

Chem Res Toxicol. Author manuscript; available in PMC 2013 July 16.

Published in final edited form as:

Chem Res Toxicol. 2012 July 16; 25(7): 1316-1383. doi:10.1021/tx300132k.

Contributions of Human Enzymes in Carcinogen Metabolism

Slobodan Rendic^{1,*} and F. Peter Guengerich²

¹University of Zagreb, Zagreb, USA 37232-0146

²Department of Biochemistry and Center in Molecular Toxicology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA 37232-0146

Abstract

Considerable support exists for roles of metabolism in modulating the carcinogenic properties of chemicals. In particular, many of these compounds are procarcinogens that require activation to electrophilic forms to exert genotoxic effects. We systematically analyzed the existing literature on metabolism of carcinogens by human enzymes, which has been developed largely in the past 25 years. The metabolism and especially bioactivation of carcinogens are dominated by cytochrome P450 enzymes (66% of bioactivations). Within this group, six P450s—1A1, 1A2, 1B1, 2A6, 2E1, and 3A4—accounted for 77% of the P450 activation reactions. The roles of these P450s can be compared with those estimated for drug metabolism and should be considered in issues involving enzyme induction, chemoprevention, molecular epidemiology, inter-individual variations, and risk assessment.

INTRODUCTION

Knowledge that chemicals can cause cancer goes back to at least 1761 with the report by Hill¹ that the use of tobacco snuff was related to oral cancer in humans. More than 100 years ago, Rehn² reported an association of bladder cancer with occupations in the so-called aniline dye factories. Experimental studies in animals showed that chemicals cause cancer, beginning with reports on coal tar in rabbits by Yamagiwa.³ Classic studies with the polycyclic aromatic hydrocarbon benzo[a]pyrene followed.⁴ Fieser⁵ and others had suggested that metabolism (of carcinogens¹) plays a role in cancer, and extensive animal studies by James and Elizabeth Miller⁶-8 validated the concept (Figure 1). Incorporation of the capability for metabolism led to the success of the bacterial Ames test⁰ for mutagenicity and testing for carcinogenic potential.

The roles of individual enzymes in carcinogen metabolism has been studied extensively, and roles of many human P450s in carcinogen activation have been characterized. Much of this work was first done in medium-throughput screens, e.g. bacterial genotoxicity, and then extended with more detailed studies of reaction products and DNA adducts. Studies with P450s led the way but similar approaches have been used with other enzymes known to have roles in the metabolism of xenobiotic chemicals. Al, Sesearch in this area has been important in several applied disciplines and approaches. These include molecular epidemiology, which is an attempt to relate risk from carcinogens to the enzymes present in an individual. Another area of interest is chemoprevention, where a major strategy involves either inhibiting enzymes that activate carcinogens or inducing enzymes that inactive them. Sec. 19,20

^{*}Address correspondence to: Slobodan Rendic, Ph. D., Haulikova 6, HR 1000 Zagreb, Croatia, slobodanrendic@yahoo.com.

Several efforts have been made to delineate the levels of expression of individual enzymes, especially P450s, in humans. Another approach is to analyze the fractions of the enzymes involved in reactions. Such analyses have been reported for drugs, for all "xenobiotic-metabolizing enzymes" and for P450s. 22-25 The analyses are rather consistent with each other and generally accepted, both with marketed drugs and new chemical entities (drug candidates). Of particular note are the findings that i) ~75% of enzymatic reaction with drugs are catalyzed by P450s, 23 ii) ~90% of the P450 reactions can be accounted for by a set of five P450s: 1A2, 2C9, 2C19, 2D6, and 3A4, 23-25 and iii) the largest fraction of the P450 reactions are catalyzed by P450 3A enzymes, particularly P450 3A4. 23-25

To our knowledge, there has not been a similar effort to categorize all of the the human enzymes involved in the metabolism of carcinogens. We thought that this would be a useful exercise in the light of continuing scientific interest in chemical carcinogenesis, cancer chemoprevention, and molecular epidemiology of cancer. We report our analysis of the literature in parts—general chemicals (environmental/industrial),Footnote 1 drugs, and natural/physiological compounds—as well as an overall analysis of all literature carcinogens for which information about metabolism is available. The results show a dominant role for P450s, especially the three Family 1 P450 enzymes (1A1, 1A2, 1B1) and P450s 2A6, 2E1, and 3A4 (Figure 2). The aldo-keto reductase (AKR) enzymes are also highly represented.²⁶

ASSIGNMENTS OF ROLES OF ENZYMES

Most of the literature on the roles of human enzymes in carcinogen metabolism has been developed in the last 25 years, e.g. a review by one of us in 1988²⁷ had only a very limited discussion of this aspect. The present literature analysis is a continuation of the work done by one of us (S. Rendic) on literature searches on the metabolism of drugs and other chemicals catalyzed by human P450s, for more than 15 years ending in February 2012. Extensive key-word literature searches were done using the PubMed database, accessing the MEDLINE database of references and abstracts. In the latter stages, the existing literature on metabolism of carcinogens and the original papers was systematically analyzed, extracting those data contributing in a "significant way" to the activation and/or detoxication of general chemicals, drugs, and physiological compounds. (This is a qualitative evaluation, and the reader is referred to a more comprehensive list in Supporting Information Table S1.)

The results are presented in several tables (Tables 1-4), including activation reactions with all chemicals (Table 1) (exclusive of "weak" reactions), followed by the activation of physiological/natural compounds (Table 2) and drugs (Table 3). Detoxication reactions are presented in Table 4. For convenience, PMID numbers of references are included in the tables to facilitate searches and retrievals. In considering the results for all types of metabolism, it is clear that P450s are dominant. The three activation tables (Tables 1-3) contain only data for what are deemed "significant activation". All activation data (potent and weak) are presented as a single table in the Supporting Information (Table S1).

The classification of compounds into Tables 2 and 3 is somewhat arbitrary. Most of the data on activation of carcinogenic chemicals is with "chemicals" and only a limited amount with drugs and physiological compounds/natural products. We selected some compounds found in nature that are known to be carcinogens under some conditions, e.g. estrogens. Natural products are included (although one could also consider the PAHs to be natural, too). The set of drugs is mainly those used to treat cancer by DNA alkylation, topoisomerase poisons,

Footnote 1: For convenience we will use the term "carcinogens" to refer to both carcinogens that act directly (e.g., modifying DNA) and to procarcinogens (i.e., those that require metabolism to be converted to act on biological targets). In the tables the term "chemicals" is used for those chemicals that are not drugs or natural products.

etc. These compounds are often tumorigenic themselves and have been included. The term "chemicals" is used to describe these components that do not fit well into the natural product or drug classification. Even here there is room for change, e.g. many of the nitrosamines can be formed from secondary amines *in vivo*.

Another point that should be made is that we use the term carcinogen broadly, including some compounds that are "cancer suspects" and might have caused cancer at very high doses in experimental animal models. Inclusion in the tables here does not necessarily carry an endorsement as a human carcinogen for any regulatory purposes. Some of the compounds cited here are used effectively as drugs, and some are physiological compounds known to be important in normal homeostasis, e.g. estrogens.

The analysis of greatest interest is the activation of chemical carcinogens, and the results are summarized in Figure 2 as well as in Table 1, the main point of this review. The most striking aspect is the dominant role of the P450 enzymes. Interestingly, beyond these the AKR enzymes have a role that exceeds that of any other enzyme group, driven by their reported roles in PAH activation to quinones. 485

Of the P450s, six P450s—1A1, 1A2, 1B1, 2A6, 2E1, and 3A4—account for 77% of the reported activations (Figure 2B). The Family 1 enzymes are prominent in the activation of PAHs and heterocyclic aromatic amines, plus arylamines and a variety of other compounds. The values for P450s 2A6 and 2E1 are driven by their roles in the metabolism of N-nitrosamines and a variety of low $M_{\rm r}$ commodity chemicals, including several vinyl monomers. 282

INTERPRETATIONS OF THE ASSIGNMENT RESULTS

Activation vs. Detoxication

We have presented separate tables for activation (Tables 1-3) and detoxication of carcinogens (Table 4). However, distinguishing a role for an enzyme in this regard may be difficult. E.g. there is the classic case of the action of epoxide hydrolase in benzo[a]pyrene activation (Figure 3).⁴⁸⁶ Another example has a single enzyme forming two different products from the same substrate, the P450 3A4-catalyzed oxidation of AFB₁ to AFQ₁ (3hydroxylation, detoxication) and AFB₁ 8,9-exo-epoxide (activation) (Figure 4). ¹⁷⁶ The activation of the anticancer drug ellipticine is catalyzed by cyclooxygenases, peroxidases, and P450 enzymes (Tables 1, 2). Hydroxylations at positions C12- and C13, as well as N2oxidation, are associated to the activation of ellipticine to toxic metabolites. These reactions are catalyzed mainly by the P450 1A1, 1A2, 1B1, and 3A4 enzymes. The same P450 enzymes catalyze detoxication of ellipticine by hydroxylation at the C7- and C9-positions, and the major enzymes considered are P450s 1A1 and 1A2 (Table 4). It has been reported that the balance of activation vs. deactivation of this drug is dependent on cytochrome b_5 , in that cytochrome b_5 enhances production of 12-hydroxy and 13-hydroxyellipticine and thus changes the product ratio in a favor of increased formation of covalent ellipticine-DNA adducts. The effect of cytochrome b_5 might be even more pronounced in vivo, in that it has been reported that ellipticine increases levels of cytochrome b_5 in rat liver. ^{39,187,189}

Another issue involves tissue selectivity. As a case in point, GSH transferases catalyze the conjugation of bifunctional electrophiles (e.g., ethylene dibromide, Figure 5) with GSH to form half-mustards and then episulfonium ions.³⁷⁷ These reactive species can react with DNA and are considered to be involved in chemical carcinogenesis. However, if such reactions occur in erythrocytes there is no DNA and this might be considered a detoxication.

Selectivity of activation *vs.* detoxication reactions is observed in the acetylation of *N*-hydroxy heterocyclic and aromatic amines (Table 1 *vs.* Table 4). The vast majority of heterocyclic amines do not undergo detoxication by *N*-acetylation because most heterocyclic amines are poor substrates for NATs. These compounds do undergo bioactivation by NATs via *O*-acetylation, following P450-mediated *N*-oxidation of the exocyclic amine groups. In contrast to heterocyclic amines, many aromatic amines do undergo detoxication by *N*-acetylation with NATs.

As mentioned before, chemical carcinogens are activated by a number of enzymes, of which the major ones are P450, SULT, AKR, and NAT (Figure 2 and Table 2), while the data on activation of natural/physiological compounds show that primarily P450 (92%, of which the major ones are 1A1, 1A2, 1B1, and Subfamily 3A) and SULT (8%) enzymes participate in their activation (Table 3). Similarly to general chemicals, drugs are activated by P450s (76%), SULT (12%), LPO (7%), and COX (5%) enzymes. Major P450 enzymes assigned are 3A4 (20%) and 1A2 (11%), and participation of others is low (Table 2).

When considering activation vs. detoxication reactions for a specific compound and/or reaction, attention should be given to the experimental conditions applied and the properties of the compounds and metabolites formed. For instance, 2-nitroanisole is (under oxidative conditions) detoxicated by C2-, C5-, and C6-hydroxylations catalyzed by P450 2E1, 1A1, and 2B6 enzymes (2E1 being the major one). However, under anaerobic conditions activation by nitroreduction prevails due to catalysis by XOR. In addition, 2-nitroanisole and its metabolite 2-nitrophenol induce P450 1A2 and NQO1 (in rats), thus providing the possibility to influence their own detoxication and/or activation pathways. 423,424

Our approach here has been to list enzymes under both activation and detoxication in cases that are deemed to be duplicative.

Influence of the Diversities of Different Chemical Classes

In making the assignments shown in Figure 2, the number of compounds available can be considered a contributor to the reported results. For instance, it is known that P450s 1A1 and 1B1 (and AKR enzymes) can oxidize many PAHs. ^{220,485,486} Many of these are available, given the long-standing interest in individual PAHs, ⁴ and have been tested with P450s. ^{41,109,229} Likewise, many arylamines and heterocyclic aromatic amines are known and have been tested with P450 1A2. ¹² Further, many *N*-nitrosamines (and vinyl monomers) have been tested with P450s 2A6 and 2E1. ^{247,282} It is possible that, in the future, the availability of a large number of analogs in another class of carcinogens might lead to more testing and shift the balance of the results in Figure 2.

Another point to be made here is that our classification includes compounds shown to be pro-mutagens, to bind covalently to DNA, etc. We do not have evidence that all of the compounds listed in our tables actually cause tumors in experimental animals or humans, although we believe that there is a likelihood that they do at some dose (readers are referred to the National Toxicology Program, International Agency on Cancer Research, and other sources for *in vivo* cancer results and classifications of human carcinogens).

Types of Reactions

Another analysis involves the type of reactions involved in bioactivation reactions (Figure 6). As seen there, 11 reactions account for 94% of the total, each representing 5-12%. The O-acetylation and O-sulfonation conjugation collectively account for 18%. Nitroreductions (6%) plus other reductions (0.3%) constitute 6.3%. Most of the other reactions are oxidations, together accounting for \sim 73%. Of these, N-hydroxylation (10%) and C-hydroxylation (11%) are the most prominent.

The results support the general view that there are many ways to activate procarcinogens (Figures 1, 3-5). As with the classification by enzymes (*vide infra*) there are caveats about representation based on the number of compounds experimentally available.

We have not analyzed the entries in Table 1 in the context of the chemical nature of the substrate, but this is rather obvious from the nature of Figure 6. Epoxidations involve olefins and aryl rings, nitro reductions involve nitro groups, N-hydroxylations involve arylamines and heterocyclic amines (O-acetylation involves the products), and O-sulfonation involves hydroxylarylamines and benzylic allylic alcohols. C^{α} -Hydroxylation is prominent for N-nitrosamines. Thus, a single group of chemicals does not dominate.

Weaker Activations

Several enzymes and their reactions have been included in the analyses, although the evidence for significance of their roles in rather weak. There was not a logical reason to delete these from our analysis nor a means of setting a strict benchmark for strong *vs.* weak roles because of the diversity of assays used. Further, "weak activation" (included in Table 1) might become "activation" or "potent activation" either following ingestion of certain enzyme inducers and/or the expression of a more active variant of the enzyme, as exemplified in several animal models.²⁷

In this regard, we had reported a major role for P450 2C9 in benzo[a]pyrene 3-hydroxylation in human liver. Although this reaction has been studied for many years and is the basis of the classic "AHH" activity, activity, it is generally not considered to be a bioactivation process, especially in liver. P450 enzymes such as those in the P450 2D6 and Subfamily 2C have been tested for several activities and do have low levels of activity (Table 1), but there is little if any evidence that these drug-metabolizing enzymes have major roles in chemical carcinogenesis in humans.

Similar points can also be raised about the activation of AFB₁. Although a number of forms of human P450 have some capability of activating AFB₁ (Table 1), 139 the evidence is very limited that most of these have relevance. The established target of AFB₁ in the liver, and enzymes that are predominantly expressed in other tissues are not very relevant. The existing literature clearly shows roles of primarily two P450s, 3A4 and 1A2. 432,443,488 P450 3A4 forms the highly mutagenic *exo*-8,9-poxide; P450 1A2 forms a roughly equimolar mixture of the dangerous *exo*-plus the *endo*-epoxide, the latter of which is essentially nongenotoxic. 176,432,489 The situation is complicated in that both of these enzymes also catalyze AFB₁ detoxication reactions, $^{3}\alpha$ -hydroxylation in the case of P450 3A4 (AFQ₁) and 9a-hydroxylation in the case of P450 1A2 (AFM₁). 176

The information presented in this review is relevant in the context of translational studies. A case in point involves P450 2D6 and lung cancer. The interest began even before the characterization of P450 2D6, with a report that individuals with lung cancer showed a low representation of phenotypically poor metabolizers of debrisoquine, subsequently confirmed as a P450 2D6 prototypic substrate. ⁴⁹⁰ These results led to the consideration of the hypothesis that P450 2D6 is involved in the bioactivation of a major carcinogen leading to lung cancer. The level of P450 2D6 in lung tissue is low, ⁴⁹¹ but it is conceivable that systemic exposure to an entity produced in the liver could be involved. However, attempts to identify a major role of P450 2D6 in the activation of carcinogens have been resoundingly negative. ^{492,493} Further, studies on the genotoxicity of crude cigarette smoke condensates and liver microsomes showed a role for P450 1A2 but not P450 2D6, based on the use of inhibitors etc. ¹⁴⁹

An alternate hypothesis, given the lack of evidence for a role of P450 2D6 in bioactivation of carcinogens, is that the *CYP2D6* gene is linked to the expression of an oncogene. However, no evidence for this hypothesis exists and the known major genetic defect regulating P450 2D6 is aberrant RNA splicing, which is not likely to involve co-regulation of nearby genes. ⁴⁹⁴ Additional epidemiology studies have generally not confirmed a major effect of P450 2D6 expression related to any kind of lung cancer. ^{495,496} In our opinion, resources could be used more effectively if sound experimental studies preceded expensive epidemiological studies with marginal bases of biological causality.

Analysis of Enzymes Involved in Detoxication

Analysis of the data on detoxication is presented in Figure 7. GST and UGT reactions account for > 50% of the reactions, which is not surprising. Two other transferases, NAT and COMT, are also prominent. The fraction attributed to AKR reactions is surprisingly high. Also surprising is the low fraction attributed to epoxide hydrolase, which seem surprising in light of the notoriety of epoxides in toxicology and drug metabolism circles. 497 However, epoxide hydrolase is rather ineffective in hydrolyzing some of the most reactive epoxides⁴⁹⁸ and AFB₁ 8,9-epoxides.⁴³³ However, the roles of epoxide hydrolase and sulfotransferases in detoxication may be underestimated because of the nature of the reactions that have been reported to date with the human enzymes. We suspect that there is more literature using animal epoxide hydrolases that has not been re-done with the human enzymes, and the overall picture (Figure 7) might be misleading. The results of Figure 7 can be contrasted with those in Figures 2 and 6, when the SULT enzymes figure in many bioactivation reactions. However, judging sulfotransferases to be primary bioactivation enzymes, as opposed to detoxication, may not be a proper conclusion. P450s are involved in ~ 14% of the detoxication reactions with carcinogens (Figure 7), but this estimate may not be accurate. As with all of the enzymes of interest here, the assays for bioactivation (e.g. Ames test, umu assays, covalent binding) are often easier to set up than those that would accurately measure detoxication, and the literature may be misleading as to the relative importance of the detoxication enzymes.

Potential Roles of "Orphan" Enzymes

The analysis of enzymes and P450s (Figure 2) is based on existing knowledge (of the enzymes, as well as the carcinogens), and the pattern might change with time. With the (human) P450s, ~ 1/4 can still be considered "orphans," in the sense that limited information is available about their catalytic activities and their roles in physiological processes. ⁴⁹⁹ Further, only limited information is available about roles in carcinogen metabolism. An exception in this regard is P450 2W1, which has been shown (like P450 1B1) to activate several classes of carcinogens. ²¹⁰ Of interest is the reported expression of P450 2W1 only in tumor tissue. ⁵⁰⁰ Another orphan P450, P450 4F11, was found not to have appreciable activity towards any carcinogens tested. ⁵⁰¹

The role of P450 2S1 in the activation of carcinogens is controversial, as well as almost all other potential substrates. Following the initial discovery of human P450 2S1, ⁵⁰² it was reported that the enzyme would oxidize naphthalene. ⁵⁰³ However, this report was not confirmed and no evidence for a role of P450 2S1 in the activation of any carcinogens was seen. ²¹⁰ Further, the only substrate reported and independently confirmed for P450 2S1 is the drug candidate 1,4-bis{[2-dimethylamino-*N*-oxide)ethyl]amino}-5,8-dihydroxyanthracene-9,10-dione (AQ4N). ^{504,505} Some carcinogens can be activated by P450 2S1 in the presence of oxygen surrogates (hydroperoxides) ^{506,507} but the significance of these reactions is unknown, in that P450 2S1 has been demonstrated to be rapidly reduced by NADPH-P450 reductase in the usual manner. ⁵⁰⁵ Nevertheless, expression of P450 2S1 in

a mammalian cell line did lead to the formation of products of benzo[a]pyrene, indicating some mechanism of function. 506,507

A number of the other P450 orphans have been expressed⁵⁰⁸ but apparently roles in carcinogen metabolism have not been investigated. This same statement can be applied to other enzymes under consideration, regarding recently discovered gene products.

We should point out that our analyses are based largely on studies done with the "wild type," or most abundant genetic variants, in the human population. A treatment of all of the implications of variations is beyond the scope of this review and indeed the catalytic efficiencies of only a subset of the variants of these enzymes has been determined with any substrates (e.g., http://www.cypalleles.ki.se/) and few with carcinogens. However, if a racial group exists in which the frequency of a fuctional polymorphism is high, then the balance of enzyme involvement (e.g., Figure 2B) could be shifted.

COMPARISONS OF PATTERNS FOR THE METABOLISM OF DRUGS AND CARCINOGENS

We^{25,509-512} and others²²⁻²⁴ have presented compilations of the roles of P450s and other enzymes involved in the metabolism of drugs. Comprehensive and up-to-date information on the metabolism of chemicals (including drugs and physiological compounds) in humans and animal models is available in a form of Web searchable absorption-distribution-metabolism-excretion (ADME) database

(http://jp.fujitsu.com/group/kyushu/en/services/admedatabase/). The generally accepted view is that, for the drugs that undergo metabolism, almost 75% involve P450 reactions. ²³⁻²⁵ Five P450s—1A2, 2C9, 2C19, 2D6, and 3A4—are involved in ~ 90% of these P450 reactions. ²³⁻²⁵ This situation, i.e. a large segment of drug metabolism being controlled by a few enzymes, has been useful in being able to rapidly define metabolism issues in drug development.

In an analysis made previously with a total of 7906 entries (metabolic reactions catalyzed by P450s with different compounds as substrates), ⁵¹³ 2065 entries are related to P450 Subfamily 3A enzymes, i.e. 26% of the total. Making similar analysis for clinically significant drugs, ⁵¹³ P450 3A4 and 3A5 enzymes participated in 34% of the total P450-catalyzed metabolic reactions, less than the ~50% presented by others. ^{23,24} The contribution of the P450 Subfamily 3A enzymes may be overestimated, or the differences may reflect the time period sampled or the possible differences between sets of drugs published in the open literature vs. proprietary drugs and those in development used in the analyses.

The results shown in Figure 2 can be compared to drug metabolism. The first point is that a similar fraction of the total bioactivation (68%) is due to P450 enzymes (Figure 2A). The five P450s involved in drug metabolism are "replaced" with six—1A1, 1A2, 1B1, 2A6, 2E1, and 3A4—that collectively account for 77% of the P450-mediated reactions.

The numbers resulting from the present analysis of updated earlier data⁵¹³ on all compounds fit better to the data we report in the activation of the carcinogens by human P450s, and can be used for comparisons. E.g., participation of P450s 1A1, 1A2 and 2E1 in carcinogen activation reactions is 20, 17, and 11%, respectively, and their participation in total metabolic reactions presented here is 7, 10, and 5%, respectively. The participation of P450 1B1 in activation is 11%, and in total metabolism reactions is 3%. However, the participation of P450 3A4 in activation reactions is 10% and its participation in all metabolic reactions is 20%.

The participation of P450 2C9 in activation reactions is ~2% and in total metabolism reactions is 9%; the participation of P450 2C19 in activation reactions is 1% and in total metabolism reactions is 8%. Finally, the apparent participation of P450 2D6 in activation reactions is ~2% and in total metabolism reactions is 10%. We make the general conclusion that the contribution of "toxicologically significant" enzymes (e.g. P450s 1A1, 1A2, 1B1, 2A6, 2E1) is greater in activation reactions and less in considerations of total metabolism. The opposite is the case for generally-detoxicating enzymes, e.g. P450s 2D6, 3A4 (with exceptions), and the 2C Subfamily.

APPLICATIONS

The information presented here is intended to provide a summary to readers who are interested in the literature on human enzymes involved in chemical carcinogenesis reported to date. Further, the analyses (Figure 2) have uses in themselves, despite the stated caveats, in evaluating the individual enzymes.

The analysis provides some guidance in translational applications. For instance, the information presented in Figure 2 can direct the efforts of those in the field of molecular epidemiology of cancer as to which genes and single nucleotide polymorphisms might be most profitable to study. Likewise, some guidance is provided to those in the field of chemoprevention as to which enzymes and reactions might be most useful to inhibit or induce. Such considerations also apply in general issues of risk assessment, in evaluating issues such as inducibility and inter-individual variation.

The analysis (Figure 2) is also useful in basic research. For one thing, it was a matter of curiosity for us—after studying the area for so long ⁵¹³—to know which P450s are most prominent in chemical carcinogenesis. Thus, justification is clearly provided for studying the six P450s cited in Figure 2B (1A1, 1A2, 1B1, 2A6, 2E1, 3A4). Of the six, only P450 1A1 has not been reported at the level of a crystal structure. However, none of these P450 structures has been solved with a carcinogen bound. An overall hope is to use our knowledge of structure-activity relationships to predict which new chemicals will be activated and whether products will be toxic or carcinogenic. In addition, there are numerous basic questions regarding how P450s, including those cited here, such as: What is the molecular basis of catalytic selectivity? What factors determine rates of particular P450 reactions? What is the molecular basis of the cooperativity seen in P450s, including some of those described here, e.g. P450 3A4 and also P450 1A2 (with pyrene). ⁵¹⁴

It should be emphasized again that almost all of the work cited here was done in the past 25 years.²⁷ In dealing with an effort of this scope, we might have overlooked some useful papers in the field and apologize to those authors in advance. An Excel file of an expansion of Table 1 is included for the ease of those readers who wish to search it or use it to develop or update their own databases.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

Acknowledgments

We thank L. M. Folkman and particulary K. Trisler for assistance in preparation of the manuscript. We also acknowledge the pioneering efforts of Dr. Frederick J. DiCarlo and his contributions to the area of xenobiotic metabolism. This review is dedicated to the memory of two eminent cancer researchers who passed away recently, Drs. Fred F. Kadlubar and Donald M. Jerina. Both played major roles in the work summarized here and are missed in this field.

FUNDING SOURCES

This study was supported in part by National Institutes of Health grants R37 CA090426 and R01 ES010546 (F.P.G.).

ABBREVIATIONS

AF aflatoxin

AGT or MGMT (used in tables) O⁶-alkylguanine DNA-alkyltransferase

AKR aldo-keto reductase

COX (used in tables) or PTGS cyclooxygenase (prostaglandin synthase)

P450 or CYP (used in tables) cytochrome P450

FMO microsomal flavin-containing monoxygenase

GST glutathione (GSH) transferase

HAA heterocyclic arylamine
NAT N-acetyltransferase

NPR or POR (used in tables) NADPH-P450 reductase

NQO NADPH-quinone reductase

PAH polycyclic aromatic hydrocarbon

SULT sulfotransferase

UGT UDP glucuronosyl transferase
XOR xanthine oxidoreductase

REFERENCES

- (1). Hill, J.; Baldwin, R. Cautions Against the Immoderate Use of Snuff. 2nd ed. Jackson, J., editor. London: 1761.
- (2). Rehn L. Über Blasentumoren bei Fuchsinarbeitern. Archiv. Clin. Chirgurie. 1895; 50:588-600.
- (3). Yamagiwa K, Ichikawa K. Experimentelle Studie über die Pathogenese der Epithelialgeschwulste. Mitt. Med. Fak. Tokio. 1915; 15:295–344.
- (4). Cook JW, Hewett CL, Hieger I. The isolation of a cancer-producing hydrocarbon from coal tar. Parts I, II, and III. J. Chem. Soc. 1933:394–405.
- (5). Fieser LF. Carcinogenic activity, structure and chemical reactivity of polynuclear hydrocarbons. Am. J. Cancer. 1938; 34:37–124.
- (6). Miller EC, Miller JA. The presence and significance of bound amino azodyes in the livers of rats fed *p*-dimethylaminoazobenzene. Cancer Res. 1947; 7:468–480.
- (7). Miller EC. Studies on the formation of protein-bound derivatives of 3,4-benzpyrene in the epidermal fraction of mouse skin. Cancer Res. 1951; 11:100–108. [PubMed: 14812434]
- (8). Miller JA. Carcinogenesis by chemicals: an overview. G. H. A. Clowes Memorial Lecture. Cancer Res. 1970; 30:559–576. [PubMed: 4915745]
- (9). Ames BN, Durston WE, Yamasaki E, Lee FD. Carcinogens are mutagens: A simple test system combining liver homogenates for activation and bacteria for detection. Proc. Natl. Acad. Sci. U. S. A. 1973; 70:2281–2285. [PubMed: 4151811]
- (10). Guengerich FP, Shimada T. Oxidation of toxic and carcinogenic chemicals by human cytochrome P-450 enzymes. Chem. Res. Toxicol. 1991; 4:391–407. [PubMed: 1912325]
- (11). Shimada T, Guengerich FP. Evidence for cytochrome P-450_{NF}, the nifedipine oxidase, being the principal enzyme involved in the bioactivation of aflatoxins in human liver. Proc. Natl. Acad. Sci. U. S. A. 1989; 86:462–465. [PubMed: 2492107]

(12). Shimada T, Iwasaki M, Martin MV, Guengerich FP. Human liver microsomal cytochrome P-450 enzymes involved in the bioactivation of procarcinogens detected by *umu* gene response in *Salmonella typhimurium* TA1535/pSK1002. Cancer Res. 1989; 49:3218–3228. [PubMed: 2655891]

- (13). Shimada T, Martin MV, Pruess-Schwartz D, Marnett LJ, Guengerich FP. Roles of individual human cytochrome P450 enzymes in the bioactivation of benzo[a]pyrene, 7,8-dihydroxy-7,8-dihydrobenzo[a]pyrene, and othe dihydrodiol derivatives of polycyclic aromatic hydrocarbons. Cancer Res. 1989; 49:6304–6312. [PubMed: 2509067]
- (14). Thier R, Pemble SE, Taylor JB, Humphreys WG, Persmark M, Ketterer B, Guengerich FP. Expression of mammalian glutathione *S*-transferase 5-5 in *Salmonella typhimurium* TA1535 leads to base-pair mutations upon exposure to dihalomethanes. Proc. Natl. Acad. Sci. U. S. A. 1993; 90:8576–8580. [PubMed: 8378332]
- (15). Glatt H, Bartsch I, Christoph S, Coughtrie MWH, Falany CN, Hagen M, Landsiedel R, Pabel U, Phillips DH, Seidel A, Yamazoe Y. Sulfotransferase-mediated activation of mutagens studied using heterologous expression systems. Chem.-Biol. Interact. 1998; 109:195–219. [PubMed: 9566746]
- (16). Kellerman G, Luyten-Kellerman M, Shaw CR. Genetic variation of aryl hydrocarbon hydroxylase in human lymphocytes. Am. J. Human Genet. 1973; 25:327–331. [PubMed: 4704864]
- (17). Kellerman G, Shaw CR, Luyten-Kellerman M. Aryl hydrocarbon hydroxylase inducibility and bronchogenic carcinoma. New Engl. J. Med. 1973; 298:934–937.
- (18). Butler MA, Lang NP, Young JF, Caporaso NE, Vineis P, Hayes RB, Teitel CH, Massengill JP, Lawsen MF, Kadlubar FF. Determination of CYP1A2 and NAT2 phenotypes in human populations by analysis of caffeine urinary metabolites. Pharmacogenetics. 1992; 2:116–127. [PubMed: 1306111]
- (19). Pantuck EJ, Pantuck CB, Garland WA, Min BH, Wattenberg LW, Anderson KE, Kappas A, Conney AH. Stimulatory effect of brussels sprouts and cabbage on human drug metabolism. Clin. Pharmacol. Therapeut. 1979; 25:88–95.
- (20). Wattenberg LW. Inhibition of neoplasia by minor dietary constituents. Cancer Res. Suppl. 1983; 43:2448–2453.
- (21). Shimada T, Yamazaki H, Mimura M, Inui Y, Guengerich FP. Interindividual variations in human liver cytochrome P450 enzymes involved in the oxidation of drugs, carcinogens, and toxic chemicals: studies with liver microsomes of 30 Japanese and 30 Caucasians. J. Pharmacol. Exp. Therapeut. 1994; 270:414–423.
- (22). Evans WE, Relling MV. Pharmacogenomics: translating function genomics into rational therapeutics. Science. 1999; 286:487–491. [PubMed: 10521338]
- (23). Williams JA, Hyland R, Jones BC, Smith DA, Hurst S, Goosen TC, Peterkin V, Koup JR, Ball SE. Drug-drug interactions for UDP-glucuronosyltransferase substrates: a pharmacokinetic explanation for typically observed low exposure (AUC_i/AUC) ratios. Drug Metab. Dispos. 2004; 32:1201–1208. [PubMed: 15304429]
- (24). Wienkers LC, Heath TG. Predicting in vivo drug interactions from in vitro drug discovery data. Nat. Rev. Drug Discov. 2005; 4:825–833. [PubMed: 16224454]
- (25). Guengerich, FP. Human cytochrome P450 enzymes. In: Ortiz de Montellano, PR., editor. Cytochrome P450: Structure, Mechanism, and Biochhemistry. 3rd ed. Kluwer Academic-Plenum Press; New York: 2005. p. 377-530.
- (26). Jiang H, Vudathala DK, Blair IA, Penning TM. Competing roles of aldo-keto reductase 1A1 and cytochrome P4501B1 in benzo[a]pyrene-7,8-diol activation in human bronchoalveolar H358 cells role of AKRs in P4501B1 induction. Chem. Res. Toxicol. 2006; 19:68–78. [PubMed: 16411658]
- (27). Guengerich FP. Roles of cytochrome P-450 enzymes in chemical carcinogenesis and cancer chemotherapy. Cancer Res. 1988; 48:2946–2954. [PubMed: 3284639]
- (28). Palackal NT, Burczynski ME, Harvey RG, Penning TM. Metabolic activation of polycyclic aromatic hydrocarbon *trans*-dihydrodiols by ubiquitously expressed aldehyde reductase (AKR1A1). Chem.-Biol. Interact. 2001; 130-132:815–824. [PubMed: 11306097]

(29). Burczynski ME, Lin HK, Penning TM. Isoform-specific induction of a human aldo-keto reductase by polycyclic aromatic hydrocarbons (PAHs), electrophiles, and oxidative stress implications for the alternative pathway of PAH activation catalyzed by human dihydrodiol dehydrogenase. Cancer Res. 1999; 59:607–614. [PubMed: 9973208]

- (30). Palackal NT, Burczynski ME, Harvey RG, Penning TM. The ubiquitous aldehyde reductase (AKR1A1) oxidizes proximate carcinogen trans-dihydrodiols to *o*-quinones. Potential role in polycyclic aromatic hydrocarbon activation. Biochemistry. 2001; 40:10901–10910. [PubMed: 11535067]
- (31). Jiang H, Shen YM, Quinn AM, Penning TM. Competing roles of cytochrome P450 1A1/1B1 and aldo-keto reductase 1A1 in the metabolic activation of (±)-7,8-dihydroxy-7,8-dihydrobenzo[a]pyrene in human bronchoalveolar cell extracts. Chem. Res. Toxicol. 2005; 18:365–374. [PubMed: 15720144]
- (32). Ruan Q, Gelhaus SL, Penning TM, Harvey RG, Blair IA. Aldo-keto reductase- and cytochrome P450-dependent formation of benzo[a]pyrene-derived DNA adducts in human bronchoalveolar cells. Chem. Res. Toxicol. 2007; 20:424–431. [PubMed: 17295519]
- (33). Quinn AM, Harvey RG, Penning TM. Oxidation of PAH *trans*-dihydrodiols by human aldo-keto reductase AKR1B10. Chem. Res. Toxicol. 2008; 21:2207–2215. [PubMed: 18788756]
- (34). Shimada T. Xenobiotic-metabolizing enzymes involved in activation and detoxification of carcinogenic polycyclic aromatic hydrocarbons. Drug Metab. Pharmacokinet. 2006; 21:257–276. [PubMed: 16946553]
- (35). Palackal NT, Lee SH, Harvey RG, Blair IA, Penning TM. Activation of polycyclic aromatic hydrocarbon trans-dihydrodiol proximate carcinogens by human aldo-keto reductase (AKR1C) enzymes and their functional overexpression in human lung carcinoma (A549) cells. J. Biol. Chem. 2002; 277:24799–24808. [PubMed: 11978787]
- (36). Burczynski ME, Sridhar GR, Palackal NT, Penning TM. The reactive oxygen species- and Michael acceptor-inducible human aldo-keto reductase AKR1C1 reduces the α,β-unsaturated aldehyde 4-hydroxy-2-nonenal to 1,4-dihydroxy-2-nonene. J. Biol. Chem. 2001; 276:2890–2897. [PubMed: 11060293]
- (37). Penning TM, Jin Y, Steckelbroeck S, Lanisnik Rizner T, Lewis M. Structure-function of human 3α-hydroxysteroid dehydrogenase genes and proteins. Mol. Cell Endocrinol. 2004; 215:63–72. [PubMed: 15026176]
- (38). Wiese FW, Thompson PA, Kadlubar FF. Carcinogen substrate specificity of human COX-1 and COX-2. Carcinogenesis. 2001; 22:5–10. [PubMed: 11159734]
- (39). Stiborová M, Rupertová M, Schmeiser HH, Frei E. Molecular mechanisms of antineoplastic action of an anticancer drug ellipticine. Biomed. Pap. Med. Fac. Univ. Palacky Olomouc Czech Repub. 2006; 150:13–23. [PubMed: 16936898]
- (40). Stiborová M, Paljaková J, Martinkova E, Borek-Dohalská L, Eckschlager T, Kizek R, Frei E. Ellipticine cytotoxicity to cancer cell lines—a comparative study. Interdiscip. Toxicol. 2011; 4:98–105. [PubMed: 21753906]
- (41). Shimada T, Hayes CL, Yamazaki H, Amin S, Hecht SS, Guengerich FP, Sutter TR. Activation of chemically diverse procarcinogens by human cytochrome P450 1B1. Cancer Res. 1996; 56:2979–2984. [PubMed: 8674051]
- (42). Shimada T, Gillam EM, Sandhu P, Guo Z, Tukey RH, Guengerich FP. Activation of procarcinogens by human cytochrome P450 enzymes expressed in *Escherichia coli*. Simplified bacterial systems for genotoxicity assays. Carcinogenesis. 1994; 15:2523–2529. [PubMed: 7955101]
- (43). Shimada T, Oda Y, Gillam EMJ, Guengerich FP, Inoue K. Metabolic activation of polycyclic aromatic hydrocarbons and other procarcinogens by cytochromes P450 1A1 and P450 1B1 allelic variants and other human cytochromes P450 in *Salmonella typhimurium* NM2009. Drug Metab. Dispos. 2001; 29:1176–1182. [PubMed: 11502724]
- (44). Schwarz D, Kisselev P, Cascorbi I, Schunck WH, Roots I. Differential metabolism of benzo[*a*]pyrene and benzo[*a*]pyrene-7,8-dihydrodiol by human CYP1A1 variants. Carcinogenesis. 2001; 22:453–459. [PubMed: 11238186]

(45). Shou M, Korzekwa KR, Crespi CL, Gonzalez FJ, Gelboin HV. The role of 12 cDNA-expressed human, rodent, and rabbit cytochromes P450 in the metabolism of benzo[a]pyrene and benzo[a]pyrene *trans*-7,8-dihydrodiol. Mol. Carcinog. 1994; 10:159–168. [PubMed: 8043197]

- (46). Doehmer J, Holtkamp D, Soballa V, Raab G, Schmalix W, Seidel A, Greim H, Jacob J. Cytochrome P450 mediated reactions studied in genetically engineered V79 Chinese hamster cells. Pharmacogenetics. 1995; 5:91–96.
- (47). Kisselev P, Schwarz D, Platt KL, Schunck WH, Roots I. Epoxidation of benzo[a]pyrene-7,8-dihydrodiol by human CYP1A1 in reconstituted membranes. Eur. J. Biochem. 2002; 269:1799–1805. [PubMed: 11952781]
- (48). Schmalix WA, Maser H, Kiefer F, Reen R, Wiebel FJ, Gonzalez F, Seidel A, Glatt H, Greim H, Doehmer J. Stable expression of human cytochrome P450 1A1 cDNA in V79 Chinese hamster cells and metabolic activation of benzo[a]pyrene. Eur. J. Pharmacol. 1993; 248:251–261. [PubMed: 8293790]
- (49). Shimada T, Watanabe J, Kawajiri K, Sutter TR, Guengerich FP, Gillam EM, Inoue K. Catalytic properties of polymorphic human cytochrome P450 1B1 variants. Carcinogenesis. 1999; 20:1607–1614. [PubMed: 10426814]
- (50). Kushman ME, Kabler SL, Fleming MH, Ravoori S, Gupta RC, Doehmer J, Morrow CS, Townsend AJ. Expression of human glutathione S-transferase P1 confers resistance to benzo[a]pyrene or benzo[a]pyrene 7,8-dihydrodiol mutagenesis, macromolecular alkylation and formation of stable N2-Gua-BPDE adducts in stably transfected V79MZ cells co-expressing hCYP1A1. Carcinogenesis. 2007; 28:207–214. [PubMed: 16885195]
- (51). Kushman ME, Kabler SL, Ahmad S, Doehmer J, Morrow CS, Townsend AJ. Protective efficacy of hGSTM1-1 against B[a]P and (+)- or (-)-B[a]P-7,8-dihydrodiol cytotoxicity, mutagenicity, and macromolecular adducts in V79 cells coexpressing hCYP1A1. Toxicol. Sci. 2007; 99:51–57. [PubMed: 17525473]
- (52). Gelhaus SL, Harvey RG, Penning TM, Blair IA. Regulation of benzo[*a*]pyrene-mediated DNA-and glutathione-adduct formation by 2,3,7,8-tetrachlorodibenzo-*p*-dioxin in human lung cells. Chem. Res. Toxicol. 2011; 24:89–98. [PubMed: 21028851]
- (53). Yamazaki H, Hatanaka N, Kizu R, Hayakawa K, Shimada N, Guengerich FP, Nakajima M, Yokoi T. Bioactivation of diesel exhaust particle extracts and their major nitrated polycyclic aromatic hydrocarbon components, 1-nitropyrene and dinitropyrenes, by human cytochromes P450 1A1, 1A2, and 1B1. Mut. Res. 2000; 472:129–38. [PubMed: 11113705]
- (54). Hatanaka N, Yamazaki H, Oda Y, Guengerich FP, Nakajima M, Yokoi T. Metabolic activation of carcinogenic 1-nitropyrene by human cytochrome P450 1B1 in *Salmonella typhimurium* strain expressing an *O*-acetyltransferase in SOS/umu assay. Mut. Res. 2001; 497:223–233. [PubMed: 11525925]
- (55). Oda Y, Watanabe T, Terao Y, Nukaya H, Wakabayashi K. Genotoxic activation of 2-phenylbenzotriazole-type compounds by human cytochrome P4501A1 and *N*-acetyltransferase expressed in *Salmonella typhimurium* umu strains. Mut. Res. 2008; 654:52–57. [PubMed: 18562244]
- (56). Marumoto S, Oda Y, Miyazawa M. Antigenotoxic activity of naturally occurring furanocoumarins. Environ. Mol. Mutagen. 2011; 52:646–57. [PubMed: 21786339]
- (57). Yamazaki Y, Fujita K, Nakayama K, Suzuki A, Nakamura K, Yamazaki H, Kamataki T. Establishment of ten strains of genetically engineered *Salmonella typhimurium* TA1538 each coexpressing a form of human cytochrome P450 with NADPH-cytochrome P450 reductase sensitive to various promutagens. Mut. Res. 2004; 562:151–62. [PubMed: 15279838]
- (58). Hammons GJ, Milton D, Stepps K, Guengerich FP, Tukey RH, Kadlubar FF. Metabolism of carcinogenic heterocyclic and aromatic amines by recombinant cytochrome P450 enzymes. Carcinogenesis. 1997; 18:851–854. [PubMed: 9111224]
- (59). Crofts FG, Sutter TR, Strickland PT. Metabolism of 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine by human cytochrome P4501A1 and P4501B1. Carcinogenesis. 1998; 19:1969–1973. [PubMed: 9855011]
- (60). Cheung C, Loy S, Li GX, Liu AB, Yang CS. Rapid induction of colon carcinogenesis in CYP1A-humanized mice by 2-amino-1-methyl-6-phenylimidazo[4,5-*b*]pyridine and dextran sodium sulfate. Carcinogenesis. 2011; 32:233–239. [PubMed: 21081470]

(61). Oda Y, Aryal P, Terashita T, Gillam EM, Guengerich FP, Shimada T. Metabolic activation of heterocyclic amines and other procarcinogens in *Salmonella typhimurium umu* tester strains expressing human cytochrome P4501A1, 1A2, 1B1, 2C9, 2D6, 2E1, and 3A4 and human NADPH-P450 reductase and bacterial *O*-acetyltransferase. Mut. Res. 2001; 492:81–90. [PubMed: 11377247]

- (62). Josephy PD, Batty SM, Boverhof DR. Recombinant human P450 forms 1A1, 1A2, and 1B1 catalyze the bioactivation of heterocyclic amine mutagens in *Escherichia coli lacZ* strains. Environ. Mol. Mutagen. 2001; 38:12–8. [PubMed: 11473383]
- (63). Edwards RJ, Murray BP, Murray S, Schulz T, Neubert D, Gant TW, Thorgeirsson SS, Boobis AR, Davies DS. Contribution of CYP1A1 and CYP1A2 to the activation of heterocyclic amines in monkeys and human. Carcinogenesis. 1994; 15:829–836. [PubMed: 8200083]
- (64). Bendaly J, Zhao S, Neale JR, Metry KJ, Doll MA, States JC, Pierce WM Jr. Hein DW. 2-Amino-3,8-dimethylimidazo-[4,5-f]quinoxaline-induced DNA adduct formation and mutagenesis in DNA repair-deficient Chinese hamster ovary cells expressing human cytochrome P4501A1 and rapid or slow acetylator N-acetyltransferase 2. Cancer Epidemiol. Biomarkers Prev. 2007; 16:1503–1509. [PubMed: 17627018]
- (65). Williams JA, Stone EM, Millar BC, Gusterson BA, Grover PL, Phillips DH. Determination of the enzymes responsible for activation of the heterocyclic amine 2-amino-3-methylimidazo (4,5-f) quinoline in the human breast. Pharmacogenetics. 1999; 8:519–528. [PubMed: 9918136]
- (66). Guengerich FP, Shimada T. Activation of procarcinogens by human cytochrome P450 enzymes. Mut. Res. 1998; 400:201–213. [PubMed: 9685642]
- (67). Sasaki JC, Arey J, Eastmond DA, Parks KK, Phousongphouang PT, Grosovsky AJ. Evidence for oxidative metabolism in the genotoxicity of the atmospheric reaction product 2-nitronaphthalene in human lymphoblastoid cell lines. Mut. Res. 1999; 445:113–25. [PubMed: 10521697]
- (68). Miyazaki M, Sugawara E, Yoshimura T, Yamazaki H, Kamataki T. Mutagenic activation of betel quid-specific *N*-nitrosamines catalyzed by human cytochrome P450 co-expressed with NADPH-cytochrome P450 reductase in *Salmonella typhimurium* YG7108. Mut. Res. 2005; 581:165–71. [PubMed: 15725615]
- (69). Aiub CA, Mazzei JL, Pinto LF, Felzenszwalb I. Evaluation of nitroreductase and acetyltransferase participation in *N*-nitrosodiethylamine genotoxicity. Chem.-Biol. Interact. 2006; 161:146–154. [PubMed: 16720019]
- (70). Oda Y, Hirayama T, Watanabe T. Genotoxic activation of the environmental pollutant 3,6-dinitrobenzo[e]pyrene in *Salmonella typhimurium umu* strains expressing human cytochrome P450 and *N*-acetyltransferase. Toxicol. Lett. 2009; 188:258–262. [PubMed: 19393727]
- (71). Shimada T, Wunsch RM, Hanna IH, Sutter TR, Guengerich FP, Gillam EM. Recombinant human cytochrome P450 1B1 expression. Escherichia coli. Arch. Biochem. Biophys. 1998; 357:111– 120.
- (72). Arlt VM, Henderson CJ, Wolf CR, Schmeiser HH, Phillips DH, Stiborová M. Bioactivation of 3-aminobenzanthrone, a human metabolite of the environmental pollutant 3-nitrobenzanthrone: evidence for DNA adduct formation mediated by cytochrome P450 enzymes and peroxidases. Cancer Lett. 2006; 234:220–231. [PubMed: 15885895]
- (73). Stiborová M, Arlt VM, Henderson CJ, Wolf CR, Frei E, Schmeiser HH, Phillips DH. Molecular mechanism of genotoxicity of the environmental pollutant 3-nitrobenzanthrone. Biomed. Pap. Med. Fac. Univ. Palacky Olomouc Czech Repub. 2005; 149:191–197. [PubMed: 16601755]
- (74). Wu J, Dong H, Cai Z, Yu Y. Stable expression of human cytochrome CYP2B6 and CYP1A1 in Chinese hamster CHL cells. Their use in micronucleus assays. Chin. Med. Sci. J. 1997; 12:148–155. [PubMed: 11360624]
- (75). Thornton-Manning J, Appleton JL, Gonzalez FJ, Yost GS. Metabolism of 3-methylindole by vaccinia-expressed P450 enzymes. Correlation of 3-methyleneindolenine formation and proteinbinding. J. Pharmacol. Exp. Ther. 1999; 276:21–29. [PubMed: 8558432]
- (76). Lanza DL, Yost GS. Selective dehydrogenation/oxygenation of 3-methylindole by cytochrome P450 enzymes. Drug Metab. Dispos. 2001; 29:950–953. [PubMed: 11408359]

(77). Nichols WK, Mehta R, Skordos K, Mace K, Pfeifer AM, Carr BA, Minko T, Burchiel SW, Yost GS. 3-Methylindole-induced toxicity to human bronchial epithelial cell lines. Toxicol. Sci. 2003; 71:229–236. [PubMed: 12563108]

