Cognoms i Nom: _	 Doc. Identitat:
_	

Totes les respostes han d'estar degudament justificades

1. Quin(s) motiu(s) i/o característica(ques) permet que un microcontrolador PIC18F pugui simultàniament, executar una instrucció i realitzar la lectura (*fetch*) de la següent instrucció. Justifiqueu la resposta. (1 punt)

2. Donat el següent codi

(2 punts)

a. Indicar el valor dels registres de la taula després de la seva execució. Assumint que tota la memòria de dades està a 0 a l'inici de l'execució.

@ RAM	Valor final		
0x050			
0x051			
0x150			
0x151			
0x250			
0x251			
WREG			
BSR			

b. Calcular el temps d'execució del codi (des del *power-on* o activació del MCLR fins l'última instrucció del llistat), si Fosc= 20 MHz.

c. Indica el nombre de bytes de memòria de programa que ocupa el codi del llistat.

A equ 0x50 B equ 0x51 C equ 0x15

ORG 0

GOTO START

••••

ORG 50 START

CLRF A, 0

MOVLW 0x10 MOVLB 0x01

SETF B, 0

ADDLW C

MOVWF A, 1

MOVLB 0x02

MOVWF A, 0 MOVLW 0xAB

Delay1

NOP

NOP

DECFSZ WREG, 0, 0

BRA Delay1

INCF A, 0, 1

DECF A, 1, 0

ADDWF A, 1, 1

••••

3. Es vol construir un circuit per encendre intermitentment un LED a un ritme de 15 vegades per minut (I_{LED}= 9mA; temps LED encès igual al temps LED apagat). El senyal que activa el LED prové d'un generador de funcions configurat per generar un senyal amb 5 volts d'amplitud. A més, es vol mesurar la caiguda de potencial en borns de la resistència. Es disposa dels següents components i instruments: (2 punts)

R, C, L, LED, BJT, JFET, Generador de funcions i Oscil·loscopi

a) Realitzeu el diagrama electrònic o esquemàtic, a partir dels components disponibles. El diagrama electrònic ha d'incloure les seves connexions al generadors de funcions i a l'oscil·loscopi amb la resta de components que formin part del circuit. Calculeu els valors dels components que utilitzeu (R's, C's o L's).

R1= (5-2)/9 mA= 333,3 Ω

b) Indiqueu com configuraríeu el generador de funcions indicant la forma, la freqüència i el duty cycle del senyal.

Generador de funcions

d) Durant l'execució del codi que permet accedir a una dada de la taula, es modificarà en algun moment el

contingut de la pila? Justifica la resposta.

5. Donat que el vector de reset i el vectors d'interrupcions es troben a l'adreça 0x00, 0x08 i 0x18 respectivament, tenim alguna restricció o conflicte per reservar variables en la memòria de dades en aquestes posicions de memòria? Justifica la resposta. (1 punt)

Extracte / Resum del conjunt d'instruccions del PIC18F4550 (Secció 26 del manual)

Mnemonic, Operands		Description	Cycles	16-Bit Instruction Word			Status		
				MSb			LSb	Affected	Notes
ADDWF	f, d, a	Add WREG and f	1	0010	01da	ffff	ffff	C, DC, Z, OV, N	1, 2
ADDWFC	f, d, a	Add WREG and Carry bit to f	1	0010	00da	ffff	ffff	C, DC, Z, OV, N	1, 2
CLRF	f, a	Clear f	1	0110	101a	ffff	ffff	Z	2
COMF	f, d, a	Complement f	1	0001	11da	ffff	ffff	Z, N	1, 2
DECF	f, d, a	Decrement f	1	0000	01da	ffff	ffff	C, DC, Z, OV, N	1, 2, 3, 4
DECFSZ	f, d, a	Decrement f, Skip if 0	1 (2 or 3)	0010	11da	ffff	ffff	None	1, 2, 3, 4
DCFSNZ	f, d, a	Decrement f, Skip if Not 0	1 (2 or 3)	0100	11da	ffff	ffff	None	1, 2
INCF	f, d, a	Increment f	1	0010	10da	ffff	ffff	C, DC, Z, OV, N	1, 2, 3, 4
INCFSZ	f, d, a	Increment f, Skip if 0	1 (2 or 3)	0011	11da	ffff	ffff	None	4
INFSNZ	f, d, a	Increment f, Skip if Not 0	1 (2 or 3)	0100	10da	ffff	ffff	None	1, 2
SETF	f, a	Set f	1	0110	100a	ffff	ffff	None	1, 2
ADDLW	k	Add Literal and WREG	1	0000	1111	kkkk	kkkk	C, DC, Z, OV, N	
ANDLW	k	AND Literal with WREG	1	0000	1011	kkkk	kkkk	Z, N	
IORLW	k	Inclusive OR Literal with WREG		0000	1001	kkkk	kkkk	Z, N	
LFSR	f, k	Move Literal (12-bit) 2nd word	2	1110	1110	00ff	kkkk	None	
		to FSR(f) 1st word		1111	0000	kkkk	kkkk		
MOVLB	k	Move Literal to BSR<3:0>	1	0000	0001	0000	kkkk	None	
MOVLW	k	Move Literal to WREG	1	0000	1110	kkkk	kkkk	None	J
MOVF	f, d, a	Move f	1	0101	00da	ffff	ffff	Z, N	1
MOVFF	f_s , f_d	Move f _s (source) to 1st word	2	1100	ffff	ffff	ffff	None	
		f _d (destination) 2nd word		1111	ffff	ffff	ffff		
MOVWF	f, a	Move WREG to f	1	0110	111a	ffff	ffff	None	
MULWF	f, a	Multiply WREG with f	1	0000	001a	ffff	ffff	None	1, 2
NEGF	f, a	Negate f	1	0110	110a	ffff	ffff	C, DC, Z, OV, N	
BNZ	n	Branch if Not Zero	1 (2)	1110	0001	nnnn	nnnn	None	
BOV	n	Branch if Overflow	1 (2)	1110	0100	nnnn	nnnn	None	
BRA	n	Branch Unconditionally	2	1101	0nnn	nnnn	nnnn	None	
BZ	n	Branch if Zero	1 (2)	1110	0000	nnnn	nnnn	None	
CALL	n, s	Call Subroutine 1st word	2	1110	110s	kkkk	kkkk	None	
		2nd word		1111	kkkk	kkkk	kkkk		
RETLW	k	Return with Literal in WREG	2	0000	1100	kkkk	kkkk	None	ĺ
RETURN	S	Return from Subroutine	2	0000	0000	0001	001s	None	

Field	Description	
	RAM access bit a = 0: RAM location in Access RAM (BSR register is ignored) a = 1: RAM bank is specified by BSR register	
	Destination select bit d = 0: store result in WREG d = 1: store result in file register f	