Über die Operation Fortsetzung bei formalen Sprachen

Robert Hartmann

24. September 2010

Inhaltsverzeichnis

1	Einleitung	3
2	allgemeine Eigenschaften 2.1 Gilt für alle Sprachen	7
3	Eigenschaften bei Sprachen spezieller Gestalt	11
4	Abgeschlossenheit in der CHOMSKY-Hierachie 4.1 Regularität 4.2 Kontextfreiheit 4.2.1 deterministisch kontextfrei 4.3 Entscheidbarkeit	14 14
5	Schlusswort	15
6	Quellen und Literatur	15

1 Einleitung

In dieser Arbeit untersuchen wir die Operation Fortsetzung bei formalen Sprachen. Diese Operation wird in der Arbeit [St87] eingeführt.

Wir bezeichnen die Menge X^* als Menge aller endlichen Wörter über dem Alphabet X.

Wir bezeichnen weiterhin die Menge X^{ω} als Menge aller unendlichen Wörter über dem Alphabet X.

Sei ferner die Präfixrelation ⊑ wie üblich definiert:

Definition 1.

$$w \sqsubseteq b \Leftrightarrow w \cdot b' = b, \text{ für ein } b' \in X^*$$

 $pref(L) = \{v : v \sqsubseteq w \land w \in L\}$

Es wird nun der δ -Limes einer Wortmenge W^{δ} definiert (s. [St87, Seite X])

Definition 2.

$$W^{\delta} = \{\beta : \beta \in X^{\omega} \ und \ pref(\beta) \cap W \ ist \ unendlich\}$$

Die folgende Eigenschaft ((13) aus [St87] ist leich einzusehen:

$$(U \cup W)^{\delta} = U^{\delta} \cup W^{\delta}$$

Definition 3. Eine Sprache nennen wir eine (σ, δ) -Teilmenge von X^* genau dann, wenn für alle $\beta \in X^{\omega}$ entweder $pref(\beta) \cap W$ oder $pref(\beta) \setminus W$ endlich ist.

Beispiele für (σ, δ) -Teilmengen sind alle endlichen Sprachen und deren Komplemente. Weitere Beispiele sind Sprachen der Form pref(U) oder $W \cdot X^*$. Eine Eigenschaft für diese Teilmengen ergibt sich wiefolgt :

Satz 1 ([St87). Sei U eine (σ, δ) – Teilmenge von X^* , dann gilt:

$$(U \cap W)^{\delta} = U^{\delta} \cap W^{\delta}, \quad \text{für alle } W \subseteq X^*$$

Nun wird die Operation "Fortsetzung" wie in [St87] eingeführt, im nachfolgenden als \triangleright bezeichnet. Die Fortsetzung eines Wortes w in eine Sprache $V \subseteq X^*$ sei definiert als:

Definition 4.

$$w \triangleright V := Min \sqsubseteq \{v : v \in V \land w \sqsubseteq v\} = Min (w \cdot X^* \cap V)$$

Diese Operation wird wie folgt auf Sprachen ausgedehnt, dabei bezeichnen wir die Fortsetzung einer Sprache W in eien Sprache $V \subseteq X^*$ mit:

Definition 5.

$$W \triangleright V := \bigcup_{w \in W} w \triangleright V$$

Diese Operation hat nun folgende Eigenschaft bezüglich des δ -Limes: Während

$$(W \cap U)^{\delta} = W^{\delta} \cap U^{\delta}$$

nur für $(\sigma,\delta)\text{-Teilemgen gilt, so gilt}$

$$(W \triangleright U)^{\delta} = W^{\delta} \cap U^{\delta}$$

für sämtliche Sprachen

Daher wird nun im Verlauf der Arbeit die Operation Fortsetzung untersucht.

