Задача №1

Пространство заполнено зарядом с объемной плотностью $ho=
ho_0\exp\!\left(\!\!-\!\alpha\!r^3\right)$, где ho_0 и lpha – положительные постоянные, а r – расстояние от центра системы. Найти E(r)

Other:
$$E(r) = \frac{\rho_0}{3\alpha\varepsilon_0} \cdot \frac{1}{r^2} \left(1 - e^{-\alpha r^3}\right)$$
.

Задача №2

На отрезке тонкого прямого проводника равномерно распределен заряд с линейной плотностью au. Найти потенциал и напряженность поля в точке, лежащей на оси отрезка на расстоянии a от ближайшего его конца.

Other:
$$\varphi = \frac{\tau}{4\pi\varepsilon_0} \ln \frac{l+a}{a}$$
; $E = \frac{\tau l}{4\pi\varepsilon_0 a(l+a)}$.

Залача №3

Поле создается бесконечно- большой по размерам равномерно заряженной тонкой плоскостью $(+\sigma=const)$. Найти работу по перемещению заряда q из точки l в точку 2.

Otbet:
$$A = \frac{q \sigma a}{2\varepsilon_0 \varepsilon}$$
.

Залача №4

Вычислить энергию поля двух металлических шаров радиусами R_1 и R_2 и зарядами q_1 и q_2 . Расстояние между центрами шаров равно a.

Otbet:
$$W = \frac{q_1^2}{8\pi\epsilon_0 R_1} + \frac{q_2^2}{8\pi\epsilon_0 R_2} + \frac{q_1 q_2}{4\pi\epsilon_0 a}$$

Залача №5

Между обкладками плоского конденсатора, заряженного до разности потенциалов U, зажата диэлектрическая пластинка с проницаемостью ε и толщиной d. Определить плоскость связанных зарядов на поверхности диэлектрической пластины.

Other:
$$\sigma_{\rho} = \varepsilon_0 (\varepsilon - 1) U/d$$
.

Задача №6

По плоскому контуру из тонкого провода течет ток I=100A. Определить магнитную индукцию B поля, создаваемого этим током в точке O. Радиус R изогнутой части контура равен 20 см.

Otbet:
$$B = \frac{\mu_0 I}{2R} \left(\frac{1}{2} + \frac{\sqrt{2}}{\pi} \right) = 298 \text{M} \kappa T \pi$$
.

Залача №1

Полусфера радиуса R заряжена равномерно с поверхностной плотностью σ . Найти E в центре полусферы.

Otbet:
$$E = \frac{\sigma}{4\varepsilon_0}$$
.

Задача №2

По тонкому проволочному кольцу радиуса R, находящемуся в вакууме, равномерно распределен заряд q. Приняв ось кольца за ось X, найти φ и E на оси кольца как функцию координаты X (начало координат поместить в центре кольца).

Other:
$$\varphi(x) = \frac{q}{4\pi\varepsilon_0 \sqrt{x^2 + R^2}}$$
; $E(x) = \frac{qx}{4\pi\varepsilon_0 \sqrt{(x^2 + R^2)^3}}$.

Задача №3

Тонкий стержень согнут в кольцо радиуса R. Он заряжен с линейной плотностью τ . Какую работу надо совершить, чтобы перенести заряд q из центра кольца в точку, расположенную на оси кольца на расстоянии l от его центра.

Other:
$$A = \frac{q\tau}{4\varepsilon_0} \left(1 - \frac{R}{\sqrt{R^2 + l^2}} \right)$$
.

Задача №4

$$+q + q + q + q - q + q + q + q$$
 $+q + q - q + q - q - q$

Найти взаимную потенциальную энергию для каждой из систем точечных зарядов, изображенных на рисунке. Все заряды одинаковы по абсолютной величине и располагаются в вершинах квадрата со стороной a.

Other:
$$W_1 = \frac{q^2}{4\pi\varepsilon_0 a} (\sqrt{2} + 4)$$
; $W_2 = \frac{q^2}{4\pi\varepsilon_0 a} (\sqrt{2} - 4)$; $W_1 = -\frac{q^2}{4\pi\varepsilon_0 a} \sqrt{2}$.

Залача №5

Расстояние между пластинами плоского конденсатора равно d, разность потенциалов U. На нижней пластине лежит пластина диэлектрика толщиной d_2 и проницаемостью ε . Определить поверхностную плотность связанных зарядов на этой пластине.

Other:
$$\sigma_p = \frac{\varepsilon_0(\varepsilon - 1)U}{\varepsilon d_1 + d_2}$$
.

Задача №6

По плоскому контуру из тонкого провода течет ток I=100A. Определить магнитную индукцию B поля, создаваемого этим током в точке O. Радиус R изогнутой части контура равен 20 см.

Other:
$$B = \frac{\mu_0 I}{4R} \left(\frac{3}{2} + \frac{\sqrt{3}}{\pi} \right) = 306 \text{MKT} \pi$$
.

