Escola Supercomputador SDumont

MC-SD07. Introdução à configuração e gerenciamento de Clusters

Programa de Verão 2021 - Escola SDumont LNCC – Petrópolis/RJ

André Ramos Carneiro - andrerc@Incc.br Bruno Alves Fagundes - brunoaf@Incc.br

MC-SD07. Introdução à configuração e gerenciamento de Clusters

- Download do material
- https://www.lncc.br/~brunoaf/MCSD07-slide.zip
- https://www.lncc.br/~brunoaf/MSCD07-vms.ova.zip
 Ou
- http://www.cenapad-rj.lncc.br/tutoriais/materiais-hpc/semana-sdumont/

- Extrair o conteúdo do arquivo e importar as vms através do VirtualBox
- Menu Arquivo > Importar Appliance...

Roteiro

- Overview sobre Clusters para HPC
- Elementos de Infraestrutura
- Configuração do cluster de testes
- Atividades de administração

Tipos de clusters

 Alta disponibilidade - HA (Failover, High Availability)

Tipos de clusters

Balanceamento de carga (Load Balancing)

Tipos de clusters

 Alto desempenho - HPC (High Performance Computing)

Clusters de alto desempenho

- Resolver problemas complexos
- Executa tarefas em paralelo
- Rede de alta performance
- Biblioteca de troca de mensagens (MPI, PVM etc)
- Sistema de armazenamento compartilhado

Desafios do HPC

- Tamanho do problema
- Comunicação entre processos
- Acesso compartilhado aos dados

Arquitetura básica de um cluster para HPC

Supercomputadores

Soluções completas de grandes fabricantes

Clusters de PCs

Projetos customizados utilizando máquinas pessoais

> Projeto Carcará (2000) Cluster de 32 PCs

- Gerenciador de recursos
- Sincronismo dos relógios
- Repositório de imagens
- Sistema de arquivos compartilhado
- Contas de usuários centralizadas
- Autenticação sem senha entre os nós
- Módulos de ambiente
- Rede de alta velocidade

Gerenciadores de recursos

Open Grid Scheduler

IBM Spectrum LSF

Univa Grid Engine

Moab HPC Suite

Sincronismo dos relógios

Protocolo NTP – Network Time Protocol

yum install ntp -y

Servidores NTP.br

- Repositório de imagens
 - Aplicação de patches e correções
 - Manter versões diferentes do sistema operacional
 - Provisionamento/deployment

É possível utilizar um software de automação para aplicar as configuração nos nodes.

Sistema de arquivos compartilhado

Sistemas de arquivos paralelos

Sistemas de arquivos distribuídos

Contas de usuários centralizadas

NIS

Network Information Service

 Autenticação sem senha entre os nós computacionais (usuário ou host)

Comunicação MPI

Gerenciamento de patches

Atividades de monitoramento

Módulos de ambiente

Rede de alta velocidade

Infiniband

- . SDR 8 Gb/s
- DDR 16 Gb/s
- . QDR 32 Gb/s
- . FDR 56 Gb/s
- EDR 100 Gb/s
- . HDR 200 Gb/s
- . NDR 400 Gbit/s
- XDR 1000 Gbit/s (2023)

Ethernet

- . 10Gbit/s
- . 25Gbit/s
- . 50Gbit/s
- . 100Gbit/s
- . 200Gbit/s
- . 400Gbit/s
- 800Gbit/s (previsão)
- 1600 Gbit/s (previsão)

Infraestrutura do Lab

- VirtualBox
 - 3 máquinas virtuais
 - CentOS 7.9
- Configurações existentes
 - Cliente e Servidor NIS
 - Cliente e Servidor NFS
 - Cliente NTP
 - SSH HostbasedAuthentication

Laboratório de Atividades

- Servidor NIS
- Servidor NFS
- Slurmctld
- Slurmdbd
- MariaDB

MC-SD07. Introdução à configuração e gerenciamento de Clusters

- Download do material
- https://www.lncc.br/~brunoaf/MC-SD07-slide.zip
- https://www.lncc.br/~brunoaf/MC-SD07-vms.ova.zipOu
- http://www.cenapad-rj.lncc.br/tutoriais/materiais-hpc/semana-sdumont/

- Extrair o conteúdo do arquivo e importar as vms através do VirtualBox
- Menu Arquivo > Importar Appliance...