- (78). Weems JM, Lamb JG, D'Agostino J, Ding X, Yost GS. Potent mutagenicity of 3-methylindole requires pulmonary cytochrome P450-mediated bioactivation. A comparison to the prototype cigarette smoke mutagens B(a)P and NNK. Chem. Res. Toxicol. 2010; 23:1682–1690. [PubMed: 20795680]
- (79). Arlt VM, Glatt H, Muckel E, Pabel U, Sorg BL, Seidel A, Frank H, Schmeiser HH, Phillips DH. Activation of 3-nitrobenzanthrone and its metabolites by human acetyltransferases, sulfotransferases and cytochrome P450 expressed in Chinese hamster V79 cells. Int. J. Cancer. 2003; 105:583–592. [PubMed: 12740904]
- (80). Arlt VM, Stiborová M, Hewer A, Schmeiser HH, Phillips DH. Human enzymes involved in the metabolic activation of the environmental contaminant 3-nitrobenzanthrone. Evidence for reductive activation by human NADPH cytochrome P450 reductase. Cancer Res. 2003; 63:2752– 2761. [PubMed: 12782579]
- (81). Shimada T, Fujii-Kuriyama Y. Metabolic activation of polycyclic aromatic hydrocarbons to carcinogens by cytochromes P450 1A1 and 1B1. Cancer Sci. 2004; 95:1–6. [PubMed: 14720319]
- (82). Koehl W, Amin S, Staretz ME, Ueng Y-F, Yamazaki H, Tateishi T, Guengerich FP, Hecht SS. Metabolism of 5-methylchrysene and 6-methylchrysene by human hepatic and pulmonary cytochrome P450 enzymes. Cancer Res. 1996; 56:316–324. [PubMed: 8542586]
- (83). Ahmad S, Kabler SL, Rudd L, Amin S, Doehmer J, Morrow CS, Townsend AJ. Cytotoxicity and mutagenicity of 5-methylchrysene and its 1,2-dihydrodiol in V79MZ cells modified to express human CYP1A1 or CYP1B1, in the presence or absence of human GSTP1 coexpression. Toxicol. Lett. 2008; 183:99–104. [PubMed: 18992797]
- (84). Yamazaki H, Mimura M, Oda Y, Gonzalez FJ, El-Bayoumy K, Chae HY, Guengerich FP, Shimada T. Activation of *trans*-1,2-dihydro-1,2-dihydroxy-6-aminochrysene to genotoxic metabolites by rat and human cytochromes P450. Carcinogenesis. 1994; 15:465–470. [PubMed: 8118930]
- (85). Yamazaki H, Mimura M, Oda Y, Inui Y, Shiraga T, Iwasaki K, Guengerich FP, Shimada T. Roles of different forms of cytochrome P450 in the activation of the promutagen 6-aminochrysene to genotoxic metabolites in human liver microsomes. Carcinogenesis. 1993; 14:1271–1278. [PubMed: 8330339]
- (86). Buters J, Quintanilla-Martinez L, Schober W, Soballa VJ, Hintermair J, Wolff T, Gonzalez FJ, Greim H. CYP1B1 determines susceptibility to low doses of 7,12-dimethylbenz[a]anthracene-induced ovarian cancers in mice correlation of CYP1B1-mediated DNA adducts with carcinogenicity. Carcinogenesis. 2003; 24:327–334. [PubMed: 12584184]
- (87). Hashizume T, Yoshitomi S, Asahi S, Uematsu R, Matsumura S, Chatani F, Oda H. Advantages of human hepatocyte-derived transformants expressing a series of human cytochrome P450 isoforms for genotoxicity examination. Toxicol. Sci. 2010; 116:488–497. [PubMed: 20507880]
- (88). Gabelova A, Bacova G, Ruzekova L, Farkasova T. Role of cytochrome P4501A1 in biotransformation of a tissue specific sarcomagen *N*-methyldibenzo[*c,g*]carbazole. Mut. Res. 2000; 469:259–269. [PubMed: 10984687]
- (89). Gabelova A, Farkasova T, Bacova G, Robichova S. Mutagenicity of 7*H*-dibenzo[*c,g*]carbazole and its tissue specific derivatives in genetically engineered Chinese hamster V79 cell lines stably expressing cytochrome P450. Mut. Res. 2002; 517:135–45. [PubMed: 12034315]
- (90). Gabelova A, Binkova B, Valovicova Z, Sram RJ. DNA adduct formation by 7*H*-dibenzo[*c,g*]carbazole and its tissue- and organ-specific derivatives in Chinese hamster V79 cell lines stably expressing cytochrome P450 enzymes. Environ. Mol. Mutagen. 2004; 44:448–458. [PubMed: 15534862]
- (91). Gábelová A, Valovi ová Z, Mesárosová M, Trilecová L, Hrubá E, Marvanová S, Kr már P, Milcová A, Schmuczerová J, Vondrá ek J, Machala M, Topinka J. Genotoxicity of 7*H*-dibenzo[*c,g*]carbazole and its tissue-specific derivatives in human hepatoma HepG2 cells is related to CYP1A1/1A2 expression. Environ. Mol. Mutagen. 2011; 52:636–645. [PubMed: 21809388]

(92). Roberts-Thompson SJ, McManus ME, Tukey RH, Gonzalez FJ, Holder GM. Metabolism of polycyclic aza-aromatic carcinogens catalyzed by four expressed human cytochromes P450. Cancer Res. 1995; 55:1052–1059. [PubMed: 7866988]

- (93). Penman BW, Chen L, Gelboin HV, Gonzalez FJ, Crespi CL. Development of a human lymphoblastoid cell line constitutively expressing human CYP1A1 cDNA substrate specificity with model substrates and promutagens. Carcinogenesis. 1994; 15:1931–1937. [PubMed: 7923587]
- (94). Sengstag C, Eugster HP, Würgler FE. High promutagen activating capacity of yeast microsomes containing human cytochrome P-450 1A and human NADPH-cytochrome P-450 reductase. Carcinogenesis. 1994; 15:837–843. [PubMed: 8200084]
- (95). Oda Y, Totsuka Y, Wakabayashi K, Guengerich FP, Shimada T. Activation of aminophenylnorharman, aminomethylphenylnorharman and aminophenylharman to genotoxic metabolites by human *N*-acetyltransferases and cytochrome P450 enzymes expressed in *Salmonella typhimurium umu* tester strains. Mutagenesis. 2006; 21:411–416. [PubMed: 17067997]
- (96). Stiborová M, Frei E, Wiessler M, Schmeiser HH. Human enzymes involved in the metabolic activation of carcinogenic aristolochic acids. Evidence for reductive activation by cytochromes P450 1A1 and 1A2. Chem. Res. Toxicol. 2001; 14:1128–1137. [PubMed: 11511187]
- (97). Stiborová M, Frei E, Hodek P, Wiessler M, Schmeiser HH. Human hepatic and renal microsomes, cytochromes P450 1A1/2, NADPH-cytochrome P450 reductase and prostaglandin H synthase mediate the formation of aristolochic acid-DNA adducts found in patients with urothelial cancer. Int. J. Cancer. 2005; 113:189–197. [PubMed: 15386410]
- (98). Stiborová M, Sopko B, Hodek P, Frei E, Schmeiser HH, Hudecek J. The binding of aristolochic acid I to the active site of human cytochromes P450 1A1 and 1A2 explains their potential to reductively activate this human carcinogen. Cancer Lett. 2005; 229:193–204. [PubMed: 16125300]
- (99). Stiborová M, Levová K, Bárta F, Shi Z, Frei E, Schmeiser HH, Nebert DW, Phillips DH, Arlt VM. Bioactivation versus detoxication of the urothelial carcinogen aristolochic acid I by human cytochrome P450 1A1 and 1A2. Toxicol. Sci. 2012; 125:345–358. [PubMed: 22086975]
- (100). Fontaine SM, Hoyer PB, Halpert JR, Sipes IG. Role of induction of specific hepatic cytochrome P450 isoforms in epoxidation of 4-vinylcyclohexene. Drug Metab. Dispos. 2001; 29:1236–1242. [PubMed: 11502734]
- (101). Yoshitomi S, Ikemoto K, Takahashi J, Miki H, Namba M, Asahi S. Establishment of the transformants expressing human cytochrome P450 subtypes in HepG2, and their applications on drug metabolism and toxicology. Toxicol. In Vitro. 2001; 15:245–256. [PubMed: 11377097]
- (102). Takemoto K, Yamazaki H, Nakajima M, Yokoi T. Genotoxic activation of benzophenone and its two metabolites by human cytochrome P450s in SOS/umu assay. Mut. Res. 2002; 519:199–204. [PubMed: 12160905]
- (103). Durant JL, Lafleur AL, Busby WF Jr. Donhoffner LL, Penman BW, Crespi CL. Mutagenicity of C24H14 PAH in human cells expressing CYP1A1. Mut. Res. 1999; 446:1–14. [PubMed: 10613181]
- (104). Kim JH, Stansbury KH, Walker NJ, Trush MA, Strickland PT, Sutter TR. Metabolism of benzo[*a*]pyrene and benzo[*a*]pyrene-7,8-diol by human cytochrome P450 1B1. Carcinogenesis. 1998; 19:1847–1853. [PubMed: 9806168]
- (105). Schwarz D, Kisselev P, Honeck H, Cascorbi I, Schunck WH, Roots I. Co-expression of human cytochrome P4501A1 (CYP1A1) variants and human NADPH-cytochrome P450 reductase in the baculovirus/insect cell system. Xenobiotica. 2001; 31:345–356. [PubMed: 11513247]
- (106). Guo Z, Gillam EM, Ohmori S, Tukey RH, Guengerich FP. Expression of modified human cytochrome P450 1A1 in *Escherichia coli*: Effects of 5' substitution, stabilization, purification, spectral characterization, and catalytic properties. Arch. Biochem. Biophys. 1994; 312:436–446. [PubMed: 8037457]
- (107). Guengerich FP, Shimada T, Raney KD, Yun CH, Meyer DJ, Ketterer B, Harris TM, Groopman JD, Kadlubar FF. Elucidation of catalytic specificities of human cytochrome P450 and glutathione S-transferase enzymes and relevance to molecular epidemiology. Environ. Health Perspect. 1992; 98:75–80. [PubMed: 1486866]

(108). Hashizume T, Yoshitomi S, Asahi S, Matsumura S, Chatani F, Oda H. *In vitro* micronucleus test in HepG2 transformants expressing a series of human cytochrome P450 isoforms with chemicals requiring metabolic activation. Mut. Res. 2009; 677:1–7. [PubMed: 19501186]

- (109). Baum M, Amin S, Guengerich FP, Hecht SS, Kohl W, Eisenbrand G. Metabolic activation of benzo[*c*]phenanthrene by cytochrome P450 enzymes in human liver and lung. Chem. Res. Toxicol. 2001; 14:686–693. [PubMed: 11409939]
- (110). Seaton MJ, Schlosser PM, Bond JA, Medinsky MA. Benzene metabolism by human liver microsomes in relation to cytochrome P4502E1. Carcinogenesis. 1994; 15:1799–1806. [PubMed: 7923572]
- (111). Reid JM, Kuffel MJ, Miller JK, Rios R, Ames MM. Metabolic activation of dacarbazine by human cytochromes P450: The role of CYP1A1, CYP1A2, and CYP2E1. Clin. Cancer Res. 1999; 5:2192–2197. [PubMed: 10473105]
- (112). Yuan ZX, Kumar S, Sikka HC. Comparative metabolism of the aza polynuclear aromatic hydrocarbon dibenz[*a,h*]acridine by recombinant human and rat cytochrome P450s. Chem. Res. Toxicol. 17:672–678. [PubMed: 15144224]
- (113). Luch A, Coffing SL, Tang YM, Schneider A, Soballa V, Greim H, Jefcoate CR, Seidel A, Greenlee WF, Baird WM, Doehmer J. Stable expression of human cytochrome P450 1B1 in V79 Chinese hamster cells and metabolically catalyzed DNA adduct formation of dibenzo[*a,I*]pyrene. Chem. Res. Toxicol. 1998; 11:686–695. [PubMed: 9625737]
- (114). Luch A, Schober W, Soballa VJ, Raab G, Greim H, Jacob J, Doehmer J, Seidel A. Metabolic activation of dibenzo[*a,I*]pyrene by human cytochrome P450 1A1 and P450 1B1 expressed in V79 Chinese hamster cells. Chem. Res. Toxicol. 1999; 12:353–364. [PubMed: 10207125]
- (115). Luch A, Kishiyama S, Seidel A, Doehmer J, Greim H, Baird WM. The K-region *trans*-8,9-diol does not significantly contribute as an intermediate in the metabolic activation of dibenzo[*a,I*]pyrene to DNA-binding metabolites by human cytochrome P450 1A1 or 1B1. Cancer Res. 1999; 59:4603–4609. [PubMed: 10493514]
- (116). King LC, Adams L, Allison J, Kohan MJ, Nelson G, Desai D, Amin S, Ross JA. A quantitative comparison of dibenzo[*a*,*I*]pyrene-DNA adduct formation by recombinant human cytochrome P450 microsomes. Mol. Carcinog. 1999; 26:74–82. [PubMed: 10506751]
- (117). Shou M, Krausz KW, Gonzalez FJ, Gelboin HV. Metabolic activation of the potent carcinogen dibenzo[*a,I*]pyrene by human recombinant cytochromes P450, lung and liver microsomes. Carcinogenesis. 1996; 17:2429–2433. [PubMed: 8968059]
- (118). Schober W, Luch A, Soballa VJ, Raab G, Stegeman JJ, Doehmer J, Jacob J, Seidel A. On the species-specific biotransformation of dibenzo[*a,I*]pyrene. Chem.-Biol. Interact. 2006; 161:37–48. [PubMed: 16581046]
- (119). Kushman ME, Kabler SL, Ahmad S, Doehmer J, Morrow CS, Townsend AJ. Cytotoxicity and mutagenicity of dibenzo[*a,l*]pyrene and (±)-dibenzo[*a,l*]pyrene-11,12-dihydrodiol in V79MZ cells co-expressing either hCYP1A1 or hCYP1B1 together with human glutathione-S-transferase A1. Mut. Res. 2007; 624:80–87. [PubMed: 17509623]
- (120). Shimada T, Guengerich FP. Inhibition of human cytochrome P450 A1-, 1A2-, and 1B1-mediated activation of procarcinogens to genotoxic metabolites by polycyclic aromatic hydrocarbons. Chem. Res. Toxicol. 2006; 19:288–294. [PubMed: 16485905]
- (121). Spink DC, Hayes CL, Young NR, Christou M, Sutter TR, Jefcoate CR, Gierthy JF. The effects of 2,3,7,8-tetrachlorodibenzo-*p*-dioxin on estrogen metabolism in MCF-7 breast cancer cells: evidence for induction of a novel 17β-estradiol 4-hydroxylase. J. Steroid Biochem. Mol Biol. 1994; 51:251–258. [PubMed: 7826886]
- (122). Yamazaki H, Shaw PM, Guengerich FP, Shimada T. Roles of cytochromes P450 1A2 and 3A4 in the oxidation of estradiol and estrone in human liver microsomes. Chem. Res. Toxicol. 1998; 11:659–665. [PubMed: 9625734]
- (123). Shou M, Korzekwa KR, Brooks EN, Krausz KW, Gonzalez FJ, Gelboin HV. Role of human hepatic cytochrome P450 1A2 and 3A4 in the metabolic activation of estrone. Carcinogenesis. 1997; 18:207–214. [PubMed: 9054608]

(124). Niwa T, Yabusaki Y, Honma K, Matsuo N, Tatsuta K, Ishibashi F, Katagiri M. Contribution of human hepatic cytochrome P450 isoforms to regioselective hydroxylation of steroid hormones. Xenobiotica. 1998; 6:539–547. [PubMed: 9667077]

- (125). Okubo K, Jinbo M, Toma Y, Shimizu Y, Yanaihara T. Aromatase and estrogen 2-hydroxylase activities of human placental microsomes in pregnancy-induced hypertension. Endocr. J. 1996; 43:363–368. [PubMed: 8930523]
- (126). Badawi AF, Cavalieri EL, Rogan EG. Role of human cytochrome P450 1A1, 1A2, 1B1, and 3A4 in the 2-, 4-, and 16α -hydroxylation of 17β -estradiol. Metabolism. 2001; 50:1001–1003. [PubMed: 11555828]
- (127). Lee AJ, Cai MX, Thomas PE, Conney AH, Zhu BT. Characterization of the oxidative metabolites of 17β-estradiol and estrone formed by 15 selectively expressed human cytochrome P450 isoforms. Endocrinology. 2003; 144:3382–3398. [PubMed: 12865317]
- (128). Zhu BT, Lee AJ. NADPH-dependent metabolism of 17β-estradiol and estrone to polar and nonpolar metabolites by human tissues and cytochrome P450 isoforms. Steroids. 2005; 70:225– 244. [PubMed: 15784278]
- (129). Tsuchiya Y, Nakajima M, Yokoi T. Cytochrome P450-mediated metabolism of estrogens and its regulation in human. Cancer Lett. 2005; 227:115–124. [PubMed: 16112414]
- (130). Zhang Y, Gaikwad NW, Olson K, Zahid M, Cavalieri EL, Rogan EG. Cytochrome P450 isoforms catalyze formation of catechol estrogen quinones that react with DNA. Metabolism. 2007; 56:887–894. [PubMed: 17570247]
- (131). Kisselev P, Schunck WH, Roots I, Schwarz D. Association of CYP1A1 polymorphisms with differential metabolic activation of 17β-estradiol and estrone. Cancer Res. 2005; 65:2972–2978. [PubMed: 15805301]
- (132). Fujita K, Kamataki T. Predicting the mutagenicity of tobacco-related *N*-nitrosamines in humans using 11 strains of *Salmonella typhimurium* YG7108, each coexpressing a form of human cytochrome P450 along with NADPH-cytochrome P450 reductase. Environ. Mol. Mutagen. 2001; 38:339–346. [PubMed: 11774366]
- (133). Kamataki T, Fujita K, Nakayama K, Miyamoto M, Ariyoshi N. Role of human cytochrome P450 (CYP) in the metabolic activation of nitrosamine derivatives: application of genetically engineered Salmonella expressing human CYP. Drug Metab. Rev. 2002; 34:667–676. [PubMed: 12214673]
- (134). Fujita K, Kamataki T. Role of human cytochrome P450 (CYP) in the metabolic activation of N-alkylnitrosamines: Application of genetically engineered *Salmonella typhimurium* YG7108 expressing each form of CYP together with human NADPH-cytochrome P450 reductase. Mut. Res. 2001; 483:35–41. [PubMed: 11600130]
- (135). Schober W, Pusch G, Oeder S, Reindl H, Behrendt H, Buters JT. Metabolic activation of phenanthrene by human and mouse cytochromes P450 and pharmacokinetics in CYP1A2 knockout mice. Chem.-Biol. Interact. 2010; 183:57–66. [PubMed: 19766613]
- (136). Stiborová M, Martinek V, Rydlova H, Hodek P, Frei E. Sudan I is a potential carcinogen for humans. Evidence for its metabolic activation and detoxication by human recombinant cytochrome P450 1A1 and liver microsomes. Cancer Res. 2002; 62:5678–5684. [PubMed: 12384524]
- (137). Stiborová M, Martinek V, Schmeiser HH, Frei E. Modulation of CYP1A1-mediated oxidation of carcinogenic azo dye Sudan I and its binding to DNA by cytochrome *b*₅. Neuro Endocrinol. Lett. 2006; 27(Suppl.2):35–39.
- (138). Gautier JC, Leceour S, Cosme J, Perret A, Urban P, Beaune P, Pompon D. Contribution of human cytochrome P450 to benzo[a]pyrene and benzo[a]pyrene-7,8-dihydrodiol metabolism, as predicted from heterologous expression in yeast. Pharmacogenetics. 1996; 6:489–499. [PubMed: 9014198]
- (139). Aoyama T, Gonzalez FJ, Gelboin HV. Human cDNA-expressed cytochrome P450 IA2 mutagen activation and substrate specificity. Mol. Carcinog. 1989; 2:192–198. [PubMed: 2803520]
- (140). Kalgutkar AS, Obach RS, Maurer TS. Mechanism-based inactivation of cytochrome P450 enzymes: Chemical mechanisms, structure-activity relationships and relationship to clinical drug-

- drug interactions and idiosyncratic adverse drug reactions. Curr. Drug Metab. 2007; 8:407–447. [PubMed: 17584015]
- (141). Duarte MP, Palma BB, Gilep AA, LaiRes A, Oliveira JS, Usanov SA, Rueff J, Kranendonk M. The stimulatory role of human cytochrome b₅ in the bioactivation activities of human CYP1A2, 2A6 and 2E1. A new cell expression system to study cytochrome P450 mediated biotransformation. Mutagenesis. 2005; 20:93–100. [PubMed: 15728263]
- (142). Duarte MP, Palma BB, LaiRes A, Oliveira JS, Rueff J, Kranendonk M. Escherichia coli BTC, a human cytochrome P450 competent tester strain with a high sensitivity towards alkylating agents involvement of alkyltransferases in the repair of DNA damage induced by aromatic amines. Mutagenesis. 2005; 20:199–208. [PubMed: 15843388]
- (143). Duarte MP, Palma BB, Gilep AA, LaiRes A, Oliveira JS, Usanov SA, Rueff J, Kranendonk M. The stimulatory role of human cytochrome b_5 in the bioactivation activities of human CYP1A2, 2A6 and 2E1. A new cell expression system to study cytochrome P450-mediated biotransformation (a corrigendum report on Duarte et al. (2005) *Mutagenesis 20*, 93-100). Mutagenesis. 2007; 22:75–81. [PubMed: 17158518]
- (144). Loeppky RN, Fuchs A, Janzowski C, Humberd C, Goelzer P, Schneider H, Eisenbrand G. Probing the mechanism of the carcinogenic activation of *N*-nitrosodiethanolamine with deuterium isotope effects. *In vivo* induction of DNA single-strand breaks and related *in vitro* assays. Chem. Res. Toxicol. 1998; 11:1556–1566. [PubMed: 9860501]
- (145). Yamada K, Suzuki T, Hakura A, Mizutani T, Saeki K. Metabolic activation of 10-aza-substituted benzo[a]pyrene by cytochrome P450 1A2 in human liver microsomes. Mut. Res. 2004; 557:159–165. [PubMed: 14729370]
- (146). Yueh MF, Nguyen N, Famourzadeh M, Strassburg CP, Oda Y, Guengerich FP, Tukey RH. The contribution of UDP-glucuronosyltransferase 1A9 on CYP1A2-mediated genotoxicity by aromatic and heterocyclic amines. Carcinogenesis. 2001; 22:943–950. [PubMed: 11375903]
- (147). Oda Y. Analysis of the involvement of human *N*-acetyltransferase 1 in the genotoxic activation of bladder carcinogenic arylamines using a SOS/umu assay system. Mut. Res. 2004; 554:399–406. [PubMed: 15450435]
- (148). Gonzalez FJ, Gelboin HV. Role of human cytochromes P450 in the metabolic activation of chemical carcinogenesis and toxins. Drug Metab. Rev. 1994; 26:165–183. [PubMed: 8082563]
- (149). Shimada T, Guengerich FP. Activation of amino-α-carboline, 2-amino-1-methyl-6-phenylimidazo[4,5-*b*]pyridine, and a copper phthalocyanine cellulose extract of cigarette smoke condensate by cytochrome P-450 enzymes in rat and human liver microsomes. Cancer Res. 1991; 51:5284–5291. [PubMed: 1913651]
- (150). Turesky RJ, Constable A, Richoz J, Varga N, Markovic J, Martin MV, Guengerich FP. Activation of heterocyclic aromatic amines by rat and human liver microsomes and by purified rat and human cytochrome P450 1A2. Chem. Res. Toxicol. 1998; 11:925–936. [PubMed: 9705755]
- (151). Aryal P, Terashita T, Guengerich FP, Shimada T, Oda Y. Use of genetically engineered *Salmonella typhimurium* OY1002/1A2 strain coexpressing human cytochrome P450 1A2 and NADPH-cytochrome P450 reductase and bacterial *O*-acetyltransferase in SOS/*umu* assay. Environ. Mol. Mutagen. 2000; 36:121–126. [PubMed: 11013410]
- (152). Turesky RJ, Constable A, Fay LB, Guengerich FP. Interspecies differences between rat and human P450 1A2 in the metabolism of heterocyclic aromatic amines. Cancer Lett. 1999; 143:109–112. [PubMed: 10503887]
- (153). Turesky R, Guengerich FP, Guillouzo A, Langouët S. Metabolism of heterocyclic aromatic amines by human hepatocytes and cytochrome P4501A2. Mut. Res. 2002; 506-507:187–95. [PubMed: 12351158]
- (154). Kim D, Guengerich FP. Selection of human cytochrome P450 1A2 mutants with enhanced catalytic activity for heterocyclic amine N-hydroxylation. Biochemistry. 2004; 43:981–938. [PubMed: 14744142]
- (155). Zhou H, Josephy PD, Kim D, Guengerich FP. Functional characterization of four allelic variants of human cytochrome P450 1A2. Arch. Biochem. Biophys. 2004; 422:23–30. [PubMed: 14725854]

(156). Walters DG, Young PJ, Agus C, Knize MG, Boobis AR, Gooderham NJ, Lake BG. Cruciferous vegetable consumption alters the metabolism of the dietary carcinogen 2-amino-1-methyl-6-phenylimidazo[4,5-*b*]pyridine (PhIP) in humans. Carcinogenesis. 2004; 25:1659–1669. [PubMed: 15073045]

- (157). Cheung C, Ma X, Krausz KW, Kimura S, Feigenbaum L, Dalton TP, Nebert DW, Idle JR, Gonzalez FJ. Differential metabolism of 2-amino-1-methyl-6-phenylimidazo[4,5-*b*]pyridine (PhIP) in mice humanized for CYP1A1 and CYP1A2. Chem. Res. Toxicol. 2005; 18:1471–1478. [PubMed: 16167840]
- (158). Josephy PD, Bibeau KL, Evans DH. Activation of MeIQ (2-amino-3,4-dimethylimidazo-[4,5-f]quinoline) by sequence variants of recombinant human cytochrome P450 1A2. Environ. Mol. Mutagen. 2000; 35:328–335. [PubMed: 10861951]
- (159). Glatt H, Pabel U, Meinl W, Frederiksen H, Frandsen H, Muckel E. Bioactivation of the heterocyclic aromatic amine 2-amino-3-methyl-9*H*-pyrido [2,3-*b*]indole (MeAαC) in recombinant test systems expressing human xenobiotic-metabolizing enzymes. Carcinogenesis. 2004; 25:801–807. [PubMed: 14729582]
- (160). Butler MA, Iwasaki M, Guengerich FP, Kadlubar FF. Human cytochrome P-450PA (P-4501A2), the phenacetin *O*-deethylase, is primarily responsible for the hepatic 3demethylation of caffeine and *N*-oxidation of carcinogenic arylamines. Proc. Natl. Acad. Sci. U.S.A. 1989; 86:7696–7700. [PubMed: 2813353]
- (161). Barcelo S, Mace K, Pfeifer AM, Chipman JK. Production of DNA strand breaks by *N*-nitrosodimethylamine and 2-amino-3-methylimidazo[4,5-*f*]quinoline in THLE cells expressing human CYP isoenzymes and inhibition by sulforaphane. Mut. Res. 1998; 402:111–120. [PubMed: 9675256]
- (162). Kranendonk M, Fisher CW, Roda R, Carreira F, Theisen P, LaiRes A, Rueff J, Vermeulen NP, Estabrook RW. *Escherichia coli* MTC, a NADPH cytochrome P450 reductase competent mutagenicity tester strain for the expression of human cytochrome P450. Comparison of three types of expression systems. Mut. Res. 1999; 439:287–300. [PubMed: 10023085]
- (163). Kim D, Kadlubar FF, Teitel CH, Guengerich FP. Formation and reduction of aryl and heterocyclic nitroso compounds and significance in the flux of hydroxylamines. Chem. Res. Toxicol. 2004; 17:529–536. [PubMed: 15089095]
- (164). Raza H, King RS, Squires RB, Guengerich FP, Miller DW, Freeman JP, Lang NP, Kadlubar FF. Metabolism of 2-amino-α-carboline, a food-borne heterocyclic amine mutagen and carcinogen, by human and rodent liver microsomes and by human cytochrome P4501A2. Drug Metab. Dispos. 1996; 24:395–400. [PubMed: 8801053]
- (165). Josephy PD, Evans DH, Parikh A, Guengerich FP. Metabolic activation of aromatic amine mutagens by simultaneous expression of human cytochrome P450 1A2, NADPH-cytochrome P450 reductase, and *N*-acetyltransferase in *Escherichia coli*. Chem. Res. Toxicol. 1998; 11:70–74. [PubMed: 9477228]
- (166). Stanley LA, Skare JA, Doyle E, Powrie R, D'Angelo D, Elcombe CR. Lack of evidence for metabolism of *p*-phenylenediamine by human hepatic cytochrome P450 enzymes. Toxicology. 2005; 210:147–157. [PubMed: 15840428]
- (167). Scheuenpflug J, Krebsfanger N, Doehmer J. Heterologous co-expression of human cytochrome P450 1A2 and polymorphic forms of *N*-acetyltransferase 2 for studies on aromatic amines in V79 Chinese hamster cells. Altern. Lab. Anim. 2005; 33:561–577. [PubMed: 16372832]
- (168). Kappers WA, van Och FM, de Groene EM, Horbach GJ. Comparison of three different in vitro mutation assays used for the investigation of cytochrome P450-mediated mutagenicity of nitropolycyclic aromatic hydrocarbons. Mut. Res. 2000; 466:143–159. [PubMed: 10727902]
- (169). Glatt H, Engelke CE, Pabel U, Teubner W, Jones AL, Coughtrie MW, Andrae U, Falany CN, Meinl W. Sulfotransferases: Genetics and role in toxicology. Toxicol. Lett. 2000; 112-113:341–348. [PubMed: 10720750]
- (170). Anderson KE, Hammons GJ, Kadlubar FF, Potter JD, Kaderlik KR, Ilett KF, Minchin RF, Teitel CH, Chou HC, Martin MV, Guengerich FP, Barone GW, Lang NP, Peterson LA. Metabolic activation of aromatic amines by human pancreas. Carcinogenesis. 1997; 18:1085–1092. [PubMed: 9163700]

(171). Nakajima M, Itoh M, Sakai H, Fukami T, Katoh M, Yamazaki H, Kadlubar FF, Imaoka S, Funae Y, Yokoi T. CYP2A13 expressed in human bladder metabolically activates 4-aminobiphenyl. Int. J. Cancer. 2006; 119:2520–2526. [PubMed: 16988941]

- (172). Czerwinski M, McLemore TL, Philpot RM, Nhamburo PT, Korzekwa K, Gelboin HV, Gonzalez FJ. Metabolic activation of 4-ipomeanol by complementary DNA-expressed human cytochromes P-450. Evidence for species-specific metabolism. Cancer Res. 1991; 51:4636–4638. [PubMed: 1651809]
- (173). Baer BR, Rettie AE, Henne KR. Bioactivation of 4-ipomeanol by CYP4B1. Adduct characterization and evidence for an enedial intermediate. Chem. Res. Toxicol. 2005; 18:855– 864. [PubMed: 15892579]
- (174). Chae Y-H, Thomas T, Guengerich FP, Fu PP, El-Bayoumy K. Comparative metabolism of 1-, 2-, and 4-nitropyrene by human hepatic and pulmonary microsomes. Cancer Res. 1999; 59:1473–1480. [PubMed: 10197616]
- (175). Aoyama T, Yamano S, Guzelian PS, Gelboin HV, Gonzalez FJ. 5 of 12 forms of vaccinia virus-expressed human hepatic cytochrome-P450 metabolically activate aflatoxin B₁. Proc. Natl. Acad. Sci. U. S. A. 1990; 87:4790–4793. [PubMed: 2162057]
- (176). Ueng Y-F, Shimada T, Yamazaki H, Guengerich FP. Oxidation of aflatoxin B_1 by bacterial recombinant human cytochrome P450 enzymes. Chem. Res. Toxicol. 1995; 8:218–225. [PubMed: 7766804]
- (177). Gallagher EP, Wienkers LC, Stapleton PL, Kunze KL, Eaton DL. Role of human microsomal and human complementary DNA-expressed cytochromes P4501A2 and P4503A4 in the bioactivation of aflatoxin B₁. Cancer Res. 1994; 54:101–108. [PubMed: 8261428]
- (178). Van Vleet TR, Klein PJ, Coulombe RA Jr. Metabolism and cytotoxicity of aflatoxin B₁ in cytochrome P-450-expressing human lung cells. J. Toxicol. Environ. Health A. 2002; 65:853– 867. [PubMed: 12079611]
- (179). Ramsdell HS, Parkinson A, Eddy AC, Eaton DL. Bioactivation of aflatoxin B₁ by human liver microsomes: Role of cytochrome P450 IIIA enzymes. Toxicol. Appl. Pharmacol. 1991; 108:436– 447. [PubMed: 1902334]
- (180). Van Vleet TR, Mace K, Coulombe RA Jr. Comparative aflatoxin B(1) activation and cytotoxicity in human bronchial cells expressing cytochromes P450 1A2 and 3A4. Cancer Res. 2002; 62:105–112. [PubMed: 11782366]
- (181). He XY, Tang L, Wang SL, Cai QS, Wang JS, Hong JY. Efficient activation of aflatoxin B₁ by cytochrome P450 2A13, an enzyme predominantly expressed in human respiratory tract. Int. J. Cancer. 2006; 118:2665–2671. [PubMed: 16385575]
- (182). Kamdem LK, Meineke I, Godtel-Armbrust U, Brockmoller J, Wojnowski L. Dominant contribution of P450 3A4 to the hepatic carcinogenic activation of aflatoxin B₁. Chem. Res. Toxicol. 2006; 19:577–86. [PubMed: 16608170]
- (183). Duisken M, Benz D, Peiffer TH, Blomeke B, Hollendert J. Metabolism of ³-carene by human cytochrome P450 enzymes. Identification and characterization of two new metabolites. Curr. Drug Metab. 2005; 6:593–601. [PubMed: 16379671]
- (184). Shou MG, Krausz KW, Gonzalez FJ, Gelboin HV. Metabolic activation of the potent carcinogen dibenzo[*a,h*]anthracene by cDNA-expresed human cytochromes P450. Arch. Biochem. Biophys. 1996; 328:201–207. [PubMed: 8638931]
- (185). Stiborová M, Bieler CA, Wiessler M, Frei E. The anticancer agent ellipticine on activation by cytochrome P450 forms covalent DNA adducts. Biochem. Pharmacol. 2001; 62:1675–1684. [PubMed: 11755121]
- (186). Frei E, Bieler CA, Arlt VM, Wiessler M, Stiborová M. Covalent binding of the anticancer drug ellipticine to DNA in V79 cells transfected with human cytochrome P450 enzymes. Biochem. Pharmacol. 2002; 64:289–295. [PubMed: 12123750]
- (187). Stiborová M, Sejbal J, Borek-Dohalska L, Aimova D, Poljakova J, Forsterova K, Rupertova M, Wiesner J, Hudecek J, Wiessler M, Frei E. The anticancer drug ellipticine forms covalent DNA adducts, mediated by human cytochromes P450, through metabolism to 13-hydroxyellipticine and ellipticine N2-oxide. Cancer Res. 2004; 64:8374–8380. [PubMed: 15548707]

(188). Stiborová M, Borek-Dohalska L, Aimova D, Kotrbova V, Kukackova K, Janouchova K, Rupertova M, Ryslava H, Hudecek J, Frei E. Oxidation pattern of the anticancer drug ellipticine by hepatic microsomes—similarity between human and rat systems. Gen. Physiol, Biophys. 2006; 25:245–261. [PubMed: 17197724]

- (189). Kotrbová V, Mrázová B, Moserová M, Martínek V, Hodek P, Hude ek J, Frei E, Stiborová M. Cytochrome b₅ shifts oxidation of the anticancer drug ellipticine by cytochromes P450 1A1 and 1A2 from its detoxication to activation, thereby modulating its pharmacological efficacy. Biochem. Pharmacol. 82:669–680. [PubMed: 21683692]
- (190). Kerlan V, Dreano Y, Bercovici JP, Beaune PH, Floch HH, Berthou F. Nature of cytochromes P450 involved in the 2-/4-hydroxylations of estradiol in human liver microsomes. Biochem. Pharmacol. 1992; 44:1745–1756. [PubMed: 1449532]
- (191). Huang Z, Guengerich FP, Kaminsky LS. 16α-Hydroxylation of estrone by human cytochrome P4503A4/5. Carcinogenesis. 1998; 19:867–872. [PubMed: 9635876]
- (192). Lee AJ, Kosh JW, Conney AH, Zhu BT. Characterization of the NADPH-dependent metabolism of 17β -estradiol to multiple metabolites by human liver microsomes and selectively expressed human cytochrome P450 3A4 and 3A5. J. Pharmacol. Exp. Ther. 2001; 298:420–432. [PubMed: 11454902]
- (193). Cheng ZN, Shu Y, Liu ZQ, Wang LS, Ou-Yang DS, Zhou HH. Role of cytochrome P450 in estradiol metabolism in vitro. Acta Pharmacol. Sin. 2001; 22:148–154. [PubMed: 11741520]
- (194). Modugno F, Knoll C, Kanbour-Shakir A, Romkes M. A potential role for the estrogen-metabolizing cytochrome P450 enzymes in human breast carcinogenesis. Breast Cancer Res. Treat. 2003; 82:191–197. [PubMed: 14703066]
- (195). Jeurissen SM, Punt A, Boersma MG, Bogaards JJ, Fiamegos YC, Schilter B, van Bladeren PJ, Cnubben NH, Rietjens IMMC. Human cytochrome P450 enzyme specificity for the bioactivation of estragole and related alkenylbenzenes. Chem. Res. Toxicol. 2007; 20:798–806. [PubMed: 17407329]
- (196). Rietgens IMMC, Boersma MG, van der Woude H, Jeurissen SM, Schutte MF, Alink GM. Flavonoids and alkenylbenzenes: mechanisms of mutagenic action and carcinogenic risk. Mut. Res. 2002; 574:124–138.
- (197). Chen XW, Serag ES, Sneed KB, Zhou SF. Herbal bioactivation, molecular targets and the toxicity relevance. Chem.-Biol. Interact. 2011; 192:161–176. [PubMed: 21459083]
- (198). Cribb AE, Knight MJ, Dryer D, Guernsey J, Hender K, Tesch M, Saleh TM. Role of polymorphic human cytochrome P450 enzymes in estrone oxidation. Cancer Epidemiol. Biomarkers Prev. 2006; 15:551–558. [PubMed: 16537715]
- (199). Jeurissen SM, Bogaards JJ, Boersma MG, ter Horst JP, Awad HM, Fiamegos YC, van Beek TA, Alink GM, Sudholter EJ, Cnubben NH, Rietjens IM. Human cytochrome P450 enzymes of importance for the bioactivation of methyleugenol to the proximate carcinogen 1'-hydroxymethyleugenol. Chem. Res. Toxicol. 2006; 19:111–116. [PubMed: 16411663]
- (200). Urban P, Jobert AS, Laine R, Pompon D. Cytochrome P450 (CYP) mutants and substrate-specificity alterations: segment-directed mutagenesis applied to human CYP1A1. Biochem. Soc. Trans. 2001; 29:128–135. [PubMed: 11356140]
- (201). Stiborová M, Miksanova M, Sulc M, Rydlova H, Schmeiser HH, Frei E. Identification of a genotoxic mechanism for the carcinogenicity of the environmental pollutant and suspected human carcinogen *o*-anisidine. Int. J. Cancer. 2005; 116:667–678. [PubMed: 15828049]
- (202). Kim H, Wang RS, Elovaara E, Raunio H, Pelkonen O, Aoyama T, Vainio H, Nakajima T. Cytochrome P450 isozymes responsible for the metabolism of toluene and styrene in human liver microsomes. Xenobiotica. 1997; 27:657–665. [PubMed: 9253143]
- (203). Nakajima T, Elovaara E, Gonzalez FJ, Gelboin HV, Raunio H, Pelkonen O, Vainio H, Aoyama T. Styrene metabolism by cDNA-expressed human hepatic and pulmonary cytochromes P450. Chem. Res. Toxicol. 1994; 7:891–896. [PubMed: 7696548]
- (204). Wenker MA, Kezic S, Monster AC, De Wolff FA. Metabolism of styrene in the human liver *in vitro*. Interindividual variation and enantioselectivity. Xenobiotica. 2001; 31:61–72. [PubMed: 11407535]

(205). Lewis DF, Sams C, Loizou GD. A quantitative structure-activity relationship analysis on a series of alkyl benzenes metabolized by human cytochrome P450 2E1. J. Biochem. Mol. Toxicol. 2003; 17:47–52. [PubMed: 12616646]

- (206). Estavillo C, Lu Z, Jansson I, Schenkman JB, Rusling JF. Epoxidation of styrene by human cyt P450 1A2 by thin film electrolysis and peroxide activation compared to solution reactions. Biophys. Chem. 2003; 104:291–296. [PubMed: 12834847]
- (207). Fukami T, Katoh M, Yamazaki H, Yokoi T, Nakajima M. Human cytochrome P450 2A13 efficiently metabolizes chemicals in air pollutants: naphthalene, styrene, and toluene. Chem. Res. Toxicol. 2008; 21:720–725. [PubMed: 18266326]
- (208). Guengerich FP, Chun Y-J, Kim D, Gillam EMJ, Shimada T. Cytochrome P450 1B1: a target for inhibition in anticarcinogenesis strategies. Mut. Res. 2003; 523-524:173–182. [PubMed: 12628515]
- (209). Mammen JS, Pittman GS, Li Y., Abou- Zahr F, Bejjani BA, Bell DA, Strickland PT, Sutter TR. Single amino acid mutations, but not common polymorphisms, decrease the activity of CYP1B1 against (–)-benzo[*a*]pyrene-7*R*-*trans*-7,8-dihydrodiol. Carcinogenesis. 2003; 24:1247–1255. [PubMed: 12807732]
- (210). Wu Z-L, Sohl CD, Shimada T, Guengerich FP. Recombinant enzymes over-expressed in bacteria show broad catalytic specificity of human cytochrome P450 2W1 and limited activity of human cytochrome P450 2S1. Mol. Pharmacol. 2006; 69:2007–2014. [PubMed: 16551781]
- (211). Chun Y-J, Kim S, Kim D, Lee SK, Guengerich FP. A new selective and potent inhibitor of human cytochrome P450 1B1 and its application to antimutagenesis. Cancer Res. 2001; 61:8164– 8170. [PubMed: 11719446]
- (212). Arlt VM, Hewer A, Sorg BL, Schmeiser HH, Phillips DH, Stiborová M. 3-Aminobenzanthrone, a human metabolite of the environmental pollutant 3-nitrobenzanthrone, forms DNA adducts after metabolic activation by human and rat liver microsomes. Evidence for activation by cytochrome P450 1A1 and P450 1A2. Chem. Res. Toxicol. 2004; 17:1092–1101. [PubMed: 15310241]
- (213). Smith TJ, Guo Z, Gonzalez FJ, Guengerich FP, Stoner GD, Yang CS. Metabolism of 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone in human lung and liver microsomes and cytochromes P-450 expressed in hepatoma cells. Cancer Res. 1992; 52:1757–1763. [PubMed: 1312898]
- (214). Smith TJ, Stoner GD, Yang CS. Activation of 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) in human lung microsomes by cytochromes P450, lipoxygenase, and hydroperoxides. Cancer Res. 1995; 55:5566–5573. [PubMed: 7585636]
- (215). Patten CJ, Smith TJ, Murphy SE, Wang MH, Lee J, Tynes RE, Koch P, Yang CS. Kinetic analysis of the activation of 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone by heterologously expressed human P450 enzymes and the effect of P450-specific chemical inhibitors on this activation in human liver microsomes. Arch. Biochem. Biophys. 1996; 333:127–138. [PubMed: 8806763]
- (216). Abdel-Rahman SZ, Salama SA, Au WW, Hamada FA. Role of polymorphic CYP2E1 and CYP2D6 genes in NNK-induced chromosome aberrations in cultured human lymphocytes. Pharmacogenetics. 10:239–249. [PubMed: 10803680]
- (217). Crespi CL, Penman BW, Steimel DT, Smith T, Yang CS, Sutter TR. Development of a human lymphoblastoid cell line constitutively expressing human CYP1B1 cDNA. Substrate specificity with model substrates and promutagens. Mutagenesis. 1997; 12:83–9. [PubMed: 9106248]
- (218). Ketelslegers HB, Godschalk RW, Eskens BJ, Dallinga JW, Gottschalk RW, van Schooten FJ, van Delft JH, Kleinjans JC. Potential role of cytochrome P450-1B1 in the metabolic activation of 4-aminobiphenyl in humans. Mol. Carcinog. 2009; 48:685–691. [PubMed: 19274671]
- (219). Chae YH, Yun C-H, Guengerich FP, Kadlubar FF, El-Bayoumy K. Roles of human hepatic and pulmonary cytochrome P450 enzymes in the metabolism of the environmental carcinogen 6-nitrochrysene. Cancer Res. 1993; 53:2028–2034. [PubMed: 8481905]
- (220). Shimada T, Gillam EM, Oda Y, Tsumura F, Sutter TR, Guengerich FP, Inoue K. Metabolism of benzo[a]pyrene to *trans*-7,8-dihydroxy-7,8-dihydrobenzo[a]pyrene by recombinant human cytochrome P450 1B1 and purified liver epoxide hydrolase. Chem. Res. Toxicol. 1999; 12:623–629. [PubMed: 10409402]

(221). Shimada T, Watanabe J, Inoue K, Guengerich FP, Gillam EMJ. Specificity of 17β-oestradiol and benzo[a]pyrene oxidation by polymorphic human cytochrome P4501B1 variants substituted at residues 48, 119 and 432. Xenobiotica. 2001; 31:163–176. [PubMed: 11465393]

- (222). Aklillu E, Ovrebo S, Botnen IV, Otter C, Ingelman-Sundberg M. Characterization of common CYP1B1 variants with different capacity for benzo[a]pyrene-7,8-dihydrodiol epoxide formation from benzo[a]pyrene. Cancer Res. 2005; 65:5105–5111. [PubMed: 15958554]
- (223). Einolf HJ, Story WT, Marcus CB, Larsen MC, Jefcoate CR, Greenlee WF, Yagi H, Jerina DM, Amin S, Park SS, Gelboin HV, Baird WM. Role of cytochrome P450 enzyme induction in the metabolic activation of benzo[c]phenentrene in human cell lines and mouse epidermis. Chem. Res. Toxicol. 1997; 10:609–617. [PubMed: 9168260]
- (224). Mahadevan B, Luch A, Atkin J, Haynes M, Nguyen T, Baird WM. Inhibition of human cytochrome P450 1B1 further clarifies its role in the activation of dibenzo[a,l]pyrene in cells in culture, J. Biochem. Mol. Toxicol. 2007; 21:101–109. [PubMed: 17623886]
- (225). Hayes CL, Spink DC, Spink BC, Cao JQ, Walker NJ, Sutter TR. 17β-Estradiol hydroxylation catalyzed by human cytochrome P450 1B1. Proc. Natl. Acad. Sci. U.S.A. 1996; 93:9776–9781. [PubMed: 8790407]
- (226). Liehr JG, Ricci MJ, Jefcoate CR, Hannigan EV, Hokanson JA, Zhu BT. 4-Hydroxylation of estradiol by human uterine myometrium and myoma microsomes: Implications for the mechanism of uterine tumorigenesis. Proc. Natl. Acad. Sci. U. S. A. 1995; 92:9220–9224. [PubMed: 7568105]
- (227). Li DN, Seidel A, Pritchard MP, Wolf CR, Friedberg T. Polymorphisms in P450 CYP1B1 affect the conversion of estradiol to the potentially carcinogenic metabolite 4-hydroxyestradiol. Pharmacogenetics. 2000; 10:343–353. [PubMed: 10862525]
- (228). Hanna IH, Dawling S, Roodi N, Guengerich FP, Parl FF. Cytochrome P450 1B1 (CYP1B1) pharmacogenetics: Association of polymorphisms with functional differences in estrogen hydroxylation activity. Cancer Res. 2000; 60:3440–3444. [PubMed: 10910054]
- (229). Sun Y-W, Guengerich FP, Sharma AK, Boyiri T, Amin S, El-Bayoumy K. Human cytochrome P450s 1A1 and 1B1 catalyze ring oxidation but not nitroreduction of environmental pollutants mono-nitropyrene isomers in primary cultures of human breast cells and cultured MCF-10A and MCF-7 cell lines. Chem. Res. Toxicol. 2004; 17:1077–1085. [PubMed: 15310239]
- (230). Wormhoudt LW, Ploemen JH, de Waziers I, Commandeur JN, Beaune PH, van Bladeren PJ, Vermeulen NPE. Inter-individual variability in the oxidation of 1,2-dibromoethane. Use of heterologously expressed human cytochrome P450 and human liver microsomes. Chem.-Biol. Interact. 1996; 101:175–192. [PubMed: 8870687]
- (231). Seaton MJ, Follansbee MH, Bond JA. Oxidation of 1,2-epoxy-3-butene to 1,2 3,4-diepoxybutane by cDNA-expressed human cytochromes P450 2E1 and 3A4 and human, mouse and rat liver microsomes. Carcinogenesis. 1995; 16:2287–2293. [PubMed: 7586124]
- (232). Elfarra AA, Krause RJ, Selzer RR. Biochemistry of 1,3-butadiene metabolism and its relevance to 1,3-butadiene-induced carcinogenicity. Toxicology. 1996; 113:23–30. [PubMed: 8901879]
- (233). Krause RJ, Elfarra AA. Oxidation of butadiene monoxide to meso- and (±)-diepoxybutane by cDNA-expressed human cytochrome P450s and by mouse, rat, and human liver microsomes. Evidence for preferential hydration of *meso*-diepoxybutane in rat and human liver microsomes. Arch. Biochem. Biophys. 1997; 337:176–184. [PubMed: 9016811]
- (234). Ding X, Spink DC, Bhama JK, Sheng JJ, Vaz AD, Coon MJ. Metabolic activation of 2,6-dichlorobenzonitrile, an olfactory-specific toxicant, by rat, rabbit, and human cytochromes P450. Mol. Pharmacol. 1996; 49:1113–1121. [PubMed: 8649351]
- (235). Liu C, Zhuo X, Gonzalez FJ, Ding X. Baculovirus-mediated expression and characterization of rat CYP2A3 and human CYP2A6: Role in metabolic activation of nasal toxicants. Mol. Pharmacol. 1996; 50:781–788. [PubMed: 8863822]
- (236). Gan J, Skipper PL, Tannenbaum SR. Oxidation of 2,6-dimethylaniline by recombinant human cytochrome P450s and human liver microsomes. Chem. Res. Toxicol. 2001; 14:672–677. [PubMed: 11409937]
- (237). Jalas JR, Ding X, Murphy SE. Comparative metabolism of the tobacco-specific nitrosamines 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone and 4-(methylnitrosamino)-1-(3-pyridyl)-1-

butanol by rat cytochrome P450 2A3 and human cytochrome P450 2A13. Drug Metab. Dispos. 2003; 31:1199–1202. [PubMed: 12975327]

