Back Propagation Algorithm

Introduction

- As we have seen, a perceptron can only express a linear decision surface.
- A multi-layer NN learned by the back-propagation (BP) algorithm can represent *highly non-linear decision surfaces*
- The BP learning algorithm is used to learn the weights of a multi-layer NN Fixed structure (i.e., fixed set of neurons and interconnections)
- For every neuron the activation function must be continuously differentiable
- The BP algorithm employs gradient descent in the weight update rule
- To minimize the error between the actual output values and the desired output ones, given the training instances

Back Propagation Algorithm

- Back-propagation algorithm searches for the weights vector that minimizes the total error made over the training set
- Back-propagation consists of the two phases
- 1. Signal forward phase.
 - The input signals (i.e., the input vector) are propagated (forwards) from the input layer to the output layer (through the hidden layers)
- 2. Error backward phase
- Since the desired output value for the current input vector is known, the error is computed
- Starting at the output layer, the error is propagated backwards through the network, layer by layer, to the input layer
- The error back-propagation is performed by recursively computing the local gradient of each neuron

Forward vs backward phase

- → Signal forward phase
 - Network activation
- ← Error backward phase
 - Output error computation
 - Error propagation

The Network- Derivation

- Let's use this 3-layer NN to illustrate the details of the BP learning algorithm
- m input signals x_j (j=1..m)
- I hidden neurons z_q (q=1..l)
- n output neurons y_i (i=1..n)
- w_{qj} is the weight of the interconnection from input signal x_j to hidden neuron z_q
- w_{iq} is the weight of the interconnection from hidden neuron z_q to output neuron y_i
- Out_q is the (local) output value of hidden neuron z_q
- Out_i is the network output w.r.t. the output neuron y_i

- For each training instance x
 - The input vector x is propagated from the input layer to the output layer
 - The network produces an actual output Out (i.e., a vector of Out_i, i=1..n)
- Given an input vector x, a neuron z_q in the hidden layer receives a net input of

 $Net_q = \sum_{j=1}^m w_{qj} x_j$

...and produces a (local) output of

$$Out_q = f(Net_q) = f\left(\sum_{j=1}^m w_{qj}x_j\right)$$

where f(.) is the activation (transfer) function of neuron z_a

The net input for a neuron y_i in the output layer is

$$Net_i = \sum_{q=1}^{l} w_{iq} Out_q = \sum_{q=1}^{l} w_{iq} f\left(\sum_{j=1}^{m} w_{qj} x_j\right)$$

 Neuron y_i produces the output value (i.e., an output of the network)

$$Out_{i} = f(Net_{i}) = f\left(\sum_{q=1}^{l} w_{iq}Out_{q}\right) = f\left(\sum_{q=1}^{l} w_{iq}f\left(\sum_{j=1}^{m} w_{qj}x_{j}\right)\right)$$

The vector of output values Out_i (i=1..n) is the actual network output, given the input vector x

- For each training instance x
 - The error signals resulting from the difference between the desired output d and the actual output Out are computed
 - The error signals are back-propagated from the output layer to the previous layers to update the weights
- Before discussing the error signals and their back propagation, we first define an error (cost) function

$$E(w) = \frac{1}{2} \sum_{i=1}^{n} (d_i - Out_i)^2 = \frac{1}{2} \sum_{i=1}^{n} [d_i - f(Net_i)]^2$$
$$= \frac{1}{2} \sum_{i=1}^{n} \left[d_i - f\left(\sum_{q=1}^{l} w_{iq} Out_q\right) \right]^2$$

 According to the gradient-descent method, the weights in the hidden-to-output connections are updated by

$$\Delta w_{iq} = -\eta \frac{\partial E}{\partial w_{iq}}$$

Using the derivative chain rule for ∂E/∂w_{iq}, we have

$$\Delta w_{iq} = -\eta \left[\frac{\partial E}{\partial Out_i} \right] \left[\frac{\partial Out_i}{\partial Net_i} \right] \left[\frac{\partial Net_i}{\partial w_{iq}} \right] = \eta \left[d_i - Out_i \right] \left[f'(Net_i) \right] \left[Out_q \right] = \eta \delta_i Out_q$$

(note that the negative sign is incorporated in ∂E/∂Out_i)

