1 Gly

<400> 3

SEQUENCE LISTING

```
<110> Gaiger, Alexander
            McNeill, Patricia D.
            Smithgall, Molly
            Moulton, Gus
Vedvick, Thomas S.
            Sleath, Paul R.
            Mossman, Sally
            Evans, Lawrence
            Spies, A. Gregory
            Boydston, Jeremy
      <120> COMPOSITIONS AND METHODS FOR WT1
            SPECIFIC IMMUNOTHERAPY
      <130> 210121.465C6
      <140> US
      <141> 2001-10-30
      <160> 413
      <170> FastSEQ for Windows Version 3.0
      <210> 1
      <211> 17
      <212> PRT
      <213> Homo sapien
      <400> 1
Arg Asp Leu Asn Ala Leu Leu Pro Ala Val Pro Ser Leu Gly Gly
                 5
      <210> 2
      <211> 23
      <212> PRT
      <213> Homo sapien
      <400> 2
Pro Ser Gln Ala Ser Ser Gly Gln Ala Arg Met Phe Pro Asn Ala Pro
                 5
                                     10
Tyr Leu Pro Ser Cys Leu Glu
            20
      <210> 3
      <211> 23
      <212> PRT
      <213> Mus musculus
```

	1	r Gln		5			Gln	Ala	Arg 10	Met	Phe	Pro	Asn	Ala 15	Pro	
1	Tyr Le	u Pro	Ser 20	Cys	Leu	Glu										
		<210>														
		<211>														
		<212>														
		<213>	ноше	o sag	ртеп											
		<400>	4													
	Gly Al	a Thr		Lys	Gly	Val	Ala	Ala	Gly	Ser	Ser	Ser	Ser	Val	Lys	
	1			5					10					15		
	Trp Th	ır Glu														
		<210>	5													
		<211>														
		<212>														
		<213>		o sa	pien											
		<400>														22
	gagagt	caga	cttg	aaag	ca g	t										22
		<210>	6													
		<211>														
		<212>														
		<213>			pien											
		<400>														20
	ctgag	cctca	gcaa	atgg	gc											20
		<210>	7													
		<211>														
		<212>														
		<213>			pien											
		<400>														27
	gagcat	gcat	gggc	tccg	ac g	tgcg	gg									21
		<210>	8													
		<211>														
		<212>														
		<213>			pien											
		<400>														0.5
	ggggt	accca	ctga	acgg	tc c	ccga										25
		<210>	a a													
		<211>														
		<211>														
		<213>			culu	s										
		<400>	9													

tccgagccgc acctcatg	18
<210> 10	
<211> 18	
<212> DNA	
<213> Mus musculus	
<400> 10	
gcctgggatg ctggactg	18
<210> 11	
<211> 27	
<212> DNA	
<213> Mus musculus	
<400> 11	
gagcatgcga tgggttccga cgtgcgg	27
gageargega rgggreeega egrgegg	
<210> 12	
<211> 29	
<212> DNA	
<213> Mus musculus	
<400> 12	
ggggtacete aaagegeeae gtggagttt	29
<210> 13	
<211> 17	
<212> PRT	
<213> Mus musculus	
<400> 13	
Arg Asp Leu Asn Ala Leu Leu Pro Ala Val Ser Ser Leu Gly Gly Gly	
1 5 10 15	
Gly	
<210> 14	
<211> 19	
<212> PRT	
<213> Mus musculus	
<400> 14	
Gly Ala Thr Leu Lys Gly Met Ala Ala Gly Ser Ser Ser Val Lys	
1 5 10 15	
Trp Thr Glu	
<210> 15	
<211> 15	
<212> PRT	
<213> Homo sapien	
<400> 15	

```
Arg Ile His Thr His Gly Val Phe Arg Gly Ile Gln Asp Val Arg
      <210> 16
      <211> 15
      <212> PRT
      <213> Mus musculus
     <400> 16
Arg Ile His Thr His Gly Val Phe Arg Gly Ile Gln Asp Val Arg
                                    10
      <210> 17
      <211> 14
      <212> PRT
      <213> Mus musculus
      <400> 17
Val Arg Arg Val Ser Gly Val Ala Pro Thr Leu Val Arg Ser
      <210> 18
      <211> 14
      <212> PRT
      <213> Homo sapien
      <400> 18
Val Arg Arg Val Pro Gly Val Ala Pro Thr Leu Val Arg Ser
      <210> 19
      <211> 15
      <212> PRT
      <213> Homo sapien
      <400> 19
Cys Gln Lys Lys Phe Ala Arg Ser Asp Glu Leu Val Arg His His
                 5
      <210> 20
      <211> 15
      <212> PRT
      <213> Mus musculus
      <400> 20
Cys Gln Lys Lys Phe Ala Arg Ser Asp Glu Leu Val Arg His His
                                     10
      <210> 21
      <211> 21
      <212> DNA
      <213> Mus musculus
      <400> 21
```

