

Few-body integrator with time-reversible adaptivity in Julia

Mikel Antoñana and Ander Murua

Department of Computer Science and Artificial Intelligence, University of of the Basque Country

Purpose

• Simulation: long-time numerical integration of few-body gravitational problem involving close encounters:

$$\frac{dq_i}{dt} = v_i \frac{dv_i}{dt} = \sum_{i \neq i} \frac{Gm_j}{\|q_j - q_i\|^3} (q_j - q_i)$$

- Integrator: based on IRKGL16 symmetric and symplectic Implicit Runge-Kutta method of order 16
- Automatic Step Size Control:
 - Standard: good long-time behaviour is lost
 - Time-reversible adaptivity better long-time behaviour

Time-reversible adaptivity

Consider the initial value problem

$$\frac{du}{dt} = f(u), \quad u_0 = u(t_0)$$

where approximations are denoted as $u_n \approx u(t_n)$.

Figure 1. Forward and backward integration: same step size

Approach

• Time-reversible adaptive fbirkgl16 algorithm: for $n=0,1,2,\ldots$

$$u_{n+1} = u_n + h_n \sum_{i=1}^{s} b_i f(U_{n,i}),$$

where $U_{n,i}$ and h_n are implicitly defined at each step by

$$U_{n,i} = u_n + h_n \sum_{j=1}^{s} a_{ij} f(U_{n,j}),$$

$$h_n = \frac{\Delta \tau}{\sum_{i=1}^{s} b_i K(U_{n,i})}.$$

- $\Delta \tau =$ user supplied constant to specify the tolerance
- $\sigma(u)$ = step-size function for the n-body problem:

$$\sigma^{-1}(u_n) = \sum_{i=1}^{s} b_i K(U_{n,i}) \approx K(u(t_{n+1/2}))$$

where K(u) is a time renormalization function for the n-body problem derived from the lower bound of the radius of convergence of the solution (see [3, p.179])

Test problem

15-body model of the Solar System

- The Sun, all eight planets of the Solar System, Pluto and the five main bodies of the asteroid belt
- Close encounters between some of the asteroids

Results

Numerical integrations

	package	method	implementation	tolerance	@btime	steps
,	OrdinaryDiffEq.jl	fbirkgl16 fbirkgl16 dprkn12	0	$\Delta\tau = 2.1$ $\Delta\tau = 2.1$ atol=rtol= $1e-14$		1,487 1,487 5,250

Our contribution

- Integrator for few-body problems that incorporate a time-reversible adaptivity mechanism
- Outperform state-of-the-art high order explicit RK schemes thanks to SIMD-vectorization.
- but, is there still room for improvement?

References

- [1] E.Hairer and D. Stoffer. Reversible long-term integration with variable stepsizes. SIAM Journal on Scientific Computing, 1997.
- [2] J. Makazaga M. Antoñana, P. Chartier and A. Murua. Global time-renormalization of the gravitational n-body problem. SIAM Journal on Applied Dynamical System, 2020.
- [3] J. Makazaga M. Antoñana, P. Chartier and A. Murua. Majorant series for the n-body problem. *International Journal of Computer Mathematics*, 2022.

Julia package

https://github.com/mikelehu/NbodylRKGL16.jl