BEST AVAILABLE COPY

Making weak line or desired break line with laser

Patent number:

DE19636429

Publication date:

1997-11-20

Inventor:

LUTZE WALTER [DE]; SCHMIEDER FRANK [DE];

SCHWARZE RALF [DE]; SCHULZE RAINER [DE];

SCHUSTER ULRICH [DE]; SCHMIDT WOLFGANG [DE]

Applicant:

JENOPTIK JENA GMBH [DE]

Classification:

- international:

B23K26/00

- european:

B23K26/03; B23K26/38B4

Application number: DE19961036429 19960907

Priority number(s): DE19961036429 19960907

Abstract of **DE19636429**

The method involves local removal to form blind holes arranged in a row and separated by struts using a pulsed laser beam. The line is formed by moving the material and the laser beam w.r.t. each other. The laser light transmitted through each blind hole is measured after each pulse and the detector signal (1.1) integrated after each detection. The integral is compared with a desired value defined for each blind hole and correlated with the desired residual wall thickness. The laser is switched off when the desired thickness is reached. The process is repeated for the struts to complete the line.

Data supplied from the esp@cenet database - Worldwide

EP0827802 (A1)
US5882572 (A1)
JP10085966 (A)
EP0827802 (B1)

(9) BUNDESREPUBLIK

DEUTSCHLAND

Patentschrift [®] DE 19636429 C1

(51) Int. Cl.6: B 23 K 26/00

DEUTSCHES

PATENTAMT

Aktenzeichen:

196 36 429.9-34

Anmeldetag:

7. 9.96

Offenlegungstag:

Veröffentlichungstag

der Patenterteilung: 20. 11. 97

Innerhalb von 3 Monaten nach Veröffentlichung der Erteilung kann Einspruch erhoben werden

(73) Patentinhaber:

JENOPTIK AG, 07743 Jena, DE

(72) Erfinder:

Lutze, Walter, 07747 Jena, DE; Schmieder, Frank, 07616 Bürgel, DE; Schwarze, Ralf, 21337 Lüneburg, DE; Schulze, Rainer, 07745 Jena, DE; Schuster, Ulrich, 07747 Jena, DE; Schmidt, Wolfgang, 59494 Soest, DE

Für die Beurteilung der Patentfähigkeit in Betracht gezogene Druckschriften:

> DE 39 43 523 C2

> DE 43 20 341 A1

US 51 01 090 US

45 49 063 EP 02 34 805 B1

(6) Verfahren zur Herstellung einer Schwächelinie mittels Laser

Die Erfindung betrifft ein Verfahren zur Herstellung einer Schwächelinie in ein Flachmaterial durch einseltig örtliches Abtragen des Flachmaterials mittels steuerbare gepulster Laserstrahlung. Die entstehende Schwächelinie ist auf der unbearbeiteten Oberfläche des Flachmaterials nicht sichtbar und weist eine reproduzierbare konstante Bruchfestigkeit auf.

Die Erfindung betrifft ein Verfahren zur Herstellung einer Schwächelinie in ein Flachmaterial durch einseitig örtliches Abtragen des Flachmaterials mittels steuerbarer gepulster Laserstrahlung. Das Flachmaterial kann eben oder auch räumlich geformt sein.

Es ist für viele Verwendungszwecke üblich, Materialschwächung in Linienform vorzunehmen, um eine Sollbruchlinie zu schaffen, die im Bedarfsfall durch Kraft- 10 einwirkung gebrochen wird, um die anliegenden Materialteile voneinander zu trennen oder eine Öffnung zu bilden. Es ist stets von Vorteil, wenn diese Sollbruchlinie über ihre Länge eine konstante Bruchfestigkeit aufgen kann. Für verschiedene Anwendungen ist es aus sicherheitstechnischen Gründen sogar erforderlich, daß die Bruchfestigkeit konstant und reproduzierbar herstellbar ist. Eine solche Anwendung ist beispielsweise eine Airbag-Abdeckung. Aus ästhetischen Gründen be- 20 steht hier teilweise noch die Forderung, daß die Sollbruchlinie für den Fahrzeuginsassen mit bloßem Auge nicht sichtbar sein soll.

Will man die Vorzüge der Lasermaterialbearbeitung sich die Erfüllung der Forderungen nach einer reproduzierbaren, konstanten Bruchfestigkeit als schwierig dar.

