Quantum, a look through nonlocality

Alexandre Nolin ¹

¹IRIF, algocomp group

03/05/2017

Defining quantumness

Disclaimer

This is in no way a real introduction to quantum theory.

Defining quantumness

Disclaimer

This is in no way a real introduction to quantum theory.

However ...

I will try to give all the basic notation and ideas necessary to understand most quantum computing talks.

Defining quantumness

Disclaimer

This is in no way a real introduction to quantum theory.

However ...

I will try to give all the basic notation and ideas necessary to understand most quantum computing talks.

And talk about my own research.

Defining quantumness: the basic idea

Quantum computing is what you get when you move from the usual theory of probability to a similar theory based on the ℓ_2 -norm.

Defining quantumness: the basic idea

Quantum computing is what you get when you move from the usual theory of probability to a similar theory based on the ℓ_2 -norm.

ok ... but precisely ?

Classical circuits

Reversibility

$$|0\rangle = \left(\begin{array}{c} 1 \\ 0 \end{array}\right), |1\rangle = \left(\begin{array}{c} 0 \\ 1 \end{array}\right), |01\rangle = |0\rangle \otimes |1\rangle = \left(\begin{array}{c} 1\cdot |1\rangle \\ 0\cdot |1\rangle \end{array}\right) = \left(\begin{array}{c} 0 \\ 1 \\ 0 \end{array}\right)$$

$$|0\rangle = \left(\begin{array}{c} 1 \\ 0 \end{array}\right), |1\rangle = \left(\begin{array}{c} 0 \\ 1 \end{array}\right), |01\rangle = |0\rangle \ |1\rangle = \left(\begin{array}{c} 1\cdot |1\rangle \\ 0\cdot |1\rangle \end{array}\right) = \left(\begin{array}{c} 0 \\ 1 \\ 0 \\ 0 \end{array}\right)$$

Combining parts

If S_1 and S_2 are the sets of states of two circuits, the states of the two circuits combined are $S_1 \times S_2$.

Combining parts

If S_1 and S_2 are the sets of states of two circuits, the states of the two circuits combined are $S_1 \times S_2$.

The matrix representing how a small-dimensional operator is applied to the whole space is obtained with a tensor product $\mathbf{1} \otimes M$

Uncomputation

Reversible circuit correspond to a *permutation matrix* over the 2^n states of the system.

As every gate is its own inverse, taking the circuit from the other side *reverses the computation*.

Uncomputation

Reversible circuit correspond to a *permutation matrix* over the 2^n states of the system.

As every gate is its own inverse, taking the circuit from the other side *reverses the computation*.

Every permutation is achievable with the previous gates.

Moving to probabilities

With reversible circuits and permutation matrices, we have a bijective map of the 2^n possible states of a n-wire circuit.

Moving to probabilities

With reversible circuits and permutation matrices, we have a bijective map of the 2^n possible states of a n-wire circuit.

Can we do the same with *probability distributions* over such states, that is *convex combinations* of the previous states ?

What can we add?

$$\begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & p & 1-p \\ 0 & 0 & 1-p & p \end{pmatrix} : \begin{pmatrix} p & 1-p \\ 1-p & p \end{pmatrix}$$

What can we add?

$$\left(\begin{array}{ccccc} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & p & 1-p \\ 0 & 0 & 1-p & p \end{array} \right) \ : \ \left(\begin{array}{cccc} p & 1-p \\ 1-p & p \end{array} \right)$$

In contrast to deterministic reversible circuits ...

... it is very different!

The sets of ℓ_1 -norm-preserving matrices, the *stochastic* matrices, are not necessarily inversible.

What can we add?

$$\left(\begin{array}{ccccc} 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & p & 1-p & p \end{array} \right) : \left(\begin{array}{cccc} p & 1-p \\ 1-p & p \end{array} \right)$$

In contrast to deterministic reversible circuits ...

... it is very different!

The sets of ℓ_1 -norm-preserving matrices, the stochastic matrices, are not necessarily inversible.

And their inverse are not necessarily norm-preserving!

Quantum

A message from the past

Quantum computing is what you get when you move from the usual theory of probability to a similar theory based on the ℓ_2 -norm.

