Coy et al.

Serial No. : Filed : 10/712,081 November 13, 2003

Page

2

COMPLETE LISTING OF ALL CLAIMS, WITH MARKINGS AND STATUS IDENTIFIERS (Amendments are illustrated by showing deletions by strikethrough or by double brackets for deletions of five or fewer characters and additions by underlining)

Claims 1-17 (canceled)

Claim 18 (currently amended): A compound of the formula:

$$R_1$$

$$A^1-D-Cys-A^3-D-Trp-Lys-A^6-Cys-A^8-R_3,$$

$$R_2$$

wherein

A¹ is a D- or L-isomer of an aromatic amino acid or is deleted;

A³ is an aromatic amino acid;

A⁶ is Thr, Thr(Bzl), Gly, Ser, an Eaa or an aliphatic amino acid;

A⁸ is a D- or L-isomer selected from the group consisting of Thr, Ser, an aromatic amino acid or an aliphatic amino acid;

each of R_1 and R_2 , is, independently, H or substituted or unsubstituted lower alkyl, aryl, aryl lower alkyl, heterocycle, heterocycle lower alkyl, E_1SO_2 or E_1CO wherein E_1 , is aryl, aryl lower alkyl, heterocycle or heterocycle lower alky and said substituent is halo, lower alkyl, hydroxy, halo lower alkyl or hydroxy lower alkyl; and

Coy et al.

Serial No. :

10/712,081

Filed Page November 13, 2003

R₃, together with the carbonyl group of A⁸ attached thereto, are reduced to form H, lower alkyl, or hydroxy lower alkyl;

provided that a disulfide bond links the sidechains of ${\mbox{A}}^2$ and ${\mbox{A}}^7;$ and

further provided that if A^1 is D-Phe or $p-NO_2-Phe$, A^3 is Phe or Tyr and A^6 is Thr or Val, then A^8 is B-Nal.

19 (currently amended): A compound of claim 18, wherein A is the D- or L-isomer of G-Nal, o-X-Phe wherein X is H, OH, CH, halo, OCH, NH, CN, or $N\Theta_{Q}$, p-X-Phe wherein X is H, OH, CH, halo, OCH, NH, CN, or NOO, m-X-Phe wherein X is H, OH, CH, halo, OCH, NH, CN, or NO, F5-Phe, Trp, Dip, 2-Pal, Tyr(Bzl), His, Igl, Tyr(I), Bta, Bip, Npa, or Pal; A³ is ß-Nal, o-X-Phe wherein X is H, OH, CH, halo, OCH, NH, CN, or NO, p-X-Phe wherein X is H, OH, CH, halo, OCH, NH, CN, or NO, m-X-Phe wherein X is H, OH, CH, halo, OCH, NH, CN, or NO, F,-Phe, Trp, Dip, 2-Pal, Tyr(Bzl), His, Igl, Tyr(I), Bta, Bip, Npa, or Pal; A⁶ is Thr, Ser, Tle, Thr(Bzl), Abu, Ala, Ile, Leu, Gly, Nle, &-Ala, Gaba, or Val; and A is the D- or L-isomer of Thr, Dip, F,-Phe, p-X-Phe wherein X is H, OH, CH, halo, OCH, NH, CN, or NO, o-X-Phe wherein X is H, OH, CH, halo, OCH, NH, CN, or NOO, m-X-Phe wherein X is H, OH, CH, halo, OCH, NH, CN, or $N\theta_0$, Igl, Tyr(Bzl), or ß-Nal.

20 (currently amended): A compound of claim 19, wherein A¹ is the D- or L-isomer of S-Nal, Phe, p-F-Phe, Trp, p-

Coy et al.

Serial No. :

10/712,081

Filed Page

CH, 00H.