Eine reproduzierbare, konstante Bruchfestigkeit erfordert im wesentlichen eine konstante und reproduzierbar herstellbare Restwandstärke im Bereich der 30 Schwächelinie. Diese läßt sich über einen gleichmäßig tiefen Abtrag dann erreichen, wenn das Material eine konstante Dicke aufweist.

Doch selbst bei homogenen Materialien konstanter Dicke läßt sich eine definierte Restwandstärke mit einem ungesteuerten Bearbeitungslaser kaum erreichen. Schwankungen in der Strahlungsqualität und Strahlungsleistung führen zu entsprechenden Schwankungen in der Bearbeitungstiefe. Eine Steuerung des Lasers in Abhängigkeit von der Abtragstiefe wird erforderlich, 40 was die Erfassung der Abtragstiefe voraussetzt.

Die Verwendung von mechanischem Meßmitteln und somit eine berührende Erfassung der Abtragstiefe scheidet schon aufgrund der geringen Schnittfugenbrei-

Ebenso können elektrische oder magnetische Meßverfahren nicht angewendet werden bei der Bearbeitung elektrisch nichtleitender Materialien.

In der DE 39 43 523 C2 wird ein Verfahren zum Abtragen, insbesondere metallischer Werkstücke mit La- 50 serstrahlung, beschrieben.

Dort erfolgt eine Regelung der einwirkenden Laserstrahlungsintensität über ein Ein- und Abschalten des Lasers in Abhängigkeit der erfaßten Wärmestrahlung, was für höhere Bearbeitungsgeschwindigkeiten ungeeignet scheint. Zur Verbesserung der Genauigkeit wird die Abtragstiefe gemessen und für eine Grenzwertkorrektur herangezogen. In der Beschreibung der DE 39 43 523 C2 wird erläutert, daß die Messung der Abtragstiefe beispielsweise mit einem nach dem Trian- 60 gulationsprinzip arbeitenden optischen Sensor erfolgt. Die Anwendbarkeit dieses Meßprinzips ist jedoch beschränkt auf Schnitte mit senkrechtem Verlauf, Schnittfugenbreiten größer dem Querschnitt des Meßstrahls und einen linearen Schnittverlauf. Darüber hinaus ist 65 dieses Meßprinzip ebenso wie andere Meßprinzipien. welche die Abtragstiefe erfassen, nicht geeignet, um auf die verbleibende Restwandstärke zu schließen, sobald

die Materialdicke nicht konstant ist.

Der Einfluß einer nicht konstanten Materialstärke auf die Bruchfestigkeit der Sollbruchlinie läßt sich nur durch einen in Abhängigkeit von der erfaßten Restwandstärke geregelten Abtrag ausschließen. Hier scheint sich eine Lösung gemäß DE 43 20 341 AI anzubieten. Es wird ein Verfahren zum Abtragen von Deckschichten von Glasbauteilen mit Laserstrahlung offenbart, bei welchem der Abtragvorgang in Abhängigkeit von Transmissionswerten geregelt wird.

Hier besteht die Aufgabe darin, die Deckschicht eines Glasbauteils dahingehend gezielt und definiert abzutragen, daß eine Restdeckschicht mit vorgegebener Schichtdickenverteilung auf dem Glasbauteil zurückweist, damit eine Trennung mit konstanter Kraft erfol- 15 bleibt. Über die Messung des Transmissionsgrades an der Bearbeitungsstelle läßt sich auf die noch vorhandene Schichtdicke auf dem Glasbauteil schließen. Damit ist dieses Meßverfahren insbesondere geeignet für den Abtrag ungleichmäßiger Schichtdicken bis auf eine vorgegebene Restschichtdicke, ohne daß zuvor die Topologie der ungleichmäßigen Deckschicht ermittelt werden muß.

Zur Bestimmung der Restschichtdicke wird an der Bearbeitungsstelle die Intensität einer transmittierten zur Herstellung solcher Schwächelinien nutzen, stellt 25 Meßstrahlung nach jedem Bearbeitungslaserpuls gemessen und der Meßwert an einen Prozeßrechner weitergegeben. Durch Verknüpfung einzelner Meßwerte können verschiedene Bewertungskriterien, wie die Abtragseffizienz und relative Transmission, bestimmt werden. Der Meßwert als Einzelwert wird mit einem Schwellwert verglichen und dient bei dessen Überschreitung als Abschaltkriterium zur Beendigung des Abtragsvorganges.

