公理的熱力学

箱

第 6 回 すうがく徒のつどい

2024年10月19日(最終更新日:2024年10月20日)

イントロダクション

公理的熱力学とは

熱力学

- 巨大な数の分子からなる系のマクロな性質を、少数のマクロな変数によって記述する理論。
 - マクロな変数:エネルギー U,体積 V,物質量 N,エントロピー S など
 - 一つ一つの分子のミクロな運動はわからなくても、系全体のマクロな性質は、 分子の数よりもはるかに少ない数の変数によって記述できる!
- 大学で習う物理学(力学,電磁気学,量子力学など)と比べても,どのような数学的枠組みで考えればよいのか明確でない(と思う)

E. H. Lieb, J. Yngvason, "The physics and mathematics of the second law of thermodynamics" (1999)

- 熱力学を、「断熱的到達可能性」が満たすべき十数個の公理として定式化した。
- それらの公理から、「エントロピー関数」の存在を示した.

本発表の目的

- Lieb-Yngvason による熱力学の公理的定式化を紹介し,「エントロピー 関数」の存在の導出について説明する.
 - Lieb-Yngvason の記述には不満な点もあるので、そのあたりは、数学を学んでいる人向けに整理してお話ししたい。
- 熱力学そのものには深入りできないが,熱力学の数学的枠組み(の一例) を紹介したい.

目次

イントロダクション

公理的熱力学の基礎

エントロピー関数

単純系の公理

熱結合の公理

参考文献

公理的熱力学の基礎

熱力学の<mark>系</mark>やその<mark>状態</mark>を,どのように数学的に定式化すべきか?

考えたい操作

- 系のスケール変換
- 系の直和(複数個の系を並べたもの)

系と状態

- 各系 σ に対して、状態空間 Γ_{σ} が定まっている.
 - Lieb—Yngvason による公理的熱力学では,平衡状態しか扱わないから,平衡 状態を単に状態という.

系と状態に関する設定

次のデータが与えられているとする.

- Σ_{simp} : 群 $\mathbb{R}_{>0}$ が自由に作用する集合. その元を<mark>単純系</mark>という.
- Γ_{simp} : 群 $\mathbb{R}_{>0}$ が自由に作用する集合. その元を単純系の状態という.
- π : Γ_{simp} → Σ_{simp} : $\mathbb{R}_{>0}$ -同変写像.

これらをもとに,次のように定義する.

- $\Sigma_{\text{all}} = (\Sigma_{\text{simp}})$ が生成する自由可換半群). その元を $\frac{S}{N}$ という.
- $\Gamma_{\text{all}} = (\Gamma_{\text{simp}})$ が生成する自由可換半群). その元を状態という.
 - これらの自由可換半群の演算を, ⊕ と書く.
 - 群 ℝ>0 の ∑all, Γall への作用が自然に定まる。
- ullet π が誘導する半群の準同型を,そのまま $\pi: \Gamma_{\mathsf{all}} o \Sigma_{\mathsf{all}}$ と書く.
- $\Gamma_{\sigma} = \pi^{-1}(\{\sigma\})$ ($\sigma \in \Sigma_{\text{all}}$) と書き,これを系 σ の状態空間という.

- Σ_{simp} :群 $\mathbb{R}_{>0}$ が自由に作用する集合. その元を<mark>単純系</mark>という.
- Γ_{simp} : 群 $\mathbb{R}_{>0}$ が自由に作用する集合. その元を単純系の状態という.
- $\pi: \Gamma_{\text{simp}} \to \Sigma_{\text{simp}}: \mathbb{R}_{>0}$ -同変写像.

要するに,

- $t \in \mathbb{R}_{>0}$ と $\sigma \in \Sigma_{\text{simp}}$ に対して,「単純系 σ のスケールを t 倍にしたもの」 $t\sigma \in \Sigma_{\text{simp}}$ が定まっている.
- $t \in \mathbb{R}_{>0}$ と $X \in \Gamma_{\text{simp}}$ に対して,「状態 X のスケールを t 倍にしたもの」 $tX \in \Gamma_{\text{simp}}$ が定まっている.
- *π(X)* は,「*X* がどの系の状態か」を表す.
- $\pi(tX) = t\pi(X)$. すなわち, X が系 σ の状態ならば, tX は系 $t\sigma$ の 状態.

- $\Sigma_{\text{all}} = (\Sigma_{\text{simp}})$ が生成する自由可換半群). その元を $\overline{\mathbf{x}}$ という.
- $\Gamma_{\text{all}} = (\Gamma_{\text{simp}})$ が生成する自由可換半群). その元を状態という.
 - これらの自由可換半群の演算を, ⊕ と書く.
 - 群 ℝ_{>0} の ∑_{all}, Γ_{all} への作用が自然に定まる。
- ullet π が誘導する半群の準同型を,そのまま $\pi: \Gamma_{\mathsf{all}} o \Sigma_{\mathsf{all}}$ と書く.

要するに,

● 一般の系は、単純系を並べたもの、一般の系の状態は、単純系の状態を並べたもの。

$$\Sigma_{\text{all}} = \{ \sigma_1 \oplus \cdots \oplus \sigma_n \mid n \in \mathbb{N}_{>0}, \ \sigma_i \in \Sigma_{\text{simp}} \},$$

$$\Gamma_{\text{all}} = \{ X_1 \oplus \cdots \oplus X_n \mid n \in \mathbb{N}_{>0}, \ X_i \in \Gamma_{\text{simp}} \}.$$

ここで、 σ_i や X_i の順序を入れ替えただけのものは、同じとみなす.

• $\pi(X_1 \oplus \cdots \oplus X_n) = \pi(X_1) \oplus \cdots \oplus \pi(X_n)$. すなわち,各 X_i が系 σ_i の状態ならば, $X_1 \oplus \cdots \oplus X_n$ は系 $\sigma_1 \oplus \cdots \oplus \sigma_n$ の状態.

例

水素からなる系を考える場合には、たとえば、次のように設定する.

