AUTO

POPULATION SIZE, MIGRATION, DIVERGENCE, ASSIGNMENT, HISTORY

Bayesian inference using the structured coalescent

Migrate-n version 5.0.0a [May-20-2017]

Using Intel AVX (Advanced Vector Extensions)

Compiled for PARALLEL computer architectures

One master and 100 compute nodes are available.

Program started at Sun Aug 13 13:47:59 2017

Program finished at Sun Aug 13 14:44:23 2017 [Runtime:0000:00:56:24]

Options

Datatype: DNA sequence data

Inheritance scalers in use for Thetas:

All loci use an inheritance scaler of 1.0

[The locus with a scaler of 1.0 used as reference]

Random number seed: (with internal timer) 830089688

Start parameters:

Theta values were generated Using a percent value of the prior

M values were generated Using a percent value of the prior

Connection matrix:

m = average (average over a group of Thetas or M,

s = symmetric migration M, S = symmetric 4Nm,

0 = zero, and not estimated,

* = migration free to vary, Thetas are on diagonal

1

d = row population split off column population, D = split and then migration

Population

1 Romanshorn 0 *

Order of parameters:

1 Θ_1 <displayed>

Mutation rate among loci: Mutation rate is constant for all loci

Analysis strategy: Bayesian inference

-Population size estimation: Exponential Distribution

Proposal distributions for parameter

Parameter Proposal
Theta Metropolis sampling
M Metropolis sampling
Divergence Metropolis sampling
Divergence Spread Metropolis sampling
Genealogy Metropolis-Hastings

Prior distribution for parameter

Parameter Prior Minimum MeanMaximum Delta Bins UpdateFreq
1 Theta -11 Uniform 0.000000 0.050 0.100 0.010 1500 0.20000

[-1 -1 means priors were set globally]

Markov chain settings: Long chain

Number of chains

Recorded steps [a]

Increment (record every x step [b]

Number of concurrent chains (replicates) [c]

1
50000

200

Visited (sampled) parameter values [a*b*c] 20000000

Number of discard trees per chain (burn-in) 10000

Multiple Markov chains:

Static heating scheme 4 chains with temperatures

1000000.00 3.00 1.50 1.00

Swapping interval is 1

Print options:

Data file: infile.0.8

Haplotyping is turned on:

Output file: outfile_0.8_1.0

Posterior distribution raw histogram file: bayesfile

Raw data from the MCMC run: bayesallfile_0.8_1.0

Print data:

Print genealogies [only some for some data type]:

Data summary

Data file: infile.0.8
Datatype: Sequence data
Number of loci: 100

Mutation	nmodel:			
Locus S	Sublocus	Mutationmodel	Mutationmodel parameters	
1	1	Jukes-Cantor	[Basefreq: =0.25]	
2	1	Jukes-Cantor	[Basefreq: =0.25]	
3	1	Jukes-Cantor	[Basefreq: =0.25]	
4	1	Jukes-Cantor	[Basefreq: =0.25]	
5	1	Jukes-Cantor	[Basefreq: =0.25]	
6	1	Jukes-Cantor	[Basefreq: =0.25]	
7	1	Jukes-Cantor	[Basefreq: =0.25]	
8	1	Jukes-Cantor	[Basefreq: =0.25]	
9	1	Jukes-Cantor	[Basefreq: =0.25]	
10	1	Jukes-Cantor	[Basefreq: =0.25]	
11	1	Jukes-Cantor	[Basefreq: =0.25]	
12	1	Jukes-Cantor	[Basefreq: =0.25]	
13	1	Jukes-Cantor	[Basefreq: =0.25]	
14	1	Jukes-Cantor	[Basefreq: =0.25]	
15	1	Jukes-Cantor	[Basefreq: =0.25]	
16	1	Jukes-Cantor	[Basefreq: =0.25]	
17	1	Jukes-Cantor	[Basefreq: =0.25]	
18	1	Jukes-Cantor	[Basefreq: =0.25]	
19	1	Jukes-Cantor	[Basefreq: =0.25]	
20	1	Jukes-Cantor	[Basefreq: =0.25]	
21	1	Jukes-Cantor	[Basefreq: =0.25]	
22	1	Jukes-Cantor	[Basefreq: =0.25]	
23	1	Jukes-Cantor	[Basefreq: =0.25]	
24	1	Jukes-Cantor	[Basefreq: =0.25]	
25	1	Jukes-Cantor	[Basefreq: =0.25]	
26	1	Jukes-Cantor	[Basefreq: =0.25]	
27	1	Jukes-Cantor	[Basefreq: =0.25]	
28	1	Jukes-Cantor	[Basefreq: =0.25]	
29	1	Jukes-Cantor	[Basefreq: =0.25]	
30	1	Jukes-Cantor	[Basefreq: =0.25]	
31	1	Jukes-Cantor	[Basefreq: =0.25]	
32	1	Jukes-Cantor	[Basefreq: =0.25]	
			rp (0.0=1	

[Basefreq: =0.25]

[Basefreq: =0.25]

