Decentralized Data Storage for LLM using Stratos

P. Paul Akash

April 18, 2024

1 Overview

The Stratos platform provides a decentralized computing and storage infrastructure that can be leveraged to support the data storage needs of a large language model (LLM). The key features of Stratos that make it suitable for this purpose are:

- 1. **Decentralized Data Mesh**: Stratos offers a decentralized data mesh that combines computation, storage, and network resources, providing a scalable and fault-tolerant infrastructure.
- 2. **Proof-of-Traffic Consensus**: Stratos uses a Proof-of-Traffic consensus mechanism to incentivize resource providers and ensure the reliability of the network.
- 3. **Secure and Efficient**: Stratos aims to provide a secure and efficient computing environment through the use of various consensus algorithms, including Practical Byzantine Fault Tolerance (PBFT) and Proof-of-Authority (PoA).

2 Stratos Architecture

The Stratos platform consists of three main components:

- 1. **Stratos Blockchain**: The blockchain layer provides services such as workload calculation, settlement, payment, and data verification.
- 2. **Stratos Meta Service**: The meta service layer is responsible for indexing, routing, and auditing the resources in the Stratos network.
- 3. **Stratos Resource Network**: The resource layer provides the actual computing, storage, and network services to users.

3 Stratos Data Storage Mechanism

Stratos utilizes a distributed and decentralized approach for data storage through its Stratos Data Service (SDS). While sharing similarities with other distributed file systems such as IPFS, SDS introduces key distinctions.

3.1 Data Storage Process

The typical data storage process in Stratos involves the following steps:

- 1. **File Segmentation:** Uploaded files are divided into smaller chunks called slices, typically a few megabytes in size.
- 2. **Merkle Tree Generation:** A hash is created for each slice, and these hashes are used to construct a Merkle Tree, ensuring file integrity verification.

- 3. Slice Distribution: Slices are distributed across various resource nodes within the Stratos network based on an algorithm that considers factors like node storage capacity, network bandwidth, and location.
- 4. **Replication:** Multiple copies (replicas) of each slice are stored on different nodes for data redundancy and fault tolerance.
- 5. **Indexing:** Slice location information is stored in a distributed index residing on Stratos meta nodes, enabling efficient file retrieval.
- 6. **Data Access:** Clients query the meta node to obtain the index and locate file slices, subsequently downloading them from resource nodes and reassembling them to reconstruct the complete file.

3.2 Distinguishing Features

Key differences between Stratos and IPFS include:

- Content Addressing vs. Path-Based: IPFS uses content addressing, identifying files by their content hash, while Stratos employs a path-based system relying on file paths.
- Metadata Layer: Stratos incorporates an additional metadata layer for tracking file locations and other information, enhancing data access efficiency.
- Incentive Mechanism: Stratos utilizes the PoT (Proof-of-Traffic) consensus mechanism to incentivize resource nodes, promoting network reliability and performance.

4 Benefits of Using Stratos for LLM Data Storage

- 1. **Scalability**: Stratos's decentralized architecture can scale to handle the large amounts of data required for LLM training and inference.
- 2. **Reliability**: The Proof-of-Traffic consensus and fault-tolerant design of Stratos provide a reliable and fault-tolerant data storage solution.
- 3. **Security**: The Stratos platform's security features, such as the use of PBFT and PoA consensus, can help protect the sensitive LLM data.
- 4. **Cost-effectiveness**: By leveraging the decentralized resource network, the data storage costs can be optimized and reduced compared to centralized cloud solutions.

5 Conclusion

Stratos's decentralized data storage mechanism offers a robust and efficient solution for managing large datasets, particularly for applications like large language models. By leveraging distributed storage, replication, and a comprehensive indexing system, Stratos ensures data availability, integrity, and fault tolerance. Additionally, the PoT consensus mechanism incentivizes resource providers, fostering a sustainable and reliable network. The path-based approach and metadata layer further enhance data access efficiency, making Stratos a compelling choice for organizations seeking secure and performant data storage solutions.