The Data Science Cycle Feature Selection

DataLab

September 21, 2016

Outline

- Introduction
 - Loading Data
 - What is Feature Selection?
 - Preprocessing
 - Outliers
 - Algorithm For Finding Multivariate Outliers
 - Data Normalization
 - Missing Data
 - The Peaking Phenomena
- Peature Selection
 - Feature Selection
 - Scatter Matrices
 - What to do with it?
 - Sequential Backward Selection

Outline

- Introduction
 - Loading Data
 - What is Feature Selection?
 - Preprocessing
 - Outliers
 - Algorithm For Finding Multivariate Outliers
 - Data Normalization
 - Missing Data
 - The Peaking Phenomena
- Peature Selection
 - Feature Selection
 - Scatter Matrices
 - What to do with it?
 - Sequential Backward Selection

Loading Data

We can use Pandas for this!!!

```
import pandas as pd
import matplotlib.pyplot as plt
import numpy as np
from scipy.stats import chi2
def ReturnDataFrame(self, path):
        return pd.read csv(path, sep=',',
                                 skipinitialspace=True)
# Load CVS
Path1 = 'SomePath'
DataMatrix = ReturnDataFrame(Path1)
# Transform to an NP Array
Data = DataMatrix.as matrix()
Data = Data.astype(float)
```

Some properties of the new numpy matrix

We have
$$Samples \begin{cases} x_{11} & x_{12} & \cdots & x_{1d} \\ x_{21} & x_{22} & \cdots & x_{2d} \\ \vdots & \vdots & \ddots & \vdots \\ x_{N1} & x_{N2} & \cdots & x_{Nd} \end{cases}$$

Outline

- Introduction
 - Loading Data
 - What is Feature Selection?
 - Preprocessing
 - Outliers
 - Algorithm For Finding Multivariate Outliers
 - Data Normalization
 - Missing Data
 - The Peaking Phenomena
- Peature Selection
 - Feature Selection
 - Scatter Matrices
 - What to do with it?
 - Sequential Backward Selection

Main Question

"Given a number of features, how can one select the most important of them so as to reduce their number and at the same time retain as much as possible of their class discriminatory information?"

Main Question

"Given a number of features, how can one select the most important of them so as to reduce their number and at the same time retain as much as possible of their class discriminatory information?"

Why is important?

If we selected features with little discrimination power, the subsequent design of a classifier would lead to poor performance.

Main Question

"Given a number of features, how can one select the most important of them so as to reduce their number and at the same time retain as much as possible of their class discriminatory information?"

Why is important?

- If we selected features with little discrimination power, the subsequent design of a classifier would lead to poor performance.
- if information-rich features are selected, the design of the classifier can be greatly simplified.

Main Question

"Given a number of features, how can one select the most important of them so as to reduce their number and at the same time retain as much as possible of their class discriminatory information?"

Why is important?

- If we selected features with little discrimination power, the subsequent design of a classifier would lead to poor performance.
- ② if information-rich features are selected, the design of the classifier can be greatly simplified.

Therefore

We want features that lead to

Main Question

"Given a number of features, how can one select the most important of them so as to reduce their number and at the same time retain as much as possible of their class discriminatory information?"

Why is important?

- If we selected features with little discrimination power, the subsequent design of a classifier would lead to poor performance.
- if information-rich features are selected, the design of the classifier can be greatly simplified.

Therefore

We want features that lead to

1 Large between-class distance.

Main Question

"Given a number of features, how can one select the most important of them so as to reduce their number and at the same time retain as much as possible of their class discriminatory information?"

Why is important?

- If we selected features with little discrimination power, the subsequent design of a classifier would lead to poor performance.
- ② if information-rich features are selected, the design of the classifier can be greatly simplified.

Therefore

We want features that lead to

- 1 Large between-class distance.
- 2 Small within-class variance.

Then

Outline

- Introduction
 - Loading Data
 - What is Feature Selection?
 - Preprocessing
 - Outliers
 - Algorithm For Finding Multivariate Outliers
 - Data Normalization
 - Missing Data
 - The Peaking Phenomena
- Peature Selection
 - Feature Selection
 - Scatter Matrices
 - What to do with it?
 - Sequential Backward Selection

It is necessary to do the following

- Outliers removal.
- Dool with missing data
- Deal with missing data.

