Junio 14. (2,5 puntos) Dados el punto P = (1,-1,0) y la recta: $s : \begin{cases} -2x & +z-1=0 \\ 3x-y & -3=0 \end{cases}$

- a) (1.5 puntos) Determine la ecuación general del plano (Ax + By + Cz + D = 0) que contiene al punto P y a la recta s.
- **b)** (1 punto) Determine el ángulo que forman el plano $\pi:2x+y-z+1=0$ y la recta s.

SOLUCIÓN.

- a) 7x-3y+z-10=0
- **b)** 19° 6′ 24″

Junio 14. (2,5 puntos) Considere las rectas $r: \begin{cases} 2x - 4z = 2 \\ x + y + z = 1 \end{cases}$ $s: \frac{x}{2} = \frac{y + 2}{a} = \frac{z - (1/2)}{1}$

- a) (2 puntos) Determine la posición relativa de dichas rectas, según los diferentes valores de a.
- **b)** (0,5 puntos) Si a=2, determine el ángulo que forman las rectas r y s.

SOLUCIÓN.

- a) Si a = -3: paralelas ; si $a \neq -3$: se cruzan.
- **b)** 84° 53′ 20″

Septiembre 14. (2,5 puntos)

- a) (1,5 puntos) Determine el valor a valores de m, si existen, para que la recta $r:\begin{cases} mx+y=2\\ x+mz=3 \end{cases}$ sea paralela al plano $\pi:2x-y-z+6=0$.
- **b)** (1 punto) Determine la distancia del punto P = (2,1,1) a la recta r cuando m = 2.

SOLUCIÓN.

- a) m = -1
- **b)** $d = \sqrt{\frac{38}{21}}$

Septiembre 14. (2,5 puntos)

a) (1,5 puntos) Estudie la posición relativa de los planos $\pi: x-y-z=0$ y $\pi': \begin{cases} x=3+2\lambda-\mu \\ y=1+\lambda+\mu \\ z=\mu \end{cases}$

b) (1 punto) Determine la ecuación de la recta perpendicular a π que pasa por el punto P = (1,0,1). Escriba la ecuación de la recta como intersección de dos planos.

SOLUCIÓN.

b)
$$\begin{cases} x + y & -1 = 0 \\ y - z + 1 = 0 \end{cases}$$

Junio 15. (2 puntos)

a) (1 punto) Determine la posición relativa de las rectas siguientes:

r:
$$\begin{cases} -x-2y+12=0 \\ 3y-z-15=0 \end{cases}$$
 s: $\frac{x-2}{5} = \frac{y+3}{2} = \frac{z}{3}$

b) (1 punto) Calcule la distancia entre esas rectas.

SOLUCIÓN.

b)
$$d(r,s) = \frac{56}{\sqrt{59}}$$

Junio 15. (2 puntos)

a) (1 punto) Determine, como intersección de dos planos, la ecuación de la recta paralela a la recta:

$$r: \begin{cases} 5x - 3y + 2z = 1 \\ x + 3y - 2z = -4 \end{cases}$$

que pasa por el punto (0,2,-4).

b) (1 punto) Determine la distancia del punto P = (1,1,0) a la recta r anterior.

SOLUCIÓN.

$$a) \begin{cases} x = 0 \\ 3y - 2z = 14 \end{cases}$$

b)
$$d(P,r) = \frac{\sqrt{22}}{2}u$$

Septiembre 15. (2 puntos)

a) (1 punto) Sean \vec{u} y \vec{v} dos vectores que satisfacen que $|\vec{u}| = 5$, $|\vec{v}| = 2$ y $\vec{u} \cdot \vec{v} = 10$. Determine $\vec{u} \times \vec{v}$.

b) (1 punto) Considere las rectas siguientes: $r: \begin{cases} 2x-y=0 \\ ax-z=0 \end{cases}$ s: $\begin{cases} x+by=3 \\ y+z=3 \end{cases}$

1) (0,5 puntos) Determine los valores de $a \ne 0$ y $b \ne 0$ para que las rectas sean paralelas.

2) (0,5 puntos) ¿Existen valores de $a \neq 0$ y $b \neq 0$ para que las rectas sean coincidentes?

SOLUCIÓN.

a)
$$\vec{u} \times v = \vec{0}$$

b) 1)
$$a = -2$$
, $b = -\frac{1}{2}$ 2) No.

Septiembre 15. (2 puntos)

a) (0,75 puntos) Sea a un parámetro real cualquiera. Dados los planos:

$$\pi: 3x + ay + 2z - 10 = 0$$
 y $\pi': x - y + az - 5 = 0$

¿Existen valores de a para los que los planos sean paralelos?

b) (1,25 puntos) Encuentre la ecuación de la recta paralela a la recta intersección de los planos:

$$\pi: 3x + 2y + z = 10$$
 y $\pi': 4x - 2y - 8z = 10$

que pasa por el punto (1,1,0).

