ECE2810J

Data Structures and Algorithms

Non-Comparison Sort

Learning Objective:

 Understand three non-comparison sorts, counting sort, bucket sort, and radix sort

Outline

- ► Non-comparison Sort
 - ► Counting Sort
 - ► Bucket Sort
 - ► Radix Sort

Counting Sort: A Simple Version

- Sort an array A of integers in the range [0, k], where k is known.
- 1. Allocate an array count[k+1].
- 2. Scan array A. For i=1 to N, increment count[A[i]].
- 3. Scan array count. For i=0 to k, print i for count[i] times.
- ▶ Time complexity: O(N + k).
- The algorithm can be converted to sort integers in some other known range [a, b].
 - ▶ Minus each number by a, converting the range to [0, b a].

Example

2 5 3 0 2 3 0 3

Pseudo code:

Sort an array A of integers in the range [0, k], where k is known.

- 1. Allocate an array count[k+1].
- Scan array A. For i=1 to N, increment count[A[i]].
- 3. Scan array count. For i=0 to k, print
 i for count[i] times.

Counting Sort: A General Version

- In the previous version, we print i for count[i] times
 - Simple but only works when sorting integer keys alone
 - How to sort items when there is "additional" information with each key? Furthermore, how to guarantee the stability?
- ► A general version:
- 1. Allocate an array C[k+1]
- 2. Scan array A. For i=1 to N, increment C[A[i]]
- 3. For i=1 to k, C[i]=C[i-1]+C[i]
 - ▶ C[i] now contains number of items less than or equal to i
- 4. For i=N downto 1, put A[i] in new position C[A[i]] and decrement C[A[i]]

- 1. Allocate an array C[k+1].
- 2. Scan array A. For i=1 to N, increment C[A[i]].
- 3. For i=1 to k, C[i]=C[i-1]+C[i]
- 4. For i=N downto 1, put A[i] in new position C[A[i]] and decrement C[A[i]].

0	1	2	3	4	5
2	0	2	3	0	1

- Allocate an array C[k+1].
- Scan array A. For i=1 to N, increment C[A[i]].
- 3. For i=1 to k, C[i]=C[i-1]+C[i]
- 4. For i=N downto 1, put A[i] in new position C[A[i]] and decrement C[A[i]].

Why putting 3 at location 7 is correct?

- 1. Allocate an array C[k+1].
- 2. Scan array A. For i=1 to N, increment C[A[i]].
- 3. For i=1 to k, C[i]=
 C[i-1]+C[i]
- 4. For i=N downto 1, put A[i] in new position C[A[i]] and decrement C[A[i]].

- 1. Allocate an array C[k+1].
- 2. Scan array A. For i=1 to N, increment C[A[i]].
- 3. For i=1 to k, C[i]= C[i-1]+C[i]
- 4. For i=N downto 1, put A[i] in new position C[A[i]] and decrement C[A[i]].

- Allocate an array C[k+1].
- 2. Scan array A. For i=1 to N, increment C[A[i]].
- 3. For i=1 to k, C[i]= C[i-1]+C[i]
- 4. For i=N downto 1, put A[i] in new position C[A[i]] and decrement C[A[i]].

- Allocate an array C[k+1].
- Scan array A. For i=1 to N, increment C[A[i]].
- 3. For i=1 to k, C[i]=
 C[i-1]+C[i]
- 4. For i=N downto 1, put A[i] in new position C[A[i]] and decrement C[A[i]].

- Allocate an array C[k+1].
- 2. Scan array A. For i=1 to N, increment C[A[i]].
- 3. For i=1 to k, C[i]= C[i-1]+C[i]
- 4. For i=N downto 1, put A[i] in new position C[A[i]] and decrement C[A[i]].

- Allocate an array C[k+1].
- 2. Scan array A. For i=1 to N, increment C[A[i]].
- 3. For i=1 to k, C[i]= C[i-1]+C[i]
- 4. For i=N downto 1, put A[i] in new position C[A[i]] and decrement C[A[i]].

- Allocate an array C[k+1].
- Scan array A. For i=1 to N, increment C[A[i]].
- For i=1 to k, C[i]=C[i-1]+C[i]
- For i=N downto 1, put A[i] in new position C[A[i]] and decrement C[A[i]].

Done!

Is counting sort stable? Yes!