- $\Sigma_{\text{simp}} = \{ N \in \mathbb{R}_{>0} \}$
 - 「水素 N mol の系」
 - ℝ>0 の作用は,通常の乗法
- $\Gamma_{\text{simp}} = \{(U, V, N) \in \mathbb{R}^3_{>0}\}$
 - 「エネルギー U J, 体積 V m³, 物質量 N mol の状態」
 - ℝ>0 の作用は、通常のスカラー倍
- $\pi(U, V, N) = N$
- $\Sigma_{\text{all}} = \{ N_1 \oplus \cdots \oplus N_n \mid n \in \mathbb{N}_{>0}, \ N_i \in \Sigma_{\text{simp}} \}$
- $\Gamma_{\text{all}} = \{(U_1, V_1, N_1) \oplus \cdots \oplus (U_n, V_n, N_n) \mid n \in \mathbb{N}_{>0}, (U_i, V_i, N_i) \in \Gamma_{\text{simp}}\}$
- $\pi((U_1, V_1, N_1) \oplus \cdots \oplus (U_n, V_n, N_n)) = N_1 \oplus \cdots \oplus N_n$

注意

 N_1+N_2 (水素 (N_1+N_2) mol の系)と $N_1\oplus N_2$ (水素 N_1 mol の系と水素 N_2 mol の系を並べたもの)は異なる.

例

水素,酸素,水からなる系を考える場合には,たとえば,次のように設定する.

- $\Sigma_{\text{simp}} = \{ (N_{\text{H}_2}, N_{\text{O}_2}, N_{\text{H}_2\text{O}}) \in \mathbb{R}^3_{>0} \}$
- $\Gamma_{\text{simp}} = \{ (U, V, N_{\text{H}_2}, N_{\text{O}_2}, N_{\text{H}_2\text{O}}) \in \mathbb{R}^5_{>0} \}$
- $\pi(U, V, N_{H_2}, N_{O_2}, N_{H_2O}) = (N_{H_2}, N_{O_2}, N_{H_2O})$
- (Σ_{all} と Γ_{all} は省略)

断熱的到達可能性

断熱的到達可能性(物理的な説明)

状態 X から状態 Y に<mark>断熱的到達可能</mark>であるとは,次の操作が可能であること. 状態 X の系を,ある装置だけと相互作用させることによって,状態 Y にする.装置には,上下移動する重りが組み込まれており,この重り の位置を除いては,操作前後の装置の状態は同じである.

要するに、

- 系のエネルギー変化が,すべて仕事として把握でき,不明瞭なエネルギー のやりとり(「熱の移動」)がない操作.
- いいかえれば、熱力学第 1 法則 $\Delta U = W + Q$ において、Q = 0 であるということ.

注意

上記の「操作」は、準静的でなくてもよい.

(準静的:操作が系にとって十分ゆっくりで,系が常に平衡状態にあるとみなせること.)

断熱的到達可能性

例

- 容器に付けられたピストンを押したところ、容器内の系は状態 X から Y になった.この間の系と外気との熱の移動は無視できる(容器が断熱、ピストンを押す操作が十分速い、など).
 - \rightarrow 状態 X から Y に断熱的到達可能.
 - 系と外気との熱の移動が無視できない場合(等温過程など)は、こうはいえない。
- 容器にファンを差し入れ,容器内を撹拌したところ,容器内の系は状態 X から Y になった.この間,系と外気との熱の移動は無視できる.
 - → 状態 X から Y に断熱的到達可能.
 - しかし,経験的事実として,状態 Y から X へは断熱的到達可能ではない.
 - このような不可逆性があることが、熱力学の特徴.
- 状態 X の系と状態 Y の系を,何も通さない壁を隔てて並べてから,その壁を取り去ったところ,全体の系は新しい状態 Z になった.
 - \rightarrow 状態 $X \oplus Y$ から Z に断熱的到達可能.

断熱的到達可能性

断熱的到達可能性に関する設定

 Γ_{all} 上の 2 項関係 \preceq が与えられているとする.

- $X \preceq Y$ であるとき, X から Y に断熱的到達可能であるという.
- $X \succeq Y \iff Y \preceq X$ と定める.
- $X \sim Y \iff X \preceq Y$ かつ $X \succeq Y$ と定める. $X \sim Y$ であるとき, $X \in Y$ は断熱的同値であるという.
- $X \prec Y \iff X \preceq Y$ かつ $X \not\subset Y$ と定める.
- $X \succ Y \iff X \not\preceq Y$ かつ $X \succeq Y$ と定める.

注意

 $X \preceq Y$ と書くとき,X と Y が同じ系の状態であるとは限らない.

断熱的到達可能性の公理

断熱的到達可能性の公理

任意の X, X', Y, Y', Z, $W \in \Gamma_{all}$ は,次を満たす.

- (A1) $X \sim X$.
- (A2) $X \preceq Y$ かつ $Y \preceq Z$ ならば, $X \preceq Z$.
- (A3) $X \preceq X'$ $brightarrow Y \preceq Y'$ $arguinus fixed for <math>X \oplus Y \preceq X' \oplus Y'$.
- (A4) $X \preceq Y$ ならば,任意の $t \in \mathbb{R}_{>0}$ に対して $tX \preceq tY$.
- (A5) 任意の $t \in (0,1)$ に対して $X \sim (1-t)X \oplus tX$.
- (A6) $\lceil \forall \epsilon > 0, \exists t \in (0, \epsilon], X \oplus tZ \preceq Y \oplus tW \rfloor \text{ t is i}, X \preceq Y.$
 - (A1), (A2): 断熱的到達可能性 ≾ は Γ_{all} 上の前順序.
 - (A3): 直和との整合性
 - (A4):スケール変換との整合性
 - (A5):分割・統合
 - (A6):安定性

簡単な性質

命題 (消約律)

 $X, Y, Z \in \Gamma_{\text{all}}$ について, $X \oplus Z \preceq Y \oplus Z$ ならば, $X \preceq Y$.

証明

 $n \in \mathbb{N}_{>0}$ とすると、 $k \in \{0, \ldots, n-1\}$ に対して、

$$\left(1 - \frac{k}{n}\right) X \oplus \frac{k}{n} Y \oplus \frac{1}{n} Z$$

$$\sim \left(1 - \frac{k+1}{n}\right) X \oplus \frac{1}{n} X \oplus \frac{k}{n} Y \oplus \frac{1}{n} Z$$

$$\lesssim \left(1 - \frac{k+1}{n}\right) X \oplus \frac{1}{n} Y \oplus \frac{k}{n} Y \oplus \frac{1}{n} Z$$

$$\sim \left(1 - \frac{k+1}{n}\right) X \oplus \frac{k+1}{n} Y \oplus \frac{1}{n} Z.$$

$$(A5)$$

よって、 $X \oplus \frac{1}{n}Z \lesssim Y \oplus \frac{1}{n}Z$.

