

Europäisches Patentamt European Patent Office Office européen des brevets

(11) EP 0 753 679 B1

(12)

EUROPEAN PATENT SPECIFICATION

(45) Date of publication and mention of the grant of the patent:08.03.2000 Bulletin 2000/10

(51) Int CI.7: **F16C 33/78**, G01P 3/44, F16J 15/32

(21) Application number: 96305098.4

(22) Date of filing: 10.07.1996

(54) Rolling bearing unit having tone wheel

Wälzlagereinheit mit frequenzbestimmendem Rad Palier à roulement avec roue phonique

(84) Designated Contracting States: **DE GB**

(30) Priority: 10.07.1995 JP 17321995 19.01.1996 JP 752596

(43) Date of publication of application: 15.01.1997 Bulletin 1997/03

(73) Proprietor: NSK LTD Shinagawa-ku, Tokyo (JP)

(72) Inventors:

 Ouchl, Hideo Fujisawa-shi, Kanagawa-ken (JP) Nakamura, Yuji
 Fujisawa-shi, Kanagawa-ken (JP)

 (74) Representative: Moreland, David, Dr. et al Crulkshank & Fairweather,
 19 Royal Exchange Square Glasgow G1 3AE (GB)

(56) References cited:

DE-A- 2 756 930 US-A- 4 948 277 US-A- 4 940 936

US-A- 5 431 413

0 753 679

П

Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).

Description

Field of the Invention

[0001] The present invention is related to a rolling bearing unit having a tone wheel to rotatably support a vehicle wheel with respect to a suspension apparatus while providing a rotating speed sensor to detect the rotating speed of the vehicle wheel,

Description of the related art

[0002] The rotating speed of the vehicle wheel, specifically free wheel (front wheel of the FR vehicle and rear wheel of the FF vehicle) must be detected in order to control the antilock brake system (ABS) or the traction control system (TCS). Accordingly, the rolling bearing unit must have a rotating speed sensor to detect the rotating speed of the vehicle wheel while rotatably supporting the vehicle wheel with respect to the suspension apparatus.

[0003] For example, U.S. Patent No. 4,968,156, U.S. Patent No. 5,431,413 and JP First Publication KOKAI No. H6-65864 disclose an example of the conventional rolling bearing units having a rotating speed sensor. Figs. 1 and 2 show the rolling bearing unit having the rotating speed sensor of the U.S. Patent No. 4,968,156. [0004] A pair of stationary bearing rings or inner rings 2a, 2b are connected by a coupling ring 1 and fitted over a stationary axle 3. The both inner rings 2a, 2b are clamped between the holder 4 and nut 5. Formed on the outer peripheral surface (first peripheral surface) of the inner rings 2a, 2b are inner ring raceways (first raceways) 6.

[0005] Formed on the inner peripheral surface (second peripheral surface) of the rotatable outer bearing ring or hub 7 are outer raceways (second raceways) 8 in double rows. Disposed between the outer raceways 8 and inner raceways 6 are a plurality of balls 9 to rotatably support the hub 7 around the axle 3. A vehicle wheel 10 is fixed to a flange 11 on the outer peripheral surface of the hub 7.

[0006] There is an opening portion on the axially inner end of the hub 7, where a seal ring 12 comprising a core metal 13 is provided. The core ring 13 is fitted into the opening portion of the hub 7.

[0007] The term "axially inner" means in this specification the inner side in the width direction in the condition assembled in the vehicle (right side e.g.in Fig. 1) while the term "axially outer" means the outer side in the width direction in the vehicle.

[0008] A cylindrical portion 18 is formed in the outer peripheral rim portion of the core metal 13 and fitted into the opening portion of the hub 7 in the interference relationship. Supported by the core metal 13 is a tone wheel 14 comprising a permanent magnet or permanent magnets and formed in an annular shape with alternative arrangement of South and North poles in a circum-

ferential direction.

[0009] The axially inner one 2b of the inner rings 2a, 2b has its axially inner end fitted into a support ring 15 formed from a metal plate through a deep-drawing step.
5 The seal ring 12 has a seal member 16 the tip end of which is provided in a sliding contact relationship with the inner peripheral surface and the axially outer surface of the support ring 15, so that dust and rain water are prevented from entering the space where the balls 9 are provided.

[0010] A sensor 17 is fixedly supported by part of the support ring 15, so that the detecting part of the sensor 17 is faced to the axially inner surface of the tone wheel 14.

[0011] With the rolling bearing unit having a rotating speed sensor as mentioned above, the vehicle wheel fixed to the hub 7 is rotatably supported with reference to the axle 3 onto which the inner rings 2a, 2b are supported in a fitting relationship. When the hub 7 is rotated together with the vehicle wheel, the output of the sensor, which is faced to the axially inner side surface of the tone wheel 14 fixed to the hub 7, is changed. The frequency at which the output of the sensor 17 is changed is proportional to the rotating speed of the vehicle wheel. Accordingly, by inputting the output signal of the sensor 17 to a control device (not shown), the rotating speed of the vehicle wheel is obtained to properly control the ABS and TCS.

