Handout 2: Probability calculations ^a

Lecturer: Georgios P. Karagiannis

georgios.karagiannis@durham.ac.uk

Aim

To practice on probability calculations on compound distribution functions. To become familiar with distributions, Inverted Gamma, multivariate Normal, and multivariate Student T distributions.

References:

- DeGroot, M. H. (1970, or 2005). Optimal statistical decisions (Vol. 82). John Wiley & Sons.
 - Part one: Survey of probability theory. Chapters 1-5; However the treatment of the Normal and Student T distributions is different than ours.
- Raiffa, H., & Schlaifer, R. (1961). Applied statistical decision theory.
 - Chapters 8.2, 8.3; However the treatment of the Normal and Student T distributions is different than ours.

Web-applets

- https://georgios-stats-3.shinyapps.io/demo_multivariatenormaldistribution/
- https://github.com/georgios-stats/Shiny_applets/tree/master/demo_ MultivariateNormalDistribution

1 Mixture probability distribution

Definition 1. Consider a random variable x distributed according to F(x|z) with a pdf/pmf f(x|z) labeled by an unknown parameter z. Consider that z is distributed according to distribution $\Pi(z)$ with pdf/pmf $\pi(z)$. Then:

1. This dependency can be represented as

$$x|z \sim F(x|z)$$
$$z \sim \Pi(z)$$

where F(x|z) is called conditional (or parametrized) distribution, $\Pi(z)$ is called mixing (or latent) distribution; and z is called mixing (or latent) variable.

2. Distribution G(x) that results by integrating the conditional distribution F(x|z) with respect to $\Pi(z)$ as

$$G(x) = \int F(x|z) \mathrm{d}\Pi(z)$$

is called the mixture (or compound) distribution of x. The mixture (or compound) distribution G(x) has PDF/PMF

$$g(x) = \int f(x|z) d\Pi(z) = \begin{cases} \int g(x|z) \pi(z) dz &, z \text{ cont.} \\ \sum_{\forall z} g(x|z) \pi(z) &, z \text{ discr.} \end{cases}$$

^aAuthor: Georgios P. Karagiannis.

Definition 2. G(x) is also called continuous mixture distribution when the mixing/latent variable z is continuous.

G(x) is also called finite mixture when z is discrete.

Remark 3. Recall from Handout 1 that

$$E_G(x) = E_{\Pi} (E_F(x|z))$$

$$Var_G(x) = E_{\Pi} (Var(x|z)) + Var_{\Pi} (E_F(x|z))$$

2 Inverted Gamma distribution $x|a, b \sim IG(a, b)$

Definition 4. The random variable $x \in (0, +\infty)$ follows an Inverted Gamma distribution $x \sim \mathrm{IG}(a, b)$, if and only if $x = \frac{1}{y}$ follows a Gamma distribution, $y \sim \mathrm{Ga}(a, b)$, with a > 0 and b > 0.

Example 5. Let $x \sim \text{IG}(a, b)$, then the PDF of x is

$$f_{\text{IG}(a,b)}(x) = \frac{b^a}{\Gamma(a)} x^{-a-1} \exp\left(-\frac{b}{x}\right) 1_{(0,+\infty)}(x)$$
 (1)

Solution. It is

$$f_{\mathrm{IG}(a,b)}(x) = f_{\mathrm{G}(a,b)}(\frac{1}{x}) \left| \frac{\mathrm{d}}{\mathrm{d}x}(\frac{1}{x}) \right| = \frac{b^a}{\Gamma(a)} \left(\frac{1}{x}\right)^{a-1} \exp\left(-\frac{b}{x}\right) \mathbb{1}_{(0,+\infty)} \left(\frac{1}{x}\right) \left| -\frac{1}{x^2} \right|$$

Example 6. Let a random variable $x \sim \mathrm{IG}(a,b)$, then

$${\rm E}_{{\rm IG}(a,b)}(x) = \frac{b}{a-1}; \ a>1 \qquad \text{and} \qquad {\rm Var}_{{\rm IG}(a,b)}(x) = \frac{b^2}{(a-1)^2(a-2)}; \ a>2$$

Solution. It is

$$\mathsf{E}_{\mathsf{IG}(a,b)}(x) = \int x f_{\mathsf{IG}(a,b)}(x) \mathrm{d}x = \int_{(0,+\infty)} x \frac{b^a}{\Gamma(a)} x^{-a-1} \exp(-\frac{b}{x}) \mathrm{d}x$$

