Toddler Geometry (Problem set)

Jes Modian

March 19, 2023

Abstract

Geometry problems are harder than they seem.

Contents

1	$\operatorname{Lin}\epsilon$	nes, angles and shapes		
	1.7	Area, perimeter and hypotenuse	2	
	1.8	Proportions and similar triangles	2	
	1.10	Four centres of triangle	11	
	1.11	Area and perimeter of circle	13	

1 Lines, angles and shapes

1.7 Area, perimeter and hypotenuse

Problem 1. In the figure, ABCD is a trapezium with AB//DC and $\angle ABD = 90^{\circ}$. If AB = 18 cm, BC = 26 cm and AD = 30 cm, find the area of the trapezium ABCD.

(Difficulty: 3) (2019 DSE Paper 2 Q19)

Solution 1. Note that $\angle BDC = \angle ABD = 90^{\circ}$ (alt. $\angle s$, AB//DC).

By pyth. theorem, $BD = \sqrt{30^2 - 18^2} = 24$, and $DC = \sqrt{26^2 - 24^2} = 10$.

By area of trapezium formula, area of $ABCD = \frac{(18+10)24}{2} = \boxed{336 \text{ cm}^2}$.

1.8 Proportions and similar triangles

Problem 2. In the figure, ABCD is a square. E is a point lying on AB produced such that BE=4 cm . BC and DE intersect at the point F . If EF=5 cm , then DF=?

2

(Difficulty: 3) (2018 DSE Paper 2 Q20)

Solution 2. Let AB = AD = x. Note that $FB = \sqrt{5^2 - 4^2} = 3$ (pyth. theorem).

Note that $\triangle EBF \sim \triangle EAD$ (AA). So

$$\frac{FB}{AD} = \frac{EB}{EA} \qquad \text{(corr. sides, } \sim \triangle \text{s)}$$

$$\frac{3}{x} = \frac{4}{4+x}$$

$$12 + 3x = 4x$$

$$x = 12$$

Thus, $DE = \sqrt{(4+12)^2 + 12^2} = 20$ (pyth. theorem), and $DF = 20 - 5 = \boxed{15 \text{ cm}}$.

Problem 3. In the figure, M and N are points lying on PQ and QR respectively such that PM: MQ=5:6 and QN:NR=3:4. If the area of the quadrilateral MNRP is 59 cm², then what is the area of $\triangle MNQ$?

(Difficulty: 4) (2022 DSE Paper 2 Q17)

Solution 3. Let PM = 5m, MQ = 6m and QN = 3k, NR = 4k.

By sine formula of area of \triangle , note that area of $\triangle MQN = \frac{1}{2}(6m)(3k)\sin\theta = 9mk\sin\theta$.

and area of $\triangle PQR = \frac{1}{2}(11m)(7k)\sin\theta = 38.5mk\sin\theta$.

We have

area of
$$\triangle PQR$$
 – area of $\triangle MQN=38.5mk\sin\theta-9mk\sin\theta$
$$59=29.5mk\sin\theta$$

$$mk\sin\theta=2$$

So area of $\triangle PQR = 9(2) = \boxed{18 \, \mathrm{cm}^2}$.

Problem 4. In the figure, the perimeter of the rectangle ABCD is 170 cm . It is given that EBF is a straight line and $\angle AEB = \angle BFC = 90^{\circ}$. If AE = 24 cm and BC = 34 cm , then EF = ?

(Difficulty: 3) (2022 DSE Paper 2 Q18)

Solution 4. Note that $\angle ABC = 90^{\circ}$ (definition of rectangle).

Note that AB = 170/2 - 34 = 51 (perimeter of rectangle).

Let $\angle EAB = \alpha$. Note that $\angle ABE = 90^\circ - \alpha$ (\angle sum of \triangle) and $\angle CBE = 180^\circ - 90^\circ - (90^\circ - \alpha) = \alpha$. Note that also, $\angle AEB = \angle BFC = 90^\circ$. Thus $\triangle AEB \sim \triangle BFC$ (AA). So

$$\frac{BF}{AE} = \frac{BC}{AB}$$
 (corr. sides, $\sim \triangle$ s)
$$\frac{BF}{24} = \frac{34}{51}$$

$$BF = 16$$

Also, $EB = \sqrt{51^2 - 24^2} = 45$ (pyth. theorem), so $EF = 45 + 16 = \boxed{61 \text{ cm}}$.