[0012] Other than U.S. Patent No. 4,968,156, U.S. Patent No. 4,948,277 and FR Patent Publication No. 2,642,483 etc. disclose a similar rolling bearing unit having a rotating speed sensor.

[0013] In the construction, however, the width W₁₄ in a radial direction of the tone wheel 14 can not be sufficiently large in size, and it can be difficult to securely and sufficiently obtain the density of magnetic flux in the section of the sensor 17.

[0014] Specifically, in the case of the conventional structure as shown in Figs. 1 and 2, the tone wheel 14 is located between the inner peripheral surface at the axially inner end of the hub 7 and the outer peripheral surface at the axially inner end of the inner ring 2b. Accordingly, the width W_{14} is substantially smaller in size than the width W_{19} of the opening portion 19 between the inner peripheral surface of the hub 7 and the outer peripheral surface of the inner ring 2b at the axially inner end ($W_{14} << W_{19}$), to avoid the interference between the tone wheel 14, core metal 13 and support ring 15.

[0015] It is hard to obtain a sufficiently large amount of magnetic force in the tone wheel 14 if the width W₁₄ of the tone wheel 14 made from permanent magnet is smaller. Consequently, the density of magnetic flux in the section of the sensor 17 is lowered, which in turn lowers the detection signal outputted from the sensor 17 as the vehicle wheel rotates and makes it difficult to keep the precision in speed detection of the vehicle wheel.

[0016] Fig. 3 shows a construction disclosed in U.S.

30

45

4

Patent Appln. No. 5,431,413.

[0017] The outer peripheral surface of the axle 3 rotating with the vehicle wheel is fitted into a first seal ring 102 comprising a first core metal 103 and a first elastic member 104 of magnetic rubber.

[0018] The first elastic member 104 is provided with South and North poles alternately arranged in a circumferential direction on its side surface.

[0019] A stationary outer ring 7 is supported by a suspension apparatus and has its inner peripheral surface at the axially inner end fitted onto a second seal ring 105 comprising a second core metal 106. Seal lips 108 are formed on the second resilient member 107 of the second seal ring 105 and provided in a sliding contact relationship with the outer peripheral surface and axially outer side surface (left side surface in Fig. 3) of the first core metal 103.

[0020] The rolling bearing unit having the first and second seal rings 102, 105 rotatably supports the vehicle wheel with reference to the suspension apparatus, and combined with a sensor (not shown) to detect the rotating speed of the vehicle wheel. The signal of rotating speed is thus obtained and utilized to control the ABS and TCS. A pair of seal lips 108 are provided to prevent foreign materials such as rain water from entering the rolling bearing unit.

[0021] In the conventional construction of Fig. 3, the freedom of design of the seal ring is small due to the fact that the first elastic member 104 of the first seal ring 102 is used for a multi-pole magnet, so that while the first seal ring 102 works as a tone wheel.

[0022] Specifically, in order to securely detect the rotating speed, a certain amount of space for accommodating the first seal ring 102 having the first elastic member 104 must be secured to keep the magnetic force of the first elastic member 4. Accordingly, it is difficult to make compact the rolling bearing unit with the tone wheel and with the seal ring. In addition, the shape of the first and second seal rings 102, 105 must be changed between the case where the shaft 3 rotates and the case where the outer ring 7 rotates, so that it is difficult to use the common seal ring.

[0023] In addition, the production cost of the seal rings 102, 105 are high because the sealing performance of the seal rings 102, 105 must be secured in order to prevent the foreign materials from entering the rolling bearing unit.

Summary of the Invention

[0024] An object of the present invention is to provide a rolling bearing unit having a tone wheel by which the problems as mentioned above are overcome.

[0025] An object of the present invention is to provide a rolling bearing unit having a tone wheel and a seal device which has an elastic seal member and a core member to reinforce the elastic seal member to seal the space where the rolling members are provided, the tone

wheel comprising an annular multi-pole magnet with South and North poles afternately arranged in a circumferential direction and supported either by the generally annular seal ring or by an outer ring outside the annular seal ring.

[0026] The rolling bearing unit having a tone wheel in one feature of the present invention does basically comprise a stationary bearing ring having a first peripheral surface on which a first raceway is formed, a rotatable bearing ring having a second peripheral surface on which a second raceway is formed, a plurality of rolling members provided between the first and second raceways, a seal device comprising a seal ring in a generally annular shape having an elastic seal member and a core metal to reinforce the elastic seal member to cover the opening at one end of the space between the first and second peripheral surfaces, and a tone wheel comprising an annular multi-pole magnet with South and North poles alternately arranged in a circumferential direction and supported by the generally annular seal ring.

[0027] In addition, part of the generally annular seal ring is projected out of the space from the opening of the axially inner end of the space between the first and second peripheral surfaces.

[0028] The tone wheel is supported on the axially outer side surface of this part of the generally annular seal ring.

