Prowadzenie projektu

Zadania Kierownika Projektu

- uruchomienie prac
- monitorowanie postępów
 - porównywanie aktualnego stanu prac z planem projektu
 - kontrola czasu (harmonogramu) i budżetu
 - identyfikacja odchyleń od planu
- podejmowanie kroków naprawczych
- monitorowanie zmian
- rozwiązywanie problemów
 - identyfikacja problemu
 - rozwiązywanie
 - raportowanie
- zarządzanie ryzykiem
 - analiza zdarzeń w poprzednim etapie
 - ponowne wykonanie analizy ryzyka dla bieżącego etapu
- zarządzanie zespołem
- kontrola podwykonawców
 - kontrola postępów
 - procedury akceptacji
 - zapewnienie jakości prac zleconych

Kontrola postępu prac

Mechanizmy kontroli

- raporty
- spotkania
- przeglądy produktów

Najważniejsza jest dokładność informacji !!!

Trzeba znaleźć punkt równowagi między poziomem kontroli i ryzykiem wystąpienia niekorzystnych zdarzeń

Działania w przypadku opóźnień

- wykorzystanie rezerwy projektowej
- nadgodziny (zaakceptowanie większych kosztów)
- powiększenie zespołu
- przesunięcie zasobów
- częściowe zrównoleglenie zadań
- zaciąganie długu technicznego
- negocjacje z klientem
 - > zmiana harmonogramu
 - > ograniczenie zakresu
 - metoda triage klasyfikacja wymagań
 - zrobić koniecznie
 - powinno się zrobić
 - ewentualnie zrobić

Czas realizacji a liczba pracowników Zależność nieliniowa

Przyczyny

- wraz z liczbą pracowników rośnie nakład czasu na komunikację
- niepodzielność zadań

Dodatkowo trzeba uwzględnić, że

- nowych wykonawców trzeba wdrożyć
- żeby ich wdrożyć trzeba oddelegować w tym celu innych wykonawców

Możliwy efekt (Brooks)

"dodanie nowych pracowników do opóźnionego projektu zwiększa opóźnienie"

Czas realizacji a liczba pracowników

Projekty wymagające niewielkiej komunikacji

Projekty wymagające intensywnej komunikacji

Dług techniczny

- metafora wprowadzone przez Warda Cunninghama w 1992 r.
- szybsze osiąganie celu i informacji zwrotnej poprzez świadome "stosowanie skrótów" (np. pozostawienie problemów z kodem)
- podobnie jak w przypadku długu finansowego dług techniczny wymaga spłaty odsetek – czasu na przywrócenie odpowiedniej jakości kodu
- mała ilość długu przyśpiesza prace tak długo, jak długo jest on spłacany odpowiednio szybko przez refaktoryzację (ulepszenie struktury istniejącego kodu)
- musimy uwzględnić spłatę zaciągniętego długu i liczyć się z tym, że zbyt długie zwlekanie ze spłatą spowoduje narośnięcie kosztownych odsetek (coraz większych problemów z utrzymywaniem i rozwijaniem kodu)
- potrzebna jest więc dogłębna analiza kosztu długu technicznego – trzeba być bardzo ostrożnym

Mierzenie wykorzystania budżetu i postępu prac

Metoda Wartości Wypracowanej (Earned Value Method)

- Określa czy realizacja harmonogramu i wykorzystanie budżetu są zgodne z planem
- Porównanie planowanych nakładów pracy z faktycznie wypracowaną wartością i poniesionymi w związku z tym kosztami
- Zarówno koszty, jak i postęp w realizacji harmonogramu są wyrażone w wartościach pieniężnych

Mierzenie wykorzystania budżetu i postępu prac (Metoda Earned Value)

Informacje wejściowe (wyrażone w wartościach pieniężnych):

