Período: 2014.2 Disciplina: <u>D279 – Otimização Combinatória e em Redes</u>

Atividade computacional

Instruções:

- 1. A atividade deve ser realizada individualmente.
- 2. Implementações semelhantes estarão sujeitas a anulação imediata e definitiva.
- 3. A avaliação será progressiva através de acompanhamento pelo professor.

Parte I – Implementação de um modelo para Fixed Charge Capacitated Network Design Problem.

Formulação. Seja G = (N, A) uma rede orientada, onde N é o conjunto de nós e A é o conjunto de arcos. Seja K o conjunto de demandas, cada uma delas caracterizada por uma origem s^k , um destino t^k , e uma quantidade d^k que deve ser transportada da origem para o destino. Seja f_{ij} o custo fixo de utilização do arco ij, c_{ij} o custo variável para transportar uma unidade de fluxo através do arco ij, e u_{ij} a capacidade do arco ij. Considere a variável x_{ij}^k que indica a quantidade de fluxo referente à demanda k no arco ij, e a variável binária y_{ij} que indica se o arco ij é utilizado ou não. O objetivo é minimizar os custos fixos e os custos variáveis.

$$\begin{aligned} & \min & \sum_{k \in K} \sum_{ij \in A} c_{ij} x_{ij}^{k} + \sum_{ij \in A} f_{ij} y_{ij} \\ & \text{s.t.} & \sum_{ij \in A} x_{ij}^{k} - \sum_{ji \in A} x_{ji}^{k} = \begin{cases} d^{k}, & \text{for } i = s^{k} \\ -d^{k}, & \text{for } i = t^{k} \end{cases} & \forall i \in N, \forall k \in K \\ & \sum_{k \in K} x_{ij}^{k} \leq u_{ij} y_{ij} & \forall ij \in A \\ & x_{ij}^{k} \geq 0 & \forall ij \in A, \forall k \in K \\ & y_{ij} \in \{0, 1\} & \forall ij \in A \end{aligned}$$

Implementação. Implementar um modelo de programação matemática utilizando Java Concert para o problema. Uma instância deve ser lida de um arquivo de entrada (FCND.dat). Devem ser gerados 3 arquivos de saída: um arquivo com a saída padrão do CPLEX (FCND.log), um arquivo com a formulação matemática (FCND.lp), e um arquivo de solução (FCND.out) conforme especificado abaixo.

Entrada. A primeira linha contém um inteiro n, indicando a quantidade de nós (rotulados de 1 a n), e um inteiro m, indicando a quantidade de arcos. Cada uma das m linhas seguintes possui uma quintupla que caracteriza um arco: $(i, j, f_{ij}, c_{ij}, u_{ij})$. A linha seguinte contém um inteiro k indicando a quantidade de demandas. Cada uma das k linhas seguintes possui uma tripla que caracteriza uma demanda: (s^k, t^k, d^k) .

Saída. O arquivo de solução deve apresentar o custo total, o tempo e os arcos efetivamente utilizados.

Exemplo de entrada:

6	8			
1	2	100	1	100
2	3	50	1	60
2	4	100	1	100
3	1	100	1	100
4	6	100	1	100
5	3	100	1	100
5	4	50	1	60
6	5	100	1	100
10				
1	3	10		
1	4	10		
2	1	10		
2	5	10		
3	6	10		
4	1	10		
4	5	10		
5	1	10		
5	6	10		
6	2	10		

Exemplo de saída:

Objetive:		950 , 00	
Lower bound	d:	950,00	
Gap:		0,0000	
Status:		Optimal	
Time:		0,03	
	1	2	100
	2	3	50
	2	4	100
	3	1	100
	4	6	100
	5	3	100
	6	5	100

Parte II - Implementação de uma relaxação lagrangeana para o problema.

