Contents							
Elements	2						
Physical Properties	3						
The Periodic Table- Mendeléev	4						
Compounds	5						
The Ionic Bond	6						
Formulae	7						
Metals	8						
Displacement Reactions	9						
The Blast Furnace	11						
Electrolysis of Lead (II) Bromide	12						
Electrolysis - Aluminium	13						
Uses of Metals	15						
Nano Science	16						
Non-metals - Electrolysis of water	18						
Uses of non-metals	20						
Fluoridation of water supply	21						
Acid Reactions	23						
Method for preparing crystals	27						
Fuels - Crude Oil	28						
Cracking	30						
Making Plastics(Polymerisation)	31						
Properties of Plastics	31						
Tectonic Plates - Wegener	32						
The Atmosphere	35						
Global Warming	37						
Acid Rain	38						

Elements

Element

Na⁺ (Na⁺ (Na⁺) (Na⁺ (Na⁺) (Na⁺) (Na⁺ (Na⁺) (Na⁺) Elements are the building blocks of all substances. They cannot be broken down into simpler substances by chemical means

An Element contains only one type of atom

Many elements in Group 3, 4, 5 show metallic and non-metallic properties

Periodic Table

Scientists as far back as 1817 found patterns in the reactivity of elements; however it was Mendeléev (1869) who first arranged the elements in a layout recognisable as a Periodic Table.

He placed the elements into 8 groups, in each group elements reacted similarly. Elements were arranged according to

- 1. Increasing atomic mass (top number)
- 2. Similar chemical properties

Confident in his work he left **gaps** predicting that some elements that were not discovered at the time should be placed there as they would have similar properties

The periodic table is also arranged by now in increasing atomic number (bottom number) There are many more elements now as scientists have discovered them over the years. These elements have fitted into the gaps left by Mendeléev.

Compounds

Substance that contains two or more elements joined together chemically

Compound	Formula	No. of elements	No. of atoms
Sodium Chloride	NaCl	2	2 (1 Na, 1 Cl)
Sodium Hydroxide	NaOH	3	3 (1 Na, 1 O, 1 H)
Sodium Oxide	Na ₂ O	2	3 (2 Na, 1 O)
Sodium Sulfate	Na ₂ SO ₄	3	7 (2 Na, 1 S, 4 O)
Calcium Carbonate	CaCO ₃	3	5 (1 Ca, 1 C, 3 O)

The Ionic Bond

Ionic Compounds

When a chemical reaction takes place new bonds are formed. Ionic compounds form by the **transfer of electrons** from <u>metal to non-metal</u> atom. Charged particles called **ions** are formed

e.g.

When sodium chloride (NaCl) forms, one electron is transferred from sodium to chlorine. This will form a **full stable outer shell** (like noble gasses) for the two particles

Extraction of Metals

Ores – Metals are found in compounds in rocks which make up the Earth's crust, these are called ores

Ore	Formula	Metal extracted
Bauxite	Al ₂ O ₃	Aluminium
Haematite	Fe ₂ O ₃	Iron

Extraction is the term for getting pure metal out of the ore; there are two methods of extracting metals which depend on their reactivity

Reduction is the process of removing oxygen from the ore using carbon

Electrolysis is the process of using electricity to extract a metal

Reactivity Series – metals are placed in order of reactivity by reacting them with oxygen, water and acid. From this data a reactivity series is produced

At the top metals naturally bond to oxygen stronger which makes it difficult to remove.

