A Brief Analysis of SLAVC method for Sound Localization

Xavier Juanola Molet Gloria Haro

Index

Index

Fundamental aspect of human perception

- Navigate our environment
- Communicate
- Respond to potential threats

Hershey and Movellan [1], Fisher et al. [2] and Kidron et al. [3]

Arandjelovic and Zisserman [4] Senocak et al. [5] and Hu et al. [6]

Model based correspondences between visual features and audio features

Used Contrastive Learning to localize objects aligning visual and audio representations

Index

SLAVC

Simultaneous Localization and Audio-Visual Correspondence

Overfitting ———— Heavy visual **dropout** + Momentum encoders

Simultaneous Localization and Audio-Visual Correspondence (Ours)

Simultaneous Localization and Audio-Visual Correspondence (Ours)

SLAVC

Overfitting

Heavy visual dropout + Momentum encoders

1. Visual Sound Localization Term

Simultaneous Localization and Audio-Visual Correspondence

SLAVC

Overfitting

Heavy visual dropout + Momentum encoders

1. Visual Sound Localization Term

Hallucinating visible sound objects

2. Audio - Visual Correspondence Term

Pixel-wise

AV similarity

Prediction

Мар

SLAVC

Hallucinating visible sound objects $P^{SLAVC}(a_i, v_j^{xy}) = P^{loc}(a_i, v_j^{xy}) \cdot P^{avc}(a_i, v_j^{xy})$ Heavy visual dropout + Momentum encoders

1. Visual Sound Localization Term

2. Audio - Visual Correspondence Term

SLAVC Hallucinating visible sound objects Heavy visual dropout + Momentum encoders 1. Visual Sound Localization Term 2. Audio - Visual Correspondence Term $P^{SLAVC}\left(a_i, v_j^{xy}\right) = P^{loc}\left(a_i, v_j^{xy}\right) \cdot P^{avc}\left(a_i, v_j^{xy}\right)$ $S_{VSL}^{xy} = \alpha S_{SLAVC}^{xy} + (1 - \alpha) S_{OGL}^{xy}$

Index

3. DEMO

A Closer Look at Weakly-Supervised Audio-Visual Source Localization demo

Article Demo Archive

Please cite the reference article if you publish results obtained with this online demo.

Description

Demo of the paper 'A Closer Look at Weakly-Supervised Audio-Visual Source Localization'.

Select input(s) 1 Upload data

Input(s) Parameters Restablecer alpha 0,5 Max: 1 Min: 0

Run

Level of importance of SLAVC with respect of OGL in VSL. VSL(x,y) = alpha * SLAVC(x,y) + (1 - alpha) * OGL(x,y)

feeds & twitter • sitemap • contact • privacy policy • ISSN: 2105-1232 • DOI: 10.5201/ipol IPOL and its contributors acknowledge support from September 2010 to August 2015 by the European Research Council (advanced grant Twelve Labours n°246961). IPOL is also supported by ONR grant N00014-14-1-0023, CNES (MISS project), FUI 18 Plein Phare project, and ANR-DGA project ANR-12-ASTR-0035. IPOL is maintained by Centre Borelli, ENS Paris-Saclay, DMI, Universitat de les Illes Balears, and Fing, Universidad de la República.

© IPOL Image Processing On Line & the authors

| Comparison of the Council Council

3. DEMO

Upload image and audio file

A Closer Look at Weakly-Supervised Audio-Visual Source Localization demo

Select pair of image audio from the ones provided

Please cite the reference article if you publish results obtained with this online demo.

Description

Article Demo Archive

Demo of the paper 'A Closer Look at Weakly-Supervised Audio-Visual Source Localization'.

