This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

THIS PAGE BLANK (USPTO)

PCT/JP 01/01160 07.03.01

PATENT OFFICE JAPANESE GOVERNMENT

別紙添付の書類に記載されている事項は下記の出願書類に記載されて いる事項と同一であることを証明する。

This is to certify that the annexed is a true copy of the following application as filed with this Office.

出願年月日 Date of Application:

2000年 2月24日

REC'D 2 6 MAR 2001 WIFO

出 Application Number:

特願2000-047947

JP07/1160

PCT

出 顒 人 Applicant (s):

ソニー株式会社

2001年 1月 5日

特許庁長官 Commissioner, Patent Office

【書類名】

特許願

【整理番号】

9900902105

【提出日】

平成12年 2月24日

【あて先】

特許庁長官殿

【国際特許分類】

H04N 7/13

【発明者】

【住所又は居所】

東京都品川区北品川6丁目7番35号 ソニー株式会社

内

【氏名】

近藤 哲二郎

【発明者】

【住所又は居所】

東京都品川区北品川6丁目7番35号 ソニー株式会社

内

【氏名】

· 高橋 健治

【発明者】

【住所又は居所】

東京都品川区北品川6丁目7番35号 ソニー株式会社

内

【氏名】

吉川 和志

【特許出願人】

【識別番号】

000002185

【氏名又は名称】

ソニー株式会社

【代表者】

出井 伸之

【代理人】

【識別番号】

100090376

【弁理士】

【氏名又は名称】

山口 邦夫

【電話番号】

03-3291-6251

【選任した代理人】

【識別番号】

100095496

【弁理士】

【氏名又は名称】 佐々木 榮二

【電話番号】

03-3291-6251

【手数料の表示】

【予納台帳番号】

007548

【納付金額】

21,000円

【提出物件の目録】

【物件名】

明細書 1

【物件名】

図面 1

【物件名】

要約書

【包括委任状番号】

9709004

【プルーフの要否】

要.

【書類名】 明細書

【発明の名称】 画像信号変換装置、画像信号変換方法、およびそれを使用した 画像表示装置、並びにそれに使用される係数データの生成装置および生成方法 【特許請求の範囲】

【請求項1】 複数の画素データからなる第1の画像信号を複数の画素データからなる第2の画像信号に変換する画像信号変換装置において、

上記第1の画像信号から、上記第2の画像信号に係る注目画素の周辺に位置する複数の第1の画素データを選択する第1のデータ選択手段と、

上記第1のデータ選択手段で選択された上記複数の第1の画素データに基づいて、上記注目画素が属するクラスを検出するクラス検出手段と、

上記第2の画像信号による画像の解像度を選択する解像度選択手段と、

上記クラス検出手段で検出されたクラスおよび上記解像度選択手段で選択され た解像度に対応して、上記注目画素の画素データを生成する画素データ生成手段 と

を備えることを特徴とする画像信号変換装置。

【請求項2】 上記画素データ生成手段は、

上記クラス検出手段で検出されるクラスおよび上記解像度選択手段で選択される解像度の組み合わせ毎に予め生成された推定式の係数データを記憶するメモリを有し、上記クラス検出手段で検出されたクラスおよび上記解像度選択手段で選択された解像度に対応した上記係数データを発生する係数データ発生手段と、

上記第1の画像信号から、上記第2の画像信号に係る注目画素の周辺に位置する複数の第2の画素データを選択する第2のデータ選択手段と、

上記係数データ発生手段で発生された上記係数データと上記第2のデータ選択 手段で選択された上記複数の第2の画素データとから、上記推定式を用いて上記 注目画素の画素データを算出する演算手段と

を備えることを特徴とする請求項1に記載の画像信号変換装置。

【請求項3】 上記係数データ発生手段は、

上記クラス検出手段で検出されるクラスおよび上記解像度選択手段で選択される解像度の組み合わせ毎に予め生成された上記推定式の係数データを記憶する第

上記第1のメモリ部より上記解像度選択手段で選択された解像度に対応する各クラスの係数データを読み出す第1のデータ読み出し手段と、

上記第1のデータ読み出し手段で読み出された各クラスの係数データを記憶する第2のメモリ部と、

上記第2のメモリ部より上記クラス検出手段で検出されたクラスに対応する係数データを読み出す第2のデータ読み出し手段と

を備えることを特徴とする請求項2に記載の画像信号変換装置。

【請求項4】 上記クラス検出手段は、上記複数の第1の画素データのレベル分布パターンを検出し、このレベル分布パターンに基づいて上記注目画素が属するクラスを検出する

ことを特徴とする請求項1に記載の画像信号変換装置。

【請求項5】 上記解像度選択手段は、アップキーおよびダウンキーの押圧 操作により上記解像度を選択する構成とされている

ことを特徴とする請求項1に記載の画像信号変換装置。

【請求項6】 上記解像度選択手段は、つまみの回転操作によって上記解像 度を選択する構成とされている

ことを特徴とする請求項1に記載の画像信号変換装置。

【請求項7】 上記解像度選択手段で選択される解像度を表示する表示手段をさらに備える

ことを特徴とする請求項1に記載の画像信号変換装置。

【請求項8】 複数の画素データからなる第1の画像信号を複数の画素データからなる第2の画像信号に変換する画像信号変換方法において、

上記第1の画像信号から、上記第2の画像信号に係る注目画素の周辺に位置する複数の第1の画素データを選択する第1のステップと、

上記第1のステップで選択された上記複数の第1の画素データに基づいて、上 記注目画素が属するクラスを検出する第2のステップと、

上記第2の画像信号による画像の解像度を選択する第3のステップと、

上記第2のステップで検出されたクラスおよび上記第3のステップで選択され

2

特2000-047947

た解像度に対応して、上記注目画素の画素データを生成する第4のステップと を備えることを特徴とする画像信号変換方法。

【請求項9】 上記第4のステップでは、

上記第2のステップで検出されたクラスおよび上記第3のステップで選択され た解像度に対応した上記係数データを発生するステップと、

上記第1の画像信号から、上記第2の画像信号に係る注目画素の周辺に位置す る複数の第2の画素データを選択するステップと、

上記発生された係数データと上記選択された複数の第2の画素データとから、 上記推定式を用いて上記注目画素の画素データを算出するステップと

を備えることを特徴とする請求項8に記載の画像信号変換方法。

【請求項10】 上記第2のステップでは、上記複数の第1の画素データの レベル分布パターンを検出し、このレベル分布パターンに基づいて上記注目画素 が属するクラスを検出する

ことを特徴とする請求項8に記載の画像信号変換方法。

【請求項11】 上記第3のステップで選択された解像度を表示する第5の ステップをさらに備える

ことを特徴とする請求項8に記載の画像信号変換方法。

【請求項12】 複数の画素データからなる第1の画像信号を入力する画像 信号入力部と、

上記画像信号入力部より入力された上記第1の画像信号を複数の画素データか らなる第2の画像信号に変換して出力する画像信号変換手段と、

上記画像信号変換手段より出力される上記第2の画像信号による画像を表示す る画像表示手段と、

上記画像表示手段に表示される上記画像の解像度を選択する解像度選択手段と を有してなり、

上記画像信号変換手段は、

上記第1の画像信号から、上記第2の画像信号に係る注目画素の周辺に位置す る複数の第1の画素データを選択する第1のデータ選択手段と、

上記第1のデータ選択手段で選択された上記複数の第1の画素データに基づい

上記クラス検出手段で検出されたクラスおよび上記解像度選択手段で選択された解像度に対応して、上記注目画素の画素データを生成する画素データ生成手段と

を備えることを特徴とする画像表示装置。

【請求項13】 上記画素データ生成手段は、

上記クラス検出手段で検出されるクラスおよび上記解像度選択手段で選択される解像度の組み合わせ毎に予め生成された推定式の係数データを記憶するメモリを有し、上記クラス検出手段で検出されたクラスおよび上記解像度選択手段で選択された解像度に対応した上記係数データを発生する係数データ発生手段と、

上記第1の画像信号から、上記第2の画像信号に係る注目画素の周辺に位置する複数の第2の画素データを選択する第2のデータ選択手段と、

上記係数データ発生手段で発生された上記係数データと上記第2のデータ選択 手段で選択された上記複数の第2の画素データとから、上記推定式を用いて上記 注目画素の画素データを算出する演算手段と

を備えることを特徴とする請求項12に記載の画像表示装置。

【請求項14】 上記クラス検出手段は、上記複数の第1の画素データのレベル分布パターンを検出し、このレベル分布パターンに基づいて上記注目画素が 属するクラスを検出する

ことを特徴とする請求項12に記載の画像表示装置。

【請求項15】 上記解像度選択手段で選択された解像度を上記画像表示手段の画面上に表示する表示制御手段をさらに備える

ことを特徴とする請求項12に記載の画像表示装置。

【請求項16】 放送信号を受信して上記第1の画像信号を得る受信手段を さらに備える

ことを特徴とする請求項12に記載の画像表示装置。

【請求項17】 複数の画素データからなる第1の画像信号を複数の画素データからなる第2の画像信号に変換する際に使用される推定式の係数データを生成する装置において、

上記第2の画像信号に対応する教師信号を処理して上記第1の画像信号に対応 する入力信号を得る信号処理手段と、

上記信号処理手段で得られる上記入力信号による画像の解像度を選択する解像 度選択手段と、

上記入力信号から、上記教師信号に係る注目画素の周辺に位置する複数の第1 の画素データを選択する第1のデータ選択手段と、

上記第1のデータ選択手段で選択された上記複数の第1の画素データに基づいて、上記注目画素が属するクラスを検出するクラス検出手段と、

上記入力信号から、上記教師信号に係る注目画素の周辺に位置する複数の第2 の画素データを選択する第2のデータ選択手段と、

上記クラス検出手段で検出されたクラスと、上記第2のデータ選択手段で選択 された上記複数の第2の画素データと、上記教師信号に係る注目画素のデータと から、各クラス毎に、上記係数データを得るための正規方程式を生成する正規方 程式生成手段と、

