

Atomic Mass

11. The mass of 3.2×10^5 atoms of an element is 8.0×10^{-18} g. The atomic mass of the element is about ($N_A = 6 \times 10^{23}$)
- (a) 2.5×10^{-22}
 - (b) 15
 - (c) 8.0×10^{-18}
 - (d) 30
12. A graph is plotted for an element, by putting its mass on X -axis and the corresponding number of number of atoms on Y -axis. What is the atomic mass of the element for which the graph is plotted? ($N_A = 6.0 \times 10^{23}$)

- (a) 80
- (b) 40
- (c) 0.025
- (d) 20

13. If 'NEERAJ KUMAR' is written by graphite pencil, it weighs 3.0×10^{-10} g. How many carbon atoms are present in it? ($N_A = 6 \times 10^{23}$)
- (a) 1.5×10^{13} (b) 5×10^{12}
 (c) 2×10^{33} (d) 1.5×10^{10}
14. The atomic masses of two elements P and Q are 20 and 40, respectively. If 'a' g of P contains 'b' atoms, how many atoms are present in '2a' g of Q?
- (a) a (b) b
 (c) $2a$ (d) $2b$
15. The molecular formula of a compound is X_4O_9 . If the compound contains 40% X, by mass, what is the atomic mass of X?
- (a) 24 (b) 12
 (c) 26 (d) 13
16. A quantity of 1 g of metallic carbonate XCO_3 is completely converted into a chloride XCl_2 weighing 1.11 g. The atomic mass of the element 'X' is
- (a) 10 (b) 20
 (c) 30 (d) 40
17. An element, X, have three isotopes X^{20} , X^{21} and X^{22} . The percentage abundance of X^{20} is 90% and its average atomic mass
- of the element is 20.18. The percentage abundance of X^{21} should be
- (a) 2% (b) 8%
 (c) 10% (d) 0%
18. A sample of hydrogen gas is collected and it is observed that it contains only hydrogen and deuterium atoms in the atomic ratio 6000:1. The number of neutrons in 3.0 g of such a sample should be nearly
- (a) 0.0005
 (b) 3.01×10^{20}
 (c) 1.80×10^{24}
 (d) 1.0
19. If isotopic distribution of C^{12} and C^{14} is 98.0% and 2.0%, respectively, then the number of C^{14} atoms in 12 g of carbon is
- (a) 1.032×10^{22}
 (b) 1.20×10^{22}
 (c) 5.88×10^{23}
 (d) 6.02×10^{23}
20. The fractional abundance of Cl^{35} in a sample of chlorine containing only Cl^{35} (atomic weight = 34.9) and Cl^{37} (atomic weight = 36.9) isotopes, is 0.6. The average mass number of chlorine is
- (a) 35.7 (b) 35.8
 (c) 18.8 (d) 35.77

Molecular Mass

21. Twenty molecules of SO_3 will weigh as much as molecules of oxygen.
- (a) 100 (b) 50
 (c) 15 (d) 8
22. The mass of CO_2 that must be mixed with 20 g of oxygen such that 27 ml of a sample of the resulting mixture would contain equal number of molecules of each gas
- (a) 13.75 g
 (b) 27.50 g
 (c) 41.25 g
 (d) 55 g
23. A mixture of 2×10^{21} molecules of P and 3×10^{21} molecules of Q weighs 0.60 g. If the molecular mass of P is 45, the molecular mass of Q will be ($N_A = 6 \times 10^{23}$)
- (a) 45 (b) 180
 (c) 90 (d) 270
24. The shape of tobacco mosaic virus (TMV) is cylindrical, having length 3000 Å and diameter 170 Å. If the specific volume of virus is 12.5 ml/g, the molecular mass of TMV is ($N_A = 6 \times 10^{23}$)
- (a) 3.28 (b) 5.44×10^{-24}
 (c) 5.44×10^{-18} (d) 3.28×10^6