Ahnlich erfolgt die Steuerung der Laserstrahlung im US-Patent 5,101,090. Hier werden ein Verfahren und eine Anordnung zur kontrollierten Entfernung eines Teiles der Ummantelung einer optischen Faser beschrieben, um an dieser Stelle Strahlung einkoppeln zu können. Der Materialabtrag erfolgt mittels Laserstrahlung, deren Einwirkungsdauer über die Erfassung der an der Bearbeitungsstelle transmittierenden Laserstrahlung gesteuert wird. Die Laserstrahlung wird dann abgeschaltet, wenn die transmittierende Laserstrahlung ihr Maximum erreicht, so daß die Ummantelung an der 45 Bearbeitungsstelle vollständig abgetragen ist, jedoch eine Beschädigung der optischen Faser vermieden wird.

Wie praktische Versuche gezeigt haben, lassen sich Lösungen gemäß DE 43 20 341 und US 5,101,090 nicht mit Erfolg zur Erzeugung einer Schwächelinie in gewünschter Qualität anwenden.

Im Gegensatz zum beschriebenen Abtragen von Deckschichten auf Glasbauteilen gemäß DE 43 20 341, wo der Abtrag flächig erfolgt und somit sich entstehende Verbrennungsrückstände und Verdampfungsgase sofort flächig verteilen und verflüchtigen, bleiben diese entstehenden Gase und Rückstände bei einem linienförmigen Abtrag, insbesondere wenn die Abtragsbreite wesentlich kleiner als die Abtragstiefe ist, am Abtragsort länger konzentriert und verfälschen durch ihre Absorption die Transmissionswerte.

Zum besseren Verständnis sind in Fig. 1 und Fig. 2 zwei Meßwertdiagramme dargestellt. Der in Fig. 1 aufgezeichnete Detektorsignalverlauf 1.1 entspricht in etwa dem theoretischen Signalverlauf und entsteht z.B bei dem Abtragsvorgang an einem homogenen Material, bei welchem die Abtragsbreite sehr groß ist im Verhältnis zur Abtragstiefe und die Abtragsgeschwindigkeit gering ist Nach Überschreitung des Rauschpegels steigt der Pegel des Detektorsignals 1.1 kontinuierlich an.

Im Gegensatz hierzu ist der Anstieg des Detektorsignalverlaufs 1.2, wie er bei einem linienförmigen Abtrag von inhomogenen Material entsteht unstetig, d.h. der Anstieg ist im wesentlichen diskontinuierlich, erfaßte Nachfolgesignale haben sogar teilweise einen niedrigeren Pegel als ihr Vorgängersignal. Daß der Anstieg des Detektorsignalverlaufes 1.2 nicht kontinuierlich ist, läßt sich u. a. mit den inhomogenen Materialeigenschaften des bearbeiteten Flachmaterials erklären, was bei glei- 10 chen Strahlungsparametern zu unterschiedlichen Abtragstiefen führt. Nicht erklären läßt sich damit der teilweise negative Anstieg bzw. Nullanstieg des Signalver-

Diese Erscheinung hat ihre Ursache im wesentlichen 15 in der bereits erwähnten Entwicklung und Verdichtung entstehender Verbrennungsrückstände und Verdampfungsgase an der unmittelbaren Bearbeitungsstelle. Diese absorbieren die Laserstrahlung mit ihrer Verdichtung zunehmend, so daß der Signalpegel nicht mit der Ab- 20 tragstiefe korreliert. Die Überschreitung des Schwellwertes 2 erfolgt abrupt, häufig erst nach unerwünschtem Durchbruch des Materials an der Bearbeitungsstelle. Eine mehrfache Wiederholung der Bearbeitung führt trotz gleicher Verfahrensparameter und Randbedingun- 25 gen zu unterschiedlichen Signalverläufen. Der Grund dafür wird in der zeitlich und räumlich ungleichmäßigen Verteilung der Verbrennungsrückstände und Verdampfungsgase im entstandenen Materialgraben vermutet. was dadurch bestärkt wird, daß die Abweichungen des 30 Detektorsignalverlaufes von dem Detektorsignalverlauf 1.1 mit zunehmender Bearbeitungsgeschwindigkeit größer werden. Eine Abschaltung des Lasers (Abbruch des Steuersignals 3) bei Überschreitung des Schwellwertes 2 durch den Signalpegel führt zu einer Sollbruch- 35 linie stark schwankender Abtragstiefe.

