lab5 2020

November 26, 2020

1 Practica de Laboratorio 5

- 1.1 Nombre y Apellidos: xxx
- 1.2 Fecha: xxx
- 1.3 Titulo

Practica acerca de la transformada DFT y el efecto "ventana" en la DFT.

1.4 Resumen

En esta practica, el estudiante practicara con programas o scripts en python para la implementacion de la DFT usando matrices en numpy. Ademas experimentara con las tecnicas de vantanas para la detección de senales.

FAVOR BORRAR ESTAS INSTRUCCIONES DE ESTA CELDA Y LOS ENUNCIADOS DE LOS TEMAS O TAREAS

OJO: SI NO LO HACEN SE REDUCE PUNTOS POR NO LEER DETENIDA-MENTE LAS INSTRUCCIONES

1.5 Objetivos de Aprendizaje

Objetivos Basicos: Cada estudiante es responsable de adquirir suficientes capacidades en estas tareas *antes* de discusiones en clase, mediante el uso de los recursos de aprendizaje (leer abajo) y mediante el trabajo de los ejercicios o tareas (abajo).

- Ser capaz de leer en idioma Ingles.
- Practicar el uso basico del lenguaje de programacion Python (Lab 3 y 4)
- Obtener la respuesta espectral de secuencias que representan senales muestreadas.

Objetivos Avanzados: Los siguientes objetivos seran parte de las discusiones en clase y trabajos adicionales; deberan ser aplicados por los estudiantes *durante* y despues de las clases.

- Practicar mediante el uso de matrices la implementación de la DFT.
- Obtener la respuesta espectral DFT de secuencias y/o sistemas.
- Usar librerias Scipy para implementar efectos de "ventana" y su aplicacion.

1.6 Recursos de aprendizaje

Para poder lograr los objetivos de aprendizaje, utilice los siguientes recursos. Puede incluir otros recursos si lo desea para complementar o reemplazar los siguientes:

Texto: El siguiente libro puede ser util para familiarizarse con la DFT.

Alan V. Oppenheim, R. Schafer. (1998). Discrete-Time Signal Processing (2nd. Ed.). Prentice Hall. ISBN: 0-13-754920-2 (Leer el capitulo 8)

Web: Estos enlaces son importantes para buscar información acerca del uso de ciertos comandos o funciones de Scipy Signal.

- El archivo Sesion 5 Lab DSP o Guia Practica 5 encontrara algunos ejemplos para poder realizar la tarea. Especificamente las funciones dft e idft
- Referencias de la ventana Hanning se encuentra en el link:
 - https://docs.scipy.org/doc/scipy-0.19.0/reference/signal.html

1.7 Tareas / Ejercicios

1.7.1 1. La DFT de una senal analogica muestreada.

Suponga que tiene una senal analogica definida como $x_a(t) = 5\cos(200\pi t) + 2\sin(400\pi t)$ y se le toma muestras a un tiempo de muestreo de $t_s = 0.001$ para obtener una secuencia x(n) con indices de elementos n = 0, 1, ..., N - 1. La DFT de N-puntos es aplicada para estimar el espectro de x_a .

1. De los valores indicados de N a continuación, de las alternativas (a)-(c) escoja el valor N que provee de la estimación mas cercana del espectro de $x_a(t)$. Es decir que se parezca mas a la CFT (Transformada de Fourier continua) de x_a . Obtenga las graficas de las partes reales e imaginarias del espectro DFT de la secuencia x(n).

(a)
$$N = 40$$
, (b) $N = 50$, (c) $N = 100$

2. De los siguientes valores de N, escoja aquel valor que provee del minimo efecto "leakage" (desbordamiento) en el espectro. Obtenga las graficas de la magnitud de la DFT de X(m).

(a)
$$N = 91$$
, (b) $N = 95$, (c) $N = 99$

[]:

[]:

1.7.2 2. Aplicacion de las "ventanas" (Windowing) en la DFT

En este ejercicio y tomando como referencia la practica acerca de La transformada Discreta de Fourier - DFT.

Se tiene una señal analógica descrita como:

$$y(t) = A_1 \cos(2\pi f t) + A_2 \cos(2\pi (f + \Delta f)t)$$

Donde $A_1=10$ y $A_2=0.2$, la frecuencia f=10 y $\Delta f=2$, la frecuencia de muestreo es de $f_s=64$.

1. Genere una senal discreta en el tiempo que inicie en el tiempo t=0, y que el numero total de muestras sea de N=128. Determine para ello el tiempo final tomando en cuenta el tiempo de muestreo.

Una vez se tenga la senal discreta, obtenga las secuencias $x_1(n) = x(n)H_1(n)$ y $x_2(n) = x(n)H_2(n)$ donde $H_1(n)$ es la ventana Hanning y $H_2(n)$ es la ventana Hanning. Grafique usando subplot las secuencias x(n), $x_t(n)$ y $x_h(n)$.

2. Obtenga la magnitud de la DFT de las secuencias x(n), $x_1(n)$ y $x_2(n)$. Haga comparaciones entre los tres resultados. Que puede concluir ante estas observaciones?

Nota para obtener las ventanas Hanning, Hamming o cualquier otra usar la libreria Scipy.signal https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.windows.hann.html#scipy.signal.windows.hann

https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.windows.hamming.html?highlight=hamming#started/scipy.signal.windows.hamming.html?highlight=hamming#started/scipy.signal.windows.hamming.html?highlight=hamming#started/scipy.signal.windows.hamming.html?highlight=hamming#started/scipy.signal.windows.hamming.html?highlight=hamming#started/scipy.signal.windows.hamming.html?highlight=hamming#started/scipy.signal.windows.hamming.html?highlight=hamming#started/scipy.signal.windows.hamming.html?highlight=hamming#started/scipy.signal.windows.hamming.html?highlight=hamming#started/scipy.signal.windows.hamming.html?highlight=hamming#started/scipy.signal.windows.hamming.html?highlight=hamming#started/scipy.signal.windows.hamming.html?highlight=hamming#started/scipy.signal.windows.hamming.html?highlight=hamming#started/scipy.signal.windows.hamming.html?highlight=hamming.html?high

]:[
]:[

FAVOR BORRAR ESTAS INSTRUCCIONES DE ESTA CELDA

OJO: SI NO LO HACEN SE REDUCE PUNTOS POR NO LEER DETENIDA-MENTE LAS INSTRUCCIONES

1.8 Instrucciones de Entrega

Entregar el resultado del ejercicio en un reporte en archivo html (apellido_lab5.html), tomando en cuenta la plantilla "plantilla_lab.ipynb" (ver el lab 1). Favor subir los dos archivos en el SIDWEB.

[]:	