1

1

33

Jukes-Cantor

Jukes-Cantor

35	1	Jukes-Cantor	[Basefreq: =0.25]
36	1	Jukes-Cantor	[Basefreq: =0.25]
37	1	Jukes-Cantor	[Basefreq: =0.25]
38	1	Jukes-Cantor	[Basefreq: =0.25]
39	1	Jukes-Cantor	[Basefreq: =0.25]
40	1	Jukes-Cantor	[Basefreq: =0.25]
41	1	Jukes-Cantor	[Basefreq: =0.25]
42	1	Jukes-Cantor	[Basefreq: =0.25]
43	1	Jukes-Cantor	[Basefreq: =0.25]
44	1	Jukes-Cantor	[Basefreq: =0.25]
45	1	Jukes-Cantor	[Basefreq: =0.25]
46	1	Jukes-Cantor	[Basefreq: =0.25]
47	1	Jukes-Cantor	[Basefreq: =0.25]
48	1	Jukes-Cantor	[Basefreq: =0.25]
49	1	Jukes-Cantor	[Basefreq: =0.25]
50	1	Jukes-Cantor	[Basefreq: =0.25]
51	1	Jukes-Cantor	[Basefreq: =0.25]
52	1	Jukes-Cantor	[Basefreq: =0.25]
53	1	Jukes-Cantor	[Basefreq: =0.25]
54	1	Jukes-Cantor	[Basefreq: =0.25]
55	1	Jukes-Cantor	[Basefreq: =0.25]
56	1	Jukes-Cantor	[Basefreq: =0.25]
57	1	Jukes-Cantor	[Basefreq: =0.25]
58	1	Jukes-Cantor	[Basefreq: =0.25]
59	1	Jukes-Cantor	[Basefreq: =0.25]
60	1	Jukes-Cantor	[Basefreq: =0.25]
61	1	Jukes-Cantor	[Basefreq: =0.25]
62	1	Jukes-Cantor	[Basefreq: =0.25]
63	1	Jukes-Cantor	[Basefreq: =0.25]
64	1	Jukes-Cantor	[Basefreq: =0.25]
65	1	Jukes-Cantor	[Basefreq: =0.25]
66	1	Jukes-Cantor	[Basefreq: =0.25]
67	1	Jukes-Cantor	[Basefreq: =0.25]
68	1	Jukes-Cantor	[Basefreq: =0.25]
69	1	Jukes-Cantor	[Basefreq: =0.25]
70	1	Jukes-Cantor	[Basefreq: =0.25]
71	1	Jukes-Cantor	[Basefreq: =0.25]
72	1	Jukes-Cantor	[Basefreq: =0.25]
73	1	Jukes-Cantor	[Basefreq: =0.25]
74	1	Jukes-Cantor	[Basefreq: =0.25]
75	1	Jukes-Cantor	[Basefreq: =0.25]
76	1	Jukes-Cantor	[Basefreq: =0.25]
77	1	Jukes-Cantor	[Basefreq: =0.25]
78	1	Jukes-Cantor	[Basefreq: =0.25]
79	1	Jukes-Cantor	[Basefreq: =0.25]

				AUTO 5
80	1	Jukes-Cantor	[Basefreq: =0.25]	
81	1	Jukes-Cantor	[Basefreq: =0.25]	
82	1	Jukes-Cantor	[Basefreq: =0.25]	
83	1	Jukes-Cantor	[Basefreq: =0.25]	
84	1	Jukes-Cantor	[Basefreq: =0.25]	
85	1	Jukes-Cantor	[Basefreq: =0.25]	
86	1	Jukes-Cantor	[Basefreq: =0.25]	
87	1	Jukes-Cantor	[Basefreq: =0.25]	
88	1	Jukes-Cantor	[Basefreq: =0.25]	
89	1	Jukes-Cantor	[Basefreq: =0.25]	
90	1	Jukes-Cantor	[Basefreq: =0.25]	
91	1	Jukes-Cantor	[Basefreq: =0.25]	
92	1	Jukes-Cantor	[Basefreq: =0.25]	
93	1	Jukes-Cantor	[Basefreq: =0.25]	
94	1	Jukes-Cantor	[Basefreq: =0.25]	
95	1	Jukes-Cantor	[Basefreq: =0.25]	
96	1	Jukes-Cantor	[Basefreq: =0.25]	
97	1	Jukes-Cantor	[Basefreq: =0.25]	
98	1	Jukes-Cantor	[Basefreq: =0.25]	
99	1	Jukes-Cantor	[Basefreq: =0.25]	
100	1	Jukes-Cantor	[Basefreq: =0.25]	
Sites per	locus			
Locus		Sites		
1	1	0000		

Locus	Sites
1	10000
2	10000
3	10000
4	10000
5	10000
6	10000
7	10000
8	10000
9	10000
10	10000
11	10000
12	10000
13	10000
14	10000
15	10000
16	10000
17	10000
18	10000
19	10000
20	10000

21	10000
22	10000
23	10000
24	10000
25	10000
26	10000
27	10000
28	10000
29	10000
30	10000
31	10000
32	10000
33	10000
34	10000
35	10000
36	10000
37	10000
38	10000
39	10000
40	10000
41	10000
42	10000
43	10000
44	10000
45	10000
46	10000
47	10000
48	10000
49	10000
50	10000
51	10000
52	10000
53	10000
54	10000
55	10000
56	10000
57	10000
58	10000
59	10000
60	10000
61	10000
62	10000
63	10000
64	10000
65	10000

66	10000				
67	10000				
68	10000				
69	10000				
70	10000				
71	10000				
72	10000				
73	10000				
74	10000				
75	10000				
76	10000				
77	10000				
78	10000				
79	10000				
80	10000				
81	10000				
82	10000				
83	10000				
84	10000				
85	10000				
86	10000				
87	10000				
88	10000				
89	10000				
90	10000				
91	10000				
92	10000				
93	10000				
94	10000				
95	10000				
96	10000				
97	10000				
98	10000				
99	10000				
100	10000				
	e variation and probab				
Locus S	Sublocus Region type	Rate of change	Probability	Patch size	
1	1 1	1.000	1.000	1.000	
2	1 1	1.000	1.000	1.000	
3	1 1	1.000	1.000	1.000	
4	1 1	1.000	1.000	1.000	
5	1 1	1.000	1.000	1.000	
6	1 1	1.000	1.000	1.000	

