

1 **THE RAPID INTENSIFICATION OF HURRICANE KARL (2010): NEW**
2 **REMOTE SENSING OBSERVATIONS OF CONVECTIVE BURSTS**
3 **FROM THE GLOBAL HAWK PLATFORM**

4
5
6 Stephen R. Guimond^{1,2}, Gerald M. Heymsfield², Paul D. Reasor³, and Anthony C.
7 Didlake, Jr.^{2,4}

8
9 ¹*University of Maryland/Earth System Science Interdisciplinary Center (ESSIC), College*
10 *Park, Maryland*

11 ²*NASA Goddard Space Flight Center, Greenbelt, Maryland*

12 ³*NOAA Hurricane Research Division, Miami, Florida*

13 ⁴*Oak Ridge Associated Universities, Oak Ridge, Tennessee*

14
15
16
17 Submitted to the *Journal of the Atmospheric Sciences*

18
19
20 January 14, 2016

21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44 Corresponding author address: Stephen R. Guimond, NASA Goddard Space Flight
45 Center, Code 612, Greenbelt, MD 20771.

46 E-mail: stephen.guimond@nasa.gov

ABSTRACT

The evolution of rapidly intensifying Hurricane Karl (2010) is examined from a suite of remote sensing observations during the NASA Genesis and Rapid Intensification Processes (GRIP) field experiment. The novelties of this study are in the analysis of data from the airborne Doppler radar HIWRAP and the new Global Hawk airborne platform that allows long endurance sampling of hurricanes. Supporting data from the HAMSAR microwave sounder coincident with HIWRAP and coordinated flights with the NOAA WP-3D aircraft help to provide a comprehensive understanding of the storm. The focus of the analysis is on documenting and understanding the structure, evolution and role of small scale, deep convective forcing in the storm intensification process.

58 Deep convective bursts are sporadically initiated in the downshear quadrants of the
59 storm and rotate into the upshear quadrants for a period of \sim 12 h during the rapid
60 intensification. The aircraft data analysis indicates that the bursts are forming through a
61 combination of two main processes: (1) convergence generated from counter-rotating
62 mesovortex circulations and the larger scale flow and (2) the turbulent transport of warm,
63 buoyant air from the eye to the eyewall at mid-to-low levels. The turbulent mixing across
64 the eyewall interface and forced convective descent adjacent to the bursts assists in
65 carving out the eye of Karl, which leads to an asymmetric enhancement of the warm core.
66 The mesovortices play a key role in the evolution of the features described above.

67 The Global Hawk aircraft allowed an examination of the vortex response and
68 axisymmetrization period in addition to the burst pulsing phase. A pronounced
69 axisymmetric development of the vortex is observed following the pulsing phase that
70 includes a sloped eyewall structure and formation of a clear, wide eye.

71 **1. Introduction**
72

73 The intensification of tropical cyclones (TCs) is a complex process that is governed
74 by nonlinear coupling of physics across a vast array of space and time scales. On the
75 slow/large scales, a sufficiently warm ocean and low vertical wind shear have been
76 identified as providing favorable environmental conditions for the intensification of TCs
77 (e.g. Kaplan and DeMaria 2003). On the fast/small scales, a large body of evidence has
78 shown that deep, rotating, convective towers are responsible for the intensification,
79 including rapid intensification (RI), of TCs (Steranka et al. 1986; Simpson et al. 1998;
80 Heymsfield et al. 2001; Kelley et al. 2004; Montgomery et al. 2006; Braun et al. 2006;
81 Reasor et al. 2009; Guimond et al. 2010; Molinari and Vollaro 2010; Rogers et al. 2015).

82 It is the fast/small scales that are the most challenging for the observation, numerical
83 modeling and understanding of TCs. Deep convective towers in TCs have lifetimes of an
84 hour or less with horizontal scales less than 10 km (Montgomery et al. 2006; Houze et al.
85 2009; Guimond et al. 2010) making it difficult to observe their kinematic properties,
86 especially from conventional aircraft, which can only sample storms for short periods of
87 time (~ 5 h). The turbulent, highly nonlinear character of deep convective towers and
88 their interaction with the TC vortex are major challenges for numerical models and our
89 physical understanding because those scales not explicitly resolved must be
90 parameterized, which are not always adequate (e.g. Persing et al. 2013) and there can be
91 considerable sensitivity to the algorithms used to solve the fluid-flow equations (e.g.
92 Guimond et al. 2016).

93 The dynamics responsible for the rapid intensification of TCs from localized, deep
94 convection project onto two classes of modes relative to the storm center: axisymmetric

95 and asymmetric. In the axisymmetric framework, the projection of localized heat forcing
96 onto the azimuthal mean results in rings of heating typically maximized inside the radius
97 of maximum winds for intensifying storms. Rogers et al. (2013) analyzed a large set of
98 airborne Doppler radar composites of intensifying and steady-state TCs and discovered
99 that a key characteristic of intensifying TCs is the location of deep convective towers
100 inside the radius of maximum winds (RMW). Earlier studies by Schubert and Hack
101 (1982) and Nolan et al. (2007) have elucidated the dynamics of intensifying hurricane
102 vortices finding that convective heating placed inside the RMW enables more efficient
103 conversion of potential to kinetic energy due to the increased inertial stability of the
104 vortex.

105 The heating rings drive an axisymmetric secondary circulation with radial inflow at
106 low levels, updrafts through the core of the heating and radial outflow aloft. In the
107 azimuthal mean, the vortex intensifies through the radial convergence of absolute angular
108 momentum, which is materially conserved above the boundary layer. This framework
109 has been understood for many years (e.g. Shapiro and Willoughby 1982). Other
110 axisymmetric theories for TC intensification have been presented such as the work of
111 Emanuel (1986) and Rotunno and Emanuel (1987), which focus on the cycling of energy
112 extracted through the thermodynamic disequilibrium at the air-ocean interface.

113 In the asymmetric framework, the heating and vorticity asymmetries generated from
114 localized convective forcing interact with the mean flow through eddy heat and
115 momentum fluxes, which can lead to intensification of the vortex for up-gradient
116 transport (Montgomery and Kallenbach 1997). This process is generally called
117 “axisymmetrization” and has been shown to occur in observational (e.g. Reasor et al.

118 2000; Reasor et al. 2009) and modeling (e.g. Montgomery et al. 2006; Persing et al. 2013)
119 studies. In nature, the axisymmetric and asymmetric modes are coupled to one another
120 with axisymmetric processes often playing the largest role (e.g. Nolan and Grasso 2003),
121 but with asymmetric dynamics contributing a significant, non-negligible component of
122 the overall system intensification (e.g. Montgomery et al. 2006; Persing et al. 2013;
123 Guimond et al. 2016).

124 In addition to these effects, deep convective towers have also been observed to
125 initiate localized interaction between the eye and eyewall. For example, the studies of
126 Heymsfield et al. (2001) and Guimond et al. (2010), which analyzed very high resolution
127 airborne radar data (along-track sampling of 100 m), showed that deep convective towers
128 intensified the warm core through compensating subsidence around strong updrafts and
129 its turbulent transport towards the eye. This intense, localized transport of air from the
130 eyewall to the eye has important implications for storm intensification through the
131 attendant inward flux of angular momentum.

132 The purpose of this paper is to analyze the rapid intensification (RI) of Hurricane Karl
133 (2010), which coincided with a convective burst episode, from a suite of remote sensing
134 observations to understand more details of the dynamics occurring on the fast/small
135 scales. The novelties of this study are in the use of a new airborne radar and a new
136 airborne platform for hurricane research that allows long endurance (up to 24 h)
137 sampling. Details of these new technologies will be discussed in the next section.

138

139

140 **2. Data and processing**

141

142 *a. HIWRAP*

143

144 The High-Altitude Imaging Wind and Rain Airborne Profiler (HIWRAP) is an
145 airborne Doppler radar that was developed at the NASA Goddard Space Flight Center
146 (GSFC) with the goal of studying hurricanes and other precipitating systems. One of the
147 unique features of HIWRAP is its ability to fly on NASA's Global Hawk (GH)
148 unmanned aircraft, which operates at \sim 18 – 19 km (60 – 62 kft) altitude and can remain
149 airborne for \sim 24 h. The long endurance of the GH is a significant capability for
150 hurricane research. Hurricanes form over remote regions of the ocean with important
151 physical processes occurring on fast time scales that can be easily missed by conventional
152 aircraft that can only remain airborne for \sim 6 h.

153 HIWRAP is a dual-frequency (Ku- and Ka- band), single-polarized (V for inner beam,
154 H for outer beam), downward pointing and conically scanning (16 rpm) Doppler radar
155 with two beams (\sim 30° and 40° tilt angles) and 150 m range resolution. The GH aircraft
156 has an airspeed of \sim 160 m s⁻¹, which yields \sim 600 m along-track sampling for HIWRAP.
157 More details on HIWRAP can be found in Li et al. (2015).

158 The NASA Genesis and Rapid Intensification Processes (GRIP) experiment in 2010
159 was the first time HIWRAP collected significant data and some issues with the data
160 quality (e.g. excessive noise at Ku-band due to a variety of issues including pulse
161 processing) were found. To address these issues, we have done two things: (1) pulse pair
162 estimates at Ku-band were reprocessed with 128 pulses averaged (azimuthal resolution of
163 \sim 2.8°), which improves the signal-to-noise ratio (SNR) over the original averaging
164 interval of 64 pulses and (2) Ku-band wind retrievals below the noise saturation level
165 (determined using a power threshold, which translates to \sim 25 dBZ at 3 km height) were
166 replaced with the corresponding Ka-band wind retrievals, which provide a higher SNR

167 and thus, lower uncertainty Doppler velocities in these regions. In the flights over Karl
168 presented in this work, only the inner (30°) beam was functional, which provides a swath
169 width at the surface of $\sim 20 - 22$ km.

