6. Amortized Analysis

What is amortized analysis?

It is:

- a collection of techniques we can use to analyze the time complexity of a sequence of operations.
 - Operations on a data structure.
 - Operations performed by an algorithm.

It is not:

- a way to prove a good upper bound on the worst case running time of a single operation.
- a technique used to design an algorithm or data structure.

What is amortized analysis?

- Intuitively, we have a situation where:
 - most operations are cheap
 - but some can be very expensive.
- However we can only execute an expensive operation if we first did a lot of cheap operations.
- Then
 - we can prove a good upper bound on the total running time of the sequence of operations
 - because the many cheap operations "paid" for the one expensive operation.

What is amortized analysis?

- There are several methods that together are called amortized analysis
 - the aggregate method
 - the accounting method
 - the charging method
 - the potential method
- We will only look at the last one.
 - It's more general than the others.
 - It's sometimes a bit harder to use (maybe).

- The idea for the potential method is derived from physics:
 - If I slowly lift a boulder then
 - I do some (a lot of) work, a little bit at a time.
 - I increase the boulder's potential energy each time.

That energy can then be used later (poor Wile E.

Coyote).

- You can think of potential as an account at a local store.
 - When you buy cheap items:
 - You pay a bit more than the items are worth and build "credit" (the potential increases).
 - When you buy an expensive item:
 - You use some of the accumulated credit (the potential decreases).
 - And so you still only pay a bit of money.
 - It's easier to keep track of the sum of your payments than of the sum of the item costs.

- We define a potential function $\Phi(m{D}_i)$ where $m{\mathsf{D}}_i$ is
 - the data structure
 - or the state of the algorithm after i operations.
- - $\Phi(D_i) \geq 0$
 - $\Phi(D_0) = 0$

- Examples:
 - ullet $\Phi\left(oldsymbol{D}_{i}
 ight)$ is the number of elements of $oldsymbol{\mathsf{D}}_{\mathsf{i}}$.
 - $\Phi(D_i)$ is the number of 1 bits in a binary counter.
- When we perform the ith operation op_i,
 - it takes cost_{real}(op_i) steps.
 - it may change the potential of the data structure, that is, $\Phi(D_i)$ may be different from $\Phi(D_{i-1})$.
 - the cost cost_{real}(op_i) may vary unpredictably.
 - That's the real price of the object you are buying.

We define the amortized cost of operation opin
 by

•
$$cost_{am}(op_i) = cost_{real}(op_i) + \Phi(D_i) - \Phi(D_{i-1})$$

- With a well chosen potential function, the costs cost_{am}(op_i) are
 - relatively consistent
 - easy to compute
 - cost_{am}(op_i) is the amount you're actually paying.

- Why is this useful?
 - We can prove that the cost of a sequence of n operations on the data structure is at most:

$$\sum_{i=1}^{n} cost_{am}(op_i)$$

That is,

$$\sum_{i=1}^{n} cost_{real}(op_i) \leq \sum_{i=1}^{n} cost_{am}(op_i)$$

The sum on the right is easy to compute.