UNCLASSIFIED 409000

DEFENSE DOCUMENTATION CENTER

FOR

SCIENTIFIC AND TECHNICAL INFORMATION

CAMERON STATION, ALEXANDRIA, VIRGINIA

UNCLASSIFIED

NOTICE: When government or other drawings, specifications or other data are used for any purpose other than in connection with a definitely related government procurement operation, the U. S. Government thereby incurs no responsibility, nor any obligation whatsoever; and the fact that the Government may have formulated, furnished, or in any way supplied the said drawings, specifications, or other data is not to be regarded by implication or otherwise as in any manner licensing the holder or any other person or corporation, or conveying any rights or permission to manufacture, use or sell any patented invention that may in any way be related thereto.

409000

I ZENTRAAL LABORATORIUM T.N.O.

CATALCEED BY DDC AS AD NO.

Rapport

Mechanical properties of highly filled elastomers II

Appendices

Julianalaan 134

Delft

Telefoon 20130*

Nijverheidsorganisatie T.N.O.

CENTRAL LABORATORY T.N.O.

DELFT (The Netherlands)

MECHANICAL PROPERTIES OF HIGHLY FILLED ELASTOMERS II

Influence of particle size and content of filler on tensile properties and shear moduli.

APP NDICES

		page
APPENDIX A	Correlation between density and composition.	1
APPENDIX B	Swelling in solvents.	2
APPENDIX C	Numerical data of dynamic mechanical	5
	measurements of shear moduli.	

Office of Naval Research Contracts N 62558-2822 and N 62558-3243 Technical Report No. 2 April, 1963

APPENDIX A CORRELATION BETWEEN DENSITY AND COMPOSITION

Table A 1 Composition, density and volume content of the filled urethane rubbers prepared

sample	weig	ht	density	filler content	t in per cent.	by vol.	particle size
no.	rubber compo- nent	filler compo- nent	d4 d4	as calculated from weight ratios of components *)	as calculated from correla- tion with den- sity **)	in	
	(g)	(g)	(g/cm ³)				μ
41	-	0	1.0724	-	-	0	<u>-</u>
43 44 47 52	344 324 406 471	740 700 580 430	1.6237 1.6365 1.5274 1.4243	50.2 51.7 41.4 31.1	50.3 51.5 41.5 32.1	50 52 42 32	300 - 480 "
48 49 53 55	354 345 451 537	760 490 410 280	1.6436 1.5332 1.4235 1.3041	51.5 41.1 31. 0 20 .5	52.1 42.0 32.1 21.1	52 42 32 21	210 ~ 30 0
58 78 59 61 63	355 379 431 500 569	625 670 495 355 210	1.5911 1.5873 1.4736 1.3621 1.2441	46.6 46.7 36.2 26.0 15.5	47.3 46.9 36.6 26.4 15.7	47 47 37 26 16	125 - 150 " "
60 62 64 65	395 463 533 604	564 423 282 141	1.5269 1.4158 1.3002 1.1856	41.4 31.1 20.7 10.4	41.5 31.4 20.8 10.4	42 31 21 10	90 - 105 "
66 67 68 69	395 462 532 603	564 423 282 141	1.5257 1.4133 1.2928 1.1854	41.4 31.1 20.8 10.4	41.4 31.1 20.1 10.3	41 31 20 10	50 - 60 "
70 71 75 76 77	397 462 463 533 604	554 423 423 282 141	1.5217 1.4163 1.4122 1.2985 1.1857	40.8 31.1 31.1 20.7 10.4	41.0 31.4 31.0 20.7 10.4	41 31 31 21 10	33 - 40 n n

^{*)} density of rubber component $d_r^{20} = 1.0724 \text{ g/cm}^3$ density of filler component $d_f^{20} = 2.169 \text{ g/cm}^3$

^{**)} see formula (2.1) of the report proper, page 8

APPENDIX B SWELLING IN SOLVENTS

From the sample a specimen of 50 mm length and 3.5 x 7 mm² cross-section was machined. The specimen was mounted in a wide test tube (\emptyset 40 mm) with stopper and provided with two short pins at a mutual distance of 35 mm. After conditioning at 23° C the distance between the centre of the two pinheads was measured by means of a cathetometer. The swelling liquid was put in the test tube and after certain time intervals the distance between the marks was measured again. From the data, volume per cent. increase S_v was calculated as a function of swelling time.

