RESPUESTAS A LOS EJERCICIOS DE MATEMATICA

MANUAL DE INGRESO 2025

MÓDULOS 1, 2, 3, 4 y 6

Agradecemos a los docentes que colaboraron en la elaboración del presente documento donde figuran las respuestas de los ejercicios correspondientes a Matemática.

Álvarez Sandra, Ávila Laura, Furchi Nahuel, Igne Raúl, Lacaba Cecilia, López Lucas, López Patricia, Lozano Elena, Pérez Villamil Cristina, Spagnolo Noelia, Suelves Nadia, Toteda Roberto y Ursino Elsa

Coordinadoras: Mg. Roxana Scorzo

Esp. Gabriela Ocampo

MÓDULO 1.: CONJUNTOS NUMERICOS.

Ejercicio 1:

	N	Z	Q	<i>∉ Q</i>	I	\Re
1/2			X			X
- 1/2			X			X
$\sqrt{-4}$				X		
_ 3√8		X	X			X
0,3333333			X			X
2,3245245			X			X
10/2	X	X	X			X
8/5			X			X
$\pi-1$				X	X	X
7.46474849505152.				X	X	X
5	X	X	X			X
$\sqrt{2}-2$				X	X	X

Ejercicio 2: a) F b) V c) V d) V

Ejercicio 3: a) F b) F c) V d)

V

Ejercicio 4: a) Conmutativa Inverso aditivo y multiplicativo b) Asociativa de la multiplicación c) d) Conmutativa de la multiplicación

Ejercicio 5:.a)3x+2y b)

41.[x.(-3y)]

(9+6y)+8x

d) (3y.4z).2x

e)

 \neq

Ejercicio 6:.a)-1

-1/4 b)

b)

-10

c)

c)

d) 39/5

51/4

Ejercicio 7 a)

 \neq

c)

 $d \neq$ e)

f) =

Ejercicio 8

Ejercicio 9: a)cada vez menor (Se acerca a 0)

b) cada vez mayor

c) Toma

valores cada vez más grandes en valor absoluto

d) si

Ejercicio 10: a) Toma valores cada vez más pequeños b) Toma valores cada vez más grandes

Ejercicio 11 a) g) V

F

b) F c) F d)

V

f) F

x < 8

Ejercicio 12:

: a) x > 0 b) $y \ge 0$ c)

x+y < 0

d) a < -3

e) b ≥ 100

 $-3 \le x \le 2$

e)

f) $c-1 \le 5$ g) a<b

h) c>a.b V c<a.b

i)

i)

F

x>-5 V x<1/2 (todos los numeros m)

-2 < x < 4

-2 < x < 4k) reales)

Ejercicio 13: a)

Ejercicio 14: a)

-2 < x < 6

1) -5 < x < 1/2

b)

3 < x < 4

c)

d)

x≥5

 $(-\infty;1]$

b)(-2;4] c) $(5;+\infty)$ d) [1;7]

Ejercicio 15: a) 100

b) 3 c) 4

d) 0

e) 5

f) -1 g) 1

h) $\pi - 3$ i) $2 - \sqrt{3}$

Ejercicio 16: a)

-52 < t < 52 b)

 $-2 \le x \le 8$ c) $x \ge 5$ V $x \le 1$

Ejercicio 17: a)

-X

b) - X

c) -x+2 d) 0 e) x-5 f) 5-x

MÓDULO 2.: EXPRESIONES ALGEBRAICAS

Ejercicio 1:

Soluciones Matemática

2

a) $3x^5 - x^{\frac{1}{2}}$		X			
$b) \sqrt{2} - 3x^3 + x$	X		3	-3	$\sqrt{2}$
$c) 2 - x + 2x^2 - 3x^4$	X		4	-3	2
$d) 4^{-1} + 4x - 7x^5 + 6$	X		5	-7	25/4
$e) 3x^2 - \frac{1}{2}x + 5 - x^{-1} + x^{-2}$		X			

Ejercicio 2 ii) a)
$$a = \frac{5}{2}, b = -3, c = -9, d = -4$$
 b) $a = -2$, $b = -5$

