Heart attack predictions

Objective

Performing the Exploratory Data Analysis & regressive machine learning on this dataset

Handling the dataset

Before getting into the EDA, It's important to mine the data for increasing the efficiency in EDA.

About Dataset(heart.csv)

Age: Age of the patient

Sex : Sex of the patient

exang: exercise induced angina (1 = yes; 0 = no)

ca: number of major vessels (0-3)

cp : Chest Pain type chest pain type

Value 1: typical angina

Value 2: atypical angina

Value 3: non-anginal pain

Value 4: asymptomatic

trtbps: resting blood pressure (in mm Hg)

chol: cholestoral in mg/dl fetched via BMI sensor

fbs: (fasting blood sugar > 120 mg/dl) (1 = true; 0 = false)

rest_ecg: resting electrocardiographic results

Value 0: normal

Value 1: having ST-T wave abnormality (T wave inversions and/or ST elevation or depression of > 0.05 mV)

Value 2: showing probable or definite left ventricular hypertrophy by Estes' criteria

thalach: maximum heart rate achieved

Questions about the dataset

Analysis-1: What is the maximum age count of the heart patients? What is the % of male and female patients?

Analysis-2: What is the maximum blood pressure, cholesterol and heart rate count of the patients?

Analysis-3: Does blood pressure, maximum heart rate and cholesterol vary with increase in the age of the patients?

Analysis-4: Does cholesterol incerases the chance of causing heart attack?

Analysis-5: Does max heart rate & blood pressure incerases the chance of causing heart attack?

Analysis-6: When patients suffers from chest pain, is it due to high pulse rate?

Analysis-7: Does blood pressure,max pulse rate & cholesterol vary with the gender?

import numpy as np
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
import plotly.express as px
df= pd.read_csv('heart.csv')
print(df.head())

	age	sex	сp	trtbps	chol	fbs	restecg	thalachh	exng	oldpeak	slp	caa	thall	output
0	63	1	3	145	233	1	0	150	0	2.3	0	0	1	1
1	37	1	2	130	250	0	1	187	0	3.5	0	0	2	1
2	41	0	1	130	204	0	0	172	0	1.4	2	0	2	1
3	56	1	1	120	236	0	1	178	0	0.8	2	0	2	1
4	57	0	0	120	354	0	1	163	1	0.6	2	0	2	1

#Data wrangling

df.info()

#

Data columns (total 14 columns): # Column Non-Null Count Dtype 0 age 303 non-null int64 1 sex 303 non-null int64 2 cp 303 non-null int64 3 trtbps 303 non-null int64 4 chol 303 non-null int64 5 fbs 303 non-null int64 6 restecg 303 non-null int64 7 thalachh 303 non-null int64 8 exng 303 non-null int64 9 oldpeak 303 non-null float64 10 slp 303 non-null int64

RangeIndex: 303 entries, 0 to 302

```
11 caa
           303 non-null int64
12 thall
          303 non-null int64
13 output 303 non-null int64
dtypes: float64(1), int64(13)
memory usage: 33.3 KB
df.isnull().sum()
        0
age
        0
sex
ср
       0
trtbps
        0
chol
        0
fbs
restecg
         0
thalachh 0
exng
        0
oldpeak
         0
slp
       0
       0
caa
thall
       0
output 0
dtype: int64
train_df=df['sex'].replace([0,1],['Female','Male'], inplace=False)
train_df
0
     Male
1
     Male
2
    Female
3
     Male
4
    Female
298 Female
299
      Male
300
      Male
301
      Male
302 Female
Name: sex, Length: 303, dtype: object
df.duplicated().sum()
1
```

df.drop_duplicates(keep='first')

#Checking the outlier

	age	sex	сp	trtbps	chol	fbs	restecg	thalachh	exng	oldpeak	slp	caa	thall	output
0	63	1	3	145	233	1	0	150	0	2.3	0	0	1	1
1	37	1	2	130	250	0	1	187	0	3.5	0	0	2	1
2	41	0	1	130	204	0	0	172	0	1.4	2	0	2	1
3	56	1	1	120	236	0	1	178	0	0.8	2	0	2	1
4	57	0	0	120	354	0	1	163	1	0.6	2	0	2	1
•••														
298	57	0	0	140	241	0	1	123	1	0.2	1	0	3	0
299	45	1	3	110	264	0	1	132	0	1.2	1	0	3	0
300	68	1	0	144	193	1	1	141	0	3.4	1	2	3	0
301	57	1	0	130	131	0	1	115	1	1.2	1	1	3	0
302	57	0	1	130	236	0	0	174	0	0.0	1	1	2	0

