1. Несчетность множества вещественных чисел.

Чтобы показать несчётность всего множества вещественных чисел, достаточно показать несчётность интервала (0,1) .[18]

Пусть все числа указанного промежутка уже занумерованы некоторым образом. Тогда их можно выписать в следующем виде:

```
x_2 = 0, a_{21}a_{22}\cdots a_{2m}\cdots
x_k = 0, a_{k1}a_{k2}\cdots a_{km}\cdots
```

Здесь $a_{ij} - j$ -я цифра j-ого числа. Очевидно, что все числа указанного вида действительно принадлежат рассматриваемому промежутку, если только в каждом числе не все цифры сразу являются нулями или девятками.

Далее предлагается рассмотреть следующее число:

```
x = 0, d_1 d_2 \cdots d_m \cdots
```

Пусть каждая цифра d_i этого числа удовлетворяет следующим трём свойствам:

```
\begin{split} &\S \ d_i \neq 0 \\ &\S \ d_i \neq 9 \\ &\S \ d_i \neq a_{ii} \end{split}
```

Такое число действительно существует на указанном промежутке, так как оно является вещественным, не совпадает ни с нулём, ни с единицей, а десятичных цифр достаточно, чтобы третье свойство выполнялось. Кроме этого, x интересно тем фактом, что оно не совпадает ни с одним из чисел x_j , выписанных выше, ведь иначе j-я цифра числа x совпала бы с j-ой цифрой числа x_j . Пришли к противоречию, заключающемуся в том, что как бы числа рассматриваемого промежутка ни были занумерованы, всё равно найдётся число из этого же промежутка, которому не присвоен номер. [18]

Это свидетельствует о том, что множество вещественных чисел не является счётным. Его мощность называется мощностью континуума.

2. Логарифмическое дифференцирование.

Погарифмическим дифференцированием называется метод дифференцирования функций, при котором сначала находится логарифм функции, а затем вычисляется производная от него. Такой прием можно использовать для нахождения производных степенных, рациональных и некоторых иррациональных функций.

Рассмотрим этот подход более детально. Пусть дана функция y = f(x). Возьмем натуральные логарифмы от обеих частей:

$$\ln y = \ln f(x).$$

Теперь продифференцируем это выражение как сложную функцию, имея ввиду, что y - это функция от x.

$$\left(\ln y\right)' = \left(\ln f\left(x\right)\right)', \ \Rightarrow \frac{1}{y}y'\left(x\right) = \left(\ln f\left(x\right)\right)'.$$

Отсюда видно, что искомая производная равна

$$y' = y(\ln f(x))' = f(x) (\ln f(x))'.$$

Такая производная от логарифма функции называется логарифмической производной.

Данный метод позволяет также эффективно вычислять производные *показательно-степенных функций*, то есть функций вида

$$y = u(x)^{v(x)},$$

где $u\left(x\right)$ и $v\left(x\right)$ — дифференцируемые функции от x.

В приведенных ниже примерах вычислить производную функции y(x), используя логарифмическое дифференцирование.

Пример 1

$$y = x^x, \ x > 0.$$

Решение.

Сначала прологарифмируем левую и правую части уравнения:

$$\ln y = \ln x^x$$
, $\Rightarrow \ln y = x \ln x$.

Теперь продифференцируем обе части, имея ввиду, что y – это функция от x:

$$(\ln y)' = (x \ln x)', \ \Rightarrow \frac{1}{y} \cdot y' = x' \ln x + x(\ln x)', \ \Rightarrow \frac{y'}{y} = 1 \cdot \ln x + x \cdot \frac{1}{x}, \ \Rightarrow \frac{y'}{y} = \ln x + 1,$$

 $\Rightarrow y' = y(\ln x + 1), \ \Rightarrow y' = x^x(\ln x + 1), \ \text{rge } x > 0.$

Пример 2

$$y = x^{\ln x}, \ x > 0.$$

Решение.

Применяем логарифмическое дифференцирование:

$$\ln y = \ln \left(x^{\ln x}\right), \ \Rightarrow \ln y = \ln x \ln x = \ln^2 x, \ \Rightarrow \left(\ln y\right)' = \left(\ln^2 x\right)', \ \Rightarrow \frac{y'}{y} = 2 \ln x (\ln x)',$$

1. Понятие числовой последовательности и ее предела. Теорема об ограниченной сходящейся последовательности.

Теорема: (о единственности предела последовательности)

Числовая последовательность может иметь только один предел.

Доказтельство:

Предположим, что последовательность X_n имеет два различных предела ${m b}$ и ${m a}$, причем b < a.

Выберем $\varepsilon>0$ таким, чтобы ε -окрестности точек b и a не пересекались (не имели общих точек). Возьмем, например, $\varepsilon=\frac{(a-b)}{3}$. Так как число b — предел последовательности X_n , то по заданному $\varepsilon>0$ можно найти номер N такой, что $X_n\in U_\varepsilon(b)$ для всех $n\geq N$. Поэтому вне интервала $U_\varepsilon(b)$ может оказаться лишь конечное число членов последовательности. В частности, интервал $U_\varepsilon(a)$ может содержать лишь конечное число членов последовательности. Это противоречит тому, что a — предел последовательности (любая окрестность точки a должна содержать бесконечное число членов последовательности). Полученное противоречие показывает, что последовательность не может иметь два различных предела. Итак, сходящаяся последовательность имеет только один предел.

