Derivatives

Thomas Cohn

Defn: $\lim_{t\to 0} \frac{f(\vec{a}+t\vec{u})-f(\vec{a})}{t} = T(\vec{u})$ We call this $f'(\vec{a};\vec{u})$ a <u>directional derivative</u>.

Defn: $T \in \text{Hom}(V, W)$ is said to be <u>bounded</u> if $\exists M \in \mathbb{R}_{>0}$ s.t. $||T(\vec{v})|| \leq M\vec{v}, \forall \vec{v} \in V$.

Defn: B(V, W) is the set of bounded linear maps $V \to W$.

With normed vector space V, for $\vec{a}, \vec{u} \in V$, define $g_{\vec{a}, \vec{u}} : \mathbb{R} \to V$, $t \mapsto \vec{a} + t\vec{u}$. Note that $g'_{\vec{a}, \vec{u}}(t) = \vec{u}$.

Return to $f: V \to W$. We have $(f \circ g_{\vec{a}, \vec{u}})'(0) = \frac{(f \circ g)(t) - f(g(0))}{t} = \frac{f(\vec{a} + \vec{u}t) - f(\vec{a})}{t}$, the directional derivative. This requires \vec{a} be an interior point of the domain of f.

If we λ -dilate Graph f centered at $(\vec{a}, f(\vec{a}))$, and let $\lambda \to \infty$, then the graph converges pointwise to some affine graph (if the limit exists).

To get theory on this, we need

- (1) $f'(\vec{a}; \vec{u}) = T(\vec{u})$ linear in \vec{u} .
- (2) $f(\vec{a}) + T(\vec{y} \vec{a}) \approx f(\vec{y})$.

Formally, for bounded T, $Df(\vec{a}) = T \to \lim_{h\to 0} \frac{||f(a+h)-f(h)-T(h)||}{||h||} = 0$. I need to check with Nikhil to make sure I have this written down right.

Prop: If Df(veca) exists and $\vec{u} \in V$, then $Df(\vec{a})(\vec{u})$ is $f'(\vec{a}; \vec{u})$.

Cor: $Df(\vec{a})$ is unique.

Proof: Directional derivatives are unique because they are limits. \square

Prop: $Df(\vec{a})$ exists implies that f is continuous at \vec{a} .

Proof: It is enough to show that $\vec{x} \to \vec{a}$ implies that $f(\vec{x}) \to f(\vec{a})$. So does $f(\vec{x}) - f(\vec{a}) \to 0$? need to check with Nikhil on this part too.

Special Cases:

(A)
$$W = \mathbb{R}^n$$
, $f = \begin{bmatrix} f_1 \\ \vdots \\ f_n \end{bmatrix}$, $A \subset \mathbb{R}^n$.

Prop: f is differentiable at $\vec{a} \leftrightarrow \text{each } f_j$ is differentiable at \vec{a} .

(B)
$$V = \mathbb{R}^m$$
. $Df(\vec{a}) = \begin{bmatrix} u_1 \\ \vdots \\ u_m \end{bmatrix} = \sum_{j=1}^m u_j T(e_j) = \sum_{j=1}^m u_j f'(\vec{a_j}; \vec{e_j})$ for $T = Df(\vec{a})$, and f' directional

derivative. This is the partial derivative.