November 13, 2003

Cl-Phe, or p-CN-Phe; A^3 is Tyr, Tyr[[]](I), or Pal; A^6 is Val, Tle, Nle, Ile, or Leu; A^8 is p-F-Phe, ß-Nal, Tyr, Dip, p-Cl-Phe, Igl, or p-CN-Phe; R_1 is H, CH₃CO, 4-(2-hydroxyethyl)-1-piperazinylacetyl, or 4-(2-hydroxyethyl)-1-piperizineethanesulfonyl; R_2 is H, and R_3 , together with the

21 (original): A compound of claim 20, wherein A³ is Pal.

carboxy group of A attached thereto, are reduced to form H or

22 (currently amended): A compound of claim 19, of the formula:

H₂-ß-Nal-D-Cys-Tyr-D-Trp-Lys-Val-Cys-(2R,3R-(2-hydroxymethyl)-3-hydroxy) propylamide;

- (H) (CH₃CO)-ß-Nal-D-Cys-Tyr-D-Trp-Lys-Val-Cys-(2R, 3R-(2-hydroxymethyl)-3-hydroxy) propylamide;
- (H) (4-(2-hydroxyethyl)-1-piperazinylacetyl)-ß-Nal-D-Cys-Tyr-D-Trp-Lys-Val-Cys-(2R, 3R-(2-hydroxymethyl)-3-hydroxy)propylamide;
- (H) (4-(2-hydroxyethyl)-1-piperizineethanesulfonyl)-ß-Nal-D-Cys-Tyr-D-Trp-Lys-Val-Cys-(2R, 3R-(2-hydroxymethyl)-3-hydroxy)propylamide;

 H_2 -R-Nal-D-Cys-Pal-D-Trp-Lys-Val-Cys-(2R,3R-(2-hydroxymethyl)-3-hydroxy) propylamide;

(H) (CH₃CO)-ß-Nal-D-Cys-Pal-D-Trp-Lys-Val-Cys-(2R, 3R-(2-hydroxymethyl)-3-hydroxy) propylamide;

Coy et al.

Serial No. : Filed :

10/712,081 November 13, 2003

Page

:

(H) (4-(2-hydroxyethyl)-1-piperazinylacetyl)-ß-Nal-D-Cys-Pal-D-Trp-Lys-Val-Cys-(2R,3R-(2-hydroxymethyl)-3-hydroxy)propylamide;

(H) (4-(2-hydroxyethyl)-1-piperizineethanesulfonyl)-ß-Nal-D-Cys-Pal-D-Trp-Lys-Val-Cys-(2R,3R-(2-hydroxymethyl)-3-hydroxy)propylamide;

 H_2 -R-Nal-D-Cys-Tyr-D-Trp-Lys-Thr-Cys-(2R, 3R-(2-hydroxymethyl)-3-hydroxy) propylamide;

(H) (CH₃CO)-ß-Nal-D-Cys-Tyr-D-Trp-Lys-Thr-Cys-(2R,3R-(2-hydroxymethyl)-3-hydroxy) propylamide;

(H) (4-(2-hydroxyethyl)-1-piperazinylacetyl)-ß-Nal-D-Cys-Tyr-D-Trp-Lys-Thr-Cys-(2R,3R-(2-hydroxymethyl)-[[]]3-hydroxymethyl)propylamide;

(H) (4-(2-hydroxyethyl)-1-piperizineethanesulfonyl)-ß-Nal-D-Cys-Tyr-D-Trp-Lys-Thr-Cys-(2R,3R-(2-hydroxymethyl)-3-hydroxy)propylamide;

 H_2 -R-Nal-D-Cys-Pal-D-Trp-Lys-Thr-Cys-(2R, 3R-(2-hydroxymethyl)-3-hydroxy) propylamide;

(H) (CH₃CO) - \(\mathbb{G} - \mathbb{Nal-D-Cys-Pal-D-Trp-Lys-Thr-Cys-(2R, 3R-(2-hydroxymethyl) - 3-hydroxy) \(\mathbb{Propylamide} \);

(H) (4-(2-hydroxyethyl)-1-piperazinylacetyl)-ß-Nal-D-Cys-Pal-D-Trp-Lys-Thr-Cys-(2R, 3R-(2-hydroxymethyl)-3-hydroxy)propylamide;

(H) (4-(2-hydroxyethyl)-1-piperizineethanesulfonyl)-ß-Nal-D-Cys-Pal-D-Trp-Lys-Thr-Cys-(2R, 3R-(2-hydroxymethyl)-3-hydroxy)propylamide;

Coy et al.