Zur Erzeugung einer mit bloßem Auge nicht sichtbaren Sollbruchlinie konstanter Restwandstärke und damit konstanter und reproduzierbarer Bruchfestigkeit, ist dieses Verfahren aus den angeführten Gründen nicht 40

Eine eventuelle Verfälschung der Transmissionswerte durch Absorption von Gasen und Verbrennungsrückständen ist für den örtlich vollständigen Materialabtrag gemäß US 5,101,090 ohne Belang, da hier als Abschalt- 45 kriterium nicht eine bestimmte Intensität der Transmissionsstrahlung gilt, welche mit einer Restwandstärke korreliert, sondern die maximal erreichbare Intensität die bei vollständigem Materialabtrag erzielt wird.

Die Herstellung von Schwächelinien durch Erzeu- 50 gung von aneinandergereihten Sacklöchern mittels Laser ist unter anderem aus EP 0234805 B1 und US 4,549,063 bekannt.

Der Erfindung liegt die Aufgabe zugrunde, ein Verfahren zu entwickeln, mit welchem mittels steuerbarer 55 gepulster Laserstrahlung eine mit bloßem Auge nicht sichtbare Schwächelinie reproduzierbarer und konstanter Bruchfestigkeit in einem Flachmaterial hergestellt werden kann.

sein, wenn dieses Flachmaterial aus mehreren, auch inhomogenen Schichten besteht und in seiner Dicke nicht konstant ist.

Diese Aufgabe wird mit einem Verfahren zur Erzeu-Vorteilhafte Ausführungen sind in den Unteransprüchen angegeben.

Die Erfindung greift den aus dem Stand der Technik

bekannten Grundgedanken auf, den Abtrag bis auf eine bestimmte Flachmaterialstärke über die Erfassung einer durch dieses Flachmaterial transmittierenden Strahlung zu steuern. Jedoch erst durch den erfindungsgemäßen Schritt der Integralwertbildung über die detektierte Transmissionsstrahlung wird ein Wert gewonnen, welcher trotz undefinierter Beeinflussung der Transmissionsstrahlung durch Materialinhomogenitäten und Ausbildung von Verbrennungsrückstände und Verdampfungsgasen gut mit der verbleibenden Restwandstärke korreliert. Dieses setzt jedoch voraus, daß die Schwächelinie keine Schnittfuge ist, sondern durch eine Aneinanderreihung von Sacklöchern gebildet wird. Mit den Sacklöchern werden örtlich begrenzte Räume geschaffen, in denen die entstehenden Gase zumindest über den kurzen Zeitraum der Bearbeitung fast vollständig verbleiben. Die Beeinflussung der Strahlung durch die absorbierenden Gase ist dadurch bei der Herstellung der einzelnen Sacklöcher gleich. Darüber hinaus wird durch den lochweisen Abtrag sicher gestellt. daß die detektierte Strahlung ausschließlich eine Transmissionsstrahlung durch den Boden des gerade bearbeiteten Sackloches ist. Gleiche Integralwerte lassen daher den Schluß auf wenigstens annähernd gleiche Restwandstärken zu.

Die Abschaltung der Laserstrahlung bei einer gewünschten Restwandstärke wird um so genauer, je besser das Signal-Rauschverhältnis und damit mehr Signale detektiert und zur Integralwertbildung herangezogen werden. Durch die Steuerung des Lasers in Abhängigkeit von einem Integralwert, werden auch die Materialinhomogenitäten relativiert, wodurch sich das Verfahren als besonders vorteilhaft für die Bearbeitung inhomogener Materialien eignet.

Die Herstellung einer Schwächelinie durch Abtrag des Flachmaterials in Form von Sacklöchern hat bezüglich der beiden Forderungen, konstante Bruchfestigkeit und Nichtsichtbarkeit, weitere Vorteile:

- während bei der Schaffung einer Schwächelinie durch Einschneiden nur die Restwandstärke in der Schnittfuge als geometrische Größe zur Erlangung einer bestimmten Bruchfestigkeit variierbar ist, kann bei einer Aneinanderreihung von Sacklöchern (im weiteren Perforationslinie genannt) auch die Steg breite zwischen den Sacklöchern variiert wer-
- das Restmaterial muß beim Abtrag in Form einer Schnittlinie so stark sein, daß es sich nicht in die Schnittfuge einlegt und somit sichtbar wird. Dieses Einlegen wird bei der Perforationslinie auch bei weit geringeren Restwandstärken durch die als Stütze wirkenden Stege vermieden.
- eine über die gesamte Perforationslinie konstante Bruchfestigkeit läßt sich auch erzielen, wenn die Sacklöcher unterschiedliche Restwandstärken aufweisen, die sich periodisch wiederholen.

