Algebraic Foundations for Effect-Dependent **Optimisations**

Ohad Kammar <ohad.kammar@ed.ac.uk>

Gordon Plotkin <gdp@ed.ac.uk>

Functional Programming Lab Seminar University of Nottingham January 11, 2012

To appear in POPL'12

Gifford-style Types and Effects

Gifford-style Types and Effects

$\label{eq:effect} \begin{array}{l} \text{Effect systems} \\ \vdash \text{ if true then } x := 1 \\ \text{ else } x := \text{deref(y)} : () \,! \, \underbrace{\{\texttt{lookup}, \texttt{update}\}}_{\mathcal{E}} \end{array}$

Effect-dependent optimisations [Benton et al.]

$$arepsilon_i \subseteq \{ ext{lookup}\} \implies egin{array}{l} ext{let} \ x = M_1 \ ext{in} \ (ext{let} \ y = M_2 \ ext{in} \ (ext{let} \ x = M_1 \ ext{in} \ N) \ \end{array}$$

 $\Gamma \vdash M_i : A_i ! \varepsilon_i$

Problem

Difficulty

Change language or effects \implies restart from scratch (useful craft).

- Duplicated effort
- Mix routine and important issues

Solution

General semantic account of effect type systems (science).

Prospect

Tools, methods and automatic support (engineering).

Plan

Tool: algebraic theory of effects

An interface to effects:

Effect operations Σ e.g.: lookup: 2, update: 1&2

Effect equations E e.g.:

Marriage of effects and monads

Observation [Wadler]

Change notation:

$$\Gamma \vdash M : A ! \varepsilon \implies \Gamma \vdash M : T_{\varepsilon}A$$

 T_{ε} behaves like a monad.

$$arepsilon_{arepsilon_{4}}^{arepsilon_{4}} \ arphi_{arepsilon_{4}}^{arepsilon_{\epsilon_{4}}} \ arphi_{arepsilon_{4}}^{arepsilon_{\epsilon_{4}}} \ arphi_{arepsilon_{2}}^{arepsilon_{\epsilon_{4}}} \ T_{arepsilon_{3}}^{arepsilon_{\epsilon_{4}}} \ T_{arepsilon_{3}}^{arepsilon_{\epsilon_{4}}} \ T_{arepsilon_{3}}^{arepsilon_{\epsilon_{4}}} \ T_{arepsilon_{5}}^{arepsilon_{5}} \ T_{arepsilon_{5}}^{$$

Annotation effects as effect operations

Key Observation

 $\varepsilon = \{\texttt{lookup}, \texttt{update}\} \text{ as an algebraic } \textbf{signature}.$

Change Perspective

View
$$T_{\varepsilon}$$
 as $\langle \Sigma_{\varepsilon}, E_{\varepsilon} \rangle$
Choose $\Sigma_{\varepsilon} = \varepsilon$
Wonder $E_{\varepsilon} = ?$

Bird's Eye

```
monadic source language

↓

multi-monadic intermediate language

↓

semantics

↓

optimisations (logic)
```

Talk Structure

- Source language
- ▶ Intermediate representation (IR) language
- Semantics
 - Validating optimisations
 - ► Constructing IR models
- Optimisations
- Conclusions

Bird's Eye

```
monadic source language

↓

multi-monadic intermediate language

↓

semantics

↓

optimisations (logic)
```

Signature

 $\Sigma = \{op : a\&p\}$ parametrises the language.

Example

State: lookup: 2 (lookup: 2&1), update: 1&2

Exceptions: DivideByZero: 0

Input: input: 128, output: 1&128

Already $2^5 = 32$ different languages!