Quantum

A message from the past

Quantum computing is what you get when you move from the usual theory of probability to a similar theory based on the ℓ_2 -norm.

Instead of ℓ_1 -unit, positive vectors of $\{\mid 0\rangle,\mid 1\rangle\}^{\otimes n}$ taken as a \mathbb{R} -vector space, we now consider ℓ_2 -unit vectors of $\{\mid 0\rangle,\mid 1\rangle\}^{\otimes n}$ taken as a \mathbb{C} -vector space.

Quantum

A message from the past

Quantum computing is what you get when you move from the usual theory of probability to a similar theory based on the ℓ_2 -norm.

Instead of ℓ_1 -unit, positive vectors of $\{\mid 0\rangle,\mid 1\rangle\}^{\otimes n}$ taken as a \mathbb{R} -vector space, we now consider ℓ_2 -unit vectors of $\{\mid 0\rangle,\mid 1\rangle\}^{\otimes n}$ taken as a \mathbb{C} -vector space.

Superposition and observation

In the presence of a state $\sum_i \alpha_i |i\rangle$, the probability of observing $|i\rangle$ is $|\alpha_i|^2$

Quantum gates

$$XYZHR_{\theta}$$

$$\begin{pmatrix}0&1\\1&0\end{pmatrix}&\begin{pmatrix}1&0\\0&-1\end{pmatrix}&\begin{pmatrix}0&-i\\i&0\end{pmatrix}&:&\frac{1}{\sqrt{2}}\begin{pmatrix}1&1\\1&-1\end{pmatrix}&:&\begin{pmatrix}1&0\\0&e^{i\theta}\end{pmatrix}$$

Quantum gates

$$XYZHR_{\theta}$$

$$\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \quad \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \quad \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix} \quad : \quad \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix} \quad : \quad \begin{pmatrix} 1 & 0 \\ 0 & e^{i\theta} \end{pmatrix}$$

The set of ℓ_2 -norm-preserving matrices is the *unitary* matrices (U s.t $UU^{\dagger}=I$).

Quantum gates

$$XYZHR_{\theta}$$

$$\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \quad \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \quad \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix} \quad : \quad \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix} \quad : \quad \begin{pmatrix} 1 & 0 \\ 0 & e^{i\theta} \end{pmatrix}$$

The set of ℓ_2 -norm-preserving matrices is the *unitary* matrices (U s.t $UU^{\dagger}=I$).

This makes all quantum circuits invertible in the same sense than classical reversible circuits.

$$HH\left|0\right\rangle = \frac{1}{\sqrt{2}}H\begin{pmatrix}1 & 1 \\ 1 & -1\end{pmatrix}\begin{pmatrix}1 \\ 0\end{pmatrix} = H\begin{pmatrix}1/\sqrt{2} \\ 1/\sqrt{2}\end{pmatrix} = H\frac{1}{\sqrt{2}}\left(\left|0\right\rangle + \left|1\right\rangle\right) = \frac{1}{2}\begin{pmatrix}1 & 1 \\ 1 & -1\end{pmatrix}\begin{pmatrix}1 \\ 1\end{pmatrix} = \begin{pmatrix}1 \\ 0\end{pmatrix} = \left|0\right\rangle$$

$$HH\left|0\right\rangle = \frac{1}{\sqrt{2}}H\begin{pmatrix}1 & 1\\1 & -1\end{pmatrix}\begin{pmatrix}1\\0\end{pmatrix} = H\begin{pmatrix}1/\sqrt{2}\\1/\sqrt{2}\end{pmatrix} = H\frac{1}{\sqrt{2}}\left(|0\rangle + |1\rangle\right) = \frac{1}{2}\begin{pmatrix}1 & 1\\1 & -1\end{pmatrix}\begin{pmatrix}1\\1\end{pmatrix} = \begin{pmatrix}1\\0\end{pmatrix} = |0\rangle$$

In this example, if we were to observe the circuit in the middle, we would see $|0\rangle$ w.p 1/2, $|1\rangle$ w.p 1/2.

