同伦类型论(HoTT)

无懈可击99

目录

- MLTT补充
- "类型看作空间"
- 截断层级初探
- transport的计算
- 路径空间刻画

MLTT补充

基本概念回忆——函数

- a:A $a \equiv b:A$
- $f: A \to B$ $f(x) := \Phi \text{ or } f := \lambda x. \Phi \text{ or } f := x \mapsto \Phi$
- $f(t) \equiv \Phi[t/x]$
- $f \equiv x \mapsto f(x)$

基本概念回忆——宇宙和类型族

- A: U
- U_i : U_{i+1}
- $P: A \to \mathcal{U}$

基本概念回忆——Ⅱ类型

- $A: \mathcal{U} \qquad P: A \to \mathcal{U}$
- $\Pi_{x:A}P(x)$ or $(x:A) \to P(x)$
- $f: \Pi_{x:A} P(x)$ $f(x) \coloneqq \Phi \text{ or } f \coloneqq \lambda x. \Phi \text{ or } f \coloneqq x \mapsto \Phi$
- $f(t) \equiv \Phi[t/x]$
- $f \equiv x \mapsto f(x)$

基本概念回忆——乘积类型

- $A, B: \mathcal{U} \Rightarrow A \times B: \mathcal{U}$
- $a: A, b: B \Rightarrow (a, b): A \times B$

- $f:(t:A\times B)\to C(t)$
- $f(a,b) \coloneqq \Phi$ (模式匹配)

基本概念回忆——Σ类型

- $A: \mathcal{U}, P: A \to U \Rightarrow \Sigma_{x:A} P(x): \mathcal{U} \text{ or } (x:A) \times P(x): \mathcal{U}$
- $a: A, p: P(a) \Rightarrow (a, p): (x: A) \times P(x)$
- $f:(t:(x:A)\times P(x))\to C(t)$
- $f(a,p) \coloneqq \Phi$

基本概念回忆——1类型

- 1: U
- *****: **1**

- $f:(t:\mathbf{1})\to C(t)$
- $f(\star) \coloneqq \Phi$

基本概念回忆——和类型

- $A, B: \mathcal{U} \Rightarrow A + B: \mathcal{U}$
- $a: A \Rightarrow inl(a): A + B$
- $b: A \Rightarrow inr(b): A + B$

- $f:(t:A+B)\to C(t)$
- $f(\operatorname{inl}(a)) \coloneqq \Phi_1$
- $f(\operatorname{inr}(b)) := \Phi_2$

基本概念回忆——0类型

- 0: U
- 没有引入规则

- $f:(t:\mathbf{0})\to C(t)$
- 无需任何信息就能构建一个0出发的函数

基本概念回忆——2类型

- 2: U
- 0₂, 1₂: 2
- $f:(t:\mathbf{2})\to C(t)$
- $\bullet f(0_2) = \Phi_1$
- $f(1_2) = \Phi_2$

基本概念回忆——№类型

- N: U
- 0: N
- $n: \mathbb{N} \Rightarrow \operatorname{suc}(n): \mathbb{N} \text{ or } n': \mathbb{N}$
- $f:(t:\mathbb{N})\to C(t)$
- $f(0) \coloneqq \Phi_1$
- $f(n') \coloneqq \Phi_2$
- Φ_2 可以包含f(n) (归纳假设)

基本概念回忆——N上的加法和乘法

- $(\Box + \Box)$: $\mathbb{N} \to \mathbb{N} \to \mathbb{N}$
- $0 + n \coloneqq n$
- $m' + n \coloneqq (m + n)'$
- $(\square \times \square)$: $\mathbb{N} \to \mathbb{N} \to \mathbb{N}$
- $0 \times n \coloneqq 0$
- $m' \times n \coloneqq n + m \times n$

