

Assignment on Activation Function

MTech in Applied AI Deep Learning Techniques

by

Sanjeev Kumar Pandey* Faculty: Dr Anamika Gupta

Submitted April 12, 2025

^{*} Student ID: 31050, Enrolment No:MT23AAI001, Email: pandey.sanjeev@yahoo.com

Table of Contents

1	Assign	ment on Activation Function
2	Effect	of change on weight and biases
	2.1	Python code - effect of change on weight and biases
	2.2	Output - Response to change on weight
	2.3	Output - Response to change on bias
	2.4	Analysis - Response to change on weight and biases
3	Multi-layer 2D activation tower	
	3.1	Python code - multi-layer 2D activation tower
	3.2	Output - multi-layer 2D activation tower
	3.3	Analysis - multi-layer 2D activation tower

1 Assignment on Activation Function

Activation functions play a critical role in neural networks by introducing non-linearity. Take the sigmoid function for example.

Explore:

Sanjeev Kumar Pandey

- 1. Its response to changes in weights (ω) and bias (b).
- 2. Visualize a multi-layer 2D activation tower.

2 Effect of change on weight and biases

2.1 Python code - effect of change on weight and biases

The code depicts the response to changes in weights (ω) and bias (b).

```
import numpy as np
  import matplotlib.pyplot as plt
4 def sigmoid(z):
      return 1 / (1 + np.exp(-z))
7 x = np.linspace(-10, 10, 500)
9 # Weight variations
plt.figure(figsize=(12, 6))
11 for w in [0.5, 1, 2, 5]:
12
      plt.plot(x, sigmoid(w*x), label=f'w={w}, b=0')
plt.title('Sigmoid Response to Weight Changes (b=0)')
plt.xlabel('x')
plt.ylabel('
                (x + b),
plt.legend()
17 plt.grid(True)
plt.savefig('response_to_weight_changes.png')
19 plt.close()
21 # Bias variations
plt.figure(figsize=(12, 6))
23 for b in [-2, 0, 2, 5]:
      plt.plot(x, sigmoid(x + b), label=f' =1, b={b}')
plt.title('Sigmoid Response to Bias Changes ( =1)')
plt.xlabel('x')
plt.ylabel('
28 plt.legend()
29 plt.grid(True)
plt.savefig('response_to_bias_changes.png')
31 plt.close()
```

Listing 1: Code

2.2 Output - Response to change on weight

Figure 1: Loss vs Weights and Biases Plot

2.3 Output - Response to change on bias

Figure 2: Loss vs Weights and Biases Plot

2.4 Analysis - Response to change on weight and biases

The provided program visualizes how changes in **weight** (ω) and **bias** (b) affect the sigmoid activation function, which is defined as:

$$\sigma(z) = \frac{1}{1 + e^{-z}}, \text{ where } z = \omega x + b$$
 (2.1)

Effect of Changing the Weight (ω)

When b = 0, the sigmoid function becomes:

$$\sigma(\omega x) = \frac{1}{1 + e^{-\omega x}} \tag{2.2}$$

- Increasing ω makes the sigmoid **steeper**, i.e., it transitions more quickly from 0 to 1.
- Decreasing ω flattens the sigmoid, making the transition more gradual.

Figure 3: Sigmoid response to different weights (ω) with b=0

Effect of Changing the Bias (b)

When $\omega = 1$, the sigmoid function becomes:

$$\sigma(x+b) = \frac{1}{1 + e^{-(x+b)}} \tag{2.3}$$

- Increasing b shifts the sigmoid curve to the left.
- Decreasing b shifts the sigmoid curve to the right.

Figure 4: Sigmoid response to different biases (b) with $\omega = 1$

Conclusion

- The weight (ω) controls the steepness or sensitivity of the sigmoid function.
- The bias (b) controls the horizontal shift of the function.

