルエンベローブは、例えば、線セグメント近似物の 形でデータ表現することができるので、データ圧縮の促進に寄与する。一連の時間フレームに対応して発生され る残差スペクトルエンベローブは、ストカスティック成分に対応するものである。SMS分析器20で得られる、確定的成分に対応する周波数トラジェクトリ及びマグニチュードトラジェクトリ(更に位相トラジェクトリを含んでいてもよい)と、ストカスティック成分に対応する残差スペクトルエンベロープとを総称して、以下で10 はSMSデータと呼ぶ。

【0035】-SMSデータ処理の概略-

SMSデータ処理部30では、SMS分析器20で得られたSMSデータに対して適宜の処理を施す。ここでの処理は、大別して2種類ある。1つは、SMSデータを適宜に処理することにより、変更されたされたSMSデータを得ること。もう1つは、SMSデータから各種の音楽パラメータを抽出することである。データ処理プロック30aでは、確定的成分に対応する周波数トラジェクトリ及びマグニチュードトラジェクトリ(更に位相トラジェクトリを含んでいてもよい)について上述のデータ処理を行なう。データ処理プロック30bでは、ストカスティック成分に対応する残差スペクトルエンベローブについて上述のデータ処理を行なう。

【0036】SMSデータ処理部30における処理によって得られた、処理済みの又は変更されたSMSデータと、各種の音楽パラメータは、データメモリ100において各フレームに対応してストアされる。SMSデータ処理部30において行なう処理は、色々あるが、発明の実施にあたってはそのすべてを行なう必要はなく、適宜選択して実施してよい。処理が施されなかったSMSデータに関しては、分析器20から与えられたものと同じものがデータメモリ100にストアされるであろう。

【0037】SMSデータ処理部30において行なわれる各種処理の概略について図3を参照して説明する。ただし、図3は、SMSデータ処理部30において行なわれるすべての処理を紹介するものではなく、いくつかの代表的な処理について示している。前述のように、図3に示されたすべての処理を実施する必要はなく、実施にあたって不要なステップは適宜省略してよい。図3に示された処理のいくつかは追って更に詳しく説明される。また、図3に示されたなかった処理についても、追って詳しく説明されるものがある。

【0038】ステップ31:スペクトルの傾き分析この処理の基本思想は、マグニチュードとスペクトルのチルトすなわち傾きとの相関を見つけだすことである。ここで、チルトとはスペクトルの全体的なスロープのことである。すなわち、チルトとは、各ハーモニックピークの頂部を概ね結んだ一直線状のスロープである。典型的には、音楽サウンドにおいて、チルトがより小さい場合、より高いハーモニックスの振幅が相対的に高めら

れ、その結果、より明るい感じのサウンドをもたらす。このスペクトルの傾き分析処理では、"チルトファクター"と称する単一の数値データを求める。このチルトファクターは、マグニチュードとスペクトルのチルトとの間の相関を表わしている。このチルトファクターは、各フレーム毎に求められる。各フレーム毎に求めたチルトファクターを使用して、どのフレームに対しても共通の単一のチルトフアクターを求めるための"スペクトルチルト正規化"が後のステップで行なわれる。チルトフアクターは音楽パラメータの一種といってよいものである。これによって、1つのチルトファクターをユーザーが自由に制御することで、SMSにより合成されるサウンドの特性を、ユーザーの意志を的確に反映してかつ自由に制御できるものとなる。

【0039】ステップ32:周波数及びマグニチュード のデトレンディング (de-trending; 癖取り除き) 記録したオリジナルサウンドは、その安定状態におい て、クレッセンドやデクレッセンドのような音量変化、 又はわずかなピッチ変化を持っているのが普通である。 ところで、記録した波形データの持続時間よりも長い時 20 間だけサウンドを再生発音することを可能にする技術と して、ループ処理といわれる繰返し発音処理を安定状態 において行なうことが知られている。そのようなループ 処理にあたって、ループする波形データ区間において音 量やピッチの変動があると、ループポイント(繰返しの つなぎポイント)で目立った不連続が生じたり、ルーピ ングによる不自然な周期性が目立ったりするので好まし くない。そこで、この問題を解決するために、このデト レンディング処理では、SMSデータにおけるその種の 変動を取り除き、サウンドの安定状態での全体的な傾向 30 (トレンド) を可能な限り平坦にするよう処理する。た だし、ビブラートやサウンドの微変動は取り除かずに残 しておく。

【0040】ステップ33:スペクトルチルト正規化 ここでは、各フレーム毎に求めたチルトファクターを使 用して、どのフレームに対しても共通の単一のチルトフ アクターを求める。これにより、ユーザーによる制御対 象であるチルトフアクターは、時間フレームに関係なく 単一となるので、制御性が向上する。

【0041】ステップ34:平均マグニチュード抽出ここでは、各フレーム毎に、全ての確定的信号のマグニチュード値の平均値を計算する。すなわち、1つのフレームについては、全ての部分音成分の数で割る。こうして得た各フレーム毎の平均マグニチュードをマグニチュード関数と呼ぶ。このマグニチュード関数は、確定的成分によって代表されるサウンドの音量の時変動を示している。さらには、これらのフレーム毎の平均マグニチュードから、全体の平均マグニチュードを計算する。全体の平均マグニチュードを計算する。全体の平均マグニチュードは、サウンドの安定状態につい

て計算される。この全体の平均マグニチュードは、安定 状態における該サウンドの代表的音量レベルを示してい る。

18

【0042】ステップ35:ピッチ抽出 ここでは、各フレーム毎のピッチが計算される。これ は、1つのフレームについては、SMSデータにおける 最初のいくつかの、つまり低次の、部分音成分を使用し て、重み付けされた平均ピッチを計算することにより行 なう。この軍みづけにあたっては、重み付けファクター 10 として、各部分音成分のマグニチュード値を使用する。 こうして求めた平均ピッチが、そのフレームにおけるサ ウンドのピッチと呼ばれる。こうして得た各フレーム毎 の平均ピッチをピッチ関数と呼ぶ。このピッチ関数は、 確定的成分によって代表されるサウンドのピッチの時変 動を示している。さらには、これらのフレーム毎の平均 ピッチから、全体の平均ピッチを計算する。全体の平均 ピッチは、サウンドの安定状態について計算される。こ の全体の平均ピッチは、安定状態における該サウンドの 代表的ピッチを示している。

ステップ36:フォルマント抽出及び引算この基本思想は、SMSデータからフォルマントを抽出し、抽出したフォルマントをSMSデータから引算することである。その結果得られる変更されたSMSデータにおける全ての部分音成分が似たようなマグニチュード値を持つことになる。つまり、スペクトル形状が平坦になる。抽出したフォルマントを表現するフォルマントデータは、後段の合成段階で利用される。このフォルマントデータは、音楽パラメータの一種といってよいものである。これによって、フォルマントデータをユーザーが自由に制御することで、SMSにより合成されるサウンドの特性を、ユーザーの意志を的確に反映してかつ自由に制御できるものとなる。

【0043】ステップ37:ビブラート抽出及び引算ここでは、上記ステップ35で求めたピッチ関数から、ビブラートのかかっている部分を抽出し、抽出したビブラート成分をピッチ関数から引算する。抽出したビブラートを表現するビブラートデータは、後段の合成段階で利用される。ビブラートデータも、音楽パラメータの一種といってよく、ユーザーによるビブラートの容易な制御を可能にする。

【0044】ステップ38:ピッチ正規化 ここでは、上配ステップ37から出力されるピブラート 抜きのピッチ関数における各フレームの平均ピッチから 前配全体平均ピッチを引き算することにより、正規化さ れたピッチ関数を得る。

ニチュード関数とを得る。また、SMSデータにおける マグニチュードトラジェクトリからもトレモロ成分を除 去し、かつ、ストカスティックゲイン(各フレーム毎の 残差スペクトルエンベロープのゲイン) からトレモロ成 分を除去してもよい。トレモロデータも、音楽パラメー タの一種といってよく、ユーザーによるトレモロの容易 な制御を可能にする。

【0046】ステップ40:マグニチュード及び周波数 の正規化

ここでは、SMSデータを正規化する処理を行なう。周 波数データは、ステップ35で抽出されたピッチ関数に よって、各部分音成分毎の周波数トラジェクトリを、そ の部分音数分だけ、割算することによって正規化され る。これにより、各部分音成分の演算結果は、1に近い 周波数値を持つようになる。マグニチュードデータは、 マグニチュードトラジェクトリから、上記マグニチュー ド関数を引算することによって正規化する。ストカステ ィックデータについては、安定状態におけるストカステ ィックゲイン(各フレーム毎の残差スペクトルエンベロ ープのゲイン) の平均値を求め、これを基準値として、 各フレーム毎の残差スペクトルエンベロープのゲインか ら引算することにより正規化してよい。こうして、正規 化されたSMSデータを得るようにしてよい。また、マ グニチュード関数に関しても、全体平均マグニチュード を基準にして正規化し、正規化されたマグニチュード関 数を得るようにしてよい。

【0047】上述したようなSMSデータ処理部30に おける各処理によって得られた、処理済みの、すなわち 変更された又は正規化されたSMSデータと、各種の音 楽パラメータは、前述したように、データメモリ100 において各フレームに対応してストアされる。前述した ように、本発明の実施にあたっては、上述した各処理は オプショナルであるため、例えば上記ステップ40のよ うな正規化処理を行なった場合は正規化されたSMSデ ータがデータメモリ100にストアされるが、 行なわな かった場合は、単に変更されたSMSデータがデータメ モリ100にストアされる。また、変更も正規化も行な わなかった場合は、SMS分析器20で分析されたまま のSMSデータがデータメモリ100にストアされるで あろう。

【0048】 [合成部の説明] 図4は、合成部11の一 例を示すブロック図である。データメモリ100は、図 2に示されたものと同じものであり、上配のように、各 フレームについての処理済みのSMSデータと抽出され た各種の音楽パラメータがストアされている。これらの データは、1つのオリジナルサウンドに対応するものだ けに限らず、多数の異なるオリジナルサウンドに対応す るものをストアするようにしてもよいのは勿論である。

【0049】再生処理部50は、所望のサウンドを再生 するために、データメモリ100からストアされたデー 50 ーによるリアルタイムでの発音指示に応じた1つのサウ

タの読み出しを行なう処理と、読み出したSMSデータ と音楽パラメータに基づく、追って述べるような様々な データ操作処理を行なう。また、図1に示された編集機 器群13や音楽コントローラ群14によって発生された 制御パラメータを含む各種の音楽パラメータがこの再生 処理部50に与えられ、この再生処理部50における各 種処理をユーザーの制御に従って行なえるようにしてい る。例えば、ユーザーによって、望みのボイス若しくは 音色を選択すると、このボイス若しくは音色に対応する 1 つのオリジナルサウンドに対応する一揃いのデータ を、データメモリ100から読み出し可能にする。それ から、ユーザーによって、発音開始指示が与えられる と、時間フレームのシーケンスがスタートし、上記読み 出し可能にされた一揃いのデータのうち、該シーケンス によって指定される特定のフレームについてのSMSデ ータと各種パラメータがデータメモリ100から読み出 される。こうして読み出されたSMSデータと音楽パラ メータとに基づき、様々なデータ操作処理を行ない、処 理済みのSMSデータをSMSサウンド合成器110に

20

与える。 【0050】SMSサウンド合成器110は、入力され たSMSデータに基づき、前述の米国特許第5,02 9,509号に示されたようなSMS合成技術に従って サウンドの合成を行なうものである。このSMSサウン ド合成器 1 1 0 の具体的構成としては、例えばその米国 特許の第2図、第4図又は第5図に示されたような構成 を参照することができる。しかし、便宜のために、SM Sサウンド合成器110の基本構成例をブロック110 内に概略的に示す。すなわち、入力されたSMSデータ のうち、確定的成分に対応する線スペクトルデータ(周 波数、マグニチュード、位相)が確定的波形発生部11 0 aに入力され、これらに基づくフーリエ合成技術によ って確定的成分に対応する波形が発生される。また、入 力されたSMSデータのうち、ストカスティック成分に 対応する残差スペクトルエンベローブがストカスティッ ク波形発生部110bに入力され、このスペクトルエン ベロープに対応するスペクトル特性を持つストカスティ ック波形が発生される。ストカスティック波形発生部1 10 bは、例えば、ノイズ信号を残差スペクトルエンベ ロープに応じた特性でフィルタすることによりストカス ティック波形を発生する。発生された確定的成分に対応 する波形とストカスティック波形が加算器110cで加 算され、望まれていたサウンドの波形信号が得られる。 【0051】再生処理部50では、合成すべきサウンド のピッチを、ユーザーの所望により自由に設定すること が可能である。すなわち、ユーザーが所望のピッチを指 定すると、これに応じて、SMSデータにおける周波数 データを変更する処理を行ない、所望ピッチでのサウン

ド合成を可能にする。勿論、再生処理部50は、ユーザ

(11)

ンドの合成に限らず、例えば編集機器群13でプログラムされたデータに従って、複数のサウンドを、同時にまたは所定シーケンスで順番に、合成するよう処理することも可能である。ユーザーがリアルタイムで所望のボーカルフレーズに対応する制御パラメータを順次入力する、又は、プログラムされたデータに基づいて所望のボーカルフレーズに対応する制御パラメータを入力する、ことによって所望のボーカルフレーズの合成が可能である。

【0052】-再生処理部における処理例- 10 再生処理部50において行なわれる各種処理の一例について図5を参照して説明する。図5は、再生処理部50 において行なわれるすべての処理を紹介するものではなく、いくつかの代表的な処理について示している。図5 に示された処理における特徴的事項は、データの補間と、音楽パラメータを考慮したSMSデータの再生である。データ補間を行なわない場合は、補間に関連する処理ステップを省略してよいのは勿論である。まず、データ補間を行なわない場合について説明する。その場合は、図5のステップ51~59が有効とされると考えて20よい。すなわち、現在発音すべきことが選択されている1つの音についてのみ処理が行なわれる。

【0053】ステップ51:フレーム選択 ここでは、シンセサイザークロックに従って、現在のフレームが指定され、この現在フレームに対応するデータ (SMSデータと各種パラメータ)をデータメモリ10 0から取り出す。このフレーム選択処理のアルゴリズムは、シンセサイザークロックに従ってフレームを単純に進めることのみならず、前述のループ処理のために、ループエンドのフレームの次にループスタートのフレーム 30に戻ることも行なうようにしてよい。

【0054】ステップ52:データ変換
ここでは、データメモリ100から取り出された当該フレームの分析データ(SMSデータと音楽パラメータ)を、ユーザーによる制御に従って、変更する処理を行なう。例えば、所望のピッチがユーザーによって指示されると、それに応じて周波数データを変更する。あるいは、ユーザーによって所望のピブラートやトレモロが指示されると、それに応じて所定の音楽パラメータを変更する。こうして、ユーザーは、全ての分析データに関しないかつ全てのフレームにわたって、所望の制御を及ぼすことができる。このステップ52による変換を経由して各ステップ53~59に与えられるデータ名が例示的に図5に示されている。

【0055】ステップ53:ここでは、前配正規化されたピッチ関数を、全体平均ピッチによって演算し、正規化を解除したピッチ関数を得る。

ステップ54:ここでは、前配正規化されたマグニチュード関数を、全体平均マグニチュードによって演算し、 正規化を解除したマグニチュード関数を得る。 ステップ55: 周波数付加

ここでは、正規化されたSMSデータのうち、周波数データの値を、ピッチ関数を使用して正規化解除する。 【0056】ステップ56:マグニチュード付加 ここでは、正規化されたSMSデータのうち、マグニチュードデータの値を、マグニチュード関数とチルトデータを使用して正規化解除する。SMSデータにおいて残差スペクトルエンベロープが正規化されている場合も、その正規化解除をここで行なう。

22

10 ステップ 5 7: ビブラート及びトレモロ付加 ここでは、ビブラートデータ及びトレモロデータを使用 して、SMSデータにビブラート及びトレモロを付加す る。