170 Retrievals of the three-dimensional wind vector over the entire radar sampling
171 volume are performed with the three-dimensional variational (3DVAR) algorithm
172 described in Guimond et al. (2014). The 3DVAR method combines an observational error
173 term as well as constraints that include the anelastic mass continuity equation, a
174 Laplacian filter and the impermeability condition at the surface. A coefficient of $2\Delta x^2$
175 was used for the mass continuity constraint and $0.5\Delta x^4$ was used for the filtering
176 constraint with Δx representing the horizontal grid spacing. These values were chosen
177 based on wind vector solution sensitivity tests that provided reasonable accuracy and
178 damping characteristics. The retrievals are performed on a storm-following grid with a
179 horizontal grid spacing of 1 km and vertical spacing of 1 km. Retrievals with vertical
180 spacing of ~ 150 m are possible, but 1 km spacing was deemed sufficient for the present
181 study. NOAA's Hurricane Research Division (HRD), using the Willoughby and
182 Chelmow (1982) method, provided storm center estimates. The mean storm motion
183 vector averaged over the aircraft-sampling period was removed from the HIWRAP
184 derived horizontal winds.

185 Guimond et al. (2014) showed that simulated and *in situ* errors for the horizontal
186 wind components were ~ 2.0 m s⁻¹ or $\sim 7\%$ of the hurricane wind speed. The errors in
187 the vertical velocity were strongly dependent on the across-track location of the
188 measurements with comparisons to *in situ* data revealing errors of ~ 2.0 m/s at nadir.
189 These *in situ* errors used data from the Imaging Wind and Rain Airborne Profiler

190 (IWRAP) flying on the NOAA P3 aircraft, which has a similar scanning geometry to
191 HIWRAP. The appendix presents comparisons of *in situ* data to HIWRAP retrievals,
192 which reveal that for wind speeds $> 10 \text{ m s}^{-1}$ the mean error in the computed wind speed
193 and direction is $\sim 1 - 4 \text{ m s}^{-1}$ and $\sim 10 - 20^\circ$, respectively.

194 *b. NOAA P3 Radars*

195 The NOAA P3 tail (TA) radar is an X-band airborne Doppler radar that scans in a
196 cone 20° fore and aft of the plane perpendicular to the aircraft with a scan rate of 10 rpm
197 and along-track sampling of fore/aft sweeps of $\sim 1.6 \text{ km}$ (Gamache et al. 1995).

198 Retrievals of the three-dimensional wind vector are performed using the variational
199 methodology outlined in Gamache (1997) and Reasor et al. (2009) at a grid spacing of 2
200 km in the horizontal and 0.5 km in the vertical. Quality control procedures on the raw
201 observations of reflectivity and radial velocity can be found in Gamache et al. (2005).
202 The mean storm motion vector averaged over the aircraft-sampling period was removed
203 from the TA derived horizontal winds.

204 The NOAA P3 aircraft also carries a C-band Lower Fuselage (LF) radar that provides
205 a scan of radar reflectivity every 30 seconds at approximately the flight-level height.
206 This data is useful for identifying and tracking vortex and convective scale features of
207 TCs close to the aircraft. The large vertical beamwidth of 4.1° can cause smearing of
208 features and inadequate beam filling for ranges greater than $\sim 60 \text{ km}$ (Marks 1985).
209 Analysis of the LF data is confined to ranges less than 50 km to avoid these problems.

210 *c. HAMSR*

211 The High-Altitude Mimic Sounding Radiometer (HAMSR) is a passive microwave
212 sounder measuring upwelling radiation from the atmosphere at frequencies sensitive to

213 temperature (\sim 50 GHz and \sim 118 GHz) and water vapor (\sim 183 GHz). The intensity of
214 convective clouds can also be estimated in regions where upwelling radiation is scattered
215 out of the beam by ice particles, which results in anomalously low brightness
216 temperatures (Tbs) at the instrument receiver. The HAMSR instrument scans \pm 60°
217 across-track providing a swath width of \sim 65 km from the height of the GH aircraft.
218 However, we focus on data at \pm 45° because larger errors are found beyond this range
219 (Brown et al. 2011). The footprint of HAMSR at nadir from the GH altitude is \sim 2 km
220 with an increase in size as the instrument scans off-nadir. The along-track sampling of
221 HAMSR measurements is \sim 250 m. In this study, the HAMSR Tbs are mapped to a grid
222 with 1 km spacing to match the HIWRAP wind retrievals. The vertical resolution of the
223 HAMSR data is dictated by each channel's weighting function, which amounts to \sim 2 – 3
224 km intervals in height. More detailed information on HAMSR can be found in Brown et
225 al. (2011).

226
227 **3. Overview of Hurricane Karl**
228

229 During the summer of 2010, NASA conducted the GRIP field experiment in the
230 Atlantic Ocean basin to study the physical processes controlling hurricane formation and
231 intensity change. A total of three NASA aircraft were deployed during GRIP with
232 instruments onboard to measure properties of the hurricane environment and inner-core
233 region. In this study, we focus on the inner-core aircraft (GH) and instruments
234 (HIWRAP and HAMSR) described in the previous section. Further information about
235 GRIP can be found in Braun et al. (2013).

236 Hurricane Karl began from a combination of a tropical wave moving off the African
237 coast and an elongated trough of low pressure situated over the southwestern North

238 Atlantic Ocean. Figure 1 shows the best track of Karl and intensity classifications
239 starting at 0000 UTC 14 September. Over several days time, deep convection located
240 near the wave axis became more organized and by 1200 UTC 14 September a tropical
241 depression formed in the northwestern Caribbean Sea (Stewart 2010). Not long after,
242 Karl intensified to a tropical storm and made landfall on 15 September on the Yucatan
243 Peninsula with surface winds of $\sim 27 \text{ m s}^{-1}$. Karl weakened while crossing land, but was
244 able to maintain tropical storm classification ($\sim 20 \text{ m s}^{-1}$ surface winds) with a well-
245 organized circulation.

246 After emerging into the Bay of Campeche, Karl rapidly intensified from a $\sim 20 \text{ m s}^{-1}$
247 tropical storm on 0600 UTC 16 September to a $\sim 57 \text{ m s}^{-1}$ hurricane on 1200 UTC 17
248 September (Fig. 1). This equates to a $\sim 37 \text{ m s}^{-1}$ increase in surface winds in a 30 h
249 period, which is more than double the typical RI rate of $\sim 15 \text{ m s}^{-1}$ in 24 h (Stewart 2010).
250 Our focus in this study is the inner-core structure and dynamics during this RI episode
251 that was sampled by the GH aircraft between ~ 1900 UTC 16 September and ~ 0800
252 UTC 17 September (see Fig. 1).

253 From an environmental perspective, Karl was primed for RI with high sea-surface
254 temperatures of $\sim 30^\circ \text{ C}$ in the Bay of Campeche, relatively low vertical wind shear of \sim
255 5 m s^{-1} with the vector pointing mostly towards the southwest over the RI interval, and
256 moist mid-level air. The large-scale vertical wind shear impacting the storm was
257 determined from CIMSS satellite analyses and verified using NCEP re-analysis data.

258

259 **4. Convective burst remote sensing observations**

260 *a. Satellite evolution*

261 Animations of GOES IR satellite data indicate that localized convective bursts in Karl
262 were actively pulsing for a \sim 12 h period between 1200 UTC 16 September and 0000
263 UTC 17 September. After this time period, the convective forcing is less frequent and a
264 more axisymmetric presentation of the cloud field emerges.

265 Figure 2 shows a sequence of GOES IR images of Karl spanning the period of GH
266 observations during the storm's RI. The GOES IR data has a resolution of \sim 4 km. On
267 1845 UTC 16 September (Fig. 2a), a region of asymmetric cold cloud tops (\sim -80° C)
268 associated with a pulsing convective burst is located in the downshear to downshear-left
269 portions of the storm. No apparent eye is visible at this time due to the presence of heavy
270 cloud. At 2215 UTC (Fig. 2b), the convective burst episode is still evident in the IR
271 imagery with deep convection located in the downshear-left sector of the storm and the
272 appearance of a cloud filled eye. A few hours later at 0140 UTC 17 September (Fig. 2c),
273 the cold cloud top region has wrapped around to the upshear quadrants of the storm. A
274 clearer depiction of an eye is present at this time although it is still not cloud free.
275 Towards the end of the aircraft observation period at 0501 UTC (Fig. 2d), the cold cloud
276 tops have diminished and spread around the storm in a more axisymmetric pattern along
277 with the development of a large, clear eye. Karl is nearing landfall at this point, but the
278 core region of the storm is still well offshore.

279 The satellite presentation of Karl's RI with localized convective bursts pulsing in the
280 downshear quadrants of the storm, their rotation and dissipation into the upshear
281 quadrants and development of an axisymmetric cloud structure with a clear eye at late
282 times is common (e.g. Reasor et al. 2009; Guimond et al. 2010; Stevenson et al. 2014).
283 In addition, the presence of lightning associated with convective bursts has become more

284 commonly recognized. Rinehart et al. (2014) analyzed satellite data and several GRIP
285 datasets and found that some of the more intense convective burst activity in Karl
286 produced significant lightning.

287 *b. HIWRAP time-averaged structure*

288 The spatial and temporal evolution of convective bursts is very turbulent in nature
289 and requires high-resolution aircraft measurements to accurately describe their structure.
290 A time-averaged view of the storm from HIWRAP radar measurements is first presented
291 and then individual overpasses are analyzed from several data sources to highlight the
292 detailed structure of convective bursts during the pulsing phase. Finally, we briefly show
293 the structure of the vortex during the axisymmetric response phase.

294 Figure 3a shows HIWRAP Ku-band reflectivity overlaid with horizontal wind vectors
295 at 2 km height on a storm-relative grid averaged over the entire GH sampling interval (\sim
296 1900 UTC 16 September - 0800 UTC 17 September). A broad cyclonic circulation is
297 evident with a reflectivity filled eye, which is weighted towards early time periods.
298 There are gaps in the azimuthal coverage of the storm due to the small swath width of
299 HIWRAP. These gaps decrease towards the storm center where estimates of the low
300 wavenumber components of the flow are best suited.

301 Figure 3b shows the horizontal wind speeds at 2 km height averaged over the same
302 time interval. The strongest winds are generally located in the downshear quadrants of
303 the storm with large patches of $\sim 40 - 45 \text{ m s}^{-1}$ winds in this region. The time and
304 azimuthally averaged RMW at this level is 20 – 25 km. An interesting feature appearing
305 in the data is the presence of small clusters of anomalously large wind speeds in the
306 eyewall (two examples are labeled with white arrows in Fig. 3b). These clusters have a

307 length scale of \sim 10 km and are found most notably in the downshear direction and
308 downshear-left quadrant just inside the RMW.

