Lista 3

Aneta Przydróżna

Kwantyl dwustronnego testu T z $\alpha=0.05$ i 10 stopniami swobody: tc i kwantyl testu F z $\alpha=0.05$, jednym stopniem swobody w liczniku i 10 w mianowniku: Fc

```
n=10
alfa=0.05
tc=qt(1-alfa/2,n)
Fc=qf(1-alfa,1,n)
c(Fc, tc^2)
```

[1] 4.964603 4.964603

Jak widać oba testy mają ten sam wynik w szczególnym wypadku.

W tabeli ANOVA:

- \bullet Są 22 obserwacje
- Estymator σ : 4,47
- \bullet Odrzucamy hipotezę, że $\beta_1=0$, bo $F=5\in(4.35,\infty)$
- Y jest wyjaśniony w 20% przez X, czyli chaotycznie
- \bullet Współczynnik korelacji wynosi0.45

Dane dotyczące średniej ocen, wyniku z testu na IQ, płci oraz wyniku z testu Piers-Harrisa uczniów z prwnej szkoły.

Prosty model regresji zależności GPA od wyników testu IQ


```
model<-lm(GPA~IQ,dane)
summary(model)</pre>
```

```
##
##
  lm(formula = GPA ~ IQ, data = dane)
##
## Residuals:
##
      Min
               1Q Median
                               3Q
                                      Max
  -6.3182 -0.5377 0.2178
                          1.0268
                                   3.5785
## Coefficients:
              Estimate Std. Error t value Pr(>|t|)
                                   -2.292
                                            0.0247 *
## (Intercept) -3.55706
                          1.55176
## IQ
                                    7.142 4.74e-10 ***
               0.10102
                          0.01414
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 1.635 on 76 degrees of freedom
## Multiple R-squared: 0.4016, Adjusted R-squared: 0.3937
```

F-statistic: 51.01 on 1 and 76 DF, p-value: 4.737e-10

Można wyczytać, że $R^2 = 0.4$, zatem zmienna objaśniana(GPA) nie jest dobrze wyjaśniana przez zmienną objaśniającą(IQ).

Sprawdzam hipotezę zerową,że GPA jest nieskorelowane z IQ

Poziom ufności:(3.25, 9.83). Statystyka F wynosi 51. P-value jest mniejsza niż 0.05, zatem można odrzucić hipotezę zerową i przyjąć że GPA jest skorelowane z IQ.

Dwaj uczniowie z IQ równym 100 mają GPA równe 4.64 i 6. Przewidywana wartość GPA w naszym modelu to 6.54 ze wzoru na regresję liniową. Przedział ufności (90 procentowy) dla GPA=100 : $(4.4\ ,\,8.7)$. Natomiast poza ograniczenia 95% obszaru przewidywań, wypadają 3 punkty. Prosty model regresji liniowej opisujący zależność GPA i testu Piersa Harrisa

Statystyka F wynosi 31.6. Statystyka \mathbb{R}^2 wynosi 0.28. Oznacza to że P-H w jeszcze mnie
jszym stopniu niż IQ wyjaśnia GPA.

Testowanie H_0 : GPA jest nieskorelowane z wynikiem testu Piersa Harrisa

cor(PH,GPA)

[1] 0.5418329

P-value jest mniejsza niż 0.05 (niemalże zerowe),
zatem można odrzucić hipotezę zerową i przyjąć że GPA jest skorelowane z PH.

Typowanie GPA dla uczniów, którzy mają z testu Pierca Harrisa 60 pkt.

Otrzymane z danych wyniki GPA przy PH=60 to: 9.3, 8.9, 7.9, 9.Poza 90% przedział ufności: (-0.4, 4.1) wypada około 7 obserwacji. Poza pasmo dla 95-procentowych przedziałów predykcji wystają 3 obserwacje.

Okazuje się, że IQ lepiej wyjaśnie GPA niż test PH.W pierwszym rzypadku statystyka F wynosi 51, a w drugim 31.6. A im większe F tym β jest mniej zerowa. Również statystyka R^2 , która jest większa przy testach ze zmienną IQ, jest bardziej istotna.

