Money Demand in the US

Elizabeth Goodwin

4/19/2022

```
data <- read.csv('mpyr.csv') %>% mutate(
    m = LOGM1,
    p = LOGP,
    y = LOGY,
    mp = m - p,
    r = R,
    year = seq(1900, 1989)
    ) %>% select(year, m, p, y, r, mp) %>% tsibble(index=year)
```

```
data %>% select(-r) %>% pivot_longer(c(m, p, y, mp), names_to = 'type', values_to = 'value') %>%
    ggplot() + geom_line(aes(x=year, y=value, linetype = type, color = type))
```


Figure 1: Plot of m, mp, p, and y

```
data %>% select(year, r) %>% autoplot(.vars = r)
```

As seen in Table 1 We can reject the null hypothesis of Y having a unit root, but cannot reject the null for r or mp.

As seen in Figure 3, You can reject the hypothesis of no cointegrating vectors. After doing it on all assumptions, having one seems the most likely.

The implied CI vector is 7.578, -7.39, 0.8517. The coefficients are significant. The income elasticity is doesn't really seem significantly different. The sign is positive for income and negative for interest rate.

Figure 2: Plot of r

Table 1: Augmented Dickey-fuller results

Variable	t-test	5pct	Prob
r	-1.2889	-2.895	0.6317
У	-3.7999	-3.462	0.0211
mp	-1.4939	-3.463	0.8244

Figure 3: Johansen Test Result

Dependent Variable: MP
Method: Least Squares
Date: 04/21/22 Time: 11:31
Sample: 1900 1989
Included observations: 90
HAC standard errors & covariance (Bartlett kernel, Newey-West fixed bandwidth = 4.0000)

Variable	Coefficient	Std. Error	t-Statistic	Prob.
С	-0.773709	0.054624	-14.16422	0.0000
Y	0.941838	0.026188	35.96450	0.0000
R	-0.083223	0.011107	-7.492807	0.0000
R-squared	0.964151	Mean depend	lent var	0.976712
Adjusted R-squared	0.963327	S.D. dependent var		0.693053
S.E. of regression	0.132721	Akaike info criterion		-1.168376
Sum squared resid	1.532484	Schwarz criterion		-1.085049
Log likelihood	55.57691	Hannan-Quin	n criter.	-1.134774
F-statistic	1169.934	Durbin-Watso	on stat	0.556614
Prob(F-statistic)	0.000000	Wald F-statistic		717.0321
Prob(Wald F-statistic)	0.000000			

Figure 4: OLS Result

Wald Test:
Equation: Untitled

-1 + C(2)

	Value	df	Probability		
t-statistic	-2.220959	87	0.0290		
F-statistic	4.932659	(1, 87)	0.0290		
Chi-square 4.932659		1	0.0264		
Null Hypothesis: C(2)=1 Null Hypothesis Summany:					

Restrictions are linear in coefficients.

Figure 5: Wald Result

-0.058162

0.026188

Dependent Variable: MP
Method: Dynamic Least Squares (DOLS)
Date: 04/21/22 Time: 11:39
Sample (adjusted): 1903 1987
Included observations: 85 after adjustments
Cointegrating equation deterministics: C
Static OLS leads and lags specification
HAC standard errors & covariance (Bartlett kernel, Newey-West fixed bandwidth = 4.0000)

Variable	Coefficient	Std. Error	t-Statistic	Prob.
Y	0.970315	0.025821	37.57890	0.0000
R	-0.096408	0.009942	-9.697103	0.0000
D(R(-1))	0.052410	0.009931	5.277154	0.0000
D(R(-2))	0.011398	0.009987	1.141289	0.2574
D(R(1))	-0.010239	0.009172	-1.116371	0.2679
D(R(2))	-0.041875	0.006813	-6.146005	0.0000
D(Y(-1))	-0.292429	0.256981	-1.137939	0.2588
D(Y(-2))	-0.192079	0.239981	-0.800392	0.4260
D(Y(1))	0.076399	0.234639	0.325601	0.7456
D(Y(2))	0.226457	0.304996	0.742494	0.4601
C	-0.770409	0.063535	-12.12578	0.0000
R-squared	0.975348	Mean depend	ient var	1.000538
Adjusted R-squared	0.972016	S.D. depende	ent var	0.660435
S.E. of regression	0.110480	Sum squared	l resid	0.903230

Figure 6: DOLS Result

As seen in Figures 4-6:

Yes, the elasticity is significantly different than one in OLS. Close to 1, but significantly different. With DOLS, this is not the case, and a coefficient of 1 is within error bars.

