Lecture Module - Sensors

ME3023 - Measurements in Mechanical Systems

Mechanical Engineering
Tennessee Technological University

Module 4 - Sensors

Module 4 - Sensors

- Topic 1 Introduction and Overview
- Topic 2 IC and MEMS based Sensors

Topic 1 - Introduction and Overview

- Analog and Digital Sensors
- Example 1: Distance or Range
- Example 2: Rotation
- Example 3: Orientation

Analog and Digital Sensors

Example 1: Distance or Range Example 2: Rotation

Analog and Digital Sensors

a sensor, a physical element that employs some natural phenomenon... ...to sense the variable being measured

Figure 1.5 Components of a general measurement system.

Analog and Digital Sensors

Example 1: Distance or Ra Example 2: Rotation

Analog and Digital Sensors

Sensors are typically classified as either **analog** or **digital** based on the type of signal that is output from the sensor.

However, this can be a misleading term. Many digital sensors operate based on analog circuit principles but require a digital circuit or MCU to operate or comminicate.

Analog	Digital	Both?

Analog and Digital Sensors

Example 1: Distance or Ra

Example 3: Orientatio

Analog and Digital Sensors

Other Classifications:

- Contact vs Non-Contact
- Programmable (Configurable) vs Non-Programmable
- By Measured Variable

Example 1: Distance or Range

Thought Exercise: How do we measure distance (aka range)?

- What variable or quantity is used to describe distance?
- What type of sensor is used to measure this?
 - •
 - •
 - •

Example 1: Distance or Range

LVDTs with NI LVDT Animation

Example 1: Distance or Range

Example 3: Orientation

• What applications require this type of sensor?

•

•

۰

Example 3: Orientation

• How does this type of sensor work?

•

•

•

Example 2: Rotation

Thought Exercise: How do we measure rotation?

- What variable or quantity is used to describe rotation?
 - •
 - •

- What type of sensor is used to measure this?
 - •
 - •
 - •

Example 2: Rotation

Rotational Potentiometer

Example 2: Rotation

Absolute Encoder

4-Bit Binary Optical Absolute Encoder Disk

Incremental Encoder

2. Types of Rotary Encoder - Incremental

Construction of Incremental Rotary Encoder

Example 2: Rotation

• What applications require this type of sensor?

•

•

•

Example 2: Rotation

• How does this type of sensor work?

•

•

•

Example 3: Orientation

Thought Exercise: How do we measure orientation?

- What variable or quantity is used to describe orientation?
 - •
 - •
 - •
- What type of sensor is used to measure this?
 - •
 - •
 - •

Example 3: Orientation

ADD EXAMPLE ORIENTATION SENSOR HERE

Example 3: Orientation

• What applications require this type of sensor?

•

•

•

Example 3: Orientation

• How does this type of sensor work?

•

•

•

Topic 2 - IC and MEMS based Sensors

- Integrated Circuits
- Micro Electro-Mechanical Devices
- Example 1: Magnometer and Digital Compass
- Example 2: Accelerometer

ntegrated Circuits

ficro Electro-Mechanical Devices xample 1: Magnometer and Digital Compass xample 2: Accelerometer

Integrated Circuits

Activitity: Group Brainstorming
List three applications or devices that use IC based sensors.

- •
- •
- •

Integrated Circuits

ficro Electro-Mechanical Devices xample 1: Magnometer and Digital Compass xample 2: Accelerometer

Integrated Circuits

Micro Electro-Mechanical Devices

Activitity: Group Brainstorming List three sensors that are found on a high performance quadcopter or drone.

- •
- •
- 0

itegrated Circuits ficro Electro-Mechanical Devices xample 1: Magnometer and Digital Compas xample 2: Accelerometer

Micro Electro-Mechanical Devices

Example 1: Magnometer and Digital Compass

An accelerometer is a tool that measures proper acceleration, which is the acceleration of a body in its own instantaneous frame. Applications:

- Navigation Systems Robotics Aircraft Missiles
- Personal Devices Phones Tablets
- Others:

Integrated Circuits
Micro Electro-Mechanical Devices
Example 1: Magnometer and Digital Compass
Example 2: Accelerometer

Example 1: Magnometer and Digital Compass

Thought Exercise: How do we measure acceleration?

Activitity: Group Brainstorming Explain one method for measuring acceleration of a body.

Example 1: Magnometer and Digital Compass

Mechanical Accelerometers Consist of a damped mass spring system and a sensing device.

Types of accelerometers:

- Seismometer or Seismograph
- piezoelectric charge in material resulting from mechanical stress
- piezoresistive change in resistance resulting from mechanical stress
- capacitive

Integrated Circuits
Micro Electro-Mechanical Devices
Example 1: Magnometer and Digital Compass
Example 2: Accelerometer

Example 1: Magnometer and Digital Compass

piezoelectric accelerometer

Integrated Circuits
Micro Electro-Mechanical Devices
Example 1: Magnometer and Digital Compass
Example 2: Accelerometer

Example 1: Magnometer and Digital Compass

capacitive accelerometer

Example 2: Accelerometer

Thought Exercise: How do we measure orientation?

- What variable or quantity is used to describe motion?
 - •
 - •

- What type of sensor is used to measure this?
 - •
 - •
 - •

Example 2: Accelerometer

• What applications require this type of sensor?

.

•

•

Integrated Circuits
Micro Electro-Mechanical Devices
Example 1: Magnometer and Digital Compa
Example 2: Accelerometer

Example 2: Accelerometer