Types and terms

$$A,B,\ldots$$
 ::= $\mathbf{n} \mid A \rightarrow B \mid TA$

$$M,N,\ldots$$
 ::= $x \mid i \mid \lambda x.M \mid MN$

$$\mid \mathtt{return} \ M \mid x \leftarrow M; N$$

$$\mid \mathtt{op}_M N$$

Type system

$$\frac{\Gamma, x : A \vdash M : B}{\Gamma \vdash \lambda x . M} \qquad \frac{\Gamma \vdash M : A \to B \qquad \Gamma \vdash N : A}{\Gamma \vdash M N : B}$$

$$\frac{\Gamma \vdash M : A}{\Gamma \vdash \text{return } M : TA} \qquad \frac{\Gamma \vdash M : TA \qquad \Gamma, x : A \vdash N : TB}{\Gamma \vdash x \leftarrow M; N : TB}$$
(cont.)

Type system

(contd.)

$$\frac{\Gamma \vdash M : \mathbf{p} \qquad \Gamma \vdash N : \mathbf{a} \to TB}{\Gamma \vdash \operatorname{op}_{M} N : TB} \operatorname{op} : a \& p$$

Example

$$\vdash lookup(\lambda x.update_0(\lambda_-.return x)) : T2$$

Source semantics

Eilenberg-Moore adjunction

A model is a theory $\mathcal{T} = \langle \Sigma, E \rangle$

Derive an adjunction $F \dashv U$:

Derive a strong monad Tx := UFx

Bird's Eye

```
monadic source language

↓

multi-monadic intermediate language

↓

semantics

↓

optimisations (logic)
```

IR syntax

Types and terms

$$A, B, \dots ::= \quad \mathbf{n} \mid A \to B \quad \mid T_{\varepsilon}A$$

$$M, N, \dots ::= \quad x \mid i \mid \lambda x.M \quad \mid MN \quad \mid \mathbf{return}_{\varepsilon} M \mid x \leftarrow M; N \quad \mid \mathbf{op}_{M}N \quad \mid \mathbf{coerce}_{\varepsilon \subseteq \varepsilon'}M$$

where $\varepsilon, \varepsilon' \subseteq \Sigma$

syntax

Type system

$$\frac{\Gamma, x : A \vdash M : B}{\Gamma \vdash \lambda x . M} \qquad \frac{\Gamma \vdash M : A \to B \qquad \Gamma \vdash N : A}{\Gamma \vdash M N : B}$$

$$\frac{\Gamma \vdash M : A}{\Gamma \vdash \mathbf{return}_{\varepsilon} M : T_{\varepsilon} A} \qquad \frac{\Gamma \vdash M : T_{\varepsilon} A \qquad \Gamma, x : A \vdash N : T_{\varepsilon} B}{\Gamma \vdash x \leftarrow M; N : T_{\varepsilon} B}$$
(cont.)

Type system

(contd.)

$$\frac{\Gamma \vdash M : \mathbf{p} \qquad \Gamma \vdash N : \mathbf{a} \to T_{\varepsilon}B}{\Gamma \vdash \operatorname{op}_{M}N : T_{\varepsilon}B} \operatorname{op} : a\&p, \operatorname{op} \in \varepsilon$$

$$\frac{\Gamma \vdash M : T_{\varepsilon}A}{\Gamma \vdash \operatorname{coerce}_{\varepsilon \subset \varepsilon'}M : T_{\varepsilon'}A}$$

Example: higher-order coercion

$$\begin{split} \vdash \lambda f. \lambda x. \mathtt{coerce}_{\varepsilon_2 \subseteq \varepsilon_2'} (f(\mathtt{coerce}_{\varepsilon_1 \subseteq \varepsilon_1'} x)) \\ &: (T_{\varepsilon_1'} A \to T_{\varepsilon_2} B) \to (T_{\varepsilon_1} A \to T_{\varepsilon_2'} B) \end{split}$$

Bird's Eye

```
monadic source language

↓

multi-monadic intermediate language

↓

semantics

↓

optimisations (logic)
```

Semantics

Models

A functorial family of theories: $\mathcal{T}_{\varepsilon} = \langle \varepsilon, E_{\varepsilon} \rangle$ with $E_{\varepsilon_1} \subseteq E_{\varepsilon_2}$ whenever $\varepsilon_1 \subseteq \varepsilon_2$.