[0029] The outer diameter of the tone wheel is larger in size than the inner diameter of the opening portion at the axially inner end of the outer bearing ring which is the radially outer one of the stationary and rotatable bearing rings, and the inner diameter of the tone wheel is smaller in size than the inner diameter of the opening portion at the axially inner end of the outer bearing ring. [0030] The rolling bearing unit having a tone wheel of the present invention rotatably supports a vehicle wheel and detects the rotating speed of the vehicle wheel fixed to the rotatable bearing ring through combination with the sensor. This, supporting and detecting manner is substationally the same as the conventional rolling bearing units having a tone wheel.

[0031] Particularly, in the present invention, the width of the tone wheel in a radial direction can be sufficiently large to increase the density of magnetic flux in the sensor section and to increase the output of the sensor.

[0032] In another feature of the present invention, the rolling bearing unit comprises a rotatable outer ring having an inner peripheral surface on which an outer ring raceway is formed, a stationary inner ring having an outer peripheral surface on which an inner ring raceway is formed, a plurality of rolling members provided between the outer and inner ring raceways, a seal ring provided between the outer peripheral surface at one end of the inner ring and the inner peripheral surface at one end of the outer ring to seal between the peripheral surfaces, and a tone wheel provided at one end of the outer ring in a concentric relation with the outer ring to have Spoles and N-poles arranged atternately in a circumfer-

25

ential direction.

[0033] The tone wheel is supported at a portion of the outer ring outside the seal ring and fixed to the portion, independent from the seal ring. The tone wheel has an inner peripheral edge close to the end portion of the inner ring to form a labyrinth seal.

Brief Description of the Drawings

[0034] Fig. 1 is a cross sectional view of one half of a prior art bearing section.

[0035] Fig. 2 is an enlarged view of the section II of Fig. 1.

[0036] Fig. 3 is a cross sectional view of a conventional seal ring structure.

[0037] Fig. 4 is a cross sectional view showing one embodiment of the present invention.

[0038] Fig. 5 is a cross sectional view showing another embodiment of the present invention.

[0039] Fig. 6 is a cross sectional view showing one example of the conventional constructions.

[0040] Fig. 7 is an enlarged view of the section VII of Fig. 6.

[0041] Fig. 8(A) is a cross sectional view showing another example of the seal ring.

[0042] Fig. 8(B) is a cross sectional view showing another example of the seal ring.

[0043] Fig. 8(C) is a cross sectional view showing another example of the seal ring.

Detailed Description of the Preferred Embodiments

[0044] Fig. 4 shows a first embodiment of the present invention. Stationary bearing ring inner rings 2a, 2b are formed with first raceway or inner ring raceways 6 on their outer peripheral surface or first peripheral surface, respectively.

[0045] A stationary axle 3 (Fig. 1) is fitted into the inner rings 2a, 2b.

[0046] Disposed around the inner rings 2a, 2b is a hub 7 which is a rotatable bearing ring outer ring in a concentric relationship with the inner rings 2a, 2b. Second raceways or outer ring raceways 8 in double row are formed on the second peripheral surface or inner peripheral surface of the hub 7.

[0047] A plurality of rolling members or balls 9 are provided between the outer ring raceways 8 and the inner ring raceways 6 so as to rotatably support the hub 7 around the inner rings 2a, 2b.

[0048] Tapered rollers can be used instead of the balls 9 as the rolling members in the rolling bearing unit for use in heavy vehicles throughout the embodiments in the application.

[0049] The balls 9 between the outer and inner ring raceways in each row are rotatably held by a retainer or cage 20, respectively.

[0050] An annular groove 21 is formed on the outer peripheral surface of the inner rings 2a, 2b while an an-

nular projection 22 is formed on the inner peripheral surface of the retainer or cage 20.

[0051] The grooves 21 are engaged with the projections 22, so that the inner rings 2 are prevented from being separated before installation onto the axle 3, even if the coupling ring 1 (Fig. 1) in the prior art construction is omitted.

[0052] Fitted onto the axially inner end of the hub 7 is a seal ring 12a having a core metal 13a, so that the space 27 between the inner peripheral surface of the hub 7 and the outer peripheral surface of the inner rings 2a, 2b is closed at the axially inner opening portion.

[0053] The core metal 13a is formed in a generally annular shape and has a substantially J-shape in cross section.

[0054] The radially outer rim of the core metal 13a is bent axially outwards at right angles (leftward in Fig. 4) to form a cylindrical portion 18a which is fitted and fixed to the axially inner end of the hub 7.

[0055] The radially inner rim of the core metal 13a is slightly bent axially outwards to form a bent rim portion 24 the inner peripheral edge of which an elastic seal member 16 is fixed to, for example by fusion bonding.

[0056] The seal member 16 has a yoke-shaped inner peripheral edge portion where a pair of seal lips 25a, 25b are formed.

[0057] The seal lips 25a, 25b have their inner peripheral edge disposed in a sliding contact with the outer peripheral surface at the axially inner end of the inner ring 2b so as to sealingly close the opening portion of the rolling bearing unit on the axially inner end side.

[0058] The seal lip 25a closer to the opening has its outer peripheral surface retained by the support ring 26 so as to sufficiently obtain the sealing performance between the inner peripheral edge of the seal lip 25a and the outer peripheral surface of the inner ring 2b.