It is necessary to do the following

- Outliers removal.
- 2 Data normalization.

PREPROCESSING

It is necessary to do the following

- Outliers removal.
- 2 Data normalization.
- Oeal with missing data.

PREPROCESSING!!!

It is necessary to do the following

- Outliers removal.
- 2 Data normalization.
- Oeal with missing data.

Actually

PREPROCESSING!!!

Outline

- Introduction
 - Loading Data
 - What is Feature Selection?
 - Preprocessing
 - Outliers
 - Algorithm For Finding Multivariate Outliers
 - Data Normalization
 - Missing Data
 - The Peaking Phenomena
- Peature Selection
 - Feature Selection
 - Scatter Matrices
 - What to do with it?
 - Sequential Backward Selection

Definition

An outlier is defined as a point that lies very far from the mean of the corresponding random variable.

Definition

An outlier is defined as a point that lies very far from the mean of the corresponding random variable.

Note: We use the standard deviation

For a normally distributed random variable

- A distance of two times the standard deviation covers 95% of the points.
- A distance of three times the standard deviation covers 99% of the points.

Definition

An outlier is defined as a point that lies very far from the mean of the corresponding random variable.

Note: We use the standard deviation

Example

For a normally distributed random variable

Definition

An outlier is defined as a point that lies very far from the mean of the corresponding random variable.

Note: We use the standard deviation

Example

For a normally distributed random variable

• A distance of two times the standard deviation covers 95% of the points.

Definition

An outlier is defined as a point that lies very far from the mean of the corresponding random variable.

Note: We use the standard deviation

Example

For a normally distributed random variable

- A distance of two times the standard deviation covers 95% of the points.
- A distance of three times the standard deviation covers 99% of the points.

Note

• Points with values very different from the mean value produce large errors during training and may have disastrous effects.

Note

- Points with values very different from the mean value produce large errors during training and may have disastrous effects.
- These effects are even worse when the outliers, and they are the result of noisy measurement.

Important

Then removing outliers is the biggest importance.

Important

Then removing outliers is the biggest importance.

Therefore

You can do the following

Important

Then removing outliers is the biggest importance.

Therefore

You can do the following

• If you have a small number ⇒ discard them!!!

Important

Then removing outliers is the biggest importance.

Therefore

You can do the following

• If you have a small number ⇒ discard them!!!

Outline

- Introduction
 - Loading Data
 - What is Feature Selection?
 - Preprocessing
 - Outliers
 - Algorithm For Finding Multivariate Outliers
 - Data Normalization
 - Missing Data
 - The Peaking Phenomena
- Peature Selection
 - Feature Selection
 - Scatter Matrices
 - What to do with it?
 - Sequential Backward Selection

Algorithm Input: An $N \times d$ data set DataOutput: Candidate Outliers Calculate the sample mean μ and sample covariance matrix Σ . Let M be $N \times 1$ vector consisting of square of the Mahalonobis distance to μ . Find points O in M whose values are greater than

Algorithm

Input: An $N \times d$ data set Data

Output: Candidate Outliers

• Calculate the sample mean μ and sample covariance matrix Σ .

Algorithm

Input: An $N \times d$ data set Data

Output: Candidate Outliers

- Calculate the sample mean μ and sample covariance matrix Σ .
- 2 Let M be $N \times 1$ vector consisting of square of the Mahalonobis distance to μ .

Algorithm

Input: An $N \times d$ data set Data

Output: Candidate Outliers

- Calculate the sample mean μ and sample covariance matrix Σ .
- 2 Let M be $N \times 1$ vector consisting of square of the Mahalonobis distance to μ .
- $oldsymbol{\circ}$ Find points O in M whose values are greater than

Algorithm

Input: An $N \times d$ data set Data

Output: Candidate Outliers

- Calculate the sample mean μ and sample covariance matrix Σ .
- 2 Let M be $N \times 1$ vector consisting of square of the Mahalonobis distance to μ .
- $oldsymbol{\circ}$ Find points O in M whose values are greater than

$$\chi_d^2 \left(0.05 \right)$$

We can do the following

Algorithm

Input: An $N \times d$ data set Data

Output: Candidate Outliers

- Calculate the sample mean μ and sample covariance matrix Σ .
- 2 Let M be $N \times 1$ vector consisting of square of the Mahalonobis distance to μ .
- lacktriangledown Find points O in M whose values are greater than

$$\chi_d^2 \left(0.05 \right)$$

Return O.

