TS217 TP

Communications numériques multi-porteuses Les système OFDM

 $\label{lem:maxime_peterlin_ensemb} \begin{aligned} \text{Maxime PETERLIN - maxime.peterlin@enseirb-matmeca.fr} \\ \text{Gabriel VERMEULEN - gabriel@vermeulen.email} \end{aligned}$

ENSEIRB-MATMECA, Bordeaux

27 mars 2015

Contents

1	Introduction	2
2	Hypothèses et paramètres de simulation	2
3	Formalisme mathématique	2
4	Implémentation de la chaîne de communication4.1 Validation de l'implémentation4.2 Débit binaire utile	
5	Implémentation d'un égaliseur par forçage à zero	2
	$ \begin{array}{llllllllllllllllllllllllllllllllllll$	

1 Introduction

L'objectif de ce TP de communications numériques est de mettre en œuvre avec MATLAB le codage OFDM dans le cadre d'un canal Rayleigh.

2 Hypothèses et paramètres de simulation

- La modulation numérique est de type BPSK (symboles iid)
- Le temps symbole Ts est égale à $0.05~\mu s$
- Le nombre de sous-porteuses totales N est égale à 128
- Le nombre de sous-porteuses utilisées N_u est égale à 128
- Les symboles OFDM sont modulés et démodulés en utilisant respectivement les algorithmes IFFT et FFT
- Une trame OFDM contient $N_t = 500$ symboles OFDM
- Le canal de propagation est tel que $h_l(p) = \sum_{k=0}^{L-1} h_l[k] \delta[p-k]$, où les $h_l[k]$ sont iid et $h_l[k]$ $N_C(0, \frac{1}{L})$. On supposera que la réponse impulsionnelle (RI) du canal est invariante sur la durée d'une trame OFDM et que L << N
- La durée du préfixe cyclique est égale à $T_CP \geq LT_s$
- Le bruit $n_l[p] N_C(0, \sigma_{n_l}^2)$
- Les échantillons du signal OFDM, du canal et du bruit sont supposés décorrélés et indépendants

3 Formalisme mathématique

4 Implémentation de la chaîne de communication

4.1 Validation de l'implémentation

La chaîne de communication implémenté sous MATLAB est testée en vérifiant que le TEB est nul lorsqu'il n'y a pas de canal et pas bruit.

La courbe du TEB en fonction du bruit nous permet également d'avoir une confirmation du bon fonctionnement de notre chaîne de communication.

Figure 1: TEB en fonction du SNR

4.2 Débit binaire utile

5 Implémentation d'un égaliseur par forçage à zero

Le test de l'égaliseur se fait avec L = 16 et $\sigma_{n_l}^2$

Figure 2: TEB en fonction du SNR

6 Performances de la chaîne de communication

6.1 Avec $CP \ge L$

Figure 3: TEB en fonction du SNR pour la nème sous-porteuse

6.2 Avec CP; L

Figure 4: TEB en fonction du SNR pour la nème sous-porteuse