Serial No. : Filed :

10/712,081 November 13, 2003

Page

 $\label{eq:H2-Phe-D-Cys-Tyr-D-Trp-Lys-Val-Cys-(2R,3R-(2-hydroxymethyl)-3-hydroxy) propylamide;} \\$

(H) (CH₃CO) Phe-D-Cys-Tyr-D-Trp-Lys-Val-Cys-(2R, 3R-(2-hydroxymethyl)-3-hydroxy) propylamide;

(H) (4-(2-hydroxyethyl)-1-piperazinylacetyl) Phe-D-Cys-Tyr-D-Trp-Lys-Val-Cys-(2R, 3R-(2-hydroxymethyl)-3-hydroxy) propylamide;

(H) (4-(2-hydroxyethyl)-1-piperizineethanesulfonyl)Phe-D-Cys-Tyr-D-Trp-Lys-Val-Cys-(2R, 3R-(2-hydroxymethyl)-[[]]3hydroxy)propylamide;

 H_2 -Phe-D-Cys-Pal-D-Trp-Lys-Val-Cys-(2R,3R-(2-hydroxymethyl)-3-hydroxy) propylamide;

H(CH,CO)Phe-D-Cys-Pal-D-Trp-Lys-Val-Cys-(2R,3R-(2hydroxymethyl)-3-hydroxy)propylamide;

(H) (4-(2-hydroxyethyl)-1-piperazinylacetyl)Phe-D-Cys-Pal-D-Trp-Lys-Val-Cys-(2R, 3R-(2-hydroxymethyl)-3-hydroxy)propylamide;

(H) (4-(2-hydroxyethyl)-1-piperizineethanesulfonyl) Phe-D-Cys-Pal-D-Trp-Lys-Val-Cys-(2R, 3R-(2-hydroxymethyl)-3-hydroxy) propylamide;

 H_2 -Phe-D-Cys-Tyr-D-Trp-Lys-Thr-Cys-(2R,3R-(2-hydroxymethyl)-3-hydroxy)propylamide;

(H) (CH₃CO) Phe-D-Cys-Tyr-D-Trp-Lys-Thr-Cys-(2R, 3R-(2-hydroxymethyl)-3-hydroxy) propylamide;

(H) (4-(2-hydroxyethyl)-1-piperazinylacetyl)Phe-D-Cys-Tyr-D-Trp-Lys-Thr-Cys-(2R, 3R-(2-hydroxymethyl)-3-hydroxy)propylamide;

Coy et al.

Serial No. : Filed :

10/712,081 November 13, 2003

Page

```
(H) (4-(2-hydroxyethyl)-1-piperizineethanesulfonyl) Phe-D-Cys-Tyr-
D-Trp-Lys-Thr-Cys-(2R, 3R-(2-hydroxymethyl)-3-hydroxy) propylamide;
     H,-Phe-D-Cys-Pal-D-Trp-Lys-Thr-Cys-(2R,3R-(2-hydroxymethyl)-
3-hydroxy) propylamide;
     (H) (CH,CO) Phe-D-Cys-Pal-D-Trp-Lys-Thr-Cys-(2R, 3R-(2-
hydroxymethyl)-3-hydroxy)propylamide;
     (H) (4-(2-hydroxyethyl)-1-piperazinylacetyl)Phe-D-Cys-Pal-D-
Trp-Lys-Thr-Cys-(2R, 3R-(2-hydroxymethyl)-3-hydroxy) propylamide;
     (H) (4-(2-hydroxyethyl)-1-piperizineethanesulfonyl)Phe-D-Cys-Pal-
D-Trp-Lys-Thr-Cys-(2R, 3R-(2-hydroxymethyl)-3-hydroxy) propylamide;
     H,-$-Nal-D-Cys-Tyr-D-Trp-Lys-Val-Cys-2R-(2-naphthyl)ethylamide;
     (H) (CH,CO) - S-Nal-D-Cys-Tyr-D-Trp-Lys-Val-Cys-2R-(2-
naphthyl) ethylamide;
     (H) (4-(2-hydroxyethyl)-1-piperazinylacetyl)-ß-Nal-D-Cys-Tyr-
D-Trp-Lys-Val-Cys-2R-(2-naphthyl)ethylamide;
     (H) (4-(2-hydroxyethyl)-1-piperizineethanesulfonyl)-ß-Nal-D-
Cys-Tyr-D-Trp-Lys-Val-Cys-2R-(2-naphthyl)ethylamide;
    H,-ß-Nal-D-Cys-Pal-D-Trp-Lys-Val-Cys-2R-(2-naphthyl)ethylamide;
     (H) (CH,CO) - S-Nal-D-Cys-Pal-D-Trp-Lys-Val-Cys-2R-(2-
naphthyl)ethylamide;
     (H) (4-(2-hydroxyethyl)-1-piperazinylacetyl)-ß-Nal-D-
Cys-Pal-D-Trp-Lys-Val-Cys-2R-(2-naphthyl)ethylamide;
     (H) (4-(2-hydroxyethyl)-1-piperizineethanesulfonyl)- ß-Nal-D-
Cys-Pal-D-Trp-Lys-Val-Cys-2R-(2-naphthyl) ethylamide;
```