How?

Get the Sample Mean per feature \boldsymbol{k}

$$oldsymbol{m}_i = rac{1}{N} \sum_{k=1}^N oldsymbol{x}_{ki}$$

$$v_i = rac{1}{N-1} \sum_{i=1}^{N} \left(oldsymbol{x}_{ki} - oldsymbol{m}_i
ight) \left(oldsymbol{x}_{ki} - oldsymbol{m}_i
ight)^{\gamma}$$

How?

Get the Sample Mean per feature k

$$\boldsymbol{m}_i = \frac{1}{N} \sum_{k=1}^{N} \boldsymbol{x}_{ki}$$

Get the Sample Variance per feature k

$$v_i = rac{1}{N-1} \sum_{k=1}^{N} \left(oldsymbol{x}_{ki} - oldsymbol{m}_i
ight) \left(oldsymbol{x}_{ki} - oldsymbol{m}_i
ight)^T$$

Mahalonobis Distance

We have

$$M(\boldsymbol{x}) = \sqrt{(\boldsymbol{x} - \boldsymbol{\mu})^T \Sigma^{-1} (\boldsymbol{x} - \boldsymbol{\mu})}$$

Why the line 3?

As Johnson and Wichern (2007, p. 155, Eq. 4-8) state

The solid ellipsoid of $oldsymbol{x}$ vectors satisfying

$$(\boldsymbol{x} - \boldsymbol{\mu})^T \Sigma^{-1} (\boldsymbol{x} - \boldsymbol{\mu}) \le \chi_d^2 (\alpha)$$

has a probability $1 - \alpha$.

Algorithm

The Partial Code

Outline

- Introduction
 - Loading Data
 - What is Feature Selection?
 - Preprocessing
 - Outliers
 - Algorithm For Finding Multivariate Outliers
 - Data Normalization
 - Missing Data
 - The Peaking Phenomena
- Peature Selection
 - Feature Selection
 - Scatter Matrices
 - What to do with it?
 - Sequential Backward Selection

In the real world

In many practical situations a designer is confronted with features whose values lie within different dynamic ranges.

In the real world

In many practical situations a designer is confronted with features whose values lie within different dynamic ranges.

For Example

We can have two features with the following ranges

$$x_i \in [0, 100, 000]$$

 $x_j \in [0, 0.5]$

In the real world

In many practical situations a designer is confronted with features whose values lie within different dynamic ranges.

For Example

We can have two features with the following ranges

$$x_i \in [0, 100, 000]$$

 $x_i \in [0, 0.5]$

Thus

Many classification machines will be swamped by the first feature!!!

We have the following situation

Features with large values may have a larger influence in the cost function than features with small values.

This does not necessarily reflect their respective significance in the design of the classifier.

We have the following situation

Features with large values may have a larger influence in the cost function than features with small values.

This does not necessarily reflect their respective significance in the design of the classifier.

We have the following situation

Features with large values may have a larger influence in the cost function than features with small values.

Thus!!!

This does not necessarily reflect their respective significance in the design of the classifier.

Naive Normalization

Be Naive

For each feature i = 1, ..., d obtain the \max_i and the \min_i such that

$$\hat{x}_{ik} = \frac{x_{ik} - \min_i}{\max_i - \min_i} \tag{1}$$

This simple normalization will send everything to a unitary sphere thus loosing data resolution!!!

Naive Normalization

Be Naive

For each feature i=1,...,d obtain the \max_i and the \min_i such that

$$\hat{x}_{ik} = \frac{x_{ik} - \min_i}{\max_i - \min_i} \tag{1}$$

Problem

This simple normalization will send everything to a unitary sphere thus loosing data resolution!!!

Use the idea of

 $\label{eq:continuous} Everything is \ Gaussian...$

Use the idea of

Everything is Gaussian...

