- Система массового обслуживания (СМО) это любая система, предназначенная для обслуживания каких-либо заявок (требований, клиентов), поступающих на нее в случайные моменты времени. Состоит из потока (требований) и одного, либо нескольких потоков обслуживания (каналов, линий обслуживания).
- Примерами СМО могут служить:
- расчетно-кассовые узлы в банках, на предприятиях;
 персональные компьютеры (сервера в сети), обслуживающие поступающие заявки или требования на решение тех или иных задач;
- станции технического обслуживания автомобилей; АЗС;
- аудиторские фирмы;
- отделы налоговых инспекций, занимающиеся приёмкой и проверкой текущей отчетности предприятий;
- телефонные станции и т. д.
 - *Отварыть СМО* когда входящий поток требований не зависит от состояния системы, поступая в неё извне.
- Замкнутая СМО когда поток требований находится внутри системы, зависит от состояния системы. Пример: Компьютерный класс, или сложная вычислительная система в которой узлы периодически требует ремонта, перезагрузки или переустановки программного обеспечения (т.е. создают заявки на обслуживание).

Различают СМО с отказами (потерями) и СМО с очередью. В СМО с отказами заявка, пришедшая в момент, когда все каналы заняты, получает отказ, покидает СМО и в дальнейшем в процессе работы не участвует. В СМО с очередью заявка, пришедшая в момент занятости всех каналов, не покидает СМО, а становится в очередь и ждет, пока не освободится какой-нибудь канал. Число мест в очереди может быть как ограниченным, так и неограниченным. Очередь может иметь ограничения не только по количеству стоящих в ней заявок (длине очереди), но и по времени ожидания (такие СМО называются «системами с нетерпеливыми клиентами)

- **Дисциплина очереди** определяет принцип, в соответствии с которым поступающие на вход обслуживающей системы требования подключаются из очереди к процедуре обслуживания. Чаще всего используются дисциплины очереди, определяемые следующими правилами:
- Упорядоченный тип: первым пришел первый обслуживаешься; first in first out (FIFO, FF) самый распространенный тип очереди.
- *С приоритемами*: тот же принцип, но требования в потоке делятся на приоритетные и не приоритетные, и образует две очереди (вторая обслуживается только во время, когда нету первой) **PR** (Priority)
- Стековый или магазинный: пришел последним обслуживаешься первым (LIFO, LF) (обойма для патронов, тупик на железнодорожной станции, поездка на лифте).
- Равновероятный выбор заявки, SP (Same Probability)
 Бывают и другие дисциплины о.)
 Механизм обслуживания (Дисциплина обслуживания) определяется характеристиками самой процедуры обслуживания и структурой обслуживающей системы, в том числе:
- количество каналов обслуживания ;
- продолжительность процедуры обслуживания (вероятностное распределение времени обслуживания требований)—задаёт интенсивность обслуживания канала (т.е. интенсивность потока на канале обслуживания при идеальной, максимальной загруженности когда канал всегда занят);
- одинаковость\различие интенсивностей среди каналов обслуживания и возможность задания предпочтений выбора между ними в последнем случае;
- количество требований, удовлетворяемых в результате процедуры;
- вероятность выхода из строя обслуживающего канала;
- возможность\невозможность участия в обслуживании заявки сразу нескольких каналов;
- все каналы могут обслуживать любые заявки тогда СМО называют полнодоступной, либо некоторые обслуживают лишь определённые категории заявок (неполнодоступные СМО, в таких моделях встречаются случаи с несколькими потоками заявок)

• Для краткой записи СМО приняты т.н. символы (обозначения) Кендалла:

Обычно используют 4 символа: первый характеризует входной поток требований, второй — распределение длительностей обслуживания и третий — число приборов в обслуживающей системе. а 4й символ - число мест в очереди (0, ∞ или конечн. число).

Приведем перечень общепринятых символов, характеризующих распределения вероятностей, которые ставятся в соответствие моделям массового обслуживания:

- М экспоненциальное распределение продолжительностей интервалов между поступлениями требований или длительностей обслуживания (от определяющего слова «марковский»);
- Д детерминированное (или регулярное) распределение длительностей интервалов между поступлениями требований или длительностей обслуживания;
- E_n n-фазное распределение Эрланга

(возникает в потоке Эрланга)

(т.е. пальмовский)

- (GU) GI рекуррентный характер входного потока 1) без каких-либо специальных предположений относительно функции распределения;
 - G общий вид распределения длительностей обслуживания (т. е. не делается никаких конкретизирующих предположений относительно функции распределения).