7	1	1	1.000	1.000	1.000	
8	1	1	1.000	1.000	1.000	
9	1	1	1.000	1.000	1.000	
10	1	1	1.000	1.000	1.000	
11	1	1	1.000	1.000	1.000	
12	1	1	1.000	1.000	1.000	
13	1	1	1.000	1.000	1.000	
14	1	1	1.000	1.000	1.000	
15	1	1	1.000	1.000	1.000	
16	1	1	1.000	1.000	1.000	
17	1	1	1.000	1.000	1.000	
18	1	1	1.000	1.000	1.000	
19	1	1	1.000	1.000	1.000	
20	1	1	1.000	1.000	1.000	
21	1	1	1.000	1.000	1.000	
22	1	1	1.000	1.000	1.000	
23	1	1	1.000	1.000	1.000	
24	1	1	1.000	1.000	1.000	
25	1	1	1.000	1.000	1.000	
26	1	1	1.000	1.000	1.000	
27	1	1	1.000	1.000	1.000	
28	1	1	1.000	1.000	1.000	
29	1	1	1.000	1.000	1.000	
30	1	1	1.000	1.000	1.000	
31	1	1	1.000	1.000	1.000	
32	1	1	1.000	1.000	1.000	
33	1	1	1.000	1.000	1.000	
34	1	1	1.000	1.000	1.000	
35	1	1	1.000	1.000	1.000	
36	1	1	1.000	1.000	1.000	
37	1	1	1.000	1.000	1.000	
38	1	1	1.000	1.000	1.000	
39	1	1	1.000	1.000	1.000	
40	1	1	1.000	1.000	1.000	
41	1	1	1.000	1.000	1.000	
42	1	1	1.000	1.000	1.000	
43	1	1	1.000	1.000	1.000	
44	1	1	1.000	1.000	1.000	
45	1	1	1.000	1.000	1.000	
46	1	1	1.000	1.000	1.000	
47	1	1	1.000	1.000	1.000	
48	1	1	1.000	1.000	1.000	
49	1	1	1.000	1.000	1.000	
50	1	1	1.000	1.000	1.000	
51	1	1	1.000	1.000	1.000	

52	1	1	1.000	1.000	1.000	
53	1	1	1.000	1.000	1.000	
54	1	1	1.000	1.000	1.000	
55	1	1	1.000	1.000	1.000	
56	1	1	1.000	1.000	1.000	
57	1	1	1.000	1.000	1.000	
58	1	1	1.000	1.000	1.000	
59	1	1	1.000	1.000	1.000	
60	1	1	1.000	1.000	1.000	
61	1	1	1.000	1.000	1.000	
62	1	1	1.000	1.000	1.000	
63	1	1	1.000	1.000	1.000	
64	1	1	1.000	1.000	1.000	
65	1	1	1.000	1.000	1.000	
66	1	1	1.000	1.000	1.000	
67	1	1	1.000	1.000	1.000	
68	1	1	1.000	1.000	1.000	
69	1	1	1.000	1.000	1.000	
70	1	1	1.000	1.000	1.000	
71	1	1	1.000	1.000	1.000	
72	1	1	1.000	1.000	1.000	
73	1	1	1.000	1.000	1.000	
74	1	1	1.000	1.000	1.000	
75	1	1	1.000	1.000	1.000	
76	1	1	1.000	1.000	1.000	
77	1	1	1.000	1.000	1.000	
78	1	1	1.000	1.000	1.000	
79	1	1	1.000	1.000	1.000	
80	1	1	1.000	1.000	1.000	
81	1	1	1.000	1.000	1.000	
82	1	1	1.000	1.000	1.000	
83	1	1	1.000	1.000	1.000	
84	1	1	1.000	1.000	1.000	
85	1	1	1.000	1.000	1.000	
86	1	1	1.000	1.000	1.000	
87	1	1	1.000	1.000	1.000	
88	1	1	1.000	1.000	1.000	
89	1	1	1.000	1.000	1.000	
90	1	1	1.000	1.000	1.000	
91	1	1	1.000	1.000	1.000	
92	1	1	1.000	1.000	1.000	
93	1	1	1.000	1.000	1.000	
94	1	1	1.000	1.000	1.000	
95	1	1	1.000	1.000	1.000	
96	1	1	1.000	1.000	1.000	

97	1	1	1.000	1.000	1.000	
98	1	1	1.000	1.000	1.000	
99	1	1	1.000	1.000	1.000	
100	1	1	1.000	1.000	1.000	
Populatio		ı	1.000	1.000	Locus	Gene copies
1 Romans					1	10
i i i i i i i i i i i i i i i i i i i	3110111_0				2	10
					3	10
					4	10
					5	10
					6	10
					7	10
					8	10
					9	10
					10	10
					11	10
					12	10
					13	10
					14	10
					15	10
					16	10
					17	10
					18	10
					19	10
					20	10
					21	10
					22	10
					23	10
					24	10
					25	10
					26	10
					27	10
					28	10
					29	10
					30	10
					31	10
					32	10
					32 33	
					33 34	10
					34 35	10
						10
					36	10
					37	10
					38	10
					39	10
					40	10

4	! 1	10
4	12	10
4	13	10
		10
		10
		10
		10
		10
		10
		10
		10
		10
		10
		10
		10
		10
		10
		10
		10
		10
		10
		10
		10
		10
		10
		10
		10
		10
	69	10
	70	10
	71	10
		10
		10
		10
		10
		10
		10
		10
		10
		10
		10
		10
		10
		10
8	35	10

	0.0	10	
	86	10	
	87	10	
	88	10	
	89	10	
	90	10	
	91	10	
	92	10	
	93	10	
	94	10	
	95	10	
	96	10	
	97	10	
	98	10	
	99	10	
	100	10	
Total of all populations	1	10	
Total of all populations	2	10	
	3	10	
	4	10	
	5		
		10	
	6	10	
	7	10	
	8	10	
	9	10	
	10	10	
	11	10	
	12	10	
	13	10	
	14	10	
	15	10	
	16	10	
	17	10	
	18	10	
	19	10	
	20	10	
	21	10	
	22	10	
	23	10	
	24	10	
	25	10	
	26	10	
	27	10	
	28	10	
	29	10	
	30	10	
	30	10	