Displacement Reactions Reduction is the loss of oxygen from a compound Oxidation is the gain of oxygen to form a compound Mg + CuO → MgO + Cu Magnesium and copper oxide oxidation Heat Magnesium + copper oxide → magnesium oxide + copper reduction Blast Furnace Reaction $Fe_2O_3 + 3CO \longrightarrow 3CO_2 + 2Fe$ Iron oxide and carbon monoxide oxidation iron oxide + carbon carbon monoxide + iron Heat reduction The Thermite Reaction $Fe_2O_3 + 2AI \longrightarrow Al_2O_3 + 2Fe$ oxidation Iron oxide + aluminium aluminium oxide + iron reduction

Displacement Examples

Iron and copper chloride

$$Fe + CuCl_2 \longrightarrow Cu + FeCl_2$$

iron + copper chloride → copper + iron chloride

iron is more reactive than copper, as a result iron displaces copper

copper and silver nitrate*

$$Cu + 2AgNO_3 \longrightarrow 2Ag + Cu(NO_3)_2$$

copper + silver nitrate → silver + copper nitrate

copper is more reactive than silver, as a result copper displaces silver

zinc and copper sulphate*

$$Zn + CuSO_4 \longrightarrow Cu + ZnSO_4$$

zinc + copper sulfate —— copper+ zinc sulfate

zinc is more reactive than copper, as a result zinc displaces copper

* higher tier only

The Blast Furnace - The extraction of iron

There are 4 raw materials; iron ore, coke, limestone and hot air

Iron ore - the source of iron

Coke - a fuel that produces carbon monoxide for the reduction reaction

Limestone - to remove impurities. Limestone breaks down and reacts with sand from the rocks to form slag

Hot air - the fourth raw material

Required for coke to burn

Carbon (coke) and oxygen (from the hot air) produce carbon monoxide and gives off heat. Reduction is achieved by Carbon monoxide at a high temperature

$$Fe_2O_3 + \boxed{3}CO \longrightarrow \boxed{2}Fe + \boxed{3}CO_2$$

Getting the furnace up to temperature takes a lot of time and costs a lot. As a result raw materials are constantly added and products removed - the process is continuous.

At the factory in Port Talbot iron ore, limestone and coke are imported from other countries even though they are available in Wales. Using raw materials from Wales is not sustainable due to cost and the effect it could have on the environment (quarrying).

Electrolysis of Lead (II) Bromide

At the negative electrode /
cathode
Pb²⁺ + 2e Pb

At the positive electrode / anode

2Br - 2e → Br₂

The positive ions Pb^{2+} move towards the cathode where they gain electrons The negative ions Br^- move towards the anode where they lose electrons

Electrolysis of Aluminium Oxide

Electrolysis is the method used to extract aluminium from aluminium oxide As aluminium is a reactive metal, aluminium oxide is very stable, a more powerful method is needed to break the bonds

Electrolyte is a solution containing ions.

Must be dissolved or molten to allow ions to move and carry charge

Aluminium Extraction (Separating aluminium oxide to create aluminium)

Electrolyte = molten aluminium oxide (950°C)

Electrodes = Carbon

Both **electrodes** are placed in molten aluminium oxide (electrolyte). This contains ions of aluminium (+ charge) and oxygen (- charge). These are able to move when molten and therefore allow conduction of electricity.

Electrolysis of Aluminium Oxide

Aluminium ions are attracted to the **negative electrode** (cathode)

Oxygen ions are attracted to the positive electrode (anode)

Reaction at the positive electrode anode

Oxide ions – electrons \rightarrow oxygen molecules

$$20^{2-}$$
 - $4e \rightarrow O_2$

Aluminium has many uses due to its physical properties

Uses	Property
Car manufacturing	Resistant to corrosion
Power lines	Electrical conductivity
Saucepans	Heat conduction
Aeroplanes	Low density

Locating aluminium plants

Electrolysis is an expensive process as it **needs a lot electrical energy** constantly. Most are located **next to a power station**

Aluminium is reactive so it needs an enormous amount of electricity to separate it from oxygen. Also it is expensive as it needs **heat** energy to heat up the ore to 1000°C

The energy costs associated with aluminium production are very high and when Wylfa Power Station was decommissioned, Anglesey Aluminium closed. When it was running the plant accounted for around 10-15% of all the electricity used in Wales. Without a power station close by, guaranteeing the supply of electricity, this became unsustainable and the plant closed.

