The Perils of Bilateral Sovereign Debt

Francisco Roldán IMF César Sosa-Padilla Notre Dame & NBER

Fiscal Policy and Sovereign Debt Universidad de Chile, June 2025

The views expressed herein are those of the authors and should not be attributed to the IMF, its Executive Board, or its management.

Official Sovereign Debt

- · A large share of sovereign borrowing takes the form of official debt
 - ... Multilaterals, development banks, other governments
- · Emergence of new bilateral creditors outside the Paris Club
 - ... with claims to seniority and sometimes opaque terms

Questions

- How does the presence of a large official lender affect sovereign debt markets?
- What are the welfare implications for borrowing governments?

Official Sovereign Debt

- · A large share of sovereign borrowing takes the form of official debt
 - ... Multilaterals, development banks, other governments
- · Emergence of new bilateral creditors outside the Paris Club
 - ... with claims to seniority and sometimes opaque terms

Questions

- · How does the presence of a large official lender affect sovereign debt markets?
- · What are the welfare implications for borrowing governments?

Evaluating Large Official Creditors

Quantitative sovereign debt model with

- Competitive creditors in private markets (bondholders)
- Large bilateral lender
 - 1. Superior enforcement technology
 - Bargained borrowing terms (price and quantity)
 - 3. Short-maturity loans
- Prime example: Central Bank swap lines (Horn et al., 2021), also deposits, IMF programs...
- Focus on the interaction between both funding sources
 - ... presence of bilateral lender affects government behavior in debt markets
 - ... outcomes in debt markets affect threat points in bargaining

Relational Overborrowing

Main findings

- · Bilateral loans small relative to debt but significant effects
 - ... provide funding when other sources dry up (e.g. because of default risk)
 - ... can also increase risk-taking
- · Bilateral loans induce relational overborrowing
 - · Surplus requires spreads spreads require risk
- Welfare losses from presence of bilateral creditor (for realistic bargaining weights)
- Relational overborrowing explained by elasticity of bilateral terms to market spreads
 - ... remains present in a model without bargaining
 - ... model with exogenous bilateral terms useful for optimal design

Relational Overborrowing

Main findings

- · Bilateral loans small relative to debt but significant effects
 - ... provide funding when other sources dry up (e.g. because of default risk)
 - ... can also increase risk-taking
- Bilateral loans induce relational overborrowing
 - · Surplus requires spreads spreads require risk
- Welfare losses from presence of bilateral creditor (for realistic bargaining weights)
- · Relational overborrowing explained by elasticity of bilateral terms to market spreads
 - ... remains present in a model without bargaining
 - ... model with exogenous bilateral terms useful for **optimal design**

Literature

- · Sovereign debt/default with interactions from 'official' debt
 - ... senior debt (Hatchondo, Martinez, & Onder 2017), senior debt with conditionality (Boz 2011, Fink & Scholl 2016), bailout agencies (Corsetti, Guimarães & Roubini 2006, Kirsch & Rühmkorf 2017, Roch & Uhlig 2018), official debt (Arellano & Barreto 2024, Liu, Liu, & Yue 2025)
- Data on new official creditors
 - ... Horn, Reinhart & Trebesch 2021a, 2021b, Gelpern et al. 2021, Horn, Parks, Reinhart & Trebesch 2023
- · Central Bank swap lines
 - ... among advanced economies (Bahaj & Reis 2021, Cesa-Bianchi, Eguren-Martin, & Ferrero 2022), data for emerging-market borrowers (Perks, Rao, Shin, & Tokuoka 2021)

Environment

The government of a small open economy borrows from a monopolist and from markets

- Income $y(z_t)$ follows an AR(1) process in logs
 - ... Only one good, representative risk-averse household, expected utility
- · Renegotiate the loan m each period
 - ... Involves a current transfer x and a new size m'
 - ... Loan is non-defaultable \implies Repaying m is the natural threat point