上記正規方程式を解いて上記クラス毎の係数データを得る係数データ演算手段 と

を備えることを特徴とする係数データ生成装置。

【請求項18】 上記信号処理手段は、上記教師信号に対して垂直および水平の間引き処理をして上記第1の画像信号に対応する上記入力信号を得るガウシアンフィルタを有してなり、

上記解像度選択手段は、上記ガウシアンフィルタの標準偏差を選択することで 上記入力信号による画像の解像度を選択する

ことを特徴とする請求項17に記載の係数データ生成装置。

【請求項19】 複数の画素データからなる第1の画像信号を複数の画素データからなる第2の画像信号に変換する際に使用される推定式の係数データを生成する方法において、

上記第2の画像信号に対応する教師信号を処理して上記第1の画像信号に対応 する入力信号を得る第1のステップと、

上記第1のステップで得られる上記入力信号による画像の解像度を選択する第

2のステップと、

上記入力信号から、上記教師信号に係る注目画素の周辺に位置する複数の第1 の画素データを選択する第3のステップと、

上記第3のステップで選択された上記複数の第1の画素データに基づいて、上 記注目画素が属するクラスを検出する第4のステップと、

上記入力信号から、上記教師信号に係る注目画素の周辺に位置する複数の第2 の画素データを選択する第5のステップと、

上記第4のステップで検出された上記クラスと、上記第5のステップで選択された上記複数の第2の画素データと、上記教師信号に係る注目画素のデータとから、各クラス毎に、上記係数データを得るための正規方程式を生成する第6のステップと、

上記第6のステップで生成された上記正規方程式を解いて上記クラス毎の係数 データを得る第7のステップと

を備えることを特徴とする係数データ生成方法。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】

この発明は、例えばNTSC方式のビデオ信号をハイビジョンのビデオ信号に変換する際に適用して好適な画像信号変換装置、画像信号変換方法、およびそれを使用した画像表示装置、並びにそれに使用される係数データの生成装置および生成方法に関する。詳しくは、第1の画像信号を第2の画像信号に変換する際に第2の画像信号に係る注目画素の画素データをユーザによって選択された解像度に対応して生成することによって、第2の画像信号による画像の解像度をユーザが所望の値に任意に調整できるようにした画像信号変換装置等に係るものである

[0002]

【従来の技術】

近年、オーディオ・ビジュアル指向の高まりから、より高解像度の画像を得る ことができるようなテレビ受信機の開発が望まれ、この要望に応えて、いわゆる ハイビジョンが開発された。ハイビジョンの走査線数は、NTSC方式の走査線数が525本であるのに対して、2倍以上の1125本である。また、ハイビジョンの縦横比は、NTSC方式の縦横比が3:4であるのに対して、9:16となっている。このため、ハイビジョンでは、NTSC方式に比べて、高解像度で臨場感のある画像を表示することができる。

[0003]

ハイビジョンはこのように優れた特性を有するが、NTSC方式のビデオ信号をそのまま供給しても、ハイビジョン方式による画像表示を行うことはできない。これは、上述のようにNTSC方式とハイビジョンとでは規格が異なるからである。

[0004]

そこで、NTSC方式のビデオ信号に応じた画像をハイビジョン方式で表示するため、本出願人は、先に、NTSC方式のビデオ信号をハイビジョンのビデオ信号に変換するための変換装置を提案した(特願平6-205934号参照)。この変換装置では、NTSC方式のビデオ信号から、ハイビジョンのビデオ信号に係る注目画素に対応するブロック(領域)の画素データを抽出し、このブロックの画素データのレベル分布パターンに基づいて上記注目画素のクラスを決定し、このクラスに対応して上記注目画素の画素データを生成するようになっている

[0005]

【発明が解決しようとする課題】

上述した変換装置においては、ハイビジョンのビデオ信号による画像の解像度は固定されており、従来のコントラストやシャープネス等の調整のように、画像 内容等に応じて所望の解像度とすることができなかった。

[0006]

そこで、この発明では、出力画像信号による画像の解像度をユーザが所望の値 に任意に調整し得る画像信号変換装置等を提供することを目的とする。

[0007]

【課題を解決するための手段】

この発明に係る画像信号変換装置は、複数の画素データからなる第1の画像信号を複数の画素データからなる第2の画像信号に変換する画像信号変換装置において、第1の画像信号から、第2の画像信号に係る注目画素の周辺に位置する複数の第1の画素データを選択する第1のデータ選択手段と、この第1のデータ選択手段で選択された複数の第1の画素データに基づいて、注目画素が属するクラスを検出するクラス検出手段と、第2の画像信号による画像の解像度を選択する解像度選択手段と、クラス検出手段で決定されたクラスおよび解像度選択手段で選択された解像度に対応して、注目画素の画素データを生成する画素データ生成手段とを備えるものである。

[0008]

例えば、画素データ生成手段は、クラス検出手段で検出されるクラスおよび解像度選択手段で選択される解像度の組み合わせ毎に予め生成された推定式の係数データを記憶するメモリを有し、クラス検出手段で検出されたクラスおよび解像度選択手段で選択された解像度に対応した係数データを発生する係数データ発生手段と、第1の画像信号から、第2の画像信号に係る注目画素の周辺に位置する複数の第2の画素データを選択する第2のデータ選択手段と、係数データ発生手段で発生された係数データと第2のデータ選択手段で選択された複数の第2の画素データとから、推定式を用いて注目画素の画素データを算出する演算手段とを備えるものである。

[0009]

また、この発明に係る画像信号変換方法は、複数の画素データからなる第1の画像信号を複数の画素データからなる第2の画像信号に変換する画像信号変換方法において、第1の画像信号から、第2の画像信号に係る注目画素の周辺に位置する複数の第1の画素データを選択する第1のステップと、この第1のステップで選択された複数の第1の画素データに基づいて、注目画素が属するクラスを検出する第2のステップと、第2の画像信号による画像の解像度を選択する第3のステップと、第2のステップで検出されたクラスおよび第3のステップで選択された解像度に対応して、注目画素の画素データを生成する第4のステップとを備えるものである。

[0010]

また、この発明に係る画像表示装置は、複数の画素データからなる第1の画像信号を入力する画像信号入力部と、この画像信号入力部より入力された第1の画像信号を複数の画素データからなる第2の画像信号に変換して出力する画像信号変換手段と、この画像信号変換手段より出力される上記第2の画像信号による画像を表示する画像表示手段と、この画像表示手段に表示される画像の解像度を選択する解像度選択手段とを有してなるものである。そして、画像信号変換手段は、第1の画像信号から、第2の画像信号に係る注目画素の周辺に位置する複数の第1の画素データを選択する第1のデータ選択手段と、この第1のデータ選択手段で選択された複数の第1の画素データに基づいて、注目画素が属するクラスを検出するクラス検出手段と、このクラス検出手段で検出されたクラスおよび解像度選択手段で選択された解像度に対応して、注目画素の画素データを生成する画素データ生成手段とを備えるものである。

[0011]

この発明において、第1の画像信号から、第2の画像信号に係る注目画素の周辺に位置する複数の第1の画素データが選択され、その複数の第1の画素データに基づいて、上記注目画素が属するクラスが検出される。例えば、複数の第1の画素データのレベル分布パターンが検出され、このレベル分布パターンに基づいて上記注目画素の属するクラスが検出される。なお、第1の画像信号は、例えば放送信号より得られる。また、ユーザが解像度アップキーおよび解像度ダウンキーの押圧操作または解像度調整つまみの回転操作をすることで、第2の画像信号による解像度が選択される。このように選択される解像度は、表示手段、例えば第2の画像信号による画像が表示される表示手段の画面上に、数値または棒グラフ等で表示される。第1および第2のデータ選択手段が共通に構成され、従って複数の第1の画素データと複数の第2の画素データとが同じであってもよい。

[0012]

そして、選択された解像度および検出されたクラスに対応して、注目画像の画素データが生成される。例えば、クラスおよび解像度の組み合わせ毎に予め生成された推定式の係数データがメモリに記憶されており、このメモリより選択され

た解像度および検出されたクラスに対応した係数データが読み出されると共に、 第1の画像信号から、第2の画像信号に係る注目画素の周辺に位置する複数の第 2の画素データが選択され、上記推定式により、上記注目画素の画素データが算 出される。

[0013]

上述したように、第1の画像信号を第2の画像信号に変換する際に、第2の画像信号に係る注目画素の画素データは、ユーザによって選択された解像度に対応して生成される。そのため、ユーザは、第2の画像信号による画像の解像度を、従来のコントラストやシャープネスの調整のように、所望の値に任意に調整できるようになる。

[0014]