Problem 5. In the figure, ABCD is a square. Let E and F be points lying on AB and BC respectively such that AE = 3BE and $\angle DEF = 90^{\circ}$. If the area of $\triangle DEF$ is 25 cm², then what is the area of $\triangle CDF$?

(Difficulty: 4) (2021 DSE Paper 2 Q20)

Solution 5. Let AE=3k and BE=k . Then the side length of the square is 4k .

Note that $\triangle DAE \sim \triangle EBF$ (AA), so

$$\frac{FB}{EB} = \frac{AE}{AD}$$
 (corr. sides, $\sim \triangle s$)
$$\frac{FB}{k} = \frac{3k}{4k}$$

$$FB = 0.75k$$

Then CF = 4k - 0.75k = 3.25k.

By pyth. theorem, $DE = \sqrt{(3k)^2 + (4k)^2} = 5k$ and $EF = \sqrt{k^2 + (0.75k)^2} = 1.25k$.

Consider the area of $\triangle DEF$:

$$\frac{1}{2}(5k)(1.25k) = 25$$
 (area of \triangle)
 $k^2 = 8$

area of
$$\triangle CDF = \frac{1}{2} (4k)(3.25k)$$
 (area of \triangle)
= $6.5(8)$
= $\boxed{52 \text{ cm}^2}$

Problem 6. In the figure, ABCD is a parallelogram. Let E be a point lying on AD such that AE:ED=2:5. CB is produced to the point F such that BF=DE. Denote the point of intersection of AB and EF by G. It is given that BG and CG intersect at point H. If the area of $\triangle AEG$ is 48 cm^2 , then what is the area of $\triangle CDH$?

(Difficulty: 4) (2020 DSE Paper 2 Q18)

Solution 6. Let BF = DE = 5k and AE = 2k. Then CB = 7k (opp. \angle s of //gram).

Note that $\angle EAG = \angle FBG$ (alt. \angle s , EA//BF), $\angle AGE = \angle FGB$ (vert. opp. \angle s). So $\triangle AGE \sim \triangle BGE$ (AA).

So area of $\triangle BGF = 48(\frac{5}{2})^2 = 300$ (corr. areas, $\sim \triangle s$).

Also, $\frac{AG}{GB}=\frac{EA}{BF}=\frac{2}{5}$ (corr. sides, $\sim \triangle$ s). Let AG=2m and GB=5m. Then DC=AB=7m (opp. sides of //gram).

In $\triangle DCB$ and $\triangle GBF$, we have $\angle DCB = \angle GBF$ (corr. \angle s, DC//AB), $\frac{DC}{GB} = \frac{CB}{BF} = \frac{7}{5}$. so $\triangle DCB \sim \triangle GBF$ (ratio of 2 sides, inc. \angle)

So area of $\triangle DCB = 300 \left(\frac{7}{5}\right)^2 = 588$ (corr. areas, $\sim \triangle s$).

Note that $\triangle DCH \sim \triangle GBH$ (AA). So DH: HB = DC: GB = 7:5.

By 'bases prop. to areas of \triangle s', we have area of $\triangle CDH = \text{area of } \triangle DCB \cdot (\frac{7}{7+5}) = 588(\frac{7}{12}) = \boxed{343 \text{ cm}^2}$.

Problem 7. In the figure, ABCD is a parallelogram and AEFG is a square. It is given that BE: EF: FC = 2:7:3. BD cuts AE and FG at the points X and Y respectively. If the area of $\triangle ABX$ is 24 cm^2 , then what is the area of the quadrilateral CDYF?

(Difficulty: 4) (2019 DSE Paper 2 Q16)

Solution 7. Let BF = 2k, EF = 7k, FC = 3k. Then DA = CB = 12k (opp. sides of //gram).

Note that EA = GA = FE = 7k since AEFG is a square.

Note that $\triangle BEX \sim DAX$ (AA) . So EX:AX=EB:DA=2:12=1:6 . This means EX=k and AX=6k .

By 'bases prop. to areas of \triangle s', area of $\triangle BEX = 24(\frac{1}{6}) = 4$, and area of $\triangle AEB = 24 + 4 = 28$.

Note that $\triangle AEB$ and $\triangle DCB$ have the same height, so 'bases prop. to areas of \triangle s' applies to them. We have area of $\triangle DCB = 28(\frac{12}{2}) = 168$.