Coy et al.

Serial No. : Filed

10/712.081 November 13, 2003

Page

H₂-S-Nal-D-Cys-Tyr-D-Trp-Lys-Thr-Cys-2R-(2-naphthyl)ethylamide;

(H) (CH,CO) - \(\mathbb{R} - \mathbb{Nal} - \mathbb{D} - \mathbb{Cys} - \mathbb{Tyr} - \mathbb{D} - \mathbb{Tyr} - \mathbb{Tyr} - \mathbb{D} - \mathbb{Tyr} - \mathbb{Tyr}

naphthyl)ethylamide;

(H) (4-(2-hydroxyethyl)-1-piperazinylacetyl)-ß-Nal-D-Cys-Tyr-D-Trp-Lys-Thr-Cys-2R-(2-naphthyl)ethylamide;

(H) (4-(2-hydroxyethyl)-1-piperizineethanesulfonyl)-ß-Nal-D-Cys-Tyr-D-Trp-Lys-Thr-Cys-2R-(2-naphthyl)ethylamide;

H,-ß-Nal-D-Cys-Pal-D-Trp-Lys-Thr-Cys-2R-(2-naphthyl)ethylamide;

(H) (CH,CO) - \(\text{R-Nal-D-Cys-Pal-D-Trp-Lys-Thr-Cys-2R-[[]] (2naphthyl)ethylamide;

- (H)(4-(2-hydroxyethyl)-1-piperazinylacetyl)-ß-Nal-D-Cys-Pal-D-Trp-Lys-Thr-Cys-2R-(2-naphthyl)ethylamide;
- (H) (4-(2-hydroxyethyl)-1-piperizineethanesulfonyl)-ß-Nal-D-Cys-Pal-D-Trp-Lys-Thr-Cys-2R-(2-naphthyl)ethylamide;

H,-Phe-D-Cys-Tyr-D-Trp-Lys-Val-Cys-2R-(2-naphthyl)ethylamide;

- (H) (CH,CO) Phe-D-Cys-Tyr-D-Trp-Lys-Val-Cys-2R-(2naphthyl) ethylamide;
- (H) (4-(2-hydroxyethyl)-1-piperazinylacetyl)Phe-D-Cys-Tyr-D-Trp-Lys-Val-Cys-2R-(2-naphthyl)ethylamide;
- (H) (4-(2-hydroxyethyl)-1-piperizineethanesulfonyl)Phe-D-Cys-Tyr-D-Trp-Lys-Val-Cys-2R-(2-naphthyl)ethylamide;

H,-Phe-D-Cys-Pal-D-Trp-Lys-Val-Cys-2R-(2-naphthyl)ethylamide;

(H) (CH,CO) Phe-Cys-Pal-D-Trp-Lys-Val-Cys-2R-(2naphthyl) ethylamide;

Coy et al. 10/712,081

Serial No. : Filed :

