

Modelo de Crecimiento Leslie (Modelo post-breeding)

Planteamiento del problema

Estamos considerando una población que vive un total de tres años y para ello hemos observado y separado una muestra de 1000 individuos nacidos este año.

Tras un primer año nos encontramos con sólo 570 individuos de los originales junto con 10 individuos nuevos. Con el fin de simplificar el análisis estos individuos nuevos se retiraron.

Tras pasar otro año, nos vamos a encontrar 430 individuos de los originales junto con 240 individuos nuevos, crías de los anteriores, que también serán retirados. Después del tercer año el resto de los individuos originales han muerto y solamente se han encontrado 1230 crías de los anteriores.

Objetivo

Pretendemos hacer la siguiente simulación:

Introducimos 2900 individuos distribuidos de la siguente forma: 300 crías, 600 jovenes (segundo año) y 2000 adultos (tercer año), y los dejamos evolucionar libremente.

- Se llama tasa de supervivencia, s_x a la fracción individuos de un estadio x que sobreviven al siguiente periodo.
- Se llama tasa de fertilidad f_x al número medio de individuos nuevos por progenitor del periodo x, que sobreviven al siguiente periodo.

Llamando a los estadios c(=crías), j(=jovenes) y a(=adultos), queda...

$$\begin{vmatrix} s_c = \frac{570}{1000} = 0.57 & s_j = \frac{430}{570} = 0.754 & s_a = \frac{0}{430} = 0 \end{vmatrix}$$

$$f_c = \frac{10}{1000} = 0.01 \quad f_j = \frac{240}{570} = 0.421 \quad f_a = \frac{1230}{430} = 2.86$$

Desarrollo manual.

$$s_c = \frac{570}{1000} = 0.57$$
 $s_j = \frac{430}{570} = 0.754$ $s_a = \frac{0}{430} = 0$

$$f_c = \frac{10}{1000} = 0.01$$
 $f_j = \frac{240}{570} = 0.421$ $f_a = \frac{1230}{430} = 2.86$

Partimos de 300 crías, 600 Jovenes y 2000 adultos.

- ullet 300 Crías \longrightarrow 171 Jóvenes y 3 Crías.
- ullet 600 Jóvenes ightarrow 452.6 Adultos y 252.6 crías.
- 2000 Adultos → 5720.9 Crías.

Total después de un periodo:

Crias
$$\longrightarrow$$
 3 + 252.6 + 5720.9 = 5976.6, Jovenes \longrightarrow 171, Adultos \longrightarrow 452.6, Total \longrightarrow 5976.6 + 171 + 452.6 = 6600, 2 Razon de crecimiento = 2.28 (128%).

Simulación con ordenador

Inicial	1000	570	430
Hijos	10	240	1230

1

Periodo

	Cría	Joven	Adulto
Supervivencia	0,570	0,754	0
Fertilidad	0,01	0,421	2,860

Cría	300	5976,6	1426,5	1817,6	7711,7	2267,9	4109,2	10071	3876,5	7510,1	13393
Joven	600	171,0	3406,6	813,1	1036,1	4395,7	1292,7	2342,2	5740,4	2209,6	4280,7
Adulto	2000	452,6	129,0	2569,9	613,4	781,6	3316,0	975,2	1767,0	4330,4	1666,9
Total	2900	6600,2	4962,1	5200,7	9361,2	7445,2	8718,0	13388	11384	14050	19340
Tasa		2.28	0.75	1.05	1.80	0.80	1.17	1.54	0.85	1.23	1.38

100	101	102
2,6E+09	3,0E+09	3,5E+09
1,3E+09	1,5E+09	1,7E+09
8,5E+08	9,8E+08	1,1E+09
4,8E+09	5,5E+09	6,3E+09
1,14958	1,14954	1,1495

Evolución del porcentaje de individuos

Adulto
Joven
Cría

Distribución asintótica.

	Unitario	%
Cría	0,5491	54,9
Joven	0,2723	27,2
Adulto	0,1787	17,9
	•	

Tasa 14,96%

Comportamiento asintóticamente autosemejante.

10

Descripción matricial del modelo.

Sea

 $c_n = n^{\underline{o}}$ de individuos del primer estadio en el *n*-ésimo periodo. $j_n = n^{\underline{o}}$ de individuos del segundo estadio en el *n*-ésimo periodo. $a_n = n^{\underline{o}}$ de individuos del tercer estadio en el *n*-ésimo periodo.

Entonces

$$\begin{cases} c_{n+1} = 0.01c_n + 0.421j_n + 2.86a_n \\ j_{n+1} = 0.57 c_n \\ a_{n+1} = 0.754 j_n \end{cases}$$

Matricialmente...

$$\begin{pmatrix} c_{n+1} \\ j_{n+1} \\ a_{n+1} \end{pmatrix} = \begin{pmatrix} 0.01 & 0.421 & 2.86 \\ 0.57 & 0 & 0 \\ 0 & 0.754 & 0 \end{pmatrix} \begin{pmatrix} c_n \\ j_n \\ a_n \end{pmatrix}$$

Sistema dinámico matricial

Sea

$$\vec{p}_n = \left(\begin{array}{c} c_n \\ j_n \\ a_n \end{array}\right)$$

У

$$L = \left(\begin{array}{ccc} 0.01 & 0.421 & 2.86 \\ 0.57 & 0 & 0 \\ 0 & 0.754 & 0 \end{array}\right)$$

entonces

$$\vec{p}_{n+1} = L \, \vec{p}_n, \ \vec{p}_0 = \begin{pmatrix} 300 \\ 600 \\ 2000 \end{pmatrix}$$

Modelo general de Leslie.

Son sistemas de la forma

$$\vec{p}_{n+1} = L \, \vec{p}_n,$$

donde L es una matriz cuadrada que tiene entradas.

$$A = \begin{pmatrix} f_1 & f_2 & \cdots & f_{k-1} & f_k \\ s_1 & 0 & \cdots & 0 & 0 \\ 0 & s_2 & \ddots & 0 & 0 \\ \vdots & \vdots & \ddots & \ddots & \vdots \\ 0 & 0 & 0 & s_{k-1} & 0 \end{pmatrix}$$

donde $f_i \geq 0$ es el número medio de crías hembras que tiene cada hembra del grupo i (la llamada tasa de fertilidad), y $0 < s_i \leq 1$ es la probabilidad de que un individuo del grupo i sobreviva al siguiente (la tasa de supervivencia del grupo).