309 Figure 4a is similar to Fig. 3a only at 8 km height centered on the inner 50 km of the
310 storm. At this higher level, the presence of convective bursts shown by the high
311 reflectivity anomalies between \sim 25 – 40 dBZ are evident. These bursts are occurring in
312 the downshear to downshear-left portions of the storm with evidence of rotation into the
313 upshear quadrants. This structure is consistent with the satellite data shown in Fig. 2,
314 only the HIWRAP data is much higher resolution and individual convective elements are
315 discernable. The majority of the burst activity over this time interval is located inside the
316 low-level (2 km) RMW, which is consistent with the intensifying TC composite of
317 Rogers et al. (2013). The patches of anomalously large wind speeds shown in Fig. 3b are
318 well correlated with the high reflectivity anomalies in Fig. 4a, which *suggests the*
319 *connection of the convective bursts to the localized spin-up of the low-level wind field.*

320 The association of the high reflectivity anomalies aloft to the localized low-level wind
321 spin-up is burdened by the 12 – 13 h time-averaged perspective. However, individual
322 overpasses were analyzed and they confirmed the existence of this relationship.

323 Figure 4b shows the horizontal wind speeds at 8 km height, which reveals similar
324 cellular structures as the 2 km wind speeds albeit with generally reduced magnitudes. The
325 strongest wind speeds of \sim 35 – 40 m s⁻¹ are found in the downshear-left quadrant and the
326 northeast, upshear quadrant at 8 km height. This shows that the enhanced winds
327 associated with the convective bursts extend through a deep layer with the downshear-left
328 quadrant containing the most intense winds.

329 *c. Airborne radar and radiometer analysis during the burst pulsing phase*

330 1) 1ST SAMPLING PERIOD (~ 1830 – 1920 UTC 16 SEPTEMBER)

331 The NOAA P3 aircraft sampled the RI of Karl at certain similar time periods as the
332 NASA GH, which allows a more comprehensive study of the inner-core processes due to
333 the large swath width of the P3 measurements. The P3 first crossed the storm center at ~
334 1842 UTC 16 September. The LF radar reflectivity at flight level (3.7 km height) along
335 with the TA radar derived wind vectors are shown in Fig. 5a at this time.

336 An interesting wavenumber-5 polygon structure is apparent at the eye/eyewall
337 interface in the LF reflectivity, which is indicative of the presence of mesovortices at the
338 locations of the vertices. The study of Hendricks et al. (2012) observed similar
339 reflectivity structures in the rapid intensification of Hurricane Dolly (2008). The
340 formation of mesovortices has been linked to dynamic instability in the eyewall where
341 thin rings of potential vorticity support the phase locking and exponential growth of
342 counter-propagating vortex Rossby waves (e.g. Schubert et al. 1999; Kossin and Schubert
343 2001; Rozoff et al. 2009; Hendricks et al. 2014). The above studies showed that
344 development of mesovortices is an effective means of turbulent mixing between the eye
345 and eyewall, which can lead to important consequences for the intensity of the hurricane.

346 The wind vectors in Fig. 5a show that the strongest winds ($\sim 40 \text{ m s}^{-1}$) are located in
347 the upshear (northeast) quadrant at this time and level (4 km height), which is more
348 consistent with the time-averaged HIWRAP data at 8 km height (Fig. 4b) than at 2 km
349 height (Fig. 3b). Figure 5b highlights the 1 – 4 km mean radial component of the flow
350 for this transect along with perturbation wind vectors (computed by removing the
351 azimuthal mean radial and tangential winds from the total flow and projecting back to
352 Cartesian space) averaged over the same height interval. The analysis in Fig. 5b shows a

353 significant region of outflow emerging from the eye and entering the southern eyewall
354 (see thick arrow in Fig. 5b) where an intense band of ~ 40 dBZ echoes are observed (Fig.
355 5a). The outflow from the eye likely brings warm anomaly air into the eyewall, which
356 helps to stimulate convection through buoyancy effects.

357 A broad region of inflow located radially outside the outflow feature (see thin arrow
358 in southern half of Fig. 5b) enables kinematic convergence to help develop and sustain
359 the intense convection in the southern eyewall as well. This convergence signature is
360 vertically coherent down to 1 km height, which was validated by computing the
361 divergence field (not shown). In the northwestern portion of the eyewall, a wide inflow
362 region (see thick arrow in Fig. 5b) with peak magnitudes of $\sim -8 \text{ m s}^{-1}$ is transporting air
363 across the eye-eyewall interface. The perturbation wind vectors show that a
364 cyclonic/anti-cyclonic mesovortex couplet is responsible for the transport of air across
365 the eye-eyewall interface on the northwestern side extending down across the southern
366 side.

367 Figure 6a shows HAMSR 54 GHz Tbs overlaid with HIWRAP computed horizontal
368 wind vectors from the first GH overpass of Karl between 1853 – 1919 UTC 16
369 September. The aircraft crossed the storm center at ~ 1910 UTC, which is ~ 25 minutes
370 after the P3 transect shown in Fig. 5. The data is shown at 2 km height, which is where
371 the HAMSR 54 GHz weighting function peaks, assuming a standard atmosphere. The
372 presence of light precipitation in the eye of Karl at this time allows the flow in the eye
373 and its interaction with the eyewall to be analyzed.

374 In this pass, the warm anomaly of Karl is evident shown by the anomalously large
375 Tbs in the core of the storm. For this analysis we are not as interested in the quantitative

376 properties of the warm core as our focus is on the qualitative structure of this feature.
377 The eyewall of Karl with embedded convective bursts is seen by the depressed Tbs in the
378 southern half of Fig. 6a with an intense cell located in the eastern half of the southern
379 eyewall, which is in the downshear-left quadrant. The azimuthal mean RMW at this time
380 and height is ~ 30 km, which places the cell inside the RMW. The winds in this region
381 are $30 - 40$ m s $^{-1}$ as computed from HIWRAP data.

382 An interesting feature of the HAMSR data is a finger-like protrusion of the warm core
383 sticking out of the southern eyewall and adjacent to the most intense convective activity
384 (labeled with white arrows in Fig. 6a). The HIWRAP winds follow this feature well and
385 show $10 - 20$ m s $^{-1}$ flow originating in the eye and cyclonically rotating towards the
386 intense convective cell in the eastern half of the southern eyewall. The winds from this
387 warm anomaly protrusion show a convergence signature with the intense convective cell.

388 Figure 6b shows Ku band reflectivity from HIWRAP along with horizontal wind
389 vectors for the same overpass as in Fig. 6a. The warm core protrusion observed in the
390 HAMSR data can also be seen in the HIWRAP data through reduced reflectivity in the
391 southern eyewall from values of $35 - 40$ dBZ to ~ 20 dBZ. *It appears that turbulent*
392 *mixing between the warm, dry air in the eye with the eyewall is helping to carve out and*
393 *develop the eye of Karl.* In addition to the HIWRAP winds in Fig. 6, the LF reflectivity
394 structure (Fig. 5a) and TA perturbation winds (Fig. 5b) observed ~ 25 minutes earlier
395 show that the turbulent mixing is a result of mesovortices located near the eye/eyewall
396 interface. Small patches of reduced reflectivity (Fig. 6b) in the same locations as the low
397 TBS in Fig. 6a are the result of attenuation of the HIWRAP Ku band signal from the
398 convective bursts.

399 Figure 7 shows nadir cross-sections of HIWRAP data for the first GH overpass (see
400 Fig. 6). This cross-section is straight through the storm center in the north-to-south
401 direction. Figure 7a shows Ku band reflectivity through the convective burst in the
402 southern eyewall revealing a deep column of high values reaching ~ 35 dBZ at 12 km
403 height (x-axis ~ -25 km). There is a large region of lower reflectivity (~ 20 dBZ) filling
404 the eye that appears connected with the convective burst in the southern eyewall. In the
405 eye region, there is a deep layer (1 – 10 km) of outflow with magnitudes of $\sim 10 - 15 \text{ m s}^{-1}$
406 ¹ (Fig. 7b, x-axis ~ -15 km), which is consistent with the warm core mixing into the
407 eyewall shown in Fig. 6a at 2 km height. The outflow from the eye converges with
408 inflowing air, located radially outside the convection, at low-to-mid levels in the core of
409 the burst (see gray arrows in Fig. 7b). *This data indicates that the formation/maintenance*
410 *of the convective burst in the southern eyewall (downshear-left quadrant) is driven by a*
411 *combination of buoyancy (inferred from Fig. 6a) and horizontal, kinematic convergence*
412 *(Fig. 7b). Both of these mechanisms are facilitated by the turbulent mixing of air,*
413 *originating in the anomalously warm eye, with inflowing air in the low-to-mid level*
414 *eyewall.* In the northern part of the eyewall in Fig. 7b, the radial flow reflects traditional
415 azimuthal mean behavior with inflow at low levels and outflow aloft.

416 A significant region of descent with peak values of $\sim -3 \text{ m s}^{-1}$ is located in the eye of
417 Karl (wide gray arrow in Fig. 7c), which should be helping to clear and warm the eye.
418 This descent appears to be induced by the convective updraft (thin gray arrow in Fig. 7c)
419 occurring on the inner edge of the eyewall (x-axis ~ -15 km). A reasonably strong
420 updraft of $\sim 10 \text{ m s}^{-1}$ (Fig. 7c) in the core of the deep convection (x-axis ~ -25 km) is
421 coincident with an anomalously large patch of cyclonic vorticity (Fig. 7d) at ~ 7 km

422 height. Note that vorticity values are removed above 10 km height because the swath
423 width of the HIWRAP data at these levels is very small, which places the swath edges
424 close to nadir. The computed horizontal winds at the swath edges have larger uncertainty
425 due to the HIWRAP scanning geometry (Guimond et al. 2014). At low levels on the
426 inner edge of the deep convection (x-axis ~ -18 km), a weak-moderate updraft (Fig. 7c) is
427 collocated with an intense cyclonic vorticity anomaly with values of 10^{-2} s^{-1} (Fig. 7d).