Environment

The government of a small open economy borrows from a monopolist and from markets

- · Income $y(z_t)$ follows an AR(1) process in logs
 - ... Only one good, representative risk-averse household, expected utility
- · Renegotiate the loan m each period
 - ... Involves a current transfer x and a new size m'
 - \dots Loan is non-defaultable \implies Repaying m is the natural threat point
- · Should expect

- $\Rightarrow x = \frac{1}{1+r}m' m$
- ... Implicit interest rate *r* to vary over time
- ... Interest rate to reflect market power
- ... Interest rate to reflect outside options

5

Timeline of Events

Borrowing from Markets

Debt is a geometrically-decaying coupon

... for each unit, get
$$q$$
, pay κ , $(1-\rho)\kappa$, ... $(1-\rho)^{s-1}\kappa$

· Government enters first stage owing b in debt, m in swaps, income state z

$$v(b, m, z) = \max \{v_R(b, m, z) + \epsilon_R, v_D(m, z) + \epsilon_D\}$$

$$v_R(b, m, z) = \max_{b'} w_R(b', b, m, z)$$

· Lenders in competitive markets need to anticipate interactions with the monopolist

$$q(b', b, m, z) = \beta_{L} \mathbb{E} \left[(1 - 1_{\mathcal{D}}(b', m', z')) \left(\kappa + (1 - \rho)q(b'', b', m', z') \right) \mid z \right]$$

$$m' = m'(b', b, m, z)$$

$$b'' = b'(b', m', z')$$

Borrowing from Markets

Debt is a geometrically-decaying coupon

... for each unit, get q, pay
$$\kappa$$
, $(1-\rho)\kappa$, ... $(1-\rho)^{s-1}\kappa$

· Government enters first stage owing b in debt, m in swaps, income state z

$$v(b, m, z) = \max \{v_R(b, m, z) + \epsilon_R, v_D(m, z) + \epsilon_D\}$$

$$v_R(b, m, z) = \max_{b'} w_R(b', b, m, z)$$

 \cdot Lenders in competitive markets need to anticipate interactions with the monopolist

$$q(b', b, m, z) = \beta_{L} \mathbb{E} \left[(1 - 1_{\mathcal{D}}(b', m', z')) (\kappa + (1 - \rho)q(b'', b', m', z')) \mid z \right]$$

$$m' = m'(b', b, m, z)$$

$$b'' = b'(b', m', z')$$

Borrowing from Markets

Debt is a geometrically-decaying coupon

... for each unit, get
$$q$$
, pay κ , $(1-\rho)\kappa$, ... $(1-\rho)^{s-1}\kappa$

· Government enters first stage owing b in debt, m in swaps, income state z

$$v(b, m, z) = \max \{v_R(b, m, z) + \epsilon_R, v_D(m, z) + \epsilon_D\}$$

$$v_R(b, m, z) = \max_{b'} w_R(b', b, m, z)$$

 \cdot Lenders in competitive markets need to anticipate interactions with the monopolist

$$q(b',b,m,z) = \beta_L \mathbb{E}\left[(1 - 1_D(b',m',z')) \left(\kappa + (1 - \rho)q(b'',b',m',z') \right) \mid z \right]$$

$$m' = m (b,m,z)$$
same sdf as monopolist
$$b'' = b'(b',m',z')$$

Bargaining Stage with Monopolist

· At state z, owing debt b bonds and m on the swap and having issued b'

$$\max_{x,m} \mathcal{L}_R(b',x,m,m',z)^{\theta} \times \mathcal{B}_R(b',b,x,m,m',z)^{1-\theta}$$
Lender surplus

