Economia Matemática: Monitoria 0

Tiago C. Botelho tiago.botelho@usp.br

Departamento de Economia Universidade de São Paulo

22 de Agosto de 2020

Objetivos de Aprendizado

Ao final da monitoria de hoje, você deve ser capaz de:

- Usar a distribuição Anaconda para editar Jupyter Notebooks localmente.
- 2. Usar o Google Colab para editar Jupyter Notebooks remotamente e salvá-los no seu Google Drive.
- 3. Baixar um Jupyter Notebook diretamente do Google Colab ou do seu Drive para uso local.

Objetivos de Aprendizado Suplementares

Se conseguirmos cumprir os três primeiros objetivos em tempo hábil, gastaremos o tempo restante discutindo mais **administrivia** e, talvez, algumas **noções elementares de programação**, para complementar a segunda aula.

Preliminares

O curso de Economia Matemática pode ser particionado em dois grandes blocos:

- 1. Primeiro Bloco: Noções Elementares de Programação em Python.
- 2. Segundo Bloco: Implementação de Métodos Numéricos em Python.

Uma condição necessária para o bom andamento do curso em ambos os blocos é que você tenha acesso a um **editor de texto** de sua preferência e a um **interpretador**.

A Distribuição Anaconda

Existem diversas opções para atender à condição necessária acima. Por simplicidade, usaremos Jupyter Notebooks ao longo do curso.

Um Jupyter Notebook é uma forma conveniente de integrar código, texto, e visualização de dados.

Embora você possa fazer o *download* desta ferramenta isoladamente, sugerimos que você use uma distribuição amplamente difundida: a distribuição Anaconda, que já dispõe de diversos pacotes a serem utilizados no decorrer do curso.

A Distribuição Anaconda (cont.)

Munidos desta distribuição, podemos editar nosso primeiro Jupyter Notebook.

Lançar um Jupyter Notebook localmente equivale a rodar o código em um servidor cujo *host* é o seu próprio computador. Se você pretende trabalhar com bases de dados muito grandes, aconselhamos esta opção (rede local), embora existam muitos serviços (pagos) que disponibilizam mais memória para serviços pesados.

Google Colab

Uma alternativa à distribuição Anaconda, especialmente útil se você dispõe de pouca memória remanescente em seu computador — ou se você simplesmente deseja prototipar um projeto em Python antes de se comprometer — é o Google Colab.

No Colab, podemos as mesmas coisas que fizemos localmente, à diferença que estes Notebooks utilizarão a memória de GPUs (*Graphics Processing Units*) em algum servidor da Google. Podemos inclusive salvar Notebooks do Colab e usarmos o Jupyter local para abrirmos o mesmo arquivo.

Experimente, erre, aprenda, e decida com qual destas opções você se sente mais confortável; qualquer uma das duas será suficiente para este curso. Se você tem curiosidade sobre outras alternativas, fique à vontade para entrar em contato por e-mail.