任意の $n \in \mathbb{N}_{>0}$ に対してこれが成り立つから,(A6) より, $X \lesssim Y$.

エントロピー関数

示量的関数

定義 (示量的関数)

関数 $F: \Gamma_{\text{all}} \to \mathbb{R}$ が<mark>示量的</mark>であるとは,次の条件を満たすこと.

- 任意の $t \in \mathbb{R}_{>0}$ と $X \in \Gamma_{\text{all}}$ に対して,F(tX) = tF(X).
- 任意の $X, Y \in \Gamma_{\text{all}}$ に対して, $F(X \oplus Y) = F(X) + F(Y)$.

単純系の集合 $\Sigma_0 \subseteq \Sigma_{\text{simp}}$ が $\mathbb{R}_{>0}$ -作用が定める同値関係に関する完全代表系であるとき,任意の関数 $F_0: \bigsqcup_{\sigma \in \Sigma_0} \Gamma_\sigma \to \mathbb{R}$ は,示量的関数 $F: \Gamma_{\text{all}} \to \mathbb{R}$ に一意に拡張される.

エントロピー関数

エントロピーは熱力学の中核をなす概念だが,その導入方法にはさまざまな流 儀がある.

- $\frac{d'Q}{r}$ の積分として定義する(伝統的な方法?).
- Helmholtz エネルギーから定義する(田崎熱力学).
- 適当な性質を満たす所与の関数とする (清水熱力学).
- Lieb-Yngvason は,「エントロピー関数」を「断熱的到達可能を特徴付ける関数」として定義し,公理からその存在を示す.

エントロピー関数

定義(エントロピー関数)

関数 $S: \Gamma_{\text{all}} \to \mathbb{R}$ がエントロピー関数であるとは,次の条件を満たすこと.

- S は示量的.
- 任意の系 $\sigma \in \Sigma_{\text{all}}$ とその状態 $X, Y \in \Gamma_{\sigma}$ に対して,

$$X \lesssim Y \iff S(X) \leq S(Y)$$
.

注意

- 「任意の $X, Y \in \Gamma_{all}$ に対して」ではないことに注意.
- 「任意の $X, Y \in \Gamma_{\text{all}}$ に対して」上記の性質を満たす S の存在は,物理的意味からして,まったく期待できない.
 - 実際,そのような S が存在するとすると,任意の系 σ の状態と任意の系 τ の 状態について,少なくとも一方から他方へは断熱的到達可能ということになる.
 - σ を「水素 1 mol の系」, τ を「水素 2 mol の系」とすると,これは明らかに正しくない.

比較可能性

定義(比較可能性)

- $X, Y \in \Gamma_{\text{all}}$ が比較可能であるとは, $X \preceq Y$ または $Y \preceq X$ であること.
- $\sigma \in \Sigma_{\text{all}}$ が<mark>比較可能性を満たす</mark>とは,任意の $X, Y \in \Gamma_{\sigma}$ が比較可能であること.

本節では,次の定理を示す.

定理

次の条件は同値である.

- (a) 任意の系 $\tau \in \Sigma_{\text{all}}$ は比較可能性を満たす.
- (b) エントロピー関数 $S: \Gamma_{\text{all}} \to \mathbb{R}$ が存在する.
- $(b) \Longrightarrow (a)$ は明らか. $(a) \Longrightarrow (b)$ が非自明.

記法

正とは限らない実数 $s_1, \ldots, s_m, t_1, \ldots, t_n$ に対しても,

$$s_1X_1 \oplus \cdots \oplus s_mX_m \preceq t_1Y_1 \oplus \cdots \oplus t_nY_n$$

などと書くことがある.この式の意味は,係数が 0 の項は無視し,係数が負の項は移項することで定める.

補題

 $A^{(0)},~A^{(1)}\in arGamma_{
m all}$ が $A^{(0)}\prec A^{(1)}$ を満たすとすると,任意の $s,~t\in\mathbb{R}$ に対して,

$$(1-s)A^{(0)} \oplus sA^{(1)} \lesssim (1-t)A^{(0)} \oplus tA^{(1)} \iff s \le t.$$

証明

消約律より,
$$(1-s)A^{(0)} \oplus sA^{(1)} \lesssim (1-t)A^{(0)} \oplus tA^{(1)}$$
 は $(t-s)A^{(0)} \lesssim (t-s)A^{(1)}$ と書き換えられ,これは $s \leq t$ と同値.

補題

X, $A^{(0)}$, $A^{(1)} \in \Gamma_{\text{all}}$ とし, $A^{(0)} \prec A^{(1)}$ であり,任意の $t \in \mathbb{R}$ に対して X と $(1-t)A^{(0)} \oplus tA^{(1)}$ は比較可能であるとする.このとき,

 $\exists! t \in \mathbb{R}, \quad X \sim (1-t)A^{(0)} \oplus tA^{(1)}.$

証明

一意性は直前の補題から従う. 存在を示す.

$$I_{+} = \{ t \in \mathbb{R} \mid X \lesssim (1 - t)A^{(0)} \oplus tA^{(1)} \},$$

$$I_{-} = \{ t \in \mathbb{R} \mid X \gtrsim (1 - t)A^{(0)} \oplus tA^{(1)} \}$$

と定めると、

- 仮定より, $I_+ \cup I_- = \mathbb{R}$.
- ullet 直前の補題より, I_+ は上に閉じており, I_- は下に閉じている.

証明(つづき)

 \bullet $(-\infty,t) \subseteq I_-$ であるとすると,任意の $\epsilon > 0$ に対して

$$\begin{split} &(1-t)A^{(0)} \oplus tA^{(1)} \oplus \epsilon A^{(0)} \\ &\sim (1-t+\epsilon)A^{(0)} \oplus (t-\epsilon)A^{(1)} \oplus \epsilon A^{(1)} \\ &\stackrel{\sim}{\sim} X \oplus \epsilon A^{(1)} \end{split}$$

だから, (A6) より $(1-t)A^{(0)} \oplus tA^{(1)} \lesssim X$. すなわち, $t \in I_-$.