Последовательность X_n называется **ограниченной снизу**, если существует такое число C_1 , что все члены последовательности удовлетворяют условию $X_n \geq C_1$, т. е.:

$$\exists C_1 : \forall n \in N \to X_n \ge C_1$$

Последовательность X_n называется ограниченной сверху, если:

$$\exists C_2: \forall n \in N \to X_n \leq C_2$$

Последовательность, ограниченную как снизу, так и сверху, называют ограниченной, т. е. последовательность X_n называется ограниченной, если:

$$\exists C_1, \exists C_2 : \forall n \in N \to C_1 \leq X_n \leq C_2$$

это можно записать и так:

$$\exists C > 0 : \forall n \in N \to |X_n| \le C$$

Таким образом, последовательность называют ограниченной, если множество ее значений ограничено.

Примеры.

Теорема: (об ограниченности сходящейся последовательности)

Если последовательность имеет предел, то она ограничена.

Доказтельство:

Пусть последовательность X_n имеет предел, равный \pmb{a} . По определению предела для $\varepsilon=1$ найдем номер N такой, что при всех $n\geq N$ имеет место неравенство $|X_n-a|<1$. Так как модуль суммы не превосходит суммы модулей, то:

$$|X_n| = |X_n - a + a| \le |X_n - a| + |a|.$$

Поэтому при всех $n \geq N$ выполняется неравенство:

$$|X_n| < 1 + |a|$$
.

Положим $c=\max\big(1+|a|\,,|X_1|\,,...,|X_{N-1}|\big)$, тогда $|X_n|\leq C$ при всех $n\in\mathbb{N}$, т. е. последовательность X_n ограничена.

Замечание: В силу предыдущей теоремы всякая сходящаяся последовательность является ограниченной. Обратное неверно: не всякая ограниченная последовательность является сходящейся! Например, последовательность $\{(-1)^n\}$ ограничена, но не является сходящейся.

<u>Замечание:</u> Если условие $\exists C>0: \forall n\in N \to |X_n|\leq C$ не выполняется, т. е.

$$\forall C>0: \exists n_C \in \mathbb{N}: |X_{n_C}|>C\text{,}$$

то говорят, что последовательность X_n не ограничена.

<u>Пример:</u> Доказать, что последовательность $\left\{\frac{1}{y_n}\right\}$ является ограниченной, если $\lim_{n\to\infty}y_n=b,\ b\neq 0$ и $y_n\neq 0$, для всех $n\in\mathbb{N}.$

<u>Решение</u>

Так как $b \neq 0$, то |b|>0. По заданному числу $\varepsilon=\frac{|b|}{2}$ в силу определения предела последовательности найдется номер N_0 такой, что:

$$\forall n \geq N_0 \rightarrow |y_n - b| < \frac{|b|}{2}$$
.

Используя неравенство для модуля разности

$$|b| - |y_n| \le |y_n - b|$$

и неравенство $\,\,\,\forall n\geq N_0\to |y_n-b|<\frac{|b|}{2},$ получаем $|b|-|y_n|<\frac{|b|}{2},$ откуда $|y_n|>\frac{|b|}{2}.$ И поэтому для всех $\,\,n\geq N_0$ справедливо неравенство $\,\,\,\left|\frac{1}{y_n}\right|<\frac{2}{|b|}.$

Пусть C = max $\left(\left|\frac{1}{y_1}\right|,...,\left|\frac{1}{y_{N_{0-1}}}\right|,\frac{2}{|b|}\right)$, для всех $n\in\mathbb{N}$ выполняется неравенство $\left|\frac{1}{y_n}\right|\leq C$, т. е. $\left\{\frac{1}{y_n}\right\}$ — ограниченная последовательность.

2. Теорема Ролля:

Теорема Ролля утверждает, что любая действительная дифференцируемая функция, принимающая одинаковые значения на концах интервала, должна иметь в этом интервале хотя бы одну стационарную точку, т.е. точку, в которой первая производная равна нулю. Геометрически это означает, что касательная к графику функции в этой точке горизонтальна (рисунок 1).

Рис.1

Рис.2 Мишель Ролль (1652-1719)

Данное свойство было известно еще в 12 веке в древней Индии. Выдающийся индийский астроном и математик $\mathit{Exackapa}\ II\ (1114-1185)$ упоминает о нем в своих сочинениях. В строгом виде эта теорема была доказана в 1691 году французским математиком $\mathit{Muuerem\ Poprem}\ (1652-1719)$ (рисунок 2).

В современной математике доказательство теоремы Ролля основывается на двух других теоремах – второй теореме Вейерштрасса и теореме Ферма. Они формулируются таким образом:

Вторая теорема Вейерштрасса

Если функция f(x) непрерывна на отрезке [a,b], то она достигает на нем своей точной верхней и нижней грани (т.е. наибольшего и наименьшего значения).

Теорема Ферма

Пусть функция f(x) определена в окрестности точки x_0 и дифференцируема в этой точке. Тогда, если функция f(x) имеет локальный экстремум в точке x_0 , то

$$f^{\prime}\left(x_{0}\right) =0.$$

Рассмотрим теперь теорему Ролля (или теорему о нуле производной) в более строгом изложении. Пусть функция y=f(x) непрерывна на отрезке [a,b], дифференцируема на интервале (a,b) и принимает одинаковые значения на концах данного отрезка:

$$f(a) = f(b)$$

Тогда на интервале (a,b) существует по крайней мере одна точка $\xi \in (a,b)$, в которой производная функции f(x) равна нулю:

$$f^{\prime}\left(\xi
ight) =0.$$

Доказательство.