Thus

For each feature set...

Use the idea of

Everything is Gaussian...

Thus

For each feature set...

Use the idea of

Everything is Gaussian...

Thus

For each feature set...

- \mathbf{o} $\overline{x}_k = \frac{1}{N} \sum_{i=1}^{N} x_{ik}, \ k = 1, 2, ..., d$
- $\sigma_k^2 = \frac{1}{N-1} \sum_{i=1}^{N} (x_{ik} \overline{x}_k)^2, \ k = 1, 2, ..., d$

Use the idea of

Everything is Gaussian...

Thus

For each feature set...

$$\overline{x}_k = \frac{1}{N} \sum_{i=1}^{N} x_{ik}, \ k = 1, 2, ..., d$$

$$\sigma_k^2 = \frac{1}{N-1} \sum_{i=1}^N (x_{ik} - \overline{x}_k)^2, \ k = 1, 2, ..., d$$

Thus

$$\hat{x}_{ik} = \frac{x_{ik} - \overline{x}_k}{\sigma}$$

For Example

```
We have
```

```
def GaussianScaling(self, Data):
    SampleMean = np.mean(Data,axis = 0)
    SampleStd = np.std(Data,axis = 0)
    return (Data-SampleMean)/SampleStd
```


Outline

- Introduction
 - Loading Data
 - What is Feature Selection?
 - Preprocessing
 - Outliers
 - Algorithm For Finding Multivariate Outliers
 - Data Normalization
 - Missing Data
 - The Peaking Phenomena
- - Feature Selection
 - Scatter Matrices
 - What to do with it?

 - Sequential Backward Selection

This can happen

In practice, certain features may be missing from some feature vectors.

This can happen

In practice, certain features may be missing from some feature vectors.

Examples where this happens

Social sciences - incomplete surveys.

This can happen

In practice, certain features may be missing from some feature vectors.

Examples where this happens

- Social sciences incomplete surveys.
- 2 Remote sensing sensors go off-line.

This can happen

In practice, certain features may be missing from some feature vectors.

Examples where this happens

- Social sciences incomplete surveys.
- 2 Remote sensing sensors go off-line.
- etc.

This can happen

In practice, certain features may be missing from some feature vectors.

Examples where this happens

- Social sciences incomplete surveys.
- 2 Remote sensing sensors go off-line.
- etc.

Note

Completing the missing values in a set of data is also known as imputation.

Some traditional techniques to solve this problem

Use zeros and risked it!!!

The idea is not to add anything to the features

The sample mean/unco

Does not matter what distribution you have use the sample mean

$$\overline{x}_i = \frac{1}{N} \sum_{k=1}^{N} x_{ik}$$

Use the mean from that distribution. For example, if you have a beta

$$\overline{x}_i = \frac{\alpha}{\alpha + \beta}$$

Some traditional techniques to solve this problem

Use zeros and risked it!!!

The idea is not to add anything to the features

The sample mean/unconditional mean

Does not matter what distribution you have use the sample mean

$$\overline{x}_i = \frac{1}{N} \sum_{k=1}^N x_{ik} \tag{3}$$

Use the mean from that distribution. For example, if you have a beta distribution

$$\overline{x}_i = \frac{\alpha}{\alpha + \beta}$$

Some traditional techniques to solve this problem

Use zeros and risked it!!!

The idea is not to add anything to the features

The sample mean/unconditional mean

Does not matter what distribution you have use the sample mean

$$\overline{x}_i = \frac{1}{N} \sum_{k=1}^N x_{ik} \tag{3}$$

Find the distribution of your data

Use the mean from that distribution. For example, if you have a beta distribution

$$\overline{x}_i = \frac{\alpha}{\alpha + \beta} \tag{4}$$

The MOST traditional

Drop it

- Remove that data
 - ► Still you need to have a lot of data to have this luxury

Outline

- Introduction
 - Loading Data
 - What is Feature Selection?
 - Preprocessing
 - Outliers
 - Algorithm For Finding Multivariate Outliers
 - Data Normalization
 - Missing Data
 - The Peaking Phenomena
- - Feature Selection
 - Scatter Matrices
 - What to do with it?
 - Sequential Backward Selection

THE PEAKING PHENOMENON

Remember

Normally, to design a classifier with good generalization performance, we want the number of sample N to be larger than the number of features d.