P(x); $2X^3$ Q(x): $-X^3$

d) P(x): 3 y Q(x): 1/2

Ejercicio 4: a) $6x^5+x^3-8x^2-2x+5$ b) $6x^5+x^3-2x^2+2x-5$ c) x^3-6x^2+4x-5 d) $18x^7 + 12x^6 - 27x^5 - 13x^4 - 15x^3 + 25x^2$ e) $x^4 - 9x^3 - 6$ f) $-\frac{1}{2}x^2 + 3\frac{1}{12}$ 24

x+1/3

Ejercicio 6: a)
$$y^2-5/2y+17/4$$
 b) $4/3z^2-70/9z-4/3$ c)- $9/8y^6+17/2y^4-54y^2+215$ d) $-8x^2+29$

c)-
$$9/8y^6+17/2y^4-54y^2+215$$

Ejercicio 7: a) Perímetro=
$$9x^3+3/2$$
 x-3 Área= $3/2x^4-6x^3+1/4x^2-3/2x+2$

b) Perímetro=
$$6x^2+9/2$$
 x- 10 Área= $6x^3-23/2$ x^2-3x+4

c) Área=
$$\pi x^2 + 6\pi x$$

d)Volumen =
$$3500.x - 240x^2 + 4x^3$$
 Área= $3500 - 4x^2$

Ejercicio 8: a) $4/3 \text{ v}^4$

b)1/6 c) -1 d) $\frac{1}{4} x^2$

Ejercicio 9: a) Cociente: 3y Resto: 13/2 y -5 b) Cociente: $2x^2 + 7$ Resto= 15x-1

c) Cociente: $2y^2+4y+9$

Resto 14 d) Cociente: $-y^2-y+2$ Resto= y

e) Cociente: $4x^2-16x+53$

Resto=-159

Ejercicio 10:

$$A(x) = 12x^{2}(x-3)$$

$$B(y) = \left(7y - \frac{1}{5}\right)\left(7y + \frac{1}{5}\right)$$

$$C(x) = \left(\frac{5}{2}y - 4\right)^{2}$$

Soluciones Matemática

3

D(y) = (8y-1)(8y+1)		$\left(5\right)^{2}$
	$E(x) = (x+4)(x^2+3)$	$F(y) = \left(\frac{5}{3}y - 2\right)^2$
G(x)=(6x-5)(6x+5)		$I(x) = (x-4)(x^2+6)$
	H(x) = (x+1)(x+3)(x-3)	, ,
$J(x) = (x+4)(x^2-4x+16)$	K(x) =	
, , ,	$(x-2)(x^4+2x^3+4x^2+8x+16)$	$I(x) = 25x^{3}(x-1)(2x-1)$
$M(x) = \frac{3}{4}x(x-3)(x+2)$		$\tilde{N}(x)=(y-11)(y+11)$
	N(x)=(x+1)(x+2)(x-3)	
o) $h(h-4)(2h^2+3)=$	p) $(x+1)^2(x-1)$	q) 2.(x + 3) (x – 2) (x +2)
r) $(4y^2+1)(2y-1)(2y+1)$	s) (x+7)(x-2)	t) $15h^2 \left(h - \frac{4}{21} \right)$
,		(1311 (1121)
u) $\frac{1}{2}x\left(x-\frac{1}{2}\right)\left(x+\frac{1}{2}\right)$	$ v) (a - \sqrt{6})^2 (a + \sqrt{6})^2$	w) $\frac{3}{2}x\left(x+\frac{1}{8}\right)^2$
2^{n} 2^{n} 2^{n} 2^{n} 2^{n}		$\left(\frac{\sqrt{2}}{2}, \left(\frac{\sqrt{2}+8}{8}\right)\right)$
x) $z^{2}(z-1)^{2}$	y) $(x-5)^2(x-4)$	z) (x-4)(x-2)(x+3)

ii)
$$m = 4$$
, $p = 3$, $h = 16$

iii)
$$a = 4$$
 , $b = 25$

iv)
$$H(x) = -6x + 43$$
 y a= -4

v)
$$Q(x) = -27x^3 + 5x + \frac{82}{27}$$
 $Q(-1) = \frac{676}{27} = 25,03 > (\sqrt{5} + 1)^2 \approx 10,47$ VERDADERO

