NOM:

INTERRO DE COURS – SEMAINE 3

Exercice 1 – On considère les matrices suivantes :

$$A = \begin{pmatrix} -1 & 0 & 0 \\ -8 & 0 & -8 \\ 9 & 0 & 8 \end{pmatrix}, \qquad P = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & -1 \\ -1 & 0 & 1 \end{pmatrix} \quad \text{et} \quad Q = \begin{pmatrix} 1 & 0 & 0 \\ 1 & 1 & 1 \\ 1 & 0 & 1 \end{pmatrix}.$$

1. Calculer *PQ* et *QP*. (Pas de détails, pas de points.)

Solution:

$$PQ = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & -1 \\ -1 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 1 & 1 & 1 \\ 1 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 1-1 & 1 & 1-1 \\ -1+1 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} = I_3$$

$$QP = \begin{pmatrix} 1 & 0 & 0 \\ 1 & 1 & 1 \\ 1 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & -1 \\ -1 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 1-1 & 1 & -1+1 \\ 1-1 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} = I_3$$

2. On définit la matrice D = QAP. Calculer D. (D est presque sûrement une matrice diagonale.)

Solution:

$$QA = \begin{pmatrix} 1 & 0 & 0 \\ 1 & 1 & 1 \\ 1 & 0 & 1 \end{pmatrix} \begin{pmatrix} -1 & 0 & 0 \\ -8 & 0 & -8 \\ 9 & 0 & 8 \end{pmatrix} = \begin{pmatrix} -1 & 0 & 0 \\ -1 - 8 + 9 & 0 & -8 + 8 \\ -1 + 9 & 0 & 8 \end{pmatrix} = \begin{pmatrix} -1 & 0 & 0 \\ 0 & 0 & 0 \\ 8 & 0 & 8 \end{pmatrix}$$

$$D = QAP = \begin{pmatrix} -1 & 0 & 0 \\ 0 & 0 & 0 \\ 8 & 0 & 8 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & -1 \\ -1 & 0 & 1 \end{pmatrix} = \begin{pmatrix} -1 & 0 & 0 \\ 0 & 0 & 0 \\ 8 - 8 & 0 & 8 \end{pmatrix} = \begin{pmatrix} -1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 8 \end{pmatrix}$$

3. En utilisant que D = QAP, en déduire que A = PDQ.

Solution : Je sais que D = QAP. Ainsi

$$PDQ = \underbrace{PQ}_{=I_3} \underbrace{A}_{=I_3} \underbrace{PQ}_{=I_3} = I_3 AI_3 = A.$$

J'ai bien montré que A = PDQ.

4. Calculer D^n pour tout $n \in \mathbb{N}$.

Solution : Comme la matrice *D* est diagonale,

$$D^n = \begin{pmatrix} (-1)^n & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 8^n \end{pmatrix}.$$

5. Montrer, par récurrence, que pour tout $n \in \mathbb{N}$, $A^n = PD^nQ$.

Solution:

Énoncé: Je note \mathcal{P}_n la proposition : $A^n = PD^nQ$.

Initialisation : Pour n = 0, $A^0 = I_3$ et $PD^0Q = PI_3Q = PQ = I_3$.

Ainsi \mathcal{P}_0 est vraie.

Hérédité : Soit $n \ge 0$. Je suppose que \mathcal{P}_n vraie et je montre que \mathcal{P}_{n+1} l'est aussi.

$$A^{n+1} = A^n \times A,$$

avec A = PDQ, et par hypothèse de récurrence je sais que $A^n = PD^nQ$. Donc

$$A^{n+1} = PD^nQPDQ = PD^nI_3DQ = PD^nDQ = PD^{n+1}Q.$$

Donc $A^{n+1} = PD^{n+1}Q$. Finalement \mathcal{P}_{n+1} est vraie et la propriété est héréditaire.

Conclusion : Comme elle est héréditaire et vraie pour n = 0, alors par principe de récurrence, la propriété \mathcal{P}_n est vraie pour tout $n \ge 0$, *i.e.*

$$\forall n \in \mathbb{N}, \quad A^n = PD^nQ.$$

6. Calculer A^n pour tout entier $n \in \mathbb{N}$.

Solution:

$$PD^{n} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & -1 \\ -1 & 0 & 1 \end{pmatrix} \begin{pmatrix} (-1)^{n} & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 8^{n} \end{pmatrix} = \begin{pmatrix} (-1)^{n} & 0 & 0 \\ 0 & 0 & -8^{n} \\ -(-1)^{n} & 0 & 8^{n} \end{pmatrix}$$

$$A^{n} = PD^{n}Q = \begin{pmatrix} (-1)^{n} & 0 & 0 \\ 0 & 0 & -8^{n} \\ -(-1)^{n} & 0 & 8^{n} \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 1 & 1 & 1 \\ 1 & 0 & 1 \end{pmatrix} = \begin{pmatrix} (-1)^{n} & 0 & 0 \\ -8^{n} & 0 & -8^{n} \\ 8^{n} - (-1)^{n} & 0 & 8^{n} \end{pmatrix}$$