Analyse de Données Structurées - Cours 6

Analyse de Données Structurées - Cours 6

Ralf Treinen

PARIS STREET STR

Université Paris Diderot UFR Informatique Laboratoire Preuves, Programmes et Systèmes

treinen@pps.univ-paris-diderot.fr

11 mars 2015

© Ralf Treinen 2015

Analyse de Données Structurées - Cours 6

Rappel et Compléments : LL(1) et LL(k) dans des cas simples

Grammaires LL(1)

- ▶ Intuition derrière les grammaires LL(1) : dans la construction d'une dérivation gauche, le symbole suivant de l'entrée nous indique quelle règle de la grammaire appliquer au non-terminal le plus à gauche de l'arbre de dérivation.
- ► Conséquence : toute grammaire LL(1) (ou même LL(k)) est non-ambiguë (oublié de préciser au dernier cours).
- ▶ Un critère très simple : Si tous les côtés droites de la grammaire pour le *même* non-terminal commencent sur des terminaux différents, alors la grammaire est LL(1).

Analyse de Données Structurées - Cours 6

Rappel et Compléments : LL(1) et LL(k) dans des cas simples

Construction d'un arbre de dérivation

	-	Е	i	+	i]	+	[i	+	i]]
--	---	---	---	---	---	---	---	---	---	---	---	---	---

Choisir règle (1) : c'est la seule qui peut produire à partir de S un mot qui commence sur i.

Analyse de Données Structurées - Cours 6

Rappel et Compléments : LL(1) et LL(k) dans des cas simples

Une caractérisation des grammaires LL(k)

Théorème

Une grammaire $G = (V_T, V_N, S, R)$ est LL(k) ssi

- $lackbox{ si }A
 ightarroweta$ et $A
 ightarrow\gamma$ sont deux règles différentes
- ightharpoonup et $S
 ightharpoonup^* w A lpha$ une dérivation gauche, $w \in V_T^*$
- ▶ alors $FIRST_k(\beta\alpha) \cap FIRST_k(\gamma\alpha) = \emptyset$
- ▶ Preuve omise (conséquence immédiate de la définition)
- Attention, ce critère général prend en compte le "contexte" dans lequel on peut obtenir A.

Analyse de Données Structurées - Cours 6

Rappel et Compléments : LL(1) et LL(k) dans des cas simples

Un meilleur critère pour être LL(1)

- ▶ Définition de $FIRST_1(\alpha)$: l'ensemble des symboles avec lesquelles un mot terminal dérivé à partir de α peut commencer (plus ϵ dans le cas où $\alpha \to^* \epsilon$).
- Vu au dernier cours : calcul de FIRST₁ dans le cas où aucun côté droite est ε.
- ▶ Meilleur critère : Si tous les côtés droites de la grammaire pour le *même* non-terminal ont des ensembles *FIRST*₁ disjointes, alors la grammaire est LL(1).

Analyse de Données Structurées - Cours 6

Rappel et Compléments : LL(1) et LL(k) dans des cas simples

Reconnaître la fin de l'entrée

- ► Le programme vu au dernier cours a un défaut : il accepte aussi des expressions correctes, avec un texte quelconque ajouté à la fin : (a+(a+a))%\$#@
- ► Solution :
 - ▶ l'analyse lexicale envoie un jeton qui signale la fin de l'entrée (par exemple, EOF)
 - ► remplacer l'axiome par S', avec une règle

$$S' \to S$$
 EOF

où S est l'ancien axiome de la grammaire.

