# VISUAL CATEGORY THEORY On Comodule Monads and Twisted Centers

Tony Zorman

Institute of Geometry

July 26, 2021

### A THEOREM

### THEOREM ([HAL21, THEOREM 3.4])

For a finite dimensional Hopf algebra, the following are equivalent

- 1 The Hopf algebra admits a pair in involution.
- 2 There exists a one dimensional anti-Yetter-Drinfel'd module.
- We have an isomorphism of algebras between the Drinfel'd center and the anti-Drinfel'd center.

# BASIC CATEGORY THEORY

DEFINITION A category C is ...

# ARROWS BETWEEN CATEGORIES

DEFINITION

A functor  $F:\mathcal{C}\longrightarrow\mathcal{D}$  is ...

# ARROWS BETWEEN ARROWS

#### **DEFINITION**

A natural transformation  $\eta \colon F \Longrightarrow G \dots$ 

# "NICE" PAIRS OF FUNCTORS

#### DEFINITION

An adjunction  $F:\mathcal{C}\rightleftarrows\mathcal{D}:U$  consists of the two natural transformations

- $\eta: \mathrm{Id}_{\mathcal{C}} \Longrightarrow UF$ ,
- $\varepsilon \colon FU \Longrightarrow \mathrm{Id}_{\mathcal{D}}$ ,

that fulfill the snake identities.

#### Monads

#### DEFINITION

A monad  $(T, \mu, \eta)$  consists of

- an endofunctor  $T: \mathcal{C} \longrightarrow \mathcal{C}$
- an associative and unital multiplication  $\mu \colon T^2 \Longrightarrow T$ ,
- a unit  $\eta \colon \mathrm{Id}_{\mathcal{C}} \Longrightarrow T$ .

### Monads as Coordinate Systems

Monads ← Categories

Bimonads ← Monoidal Categories

Hopf Monads ← Rigid Monoidal Categories

Comodule Monads ← Module Categories

### A THIRD DIRECTION OF COMPOSITION

#### DEFINITION

A monoidal category  $(\mathcal{C}, \otimes, 1)$  consists of

- a category C,
- an associative and unital multiplication  $\otimes : \mathcal{C} \times \mathcal{C} \longrightarrow \mathcal{C}$ ,
- a unit object 1.

A monad  $(T, \mu, \eta)$  consists of

- an endofunctor  $T: \mathcal{C} \longrightarrow \mathcal{C}$ ,
- an associative and unital multiplication  $\mu \colon T^2 \Longrightarrow T$ ,
- a unit  $\eta : \mathrm{Id}_{\mathcal{C}} \Longrightarrow T$ .

# TRANSLATING CATEGORICAL CONCEPTS

#### DEFINITION

A comonoidal functor is a triple  $(F, F_2, F_0)$  comprising

- A functor  $F: \mathcal{C} \longrightarrow \mathcal{D}$ .
- An associative natural transformation

$$F_{2,X,Y} \colon F(X \otimes Y) \longrightarrow FX \otimes FY$$
, for all  $X,Y \in \mathcal{C}$ ,

• A morphism  $F_0: F1 \longrightarrow 1$ .

A comonoidal functor is called *strong* (*strict*) iff both additional arrows are isomorphisms (identities).

# A DEFINITION WITHOUT WORDS



# A closer look at $F_2$



### NATURALITY

#### **DEFINITION**

A comonoidal natural transformation between the comonoidal functor F and G consists of

• a natural transformation  $\eta\colon F\Longrightarrow G$ 

that commutes with the monoidal structure of both functors.

### NATURALITY

#### DEFINITION

A comonoidal natural transformation between the comonoidal functor *F* and *G* consists of

• a natural transformation  $\eta\colon F\Longrightarrow G$  that commutes with the monoidal structure of both functors.



### BIMONADS

#### DEFINITION

A bimonad on the monoidal category  ${\mathcal C}$  consists of

- a monad  $(B, \mu, \eta)$  on C,
- a comonoidal functor  $(B, B_2, B_0)$  on C,

such that  $\mu$  and  $\eta$  are comonoidal natural transformations.

### **BIMONADS**

#### DEFINITION

A  $\emph{bimonad}$  on the monoidal category  $\mathcal C$  consists of

- a monad  $(B, \mu, \eta)$  on C,
- a comonoidal functor  $(B, B_2, B_0)$  on C,

such that  $\mu$  and  $\eta$  are comonoidal natural transformations.

