| Reg.No |  |  |  |  |  |
|--------|--|--|--|--|--|



## MANIPAL INSTITUTE OF TECHNOLOGY MANIPAL UNIVERSITY, MANIPAL - 576 104



## FIRST SEMESTER B.E DEGREE MAKEUP EXAMINATION - January, 2009

## **SUB: ENGG.MATHEMATICS I ( MAT – 101)** (REVISED CREDIT SYSTEM)

Time: 3 Hrs. Max.Marks: 50

- Note: a) Answer any FIVE full questions. b) All question carry equal marks.
- Find the n<sup>th</sup> derivative of 1A.

(i) 
$$\frac{x^2 - x - 1}{2x^3 + 5x^2 + 4x + 1}$$

- (ii)  $y = \sinh 2x \cos^2 x$
- Trace the following curve with explanation  $3ay^2 = x (x a)^2$ . 1B.
- A plane meets the coordinate axes at A, B, C such that the centroid of the triangle 1C. ABC is the point (a, b, c). Show that the equation of the plane is  $\frac{x}{a} + \frac{y}{b} + \frac{z}{c} = 3$ .
- If  $y = (x^2 1)^n$ , prove that  $(x^2 1)y_{n+2} + 2xy_{n+1} n(n+1)y_n = 0$ 2A.
- Obtain the reduction formula for  $\int \sin^m x \cos^n x dx$  and hence evaluate 2B.  $\int_{a}^{\pi/2} \sin^{m} x \cos^{n} x dx \text{ for all positive integers m and n.}$
- Show that the lines  $\frac{x+4}{3} = \frac{y+6}{5} = \frac{z-1}{-2}$  and 3x 2y + z + 5 = 0 = 2x + 3y + 4z 42C. are coplanar. Find their point of intersection and the plane in which they lie. (4 + 3 + 3)
- Find the nature of the series 3A.

(i) 
$$1 + \frac{3}{7} + \frac{3.6}{7.10} + \frac{3.6.9}{7.10.13} + \dots$$

$$1 + \frac{3}{7} + \frac{3.6}{7.10} + \frac{3.6.9}{7.10.13} + \dots$$
 (ii)  $1 + \frac{x}{2} + \frac{2!}{3^2}x^2 + \frac{3!}{4^3}x^3 + \dots$ 

Sketch and find the area bounded by the curve  $x = a (\theta + \sin \theta)$ , y a  $(1 - \cos \theta)$  and 3B. it base.

3C. Find the evolute of 
$$2xy = a^2$$
.

$$(4+3+3)$$

4A. Evaluate:

(i) 
$$\lim_{x\to 0} \frac{x\cos x - \log(1+x)}{x^2}$$

(ii) 
$$\lim_{x\to 0} \left( \frac{a^x + b^x + c^x + d^x}{4} \right)^{1/x}$$

- 4B. Find the angle between the curves  $r^m = a^m \cos m\theta$ ,  $r^m = a^m \sin m\theta$ , a > 0
- 4C. The radius of a normal selection of a right circular cylinder is 2 units, the axis lies along the straight line  $\frac{x-1}{2} = \frac{y+3}{-1} = \frac{z-2}{5}$ . Find its equations. (4+3+3)
- 5A. Find the first three nonzero terms in the Maclaurin's series of  $\log \left(x + \sqrt{1 + x^2}\right)$ .
- 5B. Prove that if,  $\rho$  be the radius of curvature at any point P on the parabola  $y^2 = 4ax$  and S be its focus, then prove that  $\rho^2$  varies as  $(SP)^3$ .
- 5C. Find the volume bounded by revolving the curve  $x^{\frac{2}{3}} + y^{\frac{2}{3}} = a^{\frac{2}{3}}$  about x axis.

$$(4 + 3 + 3)$$

6A. (i) If 
$$u = \tan^{-1} \left( \frac{x^3 + y^3}{x - y} \right)$$
 then show that 
$$x^2 \frac{\partial^2 u}{\partial x^2} + 2xy \frac{\partial^2 u}{\partial x \partial y} + y^2 \frac{\partial^2 u}{\partial y^2} = (1 - 4\sin^2 u)\sin 2u$$

(ii) If 
$$H = f(y-z, z-x, x-y)$$
, then prove that  $\frac{\partial H}{\partial x} + \frac{\partial H}{\partial y} + \frac{\partial H}{\partial z} = 0$ 

- 6B. State and prove Lagrange's mean value theorem.
- 6C. If the sides of a plane triangle ABC vary in such a way that is circum radius remains a constant, then prove that

$$\frac{\delta a}{\cos A} + \frac{\delta b}{\cos B} + \frac{\delta c}{\cos C} = 0$$

(4+3+3)

\*\*\*\*\*