Attribution & Literature

- We will only be scratching the surface of DSP in this course
- For further details, please see published literature by Valentin Jordanov. A select listing of relevant papers:
 - Jordanov_DSP_MovingAverage_IEEE_1993.pdf
 - Jordanov_Filters_NIMA345_1994.pdf
 - Jordanov_Deconvolution_NIMA351_1994.pdf
 - Jordanov_DSP_Realtime_NIMA353_1994.pdf
 - Jordanov_PSD_IEEE_1995.pdf
 - Jordanov_DSP_Compact_NIMA380_1996.pdf
 - Jordanov_ShapingWeights_NIMA505_2003.pdf
 - Jordanov_PeakDetect_IEEE_2003.pdf
 - Jordanov_DSP_Realtime_NIMA652_2011.pdf
 - Jordanov_Exponential_NIMA670_2012.pdf
- Material for next 3 lectures derived from material from DSP short course led by V. Jordanov

General Considerations

- Random nature of radioactive detector events → different analysis techniques compared to those used in telecommunications, speech, imaging, etc.
 - Anti-aliasing less important for radiation detection than in other applications
 - Emphasis on real-time processing: typically design and analyze digital shapers in discrete time domain
 - Most DSP textbooks and other literature focus on analysis in the
 frequency domain, where the mathematics of convolution are simplified
- Real-time operation is absolutely necessary for radiation measurement applications
 - Rate considerations from detector physics
 - Avoid bottlenecking at the DSP component

Digital Vs. Analog Processing

- Digital Signal Processing
 - Flexibility
 - complex math & logic operations and higher-order filter designs
 - Reprogrammable functionality (system flexibility)
 - Online & Offline processing robust evaluation and quicker design revisions
 - No tuning of analog components during production/operation (improved reliability and reduced cost)
 - Improved version control, reproducibility, and distributability of digital designs
- Analog Signal Processing
 - High-frequency applications
 - High-density applications (multi-channel systems): optimized solutions for specific applications (ASICs)
 - Potentially reduced cost for single (specific) application

From Analog To Digital

- Leverage rapid advances in digital technology driven by industry (computing & communications, etc)
 - Miniaturization, speed, power consumption, etc.
 - Cost per functionality decreases much more rapidly in digital domain than in analog
- Benefits of VLSI downscaling
 - Digital ckts not subject to analog noise (after conversion)
 - Shrinking feature size → greater functionality per Si area
 - Amenable to automated design and testing
 - "Arbitrary" precision
 - Inexpensive storage

Analog to Digital Conversion

- Convert continuous signal to digital signal
 - Bridge between continuous and discrete time domains
- Analog-to-Digital Converter (ADC) → accepts analog input signal (usually voltage) and produces corresponding digital code at output
- ADC incorporates sampling circuit, digitizer, encoder, etc.

For a review of ADC architectures for RD&M, see Knoll Ch. 17

Quantization of Sampled Signals

- Quantization Error (Q.E.) or noise is introduced by digitization process
 - Assume set of values I within one quantization step with mean m_I and D to be the width of the step so that all (equally probable) analog values from m_I -1/2 D to m_I +1/2 D are converted into the value m_I by the ADC:

- Theoretically, quantization of analog signal always results in a loss of information
 - Overcome in practice by ensuring QE < other sources of noise (e.g. electronic noise)

Dynamic Range & Noise

- Expresses range of input signal values that can be resolved
- Given by the ratio of the noise floor to the maximum signal that can be expressed
 - Often presented in units of dB
 - E.g. 16-bit ADC with $\pm 5V$ input range: $(2*5)*log_{10}(2^{16}) = 48 \text{ dB}$
 - Assumes noise floor == Q.E., If noise floor is higher, dynamic range reduced
 - Subject to ADC offset
 - If only positive polarity signals from previous example → halve dynamic range (24 dB)
- If noise floor is greater than QE, effective resolution of ADC is reduced
 - Effective Number of Bits (ENOB): N $log_2(RMS_{noise}/\Delta E_{step})$
 - E.g. 14-bit ADC w/ 10V input range \rightarrow 0.6 mV | if RMS_{noise} = 1.2 mV \rightarrow 14 log₂(1.2/0.6) = **13 effective bits!**