SOLUCIÓN.

a) No.

b)
$$\frac{x-1}{-1} = \frac{y-1}{2} = \frac{z}{-1}$$

Junio 16. (2 puntos)

a) (1 punto)

a.1) (0,5 puntos) Si los vectores \vec{w} y \vec{s} verifican que $|\vec{w}| = |\vec{s}| = 2$ y el ángulo que forman \vec{w} y \vec{s} es 60 grados, determine $\vec{w} \cdot (\vec{w} - \vec{s})$.

a.2) (0,5 puntos) Si el producto escalar del vector $\vec{u} + \vec{v}$ por sí mismo es 25 y el producto escalar de $\vec{u} - \vec{v}$ por sí mismo es 9 ¿Cuánto vale el producto escalar de \vec{u} por \vec{v} ?

b) (1 punto) Determine el ángulo que forman las rectas siguientes:

r:
$$\frac{x+1}{3} = \frac{y}{2} = \frac{z+3}{2}$$
 s: $\begin{cases} x-y-z=1\\ x-y+2z=3 \end{cases}$

SOLUCIÓN.

a.1) 2

a.2) 4

b) 30° 57′ 49,52″

Junio 16. (2 puntos) Considere el plano π y la recta r que aparecen a continuación:

$$\pi: mx-3y+2z=1$$
 $r: \begin{cases} 3x+y = 1 \\ 2x-y+2z=1 \end{cases}$

a) (1 punto) Determine para qué valores del parámetro "m" la recta r y el plano π son secantes, es decir, se cortan.

b) (1 punto) Determine el ángulo que forman el plano π y la recta r cuando m=1.

SOLUCIÓN.

a) $\forall m \neq -4$

b) 19° 21′ 34,74″

Septiembre 16. (2 puntos) Determine la ecuación de la recta, expresada como intersección de dos planos, que pasa por el punto (1,-1,2) y es perpendicular al plano determinado por los puntos A=(1,0,1), B = (3,2,1), C = (2,-1,0).

SOLUCIÓN.

$$\begin{cases} x+y=0 \\ 2x-z=0 \end{cases}$$

Septiembre 16. (2 puntos)

a) (1,5 puntos) Determine el valor del parámetro "a" para que el plano π : x-3y+az=-6 sea paralelo a la recta r: $\begin{cases} 2x-3y & =1 \\ x & +3z=-7 \end{cases}$

b) (0,5 puntos) Determine el ángulo entre esa recta r y el plano $\pi: 2x-3y-z+6=0$.

SOLUCIÓN.

a)
$$a = -3$$

Junio 17. (2 puntos)

a) (1 punto) Determine la posición relativa de las dos rectas siguientes:

$$r: \begin{cases} x=1+t \\ y=1+t \\ z=t \end{cases} s: \begin{cases} 2x-y = 0 \\ 3y-2z=0 \end{cases}$$

b) (1 punto) Determine la distancia del punto P(0,0,0) a cada una de las dos rectas anteriores.

SOLUCIÓN.

b)
$$d(P,r) = \frac{\sqrt{6}}{3}$$
 ; $d(P,s) = 0$

Junio 17. (2 puntos)

a) (1 punto) Sea "m" una constante real. Determine la posición relativa de los planos siguientes, según los valores de "m":

$$\pi: mx - 6y + 2z = 2 \qquad \qquad \pi': \left\{ \begin{array}{ll} x = & \lambda + \mu \\ y = 1 - \lambda \\ z = 2 - 2\lambda + \mu \end{array} \right.$$

valores de "m": $\pi: mx - 6y + 2z = 2 \qquad \pi': \begin{cases} x = \lambda + \mu \\ y = 1 - \lambda \\ z = 2 - 2\lambda + \mu \end{cases}$ b) (1 punto) Determine el ángulo que forman las rectas: $r: \begin{cases} x + z = 1 \\ y = 0 \end{cases}$ s: $\begin{cases} 2x - 4y - 2z = 0 \\ x + y + 3z = -1 \end{cases}$

SOLUCIÓN.

a) Para
$$m=-2$$
: paralelos ; para $m\neq -2$: secantes

b)
$$\alpha = \arccos \frac{4}{5} \approx 36^{\circ} 52' 12''$$

Septiembre 17. (2 puntos)

a) (1,5 puntos) Estudie la posición relativa de los planos:

$$\pi: x-2y+z=1 \qquad \pi': \left\{ \begin{array}{ll} x=& 2\lambda+\mu \\ y=& \lambda+k\mu \\ z=1 & -\mu \end{array} \right.$$

según los diferentes valores de la constante real k.

b) (0,5 puntos) Determine el ángulo que forman esos planos cuando k = 3.