Factories are located **near the coast** as they need **to import the aluminium** ore from abroad.

To increase the lifetime of metal ores such as aluminium oxide and iron oxide it is necessary to **recycle** metals.

Recycling aluminum uses only about 5% of the energy needed to extract it from bauxite and saves waste. Less electrical consumption means less greenhouse gas (CO₂) emissions. The environment is spoilt by quarrying.

GCSE Science: Chemistry 1 www.bangor.ac.uk

Copper

Copper has many uses due to its physical properties

Uses	Property					
Jewellery	Shiny					
electrical Wires	Electrical conduction					
saucepans	Heat conduction					
pipes	Malleability (create sheets)					
Electrical wires	Ductility (create wires)					

Titanium

Titanium is important as an alloying agent with <u>aluminum</u>, <u>molybdenum</u>,

manganese, iron, and other metals. Alloys of titanium are principally used for aircraft and missiles where lightweight strength and ability to withstand extremes of temperature are important.

Titanium is as strong as steel, but 45% lighter. It is 60% heavier than aluminium, but twice as strong. Does not corrode in water. 1660 °C M.pt

An alloy is a mixture made by mixing molten metals; the properties can be changed by altering the amount of each metal

Steel

Steels are a large family of metals. All of them are **alloys** in which iron is mixed with carbon and other elements. Steels are described as mild, mediumor high-carbon steels according to the percentage of carbon they contain, although this is never greater than about 1.5%.

Type of steel	Percentage of carbon	Strength				
Mild steel	Up to 0.25%	hard				
Medium carbon steel	0.25% to 0.45%	harder				
High carbon steel	0.45% to 1.50%	hardest				

The metal in the scissors contains nearly twenty times as much carbon and is many times harder than the steel in a drinking can.

Steel is recycled on a large scale.

Recycling steel saves 50% of the energy used in the extraction of iron.

Recycling helps to conserve iron ore

Recycling cuts down on the emission of greenhouse gases (carbon dioxide)

Nanoscience

Scientists have a great interest in the nano range because the properties of materials can be different than when they are at a larger scale. The properties change from 100 nm downwards.

Comparing sizes in nanometre scale

Many new materials are possible with this technology of building materials from atoms.

Uses which are made from nanotechnology

Nanoscience

The new properties of these materials will allow people to create many new products.

Sun screen

There are nano particles in sun screens to prevent ultraviolet radiation damage to skin cells causing cancer.

Nano-sized TiO₂ and ZnO are used, they absorb and reflect UV light. Being transparent is appealing to customers

Self-cleaning glass

Self-cleaning glass is coated with nano-scale TiO₂ particles, which are hydrophobic (water repellent), dirt breaks down in sunlight and is washed away by rainwater.

Dangers with nano particles

Although there are major benefits to nanoscience , nano particles could potentially harm humans and the environment.

Environmental and human experiments have to be performed on nano particles before they can be released commercially

As nano particles are so small and light the can move in the atmosphere. They can also move in rivers. These are methods by which nano particles can enter the body.

Dangerous nano particles can enter the blood stream

Non-metals

Electrolysis of water - the Hoffmann Voltameter

Oxygen and hydrogen can be made from the electrolysis of water. The equipment below is used

Twice the volume of Hydrogen as oxygen is made, this is because the formula of water is H_2O .

$$2H_2O_{(l)} \longrightarrow 2H_{2(g)} + O_{2(g)}$$

Identifying Hydrogen and oxygen gas

It is possible to test for the gases made by the electrolysis of water

Hydrogen Test

If a lighted splint is placed in hydrogen it will create a squeaky 'pop' sound.

Hydrogen as a fuel

Hydrogen burns in air to make <u>only</u> water. The reaction is exothermic and produces a lot of energy. [exothermic – releases energy]

Advantages and Disadvantages of Hydrogen as a fuel

The Chevrolet Sequel car

Hydrogen is a rocket fuel.

