APPENDIX II.

CLAIM AMENDMENTS:

Amend Claims 11, 20 and 22 as indicated in the following listing of the claims:

- 1. to 9. (canceled)
- 10. (previously presented) A solid mixture comprising
 - a) a sulfonvlurea herbicide, and
 - b) an alkylpolyglycoside.
- 11. (currently amended) The solid mixture as claimed in claim 10, comprising a sulfonylurea herbicide of the formula

where:

R¹ is

 C_1 - C_4 -alkyl, which may carry from one to five of the following groups: methoxy, ethoxy, SO_2CH_3 , cyano, chlorine, fluorine, SCH_3 , and $S(O)CH_3$.

halogen,

a group ER^{19} in which E is O, S or NR^{20} ,

COOR12,

NO2,

S(0) nR17, SO2NR15R16 or CONR13R14;

- R² is hydrogen, methyl, halogen, methoxy, nitro, cyano, trifluoromethyl, trifluoromethoxy, difluoromethoxy or methylthio;
- Y is F, CF3, CF2Cl, CF2H, OCF3, OCF2Cl, C1-C4-alkyl or C1-C4-alkovv:
- x is C₁-C₂-alkoxy, C₁-C₂-alkyl, C₁-C₂-alkylthio, C₁-C₂-alkylamino, di-C₁-C₂-alkylamino, halogen, C₁-C₂-haloalkyl, C₁-C₂-haloalkoxy;
- R is hydrogen or methyl;
- R^{19} is C_1 - C_4 -alkyl, C_2 - C_4 -alkenyl, C_2 - C_4 -alkynyl or C_3 - C_6 -cycloalkyl, each of which may carry from 1 to 5 halogen atoms, furthermore, in the case that E is 0 or NR^{20} , R^{19} is also methyl-

070615 - 15 -

- sulfonyl, ethylsulfonyl, trifluoromethylsulfonyl, allylsulfonyl, propargylsulfonyl or dimethylsulfamoyl;
- R20 is hydrogen, methyl or ethyl;
- R^{12} is a C_1-C_4 -alkyl group which may carry up to three of the following radicals: halogen, C_1-C_4 -alkoxy, allyl or propargyl;
- R^{17} is a C_1-C_4 -alkyl group which may carry from one to three of the following radicals: halogen, C_1-C_4 -alkoxy, allyl or propargyl;
- R15 is hydrogen, a C1-C2-alkoxy group or a C1-C4-alkyl group;
- R16 is hydrogen or a C1-C4-alkyl group;
- R^{13} is H, C_1-C_4 -alkyl, or C_1-C_4 -alkoxy;
- R14 is C1-C4-alkyl;
- n is 1 2; and
- Z is N or CH.
- 12. (previously presented) The solid mixture as claimed in claim 10, comprising a further herbicidally active compound c).
- 13. (previously presented) The solid mixture as claimed in claim 10, comprising from 0.5 to 75% by weight of the component a).
- 14. (previously presented) The solid mixture as claimed in claim 10, comprising from 1 to 50% by weight of the component b).
- 15. (previously presented) The solid mixture as claimed in claim 10, comprising an alkylpolyglycoside having a degree of polymerization of 1-3.
- 16. (previously presented) The solid mixture as claimed in claim 15, comprising an alkylpolyglycoside having a degree of polymerization of 1-2.
- 17. (previously presented) A method of controlling undesirable plant growth, which comprises treating the plants and/or the area to be kept free of the plants with a herbicidal amount of a solid mixture as claimed in claim 10.
- 18. (canceled)
- (previously presented) The solid mixture as claimed in claim 10, further comprising ammonium sulfate.

070615 - 16 -

- 20. (currently amended) the <u>The</u> method of claim 17, wherein the alkylpolyglycoside functions as a wetting agent.
- 21. (previously presented) The solid mixture as claimed in claim 10, comprising from 1 to 75% by weight of the component b).
- 22. (currently amended) The solid mixture as claimed in claim 10, wherein the sulfonylurea $\underline{herbicide}$ has the formula

where

- R is H or CHa;
- R¹ is F, Cl, Br, NO₂, C_1 - C_4 -alkyl, C_1 - C_4 -haloalkyl, C_3 - C_4 -cycloal-kyl, C_2 - C_4 -haloalkenyl, C_1 - C_4 -alkoxy, C_1 - C_4 -haloalkoxy, C_2 - C_4 -alkoxyalkoxy, C_0 - C_4 -alkoxyalkoxy, C_0 - C_4 - C_4 -alkoxyalkoxy, C_0 - C_4 - C_4
- R2 is H, F, Cl, Br, CN, CH3, OCH3, SCH3, CF3 or OCF2H;
- R^3 is C1, NO₂, CO₂CH₃, CO₂CH₂CH₃, SO₂N(CH₃)₂, SO₂CH₃, SO₂CH₂CH₃, OCH₃, or OCH₂CH₃;