	2	21
cccaggctgc aataagagat	a	
<210> 22		
<211> 21		
<212> DNA		
<213> Mus muscul	us	
<400> 22		21
atgttgtgat ggcggaccaa	t	21
<210> 23		
<210> 23		
<211> 20 <212> DNA		
<213> Homo sapie	en	
(213) Homo Supre	···	
<400> 23		
gtggggcgcc ccaggcacca		20
<210> 24		
<211> 24		
<212> DNA		
<213> Homo sapie		
<400> 24		
gtccttaatg ctacgcacga	tttc	24
-		
<210> 25		
<211> 21		
<212> DNA		
<213> Homo sapie	en e	
<400> 25		
ggcatctgag accagtgaga	a	21
99		
<210> 26		
<211> 21		
<212> DNA		
<213> Homo sapie	en	
<400> 26		
gctgtcccac ttacagatgc	a	21
gergeeeue erueugurge		•
<210> 27		
<211> 21		
<212> DNA		
<213> Homo sapi	en	
<400> 27 tcaaagcgcc agctggagtt	+	21
ccaaaycycc aycryyayrc		_
<210> 28		
<211> 9		
<212> PRT		
<213> Homo sapi	en	

```
<400> 28
Ala Ala Gly Ser Ser Ser Ser Val Lys
     <210> 29
      <211> 9
      <212> PRT
      <213> Homo sapien
      <400> 29
Ala Ala Gln Phe Pro Asn His Ser Phe
1
      <210> 30
      <211> 9
      <212> PRT
      <213> Homo sapien
      <400> 30
Ala Glu Pro His Glu Glu Gln Cys Leu
                 5
1
      <210> 31
      <211> 9
      <212> PRT
      <213> Homo sapien
      <400> 31
Ala Gly Ala Cys Arg Tyr Gly Pro Phe
1
      <210> 32
      <211> 9
      <212> PRT
      <213> Homo sapien
      <400> 32
Ala Gly Ser Ser Ser Ser Val Lys Trp
                 5
      <210> 33
      <211> 9
      <212> PRT
      <213> Homo sapien
      <400> 33
Ala Ile Arg Asn Gln Gly Tyr Ser Thr
      <210> 34
      <211> 9
      <212> PRT
      <213> Homo sapien
```

```
<400> 34
Ala Leu Leu Pro Ala Val Pro Ser Leu
                 5
      <210> 35
      <211> 9
      <212> PRT
      <213> Homo sapien
      <400> 35
Ala Leu Leu Pro Ala Val Ser Ser Leu
1
      <210> 36
      <211> 9
      <212> PRT
      <213> Homo sapien
     <400> 36
Ala Gln Phe Pro Asn His Ser Phe Lys
1
      <210> 37
      <211> 9
      <212> PRT
      <213> Homo sapien
      <400> 37
Ala Gln Trp Ala Pro Val Leu Asp Phe
 1
      <210> 38
      <211> 9
      <212> PRT
      <213> Homo sapien
      <400> 38
Ala Arg Met Phe Pro Asn Ala Pro Tyr
 1
                 5
      <210> 39
      <211> 9
      <212> PRT
      <213> Homo sapien
      <400> 39
Ala Arg Ser Asp Glu Leu Val Arg His
                 5
      <210> 40
      <211> 9
      <212> PRT
      <213> Homo sapien
```

```
<400> 40
Ala Ser Ser Gly Gln Ala Arg Met Phe
      <210> 41
      <211> 9
      <212> PRT
      <213> Homo sapien
      <400> 41
Ala Tyr Gly Ser Leu Gly Gly Pro Ala
      <210> 42
      <211> 9
      <212> PRT
      <213> Homo sapien
      <400> 42
Ala Tyr Pro Gly Cys Asn Lys Arg Tyr
                 5
      <210> 43
      <211> 9
      <212> PRT
      <213> Homo sapien
      <400> 43
Cys Ala Leu Pro Val Ser Gly Ala Ala
                 5
      <210> 44
      <211> 9
      <212> PRT
      <213> Homo sapien
      <400> 44
Cys Ala Tyr Pro Gly Cys Asn Lys Arg
                 5
      <210> 45
      <211> 9
      <212> PRT
      <213> Homo sapien
      <400> 45
Cys His Thr Pro Thr Asp Ser Cys Thr
                  5
      <210> 46
      <211> 9
      <212> PRT
      <213> Homo sapien
```

```
<400> 46
Cys Lys Thr Cys Gln Arg Lys Phe Ser
      <210> 47
      <211> 9
      <212> PRT
      <213> Homo sapien
      <400> 47
Cys Leu Glu Ser Gln Pro Ala Ile Arg
                5
      <210> 48
      <211> 9
      <212> PRT
      <213> Homo sapien
      <400> 48
Cys Leu Ser Ala Phe Thr Val His Phe
1
                 5
      <210> 49
      <211> 9
      <212> PRT
      <213> Homo sapien
      <400> 49
Cys Met Thr Trp Asn Gln Met Asn Leu
                 5
      <210> 50
      <211> 9
      <212> PRT
      <213> Homo sapien
      <400> 50
Cys Arg Trp Pro Ser Cys Gln Lys Lys
                 5
      <210> 51
      <211> 9
   <212> PRT
      <213> Homo sapien
      <400> 51
Cys Arg Tyr Gly Pro Phe Gly Pro Pro
      <210> 52
      <211> 9
      <212> PRT
      <213> Homo sapien
```

-

```
<400> 52
Cys Thr Gly Ser Gln Ala Leu Leu
                 5
      <210> 53
      <211> 9
      <212> PRT
      <213> Homo sapien
     <400> 53
Asp Glu Leu Val Arg His His Asn Met
      <210> 54
      <211> 9
      <212> PRT
      <213> Homo sapien
      <400> 54
Asp Phe Ala Pro Pro Gly Ala Ser Ala
                5
      <210> 55
      <211> 9
      <212> PRT
      <213> Homo sapien
      <400> 55
Asp Phe Lys Asp Cys Glu Arg Arg Phe
      <210> 56
      <211> 9
      <212> PRT
      <213> Homo sapien
      <400> 56
Asp Gly Thr Pro Ser Tyr Gly His Thr
                5
      <210> 57
      <211> 9
      <212> PRT
      <213> Homo sapien
      <400> 57
Asp His Leu Lys Thr His Thr Arg Thr
      <210> 58
      <211> 9
      <212> PRT
      <213> Homo sapien
```

```
<400> 58
Asp Leu Asn Ala Leu Leu Pro Ala Val
      <210> 59
      <211> 9
      <212> PRT
      <213> Homo sapien
      <400> 59
Asp Pro Met Gly Gln Gln Gly Ser Leu
      <210> 60
      <211> 9
      <212> PRT
      <213> Homo sapien
      <400> 60
Asp Gln Leu Lys Arg His Gln Arg Arg
                 5
1
      <210> 61
      <211> 9
      <212> PRT
      <213> Homo sapien
     <400> 61
Asp Ser Cys Thr Gly Ser Gln Ala Leu
 1
      <210> 62
      <211> 9
      <212> PRT
      <213> Homo sapien
      <400> 62
Asp Val Arg Asp Leu Asn Ala Leu Leu
                 5
      <210> 63
      <211> 9
      <212> PRT
      <213> Homo sapien
      <400> 63
Asp Val Arg Arg Val Pro Gly Val Ala
      <210> 64
      <211> 9
      <212> PRT
       <213> Homo sapien
```

```
<400> 64
Glu Asp Pro Met Gly Gln Gln Gly Ser
      <210> 65
      <211> 9
      <212> PRT
      <213> Homo sapien
      <400> 65
Glu Glu Gln Cys Leu Ser Ala Phe Thr
      <210> 66
      <211> 9
      <212> PRT
      <213> Homo sapien
     <400> 66
Glu Lys Pro Tyr Gln Cys Asp Phe Lys
                 5
1
      <210> 67
      <211> 9
      <212> PRT
      <213> Homo sapien
     <400> 67
Glu Lys Arg Pro Phe Met Cys Ala Tyr
 1
      <210> 68
      <211> 9
      <212> PRT
      <213> Homo sapien
      <400> 68
Glu Pro His Glu Glu Gln Cys Leu Ser
                5
      <210> 69
      <211> 9
      <212> PRT
      <213> Homo sapien
      <400> 69
Glu Gln Cys Leu Ser Ala Phe Thr Val
      <210> 70
      <211> 9
      <212> PRT
      <213> Homo sapien
```

```
<400> 70
Glu Ser Asp Asn His Thr Ala Pro Ile
                5
      <210> 71
      <211> 9
      <212> PRT
      <213> Homo sapien
      <400> 71
Glu Ser Asp Asn His Thr Thr Pro Ile
        5
1
      <210> 72
      <211> 9
      <212> PRT
      <213> Homo sapien
     <400> 72
Glu Ser Gln Pro Ala Ile Arg Asn Gln
                 5
1
      <210> 73
      <211> 9
      <212> PRT
      <213> Homo sapien
      <400> 73
Glu Thr Ser Glu Lys Arg Pro Phe Met
 1
      <210> 74
      <211> 9
      <212> PRT
      <213> Homo sapien
      <400> 74
Phe Ala Pro Pro Gly Ala Ser Ala Tyr
                5
 1
      <210> 75
      <211> 9
      <212> PRT
      <213> Homo sapien
      <400> 75
Phe Ala Arg Ser Asp Glu Leu Val Arg
      <210> 76
      <211> 9
      <212> PRT
      <213> Homo sapien
```

```
<400> 76
Phe Gly Pro Pro Pro Ser Gln Ala
     <210> 77
     <211> 9
      <212> PRT
      <213> Homo sapien
     <400> 77
Phe Lys Asp Cys Glu Arg Arg Phe Ser
     <210> 78
      <211> 9
      <212> PRT
      <213> Homo sapien
     <400> 78
Phe Lys Leu Ser His Leu Gln Met His
                5
      <210> 79
      <211> 9
      <212> PRT
      <213> Homo sapien
      <400> 79
Phe Pro Asn Ala Pro Tyr Leu Pro Ser
      <210> 80
      <211> 9
      <212> PRT
      <213> Homo sapien
      <400> 80
Phe Gln Cys Lys Thr Cys Gln Arg Lys
      <210> 81
      <211> 9
      <212> PRT
      <213> Homo sapien
      <400> 81
Phe Arg Gly Ile Gln Asp Val Arg Arg
      <210> 82
      <211> 9
      <212> PRT
      <213> Homo sapien
```

```
<400> 82
Phe Ser Gly Gln Phe Thr Gly Thr Ala
     <210> 83
      <211> 9
      <212> PRT
      <213> Homo sapien
      <400> 83
Phe Ser Arg Ser Asp Gln Leu Lys Arg
1
      <210> 84
      <211> 9
      <212> PRT
      <213> Homo sapien
      <400> 84
Phe Thr Gly Thr Ala Gly Ala Cys Arg
                 5
      <210> 85
      <211> 9
      <212> PRT
      <213> Homo sapien
      <400> 85
Phe Thr Val His Phe Ser Gly Gln Phe
 1
      <210> 86
      <211> 9
      <212> PRT
      <213> Homo sapien
      <400> 86
Gly Ala Ala Gln Trp Ala Pro Val Leu
                 5
      <210> 87
      <211> 9
      <212> PRT
      <213> Homo sapien
      <400> 87
Gly Ala Glu Pro His Glu Glu Gln Cys
      <210> 88
      <211> 9
      <212> PRT
      <213> Homo sapien
```

```
<400> 88
Gly Ala Thr Leu Lys Gly Val Ala Ala
      <210> 89
      <211> 9
      <212> PRT
      <213> Homo sapien
     <400> 89
Gly Cys Ala Leu Pro Val Ser Gly Ala
      <210> 90
      <211> 9
      <212> PRT
      <213> Homo sapien
      <400> 90
Gly Cys Asn Lys Arg Tyr Phe Lys Leu
                 5
      <210> 91
      <211> 9
      <212> PRT
      <213> Homo sapien
      <400> 91
Gly Glu Lys Pro Tyr Gln Cys Asp Phe
      <210> 92
      <211> 9
      <212> PRT
      <213> Homo sapien
      <400> 92
Gly Gly Gly Cys Ala Leu Pro Val
                 5
      <210> 93
      <211> 9
      <212> PRT
      <213> Homo sapien
      <400> 93
Gly Gly Pro Ala Pro Pro Pro Ala Pro
                 5
      <210> 94
      <211> 9
      <212> PRT
      <213> Homo sapien
```

```
<400> 94
Gly His Thr Pro Ser His His Ala Ala
                5
      <210> 95
      <211> 9
      <212> PRT
      <213> Homo sapien
     <400> 95
Gly Lys Thr Ser Glu Lys Pro Phe Ser
               5
      <210> 96
      <211> 9
      <212> PRT
      <213> Homo sapien
      <400> 96
Gly Pro Phe Gly Pro Pro Pro Pro Ser
                5
      <210> 97
      <211> 9
      <212> PRT
      <213> Homo sapien
     <400> 97
Gly Pro Pro Pro Ser Gln Ala Ser
                 5
      <210> 98
      <211> 9
      <212> PRT
      <213> Homo sapien
      <400> 98
Gly Gln Ala Arg Met Phe Pro Asn Ala
                5
      <210> 99
      <211> 9
      <212> PRT
      <213> Homo sapien
      <400> 99
Gly Gln Phe Thr Gly Thr Ala Gly Ala
      <210> 100
      <211> 9
       <212> PRT
       <213> Homo sapien
```

```
<400> 100
Gly Gln Ser Asn His Ser Thr Gly Tyr
                5
      <210> 101
      <211> 9
      <212> PRT
      <213> Homo sapien
      <400> 101
Gly Ser Asp Val Arg Asp Leu Asn Ala
      <210> 102
      <211> 9
      <212> PRT
      <213> Homo sapien
      <400> 102
Gly Ser Gln Ala Leu Leu Leu Arg Thr
                 5
1
      <210> 103
      <211> 9
      <212> PRT
      <213> Homo sapien
     <400> 103
Gly Val Phe Arg Gly Ile Gln Asp Val
 1
      <210> 104
      <211> 9
      <212> PRT
      <213> Homo sapien
      <400> 104
Gly Val Lys Pro Phe Gln Cys Lys Thr
                 5
      <210> 105
      <211> 9
      <212> PRT
      <213> Homo sapien
      <400> 105
Gly Tyr Glu Ser Asp Asn His Thr Ala
      <210> 106
      <211> 9
      <212> PRT
```

```
<400> 106
Gly Tyr Glu Ser Asp Asn His Thr Thr
      <210> 107
      <211> 9
      <212> PRT
      <213> Homo sapien
      <400> 107
His Glu Glu Gln Cys Leu Ser Ala Phe
 1
      <210> 108
      <211> 9
      <212> PRT
      <213> Homo sapien
      <400> 108
His His Asn Met His Gln Arg Asn Met
                 5
1
      <210> 109
      <211> 9
      <212> PRT
      <213> Homo sapien
      <400> 109
His Gln Arg Arg His Thr Gly Val Lys
 1
      <210> 110
      <211> 9
      <212> PRT
      <213> Homo sapien
      <400> 110
His Ser Phe Lys His Glu Asp Pro Met
                 5
      <210> 111
      <211> 9
      <212> PRT
      <213> Homo sapien
      <400> 111
His Ser Arg Lys His Thr Gly Glu Lys
       <210> 112
       <211> 9
       <212> PRT
       <213> Homo sapien
```

```
<400> 112
His Thr Gly Glu Lys Pro Tyr Gln Cys
      <210> 113
      <211> 9
      <212> PRT
      <213> Homo sapien
      <400> 113
His Thr His Gly Val Phe Arg Gly Ile
      <210> 114
      <211> 9
      <212> PRT
      <213> Homo sapien
      <400> 114
His Thr Arg Thr His Thr Gly Lys Thr
1
      <210> 115
      <211> 9
      <212> PRT
      <213> Homo sapien
      <400> 115
His Thr Thr Pro Ile Leu Cys Gly Ala
 1
      <210> 116
      <211> 9
      <212> PRT
      <213> Homo sapien
      <400> 116
Ile Leu Cys Gly Ala Gln Tyr Arg Ile
                5
      <210> 117
      <211> 9
      <212> PRT
      <213> Homo sapien
      <400> 117
Ile Arg Asn Gln Gly Tyr Ser Thr Val
      <210> 118
      <211> 9
      <212> PRT
      <213> Homo sapien
```

```
<400> 118
Lys Asp Cys Glu Arg Arg Phe Ser Arg
      <210> 119
      <211> 9
      <212> PRT
      <213> Homo sapien
      <400> 119
Lys Phe Ala Arg Ser Asp Glu Leu Val
      <210> 120
      <211> 9
      <212> PRT
      <213> Homo sapien
      <400> 120
Lys Phe Ser Arg Ser Asp His Leu Lys
                 5
1
      <210> 121
      <211> 9
      <212> PRT
      <213> Homo sapien
     <400> 121
Lys His Glu Asp Pro Met Gly Gln Gln
 1
      <210> 122
      <211> 9
      <212> PRT
      <213> Homo sapien
      <400> 122
Lys Lys Phe Ala Arg Ser Asp Glu Leu
                 5
      <210> 123
      <211> 9
      <212> PRT
      <213> Homo sapien
      <400> 123
Lys Pro Phe Ser Cys Arg Trp Pro Ser
      <210> 124
      <211> 9
       <212> PRT
```

```
<400> 124
Lys Pro Tyr Gln Cys Asp Phe Lys Asp
      <210> 125
      <211> 9
      <212> PRT
      <213> Homo sapien
     <400> 125
Lys Gln Glu Pro Ser Trp Gly Gly Ala
      <210> 126
      <211> 9
      <212> PRT
      <213> Homo sapien
      <400> 126
Lys Arg His Gln Arg Arg His Thr Gly
 1
      <210> 127
      <211> 9
      <212> PRT
      <213> Homo sapien
      <400> 127
Lys Arg Tyr Phe Lys Leu Ser His Leu
      <210> 128
      <211> 9
      <212> PRT
      <213> Homo sapien
      <400> 128
Lys Thr Cys Gln Arg Lys Phe Ser Arg
                 5
      <210> 129
      <211> 9
      <212> PRT
      <213> Homo sapien
      <400> 129
Lys Thr Ser Glu Lys Pro Phe Ser Cys
      <210> 130
      <211> 9
       <212> PRT
       <213> Homo sapien
```

```
<400> 130
Leu Asp Phe Ala Pro Pro Gly Ala Ser
      <210> 131
      <211> 9
      <212> PRT
      <213> Homo sapien
      <400> 131
Leu Glu Cys Met Thr Trp Asn Gln Met
      <210> 132
      <211> 9
      <212> PRT
      <213> Homo sapien
      <400> 132
Leu Glu Ser Gln Pro Ala Ile Arg Asn
                5
      <210> 133
      <211> 9
      <212> PRT
      <213> Homo sapien
      <400> 133
Leu Gly Ala Thr Leu Lys Gly Val Ala
 1
      <210> 134
      <211> 9
      <212> PRT
      <213> Homo sapien
      <400> 134
Leu Gly Gly Gly Gly Cys Ala Leu
                 5
      <210> 135
      <211> 9
      <212> PRT
      <213> Homo sapien
      <400> 135
Leu Lys Gly Val Ala Ala Gly Ser Ser
      <210> 136
       <211> 9
       <212> PRT
       <213> Homo sapien
```

```
<400> 136
Leu Lys Arg His Gln Arg Arg His Thr
      <210> 137
      <211> 9
      <212> PRT
      <213> Homo sapien
      <400> 137
Leu Lys Thr His Thr Arg Thr His Thr
      <210> 138
      <211> 9
      <212> PRT
      <213> Homo sapien
      <400> 138
Leu Pro Val Ser Gly Ala Ala Gln Trp
                5
 1
      <210> 139
      <211> 9
      <212> PRT
      <213> Homo sapien
      <400> 139
Leu Gln Met His Ser Arg Lys His Thr
 1
      <210> 140
      <211> 9
      <212> PRT
      <213> Homo sapien
      <400> 140
Leu Arg Thr Pro Tyr Ser Ser Asp Asn
                 5
      <210> 141
      <211> 9
      <212> PRT
      <213> Homo sapien
      <400> 141
Leu Ser His Leu Gln Met His Ser Arg
      <210> 142
      <211> 9
       <212> PRT
```

```
<400> 142
Met Cys Ala Tyr Pro Gly Cys Asn Lys
      <210> 143
      <211> 9
      <212> PRT
      <213> Homo sapien
      <400> 143
Met His Gln Arg Asn Met Thr Lys Leu
      <210> 144
      <211> 9
      <212> PRT
      <213> Homo sapien
      <400> 144
Asn Ala Pro Tyr Leu Pro Ser Cys Leu
      <210> 145
      <211> 9
      <212> PRT
      <213> Homo sapien
      <400> 145
Asn Lys Arg Tyr Phe Lys Leu Ser His
 1
      <210> 146
      <211> 9
      <212> PRT
      <213> Homo sapien
      <400> 146
Asn Leu Gly Ala Thr Leu Lys Gly Val
                  5
      <210> 147
       <211> 9
       <212> PRT
       <213> Homo sapien
       <400> 147
 Asn Leu Tyr Gln Met Thr Ser Gln Leu
       <210> 148
       <211> 9
       <212> PRT
       <213> Homo sapien
```

```
<400> 148
Asn Met His Gln Arg Asn Met Thr Lys
      <210> 149
      <211> 9
      <212> PRT
      <213> Homo sapien
     <400> 149
Asn Met Thr Lys Leu Gln Leu Ala Leu
1
      <210> 150
      <211> 9
      <212> PRT
      <213> Homo sapien
      <400> 150
Asn Gln Gly Tyr Ser Thr Val Thr Phe
                 5
      <210> 151
      <211> 9
      <212> PRT
      <213> Homo sapien
      <400> 151
Asn Gln Met Asn Leu Gly Ala Thr Leu
 1
      <210> 152
      <211> 9
      <212> PRT
      <213> Homo sapien
      <400> 152
Pro Ala Ile Arg Asn Gln Gly Tyr Ser
 1
      <210> 153
      <211> 9
      <212> PRT
      <213> Homo sapien
      <400> 153
Pro Gly Ala Ser Ala Tyr Gly Ser Leu
      <210> 154
      <211> 9
      <212> PRT
      <213> Homo sapien
```

```
<400> 154
Pro His Glu Glu Gln Cys Leu Ser Ala
     <210> 155
     <211> 9
     <212> PRT
     <213> Homo sapien
     <400> 155
Pro Ile Leu Cys Gly Ala Gln Tyr Arg
     <210> 156
     <211> 9
     <212> PRT
     <213> Homo sapien
     <400> 156
Pro Pro Pro His Ser Phe Ile Lys
1
     <210> 157
     <211> 9
      <212> PRT
     <213> Homo sapien
     <400> 157
Pro Pro Pro Pro His Ser Phe Ile
 1
      <210> 158
      <211> 9
      <212> PRT
      <213> Homo sapien
      <400> 158
Pro Pro Pro Pro Pro His Ser Phe
               5
      <210> 159
      <211> 9
      <212> PRT
      <213> Homo sapien
      <400> 159
Pro Ser Cys Gln Lys Lys Phe Ala Arg
      <210> 160
      <211> 9
      <212> PRT
```

```
<400> 160
Gln Ala Leu Leu Leu Arg Thr Pro Tyr
      <210> 161
      <211> 9
      <212> PRT
      <213> Homo sapien
      <400> 161
Gln Ala Ser Ser Gly Gln Ala Arg Met
1
      <210> 162
      <211> 9
      <212> PRT
      <213> Homo sapien
      <400> 162
Gln Cys Asp Phe Lys Asp Cys Glu Arg
      <210> 163
      <211> 9
      <212> PRT
      <213> Homo sapien
     <400> 163
Gln Cys Lys Thr Cys Gln Arg Lys Phe
 1
      <210> 164
      <211> 9
      <212> PRT
      <213> Homo sapien
      <400> 164
Gln Asp Val Arg Arg Val Pro Gly Val
                5
      <210> 165
      <211> 9
       <212> PRT
       <213> Homo sapien
      <400> 165
 Gln Phe Thr Gly Thr Ala Gly Ala Cys
                  5
  1
       <210> 166
       <211> 9
       <212> PRT
       <213> Homo sapien
```

```
<400> 166
Gln Gly Ser Leu Gly Glu Gln Gln Tyr
      <210> 167
      <211> 9
      <212> PRT
      <213> Homo sapien
      <400> 167
Gln Leu Glu Cys Met Thr Trp Asn Gln
      <210> 168
      <211> 9
      <212> PRT
      <213> Homo sapien
      <400> 168
Gln Met Asn Leu Gly Ala Thr Leu Lys
1
      <210> 169
      <211> 9
      <212> PRT
      <213> Homo sapien
     <400> 169
Gln Met Thr Ser Gln Leu Glu Cys Met
 1
      <210> 170
      <211> 9
      <212> PRT
      <213> Homo sapien
      <400> 170
Gln Pro Ala Ile Arg Asn Gln Gly Tyr
                 5
      <210> 171
       <211> 9
       <212> PRT
       <213> Homo sapien
       <400> 171
 Gln Gln Tyr Ser Val Pro Pro Pro Val
       <210> 172
       <211> 9
       <212> PRT
       <213> Homo sapien
```

```
<400> 172
Gln Arg Lys Phe Ser Arg Ser Asp His
     <210> 173
      <211> 9
      <212> PRT
      <213> Homo sapien
      <400> 173
Gln Arg Asn Met Thr Lys Leu Gln Leu
                5
      <210> 174
      <211> 9
      <212> PRT
      <213> Homo sapien
      <400> 174
Gln Trp Ala Pro Val Leu Asp Phe Ala
      <210> 175
      <211> 9
      <212> PRT
      <213> Homo sapien
      <400> 175
Gln Tyr Arg Ile His Thr His Gly Val
 1
      <210> 176
      <211> 9
      <212> PRT
      <213> Homo sapien
      <400> 176
Gln Tyr Ser Val Pro Pro Pro Val Tyr
                 5
 1
      <210> 177
      <211> 9
      <212> PRT
      <213> Homo sapien
      <400> 177
Arg Asp Leu Asn Ala Leu Leu Pro Ala
                  5
      <210> 178
       <211> 9
       <212> PRT
       <213> Homo sapien
```

```
<400> 178
Arg Phe Ser Arg Ser Asp Gln Leu Lys
      <210> 179
      <211> 9
      <212> PRT
      <213> Homo sapien
      <400> 179
Arg Gly Ile Gln Asp Val Arg Arg Val
                5
      <210> 180
      <211> 9
      <212> PRT
      <213> Homo sapien
      <400> 180
Arg His His Asn Met His Gln Arg Asn
      <210> 181
      <211> 9
      <212> PRT
      <213> Homo sapien
      <400> 181
Arg His Gln Arg Arg His Thr Gly Val
 1
      <210> 182
       <211> 9
       <212> PRT
       <213> Homo sapien
       <400> 182
Arg Ile His Thr His Gly Val Phe Arg
                  5
       <210> 183
       <211> 9
       <212> PRT
       <213> Homo sapien
       <400> 183
 Arg Lys Phe Ser Arg Ser Asp His Leu
                  5
       <210> 184
       <211> 9
       <212> PRT
       <213> Homo sapien
```

```
<400> 184
Arg Lys His Thr Gly Glu Lys Pro Tyr
      <210> 185
      <211> 9
      <212> PRT
      <213> Homo sapien
      <400> 185
Arg Met Phe Pro Asn Ala Pro Tyr Leu
      <210> 186
      <211> 9
      <212> PRT
      <213> Homo sapien
      <400> 186
Arg Asn Met Thr Lys Leu Gln Leu Ala
                 5
 1
      <210> 187
      <211> 9
      <212> PRT
      <213> Homo sapien
     <400> 187
Arg Arg Phe Ser Arg Ser Asp Gln Leu
 1
       <210> 188
       <211> 9
       <212> PRT
       <213> Homo sapien
       <400> 188
 Arg Arg His Thr Gly Val Lys Pro Phe
         5
       <210> 189
       <211> 9
       <212> PRT
       <213> Homo sapien
       <400> 189
 Arg Arg Val Pro Gly Val Ala Pro Thr
  1
       <210> 190
       <211> 9
       <212> PRT
       <213> Homo sapien
```

```
<400> 190
Arg Ser Ala Ser Glu Thr Ser Glu Lys
1
      <210> 191
      <211> 9
      <212> PRT
      <213> Homo sapien
      <400> 191
Arg Ser Asp Glu Leu Val Arg His His
      <210> 192
      <211> 9
      <212> PRT
      <213> Homo sapien
      <400> 192
Arg Ser Asp His Leu Lys Thr His Thr
                 5
 1
      <210> 193
      <211> 9
      <212> PRT
      <213> Homo sapien
      <400> 193
 Arg Ser Asp Gln Leu Lys Arg His Gln
       <210> 194
       <211> 9
       <212> PRT
       <213> Homo sapien
       <400> 194
 Arg Thr Pro Tyr Ser Ser Asp Asn Leu
                 5
       <210> 195
       <211> 9
       <212> PRT
       <213> Homo sapien
       <400> 195
 Arg Val Pro Gly Val Ala Pro Thr Leu
  1
       <210> 196
       <211> 9
       <212> PRT
        <213> Homo sapien
```

```
<400> 196
Arg Trp Pro Ser Cys Gln Lys Lys Phe
      <210> 197
      <211> 9
      <212> PRT
      <213> Homo sapien
      <400> 197
Ser Ala Ser Glu Thr Ser Glu Lys Arg
      <210> 198
      <211> 9
      <212> PRT
      <213> Homo sapien
      <400> 198
Ser Cys Leu Glu Ser Gln Pro Ala Ile
                 5
 1
      <210> 199
      <211> 9
      <212> PRT
      <213> Homo sapien
      <400> 199
 Ser Cys Leu Glu Ser Gln Pro Thr Ile
       <210> 200
       <211> 9
       <212> PRT
       <213> Homo sapien
       <400> 200
 Ser Cys Gln Lys Lys Phe Ala Arg Ser
                 5
       <210> 201
       <211> 9
       <212> PRT
       <213> Homo sapien
       <400> 201
 Ser Cys Arg Trp Pro Ser Cys Gln Lys
       <210> 202
       <211> 9
       <212> PRT
       <213> Homo sapien
```

```
<400> 202
Ser Cys Thr Gly Ser Gln Ala Leu Leu
     <210> 203
     <211> 9
      <212> PRT
      <213> Homo sapien
      <400> 203
Ser Asp Glu Leu Val Arg His His Asn
         5
      <210> 204
      <211> 9
      <212> PRT
      <213> Homo sapien
      <400> 204
Ser Asp Asn His Thr Thr Pro Ile Leu
         5
 1
      <210> 205
      <211> 9
      <212> PRT
      <213> Homo sapien
     <400> 205
Ser Asp Asn Leu Tyr Gln Met Thr Ser
 1
      <210> 206
      <211> 9
      <212> PRT
      <213> Homo sapien
      <400> 206
 Ser Asp Val Arg Asp Leu Asn Ala Leu
         5
       <210> 207
       <211> 9
       <212> PRT
       <213> Homo sapien
       <400> 207
 Ser Glu Lys Pro Phe Ser Cys Arg Trp
                 5
 1
       <210> 208
       <211> 9
       <212> PRT
```

```
<400> 208
Ser Glu Lys Arg Pro Phe Met Cys Ala
      <210> 209
      <211> 9
      <212> PRT
      <213> Homo sapien
      <400> 209
Ser Glu Thr Ser Glu Lys Arg Pro Phe
 1
                5
      <210> 210
      <211> 9
      <212> PRT
      <213> Homo sapien
      <400> 210
Ser Phe Ile Lys Gln Glu Pro Ser Trp
      <210> 211
      <211> 9
      <212> PRT
      <213> Homo sapien
      <400> 211
Ser Gly Ala Ala Gln Trp Ala Pro Val
 1
      <210> 212
      <211> 9
      <212> PRT
       <213> Homo sapien
      <400> 212
 Ser Gly Gln Ala Arg Met Phe Pro Asn
       <210> 213
       <211> 9
       <212> PRT
       <213> Homo sapien
       <400> 213
 Ser His His Ala Ala Gln Phe Pro Asn
                  5
  1
       <210> 214
       <211> 9
       <212> PRT
       <213> Homo sapien
```

```
<400> 214
Ser Leu Gly Glu Gln Gln Tyr Ser Val
      <210> 215
      <211> 9
      <212> PRT
      <213> Homo sapien
      <400> 215
Ser Leu Gly Gly Gly Gly Cys Ala
      <210> 216
      <211> 9
      <212> PRT
      <213> Homo sapien
      <400> 216
Ser Gln Ala Ser Ser Gly Gln Ala Arg
 1
      <210> 217
      <211> 9
      <212> PRT
      <213> Homo sapien
      <400> 217
Ser Ser Asp Asn Leu Tyr Gln Met Thr
       <210> 218
       <211> 9
       <212> PRT
       <213> Homo sapien
       <400> 218
 Ser Val Pro Pro Pro Val Tyr Gly Cys
                 5
       <210> 219
       <211> 9
       <212> PRT
       <213> Homo sapien
       <400> 219
 Thr Cys Gln Arg Lys Phe Ser Arg Ser
       <210> 220
       <211> 9
        <212> PRT
       <213> Homo sapien
```

```
<400> 220
Thr Asp Ser Cys Thr Gly Ser Gln Ala
      <210> 221
      <211> 9
      <212> PRT
      <213> Homo sapien
      <400> 221
Thr Glu Gly Gln Ser Asn His Ser Thr
      <210> 222
      <211> 9
      <212> PRT
      <213> Homo sapien
      <400> 222
Thr Gly Lys Thr Ser Glu Lys Pro Phe
                5
 1
      <210> 223
      <211> 9
      <212> PRT
      <213> Homo sapien
      <400> 223
Thr Gly Ser Gln Ala Leu Leu Leu Arg
 1
      <210> 224
       <211> 9
       <212> PRT
       <213> Homo sapien
       <400> 224
 Thr Gly Thr Ala Gly Ala Cys Arg Tyr
             5
       <210> 225
       <211> 9
       <212> PRT
       <213> Homo sapien
       <400> 225
 Thr Gly Tyr Glu Ser Asp Asn His Thr
                  5
  1
       <210> 226
       <211> 9
       <212> PRT
       <213> Homo sapien
```

```
<400> 226
Thr Leu Val Arg Ser Ala Ser Glu Thr
      <210> 227
      <211> 9
      <212> PRT
      <213> Homo sapien
      <400> 227
Thr Pro Ile Leu Cys Gly Ala Gln Tyr
      <210> 228
      <211> 9
      <212> PRT
      <213> Homo sapien
      <400> 228
Thr Pro Ser His His Ala Ala Gln Phe
                 5
 1
      <210> 229
      <211> 9
      <212> PRT
      <213> Homo sapien
      <400> 229
Thr Pro Ser Tyr Gly His Thr Pro Ser
 1
      <210> 230
      <211> 9
       <212> PRT
       <213> Homo sapien
       <400> 230
 Thr Pro Thr Asp Ser Cys Thr Gly Ser
                 5
       <210> 231
       <211> 9
       <212> PRT
       <213> Homo sapien
       <400> 231
 Thr Pro Tyr Ser Ser Asp Asn Leu Tyr
  1
       <210> 232
       <211> 9
       <212> PRT
       <213> Homo sapien
```

```
<400> 232
Thr Ser Glu Lys Pro Phe Ser Cys Arg
     <210> 233
     <211> 9
     <212> PRT
     <213> Homo sapien
     <400> 233
Thr Ser Glu Lys Arg Pro Phe Met Cys
      <210> 234
      <211> 9
      <212> PRT
      <213> Homo sapien
      <400> 234
Thr Ser Gln Leu Glu Cys Met Thr Trp
      <210> 235
      <211> 9
      <212> PRT
      <213> Homo sapien
     <400> 235
Thr Val His Phe Ser Gly Gln Phe Thr
 1
      <210> 236
      <211> 9
      <212> PRT
      <213> Homo sapien
      <400> 236
Val Ala Ala Gly Ser Ser Ser Val
                  5
 1
      <210> 237
       <211> 9
       <212> PRT
       <213> Homo sapien
       <400> 237
 Val Ala Pro Thr Leu Val Arg Ser Ala
  1
       <210> 238
       <211> 9
       <212> PRT
       <213> Homo sapien
```

```
<400> 238
Val Phe Arg Gly Ile Gln Asp Val Arg
     <210> 239
      <211> 9
      <212> PRT
      <213> Homo sapien
     <400> 239
Val Lys Pro Phe Gln Cys Lys Thr Cys
        5
1
      <210> 240
      <211> 9
      <212> PRT
      <213> Homo sapien
      <400> 240
Val Lys Trp Thr Glu Gly Gln Ser Asn
      <210> 241
      <211> 9
      <212> PRT
      <213> Homo sapien
      <400> 241
Val Leu Asp Phe Ala Pro Pro Gly Ala
                5
 1
      <210> 242
      <211> 9
      <212> PRT
      <213> Homo sapien
      <400> 242
 Val Pro Gly Val Ala Pro Thr Leu Val
       <210> 243
       <211> 9
       <212> PRT
       <213> Homo sapien
       <400> 243
 Val Arg His His Asn Met His Gln Arg
                  5
       <210> 244
       <211> 9
       <212> PRT
       <213> Homo sapien
```

```
<400> 244
Val Thr Phe Asp Gly Thr Pro Ser Tyr
     <210> 245
      <211> 9
      <212> PRT
      <213> Homo sapien
     <400> 245
Trp Asn Gln Met Asn Leu Gly Ala Thr
        5
      <210> 246
      <211> 9
      <212> PRT
      <213> Homo sapien
      <400> 246
Trp Pro Ser Cys Gln Lys Lys Phe Ala
         5
 1
      <210> 247
      <211> 9
      <212> PRT
      <213> Homo sapien
      <400> 247
Trp Thr Glu Gly Gln Ser Asn His Ser
 1
      <210> 248
      <211> 9
      <212> PRT
      <213> Homo sapien
      <400> 248
 Tyr Phe Lys Leu Ser His Leu Gln Met
        5
      <210> 249
       <211> 9
       <212> PRT
       <213> Homo sapien
       <400> 249
 Tyr Gly His Thr Pro Ser His His Ala
                 5
       <210> 250
       <211> 9
       <212> PRT
       <213> Homo sapien
```

```
<400> 250
Tyr Pro Gly Cys Asn Lys Arg Tyr Phe
      <210> 251
      <211> 9
      <212> PRT
      <213> Homo sapien
     <400> 251
Tyr Gln Met Thr Ser Gln Leu Glu Cys
      <210> 252
      <211> 9
      <212> PRT
      <213> Homo sapien
      <400> 252
Tyr Arg Ile His Thr His Gly Val Phe
      <210> 253
      <211> 9
      <212> PRT
      <213> Homo sapien
      <400> 253
 Tyr Ser Ser Asp Asn Leu Tyr Gln Met
 1
      <210> 254
      <211> 9
      <212> PRT
      <213> Mus musculus
      <400> 254
 Ala Glu Pro His Glu Glu Gln Cys Leu
          5
       <210> 255
       <211> 9
       <212> PRT
       <213> Mus musculus
       <400> 255
 Ala Leu Leu Pro Ala Val Ser Ser Leu
                  5
  1
       <210> 256
       <211> 9
       <212> PRT
       <213> Mus musculus
```

```
<400> 256
Ala Tyr Gly Ser Leu Gly Gly Pro Ala
     <210> 257
      <211> 9
      <212> PRT
      <213> Mus musculus
     <400> 257
Ala Tyr Pro Gly Cys Asn Lys Arg Tyr
        5
      <210> 258
      <211> 9
      <212> PRT
      <213> Mus musculus
      <400> 258
Cys Met Thr Trp Asn Gln Met Asn Leu
               5
 1
      <210> 259
      <211> 9
      <212> PRT
      <213> Mus musculus
      <400> 259
 Cys Thr Gly Ser Gln Ala Leu Leu Leu
      <210> 260
      <211> 9
      <212> PRT
      <213> Mus musculus
      <400> 260
 Asp Gly Ala Pro Ser Tyr Gly His Thr
          5
      <210> 261
       <211> 9
       <212> PRT
       <213> Mus musculus
       <400> 261
 Asp Leu Asn Ala Leu Leu Pro Ala Val
                 5
  1
       <210> 262
       <211> 9
       <212> PRT
       <213> Mus musculus
```

```
<400> 262
Asp Pro Met Gly Gln Gln Gly Ser Leu
     <210> 263
      <211> 9
      <212> PRT
      <213> Mus musculus
     <400> 263
Asp Ser Cys Thr Gly Ser Gln Ala Leu
      <210> 264
      <211> 9
      <212> PRT
      <213> Mus musculus
     <400> 264
Asp Val Arg Asp Leu Asn Ala Leu Leu
          5
1
      <210> 265
      <211> 9
      <212> PRT
      <213> Mus musculus
      <400> 265
Glu Gln Cys Leu Ser Ala Phe Thr Leu
 1
      <210> 266
      <211> 9
      <212> PRT
      <213> Mus musculus
      <400> 266
 Glu Ser Asp Asn His Thr Ala Pro Ile
        5
       <210> 267
       <211> 9
       <212> PRT
       <213> Mus musculus
       <400> 267
 Phe Pro Asn Ala Pro Tyr Leu Pro Ser
       <210> 268
       <211> 9
       <212> PRT
       <213> Mus musculus
```

```
<400> 268
Gly Cys Asn Lys Arg Tyr Phe Lys Leu
      <210> 269
      <211> 9
      <212> PRT
      <213> Mus musculus
     <400> 269
Gly Gln Ala Arg Met Phe Pro Asn Ala
      <210> 270
      <211> 9
      <212> PRT
      <213> Mus musculus
     <400> 270
Gly Val Phe Arg Gly Ile Gln Asp Val
      <210> 271
      <211> 9
      <212> PRT
      <213> Mus musculus
     <400> 271
Gly Tyr Glu Ser Asp Asn His Thr Ala
      <210> 272
      <211> 9
      <212> PRT
      <213> Mus musculus
      <400> 272
His Ser Phe Lys His Glu Asp Pro Met
        5
      <210> 273
      <211> 9
      <212> PRT
      <213> Mus musculus
      <400> 273
His Thr His Gly Val Phe Arg Gly Ile
      <210> 274
      <211> 9
      <212> PRT
      <213> Mus musculus
```

```
<400> 274
Ile Leu Cys Gly Ala Gln Tyr Arg Ile
     <210> 275
      <211> 9
      <212> PRT
      <213> Mus musculus
     <400> 275
Lys Phe Ala Arg Ser Asp Glu Leu Val
      <210> 276
      <211> 9
      <212> PRT
      <213> Mus musculus
      <400> 276
Lys Arg Tyr Phe Lys Leu Ser His Leu
            5
      <210> 277
      <211> 9
      <212> PRT
      <213> Mus musculus
     <400> 277
Lys Thr Ser Glu Lys Pro Phe Ser Cys
      <210> 278
      <211> 9
      <212> PRT
      <213> Mus musculus
      <400> 278
Leu Glu Cys Met Thr Trp Asn Gln Met
 1
      <210> 279
      <211> 9
      <212> PRT
      <213> Mus musculus
      <400> 279
Leu Gly Gly Gly Gly Cys Gly Leu
      <210> 280
      <211> 9
      <212> PRT
      <213> Mus musculus
```

```
<400> 280
 Leu Gln Met His Ser Arg Lys His Thr
       <210> 281
       <211> 9
       <212> PRT
       <213> Mus musculus
       <400> 281
 Met His Gln Arg Asn Met Thr Lys Leu
 1
       <210> 282
       <211> 9
       <212> PRT
       <213> Mus musculus
       <400> 282
 Asn Ala Pro Tyr Leu Pro Ser Cys Leu
                 5
       <210> 283
       <211> 9
       <212> PRT
       <213> Mus musculus
       <400> 283
 Asn Leu Gly Ala Thr Leu Lys Gly Met
  1
       <210> 284
       <211> 9
       <212> PRT
       <213> Mus musculus
       <400> 284
 Asn Leu Tyr Gln Met Thr Ser Gln Leu
       <210> 285
       <211> 9
        <212> PRT
        <213> Mus musculus
       <400> 285
Asn Met Thr Lys Leu His Val Ala Leu
  1
        <210> 286
        <211> 9
        <212> PRT
        <213> Mus musculus
```

```
<400> 286
Asn Gln Met Asn Leu Gly Ala Thr Leu
1
     <210> 287
     <211> 9
     <212> PRT
     <213> Mus musculus
     <400> 287
Pro Gly Ala Ser Ala Tyr Gly Ser Leu
     <210> 288
      <211> 9
      <212> PRT
      <213> Mus musculus
     <400> 288
Gln Ala Ser Ser Gly Gln Ala Arg Met
      <210> 289
      <211> 9
      <212> PRT
      <213> Mus musculus
     <400> 289
Gln Met Thr Ser Gln Leu Glu Cys Met
 1
      <210> 290
      <211> 9
      <212> PRT
      <213> Mus musculus
      <400> 290
Gln Gln Tyr Ser Val Pro Pro Pro Val
 1
      <210> 291
      <211> 9
      <212> PRT
      <213> Mus musculus
      <400> 291
Gln Tyr Arg Ile His Thr His Gly Val
                 5
       <210> 292
       <211> 9
       <212> PRT
       <213> Mus musculus
```

```
<400> 292
Gln Tyr Ser Val Pro Pro Pro Val Tyr
      <210> 293
      <211> 9
      <212> PRT
      <213> Mus musculus
      <400> 293
Arg Met Phe Pro Asn Ala Pro Tyr Leu
1
      <210> 294
      <211> 9
      <212> PRT
      <213> Mus musculus
      <400> 294
Arg Thr Pro Tyr Ser Ser Asp Asn Leu
      <210> 295
      <211> 9
      <212> PRT
      <213> Mus musculus
     <400> 295
Arg Val Ser Gly Val Ala Pro Thr Leu
 1
      <210> 296
      <211> 9
      <212> PRT
      <213> Mus musculus
      <400> 296
 Ser Cys Leu Glu Ser Gln Pro Thr Ile
        5
      <210> 297
       <211> 9
       <212> PRT
       <213> Mus musculus
       <400> 297
 Ser Cys Gln Lys Lys Phe Ala Arg Ser
                 5
       <210> 298
       <211> 9
       <212> PRT
       <213> Mus musculus
```

```
<400> 298
Ser Asp Val Arg Asp Leu Asn Ala Leu
      <210> 299
      <211> 9
      <212> PRT
      <213> Mus musculus
      <400> 299
Ser Leu Gly Glu Gln Gln Tyr Ser Val
      <210> 300
      <211> 9
      <212> PRT
      <213> Mus musculus
     <400> 300
Thr Cys Gln Arg Lys Phe Ser Arg Ser
      <210> 301
      <211> 9
      <212> PRT
      <213> Mus musculus
      <400> 301
Thr Glu Gly Gln Ser Asn His Gly Ile
 1
      <210> 302
      <211> 9
      <212> PRT
      <213> Mus musculus
      <400> 302
 Thr Leu His Phe Ser Gly Gln Phe Thr
 1
      <210> 303
       <211> 9
       <212> PRT
       <213> Mus musculus
       <400> 303
 Thr Leu Val Arg Ser Ala Ser Glu Thr
                 5
  1
       <210> 304
       <211> 9
       <212> PRT
       <213> Mus musculus
```

```
<400> 304
Val Leu Asp Phe Ala Pro Pro Gly Ala
      <210> 305
      <211> 9
      <212> PRT
      <213> Mus musculus
      <400> 305
Trp Asn Gln Met Asn Leu Gly Ala Thr
 1
      <210> 306
      <211> 9
      <212> PRT
      <213> Mus musculus
      <400> 306
Tyr Phe Lys Leu Ser His Leu Gln Met
         5
 1
      <210> 307
      <211> 9
      <212> PRT
      <213> Mus musculus
      <400> 307
Tyr Gln Met Thr Ser Gln Leu Glu Cys
 1
      <210> 308
      <211> 9
      <212> PRT
      <213> Mus musculus
      <400> 308
 Tyr Ser Ser Asp Asn Leu Tyr Gln Met
         5
       <210> 309
       <211> 6
       <212> PRT
       <213> Homo sapien
       <400> 309
 Gly Ala Ala Gln Trp Ala
                  5
       <210> 310
       <211> 12
       <212> PRT
       <213> Homo sapien
```

```
<400> 310
Ala Ser Ala Tyr Gly Ser Leu Gly Gly Pro Ala Pro
1
      <210> 311
      <211> 15
      <212> PRT
      <213> Homo sapien
      <400> 311
Ala Phe Thr Val His Phe Ser Gly Gln Phe Thr Gly Thr Ala Gly
                                    10
      <210> 312
      <211> 5
      <212> PRT
      <213> Homo sapien
      <400> 312
His Ala Ala Gln Phe
 1
      <210> 313
      <211> 32
      <212> PRT
      <213> Homo sapien
      <400> 313
Cys His Thr Pro Thr Asp Ser Cys Thr Gly Ser Gln Ala Leu Leu
                                     10
                 5
Arg Thr Pro Tyr Ser Ser Asp Asn Leu Tyr Gln Met Thr Ser Gln Leu
                                 25
             20
       <210> 314
       <211> 32
       <212> PRT
       <213> Homo sapien
       <400> 314
 Arg Ile His Thr His Gly Val Phe Arg Gly Ile Gln Asp Val Arg Arg
                                     10
                 5
 1
 Val Pro Gly Val Ala Pro Thr Leu Val Arg Ser Ala Ser Glu Thr Ser
                                                      30
                                 25
       <210> 315
       <211> 4
       <212> PRT
       <213> Homo sapien
       <400> 315
 Arg Tyr Phe Lys
```

```
<210> 316
      <211> 14
      <212> PRT
      <213> Homo sapien
      <400> 316
Glu Arg Arg Phe Ser Arg Ser Asp Gln Leu Lys Arg His Gln
      <210> 317
      <211> 22
      <212> PRT
      <213> Homo sapien
      <400> 317
Gln Arg Lys Phe Ser Arg Ser Asp His Leu Lys Thr His Thr Arg Thr
                             10
                5
His Thr Gly Lys Thr Ser
           20
      <210> 318
      <211> 21
      <212> PRT
      <213> Homo sapien
      <400> 318
Cys Gln Lys Lys Phe Ala Arg Ser Asp Glu Leu Val Arg His His Asn
 1
Met His Gln Arg Asn
            20
      <210> 319
      <211> 449
      <212> PRT
      <213> Homo sapien
      <400> 319
 Met Gly Ser Asp Val Arg Asp Leu Asn Ala Leu Leu Pro Ala Val Pro
                                     10
 Ser Leu Gly Gly Gly Gly Cys Ala Leu Pro Val Ser Gly Ala Ala
             20
 Gln Trp Ala Pro Val Leu Asp Phe Ala Pro Pro Gly Ala Ser Ala Tyr
                             40
 Gly Ser Leu Gly Gly Pro Ala Pro Pro Pro Ala Pro Pro Pro Pro
                         55
 Pro Pro Pro Pro His Ser Phe Ile Lys Gln Glu Pro Ser Trp Gly Gly
                                         75
 Ala Glu Pro His Glu Glu Gln Cys Leu Ser Ala Phe Thr Val His Phe
 Ser Gly Gln Phe Thr Gly Thr Ala Gly Ala Cys Arg Tyr Gly Pro Phe
                                 105
 Gly Pro Pro Pro Pro Ser Gln Ala Ser Ser Gly Gln Ala Arg Met Phe
 Pro Asn Ala Pro Tyr Leu Pro Ser Cys Leu Glu Ser Gln Pro Ala Ile
```