- 同様に、 $(t, \infty) \subseteq I_+$ ならば $t \in I_+$.
- $I_{-}=\mathbb{R}$ であるとすると,任意の $t\in\mathbb{R}_{>0}$ に対して $X\succsim (1-t)A^{(0)}\oplus tA^{(1)}$,したがって $A^{(0)}\oplus t^{-1}X\succsim A^{(1)}\oplus t^{-1}A^{(0)}$ となるから,(A6) より $A^{(0)}\succsim A^{(1)}$. ところが,これは仮定に反するから, $I_{-}\neq\mathbb{R}$.
- 同様に、I₊ ≠ ℝ.

以上より, $I_+ \cap I_- \neq \emptyset$. すなわち, $X \sim (1-t)A^{(0)} \oplus tA^{(1)}$ を満たす $t \in \mathbb{R}$ が存在する.

比較可能性 => エントロピー関数の存在(単純系が1種類である場合)

重複になるが、アイデア説明のため、単純系が1種類の場合を先に証明する.

定理

 $\Sigma_{\text{simp}} = \{t\sigma \mid t \in \mathbb{R}_{>0}\}$ であるとき,次の条件は同値である.

- (a) 任意の系 $t_1\sigma\oplus\cdots\oplus t_n\sigma\in \Sigma_{\rm all}$ は比較可能性を満たす.
- (b) エントロピー関数 $S: \Gamma_{\text{all}} \to \mathbb{R}$ が存在する.

さらに,S, S': $\Gamma_{\text{all}} \to \mathbb{R}$ がともにエントロピー関数ならば,a > 0 と $b \in \mathbb{R}$ が存在して,

$$S'(X) = aS(X) + b$$
 $(X \in \Gamma_{\sigma}).$

証明

 $(b) \Longrightarrow (a)$ は明らか. $(a) \Longrightarrow (b)$ を示す.

 $A^{(0)} \prec A^{(1)}$ を満たす状態 $A^{(0)}$, $A^{(1)} \in \Gamma_\sigma$ が存在しないとすると, Γ_σ の任意の 2 点は断熱的同値.(A3)と(A4)より, $\Gamma_{t_1\sigma\oplus\cdots\oplus t_n\sigma}$ の任意の 2 点も断熱的同値.よって,この場合, Γ_σ 上の定数関数を示量的になるように $\Gamma_{\rm all}$ 上に拡張したものがエントロピー関数となり,逆にエントロピー関数はこの形.

比較可能性 => エントロピー関数の存在(単純系が 1 種類である場合)

証明(つづき)

 $A^{(0)} \prec A^{(1)}$ を満たす $A^{(0)}$, $A^{(1)} \in \Gamma_\sigma$ が存在するとして,それを固定する. $X \in \Gamma_\sigma$ とすると,任意の $t \in \mathbb{R}$ に対して $X \sim (1-t)X \oplus tX$ と

$$\exists ! t \in \mathbb{R}, \quad X \sim (1-t)A^{(0)} \oplus tA^{(1)}.$$

この t を S(X) と定め,これを示量的関数 $S: \Gamma_{\text{all}} \to \mathbb{R}$ に拡張する.すると,任意の $X = t_1 X_1 \oplus \cdots \oplus t_n X_n \in \Gamma_{t_1 g \oplus \cdots \oplus t_n g}$ に対して,

$$X = t_1 X_1 \oplus \cdots \oplus t_n X_n$$

$$\sim \left(\sum_{i=1}^n t_i (1 - S(X_i)) \right) A^{(0)} \oplus \left(\sum_{i=1}^n t_i S(X_i) \right) A^{(1)}$$

$$= t \left((1 - t^{-1} S(X)) A^{(0)} \oplus t^{-1} S(X) A^{(1)} \right).$$

(ここで、 $t = \sum_{i=1}^{n} t_i$.) よって、補題より

 $(1-t)A^{(0)} \oplus tA^{(1)}$ は比較可能だから、補題より、

$$\forall X, X' \in \Gamma_{t_1 \sigma \oplus \cdots \oplus t_n \sigma}, \quad X \preceq X' \iff S(X) \leq S(X')$$

だから,S はエントロピー関数.

比較可能性 => エントロピー関数の存在(単純系が1種類である場合)

証明(つづき)

一意性を示す.

 $S': \Gamma_{\text{all}} \to \mathbb{R}$ もエントロピー関数であり, $S'(A^{(0)}) = 0$ かつ $S'(A^{(1)}) = 1$ を満たすとして, Γ_{σ} 上で S' = S であることを示せばよい.

 $X \in \Gamma_{\sigma}$ とすると,S の定義より

$$X \sim (1 - S(X))A^{(0)} \oplus S(X)A^{(1)}$$

だから,

$$S'(X) = S'((1 - S(X))A^{(0)} \oplus S(X)A^{(1)})$$

= $(1 - S(X))S'(A^{(0)}) + S(X)S'(A^{(1)})$
= $S(X)$.

これで,主張が示された.

比較可能性 =>> エントロピー関数の存在(一般の場合)

定理

次の条件は同値である.

- (a) 任意の系 $\tau \in \Sigma_{\text{all}}$ は比較可能性を満たす.
- (b) エントロピー関数 $S: \Gamma_{\text{all}} \to \mathbb{R}$ が存在する.

証明

(b) \Longrightarrow (a) は明らか. (a) \Longrightarrow (b) を示す. 単純系 $\sigma \in \Sigma_{\text{simp}}$ とその状態 $A^{(0)}$, $A^{(1)} \in \Gamma_{\sigma}$ であって

$$A^{(0)} \prec A^{(1)}$$

を満たすものが存在しないとすると, Γ_{σ} ($\forall \sigma \in \Sigma_{\text{simp}}$)の任意の 2 点は断熱的同値.(A3) と (A4) より, Γ_{τ} ($\forall \tau \in \Sigma_{\text{all}}$)の任意の 2 点も断熱的同値.よって,この場合,各系の状態空間上で定数であるような示量的関数をとれば,それがエントロピー関数となる.

比較可能性 => エントロピー関数の存在(一般の場合)

証明(つづき)

単純系 $\sigma \in \Sigma_{\text{simp}}$ とその状態 $A^{(0)}$, $A^{(1)} \in \Gamma_{\sigma}$ であって $A^{(0)} \prec A^{(1)}$ を満た すものが存在するとして,それを固定する.また,各系 $\tau \in \Sigma_{\text{all}}$ に対して $X_{\tau} \in \Gamma_{\tau}$ を選んで,

- 任意の $t \in \mathbb{R}_{>0}$ と $\tau \in \Sigma_{\text{all}}$ に対して, $X_{t\tau} = tX_{\tau}$.
- 任意の τ_1 , $\tau_2 \in \Sigma_{\text{all}}$ に対して, $X_{\tau_1 \oplus \tau_2} = X_{\tau_1} \oplus X_{\tau_2}$.

