Summary: Lecture 9

Summary for the chapter 10.3. [2, 1]

Function problems

Function problem

Finding a specific solution to a problem if possible, else return no.

- focus so far: languages deciding decision problems
- give yes or no as answer
- now: focus on finding a solution:
 - find satisfying truth assignment for a boolean expression
 - find optimal tour for TSP
 - \rightarrow function problems
- decision problems are helpful for negative results of function problems
- complexity of the decision problem helps to specify the complexity of the corresponding function problem

SAT and FSAT

SAT

The SAT (satisfiability) problem is the problem of determining if there exists an interpretation that satisfies a given Boolean formula. [3]

FSAT

The FSAT (satisfiability) problem is a function problem.

Given a boolean expression ϕ .

If ϕ is satisfiable, return a satisfying truth assignment and otherwise return no.

- for input ϕ there might be no satisfying truth assignment
 - return no
- for input ϕ there might be more than one satisfying truth assignment
 - return any satisfying truth assignment
- if SAT can be solved in polynomial time, FSAT can be solved in polynomial time, too

TSP and TSP(D)

TSP(D)

Given a list of cities and the distances between each pair of cities.

Is there a shortest possible route that visits each city exactly once and returns to the origin city?

TSP

Given a list of cities and the distances between each pair of cities.

What is the shortest possible route that visits each city exactly once and returns to the origin city?

TODO

Questions:

FP and FNP

 \mathbf{FP}

Content

FNP

Content

•

TODO

Questions:

Reductions between function problems

Title

Content

- translate answers back to the original problem
- reduction is a pair (R, S):
 - -R translates input x to input x'
 - -S translates result y' to result y
- A' is B there (A' does not exist on the slides)

TODO

Questions:

How to prove FP = FNP?

Title

Content

•

TODO

Questions:

Computing a satisfying assignment bit by bit

Title
Content
• Sat' is a formular φ plus an assignment that satisfies φ
 assignment as clauses that connects the single variables or their negation with ∧
TODO Questions:
If FP=FNP optimuzation problems become easy
Title
Content
•
TODO
Questions:
Another argument
Title
Content
1 CD ND C 1 C
• cryptographic argument: if P=NP, no safe encoding exists
TODO
Questions:
Total FNP
Title
Content
•
TODO Questions:
WILCOULDID:

References

- [1] Martin Berglund. Lecture notes in Computational Complexity.
- [2] Christos H. Papadimitriou. *Computational Complexity*. Addison-Wesley Publishing Company, 1994.
- [3] Prof. Dr. Thomas Schwentick. Lecture notes in Grundbegriffe der theoretischen Informatik. https://www.cs.tu-dortmund.de/nps/de/Studium/Ordnungen_Handbuecher_Beschluesse/Modulhandbuecher/Archiv/Bachelor_LA_GyGe_Inf_Modellv/_Module/INF-BfP-GTI/index.html.