

Reporte de Practica No. 1.3 Nombre de la Practica: EJERCICIOS 1

Alumno: Angel Amaya

Zumaya

Dr. Eduardo Cornejo

Velázquez

Introducción

En el reporte se desarrollan ejercicios prácticos utilizando **álgebra relacional** y su implementación en **SQL con MySQL**, aplicados a las tablas *Employee* y *Reward*. El objetivo es reforzar los conceptos teóricos y la práctica de consultas básicas, creación e inserción de datos, y manipulación de cadenas.

2. Marco teórico

☐ Álgebra Relacional

- Definición: modelo teórico de operaciones sobre relaciones (proyección, selección, unión, producto cartesiano, etc.).
- Ejemplo: π nombre, apellido (Empleado).

□ SQL (Structured Query Language)

- Lenguaje estándar para manejo de bases de datos relacionales.
- Sentencias DDL (CREATE, ALTER, DROP) y DML (INSERT, SELECT, UPDATE, DELETE).

☐ MySQL

- Sistema de gestión de bases de datos relacional muy utilizado.
- Compatible con SQL estándar, soporta consultas, funciones de cadenas, agregados, etc.

☐ Herramientas utilizadas

- MySQL Server.
- MySQL Workbench para ejecutar consultas y mostrar resultados.

3. Metodología de diseño e implementación

Las herramientas que se utilizó en esta práctica fue el Sistema Gestor de Bases de Datos (SGBD) MySQL Workbench, en el cual ya hemos estado familiarizados y vamos a realizar el uso de algebra relacional.

4. Desarrollo (MySQL)

EJERCICIOS.

1. Escribe la sintaxis para crear la tabla "Employee".

2. Escribe la sintaxis para insertar 7 registros (de la imagen) a la tabla "Employee".

3. Escribe la sintaxis para crear la tabla "Reward".

```
CREATE TABLE Reward (
Employee_id INT,
Date_reward DATE,
Amount DECIMAL(10,2),
FOREIGN KEY (Employee_id) REFERENCES Employee(id)

);

Employee_id Date_reward Amount
```

4. Escribe la sintaxis para insertar 4 registros (en la imagen) a la tabla "Reward".

```
INSERT INTO Reward VALUES(1,'2019-05-11',1000), (3, '2022-01-20', 1500), (5, '2022-03-10', 1200), (7, '2021-07-05', 800);
```

	Employee_id	Date_reward	Amount
•	1	2019-05-11	1000.00
	3	2022-01-20	1500.00
	5	2022-03-10	1200.00
	7	2021-07-05	800.00

5. Obtener todos los empleados.

6. Obtener el primer nombre y apellido de todos los empleados.

7. Obtener todos los valores de la columna "First_name" usando el alias "Nombre de empleado".

8. Obtener todos los valores de la columna "Last_name" en minúsculas.

9. Obtener todos los valores de la columna "Last_name" en mayúsculas. SELECT upper(Last_name) FROM Employee; 30 • 31 < Export: Wrap Cell Conten upper(Last_name) DOE SMITH JOHNSON DAVIS BROWN WILSON MILLER 10. Obtener los nombre únicos de la columna "Departament". SELECT DISTINCT Department FROM Employee; 32 Export: W Result Grid Filter Rows: Department HR Π Finance 11. Obtener los primeros 4 caracteres de todos los valores de la columna "First_name". 32 • SELECT SUBSTRING(First_name, 1, 4) FROM Employee; 33 34 Export: Wrap Cell Content: IA SUBSTRING(First_name, 1, 4) Jhon Jane Mich Emil Will Soph Dani

12. Obtener la posición de la letra "h" en el nombre del empleado con First_name = "Jhon".

13. Obtener todos los valores de la columna "First_name" después de remover los espacios en blanco de la derecha.

14. Obtener todos los valores de la columna "First_name" después de remover los espacios en blanco de la izquierda.

5. Conclusiones

Los ejercicios permitieron aplicar de manera práctica el álgebra relacional utilizando SQL en MySQL. Se comprobó cómo las operaciones de proyección y selección en álgebra relacional se traducen directamente en consultas SQL mediante SELECT y WHERE. Además, se reforzó el uso de funciones de cadenas, alias y operadores.

Bibliografía

☐ El manual de MySQL: https://dev.mysql.com/doc/
□ El libro: Elmasri, R. & Navathe, S. (2015). <i>Fundamentals of Database Systems</i> Pearson.
□ Silberschatz, A., Korth, H., & Sudarshan, S. (2006). <i>Database System Concepts</i> . McGraw-Hill.