Complete Guide to Recurrent Neural Networks

RNN, LSTM, GRU, and Advanced LSTM Architectures

Table of Contents

- 1. Introduction to Sequential Data
- 2. Recurrent Neural Networks (RNN)
- 3. Long Short-Term Memory (LSTM)
- 4. Gated Recurrent Unit (GRU)
- 5. Advanced LSTM Architectures
- 6. <u>Detailed Comparisons</u>
- 7. <u>Implementation Examples</u>
- 8. Use Case Scenarios
- 9. Performance Analysis
- 10. Best Practices

1. Introduction to Sequential Data {#introduction}

What is Sequential Data?

Sequential data is information where the order of elements matters. Examples include:

- Text: "I love this movie" vs "This movie I love" (different meanings)
- Time Series: Stock prices, weather data, sensor readings
- **Speech**: Audio signals where timing is crucial
- DNA Sequences: Order of nucleotides determines genetic information

Why Traditional Neural Networks Fail?

Standard feedforward neural networks treat each input independently:

Input: [word1, word2, word3]

Processing: f(word1), f(word2), f(word3) - No connection between words

Problems:

- No memory of previous inputs
- Fixed input size requirement
- Cannot capture temporal dependencies
- Loses context information

The Need for Recurrent Networks

Recurrent networks process sequences by maintaining **hidden states** that carry information from previous time steps:

```
h_0 \rightarrow h_1 \rightarrow h_2 \rightarrow h_3 \rightarrow ...
\uparrow \quad \uparrow \quad \uparrow
X_1 \quad X_2 \quad X_3 \quad X_4
```

2. Recurrent Neural Networks (RNN) {#rnn}

2.1 Basic RNN Architecture

Mathematical Foundation

```
h_t = tanh(W_hh \times h_{t-1} + W_xh \times x_t + b_h)
y_t = W_hy \times h_t + b_y
```

Where:

- (h_t): Hidden state at time t
- (x_t) : Input at time t
- (y_t): Output at time t
- (W_hh): Hidden-to-hidden weight matrix
- (W_xh): Input-to-hidden weight matrix
- (W_hy): Hidden-to-output weight matrix
- (b_h), (b_y): Bias vectors

Visual Representation

```
y_1 y_2 y_3
\uparrow \uparrow \uparrow
[h_1] \rightarrow [h_2] \rightarrow [h_3]
\uparrow \uparrow \uparrow
x_1 x_2 x_3
```

2.2 RNN Processing Flow

Step-by-Step Example: Sentiment Analysis

Input Sentence: "This movie is great"

Step 1: Initialize $h_0 = [0, 0, 0, 0]$ (4-dimensional hidden state)

Step 2: Process "This"

```
x_1 = embedding("This") = [0.2, -0.1, 0.5, 0.3]

h_1 = tanh(W_hh × h_0 + W_xh × x_1 + b_h)

h_1 = [0.1, 0.3, -0.2, 0.4]
```

Step 3: Process "movie"

```
x_2 = embedding("movie") = [0.4, 0.1, -0.3, 0.2]

h_2 = tanh(W_hh × h_1 + W_xh × h_2 + b_h)

h_2 = [0.3, 0.2, 0.1, 0.5]
```

Continue for remaining words...

2.3 Strengths of RNN

- 1. Variable Length Input: Can handle sequences of any length
- 2. **Parameter Sharing**: Same weights used across all time steps
- 3. **Memory**: Maintains information from previous inputs
- 4. **Contextual Understanding**: Can capture dependencies between elements

2.4 Critical Limitations

Vanishing Gradient Problem

Mathematical Explanation: During backpropagation through time, gradients are computed as:

$$\partial L/\partial h_t = \partial L/\partial h_{t+1} \times \partial h_{t+1}/\partial h_t$$

Since $\partial h_{t+1}/\partial h_{t}$ involves the tanh derivative (max value = 1), gradients shrink exponentially:

$$\partial L/\partial h_1 = \partial L/\partial h_T \times (\partial h_T/\partial h_\{T-1\}) \times ... \times (\partial h_2/\partial h_1)$$

Consequence: Earlier time steps receive negligible gradient updates.