31 10 32 10 33 10 34 10 35 10 36 10 37 10 38 10 39 10 40 10 41 10 42 10 43 10 43 10 44 10 45 10 46 10 47 10 48 10 49 10 50 10 51 10 52 10 53 10 54 10 55 10 56 10 57 10 58 10 59 10 60 10 61 10 62 10 63 10 64 10 65 10 66 10 67 10 66 10 66 10 66 10 67 10 68 10 66 10 67 10 68 10 68 10		-,_
33 10 34 10 35 10 36 10 37 10 38 10 39 10 40 10 41 10 42 10 43 10 44 10 45 10 46 10 47 10 48 10 49 10 50 10 51 10 52 10 53 10 54 10 55 10 56 10 57 10 58 10 59 10 59 10 60 10 61 10 62 10 63 10 64 10 65 10 66 10 67 10 68 10	31	10
34 10 35 10 36 10 37 10 38 10 39 10 40 10 41 10 42 10 43 10 44 10 45 10 46 10 47 10 48 10 49 10 50 10 51 10 52 10 53 10 54 10 55 10 56 10 57 10 58 10 59 10 60 10 61 10 62 10 63 10 64 10 65 10 66 10 66 10 66 10 66 10 66 10 66 10 66 10 66 10 66 10 66 10 67 10		
35 10 36 10 37 10 38 10 39 10 40 10 41 10 41 10 42 10 43 10 44 10 45 10 46 10 47 10 48 10 49 10 50 10 51 10 52 10 53 10 54 10 55 10 56 10 57 10 58 10 58 10 59 10 60 10 61 10 62 10 63 10 64 10 64 10 65 10 66 10 67 10 68 10		
36 10 37 10 38 10 39 10 40 10 41 10 41 10 42 10 43 10 44 10 45 10 46 10 47 10 48 10 49 10 50 10 51 10 52 10 53 10 54 10 55 10 56 10 57 10 58 10 59 10 60 10 61 10 62 10 63 10 64 10 65 10 66 10 67 10 66 10 67 10 66 10	34	10
37 10 38 10 39 10 40 10 41 10 42 10 43 10 44 10 45 10 46 10 47 10 48 10 49 10 50 10 51 10 52 10 53 10 54 10 55 10 56 10 57 10 58 10 59 10 60 10 61 10 62 10 63 10 64 10 65 10 66 10 66 10 66 10 66 10 66 10 66 10 66 10 66 10 66 10 66 10 66 10 66 10 66 10 67 10	35	10
38 10 39 10 40 10 41 10 41 10 42 10 43 10 44 10 45 10 46 10 47 10 48 10 49 10 50 10 51 10 52 10 53 10 54 10 55 10 56 10 57 10 58 10 59 10 60 10 61 10 62 10 63 10 64 10 65 10 66 10 66 10 66 10 67 10 68 10	36	10
39 10 40 10 41 10 42 10 43 10 44 10 45 10 46 10 47 10 48 10 49 10 50 10 51 10 51 10 52 10 53 10 54 10 55 10 56 10 57 10 58 10 59 10 60 10 61 10 62 10 63 10 64 10 65 10 66 10 66 10 66 10 66 10 66 10 66 10 66 10 66 10 66 10 66 10 66 10	37	10
39 10 40 10 41 10 42 10 43 10 44 10 45 10 46 10 47 10 48 10 49 10 50 10 51 10 51 10 52 10 53 10 54 10 55 10 56 10 57 10 58 10 59 10 60 10 61 10 62 10 63 10 64 10 65 10 66 10 66 10 66 10 66 10 66 10 66 10 66 10 66 10 66 10 66 10 66 10	38	10
40 10 41 10 42 10 43 10 44 10 45 10 46 10 47 10 48 10 49 10 50 10 51 10 52 10 53 10 54 10 55 10 56 10 57 10 58 10 59 10 60 10 61 10 62 10 63 10 64 10 66 10 66 10 66 10 66 10 66 10 66 10 66 10 66 10 66 10 66 10	39	10
41 10 42 10 43 10 44 10 45 10 46 10 47 10 48 10 49 10 50 10 51 10 52 10 53 10 54 10 55 10 56 10 57 10 58 10 59 10 60 10 61 10 62 10 63 10 64 10 65 10 66 10 67 10 68 10		
42 10 43 10 44 10 45 10 46 10 47 10 48 10 49 10 50 10 51 10 52 10 53 10 54 10 55 10 56 10 57 10 58 10 59 10 60 10 61 10 62 10 63 10 64 10 65 10 66 10 67 10 68 10		
43 10 444 10 45 10 46 10 47 10 48 10 49 10 50 10 51 10 52 10 53 10 54 10 55 10 56 10 57 10 58 10 59 10 60 10 61 10 62 10 63 10 64 10 65 10 66 10 67 10 68 10		
44 10 45 10 46 10 47 10 48 10 49 10 50 10 51 10 52 10 53 10 54 10 55 10 56 10 57 10 58 10 59 10 60 10 61 10 62 10 63 10 64 10 65 10 66 10 67 10 68 10		
45 10 46 10 47 10 48 10 49 10 50 10 51 10 52 10 53 10 54 10 55 10 56 10 57 10 58 10 59 10 60 10 61 10 62 10 63 10 64 10 65 10 66 10 67 10 68 10		
46 10 47 10 48 10 49 10 50 10 51 10 52 10 53 10 54 10 55 10 56 10 57 10 58 10 59 10 60 10 61 10 62 10 63 10 64 10 65 10 66 10 67 10		
47 10 48 10 49 10 50 10 51 10 52 10 53 10 54 10 55 10 56 10 57 10 58 10 59 10 60 10 61 10 62 10 63 10 64 10 65 10 66 10 67 10 68 10		
48 10 49 10 50 10 51 10 51 10 52 10 53 10 54 10 55 10 56 10 57 10 58 10 59 10 60 10 61 10 62 10 63 10 64 10 65 10 66 10 67 10 68 10		
49 10 50 10 51 10 52 10 53 10 54 10 55 10 56 10 57 10 58 10 59 10 60 10 61 10 62 10 63 10 64 10 65 10 66 10 67 10 68 10		
50 10 51 10 52 10 53 10 54 10 55 10 56 10 57 10 58 10 59 10 60 10 61 10 62 10 63 10 64 10 65 10 66 10 67 10 68 10		
51 10 52 10 53 10 54 10 55 10 56 10 57 10 58 10 59 10 60 10 61 10 62 10 63 10 64 10 65 10 66 10 67 10 68 10		
52 10 53 10 54 10 55 10 56 10 57 10 58 10 59 10 60 10 61 10 62 10 63 10 64 10 65 10 66 10 67 10 68 10		
53 10 54 10 55 10 56 10 57 10 58 10 59 10 60 10 61 10 62 10 63 10 64 10 65 10 66 10 67 10 68 10		
54 10 55 10 56 10 57 10 58 10 59 10 60 10 61 10 62 10 63 10 64 10 65 10 66 10 67 10 68 10		
55 10 56 10 57 10 58 10 59 10 60 10 61 10 62 10 63 10 64 10 65 10 66 10 67 10 68 10		
56 10 57 10 58 10 59 10 60 10 61 10 62 10 63 10 64 10 65 10 66 10 67 10 68 10		
57 10 58 10 59 10 60 10 61 10 62 10 63 10 64 10 65 10 66 10 67 10 68 10		
58 10 59 10 60 10 61 10 62 10 63 10 64 10 65 10 66 10 67 10 68 10		
59 10 60 10 61 10 62 10 63 10 64 10 65 10 66 10 67 10 68 10		
60 10 61 10 62 10 63 10 64 10 65 10 66 10 67 10 68 10		
61 10 62 10 63 10 64 10 65 10 66 10 67 10 68 10		
62 10 63 10 64 10 65 10 66 10 67 10 68 10		
63 10 64 10 65 10 66 10 67 10 68 10		
64 10 65 10 66 10 67 10 68 10		
65 10 66 10 67 10 68 10		
66 10 67 10 68 10		
67 10 68 10		
68 10		
09 10		
70 10		
70 10 71 10		
71 10 72 10		
72 10 73 10		
74 10 75 10		
75 10		10