November 13, 2003

Page

g

3-hydroxy)propylamide;

```
(H) (4-(2-hydroxyethyl)-1-piperazinylacetyl)Phe-D-Cys-Pal-D-
Trp-Lys-Val-Cys-2R-(2-naphthyl)ethylamide;
     (H) (4-(2-hydroxyethyl)-1-piperizineethanesulfonyl)Phe-D-Cys-
Pal-D-Trp-Lys-Val-Cys-2R-(2-naphthyl)ethylamide;
     H,-Phe-D-Cys-Tyr-D-Trp-Lys-Thr-Cys-2R-(2-naphthyl) ethylamide;
     (H) (CH,CO) Phe-D-Cys-Tyr-D-Trp-Lys-Thr-Cys-2R-(2-
naphthyl) ethylamide;
     (H) (4-(2-hydroxyethyl)-1-piperazinylacetyl)Phe-D-Cys-Tyr-D-
Trp-Lys-Thr-Cys-2R-(2-naphthyl)ethylamide;
     (H) (4-(2-hydroxyethyl)-1-piperizineethanesulfonyl)Phe-D-Cys-
Tyr-D-Trp-Lys-Thr-Cys-2R-(2-naphthyl)ethylamide;
     H,-Phe-D-Cys-Pal-D-Trp-Lys-Thr-Cys-2R-(2-naphthyl)ethylamide;
     (H) (CH,CO) Phe-Cys-Pal-D-Trp-Lys-Thr-Cys-2R-(2-
naphthyl) ethylamide;
     (H) (4-(2-hydroxyethyl)-1-piperazinylacetyl)Phe-D-Cys-Pal-D-
Trp-Lys-Thr-Cys-2R-(2-naphthyl)ethylamide;
     (H) (4-(2-hydroxyethyl)-1-piperizineethanesulfonyl)Phe-D-Cys-
Pal-D-Trp-Lys-Thr-Cys-2R-(2-naphthyl)ethylamide;
     H,-ß-Nal-D-Cys-Tyr-D-Trp-Lys-Abu-Cys-2R-(2-naphthyl)ethylamide;
     H,-Phe-D-Cys-Tyr-D-Trp-Lys-Abu-Cys-2R-(2-naphthy1)ethylamide;
     H,-ß-Nal-D-Cys-Tyr-D-Trp-Lys-Abu-Cys-(2R, 3R-(2-hydroxymethyl)-3-
hydroxy) propylamide; or
     H,-Phe-D-Cys-Tyr-D-Trp-Lys-Abu-Cys-(2R,3R-(2-hydroxymethyl)-
```

Coy *et al*. 10/712,081

Serial No. : Filed :

November 13, 2003

Page

10

or a pharmaceutically acceptable salt thereof.

23 (previously presented): A compound of the formula:

$$R_1$$

$$A^1-A^2-A^3-D-Trp-Lys-A^6-A^7-A^8-R_3,$$

$$R_2$$

wherein

A¹ is a D- or L-isomer of an aromatic amino acid, or is deleted;

A² is a D-aromatic amino acid or a D-aliphatic amino acid,

A³ is an aromatic amino acid;

A⁶ is Thr, Thr(Bzl), Gly, Ser, an Eaa, or an aliphatic amino acid;

A' is an aromatic amino acid or an aliphatic amino acid;

A⁸ is a D- or L-isomer selected from the group consisting of Thr, Ser, an aromatic amino acid, or an aliphatic amino acid;

each of R_1 and R_2 , is, independently, H or substituted or unsubstituted lower alkyl, aryl, aryl lower alkyl, heterocycle, heterocycle lower alkyl, E_1SO_2 or E_1CO wherein E_1 , is aryl, aryl lower alkyl, heterocycle, or heterocycle lower alky and said substituent is halo, lower alkyl, hydroxy, halo lower alkyl, or hydroxy lower alkyl; and

 R_3 is OH, NH_2 , C_{1-12} alkoxy, or $NH-Y-CH_2-Z$, wherein Y is a C_{1-12} hydrocarbon moiety and Z is H, OH, CO,H, or CONH,, or R_3 , together

Coy et al.

Serial No. :

10/712,081

November 13, 2003

Filed Page

11

with the carbonyl group of A⁸ attached thereto, are reduced to form H, lower alkyl, or hydroxy lower alkyl;

provided if A^2 is D-Cys or D-Pen and A^7 is Cys or Pen, then a disulfide bond links the sidechains of A^2 and A^7 , and

further provided that if A^1 is D-Phe or p-NO₂-Phe, A^2 is D-Cys, A^3 is Phe or Tyr, A^6 is Thr or Val and A^7 is Cys, then A^8 is \mathcal{B} -Nal.