Ejercicio 11: a)
$$\frac{2x-1}{2x+1}$$
 $x \neq \frac{1}{2}, x \neq -\frac{1}{2}$ b) $\frac{x+2}{4x^2}$ $x \neq 3, x \neq 0$

c)
$$\frac{2x}{x^2+1}$$
 $x \neq -\frac{2}{3}$ d) $\frac{x+2}{x+1}$ $x \neq 2$, $x \neq -1$

Ejercicio 12:

a)
$$\frac{-3x^2+x-4}{(x-1)(x+1)}$$
 $x \neq 1, x \neq -1$ b) $\frac{1}{2(x+1)}$ $x \neq \pm 1, x \neq \frac{1}{2}$ c) $\frac{1}{3a}$ $a \neq 1, a \neq 0$

d)
$$\frac{3x^2 + 7x - 44}{4x(x+1)(x-4)}$$
 con $x \neq 4$; $x \neq -1$; $x \neq 0$ e) $\frac{y^2}{4}$ $y \neq 0$

f)
$$\frac{20}{x-4}$$
 $x \neq 0, x \neq 4, x \neq -4, x \neq -2$ g) $\frac{x+2}{3}$ con $x \neq 2; x \neq -2$

h)
$$\frac{-5y-5}{(y-4)^2}$$
 con y \neq 4

i)
$$\frac{-1}{2}$$
 para $x \neq 2$; $x \neq -2$ y $x \neq \frac{4}{9}$ j) 2 con $x \neq 2$; $x \neq -2$; $x \neq 0$

k)
$$\frac{2x^2 - 13x + 7}{x^3 - x^2 - 9x + 9}$$
 con $x \neq 3; x \neq -3; x \neq 1$

I)
$$-\frac{y}{y^2 + 2y - 3}$$
 con $y \neq -3$; $y \neq 1$ m) $\frac{3x}{x + 5}$ $x \neq 0 \land x \neq 5 \land x \neq -5$

MÓDULO 3. : ECUACIONES

a)
$$S = \left\{ \frac{9}{7} \right\}$$

b)
$$S = \left\{ \frac{28}{19} \right\}$$

Ejercicio 1: a)
$$S = \left\{ \frac{9}{7} \right\}$$
 b) $S = \left\{ \frac{28}{19} \right\}$ c) $S = \left\{ -\frac{40}{19} \right\}$ d) $S = \left\{ 0 \right\}$

d)
$$S = \{0\}$$

e) $S = \left\{-\frac{9}{8}; \frac{13}{8}\right\}$ f) $S = \left\{-3; \frac{7}{3}\right\}$ g) $S = \left\{\right\}$

f)
$$S = \left\{-3; \frac{7}{3}\right\}$$

g)
$$S = \{$$

h)
$$S = \left\{ -\frac{15}{2} \right\}$$

i)
$$S = \{-5\}$$

j)
$$S = \{-1\}$$

i)
$$S = \{-5\}$$
 j) $S = \{-1\}$ k) $S = \{\frac{1}{8}\}$ l) $S = \{\frac{13}{19}\}$

1)
$$S = \left\{ \frac{13}{19} \right\}$$

Ejercicio 2 a): El error se comete en el cuarto paso cuando se divide miembro a miembro por (x+1) siendo esto posible si $x \neq -1$, suposición errónea porque contradice el dato inicial que indica que x = -1.

