XLNet: Generalized Autoregressive Pretraining for Language Understanding

Zhilin Yang, Zihang Dai, Yiming Yang, Jaime Carbonell, Ruslan Salakhutdinov, Quoc V. Le

한양대학교 인공지능연구실 송지수

XLNet

• Transformer-XL (Dai et al., 2019) 을 backbone 모델로 사용하는 Pretraining Language Model

• 20개의 NLP downstream task에서 BERT를 이기고 그 중 18개의 task에서 SOTA를 찍은 모델

Autoregressive vs Autoencoding

Autoregressive (AR)

$$\max_{\theta} \quad \log p_{\theta}(\mathbf{x}) = \sum_{t=1}^{T} \log p_{\theta}(x_t \mid \mathbf{x}_{< t})$$
[New, York, is, a, city, or, state]

ELMo, GPT, Word2Vec, ...

Autoencoding (AE)

$$\max_{\theta} \quad \log p_{\theta}(\bar{\mathbf{x}} \mid \hat{\mathbf{x}}) \approx \sum_{t=1}^{T} m_{t} \log p_{\theta}(x_{t} \mid \hat{\mathbf{x}})$$

BERT

Weakness of AR & AE

- AR
 - 한 쪽 방향의 문맥 정보 (forward or backward) 만 활용 가능

- AE
 - Independent Assumption: 모든 masked token이 독립적으로 예측됨
 - Pretrain-Finetune discrepancy: 실제 corpora 에는 <MASK> 가 없음

Weakness of AR & AE

Limitation of BERT

[, , is, a, city, ...]
$$\mathcal{J}_{\text{BERT}} = \log p(\text{New} \mid \text{is a city}) + \log p(\text{York} \mid \text{is a city}),$$

• 'New' 라는 masked token은 'York' 를 예측하는 데 분명 도움이 될 만한 token 임에도, Independent Assumption에 따라 'New' 는 활용되지 못함

$$\mathcal{J}_{XLNet} = \log p(New \mid is \ a \ city) + \log p(York \mid New, is \ a \ city)$$

Proposed method: XLNet

AR과 AE의 단점을 버리고 장점을 취하기 위해,

Permutation Language Modeling

Target-aware Representation

Two-stream Self-Attention

세 가지의 방법을 제시

Permutation Language Modeling

```
input\ sequence: x = (x_1, x_2, \ldots, x_T) \ likelihood: \mathbb{E}_{z \sim Z_T}[\Pi_{t=1}^T p(x_{z_t} \mid x_{z < t})] \ training\ objective: \max_{	heta} \ \mathbb{E}_{z \sim Z_T}[\Sigma_{t=1}^T \log\ p_{	heta}(x_{z_t} \mid x_{z < t})]
```

- Input sequence index의 모든 permutation 을 고려한 AR
- $[x_{1,}x_{2,}x_{3,}x_{4}]$ 라는 sequence가 있을 때, index의 모든 permutation 의 가짓수는 4! = 24 가지
- 각 permutation 에 대해 AR 방식 적용

Permutation Language Modeling

Permutation

[3, 2, 4, 1]

[2, 4, 3, 1]

[1, 4, 2, 3]

[4, 3, 1, 2]

$$\max_{\theta} \quad \mathbb{E}_{\mathbf{z} \sim \mathcal{Z}_T} \left[\sum_{t=1}^{T} \log p_{\theta}(x_{z_t} \mid \mathbf{x}_{\mathbf{z}_{< t}}) \right].$$

Permutation Language Modeling

• x_3 를 예측하기 위해, x_3 제외 나머지 token $[x_1, x_2, x_4]$ 의 모든 부분집합에 conditional 한 x_3 의 probability 계산 가능

• 이를 통해 masking 없이도 AR 방식을 이용해 양방향의 context 를 이용한 모델링이가능함

Target-aware Representation

- 그러나 Permutation Language Modeling 에서도 치명적인 단점 존재
 - $[x_3, x_1, x_4, x_2]$ 인 경우, x_4 를 예측하기 위해 $h_{\theta}(x_3, x_1)$ 의 representation 이용
 - $[x_{3}, x_{1}, x_{2}, x_{4}]$ 인 경우, x_{2} 를 예측하기 위해 $h_{\theta}(x_{3}, x_{1})$ 의 representation 이용