Note that $\triangle BFY \sim \triangle BEX$ (AA), so area of $\triangle BFY = \text{area of } \triangle BEX \cdot (\frac{BF}{BE})^2 = 4(\frac{9}{2})^2 = 81$

So area of CDYF = area of $\triangle DCB$ - area of $\triangle BFY$ = $168 - 81 = 87 \text{ cm}^2$.

Problem 8. In the figure, ABC is an isosceles triangle with AB = AC, D and E are points lying on AB such that AD = DE = 2EB while F is a point lying on AC such that DF//EC. If $\angle ADF = 90^{\circ}$ and CE = 60 cm, then EF = ?

(Difficulty: 4) (2019 DSE Paper 2 Q18)

Solution 8. Let AD = DE = 2k, EB = k. Then AC = 5k.

Note that $\angle AEC = 90^{\circ}$ (alt. \angle s , DF//EC).

Since AD=DE and DF//EC , we have AF=FC (intercept theorem). So AF=FC=2.5k

In $\triangle AEC$, by pyth. theorem, $(4k)^2 + 60^2 = (5k)^2$, so k = 20 .

Note that AC is the diameter of the circumcircle of $\triangle AEC$ (converse of pyth. theorem), so F is the centre since it is the mid-point of AC. This means $EF = AF = FC = 2.5k = 2.5(20) = \boxed{50 \text{ cm}}$.

Problem 9. In the figure, ABCD is a parallelogram. E is a point lying on BC such that BE: EC = 5:3. AE and BD intersect at the point F. If the area of $\triangle ABF$ is $120~{\rm cm}^2$, then what is the area of the quadrilateral CDFE?

(Difficulty: 4) (2018 DSE Paper 2 Q16)

Solution 9. Let BE = 5k, EC = 3k. Then AD = 8k (opp. \angle s, AD//BC).

Note that $\triangle FBE \sim \triangle FDA$ (AA), so we can let AF = 8m and FE = 5m.

Then area of $\triangle BFE=120(\frac{5}{8})=75$ (bases prop. to areas of $\triangle s$) , which means area of $\triangle ABE=120+75=195$.

By 'bases prop. to areas of $\triangle {\bf s}'$, area of $\triangle DBC=195(\frac{BC}{BE})=195(\frac{8}{5})=312$.

So area of $CDFE = 312 - 75 = 237 \text{ cm}^2$

Problem 10. In the figure, ABCD and BEDF are parallelograms. E is a point lying on BC such that BE: EC = 2:3. AC cuts BF and DE at G and H respectively. If the area of $\triangle ABG$ is 135 cm^2 , then what is the area of the quadrilateral DFGH?

(Difficulty: 4) (2017 DSE Paper 2 Q16)

Solution 10. Let BE = 2k, EC = 3k. Then DF = BE = 2k and DA = CB = 5k (opp. sides of //gram), so FA = 3k.

Note that $\triangle AGF \sim \triangle CGB$ (AA) . Let FG = 3m and GB = 5m .

Then area of $\triangle AFG = 135(\frac{3}{5}) = 81$ (bases prop. to areas of $\triangle s$).

Note that $\triangle AFG \sim \triangle ADH$ (AA). So area of $\triangle ADH = 81(\frac{5}{3})^2 = 225$ (corr. areas, $\sim \triangle s$), so area of $DFGH = 225 - 81 = \boxed{144 \text{ cm}^2}$.

Problem 11. In the figure, ABC is an equilateral triangle of side 16 cm . D and E are points lying on AB and BC respectively such that AD=4 cm and $\angle CDE=60^\circ$. Find CE .

(Difficulty: 4) (2017 DSE Paper 2 Q17)

Solution 11. Note that DB = 16 - 4 = 12.

Note that $\triangle CDB = \angle ACD + 60^{\circ}$ (ext. \angle of \triangle), and $\angle CDB = \angle BDE + 60^{\circ}$ (angle addition postulate). So $\angle ACD = \angle BDE$.

In $\triangle CAD$ and $\triangle DBE$,

$$\angle ACD = \angle BDE$$
 (shown above)
 $\angle CAD = \angle DBE = 60^{\circ}$ (prop. of equi. \triangle)
 $\therefore \triangle CAD \sim \triangle DBE$ (AA)
 $\therefore \frac{EB}{DB} = \frac{AD}{CA}$ (corr. sides, $\sim \triangle$ s)
 $\therefore \frac{EB}{12} = \frac{4}{16}$
 $EB = 3$
 $CE = 16 - 3 = \boxed{13 \text{ cm}}$

1.10 Four centres of triangle

Problem 12. Point D lies on side BC of $\triangle ABC$ so that AD bisects $\angle BAC$. The perpendicular bisector of AD intersects the bisectors of $\triangle ABC$ and $\triangle ACB$ in points E and F, respectively. Given that AB=4, BC=5, and CA=6, find the area of $\triangle AEF$.