Если функция f(x) постоянна на отрезке [a,b] , то производная равна нулю в любой точке интервала (a,b) , т.е. в этом случае утверждение справедливо.

Если функция f(x) не является постоянной на отрезке [a,b], то по теореме Вейерштрасса она достигает своего наибольшего или наименьшего значения в некоторой точке ξ интервала (a,b), т.е. в точке ξ существует локальный экстремум. Тогда по теореме Ферма производная в этой точке равна нулю:

$$f'(\xi)=0.$$

Теорема Ролля имеет наглядный физический смысл. Предположим, что тело движется вдоль прямой и через некоторый промежуток времени возвращается в исходную точку. Тогда в данном промежутке времени существует момент, в котором мгновенная скорость тела была равна нулю.

Пример 1

Доказать, что если уравнение

$$f(x) = a_0 x^n + a_1 x^{n-1} + \ldots + a_{n-1} x = 0$$

имеет положительный корень $x=x_0$, то уравнение

$$na_0x^{n-1} + (n-1)\,a_1x^{n-2} + \ldots + a_{n-1} = 0$$

также имеет положительный корень $x=\xi,$ причем $\xi < x_0.$

Решение.

Первое уравнение помимо $x=x_0$ имеет еще один корень x=0. Следовательно, для функции $f\left(x\right)$ выполняются условия теоремы Ролля:

$$f\left(0\right) =f\left(x_{0}\right) =0.$$

Второе уравнение получается путем дифференцирования первого уравнения:

$$f'(x) = \left(a_0x^n + a_1x^{n-1} + \ldots + a_{n-1}x\right)' = na_0x^{n-1} + (n-1)a_1x^{n-2} + \ldots + a_{n-1} = 0.$$

Согласно теореме Ролля, на отрезке $[0,x_0]$ существует внутренняя точка $x=\xi$, в которой производная равна нулю. Следовательно, точка $x=\xi$ является решением второго уравнения, причем $0<\xi< x_0$.

1. Бесконечно малые и бесконечно большие последовательности.

ОПРЕДЕЛЕНИЕ

Последовательность $\{x_n\}$ называется **бесконечно большой**, если для любого числа A>0 существует такой номер n_0 , начиная с которого (то есть для всех $n \geq n_0$) выполняется соотношение $|x_n| > A$.

Замечание 1. Различие между бесконечно большой и неограниченной последовательностью в том, что в случае бесконечно большой последовательности соотношение $|x_n|>A$ должно выполняться для всех $n\geq n_0$, а для неограниченности последовательности достаточно, чтобы существовал хотя бы один элемент последовательности, для которого выполняется $|x_n| > A$.

Следствие. Любая бесконечно большая последовательность является неограниченной.

Замечание 2. Обратное утверждение в общем случае неверно.

Например, последовательность

$$x_n = \{1, \ 0, \ 3, \ 0, \ 5, \ 0, \ 7, \ 0...\} = \left\{ \left\{ \begin{array}{cc} n, \ n = 2k+1, \\ 0, \ n = 2k, \end{array} \right. \ k \in N \right\}$$

является неограниченной, но не является бесконечно большой. Покажем это.

Действительно, для любого A>0 существует номер $n=2\ [A]+1$ ([A] – целая часть числа A), что $x_n>A$ (знак модуля опущен, так как все члены заданной последовательности являются неотрицательными). Номер $n=2\left[A
ight]+1$ является нечетным, следовательно, в этом случае $x_n = x_{2[A]+1} = 2\left[A\right] + 1 > A$. А это означает, что рассматривая последовательность неограниченна.

Так как члены последовательности чередуются и среди них есть значения 0, то нельзя указать для любого числа A>0 такой номер n_0 , начиная с которого все члены последовательности удовлетворяют условию $x_n > A$, что соответствует тому, что последовательность $\{x_n\}$ не является бесконечно большой.

Бесконечно малые последовательности

Последовательность $\{x_n\}$ называется **бесконечно малой**, если для любого числа arepsilon>0 существует такой номер $n_0=n_0$ (arepsilon), начиная с которого ($n \geq n_0$) выполняется соотношение $|x_n| < \varepsilon$.

Замечание 3. Любая бесконечно малая последовательность является ограниченной, но не наоборот.

Примеры решения задач

ПРИМЕР

Задание

Доказать, что последовательность $\{x_n = \frac{1}{n}\}$ является бесконечно малой.

Доказательство

Зададим произвольное положительное число arepsilon и найдем такой номер n_0 элемента этой последовательности, что для всех $n \geq n_0$ выполняется соотношение

$$|x_n| = \left| \frac{1}{n} \right| = \frac{1}{n} < \varepsilon$$

Запишем последнее неравенство в виде $n>rac{1}{arepsilon'}$ тогда в качестве n_0 можно выбрать $n_0 = \left\lceil \frac{1}{\varepsilon} \right\rceil + 1$. Что и означает что рассматриваемая последовательность является бесконечно малой.

Что и требовалось доказать.

