Problem BCombinations, Once Again

Input: Standard Input
Output: Standard Output
Time Limit: 2 Seconds

Given \mathbf{n} objects you'd have to tell how many different groups can be chosen if \mathbf{r} objects are taken at a time.

Input

Input consists of 100 test cases. Each test case begins with two integers n (0 < n <= 50), m (0 <= m <= n). The next line will contain the labels (numbers in the range 1 to n) of the n objects you are to choose from. Two objects with the same label are considered equivalent. Then in the last line for that test case, you'd have m values for r. There will be a single space separating two consecutive numbers in a line. Input is terminated by a test case where n=0, you must not process this test case.

Output

For each test case, print the test case number. And for each query number \mathbf{r} , print the number of different groups that can be formed if \mathbf{r} objects are taken from the given \mathbf{n} objects. You can assume that for all input cases, the output will always fit in a **64-bit** unsigned integer and ($\mathbf{0} <= \mathbf{r} <= \mathbf{n}$).

Sample Input Output for Sample Input

	Carpar ioi Campio impar
5 2	Case 1:
1 2 3 4 5	10
2 1	5
4 1	Case 2:
1 2 3 4	6
2	
0 0	

Problemsetter: Monirul Hasan, Member of Elite Problemsetters' Panel