

Introduction to Cryptography and Security The Advanced Encryption Standard (AES)

AES

Galois field computations are needed for all operations within the AES layers.

Outline

1 A Brief Introduction to Galois Fields

2 AES

3 AES Decryption

Definition (Field)

A field F is a set of elements with the following properties:

- All elements of F form an additive group with the group operation "+" and the neutral element 0.
- All elements of F except 0 form a multiplicative group with the g roup operation " \times " and the neutral element 1.
- When the two group operations are mixed, the distributivity law holds, i.e.,

$$a \times (b+c) = (a \times b) + (a \times c)$$
, for all $a, b, c \in F$.

Example

- The set R of real numbers is a field with the neutral element 0 for the additive group and the neutral element 1 for the multiplicative group.
- Every real number a has an additive inverse, namely -a, and every nonzero element a has a multiplicative inverse 1/a.

Example

- The set \mathbb{Z}_p with two operations + and \times modulo p that is a prime number is a field. This field has finite element.
- What are the additive and multiplicative inverses of element a in Z_p?

Existence of Finite Fields

The number of elements in the field is called the **order** or **cardinality** of the field.

Theorem

A field with order n only exists if n is a prime power, i.e., $n = p^m$, for some positive integer m and prime integer p. The number p is called the **characteristic** of the finite field.

Example

- There is a finite field of 11 elements GF(11).
- There is a finite field of 81 elements GF(81).
- There is a finite field of 256 elements $\mathit{GF}(2^8)$ (called AES field).
- \bullet The is no finite field of 12 elements. Why?

Finite fields

Extension Fields $GF(p^m)$

The elements of $GF(p^m)$ are polynomials with coefficients in GF(p):

$$a_{m-1}x^{m-1} + \cdots + a_1x + a_0 = A(x) \in GF(2^m)$$

where $a_i \in \mathbb{Z}_p$.

Example

The elements of the field $GF(2^3) = GF(8)$ are the polynomials

$$A(x) = a_2 x^2 + a_1 x + a_0$$

 $GF(2^3)$ has $2^3 = 8$ elements:

$$GF(2^3) = \{ 0, 1, x, x+1$$
$$x^2, x^2+1, x^2+x, x^2+x+1 \}$$

Extension Fields GF(16)

Extension Fields $\mathit{GF}(27)$

0	x+1	$x^2 + 2x + 1$
X	$x^2 + x$	$2x^2 + 2x + 2$
x^2	$x^2 + x + 2$	$2x^2 + x + 1$
x+2	$x^{2} + 2$	$x^{2} + 1$
$x^2 + 2x$	2	2x + 2
$2x^2 + x + 2$	2x	$2x^2 + 2x$
$x^2 + x + 1$	$2x^2$	$2x^2 + 2x + 1$
$x^2 + 2x + 2$	2x + 1	$2x^2 + 1$
$2x^2 + 2$	$2x^2 + x$	1

Questions

What are the operations $(+, -, \times, /)$ on $GF(p^m)$?

- They are simply achieved by performing standard polynomial operations.
- The coefficients are done in the underlying field GF(p).

Addition and Subtraction

Example (in $GF(2^3)$)

$$A(x) = x^{2} + x + 1$$
$$B(x) = x^{2} + 1$$
$$A(x) + B(x) = x$$

Multiplication

Example (in $GF(2^3)$)

$$A(x) = x^{2} + x + 1$$

$$B(x) = x^{2} + 1$$

$$A(x) \times B(x) = (x^{2} + x + 1)(x^{2} + 1)$$

$$= x^{4} + x^{3} + x + 1 \notin GF(2^{3})$$

Idea: in the prime field $\mathit{GF}(7) = \{0, 1, \dots, 6\}$

$$3 \cdot 4 = 12 = 5 \mod 7$$

Multiplication in Extension Fields

The product of the multiplication is divided by an irreducible polynomial, and we consider only the remainder after the polynomial division.

Definition (Multiplication in $GF(p^m)$)

Let $A(x), B(x) \in GF(p^m)$ and let

$$P(x) = \sum_{i=0}^{m} p_i x^i, \qquad p_i \in GF(p)$$

is an irreducible polynomial. Multiplication of the two elements A(x), B(x) is performed as

$$C(x) = A(x) \cdot B(x) \mod P(x)$$
.

Example (Multiplication in $GF(2^3)$)

$$A(x) = x^{2} + x + 1$$

$$B(x) = x^{2} + 1$$

$$A(x) \times B(x) = (x^{2} + x + 1)(x^{2} + 1)$$

$$= x^{4} + x^{3} + x + 1 \notin GF(2^{3})$$

The irreducible polynomial of this Galois field is given as

$$P(x) = x^3 + x + 1$$

Thus

$$A(x) \cdot B(x) = x^2 + x \mod P(x).$$

Polynomial remainder

Question

How do we reduce $(x^4 + x^3 + x + 1)$ modulo $P(x) = x^3 + x + 1$?