Analyse de Données Structurées - Cours 6

Rappel et Compléments : LL(1) et LL(k) dans des cas simples

Exemple vu au dernier cours

• Grammaire $G = (\{a, (,), +\}, \{F, S\}, S, R)$ où R est

$$\begin{array}{ccc} \mathsf{F} & \to & \mathsf{a} \\ \mathsf{S} & \to & (\mathsf{F+S}) \\ \mathsf{S} & \to & \mathsf{F} \end{array}$$

- Le première critère simple ne s'applique pas.
- ▶ On obtient pour les côtés droites des règles :

$$\begin{aligned} & \operatorname{FIRST}_1(\mathtt{a}) &= \{\mathtt{a}\} \\ & \operatorname{FIRST}_1((\mathsf{F+S})) &= \{(\} \\ & \operatorname{FIRST}_1(\mathsf{F}) &= \{\mathtt{a}\} \end{aligned}$$

Analyse de Données Structurées - Cours 6

Rappel et Compléments : LL(1) et LL(k) dans des cas simples

Le même exemple avec reconnaissance de la fin

• Grammaire $G = (\{a, (,), +, EOF\}, \{F, S, S'\}, S', R)$ où R est

$$\begin{array}{ccc} \mathsf{F} & \to & \mathsf{a} \\ \mathsf{S} & \to & (\mathsf{F+S}) \\ \mathsf{S} & \to & \mathsf{F} \\ \mathsf{S}' & \to & \mathsf{S} \; \mathsf{EOF} \end{array}$$

▶ On obtient pour les côtés droites des règles :

$$FIRST_1(a) = \{a\}$$

 $FIRST_1((F+S)) = \{(\}$
 $FIRST_1(F) = \{a\}$
 $FIRST_1(S EOF) = \{a, (\}$

Un exemple un peu plus avancé

- ► Une grammaire pour les expressions arithmétiques partiellement parenthésées.
- ► Terminaux : {i,+,*,(,),EOF}
- ► Règles :

$$S \rightarrow E E O F$$

$$E \rightarrow E + T \mid T$$

$$T \rightarrow T * F \mid F$$

$$F \rightarrow (E) \mid i$$

► Axiome : S

Analyse de Données Structurées - Cours 6 — Analyse LL(1) dans le cas général

Un critère pour ne pas pas être LL(k)

Définition

Une grammaire $G = (V_T, V_N, S, R)$ est récursive à gauche s'il y a un non-terminal $N \in V_N$ tel que $N \to^+ N\alpha$ pour un $\alpha \in (V_T \cup V_N)^*$.

- ightharpoonup : dérivation en au moins une étape.
- ightharpoonup Exemple : notre grammaire pour les expressions partiellement parenthésées, car $E \to E+T$

Lemme

Si la grammaire G est récursive à gauche, alors G n'est pas pas LL(k), pour aucun $k \in \mathbb{N}$.

L'exemple des expressions partiellement parenthésées

- ► Cette grammaire est non-ambiguë ③
- ► Intuition : Les "+" peuvent être produites seulement à partir du E. Tout mot engendré par E est protégé par des parenthèses (et).
- ▶ (Il y a aussi une preuve formelle mais je vous en fait grâce.)
- ► Cette grammaire, est-elle aussi LL(1)? Ou au moins LL(k) pour quelque $k \in \mathbb{N}$?
- ▶ Elle n'est pas LL(k), pour aucun $k! \odot$

Analyse de Données Structurées - Cours 6 — Analyse LL(1) dans le cas général

Preuve

- ► Supposons pour l'absurde que G est LL(k) et récursive à gauche.
- ▶ If y a donc une dérivation gauche $S \to^* wX\gamma$ (sinon X n'est pas atteignable).
- ▶ Il y a aussi une règle $X \to X\alpha$ (hypothèse simplificatrice) , et une règle différente $X \to \beta$ (sinon X est non-productif).
- ► Il existe donc une dérivation gauche

$$S \rightarrow^* wX\gamma \rightarrow^* wX\alpha^k\gamma$$

► Par le théorème du début du cours :

$$FIRST_k(X\alpha^{k+1}\gamma) \cap FIRST_k(\beta\alpha^k\gamma) = \emptyset$$

Preuve (2)

► On a:

$$FIRST_k(X\alpha^{k+1}\gamma) \cap FIRST_k(\beta\alpha^k\gamma) = \emptyset$$

Donc, grâce à la règle $X \to \beta$:

$$FIRST_k(\beta\alpha^{k+1}\gamma) \cap FIRST_k(\beta\alpha^k\gamma) = \emptyset$$

▶ Contradiction (deux cas : $\alpha \to^* \epsilon$ ou pas).