In the determination of the volume swelling of sodium chloride filled rubbers it was observed that the specimens filled with coarse particles desintegrated during the first period of (rather rapid) swelling. This difficulty could be solved by two means:

- (i) use of specimens with smaller cross-sections, e.g. 2 x 7 mm.
- (ii) "pre-swell" of the specimens in solvent vapour.

For practical reasons, method (ii) was used throughout. The "pre-swollen" specimens could be immersed in the swelling liquid without damage.

The experimental accuracy of the determination of the degree of swelling, which could be realized was well between \pm 5 % of S_v . A comparison between the results of the method described above and the method of weighing the swellen specimen, showed complete agreement for unfilled rubbers.

An example of the relationship between volume swelling vs the square root of swelling time is shown in Figure B 1. It is seen that after a certain time a well-defined maximum degree of swelling is reached. This was the case with all rubbers, filled or unfilled, prepared at T.N.O. during this investigation proving that we deal with well crosslinked systems. The equilibrium value of swelling found, was given in all cases.

From a considerable number of unfilled rubbers the volume swelling in chloroform and in trichloro-ethylene was determined. The results of these measurements are listed in Table B 1, together with composition and Shore A hardness.
So far no simple correlation could be found between composition and swelling
properties. Results of the swelling of filled rubbers in chloroform and trichloro-ethylene are listed in Table 2.

Table B 1 Composition, hardness and swelling of unfilled urethane rubbers prepared.

Exp. no.		ition per mophen 360		Shore A hardness	volume swell % vol. incre	ling ease at 23°C in
	T.D.I.	T.M.P.	D.B.		chloroform	trichloro- ethylene
3600/5	20.1	4.0	•	43	434	344
3600/8	16.9	1.9	1.0	50	425	33 5
36 00/10	15.7	2.1	-	1111	491	400
3600/11	17.8	2.9	-	41	480	370
3 600/12	19.8	3.7	-	47	438	327
3600/14	18.6	3.0	1.1	46	463	. 35 5
3600/14 B	-	-	-	45	450	3 46 *)
3600/15	17.8	3.1	2.2	44	453	<i>3</i> 50
3600/16	19.8	4.1	2.2	51	396	315
3 600/17	16.4	3.1	1.9	41	5 33	411
3600/18	16.5	2.8	1.9	47	461	<i>3</i> 55
3600/19	16.7	3.0	2.0	47	458	36 0
3600/23	18.0	3.0	2.0	52	388	310
3600/24	17.9	3.0	2.0	52	<i>3</i> 95	320
3600/25	18.5	3. 9	0.95	44	424	334
3600/26	18.3	3.9	1.0	45	428	334
3600/27	20.3	3.9	1.0	56	347	278
3600/28	20.3	3.9	0.9	56	3 59	272
3600/29	20.4	* 4.1	-	50	3 70	294
3600/31	20.1	4.0	-	46	442	3 28
3 600/41	20.5	4.0	1.5	54	<i>3</i> 70	280
3600/56	20.1	3.9	1.5	48	410	315
3600/57	20.1	4.1	1.5	48 1	42 2	319
3600/73	20.4	4.0	4.0	48 2	402	305
3600/74	20.4	4.0	1.5	49 2	420	312

^{*)} After-curing $1\frac{1}{2}$ h 130° C

The swelling behaviour of Model Substance A was quite different from the swelling of the rubbers prepared at T.N.O. As is seen from Figure B 2, there are at least two different mechanisms of swelling, a rapid and a slow one. Even after very long swelling times no real equilibrium value of swelling was reached. The values of swelling listed for this substance in Table 3 were the swelling values read (interpolated) after 24 hours.