• δ_i is the **error signal** of neuron y_i in the **output layer**

$$\mathcal{S}_{i} = -\frac{\partial E}{\partial Net_{i}} = -\left[\frac{\partial E}{\partial Out_{i}}\right]\left[\frac{\partial Out_{i}}{\partial Net_{i}}\right] = \left[d_{i} - Out_{i}\right]\left[f'(Net_{i})\right]$$

where Net_i is the net input to neuron y_i in the output layer, and $f'(Net_i)=\partial f(Net_i)/\partial Net_i$

 To update the weights of the input-to-hidden connections, we also follow gradient-descent method and the derivative chain rule

$$\Delta w_{qj} = -\eta \frac{\partial E}{\partial w_{qj}} = -\eta \left[\frac{\partial E}{\partial Out_q} \right] \left[\frac{\partial Out_q}{\partial Net_q} \right] \left[\frac{\partial Net_q}{\partial w_{qj}} \right]$$

From the equation of the error function E(w), it is clear that each error term (d_ry_i) (i=1..n) is a function of Out_q

$$E(\mathbf{w}) = \frac{1}{2} \sum_{i=1}^{n} \left[d_i - f \left(\sum_{q=1}^{l} w_{iq} Out_q \right) \right]^2$$

Evaluating the derivative chain rule, we have

$$\Delta w_{qj} = \eta \sum_{i=1}^{n} \left[(d_i - Out_i) f'(Net_i) w_{iq} \right] f'(Net_q) x_j$$
$$= \eta \sum_{i=1}^{n} \left[\delta_i w_{iq} \right] f'(Net_q) x_j = \eta \delta_q x_j$$

 δ_q is the **error signal** of neuron z_q in the **hidden layer**

$$\mathcal{S}_{q} = -\frac{\partial E}{\partial Net_{q}} = -\left[\frac{\partial E}{\partial Out_{q}}\right]\left[\frac{\partial Out_{q}}{\partial Net_{q}}\right] = f'(Net_{q})\sum_{i=1}^{n} \mathcal{S}_{i}w_{iq}$$

where Net_q is the net input to neuron z_q in the hidden layer, and $f'(Net_q) = \partial f(Net_q)/\partial Net_q$

- According to the error equations δ_i and δ_q above, the error signal of a neuron in a hidden layer is different from the error signal of a neuron in the output layer
- Because of this difference, the derived weight update procedure is called the generalized delta learning rule
- The error signal δ_q of a hidden neuron z_q can be determined
 - \Box in terms of the **error signals** δ_i of the neurons y_i (i.e., that z_q connects to) in the **output** layer
 - with the coefficients are just the weights w_{iq}
- The important feature of the BP algorithm: the weights update rule is local
 - To compute the weight change for a given connection, we need only the quantities available at both ends of that connection!

- The discussed derivation can be easily extended to the network with more than one hidden layer by using the chain rule continuously
- The general form of the BP update rule is

$$\Delta W_{ab} = \eta \delta_a X_b$$

 $\Box b$ and a refer to the two ends of the $(b \rightarrow a)$ connection (i.e., from neuron (or input signal) b to neuron a)

 $\Box x_b$ is the output of the hidden neuron (or the input signal) b,

 $\Box \delta_a$ is the error signal of neuron a

Back_propagation_incremental(D, η)

A network with Q feed-forward layers, q = 1, 2, ..., Q

 qNet_i and qOut_i are the net input and output of the i^{th} neuron in the q^{th} layer

The network has *m* input signals and *n* output neurons

 ${}^qw_{ij}$ is the weight of the connection from the j^{th} neuron in the $(q-1)^{th}$ layer to the i^{th} neuron in the q^{th} layer

Step 0 (Initialization)

Choose $E_{threshold}$ (a tolerable error)

Initialize the weights to small random values

Set E=0

Step 1 (Training loop)

Apply the input vector of the k^{th} training instance to the input layer (q=1)

$${}^{q}Out_{i} = {}^{1}Out_{i} = x_{i}^{(k)}, \forall I$$

Step 2 (Forward propagation)

Propagate the signal forward through the network, until the network outputs (in the output layer) QOut, have all been obtained

$${}^{q}Out_{i} = f({}^{q}Net_{i}) = f\left(\sum_{j} {}^{q}w_{ij} {}^{q-1}Out_{j}\right)$$

Step 3 (Output error measure)

