1120 Class Activity

박예엿

- 1. Let graph $G = G_1 \cup G_2$ where $G_1 = C_3$ and $G_2 = P_3$. Find all eigenvalues of L_G , the Laplacian matrix of G.
- 2. Above situation, let $G_2 = C_3$. Find all eigenvalues of L_G .

Proof. 1. We want to find the adjacent matrix of G. We know that the adjacent matrices of C_3 and P_3 .

$$A_{C_3} = \begin{bmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{bmatrix}; A_{P_3} = \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix}$$

Therefore, the adjacent matrix of G is $A_G = \begin{bmatrix} 0 & 1 & 1 & 0 & 0 & 0 \\ 1 & 0 & 1 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 & 0 \end{bmatrix}.$

We can find the diagonal matrix \triangle_G where $(\triangle_G)_{ii} = \deg(v_i)$ using A_G .

$$\triangle_G = \begin{bmatrix} 2 & 0 & 0 & 0 & 0 & 0 \\ 0 & 2 & 0 & 0 & 0 & 0 \\ 0 & 0 & 2 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \end{bmatrix}$$

Therefore, the Laplacian matrix of G,

$$L_G = \triangle_G - A_G = \begin{bmatrix} 2 & -1 & -1 & 0 & 0 & 0 \\ -1 & 2 & -1 & 0 & 0 & 0 \\ -1 & -1 & 2 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & -1 & 0 \\ 0 & 0 & 0 & -1 & 2 & -1 \\ 0 & 0 & 0 & 0 & -1 & 1 \end{bmatrix}$$

Using matrix calculator, we can find all eigenvalues of L_G . $(\lambda_1, \lambda_2, \lambda_3, \lambda_4, \lambda_5, \lambda_6) = (0, 0, 1, 3, 3, 3).$

2. Using
$$A_{C_3}$$
, the adjacent matrix of G is $A_G = \begin{bmatrix} 0 & 1 & 1 & 0 & 0 & 0 \\ 1 & 0 & 1 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 & 1 & 0 \end{bmatrix}$.

Also, the diagonal matrix \triangle_G is $\triangle_G = \begin{bmatrix} 2 & 0 & 0 & 0 & 0 & 0 \\ 0 & 2 & 0 & 0 & 0 & 0 \\ 0 & 0 & 2 & 0 & 0 & 0 \\ 0 & 0 & 0 & 2 & 0 & 0 \\ 0 & 0 & 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 0 & 0 & 2 \end{bmatrix}$.

$$\begin{bmatrix} 2 & -1 & -1 & 0 & 0 & 0 \\ 0 & 2 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 0 & 0 & 2 \end{bmatrix}$$

Also, the diagonal matrix
$$\triangle_G$$
 is $\triangle_G = \begin{bmatrix} 2 & 0 & 0 & 0 & 0 & 0 \\ 0 & 2 & 0 & 0 & 0 & 0 \\ 0 & 0 & 2 & 0 & 0 & 0 \\ 0 & 0 & 0 & 2 & 0 & 0 \\ 0 & 0 & 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 0 & 0 & 2 \end{bmatrix}$.

The Laplacian matrix of
$$G$$
 is $L_G = \triangle_G - A_G = \begin{bmatrix} 2 & -1 & -1 & 0 & 0 & 0 \\ -1 & 2 & -1 & 0 & 0 & 0 \\ -1 & -1 & 2 & 0 & 0 & 0 \\ 0 & 0 & 0 & 2 & -1 & -1 \\ 0 & 0 & 0 & -1 & 2 & -1 \\ 0 & 0 & 0 & -1 & -1 & 2 \end{bmatrix}$. Using matrix calculator, we can find all eigenvalues of L_G .

Using matrix calculator, we can find all eigenvalues of L_G $(\lambda_1, \lambda_2, \lambda_3, \lambda_4, \lambda_5, \lambda_6) = (0, 0, 3, 3, 3, 3).$

We can check that both two cases have $\lambda_2 = 0$, so, this is not connected graph. So, $\lambda_2(L_G), \lambda_2(L_{\tilde{G}}),$ the algebraic connectivity of G and \tilde{G} holds below inequality.

$$\lambda_2(L_G) \le \lambda_2(L_{\tilde{G}}) \le \lambda_2(L_G) + 2$$