

Theo Jansen's Strandbeests

Beautiful example of <u>Path Synthesis</u>

https://www.youtube.com/watch?v=zYGVYLzN06g

Topic 2: Graphical Linkage Synthesis

- Synthesis techniques
 - Generation types and strategies
- Motion synthesis: Two-position synthesis
 - Rocker output
 - Coupler output
 - Rotopoles
- Dyad drivers
- Quick return mechanisms
- Motion synthesis: Three-position synthesis
 - Specified moving points
 - Alternate moving points
- Path synthesis
 - Coupler curves

Kinematic or Mechanism Synthesis

How do we design a mechanism to achieve desired functionality?

• **Kinematic (or Mechanism) synthesis**, determines the size and configuration of mechanisms that shape the flow of power through a mechanical system, or machine, to achieve a desired performance.

Kinematic synthesis - procedure

- Define desired motion
 - e.g. dispense candy, walking gait
- Choose mechanism type
 - e.g., crank-rocker, slider-crank
- Specify geometry
 - e.g., link lengths, type & # of joints
- Avoid undesirable behaviors
 - e.g., toggle positions, change points

Choosing and refining mechanisms

How to design a mechanism?

Research existing solutions

A day of deep historical searching is worth 6 months in the lab

Compilations of solutions to different kinds of motion

1. Online and books are often divided by mechanism type (crank-rocker, slider-crank, 4- or 6-bar mechanism, using gears, using chains, etc.). What do you want?

2. Or, there are collections of ways to achieve common motions, like straight-line mechanisms...

Example: Straight line Motion

Chebyshev linkage

https://www.youtube.com/watch?v=o3oczQU8QIY

Other Straight-Line Mechanisms

Scotch Yoke

Hypocycloidal Gears

Peaucellier linkage

Watts linkage

Choosing and refining mechanisms

How to design a mechanism?

Research existing solutions

Analyze / Understand

Adapt / Improve

- Size, power, efficiency, constraints
- Linkages ok?
- Sliders ok? Friction?
- Does it need to be exactly a straight line, or is approximate ok?
- Is it ok to have part of the motion be not a straight line?

Adapting and improving linkage design

COMPUTATIONAL DESIGN OF MECHANICAL CHARACTERS

S. COROS1 B.THOMASZEWSKI1

G. NORIS1 S. SUEDA2 M. FORBERG2

R. SUMNER 1 W. MATUSIK 3 B. BICKEL 1

DISNEY RESEARCH ZURICH DISNEY RESEARCH BOSTON MIT CSAIL

Generation types

Function generation

- Correlates input to output
- $f(\theta_{crank})$

Path generation

- Control of a point to follow prescribed path
- Not concerned with link orientation
- e.g., coupler curves, straight-line mechanisms
- Only prescribes the position of a single point on a link

Motion generation

- Control of a line (or link) to follow prescribed set of positions
- Prescribes position **and** orientation of the link

Theo Jansen's Strandbeests

Animaris Vulgaris

Beautiful example of Path Synthesis

https://www.youtube.com/watch?v=zYGVYLzN06g https://www.facebook.com/CenterforBioDiv/videos/10155746398505460/

Photo and gif credits: https://www.wired.com/2015/09/heres-chance-play-wind-powered-strandbeest/

Example: Path Generation

• Jansen Leg mechanism

Example: the recliner

Is the movement of the foot rest on the recliner an example of path generation or motion generation?

Linkage Synthesis – *creating* a mechanisms for an *output*

- Graphical Motion Generation have a <u>link</u> follow prescribed <u>positions</u>.
 - Create 2-position and 3-position
 - Add dyad drivers and utilizing quick return mechanisms
 - How to fix designs with toggle point problems
- **2.** Path Generation have a point follow a prescribed path.
 - Existing solutions, books, and look up tables
 - Using computer software to fine-tune or optimize a 4-bar output path

Graphical Linkage Synthesis Tools

- We will design mechanisms to achieve desired motion using graphical tools and the principles of geometry
- We need the following tools.
 Pull them out and have them ready

Ruler

- Draw straight lines
- Measure size

Compass

- Draw constant R curves
- Bisect lines between points

Protractor

Measure angles

Graphical Linkage Synthesis

Goals:

Design a mechanism to achieve desired motion

- Two position synthesis
 - · Rocker output
 - Coupler output
 - Rotopole
- Three position synthesis

Be able to control the limits and positions of motion

- Dyad driver
- Alternative moving points

Be able to vary the timing of motion

• Quick return mechanisms

Two-position synthesis

Rocker output

- Most suitable for when you want a Grashof crankrocker
- Function generator
 - Output is the two angular positions of the rocker