[0059] At the axially outer end of the hub 7, the seal ring 12b having a core metal 13b is fitted into the hub 7 so as to close the axially outer opening of the space 27. [0060] An annular tone wheel 14a is supported and fixed, e.g. by adhesive, on the axially inner side of the core metal 13a.

[0061] The tone wheel 14a is comprised of a multipole permanent magnet arranged in an annular shape. Specifically, S-poles and N-poles are alternately arranged in a circumferential direction with a uniform space therebetween.

[0062] The outer diameter D_{14a} of the tone wheel 14a is larger than the inner diameter R_7 of the opening portion of the hub 7 at its axially inner end $(D_{14a} > R_7)$.

[0063] The inner diameter R_{14a} of the tone wheel 14a is smaller than the inner diameter R_7 of the hub 7 (R_{14a} < R_7).

[0064] The rolling bearing unit having a tone wheel constructed as mentioned above in the present invention is used to rotatably support a vehicle wheel around the stationary axle 3 and to detect the rotating speed of the vehicle wheel fixed to the hub 7 in the same manner

as the prior art rolling bearing unit shown in Figs. 1 and 2. **[0065]** In particular, the width W_{14a} in a diameter direction of the tone wheel 14a can be sufficiently large in the rolling bearing unit of the present invention, regardless of the width W_{27} of the opening portion at the axially inner end of the space 27.

[0066] Accordingly, the magnetism strength of the tone wheel 14a made from the permanent magnet can be made larger to increase the density of the magnetic flux from the tone wheel 14a into the portion of the sensor 17, thereby increasing the output of the sensor 17. [0067] Fig. 5 shows a second embodiment of the present invention, where the inner rings 2a, 2b are the rotatable bearing ring while the outer ring 7 is the stationary outer bearing ring.

[0068] The outer ring 7 is securely held inside the bearing box (not shown).

[0069] The space 27 is provided between the inner peripheral surface of the outer ring 7 and the outer peripheral surfaces of the inner rings 2a, 2b and the axially inner opening is closed by the seal device comprising an annular seal ring 12c and annular support ring 15a, referred to as combination seal.

[0070] The seal ring 12c has a seal member 16 having seal lips 25a the tip end of which is slidingly engaged with the support ring 15a.

[0071] The tone wheel 14a is supported by and fixed to, e.g. through adhesive, the axially inner side surface of the annular portion 29 of the support ring 15a.

[0072] Accordingly, the width W_{14a} in a diameter direction of the tone wheel 14a can be sufficiently larger to increase the output of the sensor 17 (Figs. 1 and 2). [0073] In the embodiment shown in Fig. 5, the core metal 13c of the seal ring 12c is fitted into the outer ring 7, and the support ring 15a is fitted onto the inner ring 2b, where the tip edge 30 of the core metal 13c and the tip end 31 of the support ring 15a are positioned on the same plane.

[0074] When the core metal 13c is fitted to the outer ring 7 and the support ring 15a to the inner ring 2, the tip face of the pressing jig is abutted to the tip edges 30, 31 to simultaneously press the core metal 13c and support ring 15a.

[0075] Consequently, the position relationship between the core metal 13c and the support ring 15a can be precisely controlled as required.

[0076] The small gap 32 between the tip edge 30 of the core metal 13c and the tip edge 31 of the support ring 15a works as a labyrinth seal to prevent foreign materials such as dirty water from entering the portion where the seal lips 25a, 25b are slidingly provided.

[0077] In addition, since the tip edge 30 of the core metal 13c and the tip edge 31 of the support ring 15a are positioned on the same plane while the tone wheel 14a is covered by the cylindrical surface of the core metal 13c, the tone wheel 14a is prevented from being erroneously bumped by another article upon installation and transportation.

[0078] Therefore, the damage of the tone wheel 14a and/or displacement of installation position can be hardly caused.

[0079] The rolling bearing unit having a tone wheel in the present embodiments can provide a larger sensor output to increase the reliability in the detection of the rotating speed of the vehicle wheel.

[0080] Figs. 6 and 7 show another embodiment of the present invention.

[0081] The outer ring 7 is rotatable and has an inner peripheral surface on which rotatable outer ring raceways 8 are formed in rows.

[0082] The outer ring 7 has an outer peripheral surface portion at the axially outer end (left end in Fig. 6) from which flange 11 extends to mount a vehicle wheel around the outer ring 7.

[0083] Disposed on the inside of the outer ring 7 in a concentric relationship with the outer ring 7 are inner rings 2a, 2b which have an outer peripheral surface on which an inner ring raceway 6 is formed.

[0084] The inner rings 2a, 2b are stationary and securely fixed to the axle (not shown) supported by the suspension apparatus during use.

[0085] Disposed between the outer ring raceways 8 and the inner ring raceways 6 are a plurality of rolling members 9, respectively, to rotatably support the outer ring 7 around the inner rings 2a, 2b.

[0086] The inner ring 2b located on the widthwise inside (right side in Fig. 6) of a vehicle when installed in the vehicle, has one end formed with a shoulder portion 115 having an outer peripheral surface.

