Machine learning Part 2 Model selection & validation

Jérôme Dockès & Nikhil Bhagwat

QLS612 course 2022-07-12

Outline

Introduction: cross-validation

Model and hyperparameter selection

Dimensionality reduction

Conclusion: summary of pitfalls

Recap of part 1

Supervised learning

- Regression: least-squares linear regression
- Classification: logistic regression

Recap of part 1

Supervised learning

- Regression: least-squares linear regression
- Classification: logistic regression

Regularization

• ℓ_2 a.k.a. ridge regularization

Recap of part 1

Supervised learning

- Regression: least-squares linear regression
- · Classification: logistic regression

Regularization

• ℓ_2 a.k.a. ridge regularization

Model evaluation and selection

- Out-of-sample generalization; independent test set
- · Performance metrics:
 - · regression: mean squared error
 - · classification: accuracy, ROC curve
- Cross-validation

$$Y = f(X) + E \tag{1}$$

• $Y \in \mathbb{R}$: output (a.k.a. target, dependent variable) to predict

$$Y = f(X) + E \tag{1}$$

- $Y \in \mathbb{R}$: output (a.k.a. target, dependent variable) to predict
- $X \in \mathbb{R}^p$: features (a.k.a. inputs, regressors, descriptors, independent variables)

$$Y = f(X) + E \tag{1}$$

- $Y \in \mathbb{R}$: output (a.k.a. target, dependent variable) to predict
- X ∈ R^p: features (a.k.a. inputs, regressors, descriptors, independent variables)
- $E \in \mathbb{R}$: unmodelled noise

$$Y=f(X)+E \tag{1}$$

 • $Y\in\mathbb{R}$: output (a.k.a. target, dependent variable) to predict

- $X \in \mathbb{R}^p$: features (a.k.a. inputs, regressors, descriptors, independent variables)
 - $E \in \mathbb{R}$: unmodelled noise
 - f: the function we try to approximate

Example (Linear regression)

$$Y = \beta_0 + \langle X, \beta \rangle + E$$

$$= \beta_0 + \langle X, \beta \rangle + E$$

$$= \beta_0 + \sum_{j=1}^p X_j \beta_j + E$$

(1)

5 / 62

How to set parameters: Empirical Risk Minimization

- Choose a loss function L measuring how bad is our error.
- Example: squared error $L(Y, \hat{Y}) = (Y \hat{Y})^2$, where \hat{Y} is the prediction
- We want to minimize the expected error (risk): $\mathbb{E}[L(Y, \hat{Y})]$

How to set parameters: Empirical Risk Minimization

We do not know the risk: estimate it from a sample. Given $\mathfrak n$ training examples $X\in\mathbb R^{n\times p}$, $y\in\mathbb R^n$, minimize the empirical risk: $\sum_{i=1}^n L(y_i,\hat{y_i})$

For linear regression:

find $\hat{\beta}_0 \in \mathbb{R}, \hat{\beta} \in \mathbb{R}^p$ that minimize

$$\|\mathbf{y} - \hat{\mathbf{y}}\|_{2}^{2} = \|\mathbf{y} - \hat{\boldsymbol{\beta}}_{0} - \mathbf{X}\,\hat{\boldsymbol{\beta}}\|_{2}^{2}$$
 (4)

$$= \sum_{i=1}^{n} (y_i - \hat{\beta}_0 - \sum_{j=1}^{p} X_{ij} \, \hat{\beta}_j)^2$$
 (5)

"Fitting" the parameters to X, y.

Evaluating a model

We always want to do 2 distinct things:

- Select a model (set the parameters).
- · Evaluate its performance.

We can never do both on the same data!

- 30 different models (eg 30 possible values for $\hat{\beta}_0, \hat{\beta}$)
- All have a risk (expected accuracy) of 0.5
- Evaluate on a first dataset

- 30 different models (eg 30 possible values for $\hat{\beta}_0, \hat{\beta}$)
- All have a risk (expected accuracy) of 0.5
- Evaluate on a first dataset and select the best model

On a new dataset, the selected model will perform on average:

- 1. Better than on dataset A?
- 2. Worse than on dataset A?
- 3. The same?

The selected model is more likely to perform worse on average than on dataset A.

