Volhart, traité de chimie organique :

P860 : point de fusion et d'ébullition de composé orga ou l'on voit l'influence des liaisons H.

Structure électronique des molécules, Jean et Volatron: 7,5/10

En résumé : Un bon livre, sympa pour représenter les recouvrements, en revanche les axes d'énergies ne sont jamais placés à côté des diagrammes. Le bouquin est bien pour faire de l'orbitalaire de L2 voir L1.

P5-24 : Modèle de Lewis, théorie VSEPR et géométrie des molécules. Bien expliqué avec une conclusion sur les limites du modèle.

P73-76: approximations BO, orbitalaire, LCAO.

CHap 3 : Orbitale sur deux centres-> antiliante liante évolution du recouvrement avec la distance...

Chap 4 : molécules AH, AH2... -> les constructions d'OM sont bien détaillées et les diagrammes bons.

Chap 5 diatomique : explique bien les différents recouvrements nul et non nul. Quelques distances d'équilibre.

Chap 6 : complexes théorie du champ cristallin. Un peu du champ de ligands mais bof.

Structure électronique des molécules 2, Jean et Volatron : 8/10

Chap 7 : fragments -> molécules Hn

CHap 8 : fragments AH3, AH4 en divers géométries.

Chap 9 : Ethène, Ethane... polyène et benzène (mais pas de huckel)

CHap 11 : diagramme de corrélation -> bien il y a les règles avec des diagrammes d'énergies en continue avec exemple concret.

Chap 12: interaction, 2,4 électrons (force des interactions); Hyperconjugaison

Chap 13 : Réactivité-> très bon chapitre -> parle de fukui, de la limite de l'étude des orbitales associés aux réactifs, présente des profils énergétiques...

CHap 14 : Le chapitre 14 détaille la résolution du hamiltonien pour du diatomique c'est davantage poussé que le tome 1 pour des résultats similaires. Méthode de Huckel.

p154 : Limites de l'approximation monoélectronique.

Chimie-Physique, Atkins: 7/10

P373-377 : théorie de la liaison de valence.

P380 : représentation du recouvrement radial de fonction d'ondes pour la liaison chimique.

P386: indice de liaison.

P388 : pour sonder la liaison spectroscopie de photoélectrons.

P389 : échelle de Pauling.

P390-392 : méthode variationnel pour résoudre le hamiltonien d'un diatomique hétéronucléaire.

P396: approximations de Huckel.

P398 : détail des solutions de Huckel (mais pas résolution) sur le butadiène.

P400: au cas ou deux trois concepts de chimie computationnelle.

CHap 11 : théorie des groupes -> plutôt pas mal, il rentre pas dans les aspects trop complexes et propose des exemples et schéma.

Compétences prépa Chimie PCSI, Grécias: 8,5/10

En résumé : Une source toujours fiable et intéressante. Avec une vision complète et bien mené au travers de bons exemples. EN particulier pour Lewis.

Chap8: Lewis...

P227 : problématiques soulevés auquel doit répondre le modèle de L.

P228 : interprétation classique de l'énergie de liaison.

P235: mésomérie.

P240: VSEPR.

P246: Moments dipolaires. Avec exemples.

P247 : polarisabilité.

P248 : effet inductif et mésomères.

P252-258 : résumé et exemples détaillé.

P267: Keesom, debye, London.

P268 : tableau de valeur pour différentes molécules des forces de VdW

P270-273: liaison H avec ordre de grandeur et longueur. Et exemple ADN.

<u>Liquides, solutions, dispersions, émulsions, gels ; Cabane : 7/10</u>

EN résumé : Pour les liaisons intramoléculaires, on y trouvera beaucoup d'expressions mathématiques des différentes interactions de VdW. C'est plus poussé, en revanche assez peu d'exemples.

Orbitales frontières, manuel pratique 2ème édition; Nguyen Trong-Anh: 9/10

En résumé : Un très bon livre, notamment sur la réactivité. Les concepts sont clairs et bien posés. Il y a aussi de nombreux exemples dans le livre qui donne à la fin beaucoup de molécules avec énergie et coefficient. Petites considérations computationnelles aussi. On y trouve aussi des réponses à des question que je me suis longtemps posé.

P1 : mentionne des faits chimiques inexplicable par la théorie classique.

P3 : pourquoi la théorie des perturbations.

P4-5 : Les grandes questions à laquelle l'étude des orbitales donne des réponses : réactivités structure. (Huit points en tout : réactivité absolu, relative...)

P7: expression des orbitales atomiques.

P9 : origine de la stéréochimie.

P19: formules de Coulson.

P20 : charge nette par atome en Huckel.

P23 : Huckel hétéroatomes : exemples.

P24 : effet électronique du méthyl.

P28 : perturbations appliquées aux interactions de deux OA.

P32: interaction à trois orbitales.

P40-41: définition de l'aromaticité.

P47 : règle 1 et 2.

P51 : justification de pourquoi Fukui marche.

P53 : conrot-disrot.

P61 : BV des dérivés carbonylés.

P72: réactions chélotropiques.

