CSCI 544: Applied Natural Language Processing

Dependency Parsing

Xuezhe Ma (Max)

Logistic Points

• GPU Resources:

- AWS Educate
- \$100 credits for each student

Recap: Constituency Structure

- Starting units: words are given a category: part-of-speech tags
 - N = noun, V = verb, DT = determiner
- Phrases: words combine into phrases with categories
 - NP = noun phrase, VP = verb phrase, S = sentence
 - Phrases can combine into bigger phrases recursively

The man saw the girl with the telescope

Recap: Probabilistic Context-free Grammar

- A context free grammar (CFG) $G = (N, \Sigma, R, S)$ where:
 - ightharpoonup N is a set of non-terminal symbols
 - ◆ Phrasal categories: S, NP, VP, ...
 - ◆ Part-of-speech: DT, NN, Vi, ... (pre-terminals)
 - $\succ \Sigma$ is a set of terminal symbols: the, man, sleeps, ...
 - R is a set of rules of the form $X \to Y_1 Y_2 ... Y_n$, for $n \ge 0$, $X \in N$, $Y_i \in (N \cup \Sigma)$
 - ◆ Examples: S -> NP VP, NP -> DT NN, NN -> man
 - $S \in N$ is a distinguished start symbol

Probabilistic PCFG

- A context free grammar (CFG) $G = (N, \Sigma, R, S)$ with probability assigned to each rule

Recap: The CKY Algorithm

▶ Base case definition: for all $i = 1 \dots n$, for $X \in N$

$$\pi[i, i, X] = q(X \to w_i)$$

(note: define $q(X \to w_i) = 0$ if $X \to w_i$ is not in the grammar)

Recursive definition: for all $i=1\dots n$, $j=(i+1)\dots n$, $X\in N$,

$$\pi(i, j, X) = \max_{\substack{X \to YZ \in R, \\ s \in \{i...(j-1)\}}} (q(X \to YZ) \times \pi(i, s, Y) \times \pi(s+1, j, Z))$$

Q: Running time?

 $O(n^3|R|)$

Overview

Constituency Parsing

- Constituency Structure
- Context-free Grammar (CFG) & Probabilistic Context-free Grammar (PCFG)
- The CKY algorithm
- Lexicalized PCFGs

Dependency Parsing

- Dependency Structure
- Graph-based Dependency Parsing
- Transition-based Dependency Parsing

Dependency Parsing

The man saw the girl with the telescope

• The basic idea:

• Syntactic structure consists of lexical items, linked by binary asymmetric relations called dependencies.

• In the words of Lucien Tesniere [Tesniere1959]:

• The sentence is an organized whole, the constituent elements of which are *words* [1.2]. Every word that belongs to a sentence ceases by itself to be isolated as in the dictionary. Between the word and its neighbors, the mind perceives *connection*, the totality of which forms the structure of the sentence [1.3]. The structural connections establish *dependency* relations between the words. Each connection in principle unites a *superior* term and an *inferior* term [2.1]. The superior term receives the name *governor*, and the inferior term receives the name *subordinate*.

\$ I saw a girl with a telescope

Terminology

Superior	Inferior
Head	Dependent
Governor	Modifier
Regent	Subordinate
:	

Terminology

Superior	Inferior
Head	Dependent
Governor	Modifier
Regent	Subordinate
:	:

The man saw the girl with the telescope

- Dependency structures explicitly represent
 - Head-dependent relations (directed arcs)
 - Functional categories (arc labels)
- Constituent structures explicitly represent
 - Phrases (non-terminal nodes)
 - Structural categories (non-terminal symbols)

Some Theoretical Frameworks

- Word Grammar (WG) [Hudson 1984, Hudson 1990, Hudson 2007]
- Functional Generative Description (FGD) [Sgall et al. 1986]
- Dependency Unification Grammar (DUG) [Hellwig 1986, Hellwig 2003]
- Meaning-Text Theory (MTT) [Mel'čuk 1988, Milićević 2006]
- (Weighted) Constraint Dependency Grammar ([W]CDG) [Maruyama 1990, Menzel and Schröder 1998, Schröder 2002]
- Functional Dependency Grammar (FDG)
 [Tapanainen and Järvinen 1997, Järvinen and Tapanainen 1998]
- Topological/Extensible Dependency Grammar ([T/X]DG) [Duchier and Debusmann 2001, Debusmann et al. 2004]

- ullet A dependency structure can be defined as a directed graph G, consisting of
 - ullet A set of nodes V
 - A set of directed arcs E (directed edges)
 - A linear precedence order < on V (word order)

Is this directed graph a valid dependency structure?