We have

$$x^{4} = xP(x) - x^{2} - x$$
$$= xP(x) + x^{2} + x$$
$$= x^{2} + x \mod P(x)$$

Thus

$$x^4 + x^3 + x + 1 = (x^2 + x) + P(x)$$
 mod $P(x)$
= $x^2 + x$ mod $P(x)$

Finite Fields in SageMath

https://en.wikipedia.org/wiki/SageMath

• Finite field $K = GF(2^3)$ with modulo $P(x) = x^3 + x + 1$:

```
1 \text{ K.} < x > = GF(2^3, name='x', modulus=x^3 + x + 1)
```

• Multiplication in SageMath:

```
1 A = K(x^2 + x + 1)
```

$$_{2}$$
 B=K(x 2 + 1)

$$3 C = A * B$$

Irreducible polynomial

Not all polynomials are irreducible. For example,

$$x^4 + x^3 + x + 1 = (x^2 + x + 1)(x^2 + 1)$$

is reducible.

AES uses the irreducible polynomial

$$P(x) = x^8 + x^4 + x^3 + x + 1$$

Inversion in Extension Fields

• the inverse $A^{-1}(x)$ of a nonzero element $A(x) \in GF(2^m)$ is defined as

$$A(x) \cdot A^{-1}(x) = 1 \mod P(x)$$

 The main algorithm for computing multiplicative inverses is the extended Euclidean algorithm.

```
1 sage: A=K(x^2 + x + 1)
2 sage: A^-1
3 x^2
4 sage: x^2 * A
5 1
```


For example, the inverse of

$$x^7 + x^6 + x = (11000010)_2 = (C2)_{hex} = (XY)$$

is given by the element in row C, column 2:

$$(2F)_{hex} = (00101111)_2 = x^5 + x^3 + x^2 + x + 1.$$

AES field in SageMath

```
sage: K.<x>=GF(2^8, name='x', modulus=x^8+x^4+x^3+x+1)
sage: (x^7+x^6+x)^-1
x^5 + x^3 + x^2 + x + 1
sage: (x^7+x^6+x)*(x^5+x^3+x^2+x+1)
1
```


Outline

1 A Brief Introduction to Galois Fields

2 AES

3 AES Decryption

The AES process

1997: NIST publishes request for proposal

• 1998: 15 submissions. Five claimed attacks.

• 1999: NIST chooses 5 finalists:

Mars, RC6, Rijndael, Serpent, Twofish

• 2000: NIST chooses Rijndael as AES (designed in Belgium)

Key sizes: 128, 192, 256 bits. Block size: 128 bits

AES

K	$\#$ rounds $= n_r$
128	10
192	12
256	14

AES encryption block diagram

Figure: Round 1

AES encryption block diagram: Round 1

AES round function

Byte Substitution Layer

- Question: How are S-boxes built?
- Answer: Two-step mathematical transformation:

Affine Mapping $B'_i \rightarrow B_i$

Example

Consider

$$A_i = (11000010)2 = (C2)_{hex} \in GF(2^8)$$

We have

$$A_i^{-1} = B_i' = (2F) = (00101111)_2 \in GF(2^8)$$

• Applying the B'_i as input to the affine transformation, we get

$$B_i = (0010 \ 0101)_2 = (25)_{hex}$$

S-box: $S((C2)_{hex}) = S(C, 2) = (25)_{hex}$.

		y															
		0	1	2	3	4	5	6	7	8	9	A	В	C	D	E	F
	0	63	7C	77	7B	F2	6B	6F	C5	30	01	67	2B	FΕ	D7	AB	76
	1	CA	82	C9	7D	FA	59	47	F0	AD	D4	A2	AF	9C	A4	72	C0
	2	B7	FD	93	26	36	3F	F7	CC	34	A5	E5	F1	71	D8	31	15
	3	04	C7	23	C3	18	96	05	9A	07	12	80	E2	EB	27	B2	75
	4	09	83	2C	1A	1B	6E	5A	A0	52	3B	D6	B3	29	E3	2F	84
	5	53	D1	00	ED	20	FC	B1	5B	6A	CB	BE	39	4A	4C	58	CF
	6	D0	EF	AA	FB	43	4D	33	85	45	F9	02	7F	50	3C	9F	A8
	7	51	A3	40	8F	92	9D	38	F5	BC	B6	DA	21	10	FF	F3	D2
х	8	CD	0C	13	EC	5F	97	44	17	C4	A7	7E	3D	64	5D	19	73
	9	60	81	4F	DC	22	2A	90	88	46	EE	B8	14	DE	5E	0B	DB
	A	E0	32	3A	0A	49	06	24	5C	C2	D3	AC	62	91	95	E4	79
	В	E7	C8	37	6D	8D	D5	4E	A9	6C	56	F4	EA	65	7A	ΑE	08
	C	BA	78	25	2E	1C	A6	B 4	C6	E8	DD	74	1F	4B	BD	8B	8A
	D	70	3E	B5	66	48	03	F6	0E	61	35	57	B9	86	C1	1D	9E
	Е	E1	F8	98	11	69	D9	8E	94	9B	1E	87	E9	CE	55	28	DF
	F	8C	A 1	89	0D	BF	E6	42	68	41	99	2D	0F	B0	54	BB	16