P71: règles 1 limites.

P75 : violation règle 2 (croissement profil réactionnels)

P85: règle 3: régiosélectivité.

P103: Dur, Mou.

P124: règle 4. (stéréosélectivité)

P157 : facteurs à l'origine de l'induction asymétrique.

P174: limitations règle 4

CHap 8 : problèmes structuraux. -> conformation éclipsé décalé des aldéhydes.

P194: effet anomère.

P224 : limitation théorie des Orbitales frontalières.

Liaison chimique, structure et réactivité, Sevin : 6,5/10

EN résumé : Un livre dispensable.

CHap 1: hamiltonien avec expressions et éléments de résolution pour H et H2+.

P57 : intégrale de résonnance : expression de Wolfberg-Helmoltz.

P59: méthode de résolution Huckel (symétrie).

P72 : théorie des groupes.

P112 : OA hybrides.

P119: bilan thermo formation de l'éthylène.

P127: construction cercle annulènes cycliques.

Les orbitales moléculaires dans les complexes, Yves Jean : 9/10

En résumé : Le livre pour les orbitales moléculaires dans les complexes.

P16-22: ligands L et X avec exemples.

P23-28: NEV, NENL...

P29-30: modèle ionique.

P41: plans nodaux des orbitales d.

P51 : diagrammes d'interactions simplifié.

P59: interaction pi -> perturbations.

P60-75: ML6 octaédrique, construction, forme des orbitales, th des groupes.

P75 : série spectrochimique.

P76-77: haut spin bas spin.

P79-80: ML4 plan carré

P82: ML5

P84 : polarisation de l'orbitale dz² du à la symétrie de ML5.

P88 : ML5 deux géométries diagrammes de Walsh.

P93 : ML4 tétraédrique.

P94: ML4 tétraédrique VS Carré.

CHap 3 : interaction Pi : de nombreux diagrammes avec donation et rétrodonation. Le bloc d est toujours représenté. Il y a aussi Chatt Dewar Duncanson, les cyclopentadiène. (manque comparaison de la force des différents ligands)

P193: annexe -> ligands CO. (données numériques).

P204 : suite de chatt dewar duncansson.

P210-214 : complexe de Kubas (H2 ligand pi)

P214-220: interactions agostiques (angles anormaux).

P226-231 : carbènes (complexes) fischer, shrock (ambiguité décompte électronique)

P232-236 : complexes bimétalliques (liaison delta)

P238: élimination réductrice.

Chap 5: analogie isolobale.

Chap 6 : la théorie des groupes.

Chimie Organique une approche orbitalaire, Chaquin et Volatron : 6/10

En résumé : un bon livre mais qui ne devrait pas trop servir dans ce thème.

P19: interaction à trois orbitales.

P24 : orbitales du méthanal avec niveau d'énergies.

P59 : stabilité des radicaux carbonés.

P62: cyclopropane.

CHap 4 : halogénoalcane avec profil réactionnels orbitales... SN2, E2...

P99 : addition de Br2 sur halogénoalcane.

P104 : BV des dihalogènes.

P130-148 : Réaction de Diels-ALder et assimilés avec rendements comparaison de HO BV... Supra

antara, photochimie.

P152-158: réactions sigmatropiques.

P166 : hydrate d'aldéhyde.

P170 burgi dunitz.

P172 : exemple d'approche sur un dérivée cyclique (cours de prépa)

P174: Wittig.

P182 : tautomérie céto-énolique.

P190 : aromaticité valeurs de stabilisation.

Introduction à la chimie quantique, Hilberty, trong ahn :

En résumé : pas mal mais de la redite sur le trong ahn BV

P90-110 : diagrammes de corrélation DA.

P135-140: Méthode des perturbations -> partie math bien détaillé.

P147: BV Ester cétone ...

Introduction à la chimie quantique, Leforestier : 7/10

EN résumé : Un livre très théorique, qui ne servira que dans les cas extrêmes.

CHap 2 : tout le formalisme quantique des puits, infinis, réels... avec résolution d'équation.

CHap 3: OH

Chap 4 : Postulats de la mécanique quantique.

Chap 6: méthodes d'approximations.

CHAP 7,8,9: méthode perturbationelles, variationnelles.

Chap 10: Th des groupes.

Panorama des liaison chimiques, Granger: 7/10

Chap 5: liaison covalente: les basiques (gillespie...)

Chap 6 : modèle quantique de la liaison covalent H2+ (la seule résolvable).

CHap 8-9: généralisation liaison covalente.

Chap 10 : liaison ionique, petit résumer claire.

Chap 11: liaison dans les complexes avec th du champ cristallin (bien), limites et champ de ligands.

Chap12 : la liaison métallique, avec le gel et description simple.

Chap 13 : liaison intermoléculaire.

<u>Liaisons intermoléculaires, Gerschel: 5,8/10</u>

En résumé : bof bof.

P14 : tableau récap des divers réactions interactions inter avec ordre grandeur.

P52: Micelles.

Chimie inorganique, Cachalot, Durupthy:

P15 : électronégativité : grandeur relative.