25. The density of a DNA sample is 1.1 g/ml and its molar mass determined by cryoscopic method was found to be $6 \times 10^8 \text{ g/mole}$. What is the volume occupied by one DNA molecule? ($N_A = 6 \times 10^{23}$)
- (a) $5.45 \times 10^{-8} \text{ ml}$
(b) $1.83 \times 10^{-9} \text{ ml}$
(c) $9.06 \times 10^{-16} \text{ ml}$
(d) $1.09 \times 10^{-13} \text{ ml}$
26. How many atoms do mercury vapour molecules consist of if the density of mercury vapour relative to air is 6.92? The average mass of air is 29 g per mole. ($\text{Hg} = 200$)
- (a) 1
(b) 2
(c) 4
(d) Infinite
27. Vapour density of a volatile substance is 1.2 ($\text{C}_2\text{H}_6 = 1$). Its molecular mass would be
- (a) 1.2
(b) 2.4
(c) 36
(d) 72
28. A compound contains 7 carbon atoms, 2 oxygen atoms and $9.96 \times 10^{-24} \text{ g}$ of other elements. The molecular mass of compound is ($N_A = 6 \times 10^{23}$)
- (a) 122
(b) 116
(c) 148
(d) 154
29. If the mass of neutron is doubled and that of proton is halved, the molecular mass of H_2O containing only H^1 and O^{16} atoms, will
- (a) increase by about 25%
(b) decrease by about 25%
(c) increase by about 14%
(d) decrease by about 14%
30. Out of 1.0 g dioxygen, 1.0 g atomic oxygen and 1.0 g ozone, the maximum number of oxygen atoms are contained in
- (a) 1.0 g of atomic oxygen
(b) 1.0 g of ozone
(c) 1.0 g of oxygen gas
(d) All contain the same number of atoms
31. Total number of electrons present in 4.4 g oxalate ion ($\text{C}_2\text{O}_4^{2-}$) is
- (a) $0.05N_A$
(b) $2.3N_A$
(c) $2.2N_A$
(d) $2.1N_A$
32. Total number of valence electrons present in 6.4 g peroxides ion (O_2^{2-}) is
- (a) $0.2N_A$
(b) $3.2N_A$
(c) $3.6N_A$
(d) $2.8N_A$
33. The number of F^- ions in 4.2 g AlF_3 is ($\text{Al} = 27$, $\text{F} = 19$)
- (a) 0.05
(b) 9.03×10^{22}
(c) 3.01×10^{22}
(d) 0.15
34. A quantity of 13.5 g of aluminium when changes to Al^{3+} ion in solution, will lose ($\text{Al} = 27$)
- (a) 18.0×10^{23} electrons
(b) 6.02×10^{23} electrons
(c) 3.01×10^{23} electrons
(d) 9.1×10^{23} electrons
35. If an iodized salt contains 1% of KI and a person takes 2 g of the salt every day, the iodine ions going into his body everyday would be approximately ($\text{K} = 39$, $\text{I} = 127$)
- (a) 7.2×10^{21}
(b) 7.2×10^{19}
(c) 3.6×10^{21}
(d) 9.5×10^{19}

Calculation of Mole

47. From 2 mg calcium, 1.2×10^{19} atoms are removed. The number of g-atoms of calcium left is (Ca = 40)
- (a) 5×10^{-5}
 - (b) 2×10^{-5}
 - (c) 3×10^{-5}
 - (d) 5×10^{-6}
48. The number of g-molecules of oxygen in 6.023×10^{24} CO molecules is
- (a) 1 g-molecule
 - (b) 0.5 g-molecule
 - (c) 5 g-molecules
 - (d) 10 g-molecules
49. Equal masses of oxygen, hydrogen and methane are taken in identical conditions.

What is the ratio of the volumes of the gases under identical conditions?

- (a) 16:1:8
- (b) 1:16:2
- (c) 1:16:8
- (d) 2:16:1

50. A pre-weighed vessel was filled with oxygen at NTP and weighed. It was then evacuated, filled with SO₂, at the same temperature and pressure, and again weighed. The weight of oxygen is
- (a) the same as that of SO₂
 - (b) $\frac{1}{2}$ that of SO₂
 - (c) twice that of SO₂
 - (d) $\frac{1}{4}$ that of SO₂