ClusterShell

- Framework em python que permite executar comandos de forma unificada em um conjunto de máquinas.
- Execução em paralelo
- Suporte a grupos e node groups (nodeset class)
- Aumenta a produtividade

ClusterShell

- Instalação a partir do repositório
- # yum install -y clustershell

- Arquivo de configuração dos grupos (/etc/clustershell/groups.d/local.cfg)
- Incluir:
 - all: @nodes,login
 - nodes: node1,node2

ClusterShell

- Outros exemplos de configuração:
 - tux: node[1000-1100]
 - tux_gpu: node[2000-2050]
 - tux_mngt: node[1000-1100]-net1

Utilização:

- clush -g NOME_DO_GRUPO <comando>
- clush -w NOME_DO_HOST <comando>

Environment Modules

- Permite gerenciar o ambiente shell Linux de forma dinâmica;
- Suporte para diversos tipos de shell, incluindo bash, ksh, zsh, sh, csh, tcsh e fish;
- Escritos com comandos Tcl;
- Os arquivo de módulo devem iniciar com a tag (magic cookie) #%Module seguida da versão.

#%Module1.0

Environment Modules

- Instalação a partir do repositório
- # yum install -y environment-modules

- Diretório padrão dos arquivos de módulo:
 - /usr/share/Modules/modulefiles
- Para adicionar novos diretórios ao path, editar o arquivo /usr/share/Modules/init/.modulepath

Environment Modules

```
#%Module1 0
##
proc ModulesHelp { } {
    puts stderr
    "Informações sobre como utilizar o módulo"
module-whatis "Descrição do módulo: nome, versão e etc"
set rootdir /software/foo/bar
prepend-path PATH $rootdir/bin
prepend-path MANPATH $rootdir/share/man
prepend-path LD LIBRARY PATH $rootdir/lib
```

- Simple Linux Utility for Resource Management
- Open source (GPL version 2)
- Tolerante a falhas
- Seguro
- Comunidade ativa
- Altamente escalável
- Suporte à diversos plugins

Arquitetura

- slurmctld Central controller daemon
- slurmdbd Database daemon
- slurmd Compute node daemon
- slurmstepd Job step daemon

Principais arquivos de configuração

slurmdbd.conf

- Definições sobre archive/purge dos dados de accounting
- Configurações de acesso ao banco de dados
- Método de autenticação entre os daemons do slurm

slurm.conf

- Configurações gerais
- Ativação de plugins
- Parâmetros de escalonamento
- Definição dos nós
- Configuração das partições

• slurmdbd.conf

Diretiva	Função
AuthType=auth/munge	Método de comunicação entre os componentes do SLURM
DbdAddr =localhost	Nome pelo qual DbdHost deve ser referenciado para comunicação.
DbdHost=localhost	Nome do host onde o slurmdbd estará executando.
DbdPort =6819	Porta onde o daemon slurmdbd estará executando.
SlurmUser=slurm	Usuário que executa o daemon slurmdbd
StorageType= accounting_storage/mysql	Indica como as informações de accounting serão armazenadas
StorageHost=localhost	Nome do host servidor de banco de dados
StoragePass=slurm_pass	Senha do StorageUser para acessar o banco de dados
StorageUser=slurm_user	Usuário para acessar o banco de dados
StorageLoc=slurm_acct_db	Nome do banco de dados.