	130					135					140				
Arg 145	Asn	Gln	Gly	Tyr	Ser 150	Thr	Val	Thr	Phe	Asp 155	Gly	Thr	Pro	Ser	Tyr 160
Gly	His	Thr	Pro	Ser 165	His	His	Ala	Ala	Gln 170	Phe	Pro	Asn	His	Ser 175	Phe
Lys	His	Glu	Asp	Pro	Met	Gly	Gln	Gln 185		Ser	Leu	Gly	Glu 190	Gln	Gln
Tyr	Ser	Val 195	180 Pro	Pro	Pro	Val	Tyr 200		Cys	His	Thr	Pro 205	Thr	Asp	Ser
Cys	Thr 210	Gly	Ser	Gln	Ala	Leu 215		Leu	Arg	Thr	Pro 220	Tyr	Ser	Ser	Asp
Asn 225	Leu	Tyr	Gln	Met	Thr 230	Ser	Gln	Leu	Glu	Cys 235	Met	Thr	Trp	Asn	Gln 240
Met	Asn	Leu	Gly	Ala 245	Thr	Leu	Lys	Gly	Val 250	Ala	Ala	Gly	Ser	Ser 255	Ser
Ser	Val	Lys	Trp 260	Thr	Glu	Gly	Gln	Ser 265		His	Ser	Thr	Gly 270	Tyr	Glu
		275	His				280					285			
	290	His	Gly			295					300				
305	Val	Ala	Pro		310					315					320
Arg	Pro		Met	325	Ala				330					222	
			Leu 340	Gln	Met			345					350		
		355	Asp	Phe			360					365			
	270	Lys	Arg			375					380				
305	Lys	Thr			390					390					Thr 400
His	Thr			405)				410)				410	
			420	ľ				425	1				430		Val
Arg	His	His 435		Met	His	Gln	Arg 440	Asn	Met	Thr	Lys	Leu 445	Gln	Leu	Ala
Leu	1														
	<	<210	> 320)											
			> 449												

<212> PRT

<213> Mus musculus

<400> 320

Met Gly Ser Asp Val Arg Asp Leu Asn Ala Leu Leu Pro Ala Val Ser Ser Leu Gly Gly Gly Gly Gly Cys Gly Leu Pro Val Ser Gly Ala Ala 20 25 30 Gln Trp Ala Pro Val Leu Pro Val Ser Gly Ala Ala Gln Trp Ala Pro Val Leu Asp Phe Ala Pro Pro Gly Ala Ser Ala Tyr 40