Assume that a > 1. Then

$$\begin{split} \mathbf{E}_{\mathrm{IG}(a,b)}(x) &= \int_{(0,+\infty)} \frac{b^{a-1}}{\Gamma(a)} b \frac{\Gamma(a-1)}{\Gamma(a-1)} x^{-a+1-1} \exp(-\frac{b}{x}) \mathrm{d}x \\ &= b \frac{\Gamma(a-1)}{\Gamma(a)} \int_{(0,+\infty)} \frac{b^{a-1}}{\Gamma(a-1)} x^{-a+1-1} \exp(-\frac{b}{x}) \mathrm{d}x \\ &= b \frac{\Gamma(a-1)}{\Gamma(a)} \int_{(0,+\infty)} \frac{b^{a-1}}{\Gamma(a-1)} x^{-a+1-1} \exp(-\frac{b}{x}) \mathrm{d}x = b \frac{\Gamma(a-1)}{(a-1)\Gamma(a-1)} \int f_{\mathrm{IG}(a-1,b)}(x) \mathrm{d}x \\ &= \frac{b}{a-1} \end{split}$$

34 Similarly

$$\begin{aligned} \mathbf{E}_{\mathrm{IG}(a,b)}(x^2) &= \int_{(0,+\infty)} x^2 \frac{b^a}{\Gamma(a)} x^{-a-1} \exp\left(-\frac{b}{x}\right) \mathrm{d}x = \dots = b \frac{\Gamma(a-1)}{(a-1)\Gamma(a-1)} \int x f_{\mathrm{IG}(a-1,b)}(x) \mathrm{d}x \\ &= \frac{b}{a-1} \frac{b}{a-2}; \ a > 2 \end{aligned}$$

37 **So**

$$Var_{IG(a,b)}(x) = E_{IG(a,b)}(x^2) - (E_{IG(a,b)}(x))^2 = \frac{b^2}{(a-1)^2(a-2)}$$

3 Multivariate Normal distribution $x | \mu, \Sigma \sim N_d(\mu, \Sigma)$

Definition 7. A d-dimensional random variable $x \in \mathbb{R}^d$ is said to have a multivariate Normal (Gaussian) distribution, if for every d-dimensional fixed vector $\alpha \in \mathbb{R}^d$, the random variable $\alpha^\top x$ has a univariate Normal (Gaussian) distribution.

Proposition 8. A random vector $x \in \mathbb{R}^d$ has a d-dimensional Normal distribution with mean $\mu = E(x)$ and covariance matrix $\Sigma = Var(x)$ if and only if random vector $x \in \mathbb{R}^d$ has a characteristic function

$$\varphi_x(t) = \exp\left(it^\top \mu - \frac{1}{2}t^\top \Sigma t\right) \tag{2}$$

Hence: the d-dimensional Normal distribution is uniquely defined by the mean and the covariance matrix.

Proof. (\Longrightarrow) If x has a d-dimensional distribution then the characteristic function is $\varphi_x(t) = \varphi_{t^\top x}(1)$. Since x has a d-dimensional Normal distribution with mean $\mu = \mathrm{E}(x)$ and covariance matrix $\Sigma = \mathrm{Var}(x)$, $t^\top x$ has a Normal distribution with mean $\mathrm{E}(t^\top x) = t^\top \mu$ and variance $\mathrm{Var}(t^\top x) = t^\top \Sigma t$. Then

$$\varphi_{x}(t) = \varphi_{t^{\top}x}(1) = \exp\left(i\mathsf{E}\left(t^{\top}x\right) - \frac{1}{2}\mathsf{Var}\left(t^{\top}xt\right)\right) = \exp\left(it^{\top}\mathsf{E}\left(x\right) - \frac{1}{2}t^{\top}\mathsf{Var}\left(x\right)t\right) = \exp\left(it^{\top}\mu - \frac{1}{2}t^{\top}\Sigma t\right)$$

(\Leftarrow) If random vector $x \in \mathbb{R}^d$ has a characteristic function $\varphi_x(t) = \exp(it^\top \mu - \frac{1}{2}t^\top \Sigma t)$, then for every d-dimensional fixed vector $\alpha \in \mathbb{R}^d$ the characteristic function of $\alpha^\top x$ is

$$\varphi_{\alpha^{\top}x}(t) = \varphi_x(t\alpha) = \exp\left(it\alpha^{\top}\mu - \frac{1}{2}t\alpha^{\top}\Sigma\alpha t\right) = \exp\left(it\left(\alpha^{\top}\mu\right) - \frac{1}{2}\left(\alpha^{\top}\Sigma\alpha\right)t^2\right)$$

which defines that $\alpha^{\top}x$ has a univariate Normal distribution with mean $\alpha^{\top}\mu$ and variance $\alpha^{\top}\Sigma\alpha$.

