Bài Toán 3: Số phân hoạch tự liên hợp

Đồ Án Phân Hoạch Số Nguyên

Phát biểu bài toán

Cho $n, k \in \mathbb{N}$. Hãy thực hiện các yêu cầu sau:

- (a) Đếm số phân hoạch tự liên hợp của n có đúng k phần tử, ký hiệu $p_k^{\rm self}(n)$
- (b) Với k bất kỳ, in ra tất cả các phân hoạch tự liên hợp của n
- (c) Thiết lập công thức đệ quy truy hồi tính $p_k^{\rm self}(n)$

Định nghĩa: Phân hoạch tự liên hợp

Phân hoạch $\lambda = (\lambda_1, \lambda_2, \dots, \lambda_r)$ là tự liên hợp nếu biểu đồ Ferrers của nó bằng chính chuyển vị của nó. Ví dụ: (3, 1, 1) và (5, 3, 1) là phân hoạch tự liên hợp.

Công thức đếm (derivation)

Số phân hoạch tự liên hợp của n bằng số tập các số nguyên dương lẻ phân biệt sao cho tổng của chúng là n.

Công thức tổng quát:

 $p^{\rm self}(n)={\rm s\acute{o}}$ phân hoạch của n thành tổng của các số lẻ phân biệt

Công thức đệ quy

Gọi dp[i][j] là số phân hoạch của i dùng các số lẻ phân biệt $\leq j.$ Ta có:

$$dp[i][j] = dp[i][j-2] + dp[i-j][j] \quad \text{n\'eu} \ j \leq i$$

Ngược lại:

$$dp[i][j] = dp[i][j-2]$$

Với khởi tạo: $dp[0][j]=1,\,dp[i][0]=0$ với i>0

Chú thích các biến

- \bullet n tổng cần phân hoạch
- \bullet d
p[i][j] số phân hoạch của i dùng số lẻ phân biệ
t $\leq j$
- $\bullet\,$ j tăng theo bước 2 (chỉ số lẻ)