_	EΛ					55					60	Pro			
65	Pro				70					15		Ser			00
Ala				8.5					90			Thr		95	
			100	Thr				105				Tyr	110		
		115	Pro				120					Ala 125			
	130	Ala				135					140	Gln			
145	Asn				150	Thr				155		Ala			100
Gly				165					170			Asn		1/5	
			180	Pro				185				Gly	190		
		195	Pro				200					Pro 205			
	210	Gly				215					220	Tyr			
225	Leu				230					235		Thr			240
Met				245					250			Gly		255	
			260					265				Ile	2/0		
		275					280					Gln 285			
	290					295					300	Arg			
305					310					315					Lys 320
				325					330)				333	
			340)				345					350		Pro
		355	·				360)				365			Asp
	370	}				375)				380)			Gln
385	,				390)				395)				Thr 400
				405	5				41()				415	
			420)				425	5				430	,	val
Arg	g His	s His 43!		n Met	His	s Glr	440	g Asr)	n Met	: Thr	. Lys	445	His	s val	Ala
Let	1														

```
<211> 9
     <212> PRT
     <213> Homo sapien and Mus musculus
     <400> 321
Pro Ser Gln Ala Ser Ser Gly Gln Ala
      <210> 322
      <211> 9
      <212> PRT
      <213> Homo sapien and Mus musculus
      <400> 322
Ser Ser Gly Gln Ala Arg Met Phe Pro
      <210> 323
      <211> 9
      <212> PRT
      <213> Homo sapien and Mus musculus
      <400> 323
Gln Ala Arg Met Phe Pro Asn Ala Pro
                 5
      <210> 324
      <211> 9
      <212> PRT
      <213> Homo sapien and Mus musculus
      <400> 324
Met Phe Pro Asn Ala Pro Tyr Leu Pro
                 5
 1
      <210> 325
      <211> 9
      <212> PRT
      <213> Homo sapien and Mus musculus
      <400> 325
Pro Asn Ala Pro Tyr Leu Pro Ser Cys
       <210> 326
       <211> 9
       <212> PRT
       <213> Homo sapien and Mus musculus
       <400> 326
Ala Pro Tyr Leu Pro Ser Cys Leu Glu
                  5
```

```
<210> 327
<211> 1029
<212> DNA
<213> Homo sapiens
<400> 327
atgcagcatc accaccatca ccacatgagc gataaaatta ttcacctgac tgacgacagt 60
tttgacacgg atgtactcaa agcggacggg gcgatcctcg tcgatttctg ggcagagtgg 120
tgcggtccgt gcaaaatgat cgccccgatt ctggatgaaa tcgctgacga atatcagggc 180
aaactgaccg ttgcaaaact gaacatcgat caaaaccctg gcactgcgcc gaaatatggc 240
atccgtggta tcccgactct gctgctgttc aaaaacggtg aagtggcggc aaccaaagtg 300
ggtgcactgt ctaaaggtca gttgaaagag ttcctcgacg ctaacctggc cggttctggt 360
tetggecata tgeageatea ceaceateae eaegtgteta tegaaggteg tgetagetet 420
ggtggcagcg gtctggttcc gcgtggtagc tctggttcgg gggacgacga cgacaaatct 480
agtaggcaca gcacagggta cgagagcgat aaccacacaa cgcccatcct ctgcggagcc 540
caatacagaa tacacacgca cggtgtcttc agaggcattc aggatgtgcg acgtgtgcct 600
ggagtagece egactettgt aeggteggea tetgagaeca gtgagaaaeg eeeetteatg 660
tgtgcttace caggctgcaa taagagatat tttaagctgt cccacttaca gatgcacage 720
aggaagcaca ctggtgagaa accataccag tgtgacttca aggactgtga acgaaggttt 780
tttcgttcag accagctcaa aagacaccaa aggagacata caggtgtgaa accattccag 840
tgtaaaactt gtcagcgaaa gttctcccgg tccgaccacc tgaagaccca caccaggact 900
catacaggtg aaaagccctt cagctgtcgg tggccaagtt gtcagaaaaa gtttgcccgg 960
tcagatgaat tagtccgcca tcacaacatg catcagagaa acatgaccaa actccagctg 1020
                                                                   1029
gcgctttga
<210> 328
<211> 1233
<212> DNA
<213> Homo sapiens
<400> 328
atgcagcatc accaccatca ccacatgagc gataaaatta ttcacctgac tgacgacagt 60
tttgacacgg atgtactcaa agcggacggg gcgatcctcg tcgatttctg ggcagagtgg 120
tgcggtccgt gcaaaatgat cgccccgatt ctggatgaaa tcgctgacga atatcagggc 180
aaactgaccg ttgcaaaact gaacatcgat caaaaccctg gcactgcgcc gaaatatggc 240
atccgtggta tcccgactet gctgctgttc aaaaacggtg aagtggcggc aaccaaagtg 300
ggtgcactgt ctaaaggtca gttgaaagag ttcctcgacg ctaacctggc cggttctggt 360
tetggccata tgcagcatca ccaccatcac cacgtgtcta tcgaaggtcg tgctagctct 420
ggtggcagcg gtctggttcc gcgtggtagc tctggttcgg gggacgacga cgacaaatct 480
agtaggggct ccgacgttcg tgacctgaac gcactgctgc cggcagttcc gtccctgggt 540
 ggtggtggtg gttgcgcact gccggttagc ggtgcagcac agtgggctcc ggttctggac 600
 ttegeacege egggtgeate egeataeggt teeetgggtg gteeggeace geegeeggea 660
 cegecgecge egecgecgec geegeegeac teetteatea aacaggaace gagetggggt 720
 ggtgcagaac cgcacgaaga acagtgcctg agcgcattca ccgttcactt ctccggccag 780
 ttcactggca cageeggage etgtegetae gggeeetteg gteeteetee geecageeag 840
 gcgtcatccg gccaggccag gatgtttcct aacgcgccct acctgcccag ctgcctcgag 900
 agccagccg ctattcgcaa tcagggttac agcacggtca ccttcgacgg gacgcccagc 960
 tacggtcaca cgccctcgca ccatgcggcg cagttcccca accactcatt caagcatgag 1020
 gateccatgg gecageaggg etegetgggt gageageagt acteggtgee geceeggte 1080
 tatggctgcc acacccccac cgacagctgc accggcagcc aggctttgct gctgaggacg 1140
 coctacagea gtgacaattt ataccaaatg acateecage ttgaatgeat gacetggaat 1200
                                                                    1233
 cagatgaact taggagccac cttaaagggc tga
```

```
<211> 1776
<212> DNA
<213> Homo sapiens
<400> 329
atgeageate accaccatea ceacatgage gataaaatta tteacetgae tgacgacagt 60
tttgacacgg atgtactcaa agcggacggg gcgatcctcg tcgatttctg ggcagagtgg 120
tgcggtccgt gcaaaatgat cgccccgatt ctggatgaaa tcgctgacga atatcagggc 180
aaactgaccg ttgcaaaact gaacatcgat caaaaccctg gcactgcgcc gaaatatggc 240
atccgtggta tcccgactct gctgctgttc aaaaacggtg aagtggcggc aaccaaagtg 300
ggtgcactgt ctaaaggtca gttgaaagag ttcctcgacg ctaacctggc cggttctggt 360
tetggecata tgeageatea ceaceateae eacgtgteta tegaaggteg tgetagetet 420
ggtggcagcg gtctggttcc gcgtggtagc tctggttcgg gggacgacga cgacaaatct 480
agtaggatgg geteegacgt tegtgacetg aacgeactge tgeeggeagt teegteeetg 540
ggtggtggtg gtggttgcgc actgccggtt agcggtgcag cacagtgggc tccggttctg 600
gacttegeae egeegggtge ateegeatae ggtteeetgg gtggteegge acegeegge 660
gcaccgccgc cgccgccgcc gccgccgccg cactccttca tcaaacagga accgagctgg 720
ggtggtgcag aaccgcacga agaacagtgc ctgagcgcat tcaccgttca cttctccggc 780
cagttcactg gcacageegg agectgtege taegggeeet teggteetee teegeeeage 840
caggegteat eeggecagge caggatgttt ectaacgege ectaeetgee cagetgeete 900
gagagecage cegetatteg caateagggt tacageaegg teacettega egggaegeee 960
agctacggtc acacgecete geaccatgeg gegeagttee ecaaccacte atteaageat 1020
gaggatecea tgggecagea gggetegetg ggtgageage agtaeteggt geegeeeeeg 1080
gtetatgget gecacaeeee cacegacage tgeaceggea gecaggettt getgetgagg 1140
acgccctaca gcagtgacaa tttataccaa atgacatccc agcttgaatg catgacctgg 1200
aatcagatga acttaggagc caccttaaag ggccacagca cagggtacga gagcgataac 1260
cacacaacgc ccatcetetg eggageccaa tacagaatac acacgeacgg tgtetteaga 1320
ggcattcagg atgtgcgacg tgtgcctgga gtagccccga ctcttgtacg gtcggcatct 1380
gagaccagtg agaaacgccc cttcatgtgt gcttacccag gctgcaataa gagatatttt 1440
aagetgteee acttacagat geacageagg aageacactg gtgagaaace ataccagtgt 1500
gacttcaagg actgtgaacg aaggtttttt cgttcagacc agctcaaaag acaccaaagg 1560
agacatacag gtgtgaaacc attccagtgt aaaacttgtc agcgaaagtt ctcccggtcc 1620
gaccacctga agacccacac caggactcat acaggtgaaa agcccttcag ctgtcggtgg 1680
ccaagttgtc agaaaaagtt tgcccggtca gatgaattag tccgccatca caacatgcat 1740
                                                                   1776
cagagaaaca tgaccaaact ccagctggcg ctttga
<210> 330
 <211> 771
 <212> DNA
 <213> Homo sapiens
 <400> 330
atgcagcatc accaccatca ccacggctcc gacgttcgtg acctgaacgc actgctgccg 60
gcagttccgt ccctgggtgg tggtggttggcactgc cggttagcgg tgcagcacag 120
tgggctccgg ttctggactt cgcaccgccg ggtgcatccg catacggttc cctgggtggt 180
 ceggcacege egeeggeace geeggeege egeeggeacte etteateaaa 240
 caggaaccga gctggggtgg tgcagaaccg cacgaagaac agtgcctgag cgcattcacc 300
 gttcacttct ccggccagtt cactggcaca gccggagcct gtcgctacgg gcccttcggt 360
 cetectecge ccagecagge gtcatecgge caggecagga tgtttectaa egegeeetae 420
 ctgcccagct gcctcgagag ccagcccgct attcgcaatc agggttacag cacggtcacc 480
 ttcgacggga cgcccagcta cggtcacacg ccctcgcacc atgcggcgca gttccccaac 540
 cactcattca agcatgagga teccatggge cageaggget egetgggtga geageagtae 600
 teggtgccgc ccccggtcta tggctgccac acccccaccg acagctgcac cggcagccag 660
 getttgetge tgaggaegee etacageagt gacaatttat accaaatgae ateceagett 720
```

```
gaatgcatga cctggaatca gatgaactta ggagccacct taaagggctg a
                                                                   771
<210> 331
<211> 567
<212> DNA
<213> Homo sapiens
<400> 331
atgcagcatc accaccatca ccaccacagc acagggtacg agagcgataa ccacacaacg 60
cccatcctct gcggagccca atacagaata cacacgcacg gtgtcttcag aggcattcag 120
gatgtgcgac gtgtgcctgg agtagccccg actcttgtac ggtcggcatc tgagaccagt 180
gagaaacgcc cettcatgtg tgcttaccca ggctgcaata agagatattt taagctgtcc 240
cacttacaga tgcacagcag gaagcacact ggtgagaaac cataccagtg tgacttcaag 300
gactgtgaac gaaggttttt tcgttcagac cagctcaaaa gacaccaaag gagacataca 360
ggtgtgaaac cattccagtg taaaacttgt cagcgaaagt tctcccggtc cgaccacctg 420
aagacccaca ccaggactca tacaggtgaa aagcccttca gctgtcggtg gccaagttgt 480
cagaaaaagt ttgcccggtc agatgaatta gtccgccatc acaacatgca tcagagaaac 540
                                                                   567
atgaccaaac tccagctggc gctttga
<210> 332
<211> 342
<212> PRT
<213> Homo sapiens
<400> 332
Met Gln His His His His His Met Ser Asp Lys Ile Ile His Leu
Thr Asp Asp Ser Phe Asp Thr Asp Val Leu Lys Ala Asp Gly Ala Ile
                                  25
Leu Val Asp Phe Trp Ala Glu Trp Cys Gly Pro Cys Lys Met Ile Ala
                              40
Pro Ile Leu Asp Glu Ile Ala Asp Glu Tyr Gln Gly Lys Leu Thr Val
                          55
                                              60
Ala Lys Leu Asn Ile Asp Gln Asn Pro Gly Thr Ala Pro Lys Tyr Gly
                      70
                                          75
Ile Arg Gly Ile Pro Thr Leu Leu Leu Phe Lys Asn Gly Glu Val Ala
                                      90
Ala Thr Lys Val Gly Ala Leu Ser Lys Gly Gln Leu Lys Glu Phe Leu
                                                     110
                                 105
             100
 Asp Ala Asn Leu Ala Gly Ser Gly Ser Gly His Met Gln His His His
                             120
                                                 125
 His His His Val Ser Ile Glu Gly Arg Ala Ser Ser Gly Gly Ser Gly
                         135
     130
 Leu Val Pro Arg Gly Ser Ser Gly Ser Gly Asp Asp Asp Lys Ser
                                         155
                     150
 145
 Ser Arg His Ser Thr Gly Tyr Glu Ser Asp Asn His Thr Thr Pro Ile
                                     170
 Leu Cys Gly Ala Gln Tyr Arg Ile His Thr His Gly Val Phe Arg Gly
                                 185
             180
 Ile Gln Asp Val Arg Arg Val Pro Gly Val Ala Pro Thr Leu Val Arg
                             200
```

Ser Ala Ser Glu Thr Ser Glu Lys Arg Pro Phe Met Cys Ala Tyr Pro 215 Gly Cys Asn Lys Arg Tyr Phe Lys Leu Ser His Leu Gln Met His Ser 235 230 Arg Lys His Thr Gly Glu Lys Pro Tyr Gln Cys Asp Phe Lys Asp Cys 250 245 Glu Arg Arg Phe Phe Arg Ser Asp Gln Leu Lys Arg His Gln Arg Arg 265 His Thr Gly Val Lys Pro Phe Gln Cys Lys Thr Cys Gln Arg Lys Phe 280 Ser Arg Ser Asp His Leu Lys Thr His Thr Arg Thr His Thr Gly Glu 300 295 Lys Pro Phe Ser Cys Arg Trp Pro Ser Cys Gln Lys Lys Phe Ala Arg 315 310 Ser Asp Glu Leu Val Arg His His Asn Met His Gln Arg Asn Met Thr 330 325 Lys Leu Gln Leu Ala Leu 340-

<210> 333 <211> 410 <212> PRT

<213> Homo sapiens

<400> 333

Met Gln His His His His His His Met Ser Asp Lys Ile Ile His Leu
5 10 15

Thr Asp Asp Ser Phe Asp Thr Asp Val Leu Lys Ala Asp Gly Ala Ile
20 25 30

Leu Val Asp Phe Trp Ala Glu Trp Cys Gly Pro Cys Lys Met Ile Ala 35 40 45

Pro Ile Leu Asp Glu Ile Ala Asp Glu Tyr Gln Gly Lys Leu Thr Val
50 55 60

Ala Lys Leu Asn Ile Asp Gln Asn Pro Gly Thr Ala Pro Lys Tyr Gly
65 70 75 80

Ile Arg Gly Ile Pro Thr Leu Leu Leu Phe Lys Asn Gly Glu Val Ala

Ala Thr Lys Val Gly Ala Leu Ser Lys Gly Gln Leu Lys Glu Phe Leu 100 105 110

Asp Ala Asn Leu Ala Gly Ser Gly Ser Gly His Met Gln His His His 115 120 125

His His His Val Ser Ile Glu Gly Arg Ala Ser Ser Gly Gly Ser Gly 130 135 140

Leu Val Pro Arg Gly Ser Ser Gly Ser Gly Asp Asp Asp Asp Lys Ser 145 155 160

Ser Arg Gly Ser Asp Val Arg Asp Leu Asn Ala Leu Leu Pro Ala Val 165 170 175

Pro Ser Leu Gly Gly Gly Gly Cys Ala Leu Pro Val Ser Gly Ala 180 185 190

Ala Gln Trp Ala Pro Val Leu Asp Phe Ala Pro Pro Gly Ala Ser Ala 195 200 205 Tyr Gly Ser Leu Gly Gly Pro Ala Pro Pro Pro Ala Pro Pro Pro

						015					220				
5	210	Dwo	Dro	Dro	lie	215 Ser	Phe	Ile :	lvs			Pro	Ser	Trp	Gly
225					230					235					240
Gly				245	Glu				250					255	
			260	Phe				Ala 265					2/0		
		275	Pro				280	Ala				285			
	290	Asn				295		Ser			300				
305					310			Val		315					320
				325					330					333	
			340					Gln 345					330		
		355					360	Tyr				365			
	370					375		Leu			380				
385					390			Gln		Glu 395	Cys	Met	Thr	Trp	Asn 400
Gln	Met	Asn	Leu	Gly 405	Ala	Thr	Leu	Lys	Gly 410						
	0> 3														
	1> 5 2> P														
<21	3> H	omo	sapi	ens											
< 40	0> 3	34													.
				5					10					10	
			20)				25					30		Ile
		3.5					40					45			Ala
	50	ł				55					60				Val
65	;				70					75					Gly 80
				85)				90					90	
						-	Car	T 110	Glv	Gln	Leu	Lys	: Glu	ı Phe	. Leu
			100	Gly				105					110	,	
	o Ala	a Asr	100 Leu) ı Ala	a Gly	Ser	Gly 120	105 Ser	Gly	His	Met	Gln 125	His	His	His
His	o Ala s His	A Asr 115 His	100 Let Val) 1 Ala 1 Sei	Gly	Ser Glu	Gly 120 Gly	105 Ser Arg	Gly	His Ser	Met Ser 140	Gln 125 Gly	His Gly	His Ser	His Gly
His Let	o Ala s His 130 u Val	A Asr 115 His His D Pro	100 n Leu s Val) 1 Ala 1 Sei g Gly	Gly Tle Ser 150	Ser Glu 135 Ser	Gly 120 Gly Gly	105 Ser Arg	Gly Ala Gly	His Ser Asp 155	Met Ser 140 Asp	Gln 125 Gly Asp	His Gly Asp	His Ser	His

				1.65					170					175	
Val	Dago	Cor	T O11	165	Gly	Glv	Glv	Glv		Ala	Leu	Pro	Val		Gly
vaı	PIO	ser	180	Gry	GIY	Ory	Ory	185	010				190		-
Ala		195	Trp				200					205			
Ala	210	Gly				215					220				
Pro 225	Pro				230					235					240
Gly				245					250					255	
			Gly 260					265					270		
		275	Pro				280					285			
	290		Asn			295					300				
	Ile	Arg	Asn	Gln	Gly 310	Tyr	Ser	Thr	Val	Thr 315	Phe	Asp	Gly	Thr	Pro 320
305 Ser	Tyr	Gly	His	Thr 325	Pro	Ser	His	His	Ala 330		Gln	Phe	Pro	Asn 335	His
			His 340	Glu				345					350		
		355	Ser				360					365			
	370		Thr			375					380				
385			Leu		390					395					400
Asn			Asn	405					410					415	
			Asn 420					425					430		
		435	His				440					445			
	450		Ala			455					460				
465					470					475					Phe 480
			His	485					490)				495	
			500					505					510		Ser
		515)				520)				525	•		Phe
	530					535	5				54C)			Lys
545	His	Thr			550)				555)				Trp 560
Pro	Ser			565	j i				570)				5/5	
His	Asn	Met	His 580		n Aro	g Asr	n Met	585	Lys	s Leu	ı Glr	ı Lev	1 Ala 590	Leu	l

<210> 335 <211> 256 <212> PRT <213> Homo sapiens <400> 335 Met Gln His His His His His Gly Ser Asp Val Arg Asp Leu Asn Ala Leu Leu Pro Ala Val Pro Ser Leu Gly Gly Gly Gly Cys Ala 25 Leu Pro Val Ser Gly Ala Ala Gln Trp Ala Pro Val Leu Asp Phe Ala 40 Pro Pro Gly Ala Ser Ala Tyr Gly Ser Leu Gly Gly Pro Ala Pro Pro 55 Pro Ala Pro Pro Pro Pro Pro Pro Pro Pro His Ser Phe Ile Lys 75 Gln Glu Pro Ser Trp Gly Gly Ala Glu Pro His Glu Glu Gln Cys Leu 90 85 Ser Ala Phe Thr Val His Phe Ser Gly Gln Phe Thr Gly Thr Ala Gly 110 105 100 Ala Cys Arg Tyr Gly Pro Phe Gly Pro Pro Pro Pro Ser Gln Ala Ser 120 Ser Gly Gln Ala Arg Met Phe Pro Asn Ala Pro Tyr Leu Pro Ser Cys 140 135 Leu Glu Ser Gln Pro Ala Ile Arg Asn Gln Gly Tyr Ser Thr Val Thr 155 150 Phe Asp Gly Thr Pro Ser Tyr Gly His Thr Pro Ser His His Ala Ala 170 Gln Phe Pro Asn His Ser Phe Lys His Glu Asp Pro Met Gly Gln Gln 190 185 Gly Ser Leu Gly Glu Gln Gln Tyr Ser Val Pro Pro Pro Val Tyr Gly 205 200 Cys His Thr Pro Thr Asp Ser Cys Thr Gly Ser Gln Ala Leu Leu 215 220 Arg Thr Pro Tyr Ser Ser Asp Asn Leu Tyr Gln Met Thr Ser Gln Leu 235 Glu Cys Met Thr Trp Asn Gln Met Asn Leu Gly Ala Thr Leu Lys Gly 250 245 <210> 336 <211> 188 <212> PRT <213> Homo sapiens <400> 336 Met Gln His His His His His His Ser Thr Gly Tyr Glu Ser Asp

10

Asn His Thr Thr Pro Ile Leu Cys Gly Ala Gln Tyr Arg Ile His Thr 20 25 30 His Gly Val Phe Arg Gly Ile Gln Asp Val Arg Arg Val Pro Gly Val

```
Ala Pro Thr Leu Val Arg Ser Ala Ser Glu Thr Ser Glu Lys Arg Pro
                         5.5
Phe Met Cys Ala Tyr Pro Gly Cys Asn Lys Arg Tyr Phe Lys Leu Ser
                     70
His Leu Gln Met His Ser Arg Lys His Thr Gly Glu Lys Pro Tyr Gln
                                      90
Cys Asp Phe Lys Asp Cys Glu Arg Arg Phe Phe Arg Ser Asp Gln Leu
                                105
Lys Arg His Gln Arg Arg His Thr Gly Val Lys Pro Phe Gln Cys Lys
                            120
Thr Cys Gln Arg Lys Phe Ser Arg Ser Asp His Leu Lys Thr His Thr
                        135
                                             140
    130
Arg Thr His Thr Gly Glu Lys Pro Phe Ser Cys Arg Trp Pro Ser Cys
                                        155
                    150
Gln Lys Lys Phe Ala Arg Ser Asp Glu Leu Val Arg His His Asn Met
                                    170
                165
His Gln Arg Asn Met Thr Lys Leu Gln Leu Ala Leu
                                185
            180
<210> 337
<211> 324
<212> DNA
<213> Homo sapiens
<400> 337
atgcagcatc accaccatca ccacggttcc gacgtgcggg acctgaacgc actgctgccg 60
gcagttecat ecetgggtgg eggtggagge tgegeaetge eggttagegg tgeageaeag 120
tgggctccag ttctggactt cgcaccgcct ggtgcatccg catacggttc cctgggtggt 180
ccagcaccte egecegeaac gececeaceg cetecacege eccegeacte etteateaaa 240
caggaaccta gctggggtgg tgcagaaccg cacgaagaac agtgcctgag cgcattctga 300
gaattctgca gatatccatc acac
<210> 338
<211> 462
<212> DNA
<213> Homo sapiens
<400> 338
atgcagcatc accaccatca ccaccacgaa gaacagtgcc tgagcgcatt caccgttcac 60
tteteeggee agtteaetgg caeageegga geetgteget aegggeeett eggteeteet 120
ccgcccagcc aggcgtcatc cggccaggcc aggatgtttc ctaacgcgcc ctacctgccc 180
agetgeeteg agageeagee egetattege aateagggtt acageaeggt cacettegae 240
gggacgccca gctacggtca cacgccctcg caccatgcgg cgcagttccc caaccactca 300
ttcaagcatg aggateceat gggeeageag ggetegetgg gtgageagea gtaeteggtg 360
ccgccccgg tctatggctg ccacaccccc accgacagct gcaccggcag ccaggctttg 420
ctgctgagga cgccctacag cagtgacaat ttatactgat ga
<210> 339
<211> 405
<212> DNA
<213> Homo sapiens
<400> 339
atgcagcatc accaccatca ccaccagget ttgctgctga ggacgcccta cagcagtgac 60
```