	76	10
	77	10
	78	10
	79	10
	80	10
	81	10
	82	10
	83	10
	84	10
	85	10
	86	10
	87	10
	88	10
	89	10
	90	10
	91	
		10
	92	10
	93	10
	94	10
	95	10
	96	10
	97	10
	98	10
	99	10
1	100	10

Bayesian Analysis: Posterior distribution table

Locus	Parameter	2.5%	25.0%	Mode	75.0%	97.5%	Median	Mean
1	Θ_1	0.00033	0.00227	0.00363	0.00487	0.00800	0.00390	0.00406
2	Θ_1	0.00000	0.00027	0.00103	0.00173	0.00320	0.00150	0.00103
3	Θ_1	0.00000	0.00093	0.00197	0.00287	0.00453	0.00217	0.00204
4	Θ_1	0.00080	0.00293	0.00437	0.00580	0.00960	0.00477	0.00502
5	Θ_1	0.00000	0.00140	0.00250	0.00353	0.00547	0.00270	0.00265
6	Θ_1	0.00000	0.00173	0.00290	0.00400	0.00620	0.00310	0.00314
7	Θ_1	0.00000	0.00093	0.00197	0.00287	0.00453	0.00223	0.00206
8	Θ_1	0.00000	0.00053	0.00137	0.00220	0.00367	0.00170	0.00141
9	Θ_1	0.00000	0.00027	0.00110	0.00180	0.00327	0.00150	0.00109
10	Θ_1	0.00000	0.00053	0.00137	0.00220	0.00367	0.00170	0.00140
11	Θ_1	0.00393	0.00800	0.01050	0.01380	0.02813	0.01217	0.01323
12	Θ_1	0.00000	0.00113	0.00223	0.00313	0.00493	0.00243	0.00231
13	Θ_1	0.00000	0.00167	0.00283	0.00393	0.00613	0.00303	0.00307
14	Θ_1	0.00000	0.00107	0.00210	0.00307	0.00473	0.00230	0.00219
15	Θ_1	0.00133	0.00367	0.00523	0.00693	0.01180	0.00583	0.00622
16	Θ_1	0.00033	0.00233	0.00363	0.00487	0.00793	0.00390	0.00406
17	Θ_1	0.00067	0.00280	0.00423	0.00567	0.00947	0.00463	0.00487
18	Θ_1	0.00000	0.00073	0.00177	0.00260	0.00420	0.00203	0.00180

19	Θ_1	0.00213	0.00467	0.00643	0.00853	0.01467	0.00737	0.00787
20	Θ_1	0.00000	0.00127	0.00237	0.00333	0.00520	0.00250	0.00246
21	Θ_1	0.00220	0.00480	0.00657	0.00867	0.01487	0.00743	0.00798
22	Θ_1	0.00000	0.00007	0.00077	0.00147	0.00293	0.00137	0.00080
23	Θ_1	0.00000	0.00153	0.00270	0.00373	0.00580	0.00290	0.00289
24	Θ_1	0.00000	0.00140	0.00257	0.00360	0.00567	0.00277	0.00277
25	Θ_1	0.00007	0.00187	0.00310	0.00427	0.00673	0.00337	0.00340
26	Θ_1	0.00053	0.00253	0.00397	0.00520	0.00867	0.00423	0.00444
27	Θ_1	0.00020	0.00213	0.00343	0.00460	0.00747	0.00370	0.00378
28	Θ_1	0.00000	0.00133	0.00243	0.00347	0.00533	0.00263	0.00258
29	Θ_1	0.02027	0.02413	0.03177	0.04033	0.04860	0.03330	0.03926
30	Θ_1	0.00000	0.00113	0.00223	0.00313	0.00487	0.00243	0.00231
31	Θ_1	0.00000	0.00093	0.00197	0.00287	0.00453	0.00217	0.00201
32	Θ_1	0.00000	0.00073	0.00170	0.00253	0.00413	0.00197	0.00174
33	Θ_1	0.00573	0.00960	0.01250	0.01640	0.02893	0.01457	0.01585
34	Θ_1	0.01780	0.02060	0.02877	0.04067	0.04820	0.03130	0.03609
35	Θ_1	0.00000	0.00020	0.00103	0.00173	0.00327	0.00150	0.00105
36	Θ_1	0.00000	0.00053	0.00137	0.00220	0.00367	0.00177	0.00142
37	Θ_1	0.00493	0.00840	0.01103	0.01447	0.02520	0.01283	0.01389
38	Θ_1	0.00000	0.00027	0.00103	0.00173	0.00320	0.00150	0.00103
39	Θ_1	0.00180	0.00427	0.00590	0.00787	0.01360	0.00670	0.00718
40	Θ_1	0.00000	0.00020	0.00097	0.00167	0.00313	0.00143	0.00099
41	Θ_1	0.00007	0.00193	0.00323	0.00433	0.00687	0.00343	0.00350

