Instituto Politécnico do Porto, Instituto Superior de Engenharia, Licenciatura em Eng. Electrotécnica e de Computadores, Teoria dos Sistemas, 1-Julho-2014

Todas as perguntas devem ser respondidas unicamente na folha de respostas. Seleccione apenas uma das 4 alternativas assinalando-a na matriz de respostas. O teste é sem consulta. Duração da prova: 1:45

1. Considere o seguinte diagrama de blocos de um sistema de controlo representado na figura. Sejam $s \in \mathcal{L}$, respectivamente a variável e o operador de Laplace e sejam $R(s) = \mathcal{L}[r(t)]$ e $Y(s) = \mathcal{L}[y(t)]$, respectivamente, as transformadas de Laplace do sinais de entrada e de saída. A função de transferência do sistema vem $\frac{Y(s)}{R(s)} = \frac{1}{s+2}$ para:

- A) $G(s) = \frac{s+1}{(s+2)(s+3)}$ B) $G(s) = \frac{s+3}{(s+1)(s+2)}$
- C) $G(s) = \frac{s+2}{(s+1)(s+3)}$
- D) Outro resultado
- 2. Considere o sistema hidráulico representado na figura seguinte, onde $q_i(t)$ e $q_o(t)$ representam os caudais de entrada e de saída. Sejam $h_1(t)$, $h_2(t)$ e $h_3(t)$ as alturas de líquido nos reservatórios 1, 2 e 3, respectivamente, e sejam as suas áreas designadas por A_1 , A_2 e A_3 . As resistências hidráulicas são representadas por R_1 , R_2 e R_3 . Sejam s e \mathcal{L} , respectivamente a variável e o operador de Laplace. O modelo do sistema vem:

A)
$$Q_i = Q_1 + sA_1H_1$$
, $H_1 - H_2 = R_1Q_1$, $Q_1 = Q_2 + sA_2H_2$, $H_2 - H_3 = R_2Q_2$, $Q_2 = Q_o + sA_3H_3$, $H_3 = R_3Q_o$

B)
$$Q_i = Q_1 + sA_1H_1$$
, $H_1 - H_2 = R_1Q_1$, $Q_1 = Q_2 + Q_o + sA_2H_2$, $H_2 - H_3 = R_2Q_2$, $Q_2 = sA_3H_3$, $H_2 = R_3Q_o$

C)
$$Q_i = Q_1 + sA_1H_1$$
, $H_1 - H_2 = R_1Q_1$, $Q_1 = Q_2 + sA_2H_2$, $H_2 - H_3 = R_2Q_2$, $Q_2 = Q_o + sA_3H_3$, $H_3 = R_3Q_o$

- D) Outro resultado
- 3. Considere a resposta temporal c(t) de um sistema de segunda ordem para um sinal de entrada u(t) em degrau unitário. Sejam $s \in \mathcal{L}$, respectivamente a variável e o operador de Laplace, sejam $U(s) = \mathcal{L}[u(t)]$, $C(s) = \mathcal{L}[c(t)]$, seja ζ o coeficiente de amorteciento, ω_n a frequência natural não amortecida, t_p o tempo de pico e $c(t_p)$ o valor do pico da resposta temporal. Para um sistema descrito pela função de transferência $\frac{C(s)}{U(s)} = \frac{8}{s^2 + 4s + 16}$ tem-se:
- **3.a)** A) $\zeta = 1, \, \omega_n = 16 \, \text{rad/s}$
- B) $\zeta = 0, 25, \, \omega_n = 8 \text{ rad/s}$
- C) $\zeta = 0.5, \, \omega_n = 4 \, \text{rad/s}$
- D) Outro resultado
- **3.b)** A) $t_p = 1,652 \text{ seg}, c(t_p) = 1,916$
- B) $t_p = 1,172 \text{ seg}, c(t_p) = 1,248$
- C) $t_p = 0,732 \text{ seg}, c(t_p) = 1,017$
- D) Outro resultado
- 4. Considere um sistema cuja função de transferência (em malha fechada) tem como denominador o polinómio $D(s) = s^3 + 2s^2 + 3s + K$, $K \in \Re$. Pelo critério de estabilidade de Routh-Hurwitz sabe-se que o sistema é estável para:
- A) 0 < K < 6, B) K > 6, C) O sistema é sempre estável (para qualquer valor de K), D) Outro resultado

