Package 'mlmpower'

October 20, 2024

Type Package

Title Power Analysis and Data Simulation for Multilevel Models

Version 1.0.9

Description A declarative language for specifying multilevel models, solving for population parameters based on specified variance-explained effect size measures, generating data, and conducting power analyses to determine sample size recommendations. The specification allows for any number of within-cluster effects, between-cluster effects, covariate effects at either level, and random coefficients. Moreover, the models do not assume orthogonal effects, and predictors can correlate at either level and accommodate models with multiple interaction effects.

License GPL-3
Encoding UTF-8
RoxygenNote 7.3.2

URL https://github.com/bkeller2/mlmpower

BugReports https://github.com/bkeller2/mlmpower/issues

Depends R (>= 4.0.0)

Imports cli, lme4, lmerTest, varTestnlme

Suggests knitr, rmarkdown

VignetteBuilder knitr

NeedsCompilation no

Author Brian T. Keller [aut, cre, cph]

Maintainer Brian T. Keller < btkeller@missouri.edu>

Repository CRAN

Date/Publication 2024-10-20 21:00:01 UTC

2 analyze

Contents

analyze
as.data.frame.mp_power
as.list.mp_parameters
center
correlations
effect_size
generate
is_valid
levels.mp_variable
mechanisms
mlmpower
mp_corr_func
mp_parameters
parameters
power_analysis
print.mp_correlations
print.mp_effsize
print.mp_model
print.mp_parameters
print.mp_power
print.mp_variable
product
random_slope
subset.mp_model
summary.mp_model
summary.mp_power
to_formula
Variables
2

analyze

Index

Analyzes a single mp_data using lme4::lmer

Description

Analyzes a single mp_data based on the data generating model.

```
analyze(data, alpha = 0.05, no_lrt = FALSE, ...)
```

Arguments

```
alpha the significance level to determine if an effect is statistically significant. If NULL then no nested model testing is conducted.

no_lrt do not perform additional likelihood ratio tests. Setting to TRUE will speed up the analysis because the model is only fit once.

... other arguments passed to lme4::lmer().
```

Value

A list that with the following named elements:

- estimates: The estimates from fitting the model.
- sig_test: The logical if the estimates were statistically significant based on alpha.
- parameters: The mp_parameters extracted from data.

Examples

```
# Create Model
model <- (
    outcome('Y')
    + within_predictor('X')
    + effect_size(icc = 0.1)
)
# Set seed
set.seed(198723)
# Create data set and analyze
model |> generate(5, 50) |> analyze() -> results
```

```
as.data.frame.mp\_power
```

Coerce a mp_power to a Data Frame

Description

Outputs mp_power as a data frame.

```
## S3 method for class 'mp_power'
as.data.frame(x, row.names = NULL, optional = FALSE, power = TRUE, ...)
```

Arguments

```
x a mp_power.

row.names passed to base::as.data.frame

optional passed to base::as.data.frame

power logical: do you want the power or the estimates

other arguments not used by this method.
```

Value

returns a data frame

Examples

```
# Create Model
model <- (
    outcome('Y')
    + within_predictor('X')
    + effect_size(icc = 0.1)
)
# Set seed
set.seed(19723)
# Create data set and analyze
# Note: Generally Use more than 50 replications
model |> power_analysis(50, 5, 50) -> powersim
# Obtain Results as a data frame
as.data.frame(powersim)
```

Description

A wrapper to coerce mp_parameters to a list.

Usage

```
## S3 method for class 'mp_parameters'
as.list(x, ...)
```

Arguments

```
x the mp_parameters to be coered.... additional arguments passed to as.list
```

Value

```
a list
```

center 5

Examples

```
# Specify model
model <- (
    outcome('Y')
    + within_predictor('X')
    + effect_size(
        icc = c(0.1, 0.2),
        within = 0.3
    )
)
# Obtain parameters and convert to a list
model |> summary() |> as.list() -> param_list
```

center

Center a data set based on a mp_data

Description

Provides multilevel centering of a mp_data data set.

Usage

```
center(data, all = FALSE, ...)
```

Arguments

```
data a mp_data or a list of mp_data.

all a logical value to center all variables based on model defaults

... see details below
```

Details

The ... needs to be the variable's name followed by equals and the centering strategy requested. There are three different strategies available:

- cwc = centering within cluster
- cgm = centering with group mean
- none = no centering

If all is set to TRUE then the default centering will be used unless overwritten by specifying a specific centering strategy.

Value

For ndata = 1 a single data.frame is returned. If a list of data sets are included then they will be contained in a list. Each data.frame has an additional center attribute which denotes the centering strategy used.

6 correlations

Examples

```
# Create Model
model <- (
    outcome('Y')
    + within_predictor('X')
    + effect_size(icc = 0.1)
)
# Set seed
set.seed(198723)

# Create data set with default centering
model |> generate(5, 50) |> center(all = TRUE) -> mydata

# Create data centering X with cwc
model |> generate(5, 50) |> center(X = cwc) -> mydata

# See centering strategy
attr(mydata, 'center')
```

correlations

Specify the Correlation Structure for the Model

Description

Creates a list of correlations to be added to a mp_model.