2. Теорема Коши

Теорема Коши

Теорема Коши о среднем значении обобщает формулу конечных приращений Лагранжа. В этой теореме устанавливается связь между производными двух функций и изменением этих функций на конечном отрезке.

Пусть функции f(x) и g(x) непрерывны на отрезке [a,b] и дифференцируемы на интервале (a,b) , причем $g'(x) \neq 0$ при всех $x \in (a,b)$. Тогда в этом интервале существует точка $x = \xi$, такая, что

$$\frac{f\left(b\right)-f\left(a\right)}{g\left(b\right)-g\left(a\right)}=\frac{f'\left(\xi\right)}{g'\left(\xi\right)}.$$

Локазательство.

Прежде всего, заметим, что знаменатель в левой части формулы Коши не равен нулю: $g\left(b\right)-g\left(a\right)\neq0$. Действительно, если $g\left(b\right)=g\left(a\right)$, то по теореме Ролля найдется точка $\eta\in\left(a,b\right)$, в которой $g'\left(\eta\right)=0$. Это, однако, противоречит условию, где указано, что $g'\left(x\right)\neq0$ при всех $x\in\left(a,b\right)$.

Введем вспомогательную функцию

$$F(x) = f(x) + \lambda g(x).$$

Выберем число λ таким образом, чтобы выполнялось условие $F\left(a\right)=F\left(b\right)$. В этом случае получаем

$$f\left(a
ight) + \lambda g\left(a
ight) = f\left(b
ight) + \lambda g\left(b
ight), \ \Rightarrow f\left(b
ight) - f\left(a
ight) = \lambda \left[g\left(a
ight) - g\left(b
ight)
ight], \ \Rightarrow \lambda = -rac{f\left(b
ight) - f\left(a
ight)}{g\left(b
ight) - g\left(a
ight)}$$

и функция $F\left(x\right)$ принимает вид

$$F(x) = f(x) - \frac{f(b) - f(a)}{g(b) - g(a)}g(x).$$

Эта функция непрерывна на отрезке [a,b] , дифференцируема на открытом интервале (a,b) , и при найденном значении λ принимает одинаковые значения на границах интервала. Тогда по теореме Ролля в интервале (a,b) существует точка ξ такая, что

$$F'(\xi)=0.$$

Следовательно,

$$f'\left(\xi\right)-rac{f\left(b
ight)-f\left(a
ight)}{g\left(b
ight)-g\left(a
ight)}g'\left(\xi
ight)=0$$

или

$$\frac{f\left(b\right)-f\left(a\right)}{g\left(b\right)-g\left(a\right)}=\frac{f'\left(\xi\right)}{g'\left(\xi\right)}.$$

Полагая $g\left(x \right) = x$, из формулы Коши можно получить формулу Лагранжа:

$$rac{f\left(b
ight) -f\left(a
ight) }{b-a}=f^{\prime}\left(\xi
ight) .$$

Рис.1

Рис.2 Огюстен Луи Коши (1789-1857)

Формула Коши имеет следующий геометрический смысл. Пусть плоская кривая γ описывается параметрическими уравнениями x=f(t), y=g(t), где параметр t изменяется в промежутке [a,b]. При изменении параметра t точка кривой на рисунке 1 пробегает от A(f(a),g(a)) до B(f(b),g(b)). В соответствии с теоремой Коши на кривой γ найдется точка $(f(\xi),g(\xi))$, в которой касательная параллельна хорде, соединяющей концы A и B данной кривой.

Функция f(x) дифференцируема на отрезке [a,b] , где ab>0. Показать, что для этой функции выполняется равенство

$$\left| rac{1}{a-b} \right| \left| egin{matrix} a & b \ f\left(a
ight) & f\left(b
ight) \end{array}
ight| = f\left(\xi
ight) - \xi f'\left(\xi
ight),$$

где $\xi \in (a,b)$ (Б.П.Демидович, задача 1253).

Решение.

Заметим, что в силу условия ab>0 отрезок [a,b] не содержит точку x=0. Рассмотрим две функции $F\left(x\right)$ и $G\left(x\right)$, имеющие вид:

$$F(x) = \frac{f(x)}{x}, \quad G(x) = \frac{1}{x}.$$

Для этих функций формула Коши записывается в таком виде:

$$\frac{F\left(b\right)-F\left(a\right)}{G\left(b\right)-G\left(a\right)}=\frac{F'\left(\xi\right)}{G'\left(\xi\right)},$$

где точка $x=\xi$ лежит в интервале (a,b) .

Найдем производные:

$$F'\left(x
ight)=\left(rac{f\left(x
ight)}{x}
ight)'=rac{f'\left(x
ight)x-f\left(x
ight)}{x^{2}},\;\;G'\left(x
ight)=\left(rac{1}{x}
ight)'=-rac{1}{x^{2}}.$$

Подставляя это в формулу Коши, получаем:

$$\frac{\frac{f(b)}{b}-\frac{f(a)}{a}}{\frac{1}{b}-\frac{1}{a}}=\frac{\frac{\xi f'(\xi)-f(\xi)}{\xi^2}}{-\frac{1}{\xi^2}},\ \Rightarrow \frac{\frac{af(b)-bf(a)}{ab}}{\frac{a-b}{ab}}=-\frac{\frac{\xi f'(\xi)-f(\xi)}{\xi^2}}{\frac{1}{\xi^2}},\ \Rightarrow \frac{af(b)-bf(a)}{a-b}=f(\xi)-\xi f'(\xi)\,.$$

Левую часть этого равенства можно записать через определитель. Тогда

$$\left| rac{1}{a-b} \right| \left| egin{array}{ll} a & b \\ f\left(a
ight) & f\left(b
ight) \end{array} \right| = f\left(\xi
ight) - \xi f'\left(\xi
ight).$$

Экзаменационный билет № 8

$$\frac{\sin(x)}{\cos(x)}$$

I. Замечательные пределы (x). http://www.mathprofi.ru/zamechatelnye predely.html

2. Левые и Правые пределы

Левая и правая производные, необходимое и достаточное условия существования производной.

