Mike Pozulp

pozulp1@llnl.gov (925) 422-0653

Lawrence Livermore National Laboratory 7000 East Avenue, P.O. Box 808, L-170 Livermore, CA 94550

Interests

Scientific Computing, Monte Carlo, Compilers

Education

University of California, Davis

Davis, CA

Expected May 2025

PhD in Computer Science

The College of William & Mary

Williamsburg, VA

May 2015

Bachelor of Science, *magna cum laude* Major: Computer Science

Minor: Economics

GPA: 3.75/4.00

Presentations and Publications

- "Extending 1D Transport Using Neural Nets to GPUs" (with P. Brantley), Abstract submitted to Joint International Conference on Supercomputing in Nuclear Applications + Monte Carlo, May 2020
- "Status of LLNL Monte Carlo Transport Codes on Sierra GPUs" (with M. McKinley, R. Bleile, P. Brantley, S. Dawson, M. O'Brien, D. Richards), International Conference on Mathematics and Computational Methods applied to Nuclear Science and Engineering (M&C), August 2019, 2160-2165
- "1D Transport Using Neural Nets, SN, and MC," International Conference on Mathematics and Computational Methods applied to Nuclear Science and Engineering (M&C), August 2019, 876-885
- "Porting the Opacity Client Library to a CPU-GPU Cluster Using OpenMP4.5" (with J. Kimko, R. Haque, and L. Grinberg), International Conference for High Performance Computing, Networking, Storage, and Analysis (SC), November, 2017
- "Introduction to Monte Carlo," Lawrence Livermore National Laboratory's Computation Summer Student Seminar Series, June, 2017 and The College of William & Mary Math Department Colloquium Series, October, 2017
- "Optimizing Application I/O by Leveraging the Storage Hierarchy Using the Scalable Checkpoint Restart Library with a Monte Carlo Particle Transport Application on the Trinity Advanced Computing System" (with G. Becker, P. Brantley, S. Dawson, K. Mohror, A. Moody, and M. O'Brien), International Conference for High Performance Computing, Networking, Storage, and Analysis (SC), November, 2016
- "Creating a Framework for Systematic Benchmarking of High Performance Computing Systems," International Conference for High Performance Computing, Networking, Storage, and Analysis (SC), November, 2014

Work Experience

Lawrence Livermore National Lab

Livermore, CA

July 2015 - Present

Position: Computer Scientist

• Software development for the Monte Carlo Transport Project

W&M High Performance Computing

Williamsburg, VA

February 2012 - May 2015

Position: Undergraduate Assistant to High Performance Computing

- Developed a distributed-memory parallel N-1 and N-N I/O performance benchmark using MPI
- · Performed STREAM memory benchmarking, code timing, and cycle counting
- Supported HPC applications with data visualization and performance refactoring

- Assembly/maintenance of diverse CPU + GPU distributed-memory compute clusters, totaling 900+ cores and 21 TFLOP/s theoretical peak performance
- Developed graphical tools for monitoring jobs and node statistics

NASA Langley Research Center

Hampton, VA

January - May 2014

Position: UAV Engineering Intern

- Developed ground control station that controls UAVs with MAVLink transmissions and collects ADS-B, GPS, and other RF data from UAVs to create a live display of UAVs in the local airspace
- Performed Hardware-In-The-Loop Simulation tests of ground control station using autopilot boards and commercial flight simulator
- Prepared hardware/software systems for multi-rotor and fixed-wing aircraft

NASA Ames Research Center

Moffett Field, CA

May - August 2013

Position: Supercomputing Research Intern

- Investigated performance scaling in four generations of Intel Xeon processors running the NASA Parallel Benchmarks on top-20 supercomputer Pleiades
- Researched effects of MPI communication traffic across Pleiades interconnect

Computer Skills

- C/C++, Python, Java, R, Bash, MPI, OpenMP, CUDA, Git/Github, LLVM, Latex
- Linux, OS X, Windows, Solaris, Android, Web

Honors, Awards, and Memberships

Argonne Training Program in Extreme Scale Computing, Attendee	August 2016	
Stanford CS148 Raytracing Project, 2nd Place	December 2015	
Phi Mu Epsilon Math Honors Fraternity, Student Member	2013 - 2015	
Association for Computing Machinery, Student Member	2013 - 2015	
W&M Small Hall Makerspace Grant Recipient (\$700)	May 2014	
 ACM Student Research Competition Travel Award (\$500) 	September 2014	
NASA Ames Poster Contest, 1st Place	August 2013	
 Virginia Space Grant Consortium Grant Recipient (\$6750) 	June 2013	

Technical Courses

University of California, Berkeley

Numerical Simulation in Radiation Transport (NE 255)
 Fall 2018

University of California, Davis

 Network Architecture & Resource Management (EEC 273/ECS258) 	Fall 2018
 Quantum Mechanics (PHY115A) 	Spring 2017
Analytical Mechanics II (PHY 105B)	Winter 2017
Analytical Mechanics I (PHY 105A)	Fall 2016

University of California, San Diego

High Energy Density Physics (MAE 207)
 Fall 2017

Stanford University

 Partial Differential Equations in Engineering (CME 204) 	Winter 2018
Compilers (CS 143)	Spring 2016
 Introduction to Computer Graphics (CS 148) 	Fall 2015

The College of William & Mary

Random Walks in Biology (APSC 456)	Spring 2015
Reliability (CS 668)	Spring 2015
General Physics II, Honors (PHYS 102H)	Spring 2015
Analog Electronics (PHYS 252)	Spring 2015
Ordinary Differential Equations (MATH 302) F	Fall 2014
General Physics I, Honors (PHYS 101H) F	Fall 2014
Digital Electronics (PHYS 351) F F F F F F F F F F F F F	Fall 2014
• Finite Automata (CS423)	Fall 2013
Operating Systems (CS 424)	Fall 2013
Applied Financial Derivatives (ECON 415) F F F F F F F F F F F F F	Fall 2013
Probability (MATH 401) F	Fall 2013
Numerical Analysis (MATH 413) F	Fall 2013
Programming Languages (CS 312)	Spring 2013
Systems Programming (CS 415)	Spring 2013
• Econometrics (ECON 308)	Spring 2013
Multivariable Calculus (MATH 212)	Spring 2013
• Algorithms (CS 303)	Fall 2012
• Computer Organization (CS 304)	Fall 2012
• Intermediate Microeconomics (ECON 303)	Fall 2012
Software Development (CS 301)	Spring 2012
Database Systems (CS 321)	Spring 2012
• Intermediate Macroeconomics (ECON 304)	Spring 2012
Linear Algebra (MATH 211)	Spring 2012
Data Structures (CS 241)	Fall 2012
Discrete Structures (CS 243)	Fall 2012