Insbesondere, wenn eine Schwächelinie in ein mehr-Das Verfahren soll auch dann mit Erfolg anwendbar 60 schichtiges Verbundmaterial eingebracht werden soll, erweisen sich in Abhängigkeit der Festigkeit der einzelnen Schichten verschiedene Schwächelinienstrukturen, d.h. verschiedene Folgen von Restwandstärken, als mehr oder weniger vorteilhaft. So kann in mehrschichtigung einer Schwächelinie gemäß Anspruch 1 gelöst. 65 gen Materialien, bei denen die einzelnen Materialschichten eine hohe Festigkeit aufweisen, die Schwächelinie in einer Struktur erzeugt werden, bei der sämtliche Sacklöcher eine gleiche minimale Restwandstärke auf-

weisen. Je geringer die Restwandstärke, desto geringer ist die Bruchfestigkeit des Flachmaterials, vorausgesetzt, die Materialkonstanten der Schichten und die Stegbreiten sind unverändert. Geringe Restwandstärken und schmale Stegbreiten führen jedoch zu einer starken thermischen Belastung, die ebenso wie Materialerschlaffungen infolge von Alterung dazu führen kann, daß sich das Restmaterial in die Sacklöcher einlegt und so die Schwächelinie auch von der unbearbeiteten Flachmaterialseite her sichtbar wird. Dies tritt beson- 10 ders dann auf, wenn einzelne Materialschichten, insbesondere die unterhalb der Oberflächenschicht befindlichen Schichten so weich sind, daß die verbleibenden Stege ihrer Stützfunktion nicht mehr gerecht werden können. Um dieses zu vermeiden, erfolgt ein Abtrag im 15 periodischen Wechsel auf verschiedene Tiefen, wodurch im weichen Material eine deutlich größere Stegbreite erhalten bleibt und die Oberflächenschicht thermisch geringer belastet wird. Die Reißfestigkeit der Schwächelinie wird dadurch unbedeutend erhöht, die Gefahr 20 der entstehenden Sichtbarkeit der Schwächelinie jedoch vermieden.

Besonders vorteilhaft ist das erfindungsgemäße Verfahren, wenn die Schwächelinie in ein Verbundmaterial eingebracht wird, deren Oberflächenschicht räumlich 25 strukturiert ist. Die Reißfestigkeit der Schwächelinie ist homogen trotz Schwankung der Materialstärke der Oberflächenschicht durch deren Strukturierung, da erfindungsgemäß auf eine definierte Restwandstärke abgetragen wurde. Vorteilhaft gegenüber einem Flachma- 30 terial mit ebener unstrukturierter Oberfläche ist, daß Einschmiegungen des Restmaterials in die Sacklöcher schlechter durch das menschliche Auge wahrgenommen werden. Noch schlechter wahrnehmbar sind Einschmiegungen oder auch Durchbrüche, wenn die Schwächeli- 35 nie nicht kontinuierlich verläuft. Schwächelinien, die mit bloßem Auge nicht erkennbar sein sollen, sind in der Regel nicht dazu vorgesehen, daß sie mit gezielter Krafteinwirkung in Linienrichtung gebrochen werden, sondern durch eine flächige einwirkende Kraft bricht 40 das Flachmaterial entlang der Schwächelinien und schafft dadurch eine Öffnung im Flachmaterial. Üblich ist es, die Schwächelinie gleich der Umfangslinie der gewünschten Öffnung zu erzeugen. Um jedoch die Wahrscheinlichkeit des Sichtbarwerdens zu verringern, 45 ist eine um diese Umfangslinie alternierender Schwächelinienverlauf von Vorteil. Dabei kann die Schwächelinie stochastisch um die Umfangslinie alternierend oder auch bei ähnlicher Oberflächenstruktur einer bestimmten Funktion folgend. Mit einer entsprechend groben 50 Oberflächenstruktur und einem an diese angepaßten Schwächelinienverlauf können sogar die Sacklöcher der Schwächelinie mit einer Restwandstärke Null erzeugt werden, ohne daß diese mit bloßem Auge wahrgenommen werden können, sofern die Durchbrüche nur klein 55 genug sind, was mittels Laser gut erreichbar ist.

