3.2 For the circuit in Fig. 3.51, obtain v_1 and v_2 .

Figure 3.51

For Prob. 3.2.

3.6 Solve for V_1 in the circuit of Fig. 3.55 using nodal analysis.

Figure 3.55

For Prob. 3.6.

3.22 Determine v_1 and v_2 in the circuit of Fig. 3.71.

Figure 3.71 For Prob. 3.22.

3.36 Use mesh analysis to obtain i_1 , i_2 , and i_3 in the circuit in Fig. 3.84.

Figure 3.84 For Prob. 3.36.

3.38 Apply mesh analysis to the circuit in Fig. 3.85 and obtain I_o .

Figure 3.85

ML

For Prob. 3.38.

3.58 Find i_1 , i_2 , and i_3 in the circuit of Fig. 3.103.

Figure 3.103

For Prob. 3.58.

3.68 Using Fig. 3.112, design a problem, to solve for V_o , to help other students better understand nodal analysis. Try your best to come up with values to make the calculations easier.

Figure 3.112 For Prob. 3.68.

3.72 By inspection, write the mesh-current equations for the circuit in Fig. 3.116.

Figure 3.116 For Prob. 3.72.

3.75 Use *PSpice* or *MultiSim* to solve Prob. 3.58.