2 a) Son ecuaciones la b-1) cuya solución es x=-3/4 y la b-3) x=-6/5 y en ambos casos x≠2

La b-2) no es una ecuación es una suma algebraica ya que no es una igualdad entre dos miembros

a)
$$r = \frac{C}{2\pi}$$

b)
$$r = \frac{I}{Ct}$$

Ejercicio 3: a)
$$r = \frac{C}{2\pi}$$
 b) $r = \frac{I}{Ct}$ c) $r = \frac{S}{2\pi h}$

d)
$$r = \frac{A - C}{Ct}$$

d)
$$r = \frac{A - C}{Ct}$$
 e) $r = 1 - \frac{a}{S}$ f) $r = \frac{a - S}{L - S}$

$$f) r = \frac{a - S}{L - S}$$

Ejercicio 4:

- a) Fernando tiene 15 años
- b) Hay que sumarle -6
- c) Juan compró disquetes de US\$ 2,80 cada uno, mientras que María pagó US\$ 2,30 por cada unidad.
- d) Los números consecutivos son 21,22 y 23.
- e) El número se divide en 12, 4 y 2.
- f) 7 libros

a)
$$S = \left\{ -\frac{1}{3}; 2 \right\}$$

b)
$$S = \{-1;0\}$$

Ejercicio 5: a)
$$S = \left\{-\frac{1}{3}; 2\right\}$$
 b) $S = \left\{-1; 0\right\}$ c) $S = \left\{-2 - \sqrt{7}; -2 + \sqrt{7}\right\}$

d)
$$S = \left\{-\frac{5}{4};1\right\}$$

e)
$$x_{1,2} = 1 \pm \sqrt{5}t$$

f)
$$S = \left\{0; \frac{5}{4}\right\}$$

e)
$$x_{1,2} = 1 \pm \sqrt{5}i$$
 f) $S = \left\{0; \frac{5}{4}\right\}$ g) $x_{1,2} = -\frac{1}{2} \pm \frac{\sqrt{3}}{2}i$ h) $S = \left\{-\sqrt{5}; \sqrt{5}\right\}$

h)
$$S = \left\{-\sqrt{5}; \sqrt{5}\right\}$$

Ejercicio 6: a)
$$x^2 + \frac{13}{2}x + 3 = 0$$

b)
$$x^2 + \frac{3}{5}x = 0$$

c)
$$x^2 - 2x - 2 = 0$$

d)
$$x^2 - 10x + 16 = 0$$

Ejercicio 7: a)
$$m = \frac{1}{32}$$
 b) $m = 1$ c) $m = 12$

b)
$$m = 1$$

c)
$$m = 12$$

d)
$$m = \frac{7}{4}$$

Ejercicio 8: a)
$$k = 11$$
 b) $k = -18$ c) $k = 4$ d) $k = 1$

a)
$$k = 11$$

b)
$$k = -18$$

c)
$$k = 4$$

d)
$$k = 1$$

Ejercicio 9: a)
$$k_{1,2} = \frac{3 \pm \sqrt{5}}{2}$$
 b) $k = 0$ c) $k = \frac{10}{3}$ d) $k = \frac{1}{3}$

b)
$$k = 0$$

c)
$$k = \frac{10}{3}$$

d)
$$k = \frac{1}{3}$$

Ejercicio 10: a) El número entero es 6.

- b) Perímetro= 52 cm.
- c) Las dimensiones del rectángulo son 15 cm (base) y 12 cm (altura).
- d) Las dimensiones del jardín rectangular son 20 m y 18 m.
- e) Existen dos pares de números que satisfacen el problema, ellos son 4 y 13, y -7 y 2.
- f) Perímetro=26 (\overline{AB} = 4; \overline{BC} = 7 y \overline{AD} =10)

MÓDULO 4 : INECUACIONES

Ejercicio 1:

Ejercicio 2:

a) peso de la caja: Pc
$$|Pc - 30 kg| \le 2 kg$$

b) Radio del rulemán : Rr
$$|Rr - 1cm| \le o, o1 cm$$

c)
$$|T_1 - T_2 - 7.5^{\circ}C| < 2.5^{\circ}C$$
 o bien $5^{\circ}C < |T_1 - T_2| < 10^{\circ}C$

Ejercicio 3:

Pr1) a)
$$F = [68; 86]$$
 o bien $68 \le F \le 86$ b) $C = [10; 32,2]$

Pr2)
$$x = [2,2;4]$$
 o bien $2,2 \le x \le 4$ Pr3) $D = (230,9 \text{ mm}; 241,1 \text{ mm})$

Pr4) x = (41,775; 58,225) es decir para valores Naturales entre 42 y 58

Pr5) i) c mín =
$$314501$$
 ii) c máx = 335499

Pr7) Este producto dará utilidades para $x \ge 16394$.

