合 肥 工 业 大 学 试 卷 (A)

共 1 页第 1 页

2021~2022 学年第 二 学期 课程代码 1400221B 课程名称 高等数学 A(下)

学分 6 课程性质:必修☑、选修□、限修□

考试形式:开卷□、闭卷☑

专业班级(教学班)

考试日期 2022.7.12

命题教师 高等数学课程组 系 (所或教研室) 主任审批签名

一、填空题(每小题3分,共15分)

1. 设
$$y = y(x), z = z(x)$$
 由方程
$$\begin{cases} 2z - x^2 - y^2 = 0 \\ x^2 + y^2 + z^2 = 3 \end{cases}$$
 确定,则其中 $\frac{dy}{dx}\Big|_{(1,1,1)} = \underline{\qquad}$

2. 设函数
$$f(x,y,z) = x^2 + y^2 + z^2 + 4$$
 ,则 $f(x,y,z)$ 在点 $(1,-1,\frac{1}{2})$ 处的最大方向导数为_____.

3.
$$\int_0^{\frac{\pi}{6}} dx \int_x^{\frac{\pi}{6}} \frac{\cos y}{y} dy = \underline{\qquad}.$$

4. 设曲线
$$L:|x|+|y|=1$$
 ,则对弧长的曲线积分 $\oint_{\mathcal{L}} (|x|+|y|+xy) ds = _____.$

5. 设曲面
$$\Sigma$$
 为旋转曲面 $z = x^2 + y^2$ ($0 \le z \le 1$),则曲面积分 $\iint_{\Sigma} \sqrt{1 + 4z} dS = \underline{\hspace{1cm}}$.

二、选择题(每小题3分,共15分)

1. 考虑二元函数 f(x,y) 的下列 4 条性质:

- ① 在点 (x_0, y_0) 处连续,
- ② 在点 (x_0, y_0) 处两个偏导数存在,
- ③ 在点 (x_0, y_0) 处两个偏导数连续, ④ 在点 (x_0, y_0) 处可微.

若用 " $P \Rightarrow Q$ "表示性质 P 推出性质 Q ,现有以下五种推导关系:

(C) 3

则上述正确的推导关系有()种.

- **(A)** 1
- **(B)** 2

(D) 4

2. 曲线 $x = t, y = t^2, z = t^3$ 在点(1,1,1) 处的法平面方程为().

- (A) 2x + 2y + 3z = 7
- **(B)** x + 2y + z = 4
- (C) x+2y+3z=6 (D) 2x+2y+z=5

3. 若级数
$$\sum_{n=1}^{\infty} a_n$$
 收敛,则级数().

- (A) $\sum_{n=1}^{\infty} |a_n|$ 收敛 (B) $\sum_{n=1}^{\infty} (-1)^n a_n$ 收敛 (C) $\sum_{n=1}^{\infty} a_n a_{n+1}$ 收敛 (D) $\sum_{n=1}^{\infty} \frac{a_n a_{n+1}}{2}$ 收敛

4. 设二元函数
$$f(x,y)$$
 连续,则 $\int_{-1}^{1} dx \int_{1-\sqrt{1-x^2}}^{1+\sqrt{1-x^2}} f(x,y) dy = ($).

(A)
$$\int_{0}^{\pi} d\theta \int_{0}^{2\sin\theta} f(r\cos\theta, r\sin\theta) rd\theta$$

(A)
$$\int_{0}^{\pi} d\theta \int_{0}^{2\sin\theta} f(r\cos\theta, r\sin\theta) r dr$$
 (B) $\int_{0}^{\pi} d\theta \int_{0}^{2\cos\theta} f(r\cos\theta, r\sin\theta) r dr$

(C)
$$\int_0^{2\pi} d\theta \int_0^{2\sin\theta} f(r\cos\theta, r\sin\theta) r dr$$
 (D)
$$\int_0^{2\pi} d\theta \int_0^{2\cos\theta} f(r\cos\theta, r\sin\theta) r dr$$

(D)
$$\int_{0}^{2\pi} d\theta \int_{0}^{2\cos\theta} f(r\cos\theta, r\sin\theta) rd\theta$$

5. 设
$$f(x) = \begin{cases} -1, & -\pi < x \le 0, \\ 1 + x^2, 0 < x \le \pi, \end{cases}$$
则其以 2π 为周期的傅里叶级数在点 $x = \pi$ 处收敛于().

- (A) $\frac{\pi^2}{2}$ (B) -1 (C) $1+\pi^2$

三、(本题满分 12 分)设
$$z = f(xy^2, x^2y)$$
,其中 f 具有二阶连续偏导数,求 $\frac{\partial z}{\partial x}, \frac{\partial^2 z}{\partial x \partial y}$.

四、(本题满分 12 分)设曲线 Γ 为抛物面 $z=x^2+y^2$ 与平面 x+y+z=1 的交线,求曲线 Γ 上 的点到原点的最长距离和最短距离。

五、(本题满分 14 分) 计算曲线积分 $\int_{L} (1+y^3) dx + (2x+y^2) dy$,其中 L 为 $y = \sin x$ 从 O(0,0) 到 $A(\pi,0)$ 的曲线段.

六、(本题满分 14 分) 计算 $I = \iint \frac{x^3}{3} dy dz + \frac{y^3}{3} dz dx + (z+1) dx dy$,其中 $\Sigma : z = 1 - x^2 - y^2 (z \ge 0)$, 取上侧.

七、(本题满分 14 分) 求幂级数 $\sum_{n=1}^{\infty} (-1)^{n-1} \frac{x^n}{n \cdot 3^n}$ 的收敛域及和函数,并计算 $\sum_{n=1}^{\infty} (-1)^{n-1} \frac{1}{n}$.

八、(本题满分 4 分)设 $a_0 = 0$,当 $n \ge 1$ 时, $\{a_n\}$ 是正项递减数列,且级数 $\sum_{i=1}^{\infty} a_n$ 收敛,证明 级数 $\sum_{n=1}^{\infty} n(a_{n-1} - a_n)$ 收敛.