Grundsätzlich kann das erfindungsgemäße Verfahren auf alle mit Laser bearbeitbaren Flachmaterialien angewendet werden, sofern wenigstens die Oberflächenschicht für wenigstens eine Laserwellenlänge transparent ist. Vorteilhafterweise ist dies die Wellenlänge des Bearbeitungslasers. Lediglich technisch aufwendiger, im wesentlichen aber ebenso realisierbar, ist eine zusätzliche Beaufschlagung des Bearbeitungsortes mit einer Meßstrahlung, deren transmittierender Anteil erfaßt 65 wird.

Als Oberflächenschicht können Kunststoffe sowie Leder, Gummi, Kautschuk technische Textilien und papierähnliche Flachmaterialien vorteilhaft bearbeitet werden. Anstelle der Schaumstoffschicht und der Holzformschicht des ersten Ausführungsbeispiels kann die Oberflächenschicht auf verschiedene ein- oder mehrschichtige Flachmaterialien aufgebracht sein, wie beispielsweise Kunststoffverbundmaterialien und -laminate sowie Holz, Gummi, Kautschuk und Karton.

In einem ersten Ausführungsbeispiel ist das Flachmaterial ein Verbundmaterial, bestehend aus drei verschiedenen inhomogenen Materialschichten, einer festen, dem Verbundmaterial seine Stabilität gebenden Trägerschicht aus Holzformstoff, einer weichen Schaumschicht und einer dünnen TPO-Folie als Oberflächenschicht. Zur Erreichung der gewünschten Bruchfestigkeit wurde eine Schwächelinienstruktur ausgewählt mit abwechselnder Folge von je zwei Sacklöchern mit -Restwandstärke a und je zwei Sacklöchern der Restwandstärke b bei konstanter Steg breite c. Die Restwandstärke a, kleiner der Dicke der TPO-Folie wurde in Abhängigkeit der Materialparameter der TPO-Folie so festgelegt, daß die Folie teilweise abgetragen wird, jedoch das Restmaterial ausreichend stark ist, um auch über lange Zeit formstabil zu bleiben. Die Restwandstärke b, größer der Dikke der TPO-Folie wurde so festgelegt, daß die Trägerschicht vollständig durchdrungen wird, während in der Schaumschicht höchstens ein geringer Abtrag erfolgt. Dadurch bleibt der Schaum über größere Steg breiten zur Stützung der Folie erhalten, während die Trägerschicht kontinuierlich geschwächt wird. Die Schaumschicht und die TPO-Folie weisen einen Transmissionsgrad für die Wellenlänge des Bearbeitungslasers von deutlich größer Null auf.

Zur Durchführung des erfindungsgemäßen Verfahrens wird ein in der Pulsleistung und Pulsfolge steuerbarer Laserstrahl auf das Verbundmaterial seitens der Trägerschicht gerichtet. Unterhalb des Verbundmaterials, seitens der TPO-Folie, ist in Richtung des Laserstrahls ausgerichtet, ein Sensor angeordnet, welcher den durch das Verbundmaterial transmittierenden Anteil des Laserstrahles detektiert. Die Parameter des Detektors und der Laserstrahlungsquelle sind so aufeinander abgestimmt, daß ein erstes Signal dann detektiert wird, wenn die Trägerschicht am Bearbeitungsort vollständig abgetragen ist. Zwischen dem Laserstrahl und dem Verbundmaterial erfolgt eine Relativbewegung in Richtung der zu erzeugenden Schwächelinie. Diese Relativbewegung kann entweder eine kontinuierliche Bewegung sein mit einer Geschwindigkeit vernachlässigbar gering zur Pulsfrequenz, kleiner der maximalen Abtragsgeschwindigkeit oder die Bewegung wird stets während der Beaufschlagung des Verbundmaterials mit der Laserstrahlung unterbrochen.

