

UNIVERSITY OF COLOMBO, SRI LANKA

UCSC UCSC

UNIVERSITY OF COLOMBO SCHOOL OF COMPUTING

BACHELOR OF SCIENCE IN COMPUTER SCIENCE

First Year Examination - Semester II - 2018

SCS 1110 - Discrete Mathematics (R1)

TWO (2) HOURS

Important Instructions to candidates:

- 1. The medium of instruction and questions is **English**.
- 2. If a page or a part of this question paper is not printed, please inform the supervisor immediately.
- Note that questions appear on both sides of the paper.If a page is not printed, please inform the supervisor immediately.
- 4. Write your index number on each and every page of the Answer paper.
- 5. This paper has **04** questions and **04** pages.
- 6. Answer ALL questions. All questions carry equal marks (25 marks).
- 7. Any electronic device capable of storing and retrieving text including electronic dictionaries and mobile phones are **not allowed**.
- 8. Non-Programmable or Programmable calculators are not allowed.

Question 1

(a). Construct a truth table for the compound proposition $(p \land q) \rightarrow (p \rightarrow q)$.

[4 Marks]

(b). State the converse, inverse, and contrapositive, of the conditional statement "If it is a sunny summer day, then I will go to the beach".

[3 Marks]

- (c). Let p be the proposition "You drive over 70 km per hour" and q be the proposition "You get a speeding ticket". Write the following propositions using p, q and logical connectives:
 - i. You will get a speeding ticket if you drive over 70 km per hour.
 - ii. You drive over 70 km per hour, but you do not get a speeding ticket.
 - iii. You do not drive over 70 km per hour.
 - iv. If you do not drive over 70 km per hour, then you will not get a speeding ticket.
 - v. Whenever you get a speeding ticket, you are driving over 70 km per hour.

[5 Marks]

- (d). Let L(x, y) be the predicate "x loves y," where the domain for both x and y consists of all students at the UCSC. Express each of these statements in terms of L(x, y), quantifiers, and logical connectives:
 - i. Everybody loves Nimal.
 - ii. Nobody loves Nimal.
 - iii. Nobody loves everybody.
 - iv. Everybody loves somebody.
 - v. There is somebody whom no one loves.

[5 Marks]

(e). Let C(x) and F(x,y) be predicates "x has a computer "and "x and y are friends" respectively, where domain for both x and y consists of all students at the UCSC. Translate the proposition $\forall x (C(x) \lor \exists y (C(y) \land F(x,y)))$ into English.

[4 Marks]

(f). Find the disjunctive normal form of the formula $(\neg p \lor \neg q) \to (p \leftrightarrow \neg q)$.

[4 Marks]

Question 2

(a). Test the validity of the following argument:

Anyone performs well is either intelligent or a good actor.

If someone is intelligent, then he/she can count from 1 to 10.

Nimal performs well.

Nimal cannot count from 1 to 10.

Therefore, not everyone is both intelligent and a good actor.

[10 Marks]

- (b). Prove or disprove the following statements:
 - i. If n is an integer and n^2 is odd, then n is odd.
 - ii. If x is a non-zero real number, then $x^2 + \frac{1}{x^2} \ge 2$.
 - iii. If x is a real number, then x^2 is a positive real number.

[3x5=15 Marks]

Question 3

(a). Let $A = \{0, 2, 4, 6, 8, 10\}$, $B = \{0, 1, 2, 3, 4, 5\}$, and $C = \{0, 3, 6, 9\}$ be three sets. What are

- i. $A \cup B \cup C$;
- ii. $A \cap B \cap C$;
- iii. $A \cap (B \cup C)$;
- iv. A B; and
- v. $A \times C$.

[10 Marks]

(b). Let A, B, and C be three sets. Show that

- i. $(\overline{A \cap B}) = \overline{A} \cup \overline{B}$; and
- ii. $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$.

[9 Marks]

(c). Let f and g be two functions from the set of real numbers ((\mathbb{R}) to itself defined respectively by $f(x) = x^2 + 1$ and g(x) = x + 2 for all $x \in \mathbb{R}$. Find the composition of functions $f \circ g$, and $g \circ f$.

[6 Marks]

Question 4

- (a). Let $A = \{1, 2, 3, 12, 15\}$, and R be a binary relation defined on A by $R = \{(a, b) \mid a \text{ divides } b\}$.
 - i. Show that R is a partial order relation. That is; show that R is reflexive, antisymmetric, and transitive. [6 Marks]
 - ii. Draw the corresponding Hasse diagram for R.

[4 Marks]

iii. Find the least element and greatest element if they exist.

[2 Marks]

(b). What is meant by a relation defined on a set A is an equivalence relation?

[3 Marks]

i. Let R be a relation defined on the set of integers (\mathbb{Z}) by x R y if and only if $5 \mid (x - y)$. Show that R is an equivalence relation.

[6 Marks]

ii. Find the equivalence classes of 2 and 13 with respect to the relation R.

[4 Marks]