Задача №1

Шар радиуса R имеет положительный заряд, объемная плотность

которого
$$\rho = \rho_0 \left(1 - \frac{r}{R}\right)$$
, где ρ_0 - постоянная, r – расстояние от центра

шара. Найти E(r) внутри и вне шара.

1)
$$r < R$$
; $E(r) = \frac{\rho_0 r}{3\varepsilon\varepsilon_0} - \frac{\rho_0 r^2}{4R\varepsilon\varepsilon_0}$;

Ответ:

$$(2)r \ge R; E(r) = \frac{\rho_0 R^3}{3\varepsilon \sigma^3} - \frac{\rho_0 R^3}{4\varepsilon \varepsilon_0 r^2}.$$

Задача №2

Тонкий однородный диск радиусом R заряжен равномерно с поверхностной плотностью σ . Найти φ и E на оси диска как функцию координаты X .

Other:
$$\varphi(x) = \frac{\sigma}{2\varepsilon_0} \left[\sqrt{x^2 + R^2} - |x| \right]$$
; $E(x) = \frac{\sigma}{2\varepsilon_0} \left[\frac{x}{|x|} - \frac{x}{\sqrt{x^2 + R^2}} \right]$.

Задача №3

Тонкий стержень согнут в полукольцо. Стержень заряжен с линейной плотностью τ . Какую работу надо совершить, чтобы перенести заряд q из центра полукольца в бесконечность?

Otbet:
$$A = \frac{q\tau}{4\varepsilon_0}$$
.

Задача №4

Сплошной парафиновый шар радиусом R заряжен равномерно по объему с объемной плотностью ρ . Определить энергию электрического поля, сосредоточенную в самом шаре, и энергию вне его.

Other:
$$W_1 = \frac{2\pi\rho^2 R^5}{45\varepsilon_0\varepsilon}$$
; $W_2 = \frac{2\pi\rho^2 R^5}{9\varepsilon_0}$.

Задача №5

В пространстве, наполовину заполненном диэлектриком с проницаемостью \mathcal{E} , создано однородное электрическое поле, напряженность которого в воздухе E_1 . Вектор \vec{E}_1 образует угол α с границей диэлектрик-воздух, которую можно считать плоской. Определить численные значения векторов \vec{D} , \vec{E} , и \vec{P} в диэлектрике.

Other:
$$D_2 = D_1 \sqrt{\sin^2 \alpha + \varepsilon^2 \cos^2 \alpha}$$
; $E_2 = \sqrt{\frac{1}{\varepsilon^2} E_{nl}^2 + E_{rl}^2}$; $P_2 = D_2 - \varepsilon_0 E_2$.

Задача №6

Бесконечно длинный тонкий проводник с током I=50A имеет изгиб (плоскую петлю) радиусом R=10cм. Определить в точке O магнитную индукцию B поля, создаваемого этим током.

Other:
$$B = \frac{\mu_0 I}{2\pi\kappa} (\pi + 1) = 414 M\kappa T_{\pi}$$
.

Залача 1.

Система состоит из тонкого проволочного кольца и полубесконечной нити совпадает с центром кольца. Радиус кольца R. Кольцо заряжено зарядом q, а нить заряжена равномерно с линейной плотностью r. Найти силу их взаимодействия.

OTBET:
$$F = \frac{qr}{4\pi\varepsilon_0}$$

Задача 2.

Найти потенциал и напряженность поля в центре полусферы радиусом R, заряженной с постоянной поверхностной плотностью σ . Положить $\varepsilon=1$.

Otbet:
$$\varphi = \frac{R\sigma}{2\varepsilon_0}$$
; $E = \frac{\sigma}{4\varepsilon_0}$

Задача 3.

Бесконечная прямая нить несет равномерно распределенный заряд с линейной плотностью au. Определить работу A_{12} . сил поля по перемещению заряда q из точки 1 в точку 2.

Ответ:
$$A_{12} = \frac{q\tau}{2\pi\varepsilon_0} \ln 2$$

Задача 4.

Зная, что энергия электрического поля определяется выражением

$$W=\int\limits_{(V)}^{\mathcal{E}_0\mathcal{E}R^3} dV$$
 , показать, что энергия шара радиуса R , заряженного по

объему с постоянной плотностью
$$\,
ho \, ,$$
 равна $\, W = \frac{4 \,
ho^2 R^5 \pi}{15 arepsilon_0} \, , \,$ при $\, arepsilon = 1 \, . \,$

Задача 5.

Найти энергию этого конденсатора, если площадь каждой пластины равна S (см. рис.)

Otbet:
$$W = \frac{\varepsilon_0 \varepsilon_1 \varepsilon_2 SU}{2(l_1 \varepsilon_2 + l_2 \varepsilon_1)}$$

Задача 6.

Два бесконечно длинных прямых проводника скрещены под прямым углом. По проводам текут токи $I_1=80A$ и $I_2=60A$. Расстояние d между проводниками равно 10см. Определить магнитную индукцию B в точке A, одинаково удаленной от обоих проводников.

OTBET:
$$B = \frac{\mu_0}{\pi d} \sqrt{I_1^2 + I_2^2} = 400 \text{ M} \kappa T n$$

Залача 1.

