САНКТ-ПЕТЕРБУРГСКИЙ НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ ИНФОРМАЦИОННЫХ ТЕХНОЛОГИЙ, МЕХАНИКИ И ОПТИКИ

ФАКУЛЬТЕТ ПИИКТ

Лабораторная работа №3

Функциональная схемотехника

«Проектирование цифровых устройств на ПЛИС»

Выполнили: P3210 Нгу Фыонг Ань Нго Ши Тханг

Преподаватель: Денисов Алексей Константинович

Вариант: 8

Оглавление

1.	Цели:	. 2				
	Задание:					
3.	Схема (рисунок) сопряжения разработанного блока и устройств ввода/вывода					
4.	Таблица с используемыми ресурсами ПЛИС.	. 2				
5.	Результат тестирования (временные диаграммы).	. 3				
6.	Описание алгоритма работы пользователя (блок-схема)	. 4				

1. Цели:

Получить навыки разработки цифровых устройств на базе программируемых логических интегральных схем (ПЛИС).

2. Задание:

8	$y = 1 - \frac{x^2}{2!} + \frac{x^4}{4!}$	1 сумматор и 2 умножителя	Знаковые числа 8-бит с фиксированной точкой

Таблица 1 Задание согласно варианту

3. Схема (рисунок) сопряжения разработанного блока и устройств ввода/вывода

Рисунок 1 Схема разработанного блока и устройства ввода. вывода.

4. Таблица с используемыми ресурсами ПЛИС.

WNS	TNS	WHS	THS	TPWS	Total Power	Failed Routes	LUT	FF	BRAMs	URAM	DSP
							110	110	0.00	0	0
3.590	0.000	0.106	0.000	0.000	0.099	0	110	110	0.00	0	0

Рисунок 2 Используемые ресурсы ПЛИС

5. Результат тестирования (временные диаграммы).

Внутри ОДЗ:

```
\begin{array}{l} x=0.500000;\ y=0.875000;\ CHECK:\ y=0.877604\\ x=-0.250000;\ y=0.960938;\ CHECK:\ y=0.968913\\ x=-0.500000;\ y=0.875000;\ CHECK:\ y=0.877604\\ x=-0.164063;\ y=0.984375;\ CHECK:\ y=0.986572\\ x=-0.976563;\ y=0.554688;\ CHECK:\ y=0.561058\\ x=0.203125;\ y=0.976563;\ CHECK:\ y=0.979441\\ x=0.664063;\ y=0.781250;\ CHECK:\ y=0.787613\\ x=-0.179688;\ y=0.976563;\ CHECK:\ y=0.983900\\ x=0.0000000;\ y=0.992188;\ CHECK:\ y=1.000000\\ \end{array}
```

На границах:

x = 0.992188; y = 0.539063; CHECK: y = 0.548162

6. Описание алгоритма работы пользователя (блок-схема)

Рисунок 15 Блок схема алгоритма работы со схемой

- 1) Enter the value of x_in using the switches J15 R13.
- 2) To get started, turn the start switch (V10) to position 1.
- 3) We look at the result y on LEDs H17 U16.
- 4) After completing the calculations (the LD17 indicator lights up), the reset is performed using the P17 button.
- 5) The next value of x is entered, the actions are repeated.