- ullet A dependency structure can be defined as a directed graph G, consisting of
 - A set of V of nodes
 - A set of E of directed arcs (directed edges)
 - A linear precedence order < on V (word order)
- Formal Conditions of Dependency Structures
 - ullet G is connected: there exists a directed path from the root to every other node

- ullet A dependency structure can be defined as a directed graph G, consisting of
 - ullet A set of V of nodes
 - A set of E of directed arcs (directed edges)
 - A linear precedence order < on V (word order)
- Formal Conditions of Dependency Structures
 - ullet G is connected: there exists a directed path from the root to every other node
 - G is acyclic: no cycles like $A \to B, B \to C, C \to A$

- ullet A dependency structure can be defined as a directed graph G, consisting of
 - ullet A set of V of nodes
 - A set of E of directed arcs (directed edges)
 - A linear precedence order < on V (word order)
- Formal Conditions of Dependency Structures
 - ullet G is connected: there exists a directed path from the root to every other node
 - G is acyclic: no cycles like $A \to B, B \to C, C \to A$
 - ullet G obeys the single-head constraint: each non-root node has only one head

Dependency Structures: An Example

Invalid Valid

The man sleeps

\$ The man sleeps

Additional Constraint: Projectivity

• Definition of projectivity: there are no crossing dependency when the words are laid out in their linear order, with all arcs above the words

Non-projectivity arises due to long distance dependencies or in languages with flexible word order.

We will first consider projective parsing

Dataset	# Sentences	(%) Projective
English	39,832	99.9
Chinese	16,091	100.0
Czech	72,319	76.9
German	38,845	72.2

Two Families of Dependency Parsing Algorithms

Graph-based Dependency Parsing

- Learning: Induce a model for scoring an entire dependency graph for a sentence
- Parsing: Find the highest-scoring dependency graph

Transition-based Dependency Parsing

- Learning: Induce a model for predicting the next state transition, given the transition history
- Parsing: Construct the optimal transition sequence

Graph-based Dependency Parsing

Graph-based Dependency Parsing

- The General Problem
 - We have an input sentence x
 - We have a set valid dependency structures $\mathcal{T}(x)$
 - Aim is to provide a conditional probability p(y|x), $y \in \mathcal{T}(x)$

Log-linear Model:
$$p(y|x) = \frac{\exp(v \cdot f(x,y))}{\sum_{v' \in \mathcal{T}(x)} \exp(v \cdot f(x,y'))}$$

How to simplify the feature function f(x, y)?

First-order Model

• Factorize f(x, y) into each edge of y

$$p(y|x) = \frac{\exp(v \cdot f(x,y))}{\sum_{v' \in \mathcal{T}(x)} \exp(v \cdot f(x,y'))} \qquad f(x,y) = \sum_{e \in y} f(x,e)$$

the score of an edge

$$\exp(v \cdot f(x, y)) = \exp(v \cdot \sum_{e \in y} f(x, e)) = \prod_{e \in y} \exp[v \cdot f(x, e)]$$

First-order Model

• Factorize f(x, y) into each edge of y

$$p(y|x) = \frac{\exp(v \cdot f(x,y))}{\sum_{y' \in \mathcal{T}(x)} \exp(v \cdot f(x,y'))} \qquad f(x,y) = \sum_{e \in y} f(x,e)$$

• Two standard problems:

Learning:
$$\sum_{y' \in \mathcal{T}(x)} \exp(v \cdot f(x, y'))$$

Parsing: arg max $\exp(v \cdot f(x, y'))$ $y' \in \mathcal{T}(x)$

First-order Projective Parsing Algorithm

- Cubic Parsing Algorithm [Eisner, 1996]
- Projective Parse Trees only
 - $\mathcal{I}(x)$ only contains projective trees
- Define a dynamic programming table
 - $\pi[s,t,d,c]=$ maximum probability of a dependency graph spanning words s,...,t inclusive, with direction $d\in\{\rightarrow,\leftarrow\}$, and completeness $c\in\{0,1\}$
- Our goal is to calculate $\max_{y \in \mathcal{T}(x)} p(y \mid x) = \pi[0, n, \rightarrow, 1]$

First-order Projective Parsing Algorithm

complete items

$$\pi[s, t, \rightarrow, 1]$$
 dependency graphs from word s to t , with s as the root

 $\pi[s, t, \leftarrow, 1]$ dependency graphs from word s to t, with t as the root

