[הערת תחילת השיעור: אין אלוהים.]

הגדרות שראינו:

- N = ((V, E), s, t, c) רשת זרימה
 - f זרימה \bullet
 - אילוצי קיבול 🛚 🔾
 - אנטי-סימטריה о
 - ס שימור זרימה
 - גודל זרימה (ברשת)
 - רשת שיורית •
- ס קיבול = הפרש בין קיבול מקורי לזרימה ⊙
 - 0 < צלעות: כל צלע בה הקיבול \circ
- [.יברית רשת שיורית עבור $f\equiv 0$ בדיוק כמו הגרף המקורי.] \circ

אלגוריתם פורד פולקרסון

- 1. $\forall u, v \in V$ f(u, v) = 0
- 2. Construct N_f
- 3. While t is reachable from s in N_f :
 - 3.1. Find a path p from s to t

3.2.
$$\forall (u,v) \in p \text{ set: } \begin{cases} f'(u,v) = c_f(p) \\ f'(v,u) = -c_f(p) \end{cases}$$

- 3.3. $f'(u,v) = 0 \quad \forall (u,v) \notin p$
- 3.4. f = f + f'
- 3.5. Construct N_f

<u>דוגמה</u>:

שרטוטים של דוגמת הריצה

Edmond-Karp אלגוריתם

זהה לזה של פורד-פולקרסון, עם תוספת אחת: בחיפוש מסלול, מחפשים את המסלול הפשוט הקצר ביותר:

- 1. $\forall u, v \in V$ f(u, v) = 0
- 2. Construct N_f
- 3. While t is reachable from s in N_f :
 - 3.1. Find a simple, shortest path p from s to t

3.2.
$$\forall (u,v) \in p \text{ set: } \begin{cases} f'(u,v) = c_f(p) \\ f'(v,u) = -c_f(p) \end{cases}$$

3.3.
$$f'(u,v) = 0 \quad \forall (u,v) \notin p$$

3.4.
$$f = f + f'$$

3.5. Construct N_f

?מה הסיבוכיות כאן

- . בניית $O(|E|)-N_f$ בונים אותה בגרף). O(|E|)
- עקב צביעת O $\left(|V|+|E|\right)$ קים בד"כ O $\left(|E|\right)$ עקב צביעת סציאת מסלול קצר ביותר O $\left(|E|\right)$ בעזרת O $\left(|E|\right)$ אפשר לשנות הקדקודים, אבל במקרה שלנו שבו אנו מעוניינים רק במסלול אחד מ-s ל-s אפשר לשנות את האלגוריתם כך שזה ייחסך
 - . תיקון הזרימה O(|E|) (גם כי עושים זאת רק לפי הקשתות). •

משפט [זמן הריצה של EK]

. שיפורי זרימה $\mathrm{O}ig(|V|\cdot|E|ig)$ שיפורי זרימה בצע לכל היותר הצצע על על EK ריצה של

טענת עזר

אם מריצים אדל מונוטונית עם כל שיפור $\delta_f\left(s,v
ight)$, $v\in V\setminus\left\{s,t\right\}$ אזי לכל אזי לכל ברשת G ברשת אם מריצים ברשת זרימה.

[למה זה נכון?

בבניית ,(f -בבניית שתי פעולות: הרשת השיורית לאחר השינוי ב- (כלומר הרשת הרשת בבניית $G_{f^{\prime}}$

[תרשים משולשי של הפעולות]

להשלים

[

הוכחה

p אם היא צוואר בקבוק של מסלול שיפור p הגדרה: קשת ברשת שיורית נקראת p

(u,v) נניח שהקיבול של $\left(u,v
ight)$ היא קיבול

ig(u,vig) לאחר שיפור הזרימה, קשת שיורית אחת לפחות נעלמת מהרשת השיורית. כמה פעמים יכולה להיות קריטית?