Notation 9. We denote the d-dimensional Normal distribution with mean μ and covariance matrix $\Sigma \geq 0$ as $N_d(\mu, \Sigma)$.

- Notation 10. The d-dimensional standardized Normal distribution is $N_d(0, I)$.
- Proposition 11. Let random variable $x \sim N_d(\mu, \Sigma)$, fixed vector $c \in \mathbb{R}^q$ and fixed matrix $A \in \mathbb{R}^q \times \mathbb{R}^d$. The random vector y = c + Ax has distribution $y \sim N_q \left(c + A\mu, A\Sigma A^\top \right)$.
- Proof. First I show that y is Normally distributed. Let $\alpha \in \mathbb{R}^q$ any fixed vector. Then $\alpha^\top y = \tilde{\alpha}^\top x + \alpha^\top c$ where $\tilde{\alpha} = A^\top b$. Because x is multivariate Normal, then $\tilde{\alpha}^\top x$ is univariate Normal (by Definition 7), then $\alpha^\top y$ is univariate Normal. So y is q-variate Normal. Also, $\mathrm{E}(y) = \mathrm{E}(c + Ax) = c + A\mathrm{E}(x)$, and $\mathrm{Var}(y) = \mathrm{Var}(c + Ax) = A\mathrm{Var}(x)A^\top$.

Proposition 12. Let a d-dimensional random vector $x \sim N_{(any)}(\mu, \Sigma)$.

- 1. Let $x = (x_1, ..., x_d)^{\top}$: The $x_1, ..., x_d$ are mutually independent if and only if the corresponding off diagonal parts of the Σ are zero.
- 2. Let y = Ax and z = Bx, where $A \in \mathbb{R}^{q \times d}$ and $B \in \mathbb{R}^{k \times d}$: The vectors y = Ax and z = Bx are independent if and only if $A\Sigma B^{\top} = 0$.

Proof. In both cases, the CF (2) factorizes as $\varphi_x(t) = \prod_j \varphi_{x_j}(t_j)$ only when the corresponding of diagonal parts of Σ are zero.

Proposition 13. Any sub-vector of a vector with multivariate Normal distribution has a multivariate Normal distribution.

¹Try the applet: https://georgios-stats-3.shinyapps.io/demo_multivariatenormaldistribution/

Proof. Let $x \sim N_d(\mu, \Sigma)$. Any sub-vector y of x can be expressed as y = 0 + Px, where $P \in \mathbb{R}^{q \times d}$ is a suitable projection matrix. Then $y \sim N_d(P\mu, P\Sigma P^\top)$.

Proposition 14. [Marginalization & conditioning] Let $x \sim N_d(\mu, \Sigma)$. Consider partition such that

$$x = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}; \qquad \qquad \mu = \begin{bmatrix} \mu_1 \\ \mu_2 \end{bmatrix}; \qquad \qquad \Sigma = \begin{bmatrix} \Sigma_1 & \Sigma_{21}^\top \\ \Sigma_{21} & \Sigma_2 \end{bmatrix},$$

- where $x_1 \in \mathbb{R}^{d_1}$, and $x_2 \in \mathbb{R}^{d_2}$ Then:
 - 1. For the marginal, it is $x_1 \sim N_{d_1}(\mu_1, \Sigma_1)$.
 - 2. For $x_{2,1} = x_2 \Sigma_{21}\Sigma_1^{-1}x_1$, with $\Sigma_1 > 0$, it is $x_{2,1} \sim N_{d_2}(\mu_{2,1}, \Sigma_{2,1})$ where

$$\mu_{2.1} = \mu_2 - \Sigma_{21} \Sigma_1^{-1} \mu_1 \text{ and } \Sigma_{2.1} = \Sigma_2 - \Sigma_{21} \Sigma_1^{-1} \Sigma_{21}^{\top}$$
 (3)