Diffusion Layer

Shift Rows and Mix Column

Shift Rows

B_0	B_4	B_8	B_{12}	
B_1	B_5	B_9	B_{13}	
B_2	B_6	B_{10}	B_{14}	
B_3	B_7	B_{11}	B_{15}	

B_0	B_4	B_8	B_{12}
B_5	B_9	B_{13}	B_1
B_{10}	B_{14}	B_2	B_6
B_{15}	B_3	B_7	B_{11}

Mix Column

 A linear transformation which mixes each column of the state matrix:

$$MixColumn(B) = C$$

• Each 4-byte column is considered as a vector and multiplied by a fixed 4×4 matrix:

$$\begin{pmatrix}
02 & 03 & 01 & 01 \\
01 & 02 & 03 & 01 \\
01 & 01 & 02 & 03 \\
03 & 01 & 01 & 02
\end{pmatrix}$$

 Multiplication and addition of the coefficients is done in GF(2⁸).

Mix Column

Example

Assume that the input state to the MixColumn layer is

$$B = (25, 25, \dots, 25).$$

• In this special case, only two multiplications in $GF(2^8)$ have to be done. These are $02 \cdot 25$ and $03 \cdot 25$:

$$02 \cdot 25 = x \cdot (x^5 + x^2 + 1)$$

$$= x^6 + x^3 + x,$$

$$03 \cdot 25 = (x+1) \cdot (x^5 + x^2 + 1)$$

$$= (x^6 + x^3 + x) + (x^5 + x^2 + 1)$$

$$= x^6 + x^5 + x^3 + x^2 + x + 1$$

Example (cont.)

• The output bytes of C result from the following addition in $GF(2^8)$:

$$01 \cdot 25 = x^{5} + x^{2} + 1$$

$$01 \cdot 25 = x^{5} + x^{2} + 1$$

$$02 \cdot 25 = x^{6} + x^{3} + x$$

$$03 \cdot 25 = x^{6} + x^{5} + x^{3} + x^{2} + x + 1$$

$$C_{i} = x^{5} + x^{2} + x^{2} + 1$$

• This leads to the output state

$$C = (25, 25, \dots, 25).$$

Key Addition Layer

- Input: 16-byte matrix C and 16-byte subkey k_i
- Output: C ⊕ k_i
- Subkeys are generated in the Key Schedule.

Key Schedule for 128-Bit Key AES

- There are 10 rounds and 11 Key Addition Layers; each Key Addition Layer requires a 128 bit subkey;
- These subkeys are split into $W[0], W[1], \ldots, W[43]$, and are computed on $GF(2^8)$ by

$$W[4i] = W[4(i-1)] + g(W[4i-1]).$$

$$W[4i+j] = W[4i+j-1] + W[4(i-1)+j]$$

Function g of round i

$$RC[1] = x^0 = (00000001)_2,$$

 $RC[2] = x^1 = (00000010)_2,$
 $RC[3] = x^2 = (00000100)_2,$
 \vdots
 $RC[10] = x^9 = (00110110)_2.$

AES-192: Key schedule

- AES-192 has 12 rounds and 13 Key Addition Layers
- Each Key Addition Layer requires a 128 bit subkey
- Thus, it needs 52 subkeys $W[0], \ldots, W[51]$.
- Each subkey is 32 bits = 4 bytes. $(4 \times 13 = 52)$.

AES-256: Key schedule of Round 1

AES-256: Key schedule of final round

AES-256: *g* and *h* functions

Outline

1 A Brief Introduction to Galois Fields

2 AES

3 AES Decryption

AES decryption block diagram

Figure: Round 1

Figure: AES decryption round function $1, 2, \ldots, n_r - 1$

Inverse MixColumn Layer

The inverse MixColumn step is applied to the state

$$InvMixColumn(C) = B$$

- Multiplication and addition of the coefficients is done in GF(2⁸);
- The inverse of its matrix must be used.