[0087] Disposed between the outer peripheral surface of the shoulder portion 115 and the inner peripheral surface at the axially inner end of the outer ring 7 (right end in Figs. 6 and 7) is a composite seal ring 116 to seal between the both peripheral surfaces.

[0088] Instead of the seal ring 116 as shown in Figs. 6 and 7, various seal rings 124a to 124c as shown in Figs. 8(A) to 8(C).

[0089] Securely fitted into the end of the outer ring 7 (right end in Figs. 6 and 7) is a tone wheel 117 which comprises a generally annular support ring 118 made from a metal plate through a bending process to have a L shape in cross section, and a main portion 119 made from a permanent magnet to alternately have S-poles and N-poles in a circumferential direction.

[0090] The support ring 118 comprises a cylindrical portion 120 and a circular ring portion 121. The cylindrical portion 120 is securely fitted onto the outer peripheral portion at the axially inner end of the outer ring 7.

[0091] The main portion 119 of the tone wheel 117 is fixed through adhesive etc. to the circular ring portion 121 on the opposite side face with reference to the composite seal ring 116 (on the right side face of the circular ring portion 121 in Figs. 6 and 7).

[0092] The inner diameter of the circular ring portion 121 is slightly larger than the outer diameter of the shoulder portion 115 of the inner ring 2b.

[0093] The radial gap 122 between the inner peripheral edge of the circular ring 121 and the outer peripheral surface of the shoulder portion 115 has a limited width W_{122} .

[0094] Since the circular ring portion 121 is located close to the composite seal ring 116, the width W_{123} of the axial gap between the circular ring portion 121 and the composite seal ring 116 is also small. Specifically, the width W_{122} of the radial gap 122 and the width W_{123} of the axial gap 123 are controlled in the range of 0.3 to 1.0 mm.

[0095] It will be noted that a labyrinth seal is formed in the radial and axial gaps 122, 123 defined by the inner peripheral edge and the axially outer side surface (left side surface in Figs. 6 and 7) of the tone wheel 117, the outer peripheral surface at the axially inner end (right end in Figs. 6 and 7) of the inner ring 2b and the composite seal ring 116 positioned close to each other.

[0096] The rolling bearing unit having a tone wheel in the present invention as mentioned above is used to have the inner rings fitted and fixed to an axle (not shown) supported by a suspension apparatus, while the free wheel of the vehicle is supported and fixed to a flange formed in the outer peripheral surface of the outer ring. Moreover, a stationary member such as the suspension apparatus or one part of axle etc., is provided to support a sensor (not shown) in condition of being opposed to a side face (right side in Fig. 6 and 7) of an annular member of the tone wheel. When the free wheel rotates, the sensor detects the alternately passing of the S-poles and N-poles, and the rotating speed of the outer ring rotated with the free wheel is detected.

[0097] Especially, in case of the rolling bearing unit having a tone wheel of the present invention, the freedom of planning the seal ring is large, because the tone wheel is independently provided to the composite seal ring or seal ring such as seal rings 124a to 124c etc. And, such as miniaturizing of the seal ring, miniaturizing of the rolling bearing unit having a tone wheel is possible. Moreover, a common seal ring can be used in the bearing unit in which the inner ring rotates and in the bearing unit in which the outer ring rotates and in the bearing unit in which the outer ring rotates. Moreover, because the tone wheel 117 forms a labyrinth seal outside the seal ring, the load of the seal ring is decreased due to the fact of preventing foreign substance from entering the rolling bearing unit. Accordingly, an inexpensive seal ring, although lower seal performance, can be

[0098] The rolling bearing unit having a tone wheel in the present invention is composed and operated as mentioned above. Accordingly, the effects and are obtained as follows.

The freedom of designing a seal ring is large, and miniaturizing of the rolling bearing unit having a tone wheel is possible.

② A common seal ring is used in a bearing unit

where the inner ring rotates and a bearing unit where the outer ring rotates. Moreover, the cost of the seal ring is decreased because the load of the seal ring is decreased due to the fact of preventing foreign substance from entering the rolling bearing unit.

Claims

1. A rolling bearing unit comprising:

a stationary bearing ring (2a, 2b) having a first peripheral surface on which a first raceway (6) is formed,

a rotatable bearing ring (7) having a second peripheral surface on which a second raceway (8) is formed to provide a space (27) with an opening between the first and second peripheral surfaces.

a plurality of rolling members (9) provided between the first and second raceways (6, 8),

a seal device comprising a generally annular seal ring 12a; 12c having an elastic seal member (16) and a core metal (13a; 13c) to reinforce the seal member (16), thereby closing the opening of the space (27) between the first and second peripheral surfaces, and

an annular tone wheel (14a) provided on one axial side of the seal device and having South and North poles alternately arranged in a circumferential direction,

the seal device having an annular part located outside of the opening of the space (27) to support the tone wheel (14a),

the tone wheel (14a) having an outer diameter (D_{14a}) which is larger than the inner diameter (R_7) at the opening of the radially outer one of the stationary and rotatable bearing rings (7), and an inner diameter (R_{14a}) which is smaller than the inner diameter (R_7) at the opening of the radially outer one of the stationary and rotatable bearing rings (7).