また、この発明に係る係数データ生成装置は、複数の画素データからなる第1の画像信号を複数の画素データからなる第2の画像信号に変換する際に使用される推定式の係数データを生成する装置において、第2の画像信号に対応する教師信号を処理して第1の画像信号に対応する入力信号を得る信号処理手段と、この信号処理手段で得られる入力信号による画像の解像度を選択する解像度選択手段と、入力信号から、教師信号に係る注目画素の周辺に位置する複数の第1の画素データを選択する第1のデータ選択手段と、この第1のデータ選択手段で選択された複数の第1の画素データに基づいて、上記注目画素が属するクラスを検出するクラス検出手段と、入力信号から、教師信号に係る注目画素の周辺に位置する複数の第2の画素データを選択する第2のデータ選択手段と、クラス検出手段で検出されたクラスと、第2のデータ選択手段で選択された複数の第2の画素データと、教師信号に係る注目画素とから、各クラス毎に、係数データを得るための正規方程式を生成する正規方程式生成手段と、この正規方程式を解いてクラス毎の係数データを得る係数データ演算手段とを備えるものである。

[0015]

また、この発明に係る係数データ生成方法は、複数の画素データからなる第1 の画像信号を複数の画素データからなる第2の画像信号に変換する際に使用され る推定式の係数データを生成する方法において、第2の画像信号に対応する教師 信号を処理して第1の画像信号に対応する入力信号を得る第1のステップと、この第1のステップで得られる入力信号による画像の解像度を選択する第2のステップと、入力信号から、教師信号に係る注目画素の周辺に位置する複数の第1の画素データを選択する第3のステップと、この第3のステップで選択された複数の第1の画素データに基づいて、注目画素が属するクラスを検出する第4のステップと、入力信号から、教師信号に係る注目画素の周辺に位置する複数の第2の画素データを選択する第5のステップと、第4のステップで検出されたクラスと、第5のステップで選択された複数の第2の画素データと、教師信号に係る注目画素とから、各クラス毎に、係数データを得るための正規方程式を生成する第6のステップと、この第6のステップで生成された正規方程式を解いてクラス毎の係数データを得る第7のステップとを備えるものである。

[0016]

この発明においては、第2の画像信号、例えばハイビジョンのビデオ信号に対応する教師信号が処理されて、第1の画像信号、例えばNTSC方式のビデオ信号に対応する入力信号が得られる。この場合、入力信号による画像の解像度は、予め選択された解像度に対応するものとされる。

[0017]

この入力信号から、教師信号に係る注目画素の周辺に位置する複数の第1の画素データが選択され、その複数の第1の画素データに基づいて、上記注目画素が属するクラスが検出される。また、この入力信号から、教師信号に係る注目画素の周辺に位置する複数の第2の画素データが選択される。

[0018]

そして、これら検出されたクラスと、選択された複数の第2の画素データと、 教師信号に係る注目画素とから、各クラス毎に係数データをそれぞれ得るための 正規方程式が生成され、この正規方程式を解くことで各クラス毎の係数データが 得られる。

[0019]

上述したようにして第1の画像信号を第2の画像信号に変換する際に使用される推定式の係数データが生成されるものであるが、上述した入力信号による画像

の解像度が低くなる程、第2の画像信号による画像の解像度は高くなる。これにより、入力信号による画像の解像度を順次変更して係数データを生成しておき、第1の画像信号を第2の画像信号に変換する際に係数データを選択的に使用することで、第2の画像信号の解像度を任意に調整できるようになる。

[0020]

【発明の実施の形態】

以下、図面を参照しながら、この発明の実施の形態について説明する。図1は、実施の形態としてのテレビ受信機100の構成を示している。このテレビ受信機100は、放送信号よりSD (Standard Definition) 信号としての525 i 信号を得、この525 i 信号をHD (High Definition) 信号としての525 p 信号または1050 i 信号に変換し、その525 p 信号または1050 i 信号になる画像を表示するものである。

[0021]

[0022]

テレ受信機100は、マイクロコンピュータを備え、システム全体の動作を制御するためのシステムコントローラ101と、リモートコントロール信号を受信するリモコン信号受信回路102とを有している。リモコン信号受信回路102は、システムコントローラ101に接続され、リモコン送信機200よりユーザの操作に応じて出力されるリモートコントロール信号RMを受信し、その信号RMに対応する操作信号をシステムコントローラ101に供給するように構成されている。

[0023]

また、テレビ受信機100は、受信アンテナ105と、この受信アンテナ10 5で捕らえられた放送信号(RF変調信号)が供給され、選局処理、中間周波増 幅処理、検波処理等を行って上述したSD信号Va(525i信号)を得るチュ ーナ106と、外部よりSD信号Vb(525i信号)を入力する外部入力端子107と、これらSD信号Va, Vbのいずれかを選択的に出力する切換スイッチ108と、この切換スイッチ108より出力されるSD信号を一時的に保存するためのバッファメモリ109とを有している。

[0024]

チューナ106より出力されるSD信号Vaは切換スイッチ108のa側の固定端子に供給され、外部入力端子107より入力されるSD信号Vbは切換スイッチ108のb側の固定端子に供給される。この切換スイッチ108の切り換え動作は、システムコントローラ101によって制御される。

[0025]

また、テレビ受信機100は、バッファメモリ109に一時的に保存されるSD信号(525i信号)を、HD信号(525p信号または1050i信号)に変換する画像信号変換部110と、この画像信号変換部110より出力されるHD信号による画像を表示するディスプレイ部111と、このディスプレイ部111の画面上に文字図形等の表示を行うための表示信号SCHを発生させるためのOSD(On Screen Display)回路112と、その表示信号SCHを、上述した画像信号変換部110より出力されるHD信号に合成してディスプレイ部111に供給するための合成器113とを有している。

[0026]

ディスプレイ部111は、例えばCRT (cathode-ray tube)ディスプレイ、あるいはLCD (liquid crystal display) 等のフラットパネルディスプレイで構成されている。また、OSD回路112における表示信号SCHの発生動作は、システムコントローラ101によって制御される。

[0027]

図1に示すテレビ受信機100の動作を説明する。

[0028]

ユーザのリモコン送信機200の操作でチューナ106より出力されるSD信号Vaに対応する画像表示を行うモードが選択される場合、システムコントローラ101の制御によって切換スイッチ108はa側に接続されて、この切換スイ

ッチ108よりSD信号Vaが出力される。一方、ユーザのリモコン送信機200の操作で外部入力端子107に入力されるSD信号Vbに対応する画像表示を行うモードが選択される場合、システムコントローラ101の制御によって切換スイッチ108はb側に接続されて、この切換スイッチ108よりSD信号Vbが出力される。

[0029]

切換スイッチ108より出力されるSD信号(525i信号)はバッファメモリ109に記憶されて一時的に保存される。そして、このバッファメモリ109に一時的に保存されたSD信号は画像信号変換部110に供給され、HD信号(525p信号または1050i信号)に変換される。すなわち、画像信号変換部110では、SD信号を構成する画素データ(以下、「SD画素データ」という)から、HD信号を構成する画素データ(以下、「HD画素データ」という)が得られる。ここで、525p信号または1050i信号の選択は、ユーザのリモコン送信機200の操作によって行われる。この画像信号変換部110より出力されるHD信号が合成器113を介してディスプレイ部111に供給され、ディスプレイ部111の画面上にはそのHD信号による画像が表示される。

[0030]

また、上述せずも、ユーザは、リモコン送信機200の操作によって、上述したようにディスプレイ部111の画面上に表示される画像の解像度を選択できる。例えば、解像度選択モードで、アップキーおよびダウンキーの押圧操作をすることで解像度の選択が行われる。また例えば、解像度選択モードで、ジョグダイヤル等のつまみの回転操作をすることで解像度の選択が行われる。

[0031]

画像信号変換部110では、後述するように、HD画素データが推定式によって算出されるが、この推定式の係数データとして、ユーザのリモコン送信機200の操作によって選択された解像度に対応したものが使用される。これにより、画像信号変換部110より出力されるHD信号による画像の解像度は、その選択された解像度に対応したものとなる。

[0032]

なお、ユーザのリモコン送信機200の操作によって解像度の選択操作が行われている状態では、ディスプレイ部111の画面上に、選択された解像度の表示が行われる。この表示は、図示せずも、数値または棒グラフ等で表示される。ユーザは、この解像度表示を参照して解像度の選択を行うことができる。このように画面上に選択された解像度を表示する際、システムコントローラ101は表示データをOSD回路112に供給する。これにより、OSD回路112は、その表示データに基づいて表示信号SCHを発生し、この表示信号SCHを合成器113を介してディスプレイ部111に供給することとなる。

[0033]

次に、画像信号変換部110の詳細を説明する。この画像信号変換部110は、バッファメモリ109に記憶されているSD信号(525i信号)より、HD信号(1050i信号または525p信号)に係る注目画素の周辺に位置する複数のSD画素のデータを選択的に取り出して出力する第1~第3のタップ選択回一路121~123を有している。----

[0034]

第1のタップ選択回路121は、予測に使用するSD画素(「予測タップ」と称する)のデータを選択的に取り出すものである。第2のタップ選択回路122は、SD画素データのレベル分布パターンに対応するクラス分類に使用するSD画素(「空間クラスタップ」と称する)のデータを選択的に取り出すものである。第3のタップ選択回路1-2-3は、動きに対応するクラス分類に使用するSD画素(「動きクラスタップ」と称する)のデータを選択的に取り出するものである。なお、空間クラスを複数フィールドに属するSD画素データを使用して決定する場合には、この空間クラスにも動き情報が含まれることになる。

[0035]

図2は、525i信号および525p信号の、あるフレーム(F)の奇数(o)フィールドの画素位置関係を示している。大きなドットが525i信号の画素であり、小さいドットが出力される525p信号の画素である。偶数(e)フィールドでは、525i信号のラインが空間的に0.5ラインずれたものとなる。図2から分かるように、525p信号の画素データとしては、525i信号のラ