- BCWS (Budgeted Cost of Work Scheduled) wartość planowana (Planned Value – PV) planowany koszt prac, które zgodnie z harmonogramem powinny być ukończone do danego dnia projektu
- **BCWP** (Budgeted Cost of Work Performed) wartość wypracowana (Earned Value **EV**) planowany koszt prac ukończonych do danego dnia projektu
- ACWP (Actual Cost of Work Performed) koszt rzeczywisty
 (Actual Cost – AC) rzeczywisty koszt prac ukończonych do danego dnia projektu

Metoda wartości wypracowanej

Podstawowe wskaźniki

- odchylenie od planowanego harmonogramu SV = BCWP – BCWS
 (wartość ujemna oznacza opóźnienie w stosunku do planu)
- odchylenie od planowanego kosztu
 CV = BCWP ACWP
 (wartość ujemna oznacza przekroczenie budżetu)

Wskaźniki wydajności realizacji projektu

- wskaźnik wydajności realizacji harmonogramu SPI = BCWP / BCWS
- wskaźnik wydajności realizacji budżetu CPI = BCWP / ACWP
- wskaźnik wydajności budżetu dla pozostałych do wykonania prac w celu zmieszczenia się w budżecie
 TCPI = (BAC – BCWP) / (BAC – ACWP)

Szacowane koszty końcowe

EAC (Estimate at Completion)
 EAC = ACWP + (BAC – BCWP) / CPI

Inne sposoby rejestracja postępów prac w podejściach tradycyjnych

- Monitorowanie kamieni milowych planowanych i rzeczywistych dat ukończenia kluczowych produktów (etapów)
- Wykresy Gantta

Monitorowanie postępów prac w podejściach zwinnych

- codzienne spotkania 15 minutowe
 - przeważnie na stojąco
 - zespół organizuje je sam dla siebie
 - celem jest synchronizacja zadań, przygotowanie planu działania na najbliższy dzień i korygowanie na bieżąco wszelkich odchyleń od planu
 - wykryte problemów są traktowane są jako dodatkowe zadania
 - zaznaczenie postępu na tablicy zadań i wykresie spalania
- przeglądy na koniec iteracji
 - demonstracja efektów pracy
 - zespół dostaje informację zwrotną
 - efektem może być zgłoszenie potrzeb nowych funkcjonalności, zmiana priorytetów (może się zmienić rejestr produktu)
 - zaznaczenie postępu na wykresie spalania wydania

Rejestracja postępów prac wydania

• Wykres spalania liniowy

- oś pozioma czas mierzony w liczbie iteracji
- oś pionowa suma dni idealnych (lub punktów) historyjek, które pozostały do realizacji

Niedogodności – trudno zilustrować zmiany w zakresie wydania (gdy w międzyczasie dodano lub usunięto pewne funkcjonalności)

Rejestracja postępów prac wydania

- Wykres spalania liniowy
- Wykres spalania słupkowy
 - oś pozioma czas (liczba iteracji)
 - słupek górny ile mamy do zrobienia na początku każdej iteracji (w dniach idealnych lub punktach)
 - słupek dolny reprezentuje zmiany w zakresie

Rejestracja postępów prac wydania

- Wykres spalania liniowy
- Wykres spalania słupkowy
- Wykres rozpalania (oś pionowa ile wykonaliśmy)

Rejestracja postępów prac w iteracji

• Tablica zadań

- historyjki i ich zadania reprezentowane w postaci karteczek przyczepionych do tablicy
- w trakcie realizacji iteracji karteczki z zadaniami są przemieszczane między kolumnami ("Do zrobienia", "W toku", "Gotowe")

HISTORYJKI	Do zrobienia	W toku	Gotowe
HIST. A	Z2 Z11	Z3	Z13 Z1
HIST. B	Z8 Z10	Z 9	Z4
HIST. C	Z5 Z6 Z12		

Rejestracja postępów prac w iteracji

• Wykres spalania

- oś pozioma czas mierzony w dniach
- oś pionowa suma roboczogodzin dla realizacji zadań które pozostały do wykonania

