

Lecture Notes

I. Operations Research and Analytics

(M.S. in Analytics Program)

Young H. Chun, Ph.D. Professor of Decision Science

E. J. Ourso College of Business Louisiana State University

LSU Printing Services: Baton Rouge, Louisiana

Table of Contents

1. Introduction	1
A. Deterministic Models	2
B. Probabilistic Models	6
C. Decision Models	8
D. Operations Research/Management Science	11
2. Basic Math and Probability	15
A. Review of Basic Math	16
B. Review of Linear Algebra	20
C. Applications of Linear Algebra	24
D. Introduction to Probability	28
E. Random Variables	32
 Appendix: Microsoft Excel 	35
3. Linear Programming	38
A. Introduction	39
B. Graphical Method	44
C. Word Problems	48
D. Formulations and Applications	52
 Appendix: SAS/OR for Linear Programming 	56
4. Advanced LP Models	60
A. Simplex Method*	61
B. Data Envelopment Analysis*	67
C. Goal Programming*	73
5. Integer Programming	77
A. LP Relaxation	78
B. IP Formulations and Applications	80
C. IP Formulations with Binary Variables	84
D. Integer Optimization for Network Models*	88
 Appendix: SAS/OR for Integer Programming 	96
6. Dynamic Programming	99
A. Recurrence Relation	100
B. Various Recursions	102
C. Deterministic DP Models	105
D. Probabilistic DP Models*	111
E. Optimal Stopping Problems*	116
7. Non-Linear Optimization	121
A. Univariate Optimization	122
B. Multivariate Optimization	126
C. Prediction and Classification Models	130
 Appendix: SAS/OR for Non-Linear Optimization 	134

8. Advanced Optimization Models	135
A. Gradient Vector*	136
B. Gradient Ascent Method*	138
C. Gradient Descent Method*	141
D. Gradient Methods for Prediction and Classification*	144
9. Markov Chain Models	149
A. Transition Probabilities	150
B. <i>n</i> -Step Transition Probabilities	152
C. Steady-State Probabilities	155
D. Markov Chain with Absorbing States	160
E. Markov Decision Process*	166
10. Simulation Models	173
A. Uniform Random Number Generators	174
B. Inverse Transformation Method	179
C. Simple Acceptance-Rejection Method	182
D. General Acceptance-Rejection Method	185
E. Estimation with Monde Carlo Simulation	189
F. Case Study: Waiting Line Model*	194
11. Decision Analysis	198
A. Preliminaries	199
B. Decision Making under Risk	202
C. Expected Value of Perfect Information	206
D. Expected Value of Sample Information	208
E. Sensitivity Analysis	212
F. Decision Trees	214
12. Advanced Decision Models	219
A. Game Theory*	220
B. LP Formulation for Mixed Strategies*	225
C. Analytic Hierarchy Process*	230
D. Multi-Objective Linear Programming*	234

Operations Research and Analytics – 12th Edition.

Copyright © 2022, by Young H. Chun.

All rights reserved. Except as permitted under the United States Copyright Act of 1976, no part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without prior written permission of the author.

Printed in the United States of America.

Custom published by LSU Printing Services: Baton Rouge, LA.

^{*} Those advanced topics are only for the *doctoral* students.