 $:(u,v) \notin \{(s,x),(x,s),(t,x),(x,t)|x \in V\}$ אם

v בפעם הראשונה ש(u,v) קריטית, (u,v)+1 בפעם הראשונה ש(u,v)+1 במסלול קצר ביותר מ(u,v)+1 במסלול קצר ביותר מ

מרגע שיפור הזרימה, $\left(u,v\right)$ נעלמת מהרשת השיורית, ותופיע רק כאשר הקשת ההפוכה מרגע שיפור במסלול שיפור. $\left(v,u\right)$

אם ' f היא הזרימה ב- G כאשר נבחר המסלול הזה אז f' היא הזרימה ב- G כאשר נבחר המסלול שנבחר]. הפעם v הוא הקדקוד "הקודם" מבין u,v במסלול שנבחר

 $\delta_f(s,v) \le \delta_{f'}(s,v)$ ע"פ טענת העזר,

לכן:

$$\delta_{f'}(s,u) = \delta_{f'}(s,v) + 1 \ge \delta_f(s,v) + 1 = \delta_f(s,u) + 2$$

$$\downarrow \qquad \qquad \qquad \downarrow$$

$$\delta_{f'}(s,u) \ge \delta_f(s,u) + 2$$

[כלומר בכל פעם שקשת הופכת לקריטית, מרחק של קדקוד u גדל לפחות ב-2. כיוון |V|-2 מיכול להיות לכל היותר |V|-1 פעמים (למעשה אפילו s -יכול להיות לכל היותר u בי מרחק של קדקוד u כי מרחק הוא אורך של מסלול פשוט.]

.(O(|V|)) יכולה להיות קריטית לכל היותר $\frac{1}{2}|V|$ פעמים (u,v) אזי

- :נטפל בשאר המקרים באופן פרטני
- צלע יוצאת מ- t לא תהיה חלק ממסלול פשוט ל- t ולכן לעולם לא תהיה כ(t,x) כ קריטית.
- (t,x) יכולה להיות קריטית פעם אחת, כי ע"מ שתחזור עלינו לבחור את (x,t) כי ומהמקרה הקודם אנו יודעים שזה לא אפשרי.
- יכולה להיות קשת קריטית פעם אחת לכל היותר מכיוון שכדי שניקח אותה (s,x) כבפעם הבאה היינו צריכים לקחת את (x,s), וזה לא אפשרי מאותה הסיבה שרשמנו במקרה של (t,x).
 - (t,x) לא יכולה להיות קשת קריטית מהנימוק של המקרה ((x,s)

משפט Hall

<u>תזכורות</u>:

ייקרא $R,L\!\subseteq\! V$ אם קיימות $G\!=\! (V,E)$ כך ש: ullet

$$V = R \cup L$$

$$R \cap L = \emptyset$$

$$E \subseteq \{(u \in R \land v \in L) \lor (u \in L \land v \in R)\}$$

ונים (אין שונים ב"צדדים" שונים (אין – $E \subseteq L \times R \cup R \times L$ כלומר [[כלומר שני קדקודים באותו הצד).]]

שידוך מושלם אם"ם $G=ig(R\cup E,Eig)$ ייקרא שידוך מושלם אם"ם $M\subseteq E$ שידוך חוקי |R|=|L|=|M|

:המשפט

 $A\subseteq L$ (סימטרי ל-) $|A|\leq |N(A)|$ מתקיים שידוך מושלם אם"ם לכל $A\subseteq L$

אבל בכל מקרה -R וגם עבור -R אבל בכל מקרה או לחילופין שזה יתקיים גם עבור -R אבל בכל מקרה, |L| = |R| אין לנו עניין, כי בהם אף פעם אין שידוך מושלם ממילא. $|R| \neq |L|$

[כלומר: יש שידוך מושלם אם"ם כאשר אנו בוחרים תת-קבוצה A של A, מספר האיברים ב-A קטן או שווה למספר השכנים שיש לכולם יחד (שימו לב: לא מספר הצלעות, מספר השכנים) – וזה צריך להתקיים לכל תת-קבוצה A שניקח; אם יש תת-קבוצה אחת שבה זה לא קורה, אז אין שידוך מושלם.]

