Грищенко Юрій, ПЗС

1. Довести, що в однооб'єктній категорії справедлива імплікація:

$$\forall x (x \circ x = 1_m) \Rightarrow a \circ b = b \circ a$$

$$3 \forall x (x \circ x = 1_m)$$
 випливає $(a \circ b) \circ (a \circ b) = 1_m$

$$(a \circ b \circ a \circ b) \circ b = 1_m \circ b = b$$

 $a \circ b \circ a \circ (b \circ b) = a \circ b \circ a \circ 1_m = a \circ b \circ a$
Отже $a \circ b \circ a = b$

$$(a \circ b \circ a) \circ a = b \circ a$$

 $a \circ b \circ (a \circ a) = a \circ b \circ 1_m = a \circ b$
Отже $a \circ b = b \circ a$

2. В категорії предпорядку знайти 2 х 3.

- а) Для існування добутку 2х3 повинні існувати морфізми $pr_2:2\times3\to2$ та $pr_3:2\times3\to3$. Маємо лише одне відображення в 3, отже єдине можливе значення для pr_3 це $pr_3:3\to3$, тоді єдиним можливим добутком 2 х 3 є 3. Але в категорії не задано морфізму $pr_2:3\to2$, звідси 3 не є добутком 2 х 3, отже такого добутку не існує.
- b) Добутком є 1, маємо $pr_2: 1 \rightarrow 2$, $pr_3: 1 \rightarrow 3$. Необхідно перевірити пари морфізмів $f: 0 \rightarrow 2$, $g: 0 \rightarrow 3$. Бачимо, що існує єдиний морфізм $h: 0 \rightarrow 1$ для якого $h \circ pr_2 = f$, $h \circ pr_3 = g$.

3. Довести $\langle T, T \rangle \circ \Rightarrow = T$

Розглянемо діаграму 3.1:

де g — мономорфізм, який є порівнювачем пари $\wedge : \Omega \times \Omega \rightarrow \Omega$ і $pr_1 : \Omega \times \Omega \rightarrow \Omega$.

Підберемо х так, щоб верхній квадрат діаграми був декартовим. Для цього розглянемо діаграму:

Тоді існує єдиний x:1 → a такий, що $x \circ g = \langle T, T \rangle$.

Розглянемо наступну діаграму:

Нехай $r \circ g = s \circ \langle T, T \rangle$. Тоді при k = s верхній трикутник комутує. Покажемо, що нижній трикутник комутує:

 $k \circ x \circ g = k \circ \langle T, T \rangle = r \circ g$. Скоротивши на g одержуємо $k \circ x = r$.

Таким чином верхній квадрат діаграми 3.1 є декартовим. Верхній і нижній квадрати діаграми 3.1 декартові, отже за лемою про квадрати зовнішній квадрат теж декартовий. Звідси $\langle T,T \rangle \circ \Rightarrow = T$

5. Довести $(g \times k) \circ (f \times h) = (g \circ f) \times (k \circ h)$ Розглянемо діаграму

Ліва та права частини діаграми комутують з означення функторного добутку (g x k та у x z відповідно), отже діаграма комутує. Тобто $(g \times k) \circ (f \times h) = \langle pr_a \circ (g \circ f), pr_b \circ (k \circ h) \rangle$. При цьому $(g \times k) \circ (f \times h)$ єдиний морфізм, при якому вона комутує, отже за визначенням він є функторним добутком $(g \circ f) \times (k \circ h)$.

4. Довести а⁰ ≌1

 ${\bf a}^{\circ}$ — експоненціал ${\bf 0}$ і а. Необхідно доказати, що ${\bf 1}$ — також експоненціал ${\bf 0}$ і а. Розглянемо діаграми:

1 — кінцевий елемент, отже для будь-якого с існує єдиний \hat{g} : с -> 1.

Для декартово замкнутої категорії з початковим об'єктом 0 маємо $0 \cong$ а x 0 та $0 \cong$ с x 0. Звідси отримуємо комутативність правої діаграми. Отже можна задати $ev = pr'_0 \circ i \circ pr_1$.

Отже, за визначенням, $1 \in \text{експоненціалом a i } 0$, звідси $a^0 \cong 1$.