$$HH\left|0\right\rangle = \frac{1}{\sqrt{2}}H\begin{pmatrix}1 & 1 \\ 1 & -1\end{pmatrix}\begin{pmatrix}1 \\ 0\end{pmatrix} = H\begin{pmatrix}1/\sqrt{2} \\ 1/\sqrt{2}\end{pmatrix} = H\frac{1}{\sqrt{2}}\left(|0\rangle + |1\rangle\right) = \frac{1}{2}\begin{pmatrix}1 & 1 \\ 1 & -1\end{pmatrix}\begin{pmatrix}1 \\ 1\end{pmatrix} = \begin{pmatrix}1 \\ 0\end{pmatrix} = |0\rangle$$

In this example, if we were to observe the circuit in the middle, we would see $|0\rangle$ w.p 1/2, $|1\rangle$ w.p 1/2.

But after a second Hadamard gate, we go back to the state $|0\rangle$.

$$HH\left|0\right\rangle = \frac{1}{\sqrt{2}}H\begin{pmatrix}1 & 1 \\ 1 & -1\end{pmatrix}\begin{pmatrix}1 \\ 0\end{pmatrix} = H\begin{pmatrix}1/\sqrt{2} \\ 1/\sqrt{2}\end{pmatrix} = H\frac{1}{\sqrt{2}}\left(|0\rangle + |1\rangle\right) = \frac{1}{2}\begin{pmatrix}1 & 1 \\ 1 & -1\end{pmatrix}\begin{pmatrix}1 \\ 1\end{pmatrix} = \begin{pmatrix}1 \\ 0\end{pmatrix} = |0\rangle$$

In this example, if we were to observe the circuit in the middle, we would see $|0\rangle$ w.p 1/2, $|1\rangle$ w.p 1/2.

But after a second Hadamard gate, we go back to the state $|0\rangle$. This is definitely *not possible* with probabilistic gates as described before.

In this example, the two wires are entangled, because the state $|\phi^+\rangle=\frac{1}{\sqrt{2}}(|00\rangle+|11\rangle)$ cannot be factored as $|a\rangle\otimes|b\rangle$

In this example, the two wires are entangled, because the state $|\phi^+\rangle=\frac{1}{\sqrt{2}}(|00\rangle+|11\rangle)$ cannot be factored as $|a\rangle\otimes|b\rangle$ An observer that measures a wire can get both $|0\rangle$ and $|1\rangle$ w.p 1/2 and learns what is on the other wire.

In this example, the two wires are entangled, because the state $|\phi^+\rangle=\frac{1}{\sqrt{2}}(|00\rangle+|11\rangle)$ cannot be factored as $|a\rangle\otimes|b\rangle$

An observer that measures a wire can get both $|0\rangle$ and $|1\rangle$ w.p 1/2 and learns what is on the other wire.

This is even true if the wires are far away from each other.

15/39

15/39

Bell tests: The basic setup

Bell tests: Players using only local hidden variables

Local hidden variables ? Probabilistic circuits !

Local hidden variables ? Probabilistic circuits !

Local hidden variables ? Probabilistic circuits !

Bell tests: Players with access to a quantum state

Bell tests: Bell inequalities

Bell functionals \Leftrightarrow linear forms over $\mathbb{R}^{\mathcal{A} \times \mathcal{B} \times \mathcal{X} \times \mathcal{Y}}$

$$B:(B_{ab \times y})_{\mathcal{A} \times \mathcal{B} \times \mathcal{X} \times \mathcal{Y}}$$

$$B(\mathbf{p}) = \sum_{abxy} B_{abxy} p(ab|xy)$$

The CHSH game

Alice gets an $x \in \{0,1\}$, Bob gets an $y \in \{0,1\}$ (u.a.r).

The CHSH game

Alice gets an $x \in \{0,1\}$, Bob gets an $y \in \{0,1\}$ (u.a.r).

Goal : output a and b s.t. $a \oplus b = x \wedge y$

The CHSH game

Alice gets an $x \in \{0,1\}$, Bob gets an $y \in \{0,1\}$ (u.a.r).

Goal : output a and b s.t. $a \oplus b = x \wedge y$

Claim

It is impossible to win this game with probability higher than 3/4 classically.

The CHSH game

Alice gets an $x \in \{0,1\}$, Bob gets an $y \in \{0,1\}$ (u.a.r).