In butanone, Model Substance A even dissolved completely after 1,600 hours swelling time.

APPENDIX C NUMERICAL DATA OF DYNAMIC MECHANICAL MEASUREMENTS OF SHEAR MODULI

In the undermentioned tables, numerical data are given of the results of dynamic mechanical measurements presented in Figures 20 to 29.

Results of measurements are given in 3 figures. In several cases the meaning of the last figure given may be uncertain.

In some cases, data in the tables are given in parentheses. Those data seem to be unrealistic due to the unsuitability of the technique. Generally, they were omitted in plotting the results.

temp.		_G 10 ⁷	N/m ²		tan ô	10-3
°c	vibrat	free torsional non-resonance vibration 1c/s			on 1 c/s	non-resonance vibration 1 c/s
	3600/29	3600/41	3 600/29	3600/29	3600/41	36 00/29
- 140 - 130 - 120 - 110 - 100 - 80 - 70 - 60 - 70 - 45 - 35 - 25 - 20 - 19 - 10 20 30 40 50 60 70 60 - 35 - 25 - 19 - 10 - 10 - 20 - 30 - 10 - 10 - 20 - 30 - 10 - 10 - 10 - 10 - 20 - 30 - 10 - 1	192 186 179 177 164 157 150 149 123 98.0 30.9 10.5 - 0.285 - 0.178 0.157 0.121 0.121 0.121 0.121 0.122 0.127 -	0.335 0.200 0.145 0.126 - 0.128	151 151 151 129 122 93.7 51.3 16.7 3.41 1.13 0.5336 -0.1668 0.142 0.1440 0.1440 0.1446 0.1449	(26) (21) (17) (16) (17) (18) (20) (21) 79 160 580 730 - - - - - - - - - - - - - - - - - - -	(14) (17) 58 185 540 770 950 800 500 260 150 (51) (41)	70 305 645 915 885 725 565 - 280 185 115 (83) (42) (25) (21) (27) (21) (17) (13) (8)

Table C 2 Shear modulus G and damping tan ô at 10-100 c/s of unfilled polyurethane rubber 3600/29

temp.	frequency	G 10 ⁷ N/m ²	tan 8 10 ⁻³
- 140	70.1	176	13
	27.3	176	11
	13.8	176	13
- 130	70.1	176	15
	27.0	172	14
	13.7	171	15
- 120	69.2	172	15
	26.7	169	1 6
	13.6	167	16
- 110	68.4	168	17
	26.3	163	18
	13.3	162	18
- 100	67.6	164	19
	26.0	161	18
	13.3	160	18
- 90	66.6	159	21
	25.7	156	20
	13.1	155	22
- 80	66. 0	156	31
	25.4	153	35
	13.0	152	38
- 70	63.4	144	40
	24.2	139	76
	12.3	137	59
- 60	69.0	132	79
	26.4	132	94
	13.5	132	170
- 60	64.2	126	210
	23.9	113	140
	12.0	108	200

APPENDIX C (continued)

Table C 2 (continued)

temp.	frequency c/s	G 10 ⁷ N/m ²	tan & 10-3
- 50	55.3 19.4 9.4	84.3 61.6 51.7	300 535 400
- 50	50.4 18.5 8.9	63.6 52.8 42.0	315 530 480
- 40	43.1 15.9 7.4	36.7 28 . 9 17 . 4	480 430 470
- 40	25.7	59.3	410
- 30	46.8 11.1	6.26 6.57	320 680
- 20	26.4	1.03	100
- 20 - 10 0 10 20 30 40	16.7 11.7 9.9 9.7 9.6 9.6	0.789 0.256 0.110 0.0909 0.0883 0.0883	915 375 240 145 89 58 41
50 60 70 80 90	9.8 9.8 9.9 9.9 10.0	0.0977 0.103 0.108 0.112 0.114 0.108	35 33 21 20 17 15