Considere um sistema com função de transferência G(s) cujo lugar de raízes directo se encontra representado na figura. A partir do gráfico sabe-se que:

A)
$$G(s) = K \frac{1}{s(s+1)(s+2)}$$

B)
$$G(s) = K \frac{s^2 + 4s + 5}{s(s+1)(s+2)}$$

C)
$$G(s) = K \frac{s^2 + 4s}{s(s+2)(s+3)}$$

granted sabe-se que.
A)
$$G(s) = K \frac{1}{s(s+1)(s+2)}$$

B) $G(s) = K \frac{s^2+4s+5}{s(s+1)(s+2)}$
C) $G(s) = K \frac{s^2+4s}{s(s+2)(s+3)}$
D) $G(s) = K \frac{s^2+5}{s(s+1)(s+3)}$

6. Considere um sistema de cuja resposta em frequência (gráficos de Bode de amplitude e fase) se encontra representado na figura. A partir dos gráficos sabe-se que:

A)
$$G(s) = K \frac{1}{s(s+1)(s+2)}$$

A)
$$G(s) = K \frac{1}{s(s+1)(s+2)}$$

B) $G(s) = K \frac{s^2 + 4s + 5}{(s+1)(s+2)}$
C) $G(s) = K \frac{s^2 + 4s + 5}{s(s+1)(s+2)}$
D) $G(s) = K \frac{s^2 + 5}{(s+1)(s+2)}$

C)
$$G(s) = K \frac{s^2 + 4s + 5}{s(s+1)(s+2)}$$

D)
$$G(s) = K \frac{s^2 + 5}{(s+1)(s+2)}$$

Considere o sistema $G(s) = \frac{16}{s^2 + 4s + 16}$. Na resposta em frequência existe uma ressonância tal que:

A)
$$\omega_r = 1.945 \text{ rad/s},$$

$$M_r = 1,472$$

B)
$$\omega_r = 2,027 \text{ rad/s},$$

$$M_r = 1,358$$

C)
$$\omega_r = 3,828 \text{ rad/s},$$

$$M_r = 1,065$$

Considere um sistema com função de transferência $G\left(s\right)=\frac{10e^{-5s}}{3s+1}$. Pretende-se

sintonizar um controlador PID (Proporcional, Integral e Diferencial) pelo método de Cohen-Coon. Assim, os parâmetros K (ganho proporcional), T_i (constante de tempo integral) e T_d (constante de tempo diferencial) vêm dadas por:

A)
$$K = 0.081, T_i = 7.5, T_d = 1,233$$

B)
$$K = 0, 128, T_i = 5, 7, T_d = 1, 456$$

C)
$$K = 0,271, T_i = 3, 6, T_d = 0,648$$

D) Outro resultado

let Teoria des Liteman, 1- Julho - 2014

1)
$$2 \frac{1}{5+3}$$
 $2 \frac{1}{5+3}$
 $3 \frac{1}{5+3}$
 $3 \frac{1}{5+3}$
 $3 \frac{1}{5+3}$
 $4 \frac{1}{5+3}$
 $5 \frac{1}{5+3}$

