

Institut de Science des Matériaux de Mulhouse

Group-Meeting

(Photo)Rheology

Quentin Bauerlin

April 24, 2025

cnrs

Introduction

Part 1 – Generalities and characterisation in rheology

- I. Photorheometer: HAAKE MARS 60
- II. Choice of geometry
- III. Choice of operating mode
- IV. Choice of shear rate
- V. Possibilities and results
- **VI.** Conclusion-Perspectives

Part 2 – Next Group Meeting

cnrs

Photorheometer: HAAKE MARS 60

Computer

Pure de-ionized water: 0 to 180°C

Water with anti-freeze: -40 to 180°C

Pure de-ionized water: 0 to 200°C

Water with anti-freeze: -20 to 200°C

Control panel

IS2M Institut de Science des Matériaux de Mulhouse

Photorheometer: HAAKE MARS 60

Computer

Insulated lid

Geometry

Measuring plate glass

Thermal regulation module

Light with manual control 405 - 470 - 530 nm

Automatic light at 365 nm

cnrs

Choice of geometry

Choice of geometry Cone and **Parallel** Concentric **Torsion Plate Plate** Cylinders Rectangular Very Low Very Low Very Low Mid-modulus to Medium to High Viscosity Solids Viscosity Viscosity to Soft Solids Steel Water to 10³ 10⁵ 10⁷ 10⁻¹ 10¹ Viscosity (Pa.s) HAUTE-ALSACE cnrs

stitut de Science es Matériaux de Mulhou

2M

Choice of geometry

C25 1°/Ti

Fixed gap = 0.054 mm

P3 adapter and P20-CTC/Al inserts

Advised gap 0.1 - 0.5 mm

Variable gap = 0.1 - 2.5 mm

 $\emptyset = 2.5 \text{ cm}$ $\emptyset = 2 \text{ cm}$

Shear rate

$$\dot{\gamma} = \frac{\omega \times r}{h}$$

 τ = shear stress (Pa)

M = applied torque (N.m)

 $\dot{\gamma}$ = shear rate (s⁻¹)

 ω = angular plate speed (rad/s)

r = plate radius (m)

h = gap (m)

Choice of geometry

C25 1°/Ti

Viscosity test

Fixed gap = 0.054 mm

Photorheology

test

Advised gap 0.1 - 0.5 mm

Variable gap = 0.1 - 2.5 mm

$$\dot{\gamma} = \frac{\omega \times r}{h}$$

 τ = shear stress (Pa)

M = applied torque (N.m)

 $\dot{\gamma}$ = shear rate (s⁻¹)

 ω = angular plate speed (rad/s)

r = plate radius (m)

h = gap (m)

 $\phi = 2.5 \text{ cm}$ $\phi = 2 \text{ cm}$

Rotary oscillation

Parameters measured Viscosity, shear stress, shear rate

Example of use Painting, extrusion, pumping

Type of analysis
Viscoelasticity (solid + fluid)

Measured parameters G', G'', δ , etc.

Example of use Gels, creams, foams, polymers

Continuous rotation

Type of analysis Flow (fluid)

Parameters measured Viscosity, shear stress, shear rate

Example of use Painting, extrusion, pumping

Viscosity test

Type of analysis

Viscoelasticity (solid + fluid)

Measured parameters G', G'', δ , etc.

Example of use Gels, creams, foams, polymers

Photorheology test

Continuous rotation : Viscosity test

$$\tau = \frac{F}{A}$$

$$\gamma = \frac{x}{h}$$

$$\dot{\gamma} = \frac{d\gamma}{dt}$$

$$\eta = \frac{\tau}{\dot{\gamma}}$$

F = Force(N)

 $A = Aire (m^2)$

x = travel distance (m)

h = Gap(m)

 τ = shear stress (Pa)

 $\dot{\gamma}$ = shear rate (s⁻¹)

 η = dynamic viscosity (Pa.s)

Appropriate amount of material is essential

under loading

overloading

correct loading

Measures the <u>push</u> (stress) needed to get the material to move a certain speed (shear rate) and vice versa.

To obtain the viscosity, it is necessary to define a shear rate or a shear stress.

Controlled shear rate (CSR or CR)

Paints, creams and lotions, liquid resins, oils

 η = dynamic viscosity (Pa.s) τ = shear stress (Pa) $\dot{\gamma}$ = shear rate (s⁻¹) Controlled shear stress (CSS or CS)

Ketchup, toothpaste, thick cosmetic creams, thick inks

- •CSR mode: Deformation is imposed (variable shear rates) and the force required to cause it is measured. Suitable for fluids, where deformation depends on the speed applied.
- •CSS mode: The force is imposed, and the deformation of the material is observed.

 Suitable for viscoelastic or plastic materials, where flow begins above a stress threshold.

Choice of shear rate

Situation	Typical Shear Rate Range (s ⁻¹)	Application
Sedimentation of fine powders in suspensions	10 ⁻⁶ — 10 ⁻⁴	Pharmaceutical products, paints
Leveling due to surface tension	10 ⁻² – 10 ⁻¹	Paints, printing inks
Gravity-driven drainage	$10^0 - 10^1$	Paints and coatings, rinsing layers
Extruders	$10^0 - 10^2$	Polymers
Chewing gums	$10^1 - 10^2$	Food products
Coating applied by dipping	$10^1 - 10^2$	Paints, confectionery
Mixing and agitation	$10^0 - 10^3$	Industrial liquids

Situation	Typical Shear Rate Range (s ⁻¹)	Application
Flow in pipes	$10^0 - 10^3$	Pumping, blood flow
Spraying and equipment application	$10^3 - 10^4$	Spraying, paints, fuel atomization
Rubbing	10 ⁴ – 10 ⁵	Application of creams and lotions on the skin
Grinding pigments in fluid bases	10 ³ – 10 ⁵	Paints, printing inks
High-speed coating	$10^5 - 10^6$	Paper
Lubrication	$10^3 - 10^7$	Engines

Possibilities and results

Important: When presenting a viscosity value, it is essential to specify the measurement parameters, such as temperature, shear rate, geometry used and gap.

Viscosity curve

Rheologicals behaviours

 τ = shear stress (Pa) τ_0 = threshold stress (Pa)

 $\dot{\gamma}$ = shear rate (s⁻¹)

 η = dynamic viscosity (Pa.s)

 $k = \text{Consistency index (Pa.s}^{-1})$

n = Flow index (a.u.)

Dilatant n > 1

Pseudo-plastique 0 < n < 1

Possibilities and results

Viscosity vs time curve

Thixotropic behaviour of a paint

Viscosity vs temperature curve

- Cloud point (fuel becomes cloudy initial crystallization of waxes and paraffins)
- Pour point 1: Turning point of the viscosity curve
- Pour point 2: Bend where the viscosity curve becomes flatter

institut de Science des Matériaux de Mulh

Continuous rotation mode

Important: When presenting a viscosity value, it is essential to specify the measurement parameters, such as temperature, shear rate, geometry used and gap.

Perspectives

Rotary oscillation mode

cnrs

Thank you for your attention!