• slurm.conf

Diretiva	Função
ClusterName	Nome do cluster que será referenciado no banco de accounting
SlurmctldHost	Hostname da máquina onde o daemon do slurmctld está executando. Substitui a diretiva <i>ControlMachine</i>
AuthType	Método de autenticação entre os componentes do Slurm
SlurmdSpoolDir	Path completo do diretório onde o slurmd irá escrever as informações sobre os jobs.
Epilog	Path completo para o script que será executado assim que o job for concluído em todos os nós alocados.
Prolog	Path completo para o script que será executado antes do job ser iniciado em todos os nós alocados.

slurm.conf

#SCHEDULING

Diretiva	Função
SchedulerType	Define qual será a política de escalonamento de recursos (backfill, builtin e hold)

#LOGGING

Diretiva	Função
SlurmctldDebug	Nível de detalhes no log do daemon slurmctld
SlurmctldLogFile	Arquivo de log do daemon slurmctld
SlurmdDebug	Nível de detalhes no log do daemon slurmd
SlurmdLogFile	Arquivo de log do daemon slurmd

• slurm.conf

#NODES

Diretiva	Função	
NodeName	Nome do nó que será referenciado pelo Slurm	
NodeAddr	Nome utilizado para comunicação (ex: no01-ib ou IP)	
Sockets	Número de sockets físicos do nó	
CoresPerSocket	Total de núcleos de um único processador (socket)	
RealMemory	Tamanho total de memória em megabytes	
CpuSpecList	Id das CPUs reservadas para uso do sistema.	
MemSpecLimit	Total de memória (MB) reservada para uso do sistema	
State	Status do nó ao iniciar o slurm. Default é UNKNOWN	
Weight	Prioridade do nó para escalonamento das tarefas	

slurm.conf (Nodes)

NodeName=tux[1000-1200] *Weight*=1 *Sockets*=2 *CoresPerSocket*=8 *ThreadsPerCore*=1 *RealMemory*=64000 *State*=UNKNOWN

NodeName=tux[2000,3000-3020] *Sockets*=2 *CoresPerSocket*=24 *ThreadsPerCore*=1 *RealMemory*=128000 *State*=UNKNOWN

• slurm.conf

#PARTITIONS

Diretiva	Função	
PartitionName	Nome da partição (fila)	
Allow[Accounts, Groups]	Lista de account e grupos habilitados a usar a fila	
Hidden	A partição e seus jobs ficam ocultos aos comandos	
Nodes	Lista de nós associados a uma partição	
Default	Indica que será a partição padrão	
MaxTime / DefaultTime	Limite máximo de tempo de execução dos jobs	
MinNodes / MaxNodes	Minimo e máximo de nós que podem ser requisitados por job	
Shared	Permite o uso compartilhado dos recursos	
State	Define o status da partição (Up, Down, Drain e Inactive)	

slurm.conf (Partitions)

PartitionName=cpu *Nodes*=tux[1000-1100] *Shared*=NO *Default*=YES *State*=UP *MinNodes*=10 *DefaultTime*=48:00:00

PartitionName=cpu_shared *Nodes*=tux[1101-1200] *Shared*=YES *Default*=NO *State*=UP *DefMemPerCPU*=4000 *MaxNodes*=10

PartitionName=gpu *Nodes*=tux[2000,3000] *Shared*=No *State*=UP *AllowGroups*=grupo1 *Hidden*=YES

Principais comandos

Submissão	Modificação	Informação	Accounting
salloc sbatch srun	scontrol scancel	squeue sinfo sstat sview smap	sacct sacctmgr sreport

- Aplicando as alterações
 - Adicionar ou remover nós
 - > reiniciar slurmctld e slurmd
 - Alterações nas partições e demais configurações
 - > editar os arquivos de configuração
 - > scontrol reconfigure
 - Adição ou alterações nas associações
 - > não requer ação, são aplicadas imediatamente

Instalação

Super Quick Start

https://slurm.schedmd.com/quickstart_admin.html

- Recomenda o uso de contas de usuários e relógios sincronizados
- . Utilizar o MUNGE para autenticação dos daemons do SLURM
- · Baixar o código-fonte
- Descompactar
- Compilar
- Instalar
- Iniciar os daemons

Pré-requisitos

- MUNGE

- Serviço de autenticação criado especialmente para alta escalabilidade em ambientes de HPC;
- Utiliza uma chave criptografada para autorizar a comunicação entre processos de máquinas diferentes;
- Código-fonte disponível em https://dun.github.io/munge/ ou pelo repositório epel-release do CentOS;
- Deve ser instalado em todos os nós do cluster e a chave deve ser idêntica em todas as máquinas.

