

دوره علم داده، یادگیری ماشین و هوش مصنوعی

جلسه نهه: مقدمهای بر مفاهیه یادگیری ماشین

> ارائهکننده: دکتر فرزاد مینویی

برنامهریزی ستّنی ماشین در برابر یادگیری ماشین

یادگیری ماشین برای مل چه مسائلی مناسب است؟

- مسائلی که راهکار فعلی نیازمند قواعد بسیار زیاد و بهبود دستی آن است.
- مسائل پیچیدهای که برنامهریزی ستنی ماشین راهکار مناسبی برای آن ندارد.
- محیط پویا که در آن یادگیری ماشین خود را میتواند بر اساس دادههای جدید بهروز نگه دارد.
 - گرفتن شهود از حجم بالایی از داده ما در مسائل پیچیده

مثالهایی از کاربردهای یادگیری ماشین

- پیشبینی سطح دستمزد نیروی انسانی براساس تجربه، سطح تحصیلات، رشته تحصیلی و ...
 - شناسایی محتواهای توهین آمیز در بخش نظرات یک وبسایت خبری
 - پیشبینی اینکه آیا یک غده سرطانی خوشخیم است یا بدخیم
 - تقسیهبندی مشتریان یک شرکت بر اساس رفتار خرید
 - پیشبینی درآمد ماههای آتی یک شرکت بر اساس شاخصهای عملکردی
- پیشبینی قیمت خودروهای دست دوه براساس کیلومتر کارکرد، عمر خودرو، مدل خودرو و ...

یادگیری ماشین میست؟

Y	X_1	X_2	•••	X_m
24000	10	17000	•••	1
13000	60	98000	•••	0
13500	75	89000	•••	0
16500	1	1000	•••	1

• مثال پیشبینی قیمت خودروهای دست دوه

یادگیرنده (Learner) تلاش میکند تا f را بر آورد کند.

رویکرد قطعینگر (Deterministic)

$$a = \frac{1}{m} F$$

$$a = \frac{1}{m} F + \varepsilon$$

f رویکردها به برآورد

علم داده، یادگیری ماشین و هوش مصنوعی – دکتر فرزاد مینو

انواع مسائل یادگیری ماشین

• يادگيري نظارتشده (Supervised Learning)

• يادگيري نظارتنشده (Unsupervised Learning)

• یادگیری تقویتی (Reinforcement Learning)

یادگیری نظارتشده

- یادگیری تمت نظارت متغیر پاسخ صورت میگیرد.
 - هدف اصلی پیشبینی است.

یادگیری نظارتشده

(Regression Problems) مسائل رگرسیون

یادگیری نظارتشده

(Classification) مدلهای دستهبندی

یادگیری نظارتنشده

- یادگیری تحت نظارت متغیر پاسخ صورت نمی گیرد.
- هدف پیداکردن الگوهایی برای توصیف بهتر دادهها و گروهبندی آنها است.

یادگیری نظارتنشده

خوشہبندی (Clustering)

یادگیری نظارتنشده

• کاهش بعد (Dimension Reduction)

	sepal length (cm)	sepal width (cm)	petal length (cm)	petal width (cm)
0	5.1	3.5	1.4	0.2
1	4.9	3.0	1.4	0.2
2	4.7	3.2	1.3	0.2
3	4.6	3.1	1.5	0.2
4	5.0	3.6	1.4	0.2

- یادگیرنده در اینجا عامل (Agent) نامیده میشود که میتواند محیط را مشاهده کند و عملی (Action) از خود بروز دهد و در عوض یاداش (Reward) دریافت کند.
- هدف آن است تا عامل از طریق تعامل با ممیط یاد بگیرد چه سیاستی (Policy) بهینه است تا بتواند در طول زمان یاداش خود را بیشینه کند.
- منظور از سیاست مجموعه اقداماتی است که عامل با توجه به شرایط محیط (State) بکار

- بكارگيري يادگيري تقويتشده تمت شرايط زير مناسب است:
 - تنها راه جمع آوری داده، تعامل با محیط است.
 - مدل محیط مشخص است، ولی راه عل تعلیلی وجود ندارد.
 - شبیهسازی محیط شدنی است.