Analyse de Données Structurées - Cours 6 — Analyse LL(1) dans le cas général

La grammaire transformée

- ► Une grammaire pour les expressions arithmétiques partiellement parenthésées.
- ► Terminaux : {i,+,*,(,),EOF}
- ► Règles :

Axiome : S

Quoi faire?

- ► On peut transformer la grammaire en une grammaire équivalente (qui définit le même langage), et qui est LL(1).
- ► C'est toujours possible, mais il y a deux inconvénients :
 - la grammaire résultante peux être plus grande;
 - ▶ la structure de l'arbre de dérivation peut changer.
- ▶ Il y a un troisième inconvénient : la transformation peut introduire des règles $N \to \epsilon$, il faut donc adapter la technique à ce cas.

Analyse de Données Structurées - Cours 6 — Analyse LL(1) dans le cas général

Explication de la transformation

► Les deux règles originales pour le non-terminal E :

$$E \rightarrow T$$
 $E \rightarrow E+T$

- ▶ Dans la grammaire d'origine, le non-terminal E engendre une séquence non-vide de non-terminaux T, séparés par des +.
- ▶ Dans la nouvelle grammaire, le non-terminal E' engendre la suite de cette séquence après un T :

$$\mathsf{E} \to \mathsf{T} \, \mathsf{E}'$$
 $\mathsf{E}' \to \epsilon \, | \, + \mathsf{E}$

▶ Pareil pour le non-terminal T.

Analyse de Données Structurées - Cours 6 Lanalyse de Grammaires

But d'une analyse d'une grammaire

- Détecter des propriétés des non-terminaux dans une grammaires, et des grammaires.
- ► Exemple : non-terminaux atteignables ou pas, productifs ou pas, pouvant engendrer le mot vide ou pas? Grammaires LL(1), LL(k) ou pas?
- ▶ Défis : récurrence entre des les non-terminaux d'une grammaire.
- ▶ Dans certains cas on maîtrise une descente récursive sur un mot donné pour la construction d'une dérivation - cas des grammaires LL(k).
- ▶ Dans une analyse de la grammaire, on a pas de mot d'entrée fixe donné mais on s'intéresse à une propriété générale de la grammaire.

Analyse de Données Structurées - Cours 6 Lanalyse de Grammaires

Calcul d'un point fixe

- Notre définition de productivité est correcte, mais il faut organiser le calcul différemment :
 - ▶ Au début, on pose que tout non-terminal N pour lequel existe une règle N \rightarrow w, où $w \in V_T^*$, est productif.
 - ▶ Puis, s'il y a une règle N $\rightarrow \alpha$, où on a déjà reconnu tous les non-terminaux dans α comme étant productifs, alors on pose que N est aussi productif.
 - ► On s'arrête si on ne peu plus ajouter d'information de cette façon.
- ► Il s'agit d'un point fixe!

Analyse de Données Structurées - Cours 6 Lanalyse de Grammaires

Illustration du problème d'une descente récursive

- Un non-terminal N est *productif* s'il y a une règle N $\rightarrow \alpha$ telle que tous les non-terminaux dans α sont productifs. (C'est en particulier vrai quand α ne contient que des terminaux.)
- ▶ Imaginez les règles suivantes de la grammaire :

 $\begin{array}{ccc} A & \rightarrow & BC \mid a \\ B & \rightarrow & Cb \\ C & \rightarrow & Ac \end{array}$

► Il faut éviter une descente récursive qui mène dans une boucle : A productif ? → B productif ? → C productif ? → A productif ? → . . .