- (238). Chiang HC, Wang CY, Lee HL, Tsou TC. Metabolic effects of CYP2A6 and CYP2A13 on 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK)-induced gene mutation—a mammalian cell-based mutagenesis approach. Toxicol. Appl. Pharmacol. 2011; 253:145–152. [PubMed: 21473878]
- (239). Su T, Bao Z, Zhang QY, Smith TJ, Hong JY, Ding X. Human cytochrome P450 CYP2A13: Predominant expression in the respiratory tract and its high efficiency metabolic activation of a tobacco-specific carcinogen, 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone. Cancer Res. 2000; 60:5074–5079. [PubMed: 11016631]
- (240). He XY, Shen J, Ding X, Lu AYH, Hong JY. Identification of critical amino acid residues of human CYP2A13 for the metabolic activation of 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone, a tobacco-specific carcinogen. Drug Metab. Dispos. 2004; 32:1516–1521. [PubMed: 15333516]
- (241). Seidel A, Soballa VJ, Raab G, Greim H, Grimmer G, Jacob J, Doehmer J. Regio- and stereoselectivity of metabolism of benzo[c]phenanthrene mediated by genetically engineered V79 Chinese hamster cells expressing rat and human cytochromes P450. Environ. Toxicol. Pharmacol. 1998; 5:179–196. [PubMed: 21781864]
- (242). Zhang X, D'Agostino J, Wu H, Zhang QY, von Weymarn L, Murphy SE, Ding X. CYP2A13: Variable expression and role in human lung microsomal metabolic activation of the tobaccospecific carcinogen 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone. J. Pharmacol. Exp. Ther. 2007; 323:570–578. [PubMed: 17671098]
- (243). Wong HL, Murphy SE, Hecht SS. Cytochrome P450 2A-catalyzed metabolic activation of structurally similar carcinogenic *N*-nitrosonornicotine, *N*-nitrosopiperidine, and *N*-nitrosopyrrolidine. Chem. Res. Toxicol. 2005; 18:61–69. [PubMed: 15651850]
- (244). Kushida H, Fujita K, Suzuki A, Yamada M, Endo T, Nohmi T, Kamataki T. Metabolic activation of N-alkylnitrosamines in genetically engineered *Salmonella typhimurium* expressing CYP2E1 or CYP2A6 together with human NADPH-cytochrome P450 reductase. Carcinogenesis. 2000; 21:1227–1232. [PubMed: 10837014]
- (245). Kushida H, Fujita K, Suzuki A, Yamada M, Nohmi T, Kamataki T. Development of a Salmonella tester strain sensitive to promutagenic *N*-nitrosamines. Expression of recombinant CYP2A6 and human NADPH-cytochrome P450 reductase in *S. typhimurium* YG7108. Mut. Res. 2000; 471:135–143. [PubMed: 11080669]
- (246). Smith GB, Bend JR, Bedard LL, Reid KR, Petsikas D, Massey TE. Biotransformation of 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) in peripheral human lung microsomes. Drug Metab. Dispos. 2003; 31:1134–1141. [PubMed: 12920169]
- (247). Yamazaki H, Inui Y, Yun C-H, Mimura M, Guengerich FP, Shimada T. Cytochrome P450 2E1 and 2A6 enzymes as major catalysts for metabolic activation of *N*-nitrosodialkylamines and tobacco-related nitrosamines in human liver microsomes. Carcinogenesis. 1992; 13:1789–1794. [PubMed: 1423839]
- (248). Yun CH, Shimada T, Guengerich FP. Purification and characterization of human liver microsomal cytochrome P450 2A6. Mol. Pharmacol. 1994; 40:679–685. [PubMed: 1944238]
- (249). Yun CH, Shimada T, Guengerich FP. Contributions of human liver cytochrome P450 enzymes to the N-oxidation of 4,4′-methylene-bis(2-chloroaniline). Carcinogenesis. 1992; 13:217–222. [PubMed: 1740010]
- (250). Gemma S, Vittozzi L, Testai E. Metabolism of chloroform in the human liver and identification of the competent P450s. Drug Metab. Dispos. 2003; 31:266–274. [PubMed: 12584152]
- (251). Chang TKH, Weber GF, Crespi CL, Waxman DJ. Differential activation of cyclophosphamide and iphosphamide by cytochromes P-450 2B and 3A in human liver microsomes. Cancer Res. 1993; 53:5629–5637. [PubMed: 8242617]
- (252). Bohnenstengel F, Hofmann U, Eichelbaum M, Kroemer HK. Characterization of the cytochrome P450 involved in side chain oxidation of cyclophosphamide in humans. Eur. J. Clin. Pharmacol. 1996; 51:297–301. [PubMed: 9010702]

(253). Roy P, Yu LJ, Crespi CL, Waxman DJ. Development of a substrate-activity based approach to identify the major human liver P-450 catalysts of cyclophosphamide and ifosfamide activation based on cDNA-expressed activities and liver microsomal P-450 profiles. Drug Metab. Dispos. 1999; 27:655–666. [PubMed: 10348794]

- (254). Huang Z, Roy P, Waxman DJ. Role of human liver microsomal CYP3A4 and CYP2B6 in catalyzing N-dechloroethylation of cyclophosphamide and ifosfamide. Biochem. Pharmacol. 2000; 59:961–972. [PubMed: 10692561]
- (255). Thornton-Manning JR, Nikula KJ, Hotchkiss JA, Avila KJ, Rohrbacher KD, Ding X, Dahl AR. Nasal cytochrome P450 2A: Identification, regional localization, and metabolic activity toward hexamethylphosphoramide, a known nasal carcinogen. Toxicol. Appl. Pharmacol. 1997; 142:22–30. [PubMed: 9007030]
- (256). Patten CJ, Smith TJ, Friesen MJ, Tynes RE, Yang CS, Murphy SE. Evidence for cytochrome P450 2A6 and 3A4 as major catalysts for N'-nitrosonornicotine α-hydroxylation by human liver microsomes. Carcinogenesis. 1997; 18:1623–1630. [PubMed: 9276639]
- (257). Berkman CE, Park SB, Wrighton SA, Cashman JR. In vitro-in vivo correlations of human (S)-nicotine metabolism. Biochem. Pharmacol. 1995; 50:565–570. [PubMed: 7646564]
- (258). Wong HL, Murphy SE, Hecht SS. Cytochrome P450 2A-catalyzed metabolic activation of structurally similar carcinogenic nitrosamines: *N*-nitrosonornicotine enantiomers, *N*-nitrosopiperidine, and *N*-nitrosopyrrolidine. Chem. Res. Toxicol. 2005; 18:61–69. [PubMed: 15651850]
- (259). Jeurissen SM, Bogaards JJ, Awad HM, Boersma MG, Brand W, Fiamegos YC, van Beek TA, Alink GM, Sudholter EJ, Cnubben NH, Rietjens IMCM. Human cytochrome P450 enzyme specificity for bioactivation of safrole to the proximate carcinogen 1'-hydroxysafrole. Chem. Res. Toxicol. 2004; 17:1245–1250. [PubMed: 15377158]
- (260). Ueng Y-F, Hsieh CH, Don MJ, Chi CW, Ho LK. Identification of the main human cytochrome P450 enzymes involved in safrole 1'-hydroxylation. Chem. Res. Toxicol. 2004; 17:1151–1156. [PubMed: 15310247]
- (261). D'Agostino J, Zhuo X, Shadid M, Morgan DG, Zhang X, Humphreys WG, Shu YZ, Yost GS, Ding X. The pneumotoxin 3-methylindole is a substrate and a mechanism-based inactivator of CYP2A13, a human cytochrome P450 enzyme preferentially expressed in the respiratory tract. Drug Metab. Dispos. 2009; 37:2018–2027. [PubMed: 19608696]
- (262). Bao Z, He XY, Ding X, Prabhu S, Hong JY. Metabolism of nicotine and cotinine by human cytochrome P450 2A13. Drug Metab. Dispos. 2005; 33:258–261. [PubMed: 15528319]
- (263). Wong HL, Zhang X, Zhang QY, Gu J, Ding X, Hecht SS, Murphy SE. Metabolic activation of the tobacco carcinogen 4-(methylnitrosamino)-(3-pyridyl)-1-butanone by cytochrome P450 2A13 in human fetal nasal microsomes. Chem. Res. Toxicol. 2005; 18:913–918. [PubMed: 15962925]
- (264). Zhang X, Su T, Zhang QY, Gu J, Caggana M, Li H, Ding X. Genetic polymorphisms of the human CYP2A13 gene: Identification of single-nucleotide polymorphisms and functional characterization of an Arg257Cys variant. J. Pharmacol. Exp. Ther. 2002; 302:416–423. [PubMed: 12130698]
- (265). Wang SL, He XY, Shen J, Wang JS, Hong JY. The missense genetic polymorphisms of human CYP2A13. Functional significance in carcinogen activation and identification of a null allelic variant. Toxicol. Sci. 2006; 94:38–45. [PubMed: 16917071]
- (266). Schlicht KE, Berg JZ, Murphy SE. Effect of CYP2A13 active site mutation N297A on metabolism of coumarin and tobacco-specific nitrosamines. Drug Metab. Dispos. 2009; 37:665– 671. [PubMed: 19074523]
- (267). Goto T, Moriuchi H, Fu X, Ikegawa T, Matsubara T, Chang G, Uno T, Morigaki K, Isshiki K, Imaishi H. The effects of single nucleotide polymorphisms in CYP2A13 on metabolism of 5-methoxypsoralen. Drug Metab. Dispos. 2010; 38:2110–2116. [PubMed: 20798279]
- (268). White IN, De Matteis F. The role of CYP forms in the metabolism and metabolic activation of HCFCs and other halocarbons. Toxicol. Lett. 2001; 124:121–128. [PubMed: 11684364]
- (269). White IN, Razvi N, Gibbs AH, Davies AM, Manno M, Zaccaro C, Matteis FD, Pahler A, Dekant W. Neoantigen formation and clastogenic action of hydrochlorofluorocarbons-123 and

- perchloroethylene in human MCL-5 cells. Toxicol. Lett. 2001; 124:129–138. [PubMed: 11684365]
- (270). Mimura M, Baba T, Yamazaki H, Ohmori S, Inui Y, Gonzalez FJ, Guengerich FP, Shimada T. Characterization of cytochrome P-450 2B6 in human liver microsomes. Drug Metab. Dispos. 1993; 21:1048–1056. [PubMed: 7905383]
- (271). Code EL, Crespi CL, Penman BW, Gonzalez FJ, Chang TK, Waxman DJ. Human cytochrome P4502B6. Interindividual hepatic expression, substrate specificity, and role in procarcinogen activation. Drug Metab. Dispos. 25:985–993. [PubMed: 9280407]
- (272). Dicke KE, Skrlin SM, Murphy SE. Nicotine and 4-(methylnitrosoamino)-1-(3-pyridyl)-butanone metabolism by cytochrome P450 2B6. Drug Metab. Dispos. 2005; 33:1760–1764. [PubMed: 16174803]
- (273). Fontaine SM, Mash EA, Hoyer PB, Sipes IG. Stereochemical aspects of vinylcyclohexene bioactivation in rodent hepatic microsomes and purified human cytochrome P450 enzyme systems. Drug Metab. Dispos. 2001; 29:179–184. [PubMed: 11159809]
- (274). Coleman S, Linderman R, Hodgson E, Rose RL. Comparative metabolism of chloroacetamide herbicides and selected metabolites in human and rat liver microsomes. Environ. Health Perspect. 2000; 108:1151–1157. [PubMed: 11133395]
- (275). Chen CS, Jounaidi Y, Waxman DJ. Enantioselective metabolism and cytotoxicity of *R*-ifosfamide and *S*-ifosfamide by tumor cell-expressed cytochromes P450. Drug Metab. Dispos. 2005; 33:1261–1267. [PubMed: 15919850]
- (276). Roy P, Tretyakov O, Wright J, Waxman DJ. Stereoselective metabolism of ifosfamide by human P-450s 3A4 and 2B6. Favorable metabolic properties of *R*-enantiomer. Drug Metab. Dispos. 1999; 27:1309–1318. [PubMed: 10534317]
- (277). McCune JS, Risler LJ, Phillips BR, Thummel KE, Blough D, Shen DD. Contribution of CYP3A5 to hepatic and renal ifosfamide *N*-dechloroethylation. Drug Metab. Dispos. 2005; 33:1074–1081. [PubMed: 15821045]
- (278). Sun D, Chen G, Dellinger RW, Duncan K, Fang JL, Lazarus P. Characterization of tamoxifen and 4-hydroxytamoxifen glucuronidation by human UGT1A4 variants. Breast Cancer Res. 2006; 8:R50. [PubMed: 16884532]
- (279). Jacobson PA, Green K, Birnbaum A, Remmel RP. Cytochrome P450 isozymes 3A4 and 2B6 are involved in the in vitro human metabolism of thiotepa to TEPA. Cancer Chemother. Pharmacol. 2002; 49:461–467. [PubMed: 12107550]
- (280). Ma M, Umemura T, Mori Y, Gong Y, Saijo Y, Sata F, Kawai T, Kishi R. Influence of genetic polymorphisms of styrene-metabolizing enzymes and smoking habits on levels of urinary metabolites after occupational exposure to styrene. Toxicol. Lett. 2005; 160:84–91. [PubMed: 16125881]
- (281). Penman BW, Reece J, Smith T, Yang CS, Gelboin HV, Gonzalez FJ, Crespi CL. Characterization of a human cell line expressing high levels of cDNA-derived CYP2D6. Pharmacogenetics. 1993; 3:28–39. [PubMed: 8485585]
- (282). Guengerich FP, Kim D-H, Iwasaki M. Role of human cytochrome P-450 IIE1 in the oxidation of many low molecular weight cancer suspects. Chem. Res. Toxicol. 1991; 4:168–179. [PubMed: 1664256]
- (283). Cheung C, Yu AM, Ward JM, Krausz KW, Akiyama TE, Feigenbaum L, Gonzalez FJ. The cyp2e1-humanized transgenic mouse: Role of cyp2e1 in acetaminophen hepatotoxicity. Drug Metab. Dispos. 2005; 33:449–457. [PubMed: 15576447]
- (284). Doherty AT, Ellard S, Parry EM, Parry JM. An investigation into the activation and deactivation of chlorinated hydrocarbons to genotoxins in metabolically competent human cells. Mutagenesis. 1996; 11:247–274. [PubMed: 8671747]
- (285). Simmonds AC, Reilly CA, Baldwin RM, Ghanayem BI, Lanza DL, Yost GS, Collins KS, Forkert PG. Bioactivation of 1,1-dichloroethylene to its epoxide by CYP2E1 and CYP2F enzymes. Drug Metab. Dispos. 2004; 32:1032–1039. [PubMed: 15319346]
- (286). Nieusma JL, Claffey DJ, Koop DR, Chen W, Peter RM, Nelson SD, Ruth JA, Ross D. Oxidation of 1,3-butadiene to (R)- and (S)-butadiene monoxide by purified recombinant

- cytochrome P450 2E1 from rabbit, rat and human. Toxicol. Lett. 1998; 95:123–129. [PubMed: 9635416]
- (287). Nedelcheva V, Gut I, Soucek P, Frantík E. Cytochrome P450 catalyzed oxidation of monochlorobenzene, 1,2- and 1,4-dichlorobenzene in rat, mouse, and human liver microsomes. Chem.-Biol. Interact. 1998; 115:53–70. [PubMed: 9817075]
- (288). Herbst J, Köster U, Kerssebaum R, Dekant W. Role of P4502E1 in the metabolism of 1,1,2,2,-tetrafluoro-1-(2,2,2-trifluoroethoxy)ethane. Xenobiotica. 1994; 24:507–516. [PubMed: 7975716]
- (289). Urban G, Speerschnaider P, Dekant W. Metabolism of the chlorofluorocarbon substitute 1,1-dichloro-2,2,2-trifluoroethane by rat and human liver microsomes. The role of cytochrome P450 2E1. Chem. Res. Toxicol. 1994; 7:170–176. [PubMed: 8199305]
- (290). Doroshyenko O, Fuhr U, Kunz D, Frank D, Kinzig M, Jetter A, Reith Y, Lazar A, Taubert D, Kirchheiner J, Baum M, Eisenbrand G, Berger FI, Bertow D, Berkessel A, Sörgel F, Schömig E, Tomalik-Scharte D. *In vivo* role of cytochrome P450 2E1 and glutathione-S-transferase activity for acrylamide toxicokinetics in humans. Cancer Epidemiol. Biomarkers Prev. 2009; 18:433–443. [PubMed: 19190172]
- (291). Koyama N, Yasui M, Oda Y, Suzuki S, Satoh T, Suzuki T, Matsuda T, Masuda S, Kinae N, Honma M. Genotoxicity of acrylamide in vitro. Acrylamide is not metabolically activated in standard in vitro systems. Environ. Mol. Mutagen. 2011; 52:11–19. [PubMed: 20209648]
- (292). Kedderis GL, Batra R, Koop DR. Epoxidation of acrylonitrile by rat and human cytochromes P450. Chem. Res. Toxicol. 1993; 6:866–871. [PubMed: 8117926]
- (293). Nedelcheva V, Gut I, Soucek P, Tichavska B, Tynkova L, Mraz J, Guengerich FP, Ingelman-Sundberg M. Metabolism of benezene in human liver microsomes. Individual variations in relation to CYP2E1 expression. Arch. Toxicol. 1999; 73:33–40. [PubMed: 10207612]
- (294). Powley MW, Carlson GP. Cytochromes P450 involved with benzene metabolism in hepatic and pulmonary microsomes. J. Biochem. Mol. Toxicol. 2000; 14:303–309. [PubMed: 11083083]
- (295). Sheets PL, Yost GS, Carlson GP. Benzene metabolism in human lung cell lines BEAS-2B and A549 and cells overexpressing CYP2F1. J. Biochem. Mol. Toxicol. 2004; 18:92–99. [PubMed: 15122651]
- (296). Boysen G, Scarlett CO, Temple B, Combs TP, Brooks NL, Borchers CH, Swenberg JA. Identification of covalent modifications in P450 2E1 by 1,2-epoxy-3-butene in vitro. Chem.-Biol. Interact. 2007; 166:170–175. [PubMed: 17298833]
- (297). Raucy JL. Risk assessment toxicity from chemical exposure resulting from enhanced expression of CYP2E1. Toxicology. 1995; 105:217–224. [PubMed: 8571359]
- (298). Zangar RC, Benson JM, Burnett VL, Springer DL. Cytochrome P450 2E1 is the primary enzyme responsible for low-dose carbon tetrachloride metabolism in human liver microsomes. Chem.-Biol. Interact. 2000; 125:233–243. [PubMed: 10731522]
- (299). Raucy JL, Krane JC, Lasker JM. Bioactivation of halogenated hydrocarbons by cytochrome P4502E1. Crit. Rev. Toxicol. 1993; 23:1–20. [PubMed: 8471158]
- (300). Takahashi S, Takahashi T, Mizobuchi S, Matsumi M, Morita K, Miyazaki M, Namba M, Akagi R, Hirakawa M. Increased cytotoxicity of carbon tetrachloride in a human hepatoma cell line overexpressing cytochrome P450 2E1. J. Int. Med. Res. 2002; 30:400–405. [PubMed: 12235922]
- (301). Lipscomb JC, Barton HA, Tornero-Velez R, Evans MV, Alcasey S, Snawder JE, Laskey J. The metabolic rate constants and specific activity of human and rat hepatic cytochrome P-450 2E1 toward toluene and chloroform. J. Toxicol. Environ. Health A. 2004; 67:537–53. [PubMed: 15129551]
- (302). Himmelstein MW, Carpenter SC, Hinderliter PM, Snow TA, Valentine R. The metabolism of β-chloroprene: preliminary in-vitro studies using liver microsomes. Chem.-Biol. Interact. 2001; 135-136:267–84. [PubMed: 11397396]
- (303). Lu Y, Cederbaum AI. Cisplatin-induced hepatotoxicity is enhanced by elevated expression of cytochrome P450 2E1. Toxicol. Sci. 2006; 89:515–523. [PubMed: 16251482]
- (304). Lu Y, Cederbaum A. The mode of cisplatin-induced cell death in CYP2E1-overexpressing HepG2 cells: Modulation by ERK, ROS, glutathione, and thioredoxin. Free Radic. Biol. Med. 2007; 43:1061–1075. [PubMed: 17761302]

(305). Dai Y, Rashba-Step J, Cederbaum AI. Stable expression of human cytochrome P4502E1 in HepG2 cells. Characterization of catalytic activities and production of reactive oxygen intermediates. Biochemistry. 1993; 32:6928–6937. [PubMed: 7687464]

- (306). Liu LG, Yan H, Yao P, Zhang W, Zou LJ, Song FF, Li K, Sun XF. CYP2E1-dependent hepatotoxicity and oxidative damage after ethanol administration in human primary hepatocytes. World J. Gastroenterol. 2005; 11:4530–4535. [PubMed: 16052683]
- (307). Cederbaum AI. CYP2E1. Biochemical and toxicological aspects and role in alcohol-induced liver injury. Mt. Sinai J. Med. 2006; 73:657–672. [PubMed: 16878272]
- (308). Shimada M, Liu L, Nussler N, Jonas S, Langrehr JM, Ogawa T, Kaminishi M, Neuhaus P, Nussler AK. Human hepatocytes are protected from ethanol-induced cytotoxicity by DADS via CYP2E1 inhibition. Toxicol. Lett. 2006; 163:242–249. [PubMed: 16356668]
- (309). Magne L, Blanc E, Legrand B, Lucas D, Barouki R, Rouach H, Garlatti M. ATF4 and the integrated stress response are induced by ethanol and cytochrome P450 2E1 in human hepatocytes. J. Hepatol. 2011; 54:729–737. [PubMed: 21146245]
- (310). Forkert PG, Lee RP. Metabolism of ethyl carbamate by pulmonary cytochrome P450 and carboxylesterase isozymes. Involvement of CYP 2E1 and hydrolase A. Toxicol. Appl. Pharmacol. 1997; 146:245–254. [PubMed: 9344892]
- (311). Hubner P, Groux PM, Weibel B, Sengstag C, Horlbeck J, Leong-Morgenthaler PM, Luthy J. Genotoxicity of ethyl carbamate (urethane) in Salmonella, yeast and human lymphoblastoid cells. Mutat. Res. 1997; 390:11–19. [PubMed: 9150748]
- (312). Forkert PG, Lee RP, Reid K. Involvement of CYP2E1 and carboxylesterase enzymes in vinyl carbamate metabolism in human lung microsomes. Drug Metab. Dispos. 2001; 29:258–263. [PubMed: 11181492]
- (313). Peterson LA, Cummings ME, Vu CC, Matter BA. Glutathione trapping to measure microsomal oxidation of furan to *cis*-2-butene-1,4-dial. Drug Metab. Dispos. 2005; 33:1453–1458. [PubMed: 16006568]
- (314). Mraz J, Jheeta P, Gescher A, Hyland R, Thumel K, Threadgill MD. Investigation of the mechanistic basis of *N,N*-dimethylformamide toxicity. Metabolism of *N,N*-dimethylformamide and its deuterated isotopomers by cytochrome P450 2E1. Chem. Res. Toxicol. 1993; 6:197–207. [PubMed: 8477011]
- (315). Amato G, Grasso E, Longo V, Gervasi PG. Oxidation of *N*,*N*-dimethylformamide and *N*,*N*-diethylformamide by human liver microsomes and human recombinant P450s. Toxicol. Lett. 2001; 124:11–19. [PubMed: 11684354]
- (316). Hyland R, Gescher A, Thumel K, Schiller C, Jheeta P, Mynett K, Smith AW, Mraz J. Metabolic oxidation and toxification of *N*-methylformamide catalyzed by the cytochrome P450 isoenzyme CYP2E1. Mol. Pharmacol. 1992; 41:259–266. [PubMed: 1538706]
- (317). Liu Y, Glatt H. Mutagenicity of *N*-nitrosodiethanolamine in a V79-derived cell line expressing two human biotransformation enzymes. Mut. Res. 2008; 643:64–69. [PubMed: 18616954]
- (318). Cooper MT, Porter TD. Cytochrome b(5) coexpression increases the CYP2E1-dependent mutagenicity of dialkylnitrosamines in methyltransferase-deficient strains of *Salmonella typhimurium*. Mut. Res. 2001; 484:61–68. [PubMed: 11733072]
- (319). Zhuge J, Luo Y, Yu YN. Heterologous expression of human cytochrome P450 2E1 in HepG2 cell line. World J. Gastroenterol. 2003; 9:2732–2736. [PubMed: 14669323]
- (320). Nakagawa T, Sawada M, Gonzalez FJ, Yokoi T, Kamataki T. Stable expression of human CYP2E1 in Chinese hamster cells: High sensitivity to N,N-dimethylnitrosamine in cytotoxicity testing. Mutat. Res. 1996; 354:181–186. [PubMed: 8692217]
- (321). Lin HL, Parsels LA, Maybaum J, Hollenberg PF. N-Nitrosodimethylamine-mediated cytotoxicity in a cell line expressing P450 2E1. Evidence for apoptotic cell death. Toxicol. Appl. Pharmacol. 1999; 157:117–124. [PubMed: 10366544]
- (322). Glatt H, Schneider H, Liu Y. V79-hCYP2E1-hSULT1A1, a cell line for the sensitive detection of genotoxic effects induced by carbohydrate pyrolysis products and other food-borne chemicals. Mut. Res. 2005; 580:41–52. [PubMed: 15668106]

(323). Bellec G, Dreano Y, Bail JP, Menez JF, Berthou F. Cytochrome P450 hydroxylation of carbon atoms of the alkyl chain of symmetrical *N*-nitrosodialkylamines by human liver microsomes. Mutat. Res. 1997; 377:199–209. [PubMed: 9247615]

- (324). Bellec G, Dreano Y, Lozach P, Menez JF, Berthou F. Cytochrome P450 metabolic dealkylation of nine *N*-nitrosodialkylamines by human liver microsomes. Carcinogenesis. 1996; 17:2029–2034. [PubMed: 8824531]
- (325). Teiber JF, Hollenberg PF. Identification of the human liver microsomal cytochrome P450s involved in the metabolism of N-nitrosodi-n-propylamine. Carcinogenesis. 2000; 21:1559–1566. [PubMed: 10910959]
- (326). Ekins S, Wrighton SA. The role of CYP2B6 in human xenobiotic metabolism. Drug Metab. Rev. 1999; 31:719–754. [PubMed: 10461547]
- (327). Krishnan S, Hvastkovs EG, Bajrami B, Jansson I, Schenkman JB, Rusling JF. Genotoxicity screening for N-nitroso compounds. Electrochemical and electrochemiluminescent detection of human enzyme-generated DNA damage from N-nitrosopyrrolidine. Chem. Commun (Camb). 2007; 7:1713–1715. [PubMed: 17457417]
- (328). Stiborová M, Naiman K, Martínková M, Martínek V, Svobodová M, Schmeiser HH, Frei E. Genotoxic mechanisms for the carcinogenicity of the environmental pollutants and carcinogens o-anisidine and 2-nitroanisole follow from adducts generated by their metabolite N-(2-methoxyphenyl)-hydroxylamine with deoxyguanosine in DNA. Interdiscip. Toxicol. 2009; 2:24–27. [PubMed: 21217841]
- (329). Chung JK, Yuan W, Liu G, Zheng J. Investigation of bioactivation and toxicity of styrene in CYP2E1 transgenic cells. Toxicology. 226:99–106. [PubMed: 16872732]
- (330). Lipscomb JC, Garrett CM, Snawder JE. Cytochrome P450-dependent metabolism of trichloroethylene. Interindividual differences in humans. Toxicol. Appl. Pharmacol. 1997; 142:311–318. [PubMed: 9070354]
- (331). Lash LH, Fisher JW, Lipscomb JC, Parker JC. Metabolism of trichloroethylene. Environ. Health Perspect. 2000; 108(Suppl 2):177–200. [PubMed: 10807551]
- (332). Cai H, Guengerich FP. Reaction of trichloroethylene and trichloroethylene oxide with cytochrome P450 enzymes. Inactivation and sites of modification. Chem. Res. Toxicol. 2001; 14:451–458. [PubMed: 11304134]
- (333). Forkert PG, Baldwin RM, Millen B, Lash LH, Putt DA, Shultz MA, Collins KS. Pulmonary bioactivation of trichloroethylene to chloral hydrate relative contributions of CYP2E1, CYP2F, and CYP2B1. Drug Metab. Dispos. 2005; 33:1429–1437. [PubMed: 15987776]
- (334). Lanza DL, Code E, Crespi CL, Gonzalez FJ, Yost GS. Specific dehydrogenation of 3-methylindole and epoxidation of naphthalene by recombinant human CYP2F1 expressed in lymphoblastoid cells. Drug Metab. Dispos. 1999; 27:798–803. [PubMed: 10383923]
- (335). Kartha JS, Yost GS. Mechanism-based inactivation of lung-selective cytochrome P450 CYP2F enzymes. Drug Metab. Dispos. 2008; 36:155–162. [PubMed: 17962375]
- (336). Gillam EM, Wunsch RM, Ueng Y-F, Shimada T, Reilly PE, Kamataki T, Guengerich FP. Expression of cytochrome P450 3A7 in Escherichia coli. Effects of 5′ modification and catalytic characterization of recombinant enzyme expressed in bicistronic format with NADPH-cytochrome P450 reductase. Arch. Biochem. Biophys. 1997; 346:81–90. [PubMed: 9328287]
- (337). Mesárosová M, Valovi ová Z, Sran íková A, Kraj ovi ová Z, Milcová A, Sokolová R, Schmuczerová J, Topinka J, Gábelová A. The role of human cytochrome P4503A4 in biotransformation of tissue-specific derivatives of 7*H*-dibenzo[*c,g*]carbazole. Toxicol. Appl. Pharmacol. 2011; 255:307–315. [PubMed: 21798277]
- (338). Hakkola J, Pelkonen O, Pasanen M, Raunio H. Xenobiotic-metabolizing cytochrome P450 enzymes in the human feto-placental unit. Role in intrauterine toxicity. Crit. Rev. Toxicol. 1998; 28:35–72. [PubMed: 9493761]
- (339). Raney KD, Shimada T, Kim DH, Groopman JD, Harris TM, Guengerich FP. Oxidation of aflatoxins and sterigmatocystin by human liver microsomes: significance of aflatoxin Q₁ as a detoxication product of aflatoxin B₁. Chem. Res. Toxicol. 1992; 5:202–210. [PubMed: 1643250]

(340). De Groene EM, Seinen W, Horbach GJ. A NIH/3T3 cell line stably expressing human cytochrome P450-3A4 used in combination with a lacZ' shuttle vector to study mutagenicity. Eur. J. Pharmacol. 1995; 293:47–53. [PubMed: 7545582]

- (341). Hashimoto H, Nakagawa T, Yokoi T, Sawada M, Itoh S, Kamataki T. Fetus-specific CYP3A7 and adult-specific CYP3A4 expressed in Chinese hamster CHL cells have similar capacity to activate carcinogenic mycotoxins. Cancer Res. 1995; 55:787–791. [PubMed: 7850790]
- (342). Buening MK, Fortner JG, Kappas A, Conney AH. 7,8-Benzoflavone stimulates the metabolic activation of aflatoxin B₁ to mutagens by human liver. Biochem. Biophys. Res. Commun. 1978; 82:348–355. [PubMed: 352361]
- (343). Sabater Vilar M, Kuilman-Wahls ME, Fink-Gremmels J. Inhibition of aflatoxin B_1 mutagenicity by cyclopiazonic acid in the presence of human liver preparations. Toxicol. Lett. 2003; 143:291–299. [PubMed: 12849689]
- (344). Philip PA, Ali-Sadat S, Doehmer J, Kocarek T, Akhtar A, Lu H, Chan KK. Use of V79 cells with stably transfected cytochrome P450 cDNAs in studying the metabolism and effects of cytotoxic drugs. Cancer Chemother. Pharmacol. 1999; 43:59–67. [PubMed: 9923542]
- (345). Stiborová M, Rupertová M, Frei E. Cytochrome P450-and peroxidase-mediated oxidation of anticancer alkaloid ellipticine dictates its anti-tumor efficiency. Biochim. Biophys. Acta. 2011; 1814:175–185. [PubMed: 20576524]
- (346). Hosea NA, Miller GP, Guengerich FP. Elucidation of distinct ligand binding sites for cytochrome P450 3A4. Biochemistry. 2000; 39:5929–5939. [PubMed: 10821664]
- (347). Williams JA, Ring BJ, Cantrell VE, Jones DR, Eckstein J, Ruterbories K, Hamman MA, Hall SD, Wrighton SA. Comparative metabolic capabilities of CYP3A4, CYP3A5, and CYP3A7. Drug Metab. Dispos. 2002; 30:883–891. [PubMed: 12124305]
- (348). Lin HL, Hollenberg PF. The inactivation of cytochrome P450 A5 by 17α-ethynylestradiol is cytochrome *b*₅-dependent: Metabolic activation of the ethynyl moiety leads to the formation of glutathione conjugates, a heme adduct, and covalent binding to the apoprotein. J. Pharmacol. Exp. Ther. 2007; 321:276–287. [PubMed: 17251390]
- (349). Relling MV, Nemec J, Schuetz EG, Schuetz JD, Gonzalez FJ, Korzekwa KR. *O*-Demethylation of epipodophyllotoxins is catalyzed by human cytochrome P450. Mol. Pharmacol. 1994; 45:352–358. [PubMed: 8114683]
- (350). Zhao XJ, Kawashiro T, Ishizaki T. Mutual inhibition between quinine and etoposide by human liver microsomes. Evidence for cytochrome P450 3A4 involvement in their major metabolic pathways. Drug Metab. Dispos. 1998; 26:188–191. [PubMed: 9456308]
- (351). Zheng N, Pang S, Oe T, Felix CA, Wehrli S, Blair IA. Characterization of an etoposide-glutathione conjugate derived from metabolic activation by human cytochrome P450. Curr. Drug Metab. 2006; 7:897–911. [PubMed: 17168690]
- (352). Walker D, Flinois J-P, Monkman SC, Beloc C, Boddy AV, Cholerton S, Daly AK, Lind MJ, Pearson ADJ, Beaune PH, Idle JR. Identification of the major human hepatic cytochrome P450 involved in activation and N-dechloroethylation of ifosfamide. Biochem. Pharmacol. 1994; 47:1157–1163. [PubMed: 8161344]
- (353). Granvil CP, Madan A, Sharkawi M, Parkinson A, Wainer IW. Role of CYP2B6 and CYP3A4 in the in vitro *N*-dechloroethylation of (*R*)- and (*S*)-ifosfamide in human liver microsomes. Drug Metab. Dispos. 1999; 27:533–541. [PubMed: 10101149]
- (354). Dehal SS, Kupfer D. Cytochrome P-450 3A and 2D6 catalyze ortho hydroxylation of 4-hydroxytamoxifen and 3-hydroxytamoxifen (droloxifene) yielding tamoxifen catechol: Involvement of catechols in covalent binding to hepatic proteins. Drug Metab. Dispos. 1999; 27:681–688. [PubMed: 10348797]
- (355). Lu H, Wang JJ, Chan KK, Philip PA. Stereoselectivity in metabolism of ifosfamide by CYP3A4 and CYP2B6. Xenobiotica. 2006; 36:367–385. [PubMed: 16854777]
- (356). Wang YP, Yan J, Fu PP, Chou MW. Human liver microsomal reduction of pyrrolizidine alkaloid N-oxides to form the corresponding carcinogenic parent alkaloid. Toxicol. Lett. 2005; 155:411–420. [PubMed: 15649625]

(357). Miranda CL, Reed RL, Guengerich FP, Buhler DR. Role of cytochrome P450IIIA4 in the metabolism of the pyrrolizidine alkaloid senecionine in human liver. Carcinogenesis. 1991; 12:515–519. [PubMed: 2009596]

- (358). Notley LM, De Wolf CJ, Wunsch RM, Lancaster RG, Gillam EM. Bioactivation of tamoxifen by recombinant human cytochrome P450 enzymes. Chem. Res. Toxicol. 2002; 15:614–622. [PubMed: 12018981]
- (359). Kim SY, Suzuki N, Santosh Laxmi YR, Rieger R, Shibutani S. α-Hydroxylation of tamoxifen and toremifene by human and rat cytochrome P450 3A subfamily enzymes. Chem. Res. Toxicol. 2003; 16:1138–1144. [PubMed: 12971802]
- (360). Coller JK, Krebsfaenger N, Klein K, Wolbold R, Nussler A, Neuhaus P, Zanger UM, Eichelbaum M, Murdter TE. Large interindividual variability in the in vitro formation of tamoxifen metabolites related to the development of genotoxicity. Br. J. Clin. Pharmacol. 2004; 57:105–11. [PubMed: 14678348]
- (361). Desta Z, Ward BA, Soukhova NV, Flockhart DA. Comprehensive evaluation of tamoxifen sequential biotransformation by the human cytochrome P450 system in vitro: prominent roles for CYP3A and CYP2D6. J. Pharmacol. Exp. Ther. 2004; 310:1062–1075. [PubMed: 15159443]
- (362). Notley LM, Crewe KH, Taylor PJ, Lennard MS, Gillam EMJ. Characterization of the human cytochrome P450 forms involved in metabolism of tamoxifen to its α-hydroxy and α,4-dihydroxy derivatives. Chem. Res. Toxicol. 2005; 18:1611–1618. [PubMed: 16533026]
- (363). Crewe HK, Notley LM, Wunsch RM, Lennard MS, Gillam EMJ. Metabolism of tamoxifen by recombinant human cytochrome P450 enzymes. Formation of the 4-hydroxy, 4'-hydroxy and *N*-desmethyl metabolites and isomerization of *trans*-4-hydroxytamoxifen. Drug Metab. Dispos. 2002; 30:869–874. [PubMed: 12124303]
- (364). Boocock DJ, Brown K, Gibbs AH, Sanchez E, Turteltaub KW, White IN. Identification of human CYP forms involved in the activation of tamoxifen and irreversible binding to DNA. Carcinogenesis. 2002; 23:1897–1901. [PubMed: 12419838]
- (365). Gillam EMJ, Guo Z, Ueng Y-F, Yamazaki H, Cock I, Reilly PEB, Hooper WD, Guengerich FP. Expression of cytochrome P450 3A5 in *Escherichia coli*. Effects of 5′ modification, purification, spectral characterization, reconstitution conditions, and catalytic activities. Arch. Biochem. Biophys. 1995; 317:374–384. [PubMed: 7893152]
- (366). Li Y, Yokoi T, Katsuki M, Wang J-S, Groopman JD, Kamataki T. *In vivo* activation of aflatoxin B₁ in C57BL/6N mice carrying a human fetus-specific CYP3A7 gene. Cancer Res. 1997; 57:641–645. [PubMed: 9044840]
- (367). Imaoka S, Hayashi K, Hiroi T, Yabusaki Y, Kamataki T, Funae Y. A transgenic mouse expressing human CYP4B1 in the liver. Biochem. Biophys Res. Commun. 2001; 284:757–762. [PubMed: 11396967]
- (368). Imaoka S, Yoneda Y, Sugimoto T, Hiroi T, Yamamoto K, Nakatani T, Funae Y. CYP4B1 is a possible risk factor for bladder cancer in humans. Biochem. Biophys. Res. Commun. 2000; 277:776–780. [PubMed: 11062028]
- (369). Osawa Y, Higashiyama T, Shimizu Y, Yarborough C. Multiple functions of aromatase and the active site structure. Aromatase is the placental estrogen 2-hydroxylase. J. Steroid Biochem. Mol Biol. 1993; 44:469–480. [PubMed: 8476762]
- (370). Kim YM, Ziegler DM. Size limits of thiocarbamides accepted as substrates by human flavin-containing monooxygenase 1. Drug Metab. Dispos. 2000; 28:1003–1006. [PubMed: 10901713]
- (371). Furnes B, Schlenk D. Evaluation of xenobiotic N- and S-oxidation by variant flavin-containing monooxygenase 1 (FMO1) enzymes. Toxicol. Sci. 2004; 78:196–203. [PubMed: 14976351]
- (372). Henderson MC, Krueger SK, Stevens JF, Williams DE. Human flavin-containing monoxygenase form 2. S-Oxygenation sulfenic acid formation from thioureas and oxidation of glutathione. Chem. Res. Toxicol. 2004; 17:633–640. [PubMed: 15144220]
- (373). Krueger SK, Martin SR, Yueh MF, Pereira CB, Williams DE. Identification of active flavin-containing monooxygenase isoform 2 in human lung and characterization of expressed protein. Drug Metab. Dispos. 2002; 30:34–41. [PubMed: 11744609]
- (374). Smith PB, Crespi C. Thiourea toxicity in mouse C3H/10T1/2 cells expressing human flavin-dependent monooxygenase 3. Biochem. Pharmacol. 2002; 63:1941–1948. [PubMed: 12093470]

(375). Simula TP, Glancey MJ, Wolf CR. Human glutathione S-transferase-expressing *Salmonella typhimurium* tester strains to study the activation/detoxification of mutagenic compounds: studies with halogenated compounds, aromatic amines and aflatoxin B₁. Carcinogenesis. 1993; 14:1371–1376. [PubMed: 8330352]

- (376). Josephy PD, Taylor PL, Vervaet G, Mannervik B. Screening and characterization of variant Theta-class glutathione transferases catalyzing the activation of ethylene dibromide to a mutagen. Environ. Mol. Mutagen. 2006; 47:657–665. [PubMed: 16948056]
- (377). Guengerich FP. Activation of dihaloalkanes by thiol-dependent mechanisms. J. Biochem. Molec. Biol. 2003; 36:20–27. [PubMed: 12542971]
- (378). Anders MW. Glutathione-dependent bioactivation of haloalkanes and haloalkenes. Drug Metab. Rev. 2004; 36:583–594. [PubMed: 15554237]
- (379). Thier R, Pemble S, Kramer H, Taylor JB, Guengerich FP, Ketterer B. Human glutathione Stransferase T1-1 enhances mutagenicity of 1,2-dibromoethane, dibromomethane, and 1,2,3,4-diepoxybutane in *Salmonella typhimurium*. Carcinogenesis. 1996; 17:163–166. [PubMed: 8565128]
- (380). Cho S-H, Guengerich FP. Conjugation of butadiene diepoxide with glutathione yields DNA adducts *in vitro* and *in vivo*. Chem. Res. Toxicol. 2012; 25 in press.
- (381). Liu L, Pegg AE, Williams KM, Guengerich FP. Paradoxical enhancement of the toxicity of 1,2-dibromoethane by O^6 -alkylguanine-DNA alkyltransferase. J. Biol. Chem. 2002; 277:37920–37928. [PubMed: 12151404]
- (382). Valadez JG, Liu L, Loktionova NA, Pegg AE, Guengerich FP. Activation of bis-electrophiles to mutagenic conjugates by human O6-alkylguanine-DNA alkyltransferase. Chem. Res. Toxicol. 2004; 17:972–982. [PubMed: 15257623]
- (383). Liu L, Williams KM, Guengerich FP, Pegg AE. O-Alkylguanine-DNA alkyltransferase has opposing effects in modulating the genotoxicity of dibromomethane and bromomethyl acetate. Chem. Res. Toxicol. 2004; 17:742–752. [PubMed: 15206895]
- (384). Murata M, Ohnishi S, Seike K, Fukuhara K, Miyata N, Kawanishi S. Oxidaative DNA damage induced by carcinogenic dinitropyrenes in the presence of P450 reductase. Chem. Res. Toxciol. 2004; 17:1750–1756.
- (385). Ohkuma Y, Hiraku Y, Kawanishi S. Sequence-specific DNA damage induced by carcinogenic danthron and anthraquinone in the presence of Cu(II), cytochrome P450 reductase and NADPH. Free Radic. Res. 2001; 34:595–604. [PubMed: 11697035]
- (386). Oda Y, Yamazaki H, Shimada T. Role of human N-acetyltransferases, NAT1 or NAT2, in genotoxicity of nitroarenes and aromatic amines in *Salmonella typhimurium* NM6001 and NM6002. Carcinogenesis. 1999; 20:1079–1083. [PubMed: 10357791]
- (387). Grant DM, Josephy PD, Lord HL, Morrison LD. *Salmonella typhimurium* strains expressing human arylamine *N*-acetyltransferases: Metabolism and mutagenic activation of aromatic amines. Cancer Res. 1992; 52:3961–3964. [PubMed: 1617672]
- (388). Arlt VM, Glatt H, Muckel E, Pabel U, Sorg BL, Schmeiser HH, Phillips DH. Metabolic activation of the environmental contaminant 3-nitrobenzanthrone by human acetyltransferases and sulfotransferase. Carcinogenesis. 2002; 23:1937–1945. [PubMed: 12419844]
- (389). Hein DW, Doll MA, Rustan TD, Gray K, Feng Y, Ferguson RJ, Grant DM. Metabolic activation and deactivation of arylamine carcinogens by recombinant human NAT1 and polymorphic NAT2 acetyltransferases. Carcinogenesis. 1993; 14:1633–1638. [PubMed: 8353847]
- (390). Glatt H, Meinl W. Use of genetically manipulated *Salmonella typhimurium* strains to evaluate the role of sulfotransferases and acetyltransferases in nitrofen mutagenicity. Carcinogenesis. 2004; 25:779–786. [PubMed: 14754874]
- (391). Arlt VM, Glatt H, Gamboa da Costa G, Reynisson J, Takamura-Enya T, Phillips DH. Mutagenicity and DNA adduct formation by the urban air pollutant 2-nitrobenzanthrone. Toxicol. Sci. 2007; 98:445–457. [PubMed: 17483118]
- (392). Wild D, Feser W, Michel S, Lord HL, Josephy PD. Metabolic activation of heterocyclic aromatic amines catalyzed by human arylamine N-acetyltransferase isozymes (NAT1 and NAT2) expressed in *Salmonella typhimurium*. Carcinogenesis. 1995; 16:643–648. [PubMed: 7697826]

(393). Muckel E, Frandsen H, Glatt HR. Heterologous expression of human *N*-acetyltransferases 1 and 2 and sulfotransferase 1A1 in *Salmonella typhimurium* for mutagenicity testing of heterocyclic amines. Food Chem. Toxicol. 2002; 40:1063–1068. [PubMed: 12067565]

- (394). Glatt H, Boeing H, Engelke CE, Ma L, Kuhlow A, Pabel U, Pomplun D, Teubner W, Meinl W. Human cytosolic sulphotransferases: Genetics, characteristics, toxicological aspects. Mut. Res. 2001; 482:27–40. [PubMed: 11535246]
- (395). Glatt H. Sulfation and sulfotransferases. Bioactivation of mutagens via sulfation. FASEB J. 1997; 11:314–321. [PubMed: 9141497]
- (396). Kreis P, Brandner S, Coughtrie MW, Pabel U, Meinl W, Glatt H, Andrae U. Human phenol sulfotransferases hP-PST and hM-PST activate propane 2-nitronate to a genotoxicant. Carcinogenesis. 2000; 21:295–299. [PubMed: 10657971]
- (397). Meinl W, Donath C, Schneider H, Sommer Y, Glatt H. SULT1C3, an orphan sequence of the human genome, encodes an enzyme activating various promutagens. Food Chem. Toxicol. 2008; 46:1249–1256. [PubMed: 17936463]
- (398). Glatt H, Baasanjav-Gerber C, Schumacher F, Monien BH, Schreiner M, Frank H, Seidel A, Engst W. 1-Methoxy-3-indolylmethyl glucosinolate. A potent genotoxicant in bacterial and mammalian cells. Mechanisms of bioactivation. Chem.-Biol. Interact. 2011; 192:81–86. [PubMed: 20846518]
- (399). Glatt H. Sulfotransferases in the bioactivation of xenobiotics. Chem.-Biol. Interact. 2000; 129:141–170. [PubMed: 11154739]
- (400). Svendsen C, Meinl W, Glatt H, Alexander J, Knutsen HK, Hjertholm H, Rasmussen T, Husøy T. Intestinal carcinogenesis of two food processing contaminants, 2-amino-1-methyl-6-phenylimidazo[4,5-*b*]pyridine and 5-hydroxymethylfurfural, in transgenic FVB min mice expressing human sulfotransferases. Mol. Carcinog. 2011 doi 10.1002/mc.20869.
- (401). Oda Y, Zhang Y, Buchinger S, Reifferscheid G, Yang M. Roles of human sulfotransferases in genotoxicity of carcinogens using genetically engineered umu test strains. Environ. Mol. Mutagen. 2012; 253:152–164. [PubMed: 22072630]
- (402). Nishiyama T, Ogura K, Nakano H, Ohnuma T, Kaku T, Hiratsuka A, Muro K, Watabe T. Reverse geometrical selectivity in glucuronidation and sulfation of *cis* and *trans*-4-hydroxytamoxifens by human liver UDP-glucuronosyltransferases and sulfotransferases. Biochem. Pharmacol. 2002; 63:1817–1830. [PubMed: 12034366]
- (403). Mercer KE, Apostolov EO, da Costa GG, Yu X, Lang P, Roberts DW, Davis W, Basnakian AG, Kadlubar FF, Kadlubar SA. Expression of sulfotransferase isoform 1A1 (SULT1A1) in breast cancer cells significantly increases 4-hydroxytamoxifen-induced apoptosis. Int. J Mol. Epidemiol. Genet. 2010; 1:92–103. [PubMed: 21537383]
- (404). Meinl W, Pabel U, Osterloh-Quiroz M, Hengstler J-G, Glatt H. Human sulphotransferases are involved in the activation of aristolochic acids and are expressed in renal target tissue. Int. J. Cancer. 2006; 118:1090–1097. [PubMed: 16161050]
- (405). Monien BH, Herrmann K, Florian S, Glatt H. Metabolic activation of furfuryl alcohol: formation of 2-methylfuranyl DNA adducts in *Salmonella typhimurium* strains expressing human sulfotransferase 1A1 and in FVB/N mice. Carcinogenesis. 2011; 32:1533–1539. [PubMed: 21729924]
- (406). Coles B, Nowell SA, MacLeod SL, Sweeney C, Lang NP, Kadlubar FF. The role of human glutathione S-transferases (hGSTs) in the detoxification of the food-derived carcinogen metabolite N-acetoxy-PhIP, and the effect of a polymorphism in hGSTA1 on colorectal cancer risk. Mut. Res. 2001; 482:3–10. [PubMed: 11535243]
- (407). Al-Buheissi SZ, Patel HR, Meinl W, Hewer A, Bryan RL, Glatt H, Miller RA, Phillips DH. N-Acetyltransferase and sulfotransferase activity in human prostates: Potential for carcinogen activation. Pharmacogenet. Genomics. 2006; 16:391–399. [PubMed: 16708048]
- (408). Chou HC, Lang NP, Kadlubar FF. Metabolic activation of *N*-hydroxy arylamines and *N*-hydroxy heterocyclic amines by human sulfotransferase(s). Cancer Res. 1995; 55:525–529. [PubMed: 7834621]

