Coded Snapshots Sum with Gaussian Noise

Snapshot

Coded SnapshoCoded Snapshot after Reconstru

Snapshot

Coded Snapshot

Snapshot

Coded Snapshot

After Reconstruction

Snapshot

Coded Snapshot

After Reconstruction

Snapshot

Coded Snapshot

After Reconstruction

Snapshot

Coded Snapshot

After Reconstruction

Snapshot

Coded Snapshot

After Reconstruction

Snapshot

Coded Snapshot

After Reconstruction

Snapshot

Coded Snapshot

After Reconstruction

Snapshot

Coded Snapshot

After Reconstruction

Snapshot

Coded Snapshot

After Reconstruction

Explanation for Ax = b:

$$E = \sum_{1}^{T} F \cdot C_{t}$$

E is the obtained image. We divide it into patches of 8*8. Let E^{ij} (and similiarly for other matrices) be the patch with left corner at (i,j) coordinate.

Then
$$E^{ij} = \sum_{1}^{T} F^{ij} \cdot C^{ij}_{t}$$
.

So, $b=E^{ij}$. Also $F^{ij}=(\psi_{8x8}\otimes\psi_{8x8})*\theta$, with θ being sparse. x (to be recovered) is, therefore, equal to $[\theta_1 \ \theta_2 \ \theta_3]$ (for T=3).

Converting all products to matrix products:

$$A = \left(\left[diag(C_1^{ij}) \ diag(C_2^{ij}) \ diag(C_3^{ij}) \right] \right) * (I_{3x3} \otimes \psi_{8x8} \otimes \psi_{8x8})$$

Where Kronecker products are taken for forming 2-D DCT matrix diag(M) means putting all elements of the matrix along the diagonal row-first wise.

Explanation for error Term:

Consider $y = \Phi^*f + \eta = \Phi^*\Psi^*\theta + \eta$. If for each i = 1 to m, $\eta_i \sim N(o, \sigma^2)$, with known σ then the squared magnitude of the vector η is a chi-square random variable. Hence with very high probability, the magnitude of $\boldsymbol{\eta}$ will lie within 3 standard deviations from the mean, i.e. set $\varepsilon \ge 3*\sigma*\sqrt{m}$.

Therefore, set $\varepsilon = 3*2*8 = 48$.

RMSE $||Reconstructed - Original||_{2}/||Original||_{2}$

T = 3 - 0.1043

T = 5 - 0.1371

T = 7 - 0.1759

FLAMES

Snapshot

Coded Snapshot

After Reconstruction

Snapshot

Coded Snapshot

After Reconstruction

