

Econométrie 2

Chapitre 5 : modèles de durée.

ENSAE 2021-2022

Michael Visser

CREST-ENSAE

Plan

Introduction

Définitions, modélisation, données observables

Estimation

Application

Motivation

- Nous nous intéressons ici à la modélisation de durées dans certains états.
- **Exemples**:
 - économie : temps passé au chômage, en emploi. Durée entre achats de biens durables (ex : voitures, électroménager...)
 - Sociologie/démographie : temps passé en couple, intervalles entre naissances...
 - Assurance : durée de vie, durée entre accidents/sinistres...
 - Fiabilité : durée de vie du matériel.
- Deux spécificités :
 - Durée=variable aléatoire positive, continue ou discrète (ex : durée d'études).
 - Problème de la censure (ex : distribution de la durée de vie d'une cohorte dont beaucoup de membres sont encore vivants).

Plan

Introduction

Définitions, modélisation, données observables

Estimation

Application

Définitions

- Durée d'intérêt : T v.a. ≥ 0 de fonction de répartition F : $Pr(T \leq t) = F(t), t \geq 0$.
- Lorsque T représente une durée continue on note f sa densité : $f(t) = \frac{dF(t)}{dt}$
- Fonction de survie S(t) = Pr(T > t) = 1 F(t).
- ► Fonction de hasard : « probabilité instantanée de sortie en t sachant qu'on était dans l'état en t » :

$$h(t) = \lim_{\eta \to 0} \frac{\Pr(T \in]t, t + \eta]|T > t)}{\eta} = \frac{f(t)}{S(t)}.$$

▶ On a alors $h(t) = -[\ln S(t)]'$, $S(t) = \exp\left(-\int_0^t h(u)du\right)$ et $f(t) = h(t) \exp\left(-\int_0^t h(u)du\right)$.

Exemples classiques

- ▶ Lois exponentielles $S(t) = \exp(-\lambda t)$. Alors $h(t) = \lambda$.
- « Lois sans mémoire » adaptée quand il n'y a pas d'usure (désintégration radioactive, matériel électronique...).
- ▶ Lois de Weibull $S(t) = \exp(-\lambda t^{\mu})$. Alors $h(t) = \lambda \mu t^{\mu-1}$.
- ▶ Taux de hasard décroissant $(\mu < 1)$, croissant $(\mu > 1)$, ou constant $(\mu = 1)$.
- Il existe des lois de hasard non-monotone, par exemple la loi log-logistique telle que :

$$S(t) = 1/[1 + \lambda t^{\mu}], \ h(t) = \lambda \mu t^{\mu-1}/[1 + \lambda t^{\mu}].$$

▶ La loi géométrique $Pr(T = k) = (1 - p)^{k-1}p$ est le pendant discret de la loi exponentielle.

Effet de covariables sur T

- Exemples : effet de l'indemnisation chômage sur le temps passé au chômage, du fait de fumer sur la durée de vie...
- Ces variables peuvent être constantes dans le temps on les note alors X ou évoluer dans le temps on les note alors $(X_t)_{t \in \mathbb{R}^+}$.
- On s'intéresse souvent à l'effet de X (ou de X_t) sur le taux de hasard.
- Modèle à hasard proportionnel (Proportional Hazard model en anglais):

$$h(t|X) = \phi(X)h_0(t)$$
 ou $h(t|X_t) = \phi(X_t)h_0(t)$ $(\phi(.) > 0)$.

 \Rightarrow Pour deux unités i et i', le rapport des taux de sortie est indépendant de t: $h(t|X_{it})/h(t|X_{i't}) = \phi(X_{it})/\phi(X_{i't})$.

Effet de covariables sur T

- Autre possibilité : modèles de vie accélérée (Accelerated Failure Time model).
- On construit ce modèle à partir d'une variable de durée T_0 (indépendant de X) avec fonction de survie $S_0(t) = Pr(T_0 > t)$.
- ► En définissant $T = T_0/\phi(X)$, la fonction de survie de T conditionnellement à X = x s'écrit

$$S(t|x) = Pr(T > t|X = x) = Pr(T_0 > \phi(x)t) = S_0(\phi(x)t).$$

et la fonction de densité et le taux de hasard associés sont $f(t|x) = \phi(x)f_0(\phi(x)t)$ et $h(t|x) = \phi(x)h_0(\phi(x)t)$.

 De manière équivalente, le modèle peut s'écrire comme (preuve hors cours)

$$\ln T = -\ln \phi(X) + \varepsilon, \ X \perp \!\!\!\perp \varepsilon,$$

où la loi de ε dépend de la loi de T_0 .