Analyse de Données Structurées - Cours 6

Analyse de Grammaires

Points fixes

- ▶ En maths : un *point fixe* d'une fonction $f: D \to D$ est une valeur $x \in D$ telle que f(x) = x.
- ► Application à l'algorithmique :
 - ▶ le domaine *D* est l'ensemble de toutes les affectations possibles à des variables d'intérêt.
 - Dans l'exemple : toutes les affectations possibles de P du type $V_N o$ boolean.
 - ▶ la fonction f est une mise à jour des variables. Dans l'exemple : propagation de l'information de productivité d'un non-terminal à un autre.
 - ▶ on ne cherche pas un point fixe quelconque, mais on commence avec une valeur initiale, puis on applique f jusqu'à un point fixe.

Analyse de Données Structurées - Cours 6 Lanalyse de Grammaires

Calcul d'un point fixe

Nous utiliserons dans nos algorithmes la construction "do ... until X1,..., Xn fix". Exemple productivité :

```
for all N \in V_N:
   if exists (N \to \alpha) \in R tel que \alpha \in V_T^*
   then P(N) = \text{true}
   else P(N) = \text{false}

do
   for all (N \to \alpha) \in R:
   if P(M) for all non-terminals M in \alpha
   then P(N) = \text{true}

until P fix
```

Analyse de Données Structurées - Cours 6 — Analyse de Grammaires

Autre exemple symboles atteignables

- ▶ Un non-terminal N est *atteignable* (à partir de l'axiome S) s'il existe une dérivation S \rightarrow * α N β .
- ► Calcul des non-terminaux atteignables : transparent suivant.
- ► Une grammaire est *réduite* si
 - ▶ tous ses non-terminaux sont productifs et
 - ▶ tous ses non-terminaux sont atteignables.
- ► Dans la suite nous supposons que toutes les grammaires sont réduites.

```
Analyse de Données Structurées - Cours 6

Lanalyse de Grammaires
```

La construction do ... until ... fix

Le code

```
// code initialisation de X
do
   // code mise a jour de X
until X fix
```

peut être traduit vers :

```
// code initialisation de X
do
   Xold = X
   // code mise a jour de X
while (X != Xold)
```

Analyse de Données Structurées - Cours 6

Analyse de Grammaires

Calcul des non-terminaux atteignables

Algorithme

Donnée une grammaire $G = (V_T, V_N, S, R)$.

```
for all N \in V_N:
A(N) = \text{false}
A(S) = \text{true}
do
\text{for all } (N \to \alpha) \in R :
\text{if } A(N)
\text{then for all non-terminals M in } \alpha :
A(M) = \text{true}
\text{until A fix}
```

Lemma

Pour tout $N \in V_N : A(N) == \text{true ssi } N \text{ est atteignable.}$

Analyse de Données Structurées - Cours 6 Lanalyse de Grammaires

Non-terminaux qui peuvent produire ϵ

Algorithme

```
Donnée une grammaire G = (V_T, V_N, S, R). 
 \begin{aligned} \mathsf{EPS} &= \{ N \in V_N \mid (N \to \epsilon) \in R \} \\ \mathsf{do} \\ &= \mathsf{EPS} = \mathsf{EPS} \cup \{ N \in V_N \mid \ (N \to N_1 \dots N_n) \in R, \\ N_1, \dots, N_n \in \mathsf{EPS} \} \end{aligned} 
 until EPS fix
```

Lemme

Pour tout $N \in V_N : N \in EPS$ ssi $N \to^* \epsilon$.

Analyse de Données Structurées - Cours 6 Lanalyse de Grammaires

Comment calculer $FIRST_1$ dans le cas général?

- ightharpoonup Imaginez une règle A ightarrow B C d E
- lacktriangle Tous les non-terminaux peuvent a priori engendrer $\epsilon.$
- ▶ Si B $\notin EPS$: dans cette règle, seulement $FIRST_1(B)$ peut contribuer à $FIRST_1(A)$.
- ▶ Si B ∈ EPS : $FIRST_1(C)$ peut aussi contribuer à $FIRST_1(A)$.
- ▶ Si B ∈ EPS et C ∈ EPS : d doit être dans $FIRST_1(A)$.
- ▶ Dans aucun des cas, $FIRST_1(E)$ ne peut contribuer car il se trouve derrière le terminal d.

