8 BIT ARITHMETIC OPERATIONS

Name: Prasanna Kumaran D Registration Number: 185001110

24 August 2020

1 **AIM**:

To write and execute 8086 programs for basic arithmetic operations like addition, subtraction, multiplication and division.

2 PROCEDURE:

- ullet Write the program in a text editor and save it as a .asm file under the MASM directory.
- Launch DOSBOX application and mount the MASM folder using the command prompt.
- Use the following syntax for mounting: 'mount [LOCAL DRIVE] FILEPATH'. Enter into the local drive('LOCAL DRIVE:').
- The code file can be edited using the command **edit FILENAME.asm**. Save the changes and exit.
- Assemble the code using the command 'masm FILENAME.asm' to generate the object file. The object file is in the format 'FILENAME.obj'
- Add dynamic libraries using the syntax 'link FILENAME.obj' to generate the executeable(.exe) file.
- Enter the debug mode using debug FILENAME.exe to execute and analuse the memory contents. The various commands used in debug mode are as follows:-
 - U :- Displays unassembled code.
 - D: Refers to the offset from which contents in the memory are displayed.
 - E :- Change the value in memory.
 - G :- execute the code.
 - Q :- Quit debug mode.

3 Algorithm

INITIALIZATION:

• Declare and initialize the operands and the code and data segments.

3.1 8 BIT ADDITION:

- Move the data segment to the AX register and then move it to the DS register.
- Move the first operand to AH register and the second to BH register.
- Initialize CH register to 00h.(hexadecimal)
- Add the operands using **ADD AH**, **BH**.

- Check for carry bit using JNC instruction.
 - Increment CH by 1 if there is a carry.
- Move the contents of AH and CH to RESULT and CARRY operands respectively.

3.2 8 BIT SUBTRACTION:

- Move the data segment to AX register and then move it to the DS register.
- Move the first and second operand to AH and BH register respectively.
- Initialize CH register to 00h.
- Subtract the operands using SUB AH, BH.
- Check for carry bit using JNC instruction.
 - If AH; BH carry bit is generated and take 2's complement of AH using NEG AH and increment CH by 1.
- Move the contents of AH and CH to RESULT and CARRY operands respectively.

3.3 8 BIT MULTIPLICATION:

- Move the data segment to the AX register and move the AX to DS register.
- Move the first and second operands to AL and BL registers respectively.
- Multiply the operands using MUL BL
 - Note: AL is default operand register for MUL instruction and specifying the second operand register is sufficient.
- The result is stored in the **AX** register and since product of two 8 bit numbers yield a 16 bit number move the contents of AX register to RESULT.

3.4 8 BIT DIVISION

- Move the data segment to the AX register and then move it to the DS register.
- Now, set AH register to 00h and move first operand to AL register. (Since we cant directly divide a 8bit number by 8 bit number in 8086, we now make our dividend 16 bit by storing 00h in AH register and the 8-bit operand 1 in AL register).
- Move the second operand to the BL register.
- Now divide using DIV BL. (It will perform AX / BL. Because AH is 00h, what actually happens is the division of a 16 bit number by a 8 bit number.)
- The quotient and remainder stored in AL and AH should be moved to QUOTIENT and REMAINDER respectively.

4 Programs

4.1 8 BIT ADDITION:

PROGRAM	COMMENTS
mov ah,opr1	Transfers contents of operand 1to AH register.
mov bh,opr2	Transfers contents of operand 2to BH register.
mov ch,00h	Initialises CH register with 00h.
add ah,bh	AH=AH+BH.
jnc here	Jumps to "Here Label if carry bit is not generated.
inc ch	CH=CH+1(Increment CH by 1).
here: mov result, ah	Transfers contents of AH register to RESULT.
mov carry,ch	Transfers contents of CH register to CARRY.
mov ah, 4ch	Move the hexadecimal value 4c to ah
int 21h	When software interrupt 21 is called with AH=45,process is terminated

4.2 8 BIT SUBTRACTION:

Program	Contents
mov ah,opr1	Transfers contents of operand 1to AH register.
mov bh,opr2	Transfer contents of operand 2 to BH register.
mov ch,00h	Intialize CH register with 00h
sub ah,bh	AH = AH - BH
jnc here	Jumps to "Here Label if carry bit is not generated
neg ah	AH = 2's complement of AH
inc ch	CH = CH + 1
here: mov result, ah	Transfer contents from AH to RESULT
mov carry,ch	Transfer contents from CH to CARRY.
mov ah, 4ch	Move the hexadecimal value 4c to ah
int 21h	When software interrupt 21 is called with AH=45, process is terminated

