RIOIEI 의한 RIPARE 1

10주차. 서포트벡터머신

이혜선 교수

포항공과대학교 산업경영공학과

10주차. 서포트벡터머신

1차시 서포트벡터머신 I

2차시 서포트벡터머신 II

3차시 서포트벡터머신 Ⅲ

- Breast Cancer 데이터 설명
- ☑ Breast Cancer Wisconsin(Diagnostic) Data Set
 - 세침흡인 세포검사를 통해 얻은 683개 유방조직의 9개 특성을 나타냄

X1	X2	Х3	X4	X5	X6	X7	X8	X9	X10	Y
1000025	5	1	1	1	2	1	3	1	1	benign
1002945	5	4	4	5	7	10	3	2	1	benign
1015425	3	1	1	1	2	2	3	1	1	benign
1016277	6	8	8	1	3	4	3	7	1	benign
1017023	4	1	1	3	2	1	3	1	1	benign
1017122	8	10	10	8	7	10	9	7	1	malignant
1018099	1	1	1	1	2	10	3	1	1	benign
1018561	2	1	2	1	2	1	3	1	1	benign
1033078	2	1	1	1	2	1	1	1	5	benign
1033078	4	2	1	1	2	1	2	1	1	benign
1035283	1	1	1	1	1	1	3	1	1	benign
1036172	2	1	1	1	2	1	2	1	1	benign
1041801	5	3	3	3	2	3	4	4	1	malignant
1043999	1	1	1	1	2	3	3	1	1	benign
1044572	8	7:	5	10	7	9	5	5	4	malignant
1047630	7	4	6	4	6	1	4	3	1	malignant
1048672	4	1	1	1	2	1	2	1	1	benign
1049815	4	1	1	1	2	1	3	1	1	benign

#	Attribute	Domain		
1	샘플 코드 번호	ID number		
2	종양 두께	1 - 10		
3	조직 크기의 균등성	1 - 10		
4	조직 모양의 균등성	1 - 10		
5	가장자리 흡착	1 - 10		
6	상피조직 크기	1 - 10		
7	노출핵	1 - 10		
8	순한염색질	1 - 10		
9	정상 세포핵	1 - 10		
10	유사분열	1 - 10		
11	Class	Benign(양성, 정상), Malignant(악성)		

○ 서포트벡터머신 패키지와 함수

- 서포트벡터머신을 수행하기 위한 패키지 : e1071
- ☑ 오분류율 교차표 생성을 위한 패키지 : caret

- kernel 함수에 따른 결과비교
- ☑ Breast Cancer 데이터(학습데이터와 검증데이터의 분할)

```
# training (455) & test set (228)
                                                  데이터분할
# set.seed(1000)
                                                  (학습데이터 2/3, 검증데이터 1/3)
N=nrow(cancer)
set.seed(998)
# split train data and test data
tr.idx=sample(1:N, size=N*2/3, replace=FALSE)
train <- cancer[ tr.idx,]
                                                  train(455개의 데이터)
test <- cancer[-tr.idx,]
                                                  test(228개의 데이터)
```

kernel 함수에 따른 결과비교

☑ Kernel 함수에 따른 서포트벡터머신

```
#svm using kernel
m1 < -svm(Y \sim ..., data = train)
summary (m1)
m2<-svm(Y~., data = train,kernel="polynomial")
summary (m2)
m3<-svm(Y~., data = train,kernel="sigmoid")
summary (m3)
m4<-svm(Y~., data = train,kernel="linear")
summary (m4)
```

m1-kernel: radial

m2-kernel: polynomial

m3-kernel: sigmoid

m4-kernel: linear

kernel 함수에 따른 결과비교

☑ 서포트벡터머신 결과(kernel-radial basis function)

```
> summary(m1)
call:
svm(formula = Y \sim ... data = train)
Parameters:
  SVM-Type: C-classification
SVM-Kernel: radial
       cost:
Number of Support Vectors: 85
(58 27)
Number of Classes: 2
Levels:
benign malignant
```

```
▶ 정확도 측정
pred11 ← predict(m1,test)
confusionMatrix(pred11, test$Y)
```

```
> pred11<-predict(m1,test) # radial basis</pre>
> confusionMatrix(pred11, test$Y)
Confusion Matrix and Statistics
           Reference
Prediction benign malignant
  benian
               138
  malignant
               Accuracy: 0.9825
                 95% CI: (0.9557, 0.9952)
```

kernel 함수에 따른 결과비교

☑ 서포트벡터머신 결과(kernel-polynomial)

```
> summary(m2)
ca11:
svm(formula = Y ~ ., data = train, kernel =
 "polynomial")
Parameters:
  SVM-Type: C-classification
SVM-Kernel: polynomial
      cost: 1
    degree: 3
    coef.0: 0
Number of Support Vectors: 75
(41 34)
Number of Classes: 2
Levels:
benign malignant
```

▶ 정확도 측정 pred12 ← predict(m2,test) confusionMatrix(pred12, test\$Y)

```
> pred12<-predict(m2.test) # polynomial
> confusionMatrix(pred12, test$Y)
Confusion Matrix and Statistics
           Reference
Prediction benign malignant
  benian
               142
  malignant
               Accuracy: 0.9561
                 95% CI: (0.9208, 0.9788)
```

False positive와 False negative 중 어느 것이 더 위험할까?

kernel 함수에 따른 결과비교

✓ 서포트벡터머신 결과(kernel-sigmoid)

```
> summary(m3)
call:
svm(formula = Y ~ .. data = train, kernel =
"sigmoid")
Parameters:
  SVM-Type: C-classification
SVM-Kernel: sigmoid
      cost: 1
    coef.0: 0
Number of Support Vectors: 30
( 15 15 )
Number of Classes: 2
Levels:
benign malignant
```

```
▶ 정확도 측정
pred13 ← predict(m3,test)
confusionMatrix(pred13, test$Y)
```

```
> pred13<-predict(m3,test) # sigmoid</pre>
> confusionMatrix(pred13, test$Y)
Confusion Matrix and Statistics
           Reference
Prediction benign malignant
  benign
               137
                (5)
  malignant
               Accuracy : 0.9649
                 95% CI: (0.932, 0.9847)
```

kernel 함수에 따른 결과비교

☑ 서포트벡터머신 결과(kernel-linear)

```
> summary(m4)
call:
svm(formula = Y ~ .. data = train, kernel =
 "linear")
Parameters:
  SVM-Type: C-classification
SVM-Kernel: (linear)
      cost: 1
Number of Support Vectors: 41
(21 20)
Number of Classes: 2
Levels:
benign malignant
```

```
▶ 정확도 측정
pred14 ← predict(m4,test)
confusionMatrix(pred14, test$Y)
```

```
> pred14<-predict(m4,test) # linear</pre>
> confusionMatrix(pred14, test$Y)
Confusion Matrix and Statistics
           Reference
Prediction benign malignant
  benign
               141
  malignant
               Accuracy: 0.9825
                 95% CI: (0.9557, 0.9952)
```


- Accuracy: (true positive + true negative)/n
- Sensitivity: true positive rate = True Positive /
- Specificity: true negative rate = True Negative / True Negative

		True status			
		event	Not event		
Pred	event	True Positive	False Positive		
class	Not event	False Negative	True Negative		

True Positive

False Negative