Analyse de Données Structurées - Cours 6 Lanalyse de Grammaires

Calcul de EPS sur l'exemple

- ▶ Initialisation : $EPS = \{E', T'\}$
- ► C'est déjà un point fixe!

Analyse de Données Structurées - Cours 6 — Analyse de Grammaires

Le calcul de FIRST₁ dans le cas général

Pour des raisons techniques, il est plus facile de calculer d'abord une variante de $FIRST_1$ sans ϵ :

$$Fi(N) = \{a \in V_T | N \rightarrow^* aw, w \in V_T^*\}$$

▶ Puis on en obtient FIRST₁(N) en utilisant EPS que nous avons déjà calculé.

Analyse de Données Structurées - Cours 6 — Analyse de Grammaires

Calcul de FIRST₁ dans le cas général

Algorithme

```
Donnée une grammaire G = (V_T, V_N, S, R).

\begin{array}{ll} \text{pour tout } N \in V_N: \\ \text{Fi}(N) = \{a \in V_T \mid (N \to N_1 \dots N_n a \alpha) \in R, \\ N_1, \dots, N_n \in \text{EPS}\} \end{array}
\text{do}
\text{pour tout } (N \to N_1 \dots N_n M \alpha) \in R
\text{tel que } M \in V_N, N_1, \dots, N_n \in \text{EPS}: \\ \text{Fi}(N) = \text{Fi}(N) \cup \text{Fi}(M)
\text{until F fix} \end{array}
```

Lemme

Pour tout $N \in V_N : Fi(N) = FIRST_1(N) - \{\epsilon\}$

Analyse de Données Structurées - Cours 6 Lanalyse de Grammaires

Calcul de FIRST₁ dans le cas général

Pour tout $N \in V_N$:

$$FIRST_i(N) = \begin{cases} Fi(N) \cup \{\epsilon\} & \text{si } N \in EPS \\ Fi(N) & \text{sinon} \end{cases}$$

Calcul de Fi sur l'exemple

Calcul

	Initial	lter1	lter2	lter3
S	Ø	Ø	Ø	{i,(}
Ε	Ø	Ø	{i,(}	{i,(}
E'	{+}	{+}	{+}	{+}
Т	Ø	$\{i,(\}$	$\{i,(\}$	$\{i,(\}$
T'	{*}	{*}	{*}	{*}
F	$\{i,(\}$	$\{i,(\}$	$\{i,(\}$	$\{i,(\}$

Analyse de Données Structurées - Cours 6 — Analyse de Grammaires

Calcul de FIRST₁ sur l'exemple

Calcul

	Fi	$FIRST_1$
S	$\{i, (\}$	{i,(}
Ε	$\{i,(\}$	{i,(}
E'	{+}	$\{+,\epsilon\}$
Т	$\{i, (\}$	{i,(}
T'	{*}	$\{*,\epsilon\}$
F	$\{i,(\}$	{i,(}

Analyse de Données Structurées - Cours 6 La Analyse de Grammaires

Calcul de FIRST₁ dans le cas général

On étend maintenant $FIRST_1$ à des mots de terminaux et non-terminaux :

- ightharpoonup FIRST₁(ϵ) = { ϵ }
- ▶ pour tout $a \in V_T$: $FIRST_1(a\alpha) = \{a\}$
- ▶ pour tout $N \in V_N$:

$$FIRST_1(N\alpha) = \begin{cases} FIRST_1(N) & \text{si } N \notin EPS \\ (FIRST_1(N) \setminus \{\epsilon\}) \cup FIRST_1(\alpha) & \text{si } N \in EPS \end{cases}$$

Analyse de Données Structurées - Cours 6

Analyse de Grammaires

La fonction $FOLLOW_k$

Définition

Soit $G=(V_T,V_N,S,R)$ une grammaire, $k\in\mathbb{N}$. La fonction $FOLLOW_k\colon V_N\to 2^{V_T^*}$ est définie par

$$FOLLOW_k(N) = \{ w \mid S \rightarrow^* \beta N \gamma, \beta, \gamma \in (V_T \cup V_N)^*, w \in FIRST_k(\gamma) \}$$

Remarques

FOLLOW_k(N) est l'ensemble de tous les mots de terminaux de longueur k qui peuvent, dans des mots de $\mathcal{L}(G)$, suivre à un mot dérivé de N.