Migrate 5.0.0a: (http://popgen.sc.fsu.edu) [program run on 13:47:59]

Locus	Parameter	2.5%	25.0%	Mode	75.0%	97.5%	Median	Mean
42	Θ_1	0.00053	0.00253	0.00397	0.00527	0.00880	0.00430	0.00450
43	Θ_1	0.00033	0.00233	0.00370	0.00493	0.00813	0.00403	0.00416
44	Θ_1	0.00000	0.00100	0.00203	0.00293	0.00467	0.00223	0.00211
45	Θ_1	0.00013	0.00200	0.00330	0.00440	0.00707	0.00350	0.00360
46	Θ_1	0.00067	0.00280	0.00423	0.00560	0.00933	0.00463	0.00484
47	Θ_1	0.00000	0.00107	0.00210	0.00307	0.00473	0.00230	0.00219
48	Θ_1	0.00000	0.00060	0.00157	0.00233	0.00400	0.00183	0.00159
49	Θ_1	0.00000	0.00133	0.00250	0.00353	0.00560	0.00270	0.00270
50	Θ_1	0.00000	0.00067	0.00163	0.00247	0.00400	0.00190	0.00165
51	Θ_1	0.03747	0.04527	0.04797	0.04973	0.05153	0.04643	0.07769
52	Θ_1	0.01493	0.01820	0.02417	0.03307	0.04220	0.02750	0.03093
53	Θ_1	0.00000	0.00100	0.00203	0.00300	0.00473	0.00230	0.00215
54	Θ_1	0.00000	0.00080	0.00177	0.00267	0.00427	0.00203	0.00185
55	Θ_1	0.02567	0.03560	0.04170	0.04773	0.05047	0.03910	0.05032
56	Θ_1	0.00000	0.00093	0.00197	0.00287	0.00453	0.00217	0.00204
57	Θ_1	0.00013	0.00207	0.00337	0.00460	0.00747	0.00363	0.00377
58	Θ_1	0.00040	0.00233	0.00370	0.00493	0.00813	0.00403	0.00415
59	Θ_1	0.00000	0.00000	0.00017	0.00107	0.00240	0.00110	0.00033
60	Θ_1	0.00000	0.00100	0.00203	0.00300	0.00473	0.00230	0.00216
61	Θ_1	0.00020	0.00220	0.00343	0.00467	0.00747	0.00370	0.00382

62	Θ_1	0.00000	0.00140	0.00250	0.00353	0.00547	0.00270	0.00265
63	Θ_1	0.00000	0.00100	0.00203	0.00293	0.00467	0.00223	0.00211
64	Θ_1	0.00000	0.00000	0.00063	0.00127	0.00273	0.00123	0.00064
65	Θ_1	0.00000	0.00067	0.00157	0.00247	0.00393	0.00190	0.00162
66	Θ_1	0.00000	0.00027	0.00103	0.00173	0.00320	0.00150	0.00104
67	Θ_1	0.00000	0.00180	0.00303	0.00413	0.00647	0.00323	0.00327
68	Θ_1	0.00000	0.00127	0.00243	0.00340	0.00533	0.00257	0.00255
69	Θ_1	0.00000	0.00180	0.00303	0.00413	0.00653	0.00323	0.00328
70	Θ_1	0.00000	0.00013	0.00083	0.00153	0.00300	0.00137	0.00084
71	Θ_1	0.00053	0.00260	0.00397	0.00527	0.00867	0.00430	0.00446
72	Θ_1	0.00000	0.00027	0.00103	0.00173	0.00320	0.00150	0.00104
73	Θ_1	0.00000	0.00140	0.00257	0.00360	0.00560	0.00277	0.00273
74	Θ_1	0.00080	0.00280	0.00317	0.00347	0.00547	0.00337	0.00346
75	Θ_1	0.00000	0.00127	0.00243	0.00340	0.00533	0.00263	0.00257
76	Θ_1	0.00000	0.00013	0.00090	0.00153	0.00307	0.00143	0.00090
77	Θ_1	0.00053	0.00260	0.00403	0.00533	0.00880	0.00437	0.00455
78	Θ_1	0.00000	0.00173	0.00290	0.00400	0.00620	0.00310	0.00314
79	Θ_1	0.00000	0.00027	0.00103	0.00180	0.00320	0.00150	0.00106
80	Θ_1	0.00000	0.00100	0.00203	0.00293	0.00460	0.00223	0.00208
81	Θ_1	0.00000	0.00053	0.00143	0.00227	0.00380	0.00177	0.00149
82	Θ_1	0.00000	0.00093	0.00197	0.00287	0.00453	0.00217	0.00203
83	Θ_1	0.00387	0.00407	0.00710	0.01147	0.01187	0.00810	0.00872
84	Θ_1	0.00213	0.00467	0.00643	0.00853	0.01473	0.00730	0.00784