Goal : output a and b s.t. $a \oplus b = x \wedge y$

Claim

It is impossible to win this game with probability higher than 3/4 classically.

However, with quantum ressources, it is possible to achieve $\frac{1+\sqrt{2}}{2\sqrt{2}}\approx 0.85\dots$

$$\begin{array}{ccc} \textit{U}_{\text{X}} = \textit{R}_{\alpha_{\text{X}}} & \textit{V}_{\textit{Y}} = \textit{R}_{\beta_{\textit{Y}}} \\ \alpha_0 = \textit{0}, \, \alpha_1 = \pi/4 & \beta_0 = \pi/8, \, \beta_1 = -\pi/8 \\ & \textit{where } \textit{R}_{\alpha} = \begin{pmatrix} \cos \alpha & \sin \alpha \\ -\sin \alpha & \cos \alpha \end{pmatrix} \end{array}$$

 $U_{x} = R_{\alpha_{x}}$ $V_{y} = R_{\beta_{y}}$ $\alpha_{0} = 0, \, \alpha_{1} = \pi/4$ $\beta_{0} = \pi/8, \, \beta_{1} = -\pi/8$

$$\begin{aligned} where \, R_{\alpha} &= \begin{pmatrix} \cos \alpha & \sin \alpha \\ -\sin \alpha & \cos \alpha \end{pmatrix} \\ \\ U_{X} \otimes V_{y} \frac{1}{\sqrt{2}} (|00\rangle + |11\rangle) \\ &= R_{\alpha_{X}} \otimes R_{\beta_{y}} \frac{1}{\sqrt{2}} (|00\rangle + |11\rangle) \\ &= \frac{1}{\sqrt{2}} \mathbb{1} \otimes R_{\beta_{y}} (\cos \alpha_{x} |00\rangle - \sin \alpha_{x} |10\rangle + \sin \alpha_{x} |01\rangle + \cos \alpha_{x} |11\rangle) \\ &= \frac{1}{\sqrt{2}} \Big[(\cos \alpha_{x} \cos \beta_{y} + \sin \alpha_{x} \sin \beta_{y}) (|00\rangle + |11\rangle) \\ &+ (\sin \alpha_{x} \cos \beta_{y} - \cos \alpha_{x} \sin \beta_{y}) (|01\rangle - |10\rangle) \Big] \\ &= \cos(\alpha_{x} - \beta_{y}) \frac{|00\rangle + |11\rangle}{\sqrt{2}} + \sin(\alpha_{x} - \beta_{y}) \frac{|01\rangle - |10\rangle}{\sqrt{2}} \end{aligned}$$

22/39

$$U_{X} = R_{\alpha_{X}} \qquad V_{y} = R_{\beta_{y}}$$

$$\alpha_{0} = 0, \alpha_{1} = \pi/4 \qquad \beta_{0} = \pi/8, \beta_{1} = -\pi/8$$

$$where R_{\alpha} = \begin{pmatrix} \cos \alpha & \sin \alpha \\ -\sin \alpha & \cos \alpha \end{pmatrix}$$

$$U_{X} \otimes V_{y} \frac{1}{\sqrt{2}} (|00\rangle + |11\rangle)$$

$$= R_{\alpha_{X}} \otimes R_{\beta_{y}} \frac{1}{\sqrt{2}} (|00\rangle + |11\rangle)$$

$$= \frac{1}{\sqrt{2}} \mathbb{1} \otimes R_{\beta_{y}} (\cos \alpha_{x} |00\rangle - \sin \alpha_{x} |10\rangle + \sin \alpha_{x} |01\rangle + \cos \alpha_{x} |11\rangle)$$

$$= \frac{1}{\sqrt{2}} \Big[(\cos \alpha_{x} \cos \beta_{y} + \sin \alpha_{x} \sin \beta_{y}) (|00\rangle + |11\rangle)$$

$$+ (\sin \alpha_{x} \cos \beta_{y} - \cos \alpha_{x} \sin \beta_{y}) (|01\rangle - |10\rangle) \Big]$$

$$= \cos(\alpha_{x} - \beta_{y}) \frac{|00\rangle + |11\rangle}{\sqrt{2}} + \sin(\alpha_{x} - \beta_{y}) \frac{|01\rangle - |10\rangle}{\sqrt{2}}$$