It is also used to power hydrogen fuel cell cars.

Fuel cells were invented by a Welshman Sir William Grove in 1839. It is only recently that they have been used to power cars. The technology has benefits and drawbacks.

Advantages	Disadvantages						
Only water is produced and no carbon dioxide released – therefore it does not contribute to global warming.	Large amount of electricity needed to produce hydrogen in the first place						
Does not contribute to acid rain	Storage requires bulky and heavy pressurised containers						
	Safe storage is also important as hydrogen makes an explosive mixture with air						

NOTE: In order for the process to remain green Hydrogen must be made by the electrolysis of water using <u>renewable energy</u> (solar/wind)

GCSE Science: Chemistry 1 www.bangor.ac.uk

Non metals

Physical Properties

Fluoridation of tap water

There is a difference of opinion for the addition of fluoride to water supplies.

Scientific studies show that its addition helps **strengthen children's teeth from decay** (there are reduced number of fillings in areas that have extra fluoride added)

The problems;

- (1) high concentrations of fluoride can be poisonous and may cause cancer (bone and teeth).
- (2) It can cause discolouring or decay of teeth (fluorosis) and
- (3) it can cause infertility.
- (4) Some people oppose it because they feel it is not right to force everyone to consume fluoride without the individual's consent.

Collecting evidence

Questionnaire - data of the state of children's teeth are collected by counting the number of fillings, loss of teeth and decayed teeth children of all ages have.

The data is reliable because all the children of the school are tested with exception of absent pupils.

The comparison of areas which have been fluoridated with unfluoridated areas can be unfair without the consideration to other factors (e.g. social and economic) which are important for those areas.

Fluoride is normally in toothpaste, mouthwash and sometimes it is added to special milk

Investigating a Neutralisation Reaction

A pH sensor can be used to monitor a neutralisation reaction; in the reaction below alkali (potassium hydroxide) is added slowly to 25 cm³ acid

Alkali added to Acid burette 13. 12 11 10 alkali рН pH 3.4 pH meter 10 30 20 50 Volume of alkali added / cm³ polystyrene

0 - 24 cm³ - solution is acidic 25.00 cm³ - neutralisation point

26- 50 cm³ - solution is alkaline

(too much alkali added)

Acid added to Alkali

 $0 - 24 \text{ cm}^3$ - alkaline

25.00 cm³ - neutralisation

point

26- 50 cm³ - acidic

If too much acid (excess) is added the substance will be acidic at the end.

If the correct volume is added (25 cm³) the solution becomes

REMEMBER - All neutralisation reactions are exothermic (heat is released)

3. Acid + Base

ACID+BASESALT+WATERSulfuric Acid+Copper oxide
$$\longrightarrow$$
 Copper sulfate+ Water H_2SO_4 (aq)+CuO (s) \longrightarrow CuSO₄ (aq)+ H_2O (l)Hydrochloric Acid+Copper oxide \longrightarrow Copper chloride+ Water2HCI (aq)+CuO (s) \longrightarrow CuCl₂ (aq)+ H_2O (l)

2. Acid + Carbonate

CO₂ is made in addition to salt and water

2NaCl(aq) + H₂O(l)

ACID + Carbonate
$$\longrightarrow$$
 SALT + WATER + CARBON DIOXIDE

Sulfuric Acid + Copper Carbonate \longrightarrow Copper sulfate + Water + Carbon Dioxide

 H_2SO_4 (aq) + $CuCO_3$ (s) \longrightarrow $CuSO_4$ (aq) + H_2O (l) + CO_2 (g)

Sulfuric Acid + Sodium Carbonate \longrightarrow Sodium sulfate + Water + Carbon Dioxide

 H_2SO_4 (aq) + Na_2CO_3 (s) \longrightarrow Na_2SO_4 (aq) + H_2O (l) + CO_2 (g)

Hydrochloric Acid + Sodium Carbonate \longrightarrow Sodium chloride + Water + Carbon Dioxide

2HCl (aq)

Carbonate test

 Na_2CO_3 (s)

When acid reacts with a carbonate **fizzing** is observed. Bubbles are seen as CO_2 is a gas

Carbon dioxide test

If <u>clear limewater turns</u> <u>milky</u> there is carbon dioxide present.

