ISO Geodetic Registry

Item class Transformation

Name WGS 84 (G2139) to ITRF2014 [1]

Item statusVALIDIdentifier799

Information source Title Recent Update to WGS 84 Reference Frame and

NGA Transition to IGS ANTEX

Author Office of Geomatics / GNSS Division, National

Geospatial-Intelligence Agency

Publisher National Geospatial-Intelligence Agency

Publication date 2021

Series/Journal name Public Release

Issue identification 21-520

Other citation details https://earth-info.nga.mil/php/download.php?

file=(U)WGS%2084(G2139).pdf (accessed

2021-09-24)

Information source Title Personal communication

Author Robert Wong

Publisher National Geospatial-Intelligence Agency

Publication date 2021-10-25

Series/Journal name ISOGR Control Body Meeting

Issue identification 2021-10-25

Data source ISO Geodetic Registry

Remarks Null transformation. WGS 84 (G2139) is aligned to ITRF2014 at all

epochs.

Operation version 1.0

Scope Spatial referencing and GPS satellite navigation.

Operation accuracy 0.01 m

Source CRS WGS 84 (G2139) - XYZ

Target CRS ITRF2014 - XYZ

Operation method Coordinate Frame Transformation (geocentric Cartesian domain)

Extent

Description	World	
Geographic Bounding Box	West-bound longitude	-180.0
	North-bound latitude	90.0
	East-bound longitude	180.0
	South-bound latitude	-90.0

Operation parameter values

Time reference	2016.0 year	
Rate of change of scale difference	0.0 parts per billion per year	
Rate of change of Z-axis rotation	0.0 milliarc-second per year	
Rate of change of Y-axis rotation	0.0 milliarc-second per year	İ
Rate of change of X-axis rotation	0.0 milliarc-second per year	İ
Rate of change of Z-axis translation	0.0 millimetre per year	İ
Rate of change of Y-axis translation	0.0 millimetre per year	İ
Rate of change of X-axis translation	0.0 millimetre per year	İ
Scale difference	0.0 parts per billion	İ
Z-axis rotation	0.0 milliarc-second	İ

Y-axis rotation	0.0 milliarc-second
X-axis rotation	0.0 milliarc-second
Z-axis translation	0.0 millimetre
Y-axis translation	0.0 millimetre
X-axis translation	0.0 millimetre

ISO Geodetic Registry

Item class OperationMethod

Name Coordinate Frame Transformation (geocentric

Cartesian domain)

Item status VALID Identifier 74

Alias Coordinate Frame Transformation

Alias 7-Parameter Transformation

Alias Bursa-Wolf Transformation

Data source ISO Geodetic Registry

Remarks This method is a specific case of the Molodensky-Badekas (CF)

method in which the evaluation point is at the geocentre with

coordinate values of zero. Note the analogy with the Position Vector

transformation method but beware of the differences!

Formula Geomatics Guidance Note No 7, part 2: Coordinate Conversions and

Transformations including Formulas

Operation parameters

X-axis translation
Y-axis translation
Z-axis translation
X-axis rotation
Y-axis rotation
Z-axis rotation
Scale difference