22/39

$$B_{abxy} = \mathbb{1}_{\{a \oplus b = x \wedge y\}}$$

$$B_{abxy} = \mathbb{1}_{\{a \oplus b = x \wedge y\}}$$

$$B(\ell) \leq 0.75, \forall \ell \in \mathcal{L}$$

$$B_{abxy}=\mathbb{1}_{\{a\oplus b=x\wedge y\}}$$

$$\textit{B(\ell)} \leq 0.75, \forall \ell \in \mathcal{L}$$

$$\exists \mathbf{q}, B(\mathbf{q}) = \cos^2 \frac{\pi}{8} = \frac{1}{2} + \frac{1}{2\sqrt{2}}$$

• Non-local boxes (NLBs) of success probability $p>\frac{1}{2}+\frac{1}{\sqrt{6}}\approx 0.91$ trivializes communication complexity [van Dam'00,BBL+'06]

- Non-local boxes (NLBs) of success probability $p>\frac{1}{2}+\frac{1}{\sqrt{6}}\approx 0.91$ trivializes communication complexity [van Dam'00,BBL+'06]
- Because quantum is inherently random, and because deterministic strategies cannot violate Bell inequalities, one can *certify* random bits using Bell inequalities.[PAM'10]

- Non-local boxes (NLBs) of success probability $p>\frac{1}{2}+\frac{1}{\sqrt{6}}\approx 0.91$ trivializes communication complexity [van Dam'00,BBL+'06]
- Because quantum is inherently random, and because deterministic strategies cannot violate Bell inequalities, one can *certify* random bits using Bell inequalities.[PAM'10]
- Such proofs can be device independent.

Bell tests: Bell inequality violations

Bell inequality violations : Quantifying nonlocality

Normalisation constraint : $|B(\cdot)| \le 1$ on \mathcal{L}

$$\nu(\mathbf{p}) := \max B(\mathbf{p}), \qquad |B(\ell)| \le 1, \ \forall \ell \in \mathcal{L}$$

Maximal violations: Known bounds

 $\max B(\mathbf{q}) \text{ over } \mathbf{q} \in \mathcal{Q} \text{ and } B \text{ s.t } |B(\ell)| \leq 1, \ \forall \ell \in \mathcal{L} ?$

Parameter	Upper bound	Ad hoc lower bounds	3,15
# inputs N	$2^c \leq N$ [234]	$\frac{\sqrt{N}}{\log(N)}$ [5]	
# outputs K	O(K) [5]	$\Omega\left(\frac{K}{(\log(K))^2}\right)$ [6]	
Dimension d	O(d) [4]	$\Omega\left(\frac{d}{(\log(d))^2}\right)$ [6]	

[1] BCG+'16 [2] LS'09 [3] DKLR'11 [4] JPP+'10 [5] JP'11 [6] BRSdW'12

Communication complexity: Definition

Communication complexity : $\min k$

Classical messages : CC(**p**)

Quantum messages : $\mathrm{QCC}(\textbf{p})$

Communication complexity: traveling wires

Communication complexity: Upper and lower bounds

Upper bounds \leftrightarrow protocols Lower bounds \leftrightarrow combinatorial or algebraic measures $(\nu, \gamma_2, \operatorname{disc}...)$

Theorem (DKLR'11)

 ν (LS'08) is a lower bound on simulating probability distributions : $\log \nu(\mathbf{p}) \leq \mathrm{CC}(\mathbf{p})$.

Communication complexity : Recent general link to Bell inequalities

Theorem (BCG+'16)

For any communication problem f there exists a normalized Bell inequality B and a quantum distribution \mathbf{q} such that :

$$B(\mathbf{q}) = \Omega\left(\frac{\sqrt{\mathrm{CC}(f)}}{\mathrm{QCC}(f)}\right)$$

Techniques : protocol tree, port-based teleportation, bias amplification (+Chernoff bound) . . .