$302 \text{ rows} \times 14 \text{ columns}$

```
q1= df.quantile(0.25)
q3= df.quantile(0.75)

IQR= q3-q1
upper_outlier= q3+IQR*1.5
lower_outlier= q1-IQR*1.5

upper_dict=dict(upper_outlier)
lower_dict= dict(lower_outlier)

for a,b in df.items():
    b_col = b[( b<= lower_dict[a]) | (b >= upper_dict[a])]
    perc = np.shape(b_col)[0] * 100.0 / np.shape(df)[0]

print("Column {} outliers = {} => {}%".format(a,len(b_col),round((perc),2)))
```

```
Column age outliers = 0 \Rightarrow 0.0\%

Column sex outliers = 0 \Rightarrow 0.0\%

Column cp outliers = 0 \Rightarrow 0.0\%

Column trtbps outliers = 13 \Rightarrow 4.29\%

Column chol outliers = 5 \Rightarrow 1.65\%

Column fbs outliers = 303 \Rightarrow 100.0\%

Column restecg outliers = 0 \Rightarrow 0.0\%

Column thalachh outliers = 1 \Rightarrow 0.33\%

Column exng outliers = 0 \Rightarrow 0.0\%

Column oldpeak outliers = 0 \Rightarrow 0.0\%

Column slp outliers = 0 \Rightarrow 0.0\%

Column caa outliers = 0 \Rightarrow 0.0\%

Column thall outliers = 0 \Rightarrow 0.0\%

Column thall outliers = 0 \Rightarrow 0.0\%
```

#transformation of outliers

```
df["fbs"]= np.log(df.age)

df["trtbps"]= np.log(df.trtbps)

df["chol"]= np.log(df.chol)

df["thalachh"]= np.log(df.thalachh)

print("---Log Transform of outliers performed---")
---Log Transform of outliers performed---")
```

#Exploratory Data Analysis

#Analysis-1

```
plt.figure(figsize=(20,10))
sns.countplot(x=df["age"])
plt.title('Patients age count',fontsize=20)
plt.xlabel('Age',fontsize=20)
```

plt.ylabel('Count',fontsize=20)

plt.show()

s=df["sex"].value_counts().reset_index()
px.pie(s,names="index",values="sex",title='percentage of male & female patients')

#Observation:

#Maximum age count of the heart patients is 58

#Percentage of male patients is 68.3% and female patients is 31.7%

```
#Analysis-2
#Analysis-3
#Analysis-4
#Analysis-5
#Analysis-6
#Analysis-7
```

#Basics of Machine learning

```
# droping the column 'drop' as it's unecessary for the predictions  X = df.drop('output', axis=1)   y = df['output']
```

#importing sklearn libraries

from sklearn.preprocessing import StandardScaler
from sklearn.model_selection import train_test_split
from sklearn.neighbors import KNeighborsClassifier
from sklearn.linear_model import LogisticRegression
from sklearn.ensemble import RandomForestClassifier
from sklearn.model_selection import cross_val_score
from sklearn import metrics

#Fitting & transforming the data

scaler=StandardScaler()

```
X = pd.DataFrame(scaler.fit\_transform(X))
```

X_train,X_test,y_train,y_test=train_test_split(X,y,test_size=0.2,random_state=0)

```
knn=KNeighborsClassifier(n_neighbors=5)
```

knn.fit(X_train,y_train)

y_pred=knn.predict(X_test)

print(metrics.classification_report(y_test,y_pred))

```
precision recall f1-score support

0 0.83 0.70 0.76 27
1 0.79 0.88 0.83 34

accuracy 0.80 61
macro avg 0.81 0.79 0.80 61
weighted avg 0.81 0.80 0.80 61
```

df.head()

ag e	se x	c p	trtbp s	chol	fbs	restecg	thalach h	exng	oldpea k	sl p	ca a	thal l	outp ut	
0	63	1	3	4.97673 4	5.45103 8	4.14313 5	0	5.01063 5	0	2. 3	0	0	1	1
1	37	1	2	4.86753 4	5.52146 1	3.61091 8	1	5.23110 9	0	3. 5	0	0	2	1
2	41	0	1	4.86753 4	5.31812 0	3.71357 2	0	5.14749 4	0	1. 4	2	0	2	1
3	56	1	1	4.78749 2	5.46383 2	4.02535	1	5.18178 4	0	0. 8	2	0	2	1
4	57	0	0	4.78749 2	5.86929 7	4.04305 1	1	5.09375 0	1	0. 6	2	0	2	1

#checking the accuracy of the model

model= RandomForestClassifier()

 $model.fit(X_train,y_train)$ $predict_df=model.predict(X_test)$ $metrics.accuracy_score(y_test,predict_df)$