4.3 8 BIT MULTIPLICATION:

Program	Contents
mov al, opr1	Transfers contents of operand 1to AL register
mov bl, opr2	Transfer contents of operand 2 to BL register
mul bl	$BL = BL^* AL$
mov result,ax	Transfer contents of AX to RESULT
mov ah, 4ch	Move the hexadecimal value 4c to ah
int 21h	When software interrupt 21 is called with AH=45,process is terminated

4.4 8 BIT DIVISION:

Program	Contents
mov ah, 00h	Move the value 00h to AH register.
mov al, opr1	Transfers contents of operand 1to AL register.
mov bl, opr2	Transfer contents of operand 2 to BL register.
div bl	Performs AX/BL.
mov quotient,al	Transfer contents from AL to QUOTIENT
mov remainder, ah	Transfer contents from AH to REMAINDER
mov ah, 4ch	Move the hexadecimal value 4c to ah
int 21h	When software interrupt 21 is called with AH=45, process is terminated

5 OUTPUTS:

6 RESULT:

Thus, 8086 programs for arithmetic operations like addition, subtraction, multiplication and division have been executed successfully using MS - DOSBox

```
P:N>debug 8BITADD.EXE
-d 076a:0000
076A:0000
        00
076A:0010
        076A:0020
        00 00 00 00 00 00 00 00-00
                           00 00 00 00 00
                                      \mathbf{00}
                                         00
076A:0030
        00 00 00
              00 00 00 00 00-00
                           00 00 00 00 00
                                      \mathbf{00}
                                         00
076A:0040
        00
                                         \mathbf{00}
076A:0050
            00
              00
                00
                  00
                     00 00-00
                           00 \ 00
                                00
        00 \ 00
                                  00
                                    00
                                       00
                                         00
076A:0060
        00 \ 00
            00 00 00 00
                     00 00-00 00 00 00
                                  00 00
                                       \mathbf{00}
                                         00
076A:0070
```

Figuur 1: 8 bit ADD Input

```
Program terminated normally
-d 076a:0000
076A:0000
         11 99 AA 00 00 00 00 00-00 00 00 00 00 00 00 00
076A:0010
         00 - 00
              00 00 00 00 00 00-00 00 00 00
                                         00 00 00 00
076A:0020
              00 \ 00
076A:0030
         00 \ 00
              00 00 00 00 00
                            00-00 00 00 00 00 00 00 00
                            00-00 00 00 00
076A:0040
         00 \ 00
              00 00 00 00 00
                                         00 00 00 00
076A:0050
         00 \ 00
              00 00 00 00 00
                            00-00 00 00 00
                                         00 \ 00
                                              00
                                                 00
076A:0060
         00 \ 00
              00 \ 00
                    00 00 00
                            00-00 00 00 00
                                         00 \ 00
                                              00 \ 00
076A:0070
```

Figuur 2: 8 bit ADD OUTPUT

```
d 076a:0000
076A:0000
          076A:0010
          B8 6A 07 8E D8 8A 26 00-00 8A
                                      ЗE
                                        01
                                           00 B5
                                                 \mathbf{00}
                                                    2A
076A:0020
          E7
            73 04 F6 DC FE C5 88-26 02
                                      00 88 ZE 03 00 B4
076A:0030
          4C CD 21 00
                    00 00 00 00-00 00
                                      00
                                        00 00 00 00
                                                    00
076A:0040
          00 00 00 00 00 00 00 00-00 00
                                      \mathbf{00}
                                        00 00 00 00
                                                    00
076A:0050
          00 00 00 00 00
                       00 00 00-00 00
                                      00
                                        00 00 00 00
                                                    00
076A:0060
          00 00 00 00 00
                        \mathbf{00}
                          00 00-00 00
                                      \mathbf{00}
                                        00
                                           00 \ 00
                                                 00
                                                    \mathbf{00}
          076A:0070
                                                    00
```