が成り立つようにする.

 $A^{(0)} \prec A^{(1)}$ だから,消約律より $X_\tau \oplus A^{(0)} \prec X_\tau \oplus A^{(1)}$.また, $X \in \Gamma_\tau$ とすると,任意の $t \in \mathbb{R}$ に対して

 $X \oplus A^{(0)} \sim (1-t)(X \oplus A^{(0)}) \oplus t(X \oplus A^{(1)}) \ \ \xi$

 $(1-t)(X_{\tau} \oplus A^{(0)}) \oplus t(X_{\tau} \oplus A^{(1)})$ は比較可能.したがって,補題より,

 $\exists ! t \in \mathbb{R}, \quad X \oplus A^{(0)} \sim (1-t)(X_{\tau} \oplus A^{(0)}) \oplus t(X_{\tau} \oplus A^{(1)}).$

この t を S(X) と定める.

比較可能性 =>> エントロピー関数の存在(一般の場合)

証明(つづき)

 $X \in \Gamma_{\tau}$ に対して,

$$\exists ! t \in \mathbb{R}, \quad X \oplus A^{(0)} \sim (1-t)(X_{\tau} \oplus A^{(0)}) \oplus t(X_{\tau} \oplus A^{(1)}).$$

この t を S(X) と定める.こうして定まる $S: \Gamma_{\rm all} \to \mathbb{R}$ がエントロピー関数であることを示す.

- 消約律より,上式は $X \oplus tA^{(0)} \sim X_{\tau} \oplus tA^{(1)}$ と同値.よって,S は示量的.
- $X, Y \in \Gamma_{\tau}$ に対して,

$$S(X) \leq S(Y)$$
 $\iff (1 - S(X))(X_{\tau} \oplus A^{(0)}) \oplus S(X)(X_{\tau} \oplus A^{(1)})$
 $\lesssim (1 - S(Y))(X_{\tau} \oplus A^{(0)}) \oplus S(Y)(X_{\tau} \oplus A^{(1)})$ 補題
 $\iff X \oplus A^{(0)} \lesssim Y \oplus A^{(0)}$ S の定義
 $\iff X \preceq Y$. 消約律

本節のまとめ

- 断熱的到達可能性の公理 (A1)−(A6) の下で、比較可能性がエントロピー 関数の存在を導くことを示した。
- 次の疑問:比較可能性を自然な公理から導出できるか?
- 次節:公理(A7)と単純系の公理(S1)−(S3)を追加し、単純系の比較可能性の導出について説明する.
- 次々節: 熱結合の公理 (T1)−(T4) を追加し,複合系の比較可能性の導出 について説明する.
 - テクニカルな議論が多くなるので、証明は適宜省略する.

単純系の公理

単純系に関する設定

単純系に関する設定

- 各単純系 $\sigma \in \Sigma_{\text{simp}}$ の状態空間 Γ_{σ} は, $\mathbb{R} \times \mathbb{R}^{d_{\sigma}}$ ($d_{\sigma} \in \mathbb{N}$) の開凸集合と同一視されている.
 - 厳密にいえば、各 $\sigma \in \Sigma_{\text{simp}}$ ごとに、 Γ_{σ} と $\mathbb{R} \times \mathbb{R}^{d_{\sigma}}$ の開凸集合との間の全単射が固定されている、ということ.
 - 以下では, Γ_{σ} そのものが $\mathbb{R} \times \mathbb{R}^{d_{\sigma}}$ の開凸集合であるかのように扱う.
- 任意の $t \in \mathbb{R}_{>0}$ と単純系 $\sigma \in \Sigma_{\text{simp}}$ に対して, $d_{\sigma} = d_{t\sigma}$ であり, Γ_{σ} から $\Gamma_{t\sigma}$ への全単射 $X \mapsto tX$ は,線型空間 $\mathbb{R} \times \mathbb{R}^{d\sigma}$ における t 倍写像(の制限)と同一視される.

記法

単純系 $\sigma \in \Sigma_{\text{simp}}$ の状態 $X \in \Gamma_{\sigma}$ (を同一視を通して $\mathbb{R} \times \mathbb{R}^{d_{\sigma}}$ の点とみなしたもの)を, (U_X, V_X) と書く.

 U_X をエネルギー、 V_X を仕事座標という.

単純系に関する設定

例

「水素 N mol の系」の状態空間

$$\Gamma_N = \{(U, V, N) \mid U, V \in \mathbb{R}_{>0}\}$$

は,全単射 $(U,V,N)\mapsto (U,V)$ を通して, $\mathbb{R}\times\mathbb{R}$ の開凸集合 $\mathbb{R}_{>0}\times\mathbb{R}_{>0}$ と同一視される $(d_N=1)$.

断熱的到達可能性の公理(つづき)

断熱的到達可能性の公理

単純系 $\sigma \in \Sigma_{simp}$ は,次を満たす.

(A7) 任意の $X, Y \in \Gamma_{\sigma}$ と $t \in (0, 1)$ に対して,

$$(1-t)X \oplus tY \lesssim (1-t)X + tY$$
.

エントロピー関数の凹性

命題

 $S: \Gamma_{\text{all}} \to \mathbb{R}$ がエントロピー関数ならば,各単純系 $\sigma \in \Sigma_{\text{simp}}$ の状態空間 Γ_{σ} の上で,S は凹関数.

すなわち,任意の t ∈ (0,1) と X, Y ∈ Γ_{σ} に対して,

$$(1-t)S(X) + tS(Y) \le S((1-t)X + tY).$$

証明

(A7) とエントロピー関数の定義より,

$$(1-t)S(X) + tS(Y) = S((1-t)X \oplus tY)$$

$$\leq S((1-t)X + tY).$$

単純系の公理

記法

$$\Gamma_{\sigma}^{X} = \{ Y \in \Gamma_{\sigma} \mid X \lesssim Y \}.$$

定義(支持超平面)

C を \mathbb{R}^d の凸集合とし, $x \in C$ とする.

C の x における $\frac{1}{2}$ た超平面とは,x を通る超平面であって,その超平面が定める二つの閉半空間のいずれか一方に C が含まれるものをいう.

単純系の公理

任意の単純系 $\sigma \in \Sigma_{simp}$ は,次を満たす.

