Performance modeling for Computer systems (Assignement 1)

5 mks

- ① Consider $Y = \sum_{i=1}^{N} X_i$ where X_i are iid random variables and N is an independent non negative integer valued random variable. Let $M_X(t)$ and $M_N(t)$ denote the moment generating functions for X and N respectively. Obtain the MGF $M_Y(t)$ in terms of that of X and N.
- 2. Obtain the second moment of Poisson distribution and Geometric distribution.
- **3.** Consider an $M/G/\infty$ system. Find the distribution (pmf or cdf) of X(t) where X(t) denotes the number of jobs jobs present in the system at time t and where the service time distribution follows 1) Exponential distribution with parameter μ 2) Uniform distribution over interval [0,1].
- 4. Show that the Binomial process has independent and stationary increments.
- **5**. Consider a sequence $\{X_i\}$ of i.id exponential random variables with parameter λ . Define $S_n = \sum_{i=1}^n X_i$. Derive the pdf of S_n and obtain its mean and variance.
- **6**. Prove the splitting property of the Poisson process.
- 7. Prove the merging property of the Poisson process.
- **8**. For a Poisson process N(t) derive the expression for P(N(s) = k | N(t) = n) where s < t.