ステップ58:フォルマント付加 ここでは、フォルマントデータを使用して、SMSデー タにフォルマントを付加する。

ステップ59:アーティキュレーション付加 ここでは、発生すべきサウンドにアーティキュレーションをつけるために、SMSデータに対して適宜のデータ 処理を施す。

【0057】次に、データ補間について説明する。これは、発生すべきサウンドが、或る音(これを前音という)から別の音(これを現在音という)に移行するときに、スムーズな移行を可能にするための処理である。例えば、シンギング・ボイスを合成するときに有効である。このために、現在音の発生の始まりの適当な期間の間、前音の分析データ(SMSデータ及び各種パラメータ)もデータメモリ100から取り出すようにする。【0058】ステップ61:フレーム選択ここでは、前音に関して適当なフレームのデータ(SM

ここでは、前音に関して適当なプレームのテータ (SM Sデータと各種パラメータ) をデータメモリ 100から 取り出す。

ステップ62:データ変換

ここでは、ステップ52と同様に、当該フレームの分析 データ(SMSデータと音楽パラメータ)を、ユーザー による制御に従って、変更する。

ステップ65~71:補間

ここでは、SMSデータ及び各パラメータ毎に、前音のデータと現在音のデータとの間で、所定の補間特性に従って補間を行なう。この補間特性としては、例えば、クロスフェード補間のように前音のデータから現在音のデータへと時間的に滑らかに変化してゆくような特性を使用することができるが、その他の適宜の特性を使用してもよい。補間ステップ65~71における様々な補間演算パラメータを、ユーザーの制御に従って変更することができるようになっている。

【0059】 (各種のデータ処理機能の詳細)次に、各種のデータ処理機能の詳細について説明する。以下では、各機能別に、分析から合成に至る処理が説明される。分析段階での処理は、SMSデータ処理部30(図

2. 図3)で実行され、合成段階での処理は再生処理部 50 (図4, 図5) で実行される。以下の説明では、各 データ処理機能はSMSデータを対象にして施される が、個別の各処理機能それ自体はSMSデータに限ら ず、その他のデータフォームからなる楽音データに適用 可能であり、すべてのデータフォーム種類の楽音データ に対する適用がクレームされた本願発明の範囲に含まれ る。

【0060】-フォルマント抽出及び操作-この機能は、図3のステップ36及び図5のステップ5 8における処理に対応するものである。この機能に関わ る発明の目的は、サウンドの線スペクトル(すなわちS MSデータにおける確定的表現物である周波数とマグニ チュードつまり振幅のペアからなる1組の部分音成分) から、フォルマント構造(全体的なスペクトル特性)を 抽出し、該サウンドの線スペクトルをフォルマント抽出 物と残余のスペクトルに分離することにより、分析デー タの圧縮化を図ると共に、サウンド合成の際にフォルマ ントの変更等の制御を極めて容易にできるようにするこ とである。周知のように、ボーカルサウンドにおいて は、そのボイスを特徴づけているフォルマントが存在す るので、この機能はボーカルサウンドの分析及び合成に おいて極めて有利である。

【0061】この機能に従うフォルマント抽出及び操作 システムの全体的なブロック図を図6に示す。入力側に 示されたSMS分析のステップと出力側に示されたSM S合成のステップは、前述のSMS分析器20とSMS サウンド合成器110による処理ステップに夫々対応し ている。前述のようにSMS分析によって得られるSM Sデータは、周波数トラジェクトリ及びマグニチュード 30 トラジェクトリと、ストカスティックエンベロープ(残 差スペクトルエンベロープ)とを含む。このうち、スト カスティックエンベロープについてはこの機能に従う処 理が施されず、確定的部分の分析結果つまり線スペクト ルデータ即ち周波数トラジェクトリ及びマグニチュード トラジェクトリに対してこの機能に従う処理が施され る。参考のために、フォルマントの特性を示している1 フレーム分の確定的部分の分析結果つまり線スペクトル データの一例を図7に示し、それに対応する1フレーム 分のストカスティックエンベロープの一例を図8に示 す。

【0062】図6において、ステップ80と81の処理 は、図3のステップ36の処理に対応するものである。 ステップ80では、1フレーム分の線スペクトルデータ からフォルマントを抽出するための処理を行なう。すな わち、1セットの線スペクトルデータからフォルマント の山を検出することと、検出したフォルマントの山を適 切な表現からなるパラメータで表現することとを行な う。このパラメータ表現は、前述したフォルマントデー タに対応するものである。そして、各フレーム毎に、こ 50 24

のフォルマント抽出を行ない、フレーム毎のパラメータ 表現つまりフォルマントデータを得る。こうして、フレ ―ム毎に時変動可能である一連のフォルマントデータ (これをフォルマントトラジェクトリと呼ぶ)を得る。 1セットの線スペクトルの中に複数のフォルマントがあ る場合、各フォルマント毎の連続的なフォルマントトラ ジェクトリがある。フォルマントデータのパラメータ表 現の仕方として、指数近似を、ここではまず提案する。 【0063】通常、フォルマントは、パワースペクトル

における三角形関数又はデシベルスペクトルにおける指 数関数で記述することができる。デシベルスペクトルは 人間の感覚に近いので、これを使用することは有益であ る。そこで、フォルマントの両側を夫々指数関数で近似 することにする。そのために、フォルマントの各側毎 に、そのスロープにフィットする最適の指数関数を見つ け出し、見つけ出した指数関数により該フォルマントを 表現する。この最適の指数関数の見つけ出し方や、表現 法には様々なバリエーションがあるであろう。その一例 を、図9を参照して説明する。

【0064】この例では、次の4つの値によって1つの フォルマントを表現する。 ι は或る 1 つの時間フレーム を特定するフレーム番号、 i は或る 1 つのフォルマント を特定するフォルマント番号である。

- (1) 中心周波数 F i (ι): i 番目のフォルマントの中 心周波数を示すパラメータ
- (2) ピークレベルAi(ι): i番目のフォルマントの 中心周波数位置における振幅値を示すパラメータ
- (3) バンド幅Bi(ι): i番目のフォルマントのバン ド幅を示すパラメータ
- (4) インターセクションEi(ι): i番目のフォルマ ントとその隣の i + 1 番目のフォルマントとの交点を示 すパラメータ

【0065】上記のうち最初の3つのパラメータは従来 より知られたフォルマント表現であるが、最後のインタ ーセクションパラメータは従来知られていなかったもの である。これは、例えば、i番目のフォルマントとその 隣の1+1番目のフォルマントとの交点に位置する1つ の部分音成分すなわちスペクトラムの周波数を示すもの である。ただし、最初の3つのパラメータに関しても、 その求め方は、後述するように指数近似によって求める 新規なものである。

【0066】ステップ80における処理手順を更に詳し く説明すると次の通りである。

- (1) フレーム ι の各線スペクトルつまり部分音成分に対 応するマグニチュードデータ an (ι) の中からいくつ かのローカル最大値を見つけ出す。ここで、前配式1の ように、nは、n=0, 1, 2, . . . , N-1の夫々 の値をとる変数であり、Nは、そのフレームにおいて分 析された線スペクトルつまり部分音成分の数である。
- (2) 見つけ出した個々のローカル最大値毎に、そのロー

カル最大値を取り囲んでいる2つのローカル最小値を、 夫々見つけ出す。こうして見つけ出された1つのローカ ル最大値と、その両側の2つのローカル最小値は、1つ の山を提示するものである。

【0067】(3) 各ローカル最大値とその両側の2つのローカル最小値とによって提示される各山から、前記パラメータFi, Ai, Bi, Eiを夫々算出する。こうして、フレームについての各フォルマントiに対応するフォルマントデータFi, Ai, Bi, Eiが得られる。

(4) 上記で求めたフレーム ι についての各フォルマント i に対応するフォルマントデータを、個別のフォルマントトラジェクトリに割当てる。どのフォルマントトラジェクトリに割当てるかは、中心周波数が最も近いものを探し出して決定する。これによりフォルマントの連続性が確保される。過去のフォルマントトラジェクトリにおいて、所定の誤差範囲内で中心周波数が近いものがない場合は、そのフォルマントのために新たなフォルマントトラジェクトリを割当ててもよい。

【0068】上記(3)のステップにおける各パラメータ Fi, Ai, Bi, Eiの算出アルゴリズムにつき、次 に、説明する。上記(2)のステップにおいて1つのローカル最大値とその両側の2つのローカル最小値により1つの山が特定されると、それから、これに合う2つの側の指数関数を見つけ出さねばならない。この問題は、下記数2に示すような式によって数学的に公式化することができる。

[0069]

【数2】

【0070】ここで、FとAは未知数であり、求めるべ きこのフォルマントにおける中心周波数とピークレベル 振幅値である。LlとLrは、2つのローカル最小値に対 応する部分音成分の次数である。fnとanは、この山の 内側にある部分音成分iの周波数と振幅(つまりマグニ チュード)である。xは、近似に使用する指数関数の底 40 である。- | F - f n | が、この指数関数の指数部であ る。eは、この指数関数と部分音成分との間の適合の誤 差である。すなわち、上記式2は最小自乗近似法による 誤差関数である。これにより、誤差eが最小となるよう なF、A、xを見つけ出す。これは最小限に見積もって も解くことが大変困難な問題である。しかし、本件での 適用にあたっては、それほど厳密な適合が要求されない ので、別の簡単な解決策を講じてもよい。そこで、F, A、xを見つけ出すための、次のような、簡単なアルゴ リズムを提案する。

26

【0071】その簡単なアルゴリズムとは、フォルマント周波数(F)とフォルマント振幅(A)を、ローカル最大値を精製することにより、得るものである。これは、その山における3つの最も高い振幅値について放物線的補間を行なうことによって行なう。その補間の結果得られる最大値の位置がフォルマント周波数(F)に相当し、その高さがフォルマント振幅(A)に相当する。フォルマントバンド幅Bは、賃行的には、フォルマントの先端から-3dB下がったところの帯域幅がそれに相10当する。そのような値は指数関数の底×を記述する。それらは、下記式のような関係にある。

[0072]

【数3】

$$B = -2F \frac{\ln ((\lambda-3)/\lambda)}{\ln (x)}$$

【0073】すべての部分音成分について最も良く適合するバンド幅を持つフォルマント(指数関数)は次のようにして見つけ出される。まず、個々の部分音成分 nについて下記式による指数関数の値 x n を 夫々求める。

0 [0074]

【数4】

$$xn = e^{\frac{\ln(an/A)}{|F - fn|}}$$

【0075】それから、各nに対応する上記指数関数値xnを上記数3の式のxに代入して、夫々に対応する仮のバンド幅Bnを夫々求める。こうして求めたそのフォルマントの各仮のバンド幅Bnを下記式のように平均化する。

30 [0076]

【数5】

$$B = \frac{1}{Lr - L1} \sum_{n=L1}^{n-Lr} \sum_{n=L1}^{n-Lr} \pi \mathcal{E} U_{n} = L1 \dots Lr$$

【0077】この平均バンド幅Bが、そのフォルマントのバンド幅として使用され、フォルマントとして使用された指数関数を記述するものとなる。 i 番目のフォルマントとその隣の i + 1 番目のフォルマントとの交点を示すインターセクションパラメータ E i は、そのフォルマント i における右側のローカル最小値の周波数を用いる。

【0078】図6に戻ると、ステップ81では、上配のように抽出した1フレームのフォルマントデータを使用して、そのフレームについての1組の部分音成分からフォルマント構造を引算する。フォルマント構造は、フォルマントの形状を示す相対値であると考えてよい。1組の部分音成分つまり線スペクトルからフォルマント構造を引算することは、フォルマントによる変化分を差し引いて、1組の部分音成分つまり確定的成分の線スペクト

ルを平坦化することである。従って、このステップ81 の処理の結果得られる、確定的成分の線スペクトルデー タは、例えば図10のように、平坦化されたスペクトル 構造を持つものとなる。

【0079】この手法の一例を示すと、1フレームのす べてのフォルマントデータに基づき、該フレームのすべ てのフォルマントを記述する関数を発生し、この関数が 0 平均を持つようにその振幅値を正規化する。このよう に正規化されたフォルマント関数は、フォルマント構造 部分音成分における個々の部分音成分毎に、そのマグニ チュード値からその周波数位置に対応する正規化フォル マント関数の振幅値を引算する。勿論、その他の手法も 可能である。

【0080】ステップ82の処理は、図5のステップ5 2, 62, 71の処理に対応するものである。すなわ ち、上記のように抽出されたフォルマントデータをユー ザーの制御によって自由に変更する処理が行なわれる。 ステップ83の処理は、図5のステップ58の処理に対 応するものである。すなわち、上記のように変更が適宜 20 加えられたフォルマントデータを確定的成分の線スペク トルデータに付加し、確定的成分の線スペクトルデータ にフォルマント特性を持たせる。

【0081】このフォルマント操作によれば、ユーザー は4つのパラメータF、A、B、Eを望みに応じて制御 することにより、フォルマントを自由に制御することが できる。これらの4つのパラメータ F, A, B, Eは、 フォルマントの特性/形状に直接対応しているので、フ オルマント操作/制御が非常にし易いものとなる、とい う利点がある。また、フォルマントの分析/抽出につい 30 ても、上記で提案した方法は、従来知られたLPCのよ うな自乗近似法に比べて簡単であり、計算も能率的に行 なうことができる、という利点がある。

【0082】-フォルマント抽出及び操作の別の例-図11は、フォルマント抽出及び操作システムの別の例 を示す全体的なブロック図である。ここでは、フォルマ ントを抽出するためのステップ80aが図6のステップ 80と相違しており、他は同じであってよい。このシス テムでは、フォルマントは、デシベルスペクトルにおけ る二等辺三角形関数で近似される。デシベルスペクトル 40 は人間の感覚に近いので、これを使用することは有益で ある。フォルマントのスロープにフィットする最適の二 等辺三角形関数を見つけ出し、見つけ出した二等辺三角 形関数により該フォルマントを表現する。この最適の二 等辺三角形関数の見つけ出し方や、表現法には様々なバ リエーションがあるであろう。その一例を、図12を参 照して説明する。

【00.83】この例では、次の3つの値によって1つの フォルマントを表現する。 ι は或る 1 つの時間フレーム を特定するフレーム番号、1は成る1つのフォルマント 50 28

を特定するフォルマント番号である。

- (1) 中心間波数 Fi (ι): i 番目のフォルマントの中 心周波数を示すパラメータ
- (2) ピークレベルAi(1):i番目のフォルマントの 中心周波数位置における振幅値を示すパラメータ
- (3) スロープSi(ι): i番目のフォルマントのスロ ープ(二等辺三角形の辺の傾き)を示すパラメータ 上記のうち最初の2つのパラメータは従来より知られた フォルマント表現であるが、最後のスロープパラメータ を示している。そして、そのフレームについての1組の 10 は従来知られていなかったものであり、これは、従来よ り知られたバンド幅に置き換わる新規なものである。こ のスロープをバンド幅に変換することは容易に行なえ る。

【0084】ステップ80aにおける処理手順を更に詳 しく説明すると次の通りである。

- (1) 山の検出:フレーム ι の各線スペクトルつまり部分 音成分 に対応するマグニチュードデータ an (ι)の中 からいくつかのローカル最大値つまりピークを見つけ出 す。また、見つけ出した個々のローカル最大値毎に、そ のローカル最大値を取り囲んでいる2つのローカル最小 値つまり谷を、夫々見つけ出す。こうして見つけ出され た1つのローカル最大値と、その両側の2つのローカル 最小値は、1つの山を提示するものである。このような 山検出の一例を図13に示す。
- (2) 三角形適合:各ローカル最大値とその両側の2つの ローカル最小値とによって提示される各山から、三角形 近似によって、前記パラメータFi,Ai,Siを夫々 算出する。こうして、フレーム についての各フォルマ ントiに対応するフォルマントデータFi, Ai, Si が得られる。

