Kalman-Filter

Overview

- 1. introduction
- 2.g-h-filter
- 3. the hidden markov model
- 4.kalman-filter

G-H-Filter

G-H-Filter

state: (x_{k-1}, v_{k-1}) .

input : measurement z_k after time Δt

G-H-Filter

state: (x_{k-1}, v_{k-1}) .

input: measurement z_k after time Δt

step 1: prediction

$$-x_{k|k-1} = x_{k-1} + v_{k-1} \cdot \Delta t$$

- $v_{k \mid k-1} = v_{k-1}$ (velocity assumed constant)

step 2: **update**

-
$$\tilde{y}_k = (z_k - x_{k|k-1}) : \underline{\text{innovation}} / \text{pre-fit } \underline{\text{residual}}$$

$$-x_k = x_{k|k-1} + \boldsymbol{g} \cdot \tilde{y}_k$$

$$-v_k = v_{k|k-1} + \mathbf{h} \cdot \tilde{y}_k / \Delta t$$

Choice of g and h

Hidden Markov Model

N possible states

probabilities:

$$F_{ij} = p(x_k = j \mid x_{k-1} = i)$$

 $(markov-matrix) \in \mathbb{R}^{N \times N}$

T possible observations

probabilities:

-
$$H_{i,j} = p(z_i|x=j)$$

(markov-matrix) $\in \mathbb{R}^{T \times N}$

Kalman Filter Models

From Markov to Kalman

hidden markov model

- countable state-space S
 - often finite with |S| = N
 - one dimension
- finite observation-space
 - dimension 1, size *T*
- state is N-dimensional vector of probabilities

kalman-filter model

- continuous state-space
 - $-S=\mathbb{R}^N$
 - N dimensions
- continuous obs.-space
 - dimension *T*
- state is *N* mean values and covariance matrix
- adds control
- adds process noise

From G-H to Kalman

From G-H to Kalman

Kalman Filter: World Model

the kalman-filter assumes the following state progression (based solely on hidden state x_{k-1}):

$$x_k = F_k x_{k-1} + B_k u_k + w_k$$
transition control noise

- F_k : state-transition model (e.g. classical mechanics)
- $-B_k$: control-input model (e.g. motor affects position)
- u_k : control vector (e.g. how much the motor is driven)
- w_k : process noise with covariance Q_k

Kalman Filter: Observation Model

an observation (measurement) z_k of the hidden true state x_k is modeled as

$$z_k = H_k x_k + v_k$$
observation noise

- H_k : observation model (state-space -> observe-space)
- v_k : observation noise with covariance R_k

Kalman Filter Models

Kalman Step 0 : Past state

reality

Mean

$$\hat{\chi}_{k-1}$$

estimated past state \hat{x}_{k-1} , P_{k-1}

Covariance

$$P_{k-1}$$

Kalman Step 1: Prediction

Kalman Step 2: Update

reality

Innovation Mean

$$\tilde{y}_k = \underline{z_k} - H_k \hat{x}_{k \mid k-1}$$

Innovation Covariance

$$S_k = R_k - H_k P_{k \mid k-1} H_k^T$$

Kalman Gain

$$K_k = P_{k \mid k-1} H_k^T S_k^{-1}$$

inverse covariance aka **precision**

Kalman Step 2: Update

reality

Mean (used as estimate)

$$\hat{x}_k = \hat{x}_{k \mid k-1} + K_k \tilde{y}_k$$

Covariance

$$P_k = (I - K_k H_k) P_{k \mid k-1} (I - K_k H_k)^T + K_k R_k K_k^T$$

- innovation mean \widetilde{y}_k
- kalman gain K_k

Kalman-Filter

Sources (online)

- https://en.wikipedia.org/wiki/Kalman_filter
- https://en.wikipedia.org/wiki/Hidden_Markov_model
- https://en.wikipedia.org/wiki/Alpha_beta_filter
- Tim Babb How a Kalman-Filter works, in pictures (http://www.bzarg.com/p/how-a-kalman-filter-works-in-pictures/)
- Roger R. Labbe Kalman and Bayesian Filters in Python (https://github.com/rlabbe/Kalman-and-Bayesian-Filters-in-Python)

All Links last visited on September 24th, 2018

Sources (books)

• Eli Brookner - Tracking and Kalman Filtering Made Easy (Wiley Interscience 2002)