Coupler output

- Motion generator
 - Two positions of a line in the plane are the output
 - Often triple rocker

Graphically designing a Crank rocker

- 3. Select location of crank

How to bisect a line with a compass

To evenly divide (bisect) the line

- Choose distance between compass points to be > $\frac{1}{2}$ of line length
- Put point end of compass at one end of the line to be divided (pt. B₁)
- Lightly draw a semi-circle that intersects the line
- Put point end of compass at the other end of the line to be divided (pt. B₂)
- Lightly draw another semi-circle that intersects the line
- Lightly draw a construction line that connects the intersection of the two semi-circles. The intersection of this construction line with the given line is the bisecting point.

Rocker output

Given: Two rocker positions B_1O_4 and B_2O_4 (link 4), design a 4-bar linkage that will obtain both positions.

Synthesis Steps:

- 1. Extend B_1B_2 .
- 2. Pick O₂ along line
- 3. Bisect B_1B_2 .
- 4. Distance is radius around O₂
- 5. Label A₁ & A₂
- 6. Check for Grashof condition (S + L < P + Q)
- 7. If non-Grashof, redo steps 2-5.

Note: O2O4 forms link 1 (ground)

Coupler output

Given: Two coupler positions C_1D_1 and C_2D_2 (link 3), design a 4-bar linkage that will obtain both positions.

Synthesis Steps:

- 1. Bisect C_1C_2 . Pick O_2 along line \rightarrow forms link 2 (O_2C)
- 2. Bisect D_1D_2 . Pick O_4 along line \rightarrow forms link 4 (O_4D)
- 3. Check for Grashof condition

Lots of design freedom with 2-position synthesis

 The pin-joint of the first link can be located ANYWHERE along the bisecting line.

 The pin-joint of the second link can be located ANYWHERE along the bisecting line.

 There are an unlimited number of 4-bar linkages that can accomplish this movement

Two-position synthesis: Rotopole

Rotopole: common ground rotation point – converts two-position <u>coupler output</u> motion to two-position <u>rocker output</u>.

Then treat as crank-rocker.

Advantage: simpler & stronger mechanism

Rotopole example: Garbage truck

Dyad drivers

- 2-bar chain added to drive an existing mechanism
- Can be attached to any rocker
- Creates a crank-rocker
- Useful for:
 - Adding reciprocating motion to rocker mechanisms

• Driving a mechanism out of (or through) a toggle position

LINOIS

Possible dyad configurations

• Important: Many possible driver designs for a given linkage

Dyad synthesis

Add: 2-bar chain added to drive an existing mechanism.

Synthesis Steps:

- Pick B₁ anywhere on an existing link (link 2 here)
- Draw arc about O₂ through B₁. Note: B₂ will be on this arc but in position 2.
- Complete steps 1-6 for a 2-position rocker output synthesis

2-position rocker output synthesis steps:

- Extend B₁B₂.
- 2.
- Pick O_6 .
 Bisect B_1B_2 . Use distance as radius around O_6 . 3.
- 4.
- Label $A_1 \& A_2$. Check for Grashof condition with dyad. Measure lengths of links: O_6A_2 (dyad crank), A_2B_2 (dyad coupler), B_2O_2 (dyad rocker), O_6O_2 (dyad ground).
- 6. If non-Grashof, redo 3-6.

Quick return motion

 Assuming cranks turn at a constant rate, then the arc swept area (of the crank rotation) determines the speed ratio between directions.

Quick-return mechanisms

In this mechanism the time back and forth are the same because point O₂ is along B₁B₂

What happens O_2 if is not along B_1B_2 ?

Determining quick-return: time ratio T_R

1. Determine graphically the arc swept areas between the motions forward and back

 α : return, β : forward

1. Check values knowing δ is the angle between the extended coupler positions:

$$\alpha + \beta = 360$$

$$\delta = (\beta - \alpha)/2$$

2. Quick return ratio gives the time or speed ratio between motions.

$$T_R = \alpha / \beta$$

Synthesizing quick-return mechanisms

- 1. For a given T_r , calculate α , β and δ
- 2. Draw a line through point B₁ at any convenient angle
- 3. Draw a line through B_2 at angle δ from the first line, label intersection O_2 (O_2O_4 defines ground link)
- 4. Draw an arc centered at O_2 from B_1 to cut the extended line O_2B_2 . Label intersection as B_1 '
- 5. The length of the crank is $0.5 (B_2B_1')$
- 6. Draw an arc centered at O_2 with a radius= 0.5 (B_2B_1 '). Label A_1 and A_2 along O_2B_1 and O_2B_2 , respectively.
- 7. Check for Grashof. If non-Grashof, repeat 2-6.