【0085】(3) 上記で求めたフレーム についての各 フォルマントiに対応するフォルマントデータを、個別 のフォルマントトラジェクトリに割当てる。どのフォル マントトラジェクトリに割当てるかは、中心周波数が最 も近いものを探し出して決定する。これによりフォルマ ントの連続性が確保される。前述と同様に、過去のフォ ルマントトラジェクトリにおいて、所定の誤差範囲内で 中心周波数が近いものがない場合は、そのフォルマント のために新たなフォルマントトラジェクトリを割当てて もよい。図16は、フォルマントトラジェクトリの様子 を模式的に示すマップである。

【0086】上記(1)のステップにおける山検出につい て更に説明する。一例として、隣接する3つの部分音成 分のマグニチュードつまり振幅値a-1, a0, a1が下記 式を満足するとき、その中央のマグニチュードa0に対 応する部分音成分をローカル最大値として検出するよう にしてよい。

[0087]

【数6】

【0088】そして、ローカル最大値の両隣の谷を同じ様な手法でローカル最小値として検出する。次に、上配(2)のステップにおける各パラメータFi, Ai, Siの算出アルゴリズムにつき、説明する。まず、中心周波数Fiは、前述と同様に、その山における3つの最も高い振幅値について放物線的補間を行なうことによって見つけ出す。このためのアルゴリズムとしては、下記式を用いることができる。

[0089]

【数7】

$$d = \frac{0.5(a_{-1} - a_1)}{a_{-1} - 2a_0 + a_1}$$

【数8】

$$d < 0$$
 $\pi 6 \text{ if}$, $F_1 = f_0 + d(f_0 - f_{-1})$
 $d \ge 0$ $\pi 6 \text{ if}$, $F_1 = f_0 + d(f_1 - f_0)$

【0090】ここで、f-1, f0, f1は、前述の各マグニチュードa-1, a0, a1に対応する隣接する3つの部分音成分の周波数である。dは、そのうち中央の周波数f0からの中心周波数Fiの距離である。まず数7の式によりdを求め、求めたdを数8の式に適用してFiを求める。

【0091】次に、各部分音成分nを中心周波数Fiからの隔たりに応じた相対値(xn, yn)に置き換えたデータセットを作成する。xnは周波数の相対値であり、下記式で得られる。

[数9] xn = | Fi - fn |

f nは各部分音成分nの周波数である。数9の式では差の絶対値が周波数の相対値xnとなっているため、図14に模式的に示すように、すべてのxnがFiの片側に *

$$Dx = \sum_{n=L1}^{n-Lr} x_n$$

$$Dxx = \sum_{n=L1}^{n-Lr} x_n^2$$

【0099】こうして得られた上記関数の傾きSiは、三角形の右側のスロープに対応するものである。その左側のスロープは、一Siである。また、関数のオフセット値Aiは、フォルマントのピークレベルに対応する。以上により、フォルマントに最も適合する二等辺三角形近似を定義する3つのパラメータFi、Ai、Siを得ることができる。図15はそのようなフォルマントの二等辺三角形近似を示すものである。

【0100】前述のように、フォルマントのバンド幅B 50

30

* くるように折り返されることになる。 ynは、各相対周 波数×nに対応する部分音成分 n の振幅であり、これは 下記のように各部分音成分 n のマグニチュード a n にそ のまま対応している。

[0092]

[数10] yn = an

【0093】こうして、三角形適合プログラムを、単純な線適合プログラムに変換することができる。すなわち、下記のような1次関数yを用いてAiとSiを見つけ出すことができる。

【数11】 y=Ai+Si·x

この数11の式のxとyに、上記データセット(xn,yn)を夫々代入し、下記の最小自乗近似式に従い、誤差eを最小にするようなAiとSiを見つけ出す。

[0094]

【数12】

20

【0095】L1とLrは、2つのローカル最小値つまり谷に対応する部分音成分の次数である。この解Ai,Siは下記式のように得られる。

[0096]

【数13】

$$\lambda_{1} = \frac{DxxDy - DxDxy}{Dx^{2} - Dxx}$$

$$S_{1} = \frac{Dxy - DxDy}{Dx^{2} - Dxy}$$

【0097】ここで、各導関数Dx, Dy, Dxx, Dxyは 次の通りである。

[0098]

【数14】

$$Dy = \sum_{n=L1}^{n=Lr} y_n$$

$$Dxy = \sum_{n=L1}^{n=Lr} x_n y_n$$

iは、 慣行的には、 フォルマントの先端から - 3 d B 下 がったところの帯域幅がそれに相当するので、 フォルマント中心周波数 F i とスロープ S i とに基づき、 下記式により容易に求めることができる。

[0101]

【数15】

$$Bi = 2(\frac{-3}{8i} + Fi)$$

【0102】スロープパラメータSiはそのままフォル

マント変更ステップ83に与えてもよいし、バンド幅パラメータに変換してからフォルマント変更ステップ83に与えるようにしてもよい。なお、変形例として、二等辺三角形近似に限らず、その他の不等辺三角形近似により各側のスロープを別々に近似することにより、フォルマントの三角形近似を行なうようにすることができる。

マントの三角形近似を行なうようにすることができる。 【0103】 このフォルマント操作によれば、ユーザー は3つのパラメータF、A、Sを望みに応じて制御する ことにより、フォルマントを自由に制御することができ る。これらの3つのパラメータF, A, Sは、フォルマ ントの特性/形状に直接対応しているので、フォルマン ト操作/制御が非常にし易いものとなる、という利点が ある。また、フォルマントの分析/抽出についても、上 記で提案した方法は、従来知られたLPCのような自乗 近似法に比べて簡単であり、計算も能率的に行なうこと ができる、という利点がある。また、三角形近似により フォルマントデータを抽出するので、抽出のための計算 のアルゴリズムが非常に簡単であるという利点がある。 更に、二等辺三角形近似によりフォルマントの分析/抽 出を行なうことにより、片側のスロープのみを計算すれ 20 ばよいことになるので、アルゴリズムを更に簡単化する ことができるという利点を持つ。

【0104】ービブラート分析及び操作ー

ビブラートは、各部分音成分毎に、その周波数トラジェ クトリの時間関数を分析することによって検出する。図 17は、ビブラート分析システムの一例を示す全体的な ブロック図である。これは、図3のステップ37の処理 に対応している。ビブラート分析は各部分音成分毎に行 なうので、この分析システムの入力は、或る1つの部分 音成分の周波数トラジェクトリであり、これは、各時間 フレーム毎の周波数を示す時間関数である。容易に理解 できるように、この周波数の時間関数が、ビブラートと みなすことができる周期で時変動していれば、その時変 動成分をビブラートとして検出することができる。 従っ て、周波数トラジェクトリの時間関数における低周波数 の時変動成分を検出することによってビブラートの検出 を行なうことができる。そのために、図17では、高速 フーリエ変換技術を使用してビブラート分析を行なうよ うにしている。

【0105】まず、ゲート90では、分析対象である1 40 つの周波数トラジェクトリの時間関数を入力し、ビブラート分析用の所定の時間窓信号によってゲートする。この時間窓信号は、隣接するフレームにおいてそのフレームサイズが所定割合で(例えば3/4づつ)オーバラップするように、周波数トラジェクトリの時間関数をゲートする。なお、ここでいうフレームとは、前述のSMSデータにおける時間フレームとは異なるものであり、それよりもかなり長い時間に対応している。例えば、時間窓信号によって設定する1つのフレームが0.4秒の時間長を持つとすると、オーバラップ割合が3/4である 50

とすると、隣接するフレーム間では、0. 1秒の時間差を持つ。つまり0. 1秒ごとの時間レートでビブラート分析がなされることになる。

【0106】ゲートされた信号は、直流除去器91に入力され、直流分を除去する。これは、例えば、そのフレーム内の関数値の平均値を求め、この平均値を直流分として除去する、すなわち各関数値から平均値を引算する、ことによって行なうことができる。それから、高速フーリエ変換器(FFT)92に入力され、そのスペクトル分析がなされる。こうして周波数トラジェクトリの時間関数が時間窓信号によって複数のフレームに分割され、各フレーム毎にその交流的成分についてのFFT分析が行なわれる。FFT92による分析出力は複素スペクトルであるから、次の直交一極座標変換器93でマグニチュードスペクトル及び位相スペクトルに変換する。こうして得られたマグニチュードスペクトルがピーク検出及び補間部94に与えられる。

【0107】上記マグニチュードスペクトルの一例をエンベロープによって示すと図18のようである。オリジナルサウンドにビブラートがある場合は、ビブラートの可能性のある所定の周波数領域、例えば4Hz乃至12Hzの領域に、図示のようなピークが生じる。そこで、この領域におけるピークを検出し、その周波数位置をビブラートレートとして検出する。そのための処理をピーク検出及び補間のためのステップ94で行なう。このピーク検出及び補間のためのステップ94における処理例は次の通りである。

【0108】(1) まず、与えられたマグニチュードスペクトルのうち、ピブラートの可能性のある所定の周波数領域において振幅の最大値、つまりローカル最大値を検出する。図20は、ピブラートの可能性のある所定の周波数領域を拡大して示しており、kがローカル最大値のスペクトルに相当し、k-1とk+1がその両隣のスペクトルに相当する。

- (2) 次に、上記ローカル最大値とその両隣のスペクトルの振幅値を通る放物線を補間する。図20におけるカーブPIは、この補間によって得た放物線を示す。
- (3) 次に、補間によって得た放物線カーブPIにおける 最大値を特定し、この最大値に対応する周波数位置をビ グラートレートとして検出すると共に、この補間された 最大値をビブラート幅として検出する。音楽パラメータ として抽出されるビブラートデータは、これらのビブラートレートとビブラート幅とからなっている。このビブラートデータの抽出が各フレーム毎に行なわれるので、時変動するビブラートデータの抽出が可能であることが 理解できるであろう。

【0109】図17に戻ると、ステップ95では、直交 ー極座標変換器93で得たマグニチュードスペクトルか ら、ステップ94で検出したビブラート成分を引算する 処理を行なう。ここでは、検出したビブラートの山の両

側の境界つまり2つの谷を見つけ出し、図19に示すように、この間を直線補間してビブラート成分の山を取り除く。図19は、このステップ95で処理されたマグニチュードスペクトルの一例を模式的に示している。

【0110】次に、ビブラート成分が除去されたマグニ チュードスペクトルデータと、直交-極座標変換器93 で得た位相スペクトルデータとを、極一直交座標変換器 96に入力し、これらを複素スペクトルデータに変換す る。それから、この複素スペクトルデータを逆FFT9 7に入力し、時間関数を発生する。この出力を直流加算 部98に与え、前記直流除去器91で除去した直流分を 再加算し、ビブラート成分が除去された1フレーム分の 周波数トラジェクトリの時間関数を生成する。こうし て、ビブラート成分が除去された1フレーム分の周波数 トラジェクトリを各フレーム毎に連結して、その部分音 成分に対応する一連の周波数トラジェクトリを作成す る。その際に、前述のようにオーバラップしたフレーム の時間だけ、データを重複して連結するものとする。デ ータ重複部分の連結の仕方としては、平均値を採用する のがよいと思われるが、その他の適宜の補間であっても 20 よい。また、オーバラップ部分において或る1つのフレ ームのデータのみ選択し、他を切り捨ててもよい。 この ようなオーバラップ部分についての処理は、前記検出し たビブラートレート及びビブラート幅のデータについて も適宜行なってよい。

【0111】図21は、ビブラート合成アルゴリズムの 一例を示す全体的なブロック図である。ステップ85, 86の処理は、図5のステップ52,62,69の処理 に対応するものである。すなわち、上記のように抽出さ れたビブラートレート及びビブラート幅のデータを、ユ 30 ーザーの制御によって自由に変更する処理が行なわれ る。ステップ87及び88の処理は、図5のステップ5 7の処理に対応するものである。ステップ87では、上 記のように変更が適宜加えられたビブラートレート及び ビブラート幅のデータに基づき、ビブラート信号を例え ば正弦波関数で発生する。ステップ88では、このピブ ラートレートとビブラート幅に対応する正弦波関数によ って、SMSデータにおける対応する周波数トラジェク トリにおける周波数値を変調する演算を行なう。これに より、ピプラート付与された周波数トラジェクトリが得 40 られる。

【0112】以上の説明では、各部分音成分毎に別々に、ビブラートデータを抽出し、制御若しくは変更し、かつ、ビブラート合成を行なうようにしている。しかし、各部分音成分毎にビブラートレートを異ならせる必要はないので、基本波成分から抽出したビブラートレート、あるいは低次のいくつかの部分音成分から抽出したビブラートレートの平均値、を各部分音成分に共通に使用するようにしても同様に所定のものを各部分音成分に共通に使用するようにし

てよい。 【0113】ートレモロの抽出及び操作ー

トレモロは、各部分音成分毎に、そのマグニチュードト ラジェクトリの時間関数を分析することによって検出す る。トレモロは振幅のビブラートであるといえるので、 前述したビブラートの分析及び合成のアルゴリズムと同 じものをそっくり利用することができる。ビブラートと の違いは、トレモロにおいては分析及び合成の対象がS MSデータにおけるマグニチュードトラジェクトリであ る、という点だけである。すなわち、図17乃至図21 を参照して説明したのと同様の分析及び合成のアルゴリ ズムをマグニチュードトラジェクトリに対して適用する ことにより、トレモロの分析及び合成を行なうことがで きる。従って、図17乃至図21における "周波数トラ ジェクトリ"を"マグニチュードトラジェクトリ"と読 み変えることにより、トレモロの分析及び合成のための 実施例を提示することができる。トレモロデータとして は、トレモロレートとトレモロ幅とからなるパラメータ が得られることになる。

【0114】同様に、SMSデータにおけるストカステ ィック成分に関しても、トレモロと同様の振幅の周期的 変動を分析し、これを制御若しくは変更し、かつ、合成 するようにすることができる。SMSデータにおけるス トカスティック成分に対応する残差スペクトルエンベロ ープデータの1つとして、該スペクトルエンベロープの 全体的ゲインを示すデータがあり、これをストカスティ ックゲインと呼ぶ。各時間フレーム毎の一連のストカス ティックゲインをストカスティックゲイントラジェクト リと呼ぶ。ストカスティックゲイントラジェクトリはス トカスティックゲインの時間関数である。従って、この ストカスティックゲインの時間関数を前記ピブラート又 はトレモロの場合と同様のアルゴリズムによって分析 し、その分析結果を利用した制御と合成が可能である。 また、分析を省略し、確定的成分のマグニチュードトラ ジェクトリの分析によって得たトレモロデータを使用し てストカスティックゲインの制御と合成を行なってもよ い。上述のようなビブラートあるいはトレモロの分析と 制御及び合成の手法は、SMS合成技術に限らず、他の 加算的楽音合成技術にも応用可能である。

) 【0115】-音楽サウンドにおけるスペクトルチルト 制御-

図22は、この実施例に従うスペクトルチルト制御のた - めの分析及び合成のアルゴリズムを示す。ステップ120~123は分析アルゴリズムに対応しており、SMSデータ処理部30(図2)で実行される。ステップ124,125は合成アルゴリズムに対応しており、再生処理部50(図4)で実行される。

【0116】スペクトルチルトの分析:まず、スペクトルチルトの分析について説明する。スペクトルチルト分析は、確定的成分に関して行なう。図23は、確定的成

分の線スペクトル例と、そこから分析した1直線状のスロープからなるスペクトルチルトラインの一例を示している。分析したスペクトルチルトラインは太い実線で示している。このスペクトルチルトラインの原点は、確定的成分の線スペクトルにおける最も低い周波数を持つ第1の部分音成分のマグニチュードレベル値である。そして、残りの全ての部分音成分のマグニチュード値を概ね近似することのできるような最適の傾きラインを見つけ出す(ステップ120)。これはラインーフィッティングの問題であるから、スペクトルチルトのスロープbは 10 次式によって計算できる。

【0117】 【数16】

$$b = \frac{\sum_{i=1}^{i=N-1} (x_i / x_0)^{a} (y_i - y_0)^{a}}{\sum_{i=1}^{i=N-1} (x_i / x_0)^{2}}$$

【0118】ここで、iは部分音番号、Nは部分音の合計数、xは各部分音の周波数、yは各部分音のマグニチ 20 ュード値である。特定のSMS時間フレームについての平均マグニチュードmagは次式により計算できる。