Code Exercise: Counting Sort (~10 mins)

- Goal: Implement your own Counting sort
- Code can be found in:
 - Canvas -> Non Comparison Sort -> Code Exercise -> Counting Sort

Outline

- ► Non-comparison Sort
 - **▶** Counting Sort
 - ► Bucket Sort
 - ► Radix Sort

Bucket Sort

- Instead of simple integer, each key can be a complicated record, such as a real value.
- Then instead of incrementing the count of each bucket, distribute the records by their keys into appropriate buckets.
- Algorithm:
- 1. Set up an array of initially empty "buckets".
- 2. Scatter: Go over the original array, putting each object in its bucket.
- 3. Sort each non-empty bucket by a comparison sort.
- 4. Gather: Visit the buckets in order and put all elements back into the original array.

Bucket Sort

Example

- Time complexity
 - Suppose we are sorting cN items and we divide the entire range into N buckets.
 - Assume that the items are uniformly distributed in the entire range.
 - ▶ The average case time complexity is O(N).

Code Exercise: Bucket Sort (~10 mins)

- Goal: Implement your own Bucket sort
- Code can be found in:
 - Canvas -> Non Comparison Sort -> Code Exercise -> Bucket Sort

Outline

- ► Non-comparison Sort
 - **▶** Counting Sort
 - ► Bucket Sort
 - ► Radix Sort

Radix Sort

- Radix sort sorts integers by looking at one digit at a time.
- Procedure: Given an array of integers, from the least significant bit (LSB) to the most significant bit (MSB), repeatedly do stable bucket sort according to the current bit.
- ► For sorting base-b numbers, bucket sort needs b buckets.
 - ► For example, for sorting decimal numbers, bucket sort needs 10 buckets.

Radix Sort Example

- Sort 815, 906, 127, 913, 098, 632, 278.
- ▶ Bucket sort 815, 906, 127, 913, 098, 632, 278 according to the least significant bit:

0	1	2	3	4	5	6	7	8	9
		63 <mark>2</mark>	91 <u>3</u>		81 <mark>5</mark>	90 <u>6</u>	12 <mark>7</mark>	09 <mark>8</mark> 27 <mark>8</mark>	

Bucket sort 632, 913, 815, 906, 127, 098, 278 according to the second bit.

Radix Sort Example

Bucket sort 632, 913, 815, 906, 127, 098, 278 according to the second bit.

0	1	2	3	4	5	6	7	8	9
9 <mark>0</mark> 6	9 <u>1</u> 3	1 <u>2</u> 7	6 <mark>3</mark> 2				2 <mark>7</mark> 8		098
	8 <u>1</u> 5								

Bucket sort 906, 913, 815, 127, 632, 278, 098 according to the most significant bit.

Radix Sort Example

▶ Bucket sort 906, 913, 815, 127, 632, 278, 998 according to the most significant bit.

0	1	2	3	4	5	6	7	8	9
<u>0</u> 98	<u>1</u> 27	2 78				<u>6</u> 32		<u>8</u> 15	<u>9</u> 06
									<u>9</u> 13

The final sorted order is: 098, 127, 278, 632, 815, 906, 913.

Radix Sort: Correctness

- Claim: after bucket sorting the i-th LSB, the numbers are sorted according to their last i digits
- Proof by mathematical induction
- Base case is obviously true
- Inductive step
 - ▶ Assume that according to the last i digits, order is $a_1 < \cdots < a_n$
 - For two adjacent numbers a_k and a_{k+1} if they are not in the same bucket, they are sorted according to their last i^{th} digits
 - If they are in the same bucket, then $a_k < a_{k+1}$ for the last (i-1) bits. They are also sorted due to stability of bucket sort

Radix Sort Time Complexity

- Let k be the maximum number of digits in the keys and N be the number of keys.
- \blacktriangleright We need to repeat bucket sort k times.
 - ▶ Time complexity for the bucket sort is O(N).
- ▶ The total time complexity is O(kN).

Radix Sort

- Radix sort can be applied to sort keys that are built on positional notation.
 - ▶ Positional notation: all positions uses the same set of symbols, but different positions have different weight.
 - Decimal representation and binary representation are examples of positional notation.
 - Strings can also be viewed as a type of positional notation. Thus, radix sort can be used to sort strings.
- We can also apply radix sort to sort records that contain multiple keys.
 - ► For example, sort records (year, month, day).

Code Exercise: Radix Sort (~10 mins)

- Goal: Implement your own Radix sort
- Code can be found in:
 - Canvas -> Non Comparison Sort -> Code Exercise -> Radix Sort

Code Exercise: Sorting in A Yelp-like Android APP

Code Exercise: LeetCode Problem 164

That is All for today!

Any questions?

Today's 281 One More Thing