428 These observations suggest that the convective burst sampled here is rapidly rotating
429 through a deep layer as has been observed in previous studies (e.g. Reasor et al. 2005;
430 Houze et al. 2009). For a mature TC such as Karl, the production of vorticity is likely
431 dominated by the stretching of pre-existing cyclonic vorticity in the eyewall (e.g.
432 Montgomery et al. 2006). In the northern portion of the eyewall, an elevated band of
433 cyclonic vorticity that tilts outward with height is observed (Fig. 7d), which fits more
434 closely with typical azimuthal mean TC structure.

435 2) 2nd SAMPLING PERIOD (~ 1920 – 2000 UTC 16 SEPTEMBER)

436 Approximately 20 minutes after the first GH overpass, the NOAA P3 aircraft
437 penetrated the core of Karl again with a center crossing at ~ 1930 UTC 16 September.
438 Figure 8a shows LF radar reflectivity at flight level (3.6 km height) along with the TA
439 radar derived wind vectors at 4 km height. Intense reflectivity between 45 – 50 dBZ is
440 present on the western half of the storm while the eastern half is ragged without a
441 continuous region of elevated reflectivity. Significant reflectivity is located in the eye of
442 the storm and animations of several LF scans show mesovortex-like features mixing into
443 the eye from the eyewall. Much like the previous transect, the strongest winds are
444 located in the northeast (upshear) quadrant.

445 Figure 8b shows the perturbation wind vectors, averaged over the 1 – 4 km height
446 interval, overlaid on the mean divergence field in this same layer. A wavenumber-2
447 divergence pattern is observed with strong regions of convergence in the western and
448 eastern portions of the eyewall. The convergence region in the western eyewall
449 (downshear quadrants) is consistent with the intense reflectivity band (Fig. 8a), while the
450 eastern eyewall (upshear quadrants) is having difficulty developing perhaps as a result of
451 the vertical wind shear. The perturbation wind vectors reveal a similar cyclonic/anti-
452 cyclonic mesovortex couplet as the previous transect (Fig. 5b) although a data gap in the
453 southwestern quadrant in Fig. 8b makes the placement of the anti-cyclonic circulation
454 rather broad and with some uncertainty. The counter-rotating circulations are consistent
455 with the divergence signatures and are directing air across the eye-eyewall interface with
456 inflow to the eye on the western side and outflow to the eyewall on the eastern side.

457 Figure 9 is similar to Fig. 6a only for the second GH overpass of Karl between 1938 –
458 1957 UTC 16 September. This is a diagonal pass from southeast to northwest, which
459 covers part of the upshear left quadrant of the storm where depressed Tbs from HAMSR
460 show the straining/elongation of deep convection by the advective tendencies of the
461 cyclonic flow. The maximum HIWRAP winds at 2 km height are $\sim 50 \text{ m s}^{-1}$ in the
462 northwest eyewall and $\sim 30 \text{ m s}^{-1}$ in the southeast eyewall where the flow has a radially
463 outward directed component into the convection. The warmest Tbs are located on the
464 northwestern side of the eye.

465 The vertical structure of HIWRAP Ku band reflectivity at nadir for this overpass is
466 shown in Fig. 10a. Deep convection with similar vertical structure and radial location to
467 that shown in the previous GH overpass (Fig. 7a) is observed in the southeastern (upshear

468 left) portion of the eyewall with significant reflectivity filling the eye adjacent to this cell.
469 The northwest portion of the eyewall is not as convectively active and the eye is clear
470 adjacent to this side of the eyewall, which is consistent with the previous overpass and
471 the warmest Tbs shown in Fig. 9.

472 Figure 10b shows the radial wind speeds for this overpass. The dominant features are
473 a region of midlevel inflow located radially outside the convective burst and a deep
474 column of strong outflow that traverses the eye region and enters the core of the burst
475 (see gray arrows). These winds acquire entropy from the warm anomaly eye (see Fig. 9)
476 likely leading to assistance in convective development in the southeastern eyewall
477 through buoyancy effects. The flow across the eye is similar to that observed by the P3
478 shown in Fig. 8b and is driven by the counter-rotating mesovortex circulations. On the
479 northwestern side of the storm, low-level inflow and mid-level outflow resembles
480 azimuthal mean hurricane structure.

481 The vertical motion structure in Fig. 10c shows a broad region of descent in the eye
482 adjacent to the convective burst with values of $\sim -2 - -4 \text{ m s}^{-1}$. This descent appears to be
483 generated by the convective activity through compensating motions around convective
484 updrafts (see gray arrows). The broad region of forced descent in the eye is similar to
485 that observed in the previous overpass in the downshear-left quadrant. This robust
486 structure should lead to a drying and warming effect over time, which will be
487 demonstrated with the data in subsequent overpasses.

488 Finally, instead of showing the vorticity for this overpass, which was somewhat
489 similar to the previous transect, the tangential winds are presented in Fig. 10d. The
490 tangential winds are $\sim 20 \text{ m s}^{-1}$ stronger in the northwest eyewall up to midlevel regions

491 with peak values of $\sim 50 \text{ m s}^{-1}$ at low levels. In the deep convection, large tangential
492 wind speeds are located at high levels (12 – 13 km), which is due to strong updrafts
493 transporting high angular momentum air aloft. It appears the convective towers are
494 trying to build a deeper, more intense vortex in this portion of the eyewall.

495 3) 3rd SAMPLING PERIOD ($\sim 2030 - 2100 \text{ UTC } 16 \text{ SEPTEMBER}$)

496 The NOAA P3 tracked through the center of Karl one last time centered at 2042 UTC
497 16 September. Figure 11a shows the LF reflectivity at flight level (3.6 km) along with
498 TA derived wind vectors at 4 km height for this transect. The western eyewall continues
499 to be the dominant feature with a large region of reflectivity at or above 50 dBZ. An
500 animation of several LF scans within ± 2 minutes of the one shown in Fig. 11a indicates
501 that the western eyewall with embedded deep convective towers is intensifying rapidly
502 (in terms of reflectivity) during the P3 penetration of the core. The horizontal winds in
503 this region are $\sim 10 \text{ m s}^{-1}$ stronger than those from the previous P3 sampling ~ 1 hour
504 earlier at 1930 UTC (see Fig. 8a). The eastern eyewall is still ragged without a coherent
505 eyewall apparent in the reflectivity, while the southern eyewall has increased banding
506 features, which appear to be coalescing.

507 The divergence field for this flight averaged over the 1 – 4 km layer is shown in Fig.
508 11b with 1 – 4 km height averaged perturbation winds overlaid. The cyclonic/anti-
509 cyclonic mesovortex couplet identified in the previous P3 penetrations continues to
510 persist two hours after initial diagnosis. At this time period, the mesovortex couplet has
511 rotated cyclonically with the mean flow placing the cyclonic circulation directly North of
512 the anti-cyclonic circulation in the western eyewall. These circulations are consistent
513 with a strong region of convergence in the western eyewall, which is helping to develop

514 the convective bursts, and a west-to-east flow across the eye. In the eastern eyewall,
515 which is not well defined in the LF reflectivity, another small-scale cyclonic circulation is
516 evident in the perturbation wind vectors. This circulation is helping to direct a southerly
517 flow across portions of the eastern eye-eyewall interface.

518 The next GH overpass of Karl sampled directly along the shear vector with a
519 southwest to northeast transect just north of the storm center at ~ 2040 UTC 16
520 September, which is ~ 2 minutes behind the P3. Figure 12 shows HAMSR 54 GHz Tbs
521 along with HIWRAP horizontal wind vectors at 2 km height for this overpass. A very
522 intense convective cell located in the down-shear direction is present in the HAMSR data
523 with Tbs falling well below 200 K (strong ice scattering) in the core of the ~ 10 km wide
524 feature. This cell is located at and just inside the azimuthally averaged RMW at this
525 level.

526 In the eye of the storm, the HIWRAP winds reveal a cyclonic mesovortex circulation
527 that is directing air out of the northern portion of the eye and into the convective burst.
528 The HAMSR data shows that the air being transported into the burst is anomalously
529 warm with Tbs significantly larger than ambient values. The mesovortex circulation
530 identified in the HIWRAP data is also seen at the same location in the TA perturbation
531 wind vectors (see Fig. 11b).

532 The close coordination of the GH and P3 aircraft during this time allows a
533 comparison of the storm structure from the HIWRAP and TA radars. The appendix also
534 shows error statistics between HIWRAP computed winds and P3 flight level data. Figure
535 13a shows HIWRAP Ku band reflectivity in a vertical cross section averaged between ~
536 0 – 6 km in the +y direction (see Fig. 12 for averaging domain) while Fig. 13b shows the

537 same field only for the TA X band data. Both radars show similar qualitative structures
538 with a deep convective cell and elevated reflectivity to ~ 15 km height in the downshear
539 eyewall of Karl. However, the quantitative structure of this cell differs to some extent
540 with HIWRAP revealing a more intense, concentrated reflectivity signature while the P3
541 TA radar shows a weaker and more diffuse cell.

542 These differences are due to several things: the higher resolution (sampling) of the
543 HIWRAP radar, the use of a Gaussian distance-weighted interpolation in the TA data,
544 calibration biases with both radars and rapid evolution of the convection over the ~ 2
545 minute sampling offset. The smoothing in the interpolation used to produce the gridded
546 TA data plays a significant role in the reflectivity differences. A higher resolution TA
547 product that minimizes smoothing was also analyzed and showed increases in reflectivity
548 magnitudes of $\sim 5 - 10$ dBZ (not shown), which are more similar to HIWRAP.
549 Unfortunately, this product is only available in a vertical slice along the aircraft track,
550 which prevents the presentation of the mean structure of the inner core shown in Fig. 13
551 and subsequent figures. Therefore, we proceed with the default TA dataset.

552 The radial winds from HIWRAP (Fig. 14a) show a strong convergence signature
553 (divergence field was computed, but not shown) directly below the intense convective
554 cell with outflow of $\sim 5 - 8$ m s $^{-1}$ crossing the eye-eyewall interface. This outflow from
555 the eye brings warm anomaly air into the eyewall helping to fuel the convective cell as
556 was shown in Fig. 12. The TA radar radial winds (Fig. 14b) show similar features in
557 similar locations, but the intensity of the flow is reduced. The higher resolution TA
558 product agrees more closely with HIWRAP.