The intuition, the larger the number of samples vs the number of features, the smaller the error P_c

THE PEAKING PHENOMENON

Remember

Normally, to design a classifier with good generalization performance, we want the number of sample N to be larger than the number of features d.

What?

The intuition, the larger the number of samples vs the number of features, the smaller the error P_{e}

Graphically

Let us explain

Something Notable

Let's look at the following example from the paper:

• "A Problem of Dimensionality: A Simple Example" by G.A. Trunk

The Goal

 $\bullet \ \, {\sf Select the "optimum" number} \ d \ {\sf of features}.$

The Goal

- lacksquare Select the "optimum" number d of features.
- $oldsymbol{2}$ Select the "best" d features.

- e High computational domands
 - Tilgii computational demands.
 - Low generalization performance.
 - Poor error estimates

The Goal

- $oldsymbol{0}$ Select the "optimum" number d of features.
- $oldsymbol{2}$ Select the "best" d features.

Why? Large d has a three-fold disadvantage

- High computational demands.
- low generalization performance
 - Poor error estimates

The Goal

- lacksquare Select the "optimum" number d of features.
- $oldsymbol{2}$ Select the "best" d features.

Why? Large d has a three-fold disadvantage

- High computational demands.
- Low generalization performance.

The Goal

- lacksquare Select the "optimum" number d of features.
- $oldsymbol{2}$ Select the "best" d features.

Why? Large d has a three-fold disadvantage

- High computational demands.
- Low generalization performance.
- Poor error estimates

Outline

- - Loading Data
 - What is Feature Selection?
 - Preprocessing
 - Outliers
 - Algorithm For Finding Multivariate Outliers
 - Data Normalization
 - Missing Data
 - The Peaking Phenomena
- Feature Selection
 - Feature Selection
 - Scatter Matrices
 - What to do with it?
 - Sequential Backward Selection

Back to Feature Selection

Given N

d must be large enough to learn what makes classes different and what makes patterns in the same class similar

d must be small enough not to learn what makes patterns of the same

In practice, $d < {\it N}/{\it 3}$ has been reported to be a sensible choice for a number of cases

Back to Feature Selection

Given N

d must be large enough to learn what makes classes different and what makes patterns in the same class similar

In addition

d must be small enough not to learn what makes patterns of the same class different

In practice, d < N/3 has been reported to be a sensible choice for a number of cases

Back to Feature Selection

Given N

d must be large enough to learn what makes classes different and what makes patterns in the same class similar

In addition

d must be small enough not to learn what makes patterns of the same class different

In practice

In practice, d < N/3 has been reported to be a sensible choice for a number of cases

Oh!!!

Once d has been decided, choose the d most informative features:

Oh!!!

Once d has been decided, choose the d most informative features:

Best: Large between class distance, Small within class variance.

The basic philosophy

Discard individual features with poor information content.

The remaining information rich features are examined jointly as

vectors

Oh!!!

Once d has been decided, choose the d most informative features:

Best: Large between class distance, Small within class variance.

The basic philosophy

Discard individual features with poor information content.

Oh!!!

Once d has been decided, choose the d most informative features:

Best: Large between class distance, Small within class variance.

The basic philosophy

- Discard individual features with poor information content.
- The remaining information rich features are examined jointly as vectors

Example

Example

Example

Outline

- - Loading Data
 - What is Feature Selection?
 - Preprocessing
 - Outliers
 - Algorithm For Finding Multivariate Outliers
 - Data Normalization
 - Missing Data
 - The Peaking Phenomena
- Feature Selection
 - Feature Selection
 - Scatter Matrices
 - What to do with it?
 - Sequential Backward Selection

Definition

These are used as a measure of the way data are scattered in the respective feature space.

Definition

These are used as a measure of the way data are scattered in the respective feature space.

Within-class Scatter Matrix

$$S_w = \sum_{i=1}^C P_i \Sigma_i \tag{5}$$

where C is the number of classes.

Definition

These are used as a measure of the way data are scattered in the respective feature space.

