

Chapter 7 Rate of Return One Project

Lecture slides to accompany

Engineering Economy

8th edition

Leland Blank
Anthony Tarquin

LEARNING OUTCOMES

- 1. Understand meaning of ROR
- 2. Calculate ROR for cash flow series
- 3. Understand difficulties of ROR
- 4. Determine multiple ROR values
- 5. Calculate External ROR (EROR)
- 6. Calculate r and i for bonds

Interpretation of ROR

Rate paid on ______ balance of borrowed money such that final payment brings balance to exactly _____ with interest considered

ROR equation can be written in terms of PW, AW, or FW

Use trial and error solution by factor or

ROR Calculation and Project Evaluation

☐ To determine ROR, find the *i** value in the relation

■ Alternatively, a relation like the following finds i*

$$PW_{outflow} = PW_{inflow}$$

☐ For evaluation, a project is economically viable if

Finding ROR by Spreadsheet Function

Using the RATE function

$$= RATE(n,A,P,F)$$

$$P = \$-200,000 A = \$-15,000$$

Function is

Display is $i^* = 1.9\%$

Using the IRR function

= IRR(first_cell, last_cell)

15	IRR function	1.9%
14	12	435,000
13	11	-15,000
12	10	-15,000
11	9	-15,000
10	8	-15,000
9	7	-15,000
8	6	-15,000
7	5	-15,000
6	4	-15,000
5	3	-15,000
4	2	-15,000
3	1	-15,000
2	0	-200,000
1	Year	CF,\$
	Α	В

ROR Calculation Using PW, FW or AW Relation

ROR is the unique i* rate at which a PW, FW, or AW relation equals exactly

Example: An investment of \$20,000 in new equipment will generate income of \$7000 per year for 3 years, at which time the machine can be sold for an estimated \$8000. If the company's MARR is 15% per year, should it buy the machine?

Solution: The ROR equation, based on a PW relation, is:

$$= -20,000 + 7000(P/A,i^*,3) + 8000(P/F,i^*,3)$$

Solve for i* by trial and error or spreadsheet: i* = 18.2% per year

Since i* ___ MARR = 15%, the company should buy the machine

Special Considerations for ROR

→ May get _________ i* values (discussed later)

analysis necessary for multiple alternative evaluations (discussed later)

Multiple ROR Values

Multiple i* values may exist when there is ____ one sign change in net cash flow (CF) series.

Such CF series are called ____-conventional

Two tests for i* values:

Descarte's rule of signs: total number of real i* values is ≤ the number of sign changes in *net cash flow series*.

Norstrom's criterion: if the _____ cash flow starts off negatively and has only ____ sign change, there is one positive root .

Multiple ROR Values

Multiple i* values may exist when there is more than one sign change in net cash flow (CF) series.

Such CF series are called non-conventional

Three _____ conditions for multiple i* values:

- 1. Starts off
- 2. Has only _____ ____
- 3. \sum cash flow \geq \sum Cash Flow

Plot of PW for CF Series with Multiple ROR Values

Year	Cash Flow (\$1000)	Sequence Number	Cumulative Cash Flow (\$1000)
0	+2000	S_0	+2000
1	-500	S_1	+1500
2	-8100	S_2	-6600
3	+6800	S_3^-	+200

i%	5	10	20	30	40	50
PW (\$1000)	+51.44	-39.55	-106.13	-82.01	-11.83	+81.85

Example: Multiple i* Values

Determine the maximum number of i* values for the cash flow shown below

<u>Year</u>	<u>Expense</u>	<u>Income</u>	Net cash flow	Cumulative CF
0	-12,000	-	-12,000	-12,000
1	-5,000	+ 3,000	-2,000	-14,000
2	-6,000	+9,000	+3,000	-11,000
3	-7,000	+15,000	+8,000	-3,000
4	-8,000	+16,000	+8,000	+5,000
5	-9,000	+8,000	-1,000	+4,000
				^

Solution:

The sign on the net cash flow changes twice, indicating ____ possible i* values

The cumulative cash flow begins negatively with ____ sign change

Therefore, there is only one i* value (i* = 8.7%) > 0

Removing Multiple i* Values

Two new interest rates to consider:

- ★ Investment rate i_i rate at which extra funds are _____ external to the project
- Borrowing rate i_b rate at which funds are from an external source to provide funds to the project

Two approaches to determine External ROR (EROR)

- (1) Modified ROR (MIRR)
- (2) Return on Invested Capital (ROIC)

Modified ROR Approach (MIRR)

Four step Procedure:

Determine PW in year 0 of all negative CF at ___

Determine FW in *year n* of all positive CF at ___

Calculate EROR = i' by FW = PW(F/P,i',n)

If i' ≥ _____, project is economically justified

Example: EROR Using MIRR Method

For the NCF shown below, find the EROR by the MIRR method if MARR = 9%, $i_b = 8.5\%$, and $i_i = 12\%$

Solution:
$$PW_0 = -500(P/F, 8.5\%, 1) - 8100(P/F, 8.5\%, 2)$$

$$= \$-7342$$

$$FW_3 = 2000(F/P, 12\%, 3) + 6800$$

$$= \$9610$$

$$PW_0(F/P, i', 3) + FW_3 = 0$$

$$-7342(1 + i')^3 + 9610 = 0$$

$$i' = 0.939 \quad (9.39\%)$$

Since i' > MARR of 9%, project is _____

Return on Invested Capital Approach

Measure of how effectively project uses funds that *remain internal to project*

ROIC rate, i", is determined using *net-investment procedure*

Three step Procedure

(1) Develop series of FW relations for each year t using:

$$F_t = F_{t-1}(1 + k) + NCF_t$$

where: $k = i_i$ if $F_{t-1} > 0$ and k = i" if $F_{t-1} < 0$

- (2) Set future worth relation for last year n equal to 0 (i.e., $F_n = 0$); solve for i"
- **(3)** If i" ≥ MARR, *project is* _____; otherwise, _____

ROIC Example

For the NCF shown below, find the EROR by the ROIC method if MARR = 9% and i_i = 12%

Solution:

Year 0: $F_0 = $+2000$ $F_0 > 0$; invest in year 1 at $i_i = 12\%$

Year 1: $F_1 = 2000(1.12) - 500 = \$ + 1740$ $F_1 > 0$; invest in year 2 at $i_i = 12\%$

Year 2: $F_2 = 1740(1.12) - 8100 = \-6151 $F_2 < 0$; use i" for year 3

Year 3: $F_3 = -6151(1 + i^{"}) + 6800$ Set $F_3 = 0$ and solve for i"

$$-6151(1 + i") + 6800 = 0$$

 $i" = 10.55\%$

Since i" > MARR of 9%, project is _____

Important Points to Remember

About the computation of an EROR value

- EROR values are dependent upon the selected investment and/or borrowing rates
- □ Commonly, multiple i* rates, i' from ____ andi" from ___ have different values

About the method used to decide

□ For a definitive economic decision, set the MARR value and use the ___ or __ method to determine economic viability of the project

U.S. Saving Bonds

Bond is *IOU* with face value (V), coupon rate (b), no. of payment periods/year (c), dividend (I), and maturity date (n).

ROR of Bond Investment

Bond is *IOU* with ____ value (V), _____ rate (b), no. of payment periods/year (c), _____ (I), and ____ date (n). Amount paid for the bond is P.

I = Vb/c

General equation for i*: $0 = -P + I(P/A,i^*,n_xc) + V(P/F,i^*,n_xc)$

A \$10,000 bond with 6% interest payable quarterly is purchased for \$8000. If the bond matures in 5 years, what is the ROR (a) per quarter, (b) per year?

Solution: (a) I = 10,000(0.06)/4 = \$150 per quarter

ROR equation is: $0 = -8000 + 150(P/A,i^*,20) + 10,000(P/F,i^*,20)$

By trial and error or spreadsheet: $i^* = 2.8\%$ per quarter

(b) Nominal i* per year = 2.8(4) = 11.2% per year Effective i* per year = $(1 + 0.028)^4 - 1 = 11.7\%$ per year

Summary of Important Points

HOMEWORK

- 1. Please solve every Examples in your textbook. You do not have to submit your works.
- 2. Please upload following "PROBLEMS" solution file on "Assignment" menu in e-Class.
 - **(1) 7.12**
 - **2** 7.22
 - **3** 7.52
 - **4 7.71**