MATH602 Real Analysis II

Pingbang Hu

September 6, 2022

Abstract

This is a graduate level functional analysis taught by Joseph Conlon. The prerequisites include linear algebra, complex analysis and also real analysis. We'll use Peter Lax[Lax02] and Reed-Simon[RS80] as textbooks.

This course is taken in Fall 2022, and the date on the covering page is the last updated time.

Contents

	Introduction	2
	1.1 Linear Space	2
	1.2 Quotient Space	2
	1.3 Normed Spaces	3
	Banach Spaces 2.1 Completion of Normed Space to Banach Space	7
\mathbf{A}	Additional Proofs	10

Chapter 1

Introduction

Lecture 1: Introduction

We first briefly review different kinds of vector spaces.

30 Aug. 14:30

1.1 Linear Space

Definition 1.1.1 (Linear vector space). A set with operations of addition and multiplication (by a scalar) is called a *linear vector space*.

Example. Denote the multiplicative scalar by λ , then

- $\lambda \in \mathbb{R} \Rightarrow \text{real vector space}$.
- $\lambda \in \mathbb{C} \Rightarrow$ complex vector space

Lemma 1.1.1. Given E a linear vector space, if $v, w \in E$, $\lambda, \mu \in \mathbb{R}$ (or \mathbb{C}), then $\lambda v + \mu w \in E$.

we also have usual rules of associativity and commutativity.

Example. \mathbb{R}^n a *n* dimensional linear vector space, \mathbb{C}^n a *n* dimensional complex linear vector space.

We concentrate on ∞ dimensional linear vector space.

Example. Let K is a compact Hausdorff space, then

$$E = \{ f \colon K \to \mathbb{R} \mid f(\cdot) \text{ is continuous} \}.$$

We then see that E is an ∞ dimensional real linear vector space.

1.2 Quotient Space

Observe that a linear vector space can have many subspaces. Say E is a linear vector space, and $E_1 \subset E$ where E_1 is a proper subspace, i.e., $E_1 \neq E$.

Definition 1.2.1 (Quotient Space). The *quotient space* E / E_1 is the set of equivalence classes of vectors in E where equivalence is given by $x \sim y$ if $x - y \in E_1$. Additionally, denote [x] as the equivalence class of $x \in E$, i.e., $[x] = x + E_1$.

Note that E/E_1 is a linear vector space since if $x_1 + x_2 \in E$, $[x_1] + [x_2] = [x_1 + x_2]$, and also, $\lambda[x] = [\lambda x]$ for $\lambda \in \mathbb{R}$ or \mathbb{C} , i.e., $v, w \in E/E_1$, $\lambda, \mu \in \mathbb{R}$ or \mathbb{C} implies $\lambda v + \mu w \in E$.

Definition 1.2.2 (Codimension). If E / E_1 has finite dimension, then the dimension of E / E_1 is called the *cdimension* of E_1 in E.

Example. There exists the case that $\dim(E) = \infty$, $\dim(E_1) < \infty$ where $\dim(E/E_1) < \infty$.

Proof. Let $E = \{f : K \to \mathbb{R} \mid f(\cdot) \text{ continuous}\}$, and $E_1 = \{f \in E : f(k_1) = 0\}$ where $k_1 \in K$ is fixed. We see that the dimension of E / E_1 is exactly 1 since E / E_1 is the set of constant functions.

Theorem 1.2.1. If E is finite dimensional, then $\operatorname{codim}(E_1) + \dim(E_1) = \dim(E)$

Definition 1.2.3 (Linear operator). A map $T \colon E \to F$ between 2 linear spaces is a linear operator if it preserves the properties of addition and multiplication by a scalar, i.e., $T(\lambda v + \mu w) = \lambda T(v) + \mu T(w)$ for $v, w \in E$ and $\lambda, \mu \in \mathbb{R}$ or \mathbb{C} .

Definition. Given a inear operator $T \colon E \to F$ we have the following.

Definition 1.2.4 (Kernel). The *kernel* of T is the subspace $ker(T) = \{x \in E \mid Tx = 0\}$.

Definition 1.2.5 (Image). The *image* of T is the subspace $Im(T) = \{Tx \in F \mid x \in E\}$.

1.3 Normed Spaces

We review some basic notions.

Definition 1.3.1 (Norm). Let E be a linear vector space. A norm $\|\cdot\|: E \to \mathbb{R}$ on E is a function from E to \mathbb{R} with the properties:

- (a) $||x|| \ge 0$ and $||x|| = 0 \Leftrightarrow x = 0$.
- (b) $\|\lambda x\| = |\lambda| \|x\|, \lambda \in \mathbb{R}$ or \mathbb{C} .
- (c) $||x + y|| \le ||x|| + ||y||$.