- (S1) 任意の $X \in \Gamma_{\sigma}$ に対して, $Y \in \Gamma_{\sigma}$ であって $X \prec Y$ を満たすものが存在する.
- (S2a) 任意の $X=(U_X,V_X)\in \Gamma_\sigma$ に対して, Γ_σ^X の X における支持超平面 Π_X が一意に存在する. Π_X は

$$\Pi_X = \left\{ (U, V) \in \mathbb{R} \times \mathbb{R}^{d_\sigma} \mid U - U_X + \sum_{i=1}^{d_\sigma} P_i(X)(V^i - V_X^i) = 0 \right\}$$

という形に書け,各 $P_i: \Gamma_\sigma \to \mathbb{R}$ は局所 Lipschitz 連続となる.

- (S2b) Γ_{σ}^{X} は, Π_{X} が定める二つの閉半空間のうち,「高エネルギー側」に含まれる.
 - (S3) 任意の $X \in \Gamma_{\sigma}$ に対して, $\partial \Gamma_{\sigma}^{X} = (\Gamma_{\sigma}^{X})$ の Γ_{σ} における境界)は連結.

(S2a) における局所 Lipschitz 連続性や (S3) は,微分方程式の解の一意性定理を使うためのもの.

Planck の原理

公理 (A1)–(A7) と (S1)–(S3) から得られる主要な結果を,証明抜きで紹介する.

定理 (Planck の原理)

単純系 $\sigma \in \Sigma_{\text{simp}}$ の状態 $X, Y \in \Gamma_{\sigma}$ であって,仕事座標が等しい $(V_X = V_Y)$ ものに対して,

$$X \preceq Y \iff U_X < U_Y$$
.

証明は, Lieb-Yngvason の補題 3.2 と定理 3.4 を参照のこと.

系

 $S: \Gamma_{\rm all} \to \mathbb{R}$ がエントロピー関数ならば,各単純系 $\sigma \in \Sigma_{\rm simp}$ の状態空間 Γ_{σ} の上で,S はエネルギーに関して狭義単調増加.

単純系の比較可能性

定理

単純系 $\sigma \in \Sigma_{simp}$ の任意の二つの状態 $X, Y \in \Gamma_{\sigma}$ に対して,

$$X \prec Y \iff Y \in (\Gamma_{\sigma}^{X} \circ \Gamma_{\sigma} \text{ chatahan}),$$

 $X \sim Y \iff Y \in (\Gamma_{\sigma}^{X} \circ \Gamma_{\sigma} \text{ chatahan}),$
 $X \succ Y \iff Y \in (\Gamma_{\sigma}^{X} \circ \Gamma_{\sigma} \text{ chatahan}).$

証明は、Lieb-Yngvasonの定理 3.6, 3.7 を参照のこと.

系(単純系の比較可能性)

任意の単純系は,比較可能性を満たす.

熱結合の公理

熱結合に関する設定

熱結合に関する設定

- 単純系全体のなす集合 Σ_{simp} には,結合的かつ可換な演算 $(\sigma, \tau) \mapsto \sigma * \tau$ が定まっている.
 - $\sigma * \tau$ を, σ と τ の熱結合という.
 - 「二つの系を透熱壁を隔てて接触させたもの」
- 任意の $t \in \mathbb{R}_{>0}$ と σ , $\tau \in \Sigma_{\text{simp}}$ に対して, $t\sigma * t\tau = t(\sigma * \tau)$.
- $d_{\sigma*\tau} = d_{\sigma} + d_{\tau}$ であり, $X = (U_X, V_X) \in \Gamma_{\sigma}$ と $Y = (U_Y, V_Y) \in \Gamma_{\tau}$ に対して,

$$X * Y = (U_X + U_Y, V_X, V_Y) \in \Gamma_{\sigma * \tau}.$$

逆に, $\Gamma_{\sigma*\tau}$ の点は,すべてこのように書ける.

• X * Y は,「状態 X の系と状態 Y の系を透熱壁を隔てて接触させて,平衡状態になるまで待ったときの状態」

注意

- 上の記述では、熱結合 $\sigma * \tau$ の仕事座標の順序についてごまかしてある.
- 厳密には,各単純系 σ , $\tau \in \Sigma_{\text{simp}}$ に対して, σ , τ の仕事座標と $\sigma * \tau$ の仕事座標との対応を記述するデータを固定する必要がある.

熱結合の公理

定義 (熱平衡)

単純系の状態 $X, Y \in \Gamma_{simp}$ (同じ単純系の状態でなくてもよい)について,

 $X \ge Y$ が熱平衡 $(X \stackrel{\top}{\sim} Y \ge \$ \le) \iff X \oplus Y \sim X * Y.$

熱結合の公理

任意の単純系 σ , $\tau \in \Sigma_{simp}$ は,次を満たす.

- (T1) 任意の $X \in \Gamma_{\sigma}$ と $Y \in \Gamma_{\tau}$ に対して, $X \oplus Y \preceq X * Y$.
- (T2a) 任意の $Z \in \Gamma_{\sigma * \tau}$ に対して,ある $X \in \Gamma_{\sigma}$ と $Y \in \Gamma_{\tau}$ が存在して, X * Y = Z かつ $X \stackrel{\top}{\sim} Y$.
- (T2b) 任意の $t \in \mathbb{R}_{>0}$ と $X \in \Gamma_{\sigma}$ に対して, $tX \stackrel{\top}{\sim} X$.
 - (T3) Γ_{simp} 上の 2 項関係 $\stackrel{\top}{\sim}$ は,同値関係である(**熱力学第 0 法則**).
 - (T4) 任意の $X \in \Gamma_{\sigma}$ に対して,ある X_0 , $X_1 \in \Gamma_{\sigma}$ が存在して, $X_0 \stackrel{\top}{\sim} X_1$ かつ $X_0 \prec X \prec X_1$.

複合系の比較可能性を示すための補題を準備する.

次の補題の証明には,公理 (A1)-(A6) だけで十分.

補題

 $A^{(0)}$, $A^{(1)}$, $B^{(0)}$, $B^{(1)} \in \Gamma_{\text{all}}$ と a, $b \in (0,1)$ が,次を満たすとする.

$$A^{(1)} \sim (1-a)B^{(0)} \oplus aB^{(1)}$$

$$B^{(0)} \sim (1-b)A^{(0)} \oplus bA^{(1)}$$
.