24 (previously presented): A compound of claim 23, wherein A^1 is an L- amino acid and A^2 is a D-aromatic amino acid.

25 (currently amended): A compound of claim 24, wherein each of A¹[[,]], A³, and A¹, is, independently, ß-Nal, o-X-Phe wherein X is H, OH, CH₃, halo, OCH₃, NH₂, CN or NO₂, p-X-Phe wherein X is H, OH, CH₃, halo, OCH₃, NH₂, CN or NO₂, m-X-Phe wherein X is H, OH, CH₃, halo, OCH₃, NH₂, CN, or NθΩ₂, F₅-Phe, Trp, Dip, 2-Pal, Tyr(Bzl), His, Igl, Tyr(I), Bta, Bip, Npa, or Pal; A² is D-ß-Nal, D-o-X-Phe wherein X is H, OH, CH₃, halo, OCH₃, NH₂, CN, or NO₂, D-p-X-Phe wherein X is H, OH, CH₃, halo, OCH₃, NH₂, CN, or NO₂, D-m-X-Phe wherein X is H, OH, CH₃, halo, OCH₃, NH₂, CN, or NO₂, D-F₅-Phe, D-Trp, D-Dip, D-2-Pal, D-Tyr(Bzl), D-His, D-Igl, D-Tyr(I), D-Bta, D-Bip, D-Npa, or D-Pal; A⁶ is Thr, Ser, Tle, Thr(Bzl), Abu, Ala, Ile, Leu, Gly, Nle, ß-Ala, Gaba, or Val; and A⁶ is the D- or L-isomer of Thr, Dip, F₅-Phe, p-X-Phe wherein X is H, OH, CH₃, halo, OCH₃, Nh₂, CN, or NθQ₂, o-X-Phe wherein X is H,

Coy et al.

Serial No. :

10/712,081 November 13, 2003

Filed Page

12

OH, CH₃, halo, OCH₃, NH₂, CN, or N $\frac{OO}{O}$, m-X-Phe wherein X is H, OH, CH₃, halo, OCH₃, NH₂, CN, or N $\frac{OO}{O}$, Igl, Tyr (Bzl), or ß-Nal.

26 (previously presented): A compound of claim 25, wherein A^1 is B-Nal or Phe, A^2 is D-Cpa or D-Phe; A^3 is Phe or Tyr; A^6 is Abu, Thr, or Val; A^7 is Phe; and A^8 is Thr; R_1 is H, CH_3CO , 4-(2-hydroxyethyl)-1-piperazinylacetyl, or 4-(2-hydroxyethyl)-1-piperizineethanesulfonyl; R_2 is H; and R_3 is NH_2 .

27 (currently amended): A compound of claim 25 of the formula:

H,-Phe-D-Phe-Tyr-D-Trp-Lys-Thr-Phe-Thr-NH,;

H,-Phe-D-Phe-Tyr-D-Trp-Lys-Val-Phe-Thr-NH,;

H,-Phe-D-Cpa-Tyr-D-Trp-Lys-Val-Phe-Thr-NH,;

H,-ß-Nal-D-Cpa-Tyr-D-Trp-Lys-Val-Phe-Thr-NH,;

- (H) (CH,CO) \(\mathbb{S} \text{Nal-D-Cpa-Tyr-D-Trp-Lys-Val-Phe-Thr-NH} \);
- (H) (4-(2-hydroxyethyl)-1-piperazinylacetyl)-ß-Nal-[[]]D-Cpa-Tyr-D-Trp-Lys-Val-Phe-Thr-NH;
- (H) (4-(2-hydroxyethyl)-1-piperizineethanesulfonyl)-ß-Nal-D-Cpa-Tyr-D-Trp-Lys-Val-Phe-Thr-NH₂;

H,-ß-Nal-D-Cpa-Pal-D-Trp-Lys-Val-Phe-Thr-NH,;

- (H) (CH,CO) \(\mathbb{S} \text{Nal} \text{D} \text{Cpa} \text{Pal} \text{D} \text{Trp-Lys-Val} \text{Phe-Thr-NH}, \(\; \)
- (H) (4-(2-hydroxyethyl)-1-piperazinylacetyl)-ß-Nal-D-Cpa-Pal-D-Trp-Lys-Val-Phe-Thr-NH₂;
- (H) (4-(2-hydroxyethyl)-1-piperizineethanesulfonyl)-ß-Nal-D-Cpa-Pal-D-Trp-Lys-Val-Phe-Thr-NH,;

Coy et al.