• 즉, permutation 에 따라 같은 representation 을 이용해 다른 target 을 예측해야 하는 상황이 발생

• 이를 피하기 위해 Target position을 encoding 하여 representation 에 함께 이용

Target-aware Representation

- Target-aware representation 을 설계할 때는 다음의 두 가지 조건이 필요
 - t 시점의 token x_{z_t} 를 예측하기 위해서, hidden representation $g(x_{z < t}, z_t)$ 는 t 시점 이전의 context representation 인 $x_{z < t}$ 와 target position 정보 z_t 만을 사용 가능
 - t 시점 이후인 j 시점의 token x_{z_j} 를 예측하기 위해서, hidden representation $g(x_{z < t}, z_t)$ 는 t 시점의 content 인 x_{z_i} 정보를 포함해야 함

- 통상적인 Transformer: 한 layer 에서 하나의 token은 하나의 representation 가짐
- 저자들은 2개의 representation 을 가질 수 있는 변형된 transformer 구조를 제안

Two-Stream Self Attention

Query Stream
$$g_{z_t}^{(m)} \leftarrow \operatorname{Attention}(\mathbf{Q} = g_{z_t}^{(m-1)}, \mathbf{KV} = \mathbf{h}_{\mathbf{z}_{< t}}^{(m-1)}; \theta)$$
 Content Stream $h_{z_t}^{(m)} \leftarrow \operatorname{Attention}(\mathbf{Q} = h_{z_t}^{(m-1)}, \mathbf{KV} = \mathbf{h}_{\mathbf{z}_{\le t}}^{(m-1)}; \theta)$

- Query Stream 의 마지막 Layer representation 을 이용하여 특정 position 의 token을 예측
- Content Stream 의 hidden state 를 이용하면 z > t 인 시점의 g를 계산할 때 t의 context 를 이용할 수 있음

Split View of the Query Stream (Factorization order: $3 \rightarrow 2 \rightarrow 4 \rightarrow 1$)

Split View of the Content Stream (Factorization order: $3 \rightarrow 2 \rightarrow 4 \rightarrow 1$)

Concept from Transformer-XL

- XLNet 은 긴 문장에 대한 효과적인 이해와 처리를 위하여 Transformer-XL 의다음 두 가지 개념을 차용함
 - Segment Recurrence Mechanism
 - Relative Positional Encoding

Concept from Transformer-XL

- Segment Recurrence Mechanism
 - 문장이 $\tilde{x}=s_{1:T}$ 와 $x=s_{T+1:2T}$ 의 두 Segment 로 나누어졌을 때, \tilde{x} 의 permutation \tilde{z} 에 대한 처리를 완료하고 각 마지막 layer 로부터 얻어진 context representation을 $\tilde{h}^{(m)}$ 이라고 한다면 다음 segment x 에 대한 연산은 :

$$h_{z_t}^{(m)} \leftarrow \operatorname{Attention}(\mathbf{Q} = h_{z_t}^{(m-1)}, \mathbf{KV} = [\mathbf{ ilde{h}}^{(m-1)}, \mathbf{h}_{\mathbf{z} < t}^{(m-1)}]; heta)$$

• 서상우 연구원의 발표 자료 참고

Concept from Transformer-XL

- Relative Positional Encoding
 - 일반적인 Attention Mechanism 의 Attention Score

$$\mathbf{A}_{ij}^{abs} = \underbrace{\mathbf{E}_{x_i}^{\top} \mathbf{W}_q^{\top} \mathbf{W}_k \mathbf{E}_{x_j}}_{(a)} + \underbrace{\mathbf{E}_{x_i}^{\top} \mathbf{W}_q^{\top} \mathbf{W}_k \mathbf{U}_j}_{(b)} + \underbrace{\mathbf{U}_i^{\top} \mathbf{W}_q^{\top} \mathbf{W}_k \mathbf{E}_{x_j}}_{(c)} + \underbrace{\mathbf{U}_i^{\top} \mathbf{W}_q^{\top} \mathbf{W}_k \mathbf{U}_j}_{(d)}$$