Пусть f(x) определена в некоторой окрестности x_0 .

Правой производной функции f(x) в точке x_0 называется предел отношения приращения функции Δy к приращению аргумента Δx при $\Delta x \rightarrow +0$, т.е. $\Delta x \rightarrow 0$, $\Delta x > 0$, и обозначается символом $f'(x_0+0)$:

$$f'(x_0 + 0) = \lim_{\Delta x \to +0} \frac{f(x_0 + \Delta x) - f(x_0)}{\Delta x}$$

Левой производной функции f(x) в точке x_0 называется предел отношения приращения Δy к приращению аргумента Δx при $\Delta x \rightarrow 0$, т.е. $\Delta x \rightarrow 0$, $\Delta x < 0$, и обозначается символом $f'(x_0-0)$:

$$f'(x_0 - 0) = \lim_{\Delta x \to -0} \frac{f(x_0 + \Delta x) - f(x_0)}{\Delta x}$$
.

1. Производные от некоторых простейших функций ($^{\ln(x)}$).

§ 5. ПРОИЗВОДНЫЕ ПРОСТЕЙШИХ ЭЛЕМЕНТАРНЫХ ФУНКЦИЙ

Из вводной главы и из гл. 4 нам уже извество, что простейшим и элементарными функциями принято называть следующие функции: показательную функцию $y=a^x$ и логарифмическую функцию $y=\log_a x$, рассматриваемые для любого фиксированного значения a такого, что $0 < a \ne 1$, степенную функцию $y=x^a$, где a — фиксированное вещественное число, четыре тригонометрические функции $y=\sin x$, $y=\cos x$, $y=\operatorname{tg} x$ и $y=\operatorname{ctg} x$ и четыре обратные тригонометрические функции $y=\operatorname{arcsin} x$, $y=\operatorname{arccos} x$, $y=\operatorname{arctg} x$ и $y=\operatorname{arcctg} x$.

В настоящем параграфе мы вычислим и систематизируем в таблицу производные всех простейших элементарных функций, уже выписанные нами в гл. 1.

2. Производная логарифмической функции. Пусть $y = \log_a x$, где $0 < a \ne 1$, x > 0 — фиксированная точка. Тогда для любого достаточно малого $\Delta x \ne 0$

$$\frac{\Delta y}{\Delta x} = \frac{\log_a (x + \Delta x) - \log_a x}{\Delta x} = \frac{1}{\Delta x} \log_a \left(1 + \frac{\Delta x}{x} \right) =$$

$$= \frac{1}{x} \frac{x}{\Delta x} \log_a \left(1 + \frac{\Delta x}{x} \right) = \frac{1}{x} \log_a \left[\left(1 + \frac{\Delta x}{x} \right)^{\frac{x}{\Delta x}} \right].$$

По определению производной

$$(\log_a x)' = \lim_{\Delta x \to 0} \frac{\Delta y}{\Delta x} = \frac{1}{x} \lim_{\Delta x \to 0} \log_a \left[\left(1 + \frac{\Delta x}{x} \right)^{\frac{x}{\Delta x}} \right]. \tag{5.36}$$

В силу второго замечательного предела и элементарной замены переменной $t=\frac{\Delta x}{z}$

$$\lim_{\Delta x \to 0} \left[\left(1 + \frac{\Delta x}{x} \right)^{\frac{x}{\Delta x}} \right] = \lim_{t \to 0} \left[\left(1 + t \right)^{\frac{1}{t}} \right] = e.$$
 (5.37)

^{*} Так как x>0 ф:иксировано, то $t=\frac{\Delta x}{x}\to 0$ при $\Delta x\to 0$.

Из существования предела (5.37) и из непрерывности функции $y = \log_a x$ в точке $x = e^*$ вытекает, что предел в правой части (5.36) существует и равен $\frac{1}{x} \log_a e$.

Итак,

$$(\log_a x)' = \frac{1}{x} \log_a e \tag{5.38}$$

(для любых $0 < a \ne 1$ и x > 0).

В частности, при a=e

$$(\ln x)' = \frac{1}{x}$$
 (для любого $x > 0$).

2. Дифференцирование суммы, произведения, частного.

