

Instituto de Ciências da Saúde - ICS

Klelia.carvalho@docente.unip.br

MATÉRIA

> Matéria: É formada por minúsculas partículas denominadas átomos.

✓ Classificação da Matéria:

Substâncias

Mistura

Processos de Separação de Misturas

O conjunto de processos físicos é denominado de Análise Imediata.

- à necessário saber algumas propriedades da mistura:
 - TF (Ponto de fusão)
 - TE (Ponto de ebulição
 - d (Densidade)

≻Misturas Heterogêneas

√Sólido + Sólido:

Separação magnética

Esse processo pode ser empregado quando um dos componentes da mistura é ferromagnético, ou seja, pode ser atraído por um imã.

Ex.: Mistura de minério de ferro.

Misturas Heterogêneas

√Sólido + Sólido:

Dissolução fracionada

√Sólido + Líquido:

Decantação

✓ Sólido + Líquido:

Filtração

✓ Líquido + Líquido

✓ Líquidos Imiscíveis:

Decantação

✓ Sólido Dissolvido em líquido:

Evaporação

A mistura é deixada em repouso ou aquecida até que o liquido evapore, ocorre a perda do liquido.

✓ Sólido Dissolvido em líquido:

Destilação simples

✓ Sólido Dissolvido em líquido:

Cristalização fracionada

Diferentes substâncias sólidas se dissolvem em quantidades diferentes em um mesmo solvente a uma dada temperatura.

Ao evaporamos uma parte do solvente, a substância sólida menos solúvel cristaliza-se antes das outras, separando-se da mistura.

≻Misturas Homogêneas

✓ Líquido miscíveis

Destilação fracionada

É utilizada para separar líquidos miscíveis entre si.

Liquido TE intermediário

Cromatografia: Em papel

É um processo fisíco-químico que separa componentes orgânicos em mistura em solução que são separados e identificados devido as suas propriedades e funções.

Cromatografia: Gasosa

Relação de Massas E QUANTIDADES

Qual é o número de partículas em uma amostra????

Macro ----- Micro

Como saber quantos grãos de feijão tem em um saco de 5 kg?????

Contamos 100 grãos = 2g

100 grãos _____2g

X grãos_____5000g

X = 250.000 grãos

ou

2,5 x 10

Como saber o número de átomos ou moléculas se isoladamente são tão pequenas para serem pesadas?????

> Padrões de comparação de Massa:

1) Unidade de Massa Atômica (u):

Baseia-se no isótopo do Carbono: 12C

Portanto o Mg é 24 vezes mais pesado do que 1/12 do Carbono.

2) Massa Molecular (MM):

As moléculas são formadas por átomos unidos por ligações covalentes.

Portanto MM: é a soma das massas dos átomos que a constituem.

Exemplos:
$$\checkmark H_2O MA = \begin{bmatrix} H = 1 \times 2 \\ O = 16 \times 1 \end{bmatrix}$$
 MM da $H_2O = 18 \text{ u}$
 $\checkmark C_5H_{10} MA = \begin{bmatrix} C = 12 \times 5 \\ H = 1 \times 10 \end{bmatrix}$ MM da $C_5H_{10} = 70 \text{ u}$

3) Unidade de quantidade de Matéria (Mol):

É a quantidade de matéria que contém 6 x 10²³

1 mol de átomos = **6,02 x 10**²³ **átomos**

Ou seja:

1 mol de moléculas = 6,02 x 10²³ moléculas

1 mol de íons = $6,02 \times 10^{23}$ íons

1 mol de elétrons = 6,02 x 10²³ elétrons

Exemplos:

$$\checkmark$$
 H₂O MA
$$= 1 \times 2$$

$$O = 16 \times 1$$
MM da H₂O = 18 u
$$= 16 \times 1$$
1molécula de H₂O = 18u

 $6,02 \times 10^{23} \text{ moléculas} = 1 \text{mol}$

Portanto: 1mol de H2O = 18g

Exemplos:

✓ **Mg:**
$$MA - Mg = 24$$
 MM da Mg = 24 u

1 átomo de Mg = 24u

1 átomo de Mg = $6,02 \times 10^{23}$ átomos

Portanto: 1mol de Mg = 24g

4) Massa Molar (M): É a massa que contém 6,02 x 10²³ entidades.

A unidade é g/mol

Mercúrio (Hg) M = 201u

4) Massa Molar (M): É a massa que contém 6,x 10²³ entidades.

A unidade é g/mol

Mercúrio (Hg) M = 201u

Cloreto de sódio (NaCl) M = 58,5u

Cloreto de sódio (NaCl) M = 58,5u

Água(H_2O) M = 18u

Água(H_2O) M = 18u

Íon sulfato (SO_4^{-2}) M = 96u

Íon sulfato (SO_4^{-2}) M = 96u

Lorenzo Romano Amedeo Carlo Avogadro (1776-1856)

Uma amostra de um elemento, com massa em gramas numericamente igual a sua massa atômica (MA), apresenta sempre o mesmo número de átomos (N).

 $N = 6,022 \times 10^{23}$ ou $6,02 \times 10^{23}$ ou $6,0 \times 10^{23}$

Em uma massa em gramas **numericamente** igual a sua massa atômica (MA), para qualquer elemento, existem $6,02 \times 10^{23}$ átomos.

Em uma massa em gramas **numericamente** igual a sua massa molecular (MM), para qualquer substância molecular, existem $6,02 \times 10^{23}$ átomos.

Calculando:

✓ Qual o no de mol de NH3 produzido na reação de 5 mol de gás N2 com a quantidade suficiente de H2?

Então:

$$1 \text{ mol} \longrightarrow 2 \text{ mol}$$
 $5 \text{ mol} \longrightarrow X$

$$X = \frac{5 \text{ mol x 2 mol}}{1 \text{ mol}} = 10 \text{ mol de NH}_3$$

✓ Determine a massa de NH3 produzida na reação de 5 mol de N2 com a quantidade suficiente de H2?

Massa Molar NH₃ =17g/mol

$$1N_2 + 3H_2 \longrightarrow 2NH_3$$

$$X = \frac{5 \text{ mol x } 2 \text{ x } 17g}{1 \text{ mol}} = 170 \text{ g de NH}_3$$

✓ Calcule a massa de NH3 produzida na reação de 140g de N2 com a quantidade suficiente de H2?

Massa Molar NH₃ = 17g/mol

$$1N2 + 3H2 \longrightarrow 2NH3$$

$$X = 140g \times 2 \times 17g/mol$$

 $28 g/mol = 170 g de NH_3$

Huilo