

MCA 321: NLP

(Chapter#1 – Introduction) **Aspects of Natural Language Processing**

Dr. Gitanjali Ganpatrao Nikam
Deptt. Of Computer Applications,
NIT Kurukshetra
(Lecture #1)

Introduction

- Definition: The idea of giving computers the ability to process human language.
- Goal: To get computers to perform useful tasks involving human language, tasks like enabling human-machine communication, improving humanhuman communication or simply doing useful processing of text or speech.

Examples

- Conversational Agent/ Dialogue system
- Machine translation
- Question answering

Q/A system

- What does divergent mean?
- What year was Abraham Lincoln born?
- How many states were in the United States that year?
- How much Chinese silk was exported to England by the end of the 18th century?
- What do scientists think about the ethics of human cloning?

Conversational Agent

- Dave: HAL, open the pod bay door.
- HAL: I'm sorry Dave, I'm afraid, I can't do that.

Knowledge in speech and language processing

- Knowledge of language
- It is the task of speech recognition and speech synthesis.
- It requires knowledge about phonetics and phonology, morphology, structural knowledge, Lexical semantics, Compositional semantics, Pragmatic or dialogue knowledge, Discourse knowledge Dr. Gitanjali Ganpatrao Nikam,

Ambiguity

"I made her duck."

- 1. I cooked waterfowl for her.
- 2. I cooked waterfowl belonging to her.
- 3. I created the (plaster?) duck she owns.
- 4. I caused her to quickly lower down her head or body.
- 5. I waved my magic wand and turned her into undifferentiated waterfowl.

Part-of-speech tagging
Word sense disambiguation
Lexical disambiguation
Syntactic disambiguation

Model and Algorithms

- State m/c
- Rule systems
- Logic
- Probabilistic models
- Vector-Space Models

Perpectivising NLP: Areas of AI and their inter-dependencies

AI is the forcing function for Computer Science
Dr. Gitanjali Ganpatrao Nikam,
DCA, NIT Kurukshetra

Course Content

- Sound Biology of Speech Processing; Place and manner of Articulation; Word Boundary Detection; Argmax Based Computations; HMM an Speech Recognition
- Words and word forms Morphology fundamentals; Morphological Diversity of Indian Languages; Morphology Paradigms; Finite State Machine Based Morphology; Automatic Morphology Learning; Shallow Parsing; Named Entities; Maximum Entropy Models; Random fields.

Contd...

- Structures Theories of Parsing; Robust and Scalable Parsing on Noisy Text as in Web Documents; Hybrid of Rule Based and Probabilistic Parsing; Scope Ambiguity and Attachment Ambiguity resolution
- Meaning- Lexical knowledge networks, Wordnet Theory; Indian Language wordnets and Multilingual Dictionaries; Semantic Roles; Word Sense Disambiguation; WSD and Multilinguality; Metaphores and coreference kam,

Contd...

 Advanced Topics/Applied NLP- Sentiment Analysis; Text entailment; Robust and scalable Machine Translation; Question Answering in Multilingual Setting; Cross Lingual Information Retrieval (CLIR)

Web brings new perspectives: QSA Triangle

What is NLP

- Branch of AI
- 2 Goals
 - Science Goal: Understand the way language operates
 - Engineering Goal: Build systems that analyse and generate language; reduce the man machine gap

The famous Turing Test: Language Based Interaction

Can the test conductor find out which is the machine and which the human

Dr. Gitaniali Cannatrae Nikam

Dr. Gitanjali Ganpatrao Nikam, DCA, NIT Kurukshetra

Inspired Eliza

http://www.manifestation.com/neuroto ys/eliza.php3

Inspired *Eliza* (another sample interaction)

File Edit Options Buffers Tools Help ∅ ▼ × ⑤ Ø ゥ チ № № ∅ ♀ Ø ? I am the psychotherapist. Please, describe your problems. ¶Each time you are finished talking, type RET twice. I have a terrible headache. Maybe you should consult a doctor of medicine, I am a psychi ¶atrist. Okay, I'll do that then. Can you elaborate on that? What are you talking about? No I cannot elaborate. See you 12 ¶ater. Why do you say that? Now you're just talking nonsense! What makes you believe now I am just talking nonsense? You are not making any sense. Perhaps your plans have something to do with this. *doctor* (Doctor Fill) -- L1--Top-----Dr. Gitanjali Ganpatrao Nikam,

DCA, NIT Kurukshetra

Ambiguity

This is what makes NLP challenging: The Crux of the problem

Stages of language processing

- Phonetics and phonology
- Morphology
- Lexical Analysis
- Syntactic Analysis
- Semantic Analysis
- Pragmatics
- Discourse

Phonetics

- Processing of speech
- Challenges
 - Homophones: bank (finance) vs. bank (river bank)
 - Near Homophones: maatraa vs. maatra (hin)
 - Word Boundary
 - aajaayenge (aa jaayenge (will come) or aaj aayenge (will come today)
 - I got [ua]plate- I got a plate; I got up late
 - Phrase boundary
 - mtech1 students are especially exhorted to attend as such seminars are integral to one's post-graduate education
 - Disfluency: ah, um, ahem etc.

Morphology

- Word formation rules from root words
- Nouns: Plural (boy-boys); Gender marking (czar-czarina)
- Verbs: Tense (stretch-stretched); Aspect (e.g. perfective sit-had sat); Modality (e.g. request khaanaa→ khaaiie)
- First crucial first step in NLP
- Languages rich in morphology: e.g., Dravidian, Hungarian, Turkish
- Languages poor in morphology: Chinese, English
- Languages with rich morphology have the advantage of easier processing at higher stages of processing
- A task of interest to computer science: Finite State Machines for Word Morphology

Books etc.

Main Text(s):

- Natural Language Understanding: James Allan
- Speech and NLP: Jurafsky and Martin
- Foundations of Statistical NLP: Manning and Schutze

Other References:

- NLP: A Paninian Perspective: Akshar Bharti, Vineet Chaitanya and Rajeev Sangal, Prentice Hall, New Delhi.
- Statistical Language Learning: E. Charniac, MIT Press
- "Natural language Processing and Information Retrieval", T. Siddiqui and U. S. Tiwary, Oxford Univ. Press
- "Multilingual natural language processing Applications", Daniel M. Bikel, Imed Zitouni, Pearson.

Journals

 Computational Linguistics, Natural Language Engineering, AI, AI Magazine, IEEE SMC

End of Lecture 1