Relaxação. Relaxar a restrição de capacidade de cada arco ij e associar um multiplicador lagrangeano μ_{ij} , conforme modelo abaixo.

$$\min_{y} \sum_{k \in K} \sum_{ij \in A} c_{ij} x_{ij}^{k} + \sum_{ij \in A} f_{ij} y_{ij} + \sum_{ij \in A} \mu_{ij} \left(\sum_{k \in K} x_{ij}^{k} - u_{ij} y_{ij} \right)$$
s.t.
$$\sum_{ij \in A} x_{ij}^{k} - \sum_{ji \in A} x_{ji}^{k} = \begin{cases} d^{k}, & \text{for } i = s^{k} \\ -d^{k}, & \text{for } i = t^{k} \\ 0, & \text{otherwise} \end{cases} \quad \forall i \in N, \forall k \in K$$

$$x_{ij}^{k} \ge 0 \quad \forall ij \in A, \forall k \in K$$

$$y_{ij} \in \{0, 1\} \quad \forall ij \in A$$

Implementação. Implementar o algoritmo do subgradiente conforme ilustrado abaixo. UB deve ser obtido pela resolução do modelo original onde todos os links são utilizados ($y_{ij}=1, \forall ij \in A$). Em cada iteração, o subproblema lagrangeano deve ser resolvido, os limites inferiores e superiores devem ser adequadamente atualizados. Considere os parâmetros $K=1000, \beta=10, \varepsilon=0.000001$. Note que a cada iteração apenas a função objetivo deve ser modificada de acordo com os multiplicadores lagrangeanos. Deve ser gerado um arquivo de saída FCND.lgr conforme especificado abaixo.

```
Algorithm 1 Subgradient algorithm
   {Input}
   An upper bound UB
   {Initialization}
  \mu^0 = 0
  \lambda_0 = 2
   {Subgradient iterations}
  k = 0
   while k \le K do {stopping criterion}
     \gamma^k = Ax^k - b {gradient of L(\mu^k)}
     \theta_k = \lambda_k (UB - L(\mu^k)) / ||\gamma^k||^2 \{\text{step size}\} \{||\gamma|| = (\sum_i \gamma_i^2)^{1/2}\}
      \mu^{k+1} = \max\{0, \mu^k + \theta_k \gamma^k\}
      if ||\mu^{k+1} - \mu^{k}|| < \varepsilon then
         Stop
      if no progress in more than \beta iterations then
         \lambda_{k+1} = \lambda_k/2
         \lambda_{k+1} = \lambda_k
      end if
      k = k + 1
   end while
```

Saída. Para cada iteração do algoritmo, o arquivo de saída deve apresentar o limite superior, o limite inferior, o gap e o tempo decorrido. Ao final, deve ser também apresentado o limite inferior obtido pela relaxação linear do modelo original.

Parte III – Implementação de uma decomposição de Benders para o problema.

Reformulação. Note que podemos reformular o problema conforme abaixo.

$$\min_{y \in \{0,1\}^{|\mathcal{A}|}} \sum_{ij \in A} f_{ij} y_{ij} + \\
\min_{x} \sum_{k \in K} \sum_{ij \in A} c_{ij} x_{ij}^{k} \\
\text{s.t.} \sum_{ij \in A} x_{ij}^{k} - \sum_{ji \in A} x_{ji}^{k} = \begin{cases} d^{k}, & \text{for } i = s^{k} \\ -d^{k}, & \text{for } i = t^{k} \\ 0, & \text{otherwise} \end{cases} \quad \forall i \in \mathbb{N}, \forall k \in K \\
\sum_{k \in K} x_{ij}^{k} \leq u_{ij} y_{ij} \quad \forall ij \in A, \forall k \in K \\
x_{ij}^{k} \geq 0 \quad \forall ij \in A, \forall k \in K$$

Fixação de y. Para um dado valor de $y = \overline{y}$, obtemos o seguinte programa linear e seu dual.

