Outils pour la gestion de projet (IT-S601)

Stéphane Genaud

September 23, 2010

Plan

La planification

Plan

- 🚺 La planification
 - Méthode PERT
 - Méthode PERT probabiliste
 - Diagramme Gantt

Techniques de planification

Objectif : gérer le découpage temporel et structurel

Techniques:

- Graphe PERT pour :
 - mettre en évidence les dépendances entre tâches
 - mettre en évidence le parallélisme potentiel
 - calculer la durée minimum du projet
 - mettre en évidence les temps d'attente
- Diagramme Gantt pour :
 - faire des hypothèses sur les ressources
 - faire des hypothèses sur les disponibilités
 - établir un calendrier de travail

Méthode PERT

Project Evaluation and Review Technique (PERT)

- Établissement de l'ensemble des tâches et leurs durée estimée
- Ordonnancement des tâches selon dépendances

Méthode PERT (2)

fin-début

début-début

fin-fin

début-fin

Graphe PERT

- Le projet est caractérisé par
 - un ensemble de tâches T
 - une date de début t₀
 - ▶ une date de fin t_f
- Une tâche T_i possède :
 - une durée $d(T_i)$
 - ▶ un ensemble de prédécesseurs *Pred*(*T_i*)
 - un ensemble de successeurs $Succ(T_i)$
- ⇒ Objectif : définir
 - la date au plus tôt de chaque tâche
 - la date au plus tard de chaque tâche
 - le chemin critique

Dates au plus tôt

la tâche ne peut débuter avant $d_{tot}(T_i)$ la tâche ne peut finir avant $f_{tot}(T_i)$

$$d_{tot}(T_i) = \begin{cases} max(f_{tot}(Pred(T_i))) & \text{si } Pred(T_i) \neq \{\} \\ t_0 & \text{sinon} \end{cases}$$

$$f_{tot}(T_i) = d_{tot}(T_i) + d(T_i)$$

★ : si tous les liens sont de type fin-début

Dates au plus tard

la tâche doit débuter au plus tard à $d_{tard}(T_i)$ la tâche doit finir au plus tard à $f_{tard}(T_i)$

$$f_{tard}(T_i) = \begin{cases} \min(d_{tard}(Succ(T_i))) & \text{si } Succ(T_i) \neq \{\} \\ t_f & \text{sinon} \end{cases}$$

$$d_{tard}(T_i) = f_{tard}(T_i) - d(T_i)$$

★ : si tous les liens sont de type fin-début

Exemple dates au plus tôt

Remarquer la tâche T_5 avec plusieurs prédécesseurs :

$$d_{tot}(T_5) = max(\{f_{tot}(T_2); f_{tot}(T_3)\})) = max(\{7, 10\}) = 10$$

Exemple dates au plus tard

Supposons $t_f = 15$ (estimation de la fin du projet)

Marges et chemin critique

- Marge (de manœuvre) : $m(T_i) = d_{tard}(T_i) d_{tot}(T_i)$ $= f_{tard}(T_i) - f_{tot}(T_i)$
- Chemin critique : chemin tel que la somme des marges est minimale
- Cas particulier avec uniquement liens fin-début Chemin critique ⇔ Chemin le plus long

lci : le chemin critique est $\{T_1; T_3; T_5\}$

12 / 26

Exercice graphe PERT

Tâche	durée	lien
t_1	5	fin t_1 - début t_3
t ₂	2	fin t_2 - début t_4 , t_5
t ₃	10	fin t_3 - début t_6 , t_8
t ₄	8	fin t ₄ - début t ₆
t ₅	10	fin t ₅ - début t ₇
t ₆	25	fin t ₆ - début t ₁₁
t ₇	4	fin t ₇ - début t ₁₁
t ₈	10	fin t_8 - début t_9 , t_{10} , t_{11}
t ₉	2	fin t ₉ - début t ₁₃
t ₁₀	1	fin t_{10} - début t_{13}
t ₁₁	15	début t_{11} - début t_{12}
		fin t_{11} - début t_{13}
t ₁₂	10	fin t_{12} - début t_{14}
t ₁₃	12	fin t ₁₃ - fin
t ₁₄	30	fin t ₁₄ - fin

PERT Probabiliste

- Objectif: Inclure risque et incertitude dans la durée
- Durée d'une tâche considérée comme une variable aléatoire. Des études ont montré que la durée d'une tâche peut être modélisée une loi Beta.
- La durée d'un chemin est la somme de telles variables aléatoires.
 Théorème centrale limite ⇒ La durée d'un chemin suit une loi normale.
- Conditions
 - nombre suffisant de tâches
 - ordre de grandeur semblables pour les durées
 - indépendances entre durées des tâches

PERT Probabiliste en pratique

Les travaux de C. Clarke (1962) ont donné une méthode pour contrôler les paramètres de la loi de distribution Beta α et β à partir de 3 paramètres plus simples :

opt : durée optimistepes : durée pessimistevrai : durée vraisemblable

PERT probabiliste (2)

