Homework 7

Write a .Rmd file to answer these questions, knitting it to .html along the way. Start by pasting this outline to help the grader find your answers:

```
(Your Name Here)

## 1. Skin wounds

## 1a.

## 1b.

## 1c.

## 1d.

## 2. Test and power

## 2a.

## 2b.

## 2c.
```

1. Biologists studying the healing of skin wounds measured the rate at which new cells closed a cut made in the skin of an anesthetized newt. Here are data from a random sample of 18 newts, measured in micrometers (millionths of a meter) per hour:

```
29, 27, 34, 40, 22, 28, 14, 35, 26, 35, 12, 30, 23, 18, 11, 22, 23, 33
```

- (a) Create a QQ plot of the data. Do you think it is reasonable to assume that the population distribution is normal? Explain your answer. (There isn't a unique "right" answer.)
- (b) Regardless of your answer to (a), assume the population distribution is normal and use that assumption to create a 90% CI for μ , the population mean rate.
- (c) Consider a test of $H_0: \mu = 25$ vs. $H_A: \mu \neq 25$ using significance level 0.10 (not the usual 0.05). Based on your 90% interval and no new calculations, say whether you would reject H_0 .
- (d) Test whether these data are strong evidence that the population mean rate is significantly greater than 25 at level $\alpha = .05$. (Note that you found a 90% confidence interval, not a 95% interval, and the interval was two-sided, but this test is one-sided, so the interval isn't directly useful for deciding this test.) Use a p-value to decide the test.
- (e) Suppose the problem statement included the addition, "Prior experience in the lab indicates that the population standard deviation is close to $\sigma = 8$ (micrometers per hour)." This would call for which changes to your confidence interval calculation? Write down the letters of all that are correct.
 - i. Replace \bar{x} with $\frac{\bar{x}}{n}$.
 - ii. Replace $t_{17,.05}$ with $z_{.05} = 1.645$.

- iii. Replace \sqrt{n} with n.
- iv. Replace s (calculated from the data) with $\sigma = 8$.
- v. Replace s (calculated from the data) with $\frac{\sigma}{\sqrt{n}} = \frac{8}{\sqrt{18}}$.
- 2. A random sample of size n=10 is taken from a large population. Let μ be the unknown population mean. A test is planned of $H_0: \mu=12$ vs. $H_A: \mu \neq 12$ using $\alpha=0.1$. A QQ plot indicates it it is reasonable to assume a normal population. From the sample, $\bar{x}=14.2$ and s=4.88.
 - (a) Since the data leave it plausible that the population is normal, and the population standard deviation σ is unknown, a t-test is appropriate. Compute the p-value of the test. Do you reject or not reject H_0 ?
 - (b) Based on the test (and without calculating the interval), say whether you expect a 90% confidence interval to include 12.
 - (c) Using s=4.88 as our best guess of σ (that is, pretending we know $\sigma=4.88$), compute the power of a future test of $H_0: \mu=12$ vs. $H_A: \mu\neq 12$ if the true population mean is $\mu_A=15$.