• چطور به آونگ وارون یاد دهیم که خود را متعادل نگه دارد؟

https://www.aparat.com/v/ZMsbu

• مسئله آونگ وارونه: آموزش با Q-Learning

https://www.aparat.com/v/hNkLA

تمرين

• مدس بزنید برای هر مسئله، کداه رویکرد یادگیری ماشین مناسبتر است؟

پیدا کردن گروههایی از کاربران که رفتار مشابهی در جستجوی صفحات یک وبسایت سر گرمی دارند	مثال ۱
پیشبینی قیمت خانه براساس سال ساخت، متراژ، مکان جغرافیایی و	مثال ۲
آمادهسازی یک دیتاست با ۸۰۰ متغیر برای تحلیل رگرسیون	مثال ۳
یافتن سلولهای سرطانی مشابه بر اساس شاخصهای ژنتیکی آنان	مثال ۴
پیشبینی جهت حرکت (صعودی/نزولی) شاخص بازار سهام در روز آینده	مثال ۵
محاسبه احتمال آنکه یک تراکنش بانکی متقلبانه است	مثال ۶
رباتی که میتواند بازی Pacman انجام دهد	مثال ۷

• ناکافی بودن داده آموزش

Banko, Michele, and Eric Brill. "Scaling to very very large corpora for natural language disambiguation." In *Proceedings of the 39th annual meeting of the Association for Computational Linguistics*, pp. 26-33. 2001.

• نماینده نبودن نمونه آموزش از جامعه

- کیفیت پایین دادهها
- دادههای گمشده (Missing values)
 - دادههای پرت (Outliers)

- ویژگیهای نامرتبط
- انتخاب ویژگیها (Feature Selection)
- ساخت ویژگیهای جدید (Dimension Reduction)
 - جمع آوری داده های جدید با ویژگی های جدید

- خطای سوگیری (Bias) در مدلسازی
- عده توانایی الگوریته یادگیری ماشین در برآ ورد صمیم رابطه (f) سوگیری نامیده می شود.

- خطای واریانس (Variance) در مدلسازی
- خطای واریانس ناشی از بیشبرازش مدل یادگیری ماشین روی دادههای آموزش است.

• تعادل بین سوگیری و واریانس

مفهوه تعادل بین سوگیری و واریانس

جداسازی داده جهت آموزش و آزمایش

- مسئله تعمیهپذیری مدل (Generalizability)
 - جداسازی داده (Data Splitting)
 - دادههای آموزش (Train)
 - دادههای آزمایش (Test)
 - قانون سرانگشتی:

60% (train) - 40% (test), 70% - 30%, or 80% - 20%

- لزوماً مجه داده بزرگ (۱۰۰هزار <) برای آموزش مدل منجر به بهبود چشمگیر مدل نمیشود. ممکن است سرعت مماسبات را کاهش دهد.
 - اگر تعداد ویژگیها > تعداد دادهها باشد، مجه داده بیشتر برای اَموزش مدل بهتر است.

k-Nearest Neighbors Regression (k-NN Regression)

$$\hat{y} = \frac{1}{k} \sum_{x_i \in N_k(x)} y_i$$

تعادل بین سوگیری و واریانس در الگوریتی kNN

علم داده، یادگیری ماشین و موش مصنوعی – دکتر فرزاد مینویی

ارزیابی مدل رگرسیون

MSE: Mean Squared Error → min

$$MSE = \frac{\sum_{i=1}^{n} (y_i - \hat{y}_i)^2}{n}$$

RMSE: Root Mean Squared Error → min

$$RMSE = \sqrt{\frac{\sum_{i=1}^{n} (y_i - \hat{y}_i)^2}{n}}$$

MAE: Mean Absolute Error → min

$$MAE = \frac{\sum_{i=1}^{n} |y_i - \hat{y}_i|}{n}$$

MAPE: Mean Absolute Percentage Error → min

$$MAPE = \frac{\sum_{i=1}^{n} |\frac{y_i - \hat{y}_i}{y_i}|}{n}$$

تنظیم فرایارمترهای مدل (Hyper-parameter Tuning)

- از داده های آزمایش برای ارزیابی عملکرد مدل جهت تنظیم فراپارامترها استفاده نکنید.
 - چگونه مدل آموزش دیده را در فاز آموزش ارزیابی کنیه؟
 - (Validation) عتبارسنجی مدل •
 - تقسیم دادههای آموزش به دو بخش

- Training set
- Validation set

k-Fold Cross-Validation الگوريتي

k-Fold Cross-Validation الگوریتی

تعادل بین سوگیری و واریانس در الگوریتی KNN

فرآیند مدلسازی در یادگیری ماشین

https://www.statlearning.com/

برنامهنویسی در پایتون

اجرای الگوریتی kNN و آشنایی با مفهوی تعادل بین سوگیری و واریانس در یادگیری ماشین