<212> PRT

<213> Homo sapiens

```
aatttatacc aaatgacatc ccagcttgaa tgcatgacct ggaatcagat gaacttagga 120
gccaccttaa agggccacag cacagggtac gagagcgata accacacaac gcccatcctc 180
tgcggagccc aatacagaat acacacgcac ggtgtcttca gaggcattca ggatgtgcga 240
cgtgtgcctg gagtagcccc gactettgta eggteggeat etgagaccag tgagaaacge 300
cccttcatgt gtgcttaccc aggctgcaat aagagatatt ttaagctgtc ccacttacag 360
                                                                   405
atgcacagca ggaagcacac tggtgagaaa ccataccagt gatga
<210> 340
<211> 339
<212> DNA
<213> Homo sapiens
<400> 340
atgcagcatc accaccatca ccaccacagc aggaagcaca ctggtgagaa accataccag 60
tgtgacttca aggactgtga acgaaggttt tttcgttcag accagctcaa aagacaccaa 120
aggagacata caggtgtgaa accattccag tgtaaaactt gtcagcgaaa gttctcccgg 180
teegaceace tgaagaceea caceaggaet catacaggtg aaaageeett cagetgtegg 240
tggccaagtt gtcagaaaaa gtttgcccgg tcagatgaat tagtccgcca tcacaacatg 300
                                                                   339
catcagagaa acatgaccaa actccagctg gcgctttga
<210> 341
<211> 1110
<212> DNA
<213> Homo sapiens
<400> 341
atgcagcatc accaccatca ccaccactcc ttcatcaaac aggaaccgag ctggggtggt 60
gcagaaccgc acgaagaaca gtgcctgagc gcattcaccg ttcacttctc cggccagttc 120
actggcacag ccggagcctg tcgctacggg cccttcggtc ctcctccgcc cagccaggcg 180
tcatceggee aggecaggat gtttectaae gegeeetace tgeecagetg eetegagage 240
cagecegeta ttegeaatea gggttacage aeggteaeet tegaegggae geeeagetae 300
ggtcacacgc cctcgcacca tgcggcgcag ttccccaacc actcattcaa gcatgaggat 360
cccatgggcc agcagggctc gctgggtgag cagcagtact cggtgccgcc cccggtctat 420
ggetgecaca eccecacega cagetgeace ggeagecagg etttgetget gaggaegeee 480
tacagcagtg acaatttata ccaaatgaca tcccagcttg aatgcatgac ctggaatcag 540
atgaacttag gagccacctt aaagggccac agcacagggt acgagagcga taaccacaca 600
acgeceatee tetgeggage ecaatacaga atacacaege aeggtgtett cagaggeatt 660
caggatgtgc gacgtgtgcc tggagtagcc ccgactcttg tacggtcggc atctgagacc 720
agtgagaaac gccccttcat gtgtgcttac ccaggctgca ataagagata ttttaagctg 780
tcccacttac agatgcacag caggaagcac actggtgaga aaccatacca gtgtgacttc 840
aaggactgtg aacgaaggtt ttttcgttca gaccagctca aaagacacca aaggagacat 900
acaggtgtga aaccattcca gtgtaaaact tgtcagcgaa agttctcccg gtccgaccac 960
ctgaagaccc acaccaggac tcatacaggt gaaaagccct tcagctgtcg gtggccaagt 1020
tgtcagaaaa agtttgcccg gtcagatgaa ttagtccgcc atcacaacat gcatcagaga 1080
aacatgacca aactccagct ggcgctttga
<210> 342
<211> 99
```

```
<400> 342
Met Gln His His His His His Gly Ser Asp Val Arg Asp Leu Asn
Ala Leu Leu Pro Ala Val Pro Ser Leu Gly Gly Gly Gly Cys Ala
                                25
Leu Pro Val Ser Gly Ala Ala Gln Trp Ala Pro Val Leu Asp Phe Ala
                             40
Pro Pro Gly Ala Ser Ala Tyr Gly Ser Leu Gly Gly Pro Ala Pro Pro
                        55
Pro Ala Pro Pro Pro Pro Pro Pro Pro Pro His Ser Phe Ile Lys
                                        75
                    70
Gln Glu Pro Ser Trp Gly Gly Ala Glu Pro His Glu Glu Gln Cys Leu
                                    90
Ser Ala Phe
<210> 343
<211> 152
<212> PRT
<213> Homo sapiens
<400> 343
Met Gln His His His His His His Glu Glu Gln Cys Leu Ser Ala
                                     10
Phe Thr Val His Phe Ser Gly Gln Phe Thr Gly Thr Ala Gly Ala Cys
                                25
Arg Tyr Gly Pro Phe Gly Pro Pro Pro Ser Gln Ala Ser Ser Gly
                                                4.5
                            40
Gln Ala Arg Met Phe Pro Asn Ala Pro Tyr Leu Pro Ser Cys Leu Glu
                                            60
                         55
Ser Gln Pro Ala Ile Arg Asn Gln Gly Tyr Ser Thr Val Thr Phe Asp
                                        75
Gly Thr Pro Ser Tyr Gly His Thr Pro Ser His His Ala Ala Gln Phe
                                     90
                 8.5
Pro Asn His Ser Phe Lys His Glu Asp Pro Met Gly Gln Gln Gly Ser
                                105
            100
Leu Gly Glu Gln Gln Tyr Ser Val Pro Pro Pro Val Tyr Gly Cys His
                            120
                                               125
Thr Pro Thr Asp Ser Cys Thr Gly Ser Gln Ala Leu Leu Leu Arg Thr
                        135
Pro Tyr Ser Ser Asp Asn Leu Tyr
                    150
<210> 344
<211> 133
<212> PRT
<213> Homo sapiens
<400> 344
Met Gln His His His His His Gln Ala Leu Leu Arg Thr Pro
                                     10
                  5
Tyr Ser Ser Asp Asn Leu Tyr Gln Met Thr Ser Gln Leu Glu Cys Met
```

```
Thr Trp Asn Gln Met Asn Leu Gly Ala Thr Leu Lys Gly His Ser Thr
Gly Tyr Glu Ser Asp Asn His Thr Thr Pro Ile Leu Cys Gly Ala Gln
                         55
                                            60
Tyr Arg Ile His Thr His Gly Val Phe Arg Gly Ile Gln Asp Val Arg
                                        75
                    70
Arg Val Pro Gly Val Ala Pro Thr Leu Val Arg Ser Ala Ser Glu Thr
                85
Ser Glu Lys Arg Pro Phe Met Cys Ala Tyr Pro Gly Cys Asn Lys Arg
                               105
           100
Tyr Phe Lys Leu Ser His Leu Gln Met His Ser Arg Lys His Thr Gly
                          120
       115
Glu Lys Pro Tyr Gln
    130
<210> 345
<211> 112
<212> PRT
<213> Homo sapiens
<400> 345
Met Gln His His His His His His Ser Arg Lys His Thr Gly Glu
Lys Pro Tyr Gln Cys Asp Phe Lys Asp Cys Glu Arg Arg Phe Phe Arg
                                 2.5
Ser Asp Gln Leu Lys Arg His Gln Arg Arg His Thr Gly Val Lys Pro
                             40
Phe Gln Cys Lys Thr Cys Gln Arg Lys Phe Ser Arg Ser Asp His Leu
                         55
Lys Thr His Thr Arg Thr His Thr Gly Glu Lys Pro Phe Ser Cys Arg
                                         75
                     70
Trp Pro Ser Cys Gln Lys Lys Phe Ala Arg Ser Asp Glu Leu Val Arg
                                     90
His His Asn Met His Gln Arg Asn Met Thr Lys Leu Gln Leu Ala Leu
                                105
<210> 346
<211> 369
<212> PRT
<213> Homo sapiens
<400> 346
Met Gln His His His His His His Ser Phe Ile Lys Gln Glu Pro
                                     10
 Ser Trp Gly Gly Ala Glu Pro His Glu Glu Gln Cys Leu Ser Ala Phe
                                  25
 Thr Val His Phe Ser Gly Gln Phe Thr Gly Thr Ala Gly Ala Cys Arg
                              40
 Tyr Gly Pro Phe Gly Pro Pro Pro Ser Gln Ala Ser Ser Gly Gln
```

55

Ala Arg Met Phe Pro Asn Ala Pro Tyr Leu Pro Ser Cys Leu Glu Ser

```
Gln Pro Ala Ile Arg Asn Gln Gly Tyr Ser Thr Val Thr Phe Asp Gly
                                   90
Thr Pro Ser Tyr Gly His Thr Pro Ser His His Ala Ala Gln Phe Pro
                             105
           100
Asn His Ser Phe Lys His Glu Asp Pro Met Gly Gln Gln Gly Ser Leu
                         120
      115
Gly Glu Gln Gln Tyr Ser Val Pro Pro Pro Val Tyr Gly Cys His Thr
                   135
Pro Thr Asp Ser Cys Thr Gly Ser Gln Ala Leu Leu Leu Arg Thr Pro
                 150
                                     155
Tyr Ser Ser Asp Asn Leu Tyr Gln Met Thr Ser Gln Leu Glu Cys Met
                                  170
Thr Trp Asn Gln Met Asn Leu Gly Ala Thr Leu Lys Gly His Ser Thr
                             185
Gly Tyr Glu Ser Asp Asn His Thr Thr Pro Ile Leu Cys Gly Ala Gln
                          200
      195
Tyr Arg Ile His Thr His Gly Val Phe Arg Gly Ile Gln Asp Val Arg
                      215
                                         220
Arg Val Pro Gly Val Ala Pro Thr Leu Val Arg Ser Ala Ser Glu Thr
        230
                                      235
Ser Glu Lys Arg Pro Phe Met Cys Ala Tyr Pro Gly Cys Asn Lys Arg
                     250
              245
Tyr Phe Lys Leu Ser His Leu Gln Met His Ser Arg Lys His Thr Gly
                   265
           260
Glu Lys Pro Tyr Gln Cys Asp Phe Lys Asp Cys Glu Arg Arg Phe Phe
               280
Arg Ser Asp Gln Leu Lys Arg His Gln Arg Arg His Thr Gly Val Lys
                    295
Pro Phe Gln Cys Lys Thr Cys Gln Arg Lys Phe Ser Arg Ser Asp His
                                     315
                  310
Leu Lys Thr His Thr Arg Thr His Thr Gly Glu Lys Pro Phe Ser Cys
                                 330
Arg Trp Pro Ser Cys Gln Lys Lys Phe Ala Arg Ser Asp Glu Leu Val
                                          350
                           345
Arg His His Asn Met His Gln Arg Asn Met Thr Lys Leu Gln Leu Ala
                           360
```

<210> 347

<211> 21

Leu

<212> DNA

<213> Artificial Sequence

<220>

<223> Primer

<400> 347

ggctccgacg tgcgggacct g

<210> 348

<211> 30

<212> DNA

<213> Artificial Sequence

	<220> <223> Primer	
	<400> 348 gaattctcaa agcgccagct ggagtttggt	30
	<210> 349	
	<211> 21	
	<212> DNA	
	<213> Artificial Sequence	
þi.	<220>	
	<223> Primer	
	<400> 349	21
T.	ggctccgacg tgcgggacct g	21
T'	<210> 350	
	<211> 30	
L.	<212> DNA	
ه إسار	<213> Artificial Sequence	
	<220>	
L.	<223> Primer	
	<400> 350	20
	gaatteteaa agegeeaget ggagtttggt	30
•	<210> 351	
	<211> 21	
	<212> DNA	
	<213> Artificial Sequence	
	<220>	
	<223> Primer	
	<400> 351	21
	cacagcacag ggtacgagag c	21
	<210> 352	
	<211> 30	
	<212> DNA	
	<213> Artificial Sequence	
	<220>	
	<223> Primer	
	<400> 352	30
	gaatteteaa agegeeaget ggagtttggt	٦٢.
	<210> 353	
	<211> 29	
	<212> DNA	

<213> Artificial Sequence	
<220> <223> Primer	
<400> 353 cacgaagaac agtgcctgag cgcattcac	29
<210> 354 <211> 32 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 354 ccggcgaatt catcagtata aattgtcact gc	32
<210> 355 <211> 24 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 355 caggetttge tgetgaggae geec	24
<210> 356 <211> 34 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 356 cacggagaat tcatcactgg tatggtttct cacc	34
<210> 357 <211> 28 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 357 cacagcagga agcacactgg tgagaaac	28
<210> 358 <211> 30	

<212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 358 ggatatctgc agaattctca aagcgccagc	30
<210> 359 <211> 22 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 359 cactccttca tcaaacagga ac	22
<210> 360 <211> 30 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 360 ggatatctgc agaattctca aagcgccagc	30
<210> 361 <211> 33 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 361 ggttccgacg tgcgggacct gaacgcactg ctg	33
<210> 362 <211> 40 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 362 ctgccggcag cagtgcgttc aggtcccgca cgtcggaacc	40
<210> 363	

	<211> 35 <212> DNA	
	<213> Artificial Sequence	
	<220>	
	<223> Primer	
	<400> 363	2.5
	ccggcagttc catccctggg tggcggtgga ggctg	35
	<210> 364	
	<211> 38	
æi:	<212> DNA	
	<213> Artificial Sequence	
an ⁱ	<220>	
	<223> Primer	
Ţ	<400> 364	20
===== ================================	cggcagtgcg cagectecae egecaeecag ggatggaa	38
i F	<210> 365	
	<211> 35	
	<212> DNA	
A	<213> Artificial Sequence	
	<220>	
	<223> Primer	
	<400> 365	
	cgcactgccg gttagcggtg cagcacagtg ggctc	35
	<210> 366	
	<211> 33	
	<212> DNA	
	<213> Artificial Sequence	
	<220>	
	<223> Primer	
	<400> 366	
	cagaactgga gcccactgtg ctgcaccgct aac	33
	<210> 367	
	<211> 38	
	<212> DNA	
	<213> Artificial Sequence	
	<220>	
	<223> Primer	
	<400> 367	
	cagttetgga ettegeaceg eetggtgeat eegeatae	38

<210> 368 <211> 39 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 368	
cagggaaccg tatgcggatg caccaggcgg tgcgaagtc	39
<210> 369	
<211> 38	
<212> DNA <213> Artificial Sequence	
<220>	
<223> Primer	
<400> 369	38
ggtteeetgg gtggteeage aceteegeee geaaegee	50
<210> 370	
<211> 38	
<212> DNA	
<213> Artificial Sequence	
<220> <223> Primer	
\223\times	
<400> 370	2.0
ggcggtgggg gcgttgcggg cggaggtgct ggaccacc	38
<210> 371	
<211> 40	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
<400> 371	
cccaccgcct ccaccgcccc cgcactcctt catcaaacag	40
<210> 372	
<211> 39	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
<400> 372	39
ctaggttcct gtttgatgaa ggagtgcggg ggcggtgga	: ر

```
<210> 373
<211> 38
<212> DNA
<213> Artificial Sequence
<220>
<223> Primer
<400> 373
                                                                           38
gaacctagct ggggtggtgc agaaccgcac gaagaaca
<210> 374
<211> 39
<212> DNA
<213> Artificial Sequence
<220>
<223> Primer
<400> 374
                                                                           39
ctcaggcact gttcttcgtg cggttctgca ccaccccag
<210> 375
<211> 32
<212> DNA
<213> Artificial Sequence
<220>
<223> Primer
<400> 375
                                                                           32
gtgcctgagc gcattctgag aattctgcag at
<210> 376
<211> 34
<212> DNA
<213> Artificial Sequence
<220>
<223> Primer
<400> 376
                                                                           34
gtgtgatgga tatctgcaga attctcagaa tgcg
<210> 377
<211> 1292
 <212> DNA
 <213> Homo sapiens
 <220>
 <221> misc feature
 <222> 253, 256, 517, 518, 520, 521, 522, 743, 753, 754,
```

758 <223> n = A,T,C or G

<400> 377 atgggctccg acgttcgtga cctgagcgcg ctgctgccgg cagttccgtc cctgggtgat 60 ggtggtggtt gcgcactgcc ggttagcggt gcagcacagt gggctccggt tctggacttc 120 gcaccgccgg gtgcatccgc acacggtccc ctgggtggtc cggcgccgcc gtcggcaccg 180 ccgccgccgc cgccgccgcc gccgcactcc ttcatcaaac agggaccgag ctggggtggc 240 geggaactge ackaakaaca gtacetgage gegtteaeeg tteaeteete eggteaggtt 300 cactggcacg gccggggcct gtcgctacgg gcccctcggc ccccctccgc ccagccaggc 360 gtcatccggc caggccagga tgtctcctag cgcgccctgc ctgcccagcc gcctcgagag 420 ccagcccgct acccgcaatc ggggctacag cacggtcacc ttcgacgggg cgtccggcta 480 cggtcacacg ccctcgcacc atgcggcgca gttctcsmar yyactcgtta ggcgtgagga 540 teccatggge cageagggte egetgggtga geageagtge teggegeege eeeeggeetg 600 tggccgccac acccccgccg acagctgcgc cggcagccag gctttgctgc tgagggcgcc 660 ctgtagcagc gacggtttat accaagtgac gtcccagctt gagtgcatgg cctggagtca 720 gatgageete ggggeegeet tamegggeea cakyacargg taegagageg atgateaeae 780 aacgcccggc ctctgcggag cccaatacag aatacacacg cacggtgcct tcaggggcgt 840 tcagggtgtg cgccgtgtgc ctggagtagc cccgactctt gtacggtcgg catctgaggc 900 cagtgaggaa cgcccctca tgtgtgctta cccaggctgc aataggaggt atctgaagct 960 gccccgctta cagatgcacg gtaggaagca cgctggtgag agaccatacc agtgtgactt 1020 caaggactgt ggacggaggt ttttctgctc agaccggctc aaaagacacc aggggaggca 1080 tacagatgtg aagccattcc agcgtaagac ctgtcagcga gggttctccc ggcccaacca 1140 cctgaagacc cacgccagga ctcatgcagg tgaaaagccc cccagctgtc ggtggtcaga 1200 ttgtcagaga aagcctgccc ggtcaagtga gttggtccgc catcgcgaca tgcatcagag 1260 1292 gggcatgacc gaactccagc tggcgctttg aa <210> 378 <211> 1291 <212> DNA <213> Homo sapiens <400> 378 atgggeteeg aegttegtga eetaaaegea etgetgeegg eagtteegte eeegggtggt 60 ggtggtggtt gcgcactgcc ggttagcggt gcaacacagt gggctccggt tctggacttc 120 gtaccgccgg gtgcgcctgt atgcggttcc ctgggtggcc cggcaccgcc gccagcgccg 180 ccgccgctgc cgccgccgcc gtcgcactcc ttcaccaaac aggaaccgag ttggggtggt 240 acagageege acgeaggaca gggeeggage geactegteg etcaeteete eggeeagtte 300 actggcacag coggagootg togotacggg coettoggto etectoogco cagocaggog 360 tcatccggcc aggccaggat gtttcctaac gcgccctacc tgcccagctg cctcgagagc 420 cagecegeta ttegeaatea gggttaeage aeggteaeet tegaegggae geeeagetae 480 ggtcacacgc cetegeacca tgeggegeag tteeceaace aeteateeaa geatgaggae 540 cccatgggcc agcagggctc gccgggtgag cagcagtact cggcgccgcc cccggtctgc 600 ggctgccgca ccccaccgg cagctgcacc ggcagccagg ctttgctgct gagggcgccc 660 tacageggtg gegatetaca ceaaacgaca teceagettg gacacatgge etggaateag 720 acgaacttag gagccacctt aaagggccac ggcacagggt acgagagcga tgaccacaca 780 acgeceatee tetgeggaae ceagtacagg atacgegege geggegteet eeggggtaet 840 caggatgtgc ggtgtgtgcc tggggtggcc ccgactcttg tgcggtcggc atctgagacc 900 agtgagaagc gccccctcat gtgtgcctac ccaggctgca ataagagaca ctttaagccg 960 tecegettge gggtgegegg cagggagege aetggtgaga aaccatacea gegegaette 1020 aaggaccgtg gacgagggct tctccgtcca gaccagctca aaaggcacca gagggggcat 1080 acaggtgtga aacctctcca gtgtgaagct tgacggcgga ggcccccccg acccggccac 1140 ctgaaggtcc acaccaggac ccatacaggt ggagagccct tcagttgtcg gtggccaagt 1200 tgtcaggaga agtctgcccg gccagatgaa tcagcccgcc gtcataacat gcatcagaga 1260 aacatgacca aactccagct ggcgctttga a

1291

```
<210> 379
<211> 1281
<212> DNA
<213> Homo sapiens
<400> 379
atgggctccg acgttcgtga cctgagtgca ttgctaccga cggccccgtc cctgggtggt 60
ggcggtgact gcacactgcc ggttagcggt acagcacagt gggctccggt cccggcctcc 120
gcaccgccgg gcgcatccgc atacgattcc ctgggtggcc cggcaccgcc gccggcgccg 180
ccgccgccgc cgccgccgcc gccgcactcc tgcggcgaac aggggccgag ctggggtggt 240
gcagaaccgc gcgaggggca atgcctgagt gcgcccgccg tccgcttctc cggccggttc 300
accggcacag teggageetg tegetatggg ecceteggte etecteegee eageeaggeg 360
ccatccggcc agaccaggat gttgcccagc gcgccctatc tgtcgagttg cctcaggagc 420
cggtccgcta tccgtagtca gggtcgcagc acggcacctt cagcggggcg cccagctatg 480
gcacccaccc tegeaccace ggegeagtee cactacteee aacatggggt cetacatggg 540
ccagcagggc tcgctgggtg agcagcagta ctcggtgccg cccccggtct atggctgcca 600
cacccccacc gacagetgea eeggeageea ggetttgetg etgaggaege eetacageag 660
tgacaattta taccaaatga catcccagct tgaatgcatg acctggaatc agatgaactt 720
aggagecace ttaaagggee acageacagg gtaegagage gataaceaca caaegeeeat 780
cctctgcgga gcccaataca gaatacacac gcacggtgtc ttcagaggca ttcaggatgt 840
gcgacgtgtg cctggagtag ccccgactct tgtacggtag cacctgagac cagtgagaac 900
gccccttggt gtgtgttacc ggggctgcag taaggggtat tttaagccgt cccacttacg 960
ggtgcacage aggaagegea ttggtgagae gecaegeeag tgegaeteea agggeegtgg 1020
acgagggeet eteegttegg gaccageeca agggaeacea aaggagaeat acaggtaege 1080
aaccactcca gtgtaagget tgtcagegaa ggtteeeceg gteegaecae etgagggeee 1140
acgccagggc ccacacgggt gggaagcccc tcagctgccg gtggccaagc tgccagagag 1200
ggttcgccca gtcagacgaa ttagtccgtc atcacaacat gtatcagcga aacatgacta 1260
                                                                   1281
aactccagct ggcgctttga a
<210> 380
<211> 3020
<212> DNA
<213> Homo sapiens
<400> 380
gttcaaggca gcgcccacac ccgggggctc tccgcaaccc gaccgcctgt ccgctccccc 60
acttecegee etecetecea ectaeteatt cacceaceca eccaeceaga geegggaegg 120
cageceagge geeeggeee egeegtetee tegeegegat cetggaette etettgetge 180
aggaccegge ttecaegtgt gteceggage eggegtetea geaeaegete egeteeggge 240
ctgggtgcct acagcagcca gagcagcagg gagtccggga cccgggcggc atctgggcca 300
agttaggege egeegaggee agegetgaae gtetecaggg eeggaggage egeggggegt 360
ccgggtctga gcctcagcaa atgggctccg acgtgcggga cctgaacgcg ctgctgcccg 420
ccgtcccctc cctgggtggc ggcggcggct gtgccctgcc tgtgagcggc gcggcgcagt 480
gggcgccggt gctggacttt gcgccccgg gcgcttcggc ttacgggtcg ttgggcggcc 540
ccgcgccgcc accggctccg ccgccacccc cgccgccgcc gcctcactcc ttcatcaaac 600
aggageegag etggggegge geggageege acgaggagea gtgeetgage geetteaetg 660
tecaetttte eggeeagtte aetggeacag eeggageetg tegetaeggg eeetteggte 720
ctcctccgcc cagccaggcg tcatccggcc aggccaggat gtttcctaac gcgccctacc 780
tgcccagctg cctcgagagc cagcccgcta ttcgcaatca gggttacagc acggtcacct 840
```