 Все символы записываются подряд через черту. Например, простейшая СМО с одним каналом и отказами (потерями, нет очереди):
 М / М / 1 / 0

Остальные символы (начиная с пятого – не обязательны, характеризуют специфические, «неклассические», особенности устройства СМО).

Например, далее могут добавить (уже не обязательно) ещё символ, обозначающий ограничение на источники нагрузки (т.е. если в СМО поступает конечное число требований вместо потока требований):

- M / M / 1 / 0 / К (К целое положит. число)
- И после этого ещё символы для характеризации дисциплины очереди и особого устройства механизма обслуживания (если отличны от FF| FM), например:

D/M/1/0/LF/FM

Также в последнем разряде можно было бы увидеть:

FM (Full Matrix)– полнодоступная система, G – неполнодоступная система (Grading) и другое (например, разновидности неполнодоступной системы) Задачи теории массового обслуживания — нахождение вероятностей различных состояний СМО, а также установление зависимости между заданными параметрами (числом каналов n, интенсивностью потока заявок λ , распределением времени обслуживания и т.д.) и характеристиками эффективности работы СМО. В качестве таких характеристик могут рассматриваться, например, следующие:

среднее число заявок A, обслуживаемое СМО в единицу времени, или абсолютная пропускная способность СМО;

вероятность обслуживания поступившей заявки Q или *относитель*ная пропускная способность СМО; $Q = A / \lambda$;

вероятность отказа $P_{\text{отк}}$, т.е. вероятность того, что поступившая заявка не будет обслужена, получит отказ; $P_{\text{отк}}=1-Q$;

среднее число заявок в СМО (обслуживаемых или ожидающих в очереди) \bar{z} ;

среднее число заявок в очереди $ar{r}$; (также распространено обозн. $\mathsf{L}_{\scriptscriptstyle ext{oч.}}$)

среднее время пребывания заявки в СМО (в очереди или под обслуживанием) $\bar{t}_{\rm сист}$;

среднее время пребыван: заявки в очереди \bar{t}_{oq} ; среднее число занят каналов \bar{k} .

В общем случае все эти характеристики зависят от времени. Но многие СМО работают в неизменных условиях достаточно долгое время, и поэтому для них успевает установитьс режим, близкий к стационарному. (Тогда соотв. процесс маркова эргодичен) повсюду, не оговаривая этого каждый раз специально, будем вычислять финальные вероятности состояний и финальные характеристики эффективности СМО, относящиеся к предельному, стационарному режиму ее работы.

• ОПР. СМО, в которой поток требований простейший, а время обслуживания на всех каналах распределено по показательному закону будем называть простейшей СМО (т.е. из времён обслуживания на отдельной линии обслуживания также складывается простейший поток)

TEOPEMA 1.

Любая простейшая СМО моделируется процессом Маркова.

TEOPEMA 2.

• Любая СМО стандартного механизма обслуживания (полнодоступная, с одинаковыми интенсивностями каналов обслуживания) с Пуассоновским потоком требований и опредёлённым распределением времени обслуживания (временами обслуживания, если выделяют приоритетную категорию заявок и она имеет другое время обслуживания) моделируется процессом Маркова. Причём, в случае стационарности потока требований и экспоненциального распределения времени обслуживания имеем однородный процесс Маркова.

• **Д-ВО** (идея)Теорему можно доказать, начав с рассмотрения схемы работы (поток событий) канала для одноканальной СМО с неограниченной очередью:

- в которой пунктиром обозначены моменты поступления новых заявок и подписаны периоды нахождения системы в состояниях
- S₂ канал работает, одна заявка в очереди
- S₁ канал работает, нет заявок в очереди
- S₀ канал свободен (простаивает)
- Схема моделирующего процесса будет частным случаем схемы гибели и размножения (как и у других простейших СМО):

• Покажем, что все интенсивности переходов именно такие: λ и μ (и что эти величины представляют в самой СМО). Далее можно увидеть, что в других простейших СМО схема составляется по аналогии.