Notation (Dilation). We say that the second condition is the *dilation* property.

Definition 1.3.2 (Normed vector space). A linear vector space E equipped with a norm $\|\cdot\|$ is called a normed vector space.

Remark (Induced metric space). A normed vector space E induces a metric space with metric d(x,y) = ||x-y||, where the metric has properties

- (a) $d(x,y) \ge 0$. Also, d(x,x) = 0 and d(x,y) implies x = y.
- (b) d(x, y) = d(y, x).
- (c) $d(x,z) \le d(x,y) + d(y,z)$.

Example (Bounded sequences ℓ_{∞}). Let ℓ_{∞} be the space of bounded sequences $x=(x_1,x_2,\ldots)$ with $x_i \in \mathbb{R}$ for $i=1,2,\ldots$ Then we define $\|x\|=\|x\|_{\infty}=\sup_{i\geq 1}|x_i|$.

Example (Absolutely summable sequences ℓ_1). Let ℓ_1 be the space of absolutely summable sequences $x = (x_1, x_2, \ldots)$ and $\sum_{i=1}^{\infty} |x_i| < \infty$. Then we define $||x|| = ||x||_1 = \sum_{i=1}^{\infty} |x_i| < \infty$.

Example (Continuous functions C(k)). The space C(k) of continuous functions $f: K \to \mathbb{R}$ where K is compact Hausdorff. Then we define $||f|| = ||f||_{\infty} = \sup_{x \in K} |f(x)|$.

1.3.1 Geometry of Normed Spaces

Definition 1.3.3 (Ball). A (closed) *ball* centered at a point $x_0 \in E$ with radius r > 0 is the set $B(x_0, r) = \{x \in E \mid ||x - x_0|| \le r\}.$

Definition 1.3.4 (Sphere). The *sphere* centered at x_0 with radius r > 0 is the set $S(x_0, r) = \{x \in E \mid ||x - x_0|| = r\}$.

Remark. We see that $S(x_0, r)$ is the **boundary** of $B(x_0, r)$, i.e., $S(x_0, r) = \partial B(x_0, r)$.

Note (Nonequivalency in infinite dimensional spaces). We know that in finite dimensional, all norms are equivalent, which is not true for infinite dimensional vector spaces.

This has something to do with the geometry of balls.

Explicitly, balls can have different geometries depending on the properties of the norms. We see that an $\|\cdot\|_{\infty}$ can have multiple supporting hyperplane at the corner, while for an $\|\cdot\|_2$ can have only one at each point.

Also, unit balls for $\|\cdot\|_1$ is also a **square**, where we have

$$B(0,1) = \{x = (x_1, x_2, \ldots) \mid -1 < y_{\epsilon} < 1 \forall \epsilon \}$$

such that $y_{\epsilon} = \sum_{i=1}^{\infty} \epsilon_i x_i$, $\epsilon_i = \pm 1$ and $\epsilon = (\epsilon_1, \epsilon_2, ...)$.

We see that different norms give different geometry, but they have important common features, most notably, convexity properties.

Definition 1.3.5 (Convex set). Given E a linear vector space, a set $K \subset E$ is convex if $x, y \in K$ and $0 \le \lambda \le 1$, we have $\lambda x + (1 - \lambda)y \in K$.

Definition 1.3.6 (Convex function). Given E a linear vector space, a function $f: E \to \mathbb{R}$ is called *convex* if

$$f(\lambda x + (1 - \lambda)y) \le \lambda f(x) + (1 - \lambda)f(y)$$

for $x, y \in E$, $0 \le \lambda \le 1$.

Remark. If $f: E \to \mathbb{R}$ is a convex function, then for any $M \in \mathbb{R}$ the set $\{x \in E \mid f(x) \leq M\}$ is convex.

The upshot is that norms are convex, and the unit balls are convex as well.

Lecture 2: Banach Spaces and Completion

Let's first see a proposition.

01 Sep. 14:30

Proposition 1.3.1. Let $\{E, \|\cdot\|\}$ be a normed linear space. Then the norm is convex and continuous.

Proof. Let $f: E \to \mathbb{R}$ be f(x) = ||x||. Then $f(x) - f(y) = ||x|| - ||y|| \le ||x - y||$, which implies $|f(x) - f(y)| \le ||x - y||$ for $x, y \in E$, i.e., f is Lipschitz continuous. For convexity, let $0 < \lambda < 1$,

we have

$$f(\lambda x + (1 - \lambda)y) = \|\lambda x + (1 - \lambda)y\| \le \|\lambda x\| + \|(1 - \lambda)y\| = \lambda \|x\| + (1 - \lambda)\|y\| = \lambda f(x) + (1 - \lambda)f(y).$$

Note. Note that $f(\cdot)$ is continuous implies the closed ball

$$B(x_0, r) = \{x \in E \mid ||x - x_0|| \le r\} = \{x \in E \mid f(x - x_0) \le r\}$$

is closed in topology of E. Also, $f(\cdot)$ is convex implies $B(x_0, r)$ is convex.