The selected model is more likely to perform worse on average than on the dataset used to select it: To estimate its risk we need a new dataset.

Distribution of train and test errors across 30 repetitions:

- The systematic difference is the bias.
- It is why we cannot use the training error to estimate model performance.

Estimating prediction performance

When you hear "best", "maximum", "select", ... think "bias" Setting the parameters

- **Select** β that gives the **best** prediction on training data
- The prediction score for $\hat{\beta}$ is biased: compute a new score on unseen test data.

scikit-learn "estimator API": fit; predict

```
estimator = Ridge()
estimator.fit(X_train, y_train)
predictions = estimator.predict(X_test)
```

Scikit-learn user guide sklearn.linear_model.Ridge

Evaluating performance with sklearn.metrics

```
estimator = Ridge()
estimator.fit(X_train, y_train)
predictions = estimator.predict(X_test)

mse = metrics.mean_squared_error(y_test, predictions)
```

```
sklearn.linear_model.Ridge
sklearn.metrics
User guide on model evaluation
```

```
ex 01 fit predict questions.py
```

Some possible metrics for regression R² score (coefficient of determination): r2 score

$$R^{2}(y, \hat{y}) = 1 - \frac{\sum_{i=1}^{n} (y_{i} - \hat{y}_{i})^{2}}{\sum_{i=1}^{n} (y_{i} - \bar{y})^{2}},$$

where
$$\bar{y} = \frac{1}{n} \sum_{i=1}^{n} y_i$$

where $g = n \angle i = 1$

$$\mathsf{MSE}(\mathbf{y}, \hat{\mathbf{y}}) = \frac{1}{n} \sum_{i=1}^{n} (\mathbf{y}_i - \hat{\mathbf{y}}_i)^2$$

$$\mathsf{MAE}(\mathbf{y}, \hat{\mathbf{y}}) = \frac{1}{n} \sum_{i=1}^{n} |\mathbf{y}_i - \hat{\mathbf{y}}_i|$$

(8)

(6)

(7)

Cross-validation

User guide on cross-validation sklearn.model_selection.cross_validate sklearn.model_selection.cross_val_score ex_02_cross_validate_questions.py

Outline

Introduction: cross-validation

Model and hyperparameter selection

Dimensionality reduction

Conclusion: summary of pitfalls

Need for regularization

Linear regression: projection on the column space of X

- Too many features: high variance & unstable solution
- Solutions: regularization, dimensionality reduction

Regularization

Example (Ridge regression)

$$\underset{\beta,\beta_0}{\operatorname{argmin}} \|\mathbf{y} - \beta_0 - \mathbf{X} \, \boldsymbol{\beta}\|_2^2 + \alpha \, \|\boldsymbol{\beta}\|_2^2 \tag{10}$$

 $\mathsf{Bias}(\hat{\beta}_{i}) = \mathbb{E}(\hat{\beta}_{i}) - \beta_{i}$

Setting hyperparameters

How can we choose the ridge hyperparameter α ?

Try a few and pick the best one...
But measure its performance on separate data!

When you hear "best", "maximum", "select", ... think "bias"

When you hear "best", "maximum", "select", ... think "bias" Setting the parameters

- Select β that gives the **best** prediction on training data
- The prediction score for $\hat{\beta}$ is biased: compute a new score on unseen test data.

When you hear "best", "maximum", "select", ... think "bias" Setting the parameters

- Select β that gives the **best** prediction on training data
- The prediction score for $\hat{\beta}$ is biased: compute a new score on unseen test data.

Setting the hyperparameters

- Repeat step 1 for a few values of α , fitting and testing several models
- Select the hyperparameter that obtains the best prediction on test data
- The prediction score of that model on *test* data is biased: evaluate it again on unseen data

One split

FALL 2

28 / 62

Nested cross-validation with scikit-learn

In general: GridSearchCV (User Guide)

```
model = GridSearchCV(
    Ridge(), {"alpha": [.1, 1., 10.]})
scores = cross_val_score(model, X, y)
```

• Use CV estimators when possible: RidgeCV, LassoCV, ...

```
ex 03 grid search regression questions.py
```

Implementing nested CV

ex_04_nested_cross_validation_questions.py

Outline

Introduction: cross-validation

Model and hyperparameter selection

Dimensionality reduction

Conclusion: summary of pitfalls

Dimensionality reduction

Linear regression: projection on the column space of X

- Too many features: high variance & unstable solution
- Solutions: regularization, dimensionality reduction