Nous avons besoin de plus d'information!

- ► Le calcul de *FIRST*₁ n'est plus suffisant pour savoir quelle production appliquer!
- ▶ Exemple : $E' \rightarrow \epsilon \mid +E$ Si nous voyons + alors il faut utiliser la deuxième alternative pour réécrire E'. Mais quand faut-il appliquer la première ?
- ► Il nous manque une information : quel sont les symboles terminaux qui peuvent *suivre* à un mot produit par un non-terminal?

Analyse de Données Structurées - Cours 6

Analyse de Grammaires

Calcul de FOLLOW₁

Algorithme

Donnée une grammaire $G = (V_T, V_N, S, R)$.

```
for all N \in V_N:
Fo(N) = \{ a \in V_T \mid (M \to \dots NN_1 \dots N_k a \dots) \in R, N_1, \dots, N_n \in EPS \}
for all (M \to \dots NN_1 \dots N_k N' \dots) \in R
with N_1, \dots, N_k \in EPS:
Fo(N) = Fo(N) \cup Fi(N')
do
for all <math>(M \to \dots NN_1 \dots N_k) \in R
with N_1, \dots, N_n \in EPS:
Fo(N) = Fo(N) \cup Fo(M)
until Fo fix
```

Lemme

```
Si (S \to N EOF) \in R, alors \forall N \in V_N : Fo(N) = FOLLOW_1(N)
```

Analyse de Données Structurées - Cours 6

-Analyse de Grammaires

Calcul de *FOLLOW*₁ sur l'exemple

Calcul

	Initial	lter1	lter2
S	Ø	Ø	Ø
Е	{EOF,)}	{EOF,)}	{EOF,)}
E'	Ø	{EOF,)}	{EOF,)}
Т	{+}	{+,EOF,)}	{+,EOF,)}
T'	Ø	{+}	{EOF,),+}
F	{*}	{*,EOF,),+}	{*,EOF,),+}

Analyse de Données Structurées - Cours 6

L Analyse de Grammaires

Comment choisir la règle dans l'analyse lexicale

Soit $A \to \alpha_1 \mid \ldots \mid \alpha_n$ une alternative. If y deux cas :

- 1. Soit, aucun des $FIRST_1(\alpha_i)$ ne contient ϵ : comme avant :
 - On choisit la règle $A \to \alpha_i$ quand le symbole suivant est dans $FIRST_1(\alpha_i)$ (ils sont tous disjoints).
 - ► Erreur si aucun tel *i* existe
- 2. Soit α_i avec $\epsilon \in FIRST_i(\alpha_i)$:
 - ▶ si le symbole suivant est dans $FIRST_1(\alpha_j)$: choisir $A \to \alpha_j$, pour $1 \le j \le n$.
 - si le symbole suivant est dans $FOLLOW_1(A)$: choisir $A \to \alpha_i$.
 - sinon Erreur

Analyse de Données Structurées - Cours 6 La Analyse de Grammaires

Finalement (!) : le critère pour être LL(1)

Théorème

La grammaire $G = (V_T, V_N, S, R)$ est LL(1) ssi pour toutes les alternatives $A \to \alpha_1 \mid \ldots \mid \alpha_n$:

- ▶ $FIRST_1(\alpha_1), \ldots, FIRST(\alpha_n)$ sont disjoints entr'eux;
- ▶ Si $\epsilon \in FIRST_1(\alpha_i)$, alors pour tous $j \neq i$:

$$FIRST_1(\alpha_i) \cap FOLLOW_1(A) = \emptyset$$

Remarque

Condition (1) implique qu'au plus un des ensembles $FIRST_1(\alpha_i)$ contient ϵ .