2 allgemeine Eigenschaften

2.1 Gilt für alle Sprachen

Folgende Eigenschaft ist direkt aus der Definition einsehbar:

Gleichung 1.

$$u \in L \to (u \triangleright L = \{u\})$$

Aus 2.1.1 folgt direkt

Gleichung 2.

$$L \triangleright L = L$$

Gleichung 3.

$$U \triangleright L \subseteq L$$

Eine unmittelbare Folgerung aus der Definition 1.5 ergibt sich:

Gleichung 4.

$$(L \cup U) \triangleright V = (L \triangleright V) \cup (U \triangleright V)$$

Beweis.

$$\begin{split} (L \cup U) \triangleright V &= \bigcup_{l \in L \cup U} Min \; (l \cdot X^* \cap V) \\ &= \bigcup_{l \in L} Min \; (l \cdot X^* \cap V) \cup \bigcup_{l \in U} Min \; (l \cdot X^* \cap V) \\ &= (L \triangleright V) \cup (U \triangleright V) \end{split}$$

Aus dieser Gleichung 2.1.4 folgt wiederum direkt:

Gleichung 5.

$$L_2 \subseteq L_1 \to L_2 \triangleright W \subseteq L_1 \triangleright W$$

Beweis.

$$L_1 \triangleright W = \bigcup_{l \in L_1} l \triangleright W$$

$$= \bigcup_{l \in L_2} l \triangleright W \cup \bigcup_{l \in L_1 \setminus L_2} l \triangleright W$$

$$\supseteq \bigcup_{l \in L_2} l \triangleright W = L_2 \triangleright W$$

Auf Gleichung 2.1.5 folgt direkt:

Gleichung 6.

$$(L \cap U) \triangleright V \subseteq (L \triangleright V) \cap (U \triangleright V)$$

Beweis.

$$w \in (L \cap U) \triangleright V \rightarrow w \in V \land \exists p : p \sqsubseteq w \land p \in L \land p \in U \land p \text{ ist minimal}$$

$$\rightarrow \underbrace{w \in V \land \exists p : p \sqsubseteq w \land p \in L \land p \ ist \ minimal}_{w \in L \rhd V} \land \underbrace{w \in V \land \exists p : p \sqsubseteq w \land p \in U \land p \ ist \ minimal}_{w \in U \rhd V}$$

Gleichung 7.

$$L \triangleright (U \cup V) \subseteq (L \triangleright U) \cup (L \triangleright V)$$

Lemma 1.

$$Min (A \cup B) \subseteq Min A \cup Min B$$

Es genügt, die Eigenschaft für $L=\{w\}$ zu zeigen.

Beweis.

$$L \triangleright (W \cup V) = w \triangleright (W \cup V)$$
$$= Min \ (w \cdot X^* \cap (W \cup V))$$

Nach Anwenden der Distributivgesetze ergibt sicht:

$$= Min ((w \cdot X^* \cap W) \cup (w \cdot X^* \cap V))$$

Anwendung von Lemma 1:

$$\subseteq \mathit{Min}\ (w \cdot X^* \cap W) \cup \mathit{Min}\ (w \cdot X^* \cap V)$$
$$= (L \triangleright W) \cup (L \triangleright V)$$

Gleichung 8.

$$L \triangleright (U \cap V) \supseteq (L \triangleright U) \cap (L \triangleright V)$$

Lemma 2.

$$Min (A \cap B) \supseteq Min A \cap Min B$$

Es genügt die Eigenschaft für $L=\{w\}$ zu zeigen.

Beweis.

$$L \triangleright (U \cap V) = Min \ (w \cdot X^* \cap (U \cap V))$$

Nach Anwenden der Distributivgesetze ergibt sicht:

$$= Min ((w \cdot X^* \cap U) \cap (w \cdot X^* \cap V))$$

Anwendung von Lemma 2:

$$\supseteq Min \ (w \cdot X^* \cap U) \cap Min \ (w \cdot X^* \cap V)$$
$$= (L \triangleright U) \cap (L \triangleright V)$$

Gleichung 9.

$$L_1 \subseteq L_2 \to L_1 \triangleright L_2 = L_1$$

Eigenschaft 1.

$$l \in L \to l \triangleright L = \{l\}$$

Beweis.

$$L_1 \triangleright L_2 = \bigcup_{l \in L_1} l \triangleright L_2$$

$$we gen \ L_1 \subseteq L_2 : l \triangleright L_2 = \{l\}$$

$$= \bigcup_{l \in L_1} \{l\} = L_1$$

Gleichung 10.

$$L_2 \subseteq L_1 \to L_1 \triangleright L_2 = L_2$$

Beweis.

