Prof. Dr. Ernst-Rüdiger Olderog Christopher Bischopink, M.Sc.

Ausgabe: 06.12.2019

Abgabe: 13.12.2019 bis 14⁰⁰ Uhr in den Fächern im ARBI-Flur

8. Übung zu Grundlagen der Theoretischen Informatik

Aufgabe 31: Quiz (5 Punkte)

Für jede richtige Antwort gibt es einen Punkt, für jede falsche wird einer abgezogen. Minimal können 0 Punkte erreicht werden.

Wahr Falsch

	a)	Im Gegensatz zu den kontextfreien Sprachen sind die deterministisch kontextfreien Sprachen
		unter Komplementbildung abgeschlossen.

\Box b) Sei $G = (N, T, P, S)$ eine kontextfreie Grammatik. Der mit dem Verfahren aus der Vorlesung
aus G konstruierte Kellerautomat K mit $L_{\varepsilon}(K) = L(G)$ ist genau dann deterministisch
wenn $ \{X \to Y \in P \mid \exists X \to Y' \in P : Y \neq Y'\} = 0$ gilt.

c)) Zu jedem Kellerautomat, der über Endzustände akzeptiert, kann ein Kellerautomat, der m	ιit
	leerem Keller dieselbe Sprache akzeptiert, konstruiert werden und umgekehrt.	

d)	Zu jedem	Keller automaten	lässt	sich ei	in (deterministischer	Keller automat	konstruieren	der
	dieselbe S ₁	prache akzeptiert	•						

_ e)	Die Sprache der	arithmetischen	${\bf Ausdr\"{u}cken}$	mit den	Variablen	a, \ldots, z und	Operatoren	+
	und * ist inhärer	nt mehrdeutig.						

Aufgabe 32: Kellerautomat für ktfr. Sprache \cap reg. Sprache (1+1+1+3+2 Punkte) Gegeben sei der Kellerautomat $K = (\{a, b\}, \{s_1, \dots, s_3\}, \{A, B, Z\}, \rightarrow, s_1, Z, \{s_3\})$, wobei \rightarrow wie in folgender graphischen Darstellung definiert ist:

$$(a, Z; AZ)$$

$$(a, A; AA)$$

$$(a, B; AB)$$

$$(b, Z; BZ)$$

$$(b, B; BB)$$

$$(b, A; BA)$$

$$(\varepsilon, Z; Z)$$

$$(b, B; \varepsilon)$$

$$(\varepsilon, A; A)$$

$$(\varepsilon, B; B)$$

$$(\varepsilon, B; B)$$

$$(\varepsilon, Z; \varepsilon)$$

$$(\varepsilon, Z; \varepsilon)$$

$$(\varepsilon, Z; \varepsilon)$$

$$(\varepsilon, Z; \varepsilon)$$

- a) Welche Sprache akzeptiert der Kellerautomat über Endzustände? Bestimmen Sie also $L_1 := L(K)$ und begründen Sie ihre Wahl.
- b) Definieren Sie einen deterministischen endlichen Automaten, der die Sprache $L_2 := L(a^*b^*)$ akzeptiert und drei Zustände besitzt.
- c) Geben Sie die Sprache $L_3 = L_1 \cap L_2$ an.
- d) Konstruieren Sie mit dem aus der Vorlesung bekannten Verfahren den Kellerautomaten K' mit $L(K') = L_1 \cap L_2$.

e) Konstruieren Sie K'', indem Sie aus K' alle nicht nutzbaren Transitionen und Zustände streichen, und erklären Sie, warum $L(K'') = L_3$ gilt.

Aufgabe 33: Kellerautomat und Grammatik (3+3+1 Punkte) Gegeben sei die Sprache $L = \{w \in \{a, b\}^* \mid \#_a(w) = \#_b(w)\}.$

- a) Geben Sie einen Kellerautomaten K an, der L akzeptiert und zwei Zustände besitzt. Der Kellerautomat soll dabei über Endzusände dieselbe Sprache akzeptierren wie mit leerem Keller.
- b) Konstruieren Sie mit dem Verfahren aus der Vorlesung aus K eine Grammatik G, die dieselbe Sprache akzeptiert, also $L(G) = L_{\varepsilon}(K)$. Achten Sie insbesondere darauf die Nichtterminalsymbole richtig zu benennen.
- c) Geben Sie unter Verwendung der in (b) konstruierten Grammatik eine Ableitung für das Wort w = abba an.