Pré-requisitos

- MUNGE

Instalar o munge em todos os nodes

clush -g all yum install -y munge munge-libs munge-devel

Gerar uma chave e distribuí-la em todos os nodes

```
# dd if=/dev/urandom bs=1 count=1024 > /etc/munge/munge.key
# chmod 0600 /etc/munge/munge.key
# clush -g nodes -p -c /etc/munge/munge.key
# clush -g all chown munge:munge /etc/munge/munge.key
```

Pré-requisitos

- MUNGE

Iniciar o serviço e testar a comunicação entre os nós

```
# clush -g all systemctl enable munge
# clush -g all systemctl start munge
```

Testando a comunicação:

```
# munge -n | unmunge
# munge -n | ssh node1 unmunge
# munge -n | ssh node2 unmunge
```

Pré-requisitos

- MySQL/MariaDB
 - Será utilizado como banco de dados do sistema de accounting
 - Utilizar o repositório do mariadb

curl -sS https://downloads.mariadb.com/MariaDB/mariadb_repo_setup | bash

Login/Service node

- MariaDB-client
- . MariaDB-shared
- MariaDB-devel
- MariaDB-server
- MariaDB-backup

Computer nodes

- MariaDB-client
- . MariaDB-shared
- MariaDB-devel

- Pré-requisitos
 - MySQL/MariaDB
 - Instalação do MariaDB no Service Node
 - login# yum install -y MariaDB-client MariaDB-shared
 MariaDB-devel MariaDB-server MariaDB-backup
 - Instalação das libs nos computer nodes
 - nodes# yum install -y MariaDB-client MariaDB-shared
 MariaDB-devel

Pré-requisitos

- MySQL/MariaDB
 - Ajustar configurações do banco de dados para os valores recomendados*.
 - Criar o arquivo /etc/my.cnf.d/innodb.cnf com o conteúdo abaixo:
 - login# vi /etc/my.cnf.d/innodb.cnf
 - [mysqld]
 - innodb_buffer_pool_size=1024M
 - innodb_log_file_size=64M
 - innodb_lock_wait_timeout=900

Pré-requisitos

MySQL/MariaDB

mysql> exit;

- Iniciar o serviço e habilitar para inicializar automaticamente.
- Criar o banco de dados e o usuário para acesso ao mysql login# mysql

```
mysql> create database slurm_acct_db;
mysql> create user 'slurm'@'localhost' identified by 'slurm_pass';
mysql> grant all on slurm_acct_db.* TO 'slurm'@'localhost';
mysql> FLUSH PRIVILEGES;
```

- Pré-requisitos
 - MySQL/MariaDB
 - Testando o acesso:

login# mysql -u slurm -D slurm_acct_db -p

- Instalação
 - Criar o usuário e o grupo slurm
 - Baixar o código-fonte
 - Gerar os arquivos RPM
 - Instalar os pacotes
 - Criar estrutura de diretórios de log e spool
 - Configurar e iniciar os serviços

Instalação – Criando usuário e grupo slurm

Criando o grupo:

clush -g all "groupadd -g 991 slurm"

Criando o usuário:

clush -g all 'useradd -m -c "Slurm workload manager" -d /var/lib/slurm -u 991 -g slurm -s /bin/bash slurm'

Verificando:

#clush -g all getent passwd slurm #clush -g all getent group slurm

Instalação – Baixar o código-fonte e gerar o rpm

Baixando o fonte:

login# wget https://download.schedmd.com/slurm/slurm-19.05.5.tar.bz2

Criando os pacotes

login# rpmbuild -ta slurm-19.05.5.tar.bz2

login# mkdir -p /scratch/app/slurm-rpms

login# cp /root/rpmbuild/RPMS/x86_64/slurm-* /scratch/app/slurm-rpms

- Instalação service/login node
 - Instalar os pacotes rpm


```
login# cd /scratch/app/slurm-rpms
login# yum --nogpgcheck localinstall -y \
slurm-19.05.5-1.el7.x86_64.rpm \
slurm-perlapi-19.05.5-1.el7.x86_64.rpm \
slurm-slurmctld-19.05.5-1.el7.x86_64.rpm \
slurm-slurmdbd-19.05.5-1.el7.x86_64.rpm \
slurm-example-configs-19.05.5-1.el7.x86_64.rpm \
slurm-devel-19.05.5-1.el7.x86_64.rpm \
slurm-contrib-19.05.5-1.el7.x86_64.rpm
```