インと同一位置のラインデータL1と、525i信号の上下のラインの中間位置のラインデータL2とが存在する。また、525p信号の各ラインの画素数は、525i信号の各ラインの画素数の2倍である。

[0036]

図3は、525i信号および1050i信号のあるフレーム(F)の画素位置関係を示すものであり、奇数(o)フィールドの画素位置を実線で示し、偶数(e)フィールドの画素位置を破線で示している。大きなドットが525i信号の画素であり、小さいドットが出力される1050i信号の画素である。図3から分かるように、1050i信号の画素データとしては、525i信号のラインに近い位置のラインデータL1,L1'と、525i信号のラインから遠い位置のラインデータL2,L2'とが存在する。ここで、L1,L2は奇数フィールドのラインデータ、L1',L2'は偶数フィールドのラインデータ、L1',L2'は偶数フィールドのラインデータである。また、1050i信号の各ラインの画素数は、525i信号の各ラインの画素数の2倍である。

[0037]

図4および図5は、525i信号から525p信号に変換する場合に、第1のタップ選択回路121で選択される予測タップ(SD画素)の具体例を示している。図4および図5は、時間的に連続するフレームF-1, F, F+1の奇数(o)、偶数(e)のフィールドの垂直方向の画素位置関係を示している。

[0038]

図4に示すように、フィールドF/οのラインデータL1,L2を予測するときの予測タップは、次のフィールドF/eに含まれ、作成すべき525p信号の画素(注目画素)に対して空間的に近傍位置のSD画素T1,T2,T3と、フィールドF/οに含まれ、作成すべき525p信号の画素に対して空間的に近傍位置のSD画素T4,T5,T6と、前のフィールドF-1/eに含まれ、作成すべき525p信号の画素に対して空間的に近傍位置のSD画素T7,T8,T9と、さらに前のF-1/οに含まれ、作成すべき525p信号の画素に対して空間的に近傍位置のSD画素T10である。

[0039]

図5に示すように、フィールドF/eのラインデータL1, L2を予測するときの予測タップは、次のフィールドF+1/oに含まれ、作成すべき525p信号の画素に対して空間的に近傍位置のSD画素T1, T2, T3と、フィールドF/eに含まれ、作成すべき525p信号の画素に対して空間的に近傍位置のSD画素T4, T5, T6と、前のフィールドF/oに含まれ、作成すべき525p信号の画素に対して空間的に近傍位置のSD画素T7, T8, T9と、さらに前のF-1/eに含まれ、作成すべき525p信号の画素に対して空間的に近傍位置のSD画素T10である。

[0040]

なお、ラインデータL1を予測する際にはSD画素T9を予測タップとして選択しないようにし、一方ラインデータL2を予測する際にはSD画素T4を予測タップとして選択しないようにしてもよい。

[0041]

図6および図7は、525i信号から1050i信号に変換する場合に、第1のタップ選択回路121で選択される予測タップ(SD画素)の具体例を示している。図6および図7は、時間的に連続するフレームF-1, F, F+1の奇数(o)、偶数(e)のフィールドの垂直方向の画素位置関係を示している。

[0042]

図6に示すように、フィールドF/oのラインデータL1, L2を予測するときの予測タップは、次のフィールドF/eに含まれ、作成すべき1050i信号の画素(注目画素)に対して空間的に近傍位置のSD画素T1, T2と、フィールドF/oに含まれ、作成すべき525p信号の画素に対して空間的に近傍位置のSD画素T3, T4, T5, T6と、前のフィールドF-1/eに含まれ、作成すべき1050i信号の画素に対して空間的に近傍位置のSD画素T7, T8である。

[0043]

図7に示すように、フィールドF/eのラインデータL1', L2'を予測するときの予測タップは、次のフィールドF+1/oに含まれ、作成すべき1050ip信号の画素に対して空間的に近傍位置のSD画素T1, T2と、フィールド

F/e に含まれ、作成すべき 1050 i 信号の画素に対して空間的に近傍位置の SD 画素 T3, T4, T5, T6 と、前のフィールド F/o に含まれ、作成すべき 525 p 信号の画素に対して空間的に近傍位置の SD 画素 T7, T8 である。

[0044]

なお、ラインデータL1,L1′を予測する際にはSD画素T6を予測タップとして選択しないようにし、一方ラインデータL2,L2′を予測する際にはSD画素T3を予測タップとして選択しないようにしてもよい。

[0045]

さらに、図4〜図7に示すように複数フィールドの同一位置にあるSD画素に加えて、水平方向の一または複数のSD画素を、予測タップとして選択するようにしてもよい。

[0046]

図8および図9は、525i信号から525p信号に変換する場合に、第2のタップ選択回路122で選択される空間クラスターップー(SD画素)の具体例を示している。図8および図9は、時間的に連続するフレームF-1, F, F+1の奇数(o)、偶数(e)のフィールドの垂直方向の画素位置関係を示している。

[0047]

図8に示すように、フィールドF/oのラインデータL1, L2を予測するときの空間クラスタップは、次のフィールドF/eに含まれ、作成すべき525p信号の画素=(注目画素)に対して空間的に近傍位置のSD画素T1, T2と、フィールドF/oに含まれ、作成すべき525p信号の画素に対して空間的に近傍位置のSD画素T3, T4, T5と、前のフィールドF-1/eに含まれ、作成すべき525p信号の画素に対して空間的に近傍位置のSD画素T6, T7である

[0048]

図9に示すように、フィールドF/eのラインデータL1, L2を予測するときの空間クラスタップは、次のフィールドF+1/oに含まれ、作成すべき525 p信号の画素に対して空間的に近傍位置のSD画素T1, T2と、フィールドF/eに含まれ、作成すべき525p信号の画素に対して空間的に近傍位置のSD

[0049]

なお、ラインデータL1を予測する際にはSD画素T7を空間クラスタップとして選択しないようにし、一方ラインデータL2を予測する際にはSD画素T6を空間クラスタップとして選択しないようにしてもよい。

[0050]

図10および図11は、525i信号から1050i信号に変換する場合に、第2のタップ選択回路122で選択される空間クラスタップ(SD画素)の具体例を示している。図10および図11は、時間的に連続するフレームF-1, F, F+1の奇数(o)、偶数(e)のフィールドの垂直方向の画素位置関係を示している。

[0051]

図10に示すように、フィールドF/oのラインデータL1, L2を予測するときの空間クラスタップは、フィールドF/oに含まれ、作成すべき1050i信号の画素(注目画素)に対して空間的に近傍位置のSD画素T1, T2, T3と、前のフィールドF-1/eに含まれ、作成すべき1050i信号の画素に対して空間的に近傍位置のSD画素T4, T5, T6, T7である。

[0052]

図11に示すように、フィールドF/eのラインデータL1', L2'を予測するときの空間クラスタップは、フィールドF/eに含まれ、作成すべき1050i信号の画素に対して空間的に近傍位置のSD画素T1, T2, T3と、前のフィールドF/oに含まれ、作成すべき1050i信号の画素に対して空間的に近傍位置のSD画素T4, T5, T6, T7である。

[0053]

なお、ラインデータL1,L1′を予測する際にはSD画素T7を空間クラスタップとして選択しないようにし、一方ラインデータL2,L2′を予測する際にはSD画素T4を空間クラスタップとして選択しないようにしてもよい。

[0054]

さらに、図8~図11に示すように複数フィールドの同一位置にあるSD画素に加えて、水平方向の一または複数のSD画素を、空間クラスタップとして選択するようにしてもよい。

[0055]

図12は、525i信号から525p信号に変換する場合に、第3のタップ選択回路123で選択される動きクラスタップ(SD画素)の具体例を示している。図12は、時間的に連続するフレームF-1、Fの奇数(o)、偶数(e)のフィールドの垂直方向の画素位置関係を示している。図12に示すように、フィールドF/oのラインデータL1、L2を予測するときの動きクラスタップは、次のフィールドF/eに含まれ、作成すべき525p信号の画素(注目画素)に対して空間的に近傍位置のSD画素n2、n4、n6と、フィールドF/oに含まれ、作成すべき525p信号の画素に対して空間的に近傍位置のSD画素n1、n3、n5と、前のフィールドF-1/eに含まれ、作成すべき525p信号の画素に対して空間的に近傍位置のSD画素m2、m4、m6と、さらに前のフィールドF-1/oに含まれ、作成すべき525p信号の画素に対して空間的に近傍位置のSD画素m1、m3、m5である。SD画素n1~n6のそれぞれの垂直方向の位置は、SD画素m1~m6のそれぞれの垂直方向の位置は一致する。

[0056]

図13は、525i信号から1050i信号に変換する場合に、第3のタップ 選択回路123で選択される動きクラスタップ (SD画素)の具体例を示している。図13は、時間的に連続するフレームF-1, Fの奇数 (o)、偶数 (e)のフィールドの垂直方向の画素位置関係を示している。図13に示すように、フィールドF/oのラインデータL1, L2を予測するときの動きクラスタップは、次のフィールドF/eに含まれ、作成すべき1050i信号の画素に対して空間的に近傍位置のSD画素n2, n4, n6と、フィールドF/oに含まれ、作成すべき1050i信号の画素に対して空間的に近傍位置のSD画素n1, n3, n5と、前のフィールドF-1/eに含まれ、作成すべき1050i信号の画素に対して空間的に近傍位置のSD画素に対して空間的に近傍位置のSD画素に対して空間的に近傍位置のSD画素に対して空間的に近傍位置のSD画素に対して空間的に近傍位置のSD画素に対して空間的に近傍位置のSD画素に対して空間的に近傍位置のSD画素に対して空間的に近傍位置