このとき,任意の $s \in (0,1)$ に対して, $t = \frac{a}{1-b+ab}s \in (0,1)$ と置けば,

$$(1-s)A^{(0)} \oplus sA^{(1)} \sim (1-t)A^{(0)} \oplus tB^{(1)}$$
.

証明

$$A^{(1)} \sim (1-a)B^{(0)} \oplus aB^{(1)}$$

 $\sim (1-a)(1-b)A^{(0)} \oplus (1-a)bA^{(1)} \oplus aB^{(1)}$

だから,消約律より

$$A^{(1)} \sim \left(1 - \frac{a}{1 - b + ab}\right) A^{(0)} \oplus \frac{a}{1 - b + ab} B^{(1)}.$$

$$(1-s)A^{(0)} \oplus sA^{(1)}$$

$$\sim (1-s)A^{(0)} \oplus \left(1-\frac{a}{1-b+ab}\right)sA^{(0)} \oplus \frac{a}{1-b+ab}sB^{(1)}$$

$$\sim \left(1 - \frac{a}{1-b+ab}s\right)A^{(0)} \oplus \frac{a}{1-b+ab}sB^{(1)}.$$

記法

$$((A^{(0)}, A^{(1)})) = \{X \in \Gamma_{\sigma} \mid A^{(0)} \prec X \prec A^{(1)}\}.$$

補題

単純系 $\sigma \in \Sigma_{\text{simp}}$ の状態 $A_i^{(0)}$, $A_i^{(1)} \in \Gamma_{\sigma}$ $(1 \leq i \leq k)$ が,次の条件を満たすとする.

- 任意のiに対して, $A_i^{(0)} \prec A_i^{(1)}$ かつ $A_i^{(0)} \stackrel{\mathsf{T}}{\sim} A_i^{(1)}$.
- 任意の i に対して, $A_i^{(1)}\in ((A_{i+1}^{(0)},A_{i+1}^{(1)}))$ かつ $A_{i+1}^{(0)}\in ((A_i^{(0)},A_i^{(1)}))$. このとき,

$$\forall X \in ((A_1^{(0)}, A_k^{(1)})), \quad \exists t \in (0, 1), \quad X \sim (1 - t)A_1^{(0)} \oplus tA_k^{(1)}.$$

証明

k に関する帰納法で示す.

証明(つづき)

k=1 **のとき**: $X\in ((A_1^{(0)},A_1^{(1)}))$ が $(1-t)A_1^{(0)}\oplus tA_1^{(1)}$ $(\exists\, t\in (0,1))$ と断熱的同値であることを示したい.

 $t \in (0,1)$ を任意にとる. (T2b) より $(1-t)X \stackrel{\top}{\sim} tX$ だから,

$$X \sim (1-t)X \oplus tX \sim (1-t)X * tX \in \Gamma_{(1-t)\sigma * t\sigma}$$

一方で,
$$A_1^{(0)} \stackrel{\tau}{\sim} A_1^{(1)}$$
 と (T2b),(T3) より $(1-t)A_1^{(0)} \stackrel{\tau}{\sim} tA_1^{(1)}$ だから,

$$(1-t)A_1^{(0)} \oplus tA_1^{(1)} \sim (1-t)A_1^{(0)} * tA_1^{(1)} \in \Gamma_{(1-t)\sigma * t\sigma}.$$

単純系 $(1-t)\sigma*t\sigma$ は比較可能性を満たすから,X と $(1-t)A_1^{(0)}\oplus tA_1^{(1)}$ は比較可能.よって,「エントロピー関数」節の補題と同様にして,

$$\exists t \in (0,1), \quad X \sim (1-t)A_1^{(0)} \oplus tA_1^{(1)}.$$

k **のとき正しいとして**,k+1 **のとき**:単純系 σ は比較可能性を満たすから, $((A_1^{(0)},A_{k+1}^{(1)}))=((A_1^{(0)},A_k^{(1)}))\cup((A_{k+1}^{(0)},A_{k+1}^{(1)}))$. $X\in ((A_1^{(0)},A_k^{(1)}))$ と $X\in ((A_{k+1}^{(0)},A_{k+1}^{(1)}))$ のそれぞれに対して主張が成り立つことが,帰納法の仮定と直前の補題から従う.

複合系の比較可能性(1種類の単純系の直和について)

定理

任意の単純系 $\sigma \in \Sigma_{\text{simp}}$ と $t_1, \ldots, t_n \in \mathbb{R}_{>0}$ について, $t_1 \sigma \oplus \cdots \oplus t_n \sigma$ は比較可能性を満たす.

証明

一般性を失わず, $t_1+\cdots+t_n=1$ であると仮定する. $X_1,\ldots,X_n,Y_1,\ldots,Y_n\in \Gamma_\sigma$ として, $t_1X_1\oplus\cdots\oplus t_nX_n$ と $t_1Y_1\oplus\cdots\oplus t_nY_n$ が比較可能であることを示す.

 $(\mathsf{T4})$ より, $(A^{(0)},A^{(1)})\in \Gamma_\sigma \times \Gamma_\sigma$ が $A^{(0)} \prec A^{(1)}$ かつ $A^{(0)} \stackrel{\mathsf{T}}{\sim} A^{(1)}$ を満たす組全体を動くとき,

$$((A^{(0)}, A^{(1)})) = \{X \in \Gamma_{\sigma} \mid A^{(0)} \prec X \prec A^{(1)}\}\$$

の全体は Γ_σ を被覆する.各 $((A^{(0)},A^{(1)}))$ は Γ_σ の開集合であり(「単純系の比較可能性」節の定理),凸包 $\Delta=\operatorname{co}\{X_1,\ldots,X_n,Y_1,\ldots,Y_n\}$ は Γ_σ のコンパクト集合だから,

$$\exists (A_i^{(0)}, A_i^{(1)}) \text{ for } 1 \leq i \leq k, \quad \Delta \subseteq \bigcup_{i=1}^k ((A_i^{(0)}, A_i^{(1)})).$$

複合系の比較可能性(1種類の単純系の直和について)

証明

$$\exists (A_i^{(0)}, A_i^{(1)}) \text{ for } 1 \leq i \leq k, \quad \Delta \subseteq \bigcup_{i=1}^k ((A_i^{(0)}, A_i^{(1)})).$$

