## Project: Detecting fake reviews

- Team members
  - Georgios (Economics and Business)



Pedro (Economics and Business)



Marius (User Experience Design)







## Objective

Create a ML- pipeline to Detect fraudulent reviews

Given these predictions, they can conduct investigations, decide whether to notify users (i.e flag fake reviews) or take corrective action.

Main Beneficiary: e-commerce platforms

Indirect beneficiaries: customers, sellers and the regulatory agencies

#### Project motivation

• E-commerce on the rise

Reviews closely determine purchasing decisions

• Dynamic environment: easier than ever to create fake content that seems believable

 Fraudulent reviews damage both the platform, the seller reputation and consumers

#### Real world case

UK competition watchdog to probe Google and Amazon over fake reviews Financial Times

- Competition and Markets Authority says tech groups may not be doing enough to protect consumers.
- The UK competition regulator has opened an investigation into Amazon and Google over fake reviews on their sites that may be duping consumers.
- A thriving industry where potentially hundreds of thousands of reviews are bought and sold for as little as £5 each".

"Our worry is that millions of online shoppers could be misled by reading fake reviews and then spending their money based on those recommendations,"

### This is a real business problem

Fake online reviews cost the global economy \$152 billion a year. (WEF) In response, there exist off-the-shelf solutions:

Fraud detection algorithms that combine behavioural analytics and text analysis e.g. Amazon Web Services (AWS):



# Some Statistics (about the e-commerce market)

- Revenue in the eCommerce Market is projected to reach US\$3,226.00bn in 2024.
- Revenue is expected to show an annual growth rate (CAGR 2024-2029) of 9.79%, resulting in a projected market volume of US\$5,145.00bn by 2029.
- In the eCommerce Market, the number of users is expected to amount to 3.2bn users by 2029.
- Data from STATISTA (world wide in us dolars)

## Some Statistics (about the role of reviews in the buying process)

- 95% of costumers read reviews before making the buying decision (Global Newswire)
- 88% of customers who read an online review say it influenced their buying decision (Zendesk )
- 49% of consumers trust online reviews as much as personal recommendation (Bright Local)
- Positive reviews can increase customer spending by 31% (Bright Local)
- 86% of people hesitate to do business with a company if it has too many negative customer reviews.
- If consumers found out a platform was censoring reviews, 62% of consumers would stop using it (Trustpilot)
- 52% of a company's market value is attributed to its reputation (PR Week)

#### Similar open source projects:

Mostly focus on NLP (analysis on text)

| Sr. No. | Model Accuracy (%)                | Precision Score | Recall Score | F1 Score |
|---------|-----------------------------------|-----------------|--------------|----------|
| 1       | MultinomialNB                     | 90.25           | 0.9325       | 0.8601   |
| 2       | Stochastic Gradient Descent (SGD) | 87.75           | 0.8913       | 0.8497   |
| 3       | Logistic Regression               | 87.00           | 0.8691       | 0.8601   |
| 4       | Support Vector Machine            | 56.25           | 0.525        | 0.9792   |
| 5       | Gaussian Naive Bayes              | 63.5            | 0.6424       | 0.6169   |
| 6       | K-Nearest Neighbour               | 57.5            | 0.8604       | 0.1840   |
| 7       | Decision tree                     | 68.5            | 0.6681       | 0.7412   |

Credits: Salunkhe, Ashish. "Attention-based Bidirectional LSTM for Deceptive Opinion Spam Classification." arXiv preprint arXiv:2112.14789 (2021).

## Possible analyses

- 1. Analyze the reviewer, not the review
  - Feature engineering: how old the account is, # of reviews made, time stamps for behavior, etc
- 2. Use review metadata: helpfulness ranking, verified purchase or not.

- 3. Analyse the review text
  - Natural Language Processing (NLP)
  - Complex and beyond the scope of this course

### Dataset (correction: huge database)

#### Yelp Dataset on Kaggle.





kaggle.com/datasets/yelp-dataset/yelp-dataset

Clean

Popular for analysis

JSON (not CSV)

Large: 3GB + 5GB databases

#### Credits: An Hoang Vo, Kaggle, Business Analysis using SQL and Spark

#### Data schema

#### **Covers:**

- Businesses,
- Reviews
- Users



## Exploratory data analysis (EDA). Part 1/3

#### **Business Categories**



Credits: An Hoang Vo on Kaggle, Business Analysis using SQL



Analysis of a fragment of 35k random (?) entries of 'reviews'

## EDA 2/3



19



#### Questions we need help with:

1. Dealing with a large dataset: in practice vs for this course. Is 'split' acceptable? How can we see how randomly distributed it is now?

- 2. Should we continue working with a large dataset that requires significant JOINs between different datasets?
- 3. How can we evaluate the model if real world data does not contain a label: fake/real. Prediction tested by what?

#### Next actions

- Closer look at how others evaluate their result given data not labelled on authenticity
- Replicating another project to see what we learn
- Comparing 3 key algorithms and decide on one

OR

 coaching session w/ teacher + Plan B for a more manageable objective.

### Follow our progress

github.com/ursumarius/review-analysis-intro-ml-jads/ kaggle.com/code/mariusursu/review-analysis-intro-ml-jads

#### Slides:

- Thanks for your time.
  - Marius
  - Pedro
  - Georgios

## Project: Detecting fake reviews

- Team members
  - Georgios (Economics and Business)



Pedro (Economics and Business)



Marius (User Experience Design)