【0119】 【数17】

$$\max = \frac{1}{N} \sum_{i=0}^{i=N-1} y_i$$

【0120】これらの計算により、スペクトルチルト(b)と平均マグニチュードmagのデータペアを各SMS時間フレーム毎に得ることができる。次に、各フレ 30ーム毎の平均マグニチュードmagの平均値すなわち全体平均マグニチュードAvgMagを計算する。そして、次式によってこれらの値の相関を求める(ステップ121)。

[0121] 【数18】

【0122】ここで、iはSMS時間フレーム番号、MはSMS時間フレームの合計数である。この相関データcorrは、各フレームi毎の平均マグニチュードmagiに対する全体平均マグニチュードAvgMagの差(magi-AvgMag)と、各フレームi毎のスペクトルチルトbiとの相関を示すものである。すなわち、相関データcorrは、各フレーム毎のスペクトルチルトデータbを、そのフレームの平均マグニチュード 50

magに対する全体平均マグニチュードAvgMagの差(mag-AvgMag)に相関するデータとして正規化したものである。式18から容易に理解できるように、仮に、全フレームiのスペクトルチルトbiが等しいとすると、個別サンプルmagiとそれらの平均値AvgMagとの差(magi-AvgMag)の合計は0に収束するので、相関データcorrは、各フレームのスペクトルチルトbiの相互関係を、そのフレームi毎の平均マグニチュードmagiに対する全体平均マグニチュードAvgMagの差(magi-AvgMag)をパラメータとして、示している基準値若しくは正規化値である、ということである。

【0123】以上によって求められた相関データcor rが、スペクトルチルトに関する唯一の音楽パラメー タ、つまりチルトファクターである。ユーザーは、この チルトファクターつまり相関データcorrを変更制御 することにより、合成するサウンドの明るさ等の表情を 自由に制御することができる。なお、チルト分析にあた っては、確定的成分における全ての部分音を考慮にいれ る必要はなく、適宜省略してよい。例えば、上記式16 の分析式に算入する部分音成分を定義するために、或る スレショルド値を設定し、このスレショルド値以上のマ グニチュードを持つ部分音成分を算入して分析を行なう ようにしてよい。また、所定の高い周波数(例えば80 00Hz)以上の高い周波数の部分音成分も上記式16 の分析式に算入しないようにし、チルト分析にあたって の不安定要素を排除してよい。勿論、上記分析の結果得 たスロープと実際の各部分音のマグニチュードとを照合 し、あまりにもかけ離れているものがある場合は、それ を除外して、もう一度分析をやり直すようにしてもよ

【0124】スペクトルチルトによる正規化:次に、上 記のように求めたスペクトルチルト分析データを使用し て、SMSデータの確定的成分のマグニチュード値を正 規化する処理を行なう。ここでは、各フレーム毎の確定 的成分の線スペクトルが、見掛け上共通のスペクトルチ ルトを持つかのように、かつ、全体平均マグニチュード AvgMagに関して、夫々の部分音のマグニチュード 値を正規化する。そのために、下記式に従って、各部分 音成分毎に差分値diffを計算する(ステップ12 2)。

【0125】 【数19】

diff = corr * (AvgMag - mag) * (xi / x0)

【0126】ここで、magはそのフレームの平均マグニチュード、x0はそのフレームにおける第1の部分音の周波数、xiはこの計算の対象となっている部分音iの周波数である。それから、各部分音毎に計算した上記

差分値diffを、対応する部分音のマグニチュード値 に加算し、正規化したマグニチュード値を求める(ステ ップ123)。

【0127】スペクトルチルト合成:前述のように、ユ ーザーは、分析されたチルトファクターつまり相関デー タcorrを自由に変更制御することができる(ステッ* *プ124)。サウンド合成に際しては、各部分音成分の マグニチュード値をチルトファクターによって制御する 処理を行なう。そのために、下配式に従って、各部分音 毎に合成用の差分値d i f f を計算する。

【数20】

diff = corr' = (nawmag - AvgMag) = (xi / x0)

【0128】ここで、cor r'はユーザーによる変更 wnagはそのフレームの平均マグニチュードであり、合成 の際に適宜の処理が施されているかもしれないもの、x 0はそのフレームにおける第1の部分音の周波数、xiは この計算の対象となっている部分音iの周波数である。 これにより、チルトファクターcorr゚を考慮に入れ た合成用の差分値d i f f が各部分音毎に求められる。 この合成用の差分値diffを対応する部分音のマグニ チュード値に加算することにより、望みの修正されたス ペクトルチルトによって制御された線スペクトルデータ を得る(ステップ125)。この修正された線スペクト ルデータを含むSMSデータに基づき、後に、SMSサ ウンド合成器110(図4)でサウンド合成がなされ る。従って、ユーザーによるチルトファクターつまり相 関データcorrの変更制御に応じて、明るさ等の表情 が自由に制御されたサウンドが合成される。

【0129】容易に理解できるように、もし、スペクト ルチルトが時変動しない簡略化された制御を行なう場合 は、相関corrの算出等の面倒な演算は省略できるで あろう。つまり、分析されたスペクトルチルトデータb をそのままユーザーによって自由に制御し、制御された スペクトルチルトデータに基づきサウンド合成の際に線 スペクトルのチルトを制御するようにしてもよい。 発明 の本質は、スペクトルのチルトを抽出し、これを制御す ることにより合成すべきサウンドの制御を行なう点にあ るのであるから、そのような簡略化されたチルト分析と 合成も、本発明の範囲に含まれると理解すべきである。 このスペクトルチルト制御もまた、他の制御と同様に、 SMS技術に限らず、他の部分音加算合成技術において も適用可能である。

【0130】ーサウンドの時間変更ー

この技術の目的は、SMS技術によって表現されたサウ ンドの発音時間長を長くしたり又は短くしたりする制御 を行なうことである。発音時間長を長くすることは、サ ンプラーにおけるルーピング技術で知られているよう に、サウンドの或る部分を切り出し、これを繰返しつな ぎ合わせることによって行なう。発音時間を短くするこ とは、サウンドから適切に選んだセグメントを取り除く ことによって行なう。以下で述べる例では、ループポイ ントを設定するために、ビブラートサイクルの境界を見 つけ出すようにしたことを特徴としている。

【0131】図24は、この実施例に従う時間変更のた **制御処理を経たチルトファクターつまり相関データ、ne 10 めの分析及び合成のアルゴリズムを示す。ステップ13** 0, 131, 132は分析アルゴリズムに対応してお り、SMSデータ処理部30(図2)で実行される。ス テップ133,134,135は合成アルゴリズムに対 応しており、再生処理部50(図4)で実行される。ス テップ130、131、132による分析アルゴリズム によれば、オリジナルサウンドのビブラートサイクルの 境界を見つけ出す処理を行なう。そのために、ビブラー トの特徴が現われやすい低次の部分音成分のいくつかの 周波数トラジェクトリを対象にして分析を行なう。この 例では、第1の部分音成分すなわち基本波と第2の部分 音成分すなわち第1ハーモニックの2つの周波数トラジ ェクトリに関して、夫々分析を行なう。

> 【0132】まず、ステップ130では、分析しようと する音の中央当たりにおいて、基本波の周波数トラジェ クトリと第1ハーモニックの周波数トラジェクトリか ら、その周波数が最も高いローカル最大値を探し出す。 これを最初のローカル最大値とする。具体的には、分析 しようとする音の中央当たりの所定時間範囲内におい て、基本波の周波数トラジェクトリと第1ハーモニック の周波数トラジェクトリの夫々につき、7フレーム分の 周波数の平均値を順次に作成し、そのファイルを作成す る (7ポイント平均値ファイルの作成)。こうして、作 成した各トラジェクトリの7ポイント平均値ファイルを 比較参照して、基本波と第1ハーモニックの両方に関し て生じている最も高いローカル最大値を探し出す。こう して、探し出したローカル最大値の位置と値を、最初の ローカル最大値としてリストに入れる(最初のローカル 最大値の検出)。仮にオリジナルサウンドにビブラート がなかったとしても、このようなローカル最大値の検出 は可能である。なお、SMS時間フレームのレートを1 00Hzとすると、そのような7ポイントつまり7フレ ームの長さは0.07秒である。

【0133】次に、ステップ131では、上記のように 見つけ出した最初のローカル最大値の位置を基に、さら にサーチを進め、その両側において周波数が最小である 2つのローカル最小値を探し出して、上記最初のローカ ル最大館のリストに加える。それから、更に時間進行方 向にサーチを進め、音の終了近くまでに、いくつかのロ ーカル最大値とローカル最小値のペアを探し出し、上記 50 リストに時間順に加える。こうして、探し出したすべて のローカル最大値とローカル最小値つまり極値の値と位 置が上記リスト(つまり極値リスト)に時間順に記憶さ れる。

【0134】具体的には、まず、上配各トラジェクトリの7ポイント平均値ファイルにおいて最初のローカル最大値の位置から時間進行方向にサーチを進め、基本波と第1ハーモニックの両方に関して生じている周波数が最も低いローカル最小値(右のローカル最小値)を探し出す。このとき、必要に応じて、分析対象範囲を時間進行方向に広げて、前記7ポイント平均値ファイルにファイルする各トラジェクトリの7ポイント平均値データを追加作成する。こうして、探し出した右のローカル最小値の位置と値を、上配極値リストにおいて最初のローカル最大値の右隣に配憶する(右ローカル最小値検出)。

【0135】次に、上記各トラジェクトリの7ポイント 平均値ファイルにおいて最初のローカル最大値の位置から時間逆行方向にサーチを進め、基本波と第1ハーモニックの両方に関して生じている周波数が最も低いローカル最小値(左のローカル最小値)を探し出す。このときも、必要に応じて、分析対象範囲を時間逆行方向に広げて、前記7ポイント平均値ファイルにファイルする各トラジェクトリの7ポイント平均値データを追加作成する。こうして、探し出した左のローカル最小値の位置と値を、上記極値リストにおいて最初のローカル最大値の左隣に記憶する(左ローカル最小値検出)。

【0136】次に、分析対象範囲を時間進行方向に、音 の終了近くまで、広げて、前記7ポイント平均値ファイ ルにファイルする各トラジェクトリの7ポイント平均値 データを追加作成する。それから、前述と同様に、各ト ラジェクトリの7ポイント平均値ファイルにおいて時間 進行方向にサーチを進め、基本波と第1ハーモニックの 両方に関して生じている周波数の極値(ローカル最大値 又はローカル最小値)を順次検出し、これらの位置と値 を上記極値リストに時間順に記憶する。こうして作成さ れた極値リストにリストされた各極値のいくつかは、ビ ブラートサイクルのピークと谷であると推定することが できる。なお、極値の位置データとは、時間に対応する データである。次のステップ132では、上配ステップ 131でリストした極値データを検討し、ビブラートサ イクルのピークと谷であると推定される極値データを残 40 し、他を削除するための編集処理を行なう。

【0137】具体的には、次のように処理する。まず、リストした極値データにおいて見られるビブラートサイクルが、所定のビブラートレートの範囲内に納まっているかを調べる。すなわち、極値リストにおける或る最大値と或る最小値の時間差が所定の時間範囲内に納まるかを、全ての最大値と最小値のペアにつき、夫々調べる。所定の時間範囲の一例を示すと、最大で0.15秒、最小で0.05秒である。こうして、所定の時間範囲に納まっていない最大値と最小値のいくつかのペアを見つけ50

40

出すことができるであろう。これらの各ペアのうち少なくとも一方は、ビブラートの最大値又は最小値に対応していないものである。こうして、調べた結果、その時間差が所定の時間範囲に納まっている各極値ペアを、保存すべきものとして、マークする。ところで、上記所定時間範囲はむしろ広めに設定してあるので、有効なビブラート極値がマークされないことは有りえない。しかし、そのために、実際のビブラートを示している極値よりも多くの極値がマークされてしまう可能性がでてくる。なお、ここでマークされなかった極値は、以後の処理では全て無視される。

【0138】次に、リストに保存された各極値ペアにお いて、最小値から最大値に向かうアップスロープの時間 間隔と、最大値から最小値に向かうダウンスロープの時 間間隔を夫々算出する(図25参照)。 そして、夫々の アップスローブ時間間隔の平均値と、夫々のダウンスロ ープ時間間隔の平均値を計算する。それから、各極値ペ ア毎のアップスローブ時間間隔と上記アップスローブ平 均値との関係、及び各極値ペア毎のダウンスロープ時間 間隔と上記ダウンスロープ平均値との関係、を夫々調 べ、夫々の時間間隔が平均値に対して所定の誤差限界内 に収まっているかを調べる。例えば、この誤差限界とし ては、平均値の20%としてよい。この誤差限界内に収 まっている各極値ペアを、保存すべきものとして、マー クする。最初と最後の極値を除く各極値は、アップスロ ープとダウンスロープに関して合計2回の検査を受ける ことになる。どちらかの検査が合格であれば、その極値 を保存すべきことがマークされることになる。

【0139】以上の処理を経た結果として極値リストに保存された極値がビブラートの最大値及び最小値として推定できるものである。ルーピングのためにつなぎ波形として使用するセグメントは、2つの最大値又は2つの最小値の間の波形とする。そのために、少なくとも3つの極値がリストに保存されていなければならない。もし、2以下の極値しか保存されていない場合は、処理エラーとして、このステップ132の極値編集処理を再実行するようにしてもよい。その場合は、各検査における基準値を緩和して再実行するようにしてもよい。

【0140】サウンド合成に際しては、以上のように編集処理済みの極値リストを利用して、発音時間を長くする制御を行なう。図24のステップ133,134,135に示された合成アルゴリズムにおいて、ステップ133,134では発音時間を長くするためのアルゴリズム、ステップ135では発音時間を短くするためのアルゴリズムを行なう。まず、発音時間を長くするためのアルゴリズムについて説明する。

【0141】ステップ133では、極値リストを参照して、ルーピングのためにつなぎ波形として使用するセグメントに対応する波形データを波形メモリから取り出す。このセグメントは、2つの最大値又は2つの最小値

の間の波形データである。配録したオリジナルサウンド のどの部分からルーピング用セグメント波形を取り出す べきかは、極値リストが用意されているが故に、全く任 意に選択できる。この所望のセグメント波形の選択は、 サウンド合成プログラム内に任意にプログラムしておく ことによってもできるし、ユーザーがマニュアル操作に よって任意に選択するようにもできる。例えば、発生し ようとする音の性質によって、音の中間部分に対応する 波形をループさせるのが好ましい場合や、音の終わりの 方の部分の波形をループさせた方が好ましい場合があ る。それに限らず、どの部分をループさせるかはユーザ ーの好みもあるであろうし、サウンド合成プログラムを 作成するものの好みもあるであろう。一般的に言って、 繰返しは音を単調にするので、サウンドの余り重要でな い(そのサウンドをそれほど特徴づけていない)部分の セグメントをループ用のセグメントとして取り出すのが よいであろう。勿論、それに限らず、サウンドを特徴づ ける部分のセグメントをループ用のセグメントとして取 り出すようにしてもよい。なお、ルーピングのために取 り出されるセグメント波形データは、SMSデータの全 20 ての種類、つまり周波数トラジェクトリとマグニチュー ドトラジェクトリ及びストカスティック波形データであ る。

【0142】ステップ134では、上記のように取り出 したセグメント波形を、合成すべきサウンド波形に挿入 するための処理を行なう。例えば、オリジナルサウンド 波形におけるルーピングを開始するまでの望みの波形 (例えばアタック部の波形、又はアタック部とそれに続 く適当な部分の波形)のSMSデータをデータメモリ1 00から取り出し、これを新しい波形データファイルと してデータメモリ100の別の記憶位置若しくはその他 の適宜のメモリに書き込む。そして、書き込まれた先行 波形データに続いて、上記のように取り出したセグメン ト波形のSMSデータを所望回数だけ繰返して書き込 む。セグメント波形を挿入若しくは繰り返すときに、デ ータのスムーズな接続が行なわれるように、適当なスム ズ化演算を施すものとする。このスムーズ化演算は、 例えば接続部分での補間演算であってもよいし、あるい は、先行する波形の終わりのデータと後続する波形の先 頭のデータの値が一致するようにする演算であってもよ い。SMSデータにおいてスムーズ化演算の対象とする のは確定的成分のデータであり、ストカスティック成分 のデータはスムーズ化演算不要である。 延長したい望み の時間分だけ、セグメント波形を繰返し挿入した後は、 オリジナル波形の残りのSMSデータを最後の部分とし て挿入し、メモリに書き込む。この場合も、上配スムー ズ化演算を施して、先行するデータと後続するデータの