tegaegggae geceagetae ggteaeaege eetegeaeea tgeggegeag tteeecaaee 900

actcattcaa	gcatgaggat	cccatgggcc	agcagggctc	gctgggtgag	cagcagtact	960
caataccacc	cccggtctat	ggctgccaca	ccccaccga	cagctgcacc	ggcagccagg	1020
ctttactact	gaggacgccc	tacagcagtg	acaatttata	ccaaatgaca	tcccagcttg	1080
aatgcatgac	ctggaatcag	atgaacttag	gagccacctt	aaagggagtt	gctgctggga	1140
actccaactc	agtgaaatgg	acagaagggc	agagcaacca	cagcacaggg	tacgagagcg	1200
ataaccacac	aacgcccatc	ctctgcggag	cccaatacag	aatacacacg	cacggtgtct	1260
tragaggrat	tcaggatgtg	cgacgtgtgc	ctggagtagc	cccgactctt	gtacggtcgg	1320
catctgagac	caqtqaqaaa	cgccccttca	tgtgtgctta	cccaggctgc	aataagagat	1380
attttaagct	gtcccactta	cagatgcaca	gcaggaagca	cactggtgag	aaaccatacc	1440
agtgtgactt	caaggactgt	gaacgaaggt	tttctcgttc	agaccagctc	aaaagacacc	1500
aaaggagaca	tacaggtgtg	aaaccattcc	agtgtaaaac	ttgtcagcga	aagttctccc	1560
ggtccgacca	cctgaagacc	cacaccagga	ctcatacagg	taaaacaagt	gaaaagccct	1620
tcagctgtcg	gtggccaagt	tqtcagaaaa	agtttgcccg	gtcagatgaa	ttagtccgcc	1680
atcacaacat	gcatcagaga	aacatgacca	aactccagct	ggcgctttga	ggggtctccc	1/40
tcaaaaacca	ttcagtgtcc	caggcagcac	agtgtgtgaa	ctgctttcaa	gtctgactct	1800
ccactcctcc	tcactaaaaa	ggaaacttca	gttgatcttc	ttcatccaac	ttccaagaca	1860
agataccogt	gcttctggaa	actaccaggt	gtgcctggaa	gagttggtct	ctgccctgcc	1920
tacttttagt	tgactcacag	gccctggaga	agcagctaac	aatgtctggt	tagttaaaag	1980
cccattgcca	tttaatctaa	attttctact	gtaagaagag	ccatagctga	tcatgtcccc	2040
ctgaccette	ccttctttt	ttatactcat	tttcactaga	gatggaatta	ttgtaccatt	2100
ttctatcatc	gaatatttat	addccadddc	atgtatgt	gtctgctaat	gtaaactttg	2160
tcatagtttc	catttactaa	cadcaacadc	aagaaataaa	tcagagagca	aggcatcggg	2220
agtgaatett	gtctaacatt	cccgaggtca	accagactac	taacctggaa	agcaggatgt	2280
agttatacca	ggcaactttt	aaagctcatg	catttcaage	agctgaagaa	agaatcagaa	2340
ctaaccagta	cctctctata	gaaatctaaa	agaatttac	cattcagtta	attcaatgtg	2400
angagtaga	cactoctet	aadaaactat	gaagatotga	gattttttg	tgtatgtttt	2460
tasatattt	gagtggtaat	catatototo	tttatagatg	tacatacctc	cttgcacaaa	2520
tgactetttt	ttaatttaa	tcactgagac	tateettaat	gtataaaaac	catgctggta	2580
Lggaggggaa	agttgtaaaa	ataaaataa	ctttaaaaga	aaatagggga	tggtccagga	2640
tatggcttca	taagaatatt	tttaagtaac	ttaaggacct	ttagatetae	aagtatatgt	2700
terceaciga	caagactgtt	gataagaaaa	tccattatt	aaagatggtc	gtgtgtgtgt	
gaaaaaaatg	agacttactg	tattatatt	tatttttaa	aaagaaggaat	ttattattta	2820
gtgtgtgt	grardrates	atasatatat	atataataat	gagagagaat	ttgacaacta	2880
ccgttgcttg	adattactyt	gradararar	geetgaetat	tratcttaca	agatattgat	2940
aaattaggac	tgtataagta	ctagatgcat	tacetttact	ctcaattaaa	gtctattcaa	3000
		ccigcattt	ccacciciget	Cccaaccaaa	geocaecoaa	3020
aaggaaaaaa	aaaaaaaaa					0020
.010. 201						
<210> 381						
<211> 1291						
<212> DNA						
<213> Homo	sapiens					
100 001						
<400> 381			at aat aaaaa	anattacata	cctagataat	60
atgggctccg	acgttcgtga	cetgaaegea	agagagagt	gaactacaat	cctgggtggt	120
ggtggtggtt	gcgcactgcc	ggttagcggt	geageaeage	gggccccggc	tctggacttc	180
gcaccgccgg	gtgcatccgc	atacggttcc	etgggtggte	cygcaccycc	gccggcaccg	240
ccgccgccgc	cgccgccgcc	gccgcactcc	ttcatcaaac	aggaaccyag	ctggggtggt	300
gcagaaccgc	acgaagaaca	gtgcctgagc	gcattcaccg	atactacaa	cggccagttc	360
actggcacag	ccggagcctg	tcgctacggg	cccttcggtc	tagacaata	cagecaggeg	420
tcatccggcc	aggccaggat	gtttcctaac	gcgccctacc	t accepted	cctcgagagc	420 420
cagcccgcta	ttcgcaatca	gggttacagc	acggtcacct	cegaegggae	geceagetae	5/10
ggtcacacgc	cctcgcacca	tgcggcgcag	ttccccaacc	actcattcaa	gcatgaggat	240
cccatgggc	agcagggctc	: qctqqqtgag	cagcagtact	eggtgccgcc	cccggtctat	600
ggctgccaca	ccccaccga	cagetgeace	ggcagccagg	ctttgctgct	gaggacgccc	000

```
tacagcagtg acaatttata ccaaatgaca tcccagcttg aatgcatgac ctggaatcag 720
atgaacttag gagccacctt aaagggccac agcacagggt acgagagcga taaccacaca 780
acgcccatcc tctgcggagc ccaatacaga atacacacgc acggtgtctt cagaggcatt 840
caggatgtgc gacgtgtgcc tggagtagcc ccgactcttg tacggtcggc atctgagacc 900
agtgagaaac geceetteat gtgtgettae eeaggetgea ataagagata ttttaagetg 960
teceaettae agatgeaeag eaggaageae aetggtgaga aaceataeea gtgtgaette 1020
aaggactgtg aacgaaggtt ttttcgttca gaccagctca aaagacacca aaggagacat 1080
acaggtgtga aaccattcca gtgtaaaact tgtcagcgaa agttctcccg gtccgaccac 1140
ctgaagaccc acaccaggac tcatacaggt gaaaagccct tcagctgtcg gtggccaagt 1200
tgtcagaaaa agtttgcccg gtcagatgaa ttagtccgcc atcacaacat gcatcagaga 1260
                                                                  1291
aacatgacca aactccagct ggcgctttga g
```

```
<210> 382
<211> 1491
<212> DNA
<213> Homo sapiens
```

<400> 382 atggcggccc ccggcgcccg gcggtcgctg ctcctgctgc tgctggcagg ccttgcacat 60 ggcgcctcag cactctttga ggatctaatg ggctccgacg ttcgtgacct gaacgcactg 120 ctgccggcag ttccgtccct gggtggtggt ggtggttgcg cactgccggt tagcggtgca 180 gcacagtggg ctccggttct ggacttcgca ccgccgggtg catccgcata cggttccctg 240 ggtggtccgg caccgccgc ggcaccgccg ccgccgccgc cgccgcactc cttcatcaaa 300 caggaaccga gctggggtgg tgcagaaccg cacgaagaac agtgcctgag cgcattcacc 360 gttcacttct ccggccagtt cactggcaca gccggagcct gtcgctacgg gcccttcggt 420 cctcctccgc ccagccaggc gtcatccggc caggccagga tgtttcctaa cgcgccctac 480 ctgcccagct gcctcgagag ccagcccgct attcgcaatc agggttacag cacggtcacc 540 ttcgacggga cgcccagcta cggtcacacg ccctcgcacc atgcggcgca gttccccaac 600 cactcattca agcatgagga tcccatgggc cagcagggct cgctgggtga gcagcagtac 660 teggtgeege eeeeggteta tggetgeeae acceecaceg acagetgeae eggeageeag 720 gctttgctgc tgaggacgcc ctacagcagt gacaatttat accaaatgac atcccagctt 780 gaatgcatga cctggaatca gatgaactta ggagccacct taaagggcca cagcacaggg 840 tacgagageg ataaccacac aacgeecate etetgeggag eccaatacag aatacacaeg 900 cacggtgtct tcagaggcat tcaggatgtg cgacgtgtgc ctggagtagc cccgactctt 960 gtacggtcgg catctgagac cagtgagaaa cgccccttca tgtgtgctta cccaggctgc 1020 aataagagat attttaagct gtcccactta cagatgcaca gcaggaagca cactggtgag 1080 aaaccatacc agtgtgactt caaggactgt gaacgaaggt tttttcgttc agaccagctc 1140 aaaagacacc aaaggagaca tacaggtgtg aaaccattcc agtgtaaaac ttgtcagcga 1200 aagtteteee ggteegaeea eetgaagaee cacaceagga eteataeagg tgaaaageee 1260 ttcagctgtc ggtggccaag ttgtcagaaa aagtttgccc ggtcagatga attagtccgc 1320 catcacaaca tgcatcagag aaacatgacc aaactccagc tggcgcttct taacaacatg 1380 ttgatcccca ttgctgtggg cggtgccctg gcagggctgg tcctcatcgt cctcattgcc 1440 tacctcattg gcaggaagag gagtcacgcc ggctatcaga ccatctagtg a

```
<210> 383
<211> 1251
```

<212> DNA

<213> Homo sapiens

<400> 383

```
atggcgcccc gcagcgcccg gcgacccctg ctgctgctac tgcctgttgc tgctgctcgg 60
cctcatgcat tgtcgtcagc agccatgttt atggtgaaaa atggcaacgg gaccgcgtgc 120
ataatggcca acttctctgc tgccttctca gtgaactacg acaccaagag tggccccaag 180
aacatgacct ttgacctgcc atcagatgcc acagtggtgc tcaaccgcag ctcctgtgga 240
aaagagaaca cttctgaccc cagtctcgtg attgcttttg gaagaggaca tacactcact 300
ctcaatttca cgagaaatgc aacacgttac agcgttcagc tcatgagttt tgtttataac 360
ttgtcagaca cacacctttt ccccaatgcg agctccaaag aaatcaagac tgtggaatct 420
ataactgaca tcagggcaga tatagataaa aaatacagat gtgttagtgg cacccaggtc 480
cacatgaaca acgtgaccgt aacgctccat gatgccacca tccaggcgta cctttccaac 540
agcagettea geagggaga gacaegetgt gaacaagaea ggeetteeee aaccaeageg 600
cccctgcgc cacccagccc ctcgccctca cccgtgccca agagcccctc tgtggacaag 660
tacaacgtga gcggcaccaa cgggacctgc ctgctggcca gcatggggct gcagctgaac 720
ctcacctatg agaggaagga caacacgacg gtgacaaggc ttctcaacat caaccccaac 780
aagacctcgg ccagcgggag ctgcggcgcc cacctggtga ctctggagct gcacagcgag 840
ggcaccaccg tectgetett ecagtteggg atgaatgeaa gttetageeg gttttteeta 900
caaggaatcc agttgaatac aattcttcct gacgccagag accetgeett taaagctgee 960
aacggctccc tgcgagcgct gcaggccaca gtcggcaatt cctacaagtg caacgcggag 1020
gagcacgtcc gtgtcacgaa ggcgttttca gtcaatatat tcaaagtgtg ggtccaggct 1080
ttcaaggtgg aaggtggcca gtttggctct gtggaggagt gtctgctgga cgagaacagc 1140
acgctgatcc ccatcgctgt gggtggtgcc ctggcggggc tggtcctcat cgtcctcatc 1200
gcctacctcg tcggcaggaa gaggagtcac gcaggctacc agactatcta g
<210> 384
<211> 228
<212> DNA
<213> Homo sapiens
<400> 384
atgcagatct tcgtgaagac tctgactggt aagaccatca ccctcgaggt ggagcccagt 60
gacaccatcg agaatgtcaa ggcaaagatc caagataagg aaggcattcc tcctgatcag 120
cagaggttga tctttgccgg aaaacagctg gaagatggtc gtaccctgtc tgactacaac 180
                                                                   228
atccagaaag agtccacctt gcacctggta ctccgtctca gaggtggg
<210> 385
<211> 1515
<212> DNA
<213> Homo sapiens
<400> 385
atgcagatct tcgtgaagac cctgaccggc aagaccatca ccctggaagt ggagcccagt 60
gacaccatcg aaaatgtgaa ggccaagatc caggataaag aaggcatccc tcccgaccag 120
cagaggetea tetttgcagg caageageta gaagatggee geactettte tgaetacaae 180
atccagaagg agtcgaccct gcacctggtc cttcgcctga gaggtgccat gggctccgac 240
gttcgtgacc tgaacgcact gctgccggca gttccgtccc tgggtggtgg tggtggttgc 300
gcactgccgg ttagcggtgc agcacagtgg gctccggttc tggacttcgc accgccgggt 360
gcateegeat aeggtteeet gggtggteeg geaeegeege eggeaeegee geegeegeeg 420
ccgccgccgc actccttcat caaacaggaa ccgagctggg gtggtgcaga accgcacgaa 480
gaacagtgcc tgagcgcatt caccgttcac ttctccggcc agttcactgg cacagccgga 540
gcctgtcgct acgggccctt cggtcctcct ccgcccagcc aggcgtcatc cggccaggcc 600
aggatgtttc ctaacgcgcc ctatctgccc agctgcctcg agagccagcc cgctattcgc 660
 aatcagggtt acagcacggt caccttcgac gggacgccca gctacggtca cacgccctcg 720
caccatgcgg cgcagttccc caaccactca ttcaagcatg aggatcccat gggccagcag 780
```

accgacagct ttataccaaa accttaaagg ggagcccaat gtgcctggag ttcatgtgtg cacagcagga aggtttttc ttccagtgta	gcaccggcag tgacatcca gccacagcac acagaataca tagccccgac cttacccagg agcacactgg gttcagacca aaacttgtca caggtgaaaa atgaattagt	gtactcggtg ccaggctttg gcttgaatgc agggtacgag cacgcacggt tcttgtacgg ctgcaataag tgagaaacca gctcaaaaga gcgaaagttc gcccttcagc ccgccatcac	etgetgagga atgacetgga agegataace gtetteagag teggeatetg agatatttta taceagtgtg caceaaagga teeeggteeg tgteggtgge	cgccctacag atcagatgaa acacaacgcc gcattcagga agaccagtga agctgtccca acttcaagga gacatacagg accacctgaa caagttgtca	cagtgacaat cttaggagcc catcctctgc tgtgcgacgt gaaacgcccc cttacagatg ctgtgaacga tgtgaaacca gacccacacc gaaaaagttt	960 1020 1080 1140 1200 1260 1320 1380 1440
<210> 386 <211> 648 <212> DNA <213> Homo	sapiens					
tgcctgagcg cgctacgggc tttcctaacg ggttacagca gcggcgcagt ctgggtgagc agctgcaccg caaatgacat	cattcaccgt ccttcggtcc cgccctacct cggtcacctt tccccaacca agcagtactc gcagccaggc cccagcttga gcacagggta	ggaaccgagc tcacttctcc tcctccgccc gcccagctgc cgacgggacg ctcattcaag ggtgccgcc tttgctgctg atgcatgacc cgagagcgat cggtgtcttc	ggccagttca agccaggcgt ctcgagagcc cccagctacg catgaggatc ccggtctatg aggacgcct tggaatcaga aaccacacaa	ctggcacage cateeggca ageeegetat gtcacaegee ccatgggcca getgecaeae acageagtga tgaacttagg egeecateet	cggagcctgt ggccaggatg tcgcaatcag ctcgcaccat gcagggctcg cccaccgac caatttatac agccacctta	180 240 300 360 420 480 540
<210> 387 <211> 1089 <212> DNA <213> Homo						
tgcctgagcg cgctacgggc tttcctaacg ggttacagca gcggcgcagt ctgggtgagc agctgcacca caatgacat aagggccaca gagtagccaca	cattcaccgt ccttcggtcc cgccctacct cggtcacctt tccccaacca ggcagtactc gcagccaggo cccagcttga agcacagggta tacacacgca ccgactcttgt ccaggctgcaa	ggaaccgagc tcacttctcc tcctccgccc gcccagctgc cgacgggacg ctcattcaag ggtgccgccc tttgctgctg atgcatgacc cgagagcgat cggtgtcttc acggtcggca taagagatat accataccag aagacaccaa	ggccagttca agccaggcgt ctcgagagcc cccagctacg catgaggatc aggacgccct tggaatcaga aaccacacaa agaggcattc tctgagacca	ctggcacago catccggcca agcccgctat gtcacacgco ccatgggcoa acagcagtga tgaacttago cgcccatcct aggatgtgoo gtgagaaaco acgaccttaca aggactgtgoo	cggagcetgt ggceaggatg tegeaateag ctegeaecat geagggeteg caatttatae ageeaectta ctgeggagee aegtgtgeet gatgeaeagga	120 180 240 300 360 420 480 540 600 660 720 780 840

tgtaaaactt catacaggtg tcagatgaat gcgctttga <210> 388 <211> 1035 <212> DNA	aaaagccctt	gttctcccgg cagctgtcgg tcacaacatg	tggccaagtt	gtcagaaaaa	gtttgcccgg	1020
<213> Homo <400> 388 atgacggccg atcgggcagg accgcttcc gtggtcggga gtcgacggcg cccggtgacg gtgacattgg tggggtggtg ggccagttca agccaggcg ctcgagagcc	cgtccgataa cgatggcgat tcggcttggg gcgctccggc ctccgatcaa tcatctcggt ccgagggacc cagaaccgca ctggcacagc catccggcca agcccgctat gtcacacgc	cttccagctg cgcgggccag tgttgtcgac ggcaagtctc ctcggccacc gacctggcaa cccggccgaa cgaagaacag cggagcctgt ggccaggatg tcgcaatcag	atcaagette aacaacggea ggcateteca gegatggegg accaagtegg ttecactect tgeetgageg egetaeggge tttectaaeg ggttacagea geggegeagt	ccaccgttca acggcgcacg ccggcgacgt acgcgcttaa gcggcacgcg tcatcaaaca cattcaccgt ccttcggtcc cgccctacct cggtcacctt	tategggeet agtecaaege gateaeegeg egggeateat tacagggaae ggaaeegage teaettetee teeteegeee geceagetge egaegggaeg eteatteaag	120 180 240 300 360 420 480 540 600 660 720
ccggtctatg aggacgccct tggaatcaga	gctgccacac acagcagtga tgaacttagg cgcccatcct agtga	gcagggctcg ccccaccgac caatttatac agccacctta ctgcggagcc	agctgcaccg caaatgacat aagggccaca	gcagccaggc cccagcttga gcacagggta	atgcatgacc cgagagcgat	900 960
atcgggcagg accgcttcc gtggtcggga gtcgacggcg cccggtgacg gtgacattgg ggctccgacg ggtggttgcg ccgccgggtg ccgccgccgc gaaccgcacg gcacagccg tccggccagg cccgctattc cacacgccct	cgatggcgat tcggcttggg gcgctccggc ctccgatcaa tcatctcggt ccgagggacct tcgggacct cactgccggt catccgcata cgccgccgcc aagaacagtg gagcctgtcg ccaggatgtt gcaatcaggg cgcaccatgc	cttccagctg cgcgggccag tgttgtcgac ggcaagtctc ctcggccacc gacctggcaa cccggccgaa gaacgcactg tagcggtgca cggttccctg gcactccttc cctgagcgca ctacgggccc tcctaacgcg tacagcacg ggcgcagttc gggtgagcag ctgcaccggc	atcaagette aacaacggca ggcateteca gegatggegg accaagtegg ttecegetgg etgeeggcag geacagtggg ggtggteegg atcaaacagg tteacegtte tteggteete ecetacetge gtcacetteg eccaaccact cagtactegg	ccaccyttca acggcgcacg ccggcgacgt acgcgcttaa gcggcacgcg tgccgcggg ttccgtccct ctccggttct caccgccgcc aaccgagctg acttctccgg ctcgcccag ccagctgcct acgggacgcc cattcaagca tgccgcccc	tategggeet agtecaaege gateaeegeg egggeateat tacagggaae eageeggtggtggt ggaettegea ggeaeegeeg gggtggtgea ecagtteaet ecaggegtea egagageeag eagetaeggt tgaggateee ggtetatgge	120 180 240 300 360 420 480 540 600 660 720 780 840 900 960 1020

```
agcagtgaca atttatacca aatgacatcc cagcttgaat gcatgacctg gaatcagatg 1140
aacttaggag ccaccttaaa gggccacagc acagggtacg agagcgataa ccacacaacg 1200
cccatcctct gcggagccca atacagaata cacacgcacg gtgtcttcag aggcattcag 1260
tga
<210> 390
<211> 1707
<212> DNA
<213> Homo sapiens
<400> 390
atgacggccg cgtccgataa cttccagctg tcccagggtg ggcagggatt cgccattccg 60
atcgggcagg cgatggcgat cgcgggccag atcaagcttc ccaccgttca tatcgggcct 120
accgccttcc tcggcttggg tgttgtcgac aacaacggca acggcgcacg agtccaacgc 180
gtggtcggga gcgctccggc ggcaagtctc ggcatctcca ccggcgacgt gatcaccgcg 240
gtcgacggcg ctccgatcaa ctcggccacc gcgatggcgg acgcgcttaa cgggcatcat 300
cccggtgacg tcatctcggt gacctggcaa accaagtcgg gcggcacgcg tacagggaac 360
gtgacattgg ccgagggacc cccggccgaa ttcccgctgg tgccgcgcgg cagcccgatg 420
ggctccgacg ttcgggacct gaacgcactg ctgccggcag ttccgtccct gggtggtggt 480
ggtggttgcg cactgccggt tagcggtgca gcacagtggg ctccggttct ggacttcgca 540
ccgccgggtg catccgcata cggttccctg ggtggtccgg caccgccgcc ggcaccgccg 600
cegeegeege egeegeege geacteette ateaaacagg aacegagetg gggtggtgca 660
gaaccgcacg aagaacagtg cctgagcgca ttcaccgttc acttctccgg ccagttcact 720
ggcacagccg gagcctgtcg ctacgggccc ttcggtcctc ctccgcccag ccaggcgtca 780
teeggeeagg ceaggatgtt teetaaegeg ceetacetge ceagetgeet egagageeag 840
cccgctattc gcaatcaggg ttacagcacg gtcaccttcg acgggacgcc cagctacggt 900
cacacgeeet egeaceatge ggegeagtte eccaaceact catteaagea tgaggateee 960
atgggccagc agggctcgct gggtgagcag cagtactcgg tgccgcccc ggtctatggc 1020
tgccacaccc ccaccgacag ctgcaccggc agccaggett tgctgctgag gacgccctac 1080
agcagtgaca atttatacca aatgacatcc cagcttgaat gcatgacctg gaatcagatg 1140
aacttaggag ccaccttaaa gggccacagc acagggtacg agagcgataa ccacacaacg 1200
cccatcctct gcggagccca atacagaata cacacgcacg gtgtcttcag aggcattcag 1260
gatgtgcgac gtgtgcctgg agtagccccg actcttgtac ggtcggcatc tgagaccagt 1320
gagaaacgcc ccttcatgtg tgcttaccca ggctgcaata agagatattt taagctgtcc 1380
cacttacaga tgcacagcag gaagcacact ggtgagaaac cataccagtg tgacttcaag 1440
gactgtgaac gaaggttttt tcgttcagac cagctcaaaa gacaccaaag gagacataca 1500
ggtgtgaaac cattccagtg taaaacttgt cagcgaaagt tctcccggtc cgaccacctg 1560
aagacccaca ccaggactca tacaggtgaa aagcccttca gctgtcggtg gccaagttgt 1620
cagaaaaagt ttgcccggtc agatgaatta gtccgccatc acaacatgca tcagagaaac 1680
atgaccaaac tccagctggc gctttga
<210> 391
<211> 344
<212> PRT
 <213> Homo sapiens
 <400> 391
Met Thr Ala Ala Ser Asp Asn Phe Gln Leu Ser Gln Gly Gly Gln Gly
 Phe Ala Ile Pro Ile Gly Gln Ala Met Ala Ile Ala Gly Gln Ile Lys
                                  25
```