 A rolling bearing unit comprising a rotatable outer ring (7) having an inner peripheral surface on which an outer ring raceway (8) is formed,

> a stationary inner ring (2a, 2b) having an outer peripheral surface on which an inner ring raceway (6) is formed,

> a plurality of rolling members (9) provided between the outer (8) and inner (6) ring raceways, a seal ring (116) provided between the outer peripheral surface at one end of the inner ring (2b) and the inner peripheral surface at one end of the outer ring (7) to seal the space between the inner and outer peripheral surfaces, and

50

a tone wheel (117) having North and South poles arranged alternately in a circumferential direction and provided at one end of the outer ring (7) in a concentric relationship with the outer ring (7),

the tone wheel (117) made independent from the seal ring (116) and securely supported by the outer ring outside the seal ring (116), and the tone wheel (117) having an inner peripheral edge located close to the inner ring (26) at one end thereof to form a labyrinth seal (122).

 A rolling bearing unit comprising a rotatable outer ring (7) having an inner peripheral surface on which an outer ring raceway (8) is formed and an opening portion which is provided at one end thereof and has an inner diameter,

a stationary inner ring (2b) having an outer peripheral surface on which an inner ring raceway (6) is formed,

a plurality of rolling members (9) provided between the outer (8) and inner (6) ring raceways, a seal ring provided between the outer peripheral surface at one end of the inner ring (2b) and the inner peripheral surface at the one end of the outer ring (7) to seal the space between the inner and outer peripheral surfaces, and a tone wheel (14a) having North and South poles arranged alternately in a circumferential direction and provided at the one end of the outer ring (7) in a concentric relationship with the outer ring (7), and

the tone wheel (14a) securely supported by the outer ring (7), and formed in a disk shape so as to have a flat side face magnetized to provide the North and South poles, such that the flat side face has an outer diameter sized larger than the inner diameter of the opening portion at the one end of the outer ring (7), and an inner diameter sized smaller than the inner diameter of the opening portion of the outer ring (7).

4. A rolling bearing unit comprising a rotatable outer ring (7) having an outer peripheral surface and an inner peripheral surface formed with a raceway (8), a stationary inner ring (2b) having an outer peripheral surface formed with a raceway (6), a plurality of rolling members (9) provided between the raceway (8) of the outer ring (7) and the raceway (6) of the inner ring (2b) so as to rotatably support the outer (7) and inner (2b) rings, and an encoder unit comprising a cylindrical portion (18a) fitted onto the outer peripheral surface of the outer ring (7), a core metal (13a) having an inner periphery and a circular ring portion (24) with a side face located axially outside of one end of the outer ring (7), an encoder (14a) mounted to the side face of the circular ring

portion (24) and having a magnetism property changing with a uniform pitch in a circumferential direction, and a seal lip (25a, 25b) mounted to the inner periphery of the core metal (13a) in a sliding contact with the inner ring (2b).

Patentansprüche

Wälzlagereinheit, die folgende Komponenten aufweist:

einen stationären Lagerring (2a, 2b), der eine erste Umfangsfläche hat, auf der eine erste Laufbahn (6) gebildet wird,

einen drehbaren Lagerring (7), der eine zweite Umfangsfläche hat, auf der eine zweite Laufbahn (8) gebildet wird, um zwischen der ersten und zweiten Umfangsfläche einen Raum (27) mit einer Öffnung zu bilden,

eine Vielzahl von Wälzkörpern (9), die zwischen der ersten und zweiten Laufbahn (6, 8) vorhanden sind,

eine Dichtungsvorrichtung, die einen allgemein ringförmigen Dichtungsring (12a; 12c) umfaßt, der ein elastisches Dichtungselement (16) und ein Kernmetall (13a; 13c) zum Verstärken des Dichtungselements (16) hat, um dadurch die Öffnung des Raumes (27) zwischen der ersten und zweiten Umfangsfläche zu schließen, und ein ringförmiges Unterbrecherrad (14a), das auf einer Axialseite der Dichtungsvorrichtung vorhanden ist und Nord- und Südpole hat, die abwechselnd in einer Umfangsrichtung angeordnet sind.

wobei die Dichtungsvorrichtung ein ringförmiges Teil hat, das sich außerhalb der Öffnung des Raumes (27) befindet, um das Unterbrecherrad (14a) zu tragen,

wobei das Unterbrecherrad (14a) einen Außendurchmesser (D_{14a}), der größer als der Innendurchmesser (R_7) an der Öffnung der in Radialrichtung äußeren der Komponenten stationärer und drehbarer Lagerring (7) ist, und einen Innendurchmesser (R_{14a}) hat, der kleiner als der Innendurchmesser (R_7) an der Öffnung der in Radialrichtung äußeren der Komponenten stationärer und drehbarer Lagerring (7) ist.