First-order Projective Parsing Algorithm

complete items

$$\pi[s,t,\to,1]$$

dependency graphs from word s to t, with s as the root

dependency graphs from word s to t, with t as the root

incomplete items

$$\pi[s, t, \rightarrow, 0]$$

dependency graphs from word s to t, with s as the root and an edge $s \rightarrow t$

$$\pi[s, t, \leftarrow, 0]$$

dependency graphs from word s to t, with t as the root and an edge $s \leftarrow t$

First-order Projective Parsing Algorithm

• Dynamic programming derivations

First-order Projective Parsing Algorithm

• Dynamic programming derivations

First-order Projective Parsing Algorithm

```
Initialization: C[s][s][d][c] = 0.0 \quad \forall s, d, c
for k : 1..n
  for s:1..n
   t = s + k
    if t > n then break
     % First: create incomplete items
    C[s][t][\leftarrow][0] = \max_{s < r < t} (C[s][r][\rightarrow][1] + C[r+1][t][\leftarrow][1] + s(t,s))
    C[s][t][\rightarrow][0] = \max_{s < r < t} (C[s][r][\rightarrow][1] + C[r+1][t][\leftarrow][1] + s(s,t))
     % Second: create complete items
    C[s][t][\leftarrow][1] = \max_{s \le r < t} (C[s][r][\leftarrow][1] + C[r][t][\leftarrow][0])
    C[s][t][\to][1] = \max_{s < r < t} (C[s][r][\to][0] + C[r][t][\to][1])
  end for
end for
                                                                                                    Running time:
                                                                                                          O(n^3)
```

Higher-order Parsing

- First-order: factorizing features into each edge
- Higher-order: factorizing features into more complex components

$$f(x,y) = \sum_{p \in y} f(x,p)$$

Non-projective Parsing

• Two standard problems:

Learning:
$$\sum_{y' \in \mathcal{T}(x)} \exp(v \cdot f(x, y'))$$

- Parsing: arg max $\exp(v \cdot f(x, y'))$ $y' \in \mathcal{T}(x)$
- First-order Model:
 - Learning: Matrix-Tree Theorem [Koo et al., 2007]
 - Parsing: Maximum Spanning Tree algorithm [McDonald, 2005]
- High-order Models: NP-hard

Evaluation Dependency Parsing

- Unlabeled Attachment Score (UAS)
 - Percentage of words that have been assigned the corrected head
- Labeled Attachment Score (LAS)
 - Percentage of words that have been assigned the correct head & label
- Root Accuracy (RA)
 - Accuracy of the root dependencies

UAS = 5/6

LAS = 4/6

RA = 1/1

Parsing Exeriments

Penn Treebank

	UAS	Complexity
1st-proj	91.8	$O(n^3)$
1st-non-proj	91.7	$O(n^3)$
2nd-proj	92.4	$O(n^3)$
3nd-proj	93.0	$O(n^4)$
4nd-proj	93.4	$O(n^5)$

Transition-based Dependency Parsing

Transition-based Parsing

Basic Ideas

- Define a transition system for dependency parsing
- Learn a machine learning model for scoring possible transitions
- Parse by searching for the optimal transition sequence

Transition-based Parsing

• The Arc-standard Transition System

- Three data structures, a stack σ , a buffer β and a set α
- A configuration consists of
 - 1. A stack σ consisting of a sequence of words, e.g.,

$$\sigma = [\mathsf{root}_0, \mathsf{I}_1, \mathsf{live}_2]$$

2. A buffer β consisting of a sequence of words, e.g.,

$$\beta = [\text{in}_3, \text{New}_4, \text{York}_5, \text{city}_6, ._7]$$

3. A set α of labeled dependencies, e.g.,

$$\alpha = \{\{1 \to^{nsubj} 2\}, \{6 \to^{nn} 5\}$$

- Initial configuration: $\sigma = [\$], \ \beta = [w_1, ..., w_n], \ \alpha = \{\}$
- Three types of transition actions: LEFT-ARC, RIGHT-ARC, SHIFT
- A terminal configuration: $\sigma = [\$], \ \beta = []$

The Initial Configuration

$$\sigma = [\mathsf{root}_0], \quad \beta = [\mathsf{I}_1, \mathsf{live}_2, \mathsf{in}_3, \mathsf{New}_4, \mathsf{York}_5, \mathsf{city}_6, ._7], \quad \alpha = \{\}$$

• The shift action takes the first word in the buffer, and adds it to the end of the stack

