Mon 22 Feb

Exam 1 Feedback

		Total	Problem															
			1	2	3 (a)	(b)	(c)	(d)	4	5 (a)	(b)	(c)	6 (a)	(b)	(c)	7	8	
out	of	75	10	10	3	3	3	3	10	3	3	3	5	5	3	5	5	
Median	->	48.0	8	7	2	0	1	2	8	2	3	1	5	1	1	4	3	

Exam 1 Raw Distribution

Mon 22 Feb (cont.)

MIDTERM

- Tuesday 8 March 6-7:30p
- If you have legitimate conflict, i.e., anything that is also scheduled in ISIS, I need to know now. If you are not sure if it conflicts with a course, please have that instructor contact me ASAP.
- Cumulative. Covers up to §3.9
- Morning Section: Walker rm 124
 Afternoon Section: Walker rm 218
- Sub on Friday 26 Feb and Monday 29 Feb.
- Exam 2: Friday 4 March. Covers up to §3.8.

The Quotient Rule also allows us to extend the Power Rule to negative numbers – if n is any integer, then

$$\frac{d}{dx}\left[x^n\right] = nx^{n-1}.$$

Question

How?

Exercise

If
$$f(x) = \frac{x(3-x)}{2x^2}$$
, find $f'(x)$.

Derivative of e^{kx}

For any real number k,

$$\frac{d}{dx}\left(e^{kx}\right) = ke^{kx}.$$

Exercise

What is the derivative of x^2e^{3x} ?

Rates of Change

The derivative provides information about the instantaneous rate of change of the function being differentiated (compare to the limit of the slopes of the secant lines from $\S 2.1$).

For example, suppose that the population of a culture can be modeled by the function p(t). We can find the instantaneous growth rate of the population at any time $t \geq 0$ by computing p'(t) as well as the **steady-state population** (also called the **carrying capacity** of the population). The steady-state population equals

$$\lim_{t \to \infty} p(t).$$

3.4 Book Problems

9-49 (every 3rd problem), 57, 59, 63, 75-79 (odds)