§ 4. ДИФФЕРЕНЦИРОВАНИЕ СУММЫ, РАЗНОСТИ, ПРОИЗВЕДЕНИЯ И ЧАСТНОГО ФУНКЦИЙ

Теорема 5.5. Если каждая из функций u(x) и v(x) дифференцируема в данной точке x, то сумма, разность, произведение и частное этих функций (частное при условии, что значение $v(x)\neq 0$) также дифференцируемы в этой точке, причем имеют место формулы

$$\begin{cases}
[u(x) \pm v(x)]' = u'(x) \pm v'(x), \\
[u(x) \cdot v(x)]' = u'(x) \cdot v(x) + u(x) \cdot v'(x), \\
\left[\frac{u(x)}{v(x)}\right]' = \frac{u'(x) \cdot v(x) - u(x) \cdot v'(x)}{v^{2}(x)}.
\end{cases} (5.24)$$

$$\begin{cases} d(u \pm v) = du \pm dv, \\ d(u \cdot v) = vdu + udv, \\ d\left(\frac{u}{v}\right) = \frac{vdu - udv}{v^2}. \end{cases}$$
 (5.28)

Для установления соотношений (5.28) достаточно умножить равенство (5.24) на dx и воспользоваться универсальным представлением (5.12) дифференциала произвольной функции y=f(x).

Экзаменационный билет № 12

1. Теорема о переходе к пределу в неравенствах.

Теорема 4

Функции y = f(x), y = g(x) такие, что

1)
$$f(x) \le g(x) \ \forall x \in U_{\theta}(a)$$

2)
$$\lim_{x\to a} f(x) = A$$
 $\lim_{x\to a} g(x) = B$. Тогда $A \le B$.

Доказательство

Противное: A > B. $\forall \varepsilon : 0 < \varepsilon < 0,5 |A - B| \ \exists \delta = \delta_\varepsilon : \forall x \in U_\delta \stackrel{0}{(a)} \Rightarrow$

$$g(x) < B + \varepsilon < A - \varepsilon < f(x), \, \forall x \in \overset{\circ}{U}_{\delta}(a) \Rightarrow g(x) < f(x)$$
 противоречие с 1)

2. Условие возрастания дифференцируемой функции на отрезке.

Определение 1

Функция y=f(x) будет возрастать на интервале x, когда при любых $x_1\in X$ и $x_2\in X$, $x_2>x_1$ неравенство $f(x_2)>f(x_1)$ будет выполнимо. Иначе говоря, большему значению аргумента соответствует большее значение функции.

Определение 2

Функция y=f(x) считается убывающей на интервале x, когда при любых $x_1\in X$, $x_2\in X$, $x_2>x_1$ равенство $f(x_2)>f(x_1)$ считается выполнимым. Иначе говоря, большему значению функции соответствует меньшее значение аргумента. Рассмотрим рисунок, приведенный ниже.

Замечание: Когда функция определенная и непрерывная в концах интервала возрастания и убывания, то есть (a;b), где $x=a,\;x=b$, точки включены в промежуток возрастания и убывания. Определению это не противоречит, значит, имеет место быть на промежутке x.

Основные свойства элементарных функций типа $y=\sin x$ – определенность и непрерывность при действительных значениях аргументах. Отсюда получаем, что возрастание синуса происходит на интервале $\left(-\frac{\pi}{2};\ \frac{\pi}{2}\right)$, тогда возрастание на отрезке имеет вид $\left[-\frac{\pi}{2};\ \frac{\pi}{2}\right]$.

Экзаменационный билет №14

1. Теоремы о пределах суммы, произведения, частного.

Теоремы

1)Предел суммы двух функций равен сумме их пределов: $\lim_{x\to \infty} (f(x) \pm \varphi(x)) = \lim_{x\to \infty} f(x) \pm \lim_{x\to \infty} \varphi(x)$.

Доказательство

Пусть $\lim_{x\to a_1} f(x) = A$, $\lim_{x\to a_2} \varphi(x) = B$. Тогда по теореме о связи функции, её предела и бесконечно малой функции можно записать: $f(x) = A + \alpha(x)$ и $\varphi(x) = B + \beta(x)$. Следовательно, $f(x) + \varphi(x) = A + B + (\alpha(x) + \beta(x))$, где $(\alpha(x) + \beta(x))$ - бесконечно малой функции (по свойству бесконечно малых функций). Тогда по теореме о связи функции, её предела и бесконечно малой функции можно записать $\lim_{x\to a_1} f(x) \pm \varphi(x) = A + B$, или $\lim_{x\to a_1} f(x) \pm \varphi(x) = \lim_{x\to a_1} f(x) \pm \lim_{x\to a_2} \varphi(x)$.

2)Предел произведения двух функций равен произведению их пределов: $\lim_{x \to x} (f(x) \cdot \varphi(x)) = \lim_{x \to x} f(x) \cdot \lim_{x \to x} \varphi(x)$.

Доказательство

Пусть $\lim_{x\to a} f(x) = A$, $\lim_{x\to a} \varphi(x) = B$. Тогда $f(x) = A + \alpha(x)$ и $\varphi(x) = B + \beta(x)$. Следовательно

 $f(x) \cdot \varphi(x) = (A + \alpha(x) \cdot (B + \beta(x)),$

 $f(x)\cdot\varphi(x)=AB+\left(A\cdot\beta(x)+B\cdot\alpha(x)+\beta(x)\cdot\alpha(x)\right).$

Выражения в скобках, по свойствам бесконечно малых функций, - бесконечно малая функция. Тогда $\lim_{x \to \infty} f(x) \cdot \varphi(x) = AB$, т.е. $\lim_{x \to \infty} f(x) \cdot \varphi(x) = \lim_{x \to \infty} f(x) \cdot \lim_{x \to \infty} \varphi(x)$.