• Relative Position Encoding 을 적용한 Attention Store

$$\mathbf{A}_{ij}^{rel} = \underbrace{\mathbf{E}_{x_i}^{\top} \mathbf{W}_q^{\top} \mathbf{W}_{k,E} \mathbf{E}_{x_j}}_{(a)} + \underbrace{\mathbf{E}_{x_i}^{\top} \mathbf{W}_q^{\top} \mathbf{W}_{k,R} \mathbf{R}_{i-j}}_{(b)} + \underbrace{u^{\top} \mathbf{W}_{k,E} \mathbf{E}_{x_j}}_{(c)} + \underbrace{v^{\top} \mathbf{W}_{k,R} \mathbf{R}_{i-j}}_{(d)}$$

• 서상우 연구원의 발표 자료 참고

Experiments

RACE	Accuracy	Middle	High	
GPT [25]	59.0	62.9	57.4	
BERT [22]	72.0	76.6	70.1	
BERT+OCN* [28]	73.5	78.4	71.5	
BERT+DCMN* [39]	74.1	79.5	71.8	
XLNet	81.75	85.45	80.21	

Table 1: Comparison with state-of-the-art results on the test set of RACE, a reading comprehension task. * indicates using ensembles. "Middle" and "High" in RACE are two subsets representing middle and high school difficulty levels. All BERT and XLNet results are obtained with a 24-layer architecture with similar model sizes (aka BERT-Large). Our single model outperforms the best ensemble by 7.6 points in accuracy.

SQuAD1.1	EM	F1	SQuAD2.0	EM	F1				
Dev set results without data augmentation									
BERT [10]	84.1	90.9	BERT† [10]	78.98	81.77				
XLNet	88.95	94.52	XLNet	86.12	88.79				
Test set results	Test set results on leaderboard, with data augmentation (as of June 19, 2019)								
Human [27]	82.30	91.22	BERT+N-Gram+Self-Training [10]	85.15	87.72				
ATB	86.94	92.64	SG-Net	85.23	87.93				
BERT* [10]	87.43	93.16	BERT+DAE+AoA	85.88	88.62				
XLNet	89.90	95.08	XLNet	86.35	89.13				

Table 2: A single model XLNet outperforms human and the best ensemble by 7.6 EM and 2.5 EM on SQuAD1.1. * means ensembles, † marks our runs with the official code.

Experiments

Model	MNLI	QNLI	QQP	RTE	SST-2	MRPC	CoLA	STS-B	WNLI	
Single-task single	Single-task single models on dev									
BERT [2]	86.6/-	92.3	91.3	70.4	93.2	88.0	60.6	90.0	-	
XLNet	89.8/-	93.9	91.8	83.8	95.6	89.2	63.6	91.8	-	
Single-task single	Single-task single models on test									
BERT [10]	86.7/85.9	91.1	89.3	70.1	94.9	89.3	60.5	87.6	65.1	
Multi-task ensem	Multi-task ensembles on test (from leaderboard as of June 19, 2019)									
Snorkel* [29]	87.6/87.2	93.9	89.9	80.9	96.2	91.5	63.8	90.1	65.1	
ALICE*	88.2/87.9	95.7	90.7	83.5	95.2	92.6	68.6	91.1	80.8	
MT-DNN* [18]	87.9/87.4	96.0	89.9	86.3	96.5	92.7	68.4	91.1	89.0	
XLNet*	$\mathbf{90.2/89.7}^{\dagger}$	98.6^{\dagger}	90.3^{\dagger}	86.3	96.8^{\dagger}	93.0	67.8	91.6	90.4	

Table 4: Results on GLUE. * indicates using ensembles, and † denotes single-task results in a multi-task row. All results are based on a 24-layer architecture with similar model sizes (aka BERT-Large). See the upper-most rows for direct comparison with BERT and the lower-most rows for comparison with state-of-the-art results on the public leaderboard.

• 비교적 긴 문장을 사용하는 task에서 더욱 성능 향상이 돋보임 (RACE, SQuAD)

Thank you!