- Instalação computer node
 - Instalar os pacotes rpm


```
nodes# cd /scratch/app/slurm-rpms
nodes# yum --nogpgcheck localinstall -y \
slurm-19.05.5-1.el7.x86_64.rpm \
slurm-perlapi-19.05.5-1.el7.x86_64.rpm \
slurm-slurmd-19.05.5-1.el7.x86_64.rpm \
slurm-pam_slurm-19.05.5-1.el7.x86_64.rpm
```

Instalação – Estrutura de diretórios de log e spool

clush -g all "mkdir -p /var/log/slurm/ /var/spool/slurm/d /var/spool/slurm/ctld" # clush -g all "chown -R slurm:slurm /var/log/slurm /var/spool/slurm"

 Configuração do slurmdbd.conf (login)

Usar o arquivo de exemplo como base para configuração

login# cp /etc/slurm/slurmdbd.conf.example /etc/slurm/slurmdbd.conf

login# vi /etc/slurm/slurmdbd.conf

Diretiva	Valor	
AuthType	auth/munge	
DbdAddr	localhost	-0-
DbdHost	localhost	
DebugLevel	verbose	
SlurmUser	slurm	
StorageType	accounting_storage/mysql	
StorageHost	localhost	
StoragePass	slurm_pass	
StorageUser	slurm	
StorageLoc	slurm_acct_db	
LogFile	/var/log/slurm/slurmdbd.log	
PidFile	/var/run/slurmdbd.pid	

 Iniciar o serviço do slurmdbd e verificar os logs

login# systemctl start slurmdbd

O log do slurmdbd deve apresentar uma saída semelhante a descrita abaixo:

login# cat /var/log/slurm/slurmdbd.log
[data] Accouting storage MYSQL plugin loaded
[data] slurmdbd version 19.05.5 started

 Configuração do slurm.conf

Usar o arquivo de exemplo como base para configuração

login# cp /etc/slurm/slurm.conf.example /etc/slurm/slurm.conf

login# vi /etc/slurm/slurm.conf

Diretiva	Valor	
ClusterName	verao21	
SlurmctldHost	login	
SlurmdUser	slurm	
AuthType	auth/munge	
StateSaveLocation	/var/spool/slurm/ctld	
SlurmdSpoolDir	/var/spool/slurm/d	
SchedulerType	sched/backfill	
SlurmctldDebug	info	
SlurmctldLogFile	/var/log/slurm/slurmctld.log	
SlurmdDebug	info	
SlurmdLogFile	/var/log/slurm/slurmd.log	

Configuração do slurm.conf

Nodes e Partitions

#Nodes

NodeName=node[1-2] CPUs=1 State=UNKNOWN

#Partitions

PartitionName=teste Nodes=node1 Default=Yes MaxTime=INFINITE State=UP

Iniciar o slurmetld no nó de login

login# systemctl enable slurmctld login# systemctl start slurmctld

 Propagar o arquivo de configuração e iniciar o slurmd nos nodes

login# clush -w node[1-2] mkdir /etc/slurm *****
login# clush -w node[1-2] -c /etc/slurm/slurm.conf

login# clush -w node[1-2] systemctl enable slurmd login# clush -w node[1-2] systemctl start slurmd

- Testando a configuração
 - Dump da configuração atual:
 - \$ scontrol show config

 Obtendo as informações dos nodes login# clush -w node1 slurmd -C

NodeName=node1 CPUs=1 Boards=1 SocketsPerBoard=1 CoresPerSocket=1 ThreadsPerCore=1 RealMemory=360