Analiza danych dotyczących ilości obsługiwanych kopiarek w czasie.

Suma reszt w modelu wynosi zero. Reszty względem X są porozrzucane.

```
model<-lm(Y~X,dane)
sum(residuals(model))</pre>
```

[1] -1.176836e-14

Błędy występują przy estymacji poszczególnych wartości względem zmiennej objaśniającej. Dane rozkładają się bez określonego schematu. Mamy zależność liniową niezależnych reszt. Również na kolejnym wykresie dane układają się w miare symetrycznie nad i pod zerem obciętych. Wykres posortowany według objaśniającej zachowuje się podobnie.

Posortowane

Rozkład błędów na histogramie. Największa częstotliwość w okolicy zera, spadająca w miarę symetrycznie z obydwóch stron.

Statystyka R^2 jest na poziomie 96% , czyli model dobrze przedstawia zależność między zmiennymi. P-wartość dla b
1 wynosi prawie 0, więc zmienne są od siebie zależne. Mamy podstawy do twierdzenia że to rozkład normalny patrząc na jego qqplot(bez dużych ogonów).

Zmiana czasu serwisowania pierwszej maszyny z 20 na 2000 godzin.

Statystyka F wynosi 0.037 więc jest nieistotna .Nie ma zależności X i Y.Jedna zamieniona obserwacja na to wpłynęła.P-wartość wynosi 0.84. Stworzenie pasującego modelu jest mało prawdopodobne. Wykres reszt znacząco się zmieniły,dzieląc się na pierwszą obserwacje odstającą i resztę blisko siebie..Histogram ma za to bardzo ciężki prawy ogon.Żaden model regresji nie będzie pasował.

Dane dotyczące wartości stężenia roztworu, w zależności od czasu.

Statystyka R^2 wynosi 0.8 czyli stężenie jest bardzo dobrze wyjaśnione przez czas. H_0 mówiące, że β jest zerowa odrzucamy przez p-value bliskie zeru. Statystyka F Wynosi 56, więc spokojnie przekracza wartość 4.6 dla 95% ufności, wpadając do obszaru krytycznego. Zatem przyjmujemy H_A mówiące, że przynajmniej jeden ze współczynników β jest niezerowy.

Dopasowanie linii regresji i pasmo dla 95% interwałów predykcyjnych.

Korelacja zmiennych wynosi 0.98. Rozkład błędów nie jest normalny. Regresja wychodzi malejąca. Model nie do końca dobrze przewiduje dane.

Transformacja modelu metodą Box-Cox.Rozkład zbliżony do normalnego.

Według wykresu zmienna $\lambda=0$, więc można nałożyć logarytm na zmienną stężenia. Konstruuję nowy model.

Po nałożeniu na Y logarytmu nasz model znacznie się poprawił. Wszystko wpada do przedziału 95%, dla średniej nie wszystkie,
bo 3 obserwacje wypadają. R^2 wynosi prawie 1, p-value 0 natomiast statystyka F
 1838. To wszystko świadczy o bardzo dobrym dopasowaniu modelu. Rozkład błędów wygląda lepiej niż w
 pierwotnej wersji danych-Są one normalne.

Nałożenie exp na y

Punkty ustawiają się dokładnie na jednaj lini. Regresja jest malejąca.

Tym razem na wykresie mamy rosnące prostą i przedziały. Przedział predykcyjny obejmuje wszystkie punkty.

Porównując powyższe wykresy, wykonane na tych samych danych róznymi metodami, okazuje się że nr 1 ma za każdym razem inną wariancję błędów (trudno wskazać że dane są iid). Najlepszym modelem jest ten $\log(Y)$ ponieważ dane wydają się idealnie pasować do modelu. Również statystyka R^2 =0.992 jest tu największa, zaraz za nią z wartością 0.987 jest statystyka w ostatnim prypadku. W pozostałych dwóch przypadkach prawie 0.8.