Derived monads

Global state

Example

Global state

Derived monads

Effect-dependent optimisation

Source: $x \leftarrow M$; return 0 : T1

Effect-dependent optimisation

Source:
$$x \leftarrow M$$
; return 0 = return 0 : $T1$

$$x \leftarrow M$$
;

$$\begin{array}{lll} \textbf{IR:} & \text{return}_{\{\texttt{lookup}\}}\,\mathbf{0} & = & \text{return}_{\{\texttt{lookup}\}}\,\mathbf{0} & : \mathcal{T}_{\{\texttt{lookup}\}}\,\mathbf{1} \\ \end{array}$$

crucial step holds $\forall N : T_{\{lookup\}}A$, not $\forall N : TA$

Effect-dependent optimisation

Source:
$$x \leftarrow M$$
; return 0 = return 0 : $T1$

$$x \leftarrow M$$
;

$$\begin{array}{lll} \textbf{IR:} & \text{return}_{\{\texttt{lookup}\}} \, \textbf{0} & = & \text{return}_{\{\texttt{lookup}\}} \, \textbf{0} & : \, \mathcal{T}_{\{\texttt{lookup}\}} \, \textbf{1} \\ \end{array}$$

 $\mathtt{return}_\emptyset \ 0 \qquad : \mathcal{T}_\emptyset \mathbf{1}$

Formalising soundness

Erasure

 $\mathrm{Erase}:\mathsf{IR}\;\mathsf{terms}\to\mathsf{source}\;\mathsf{terms}$

Erase(M): remove ε 's and coercions from M

$$\begin{array}{c} \mathsf{coerce}_{\{\mathsf{lookup}\}}(\mathtt{x} \leftarrow M; \mathtt{return}_{\emptyset}\, \mathtt{0}) \\ & \stackrel{\mathrm{Erase}}{\longmapsto} & \mathtt{x} \leftarrow \mathsf{Erase}(M); \mathtt{return}\, \mathtt{0} \end{array}$$

Validity

 ${\mathcal M}$ a model (source or IR):

$$\mathcal{M} \models M = N \stackrel{def}{\iff} \llbracket M \rrbracket = \llbracket N \rrbracket \text{ in } \mathcal{M}$$

Formal soundness

Soundness

For a **source** model \mathcal{T} and IRs $\vdash M, N : T_{\varepsilon} \mathbf{n}$, suffices to find an IR model \mathcal{T}^{\sharp} such that:

$$\mathcal{T}^{\sharp} \models M = N \implies \mathcal{T} \models \operatorname{Erase}(M) = \operatorname{Erase}(N)$$

Source:
$$Erase(M)$$
 $Erase(N)$: Tn

IR:
$$M = M' = M'' = \dots = M''' = N$$
 : T_{ε} **n**

Constructing IR Models

Conservative Restriction Model

Given $\mathcal{T} = \langle \Sigma, E \rangle$, define the IR model $\mathcal{T}^{\operatorname{Cns}}$ by:

$$E|_{\varepsilon} \coloneqq E \cap (\varepsilon\text{-terms} \times \varepsilon\text{-terms})$$

i.e., all derivable E equations between ε -terms.

Theorem

For all $\vdash M, N : T_{\varepsilon} \mathbf{n}$:

$$\mathcal{T}^{\operatorname{Cns}} \models M = N \iff \mathcal{T} \models \operatorname{Erase}(M) = \operatorname{Erase}(N)$$

Global state

Example Conservative Restriction Model

Global state

Injective monad morphisms

Combining theories

Sum

$$\mathcal{T}^1 + \mathcal{T}^2 \coloneqq \langle \Sigma_1 + \Sigma_2, \mathrm{Th}(\textit{E}_1 + \textit{E}_2) \rangle$$

Theorem [Hyland, Plotkin, Power]

Summing with exceptions (resp. input, output) induces the exception (resp. input, output) monad transformer.

