Gegeben:

$$A = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 8 & 14 \\ 3 & 14 & 34 \end{pmatrix}$$

Aufgabe: Durch Gauß-Elimination die Cholesky-Zerlegung $A = \overline{LL}^T$ berechnen Lösung mit Gauß-Elimination:

TODO: Und wie gehts weiter?

Lösung ohne Gauß-Elimination:

$$A = \underbrace{\begin{pmatrix} 1 & 0 & 0 \\ 2 & 2 & 0 \\ 3 & 4 & 3 \end{pmatrix}}_{=:L} \cdot \underbrace{\begin{pmatrix} 1 & 2 & 3 \\ 0 & 2 & 4 \\ 0 & 0 & 3 \end{pmatrix}}_{=:L^T}$$

Teilaufgabe i

Es gilt:

$$2x - e^{-x} = 0 (1)$$

$$\Leftrightarrow 2x = e^{-x} \tag{2}$$

(3)

Offensichtlich ist g(x) := 2x streng monoton steigend und $h(x) := e^{-x}$ streng monoton fallend.

Nun gilt: $g(0) = 0 < 1 = e^0 = h(0)$. Das heißt, es gibt keinen Schnittpunkt für $x \le 0$.

Außerdem: g(1)=2 und $h(1)=e^{-1}=\frac{1}{e}<2$. Das heißt, für $x\geq 1$ haben g und h keinen Schnittpunkt.

Da g und h auf [0,1] stetig sind und g(0) < h(0) sowie g(1) > h(1) gilt, müssen sich g und h im Intervall mindestens ein mal schneiden. Da beide Funktionen streng monoton sind, schneiden sie sich genau ein mal.

Ein Schnittpunkt der Funktion g, h ist äquivalent zu einer Nullstelle der Funktion f. Also hat f genau eine Nullstelle und diese liegt in [0,1].

Teilaufgabe ii

Teilaufgabe i

$$p(x) = \sum_{i=0}^{3} f_i \cdot L_i(x) \tag{4}$$

mit

$$L_0(x) = \frac{(x - x_1)(x - x_2)(x - x_3)}{(x_0 - x_1)(x_0 - x_2)(x_0 - x_3)} = \dots = \frac{x^3 - 4x^2 + 3x}{-8}$$
 (5)

$$L_1(x) = \frac{x^3 - 3x^2 - x + 3}{3}$$

$$L_2(x) = \frac{x^3 - 2x^2 - 3x}{-4}$$

$$(6)$$

$$L_2(x) = \frac{x^3 - 2x^2 - 3x}{-4} \tag{7}$$

$$L_3(x) = \frac{x^3 - x}{24} \tag{8}$$

Teilaufgabe ii

Anordnung der dividierten Differenzen im so genannten Differenzenschema:

$$f[x_0] = f_0 = 8$$

$$f[x_1] = 3 f[x_0, x_1] = \frac{f[x_0] - f[x_1]}{x_0 - x_1} = -5$$

$$f[x_2] = 4 1 3$$

$$f[x_3] = 8 2 \frac{1}{3} - \frac{2}{3}$$

Also:

$$p(x) = f[x_0] + f[x_0, x_1] \cdot (x - x_0) + f[x_0, x_1, x_2] \cdot (x - x_0) \cdot (x - x_1)$$

$$(9)$$

$$+ f[x_0, x_1, x_2, x_3] \cdot (x - x_0) \cdot (x - x_1) \cdot (x - x_2) \tag{10}$$

$$= 8 - 5 \cdot (x - x_0) + 3 \cdot (x - x_0) \cdot (x - x_1) \tag{11}$$

$$-\frac{2}{3} \cdot (x - x_0) \cdot (x - x_1) \cdot (x - x_2) \tag{12}$$

Aufgabe 5