 Wälzlagereinheit, die folgende Komponenten aufweist: einen drehbaren Außenring (7), der eine innere Umfangsfläche hat, auf der eine Außenringlaufbahn (8) gebildet wird,

> einen stationären Innenring (2a, 2b), der eine äußere Umfangsfläche hat, auf der eine Innenringlaufbahn (6) gebildet wird,

eine Vielzahl von Wälzkörpern (9), die zwi-

10

20

35

40

50

schen der Außen- (8) und Innenringlaufbahn (6) vorhanden sind,

einen Dichtungsring (116), der zwischen der äußeren Umfangsfläche an einem Ende des Innenrings (2b) und der inneren Umfangsfläche an einem Ende des Außenrings (7) vorhanden ist, um den Raum zwischen der inneren und äu-Beren Umfangsfläche abzudichten, und ein Unterbrecherrad (117), das Nord- und Südpole hat, die abwechselnd in einer Umfangsrichtung angeordnet sind, und das an einem Ende des Außenrings (7) in einem konzentrischen Verhältnis zum Außenring (7) bereitgestellt wird. wobei das Unterbrecherrad (117) vom Dichtungsring (116) unabhängig gemacht ist und sicher durch den Außenring außen von dem Dichtungsring (116) getragen wird, und wobei das Unterbrecherrad (117) eine Innenumfangskante hat, die sich dicht am Innenring (2b) an dessen einem Ende befindet, um eine

3. Wälzlagereinheit, die folgende Komponenten aufweist: einen drehbaren Außenring (7), der eine innere Umfangsfläche, auf der eine Außenringlaufbahn (8) gebildet wird, und einen Öffnungsabschnitt hat, der an dessen einem Ende vorhanden ist und einen Innendurchmesser hat,

Labyrinthdichtung (122) zu bilden.

einen stationären Innenring (2b), der eine äu-Bere Umfangsfläche hat, auf der eine Innenringlaufbahn (6) gebildet wird,

eine Vielzahl von Wälzkörpern (9), die zwischen der Außen- (8) und Innenringlaufbahn (6) vorhanden sind,

einen Dichtungsring, der zwischen der äußeren Umfangsfläche an einem Ende des Innenrings (2b) und der inneren Umfangsfläche an einem Ende des Außenrings (7) vorhanden ist, um den Raum zwischen der inneren und äußeren Umfangsfläche abzudichten, und

ein Unterbrecherrad (14a), das Nord- und Südpole hat, die abwechselnd in einer Umfangsrichtung angeordnet sind, und das an einem Ende des Außenrings (7) in einem konzentrischen Verhältnis zum Außenring (7) bereitgestellt wird, und

wobei das Unterbrecherrad (14a) sicher durch den Außenring (7) getragen und in einer Scheibenform ausgeführt wird, so daß es eine flache Seitenfläche hat, die magnetisiert ist, um die Nord- und Südpole bereitzustellen, derartig. daß die flache Seitenfläche einen Außendurchmesser, der größer als der Innendurchmesser 55 des Öffnungsabschnitts an dem einen Ende des Außenrings (7) bemessen ist, und einen Innendurchmesser hat, der kleiner als der Innendurchmesser des Öffnungsabschnitts des Au-Benrings (7) bemessen ist.

Wälzlagereinheit, die folgende Komponenten aufweist: einen drehbaren Außenring (7), der eine äu-Bere Umfangsfläche und eine innere Umfangsfläche hat, die mit einer Laufbahn (8) versehen ist, einen stationären Innenring (2b), der eine äußere Umfangsfläche hat, die mit einer Laufbahn (6) versehen ist, eine Vielzahl von Wälzkörpern (9), die zwischen der Laufbahn (8) des Außenrings (7) und der Laufbahn (6) des Innenrings (2b) vorhanden sind, um so den Außen- (7) und den Innenring (2b) drehbar zu tragen, und eine Codiereinheit, die ei-15 nen zylindrischen Abschnitt (18a), der auf der äu-Beren Umfangsfläche des Außenrings (7) angebracht ist, ein Kernmetall (13a), das einen Innenumfang und einen runden Ringabschnitt (24) mit einer flachen Seite hat, der axial außerhalb des einen Endes des Außenrings (7) angeordnet ist, eine Codiereinrichtung (14a), die an der Seitenfläche des runden Ringabschnitts (24) angebracht ist und Magnetismuseigenschaften hat, die sich mit gleichmä-Bigem Abstand in der Umfangsrichtung ändern, und eine Dichtungslippe (25a, 25b) umfaßt, die am Innenumfang des Kemmetalls (13a) im Gleitkontakt mit dem Innenring (2b) angebracht ist.

