Computability

Rasmus Guldborg Pedersen

January 2015

Deterministic and non-deterministic finite automata

Define the two types of finite automata. Are the classes of languages they define the same? Explain and justify your answer.

Finite Automata

```
(Q, \Sigma, q_0, A, \delta)
 Q is a finite set of states;
 \Sigma is a finite input alphabet;
 q_0 \in Q is the initial state;
 A \subseteq Q is the set of accepting states;
 \delta is the transition function.
```

Deterministic & Nondeterministic FA

DFA

 $\delta: Q \times \Sigma \rightarrow Q$

For $q \in Q$ and $\sigma \in \Sigma$ then $\delta(q, \sigma)$ denotes the state transition from q on input σ .

NFA

 $\delta: Q \times (\Sigma \cup \{\Lambda\}) \rightarrow 2^Q$

For $q \in Q$ and $\sigma \in (\Sigma \cup \{\Lambda\})$ then $\delta(q, \sigma)$ denotes the set of states the NFA can move to from q on input σ .

Eliminating Λ -transistions

$$M = (Q, \Sigma, q_0, A, \delta)$$

$$M_1 = (Q, \Sigma, q_0, A_1, \delta_1)$$

Eliminating Λ-transistions

$$M = (Q, \Sigma, q_0, A, \delta)$$
 $M_1 = (Q, \Sigma, q_0, A_1, \delta_1)$
 $A_1 = \left\{ egin{array}{ll} A \cup \{q_0\} & ext{if } \Lambda \in L \\ A & ext{if not} \end{array}
ight.$

Eliminating Λ -transistions

```
M = (Q, \Sigma, q_0, A, \delta)
M_1 = (Q, \Sigma, q_0, A_1, \delta_1)
A_1 = \left\{ egin{array}{ll} A \cup \{q_0\} & 	ext{if } \Lambda \in L \\ A & 	ext{if not} \end{array} 
ight.
For every q \in Q and every \sigma \in \Sigma then \delta_1(q, \sigma) = \delta^*(q, \sigma)
```

NFA
$$M = (Q, \Sigma, q_0, A, \delta)$$

FA $M_1 = (Q_1, \Sigma, q_1, A_1, \delta_1)$

NFA
$$M = (Q, \Sigma, q_0, A, \delta)$$

FA $M_1 = (Q_1, \Sigma, q_1, A_1, \delta_1)$
 $Q_1 = 2^Q$
 $q_1 = q_0$

NFA
$$M = (Q, \Sigma, q_0, A, \delta)$$

FA $M_1 = (Q_1, \Sigma, q_1, A_1, \delta_1)$
 $Q_1 = 2^Q$
 $q_1 = q_0$
 $A_1 = \{q \in Q_1 | q \cap A \neq \emptyset\}$

NFA
$$M = (Q, \Sigma, q_0, A, \delta)$$

FA $M_1 = (Q_1, \Sigma, q_1, A_1, \delta_1)$
 $Q_1 = 2^Q$
 $q_1 = q_0$
 $A_1 = \{q \in Q_1 | q \cap A \neq \emptyset\}$
 $\delta_1(q, \sigma) = \bigcup \{\delta(p, \sigma) | p \in q\}$

The End

The End