Pour une tâche :

• Calculer la durée probable d'une tâche i :

$$prob_i = \frac{opt_i + 4 \ vrai_i + pes_i}{6}$$

• Mesurer l'incertitude de l'estimation en calculant l'indicateur de dispersion de la durée de la tâche *i*:

$$d_i = \frac{pes_i - opt_i}{6}$$

PERT probabiliste (3)

Pour un chemin constitué des tâches {1; 2; ...; n}

Mesurer la durée estimée du chemin

$$D = \sum_{i=1}^{n} prob_i$$

• Mesurer l'écart-type de l'estimation pour le chemin :

$$E = \sqrt{\sum_{i=1}^{n} d_i^2}$$

PERT probabiliste (4)

ldée: on cherche une borne supérieure t de la durée d'un chemin avec un certain degré de confiance p.

Soit F(t) est la fonction de répartition (ou CFD) de $\mathcal{N}(0,1)$, on cherche

$$t$$
 telle que $F(t) \leq p$

PERT probabiliste (5)

Le comportement stochastique s'applique à l'incertitude déclarée sur le chemnin : *E*.

Si on appelle $G = F^{-1}$,

La durée maximum du chemin avec une probabilité *p* est:

$$\mathcal{D}(p) = D + E \times G(p)$$

On utilise une table (ou calculatrice):

p	G(p)	p	G(p)
99,9	3,00	89,1	1,23
99	2,31	85,1	1,04
98	2,06	70,2	0,53
97	1,88	50	0
95	1,65	42,1	-0,2
92,1	1,41	34,5	-0,4
90	1,28	27,4	-0,6

PERT probabiliste (4)

Exemple : Les estimations sont D=100 et E=15. La durée probable à 90% est

$$\mathcal{D}(0,9) = 100 + 15 \times G(0,9)$$

= 100 + 15 × 1,28
 ≈ 119

La durée probable à 70% est

$$\mathcal{D}(0,7) = 100 + 15 \times G(0,7)$$

= 100 + 15 × 0,53
 ≈ 108

La probabilité de terminer en 90 jours est

90 =
$$100 + 15 \times G(p)$$

 $G(p) = -10/15 = -2/3$

d'où $p \approx 27\%$

Exercice PERT probabiliste

Description	opt	pes	vrai
· · · · · · · · · · · · · · · · · · ·	6	9	7,5
	1	4.5	3
•	6	, -	7
	•	12	5
<u> </u>	_		
3 ·	2	6	3
		•	18
	Description faire fondre le beurre et le chocolat séparer les oeufs en jaunes et blancs ajouter les jaunes au mélange, faire cuire monter les blancs en neige arrêter la cuisson du mélange, et incorporer les blancs au mélange faire cuire au four	faire fondre le beurre et le chocolat séparer les oeufs en jaunes et blancs ajouter les jaunes au mélange, faire cuire monter les blancs en neige 2 arrêter la cuisson du mélange, et incorporer les blancs au mélange 2	faire fondre le beurre et le chocolat séparer les oeufs en jaunes et blancs 1 4,5 ajouter les jaunes au mélange, faire cuire 6 monter les blancs en neige 2 12 arrêter la cuisson du mélange, et incorporer les blancs au mélange 2 6

- Tracer le graphe PERT (sans contrainte de ressources)
- 2 Calculer la durée probable, l'écart-type de chaque chemin
- Oéterminer le chemin critique
- Quelle est la durée estimée de préparation du gâteau,
 - avec une probabilité de 90% ?
 - avec une probabilité de 95% ?
- Quelle est la probabilité de terminer en 37 minutes ?

Diagramme Gantt

Etablir un planning

- Un réseau PERT donne les dates (au plus tôt, au plus tard) sans tenir compte des contraintes de ressources
- Planning ⇒ faire des hypothèses sur les ressources
- Diagramme Gantt : qui fait quoi et quand ?
- Possibilité de modifier le planning en
 - jouant sur les ressources affectées
 - jouant sur le chargement (au plus tôt, au plus tard)

Diagramme Gantt (2)

$Hypoth\`eses: ressources \ R1 \ et \ R2, \ et \ chargement \ au \ plus \ t\^ot$

		_													
Périodes	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14
Ressources R1	T1														
Ki				Т3								L			
											T5				
R2				T2				Ε	=	=		_			
											T4				

Diagramme de Gantt (3)

Hypothèses: ressources R1 et R2, et chargement au plus tard

		_													
Périodes	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14
Ressources															
R1		T1													
					Т	'3									
												T5			
								T2							
R2												T4		1	
														1	

Diagramme Gantt : le nivellement

Le nivellement : limiter les ressources utilisées

Diagramme Gantt : le lissage

Le lissage : répartir l'utilisation d'une ressource dans le temps

Périodes	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14
Ressources					1										
R1	T1				L										
				Т3											
											T5				=
R2 (50%				T2											
ì										T4					