のSD画素m1, m3, m5である。SD画素 $n1 \sim n6$ のそれぞれの垂直方向の位置は、SD画素 $m1 \sim m6$ のそれぞれの垂直方向の位置は一致する。

[0057]

図1に戻って、また、画像信号変換部110は、第2のタップ選択回路122 で選択的に取り出される空間クラスタップのデータ(SD画素データ)のレベル 分布パターンを検出し、このレベル分布パターンに基づいて空間クラスを検出し 、そのクラス情報を出力する空間クラス検出回路124を有している。

[0058]

空間クラス検出回路124では、例えば、各SD画素データを、8ビットデータから2ビットデータに圧縮するような演算が行われる。そして、空間クラス検出回路124からは、各SD画素データに対応した圧縮データが空間クラスのクラス情報として出力される。本実施の形態においては、ADRC(Adaptive Dynamic Range Coding)によって、データ圧縮が行われる。なお、情報圧縮手段としては、ADRC以外にDPCM(予測符号化)、VQ(ベクトル量子化)等を用いてもよい。

[0059]

本来、ADRCは、VTR (Video Tape Recorder) 向け高性能符号化用に開発された適応再量子化法であるが、信号レベルの局所的なパターンを短い語長で効率的に表現できるので、上述したデータ圧縮に使用して好適なものである。ADRCを使用する場合、空間クラスタップのデータ (SD画素データ)の最大値をMAX、その最小値をMIN、空間クラスタップのデータのダイナミックレンジをDR (=MAX-MIN+1)、再量子化ビット数をPとすると、空間クラスタップのデータとしての各SD画素データkiに対して、(1)式の演算により、圧縮データとしての再量子化コードQiが得られる。ただし、(1)式において、[]は切り捨て処理を意味している。空間クラスタップのデータとして、Na個のSD画素データがあるとき、i=1~Naである。

[0060]

 $Qi = [(ki - MIN + 0.5).2^{P}/DR] \cdot \cdot \cdot (1)$

また、画像信号変換部110は、第3のタップ選択回路123で選択的に取り

出される動きクラスタップのデータ(SD画素データ)より、主に動きの程度を 表すための動きクラスを検出し、そのクラス情報を出力する動きクラス検出回路 125を有している。

[0061]

この動きクラス検出回路125では、第3のタップ選択回路123で選択的に取り出される動きクラスタップのデータ(SD画素データ)mi,niからフレーム間差分が算出され、さらにその差分の絶対値の平均値に対してしきい値処理が行われて動きの指標である動きクラスが検出される。すなわち、動きクラス検出回路125では、(2)式によって、差分の絶対値の平均値AVが算出される。第3のタップ選択回路123で、例えば上述したように12個のSD画素データm1~m6,n1~n6が取り出されるとき、(2)式におけるNbは6である。

[0062]

【数1】

$$A V = \frac{\sum_{i=1}^{Nb} |m_i - n_i|}{Nb}$$

[0063]

そして、動きクラス検出回路 $1 \ 2 \ 5$ では、上述したように算出された平均値 A V が 1 個または複数個のしきい値と比較されて動きクラスのクラス情報 M V が得られる。例えば、 3 個のしきい値 t h 1 , t h 2 , t h 3 (t h 1 < t h 2 < t h 3) が用意され、 4 つの動きクラスを検出する場合、 A V \leq t h 1 のときは M V = 0 、 t h 1 < A V \leq t h 2 のときは M V = 1 、 t h 2 < A V \leq t h 3 のときは M V = 2 、 t h 3 < A V のときは M V = 3 とされる。

[0064]

また、画像信号変換部110は、空間クラス検出回路124より出力される空

間クラスのクラス情報としての再量子化コードQiと、動きクラス検出回路125より出力される動きクラスのクラス情報MVに基づき、作成すべきHD信号(525p信号または1050i信号)の画素(注目画素)が属するクラスを示すクラスコードCLを得るためのクラス合成回路126を有している。

[0065]

このクラス合成回路126では、(3)式によって、クラスコードCLの演算が行われる。なお、(3)式において、Naは空間クラスタップのデータ(SD画素データ)の個数、PはADRCにおける再量子化ビット数を示している。

[0066]

【数2】

$$CL = \sum_{i=1}^{Na} q_i(2^P)^i + MV \cdot 2^{P^{Na}} \cdot \cdot \cdot (3)$$

[0067]

また、画像信号変換部110は、レジスタ130~133と、係数メモリ134とを有している。後述する線順次変換回路128は、525p信号を出力する場合と、1050i信号を出力する場合とで、その動作を切り換える必要がある。レジスタ130は、線順次変換回路1280動作を指定する動作指定情報を格納するものである。線順次変換回路128は、レジスタ130より供給される動作指定情報に従った動作をする。

[0068]

レジスタ131は、第1のタップ選択回路121で選択される予測タップのタップ位置情報を格納するものである。第1のタップ選択回路121は、レジスタ131より供給されるタップ位置情報に従って予測タップを選択する。タップ位置情報は、例えば選択される可能性のある複数のSD画素に対して番号付けを行い、選択するSD画素の番号を指定するものである。以下のタップ位置情報においても同様である。

[0069]

レジスタ132は、第2のタップ選択回路122で選択される空間クラスタッ

プのタップ位置情報を格納するものである。第2のタップ選択回路122は、レジスタ132より供給されるタップ位置情報に従って空間クラスタップを選択する。

[0070]

ここで、レジスタ132には、動きが比較的小さい場合のタップ位置情報Aと、動きが比較的大きい場合のタップ位置情報Bとが格納される。これらタップ位置情報A, Bのいずれを第2のタップ選択回路122に供給するかは、動きクラス検出回路125より出力される動きクラスのクラス情報MVによって選択される。

[0071]

すなわち、動きがないか、あるいは動きが小さいためにMV=0またはMV=1であるときは、タップ位置情報Aが第2のタップ選択回路122に供給され、この第2のタップ選択回路122で選択される空間クラスタップは、図8~図11に示すように、2フィールドに跨るものとされる。また、動きが比較的大きいためにMV=2またはMV=3であるときは、タップ位置情報Bが第2のタップ選択回路122に供給され、この第2のタップ選択回路122で選択される空間クラスタップは、図示せずも、作成すべき画素と同一フィールド内のSD画素のみとされる。

[0072]

なお、上述したレジスタ131にも動きが比較的小さい場合のタップ位置情報と、動きが比較的大きい場合のタップ位置情報が格納されるようにし、第1のタップ選択回路121に供給されるタップ位置情報が動きクラス検出回路125より出力される動きクラスのクラス情報MVによって選択されるようにしてもよい

[0073]

レジスタ133は、第3のタップ選択回路123で選択される動きクラスタップのタップ位置情報を格納するものである。第3のタップ選択回路123は、レジスタ133より供給されるタップ位置情報に従って動きクラスタップを選択する。

さらに、係数メモリ134は、後述する推定予測演算回路127で使用される推定式の係数データを各クラス毎に格納するものである。この係数データは、SD信号としての525p信号または1050i信号に変換するための情報である。係数メモリ134には上述したクラス合成回路126より出力されるクラスコードCLが読み出しアドレス情報として供給され、この係数メモリ134からはクラスコードCLに対応した係数データが読み出され、推定予測演算回路127に供給されることとなる。

[0075]

また、画像信号変換部110は、情報メモリバンク135を有している。この情報メモリバンク135には、レジスタ130に格納するための動作指定情報と、レジスタ131~133に格納するためのタップ位置情報と、係数メモリ134に格納するための係数データとが予め蓄えられている。

[0076]

ここで、レジスタ130に格納するための動作指定情報として、情報メモリバンク135には、線順次変換回路128を525p信号を出力するように動作させるための第1の動作指定情報と、線順次変換回路128を1050i信号を出力するように動作させるための第2の動作指定情報とが予め蓄えられている。

[0077]

ユーザはリモコン送信機200を操作することで、HD信号として525p信号を出力する第1の変換方法、またはHD信号として1050i信号を出力する第2の変換方法を選択できる。情報メモリバンク135にはシステムコントローラ101よりその変換方法の選択情報が供給され、この情報メモリバンク135よりレジスタ130にはその選択情報に従って第1の動作指定情報または第2の動作指定情報がロードされる。

[0078]

また、レジスタ131に格納するための予測タップのタップ位置情報として、 第1の変換方法(525p)に対応する第1のタップ位置情報と、第2の変換方 法(1050ⅰ)に対応する第2のタップ位置情報とが予め蓄えられている。こ

[0079]

また、レジスタ132に格納するための空間クラスタップのタップ位置情報として、第1の変換方法(525p)に対応する第1のタップ位置情報と、第2の変換方法(1050i)に対応する第2のタップ位置情報とが予め蓄えられている。なお、第1および第2のタップ位置情報は、それぞれ動きが比較的小さい場合のタップ位置情報と、動きが比較的大きい場合のタップ位置情報とからなっている。この情報メモリバンク135よりレジスタ132には、上述した変換方法の選択情報に従って第1のタップ位置情報または第2のタップ位置情報がロードされる。

[0080]

また、レジスタ133に格納するための動きクラスタップのタップ位置情報として、第1の変換方法(525p)に対応する第1のタップ位置情報と、第2の変換方法(1050i)に対応する第2のタップ位置情報とが予め蓄えられている。この情報メモリバンク135よりレジスタ133には、上述した変換方法の選択情報に従って第1のタップ位置情報または第2のタップ位置情報がロードされる。