【0143】上述したステップ134の挿入処理は、サウンド発生に関して非実時間的に行なうようにしてい

抱続がスムーズになされるようにする。

る。すなわち、発音時間を望みの分だけ延長した波形を 作成し、この波形データを新しい波形データファイルと してデータメモリ100の新たな記憶位置又はその他適 宜のメモリに書き込むようにしている。このようにした 場合、サウンドを再生発音するときに、メモリからの波 形データの順次読み出しを1回だけ行なうことで、延長 した発音時間を持つサウンドを合成できる。しかし、こ れに限らず、シンセサイザー等におけるルーピング処理 として知られているような手法で、上述したステップ1 10 34の挿入処理と同様な処理を、サウンド発生時に実時 間的に行なうようにしてもよい。その場合は、セグメン ト波形を繰り返して書き込む処理は不要であり、ルーピ ングすべきセグメント波形を指示するデータをステップ 133の処理から受け取り、オリジナルサウンド波形を 記憶したデータベースの中からこのセグメント波形のデ ータを繰返し読み出すようにすればよい。変形例として は、発音時間延長のために追加的に繰り返されるセグメ ント波形は、単一のセグメントに限らず、複数セグメン トであってもよい。また、1セグメントがビブラートの

42

【0144】次に、発音時間を短くするためのアルゴリ ズムについて説明する。発音時間を短くするためのアル ゴリズムは、サウンドのいくつかのセグメントを取り除 くことを基にしているものである。そのためにステップ 135の短縮処理において実行されるアルゴリズムは、 周波数トラジェクトリにおける2つのローカル最大値の ペアまたは2つのローカル最小値のペアの時間間隔を夫 々調べ、取り除きたい時間に適したペアを見つけ出すこ とからなっている。そのために、周波数トラジェクトリ におけるローカル最大値とローカル最小値のリストを作 成し、このリストを参照して、所望の取り除きたい時間 に適した極値ペアを見つけ出すようにしてよい。 このリ ストとしては、前述の7ポイント平均値ファイルに基づ いて作成した極値リストを用いてよく、その場合、この 極値リストは、ステップ131による編集処理を施す前 のものであってもよいし、又は施した後のものであって

複数サイクルに対応していてもよい。

【0145】具体的には、音の中央当たりから時間進行方向に沿って極値リストのサーチを開始し、所望の取り40 除きたい時間に適した2つのローカル最大値のペアまたは2つのローカル最小値のペアを探し出す。こうして、取り除きたい時間に最適の極値ペアを選択する。もし、最大の時間間隔を持つ極値ペアの時間間隔が、所望の取り除きたい時間よりも短い場合は、その最大の時間間隔を持つ極値ペアを、取り除くべき極値ペアとして選択する。次に、図26に示すように、取り除くべきことが選択された極値ペアの間にあるSMSデータのトラジェクトリ部分Bを、オリジナルのSMSデータトラジェクトリA、B、C…から削除する処理を行なう。すなわち、50 取り除くべきことが選択された極値ペアのうちの最初の

極値よりも前にあるSMSデータトラジェクトリ部分A をデータメモリ100から取り出して、これを新しい波 形データファイルとしてデータメモリ100の新たな記 憶位置又はその他適宜のメモリに書き込む。それから、 取り除くべきことが選択された極値ペアのうちの2番目 の極値よりも後にあるSMSデータトラジェクトリ部分 Cをデータメモリ100から取り出して、これを新しい 波形データファイルにおけるトラジェクトリ部分Aの次 に書き込む。SMSデータトラジェクトリ部分AとCの 接続に際しては、前述と同様のスムーズ化演算を行なう ものとする。こうして、図27に示すように、トラジェ クトリ部分Bを除いた新しいSMSデータファイルが作 成される。勿論、削除はSMSデータの全て(周波数、 マグニチュード、位相、ストカスティック成分)につい て行なう。また、波形を短縮すべき時間はユーザーによ って任意に選択可能にしてよい。

【0146】上述したステップ135の短縮処理は、サ ウンド発生に関して非実時間的に行なうようにしてい る。すなわち、発音時間を望みの分だけ短縮した波形を 作成し、この波形データを新しい波形データファイルと してデータメモリ100の新たな記憶位置又はその他適 宜のメモリに書き込むようにしている。しかし、これに 限らず、上述したステップ135の短縮処理と同様な処 理を、サウンド発生時に実時間的に行なうようにしても よい。その場合は、取り除くべきセグメントは予めサー チしておき、発音時において、トラジェクトリ部分Aの 読み出しが終了した後、取り除くべきセグメントに対応 するトラジェクトリ部分Bの読み出しを行なわずに、ト ラジェクトリ部分Cにジャンプして読み出しを行なうよ うにすればよい。その場合も、トラジェクトリ部分Aの 終わりとトラジェクトリ部分Cの始まりのデータのつな がりをスムーズにするための演算処理を行なうのがよ ٧V

【0147】以上述べた例では、発音時間延長用又は短縮用の波形セグメントのサーチは、周波数トラジェクトリにおける極値(すなわちビブラート)を利用して行なっているが、これに限らず、マグニチュードトラジェクトリにおける極値を利用して行なうようにしてもよい。また、発音時間延長用又は短縮用の波形セグメントを見つけ出すための指標としては、極値に限らず、他のもの40を使用してもよい。この時間変更制御もまた、他の制御と同様に、SMS技術に限らず、他の類似の部分音加算合成技術においても適用可能である。

【0148】ーピッチ分析及び合成一

オリジナルのSMSデータからそのピッチを分析することは、任意の可変ピッチでサウンド合成が行なえるようにするために、極めて重要である。すなわち、オリジナルのSMSデータのピッチが判明していれば、所望の再生ピッチを指定し、該所望再生ピッチとオリジナルピッチとの比に応じてオリジナルのSMSデータの各周波数 50

データを制御することにより、これらのSMS周波数データを該所望の再生ピッチに対応するものに変更することができる。こうして、変更されたSMSデータは、オリジナルSMSデータの特徴を持つサウンドをそっくり再生できるものでありながら、そのピッチだけがオリジナルとは異なる任意の希望のピッチを持つものとなる。従って、このことを実現可能にするピッチ分析及び合成アルゴリズムは、SMS技術を用いた音楽シンセサイザーにとって極めて重要である。以下、ピッチ分析及び合成アルゴリズムはSMSデータ処理器30(図2)で実行され、ピッチ合成アルゴリズムは再生処理器50(図

44

【0149】ピッチ分析アルゴリズム:図28はピッチ分析アルゴリズムの一例を示すものである。まず、オリジナルSMSデータの周波数トラジェクトリから各フレーム毎のピッチPf(ι)を下記式に従い求める(ステップ140)。

【0150】 【数21】

4) で実行される。

$$\begin{array}{c} Np-1 \\ \Sigma \\ n=0 \end{array}$$

【0151】ここで、Lは特定のフレームを示すフレー ム番号、Npはピッチ分析に使用する部分音の数、nは 部分音の次数を示す変数であり、n=0, 1, …, Npである。 $an(\iota)$ と $fn(\iota)$ は、フレーム ι における確定 的成分中のn番目の部分音の振幅マグニチュード及び周 波数である。式21は、低次のNp個の部分音の周波数 fnを、夫々の周波数順位の逆数1/(n+1)と振幅 マグニチュードanとで重みづけし、それらの加重平均 を算出するものである。この加重平均により、ピッチP fを比較的精度良く検出することができる。例えば、Np =6として、低次の6部分音につき上記加重平均を計算 すると、良い結果が得られる。しかし、これに限らず、 Np=3程度であってもよい。なお、単純には、最低周 波数の部分音の周波数 f 0(ι)をそのフレームのピッチ Pf(ι)として検出するようにすることも可能である。 しかし、そのような単純な方法よりも、上記のように加 重平均によってピッチを検出するようにした方がより聴 覚に合っている。

【0152】図30は、上記の加重平均演算に従うフレームピッチPf(1)の検出状態を模式的に示す図である。横軸周波数に示された数字1は、検出したフレームピッチPf(1)の周波数位置、2,3,4,…は、その2倍、3倍、4倍、…の周波数位置であり、これらは正確な整数倍関係にある。図に示された線スペクトルは、オリジナル周波数データfn(1)の線スペクトル例であ

る。オリジナルサウンドの線スペクトルfn(ι)は、必 ずしも正確な整数倍の周波数関係にはなっていない。図 では、加重平均によって求めたピッチの周波数位置は、 第1部分音の周波数 f0(1)とはいくぶん相違している ことを示している。

【0153】次に、所定のフレーム範囲にわたる各フレ -ム毎のピッチPf (ι) の平均を下記式によって計算 し、全体平均ピッチ Paを得る (ステップ141)。 L は該所定のフレーム範囲におけるフレーム数である。こ ピッチが安定する適当な期間を選ぶのがよい。

[0154]

【数22】

$$Pa = \frac{1}{L} \sum_{\ell=0}^{L-1} Pf(\ell)$$

【0155】次に、下記式のように、オリジナルSMS データにおける各フレーム毎の周波数データfn(1) を、そのフレームのピッチ Pf (ι) に対する比で表わ したデータ $f'n(\iota)$ に変換する(ステップ 142)。 [数23] $f'n(\iota) = fn(\iota)/Pf(\iota)$ ここで、n=0, 1, 2, …, N-1である。次に、下 記式のように、各フレーム毎のピッチPf(1)を全体 平均ピッチ Paに対する比で表わしたデータ P'f(ι) に変換する (ステップ143)。

【数24】 P'f(ι) = Pf(ι) / Pa

【0156】上記数23,24の式によるデータ変換処 理によって、SMS周波数データの圧縮化を図ることが できると共に、後段での変更制御にあたって処理しやす いデータ表現に変換されることになる。こうして、オリ ジナルSMSデータにおける絶対的な周波数データfn (L)が、相対的な周波数データ群つまり部分音ごとの 相対周波数トラジェクトリf'n(ι)及びフレームピッ チトラジェクトリ $P'f(\iota)$ と、1つの全体平均ピッチ データPaとに変換される。これらの変換された周波数 データ群 f'n(ι)、P'f(ι)、Paが、SMS周波 数データとして、データメモリ100に記憶される。

【0157】 ピッチ合成アルゴリズム: 図29はピッチ 合成アルゴリズムの一例を示すものであり、サウンド合 成のためにデータメモリ100から読み出した上記変更 40 されたSMS周波数データ群 $f'n(\iota)$ 、 $P'f(\iota)$ 、 Paを入力し、これに関して下記のような処理を行な う。まず、ステップ150では、合成しようとするサウ ンドのピッチを制御するためのユーザーの操作に応じた 処理を行なう。例えば、ユーザーの操作に応じてピッチ 制御パラメータCpを発生し、このピッチ制御パラメー タCpによって全体平均ピッチデータ Paを変更制御す る(例えば乗算する)ことによって、再生サウンドの全 体ピッチを指定するデータPdを生成する。あるいは、 再生サウンドの全体ピッチを指定するデータPdを、ユ 50 46

ーザーの操作に応じて直接的に発生するようにしてもよ い。周知のように、ユーザーの操作に応じたピッチ指定 ファクタ又はピッチ制御ファクタには、鍵盤等による音 **階音指定やピッチベンド等の制御ファクタを含んでいて** よい。

【0158】次に、ステップ151では、上記のように 確定された所望ピッチPdを分析された全体平均ピッチ Paに置換して、下記式のように相対フレームピッチ P'f (ι) と演算することにより、上記式24の逆算を の所定のフレーム範囲としては、オリジナルサウンドの 10 行ない、該所望ピッチPdに対応して決定される各フレ **ーム毎の新たなピッチ Pf (ι) を求める。**

[数25] $Pf(\iota) = P'f(\iota) * Pd$

【0159】次に、ステップ152では、上記のように 求められた新たなフレームピッチPf(ι)とそのフレ ームに関する各部分音の相対周波数データf'n(ι)と を下記式のように夫々演算することにより、上記式23 の逆算を行ない、該所望ピッチPdに対応して決定され る各フレーム毎の各部分音の絶対周波数データ fn

 (ι) を求める。ここで、 $n=0, 1, 2, \dots, N-1$ 20 である。

[数26] $fn(\iota) = f'n(\iota) * Pf(\iota)$ 【0160】以上により、ユーザーの所望するピッチP dに対応する絶対周波数で表わされた周波数トラジェク トリfn(ι)が得られる。このピッチ修正された周波 数トラジェクトリfn(ι)を含むSMSデータに基づ きSMSサウンド合成器110でサウンド合成を行なう ことにより、所望のピッチ制御がなされたサウンドが得 られる。この再生サウンドにおける倍音構成は、その倍 音構成に何の制御も加えられない限り、例えば図30に 示したようなオリジナルサウンドの倍音構成 f 0(ι), f1(ι), f2(ι), …を忠実に模倣する(自然音特有の 徴妙な周波数ずれも模倣している)髙品質のものであ る。また、各データを相対値で表現しているため、倍音 構成等を変更するための加工操作も比較的容易に行なえ るようになっている。

【0161】なお、所望ピッチPdに応じた確定的成分 の上記制御と同時に、SMSサウンド合成に使用するス トカスティックエンベロープを所望ピッチPdに応じて 周波数方向に圧縮又は伸長する制御を行なってもよい。 このピッチ分析及び合成技術もまた、他の制御と同様 に、SMS技術に限らず、他の類似の部分音加算合成技 術においても適用可能である。

【0162】一位相分析及び合成一

SMS技術において確定的成分の位相データは必須では ないが、位相データを考慮したサウンド合成を行なえ は、サウンドの品質をより一層良くすることができる。 特に、音のサステイン状態において、適正な位相制御を 行なうことは、音の品質を上げるので、望ましい。ま た、位相を考慮しなかったとすると、ピッチの変更や時 間伸長などの変換を位相を含んで行なうことが困難であ

る。そこで、ここでは、確定的成分の位相データの新し い分析及び合成アルゴリズムを提案する。SMS分析さ れたデータにおける位相トラジェクトリをφn(ι)で示 す。 ι はフレーム番号、 n は部分音の次数である。この 位相トラジェクトリ ϕ n(ι)における位相値 ϕ nは、各部 分音n毎の初期位相の絶対値である。新しい位相分析ア ルゴリズムにおいては、下記式に示すように、この位相 値ønを第1部分音つまり基本成分に対する相対値θn (ι)で表現する。この演算は、SMSデータ処理部30 で行なわれる。

[0163]

【数27】

$$\theta n(\epsilon) = \frac{\theta n(\epsilon)}{fn(\epsilon)/fo(\epsilon)} - \theta o(\epsilon)$$

【0164】すなわち、或る部分音の相対位相値 θ n (1)は、その絶対位相値 øn(1)を、第1部分音周波 数 $f O(\iota)$ に対するその部分音周波数 $f n(\iota)$ の比で割っ*

*たものから、第1部分音の絶対位相値φ0(ι) を引いた ものである。すなわち、高次の部分音ほどその位相の重 要度が少なくなるため、それに応じた重み付けを行なっ てから、第1部分音の位相に対する相対値で表現するよ うにしている。こうして、位相トラジェクトリφn(ι) は、より小さな値からなる相対位相トラジェクトリ θn (ι)に変換され、この状態でデータメモリ100に記憶 される。従って、データ圧縮がなされた状態で位相デー タを記憶することができる。 また、 第1部分音の相対位 10 相θ0(ι)は常に0であるから、これは特に配憶してお

