Weighted Average of Human Motion Sequences for Improving Rehabilitation Assessment

9th Workshop on Advanced Analytics and Learning on Temporal Data (AALTD), ECML/PKDD 2024

Ali Ismail-Fawaz¹, Maxime Devanne¹, Stefano Berretti², Jonathan Weber¹ and Germain Forestier^{1,3}

> ¹IRIMAS, Université Haute-Alsace, Mulhouse, France ²MICC, University of Florence, Florence, Italy ³DSAI, Monash University, Melbourne Australia

> > November 10, 2024

Presentation Content

Time Series Averaging is a popular domain in machine learning, it can be used for: Time Series Clustering [1], Data Augmentation [2,3], Improving Nearest Neighbour classifier [4], etc.

- [1] Petitjean, François et al. "A global averaging method for dynamic time warping, with applications to clustering."
 Pattern recognition 2011.
- [2] Ismail Fawaz, Hassan, et al. "Data augmentation using synthetic data for time series classification with deep residual networks." AALTD -ECML/PKDD 2018.
- [3] Forestier, Germain, et al. "Generating synthetic time series to augment sparse datasets." IEEE international conference on data mining (ICDM) 2017.
- [4] Petitjean, François, et al. "Dynamic time warping averaging of time series allows faster and more accurate classification." IEEE international conference on data mining (ICDM) 2014.

Time Series Averaging is a popular domain in machine learning, it can be used for: Time Series Clustering [1], Data Augmentation [2,3], Improving Nearest Neighbour classifier [4], etc.

- [1] Petitjean, François et al. "A global averaging method for dynamic time warping, with applications to clustering." Pattern recognition 2011.
- [2] Ismail Fawaz, Hassan, et al. "Data augmentation using synthetic data for time series classification with deep residual networks." AALTD -ECML/PKDD 2018.
- [3] Forestier, Germain, et al. "Generating synthetic time series to augment sparse datasets." IEEE international conference on data mining (ICDM) 2017.
- [4] Petitjean, François, et al. "Dynamic time warping averaging of time series allows faster and more accurate classification." IEEE international conference on data mining (ICDM) 2014.

Time Series Averaging is a popular domain in machine learning, it can be used for: Time Series Clustering [1], Data Augmentation [2,3], Improving Nearest Neighbour classifier [4], etc.

- [1] Petitjean, François et al. "A global averaging method for dynamic time warping, with applications to clustering." Pattern recognition 2011.
- [2] Ismail Fawaz, Hassan, et al. "Data augmentation using synthetic data for time series classification with deep residual networks." AALTD -ECML/PKDD 2018.
- [3] Forestier, Germain, et al. "Generating synthetic time series to augment sparse datasets." IEEE international conference on data mining (ICDM) 2017.
- [4] Petitjean, François, et al. "Dynamic time warping averaging of time series allows faster and more accurate classification." IEEE international conference on data mining (ICDM) 2014.

Two Input Time Series

- [1] Müller, Meinard. "Dynamic time warping." Information retrieval for music and motion 2007.
- [3] Zhao, Jiaping, and Laurent Itti. "shapeDTW: Shape dynamic time warping." Pattern Recognition 2018.

Müller, Meinard. "Dynamic time warping." Information retrieval for music and motion 2007.

- [1] Müller, Meinard. "Dynamic time warping." Information retrieval for music and motion 2007.
- [3] Zhao, Jiaping, and Laurent Itti. "shapeDTW: Shape dynamic time warping." Pattern Recognition 2018.

- [1] Müller, Meinard. "Dynamic time warping." Information retrieval for music and motion 2007.
- [3] Zhao, Jiaping, and Laurent Itti. "shapeDTW: Shape dynamic time warping." Pattern Recognition 2018.

Sample taken from the Trace dataset.

Sample taken from the HumanAct12 dataset

Sample taken from the HumanAct12 dataset

Guo, Chuan, et al. "Action2motion: Conditioned generation of 3d human motions." Proceedings of the 28th ACM International Conference on Multimedia 2020.

Sample taken from the HumanAct12 dataset

Guo, Chuan, et al. "Action2motion: Conditioned generation of 3d human motions." Proceedings of the 28th ACM International Conference on Multimedia 2020.

Rehabilitation Assessment

Patient's Recorded Exercises

Samples taken from the Kimore daataset

Capecci, Marianna, et al. "The kimore dataset: Kinematic assessment of movement and clinical scores for remote monitoring of physical rehabilitation." IEEE Transactions on Neural Systems and Rehabilitation Engineering 2019.

Patient's Recorded Exercises

Samples taken from the Kimore daataset

Capecci, Marianna, et al. "The kimore dataset: Kinematic assessment of movement and clinical scores for remote monitoring of physical rehabilitation." IEEE Transactions on Neural Systems and Rehabilitation Engineering 2019.

Deep Learning for Human Rehabilitation: An Extrinsic Regression Task

Used Architecture: Fully Convolutional Network.

Wang, Zhiguang, Weizhong Yan, and Tim Oates. "Time series classification from scratch with deep neural networks: A strong baseline." International joint conference on neural networks (IJCNN) 2017.

Averaging Augmentation

Averaging Augmentation to Create Synthetic Time Series

How to create synthetic time series?

