杨氏模量的测定实验报告

姓名: 白明浩 学号: 2411523 专业: 物理科学 组别: H 实验时间: 04/28 周一下午

1.目的要求 目的 1: 用伸长法测量金属丝的杨氏模量。 目的 2: 了解望远镜的结构,使用方法。 目的 3: 掌握用光杠杆测量微小长度变化量的办法。 目的 4: 学习用对立影响法消除系统误差的思想方法。 目的 5: 用环差法,作图法,最小二乘法处理数据。 要求:
 2. 仪器用具 (列出实验中使用的主要仪器和用具,必要时注明规格型号及仪器编号。) (仪器 1: 杨氏模量测定仪(型号:,编号:) (仪器 2: 千分尺(型号:,编号:) (仪器 3: 游标卡尺(型号:,编号:) (仪器 4: 米尺(型号:,编号:) (仪器 5: 照明光源(型号:,编号:) 其他用具:
3. 实验原理简述 (用自己的语言简要说明实验所依据的原理和公式,避免直接复制教材内容。)

实验步骤:

- 1. 调节伸长仪和光杠杆使之达到备用状态; <u>看伸长仪是否竖直,载物平台和圆柱间的摩擦大小,金属矿与限位器的关</u> 系,平面镜的方向,光杠杆的臂长和足尖的位置。
- 2. 调节望远镜的高度及方向,使其与平面镜约等高;
- 3. 移动望远镜尺组,使标尺距平面镜 1.2m 左右;且其瞄准方向应对正欲观测目标,即反射镜中标尺的像;
- 4. 以灯光照明标尺,通过望远镜凹槽观察,使得准星、凹槽、平面镜中的标 尺像在同一直线上,同时要求标尺像约在平面镜正中央;
- 5. 调节目镜旋钮, 使望远镜中的刻线清晰;

- 6. 调节内调焦手轮,此时应能找到标尺的像,调节清晰,且应使分划板准 线所对应的标尺刻度数略低于望远镜轴线所在刻度读数;
- 7. 观测像移: 依次按等时间隔(2分钟左右)递加砝码,记下相应读数直至10kg;然后仍按等时间隔逐次递减砝码,记下相应读数,取两组读数的平均值作为相应的测量值;
- 8. 用游标卡尺测光杠杆常数 b; 用米尺测量 B、金属丝原始长度 1。用螺旋测微器测量金属丝不同位置的直径共计 6 次;

注意事项:

- 1. 保持光学镜面清洁,不得用手触摸,镜面有灰尘时,应以软毛刷轻拭,且 用毕应盖好物镜罩;
- 2. 调节望远镜时,动作要轻,且尽量不靠微动手轮瞄准目标,伸长仪及望远镜尺组应避免撞击和剧烈振动;
- 3. 测像移过程中不得碰动仪器的任何部位,且加减砝码时动作要轻,防止砝码托摆动,以提高测量精度。

4. 数据处理

4.1 原始数据

单位制: 帕斯卡 Pa $u_{b\Delta h}$ = 0.05774mm 零点读数 D_0 =-0.005mm u_{bD} =0.0005774 mm $\Delta m_i = 6kg$

X	$m_i(kg)$	h_i (cm)	$h_i'(cm)$	$\overline{h}_{l}(\mathrm{cm})$	$\frac{\Delta h_j}{\overline{h_{J+3}}} - \overline{h_J}$	$S_{\Delta h_j} = 0.25508$ cm	$D_i(mm)$	$S_{D_i} = 0.0039370 \text{mm}$	
1	0	-0.25	-0.45	-0.35	3.97cm	$S_{\overline{h}} = 0.14727$ cm	0.439	$S_{\overline{D}} = 0.0016072 \text{mm}$	
2	2	0.72	0.88	0.8	3.97CIII	$3\overline{\Delta h}$ =0.14/2/CIII	0.434		
3	4	2.21	2.22	2.215	4.205am	4.295cm $u_{a\Delta h}$ =0.19440cm	0.437	u =0.0017941mm	
4	6	3.62	3.62	3.62	4.2930111		0.432	u_{aD} =0.0017841mm	
5	8	5.09	5.10	5.095	4 275	4.375cm	4.275 am at =0.10449 am	0.429	a. =0.0019752
6	10	6.59	6.59	6.59	4.3 / 30111	$u_{\Delta h} = 0.19448 \text{cm}$	0.430	$u_D = 0.0018752$ mm	
平均					4.213		0.4335		
B=113.00cm					b=7.040cm		L=85.20cm		
u_B =0.233333mm					u_l	₅ =0.02mm	u_L =0.233333mm		

 \overline{E} =2.59×10¹¹ u_E =1.2×10¹⁰ 结果表达式: $E = (2.59 \times 10^{11} \pm 1.2 \times 10^{10})$ Pa

4.2 数据处理表格

4.3 实验曲线

4.4 主要演算步骤
4.5 结果表述
(对实验过程中观察到的现象、结果进行分析,提出建议或心得体会。)
5.1 异常现象及解释
● 现象:
● 可能原因:
5.2 实验结果分析
• 结果与理论值的对比:
● 影响结果的因素:
5.3 建议与心得体会
对实验装置的建议:
• 对实验方法的改进:
• 个人心得体会:
6. 回答教师指定的思考题
(根据教师提出的具体问题作答,分题号列出。)
1. 问题 1:
回答:
2. 问题 2:
回答:

注:

- 实验报告需手写或打印后手写部分内容,确保字迹清晰。
- 数据处理部分需保留有效数字,单位标注明确。
- 讨论部分应结合实验实际,避免空泛。

耜	生	宇	ᆄ	Н	期			
TIV		7	IJX.	ш	жп	-		