Figuur 3: 8 bit SUB INPUT

```
Program terminated normally
-d 076a:0000
976A:0000
            11 43 32 01 00 00 00 00-00 00 00 00 00 00 00 00
076A:0010
            B8 6A 07
                       8E D8 8A 26 00-00 8A 3E 01 00 B5 00 2A
076A:0020
            E7
                73 04
                       F6
                          DC
                              FE C5 88-26 02
                                                00 88 ZE 03 00 B4
076A:0030
                       00 00 00 00 00-00 00 00 00 00 00 00
            4C CD 21
                                                                  00
            00 00 00
                                                   00 00 00 00
076A:0040
                       00
                          \mathbf{00}
                              00 00 00-00 00
                                               \mathbf{00}
                                                                  00
076A:0050
            00 00 00
                       \mathbf{00}
                          \mathbf{00}
                              00 00 00-00 00
                                                \mathbf{00}
                                                   00 00 00 00
                                                                  00
                              00 00 00-00 00 00 00 00 00 00
076A:0060
            00 00 00
                       \mathbf{00}
                          \mathbf{00}
                                                                  \mathbf{00}
076A:0070
            00 00 00
                       00 00 00 00 00-00 00 00 00
                                                       00 00 00 00
```

Figuur 4: 8 bit SUB OUTPUT

```
OFFO TIBBIOLOGY
                             H\Pi_{J}HU
d 076a:0000
076A:0000
          076A:0010
         B8 6A 07 8E D8 A0 00 00-8A 1E 01
                                       00 B5 00 F6
                                                   EЗ
076A:0020
         73 02 FE C5 A3 02
                            88-ZE 04 00 B4
                                          4C CD 21
                          00
                                                   B4
076A:0030
         4C CD
               21
                 00
                    00 00 00
                            00-00 00 00
                                       00 00 00 00
                                                  00
                            00-00 00 00 00 00 00
076A:0040
         00 00 00 00 00 00 00
                                                00
                                                   00
                            00-00 00 00
076A:0050
         00 00 00
                 00
                          00
                                       00
                    00 \ 00
                                          00
                                             \mathbf{00}
                                                00
                                                   00
                                          00
076A:0060
               00
                 00
                    00 00 00
                            00-00 00
                                     00
                                        00
         00 \ 00
                                             \mathbf{00}
                                                00
                                                   00
         076A:0070
                                                  00
```

Figuur 5: 8 bit MUL INPUT

```
Program terminated normally
 d 076a:0000
076A:0000
           15 23 DF 02 01 00 00 00-00 00 00 00 00 00 00 00
076A:0010
           B8 6A 07
                    8E D8 A0 00 00-8A 1E 01 00 B5 00 F6
                                                           E3
076A:0020
           73
              02
                 \mathbf{FE}
                    C5 A3 02 00 88-2E
                                       04
                                           00 B4
                                                 4C CD
                                                       21
                                                           B4
076A:0030
           4C CD 21 00 00 00 00 00-00 00 00 00 00 00
                                                       00
                                                           00
076A:0040
           00 \ 00
                 \Theta\Theta
                    00 \ 00
                          00 \ 00
                                 00-00 00
                                           00
                                              00
                                                 \Theta\Theta
                                                    00
                                                        00
                                                           00
076A:0050
           00 \ 00
                 00 00 00 00 00 00-00 00
                                           00 00 00 00 00
                                                           00
076A:0060
           00 \ 00
                 00
                    00 00 00 00 00-00
                                       00
                                           00
                                              00
                                                 00 \ 00
                                                       00
                                                           00
076A:0070
           \mathbf{00}
```

Figuur 6: 8 bit MUL OUTPUT

```
d 076A:0000
976A:0000
       076A:0010
       076A:0020
       076A:0030
       00 \ 00
           00 00 00 00
                   00 00-00 00 00 00 00 00 00 00
076A:0040
       00 00
           00 00 00 00
                   00 00-00 00 00 00 00 00 00 00
076A:0050
       00
         00
           00 \ 00
               \mathbf{00}
                 00
                   00 00-00 00
                           00 \ 00
                               \Theta\Theta
                                 00
                                   00
                                     00
076A:0060
       00 00
           00 00 00 00 00 00-00 00 00 00 00
                                 00
                                   00 \ 00
076A:0070
```

Figuur 7: 8 bit DIV INPUT

```
-G
Program terminated normally
-D 076A:0000
076A:0000
   11 99 00 11 00 00 00 00-00 00 00 00 00 00 00 00
076A:0010
   076A:0020
   076A:0030
   076A:0040
   076A:0050
   076A:0060
   076A:0070
```

Figuur 8: 8 bit DIV OUTPUT