(409). Chou HC, Lang NP, Kadluber FF. Metabolic activation of the N-hydroxy derivative of the carcinogen 4-aminobiphenyl by human tissue sulfotransferases. Carcinogenesis. 1995; 16:413– 417. [PubMed: 7859374]

- (410). Meinl W, Meerman JH, Glatt H. Differential activation of promutagens by alloenzymes of human sulfotransferase 1A2 expressed in *Salmonella typhimurium*. Pharmacogenetics. 2002; 12:677–689. [PubMed: 12464797]
- (411). Glatt H, Schneider H, Murkovic M, Monien BH, Meinl W. Hydroxymethyl-substituted furans: Mutagenicity in *Salmonella typhimurium* strains engineered for expression of various human and rodent sulphotransferases. Mutagenesis. 2012; 27:41–48. [PubMed: 21825114]
- (412). Shibutani S, Shaw PM, Suzuki N, Dasaradhi L, Duffel MW, Terashima I. Sulfation of α-hydroxytamoxifen catalyzed by human hydroxysteroid sulfotransferase results in tamoxifen-DNA adducts. Carcinogenesis. 1998; 19:2007–2011. [PubMed: 9855017]
- (413). Apak TI, Duffel MW. Interactions of the stereoisomers of alpha-hydroxytamoxifen with human hydroxysteroid sulfotransferase SULT2A1 and rat hydroxysteroid sulfotransferase STa. Drug Metab. Dispos. 2004; 32:1501–1508. [PubMed: 15371299]
- (414). Shen Y, Zhong L, Johnson S, Cao D. Human aldo-keto reductases B1 and 1B10: a comparative study on their enzyme activity toward electrophilic carbonyl compounds. Chem.-Biol. Interact. 2011; 191:192–198. [PubMed: 21329684]
- (415). Martin HJ, Breyer-Pfaff U, Wsol V, Venz S, Block S, Maser E. Purification and characterization of AKR1B10 from human liver: role in carbonyl reduction of xenobiotics. Drug Metab. Dispos. 2006; 34:464–470. [PubMed: 16381663]
- (416). Martin HJ, Maser E. Role of human aldo-keto-reductase AKR1B10 in the protection against toxic aldehydes. Chem.-Biol. Interactions. 2009; 178:145–150.
- (417). Zhong L, Liu Z, Yan R, Johnson S, Zhao Y, Fang X, Cao D. Aldo-keto reductase family 1B10 protein detoxifies dietary and lipid-derived α, β-unsaturated carbonyls at physiological levels. Biochem. Biophys. Res. Commun. 2009; 387:245–250. [PubMed: 19563777]
- (418). Atalla A, Breyer-Pfaff U, Maser E. Purification and characterization of oxidoreductases-catalyzing carbonyl reduction of the tobacco-specific nitrosamine 4-methylnitrosamino-1-(3-pyridyl)-1-butanone (NNK) in human liver cytosol. Xenobiotica. 2000; 30:755–769. [PubMed: 11037109]
- (419). Atalla A, Maser E. Characterization of enzymes participating in carbonyl reduction of 4-methylnitrosamino-1-(3-pyridyl)-1-butanone (NNK) in human placenta. Chem.-Biol. Interact. 2001; 130-132:737–748. [PubMed: 11306090]
- (420). Knight LP, Primiano T, Groopman JD, Kensler TW, Sutter TR. B₁-metabolizing member of the aldo-keto reductase superfamily, AKR7A3. Carcinogenesis. 1999; 20:1215–1223. [PubMed: 10383892]
- (421). Penning TM, Drury JE. Human aldo-keto reductases: Function, gene regulation, and single nucleotide polymorphisms. Arch. Biochem. Biophys. 2007; 464:241–250. [PubMed: 17537398]
- (422). Bodreddigari S, Jones LK, Egner PA, Groopman JD, Sutter CH, Roebuck BD, Guengerich FP, Kensler TW, Sutter TR. Protection against aflatoxin B₁-induced cytotoxicity by expression of the cloned aflatoxin B₁-aldehyde reductases rat AKR7A1 and human AKR7A3. Chem. Res. Toxicol. 2008; 21:1134–1142. [PubMed: 18416522]
- (423). Miksanova M, Sulc M, Rydlova H, Schmeiser HH, Frei E, Stiborová M. Enzymes involved in the metabolism of the carcinogen 2-nitroanisole: evidence for its oxidative detoxication by human cytochromes P450. Chem. Res. Toxicol. 2004; 17:663–671. [PubMed: 15144223]
- (424). Dracinska H, Miksanova M, Svobodova M, Smrcek S, Frei E, Schmeiser HH, Stiborová M. Oxidative detoxication of carcinogenic 2-nitroanisole by human, rat and rabbit cytochrome P450. Neuro. Endocrinol. Lett. 2006; 27(Suppl. 2):9–13. [PubMed: 17159769]
- (425). Jones JP, Shou M, Korzekwa KR. Stereospecific activation of the procarcinogen benzo[*a*]pyrene: a probe for the active sites of the cytochrome P450 superfamily. Biochemistry. 1995; 34:6956–6961. [PubMed: 7766605]
- (426). Shimada T, Gillam EM, Sutter TR, Strickland PT, Guengerich FP, Yamazaki H. Oxidation of xenobiotics by recombinant human cytochrome P450 1B1. Drug Metab. Dispos. 1997; 25:617– 622. [PubMed: 9152602]

(427). Bauer E, Guo Z, Ueng Y-F, Bell LC, Guengerich FP. Oxidation of benzo[a]pyrene by recombinant human cytochrome P450 enzymes. Chem. Res. Toxicol. 1995; 8:136–142. [PubMed: 7703357]

- (428). Parikh A, Josephy PD, Guengerich FP. Selection and characterization of human cytochrome P450 1A2 mutants with altered catalytic properties. Biochemistry. 1999; 38:5283–5289. [PubMed: 10220313]
- (429). Langouët S, Welti DH, Kerriguy N, Fay LB, Huynh-Ba T, Markovic J, Guengerich FP, Guillouzo A, Turesky RJ. Metabolism of 2-amino-3,8-dimethylimidazo[4,5-f]quinoxaline-8-carboxylic acid is a major detoxification pathway catalyzed by cytochrome P450 1A2. Chem. Res. Toxicol. 2001; 14:211–221. [PubMed: 11258970]
- (430). Yun C-H, Shimada T, Guengerich FP. Roles of human liver cytochrome P-450 2C and 3A enzymes in the 3-hydroxylation of benzo(*a*)pyrene. Cancer Res. 1992; 52:1868–1874. [PubMed: 1551116]
- (431). Munter T, Cottrell L, Golding BT, Watson WP. Detoxication pathways involving glutathione and epoxide hydrolase in the *in vitro* metabolism of chloroprene. Chem. Res. Toxicol. 2003; 16:1287–1297. [PubMed: 14565770]
- (432). Guengerich FP, Johnson WW, Ueng Y-F, Yamazaki H, Shimada T. Involvement of cytochrome P450s, glutathione S-transferase, and epoxide hydrolase in the metabolism of aflatoxin B₁ and relevance to risk of human liver cancer. Environ. Health Perspect. 1996; 104(Suppl. 3):557–562. [PubMed: 8781383]
- (433). Johnson WW, Ueng Y-F, Yamazaki H, Shimada T, Guengerich FP. Role of microsomal epoxide hydrolase in the hydrolysis of aflatoxin B₁ 8,9-epoxide. Chem. Res. Toxicol. 1997; 10:672–676. [PubMed: 9208174]
- (434). Chandrasena RE, Edirisinghe PD, Bolton JL, Thatcher GR. Problematic detoxification of estrogen quinones by NAD(P)H-dependent quinone oxidoreductase and glutathione-S-transferase. Chem. Res. Toxicol. 2008; 21:1324–1329. [PubMed: 18588320]
- (435). Pernice R, Hauder J, Koehler P, Vitaglione P, Fogliano V, Somoza V. Effect of sulforaphane on glutathione-adduct formation and on glutathione S-transferase-dependent detoxification of acrylamide in Caco-2 cells. Mol Nutr Food Res. 2009; 53:1540–1550. [PubMed: 19904761]
- (436). Pacifici GM, Guthenberg C, Warholm M, Mannervik B, Rane A. Conjugation of styrene oxide by the basic and acidic forms of glutathione transferase in the human fetal liver. Dev. Pharmacol. Ther. 1988; 11:243–251. [PubMed: 3224538]
- (437). Pacifici GM, Warholm M, Guthenberg C, Mannervik B, Rane A. Detoxification of styrene oxide by human liver glutathione transferase. Hum. Toxicol. 1987; 6:483–489. [PubMed: 3692493]
- (438). Seidel A, Friedberg T, Löllmann B, Schwierzok A, Funk M, Frank H, Holler R, Oesch F, Glatt H. Detoxification of optically active bay- and fjord-region polycyclic aromatic hydrocarbon dihydrodiol epoxides by human glutathione transferase P1-1 expressed in Chinese hamster V79 cells. Carcinogenesis. 1998; 19:1975–1981. [PubMed: 9855012]
- (439). Jernstrom B, Funk M, Frank H, Mannervik B, Seidel A. Glutathione S-transferase A1-1-catalysed conjugation of bay and fjord region diol epoxides or polycyclic aromatic hydrocarbons with glutathione. Carcinogenesis. 1996; 17:1491–1498. [PubMed: 8706254]
- (440). Sundberg K, Dreij K, Seidel A, Jernström B. Glutathione conjugation and DNA adduct formation of dibenzo[*a,l*]pyrene and benzo[*a*]pyrene diol epoxides in V79 cells stably expressing different human glutathione transferases. Chem. Res. Toxicol. 2002; 15:170–179. [PubMed: 11849043]
- (441). Dreij K, Sundberg K, Johansson AS, Nordling E, Seidel A, Persson B, Mannervik B, Jernström B. Catalytic activities of human alpha class glutathione transferases toward carcinogenic dibenzo[*a,l*]pyrene diol epoxides. Chem. Res. Toxicol. 2002; 15:825–831. [PubMed: 12067250]
- (442). Dirven HA, van Ommen B, van Bladeren PJ. Involvement of human glutathione S-transferase isoenzymes in the conjugation of cyclophosphamide metabolites with glutathione. Cancer Res. 1994; 54:6215–6220. [PubMed: 7954469]
- (443). Guengerich FP, Johnson WW, Shimada T, Ueng YF, Yamazaki H, Langouët S. Activation and detoxication of aflatoxin B₁. Mut. Res. 1998; 402:121–128. [PubMed: 9675258]

(444). Lin D, Meyer DJ, Ketterer B, Lang NP, Kadlubar FF. Effects of human and rat glutathione Stransferases on the covalent DNA binding of the *N*-acetoxy derivatives of heterocyclic amine carcinogens *in vitro*: a possible mechanism of organ specificity in their carcinogenesis. Cancer Res. 1994; 54:4920–4926. [PubMed: 8069858]

- (445). Upadhyaya P, Rao P, Hochalter JB, Li ZZ, Villalta PW, Hecht SS. Quantitation of *N*-acetyl-S-(9,10-dihydro-9-hydroxy-10-phenanthryl)-L-cysteine in human urine: Comparison with glutathione-S-transferase genotypes in smokers. Chem. Res. Toxicol. 2006; 19:1234–1240. [PubMed: 16978029]
- (446). Sundberg K, Widersten M, Seidel A, Mannervik B, Jernström B. Glutathione conjugation of bay- and fjord-region diol epoxides of polycyclic aromatic hydrocarbons by glutathione transferases M1-1 and P1-1. Chem. Res. Toxicol. 1997; 10:1221–1227. [PubMed: 9403173]
- (447). Alexandrov K, Cascorbi I, Rojas M, Bouvier G, Kriek E, Bartsch H. CYP1A1 and GSTM1 genotypes affect benzo[a]pyrene DNA adducts in smokers' lung: Comparison with aromatic/hydrophobic adduct formation. Carcinogenesis. 2002; 23:1969–1977. [PubMed: 12507920]
- (448). Hu X, Xia H, Srivastava SK, Herzog C, Awasthi YC, Ji X, Zimniak P, Singh SV. Activity of four allelic forms of glutathione S-transferase hGSTP1-1 for diol epoxides of polycyclic aromatic hydrocarbons. Biochem. Biophys. Res. Commun. 1997; 238:397–402. [PubMed: 9299520]
- (449). Sundberg K, Johansson AS, Stenberg G, Widersten M, Seidel A, Mannervik B, Jernström B. Differences in the catalytic efficiencies of allelic variants of glutathione transferase P1-1 towards carcinogenic diol epoxides of polycyclic aromatic hydrocarbons. Carcinogenesis. 1998; 19:433–436. [PubMed: 9525277]
- (450). Hu X, Herzog C, Zimniak P, Singh SV. Differential protection against benzo[*a*]pyrene-7,8-dihydrodiol-9,10-epoxide-induced DNA damage in HepG2 cells stably transfected with allelic variants of pi class human glutathione S-transferase. Cancer Res. 1999; 59:2358–2362. [PubMed: 10344744]
- (451). Dirven HA, Megens L, Oudshoorn MJ, Dingemanse MA, van Ommen B, van Bladeren PJ. Glutathione conjugation of the cytostatic drug ifosfamide and the role of human glutathione S-transferases. Chem. Res. Toxicol. 1995; 8:979–986. [PubMed: 8555414]
- (452). Morrow CS, Smitherman PK, Townsend AJ. Role of multidrug-resistance protein 2 in glutathione S-transferase P1-1-mediated resistance to 4-nitroquinoline 1-oxide toxicities in HepG2 cells. Mol. Carcinog. 2000; 29:170–178. [PubMed: 11108662]
- (453). Peklak-Scott C, Townsend AJ, Morrow CS. Dynamics of glutathione conjugation and conjugate efflux in detoxification of the carcinogen, 4-nitroquinoline 1-oxide: contributions of glutathione, glutathione S-transferase, and MRP1. Biochemistry. 2005; 44:4426–4433. [PubMed: 15766272]
- (454). Hu X, Pal A, Krzeminski J, Amin S, Awasthi YC, Zimniak P, Singh SV. Specificities of human glutathione S-transferase isozymes toward *anti*-diol epoxides of methylchrysenes. Carcinogenesis. 1998; 19:1685–1689. [PubMed: 9771942]
- (455). Sundberg K, Seidel A, Mannervik B, Jernström B. Detoxication of carcinogenic fjord-region diol epoxides of polycyclic aromatic hydrocarbons by glutathione transferase P1-1 variants and glutathione. FEBS Lett. 1998; 438:206–210. [PubMed: 9827546]
- (456). Hu X, Xia H, Srivastava SK, Pal A, Awasthi YC, Zimniak P, Singh SV. Catalytic efficiencies of allelic variants of human glutathione S-transferase P1-1 toward carcinogenic anti-diol epoxides of benzo[c]phenanthrene and benzo[g]chrysene. 1998; s:5340–5343.
- (457). Fields WR, Morrow CS, Doss AJ, Sundberg K, Jernström B, Townsend AJ. Overexpression of stably transfected human glutathione S-transferase P1-1 protects against DNA damage by benzo[a]pyrene diol-epoxide in human T47D cells. Mol. Pharmacol. 1998; 54:298–304. [PubMed: 9687571]
- (458). Nelson CP, Kidd LC, Sauvageot J, Isaacs WB, De Marzo AM, Groopman JD, Nelson WG, Kensler TW. Protection against 2-hydroxyamino-1-methyl-6-phenylimidazo[4,5-*b*]pyridine cytotoxicity and DNA adduct formation in human prostate by glutathione S-transferase P1. Cancer Res. 2001; 61:103–109. [PubMed: 11196146]
- (459). Kurian JR, Chin NA, Longlais BJ, Hayes KL, Trepanier LA. Reductive detoxification of arylhydroxylamine carcinogens by human NADH cytochrome *b*₅ reductase and cytochrome *b*₅. Chem. Res. Toxicol. 2006; 19:1366–1373. [PubMed: 17040106]

(460). Rhoads K, Sacco JC, Drescher N, Wong A, Trepanier LA. Individual variability in the detoxification of carcinogenic arylhydroxylamines in human breast. Toxicol. Sci. 2011; 121:245– 256. [PubMed: 21447608]

- (461). Lavigne JA, Goodman JE, Fonong T, Odwin S, He P, Roberts DW, Yager JD. The effects of catechol-*O*-methyltransferase inhibition on estrogen metabolite and oxidative DNA damage levels in estradiol-treated MCF-7 cells. Cancer Res. 2001; 61:7488–7494. [PubMed: 11606384]
- (462). Goodman JE, Jensen LT, He P, Yager JD. Characterization of human soluble high and low activity catechol-*O*-methyltransferase catalyzed catechol estrogen methylation. Pharmacogenetics. 2002; 12:517–28. [PubMed: 12360102]
- (463). Zhang L, Jin Y, Chen M, Huang M, Harvey RG, Blair IA, Penning TM. Detoxication of structurally diverse polycyclic aromatic hydrocarbon (PAH) o-quinones by human recombinant catechol-O-methyltransferase (COMT) via O-methylation of PAH catechols. J. Biol. Chem. 2011; 286:25644–25654. [PubMed: 21622560]
- (464). Ozawa S, Nagata K, Yamazoe Y, Kato R. Formation of 2-amino-3-methylimidazo[4,5-f]quinoline- and 2-amino-3,8-dimethylimidazo[4,5-f]quinoxaline-sulfamates by cDNA-expressed mammalian phenol sulfotransferases. Jpn. J. Cancer Res. 1995; 86:264–269. [PubMed: 7744696]
- (465). Turesky, RJ.; Fay, LB.; Welti, DH. Metabolism of heterocyclic aromatic amines and strategies of human biomonitoring. In: Adamson, RH.; Gustafsson, J-Å.; Ito, N.; Nagao, M.; Wakabayashi, K.; Yamazoe, Y., editors. Heterocyclic Amines and Human Cancer. Vol. 23. Princeton Sci. Publ.; Princeton, NJ: 1995. p. 59-68.Proc. 23rd Int. Princess Takamatsu Cancer Sympos., Tokyo, 10-12 November, 1992
- (466). Fang JL, Beland FA, Doerge DR, Wiener D, Guillemette C, Marques MM, Lazarus P. Characterization of benzo(*a*)pyrene-trans-7,8-dihydrodiol glucuronidation by human tissue microsomes and overexpressed UDP-glucuronosyltransferase enzymes. Cancer Res. 2002; 62:1978–1986. [PubMed: 11929814]
- (467). Malfatti MA, Felton JS. N-Glucuronidation of 2-amino-1-methyl-6-phenylimidazo[4,5-*b*]pyridine (PhIP) and N-hydroxy-PhIP by specific human UDP-glucuronosyltransferases. Carcinogenesis. 2001; 22:1087–1093. [PubMed: 11408353]
- (468). Dellinger RW, Chen G, Blevins-Primeau AS, Krzeminski J, Amin S, Lazarus P. Glucuronidation of PhIP and N-OH-PhIP by UDP-glucuronosyltransferase 1A10. Carcinogenesis. 2007; 28:2412–2418. [PubMed: 17638922]
- (469). Basu NK, Kubota S, Meselhy MR, Ciotti M, Chowdhury B, Hartori M, Owens IS. Gastrointestinally distributed UDP-glucuronosyltransferase 1A10, which metabolizes estrogens and nonsteroidal anti-inflammatory drugs, depends upon phosphorylation. J. Biol. Chem. 2004; 279:28320–28329. [PubMed: 15117964]
- (470). Olson KC, Sun D, Chen G, Sharma AK, Amin S, Ropson IJ, Spratt TE, Lazarus P. Characterization of dibenzo[*a,I*]pyrene-trans-11,12-diol (dibenzo[*def,p*]chrysene) glucuronidation by UDP-glucuronosyltransferases. Chem. Res. Toxicol. 2011; 24:1549–1559. [PubMed: 21780761]
- (471). Malfatti MA, Felton JS. Human UDP-glucuronosyltransferase A1 is the primary enzyme responsible for the N-glucuronidation of N-hydroxy-PhIP *in vitro*. Chem. Res. Toxicol. 2004; 17:1137–1144. [PubMed: 15310245]
- (472). Malfatti MA, Wu RW, Felton JS. The effect of UDP-glucuronosyltransferase 1A1 expression on the mutagenicity and metabolism of the cooked-food carcinogen 2-amino-1-methyl-6-phenylimidazo[4,5-*b*]pyridine in CHO cells. Mut. Res. 2005; 570:205–214. [PubMed: 15708579]
- (473). Ogura K, Ishikawa Y, Kaku T, Nishiyama T, Ohnuma T, Muro K, Hiratsuka A. Quaternary ammonium-linked glucuronidation of *trans*-4-hydroxytamoxifen, an active metabolite of tamoxifen, by human liver microsomes and UDP-glucuronosyltransferase 1A4. Biochem. Pharmacol. 2006; 71:1358–1369. [PubMed: 16480962]
- (474). Sun D, Sharma AK, Dellinger RW, Blevins-Primeau AS, Balliet RM, Chen G, Boyiri T, Amin S, Lazarus P. Glucuronidation of active tamoxifen metabolites by the human UDP glucuronosyltransferases. Drug Metab. Dispos. 2007; 35:2006–2014. [PubMed: 17664247]
- (475). Nowell SA, Massengill JS, Williams S, Radominska-Pandya A, Tephly TR, Cheng Z, Strassburg CP, Tukey RH, MacLeod SL, Lang NP, Kadlubar FF. Glucuronidation of 2-hydroxyamino-1-methyl-6-phenylimidazo[4,5-*b*]pyridine by human microsomal UDP-

- glucuronosyltransferases: Identification of specific UGT1A family isoforms involved. Carcinogenesis. 1999; 20:1107–1114. [PubMed: 10357796]
- (476). Wiener D, Fang JL, Dossett N, Lazarus P. Correlation between UDP-glucuronosyltransferase genotypes and 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone glucuronidation phenotype in human liver microsomes. Cancer Res. 2004; 64:1190–1196. [PubMed: 14871856]
- (477). Wiener D, Doerge DR, Fang JL, Upadhyaya P, Lazarus P. Characterization of N-glucuronidation of the lung carcinogen 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanol (NNAL) in human liver: importance of UDP-glucuronosyltransferase 1A4. Drug Metab. Dispos. 2004; 32:72–79. [PubMed: 14709623]
- (478). Chen G, Dellinger RW, Sun D, Spratt TE, Lazarus P. Glucuronidation of tobacco-specific nitrosamines by UGT2B10. Drug Metab Dispos. 2008; 36:824–830. [PubMed: 18238858]
- (479). Kaku T, Ogura K, Nishiyama T, Ohnuma T, Muro K, Hiratsuka A. Quaternary ammonium-linked glucuronidation of tamoxifen by human liver microsomes and UDP-glucuronosyltransferase 1A4. Biochem. Pharmacol. 2004; 67:2093–2102. [PubMed: 15135306]
- (480). Ren Q, Murphy SE, Zheng Z, Lazarus P. O-Glucuronidation of the lung carcinogen 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanol (NNAL) by human UDP-glucuronosyltransferases 2B7 and 1A9. Drug Metab. Dispos. 2000; 28:1352–1360. [PubMed: 11038164]
- (481). Dellinger RW, Fang JL, Chen G, Weinberg R, Lazarus P. Importance of UDP-glucuronosyltransferase 1A10 (UGT1A10) in the detoxification of polycyclic aromatic hydrocarbons: decreased glucuronidative activity of the UGT1A10139Lys isoform. Drug Metab. Dispos. 2006; 34:943–949. [PubMed: 16510539]
- (482). Balliet RM, Chen G, Dellinger RW, Lazarus P. UDP-glucuronosyltransferase 1A10: activity against the tobacco-specific nitrosamine, 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanol, and a potential role for a novel UGT1A10 promoter deletion polymorphism in cancer susceptibility. Drug Metab. Dispos. 2010; 38:484–90. [PubMed: 20007297]
- (483). Bushey RT, Chen G, Blevins-Primeau AS, Krzeminski J, Amin S, Lazarus P. Characterization of UDP-glucuronosyltransferase 2A1 (UGT2A1) variants and their potential role in tobacco carcinogenesis. Pharmacogenet. Genomics. 2011; 21:55–65. [PubMed: 21164388]
- (484). Gallagher CJ, Muscat JE, Hicks AN, Zheng Y, Dyer AM, Chase GA, Richie J, Lazarus P. The UDP-glucuronosyltransferase 2B17 gene deletion polymorphism: sex-specific association with urinary 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanol glucuronidation phenotype and risk for lung cancer. Cancer Epidemiol. Biomarkers Prev. 2007; 16:823–828. [PubMed: 17416778]
- (485). Penning TM. Aldo-keto reductases and formation of polycyclic aromatic hydrocarbon *o*-quinones. Methods Enzymol. 2004; 378:31–67. [PubMed: 15038957]
- (486). Conney AH. Induction of microsomal enzymes by foreign chemicals and carcinogenesis by polycyclic aromatic hydrocarbons: G. H. A. Clowes memorial lecture. Cancer Res. 1982; 42:4875–4917. [PubMed: 6814745]
- (487). Nebert DW, Gelboin HV. Substrate-inducible microsomal arylhydroxylase in mammalian cell culture: assay and properties of induced enzyme. J. Biol. Chem. 1968; 243:6242–6249. [PubMed: 4387094]
- (488). Guengerich FP, Johnson WW. Kinetics of hydrolysis and reaction of aflatoxin B₁ *exo*-8,9-epoxide and relevance to toxicity and detoxication. Drug Metab. Rev. 1999; 31:141–158. [PubMed: 10065369]
- (489). Iyer R, Coles B, Raney KD, Thier R, Guengerich FP, Harris TM. DNA adduction by the potent carcinogen aflatoxin B₁: mechanistic studies. J. Am. Chem. Soc. 1994; 116:1603–1609.
- (490). Distlerath LM, Reilly PEB, Martin MV, Davis GG, Wilkinson GR, Guengerich FP. Purification and characterization of the human liver cytochromes P-450 involved in debrisoquine 4-hydroxylation and phenacetin *O*-deethylation, two prototypes for genetic polymorphism in oxidative drug metabolism. J. Biol. Chem. 1985; 260:9057–9067. [PubMed: 4019462]
- (491). Lo Guidice JM, Marez D, Sabbagh N, Legrand-Andreoletti M, Spire C, Alcaïde E, Lafitte JJ, Broly F. Evidence for CYP2D6 expression in human lung. Biochem. Biophys. Res. Commun. 1997; 241:79–85. [PubMed: 9405237]
- (492). Wolff T, Distlerath LM, Worthington MT, Groopman JD, Hammons GJ, Kadlubar FF, Prough RA, Martin MV, Guengerich FP. Substrate specificity of human liver cytochrome P-450

- debrisoquine 4-hydroxylase probed using immunochemical inhibition and chemical modeling. Cancer Res. 1985; 45:2116–2122. [PubMed: 3921236]
- (493). Crespi CL, Penman BW, Gelboin HV, Gonzalez FJ. A tobacco smoke-derived nitrosamine, 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone, is activated by multiple human cytochrome P450s including the polymorphic human cytochrome P4502D6. Carcinogenesis. 1991; 12:1197–1201. [PubMed: 2070484]
- (494). Gonzalez FJ, Skoda RC, Kimura S, Umeno M, Zanger UM, Nebert DW, Gelboin HV, Hardwick JP, Meyer UA. Characterization of the common genetic defect in humans deficient in debrisoquine metabolism. Nature. 1988; 331:442–446. [PubMed: 3123997]
- (495). Christensen PM, Gøtzsche PC, Brøsen K. The sparteine/debrisoquine (CYP2D6) oxidation polymorphism and the risk of lung cancer: a *meta*-analysis. Eur. J. Clin. Pharmacol. 1997; 51:389–393. [PubMed: 9049580]
- (496). Rostami-Hodjegan A, Lennard MS, Woods HF, Tucker GT. *Meta*-analysis of studies of the CYP2D6 polymorphism in relation to lung cancer and Parkinson's disease. Pharmacogenetics. 1998; 8:227–238. [PubMed: 9682268]
- (497). Guengerich FP. Cytochrome P450 oxidation in the generation of reactive electrophiles: Epoxidations and related reactions. Arch. Biochem. Biophys. 2003; 409:59–71. [PubMed: 12464245]
- (498). Gozukara EM, Belvedere G, Robinson RC, Deutsch J, Coon MJ, Guengerich FP, Gelboin HV. The effect of epoxide hydratase on benzo[a]pyrene diol epoxide hydrolysis and binding to DNA and mixed-function oxidase proteins. Mol. Pharmacol. 1981; 19:153–161. [PubMed: 7193798]
- (499). Guengerich FP, Tang Z, Salamanca-Pinzon SG, Cheng Q. Characterizing proteins of unknown function: Orphan cytochrome P450s as a paradigm. Mol. Interventions. 2010:153–163.
- (500). Karlgren M, Gomez A, Stark K, Svard J, Rodriguez-Antona C, Oliw E, Bernal ML, Ramón y Cajal S, Johansson I, Ingelman-Sundberg M. Tumor-specific expression of the novel cytochrome P450 enzyme, CYP2W1. Biochem. Biophys. Res. Commun. 2006; 341:451–458. [PubMed: 16426568]
- (501). Tang Z, Salamanca-Pinzon SG, Wu Z-L, Xiao Y, Guengerich FP. Human cytochrome P450 4F11: heterologous expression in bacteria, purification, and characterization of catalytic function. Arch. Biochem. Biophys. 2010; 494:86–93. [PubMed: 19932081]
- (502). Rylander T, Neve EPA, Ingelman-Sundberg M, Oscarson M. Identification and tissue distribution of the novel human cytochrome P450 2S1 (CYP2S1). Biochem. Biophys. Res. Commun. 2001; 281:529–535. [PubMed: 11181079]
- (503). Karlgren M, Miura S, Ingelman-Sundberg M. Novel extrahepatic cytochrome P450s. Toxicol. Appl. Pharmacol. 2005; 207(Suppl. 1):57–61. [PubMed: 15987645]
- (504). Nishida CR, Lee M, Ortiz de Montellano PR. Efficient hypoxic activation of the anticancer agent AQ4N by CYP2S1 and CYP2W1. Mol. Pharmacol. 2010; 78:497–502. [PubMed: 20566689]
- (505). Xiao Y, Shinko R, Guengerich FP. Cytochrome P450 2S1 is reduced by NADPH-cytrochrome P450 reductase. Drug Metab. Dispos. 2011; 39:944–946. [PubMed: 21430234]
- (506). Bui PH, Hsu EL, Hankinson O. Fatty acid hydroperoxides support cytochrome P450 2S1-mediated bioactivation of benzo[a]pyrene-7,8-dihydrodiol. Mol. Pharmacol. 2009; 76:1044–1052. [PubMed: 19713357]
- (507). Bui PH, Hankinson O. Functional characterization of human cytochrome P450 2S1 using a synthetic gene-expressed protein. Escherichia coli. Mol. Pharmacol. 2009; 76:1031–1043.
- (508). Guengerich FP, Cheng Q. Orphans in the human cytochrome P450 family: Approaches to discovering function and relevance to pharmacology. Pharmacol. Rev. 2011; 63:684–699. [PubMed: 21737533]
- (509). Rendic S, Di Carlo FJ. Human cytochrome P450 enzymes: a status report summarizing their reacitons, substrates, inducers, and inhibitors. Drug Metab. Rev. 1997; 29:413–580. [PubMed: 9187528]
- (510). Rendic S. Summary of information on human CYP enzymes: Human P450 metabolism data. Drug Metab. Rev. 2002; 34:83–448. [PubMed: 11996015]

(511). Guengerich FP, Rendic S. Update information on drug metabolism systems-2009, Part I. Drug Metab. Rev. 2010; 11:1–3.

- (512). Rendic S, Guengerich FP. Summary of information on human cytochrome P450 enzyme and transporters: "Non-chemical" effectors influencing expression and activity. Curr. Drug Metab. 2010; 11:4–84. [PubMed: 20302566]
- (513). Guengerich FP. Separation and purification of multiple forms of microsomal cytochrome P-450. Activities of different forms of cytochrome P-450 towards several compounds of environmental interest. J. Biol. Chem. 1977; 252:3970–3979. [PubMed: 405388]
- (514). Sohl CD, Isin EM, Eoff RL, Marsch GA, Stec DF, Guengerich FP. Cooperativity in oxidation reactions catalyzed by cytochrome P450 1A2. Highly cooperative pyrene hydroxylation and multiphasic kinetics of ligand binding. J. Biol. Chem. 2008; 283:7293–7308. [PubMed: 18187423]

Figure 1. General paradigm of metabolism of chemical carcinogens.

Figure 2. Enzyme contributions to activation of carcinogens (from Table 1). A: Fractions of activation reactions attributed to groups of enzymes. The analysis is based on 713 reactions. B: Fractions of P450 activation reactions attributed to individual human P450 enzymes (from a total of 473 reactions considered). See text for discussion.

Figure 3. Diol-epoxide pathway of benzo[*a*]pyrene activation. ⁴⁸⁶

Figure 4. Oxidation of AFB₁ by P450 3A4.¹⁷⁶

$$Br \longrightarrow Br \longrightarrow GSH, GSH \longrightarrow GS \longrightarrow GS \longrightarrow GS \longrightarrow DNA$$

Figure 5. Conjugation of ethylene dibromide with GSH.³⁷⁷

Figure 6. Analysis of types of activation reactions (data of Table 1, total of 799 reactions). See text for discussion.

Figure 7. Analysis of detoxication reactions. A: Enzymes involved in detoxication. B: Reactions involved in detoxication. Data are from Table 4 (total of 281 reactions). See text for discussion.

NIH-PA Author Manuscript

Data on individual enzymes and chemicals, but not including weak bioactivation (see Supporting Information for inclusion of weak Table 1 activation data)

Note: the term "diol" is used in stead of "dihydrodiol" for convenience with the PAHs.

enzyme	category	subcategory	punoduoo	reaction	remarks	references	PubMed ID
AKR1A1	chemical	PAH, metabolite	(±)-benzo[a]pyrene-7,8- dihydrodio]	oxidation, o-quinone formation, preferential for (-)-7R,8R-oxidation	activation	26, 28-33	16411658, 11306097, 9973208, 11535067, 15720144, 17295519, 18788756
AKR1A1	chemical	PAH, metabolite	12-methylbenz[a]anthracene-3,4-diol	oxidation, o-quinone formation	activation	28	11306097
AKR1A1	chemical	PAH, metabolite	5-methylchrysene-1,2-diol	oxidation, o -quinone formation (medium K_m) high activity, high efficiency)	activation	28, 30, 34	11306097, 11535067, 16946553
AKR1A1	chemical	PAH, metabolite	7,12- dimethylbenz[a]anthracene- 3,4-diol	oxidation, o-quinone form.	activation	28,30	11306097, 11535067
AKR1A1	chemical	PAH, metabolite	7-methylbenz[a]anthracene- 3,4-diol	oxidation, o -quinone formation, preferential for (–)3 x 4 x -oxidation	activation	28, 30	11306097, 11535067
AKR1A1	chemical	PAH, metabolite	benz[a]anthracene-3,4-diol	oxidation, o -quinone formation, preferential for (–)3 <i>K</i> ,4 <i>R</i> -oxidation	activation	28, 30	11306097, 11535067
AKR1A1	chemical	PAH, metabolite	chrysene-1,2-diol	oxidation, o-quinone formation	activation	28	11306097
AKR1B1	chemical	РАН	(+)-benz[a] anthracene- $3S$,4 S -diol	oxidation, o-quinoneform, stereospecific for (+)-7 <i>S</i> -,8 <i>S</i>	activation	33	18788756
AKR1B1	chemical	PAH, metabolite	(+)-benzo[a]pyrene-75,85- diol	oxidation, o -quinone formation, stereospecific for (+)-7.5,8.8	activation	33	18788756
AKR1B1	chemical	PAH, metabolite	(+)- S , S -benzo[g]chrysene- 11 , 12 -diol	oxidation, o -quinone formation, stereospecific for (+)-7.5,8.8	activation	33	18788756
AKR1B10	chemical	PAH, metabolite	(-)- R , R - and (+)- S , S -benzo[g]chrysene-11,12-diol	oxidation, o-quinone formation	activation	33	18788756
AKR1B10	chemical	PAH, metabolite	(+)-benz[a]anthracene-3.5,4.5-diol	oxidation, ϕ -quinone formation, stereospecific for (+)-7.5,8.5	activation	33	18788756

NIH-PA Author Manuscript

Rendic and Guengerich

enzyme	category	subcategory	compound	reaction	remarks	references	PubMed ID
AKR1B10	chemical	PAH, metabolite	(+)-benzo[a]pyrene-7 <i>S</i> ,8 <i>S</i> -diol	oxidation, ϕ -quinone formation, stereospecific for (+)-7.5-,8.8	activation	33	18788756
AKR1B10	chemical	PAH, metabolite	7,12- dimethylbenz[a]anthracene- 3,4-diol	oxidation, ϕ -quinone formation	activation	33	18788756
AKR1C1	chemical	PAH, metabolite	(+,-)- and (-)- benzo[<i>a</i>]pyrene-7,8-diol	oxidation, ϕ -quinone formation	activation	29, 33, 35, 36	9973208, 18788756, 11978787, 11060293
AKR1C1	chemical	PAH, metabolite	5-methylchrysene-7,8-diol	oxidation, o-quinone formation	activation	35, 36	11978787, 11060293
AKR1C1	chemical	PAH, metabolite	7,12- dimethylbenz[a]anthracene- 3,4-diol	oxidation, ϕ -quinone formation, minor enzyme	activation	35, 36	11978787, 11060293
AKR1C1	chemical	PAH, metabolite	7-methylbenz[a]anthracene- 3,4-diol	oxidation, o -quinone formation, minor enzyme	activation	35	11978787
AKR1C1	chemical	PAH, metabolite	benz[<i>a</i>]anthracene-3,4-diol	oxidation, o -quinone formation	activation	35	11978787
AKR1C1	chemical	aromatic hydrocarbon	benzene diol	oxidation, ϕ -quinone formation	activation	36, 37	11060293, 15026176
AKR1C1	chemical	PAH, metabolite	benzo[g]chrysene-11,12-diol	oxidation, o-quinone formation	activation	35, 36	11978787, 11060293
AKR1C1	chemical	PAH, metabolite	naphthalene 1,2-diol	oxidation, o -quinone formation, major enzyme	activation	35, 36	11978787, 11060293
AKR1C2	chemical	PAH, metabolite	(±)- and (–)-benzo[<i>a</i>]pyrene- 7,8-diol	oxidation, o -quinone formation	activation	29, 33, 35	9973208, 18788756, 11978787
AKR1C2	chemical	PAH, metabolite	5-methylchrysene-7,8-diol	oxidation, o-quinone formation	activation	35	11978787
AKR1C2	chemical	PAH, metabolite	7,12- dimethylbenz[a]anthracene- 3,4-diol	oxidation, ϕ -quinone formation	activation	35	11978787
AKR1C2	chemical	PAH, metabolite	7-methylbenz[a]anthracene-3,4-diol	oxidation, o -quinone formation	activation	35	11978787
AKR1C2	chemical	PAH, metabolite	benz[<i>a</i>]anthracene-3,4-diol	oxidation, ϕ -quinone formation	activation	35	11978787
AKR1C2	chemical	PAH, metabolite	benzene diol	oxidation, o-quinone formation	activation	37	15026176

enzyme	category	subcategory	compound	reaction	remarks	references	PubMed ID
AKR1C2	chemical	PAH, metabolite	benzo[c]phenanthrene-3,4- diol	oxidation, o-quinone form.	activation	35	11978787
AKR1C2	chemical	PAH, metabolite	benzo[g]chrysene-11,12-diol	oxidation, o -quinone formation	activation	35	11978787
AKR1C2	chemical	PAH, metabolite	chrysene-1,2-diol	oxidation, o-quinone formation	activation	35	11978787
AKR1C2	chemical	PAH, metabolite	naphthalene 1,2-diol	oxidation, o-quinone formation, major enzyme	activation	35	11978787
AKR1C3	chemical	PAH, metabolite	(+,-)- and (-)- benzo[a]pyrene-7,8- dihydrodiol	oxidation, o-quinone formation	activation	29, 33, 35	9973208, 18788756, 11978787
AKR1C3	chemical	PAH, metabolite	5-methylchrysene-7,8-diol	oxidation, o-quinone formation	activation	35	11978787
AKR1C3	chemical	PAH, metabolite	7,12- dimethylbenz[<i>a</i>]anthracene- 3,4-diol	oxidation, $oldsymbol{ au}$ quinone formation	activation	35	11978787
AKR1C3	chemical	PAH, metabolite	7-methylbenz[a]anthracene- 3,4-diol	oxidation, ϕ -quinone formation	activation	35	11978787
AKR1C3	chemical	PAH, metabolite	benz[<i>a</i>]anthracene-3,4-diol	oxidation, o-quinone formation	activation	35	11978787
AKR1C3	chemical	aromatic hydrocarbon, metabolite	benzene diol	oxidation, o-quinone formation	activation	37	15026176
AKR1C3	chemical	PAH, metabolite	benzo[c]phenanthrene-3,4-diol	oxidation, ϕ -quinone formation	activation	35	11978787
AKR1C3	chemical	PAH, metabolite	${\tt benzo[g]chrysene-11,12-diol}$	oxidation, o-quinone formation	activation	35	11978787
AKR1C3	chemical	PAH, metabolite	chrysene-1,2-diol	oxidation, o-quinone formation	activation	35	11978787
AKR1C3	chemical	PAH, metabolite	naphthalene 1,2-diol	oxidation, ϕ -quinone formation	activation	35	11978787
AKR1C4	chemical	PAH, metabolite	(±)- and (–)-benzo[a]pyrene- 7,8-diol	oxidation, o-quinone formation	activation	29, 35	9973208, 11978787
AKR1C4	chemical	PAH, metabolite	(±)-benzo[a]pyrene-7,8-diol	oxidation, ϕ -quinone formation	activation	33	18788756
AKR1C4	chemical	PAH, metabolite	5-methylchrysene-7,8-diol	oxidation, σ quinone formation, major enzyme	activation	35	11978787
AKR1C4	chemical	PAH, metabolite	7,12- dimethylbenz[a]anthracene- 3,4-diol	oxidation, ϕ -quinone formation, major enzyme	activation	35	11978787

enzyme	category	subcategory	compound	reaction	remarks	references	PubMed ID
AKR1C4	chemical	PAH, metabolite	7-methylbenz[a]anthracene-3,4-diol	oxidation, o-quinone formation	activation	35	11978787
AKR1C4	chemical	PAH, metabolite	benz[<i>a</i>]anthracene-3,4-diol	oxidation, o -quinone formation	activation	35	11978787
AKR1C4	chemical	aromatic hydrocarbon, metabolite	benzene diol	oxidation, o -quinone formation	activation	37	15026176
AKR1C4	chemical	PAH, metabolite	benzo[c]phenanthrene-3,4-diol	oxidation, o -quinone formation	activation	35	11978787
AKR1C4	chemical	PAH, metabolite	benzo[g]chrysene-11,12-diol	oxidation, o-quinone formation, major enzyme	activation	35	11978787
AKR1C4	chemical	PAH, metabolite	chrysene-1,2-diol	oxidation, o -quinone formation	activation	35	11978787
AKR1C4	chemical	PAH, metabolite	naphthalene 1,2-diol	oxidation, o -quinone formation	activation	35	11978787
COX-1	chemical	PAH, metabolite	(±)- and (+)-benzo[a]pyrene- 7,8-diol	oxidation	activation	38	11159734
C0X-1	chemical	heterocyclic amine	2-amino-3,8- dimethylimidazo[4,5- f]quinoxaline (MeIQx)	oxidation	activation	38	11159734
COX-1	chemical	arylamine	4,4'-methylene bis(2-chloroaniline) (MOCA)	oxidation	potent activation	38	11159734
COX-1	chemical	arylamine, tobacco smoke compound	4-aminobiphenyl	oxidation	activation	38	11159734
C0X-1	chemical	arylamine	benzidine	oxidation	activation	38	11159734
COX-1	drug	pyrido-carbazole; antineoplastic, alkaloid, Apocyamaceae plant compound, topoisomerase II inhibitor, DNA binding	ellipticine	oxidation	activation	39, 40	16936898, 21753906
COX-2	chemical	PAH, metabolite	(\pm) - and $(+)$ -benzo[a]pyrene-7,8-diol	oxidation	activation	38	11159734
COX-2	chemical	heterocyclic amine	2-amino-3,8- dimethylimidazo[4,5- f]quinoxaline (MeIQx)	oxidation	activation	38	11159734
COX-2	chemical	arylamine	4,4'-methylene bis(2-chloroaniline) (MOCA)	oxidation	potent activation	38	11159734

enzyme	category	subcategory	punoduoo	reaction	remarks	references	PubMed ID
COX-2	chemical	arylamine, tobacco smoke compound	4-aminobiphenyl	oxidation	activation	38	11159734
COX-2	chemical	arylamine	benzidine	oxidation	activation	38	11159734
COX-2	drug	pyrido-carbazole; antineoplastic, alkaloid, Apocyanaceae plant compound, topoisomerase II inhibitor, and DNA binding	ellipticine	oxidation	activation	39, 40	16936898, 21753906
CYPIAI	chemical	PAH, metabolite	(±)-, (-)-, and (+)- benzo[<i>a</i>]pyrene-7,8-diol	trans-(ant)-7,8- dihydroxy-9,10-epoxy- 7,8,9,10-tetrahydroformation (trans-diol epoxide formation); oxidation	potent activation	13, 31, 32, 34, 41-52	2509067, 8674051, 11528186, 8043197, 7581497, 11238186, 8043197, 7581497, 11952781, 16726814, 8293790, 16946553, 16846553, 16846553, 16846553, 17225519, 17225519,
CYP1A1	chemical	nitroarene	1,8-dinitropyrene	nitroreduction	potent activation	53	11113705
CYP1A1	chemical	arylamine, metabolite of 1-nitropyrene	1-aminopyrene	oxidation	activation	54	11525925
CYPIA1	chemical	2-phenylbenzotriazole	2-[2-(acetylamino)-4- (diallylamino)-5- methoxyphenyl]-5-amino-7- bromo-4-chloro-2 <i>H</i> - benzotriazole (PBTA-8)	oxidation	activation	55	18562244
CYPIA1	chemical	2-phenylbenzotriazole	2-[2-(acetylamino)-4- (diethylamino)-5- methoxyphenyl]-5-amino-7- bromo-4-chloro-2 <i>H</i> - benzotriazole (PBTA-7)	охідац́оп	activation	55	18562244
CYP1A1	chemical	2-phenylbenzotriazole	2-[2-(acetylamino)-4-amino- 5-methoxyphenyl]-5-amino- 7-bromo-4-chloro-2 <i>H</i> benzotriazole (PBTA-4)	oxidation	activation	55	18562244

enzyme	category	subcategory	punoduoo	reaction	remarks	references	PubMed ID
CYP1A1	chemical	benzotriazole	2-[2-(acetylamino)-4-amino- 5-methoxyphenyl]-5-amino- 7-bromo-4-chloro-2 <i>H</i> benzotriazole (PBTA-4)	oxidation	activation	56	21786339
CYP1A1	chemical	arylamine, metabolite	2-acetylaminofluorene (2- AAF)	N-hydroxylation, oxidation	activation	41, 43, 57	8674051, 11502724, 15279838
CYPIA1	chemical	heterocyclic amine	2-amino-1-methyl-6- phenylimidazo[4,5- <i>b</i>]pyridine (PhIP)	N-hydroxylation, oxidation	activation	41, 43, 57-	8674051, 11502724, 15279838, 9111224, 9855011, 21081470, 1377247
CYP1A1	chemical	heterocyclic amine	2-amino-3,4- dimethylimidazo[4,5- flquinoline (MeIQ)	N-hydroxylation, oxidation	potent activation	41, 43, 49, 56, 62, 63	8674051, 11502724, 10426814, 21786339, 11473383, 8200084
CYPIAI	chemical	heterocyclic amine	2-amino-3,8- dimethylimidazo[4,5- /jquinoxaline (MelQx)	N-hydroxylation, oxidation	activation	41, 43, 49, 58, 62-64	8674051, 11502724, 10426814, 9111224, 11473383, 8200084, 17627018
CYP1A1	chemical	heterocyclic amine	2-amino-3- methylimidazo[4,5- Aquinoline (IQ)	N-hydroxylation, oxidation	potent activation	41, 43, 49, 58, 61, 65	8674051, 11502724, 10426814, 9111224, 11377247, 9918136
CYP1A1	chemical	heterocyclic amine	2-amino-6- methyldipyrido[1,2-a:3',2'-d]- imidazole (Glu-P-1)	N-hydroxylation, oxidation	activation	41, 43, 61	8674051, 11502724, 11377247
CYP1A1	chemical	arylamine	2-aminoanthracene	N-hydroxylation, oxidation (high activity)	potent activation	41, 43, 61, 66	8674051, 11502724, 11377247, 9685642
CYP1A1	chemical	arylamine	2-aminofluorene	N-hydroxylation, oxidation	activation	41, 43, 49, 61	8674051, 11502724, 10426814, 11377247
CYP1A1	chemical	nitroarene	2-nitronaphthalene	nitroreduction	activation	29	10521697