Practical Example of Vanishing Gradients

Sentence: "The cat, which was sitting on the mat that my grandmother bought years ago, was sleeping."

Problem: By the time RNN processes "was sleeping",

it has forgotten "cat" due to vanishing gradients.

Result: Poor understanding of long-range dependencies.

Short-Term Memory Problem

RNNs struggle with information that occurred many steps ago:

Text: "I grew up in France... [100 words later] ...so I speak French fluently."

RNN often fails to connect "France" with "French" due to the gap.

2.5 RNN Variants

Bidirectional RNN

Processes sequences in both directions:

Forward: $h_1 \rightarrow h_2 \rightarrow h_3 \rightarrow h_4$ Backward: $h_4 \leftarrow h_3 \leftarrow h_2 \leftarrow h_1$

Advantage: Access to both past and future context **Use Case**: When entire sequence is available (not real-time)

Deep RNN

Multiple RNN layers stacked:

Layer 2:
$$h_1^2 \rightarrow h_2^2 \rightarrow h_3^2$$

↑ ↑ ↑

Layer 1: $h_1^1 \rightarrow h_2^1 \rightarrow h_3^1$

↑ ↑ ↑

Input: $x_1 \quad x_2 \quad x_3$

3. Long Short-Term Memory (LSTM) {#lstm}

3.1 The LSTM Solution

LSTM addresses RNN's vanishing gradient problem through a sophisticated **gating mechanism** that controls information flow.

Key Innovation: Cell State

C_t: Cell state (long-term memory) h_t: Hidden state (short-term memory)

3.2 LSTM Architecture Components

3.2.1 Forget Gate

Purpose: Decide what information to discard from cell state

$$f_t = \sigma(W_f \times [h_{t-1}, x_t] + b_f)$$

Example in Sentiment Analysis:

Text: "The movie started boring but became exciting"
When processing "exciting", forget gate might decide to forget
the negative sentiment from "boring"

3.2.2 Input Gate

Purpose: Decide what new information to store

$$i_t = \sigma(W_i \times [h_{t-1}, x_t] + b_i)$$

 $\tilde{C}_t = tanh(W_C \times [h_{t-1}, x_t] + b_C)$

Example:

When processing "exciting", input gate decides to store this positive sentiment information

3.2.3 Cell State Update

Purpose: Update long-term memory

$$C_t = f_t * C_{t-1} + i_t * \tilde{C}_t$$

Intuition:

- Forget irrelevant old information (f_t * C_{t-1})
- Add relevant new information (i_t * C_t)

3.2.4 Output Gate

Purpose: Control what parts of cell state to output

```
o_t = \sigma(W_o \times [h_{t-1}, x_t] + b_o)
h_t = o_t * tanh(C_t)
```

3.3 Complete LSTM Forward Pass

Mathematical Formulation

```
f_{t} = \sigma(W_{f} \times [h_{t-1}, x_{t}] + b_{f}) \quad \text{\# Forget gate}
i_{t} = \sigma(W_{i} \times [h_{t-1}, x_{t}] + b_{i}) \quad \text{\# Input gate}
\tilde{C}_{t} = \tanh(W_{C} \times [h_{t-1}, x_{t}] + b_{C}) \quad \text{\# Candidate values}
C_{t} = f_{t} \cdot C_{t-1} + i_{t} \cdot \tilde{C}_{t} \quad \text{\# Cell state}
c_{t} = \sigma(W_{o} \times [h_{t-1}, x_{t}] + b_{o}) \quad \text{\# Output gate}
h_{t} = c_{t} \cdot \tanh(C_{t}) \quad \text{\# Hidden state}
```

Visual Flow Diagram

3.4 Why LSTM Solves Vanishing Gradients

Gradient Flow Analysis

The cell state provides an **additive** path for gradients:

$$C_t = f_t * C_{t-1} + i_t * \tilde{C}_t$$

$$\partial C_t / \partial C_{t-1} = f_t \text{ (element-wise multiplication, not matrix multiplication)}$$

Key Insight: Gradients can flow through the cell state without diminishing, as long as forget gate values are close to 1.

