Math 172 Assignment 8 Tuesday, April 10, 2018

Problem G, Problem H, 14.6 (2c, 22, 23a, 37)

Problem G Verify that if ω is a complex 3rd root of unity ($\omega^3 = 1$) and x = u + v is a solution to the depressed cubic $x^3 + px + q = 0$, then $x = u\omega + v\omega^2$ and $x = u\omega^2 + v\omega$ are also solutions. Explain why $x = u\omega + v\omega$ is not a solution in the context of the derivation of Cardano's formulas.

Problem H Use Cardanos formulas to solve $x^3 + x^2 - 2 = 0$. Find all 3 solutions. Then verify that your expressions are equal to the 3 roots: 1, (-1+i), (-1-i).

14.6.2c Determine the Galois groups of the following polynomial: $x^3 - x + 1$.

14.6.22 (*Newton's Formulas*) Let f(x) be a monic polynomial of degree n with roots $\alpha_1, \ldots, \alpha_n$. Let s_i be the elementary symmetric function of degree i in the roots and define $s_i = 0$ for i > n. Let $p_i = \alpha_1^i + \cdots + \alpha_n^i$, $i \ge 0$, be the sum of the ith powers of the roots of f(x). Prove Newton's Formulas:

$$p_1 - s_1 = 0$$

$$p_2 - s_1 p_1 + 2s_2 = 0$$

$$p_3 - s_1 p_2 + s_2 p_1 - 3s_3 = 0$$

$$\vdots$$

$$p_i - s_1 p_{i-1} + s_2 p_{i-2} - \dots + (-1)^{i-1} s_{i-1} p_1 + (-1)^i i s_i = 0.$$

14.6.23a If x + y + z = 1, $x^2 + y^2 + z^2 = 2$ and $x^3 + y^3 + z^3 = 3$, determine $x^4 + y^4 + z^4$.

14.6.37 Let $f(x_1,...,x_n)$ be a polynomial which is symmetric in $x_1,...,x_n$. Recall that the degree (sometimes called the *weight*) of the monomial $Ax_1^{a_1}x_2^{a_2}...x_n^{a_n}(a_i \ge 0)$ is $a_1 + a_2 + \cdots + a_n$ and that a polynomial is *homogeneous* (of degree m) if every monomial has the same degree (m).

- (a) Show that every polynomial $f(x_1,...,x_n)$ can be written as a sum of homogeneous polynomials. Show that if $f(x_1,...,x_n)$ is symmetric then each of these homogeneous polynomials is also symmetric.
- (b) Show that the monomial $Bs_1^{a_1}s_2^{a_2}\dots s_n^{a_n}$ in the elementary symmetric functions is a homogeneous polynomial in x_1, x_2, \dots, x_n of degree $a_1 + 2a_2 + \dots + na_n$.