(2.a) INTRODUCCIÓN A LA FORMULACIÓN DE MODELOS LINEALES

Cap. 2,3 "AMPL: A Modeling Language for M.P." Fourer, Gay, Kernighan□ Cap 3 "Introduction to Operations Research" Hillier, Lieberman□

- PROBLEMAS DE PROGRAMACIÓN LINEAL. Función objetivo y restricciones.
- HIPÓTESIS DE MODELIZACIÓN. Ejemplos: problema de producción, problema de dietas.
- INTRODUCCIÓN AL LENGUAJE ALGEBRAICO AMPL.
 Características del lenguaje.
 Declaración de parámetros, variables,
 restricciones y función objetivo.
 El entorno AMPL Plus.

Ciclo metodológico de la I.O.

Modelo Matemático; Optimización

Max (Min):
$$f_0(x_1, x_2, ..., x_n)$$
 función objetivo
s. a: $f_1(x_1, x_2, ..., x_n) \le 0$
 \vdots $f_k(x_1, x_2, ..., x_n) \ge 0$
 \vdots $f_m(x_1, x_2, ..., x_n) = 0$

- $f_j(x_1, x_2, ..., x_n)$ lineal, no lineal
- x_i continua o discreta (entera) ∀i

variables de decisión

PROBLEMAS DE PROGRAMACIÓN LINEAL

Función objetivo: $f_0(x_1,...,x_n) = c_1x_1 + ... + c_nx_n$, lineal.

Restricciones: $f_j(x_1, ..., x_n) = a_{j1}x_1 + ... + a_{jn}x_n - b_j$, afines. j = 1, 2, ..., m.

$$Min_x$$
 $c_1x_1 + ... + c_nx_n$

$$s.a: a_{11}x_1 + \dots + a_{1n}x_n \ge b_1$$

. . .

$$a_{p1}x_1 + \dots + a_{pn}x_n \ge b_p$$

$$d_{11}x_1 + \dots + d_{1n}x_n \le e_1$$

. . .

$$d_{q1}x_1 + \dots + d_{qn}x_n \le e_q$$

$$g_{11}x_1 + \dots + g_{1n}x_n = h_1$$

• • •

$$g_{r1}x_1 + \dots + g_{rn}x_n = h_r$$

NOTACIÓN MATRICIAL

$$Min_x$$
 $c^{\top}x$

$$s.a: Ax \geq b$$

$$Dx \leq e$$

$$Gx = h$$

Problema de producción

Se deben decidir las cantidades $x_i \ge 0$, i = 1, ..., n a producir de n productos.

El beneficio unitario de cada producto es c_i , i = 1, ..., n.

Beneficio total: $c_1x_1 + ... + c_nx_n$ (maximizar)

Se dispone de m recursos en cantidades b_j , j = 1, 2, ..., m.

Cada unidad del producto i consume a_{ij} unidades del recurso j:

Consumo de recurso $j = a_{j1}x_1 + ... + a_{jn}x_n \le b_j = \text{Cantidad de recurso } j$

$$Max_{x}$$
 $c_{1}x_{1} + ... + c_{n}x_{n}$
 $s.a:$ $a_{11}x_{1} + ... + a_{1n}x_{n} \leq b_{1}$ Max_{x} $c^{\top}x$
 $...$ $s.a:$ $Ax \leq b$
 $a_{m1}x_{1} + ... + a_{mn}x_{n} \leq b_{m}$ $x \geq 0$
 $x_{1}, ..., x_{n} > 0$

HIPÓTESIS BÁSICAS en P.P.L.

En el problema de producción:

ADITIVIDAD:

F.obj: el beneficio total es la suma de los beneficios parciales por cada producto.

Restricciones: el consumo total de un recurso es la suma de los consumos parciales por cada producto.

PROPORCIONALIDAD:

F.obj: cada beneficio parcial $c_i x_i$ es proporcional a la cantidad de producto x_i . Restricciones: el consumo parcial $a_{ji} x_i$ de un recurso j por la cantidad x_i es proporcional a x_i

Fabricación de pienso para ganado

Se debe fabricar alimento para ganado con unos requerimientos mínimos de m nutrientes básicos. (vitaminas, hidratos de carbono, sales, etc.)

 b_i - cantidad mínima del nutriente básico j.