(a) Construction of a quick-return
Grashof crank-rocker

Example of constructing a quick return

- 1. For a given TR calculate α , β and δ
- 2. Draw a line through point B1 at any convenient angle
- 3. Draw a line through B_2 at angle δ from the first line, label intersection O_2 (O_2O_4 defines ground link)
- 4. Draw an arc centered at O₂ from B₁ to cut the extended line O₂B₂. label intersection B₁'
- 5. The length of the crank is $0.5 B_2 B_1$
- 6. Draw an arc centered at O2 with a radius= $0.5 B_2B_1$ '. Label A_1 and A_2 along O_2B_1 and O_2B_2 , respectively. These points define the extreme positions of the crank rocker.
- 7. Measure out link lengths. Check for Grashof. If non Grashof repeat 2-6

Three-position synthesis: Specified moving points

- To find ground point O₂:
 - Find intersection of bisections of C_1C_2 and C_2C_3
- Repeat for O₄ using point D
- Example 3-5 in Norton 3.4

problem

Specified moving points

• Example 3-5 in Norton section 3.4

Specified moving points – final design

Note toggle positions in positions 1 & 3

- Can we use a dyad to drive out of the toggle positions?
- What happens if the previous technique places the fixed points (O₂ and O₄) in undesirable locations?

Solution: Alternative moving points

Change the *link size* & *node locations* → must change the *node path*

Follow same procedure as before, but use new nodes EF to define locations of O_2 and O_4

Example 3-6 in Norton section 3.4

Alternate moving points – final design

Path Synthesis or Path Generation

Path Synthesis/Generation:

Designing a mechanism to make a point follow a prescribed path

Four-bar mechanism – coupler curves...

Analytical Path Generation of coupler points

- The equation describing a point on the coupler curve is of 6th order.
- It is complex and can be written in many forms.
- Such complex path generation is usually solved graphically, or by numerical trialand-error.
- The Beyer form is written as:

$$a^{2} \left[(x-k)^{2} + y^{2} \right] \left(x^{2} + y^{2} + b^{2} - r^{2} \right)^{2}$$

$$-2ab \left[(x^{2} + y^{2} - kx)\cos\gamma + ky\sin\gamma \right] \left(x^{2} + y^{2} + b^{2} - r^{2} \right) \left[(x-k)^{2} + y^{2} + a^{2} - R^{2} \right]$$

$$+b^{2} \left(x^{2} + y^{2} \right) \left[(x-k)^{2} + y^{2} + a^{2} - R^{2} \right]^{2}$$

$$-4a^{2}b^{2} \left[(x^{2} + y^{2} - kx)\sin\gamma - ky\cos\gamma \right]^{2} = 0$$

Path Generation: Coupler Points

Determining independent parameters to define the size, orientation, and shape of a coupler curve

To determine mechanism:

To determine path position P:

Independent parameters:

Five input parameter of coupler curve tables

. Ground link ratio
$${}^{L_1}\!/_{L_2}$$

2. Coupler link ratio
$$L_3/L_2$$

3. Output link ratio
$$\frac{L_4}{L_2}$$

4. Offset link ratio
$$\frac{BP}{L_2}$$

5. Offset angle
$$\gamma$$

Coupler curves for symmetric 4-bar linkages

 We can use lookup tables and atlases to find the mechanism parameters that will give us the desired curve

 $L_1/L_2 = 2$ for all graphs shown

(a) Variation of coupler curve shape with common link ratio and coupler angle for a ground link ratio L_1 / L_2 = 2.0

Coupler curves for symmetric 4-bar linkages

$$L_3/L_2 = L_4/L_2 = BP/L_2 = 2.5$$
 for all graphs

(b) Variation of coupler curve shape with ground link ratio and coupler angle for a common link ratio L_3 / L_2 = L_4 / L_2 = BP / L_2 = 2.5

Using lookup tables for path synthesis

- 1. Define the motion you want
- 2. Use the look up table to find the motion that most closely resembles the motion you desire. Read off the mechanism parameters that give that motion and use them as a starting point for your design
- 3. Examine how the path changes by varying the different mechanism parameters along each axis.
- 4. Adjust the motion by varying the mechanism parameters and test using simulation or prototyping until desired motion is achieved.

Precision is important in synthesis

- Poor precision means:
 - Designed mechanism might not give desired motion
 - Assembly may not be possible
 - Might have incorrect timing
- Two major mistakes during GLS:

To small/big of mechanism