Remark. If $f: E \to \mathbb{R}$ is convex, then the sets $\{x \in E \mid f(x) \leq M\}$ is also convex. However, it's possible to have non-convex functions f such that all sets $\{x \in E \mid f(x) \leq M\}$ are convex.

Example. Take $f(x) = |x|^p$ for $x \in \mathbb{R}$ and p > 0. We see that f is convex if p > 1, and non-convex if p < 1. The sets $\{x \in \mathbb{R} \mid f(x) \leq M\}$ all convex since it's independent of p.

Lemma 1.3.1. Suppose $x \mapsto ||x||$ satisfies

- (a) $||x|| \ge 0$ and $||x|| = 0 \Leftrightarrow x = 0$.
- (b) $\|\lambda x\| = |\lambda| \|x\|, \lambda \in \mathbb{R}$ or \mathbb{C} .
- (c) The unit ball B(0,1) is convex.

Then f(x) = ||x|| satisfies the triangle inequality $||x + y|| \le ||x|| + ||y||$.

Proof. We see that if the third condition is true, the for $u, v \in B(0,1)$ and $0 < \lambda < 1$, we have $\lambda u + (1 - \lambda)v \in B(0,1)$. Let $x, y \in E$, and

$$\lambda = \frac{\|x\|}{\|x\| + \|y\|} \Rightarrow 1 - \lambda = \frac{\|y\|}{\|x\| + \|y\|}.$$

By letting $u=x/\left\|x\right\|,\,v=y/\left\|y\right\|$ we see that

$$\lambda u + (1 - \lambda)v = \frac{\|x\|}{\|x\| + \|y\|} \frac{x}{\|x\|} + \frac{\|y\|}{\|x\| + \|y\|} \frac{y}{\|y\|} \in B(0, 1) \Rightarrow \left\| \frac{x}{\|x\| + \|y\|} + \frac{y}{\|x\| + \|y\|} \right\| \le 1.$$

From the second condition, it follows that $||x+y|| \le ||x|| + ||y||$, which is the triangle inequality.

Remark. If $x \mapsto ||x||$ satisfies the first two condition and is a convex, then it satisfies the triangle inequality.

Proof. Since
$$\frac{1}{2} \|x + y\| = \left\| \frac{x}{2} + \frac{y}{2} \right\| \le \frac{1}{2} \|x\| + \frac{1}{2} \|y\|$$
.

Now, given a quotient space E/E_1 , the question is can we try to define a norm?

Problem 1.3.1. On E / E_1 , is $||[x]|| := \inf_{y \in E_1} ||x + y||$ a norm?

Answer. We see that if
$$x \in \overline{E}_1 \setminus E_1$$
, then $||[x]|| = 0$ but $[x] \neq 0 \in E / E_1$.

Note. Notice the difference from finite dimensional situation. All finite dimensional spaces E_1 are closed but not in general if E_1 has ∞ dimensions.

Example. Let $\ell_1(\mathbb{R})$ be the sequence of x_n for $n \geq 1$ in \mathbb{R} such that $\sum_{i=1}^{\infty} |x_i| \leq \infty$. Define

$$||x||_1 \coloneqq \sum_{i=1}^{\infty} |x_i|,$$

and let E_1 be all sequences with finite number of the x_n are nonzero. We see that $\overline{E}_1 = \ell_1(\mathbb{R})$ is infinite dimensional.

Proposition 1.3.2. Let $\{E, \|\cdot\|\}$ be a normed space and $E_1 \subseteq E, E_1$ is closed. Then

$$\left\|\cdot\right\|: {^E/_{E_1}} \rightarrow \mathbb{R}, \quad \left\|[x]\right\| = \inf_{y \in E_1} \left\|x + y\right\|$$

is a norm on E/E_1 .

Proof. If ||[x]|| = 0, then $\inf_{y \in E_1} ||x - y|| = 0$, which implies $x \in E_1$ since E_1 is closed, so [x] = 0. Also, since

$$\|\lambda[x]\| = \inf_{y \in E_1} \|\lambda x + y\| = \inf_{z \in E_1} \|\lambda x + \lambda z\| = |\lambda| \inf_{z \in E_1} \|x + z\| = |\lambda| \, \|[x]\| \,,$$

the dilation property is satisfied. Finally, for triangle inequality, we have

$$||[x] + [y]|| = \inf_{x_1, y_1 \in E} ||x + y + x_1 + y_1|| \le \inf_{x_1 \in E_1} ||x + x_1|| + \inf_{y_1 \in E_1} ||y + y_1|| = ||[x]|| + ||[y]||.$$

Remark. This shows that the only obstacle for this kind of norm being an actual norm is the closeness of E_1 .

