





## Searching for natural selection on individual genes: dN/dS





# The fix: scale using number of synonymous changes!

- Synonymous differences accumulate neutrally
  - Can use them to scale for mutation rate differences

 RATIO of nonsynonymous to synonymous differences (dN/dS) estimates non-neutral changes relative to neutral changes

Let's see how this is done...



## dN/dS Ratios

• *dN* = number of non-synonymous changes **per non-synonymous site** 

• *dS* = number of synonymous changes **per synonymous site** 







ACT CCG GGG CCC \* \*

ACG CCG GGC CTC

site # 123 456 789 111 012

syn 001 001 001 001

non 110 110 110 110

Thr Pro Gly Pro

Thr Pro Gly Leu







```
Thr Pro Gly Pro
Thr Pro Gly Leu
```

Any change from A gives different amino acid

non-syn site







Any change in 2<sup>nd</sup> position gives different amino acid

• non-syn site







Any change DOES NOT affect amino acid

syn site w/change



ACT CCG GGG CCC

\* \*

ACG CCG GGC CTC

site # 123 456 789 111 012

syn 001 001 001 001

non 110 110 110 110

Thr Pro Gly Pro

Thr Pro Gly Leu

Total synonymous sites = 4 Total nonsynonymous sites = 8



 What about bases where SOME changes affect amino acid and SOME changes do not???

TTT = Phe, TTC = Phe, TTG = Leu, TTA = Leu



 What about bases where SOME changes affect amino acid and SOME changes do not???

```
TTT = Phe, TTC = Phe, TTG = Leu, TTA = Leu
```

• If start with TTG, 3<sup>rd</sup> position has

1/3 probability synonymous

2/3 probability nonsynonymous

... add to both totals in those amounts!



|      |   | ACT<br>* | CCG | GGG<br>* |            | Thr Pro Gly Pro                                          |
|------|---|----------|-----|----------|------------|----------------------------------------------------------|
|      |   | ACG      | CCG | GGC      | CTC        | Thr Pro Gly Leu                                          |
| site | # | 123      | 456 | 789      | 111<br>012 | Total synonymous sites = 4 Total nonsynonymous sites = 8 |
| syn  |   | 001      | 001 | 001      | 001        | Total synonymous changes=2                               |
| non  |   | 110      | 110 | 110      | 110        | Total nonsynonymous changes=1                            |



ACT CCG GGG CCC \* \*

ACG CCG GGC CTC

site # 123 456 789 111

012

syn 001 001 001 001

non 110 110 110 110

Thr Pro Gly Pro

Thr Pro Gly Leu

Total synonymous sites = 4
Total nonsynonymous sites = 8

Total synonymous changes=2
Total nonsynonymous changes=1

dN = 1/8 = 0.125 dS = 2/4 = 0.5



|        | ACT<br>* | CCG | GGG<br>* | CCC<br>*   | Thr Pro Gly Pro                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|--------|----------|-----|----------|------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|        | ACG      | CCG | GGC      | CTC        | Thr Pro Gly Leu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| site # | 123      | 456 | 789      | 111<br>012 | Total synonymous sites = 4 Total nonsynonymous sites = 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| syn    | 001      | 001 | 001      | 001        | Total synonymous changes=2 Total nonsynonymous changes=1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| non    | 110      | 110 | 110      | 110        | rotal from symbol y from the first factor of the factor of |
|        |          |     |          |            | dN = 1/8 = 0.125 $dS = 2/4 = 0.5dN/dS = 0.125/0.5 = 0.25$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |

- Estimates how much "non-neutral" (nonsynonymous)
   evolution has happened relative to "neutral" (synonymous)
   evolution
  - If a gene is evolving neutrally, has dN/dS = 1
    - No selection on nonsynonymous changes (null hyp)



- Estimates how much "non-neutral" (nonsynonymous)
   evolution has happened relative to "neutral" (synonymous)
   evolution
  - If a gene is evolving neutrally, has dN/dS = 1
    - No selection on nonsynonymous changes (null hyp)
  - If a gene has dN/dS < 1, then "constrained"</p>
    - Nonsynonymous changes selected against





- Estimates how much "non-neutral" (nonsynonymous)
   evolution has happened relative to "neutral" (synonymous)
   evolution
  - If a gene is evolving neutrally, has dN/dS = 1
    - No selection on nonsynonymous changes (null hyp)
  - If a gene has dN/dS < 1, then "constrained"</p>
    - Nonsynonymous changes selected against
  - If a gene has dN/dS > 1, then changing rapidly
    - Multiple nonsynonymous changes favored by natural selection



## dN/dS in human-chimp

- Average dN/dS ~ 0.23
- 585 genes of 13,454 tested had dN/dS > 1
  - Genes involved in resistance to parasites, fertilization, etc.

Shown in figure:
 Epidermal
 Differentiation
 Complex (EDC)



## Try this!

• Aspm gene affects brain size in humans:

- Human: CGT GGC GCA CTT GTA

- Chimp: CGT CGT CCA CTT GTA



- Real dN/dS for Aspm ~ 0.9 for whole gene
- Is this gene likely to be evolving neutrally?
  - Amino acid changes "don' t matter"?



- Real dN/dS for Aspm ~ 0.9 for whole gene
- Is this gene likely to be evolving *neutrally*?
  - Amino acid changes "don' t matter"?

- BOTH constraint AND rapid evolution may operate within a gene (at different bases)
- This muddies a single "generalization" about a gene as a whole

- If dN/dS = 1, then "cannot reject" neutrality
  - Realistically, unlikely any protein-coding gene would really be evolving totally neutrally



- If dN/dS < 1, then lots of "constraint"</li>
  - Most amino acid changes disfavored
- If dN/dS > 1, then selection driving rapid change
  - Multiple amino acid changes favored



#### Need another test...



- dN/dS can be too conservative for finding adaptive aminoacid changes
  - Many false negatives

## Image Credits, Unit 15-2

 EDC, © 2005 Republished with permission from Macmillan Publishers Ltd: Nature, The Chimpanzee Sequencing and Analysis Consortium (2005). "Initial sequence of the chimpanzee genome and comparison with the human genome." Nature 437, 69-87, all rights reserved