ESERCIZI SVOLTI SUL SUBNETTING

ESERCIZIO 1: Dato l'indirizzo IP 200.110.12.0 con maschera di sottorete 255.255.255.224, specificare quante sottoreti e quanti host per sottorete si possono ottenere.

SOLUZIONE ESERCIZIO 3

- 1. Determino la classe di indirizzo 200.100.12.0 convertendo il byte più significativo: $(200)_{10} = (11001000)_2$. Poiché i primi tre bit sono 110 \rightarrow è un indirizzo di classe C perciò avrà una struttura del tipo N.N.N.H
- 3. Con 3 bit avrò $2^3 = 8$ subnet
- 4. Con 5 bit avrò $2^5 2 = 30$ host per sottorete

ESERCIZIO 2: Determinare l'indirizzo di rete e la maschera di sottorete necessari per individuare la subnet che contiene il seguente intervallo di indirizzi IP: 210.120.12.2 - 210.120.12.60.

SOLUZIONE ESERCIZIO 4

- 1. Determino la classe di indirizzo 210.120.12.2 convertendo il byte più significativo: (210)₁₀ = (11010010)₂. Poiché i primi tre bit sono 110 → è un indirizzo di classe C perciò avrà una struttura del tipo N.N.N.H e la suddivisione fra subnet e host viene fatta sul 4° byte
- 2. Sviluppo il range dato convertendo l'ultimo byte e verificando quanti bit rimangono fissi:

 $210.120.12.2 \rightarrow 210.120.2.00000010$ $210.120.12.3 \rightarrow 210.120.12.00000011$

 $210.120.12.4 \rightarrow 210.120.12.00000100$

.

 $210.120.12.58 \rightarrow 210.120.12.00111010$

 $210.120.12.59 \rightarrow 210.120.12.00111011$

 $210.120.12.60 \rightarrow 210.120.12.00111100$

Si vede che rimangono fissi a 00 due bit perciò 2 bit dedicati alle subnet e 6 bit dedicati agli host

- 4. Dalla teoria so che considerando un indirizzo IP e la relativa subnet mask attraverso un'operazione di AND bitwise determino l'indirizzo di rete: (i primi tre byte rimangono invariati poiché la subnet ha i brimi 3 byte fissi a 1

IP	210	120	12	0	0	1	1	1	1	0	0
AND											
Subnet	255	255	255	1	1	0	0	0	0	0	0
Indirizzo di rete	210	120	12	0	0	0	0	0	0	0	0

Quindi l'indirizzo di rete è: 210.120.12.0

ESERCIZIO 3: Indicare l'indirizzo del 30° host della 14° subnet relativa all'indirizzo di rete 150.180.0.0 con subnet mask 255.255.248.0

SOLUZIONE ESERCIZIO 5

- 1. Determino la classe di indirizzo 150.180.0.0 convertendo il byte più significativo: (150)₁₀ = (10010110)₂. Poiché i primi due bit sono 10 → è un indirizzo di classe B perciò avrà una struttura del tipo N.N.H.H.
- 2. Converto la subnet mask in binario per determinare quanti bit sono dedicati agli host e quanti alle subnet: (255.255.248.0)₁₀ = (11111111.11111111. 11111000.00000000)₂ → 5 bit sono dedicati alle subnet e 11 (3+8) bit agli host. Gli ultimi due ottetti hanno struttura: ssssshhh.hhhhhhhh
- 3. Gli indirizzi di sottorete avranno il seguente range:

150.180.00000hhh,hhhhhhh

.

150.180.11111hhh.hhhhhhh

La 14° sottorete sarà la rete con numero decimale 13 (perché si parte da zero) perciò convertendo (13)₁₀ in binario ottengo (1101)₂

Perciò la 14° sottorete avrà indirizzo: 150.180.01101000.00000000 →150.180.104.0

4. Gli indirizzi degli host partono da 1 perché l'indirizzo 0 è di sottorete quindi il 30° host avrà indirizzo: **150.180.104.30**

ESERCIZIO 4: Indicare l'indirizzo del 1° e dell'ultimo host della 10° subnet relativa all'indirizzo di rete 25.0.0.0 di cui 13 bit sono dedicati agli host e i rimanenti alle subnet.

SOLUZIONE ESERCIZIO 6

- Determino la classe di indirizzo 25.0.0.0 convertendo il byte più significativo: (25)₁₀ = (00011001)₂.
 Poiché il primo bit è 0 → è un indirizzo di classe A perciò avrà una struttura del tipo N.H.H.H.

.

25.111111111.11100000.000000000

La 10° sottorete sarà la rete con numero decimale 9 (perché si parte da 0) quindi converto $(9)_{10}$ in binario ottengo $(1001)_2$

Perciò la 10° sottorete avrà indirizzo: 25.00000001.00100000.00000000 →25.1.32.0

- 4. L'indirizzo del primo host della decima sottorete sarà: 25.00000001.00100000.00000001

 →25.1.32.1
- 5. L'indirizzo dell' ultimo host della decima sottorete sarà: 25.00000001.00111111.11111110 →25.1.63.254

(NOTA: non può essere 25.00000001.00111111.1111111 perché questo è l'indirizzo di broadcast della 10° sottorete)