Лаб: Дискретна математика - логика - Решения

1. Образуване на съставни съждения

Нека са дадени следните елементарни съждения:

```
р: "Навън вали."
q: "Навън е студено."
r: "Навън е облачно."
s: "Навън е слънчево."
```

Като използвате съждителните връзки, да се запишат следните съставни съждения:

```
а) "Навън не вали." Отговор: ~р
```

- b) "Не е вярно, че е слънчево." <mark>Отговор: ~s</mark>
- с) "Навън вали и е студено." Отговор: р ^ q
- d) "Навън вали, но не е студено." Отговор: р ^ ~q
- е) "Навън е облачно или слънчево." Отговор: r v s
- f) "Ако е облачно, то навън е студено." Отговор: $r \to q$
- g) "Ако вали, то навън е студено или не е слънчево." Отговор: p -> (q v ~s)
- h) "От това, че вали, следва, че е студено или облачно." Отговор: p -> (q v r)
- і) "Навън е слънчево тогава и само тогава, когато не е облачно."

Отговор: s <-> ~r

2. Класификация на формули

Да се напишат таблиците на истинност на дадените формули и да се определи всяка от тях дали е тавтология, противоречива или неутрална.

a)
$$((\sim q \rightarrow \sim p) ^ p) \rightarrow p$$
 (ТАВТОЛОГИЯ)

q	р	~q	~p	~q -> ~p	(~q -> ~p) ^ p	((~q -> ~p) ^ p) -> p
Т	Т	F	F	Т	Т	Т
F	F	Т	T	Т	F	Т
Т	F	F	T	Т	F	Т
F	Т	T	F	F	F	Т

b)
$$(p \rightarrow q) ^ \sim (q \vee \sim p) (\Pi POT UBO PE Y UE)$$

р	q	p -> q	~p	q v ∼p	~(q v ~p)	(p -> q) ^ ~(q v ~p)
Т	T	Т	F	Т	F	F
F	F	Т	Т	Т	F	F
Т	F	F	F	F	Т	F
F	T	Т	Т	Т	F	F

c) ~p v (~q <-> p) (НЕУТРАЛНА)

р	q	~p	~q	~q <-> p	~p v (~q <-> p)
Т	T	F	F	F	F
F	F	Т	Т	F	Т
Т	F	F	Т	Т	Т
F	Т	Т	F	F	T

d) p $^(q ^(vp v q))$ (ПРОТИВОРЕЧИЕ)

р	q	~p	~q	~p v ~q	q ^(~p v ~q)	p ^ (q ^(~p v ~q))
Т	T	F	F	F	F	F
F	F	Т	Т	T	F	F
Т	F	F	Т	Т	F	F
F	T	Т	F	Т	Т	F

e) (p ^ (p -> q)) -> q (ТАВТОЛОГИЯ)

р	q	p -> q	p ^ (p -> q)	(p ^ (p -> q)) -> q
Т	T	Т	Т	Т
F	F	Т	F	Т
Т	F	F	F	Т
F	T	Т	F	Т

3. Доказване на тавтология

Докажете, че $p \to (q \to r) \to (p \to q) \to (p \to r)$ е тавтология.

р	q	r	q -> r	p -> q	p -> r	(p -> q) -> (p -> r)	(q -> r) -> ((p -> q) -> (p -> r))	р -> предишната колона
F	F	F	Т	Т	Т	Т	Т	Т
F	F	Т	Т	Т	Т	Т	Т	Т
F	Т	F	F	Т	Т	F	F	Т
F	Т	Т	Т	Т	Т	Т	Т	Т
Т	F	F	Т	F	F	Т	Т	Т
Т	F	Т	Т	F	F	Т	Т	Т
Т	Т	F	F	Т	Т	Т	Т	Т
Т	T	Т	Т	Т	T	Т	Т	Т

⇒ Изразът е тавтология

4. Доказване на еквивалентност

Дадени са две формули:

$$\Phi_1 = p -> q$$
 $\mu \Phi_2 = q -> p$

Докажете, че двете формули са еквивалетни.

$$\Phi_1 = p -> q (T, T, F, T)$$

р	q	p -> q
Т	Т	Т
F	F	Т
Т	F	F
F	Т	Т

$$\Phi_2 = ^q -> ^p (T, T, F, T)$$

р	q	~q	~p	~q -> ~p
Т	Т	F	F	Τ
F	F	Т	Т	Т
Т	F	Т	F	F
F	Т	F	Т	Т

⇒ Ф₁и Ф₂ са еквивалентни.