2)Предел частного двух функций равен пределу делимого, деленного на предел делителя, если предел делителя не равен: $\lim_{x \to \infty} \frac{f(x)}{g(x)} = \lim_{x \to \infty} \frac{f(x)}{g(x)} = \lim$

Локазательство

Пусть $\lim_{x\to z_1} f(x) = A$, $\lim_{x\to z_2} \varphi(x) = B \neq 0$. Тогда $f(x) = A + \alpha(x)$ и $\varphi(x) = B + \beta(x)$. Тогда $\frac{f(x)}{\varphi(x)} = \frac{A + \alpha(x)}{B + \beta(x)} = \frac{A}{B} + (\frac{A + \alpha(x)}{B + \beta(x)} - \frac{A}{B}) = \frac{A}{B} + (\frac{B + \alpha(x)}{B^2 + B\beta(x)})$. По свойствам бесконечно малых функций, второе слагаемое – бесконечно малая функция.

Поэтому $\lim_{x \to x_0} \frac{f(x)}{\varphi(x)} = \frac{A}{B}$, т.е. $\lim_{x \to x_0} \left(\frac{f(x)}{\varphi(x)} \right) = \lim_{x \to x_0} \frac{f(x)}{\varphi(x)}$

2.Теорема Ферма(смотри 7 экзам.билет)

Экзаменационный билет №16

1. Непрерывность элементарных функций.

Непрерывность элементарных функций

Все элементарные функции являются непрерывными в любой точке свой области определения.

Функция называется элементарной, если она построена из конечного числа композиций и комбинаций (с использованием 4 действий - сложение, вычитание, умножение и деление) основных элементарных функций. Множество основных элементарных функций включает в себя:

- 1. Алгебраические многочлены $Ax^n + Bx^{n-1} + \ldots + Kx + L$;
- 2. Рациональные дроби $\frac{Ax^n+Bx^{n-1}+\ldots+Kx+L}{Mx^m+Nx^{m-1}+\ldots+Tx+U};$
- 3. Степенные функции x^p ;
- 4. Показательные функции a^x ;
- 5. Логарифмические функции $\log_a x$;
- 6. Тригонометрические функции $\sin x$, $\cos x$, $\tan x$, $\cot x$, $\sec x$, $\csc x$;
- 7. Обратные тригонометрические функции $\arcsin x$, $\arccos x$, $\arctan x$, $\operatorname{arccot} x$, $\operatorname{arcsec} x$, $\operatorname{arccsc} x$;
- 8. Гиперболические функции $\sinh x$, $\cosh x$, $\tanh x$, $\coth x$, $\operatorname{sech} x$, $\operatorname{csch} x$;
- 9. Обратные гиперболические функции $\operatorname{arcsinh} x$, $\operatorname{arccosh} x$, $\operatorname{arccach} x$, $\operatorname{arcsech} x$, $\operatorname{arcsech} x$.

- 2. Производные от некоторых простейших функций ($\sin(x)$).
 - 1. Производные тригонометрических функций.
 - 1° . Производная функции $y = \sin x$. Так как для этой функции

$$\Delta y = \sin(x + \Delta x) - \sin x = 2\cos\left(x + \frac{\Delta x}{2}\right) \sin\frac{\Delta x}{2}$$
,

то при любом $\Delta x \neq 0$ разностное отношение имеет вид

$$\frac{\Delta y}{\Delta x} = \cos\left(x + \frac{\Delta x}{2}\right) \frac{\sin\frac{\Delta x}{2}}{\frac{\Delta x}{2}}.$$

По определению производной

$$(\sin^{2}x)' = \lim_{\Delta x \to 0} \frac{\Delta y}{\Delta x} = \lim_{\Delta x \to 0} \left\{ \cos\left(x + \frac{\Delta x}{2}\right) \frac{\sin\frac{\Delta x}{2}}{\left(\frac{\Delta x}{2}\right)} \right\}. \tag{5.29}$$

В силу непрерывности функции $y = \cos x$ в любой точке x бесконечной прямой

$$\lim_{\Delta x \to 0} \cos \left(x + \frac{\Delta x}{2} \right) = \cos x. \tag{5.30}$$

$$(\lg x)' = \left(\frac{\sin x}{\cos x}\right)' = \frac{(\sin x)' \cos x - (\cos x)' \sin x}{\cos^2 x} = \frac{\cos^2 x + \sin^2 x}{\cos^2 x} = \frac{1}{\cos^2 x}.$$

Итак,

$$(tg x)'_1 = \frac{1}{\cos^2 x} = 1 + tg^2 x$$
 (5.34)

(в любой точке
$$x \neq \frac{\pi}{2} + n\pi$$
, где $n = 0, \pm 1, \pm 2, \ldots$).

4°. Производная функции $y = \operatorname{ctg} x$. Так как $\operatorname{ctg} x = \frac{\cos x}{\sin x}$, то в силу правила дифференцирования частного и соотношений (5.32) и (5.33) в любой точке x, в которой $\sin x \neq 0$,

$$(\operatorname{ctg} x)' = \left(\frac{\cos x}{\sin x}\right)' = \frac{(\cos x)' \sin x - (\sin x)' \cos x}{\sin^2 x} = \frac{-\sin^2 x - \cos^2 x}{\sin^2 x} = \frac{1}{\sin^2 x}.$$

Итак,

$$(\operatorname{ctg} x)' = -\frac{1}{\sin^2 x} = -(1 + \operatorname{ctg}^2 x)$$
 (5.35)

(в любой точке $x \neq \pi n$, где $n = 0, \pm 1, \pm 2, \pm 3, ...$).