Chap 9 : liaison ionique. Avec série alterné. Et modèles mathématiques et énergie (cycle thermo)

Rayon ionique-> p107.

P136 : théorie du champs cristallin, avec champ tétraédrique.

Chimie organique, PC, Mesplède: 8/10

Chapitre sur Huckel pas mal, c'est concis et clair. Avec des ordres de grandeurs pour les hétéroatomes.

P57: résumé Huckel.

Chimie organique et polymèrs, PC/PC* Frajman: 8/10

En résumé : les commentaires sur Huckel sont bien.

Chap 1 : formules mésomères, effets électroniques. Huckel p 16 : commentaire sur les approximations.

Chimie, PC/PC* 2014, Ribeyre: 6/10

P503 : Description générale des complexes et enjeux et possibilités.

P516 : levée de dégénérescence.

P528: propriétés optiques.

L'indispensable en liaison Chimique, Bonardet :

P15 : hybride de résonance.

P19: longueur des liaisons covalente.

P29: Longueur de liaison.

P30-: exemples structures de lewis.

P58: moment dipolaire.

P70-72: liaison ionique.

P72-75 : liaison métallique et estimation -> enthalpie de sublimation.

P77 : Champ cristallin, avec diverses valeurs en fonction de l'ion du d.o.

P80 : Keesom énergie expression.

P81: Debye et London.

P82 : Energie de VdW corrélé avec Tfus et Teb.

P83 : variation des températures de changement d'état en fonction de la période.

Miessler, Inorganic chemistry: 8/10

Chimie tout-en-un PC/PC* fosset 2014 : 7/10

P535 : orbitales des ligands plus donne les limites du programme.

P540: dessin de toutes les orbitales.

P541 : série spectrochimique.

P545 : remplissage électronique complexe de vaska.

P547: ligands pi donneur.

P549: ligands pi-accepteur.

P551-553: chatt dewar duncanson.

H prépa, tout en un PCSI 2010 : 9,5/10

En résumé : Pour une leçon de L1 voir L2 sur les forces intermoléculaires c'est une super référence.

Chap 11: liaisons faibles.

P330: interaction entre dipoles fixes.

P331 : quand les dipôles bougent.

P331 : effet de la polarisabilité.

P332 : dipôles instantanée et effet de la polarisabilité.

P335 : influence de la polarité sur Teb.

P336 : changement d'état et liaison intra.

P337 : solubilité.

P341 : effet de liaisons faible intra sur l'acidité et sur l'infrarouge.

P342 : effet sur la viscosité masse volumique...

Cours de Martin sur les complexes.

Cours de Martin chimie orbitalaire.

De belles images d'orbitales. Du slater, les approximations usuelles. Des courbes de recouvrements. Wolfsberg-Helmotz. Approche perturbative. Interaction à trois orbitales avec schéma. De la réactivité et des complexes.

Chimie3, Burrows:

P258: Triangle de Van Arkel Ketalaar.

P1196 p type de liaison en fonction de l'oxyde, fluorure.

Chimie inorganique, Housecroft: 7,8/10

P260-280 : des enthalpies de dissociation des liaisons hydrogènes, et autres concepts sympas sur la liaison H.

Chimie inorganique, Huheey, keiter: 8/10

En résumé : Que ce soit sur ce chapitre ou d'une manière générale ce bouquin est assez atypique.

CHap 8: les forces chimiques.

P291: rayons ioniques et covalents.

P292: tableau de valeur rayon ion, cov et VdW (avec source)

P293 : rayon de VdW et cov sur un schéma.

P294 : longueur de liaison vs somme de rayon covalent. (pertinence du modèle)

P295 : proposition de correction pour la longueur de liaison.

P300 : tableau récap des intearctions chimiques et évolution en r^n.

P301 : comparaison quantitative de liaison hydrogènes.

P305: Les chlarates.

Cours de chimie minérale, Maurice Bernard: 7,5/10

En résumé : des schémas et des concepts assez inédits.

P20 : variation des énergies des orbitales atomiques.

P35 : triangle de Van Arkel Ketalaar avec examples.

P41 hypervalence.

P70 : diatomique O2, O2+... évolution de la distance de liaison.

Chemical bondings in solids, Burdett:

P25 : effet jahn-teller sur le butadiène.

Cours de chimie 1ere année, Bottin Mallet : 7,5/10 :

Chapitre 1 : reprends pas mal de concepts liés aux liaisons intra et inter mais sur le cas de l'eau. Avec des valeurs numériques.

Des matériaux, 3ème édition, Baïlon :

P63: triangle de Van Arkel Ketalaar en 3D (inclus les liaisons faibles).

https://www.meta-synthesis.com/webbook/37_ak/triangles.php

Triangle de Van Arkel Ketalaar : covalent vs ionique vs métallique

https://www.lct.jussieu.fr/pagesperso/orbimol/fr/index-fr.shtml ORBIMOL

https://culturesciences.chimie.ens.fr/thematiques/chimie-du-vivant/les-forces-de-van-der-waals-et-le-gecko_pour le Gecko.