[0081]

また、係数メモリ134に格納するための係数データとして、第1および第2の変換方法のそれぞれに対応した複数の解像度における各クラス毎の係数データが予め蓄えられている。この複数の解像度に対応する係数データの生成方法については後述する。

[0082]

上述せずも、ユーザは、リモコン送信機200の操作部においてアップキーおよびダウンキーの押圧操作、またはジョグダイヤル等のつまみの回転操作をすることで、画像変換部110より出力されるHD信号による画像の解像度を任意に選択できる。情報メモリバンク135にはシステムコントローラ101よりその解像度の選択情報が供給され、この情報メモリバンク135より係数メモリ13

4には選択された解像度および上述した選択された変換方法に対応した係数データがロードされる。

[0083]

また、画像信号変換部110は、第1のタップ選択回路121で選択的に取り出される予測タップのデータ(SD画素データ)xiと、係数メモリ134より読み出される係数データwiとから、作成すべきHD信号の画素(注目画素)のデータ(HD画素データ)を演算する推定予測演算回路127を有している。

[0084]

この推定予測演算回路127では、525p信号を出力する場合、上述した図2に示すように、奇数(o)フィールドおよび偶数(e)フィールドで、525i信号のラインと同一位置のラインデータL1と、525i信号の上下のラインの中間位置のラインデータL2とを生成し、また各ラインの画素数を2倍とする必要がある。また、この推定演算回路127では、1050i信号を出力する場合、上述した図3に示すように、奇数(o)フィールドおよび偶数(e)フィールドで、525i信号のラインに近い位置のラインデータL1, L1′と、525i信号のラインから遠い位置のラインデータL2, L2′とを生成し、また各ラインの画素数を2倍とする必要がある。

[0085]

従って、推定予測演算回路127では、HD信号を構成する4画素のデータが同時的に生成される。例えば、4画素のデータはそれぞれ係数データを異にする推定式を使用して同時的に生成されるものであり、係数メモリ134からはそれぞれの推定式の係数データが供給される。ここで、推定予測演算回路127では、予測タップのデータ(SD画素データ)xiと、係数メモリ134より読み出される係数データwiとから、(4)式の線形推定式によって、作成すべきHD画素データyが演算される。第1のタップ選択回路121で選択される予測タップが、図4および図5に示すように10個であるとき、(4)式におけるnは10となる。

[0086]

【数3】

$$y = \sum_{i=1}^{n} w_i \cdot x_i \qquad \cdot \cdot \cdot (4)$$

[0087]

また、画像信号変換部110は、水平周期を2倍とするライン倍速処理を行って、推定予測演算回路127より出力されるラインデータL1,L2(L1',L2')を線順次化する線順次変換回路128を有している。

[0088]

図14は、525p信号を出力する場合のライン倍速処理をアナログ波形を用いて示すものである。上述したように、推定予測演算回路127によってラインデータL1, L2が生成される。ラインデータL1には順にa1, a2, a3, ・・・のラインが含まれ、ラインデータL2には順にb1, b2, b3, ・・・のラインが含まれる。線順次変換回路128は、各ラインのデータを時間軸方向に1/2に圧縮し、圧縮されたデータを交互に選択することによって、線順次出力a0, b0, a1, b1, ・・・を形成する。

[0089]

なお、1050i信号を出力する場合には、奇数フィールドおよび偶数フィールドでインタレース関係を満たすように、線順次変換回路128が線順次出力を発生する。したがって、線順次変換回路128は、525p信号を出力する場合と、1050i信号を出力する場合とで、その動作を切り換える必要がある。その動作指定情報は、上述したようにレジスタ130より供給される。

[0090]

次に、画像信号変換部110の動作を説明する。

[0091]

バッファメモリ109に記憶されているSD信号(525i信号)より、第2のタップ選択回路122で、空間クラスタップのデータ(SD画素データ)が選択的に取り出される。この場合、第2のタップ選択回路122では、レジスタ1

3 2 より供給される、ユーザによって選択された変換方法、および動きクラス検 出回路 1 2 5 で検出される動きクラスに対応したタップ位置情報に基づいて、タップの選択が行われる。

[0092]

この第2のタップ選択回路122で選択的に取り出される空間クラスタップのデータ(SD画素データ)は空間クラス検出回路124に供給される。この空間クラス検出回路124では、空間クラスタップのデータとしての各SD画素データに対してADRC処理が施されて空間クラス(主に空間内の波形表現のためのクラス分類)のクラス情報としての再量子化コードQiが得られる((1)式参照)。

[0093]

また、バッファメモリ109に記憶されているSD信号(525i信号)より、第3のタップ選択回路123で、動きクラスタップのデータ(SD画素データ)が選択的に取り出される。この場合、第3のタップ選択回路123では、レジスタ133より供給される、ユーザによって選択された変換方法に対応したタップ位置情報に基づいて、タップの選択が行われる。

[0094]

この第3のタップ選択回路123で選択的に取り出される動きクラスタップのデータ(SD画素データ)は動きクラス検出回路125に供給される。この動きクラス検出回路125では、動きクラスタップのデータとしての各SD画素データより動きクラス(主に動きの程度を表すためのクラス分類)のクラス情報MVが得られる。

[0095]

この動き情報MVと上述した再量子化コードQiはクラス合成回路126に供給される。このクラス合成回路126では、これら動き情報MVと再量子化コードQiとから、作成すべきHD信号(525p信号または1050i信号)の画素(注目画素)が属するクラスを示すクラスコードCLが得られる((3)式参照)。そして、このクラスコードCLは係数メモリ134に読み出しアドレス情報として供給される。

係数メモリ134には、ユーザによって選択された解像度および変換方法における各クラス毎の係数データが、情報メモリバンク135よりロードされて格納されている。上述したようにクラスコードCLが読み出しアドレス情報として供給されることで、この係数メモリ134からクラスコードCLに対応した係数データwiが読み出されて推定予測演算回路127に供給される。

[0097]

また、バッファメモリ109に記憶されているSD信号(525i信号)より、第1のタップ選択回路121で、予測タップのデータ(SD画素データ)が選択的に取り出される。この場合、第1のタップ選択回路121では、レジスタ131より供給される、ユーザによって選択された変換方法に対応したタップ位置情報に基づいて、タップの選択が行われる。この第1のタップ選択回路121で選択的に取り出される予測タップのデータ(SD画素データ)xiは推定予測演算回路127に供給される。

[0098]

推定予測演算回路127では、予測タップのデータ(SD画素データ) x i と、係数メモリ134より読み出される係数データwiとから、作成すべき HD信号の画素(注目画素)のデータ(HD画素データ) yが演算される((4) 式参照)。この場合、HD信号を構成する4画素のデータが同時的に生成される。

[0099]

これにより、525p信号を出力する第1の変換方法が選択されているときは、奇数(o)フィールドおよび偶数(e)フィールドで、525i信号のラインと同一位置のラインデータL1と、525i信号の上下のラインの中間位置のラインデータL2とが生成される(図2参照)。また、1050i信号を出力する第2の変換方法が選択されているときは、奇数(o)フィールドおよび偶数(e)フィールドで、525i信号のラインに近い位置のラインデータL1, L1′と、525i信号のラインから遠い位置のラインデータL2, L2′とが生成される(図3参照)。

[0100]

このように推定予測演算回路127で生成されたラインデータL1, L2(L1', L2')は線順次変換回路128に供給される。そして、この線順次変換回路128では、ラインデータL1, L2(L1', L2')が線順次化されてHD信号が生成される。この場合、線順次変換回路128は、レジスタ130より供給される、ユーザによって選択された変換方法に対応した動作指示情報に従った動作をする。そのため、ユーザによって第1の変換方法(525p)が選択されているときは、線順次変換回路128より525p信号が出力される。一方、ユーザによって第2の変換方法(1050i)が選択されているときは、線順次変換回路128より1050i信号が出力される。

[0101]

上述したように、係数メモリ134に格納される各クラスの係数データは、ユーザによって選択された解像度に対応したものとなる。そのため、ユーザがリモコン送信機200で解像度を変更する操作をすると、それに伴って係数メモリ134に格納される各クラスの係数データも変更され、推定予測演算回路127ではHD信号の画素データが、ユーザによって選択された解像度に対応して生成される。したがって、線順次変換回路128より出力されるHD信号による画像の解像度も変更されることとなり、ユーザは、変換して得られるHD信号による画像の解像度を、従来のコントラストやシャープネスの調整のように、所望の値に任意に調整できる。

[0102]

上述したように、情報メモリバンク135には、複数の解像度における各クラス毎の係数データが記憶されている。この係数データは、予め学習によって生成されたものである。

[0103]

まず、この学習方法について説明する。(4)式の推定式に基づく係数データ wi(i=1~n)を最小自乗法により求める例を示すものとする。一般化した 例として、Xを入力データ、Wを係数データ、Yを予測値として、(5)式の観測方程式を考える。この(5)式において、mは学習データの数を示し、nは予測タップの数を示している。

[0104]

【数4】

$$XW = Y \qquad \cdot \cdot \cdot (5)$$

[0105]

- (5)式の観測方程式により収集されたデータに最小自乗法を適用する。この
- (5)式の観測方程式をもとに、(6)式の残差方程式を考える。

[0106]

【数5】

$$XW = Y + E$$
, $E = \begin{bmatrix} e & 1 \\ e & 2 \\ \cdots \\ e & m \end{bmatrix}$... (6)

[0107]