Se deben comprar n alimentos en cantidades x_i , i = 1, 2, ..., n. El precio unitario del alimento i es c_i .

Desembolso total: $c_1x_1 + ... + c_nx_n$ (minimizar)

La cantidad de nutriente básico j del alimento i es a_{ij} .

$$=a_{j1}x_1+\ldots+a_{jn}x_n\geq b_j=$$
 Cantidad mínima de nutriente básico

$$Min_{x}$$
 $c_{1}x_{1} + ... + c_{n}x_{n}$
 $s.a:$ $a_{11}x_{1} + ... + a_{1n}x_{n} \ge b_{1}$ Min_{x} $c^{\top}x$
 $...$ $s.a:$ $Ax \ge b$
 $a_{m1}x_{1} + ... + a_{mn}x_{n} \ge b_{m}$ $x \ge 0$
 $x_{1}, ..., x_{n} > 0$

Transparencias de clase. Prof. E.Codina

LENGUAJES ALGEBRAICOS PARA OPTIMIZACIÓN: AMPL

- Los lenguajes algebraicos permiten formular modelos de optimización comúnmente usados en I.O.
- Están orientados al desarrollo de modelos.
- Las formulaciones son: inteligibles por otros usuarios y fácilmente ampliables y modificables.
- Utilizan otros programas para resolver los modelos (SOLVERS)
- Proporcionan entornos (AMPL Plus) que permiten manipular, controlar y depurar los modelos.
- El lenguaje AMPL es uno de los mejor surtidos en cuanto a potencialidades. Otros lenguajes: GAMS, CAMPS, LINGO.

(http://www.ampl.com/)

LENGUAJE AMPL: Características principales

- 1. Separación entre definición del modelo y datos que parametrizan el modelo: dimensiones, valores de parámetros etc.
- 2. Definición de conjuntos de índices y de productos cartesianos de conjuntos de índices.
- 3. Declaración de parámetros del problema y condiciones sobre los valores que pueden tomar.
- 4. Declaración de variables de decisión del modelo, de la función objetivo y de las restricciones.
- 5. Reoptimización tras un cambio de valor de alguno de los parámetros.
- 6. Congelar parte de las variables de decisión en la optimización.
- 7. Declaración de variables como enteras.
- 8. Declaraciones node, arc para problemas de flujos en redes.
- 9. Uso de diferentes solvers.

$$Max_x \sum_{\substack{i=1\\n}}^{n} c_i x_i$$

 $s.a: \sum_{\substack{i=1\\0 \le x_i \le u_i, i=1,2,...,n}}^{n} a_i x_i \le b$

$$\begin{array}{ccc} Max_x & c^{\top}x \\ s.a: & a^{\top}x \leq b \\ & 0 \leq x \leq u \end{array}$$

$$Max_x \sum_{i \in P} c_i x_i
s.a: \sum_{i \in P} a_i x_i \le b
0 \le x_i \le u_i, i \in P$$

$$P = \{1, 2, ..., n\}$$

 $P = \{ bandas, bobinas \}$

Parámetros:

- c Vector de costes
- a Vector de consumo de recursos
- b cantidad de recursos
- u vector de límites

Fichero prod.mod

```
set P:
                               Max_x \sum c_i x_i
param a {j in P};
                               s.a: \sum_{i \in P} \overline{a_i x_i} \le b
param b;
param c {j in P};
param u {j in P};
                                       0 < x_i < u_i, i \in P
var X {j in P};
maximize beneficio: sum {j in P} c[j] * X[j];
subject to tiempo: sum {j in P} a[j] * X[j]<=b;</pre>
subject to Limites {j in P}: 0 <= X[j] <= u[j];</pre>
```


Fichero prod.dat

```
set P := bandas bobinas;
param:    a    c    u :=
bandas    200    25    6000
bobinas    140    30    4000;
param b := 40;
```

```
set P := bandas bobinas;
param: a:= bandas 200 bobinas 140;
param: c:= bandas 25 bobinas 30;
param: u:= bandas 6000 bobinas 4000;
param b := 40;
```


sum {p in P} tasa[p,s]* X[p] <= recurso[s];</pre>

OPERACIONES EN EL ENTORNO AMPL Plus: CREAR UN PROYECTO: .mod + .dat

OPERACIONES EN EL ENTORNO AMPL Plus: Cargar modelo, datos y resolver el problema

OPERACIONES EN EL ENTORNO AMPL Plus:

 EXAMINAR EL MODELO CARGADO MAMPL Plus for Students File Edit View Run Proje ك بعد العالم 👫 Solver Status _ | _ | × | **3** AN DOOD DAT - | D | X | Model _ | | | | | | | | -Message XLSOL 1.03S: 🚉 E. Maximize: Subi to: Constraints Solve for: Variables Optimal solution found beneficio Limites tiempo **₩** M. -Model-in P); Filename: prod.sol Variables: Functions / Checks **Parameters** Sets in P); Constraints: 1 in P); Nonzeroes: 4 in P): Integers: beneficio: sum {i i Solvermaximize beneficio: sum{j in P} Data Branch: tiempo: sum {j in c[j]*X[j]; = 8.571428571428571Iteration: 1 Infeasibility: 0. expand; Objective: 8.571429 **& Commands** maximize beneficio: expand; maximize benef c 25*X['bandas'] + 30*X['bobinas']; 25*X['bandas'] + 30 "'bobinas']; s.t. tiempo: s.t. tiempo: 200*X['bandas'] + 140*X['bobinas' 200*X['bandas'] + 140*X['bobinas'] <= 40; s.t. Limites['bandas']: 0 <= X['bandas'] <= 6000;</pre> s.t. Limites['bandas']: s.t. Limites['bobinas']: 0 <= X['bobinas'] <= 4000;</pre> 0 <= X['bandas'] <= 6000;</pre> amp1: s.t. Limites['bobinas']: 0 <= X['bobinas'] <= 4000;</pre> KI (Denerici. qry) 🔁 🗀 🔼

SESION DE PROBLEMAS

En una empresa hay las siguientes necesidades de personal:

i	1	2	3	4	5	6
Período	2 - 6	6 - 10	10 - 14	14 - 18	18 - 22	22 - 2
N. mínimo	22	55	88	110	44	33

Cada persona trabaja 8 h consecutivas. Determinar el número de personas x_i , i = 1, 2, ..., 6 que deben iniciar su turno en el período i de forma que el número total sea mínimo.

$$Min_x$$
 $\sum_{i=1}^{6} x_i$
 $s.a:$ $x_6 + x_1 \ge 22$ Per. 1
 $x_1 + x_2 \ge 55$ Per. 2
 $x_2 + x_3 \ge 88$ Per. 3
 $x_3 + x_4 \ge 110$ Per. 4
 $x_4 + x_5 \ge 44$ Per. 5
 $x_5 + x_6 \ge 33$ Per. 6
 $x_i \ge 0$

 p_i Beneficio unitario por proceso i=1,2 $x_{A1}, x_{A2}, x_{B1}, x_{B2}$ =Cantidades de crudo A,B a proceso 1, 2 $\mathbf{x}_1, \mathbf{x}_2, \mathbf{y}_1, \mathbf{y}_2$ = Gasolinas X, Y producidas por los Procesos 1,2

Disponibilidad de Crudo A, B: $x_{A1} + x_{A2} \le 120$, $x_{B1} + x_{B2} \le 180$

Producción mínima de gasolina X,Y: $\mathbf{x}_1 + \mathbf{x}_2 \ge 2800$, $\mathbf{y}_1 + \mathbf{y}_2 \ge 2200$

$$3x_{A1} = x_{B1}, 2x_{B2} = x_{A2}$$

$$\mathbf{x}_{1} = \frac{50}{70} \frac{70}{4} (x_{A1} + x_{B1}), \, \mathbf{y}_{1} = \frac{20}{70} \frac{70}{4} (x_{A1} + x_{B1}),$$

$$\mathbf{x}_{2} = \frac{30}{110} \frac{110}{6} (x_{A2} + x_{B2}), \, \mathbf{y}_{2} = \frac{80}{110} \frac{110}{6} (x_{A2} + x_{B2})$$

$$\mathbf{x}_{1} + \mathbf{x}_{2} = 50x_{A1} + 15x_{B2}, \, \mathbf{y}_{1} + \mathbf{y}_{2} = 20x_{A1} + 40x_{B2}$$

$$Max_x$$
 $p_170x_{A1} + p_255x_{B2}$
 $s.a:$ $50x_{A1} + 15x_{B2} \ge 2800$
 $20x_{A1} + 40x_{B2} \ge 2200$
 $x_{A1} + 2x_{B2} \le 120$
 $3x_{A1} + x_{B2} \le 180$
 $x_{A1}, x_{B2} \ge 0$

Para valores de k > 180 las curvas de nivel de la f.obj. no intersectan la región factible:

k=180 es el mayor valor que puede alcanzar la f.obj. en la región factible.