559 A deep column (1 – 12 km) of inflow (~ -5 – -10 m s^{-1}) coincident with the
560 convective cell is present in the HIWRAP data (Fig. 14a) and in the TA data at low and
561 high levels (Fig. 14b), which acts to locally spin-up the tangential winds through the
562 inward transport of high angular momentum air. The proximity of the cell to the center
563 of circulation (inside RMW of ~ 23 km) also allows strong projection onto the azimuthal
564 mean dynamics.

565 Figure 15a shows the HIWRAP derived vertical winds in the downshear eyewall for
566 this same averaged section of data. A deep updraft is present in the core of the
567 convective cell with a strong pulse approaching 10 m s^{-1} located above 10 km height. A
568 downdraft of $\sim -3 \text{ m s}^{-1}$ is located on the inner edge of the eyewall (see gray arrow),
569 which is likely formed through mass conserving motions around the strong updraft. The
570 TA vertical winds in Fig. 15b show similar structure to that from HIWRAP with a deep,
571 wide updraft maximized at ~ 10 km height, but again with reduced magnitudes. The TA
572 data also shows compensating downdrafts on either side of the updraft with a broad
573 region of descent (~ -1 – -2 m s^{-1}) located radially inward of the cell (see gray arrow).
574 This broad descent is well positioned to dry and warm the eye as observed in previous
575 overpasses (see Fig. 7c and Fig. 10c). This is also true of the HIWRAP observed inner-
576 edge downdraft and is a common feature around convective towers located in the eyewall
577 of intensifying TCs (e.g. Heymsfield et al. 2001; Guimond et al. 2010).

578 *d. HIWRAP data analysis during the vortex response phase*

579 The main advantage of the GH aircraft is the long duration sampling, which allows
580 continued analysis of the RI of Karl when the P3 aircraft returned to base following the
581 2042 UTC 16 September eye penetration. The GOES IR satellite data analyzed in

582 section 4a showed that the majority of the convective burst activity was finished by ~
583 0000 UTC 17 September. After this time, the vortex went through a response phase that
584 included axisymmetrization of the convective anomalies, which was sampled by the GH
585 aircraft for a period of ~ 8 h.

586 Figure 16 shows vertical cross sections of HIWRAP Ku band reflectivity and
587 tangential wind speed at nadir for a series of overpasses of the inner-core of Karl
588 spanning this 8 h period. At 0012 UTC 17 September (Fig. 16a), the vertical structure of
589 the eye/eyewall already looks different than that shown for the burst pulsing phase (e.g.
590 Fig. 7a and Fig. 10a). There is little reflectivity filling the eye, and the beginning of a
591 more sloped structure to the eyewall is observed. The tangential winds peak at ~ 40 m s⁻¹
592 in the southeast quadrant and ~ 45 m s⁻¹ in the northwest quadrant with both sides
593 showing contours sloping outward with height. About 3.5 h later at 0345 UTC (Fig.
594 16b), the axisymmetric structure reflected in the cross-section continues to develop with
595 significant sloping of the eyewall reflectivity and tangential winds with height. The eye
596 has also widened, which is indicative of increased subsidence and growth of the warm
597 core (backed by HAMSR data; not shown) in association with an enhanced secondary
598 circulation from the vortex response to the convective forcing.

599 Over the next ~ 4 h, the trend towards a wider, clearer and warmer eye with a sloping
600 eyewall structure reminiscent of axisymmetric hurricanes continues to prevail (Figs. 16c
601 and 16d), except for the presence of a transient convective burst in the northwest eyewall
602 in Fig. 16c.

603

604 **5. Conclusions**

605 In this paper, the evolution of rapidly intensifying Hurricane Karl (2010) is examined
606 from a suite of remote sensing observations during the NASA Genesis and Rapid
607 Intensification (GRIP) field experiment. The novelties of this study are in the analysis of
608 data from a new airborne Doppler radar (HIWRAP) and a new airborne platform (NASA
609 Global Hawk) for hurricane research that allows long endurance sampling (up to 24 h).
610 Supporting data from a microwave sounder (HAMS) coincident with HIWRAP and
611 coordinated flights with the NOAA WP-3D aircraft carrying the lower fuselage (LF) and
612 Tail (TA) radars help to provide a detailed analysis of the storm. The focus of the
613 analysis is on documenting and understanding the structure, evolution and role of small
614 scale, deep convective forcing in the storm intensification process.

615 After Karl emerged off the Yucatan Peninsula as a tropical storm, satellite data
616 revealed the presence of deep convective bursts located primarily in the downshear to
617 downshear-left quadrants of the storm. The bursts went through a ~ 12 h pulsing phase
618 followed by a vortex response phase that included axisymmetrization of the convective
619 anomalies and the development of a wide, clear eye. During the time period of the burst
620 pulsing and vortex response phase, the surface wind speeds in Karl increased by ~ 37 m
621 s⁻¹ in a 30 h period, which is more than double the typical rapid intensification rate of ~
622 15 m s⁻¹ in 24 h (Stewart 2010).

623 The Global Hawk (GH) and P3 aircraft data was analyzed from ~ 1900 UTC 16
624 September – 0800 UTC 17 September, which covered portions of the convective burst
625 pulsing phase and vortex response phase. The aircraft remote sensing data and analysis
626 indicates the following science results.

627 The convective bursts formed primarily in the downshear to downshear-left quadrants
628 through a combination of two main processes: (1) convergence generated from counter-
629 rotating mesovortex circulations and the larger scale flow and (2) the turbulent transport
630 of warm, buoyant air from the eye to the eyewall at low-to-mid levels. Reflectivity
631 snapshots and animations from the LF radar showed a distinct wavenumber-5 structure at
632 the eye/eyewall interface and movement of small-scale features in the eye and across the
633 interface during the aircraft-sampling period. These structures and the observed turbulent
634 mesovortex circulations that produce significant eye-eyewall mixing form as a result of
635 dynamic instability in the axisymmetric vortex (e.g. Schubert et al. 1999; Kossin and
636 Schubert 2001; Rozoff et al. 2009; Hendricks et al. 2012).

637 Horizontal wind fields computed from the TA and HIWRAP measurements showed
638 that the mesovortex circulations were primarily located in the western and southern
639 (downshear) eye/eyewall region where the most intense convective activity was found.
640 In one GH overpass, a finger-like protrusion of the warm core observed from HAMSAR
641 was observed to rotate cyclonically into the eyewall, likely helping to fuel convective
642 towers observed in this region. The array of mesoscale circulations and convective bursts
643 rotated cyclonically with the mean flow over time. As the bursts rotated into the upshear
644 quadrants, they were influenced by an across eye flow induced by the counter-rotating
645 mesovortex circulations. Figure 17 shows a conceptual diagram summarizing the remote
646 sensing measurements and the analysis of the mesoscale dynamics described above.

647 The mechanism for convective burst formation identified in the observations is
648 similar to that determined by Braun et al. (2006) using a numerical simulation of
649 Hurricane Bonnie (1998). In this study, the initiation of updraft towers was found to

650 result from convergence between shear induced asymmetries and the cyclonic flow
651 associated with eyewall mesovortices. Reasor et al. (2009) also found observational
652 evidence for the triggering of convective bursts through the interaction of low-level
653 environmental flow and low-wavenumber vorticity asymmetries in the eyewall of
654 Hurricane Guillermo (1997). The HIWRAP and P3 TA radar analysis described in this
655 paper highlights a similar convergence mechanism with the addition of significant
656 transport of warm, buoyant air from the eye into the eyewall as indicated by the
657 HIWRAP and HAMSR data. This additional piece of evidence linked to the formation
658 and/or maintenance of the convective bursts is supported by the trajectory analysis of a
659 numerically simulated hurricane by Cram et al. (2007).

660 The formation of a clear eye and growth of the warm core of Karl are influenced by
661 both asymmetric and axisymmetric processes. The TA and especially HIWRAP data
662 showed that convective induced descent on the inner-edge of the eyewall and in the eye
663 itself was significant, which helps to warm and dry the eye over time. In addition, in one
664 GH overpass the HIWRAP and HAMSR data revealed that turbulent mixing between the
665 eye and eyewall eroded the reflectivity on a local scale. These processes contribute
666 largely to an asymmetric development of the eye and warm core of Karl. During the
667 vortex response phase where the convective bursts are less pronounced and
668 axisymmetrization of the convective anomalies is dominant, the development of the eye
669 has a clear axisymmetric signal shown by the time series of HIWRAP data.

670 Taking in the full scope of the data and analysis, we conclude that the convective
671 bursts played an important role in the rapid intensification of Hurricane Karl (2010).
672 These results build on a large body of evidence supporting the role of convective bursts

673 and their axisymmetric and asymmetric dynamical pathways to the TC intensification
674 problem. We also note that the routine use of the Global Hawk aircraft carrying the
675 HIWRAP and HAMSR instruments for the study of TC evolution and operational
676 forecasting in the future appears promising if the function of the aircraft can mirror that
677 conducted during GRIP.

678

679 *Acknowledgments.* We would like to thank Dr. Lihua Li, Matt McLinden, Martin Perrine
680 and Jaime Cervantes for their engineering efforts on HIWRAP during GRIP. We also
681 thank the JPL HAMSR team for providing level 1B data used in this study, which was
682 obtained from the NASA Global Hydrology Resource Center in Huntsville, Alabama.
683 Discussions with Dr. Scott Braun were useful and helped to clarify the presentation of the
684 data. Dr. Lin Tian helped with early HIWRAP data processing. The NASA GRIP and
685 HS3 field programs supported this research. The NASA weather program under Dr.
686 Ramesh Kakar supported GRIP. The first author was also partially supported by the
687 Institute of Geophysics and Planetary Physics (IGPP) at Los Alamos National
688 Laboratory. The first author thanks Robert Kilgore for his artistic work on the conceptual
689 diagram.

690

691 APPENDIX

692 **Comparison of HIWRAP wind retrievals to flight level data**

693 The HIWRAP radar participated in the NASA Hurricane and Severe Storm Sentinel
694 (HS3) field campaign between the years 2012 – 2014 to study hurricane evolution. As
695 part of this experiment, a coordinated flight between the Global Hawk and the NOAA P3

696 aircraft on September 25, 2013 allowed for the opportunity to validate the HIWRAP wind
697 retrievals with flight level wind data. The aircraft sampled the end of a large-scale frontal
698 system with a mix of stratiform and weak convective precipitation.