归纳类型的例子——列表类型

- $A: U \Rightarrow [A]: U$ ([A]表示由A中的元素形成的列表类型)由以下两个构造器生成:
- nil: [*A*]
- $v: A; h: [A] \Rightarrow cons(v, h): [A]$
- 设p,q:[A], 定义p+q:[A]
- nil + q := q
- cons(v, h) + q := cons(v, h + q)

归纳类型族的例子——定长列表类型

- 固定类型A,定义类型族 $Vec: \mathbb{N} \to U$ (Vec(n)表示由 $n \cap A$ 中元素组成的列表的类型)由以下两个构造器生成:
- nil: Vec(0)
- $n: \mathbb{N}; v: A; h: \operatorname{Vec}(n) \Rightarrow \operatorname{cons}(v, h): \operatorname{Vec}(n')$
- 设 $m, n: \mathbb{N}$; p: Vec(m), q: Vec(n), 定义p + q: Vec(m + n)
- nil + q := q
- cons(v, h) + q := cons(v, h + q)

归纳类型族的例子——偶数

- isEven: $\mathbb{N} \to U$ (isEven(n)的元素表示n是偶数的证据)由以下的两个构造器生成:
- e_0 : isEven(0)
- $n: \mathbb{N}$; $p: isEven(n) \Rightarrow e_{ss}(p): isEven(n'')$
- 另外定义类型族 $C: \mathbb{N} \to U$ 如下:
- C(0) := 1
- $C(1) := \mathbf{0}$
- $C(n'') \coloneqq C(n)$

归纳类型族的例子——偶数

- 可以定义to: $(n: \mathbb{N}) \to isEven(n) \to C(n)$
- to $(0, e_0) := \star$
- $\operatorname{to}(n'', e_{ss}(p)) \coloneqq \operatorname{to}(n, p)$
- 可以定义from: $(n: \mathbb{N}) \to C(n) \to isEven(n)$
- from $(0, c) := e_0$
- from $(n'', c) := e_{ss}(\text{from}(n, c))$

归纳类型族的例子——是零

- 我们对isEven再做一次简化,变成isZero: $\mathbb{N} \to U$,由一个构造器生成:
- z_0 : isZero(0)
- 设C: $(n: \mathbb{N}) \to (p: isZero(n)) \to U$ 为了构建f: $(n: \mathbb{N}) \to (p: isZero(n)) \to C(n,p)$ 的一个元素,对p归纳,只要讨论 $p \neq z_0$, $n \neq 0$ 的情形,也即只要给出c: $C(0,z_0)$ 便足够。
- $f(0,z_0) \coloneqq c$

相等类型

- 我们对isZero做推广,取定类型A和元素a: A,我们定义类型族 $a =_A \Box$: $A \to U$ ($a =_A x$ 的一个元素表示x是a的一个证据),由一个构造器生成:
- refl_a : $a =_A a$
- 设 $C:(x:A) \to (p:a=_A x) \to U$ 为了构建 $f:(x:A) \to (p:a=_A x) \to C(x,p)$ 的一个元素,对p归纳,只要讨论p是 $refl_a$,x是a的情形,也即只要给出 $c:C(a,refl_a)$ 便足够。
- $f(a,p) \coloneqq c$
- 这条规则叫做J规则,或者路径归纳

相等类型的基本性质

- 定义 \Box^{-1} : $x = y \to y = x$
- $\operatorname{refl}_{x}^{-1} := \operatorname{refl}_{x}$
- 定义 $\neg : x = y \rightarrow y = z \rightarrow x = z$
- $\operatorname{refl}_{x} \cdot \operatorname{refl}_{x} \coloneqq \operatorname{refl}_{x}$
- 定义 ap_f : $x = y \rightarrow f(x) = f(y)$
- $\operatorname{ap}_f(\operatorname{refl}_x) = \operatorname{refl}_x$
- ap_f 也记作f(p)

相等类型的基本性质

- 设 $B: A \to \mathcal{U}$, p: x = y, 定义 $coe_p^B: B(x) \to B(y)$
- $coe_{refl_{x}}^{B} := id_{B(x)}$
- coe: $A = B \rightarrow A \rightarrow B$
- $coe(refl_A) := id_A$

相等类型的基本性质

- li: $(p: x = y) \rightarrow p^{-1} \cdot p = \text{refl}_y$
- $li(refl_x) := refl_{refl_x}$
- $K:(p:x=x) \to p = \operatorname{refl}_x$
- $K(\text{refl}_x) \coloneqq \text{refl}_{\text{refl}_x}$
- 这是不合法的定义!