48

[0165]上記相対位相トラジェクトリ θ n(ι) に基 づき絶対位相トラジェクトリφn(ι)を再合成する処理 は、下記式に従って行なう。この演算は再生処理部50 で行なわれる。

[0166]

く必要がない。

【数28】

 $\phi'n(\iota) = [fn(\iota)/f0(\iota)] * [\theta n(\iota) + \phi'0(\iota)]$

逆算式である。ただし、 $\phi'0(\iota)$ は第1部分音の絶対位 相値に相当し、ユーザー操作又は適宜の再生プログラム によって制御可能である。例えば、 $\phi'0(\iota) = \phi0(\iota)$ とすれば、得られる位相トラジェクトリφ'n(ι)はオリ ジナルの位相トラジェクトリφn(ι)と同じとなる。φ' $O(\iota) = 0$ とすれば、合成されるサウンドにおける基本 成分(第1部分音)の初期位相が0となる。

【0168】この位相トラジェクトリ ϕ' n(ι)は、SM Sサウンド合成器110において、SMSデータの確定 的成分をシヌソイド合成するときに、各部分音に対応す るシヌソイド波形の初期位相を設定するために利用され る。例えば、nの各値(n=0, 1, 2, ···, N-1) に対応するシヌソイド波形を、

an sin $[2\pi fn(\iota)t+\phi'n(\iota)]$

と表現し、これらを加算合計してサウンドを合成するよ うにしてよい。

【0169】なお、正確な位相の再合成計算は、3次多 項式を各部分音の各サンプル毎に計算する必要がある。 しかし、そのような計算は、時間がかかり、面倒である という問題がある。そこで、これを簡略化し、時間のか 40 からない方法で比較的正確な位相の再合成計算を行なえ るようにした手法を次に提案する。それは、位相トラジ ェクトリを使用して周波数トラジェクトリを修正する一 種の補間演算からなる。フレームの始まりの周波数を f s,終わりの周波数をfeとし、フレームの始まりの位相 をφs, 終わりの位相をφeとする。ここで、もし、単純 に、周波数を直線補間したならば、フレームの最後での 位相φiは、次のように表わせる。

[0170]

【数29】 $\phi i = [(fs+fe)/2] * \Delta t + \phi s$

【 $0\,1\,6\,7$ 】基本的には、上記数式 $2\,8$ は、数式 $2\,7\,0$ 20 ここで、 $\Delta\,t$ は合成フレームの時間サイズである。(fs+fe) /2は、始まりの周波数fsと,終わりの周波 数feの単純平均であり、これにΔtを掛けたものは、 Δ t における周期数を示し、位相に対応している。 すな わち、時間∆tからなる1フレームにおいて進行した総 位相量に対応している。従って、φiは単純補間による 終わりの位相を示す。次に、φeとφiの単純平均を次の ように求め、これを目標位相øtとする。

[0171]

【数30】 $\phi t = (\phi e + \phi i) / 2$

この目標位相φtから、下記式のように目標周波数ftを 求める。

[数31] $ft = 2 (\phi t - \phi s) / \Delta t - fs$ ここで、φtーφsは、目標位相φtを終わりの位相とし たときの時間Δtからなる1フレームにおいて進行する 総位相量に対応しており、(φt-φs) /Δtは、その フレームでの周波数に相当する。この周波数が、始まり の周波数 fsと目標周波数 ftとの単純平均に相当するも のとして、ftを求めた式が上記式31である。

【0172】以上の手法で各部分音ごとの位相データを 考慮して夫々の周波数データを補間演算し、こうして求 めた補間修正済み周波数データを使用してシヌソイド合 成を行なえば、望みの位相合成を比較的正確に行なうこ とができる。この位相分析及び合成技術もまた、他の制 御と同様に、SMS技術に限らず、他の類似の部分音加 算合成技術においても適用可能である。

【0173】-周波数及びマグニチュードのデトレンド 処理一

デトレンド処理の概略は図3のステップ32に関連して 前述した通りである。ここでは、この処理についてその 50 一例につき更に詳しく説明する。ここで述べる例では、

周波数トラジェクトリについては各フレーム毎の基本周波数 (これは第1部分音の周波数 f 0(\(\ilde{\chi}\)) 若しくは前述のようなピッチ分析によって分析したフレームピッチP f(\(\ilde{\chi}\)) を対象にし、マグニチュードトラジェクトリについては各フレーム毎の平均マグニチュード(そのフレームについての確定的全部分音のマグニチュードの平均値)を対象にし、ストカスティックトラジェクトリについては各フレーム毎のストカスティックドイン(残差スペクトルエンベロープの全体レベルを示すゲインデータ)を対象にして、夫々処理を行なう。これらの処理対象を以下では要素と呼ぶ。

【0174】まず、サウンドの安定状態に関して、下記式によって、各要素についての時間的変化傾向を示すスロープbを夫々計算し、各要素についてその変化傾向を見つけ出す。

【数32】b=(ye-y0)/(xe-x0) ここで、yはこの式によってその時間的変化傾向を分析 しようとする要素の値を示し、y0は安定状態の始まり での要素の値、yeは安定状態の終わりでの要素の値で ある。xはフレーム番号(つまり時間)を示し、x0は 安定状態の始まりのフレーム番号、xeは安定状態の終 わりのフレーム番号である。明らかなように、スロープ bは、変化傾向を示す1次関数の傾き係数に相当する。 【0175】次に、上記スロープbから、安定状態にお ける各フレームx0、x1、x2、…xeに対応してフレー

ム単位のデトレンド値diを下記式により計算する。 【数33】 di = (xi-x0)*bここで、xiは現在フレーム番号であり、i=0, 1,

2, …, eについての変数である。

【0176】こうして求めたフレーム単位のデトレンド 30 値diを各要素に対応するSMSデータから引算するこ とにより、デトレンド処理を施す。つまり、スロープb による癖を取り除いた平坦化されたSMSデータが得ら れる(ただし、ビブラートやトレモロあるいはその他の 微変動は残されている)。周波数要素についてのデトレ ンド値diの引算は、次のように行なう。このデトレン ド値diは基本周波数を基準にしているものであるか ら、そのフレームにおける各部分音の番号n(または正 確には第1部分音周波数すなわち基本周波数に対する各 部分音周波数の比でもよい)をデトレンド値diに掛け たものn * di(ここでn = 1, 2, …N)を夫々求 め、これを対応する部分音周波数から引算する。マグニ チュード要素についてのデトレンド値diの引算は、そ のフレームにおける各部分音のマグニチュード値からそ の値diを夫々引算する。ストカスティックゲインにつ いてのデトレンド値diの引算は、そのフレームにおけ るストカスティックゲインの値からその値diを引算す る。

【0177】デトレンド処理済みのSMSデータは、そ ームレートは変化させないものとする。フレームサイズのままデータメモリ100に記憶し、サウンド合成のた 50 を変化させることは、1回のSMS分析のために取り込

めにこれが読み出されるようになっていてよい。通常は、デトレンドしたSMSデータからサウンドを合成する際に、オリジナルのトレンドを再合成して付与する必要はない。すなわち、デトレンドしたままでサウンドを合成してよい。しかし、オリジナルのトレンドをそっくり具備するサウンドを合成したい場合は、トレンド再合成を適宜行なってよい。あるいは、デトレンド処理済みのSMSデータを前述したフォルマント分析やビブラート分析等の各種分析処理の対象として使用するようにしてもよい。

50

【0178】このデトレンド処理は、SMS分析及び合成にとって必須ではなく、適宜省略できる。しかし、発音時間延長のためにルーピング処理を行なうような場合、SMSデータにデトレンド処理を施しておくことは不自然さのないルーピング(セグメント波形の繰返し)を実現するので、有効である。すなわち、ルーピング用のセグメント波形のSMSデータを作成する目的でのみ、補助的にこのデトレンド処理を行なうようにしてもよい。このデトレンド処理技術もまた、SMS技術に限らず、他のサウンド合成技術においても適用可能である。

【0179】ーシンギング・シンセサイザのための改良

この実施例で説明しているシンセサイザは、既に述べた、フォルマントの分析及び合成(制御を含む)技術や、ビブラートの分析及び合成(制御を含む)技術、あるいはノートの転移の際にデータ再生/合成ステップにおいて行なう各種データの補間技術など、その他色々な点で、人声音やボーカルフレーズの合成に適しているものである。以下では、シンギング・シンセサイザとしての応用のために工夫した更なる改良点について説明する。以下で述べる改良点は、SMS分析器20(図2)にて行なうSMS分析処理に関するものである。

【0180】ピッチに同期した分析: SMS技術を使用したシンギング・シンセサイザの特徴の1つは、外部からオリジナルサウンドとして実際のシンギングボイス (人の歌声)を入力し、これをSMS分析することにより、SMSデータを作成し、このSMSデータを自由に加工してからSMS合成を行なうことにより、制御性に富んだ自由なシンギングボイスの合成が行なえることである。ここでは、オリジナルサウンドとして実際のシンギングボイスを入力した場合に有効な、SMS分析の改良を提案する。

【0181】シンギングボイスの特徴の1つは、そのピッチがすばやくかつ連続的に変化することである。そのような場合に分析の精度を上げるために、SMS分析の時間フレームサイズを入力オリジナルサウンドの現在ピッチに従って変化させるようにするとよい。なお、フレームレートは変化させないものとする。フレームサイズを変化させることは、1回のSMS分析のために取り込

む信号の時間長を変えることを意味する。そのために、 次のようなステップでSMS分析の或る部分の処理を行 なう。この或る部分の処理とは、例えばストカスティッ ク分析のための処理である。

【0182】第1ステップ:過去のフレームの分析結果から入力オリジナルサウンドの基本周波数を得る。

第2ステップ:最後のフレームの基本周波数に応じて現在のフレームサイズを設定する(例えば、周期の4倍の時間とする)。

第3ステップ:時間領域の引算によって残差信号を得る。

第4ステップ:時間領域の残差信号からストカスティック分析を行なう。

【0183】まず、第1ステップであるが、これはSM S分析においては容易に求まる。例えば、これは第1部 分音の周波数 f 0(ι)若しくは前述のようなピッチ分析 によって分析したフレームピッチPf(ι)のどちらを基 本周波数として用いてもよい。第2ステップのためは、 各フレーム毎に異なるフレームサイズを設定することが できるようにフレキシブルな分析バッファを用意する。 こうして用意した各フレームサイズを使用して第3及び 第4ステップのストカスティック分析を行なう。第3ス テップでは、確定的成分の信号を再生し、これをオリジ ナル信号から引算して残差信号を得る。第4ステップで は、この残差信号からストカスティック成分のデータを 求める。このようなストカスティック分析は、ストカス ティック分析用のフレームサイズを、確定的成分分析用 のフレームサイズとは異ならせることができるのでよ い。例えば、ストカスティック分析用のフレームサイズ を、確定的成分分析用のフレームサイズよりも小さくす 30 ると、ストカスティック分析結果の時間分解能が良くな り、するどい立上りにおける時間分解能がより良くな る。

【0184】プリエンファシス処理:SMS分析の精度を上げるために、SMS分析を行なう前に、入力音声信号に対してプリエンファシス処理を施すとよい。それから、SMS分析の最後に、プリエンファシスに対応したデエンファシス処理を施す。このようなプリエンファシス処理は、より高い周波数の部分音まで分析できるようにするので、好ましい。

【0185】残差信号に対するハイパスフィルタ処理: 通常、シンギングボイスのストカスティック成分は高周 波数である。200Hz以下のストカスティック信号は 極めて少ない。従って、SMS分析において、SMS分析された確定的成分信号をオリジナルサウンド信号から 引算することによって求めた残差信号に基づきストカスティック分析を行なう前に、この残差信号に対してハイパスフィルタ処理を施すのがよい。それとは別に、オリジナルサウンド信号からの確定的成分信号の引算は、音 声によくみられる早いピッチ変化のために低周波数にお 50

52

いていくつかの問題を持っている。そのためにハイパスフィルタを使用するとよい。例えばハイパスのカットオフ周波数を800Hz程度に設定するとよい。このフィルタリングが実際のストカスティック信号を差し引かないようにするための妥協策は、分析しようとするサウンドの部分に従属してそのカットオフ周波数を変化させることである。例えば、多くの確定的成分を持つが、ストカスティック成分は僅かしか持たないサウンドの部分においては、カットオフ周波数をより高くすることができる。その逆に、多くのストカスティック成分を持つサウンドの部分においては、カットオフ周波数をより低くしなければならない。

【0186】ーボーカルフレーズ合成の具体例一 以上に述べたこの発明のシンセサイザを使用してボーカ ルフレーズを合成するためには、まず、複数の音素(ph oneme) 及び重なり音 (diphone) のデータベースを作成 する。そのため、各音素及び重なり音のサウンドを入力 してSMS分析を夫々行ない、それらのSMSデータを 作成し、データメモリ100に夫々記憶することにより それらのデータベースを作成する。こうして、作成され たデータベースから、ユーザーの制御に基づき、所望の ボーカルフレーズを構成するに必要な複数の音素及び/ 又は重なり音のSMSデータを読み出し、これらを時系 列的に組合せて該ボーカルフレーズに対応するSMSデ ータを作成する。作成された所望のボーカルフレーズに 対応するSMSデータの組合せは、メモリに記憶してお き、望みのときにこれを読み出すことによりボーカルフ レーズのサウンド合成を行なうようにしてよい。 あるい は、作成された所望のボーカルフレーズに対応するSM Sデータの組合せに対応するサウンドを実時間的にSM S合成することにより、該ボーカルフレーズのサウンド 合成を行なうようにしてもよい。

【0187】入力サウンドの分析にあたっては、例えば、入力サウンドが、単一の音素又は重なり音であるとみなしてSMS分析を行なうようにしてよい。単一の音素又は重なり音における周波数成分は、そのサウンドの安定状態においては、あまり変化しないので、分析がしやすい。従って、例えば、望みの或る音素を分析しようとする場合、サウンドの安定状態においてその音素の特徴が現われるサウンドを入力してやればよい。このような音素又は重なり音の分析つまり人声音の分析のために、従来知られたSMS分析を行なうのみならず、この明細書で説明した様々な改良(フォルマント分析やビブラート分析など、その他)を併せて行なうことは、人声音の分析及びその自由な可変的合成にとって、きわめて有益である。

【0188】-SMSデータの対数表現-SMSデータにおける周波数データは、従来はHzまた はラジアンに対応するリニア表現からなるものであっ た。しかし、これに限らず、この周波数データを対数表

現で表わしてもよい。そうすると、前述した様々な演算、例えばピッチ変更のための演算など、における周波数データの乗算を、簡単な加算によって置き換えることができる。

【0189】 ーストカスティックエンベロープのスムーズ化一

与えられたサウンドのストカスティック表現データを計算するための方法の1つは、残差スペクトルエンベロープについてのラインセグメント近似によるものである。ストカスティックデータの周波数エンベロープを一旦計 10 算したら、このエンベロープをローパスフィルタで処理してスムーズにするのが良い。この処理によって、合成されるノイズ信号はスムーズなものとなる。

【0190】ーデジタルウェーブガイド技術への応用ーデジタルウェーブガイド理論に従って音を合成する技術が知られている(例えば米国特許第4,984,276号)。これを極めてシンプルに示すと図31のようであり、閉鎖されたウェーブガイドネットワーク160に、励振関数発生器161から発生した励振関数信号を入力し、ウェーブガイドネットワーク160において設定されているパラメータに従って信号処理を行なうことにより、該パラメータによって設定した所望音色の出力サウンドを得るものである。このようなデジタルウェーブガイド理論に従う楽音合成技術にSMS技術を応用することを考えると、励振関数発生器161をSMSサウンド合成システムによって構成し、SMS合成したサウンド信号をウェーブガイドネットワーク160に対する励振関数信号として使用する方法が考えられる。