さらに、適当に番号を付け替えたり削除したりすることで、

$$\forall i, \quad A_i^{(1)} \in ((A_{i+1}^{(0)}, A_{i+1}^{(1)})) \quad \text{to} \quad A_{i+1}^{(0)} \in ((A_i^{(0)}, A_i^{(1)}))$$

としてよい(Δ の連結性を使う).このとき,単純系 σ が比較可能性を満たすことより $\bigcup_{i=1}^k ((A_i^{(0)},A_i^{(1)}))=((A_1^{(0)},A_k^{(1)}))$ であり,補題より

$$\forall X \in ((A_1^{(0)}, A_k^{(1)})), \quad \exists t \in (0, 1), \quad X \sim (1 - t)A_1^{(0)} \oplus tA_k^{(1)}.$$

特に, $X = X_1, \ldots, X_n, Y_1, \ldots, Y_n$ に対してこれが正しい.よって,

$$\exists u \in (0,1), \quad t_1 X_1 \oplus \cdots \oplus t_n X_n \sim (1-u) A_1^{(0)} \oplus u A_k^{(1)},$$

$$\exists v \in (0,1), \quad t_1 Y_1 \oplus \cdots \oplus t_n Y_n \sim (1-v) A_1^{(0)} \oplus v A_k^{(1)}$$

となるから,「エントロピー関数」節の補題より,これらは比較可能.

複合系の比較可能性を一般の場合に証明するために,次の概念を導入する.

定義(キャリブレータ)

 $A^{(0)}, A^{(1)} \in \Gamma_{\sigma} \succeq B^{(0)}, B^{(1)} \in \Gamma_{\tau} \ \mathcal{N}$

$$A^{(0)} \prec A^{(1)}, \quad B^{(0)} \prec B^{(1)}, \quad A^{(0)} \oplus B^{(1)} \sim A^{(1)} \oplus B^{(0)}$$

を満たすとき, $(A^{(0)}, A^{(1)}; B^{(0)}, B^{(1)})$ を系 σ と τ の間のキャリブレータという.

次の補題の証明は、Lieb-Yngvasonの定理 4.7 を参照のこと.

補題(キャリブレータの存在)

状態空間が空でない任意の二つの系 σ , $\tau \in \Sigma_{\rm all}$ に対して,その間のキャリブレータが存在する.

複合系の比較可能性(一般の場合)

定理(複合系の比較可能性)

任意の系は,比較可能性を満たす.

すでに示したように,比較可能性はエントロピー関数の存在を導くから,次の 系を得る.

系

エントロピー関数 $S: \Gamma_{\text{all}} \to \mathbb{R}$ が存在する.

複合系の比較可能性(一般の場合)

証明

任意の系 $\sigma \in \Sigma_{\text{all}}$ に対して次が成り立つことを, σ に関する帰納法で示す. 「任意の $t_1,\ldots,t_n \in \mathbb{R}_{>0}$ に対して, $t_1\sigma \oplus \cdots \oplus t_n\sigma$ が比較可能性を満たす.」

一般性を失わず, $t_1+\cdots+t_n=1$ であると仮定する.

単純系 σ **に対して正しいこと**: 先ほど示した定理にほかならない.

 \mathbf{x} σ , τ **に対して正しいとして**, σ \oplus τ **に対して正しいこと**: 状態空間 Γ_{σ} または Γ_{τ} が空である場合には明らかだから,そうでないとする.このとき, σ と τ の間のキャリブレータ $(A^{(0)},A^{(1)};B^{(0)},B^{(1)})$ がとれる.

 $X \in \Gamma_{\sigma}$, $Y \in \Gamma_{\tau}$ とすると,帰納法の仮定と「エントロピー関数」節の補題より,

$$\exists s \in \mathbb{R}, \quad X \sim (1-s)A^{(0)} \oplus sA^{(1)},$$

 $\exists t \in \mathbb{R}, \quad Y \sim (1-t)B^{(0)} \oplus tB^{(1)}.$

複合系の比較可能性(一般の場合)

証明(つづき)

すると,

$$\begin{split} X \oplus Y &\sim (1-s)A^{(0)} \oplus sA^{(1)} \oplus (1-t)B^{(0)} \oplus tB^{(1)} \\ &\sim (1-\frac{s+t}{2})A^{(0)} \oplus \frac{-s+t}{2}A^{(0)} \oplus \frac{s+t}{2}A^{(1)} \oplus \frac{s-t}{2}A^{(1)} \\ &\oplus (1-\frac{s+t}{2})B^{(0)} \oplus \frac{s-t}{2}B^{(0)} \oplus \frac{s+t}{2}B^{(1)} \oplus \frac{-s+t}{2}B^{(1)} \\ &\sim (1-\frac{s+t}{2})A^{(0)} \oplus \frac{-s+t}{2}A^{(0)} \oplus \frac{s+t}{2}A^{(1)} \oplus \frac{s-t}{2}A^{(0)} \\ &\oplus (1-\frac{s+t}{2})B^{(0)} \oplus \frac{s-t}{2}B^{(1)} \oplus \frac{s+t}{2}B^{(1)} \oplus \frac{-s+t}{2}B^{(1)} \\ &\sim (1-\frac{s+t}{2})(A^{(0)} \oplus B^{(0)}) \oplus \frac{s+t}{2}(A^{(1)} \oplus B^{(1)}). \end{split}$$

任意の $X \in \Gamma_{\sigma}$ と $Y \in \Gamma_{\tau}$ に対してこのように書けるから,系 $t_1(\sigma \oplus \tau) \oplus \cdots \oplus t_n(\sigma \oplus \tau)$ $(t_1, \ldots, t_n \in \mathbb{R}_{>0}, \sum_{i=1}^n t_i = 1)$ の任意 の状態 Z に対して,

$$\exists u \in \mathbb{R}, \quad Z \sim (1-u)(A^{(0)} \oplus B^{(0)}) \oplus u(A^{(1)} \oplus B^{(1)}).$$

よって, $t_1(\sigma \oplus \tau) \oplus \cdots \oplus t_n(\sigma \oplus \tau)$ は比較可能性を満たす(「エントロピー関数」節の補題を用いた).

参考文献

- [1] E. H. Lieb, J. Yngvason, "The physics and mathematics of the second law of thermodynamics", *Physics Reports* **310**.1 (1999), pp. 1–96.
- [2] 清水明, 『熱力学の基礎 I・II』, 第2版, 東京大学出版会, 2021.
- [3] 田崎晴明,『熱力学』,培風館,2000.