Modularity theorem

Idea

Restrictions of $\mathcal{T}=\mathcal{T}^1 \odot \mathcal{T}^2$ in terms of component restrictions.

Theorem

For consistent theories:

$$(\mathcal{T}^1+\mathcal{T}^2)\big|_{\varepsilon_1+\varepsilon_2}=\left.\mathcal{T}^1\right|_{\varepsilon_1}+\left.\mathcal{T}^2\right|_{\varepsilon_2}$$

Combining theories

Tensor

Theorem [Hyland, Plotkin, Power]

Tensoring with the global state (resp. environment, overwrite) theory induces the global state (resp. environment, overwrite) monad transformer.

Modularity counter example

Idea

Restrictions of $\mathcal{T}=\mathcal{T}^1 \circ \mathcal{T}^2$ in terms of component restrictions.

Tensor counterexample: Eckmann-Hilton

 $(\mathsf{Monoids} \otimes \mathsf{Monoids})_{\{\cdot,1\}+\emptyset} = \mathsf{Commutative} \ \mathsf{Monoids}$

$$\neq \left. \mathsf{Monoids} \right|_{\{\cdot,1\}} \otimes \left. \mathsf{Monoids} \right|_{\emptyset}$$

$$(1 \cdot_1 x) \cdot_2 (y \cdot_1 1) = (1 \cdot_2 y) \cdot_1 (x \cdot_2 1) \implies x \cdot_2 y = y \cdot_1 x$$

 $(x \cdot_1 1) \cdot_2 (1 \cdot_1 y) = (x \cdot_2 1) \cdot_1 (1 \cdot_2 y) \implies x \cdot_2 y = x \cdot_1 x$

Pragmatic Modularity Theorems

Tensoring with the global state, environment and overwrite theories is modular. Tensoring with non-determinism is non-modular over ω -CPO.

Axiomatic restriction

Axiomatic Restriction Model

Given $\mathcal{T} = \langle \Sigma, \operatorname{ThAx} \rangle$, define the IR model $\mathcal{T}^{\operatorname{Ax}}$ by:

$$\operatorname{Th}|_{\varepsilon} \operatorname{Ax} := \operatorname{Th}(\operatorname{Ax} \cap (\varepsilon\text{-terms} \times \varepsilon\text{-terms}))$$

By fiat,

$$\begin{array}{ll} \operatorname{Th}|_{\varepsilon_{1}+\varepsilon_{2}} \ (\operatorname{Ax}^{1}+\operatorname{Ax}^{2}) & = \operatorname{Th}|_{\varepsilon_{1}} \operatorname{Ax}^{1} + \operatorname{Th}|_{\varepsilon_{2}} \operatorname{Ax}^{2} \\ \operatorname{Th}|_{\varepsilon_{1}+\varepsilon_{2}} \left((\operatorname{Ax}^{1}+\operatorname{Ax}^{2}) \cup \mathcal{E}_{\Sigma_{1}\otimes\Sigma_{2}} \right) & = \operatorname{Th}|_{\varepsilon_{1}} \operatorname{Ax}^{1} \otimes \operatorname{Th}|_{\varepsilon_{2}} \operatorname{Ax}^{2} \end{array}$$

Theorem

For all $\vdash M, N : T_{\varepsilon} \mathbf{n}$:

$$\mathcal{T}^{\mathrm{Ax}} \models M = N \implies \mathcal{T} \models \mathrm{Erase}(M) = \mathrm{Erase}(N)$$

Bird's Eye

```
monadic source language

↓

multi-monadic intermediate language

↓

semantics

↓

optimisations (logic)
```

Optimisations

Cataloguing Optimisations

For existing transformations:

- Validate
- Classify
- Generalise

Structural properties

Structural

Bread and butter of optimisation, e.g.

