Installation and Deployment Guide: AI-Powered Predictive Maintenance for Industrial Machines

This document provides a step-by-step guide on how to install dependencies, set up the environment, train the model, and run the AI-Powered Predictive Maintenance system.

1. System Requirements

Before proceeding, ensure your system meets the following requirements:

Hardware Requirements:

- CPU: Intel Core i5 or higher (Recommended: i7 or Ryzen 5+)
- RAM: Minimum **8GB** (Recommended: 16GB)
- Storage: At least 2GB free space

Software Requirements:

- Operating System: Windows 10/11, Ubuntu 20.04+, macOS Monterey+
- Python: **Version 3.10 or 3.11** (Avoid 3.12 due to compatibility issues)
- Required Libraries: Listed below

2. Installation of Dependencies

Step 1: Install Python

- 1. Download **Python 3.10**+ from **Python Official Website**.
- 2. During installation, check "Add Python to PATH" to avoid path-related issues.
- 3. Verify installation using:
- 4. python --version

Step 2: Clone or Download the Project

- If using **Git**, run:
- git clone https://github.com/your-repository/AI-Predictive-Maintenance.git
- cd AI-Predictive-Maintenance
- If downloaded as a **ZIP file**, extract it and navigate into the folder.

Step 3: Create a Virtual Environment

python -m venv venv

Activate the virtual environment:

- Windows:
- venv\Scripts\activate
- Linux/macOS:
- source veny/bin/activate

Step 4: Install Required Python Libraries

pip install -r requirements.txt

If requirements.txt is missing, install manually:

pip install numpy pandas scikit-learn streamlit matplotlib seaborn pickle5

Step 5: Verify Installation

Run the following command to ensure all dependencies are installed:

python -c "import sklearn, streamlit, pandas, numpy; print('All Dependencies Installed Successfully')"

3. Model Training & Preparation

Step 1: Generate the Dataset

If the dataset is missing or needs re-creation, run:

python generate dataset.py

This will create synthetic machine data.csv.

Step 2: Train the Model

To train the predictive model, execute:

python train_model.py

This will generate:

- predictive model.pkl → Trained ML model
- scaler.pkl → Feature scaler for normalization
- label encoder.pkl → Encodes fault types

Expected Output:

Model Training Complete ✓ - Accuracy: 0.85

4. Running the Predictive Maintenance System

Option 1: Run the Model Manually (CLI-Based Testing)

To test the model using sample inputs:

python check.py

You will be prompted to enter machine parameters, and the model will classify the fault.

Option 2: Run the Dashboard (GUI-Based Interface)

For an interactive web-based dashboard:

streamlit run dashboard.py

This will open the AI-Powered Predictive Maintenance dashboard in your default web browser.

5. Understanding the Dashboard

The dashboard provides:

- ✓ Input fields for vibration, temperature, pressure, and running hours
- **✓** Real-time fault classification
- **✓** Fault probability distribution
- **✓** Historical predictions table
- **✓** Visualizations for fault trends

6. Deployment Options

Local Execution (Recommended for Testing)

Simply run:

streamlit run dashboard.py

Access it via http://localhost:8501/.

Cloud Deployment (Streamlit Share)

To deploy on Streamlit Share:

- 1. Push the project to GitHub.
- 2. Go to Streamlit Cloud.
- 3. Deploy using dashboard.py.

7. Troubleshooting Common Issues

Issue	Possible Cause	Solution
ModuleNotFoundError: No module named 'sklearn'	Dependencies missing	Run pip install -r requirements.txt
ValueError: X has 5 features, but StandardScaler is expecting 4	Incorrect input formatting	Ensure input features match trained model
pickle.UnpicklingError	Corrupted model files	Delete .pkl files and retrain the model
Streamlit app not opening	Port conflict	Try streamlit run dashboard.pyserver.port 8502

8. Final Steps & Best Practices

- **✓** Always train the model before running the dashboard.
- **✓ Do not modify the dataset** after training unless re-training is needed.
- ✓ Keep predictive_model.pkl, scaler.pkl, and label_encoder.pkl safe.
- ✓ For production deployment, use a Docker container or cloud-based solution.