· Verificando o status da partição e dos nodes

login# sinfo

PARTITION AVAIL TIMELIMIT NODES STATE NODELIST teste* up infinite 1 idle node1

 Submetendo um job user01@login~\$ srun -N 1 -p teste hostname node1

- Hierarquia de accounting
 - 1) Cluster
 - 2) Account
 - 3) User
 - 4) Resource

A combinação desses elementos possibilita criar diversas associações que permitem a definição de limites no uso dos recursos

- Cluster
 - Name: nome do cluster
- Account
 - Cluster: nome do cluster associado
 - Description: texto descritivo da account
 - Name: nome da account
 - Organization: nome da organização
 - Parent: transforma a account em uma filha da account informada

User

- Account: nome da account do usuário
- AdminLevel: nível de privilégio do usuário (none, operator e admin)
- Cluster: nome do cluster do usuário
- **DefaultAccount**: nome da account default
- Name: nome do usuário
- Partition: nome da partição que será utilizada para criar uma associação

Resources

- Fairshare: valor inteiro que indica a prioridade
- MaxJobs: número total de jobs em execução
- MaxSubmitJobs: número máximo de jobs submetidos
- MaxCPUs: número máximo de CPUs alocadas por job
- MaxNodes: número máximo de nós alocados por job
- MaxWall: walltime máximo de um job

Habilitando

Arquivo slurm.conf

- AccountingStorageType
- accounting_storage/none: não registra as informações de accounting dos jobs. Essa é a opção padrão.
- accounting_storage/slurmdbd: armazena as informações de accounting em um banco de dados através do daemon do slurmdbd.
- accounting_storage/filetext: grava as informações de accounting diretamente em um arquivo.

Habilitando

Arquivo slurm.conf

- AccountingStorageEnforce
- associations: impede que os usuários executem jobs se não existir uma associação no banco de dados.
- limits: aplica limites as associações existentes no banco de dados. Ao habilitar essa opção, a opção associations também é definida.
- qos: exige que todos os jobs informem um QOS válido.
- safe: só aceitará jobs que a associação ou QOS tenham um GrpCPUMins (tempo máximo de CPU) definido. Implica em associations e limits habilitados.
- wckeys: previne que usuários executem jobs com uma chave (WCKey) que não possuem acesso. Implica em associations habilitada.

- Comando sacctmgr
 - sacctmgr [opções] [comando]

```
sacctmgr add <ENTRY> <SPECS>
sacctmgr list <ENTRY> <SPECS>
sacctmgr modify <ENTRY> where <SPECS> set <SPECS>
sacctmgr delete <ENTRY> where <SPECS>
```

Criando um cluster

- \$ sacctmgr add cluster verao21

Criando um account

- \$ sacctmgr add account alunos Description="Alunos"

Criando um user

sacctmgr create user name=aluno123 account=alunos

Alterando elementos

- \$ sacctmgr modify account where name=alunos set
 Description="Alunos programa de verao 2021"

- \$ sacctmgr modify user where name=aluno123 set
 DefaultAccount=none

- \$ sacctmgr modify user where name=aluno123 set
 MaxJobs=10

Removendo elementos

- \$ sacctmgr remove user aluno123 where account=alunos

Outros comandos

- \$ sacctmgr show configuration
- \$ sacctmgr show stats
- \$ sacctmgr list user aluno123
- \$ sacctmgr list assoc user=aluno123

Configuração do slurm.conf

Diretiva	Valor
AccountingStorageEnforce	limits
AccountingStorageType	accounting_storage/slurmdbd

 Propagar a configuração para os nodes e reiniciar os daemons

login# clush -w node[1-2] -c /etc/slurm/slurm.conf login# clush -w node[1-2] systemctl start slurmd login# systemctl restart slurmctld

Verifique os logs do slurmctld

Error: slurmdbd: Issue with call DBD_REGISTER_CTLD(1434): 4294967295(This cluster hasn't been added to accounting yet)

fatal: You need to add this cluster to accounting if you want to enforce associations, or no jobs will ever run.

 Ao habilitarmos o controle de limites de recursos devemos ter, pelo menos, a associação do cluster cadastrada

• • •

fatal: You need to add this cluster to accounting if you want to enforce associations, or no jobs will ever run.