Table C 3 Shear modulus G and damping tan ô (1 c/s) for polyurethane rubbers filled with 300-480 μ NaCl.

temp.		G 10 ⁷ N,	/m ²		tan 8 10	0-3
°c	3600/44 52 vol. %		3600/52 32 vol. %	3600/44 52 vol. %	3600/47 42 vol. %	3600/52 32 vol. %
- 140 - 130 - 120 - 110 - 100 - 80 - 70 - 60 - 50 - 45 - 35 - 25 - 20 - 15 - 10 - 20 22 30 40 50 60 70 80 - 70 - 80 - 70 - 45 - 40 - 35 - 25 - 10 - 20 - 20 - 80 - 70 - 80 - 70 - 80 - 70 - 40 - 70 - 80 - 70 - 45 - 40 - 70 - 80 - 90 - 15 - 90 - 9	462 451 446 441 462 452 449 432 424 391 278 49.0 27.1 12.7 8.3 4.28 3.31 2.70 2.04 1.38 1.38 1.32 1.03 1.00	337 312 280 218 101 50.0 20.6 3.01 1.50 0.980 	260 246 216 174 82.7 21.5 15.5 4.62 1.20 0.740 - 0.480	14 13 14 14 12 13 13 17 36 170 385 595 595 435 280 201 140 105 66 44 38 28 41 25	- - 10 - 18 61 165 490 600 670 - 615 - 220 - 41 - 24	11 - - 14 49 150 470 1,140 850 - 640 400 315 - 185 - 100 - 51

Table C 4 Shear modulus G and damping tan δ (1 c/s) of polyurethane rubbers filled with 210-300 μ NaCl.

temp.		G 10	$0^7 \mathrm{N/m}^2$			tan ô	10-3	
°c	3600/48	3600/49	3600/53	3600/55	3600/48	3600/49	3600/53	3600/55
	52 vol.%	42 vol.%	32 vol.%	21 v ol.%	52 vol.%	42 vol.%	32 vol.%	21 v ol.%
- 80	43 8	344	273	209	12	14	12	14
- 60	409	324	255	191	21	17	21	55
- 50	386	298	233	-	41	44	46	-
- 48] -	-	· -	157	-	-	-	88
- 45	341	261	199	-	87	85	110	-
- 43	-	-	-	116	-	_	-	185
- 40	224	160	90	87.4	250	295	425	3 20
- 35	114	64.5	3 5.4	26.1	420	600	695	610
- 30	47.7	30. 8	11.0	10.6	700	875	870	940
- 25	19.2	14.0	-	-	780	750	-	-
- 20	7.92	5.67	1.66	1.19	-	585	635	795
- 15	5.51	3. 18	0.964	0.759	520	-	485	570
- 10	2.87	1.77	0.670	0.505	365	330	352	3 95
0	2.12	1.07	0.440	0.294	240	180	160	180
20	1.25	0.840	0.372	0.214	82	78	71	64
40	1.10	0.740	0 .3 60	0.220	36	62	3 6	49
60	1.09	0.720	0.350	0.224	3 2	3 6	-	23
80	-	0.625	-	-	- .	23	-	-

Table C 5 Shear modulus G and damping tan δ (1 c/s) of polyurethane rubbers filled with NaCl 125-150 μ .