- \triangleright β , η rules.
- Sequencing.
- ▶ Coercion, e.g.:

$$\mathsf{coerce}_{\varepsilon'\subseteq\varepsilon''}(\mathsf{coerce}_{\varepsilon\subseteq\varepsilon'}M)=\mathsf{coerce}_{\varepsilon\subseteq\varepsilon''}M$$

Practically: constant propagation, common subexpression elimination, (loop unrolling), etc.

Local algebraic properties

Algebraic

Single equations in $\mathcal{T}_{\varepsilon}$, e.g.:

$$\begin{array}{ccc} \operatorname{update}_b & \operatorname{update}_b \\ \operatorname{lookup} & = & \Big| \\ \operatorname{x_0} & \operatorname{x_1} & \operatorname{x_b} \end{array}$$

become optimisations, e.g.:

$$\operatorname{update}_V(\operatorname{lookup}(N)) = \operatorname{update}_V N V$$

i.e., **local** properties of $\mathcal{T}_{\varepsilon}$.

Global structural properties

Discard: Utilitarian Form

$$\frac{\Gamma \vdash M : T_{\varepsilon}A \qquad \Gamma \vdash N : T_{\varepsilon'}B}{\mathtt{x} \leftarrow (\mathtt{coerce}_{\varepsilon \subseteq \varepsilon'}M); N = N}$$

Discard: Pristine Form

(cont.)

$$rac{\Gamma dash M: T_{arepsilon}A}{\mathtt{x} \leftarrow M; \mathtt{return}_{arepsilon}\, \mathtt{0} = \mathtt{return}_{arepsilon}\, \mathtt{0}}$$

Abstract optimisations

(contd.) Discard: $\mathbf{x} \leftarrow M$; $\mathbf{return}_{\varepsilon} \mathbf{0} = \mathbf{return}_{\varepsilon} \mathbf{0}$ Categorical Characterisation

$$T_{\varepsilon}1\cong 1$$

Due to Kock, Jacobs, Führmann

Algebraic Characterisation

For all $t(x_1, \ldots, x_n)$:

$$x \cdot x = x$$

Due to Wraith
This is a **global** property.

