

Master in Computer Vision Barcelona

Module: 3D Vision

Project: 3D recovery of urban scenes Session4

Original Lab: Pedro Cavestany

Modifications: Daniel Odoñez - daniel.ordonez@upc.edu

Goal

Reconstruction of 3D scenes from two images (known internal parameters)

Mandatory Tasks:

•	Tria	ngulation with the homogeneous algebraic method	(2.0)
	Reconstruction from two views:		
	\circ	Estimation of the Fundamental and Essential Matrix between two	
		cameras	(2.0) (2.0) (0.5)
		Estimate both Camera Matrices	(2.0)
	\circ	Computation of reprojection error	(0.5)
	 Computation of reprojection error Depth map computation using local methods 		
	0	SSD Cost	(2.0)
	\circ	NCC Cost	(1.0) (2.0)
	0	Adaptive support weights	(2.0)

Goal

Reconstruction of 3D scenes from two images (known internal parameters)

Optional Tasks:

- Depth map computation by plane sweep (+1.5)
- New view synthesis: using view morphing (+1.5)
- Depth map fusion review (old and new) (+2.0)

Organized notebook/code and good code/mathematical notation (+1.0)

Assignment

- Code is provided in python in a jupyter notebook.
- Auxiliary functions and algorithms are provided on additional modules. Deliver before 9AM of the next lab session.

Deliverables

- **Jupyter notebook:** ready to run.
 - Document your code and decisions on markdown.
 - Be clear of what information is assumed/required for each algorithm/operation.
 - Understand the equations do not just reproduce them from the slides.

Report:

- Short report.
- In depth analysis.
- Do not paste code in report. I am interested in analysis and justification.
- Problems and comments.
- You can use the notebook as a report **IFF** you format the notebook appropriately.

Triangulation

Reconstruction from two views Fundamental/Essential Matrices

1981 by H. Christopher Longuet-Higgins

Reconstruction from two views Fundamental/Essential Matrices

Reconstruction from two views Estimate Camera Matrices

Multiple cost metrics including: Sum of Squared Differences (SSD) and Normalized Cross Correlation (NCC).

Test quantitatively with: Middlebury images

(a) Reference image.

(b) Target image.

(c) Ground-truth disparity map.

Focal length and baseline of the camera configuration is available at: https://vision.middlebury.edu/stereo/data/scenes2014/ you might need them (?)

Test qualitatively on Castle facade images (rectified)

Effect of the window size

L. F. Julià, P. Monasse. Bilaterally Weighted Patches for Disparity Map Computation. Image Processing On Line, 2015.

Depth map computation

Local methods on rectified images Adaptive Support Weights

Optional Points

Find details on the Notebook.