15	7	
-	=	
	•	
_		
	П	Ī
	÷	
	L	Į
	h	
	4	
-		
	ø	2
-	-	
	÷	i
-	J	
3	7	
-	₹	
	,	
-	-	į
<		
	2	
2	D	
	=	
	ر	
-	_	
-	-	
1001	n	
C	7	
- 2	-	
	_,	ė
τ	7	
-	4	
	7	

enzyme	category	subcategory	punoduoo	reaction	remarks	references	PubMed ID
CYP1A1	chemical	nitroarene	2-nitropyrene	2-aminopyrene formation (nitroreduction)	activation	41	8674051
CYP1A1	chemical	nitrosamine	3-(n-nitrosomethylamino) propiona Idehyde	oxidation	activation	89	15725615
CYP1A1	chemical	nitrosamine	3-(<i>N</i> -nitrosomethylamino) propioni trile	oxidation (at high concentrations)	activation	68, 69	15725615, 16720019
CYP1A1	chemical	nitroarene	3,6-dinitrobenzo[e]pyrene	nitroreduction	activation	70	19393727
CYP1A1	chemical	heterocyclic amine	3-Amino-1,4-dimethyl-5H- pyrido[4,3-b]indole (Trp-P-1)	N-hydroxylation, oxidation	potent activation	41, 43, 49, 61, 66, 71	8674051, 11502724, 10426814, 11377247, 9685642, 9721189
CYPIA1	chemical	heterocyclic amine	3-amino-1-methyl-5 <i>H</i> pyrido[4,3- <i>b</i>]indole (Trp-P-2)	N-hydroxylation, oxidation	activation	41, 43, 49, 61-63, 66	8674051, 11502724, 10426814, 11377247, 11473383, 8200084, 9685642
CYP1A1	chemical	arylamine, metabolite	3-aminobenzanthrone	N-hydroxylation	activation	72, 73	15885895, 16601755
CYP1A1	chemical	azoaromatic amine	3-methoxy-4- aminoazobenzene (3-MeO- AAB)	oxidation	potent activation	41, 43, 49, 66	8674051, 11502724, 10426814, 9685642
CYP1A1	chemical	PAH	3-methylcholanthrene (3MC)	oxidation	activation	74	11360624
CYP1A1	chemical	PAH, metabolite	3-methylcholanthrene-11,12-diol, 3MC-11,12-diol	oxidation	activation	43	11502724
CYPIAI	natural compound	indole, alkylating, pulmonary toxin; in higher concentrations in mammalian digestive tract and coal tar	3-methylindole, skatole	epoxidation (3- methyloxindole formation); dehydrogenation desaturation, 3- methyleneindolenine formation), low K _m , medium activity, high efficiency	activation	75-78	8558432, 11408359, 12563100, 20795680
CYP1A1	chemical	nitroarene	3-nitrobenzanthrone	nitroreduction	activation	73, 79, 80	16601755, 12740904, 12782579

enzyme	category	subcategory	compound	reaction	remarks	references	PubMed ID
CYP1A1	chemical	arylamine, tobacco smoke compound	4-aminobiphenyl	N-hydroxylation, oxidation	activation	41, 58, 66	8674051, 9111224, 9685642
CYP1A1	chemical	PAH, metabolite	5,6-dimethylchrysene-1,2- diol	oxidation	activation	34, 43, 49, 81	16946553, 11502724, 10426814, 14720319
CYP1A1	chemical	РАН	5-methylchrysene	1,2-dihydrodiol formation (medium K _m , high activity, high efficiency), oxidation	activation	43, 81-83	11502724, 14720319, 8542586, 18992797
CYP1A1	chemical	PAH, metabolite	5-methylchrysene-1,2-diol	oxidation	potent activation	34, 41, 43, 49, 81, 83	16946553, 8674051, 11502724, 10426814, 14720319, 18992797
CYP1A1	chemical	arylamine	6-aminochrysene	oxidation (high activity)	potent activation	41, 43, 66	8674051, 11502724, 9685642
CYP1A1	chemical	arylamine, metabolite	6-aminochrysene-1,2-diol	diol epoxide formation, oxidation	activation	41, 84, 85	8674051, 8118930, 8330339
CYP1A1	chemical	PAH	6-methylchrysene	1,2-dihydrodiol formation	activation	82	8542586
CYP1A1	chemical	nitroarene	6-nitrochrysene	oxidation	activation	43	11502724
CYP1A1	chemical	РАН	7,12- dimethylbenz[a]anthracene	oxidation (low K_{m} high activity and efficiency)	potent activation	43, 49, 81, 86, 87	11502724, 10426814, 14720319, 12584184, 20507880
CYPIA1	chemical	PAH, metabolite	7,12- dimethylbenz[a]anthracene- 3,4-diol	3,4-dihydrodiol-1,2- epoxide formation (medium K _m , high activity, high efficiency), oxidation	potent activation	34, 43, 49, 66, 74, 81	16946553, 11502724, 10426814, 9685642, 11360624, 14720319
CYP1A1	chemical	Wheterocyclic aromatic hydrocarbon	7 <i>H</i> -dibenzo[<i>c,g</i>]carbazole	oxidation	potent activation	88-91	10984687, 12034315, 15534862, 21809388
CYP1A1	chemical	PAH, aza-aromatic	7-methylbenz[c]acridine	3,4-dihydrodiol formation	activation	92	7866988
CYP1A1	chemical	PAH, aza-aromatic	7-methylbenz[c]acridine	oxidation	potent activation	92	7866988

enzyme	category	subcategory	punoduoo	reaction	remarks	references	PubMed ID
CYP1A1	chemical	PAH, metabolite	9-hydroxybenzo[a]pyrene	oxidation	activation	43	11502724
CYP1A1	natural compound	difuranocoumarin; mycotoxin, produced by Aspergillus species on food products	aflatoxin \mathbf{B}_1	epoxidation 8.9-, oxidation	activation	41, 57, 61, 93, 94	8674051, 15279838, 11377247, 7923587, 8200084
CYP1A1	chemical	heterocyclic amine	aminomethylphenylnorharma n	N-hydroxylation	activation	95	17067997
CYP1A1	natural compound	phenanthroic acid derivative; nephrotoxin, found in the Aristolochiaceae family of plants	aristolochic acid I	nitroreduction	potent activation	66-96	11511187, 15386410, 16125300, 22086975
CYPIA1	natural compound	phenanthroic acid derivative; nephrotoxin, found in the Aristolochiaceae family of plants	aristolochic acid II	nitroreduction	activation	66-96	11511187, 15386410, 16125300, 22086975
CYP1A1	chemical	РАН	benz[<i>a</i>]anthracene	oxidation	activation	43, 81, 100	11502724, 14720319
CYP1A1	chemical	PAH, metabolite	benz[a]anthracene-1,2-diol	oxidation	activation	34, 43, 74, 101	16946553, 11502724, 11360624, 11377097
CYPIA1	chemical	PAH, metabolite	benz[a]anthracene-3,4-diol	oxidation	activation	34, 43, 81	16946553, 11502724, 14720319
CYP1A1	chemical	PAH, metabolite	benz[<i>a</i>]anthracene-5,6-diol	oxidation	activation	34, 43	16946553, 11502724
CYP1A1	chemical	diphenylmethanol, metabolite	benzhydrol	oxidation	activation	102	12160905
CYP1A1	chemical	PAH	benzo[a]perylene	oxidation	activation	103	10613181

enzyme	category	subcategory	compound	reaction	remarks	references	PubMed ID
CYPIAI	chemical	РАН	benzo[<i>a</i>]pyrene	trans-7,8-dihydroxy-9,10- epoxy-7,8,9,10- tetrahydro-formation (Jow activity, medium activity, or high activity, high efficiency); 1,6-3,6-, 6,12-dione (quinone formation, low activity); oxidation	activation	41, 43, 50- 52, 57, 81, 93, 94, 104-108	8674051, 11502724, 16885195, 117525473, 21028851, 15279838 14720319, 7923587, 8200084, 9806168, 11513247, 1486866, 19501186
CYPIA1	chemical	PAH, metabolite	benzo[\(\theta\)]fluoroanthene-9,10-diol	oxidation	potent activation	34, 41, 43, 49, 66, 81	16946553, 8674051, 11502724, 10426814, 9685642, 14720319
CYP1A1	chemical	ЬАН	benzo[c]phenanthrene	dihydrodiol 3.4., 1.2- epoxide formation (major enzyme); oxidation	activation	109	11409939
CYP1A1	chemical	PAH, metabolite	benzo[c]phenanthrene-3,4- diol	dihydrodiol 3,4-, 1,2- epoxide formation; oxidation	activation	43, 49	11502724, 10426814
CYP1A1	chemical	PAH, metabolite	benzo[g]chrysene-11,12-diol	oxidation	activation	34, 43, 49, 81	16946553, 11502724, 10426814, 14720319
CYP1A1	chemical	aromatic ketone, diphenyl ketone	benzophenone	oxidation	activation	102	12160905
CYP1A1	chemical	PAH, metabolite	chrysene-1,2-diol	oxidation	potent activation	43, 49, 81	11502724, 10426814, 14720319
CYP1A1	chemical	PAH	cyclopenta[c,d]pyrene	oxidation	activation	110	7923587
CYP1A1	Drug	imidazole; anticancer, alkylating	dacarbazine	N-demethylation (major extrahepatic enzyme)	activation	111	10473105
CYP1A1	chemical	PAH, metabolite, aza- aromatic	dibenz[a,h]acridine	10,11-diol formation	potent activation	112	15144224
CYP1A1	chemical	PAH	dibenz[a,h]anthracene	oxidation	activation	43	11502724
CYP1A1	chemical	PAH, aza-aromatic	dibenz[a,j]acridine	3,4-dihydrodiol formation	activation	92	7866988
CYP1A1	chemical	PAH	dibenzo[a,e]fluoranthene	oxidation	activation	103	10613181

enzyme	category	subcategory	punoduoo	reaction	remarks	references	PubMed ID
CYP1A1	chemical	РАН	dibenzo[a,e]pyrene	oxidation	activation	103	10613181
CYP1A1	chemical	PAH	dibenzo[<i>a,f</i>]fluoranthene	oxidation	activation	103	10613181
CYP1A1	chemical	ЬАН	dibenzo[a,h]pyrene	oxidation	activation	103	10613181
CYP1A1	chemical	ЬАН	${\it dibenzo}[a,k]{\it fluoranthene}$	oxidation	activation	103	10613181
CYPIA1	chemical	РАН	dibenzo[<i>a,l</i>]pyrene	(-)-syn- and (-)-anti- 11,12-dihydrodiol-13,14- epoxide formation (medium K _m , high activity, high efficiency); oxidation	potent activation	43, 81, 103, 113-119	11502724, 14720319, 10613181, 9625737, 10207125, 10493514, 10506751, 8968059, 16581046,
CYPIA1	chemical	PAH, metabolite	dibenzo[<i>a,I</i>]pyrene-11,12-	11,12-dihydrodiol-13,14- epoxide formation (medium K _m , high activity, high efficiency); oxidation	potent activation	34, 43, 49, 71, 81, 113-115, 118-120	16946553, 11502724, 10426814, 9721189, 14720319, 9625737, 10207125, 10493514, 16581046, 17509623, 16485905
CYP1A1	chemical	РАН	$\operatorname{dibenzo}[b,k]$ fluoranthene	oxidation	activation	103	10613181
CYPIA1	physiologi -cal compound	estrogen	17β–estradiol	C2-hydroxylation (major reaction, medium K_m , high activity, high efficiency), major metabolite and major extrahepatic enzyme; C4-hydroxylation (minor reaction, medium K_m medium efficiency, low activity), oxidation, 3.4-quinone formation (lower activity); oxidation, 2.3-quinone formation; C16 α -hydroxylation (high K_m , low activity)	potent activation	71, 106, 121-130	9721189, 8037457, 7826886, 90525734, 9054608, 967077, 11555828, 112865317, 1574278, 161124414,
CYP1A1	physiologi cal compound	estrogen	estrone	C2-hydroxylation (major reaction, medium $K_{\rm m}$ low activity), oxidation, 2,3-quinone formation; C4-hydroxylation (medium $K_{\rm m}$, low activity, or	activation	49, 127, 130, 131	10426814, 12865317, 17570247, 15805301

enzyme	category	subcategory	compound	reaction	remarks	references	PubMed ID
				medium activity); C16α- hydroxylation (minor reaction, very low activity)			
CYP1A1	chemical	PAH, metabolite	fluoranthene-2,3-diol	oxidation	activation	34, 43	16946553, 11502724
CYP1A1	drug	oxazaphosporine; anticancer, nitrogen mustard alkylating	ifosfamide	oxidation (at high concentrations)	activation	87	20507880
CYP1A1	chemical	PAH	naphtho[1,2- <i>K</i>]fluoranthene	oxidation	activation	103	10613181
CYP1A1	chemical	РАН	naphtho[2,1-a]pyrene	oxidation	activation	103	10613181
CYP1A1	chemical	PAH	naphtho[2,3-a]pyrene	oxidation	activation	103	10613181
CYP1A1	chemical	Wheterocyclic aromatic hydrocarbon, dibenzocarbazole	\mathcal{N} methyldibenzo[c_i g]carbazole	oxidation	potent activation	88-91	10984687, 12034315, 15534862, 21809388
CYP1A1	chemical	tobacco-specific nitrosamine	N-nitrosoanabasine	oxidation	activation	132, 133	11774366, 12214673
CYP1A1	chemical	nitrosamine	N-nitrosodibutylamine (N , N -dibutylnitrosamine)	oxidation	activation	134	11600130
CYP1A1	chemical	nitrosamine	N nitrosodiethylamine (N , N -diethyl \mathbf{n} i \mathbf{n} os \mathbf{s} idni \mathbf{n} \mathbf{n})	uiwasidntion)	activation	132-134	11774366, 12214673, 11600130
CYP1A1	chemical	nitrosamine	N-nitrosodi- n -propylamine (N -nitrosodipropylamine)	oxidation	activation	134	11600130
CYP1A1	chemical	nitrosamine	N-nitrosoethylbutylamine	oxidation (major enzyme)	activation	134	11600130
CYP1A1	chemical	nitrosamine	N-nitrosomethylbutylamine	oxidation	activation	134	11600130
CYP1A1	chemical	nitrosamine	N-nitrosomethylethylamine	oxidation	activation	134	11600130
CYP1A1	chemical	nitrosamine	N-nitrosomethylpropylamine	oxidation	activation	69, 134	16720019, 11600130
CYP1A1	chemical	nitrosamine	N-nitrosomorpholine	oxidation	activation	132, 133	11774366, 12214673
CYP1A1	natural compound	nitrosamine, tobacco- specific	N-nitrosonornicotine (N -nitrosonornicotine, NNN)	oxidation	activation	132, 133	11774366, 12214673
CYP1A1	chemical	nitrosamine	<i>N</i> -nitrosopyrrolidine	Cahydroxylation (2-OH- tetrahydrofuran formation); oxidation	activation	132, 133	11774366, 12214673
CYP1A1	chemical	azoarylamine	<i>o</i> -aminoazotoluene	oxidation	activation	41, 66	8674051, 9685642

\neg	7
_	•
=	
т	
_	•
ıπ	
~	
حر	•
<u> </u>	
Þ	
\subseteq	
⇉	ı
-	•
=	
utho	
=	
•	
_	
\leq	
/ar	
ש	
\neg	
=	
ISCI	
0	
=	
	•
$\boldsymbol{\sigma}$	
$\vec{}$	

enzyme	category	subcategory	compound	reaction	remarks	references	PubMed ID
CYP1A1	chemical	diphenylketone, metabolite	<i>p</i> -benzoylphenol,4- hydroxybenzophenone	oxidation	activation	102	12160905
CYP1A1	chemical	РАН	phenanthrene	oxidation to 1,2- (major reaction), 9,10-, and 3,4- dihydrodiols (minor reactions) and phenols, at high concentration	activation	46, 135	7581497, 19766613
CYP1A1	chemical	aza-aromatic	Sudan I	oxidation, major enzyme	activation	136, 137	12384524, 17159775
CYPIA2	chemical	PAH, metabolite	(±)-, (-)-, and (+)- benzo[a]pyrene-7,8- dihydrodiol	trans-(ant)-7.8- dihydroxy-9,10-epoxy- 7,8,9,10-terrahydro- formation: oxidation	activation	13, 34, 41- 43, 120, 138, 139	2509067, 16946553, 8674051, 7955101, 11502724, 16485905, 9014198, 2803520
CYP1A2	chemical	triazole	1-aminobenzotriazole (1- ABT)	oxidation	activation	140	17584015
CYP1A2	chemical	arylamine, metabolite of 1-nitropyrene	1-aminopyrene	oxidation	activation	54, 141- 144	11525925, 15728263, 15843388, 17158518, 9860501
CYP1A2	chemical	PAH, aza-aromatic	1-azabenzo[<i>a</i>]pyrene	oxidation	potent activation	145	14729370
CYP1A2	chemical	arylamine, metabolite	2-acetylaminofluorene (2-AAF)	Whydroxylation (major enzyme), oxidation	potent activation	12, 41, 57, 107, 139, 146, 147	265891, 8674051, 15279838, 1486866, 2803520, 11375903, 15450435

enzyme	category	subcategory	compound	reaction	remarks	references	PubMed ID
CYPIA2	chemical	heterocyclic amine	2-amino-1-methyl-6- phenylimidazol 4,5- blpyridine (PhIP)	N-hydroxylation, oxidation (high activity, major enzyme, major reaction)	potent activation	57-61, 63, 107, 146, 148-156, 157	15279838, 9111224, 9855011, 21081470, 11377247, 8200083, 1486866, 11375903, 8082563, 1913651, 9705755, 11013410, 10503887, 12351158, 1444142, 1444142, 1444142, 14725854, 15073045,
CYP1A2	chemical	heterocyclic amine	2-amino-3,4,8- trimethylimidazo[4,5- Jquinoxaline (DiMeIQx)	N-hydroxylation	potent activation	107	1486866
CYP1A2	chemical	heterocyclic amine	2-amino-3,4- dimethylimidazo[4,5- flquinolone (MeIQ)	N-hydroxylation; oxidation (major enzyme)	potent activation	12, 41, 56, 61-63, 71, 94, 107, 120, 150, 151, 154, 155, 158	2655891, 8674051, 21786339, 11377247, 11473383, 8200083, 9721189, 8200084, 1488866, 16485905, 9705755, 11013410, 14744142, 14744142, 14725854,
CYP1A2	chemical	heterocyclic amine	2-amino-3,8- dimethylimidazo[4,5- Aquinoxaline (MeIQx)	N-hydroxylation (major enzyme, high activity)	potent activation	12, 41, 58, 61-63, 94, 107, 151- 155	2655891, 8674051, 9111224, 11477247, 11473383, 8200084, 8200084, 1486866, 11013410, 10503887, 12351158, 14744142,

enzyme	category	subcategory	compound	reaction	remarks	references	PubMed ID
CYP1A2	chemical	arylamine, heterocyclic	2-amino-3-methyl-9 <i>H</i> - pyrido[2,3- <i>b</i>]indole (MeAaC)	N-hydroxylation, oxidation	potent activation	159	14729582
CYP1A2	chemical	heterocyclic amine	2-amino-3- methylimidazo[4,5- Aquinolone (1Q)	Whydroxylation, oxidation (high activity, major enzyme)	potent	12, 41, 58, 61, 65, 71, 141-144, 151, 154, 155, 160-163	2655891, 8674051, 9111224, 1112747, 9918136, 9721189, 15728263, 15728263, 1573818, 1674388, 11718818, 986051, 11013410, 1474142, 1474142, 1474142, 1476866, 281353, 9675256, 160023085, 15089095
CYP1A2	chemical	heterocyclic amine	2-amino-6- methyldipyrido[1,2-a:3',2'-d]- imidazole (Glu-P-1)	Whydroxylation, oxidation (high activity, major enzyme)	potent activation	12, 41, 61, 107, 139, 154, 155, 160	265891, 8674051, 11377247, 1486866, 2803520, 1474142, 14725854,
CYP1A2	chemical	heterocyclic amine	2-amino-α-carboline	oxidation	activation	149, 164	1913651, 8801053
CYP1A2	chemical	arylamine	2-aminoanthracene	N-hydroxylation, oxidation (major enzyme)	potent activation	12, 41, 61, 107, 139, 141-144, 162, 165	2655891, 8674051, 11377247, 1486866, 2803520, 15728263, 1584338, 17158518, 9860501, 10023085,
CYP1A2	chemical	heterocyclic amine	2-aminodipyrido[1,2-a:3,2'-d]-imidazole (Glu-P-2)	oxidation	activation	12, 107, 139	2655891, 1486866, 2803520

enzyme	category	subcategory	punoduoo	reaction	remarks	references	PubMed ID
CYPIA2	chemical	arylamine	2-aminofluorene (2-AF)	N-hydroxylation, oxidation (major enzyme, high activity)	potent activation	12, 41, 61, 107, 139, 166-168	2655891, 8674051, 11377247, 1486866, 2803520, 15840428, 16372832,
CYP1A2	chemical	arylamine	2-naphthylamine (β- naphthylamine)	N-hydroxylation, oxidation	activation	12, 61, 107, 147, 160	2655891, 11377247, 1486866, 15450435, 2813353
CYP1A2	chemical	nitroarene	2-nitrofluoranthene	nitroreduction	activation	53	11113705
CYP1A2	chemical	nitrosamine	3-(<i>N</i> -nitrosomethylamino) propiona ldehyde	oxidation	activation	89	15725615
CYP1A2	chemical	nitroarene	3,6-dinitrobenzo[e]pyrene	nitroreduction	activation	70	19393727
CYP1A2	chemical	nitroarene	3-acetylaminobenzanthrone	N-hydroxylation (concentration dependent)	activation	62	12740904
CYP1A2	chemical	heterocyclic amine	3-amino-1,4-dimethyl-5 <i>H</i> pyrido[4,3- <i>b</i>]indole (Trp-P-1)	N-hydroxylation; oxidation (major enzyme)	activation	12, 41, 61, 139, 151	2655891, 8674051, 11377247, 2803520, 11013410
CYPIA2	chemical	heterocyclic amine	3-amino-1-methyl-5 <i>H</i> - pyrido[4,3- <i>b</i>]indole (Trp-P-2)	N-hydroxylation, oxidation (major enzyme)	activation	12, 41, 61, 62, 94, 107, 151, 160	2655891, 8674051, 11377247, 11473383, 8200084, 1486866, 11013410, 2813353
CYP1A2	chemical	arylamine, metabolite	3-aminobenzanthrone	N-hydroxylation (major enzyme, concentration dependent)	activation	72, 73	15885895, 16601755
CYP1A2	chemical	azoaromatic amine	3-methoxy-4- aminoazobenzene	oxidation	activation	41	8674051
CYP1A2	chemical	arylamine	3'-methyl-4- dimethylaminazobenzene	oxidation	potent activation	169	10720750
CYP1A2	chemical	nitroarene	3-nitrobenzanthrone	nitroreduction	activation	73, 79, 80	16601755, 12740904, 12782579
CYP1A2	chemical	nitroarene	3-nitrofluoranthene	nitroreduction	activation	53	11113705

enzyme	category	subcategory	compound	reaction	remarks	references	PubMed ID
CYP1A2	chemical	arylamine, tobacco smoke compound	4-aminobiphenyl	N-hydroxylation, oxidation	activation	12, 41, 58, 107, 147, 160, 170, 171	265891, 8674051, 9111224, 1486866, 15450435, 2813353, 9163700, 16988941
CYPIA2	natural compound	furanoterpene produced by sweet potatoes infected with Fusarium solani, pulmonary toxin, alkylating	4-ipomeanol	oxidation (major enzyme)	activation	172, 173	1651809, 15892 <i>5</i> 79
CYP1A2	chemical	nitroarene	4-nitropyrene	4-aminopyrene formation (nitroreduction)	activation	174	10197616
CYP1A2	chemical	PAH, metabolite	5,6-dimethylchrysene-1,2-diol	oxidation	activation	34, 43, 81	16946553, 11502724, 14720319
CYP1A2	chemical	Wheterocyclic aromatic hydrocarbon,	5,9- dimethyldibenzo[<i>c,g</i>]carbazol e	oxidation	activation	88-91	10984687, 12034315, 15534862, 21809388
CYP1A2	chemical	PAH, metabolite	5-methylchrysene-1,2-diol	oxidation	activation	31, 34, 43, 81	16946553, 8674051, 11502724, 14720319
CYPIA2	chemical	arylamine	6-aminochrysene	oxidation	activation	41, 66, 84, 85, 141- 144	8674051, 9685642, 8118930, 8330339, 15728263, 15843388, 17158518,
CYP1A2	chemical	arylamine, metabolite	6-aminochrysene-1,2-diol	diol epoxide formation; oxidation	activation	41, 84, 85	8674051, 8118930, 8330339
CYP1A2	chemical	РАН	7,12- dimethylbenz[<i>a</i>]anthracene	oxidation	activation	43, 81, 86	11502724, 14720319, 12584184
CYP1A2	chemical	PAH, metabolite	7,12- dimethylbenz[a]anthracene- 3,4-diol	oxidation	activation	34, 43, 81	16946553, 11502724, 14720319

enzyme	category	subcategory	compound	reaction	remarks	references	PubMed ID
CYP1A2	chemical	Wheterocyclic aromatic hydrocarbon	7 <i>H</i> -dibenzo[<i>c,g</i>]carbazole	oxidation	activation	06-88	10984687, 12034315, 15534862
CYP1A2	chemical	PAH, aza-aromatic	7-methylbenz[c]acridine	3,4-dihydrodiol formation	activation	92	7866988
CYP1A2	chemical	PAH, aza-aromatic	7-methylbenz[c]acridine	oxidation	activation	92	7866988
CYP1A2	compound	difuranocoumarin; mycotoxin, produced by Aspergillus species on food products	aflatoxin B ₁ (AFB ₁)	epoxidation (both <i>exo</i> -8,9-1, oxidation	activation	11, 12, 41, 42, 57, 61, 93, 94, 162, 175-182	2492107, 2509067, 8674051, 7955101, 15279838, 11377247, 7923587, 8200084, 10023085, 2162057, 766804, 8261428, 112079611, 1902334, 11782366, 16385575,
CYP1A2	chemical	heterocyclic amine	aminomethylphenylnorharma n	N-hydroxylation	activation	56	17067997
CYP1A2	chemical	arylamine, heterocyclic	aminophenylharman	N-hydroxylation	activation	56	17067997
CYP1A2	chemical	arylamine, heterocyclic	aminophenylnorharman	N-hydroxylation	activation	56	17067997
CYP1A2	natural compound	phenanthroic acid derivative; nephrotoxin, found in the Aristolochiaceae family of plants	aristolochic acid I	nitroreduction	potent activation	66-96	11511187, 15386410, 16125300, 22086975
CYP1A2	natural compound	phenanthroic acid derivative; nephrotoxin, found in the Aristolochiaceae family of plants	aristolochic acid II	nitroreduction	potent activation	66-96	11511187, 15386410, 16125300, 22086975
CYP1A2	chemical	PAH, metabolite	benz[a]anthracene-3,4-diol	oxidation	activation	34, 43, 81	16946553, 11502724, 14720319
CYP1A2	chemical	diphenylmethanol, metabolite	benzhydrol	oxidation	activation	102	12160905

enzyme	category	subcategory	compound	reaction	remarks	references	PubMed ID
CYP1A2	chemical	PAH, metabolite	benzo[b]fluoroanthene-9,10- diol	oxidation	activation	34, 41, 43, 81	16946553, 8674051, 11502724, 14720319
CYP1A2	chemical	PAH, metabolite	benzo[c]phenanthrene-3,4- diol	oxidation	activation	43	11502724
CYP1A2	chemical	PAH, metabolite	benzo[g]chrysene-11,12-diol	oxidation	activation	34, 43, 81	16946553, 11502724, 14720319
CYP1A2	chemical	aromatic ketone, diphenyl ketone	benzophenone	oxidation	activation	102	12160905
CYP1A2	chemical	PAH, metabolite	chrysene-1,2-diol	oxidation	activation	34, 41, 81	16946553, 11502724, 14720319
CYP1A2	drug	imidazole; anticancer, alkylating	dacarbazine	N-demethylation (major enzyme)	potent activation	111	10473105
CYP1A2	natural compound	bicyclic monoterpene	Δ^3 -carene	epoxidation (high $K_{\rm m}$, medium activity)	activation	183	16379671
CYP1A2	chemical	PAH	dibenz[a,h]anthracene	3,4-dihydrodiol formation	activation	184	8638931
CYP1A2	chemical	PAH, aza-aromatic	dibenz[a,j]acridine	3,4-dihydrodiol formation	activation	92	7866988
CYP1A2	chemical	РАН	${ m dibenzo}[a,l]$ pyrene	(–)- <i>anti</i> -11,12- dihydrodiol-13,14- epoxide formation, oxidation	activation	81	14720319
CYP1A2	chemical	PAH, metabolite	dibenzo[<i>a,I</i>]pyrene-11,12- diol	oxidation	activation	34, 71, 81	16946553, 9721189, 14720319
CYPIA2	drug	pyrido-carbazole; antineoplastic, alkaloid, Apocyanaceae plant compound, topoisomerase II inhibitor and DNA binding	ellipticine	hydroxylation, C12- and C13- (low activity)	activation	39, 40, 185-189	16936898, 21753906, 11755121, 12123750, 15548707, 17197724, 21683692

enzyme	category	subcategory	punoduoo	reaction	remarks	references	PubMed ID
CYP1A2	physiologi cal compound	estrogen	17β-estradiol	C2-hydroxylation (major reaction, medium $K_{\rm m}$ medium activity, medium efficiency), major metabolite and major enzyme in liver; C4-hydroxylation (minor reaction); C16a-hydroxylation (major enzyme, high $K_{\rm m}$ no activity, or low activity)	activation	71, 106, 122-124, 126-129, 190-194	9721189, 8037457, 9625734, 9625734, 9667077, 11555828, 12865317, 15784278, 16112414, 149532, 9633876, 11741520,
CYP1A2	natural compound	alkenylbenzene; occurs in a variety of foods including essential oils of tarragon, sweet basil, sweet fennel, anis	estragole	C1'-hydroxylation (major enzyme, medium K _m , low activity)	potent activation	195-197	17407329, 15914212, 21459083
CYP1A2	physiologi cal compound	estrogen	estrone	C2-hydroxylation (medium K _m , high activity, major metabolite); C4-hydroxylation (medium K _m , medium activity, very low activity); C16α-hydroxylation (minor reaction, very low activity)	activation	49, 122, 123, 127, 128, 191, 192, 198	10426814, 9625734, 9054608, 12865317, 15784278, 9635876, 11454902, 16537715
CYP1A2	drug	oxazaphosporine; anticancer, nitrogen mustard alkylating	ifosfamide	oxidation (at high concentration)	activation	87	20507880
CYP1A2	natural compound	phenylpropene; from Rhizoma acorigraminei	methyleugenol	C1'-hydroxylation (medium K _m , major enzyme)	activation	196, 199	15914212, 16411663
CYP1A2	chemical	arylamine, metabolite	N-acetyl- N -hydroxy-3-aminobenzanthrone	oxidation, at higher concentrations	activation	62	12740904
CYP1A2	chemical	PAH	naphthalene	oxidation	activation	200	11356140
CYP1A2	chemical	hydroxylamine, arylamine, metabolite	<i>N</i> hydroxy-3- aminobenzanthrone	reduction to amine	activation	62	12740904
CYP1A2	chemical	Wheterocyclic aromatic hydrocarbon	N^- methyldibenzo[c_i g]carbazole	oxidation	activation	88-91	10984687, 12034315, 15534862, 21809388
CYP1A2	chemical	nitrosamine	N-nitrosoethylbutylamine	oxidation	activation	134	11600130

_
7
\neg
_
÷
્પ
D
·➤
=
⋍
-
Author
\subseteq
_
lan
മ
_
<u>~</u>
uscr
က
O
\simeq

enzyme	category	subcategory	compound	reaction	remarks	references	PubMed ID
CYP1A2	chemical	nitrosamine	N-nitrosomethylbutylamine	oxidation	activation	134	11600130
CYP1A2	chemical	nitrosamine	N-nitrosomethylethylamine	oxidation	activation	134	11600130
CYP1A2	chemical	nitrosamine	N-nitrosomethylpropylamine	oxidation	activation	69, 134	16720019, 11600130
CYP1A2	chemical	nitrosamine	N -nitrosopy π rolidine	$C\alpha\text{-hydroxylation (2-OHtetrahydrofuran} \\ formation)$	activation	132, 133	11774366, 12214673
CYP1A2	chemical	azoarylamine	o-aminoazotoluene	oxidation	activation	41, 66	8674051, 9685642
CYP1A2	chemical	<i>o</i> -methoxyaniline	σ anisidine (2- methoxyaniline)	A-hydroxylation (major enzyme with recombinant model), oxidation	activation	147, 201	15450435, 15828049
CYP1A2	chemical	diphenylketone, metabolite	<i>p</i> -benzoylphenol (4-hydroxybenzophenone)	oxidation	activation	102	12160905
CYP1A2	chemical	РАН	phenanthrene	oxidation to 1.2- (major reaction), 3,4-, and 9,10- dihydrodiols and phenols	activation	46, 135	7581497, 19766613
CYP1A2	natural compound	furanoxanthone; mycotoxin, produced by Aspergillus species	sterigmatocystin	oxidation	activation	41	8674051
CYP1A2	chemical	aromatic hydrocarbon, alkyl benzene	styrene (vinyl benzene)	oxidation, 7,8-oxide formation	activation	202-207	9253143, 7696548, 11407535, 12616646, 12834847, 18266326
CYPIBI	chemical	PAH, metabolite	(±)·, (–)·, and (+)- benzo[<i>a</i>]pyrene-7,8- dihydrodiol	trans-(ant)-7,8- dihydroxy-9,10-epoxy- 7,8,9,10-terrahydro- formation, trans-diol epoxide form (low K _m , high activity, high efficiency); oxidation	potent activation	26, 31, 32, 34, 41, 43, 49, 52, 120, 208-210	16411658, 15720144, 17295519, 16946553, 8674051, 11502724, 10426814, 10426814, 1042881, 16485905, 12628515, 12628515,
CYPIBI	chemical	nitroarene	1,8-dinitropyrene	nitroreduction	potent activation	53	11113705
CYPIBI	chemical	arylamine, metabolite of 1-nitropyrene	1-aminopyrene	oxidation	potent activation	54	11525925
CYPIB1	chemical	РАН	2,3-dihydroxy-2,3- dihydrofluoranthene	oxidation	activation	99	9685642

enzyme	category	subcategory	compound	reaction	remarks	references	PubMed ID
CYP1B1	chemical	heterocyclic amine	2-amino-3,4- dimethylimdazol4,5- /jquinolone (MelQ)	N-hydroxylation, oxidation	activation	41, 49, 61, 100, 210, 211	8674051, 10426814, 11377247, 11502724, 16551781, 11719446
CYP1B1	chemical	heterocyclic amine	2-amino-3,8- dimethylimidazo[4,5- flquinoxaline (MeIQx)	N- hydroxylation, oxidation	activation	41, 49, 61	8674051 10426814, 11377247
CYPIBI	chemical	heterocyclic amine	2-amino-3- methylimidazo[4,5- /jquinolone (IQ)	A-hydroxylation, oxidation	activation	41, 49, 61, 65, 100	8674051, 10426814, 11377247, 9918136, 11502724
CYP1B1	chemical	arylamine	2-aminoanthracene	N-hydroxylation, oxidation (high activity)	potent activation	41, 61, 100, 210	8674051, 11377247, 11502724, 16551781
CYP1B1	chemical	arylamine	2-aminofluorene (2-AF)	N-hydroxylation, oxidation	potent activation	41, 49, 61, 100, 210	8674051, 10426814, 11377247, 11502724, 16551781
CYP1B1	chemical	nitroarene	2-nitrofluoranthene	nitroreduction	potent activation	53	11113705
CYP1B1	chemical	nitroarene	2-nitropyrene	2-aminopyrene formation (nitroreduction)	potent activation	41, 100	8674051, 11502724
CYP1B1	chemical	nitrosamine	3-(<i>N</i> -nitrosomethylamino) propiona Idehyde	oxidation	activation	89	15725615
CYPIBI	chemical	heterocyclic amine	3-amino-1,4-dimethyl-5 <i>H</i> -pyrido[4,3 <mark>-{gNishyde (NypaPeh</mark>)) oxidation	λήγειφο μα (Χίγ <u>τ</u> ριθού) oxidation	potent activation	41, 49, 61, 66, 71, 100, 210	8674051, 10426814, 11377247, 9685642, 9721189, 11502724, 16551781
CYPIBI	chemical	heterocyclic amine	3-amino-1-methyl-5 <i>H</i> - pyrido[4,3- <i>b</i>]indole (Trp-P-2)	N-hydroxylation; oxidation	activation	41, 49, 61, 62, 66, 71, 100	8674051, 10426814, 11377247, 11473383, 9685642, 11502724
CYP1B1	chemical	arylamine, metabolite	3-aminobenzanthrone	N-hydroxylation	activation	212	15310241

enzyme	category	subcategory	compound	reaction	remarks	references	PubMed ID
CYPIBI	chemical	azoaromatic amine	3-methoxy-4- aminoazobenzene	oxidation	potent activation	41, 49, 66, 100, 210	8674051, 10426814, 9685642, 11502724, 16551781
CYP1B1	chemical	nitroarene	3-nitrofluoranthene	nitroreduction	activation	53	111113705
CYPIBI	chemical	tobacco-specific nitrosamine	4-(methylnitrosamino)-1-(3- pyridyl)-1-butanone (NNK)	oxidation	activation	132, 133, 213-217	11774366, 12214673, 1312898, 7595636, 8806763, 10803680,
CYP1B1	chemical	arylamine, tobacco smoke compound	4-aminobiphenyl	N-hydroxylation; oxidation	activation	41, 218	8674051, 19274671
CYPIBI	chemical	PAH, metabolite	5,6-dimethylchrysene-1,2- diol	oxidation	activation	34, 41, 43, 49, 66, 81, 210	16946553, 8674051, 11502724, 10426814, 9685642, 14720319, 16551781
CYP1B1	chemical	РАН	5-methylchrysene	oxidation	activation	83, 210	18992797 16551781
CYPIBI	chemical	PAH, metabolite	5-methylchrysene-1,2-diol	oxidation (medium $K_{\rm m}$, high activity, high efficiency)	potent activation	34, 41, 43, 49, 66, 81, 83, 120, 210	16946553, 8674051, 11502724, 10426814, 9685642, 14720319, 18992797, 16485905,
CYP1B1	chemical	arylamine	6-aminochrysene	oxidation	potent activation	41, 43	8674051, 11502724
CYP1B1	chemical	arylamine, metabolite	6-aminochrysene-1,2-diol	diolepoxide formation, oxidation	potent activation	41, 84, 85	8674051, 8118930, 8330339
CYP1B1	chemical	nitroarene	6-nitrochrysene	nitroreduction; 5,6- quinone formation	activation	41, 43, 219	8674051, 11502724, 8481905
CYPIBI	chemical	РАН	7,12- dimethylbenz[<i>a</i>]anthracene	oxidation (low $K_{\rm in}$ high activity and efficiency)	activation	43, 49, 81, 86, 210	11502724, 10426814, 14720319, 12584184, 16551781

enzyme	category	subcategory	compound	reaction	remarks	references	PubMed ID
CYPIBI	chemical	PAH, metabolite	7,12- dimethylbenz[a]anthracene- 3,4-diol	3,4-dihydrodiol-1,2- epoxide formation (medium <i>K</i> _m , high activity, high efficiency); oxidation	potent activation	34, 41, 43, 49, 66, 81	16946553, 8674051, 11502724, 10426814, 9685642, 14720319
CYP1B1	chemical	PAH, metabolite	9-hydroxybenzo[a]pyrene	oxidation	activation	43	11502724
CYP1B1	natural compound	difuranocoumarin; mycotoxin, produced by Aspergillus species on food products	aflatoxin B ₁ (AFB ₁)	oxidation	activation	61, 210, 217	11377247, 16551781, 9106248
CYP1B1	chemical	diphenylmethanol, metabolite	benzhydrol	oxidation	activation	102	12160905
CYPIBI	chemical	РАН	benzo[<i>a</i>]pyrene	trans-7.8-chiydroxy-9,10- epoxy-7,8,9,10- tetrahydro- formation (medium K _m , high activity, high efficiency); 1,6-3,6-dione (quinone form, low activity); oxidation (major enzyme)	activation	34, 41, 43, 49, 52, 61, 81, 104, 208, 210, 220-222	16946553, 8674051, 11502724, 10426814, 21028851, 11377247, 14720319, 9806168, 12628515, 16551781, 10409402, 11465393,
CYP1B1	chemical	PAH, metabolite	benzo[<i>b</i>]fluoroanthene-9,10- diol	oxidation	activation	34, 43, 49, 50, 81	16946553, 8674051, 11502724, 10426814, 14720319
CYPIBI	chemical	РАН	benzo[\mathcal{C}]phenanthrene	dihydrodiol 3.4-, 1,2- epoxide formation (major enzyme); oxidation	activation	43, 81, 109, 217, 223	11502724, 14720319, 11409939, 9168260, 21781864
CYP1B1	chemical	PAH, metabolite	benzo[c]phenanthrene-3,4- diol	dihydrodiol 3,4-, 1,2- epoxide formation	activation	43, 49	11502724, 10426814
CYPIBI	chemical	PAH, metabolite	benzo[g]chrysene-11,12-diol	oxidation	potent activation	34, 41, 43, 49, 66, 81	16946553, 8674051, 11502724, 10426814, 9685642, 14720319
CYP1B1	chemical	aromatic ketone, diphenyl ketone	benzophenone	oxidation	activation	102	12160905

enzyme	category	subcategory	punoduoo	reaction	remarks	references	PubMed ID
CYP1B1	chemical	PAH, metabolite	chrysene-1,2-diol	oxidation	potent activation	34, 41, 43, 49, 66, 81, 210	16946553, 8674051, 11502724, 10426814, 9685642, 14720319, 16551781
CYP1B1	chemical	PAH	cyclopenta[c,d]pyrene	oxidation	activation	217	9106248
CYP1B1	chemical	PAH, aza-aromatic	dibenz[a,h]acridine	10,11-diol formation	activation	111	15144224
СУРІВІ	chemical	РАН	dibenzo[<i>a,I</i>]pyrene	(-)-anti-11.12- dihydrodiol-13,14- epoxide formation (medium K _m , high activity, high efficiency); oxidation	potent activation	43, 81, 113-119, 208, 210, 224	11502724, 14720319, 9625737, 10207125, 10499514, 10506751, 8968059, 17599623, 1759963, 17628815, 16551781,
CYPIBI	chemical	PAH, metabolite	dibenzo[<i>a,I</i>]pyrene-11,12-diol	11,12-dihydrodiol-13,14- epoxide formation (medium K _m , high activity, high efficiency)	potent activation	34, 41, 43, 49, 71, 81, 113-115, 118, 120, 208, 210	16946553, 8674051, 11502724, 10426814, 9721189, 14720319, 9625737, 10207125, 10493514, 16581046, 17509653, 16488905, 12628515,
CYPIBI	drug	pyrido-carbazole; antineoplastic, alkaloid, Apocyanaceae plant compound, topoisomerase II inhibitor and DNA binding	ellipticine	oxidation	activation	39, 185- 188	16936898, 11755121, 12123750, 15548707, 17197724

enzyme	category	subcategory	compound	reaction	remarks	references	PubMed ID
CYPIBI	physiologi cal compound	estrogen	17β-estradiol	C4-hydroxylation (major enzyme, medium K_m , medium activity, medium and low efficiency), oxidation, 3,4-quinone formation; C2-hydroxylation (low activity, minor reaction), oxidation, 2,3-quinone formation; C16 α -hydroxylation (minor enzyme, medium and high K_m , low activity)	potent activation	49, 71, 121-130, 194, 211, 221, 225- 228	10426814, 9721189, 7826886, 9052734, 9054608, 9667077, 8930523, 11555828, 11555828, 11570247, 16171444, 17770247, 1177946, 1171946, 1171946, 1171946, 1171946, 1171946, 1170868105, 11865393, 8794407, 7568105,
CYPIBI	physiologi cal compound	estrogen	еѕиопе	C4-hydroxylation (low K _m , major reaction); C2-hydroxylation (low activity, minor reaction), oxidation, 2,3-quinone formation;	potent activation	49, 127, 128, 130, 198	10426814, 12865317, 15784278, 17570247, 16537715
CYP1B1	chemical	nitrosamine	N-nitrosodiethylamine (N.N-diethylnitrosamine)	oxidation	activation	132-134	11774366, 12214673, 11600130
CYP1B1	chemical	nitrosamine	N-nitrosoethylbutylamine	oxidation	activation	134	11600130
CYP1B1	chemical	nitrosamine	N-nitrosomethylbutylamine	oxidation	activation	134	11600130
CYP1B1	chemical	nitrosamine	N-nitrosomethylpropylamine	oxidation	activation	69, 134	16720019, 11600130
CYP1B1	chemical	nitrosamine	N-nitrosomorpholine	oxidation	activation	132, 133	11774366, 12214673
CYP1B1	chemical	nitrosamine	N-nitrosopyrrolidine	Cα-hydroxylation (2-OHtetrahydrofuran formation), oxidation	activation	132, 133	11774366, 12214673
CYP1B1	chemical	diphenylketone, metabolite	<i>p</i> -benzoylphenol,4- hydroxybenzophenone	oxidation	activation	102	12160905
CYP1B1	chemical	РАН	phenanthrene	oxidation to 9,10- (major reaction), and 1,2- and 3,4- (minor reaction) dihydrodiols and phenols	activation	135	19766613
CYP1B1	chemical	nitroarene	1-nitropyrene	1-aminopyrene form. (nitroreduction), at low concentrations, epoxidation C4,5, at high	potent activation	53, 54, 229	11113705, 11525925, 15310239

enzyme	category	subcategory	compound	reaction	remarks	references	PubMed ID
				concentration			
CYP2A6	chemical	haloalkane	1, 2-dibromoethane (ethylene dibromide)	oxidation to 2- bromoacetaldehyde	activation	230	8870687
CYP2A6	chemical	diene	1,3-butadiene	butadiene monoxide (epoxybutene) formation (high activity)	activation	231-233	7586124, 8901879, 9016811
CYP2A6	chemical	nitrile, herbicide	2,6-dichlorobenzonitrile (dichlobenil)	epoxidation, C2,3-	activation	234, 235	8649351, 8863822
CYP2A6	chemical	arylamine	2,6-dimethylaniline	N-hydroxylation (at higher concentrations), major enzyme	activation	236	11409937
CYP2A6	chemical	nitrosamine	3-(<i>N</i> -nitrosomethylamino) propiona Idehyde	oxidation	activation	89	15725615
CYP2A6	chemical	nitrosamine	3-(<i>N</i> -nitrosomethylamino) propioni trile	oxidation (at high concentrations, major enzyme)	potent activation	68, 69	15725615, 16720019
CYP2A6	chemical	arylamine, metabolite	3-aminobenzanthrone	N-hydroxylation	activation	212	15310241
CYP2A6	chemical	tobacco-specific nitrosamine	4-(methylnitrosamino)-1-(3- pyridyl)-1-butanol (NNAL)	Ca-hydroxylationmethylene (lactol/acid formation or Ca-methyl (diol/acid formation)	activation	170, 237, 238	9163700, 12975327, 21473878
CYP2A6	chemical	tobacco-specific nitrosamine	4-(methylnitrosamino)-1-(3- pyridyl)-1-butanone (NNK)	Ca-hydroxylationmethylene (keto aldehyde and keto alcohol formation), high $K_{m\nu}$ low activity, oxidation	activation	66, 132- 134, 141- 143, 213- 216, 238- 246	9685642, 11774366, 12214673, 11600130, 15728263, 15728263, 17158518, 1312898, 7555636, 8806763, 11080663, 110833516, 110837014, 110837014, 110837014, 11083669,
CYP2A6	chemical	arylamine	44'-methylene bis(2-chloroaniline) (MOCA)	oxidation, <i>N</i> -hydroxylation	activation	65, 106, 248, 249	9685642, 1486866, 1944238, 1740010

enzyme	category	subcategory	punoduoo	reaction	remarks	references	PubMed ID
CYP2A6	chemical	arylamine	6-aminochrysene	oxidation	activation	248	1944238
CYP2A6	chemical	diphenylmethanol, metabolite	benzhydrol	oxidation (major enzyme)	activation	102	12160905
CYP2A6	chemical	aromatic ketone, diphenyl ketone	benzophenone	oxidation (major enzyme)	activation	102	12160905
CYP2A6	chemical	aliphatic epoxide, metabolite	butadiene monoxide (1,2- epoxy-3-butene)	diepoxybutane meso- (major) and (\pm) - formation (at high concentrations)	activation	231-233	7586124, 8901879, 9016811
CYP2A6	chemical	haloalkane	chloroform (trichloromethane)	dehalogenation, reductive (at high concentrations); oxidation (major enzyme at high concentrations)	activation	250	12584152
CYP2A6	drug	oxazaphosporine; anticancer, nitrogen mustard, alkylating	cyclophosphamide	C4-hydroxylation (minor enzyme, high $K_{\rm m}$); oxidation	activation	101, 108, 251-254	11377097, 19501186, 8242617, 9010702, 10348794,
CYP2A6	natural compound	alkenylbenzene; occurs in a variety of foods including essential oils of tarragon, sweet basil, sweet fennel, anis	estragole	C1'-hydroxylation (major enzyme, medium $K_{m\nu}$ medium activity)	potent activation	195, 197	17407329, 21459083
CYP2A6	chemical	phosphoramide	hexamethylphosphoramide	oxidation, formaldehyde production	activation	235, 255	8863822, 9007030
CYP2A6	drug	oxazaphosporine; anticancer, nitrogen mustard alkylating	ifosfamide	C4-hydroxylation (minor reaction, high K_{m}), oxidation (at high concentration)	activation	87, 247, 253	20507880, 8242617, 10348794
CYP2A6	natural compound	furanocoumarin; anti- psoriatic, photosensitizer, found in several species of plants	methoxalen (8- methoxypsoralen, xanthotoxin)	epoxidation (furanoepoxide formation) and hydrolysis	activation	140	17584015
CYP2A6	chemical	tobacco-specific nitrosamine	N-nitrosoanabasine	oxidation	activation	132, 133	11774366, 12214673
CYP2A6	chemical	tobacco-specific nitrosamine	N-nitrosoanatabine	oxidation	activation	132, 133	11774366, 12214673
CYP2A6	chemical	nitrosamine	N-nitrosodibutylamine (N, N-dibutylnitrosamine)	oxidation	activation	244, 134	10837014, 11600130

