

Unit 1.3

CIRCULAR FUNCTIONS & HYPERBOLIC FUNCTIONS

CIRCULAR FUNCTIONS:

From Euler's formula, we have $e^{i\theta}=\cos\cos\theta+i\sin\sin\theta$ and $e^{-i\theta}=\cos\cos\theta-i\sin\sin\theta$

$$\theta = \frac{e^{i\theta} + e^{-i\theta}}{2}$$
, $\sin \sin \theta = \frac{e^{i\theta} - e^{-i\theta}}{2i}$

If z = x + iy is complex number, then $\cos \cos z = \frac{e^{iz} + e^{-iz}}{2}$, $\sin \sin z = \frac{e^{iz} - e^{-iz}}{2i}$

These are called circular functions of complex numbers.

HYPERBOLIC FUNCTIONS:

If x is real or complex, then sine hyperbolic of x is denoted by sinh x and is given as, $sinh x = \frac{e^x - e^{-x}}{2}$ and

Cosine hyperbolic of x is denoted by $\cosh x$ and is given as, $\cosh x = \frac{e^x + e^{-x}}{2}$

From above expressions, other hyperbolic functions can also be obtained as $tan hx = \frac{\sinh x}{\cosh x} = \frac{e^x - e^{-x}}{x + e^{-x}}$

$$cosechx = \frac{1}{sinh \, x} = \frac{2}{e^{x} - e^{-x}}, \quad x = \frac{1}{cosh \, x} = \frac{2}{e^{x} + e^{-x}}, \text{ and } coth coth \ x = \frac{1}{tanh \, x} = \frac{e^{x} + e^{-x}}{e^{x} - e^{-x}}$$

TABLE OF VALUES OF HYPERBOLIC FUNCTION:

From the definitions of $\sinh x$, $\cosh x$, $\tanh x$, we can obtain the following values of hyperbolic function.

X	-∞	0	∞
sinh x	-∞	0	∞
cosh x	∞	1	∞
tanh x	- 1	0	1

Note: since $tanh(-\infty) = -1$, tanh(0) = 0, $tanh(\infty) = 1$ $\therefore |tanh(x)| \le 1$

RELATION BETWEEN CIRCULAR AND HYPERBOLIC FUNCTIONS:

(i)	sin ix = isinh x & sinh x = -i sin ix	$x = -i \sinh ix$
(ii)	cos ix = cosh x	х
(iii)	tan ix = i tanh x & tanh x = -i tan ix	$x = -i \tanh ix$

FORMULAE ON HYPERBOLIC FUNCTIONS:

	CIRCULAR FUNCTIONS	HYPERBOLIC FUNCTIONS
1	$\sin\left(-x\right) = -(\sin x)$	sinh(-x) = -sinh x,
2	$cos\left(-x\right)=\left(cosx\right)$	cosh(-x) = cosh x
3	$e^{ix} = \cos\cos x + i\sin\sin x$	$e^x = \cosh \cosh x + \sinh \sinh x$
4	$e^{-ix} = \cos \cos x - i \sin \sin x$	$e^{-x} = \cosh \cosh x - \sinh \sinh x$
5	$\sin^2 x + \cos^2 x = 1$	$cosh^2x - sinh^2x = 1$
6	$1 + tan^2x = sec^2x$	$sech^2x + tanh^2x = 1$
7	$1 + \cot^2 x = \csc^2 x$	$coth^2x - cosech^2x = 1$
8	$sin sin 2x = 2 sin sin x cos cos x$ $= \frac{2x}{1 + tan^2 x}$	$sinh sinh 2x = 2 sinh sinh x cosh cosh x$ $= \frac{2x}{1 - tanh^2 x}$
9	$cos cos 2x = cos^{2}x - sin^{2}x$ $= 2 cos^{2}x - 1$ $= 1 - 2sin^{2}x$ $= \frac{1 - tan^{2}x}{1 + tan^{2}x}$	$cosh cosh 2x = cosh^{2}x + sinh^{2}x$ $= 2 cosh^{2}x - 1$ $= 1 + 2sinh^{2}x$ $= \frac{1 + tanh^{2}x}{1 - tanh^{2}x}$
10	$\tan \tan 2x = \frac{2x}{1 - \tan^2 x}$	$tanh tanh 2x = \frac{2x}{1 + tanh^2 x}$
11	$\sin \sin 3x = 3 \sin \sin x - 4 \sin^3 x$	$sinh sinh 3x = 3 sinh sinh x + 4 sinh^3 x$
12	$\cos\cos 3x = 4\cos^3 x - 3\cos\cos x$	$\cosh \cosh 3x = 4\cosh^3 x - 3\cosh \cosh x$