Hétérogénéité individuelle

- ▶ Point important : distinction entre hétérogénéité inobservée et dépendance temporelle (cf. cours de panels).
- ▶ Idée : même lorsqu'on contrôle des X, il reste de l'hétérogénéité entre individus.
- Si on la néglige, un estimateur de $h_0(t)$ peut laisser accroire qu'il existe de la dépendance temporelle.
- ightharpoonup Solution : introduire une variable individuelle ν et supposer :

$$h(t|X,\nu) = \nu \phi(X)h_0(t), X \perp \!\!\!\perp \nu.$$

▶ Il s'agit du modèle MPH (*Mixed Proportional Hazard model*).

Problème de la censure

- Problème standard : on n'observe pas forcément les durées complètes T, mais parfois des épisodes « censurés ».
- Exemple : on veut étudier, à partir d'une enquête à la date t_1 , les durées de chômage pour les gens entrant au chômage après t_0 ($< t_1$).
- On observe avec l'enquête :
 - le dernier épisode de chômage pour ceux ayant retrouvé un emploi en $t_1 \Rightarrow$ on mesure T dans ce cas.
 - la date $E \in [t_0, t_1[$ d'entrée au chômage pour les chômeurs en $t_1 \Rightarrow$ on sait alors seulement que $T \geq t_1 E$.

Problème de la censure

- Formellement, on observe non pas T mais (Y, D) avec $Y = \min(T, C)$ et $D = \mathbb{1}\{T < C\}$.
- C est la variable de censure et D est l'indicatrice de non-censure.
- ▶ Dans l'exemple précédent, $C = t_1 E$ et $D = \mathbb{1}\{E + T < t_1\}$.
- On supposera par la suite $C \perp \!\!\! \perp T | X$. Il est difficile de s'abstraire de cette hypothèse.
- ▶ $C \perp \!\!\! \perp T | X$ revient à supposer que la durée en chômage est indépendante de la date d'entrée, conditionellement à X.
- N.B. : il existe d'autres problèmes que la censure à droite, en particulier la troncature (à gauche et à droite), non évoquée ici. Il existe aussi d'autres méthodes d'échantillonnage (voir le TD).

Modèles paramétriques

- On considère ici des modèles où $\phi(.)$, $h_0(.)$ et éventuellement F_{ν} (loi de l'hétérogénéité inobservée), sont spécifiés paramétriquement.
- Choix le plus courant pour l'effet des covariables :

$$\phi(X) = \exp(X'\beta_0). \tag{1}$$

- Choix pour $h_0(t)$: hasard de base constant (modèle exponentiel), de Weibull, de log-logistique, fonction constante par morceaux...
- ightharpoonup Choix courants pour ν : loi gamma, loi à support fini...
- A partir de ces hypothèses on peut reconstruire la densité de T sachant X.
- Exemple : modèle MPH, $\phi(x) = \exp(x'\beta_0)$, $h_0(t) = \lambda \mu t^{\mu-1}$ et $\nu \sim \Gamma(\gamma, \gamma)$, de densité $f_{\nu}(\nu) = \gamma^{\gamma} \nu^{\gamma-1} \exp(-\gamma \nu)/\Gamma(\gamma)$ (ν suit donc une loi gamma de moyenne 1 et de variance $1/\gamma$). Remarque : on ne peut pas identifier à la fois λ et la constante dans $x'\beta_0$, dans la pratique un des deux paramètres est fixé.

Modèles paramétriques

Alors :

$$f_{T|X,\nu}(t|x,v) = v \exp(x'\beta_0)h_0(t) \exp\left(-v \exp(x'\beta_0) \int_0^t h_0(u)du\right)$$
$$= v \exp(x'\beta_0)\lambda\mu t^{\mu-1} \exp\left(-v \exp(x'\beta_0)\lambda t^{\mu}\right)$$

Par conséquent,

$$f_{T|X}(t|x) = \int_0^{+\infty} f_{T|X,\nu}(t|x,\nu) dF_{\nu}(\nu)$$
$$= \frac{\lambda \mu \exp(x'\beta_0) t^{\mu-1}}{(1 + \exp(x'\beta_0)\lambda t^{\mu}/\gamma)^{\gamma+1}}.$$

- ▶ Dans la suite, on note par ex. $f_{T|X;\theta_0}$ la densité de T|X, fonction de θ_0 , paramètre inconnu à estimer.
- Note : on ne modélise pas la loi de la censure C. On suppose simplement qu'elle ne dépend pas de θ_0 .
- ➤ On considère ici des modèles à temps continu mais la même logique s'applique aux modèles à temps discret.

