Санкт-Петербургский политехнический университет

Высшая школа теоретической механики, ФизМех

Направление подготовки

«01.03.03 Механика и математическое моделирование»

Индивидуальное задание № 2

тема "Метод конечных элементов. Расчет динамического прогиба балки Бернулли-Эйлера"

> дисциплина "Вычислительная механика" Вариант 2

Выполнила студент гр. 5030103/90301

Бенюх М.А.

Преподаватель:

Е.Ю. Витохин

Санкт-Петербург

2022

Содержание:

1. Формулировка задачи	3
2. Алгоритм метода	3
3. Результаты	4
4. Заключение	6
5. Код программы	7

1. Формулировка задачи.

Произвести расчет статического прогиба балки Бернулли-Эйлера. Нагрузку следует прикладывать. Закрепить крайне левый и правый конец балки шарнирными опорами. Требуется определить перемещения в балке фермы и усилия в стержнях. В качестве сечения использовать швеллер с высотой $h=140\,$ мм, толщиной стенки $d=4.9\,$ мм и шириной полки $b=58\,$ мм.

Таблица 1. Параметры задачи

Параметр	Значение
Коэффициент Пуассона	0.35
Модуль Юнга E (Па)	2 1011
Момент М (H/м)	10 10 ³

2. Алгоритм метода.

Рассмотрим выражение $L=T-\Pi$, где L- полная энергия, T- кинетическая энергия, $\Pi-$ потенциальная энергия (1)

С его помощью получим уравнение Лагранжа 2-го рода:

$$\frac{d}{dt} \left(\frac{\partial L}{\partial \{\dot{u}\}} \right) - \frac{\partial L}{\partial \{u\}} = \{F\}$$
 (2)

Подставим в уравнение Лагранжа выражение (1).

$$\frac{d}{dt} \left(\frac{\partial T}{\partial \{\dot{u}\}} \right) + \frac{\partial \Pi}{\partial \{u\}} = \{F\}$$
 (3)

Перепишем

$$\frac{\partial \Pi}{\partial \{u\}} = [K]\{u\} \tag{3*}$$

Выражение для кинетической энергии:

$$T = \frac{1}{2} S \int_0^h (\dot{u})^2 \rho dx$$
 (4)

$$u = [N]\{u^e\} \tag{5}$$

Подставим (5) в (4):

$$u^2 = ([N]\{u^e\})^2 = \{u^e\}^T [N]^T [N]\{u^e\}$$

$$T = \frac{1}{2} S \rho \{ \dot{u} \}^T \int_0^h [N]^T [N] dx \{ \dot{u} \}$$
 (6)

Введем матрицы масс:

$$[M^{e}] = S\rho \int_{0}^{h} [N]^{T} [N] dx, \qquad [M] = \sum_{e} [M^{e}]$$

$$\xi = \frac{2x}{l} - 1 \quad \Rightarrow \frac{(\xi + 1)l}{2} = x$$

$$[M^{e}] = S\rho \int_{0}^{h} [N]^{T} [N] dx = \frac{S\rho l}{2} \int_{-1}^{1} [N]^{T} [N] d\xi$$

$$T = \frac{1}{2} \{ \dot{u}^{e} \}^{T} [M^{e}] \{ \dot{u}^{e} \}$$
(7)

Подставим (3^*) и (6) в (3) и получим уравнение динамики системы поперечных элементов:

$$[M]\{\ddot{u}\} + [K]\{u\} = \{F\} \tag{8}$$

Для решения матричного уравнения воспользуемся явной схемой интегрирования — методом центральных разностей.

