Food Discovery with Uber Eats:

Holistic Multi-Objective Optimization for the Marketplace

Uber

Yuyan Wang, 06/24/2019

Uber Mission:

Transportation as reliable as running water, everywhere for everyone.

Uber Eats Mission:

Make eating well effortless at any time, for anyone.

Number of decisions a person makes in an average day:

Where to eat?

Ranking and recommendation: We are not alone

Recommending a job

Recommending a video / song

Recommending a product

Recommending news / tweet

• • •

Ranking and recommendation: We are unique

3-sided marketplace

Ranking and recommendation: We are unique

Another challenge: Heterogeneous & hierarchical content

Row Ranking

Vertical Ranking

Search

Outline

- The Journey of Ranking
- Multi-Objective Optimization (MOO)
- Holistic optimization: Heterogeneous and hierarchical Content
- Ongoing efforts

The Journey of Ranking

Single Objective Ranking

- Real-time
 - o For every (eater, store) pair
- ML-based Prediction
 - Impression level conversion rate
- Personalized
 - Important features: Collaborative filtering
- ML model
 - GBDT, XGBoost

Multi-objective Optimization (MOO)

Single objective:

- Eater conversion

Multiple objectives:

- Eater conversion
- Restaurant earnings
- Delivery partner supply reliability
- ..

MOO: Ranking to Serve the Marketplace

- Conventional ML model
 - Single objective: eater
 - GBDT, XGBoost
- Multi-objective Optimization:
 - Multiple objectives:
 eater / restaurant / delivery partner
 - Tradeoff
 - Linear / Quadratic programming

MOO: Building a Fair Marketplace

MOO: Building a Fair Marketplace

VS.

Well-established Restaurants

New/Low-volume Restaurants

Explore-Exploit with Multi-Armed Bandit

- Explore/exploit tradeoff
 - Exploit: restaurants with high predicted conv
 - Explore: new / low-volume restaurants

Explore-Exploit with Multi-Armed Bandit

- Explore/exploit tradeoff
 - Exploit: restaurants with high predicted conv
 - Explore: new / low-volume restaurants
- Bayesian modeling for posterior variance
 - New / low volume restaurant High var
 - Well-established restaurant Low var
 - Beta-binomial distribution
 - Multi-armed bandit
 - ML model to estimate the mode of conversion
 - Bandit algorithm for explore-exploit (UCB/Thompson sampling)

Relevance vs. Diversity

- What's wrong with ranking wrt relevance?
 - Overwhelming restaurants that are too similar to each other in a consecutive order
 - Recommendations should be both accurate and diverse

Ken Ken Ramen	20-30 MIN
Ramen·Japanese·\$\$	
Genki Ramen	25-35 MIN
Seafood·Japanese·\$\$	
Jika Ramen & Sushi	30-40 MIN
Sushi-Japanese-\$	
The Ramen Bar	35-45 MIN
Ramen-Japanese-Noodles-	\$\$
Ramen·Japanese·Noodles· Uchiwa Ramen	35,75
,	\$\$ 40-50 MIN
Uchiwa Ramen	40-50 MIN
Uchiwa Ramen Ramen·Japanese·\$\$	40-50 MIN
Uchiwa Ramen Ramen·Japanese·\$\$ Ramen Izakaya	35.,(2)

Relevance vs. Diversity

- What's wrong with ranking wrt relevance?
 - Overwhelming restaurants that are too similar to each other in a consecutive order
 - Recommendations should be both accurate and diverse
- Personalized diversification algorithm
 - Eater representation (taste profile)
 - Restaurant representation (cuisine profile)
 - Sequential/greedy optimization

Ken Ken Ramen	20-30 MIN
Ramen-Japanese-\$\$	
Genki Ramen	25-35 MIN
Seafood·Japanese·\$\$	
Jika Ramen & Sushi	30-40 MIN
Sushi·Japanese·\$	
The Ramen Bar	35-45 MIN
Ramen-Japanese-Noodles-	\$\$
Uchiwa Ramen	40-50 MIN
Ramen·Japanese·\$\$	
Ramen Izakaya	35-45 MIN
Sushi-Japanese-\$\$	
Ramen Doraku	30-40 MIN

With MOO in place, what's next?