Maximal violations: Known bounds

Parameter	Upper bound	Ad hoc lower bounds	Best possible lower bound from [1]
# inputs N	$2^c \leq N$ [234]	$\frac{\sqrt{N}}{\log(N)}$ [5]	$\frac{\sqrt{c}}{q} \leq \log(N)$
# outputs K	O(K) [5]	$\Omega\left(\frac{K}{(\log(K))^2}\right)$ [6]	$\leq \log(K)$
Dimension d	O(d) [4]	$\Omega\left(\frac{d}{(\log(d))^2}\right)$ [6]	$\leq \log \log(d)$
[1] DCC + '16 [2]	1 C'00 21 DK E	11 [4] IDD 110	[E] ID'11 [6]

[1] BCG+'16 [2] LS'09 [3] DKLR'11 [4] JPP+'10 [5] JP'11 [6] BRSdW'12

Efficiency and distributions with abort events

We add a new event \bot (abort) to the outputs We get new sets \mathcal{L}^\bot and \mathcal{Q}^\bot

Inefficiency-resistant Bell inequalities

Bell inequalities over the larger space $\{A \cup \bot\} \times \{B \cup \bot\} \times \mathcal{X} \times \mathcal{Y}$:

No weights on abort events. Normalized over a larger set \mathcal{L}^{\perp} . Weaker constraints :

 $B(\ell) \leq 1, \ \forall \ell \in \mathcal{L}^{\perp}.$

Theorem (1, this work)

For B such that $|B(\ell)| \le 1$ over $\mathcal L$ There exists B^* such that for all $\mathbf p \in \mathcal C$ such that $B(\mathbf p) \ge 1$, $B^*(\mathbf p) \ge \frac{1}{3}B(\mathbf p) - \frac{2}{3}$ and $|B(\ell)| \le 1$ over $\mathcal L^\perp$

Ideas: replace aborts by local strategies (preserving locality), make corresponding Bell inequality with weights on aborts, remove aborts from said Bell inequality (MPRG'02)

Theorem (2, this work)

If a distribution $\mathbf{p} \in \mathcal{P}$ is such that $CC(\mathbf{p}) \ge \log(B(\mathbf{p})) = C$ and $QCC(\mathbf{p}) \le Q$. Then there exists $\mathbf{q} \in \mathcal{Q}$ with one additional output per player compared to the distribution \mathbf{p} such that $B(\mathbf{q}) \ge 2^{C-2Q}$

Application to some communication problems

Problem	Normalized Bell violations [1]	Inefficiency-resistant Bell violations (this work)
VSP [23]	$\Omega\left(\sqrt[6]{n}/\sqrt{\log n}\right)$	$2^{\Omega(\sqrt[3]{n})-O(\log n)}$
DISJ [456]	N/A	$2^{\Omega(n)-O(\sqrt{n})}$
TRIBES [78]	N/A	$2^{\Omega(n)-O(\sqrt{n}\log^2 n)}$
ORT [98]	N/A	$2^{\Omega(n)-O(\sqrt{n}\log n)}$

[1] BCG'16 [2] Raz'99 [3] KR'11 [4] Razb'92 [5] Razb'03 [6] AA'05 [7] JKS'03 [8] BCW'98 [9] She'12

Maximal violations for inefficiency-resistant Bell inequalities

Parameter	Upper bound	Lower bounds
# inputs N	N	$\Omega(N)$
# outputs K	$2^{O(\frac{K^4}{\epsilon^2}\log^2(K))}$	$\infty(\epsilon=0)$
Dimension d	$2^{O((\frac{Kd}{\epsilon})^2\log^2(K))}$?

Very sensitive to arbitrary noise, less so to other noise models.

Uses much less entanglement than (BCG'+16).

Results are quantitatively incomparable.

Thank you!

Why inefficiency-resistant Bell inequalities are normalized

How to get arbitrary violations with normalized Bell inequalities

$$\tilde{B} = M \cdot B + \frac{M-1}{\# \mathcal{X} \mathcal{Y}}$$

A simple example where this fails for inefficiency-resistant Bell inequalities

- $B_{0,0,0,0} = 1$
- $B_{a,b,x,y} = 0$ for $(a,b,x,y) \neq (0,0,0,0)$

$$\forall \mathbf{p} \in \mathcal{P}, \ |B(\mathbf{p})| \le 1 \ \tilde{B}(\ell_{(0,0) \to (0,0)}) = M - \frac{M-1}{\# \mathcal{X} \mathcal{Y}}$$