Select input(s) 1 Upload data

ACCESS & OPEN SOURCE OPEN DATA

Run

Select α value:

$$S_{VSL}^{xy} = \alpha \cdot S_{SLAVC}^{xy} + (1 - \alpha) \cdot S_{OGL}^{xy}$$

Input(s)

Run the demo

Parameters Restablecer

alpha

0,5

Max: 1

Max: 1 No. 2 Level of importance of SLAVC with respect of OGL in VSL. VSL(x,y) = alpha * SLAVC(x,y) + (1 - alpha) * OGL(x,y)

feeds & twitter • sitemap • contact • privacy policy • ISSN: 2105-1232 • DOI: 10.5201/ipol IPOL and its contributors acknowledge support from September 2010 to August 2015 by the European Research Council (advanced grant Twelve Labours n°246961). IPOL is also supported by ONR grant N00014-14-1-0023. CNES (MISS project), FUI 18 Plein Phare project, and ANR-DGA project ANR-12-ASTR-0035. IPOL is maintained by Centre Borelli, ENS Paris-Saclay, DMI, Universitat de les Illes Balears, and Fing, Universidad de la Republica.

© IPOL Image Processing On Line & the authors

3. DEMO

Results

Input

Simultaneous Localization and Audio-Visual Correspondence (SLAVC)

Object Guided Localization (OGL)

Visual Sound Localization (VSL)

Compare

Input

Simultaneous Localization and Audio-Visual Correspondence (SLAVC)

> Object Guided Localization (OGL)

Visual Sound Localization (VSL)

Zoom 1x

Colorbar

Zoom 1x

Index

- 1. Impact of α
- 2. Easy cases
- 3. Difficulties on Visual Sound Localization
 - 3.1 Mixture of sounds
 - 3.2 Small objects
 - 3.3 Silent objects
 - 3.4 Off-screen sounds
 - 3.5 Different objects of the same type

Impact of α

$$S_{VSL}^{xy} = \alpha S_{SLAVC}^{xy} + (1 - \alpha) S_{OGL}^{xy}$$

$$\alpha = 0.10$$

 $\alpha = 0.25$

 $\alpha = 0.75$

 $\alpha = 0.90$

Easy cases

Difficult cases:

1. Mixture of sounds

Difficult cases:

2. Small objects

Difficult cases:

3. Silent objects

Difficult cases:

4. Off-screen sounds

Difficult cases:

5. Different objects of the same type

Index

5. PROPOSED IMPROVEMENTS

- Good results on many cases
- Mixture of sounds
- X Small objects
- X Silent objects
- Off-screen sounds
- Different objects of the same type

- Image → Videos → Learn motion cues
- 2. Audio and Visual prototypes used to define proper filters to be applied in the localization map (Liu et al. [8]

Bibliography

- 1. John Hershey and Javier Movellan, Audio vision: Using audio-visual synchrony to locate sounds, in Advances in Neural Information Processing Systems, S. Solla, T. Leen, and K. M"uller, eds., vol. 12, MIT Press, 1999.
- 2. John W Fisher III, Trevor Darrell, William Freeman, and Paul Viola, Learning joint statistical models for audio-visual fusion and segregation, Advances in neural information processing systems, 13 (2000)
- 3. Einat Kidron, Yoav Y Schechner, and Michael Elad, Pixels that sound, in 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05), vol. 1, IEEE. 2005, pp. 88–95.
- 4. Relja Arandjelovic and Andrew Zisserman. 2017. Look, listen and learn. In ICCV
- 5. Arda Senocak, Tae-Hyun Oh, Junsik Kim, Ming-Hsuan Yang, and In So Kweon, Learning to localize sound source in visual scenes, in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018, pp. 4358–4366.
- 6. Di Hu, Feiping Nie, and Xuelong Li, Deep multimodal clustering for unsupervised audiovisual learning, in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2019, pp. 9248–9257.
- 7. Di Hu, Rui Qian, Minyue Jiang, Xiao Tan, Shilei Wen, Errui Ding, Weiyao Lin, and Dejing Dou, Discriminative sounding objects localization via self-supervised audiovisual matching, Advances in Neural Information Processing Systems, 33 (2020), pp. 10077–10087.
- 8. Xian Liu, Rui Qian, Hang Zhou, Di Hu, Weiyao Lin, Ziwei Liu, Bolei Zhou, and Xiaowei Zhou, Visual sound localization in the wild by cross-modal interference erasing, in Proceedings of the AAAI Conference on Artificial Intelligence, vol. 36, 2022, pp. 1801–1809.

Questions?