HRank: Holistic optimization of heterogeneous and hierarchical contents

HRank: Methodology

- A personalized, holistic approach for optimal home feed layout
- Key model components / assumptions
 - Triplet model: (eater, store, source)
 - Scrolling discounting factor
 - User has limited patience
 - Within-row
 - Across-row

Figure 4: Horizontal impression discounting factor.

Figure 5: Vertical impression discounting factor.

HRank: Methodology

- A personalized, holistic approach for optimal home feed layout
- Key model components / assumptions
 - Triplet model: (eater, store, source)
 - Scrolling discounting factor
 - User has limited patience
 - Within-row
 - Across-row
 - Law of total probability:
 Holistically optimize for session-level conversion
 (as opposed to impression-level conversion)

Figure 4: Horizontal impression discounting factor.

Figure 5: Vertical impression discounting factor.

$$P(O_{ic}=1) = p_1 \ + \ (1-p_1)R_h(1,2)p_2 \ + \ (1-p_1)(1-p_2)R_h(1,3)p_3 \ + \ \dots \ + \ (1-p_1)\cdots(1-p_{N-1})R_h(1,N)p_N.$$

Ongoing efforts: Holistic Multi-Objective Optimization

 Challenge 1: Heterogeneous & Hierarchical Contents

=> Need a holistic optimization and recommendation framework

Challenge 2: Three-sided marketplace

=> Trade-off among different objectives

HRank

Flexible Feed: Unlocking more potential for HMOO

Unconstrained Optimization

Summary

- The Journey of Ranking
- Multi-Objective Optimization (MOO)
 - Building a Fair Marketplace
 - Relevance vs. Diversity
- Holistic Optimization
- Riders-to-Eaters
 - Using rider history to solve cold start
 problem for new eaters
- Dish recommendation

Thank you.

Uber Eats

Appendix

MOO: Multi-Objective Optimization

Formulation

Expected total # of orders:

$$T(X) = \sum_{i} \sum_{j} x_{ij} p_{ij}$$

Expected total gross booking fee:

$$G(X) = \sum_{i} \sum_{j} x_{ij} p_{ij} g_{j}$$

Linear programming (LP):

$$\max_{X} G(X)$$

$$s.t. \ T(X) \ge \alpha \cdot T(X^{*})$$

$$x_{ij} \ge 0, \ \forall \ i, \ j$$

$$\sum_{i} x_{ij} = 1, \ \forall \ i$$

Notation	Meaning
i	Indexes users
j	Indexes stores (restaurants)
$X = \{x_{ij}\}$	Serving plan (variable to be optimized)
x_{ij}	Probability that the serving scheme will recommend j th store to user i
$Q = \{q_{ij}\}$	Uniform serving plan with $q_{ij}=rac{1}{J}$, where J is the total number of open stores.
p_{ij}	Estimated conversion rate of user i on store j
g_j	Estimated gross booking fee for store j (can be personalized as g_{ij})

A **huge** linear programming problem -> scalability issue!

MOO: Multi-Objective Optimization

• LP => QP (quadratic programming):

$$\max_{X} G(X)$$

$$s.t. \ T(X) \ge \alpha \cdot T(X^{*})$$

$$x_{ij} \ge 0, \ \forall \ i, \ j$$

$$\sum_{j} x_{ij} = 1, \ \forall \ i$$

Notation
 Meaning

$$i$$
 Indexes users

 j
 Indexes stores (restaurants)

 $X = \{x_{ij}\}$
 Serving plan (variable to be optimized)

 x_{ij}
 Probability that the serving scheme will recommend j th store to user i
 $Q = \{q_{ij}\}$
 Uniform serving plan with $q_{ij} = \frac{1}{J}$, where J is the total number of open stores.

 p_{ij}
 Estimated conversion rate of user i on store j
 g_j
 Estimated gross booking fee for store j (can be personalized as g_{ij})

$$x_{ij} = const + \frac{1}{c \cdot \gamma} \cdot p_{ij} \cdot (1 + \lambda_g \cdot g_j), \quad if \ x_{ij} > 0$$

Personalized Diversification

Captures individual's cuisine and diversity preference.