temp.		G	10 ⁷ N/m	2		tan	o 10 ⁻	3
°c	3600/78 47 vol.%	1		3600/63 16 v ol.%	-		3600/61 26 vol.%	
- 80	372	311	235	505	12	13	14	14
- 60	354	290	220	187	12	16	20	22
- 50	331	271	505	167	29	36	50	56
- 45	315	246	180	142	48	80	99	119
- 40	229	153	113	84.0	175	255	280	3 20
- 35	132	72.3	43.3	26.2	335	455	570	670
- 30	62.4	34.7	21.0	10.0	520	600	800	895
~ 25	27.2	9•95	4.0	1.73	680	755		770
- 20	8.40	i -	1.38	0.790	795	-	-	645
- 15	-	1.96	0.755	0.502	-	54 0	545	470
- 14	4.80	-	-	-	525	•	-	-
- 10	2.32	1.17	0.539	0.321	340	360	390	280
0	1.48	0.731	0.357	0.235	190	215	184	220
20	0.940	0.576	0.286	0.191	75	95	81	74
40	0.870	0.510	0.270	0.190	36	37	54	23
60	0.846	0.485	0.277	0.190	-	24	-	-

Table C 6 Shear modulus G and damping tan δ (1 c/s) of polyurethane rubbers filled with NaCl 90-105 μ_{\bullet}

temp.		G	10 ⁷ N/m ²			tan δ	10-3	-
°c	360 0/60	3600/62	3600/64	3600/65	3600/60	3600/62	3600/64	3600/65
	42 vol.%	31 vol.%	21 vol.%	10 vol.%	42 vol.%	31 vol.%	21 vol.%	10 vol.%
- 82	-	294	-	180	-	8	-	14
- 80	362	-	221	-	13	-	11	-
- 60	340	273	211	166	19	15	15	22
- 50	3 15	239	165	152	42	52	92	45
- 45	ر28	202	102	124	84	120	275	115
- 40	189	110	40.0	78.9	220	3 20	5 3 5	295
- 35	89.6	44.9	11.0	27.7	415	5 35	820	585
- 30	45.2	19.0	5.00	11.0	545	685	1,090	845
- 25	16.8	7.07	1.95	-	810	850	640	-
- 20	7.00	2.90	0.725	0.721	715	555	500	680
- 15	3.04	1.43	0.492	0.389	525	460	<i>3</i> 75	495
- 10	1.85	0.970	0 .35 8	0.279	3 70	3 60	295	355
0	1.08	0.637	0.262	0.190	205	200	170	150
20	0.766	0.509	0.220	0.162	52	76	54	66
40	0.677	0 .3 98	0.215	0.163	-	3 8	42	-
60	0.677	0 .3 87	0,225	0.157	10	25	26	-

Table C 7 Shear modulus G and damping tan δ (1 c/s) of polyurethane rubbers filled with 33 - 40 μ NaCl.

temp.		G :	10 ⁷ N/m ²			tan ô	10-3	
°c	3 600/70	3600/71	36 00/76	3600/77	3600/7 0	3 600/71	3600/ 76	3600/77
	41 vol.%	31 vol.%	21 vol.%	10 v ol.%	41 vol.%	31 vol.%	21 vol.%	10 vol.%
- 80	3 60	290	214	182	10	12	13	10
- 60	339	276	200	168	15	12	20	16
- 50	317	261	177	155	34	43	48	34
- 45	285	233	159	134	77	74	105	100
- 40	216	160	97.0	78.2	175	265	290	30 0
- 35	102	80.5	38.2	30.2	<i>3</i> 75	425	550	540
- 30	61.2	29.2	17.5	14.0	500	610	760	650
- 25	23.0	11.0	3.55	-	625	-	1,060	-
- 20	8.25	4.37	1.06	1.04	800	6 3 5	-	610
- 15	3.80	2.10	0.708	0.503	620	480	63 0	512
- 10	2.32	1.60	0.480	0.282	446	3 90	380	390
0	1.17	0.790	0.326	0.205	251	230	210	112
20	0.790	0.575	0.220	0.155	82	97	56	56
40	0.728	0.450	0.226	0.154	-	45	40	3 6
60	0.690	0.411	0.232	0.159	3 8	-	34	-