- We averaged a set of time series and took the average as a new synthetic object
- We used weighted averages to generate multiple synthetic objects

- [1] Petitjean, F., Ketterlin, A., & Gançarski, P. (2011). A global averaging method for dynamic time warping, with applications to clustering. Pattern Recognition, 44(3), 678-693.
- [2] Forestier, G., et al. "Generating synthetic time series to augment sparse datasets." 2017 IEEE International Conference on Data Mining (ICDM). IEEE, 2017.
- [3] Ismail-Fawaz, A. et al. " ShapeDBA: Generating Effective Time Series Prototypes using ShapeDTW Barycenter Averaging." ECML/PKDD Workshop on Advanced Analytics and Learning on Temporal Data, 2023

Averaging Augmentation to Create Synthetic Time Series

How to create synthetic time series?

- We averaged a set of time series and took the average as a new synthetic object
- We used weighted averages to generate multiple synthetic objects

Samples taken from the ECG200 dataset.

- [1] Petitjean, F., Ketterlin, A., & Gançarski, P. (2011). A global averaging method for dynamic time warping, with applications to clustering. Pattern Recognition, 44(3), 678-693.
- [2] Forestier, G., et al. "Generating synthetic time series to augment sparse datasets." 2017 IEEE International Conference on Data Mining (ICDM). IEEE, 2017.
- [3] Ismail-Fawaz, A. et al. " ShapeDBA: Generating Effective Time Series Prototypes using ShapeDTW Barycenter Averaging." ECML/PKDD Workshop on Advanced Analytics and Learning on Temporal Data, 2023

Qualitative Evaluation of Generation

Qualitative Evaluation of Generation

Quantitative Evaluation: Data Extension

- 1. We define five different train/test splits per exercise, using a cross subject setup
- 2. ShapeDBA augmentation: For each training sample, we generate one new sample using the reference sample and its N nearest neighbors ($N \in [1,5]$)
- 3. Noisy augmentation: For each training sample, we add a Gaussian white noise
- We perform six experiments training and evaluation is done over the same test set

Training Set	Exercise 1	Exercise 2	Exercise 3	Exercise 4	Exercise 5
MAE					
Ref.	0.206 ± 0.069	0.202 ± 0.037	0.204 ± 0.055	0.184 ± 0.068	0.224 ± 0.058
Ref. + Noise	0.186 ± 0.065	0.172 ± 0.040	0.203 ± 0.045	0.185 ± 0.073	0.229 ± 0.069
Ref. + ShapeDBA NN1	0.167 ± 0.070	0.175 ± 0.030	0.182 ± 0.051	0.141 ± 0.062	0.208 ± 0.079
Ref. + ShapeDBA NN2	0.169 ± 0.057	0.177 ± 0.041	0.194 ± 0.041	0.168 ± 0.056	0.226 ± 0.066
Ref. + ShapeDBA NN3	0.173 ± 0.063	0.183 ± 0.047	0.199 ± 0.058	0.168 ± 0.083	0.225 ± 0.055
Ref. + ShapeDBA NN4	0.168 ± 0.059	0.179 ± 0.043	0.199 ± 0.043	0.180 ± 0.080	0.231 ± 0.060
Ref. + ShapeDBA NN5	0.166 ± 0.067	0.185 ± 0.043	0.201 ± 0.050	0.182 ± 0.089	0.226 ± 0.061
RMSE					
Ref.	0.251 ± 0.083	0.247 ± 0.045	0.248 ± 0.065	0.230 ± 0.083	0.267 ± 0.073
Ref. + Noise	0.203 ± 0.078	0.226 ± 0.043	0.238 ± 0.046	0.227 ± 0.090	0.274 ± 0.092
Ref. + ShapeDBA NN1	0.199 ± 0.087	0.226 ± 0.036	0.214 ± 0.054	0.178 ± 0.074	0.251 ± 0.094
Ref. + ShapeDBA NN2	0.203 ± 0.075	0.232 ± 0.052	0.226 ± 0.044	0.210 ± 0.074	0.268 ± 0.083
Ref. + ShapeDBA NN3	0.205 ± 0.082	0.235 ± 0.050	0.240 ± 0.062	0.214 ± 0.105	0.268 ± 0.066
Ref. + ShapeDBA NN4	0.198 ± 0.071	0.235 ± 0.050	0.234 ± 0.048	0.230 ± 0.105	0.279 ± 0.070
Ref. + ShapeDBA NN5	0.202 ± 0.079	0.230 ± 0.049	0.244 ± 0.057	0.231 ± 0.109	0.280 ± 0.080
	•			•	•

Take Away Message

- Paper titled "Weighted Average of Human Motion Sequences for Improving Rehabilitation Assessment"
- Data augmentation / Generation of synthetic temporal data is still an evolving domain, and it should depend on the application such as the case of human motion rehabilitation
- Weighted ShapeDBA allows the association of a contribution value for each sample when producing the average sequence
- We believe in reproducibility https://github.com/MSD-IRIMAS/Weighted-ShapeDBA-4-Rehab
- Contact: ali-el-hadi.ismail-fawaz@uha.fr
- Website: https://hadifawaz1999.github.io/