Plan

Introduction

Définitions, modélisation, données observables

Estimation

Application

Pourquoi pas les MCO?

Le modèle de vie accélérée correspond à

$$ln(T) = -ln \phi(X) + \varepsilon, \ \varepsilon \perp \!\!\!\perp X.$$

- ▶ Si $\phi(X) = \exp(X'\beta_0)$, on est donc ramené à un modèle linéaire.
- ▶ On pourrait donc penser estimer β_0 par MCO.
- Problème : on n'observe pas T mais seulement (Y, D) avec $Y = \min(T, C)$.
- Comme dans le modèle de sélection généralisée, les MCO de In(Y) sur X ou de In(Y) sur X sur les données non-censurées ne convergent pas en général.

Maximum de vraisemblance

▶ If y a deux types de contributions à la fonction de vraisemblance (selon que D=1 ou D=0):

$$\begin{split} L_{1}(y,1|x;\theta) &= f_{T|X;\theta}(y|x) \Pr(C > y|X,T = y) \\ &= f_{T|X;\theta}(y|x) \Pr(C > y|X = x), \\ L_{1}(y,0|x;\theta) &= f_{C|X}(y|x) \Pr(T > y|X = x,C = y;\theta) \\ &= f_{C|X}(y|x) \Pr(T > y|X = x;\theta). \end{split}$$

- Les termes $\Pr(C > y | X = x)$ et $f_{C|X}(y|x)$ ne dépendant pas de θ , ils peuvent être négligés dans la maximisation.
- \Rightarrow la log-vraisemblace d'un échantillon de taille n vaut, à une constante près :

$$\mathcal{L}_n(\theta) = \sum_{i=1}^n D_i \ln f_{T|X;\theta}(Y_i|X_i) + (1-D_i) \ln S_{T|X;\theta}(Y_i|X_i).$$

ightharpoonup L'estimateur $\widehat{\theta}$ a les propriétés standards d'un EMV.

Plan

Introduction

Définitions, modélisation, données observables

Estimation

Application

Modélisation de la récidive

- On considère T = durée en mois de récidive pour les individus ayant été en prisons aux USA (Chung, Schmidt et Witte, 1991).
- Questions : effet de certaines variables sur la récidive, dépendance d'état négative ou positive?
- Echantillon de personnes sortis de prison entre le 01/07/1977 et le 30/06/1978. Données rétrospectives obtenus en 04/1984.
- \Rightarrow données censurées si $T \ge 12 \times (04/1984$ date de sortie).
- durat= durée , cens=indic. de censure.
- Covariables: workprg: indic. de participation à un programme de travail en prison, priors: nb de condamnations précédentes, tserved: nb de mois passés en prison, felon= 1 si crime commis, 0 sinon, etc... (les noms des autres variables sont explicites).

Code stata

Commande Stata streg.

```
gen failed=1-cens
* Définition des variables d'intérêt et de l'indicatrice de non censure (Y,D)
stset durat, failure(failed)

* Modèle à hasard proportionnel
streg workprg priors tserved felon alcohol drugs black married educ age, ///
d(weibull)
streg, nohr
* Modèle de vie accélérée
streg workprg priors tserved felon alcohol drugs black married educ age, ///
d(weibull) time
```

- * MCO de log(durée), sur toutes les données ou les données non censurées reg ldurat workprg priors tserved felon alcohol drugs black married educ age reg ldurat workprg priors tserved felon alcohol drugs black married educ age // if cens==0
- * Modèle à hasard proportionnel avec hétérogenéité inobservée streg workprg priors tserved felon alcohol drugs black married educ age, /// d(weibull) frailty(gamma)

Résultats : modèle à hasard proportionnel

Fitting full model:

Iteration 0: log likelihood = -1715.7711 Iteration 1: log likelihood = -1669.1785 Iteration 2: log likelihood = -1634.3693 Iteration 3: log likelihood = -1633.0405 Iteration 4: log likelihood = -1633.0325 Iteration 5: log likelihood = -1633.0325

Weibull regression -- log relative-hazard form

No. of subjects	=	1,445	Number of obs	=	1,445
No. of failures	=	552			
Time at risk	=	80013			
			LR chi2(10)	=	165.48
Log likelihood	=	-1633.0325	Prob > chi2	=	0.0000