Percentage Composition

Empirical and Molecular Formula

Stoichiometry

93. A mixture of N_2 and H_2 is caused to react in a closed container to form NH_3 . The reaction ceases before either reactant has been totally consumed. At this stage, 2.0 moles each of N_2 , H_2 and NH_3 are present. The moles of N_2 and H_2 present originally were, respectively,
- (a) 4 and 4 moles
(b) 3 and 5 moles
(c) 3 and 4 moles
(d) 4 and 5 moles
94. An ore contains 2.296% of the mineral argentite, Ag_2S , by mass. How many grams of this ore would have to be
95. processed in order to obtain 1.00 g of pure solid silver? ($Ag = 108$)
(a) 1.148 g
(b) 0.026 g
(c) 50 g
(d) 2.296 g
95. A power company burns approximately 500 tons of coal per day to produce electricity. If the sulphur content of the coal is 1.5%, by mass, how many tons SO_2 are dumped into the atmosphere, every day?
(a) 15.0
(b) 7.5
(c) 30.0
(d) 18.75

Limiting Reagent Based

96. An amount of 1.0×10^{-3} moles of Ag^+ and 1.0×10^{-3} moles of CrO_4^{2-} reacts together to form solid Ag_2CrO_4 . What is the amount of Ag_2CrO_4 formed? ($Ag = 108$, $Cr = 52$)
(a) 0.332 g
(b) 0.166 g
(c) 332 g
(d) 166 g
97. An amount of 0.3 mole of $SrCl_2$ is mixed with 0.2 mole of K_3PO_4 . The maximum moles of KCl which may form is
(a) 0.6
(b) 0.5
(c) 0.3
(d) 0.1
98. Large quantities of ammonia are burned in the presence of a platinum catalyst to give nitric oxide, as the first step in the preparation of nitric acid.
- $$NH_3(g) + O_2(g) \xrightarrow{Pt} NO(g) + H_2O(g)$$
- (Unbalanced)
- Suppose a vessel contains 0.12 moles NH_3 and 0.14 moles O_2 . How many moles of NO may be obtained?
99. Equal masses of iron and sulphur are heated together to form FeS . What fraction of the original mass of excess reactant is left unreacted? ($Fe = 56$, $S = 32$)
(a) 0.22
(b) 0.43
(c) 0.86
(d) 0.57
100. Hydrogen cyanide, HCN , is prepared from ammonia, air and natural gas (CH_4) by the following process.
- $$2NH_3(g) + 3O_2(g) + 2CH_4(g) \xrightarrow{Pt} 2HCN(g) + 6H_2O(g)$$
- If a reaction vessel contains 11.5 g NH_3 , 10.0 g O_2 , and 10.5 g CH_4 , what is the maximum mass, in grams, of hydrogen cyanide that could be made, assuming the reaction goes to completion?
(a) 18.26 g
(b) 5.625 g
(c) 17.72 g
(d) 16.875 g

Sequential and Parallel Reactions

101. What mass of carbon disulphide, CS_2 can be completely oxidized to SO_2 and CO_2 by the oxygen liberated when 325 g of Na_2O_2 react with water?
- (a) 316.67 g (b) 52.78 g
(c) 633.33 g (d) 211.11 g
102. An amount of 2 moles KClO_3 is decomposed completely to produce O_2 gas. How many moles of butane, C_4H_8 can be burnt completely by the O_2 gas produced?
- (a) 0.5 (b) 1.0
(c) 2.0 (d) 3.0
103. On heating KClO_3 at a certain temperature, it is observed that one mole of KClO_3 yields one mole of O_2 . What is the mole fraction of KClO_4 in the final solid mixture containing only KCl and KClO_4 , the latter being formed by the parallel reaction?
- (a) 0.50 (b) 0.25
(c) 0.33 (d) 0.67
104. When 12 g graphite is burnt in sufficient oxygen, CO as well as CO_2 is formed. If the product contains 40% CO and 60% CO_2 by mass and none of the reactant is left, what is the mass of oxygen gas used in combustion?
- (a) 24.0 g (b) 21.33 g
(c) 23.8 g (d) 15.6 g
105. A mixture of 254 g of iodine and 142 g of chlorine is made to react completely to give a mixture of ICl and ICl_3 . How many moles of each product are formed? ($I = 127$, $\text{Cl} = 35.5$)
- (a) 0.1 mol of ICl and 0.1 mol of ICl_3
(b) 1.0 mol of ICl and 1.0 mol of ICl_3
(c) 0.5 mol of ICl and 0.1 mol of ICl_3
(d) 0.5 mol of ICl and 1.0 mol of ICl_3

