Prova Totale di **Ottimizzazione Combinatoria** 20 Novembre 2008

Cognome	
Nome	
Matricola	

Domanda 1

Enunciare e dimostrare il teorema di Gallai.

Domanda 2

Dare la definizione di matrice totalmente unimodulare.

Dire se la seguente matrice è totalmente unimodulare motivando la risposta:

$$M = \begin{pmatrix} 1 & 0 & 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 & 0 & 0 \\ -1 & 0 & 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 1 \end{pmatrix}$$

Domanda 3

Dato il seguente problema di Knapsack 0-1

$$\max 6x_1 - 11x_2 + 7x_3 - 6x_4 + 8x_5 + 12x_6$$

$$2x_1 - 3x_2 + 3x_3 + 3x_4 + 2x_5 - 2x_6 \le 2$$

$$x \in \{0, 1\}^6$$

descrivere un algoritmo basato sulla programmazione dinamica e risolvere il problema con tale algoritmo.

Esercizio 1

La seguente matrice è una matrice delle distanze di un'istanza del problema del Commesso Viaggiatore.

	A	В	C	D	E	F	G	H
A	-	7	11	16	6	18	16	20
В	7	_	5	10	12	24	10	14
C	11	5	-	6	16	28	6	10
D	16	10	6	-	21	33	11	15
E	6	12	16	21	-	13	33	25
F	18	24	28	33	13	-	33	37
G	16	10	6	11	33	33	-	5
Н	20	14	10	15	25	37	5	-

Calcolare

- 1. Il valore del rilassamento che si ottiene determinando l'1-albero di costo minimo.
- 2. Una soluzione euristica S ottenuta tramite l'algoritmo di Christofides.

Cognome	
Nome	
Matricola	

Esercizio 2

Dato il grafo in figura G, a partire dal matching evidenziato $M = \{110, 29, 511, 67, 1213\}$ determinare il massimo matching e il minimo vertex cover su G. Spiegare nel dettaglio i passi degli algoritmi utilizzati.

Esercizio 3

Un'azienda deve pianificare gli investimenti per il prossimo anno. Sono stati selezionati i seguenti investimenti (le cifre sono espresse in milioni di Euro)

I_1 :	Redditività: 5	Cash Flow = $\{+6, +3, -2, -6\}$
I_2 :	Redditività: 4	Cash Flow = $\{-6, -5, +2, +3\}$
I_3 :	Redditività: 8	Cash Flow = $\{-1, -2, -3, -1\}$
I_4 :	Redditività: 3	Cash Flow = $\{-4, -5, -6, -10\}$
I ₅ :	Redditività: 2	Cash Flow = $\{+3, +2, -1, -2\}$
I ₆ :	Redditività: 3	Cash Flow = $\{-1, -3, -3, -5\}$

Sapendo che:

- a) Il budget trimestrale a disposizione dell'azienda è di $B = \{10, 12, 6, 11\}$ milioni di euro per trimestre.
- b) L'investimento I3 può essere attivato solo se è stato attivato l'investimento I4.
- c) Al più uno tra gli investimenti I2, I5, I6 può essere attivato.

Prova Totale di **Ottimizzazione Combinatoria** 20 Novembre 2008

Cognome	
Nome	
Matricola	

- 1. Formulare come PL-{0,1} il problema di massimizzare la redditività rispettando il vincolo sul budget trimestrale.
- 2. Sapendo che la soluzione ottima del rilassamento lineare del problema al punto 1. è $x_{PL}^* = \{1; 1; 0.66; 0.66; 0; 0\}$, rafforzare la formulazione con l'aggiunta di una disequazione valida calcolata rispetto al vincolo sul budget del terzo trimestre (B(3) = 6) oppure concludere che non esiste una disequazione valida violata da x_{PL}^* .

N.B.: Risolvere il problema di separazione tramite l'algoritmo di Branch and Bound.

\$