Pr8)
$$A = [578,4025 \text{ cm}^2; 592,9225 \text{ cm}^2]$$
 Pr9) $H = [20; 80]$

Pr10) t = [13;17] Si, ese tiempo se encuentra en dicho intervalo.

MÓDULO 6.: FUNCIONES EXPONENCIALES Y LOGARITMICAS

Ejercicio 1::

a)
$$Log_2 8 = 3$$

b)
$$Log_3 81 = 4$$

c)
$$Log_5 \frac{1}{25} = -2$$

d)
$$Log_{\sqrt{2}} 4 = 4$$

e)
$$Log_{\sqrt{2}} = 3$$

f)
$$Log_8 2 = \frac{1}{3}$$

g)
$$Log_{\frac{1}{2}}4 = -2$$

h)
$$Log_{\frac{9}{4}}^{\frac{2}{3}} = -\frac{1}{2}$$

i)
$$Log_5^{\frac{1}{3}}\sqrt{5} = \frac{1}{3}$$

j)
$$Log_{\frac{2}{3}} \sqrt{\frac{3}{2}} = -\frac{1}{2}$$

Ejercicio 2::

a)
$$Log_3 9 = 2$$

b)
$$Log_7 7 = 1$$

c)
$$Log_2 \frac{1}{16} = -4$$

d)
$$Log_8 1 = 0$$

e)
$$Log_5 125 = 3$$

f)
$$Log_2 \sqrt{2} = \frac{1}{2}$$

g)
$$Log_{\frac{1}{2}} 4 = -2$$

h)
$$Log_{\sqrt{2}}^2$$
 0,25 = -4

Ejercicio 3:

a)
$$Log_2(8.32) = Log_2 8 + Log_2 32 = 8$$

b)
$$Log_3 \left(81^{\frac{1}{3}}\right)^5 = \frac{5}{3} Log_3 81 = \frac{20}{3}$$

c)
$$Log_7 7^{48} = 48 Log_7 7 = 48$$

d)
$$Log_5(5.\sqrt{5})^5 = 5 (Log_55 + \frac{1}{2}Log_55) = \frac{15}{2}$$

e)
$$Log_4(4^3 \cdot \sqrt[3]{4}) = 3 Log_4 4 + \frac{1}{3} Log_4 4 = \frac{10}{3}$$

Ejercicio 4:

b)
$$Log_3 2 (b+c)^2 = Log_3 2 + 2 Log_3 (b+c)$$

c)
$$Log_a 10.x^2 = Log_a 10 + 2 Log_a x$$

d)
$$Log_c(10.x)^2 = 2 (Log_c 10 + Log_c x)$$

e)
$$Log_c((3b)^5.(a-b)) = 5(Log_c 3 + Log_c b) + Log_c(a-b)$$

f)
$$Log_c\left(\frac{18}{a+b}\right) = Log_c 18 - Log_c (a+b)$$

g)
$$Log_c \frac{1}{a} = -Log_c a$$

h)
$$Log_a\left(c \cdot \sqrt{\frac{x}{g}}\right) = Log_a c + \frac{1}{2} \left(Log_a x - Log_a g\right)$$

i)
$$Log_c \sqrt[7]{7 x^2 k^4} = \frac{1}{7} (Log_c 7 + 2 Log_c x + 4 Log_c k)$$

j)
$$Log \frac{a^3 \sqrt{x}}{\sqrt[4]{y^3}} = 3 Log a + \frac{1}{2} Log x - \frac{3}{4} Log y$$

Ejercicio 5:
$$: Log \left[\frac{(m\sqrt{m})}{\sqrt[3]{m^2}} \right] = Log m + \frac{1}{2} Log m - \frac{2}{3} Log m = -\frac{5}{3}$$