070615 - 17 --

- R⁴ is $C_1-C_3-alkyl$, $C_1-C_4-haloalkyl$, $C_1-C_4-alkoxy$, $C_2-C_4-haloalke-nyl$, F, Cl, Br, NO₂, CO_2R^{12} , C(0)NR¹³R¹⁴, $SO_2NR^{15}R^{16}$, S(0)_RR¹⁷, C(0)R¹⁶ or L;
- R5 is H, F, Cl, Br or CH3;
- R^6 is C_1-C_4 -alkyl, C_1-C_4 -alkoxy, C_2-C_4 -haloalkenyl, F, Cl, Br, CO_2R^{12} , $C(O)NR^{13}R^{14}$, $SO_2NR^{15}R^{16}$, $S(O)_nR^{17}$, $C(O)R^{18}$ or L;
- R7 is H, F, Cl, CH3 or CF3;
- R8 is H, C1-C4-alkyl or pyridyl;
- R^{10} is H, Cl, F, Br, C_1-C_4 -alkyl or C_1-C_4 -alkoxy;
- R¹¹ is H, C₁-C₄-alkyl, C₁-C₄-alkoxy, C₂-C₄-alkoxy; haloalkenyl, F, Cl, Br, CO₂R¹², C(O)NR¹³R¹⁴, SO₂NR¹⁵R¹⁶, S(O)_RR¹⁷, C(O)R¹⁸ or L;
- R¹² is C₁-C₄-alkyl, with or without substitution by halogen, C₁-C₄-alkoxy or CN, allyl or propargyl;
- R13 is H, C1-C4-alkyl or C1-C4-alkoxy;
- R14 is C1-C4-alkyl;
- R15 is H, C1-C4-alkyl, C1-C4-alkoxy, allyl or cyclopropyl;
- R16 is H or C1-C4-alkyl;
- R^{17} is C_1-C_4 -alkyl, C_1-C_4 -haloalkyl, allyl or propargyl;
- R^{18} is $C_1-C_4-alkyl,\ C_1-C_4-haloalkyl or <math display="inline">C_3-C_5-cycloalkyl,$ with or without substitution by halogen;
- n is 0, 1 or 2;
- L has the structure

where

- Ri is H or C1-C3-alkyl;
- W is 0 or S;
- X is B, C₁-C₄-alkyl, C₁-C₄-alkoxy, C₁-C₄-haloalkoxy, C₁-C₄-haloalkyl, C₁-C₄-haloalkylthio, C₁-C₄-alkylthio, halogen, C₂-C₅-alkoxyalkyl, C₂-C₅-alkoxyalkoxy, amino, C₁-C₃-alkylamino or di(C₁-C₃-alkyl)amino;
- Y is H, C_1-C_4 -alkyl, C_1-C_4 -alkoxy, C_1-C_4 -haloalkoxy, C_1-C_4 -alkylthio, C_1-C_4 -haloalkylthio, C_2-C_5 -alkoxyalkyl, C_2-C_5 -alkoxyal-

koxy, amino, C_1-C_3 -alkylamino, di(C_1-C_3 -alkyl)amino, C_3-C_4 -alkenyloxy, C_3-C_4 -alkanyloxy, C_2-C_5 -alkylthioalkyl, C_2-C_5 -alkyl-sulfonylalkyl, C_1-C_4 -haloalkyl, C_2-C_4 -alkenyl, C_3-C_5 -alkylsulfonylalkyl, C_1-C_4 -haloalkyl, azido, fluorine or cyano; and

Z is CH or N;

or is an agriculturally useul salt thereof.

23. (previously presented) The solid mixture as claimed in claim 10, wherein the alkylpolyglycoside has the formula

R210(Z)

where R^{21} is an alkyl radical having from 4 to 30 carbon atoms and Z is a glycoside radical having from 5 to 6 carbon atoms and a is in the range from 1 to 6.

070615 - 19 --