# THEOREM ([MOE02])

Given a monad T on a monoidal category  $\mathcal{C}$ , there is a bijective correspondence

 $\{Bimonad\ structures\ on\ T\} \stackrel{1-1}{\longleftrightarrow} \{strict\ monoidal\ functors\ U_T\}$ 

### TWO USEFUL OBSERVATIONS

1 Categories can act on other categories.

$$\otimes \colon \mathcal{C} \times \mathcal{C} \longrightarrow \mathcal{C} \quad \leadsto \quad \rhd \colon \mathcal{C} \times \mathcal{M} \longrightarrow \mathcal{M}$$

### TWO USEFUL OBSERVATIONS

1 Categories can act on other categories.

$$\otimes \colon \mathcal{C} \times \mathcal{C} \longrightarrow \mathcal{C} \quad \rightsquigarrow \quad \rhd \colon \mathcal{C} \times \mathcal{M} \longrightarrow \mathcal{M}$$

2 Colours are fun.

# PURPLE FUNCTORS



# PURPLE FUNCTORS



# COMODULE NATURAL TRANSFORMATIONS



# COMODULE ADJUNCTIONS



# COMODULE ADJUNCTIONS



# COMODULE ADJUNCTIONS



# A CLASSIFICATION RESULT

THEOREM
Suppose we have



There is a bijective correspondence

- (I) Lifts of  $C \dashv D$  to a comodule adjunction,
- (II) Lifts of D to a strong comodule functor from  $\mathcal N$  to  $\mathcal C$ .

# A TASTE OF GRAPHICAL PROOFS

(I)  $\Longrightarrow$  (II): Assume  $C \dashv D$  is a comodule adjunction.

Define  $(\lambda^D)^{-1}$  as



# A TASTE OF GRAPHICAL PROOFS<sup>2</sup>

The natural transformation  $(\lambda^D)^{-1}$  is a post-inverse of  $\lambda^D$ :



### COMODULE MONADS

#### DEFINITION

Let  $(B, \mu, \eta)$  be a bimonad on  $\mathcal{C}$ . A comodule monad over B is a comodule endofunctor  $(\mathcal{C}, \lambda)$  on  $\mathcal{M}$  over B such that

### COMODULE MONADS

#### DEFINITION

Let  $(B, \mu, \eta)$  be a bimonad on  $\mathcal{C}$ . A comodule monad over B is a comodule endofunctor  $(\mathcal{C}, \lambda)$  on  $\mathcal{M}$  over B such that



### COMODULE MONADS

#### DEFINITION

Let  $(B, \mu, \eta)$  be a bimonad on  $\mathcal{C}$ . A comodule monad over B is a comodule endofunctor  $(\mathcal{C}, \lambda)$  on  $\mathcal{M}$  over B such that



### RECONSTRUCTION FOR COMODULE MONADS

#### THEOREM

Let B and C be a bimonad respectively monad on  $\mathcal{C}$ . There is a bijective correspondence between

- (I) Comodule structure on C,
- (II) Left modules structures of  $C^C$  over  $C^B$  such that  $U_C(\triangleright) = \otimes$ .

# LIFTING THEOREMS

THEOREM ([BV07, THEOREM 5.6])

Assuming a nice enough base category  $\mathcal C$ , the center of the category  $\mathcal C$  gives rise to a Hopf monad

### LIFTING THEOREMS

THEOREM ([BV07, THEOREM 5.6])

Assuming a nice enough base category  $\mathcal{C}$ , the center of the category  $\mathcal{C}$  gives rise to a Hopf monad and twisted center gives rise to a comodule monad.

### LIFTING THEOREMS

# THEOREM ([BV07, THEOREM 5.6])

Assuming a nice enough base category  $\mathcal{C}$ , the center of the category  $\mathcal{C}$  gives rise to a Hopf monad and twisted center gives rise to a comodule monad.

#### THEOREM

For a finite dimensional Hopf algebra tensor category, the following are equivalent

- 1. The Hopf algebra category admits a pair in involution quasi-pivotal struture.
- 2. There exists a one dimensional anti-Yetter-Drinfel'd module an "invertible" element in the twisted center.
- 3. We have an isomorphism equivalence of algebras categories between the Drinfel'd center and the anti-Drinfel'd twisted center.

# BONUS: ASSOCIATIVITY IN THREE DIMENSIONS



```
[BV07]
         Alain Bruguières and Alexis Virelizier. "Hopf monads".
         In: Adv. Math. 215.2 (2007), pp. 679–733. issn:
         0001-8708. doi: 10.1016/j.aim.2007.04.011. url:
         https://doi.org/10.1016/j.aim.2007.04.011.
[Hal21]
         Sebastian Halbig. "Generalized Taft algebras and pairs in
         involution". In: Communications in Algebra 0.0 (2021),
         pp. 1–15. doi: 10.1080/00927872.2021.1939043.
         eprint:
         https://doi.org/10.1080/00927872.2021.1939043.
         url:
         https://doi.org/10.1080/00927872.2021.1939043.
```

[Moe02] leke Moerdijk. "Monads on tensor categories". ln:
vol. 168. 2-3. Category theory 1999 (Coimbra). 2002,
pp. 189–208. doi: 10.1016/S0022-4049(01)00096-2.
url:
https://doi.org/10.1016/S0022-4049(01)00096-2.