Percentage Based

106. A quantity of 4.35 g of a sample of pyrolusite ore, when heated with conc. HCl , gave chlorine. The chlorine, when passed through potassium iodide solution, liberated 6.35 g of iodine. The percentage of pure MnO_2 in the pyrolusite ore is ($\text{Mn} = 55$, $I = 127$)
- (a) 40 (b) 50
(c) 60 (d) 70
107. How many grams of 90% pure Na_2SO_4 can be produced from 250 g of 95% pure NaCl ?
- (a) 640.6 g (b) 288.2 g
(c) 259.4 g (d) 320.3 g
108. A quantity of 10 g of a piece of marble was put into excess of dilute HCl acid. When the reaction was complete, 1120 cm^3 of CO_2 was obtained at 0°C and 1 atm. The percentage of CaCO_3 in the marble is
- (a) 5%
(b) 25%
(c) 50%
(d) 2.5%
109. A 1.50 g sample of potassium bicarbonate having 80% purity is strongly heated. Assuming the impurity to be thermally stable, the loss in weight of the sample, on heating, is
- (a) 3.72 g
(b) 0.72 g
(c) 0.372 g
(d) 0.186 g

- 110.** Hydrazine N_2H_4 (used as a fuel in rocket system) can be produced according to the following reaction:

When 1.0 kg ClNH_2 is reacted with excess of NH_3 , 473 g of N_2H_4 is produced. What is the percentage yield?

- 111.** Two successive reactions, $A \rightarrow B$ and $B \rightarrow C$, have yields of 90% and 80%, respectively. What is the overall percentage yield for conversion of A to C?

- 112.** Iodobenzene is prepared from aniline ($C_6H_5NH_2$) in a two-step process as shown here:

In an actual preparation, 9.30 g of aniline was converted to 16.32 g of iodobenzene. The percentage yield of iodobenzene is (I = 127)

113. One mole of a mixture of CO and CO_2 requires exactly 20 g of NaOH in solution for complete conversion of all the CO_2 into Na_2CO_3 . How many grams more of NaOH would it require for conversion into Na_2CO_3 , if the mixture (one mole) is completely oxidized to CO?

114. When burnt in air, 14.0 g mixture of carbon and sulphur gives a mixture of CO_2 and SO_2 in the volume ratio of 2:1, volume being measured at the same conditions of temperature and pressure. Moles of carbon in the mixture is

115. A mixture of NaI and NaCl on reaction with H_2SO_4 gave Na_2SO_4 equal to the weight of original mixture taken. The percentage of NaI in the mixture is (I = 127)

Atomic Mass

11. (b) 12. (b) 13. (a) 14. (b) 15. (a) 16. (d) 17. (a) 18. (b) 19. (b) 20. (b)

Molecular Mass

21. (b) 22. (b) 23. (c) 24. (d) 25. (c) 26. (a) 27. (c) 28. (a) 29. (c) 30. (d)
31. (b) 32. (d) 33. (b) 34. (d) 35. (b)

Calculation of Mole

36. (a) 37. (c) 38. (b) 39. (a) 40. (a) 41. (c) 42. (c) 43. (a) 44. (d) 45. (b)
46. (a) 47. (c) 48. (c) 49. (b) 50. (b)

Average Molecular Mass

51. (b) 52. (d) 53. (b) 54. (b) 55. (a) 56. (a) 57. (b) 58. (d) 59. (b) 60. (c)

Percentage Composition

61. (b) 62. (a) 63. (d) 64. (b) 65. (b) 66. (c) 67. (b) 68. (b) 69. (a) 70. (a)

Empirical and Molecular Formula

71. (d) 72. (c) 73. (d) 74. (b) 75. (b) 76. (b) 77. (a) 78. (d) 79. (b) 80. (b)

Stoichiometry

81. (c) 82. (b) 83. (d) 84. (b) 85. (a) 86. (c) 87. (b) 88. (a) 89. (a) 90. (d)
91. (b) 92. (c) 93. (b) 94. (c) 95. (a)

Limiting Reagent Based

96. (b) 97. (a) 98. (b) 99. (b) 100. (b)

Sequential and Parallel Reactions

101. (b) 102. (a) 103. (b) 104. (c) 105. (b)

Percentage Based

106. (b) 107. (d) 108. (a) 109. (c) 110. (a) 111. (c) 112. (d) 113. (a) 114. (c) 115. (d)

- ..