699 To make the comparisons, all HIWRAP data with a time offset of < 10 minutes and
700 space offset of < 1 km from the P3 aircraft and with reflectivity > 5 dBZ are retained.
701 These data are then interpolated to the locations of the flight level measurements (height
702 of \sim 2 km). In an attempt to match the along-track sampling of the flight level winds (1
703 Hz or \sim 100 – 150 m for a typical P3 airspeed) with the HIWRAP wind retrieval grid (1
704 km) a 10-point running mean filter is applied to the flight level winds.

705 Figure A1 shows a scatter plot of the horizontal wind speed error, defined as
706 $|HIWRAP - P3 \text{ flight level}|$, vs. the flight level horizontal wind speed. In this figure,
707 HIWRAP Ku band data is shown. There is a clear trend of lower errors for higher wind
708 speeds. For all the points in Fig. A1 ($N = 2727$) the RMSE for wind speed and direction
709 (not shown) is 7.8 m s^{-1} and 27° , respectively. When considering points where the wind
710 speed is $> 10 \text{ m s}^{-1}$ ($N = 1077$) the RMSE for wind speed and direction is 1.3 m s^{-1} and
711 19° , respectively. These errors are slightly lower for Ka band data likely due to the
712 higher signal-to-noise ratios when compared to Ku band. For example, when the wind
713 speed is $> 10 \text{ m s}^{-1}$ ($N = 1321$) the RMSE for wind speed and direction using Ka band
714 data is 1.1 m s^{-1} and 15° . No clear reflectivity dependence is observed in Fig. A1, but the
715 values give an indication of the intensity of precipitation sampled.

716 Coordination between the Global Hawk and NOAA P3 aircraft also occurred for one
717 overpass of Hurricane Karl during GRIP on September 16, 2010 at ~ 2040 UTC. The
718 same procedures described above were applied to this data. The flight level

719 measurements were located between 3.5 and 3.8 km height and the time offset between
720 the aircraft was $\sim 2 - 3$ minutes. Figure A2 shows these comparison results for the same
721 kind of scatter plot as that in Fig. A1. A trend for lower errors with increasing wind
722 speeds is not observed with the range of values sampled here, but a slight indication of
723 lower errors for higher reflectivity values is somewhat apparent. For all the points in Fig.
724 A2 ($N = 239$) the RMSE for wind speed and direction (not shown) is 4.0 m s^{-1} and 11° ,
725 respectively.

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

References

743

- 744 Braun, S., M. T. Montgomery, and Z. Pu, 2006: High-resolution simulation of
745 Hurricane Bonnie (1998). Part I: The organization of eyewall vertical motion. *J.*
746 *Atmos. Sci.*, **63**, 19–42.
- 747
- 748 Braun, S., R. Kakar, E. Zipser, G. Heymsfield, C. Albers, S. Brown, S. Durden, S.
749 Guimond, J. Halverson, A. Heymsfield, S. Ismail, B. Lambrightsen, T. Miller, S.
750 Tanelli, J. Thomas and J. Zawislak, 2013: NASA’s Genesis and Rapid Intensification
751 Processes (GRIP) field experiment. *Bull. Amer. Meteor. Soc.*, **94**, 345 – 363.
- 752
- 753 Brown, S.T., Lambrightsen, B., Denning, R.F., Gaier, T., Kangaslahti, P., Lim, B.H.,
754 Tanabe, J.M., Tanner, A.B., 2011: The High-Altitude MMIC Sounding Radiometer
755 for the Global Hawk Unmanned Aerial Vehicle: Instrument description and
756 performance. *IEEE Transactions on Geoscience and Remote Sensing*, doi:
757 10.1109/TGRS.2011.2125973.
- 758
- 759 Cram, T.A., J. Persing, M. T. Montgomery, and S.A. Braun, 2007: A lagrangian
760 trajectory view on transport and mixing processes between the eye, eyewall and
761 environment using a high-resolution simulation of Hurricane Bonnie (1998). *J. Atmos.*
762 *Sci.*, **64**, 1835 – 1856.
- 763
- 764 Emanuel, K.A., 1986: An air-sea interaction theory for tropical cyclones. Part I: Steady-

- 765 state maintenance. *J. Atmos. Sci.*, **43**, 2044-2061.
- 766
- 767 Gamache, J.F., F.D. Marks, and F. Roux, 1995: Comparison of three airborne Doppler
768 sampling techniques with airborne in situ wind observations in Hurricane Gustav
769 (1990). *J. Atmos. Oceanic Technol.*, **12**, 171 – 181.
- 770
- 771 Gamache, J.F., 1997: Evaluation of a fully three-dimensional variational Doppler
772 analysis technique. Preprints, *28th Conf. on Radar Meteorology*, Austin, TX, Amer.
773 Meteor. Soc., 422 – 423.
- 774
- 775 Gamache, J.F., 2005: Real-time dissemination of hurricane wind fields determined from
776 airborne Doppler radar data. National Hurricane Center, 38 pp. [Available online at
777 http://www.nhc.noaa.gov/jht/2003-2005reports/DOPLRgamache_JHTfinalreport.pdf]
778
- 779 Guimond, S. R., G. M. Heymsfield, and F. J. Turk, 2010: Multiscale observations of
780 Hurricane Dennis (2005): The effects of hot towers on rapid intensification. *J. Atmos.*
781 *Sci.*, **67**, 633–654.
- 782
- 783 Guimond, S.R., L. Tian, G.M. Heymsfield, and S.J. Frasier, 2014: Wind retrieval
784 algorithms for the IWRAP and HIWRAP airborne Doppler radars with applications to
785 hurricanes. *J. Atmos. Oceanic Technol.*, **31**, 1189 – 1215.
- 786
- 787 Guimond, S.R., J.M. Reisner, S. Marras, and F.X. Giraldo, 2016: The impacts of

- 788 numerical schemes on asymmetric hurricane intensification. *J. Atmos. Sci.*, submitted.
- 789
- 790 Hendricks, E.A., B.D. McNoldy, and W.H. Schubert, 2012: Observed inner-core
- 791 structural variability in Hurricane Dolly (2008). *Mon. Wea. Rev.*, **140**, 4066 – 4077.
- 792
- 793 Hendricks, E.A., W.H. Schubert, Y. Chen, H. Kuo and M.S. Peng, 2014: Hurricane
- 794 eyewall evolution in a forced shallow-water model. *J. Atmos. Sci.*, **71**, 1623 – 1643.
- 795
- 796 Heymsfield, G. M., J. B. Halverson, J. Simpson, L. Tian, and T. P. Bui, 2001: ER-2
- 797 Doppler radar investigations of the eyewall of Hurricane Bonnie during the
- 798 Convection and Moisture Experiment-3. *J. Appl. Meteor.*, **40**, 1310–1330.
- 799
- 800 Houze, R.A., W.C. Lee, and M.M. Bell, 2009: Convective contribution to the genesis of
- 801 Hurricane Ophelia (2005). *Mon. Wea. Rev.*, **137**, 2778 – 2800.
- 802
- 803 Kaplan, J., and M. DeMaria, 2003: Large-scale characteristics of rapidly intensifying
- 804 tropical cyclones in the North Atlantic basin. *Wea. Forecasting*, **18**, 1093 – 1108.
- 805
- 806 Kelley, O. A., J. Stout, and J. B. Halverson, 2004: Tall precipitation cells in tropical
- 807 cyclone eyewalls are associated with tropical cyclone intensification. *Geophys. Res.*
- 808 *Lett.*, **31**.
- 809
- 810 Kossin, J.P., and W.H. Schubert, 2001: Mesovortices, polygonal flow patterns, and rapid

- 811 pressure falls in hurricane-like vortices. *J. Atmos. Sci.*, **58**, 2196 – 2209.
- 812
- 813 Li, L., G.M. Heymsfield, J. Carswell, D. Schaubert, M. McLinden, J. Creticos, M. Perrine,
- 814 M. Coon, J. Cervantes, M. Vega, S. Guimond, L. Tian, and A. Emory, 2015: The
- 815 NASA High-altitude Imaging Wind and Rain Airborne Profiler (HIWRAP). *IEEE*
- 816 *Trans. Geosci. Remote Sens.*, **54**, 298 – 310.
- 817
- 818 Marks, F.D., 1985: Evolution and structure of precipitation in Hurricane Allen (1980).
- 819 *Mon. Wea. Rev.*, **113**, 909 – 930.
- 820
- 821 Molinari, J. and D. Vollaro, 2010: Rapid Intensification of a Sheared Tropical
- 822 Storm. *Mon. Wea. Rev.*, **138**, 3869–3885.
- 823
- 824 Montgomery M. T., and R. J. Kallenbach, 1997: A theory for vortex Rossby waves and
- 825 its application to spiral bands and intensity changes in hurricanes. *Quart. J. Roy.*
- 826 *Meteor. Soc.*, **123**, 435–465.
- 827
- 828 Montgomery, M. T., M. Nicholls, T. Cram, and A. Saunders, 2006: A vortical hot
- 829 tower route to tropical cyclogenesis. *J. Atmos. Sci.*, **63**, 355–386.
- 830
- 831 Nolan, D.S., and L.D. Grasso, 2003: Three-dimensional, nonhydrostatic perturbations to
- 832 balanced, hurricane-like vortices. Part II: Symmetric response and nonlinear
- 833 simulations. *J. Atmos. Sci.*, **60**, 2717-2745.