例子——自然数加法结合律

- $assoc_{+_{\mathbb{N}}}: (n, m, k: \mathbb{N}) \to (n + m) + k = n + (m + k)$
- $\operatorname{assoc}_{+_{\mathbb{N}}}(0, m, k) \coloneqq \operatorname{refl}_{m+k}$
- $\operatorname{assoc}_{+_{\mathbb{N}}}(n', m, k) \coloneqq \operatorname{ap}_{\operatorname{suc}}\left(\operatorname{assoc}_{+_{\mathbb{N}}}(n, m, k)\right)$

"类型看作空间"

类型看作集合

类型论的语句/项	集合解释
A是类型	A是集合
a:A	a是 A 的元素
$f:A\to B$	f是 A 到 B 的函数
$A \rightarrow B$	A到B的函数组成的集合
и	集合宇宙
$P:A o \mathcal{U}$	P是以A为下标的类型族
$(x:A) \to P(x)$	族P的笛卡尔积
$f:(x:A)\to P(x)$	f 是 A 出发的函数,满足 $f(x) \in P(x)$
$(x:A)\times P(x)$	族P的无交并
$t:(x:A)\times P(x)$	t 是二元对 (x,p) ,满足 $p \in P(x)$

类型看作集合

类型论的语句/项	集合解释
$p: x =_A y$	p是x和y相等的证据
$x =_A y$?
$\operatorname{refl}_x: x =_A x$	相等的自反性
$\Box^{-1}: x = y \to y = x$	相等的对称性
$\Box \cdot \Box : x = y \to y = z \to x = z$	相等的传递性
$li(p): p^{-1} \cdot p = refl_y$?
$\alpha : p =_{x = Ay} q$?

类型看作空间

类型论的语句/项	集合解释
A是类型	A是空间
a:A	a是 A 中的点
$f:A\to B$	f是 A 到 B 的连续函数
$A \rightarrow B$	A到B的连续函数组成的空间
и	空间宇宙
$P:A o \mathcal{U}$	P 是以 A 为底空间的纤维丛(纤维是 $P(x)$)
$(x:A) \to P(x)$	纤维丛P的截面空间
$f:(x:A)\to P(x)$	f是 A 出发的连续函数,满足 $f(x)$ ∈ $P(x)$
$(x:A) \times P(x)$	纤维丛P的全空间
$t:(x:A)\times P(x)$	t是某纤维 $P(x)$ 中的一个点

类型看作空间

类型论的语句/项	空间解释
$p: x =_A y$	p是x到y的一条道路
$x =_A y$	x到 y 的道路空间
$\operatorname{refl}_{x}: x =_{A} x$	常路径
$\Box^{-1}: x = y \to y = x$	路径取反
$\Box \cdot \Box : x = y \to y = z \to x = z$	路径连接
$\operatorname{li}(p) : p^{-1} \cdot p = \operatorname{refl}_{y}$	$p^{-1} \cdot p$ 和 $\mathrm{refl}_{\mathcal{Y}}$ 定端同伦
$\alpha : p =_{x =_A y} q$	$\alpha 是 p$ 到 q 的定端同伦

群胚法则

引理 1.1

设 A: U, x, y, z, w: A, p: x = y, q: y = z, r: z = w, 于是:

- (i) $p \cdot \text{refl}_y = p$, $\text{refl}_x \cdot p = p$
- (ii) $p^{-1} \cdot p = \operatorname{refl}_y, \ p \cdot p^{-1} = \operatorname{refl}_x$
- (iii) $(p^{-1})^{-1} = p$
- (iv) $p \cdot (q \cdot r) = (p \cdot q) \cdot r$

