1 Enumeration of the Stabilizer States

Proposition 1 ([1, Theorem 2], [2, Theorem 5.(ii)], [3]). All stabilizer states can be written as follows:

$$\begin{cases} |\phi\rangle \coloneqq |t\rangle & \text{if } k = 0, \\ |\phi\rangle \coloneqq \frac{1}{2^{k/2}} \sum_{x=0}^{2^k - 1} (-1)^{x^\top Q x} i^{c^\top x} |Rx + t\rangle & \text{if } k > 0, \end{cases}$$
 (1)

証明 By hamada? In particular, can we say that all states in this form are stabilizer states?

A little modification of the above proposition gives us a efficient way to enumerate all the stabilizer states.

Theorem 1 In order to enumerate all stabilizer states, it is enough to consider the cases satisfying the following conditions:

- Q is a top-left $\mathbb{F}_2^{k \times k}$ matrix.
- R is a rank k $\mathbb{F}_2^{k \times (n-k)}$ rref(reduced row echelon form) matrix.
- t belongs to the complement of the row space of R.

証明 Main Ideas come from [1]. What we have to check is that this formulation can cover all the stabilizer states. It is easy to check that if $(Q_1, R_1, t_1) \neq (Q_2, R_2, t_2)$, then the corresponding states are also different, so we only have to check the number of stabilizer states. It is known that the number of rank k $\mathbb{F}_2^{k \times (n-k)}$ rref matrices is $\begin{bmatrix} n \\ k \end{bmatrix}_2$, which is a q-binomial coefficient with q=2. Thus, The number of Q, c, R, t is $2^{k(k+1)/2}, 2^k, \begin{bmatrix} n \\ k \end{bmatrix}_2, 2^{n-k}$, respectively, and the total number of states is

$$2^{n} + \sum_{k=1}^{n} 2^{k(k+1)/2} 2^{k} {n \brack k}_{2} 2^{n-k} = 2^{n} \sum_{k=0}^{n} {n \brack k}_{2} 2^{k(k+1)/2} = 2^{n} \prod_{k=1}^{n} (2^{k} + 1) = |\mathcal{S}_{n}|.$$

In the second last equation, we used the q-binomial theorem. Therefore, this formulation actually covers all the stabilizer states. \Box

In the above theorem, we used \mathbb{F}_2 . By doing so, we can separate the coefficients of -1 and i since $i^0 = 1, i^1 = i$, without no appearance of -1. This is a nice property, but at the same time, the law of exponents does not hold due to \mathbb{F}_2 , i.e., 1+1=0 in \mathbb{F}_2 but $-1=i^{1+1} \neq i^0=1$. This fact encourages us to allow $c^{\top}x$ to take non negative integer values, and here is another formulation with a slightly difference in order to solve this problem.

Corollary 1. In the above theorem, We can change \mathbb{F}_2 to $\{0,1\} \subset \mathbb{Z}$.

証明 We only have to check the term $i^{c^{\top}x}$, since other terms are the same as the above theorem. By changing \mathbb{F}_2 to $\{0,1\} \subset \mathbb{Z}$, the term $i^{c^{\top}x}$ change iff $p \equiv 2,3 \pmod 4$, where p is the number of i such

that $c_i = 1$ and $x_i = 1$. By flipping the value of Q_{ij} iff $c_i = c_j = 1 (i \neq j)$, we can flip this negative term, since

$$\binom{p}{2} \equiv \begin{cases} 0 \pmod{2} & \text{if } p \equiv 0, 1 \pmod{4}, \\ 1 \pmod{2} & \text{if } p \equiv 2, 3 \pmod{4}. \end{cases}$$

2 Calculating the Overlap

Thanks to the corollary 1, we can prove the following theorem.

Theorem 2 Fix k, R, t in the standard form (1). Then, we can compute the overlap $\langle \phi | \psi \rangle$ efficiently. (TODO: Write the exact computational cost.)

証明 (Following is rough and crude proof.)

We only consider the case k>0, R=0, t=0 for the simplicity. Other cases are trivial or can be reduced to this case. Define $x:=\begin{bmatrix}x_0\\\overline{x}\end{bmatrix}, \ c:=\begin{bmatrix}c_0\\\overline{c}\end{bmatrix}, \ \text{and} \ Q:=\begin{bmatrix}Q_{00}&Q_0^\top\\0&\overline{Q}\end{bmatrix}$ (x_0,c_0) and Q_{00} are all in $\{0,1\}$). Since $x^\top Qx = x_0(Q_{00}+Q_0^\top\overline{x})+\overline{x}^\top\overline{Q}\overline{x}$ and $c^\top x = c_0x_0+\overline{c}^\top\overline{x}$, we can rewrite the state as

$$\begin{aligned} |\phi\rangle &= \sum_{x=0}^{2^{k}-1} (-1)^{x^{\top}Qx} i^{c^{\top}x} |x\rangle \\ &= \sum_{\overline{x}=0}^{2^{k-1}-1} (-1)^{\overline{x}^{\top}\overline{Q}\overline{x}} i^{\overline{c}^{\top}\overline{x}} \Big(|2\overline{x}\rangle + (-1)^{Q_{00} + Q_{0}^{\top}\overline{x}} i^{c_{0}} |2\overline{x} + 1\rangle \Big) \\ &= \sum_{\overline{x}=0}^{2^{k-1}-1} (-1)^{\overline{x}^{\top}\overline{Q}\overline{x}} i^{\overline{c}^{\top}\overline{x}} |\overline{x}'\rangle \end{aligned}$$

by defining $|\overline{x}'\rangle := |2\overline{x}\rangle + (-1)^{Q_{00} + Q_0^{\top} \overline{x}} i^{c_0} |2\overline{x} + 1\rangle$. (Question: Is it natural to equate integer $2\overline{x} + 1$ to the vector $\begin{bmatrix} 1 \\ \overline{x} \end{bmatrix}$?)

Thus, we can compute the overlap recursively with very small computational cost per each step. This leads to the efficient calculation of the overlaps, which concludes the proof. \Box

Proposition 2. For the each steps, we can skip the calculation of the overlap if the following conditions are satisfied:

$$\sum_{x=0}^{2^k-1} \langle Rx + t | \psi \rangle < \text{threshold}$$

証明 The overlap can be suppressed by L^1 norm of the state. (TODO: Write exact proof.)

参考文献

- G.I. Struchalin, Ya. A. Zagorovskii, E.V. Kovlakov, S.S. Straupe, and S.P. Kulik. "Experimental Estimation of Quantum State Properties from Classical Shadows".
 PRX Quantum 2, 010307 (2021).
- [2] Jeroen Dehaene and Bart De Moor. "Clifford group, stabilizer states, and linear and quadratic operations over GF(2)". Physical Review A 68, 042318 (2003).
- [3] Maarten Van den Nest. "Classical simulation of quantum computation, the gottesman-Knill theorem, and slightly beyond". Quantum Inf. Comput. 10, 258–271 (2010).