Short Read Alignment & Variant Calling

- Loo...ts of Google/ChatGPT search
- Proper data & directory management
- Perform background study
- Be persistent

With Great Power

Comes great responsibility

2

Workflow

Short Read Alignment

Basic Concepts and Common Terminologies

Short Read Alignment / Mapping

Determine the most likely location and orientation of each read within the reference sequence.

5

Commonly Used Tools...

minimap2

HISAT2

STAR

SAM File

Child Health Research Foundation

SAM (Sequence Alignment/Map) File

```
QHD VN:1.5 SO:coordinate
                                                                                                              Header
                                                                                                              section
@SQ SN:ref LN:45
                     30 8M2I4M1D3M = 37
                                               39 TTAGATAAAGGATACTG *
r001
        99 ref
r002
                  9 30 3S6M1P1I4M *
                                                O AAAAGATAAGGATA
                                                O GCCTAAGCTAA
r003
          0 ref
                  9 30 5S6M
                                                                         * SA:Z:ref,29,-,6H5M,17,0;
                                                                                                              Alignment
                                                                                                              section
r004
          0 ref 16 30 6M14N5M
                                                O ATAGCTTCAGC
r003 2064 ref 29 17 6H5M
                                                O TAGGC
                                                                         * SA:Z:ref,9,+,5S6M,30,1;
r001 147 ref 37 30 9M
                                             -39 CAGCGGCAT
                                                                         * NM:i:1
                                                                              Optional fields in the format of TAG:TYPE:VALUE
                                                                        QUAL: read quality; * meaning such information is not available
                                                        SEQ: read sequence
                                               TLEN: the number of bases covered by the reads from the same fragment. Plus/minus
                                               means the current read is the leftmost/rightmost read. E.g. compare first and last lines.
                                           PNEXT: Position of the primary alignment of the NEXT read in the template. Set as 0 when the
                                           information is unavailable. It corresponds to POS column.
                                      RNEXT: reference sequence name of the primary alignment of the NEXT read. For paired-end
                                      sequencing, NEXT read is the paired read, corresponding to the RNAME column.
                            CIGAR: summary of alignment, e.g. insertion, deletion
                    MAPQ: mapping quality
                 POS: 1-based position
             RNAME: reference sequence name, e.g. chromosome/transcript id
       FLAG: indicates alignment information about the read, e.g. paired, aligned, etc.
QNAME: query template name, aka. read ID
```


BAM (Binary Alignment/Map file) File

- Binary, compressed (and almost always sorted)
 representation of the SAM information
 - Sorting by coordinate allows fast query on the information by location.

Variant Calling

Basic Concepts and Common Terminologies

Variant Calling

Variant calling is the process of identifying genetic variations or differences, such as single nucleotide polymorphisms (SNPs) or insertions/deletions (indels), in a subject's genome compared to a reference genome.

Commonly Used Variant Callers

bcftools

FreeBayes

VarScan2

GATK

VCF file format

Data representation format used to describe variations in the genome

13

VCF file format

Data representation format used to describe variations in the genome

Happy Learning