【0191】更に具体的に考察すると、一例として、図 32のような処理手順で、ウェーブガイドネットワーク 160に対する励振関数信号をSMS合成する方法が考 えられる。まず、ウェーブガイドネットワーク160か ら出力したい望みのサウンドに対応するオリジナルサウ ンドの信号を、ウェーブガイドネットワーク160で設 定するフィルタ特性とは反対の特性に設定した逆フィル タ回路で処理する(ステップ162)。この出力が望み の励振関数信号に対応する。次に、この望みの励振関数 信号をSMS分析器で分析し(ステップ163)、これ に対応するSMSデータを得る。このSMSデータをデ ータメモリに適宜記憶しておく。それから、このSMS 40 データをデータメモリから読み出し、ユーザーの制御に 応じて適宜変更を施し(ステップ164)、SMS合成 器でサウンド合成する(ステップ165)。こうして合 成されたサウンド信号を励振関数信号としてウェーブガ イドネットワーク160に入力する。

【0192】このような方法の利点は、ウェーブガイド ネットワーク160のパラメータを変えずに、SMS合 成による励振関数信号を変えることにより、望みのサウ ンドを合成できる点であり、ウェーブガイドネットワー クのパラメータ解析を簡単化することができる。すなわ 50

ち、サウンドを合成する際の所望の可変制御は、SMS データの変更制御によってかなり実現できることにな り、その分、ウェーブガイドネットワーク側での可変制 御のためのパラメータ解析を簡単化することができる、

54

ということが期待できる点である。

【0193】以上の実施例に基づき抽出されるこの出願 の発明若しくは実施閣様のいくつかを要約して列挙する と次のようである。

- 1. オリジナルサウンドを分析することにより、該オリジナルサウンド波形を構成する複数の成分を示す分析データを提供する第1のステップと、前記分析データから所定のサウンド要素に関する特徴を分析して、分析した該特徴を示すデータを、前記オリジナルサウンドにおける前配要素についての固有の特性を示すサウンドパラメータとして抽出する第2のステップと、抽出されたサウンドパラメータに対応する特徴を前記分析データから取り除く第3のステップと、前記特徴が取り除かれた分析データに対して、サウンドパラメータに対応する特徴を付加する第4のステップと、この特徴が付加された分析データに基づき、サウンド波形を合成する第5のステップとを備えたサウンドを分析し合成するための方法。
- 2. 前記第4のステップは、前記サウンドバラメータを変更するためのステップを含み、変更されたサウンドパラメータに対応する特徴を前記分析データに付加することを特徴とする前記1項の方法。
- 3. 前記特徴が取り除かれた分析データと、前記サウンドパラメータとをメモリに記憶するステップを更に具えることを特徴とする前記1項の方法。
- 4. 前記サウンドパラメータは、前記分析データとは異なるデータ表現で表現されたものであることを特徴とする前記1項の方法。
- 5. 前記第4のステップは、前記サウンドパラメータから前記分析データのデータ表現に対応するデータ表現からなる付加データを再生するステップを含み、この付加データを前記分析データに付加することを特徴とする前記1項の方法。

【0194】6. 前記第4のステップの前に、少なくとも2つの異なるサウンド又はサウンド部分に関する前記分析データを補間すると共に、該異なるサウンド又はサウンド部分に関する前記サウンドパラメータを補間するステップを更に含み、前記第4のステップでは、補間された前記分析データに対して、補間された前記サウンドパラメータに対応する特徴を付加することを特徴とする前記1項の方法。

- 7. 前記分析データは、オリジナルサウンド波形を構成 する部分音の周波数及びマグニチュードを示すデータを 含むことを特徴とする前記1項の方法。
- 8. 前記分析データは、オリジナルサウンド波形を構成 する部分音の周波数及びマグニチュードを示す確定的成 分のデータと、前記オリジナルサウンド波形の前記確定

的成分に対する残差成分に対応するストカスティックデータとを含むことを特徴とする前配1項の方法。

9. 前配第1のステップでは、前配オリジナルサウンドを異なる時間フレームで分析することによって得られる各時間フレーム毎の分析データを提供し、前配第2のステップでは、各時間フレーム毎の分析データに基づき、各時間フレーム毎に前配サウンドパラメータを抽出することを特徴とする前配1項の方法。

10. 前配第1のステップでは、前配オリジナルサウンドを異なる時間フレームで分析することによって得られる各時間フレーム毎の分析データを提供し、前配第2のステップでは、各時間フレーム毎の分析データに基づき、複数の時間フレームに共通の前記サウンドパラメータを抽出することを特徴とする前記1項の方法。

11. 前記サウンドパラメータに対応する特徴は周波数 成分に関するものであり、前記第3のステップにおける 分析データからの該特徴の取り除きは、分析データにお ける周波数データを変更することからなることを特徴と する前記1項の方法。

12. 前記サウンドパラメータに対応する特徴はマグニ 20 チュード成分に関するものであり、前記第3のステップ における分析データからの該特徴の取り除きは、分析デ ータにおけるマグニチュードデータを変更することから なることを特徴とする前記1項の方法。

【0195】13. オリジナルサウンドを分析することにより、該オリジナルサウンド波形を構成する複数の成分を示す分析データを提供する第1のステップと、前記分析データから所定のサウンド要素に関する特徴を分析して、分析した該特徴を示すデータを、前記オリジナルサウンドにおける前記要素についての固有の特性を示すサウンドパラメータとして抽出する第2のステップと、抽出されたサウンドパラメータに対応する特徴を前記分析データから取り除く第3のステップとを備え、前記特徴が取り除かれた分析データと、前記サウンドパラメータとの組合せによって前記オリジナルサウンド波形を表現することを特徴とするサウンドを分析するための方法。

14. 前記特徴が取り除かれた分析データと、前記サウンドパラメータとをメモリに記憶するステップを更に具えることを特徴とする前記13項の方法。

15. 前配分析データは、オリジナルサウンド波形を構成する部分音の周波数及びマグニチュードを示す確定的成分のデータと、前配オリジナルサウンド波形の前配確定的成分に対する残差成分に対応するストカスティックデータとを含むことを特徴とする前配13項の方法。

【0196】16、オリジナルサウンドを分析することにより、該オリジナルサウンド波形を構成する複数の成分を示す分析データを提供する第1のステップと、前配分析データから所定のサウンド要素に関する特徴を分析して、分析した該特徴を示すデータを、前配オリジナル 50

サウンドにおける前配要素についての固有の特性を示す サウンドパラメータとして抽出する第2のステップと、 前配サウンドパラメータを変更するための第3のステッ プと、前配分析データに対して、前配サウンドパラメー タに対応する特徴を付加する第4のステップと、この特 徴が付加された分析データに基づき、サウンド波形を合 成する第5のステップとを備えたサウンドを分析し合成 するための方法。

56

17. 前記分析データは、オリジナルサウンド波形を構成する部分音の周波数及びマグニチュードを示す確定的成分のデータと、前記オリジナルサウンド波形の前記確定的成分に対する残差成分に対応するストカスティックデータとを含むことを特徴とする前記16項の方法。

【0197】18. オリジナルサウンドの分析に基づき 該オリジナルサウンド波形を構成する複数の成分を示す 分析データを提供する分析手段と、前配分析データから 所定のサウンド要素に関する特徴を分析して、分析した 該特徴を示すデータをサウンドパラメータとして抽出す ると共に、抽出されたサウンドパラメータに対応する特 徴を前配分析データから取り除くデータ処理手段と、前 配特徴が取り除かれた分析データと前配サウンドパラメ ータとを記憶する記憶手段と、前配分析データとサウン ドパラメータを前記記憶手段から読み出し、読み出した 分析データに対して該サウンドパラメータに対応する特 徴を付加するデータ再生手段と、データ再生手段で再生 された分析データに基づき、サウンド波形を合成するサ ウンド合成手段とを備えたサウンド波形合成装置。

19. 前記サウンドバラメータを変更するための変更手段を更に具え、前記データ再生手段では変更されたサウンドパラメータに対応する特徴を前記分析データに対して付加し、これにより、合成するサウンドを制御することができることを特徴とする前記18項のサウンド波形合成装置。

20. 前記変更手段は、ユーザーの操作に応じて前記サウンドバラメータを変更できるものであることを特徴とする前記19項のサウンド波形合成装置。

21. 前配データ再生手段は、少なくとも2つの異なる サウンド又はサウンド部分に関する前配分析データを補 間すると共に、該異なるサウンド又はサウンド部分に関 する前配サウンドパラメータを補間する補間手段を含 み、補間された分析データに対して補間されたサウンド パラメータに対応する特徴を付加することを特徴とする 前配18項のサウンド波形合成装置。

22. 前配分析データは、オリジナルサウンド波形を構成する部分音の周波数及びマグニチュードを示す確定的成分のデータと、前配オリジナルサウンドの前配確定的成分に対する残差成分に対応するストカスティックデータとを含むことを特徴とする前配18項のサウンド波形合成装置。

【0198】23、部分音を示すデータを含む彼形分析

データと、オリジナルサウンドから抽出された所定のサ ウンド要素に関する特徴を示すサウンドパラメータとを 記憶している記憶手段と、前記波形分析データとサウン ドパラメータを前記記憶手段から読み出す読出し手段 と、読み出されたサウンドパラメータを変更するための 制御を行なう制御手段と、前配読み出した波形分析デー タを、前記制御されたサウンドパラメータによって変更 するデータ変更手段と、データ変更手段で変更された波 形分析データに基づき、サウンド波形を合成するサウン ド合成手段とを備えたサウンド波形合成装置。

24. 前記記憶手段に記憶される前記波形分析データ は、更にスペクトルエンベロープデータを含んでおり、 前記サウンド合成手段は、前記波形分析データに含まれ る前記部分音を示すデータに基づき各部分音の波形を発 生する確定的波形発生手段と、前記波形分析データに含 まれるスペクトルエンベロープデータに基づいて定まる スペクトルマグニチュードを持つストカスティックなス ペクトル構成からなるストカスティック波形を発生する ストカスティック波形発生手段と、前記各部分音の波形 とストカスティック波形とを組み合わせることによりサ 20 ウンド波形を合成する手段とを具えることを特徴とする 前記23項のサウンド波形合成装置。

【0199】25. オリジナルサウンドをスペクトル分 析したデータを提供する第1の手段と、前記スペクトル 分析されたデータからフォルマント構造を検出し、検出 したフォルマントを記述するパラメータを生成する第2 の手段と、前記スペクトル分析されたデータから前記検 出されたフォルマント構造を差引き、残余のスペクトル データを生成する第3の手段とを備え、前記残余のスペ クトルデータと前記パラメータとの組合せによって前記 オリジナルサウンド波形を表現することを特徴とするサ ウンド波形合成装置。

26. 前記フォルマントを制御するために前記パラメー タを可変制御する第4の手段と、前記パラメータに基づ きフォルマント構造を再生し、再生されたフォルマント 構造を前記残余のスペクトルデータに付加し、制御され たフォルマント構造を有するスペクトルデータを作成す る第5の手段とを更に備えたことを特徴とする前配25 項のサウンド波形合成装置

27. 前配第5の手段で作成されたスペクトルデータに 40 基づきサウンド波形を合成するサウンド合成手段を更に 備えたことを特徴とする前配26項のサウンド波形合成

【0200】28. 前配第1の手段は、前配オリジナル サウンドを異なる時間フレームで分析することによって 得られた各時間フレーム毎のスペクトル分析データを提 供するものであり、前配第2の手段は、各時間フレーム 毎のスペクトル分析データに基づき、各時間フレーム毎 にフォルマント構造をそれぞれ検出し、検出したフォル マントを記述するパラメータを生成するものであり、前 50

配第3の手段は、各時間フレーム毎のスペクトル分析デ ータから前配各時間フレーム毎に検出されたフォルマン ト構造を差引き、残余のスペクトルデータを各時間フレ ーム毎に生成することを特徴とする前記25項のサウン ド波形合成装置。

58

29. 前記第2の手段は、前記スペクトル分析データに おける各線スペクトルのマグニチュードに基づき、2つ のローカル最小値とそれによって囲まれた1つのローカ ル最大値とからフォルマントと推定される1又は複数の 10 山を検出する手段と、検出した各山毎に所定の関数近似 によりフォルマントエンベロープを近似し、この近似に より少なくともフォルマント中心周波数とそのピークレ ベルを記述するデータを含むフォルマントパラメータを 求める手段とを有することを特徴とする前記25項のサ ウンド波形合成装置。

30. 前記フォルマントエンベローブの近似は、指数関 数近似によって行なうことを特徴とする前記29項のサ ウンド波形合成装置。

31. 前記フォルマントエンベロープの近似は、二等辺 三角形関数近似によって行なうことを特徴とする前記2 9項のサウンド波形合成装置。

【0201】32. オリジナルサウンドの分析によって 得た複数のサウンド部分を示す部分音データのセットを 提供するものであり、各部分音データは周波数データを 含み、前記部分音データのセットを時間関数で提供する 第1の手段と、前記部分音データにおける周波数データ の時間関数からオリジナルサウンドにおけるピブラート を検出し、検出したビブラートを記述するパラメータを 生成する第2の手段と、前記部分音データにおける周波 数データの時間関数から前記検出されたビブラートの特 徴を取り除き、修正された周波数データの時間関数を生 成する第3の手段とを備え、前記修正された周波数デー **タの時間関数を含む前記部分音データと前記パラメータ** との組合せによって時間的に変化する前記オリジナルサ ウンド波形を表現することを特徴とするサウンド波形合 成装置。

33. ビブラートを制御するために前配パラメータを可 変制御する第4の手段と、前記パラメータに基づきビブ ラート関数を発生し、発生されたビブラート関数によっ て前配修正された周波数データの時間関数にピプラート を付与する第5の手段と、ビブラート付与された周波数 データの時間関数を含む前配部分音データに基づきサウ ンド波形を合成するサウンド合成手段とを更に備えたこ とを特徴とする前配32項のサウンド波形合成装置。 34. 前配第2の手段は、前配周波数データの時間関数 をスペクトル解析することにより、ピブラートを検出す るものであり、前配第3の手段は、解析された前配周波 数データの時間関数のスペクトルデータから、検出され たビブラートの成分を除去し、その結果たる時間関数の

スペクトルデータを逆フーリエ変換することにより、修

30

50

正された周波数データの時間関数を生成することを特徴 とする前配32項のサウンド波形合成装置。

35. 前配第2の手段は、所定の1又は複数の低次の部 分音の周波数データの時間関数について前記スペクトル 解析を行なうことにより、ビブラートを検出することを 特徴とする前記34項のサウンド波形合成装置。

【0202】36、オリジナルサウンドの分析によって 得た複数のサウンド部分を示す部分音データのセットを 提供するものであり、各部分音データはマグニチュード データを含み、前記部分音データのセットを時間関数で 提供する第1の手段と、前配部分音データにおけるマグ ニチュードデータの時間関数からオリジナルサウンドに おけるトレモロを検出し、検出したトレモロを記述する パラメータを生成する第2の手段と、前記部分音データ におけるマグニチュードデータの時間関数から前配検出 されたトレモロの特徴を取り除き、修正されたマグニチ ユードデータの時間関数を生成する第3の手段とを備 え、前記修正されたマグニチュードデータの時間関数を 含む前記部分音データと前記パラメータとの組合せによ って時間的に変化する前記オリジナルサウンド波形を表 20 現することを特徴とするサウンド波形合成装置。

37. トレモロを制御するために前記パラメータを可変 制御する第4の手段と、前記パラメータに基づきトレモ ロ関数を発生し、発生されたトレモロ関数によって前記 修正されたマグニチュードデータの時間関数にトレモロ を付与する第5の手段と、トレモロ付与されたマグニチ ユードデータの時間関数を含む前記部分音データに基づ きサウンド波形を合成するサウンド合成手段とを更に備 えたことを特徴とする前記36項のサウンド波形合成装 置。

【0203】38. オリジナルサウンドのスペクトル構 造を示すスペクトルデータを提供する第1の手段と、前 記スペクトルデータに基づき、そのスペクトルエンベロ ープに概ね適合しているただ1本のチルトラインを検出 し、検出したチルトラインを記述するチルトパラメータ を生成する第2の手段と、スペクトルの傾きを制御する ために、前配チルトパラメータを可変制御する第3の手 段と、制御されたチルトパラメータに基づき前配スペク トルデータのスペクトル構造を制御する第4の手段と、 制御されたスペクトルデータに基づきサウンド波形を合 40 成するサウンド合成手段とを備えたサウンド波形合成装 置。