(6)式の残差方程式から、各wiの最確値は、(7)式のe²を最小にする条件が成り立つ場合と考えられる。すなわち、(8)式の条件を考慮すればよいわけである。

[0108]

【数 6】

$$e^{2} = \sum_{i=1}^{m} e^{i^{2}} \cdot \cdot \cdot (7)$$

$$e^{1} \frac{\partial e^{1}}{\partial w_{i}} + e^{2} \frac{\partial e^{2}}{\partial w_{i}} + \cdot \cdot \cdot + e^{m} \frac{\partial e^{m}}{\partial w_{i}} = 0 \quad (i=1, 2, \dots, n)$$

$$\cdot \cdot \cdot (8)$$

[0109]

つまり、(8)式のiに基づくn個の条件を考え、これを満たす \mathbf{w}_1 , \mathbf{w}_2 , ・・・, \mathbf{w}_n を算出すればよい。そこで、(6)式の残差方程式から、(9)式が得られる。さらに、(9)式と(5)式とから、(10)式が得られる。

[0110]

【数7】

$$\frac{\partial e i}{\partial w_1} = x i_1, \quad \frac{\partial e i}{\partial w_2} = x i_2, \cdots, \quad \frac{\partial e i}{\partial w_n} = x i_n (i=1, 2, \cdots, m)$$

$$\sum_{i=1}^{m} e_{i} x_{i} = 0, \quad \sum_{i=1}^{m} e_{i} x_{i} = 0, \quad \cdot \cdot \cdot, \quad \sum_{i=1}^{m} e_{i} x_{i} = 0$$

[0111]

そして、(6)式と(10)式とから、(11)式の正規方程式が得られる。 【0112】 【数8】

[0113]

(11)式の正規方程式は、未知数の数 n と同じ数の方程式を立てることが可能であるので、各wiの最確値を求めることができる。この場合、掃き出し法 (Guss-Jordanの消去法) 等を用いて連立方程式を解くことになる。

[0114]

図15は、上述した係数データの学習フローを示している。学習を行うためには、入力信号と予測対象となる教師信号を用意しておく。

[0115]

まず、ステップST11で、教師信号より得られる注目画素データと入力信号より得られる予測タップのn個の画素データとの組み合わせを学習データとして生成する。次に、ステップST12で、学習データの生成が終了したか否かを判定し、学習データの生成が終了していないときは、ステップST13でその学習データにおける注目画素データが属するクラスを決定する。このクラスの決定は、注目画素データに対応して入力信号より得られる所定数の画素データに基づいて行われる。

[0116]

そして、ステップST14で、各クラス毎に、ステップST11で生成された 学習データ、すなわち注目画素データと予測タップのn個の画素データとを使用 して、(11)式に示すような正規方程式を生成する。ステップST11~ステップST14の動作は、学習データの生成が終了するまで繰り返され、多くの学

[0117]

ステップST12で学習データの生成が終了したときは、ステップST15で、各クラス毎に生成された正規方程式を解き、各クラス毎のn個の係数データwiを求める。そして、ステップST16で、クラス別にアドレス分割されたメモリに係数データwiを登録して、学習フローを終了する。

[0118]

次に、図1に示したテレビ受信機100の画像信号変換部110内の情報メモリバンク135に記憶される複数の解像度における各クラス毎の係数データwiを、上述した学習の原理によって予め生成する係数データ生成装置150の詳細を説明する。図16は、係数データ生成装置150の構成例を示している。

[0119]

この係数データ生成装置150は、教師信号としてのHD信号(525p信号 / 1050i信号)が入力される入力端子151と、このHD信号に対して水平 および垂直の間引きフィルタ処理を行って、入力信号としてのSD信号を得る2次元間引きフィルタ152とを有している。

[0120]

2次元間引きフィルタ152には、変換方法選択信号が制御信号として供給される。第1の変換方法(図1の画像信号変換部110で525i信号より525 p信号を得る)が選択される場合、2次元間引きフィルタ152では525p信号に対して間引き処理が施されてSD信号が生成される(図2参照)。一方、第2の変換方法(図1の画像信号変換部110で525i信号より1050i信号を得る)が選択される場合、2次元間引きフィルタ152では1050i信号に対して間引き処理が施されてSD信号が生成される(図3参照)。

[0121]

また、2次元間引きフィルタ152には、解像度の選択信号が制御信号として供給される。この解像度は、図1に示すテレビ受信機100でユーザがリモコン送信機200の操作で選択し得る解像度と同義である。この解像度選択信号で示される解像度が高くなるほど、2次元間引きフィルタ152で生成されるSD信

[0122]

例えば、2次元間引きフィルタ152はガウシアンフィルタを用いて構成される。この場合、HD信号を構成する垂直方向の画素データが(12)式で示される1次元ガウシアンフィルタにより間引き処理され、同様にHD信号を構成する水平方向の画素データも同様の1次元ガウシアンフィルタにより間引き処理されることでSD信号が生成される。このように2次元間引きフィルタ152がガウシアンフィルタを用いて構成される場合、上述した解像度選択信号によって標準偏差σの値が変更される。

[0123]

【数9】

O u t =
$$\frac{1.0}{\sigma\sqrt{2.0\pi}} e^{\frac{-(4.0x-37)^2}{2.0\sigma^2}}$$
 . . . (12)

[0124]

また、係数データ生成装置150は、2次元間引きフィルタ152より出力されるSD信号(525i信号)より、HD信号(1050i信号または525p信号)に係る注目画素の周辺に位置する複数のSD画素のデータを選択的に取り出して出力する第1~第3のタップ選択回路153~155を有している。

[0125]

これら第1~第3のタップ選択回路153~155は、上述した画像信号変換部110の第1~第3のタップ選択回路121~123と同様に構成される。これら第1~第3のタップ選択回路153~155で選択されるタップは、タップ選択制御部156からのタップ位置情報によって指定される。

[0126]

タップ選択制御回路156には、変換方法選択信号が制御信号として供給される。第1の変換方法が選択される場合と第2の変換方法が選択される場合とで、第1~第3のタップ選択回路153~155に供給されるタップ位置情報が異な

るようにされている。また、タップ選択制御回路156には後述する動きクラス 検出回路158より出力される動きクラスのクラス情報MVが供給される。これ により、第2のタップ選択回路154に供給されるタップ位置情報が動きが大き いか小さいかによって異なるようにされる。

[0127]

また、係数データ生成装置150は、第2のタップ選択回路154で選択的に取り出される空間クラスタップのデータ(SD画素データ)のレベル分布パターンを検出し、このレベル分布パターンに基づいて空間クラスを検出し、そのクラス情報を出力する空間クラス検出回路157を有している。この空間クラス検出回路157は、上述した画像信号変換部110の空間クラス検出回路124と同様に構成される。この空間クラス検出回路157からは、空間クラスタップのデータとしての各SD画素データ毎の再量子化コードQiが空間クラスを示すクラス情報として出力される。

[0128]

また、係数データ生成装置150は、第3のタップ選択回路155で選択的に取り出される動きクラスタップのデータ(SD画素データ)より、主に動きの程度を表すための動きクラスを検出し、そのクラス情報MVを出力する動きクラス検出回路158は、上述した画像信号変換部110の動きクラス検出回路125と同様に構成される。この動きクラス検出回路155で選択的に取り出される動きクラスタップのデータ(SD画素データ)からフレーム間差分が算出され、さらにその差分の絶対値の平均値に対してしきい値処理が行われて動きの指標である動きクラスが検出される。

[0129]

また、係数データ生成装置150は、空間クラス検出回路№57より出力される空間クラスのクラス情報としての再量子化コードQiと、動きクラス検出回路158より出力される動きクラスのクラス情報MVに基づき、HD信号(525p信号または1050i信号)に係る注目画素が属するクラスを示すクラスコードCLを得るためのクラス合成回路159を有している。このクラス合成回路1

[0130]

また、係数データ生成装置150は、入力端子151に供給されるHD信号より得られる注目画素データとしての各HD画素データッと、この各HD画素データッにそれぞれ対応して第1のタップ選択回路153で選択的に取り出される予測タップのデータ(SD画素データ)xiと、各HD画素データッにそれぞれ対応してクラス合成回路159より出力されるクラスコードCLとから、各クラス毎に、n個の係数データwiを得るための正規方程式((11)式参照)を生成する正規方程式生成部160を有している。

[0131]

この場合、一個のHD画素データッとそれに対応するn個の予測タップ画素データとの組み合わせで上述した学習データが生成され、従って正規方程式生成部160では多くの学習データが登録された正規方程式が生成される。なお、図示せずも、第1のタップ選択回路153の前段に時間合わせ用の遅延回路を配置することで、この第1のタップ選択回路153から正規方程式生成部160に供給されるSD画素データ×iのタイミング合わせを行うことができる。

[0132]

また、係数データ生成装置150は、正規方程式生成部160で各クラス毎に 生成された正規方程式のデータが供給され、各クラス毎に生成された正規方程式 を解いて、各クラス毎の係数データwiを求める係数データ決定部161と、こ の求められた係数データwiを記憶する係数メモリ162とを有している。係数 データ決定部161では、正規方程式が例えば掃き出し法などによって解かれて 、係数データwiが求められる。

[0133]

図16に示す係数データ生成装置150の動作を説明する。入力端子151には教師信号としてのHD信号(525p信号または1050i信号)が供給され、そしてこのHD信号に対して2次元間引きフィルタ152で水平および垂直の間引き処理が行われて入力信号としてのSD信号(525i信号)が生成される

[0134]