enzyme	category	subcategory	compound	reaction	remarks	references	PubMed ID
CYP2A6	chemical	nitrosamine	W-nitrosodiethylamine (N.N-diethylnitrosamine)	oxidation	potent activation	106, 132- 134, 141- 144, 245- 247	1486866, 11774366, 112214673, 11600130, 15728263, 15843388, 17158518, 986501, 10837014, 11080669,
CYP2A6	chemical	nitrosamine	N-nitrosodi-n-propylamine (N-nitrosodipropylamine)	oxidation	potent activation	134, 141- 143, 244	11600130, 15728263, 15843388, 17158518, 10837014
CYP2A6	chemical	nitrosamine	N-nitrosoethylbutylamine	oxidation (major enzyme)	potent activation	134, 244	11600130, 10837014
CYP2A6	chemical	nitrosamine	N-nitrosomethylbutylamine	oxidation (major enzyme)	potent activation	134, 244	11600130, 10837014
CYP2A6	chemical	nitrosamine	N-nitrosomethylethylamine	oxidation	potent activation	134, 243	11600130, 10837014
CYP2A6	chemical	nitrosamine	N-nitrosomethylphenylamine	oxidation	activation	134, 243, 245	11600130, 10837014, 11080669
CYP2A6	chemical	nitrosamine	N-nitrosomethylpropylamine	oxidation	activation	68, 134, 244	16720019, 11600130, 10837014
CYP2A6	chemical	nitrosamine	N-nitrosomorpholine	oxidation (major enzyme)	activation	132, 133	11774366, 12214673
CYP2A6	natural compound	nitrosamine, tobaccospecific	N-nitrosonornicotine (N-nitrosonornichyantexyNNtNon CS' - (lactol formation, medium Km. high to medium activity), oxidation (major enzyme)	chyidroxyNdNon CS'- (lactol formation, medium Km. high to medium activity), oxidation (major enzyme)	activation	132-134, 244, 256- 258	11774366, 12214673, 11600130, 15651850, 10837014, 9276639, 7646564
CYP2A6	chemical	nitrosamine	N-nitrosopiperidine	Ca-hydroxylation (2-OH-tetrahydropyran and 2-OH-5-methyltetrahydropyran formation), major enzyme; oxidation	activation	132, 133, 258	11774366, 12214673, 15651850

enzyme	category	subcategory	compound	reaction	remarks	references	PubMed ID
CYP2A6	chemical	nitrosamine	N-nitrosopyrrolidine,	Ca-hydroxylation (2-OH- tetrahydrofuran formation); oxidation (major enzyme)	activation	132-134, 244, 258	11774366, 12214673, 11600130, 15651850, 10837014
CYP2A6	chemical	diphenylketone, metabolite	<i>p</i> -benzoylphenol (4-hydroxybenzophenone)	oxidation (major enzyme)	activation	102	12160905
CYP2A6	natural compound	Methylenedioxypheny I (benzodioxole)	safrole	C1'-hydroxylation (major enzyme at low concentrations), medium K _m , medium activity	activation	195, 196, 259, 260	17407329, 15914212, 15377158, 15370247
CYP2A13	chemical	nitrosamine	3-(<i>N</i> -nitrosomethylamino) propiona ldehyde	oxidation (major enzyme)	potent activation	89	15725615
CYP2A13	natural compound	indole, alkylating, pulmonary toxin; in higher concentrations in mammalian digestive tract and coal tar	3-methylindole (skatole)	dehydrogenation (desaturation, 3-methyleneindolenine form., low K _m , medium activity, high efficiency), epoxidation (3-methyloxindole formation)	potent activation	77, 261	20795680, 19608696
CYP2A13	chemical	nitrosamine	3-N-nitrosoguvacoline	oxidation (major enzyme)	activation	68, 69	15725615, 16720019
CYP2A13	chemical	tobacco-specific nitrosamine	4-(methylnitrosamino)-1-(3- pyridyl)-1-butanone (NNK)	Ca-hydroxylation-methyl (keto alcohol formation), major enzyme, medium $K_{\rm mr}$ medium activity, or high activity	potent activation	237-240, 262-266	11016631, 12975327, 15333516, 15962925, 12130698, 16917071, 17671098, 19074523,
CYP2A13	chemical	arylamine, tobacco smoke compound	4-aminobiphenyl	<i>N</i> -hydroxylation; oxidation	activation	58, 171	9111224, 16988941
CYP2A13	chemical	difuranocoumarin; mycotoxin, produced by Aspergillus species on food products	aflatoxin B ₁ (AFB ₁)	epoxidation 8,9., oxidation	potent activation	181, 265	16385575, 16917071
CYP2A13	natural compound	furanocoumarin; antipsoriatic, photosensitizer, found in bergamot essential oil, in other citrus essential oils, and in	bergapten, 5- methoxypsoralen	epoxidation and	activation	267	20798279

enzyme	category	subcategory	compound	reaction	remarks	references	PubMed ID
		grapefruit juice		hydrolysis to dihydrodiol			
CYP2A13	chemical	nitrosamine	N-nitrosomethylpropylamine	oxidation	potent activation	69, 134	16720019, 11600130
CYP2A13	natural compound	nitrosamine, tobacco- specific	N-nitrosonomicotine (N-nitrosonomicotine, NNN)	hydroxylation C5'- (lactol formation, medium <i>K</i> _m , high activity) and C2'- (keto alcohol formation, medium <i>K</i> _m , low activity)	activation	258, 266	19074523, 15651850
CYP2A13	chemical	nitrosamine	<i>N</i> -nitrosopiperidine	Ca-hydroxylation (2-OH- tetrahydropyran and 2- OH-5-methyl tetrahydrofuran formation)	activation	258	15651850
CYP2A13	chemical	nitrosamine	N-nitrosopyrrolidine	Ca-hydroxylation (2-OH-tetrahydrofuran formation)	activation	258	15651850
CYP2A13	chemical	aromatic hydrocarbon, alkyl benzene	styrene (vinyl benzene)	oxidation, 7,8-oxide formation	activation	207	18266326
CYP2B6	chemical	haloalkane	1, 2-dibromoethane (ethylene dibromide)	oxidation to 2- bromoacetaldehyde	activation	230	8870687
CYP2B6	chemical	haloalkane	2, 2-dichloro-1,1,1- trifluoroethane (HCFC-123)	oxidation	activation	268, 269	11684364, 11684365
CYP2B6	chemical	arylamine, metabolite	3-aminobenzanthrone	N-hydroxylation	activation	212	15310241
CYP2B6	chemical	azoaromatic amine	3-methoxy-4- aminoazobenzene	oxidation	activation	270	7905383
CYP2B6	chemical	nitroarene	3-nitrobenzanthrone	nitroreduction	potent activation	80	12782579
CYP2B6	chemical	tobacco-specific nitrosamine	4-(methylnitrosamino)-1-(3- pyridyl)-1-butanone (NNK)	hydroxylation, alphamethyl (keto alcohol form.), major reaction and Ca-methylene (keto aldehyde form.), minor reaction	activation	74, 213- 216, 252, 271, 272	11360624, 1312898, 7595636, 8806763, 10803680, 12920169, 9280407, 16174803
CYP2B6	chemical	unsaturated	4-vinyl-1-cyclohexene (<i>S</i>)-and (<i>R</i>)-	epoxidation 7,8- (major reaction, stereoselective for (<i>R</i>)-); epoxidation 1,2-	activation	100, 273	11502734, 11159809
CYP2B6	chemical	arylamine	6-aminochrysene	oxidation	activation	85, 270	8330339, 7905383
CYP2B6	chemical	herbicide, chloroacetamide	alachlor	oxidation	activation	274	11133395

enzyme	category	subcategory	compound	reaction	remarks	references	PubMed ID
CYP2B6	chemical	herbicide, chloroacetamide	butachlor	oxidation	activation	274	11133395
CYP2B6	chemical	haloalkane	chloroform (trichloromethane)	oxidation (at high conc.)	activation	250	12584152
CYP2B6	drug	azaphosporine; anticancer, nitrogen mustard, alkylating	cyclophosphamide	C4-hydroxylation (major enzyme, major reaction, high K _m , high activity); oxidation	potent activation	74, 101, 108, 251- 254, 271, 275	11360624, 11377097, 19501186, 8242617, 9010702, 10348794, 10692561, 9280407, 15919850
CYP2B6	chemical	polycyclic aromatic hydrocarbon (PAH)	dibenz[a,h]anthracene	3,4-dihydrodiol form.	activation	184	8638931
CYP2B6	drug	oxazaphosporine; anticancer, nitrogen mustard alkylating	ifosfamide	C4-hydroxylation stereoselective for (S)- (high K _m , major enzyme), oxidation (at high concentrations)	activation	87, 259, 261, 262, 275-278	20507880, 8242617, 10348794, 10692561, 15919850, 10534317, 15821045, 16854777
CYP2B6	chemical	herbicide, chloroacetamide	metolachlor	oxidation	activation	274	11133395
CYP2B6	chemical	aziridine	N, N, N'-triethylene thiophosphoramide (thioTEPA)	desulfuration, TEPA formation (major enzyme)	activation	140, 279	17584015, 12107550,
CYP2B6	chemical	nitrosamine	N-nitrosomorpholine	oxidation	activation	74	11360624
CYP2B6	chemical	o-methoxyaniline	<i>ο</i> -anisidine (2-methoxyaniline)	N-hydroxylation	activation	201	15828049
CYP2B6	chemical	aromatic hydrocarbon, alkyl benzene	styrene (vinyl benzene)	oxidation (major enzyme in liver microsomes at high concentration)	activation	202-205, 2780	9253143, 7696548, 11407535, 12616646, 16125881
CYP2C8	chemical	tobacco-specific nitrosamine	4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK)	oxidation	activation	132, 133	11774366, 12214673
CYP2C8	chemical	haloalkane	chloroform (trichloromethane)	dehalogenation reductive (at high concentrations)	activation	258	12584152
CYP2C8	drug	oxazaphosporine; anticancer, nitrogen mustard alkylating	ifosfamide	C4-hydroxylation (minor enzyme, high $K_{\rm m}$), oxidation (at high concentrations)	activation	87, 259, 261	20507880, 8242617, 10348794

_
=
┰
-
÷
U
\rightarrow
\rightarrow
7
$\overline{}$
thor
\simeq
_
lan
(C)
=
\subseteq
JSCr
ö
\simeq
0

enzyme	category	subcategory	punoduoo	reaction	remarks	references	PubMed ID
CYP2C8	chemical	nitrosamine	N-nitrosomethylbutylamine	oxidation	activation	134	11600130
CYP2C8	chemical	nitrosamine	N-nitrosomethylpropylamine	oxidation	activation	134	11600130
CYP2C8	chemical	nitrosamine	N-nitrosopytrolidine	Ca-hydroxylation (2-OH-tetrahydrofuran formation); oxidation	activation	132, 133	11774366, 12214673
CYP2C8	chemical	aromatic hydrocarbons, alkyl benzene	styrene (vinyl benzene)	oxidation (major enzyme in liver microsomes at high concentrations)	activation	202-205, 280	9253143, 7696548, 11407535, 12616646, 16125881
CYP2C9	chemical	diene	1,3-butadiene	butadiene monoxide (epoxybutene) formation (high activity)	activation	231-233	7586124, 8901879, 9016811
CYP2C9	chemical	triazole	1-aminobenzotriazole (1- ABT)	oxidation	activation	140	17584015
CYP2C9	chemical	РАН	7,12- dimethylbenz[a]anthracene	oxidation	activation	43, 81, 87	11502724, 14720319, 20507880
CYP2C9	chemical	PAH	benzo[c]phenanthrene	oxidation	activation	81	14720319
CYP2C9	chemical	aliphatic epoxide, metabolite	butadiene monoxide (1, 2- epoxy-3-butene)	diepoxybutane $meso$ - and (\pm) - formation	activation	231-233	7586124, 8901879, 9016811
CYP2C9	chemical	haloalkane	chloroform (trichloromethane)	dehalogenation reductive (at high concentrations)	activation	250	12584152
CYP2C9	drug	oxazaphosporine; anticancer, nitrogen mustard, alkylating	cyclophosphamide	C4-hydroxylation (low $K_{\rm m}$, low activity, major enzyme at low concentrations); oxidation	activation	101, 108, 251-254	11377097, 19501186, 8242617, 9010702, 10348794,
CYP2C9	chemical	PAH	dibenz[a,h]anthracene	3,4-dihydrodiol formation	activation	184	8638931
CYP2C9	drug	oxazaphosporine; anticancer, nitrogen mustard alkylating	ifosfamide	C4-hydroxylation (low $K_{\rm m}$), oxidation (at high concentration)	activation	87, 259	20507880, 8242617
CYP2C9	natural compound	phenylpropene, from Rhizoma acorigraminei	methyleugenol	C1'-hydroxylation (medium activity, high $K_{\rm m}$), at high concentration	activation	196, 199	15914212, 16411663
CYP2C19	chemical	triazole	1-aminobenzotriazole (1- ABT)	oxidation	activation	140	17584015
CYP2C19	natural compound	furanoterpene produced in sweet	4-ipomeanol	oxidation (major enzyme)	activation	173	15892579

enzyme	category	subcategory	compound	reaction	remarks	references	PubMed ID
		potatoes infected with Fusarium solani; pulmonary toxin, alkylating					
CYP2C19	chemical	haloalkane	chloroform (trichloromethane)	dehalogenation reductive (at high concentration); oxidation (at high concentration)	activation	250	12584152
CYP2C19	drug	oxazaphosporine; anticancer, nitrogen mustard, alkylating	cyclophosphamide	C4-hydroxylation (low $K_{\rm m}$ low activity); oxidation	activation	108, 251- 254	19501186, 8242617, 9010702, 10348794, 10692561
CYP2C19	drug	oxazaphosporine; anticancer, nitrogen mustard alkylating	ifosfamide	C4-hydroxylation stereoselective for (<i>S</i>)- (minor reaction, high <i>K</i> _m), oxidation (at high concentration)	activation	87, 259, 253, 276	20507880, 8242617, 10348794, 10534317
CYP2C19	chemical	nitrosamine	N-nitrosomethylbutylamine	oxidation	activation	134	11600130
CYP2C19	chemical	nitrosamine	N-nitrosomethylethylamine	oxidation	activation	134	11600130
CYP2C19	chemical	nitrosamine	N-nitrosopyrrolidine	Ca-hydroxylation (2-OH- tetrahydrofuran formation)	activation	132, 133	11774366, 12214673
CYP2D6	chemical	triazole	1-aminobenzotriazole (1- ABT)	oxidation	activation	140	17584015
CYP2D6	chemical	nitrosamine	3-(<i>N</i> -nitrosomethylamino) propiona ldehyde	oxidation	activation	89	15725615
CYP2D6	chemical	nitroarene	3-nitrobenzanthrone	nitroreduction	potent activation	80	12782579
CYP2D6	chemical	tobacco-specific nitrosamine	4-(methylnitrosamino)-1-(3- pyridyl)-1-butanol (NNAL)	$C\alpha$ -hydroxylation,methylene	activation	170	9163700
CYP2D6	chemical	tobacco-specific nitrosamine	4-(methylnitrosamino)-1-(3- pyridyl)-1-butanone (NNK)	Ca-hydroxylation, methyl (keto alcohol formation), high K_{m} , medium activity, or high activity, major reaction and Camethylene (keto aldehyde formation), high K_{m} , low activity, minor reaction	activation	170, 213- 216, 281	9163700, 1312898, 7595636, 8806763, 10803680, 8485585
CYP2D6	natural compound	furanoterpene produced in sweet potatoes infected with Fusarium solani;	4-ipomeanol	oxidation	activation	173	15892579

enzyme	category	subcategory	compound	reaction	remarks	references	PubMed ID
		pulmonary toxin, alkylating					
CYP2D6	chemical	РАН	7,12-dimethylbenz[a]anthracene	oxidation	activation	28	20507880
CYP2D6	natural compound	difuranocoumarin; mycotoxin, produced by Aspergillus species on food products	aflatoxin B ₁ (AFB ₁)	oxidation	activation	61	11377247
CYP2D6	chemical	haloalkane	chloroform (trichloromethane)	dehalogenation, reductive (at high concentration)	activation	250	12584152
CYP2D6	drug	pyrido-carbazole; antineoplastic, alkaloid, Apocyanaceae plant compound, topoisomerase II inhibitor and DNA binding	ellipticine	oxidation N ² -; hydroxylation, C13- (low activity)	activation	39, 40, 187, 188	16936898, 21753906, 15548707, 17197724
CYP2D6	drug	oxazaphosporine; anticancer, nitrogen mustard	alkylating ifosfamide	oxidation (at high concentration)	activation	87	20507880
CYP2E1	chemical	haloalkane	1, 2-dibromoethane (ethylene dibromide)	oxidation to 2- bromoacetaldehyde	activation	107, 230, 180	1486866, 8870687, 1664256
CYP2E1	chemical	haloalkane	1, 2-dichloroethane (ethylene dichloride)	oxidation	activation	107, 282	1486866, 1664256
CYP2E1	chemical	haloalkane	1, 2-dichloropropane (propylene dichloride)	oxidation	activation	107, 282	1486866, 1664256
CYP2E1	chemical	hydrazine	1, 2-dimethylhydrazine	oxidation	activation	283	15576447
CYP2E1	chemical	haloalkane	1,1,2-trichloroethane	oxidation	activation	284	8671747
CYP2E1	chemical	haloalkene	1,1,3-trichloropropene	oxidation	activation	284	8671747
CYP2E1	chemical	haloalkene	1,1-dichloroethylene (vinylidene chloride)	epoxidation	activation	285	15319346
CYP2E1	chemical	diene	1,3-butadiene	butadiene monoxide (epoxybutene) (<i>S</i>)- and (<i>R</i>)- formation (high activity, major enzyme)	potent activation	231-233, 286	7586124, 8901879, 9016811, 9635416
CYP2E1	chemical	halobenzene	1,4-dichlorobenzene	oxidation	activation	287	9817075
CYP2E1	chemical	triazole	1-aminobenzotriazole (1- ABT)	oxidation	activation	140	17584015

enzyme	category	subcategory	punoduoo	reaction	remarks	references	PubMed ID
CYP2E1	chemical	haloalkane	2, 2-dichloro-1,1,1- trifluoroethane (HCFC-123)	oxidation	activation	268, 269, 288, 289	11684364, 11684365, 7975716, 8199305
CYP2E1	chemical	halobenzene	2,3-dichlorobutane	oxidation	activation	284	8671747
CYP2E1	chemical	nitrile, herbicide	2,6-dichlorobenzonitrile (dichlobenil)	epoxidation, C2,3-	activation	234,235	8649351, 8863822
CYP2E1	chemical	arylamine	2,6-dimethylaniline	N-hydroxylation (at higher concentration)	activation	236	11409937
CYP2E1	chemical	arylamine	2-aminoanthracene	N-hydroxylation	activation	61	11377247
CYP2E1	chemical	arylamine	2-aminofluorene (2-AF)	N-hydroxylation	activation	61	11377247
CYP2E1	natural compound	furanoterpene produced in sweet potatoes infected with Fusarium solani; pulmonary toxin, alkylating	4-ipomeanol	oxidation	activation	173	15892579
CYP2E1	chemical	unsaturated	4-vinyl-1-cyclohexene, (S)- and (R)-	epoxidation 7,8, stereoselective for (S)-; epoxidation 1,2, stereoselective for (R)-	activation	100, 273	11502734, 11159809
CYP2E1	chemical	acrylic amide	acrylamide	epoxidation to glycidamide	activation	290, 291	19190172, 20209648
CYP2E1	chemical	aliphatic nitrile	acrylonitrile (vinyl cyanide, cyanoethylene)	oxidation (2- cyanoethylene oxide formation)	activation	107, 282, 290	1486866, 1664256, 8117926
CYP2E1	chemical	oxidoazanium	azoxymethane	oxidation	activation	283	15576447
CYP2E1	chemical	aromatic hydrocarbon	benzene	hydroxylation, aromatic (via benzene oxide, muconic acid, and benzoquinone formation, major enzyme at low concentrations)	activation	107, 110, 282, 293-295	1486866, 7923572, 1664256, 10207612, 11083083, 15122651
CYP2E1	chemical	aliphatic epoxide, metabolite	butadiene monoxide (1, 2- epoxy-3-butene)	diepoxybutane $meso$ - (major) and (\pm) - formation, high activity, major enzyme	potent activation	231-233, 296	7586124, 8901879, 9016811, 17298833
CYP2E1	chemical	haloalkane	carbon tetrachloride	dechlorination reductive (at low concentrations), oxidative stress induction	potent activation	106, 297- 300	1486866, 8571359, 10731522, 8471158, 12235922

enzyme	category	subcategory	compound	reaction	remarks	references	PubMed ID
CYP2E1	chemical	haloalkane	chloroform (trichloromethane)	dehalogenation reductive (at high concentration, major enzyme); oxidation (major enzyme at low concentration)	potent activation	66, 107, 252, 282, 299, 301	9685642, 1486866, 12584152, 1664256, 8471158,
CYP2E1	chemical	haloalkene	chloroprene	epoxidation	activation	302	11397396
CYP2E1	drug	platinum-containing; anticancer	cisplatin	oxidation	activation	303, 304	16251482, 17761302
CYP2E1	drug	imidazole; anticancer, alkylating	dacarbazine	N-demethylation	activation	111	10473105
CYP2E1	chemical	haloalkene dichloromethane (methy]ene chloride)	dehalogenation ene	oxidative	activation	107, 282, 284, 297	1486866, 1664256, 8671747, 8571359
CYP2E1	chemical	organic solvents, alcohol	ethanol	oxidation, reactive oxygen species production	activation	305-309	7687464, 16052683, 16878272, 16356668, 21146245
CYP2E1	natural compound	carbamic acid derivative; fermentation by- product	ethyl carbamate (urethane)	oxidation to vinyl carbamate epoxide	activation	107, 282, 310-312	1486866, 1664256, 9344892, 9150748, 11181492
CYP2E1	chemical	furan	furan	oxidation, <i>cis-</i> 2-butene- 1,4-dial formation	activation	313	16006568
CYP2E1	chemical	organic solvents, alkylformamide	N, N-dimethylformamide(DMF)	N-demethylation (high activity)	activation	314, 315	8477011, 11684354
CYP2E1	chemical	organic solvents, alkylformamide	N-methylformamide	oxidation (methylisocyanate formation)	activation	316	1538706
CYP2E1	chemical	nitrosamine	N-nitrosodiethanolamine	oxidation	activation	317	18616954
CYP2E1	chemical	nitrosamine	N-nitrosodiethylamine (N,N- diethylnitrosamine,)	oxidation (major enzyme)	potent activation	107, 132- 134, 141- 144, 244, 318, 319	1486866, 11774366, 12214673, 11600130, 15728263, 15843388, 17158518, 9860501, 10837014, 11733072,

enzyme	category	subcategory	compound	reaction	remarks	references	PubMed ID
CYP2E1	chemical	nitrosamine	<i>N</i> -nitrosodimethylamine (<i>N</i> , <i>N</i> -dimethylnitrosamine, DMN)	oxidation (major enzyme)	activation	107, 134, 170, 244, 246, 317, 318, 320, 321, 322	1486866, 11600130, 9163700, 10837014, 1423839, 18616954, 11733072, 8692217, 10366544, 15668106
CYP2E1	chemical	nitrosamine	N-nitrosodi-n-propylamine (N-nitrosodipropylamine)	Ca-hydroxylation and <i>N</i> -depropylation (major enzyme); oxidation	activation	134, 141- 143, 244, 318, 323- 325	11600130, 15728263, 15843388, 117158518, 10837014, 11733072, 9247615, 8824531,
CYP2E1	chemical	nitrosamine	N-nitrosoethylbutylamine	oxidation	activation	134, 244	11600130, 10837014
CYP2E1	chemical	nitrosamine	N-nitrosomethylbutylamine	oxidation	potent activation	107, 134, 244	1486866, 11600130, 10837014,
CYP2E1	chemical	nitrosamine	N-nitrosomethylethylamine	oxidation	potent activation	134, 244	11600130, 10837014
CYP2E1	chemical	nitrosamine	N-nitrosomethylpropylamine	oxidation	potent activation	134, 244	11600130, 10837014
CYP2E1	chemical	nitrosamine	N-nitrosomorpholine	oxidation	activation	132, 133, 326	11774366, 12214673, 10461547
CYP2E1	chemical	nitrosamine	<i>N</i> -nitroso- <i>N</i> -methylbenzylamine	oxidation	activation	107	1486866
CYP2E1	natural compound	nitrosamine, tobacco- specific	N-nitrosonomicotine (N-nitrosonomicotine, NNN)	hydroxylation C5' - (lactol formation, low activity)	activation	134, 244, 247, 256, 257	11600130, 10837014, 1423839, 9276639, 7646564
CYP2E1	chemical	nitrosamine	<i>N</i> -nitrosopyrrolidine	Ca-hydroxylation (2-OH- tetrahydrofuran formation); oxidation	activation	132-134, 244, 327	11774366, 12214673, 11600130, 10837014, 17457417
CYP2E1	chemical	o-methoxyaniline	ο-anisidine (2- methoxyaniline)	N-hydroxylation (major enzyme in microsomal model)	potent activation	201, 328	15828049, 21217841

enzyme	category	subcategory	compound	reaction	remarks	references	PubMed ID
CYP2E1	chemical	aromatic hydrocarbons, alkyl benzene	styrene (vinyl benzene)	oxidation, medium $K_{\rm m}$, major enzyme in liver at low concentration, stereoselective	activation	66, 107, 202-205, 280, 282, 329	9685642, 1486866, 9253143, 7696548, 11407535, 12616646, 16125881, 1664256, 16872732
CYP2E1	chemical	haloalkene	tetrachloroethylene	oxidation	activation	284	8671747
CYP2E1	chemical	haloalkene	trichloroethylene (TCE)	oxidation to trichloroethylene oxide and chloral hydrate form ation (major enzyme)	activation	107, 282, 330-333	1486866, 1664256, 9070354, 10807551, 11304134, 15987776
CYP2E1	chemical	vinyl halide	vinyl bromide (bromoethylene)	oxidation	activation	66, 107, 282	9685642, 1486866, 1664256
CYP2E1	chemical	carbamic acid derivative, metabolite	vinyl carbamate	epoxide formation	activation	66, 107, 282, 312	9685642, 1486866, 1664256, 11181492
CYP2E1	chemical	vinyl halide	vinyl chloride (chloroethylene)	oxidation	potent activation	66, 107, 282, 299	9685642, 1486866, 1664256, 8471158
CYP2E1	chemical	cyclohexane derivative	vinylcyclohexane	oxidation (epoxidation)	activation	329	16872732
CYP2F1	natural compound	indole, alkylating, pulmonary toxin; present in higher concentrations in mammalian digestive tract and coal tar	3-methylindole, skatole	dehydrogenation (desaturation, 3-methyleneindolenine form, low $K_{\rm m}$ medium activity, high efficiency), major enzyme	potent activation	75-78, 334, 335	8558432, 11408359, 12563100, 20795680, 10383923, 17962375
CYP2F1	chemical	tobacco-specific nitrosamine	4-(methylnitrosamino)-1-(3- pyridyl)-1-butanone (NNK)	hydroxylation, α-methyl (keto alcohol formation)	activation	213-216	1312898, 7595636, 8806763, 10803680
CYP2F1	natural compound	furanoterpene produced in sweet potatoes infected with Fusarium solani, pulmonary toxin, alkylating	4-ipomeanol	oxidation	activation	172	1651809
CYP2F1	chemical	РАН	naphthalene	oxidation	activation	334	10383923

enzyme	category	subcategory	compound	reaction	remarks	references	PubMed ID
CYP2F1	chemical	aromatic hydrocarbon, alkyl benzene	styrene (vinyl benzene)	oxidation (major enzyme in lung microsomes)	activation	202-205, 278	9253143, 7696548, 11407535, 12616646, 16125881
CYP2W1	chemical	PAH, metabolite	(\pm) -benzo[a]pyrene-7,8-diol	oxidation	activation	210	16551781
CYP2W1	chemical	arylamine	2-aminoanthracene	oxidation	activation	210	16551781
CYP2W1	chemical	arylamine	2-aminofluorene (2-AF)	oxidation	activation	210	16551781
CYP2W1	chemical	heterocyclic amine	3-amino-1,4-dimethyl-5H- pyrido[4,3- <i>b</i>]indole (Trp-P-1)	oxidation	activation	210	16551781
CYP2W1	chemical	azoaromatic amine	3-methoxy-4- aminoazobenzene	oxidation	activation	210	16551781
CYP2W1	chemical	PAH, metabolite	5-methylchrysene-1,2-diol	oxidation	activation	210	16551781
CYP2W1	Natural compound	difuranocoumarin; mycotoxin, produced by Aspergillus species on food products	aflatoxin B_1 (AFB ₁)	oxidation	activation	210	16551781
CYP2W1	chemical	PAH, metabolite	chrysene-1,2-diol	oxidation	activation	210	16551781
CYP2W1	chemical	PAH, metabolite	${\it dibenzo}[a.l] pyrene-11,12-\\ {\it diol}$	oxidation	activation	210	16551781
CYP2W1	natural compound	furanoxanthone; mycotoxin, produced by Aspergillus species	sterigmatocystin	oxidation	activation	210	16551781
CYP3A4	chemical	nitroarene	1, 2-dihydro-1,2-dihydroxy- 6-nitrochrysene	oxidation	activation	219	8481905
CYP3A4	chemical	nitroarene	6-nitrochrysene	oxidation	activation	12	2655891
CYP3A4	chemical	nitroarene	1,6-dinitropyrene	nitroreduction	activation	174	10197616
CYP3A4	chemical	triazole	1-aminobenzotriazole (1- ABT)	oxidation	activation	140	17584015
CYP3A4	chemical	arylamine, metabolite of 1-nitropyrene	1-aminopyrene	oxidation	activation	54	11525925
CYP3A4	chemical	nitroarene	1-nitropyrene	epoxidation C4,5-, minor reaction	activation	54, 107, 174	11525925, 1486866, 10197616
CYP3A4	chemical	arylamine	2-aminofluorene	oxidation	activation	61, 336	9328287, 11377247
CYP3A4	chemical	nitroarene	3,6-dinitrobenzo[e]pyrene	niroreduction and O-acetylation	activation	70	19393727

enzyme	category	subcategory	compound	reaction	remarks	references	PubMed ID
CYP3A4	chemical	heterocyclic amine	3-amino-1,4-dimethyl-5H- pyrido[4,3-b]indole (Trp-P-1)	N-hydroxylation	potent activation	12, 61	2655891, 11377247
CYP3A4	chemical	heterocyclic amine	3-amino-1-methyl-5 <i>H</i> -pyrido[4,3- <i>b</i>]indole (Trp-P-2)	N-hydroxylation	potent activation	61	11377247
CYP3A4	chemical	azoaromatic amine	3-methoxy-4- aminoazobenzene	oxidation	activation	336	9328287
CYP3A4	chemical	arylamine	4,4'-methylene bis(2-chloroaniline) (MOCA)	oxidation, ${\cal N}$ (major enzyme)	activation	66, 107, 249	9685642, 1486866, 1740010
CYP3A4	Natural compound	furanoterpene produced in sweet potatoes infected with Fusarium solani; pulmonary toxin, alkylating	4-ipomeanol	epoxidation; oxidation, minor enzyme	activation	140, 172, 173	17584015, 1651809, 15892579
CYP3A4	chemical	nitroarene	4-nitropyrene	4-aminopyrene formation (nitroreduction), major enzyme	activation	174	10197616
CYP3A4	chemical	Wheterocyclic aromatic hydrocarbon, dibenzocarbazole	5,9- dimethyldibenzo[<i>c,g</i>]carbazol e	oxidation	activation	337	21798277
CYP3A4	chemical	arylamine	6-aminochrysene	oxidation (high activity)	potent activation	12, 84, 85, 107, 336, 338	2655891, 8118930, 8330339, 1486866, 9328287, 9493761
CYP3A4	chemical	arylamine, metabolite	6-aminochrysene-1,2-diol	Diol epoxide formation; oxidation	activation	84, 85	8118930, 8330339
CYP3A4	chemical	Wheterocyclic aromatic hydrocarbon, dibenzocarbazole	7 H -dibenzol c , $oldsymbol{arepsilon}$ carbazole	oxidation	activation	337	21798277
CYP3A4	chemical	PAH, aza-aromatic	7-methylbenz[c]acridine	oxidation.	potent activation	92	7866988
CYP3A4	chemical	PAH, metabolite	benzo[a]pyrene 7,8-diol	oxidation	activation	12	2655891

enzyme	category	subcategory	compound	reaction	remarks	references	PubMed ID
CYP3A4	compound	difuranocoumarin; mycotoxin, produced by Aspergillus species on food products	aflatoxin B ₁ (AFB ₁)	epoxidation exo-C8,9- (major activating enzyme), oxidation	activation	11, 12, 42, 57, 61, 175-180, 182, 336, 339-341	2492107, 2655891, 7955101, 11377247, 2162057, 7766804, 8261428, 12079611, 1902334, 11782366, 16608170, 9328287, 1643250, 7545582,
CYP3A4	natural	difuranocoumarin; mycotoxin, produced by Aspergillus species on food products	aflatoxin G ₁ (AFG ₁)	oxidation	activation	11, 12, 107, 148, 341- 343	2492107, 2655891, 1486866, 8082563, 7850790, 352361, 12849689
CYP3A4	chemical	herbicide, chloroacetamide	alachlor	oxidation	activation	274	11133395
CYP3A4	chemical	herbicide, chloroacetamide	butachlor	oxidation	activation	274	11133395
CYP3A4	drug	oxazaphosporine; anticancer, nitrogen mustard, alkylating	cyclophosphamide	C4-hydroxylation; oxidation	activation	108, 251- 254, 275, 344	19501186, 8242617, 9010702, 10348794, 10692561, 9923542, 15919850
CYP3A4	chemical	PAH), aza-aromatic	dibenz[a,j]acridine	3,4-dihydrodiol formation	potent activation	92	7866988
CYP3A4	drug	pyrido-carbazole; antineoplastic, alkaloid, Apocyanaceae plants compound, topoisomerase II inhibitor and DNA binding	ellipticine	hydroxylation, C13- (major enzyme) and C12- (minor reaction); oxidation N2- (major enzyme	potent activation	39, 40, 287-290, 345	16936898, 21753906, 11755121, 12123750, 15548707, 17197724, 20576524

enzyme	category	subcategory	compound	reaction	remarks	references	PubMed ID
CYP3A4	physiologi cal compound	estrogen	17β-estradiol	C2-hydroxylation (major reaction, major enzyme, medium K_m , medium efficiency, high activity), major enzyme in liver; oxidation, 2,3-quinone formation (tower activity); C4-hydroxylation (minor reaction, major enzyme, medium K_m , medium efficiency); oxidation, 3,4-quinone formation; C16 α -hydroxylation (high K_m) low activity).	activation	107, 122- 124, 126- 130, 190- 193, 346, 347	1486866, 9625734, 9054608, 9054608, 9667077, 11555828, 12865317, 16112414, 117570247, 1449532, 9635876, 111454902, 111454902, 117510, 117510, 117510, 117510, 117510, 117510, 117510, 117510,
CYP3A4	physiologi cal compound	estrogen	estrone	C2-hydroxylation (high K _m major metabolite, low activity); oxidation, 2,3-quinone formation; C4-hydroxylation (high K _m , low activity, major enzyme); C16α-hydroxylation (high K _m , low activity, major enzyme)	activation	48, 122- 124, 127, 128, 130, 191, 192	10426814, 9625734, 9054608, 9667077, 12865317, 15784278, 17570247, 9635876, 11454902
CYP3A4	drug	estradiol derivative; estrogen, contraceptive	17α-ethynylestradiol (ethinnylestradiol 17α-)	oxygenation (2- hydroxylation, 17α- inactivation)	activation	140, 348	17584015, 17251390
CYP3A4	drug	antimitotic, epipodophyllotoxin, topoisomerase II inhibitor	etoposide (VP-16)	O-demethylation (catechol formation), high $K_{\rm m}$, high activity, major enzyme	activation	349-351	8114683, 9456308, 17168690
CYP3A4	drug	oxazaphosporine; anticancer, nitrogen mustard alkylating	ifosfamide	C4-hydroxylation stereoselective for (<i>R</i>)- (high <i>K</i> _m , high activity), oxidation at high concentrations	potent activation	87, 251, 254, 275- 277, 344, 352-355	20507880, 8242617, 10692561, 1591850, 10534317, 15821045, 9923542, 8161344, 10101149, 10348794,
CYP3A4	chemical	herbicide, chloroacetamide	metolachlor	oxidation	activation	274	11133395

_	
=	
_	
т	
~	
حر	
Author	
=	
=	
0	
=	
7	
\sim	
a	
=	
⊆	
CO	
~	
\sim	
Manuscrip.	
$\overline{\mathbf{c}}$	
∸	

enzyme	category	subcategory	compound	reaction	remarks	references	PubMed ID
CYP3A4	natural compound	alkaloid, pyrrolizidine, genotoxic	monocrotaline	dehydrogenation	activation	356	15649625
CYP3A4	chemical	aziridine	<i>N, N, N'</i> -triethylene thiophosphoramide (thioTEPA)	desulfuration, TEPA formation (minor enzyme)	activation	279	12107550
CYP3A4	chemical	tobacco-specific nitrosamine	\mathcal{N} -nitrosoanabasine	oxidation (major enzyme)	activation	132, 133	11774366, 12214673
CYP3A4	chemical	nitrosamine	Naitrosodibutylamine (N,N-dibutylnitrosamine)	oxidation	activation	134	11600130
CYP3A4	chemical	nitrosamine	N-nitrosodiethylamine (N - N -diethylnitrossidnitus)	troskidnina)	activation	134, 255	11600130, 1423839
CYP3A4	chemical	nitrosamine	N-nitrosoethylbutylamine	oxidation	activation	134	11600130
CYP3A4	chemical	nitrosamine	N-nitrosomethylbutylamine	oxidation	activation	134	11600130
CYP3A4	natural compound	nitrosamine, tobacco- specific	N-nitrosonornicotine (N-nitrosonornichyinko)NNNNOn C2'- (keto alcohol formation); oxidation	cbyintcyNMtNgn C2′- (keto alcohol formation); oxidation	activation	132, 133, 264, 265	11774366, 12214673, 9276639, 7646564
CYP3A4	chemical	nitrosamine	N-nitrosopiperidine	Ca-hydroxylation (2-OH-tetrahydropyran and 2-OH-5-methyltetrahydrofuran formation); oxidation	activation	132, 133	11774366, 12214673
CYP3A4	chemical	nitrosamine	N-nitrosopyrrolidine	Ca-hydroxylation (2-OH-tetrahydrofuran formation); oxidation	activation	132, 133	11774366, 12214673
CYP3A4	natural compound	pyrrolizidine alkaloid from Senecio retrorsus	retrorsine	dehydrogenation	activation	356	15649625
CYP3A4	natural compound	pyrrolizidine alkaloid, food contaminant (meat, milk, and honey)	riddelline	dehydrogenation	activation	356	15649625
CYP3A4	natural compound	pyrrolizidine alkaloid, genotoxic	senecionine	dehydrogenation	activation	107, 357	1486866, 2009596
CYP3A4	natural compound	furanoxanthone; mycotoxin, produced by Aspergillus species	sterigmatocystin	oxidation	activation	11, 12, 66, 107, 336, 341	2492107, 2655891, 9685642, 1486866, 9328287, 7850790

enzyme	category	subcategory	compound	reaction	remarks	references	PubMed ID
CYP3A4	drug	triphenylethyleneamin e; antiestrogen, estrogen receptor modulator	tamoxifen	Ca-hydroxylation (major enzyme), catechol formation, oxidation, at high concentrations	activation	87, 354, 358-364	20507880, 10348797, 12018981, 14678348, 15159443, 16533026, 12124303,
CYP3A4	chemical	organophosphate	tris(2,3- dibromopropyl)phosphate	oxidation	activation	12, 107	2655891, 1486866
CYP3A5	chemical	PAH, aza-aromatic	7-methylbenz[c]acridine	oxidation	potent activation	92	7866988
CYP3A5	natural compound	difuranocoumarin; mycotoxin, produced by Aspergillus species on food products	aflatoxin B ₁ (AFB ₁)	epoxidation <i>exo-</i> 8.9- (major reaction); oxidation	activation	182, 365	16608170, 7893152
CYP3A5	drug	oxazaphosporine; anticancer, nitrogen mustard, alkylating	cyclophosphamide	C4-hydroxylation (very low activity) activation to cytotoxic metabolites	activation	253	10348794
CYP3A5	chemical	PAH, aza-aromatic	dibenz[a,j]acridine	3,4-dihydrodiol formation	activation	92	7866988
CYP3A5	physiologi cal compound	estrogen	17β-estradiol	C2-hydroxylation: C4- hydroxylation (major reaction); C16a- hydroxylation (low activity)	activation	127, 128, 191, 192, 347	12865317, 15784278, 9635876, 11454902, 12124305
CYP3A5	drug	estradiol derivative; estrogen, contraceptive	17a-ethynylestradiol (ethinylestradiol, 17a-)	oxygenation (2- hydroxylation, 17α- mechanism-based inactivation)	activation	140, 348	17584015, 17251390
CYP3A5	drug	antimitotic, epipodophyllotoxin, topoisomerase II inhibitor	etoposide (VP-16)	O -demethylation (catechol formation), medium K_m , high activity, minor enzyme	activation	349	8114683
CYP3A5	drug	oxazaphosporine; anticancer, nitrogen mustard alkylating	ifosfamide	C4-hydroxylation, stereoselective for (<i>R</i>)-	activation	253, 276, 277, 353, 355	10348794, 10534317, 15821045, 10101149, 16854777
CYP3A5	chemical	tobacco-specific nitrosamine	N-nitrosoanabasine	oxidation	activation	132, 133	11774366, 12214673
CYP3A5	natural compound	nitrosamine, tobacco- specific	N-nitrosonornicotine (N -nitrosonornicotine, NNN)	oxidation	activation	132, 133	11774366, 12214673
CYP3A7	chemical	arylamine	2-aminofluorene (2-AF)	oxidation	activation	336	9328287

enzyme	category	subcategory	punoduoo	reaction	remarks	references	PubMed ID
CYP3A7	chemical	azoaromatic amine	3-methoxy-4- aminoazobenzene	oxidation	activation	336	9328287
CYP3A7	chemical	arylamine	6-aminochrysene	oxidation	activation	336, 338	9328287, 9493761
CYP3A7	natural compound	difuranocoumarin; mycotoxin, produced by Aspergillus species on food products	aflatoxin B ₁ (AFB ₁)	epoxidation exo-C8,9-; oxidation	activation	107, 182, 336, 338, 341, 366	1486866, 16608170, 9328287, 9493761, 7850790, 9044840
CYP3A7	natural compound	difuranocoumarin; mycotoxin, produced by Aspergillus species on food products	aflatoxin G_1 (AF G_1)	oxidation	activation	341	7850790
CYP3A7	drug	oxazaphosporine; anticancer, nitrogen mustard, alkylating	cyclophosphamide	C4-hydroxylation	activation	253, 275	10348794, 15919850
CYP3A7	physiologi cal compound	estrogen	17β-estradiol	C2-hydroxylation (medium K _m , low activity, major reaction); C4-hydroxylation (low activity, high K _m); C16α-hydroxylation (very low activity, high K _m)	activation	127, 128, 347	12865317, 15784278, 12124305,
CYP3A7	physiologi cal compound	estrogen	estrone	C2-hydroxylation (medium K_m , medium activity); C4-hydroxylation (low activity, medium K_m); C16 α -hydroxylation (medium K_m) medium activity)	activation	127, 128	12865317, 15784278
CYP3A7	drug	oxazaphosporine; anticancer, nitrogen mustard alkylating	ifosfamide	C4-hydroxylation stereoselective for (<i>R</i>)- (high <i>K</i> _m , medium (<i>S</i>) and high (<i>R</i> -) activity, minor enzyme and reaction)	activation	253, 273	10348794, 15919850
CYP3A7	natural compound	furanoxanthone; mycotoxin, produced by Aspergillus species	sterigmatocystin	oxidation	activation	336, 338, 341	9328287, 9493761, 7850790
CYP4B1	chemical	arylamine	2-aminofluorene (2-AF)	<i>N</i> -hydroxylation; oxidation	activation	367, 368	11396967, 11062028
CYP4B1	natural compound	furanoterpene produced in sweet	4-ipomeanol	oxidation	activation	172	1651809

enzyme	category	subcategory	compound	reaction	remarks	references	PubMed ID
		potatoes infected with Fusarium solani; pulmonary toxin, alkylating					
CYP4B1	chemical	aromatic hydrocarbon	benzene	oxidation (at high conc., minor reaction)	activation	294	11083083
CYP19A1 (aromatase)	physiologi cal compound	estrogen	17β-estradiol	C2-hydroxylation (medium K _m)	activation	125, 369	8930523, 8476762
CYP19A1 (aromatase)	physiologi cal compound	escnosen	estrone	C2-hydroxylation (medium K _m)	activation	125, 369	8930523, 8476762
Epoxide hydrolase, EH	chemical	PAH, metabolite	benzo[a]pyrene-7,8-oxide	hydrolysis to benzo[<i>a</i>]pyrene -7,8-diol	activation	51, 220	21028851, 10409402
FM01	chemical	thiocarbamide	thiourea	\mathcal{S} -oxidation (medium K_{m} , high activity)	activation	370, 371	10901713, 14976351
FM02	chemical	thiocarbamide	1-phenylthiourea	S-oxidation	activation	372	15144220
FM02	chemical	thiocarbamide	α-naphthylthiourea	S-oxidation	activation	372	15144220
FM02	chemical	thiocarbamide	ethylenethiourea	S-oxidation	activation	372	15144220
FM02	chemical	thiocarbamide	thiourea	\mathcal{S} -oxidation (medium K_{m} , high activity)	activation	372, 373	15144220, 11744609
FM03	chemical	thiocarbamide	thiourea	\mathcal{S} -oxidation (medium K_{m} , high activity)	activation	374	12093470
GST	chemical	haloalkane	1, 2-dibromoethane (ethylene dibromide)	GSH conjugation	activation	375-378	8330352, 16948056, 12542971, 15554237
GST	chemical	haloalkane	1, 2-dichloroethane, ethylene dichloride	GSH conjugation	activation	375, 378	8330352, 15554237
GST	chemical	haloalkene	chlorotrifluoroethene	GSH conjugation	activation	378	15554237
GST	chemical	haloalkane	dichloromethane, methylene chloride	GSH conjugation	activation	284, 377, 378	8671747, 12542971, 15554237
GST	chemical	haloalkene	hexachlorobutadiene	GSH conjugation	activation	378	15554237
GST	chemical	haloalkene	tetrafluoroethene	GSH conjugation	activation	378	15554237
GST	chemical	haloalkene	trichloroethene	GSH conjugation	activation	378	15554237
GST T1-1	chemical	haloalkane	1, 2-dibromoethane (ethylene dibromide)	GSH conjugation	activation	378	8565128

enzyme	category	subcategory	compound	reaction	remarks	references	PubMed ID
GST T1-1	chemical	haloalkane	dibromomethane (methylene dibromide)	GSH conjugation	activation	378	8565128
GST T1-1	chemical	haloalkane	diepoxybutane (butadiene diepoxide)	GSH conjugation	activation	379, 380	8565128, 222181695
GST A1-1	chemical	haloalkane	diepoxybutane, butadiene diepoxide	GSH conjugation	activation	380	222181695
GST A3-3	chemical	haloalkane	diepoxybutane (butadiene diepoxide)	GSH conjugation	activation	380	222181695
GST M1-1	chemical	haloalkane	diepoxybutane (butadiene diepoxide)	GSH conjugation	activation	380	222181695
GST P1-1	chemical	haloalkane	diepoxybutane (butadiene diepoxide)	GSH conjugation	activation	380	222181695
Lactoperox dase (LPO)	chemical	arylamine, metabolite	3-aminobenzanthrone	N-oxidation	activation	72, 73	15885895, 16601755
Lactoperoxi dase (LPO)	drug	pyrido-carbazole; antineoplastic, alkaloid, Apocyanaceae plants compound, topoisomerase II inhibitor and DNA binding	Ellipticine	oxidation	activation	39, 40	16936898, 21753906
Myeloperoxi dase (MPO)	i chemical	arylamine, metabolite	3-aminobenzanthrone	N-oxidation	activation	72, 73	15885895, 16601755
Myeloperoxi dase (MPO)	i drug	pyrido-carbazole; antineoplastic, alkaloid, Apocyanaceae plants compound, topoisomerase II inhibitor and DNA binding	ellipticine	oxidation	activation	39, 40	16936898, 21753906
O6- alkylguanine DNA alkyl transferase (MGMT)	chemical e	bifunctional electrophile	1,2-dibromoethane (ethylene dibromide)	conjugation	activation	381, 382	12151404, 15257623
06- alkylguanine DNA alkyl transferase (MGMT)	chemical e	bifunctional electrophile	dibromomethane (methylene dibromide)	conjugation	activation	382, 383	15257623, 15206895

enzyme	category	subcategory	compound	reaction	remarks	references	PubMed ID
O6- alkylguanin DNA alkyl transferase (MGMT)	chemical e	bifunctional electrophile	bromomethyl acetate	conjugation	activation	383	15206895
06- alkylguanin DNA alkyl transferase (MGMT)	chemical e	bifunctional electrophile	dichloromethane (methylene dichloride)	conjugation	activation	382	15257623
O6- alkylguanin DNA alkyl transferase (MGMT)	chemical e	bifunctional electrophile	bromochloromethane	conjugation	activation	382	15257623
O6- alkylguanine DNA alkyl transferase (MGMT)	chemical e	bifunctional electrophile	1,2-diiodoethane (ethylene diiodide)	conjugation	activation	382	15257623
O6- alkylguanin DNA alkyl transferase (MGMT)	chemical e	bifunctional electrophile	1,2-bromochloroethane	conjugation	activation	382	15257623
O6. alkylguanine DNA alkyl transferase (MGMT)	chemical e	bifunctional electrophile	1,3-dibromopropane	conjugation	activation	382	15257623
O6- alkylguanine DNA alkyl transferase (MGMT)	chemical e	bifunctional electrophile	1,4-dibromobutane	conjugation	activation	382	15257623
O6- alkylguanin DNA alkyl transferase (MGMT)	chemical e	bifunctional electrophile	1,3-diiodopropane	conjugation	activation	382	15257623
O6- alkylguanink DNA alkyl transferase (MGMT)	chemical e	bifunctional electrophile	diepoxybutane (butadiene diepoxide)	conjugation	activation	382	15257623