Inverse ShiftRows Sublayer

B_0	B_4	B_8	B_{12}
B_1	B_5	B_9	B_{13}
B_2	B_6	B_{10}	B_{14}
B_3	B_7	B_{11}	B_{15}

B_0	B_4	B_8	B_{12}
B_1	B_1	B_5	<i>B</i> 9
B_1		B_2	B_6
B_7	B_1	B_{15}	B_3

Inverse Byte Substitution Layer

• We recall the SubBytes operation $S(A_i) = B_i$:

• To calculate InvSubBytes $S^{-1}(B_i) = A_i$, we do the reverse:

$$B_i \rightarrow B_i' \rightarrow A_i$$

InvSubBytes: $B_i \rightarrow B'_i$

$$\begin{pmatrix} b'_0 \\ b'_1 \\ b'_2 \\ b'_3 \\ b'_4 \\ b'_5 \\ b'_6 \\ b'_7 \end{pmatrix} \equiv \begin{pmatrix} 0 & 1 & 0 & 1 & 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 & 1 & 0 & 0 & 1 \\ 1 & 0 & 0 & 1 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 & 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 & 1 & 0 & 0 & 1 \\ 1 & 0 & 0 & 1 & 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 & 1 & 0 & 0 & 1 \\ 1 & 0 & 1 & 0 & 0 & 1 & 0 & 0 \end{pmatrix} \begin{pmatrix} b_0 \\ b_1 \\ b_2 \\ b_3 \\ b_4 \\ b_5 \\ b_6 \\ b_7 \end{pmatrix} + \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 1 \\ 0 \\ 1 \end{pmatrix} \mod 2,$$

InvSubByte: $B'_i \rightarrow A_i$

- We have $A_i = (B'_i)^{-1} \in GF(2^8)$
- For example, the inverse of

$$(2F)_{hex} = (00101111)_2 = x^5 + x^3 + x^2 + x + 1.$$

is

$$x^7 + x^6 + x = (11000010)_2 = (C2)_{hex}$$

Inverse AES S-Box

		y															
		0	1	2	3	4	5	6	7	8	9	Α	В	C	D	E	F
	0	52	09	6A	D5	30	36	A5	38	BF	40	A3	9E	81	F3	D7	FB
9 A B	1	7C	E3	39	82	9B	2F	FF	87	34	8E	43	44	C4	DE	E9	CB
	2	54	7B	94	32	A6	C2	23	3D	EE	4C	95	0B	42	FA	C3	4E
	3	08	2E	A 1	66	28	D9	24	B2	76	5B	A2	49	6D	8B	D1	25
	4	72	F8	F6	64	86	68	98	16	D4	A4	5C	CC	5D	65	B6	92
	5	6C	70	48	50	FD	ED	B9	DA	5E	15	46	57	A7	8D	9D	84
	6	90	D8	AB	00	8C	BC	D3	0A	F7	E4	58	05	B8	В3	45	06
	7	D0	2C	1E	8F	CA	3F	0F	02	C1	AF	BD	03	01	13	8A	6B
	8	3A	91	11	41	4F	67	DC	EA	97	F2	CF	CE	F0	B4	E6	73
	9	96	AC	74	22	E7	AD	35	85	E2	F9	37	E8	1C	75	DF	6E
	A	47	F1	1A	71	1D	29	C5	89	6F	B7	62	0E	AA	18	BE	1B
	В	FC	56	3E	4B	C6	D2	79	20	9A	DB	C0	FE	78	CD	5A	F4
	C	1F	DD	A8	33	88	07	C7	31	B1	12	10	59	27	80	EC	5F
	D	60	51	7F	A9	19	B5	4A	0D	2D	E5	7A	9F	93	C9	9C	EF
	Е	A0	E0	3B	4D	AE	2A	F5	B0	C8	EB	BB	3C	83	53	99	61
	F	17	2B	04	7E	BA	77	D6	26	E1	69	14	63	55	21	0C	7D

Decryption Key Schedule

- Since decryption round one needs the last subkey,
- the second decryption round needs the second-to-last subkey and so on,
- In short, we need to compute the subkeys in reverse order.
- In practice this is mainly achieved by computing the entire key schedule first and storing all
 - 11 subkey (if for AES-128),
 - 13 subkey (if for AES-192), or
 - 15 subkey (if for AES-256).

VIỆN CÔNG NGHỆ THÔNG TIN VÀ TRUYỀN THÔNG SCHOOL OF INFORMATION AND COMMUNICATION TECHNOLOGY

Thank you!