Serial No. :

10/712,081

Filed Page November 13, 2003

```
H,-ß-Nal-D-Cpa-Tyr-D-Trp-Lys-Thr-Phe-Thr-NH,;
```

- (H) (CH,CO) R-Nal-D-Cpa-Tyr-D-Trp-Lys-Thr-Phe-Thr-NH,;
- (H) (4-(2-hydroxyethyl)-1-piperazinylacetyl)-ß-Nal-[[]]D-Cpa
 -Tyr-D-Trp-Lys-Thr-Phe-Thr-NH,;
- (H) (4-(2-hydroxyethyl)-1-piperizineethanesulfonyl)-ß-Nal-D-Cpa-Tyr-D-Trp-Lys-Thr-Phe-Thr-NH₂;

- (H) (CH₃CO) \(\text{S-Nal-D-Cpa-Pal-D-Trp-Lys-Thr-Phe-Thr-NH}_2 \);
- (H) (4-(2-hydroxyethyl)-1-piperazinylacetyl)-ß-Nal-D-Cpa-Pal-D-Trp-Lys-Thr-Phe-Thr-NH,;
- (H) (4-(2-hydroxyethyl)-1-piperizineethanesulfonyl)-ß-Nal-D-Cpa-Pal-D-Trp-Lys-Thr-Phe-Thr-NH,;

- (H) (CH,CO) \(\mathbb{G} \text{Nal-D-Cpa-Tyr-D-Trp-Lys-Val-Phe-\(\mathbb{G} \text{Nal-NH}_{\text{.}} \);
- (H) (4-(2-hydroxyethyl)-1-piperazinylacetyl)-ß-Nal-[[]]D-Cpa-Tyr-D-Trp-Lys-Val-Phe-ß-Nal-NH,;
- (H) (4-(2-hydroxyethyl)-1-piperizineethanesulfonyl)-[[]]ß-Nal-D-Cpa-Tyr-D-Trp-Lys-Val-Phe-ß-Nal-NH;

a pharmaceutically acceptable salt thereof.

28 (original): A compound of claim 23, wherein A^1 is a D-amino acid and A^2 is a D-aromatic amino acid.

Coy et al.

Serial No. :

10/712,081

November 13, 2003

Filed Page

14

29 (currently amended): A compound of claim 28,

wherein each of A¹ and A², is, independently, D-ß-Nal, D-o-X-Phe wherein X is H, OH, CH, halo, OCH, NH, CN, or NO, D-p-X-Phe wherein X is H, OH, CH, halo, OCH, NH, CN, or NO, D-m-X-Phe wherein X is H, OH, CH, halo, OCH, NH, CN, or NO, D-F,-Phe, D-Trp, D-Dip, D-2-Pal, D-Tyr(Bzl), D-His, D-Igl, D-Tyr(I), D-Bta, D-Bip, D-Npa, or D-Pal; each of A³ and A⁷, is, independently, is ß-Nal, o-X-Phe wherein X is H, OH, CH, halo, OCH, NH, CN, or NO,, p-X-Phe wherein X is H, OH, CH, halo, OCH, NH, CN, or NO,, m-X-Phe wherein X is H, OH, CH, halo, OCH, NH, CN, or NO, F5-Phe, Trp, Dip, 2-Pal, His, Igl, Tyr(I), Bta, Bip, Npa, Tyr(Bzl), or Pal; A⁶ is Thr, Ser, Tle, Thr(Bzl), Abu, Ala, Ile, Leu, Gly, Nle, ß-Ala, Gaba, or Val; and A⁸ is the D- or L-isomer of Thr, Dip, F.-Phe, p-X-Phe wherein X is H, OH, CH, halo, OCH, NH, CN, or NO,, o-X-Phe wherein X is H, OH, CH, halo, OCH, NH, CN, or NO, m-X-Phe wherein X is H, OH, CH, halo, OCH, NH, CN, or NO, Igl, Tyr(Bzl), or ß-Nal.