Экзаменационный билет № 18

1. Непрерывность суммы, произведений, частного.

Если функции f(x) и g(x) непрерывны в точке x_0 , то их сумма, произведение и частное(если $g(x_0) \neq 0$) являются функциями, непрерывными в точке x_0 .

Доказательство:

Покажем непрерывность частного. Пусть f(x),g(x) непрерывны в точке x_0 , т.е. $\lim_{x\to x_0} f(x) = f(x_0)$, $\lim_{x\to x_0} g(x) = g(x_0)$, причем $g(x_0)\neq 0$.

По теореме об арифметических действиях с пределами существует $\frac{t_{\rm reg}\,f(z)}{z-t_{\rm reg}\,g(z)}$, и этот предел равен

$$\frac{\lim_{x \to y} f(x)}{\lim_{x \to x} g(x)} = \frac{f(x)}{g(x_y)}$$
 , что означает непрерывность функции $\frac{f(x)}{g(x)}$ в точке \mathbf{x}_0 .

2. Логарифмическое дифференцирование

Погарифмическим дифференцированием называется метод дифференцирования функций, при котором сначала находится логарифм функции, а затем вычисляется производная от него. Такой прием можно использовать для нахождения производных степенных, рациональных и некоторых иррациональных функций.

Рассмотрим этот подход более детально. Пусть дана функция y = f(x). Возьмем натуральные логарифмы от обеих частей:

$$ln y = ln f(x).$$

Теперь продифференцируем это выражение как сложную функцию, имея ввиду, что y - это функция от x.

$$\left(\ln y\right)' = \left(\ln f\left(x
ight)
ight)', \ \Rightarrow rac{1}{y}y'\left(x
ight) = \left(\ln f\left(x
ight)
ight)'.$$

Отсюда видно, что искомая производная равна

$$y' = y(\ln f(x))' = f(x) \left(\ln f(x)\right)'.$$

Такая производная от логарифма функции называется логарифмической производной.

Данный метод позволяет также эффективно вычислять производные *показательно-степенных функций*, то есть функций вида

$$y = u(x)^{v(x)},$$

где $u\left(x\right)$ и $v\left(x\right)$ – дифференцируемые функции от x.

В приведенных ниже примерах вычислить производную функции y(x), используя логарифмическое дифференцирование.

- 1. Первообразная и неопределенный интеграл. http://www.cleverstudents.ru/integral/indefinite_integral_properties.
- 2. Формула Тейлора.

§ 7. ФОРМУЛА ТЕЙЛОРА

В этом параграфе мы установим одну из важнейших формул математического анализа, имеющую многочисленные приложения как в математике, так и в смежных дисциплинах.

Теорема 6.10 (теорема Тейлора*). Пусть функция f(x) имеет в некоторой окрестности точки а производную порядка ** n+1 (n — любой фиксированный номер). Пусть, далее, x — любое значение аргумента из указанной окрестности, p — произвольное положительное число. Тогда между точками а и x найдется точка ξ такая, что справедлива следующая формула:

$$f(x) = f(a) + \frac{f'(a)}{1!} (x - a) + \frac{f^{(2)}(a)}{2!} (x - a)^2 + \dots$$

$$\dots + \frac{f^{(n)}(a)}{n!} (x - a)^n + R_{n+1}(x), \tag{6.33}$$

где

$$R_{n+1}(x) = \left(\frac{x-a}{x-\xi}\right)^p \frac{(x-\xi)^{n+1}}{n! \, p} f^{(n+1)}(\xi). \tag{6.34}$$

Замечание. Так как точка ξ лежит между x и a, то дробь $\frac{x-a}{x-\xi}$ всегда положительна, а поэтому для любого p>0 определена степень $\left(\frac{x-a}{x-\xi}\right)^p$.

Формула (6.33) называется формулой Тейлора (с центром в точке a), а выражение $R_{n+1}(x)$ называется остаточным членом. Как мы увидим ниже, остаточный член может быть записан не только в виде (6.34), но и в других видах. Принято называть остаточный член, записанный в виде (6.34), остаточным членом в общей форме***.

Доказательство. Обозначим символом $\varphi(x, a)$ многочлен относительно x порядка n, фигурирующий в правой части (6.33), т. е. положим

$$\varphi(x,a) = f(a) + \frac{f'(a)}{11}(x-a) + \frac{f^{(2)}(a)}{2!}(x-a)^2 + \dots + \frac{f^{(n)}(a)}{n!}(x-a)^n.$$
(6.35)

Далее обозначим символом $R_{n+1}(x)$ разность

$$R_{n+1}(x) = f(x) - \varphi(x, a).$$
 (6.36)

Экзаменационный билет № 22

1. Производная неявно заданной функции

http://www.mathprofi.ru/proizvodnye_neyavnoi_parametricheskoi_funkcii.html

2. Понятие производной. Геометрический смысл производной, физический смысл производной.(смотри другие билеты)

Экзаменационный билет № 24

- **1.** Теоремы о пределах суммы, произведения, частного. **(смотри другие билеты)**
- 2. . Наклонные асимптоты. http://www.mathprofi.ru/asimptoty grafika funkcii.html