Comparison between several denoising methods for image processing

Jessy Khafif

March 17, 2023

Summary

Non Local Means (NLM)

2 Bilateral Filter

3 Anisotropic Filtering

Non Local Means (NLM)

Principle

- Iterative method
- Non Linear Filtering
- Using knowledge about neighbors

Filter Expression

$$w(i, j, k, l) = -e^{\frac{\|I(i, j) - I(k, l)\|_2^2}{2\sigma^2}}$$

$$I_D(i,j) = \frac{\sum_{k,l} I(k,l) w(i,j,k,l)}{\sum_{k,l} w(i,j,k,l)}$$

Filter Expression

$$w(i, j, k, l) = -e^{\frac{\|I(i, j) - I(k, l)\|_2^2}{2\sigma^2}}$$

$$I_{D}(i,j) = \frac{\sum_{k,l} I(k,l) w(i,j,k,l)}{\sum_{k,l} w(i,j,k,l)}$$

Algorithm

Algorithm 1 Filtering Algorithm

```
1: procedure Denoising With Non Local Means Filter Input: I, \sigma, (n_w, n_h)
2: Output: I_D
3: for pixel \in I do
4: neighs = neighboors\_of(pixel, n_w, n_h)
5: I_D[pixel] = non\_local\_mean(pixel, neighs, \sigma)
6: end for
7: end procedure
```

Data

Results (with $(n_w, n_h) = (5, 5)$)

Results (with $(n_w, n_h) = (5, 5)$)

Bilateral Filter

Principle

- Iterative method
- Non Linear Filtering
- Using knowledge about neighbors
- Like NLM but we add an hyper-parameter related to the distance between pixels

Filter Expression

$$w(i,j,k,l) = e^{-\frac{(i-k)^2 + (j-l)^2}{2\sigma_{spatial}^2} - \frac{\|I(i,j) - I(k,l)\|_2^2}{2\sigma_{color}^2}}$$

$$I_D(i,j) = \frac{\sum_{k,l} I(k,l) w(i,j,k,l)}{\sum_{k,l} w(i,j,k,l)}$$

Filter Expression

$$w(i,j,k,l) = e^{-\frac{(i-k)^2 + (j-l)^2}{2\sigma_{spatial}^2} - \frac{\|I(i,j) - I(k,l)\|_2^2}{2\sigma_{color}^2}}$$

$$I_D(i,j) = \frac{\sum_{k,l} I(k,l) w(i,j,k,l)}{\sum_{k,l} w(i,j,k,l)}$$

Algorithm

Algorithm 2 Filtering Algorithm

```
1: procedure Denoising With Bilateral Filter Input: I, \sigma_{spatial}, \sigma_{color}, (n_w, n_h)
2: Output: I_D
3: for pixel \in I do
4: neighs = neighboors\_of(pixel, n_w, n_h)
5: I_D[pixel] = bilateral\_filter(pixel, neighs, \sigma_{spatial}, \sigma_{color})
6: end for
7: end procedure
```

Data

Results (with $(n_w, n_h) = (5, 5)$)

Results (with $(n_w, n_h) = (5, 5)$)

Anisotropic Filtering

Principle

- Iterative method
- PDE-based method

PDE meaning?

Partial Differential Equation (PDE): Differential equation with a function as solution

Perona-Malik Model: Heat PDE

$$\begin{cases} I_0 = I_{\mathsf{noisy}} \\ I_{k+1} = I_k + \lambda [\sum\limits_{d \in Dir} (f_{\mathsf{diffusion}} \circ (I_k * \nabla_d))] \end{cases}$$

- $\lambda = \lambda$ hyper-parameter
- $Dir = {North, East, South, West}$
- $\blacksquare k = \text{iteration number}$
- lacksquare $\nabla_d =$ derivation kernel with direction d
- $f_{\text{diffusion}} = \text{heat diffusion function}$

Perona-Malik Model: Heat PDE

$$\begin{cases} I_0 = I_{\mathsf{noisy}} \\ I_{k+1} = I_k + \lambda [\sum\limits_{d \in Dir} (f_{\mathsf{diffusion}} \circ (I_k * \nabla_d))] \end{cases}$$

- $\lambda = \lambda$ hyper-parameter
- $Dir = \{North, East, South, West\}$
- $\blacksquare k = \text{iteration number}$
- lacksquare $\nabla_d =$ derivation kernel with direction d
- \bullet $f_{\text{diffusion}} = \text{heat diffusion function}$

Derivation kernels

$$\nabla_{\mathsf{North}} = \begin{bmatrix} 0 & 1 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

$$\nabla_{\mathsf{South}} = \begin{bmatrix} 0 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 1 & 0 \end{bmatrix}$$

$$abla_{\mathsf{West}} = egin{bmatrix} 0 & 0 & 0 \ 1 & -1 & 0 \ 0 & 0 & 0 \end{bmatrix}$$

$$abla_{\mathsf{Est}} = egin{bmatrix} 0 & 0 & 0 \\ 0 & -1 & 1 \\ 0 & 0 & 0 \end{bmatrix}$$

Heat diffusion functions

$$f_{\text{diffusion}}: \mathcal{R}_+ \to \mathcal{R}_+^* \text{ such that } \begin{cases} f_{\text{diffusion}}(0) = 1 \\ \lim_{u \to +\infty} f_{\text{diffusion}}(u) = 0 \end{cases}$$

Examples:

$$f_{\mathsf{diffusion}}(u) = \frac{1}{1 + (\frac{u}{L})^2}$$

$$f_{\text{diffusion}}(u) = e^{-(\frac{u}{k})^2}$$

with $k \in \mathcal{R}_+^*$

Heat diffusion functions

$$f_{\text{diffusion}}: \mathcal{R}_+ \to \mathcal{R}_+^* \text{ such that } \begin{cases} f_{\text{diffusion}}(0) = 1 \\ \lim_{u \to +\infty} f_{\text{diffusion}}(u) = 0 \end{cases}$$

Examples:

$$f_{\mathsf{diffusion}}(u) = \frac{1}{1 + (\frac{u}{k})^2}$$

$$f_{\text{diffusion}}(u) = e^{-(\frac{u}{k})^2}$$

with $k \in \mathcal{R}_{+}^{*}$

Notation about $f_{\text{diffusion}} \circ (I_k * \nabla_d)$

Set
$$M = I_k * \nabla_d$$
.

$$f_{\mathsf{diffusion}} \circ M = f_{\mathsf{diffusion}} \circ \begin{bmatrix} m_{0,0} & \dots & m_{0,M} \\ \vdots & \ddots & \vdots \\ m_{0,N} & \dots & m_{M,N} \end{bmatrix}$$

$$= \begin{bmatrix} f_{\mathsf{diffusion}}(m_{0,0}) & \dots & f_{\mathsf{diffusion}}(m_{0,M}) \\ \vdots & \ddots & \vdots \\ f_{\mathsf{diffusion}}(m_{0,N}) & \dots & f_{\mathsf{diffusion}}(m_{M,N}) \end{bmatrix}$$

Algorithm

Algorithm 3 Filtering Algorithm

- 1: procedure Denoising With Anisotropic Filter Input: I, λ , N
- 2: Output: I_{N-1}
- 3: $I_0 = I$
- 4: for $k \in [0, N]$ do
- 5: $I_{k+1} = I_k + \lambda [\sum_{d \in Dir} (f_{\mathsf{diffusion}} \circ (I_k * \nabla_d))]$
- 6: end for
- 7: end procedure

Data

Results (with N=40)

Results (with N=40)

The End