Die Bearbeitung des Verbundmaterials beginnt mit einem Pulsregime für hohe Pulsleistungen, was ein schnelles Durchdringen der Trägerschicht ermöglicht. Mit der Detektion eines ersten Signals wird das Pulsregime verändert, um es dem Abtragverhalten der Schaumstoffschicht anzupassen. Insbesondere wird die Pulsdauer kleiner gewählt, was eine geringe thermische Belastung zur Folge und Verlangsamung des Abtrages zur Folge hat. Je langsamer der Abtrag erfolgt, desto mehr Signale werden detektiert. Nach jedem Signalempfang wird über die bereits detektierten Signale ein Integral gebildet und der Integralwert mit einem Komparatorwert verglichen. Sobald der Integralwert den Komparatorwert erreicht, welcher in vorherigen Versuchen als Korrelationswert zur Restwandstärke a ermittelt wurde, wird die Laserstrahlung abgeschaltet. Analog wird das zweite Loch im Stegabstand c zum ersten Loch erzeugt. Bei der Erzeugung des dritten und vierten Loches wird die Laserstrahlung bereits dann abgeschaltet, wenn der gebildete Integralwert den Komparatorwert b erreicht. Da dessen Integralwert bereits nach 5 Detektieren eines Signals oder nur weniger Signale erreicht wird, ist die Genauigkeit der verbleibenden Restwandstärke auch geringer. Dies ist jedoch nicht von Nachteil, da ein geringfügiges Eindringen in den Schaumstoff mit unterschiedlicher Tiefe keinen Einfluß auf die Bruchfestigkeit der Schwächelinie insgesamt hat.

Patentansprüche

- 1. Verfahren zur Erzeugung einer Schwächelinie in ein Flachmaterial durch einseitiges örtliches Abtragen des Flachmaterials in Form von Sacklöchern, die linienförmig aneinandergereiht angeordnet und untereinander jeweils durch einen Steg getrennt sind, mittels steuerbarer gepulster Laserstrahlung, wobei eine Relativbewegung zwischen der Laserstrahlung und dem Flachmaterial in Richtung der zu erzeugenden Schwächelinie erfolgt, gekennzeichnet durch folgende Schritte:
 - Detektion einer durch den Boden des jeweiligen Sacklochs transmittierenden Laserstrahlung nach jedem Laserpuls
 - Integralwertbildung über die bei der Erzeugung eines Sackloches erhaltenen Detektorsignale nach jeder Detektion,
 - Vergleich des Integralwertes mit einem für das jeweilige Sackloch vorgegebenen und mit der gewünschten Restwandstärke korrelierenden Sollwertes,
 - Abschalten der Laserstrahlung bei Errei- 35 chen des Sollwertes
 - Anschalten der Laserstrahlung nach erfolgter Relativbewegung über eine vorgegebene Strecke, welche für die gewünschte Stegbreite zwischen zwei benachbarten Sacklöchern bestimmend ist und Wiederholung der Verfahrensschritte, bis die Schwächelinie in vollständiger Länge erzeugt ist.
- Verfahren zur Erzeugung einer Schwächelinie nach Anspruch 1, dadurch gekennzeichnet, daß die detektierte Laserstrahlung ein Teil der Strahlung ist, welche den Abtrag bewirkt.
- Verfahren zur Erzeugung einer Schwächelinie nach Anspruch 1, dadurch gekennzeichnet, daß die detektierte Laserstrahlung ein Teil einer zusätzlich auf das gerade bearbeitete Sackloch gerichteten Meßstrahlung ist.
- 4. Verfahren zur Erzeugung einer Schwächelinie nach Anspruch 1, dadurch gekennzeichnet, daß die für die einzelnen Sacklöcher vorgegebenen Sollwerte eine wiederkehrende Folge unterschiedlicher Beträge bilden, wodurch in verschiedenen Materialtiefen verschiedene Stegbreiten herstellbar sind.

Hierzu 1 Seite(n) Zeichnungen

60

Figur 1

Figur 2

This Page is inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

ZS.	BLACK BORDERS
×	IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
×	FADED TEXT OR DRAWING
	BLURED OR ILLEGIBLE TEXT OR DRAWING
	SKEWED/SLANTED IMAGES
×	COLORED OR BLACK AND WHITE PHOTOGRAPHS
۵	GRAY SCALE DOCUMENTS
0	LINES OR MARKS ON ORIGINAL DOCUMENT
0	REPERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY
0	OTHER:

IMAGES ARE BEST AVAILABLE COPY.
As rescanning documents will not correct images problems checked, please do not report the problems to the IFW Image Problem Mailbox