Da
$$L_2 \subseteq L_1$$
 gilt für alle $l \in L_2 \land l \in L_1 : l \triangleright L_2 = \{l\}$
$$\bigcup_{l \in L_1} l \triangleright L_2 = \bigcup_{l \in L_1} \{l\} = L_2$$

2.2 Gilt für einige Sprachen $\exists L, U, V \subseteq X^*$:

$$L \triangleright (U \cdot V) = (L \triangleright U) \cdot (L \triangleright V)$$

$$L \rhd (U \cdot V) \supset (L \rhd U) \cdot (L \rhd V)$$

2.3 Gilt nicht...

Folgt direkt aus den Gleichungen in 2.1

$$L \triangleright (U \cup V) \supset (L \triangleright U) \cup (L \triangleright V)$$

$$L \triangleright (U \cap V) \subset (L \triangleright U) \cap (L \triangleright V)$$

$$L \triangleright (U \cdot V) \subset (L \triangleright U) \cdot (L \triangleright V)$$

$$(L\cap U)\triangleright V\supset (L\triangleright V)\cap (U\triangleright V)$$

$$L \triangleright (U \cup V) \subset (L \triangleright U) \cup (L \triangleright V)$$

$$L = \{a, b\}U = \{aaa\}V = \{bb, aa\}$$

$$L \triangleright (U \cup V) = (L \triangleright U) \cup (L \triangleright V)$$

$$L = \{a, b\}U = \{aaa\}V = \{aaa\}$$

$$L \rhd (U \cap V) \supset (L \rhd U) \cap (L \rhd V)$$

$$L = \{a,b\}U = \{aaa,b,bb\}V = \{bb,aaa\}$$

$$L \triangleright (U \cap V) = (L \triangleright U) \cap (L \triangleright V)$$

$$L = \{a\}U = \{aaa\}V = \{aaa\}$$

$$(L \cap U) \triangleright V \subset (L \triangleright V) \cap (U \triangleright V)$$

$$L = \{aa, bb\}U = \{aa, b\}V = \{aa, bb\}$$

$$(L\cap U)\triangleright V=(L\triangleright V)\cap (U\triangleright V)$$

$$L = \{aaa\}U = \{aaa\}V = \{aaa\}$$

$$L \triangleright (U \cup V) \not\supset (L \triangleright U) \cup (L \triangleright V),$$

Gegenbeispiel: $L = \{a\}$ $U = \{abb, aaba\}$ $V = \{aab, aba\}$

 $L\triangleright(U\cup V)=\{abb,aba,aab\}$, $aba,abb\}$, $aba,abb\}$, $aba,abb\}$

$$L \triangleright (U \cap V) \not\subset (L \triangleright U) \cap (L \triangleright V),$$

Gegenbeispiel: $L = \{a, b\}$ $U = \{a, aa\}$ $V = \{aa, b\}$

$$L \triangleright (U \cap V) = \{aa\}$$
, aber $L \triangleright U \cap L \triangleright V = \{a\} \cap \{b\} = \emptyset$

$$L\rhd (U\cdot V)=(L\rhd U)\cdot (L\rhd V),$$
 Beispiel: $L=\{e\}\quad U=\{a\}\quad V=\{b\}$
$$L\rhd (U\cdot V)\supset (L\rhd U)\cdot (L\rhd V),$$
 Beispiel: $L=\{a\}\quad U=\{aa\}\quad V=\{b,a\}$

$$(L_1 \triangleright L_2) \triangleright L_3 \not\supseteq L_1 \triangleright (L_2 \triangleright L_3)$$
 Gegenbeispiel: $L_1 = \{ab, aa\}$ $L_2 = \{a, ab\}$ $L_3 = \{aa\}$
$$(L_1 \triangleright L_2) \triangleright L_3 = \{ab\} \triangleright \{aa\} = \emptyset \text{ ,aber } \{ab, aa\} \triangleright \{aa\} = \{aa\}$$

