EA-513 - Circuitos Elétricos I - Turma W Prova Sub - 23/06/2008

- 1. Prova individual sem consulta. Permitido uso de calculadora pessoal (não emprestar).
- 2. Necessário devolver a folha de questões junto com a prova.
- 3. Informações complementares: $tg11.31^{\circ} = 0.2$, $tg18.19^{\circ} = 0.33$, $tg24.77^{\circ} = 0.46$, $tg26.56^{\circ} = 0.5$, $tg40.06^{\circ} = 0.857$, $tg45^{\circ} = 1$, $cos18.19^{\circ} = 0.95$, $cos24.77^{\circ} = 0.91$, $cos40.6^{\circ} = 0.76$.

Questão 1

Considere o circuito mostrado na figura 1. A chave ficou fechada em A por um longo tempo e em t=0, é chaveada para B. Assuma $R1=R2=20\Omega$, $R3=R4=80\Omega$, L1=3H, L2=1H, $C=\frac{1}{8}F$, $v_g=40V$. (0.5) a) Determine $v(0^-)$, $i_1(0^-)$ e $i_2(0^-)$. (0.5) b) Determine v(t), $t\geq 0$. (0.5) c) Determine $i_1(t)$, $t\geq 0$. (0.5) d) Determine a energia dissipada no resistor R3 em $t\in [0,0.1]$.

Questão 2

Considere o circuito mostrado na figura 2. Assuma $R1 = R3 = 2K\Omega$.

- (1.0) a) Determine o valor de R2 tal que a fonte I veja o circuito à direita do terminal (A,B) como sendo um resistor de $4K\Omega$.
- (1.0) b) Substitua tudo, exceto a resistência R1, pelo seu circuito equivalente Thévenin em função de I e R2.

Questão 3

Considere o circuito mostrado na figura 3. A chave ficou fechada em A por um longo tempo e em t=0, é chaveada para B. Assuma $R1=2\Omega$, $R2=2\Omega$, L=4H, $C=\frac{1}{4}F$, $v_{g1}(t)=4$ V e $v_{g2}(t)=8$ V.

- (1.0) a) Determine a equação diferencial que descreve a dinâmica de $i(t), t \geq 0$.
- (1.0) b) Ache a solução do ítem a), i(t), $t \ge 0$.
- (0.5) c) Escreva as equações de estado associados ao circuito em questão, na forma $\dot{x}(t) = Ax(t) + Bu(t); x(0); y(t) = Cx(t)$.

Questão 4

Considere o circuito da figura 4 com $R1 = R2 = 6\Omega$, $C = \frac{1}{18}$ F, L1 = L2 = 2 H e $v_g = 6\cos 3t$ V.

- (1.0) a) Determine a potência média entregue pela fonte para o circuito.
- \bullet (0.5) b) Ache a potência média absorvida pela impedância formada pelo resistor R1 e o capacitor C.
- (0.5) c) Determine a potência aparente entregue pela fonte ao circuito.
- (0.5) d) Determine a potência complexa entregue pela fonte ao circuito.
- (1.0) e) Ache o valor do elemento que deve ser colocado em paralelo com a fonte para tornar o fator de potência visto pela fonte igual a 0.95 adiantado.

Figure 1: Circuito da questão 1.

Figure 2: Circuito da questão 2.

Figure 3: Circuito da questão 3.

Figure 4: Circuito da questão 4.