 Chow Breakpoint Test: 1946

 Null Hypothesis: No breaks at specified breakpoints

 Equation Sample: 1900 1989

 F-statistic
 48.19815
 Prob. F(3,84)
 0.0000

 Log likelihood ratio
 90.10194
 Prob. Chi-Square(3)
 0.0000

Figure 7: Chow breakpoint Result

Chow Forecast Test
Equation: UNTITLED
Test predictions for observations from 1946 to 1989
Specification: MP C Y R

F-statistic Likelihood ratio	Value 2.642691 117.8508	df (44, 43) 44	Probability 0.0009 0.0000
F-test summary:			
	Sum of Sq.	df	Mean Squares
Test SSR	1.118763	44	0.025426
Restricted SSR	1.532484	87	0.017615
Unrestricted SSR	0.413721	43	0.009621
LR test summary:			
	Value		_
Restricted LogL	55.57691		_
Unrestricted LogL	114.5023		

Unrestricted log likelihood adjusts test equation results to account for observations in forecast sample

Unrestricted Test Equation: Dependent Variable: MP Method: Least Squares Date: 04/21/22 Time: 11:47 Sample: 1900 1945 Included observations: 46

HAC standard errors & covariance (Bartlett kernel, Newey-West fixed bandwidth = 4.0000)

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C Y R	-0.777537 0.929365 -0.083729	0.132405 0.077245 0.011619	-5.872419 12.03132 -7.206415	0.0000 0.0000 0.0000
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic) Prob(Wald F-statistic)	0.960664 0.958835 0.098089 0.413721 43.08654 525.0781 0.000000 0.000000	Mean depen S.D. depend Akaike info c Schwarz crit Hannan-Qui Durbin-Wats Wald F-stati	lent var :riterion erion nn criter. son stat	0.394018 0.483453 -1.742893 -1.623634 -1.698218 0.684334 165.5635

Figure 8: Chow forecast Result

As seen in Figure 7 and 8, Yes, there is evidence for a structural break at 1946.

After generating velocity, there is one cointegrating vector. Hasn't changed, tells you that v and r are cointegrated. Looking at Figure 10, there seems to be evidence that there is a structural break around that time.

Yes, there is evidence for a structural break at 1946. The money demand in the US seems to be stable. Income elasticity appears to be if not 1, pretty close to one at the very least. More accurate models (ie, DOLS) have it being within error bars of 1. The interest semielasticity appears to be around -.1, or slightly smaller. Either way within margin of error of -.10.

Date: 04/21/22 Time: 11:51 Sample (adjusted): 1902 1989 Included observations: 88 after adjustments Trend assumption: Linear deterministic trend

Series: V R Lags interval (in first differences): 1 to 1

Unrestricted Cointegration Rank Test (Trace)

Hypothesized No. of CE(s)	Eigenvalue	Trace Statistic	0.05 Critical Value	Prob.**
None *	0.276999	28.83084	15.49471	0.0003
At most 1	0.003274	0.288557	3.841465	0.5911

Trace test indicates 1 cointegrating eqn(s) at the 0.05 level * denotes rejection of the hypothesis at the 0.05 level **MacKinnon-Haug-Michelis (1999) p-values

Figure 9: Johansen V R Result

Figure 10: V Graph

Chow Breakpoint Test: 1946

Null Hypothesis: No breaks at specified breakpoints

Equation Sample: 1900 1989

Figure 11: V Chow BP

Chow Forecast Test Equation: UNTITLED

Test predictions for observations from 1946 to 1989

Specification: V C R

F-statistic Likelihood ratio	Value 2.895471 122.3833	df (44, 44) 44	Probability 0.0003 0.0000
F-test summary:			
	Sum of Sq.	df	Mean Squares
Test SSR	1.254168	44	0.028504
Restricted SSR	1.687316	88	0.019174
Unrestricted SSR	0.433148	44	0.009844
LR test summary:			
	Value		_
Restricted LogL	51.24570		
Unrestricted LogL	112.4374		

Unrestricted log likelihood adjusts test equation results to account for observations in forecast sample

Unrestricted Test Equation: Dependent Variable: V Method: Least Squares Date: 04/21/22 Time: 12:05 Sample: 1900 1945 Included observations: 46

HAC standard errors & covariance (Bartlett kernel, Newey-West fixed bandwidth = 4.0000)

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C R	-0.920534 -0.075053	0.040005 0.010027	-23.01051 -7.484914	0.0000 0.0000
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic) Prob(Wald F-statistic)	0.691211 0.684193 0.099218 0.433148 42.03111 98.49202 0.000000 0.000000	Mean depen S.D. depend Akaike info c Schwarz crit Hannan-Qui Durbin-Wats Wald F-stati	ent var riterion erion nn criter. son stat	-1.189777 0.176555 -1.740483 -1.660977 -1.710700 0.642767 56.02393

Figure 12: V Chow Forecast

Figure 13: Recursive Estimates