DESCRIPTION

M5269L is dual Darlington current driver (semiconductor integrated circuit) which consists of PNP and NPN transistors with clamp diode and it can be driven directly from 5V-type microcomputers or logic ICs.

Low saturation output can be obtained by separating the output stage transistor's collector from the drive stage transistors.

FEATURES

- Contains a clamp diode.
- Operates by the "L" level input.
- Wide operating temperature range . . $T_a = -40^{\circ} C \sim +85^{\circ} C$ * PW = 10 ms, duty cycle $\leq 10\%$

APPLICATION

Motor drives for various relays or portable printers, digit drives for display elements such as LEDs and lamps, or power amplifiers

FUNCTION

Unlike the existing common-collector-type transistor arrays, M5269L realizes 0.3V of low saturation output voltage (typ, $I_{\rm C}=0.7{\rm A})$ by separating the drive stage collector from the output stage collector. Therefore, the power dissipation which is determined by the product of the load current and the saturation output voltage can be greatly decreased.

The maximum output current is 3.0A and up to 80V can be applied as the output voltage.

ABSOLUTE MAXIMUM RATINGS ($T_a = 25 \, ^{\circ}\!\! \text{C}$, unless otherwise noted)

Symbol	Parameter	Conditions	Ratings	Unit
Voc	Supply voltage		20	V
VD	Drive stage applied voltage		80	V
VCED	Output voltage	When the output is "H"	80	V
Vi	Input voltage	V _{CC} = 5 V	30	V
Ic	Output current	Current per circuit when the output is "L"	3.0*	Α
VR	Clamp diode reverse voltage	,	80	V
lF	Clamp diode forward current		3.0	А
Pd	Power dissipation	Ta=25℃	1, 2(1, 7)**	w
Topr	Operating temperature		-40-+85	°C
Tstg	Storage temperature		-55~+150	°C

^{* :} PW = 10ms, duty cycle ≤ 10%

RECOMMENDED OPERATING CONDITIONS (Ta = 25°C, unless otherwise noted)

Symbol	Parameter	Conditions		Limits		
			Min	Тур	Max	Unit
Vcc	Supply voltage		4	5	6	٧
VD	Drive stage applied voltage		4	5	70	V
V _{CE}	Output applied voltage		0		70	V
Ic	Output current	Current per circuit	0	0.7	2.0	А
VR	Clamp diode reverse voltage		0		70	V
l _F	Clamp diode forward current		0		2.0	А
Pd	Operating temperature		0		1.0	w

ELECTRICAL CHARACTERISTICS ($T_a = 25 \, \text{°C}$, value/circuit unless specified)

	Parameter		T		Limits		
Symbol		Test conditions		Min	Тур	Max	Unit
V(BR)CEO	Output breakdown voltage	I _{CEO} = 100 μA		80			V
Icch	Output "H" supply voltage	V _{CC} = 6V, V ₁ = V _{CC}				10	μΑ
ICCL	Output "L" supply voltage	$V_{CC} = 6V, V_1 = 0.5V$				10	mΑ
	Saturation output voltage	$V_{\rm CC} = 4V$	I _C = 1.8A , R _D = 30 Ω		0.8	1.5	
Voe(sat)		∨ _D = 4∨	$I_{\rm C} = 1.0 {\rm A}$, $R_{\rm D} = 50 {\rm }\Omega$		0.4	0.8	V
		∨i = 0.5∨	I _C = 0.7A, R _D = 100 Ω		0.3	0.6	
l ₁	Input current	Vi = V _{CC} - 0.5	v			-0.1	mΑ
		Vi=Vcc-6V				-0.1	INA
IO(leak)	Output lead current	V _{CE} =80V				100	μΑ
I _R	Clamp diode leak current	V _R = 80 V				50	μΑ
VR	Clamp diode reverse voltage	$I_{R} = 100 \mu\text{A}$		80			V
VF	Clamp diode forward voltage	F = 2.0A				3.0	V
ViH	"H" input voltage	$I_{O(leak)} = 50 \mu A$		V _{CC} -1.0			V
ViL	"L" input voltage	I _C = 2.0A				V _{CC} -3.5	V

TIMING DIAGRAM

TYPICAL SPEED (Example)

t _{PHL(A-Y)}	t _{PLH(A-Y)}	t _{THL(Y)}	t _{TLH(Y)}
500ns	11 μs	130ns	20ns

^{**: 400}mm² of copper film is added.

TEST CIRCUITS

TYPICAL CHARACTERISTICS

THERMAL DERATING 2.0 1.7 COPPER GILT 400mm² 1.2 1.0 STANDARD O 50 AMBIENT TEMPERATURE Ta (°C)

SAMPLE PCB LAYOUT

When you design a layout of a PCB, you have to consider the thermal derating. To improve the heat radiation of an IC, add a 400 mm² of copper film at the base of the GND pin. This will improve the thermal derating characteristics.

SATURATION OUTPUT VOLTAGE VS. DRIVE STAGE RESISTANCE

DRIVE STAGE RESISTANCE R_D (Ω)

DRIVE STAGE VIAS VOLTAGE VS. DRIVE STAGE RESISTANCE

DRIVE STAGE RESISTANCE R_D (Ω)

SATURATION OUTPUT VOLTAGE VS. OUTPUT CURRENT

OUTPUT CURRENT IC (A)

CLAMP DIODE FORWARD CURRENT VS. CLAMP DIODE FORWARD VOLTAGE

CLAMP DIODE FORWARD VOLTAGE VF (V)

CIRCUIT CURRENT VS. SUPPLY VOLTAGE

OUTPUT VOLTAGE VS. INPUT VOLTAGE

INPUT VOLTAGE Vi (V)

APPLICATION CIRCUIT (Stepping motor drive for a printer)

 $\ensuremath{\mathsf{V_{CC}}}, \ensuremath{\mathsf{DRIVE}}, \ensuremath{\mathsf{CLAMP}}, \ensuremath{\mathsf{AND}} \ensuremath{\mathsf{GND}} \ensuremath{\mathsf{ARE}} \ensuremath{\mathsf{THE}} \ensuremath{\mathsf{SAME}} \ensuremath{\mathsf{FOR}} \ensuremath{\mathsf{BOTH}} \ensuremath{\mathsf{CIRCUITS}}.$

