## **WEEK 2 CNN COURSE**

## WHY LOOK AT CASE STUDIES?

#### Outline

#### Classic networks:

- LeNet-5 ←
- AlexNet <
- VGG ←

ResNet (152)

Inception

#### **CLASSIC NETWORKS:**



#### Red part can be skipped its optional. 个个个





## **RESNETS ( RESIDUAL NETWORKS)**





#### WHY DO RESNETS WORK?

## Why do residual networks work?



# ResNet



2 CN

Andrew Ng

[He et al., 2015, Deep residual networks for image recognition]

#### **NETWORKS IN NETWORKS AND 1x1 CONVOLUTIONS:**

#### Why does a $1 \times 1$ convolution do?



## Using 1×1 convolutions



Hin et al. 2013. Network in networkl

## Clarifications about Upcoming Inception Network Motivation Video



Note 2: At 3:00, Andrew should have said 28 x 28 x 192 instead of 28 x 28 x 129. The subtitles have been corrected.

#### **INCEPTION NETWORK MOTIVATION**



#### The problem of computational cost





#### **INCEPTION NETWORK**





[Szegedy et al., 2014, Going Deeper with Convolutions]

#### **MOBILE NET**

#### Motivation for MobileNets

- · Low computational cost at deployment
- Useful for mobile and embedded vision applications
- Key idea: Normal vs. depthwiseseparable convolutions



[Howard et al. 2017, MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications]



## Depthwise Separable Convolution









#### Depthwise Separable Convolution

Depthwise Convolution



Pointwise Convolution







Andrew Ng

#### Pointwise Convolution



Andrew Ng

#### Depthwise Separable Convolution

Normal Convolution





## Cost Summary



Cost of depthwise separable convolution

$$= \frac{1}{1} + \frac{1}{1^2}$$

$$= \frac{1}{512} + \frac{1}{3^2}$$

$$= \frac{1}{512} + \frac{1}{3^2} + \frac{1}{3^2}$$

$$= \frac{1}{512} + \frac{1}{3^2} +$$

[Howard et al. 2017, MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications]

Andrew Ng

## Depthwise Separable Convolution



#### MOBILE NET ARCHITECTURE



#### MobileNet v2 Bottleneck



[Sandler et al. 2019, MobileNetV2: Inverted Residuals and Linear Bottlenecks]

## MobileNet

MobileNet v1



#### **EFFICIENT NET**

#### **EfficientNet**



resolution

**Higher Resolution** 



[Tan and Le, 2019, EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks]

Andrew Ng

#### **EfficientNet**



resolution

Deeper



[Tan and Le, 2019, EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks]

#### **EfficientNet**



[Tan and Le, 2019, EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks]

Andrew Ng



[Tan and Le, 2019, EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks]

## **USING OPEN SOURCE IMPLEMENTATIONS**

- About git giithub

## TRANSFER LEARNING



#### **DATA AUGMENTATION**







#### Implementing distortions during training



#### STATE OF COMPUTER VISION



## Tips for doing well on benchmarks/winning competitions



#### Use open source code

- · Use architectures of networks published in the literature
- · Use open source implementations if possible
- Use pretrained models and fine-tune on your dataset