Within-class Scatter Matrix

$$S_w = \sum_{i=1}^C P_i \Sigma_i \tag{5}$$

where C is the number of classes.

Where

We can use the sample mean

$$S_i = E\left[\left(\boldsymbol{x} - \boldsymbol{\mu}_i\right)\left(\boldsymbol{x} - \boldsymbol{\mu}_i\right)^T\right] \approx \frac{1}{N-1} \sum_{k=1}^{n_i} \left(\boldsymbol{x}_{ki} - \boldsymbol{m}_i\right) \left(\boldsymbol{x}_{ki} - \boldsymbol{m}_i\right)^T$$

 $P_i \cong n_i/N$

 n_i is the number of samples in class ω_i .

Where

We can use the sample mean

$$S_i = E\left[\left(\boldsymbol{x} - \boldsymbol{\mu_i}\right)\left(\boldsymbol{x} - \boldsymbol{\mu_i}\right)^T\right] \approx \frac{1}{N-1} \sum_{k=1}^{n_i} \left(\boldsymbol{x}_{ki} - \boldsymbol{m}_i\right) \left(\boldsymbol{x}_{ki} - \boldsymbol{m}_i\right)^T$$

And P_i the a priori probability of class ω_i defined as

$$P_i \cong n_i/N$$

 n_i is the number of samples in class ω_i .

Between-class scatter matrix

$$S_b = \sum_{i=1}^{C} P_i \left(\boldsymbol{x} - \boldsymbol{\mu_0} \right) \left(\boldsymbol{x} - \boldsymbol{\mu_0} \right)^T$$
 (6)

Where

$$\mu_0 = \sum_{i=1}^{C} P_i \mu_i \tag{7}$$

The global mean

$$S_m = E\left[(x - \mu_0) (x - \mu_0)^T \right] \approx \frac{1}{N - 1} \sum_{k=1}^{N} (x_i - \mu_0) (x_i - \mu_0)^T$$
 (8)

Note: it can be proved that $S_m = S_w + S_b$

Between-class scatter matrix

$$S_b = \sum_{i=1}^{C} P_i \left(\boldsymbol{x} - \boldsymbol{\mu_0} \right) \left(\boldsymbol{x} - \boldsymbol{\mu_0} \right)^T$$
 (6)

Where

$$\mu_0 = \sum_{i=1}^C P_i \mu_i \tag{7}$$

The global mean.

$$S_m = E\left[(x - \mu_0) (x - \mu_0)^T \right] \approx \frac{1}{N - 1} \sum_{i=1}^{N} (x_i - \mu_0) (x_i - \mu_0)^T$$
 (8)

Note: it can be proved that $S_m = S_w + S_b$

Between-class scatter matrix

$$S_b = \sum_{i=1}^{C} P_i \left(\boldsymbol{x} - \boldsymbol{\mu_0} \right) \left(\boldsymbol{x} - \boldsymbol{\mu_0} \right)^T$$
 (6)

Where

$$\boldsymbol{\mu_0} = \sum_{i=1}^{C} P_i \boldsymbol{\mu}_i \tag{7}$$

The global mean.

Mixture scatter matrix

$$S_m = E\left[(\boldsymbol{x} - \boldsymbol{\mu_0}) (\boldsymbol{x} - \boldsymbol{\mu_0})^T \right] \approx \frac{1}{N-1} \sum_{k=1}^{N} (\boldsymbol{x_i} - \boldsymbol{\mu_0}) (\boldsymbol{x_i} - \boldsymbol{\mu_0})^T \quad (8)$$

Note: it can be proved that
$$S_m = S_w + S_b$$

Criterion

The one we can use

$$J_1 = \frac{trace\left\{S_m\right\}}{trace\left\{S_w\right\}}$$

(9)

Criterion

The one we can use

$$J_1 = \frac{trace \{S_m\}}{trace \{S_w\}} \tag{9}$$

Meaning

It takes takes large values when samples in the d-dimensional space are well clustered around their mean, within each class, and the clusters of the different classes are well separated.

