实验 2: ALU 与寄存器堆实验

计23 万振南

一、仿真波形

我的仿真可以分为三个部分: POKE + 随机 20 条计算指令 + PEEK

1. POKE

图1: 使用 POKE 指令为寄存器赋随机初值

可以看到寄存器值正确

2. 随机 20 条计算指令

图2: 第2条计算指令 (alu_op=1, 加法)

可以看到寄存器 0x19 的值 0x30c7 和寄存器 0x14 的值 0x14df 被读出到 alu_a=0x30c7 和 alu_b=0x14df, 加法后得到结果 alu_y=0x45a6, 写入寄存器 0x17

图3: 第5条计算指令 (alu_op=7, 逻辑左移)

可以看到寄存器 0x1d 的值 0x79ea 和寄存器 0x0a 的值 0xb306 被读出到 alu_a=0x79ea 和 alu_b=0xb306,逻辑左移后得到结果 alu_y=0x7a80,写入寄存器 0x08

0x79ea=0b0111100111101010 0xb306=0b1011001100000110 取后四位,即0b0110=6,逻辑左移6位 0b0111101010000000=0x7a80

图4: 读取各寄存器的值

可以看到寄存器值读取正确

二、云平台实验

本次云平台实验可以分为三个部分: POKE + 2条计算指令 + PEEK

1. POKE

图5:将 0xb306=0b1011001100000110,写入寄存器 0x0a=01010

指令: 0b1011001100000110_0000_01010_0001_010

图6: 将 0x14df=0b0001010011011111, 写入寄存器 0x14=10100

指令: 0b0001010011011111_0000_10100_0001_010

图7:将 0x30c7=0b0011000011000111,写入寄存器 0x19=11001

指令: 0b0011000011000111_0000_11001_0001_010

图8: 将 0x79ea=0b0111100111101010, 写入寄存器 0x1d=0b11101

指令: 0b0111100111101010_0000_11101_0001_010

2.2条计算指令

图9: 对源寄存器 0x14=0b10100 与 0x19=0b11001 中的数据进行加法运算,并将结果写入目标寄存器 0x17=0b10111 中

指令: 0b0000000_11001_10100_000_10111_0001_001

计算:

0x30c7 = 0b0011000011000111 + 0x14df = 0b0001010011011111 = 0x45a6 = 0b0100010110100110

图10: 对源寄存器 0x1d=0b11101, 逻辑左移 0x0a=0b01010 的后四位,并将结果写入目标寄存器 0x08=0b01000 中

指令: 0b0000000_01010_11101_000_01000_0111_001

计算:

0x79ea=0b0111100111101010 0xb306=0b1011001100000110 取后四位,即0b0110=6,逻辑左移6位 0b0111101010000000=0x7a80

3. PEEK

图11: 读出寄存器 0x17=0b10111 中的数据

结果: 0b0100010110100110, 正确

图12: 读出寄存器 0x08=0b01000 中的数据

结果: 0b0111101010000000, 正确

三、思考题

ALU 支持乘法和除法运算,而这些运算均不能在一个周期内完成

需要增加一个状态 MULTI/DIV,专门用于乘法和除法,并且增加一个完成信号 done,由该状态控制,计算乘法除法时设为 0,计算完成后设为 1。只有当 done 的值为 1 时,才可以进入到 WRITE_REG 状态。新的状态转移图如下图所示:

图13:新的状态转移图