 $+ CO_{2}(g)$

Method of preparing salt crystals

Stage 1: Excess base (copper oxide) is added to the dilute acid to make sure all the acid has been reacted and used up. Heat and stirring will assist the process

Stage 2: The excess (unreacted) base is removed by the process of <u>filtration</u>, using a filter funnel and filter paper

Stage 3: Salt is obtained by <u>evaporation</u> - water evaporates and crystals of salt left behind. Water can be evaporated slowly near a window or with additional heating using a Bunsen Burner, 1/3 of the solution should be left behind to evaporate naturally.

Obtaining salt from the metal and acid reaction

The only difference in the method is stage 1 - excess metal is used - to make sure all the acid has been used up

Production and uses of fuels

There is a limit to coal, crude oil (petroleum) and natural gas life as they will run out over time – they are **finite** – or **non-renewable**.

Crude oil is a mixture of hydrocarbons

Hydrocarbons are compounds that contain the elements hydrogen and carbon only.

Carbon has the ability to form bonds with other carbon atoms resulting in the formation of carbon atom chains, e.g.

Crude oil contains a mixture of different sized hydrocarbon chains

Production and uses of fuels

Fractions contain hydrocarbons with **boiling points in the same range**, e.g. the petrol fraction has hydrocarbons with boiling points in the range 40-100 °C

Long chain hydrocarbons are at the **bottom** of the column as they do not boil until a very high temperature

Some of the fractions are used as **fuels** (e.g. Kerosine - aeroplane fuel) others are further processed by **cracking**. (see next page)

Cracking and Addition Polymerisation

Cracking

At high temperature long hydrocarbon chains are broken down into smaller, more useful hydrocarbons.

This can create ethene.

ene.

more useful

the property of the propert

Shorter

Used to make the plastic polythene

Ethene is a small reactive molecule, a monomer

If many ethene molecules are linked together it is called polythene which is used to make many plastics

Creating Plastics

When small **reactive** molecules such as ethene react together in a chemical reaction a long chain molecule called a **polymer** is formed.

Monomer is the name given to small reactive organic molecule

The process whereby monomers link to create a polymer is polymerisation.

The type of polymerisation that happen here is **addition polymerisation** as there is only **one product** formed

Properties of Plastics

There are many types of plastics, all made by polymerisation, e.g. polythene, PVC, PTFE (Teflon) and polystyrene.

Electrical insulator / flexible

Thermal insulator

Transparent / flexible

Strong / low density

Strong /

Plastics versus traditional materials

Plastics are used widely in place of natural materials such as paper and iron

PVC plastic is used to make water pipes/guttering because they are light, do not rust like iron, cheaper and last longer

Polythene is used to make plastic bags in place of paper as they are stronger, do not rip and are waterproof

The disadvantages of plastics are that the do not rot i.e. the do not decompose (takes hundreds of years) and fill landfill sites.

With heat some plastics **melt** easily

If plastics burn they form poisonous gases

Recycling waste plastic:

- 1. reduces the amount of waste but equally importantly
 - 2. conserves crude oil reserves and
 - 3. requires less energy than making new plastics

Geology

Lithosphere – outer layer of the earth contains three types of rocks. They create tectonic plates

Tectonic Plates – The lithosphere has been split up into pieces called tectonic plates which move very slowly in different directions as seen in the diagram.