Ejercicio 6:..
$$h = Log_b \frac{xy^3}{z} = Log_b x + 3Log_b y - Log_b z = 4$$

Ejercicio 7:

a)
$$Log \frac{7}{4}$$

b)
$$Log_3 2$$

c)
$$Log_2\left(\frac{2x}{x+1}\right)$$

d)
$$Log\left(\frac{x^2}{\sqrt{x-2}}\right)$$

f)
$$Log\left(\frac{xy}{z}\right)^3$$

f)
$$Log \left(\frac{xy}{z}\right)^3$$

g) $Log(100 (1,05)^{10})$

h)
$$Log\left(\frac{215\cdot 6^8}{121^3}\right)^{\frac{1}{2}}$$

Ejercicio 8:: $A = \sqrt[5]{\frac{m^3 a}{u^2}} = \sqrt[5]{\frac{((10)^{0.5})^3 \cdot 10^{-1.5}}{((10)^{2.5})^2}} = \sqrt[5]{10^{-5}} = 10^{-1}$

Ejercicio 9:

a)
$$Log_3 x + 5 Log_{\frac{1}{3}} x = Log_3 x^{-4}$$

b)
$$Log_{\frac{1}{2}}a - Log_{\sqrt{2}}a^5 = Log_{\frac{1}{2}}a^{11}$$

c)
$$Log_{\sqrt{k}} 3 - 2 Log_k 5 - Log_{k^2} 3 = Log_k \frac{3^{\frac{3}{2}}}{5^2}$$

d)
$$Log_4 x + Log_{\frac{1}{4}} x - 3 Log_4 x = Log_4 x^{-3}$$

Ejercicio 10:

a)
$$x = \frac{3}{5}$$

a)
$$x = \frac{3}{5}$$

b) $x = 9/2$

c)
$$x = 1$$

d)
$$x = 2$$

e)
$$x = -\frac{\log 8}{\log(\frac{8}{9})}$$

$$f) \quad x = -\frac{\log 2}{\log 5}$$

g)
$$x = -1$$
; $x = -2$
h) $x = \frac{1}{2}$; $x = 0$

h)
$$x = \frac{1}{2}$$
; $x = 0$

i)
$$r = 0$$

i)
$$x = 0$$

j) $x = 4; x = -1$

k)
$$x = -1; x = \frac{1}{3}$$

1)
$$x = -1$$

Ejercicio 11:

a)
$$x = -\frac{1}{4}$$

b) $x = 10^{10}$

b)
$$x = 10^{10}$$

c)
$$x = 2$$

d)
$$x = \frac{1}{2}$$

e)
$$x = \frac{2}{5}$$

d)
$$x = \frac{1}{2}$$

e) $x = \frac{1}{5}$
f) $x = \frac{13}{2}$

g)
$$x = 2^{\frac{3}{2}}$$

h)
$$x = 8$$

i)
$$x = 9$$

j)
$$x = \frac{1}{25}$$
; $x = 625$

k)
$$x = 4$$
; $x = -1$ no es solución

m)
$$x = 6$$
; $x = 14$

n)
$$x = 1$$

Ejercicio 12:

$$y = 2^{x+2} + 3$$

$$D = R$$

$$I = (3, +\infty)$$
Raiz: no tiene
Ordenada: $y = 7$

$$C^{\uparrow} = R$$

$$C^{\perp} = \emptyset$$

$$C^{+} = R$$

$$C^{-} = \emptyset$$

$$A.H : y = 3$$

$$y = 3^{x+2} - 7$$

$$D = R$$

$$I = (-7, +\infty)$$
Raiz: $x = log_{\frac{1}{3}}6 + 2$

$$A.H : y = -6$$

$$y = 3^{x+2} - 7$$

$$D = R$$

$$I = (-7, +\infty)$$
Raiz: $x = log_{3}7 - 2$
Ordenada: $y = 3$

$$C^{\uparrow} = \emptyset$$

$$A.H : y = -6$$

$$y = 4^{x+1} - 5$$

$$D = R$$

$$I = (-5, +\infty)$$
Raiz: $x = log_{4}5 - 1$
Ordenada: $y = -1$

$$C^{\uparrow} = R$$

$$C^{\downarrow} = \emptyset$$

$$C^{+} = (log_{3}7 - 2; +\infty)$$

$$C^{-} = (-\infty; log_{3}7 - 2)$$

$$A.H : y = -7$$

$$A.H : y = -5$$

Ejercicio 13:

a) $y = log_3(x + 4) + 2$	b) $y = log_{\frac{1}{3}}(x+1)$
$D = (-4; +\infty)$	$D = (-1; +\infty)$
I = R	I = R
Raiz: $x = -\frac{35}{9}$	Raiz: $x = 0$
Ordenada: $y = log_3 4 + 2$	Ordenada: $y = 0$
$C^{\uparrow} = (-4; +\infty)$	$C^{\uparrow} = \emptyset$
$C^{\downarrow} = \emptyset$	$C^{\downarrow} = (-1, +\infty)$
$C^{+} = \left(-\frac{35}{9}; +\infty\right)$	$C^{+} = (-1; 0)$
$C^{-} = \left(-4; -\frac{35}{9}\right)$	$C^{-} = (0; +\infty)$
A. V: x = -4	A.V: x = -1
c) $y = log_{\frac{1}{2}}(x - 4) + 1$ D = (4; +\infty)	d) $y = log_2(x - 3) - 4$ D = (3; +\infty) I = R

I =R
Raiz:
$$x = 6$$

Ordenada: no tiene
 $C^{\uparrow} = \emptyset$
 $C^{\downarrow} = (4, +\infty)$
 $C^{+} = (4; 6)$
 $C^{-} = (6; +\infty)$
 $A.V: x = 4$

Raiz:
$$x = 19$$

Ordenada: no tiene $C^{\uparrow} = (3; +\infty)$
 $C^{\downarrow} = \emptyset$
 $C^{+} = (19; +\infty)$
 $C^{-} = (3; 19)$
 $A. V : x = 3$

Ejercicio 14: I)
$$y = Log_2(x+2) + 1$$
 $(a = 1, h = -2, k = 1)$
II) $y = -\log_2(x-1)$ $(a = -1, h = 1, k = 0)$

Ejercicio 15:: $f(x) = 3 \cdot 2^x$

Ejercicio 16:

- a) Cuando t = k el numero de células (N) es el doble de la cantidad inicial de células (N₀).
- b) El tiempo necesario para que la población sea N_1 es: $t = k \cdot log_2(\frac{N_1}{N_0})$.

Ejercicio 17:

- a) Inicialmente hay 100 mg.
- b) Habra 20 mg después de 46 años (el valor exacto de $t = \frac{ln(\frac{1}{5})}{-0.035}$)

Ejercicio 18:

- a) La magnitud de un terremoto que registra una amplitud de 1 mm es M=3.
- b) La magnitud de un sismo con amplitud $100A_1$ es $M = M_1 + 2$ siendo $M_1 = log A_1 + 3$.

Ejercicio 19:

1- La temperatura inicial es 210°F.

- 2- La temperatura después de 10 min es $T(10) = 152,95 \,^{\circ}F$.
- 3- La temperatura llegara a 100°F después de 28 min 25 seg aproximadamente (el valor exacto de $t=\frac{ln\left(\frac{7}{29}\right)}{-0.05}$).

Ejercicio 20:

: La magnitud de la población proyectada para el año 2010 es 140000 habitantes (considerando t=0 para el año 1990)

Ejercicio 21:

- a) El peso aproximado de un niño de 1,2 m de altura es 22 kg (el valor exacto de $P = e^{(\ln 2,4+2,208)}$)
- b) La altura aproximada de un niño que pesa 40 kg es 1,53 m (el valor exacto de $A = \frac{ln40 ln2,4}{1,84})$

Ejercicio 22: El tiempo que tardara en cargar hasta el 90% de su carga máxima es aproximadamente 34min,32seg (el valor exacto es $t=-0.25 \cdot \ln(\frac{1}{10})$)