LOCALIZZAZIONE INDOOR BASATA SU BEACON BLUETOOTH A BASSA POTENZA ATTRAVERSO TECNICHE DI DEEP LEARNING

Relatore: Prof. GianLuigi Ferrari Candidato: Marco Pampaloni

Anno Accademico: 2019/2020 24 Luglio 2020

- I sistemi di Localizzazione Indoor sono oggetto di interesse in vari contesti:
 - Navigazione guidata in edifici complessi
 - Gestione dei flussi
 - Contingentazione
- Diverse soluzioni al problema:
 - Tecnologie e sensori ad-hoc
 - Utilizzo di segnali wireless preesistenti

- La soluzione proposta sfrutta i segnali emessi da Beacon BLE e i relativi valori RSSI
- I Beacon sono disposti all'interno dell'edificio

 I segnali vengono raccolti registrandone la propogazione poll'edificie

propagazione nell'edificio

- Si cerca di trovare un modello che utilizzi i valori RSSI per predire la posizione dell'utente
- Vari approcci possibili:
 - Machine Learning
 - Triangolazione (poco efficace)

- Il Deep Learning è un insieme di tecniche e algoritmi per approssimare funzioni
- Una rete neurale è un modello matematico capace di apprendere dai dati
- La soluzione proposta utilizza una serie di reti neurali convoluzionali (CNN) e di multi layer perceptron (MLP)

- Le reti neurali convoluzionali (CNN) applicano l'operazione di convoluzione all'input
- Vengono prodotte diverse feature map a partire da un input (in figura l'applicazione di un filtro bidimensionale)

Architettura

Laurea Triennale in Informatica

Topologia della rete neurale sviluppata

- Input principale e input ausiliari
 - \circ Sensore magnetico (α)
 - Posizione precedente dell'utente (y_{old})
 - Coefficiente memoria residua (μ)
- Layer convoluzionali
- Output principale e output ausiliario

- Varie criticità dovute all'approccio data-driven della soluzione proposta:
 - Difficoltà nella raccolta dati (dataset limitato)
 - Dati incostanti (rumore di fondo e perturbazione dei segnali)
- Vengono proposte varie tecniche di arricchimento dei dati per risolvere questi problemi

- I segnali wireless sono naturalmente soggetti a rumore
- Questo fa sì che l'output del modello subisca delle fluttuazioni
- Possibili soluzioni:
 - Campionamento con Sliding Window
 - Utilizzo di sensori inerziali
 - Filtro di Kalman
- L'uso di un filtro di Kalman, insieme ai dati dell'accelerometro, permette di migliorare la stabilità del modello.

Interfaccia grafica dell'applicazione Mobile Sviluppata

Risultati Sperimentali

Laurea Triennale in Informatica

Modello	MAE	RMSE	MaxAE
Baseline Ensemble	$0.3070 \\ 0.2592$	$0.6716 \\ 0.5536$	3.001 2.4693

- Il modello di machine learning esposto ha permesso di progettare un sistema di localizzazione indoor con una precisione media di circa 30cm.
- L'utilizzo di un ensemble di modelli ha ridotto l'errore medio a circa 26cm.
- La stabilità del sistema e le risorse richieste per utilizzarlo lo rendono fruibile su sistemi mobile con ridotte capacità computazionali.

Grazie per l'attenzione