Leu Pro Thr Val His Ile Gly Pro Thr Ala Phe Leu Gly Leu Gly Val

		35					40					45			
Val	Asp 50	Asn	Asn	Gly	Asn	Gly 55	Ala	Arg	Val	Gln	Arg 60	Val	Val	Gly	Ser
Ala 65	Pro	Ala	Ala	Ser	Leu 70	Gly	Ile	Ser	Thr	Gly 75	Asp	Val	Ile	Thr	Ala 80
Val	Asp	Gly	Ala	Pro 85	Ile	Asn	Ser	Ala	Thr 90	Ala	Met	Ala	Asp	Ala 95	Leu
Asn	Gly	His	His 100	Pro	Gly	Asp	Val	Ile 105	Ser	Val	Thr	Trp	Gln 110	Thr	Lys
Ser	Gly	Gly 115	Thr	Arg	Thr	Gly	Asn 120	Val	Thr	Leu	Ala	Glu 125	Gly	Pro	Pro
Ala	Glu 130	Phe	His	Ser	Phe	Ile 135	Lys	Gln	Glu	Pro	Ser 140	Trp	Gly	Gly	Ala
Glu 145	Pro	His	Glu	Glu	Gln 150	Cys	Leu	Ser	Ala	Phe 155	Thr	Val	His	Phe	Ser 160
Gly	Gln	Phe	Thr	Gly 165	Thr	Ala	Gly	Ala	Cys 170	Arg	Tyr	Gly	Pro	Phe 175	Gly
Pro	Pro	Pro	Pro 180	Ser	Gln	Ala	Ser	Ser 185	Gly	Gln	Ala	Arg	Met 190	Phe	Pro
Asn	Ala	Pro 195		Leu	Pro	Ser	Cys 200	Leu	Glu	Ser	Gln	Pro 205	Ala	Ile	Arg
Asn	Gln 210	Gly	Tyr	Ser	Thr	Val 215	Thr	Phe	Asp	Gly	Thr 220	Pro	Ser	Tyr	Gly
His 225	Thr	Pro	Ser	His	His 230	Ala	Ala	Gln	Phe	Pro 235	Asn	His	Ser	Phe	Lys 240
His	Glu	Asp	Pro	Met 245		Gln	Gln	Gly	Ser 250	Leu	Gly	Glu	Gln	Gln 255	Tyr
Ser	Val	Pro	Pro 260		Val	Tyr	Gly	Cys 265	His	Thr	Pro	Thr	Asp 270		Cys
Thr	Gly	Ser 275		Ala	Leu	Leu	Leu 280		Thr	Pro	Tyr	Ser 285	Ser	Asp	Asn
Leu	Tyr 290		n Met	Thr	Ser	Gln 295	Leu	Glu	Cys	Met	300	Trp	Asn	Gln	Met
Asn 305		Gly	, Ala	Thr	1 Leu		: Gly	His	Ser	Thr 315	Gly	y Tyr	Glu	Ser	320
Asn	His	Thr	Thr	Pro) Ile	e Lev	а Суя	Gly	, Ala	a Glr	ı Tyr	Arç	, Ile	His	Thr

325 330 335

His Gly Val Phe Arg Gly Ile Gln 340

<210> 392

<211> 568

<212> PRT

<213> Homo sapiens

<400> 392

Met Thr Ala Ala Ser Asp Asn Phe Gln Leu Ser Gln Gly Gly Gln Gly

Phe Ala Ile Pro Ile Gly Gln Ala Met Ala Ile Ala Gly Gln Ile Lys 20 25 30

Leu Pro Thr Val His Ile Gly Pro Thr Ala Phe Leu Gly Leu Gly Val 35 40 45

Val Asp Asn Asn Gly Asn Gly Ala Arg Val Gln Arg Val Val Gly Ser 50 55 60

Ala Pro Ala Ala Ser Leu Gly Ile Ser Thr Gly Asp Val Ile Thr Ala 65 70 75 80

Val Asp Gly Ala Pro Ile Asn Ser Ala Thr Ala Met Ala Asp Ala Leu 85 90 95

Asn Gly His His Pro Gly Asp Val Ile Ser Val Thr Trp Gln Thr Lys 100 105 110

Ser Gly Gly Thr Arg Thr Gly Asn Val Thr Leu Ala Glu Gly Pro Pro 115 120 125

Ala Glu Phe Pro Leu Val Pro Arg Gly Ser Pro Met Gly Ser Asp Val 130 135 140

Arg Asp Leu Asn Ala Leu Leu Pro Ala Val Pro Ser Leu Gly Gly 145 150 155 160

Gly Gly Cys Ala Leu Pro Val Ser Gly Ala Ala Gln Trp Ala Pro Val 165 170 175

Leu Asp Phe Ala Pro Pro Gly Ala Ser Ala Tyr Gly Ser Leu Gly Gly 180 185 190

Pro Ala Pro Pro Pro Ala Pro Pro Pro Pro Pro Pro Pro Pro Pro His

Ser Phe Ile Lys Gln Glu Pro Ser Trp Gly Gly Ala Glu Pro His Glu 210 215 220

Glu 225	Gln	Cys	Leu	Ser	Ala 230	Phe	Thr	Val	His	Phe 235	Ser	Gly	Gln	Phe	Thr 240
Gly	Thr	Ala	Gly	Ala 245	Cys	Arg	Tyr	Gly	Pro 250	Phe	Gly	Pro	Pro	Pro 255	Pro
Ser	Gln	Ala	Ser 260	Ser	Gly	Gln	Ala	Arg 265	Met	Phe	Pro	Asn	Ala 270	Pro	Tyr
Leu	Pro	Ser 275	Cys	Leu	Glu	Ser	Gln 280	Pro	Ala	Ile	Arg	Asn 285	Gln	Gly	Tyr
Ser	Thr 290	Val	Thr	Phe	Asp	Gly 295	Thr	Pro	Ser	Tyr	Gly 300	His	Thr	Pro	Ser
His 305	His	Ala	Ala	Gln	Phe 310	Pro	Asn	His	Ser	Phe 315	Lys	His	Glu	Asp	Pro 320
Met	Gly	Gln	Gln	Gly 325	Ser	Leu	Gly	Glu	Gln 330	Gln	Tyr	Ser	Val	Pro 335	Pro
Pro	Val	Tyr	Gly 340	Cys	His	Thr	Pro	Thr 345	Asp	Ser	Суѕ	Thr	Gly 350	Ser	Gln
Ala	Leu	Leu 355	Leu	Arg	Thr	Pro	Tyr 360	Ser	Ser	Asp	Asn	Leu 365	Tyr	Gln	Met
Thr	Ser 370	Gln	Leu	Glu	Cys	Met 375	Thr	Trp	Asn	Gln	Met 380	Asn	Leu	Gly	Ala
Thr 385	Leu	Lys	Gly	His	Ser 390	Thr	Gly	Tyr	Glu	Ser 395	Asp	Asn	His	Thr	Thr 400
Pro	Ile	Leu	Суз	Gly 405	Ala	Gln	Tyr	Arg	Ile 410	His	Thr	His	Gly	Val 415	Phe
Arg	Gly	Ile	Gln 420		Val	Arg	Arg	Val 425	Pro	Gly	Val	Ala	Pro 430	Thr	Leu
Val	Arg	Ser 435		Ser	Glu	Thr	Ser 440		Lys	Arg	Pro	Phe 445		Суѕ	Ala
Tyr	Pro 450		Cys	Asn	Lys	Arg 455	Tyr	Phe	Lys	Leu	Ser 460	His	Leu	Gln	Met
His 465		Arg	Lys	His	Thr 470		Glu	Lys	Pro	Tyr 475	Gln	Cys	Asp	Phe	Lys 480
Asp	Cys	Glu	Arg	Arg 485		Phe	Arg	Ser	Asp 490		Leu	Lys	Arg	His 495	Gln
Arg	Arg	His	Thr 500		Val	Lys	Pro	Phe 505		Cys	Lys	Thr	Cys 510	Gln	Arg

Lys Phe Ser Arg Ser Asp His Leu Lys Thr His Thr Arg Thr His Thr 515 520 525

Gly Glu Lys Pro Phe Ser Cys Arg Trp Pro Ser Cys Gln Lys Lys Phe 530 535 540

Ala Arg Ser Asp Glu Leu Val Arg His His Asn Met His Gln Arg Asn 545 550 560

Met Thr Lys Leu Gln Leu Ala Leu 565

<210> 393

<211> 420

<212> PRT

<213> Homo sapiens

<400> 393

Met Thr Ala Ala Ser Asp Asn Phe Gln Leu Ser Gln Gly Gln Gly
5 10 15

Phe Ala Ile Pro Ile Gly Gln Ala Met Ala Ile Ala Gly Gln Ile Lys
20 25 30

Leu Pro Thr Val His Ile Gly Pro Thr Ala Phe Leu Gly Leu Gly Val 35 40 45

Val Asp Asn Asn Gly Asn Gly Ala Arg Val Gln Arg Val Val Gly Ser 50 55 60

Ala Pro Ala Ala Ser Leu Gly Ile Ser Thr Gly Asp Val Ile Thr Ala 65 70 75 80

Val Asp Gly Ala Pro Ile Asn Ser Ala Thr Ala Met Ala Asp Ala Leu 85 90 95

Asn Gly His His Pro Gly Asp Val Ile Ser Val Thr Trp Gln Thr Lys

Ser Gly Gly Thr Arg Thr Gly Asn Val Thr Leu Ala Glu Gly Pro Pro 115 120 125

Ala Glu Phe Pro Leu Val Pro Arg Gly Ser Pro Met Gly Ser Asp Val

Arg Asp Leu Asn Ala Leu Leu Pro Ala Val Pro Ser Leu Gly Gly 145 150 155 160

Gly Gly Cys Ala Leu Pro Val Ser Gly Ala Ala Gln Trp Ala Pro Val 165 170 175

Leu Asp Phe Ala Pro Pro Gly Ala Ser Ala Tyr Gly Ser Leu Gly Gly 180 185 190

Pro	Ala	Pro 195	Pro	Pro	Ala	Pro	Pro 200	Pro	Pro	Pro	Pro	Pro 205	Pro	Pro	His
Ser	Phe 210	Ile	Lys	Gln	Glu	Pro 215	Ser	Trp	Gly	Gly	Ala 220	Glu	Pro	His	Glu
Glu 225	Gln	Cys	Leu	Ser	Ala 230	Phe	Thr	Val	His	Phe 235	Ser	Gly	Gln	Phe	Thr 240
Gly	Thr	Ala	Gly	Ala 245	Cys	Arg	Tyr	Gly	Pro 250	Phe	Gly	Pro	Pro	Pro 255	Pro
Ser	Gln	Ala	Ser 260	Ser	Gly	Gln	Ala	Arg 265	Met	Phe	Pro	Asn	Ala 270	Pro	Tyr
Leu	Pro	Ser 275	Cys	Leu	Glu	Ser	Gln 280	Pro	Ala	Ile	Arg	Asn 285	Gln	Gly	Tyr
Ser	Thr 290	Val	Thr	Phe	Asp	Gly 295	Thr	Pro	Ser	Tyr	Gly 300	His	Thr	Pro	Ser
His 305	His	Ala	Ala	Gln	Phe 310	Pro	Asn	His	Ser	Phe 315	Lys	His	Glu	Asp	Pro 320
Met	Gly	Gln	Gln	Gly 325	Ser	Leu	Gly	Glu	Gln 330	Gln	Tyr	Ser	Val	Pro 335	Pro
Pro	Val	Tyr	Gly 340	Cys	His	Thr	Pro	Thr 345	Asp	Ser	Cys	Thr	Gly 350	Ser	Gln
Ala	Leu	Leu 355	Leu	Arg	Thr	Pro	Tyr 360	Ser	Ser	Asp	Asn	Leu 365	Tyr	Gln	Met
Thr	Ser 370	Gln	Leu	Glu	Cys	Met 375		Trp	Asn	Gln	Met 380	Asn	Leu	Gly	Ala
Thr 385	Leu	Lys	Gly	His	Ser 390	Thr	Gly	Tyr	Glu	Ser 395	Asp	Asn	His	Thr	Thr 400
Pro	Ile	Leu	Cys	Gly 405	Ala	Gln	Tyr	Arg	Ile 410		Thr	His	Gly	Val 415	Phe
Arg	Gly	Ile	Gln 420												
<21 <21	0> 3 1> 3 2> P 3> H	62 RT	sapi	ens											

 $<\!400\!>\,394$ Met His Ser Phe Ile Lys Gln Glu Pro Ser Trp Gly Gly Ala Glu Pro

				5					10					15	
His	Glu	Glu	Gln 20	Cys	Leu	Ser	Ala	Phe 25	Thr	Val	His	Phe	Ser 30	Gly	Gln
Phe	Thr	Gly 35	Thr	Ala	Gly	Ala	Cys 40	Arg	Tyr	Gly	Pro	Phe 45	Gly	Pro	Pro
Pro	Pro 50	Ser	Gln	Ala	Ser	Ser 55	Gly	Gln	Ala	Arg	Met 60	Phe	Pro	Asn	Ala
Pro 65	Tyr	Leu	Pro	Ser	Cys 70	Leu	Glu	Ser	Gln	Pro 75	Ala	Ile	Arg	Asn	Gln 80
Gly	Tyr	Ser	Thr	Val 85	Thr	Phe	Asp	Gly	Thr 90	Pro	Ser	Tyr	Gly	His 95	Thr
Pro	Ser	His	His 100	Ala	Ala	Gln	Phe	Pro 105	Asn	His	Ser	Phe	Lys 110	His	Glu
Asp	Pro	Met 115	Gly	Gln	Gln	Gly	Ser 120	Leu	Gly	Glu	Gln	Gln 125	Tyr	Ser	Val
Pro	Pro 130	Pro	Val	Tyr	Gly	Cys 135	His	Thr	Pro	Thr	Asp 140	Ser	Cys	Thr	Gly
Ser 145	Gln	Ala	Leu	Leu	Leu 150	Arg	Thr	Pro	Tyr	Ser 155	Ser	Asp	Asn	Leu	Tyr 160
Gln	Met	Thr	Ser	Gln 165	Leu	Glu	Cys	Met	Thr 170	Trp	Asn	Gln	Met	Asn 175	Leu
Gly	Ala	Thr	Leu 180	Lys	Gly	His	Ser	Thr 185	Gly	Tyr	Glu	Ser	Asp 190	Asn	His
Thr	Thr	Pro 195	Ile	Leu	Cys	Gly	Ala 200	Gln	Tyr	Arg	Ile	His 205	Thr	His	Gly
Val	Phe 210	Arg	Gly	Ile	Gln	Asp 215	Val	Arg	Arg	Val	Pro 220	Gly	Val	Ala	Pro
Thr 225		Val	Arg	Ser	Ala 230	Ser	Glu	Thr	Ser	Glu 235	Lys	Arg	Pro	Phe	Met 240
Cys	Ala	Tyr	Pro	Gly 245		Asn	Lys	Arg	Tyr 250	Phe	Lys	Leu	Ser	His 255	Leu
Gln	Met	His	Ser 260		Lys	His	Thr	Gly 265		Lys	Pro	Tyr	Gln 270	Cys	Asp
Phe	Lys	Asp 275		Glu	Arg	Arg	Phe 280		Arg	Ser	Asp	Gln 285	Leu	Lys	Arg
His	Gln	Arg	Arg	His	Thr	Gly	Val	Lys	Pro	Phe	Gln	Cys	Lys	Thr	Cys

300 295 290 Gln Arg Lys Phe Ser Arg Ser Asp His Leu Lys Thr His Thr Arg Thr 310 His Thr Gly Glu Lys Pro Phe Ser Cys Arg Trp Pro Ser Cys Gln Lys 330 325 Lys Phe Ala Arg Ser Asp Glu Leu Val Arg His His Asn Met His Gln 345 Arg Asn Met Thr Lys Leu Gln Leu Ala Leu <210> 395 <211> 214 <212> PRT <213> Homo sapiens <400> 395 Met His Ser Phe Ile Lys Gln Glu Pro Ser Trp Gly Gly Ala Glu Pro His Glu Glu Gln Cys Leu Ser Ala Phe Thr Val His Phe Ser Gly Gln Phe Thr Gly Thr Ala Gly Ala Cys Arg Tyr Gly Pro Phe Gly Pro Pro Pro Pro Ser Gln Ala Ser Ser Gly Gln Ala Arg Met Phe Pro Asn Ala Pro Tyr Leu Pro Ser Cys Leu Glu Ser Gln Pro Ala Ile Arg Asn Gln Gly Tyr Ser Thr Val Thr Phe Asp Gly Thr Pro Ser Tyr Gly His Thr Pro Ser His His Ala Ala Gln Phe Pro Asn His Ser Phe Lys His Glu 105 100 Asp Pro Met Gly Gln Gln Gly Ser Leu Gly Glu Gln Gln Tyr Ser Val Pro Pro Pro Val Tyr Gly Cys His Thr Pro Thr Asp Ser Cys Thr Gly 135 Ser Gln Ala Leu Leu Arg Thr Pro Tyr Ser Ser Asp Asn Leu Tyr 155 150 Gln Met Thr Ser Gln Leu Glu Cys Met Thr Trp Asn Gln Met Asn Leu 165 170

Gly Ala	Thr	Leu 180	Lys	Gly	His	Ser	Thr 185	Gly	Tyr	Glu	Ser	Asp 190	Asn	His	
Thr Thr	Pro 195	Ile	Leu	Cys	Gly	Ala 200	Gln	Tyr	Arg	Ile	His 205	Thr	His	Gly	
Val Phe 210	Arg	Gly	Ile	Gln											
<210> 39 <211> 30 <212> DN <213> An	C AN	icia.	l Se	quen	ce										
<220> <223> PO	CR p	rime	r												
<400> 39 gacgaaaq		tatg	cact	cc t	tcat	caaa	С								30
<210> 39 <211> 33 <212> Dt <213> As	1 NA	icia	l Se	quen	ce										
<220> <223> P0	CR p	rime	r												
<400> 3: cgcgtga		catc	actg	aa t	gcct	ctga	a g								31
<210> 3 <211> 3 <212> D <213> A	1 NA	icia	l Se	quen	ce										
<220> <223> P	CR p	rime	r												
<400> 3 cgataag		atga	.cggc	cg c	gtcc	:gata	a c								31
<210> 3 <211> 3 <212> D <213> A	1 NA	icia	ıl Se	equer	ıce										
<220> <223> P	CR p	rime	er												
<400> 3 cgcgtga		cato	cacto	gaa t	gcct	ctga	aa g								31

<210> 400 <211> 31 <212> DNA <213> Artificial Sequence	
<220> <223> PCR primer	
<400> 400 cgataagcat atgacggccg cgtccgataa c	31
<210> 401 <211> 28 <212> DNA <213> Artificial Sequence	
<220> <223> PCR primer	
<400> 401 gtctgcagcg gccgctcaaa gcgccagc	28
<210> 402 <211> 30 <212> DNA <213> Artificial Sequence	
<220> <223> PCR primer	
<400> 402 gacgaaagca tatgcactcc ttcatcaaac	30
<210> 403 <211> 28 <212> DNA <213> Artificial Sequence	
<220> <223> PCR primer	
<400> 403 gtctgcagcg gccgctcaaa gcgccagc	28
<210> 404 <211> 449 <212> PRT <213> Homo sapiens	
<400> 404 Met Gly Ser Asp Val Arg Asp Leu Asn Ala Leu Leu Pro Ala Val Pro 1 5 10 15	