$$\sum_{ij \in A} f_{ij} \overline{y}_{ij} + \min_{x} \sum_{k \in K} \sum_{ij \in A} c_{ij} x_{ij}^{k}$$
s.t.
$$\sum_{ij \in A} x_{ij}^{k} - \sum_{ji \in A} x_{ji}^{k} = \begin{cases} d^{k}, & \text{for } i = s^{k} \\ -d^{k}, & \text{for } i = t^{k} \end{cases} \quad \forall i \in N, \forall k \in K$$

$$- \sum_{k \in K} x_{ij}^{k} \ge -u_{ij} \overline{y}_{ij} \qquad \forall ij \in A$$

$$x_{ij}^{k} \ge 0 \qquad \forall ij \in A, \forall k \in K$$

$$\sum_{ij \in A} f_{ij} \overline{y}_{ij} + \max_{\alpha, \beta} \sum_{i \in N} \sum_{k \in K} g(i, k) \alpha_{i}^{k} - \sum_{ij \in A} (u_{ij} \overline{y}_{ij}) \beta_{ij}$$
s.t.
$$\sum_{v \in N} h(ij, v) \alpha_{v}^{k} - \beta_{ij} \le c_{ij} \qquad \forall ij \in A, \forall k \in K$$

$$\alpha_{i}^{k} \in \mathbb{R} \qquad \forall i \in N, \forall k \in K$$

$$\beta_{ij} \ge 0 \qquad \forall ij \in A$$
where
$$g(i, k) = \begin{cases} d^{k}, & \text{for } i = s^{k} \\ -d^{k}, & \text{for } i = t^{k} \\ 0, & \text{otherwise} \end{cases} \quad \text{and} \quad h(ij, v) = \begin{cases} 1, & \text{for } i = v \\ -1, & \text{for } j = v \\ 0, & \text{otherwise} \end{cases}$$

Região viável. Note que a região viável do problema dual não depende do valor de y. Se o problema dual é inviável, ou o problema original é ilimitado ou o problema original é inviável. Do contrário, podemos em tese enumerar todos os pontos extremos e direções extremas da região viável do problema dual. Dado um valor de $y=\overline{y}$, o problema dual pode ser resolvido:

(1) checando-se se para algum raio extremo $\sum_{i \in N} \sum_{k \in K} g(i,k) \alpha_i^k - \sum_{ij \in A} (u_{ij} \overline{y}_{ij}) \beta_{ij} > 0$. Neste caso, temos que o problema dual é ilimitado e o problema primal é inviável;

(2) encontrando-se um ponto extremo que maximiza o valor da função objetivo do problema dual $\sum_{ij\in A} f_{ij} \, \overline{y}_{ij} + \sum_{i\in N} \sum_{k\in K} g(i,k) \alpha_i^k - \sum_{ij\in A} (u_{ij} \, \overline{y}_{ij}) \beta_{ij}$. Neste caso, tanto o problema primal e o problema dual apresentam soluções ótimas finitas.

Problema mestre.

$$\begin{array}{ll} \min \limits_{y,z} z \\ \mathrm{s.t.} \quad z \geq \sum\limits_{ij \in A} f_{ij} y_{ij} + \sum\limits_{i \in N} \sum\limits_{k \in K} g(i,k) \overline{\alpha}_i^k - \sum\limits_{ij \in A} (u_{ij} \overline{\beta}_{ij}) y_{ij} & \forall \text{ extreme points} \\ \sum \sum\limits_{i \in N} \sum\limits_{k \in K} g(i,k) \overline{\alpha}_i^k - \sum\limits_{ij \in A} (u_{ij} \overline{\beta}_{ij}) y_{ij} \leq 0 & \forall \text{ extreme rays} \\ z \in \mathbb{R} \\ y_{ij} \in \{0,1\} & \forall ij \in A \end{array}$$

Subproblema.

$$\begin{aligned} \max_{\substack{\alpha,\beta\\ \text{s.t.}}} & \sum_{ij \in A} f_{ij} \overline{y}_{ij} + \sum_{i \in N} \sum_{k \in K} g(i,k) \alpha_i^k - \sum_{ij \in A} (u_{ij} \overline{y}_{ij}) \beta_{ij} \\ \text{s.t.} & \sum_{v \in N} h(ij,v) \alpha_v^k - \beta_{ij} \le c_{ij} & \forall ij \in A, \forall k \in K \\ \alpha_i^k \in \mathbb{R} & \forall i \in N, \forall k \in K \\ \beta_{ij} \ge 0 & \forall ij \in A \end{aligned}$$

