Zusammenfassung: Logik für die Informatik

Rico Klimpel

January 29, 2020

Contents

- I Aussagenlogik
- II Prädikatenlogik
- 1 S-Signatur
- 2 S-Struktur

Informationen

- Zusammenfassung der Vorlesung Logik für die Informatik an 1 der CAU Kiel aus dem Wintersemester 2019/2020, gehalten von Prof. Dr. Thomas Wilke. Ein Versuch die wichtigsten Aussagen ohne enorm lange Formalitäten drum herum knapp
- 2 zu Papier zu bringen. Kein Anspruch auf Vollständigkeit. Geschrieben in IATEX.
- $\mathbf{2}$

² Part I

Aussagenlogik

 Hier kommt alles zur Aussagenlogik rein.

Ja

 ${\bf Stimmt}$

Schon ganz viel hier!

Part II

Prädikatenlogik

1 S-Signatur

Eine Signatur S besteht aus eine Menge S von Symbolen und einer Funktion $\Sigma \colon S \to \mathbf{N} \cup \mathbf{N} \times \{1\}$.

The Elemente von S werden Symbole genannt und wie folgt eingeteilt:

• Ein Symbol f mit $\Sigma(f) = \langle n, 1 \rangle$ für n > 0 ist eine Funktionssymbol.

Menge dieser Symbole: \mathcal{F}_{Σ} oder einfach \mathcal{F} .

• Ein Symbol R mit $\Sigma(R) = n$ für n > 0 ist ein Relationssymbol.

Menge dieser Symbole: \mathcal{R}_{Σ} oder \mathcal{R} .

• Ein Symbol c mit $\Sigma(c) = \langle 0, 1 \rangle$ ist ein Symbol für eine Konstante.

Menge dieser Symbole: \mathcal{C}_{Σ} oder \mathcal{C} .

• Symbol b mit $\Sigma(b)=0$ ist ein Symbol für einen boolschen Wert.

Menge dieser Symbole: \mathcal{B}_{Σ} or simply \mathcal{B} .

Im all gemeinen werden Signaturen mit $\mathcal{B} \neq \emptyset$ ignoriert (Signaturen ohne boolsche Werte).

Beispiele:

$$S = \{\text{zero, one, add, mult}\}\$$

$$\Sigma = \{ {\rm zero} \mapsto \langle 0, 1 \rangle, {\rm one} \mapsto \langle 0, 1 \rangle, {\rm add} \mapsto \langle 2, 1 \rangle, {\rm mult} \mapsto \langle 2, 1 \rangle \}$$

Vereinfacht aufgeschrieben:

$$S = \{\text{zero, one, add}//2, \text{mult}//2\}$$

2 S-Struktur

Sei $\mathcal S$ eine Signatur. Eine $\mathcal S$ -Struktur $\mathcal A$ besteht aus:

- Univserum A mit $A \neq \emptyset$
- Für jedes Symbol eine Konstanten $c \in \mathcal{S}$ eine Interpretation $c^{\mathcal{A}} \in A$ von c.
- Für jedes Funktionssymbol $f/\!/n \in \mathcal{S}$ eine Interpretation $f^{\mathcal{A}} \colon A^n \to A$
- Für jedes Relations symbol $R/n \in \mathcal{S}$ eine Interpretation $R^{\mathcal{A}} \subseteq A^n$

Hier ein Beispiel das ungefähr zu der Signatur oben passt:

$$A = \{0, 1, 2, 3\}$$

$$zero^{\mathcal{A}} = 3$$

$$one^{\mathcal{A}} = 2$$

$$add^{\mathcal{A}}(a, b) = 0 \qquad \text{for } a, b \in A$$

$$mult^{\mathcal{A}}(a, b) = a + b \text{ rest } 4 \qquad \text{for } a, b \in A$$

$$Lt^{\mathcal{N}} = \{\langle a, a \rangle : a \in A\}$$