ADC Basics

N=number of bits of resolution in ADC $n_{ADC}=$ converted code $0 \le n_{ADC} \le 2^{N-1})$ $v_{in}=$ sampled input voltage $V_{+REF}=$ upper end of input voltage range $V_{-REF}=$ lower end of input voltage range FSR=Full-scale range

$$n_{ADC} = INTEGER \left[\frac{(v_{in} - V_{-REF})(2^{N} - 1)}{V_{+REF} - V_{-REF}} + \frac{1}{2} \right]$$

if
$$V_{-REF} = 0$$
, and $FSR = V_{+REF}$

$$n_{ADC} = INTEGER \left[\frac{v_{in}(2^{N} - 1)}{FSR} + \frac{1}{2} \right]$$

 n_{ADC} rounded to nearest integer

Ideal Conversion

- Ideal ADC transfer function
- Least-significant bit (LSB)
 - Width of single step: measure of converter resolution

$$1 LSB = FSR / (2^{n} - 1)$$

A/D Conversion Characteristics

- Gain Error
- Temperature/long-term drift

- Differential Nonlinearity (DNL)
- Integral Nonlinearity (INL)
- Non-monotonic conversion
- Missing Codes
- Conversion errors usually expressed in terms of least-significant bit (LSB)

ADC Nonlinearity

Differential Nonlinearity

- Difference between ideal step width
 (1 LSB) and actual step width
- DNL[i] = (V[i+1] V[i]) 1 LSB

Integral Nonlinearity

- Deviation of ADC transfer function from a straight line
- End-point linearity: straight line between V_{min} and V_{max}
- \circ INL[i] = (V[i] V[0]) ((i/N)*(V_{max} V_{min})
- "Integral" nonlinearity →
 Accumulation of differential
 nonlinearities from 0th to ith step

ADC Data Sheets

- ADC characterized by manufacturer
 - Select the right component for specific application!

Spectroscopy Signal Processing Chain

Spectroscopy Signal Processing Chain

Choosing the ADC to fit the Application

- ADC for multichannel analyzer
 - Goal: digitize pulse heights of shaped signals
 - Speed: dictated by count rate & shaping time
 - Linearity: INL must be minimized over whole range
 - Resolution: dictated by energy resolution of detector
 - Wilkinson, SAR (serial arch.) ADCs (see Knoll ch. 18)
- ADC for digital signal processing
 - Goal: Digitize signal from detector
 - Speed: dictated by timing/features of signals
 - Linearity: INL & DNL can lead to biases in signal shapes
 - Resolution: dictated by system noise (QE < other noise sources)
 - Flash, subranging (parallel arch.) ADCs (review Knoll ch. 17)

Choosing the ADC to fit the Application

- ADC for multichannel analyzer
 - Goal: digitize pulse heights of shaped signals
 - Speed: dictated by count rate
 - Linearity: INL must be minimized
 - Resolution: dictated by energy resolution of detector
 - Wilkinson, SAR (serial arch.) ADCs (see Knoll ch. 18)
- ADC for digital signal processing
 - Goal: Digitize signal from detector
 - Speed: dictated by timing/features of signals
 - Linearity: INL & DNL can lead to biases in signal shapes
 - Resolution: dictated by system noise (QE < other noise sources)
 - Flash, subranging (parallel arch.) ADCs (review Knoll ch. 17)

Fast ADC History

1992

12 bit, 20Msps, 4W, \$750

1998

12 bit, 25Msps, 280mW, \$30

2004

14 bit, 80Msps, 220mW, \$30

2008

16 bit, 105Msps, 900mW, \$80

2013

16 bit, 125Msps, 750mW, \$130 (2 Ch)

14 bit, 250Msps, 711mW, \$130 (2 Ch)

12 bit, 500Msps, 650mW, \$130 (1 Ch)

Fast Digitization of Preamp Signals: Amplitude Considerations

- Want to maximize ADC range used for digitizing pulses
 - Must consider the baseline & negative excursions!

Fast Digitization of Preamp Signals: Amplitude Considerations

- Add offset in analog domain, subtract off in digital domain
 - Example: Bipolar pulses what effect does this have on ADC resolution/dynamic range?

Fast Digitization of Preamp Signals: Timing Considerations

- Phase Error: Signal arrival time not synchronous with sampling
 - Depends on sampling time, ΔT!
 - ADC with sufficient resolution to minimize Quantization Error
 - ADC with sufficient sampling rate to minimize **Phase Error**