Effective dictionary

Knowledge unification

Optimisation	Utilitarian	Pristine	Categorical	Algebraic	
i :	i:	i :	i:	i i	

Effective dictionary

	name	utilitarian form	pristine form	abstract side condition	algebraic equivalent	example basic theories
Figure 7. Abstract Optimisations	Discard	$\frac{\Gamma \vdash_{\varepsilon} M : \mathbf{F}_{\varepsilon} A \Gamma \vdash_{\varepsilon'} N : \underline{B}}{(\mathbf{coerce} M) \text{ to } x : A . N = N}$	$\Gamma \vdash_{\varepsilon} M : \mathbf{F}_{\varepsilon}A$ $M \text{ to } x : A. \text{ return}_{\varepsilon} \times = \text{return}_{\varepsilon} \times$	$\mathcal{T}_{\varepsilon}$ affine: $\mathbf{y} = \eta_{1}^{\varepsilon} : 1 \rightarrow F_{\varepsilon}1 $ has a continuous inverse	For all ε -terms t : $t(\mathbf{x}, \dots, \mathbf{x}) = \mathbf{x}$	read-only state, convex, upper and lower semilattices
	Сору	$\begin{array}{c} \Gamma \vdash_{\mathcal{E}} M : \mathbf{F}_{\mathcal{E}} A \\ \Gamma, x : A, y : A \vdash_{\mathcal{E}'} N : \underline{B} \\ \hline \text{coerce} M \text{ to } x : A. \\ \text{coerce} M \text{ to } x : A. \\ \hline \text{coerce} M \text{ to } x : A. N[x/y] \end{array}$	$ \begin{array}{c} \Gamma \vdash_{\varepsilon} M : \mathbf{F}_{\varepsilon}A \\ \hline M \text{ to } x : A. M \text{ to } \underline{y} : A. \text{ return}_{\varepsilon}(x,y) \\ \hline M \text{ to } x : A. \text{ return}_{\varepsilon}(x,x) \end{array} $	$\mathcal{T}_{\varepsilon}$ relevant: $\psi_{\varepsilon} \circ \delta = L^{\varepsilon} \delta$	For all ε -terms t : $t(t(\mathbf{x}_{11}, \dots, \mathbf{x}_{1n}), \dots, t(\mathbf{x}_{n1}, \dots, \mathbf{x}_{nn}))$ $= t(\mathbf{x}_{11}, \dots, \mathbf{x}_{nn})$	exceptions, lifting, read-only state, write-only state
	Weak Copy	$\begin{array}{c} \Gamma \vdash_{Z} M : E A \\ \Gamma, x : A \vdash_{e^{i}} N : \underline{B} \end{array}$ $\begin{array}{c} \overline{\text{coerceM to } x : A} \\ \overline{\text{coerceM to } y : A . N =} \\ \overline{\text{coerceM to } x : A . N =} \end{array}$	$\frac{\Gamma \vdash_{\varepsilon} M : \mathbf{F}_{\varepsilon} A}{M \text{ to } x : A . M = M}$	$\mu^\varepsilon\circ\operatorname{str}^\varepsilon\circ\delta=\operatorname{id}$	For all ε -terms t : $t(t(\mathbf{x}_1, \dots, \mathbf{x}_n), \dots, t(\mathbf{x}_1, \dots, \mathbf{x}_n))$ $= t(\mathbf{x}_1, \dots, \mathbf{x}_n)$	any affine or relevant theory: lifting, exceptions, read-only and write-only state, all three semilattice theories
	Swap	$ \begin{array}{c c} \Gamma \vdash_{e_1} M_1 : \mathbb{F}_{e_1} A_1 \Gamma \vdash_{e_2} M_2 : \mathbb{F}_{e_2} A_2 \\ \Gamma, x_1 : A_1, x_2 : A_2 \vdash_{e_1} N \end{array} \\ = \underbrace{\begin{array}{c} \text{correoM}_1 \text{ to } x_1 : A_1, \\ \text{correoM}_2 \text{ to } x_2 : A_2 : N = \\ \text{correoM}_2 \text{ to } x_2 : A_2 : \\ \text{correoM}_3 \text{ to } x_2 : A_2 : \end{array} }_{\text{correoM}_1 \text{ to } x_1 : A_1, N} $	$ \begin{array}{c cccc} & \Gamma \vdash_{\varepsilon_1} M_1 : \mathbb{F}_{\varepsilon_1} A_1 & \Gamma \vdash_{\varepsilon_2} M_2 : \mathbb{F}_{\varepsilon_2} A_2 \\ \hline \text{coerce} M_1 \text{ to } x_1 : A_1, & \\ \hline \text{coerce} M_2 \text{ to } x_2 : A_2 \text{ return}_{\ell} \left(x_1, x_2 \right) = \\ \hline \text{coerce} M_2 \text{ to } x_2 : A_2, & \\ \hline \text{coerce} M_1 \text{ to } x_1 : A_1 \text{ return}_{\ell} \left(x_1, x_2 \right) \end{array} $	$\begin{array}{ccc} \mathfrak{T}_{\varepsilon_1\subseteq\varepsilon}, \mathfrak{T}_{\varepsilon_2\subseteq\varepsilon} \text{ commute:} \\ \psi_\varepsilon\circ (m^{\varepsilon_1\subseteq\varepsilon}\times m^{\varepsilon_2\subseteq\varepsilon}) \\ \mathfrak{r} & = \\ \tilde{\psi}_\varepsilon\circ (m^{\varepsilon_1\subseteq\varepsilon}\times m^{\varepsilon_2\subseteq\varepsilon}) \end{array}$	$\mathfrak{T}_{\varepsilon_1\subseteq\varepsilon} \text{ translations commute} \\ \text{with } \mathfrak{T}_{\varepsilon_2\subseteq\varepsilon} \text{ translations (see tensor equations)}$	$\mathcal{T}_1 \rightarrow \mathcal{T}_1 \otimes \mathcal{T}_2 \leftarrow \mathcal{T}_2$, e.g., distinct global memory cells
	Weak Swap	$\frac{\Gamma \vdash_{\varepsilon_1} M_1 : \mathbf{F}_{\varepsilon_2} A_1 \Gamma \vdash_{\varepsilon_2} M_2 : \mathbf{F}_{\varepsilon_2} A_2}{(\text{sume as Swap})}$	$\begin{array}{ll} \Gamma \vdash_{e_1} M_1 \colon \mathbb{P}_{e_1} A_1 \Gamma \vdash_{e_2} M_2 \colon \mathbb{P}_{e_2} A_2 \\ \hline \text{coerce } M_1 \text{ to } x_1 \colon A_1, \\ \text{coerce } M_2 \text{ to } x_2 \colon A_2 \colon \text{return}_t x_1 = \\ \text{coerce } M_1 \text{ to } x_1 \colon A_1, \text{ return}_t x_2 \end{array}$	$\psi_{\varepsilon} \circ (m^{\varepsilon_1} \times m^{\varepsilon_2})$ $\circ (\operatorname{id} \times \eta_{\varepsilon_1}^{\varepsilon_2}) =$ $\tilde{\psi}_{\varepsilon} \circ (m^{\varepsilon_1} \times m^{\varepsilon_2})$ $\circ (\operatorname{id} \times \eta_{\varepsilon_1}^{\varepsilon_2})$	For all ε -terms $t = \mathfrak{T}_1(t')$, $s = \mathfrak{T}_2(s')$: $t(s(\mathbf{x}_1, \dots, \mathbf{x}_1), \dots, s(\mathbf{x}_n, \dots, \mathbf{x}_n)) = s(t(\mathbf{x}_1, \dots, \mathbf{x}_n), \dots, t(\mathbf{x}_1, \dots, \mathbf{x}_n))$	when T_{e_2} is affine, e.g.: read-only state and convex, upper and lower semilartices.
	Isolated Swap	$\frac{\Gamma \vdash_{\varepsilon_1} M_1 : \mathbf{F}_{\varepsilon_1} A_1 \Gamma \vdash_{\varepsilon_2} M_2 : \mathbf{F}_{\varepsilon_2} A_2}{(\text{same as Swap})}$	$\begin{array}{ll} \Gamma \vdash_{\varepsilon_1} M_1 : \mathbf{F}_{\varepsilon_1} A_1 & \Gamma \vdash_{\varepsilon_2} M_2 : \mathbf{F}_{\varepsilon_2} A_2 \\ \hline \text{coores } M_1 \text{ to } x_1 : A_1, \\ \text{coores } M_2 \text{ to } x_2 : A_2, \text{return}_{\varepsilon} * = \\ \text{coores } M_2 \text{ to } x_2 : A_2, \\ \text{coores } M_1 \text{ to } x_1 : A_1, \text{ return}_{\varepsilon} * \end{array}$	$\psi_{\varepsilon} \circ (m^{\varepsilon_1} \times m^{\varepsilon_2})$ $\circ (\eta_i^{\varepsilon_1} \times \eta_i^{\varepsilon_2}) =$ $\hat{\psi}_{\varepsilon} \circ (m^{\varepsilon_1} \times m^{\varepsilon_2})$ $\circ (\eta_i^{\varepsilon_1} \times \eta_i^{\varepsilon_2})$	For all ε -terms $t = \mathfrak{T}_1(t')$, $s = \mathfrak{T}_2(s')$: $t(s(\mathbf{x}, \dots, \mathbf{x}), \dots, s(\mathbf{x}, \dots, \mathbf{x})) = s(t(\mathbf{x}, \dots, \mathbf{x}), \dots, t(\mathbf{x}, \dots, \mathbf{x}))$	when $T\varepsilon_1$ is affine: read-only state and convex, upper and lower semilattices.