Implementação. Implementar o algoritmo de Benders conforme ilustrado abaixo. Considere solução inicial onde todos os links são utilizados ($y_{ij}=1, \forall ij \in A$). Em cada iteração, o subproblema e o problema mestre devem ser resolvidos, e os limites inferiores e superiores devem ser adequadamente atualizados. Considere o parâmetro $\varepsilon = 0.000001$. Note que a cada iteração apenas a função objetivo do subproblema deve ser modificada e um novo corte adicionado ao problema mestre. Deve ser gerado um arquivo de saída FCND.ben conforme especificado abaixo.

```
{initialization}
y := initial feasible integer solution
LB := -\infty
UB := \infty
while UB - LB > \epsilon do
   {solve subproblem}
  \max_{u} \{ f^T \overline{y} + (b - B \overline{y})^T u | A^T u \le c, u \ge 0 \}
   if Unbounded then
      Get unbounded ray \overline{u}
      Add cut (b - By)^T \overline{u} \le 0 to master problem
   else
      Get extreme point \overline{u}
      Add cut z \geq f^T y + (b - By)^T \overline{u} to master problem
      UB := \min\{UB, f^T\overline{y} + (b - B\overline{y})^T\overline{u}\}\
   end if
   {solve master problem}
   \min_{y} \{ z | \text{cuts}, y \in Y \}
   LB := \overline{z}
end while
```

Saída. Para cada iteração do algoritmo, o arquivo de saída deve apresentar o limite superior, o limite inferior, o gap e o tempo decorrido.

Detalhes de implementação.

```
(1) O parâmetro presolver deve estar desabilitado no subproblema:
cplex.setParam(IloCplex.BooleanParam.PreInd, false);
(2) Nome das variáveis duais do subproblema:
alpha = new IloNumVar[data.nNodes][data.nDemands];
for (int n = 0; n < data.nNodes; n++) {
        for (int k = 0; k < data.nDemands; k++) {
                String varName = "alpha" + n + "" + k:
                alpha[n][k] = cplex.numVar(-Double.MAX_VALUE, Double.MAX_VALUE, varName);
beta = new IloNumVar[data.nLinks];
for (int m = 0; m < data.nLinks; m++) {
        String varName = "beta_" + m;
        beta[m] = cplex.numVar(0, Double.MAX VALUE, varName);
}
(3) Teste de status do subproblema:
cplex.solve();
if (cplex.getStatus() == IloCplex.Status.Optimal) {
        recoverPoint();
        return 1;
} else if (cplex.getStatus() == IloCplex.Status.Unbounded) {
        recoverRay();
        return 0;
} else {
        return -1;
(4) Recuperação de raio extremo do subproblema:
private void recoverRay() throws IloException {
        alphaValue = new double[data.nNodes][data.nDemands];
        betaValue = new double[data.nLinks];
        Pattern patternAlpha = Pattern.compile("(alpha )(\d+)( )(\d+)");
        Pattern patternBeta = Pattern.compile("(beta )(\d+)");
        IloLinearNumExpr rayExpression = cplex.getRay();
        IloLinearNumExprIterator iterator = rayExpression.linearIterator();
        Matcher matcher;
        while (iterator.hasNext()) {
                IloNumVar variable = iterator.nextNumVar();
                String name = variable.getName();
                matcher = patternAlpha.matcher(name);
                if (matcher.find()) {
                         int n = Integer.parseInt(matcher.group(2)):
                         int k = Integer.parseInt(matcher.group(4)):
                         alphaValue[n][k] = iterator.getValue();
                } else {
                         matcher = patternBeta.matcher(name);
                         if (matcher.find()) {
                                 int m = Integer.parseInt(matcher.group(2));
                                 betaValue[m] = iterator.getValue();
                }
        }
(5) Adicionar corte no problema mestre:
```

cplex.addCut(cplex.ge(IloNumExpr arg0, double arg1));