_t	Haz. Ratio	Std. Err.	z	P> z	[95% Conf. Ir	nterval]
workprg	1.095148	.0992728	1.00	0.316	.9168814	1.308074
priors	1.092848	.014683	6.61	0.000	1.064445	1.122008
tserved	1.013655	.0017037	8.07	0.000	1.010321	1.017
felon	.7412054	.0785485	-2.83	0.005	.6021898	.9123128
alcohol	1.564179	.165389	4.23	0.000	1.271406	1.92437
drugs	1.325064	.1296765	2.88	0.004	1.093791	1.605237
black	1.574149	.1390031	5.14	0.000	1.32398	1.871587
married	.8593436	.0938794	-1.39	0.165	.6937084	1.064527
educ	.9769709	.0189724	-1.20	0.230	.9404845	1.014873
age	.9962823	.000523	-7.09	0.000	.9952577	.997308
_cons	.0333035	.0100249	-11.30	0.000	.0184613	.0600781
/ln_p	2158398	.0389149	-5.55	0.000	2921115	1395681
p	.8058644	.0313601			.7466852	.8697338
1/p	1.240904	.0482896			1.149777	1.339252

Résultats : modèle à hasard proportionnel

(avec l'option nohr)

No. of subjects = No. of failures =	552	Number of obs	=	1,445
Time at risk =	80013			
		LR chi2(10)	=	165.48
Log likelihood =	-1633.0325	Prob > chi2	=	0.0000

_t	Coef.	Std. Err.	z	P> z	[95% Conf. Ir	nterval]
workprg	.0908893	.0906478	1.00	0.316	0867772	.2685558
priors	.0887867	.0134355	6.61	0.000	.0624535	.1151198
tserved	.0135625	.0016808	8.07	0.000	.0102682	.0168567
felon	2994775	.105974	-2.83	0.005	5071826	0917723
alcohol	.4473611	.1057353	4.23	0.000	.2401236	.6545985
drugs	.2814605	.0978644	2.88	0.004	.0896499	.4732711
black	.4537147	.0883037	5.14	0.000	.2806426	.6267867
married	1515864	.1092454	-1.39	0.165	3657035	.0625307
educ	0232984	.0194196	-1.20	0.230	0613601	.0147633
age	0037246	.000525	-7.09	0.000	0047536	0026956
_cons	-3.402094	.3010177	-11.30	0.000	-3.992077	-2.81211
/ln_p	2158398	.0389149	-5.55	0.000	2921115	1395681
р	.8058644	.0313601			.7466852	.8697338
1/p	1.240904	.0482896			1.149777	1.339252

Résultats : modèle de vie accélérée

Fitting full model:

Iteration 0: log likelihood = -1715.7711 Iteration 1: log likelihood = -1669.1785 Iteration 2: log likelihood = -1634.3693 Iteration 3: log likelihood = -1633.0405 Iteration 4: log likelihood = -1633.0325 Iteration 5: log likelihood = -1633.0325

Weibull regression -- accelerated failure-time form

No. of subjects	=	1,445	Number of obs	=	1,445
No. of failures	=	552			
Time at risk	=	80013			
			LR chi2(10)	=	165.48
Log likelihood	=	-1633.0325	Prob > chi2	=	0.0000

_t	Coef.	Std. Err.	z	P> z	[95% Conf. Ir	nterval]
workprg	1127848	.1125346	-1.00	0.316	3333486	.107779
priors	1101757	.0170675	-6.46	0.000	1436273	0767241
tserved	0168297	.0021303	-7.90	0.000	021005	0126544
felon	.3716227	.1319951	2.82	0.005	.112917	.6303284
alcohol	555132	.1322427	-4.20	0.000	8143229	295941
drugs	3492654	.1218801	-2.87	0.004	5881461	1103847
black	5630162	.110817	-5.08	0.000	7802135	3458189
married	.1881041	.1357519	1.39	0.166	0779647	.4541729
educ	.0289111	.0241153	1.20	0.231	0183541	.0761763
age	.0046219	.0006648	6.95	0.000	.0033189	.0059249
_cons	4.22167	.3413114	12.37	0.000	3.552712	4.890628
/ln_p	2158398	.0389149	-5.55	0.000	2921115	1395681
p	.8058644	.0313601			.7466852	.8697338
1/p	1.240904	.0482896			1.149777	1.339252

Résultats : régressions simples

. reg ldurat workprg priors tserved felon alcohol drugs black married educ age

Source	ss	df	MS	Number of obs	= =	1,445 17.49
Model Residual	134.350088 1101.29155	10 1,434	13.4350088 .767985737	Prob > F R-squared	= =	0.0000 0.1087
Total	1235.64163	1,444	.855707503	Adj R-squared Root MSE	=	0.1025 .87635

ldurat	Coef.	Std. Err.	t	P> t	[95% Conf. Ir	nterval]
workprg	.008758	.0489457	0.18	0.858	0872548	.1047709
priors	0590636	.0091717	-6.44	0.000	077055	0410722
tserved	0094002	.0013006	-7.23	0.000	0119516	0068488
felon	.1785428	.0584077	3.06	0.002	.0639691	.2931165
alcohol	2628009	.0598092	-4.39	0.000	3801238	1454779
drugs	0907441	.0549372	-1.65	0.099	19851	.0170217
black	1791014	.0474354	-3.78	0.000	2721516	0860511
married	.1344326	.0554341	2.43	0.015	.025692	.2431732
educ	.0053914	.0099256	0.54	0.587	0140789	.0248618
age	.0013258	.0002249	5.90	0.000	.0008847	.0017669
_cons	3.569168	.137962	25.87	0.000	3.298539	3.839797

