Санкт-Петербургский Политехнический Университет Петра Великого

Кафедра компьютерных систем и программных технологий

Отчёт по лабораторной работе №3

Курс: «Защита информации»

Тема: «Ознакомление с PGP системами на основе программы Kleopatra»

Выполнил студент:

Бояркин Никита Сергеевич Группа: 43501/3

Проверил:

Новопашенный Андрей Гелиевич

Содержание

1	Лаб	бораторная работа №3
	1.1	Цель работы
		Программа работы
	1.3	Программное окружение
	1.4	Ход работы
		1.4.1 Pretty Good Privacy
		1.4.2 Принцип работы
		1.4.3 Создание сертификата
		1.4.4 Шифрование файлов открытым ключем
		1.4.5 Расшифровка файлов закрытым ключем
	1.5	Вывод

Лабораторная работа №3

1.1 Цель работы

Ознакомиться с PGP системами на основе программы Kleopatra.

1.2 Программа работы

- 1. Ознакомиться с программой Kleopatra.
- 2. Создать новый сертификат.
- 3. Зашифровать произвольный файл открытым ключем.
- 4. Расшифровать произвольный файл закрытым ключем.

1.3 Программное окружение

Первый компьютер

```
nikita@nikita-VirtualBox:~$ cat /proc/version
Linux version 4.4.0-72-generic (buildd@lcy01-17) (gcc version 5.4.0 20160609 (Ubuntu 5.4.0-6ubuntu1~16.04.4) ) #93-Ubuntu SMP Fri Mar 31 14:07:41 UTC 2017
nikita@nikita-VirtualBox:~$ kleopatra —version
kleopatra 2.2.0
```

Второй компьютер

```
nikita@nikita-pc:~$ cat /proc/version
Linux version 4.4.0-59-generic (buildd@lgw01-11) (gcc version 5.4.0 20160609 (Ubuntu 5.4.0-6ubuntu1~16.04.4) ) #80-Ubuntu SMP Fri Jan 6 17:47:47 UTC 2017
nikita@nikita-pc:~$ kleopatra —version
kleopatra 2.2.0
```

1.4 Ход работы

1.4.1 Pretty Good Privacy

Pretty Good Privacy (PGP) — компьютерная программа, также библиотека функций, позволяющая выполнять операции шифрования и цифровой подписи сообщений, файлов и другой информации, представленной в электронном виде, в том числе прозрачное шифрование данных на запоминающих устройствах, например, на жёстком диске. Первоначально разработана Филиппом Циммерманном в 1991 году.

В 1999 году силами Фонда свободного программного обеспечения была создана свободная реализация OpenPGP под названием GNU Privacy Guard (GnuPG).

В рамках данной лабораторной работы ограничимся изучением менеджера сертификатов Kleopatra, который включается в OpenPGP реализацию.

1.4.2 Принцип работы

Первым этапом является создание нового сертификата. Генерируется пара ключей: открытый ключ и закрытый ключ. Ключи являются парными, и файлы зашифрованные одним ключем можно расшифровать только парным ключем. Открытый ключ распространяется открыто, в то время как закрытый ключ должен сохраняться в секрете. Стоит отметить, что в программе Kleopatra доступ к расшифровке закрытым ключем защищается специальным паролем.

Таким образом, сторона создающая сертификат распространяет открытый ключ среди пользователей, от которых ожидается прием сообщений. Сообщения шифруются этим открытым ключем на стороне пользователя и пересылаются стороне, создавшей сертификат. После этого, сторона создавшая сертификат расшифровывает сообщение закрытым ключем.

1.4.3 Создание сертификата

Проиллюстрируем этап создания нового сертификата (File -> New Certificate...). Первый этап - выбор стандарта для пары ключей. Kleopatra поддерживает помимо OpenPGP также и X.509:

Рис. 1.1: Выбор стандарта для пары ключей

После этого происходит процесс конфигурирования сертификата (выбор алгоритма шифрования, длины ключа, названия сертификата и др.):

Рис. 1.2: Конфигурирование сертификата и выбор алгоритма шифрования

Затем, происходит процесс генерирования пары ключей (на основе случайных символов и движения окна), а также устанавливается пароль на доступ к закрытому ключу:

Рис. 1.3: Процесс генерирования пары ключей и установление пароля на доступ к закрытому ключу Созданный сертификат появляется в списке сертификатов:

Рис. 1.4: Результат создания сертификата

Для получения открытого ключа воспользуемся командой ΠKM -> Export Certificates... Отрытый ключ сохраняется в файле с собственным расширением:

Рис. 1.5: Открытый ключ RSA 2048 бит

Этот файл можно распространять среди пользователей, от которых ожидается прием сообщений.

1.4.4 Шифрование файлов открытым ключем

На втором компьютере импортируем сертификат (File -> Import Certificates...), указав в качестве параметра созданный открытый ключ (см. п. 1.4.3):

Рис. 1.6: Результат импортирования сертификата

Для шифрования файлов воспользуемся командой File -> Sign/Encrypt files... Появляется окно с выбором параметров шифрования:

Рис. 1.7: Выбор параметров шифрования

Далее указывается сертификат для шифрования файла:

r whom do you want to Please select for whom not forget to pick one c	you war	nt the fi	ificates.	ypted. Do
Search		All Ce	ertificates	*
Name	Δ		E-Mail	Valid Fro
My Super Certificate	e	im@th	e.best	24.04.17
CA Cert Signing Au	thority	suppo	rt@cacert.org	30.03.03
(4) III				
	Add	Re	move	
Name A	_	Re	move Valid From	Valid U
	E-N	/ail	Valid From	

Рис. 1.8: Выбор сертификата для шифрования

Результат шифрования файла:

Рис. 1.9: Результат шифрования файла

Файл был зашифрован в формате .gpg, расшифровка этого файла возможна только закрытым ключем, поэтому расшифровать его на этом компьютере нельзя, даже учитывая что мы его и зашифровали.

1.4.5 Расшифровка файлов закрытым ключем

Для расшифровки файлов воспользуемся командой File -> Decrypt/Verify files... Появляется окно с выбором параметров расшифровки:

Рис. 1.10: Выбор параметров расшифровки

Для доступа к расшифровке закрытым ключем необходимо ввести пароль, который был создан вместе с сертификатом (см. п. 1.4.3):

Рис. 1.11: Расшифровка закрытым ключем

Результат расшифровки файла:

Рис. 1.12: Результат расшифровки файла

Файл был успешно расшифрован: название и содержимое файла совпадает с оригиналом.

1.5 Вывод

В данной работе было рассмотрено ассиметричное шифрование на примере программы Kleopatra семейства OpenPGP. Ассиметричное шифрование имеет преимущество перед симметричным в простоте обмена ключами, однако проигрывает в скорости шифрования. Рассмотренное в работе шифрование одностороннее. Для того, чтобы осуществить двустороннюю передачу используются два канала. В современных криптосистемах ассиметричное шифрование используется для обмена ключами, а одновременно с этим симметричное шифрование для обмена данными.