Compute the error and error signals Q_{δ_i} for every neuron in the output layer

$$E = E + \frac{1}{2} \sum_{i=1}^{n} (d_i^{(k)} - {}^{Q}Out_i)^2$$

$${}^{\mathcal{Q}}\delta_i = (d_i^{(k)} - {}^{\mathcal{Q}}Out_i)f'({}^{\mathcal{Q}}Net_i)$$

Step 4 (Error back-propagation)

Propagate the error backward to update the weights and compute the error signals $q^{-1}\delta_i$ for the preceding layers

$$\Delta^{q} w_{ij} = \eta.({}^{q}\delta_{i}).({}^{q-1}Out_{j}); \qquad {}^{q}w_{ij} = {}^{q}w_{ij} + \Delta^{q}w_{ij}$$

$${}^{q-1}\delta_{i} = f'({}^{q-1}Net_{i})\sum_{j} {}^{q}w_{ji} {}^{q}\delta_{j}; \text{ for all } q = Q, Q-1,..., 2$$

Step 5 (One epoch check)

Check whether the entire training set has been exploited (i.e., one epoch)

If the entire training set has been exploited, then go to step 6; otherwise, go to step 1

Step 6 (Total error check)

If the current total error is acceptable ($E < E_{threshold}$) then the training process terminates and output the final weights;

Otherwise, reset E=0, and initiate the new training epoch by going to step 1

Back Propagation algo – Ilustration

Computing error

Issues- Initial weight

- Often the weights are initially set to small random values
- If the initial weights are large
 - the sigmoid functions will saturate from the beginning
 - the system gets stuck at a local minimum or in a very flat plateau near the starting point
- Some suggestions for w_{ab}^{o} (from neuron b to neuron a)
 - \Box Let's denote n_a is the number of neurons in the layer of neuron a

$$W_{ab}^{0} \in [-1/n_a, 1/n_a]$$

Let's denote k_a the number of neurons that feed-forward to neuron a
 (the number of input links of neuron a)

$$w^{0}_{ab} \in [-3/\sqrt{k_a}, 3/\sqrt{k_a}]$$

Issues – Learning Rate

- Significantly affects the effectiveness and convergence of the BP learning algorithm

 - \Box a smaller value of η may take a very long time for the training
- Usually chosen experimentally for each problem
- Good values of the learning rate at the beginning of the training may not be as good in later time (of the training)
 - To use an adaptive (dynamic) learning rate
- After an update of the weights update, check whether the weight update results in a decrease of the error

$$\Delta \eta \ = \ \begin{cases} a & \text{, if } \Delta E < 0 \text{ consistently} \\ -b \eta & \text{, if } \Delta E > 0 \\ 0 & \text{, otherwise.} \end{cases}$$

Issues- Momentum

- Gradient descent can be very slow if the learning rate η is small and can oscillate widely if η is too large
- To reduce the oscillation, incorporate a momentum term in the normal gradient-descent

$$\Delta w^{(t)} = -\eta \nabla E^{(t)} + \alpha \Delta w^{(t-1)}$$

where $\alpha \in [0,1]$ is a momentum
parameter, and a value of 0.9 is
often used

One rule, based on the experiments, to choose the properly learning rate and momentum is: (η+α) >≈ 1; where α>η to prevent the oscillation

Gradient descent on a simple quadratic surface. There is no momentum on the left trajectory, while on the right there is a momentum term.

Issues – Number of hidden neurons

- The size of a hidden layer is a fundamental question for the application of multilayer feed-forward NNs to real-world problems
- It practice, it is very difficult to determine a sufficient number of neurons to achieve the desired accuracy
- The size of a hidden layer is usually determined experimentally – trial and test
- A recommendation
 - Begin with the size of hidden nodes ~ a relatively small fraction of the dimensionality of the input layer
 - If the network fails to converge to a solution, add more hidden nodes
 - If it does converge, you may try fewer hidden nodes

Advantages & Disadvantages

- Advantages
 - Massively parallel in nature
 - □ Fault (noise) tolerant because of parallelism
 - Can be designed to be adaptive
- Disadvantages
 - □ No clear rules or design guidelines for arbitrary applications
 - No general way to assess the internal operation of the network
 - □ (therefore, an ANN system is seen as a "black-box")
 - □ Difficult to predict future network performance (generalization)

ANN- When?

- Input is high-dimensional discrete or real-valued
- The target function is real-valued, discrete-valued or vector-valued
- Possibly noisy data
- The form of the target function is unknown
- Human readability of result is not (very) important
- Long training time is accepted
- Short classification/prediction time is required