Multi-Task Learning for Boosting with Application to Web Search Ranking Olivier Chapelle et al.

Presenter: Wei Cheng

Outline

- Motivation
- Backgrounds
- Algorithm
 - From svm to boosting using L1 regularization
 - E-boosting for optimization
 - Overall algorithm
- Evaluation
- Overall review and new research points discussion

Motivation

Motivation

- Should we train ranking model separately?
 - Corps in some domains might be too small to train a good model
 - Solution:

Multi-task learning

Fig. 1. Different learning processes between (a) traditional machine learning and (b) transfer learning.

Sinno Jialin Pan and Qiang Yang, TKDE'2010

Different Settings of Transfer Learning

Transfer Learning Settings	Related Areas	Source Domain Labels	Target Domain Labels	Tasks
Inductive Transfer Learning	Multi-task Learning	Available	Available	Regression,
				Classification
	Self-taught Learning	Unavailable	Available	Regression,
				Classification
Transductive Transfer Learning	Domain Adaptation, Sample	Available	Unavailable	Regression,
	Selection Bias, Co-variate Shift			Classification
Unsupervised Transfer Learning		Unavailable	Unavailable	Clustering,
				Dimensionality
				Reduction

Why transfer learning works?

Table 1: Cross-domain sentiment classification examples: reviews of *electronics* and *video games* products. Boldfaces are domain-specific words, which are much more frequent in one domain than in the other one. Italic words are some domain-independent words, which occur frequently in both domains. "+" denotes positive sentiment, and "-" denotes negative sentiment.

	electronics	video games
+	Compact; easy to operate; very good picture quality; looks	A very good game! It is action packed and full of excitement. I
	sharp!	am very much hooked on this game.
+	I purchased this unit from Circuit City and I was very excited	Very realistic shooting action and <i>good</i> plots. We played this and
	about the quality of the picture. It is really <i>nice</i> and sharp .	were hooked.
-	It is also quite blurry in very dark settings. I will never buy HP	The game is so boring. I am extremely unhappy and will proba-
	again.	bly never buy UbiSoft again.

Why transfer learning works?(continue)

TRANSFER LEARNING DATA SETS (GENERATED FROM 20-NEWSGROUPS AND REUTERS-21578)

Data Set	\mathcal{D}_s	\mathcal{D}_t
comp vs rec	comp.graphics, comp.os.*	comp.sys.*
	rec.autos, rec.motorcycles	rec.sport.*
comp vs sci	comp.graphics, comp.os.*	comp.sys.*
	sci.crypt, sci.med	sci.electronics, sci.space
rec vs sci	rec.autos, rec.motorcycles	rec.sport.*
	sci.crypt, sci.med	sci.electronics, sci.space
orgs vs people	orgs.{s}, people.{s}	orgs.{t}, people.{t}
orgs vs place	orgs.{s}, place.{s}	orgs.{t}, place.{t}
people vs place	people.{s}, place.{s}	people.{t}, place.{t}

Why transfer learning works?(continue)

Table: Average Learning Accuracy (%) based on 10 Repeated Runs

Accuracy	K-means	SVM	TSVM	CoCC	MTrick	CCI
comp vs rec	85.64	86.81	90.60	91.00	97.18	97.42
comp vs sci	68.92	62.02	67.63	80.80	82.54	87.28
rec vs sci	80.58	76.64	86.05	84.00	93.60	94.88
orgs vs people	69.74	69.34	73.80	76.40	74.69	78.46
orgs vs place	68.98	69.98	69.89	68.80	70.15	72.15
people vs place	60.37	56.94	58.43	66.94	63.31	67.73

traditional learning

Input:

LearnerA

LearnerB

Target:

Dog/human

Girl/boy

Multi-task learning

Input:

Joint Learning Task

Target:

Dog/human

Girl/boy

- The algorithm aims at designing an algorithm based on gradient boosted decision trees
- Inspired by svm based multi-task solution and boosting-trick.
- Using E-boosting for optimization