(Note: No figure is provided for this problem.)

(Difficulty: 7 [Insane]) (2020 AIME I Problem 13)

Solution 12. Let M be the mid-point of AD , and I be the incentre of $\triangle ABC$.

Note that I is below M on AD by 'prop. of \angle bisector of \triangle '. This means E is at the right of M, and F is at the left of M. (Whether E lies outside the triangle is not relevant, even though it does.)

By angle bisector theorem in $\triangle ABC$, we have BD:DC=AB:AC=4:6 .

So
$$BD = 5 \cdot (\frac{4}{4+6}) = 2$$
 , and $DC = 5-2 = 3$.

By 'length of \angle bisector of \triangle ' $(\triangle ABC)$, we have $AD = \sqrt{(4)(6) - (2)(3)} = \sqrt{18} = 3\sqrt{2}$.

Since M is the mid-point of AD , we have $AM=MD=\frac{3\sqrt{2}}{2}$.

By angle bisector theorem in $\triangle ABD$, we have ID:IA=2:4=1:2 . So $ID=\frac{1}{3}AD=\sqrt{2}$

Thus
$$IM = MD - ID = \frac{3\sqrt{2}}{2} - \sqrt{2} = \frac{\sqrt{2}}{2}$$
.

Let $\angle A=2x$, $\angle B=2y$ and $\angle C=2z$. Then $x+y+z=90^\circ$ (\angle sum of \triangle)

Note that $\angle CID = x + z$ (ext. \angle of $\triangle AIC$) = $90^{\circ} - y$ (since $x + y + z = 90^{\circ}$).

So $\angle FIM = \angle CID = 90^{\circ} - y$ (vert. opp. \angle s), so $\angle EFI = 90^{\circ} - (90^{\circ} - y) = y$ (\angle sum of \triangle).

In $\triangle IFE$ and $\triangle IBC$, $\angle EFI=\angle CBI=y$, $\angle EIF=\angle CIB$ (vert. opp. \angle s). Thus $\triangle IFE\sim\triangle IBC$ (AA).

Draw $IN \perp BC$. Note that IN is the inradius of $\triangle ABC$ (prop. of incentre).

Let $s = \frac{4+5+6}{2} = \frac{15}{2}$. Then by in radius formula, $IN = \sqrt{\frac{(s-4)(s-5)(s-6)}{s}} = \frac{\sqrt{7}}{2}$.

Note that in $\triangle IFE$ and $\triangle IBC$,

$$\begin{split} \frac{FE}{BC} &= \frac{MI}{IN} & \text{ (heights prop. to sides of } \sim \triangle \text{s)} \\ \frac{FE}{5} &= \frac{\frac{\sqrt{2}}{2}}{\frac{\sqrt{7}}{2}} \\ FE &= 5 \cdot \sqrt{\frac{2}{7}} \end{split}$$

Area of
$$\triangle AEF = \frac{1}{2}AM \cdot FE = \frac{1}{2}(\frac{3\sqrt{2}}{2})(5\sqrt{\frac{2}{7}}) = \boxed{\frac{15\sqrt{7}}{14}}$$
.

1.11 Area and perimeter of circle

Problem 13. In the figure, O is the centre of the sector OABCD. AD and OC are perpendicular to each other and intersect at the point E. F is a point lying on AD such that BF is perpendicular to AD. If AF=9 cm , DF=39 cm and OE=18 cm , then what is the area of the sector OBC?

(Difficulty: 4) (2018 DSE Paper 2 Q17)

Solution 13. We have AD=39+9=48 . Note that DE=EA (line from centre \bot chord bisects chord).

This means DE=EA=48/2=24 , and EF=24-9=15 .

By pyth. theorem in $\triangle OEA$, $OA = \sqrt{18^2 + 24^2} = 30$. So OB = OA = 30 (radii).

Draw $BG \perp OC$.

Then OG = 15 since GBFE is a rectangle. Note that $\angle BOG = \arcsin(\frac{15}{30}) = 30^{\circ}$.

So, area of sector
$$OBC = \pi(30^2)(\frac{30^\circ}{360^\circ}) = \boxed{75\pi \text{ cm}^2}$$

References