enzyme	category	subcategory	punoduoo	reaction	remarks	references	PubMed ID
NADPH- cytochrome P450 reductase (POR)	chemical	nitroarene	1,8-dinitropyrene	nitroreduction	activation	53, 384	11113705, 15606153
NADPH- cytochrome P450 reductase (POR)	chemical	nitroarene	1-nitro-6-nitrosopyrene	reduction	activation	384	15606153
NADPH- cytochrome P450 reductase (POR)	chemical	nitroarene	1-nitro-8-nitrosopyrene	reduction	activation	384	15606153
NADPH- cytochrome P450 reductase (POR)	chemical	nitroarene	3,6-dinitrobenzol@pyrene	niroreduction and ${\cal O}$ acetylation	activation	70	19393727
NADPH- cytochrome P450 reductase (POR)	chemical	nitroarene	3-nitrobenzanthrone	nitroreduction	activation	08	12782579
NADPH- cytochrome P450 reductase (POR)	chemical	quinone	anthraquinone	reduction	activation	385	11697035
NADPH- cytochrome P450 reductase (POR)	drug	dihydroxyanthraquino ne; laxative	danthron	reduction	activation	383	11697035
Xanthine oxidoreduct se (XOR)	chemical a	nitroarene	2-nitroanisole	nitroreduction to hydroxylamine	activation	328	21217841
Xanthine oxidoreduct se (XOR)	chemical a	nitroarene	3-nitrobenzanthrone	nitroreduction to hydroxylamine	activation	79	12740904
NAT1	chemical	nitroarene	1,8-dinitropyrene	Oacetylaton after nitroreduction	activation	386	10357791

enzyme	category	subcategory	compound	reaction	remarks	references	PubMed ID
NAT1	chemical	2-phenylbenzotriazole	2-[2-(acetylamino)-4- (diallylamino)-5- methoxyphenyl]-5-amino-7- bromo-4-chloro-2 <i>H</i> -benzotriazole (PBTA-8)	Oacetylation FTA-8)	activation	55	18562244
NATI	chemical	2-phenylbenzotriazole	2-[2-(acetylamino)-4- (diethylamino)-5- methoxyphenyl]-5-amino-7- bromo-4-chloro-2 <i>H</i> - benzotriazole (PBTA-7)	O-acetylation	activation	55	18562244
NAT1	chemical	2-phenylbenzotriazole	2-[2-(acetylamino)-4-[bis(2-hydroxyethyl)amino]-5-methoxyphenyl]-5-amino-7-bromo-4-chloro-2 <i>H</i> -benzotriazole (PBTA-6)	O-acetylation	activation	55	18562244
NAT1	chemical	2-phenylbenzotriazole	2-[2-(acetylamino)-4-amino- 5-methoxyphenyl]-5-amino- 7-bromo-4-chloro-2 <i>H</i> benzotriazole (PBTA-4)	O-acetylation	activation	55	18562244
NAT1	chemical	arylamine, metabolite	2-acetylaminofluorene (2-AAF)	O-acetylation after N-hydroxylation	potent activation	147	15450435
NAT1	chemical	heterocyclic amine	2-amino-6- methyldipyrido[1,2- x 3',2'- d]- imidazole (Glu-P-1)	O-acetylation after N-hydroxylation	activation	386	10357791
NAT1	chemical	arylamine	2-aminofluorene (2-AF)	O-acetylaton after N -hydroxylation	activation	386, 387	103 <i>577</i> 91, 161 <i>7</i> 672
NAT1	chemical	arylamine	2-naphthylamine	Oacetylation after N tydroxylation	activation	147	15450435
NATI	chemical	nitroaromatic	2-nitrofluorene	O-acetylaton after nitroreduction	activation	386	10357791
NAT1	chemical	nitroarene	3-acetylaminobenzanthrone	O-acetylation after N-hydroxylation, at higher conc.	potent activation	79	12740904
NAT1	chemical	arylamine, metabolite	3-aminobenzanthrone	O-acetylation after N-hydroxylation, at higher conccentrations	potent activation	79	12740904
NAT1	chemical	nitroarene	3-nitrobenzanthrone	O-acetylation after nitro- reduction to hydroxylamine, at higher concentrations	potent activation	73, 79, 388	16601755, 12740904, 12419844
NAT1	chemical	arylamine, tobacco smoke compound	4-aminobiphenyl (4-ABP)	Oacetylation after N tydroxylation	potent activation	147, 389	15450435, 8353847
NATI	chemical	arylamine, heterocyclic	aminophenylnorharman	Oacetylation after N tydroxylation	activation	95	17067997

enzyme	category	subcategory	compound	reaction	remarks	references	PubMed ID
NAT1	chemical	arylamine	benzidine	Oacetylation after N hydroxylation	activation	147, 387	15450435, 1617672
NAT1	chemical	arylamine, metabolite	<i>N</i> -acetyl- <i>N</i> -hydroxy-3-aminobenzanthrone	O-acetylation at higher concentrations	potent activation	79, 387	12740904, 12419844
NAT1	chemical	arylamine, tobacco smoke compound, metabolite	N-hydroxy-4-aminobiphenyl (N-OH-4-ABP)	O-acetylation	activation	389	8353847
NAT1	chemical	hydroxylamine, arylamine, metabolite	<i>N</i> -hydroxy-2-aminofluorene (<i>N</i> -OH-2-AF)	O-acetylation	activation	389	8353847
NAT1	chemical	hydroxylamine, heterocyclic amine, metabolite	<i>N</i> -hydroxy- aminomethylphenylnorharma n	O-acetylation	activation	95	17067997
NAT1	chemical	hydroxylamine, heterocyclic amine, metabolite	N-hydroxy- aminophenylnorharman	O-acetylation	activation	95	17067997
NAT1	chemical	nitroarene	nitrofen	O-acetylation after nitroreduction	activation	390	14754874
NAT1	chemical	o-methoxyaniline	σ -anisidine, 2-methoxyaniline	O-acetylation after N -hydroxylation	activation	147	15450435
NAT2	chemical	nitroarene	1,8-dinitropyrene	Oacetylaton after nitroreduction	potent activation	386	10357791
NAT2	chemical	2-phenylbenzotriazole	2-[2-(acetylamino)-4- (diallylamino)-5- methoxyphenyl]-5-amino-7- bromo-4-chloro-2Hbenzotriazole (PBTA-8)	oxidation	activation	55	18562244
NAT2	chemical	2-phenylbenzotriazole	2-[2-(acetylamino)-4- (diethylamino)-5- methoxyphenyl]-5-amino-7- bromo-4-chloro-2Hbenzotriazole (PBTA-7)	oxidation	activation	55	18562244
NAT2	chemical	2-phenylbenzotriazole	2-[2-(acetylamino)-4-[bis(2-hydroxyethyl)amino]-5-methoxyphenyl]-5-amino-7-bromo-4-chloro-2 <i>H</i> -benzotriazole (PBTA-6)	oxidation	activation	55	18562244
NAT2	chemical	2-phenylbenzotriazole	2-[2-(acetylamino)-4-amino- 5-methoxyphenyl]-5-amino- 7-bromo-4-chloro-2 <i>H</i> - benzotriazole (PBTA-4)	oxidation	activation	55	18562244
NAT2	chemical	hydroxylamine, heterocyclic amine, metabolite	2-amino-3,4- dimethylimidazo[4,5- f]quinolone (MeIQ)	O-acetylation after N -hydroxylation	activation	386, 387	10357791, 1617 <i>6</i> 72

enzyme	category	subcategory	compound	reaction	remarks	references	PubMed ID
NAT2	chemical	heterocyclic amine	2-amino-6- methyldipyrido[1,2- <i>x</i> :3′,2′- <i>d</i>]- imidazole (Glu-P-1)	Oacetylation after N thydroxylation	activation	386	10357791
NAT2	chemical	nitroarene	2-nitrobenzanthrone	O-acetylation after reduction to hydroxylamine	activation	391	17483118
NAT2	chemical	nitroarene	3-acetylaminobenzanthrone	O-acetylation after Nhydroxylation, at higher concentration	potent activation	79	12740904
NAT2	chemical	arylamine, metabolite	3-aminobenzanthrone	O-acetylation after Nhydroxylation, at higher concentration	potent activation	79	12740904
NAT2	chemical	nitroarene	3-nitrobenzanthrone	O-acetyJation after nitro- reduction to hydroxyJamine, at higher concentration	potent activation	73, 79, 388, 391	16601755, 12740904, 12419844, 17483118
NAT2	chemical	arylamine, tobacco smoke compound	4-aminobiphenyl (4-ABP)	\mathcal{O} -acetylation after \mathcal{N} hydroxylation	activation	147, 389	15450435, 8353847
NAT2	chemical	arylamine	6-aminochrysene	${\cal O}$ acetylation after ${\cal N}$ hydroxylation	activation	386	10357791
NAT2	chemical	arylamine, heterocyclic	aminomethylphenylnorharma n	O-acetylation after N-hydroxylation	activation	95	17067997
NAT2	chemical	arylamine, heterocyclic	aminophenylharman	O-acetylation after N-hydroxylation	activation	95	17067997
NAT2	chemical	arylamine, heterocyclic	aminophenylnorharman	O-acetylation after N -hydroxylation	activation	95	17067997
NAT2	chemical	arylamine, metabolite	<i>N</i> -acetyl- <i>N</i> -hydroxy-3-aminobenzanthrone	O-acetylation at higher conc.	potent activation	79, 388	12740904, 12419844
NAT2	chemical	hydroxylamine, heterocyclic amine, metabolite	N-hydroxy-2-amino-1- methylimidazo[4,5- flquinolone (N-hydroxyisoIQ)	O-acetylation	activation	392	7697826
NAT2	chemical	hydroxylamine, heterocyclic amine, metabolite	N-hydroxy-2-amino-3,4- dimethylimidazo[4,5- flquinolone (N-hydroxy- MeIQ)	O-acetylation	activation	392	7697826
NAT2	chemical	hydroxylamine, heterocyclic amine, metabolite	Whydroxy-2-amino-3,8- dimethylimidazo[4,5- //quinoxaline (/Whydroxy- MelQx)	O-acetylation	activation	392	7697826
NAT2	chemical	hydroxylamine, heterocyclic amine, metabolite	N-hydroxy-2-amino-3- methylimidazo[4,5- f quinolone (N-hydroxy-IQ)	Oacetylation	potent activation	392, 393	7697826, 12067565

enzyme	category	subcategory	compound	reaction	remarks	references	PubMed ID
NAT2	chemical	hydroxylamine, heterocyclic amine, metabolite	N-hydroxy-2-amino-6- methyldipyrido[1,2-a3',2'-d]- imidazole (N-hydroxy-Glu-P- 1)	Oacetylation	activation	392	7697826
NAT2	chemical	hydroxylamine, arylamine, metabolite	<i>N</i> -hydroxy-2- aminobenzanthrone	O-acetylation	activation	391	17483118
NAT2	chemical	hydroxylamine, heterocyclic amine, metabolite	N-hydroxy-2- aminodipyndo[1,2-æ3,2'-d]- imidazole (N-hydroxy-Glu-P- 2)	Oacetylation	ativation	392	7697826
NAT2	chemical	hydroxylamine, arylamine, metabolite	<i>N</i> -hydroxy-3- aminobenzanthrone	O-acetylation	activation	391	17483118
NAT2	chemical	arylamine, tobacco smoke compound, metabolite	N-hydroxy-4-aminobiphenyl (N-OH-4-ABP)	O-acetylation	activation	389	8353847
NAT2	chemical	hydroxylamine, arylamine, metabolite	Nhydroxyaminofluorene (N-2-AF)	O-acetylation	activation	389	8353847
NAT2	chemical	hydroxylamine, heterocyclic amine, metabolite	N-hydroxyaminomethylphenyln orharman	O-acetylation	activation	95	17067997
NAT2	chemical	hydroxylamine, heterocyclic amine, metabolite	<i>N</i> -hydroxyaminophenylnorharm an	O-acetylation	activation	95	17067997
NAT2	chemical	o-methoxyaniline	σ anisidine, 2- methoxyaniline	O-acetylation after N -hydroxylation	activation	147	15450435
Prostagla ndi n H synthase (PHS, COX)	chemical	arylamine, metabolite	3-aminobenzanthrone	Noxidation	activation	72, 73	15885895, 16601755
Quinone oxidoreducta se (NQO1)	chemical a	nitroarene	3-nitrobenzanthrone	nitroreduction (major enzyme)	potent activation	73, 80	16601755, 12782579
SULT1A1	chemical	PAH, metabolite	(-)-1-hydroxyethylpyrene	O-sulfonation	activation	169, 394	10720750, 11535246
SULT1A1	chemical	PAH, metabolite	1-(1-pyrenyl)ethanol	O-sulfonation	activation	395	9141497
SULTIAI	chemical	PAH, metabolite	1-hydroxymethylpyrene	O-sulfonation	potent activation	169, 390, 396, 397	10720750, 14754874, 10657971, 17936463
SULT1A1	natural compound	1-methoxy-3- indolylmethyl	1-methoxy-3-indolylmethyl- alcohol	O-sulfonation	activation	398	20846518

enzyme	category	subcategory	compound	reaction	remarks	references	PubMed ID
		glucosinolate breakdown product, in many <i>Brassica</i> vegetables					
SULT1A1	chemical	benzylic alcohol, nitroatromatic	2,4-dinitrobenzylalcohol	O-sulfonation	activation	169, 394, 399	10720750, 11535246, 11154739
SULT1A1	chemical	heterocyclic amine	2-amino-1-methyl-6- phenylimidazo(4,5- b]pyridine (PhIP)	O-sulfonation after oxidation	activation	400	22006426
SULT1A1	chemical	heterocyclic amine	2-amino-6- methyldipyrido[1,2- <i>a</i> :3′,2′- <i>d</i>]- imidazole (Glu-P-1)	O-sulfonation after N-hydroxylation	potent activation	401	22072630
SULT1A1	chemical	benzylic alcohol	2-aminobenzylalcohol	O-sulfonation	activation	3979	11154739
SULT1A1	chemical	arylamine, heterocyclic	2-hydroxylamino-3-methyl-9H-pyrido[2,3- b]indole (N -OH-MeA α C)	O-sulfonation	potent activation	160	14729582
SULT1A1	chemical	hydroxylamine, heterocyclic	2-hydroxylamino-5- phenylpyridine	O-sulfonation	activation	394	11535246
SULT1A1	chemical	nitroarene	2-nitrobenzanthrone	O-sulfonation after reduction to hydroxylamine	activation	391	17483118
SULT1A1	chemical	nitroarene	3,9-dinitrofluoranthene	O-sulfonation	potent activation	401	22072630
SULT1A1	chemical	nitroarene	3-acetylaminobenzanthrone	O-sulfonation after N-hydroxylation, at higher concentrations	potent activation	79	12740904
SULT1A1	chemical	arylamine, metabolite	3-aminobenzanthrone	O-sulfonation after N-hydroxylation, at higher concentrations	potent activation	79	12740904
SULT1A1	chemical	azoaromatic amine	3-methoxy-4- aminoazobenzene	O-sulfonation	potent activation	401	22072630
SULT1A1	chemical	nitroarene	3-nitrobenzanthrone	O-sulfonation after nitroreduction to hydroxylamine	potent activation	73, 79, 364, 391, 401	16601755, 12740904, 12419844, 17483118, 22072630
SULTIAI	drug	triphenylethyleneamin e; antiestrogen, estrogen receptor modulator, metabolite	4-hydroxytamoxifen	O-sulfonation	activation	402, 403	12034366, 21537383

enzyme	category	subcategory	compound	reaction	remarks	references	PubMed ID
SULT1A1	chemical	furaldehyde derivative	5-hydroxymethylfurfural	O-sulfonation	activation	322, 397, 400	15668106, 17936463, 22006426
SULT1A1	chemical	nitroaromatic	5-nitroacenaphthene	O-sulfonation	potent activation	401	22072630
SULT1A1	chemical	PAH, metabolite	7-hydroxy-7,8,9,10- tetrahydrobenzo[a]pyrene	O-sulfonation	activation	395	9141497
SULT1A1	natural compound	nephrotoxin, Aristolochia fangchi compound, nitroarene	aristolochic acids I and II	O-sulfonation after nitroreduction to hydroxylamine	potent activation	404	16161050
SULT1A1	chemical	furan	furan	$\mathcal{O} ext{-sulfonation}$ after oxidation	activation	322	15668106
SULT1A1	chemical	furan derivative	furfuryl alcohol	O-sulfonation	activation	405	21729924
SULT1A1	chemical	arylamine, metabolite	Nacetyl-Nhydroxy-3- aminobenzanthrone	O-sulfonation, at higher concentrations	potent activation	79, 364	12740904, 12419844
SULT1A1	chemical	hydroxamic acid, heterocyclic amine, metabolite	N-hydroxy-2-acetylamino-3- methyl-5-phenylpyridine	O-sulfonation	activation	399	11154739
SULT1A1	chemical	hydroxamic acid, heterocyclic amine, metabolite	N-hydroxy-2- acetylaminofluorene (N-OH-2-AAF)	O-sulfonation	activation	169, 406	10720750, 11535243
SULT1A1	chemical	hydroxamic acid, heterocyclic amine, metabolite	N-hydroxy-2-acetylaminol-5- phenylpyridine	O-sulfonation	activation	399	11154739
SULT1A1	chemical	hydroxylamine, heterocyclic amine, metabolite	N-hydroxy-2-amino-1- methyl-6-phenylimidazo[4,5- b]pyridine (N-hydroxy-PhIP)	O-sulfonation	potent activation	393, 399	12067565, 11154739
SULT1A1	chemical	hydroxylamine, heterocyclic amine, metabolite	N-hydroxy-2-amino-3- methylimidazo[4,5- flquinolone (N-hydroxy-IQ)	O-sulfonation	potent activation	407	16708048
SULTIAI	chemical	hydroxylamine, heterocyclic amine, metabolite	N-hydroxy-2-amino-6- methyldipyrido[1,2-a3',2'-d]- imidazole (N-hydroxy-Glu-P- 1)	O-sulfonation	activation	408	7834621
SULT1A1	chemical	hydroxylamine, arylamine, metabolite	<i>N</i> -hydroxy-2- aminobenzanthrone	O-sulfonation	activation	401	17483118
SULT1A1	chemical	hydroxylamine, arylamine, metabolite	<i>N</i> -hydroxy-3- aminobenzanthrone	O-sulfonation	activation	391	17483118
SULT1A1	chemical	arylamine, tobacco smoke compound, metabolite	N-hydroxy-4-aminobiphenyl (N-OH-4-ABP)	O-sulfonation	activation	409	7859374

enzyme	category	subcategory	compound	reaction	remarks	references	PubMed ID
SULT1A1	chemical	hydroxylamine, arylamine, metabolite	Nhydroxy-2-aminofluorene (N-QH-4-AF)	O-sulfonation	activation	408	7834621
SULT1A1	chemical	nitroarene	nitrofen	O-sulfonation after nitroreduction to hydroxylamine	potent activation	322, 390	15668106, 14754874
SULT1A1	chemical	nitrosamine	<i>N</i> -nitrosodimethylamine (<i>N</i> , <i>N</i> -dimethylnitrosamine, DMN)	O-sulfonation after oxidation	activation	322	15668106
SULT1A1	chemical	heterocyclic amine	N-OH-4,4'-methylenebis(2-chloroaniline) (N-OHMOCA)	O-sulfonation	activation	408	7834621
SULT1A2	chemical	PAH, metabolite	(-)-1-hydroxyethylpyrene	O-sulfonation	activation	394	11535246
SULT1A2	chemical	PAH, metabolite	1-hydroxymethylpyrene	O-sulfonation	activation	394, 410	11535246, 12464797
SULT1A2	chemical	heterocyclic amine	2-amino-1-methyl-6- phenylimidazo[4,5- <i>b</i>]pyridine (PhIP)	O-sulfonation after oxidation	activation	400	22006426
SULT1A2	chemical	arylamine, heterocyclic	2-hydroxylamino-3-methyl- $9H$ -pyrido[2,3- b]indole (N-OH-MeA α C)	O-sulfonation	activation	159	14729582
SULT1A2	chemical	hydroxylamine, heterocyclic	2-hydroxylamino-5- phenylpyridine	O-sulfonation	potent activation	394, 410	11535246, 12464797
SULT1A2	chemical	nitroarene	3-acetylaminobenzanthrone	O-sulfonation after N-hydroxylation, at higher concentrations	potent activation	79	12740904
SULT1A2	chemical	arylamine, metabolite	3-aminobenzanthrone	O-sulfonation after N-hydroxylation, at higher concentrations	potent activation	79	12740904
SULT1A2	chemical	nitroarene	3-nitrobenzanthrone	O-sulfonation after nitroreduction to hydroxylamine	activation	73, 79	16601755, 12740904
SULT1A2	chemical	furaldehyde derivative	5-hydroxymethylfurfural	O-sulfonation	activation	400	22006426
SULT1A2	chemical	arylamine, metabolite	<i>N</i> -acetyl- <i>N</i> -hydroxy-3-aminobenzanthrone	O-sulfonation, at higher concentrations	potent activation	79, 388	12740904, 12419844
SULT1A2	chemical	hydroxamic acid, heterocyclic amine, metabolite	<i>N</i> -hydroxy-2-acetylamino-3-methyl-5-phenylpyridine	Osulfonation	activation	399	11154739
SULT1A2	chemical	hydroxamic acid, heterocyclic amine, metabolite	N-hydroxy-2- acetylaminofluorene (N-OH- 2-AAF)	O-sulfonation	potent activation	169, 394, 410	10720750, 11535246, 12464797

enzyme	category	subcategory	compound	reaction	remarks	references	PubMed ID
SULT1A2	chemical	hydroxamic acid, heterocyclic amine, metabolite	Nhydroxy-2-acetylaminol-5- phenylpyridine	O-sulfonation	activation	399	11154739
SULT1A2	chemical	hydroxylamine, heterocyclic amine, metabolite	<i>N</i> -hydroxy-2-amino-1- methyl-6-phenylimidazo[4,5- <i>b</i>]pyridine (<i>N</i> -OH-PhIP)	O-sulfonation	potent activation	393, 399	12067565, 11154739
SULT1A2	chemical	hydroxylamine, arylamine, metabolite	<i>N</i> -hydroxy-2-aminofluorene (<i>N</i> -OH-2-AF)	O-sulfonation	potent activation	401	22072630
SULT1A3	natural compound	alkenylbenzene; occurs in a variety of foods including essential oils of tarragon, sweet basil, sweet fennel, anis, metabolite	1 '-hydroxyestragole	Osulfonation	activation	197, 401	21459083, 22072630
SULT1A3	chemical	PAH, metabolite	1-hydroxymethylpyrene	O-sulfonation	activation	169, 394, 396	10720750, 11535246, 10657971
SULTIA3	chemical	nitroalkane	2-nitropropane	O-sulfonation, propane 2-nitronate formation	activation	169, 396	1072075, 10657971
SULTIA3	natural compound	alkenylbenzene; occurs in a variety of foods including essential oils of tarragon, sweet basil, sweet fennel, anis	estragole	O-sulfonation after C1'-hydroxylation	activation	401	22072630
SULT1A3	chemical	nitroarene	nitrofen	O-sulfonation after nitroreduction to hydroxylamine	activation	390	14754874
SULT1B1	chemical	PAH, aldehyde	1-formylpyrene	O-sulfonation	activation	399	11154739
SULT1B1	chemical	PAH, metabolite	1-hydroxymethylpyrene	O-sulfonation	activation	394	11535246
SULT1B1	chemical	arylamine, heterocyclic	2-hydroxylamino-3-methyl- $9H$ -pyrido[2,3- b]indole (N -OH-MeA α C)	O-sulfonation	activation	159	14729582
SULT1B1	chemical	hydroxylamine, heterocyclic	2-hydroxylamino-5- phenylpyridine	O-sulfonation	activation	394	11535246
SULT1B1	chemical	PAH, metabolite	4- hydroxycyclopenta[<i>d,e.f</i>]chry sene	O-sulfonation	potent activation	169, 394	10720750, 11535246
SULT1B1	chemical	PAH, metabolite	6- hydroxymethylbenzo[<i>a</i>]pyren e	O-sulfonation	potent activation	394	11535246

enzyme	category	subcategory	compound	reaction	remarks	references	PubMed ID
SULT1B1	natural compound	nephrotoxin, Aristolochia fangchi compound, nitroarene	aristolochic acids I and II	O-sulfonation after nitroreduction to hydroxylamine	activation	394	16161050
SULTICI	chemical	PAH, metabolite	(-)-1-hydroxyethylpyrene	O-sulfonation	activation	392	11535246
SULTICI	chemical	arylamine, heterocyclic	2-hydroxylamino-3-methyl- $9H$ -pyrido[2,3- b]indole (N -OH-MeA α C)	O-sulfonation	activation	169	14729582
SULTICI	chemical	nitroarene	nitrofen	O-sulfonation after nitroreduction to hydroxylamine	activation	390	14754874
SULT1C2	chemical	PAH, metabolite	(-)-1-hydroxyethylpyrene	O-sulfonation	activation	394	11535246
SULT1C2	chemical	PAH, metabolite	1-hydroxymethylpyrene	O-sulfonation	activation	394	11535246
SULT1C2	chemical	furan derivative	2,5-(bishydroxymethyl)furan	O-sulfonation	activation	411	21825114
SULT1C2	chemical	furan derivative	5-methylfurfural	O-sulfonation	activation	411	21825114
SULT1C2	chemical	furan derivative	furfuryl alcohol	O-sulfonation	activation	411	21825114
SULT1C3	chemical	PAH, metabolite	(\pm) , $(+)$, and $(-)$ -1-hydroxyethylpyrene	Osulfonation	activation	397	17936463
SULTIC3	chemical	methylenedioxyphenyl , benzodioxole, metabolite	1'-hydroxysafrole	O-sulfonation, at high conc.	activation	397	17936463
SULT1C3	chemical	PAH, metabolite	6- hydroxymethylanthanthrene	Osulfonation	potent activation	397	17936463
SULTIC3	chemical	PAH, metabolite	6- hydroxymethylbenzo[<i>a</i>]pyren e	O-sulfonation	potent activation	397	17936463
SULTIE1	chemical	PAH, metabolite	(±), (+), and (-)-1- hydroxyethylpyrene	O-sulfonation	potent activation	169, 394, 397	10720750, 11535246, 17936463
SULT1E1	chemical	PAH, metabolite	1-(1-pyrenyl)ethanol	O-sulfonation	activation	395	9141497
SULT1E1	chemical	PAH, metabolite	10-hydroxy-7,8,9,10- tetrahydrobenzo[a]pyrene	O-sulfonation	activation	395	9141497
SULTIE1	chemical	PAH, metabolite	1-hydroxymethylpyrene	O-sulfonation	potent activation	394, 396, 397	11535246, 10657971, 17936463
SULTIE1	chemical	PAH, metabolite	4- hydroxycyclopenta[def]chrys ene	O-sulfonation	activation	169, 394	10720750, 11535246

enzyme	category	subcategory	compound	reaction	remarks	references	PubMed ID
SULT2A1	chemical	PAH, metabolite	(±), (+), and (–).1- hydroxyethylpyrene	O-sulfonation	activation	169, 394, 397	10720750, 11535246, 17936463
SULT2A1	chemical	PAH, metabolite	1-(1-pyrenyl)ethanol, I-HEP	O-sulfonation	activation	395	9141497
SULT2A1	chemical	PAH, metabolite	1-hydroxy-3- methylcholanthrene	O-sulfonation	activation	395	9141497
SULT2A1	chemical	PAH, metabolite	1-hydroxymethylpyrene	O-sulfonation	potent activation	169, 394, 396	10720750, 11535246, 10657971
SULT2A1	chemical	PAH, metabolite	2-hydroxymethylpyrene	O-sulfonation	activation	395	9141497
SULT2A1	drug	pregnane, antiandrogen, metabolite	3a-hydroxycyproterone acetate	O-sulfonation	activation	394	11535246
SULT2A1	chemical	PAH, metabolite	6- hydroxymethylbenzo[a]pyren e	O-sulfonation	potent activation	169, 394	10720750, 11535246
SULT2A1	chemical	PAH, metabolite	7-hydroxy-12- methylbenz[<i>a</i>]anthracene	O-sulfonation	activation	394	9141497
SULT2A1	drug	triphenylethyleneamin e; antiestrogen, estrogen receptor modulator, metabolite	α-hydroxytamoxifen	O-sulfonation	activation	412, 413	9855017, 15371299
SULT2A1	drug	thioxanthenone; schistosomicide	hycanthone	O-sulfonation	potent activation	394, 395	11535246, 9141497
SULT2E1	chemical	РАН	1-acetylpyrene	O-sulfonation	potent activation	399	11154739
SULT2E1	drug	thioxanthenone; schistosomicide	hycanthone	O-sulfonation	activation	394	11535246

NIH-PA Author Manuscript

Bioactivation of Natural Compounds

Table 2

NIH-PA Author Manuscript

enzyme	category	subcategory	compound	reaction	remarks	references	PubMed ID
CYPIA1	natural compound	indole, alkylating, pulmonary toxin; higher concentrations in mammalian digestive tract and coal tar	3-methylindole (skatole) epoxidation (3-methyloxindole formation); dehydrogenation (desaturation, 3-methyleneindolenine form), low K _m , medium	activity, high efficiency	activation	75-78	8558432, 11408359, 12563100, 20795680
CYPIA1	natural compound	difuranocoumarin; mycotoxin, produced by Aspargillus species on food products	aflatoxin B ₁ (AFB ₁)	epoxidation 8,9-; oxidation	activation	41, 57, 61, 93, 94	8674051, 15279838, 11377247, 7923587, 8200084
CYPIA1	natural compound	phenanthroic acid derivative; nephrotoxin, found in the Aristolochiaceae family of plants	aristolochic acid I	nitroreduction	potent activation	66-96	11511187, 15386410, 16125300, 22086975
CYPIAI	natural compound	phenanthroic acid derivative, nephrotoxin, found in the Aristolochiaceae family of plants	aristolochic acid II	nitroreduction	activation	66-96	11511187, 15386410, 16125300, 22086975
CYPIAI	physiological	estrogen	17β–estradiol	C2-hydroxylation (major reaction, medium K _m , high activity, high efficiency), major metabolite and major extrahepatic enzyme; C4-hydroxylation (minor reaction, medium K _m , medium efficiency, low activity), oxidation, 3,4-quinone formation (lower activity); oxidation, 2,3-quinone formation, C16α-hydroxylation (high K _m , low activity)	potent activation	71, 106, 121-130	9721189, 8037457, 7826886, 9055734, 9054608, 9667077, 8930523, 11555828, 12865317, 15784278, 16112414, 17570247
CYPIA1	physiological compound	estrogen	estrone	C2-hydroxylation (major reaction, medium K_m , low activity), oxidation, 2,3-quinone formation; C4-hydroxylation (medium K_m , low	activation	49, 127, 130, 131	10426814, 12865317, 17570247, 15805301

enzyme	category	subcategory	compound	reaction	remarks	references	PubMed ID
				activity, or medium activity), C16α- hydroxylation (minor reaction, very low activity)			
CYP1A1	natural compound	nitrosamine, tobacco- specific	N-nitrosonornicotine (N-nitrosonornicotine, NNN)	oxidation	activation	132, 133	11774366, 12214673
CYP1A2	natural compound	furanoterpene produced by sweet potatoes infected with <i>Fusarium solani</i> ; pulmonary toxin, alkylating	4-ipomeanol	oxidation (major enzyme)	activation	172, 173	1651809, 15892579
CYP1A2	compound	difuranocoumarin; mycotoxin, produced by Aspergillus species on food products	aflatoxin B ₁ (AFB ₁)	epoxidation (both <i>exo</i> -8,9- and <i>endo</i> -8,9-); oxidation	activation	11, 12, 13, 41, 42, 57, 61, 93, 94, 162, 175-	2492107 2655891, 2509067, 88674051, 7955101, 15279838, 11377247, 792587, 8200084, 10023085, 2162057 7766804, 8261428, 112079611, 1902334, 11782366, 16385575,
CYP1A2	natural compound	phenanthroic acid derivative; nephrotoxin, found in the Aristolochiaceae family of plants	aristolochic acid I	nitroreduction	potent activation	66-96	11511187, 15386410, 16125300, 22086975
CYP1A2	natural compound	phenanthroic acid derivative, nephrotoxin, found in the Aristolochiaceae family of plants	aristolochic acid II	nitroreduction	potent activation	66-96	11511187, 15386410, 16125300, 22086975
CYP1A2	natural compound	bicyclic monoterpene	Δ^3 -carene	epoxidation (high K _m , medium activity)	activation	183	16379671

enzyme	category	subcategory	compound	reaction	remarks	references	PubMed ID
CYP1A2	physiological compound	estrogen	17β-estradiol	C2-hydroxylation (major reaction, medium K_m medium activity, medium efficiency), major metabolite and major enzyme in liver; C4-hydroxylation (minor reaction); C16a-hydroxylation (major enzyme, high K_m , no activity, or low activity)	activation	71, 106, 122-124, 126-129, 190-194	9721189, 8037457, 9625734, 9024608, 9024607, 11555828, 12865717, 15784278, 16112414, 1449532, 9638876, 11454902, 11741520,
CYP1A2	natural compound	alkenylbenzene; occurs in a variety of foods including essential oils of tarragon, sweet basil, sweet fennel, anis	estragole	Cl'-hydroxylation (major enzyme, medium K _m . low activity)	potent activation	195-197	17407329, 15914212, 21459083
CYP1A2	physiological compound	estrogen	estrone	C2-hydroxylation (medium <i>K</i> _m , high activity, major metabolite); C4- hydroxylation (medium <i>K</i> _m , medium activity, very low activity); C1 Gahydroxylation (minor reaction, very low activity) low activity)	activation	49, 122, 123, 127, 128, 191, 192, 198	10426814, 9625734, 9054608, 12865317, 12865317, 1584278, 965876, 11454902, 16537715
CYP1A2	natural compound	phenylpropene, from Rhizoma acorigraminei	methyleugenol	Cl'-hydroxylation (medium <i>K</i> _m , major enzyme)	activation	196, 199	15914212, 16411663
CYP1A2	natural compound	furanoxanthone; mycotoxin, produced by Aspergillus species	sterigmatocystin	oxidation	activation	41	8674051
CYP1B1	natural compound	difuranocoumarin; mycotoxin, produced by Aspergillus species on food products	aflatoxin B ₁ (AFB ₁)	oxidation	activation	61, 210, 217	11377247, 16551781, 9106248

enzyme	category	subcategory	compound	reaction	remarks	references	PubMed ID
CYPIB1	physiological	estrogen	17β-estradiol	C4-hydroxylation (major enzyme, medium Km, medium activity, medium and low efficiency), oxidation, 3,4-quinone formation; C2-hydroxylation (low activity, minor reaction), oxidation, 2,3-quinone formation; C16a hydroxylation (minor enzyme, medium and high Km, low activity)	potent activation	49, 71, 121-130, 194, 211, 221, 225- 228	10426814, 9721189, 7826886, 9052734, 9062734, 9063707, 8930523, 11555828, 115784278, 1611244, 17570247, 14703066, 111165393, 8790407, 7568105, 10910054
CYPIB1	physiological compound	estrogen	estrone	C4-hydroxylation (low K _m , major reaction); C2-hydroxylation (low activity, minor reaction), oxidation, 2,3-quinone formation;	potent activation	49, 127, 128, 130, 198	10426814, 12865317, 15784278, 17570247, 16537715
CYP2A6	natural compound	alkenylbenzene; occurs in a variety of foods	including essential oils of tarragon, sweet basil, sweet fennel, anis estragole	Cl'-hydroxylation (major enzyme, medium K _m , medium activity)	potent activation	195, 197	17407329, 21459083
CYP2A6	natural compound	furanocoumarin; anti- psoriatic, photosensitizer, found in several species of plants	methoxalen (8- methoxypsoralen, xanthotoxin)	epoxidation (furancepoxide formation) and hydrolysis	activation	140	17584015
CYP2A6	natural compound	nitrosamine, tobacco- specific	N-nitrosonornicotine (N-nitrosonornicotine, NNN)	hydroxylation C5'- (lactol formation, medium $K_{\rm m}$ high to medium activity); oxidation (major enzyme)	activation	132-134, 244, 256- 258	11774366, 12214673, 11600130, 15651850, 10837014, 9276639, 7646564
CYP2A6	natural compound	methylenedioxypheny, benzodioxole	safrole	Cl'-hydroxylation (major enzyme at low concentrations), medium Km, medium activity	activation	195, 196, 259, 260	17407329, 15914212, 15377158, 15310247
CYP2A13	natural compound	indole, alkylating, pulmonary toxin; in higher concentrations in mammalian digestive tract and coal tar	3-methylindole, skatole	dehydrogenation (desaturation, 3- methyleneindolenine formation, low K _m , medium activity, high	potent activation	77, 261	20795680, 19608696

enzyme	category	subcategory	compound	reaction	remarks	references	PubMed ID
				efficiency); epoxidation (3-methyloxindole formation)			
CYP2A13	chemical	difuranocoumarin; mycotoxin, produced by Aspergillus species on food products	aflatoxin B ₁ (AFB ₁)	epoxidation 8,9-; oxidation	potent activation	181, 265	16385575, 16917071
CYP2A13	natural compound	furanocoumarin; anti- psoriatic, photosensitiser, found in bergamot essential oil, in other citrus essential oils, and in grapefruit juice	bergapten (5- methoxypsoralen)	epoxidation and hydrolysis to dihydrodiol	activation	267	20798279
CYP2A13	natural compound	nitrosamine, tobacco- specific	N-nitrosonomicotine (N-nitrosonomicotine, NNN)	hydroxylation CS' - (lactol formation, medium K_{m} , high activity) and CS' - (keto alcohol formation, medium K_{m} , low activity)	activation	258, 266	19074523, 15651850
CYP2C9	natural compound	phenylpropene; from Rhizoma acorigraminei	methyleugenol	Cl'-hydroxylation (medium activity, high K _m), at high concentration	activation	196, 199	15914212, 16411663
CYP2C19	natural compound	furanoterpene produced in sweet potatoes infected with Fusarium solam; pulmonary toxin, alkylating	4-ipomeanol	oxidation (major enzyme)	activation	173	15892579
CYP2D6	natural compound	furanoterpene produced in sweet potatoes infected with Fusarium solani; pulmonary toxin, alkylating	4-ipomeanol	oxidation	activation	173	15892579
CYP2D6	natural compound	difuranocoumarin; mycotoxin, produced by Aspergillus species on food products	aflatoxin B ₁ (AFB ₁)	oxidation	activation	61	11377247
CYP2E1	natural compound	furanoterpene produced in sweet potatoes infected with Fusariumsolani; pulmonary toxin, alkylating	4-ipomeanol	oxidation	activation	173	15892579
CYP2E1	natural compound	carbamic acid derivative;	ethyl carbamate (urethane)	oxidation to vinyl	activation	107, 282, 310-312	1486866, 1664256, 9344892, 9150748, 11181492

enzyme	category	subcategory	compound	reaction	remarks	references	PubMed ID
		fermentation by-product		carbamate epoxide			
CYP2E1	natural compound	nitrosamine, tobacco- specific	N-nitrosonornicotine (N-nitrosonornicotine, NNN)	hydroxylation C5'- (lactol formation, low activity)	activation	134, 244, 247, 247, 256, 265	11600130, 10837014, 1423839, 9276639, 7646564
CYP2F1	natural compound	indole, alkylating, pulmonary toxin; present in higher concentrations	in mammalian digestive tract and coal tar	3-methylindole, skatole dehydrogenation (desaturation, 3-methyleneindolenine form, low $K_{\rm m}$ medium activity, high efficiency), major enzyme	potent activation	75-79, 334, 335	8558432, 11408359, 12563100, 20795680, 10383923, 17962375
CYP2F1	natural compound	furanoterpene produced in sweet potatoes infected with Fusarium solani; pulmonary toxin, alkylating	4-ipomeanol	oxidation	activation	172	1651809
CYP2W1	natural compound	difuranocoumarin; mycotoxin, produced by Aspergillus species on food products	aflatoxin B ₁ (AFB ₁)	oxidation	activation	210	16551781
CYP2W1	natural compound	furanoxanthone; mycotoxin, produced by Aspergillus species	sterigmatocystin	oxidation	activation	210	16551781
CYP3A4	natural compound	furanoterpene produced in sweet potatoes infected with Fusarium solani; pulmonary toxin, alkylating	4-ipomeanol	epoxidation; oxidation, minor enzyme	activation	140, 172, 173	17584015, 1651809, 15892579
CYP3A4	compound	difuranocoumarin; mycotoxin, produced by Aspergillus species on food products	aflatoxin B ₁ (AFB ₁)	epoxidation exo-C8,9- (major activating enzyme), oxidation	activation	11, 12, 41, 57, 61, 175-180, 182, 336, 339-341	2492107, 2655891, 15279838, 11377247, 2162057, 7766804, 8261428, 12079611, 1902334, 11782366, 1668170, 9328287, 1643280, 7545582,

enzyme	category	subcategory	compound	reaction	remarks	references	PubMed ID
CYP3A4	natural compound	difuranocoumarin; mycotoxin, produced by Aspergillus species on food products	aflatoxin G ₁ (AFG ₁)	oxidation	activation	11, 12, 107, 341-343	2492107, 2655891, 1486866, 8082563, 7850790, 352361, 12849689
CYP3A4	physiological compound	estrogen	17β-estradiol	c2-hydroxylation (major reaction, major enzyme, medium K_{m} , medium efficiency, high activity), major enzyme in liver; oxidation, 2,3-quinone formation (lower activity); C4-hydroxylation (minor reaction, major enzyme, medium K_{m}) medium K_{m} medium efficiency); oxidation, 3,4-quinone formation; (16 α -hydroxylation (in M -medium efficiency); oxidation, 3,4-quinone formation; (16 α -hydroxylation (high K_{m} , low activity)	activation	107, 122- 124, 126- 130, 190- 193, 346, 347	1486866, 9625734, 9054608, 9054608, 11558228, 12865317, 16112414, 16112414, 17570247, 1449532, 9635876, 111454902, 111454902, 11145402, 11145402, 11145402, 11145402, 11145402, 11145402,
CYP3A4	physiological compound	estrogen	estrone	C2-hydroxylation (high K _m major metabolite, low activity); oxidation, 2,3-quinone formation; C4-hydroxylation (high K _m) wa oxtivity, major enzyme); C16ahydroxylation (high K _m , low activity, major enzyme)	activation	49, 122- 124, 127, 128, 130, 191, 192	10426814, 9625734, 9054608, 9667077, 12865317, 15784278, 17570247, 9635876, 11454902
CYP3A4	natural compound	alkaloid, pyrrolizidine, genotoxic	monocrotaline	dehydrogenation	activation	356	15649625
CYP3A4	natural compound	nitrosamine, tobacco- specific	N-nitrosonornicotine (N-nitrosonornicotine, NINN)	hydroxylation C2' - (keto alcohol formation); oxidation	activation	132, 133, 256, 257	11774366, 12214673, 9276639, 7646564
CYP3A4	natural compound	pyrrolizidine alkaloid from Senecio retrorsus	retrorsine	dehydrogenation	activation	356	15649625
CYP3A4	natural compound	pyrrolizidine alkaloid, food contaminant (meat, milk, and honey)	riddelliine	dehydrogenation	activation	356	15649625
CYP3A4	natural compound	pyrrolizidine alkaloid, genotoxic	senecionine	dehydrogenation	activation	107, 357	1486866, 2009596

enzyme	category	subcategory	compound	reaction	remarks	references	PubMed ID
CYP3A4	natural compound	furanoxanthone; mycotoxin, produced by Aspergillus species	sterigmatocystin	oxidation	activation	11, 12, 66, 107, 336, 341	2492107, 2655891, 9685642, 1486866, 9328287, 7850790
CYP3A5	natural compound	difuranocoumarin; mycotoxin, produced by Aspergillus species on food products	aflatoxin B ₁ (AFB ₁)	epoxidation exo-8,9- (major reaction); oxidation	activation	182, 365	16608170, 7893152
CYP3A5	physiological compound	еѕиовел	17β-estradiol	C2-hydroxylation; C4-hydroxylation (major reaction); C16α-hydroxylation (low activity)	activation	127, 128, 191, 192, 347	12865317, 15784278, 9635876, 11454902, 12124305
CYP3A5	chemical	tobacco-specific nitrosamine	N-nitrosoanabasine	oxidation	activation	132, 133	11774366, 12214673
CYP3A7	natural compound	difuranocoumarin; mycotoxin, produced by Aspergillus species on food products	aflatoxin B ₁ (AFB ₁)	epoxidation exo-C8,9-;	activation	107, 182, 336, 338, 341, 366	1486866, 16608170, 9328287, 9493761, 7850790, 9044840
CYP3A7	natural compound	difuranocoumarin; mycotoxin, produced by Aspergillus species on food products	aflatoxin G ₁ (AFG ₁)	oxidation	activation	341	7850790
CYP3A7	physiological compound	еѕиовел	17β-estradiol	C2-hydroxylation (medium K_m , low activity, major reaction); C4-hydroxylation (low activity, high K_m); C16 α -hydroxylation (very low activity, high K_m);	activation	347	12865317, 15784278, 12124305,
CYP3A7	physiological compound	estrogen	estrone	C2-hydroxylation (medium K _m , medium activity); C4- hydroxylation (low activity, medium K _m); C16α-hydroxylation (medium K _m , medium activity)	activation	127, 128	12865317, 15784278
CYP3A7	natural compound	furanoxanthone; mycotoxin, produced by Aspergillus species	sterigmatocystin	oxidation	activation	336, 338, 341	9328287, 9493761, 7850790

enzyme	category	subcategory	punoduroo	reaction	remarks	references	PubMed ID
CYP4B1	natural compound	furanoterpene produced in sweet potatoes infected with Fusarium solani; pulmonary toxin, alkylating	4-ipomeanol	oxidation	activation	172	1651809
CYP19A1 (aromatase)	physiological compound	estrogen	estradiol 17β-	C2-hydroxylation (medium K _m)	activation	125, 369	8930523, 8476762
CYP19A1 (aromatase)	physiological compound	estrogen	estrone	C2-hydroxylation (medium K _m)	activation	125, 369	8930523, 8476762
SULT1A1	natural compound	1-methoxy-3- indolylmethyl glucosinolate breakdown product, in many <i>Brassica</i> vegetables	1-methoxy-3- indolyImethy1-alcohol	<i>O</i> -sulfonation	activation	398	20846518
SULT1A1	natural compound	nephrotoxin, <i>Aristolochia</i> fangchi compound, nitroarene	aristolochic acids I and II	O-sulfonation after nitroreduction to hydroxylamine	potent activation	404	16161050
SULT1A3	natural compound	alkenylbenzene; occurs in a variety of foods including essential oils of tarragon, sweet basil, sweet fennel, anis, metabolite	1'-hydroxyestragole	<i>O</i> -sulfonation	activation	197, 401	21459083, 22072630
SULT1A3	natural compound	alkenylbenzene; occurs in a variety of foods including essential oils of tarragon, sweet basil, sweet fennel, anis	estragole	\mathcal{O} sulfonation after C1 $^{\prime}$ - hydroxylation	activation	401	22072630
SULTIBI	natural compound	nephrotoxin, <i>Aristolochia</i> fangchi compound, nitroarene	aristolochic acids I and II	Osulfonation after nitroreduction to hydroxylamine	activation	394	16161050