Tectonic plates movements

Any movement will cause an earthquake

Constructive plate

Plates can move apart. Magma pushes through to create new igneous rock (granite) Volcanic eruption possible

Destructive plate

Plates can move towards each **other**. More dense plate (heavy) melts to form magma Mountain ranges can be formed Explosive volcanoes possible

Plates can slide past each other

A theory that changed into scientific fact over time due to enough scientific evidence.

Alfred Wegener idea in 1915 was not scientifically accepted until more concrete facts were put forward. At the time Wegener could not explain **WHY** the plates moved

The current theory of plate tectonics became widely accepted in the 1960's.

By which time other scientists had found evidence to show that it is the Earth's plates that move and that they do so as a result of convection currents in the mantle.

Alfred Wegener suggested that the Earth's continents were once joined

He said the continents had moved apart to their present positions;

He observed the close fit of coastlines, of different countries (continents). Jigsaw fit

He also saw similar patterns of rocks and fossils, of continents separated by large oceans;

Accepting Wegener's theory

To convince people that the continents could move (continental drift) new evidence was needed and found;

- 1. Study of the ocean floor
 large mountain ranges and
 deep trenches found. It was
 originally thought that the
 seabed was flat
- Continental shelf

 Continental slope

 Continental rise

 Transform fault

 Abyssal plain

 Mid-ocean ridge

 Guyot

 Trench

 Seamount

2. Dating techniques using radioisotopes - oceanic crust was very young compared to the continents

3. Rocks keep a record of the magnetic field of the Earth, which changes from time to time. Evidence of "seafloor spreading"

Crust forms and moves sideways in both directions

Atmosphere

Atmosphere creation

The composition of the air was different 4000 million years ago. Most Scientists agree that the initial atmosphere came from volcanoes.

Volcanoes releasing carbon dioxide, ammonia and water vapour (steam) creating the first atmosphere

The Earth cools causing the steam to condense, forming oceans. This was fast.

Photosynthesising bacteria form in the oceans. Carbon dioxide levels decrease.

Bacteria releases oxygen in the atmosphere. Oxygen levels increase. Oxygen reacts with ammonia - nitrogen made - the most abundant gas in the atmosphere

Oxygen combines to form ozone. It prevents ultraviolet light from entering the Earth. It helps to prevent skin cancer.

Atmosphere

Carbon Cycle

The levels of oxygen and carbon dioxide have remained fairly constant for many years due to the carbon cycle.

Atmosphere

Global Warming

There is evidence to suggest that the Earth is warming but scientists do not all agree on the cause of this.

Many think that it is due mainly to increased levels of carbon dioxide in the atmosphere as a result of the combustion of fossil fuels and deforestation.

As a result the carbon cycles has been imbalanced

Higher level of carbon dioxide causes the temperature of the Earth to rise. Heat can not escape as easily

The effects of global warming

Global warming can cause :-

- 1. Changing weather patterns e.g. drier, hotter summers in some parts of the world leading to drought.
- 2. Flooding due to increase rainfall in some areas
- 3. Quicker melting of ice caps and glaciers
- 4. Rising sea levels

Carbon capture

Scientists are thinking of storing the CO₂ produced by burning fossil fuels under the sea or underground in geological formations

Acid Rain

In fuels such as oil and petrol there are **impurities** (i.e. oil is not pure hydrocarbons), compounds such as sulphur and nitrogen are present.

When these burn they form **polluting gases**, such as **sulfur dioxide** and **oxides of nitrogen**.

Acid rain forms when sulfur dioxide is released from factories. Acid rain forms when **sulfur dioxide** reacts with **rain** to form **sulfuric acid**.

It kills plants (forests) and aquatic life such as fish. It also damages buildings and statues made of limestone (calcium carbonate) and metals e.g. bridges.