- 3. Random variables x_1 and $x_{2,1}$ are independent.
- 4. For the conditional, if $\Sigma_1 > 0$, it is

$$x_2|x_1 \sim N_{d_2}(\mu_{2|1}, \Sigma_{2|1})$$

where

$$\mu_{2|1} = \mu_2 - \Sigma_{21} \Sigma_1^{-1} (x_1 - \mu_1) \text{ and } \Sigma_{2|1} = \Sigma_2 - \Sigma_{21} \Sigma_1^{-1} \Sigma_{21}^{\top}$$
 (4)

Hint: If that was a Homework it will be given as a hint to use, in (1.): $x_1 = Ax$ with A = [I, 0], and in (2.): $x_{2.1} = Bx$ with $[-\Sigma_{21}\Sigma_1^{-1}, I]$.

Solution.

1. It is $x_1 = Ax$ with A = [I, 0]. Then $x_1 \sim N(A\mu, A\Sigma A^{\top})$ where

$$A\mu = [I,0] \begin{bmatrix} \mu_1 \\ \mu_2 \end{bmatrix} = \mu_1 \; ; \qquad \qquad A\Sigma A^\top = [I,0] \begin{bmatrix} \Sigma_1 & \Sigma_{21}^\top \\ \Sigma_{21} & \Sigma_2 \end{bmatrix} \begin{bmatrix} I \\ 0 \end{bmatrix} = \Sigma_1$$

2. It is $x_{2,1} = Bx$ with $[-\Sigma_{21}\Sigma_1^{-1}, I]$. Then $x_{2,1} \sim N(B\mu, B\Sigma B^{\top})$ where

$$B\mu = \begin{bmatrix} -\Sigma_{21}\Sigma_{1}^{-1}, I \end{bmatrix} \begin{bmatrix} \mu_{1}, \mu_{2} \end{bmatrix}^{\top} = -\Sigma_{21}\Sigma_{1}^{-1}\mu_{1} + \mu_{2};$$

$$B\Sigma B^{\top} = \begin{bmatrix} -\Sigma_{21}\Sigma_{1}^{-1}, I \end{bmatrix} \begin{bmatrix} \Sigma_{1} & \Sigma_{21}^{\top} \\ \Sigma_{21} & \Sigma_{2} \end{bmatrix} \begin{bmatrix} -\Sigma_{1}^{-1}\Sigma_{21}^{\top} \\ I \end{bmatrix} = \begin{bmatrix} 0, -\Sigma_{21}\Sigma_{1}^{-1}\Sigma_{21}^{\top} + \Sigma_{2} \end{bmatrix} \begin{bmatrix} -\Sigma_{21}\Sigma_{1}^{-1} \\ I \end{bmatrix}$$

$$= -\Sigma_{21}\Sigma_{1}^{-1}\Sigma_{21}^{\top} + \Sigma_{2}$$

3. x_1 and $x_{2.1}$ are independent, because (i.) x_1 and x_2 are Normally distributed and (ii.) for $x_1 = Ax$ with A = [I, 0] and $x_{2.1} = Bx$ with $[\Sigma_{21}\Sigma_1^{-1}, 0]$ are

$$\begin{aligned} \operatorname{Cov}(x_1, x_{2.1}) &= \operatorname{Cov}(Ax, Bx) = A\Sigma B^{\top} = \begin{bmatrix} I & 0 \end{bmatrix} \begin{bmatrix} \Sigma_1 & \Sigma_{21}^{\top} \\ \Sigma_{21} & \Sigma_2 \end{bmatrix} \begin{bmatrix} -\Sigma_1^{-1} \Sigma_{21}^{\top} \\ I \end{bmatrix} = \\ &= \begin{bmatrix} \Sigma_1, & \Sigma_{21}^{\top} \end{bmatrix} \begin{bmatrix} -\Sigma_1^{-1} \Sigma_{21}^{\top} \\ I \end{bmatrix} = -\Sigma_{21}^{\top} + \Sigma_{21}^{\top} = 0 \end{aligned}$$

4. From the above, $x_{2.1}$ is independent on x_1 ; hence the conditional distribution of $x_2|x_1$ (x_2 given x_1 is known) is the same as the marginal distribution of $x_{2.1}$ aka Normal. Namely $dF(x_{2.1}|x_1) = dF(x_{2.1}) \in Normal$.

