Data Science Modelling with Regression

Alexandra Posekany

Summerschool 2023

Linear Regression - simple univariate model

(linear) regression models the dependence between

- ▶ a **dependent** numeric variable, **regressand** *Y*, and
- one or more independent explanatory numeric variables, regressor(s) X, X

Mathematically, the simple linear regression model is

$$y_i = \alpha + \beta x_i + \varepsilon_i$$

- lacktriangle lpha and eta are unknown parameters of the population
- \triangleright ε_i are iid errors with mean 0 and a common unknown variance σ^2 (no heteroscedasticity).

Visualising Correlation

Root and Polynomials

```
ggplot(dfpoly,aes(x=x,y=ypoly,col=gr)) + geom_smooth(meth
## `geom_smooth()` using formula = 'y ~ x'
```


Non-linear Transformations

 \triangleright E_i are a **exponential** transformation of data X_i , if

$$E_i = exp(X_i)$$

 $ightharpoonup L_i$ are a **logarithmic** transformation of data X_i , if

$$L_i = log(X_i)$$

These two transformations form the bridge between the class of exponential models

$$Y_i = C \cdot exp(\beta \boldsymbol{X}_i) \cdot \epsilon_i$$

and linear models

Non-linear Transformations of Exponential function to linear

Which line is the "right" line?

Different Regression of Y onto X (red) and X onto Y (green).

CEO regression with confidence bands

 $\hat{\alpha} = 242.702 \text{ [168.760]}, \quad \hat{\beta} = 3.133 \text{ [3.226]}.$

Confidence and Prediction bands

Leverage

Leverage

Leverage points are observations made at extreme or outlying values of the independent variables \boldsymbol{X} which therefore have large influence on the slope of the regression line β .

Linear Regression - multiple model

Mathematically, the simple linear regression model is

$$y_i = \alpha + \beta_1 x_{1,i} + \ldots + \beta_k x_{k,i} + \varepsilon_i$$

in the notation of vectors and matrices this model corresponds to

$$\mathbf{y} = \mathbf{X}\boldsymbol{\beta} + \boldsymbol{\varepsilon}$$

- \blacktriangleright μ and the α_i are unknown parameters of the population
- $ightharpoonup \epsilon_{ij}$ are iid errors with mean 0 and a common unknown variance σ^2 (no heteroscedasticity).
- ▶ in case of multivariate X, the columns of $x_{k,.}$ have to be stochastically independent

Tree based method

Machine Learning and types of Learning

Creating models based on data has two main goals: - learning relations between the variables in the models and their structure - predicting future data based on previous one

In **Machine Learning** these approaches are often split dependent on the amount of knowledge and data available on the process you wish to learn about or predict:

- supervised learning (all outcomes are already know for training the algorithm)
- semi-supervised learning (some outcomes are already know for training the algorithm, other training data or validation data have no outcomes known in advance)
- unsupervised learning (what is to be learned be the algorithm is not available as previous data, because it is unknown, unmeasurable etc.)

Concepts of Classification

Concepts of Classification

k Nearest Neighbours

Perceptron = Single-Layer aNN

k means Clustering