3 Multi-layer 2D activation tower

3.1 Python code - multi-layer 2D activation tower

Visualize a multi-layer 2D activation tower.

```
1 import numpy as np
2 import matplotlib.pyplot as plt
3 from mpl_toolkits.mplot3d import Axes3D
5 def sigmoid(z):
      return 1 / (1 + np.exp(-z))
  def plot_sigmoid_towers():
      # Create a 2D grid
9
      x1 = np.linspace(-5, 5, 100)
10
      x2 = np.linspace(-5, 5, 100)
11
      X1, X2 = np.meshgrid(x1, x2)
      # Define tower centers
14
      a1, b1 = -2, -2
15
      a2, b2 = 2, 2
16
17
      # Combine two sigmoid towers
      Z = sigmoid(-((X1 - a1)**2 + (X2 - b1)**2)) + sigmoid(-((X1 - a2)**2 + (X2 - b2)**2))
19
20
21
      fig = plt.figure(figsize=(10, 5))
22
23
      # Heatmap
24
      ax1 = fig.add_subplot(1, 2, 1)
25
      contour = ax1.contourf(X1, X2, Z, cmap='plasma')
26
      fig.colorbar(contour, ax=ax1)
27
      ax1.set_title("Sigmoid Towers - Heatmap")
28
      ax1.set_xlabel("X1")
29
      ax1.set_ylabel("X2")
```

```
31
32
       # 3D Surface
       ax2 = fig.add_subplot(1, 2, 2, projection='3d')
ax2.plot_surface(X1, X2, Z, cmap='plasma')
33
34
       ax2.set_title("Sigmoid Towers - 3D Surface")
35
       ax2.set_xlabel("X1")
36
       ax2.set_ylabel("X2")
37
       ax2.set_zlabel("Activation")
38
39
       plt.tight_layout()
40
       plt.savefig("sigmoid_towers.png")
41
       plt.show()
42
43
44 # Call the tower plotting function
45 plot_sigmoid_towers()
```

Listing 2: Code

3.2 Output - multi-layer 2D activation tower

Figure 5: Sigmoid 2-d Towers

3.3 Analysis - multi-layer 2D activation tower

Concept	What it Does
<pre>sigmoid(-distance^2)</pre>	Creates a smooth, localized "tower" of activation
Two sigmoids added	Mimics a layer with two activated neurons
Heatmap	2D view of activation intensity
3D surface	Shape of activation across input space
Analogy	Simulates how a layer processes spatial input non-linearly

Table 1: Summary of key components in sigmoid tower visualization

This visualization demonstrates how two sigmoidal functions can be used to create localized "towers" of activation in a two-dimensional space. This is similar to how neurons can be tuned to respond strongly to specific regions of the input space.

Sigmoid Definition in 2D

The sigmoid function is defined as:

$$\sigma(z) = \frac{1}{1 + e^{-z}} \tag{3.1}$$

To create a 2D "bump" centered at (a, b), we use:

$$z = -((x_1 - a)^2 + (x_2 - b)^2)$$
(3.2)

$$\Rightarrow \sigma(z) = \frac{1}{1 + \exp((x_1 - a)^2 + (x_2 - b)^2)}$$
(3.3)

This results in a smooth, localized activation with a peak at $(x_1 = a, x_2 = b)$ and decaying smoothly in all directions.

Adding Two Sigmoid Towers

To create multiple activations, we can simply add two such sigmoid functions:

$$Z(x_1, x_2) = \sigma(-((x_1 - a_1)^2 + (x_2 - b_1)^2)) + \sigma(-((x_1 - a_2)^2 + (x_2 - b_2)^2))$$
(3.4)

For example, setting:

$$(a_1, b_1) = (-2, -2), \quad (a_2, b_2) = (2, 2)$$

creates two "towers" centered at those points.

Visualization

Figure 6: Heatmap and 3D surface of two added sigmoid towers centered at (-2,-2) and (2,2)

Interpretation

- Each sigmoid represents a localized response, with the peak activation at the center and smooth fall-off.
- Adding two sigmoids creates a composite surface with two high-activation regions similar to multiple neurons responding to different input features.
- This approach is a simplified version of how neural networks or RBF (Radial Basis Function) networks encode features across input space.