דוגמאות

<u>הוכחה</u>:

- 1. אם קיים שידוך מושלים אז לכל $A\subseteq L$ מתקיים $A\subseteq L$ אם קיים שידוך מושלים אז לכל $A\subseteq L$ יש בתור שכן מושלם מתאים לכל קדקוד מ- A קדקוד אחר מ- A , לכן לכל קדקוד ב- A יש בתור שכן לפחות את בן-הזוג שלו A.
 - $:\! \left|A\right| \! \leq \! \left|N\!\left(A\right)\right|$ מתקיים $A \! \subseteq \! L$ אם לכל. 2

נבצע רדוקציה לבעיית הזרימה ונשתמש ב-Min-Cut-Max-Flow ובהוכחה מתרגול 6 כי זרימה בגודל n גוררת שידוך בגודל n

שרטוט הגרף]

. נביט בחתך (S,T) כלשהו

|L|- אם יש עליו צלע בקיבול ∞ אזי קיבולו גדול מ

אחרת כל הצלעות החוצות אותו בעלות קיבול סופי.

נסמן את איברי הקבוצות הבאות:

$$S \cap L = \{x_1, \dots, x_k\}$$

$$T \cap L = \{x_{k+1}, \dots, x_n\}$$

$$S \cap R = \{y_1, \dots, y_j\}$$

$$T \cap R = \{y_{k+1}, \dots, y_n\}$$

[שרטוט החתר

כל השכנים של $S \cap L$ חייבים להיות ב- $S \cap R$ [כי אחרת יש צלע שחוצה את החתך עם קיבולת אינסופית].

[הערה: החצים המסומנים ב<צבע שבו אני יום אחד אסמן אותם כשיהיה לי זמן להוסיף את הציורים להרצאות> עם קיבולת ∞ שהולכים מ- $S \cap L$ ל- $S \cap T$ לא נחשבים לקיבול של החתך, כי הקיבול של החתך הוא סכום הקיבולות של הקשתות מ-S ל-T בלבד.]

הצלעות שחוצות את החתך הן:

- אלה ל- T אירות ל- אירות שיוצאות מ- א ל- אלה ל- .[(T-ם שנמצאים ב- אנמצאים ב- הצלעות המחוברות לקדקודים
 - T-ל $S \cap R$ ל- j \circ

:מכיוון שלכל
$$A\subseteq L$$
 מתקיים ש $A\subseteq L$ מתקיים ש $A\subseteq L$ מכיוון שלכל $k=|S\cap L|\le |N(S\cap L)|\le |S\cap R|=j$

- בין S ל- ∞ בין ∞ ל- הסבר לגבי אי-השוויון האחרון, המסומן באדום: אמרנו שאין קשתות בקיבול , וכל הקשתות המחברות איבר מ- $S \cap L$ לשכנים שלו הן עם קיבול ∞ . לכן כל הקשתות שמחברות בין איבר x_i ב-C לשכן שלו נמצאות בתוך $S \cap L$ ב- x_i מ-

חייב להיות ב- $S \cap R$. זה אומר ש- $S \cap R$ חייב להיות ב- $S \cap R$. זה אומר ש- $S \cap R$ $|N(S \cap L)| \le |S \cap R|$ סופיות,

אנחנו לא רוצים להוכיח שזה שווה ממש, כי אין לנו צורך בכך.]]

לכן $k \leq j$ ולכן קיבול החתך (S,T), אשר כולל רק צלעות עם קיבולת של 1 החוצות אותו, שווה לכמות הצלעות הללו:

$$c(S,T) = n - k + j \ge n - k + k = n$$