Fourier-Synthese

David Gutnikov Lasse Sternemann

Durchführung am 4.11.19

Inhaltsverzeichnis

1	Theorie der Fourier-Synthese	2
2	Fourier-Synthese von $f(t) = \left sin(t) \right $	2
3	Fourier-Synthese von $f(t) = t$	4

1 Theorie der Fourier-Synthese

Mit dem mathematischen Konzept der Fourier-Synthese kann man jede periodische Funktion durch eine Addition von Sinus- und Kosinusfunktionen darstellen.

$$f(t) = \sum_{k=0}^{\infty} (A_k cos(\omega_k t) + B_k sin(\omega_k t)) \qquad mit \ \omega_k = \frac{2\pi k}{T}$$
 (1)

Die Koeffizienten aus Formel (1) lassen sich wie folgt bestimmen.

$$\begin{split} A_k &= \frac{2}{T} \int_{-\frac{T}{2}}^{\frac{T}{2}} f(t) cos(w_k t) dt \\ B_k &= \frac{2}{T} \int_{-\frac{T}{2}}^{\frac{T}{2}} f(t) sin(w_k t) dt \end{split} \qquad mit \ A_0 = \frac{1}{T} \int_{-\frac{T}{2}}^{\frac{T}{2}} f(t) dt \\ mit \ B_0 = 0 \end{split}$$

Wenn die Funktion eine Symmetrie aufweist, kann die Synthese vereinfacht werden. So müssen bei punktsymmetrischen/ungeraden Funktionen die Kosinus-Terme wegfallen und A_k wird gleich Null gesetzt. Wenn die Funktion achsensymmetrisch/gerade ist, wird der Sinus weggelassen und und demenstprechend B_k gleich Null gesetzt.

2 Fourier-Synthese von f(t) = |sin(t)|

Die anzunähernde Funktion ist achsensymmetrisch/gerade und B_k wird daher gleich Null gesetzt. Es wird eine Periode $T=\pi$ gewählt und die Frequenz ω_k entspricht demnach 2k.

$$f(t) = \sum_{k=0}^{17} (A_k cos(\omega_k t)) \tag{2}$$

Formel (2) ist die zu bestimmende Funktion. Nun müssen noch die Koeffizienten A_0 bis A_{17} mit einem Python Programm bestimmt werden.

$$\begin{split} A_0 &= \frac{1}{T} \int_{-\frac{T}{2}}^{\frac{T}{2}} |sin(t)| dt \\ A_k &= \frac{2}{T} \int_{-\frac{T}{2}}^{\frac{T}{2}} |sin(t)| cos(w_k t) dt \end{split}$$

Aus den Berechnungen ergibt sich das Frequenzspektrum (Tabelle 1 und Abbildung 1) und die angenäherte Funktion (Abbildung 2).

 ${\bf Tabelle~1:~Frequenzspektrum}$

	quenzopen
$k = \frac{\omega_k}{2}$	A_k
0	0,0000
1	2,0000
2	-1,0000
3	0,6667
4	-0,5000
5	0,4000
6	-0,3334
7	0,2857
8	-0,2500
9	0,2223
10	-0,2000
11	0,1818
12	-0,1667
13	$0,\!1538$
14	-0,1429
15	0,1334
16	-0,1250
17	0,1176

Abbildung 1: Frequenzspektrum der Fourier-Synthese von $f(t) = \left| sin(t) \right|$

Abbildung 2: Graph der Fourier-Synthese von f(t) = |sin(t)|

3 Fourier-Synthese von f(t) = t

Die anzunähernde Funktion ist punktsymmetrisch/ungerade und A_k wird daher gleich Null gesetzt. Es wird eine Periode $T=2\pi$ gewählt und die Frequenz ω_k entspricht demnach k.

$$f(t) = \sum_{k=0}^{17} B_k sin(\omega_k t) \tag{3}$$

Formel (3) ist die zu bestimmende Funktion. Nun sind noch die Koeffizienten B_0 bis B_{17} mit einem Python Programm zu bestimmen.

$$\begin{split} B_0 &= 0 \\ B_k &= \frac{2}{T} \int_{-\frac{T}{2}}^{\frac{T}{2}} t sin(w_k t) dt \end{split}$$

Aus den Berechnungen ergibt sich das Frequenzspektrum (Tabelle 2 und Abbildung 3) und die angenäherte Funktion (Abbildung 4).

Tabelle 2: Frequenzspektrum

$k = \omega_k$	B_k
0	0,6366
1	-0,4244
2	-0,0849
3	-0,0364
4	-0,0202
5	-0,0129
6	-0,0089
7	-0,0065
8	-0,0050
9	-0,0039
10	-0,0032
11	-0,0026
12	-0,0022
13	-0,0019
14	-0,0016
15	-0,0014
16	-0,0012
17	-0,0011

Abbildung 3: Frequenzspektrum der Fourier-Synthese von f(t)=t

Abbildung 4: Graph der Fourier-Synthese von $f(t)=t\,$