 O nome do cluster deve ser idêntico ao valor do parâmetro ClusterName do arquivo slurm.conf

\$ sacctmgr add cluster verao21

 Reinicie o daemon do slurmctld e verifique o arquivo de log.

systemctl restart slurmctld

login# cat /var/log/slurm/slurmctld.log

[data] slurmctld version 19.05.5 started on cluster verao21

- - -

 Submeta um job de teste user01@login~\$ srun -N 1 -p teste hostname

srun: error: Unable to allocate resources: Invalid account or account/partition combination specified

- Verifique os acessos do usuário user01
 - \$ sacctmgr list user user01
 - \$ sacctmgr list assoc user=user01

Cadastrando um account sem restrições

sacctmgr create account alunos

- Cadastrando um account com limitações
 - Número máximo de nós por job: 1
 - Número máximo de jobs submetidos: 2
 - Tempo máximo de execução dos jobs: 60 segundos

sacctmgr create account restrito MaxNodes=1 MaxSubmitJobs=2 MaxWall=00:01:00

 Criando associações entre usuários e accounts

Usuário	Account	Restrições
user01	alunos	-
user02	alunos	Default Account = restrito

sacctmgr create user user01 account=alunos

sacctmgr create user user02 account=alunos DefaultAccount=restrito

· Submeta com as contas de usuário criadas.


```
# sudo -u user01 srun -N 1 -p teste sleep 200&
# sudo -u user01 srun -N 1 -p teste sleep 200&
```

Liste as informações da fila e da partição

```
# squeue -p teste
# sinfo -p teste
```

Verifique as informações dos jobs


```
# scontrol show job JOBID1
```

scontrol show job JOBID2

Atenção para os campos account e timelimit

Submeta o job abaixo:

sudo -u user02 srun -N 2 -p teste sleep 100&

Liste as informações da fila e dos jobs

```
# squeue -p teste
# scontrol show job JOBID
```

 O comando scontrol permite modificar os recursos solicitados por um job que está na fila.

```
# sudo -u user02 scontrol update jobid=JOBID propriedade=valor ...
```

```
# sudo -u user02 scontrol update jobid=JOBID ReqNodes=1 NumNodes=1-1 NumCpus=1 NumTasks=1
```

scontrol update jobid=JOBID TimeLimite=+01:00:00 (apenas root)

man scontrol

Sessão: SPECIFICATION FOR UPDATE COMMAND, JOBS

Gerenciando nodes

Coloca um nó em manutenção

scontrol update NodeName=node1 State=Drain Reason="Motivo"

sinfo -p teste -R

Retornando um nó para a fila
 # scontrol update NodeName=node1 State=Resume
 # sinfo -p teste

- Partitions (filas)
 - Alterando configurações
 - Uso exclusivo x compartilhado
 - Tempo default
 - Status (up, down, drain, inactive)

scontrol update partition PartitionName=NOME chave=valor

Partitions (filas)

- As alterações feitas com o comando scontrol não são permanentes;
- Caso o daemon do slurmctld for reiniciado, serão carregas as configurações contidas no arquivo de configuração do slurm.

Reservations

- Garante uma quantidade de recursos por um período de tempo;
- Não necessita criar associação;
- Restrição por usuário ou account;
- São removidas automaticamente.

Reservations

scontrol create reservation StartTime=2021-01-22T00:00:00 Duration=120 User=user01 Nodes=node1

scontrol show res

sudo -u user01 srun -N1 --reservation user01_1 hostname

Relatórios de accounting

sacct

Exibe as informações sobre os jobs do banco de dados de accounting.

Permite filtros por data de inicio e fim, nome do usuário, account, partição, nós onde os jobs executaram entre outros.

sacct -a -X -N node1 -S 2021-01-01 -E 2021-01-15

Relatórios de accounting

sreport

Gera relatórios consolidados sobre o consumo de recursos em um determinado período.

- Utilização por usuário
- Utilização por account
- Utilização de todo o cluster
- Total de recursos ocupados por Reservations
- Top users do cluster

Relatórios de accounting

sreport

sreport user topUser Start=2021-01-01 End=2021-02-01

sreport cluster utilization

sreport cluster AccountUtilizationByUser account=alunos