Lender's surplus

$$\mathcal{L}_{R}(b',x,m,m',z) = \underbrace{(a-x+\beta_{L}\mathbb{E}\left[h(b',m',z')\mid z\right])}_{\text{agreement}} - \underbrace{(a+m+\beta_{L}\mathbb{E}\left[h(b',0,z')\mid z\right])}_{\text{threat point}}$$

$$\mathcal{B}_{R}(b',b,x,m,m',z) = \underbrace{u(y(z) + B(b',b,m,z) + x) + \beta \mathbb{E}\left[v(b',m',z') \mid z\right]}_{\text{agreement}} - \underbrace{\left(u(y(z) + B(b',b,m,z) - m) + \beta \mathbb{E}\left[v(b',0,z') \mid z\right]\right)}_{\text{threat point}}$$

with
$$B(\boldsymbol{b}',\boldsymbol{b},m,z)=q(\boldsymbol{b}',\boldsymbol{b},m,z)(\boldsymbol{b}'-(1-
ho)\boldsymbol{b})-\kappa \boldsymbol{b}$$

Bargaining Stage with Monopolist

· At state z, owing debt b bonds and m on the swap and having issued b'

$$\max_{x,m} \mathcal{L}_R(b',x,m,m',z)^{\theta} \times \mathcal{B}_R(b',b,x,m,m',z)^{1-\theta}$$

Lender's surplus

$$\mathcal{L}_{R}(b',x,m,m',z) = \underbrace{(a-x+\beta_{L}\mathbb{E}\left[h(b',m',z')\mid z\right])}_{\text{agreement}} - \underbrace{(a+m+\beta_{L}\mathbb{E}\left[h(b',0,z')\mid z\right])}_{\text{threat point}}$$

$$\mathcal{B}_{R}(b',b,x,m,m',z) = \underbrace{u(y(z) + B(b',b,m,z) + x) + \beta \mathbb{E}\left[v(b',m',z') \mid z\right]}_{\text{agreement}} - \underbrace{\left(u(y(z) + B(b',b,m,z) - m) + \beta \mathbb{E}\left[v(b',0,z') \mid z\right]\right)}_{\text{threat point}}$$

with
$$B(\boldsymbol{b}',\boldsymbol{b},m,z)=q(\boldsymbol{b}',\boldsymbol{b},m,z)(\boldsymbol{b}'-(1-\rho)\boldsymbol{b})-\kappa\boldsymbol{b}$$

• At state z, owing debt b bonds and m on the swap and having issued b'

$$\max_{x,m} \mathcal{L}_{R}(b',x,m,m',z)^{\theta} \times \mathcal{B}_{R}(b',b,x,m,m',z)^{1-\theta}$$

Lender's surplus

$$\mathcal{L}_{R}(b',x,m,m',z) = \underbrace{(a-x+\beta_{L}\mathbb{E}\left[h(b',m',z')\mid z\right])}_{\text{agreement}} - \underbrace{(a+m+\beta_{L}\mathbb{E}\left[h(b',0,z')\mid z\right])}_{\text{threat point}}$$

$$\mathcal{B}_{R}(b',b,x,m,m',z) = \underbrace{u\big(y(z) + B(b',b,m,z) + x\big) + \beta \mathbb{E}\left[v(b',m',z') \mid z\right]}_{\text{agreement}} - \underbrace{\big(u\big(y(z) + B(b',b,m,z) - m\big) + \beta \mathbb{E}\left[v(b',0,z') \mid z\right]\big)}_{\text{threat point}}$$

with
$$B(\mathbf{b}', \mathbf{b}, m, z) = q(\mathbf{b}', \mathbf{b}, m, z)(\mathbf{b}' - (1 - \rho)\mathbf{b}) - \kappa \mathbf{b}$$

Quantitative Effects of Bilateral Loans

Calibration

· Calibrate to Argentina with only market (as in Roch & Roldán, 2023)

	Parameter	Value
Sovereign's discount factor	β	0.9504
Sovereign's risk aversion	γ	2
Preference shock scale parameter	χ	0.02
Lender's bargaining power	θ	0.5
Risk-free interest rate	r	0.01
Duration of debt	ho	0.05
Income autocorrelation coefficient	$ ho_{z}$	0.9484
Standard deviation of y_t	$\sigma_{\it z}$	0.02
Reentry probability	ψ	0.0385
Default cost: linear	d_0	-0.24
Default cost: quadratic	d_1	0.3