From the above I observe that it is

$$x_{2,1} = x_2 - \Sigma_{21}\Sigma_1^{-1}x_1 \iff x_2 = x_{2,1} + \Sigma_{21}\Sigma_1^{-1}x_1;$$

hence if I condition x_2 on a given value for x_1 , the term $\sum_{21}\sum_{1}^{-1}x_1$ is a constant, namely I have $x_2|x_1=x_{2.1}+\text{const.}$, which implies that the conditional distribution of $x_2|x_1$ is Normal. Now, about the moments

$$\begin{split} & \mathrm{E}(x_{2}|x_{1}) = \mathrm{E}(x_{2.1} + \Sigma_{21}\Sigma_{1}^{-1}x_{1}|x_{1}) = \mathrm{E}(x_{2.1}|x_{1}) + \mathrm{E}(\Sigma_{21}\Sigma_{1}^{-1}x_{1}|x_{1}) = \left[\mu_{2} - \Sigma_{21}\Sigma_{1}^{-1}\mu_{1}\right] + \left[\Sigma_{21}\Sigma_{1}^{-1}x_{1}\right] \\ & \mathrm{Var}(x_{2}|x_{1}) = \mathrm{Var}(x_{2.1} + \Sigma_{21}\Sigma_{1}^{-1}x_{1}|x_{1}) = \mathrm{Var}(x_{2.1}|x_{1}) = \Sigma_{2} - \Sigma_{21}\Sigma_{1}^{-1}\Sigma_{21}^{-1} \end{split}$$

Proposition 15. The density function of the d-dimensional Normal distribution with mean μ and covariance matrix Σ , when Σ is symmetric positive definite matrix ($\Sigma > 0$), exists and it is equal to

$$f(x) = (2\pi)^{-\frac{d}{2}} \det(\Sigma)^{-\frac{1}{2}} \exp\left(-\frac{1}{2}(x-\mu)^{\top} \Sigma^{-1}(x-\mu)\right)$$
 (5)

Proof. Let $x \sim N(\mu, \Sigma)$. Because $\Sigma > 0$, we use Cholesky decomposition to define L such that $\Sigma = LL^{\top}$. Let $z = L^{-1}(x - \mu)$. It is E(z) = 0, Var(z) = I, $z \sim N_d(0, I)$, and hence $z_1, ..., z_d$ are mutually independent So

$$f_z(z) = \prod_{i=1}^d (2\pi)^{-\frac{1}{2}} \exp\left(-\frac{1}{2}z_i^2\right) = (2\pi)^{-\frac{d}{2}} \exp\left(-\frac{1}{2}z^\top z\right)$$

112 Then

$$f_x(x) = f_z(z) \left| \frac{dz}{dx} \right| = f_z \left(L^{-1}(x - \mu) \right) \left| \det \left(\frac{d}{dx} L^{-1}(x - \mu) \right) \right|$$
$$= (2\pi)^{-\frac{d}{2}} \exp \left(-\frac{1}{2} (x - \mu)^{\top} \left(L^{-1} \right)^{\top} L^{-1}(x - \mu) \right) \det(L^{-1})$$
$$= (2\pi)^{-\frac{d}{2}} \det(\Sigma)^{-\frac{1}{2}} \exp \left(-\frac{1}{2} (x - \mu)^{\top} \Sigma^{-1}(x - \mu) \right) \det(\Sigma)^{-\frac{1}{2}}$$

Fact 16. [In exercises they will be given as a Hint.] Useful formulas about the PDF of the multivariate Normal distribution that we may use.

1. If $\Sigma_1 > 0$ and $\Sigma_2 > 0$ symmetric

$$-\frac{1}{2}(x-\mu_1)\Sigma_1^{-1}(x-\mu_1)^{\top} - \frac{1}{2}(x-\mu_2)\Sigma_2^{-1}(x-\mu_2)^{\top} = -\frac{1}{2}(x-m)V^{-1}(x-m)^{\top} + C$$

wher

$$V^{-1} = \Sigma_1^{-1} + \Sigma_2^{-1}; \quad m = V\left(\Sigma_1^{-1}\mu_1 + \Sigma_2^{-1}\mu_2\right); \quad C = \frac{1}{2}m^{\top}V^{-1}m - \frac{1}{2}\left(\mu_1^{\top}\Sigma_1^{-1}\mu_1 + \mu_2^{\top}\Sigma_2^{-1}\mu_2\right)$$

