

Robotics Group Project - 5CCS2RGP

Lecture 5: Bayesian Filter for Localisation

$$P(x|y) = \frac{P(y|x) P(x)}{P(y)} = \frac{\text{likelihood} \cdot \text{prior}}{\text{evidence}}$$

$$P(x \mid z_1,...,z_n) = \frac{P(z_n \mid x, z_1,...,z_{n-1})P(x \mid z_1,...,z_{n-1},u)}{P(z_n \mid z_1,...,z_{n-1})}$$

Z measurements

$$P(x \mid z_1,...,z_n) = \frac{P(z_n \mid x, z_1,...,z_{n-1})P(x \mid z_1,...,z_{n-1},u)}{P(z_n \mid z_1,...,z_{n-1})}$$

Markov assumption: z_n is independent of $z_1, ..., z_{n-1}$ if we know x.

$$P(robot = [a,b],t = n)$$

$$= \frac{P(measure = c \mid robot = [a,b])P(robot = [a,b],action)}{P(measure = c)}$$

Initialization (assume equal probability at t=0)

$$Bel(robot = [a,b]) = 1 / states _number$$

Sense and update: (measure, t=k+1)

$$Bel(robot = [a,b]) = \eta P(measure = z \mid robot = [a,b])$$

Move robot (action) and update Bel

```
Bel(robot = [a,b])
```

- $= \eta P(measure = z \mid robot = [a,b])P(robot = [a,b], action)$
- $= \eta P(measure = z \mid robot = [a,b]) f(action, Bel(robot, t = k))$

Recursive Bayesian Filter-1D World

P(Sensor_work) = 0.8, P(Sensor_wrong)=0.2

P(x=i, measure)

if measure=red

P(x=4, t) = P(Sensor work)*P(x=4,t-1)

if measure=blue
P(x=4, t)= P(Sensor wrong)*P(x=4,t-1)

Recursive Bayesian Filter-1D World

P(x=i, U)

$$0.1$$
 0.1
 0.8
U= Move right 1 grid

$$P([a,b] \mid action) = P(x \mid u) = \sum P(x \mid u, x')P(x')$$

$$P(x=4, U) = P(x=3,t-1)*0.8+P(x=5,t-1)*0.1+P(x=4,t-1)*0.1$$

- P(x=i,t)= P(x=i, measure)
- $\eta=1/Sum(p(x=i))$
- $P(x=i,t)=\eta P(x=i, measure)*P(x=i, U)$

Recursive Bayesian Filter-1D Case

Recursive Bayesian Filter-1D Case

2D Case-Simple Grid World

P(Sensor_work) = 0.7 P(Move_work)=0.8

Action: Measures:

stay red

left green

down green

left green

down red

right red

•••••

	b1	b2	b3	b4
a1	0.01	0.1	0.01	0.01
a2	0.2	0.3	0.01	0.01
a3	0.01	0.05	0.01	0.01
a4	0.01	0.01	0.01	0.01

P (X=[a,b], measure)

If measure == map

P(x=a2,b2, measure)= P(sensor work)*P(a2, b2)

If measure \= map

P(x=a2,b2, measure)= (1-P(sensor work))*P(a2, b2)

	b1	b2	b3	b4
a1	0.01	0.1	0.01	0.01
a2	0.2	0.3	0.01	0.01
a3	0.01	0.05	0.01	0.01
a4	0.01	0.01	0.01	0.01

$$P([a,b] | action) = P(x | u) = \sum P(x | u, x')P(x')$$

P(x=a2,b2, U) = P(a2,b1)*0.65+P(a1,b2)*0.1+P(a3,b2)*0.12+P(a2,b2)*0.13

Recursive Bayesian Filter

True Robot Path

Estimated Path using Bayesian Filter

2D Case-Simple Grid World

P(Sensor_work) = 0.7 , P(Sensor_wrong)=0.3
Initial condition: Assume equal probability for all grids

Sense and update P: (measure, t=k)

```
for all grids
                             Recursive Bayesian Updating
    if measure= grid [i,j]
       P([i,j], t=k) = P([i,j], t=k-1)*P(Sensor work)
    if measure ≠ grid [i,j]
       P([i,j], t=k) = P([i,j], t=k-1)*P(Sensor_wrong)
end
P(i,j)=P(i,j)/[Sum P(i,i)]
MOVE robot (u,v) and update P
P[i, j]=P(Move_work)*P[i-u, j-v]+P(Move_fail)*P[i, j]
```

u = action

x = state

Bayes Filters

$$\underbrace{Bel(x_t | z_t)} = P(x_t | u_1, z_1, \dots, u_t, z_t)$$

Bayes

$$= \eta P(z_t \mid x_t, u_1, z_1, \dots, u_t) P(x_t \mid u_1, z_1, \dots, z_{t-1})$$

Markov

$$= \eta P(z_t \mid x_t) P(x_t \mid u_1, z_1, ..., z_{t-1})$$

Total prob.

$$= \eta P(z_t \mid x_t) \int P(x_t \mid u_1, z_1, \dots, u_t, x_{t-1}) P(x_{t-1} \mid u_1, z_1, \dots, z_{t-1}) dx_{t-1}$$

Markov

$$= \eta P(z_t \mid x_t) \int P(x_t \mid u_t, x_{t-1}) P(x_{t-1} \mid z_{t-1}) dx_{t-1}$$

$$= \eta \ P(z_t \mid x_t) \int P(x_t \mid u_t, x_{t-1}) \ Bel(x_{t-1}) \ dx_{t-1}$$

$Bel(x_t) = \eta \ P(z_t \mid x_t) \int P(x_t \mid u_t, x_{t-1}) \ Bel(x_{t-1}) \ dx_{t-1}$

```
Algorithm Bayes_filter( Bel(x),d ):
1.
2.
       \eta=0
3.
       If d is a perceptual data item z then
4.
         For all x do
                Bel'(x) = P(z \mid x)Bel(x)
5.
                \eta = \eta + Bel'(x)
6.
         For all x do
7.
                Bel'(x) = \eta^{-1}Bel'(x)
8.
9.
       Else if d is an action data item u then
         For all x do Bel'(x) = \bigcap P(x \mid u, x') Bel(x') dx'
10.
11.
                         discrete: \mathring{a}P(x | u, x') Bel(x')
       Return Bel'(x)
12.
```