Calibration

· Calibrate to Argentina with only market (as in Roch & Roldán, 2023)

	Parameter	Value
Sovereign's discount factor	β	0.9504
Sovereign's risk aversion	γ	2
Preference shock scale parameter	χ	0.02
Lender's bargaining power	heta	0.5
Risk-free interest rate	r	0.01
Duration of debt	ho	0.05
Income autocorrelation coefficient	$ ho_{z}$	0.9484
Standard deviation of y_t	$\sigma_{\it z}$	0.02
Reentry probability	ψ	0.0385
Default cost: linear	d_0	-0.24
Default cost: quadratic	d_1	0.3

How Do Bilateral Loans Affect Equilibrium?

	Only market	Both, $\theta = 0.25$	Both, $\theta = 0.5$
Avg spread (bps)	804	1,841	2,396
Std spread (bps)	470	1,099	1,541
$\sigma(c)/\sigma(y)$ (%)	111	111	110
Debt to GDP (%)	21.4	20.8	20.2
Loan to GDP (%)	0	3.74	3.32
Corr. loan & spreads (%)	-	53.8	62.2
Default frequency (%)	6.53	13.0	14.7
Welfare gains (rep)	-	-0.082%	-0.41%

· Loans shoot up before and during defaults

Also consider Limited versions: $m' \leq \Gamma(m)$ while in default

· Loans shoot up before and during defaults

r Also consider Limited versions: $m' \leq \Gamma(m)$ while in default

· Loans shoot up before and during defaults

· Also consider Limited versions: $m' \leq \Gamma(m)$ while in default

Limiting Loans in Default

· **Limited**: entire loan must be repaid while in default $\Gamma(m) = 0$

	Only market	Unrestricted, $\theta = $ 0.5	$\begin{array}{l} \textbf{Limited,} \\ \theta = \texttt{0.5} \end{array}$
Avg spread (bps)	804	2,396	1,216
Std spread (bps)	470	1,541	779
$\sigma(c)/\sigma(y)$ (%)	111	110	113
Debt to GDP (%)	21.4	20.2	21.7
Loan to GDP (%)	0	3.32	1.05
Corr. loan & spreads (%)	_	62.2	69.4
Default frequency (%)	6.53	14.7	9.34
Welfare gains (rep)	-	-0.41%	-0.084%

Default Barriers with Loans

· Unrestricted: default barrier moves inward, Limited: marginal impact

Default Barriers with Loans

· Unrestricted: default barrier moves inward, Limited: marginal impact

If **Limited** loans help repay the debt,

Why are there more defaults with loans?

Debt Levels with Loans

Debt Levels with Loans

Debt Levels with Loans

Monopolist's Profits

Monopolist's profits increasing in debt (cond. on repayment) – surplus requires spreads > 0

Risk-taking Incentives

Surplus on loan requires spreads > 0: monopolist provides incentives for risk taking

Relational Overborrowing

$$\mathcal{B}_{R}(\boldsymbol{b'}, b, x, m, m', z) = u(y(z) + B(\boldsymbol{b'}, b, m, z) + \boldsymbol{x}) + \beta \mathbb{E}\left[v(\boldsymbol{b'}, \boldsymbol{m'}, z') \mid z\right] - \left(u(y(z) + B(\boldsymbol{b'}, b, m, z) - \boldsymbol{m}\right) + \beta \mathbb{E}\left[v(\boldsymbol{b'}, \boldsymbol{0}, z') \mid z\right]$$

