Intercepts of the Quadratic

 $y_{1,2} = \frac{-b \pm \sqrt{b^2 - 4 \text{ ac}}}{2a}$ computes the y-intercepts of multiplicity 1. n(0) = c computes the single n-intercept.

Given a quadratic $n(y) = a y^2 + b y + c$ compute its discriminant \triangle :

Example 1.

$n(y) = -2y^2 - 22y - 36$ compute its discriminant \triangle : △=**196**>0

Example 2.

Example 3.

n(0) = 490 n-intercept.

 $\triangle = \sqrt{b^2 - 4ac}$ Case1: △>0

y_{1,2}=-2,-9 n(0) = -36 n-intercept.

 $y_{1,2} = \frac{-b \pm \sqrt{b^2 - 4 \text{ ac}}}{2a} = \frac{-b \pm 0}{2a} = \frac{-b}{2a}$ single y-intercept of multiplicity 2.

 $y_{1,2} = -3, -3$ n(0) = -18 n-intercept.

 $n(y) = -2y^2 - 12y - 18$ compute its discriminant \triangle :

$n(y) = 9y^2 - 126y + 490$ compute its discriminant \triangle : $\triangle = -1764 < 0$

2500

2000 1500 1000 n-intercept 500 -10 10