- 834
- 835 Nolan, D.S., Y. Moon, and D.P. Stern, 2007: Tropical cyclone intensification from
836 asymmetric convection: Energetics and efficiency. *J. Atmos. Sci.*, **64**, 3377-3405.
- 837
- 838 Persing, J., M.T. Montgomery, J.C. McWilliams, R.K. Smith, 2013: Asymmetric and
839 axisymmetric dynamics of tropical cyclones. *Atmos. Chem. Phys.*, **13**, 12299 – 12341.
- 840
- 841 Reasor, P.D., M.T. Montgomery, F.D. Marks Jr., and J.F. Gamache, 2000: Low-
842 wavenumber structure and evolution of the hurricane inner core observed by airborne
843 dual-Doppler radar. *Mon. Wea. Rev.*, **128**, 1653 – 1680.
- 844
- 845 Reasor, P.D., M.T. Montgomery, and L.F. Bosart, 2005: Mesoscale observations of the
846 genesis of Hurricane Dolly (1996). *J. Atmos. Sci.*, **62**, 3151 – 3171.
- 847
- 848 Reasor, P. D., M. D. Eastin, and J. F. Gamache, 2009: Rapidly intensifying Hurricane
849 Guillermo (1997). Part I: Low-wavenumber structure and evolution. *Mon. Wea. Rev.*,
850 **137**, 603–631.
- 851
- 852 Rinehart, B., H. Fuelberg, R. Blakeslee, D. Mach, A. Heymsfield, A. Bansemmer, S.L.
853 Durden, S. Tanelli, G. Heymsfield, and B. Lambrigtsen, 2014: Understanding the
854 relationships between lightning, cloud microphysics, and airborne radar derived storm
855 structure during Hurricane Karl (2010). *Mon. Wea. Rev.*, **142**, 590 – 605.
- 856

- 857 Rogers, R.F., P.D. Reasor, and S. Lorsolo, 2013: Airborne Doppler observations of the
858 inner-core structural differences between intensifying and steady-state tropical
859 cyclones. *Mon. Wea. Rev.*, **141**, 2970 – 2991.
- 860
- 861 Rogers, R. F., P.D. Reasor, and J.A. Zhang, 2015: Multiscale structure and evolution of
862 Hurricane Earl (2010) during rapid intensification. *Mon. Wea. Rev.*, **143**, 536 – 562.
- 863
- 864 Rotunno, R., and K.A. Emanuel, 1987: An air-sea interaction theory for tropical
865 cyclones. Part II: Evolutionary study using a nonhydrostatic axisymmetric numerical
866 model. *J. Atmos. Sci.*, **44**, 542-561.
- 867
- 868 Rozoff, C.M., J.P. Kossin, W.H. Schubert, and P.J. Mulero, 2009: Internal control of
869 hurricane intensity: The dual nature of potential vorticity mixing. *J. Atmos. Sci.*, **66**,
870 133 – 147.
- 871
- 872 Schubert, W.H., and J.J. Hack, 1982: Inertial stability and tropical cyclone development.
873 *J. Atmos. Sci.*, **39**, 1687 – 1697.
- 874
- 875 Schubert, W.H., M.T. Montgomery, R.K. Taft, T.A. Guinn, S.R. Fulton, J.P. Kossin, and
876 J.P. Edwards, 1999: Polygonal eyewalls, asymmetric eye contraction, and potential
877 vorticity mixing in hurricanes. *J. Atmos. Sci.*, **56**, 1197 – 1223.
- 878
- 879 Shapiro, L.J. and H.E. Willoughby, 1982: The response of balanced hurricanes to local

- 880 sources of heat and momentum. *J. Atmos. Sci.*, **39**, 378 – 394.
- 881
- 882 Simpson, J., J. B. Halverson, B. S. Ferrier, W. A. Petersen, R. H. Simpson, R. Blakeslee,
- 883 and S. L. Durden, 1998: On the role of “hot towers” in tropical cyclone formation.
- 884 *Meteor. Atmos. Phys.*, **67**, 15–35.
- 885
- 886 Steranka, J., E.B. Rodgers, and R.C. Gentry, 1986: The relationship between satellite-
- 887 measured convective bursts and tropical cyclone intensification. *Mon. Wea. Rev.*, **114**,
- 888 1539 – 1546.
- 889
- 890 Stevenson, S.N., K.L. Corbosiero, and J. Molinari, 2014: The convective evolution and
- 891 rapid intensification of Hurricane Earl (2010). *Mon. Wea. Rev.*, **142**, 4364 – 4380.
- 892
- 893 Stewart, S., 2010: Tropical cyclone report: Hurricane Karl 14 – 18 September 2010.
- 894 National Hurricane Center, 17 pp. [Available online at
- 895 <http://www.nhc.noaa.gov/2010atlan.shtml>].
- 896
- 897 Willoughby, H.E., and M.B. Chelmsow, 1982, Objective determination of hurricane tracks
- 898 from aircraft observations. *Mon. Wea. Rev.*, **110**, 1298 – 1305.
- 899
- 900
- 901
- 902

903

FIGURE CAPTIONS

904 1. Best track of Hurricane Karl (2010) starting from 0000 UTC 14 September with
905 intensity classifications marked every six hours. The days in September at 0000 UTC are
906 also shown. The green circles denote tropical depression status, open hurricane symbols
907 are tropical storm and closed hurricane symbols are hurricane status with the category
908 listed in the center. The inset shows the time series of maximum surface wind speed in m
909 s^{-1} with the Global Hawk flight bracketed with the black lines.

910

911 2. A sequence of GOES IR images of Hurricane Karl (2010) in the Bay of Campeche
912 during an RI episode spanning the GH flights into the storm. The times shown are (a)
913 1845 UTC 16 September, (b) 2215 UTC 16 September, (c) 0140 UTC 17 September and
914 (d) 0501 UTC 17 September. The white arrow in (a) denotes the environmental vertical
915 wind shear vector valid over the time interval. The star represents the estimated storm
916 center. The track of the GH ± 2 h from the satellite time stamp is shown in white with
917 the large numbers denoting the hour (UTC).

918

919 3. Composite analysis of HIWRAP data averaged over the total Global Hawk sampling
920 interval (12 – 13 h) at 2 km height for (a) Ku band reflectivity (dBZ) and horizontal wind
921 vectors and (b) horizontal wind speeds ($m s^{-1}$). The white arrows in (b) highlight
922 anomalously large wind speeds in the eyewall discussed in the text.

923

924 4. As in Fig. 3 only at 8 km height and zoomed in on the inner-core of Karl. The large,
925 gray arrow in (a) is the large-scale vertical wind shear vector valid for this time interval

926 with a value of $\sim 5 \text{ m s}^{-1}$. The thick white arrows in (a) show the locations of low-level
927 (2 km) anomalously large wind speeds in the eyewall (see Fig. 3b). The white circle in
928 (a) shows the location of the low-level (2 km), time and azimuthally averaged RMW.

929

930 5. NOAA P3 flight through the inner-core of Hurricane Karl (2010) centered at ~ 1842
931 UTC 16 September showing (a) LF C-band reflectivity at 3.7 km height overlaid with TA
932 derived winds at 4 km height and (b) TA derived radial wind speeds averaged between 1
933 – 4 km height overlaid with perturbation wind vectors averaged over the same interval.
934 The white arrows in (b) highlight features discussed in the text. The gray line in (b)
935 marks the eye-eyewall interface using the gradient in LF reflectivity. The “C” and “A”
936 letters in (b) denote the centers of cyclonic and anti-cyclonic mesovortex circulations,
937 respectively.

938

939 6. Global Hawk overpass of the inner-core of Hurricane Karl (2010) between 1853 –
940 1919 UTC 16 September showing (a) HAMSR 54 GHz Tbs (K) and (b) HIWRAP Ku
941 band reflectivity (dBZ). In both figures, horizontal wind vectors from HIWRAP are
942 overlaid and the analysis level is 2 km height. The white arrows in (a) highlight a feature
943 discussed in the text. The reference vector in (a) applies to both figures. Note that the
944 azimuthal mean RMW at this time and level is $\sim 30 \text{ km}$.

945

946 7. HIWRAP vertical cross sections at nadir through the storm center in the North-South
947 direction for the Global Hawk overpass between 1853 – 1919 UTC 16 September. The
948 data shown is (a) Ku band reflectivity (dBZ), (b) meridional (radial) winds (m s^{-1}), (c)

949 vertical winds (m s^{-1}) and (d) vertical vorticity (s^{-1}). The large gray arrows in (b) and (c)
950 highlight features discussed in the text.

951

952 8. NOAA P3 flight through the inner-core of Hurricane Karl (2010) centered at ~ 1930
953 UTC 16 September showing (a) LF reflectivity at 3.6 km height overlaid with TA derived
954 winds at 4 km height and (b) TA derived divergence (s^{-1}) averaged between 1 – 4 km
955 height overlaid with perturbation winds averaged over the same interval. The gray line in
956 (b) marks the eye-eyewall interface using the gradient in LF reflectivity. The “C” and
957 “A” letters in (b) denote the centers of cyclonic and anti-cyclonic mesovortex
958 circulations, respectively.

959

960 9. As in Fig. 6a, but for the GH overpass between 1938 – 1957 UTC 16 September. The
961 large white circle denotes the azimuthally averaged RMW at 2 km height and the white
962 dot is the storm center.

963

964 10. As in Fig. 7 except for the Global Hawk overpass between 1938 – 1957 UTC 16
965 September. The data shown is (a) Ku band reflectivity (dBZ), (b) radial winds (m s^{-1}), (c)
966 vertical winds (m s^{-1}) and (d) tangential winds (m s^{-1}). The gray arrows in (b) and (c)
967 highlight features discussed in the text.

968

969 11. As in Fig. 8, only for the NOAA P3 transect centered at ~ 2042 UTC 16 September.
970

971

972 12. As in Fig. 6a, but for the GH overpass between 2009 – 2055 UTC 16 September with
973 a center crossing at \sim 2040 UTC. The large white circle denotes the azimuthally
974 averaged RMW at 2 km height and the white dot is the storm center. The gray box shows
975 the region where data are averaged in the y-direction for subsequent figures. The “C”
976 letter denotes the center of a mesovortex cyclonic circulation.

977

978 13. Vertical cross sections of radar reflectivity averaged between \sim 0 – 6 km in the +y-
979 direction (see Fig. 12) from (a) HIWRAP Ku band data valid at \sim 2040 UTC 16
980 September (b) NOAA P3 X band data valid at \sim 2042 UTC 16 September. Note that
981 there is no data on the right side of (a) due to the HIWRAP coverage and cross section
982 cut.

983

984 14. As in Fig. 13, only for radial winds. The gray line denotes the western eye-eyewall
985 interface using the gradient in reflectivity.

986

987 15. As in Fig. 14, only for vertical winds. The large gray arrows highlight features
988 discussed in the text.

