TD Tuning logique

Stéphane Lopes

Exercice 1 Soit la base de données suivante :

2

1

1

Instructor status rank ssn1 Assoc. Prof. 1 2 Prof. 2 3 Assist. 1 2 4 Assist.

Prof.

Prof.

Assoc. Prof.

5

6

7

a	me.			
	TeachesIn			
	ssn	dnum	course	year
	1	1	1	85
	1	6	1	94
	2	2	1	92
	3	2	3	98
	4	3	1	98
	5	1	2	75
	6	6	2	88

Department			
dnumber	dname	$_{ m mgr}$	
1	Biochemistry	5	
2	Computer Sce	2	
3	${ m Geophysics}$	2	
4	Medical center	11	
5	$\operatorname{Admission}$	12	
6	$\operatorname{Genetic}$	6	
7	Electrical Engineering	7	

\mathbf{Course}			
cnumber	cnumber cname		
1	Programming Languages	1	
1	Programming Languages	2	
1	Programming Languages	7	
1	Programming Languages	3	
2	Cellular Neurobiology	1	
2	Cellular Neurobiology	6	
3	Advanced Topics in DB	2	
4	Chemical Principles	1	
4	Chemical Principles	3	

et l'ensemble des colonnes de jointure :

 $\mathcal{W} = \{Instructor[ssn] \bowtie TeachesIn[ssn], Department[dnumber] \bowtie TeachesIn[dnum], \\ Instructor[ssn] \bowtie Department[mgr], TeachesIn[course] \bowtie Course[cnumber], \\ Department[dnumber] \bowtie Course[offering-dept]\}$

- 1. Donner la navigation logique correspondant à cet ensemble.
- 2. Donner les couples candidats à tester.
- 3. Ecrire la requête SQL permettant de tester une dépendance d'inclusion.
- 4. Donner les dépendances d'inclusion correspondantes.
- 5. Commenter ces résultats et proposer, si nécessaire, une restructuration de la BD.

Exercice 2

Soit la base de données suivante :

r				
	Α	В	С	D
	1	Х	3	11.0
	1	Х	3	12.0
	2	Υ	4	11.0
	1	Х	3	13.0

9	S			
	Е	F	G	Н
Ì	1	Χ	3	11.0
Ì	2	Υ	9	12.0
Ì	4	Z	6	14.0
ĺ	2	W	4	13.0

- 1. Calculer les DI unaires.
- 2. Appliquer l'algorithme par niveau pour extraire les DI de taille supérieure.