Locus	Parameter	2.5%	25.0%	Mode	75.0%	97.5%	Median	Mean
85	Θ_1	0.00000	0.00053	0.00143	0.00227	0.00373	0.00177	0.00148
86	Θ_1	0.00000	0.00087	0.00190	0.00273	0.00440	0.00210	0.00194
87	Θ_1	0.00053	0.00260	0.00397	0.00527	0.00860	0.00430	0.00445
88	Θ_1	0.00000	0.00080	0.00183	0.00267	0.00433	0.00203	0.00187
89	Θ_1	0.00000	0.00107	0.00217	0.00307	0.00487	0.00237	0.00224
90	Θ_1	0.00000	0.00053	0.00143	0.00227	0.00380	0.00177	0.00150
91	Θ_1	0.00027	0.00227	0.00357	0.00480	0.00773	0.00383	0.00396
92	Θ_1	0.00053	0.00260	0.00397	0.00533	0.00880	0.00437	0.00453
93	Θ_1	0.02020	0.02547	0.03137	0.03773	0.04873	0.03330	0.03919
94	Θ_1	0.00000	0.00067	0.00163	0.00247	0.00400	0.00190	0.00165
95	Θ_1	0.00000	0.00120	0.00230	0.00327	0.00500	0.00243	0.00238
96	Θ_1	0.00000	0.00060	0.00150	0.00233	0.00380	0.00177	0.00151
97	Θ_1	0.00000	0.00107	0.00210	0.00307	0.00473	0.00230	0.00220
98	Θ_1	0.00000	0.00160	0.00283	0.00387	0.00607	0.00297	0.00302
99	Θ_1	0.00000	0.00073	0.00170	0.00253	0.00413	0.00197	0.00172
100	Θ_1	0.00500	0.01027	0.01063	0.01107	0.02300	0.01243	0.01348
All	Θ_1	0.00000	0.00093	0.00183	0.00267	0.00373	0.00197	0.00184

Citation suggestions:

Beerli P., 2006. Comparison of Bayesian and maximum-likelihood inference of population genetic parameters. Bioinformatics 22:341-345

Beerli P., 2007. Estimation of the population scaled mutation rate from microsatellite data, Genetics, 177:1967-1968.

Beerli P., 2009. How to use MIGRATE or why are Markov chain Monte Carlo programs difficult to use?						
In Population Genetics for Animal Conservation, G. Bertorelle, M. W. Bruford, H. C. Hauffe, A. Rizzoli,						
and C. Vernesi, eds., vol. 17 of Conservation Biology, Cambridge University Press, Cambridge UK, pp. 42-79.						

Bayesian Analysis: Posterior distribution over all loci

Log-Probability of the data given the model (marginal likelihood)

Use this value for Bayes factor calculations: $BF = Exp[\ ln(Prob(D \mid thisModel) - ln(\ Prob(\ D \mid otherModel)) \\ or \ as \ LBF = 2 \ (ln(Prob(D \mid thisModel) - ln(\ Prob(\ D \mid otherModel))) \\ shows the \ support for \ thisModel]$

Locus	TI(1a)	BTI(1b)	SS(2)	HS(3)
1	-15288.65	-14902.15	-14949.81	-15005.01
2	-14375.95	-14004.97	-14029.96	-14099.43
3	-14664.32	-14250.93	-14277.89	-14340.88
4	-15545.25	-15121.00	-15161.36	-15218.11
5	-14779.20	-14375.61	-14408.88	-14468.86
6	-15309.35	-14803.37	-14823.40	-14881.93
7	-14725.74	-14317.70	-14347.43	-14410.99
8	-14475.58	-14122.13	-14155.86	-14221.38
9	-14337.82	-13979.02	-14005.98	-14075.11
10	-14535.20	-14133.27	-14157.22	-14223.75
11	-16183.56	-15670.41	-15710.41	-15764.22
12	-14926.55	-14553.51	-14593.64	-14656.77
13	-14833.06	-14442.30	-14478.80	-14537.64
14	-14756.31	-14390.69	-14430.31	-14492.63
15	-15240.36	-14813.17	-14852.76	-14907.10
16	-15975.92	-15237.51	-15220.17	-15275.93
17	-15055.52	-14696.36	-14746.01	-14801.76
18	-14542.09	-14171.67	-14205.11	-14268.25
19	-16042.83	-15422.20	-15436.60	-15486.67
20	-14783.54	-14376.85	-14409.00	-14469.77
21	-16066.52	-15468.26	-15485.02	-15536.32
22	-14296.83	-13939.22	-13962.92	-14037.18
23	-15006.66	-14526.47	-14547.67	-14607.36
24	-14659.56	-14302.00	-14341.33	-14401.60
25	-15277.63	-14737.09	-14750.19	-14808.77
26	-15404.08	-14910.78	-14937.59	-14994.90
27	-15326.57	-14752.38	-14758.85	-14816.27
28	-14681.33	-14277.80	-14308.53	-14369.49
29	-29580.68	-23345.52	-22385.34	-22420.25

Migrate 5.0.0a: (http://popgen.sc.fsu.edu) [program run on 13:47:59]