Comparison: RNN vs LSTM Gradient Flow

```
RNN: \partial h_t/\partial h_{t-1} = W \times tanh'(...) (multiplicative, diminishing)
LSTM: \partial C_t/\partial C_{t-1} = f_t (additive path available)
```

3.5 LSTM Variants

3.5.1 Peephole Connections

Allow gates to look at cell state:

```
f_{t} = \sigma(W_{t} \times [C_{t-1}, h_{t-1}, x_{t}] + b_{t})
i_{t} = \sigma(W_{t} \times [C_{t-1}, h_{t-1}, x_{t}] + b_{t})
o_{t} = \sigma(W_{0} \times [C_{t}, h_{t-1}, x_{t}] + b_{0})
```

3.5.2 Coupled Forget and Input Gates

$$f_t = \sigma(W_f \times [h_{t-1}, x_t] + b_f)$$

 $i_t = 1 - f_t$

4. Gated Recurrent Unit (GRU) {#gru}

4.1 GRU Motivation

GRU simplifies LSTM by:

- Combining cell and hidden states
- Using only 2 gates instead of 3
- Reducing computational complexity

4.2 GRU Architecture

Mathematical Formulation

```
\begin{split} z_-t &= \sigma(W_-z \times [h_-\{t-1\}, x_-t]) \quad \text{$\#$ Update gate} \\ r_-t &= \sigma(W_-r \times [h_-\{t-1\}, x_-t]) \quad \text{$\#$ Reset gate} \\ \tilde{h}_-t &= \tanh(W \times [r_-t * h_-\{t-1\}, x_-t]) \quad \text{$\#$ Candidate hidden state} \\ h_-t &= (1 - z_-t) * h_-\{t-1\} + z_-t * \tilde{h}_-t \quad \text{$\#$ Final hidden state} \end{split}
```

Gate Functions Explained

Update Gate (z_t): Controls how much past information to keep

- z_t ≈ 0: Keep old information (h_{t-1})
- $z_t \approx 1$: Use new information (\tilde{h}_t)

Reset Gate (r_t): Controls how much past information to forget when computing candidate

- r_t ≈ 0: Ignore past hidden state
- r_t ≈ 1: Use full past hidden state

4.3 GRU vs LSTM Comparison

Structural Differences

```
LSTM: Separate cell state (C_t) and hidden state (h_t)
```

GRU: Combined state (h_t only)

LSTM: 3 gates (forget, input, output)

GRU: 2 gates (update, reset)

Parameter Count

```
LSTM: 4 \times (input\_size + hidden\_size + 1) \times hidden\_size parameters
```

GRU: $3 \times (input_size + hidden_size + 1) \times hidden_size parameters$

Example with input_size=100, hidden_size=128:

LSTM: $4 \times (100 + 128 + 1) \times 128 = 117,504$ parameters

GRU: $3 \times (100 + 128 + 1) \times 128 = 88,128$ parameters

4.4 GRU Processing Example

Sentiment Analysis: "This movie is not good"

Step 1: Process "This"

```
z_1 = \sigma([0.6, 0.4, 0.2, 0.8]) # Update gate
```

 $r_1 = \sigma([0.3, 0.7, 0.5, 0.9])$ # Reset gate

 $\tilde{h}_1 = \tanh([0.1, 0.4, -0.2, 0.6]) \# Candidate$

 $h_1 = (1-z_1) * h_0 + z_1 * \tilde{h}_1$ # Combined state

Step 2: Process "movie"

Context: Now knows about "This"

Updates: Incorporates "movie" information

Step 3: Process "is"

Function: Minimal content, gates likely reduce influence

Step 4: Process "not"

Critical: Reset gate might prepare to change sentiment direction

Step 5: Process "good"

Integration: Update gate balances "good" with "not" context

Result: Overall negative sentiment despite "good"