- Revenues from debt issuance B(b', b, m, z) modulate the value of the threat point
 - After large revenues (high q, high b'), gov't flush with cash, strong in bargaining
 - · After bad issuance (low q or low b'), gov't weak in bargaining
- Strongly negative cross-elasticity of bilateral terms to market debt
 goes against market discipline of spreads

$$u'(c)\left(q+\frac{\partial q}{\partial b'}+\frac{\partial \frac{1}{1+r_b}}{\partial b'}m'+\frac{1}{1+r_b}\frac{\partial m'}{\partial b'}\right)=\beta\mathbb{E}\left[u'(c)(1-\mathbb{I}_{\mathcal{D}})\left(\kappa+(1-\delta)q'+\ldots\right)\right]$$

$$\mathcal{B}_{R}(\boldsymbol{b'}, b, x, m, m', z) = u(y(z) + B(\boldsymbol{b'}, b, m, z) + \boldsymbol{x}) + \beta \mathbb{E}\left[v(\boldsymbol{b'}, \boldsymbol{m'}, z') \mid z\right] - \left(u(y(z) + B(\boldsymbol{b'}, b, m, z) - \boldsymbol{m}\right) + \beta \mathbb{E}\left[v(\boldsymbol{b'}, \boldsymbol{0}, z') \mid z\right]$$

- Revenues from debt issuance B(b', b, m, z) modulate the value of the threat point
 - After large revenues (high q, high b'), gov't flush with cash, strong in bargaining
 - After bad issuance (low q or low b'), gov't weak in bargaining
- Strongly negative cross-elasticity of bilateral terms to market debt
 - \longrightarrow goes against market discipline of spreads

$$u'(c)\left(q+\frac{\partial q}{\partial b'}+\frac{\partial \frac{1}{1+r_b}}{\partial b'}m'+\frac{1}{1+r_b}\frac{\partial m'}{\partial b'}\right)=\beta\mathbb{E}\left[u'(c)(1-\mathbb{1}_{\mathcal{D}})\left(\kappa+(1-\delta)q'+\ldots\right)\right]$$

Welfare Effects of Bilateral Loans

Limited ≽ Unrestricted, but...

Programming the Large Lender

Possible rules

- · Bargaining over bilateral terms endogenously leads to punishment for deleveraging
- Explore interest rate rules of the form

$$r(b', m') = \max\{r, \alpha_0 + \alpha_b b' + \alpha_m m'\}$$

- · Two versions
 - Risk-inducing rule: $\alpha_0 > 0, \alpha_b < 0, \alpha_m = 0$
 - · Size-dependent (similar to surcharges): $\alpha_{\rm 0}>{\rm 0}, \alpha_{\rm b}={\rm 0}, \alpha_{\rm m}>{\rm 0}$

Equilibrium with Exogenous Rules

	Only market	Size dependent r	Risk inducing <i>r</i>	Limited, $\theta = 0.5$
Avg spread (bps)	802	635	1,118	1,211
Std spread (bps)	454	241	1,051	753
$\sigma(c)/\sigma(y)$ (%)	112	120	118	113
Debt to GDP (%)	21.5	25.8	21.9	21.8
Loan to GDP (%)	0	2.32	1.37	1.05
Loan spread (bps)	-	836	2,267	408
Corr. loan & spreads (%)	-	50.2	43.6	70.1
Default frequency (%)	6.27	5.13	7.56	9.17
Welfare gains (rep)	-	0.61%	-0.094%	-0.084%

The Perils of Bilateral Sovereign Debt

- Simple model with monopolist/fringe structure
 - ... example of situation where cross-elasticity emerges
 - ... market power is crucial in model
- · Strong interaction between two markets for sovereign debt
 - ... even if bilateral loans are **not** used intensely on the equilibrium path
- · Large welfare effects, policy challenges
 - How to limit their use during defaults?
 - Relational overborrowing more gains from fiscal rules, state-contingent debt?
- · Simple test to determine welfare gains of a new instrument

· Further conditioning on default events lasting exactly two years

• With Limited: $\Gamma(m) = m$