3 Eigenschaften bei Sprachen spezieller Gestalt

Bedingung:

$$V\subseteq X^*\backslash W\cdot X^*$$

Eigenschaft 2.

$$V \triangleright W \cdot X^* = V \triangleright W$$

Es genügt die Eigenschaft zu zeigen für $L = \{v\}$:

Beweis.

$$V \triangleright W \cdot X^* = \{v\} \triangleright W \cdot X^*$$

Nach Definition der Operation Fortsetzung ergibt sich:

$$= \min_{\sqsubseteq} \{w: w \in W \cdot X^* \wedge v \sqsubseteq w\}$$

Wir wissen aus der Vorrausetzung, dass $v \notin W \cdot X^*$, daraus folgt unmittelbar, dass $v \in pref(W)\backslash W$.

Angenommen es existiert ein $w \in W \cdot X^+$ in $min_{\sqsubseteq}\{w : w \in W \cdot X^* \wedge v \sqsubseteq w\}$, so ist w' mit $w = w' \cdot r \wedge w' \in W$ ein kürzeres Wort, daher gilt:

$$\min_{\sqsubseteq}\{w:w\in W\cdot X^*\wedge v\sqsubseteq w\}=\min_{\sqsubseteq}\{w:w\in W\wedge v\sqsubseteq w\}$$

Eigenschaft 3.

$$V \triangleright W = V \triangleright \mathit{Min}\ (W)$$

Eigenschaft 4. $pref(V) \triangleright W$

Beweis. 1. Fall:
$$w \in W \cap pref(V) \to w \in pref(V) \triangleright W$$

2. Fall: $w \in W \setminus pref(V) \to w \in V \triangleright Min(W)$
 $\to pref(V) \triangleright W = (pref(V) \cap W) \cup (pref(V) \triangleright Min(W))$

Eigenschaft 5. $W \triangleright pref(V) = W \cap pref(V)$

Es genügt die Eigenschaft für $W = \{w\}$ zu zeigen:

Beweis.

$$W \triangleright pref(V) = \{w\} \triangleright pref(V)$$
$$= min_{\sqsubset} \{v : v \in pref(V) \land w \sqsubseteq v\}$$

Aus $v \in pref(V) \land w \sqsubseteq v$ folgt direkt, dass $w \in pref(V)$. Damit ergibt sich :

$$min_{\sqsubset}\{v:v\in pref(V)\land w\sqsubseteq v\}=\{v:v\in pref(V)\land w=v\}=\{w\}\cap pref(V)$$

Eigenschaft 6. $V \cdot X^* \triangleright W$

Beweis.
$$\bigcup_{v \in VX^*} Min \sqsubseteq \{w : w \in W \land v \sqsubseteq w\}$$

 $v \in VX^* \land v \sqsubseteq w \rightarrow w \in VX^*$
 $= \{w : w \in W \land w \in VX^*\} = W \cap VX^*$

Eigenschaft 7.

$$W \triangleright V \cdot X^*$$

Beweis. Die Aussage lässt sich in 2 Fälle aufteilen:

Fall a)
$$W \subseteq X^* \backslash V \cdot X^*$$

Fall b) $W \subseteq V \cdot X^*$

Es genügt die Eigenschaft zu zeigen für $W = \{w\}$.

zu a): Wie in Eigenschaft 3.2 und 3.3 bereits gezeigt folgt aus der der Bedingung in Fall a): $W \subseteq X^* \backslash V \cdot X^* \to W \triangleright V \cdot X^* = W \triangleright Min(V)$

zu b): zu betrachten $\{w\} \triangleright V \cdot X^*$

$$\{w\} \rhd V \cdot X^* = \min_{\sqsubseteq} \{v : v \in V \cdot X^* \land w \sqsubseteq \}$$

