MATH 5591H HOMEWORK 10

BRENDAN WHITAKER

13.5 Exercises

5. For any prime p and any nonzero $a \in \mathbb{F}_p$, prove that $x^p - x + a$ is irreducible and separable over \mathbb{F}_p . [For the irreducibility: One approach – prove first that if α is a root then $\alpha + 1$ is also a root. Another approach – suppose it's reducible and compute derivatives.]

Proof. Suppose α is a root. Then we have $\alpha^p - \alpha + a = 0$. Behold:

$$(\alpha+1)^{p} - (\alpha+1) + a = \left(\sum_{k=0}^{p} \binom{p}{k} \alpha^{k}\right) - \alpha - 1 + a$$

$$= \left(\sum_{k=1}^{p-1} \binom{p}{k} \alpha^{k}\right) + \alpha^{p} - \alpha + a$$

$$= \sum_{k=1}^{p-1} \binom{p}{k} \alpha^{k}$$

$$= \sum_{k=1}^{p-1} \frac{p!}{k!(p-k)!} \alpha^{k}.$$

$$(1)$$

We claim that $\frac{p!}{k!(p-k)!}$ is divisible by p for all integer values of k in the range [1, p-1]. Note for these values of k that $p \nmid (k!(p-k)!)$ but that p|p!, and the binomial coefficient is an integer, so we must have that $p \mid \left(\frac{p!}{k!(p-k)!}\right)$. Thus:

$$\sum_{k=1}^{p-1} \frac{p!}{k!(p-k)!} \alpha^k \mod p \equiv 0.$$

And since we are over \mathbb{F}_p , we know that $\alpha + 1$ must then be a root. Now note that by induction, we have that if any $\alpha \in \mathbb{F}_p$ is a root, then all elements of \mathbb{F}_p are roots, hence 0 is a root. So we have:

$$0^p - 0 + a = 0 \Rightarrow a = 0$$
,

which is a contradiction, since we said $a \neq 0$. So we must have that $\nexists \alpha \in \mathbb{F}_p$ such that α is a root of the given polynomial. So let α be a root, then $\alpha \notin \mathbb{F}_p$. Then consider the extension $\mathbb{F}_p(\alpha)$. It must contain $\alpha + k$, for all $k \in \mathbb{F}_p$. Then f(x) must be the product of all minimal polynomials. Also since $\mathbb{F}_p(\alpha) \cong \mathbb{F}_p(\alpha + k)$ we know that they all have the same degree, say m. Then p = km, which tells us k = 1 since p prime. Then we must have that the minimal polynomial is f and it is irreducible. Now we show that it is separable. Simply recall from Proposition 37 in the book that every irreducible polynomial over a finite field is separable.

13.6 Exercises

6. Prove that for n odd, n > 1, $\Phi_{2n}(x) = \Phi_n(-x)$.

Proof. Let n be odd, and let $\varphi(x)$ be Euler's totient function. Then $\varphi(n) = \varphi(2n)$ since the only factor of 2n which is not already a factor of n is 2, and $2 \nmid n$ since n is odd. So then $\Phi_{2n}(x)$ has the same degree as $\Phi_n(-x)$. So they both have the same number of roots. But note we know that if ω is an n-th root of unity, then we know that $-\omega$ is also an n-th root of unity and also a 2n-th root of unity. Then the roots of $\Phi_n(-x)$ are also roots of $\Phi_{2n}(x)$, and since we already proved that they

have the same number of roots, we know they are the same polynomial. (Note I got the idea for this proof from Jack Peltier) \Box

14.3 Exercises

4. Construct a finite field of 16 elements and find a generator for the multiplicative group. How many generators are there?

We simply need to construct an irreducible polynomial of degree 4 over \mathbb{F}_2 . Consider $f(x) = x^4 + x^3 + x^2 + x + 1$. Clearly 1,0 are not roots. So we need to check if it is divisible by any irreducible quadratics. So it would have to b $(x^2 + x + 1)^2$, as this is the only such quadratic. We have:

$$(x^{2} + x + 1)^{2} = x^{4} + x^{3} + x^{2} + x^{3} + x^{2} + x + x^{2} + x + 1$$
$$= x^{4} + x^{2} + 1.$$
 (2)

So f is irreducible. Thus $\mathbb{F}_2[x]/(f) \cong \mathbb{F}_{2^4}$, a finite field of 16 elements. Note that the multiplicative group of this field is isomorphic to \mathbb{Z}_{15} since we have 15 nonzero elements. Since we want to know how many generators we have, recall that the generators of \mathbb{Z}_{15} are exactly those whose equivalence classes are coprime with the order. So we have $\varphi(15) = 8$ generators.

$$(x+1)^{2} = x^{2} + 1$$

$$(x+1)(x^{2}+1) = x^{3} + x + x^{2} + 1$$

$$(x+1)(x^{3} + x^{2} + x + 1) = x^{4} + x^{3} + x^{2} + x + x^{3} + x^{2} + x + 1$$

$$= x^{4} + 1$$

$$(x+1)^{5} = (x+1)(x^{4} + 1) = x^{5} + x + x^{4} + 1.$$
(3)

And since \mathbb{Z}_5 is the largest subgroup in the lattice of \mathbb{Z}_15 , we know that the elements with largest order not equal to 15 have order 5, and this element has order > 5 since $(x+1)^5 \neq 1$. So it must have order 15. Thus x+1 is a generator.