Sulfur Scrubbing

The process of removing sulphur dioxide from exhaust flue gases of fossil fuel powered plants

FORMULAE FOR SOME COMMON IONS

POSITIV	E IONS	NEGATIVE IONS					
Name	Formula	Name	Formula				
Aluminium	Al ³⁺	Bromide	Br ⁻				
Ammonium	$\mathrm{NH_4}^+$	Carbonate	CO_3^{2-}				
Barium	Ba ²⁺	Chloride	Cl-				
Calcium	Ca ²⁺	Fluoride	\mathbf{F}^-				
Copper(II)	Cu ²⁺	Hydroxide	OH-				
Hydrogen	\mathbf{H}^{+}	Iodide	I-				
Iron(II)	Fe ²⁺	Nitrate	NO ₃				
Iron(III)	Fe ³⁺	Oxide	O^{2-}				
Lithium	Li ⁺	Sulphate	SO_4^{2-}				
Magnesium	Mg^{2+}						
Nickel	Ni ²⁺						
Potassium	\mathbf{K}^{+}						
Silver	\mathbf{Ag}^{+}						
Sodium	Na ⁺						

PERIODIC TABLE OF ELEMENTS

0	Не	Helium	Ne e	Neon	Ar	Argon	84 Kr 36 Kr	Krypton	Xe	non	Rn	lon						
	4 2	Hel	20 10		40		84 36		131	Xenon	222 86 Rn	Radon						
^			19 9 F	Fluorine	35 CI	Chlorine	$^{80}_{35}\mathrm{Br}$	Bromine	127 53 I	Iodine	²¹⁰ ₈₅ At	Astatine						
9			16 O 8	Oxygen	32 16 S	Sulphur	⁷⁹ Se	Selenium	$_{52}^{128}{ m Te}$	Tellurium	²¹⁰ ₈₄ Po	Polonium						
w		14 N Nitrogen 31 P 15 Phosphorus					75 As	Arsenic	122 51 Sb	Antimony	209 83 Bi	Bismuth						
4			12 6 6	Carbon	²⁸ Si	Silicon	⁷³ Ge	Germanium	119 Sn	Tin	²⁰⁷ ₈₂ Pb	Lead						
m			11 B	Boron	27 A1	Aluminium	70 31 Ga	Gallium	115 In	Indium	204 TI	Thallium						
		'					65 30 Zn	Zinc	112 Cd	Cadmium	201 Hg	Mercury				symbol		
							64 29 Cu	Copper	108 47 Ag	Silver	197 79 Au	Gold				- Element Symbol		
							⁵⁹ Ni	Nickel	106 Pd 46 Pd	Palladium	195 Pt	Platinum				×	Name	Manne
	1 H	Hydrogen					⁵⁹ Co	Cobalt	103 Rh		192 Ir	Iridium			<u></u>		1	_
dno							56 Fe 26 Fe	Iron	101 44 Ru	Ruthenium	190 Os	Osmium			Mass number		Atomic number –	
Gro							55 Mn	Manganese	99 Tc	Technetium	¹⁸⁶ Re	Rhenium		Key:	Ma		Atc	
							⁵² ₂₄ Cr	Vanadium Chromium Manganese	⁹⁶ Mo	Molybdenum Technetium Ruthenium Rhodium	184 W	Tungsten						
							51 V 23 V	Vanadium	93 Nb	Niobium	¹⁸¹ Ta	Tantalum						
							48 22 Ti	Titanium	$^{91}_{40}\mathrm{Zr}$	Zirconium	179 Hf	Hafnium						
							45 Sc 21 Sc	Scandium	Y 68 39 Y	Yttrium	¹³⁹ La	Lanthanum Hafnium	²²⁷ Ac 89	Actinium				
7			⁹ Be	Beryllium	24 Mg	Magnesium	40 Ca	Calcium	88 38 Sr	Strontium	137 56 Ba	Barium	²²⁶ Ra	Radium				
—			⁷ Li	Lithium	23 Na	Sodium	39 K	Potassium	86 37 Rb	Rubidium Strontium	133 Cs	Caesium	²²³ Fr	Francium				