

Registros (2)

- ▶ La figura anterior muestra un registro donde los datos D₀ D₁..... son copiados a la salida correspondiente Q₀ Q₁.... con c/pulso de reloj.
- ➤ En la figura siguiente observar que la conexión entre FF es diferente.

Desplazamiento a derecha e izquierda

Si observamos los esquemas anteriores y tomamos como ej. el FF1, vemos que con desplazamiento a derecha D_1 va conectada a Q_0 y con desplazamiento a izquierda D_1 va conectada a Q_2 .

Un circuito lógico que nos permite conectar las dos entradas, y seleccionar el desplazamiento a derecha ó izquierda con una señal adicional llamada H se muestra en la siguiente figura.

Desplazamiento a derecha e izquierda

Cuando H=1 Q_0 queda conectado a D_1 y hay desplazamiento a derecha.

Cuando H=0 Q_1 queda conectado a D_2 y hay desplazamiento a izquierda.

Contadores(3)

- ✓ El contador está formado por 3 FF JK con sus entradas a "1". (J=K=1). Según la tabla de verdad vista con este estado la salida es Qn con c/pulso de reloj. Por lo tanto la salida alternará 1,0,1,0... con cada pulso de reloj.
- ✓ Cuenta la cantidad de pulsos de reloj que llegaron al primer FF, en la fig. anterior 1,2,3..

Contadores(4)

- Supongamos que c/FF cambia de estado con el flanco descendente del reloj (clock).
- Además notar que el clock va conectado sólo al FF0. Los siguientes FF tienen como entrada de Ck la salida Q del FF anterior. Q₀ conectada a Ck del FF1.
- Esto quiere decir que el FF0 cambiará de estado con cada flanco descendente de la señal Ck. El FF1 cambiará de estado cuando su señal de reloj Ck1 descienda el flanco, o sea Q₀ y así siguiendo.

Contadores(5)

- ✓ Cada FF tiene un bit de salida. Por tanto con 3 FF 2³=8, cuento de 0 a 7, 8 estados (8 números distintos).
- ✓ Es decir Q₂ Q₁ Q₀ "forman" la tabla de verdad "a lo largo del eje de tiempo" representando a los estados 0, 1,2.... hasta 7.