$$t$$
 — время, $t=k\Delta t$ — зададим временную сетку, $k\in [0,k]$ $\{\ddot{u}_k\}=[M]^{-1}(\{F_k\}-[K]\{u_k\})$ $\{\dot{u}_{k+1}\}=\{\dot{u}_k\}+\Delta t\,\{\ddot{u}_k\}$

$${u_{k+1}} = {u_k} + \Delta t {\dot{u}_{k+1}}$$

3.0 Результаты работы в Python

Рис.8. График перемещений по оси ОУ, с 0 по 0.5 с

Рис 10. График скоростей по оси ОУ, с 0 по 0.5 с

Рис 12. График ускорений по оси ОУ, с 0 по 0.5 с

3.1 Результаты работы в Abaqus

Рис.8. График перемещений по оси ОУ, с 0 по 0.5 с

Рис 10. График скоростей по оси ОУ, с 0 по 0.5 с

Рис 11. График скоростей по оси ОУ, с 0.5 по 1.0 с

Рис 12. График ускорений по оси ОУ, с 0 по 0.5 с

3.2Сравнение результатов

Для сравнения полученных результатов вычтем из каждого элемента столбца, соответствующего нагрузкам или перемещениям в Abaqus, соответствующую нагрузку или перемещение, полученные в Python.

Перемещения вдоль оси ОҮ, м,(U2) в момент t=0 с

Координата Х, м	Abaqus, координата Y	Python, координата Y
0	0	0
0.1	0	0
0.2	0	0
0.3	0	0
0.4	0	0
0.5	0	0
0.6	0	0
0.7	0	0
0.8	0	0
0.9	0	0
1	0	0

Перемещения вдоль оси ОҮ, м,(U2) в момент t=0.1 с

Координата Х, м	Abaqus, координата Y	Python, координата Y
0	0	0
0.1	1.43021E-05	1.40877977e-05
0.2	5.72082E-05	5.64105705e-05
0.3	0.000128719	1.27054079e-04
0.4	0.000228833	2.26098137e-04
0.5	0.000357552	3.53612065e-04
0.6	0.000514874	5.09652006e-04
0.7	0.000700801	6.94262448e-04
0.8	0.000915332	9.07478255e-04
0.9	0.00115847	1.14932517e-03
1	0.00143021	1.41981944e-03

Перемещения вдоль оси ОY, м,(U2) в момент t=0.2 с

Координата Х, м	Abaqus, координата Y	Python, координата Y
0	0	0
0.1	2.86041E-05	2.87338869e-05
0.2	0.000114416	1.14923084e-04
0.3	0.000257437	2.58549703e-04
0.4	0.000457666	4.59594830e-04
0.5	0.000715103	7.18037357e-04
0.6	0.00102975	1.03385530e-03
0.7	0.0014016	1.40702637e-03
0.8	0.00183066	1.83753194e-03
0.9	0.00231693	2.32535857e-03
1	0.00286041	2.87049692e-03

Перемещения вдоль оси ОҮ, м,(U2) в момент t=0.3 с

Координата Х, м	Abaqus, координата Y	Python, координата Y
0	0	0
0.1	4.30551500e-05	4.31840511e-05
0.2	0.000172684	1.72684865e-04
0.3	0.000389598	3.88427360e-04

0.4	0.000693345	6.90342912e-04
0.5	0.001045873	1.07837321e-03
0.6	0.001517368	1.55246896e-03
0.7	0.002169191	2.11259118e-03
0.8	0.002734645	2.75871240e-03
0.9	0.003498235	3.49081347e-03
1	0.004302968	4.30888103e-03

Перемещения вдоль оси ОҮ, м,(U2) в момент t=0.4 с

Координата Х, м	Abaqus, координата Y	Python, координата Y
0	0	0
0.1	5.72082E-05	5.71591587e-05
0.2	0.000228833	2.28657612e-04
0.3	0.000514874	5.14528351e-04
0.4	0.000915332	9.14807142e-04
0.5	0.00143021	1.42953288e-03
0.6	0.0020595	2.05874520e-03
0.7	0.0028032	2.80248308e-03
0.8	0.00366133	3.66078203e-03
0.9	0.00463387	4.63367140e-03
1	0.00572082	5.72116906e-03

Перемещения вдоль оси ОҮ, м,(U2) в момент t=0.5 с

		•
Координата Х, м	Abaqus, координата Y	Python, координата Y
0	0	0
0.1	7.15103E-05	7.14939709e-05
0.2	0.000286041	2.86012987e-04
0.3	0.000643593	6.43610940e-04
0.4	0.00114416	1.14433651e-03
0.5	0.00178776	1.78823157e-03
0.6	0.00257437	2.57532879e-03
0.7	0.003504	3.50565172e-03
0.8	0.00457666	4.57921928e-03
0.9	0.00579233	5.79604528e-03
1	0.00715103	7.15613646e-03