 The LEFT-ARC action takes the top two words on the stack, and adds a dependency between them in the left direction, and removes the modifier word from the stack

$$\sigma = [\mathsf{root}_0, \mathsf{I_1}, \mathsf{live_2}], \quad \beta = [\mathsf{in}_3, \mathsf{New}_4, \mathsf{York}_5, \mathsf{city}_6, ._7], \quad \alpha = \{\}$$

$$\mathsf{LEFT-ARC}^{nsubj}$$

$$\downarrow \downarrow$$

$$\sigma = [\mathsf{root}_0, \mathsf{live}_2], \quad \beta = [\mathsf{in}_3, \mathsf{New}_4, \mathsf{York}_5, \mathsf{city}_6, ._7], \quad \alpha = \{\{2 \to^{nsubj} 1\}\}$$

 The RIGHT-ARC action takes the top two words on the stack, and adds a dependency between them in the right direction, and removes the modifier word from the stack

$$\sigma = [\mathsf{root}_0, \mathsf{live}_2, \mathsf{in}_3], \quad \beta = [._7], \quad \alpha = \{\{2 \to^{nsubj} 1\}, \}$$

$$\mathsf{RIGHT\text{-}ARC}^{prep}$$

$$\downarrow \downarrow$$

 $\sigma = [\mathsf{root}_0, \mathsf{live}_2], \quad \beta = [.7], \quad \alpha = \{\{2 \to^{nsubj} 1\}, \{2 \to^{prep} 3\}\}$

• Each projective dependency graph is mapped to a sequence of actions

Action	σ	β	$h \xrightarrow{l} d$
Shift	$[root_0]$	$[I_1,live_2, in_3, New_4, York_5, city_6, .7]$	
Shift	$[root_0, I_1]$	[live ₂ , in ₃ , New ₄ , York ₅ , city ₆ , \cdot ₇]	
Left-Arc nsubj	$[root_0, I_1, live_2]$	[in ₃ , New ₄ , York ₅ , city ₆ , \cdot ₇]	$2 \xrightarrow{nsubj} 1$
Shift	$[root_0, live_2]$	[in ₃ , New ₄ , York ₅ , city ₆ , . ₇]	
Shift	$[root_0, live_2, in_3]$	[New ₄ , York ₅ , city ₆ , $.7$]	
Shift	[root ₀ , live ₂ , in ₃ , New ₄]	[York ₅ , city ₆ , \cdot ₇]	
Shift	[root ₀ , live ₂ , in ₃ , New ₄ , York ₅]	[city ₆ , . ₇]	
Left-Arc nn	[root ₀ , live ₂ , in ₃ , New ₄ , York ₅ , city ₆]	[.7]	$6 \xrightarrow{nn} 5$
Left-Arc nn	[root ₀ , live ₂ , in ₃ , New ₄ , city ₆]	[.7]	$6 \xrightarrow{nn} 4$
$Right ext{-}Arc^{pobj}$	[root ₀ , live ₂ , in ₃ , city ₆]	[.7]	$3 \xrightarrow{pobj} 6$
$Right ext{-}Arc^{prep}$	[root ₀ , live ₂ , in ₃]	[.7]	$2 \xrightarrow{prep} 3$
Shift	[root ₀ , live ₂]	[.7]	
$Right ext{-}Arc^{punct}$	$[root_0,live_2,7]$		$2 \xrightarrow{punct} 7$
$Right ext{-}Arc^{root}$	$[root_0, live_2]$		$0 \xrightarrow{root} 2$
Terminal	$[root_0]$		

Transition-based Parsing: Learning

- How to decide which transition actions to take?
 - Learn a machine learning model, e.g. a classifier
 - We can design features based on the current configuration: parsing history

1. A stack σ consisting of a sequence of words, e.g.,

$$\sigma = [\mathsf{root}_0, \mathsf{I}_1, \mathsf{live}_2]$$

2. A buffer β consisting of a sequence of words, e.g.,

$$\beta = [\text{in}_3, \text{New}_4, \text{York}_5, \text{city}_6, ._7]$$

3. A set α of labeled dependencies, e.g.,

$$\alpha = \{\{1 \to^{nsubj} 2\}, \{6 \to^{nn} 5\}$$

Transition-based Parsing: Parsing

No Exact Parsing Algorithm

- Greedy search or beam search
- Linear time complexity
- Comparable performance with graph-based parsing algorithms

Reading Materials

- Comparison and Integration of graph-based and transition-based dependency parsers
 - McDonald and Nivre, 2011