	Unique	$\frac{\Gamma \vdash_{\varepsilon} M_i : \mathbf{F}_{\varepsilon} 0, i = 1, 2}{M_1 = M_2}$	(same as utilitarian form)	$F_e 0 = 0, 1$	$\mathcal{T}_{\varepsilon}$ equates all ε -constants	all three state theories, all three semilattice theories, a single unparameterised exception, lifting
	Pure Hoist	$\Gamma \vdash_{\varepsilon} M : \mathbf{F}_{\varepsilon}A \Gamma, x : A \vdash_{\varepsilon'} N : \underline{B}$ $return_{\varepsilon} \text{ thunk (coerce} M \text{ to } x : A.N)$ $= M \text{ to } x : A. \text{ return}_{\varepsilon} \text{ thunk } N$	$\Gamma \vdash_{\varepsilon} M : \mathbf{F}_{\varepsilon} A$ $return_{\varepsilon} \operatorname{thunk} M = M \text{ to } x : A. \operatorname{return}_{\varepsilon} \operatorname{thunk} \operatorname{return}_{\varepsilon} x$	$L^{\varepsilon} \eta_W^{\varepsilon} = \eta_{ F_{\varepsilon}W }^{\varepsilon}$	all ε -terms are equal to variables in $\mathcal{T}_{\varepsilon}$	the empty theory, inconsistent theories
	Hoist	$ \begin{array}{c} \Gamma \vdash_{\varepsilon} M : \mathbb{F}_{\varepsilon}A \Gamma, x : A \vdash_{\varepsilon'} N : \underline{B} \\ \hline M \text{ to } x : A. \\ \text{return}_{\varepsilon} \text{ thunk } (\text{coerce}M \text{ to } x : A. N) \\ = M \text{ to } x : A. \text{ return}_{\varepsilon} \text{ thunk } N \end{array} $	$\Gamma \vdash_{\varepsilon} M : \mathbf{F}_{\varepsilon} A$ $\text{IF} \begin{array}{c} M \text{ to } x : A. \\ \text{thunk return}_{\varepsilon} (x, \text{ thunk } M) = \\ M \text{ to } x : A. \\ \text{thunk return}_{\varepsilon} (x, \text{ thunk return}_{\varepsilon} x) \end{array}$	$_{\mathbf{F}}$ $L^{\varepsilon}\langle \eta^{\varepsilon}, id \rangle = \operatorname{str}^{\varepsilon} \circ \delta$	all ε -terms are either a variable or independent of their variables via $\mathcal{T}_{\varepsilon}$	all theories containing only constants: lifting and exceptions

2011/11

Further reading

Teasers

Details in the paper, and:

► An extended example:

```
\begin{split} \mathsf{Exceptions} + \big(\mathsf{Read}\ \mathsf{Only} \otimes \mathsf{Write}\ \mathsf{Only} \otimes \mathsf{Read\text{-}Write} \otimes \\ \big(\mathsf{Exceptions} + \mathsf{Input} + \mathsf{Output} + \\ \big(\mathsf{Non\text{-}determinism} \otimes \mathsf{Lifting}\big)\big)\big) \end{split}
```

```
(2^9 = 512 \text{ effect sets}).
```

- Modular validation of optimisations.
- ► More expressible language (recursion + CBPV).
- More optimisations.
- ▶ Further work.

Summary

Conclusions

- ► This work unified and generalised existing work: a step towards a science and an engineering discipline.
- ► The algebraic approach is fruitful: clarifies and unveils both connections and constructions.
- Category theory was crucial to our formulation and for forming the connections between the different areas that were unified.

Summary

Some further work

- Effect reconstruction
- Handlers
- Automation
- More effects

- Locality
- Concurrency
- Better program logics (Hoare, modal, etc.).