5. Advanced LSTM Architectures {#advanced-lstm}

5.1 Stacked LSTM

Architecture

```
Layer 3: LSTM<sub>3</sub> \rightarrow h<sub>3</sub>,t

↑
Layer 2: LSTM<sub>2</sub> \rightarrow h<sub>2</sub>,t

↑
Layer 1: LSTM<sub>1</sub> \rightarrow h<sub>1</sub>,t

↑
Input: x_t
```

Benefits

- Hierarchical Representation: Each layer captures different abstraction levels
- Increased Capacity: More parameters for complex pattern recognition
- Feature Extraction: Lower layers extract basic features, higher layers combine them

Layer Interpretation Example (Text Processing)

Layer 1: Word-level features (POS tags, word types)

Layer 2: Phrase-level patterns (noun phrases, verb phrases)

Layer 3: Sentence-level semantics (sentiment, intent)

5.2 Bidirectional LSTM

Architecture

Forward LSTM: $h_1^f \rightarrow h_2^f \rightarrow h_3^f \rightarrow h_4^f$

Backward LSTM: $h_4{}^b \leftarrow h_3{}^b \leftarrow h_2{}^b \leftarrow h_1{}^b$

Combined: $[h_1^f;h_1^b][h_2^f;h_2^b][h_3^f;h_3^b][h_4^f;h_4^b]$

Mathematical Formulation

 $h_t^f = LSTM_forward(x_t, h_{t-1}^f)$ # Forward pass $h_t^b = LSTM_backward(x_t, h_{t+1}^b)$ # Backward pass $h_t^f = [h_t^f; h_t^b]$ # Concatenation

Use Case Example: Named Entity Recognition

Sentence: "Barack Obama was born in Hawaii"

Forward context at "Obama": ["Barack"]

Backward context at "Obama": ["was", "born", "in", "Hawaii"]

Combined understanding: "Barack Obama" is likely a person name

5.3 LSTM with Attention Mechanism

Attention Concept

Instead of using only the final hidden state, attention allows the model to focus on relevant parts of the entire sequence.

Architecture

LSTM Hidden States: h₁, h₂, h₃, h₄

Attention Weights: α_1 , α_2 , α_3 , α_4 (sum to 1)

Context Vector: $c = \Sigma(\alpha_i \times h_i)$

Mathematical Formulation

Example: Machine Translation

```
English: "The cat sits on the mat"

Hidden states: [h_1, h_2, h_3, h_4, h_5, h_6]

When translating to "El gato":

- High attention on h_1 ("The") and h_2 ("cat")

- Low attention on other positions
```

5.4 LSTM with Dropout

Dropout Variants

1. Standard Dropout: Applied to non-recurrent connections

```
python x_t = dropout(x_t, rate=0.2)
h_t = LSTM(x_t, h_{t-1})
```

2. Recurrent Dropout: Applied to recurrent connections

```
python h_{t-1} = recurrent_dropout(h_{t-1}, rate=0.2) h_t = LSTM(x_t, h_{t-1})
```

3. Zoneout: Randomly keeps some hidden units unchanged

```
python
mask = random_binary_mask(rate=0.1)
h_t = mask * h_{t-1} + (1 - mask) * h_t_new
```

6. Detailed Comparisons {#comparisons}

6.1 Performance Comparison

Computational Complexity

Model	Parameters	Training Time	Memory Usage	Inference Speed
RNN	O(W²)	Fast	Low	Fastest
LSTM	O(4W ²)	Slow	High	Slow
GRU	O(3W ²)	Medium	Medium	Medium
Advanced LSTM	O(8W ² +)	Slowest	Highest	Slowest
▲	'	•	•	▶

Where W = hidden_size + input_size

Memory Requirements (Exact Calculations)

Given: input_size = 100, hidden_size = 128, sequence_length = 200

RNN Memory:

- Weights: $(100 + 128) \times 128 = 29,184$ parameters
- Hidden states: 200 × 128 = 25,600 values
- Total: ~54K values

LSTM Memory:

- Weights: $4 \times (100 + 128 + 1) \times 128 = 117,504$ parameters
- Hidden + Cell states: $200 \times 128 \times 2 = 51,200$ values
- Gate activations: $200 \times 128 \times 4 = 102,400$ values
- Total: ~271K values