30	-15409.97	-14732.18	-14714.83	-14777.39
31	-14723.79	-14324.59	-14356.82	-14417.51
32	-14608.75	-14204.65	-14230.96	-14295.81
33	-18728.27	-18005.08	-18035.79	-18079.53
34	-19784.44	-18629.48	-18589.55	-18627.41
35	-14284.67	-13936.09	-13962.90	-14033.60
36	-14570.79	-14163.28	-14187.00	-14254.44
37	-16536.36	-15977.38	-16012.08	-16058.24
38	-14448.80	-14075.42	-14101.84	-14173.55
39	-15215.48	-14798.79	-14840.44	-14892.86
40	-14313.99	-13958.01	-13982.32	-14053.90
41	-15191.71	-14731.35	-14757.74	-14815.94
42	-15080.91	-14649.77	-14683.90	-14740.03
43	-15240.59	-14787.16	-14819.47	-14875.60
44	-14498.79	-14136.92	-14170.64	-14234.16
45	-15217.69	-14751.03	-14778.83	-14837.53
46	-15678.59	-15026.16	-15023.48	-15078.56
47	-14994.49	-14474.94	-14484.83	-14547.16
48	-14330.08	-13984.98	-14016.78	-14086.98
49	-14571.58	-14213.44	-14252.12	-14314.85
50	-14733.42	-14367.89	-14403.25	-14468.24
51	-39485.38	-30365.97	-28940.07	-28967.80
52	-21038.40	-19306.14	-19163.35	-19202.04
53	-14726.10	-14295.77	-14321.60	-14383.37
54	-14523.66	-14161.96	-14195.43	-14260.75
55	-25239.96	-23460.67	-23360.53	-23395.60
56	-15246.70	-14620.37	-14609.68	-14673.11
57	-14663.83	-14301.66	-14342.66	-14402.24
58	-15185.16	-14751.91	-14786.62	-14844.43
59	-14168.27	-13816.20	-13825.84	-13911.57
60	-14483.50	-14122.26	-14157.87	-14220.27
61	-15566.91	-14934.16	-14933.65	-14989.73
62	-14740.19	-14337.59	-14370.86	-14430.57
63	-14735.93	-14335.07	-14365.86	-14428.36
64	-14289.21	-13933.87	-13956.32	-14031.58
65	-14533.57	-14148.03	-14177.85	-14241.67
66	-14325.62	-13962.14	-13986.52	-14057.52
67	-14800.04	-14390.38	-14425.17	-14483.67
68	-14894.67	-14459.20	-14486.66	-14546.75
69	-14789.25	-14382.28	-14415.20	-14473.89
70	-14319.02	-13960.62	-13983.89	-14057.17
71	-15633.02	-15039.76	-15049.16	-15104.37
72	-14487.54	-14083.58	-14104.16	-14172.89
73	-14642.32	-14260.38	-14295.03	-14356.91
74	-15085.75	-14615.39	-14640.97	-14698.34

75	-14775.81	-14384.42	-14420.50	-14480.46
76	-14283.56	-13935.76	-13959.17	-14034.97
77	-15130.11	-14737.99	-14782.53	-14838.45
78	-15462.90	-14826.63	-14822.74	-14880.16
79	-14465.26	-14068.30	-14090.71	-14158.58
80	-14660.78	-14254.53	-14283.14	-14346.22
81	-14385.72	-14027.64	-14059.20	-14126.15
82	-14485.15	-14117.49	-14149.95	-14213.29
83	-16662.11	-15892.10	-15882.22	-15932.93
84	-15160.04	-14778.55	-14829.44	-14880.45
85	-14627.50	-14213.13	-14237.72	-14302.75
86	-14810.02	-14341.57	-14359.39	-14421.34
87	-15618.78	-15187.56	-15230.17	-15285.75
88	-14542.17	-14193.01	-14231.29	-14294.79
89	-14678.10	-14289.95	-14323.92	-14385.49
90	-14388.89	-14031.26	-14063.21	-14129.89
91	-15245.63	-14737.83	-14759.02	-14815.42
92	-15005.37	-14586.73	-14623.91	-14679.52
93	-24416.89	-22438.04	-22282.28	-22320.82
94	-14685.61	-14239.33	-14258.67	-14322.83
95	-14890.42	-14464.19	-14491.89	-14555.42
96	-14684.33	-14254.32	-14276.47	-14341.48
97	-14884.79	-14470.98	-14500.01	-14564.40
98	-14757.62	-14351.64	-14384.31	-14443.98
99	-14621.85	-14214.64	-14240.88	-14306.02
100	-18612.05	-17255.12	-17151.38	-17198.86
All	-1568146.74	-1504072.44	-1503634.09	-1509618.13

- (1a) TI: Thermodynamic integration: log(Prob(D|Model)): Good approximation with many temperatures(1b) BTI: Bezier-approximated Thermodynamic integration: when using few temperatures USE THIS!
- (2) SS: Steppingstone Sampling (Xie et al 2011)
- (3) HS: Harmonic mean approximation: Overestimates the marginal likelihood, poor variance [Scaling factor = 238.561154]

Citation suggestions:

Beerli P. and M. Palczewski, 2010. Unified framework to evaluate panmixia and migration direction among multiple sampling locations, Genetics, 185: 313-326.

Palczewski M. and P. Beerli, 2014. Population model comparison using multi-locus datasets. In M.-H. Chen, L. Kuo, and P. O. Lewis, editors, Bayesian Phylogenetics: Methods,

Algorithms, and Applications, pages 187-200. CRC Press, 2014.

Xie W., P. O. Lewis, Y. Fan, L. Kuo, and M.-H. Chen. 2011. Improving marginal likelihood estimation for Bayesian phylogenetic model selection. Systematic Biology, 60(2):150â 160, 2011.

Acceptance ratios for all parameters and the genealogies

Parameter	Accepted changes	Ratio
Θ_1	165646221/400035457	0.41408
Genealogies	151701435/1599964543	0.09482

MCMC-Autocorrelation and Effective MCMC Sample Size

Parameter	Autocorrelation	Effective Sampe Size
Θ_1 Genealogies	0.06765 0.17762	8912925.22 7132194.16

Average temperatures during the run

Chain Temperatures 1 0.00000 2 0.00000 3 0.00000

Adaptive heating often fails, if the average temperatures are very close together try to rerun using static heating! If you want to compare models using marginal likelihoods then you MUST use static heating

4

0.00000

Potential Problems

This section reports potential problems with your run, but such reporting is often not very accurate. Whith many parameters in a multilocus analysi s, it is very common that some parameters for some loci will not be very informative, triggering suggestions (for example to increase the prior ran ge) that are not sensible. This suggestion tool will improve with time, therefore do not blindly follow its suggestions. If some parameters are fla

gged, inspect the tables carefully and judge wether an action is required. For example, if you run a Bayesian inference with sequence data, for mac roscopic species there is rarely the need to increase the prior for Theta
beyond 0.1; but if you use microsatellites it is rather common that your prior distribution for Theta should have
a range from 0.0 to 100 or more. With many populations (>3) it is also very common that some migration rou
tes are estimated poorly because the data contains little or no information for that route. Increasing the range will
not help in such situations, reducing number of parameters may help in such situations.
No warning was recorded during the run