Найти силу, действующую на отрезок нити длиной r_2-r_1 заряженной с линейной плотностью τ_2 и находящейся вдоль радиуса от бесконечно длинной нити, заряженной с линейной плотностью τ_1 .

Otbet:
$$F = \frac{\tau_1 \tau_2}{2\pi \varepsilon_0} \ln \left| \frac{r_2}{r_1} \right|$$

Задача 2.

Заряд q равномерно распределен по объему шара радиуса R . Используя теорему гаусса и определение потенциала, найти потенциалы в точках 1, 2, 3 и 0 как функцию r .

Ответ:

$$\varphi_1 = \frac{q}{4\pi\varepsilon_0 r}; \varphi_2 = \frac{q}{4\pi\varepsilon_0 R}; \varphi_3 = \frac{q}{4\pi\varepsilon_0 R^3} \left(\frac{R^2 - r^2}{2}\right) + \frac{q}{4\pi\varepsilon_0 R}$$

Задача 3.

Определить работу электрических сил, если четыре одинаковых по величине и знаку заряда $\,q\,$, расположенных вдоль прямой на расстояниях $\,r\,$ друг от друга, перенести в вершины тетраэдра с длиной ребра $\,r\,$.

OTBET:
$$A_{33} = -\frac{1}{4\pi\varepsilon_0} \cdot \frac{5q^2}{3r}$$

Задача 4.

Определить потенциальную энергию диполя во внешнем однородном электрическом поле с напряженностью \vec{E} . Электрический момент диполя равен \vec{p} . (Дать два решения.)

Ответ: $W = -\vec{p}\vec{E}$

Задача 5.

Расстояние d между пластинами плоского конденсатора равно 2мм. Разность потенциалов U = 1,8 κB Диэлектрик — стекло. Определить диэлектрическую восприимчивость χ стекла и поверхностную плотность σ' поляризационных (связанных) зарядов на поверхности стекла.

Ответ:
$$\chi = 6; \sigma' = 47, 7 \frac{M \kappa K \eta}{M^2}$$

Задача 6.

По двум бесконечно длинным прямым проводам, скрещенным под прямым углом, текут токи $I_1=30A$ и $I_2=40A$. Расстояние d между проводами равно 20см. Определить магнитную индукцию B в точке C, одинаково удаленной от обоих проводников на расстояние, равное d.

Ответ: $B = 50 M \kappa T \pi$

Вариант №6

Задача 1.

Полубесконечная нить заряжена равномерно с линейной плотностью au . Найти E_{\perp}, E_{\parallel} и результирующую E , на расстоянии R от нити y её конца.

Other:
$$E_{\perp} = \frac{\tau}{4\pi\varepsilon_{0}R}; E_{\parallel} = \frac{\tau}{4\pi\varepsilon_{0}R}; E = \sqrt{2} \cdot \frac{\tau}{4\pi\varepsilon_{0}R}$$

Задача 2.

Заряд q равномерно распределен по поверхности сферы радиуса R. Используя теорему Гаусса и определение потенциала найти потенциал поля в точках 1, 2, 3 и 0 как функцию r.

Otbet:
$$\varphi_1 = \frac{q}{4\pi\varepsilon_0 r}$$
; $\varphi_2 = \frac{q}{4\pi\varepsilon_0 R}$; $\varphi_3 = \frac{q}{4\pi\varepsilon_0 R}$

Задача 3.

Определить работу сил поля по перемещению заряда q из точки 1 в точку 2 поля, созданного заряженным проводящим шаром. Потенциал шара равен ϕ .

Ответ: $A_{12} = \frac{q\varphi}{4}$

Задача 4.

Плоский воздушный конденсатор заряжен до разности потенциалов U. Площадь пластины конденсатора S, а расстояние между пластинами l_1 . Какую работу совершат электрические силы, если расстояние между обкладками увеличить до l_2 , не отключая конденсатор от источника? (Найти два решения.)

Other:
$$A = \frac{\varepsilon_0 SU^2}{2} \left(\frac{1}{l_1} - \frac{1}{l_2} \right)$$

Задача 5.

Металлический шар радиусом R=5м окружен равномерным слоем фарфора толщиной d=2см. Определить поверхностные плотности σ_1 и σ_2 связанных зарядов соответственно на внутренней и внешней

поверхностях диэлектрика. Заряд шара
$$Q = 10 \mu K n$$
 .
 Ответ: $\sigma_1' = -\frac{Q}{4\pi R^2} \cdot \frac{\varepsilon - 1}{\varepsilon} = 0,26 \frac{m \kappa K n}{n^2}$

Задача 6.

По плоскому контуру из тонкого провода течет ток I=100A. Определить магнитную индукцию B поля, создаваемого этим током в точке O. Радиус R изогнутой части контура равен 20см.

OTBET:
$$B = \frac{\mu_0 l}{8R} \left(3 + \frac{\sqrt{2}}{\pi} \right) = 271 \text{M} \kappa T \pi.$$