2. If $f_{N_d(\mu,\Sigma)}(x)$ denotes the PDF of $N_d(\mu,\Sigma)$, then

$$f_{N_d(\mu_1,\Sigma_1)}(x) f_{N_d(\mu_2,\Sigma_2)}(x) = f_{N_d(m,V)}(x) f_{N_d(\mu_2,\Sigma_1+\Sigma_2)}(\mu_1)$$

where

$$V^{-1} = \Sigma_1^{-1} + \Sigma_2^{-1}; \quad m = V(\Sigma_1^{-1}\mu_1 + \Sigma_2^{-1}\mu_2)$$

3. If $\Sigma_i > 0$ symmetric for i = 1, ..., n

$$-\frac{1}{2}\sum_{i=1}^{n} (x - \mu_i) \Sigma_i^{-1} (x - \mu_i)^{\top} = -\frac{1}{2} (x - m) V^{-1} (x - m)^{\top} + C$$
 (6)

where

$$V^{-1} = \sum_{i=1}^{n} \Sigma_{i}^{-1}; \quad m = V\left(\sum_{i=1}^{n} \Sigma_{i}^{-1} \mu_{i}\right); \quad C = \frac{1}{2} m V^{-1} m^{\top} - \frac{1}{2} \left(\sum_{i=1}^{n} \mu_{i} \Sigma_{i}^{-1} \mu_{i}^{\top}\right)$$
(7)

Proof. (1.) is derived by \pm ing terms and doing matrix calculations. (2.) is derived by exponentiation and completing the associated constants. (3.) is shown by induction from the (1.).

4 Multivariate Student's T distribution² $x \sim T_d(\mu, \Sigma, v)$

Definition 17. A d-dimensional random variable $x \in \mathbb{R}^d$ is said to have a multivariate Student's T distribution with location parameter μ , scale matrix Σ , and degrees of freedom v, and it is denoted as $x \sim T_d(\mu, \Sigma, v)$, if and only if

$$x = \mu + y\sqrt{v\xi}$$

where $y \sim N_d(0, \Sigma)$ and $\xi \sim \mathrm{IG}(\frac{v}{2}, \frac{1}{2})$ are independent random variables.

Remark 18. Definition 17 can be equivalently represented in terms of a mixture probability distribution (Section 1) as the compound (or mixture) distribution

$$x \sim T_d(\mu, \Sigma, v)$$

41 of

$$x|\xi \sim N_d(\mu, \Sigma v \xi)$$

 $\xi \sim IG(\frac{v}{2}, \frac{1}{2})$

Proof. Straightforward derivation from Definition 17. We have that $y \sim N_d(0, \Sigma)$, $x = \mu + y\sqrt{v\xi}$, and consider the rest Σ , μ , v, and ξ as constant/known. So $x|\mu, \Sigma, v, \xi$ follows a Normal distribution with mean $E(x|\xi) = \mu$ and covariance matrix $Var(x|\xi) = \Sigma v\xi$. For the economy of the presentation we can suppress the uninteresting constants Σ , μ , and v, and just write down $x|\xi \sim N_d(\mu, \Sigma v\xi)$.

Proposition 19. If $x \sim T_d(\mu, \Sigma, v)$ and $\Sigma > 0$ then

1. The expected value is

$$E_{T_d(\mu,\Sigma,\nu)}(X) = \mu$$

2. The covariance matrix is

$$Var_{T_d(\mu,\Sigma,\nu)}(X) = \begin{cases} \frac{\nu}{\nu-2} \Sigma & , \text{ if } \nu > 2\\ \text{undefined} & , \text{ else} \end{cases}$$
 (8)

Proof. Given Definition 17, $x \sim T_d(\mu, \Sigma, v)$ results as the marginal distribution of (x, ξ) where $x | \xi \sim N_d(\mu, \Sigma \xi v)$ and $\xi \sim IG(\frac{v}{2}, \frac{1}{2})$.