函子性

引理 1.2

设 $f: A \rightarrow B$, $g: B \rightarrow C$, $p: x =_A y$, $q: y =_A z$. 求证:

- (i) $f(p \cdot q) = f(p) \cdot f(q)$
- (ii) $f(p^{-1}) = f(p)^{-1}$
- (iii) $g(f(p)) = (g \circ f)(p)$
- (iv) $id_A(p) = p$

依值相等

- 设 $P: A \to U$, $p: x =_A y$, s: P(x), t: P(y), 定义依值相等类型:
- $s =_p^B t := coe_p^B(s) =_{B(y)} t$
- 设 $f:(x:A) \to P(x)$, $p:x =_A y$, 定义apd $_f(p):f(x) =_p^B f(y)$
- $\operatorname{apd}_f(\operatorname{refl}_x) \coloneqq \operatorname{refl}_{f(x)}$

例子——定长列表连接的结合律

- $\operatorname{assoc}_{+_{\operatorname{Vec}}}: \{n, m, k : \mathbb{N}\} \to (p : \operatorname{Vec}(n)) \to (q : \operatorname{Vec}(m)) \to (r : \operatorname{Vec}(k)) \to (p+q) + r =_{\operatorname{assoc}_{+_{\mathbb{N}}}(n,m,k)}^{\operatorname{Vec}} p + (q+r)$
- $\operatorname{assoc}_{+_{\operatorname{Vec}}}(\operatorname{nil},q,r) \coloneqq \operatorname{refl}_{q+r}$
- $\operatorname{assoc}_{+_{\operatorname{Vec}}}(\operatorname{cons}(v,p),q,r) \coloneqq ?$
- 已知 $(p+q) + r =_{\operatorname{assoc}_{+_{\mathbb{N}}}(n,m,k)}^{\operatorname{Vec}} p + (q+r)$
- 求证cons(v, (p+q)+r) = $\sup_{\operatorname{suc}(\operatorname{assoc}_{+_{\mathbb{N}}}(n,m,k))} \operatorname{cons}(v,p+(q+r))$

例子——定长列表连接的结合律

- l_1 : Vec (n_1) ; l_2 : Vec (n_2) ; p: $n_1 = n_2$
- $h: l_1 =_p^{\text{Vec}} l_2$
- 要证: $cons(v, l_1) = \frac{Vec}{suc(p)} cons(v, l_2)$
- 对p做路径归纳,不妨设p就是 $refl_{n_1}$, n_2 就是 n_1 ,此时
- $h: l_1 = l_2$
- 要证: $cons(v, l_1) = cons(v, l_2)$

同伦

- 设 $f,g:(x:A) \to P(x)$
- $H:(x:A) \rightarrow f(x) = g(x)$ 称为f到g的一个同伦
- •集合观点:逐点相等;空间观点:逐点连续地连线
- $i \exists f \sim g \coloneqq (x : A) \rightarrow f(x) = g(x)$
- 同伦是"等价关系"

- 同伦的自然性: 设 $p: x =_A y$, 则 $H(x) \cdot g(p) = f(p) \cdot H(y)$
- •证明:对p路径归纳

(同伦)等价

- 设 $f: A \to B$, 三元对 (g, α, β) 称为f的一个拟逆, 其中 $g: B \to A$, $\alpha: f \circ g \sim \mathrm{id}_B$, $\beta: g \circ f \sim \mathrm{id}_A$
- 集合观点: $g \in f$ 的逆映射,从而 $f \in f$ 是双射,逆映射存在则唯一
- 空间观点: g是f的同伦逆映射,从而f是同伦等价映射,同伦逆映射存在则同伦意义下唯一
- $i \exists qinv(f) := (g: B \to A) \to ((f \circ g \sim id_B) \times (g \circ f \sim id_A))$
- 但qinv(f)性质不好,可能存在 e_1 , e_2 : qinv(f),使得 $e_1 \neq e_2$
- 我们需要找一个isequiv(f)与qinv(f)逻辑等价,且对一切 e_1, e_2 : isequiv(f),有 $e_1 = e_2$

