Energy Band

- → The band which is completely filled with electrons at 0K is called valence band.
- **→ Conduction Band** is completely empty at 0K.
- **→ Energy band** gap is the difference between Valence band and Conduction band.

On the basis of Energy Band Theory

////Conduction/Band////
Valence/Band

Conductor (Metal)

Conduction & valence bands overlap eachother

Conduction Band

Energy gap < 3eV

Valence Band

Semiconductor

Conduction Band

Energy gap > 3eV

Valence Band

Insulator

Classification of Metals, Insulator and Semiconductor on the basis of Conductivity

1) For metals:

$$\rho \sim 10^{\text{--}2}$$
 – $10^{\text{--}8}~\Omega$ m

 $\sigma \sim 10^2$ - 10^8 s/m

They have high conductivity.

2) For Semiconductors:

$$\rho \sim 10^{-5}$$
 – $10^6 \, \Omega$ m

$$\sigma \sim 10^5$$
 – 10^{-6} s/m

They have intermediate conductivity to metals and insulators.

3) For insulators:

$$\rho \sim 10^{11}$$
 – $10^{19}\,\Omega$ m

$$\sigma \sim 10^{\text{-}11}$$
 – $10^{\text{-}19}$ s/m

They have low conductivity.

- σ = electrical conductivity.
- ρ = resistivity

14. SEMICONDUCTOR ELECTRONICS: MATERIALS, DEVICES AND SIMPLE CIRCUITS

SEMICONDUCTOR AND ITS TYPES

Semiconductors exhibit electrical conductivity between conductors and non – conductors.

Intrinsic Semiconductors

- 1) Pure Semiconductors are intrinsic semiconductors.
- 3) Examples:- Ge, Si

Extrinsic Semiconductors

- 1) The doped semiconductors are said to be extrinsic semiconductors
- 2) Impurities are added to improve conductivity

Doping /

The process of adding impurity in an controlled quantity with pure semiconductor to promote its conductivity.

P - type Semiconductor

- 1) Si or Ge doped with trivalent (B, Al) elements.
- 2) Holes are majority charge carriers.
- 3) Electrons are minority charge carriers.

N - type Semiconductor

- 1) Si or Ge doped with pentavalent elements (P, As)
- 2) Electrons are majority charge carriers.
- 3) Holes are minority charge carriers.

P - N junction

A junction formed either when a p-type semiconductor is grown in n-type semiconductor or n-type is grown in a p-type semiconductor.

P - N junction diode

- → P N junction diode is the combination of P type and N type semiconductor.
- → P region has mobile majority holes and immobile ve ions.
- → N region has mobile majority free electrons and immobile positively charged ions.

Potential Barrier

Potential barrier is the potential difference developed across depletion region.

V_B = 0.7 for silicon = 0.3 for germanium

Forward Bias

In Forward Bias

- 1) +ve terminal of the battery to p side
- 2) -ve terminal of the battery to n side
- 3) depletion layer reduced
- 4) diffusion current increases

Reverse Bias

In reverse Bias

- 1) -ve terminal of the battery to p side
- 2) +ve terminal of the battery to n -side
- 3) depletion layer increases
- 4) very small reverse current

Avalanche Breakdown

This phenomenon takes place in,

- 1) p n junction having 'Low doping'
- 2) p n junction having thick depletion layer.

Here, p-n junction damages permanently due to abruptly increment of minorities during repetitive collisions.

Zener Diode

Specially designed junction diodes which can operate in the reverse breakdown voltage region continuously without being damaged.

Zener Breakdown

This phenomenon takes place in

- 1) p n junction having 'high doping'
- 2) p n junction having thin depletion layer Here, p -n junction does not damage permanently

Applications of Junction Diode

1. Half Wave Rectifier

A half-wave rectifier circuit

1. Full-Wave Rectifier

A full-wave rectifier circuit

Input waveforms given to the diode D, at A and to the diode D, at B t $\underbrace{\text{Holinois}_{g_{i}}}_{g_{i}} \underbrace{\text{Due to Due to Due to Div}_{D_{i}}}_{D_{i}} \underbrace{\text{Due to Due to Div}_{D_{2}}}_{D_{2}} \underbrace{\text{Due to Due to Div}_{D_{2}}}_{D_{2}}$

Output waveform across the load R