1. It is

$$E_{t_d(\mu,\Sigma,\nu)}(x) = E_{IG(\frac{\nu}{2},\frac{1}{2})} \left(E_{N_d(\mu,\Sigma\xi\nu)}(x|\xi) \right) = E_{IG(\frac{\nu}{2},\frac{1}{2})} \left(\mu \right) = \mu \tag{9}$$

²Try the applet: https://georgios-stats-3.shinyapps.io/demo_multivariatenormaldistribution/

2. It is

$$\begin{aligned}
& \operatorname{Var}_{\mathsf{I}_{d}(\mu,\Sigma,\nu)}(x) = & \operatorname{E}_{\mathsf{IG}(\frac{v}{2},\frac{1}{2})} \left(\operatorname{Var}_{\mathsf{N}_{d}(\mu,\Sigma\xi v)}(x|\xi) \right) + \operatorname{Var}_{\mathsf{IG}(\frac{v}{2},\frac{1}{2})} \left(\operatorname{E}_{\mathsf{N}_{d}(\mu,\Sigma\xi v)}(x|\xi) \right) \\
&= & \operatorname{E}_{\mathsf{IG}(\frac{v}{2},\frac{1}{2})} \left(\Sigma \xi v \right) + \underbrace{\operatorname{Var}_{\mathsf{IG}(\frac{v}{2},\frac{1}{2})} \left(\xi \right)}_{= \Sigma v \operatorname{E}_{\mathsf{IG}(\frac{v}{2},\frac{1}{2})} \left(\xi \right) + 0 \end{aligned}$$

$$\begin{aligned}
&= & \left\{ \frac{\sum v \frac{\frac{1}{2}}{\frac{v}{2} - 1}}{\text{undefined}}, & \text{if } \frac{v}{2} > 1 \\
&\text{undefined}, & \text{else} \end{aligned} \right.
\end{aligned}$$

Proposition 20. If $x \sim T_d(\mu, \Sigma, v)$ and $\Sigma > 0$ the PDF of x is

$$f_X(x|\mu, \Sigma, v) = \frac{\Gamma(\frac{\nu+d}{2})}{\Gamma(\frac{\nu}{2})\nu^{\frac{d}{2}}\pi^{\frac{d}{2}}\det(\Sigma)^{\frac{1}{2}}} \left(1 + \frac{1}{v}(t-\mu)^T \Sigma^{-1}(t-\mu)\right)^{-\frac{\nu+d}{2}}$$
(11)

166 *Proof.* Given Definition 17, $x \sim T_d(\mu, \Sigma, v)$ results as the marginal distribution of (x, ξ) where $x | \xi \sim N_d(\mu, \Sigma \xi v)$ 167 and $\xi \sim IG(\frac{v}{2}, \frac{1}{2})$. So it is

$$f_{x}(x) = \int f_{x|\xi}(x|\xi) f_{\xi}(\xi) d\xi = \int f_{N_{d}(\mu, \Sigma v \xi)}(x|\xi) f_{\mathrm{IG}(\frac{v}{2}, \frac{1}{2})}(\xi) d\xi$$

$$= \int \left(\frac{1}{2\pi}\right)^{\frac{d}{2}} \frac{1}{\sqrt{\det(\Sigma v \xi)}} \exp\left(-\frac{1}{2}(x-\mu)^{\top} \frac{\Sigma^{-1}}{v \xi}(x-\mu)\right) \frac{\frac{1}{2}^{\frac{v}{2}}}{\Gamma(\frac{v}{2})} \xi^{-\frac{v}{2}-1} \exp\left(-\frac{1}{\xi} \frac{1}{2}\right) 1_{(0,\infty)}(\xi) d\xi$$

$$= \int \left(\frac{1}{2\pi}\right)^{\frac{d}{2}} \frac{1}{\sqrt{\det(\Sigma v)}} \frac{\frac{1}{2}^{\frac{v}{2}}}{\Gamma(\frac{v}{2})} \int \xi^{-\frac{v}{2}-\frac{d}{2}-1} \exp\left(-\frac{1}{\xi} \left[\frac{1}{2v}(x-\mu)^{\top} \Sigma^{-1}(x-\mu) + \frac{1}{2}\right]\right) d\xi$$

$$= \Gamma\left(\frac{v}{2} + \frac{d}{2}\right) \left[\frac{1}{2v}(x-\mu)^{\top} \Sigma^{-1}(x-\mu) + \frac{1}{2}\right]^{-\left(\frac{v}{2} + \frac{d}{2}\right)}$$

$$= \left(\frac{1}{2\pi}\right)^{\frac{d}{2}} \frac{1}{\sqrt{\det(\Sigma v)}} \frac{\frac{1}{2}^{\frac{v}{2}}}{\Gamma(\frac{v}{2})} \Gamma\left(\frac{v}{2} + \frac{d}{2}\right) \left[\frac{1}{2v}(x-\mu)^{\top} \Sigma^{-1}(x-\mu) + \frac{1}{2}\right]^{-\left(\frac{v}{2} + \frac{d}{2}\right)}$$