- From svm to boosting using L1 regularization
 - Previous svm based multi-task learning:

$$\min_{w^0, w^1, \dots, w^T} \sum_{t=0}^T \lambda_t ||w^t||_2^2 + \sum_{t=1}^T C^t (w^0 + w^t)$$

$$C^{t}(w) = \sum_{i \in I^{t}} \max(0, 1 - y_{i} \langle w, x_{i} \rangle).$$

Svm(kernel-trick)---->boosting (boosting trick)

Pick set of non-linear functions(e.g., decision trees, regression trees,....)

Apply every single function to each data point

$$|H| = J$$

$$x \to \phi(x)$$

$$\phi(x) = \begin{bmatrix} h_1(x) \\ \vdots \\ h_J(x) \end{bmatrix}$$

E-boosting for optimization

Using L1 regulization

$$\min_{\beta^0, \beta^1, \dots, \beta^T} \sum_{t=1}^T C^t (\beta^0 + \beta^t) \quad \text{s.t.} \quad \sum_{t=0}^T \lambda_t \|\beta^t\|_1 \le \mu,$$

$$\min_{\|\beta\|_{\lambda} \le \mu} C(\beta),$$

$$\min_{\|\beta\|_{\lambda} \le \mu} C(\beta), \qquad \|\beta\|_{\lambda} = \sum_{t=0}^{T} \lambda_t \|\beta^t\|_1$$

Using E-boosting
$$\min_{\Delta\beta} \ C(\beta+\Delta\beta) \quad \text{s.t.} \ \|\Delta\beta\|_{\lambda} \leq \epsilon$$

s.t.
$$\|\Delta\beta\|_{\lambda} \leq \epsilon$$

Algorithm 1 Multi-boost (S iterations)

$$F^{t} = 0 \quad \forall 0 \leq t \leq T$$

$$\mathbf{for} \ s \leftarrow 1 \ \mathbf{to} \ S \ \mathbf{do}$$

$$z_{i} = -\frac{\partial C(u)}{\partial u_{i}} \quad \forall 1 \leq i \leq n$$

$$\hat{h}^{t} \leftarrow \underset{h \in \mathcal{H}}{\operatorname{argmin}} \sum_{i \in I^{t}} (h(x_{i}) - z_{i})^{2}, \quad 0 \leq t \leq T.$$

$$\hat{t} \leftarrow \underset{t}{\operatorname{argmax}} \frac{1}{\lambda_{t}} \sum_{i \in T^{t}} \hat{h}^{t}(x_{i}) z_{i}.$$

$$F^{\hat{t}} \leftarrow F^{\hat{t}} + \epsilon \hat{h}^{\hat{t}}$$

$$u_{i} \leftarrow u_{i} + \epsilon \hat{h}^{\hat{t}}(x_{i}) \quad \forall i \in I^{t}$$

$$\mathbf{end} \ \mathbf{for}$$

$$\mathbf{Predict} \ \mathbf{a} \ \mathbf{new} \ \mathbf{example} \ x \ \mathbf{of} \ \mathbf{task} \ t \ \mathbf{as} \ F^{0}(x) + F^{t}(x)$$

Datasets

	Examples			(Queries	
Country	Train	Valid	Test	Train	Valid	Test
A	72k	7k	11k	3486	477	600
В	64k	10k	_	4286	563	_
C	74k	4k	11k	5992	298	600
D	108k	12k	14k	7027	383	600
E	162k	14k	11k	7204	586	600
\mathbf{F}	74k	11k	11k	7295	486	600
G	57k	5k	15k	7356	238	600
Н	137k	11k	12k	7644	807	600
I	95k	12k	12k	8153	835	600
J	166k	12k	11k	11145	586	600
K	62k	10k	20k	11301	548	600
L	307k	_	_	12850	_	_
M	474k	_	_	15666	_	_
N	194k	16k	12k	18331	541	600
О	401k	_	_	33680	_	_

Country	weighted	unweighted	pooling	cold-start
A	0.561	1.444	-0.320	-0.282
C	1.135	1.295	0.972	1.252
D	-0.043	-0.233	-1.096	-2.378
E	0.222	0.342	-2.873	-3.624
M	-2.385	-0.029	-1.724	-6.376
N	-0.036	0.705	-1.160	-3.123

Table 2: Percentage change in DCG over *independent* ranking models for various baseline ranking models.

