1. Let function f be defined by the polynomial below:

$$f(x) = 4x^5 - 2x^4 - 9x^3 - 8x^2 - 6x + 5$$

Draw lines that match each function reflection with its polynomial:

Reflections	Polynomials
-f(x) ●	$-4x^5 + 2x^4 + 9x^3 + 8x^2 + 6x - 5$
f(−x) •	$-4x^5 - 2x^4 + 9x^3 - 8x^2 + 6x + 5$
-f(-x) ●	$4x^5 + 2x^4 - 9x^3 + 8x^2 - 6x - 5$

2. In each xy plane shown below, a function is graphed with blue. Draw the indicated reflections (as a second curve, indicated in legend) with black (or with whatever you have). The x axis is horizontal and the y axis is vertical (as typical), and the scale is equal on both axes.

For all questions on this page, the functions f, g, and h are defined by the table below.

x	f(x)	g(x)	h(x)
1	1	9	8
2	5	6	4
3	9	2	9
4	3	7	1
5	4	1	2
6	8	4	3
7	6	8	7
8	2	3	5
9	7	5	6

3. Evaluate f(9).

$$f(9) = 7$$

4. Evaluate $h^{-1}(1)$.

$$h^{-1}(1) = 4$$

5. Assuming h is an **even** function, evaluate h(-3).

If function h is even, then

$$h(-3) = 9$$

6. Assuming g is an **odd** function, evaluate g(-8).

If function g is odd, then

$$g(-8) = -3$$

7. A function, f, is **even** if f(x) = f(-x) for all x in the domain. A function, g, is **odd** if g(x) = -g(-x) for all x in the domain.

Let polynomial p be defined with the following equation:

$$p(x) = -x^2 - 1$$

a. Express p(-x) as a polynomial in standard form.

$$p(-x) = -(-x)^{2} - 1$$
$$p(-x) = -x^{2} - 1$$

b. Express -p(-x) as a polynomial in standard form.

$$-p(-x) = -(-x^2 - 1)$$

 $-p(-x) = x^2 + 1$

c. Is polynomial p even, odd, or neither?

even

d. Explain how you know the answer to part c.

We see that p(x) = p(-x) for all x because p(x) and p(-x) are equivalent polynomials. Thus function p satisfies the criterion for being an even function.

8. I have drawn half of a function. Draw the other half to make it even or odd.

9. Let function f be defined with the equation below.

$$f(x) = 3x + 8$$

a. Evaluate f(11).

step 1: multiply by 3

step 2: add 8

$$f(11) = 3(11) + 8$$

f(11) = 41

b. Evaluate $f^{-1}(83)$.

step 1: subtract 8 step 2: divide by 3

$$f^{-1}(x) = \frac{x-8}{3}$$

$$f^{-1}(83) = \frac{(83) - 8}{3}$$

$$f^{-1}(83) = 25$$

10. The function b is represented by the curve y = b(x) graphed below.

a. Evaluate b(5).

$$b(5) = 6$$

b. Evaluate $b^{-1}(7)$.

$$b^{-1}(7) = 4$$

- 11. Function f is defined by the table below.
 - a. Complete the columns for -f(x) and f(-x) and -f(-x).

\overline{x}	f(x)	-f(x)	f(-x)	-f(-x)
-2	3	-3	3	-3
-1	5	-5	-5	5
0	0	0	0	0
1	-5	5	5	-5
2	3	-3	3	-3

b. Is function f even, odd, or neither?

neither

c. How do you know the answer to part b?

Function f is neither because neither column -f(-x) nor column f(-x) matches column f(x) exactly.