Revendications

1. Unité de palier à roulement comprenant:

une bague de palier stationnaire (2a, 2b) comportant une première surface périphérique sur laquelle est formé un premier chemin de roulement (6),

une bague de palier rotative (7) comportant une deuxième surface périphérique sur laquelle est formé un deuxième chemin de roulement (8) pour établir un espace (27) avec une ouverture entre les première et deuxième surfaces péri-

plusieurs éléments de roulement (9) agencés entre les premier et deuxième chemins de roulement (6, 8),

un dispositif de joint comprenant une bague d'étanchéité généralement annulaire (12a, 12c) comportant un élément de joint élastique (16) et une partie centrale métallique (13a, 13c) pour renforcer l'élément de joint (16), fermant ainsi l'ouverture de l'espace (27) entre les première et deuxième surfaces périphériques, et une roue émettrice annulaire (14a) agencée sur un côté axial du dispositif de joint et comportant des pôles sud et nord agencés alternativement dans une direction circonférentielle, le dispositif de joint comportant une partie an-

25

30

35

nulaire agencée à l'extérieur de l'ouverture de l'espace (27) pour supporter la roue émettrice (14a),

la roue émettrice (14a) ayant un diamètre extérieur (D_{14a}) supérieur au diamètre intérieur (R₇) au niveau de l'ouverture de la bague de palier radialement externe des bagues de palier stationnaire et rotative (7) et un diamètre intérieur (R_{14a}) inférieur au diamètre intérieur (R₇) au niveau de l'ouverture de la bague de palier radialement externe des bagues de palier stationnaire et rotative (7).

 Unité de palier à roulement comprenant une bague externe rotative (7) comportant une surface périphérique interne sur laquelle est agencé un chemin de roulement de la bague externe (8),

> une bague interne stationnaire (2a, 2b) comportant une surface périphérique externe sur ²⁰ laquelle est agencé un chemin de roulement de la bague interne (6),

plusieurs éléments de roulement (9) agencés entre les chemins de roulement de la bague exteme (8) et de la bague interne (6),

une bague d'étanchéité (116) agencée entre la surface périphérique externe au niveau d'une extrémité de la bague interne (2b) et la surface périphérique interne au niveau d'une extrémité de la bague externe (7) pour sceller l'espace entre les surfaces périphériques interne et externe, et

une roue émettrice (117) comportant des pôles nord et sud agencés alternativement dans une direction circonférentielle et concentriques au niveau d'une extrémité de la bague externe (7) à la bague externe (7),

la roue émettrice (117) étant indépendante de la bague d'étanchéité (116) et étant supportée fermement par la bague externe en-dehors de la bague d'étanchéité (116), et

la roue émettrice (117) comportant un bord périphérique interne agencé près de la bague interne (26) au niveau d'une extrémité correspondante, pour former un joint à labyrinthe (122).

3. Unité de palier à roulement comprenant une bague externe rotative (7) comportant une surface périphérique interne sur laquelle est agencé un chemin de roulement de la bague externe (8) et une partie d'ouverture, agencée au niveau d'une extrémité correspondante et ayant un diamètre intérieur,

> une bague interne stationnaire (2b) comportant une surface périphérique externe sur laquelle est agencé un chemin de roulement de la baque interne (6),

plusieurs éléments de roulement (9) agencés entre les chemins de roulement de la bague externe (8) et de la bague interne (6),

une bague d'étanchéité agencée entre la surface périphérique externe au niveau d'une extrémité de la bague interne (2b) et la surface périphérique interne au niveau d'une extrémité de la bague externe (7) pour sceller l'espace entre les surfaces périphériques interne et externe, et

une roue émettrice (14a) comportant des pôles nord et sud agencés alternativement dans une direction circonférentielle et concentriques au niveau d'une extrémité de la bague externe (7) à la bague externe (7),

la roue émettrice (14a) étant supportée fermement par la bague externe (7) et ayant une forme en disque, de sorte à comporter une face latérale plate magnétisée pour établir des pôles nord et sud, la face latérale plate ayant ainsi un diamètre extérieur supérieur au diamètre intérieur de la partie d'ouverture au niveau d'une extrémité de la bague externe (7) et un diamètre intérieur inférieur au diamètre intérieur de la partie d'ouverture de la bague externe (7).

Unité de palier à roulement comprenant une bague externe rotative (7) comportant une surface périphérique externe et une surface périphérique interne comportant un chemin de roulement (8), une bague interne stationnaire (2b) comportant une surface périphérique externe sur laquelle est agencé un chemin de roulement (6), plusieurs éléments de roulement (9) agencés entre le chemin de roulement (8) de la bague externe (7) et le chemin de roulement (6) de la bague interne (2b), de sorte à supporter par rotation les bagues externe (7) et interne (26), et une unité de codage comprenant une partie cylindrique (18a) ajustée sur la surface périphérique externe de la bague externe (7), une partie centrale métallique (13a) comportant une périphérie interne et une partie annulaire circulaire (24) avec une face latérale, agencée axialement à l'extérieur d'une extrémité de la bague externe (7), un codeur (14a) monté sur la face latérale de la partie annulaire circulaire (24) et comportant une propriété de magnétisme changeant avec un pas uniforme dans une direction circonférentielle, et une lèvre de joint (25a, 25b) montée sur la périphérie interne de la partie centrale métallique (13a), en contact par glissement avec la bague interne (2b).

FIG.1

FIG.2

FIG.3

FIG.4

FIG.5

FIG.6

FIG.7

. >

FIG.8A

FIG.8B FIG.8C 120 120 109a 109a <u>118</u> <u>118</u> 121 121 119 /119 124b-124c-123 122 122 ₋₁₁₅