Prob(user will order from store | user will not order from all previous recommended stores)

Prob(user will order from cuisine user will not order from all previous recommended stores)

```
Algorithm 1 IA-SELECT
Input k, q, C(q), R(q), C(d), P(c|q), V(d|q, c)
Output set of documents S
1: S = \emptyset
 2: \forall c, U(c|q, S) = P(c|q)
 3: while |S| < k do
 4: for d \in R(q) do
 5: g(d|q,c,S) \leftarrow \sum_{c \in C(d)} U(c|q,S)V(d|q,c)
 6: end for
 7: d^* \leftarrow argmax \ g(d|q, c, S) [ties broken arbitrarily]
 8: S \leftarrow S \cup \{d^*\}
    \forall c \in C(d^*), U(c|q, S) = (1 - V(d^*|q, c))U(c|q, S \setminus \{d^*\})
      R(q) \leftarrow R(q) \setminus \{d^*\}
11: end while
12: return S
```

HRank: Methodology

- A personalized, holistic approach for optimal home feed layout
- Key model components / assumptions
 - Triplet model: (eater, store, source)
 - Scrolling discounting factor
 - User has limited patience
 - Within-row
 - Across-row
 - Law of total probability:
 Holistically optimize for session-level conversion
 (as opposed to impression-level conversion)

Figure 4: Horizontal impression discounting factor.

Figure 5: Vertical impression discounting factor.

HMOO: Overview

- Challenges
 - MOO only applies to 1-dim world
 - Current world is 2-dim with heterogeneous & hierarchical contents
- Soln: 2-step procedure
 - 2-dim => 1-dim
 - Define MOO objective on item (restaurant/carousel) level
 - Apply 1-dim MOO
- Goal
 - A personalized, holistic home feed that is optimized for all sides of the marketplace
 - HRank: holistic optimization of eater conversion
 - HMOO: holistic optimization of marketplace objectives (e.g. gross bookings)

HMOO: Methodology

- Expanding the HRank framework
 - Law of total probability => HRank
 - Law of total expectation => HMOO

Figure 4: Horizontal impression discounting factor.

$$E[B_{ic}] \ = \ E[B_{ic} \ | \ O_{ic} = 1] \\ P(O_{ic} = 1) \ + \ E[B_{ic} \ | \ O_{ic} = 0] \\ P(O_{ic} = 0).$$
 Expected \$ from a Conversion rate of the carousel

HMOO: Methodology

0

- Expanding the HRank framework
 - Law of total probability => HRank
 - Law of total expectation => HMOO

Figure 4: Horizontal impression discounting factor.

Readily applies to other objectives / multiple objectives

Basket size objective for carousels

Law of total expectation:

Figure 4: Horizontal impression discounting factor.

$$E[B_{ic}] = E[B_{ic} \mid O_{ic} = 1]P(O_{ic} = 1) + E[B_{ic} \mid O_{ic} = 0]P(O_{ic} = 0).$$

$$E[B_{ic}] = p_1b_1 + (1-p_1)R_h(1,2)p_2b_2 + (1-p_1)(1-p_2)R_h(1,3)p_3b_3 + \dots + (1-p_1)\cdots(1-p_{N-1})R_h(1,N)p_Nb_N.$$

$$P(O_{ic} = 1) = p_1 + (1 - p_1)R_h(1, 2)p_2 + (1 - p_1)(1 - p_2)R_h(1, 3)p_3 + \dots + (1 - p_1)\cdots(1 - p_{N-1})R_h(1, N)p_N.$$

Putting everything together

$$E[B_{ic} \mid O_{ic} = 1] = \frac{p_1b_1 + (1-p_1)R_h(1,2)p_2b_2 + (1-p_1)(1-p_2)R_h(1,3)p_3b_3 + \dots + (1-p_1)\cdots(1-p_{N-1})R_h(1,N)p_Nb_N}{p_1 + (1-p_1)R_h(1,2)p_2 + (1-p_1)(1-p_2)R_h(1,3)p_3 + \dots + (1-p_1)\cdots(1-p_{N-1})R_h(1,N)p_Nb_N}$$