39. 前配第1の手段は、前配オリジナルサウンドを異 なる時間フレームで分析することによって得られた各時 間フレーム毎のスペクトルデータを提供するものであ り、前配第2の手段は、各時間フレーム毎のスペクトル データに基づき、各時間フレーム毎のチルトラインを検 出し、これらのチルトラインを示すデータに基づきこれ らの相関を示すただ1つの前配チルトパラメータを生成 するものであり、更に、前配各時間フレーム毎のスペク 60

トルデータを、前配チルトパラメータを使用して正規化 する第5の手段を具備し、かつ、前配第4の手段は、制 御されたチルトパラメータに基づき前配正規化されたス ペクトルデータの正規化を解除することを特徴とする前 記38項のサウンド波形合成装置。

【0204】40. オリジナルサウンドを構成する部分 音のスペクトルデータを複数の時間フレームに対応して 提供する第1の手段と、一連の時間フレームにおける前 **記部分音スペクトルデータにおける周波数データに基づ** き前記オリジナルサウンドの平均ピッチを検出し、ピッ チデータを生成する第2の手段と、前記ピッチデータを 可変制御するための第3の手段と、制御されたピッチデ ータに応じて前記部分音スペクトルデータにおける周波 数データを修正する第4の手段と、前記修正された周波 数データを含む前記部分音スペクトルデータに基づき、 可変制御されたピッチを持つサウンド波形を合成するサ ウンド合成手段とを備えたサウンド波形合成装置。

41. 前記第1の手段は、更に、前記部分音スペクトル データに対応する確定的成分波形を前記オリジナルサウ ンドから引いた残りである残差成分波形に対応するスト カスティックデータを提供するものであり、前記第4の 手段は、更に、制御されたピッチデータに応じて前記ス トカスティックデータの周波数特性を制御することを特 徴とする前記40項のサウンド波形合成装置。

42. 前記部分音スペクトルデータにおける周波数デー タを前記検出した平均ピッチを基にした相対値に変換す る手段を更に備え、前記第4の手段は、制御されたピッ チデータに応じて前記相対値を絶対値に変換し、前記修 正された周波数データを得ることを特徴とする前記40 項のサウンド波形合成装置。

43. 前記第2の手段は、各時間フレーム毎に、所定の 複数の低次の部分音の周波数をそのマグニチュードに応 じて重みづけして平均化することによりフレームピッチ をそれぞれ求め、各フレームピッチを平均化することに より平均ピッチを検出することを特徴とする前配40項 のサウンド波形合成装置。

【0205】44.オリジナルサウンドを構成する部分 音のスペクトルデータと、前配部分音スペクトルデータ に対応する確定的成分波形を前配オリジナルサウンドか ら引いた残りである残差成分波形に対応するストカステ ィックデータと、前配オリジナルサウンドの特定された ピッチを示すピッチデータとを記憶するものであり、前 配部分音スペクトルデータにおける各周波数データを、 前記ピッチデータが示す特定の周波数を基にした相対値 で表わしたデータで記憶している記憶手段と、前記記憶 手段に配憶したデータを読み出すための手段と、前配配 億手段から読み出された前配ピッチデータを可変制御す るための制御手段と、前配配億手段から競み出された前 配部分音スペクトルデータにおける周波数データの相対 値を、前配制御されたビッチデータに応じて絶対値に変

62

換する演算手段と、変換された周波数データと前配記憶 手段から読み出された前配部分音スペクトルデータにお けるマグニチュードデータとに基づき部分音波形を合成 し、かつ、前配配憶手段から読み出された前配ストカス ティックデータに基づき前記残差成分波形を合成し、前 配部分音波形と前配残差成分波形を組み合わせたサウン ド波形を合成するサウンド合成手段とを備えたサウンド 波形合成装置。

4 5. 前記記憶手段に記憶する前記部分音スペクトルデータには位相データが含まれており、この位相データは、各部分音の位相を基本の部分音の位相を基準にした相対値で表わされており、更に、前記記憶手段から読み出された前記部分音スペクトルデータにおける位相データの相対値を絶対値に変換する手段を具備し、前記サウンド合成手段では、変換された位相データと前記周波数データ及びマグニチュードデータとに基づき前記部分音波形を合成することを特徴とする前記44項のサウンド波形合成装置。

【0206】46. ウェーブガイドをモデルした閉鎖ネ ットワークであって、振動関数信号を該閉鎖ネットワー ク内に導入し、前記ウェーブガイドにおける信号の遅延 と散乱をシミュレートするパラメータによって決定され る処理を該信号に対して施すことにより、サウンド信号 を合成する閉鎖型ウェーブガイドネットワーク手段と、 前記振動関数信号を発生するための振動関数発生手段と を具備し、前記振動関数発生手段は、オリジナル信号波 形を構成する部分音のスペクトルデータと、前記部分音 スペクトルデータに対応する確定的成分波形を前記オリ ジナル信号波形から引いた残りである残差成分波形に対 応するストカスティックデータとを記憶している記憶手 段と、前記記憶手段に記憶したデータを読み出すための 手段と、前配配億手段から読み出されたデータを可変制 御するための制御手段と、前配部分音スペクトルデータ に基づき部分音波形を合成し、かつ、前記ストカスティ ックデータに基づき前記残差成分波形を合成し、前配部 分音波形と前記残差成分波形を組み合わせた波形信号を 合成する波形合成手段とを有しており、合成された波形 信号を前記振動関数信号として前記ウェーブガイドネッ トワークに与えるようにしたことを特徴とするサウンド 波形合成装置。

47. 前配配憶手段は、所定の音楽要素に関する特徴を示すパラメータを更に配憶しており、前配制御手段は、前配パラメータを可変制御すると共に、制御されたパラメータによって前配部分音スペクトルデータ及びストカスティックデータを可変制御することを特徴とする前配46項のサウンド波形合成装置

【0207】48. オリジナル波形を構成する部分音のスペクトルデータを、複数の時間フレームに対応して順次に提供するステップと、前配複数の時間フレームのスペクトルデータ列から前配オリジナル波形におけるピブ 50

ラート変動を検出し、この変動の少なくとも1サイクルに対応する長さを持つ1又は複数の波形セグメントを指摘するデータリストを作成するステップと、前配データリストを参照して、任意の波形セグメントを選択するステップと、選択した波形セグメントに対応する前記スペクトルデータ列を前配オリジナル波形のスペクトルデータ列を繰り返すことにより前配波形セグメントの繰り返しに対応するスペクトルデータ列を作成するステップと、前配繰り返しに対応するスペクトルデータ列を使用して、延長された長さを持つサウンド波形を合成するステップとを備えたサウンドを分析し合成する方法。49.前配部分音スペクトルデータに対応する確定的成分波形を前配オリジナル波形から引いた残りである残差

分波形を前記オリジナル波形から引いた残りである残差 成分波形に対応するストカスティックデータを、複数の 時間フレームに対応して順次に提供するステップと、前 配選択した波形セグメントに対応する前記ストカスティ ックデータ列を前記オリジナル波形のストカスティック データ列から抜き出すステップと、抜き出したストカス ティックデータ列を繰り返すことにより前記波形セグメ ントの繰り返しに対応するストカスティックデータ列を 作成するステップと、前記繰り返しに対応するストカス ティックデータ列を使用して、延長された長さを持つストカスティックが一タ列を使用して、延長された長さを持つストカスティックが形を合成し、これを前記サウンド波形 に組み込むステップとを更に備えたことを特徴とする前 記48項の方法。

【0208】50. オリジナル波形を構成する部分音の スペクトルデータを、複数の時間フレームに対応して順 次に提供するステップと、前記複数の時間フレームのス ペクトルデータ列から前記オリジナル波形におけるビブ ラート変動を検出し、この変動の少なくとも1サイクル に対応する長さを持つ1又は複数の波形セグメントを指 摘するデータリストを作成するステップと、前記データ リストを参照して、任意の波形セグメントを選択するス テップと、選択した波形セグメントに対応する前配スペ クトルデータ列を前記オリジナル波形のスペクトルデー タ列から取り去り、その前後で残された2つのスペクト ルデータ列を接続し、短縮されたスペクトルデータ列を 作成するステップと、前配短縮されたスペクトルデータ 列を使用して、短縮された長さを持つサウンド波形を合 成するステップとを備えたサウンドを分析し合成する方 法。

51. 前記部分音スペクトルデータに対応する確定的成分波形を前記オリジナル波形から引いた残りである残差成分波形に対応するストカスティックデータを、複数の時間フレームに対応して順次に提供するステップと、前記選択した波形セグメントに対応する前記ストカスティックデータ列を前記オリジナル波形のストカスティックデータ列から取り去り、その前後で残された2つのストカスティックデータ列を接続し、短縮されたストカステ

ィックデータ列を作成するステップと、前配短縮された ストカスティックデータ列を使用して短縮された長さを 持つストカスティック波形を合成し、これを前配サウン ド波形に組み込むステップとを更に備えた前配50項の 方法。

[0209]

以上の通り、この発明によれば、オリ 【発明の効果】 ジナルサウンドの分析データから所定のサウンド要素に 関する特徴を分析し、分析した該特徴を示すデータをサ ウンドパラメータとして抽出するようにしたので、例え ばフォルマントやビブラートなどのような様々なサウン ド要素に関して、オリジナルの特徴を示している品質の よいサウンドパラメータを得ることができる。従って、 このパラメータをサウンド波形合成に際して利用すれ ば、品質のよい各種音楽的特徴の合成を行なうことがで きる。しかも、サウンドパラメータとして分析データか ら分離抽出されているため、その可変制御が容易であ り、ユーザーによる自由な音楽制御に適したものであ る。また、抽出されたサウンドパラメータに基づき、前 記オリジナルサウンドの分析データから時変動成分を取 20 り除くようにしているため、分析データの構造が簡単化 され、データ圧縮が期待できるものである。また、時変 動成分が取り除かれた分析データ又は合成されたサウン ド波形に対して任意の時間変化を付与することで任意の 時間変化特性が付与されたサウンド波形を合成するよう にしているので、オリジナルの特徴を示している品質の よいサウンド波形に対して任意の時間変化特性を付与す ることができ、品質と制御性に優れたサウンド波形合成 を行なうことができる。このように、サウンドパラメー タを分析データから抽出分離し、時変動成分が取り除か れた分析データとサウンドパラメータの組み合わせによ ってオリジナルサウンド波形を表現するデータを提供 し、これに基づきサウンド波形を合成する技術は、種々 の効果が期待できるものである。

【図面の簡単な説明】

【図1】この発明の一実施例に係る音楽シンセサイザの 全体を示すブロック図。

【図2】図1における分析部の一実施例を示すブロック 図。

【図3】図2におけるSMSデータ処理部の一実施例を 40 示すブロック図。

【図4】図1における合成部の一実施例を示すブロック 図。

【図5】図4における再生処理部の一実施例を示すブロ ック図。

【図6】この発明に従うフォルマント抽出及び操作シス テムの一実施例を示すブロック図。

【図7】図6に入力されるSMS分析されたデータのう ち1フレーム分の確定的部分のデータすなわち線スペク トルデータの一例を示す線スペクトル図。

【図8】図6に入力されるSMS分析されたデータのう ち1フレーム分のストカスティックエンペロープの一例 を示すスペクトルエンペロープ図。

64

【図9】図6の実施例に従って、線スペクトルにおける フォルマントを指数関数近似によって検出する状態を説 明するための図。

【図10】検出したフォルマントの特徴を差し引いて平 坦化された線スペクトル構造の一例を示す図。

【図11】この発明に従うフォルマント抽出及び操作シ 10 ステムの別の実施例を示すブロック図。

【図12】図11の実施例に従って、線スペクトルにお けるフォルマントを三角形関数近似によって検出する状 態を説明するための図。

【図13】フォルマントの三角形関数近似の第1ステッ プとして、フォルマントの山を検出する状態を説明する ための図。

【図14】フォルマントの三角形関数近似の第2ステッ プとして、二等辺三角形近似のために、フォルマント中 心周波数の位置で線スペクトルを折り返した状態を模式 的に示す図。

【図15】フォルマントの三角形関数近似の第3ステッ プとして、二等辺三角形近似が達成できた状態を示す

【図16】検出したフォルマントをトラジェクトリに割 当てる様子を模式的に示す図。

【図17】この発明に従うビブラート分析システムの一 実施例を示すブロック図。

【図18】図17の実施例において、周波数トラジェク トリの時間関数をフーリエ変換することにより求められ るスペクトルエンベロープの一例を示す図。

【図19】図18のスペクトルからピブラート成分を取 り除いた状態を示すスペクトルエンベロープの一例を示 す図。

【図20】図17の実施例において、図18のようなス ペクトル特性からピプラートレートを放物線近似によっ て計算する一例を拡大して示す図。

【図21】この発明に従うビブラート合成アルゴリズム の一実施例を示すブロック図。

【図22】この発明に従うスペクトルチルトの分析及び 合成アルゴリズムの一実施例を示すブロック図。

【図23】図22の実施例に従って、SMS分析された データのうち1フレーム分の確定的部分のデータすなわ ち線スペクトルから分析されるチルトの一例を示す図。

【図24】この発明に従う発音時間変更アルゴリズムの 一実施例を示すブロック図。

【図25】図24の実施例に従って分析されるビブラー ト極値とスロープの一例を示す図。。

【図26】図24の実施例における、発音時間短縮のた めの取り除き部分の分析例を示す図。

【図27】図25の例において、分析した取り除き部分

50

を波形データから取り除いて発音時間を短縮したデータ の例を示す図。

【図28】この発明に従うピッチ分析アルゴリズムの一 実施例を示すブロック図。

【図29】 この発明に従うピッチ合成アルゴリズムの一 実施例を示すブロック図。

【図30】図28のピッチ分析アルゴリズムにおける1 フレームについてのピッチ検出を説明するためのスペク トル図。

【図31】この発明に従うSMS技術をデジタルウェー 10 ブガイド理論による楽音合成技術に適用する一実施例を 示すブロック図。

【図32】図31における励振関数発生器に対するSM

S分析及び合成技術の適用例を示すブロック図。 【符号の説明】

66

- 10 分析部
- 11 合成部
- 13 編集機器群
- 14 音楽コントローラ群
- 15 音楽パラメータインターフェース部
- 20 SMS分析器
- 30 SMSデータ処理部
- 50 再生処理部
 - 100 データメモリ
 - 110 SMSサウンド合成器

【図1】

【図4】

[図2]

[図8]

【図7】

【図10】

【図3】

[図5]

【図9】

【図13】

【図14】

【図15】

【図6】

A1 ZERYZE S1

【図12】

【図16】

【图26】

【図11】

【図17】

【図18】

[図19]

【図20】

【図21】

【図22】

【図23】

【図31】

[図27]

【図30】

【図24】

[図25]

【図32】

【図29】

[図28]

フロントページの続き

(72)発明者 ロバート グロス

アメリカ合衆国、ノースカロライナ

27615, ローリー, サウスフィールド

ドライブ 8509

(72)発明者 アーリング ウォルド

アメリカ合衆国、カリフォルニア

94530, エルサーリト, ルドウィグ ア

ベニュー 5618

(56)参考文献 特開 平1-209497 (JP, A)

特開 昭60-97397 (JP, A)

特期 昭63-61296 (JP, A)

特開 平5-119782 (JP, A)

特開 平5-127678 (JP, A)

(58)調査した分野(Int.Cl.6, DB名)

G10H 7/08

G10H 7/00

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

BLACK BORDERS

IMAGE CUT OFF AT TOP, BOTTOM OR SIDES

FADED TEXT OR DRAWING

BLURRED OR ILLEGIBLE TEXT OR DRAWING

SKEWED/SLANTED IMAGES

COLOR OR BLACK AND WHITE PHOTOGRAPHS

GRAY SCALE DOCUMENTS

LINES OR MARKS ON ORIGINAL DOCUMENT

REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY

IMAGES ARE BEST AVAILABLE COPY.

□ OTHER: _____

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.