Dimensionality reduction

Until now

Add a step in the pipeline: simplifying the inputs

Simulated data for linear regression

- Generate $X \in \mathbb{R}^{n \times 3}$, $\beta \in \mathbb{R}^3$, $e \in \mathbb{R}^n$ and $y = X\beta + e \in \mathbb{R}^n$
- Append columns containing random noise to X
- Now $X \in \mathbb{R}^{n \times p}$, with $p \geqslant 3$, but only the first 3 columns are linked with y
- Split into training and testing tests and evaluate a linear regression model: what happens when p becomes large?

See sklearn.datasets.make_regression for generating data

Model complexity: overfitting

- Model complexity increases with dimension.
- Example: a linear model in dimension $\mathfrak p$ can fit exactly (0 training error) any set of $\mathfrak p+1$ points.
- Risk of overfitting: fitting exactly training data but failing on test data

Univariate feature selection

- a.k.a. feature screening, filtering . . .
- Check features (columns of X) one by one for association with the output y
- Keep only a fixed number or percentage of the features

Simple (linear) association criteria

- · for regression: correlation
- for classification: ANalysis Of VAriance

Read more in the scikit-learn user guide scikit-learn feature selection

Original regression problem

After univariate feature selection

After univariate feature selection

Univariate feature selection

Keeping only the 10 best features (most correlated with y)

Dataset transformations

Typical pipeline

Example

scikit-learn "transformer API": fit; transform

```
transformer = SelectKBest()
transformer.fit(X_train)
transformed_train = transformer.transform(X_train)
```

can also be written:

```
transformer = SelectKBest()
transformed_train = transformer.fit_transform(X_train)
```

scikit-learn feature selection scikit-learn Transformer API

feature_selection.SelectKBest

fit:

- compute ANOVA or correlation for each column of X
- Remember the indices of the k columns with highest scores

transform:

Index input to keep only the k selected columns

```
sklearn.feature selection.SelectKBest
```

Fit the transformer only on train data!

```
transformer = SelectKBest()
transformed_train = transformer.fit_transform(X_train)
transformed test = transformer.transform(X test)
```

Pipelines

To chain transformations and an estimator, use sklearn.pipeline.Pipeline

- can be used to properly cross-validate whole pipeline
- can be combined with cross_validate, GridSearchCV, ...
- easily created with sklearn.pipeline.make pipeline

```
model = make_pipeline(SelectKBest(), Ridge())
```

```
ex 05 feature selection questions.py
```

Linear decomposition methods Another approach to dimensionality reduction Maybe OK to drop X_2 :

Data low-dimensional but no feature can be dropped:

Find a better referential in which to represent the data

Linear regression: projection on the column

space of X

$$\hat{\mathbf{y}} = \mathbf{X}\,\hat{\boldsymbol{\beta}} \qquad (15)$$

- Too many features: high variance & unstable solution
- Feature selection: drop some columns of X
- Other ways to build a family of k vectors on which to regress y?

Linear decomposition: low-rank approximation of \mathbf{X}

Minimize

$$\|X - WH\|_F^2 = \sum_{i,j} (X_{i,j} - (WH)_{i,j})^2$$
 (16)

Linear regression after dimensionality reduction

(17)

Prediction for a new data point $x \in \mathbb{R}^p$

- Find the combination of rows of H that is closest to x: regress x on H^T
- Multiply by $\hat{\beta}$

$$x \in \mathbb{R}^p o \mathsf{projection} o w \in \mathbb{R}^k o \langle \cdot \,, \, \hat{eta}
angle o \hat{\mathfrak{y}} \in \mathbb{R}$$
 (18)

Principal Component Analysis

Singular Value Decomposition of X:

$$X = \mathbf{U} \, \mathbf{S} \, \mathbf{V}^{\mathsf{T}} \tag{19}$$

with $X \in \mathbb{R}^{n \times p}$, $U \in \mathbb{R}^{n \times r}$, $S \in \mathbb{R}^{r \times r}$, $V \in \mathbb{R}^{r \times p}$