$$= \left(\frac{1}{2\pi}\right)^{\frac{d}{2}} \frac{1}{\sqrt{\det(\Sigma v)}} \frac{\frac{1}{2}^{\frac{v}{2}}}{\Gamma(\frac{v}{2})} \Gamma\left(\frac{v}{2} + \frac{d}{2}\right) \left(\frac{1}{2}\right)^{-\frac{(v+d)}{2}} \left[\frac{1}{v}(x-\mu)^{\top} \Sigma^{-1}(x-\mu) + 1\right]^{-\frac{v+d}{2}}$$

$$= \left(\frac{1}{\pi}\right)^{\frac{d}{2}} \frac{1}{\sqrt{\det(\Sigma v)}} \frac{1}{\Gamma(\frac{v}{2})} \Gamma\left(\frac{v+d}{2}\right) \left[\frac{1}{v}(x-\mu)^{\top} \Sigma^{-1}(x-\mu) + 1\right]^{-\frac{v+d}{2}}$$

$$= \left(\frac{1}{\pi}\right)^{\frac{d}{2}} \frac{1}{\sqrt{\det(\Sigma v)}} \left(\frac{1}{v}\right)^{\frac{d}{2}} \frac{1}{\Gamma(\frac{v}{2})} \Gamma\left(\frac{v+d}{2}\right) \left[\frac{1}{v}(x-\mu)^{\top} \Sigma^{-1}(x-\mu) + 1\right]^{-\frac{v+d}{2}}$$

where the integral in (12) was calculated by recognizing the IG density from (1).

5 Practice

Question 21. For practice try the Exercises 13, 14, and, 16, from the Exercise Sheet.

6 Examples of other distributions

The following distributions are given as examples.

6.1 Fisher-Snedecor distribution $x \sim \mathbf{F}(d_1, d_2)$

Definition 22. A random variable $x \in \mathbb{R}$ is said to have a Fisher-Snedecor distribution distribution with degrees of freedom n, m, and it is denoted as $x \sim F(n, m)$, if and only if

$$x = \frac{y_1/d_1}{y_2/d_2}$$

- where $y_1 \sim G(d_1/2, 1/2)$ and $y_2 \sim G(d_2/2, 1/2)$ are independent random variables.
- Example 23. The distribution function $x \sim L(\mu, b)$ is such that

$$dF(x) = \left[xB\left(\frac{d_1}{2}, \frac{d_2}{2}\right) \right]^{-1} \sqrt{\frac{(d_1 x)^{d_1} d_2^{d_2}}{(d_1 x + d_2)^{d_1 + d_2}}} dx$$

- with mean $E(x) = d_2/(d_2 1)$.
- Solution. Concepts in Statistics II (Exercises)
- **Example 24.** The distribution function $x \sim F(d_1, d_2)$ can be re-presented as a mixture distribution as

$$\begin{cases} x | v \sim \text{Ga}(d_1/2, zd_1/2) \\ z \sim \text{Ga}(d_2/2, d_2/2) \end{cases}$$

Solution. Show that $f(x) = \int f(x|z)f(z)dz$; see Exercise 14 in the Exercise sheet.

6.2 Laplace distribution $x \sim \mathbf{L}(\mu, b)$

Definition 25. A random variable $x \in \mathbb{R}$ is said to have a Laplace (or Double exponential) distribution with location parameter μ , and scale parameter b, and it is denoted as $x \sim L_d(\mu, b)$, if and only if

$$x = \mu + y\sqrt{2v}$$

- where $y \sim N_d(0, b)$ and $v \sim G(1, 1)$ are independent random variables.
- Example 26. The distribution function $x \sim L(\mu, b)$ is such that

$$dF(x) = \frac{1}{2b} \exp\left(-\frac{|x-\mu|}{b}\right) dx$$

- with mean $E(x) = \mu$ and variance $Var(x) = 2b^2$.
- 99 **Solution.** By transformation of random variables
- **Example 27.** The distribution function $x \sim L(\mu, b)$ can be re-presented as a mixture distribution as

$$\begin{cases} x|v \sim \mathcal{N}(\mu, 2vb) \\ v \sim \mathcal{G}a(1, 1) \end{cases}$$

Solution. Show that $f(x) = \int f(x|v)f(v)dv$