Ser Leu Gly Gly Gly Gly Cys Ala Leu Pro Val Ser Gly Ala Ala Gln Trp Ala Pro Val Leu Asp Phe Ala Pro Pro Gly Ala Ser Ala Tyr 40 Gly Ser Leu Gly Gly Pro Ala Pro Pro Pro Ala Pro Pro Pro Pro Pro Pro Pro Pro His Ser Phe Ile Lys Gln Glu Pro Ser Trp Gly Gly 70 75 Ala Glu Pro His Glu Glu Gln Cys Leu Ser Ala Phe Thr Val His Phe 90 8.5 Ser Gly Gln Phe Thr Gly Thr Ala Gly Ala Cys Arg Tyr Gly Pro Phe 105 100 Gly Pro Pro Pro Pro Ser Gln Ala Ser Ser Gly Gln Ala Arg Met Phe 120 Pro Asn Ala Pro Tyr Leu Pro Ser Cys Leu Glu Ser Gln Pro Ala Ile 140 135 Arg Asn Gln Gly Tyr Ser Thr Val Thr Phe Asp Gly Thr Pro Ser Tyr 155 150 Gly His Thr Pro Ser His His Ala Ala Gln Phe Pro Asn His Ser Phe 170 165 Lys His Glu Asp Pro Met Gly Gln Gln Gly Ser Leu Gly Glu Gln Gln 185 180 Tyr Ser Val Pro Pro Pro Val Tyr Gly Cys His Thr Pro Thr Asp Ser 200 205 Cys Thr Gly Ser Gln Ala Leu Leu Leu Arg Thr Pro Tyr Ser Ser Asp 220 215 Asn Leu Tyr Gln Met Thr Ser Gln Leu Glu Cys Met Thr Trp Asn Gln 235 230 Met Asn Leu Gly Ala Thr Leu Lys Gly Val Ala Ala Gly Ser Ser Ser 250 245 Ser Val Lys Trp Thr Glu Gly Gln Ser Asn His Ser Thr Gly Tyr Glu 265 260 Ser Asp Asn His Thr Thr Pro Ile Leu Cys Gly Ala Gln Tyr Arg Ile 280 His Thr His Gly Val Phe Arg Gly Ile Gln Asp Val Arg Arg Val Pro 295 Gly Val Ala Pro Thr Leu Val Arg Ser Ala Ser Glu Thr Ser Glu Lys 315 310 Arg Pro Phe Met Cys Ala Tyr Pro Gly Cys Asn Lys Arg Tyr Phe Lys 330 325 Leu Ser His Leu Gln Met His Ser Arg Lys His Thr Gly Glu Lys Pro 345 340 Tyr Gln Cys Asp Phe Lys Asp Cys Glu Arg Arg Phe Ser Arg Ser Asp Gln Leu Lys Arg His Gln Arg Arg His Thr Gly Val Lys Pro Phe Gln 375 Cys Lys Thr Cys Gln Arg Lys Phe Ser Arg Ser Asp His Leu Lys Thr 395 390 His Thr Arg Thr His Thr Gly Lys Thr Ser Glu Lys Pro Phe Ser Cys 410 405 Arg Trp Pro Ser Cys Gln Lys Lys Phe Ala Arg Ser Asp Glu Leu Val 425 420 Arg His His Asn Met His Gln Arg Asn Met Thr Lys Leu Gln Leu Ala 440

Leu

<210> 405

<211> 428 <212> PRT <213> Homo sapiens <400> 405 Met Gly Ser Asp Val Arg Asp Leu Asn Ala Leu Leu Pro Ala Val Pro 10 Ser Pro Gly Gly Gly Gly Cys Ala Leu Pro Val Ser Gly Ala Thr 25 Gln Trp Ala Pro Val Leu Asp Phe Val Pro Pro Gly Ala Pro Val Cys 40 Gly Ser Leu Gly Gly Pro Ala Pro Pro Pro Ala Pro Pro Pro Leu Pro 55 Pro Pro Pro Ser His Ser Phe Thr Lys Gln Glu Pro Ser Trp Gly Gly 70 75 Thr Glu Pro His Ala Gly Gln Gly Arg Ser Ala Leu Val Ala His Ser 90 8.5 Ser Gly Gln Phe Thr Gly Thr Ala Gly Ala Cys Arg Tyr Gly Pro Phe 110 105 Gly Pro Pro Pro Pro Ser Gln Ala Ser Ser Gly Gln Ala Arg Met Phe 120 125 Pro Asn Ala Pro Tyr Leu Pro Ser Cys Leu Glu Ser Gln Pro Ala Ile 140 135 Arg Asn Gln Gly Tyr Ser Thr Val Thr Phe Asp Gly Thr Pro Ser Tyr 155 Gly His Thr Pro Ser His His Ala Ala Gln Phe Pro Asn His Ser Ser 170 165 Lys His Glu Asp Pro Met Gly Gln Gln Gly Ser Pro Gly Glu Gln Gln 190 185 180 Tyr Ser Ala Pro Pro Pro Val Cys Gly Cys Arg Thr Pro Thr Gly Ser 200 Cys Thr Gly Ser Gln Ala Leu Leu Leu Arg Ala Pro Tyr Ser Gly Gly 215 Asp Leu His Gln Thr Thr Ser Gln Leu Gly His Met Ala Trp Asn Gln 230 235 Thr Asn Leu Gly Ala Thr Leu Lys Gly His Gly Thr Gly Tyr Glu Ser 250 245 Asp Asp His Thr Thr Pro Ile Leu Cys Gly Thr Gln Tyr Arg Ile Arg 265 Ala Arg Gly Val Leu Arg Gly Thr Gln Asp Val Arg Cys Val Pro Gly 280 Val Ala Pro Thr Leu Val Arg Ser Ala Ser Glu Thr Ser Glu Lys Arg 295 Pro Leu Met Cys Ala Tyr Pro Gly Cys Asn Lys Arg His Phe Lys Pro 315 Ser Arg Leu Arg Val Arg Gly Arg Glu Arg Thr Gly Glu Lys Pro Tyr 330 Gln Arg Asp Phe Lys Asp Arg Gly Arg Gly Leu Leu Arg Pro Asp Gln 345

 Leu
 Lys
 Arg
 His
 Gln
 Arg
 Gly
 His
 Thr
 Gly
 Val
 Lys
 Pro
 Leu
 Gln
 Cys

 355
 355
 360
 Fro
 Gly
 His
 Leu
 Lys
 Val
 His
 Thr

 370
 375
 375
 380
 380
 Trp
 Pro
 Ser
 Cys
 Arg
 His
 Asn
 Met
 Arg
 Pro
 Asp
 Glu
 Ser
 Ala
 Arg
 Arg
 His
 Asn
 Met

 His
 Gln
 Arg
 Arg
 Arg
 Pro
 Arg
 Fro
 Arg
 His
 Arg
 His
 Arg
 Arg
 His
 Arg
 Arg
 His
 His
 Arg
 Arg
 His
 His
 Arg
 Arg
 His
 Arg
 Arg
 His
 Arg
 Arg
 Arg
 Arg
 Arg
 Arg
 Arg
 Arg
 A

<210> 406 <211> 414 <212> PRT <213> Homo sapiens <220> <221> VARIANT <222> 85, 86, 172, 173, 242, 245, 246, 247 <223> Xaa = Any Amino Acid <400> 406 Met Gly Ser Asp Val Arg Asp Leu Ser Ala Leu Leu Pro Ala Val Pro 10 Ser Leu Gly Asp Gly Gly Gly Cys Ala Leu Pro Val Ser Gly Ala Ala 25 Gln Trp Ala Pro Val Leu Asp Phe Ala Pro Pro Gly Ala Ser Ala His 40 Gly Pro Leu Gly Gly Pro Ala Pro Pro Ser Ala Pro Pro Pro Pro 60 55 Pro Pro Pro Pro His Ser Phe Ile Lys Gln Gly Pro Ser Trp Gly Gly 75 Ala Glu Leu His Xaa Xaa Gln Tyr Leu Ser Ala Phe Thr Val His Ser 90 8.5 Ser Gly Gln Val His Trp His Gly Arg Gly Leu Ser Leu Arg Ala Pro 105 100 Arg Pro Pro Ser Ala Gln Pro Gly Val Ile Arg Pro Gly Gln Asp Val 120 Ser Arg Ala Leu Pro Ala Gln Pro Pro Arg Glu Pro Ala Arg Tyr Pro 140 135 Gln Ser Gly Leu Gln His Gly His Leu Arg Arg Gly Val Arg Leu Arg 155 150 Ser His Ala Leu Ala Pro Cys Gly Ala Val Leu Xaa Xaa Thr Arg Ala 170 Gly Ser His Gly Pro Ala Gly Ser Ala Gly Ala Ala Val Leu Gly Ala 185 180 Ala Pro Gly Leu Trp Pro Pro His Pro Arg Arg Gln Leu Arg Arg Gln 200 195 Pro Gly Phe Ala Ala Glu Gly Ala Leu Gln Arg Arg Phe Ile Pro Ser 220 215 Asp Val Pro Ala Val His Gly Leu Glu Ser Asp Glu Pro Arg Gly Arg 230 235 Leu Xaa Gly Pro Xaa Xaa Xaa Val Arg Glu Arg Ser His Asn Ala Arg

				245					250					255	
Pro	Leu	Arg	Ser 260	Pro	Ile	Gln	Asn	Thr 265	His	Ala	Arg	Cys	Leu 270	Gln	Gly
-		275					280					285	Ser		
Val	Gly 290	Ile	Gly	Gln	Gly	Thr 295	Pro	Pro	His	Val	Cys 300	Leu	Pro	Arg	Leu
Gln 305	Glu	Val	Ser	Glu	Ala 310	Ala	Pro	Leu	Thr	Asp 315	Ala	Arg	Glu	Ala	Arg 320
Trp	Glu	Thr	Ile	Pro 325	Val	Leu	Gln	Gly	Leu 330	Trp	Thr	Glu	Val	Phe 335	Leu
Leu	Arg	Pro	Ala 340	Gln	Lys	Thr	Pro	Gly 345	Glu	Ala	Tyr	Arg	Cys 350	Glu	Ala
Ile	Pro	Ala 355	Asp	Leu	Ser	Ala	Arg 360	Val	Leu	Pro	Ala	Gln 365	Pro	Pro	Glu
Asp	Pro 370	Arg	Gln	Asp	Ser	Cys 375	Arg	Lys	Ala	Pro	Gln 380	Leu	Ser	Val	Val
Arg 385		Ser	Glu	Lys	Ala 390	Cys	Pro	Val	Lys	Val 395	Gly	Pro	Pro	Ser	Arg 400
	Ala	Ser	Glu	Gly 405	His	Asp	Arg	Thr	Pro 410	Ala	Gly	Ala	Leu		

<210> 407 <211> 417 <212> PRT

<213> Homo sapiens

<400> 407 Met Gly Ser Asp Val Arg Asp Leu Ser Ala Leu Leu Pro Thr Ala Pro 10 Ser Leu Gly Gly Gly Asp Cys Thr Leu Pro Val Ser Gly Thr Ala 25 Gln Trp Ala Pro Val Pro Ala Ser Ala Pro Pro Gly Ala Ser Ala Tyr Asp Ser Leu Gly Gly Pro Ala Pro Pro Pro Ala Pro Pro Pro Pro 55 Pro Pro Pro Pro His Ser Cys Gly Glu Gln Gly Pro Ser Trp Gly Gly 70 75 Ala Glu Pro Arg Glu Gly Gln Cys Leu Ser Ala Pro Ala Val Arg Phe 90 Ser Gly Arg Phe Thr Gly Thr Val Gly Ala Cys Arg Tyr Gly Pro Leu 105 100 Gly Pro Pro Pro Pro Ser Gln Ala Pro Ser Gly Gln Thr Arg Met Leu 120 Pro Ser Ala Pro Tyr Leu Ser Ser Cys Leu Arg Ser Arg Ser Ala Ile 140 135 Arg Ser Gln Gly Arg Ser Thr Ala Pro Ser Ala Gly Arg Pro Ala Met 155 Ala Pro Thr Leu Ala Pro Pro Ala Gln Ser His Tyr Ser Gln His Gly 170 165 Val Leu His Gly Pro Ala Gly Leu Ala Gly Ala Ala Val Leu Gly Ala 180 185 Ala Pro Gly Leu Trp Leu Pro His Pro His Arg Gln Leu His Arg Gln

		195					200					205			
	210					215	Ala				220				
225					230		Leu			235					240
				245			Val		250					255	
			260				Asn	265					270		
		275					Ala 280					285			
	290					295					300				
305					310		Pro			315					320
His				325			Arg		330					335	
Ser	Pro	Phe	Gly 340	Thr	Ser	Pro	Arg		Thr		Gly	Asp	Ile 350	Gln	Val
Arg	Asn	His 355	Ser	Ser	Val	Arg	Leu 360	Val	Ser	Glu	Gly	Ser 365	Pro	Gly	Pro
	370	_				375	Pro				380				
Ala 385	Gly	Gly	Gln	Ala	Ala 390	Arg	Glu	Gly	Ser	Pro 395	Ser	Gln	Thr	Asn	Ser 400
Val	Ile	Thr	Thr	Cys 405	Ile	Ser	Glu	Thr	Leu 410	Asn	Ser	Ser	Trp	Arg 415	Phe
Glu															

<210> 408 <211> 429 <212> PRT <213> Homo sapiens

<400> 408 Met Gly Ser Asp Val Arg Asp Leu Asn Ala Leu Leu Pro Ala Val Pro 10 Ser Leu Gly Gly Gly Gly Cys Ala Leu Pro Val Ser Gly Ala Ala 25 Gln Trp Ala Pro Val Leu Asp Phe Ala Pro Pro Gly Ala Ser Ala Tyr 40 Gly Ser Leu Gly Gly Pro Ala Pro Pro Pro Ala Pro Pro Pro Pro 55 Pro Pro Pro Pro His Ser Phe Ile Lys Gln Glu Pro Ser Trp Gly Gly 75 Ala Glu Pro His Glu Glu Gln Cys Leu Ser Ala Phe Thr Val His Phe 90 Ser Gly Gln Phe Thr Gly Thr Ala Gly Ala Cys Arg Tyr Gly Pro Phe 110 105 Gly Pro Pro Pro Ser Gln Ala Ser Ser Gly Gln Ala Arg Met Phe 120 Pro Asn Ala Pro Tyr Leu Pro Ser Cys Leu Glu Ser Gln Pro Ala Ile

	130					135					140				
Arg 145	Asn	Gln	Gly	Tyr	Ser 150	Thr	Val	Thr	Phe	Asp 155	Gly	Thr	Pro	Ser	Tyr 160
Gly	His	Thr	Pro	Ser 165	His	His	Ala	Ala	Gln 170	Phe	Pro	Asn	His	Ser 175	Phe
Lys	His	Glu	Asp 180	Pro	Met	Gly	Gln	Gln 185	Gly	Ser	Leu	Gly	Glu 190	Gln	Gln
Tyr	Ser	Val 195	Pro	Pro	Pro	Val	Tyr 200	Gly	Cys	His	Thr	Pro 205	Thr	Asp	Ser
Cys	Thr 210	Gly	Ser	Gln	Ala	Leu 215	Leu	Leu	Arg	Thr	Pro 220	Tyr	Ser	Ser	Asp
Asn 225	Leu	Tyr	Gln	Met	Thr 230	Ser	Gln	Leu	Glu	Cys 235	Met	Thr	Trp	Asn	Gln 240
Met	Asn	Leu	Gly	Ala 245	Thr	Leu	Lys	Gly	His 250	Ser	Thr	Gly	Tyr	Glu 255	Ser
-			260					265				Tyr	270		
Thr	His	Gly 275	Val	Phe	Arg	Gly	Ile 280	Gln	Asp	Val	Arg	Arg 285	Val	Pro	Gly
Val	Ala 290	Pro	Thr	Leu	Val	Arg 295	Ser	Ala	Ser	Glu	Thr 300	Ser	Glu	Lys	Arg
Pro 305	Phe	Met	Cys	Ala	Tyr 310	Pro	Gly	Cys	Asn	Lys 315	Arg	Tyr	Phe	Lys	Leu 320
Ser	His	Leu	Gln	Met 325	His	Ser	Arg	Lys	His 330	Thr	Gly	Glu	Lys	Pro 335	Tyr
	_	_	340					345				Arg	350		
		355					360					Pro 365			
_	370					375					380	Leu			
Thr 385	Arg	Thr	His	Thr	Gly 390	Glu	rys	Pro	Phe	Ser 395	Cys	Arg	Trp	Pro	Ser 400
Cys	Gln	Lys	Lys	Phe 405	Ala	Arg	Ser	Asp	Glu 410	Leu	Val	Arg	His	His 415	Asn
Met	His	Gln	Arg 420	Asn	Met	Thr	Lys	Leu 425	Gln	Leu	Ala	Leu			

<210> 409

<211> 495

<212> PRT

<213> Homo sapiens

<400> 409

Met Ala Ala Pro Gly Ala Arg Arg Ser Leu Leu Leu Leu Leu Leu Ala 1 5 10 15 15 Gly Leu Ala His Gly Ala Ser Ala Leu Phe Glu Asp Leu Met Gly Ser

20 25 30
Asp Val Arg Asp Leu Asn Ala Leu Leu Pro Ala Val Pro Ser Leu Gly

5 40 45

Gly Gly Gly Cys Ala Leu Pro Val Ser Gly Ala Ala Gln Trp Ala 50 55 60

Pro Val Leu Asp Phe Ala Pro Pro Gly Ala Ser Ala Tyr Gly Ser Leu

<210> 410

<211> 504 <212> PRT <213> Homo sapiens <400> 410 Met Gln Ile Phe Val Lys Thr Leu Thr Gly Lys Thr Ile Thr Leu Glu Val Glu Pro Ser Asp Thr Ile Glu Asn Val Lys Ala Lys Ile Gln Asp Lys Glu Gly Ile Pro Pro Asp Gln Gln Arg Leu Ile Phe Ala Gly Lys 40 Gln Leu Glu Asp Gly Arg Thr Leu Ser Asp Tyr Asn Ile Gln Lys Glu 55 Ser Thr Leu His Leu Val Leu Arg Leu Arg Gly Ala Met Gly Ser Asp 70 Val Arg Asp Leu Asn Ala Leu Leu Pro Ala Val Pro Ser Leu Gly Gly 90 Gly Gly Gly Cys Ala Leu Pro Val Ser Gly Ala Ala Gln Trp Ala Pro 105 Val Leu Asp Phe Ala Pro Pro Gly Ala Ser Ala Tyr Gly Ser Leu Gly 115 120 Gly Pro Ala Pro Pro Pro Ala Pro Pro Pro Pro Pro Pro Pro His 135 140 Ser Phe Ile Lys Gln Glu Pro Ser Trp Gly Gly Ala Glu Pro His Glu 150 155 Glu Gln Cys Leu Ser Ala Phe Thr Val His Phe Ser Gly Gln Phe Thr 165 170 Gly Thr Ala Gly Ala Cys Arg Tyr Gly Pro Phe Gly Pro Pro Pro 180 185 Ser Gln Ala Ser Ser Gly Gln Ala Arg Met Phe Pro Asn Ala Pro Tyr 200 Leu Pro Ser Cys Leu Glu Ser Gln Pro Ala Ile Arg Asn Gln Gly Tyr 215 220 Ser Thr Val Thr Phe Asp Gly Thr Pro Ser Tyr Gly His Thr Pro Ser 230 235 His His Ala Ala Gln Phe Pro Asn His Ser Phe Lys His Glu Asp Pro 245 250 Met Gly Gln Gln Gly Ser Leu Gly Glu Gln Gln Tyr Ser Val Pro Pro 265 Pro Val Tyr Gly Cys His Thr Pro Thr Asp Ser Cys Thr Gly Ser Gln 280 Ala Leu Leu Leu Arg Thr Pro Tyr Ser Ser Asp Asn Leu Tyr Gln Met 295 Thr Ser Gln Leu Glu Cys Met Thr Trp Asn Gln Met Asn Leu Gly Ala 310 315 Thr Leu Lys Gly His Ser Thr Gly Tyr Glu Ser Asp Asn His Thr Thr 325 330 Pro Ile Leu Cys Gly Ala Gln Tyr Arg Ile His Thr His Gly Val Phe 340 345 350 Arg Gly Ile Gln Asp Val Arg Arg Val Pro Gly Val Ala Pro Thr Leu 360

Val Arg Ser Ala Ser Glu Thr Ser Glu Lys Arg Pro Phe Met Cys Ala

	370					375					380				
385					390					395				Gln	400
				405					410					Phe 415	
			420					425					430	His	
		435					440					445		Gln	
	450					455					460			His	
465					470					475				Lys	480
				485				His	His 490	Asn	Met	His	Gln	Arg 495	Asn
Met	Thr	Lys	Leu 500	Gln	Leu	Ala	Leu								
	> 41 > 10														
	> PF														
		omo s	sapie	ens											
	> 41														
Val 1	Leu	Asp	Phe	Ala 5	Pro	Pro	Gly	Ala	Ser 10						
<210	> 41	2													
<211															
<212 <213		.1 mo s	apie	ns											
< 400	_ 11	2													
<400 Gln			Pro	Val	Leu	Asp	Phe	Ala	Pro	Pro	Glv	Ala	Ser	Δla	
1	-			5		-			10		O. J	1114	DCI	15	
<210	> 11	3													
<211		J													
<212															
<213> Homo sapiens															
< 400															
Val :	Leu .	Asp	Phe	Ala 5	Pro	Pro	Gly .		Ser 10	Ala	Tyr	Gly		Leu 15	