989

990 16. HIWRAP vertical cross sections of Ku band reflectivity (shading; dBZ) and
991 tangential winds (contours; $m s^{-1}$) at nadir for the Global Hawk overpasses on 17
992 September centered at (a) 0012 UTC in southeast to northwest direction (b) 0345 UTC in
993 southwest to northeast direction (c) 0550 UTC in southeast to northwest direction and (d)
994 0805 UTC in southeast to northwest direction.

995

996 17. Conceptual diagram highlighting the measurements and analysis from the HIWRAP,
997 HAMSR and P3 instruments during the Hurricane Karl (2010) sampling. The arrows
998 represent the mesoscale flow with red indicating anomalously warm, buoyant air.

999

1000 A1. Scatter plot of HIWRAP horizontal wind speed errors ($|HIWRAP - P3$ flight level)|
1001 vs. P3 flight level wind speeds for the coordinated flight during HS3 on 25 Sept. 2013.
1002 The points are colored by HIWRAP Ku band reflectivity. Note the HIWRAP winds are
1003 computed using Ku band Doppler velocities. See text for more details.

1004

1005 A2. As in Fig. A1, only for the coordinated flight during GRIP (sampling of Hurricane
1006 Karl on 16 Sept. 2010 at \sim 2040 UTC). The points are colored by HIWRAP Ku band
1007 reflectivity. Note the HIWRAP winds are computed using a combination of Ku and Ka
1008 band Doppler velocities. See text for more details.

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027
1028

Figures

1029
1030
1031
1032
1033
1034
1035
1036
1037

Figure 1. Best track of Hurricane Karl (2010) starting from 0000 UTC 14 September with intensity classifications marked every six hours. The days in September at 0000 UTC are also shown. The green circles denote tropical depression status, open hurricane symbols are tropical storm and closed hurricane symbols are hurricane status with the category listed in the center. The inset shows the time series of maximum surface wind speed in m s^{-1} with the Global Hawk flight bracketed with the black lines.

1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057

Figure 2. A sequence of GOES IR images of Hurricane Karl (2010) in the Bay of Campeche during an RI episode spanning the GH flights into the storm. The times shown are (a) 1845 UTC 16 September, (b) 2215 UTC 16 September, (c) 0140 UTC 17 September and (d) 0501 UTC 17 September. The white arrow in (a) denotes the environmental vertical wind shear vector valid over the time interval. The star represents the estimated storm center. The track of the GH ± 2 h from the satellite time stamp is shown in white with the large numbers denoting the hour (UTC).

1058
1059
1060
1061
1062
1063

Figure 3. Composite analysis of HIWRAP data averaged over the total Global Hawk sampling interval (12 – 13 h) at 2 km height for (a) Ku band reflectivity (dBZ) and horizontal wind vectors and (b) horizontal wind speeds (m s^{-1}). The white arrows in (b) highlight anomalously large wind speeds in the eyewall discussed in the text.

1064
 1065 Figure 4. As in Fig. 3 only at 8 km height and zoomed in on the inner-core of Karl.
 1066 The large, gray arrow in (a) is the large-scale vertical wind shear vector valid for this time
 1067 interval with a value of $\sim 5 \text{ m s}^{-1}$. The thick white arrows in (a) show the locations of
 1068 low-level (2 km) anomalously large wind speeds in the eyewall (see Fig. 3b). The white
 1069 circle in (a) shows the location of the low-level (2 km), time and azimuthally averaged
 1070 RMW.

1071
1072
1073
1074
1075
1076
1077
1078
1079

Figure 5. NOAA P3 flight through the inner-core of Hurricane Karl (2010) centered at ~ 1842 UTC 16 September showing (a) LF C-band reflectivity at 3.7 km height overlaid with TA derived winds at 4 km height and (b) TA derived radial wind speeds averaged between 1 – 4 km height overlaid with perturbation wind vectors averaged over the same interval. The white arrows in (b) highlight features discussed in the text. The gray line in (b) marks the eye-eyewall interface using the gradient in LF reflectivity. The “C” and “A” letters in (b) denote the centers of cyclonic and anti-cyclonic mesovortex circulations, respectively.

1080
1081

1082
1083

1084 Figure 6. Global Hawk overpass of the inner-core of Hurricane Karl (2010) between
1085 1853 – 1919 UTC 16 September showing (a) HAMSR 54 GHz Tbs (K) and (b) HIWRAP
1086 Ku band reflectivity (dBZ). In both figures, horizontal wind vectors from HIWRAP are
1087 overlaid and the analysis level is 2 km height. The white arrows in (a) highlight a
1088 protrusion of the warm core discussed in the text. The reference wind vector in (a)
1089 applies to both figures. Note that the azimuthal mean RMW at this time and level is ~ 30
1090 km.

1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105

1106
 1107
 1108 Figure 7. HIWRAP vertical cross sections at nadir through the storm center in the North-
 1109 South direction for the Global Hawk overpass between 1853 – 1919 UTC 16 September.
 1110 The data shown is (a) Ku band reflectivity (dBZ), (b) meridional (radial) winds (m s^{-1}),
 1111 (c) vertical winds (m s^{-1}) and (d) vertical vorticity (s^{-1}). The large gray arrows in (b) and
 1112 (c) highlight features discussed in the text.

1113
 1114
 1115
 1116
 1117
 1118
 1119
 1120
 1121

1122
 1123 Figure 8. NOAA P3 flight through the inner-core of Hurricane Karl (2010) centered at ~
 1124 1930 UTC 16 September showing (a) LF reflectivity at 3.6 km height overlaid with TA
 1125 derived winds at 4 km height and (b) TA derived divergence (s^{-1}) averaged between 1 – 4
 1126 km height overlaid with perturbation winds averaged over the same interval. The gray
 1127 line in (b) marks the eye-eyewall interface using the gradient in LF reflectivity. The "C"
 1128 and "A" letters in (b) denote the centers of cyclonic and anti-cyclonic mesovortex
 1129 circulations, respectively.

1130
1131
1132
1133
1134
1135
1136
1137

1138
1139

1140 Figure 9. As in Fig. 6a, but for the GH overpass between 1938 – 1957 UTC 16
1141 September. The large white circle denotes the azimuthally averaged RMW at 2 km
1142 height and the white dot is the storm center.

1143
1144
1145
1146
1147
1148
1149
1150
1151
1152

1153
 1154
 1155 Figure 10. As in Fig. 7 except for the Global Hawk overpass between 1938 – 1957 UTC
 1156 16 September in the southeast (negative radius) to northwest (positive radius) direction.
 1157 The data shown is (a) Ku band reflectivity (dBZ), (b) radial winds (m s^{-1}), (c) vertical
 1158 winds (m s^{-1}) and (d) tangential winds (m s^{-1}). The gray arrows in (b) and (c) highlight
 1159 features discussed in the text.

1160
1161
1162
1163

Figure 11. As in Fig. 8, only for the NOAA P3 transect centered at ~ 2042 UTC 16 September.

1164
 1165 Figure 12. As in Fig. 6a, but for the GH overpass between 2009 – 2055 UTC 16
 1166 September with a center crossing at ~ 2040 UTC.
 1167 The large white circle denotes the azimuthally averaged RMW at 2 km height and the white dot is the storm center.
 1168 The gray box shows the region where data are averaged in the y-direction for subsequent
 1169 figures. The “C” letter denotes the center of a mesovortex cyclonic circulation.
 1170
 1171
 1172
 1173
 1174
 1175
 1176
 1177
 1178
 1179
 1180
 1181
 1182
 1183
 1184
 1185
 1186

1187

1188

1189 Figure 13. Vertical cross sections of radar reflectivity averaged between $\sim 0 - 6$ km in
1190 the +y-direction (see Fig. 12) from (a) HIWRAP Ku band data valid at ~ 2040 UTC 16
1191 September (b) NOAA P3 X band data valid at ~ 2042 UTC 16 September. Note that
1192 there is no data on the right side of (a) due to the HIWRAP coverage and cross section
1193 cut.

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217
1218
1219

1220
1221

1222 Figure 14. As in Fig. 13, only for radial winds. The gray line denotes the western eye-
1223 wall interface using the gradient in reflectivity.

1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247

1248
1249
1250
1251

1252
1253

1254 Figure 15. As in Fig. 13, only for vertical winds. The gray line denotes the western eye-
1255 eyewall interface using the gradient in reflectivity. The large gray arrows highlight
1256 features discussed in the text.

1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277

1278
1279
1280
1281
1282

1283
1284

1285 Figure 16. HIWRAP vertical cross sections of Ku band reflectivity (shading; dBZ) and
1286 tangential winds (contours; m s^{-1}) at nadir for the Global Hawk overpasses on 17
1287 September centered at (a) 0012 UTC in southeast to northwest direction (b)
1288 in southwest to northeast direction (c) 0550 UTC in southeast to northwest direction and (d)
1289 0805 UTC in southeast to northwest direction.
1290
1291
1292
1293

1294
1295

1296 Figure 17. Conceptual diagram highlighting the measurements and analysis from the
1297 HIWRAP, HAMSR and P3 instruments during the Hurricane Karl (2010) sampling. The
1298 arrows represent the mesoscale flow with red indicating anomalously warm, buoyant air.
1299
1300
1301
1302
1303
1304
1305

1306
1307

1308 Figure A1. Scatter plot of HIWRAP horizontal wind speed errors ($|\text{HIWRAP} - \text{P3 flight}$
1309 level|) vs. P3 flight level wind speeds for the coordinated flight during HS3 on 25 Sept.
1310 2013. The points are colored by HIWRAP Ku band reflectivity. Note the HIWRAP
1311 winds are computed using Ku band Doppler velocities. See text for more details.

1312
1313

1314
1315

1316
1317

1318
1319

1320
1321

1322
1323

1324
1325

1326
1327

1328
1329

1330
1331

1332
1333
1334

1335
1336
1337
1338
1339
1340
1341

Figure A2. As in Fig. A1, only for the coordinated flight during GRIP (sampling of Hurricane Karl on 16 Sept. 2010 at ~ 2040 UTC). The points are colored by HIWRAP Ku band reflectivity. Note the HIWRAP winds are computed using a combination of Ku and Ka band Doppler velocities. See text for more details.