北京师范大学 2023-2024 学年第一学期代数学基础 I 期末考试题

课程名称:	代数学基础 I					任课老师姓名:				
卷面总分:	100	_ 分	考证	式时长: _	120	_ 分钟	考试	类别:	闭卷	
院 (系):			专	亦:			年	级: _		
姓 名:			学	号:			_			

一. (18) 对于下列线性方程组, 通过求出特解 γ_0 和导出组的解空间得到线性方程组的全部解.

$$\begin{cases} x_1 - x_2 - 3x_3 + x_4 - 3x_5 = 2\\ 2x_1 - 3x_2 - 4x_3 + 4x_4 + 2x_5 = 7\\ 9x_1 - 9x_2 - 24x_3 + 7x_4 - 26x_5 = 25 \end{cases}$$

- 二. (18 分) 设 $f_1(x), f_2(x), \dots, f_s(x) \in \mathbb{F}[x]$ 且 $(f_1(x), f_2(x), \dots, f_s(x)) = D(x)$. 对于 $A \in M_n(\mathbb{F})$, 令 $B = \begin{pmatrix} f_1(A) \\ \vdots \\ f_s(A) \end{pmatrix}$, C = D(A), 证明齐次线性方程组 BX = O 和 CX = O 等价.
- 三. (16 分) 设 f(x) 是 $\mathbb{Q}[x]$ 中的三次首一多项式,且满足 $(x-1)^2 | f(x) + 1$, $(x+1)^2 | f(x) 3$, 求 出 f(x) 并判断 f(x) 在 $\mathbb{Q}[x]$ 中是否可约 (要求说明理由).
- **四.** (16 分) 设向量空间 $V = \mathbb{Q}[x]$, 对于 V 中的向量

$$f(x) = x^3 + x^2 - x - 1,$$
 $g(x) = 2x^3 - 2x^2 + x - 1.$

 $\diamondsuit V_1 = f(x)\mathbb{Q}[x], V_2 = g(x)\mathbb{Q}[x].$

- (1) 证明 V_1, V_2 是 V 的子空间, 并求出 $V_1 + V_2, V_1 \cap V_2$.
- (2) 判断是否有 $V_1 \cong V_2$, 并证明你的结论.
- **五.** (16 分) 设 $V = M_n(\mathbb{R})$, V_1 是 V 中全体对称阵的集合, V_2 是 V 中全体幂零上三角阵的集合, 则 V_1, V_2 是 V 的子空间.
 - (1) 证明: $V = V_1 \oplus V_2$.
 - (2) 若 W 是 V 的一个幂零子空间 (即 W 是 V 的子空间且 W 中的向量均是幂零矩阵), 证明: $\dim(W) \leq \frac{n(n-1)}{2}$.
- 六. (16 分) 设向量组 $\alpha_1, \dots, \alpha_r$ 是向量组 $I = \{\alpha_1, \dots, \alpha_m\}$ 的一个极大线性无关部分组. 对于向量组 $II = I \setminus \{\alpha_1, \dots, \alpha_r\}$,若 II 中每个向量都只出现在 I 的一个极大线性无关部分组中,证明: $\mathbf{r}(II) = 1$,且存在 $\alpha_i \in \{\alpha_1, \dots, \alpha_r\}$,使得 $\alpha_i = k_i \alpha_i$, $i = r+1, \dots, m$.