30 (currently amended): A compound of claim 29, wherein A^1 is D-B-Nal or D-Phe; A^2 is D-Cpa or D-Phe; A^3 is Phe or Tyr; A^6 is Thr or Val; A^7 is Phe; A^8 is Thr; R_1 is H, CH_3CO , 4-(2-hydroxyethyl)-1-piperazinylacetyl, or 4-(2-hydroxyethyl)-[[]]1-piperizineethanesulfonyl; R_2 is H; and R_3 is NH_2 .

31 (previously presented): A compound of claim 29 of the formula:

Coy et al.

Serial No. :

10/712,081

November 13, 2003

Filed Page

15

H,-D-S-Nal-D-Cpa-Phe-D-Trp-Lys-Val-Phe-Thr-NH,;

H,-D-S-Nal-D-Phe-Tyr-D-Trp-Lys-Thr-Phe-Thr-NH,;

H,-D-Phe-D-Phe-Tyr-D-Trp-Lys-Val-Phe-Thr-NH,;

H,-D-S-Nal-D-Cpa-Tyr-D-Trp-Lys-Val-Phe-Thr-NH,;

 $\label{eq:H2-D-B-Nal-D-Cpa-Tyr-D-Trp-Lys-Val-Phe-B-Nal-NH2} H_2-D-B-Nal-D-Cpa-Tyr-D-Trp-Lys-Val-Phe-B-Nal-NH_2; or a pharmaceutically acceptable salt thereof.$

- 32 (previously presented): A method of promoting the release of growth hormone in a subject in need thereof, which comprises administering to said subject an effective amount of a compound according to claim 18 or a pharmaceutically acceptable salt thereof.
- 33 (previously presented): A method of promoting the release of insulin in a subject in need thereof, which comprises administering to said subject an effective amount of a compound according to claim 18 or a pharmaceutically acceptable salt thereof.
- 34 (previously presented): A method of enhancing wound healing in a subject in need thereof, which comprises administering to said subject an effective amount of a compound according to claim 18 or a pharmaceutically acceptable salt thereof.
- 35 (previously presented): A method of promoting angiogenesis in a subject in need thereof, which comprises administering to said subject an effective amount of a compound

Coy et al.

Serial No. : Filed :

10/712,081 November 13, 2003

Page

16

according to claim 18 or a pharmaceutically acceptable salt thereof.

36 (currently amended): A method of imaging cells having somatostatin receptors which comprises administering to said a subject an effective amount of a compound or a pharmaceutically acceptable salt thereof according to claim 18 having Tyr(I).

37 (previously presented): A method of eliciting an antagonist effect from a somatostatin receptor in a subject, which comprises administering to said subject an effective amount of a compound according to claim 18 or a pharmaceutically acceptable salt thereof.

38 (previously presented): A method of promoting the release of growth hormone in a subject in need thereof, which comprises administering to said subject an effective amount of a compound according to claim 23 or a pharmaceutically acceptable salt thereof.

39 (previously presented): A method of promoting the release of insulin in a subject in need thereof, which comprises administering to said subject an effective amount of a compound according to claim 23 or a pharmaceutically acceptable salt thereof.

40 (previously presented): A method of enhancing wound healing in a subject in need thereof, which comprises

Coy et al.

Serial No. : Filed :

10/712,081 November 13, 2003

Page

17

administering to said subject an effective amount of a compound according to claim 23 or a pharmaceutically acceptable salt thereof.

- 41 (previously presented): A method of promoting angiogenesis in a subject in need thereof, which comprises administering to said subject an effective amount of a compound according to claim 23 or a pharmaceutically acceptable salt thereof.
- 42 (currently amended): A method of imaging cells having somatostatin receptors which comprises administering to said a subject an effective amount of a compound or a pharmaceutically acceptable salt thereof according to claim 23 having Tyr(I).
- 43 (previously presented): A method of eliciting an antagonist effect from a somatostatin receptor in a subject, which comprises administering to said subject an effective amount of a compound according to claim 23 or a pharmaceutically acceptable salt thereof.