Introduction to COMP2711H

Cunsheng Ding

HKUST, Hong Kong

September 27, 2015

Contents

- Discrete Mathematics and Its Applications
- Topics of COMP2711H
- 3 Lecture Schedule
- 4 Information on Tutorials
- 5 Learning Objectives
- Reference Books
- Grading Scheme
- Important Messages to Students

Discrete Mathematics and Its Applications

What is discrete mathematics?

- Discrete mathematics is the study of mathematical structures that are fundamentally <u>discrete</u> rather than <u>continuous</u>.
 - For example, integers, graphs, and statements in logic.
- Discrete mathematics therefore excludes topics in "continuous mathematics" such as calculus and analysis.

Some Applications

- Computer science: computer algorithms, programming languages, cryptography, automated theorem proving, and software development.
- **Electrical engineering**: Digital communication systems, coding theory, consumer electronics, signal processing, and information theory.

Topics of COMP2711H

- Sets
- Propositional and Predicate Logic
- Mathematical Proofs
- Binary Relations
- Functions
- Combinatorics
- Graphs
- Discrete Probability

- Mathematical Induction
- Recursions
- Complexity of Algorithms
- Number Theory
- Groups, Rings and Fields
- Polynomials over Fields
- Finite Fields
- Some Applications of Finite Fields

Lecture Schedule (Tentative)

- 01. Sets
- 02. Propositional Logic
- O3. Predicate Logic
- 04. Mathematical Proofs
- 05. Binary Relations
- 06. Functions
- 07. Mathematical Induction
- 08. Combinatorics: Part I
- 09. Combinatorics: Part II
- Recursions: Part I
- 11. Recursions: Part II
- 12. Complexity of Algorithms
- 13. Discrete Probability: Part I

- 14. Discrete Probability: Part II
- Discrete Probability: Part III
- Graphs: Part I
- 17. Graphs: Part II
- 18. Modular Arithmetic
- Number Theory: Part I
- 20. Number Theory: Part II
- 21. Groups, Rings and Fields
- 22. Polynomials over Fields
- 23. Finite Fields: Part I
- 24. Finite Fields: Part II
- 25. Finite Fields: Part III
- 26. Review Lecture

Tutorials

Time Monday 18:00–18:50

Venue Room 6573

TA LIU Hao (office hours and email address on the course web page.

You should attend the tutorials due to the following:

- New topics and contents are sometimes covered.
- Problem solving techniques are sometimes further discussed.

Learning Objectives

On successful completion of this course, students are expected to be able to:

- Understand the formulation of common problems in several areas of discrete mathematics, including combinatorics, graphs, number theory, cryptography, logic and proof, recursions, probability theory, and finite fields.
- Learn a number of discrete mathematics tools.
- Apply discrete mathematics tools learnt to solve certain problems in computer science and electrical engineering.

Reference Books

- S. S. Epp, Discrete Mathematics with Applications, Fourth Edition, Brooks/Cole, 2011.
- R. Lidl and H. Niederreiter, Finite Fields, Second Edition, Cambridge University Press, 1997.
- R. J. McEliece, Finite Fields for Computer Scientists and Engineers, Kluwer, 1987.

Grading Scheme

- Course attendance %10
- Five assignments %40
- Midterm exam %25
- Final exam %25

Important Messages to Students

- Homework solutions must be submitted at the start of class on due date.
 In exceptional circumstances (illness, university business, or religious observances) extensions may be granted.
- As a courtesy to graders, homeworks should be written neatly.
- It is crucial that you work out assignment problems yourself, though group discussions are allowed. Otherwise you will not be able to fully understand the materials covered in this course.
- This course is designed only for a very small number of top undergraduates, and may cover more topics and deeper materials than a discrete mathematics course in other universities worldwide.
- You should not take this course if you would have an easy life, as course assignments will be heavy.

Acknowledgements

Some of the slides are based on the lecture materials prepared by Professor Sanjay Jain at the National University of Singapore.