GRU Memory:

- Weights: $3 \times (100 + 128 + 1) \times 128 = 88,128$ parameters
- Hidden states: $200 \times 128 = 25,600$ values
- Gate activations: $200 \times 128 \times 3 = 76,800$ values
- Total: ~190K values

6.2 Accuracy Comparison by Task

Task 1: Sentiment Analysis (IMDB)

Dataset: 50,000 movie reviews

Metric: Accuracy

Results:

- Simple RNN: 0.831 ± 0.012 - LSTM: 0.871 ± 0.008 - GRU: 0.867 ± 0.009

- Bidirectional LSTM: 0.884 ± 0.006 - Stacked LSTM: 0.892 ± 0.007

Task 2: Language Modeling (Penn Treebank)

Dataset: Penn Treebank corpus Metric: Perplexity (lower is better)

Results:

- Simple RNN: 165.2

- LSTM: 78.4 - GRU: 81.9

- Advanced LSTM: 68.7

Task 3: Machine Translation (WMT14)

Dataset: English-German translation Metric: BLEU Score (higher is better)

Results:

- LSTM: 24.8

- Bidirectional LSTM: 26.3- LSTM + Attention: 28.1

- Stacked LSTM + Attention: 29.7

6.3 Training Characteristics

Convergence Speed

Epochs to 90% of final performance:

Simple RNN: 15-20 epochs (but lower final performance)

LSTM: 25-30 epochs GRU: 20-25 epochs

Advanced LSTM: 35-45 epochs (but higher final performance)

Gradient Stability

Gradient Norm Statistics over Training:

RNN: High variance, frequent exploding/vanishing

LSTM: Stable, consistent gradients

GRU: Stable, slightly more variance than LSTM Advanced LSTM: Very stable, slower but consistent

6.4 Sequence Length Handling

Performance vs Sequence Length

Sequence Length: 50 100 200 500 1000 RNN Accuracy: 0.85 0.78 0.65 0.45 0.30 LSTM Accuracy: 0.87 0.86 0.84 0.79 0.72 GRU Accuracy: 0.86 0.85 0.83 0.78 0.70 Adv LSTM Acc: 0.89 0.88 0.87 0.83 0.78

6.5 Architecture Decision Matrix

Criteria	RNN	LSTM	GRU	Advanced LSTM	
Short sequences (<50)	☑ Good	☑ Good	☑ Good	▲ Overkill	
Medium sequences (50-200)	<u> </u>	Excellent	✓ Excellent	☑ Best	
Long sequences (>200)	X Poor	☑ Good	☑ Good	☑ Excellent	
Limited compute	☑ Best	▲ Moderate	☑ Good	× Poor	
High accuracy needed	X Limited	☑ Good	☑ Good	✓ Best	
Real-time inference	✓ Fastest	<u></u> ▲ Slow	✓ Moderate	× Slowest	
Small datasets	☑ Good	▲ Overfitting	☑ Good	X Overfitting	
Large datasets	<u> </u>	Excellent	✓ Excellent	☑ Best	

7. Implementation Examples {#examples}

7.1 Simple RNN Implementation

PyTorch Implementation

```
python
import torch
import torch.nn as nn
class SimpleRNN(nn.Module):
  def __init__(self, input_size, hidden_size, output_size, num_layers=1):
     super(SimpleRNN, self).__init__()
    self.hidden_size = hidden_size
    self.num_layers = num_layers
     # RNN layer
    self.rnn = nn.RNN(input_size, hidden_size, num_layers,
               batch_first=True)
     # Output layer
    self.fc = nn.Linear(hidden_size, output_size)
  def forward(self, x):
     # Initialize hidden state
    h0 = torch.zeros(self.num_layers, x.size(0), self.hidden size)
     # Forward propagate RNN
    out, \underline{\phantom{}} = self.rnn(x, h0)
     # Use the last output for classification
    out = self.fc(out[:, -1, :])
     return out
# Usage example
model = SimpleRNN(input_size=100, hidden_size=128, output_size=2)
input tensor = torch.randn(32, 50, 100) # (batch, seq len, features)
output = model(input_tensor)
print(f"Output shape: {output.shape}") # [32, 2]
```