Table 3

Activation of Drugs

enzyme	category	subcategory	punoduoo	reaction	remarks	references	PubMed ID
C0X-1	drug	pyrido-carbazole; antineoplastic, alkaloid, Apocyanaceae plant compound, topoisomerase II inhibitor, and DNA binding	ellipticine	oxidation	activation	39, 40	16936898, 21753906
CYP1A1	drug	imidazole; anticancer, alkylating	dacarbazine	N-demethylation (major extrahepatic enzyme)	activation	111	10473105
CYP1A1	drug	oxazaphosporine; anticancer, nitrogen mustard alkylating	ifosfamide	oxidation (at high conc.)	activation	87	20507880
CYP1A2	drug	imidazole; anticancer, alkylating	dacarbazine	N-demethylation (major enzyme)	potent activation	111	10473105
CYP1A2	grup	pyrido-carbazole; antineoplastic, alkaloid, apocyanaceae plant compound, topoisomerase II inhibitor and DNA binding	ellipticine	hydroxylation, C12- and C13- (low activity)	activation	39, 40, 185- 189	16936898, 21753906, 11755121, 12123750, 15548707, 17197724, 21683692
CYP1A2	drug	oxazaphosporine; anticancer, nitrogen mustard alkylating	ifosfamide	oxidation (at high concentration)	activation	28	20507880
CYP1B1	gnp	pyrido-carbazole; antineoplastic, alkaloid, Apocyanaceae plant compound, topoisomerase II inhibitor and DNA binding	ellipticine	oxidation	activation	39, 185-188	16936898, 11755121, 12123750, 15548707, 17197724
CYP2A6	gnp	oxazaphosporine; anticancer, nitrogen mustard, alkylating	cyclophosphamide	C4-hydroxylation (minor enzyme, high K _m); oxidation	activation	101, 108, 251-254	11377097, 19501186, 8242617, 9010702, 10348794,
CYP2A6	drug	oxazaphosporine; anticancer, nitrogen mustard alkylating	ifosfamide	C4-hydroxylation (minor reaction, high $K_{\rm m}$); oxidation (at high concentration)	activation	87, 251, 253	20507880, 8242617, 10348794
CYP2B6	drug	oxazaphosporine; anticancer, nitrogen mustard, alkylating	cyclophosphamide	C4-hydroxylation (major enzyme, major reaction, high K _m , high activity); oxidation	potent activation	74, 101, 108, 251-254, 271, 275	11360624, 11377097, 19501186, 8242617, 9010702, 10348794, 10692561, 9280407, 15919850

enzyme	category	subcategory	compound	reaction	remarks	references	PubMed ID
CYP2B6	drug	oxazaphosporine; anticancer, nitrogen mustard alkylating	ifosfamide	C4-hydroxylation stereoselective for (S)-(high K _m , major enzyme); oxidation (at high concentrations)	activation	87, 251-254, 275-277, 355	20507880, 8242617, 10348794, 10692561, 15919850, 10534317, 15821045, 16854777
CYP2C8	drug	oxazaphosporine; anticancer, nitrogen mustard alkylating	ifosfamide	C4-hydroxylation (minor enzyme, high <i>K</i> _m), oxidation (at high concentrations)	activation	87, 251, 253	20507880, 8242617, 10348794
CYP2C9	gnp	oxazaphosporine; anticancer, nitrogen mustard, alkylating	cyclophosphamide	C4-hydroxylation (low K _m , low activity, major enzyme at low concentration); oxidation	activation	101, 108, 251-254	11377097, 19501186, 8242617, 9010702, 10348794,
CYP2C9	Drug	Oxazaphosporine; Anticancer, Nitrogen mustard alkylating	Ifosfamide	C4-hydroxylation (low $K_{\rm m}$), Oxidation (at high concentrations)	activation	87, 251	8242617, 20507880
CYP2C9	drug	oxazaphosporine; anticancer, nitrogen mustard alkylating	ifosfamide	C4-hydroxylation (low K _m), oxidation (at high concentration)	activation	86, 251	20507880, 8242617
CYP2C19	drug	oxazaphosporine; anticancer, nitrogen mustard alkylating	ifosfamide	C4-hydroxylation stereoselective for (\mathfrak{S}) - (minor reaction, high K_m), oxidation (at high concentration)	activation	87, 251, 253, 276	20507880, 8242617, 10348794, 10534317
CYP2D6	drug	pyrido-carbazole; antineoplastic, alkaloid, Apocyanaceae plant compound, topoisomerase II inhibitor and DNA binding	ellipticine	oxidation N²-; hydroxylation, C13-(low activity)	activation	39, 40, 187, 188	16936898, 21753906, 15548707, 17197724
CYP2D6	drug	oxazaphosporine; anticancer, nitrogen mustard alkylating	ifosfamide	oxidation (at high concentration)	activation	87	20507880
CYP2E1	drug	platinum-containing; anticancer	cisplatin	oxidation	activation	303, 304	16251482, 17761302
CYP2E1	drug	imidazole; anticancer, alkylating	dacarbazine	N-demethylation	activation	111	10473105
CYP3A4	drug	oxazaphosporine; anticancer, nitrogen mustard, alkylating	cyclophosphamide	C4-hydroxylation; oxidation	activation	108, 251-254, 275, 344	19501186, 8242617, 9010702, 10348794, 10692561, 9923542, 15919850

enzyme	category	subcategory	compound	reaction	remarks	references	PubMed ID
CYP3A4	drug	pyrido-carbazole; antineoplastic, alkaloid, Apocyanaceae plants compound, topoisomerase II inhibitor and DNA binding	ellipticine	hydroxylation, Cl3- (major enzyme) and Cl2- (minor reaction); oxidation N2- (major enzyme)	potent activation	39, 40, 287- 290, 345	16936898, 21753906, 11755121, 12123750, 15548707, 17197724, 20576524
CYP3A4	drug	estradiol derivative; estrogen, contraceptive	17a-ethynylestradiol (ethinylestradiol 17a-)	oxygenation (2- hydroxylation, 17α- inactivation)	activation	140, 348	17584015, 17251390
CYP3A4	drug	antimitotic, epipodophyllotoxin, topoisomerase II inhibitor	etoposide (VP-16)	O-demethylation (catechol formation), high $K_{\rm m}$, high activity, major enzyme	activation	349-351	8114683, 9456308, 17168690
CYP3A4	gup	oxazaphosporine; anticancer, nitrogen mustard alkylating	ifosfamide	C4-hydroxylation stereoselective for (R)- (high K _m , high activity); oxidation at high concentration	potent activation	87, 251, 275- 277, 344, 352-355	20507880, 8242617, 10692561, 15919850, 10534317, 15821045, 9923542, 8161344, 10101149, 10348794,
CYP3A4	drug	triphenylethyleneamine; antiestrogen, estrogen receptor modulator	tamoxifen	Ca-hydroxylation (major enzyme); catechol formation; oxidation, at high concentration	activation	87, 354, 358- 364	20507880, 10348797, 12018981, 12971802, 14678348, 15159443, 16533026, 12124303,
CYP3A5	drug	oxazaphosporine; anticancer, nitrogen mustard, alkylating	cyclophosphamide	C4-hydroxylation (very low activity) activation to cytotoxic metabolites	activation	253	10348794
CYP3A5	drug	estradiol derivative; estrogen, contraceptive	17α -ethynylestradiol (ethinylestradiol, 17α -)	oxygenation (2- hydroxylation, 17α- mechanism-based inactivation)	activation	140, 348	17584015, 17251390
CYP3A5	drug	antimitotic, epipodophyllotoxin, topoisomerase II inhibitor	etoposide (VP-16)	O-demethylation (catechol formation), medium $K_{\rm m}$, high activity, minor enzyme	activation	349	8114683
CYP3A5	dng	oxazaphosporine; anticancer, nitrogen	ifosfamide	C4-hydroxylation, stereoselective for (R)-	activation	253, 276,	10348794, 10534317, 15821045, 10101149, 16854777

enzyme	category	subcategory	punoduoo	reaction	remarks	references	PubMed ID
		mustard alkylating				277, 353, 355	
CYP3A7	gnıp	oxazaphosporine; anticancer, nitrogen mustard, alkylating	cyclophosphamide	C4-hydroxylation	activation	253, 275	10348794, 15919850
CYP3A7	drug	oxazaphosporine; anticancer, nitrogen mustard alkylating	ifosfamide	C4-hydroxylation stereoselective for (R)- (high K _m , medium (S-) and high (R-) activity, minor enzyme and reaction)	activation	253, 275	10348794, 15919850
Lactoperox idase (LPO)	drug	pyrido-carbazole; antineoplastic, alkaloid, Apocyanaceae plants compound, topoisomerase II inhibitor and DNA binding	Ellipticine	oxidation	activation	39, 40	16936898, 21753906
Myelopero xidase (MPO)	drug	pyrido-carbazole; antineoplastic, alkaloid, apocyanaceae plants compound, topoisomerase II inhibitor and DNA binding	ellipticine	oxidation	activation	39, 40	16936898, 21753906
NADPH- cytochrom e P450 reductase (POR)	drug	dihydroxyanthraquinone, laxative	danthron	reduction	activation	385	11697035
SULT1A1	drug	triphenylethyleneamine; antiestrogen, estrogen receptor modulator, metabolite	4-hydroxytamoxifen	Osulfonation	activation	402, 403	12034366, 21537383
SULT2A1	drug	pregnane, antiandrogen, metabolite	3α- hydroxycyproterone acetate	Osulfonation	activation	394	11535246
SULT2A1	drug	triphenylethyleneamine; antiestrogen, estrogen receptor modulator, metabolite	α-hydroxytamoxifen	Osulfonation	activation	412, 413	9855017, 15371299
SULT2A1	drug	thioxanthenone, schistosomicide	hycanthone	Osulfonation	potent activation	394, 395	11535246, 9141497
SULT2E1	drug	thioxanthenone, schistosomicide	hycanthone	O-sulfonation	activation	394	11535246

Table 4

Detoxication Reactions

CILLY IIIC	category	subcategory	compound	reaction	references	PubMed ID
AKR1B1	natural compound	carbonyl, unsaturated	4-hydroxynonenal	reduction	414	21329684
AKR1B1	natural compound	carbonyl, unsaturated	acrolein	reduction (low activity)	414	21329684
AKR1B1	natural compound	carbonyl, unsaturated	crotonaldehyde	reduction (low activity)	414	21329684
AKR1B1	natural compound	GSH conjugate, metabolite	GS-2-hexenal	reduction (high activity)	414	21329684
AKR1B1	natural compound	carbonyl, unsaturated	GS-4-hydroxynonanal	reduction (high activity)	414	21329684
AKR1B1	natural compound	carbonyl, unsaturated	GS-butanal	reduction (high activity)	414	21329684
AKR1B1	natural compound	carbonyl, unsaturated	GS-propanal	reduction	414	21329684
AKR1B1	natural compound	GSH conjugate, metabolite	GS-trans-2-hexenal	reduction	414	21329684
AKR1B1	natural compound	carbonyl, unsaturated	trans-2,4-hexedinal	reduction	414	21329684
AKR1B1	natural compound	carbonyl, unsaturated	trans-2-hexenal	reduction	414	21329684
AKR1B10	chemical	tobacco-specific nitrosamine	4-(methylnitrosamino)-1-(3- pyridyl)-1-butanone (NNK)	reduction	415	16381663
AKR1B10	natural compound	carbonyl, unsaturated	4-hydroxynonenal	reduction (high activity)	414, 416, 417	21329684 19013440, 19563777,
AKR1B10	natural compound	carbonyl, unsaturated	4-methylpentanal	reduction	416	19013440
AKR1B10	natural compound	carbonyl	4-oxonon-2-enal	reduction	416	19013440
AKR1B10	natural compound	carbonyl	acrolein	reduction	414, 417	21329684 19563777
AKR1B10	natural compound	carbonyl	crotonaldehyde	reduction (high activity)	414, 417	21329684 19563777
AKR1B10	natural compound	GSH conjugate, metabolite	GS-2-hexenal	reduction	414	21329684

enzyme	category	subcategory	compound	reaction	references	PubMed ID
AKR1B10	natural compound	GSH conjugate, metabolite	GS-acrolein	reduction	417	19563777
AKR1B10	natural compound	carbonyl, unsaturated	GS-butanal	reduction	414	21329684
AKR1B10	natural compound	GSH conjugate, metabolite	GS-crotonaldehyde	reduction	417	19563777
AKR1B10	natural compound	carbonyl, unsaturated	GS-propanal	reduction (low activity)	414	21329684
AKR1B10	natural compound	GSH conjugate, metabolite	GS-trans-2, 4-hexadienal	reduction	417	19563777
AKR1B10	natural compound	GSH conjugate, metabolite	GS-trans-2-hexenal	reduction (high activity)	414, 417	21329684 19563777
AKR1B10	natural compound	carbonyl, unsaturated	trans-2, 4-hexadienal	reduction	417	19563777
AKR1B10	natural compound	carbonyl, unsaturated	trans-2,4-hexedinal	reduction	414	21329684
AKR1B10	natural compound	carbonyl, unsaturated	trans-2-hexenal	reduction (high activity)	414, 417	21329684 19563777
AKR1C1	chemical	tobacco-specific nitrosamine	4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK)	reduction	418, 419	11037109, 11306090
AKR1C2	chemical	tobacco-specific nitrosamine	4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK)	reduction	418, 419	11037109, 11306090
AKR1C4	chemical	tobacco-specific nitrosamine	4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK)	reduction	418, 419	11037109, 11306090
AKR7A2	natural compound	difuranocoumarin; mycotoxin, produced by Aspergillus species on food products	aflatoxin B ₁ dialdehyde	reduction	420, 421	10383892, 17537398
AKR7A3	natural compound	difuranocoumarin; mycotoxin, produced by Aspergillus species on food products, metabolite	aflatoxin B ₁ dialdehyde	reduction	420-422	10383892, 17537398, 18416522
CYP1A1	chemical	nitroarene	2-nitroanisole	demethylation, O. hydroxylation, C2-, C2-C5-, and C2-C6-	423, 424	15144223, 17159769
CYP1A1	natural compound	nephrotoxin, Aristolochia fangchi compound, nitroarene	aristolochic acid I	hydroxylation, C8- (major enzyme)	66	22086975

enzyme	category	subcategory	compound	reaction	references	PubMed ID
CYPIA1	chemical	РАН	benzo[a]pyrene	hydroxylation, 3- (low K _m , or medium K _m , medium activity, or high activity)	44, 46, 48, 104-106, 425-427	11238186, 7581497, 8293790, 9806168, 11513247, 803747, 7766605, 9152602,
CYP1A1	chemical	РАН	benzo[a]pyrene	hydroxylation 3- (low activity)	44, 138	11238186 9014198
CYP1A1	drug	pyrido-carbazole; antineoplastic, alkaloid, Apocyamacae plants compound, topoisomerase II inhibitor, and DNA binding	ellipticine	hydroxylation, C7- and C9- (major enzyme, low activity)	39, 187, 189	16936898, 15548707, 21683692
CYP1A1	chemical	aza-aromatic	Sudan I	hydroxylation, C4'- (high activity), hydroxylation, C6- (low activity); oxidation, major enzyme	136, 137	12384524, 17159775
CYP1A2	chemical	heterocyclic amine	2-amino-3,8- dimethylimidazo[4,5- f]quinoxaline (MeIQx)	C8-oxidation (carboxylic acid form.)	428, 429	10220313, 11258970
CYP1A2	natural compound	difuranocoumarin; mycotoxin, produced by Aspergillus species on food products	aflatoxin B ₁ (AFB ₁)	hydroxylation (AFM ₁ formation, major enzyme and reaction); hydroxylation, C3a- (AFQ ₁ formation, low activity); demethylation, O- (AFP ₁ formation, very low activity)	176-178	7766804, 8261428, 12079611
CYP1A2	natural compound	nephrotoxin, Aristolochia fangchi compound, nitroarene	aristolochic acid I	hydroxylation, C8- (major enzyme)	66	22086975
CYP1A2	chemical	РАН	benzo[<i>a</i>]pyrene	3- hydroxylation (Iow activity)	46, 104, 106, 425- 427, 430	7581497, 9806168, 8037457, 7766605, 9152602, 7703357, 1551116

category subc	sapc	subcategory	compound	reaction	references	PubMed ID
drug pyrido-carbazole; el antineoplastic, alkaloid, Apocyanaceae plants compound, topoisomerase II inhibitor and DNA binding	urbazole; lastic, alkaloid, aceae plants id, lerase II and DNA	ତ	ellipticine	hydroxylation, C7- and C9- (major enzyme in liver, low activity)	39, 187, 189	16936898, 15548707, 21683692
drug pyrido-carbazole; elli antineoplastic, alkaloid, Apocyanaceae plants compound, topoisomerase II inhibitor and DNA binding	arbazole; lastic, alkaloid, aceae plants nd, lerase II and DNA	elli	ellipticine	(major enzyme)	187	15548707
chemical PAH be		рę	benzo[<i>a</i>]pyrene	3-hydroxylation	104, 222, 426	9806168, 15958554, 9152602
drug pyrido-carbazole; elli antineoplastic, alkaloid, Apocyanaceae plants compound, topoisomerase II inhibitor and DNA binding	caloid, ints	elli	ellipticine	hydroxylation, C7- (very low activity) and C9-	187	15548707
chemical tobacco-specific 4-(r		4-(r pyri	4-(methylnitrosamino)-1-(3- pyridyl)-1-butanol (NNAL)	oxidation, N-	265	12975327
chemical tobacco-specific 4-(r		4-(r pyri	4-(methylnitrosamino)-1-(3- pyridyl)-1-butanone (NNK)	oxidation, N-	265	12975327
compound difuranocoumarin; affi compound mycotoxin, produced by Aspergillus species on food products	·	afl	aflatoxin B ₁ (AFB ₁)	hydroxylation (AFMI formation, low activity); hydroxylation, C3c-(AFQI formation, low activity); demethylation, O- (AFPI formation, major reaction), at high substrate concentrations	181	16385575
chemical tobacco-specific 4-(4-(j pyr	4-(methylnitrosamino)-1-(3- pyridyl)-1-butanol (NNAL)	oxidation, N-	265	12975327
compound difuranocoumarin; afl mycoloxin, produced by Aspergillus species on food products		afl	aflatoxin B ₁ (AFB ₁)	hydroxylation (AFM ₁ formation, low activity); hydroxylation, C3α- (AFQ ₁	181	16385575

enzyme	category	subcategory	compound	reaction	references	PubMed ID
				formation, low activity); demethylation, O- (AFP ₁ formation, very low activity)		
CYP2B6	chemical	tobacco-specific nitrosamine	4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK)	oxidation, N-	265	12975327
CYP2C19	chemical	РАН	benzo[a]pyrene	hydroxylation 3-	138, 425, 427	9014198, 7766605, 7703357,
CYP2C8	chemical	РАН	benzo[a]pyrene	hydroxylation 3-	425, 427, 430	7766605, 7703357, 1551116
CYP2C9	chemical	РАН	benzo[a]pyrene	hydroxylation 3- (major enzyme)	138, 425, 427, 430	9014198, 7766605, 7703357, 1551116
CYP2D6	drug	pyrido-carbazole; antineoplastic, alkaloid, Apocyanaceae plants compound, topoisomerase II inhibitor and DNA binding	ellipticine	hydroxylation, C7- (low activity) and C9-	187	15548707
CYP2E1	chemical	nitroarene	2-nitroanisole	demethylation, O. hydroxylation, C2. C2-C5-, and C2-C6- (major enzyme)	423, 424	15144223, 17159769
CYP2E1	chemical	tobacco-specific nitrosamine	4-(methylnitrosamino)-1-(3- pyridyl)-1-butanone (NNK)	oxidation, N-	265	12975327
CYP2E1	chemical	РАН	benzo[a]pyrene	hydroxylation 3- (low activity)	425, 427	7766605, 7703357
CYP3A4	natural compound	difuranocoumarin; mycotoxin, produced by Aspergillus species on food products	aflatoxin B ₁ (AFB ₁)	hydroxylation, C3a- (AFQ ₁ form.), medium K _m , medium activity, major reaction, major enzyme	176-178, 339	7766804, 8261428, 12079611, 1643250
CYP3A4	chemical	РАН	benzo[<i>a</i>]pyrene	hydroxylation 3- (major enzyme)	138, 425- 427, 430	9014198, 7766605, 9152602, 7703357, 1551116

enzyme	category	subcategory	compound	reaction	references	PubMed ID
CYP3A4	drug	pyrido-carbazole; antineoplastic, alkaloid, Apocyamacae plants compound, topoisomerase II inhibitor and DNA	ellipticine	hydroxylation, C9- (very low activity)	187	15548707
CYP3A4	chemical	aza-aromatic	Sudan I	hydroxylation, C4'- and C6 (low activity)	136	12384524
CYP3A5	natural compound	difuranocoumarin; mycotoxin, produced by Aspergillus species on food products	aflatoxin B ₁ (AFB ₁)	hydroxylation, C3a- (AFQ ₁ form.)	182, 365	16608170, 7893152
CYP3A7	natural compound	difuranocoumarin; mycotoxin, produced by Aspergillus species on food products	aflatoxin B ₁ (AFB ₁)	hydroxylation, C3α - (AFQ1 formation)	182	16608170
Epoxide hydrolase, EH	chemical	haloalkene, metabolite	chloroprene epoxide (1- chloroethenyl oxirane)	hydrolysis	431	14565770
Epoxide hydrolase, EH	natural compound	difuranocoumarin; mycotoxin, produced by Aspergillus species on food products, metabolite	aflatoxin B _I -8,9-epoxide	hydrolysis, aflatoxin-8,9- dihydrodiol formation	432, 433	8781383, 9115980
Epoxide hydrolase, EH	chemical	PAH, metabolite	benzo[a]pyrene-7,8-oxide	hydrolysis to benzo[a]pyrene- 7,8-diol	52, 220	21028851, 10409402
GST	physiological compound	estrogen, metabolite	4-hdroxyestrone-o-quinone	covalent binding	434	18588320
GST	chemical	acrylic amide	acrylamide	GSH conjugation	435	19904761
GSTM	chemical	aromatic hydrocarbon, alkyl benzene, metabolite	styrene 7,8-oxide	GSH conjugation	436, 437	3224538, 3692493
GSTA1	chemical	РАН	dibenzo[<i>a,I</i>]pyrene	GSH conjugation after oxidation	119	17509623
GSTA1	chemical	PAH, metabolite	dibenzo[<i>a,I</i>]pyrene-11,12- diol	GSH conjugation after oxidation	119, 438	17509623, 9855012
GSTA1-1	chemical	PAH, metabolite	(+)- and (–)-benzo[a]pyrene-7,8-dihydrodiol 9,10-epoxide	GSH conjugation (high activity)	439-441	8706254, 11849043, 12067250

enzyme	category	subcategory	punoduoo	reaction	references	PubMed ID
GSTA1-1	drug	oxazaphosporine; anticancer, mitrogen mustard, alkylating, metabolite	4-hydroxycyclophosphamide	GSH conjugation	442	7954469
GSTA1-1	natural compound	difuranocoumarin; mycotoxin, produced by Aspergillus species on food products, metabolite	aflatoxin B _I -8,9-epoxide	GSH conjugation	375, 443	8330352, 9675258
GSTA1-1	chemical	PAH, metabolite	benzo[c]chrysene-9,10-diol 11,12-epoxide	GSH conjugation	439	8706254
GSTA1-1	chemical	PAH, metabolite	benzo[c]phenanthrene-3,4-diol 1,2-epoxide	GSH conjugation	439	8706254
GSTA1-1	chemical	PAH, metabolite	benzo[g]chrysene-11,12-diol 13,14-epoxide	GSH conjugation	439	8706254
GSTA1-1	chemical	PAH, metabolite	chrysene- <i>trans</i> -1,2- dihydrodiol-3,4-epoxide	GSH conjugation	439	8706254
GSTA1-1	chemical	PAH, metabolite	dibenz[a,h]anthracene-3,4-dibydrodiol 1,2-epoxide	GSH conjugation	439	8706254
GSTA1-1	chemical	PAH, metabolite	dibenzo[<i>a,I</i>]pyrene-11,12- diol 13,14-epoxide	GSH conjugation (high activity)	441	12067250
GSTA1-1	chemical	hydroxylamine, heterocyclic amine, metabolite	N-acetoxy-2-amino-1- methyl-6-phenylimidazo[4,5- b]pyridine (N-acetoxy-PhIP)	reduction in reaction with GST (major enzyme)	406, 444	11535243, 8069858
GSTA1-1	chemical	hydroxamic acid, heterocyclic amine, metabolite	N-hydroxy-2- acetylaminofluorene (N-OH-2-AAF)	GSH conjugation	375	8330352
GSTA1-1	drug	phosphoramide mustard ; anticancer, alkylating, metabolite of cyclophosphamide	phosphoramide mustard	GSH conjugation	442	7954469
GSTA1-2	drug	oxazaphosporine; anticancer, nitrogen mustard, alkylating, metabolite	4-hydroxycyclophosphamide	GSH conjugation	442	7954469
GSTA1-2	chemical	hydroxylamine, heterocyclic amine, metabolite	N-acetoxy-2-amino-1- methyl-6-phenylimidazo[4,5- b]pyridine (N-acetoxy-PhIP)	reduction in reaction with GST (low activity)	444	8069858
GSTA2-2	natural compound	difuranocoumarin; mycotoxin, produced by Aspergillus species on food products, metabolite	aflatoxin B _I -8,9-epoxide	GSH conjugation	420	10383892

enzyme	category	subcategory	punoduoo	reaction	references	PubMed ID
GSTA2-2	chemical	hydroxylamine, heterocyclic amine, metabolite	N-acetoxy-2-amino-1- methyl-6-phenylimidazo[4,5- b]pyridine (N-acetoxy-PhIP)	Reduction in reaction with GST (low activity)	406	11535243
GSTA2-2	chemical	PAH, metabolite	dibenzo[a , l]pyrene-11,12-diol 13,14-epoxide	GSH conjugation (low activity)	441	12067250
GSTA3-3	chemical	PAH, metabolite	dibenzo[a,1]pyrene-11,12- diol 13,14-epoxide	GSH conjugation	441	12067250
GSTM1	chemical	PAH, metabolite	phenanthrene-9,10-epoxide	GSH conjugation	445	16978029
GSTM1-1	natural compound	difuranocoumarin; mycotoxin, produced by Aspergillus species on food products, metabolite	aflatoxin B _I -8,9-epoxide	GSH conjugation, major enzyme	432, 443, 433	8781383, 9675258, 9115980
GSTM1-1	chemical	hydroxylamine, heterocyclic amine, metabolite	N-acetoxy-2-amino-1- methyl-6-phenylimidazo[4,5- b]pyridine (N-acetoxy-PhIP)	reduction in reaction with GST (low activity)	404	11535243
GSTM1-1	chemical	PAH, metabolite	(+)- and (-)-benzo[a]pyrene-7,8-diol 9,10-epoxide	GSH conjugation	440, 446	11849043, 9403173
GSTM1-1	chemical	PAH, metabolite	(+)- and (–)-benzo[<i>a</i>]pyrene-7,8-diol	GSH conjugation after oxidation	51, 447	17525473, 12507920
GSTM1-1	drug	oxazaphosporine; anticancer, nitrogen mustard, alkylating, metabolite	4-hydroxycyclophosphamide	GSH conjugation	442	7954469
GSTM1-1	chemical	РАН	benzo[a]pyrene	GSH conjugation after oxidation	51	17525473
GSTM1-1	chemical	PAH, metabolite	benzo[c]chrysene-9,10-diol 11,12-epoxide	GSH conjugation	446	9403173
GSTM1-1	chemical	PAH, metabolite	benzo[g]chrysene-11,12-diol 13,14-epoxide	GSH conjugation	446	9403173
GSTM1-1	chemical	PAH, metabolite	chrysene- <i>trans</i> -1,2-diol-3,4-epoxide	GSH conjugation	446	9403173
GSTM1-1	chemical	РАН	dibenz[a,h]anthracene-3,4-diol-1,2-epoxide	GSH conjugation	446	9403173
GSTM1-1	chemical	PAH, metabolite	dibenzo[a , l]pyrene-11,12-diol 13,14-epoxide	GSH conjugation	446	9403173
GSTP1-1	chemical	PAH, metabolite	(+)- and (-)-benzol alpyrene-	GSH conjugation	438, 440, 446, 448, 449	9855012, 11849043 9403173, 9299520, 9525277

enzyme	category	subcategory	compound	reaction	references	PubMed ID
			7,8-diol 9,10-epoxide			
GSTP1-1	chemical	PAH, metabolite	(+)- and (–)-benzo[<i>a</i>]pyrene-7,8-diol	GSH conjugation after oxidation	50, 450	16885195, 10344744
GSTP1-1	drug	oxazaphosporine; anticancer, nitrogen mustard, alkylating, metabolite	4-hydroxycyclophosphamide	GSH conjugation	442	7954469
GSTP1-1	drug	oxazaphosporine; anticancer, nitrogen mustard, alkylating, metabolite	4-hydroxyifosfamide	GSH conjugation	451	8555414
GSTP1-1	chemical	quinoline	4-nitroquinoline 1-oxide (NQO)	GSH conjugation	452, 453	11108662, 15766272
GSTP1-1	chemical	РАН	5-methylchrysene	GSH conjugation after oxidation	83	18992797
GSTP1-1	chemical	PAH, metabolite	5-methylchrysene-1,2-diol	GSH conjugation after oxidation	83	18992797
GSTP1-1	chemical	PAH, metabolite	5-methylchrysene-1,2-diol 3,4-epoxide	GSH conjugation	454	9771942
GSTP1-1	chemical	PAH, metabolite	6-methylchrysene-1,2-diol 3,4-epoxide	GSH-conjugation	454	9771942
GSTP1-1	chemical	РАН	benzo[a]pyrene	GSH conjugation after oxidation	50	16885195
GSTP1-1	chemical	PAH, metabolite	benzo[c]chrysene-9,10-diol 11,12-epoxide	GSH conjugation	446, 455	9403173, 9827546
GSTP1-1	chemical	PAH, metabolite	benzo[c]phenanthrene-3,4- diol-1,2-epoxide	GSH conjugation	438, 446, 455, 456	9855012, 9403173, 9827546, 9850062
GSTP1-1	chemical	PAH, metabolite	benzo[g]chrysene-11,12-diol- 13,14-epoxide	GSH conjugation	438, 446, 455, 456	9855012, 9403173, 9827546, 9850062
GSTP1-1	chemical	PAH, metabolite	chrysene-trans-1,2- dihydrodiol-3,4-epoxide	GSH conjugation	446, 448, 449	9403173, 9299520, 9525277
GSTP1-1	chemical	PAH, metabolite	dibenz $[a,h]$ anthracene-3,4-diol-1,2-epoxide	GSH-conjugation	446, 449	9403173, 9525277
GSTP1-1	chemical	PAH, metabolite	dibenzo[a./]pyrene-11,12- diol-13,14-epoxide	GSH conjugation	438, 446, 455, 457	9855012, 9403173, 9827546, 9687571

enzyme	category	subcategory	compound	reaction	references	PubMed ID
GSTP1-1	drug	oxazaphosporine; anticancer, nitrogen mustard, alkylating, metabolite	ifosfamide mustard	GSH conjugation	451	8555414
GSTP1-1	chemical	hydroxylamine, heterocyclic amine, metabolite	N-acetoxy-2-amino-1- methyl-6-phenylimidazo[4,5- b]pyridine (N-acetoxy-PhIP)	reduction in reaction with GST (low activity)	406, 444	11535243, 8069858
GSTP1-1	chemical	hydroxamic acid, heterocyclic amine, metabolite	N-hydroxy-2- aceylaminofluorene (N-OH- 2-AAF)	GSH conjugation	375	8330352
GSTP1-1	chemical	hydroxylamine, heterocyclic amine, metabolite	N-hydroxy-2-amino-1- methyl-6-phenylimidazo[4,5- b]pyridine (N-OH-PhIP)	reduction in reaction with GST	458	11196146
GSTT1-1	chemical	hydroxylamine, heterocyclic amine, metabolite	N-acetoxy-2-amino-1- methyl-6-phenylimidazo[4,5- b]pyridine (N-acetoxy-PhIP)	reduction in reaction with GST (low activity)	406	11535243
GSTT2-1	chemical	hydroxylamine, heterocyclic amine, metabolite	N-acetoxy-2-amino-1- methyl-6-phenylimidazo[4,5- b]pyridine (N-acetoxy-PhIP)	reduction in reaction with GST (low activity)	406	11535243
NAD(P)H- dependent quinone oxidoredu ctase, NQO1	physiological compound	estrogen, metabolite	4-hydroxyestrone-o-quinone	reduction (low activity)	434	18588320
NADH cytochro m e b 5 reductase, b5R; cytochro m e b 5, CYB5	chemical	hydroxylamine, heterocyclic amine, metabolite	N-hydroxy-2-amino-1- methyl-6-phenylimidazo[4,5- b]pyridine (N-OH-PhIP)	reduction	459	17040106
NADH cytochro m e b5 reductase, b5R; cytochro m e b5, CYB5	chemical	arylamine, tobacco smoke compound, metabolite	W-hydroxy-4-aminobiphenyl (N-OH-4-ABP)	reduction (low activity)	459, 460	17040106, 21447608

enzyme	category	subcategory	compound	reaction	references	PubMed ID
NAT1	chemical	heterocyclic amine	2-amino-3- methylimidazo[4,5- f]quinolone (IQ)	N-acetylation (low activity)	389	8353847
NAT1	chemical	arylamine	2-aminofluorene (2-AF)	N-acetylation (low activity)	389	8353847
NAT1	chemical	РАН	2-naphthylamine	N-acetylation (low activity)	389	8353847
NAT1	chemical	arylamine, tobacco smoke compound	4-aminobiphenyl (4-ABP)	N-acetylation (low activity)	389	8353847
NAT1	chemical	hydroxamic acid, heterocyclic amine, metabolite	N-hydroxy-2- acetylaminobiphenyl (N-acetoxy-4-ABP)	N-acetylation (low activity)	389	8353847
NATI	chemical	hydroxamic acid, heterocyclic amine, metabolite	N-hydroxy-2- acetylaminofluorene (N-OH-2-AAF)	Nacetylation (low activity)	389	8353847
NATI	chemical	arylamine, tobacco smoke compound, metabolite	Nhydroxy-4-aminobiphenyl (N-OH-4-ABP)	N-acetylation (low activity)	389	8353847
NAT1	chemical	hydroxylamine, arylamine, metabolite	N-hydroxy-2-aminofluorene (N-OH-2-AF)	N-acetylation (low activity)	389	8353847
NAT2	chemical	heterocyclic amine	2-amino-3- methylimidazo[4,5- f]quinolone (IQ)	N-acetylation	389	8353847
NAT2	chemical	arylamine	2-aminofluorene (2-AF)	N-acetylation	389	8353847
NAT2	chemical	arylamine	2-naphthylamine	N-acetylation	389	8353847
NAT2	chemical	arylamine, tobacco smoke compound	4-aminobiphenyl (4-ABP)	N-acetylation	389	8353847
NAT2	chemical	hydroxamic acid, heterocyclic amine, metabolite	Nhydroxy-2- acetylaminobiphenyl (N-acetoxy-4-ABP)	N-acetylation	389	8353847
NAT2	chemical	hydroxamic acid, heterocyclic amine, metabolite	Nhydroxy-2- acetylaminofluorene (NOH-2-AAF)	N-acetylation	389	8353847
NAT2	chemical	arylamine, tobacco smoke compound, metabolite	Nhydroxy-4-aminobiphenyl (NOH-4-ABP)	N-acetylation	389	8353847
NAT2	chemical	hydroxylamine, arylamine, metabolite	N-hydroxy-2-aminofluorene (N-OH-2-AF)	N-acetylation	389	8353847
S-COMT	physiological compound	estrogen, metabolite	2-hydroxyestradiol	O-methylation, 2- OH and 3-OH	461, 462	11606384, 12360102

enzyme	category	subcategory	compound	reaction	references	PubMed ID
S-COMT	physiological compound	estrogen, metabolite	2-hydroxyestrone	Omethylation, 2- OH and 3-OH	462	12360102
S-COMT	physiological compound	estrogen, metabolite	4-hydroxyestradiol	Omethylation, 4- OH	462	12360102
S-COMT	physiological compound	estrogen, metabolite	4-hydroxyestrone	Omethylation, 4- OH	462	12360102
S-COMT	chemical	PAH, metabolite	(+)- and (-)-benzo[<i>a</i>]pyrene-7,8-diol	O-methylation	463	21622560
S-COMT	chemical	PAH, metabolite	12-methylbenz[a]anthracene-3,4-diol	O-methylation	463	21622560
S-COMT	chemical	PAH, metabolite	5-methylchrysene-1,2-diol	O-methylation	463	21622560
S-COMT	chemical	PAH, metabolite	5-methylchrysene-7,8-diol	O-methylation	463	21622560
S-COMT	chemical	PAH, metabolite	7,12- dimethylbenz[<i>a</i>]anthracene- 3,4-diol	O-methylation	463	21622560
S-COMT	chemical	PAH, metabolite	7-methylbenz[a]anthracene-3,4-diol	O-methylation	463	21622560
S-COMT	chemical	PAH, metabolite	benz[a]anthracene-3,4-diol	Omethylation (low activity)	463	21622560
S-COMT	chemical	PAH, metabolite	benzo[c]phenanthrene-3,4-diol	O-methylation	463	21622560
S-COMT	chemical	PAH, metabolite	benzo[g]chrysene-11,12-diol	O-methylation	463	21622560
S-COMT	chemical	PAH, metabolite	chrysene-1,2-diol	O-methylation	463	21622560
S-COMT	chemical	PAH, metabolite	chrysene-3,4-diol	Omethylation (low activity)	463	21622560
SULT	chemical	heterocyclic amine	2-amino-3- methylimidazo[4,5- f]quinolone (IQ)	N-sulfamate formation (low activity)	464	7744696
SULT	chemical	hydroxylamine, heterocyclic amine, metabolite	N-hydroxy-2-amino-3,8- dimethylimidazo[4,5- f]quinoxaline (N-OH-MeIQx)	N-sulfation after N-hydroxylation	429, 465	11258970 8844796
UGT	chemical	hydroxylamine, heterocyclic amine, metabolite	<i>N</i> -hydroxy-2-amino-3,8- dimethylimidazo[4,5- f]quinoxaline (<i>N</i> -OH-MeIQx)	N-glucuronidation	429, 465	11258970 8844796
UGT1A1	chemical	PAH, metabolite	(+)- and (-)-benzo[<i>a</i>]pyrene-7,8-diol	$O_{ m glucuronidation}$	466	11929814
UGT1A1	chemical	heterocyclic amine	2-amino-1-methyl-6- phenylimidazo[4,5- b]pyridine (PhIP)	N2- (major metabolite) and N3-glucuronidation	467, 468	11408353, 17638922

enzyme	category	subcategory	compound	reaction	references	PubMed ID
UGT1A1	physiological compound	estrogen, metabolite	2-hydroxyestradiol	Oglucuronidation	469	15117964
UGT1A1	physiological compound	estrogen, metabolite	2-hydroxyestrone	Oglucuronidation	469	15117964
UGT1A1	physiological compound	estrogen, metabolite	4-hydroxyestrone	Oglucuronidation	469	15117964
UGT1A1	chemical	PAH, metabolite	dibenzo[<i>a,I</i>]pyrene-11,12- diol	O-glucuronidation	470	21780761
UGT1A1	physiological compound	езиовен	17β-estradiol	O-glucuronidation	469	15117964
UGT1A1	physiological compound	estrogen	estrone	Oglucuronidation	469	15117964
UGT1A1	chemical	hydroxylamine, heterocyclic amine, metabolite	N-hydroxy-2-amino-1- methyl-6-phenylimidazo[4,5- b]pyridine (N-OH-PhIP)	N2- (major metabolite) and N3- glucuronidation, major enzyme	146, 467, 468, 471, 472	11375903, 11408353, 17638922, 15310245, 15708579
UGT1A1	drug	triphenylethyleneamine; antiestrogen, estrogen receptor modulator, metabolite	4-hydroxytamoxifen	Oglucuronidation (low activity)	402, 473, 474	12034366, 16480962, 17664247
UGT1A3	chemical	heterocyclic amine	2-amino-1-methyl-6- phenylimidazo[4,5- <i>b</i>]pyridine (PhIP)	N2- and N3- glucuronidation	475	10357796
UGT1A3	physiological compound	estrogen, metabolite	2-hydroxyestradiol	Oglucuronidation (low activity)	469	15117964
UGT1A3	physiological compound	estrogen, metabolite	2-hydroxy-estrone	Oglucuronidation (low activity)	469	15117964
UGT1A3	physiological compound	estrogen, metabolite	4-hydroxyestrone	$O_{ m glucuronidation}$	469	15117964
UGT1A3	physiological compound	estrogen	17β-estradiol	$O_{ m glucuronidation}$	469	15117964
UGT1A3	physiological compound	estrogen	estrone	Oglucuronidation	469	15117964
UGT1A3	chemical	hydroxamic acid, heterocyclic amine, metabolite	N-hydroxy-2- acetylaminofluorene (N-OH- 2-AAF)	N-glucuronidation (low activity)	146	11375903
UGT1A3	chemical	hydroxylamine, heterocyclic amine, metabolite	N-hydroxy-2-amino-1- methyl-6-phenylimidazo[4,5- b]pyridine (N-OH-PhIP)	N2- and N3- glucuronidation (major metabolite)	146, 467, 468, 471	11375903, 11408353, 17638922, 15310245

enzyme	category	subcategory	compound	reaction	references	PubMed ID
UGT1A4	chemical	heterocyclic amine	2-amino-1-methyl-6- phenylimidazo[4,5- b]pyridine (PhIP)	N2- and N3- glucuronidation (major metabolite), low activity	467, 468	11408353, 17638922
UGT1A4	chemical	tobacco-specific nitrosamine	4-(methylnitrosamino)-1-(3- pyridyl)-1-butanol (NNAL)	Nglucuronidation	476-478	14871856, 14709623, 18238858
UGT1A4	drug	triphenylethyleneamine; antiestrogen, estrogen receptor modulator, metabolite	4-hydroxytamoxifen	Nglucuronidation	278, 402, 473, 474, 479	16884532, 12034366, 16480962, 17664247, 15135306
UGT1A4	chemical	PAH, metabolite	dibenzo[a,/]pyrene-11,12-diol	Oglucuronidation	470	21780761
UGT1A4	chemical	hydroxylamine, heterocyclic amine, metabolite	N-hydroxy-2-amino-1- methyl-6-phenylimidazo[4,5- b]pyridine (N-OH-PhIP)	N2- (major metabolite) and N3-glucuronidation	467, 468, 471	11408353, 17638922, 15310245
UGT1A4	chemical	tobacco-specific nitrosamine	N-nitrosoanabasine	Oglucuronidation	478	18238858
UGT1A4	drug	triphenylethyleneamine ; antiestrogen, estrogen receptor modulator	tamoxifen	N-glucuronidation	278	16884532
UGT1A6	drug	triphenylethyleneamine; antiestrogen, estrogen receptor modulator, metabolite	4-hydroxytamoxifen	Oglucuronidation (low activity)	473	16480962
UGT1A6	chemical	hydroxamic acid, heterocyclic amine, metabolite	N-hydroxy-2- acetylaminofluorene (N-OH-2AAF)	Nglucuronidation (low activity)	146	11375903
UGT1A6	chemical	hydroxylamine, heterocyclic amine, metabolite	N-hydroxy-2-amino-1- methyl-6-phenylimidazo[4,5- b]pyridine (N-OH-PhIP)	Nglucuronidation (low activity)	146	11375903
UGT1A7	chemical	PAH, metabolite	(+)- and (-)-benzo[<i>a</i>]pyrene-7,8-diol	O-glucuronidation	466	11929814
UGT1A7	physiological compound	estrogen, metabolite	2-hydroxyestradiol	O-glucuronidation	469	15117964
UGT1A7	physiological compound	estrogen, metabolite	2-hydroxyestrone	Oglucuronidation	469	15117964
UGT1A7	physiological compound	estrogen, metabolite	4-hydroxyestrone	O-glucuronidation	469	15117964
UGT1A7	drug	triphenylethyleneamine; antiestrogen, estrogen receptor modulator,	4-hydroxytamoxifen	Oglucuronidation (low activity)	473, 474	16480962, 17664247

enzyme	category	subcategory	compound	reaction	references	PubMed ID
		metabolite				
UGT1A7	chemical	PAH, metabolite	dibenzo[<i>a,I</i>]pyrene-11,12- diol	Oglucuronidation	470	21780761
UGT1A7	physiological compound	estrogen	17β-estradiol	Oglucuronidation (low activity)	469	15117964
UGT1A7	physiological compound	estrogen	estrone	Oglucuronidation (low activity)	469	15117964
UGT1A7	chemical	hydroxamic acid, heterocyclic amine, metabolite	<i>N</i> -hydroxy-2- acetylaminofluorene (<i>N</i> -OH- 2-AAF)	Wglucuronidation (high activity)	146	11375903
UGT1A7	chemical	hydroxylamine, heterocyclic amine, metabolite	N-hydroxy-2-amino-1- methyl-6-phenylimidazo[4,5- b]pyridine (N-OH-PhIP)	N2- and N3- glucuronidation (low activity)	146, 467, 468, 471	11375903, 11408353, 17638922, 15310245
UGT1A8	chemical	heterocyclic amine	2-amino-1-methyl-6- phenylimidazo[4,5- <i>b</i>]pyridine (PhIP)	N2- and N3- glucuronidation	466	10357796
UGT1A8	physiological compound	estrogen, metabolite	2-hydroxyestradiol	O-glucuronidation	469	15117964
UGT1A8	physiological compound	estrogen, metabolite	2-hydroxyestrone	O-glucuronidation	469	15117964
UGT1A8	physiological compound	estrogen, metabolite	4-hydroxyestrone	O-glucuronidation	469	15117964
UGT1A8	drug	triphenylethyleneamine; antiestrogen, estrogen receptor modulator, metabolite	4-hydroxytamoxifen	Oglucuronidation (low activity)	473, 474	16480962, 17664247
UGT1A8	chemical	PAH, metabolite	dibenzo[<i>a,I</i>]pyrene-11,12- diol	O-glucuronidation	470	21780761
UGT1A8	physiological compound	estrogen	17β-estradiol	Oglucuronidation	469	15117964
UGT1A8	physiological compound	estrogen	estrone	Oglucuronidation (low activity)	469	15117964
UGT1A8	chemical	hydroxamic acid, heterocyclic amine, metabolite	<i>N</i> -hydroxy-2- acetylaminofluorene (<i>N</i> -OH- 2-AAF)	Wglucuronidation (low activity)	146	11375903
UGT1A8	chemical	hydroxylamine, heterocyclic amine, metabolite	N-hydroxy-2-amino-1- methyl-6-phenylimidazo[4,5- b]pyridine (N-OH-PhIP)	N2- (major metabolite) and N3-glucuronidation	146, 467, 468, 471	11375903, 11408353, 17638922, 15310245

enzyme	category	subcategory	compound	reaction	references	PubMed ID
UGT1A9	chemical	PAH, metabolite	(+)- and (–)-benzo[<i>a</i>]pyrene-7,8-diol	Oglucuronidation	466	11929814
UGT1A9	chemical	heterocyclic amine	2-amino-1-methyl-6- phenylimidazo[4,5- b]pyridine (PhIP)	N2- (major metabolite) and N3- glucuronidation, low activity	467, 468, 475	11408353, 17638922, 10357796
UGT1A9	chemical	tobacco-specific nitrosamine	4-(methylnitrosamino)-1-(3- pyridyl)-1-butanol (NNAL)	$O_{ m glucuronidation}$	477, 480	14709623, 11038164
UGT1A9	drug	triphenylethyleneamine; antiestrogen, estrogen receptor modulator, metabolite	4-hydroxytamoxifen	Oglucuronidation (low activity)	402, 473, 474	12034366, 16480962, 17664247
UGT1A9	chemical	PAH, metabolite	dibenzo[<i>a,I</i>]pyrene-11,12-diol	Oglucuronidation (high activity)	470	21780761
UGT1A9	chemical	hydroxamic acid, heterocyclic amine, metabolite	Nhydroxy-2- acetylaminofluorene (N-OH- 2-AAF)	Nglucuronidation (high activity)	146	11375903
UGT1A9	chemical	hydroxylamine, heterocyclic amine, metabolite	N-hydroxy-2-amino-1- methyl-6-phenylimidazo[4,5- b]pyridine (N-OH-PhIP)	N2- and N3- glucuronidation (major metabolite)	146, 467, 468, 471, 475	11375903, 11408353, 17638922, 15310245, 10357796
UGT1A10	chemical	PAH, metabolite	(+)- and $(-)$ -benzo[a]pyrene- 7 ,8-diol	Oglucuronidation (major enzyme)	466, 481	11929814, 16510539
UGT1A10	chemical	heterocyclic amine	2-amino-1-methyl-6- phenylimidazo[4,5- b]pyridine (PhIP)	N2- and N3- glucuronidation	468, 475	17638922, 10357796
UGT1A10	physiological compound	estrogen, metabolite	2-hydroxyestradiol	Oglucuronidation (high activity)	469	15117964
UGT1A10	physiological compound	estrogen, metabolite	2-hydroxyestrone	$O_{ m glucuronidation}$	469	15117964
UGT1A10	chemical	tobacco-specific nitrosamine	4-(methylnitrosamino)-1-(3- pyridyl)-1-butanol (NNAL)	O-glucuronidation	482	20007297
UGT1A10	physiological compound	estrogen, metabolite	4-hydroxyestrone	Oglucuronidation (high activity)	469	15117964
UGT1A10	drug	triphenylethyleneamine; antiestrogen, estrogen receptor modulator, metabolite	4-hydroxytamoxifen	Oglucuronidation (low activity)	473, 474	16480962, 17664247
UGT1A10	chemical	PAH, metabolite	dibenzo[<i>a,I</i>]pyrene-11,12- diol	Oglucuronidation	468	21780761

enzyme	category	subcategory	compound	reaction	references	PubMed ID
UGT1A10	physiological compound	estrogen	17β-estradiol	Oglucuronidation (high activity)	467	15117964
UGT1A10	physiological compound	estrogen	estrone	Oglucuronidation (high activity)	467	15117964
UGT1A10	chemical	hydroxamic acid, heterocyclic amine, metabolite	N-hydroxy-2- acetylaminofluorene (N-OH- 2-AAF)	N-glucuronidation (low activity)	146	11375903
UGTIA10	chemical	hydroxylamine, heterocyclic amine, metabolite	N-hydroxy-2-amino-1- methyl-6-phenylimidazo[4,5- b]pyridine (N-OH-PhIP)	N2- (major metabolite) and N3- glucuronidation, high activity	146, 465, 466, 469	11375903, 11408353, 17638922, 15310245
UGT2A1	chemical	PAH, metabolite	(+)- and (-)-benzo[<i>a</i>]pyrene-7,8-diol	O-glucuronidation	483	21164388
UGT2A1	chemical	PAH, metabolite	5-methylchrysene-1,2-diol	Oglucuronidation	481	21164388
UGT2B10	chemical	tobacco-specific nitrosamine	4-(methylnitrosamino)-1-(3- pyridyl)-1-butanol (NNAL)	Oglucuronidation	478	18238858
UGT2B10	chemical	tobacco-specific nitrosamine	N-nitrosoanabasine	O-glucuronidation	478	18238858
UGT2B10	chemical	tobacco-specific nitrosamine	N-nitrosoanatabine	O-glucuronidation	478	18238858
UGT2B10	chemical	tobacco-specific nitrosamine	N-nitrosoanatabine	Oglucuronidation	468, 478	17638922, 18238858
UGT2B10	natural compound	nitrosamine, tobacco- specific	N-nitrosonornicotine (N -nitrosonornicotine, NNN)	O-glucuronidation	478	18238858
UGT2B10	natural compound	nitrosamine, tobacco- specific	N-nitrosonornicotine (N -nitrosonornicotine, NNN)	O-glucuronidation	468, 478	17638922, 18238858
UGT2B15	drug	triphenylethyleneamine; antiestrogen, estrogen receptor modulator, metabolite	4-hydroxytamoxifen	Oglucuronidation	402, 473, 474	12034366, 16480962, 17664247
UGT2B17	chemical	tobacco-specific nitrosamine	4-(methylnitrosamino)-1-(3- pyridyl)-1-butanol (NNAL)	O-glucuronidation	484	17416778
UGT2B17	drug	triphenylethyleneamine; antiestrogen, estrogen receptor modulator, metabolite	4-hydroxytamoxifen	Oglucuronidation	474	17664247
UGT2B7	chemical	PAH, metabolite	(+)- and (-)-benzo[a]pyrene-7,8-diol	Oglucuronidation	466	11929814

enzyme	category	subcategory	compound	reaction	references	PubMed ID
UGT2B7	chemical	tobacco-specific nitrosamine	4-(methylnitrosamino)-1-(3- pyridyl)-1-butanol (NNAL)	O.glucuronidation	476, 477, 480	14871856, 14709623, 11038164
UGT2B7	chemical	PAH, metabolite	dibenzo[<i>a,I</i>]pyrene-11,12-diol	Oglucuronidation	470	21780761
UGT2B7	chemical	hydroxamic acid, heterocyclic amine, metabolite	N-hydroxy-2- acetylaminofluorene (N-OH- 2-AAF)	N-glucuronidation	146	11375903
UGT2B7	drug	triphenylethyleneamine; antiestrogen, estrogen receptor modulator, metabolite	4-hydroxytamoxifen	Oglucuronidation	474	17664247