[Total No. of Printed Pages :6

Roll No

EC - 305

B.E. III Semester

Examination, December 2012

Network Analysis

Time: Three Hours

Maximum Marks: 70/100

- **Note**: 1. Answer Five questions, selecting One question from each unit.
 - 2. All questions carry equal marks.

Unit - I

- a) Discuss the properties of an ideal current source and an ideal voltage source.
 - b) Explain the 'principle of duality'.
 - c) Draw the dual of the network shown in Fig. 1

Figure - 1

PTO

EC-305

- 2. a) Discuss the properties of series resonant circuits.
 - b) In the coupled network of Fig. 2, find the voltage across the 5 ohms resistor. (k – couplin of coefficient)

Figure - 2

Unit - II

- 3. a) Explain the terms, 'tie-set matrix' and 'cut-set matrix' with the help of simple examples.
 - b) Using superposition theorem, find the power loss in the 5 ohms resistor of the network of Fig. 3.

Figure - 3

EC-305

OR

- 4. a) State and explain the following:
 - i) Reciprocity theorem
 - ii) Millman's theorem
 - b) Using Thevenin's theorem, find the power in a 1-ohm resistor connected to the terminals A B of the network shown in Fig. 4.

Figure - 4

Unit - III

5. Explain how the initial conditions in networks can be evaluated.

The network of Fig. 5, reaches a steady state with the switch 'k' open. At t = 0, the switch 'k' is closed. Find i(t). Sketch the current wave form and indicate the value of the time constant.

Figure - 5

OR

The network of Fig. 6 contains two voltage sources, v

₁ and v

₂. With v

₁ = 30 ∠0° v, determine v

₂ such that the current in (2 ÷ j3) Ω impedance is zero, using mesh-current method.

Figure - 6

Unit-IV

- a) Explain clearly the relationship between impulse, step and ramp functions. Give their standard expressions in timedomain and their laplace transforms.
 - b) A ramp-voltage v(t) = r(t-2) is applied to a series R-C network at t = 0, when R = 3 Ω and C = I.F. Assuming zero initial conditions, find i(t).

OR

- 8. a) What is half-wave symmetry? Explain with the help of an example.
 - b) Find the trigonometric Fourier series for the wave form shown in Fig. 7 and sketch the spectrum.

EC-305

Figure - 7

Unit - V

- a) Discuss the restrictions on pole and zero locations in s-plane for driving point functions.
 - b) Find the open-circuit transfer impedance, $\frac{V_2(s)}{I_1(s)}$ and open-circuit voltage ratio, $\frac{V_2(s)}{V_1(s)}$ for the network shown in Fig. 8.

OR

10. Define z (open-circuit impedance) parameters of two port networks.

Find the 'z' parameters of the network shown in Fig. 9.