Este valor se obtiene en el punto $x_A = (20,60)$:

ÓPTIMO (SOLUCIÓN) DE (P)

CONVEXIDAD de la REGIÓN FACTIBLE

Definición: Dados dos puntos x_1 , x_2 , el segmento abierto $x_1\bar{}x_2$ son los puntos x t.q.:

$$x = \alpha x^{1} + (1 - \alpha)x^{2}, \quad 0 < \alpha < 1$$

Definición de conjunto convexo. $C \subseteq \mathbb{R}^n$ es convexo si, $\forall x_1, x_2 \in C$, el segmento abierto $x_1 \bar{} x_2 \subset C$

Supongamos $F = \{ x \in \mathbb{R}^n \mid Ax \ge b \}$, (o $Ax \le b$, o Ax = b)

F es un conjunto convexo

$$Ax^{1} \ge b$$

$$A(\alpha x^{1} + (1 - \alpha)x^{2}) =$$

$$= \alpha Ax^{1} + (1 - \alpha)Ax^{2} \ge \alpha b + (1 - \alpha)b = b, \quad (\le, =)$$

$$x_1 + x_2 \le 1$$

Vértices de un conjunto convexo

 \hat{x} es un vértice de $C \subset \mathbb{R}^n$, convexo, si $\forall x_1, x_2 \in \mathbb{R}^n$ tales que $\hat{x} \in x_1 \bar{x}_2$:

 $x_1 \notin C$, o $x_2 \notin C$, o ambos

$$(x_1 - 1)^2 + (x_2 - 1)^2 \le 1$$

 $(x_1 - 1)^2 + (x_2 - 1)^2 \ge \frac{1}{2}$

$$x_1 + x_2 \le 1$$

NO TODOS LOS CONVEXOS TIENEN VÉRTICES

Transparencias de clase. Prof. E.Codina

FORMA STANDARD DE UN P.P.L.

Tras transformaciones, todo P.P.L. puede expresarse de la forma:

$$Min_{x}$$
 $c_{1} \cdot x_{1} + ... + c_{n} \cdot x_{n}$
 $s.a:$ $a_{11} \cdot x_{1} + ... + a_{1n} \cdot x_{n} = b_{1}$
 $a_{21} \cdot x_{1} + ... + a_{2n} \cdot x_{n} = b_{2}$
 $...$
 $a_{m1} \cdot x_{1} + ... + a_{mn} \cdot x_{n} = b_{m}$
 $x_{1} \geq 0, ... x_{n} \geq 0$

$$Min_{x} \quad c^{\top}x$$

$$s.a: \quad Ax = b$$

$$x \geq 0$$

$$(m \leq n)$$

- Todas las variables x_i están sujetas a $x_i \ge 0$, i = 1, 2, ... n
- Todos los términos de la derecha b_i son no negativos: $b_i \ge 0$, i = 1, 2, ... m
- La matriz de coeficientes A es de pleno rango:

Hay m columnas de A tales que al formar una matriz B con ellas, ésta es inversible.

Todos los paquetes para P.L. convierten automáticamente a la forma Standard

$$\begin{array}{cccc} Min & c^{\top}x \\ (P) & s.a: & Ax = b & \leftarrow F \text{ en F.S.} \\ & x \geq 0 \end{array}$$

Teorema Fundamental de la P.L.

- 1. Si $F \neq \emptyset \Rightarrow$ existe al menos una s.b.f.
- 2. Si (P) posee solución entonces hay una solución de (P) que es s.b.f.

Una estrategia para resolver el P.P.L. consiste en:

- **1.** Determinar si $F=\emptyset$.
- 2. En caso contrario, determinar una s.b.f. (vértice) de F inicial
- 3. Visitar s.b.f's hasta encontrar una que sea solución de (P)
- 4. Determinar si la s.b.f. solución es única o existen otras soluciones.