Da wir aus der Bedingung von Fall b) wissen, dass $w \in V \cdot X^*$, so folgt aus: $min_{\square}\{v:v\in V\cdot X^*\wedge w\sqsubseteq v\}$ unmittelbar, dass es sich um die Menge

$$\{v:v\in V\cdot X^*\wedge w=v\}=\{w\}\cap V\cdot X^* \text{ handelt}.$$

Daraus folgt direkt:

$$W \triangleright V \cdot X^* = (W \triangleright Min\ (V)) \cup (W \cap V \cdot X^*)$$

4 Abgeschlossenheit in der CHOMSKY-Hierachie

4.1 Regularität

Seien L und W regulär, so ist auch $L \triangleright W$ regulär.

Automat $A_L = (X, Z, z_0, \delta_L, Z_f)$ akzeptiere L, Automat $A_W = (X, S, s_0, f, S_f)$ akzeptiere W. Automat A akzeptiert $L \triangleright W$,

Vorgehensweise:

 A_L und A_W lesen das Wort w parallel. Falls A_L akzeptiert und wählt A nicht-deterministisch aus ob Schritt 2 aktiviert wird oder nicht.

Schritt 2: A_W liest das Wort w zu Ende, während A_L im Zustand z'_f verweilt. Sollte A_W auf diesem mehr als einmal akzeptieren, so akzeptiert A nicht indem A_W im Stoppzustand s_x stehen bleibt, ansonsten akzeptiert A.

$$A = (X, Z \cup \{z'_f\} \times S \cup \{s_x\}, (z_0, s_0), \delta, \{(z'_f, s') : s' \in S_f\}), s_x \notin S \text{ mit}$$

$$\delta = \{((z_i, s_i), x, (z_j, s_j)) : (z_i, x, z_j) \in \delta_L \land f(s_i, x) = s_j\} \cup \{((z_i, s_i), x, (z'_f, s_j)) : (z_i, x, z') \in \delta_L \land z' \in Z_f \land f(s_i, x) = s_j\} \cup \{((z'_f, s_i), x, (z'_f, s_j)) : f(s_i, x) = s_j \land s_i \notin S_f\} \cup \{((z'_f, s_i), x, (z'_f, s_x)) : f(s_i, x) = s_j \land s_i \in S_f\}$$

4.2 Kontextfreiheit

4.2.1 deterministisch kontextfrei

Es existieren deterministisch kontextfreie Sprachen L, W, sodass $L \triangleright W$ nicht deterministisch kontextfrei ist!

$$L = \{a^n b^n c^i : i, n > 0\} \qquad W = \{a^i b^n c^n : i, n > 0\}$$

So ist

$$L \triangleright W = \bigcup_{l \in L} \mathit{Min} \ {\sqsubseteq} \{w : w \in W \land l \sqsubseteq w\} = \{a^n b^n c^n : n > 0\} = U$$

Und von U wissen wir, dass es nicht kontextfrei, also auch nicht deterministisch kontextfrei ist.

4.3 Entscheidbarkeit

Seien L und W (Turing)entscheidbar, so ist auch $L \triangleright W$ entscheidbar.

Seien die Turing Maschinen T_L und T_W .

Die Turing Maschine T entscheide
t $L \triangleright W$ nach folgendem Algorithmus:

Algorithm 1 entscheide $L \triangleright W$, Input w

```
if (w \in W \land w \in L) then
  T accepts
\quad \text{end if} \quad
w' = w
if (w \in W) then
  return false
end if
repeat
  w' \leftarrow cut(w')
  if (w' \in W) then
     T rejects
  end if
  if (w' \in L) then
     T accepts
  end if
until (w' == e)
T rejects
```

- 5 Schlusswort
- 6 Quellen und Literatur