Перемещения вдоль оси ОҮ, м,(U2) в момент t=0.6 с

Координата Х, м	Abaqus, координата Y	Python, координата Y
0	0	0
0.1	-1.11537E-16	-3.69408814e-05
0.2	-4.20996E-16	-1.12311333e-04
0.3	-8.89263E-16	-2.00015526e-04
0.4	-1.47625E-15	-3.20479074e-04

0.5	-2.14585E-15	-4.45177188e-04
0.6	-2.86446E-15	-5.82103233e-04
0.7	-3.60042E-15	-7.72288955e-04
8.0	-4.33074E-15	-9.33431440e-04
0.9	-5.03937E-15	-1.02442170e-03
1	-5.73673E-15	-1.06125494e-03

Перемещения вдоль оси ОҮ, м,(U2) в момент t=0.7 с

Координата Х, м	Abaqus, координата Y	Python, координата Y
0	0	0
0.1	2.68638E-16	-8.22779520e-05
0.2	1.0134E-15	-3.10122908e-04
0.3	2.13956E-15	-6.13370682e-04
0.4	3.55011E-15	-1.03306690e-03
0.5	5.15993E-15	1.59101705e-03
0.6	6.88642E-15	-2.31890348e-03
0.7	8.6502E-15	-3.24317079e-03
0.8	1.04005E-14	-4.30929997e-03
0.9	1.20997E-14	-5.40631768e-03
1	1.37685E-14	-6.48465137e-03

Перемещения вдоль оси ОҮ, м,(U2) в момент t=0.8 с

Координата Х, м	Abaqus, координата Y	Python, координата Y
0	0	0
0.1	-3.42852E-16	4.45436566e-05
0.2	-1.294E-15	2.18592954e-04
0.3	-2.73284E-15	5.30638863e-04
0.4	-4.5363E-15	9.25257704e-04
0.5	-6.59282E-15	1.37489819e-03
0.6	-8.79895E-15	1.79394038e-03
0.7	-1.10597E-14	2.18171358e-03
0.8	-1.32958E-14	2.54312561e-03
0.9	-1.54755E-14	2.91070782e-03
1	-1.76161E-14	3.32002030e-03

Перемещения вдоль оси ОY, м,(U2) в момент t=0.9 с

Координата Х, м	Abaqus, координата Y	Python, координата Y
0	0	0
0.1	3.409E-16	2.87616706e-05
0.2	1.28662E-15	1.53241373e-04
0.3	2.71679E-15	4.09061636e-04
0.4	4.50855E-15	7.60546723e-04
0.5	6.55118E-15	1.20295502e-03

0.6	8.7391E-15	1.76467816e-03
0.7	1.09817E-14	2.43301273e-03
0.8	1.31969E-14	3.24846664e-03
0.9	1.5354E-14	4.17044337e-03
1	1.74739E-14	5.13215132e-03

Перемещения вдоль оси ОҮ, м,(U2) в момент t=1.0 с

Координата Х, м	Abaqus, координата Y	Python, координата Y
0	0	0
0.1	-3.33094E-16	-0.00011363
0.2	-1.25713E-15	-0.00041835
0.3	-2.65478E-15	-0.00083933
0.4	-4.40533E-15	-0.00136116
0.5	-6.40373E-15	-0.00200099
0.6	-8.54395E-15	-0.00267626
0.7	-1.07336E-14	-0.00331047
0.8	-1.29003E-14	-0.00386988
0.9	-1.50106E-14	-0.00437546
1	-1.70888E-14	-0.00483031

Заключение

В рамках данной задачи был использован метод конечных элементов. С его помощью были получены перемещения, скорости и ускорения, возникающие при расчете динамического прогиба балки Бернулли-Эйлера.

И получили совпадения с точностью до 2го значащего знака.