Country	% gain	Best Countries
A	+4.21	CDFHLMN
В	+2.06	N
C	+1.70	A M
D	+2.95	C H L N
E	+0.35	BCFLO
F	+1.43	ABEHLN
H	+1.11	ABDEFL
L	+0.57	ABCEFM
M	+0.45	$A \subset N$
N	+1.00	A F L
О	+0.61	A F

Table 3: Percentage improvement over independent for the best countries found on the validation set.

Country	Multi-C	BDT	Multi-Gl	BRank
	Unweighted	Weighted	Unweighted	Weighted
A	+1.53	+0.72	+0.69	+0.75
В	+1.81	+1.58	+2.22	+1.64
C	+0.92	+0.52	+0.92	+0.01
D	+4.14	+3.62	+1.77	+1.84
\mathbf{E}	-1.37	-1.45	-0.18	-0.91
F	+0.57	+1.80	+1.67	+2.22
G	+4.34	+4.68	+1.74	+0.75
H	+0.34	+0.96	+0.52	+0.85
I	-0.50	-0.80	-0.07	+0.32
J	+0.10	-0.69	+0.74	-0.64
K	+2.37	+2.38	+3.40	+2.01
N	+0.53	-1.23	+0.51	-0.92
Mean	+1.23	+1.01	+1.16	+0.66

Table 4: DCG-5 gains with *Multi-GBDT* and *Multi-GBRank* learning algorithms in two different weighting settings. The gains are over *independent-GBDT* and *independent-GBRank* respectively.

Country	Group 1	Group 2	Group 3	Group 4	Group 5	Group 6	Group 7	Group 8
A	+0.33	+1.53				+0.46		
В	+1.87	+1.81		+1.60				
C	+1.81	+0.92				+0.64		
D	+2.90	+4.14		+2.29				
E	-1.02		-1.37					-1.24
F	+1.82	+0.57		-0.20				
G	+1.51		+4.34				+3.59	
Н	+0.00	+0.34			+0.08			
I	-0.85	-0.50			-0.97			
J	+0.76		+0.10					+0.38
K			+2.37				+1.98	
L			†		†	†		
N			+0.53			-0.09		
0		†						†

Table 5: Improvement of multi-task models with various groupings of countries over *independent* ranking models. Each column in the table indicates a group that includes a subset of countries and each row in the table corresponds to a single country. The numbers in the cell are filled only when the corresponding country is part of the corresponding group. The symbol † indicates that this country was included for training but has not been tested.

Country	Improvements with F^0
A	+2.94
С	-0.20
D	-0.17
E	-0.33
F	+0.83
G	+0.49
Н	+1.18
I	+0.73
J	+4.83
K	+0.85
N	-1.48
mean	+ 0.88

Table 7: DCG-5 gains of global models trained with multi-task approach compared with simple data combination from of all countries.

Overall review and new research point discussion

Contributions:

- Propose a novel multi-task learning method based on gradient boosted decision tree, which is useful for web-reranking applications. (e.g., personalized search).
- Have a thorough evaluation on we-scale datasets.

New research points:

- Negative transfer: $P_s(\mathbf{x}) \approx P_t(\mathbf{x})$ $P_s(y|\mathbf{x}) \approx P_t(y|\mathbf{x})$
- Effective grouping: flexible domain adaptation

Q&A

Thanks!