13	$\tan \tan 3x = \frac{3 \tan \tan x - \tan^3 x}{1 - 3 \tan^2 x}$	$tanh tanh 3x = \frac{3 \tanh \tanh x + \tanh^3 x}{1 + 3 \tanh^2 x}$
14	$sin sin (x \pm y)$ $= sin sin x cos cos y \pm cos cos x sin y$	$sinh sinh (x \pm y)$ = $sinh sinh x cosh cosh y \pm$ cosh cosh x sinh sinh y
15	$\cos \cos (x \pm y)$ $=\cos \cos x \cos \cos y \mp \sin \sin x \sin y$	$cosh cosh (x \pm y)$ $= cosh cosh x cosh cosh y \pm sinh sinh x sinh sinh y$
16	$tan \ tan \ (x \pm y) = \frac{x \pm y}{1 \mp x \ y}$	$tanh tanh (x \pm y) = \frac{x \pm y}{1 \pm x y}$
17	$\cot\cot(x \pm y) = \frac{x \cot\cot y \mp 1}{\cot\cot y \pm x}$	$coth coth (x \pm y)$ $= \frac{x \ coth \ coth \ y \ \mp 1}{coth \ coth \ y \ \pm coth \ coth \ x}$
18	$sin sin x + sin sin y$ $= 2 sin sin \left(\frac{x+y}{2}\right)$ $cos cos \left(\frac{x-y}{2}\right)$	$sinh sinh x + sinh sinh y$ $= 2 sinh sinh \frac{x+y}{2}$ $cosh cosh \frac{x-y}{2}$
19	$sin sin x - sin sin y$ $= 2 cos cos \left(\frac{x+y}{2}\right)$ $sin sin \left(\frac{x-y}{2}\right)$	$sinh sinh x - sinh sinh y$ $= 2 \cosh \cosh \frac{x+y}{2}$ $sinh sinh \frac{x-y}{2}$
20	$\cos \cos x + \cos \cos y$ $= 2 \cos \cos \left(\frac{x+y}{2}\right)$ $\cos \cos \left(\frac{x-y}{2}\right)$	$cosh cosh x + cosh cosh y$ $= 2 cosh cosh \frac{x+y}{2}$ $cosh cosh \frac{x-y}{2}$
21	$\cos \cos x - \cos \cos y$ $= -2 \sin \sin \left(\frac{x+y}{2}\right)$ $\sin \sin \left(\frac{x-y}{2}\right)$	$cosh cosh x - cosh cosh y$ $= 2 sinh sinh \frac{x+y}{2}$ $sinh sinh \frac{x-y}{2}$
22	$2 \sin \sin x \cos \cos y$ $= \sin \sin (x + y) + \sin \sin (x - y)$	2 $sinh sinh x cosh cosh y$ = $sinh sinh (x + y) +$ sinh sinh (x - y)

23	$ 2 \cos \cos x \sin \sin y \\ = \sin \sin (x + y) - \\ \sin \sin (x - y) $	2 cosh cosh x sinh sinh y = sinh sinh $(x + y) -$ sinh sinh $(x - y)$
24	$2 \cos \cos x \cos \cos y$ $= \cos \cos (x + y) + \cos \cos (x - y)$	$2 \cosh \cosh x \cosh \cosh y$ $= \cosh \cosh (x + y) +$ $\cosh \cosh (x - y)$
25	$2 \sin \sin x \sin y$ $= (x - y) - \cos \cos (x + y)$	$2 \sinh \sinh x \sinh y$ $= (x + y) - (x - y)$

PERIOD OF HYPERBOLIC FUNTIONS:

$$sinh sinh (2\pi i + x) = sinh sinh (2\pi i) cosh cosh x + cosh cosh (2\pi i) sinh sinh x$$

$$= 2\pi cosh cosh x + 2\pi sinh sinh x$$

$$= 0 + sinh sinh x$$

$$= sinh sinh x$$

Hence sinh x is a periodic function of period $2\pi i$

Similarly we can prove that $\cosh x$ and $\tanh x$ are periodic functions of period $2\pi i$ and πi .

DIFFERENTIATION AND INTRGRATION:

(i) If
$$y = \sinh x$$
, $y = \frac{e^x - e^{-x}}{2}$ $\therefore \frac{dy}{dx} = \frac{d}{dx} \left(\frac{e^x - e^{-x}}{2} \right) = \frac{e^x + e^{-x}}{2} = \cosh x$
If $y = \sinh x$, $\frac{dy}{dx} = \cosh x$

(ii) If
$$y = \cosh x$$
, $y = \frac{e^x + e^{-x}}{2}$, $\therefore \frac{dy}{dx} = \frac{d}{dx} \left(\frac{e^x + e^{-x}}{2} \right) = \frac{e^x - e^{-x}}{2} = \sinh x$
If $y = \cosh x$, $\frac{dy}{dx} = \sinh x$

(iii) If
$$y = \tanh x$$
, $y = \frac{\sinh x}{\cosh x}$ $\therefore \frac{dy}{dx} = \frac{\cosh x \cdot \cosh x - \sinh x \cdot \sinh x}{\cosh^2 x} = \frac{1}{\cosh^2 x}$

If
$$y = \tanh x$$
, $\frac{dy}{dx} = \operatorname{sech}^2 x$

Hence, we get the following three results

$$\int \cosh x \, dx = \sinh \sinh x \quad , \quad \int \sinh x \, dx = \cosh x \quad ,$$

$$\int \operatorname{sech}^2 x dx = \tanh x$$