ČÍSLICOVÝ MĚŘIČ IMPEDANCÍ A ADMITANCÍ

Jakub Dvořák

4. prosince 2020

1 Úkol měření

1. Odvoďte, že pro zapojení na obr. 1 platí vztahy

$$R_{\rm X} = \frac{-R_{\rm N} \operatorname{Re}\{U_{2}\}}{U_{1}}; \qquad L_{\rm X} = \frac{-R_{\rm N} \operatorname{Im}\{U_{2}\}}{\omega U_{1}}$$
 (1)

a pro zapojení na obr. 2 platí:

$$G_{X} = \frac{-\operatorname{Re}\{\mathbf{U}_{2}\}}{R_{N} U_{1}}; \qquad C_{X} = \frac{\operatorname{Im}\{\mathbf{U}_{2}\}}{\omega R_{N} U_{1}}$$
 (2)

Obr. 1 Zapojení převodníku pro měření impedance

Obr. 2 Zapojení převodníku pro měření admitance

2. Sestaveným LRC měřičem změřte indukčnost a ztrátový odpor předložené cívky. Použijte sériové náhradní schéma L_s , R_s , měřte při doporučených hodnotách kmitočtů a odporů R_N uvedených v tabulce.

Doporučený kmitočet f (Hz)	ω	Velikost $R_{ m N}$ (Ω)
159,2	10 ³	100
1592	10 ⁴	1000

- 3. Pro jedno měření zakreslete do sešitu průběhy napětí za řízeným usměrňovačem (v poloze $Rei\ Im$) a dokažte, že střední hodnota (stejnosměrná složka) tohoto napětí U_{2s} odpovídá reálné, popř. imaginární složce fázoru výstupního napětí \mathbf{U}_2 .
- 4. Výše uvedeným RLC měřičem změřte průchozí admitanci předloženého kondenzátoru a obě dvě parazitní kapacity vůči stínění. Použijte paralelní náhradní schéma C_P , G_P , měřte při kmitočtu 1592 Hz, $R_N = 100 \text{ k}\Omega$.

2 Schéma zapojení

Obrázek 1: Schéma zapojení přípravku pro měření impedancí a admitancí

3 Seznam použitých přístrojů

G - generátor napětí ČV1,2 - číslicové voltmetry, AC a DC RN -odporová dekáda Napájecí zdroj ± 15 V

4 Teoretický úvod

Pro měření reálné a imaginární složky výstupního napětí $\hat{U_2}$ využíváme řízený usměrňovač. Jako referenční napětí pro řízení přepínače použijeme při měření reálné složky napájecí napětí $\hat{U_1}$ volené komparátorem. Pro měření imaginární složky použijeme pro řízení usměrňovače TTL výstup z generátoru., které je posunuto o $\frac{\pi}{4}$ = 90 °.

4.0.1 Odvození vztahů

$$\begin{split} \hat{I}_{\text{RN}} &= -\hat{I}_{\text{ZX}} \\ \frac{\hat{U}_1}{R_{\text{N}}} &= -\frac{\hat{U}_2}{Z_{\text{X}}} \\ \hat{Z}_{\text{X}} &= -\frac{R_{\text{N}}\hat{U}_{\text{N}}}{U_1} \\ L_{\text{X}} &= -\frac{R_{\text{N}}\text{Im}\{\hat{U}_2\}}{\omega U_1} \end{split} \tag{1}$$

5 Naměřené hodnoty

Naměřené hodnoty jsou v tabulce níže

Cívka						
f[Hz]	$R[\Omega]$	U[V]	Re[V]	Im[V]	L[H]	
159,2	100	1,03	0,02	0,66	0,66	
Kondenzátor						
f[Hz]	$R[\Omega]$	U[V]	Re[mV]	Im[V]	C[nF]	
159,2	1000	1,02	26,6	1,01	1,009	

6 Zpracování naměřených hodnot

Obrázek 2: Nakreslené průběhy napětí na čase

6.0.1 Terminování kondenzátoru

$$Im\{\hat{U}_{2}\} = 1,11 \text{ V}$$

$$Im\{\hat{U}_{2}\} = 1,26 \text{ V}$$

$$C_{20} = -\frac{Im\{\hat{U}_{2}\}}{\omega R_{N}U_{1}} - C_{12} = \underline{100 \text{ nF}}$$

$$C_{10} = -\frac{Im\{\hat{U}_{2}\}}{\omega R_{N}U_{1}} - C_{12} = \underline{250 \text{ nF}}$$
(3)

7 Závěrečné vyhodnocení

Naměřili jsme indukčnosti cívky a kapacitu kondenzátoru. U Kondenzátoru jsme také správně určili jeho parazitní kapacity vůči stínění, které se mezi sebou lišily a jejich hodnota byla přibližně 10 % z kapacity kondenzátoru. Také jsme ověřili průběhy reálné a imaginární složky proudu resp. napětí.

Seznam použité literatury a zdrojů informací

Seznam použitých internetových zdrojů

[1] Návod k laboratorní úloze