ITMO Библиотека автоматического обучения объяснимых графовых нейронных сетей

Графовые нейронные сети

Графами можно моделировать:

- химические молекулы;
- транспортные системы;
- социальные сети;
- сети банковских транзакций;
- ...

Задачи ГНС:

- Прогнозирование растворимости молекул (задача регрессии/классификации графов);
- Предсказание характеристики пользователей в соц. сети (задача регрессии/классификации вершин);
- Рекомендательная система предсказать купит ли человек определенный товар на основе информации о покупках интересуемого человека и других людей (задача предсказания связей);

Фреймворки для графовых нейронных сетей ТМО

```
dataset = Planetoid(root='/tmp/Cora', name='Cora')
data = dataset[0]
# Подготовка данных
train_mask = data.train_mask
test mask = data.test mask
# Определение архитектуры сети
 lass Net(torch.nn.Module):
   def __init__(self):
       super(Net, self).__init__()
       self.conv1 = GCNConv(dataset.num_node_features, 16)
        self.conv2 = GCNConv(16, dataset.num_classes)
    def forward(self, data):
        x, edge_index = data.x, data.edge_index
       x = F.relu(self.conv1(x, edge_index))
       x = F.dropout(x, training=self.training)
       x = self.conv2(x, edge_index)
       return F.log_softmax(x, dim=1)
# Инициализация сети и оптимизатора
device = torch.device('cuda' if torch.cuda.is available() else 'cpu')
model = Net().to(device)
data = data.to(device)
optimizer = optim.Adam(model.parameters(), lr=0.01, weight_decay=5e-4
# Обучение сети
model.train()
 or epoch in range(200):
    optimizer.zero_grad()
    out = model(data)
    loss = F.nll_loss(out[train_mask], data.y[train_mask])
    loss.backward()
    optimizer.step()
 Тестирование сети
model.eval()
 , pred = model(data).max(dim=1)
correct = pred[test_mask].eq(data.y[test_mask]).sum().item()
accuracy = correct / test_mask.sum().item()
 rint('Accuracy: {:.4f}'.format(accuracy))
```


Автоматизация ГНС

С какими проблемами мы можем столкнуться, если хотим делать «универсальный пайплайн»?

- Шумные данные => уточнение структуры графа (с учетом априорных свойств графа);
- Малый объем размеченных данных => self-supervised функции потерь;
- Низкая интерпретация результатов => объяснять решения;
- Ограниченные / неизвестные распределения данных => Обобщаемость / возможность экстраполяции;
- Графы с низкой ассортативностью => метод GeomGCN.

Библиотека

https://github.com/aimclub/StableGNN

iTMO

Основные компоненты StableGNN

- Модуль graph: уточнение графа с учетом свойства ассортативности
- Moдуль model_nc: self-supervised (предсказание степени вершины), свертка geom_gcn (нет ее реализации в torch_geometric)
- Mодуль model_gc: экстраполяция, self-supervised (предсказание степени вершины)
- Модуль explain: PGM-Explainer (сейчас только для model_nc)

Основные компоненты: StableGNN.graph

Уточнение структуры графа

Основные компоненты: StableGNN.model_nc ITMO

geom_gcn, loss_self_supervised

Основные компоненты: StableGNN.model_gc ITMO

Extrapolation

Основные компоненты: StableGNN.explain

какой <u>подграф</u> наиболее повлиял на предсказание?

Node-level

Примеры применения StableGNN

Предсказания валовой прибыли нефтяных месторождений

	adjust_flag = True	adjust_flag = False
ssl_flag = True	0.47	0.42
ssl_flag = False	0.37	0.40

Предсказание свойств горения углеводорода

	F1, extrapolate_flag = True	F1, extrapolate_flag = False
ssl_flag = True	0.8	0.73
ssl_flag = False	0.66	0.74

Предсказание качественного связывания набора ингибиторов β-секретазы человека. **Экстраполяция** GNN на различные типы молекул (scaffold) на примере датасета BACE.

	ROC AUC
UniMol	85.7
StableGNN	90.1

Возможные направления НИР и ВКР

Исследование и разработка методов объяснения предсказаний графовых нейронных сетей. (stable_gnn.explain)

Исследование и разработка методов уточнения структуры графов для обучения графовой нейронной сети (stable_gnn.graph)

Исследование и разработка функций потерь самостоятельного обучения графовых нейронных сетей. (stable_gnn.model_nc/stable_gnn.model_gc)

Ваши предложения!

ITMO

Вопросы и дискуссия!

THANK YOU FOR YOUR TIME!

ITSMOre than a UNIVERSITY

Your contact info