2)
$$\frac{|A_{3}|}{|A_{3}|} \frac{|A_{2}|}{|A_{1}|} \frac{|A_{1}|}{|A_{1}|} \frac{|A_{1}|}{|A_{1}|} + Q_{1} = Q_{1}^{2}$$
 $\frac{|A_{2}|}{|A_{2}|} \frac{|A_{2}|}{|A_{1}|} \frac{|A_{1}|}{|A_{1}|} + Q_{1} = Q_{1}^{2}$
 $\frac{|A_{2}|}{|A_{2}|} \frac{|A_{2}|}{|A_{2}|} \frac{|A_{1}|}{|A_{2}|} + Q_{2}^{2} + Q_{2}^{2} + Q_{3}^{2} + Q_{4}^{2}$
 $\frac{|A_{2}|}{|A_{2}|} \frac{|A_{2}|}{|A_{1}|} \frac{|A_{1}|}{|A_{1}|} + Q_{1} = Q_{1}^{2}$
 $\frac{|A_{2}|}{|A_{2}|} \frac{|A_{2}|}{|A_{1}|} \frac{|A_{1}|}{|A_{1}|} + Q_{1}^{2} = Q_{1}^{2}$
 $\frac{|A_{2}|}{|A_{2}|} \frac{|A_{2}|}{|A_{1}|} \frac{|A_{1}|}{|A_{1}|} + Q_{1}^{2} = Q_{1}^{2}$
 $\frac{|A_{2}|}{|A_{2}|} \frac{|A_{2}|}{|A_{1}|} \frac{|A_{1}|}{|A_{1}|} + Q_{1}^{2} = Q_{1}^{2}$
 $\frac{|A_{2}|}{|A_{1}|} \frac{|A_{2}|}{|A_{1}|} \frac{|A_{1}|}{|A_{1}|} + Q_{1}^{2} = Q_{1}^{2}$
 $\frac{|A_{2}|}{|A_{1}|} \frac{|A_{2}|}{|A_{1}|} \frac{|A_{1}|}{|A_{1}|} + Q_{1}^{2} = Q_{1}^{2}$
 $\frac{|A_{2}|}{|A_{1}|} \frac{|A_{1}|}{|A_{1}|} + Q_{1}^{2} = Q_{1}^{2}$
 $\frac{|A_{2}|}{|A_{1}|} \frac{|A_{1}|}{|A_{1}|} + Q_{1}^{2} = Q_{1}^{2}$
 $\frac{|A_{2}|}{|A_{1}|} \frac{|A_{2}|}{|A_{1}|} + Q_{1}^{2} = Q_{1}^{2}$
 $\frac{|A_{2}|}{|A_{1}|} \frac{|A_{1}|}{|A_{1}|} + Q_{1}^{2} = Q_{1}^{2}$
 $\frac{|A_{2}|}{|A_{1}|} \frac{|A_{1}|}{|A_{1}|} + Q_{1}^{2} = Q_{1}^{2}$
 $\frac{|A_{1}|}{|A_{1}|} \frac{|A_{1}|}{|A_{1}|} + Q_{1}^{2} = Q_{1}^{2}$

$$AA, H+Q_1=Q_1^2$$
 $R_1Q_1=H_1-H_2$
 $Q_1=Q_2+Q_0+AA_2H_2$
 $H_2-H_3=R_2Q_2$
 $H_2=R_3Q_0$
 $AA_3H_3=Q_2$

$$3) \frac{(15)}{V(15)} = \frac{8}{3^{2}40+16}$$

$$\begin{cases} 3a \end{cases} = \frac{4}{2 \cdot 4} = 0.5$$

$$\begin{cases} \frac{4}{2 \cdot 4} = 0.5 \end{cases}$$

$$3a$$
) $k=0.5$

$$W_{M} = \sqrt{16} = 4 \text{ acd/s} \qquad 3b$$
) $t_{p} = 0.907 \text{ fey}$

$$S = \frac{4}{2 \cdot 4} = 0.5 \qquad J(t_{p}) = 0.5 \times 1.163 = 0.582$$

6) Diegraman Bode

8)
$$((s) = 10 \frac{e^{-51}}{3 + 1}$$
 P1D - Coheu-Gom
$$|K = 0,108|$$

$$|T_1 = 8,383|$$

$$|T_1 = 1,388|$$