Résultats : régressions simples

SS

.0005345

3.001025

552

4.13

. reg ldurat workprg priors tserved felon alcohol drugs black married educ age ///

MS

df

.0004228

.2438418

Number of obs

F(10, 541)

> if cens==0

Source

age

cons

Model	33.7647818	10	3.37647818	Prob > F	=	0.0000
Residual	442.796158	541	.818477187	R-squared	=	0.0709
				- Adj R-squar	red =	0.0537
Total	476.56094	551	.864901888	Root MSE	=	.9047
	'					
ldurat	Coef.	Std. Err.	t P>	t [95% (Conf. Ir	nterval]
	-			• •		
workprg	.0923415	.0827407	1.12	0.26507	01909	.254874
priors	0483627	.0140418	-3.44	0.00107	59459	0207795
tserved	0067761	.001938	-3.50	0.0010	10583	0029692
felon	.1187173	.103206	1.15	0.25108	40163	.3214509
alcohol	2180496	.0970583	-2.25	0.0254	08707	0273923
drugs	.0177737	.0891098	0.20	0.84215	72699	.1928172
black	0008505	.0822071	-0.01	0.99216	23348	.1606338
married	.2388998	.0987305			49577	.432842
educ	0194548	.0189254	-1.03		66312	.0177215

1.26

12.31

0.207

0.000

-.000296

2.522032

.0013651

3.480017

Résultats : modèle avec hétérogénéité inobservée

Fitting full model:

Iteration 0: log likelihood = -1620.2703 (not concave) Iteration 1: log likelihood = -1612.4226 Iteration 2: log likelihood = -1598.06 Iteration 3: log likelihood = -1585.5107 Iteration 4: log likelihood = -1584.9183 Tteration 5: log likelihood = -1584.9172 Iteration 6: log likelihood = -1584.9172

Weibull regression -- log relative-hazard form Gamma frailty

_t	Haz. Ratio	Std. Err.	z	P> z	[95% Conf. In	terval]
workprg	1.00741	.2053883	0.04	0.971	.6755623	1.502267
priors	1.275214	.0537558	5.77	0.000	1.17409	1.385049
tserved	1.035554	.0072673	4.98	0.000	1.021408	1.049896
felon	.4534124	.1208835	-2.97	0.003	.2688784	.7645939
alcohol	3.233478	.9070623	4.18	0.000	1.865903	5.60339
drugs	1.329452	.2968761	1.28	0.202	.8582091	2.059453
black	2.163173	.4409171	3.79	0.000	1.450748	3.225453
married	.4467732	.1151877	-3.13	0.002	.2695437	.7405342
educ	.9732451	.0436997	-0.60	0.546	.8912559	1.062777
age	.9947974	.0009922	-5.23	0.000	.9928546	.996744
_cons	.0045453	.0032737	-7.49	0.000	.0011079	.0186482
/ln p	.5352553	.0951206	5.63	0.000	.3488225	.7216882
/ln_the	1.790243	.1788498	10.01	0.000	1.439703	2.140782
p	1.707884	.1624549			1.417398	2.057904
1/p	.5855198	.055695			.4859312	.7055184
theta	5.990906	1.071472			4.219445	8.506084

Questions

- D'après le modèle à hasard proportionnel, quel est l'effet du temps sur la récidive? L'effet de la consommation de drogue?
- Quel est le lien entre le modèle à hasard proportionnel et le modèle de vie accélérée ici?
- Les résultats des MCO sont-ils cohérents avec ceux du modèle de vie accélérée?
- Les conclusions sont-elles modifiées lorsqu'on introduit de l'hétérogénéité inobservée?

L'essentiel

- Spécificités des durées : fonction de survie et de hasard, censure (aléatoire) à droite.
- Effet des covariables : modèles à hasard proportionnel et à hasard accéléré.
- Dépendance d'état versus hétérogénéité individuelle. Modélisation de l'hétérogénéité inobservée.
- Vraisemblance dans les modèles avec censure aléatoire.