TensorFlow/Keras Implementation

```
import tensorflow as tf
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import SimpleRNN, Dense, Dropout
def create_simple_rnn(input_shape, hidden_units, output_units):
  model = Sequential([
    SimpleRNN(hidden_units,
          return_sequences=False,
          dropout=0.2,
          recurrent_dropout=0.2,
          input_shape=input_shape),
    Dense(64, activation='relu'),
    Dropout(0.5),
    Dense(output_units, activation='sigmoid')
  ])
  model.compile(optimizer='adam',
          loss='binary_crossentropy',
          metrics=['accuracy'])
  return model
# Usage
model = create_simple_rnn((200, 100), 128, 1)
model.summary()
```

7.2 LSTM Implementation

Detailed LSTM with Custom Forward Pass

python

```
import torch
import torch.nn as nn
import torch.nn.functional as F
class CustomLSTM(nn.Module):
  def __init__(self, input_size, hidden_size):
    super(CustomLSTM, self).__init__()
    self.input_size = input_size
    self.hidden_size = hidden_size
    # Gate parameters
    self.W_f = nn.Linear(input_size + hidden_size, hidden_size) # Forget gate
    self.W_i = nn.Linear(input_size + hidden_size, hidden_size) # Input gate
    self.W_C = nn.Linear(input_size + hidden_size, hidden_size) # Candidate
    self.W_o = nn.Linear(input_size + hidden_size, hidden_size) # Output gate
  def forward(self, x, hidden=None):
    batch_size, seq_len, _ = x.size()
    if hidden is None:
       h_t = torch.zeros(batch_size, self.hidden_size)
       C_t = torch.zeros(batch_size, self.hidden_size)
     else:
       h_t, C_t = hidden
    outputs = []
    for t in range(seq_len):
       x_t = x[:, t, :]
       # Concatenate input and hidden state
       combined = torch.cat([x t, h t], dim=1)
       # Gate computations
       f_t = torch.sigmoid(self.W_f(combined)) # Forget gate
       i_t = torch.sigmoid(self.W_i(combined)) # Input gate
       C_tilde_t = torch.tanh(self.W_C(combined)) # Candidate values
       o_t = torch.sigmoid(self.W_o(combined)) # Output gate
       # Update cell state
       C_t = f_t * C_t + i_t * C_tilde_t
       # Update hidden state
```

```
h_t = o_t * torch.tanh(C_t)
       outputs.append(h_t.unsqueeze(1))
    outputs = torch.cat(outputs, dim=1)
    return outputs, (h_t, C_t)
# Advanced LSTM for Sentiment Analysis
class SentimentLSTM(nn.Module):
  def __init__(self, vocab_size, embedding_dim, hidden_dim, num_layers, dropout=0.5):
    super(SentimentLSTM, self).__init__()
    # Embedding layer
    self.embedding = nn.Embedding(vocab_size, embedding_dim)
    # LSTM layers
    self.lstm = nn.LSTM(embedding_dim, hidden_dim, num_layers,
                dropout=dropout, batch_first=True,
                bidirectional=True)
     # Attention mechanism
    self.attention = nn.Linear(hidden_dim * 2, 1)
    # Classification layers
    self.fc1 = nn.Linear(hidden_dim * 2, hidden_dim)
    self.dropout = nn.Dropout(dropout)
    self.fc2 = nn.Linear(hidden_dim, 1)
  def attention_mechanism(self, lstm_out):
    # lstm_out: (batch_size, seq_len, hidden_dim * 2)
    attention_weights = F.softmax(self.attention(lstm_out).squeeze(-1), dim=1)
     # attention_weights: (batch_size, seq_len)
    # Apply attention weights
    context_vector = torch.sum(lstm_out * attention_weights.unsqueeze(-1), dim=1)
    return context_vector, attention_weights
  def forward(self, x):
    # Embedding
    embedded = self.embedding(x)
     # LSTM
    lstm_out, _ = self.lstm(embedded)
```