Chapter 2

Banach Spaces

Definition 2.0.1 (Banach space). A linear normed space is a *Banach space* if it's complete, i.e., every Cauchy sequence converges.

Note. If $x_n \in E$, $n \ge 1$ is a sequence with property such that $\lim_{m \to \infty} \sup_{n \ge m} ||x_n - x_m|| > 0$, then $\exists x_\infty \in E$ such that $\lim_{n \to \infty} ||x_n - x_m|| = 0$.

Example. The spaces ℓ_1 , ℓ_{∞} and C(K) are Banach spaces.

We want to give a different criterion for showing $\{E, \|\cdot\|\}$ is Banach. Let E be a linear normed space and $\{x_{\ell} \mid \ell \geq 1\}$ a sequence in E.

Definition 2.0.2 (Absolutely summable). A sequence is absolutely summable if $\sum_{i=1}^{\infty} ||x_i|| < \infty$.

Theorem 2.0.1 (Criterion for completeness). A normed space $\{E, \|\cdot\|\}$ is a Banach space if and only if every series in E converges.

Proof. We need to prove two directions.

(\Rightarrow) Suppose E is a Banach space and $\{x_k \mid x \geq 1\}$ an absolutely summable series. Set $s_n = \sum_{k=1}^n x_k$, $n \geq 1$, we want to show s_n is Cauchy, and if this is the case, completeness of E implies $\exists s_{\infty}$ and $\lim_{n \to \infty} \|s_n - s_{\infty}\| = 0$. Let n > m, we see that

$$||s_n - s_m|| = \left\| \sum_{k=m+1}^n x_k \right\| \le \sum_{k=m+1}^n ||x_k|| \le \sum_{k=m+1}^\infty ||x_k||.$$

Observe that $\lim_{m\to\infty}\sum_{k=m+1}^{\infty}\|x_k\|=0$, we see that the sequence $\{s_n\}$ is Cauchy.

(\Leftarrow) Conversely, suppose E is **not** complete. Then there exists a Cauchy sequence $\{x_n \mid n \geq 1\}$ which does not converge. Furthermore, no subsequence of $\{x_n \mid n \geq 1\}$ converges. We now construct an absolutely summable series which does not converge.

Define $n(1) \ge 1$ such that $||x_n - x_{n(1)}|| \le \frac{1}{2}$ if $n \ge n(1)$, similarly, let n(2) > n(1) be such that $||x_n - x_{n(2)}|| \le \frac{1}{2^2}$ if n > n(2). In all, we have $n(1) < n(2) < n(3) < \dots$ such that $||x_n - x_{n(k)}|| \le \frac{1}{2^k}$ if n > n(k). Define $w_j := x_{n(j+1)} - x_{n(j)}$ for $j = 1, 2, \dots$ We see that

$$x_{n(m)} = x_{n(1)} + \sum_{j=1}^{m} w_j$$

for $m=1,2,\ldots,$ and $\left\{x_{n(m)}\right\}$ does not converge, hence so does the series $\sum_{j=1}^{\infty}w_{j}$. However, $\sum_{j=1}^{\infty}\|w_{j}\|\leq\sum_{j=1}^{\infty}\frac{1}{2^{j}}=1$, which implies $\left\{w_{j}\right\}$ is absolutely summable.

2.1 Completion of Normed Space to Banach Space

Theorem 2.1.1. Suppose E is a normed space. Then there exists a Banach space \hat{E} called a completion of E with the following properties:

- (a) There exists a linear map $i \colon E \to \hat{E}$ such that $\|ix\| = \|x\|$.
- (b) Im(i) is dense in \hat{E} , and \hat{E} is the smallest Banach space containing image of E.

Lecture 3

07 Sep. 14:30

^aOtherwise, the whole sequence converges by the fact that it's Cauchy.

^aThis is called an *isometric embedding* of E into \hat{E} .

Appendix

Appendix A Additional Proofs

Bibliography

- [Lax02] P.D. Lax. Functional Analysis. Pure and Applied Mathematics: A Wiley Series of Texts, Monographs and Tracts. Wiley, 2002. ISBN: 9780471556046. URL: https://books.google.com/books?id=18VqDwAAQBAJ.
- [RS80] M. Reed and B. Simon. *I: Functional Analysis*. Methods of Modern Mathematical Physics. Elsevier Science, 1980. ISBN: 9780125850506. URL: https://books.google.com/books?id=hInvAAAAMAAJ.