Теория функции комплексной переменной

Шарабарин Михаил

26.01.2025

Содержание

L	Воп	рос 1. Определения и формы комплексных чисел и действия над ними	2
	1.1	Действия с комплексными числами	2
	1.2	Особый разговор об аргументе	2
	1.3	Тригонометрическая форма комплексного числа	3
	1.4	Умножение и деление комплексных чисел, записанных в тригонометрической или пока-	
		зательной формах	3
	1.5	Возведение в степень и извлечение корня из комплексного числа	3

1 Вопрос 1. Определения и формы комплексных чисел и действия над ними

Комплексные числа — это числа, представляемые в виде:

$$z = a + bi$$
,

где a — действительная часть, b — мнимая часть, а i $(i=\sqrt{-1})$ — мнимая единица. Основные представления комплексных чисел:

- Алгебраическая форма: z = a + bi,
- Тригонометрическая форма: $z = r(\cos \varphi + i \sin \varphi)$,
- Экспоненциальная форма: $z = re^{i\varphi}$,

где r=|z| — модуль числа, $\varphi=\arg z$ — аргумент числа.

1.1 Действия с комплексными числами

- Сложение: (a + bi) + (c + di) = (a + c) + (b + d)i,
- Умножение: $(a + bi) \cdot (c + di) = (ac bd) + (ad + bc)i$,
- Деление:

$$\frac{a+bi}{c+di} = \frac{(a+bi)(c-di)}{c^2+d^2}.$$

Представления комплексных чисел:

- $\Re(a + b\mathbf{i}) = a$
- $\mathfrak{Im}(a+b\mathbf{i})=b$

•

$$\overline{\overline{z}}=z, \quad \overline{z_1z_2}=\overline{z}_1\overline{z}_2, \quad \overline{\frac{z_1}{z_2}}=\overline{\frac{\overline{z}_1}{\overline{z}_2}.$$

Комплексное число - это число z вида $a+b\mathbf{i}$, где a - вещественная часть, a b - мнимая. Символ $\mathbf{i^2}=-1$ называется мнимой единицей.

Сопряженное число - \overline{z} называется сопряженным числом и записывается как $a-b\mathbf{i}$. Свойства сопряженны чисел:

$$\overline{z*z} = \overline{z}*\overline{z}, \quad \overline{\overline{z}} = z, \quad \overline{\frac{z_1}{z_2}} = \overline{\frac{\overline{z}}{\overline{z}}}$$

В полярных координатах точка m имеет коодинаты r, φ , (мы рассматриваем) комплексные числа как вектора + их нельзя сравнить). Иногда говорят что вектор и комплексное число это тоже самое. Здесь расстояние от центра координат до этой точки будет равно модулю вектора

$$r = \overline{OM} = |z| = \sqrt{z * \overline{z}} = \sqrt{a^2 + b^2}$$

в это время φ является углом между вектором \overline{OM} и вектором \overline{OX} (направлением оси X) и обозначается как $\varphi={\rm Arg}\ z$

1.2 Особый разговор об аргументе

Аргумент - бесконечен т.к. все его значения отдаляются от истенных (в нап равлении от оси \overline{OX} в противоположном направлении до 2π).

Аргумент определяется в виде формулы

$$\begin{cases} x = r\cos\varphi \\ x = r\sin\varphi \end{cases} \tag{1}$$

С точностью до слагаемого Arg $z=\arg z+2\pi k,\quad k=0,\pm 1,\pm 2,\ldots,$. Из всех главных значений особо выделяются $-\pi<\arg z<\pi$. При этом полезны формулы:

$$\begin{cases} \arctan \frac{y}{x}, & \text{если} x > 0 \\ \arctan \frac{y}{x} + \pi, & \text{если} x < 0, y \ge 0 \\ \arctan \frac{y}{x} - \pi, & \text{если} x > 0, y < 0 \end{cases}$$
 (2)

Условия сопряжения двух чисел z и \overline{z} :

$$\arg z = -\arg \overline{z}, \quad |z| = |\overline{z}|$$

Некоторые свойства модуля:

$$|z_1 + z_2| \le |z_1| + |z_2|, \quad |z_1 + z_2| \ge ||z_1| - |z_2||, \quad |z_1 - z_2| \ge ||z_1| - |z_2||$$

1.3 Тригонометрическая форма комплексного числа

$$z = i(\cos\varphi + \mathbf{i}\sin\varphi)$$

Формула Эйлера:

$$e^{i\varphi} = \cos\varphi + \mathbf{i}\sin\varphi$$

Показательная форма числа:

$$z = re^{i\varphi}$$

1.4 Умножение и деление комплексных чисел, записанных в тригонометрической или показательной формах

Пусть даны два комплексных числа:

$$z_1 = r_1(\cos \varphi_1 + \mathbf{i} \sin \varphi_1),$$

 $z_2 = r_2(\cos \varphi_2 + \mathbf{i} \sin \varphi_2).$

Выведем формулу произвеения:

$$z_1 z_2 = r_1 r_2 \left(\cos \varphi_1 \cos \varphi_2 - \sin \varphi_1 \sin \varphi_2 + \mathbf{i} (\sin \varphi_1 \cos \varphi_2 + \cos \varphi_1 \sin \varphi_2)\right) = r_1 r_2 \left(\cos(\varphi_1 + \varphi_2) + \mathbf{i} \sin(\varphi_1 + \varphi_2)\right).$$

Деление:

$$\begin{split} &\frac{z_1}{z_2} = \frac{r_1(\cos\varphi_1 + i\sin\varphi_1)}{r_2(\cos\varphi_2 + i\sin\varphi_2)} = \frac{r_1(\cos\varphi_1 + i\sin\varphi_1)(\cos\varphi_2 - i\sin\varphi_2)}{r_2(\cos\varphi_2 + i\sin\varphi_2)(\cos\varphi_2 - i\sin\varphi_2)} = \\ &= \frac{r_1}{r_2} \left(\cos\varphi_1\cos\varphi_2 + \sin\varphi_1\sin\varphi_2 + \mathbf{i}(\sin\varphi_1\cos\varphi_2 - \cos\varphi_1\sin\varphi_2)\right) = \\ &= \frac{r_1}{r_2} \left(\cos\varphi_1\cos\varphi_2 + \sin\varphi_1\sin\varphi_2 + \mathbf{i}(\sin\varphi_1\cos\varphi_2 - \cos\varphi_1\sin\varphi_2)\right) = \end{split}$$

1.5 Возведение в степень и извлечение корня из комплексного числа

$$z^{n} = (x + \mathbf{i}y)^{n} = (r(\cos\varphi + \mathbf{i}\sin\varphi))^{n} = (re^{\mathbf{i}\varphi})^{n} = r^{n}e^{\mathbf{i}n\varphi} = r^{n}(\cos n\varphi + \mathbf{i}\sin n\varphi).$$

Формула Муавра:

$$\cos n\varphi + \mathbf{i}\sin n\varphi$$

Нахождение корня

$$w_k = \sqrt[n]{r(\cos\varphi + \mathbf{i}\sin\varphi)} = \sqrt[n]{r}\left(\cos\frac{\arg z + 2\pi k}{n} + \mathbf{i}\sin\frac{\arg z + 2\pi k}{n}\right).$$