この場合、第1の変換方法(図1の画像信号変換部110で525i信号より525p信号を得る)が選択される場合、2次元間引きフィルタ152では525p信号に対して間引き処理が施されてSD信号が生成される。一方、第2の変換方法(図1の画像信号変換部110で525i信号より1050i信号を得る)が選択される場合、2次元間引きフィルタ152では1050i信号に対して間引き処理が施されてSD信号が生成される。

[0135]

またこの場合、生成されるSD信号による画像の解像度は解像度選択信号に対応したものとなり、解像度選択信号で示される解像度が高くなるほど、2次元間引きフィルタ152で生成されるSD信号による画像の解像度は低下したものとなる。SD信号による画像の解像度が低くなるほど、図1の画像信号変換部110で生成されるHD信号による画像の解像度を高くする係数データが得られることとなる。

[0136]

このSD信号(525i信号)より、第2のタップ選択回路154で、HD信号(525p信号または1050i信号)に係る注目画素の周辺に位置する空間クラスタップのデータ(SD画素データ)が選択的に取り出される。この第2のタップ選択回路154では、タップ選択制御回路156より供給される、選択された変換方法、および動きクラス検出回路158で検出される動きクラスにに対応したタップ位置情報に基づいて、タップの選択が行われる。

[0137]

この第2のタップ選択回路154で選択的に取り出される空間クラスタップのデータ(SD画素データ)は空間クラス検出回路157に供給される。この空間クラス検出回路157では、空間クラスタップのデータとしての各SD画素データに対してADRC処理が施されて空間クラス(主に空間内の波形表現のためのクラス分類)のクラス情報としての再量子化コードQiが得られる((1)式参照)。

また、2次元間引きフィルタ152で生成されたSD信号より、第3のタップ 選択回路155で、HD信号に係る注目画素の周辺に位置する動きクラスタップ のデータ(SD画素データ)が選択的に取り出される。この場合、第3のタップ 選択回路155では、タップ選択制御回路156より供給される、選択された変 換方法に対応したタップ位置情報に基づいて、タップの選択が行われる。

[0139]

この第3のタップ選択回路155で選択的に取り出される動きクラスタップのデータ(SD画素データ)は動きクラス検出回路158に供給される。この動きクラス検出回路158では、動きクラスタップのデータとしての各SD画素データより動きクラス(主に動きの程度を表すためのクラス分類)のクラス情報MVが得られる。

[0140]

この動き情報MVと上述した再量子化コードQiはクラス合成回路159に供給される。このクラス合成回路159では、これら動き情報MVと再量子化コードQiとから、HD信号(525p信号または1050i信号)に係る注目画素が属するクラスを示すクラスコードCLが得られる((3)式参照)。

[0141]

また、2次元間引きフィルタ152で生成されるSD信号より、第1のタップ選択回路153で、HD信号に係る注目画素の周辺に位置する予測タップのデータ(SD画素データ)が選択的に取り出される。この場合、第1のタップ選択回路153では、タップ選択制御回路156より供給される、選択された変換方法に対応したタップ位置情報に基づいて、タップの選択が行われる。

[0142]

そして、入力端子151に供給されるHD信号より得られる注目画素データとしての各HD画素データッと、この各HD画素データッにそれぞれ対応して第1のタップ選択回路121で選択的に取り出される予測タップのデータ(SD画素データ)xiと、各HD画素データッにそれぞれ対応してクラス合成回路159より出力されるクラスコードCLとから、正規方程式生成部160では、各クラ

[0143]

そして、係数データ決定部161でその正規方程式が解かれ、各クラス毎の係数データwiが求められ、その係数データwiはクラス別にアドレス分割された係数メモリ162に記憶される。

[0144]

このように、図16に示す係数データ生成装置150においては、図1の画像信号変換部110の情報メモリバンク135に記憶される各クラス毎の係数データwiを生成することができる。

[0145]

この場合、2次元間引きフィルタ152では、選択された変換方法によって525p信号または1050i信号を使用してSD信号(525i信号)が生成されるものであり、第1の変換方法(画像信号変換部110で525i信号より525p信号を得る)および第2の変換方法(画像信号変換部110で525i信号より1050i信号を得る)に対応した係数データを生成できる。

[0146]

また、2次元間引きフィルタ152で生成されるSD信号による画像の解像度を解像度選択信号によって変化させることができる。そのため、このSD信号による画像の解像度を順次変化させて各クラス毎の係数データを決定していくことで、複数の解像度における各クラス毎の係数データを生成できる。

[0147]

なお、上述実施の形態においては、HD信号を生成する際の推定式として線形 一次方程式を使用したものを挙げたが、推定式として高次方程式を使用するもの であってもよい。

[0148]

また、上述実施の形態においては、SD信号(525i信号)をHD信号(525p信号または1050i信号)に変換する例を示したが、この発明はそれに限定されるものでなく、推定式を使用して第1の画像信号を第2の画像信号に変換するその他の場合にも同様に適用できることは勿論である。

[0149]

【発明の効果】

この発明によれば、第1の画像信号を第2の画像信号に変換する際に第2の画像信号に係る注目画素の画素データをユーザによって選択された解像度に対応して生成するものであり、ユーザは、第2の画像信号による画像の解像度を、従来のコントラストやシャープネス等の調整のように所望の値に任意に調整できる。

【図面の簡単な説明】

【図1】

実施の形態としてのテレビ受信機の構成を示すブロック図である。

【図2】

- 525i信号と525p信号の画素位置関係を説明するための図である。 【図3】
- 525i信号と1050i信号の画素位置関係を説明するための図である。
- 525iと525pの画素位置関係と、予測タップの一例を示す図である。 【図5】
- 5 2 5 i と 5 2 5 p の画素位置関係と、予測タップの一例を示す図である。 【図 6】
- 525iと1050iの画素位置関係と、予測タップの一例を示す図である。

___【図.7.】____

- 525iと1050iの画素位置関係と、予測タップの一例を示す図である。 【図8】
- 525iと525pの画素位置関係と、空間クラスタップの一例を示す図である。

【図9】

525iと525pの画素位置関係と、空間クラスタップの一例を示す図である。

【図10】

525iと1050iの画素位置関係と、空間クラスタップの一例を示す図で

ある。

【図11】

525iと1050iの画素位置関係と、空間クラスタップの一例を示す図である。

【図12】

525iと525pの画素位置関係と、動きクラスタップの一例を示す図である。

【図13】

525iと1050iの画素位置関係と、動きクラスタップの一例を示す図である。

【図14】

525p信号を出力する場合のライン倍速処理を説明するための図である。

【図15】

係数データの学習フローを示すフローチャートである。

【図16】

係数データ生成装置の構成例を示すブロック図である。

【符号の説明】

100・・・テレビ受信機、101・・・システムコントローラ、102・・・リモコン信号受信回路、105・・・受信アンテナ、106・・・チューナ、107・・外部入力端子、110・・・画像信号変換部、111・・・ディスプレイ部111、112・・・OSD回路、121・・・第1のタップ選択回路、122・・・第2のタップ選択回路、123・・・第3のタップ選択回路、124・・・空間クラス検出回路、125・・・動きクラス検出回路、126・・・クラス合成回路、127・・・推定予測演算回路、128・・・線順次変換回路、130~133・・・レジスタ、134・・・係数メモリ、135章・・情報メモリバンク、150・・・係数データ生成装置、151・・・入力端子、152・・・2次元間引きフィルタ、153・・・第1のタップ選択回路、154・・・第2のタップ選択回路、155・・・第3のタップ選択回路、156・・・タップ選択制御回路、157・・・空間クラス検出回路、158・・・動きク

ラス検出回路、159・・・クラス合成回路、160・・・正規方程式生成部、 161・・・係数データ決定部、162・・・係数メモリ、200・・・リモコン送信機

図面

【図1】

【図2】

525i信号と525P信号の画素 位置関係

【図3】

【図4】

予測タップの例(525i──→ 525p)

【図5】

予測タップの例(525i─→ 525p)

【図6】

予測タップの例(525i→→1050i)

【図7】

予測タップの例(525i──→1050i)

【図8】

空間クラスタップの例 (525i─→525p)

空間クラスタップの例 (525i──→1050i)

動きクラスタップの例 (525i─→525p)

【図13】

動きクラスタップの例 (525i----1050i)

525P信号を出力する場合の ライン倍速処理

係数データの学習フロー

【図16】

係数データ生成装置

【書類名】

要約書

【要約】

【課題】出力画像信号による画像の解像度を任意に調整可能とする。

【解決手段】画像信号変換部110でSD信号 (525i)をHD信号 (525p等)に変換し、ディスプレイ部111に画像表示する。SD信号より選択的に取り出された、HD信号の注目画素に対応するタップの画素データより空間クラスや動きクラスを検出し、当該HD信号の注目画素のクラスを示すクラスコードCLを得る。コントローラ101は、ユーザが解像度の選択操作を行う際、選択された解像度における各クラス毎の係数データを情報メモリバンク135より係数メモリ134にロードする。演算回路127で、タップ選択回路121でSD信号より選択的に取り出された、HD信号の注目画素に対応するタップのデータxiと、係数メモリ134よりクラスコードCLで読み出された係数データwiとから、推定式を使用して、HD信号の注目画素の画素データを演算する。

【選択図】

図1

出願人履歴情報

識別番号

[000002185]

1. 変更年月日

1990年 8月30日

[変更理由]

新規登録

住 所

東京都品川区北品川6丁目7番35号

氏 名

ソニー株式会社

THIS PAGE BLANK (USPTO)