ELECTROMAGNETISME

Chapitre 3 : Magnétostatique

Exercice 1 : Plaque de cuivre

Soit un repère orthonormé direct $(0,\overrightarrow{u_x},\overrightarrow{u_y},\overrightarrow{u_z})$ et deux plans (P) et (P') parallèles au plan (xOy), et de cotes respectives suivant (Oz) égales à $+\frac{a}{2}$ et $-\frac{a}{2}$. Ces plans délimitent une plaque de cuivre homogène, d'épaisseur a, de perméabilité μ_0 , de permittivité ε_0 et de conductivité γ .

Une densité volumique de courant continu et constant $\vec{j} = j \overrightarrow{u_x}$ (j > 0) parcourt ce conducteur de dimension infinie suivant $\overrightarrow{u_x}$ et $\overrightarrow{u_y}$. La densité superficielle de courant est nulle.

- 1) Déterminer la direction du champ magnétique $\vec{B}(M)$, créé en un point M quelconque par la distribution.
- 2) Calculer le champ magnétique $\vec{B}(M)$ en utilisant le théorème d'Ampère.
- 5 ($\vec{B}(M)$ par les équations de Maxwell.
- $\overline{2}^{\mbox{\scriptsize 1}}$ Calculer la densité volumique de puissance dissipée dans la plaque.

Données : $j = 1 A.mm^{-2}$; $\gamma = 6.2.10^7 \Omega^{-1}.m^{-1}$

Exercice 2 : Fil enroulé sur un tore

Un fil parcouru par un courant I est enroulé autour d'un tore à base carrée de rayon moyen R et de côté a. L'enroulement est supposé serré et comporte $N\gg 1$ tours.

Evaluer le champ magnétostatique créé en tout point de l'espace.