- r = min(n, p)
- $S \succeq 0$ diagonal with decreasing values s_j along the diagonal
- $\mathbf{u}^\mathsf{T} \mathbf{u} = \mathbf{I}_r$
- $V^T V = I_r$

Truncating the SVD to keep only the first k components gives the best rank-k approximation of \boldsymbol{X}

Singular Value Decomposition

$$X = \mathbf{U} \, \mathbf{S} \, \mathbf{V}^{\mathsf{T}}$$

$$\mathbf{u}_{1} \qquad \mathbf{u}_{2} \qquad \mathbf{u}_{3} \qquad \mathbf{u}_{4} \qquad \mathbf{u}_{5} \qquad \mathbf{u}_{7} \qquad$$

Explained variance: 0.53

$$\mathbf{u}^{\mathsf{T}} \, \mathbf{u} = \mathbf{I}_{\mathsf{n}}$$

$$\label{eq:utility} \begin{split} \boldsymbol{u}^\mathsf{T} \, \boldsymbol{u} &= \boldsymbol{\mathrm{I}}_{\mathsf{p}} \\ \boldsymbol{V}^\mathsf{T} \, \boldsymbol{V} &= \boldsymbol{\mathrm{I}}_{\mathsf{p}} \end{split}$$

(20)

(21)

(22)

Singular Value Decomposition

$$\mathbf{U}^{\mathsf{T}} \, \mathbf{U} = \mathbf{I}_{\mathsf{p}} \tag{24}$$

$$\mathbf{V}^{\mathsf{T}} \, \mathbf{V} = \mathbf{I}_{\mathsf{p}} \tag{25}$$

$$^{\mathsf{T}}\mathbf{V}=\mathsf{I}_{\mathtt{n}}$$

(25)

(23)

Singular Value Decomposition

$$\mathbf{U}^{\mathsf{T}} \, \mathbf{U} = \mathbf{I}_{\mathsf{p}} \tag{27}$$

$$\mathbf{V}^{\mathsf{T}} \, \mathbf{V} = \mathbf{I}_{\mathsf{p}} \tag{28}$$

$$\mathbf{V}^{\mathsf{T}}\,\mathbf{V} = \mathbf{I}_{\mathfrak{p}} \tag{28}$$

Other decomposition methods

Many other methods use the same objective (sum of squared reconstruction errors), but add penalties or constraints on the factors

- · Dictionary Learning
- Non-negative Matrix Factorization
- · K-means clustering
- ..

What about y?

- PCA is an example of unsupervised learning: it does not use y
- Some other methods take it into account: e.g. Partial Least Squares

Ridge regression and PCA

- Both ridge regression and PC regression compute the coordinates of y in the basis given by the SVD of X
- Ridge shrinks the coordinate along U_j by a factor $s_j^2/(s_j^2+\alpha)$
- PC regression sets the coordinates to 0 except for those corresponding to the k largest s_j : shrinks by a factor $1_{\{j\leqslant k\}}$

Outline

Introduction: cross-validation

Model and hyperparameter selection

Dimensionality reduction

Conclusion: summary of pitfalls

(Cross-)validation experiments are simulations

The validation experiments must simulate what will happen when deploying the trained model in production – when starting to use it in real life.

(Cross-)validation experiments are simulations

The validation experiments must simulate what will happen when deploying the trained model in production – when starting to use it in real life.

Example (Deploying a model to a hospital)

A model is trained on research dataset and then shipped and used on a hospital's patients. We cannot:

- Preprocess the patients' data together with the training data.
- · Use the patients' data for feature selection.
- Try different models on the patients' data and pick the best.

If we do any of these things in our cross-validation it is not a realistic experiment.

Split choice example: time series

Don't ignore dependencies between samples: which is easier?

Use the appropriate cross-validation iterator

Remember that CV training sets overlap

So the scores are not independent! Their variance can be underestimated.

Some pitfalls with cross-validation Overfitting the hyperparameters

 select hyperparameters with nested CV sklearn.model_selection.GridSearchCV

Fitting part of the pipeline on the whole dataset

• use sklearn.pipeline.Pipeline

Ignoring dependencies between samples

• e.g. time series: use appropriate cross-validation iterator

Ignoring dependencies between CV scores

 Training sets overlap: cross-validation scores of different splits are not independent

Over-interpreting good CV scores