SOLUCIÓN.

a) Para k = 0: coincidentes. Para $k \neq 0$: secantes

b) 90°

Septiembre 17. (2 puntos)

a) (1,5 puntos) Determine, como intersección de dos planos, la ecuación de la recta que es paralela a la recta:

$$r: \begin{cases} 2x-3y+z=4 \\ y+z=0 \end{cases}$$

y pasa por el punto P(2,1,-1).

b) (0,5 puntos) Determine el ángulo que forman los dos planos siguientes:

$$\pi: 2x-3y+z=4$$
 y $\pi': y+z=0$

SOLUCIÓN.

a)
$$\begin{cases} x-2y = 0 \\ y+z=0 \end{cases}$$
 b) $112^{\circ} 12' 27,56''$

Junio 18. (1,5 puntos)

Determine la ecuación del plano que pasa por el punto (0,0,0) y contiene a la recta r: $\begin{cases} 2x-y-2=0 \\ 3y-2z+4=0 \end{cases}$

SOLUCIÓN.

$$4x + y - 2z = 0$$

Junio 18. (1,5 puntos)

Considere el plano π : 2ax+y+az=4 y la recta r: $\begin{cases} 2x+y+z=2\\ -x+y+2z=3 \end{cases}$

- a) (0,75 puntos) Determine la posición del plano y la recta según los diferentes valores de a.
- **b)** (0,75 puntos) Para a=2, determine la recta que es perpendicular al plano π y pasa por el punto P(0,1,0).

SOLUCIÓN.

a) Para
$$a \ne 1$$
: secantes , para $a = 1$: paralelos b) $\frac{x}{4} = \frac{y-1}{1} = \frac{z}{2}$

Septiembre 18. (1,5 puntos)

a) (0,5 puntos) Dados los vectores $\vec{u} = (1,2,1)$, $\vec{v} = (2,1,1)$ y $\vec{w} = (0,2,1)$, determine el volumen del paralelepípedo que definen estos tres vectores.

b) (1 punto) Determine la posición relativa de las rectas r y s siguientes:

r:
$$\frac{x+1}{4} = \frac{y}{6} = \frac{z+2}{1}$$
 s: $\begin{cases} -x+y+2z-4=0\\ x+2y+z-5=0 \end{cases}$

SOLUCIÓN.

a) 1 u³

b) Se cruzan

Septiembre 18. (1,5 puntos)

Determine el valor de los parámetros m y n que hacen que la recta $\ r: \begin{cases} x+y+z=2 \\ 2x+3y+z=3 \end{cases}$ esté contenida en el plano $\ \pi: \ mx+y+nz=4$.

SOLUCIÓN.

$$m = \frac{5}{3}$$
, $n = \frac{7}{3}$

Junio 19.

a) (1 punto) Determine el valor de las constantes a y b para que los puntos siguientes estén alineados A:(1,1,2), B:(2,2,2) y C:(-1,a,b) y determine la recta que los contiene.

b) (0,5 puntos) Dados dos vectores \vec{u} y \vec{v} , calcule el vector: $(\vec{u}-\vec{v})\times(\vec{u}-\vec{v})$ donde el símbolo "×" representa el producto vectorial.

SOLUCIÓN.

a)
$$a=-1$$
, $b=2$; $\frac{x-1}{1}=\frac{y-1}{1}=\frac{z-2}{0}$

b) $\vec{0}$

Junio 19.

a) (1 punto) Determine la ecuación del plano determinado por el punto P:(2,1,2) y la recta r:(1,0,0)+t(-1,1,1).

b) (0,5 puntos) Dados los vectores $\vec{u} = (1,2,0)$ y $\vec{v} = (2,1,-3)$, determine el área del triángulo que tiene por lados esos vectores.

SOLUCIÓN.

a)
$$x+3y-2z-1=0$$

b)
$$\frac{3\sqrt{6}}{2}$$
 u²

Septiembre 19.

a) (0,75 puntos) Determine el volumen del paralelepípedo determinado por los siguientes vectores: $\vec{u} = (1,1,1), \vec{v} = (2,1,0)$ y \vec{w} , siendo $\vec{w} = \vec{u} \times \vec{v}$, y donde el símbolo \times representa el producto vectorial.

Pruebas de Acceso a la Universidad de Zaragoza. Matemáticas II.

b) (0,75 puntos) Determine la ecuación del plano que pasa por el punto P:(1,3,2) y es perpendicular a la recta $r:\begin{cases} 3x-2y & =-1\\ 2y+3z=3 \end{cases}$

SOLUCIÓN.

a)
$$V = 6 u^3$$

b)
$$2x+3y-2z-7=0$$

Septiembre 19.

(1,5 puntos) Determine la ecuación del plano que contiene a la recta: r: $\begin{cases} 3x + y & = -1 \\ 4y + 3z = 5 \end{cases}$ y pasa por el punto A:(1,3,-1)

SOLUCIÓN.

$$4x - 8y - 7z + 13 = 0$$