(同伦)等价

- 一种合法的定义是:
- isequiv $(f) := ((g: B \to A) \times (f \circ g \sim id_B)) \times ((h: B \to A) \times (h \circ f \sim id_A))$
- 要证明一个f是等价,只要给出f的一个拟逆
- $A \simeq B \coloneqq (f: A \to B) \times \text{isequiv}(f)$
- 类型等价是一种"等价关系"
- 记号上不太区分等价和函数

函数外延性公理

- 设 $f,g:(x:A) \rightarrow P(x)$
- 有happly: $(f = g) \rightarrow (f \sim g)$
- 公理: happly是一个等价
- happly的拟逆记作funext: $(f \sim g) \rightarrow (f = g)$

泛等公理

- 设A, B: U,有idtoeqv: $(A = B) \rightarrow (A \simeq B)$
- idtoeqv $(p) := (coe(p), \cdots)$
- · 公理:idtoeqv是一个等价
- idtoeqv的拟逆记作ua: $(A \simeq B) \rightarrow (A = B)$

•注:泛等公理可以推出函数外延性公理

截断层级初探

离散的空间

类型论的语句/项	集合解释
0	Ø
1	{Ø}
2	$\{\emptyset, \{\emptyset\}\}$
N	\mathbb{N}

类型论的语句/项	空间解释
0	空空间
1	由一个点构成的离散空间
2	由两个点组成的离散空间
N	由可数个点组成的离散空间

离散的空间

• isSet(A) :=
$$(x, y: A) \rightarrow (p, q: x =_A y) \rightarrow p =_{x=_A y} q$$

- $\neg isSet(\mathcal{U})$
- $refl_2$, $flip_2$: 2 = 2
- $coe(refl_2)(0_2) = 0_2$
- $coe(flip_2)(0_2) = 1_2$

$0_2 \neq 1_2$

- 定义*C*: **2** → *U*
- $C(0_2) \coloneqq \mathbf{0}$
- $C(1_2) \coloneqq \mathbf{1}$
- $\mathfrak{P}: 0_2 = 1_2$
- $\operatorname{coe}_{p^{-1}}^{\mathcal{C}}(\star)$: **0**

员

- S^1 : \mathcal{U}
- base: *S*¹
- loop: base = base
- $f: S^1 \to C$
- f(base) := c
- $ap_f(base) \coloneqq l$ (不是依定义相等)

员

- $f:(t:S^1)\to C(t)$
- f(base) := c
- $apd_f(loop) = l$ (不是依定义相等)
- 例子: C:S¹ → U
- C(base) := 2
- $C(loop) := flip_2$

refl_{base} ≠ loop

- 设p: refl_{base} = loop
- 则 $C(refl_{base}) = C(loop)$
- 则 $refl_2 = flip_2$

命题

• isProp(A) := $(x, y: A) \rightarrow x =_A y$

• 则isProp(isequiv(A)), isProp(isSet(A)), isProp(isProp(A))

• isSet(A) $\equiv (x, y : A) \rightarrow isProp(x =_A y)$

n-类型

- is1type(A) := $(x, y: A) \rightarrow isSet(x =_A y)$
- is2type(A) := $(x, y: A) \rightarrow \text{is1type}(x =_A y)$
- 0-类型是指集合, -1-类型是指命题
- isContr(A) := $(a:A) \times ((x:A) \rightarrow a =_A x)$
- isProp(A) \simeq (x, y: A) \rightarrow isContr(x =_A y)
- -2-类型是指可缩的类型

可缩的类型

• 1可缩,可缩的类型都等价于1

• $(x:A) \times a =_A x$ 可缩,因为 $(a, refl_a) = (x, p)$