Outline

- - Loading Data
 - What is Feature Selection?
 - Preprocessing
 - Outliers
 - Algorithm For Finding Multivariate Outliers
 - Data Normalization
 - Missing Data
 - The Peaking Phenomena
- Feature Selection
 - Feature Selection
 - Scatter Matrices
 - What to do with it?
 - Sequential Backward Selection

We want to avoid

High Complexities

As for example

Select a class separability

 $\quad \text{with } l=1,2,...,m$

We want to avoid

High Complexities

As for example

- Select a class separability
- Then, get all possible combinations of features

$$\left(\begin{array}{c} m \\ l \end{array}\right)$$

with l = 1, 2, ..., m

We want to avoid

High Complexities

As for example

- Select a class separability
- Then, get all possible combinations of features

$$\begin{pmatrix} m \\ l \end{pmatrix}$$

with l = 1, 2, ..., m

We can do better

Sequential Backward Selection

We want to avoid

High Complexities

As for example

- Select a class separability
- Then, get all possible combinations of features

$$\begin{pmatrix} m \\ l \end{pmatrix}$$

with l = 1, 2, ..., m

We can do better

Sequential Backward Selection

Outline

- - Loading Data
 - What is Feature Selection?
 - Preprocessing
 - Outliers
 - Algorithm For Finding Multivariate Outliers
 - Data Normalization
 - Missing Data
 - The Peaking Phenomena
- Feature Selection
 - Feature Selection
 - Scatter Matrices
 - What to do with it?
 - Sequential Backward Selection

We have the following example

Given x_1, x_2, x_3, x_4 and we wish to select two of them

We have the following example

Given x_1, x_2, x_3, x_4 and we wish to select two of them

Step 1

Adopt a class separability criterion, C, and compute its value for the feature vector $[x_1, x_2, x_3, x_4]^T$.

Eliminate one feature, you get

 $[x_1, x_2, x_3]^T, [x_1, x_2, x_4]^T, [x_1, x_3, x_4]^T, [x_2, x_3, x_4]^T,$

We have the following example

Given x_1, x_2, x_3, x_4 and we wish to select two of them

Step 1

Adopt a class separability criterion, C, and compute its value for the feature vector $[x_1, x_2, x_3, x_4]^T$.

Step 2

Eliminate one feature, you get

$$[x_1, x_2, x_3]^T, [x_1, x_2, x_4]^T, [x_1, x_3, x_4]^T, [x_2, x_3, x_4]^T,$$

You use your criterion C

Thus the winner is $[x_1, x_2, x_3]^T$

Now, eliminate a feature and generate $[x_1,x_2]^T, [x_1,x_3]^T, [x_2,x_3]^T,$

To select the best one

You use your criterion C

Thus the winner is $[x_1, x_2, x_3]^T$

Step 3

Now, eliminate a feature and generate $[x_1, x_2]^T$, $[x_1, x_3]^T$, $[x_2, x_3]^T$,

To select the best one

You use your criterion C

Thus the winner is $[x_1, x_2, x_3]^T$

Step 3

Now, eliminate a feature and generate $[x_1, x_2]^T$, $[x_1, x_3]^T$, $[x_2, x_3]^T$,

Use criterion C

To select the best one

Complexity

Thus, starting from m, at each step we drop out one feature from the "best" combination until we obtain a vector of l features.

Complexity

Thus, starting from m, at each step we drop out one feature from the "best" combination until we obtain a vector of l features.

Thus, we need

1 + 1/2((m+1)m - l(l+1)) combinations

Complexity

Thus, starting from m, at each step we drop out one feature from the "best" combination until we obtain a vector of l features.

Thus, we need

1 + 1/2((m+1)m - l(l+1)) combinations

However

• The method is sub-optimal

Complexity

Thus, starting from m, at each step we drop out one feature from the "best" combination until we obtain a vector of l features.

Thus, we need

1 + 1/2((m+1)m - l(l+1)) combinations

However

- The method is sub-optimal
- It suffers of the so called nesting-effect

Complexity

Thus, starting from m, at each step we drop out one feature from the "best" combination until we obtain a vector of l features.

Thus, we need

1 + 1/2((m+1)m - l(l+1)) combinations

However

- The method is sub-optimal
- It suffers of the so called nesting-effect
 - ► Once a feature is discarded, there is no way to reconsider that feature again.