Usage

```
correlations(within, between, randeff)
```

Arguments

within a single numeric value or mp_corr_func that specifies random correlations.

Corresponds to the level-1 correlation among predictors.

between a single numeric value or mp_corr_func that specifies random correlations.

Corresponds to the level-2 correlation among predictors.

randeff a single numeric value or mp_corr_func that specifies random correlations.

Corresponds to the random effects correlation among predictors.

Details

The default values are random(0.1, 0.3). Currently randeff are required to be zero if more than one random slope is in the model.

Value

A list that corresponds to each correlation value.

effect_size 7

See Also

```
random() fixed()
```

Examples

```
(
   outcome('Y')
   + within_predictor('X')
   + effect_size(
        icc = c(0.1, 0.2),
        within = 0.3
)
   # Defaults
   + correlations(
        within = random(0.1, 0.3),
        between = random(0.1, 0.3),
        randeff = random(0.1, 0.3)
)
```

effect_size

Specify the Effect Size for the Model

Description

Creates a list of effect sizes to be added to a mp_model.

Returns suggested ICC's for cross-sectional studies (0.05, 0.15, and 0.25).

Returns suggested ICC ranges for longitudinal studies (0.40, 0.50, and 0.60).

Usage

```
effect_size(icc, within, between, random_slope, product)
cross_sectional()
longitudinal()
```

Arguments

icc a numeric vector of global ICC values for mp_variable who are left unspecified.

Values must be between 0 and 1.

within a single numeric value that corresponds to the proportion of variance explained

by the within variables.

between a single numeric value that corresponds to the incremental proportion of vari-

ance explained by the between variables.

random_slope a single numeric value that corresponds to the proportion of variance explained

by the random slopes.

8 generate

product

a single numeric value that corresponds to the proportion of variance explained by the product terms.

Value

A list that corresponds to each R2 value.

Examples

```
# Set ICCs
(
   outcome('Y')
   + within_predictor('X')
    + effect_size(
        icc = c(0.1, 0.2),
        within = 0.3
   )
)
# With cross-sectional ICC
   outcome('Y')
   + within_predictor('X')
   + effect_size(
        icc = cross_sectional,
        within = 0.3
   )
)
# With longitudinal ICC
   outcome('Y')
   + within_predictor('X')
   + effect_size(
        icc = longitudinal,
        within = 0.3
   )
)
```

generate

Generates Data Sets Based on a mp_model

Description

Generates data sets based on a mp_model. These data sets will be returned as a data.frame and include the solved parameters as an attribute to the data.frame.

```
generate(model, n_within, n_between, ndata = 1, mechanism = NULL)
```

generate 9

Arguments

model a mp_model.

n_within a single positive integer of the desired within cluster observations.

n_between a single positive integer of the desired between cluster observations.

a single positive integer of the number of desired data sets.

mechanism a function for inducing missing data to the data set. If NULL it is ignored. See details below.

Details

Note that there must only be one global ICC in mp_model.

Use the mechanism argument to specify missing data mechanisms. See mechanisms for predefined missing data mechanisms for the outcome and examples using them. When creating custom mechanisms care needs to be taken because it is considered for advanced usage. This a argument expects a function with the mp_data as the input, and the function should return the modified mp_data. Be careful when using this because it allows you to modify the population parameters, which will be incorrect. You should only induce missing data values on variables. Missing data on the predictors will cause listwise deletion to be used, but missing data on the outcome will be appropriate for MAR-based mechanisms. See examples below for an example that generates MCAR data on the outcome. See parameters to obtain the population parameters from each data set.

Value

For ndata = 1 a single data.frame is returned. The first variable is the cluster identifier labeled _id. This object is also of class mp_data which means that it was generated based on a specified model. If multiple data sets are requested then they will be contained in a list.

Examples

```
# Create Model
model <- (
   outcome('Y')
    + within_predictor('X')
   + effect_size(icc = 0.1)
)
# Set seed
set.seed(198723)
# Create data set
model |> generate(5, 50) -> mydata
# Induce missing data with built-in function
model |> generate(50, 5, mechanism = MCAR(0.25)) -> mydata_mcar
# Induce missing data with custom function
model |> generate(50, 5, mechanism = \(data\) {
   # `data` will be the `mp_data` used
   within(data, {
        # MCAR Process
```

10 levels.mp_variable

```
Y <- ifelse(runif(NROW(data)) < 0.5, Y, NA)
}) -> mydata_mcar_custom
```

is_valid

Check if a Model is Properly Specified

Description

This function is used to validate if a mp_model is correct. If the model is incorrect an appropriate error message describing while will be supplied

Usage

```
is_valid(x)
```

Arguments

x a mp_model

Value

Invisibly returns the original model.

Examples

```
# Create Model
model <- outcome('Y') + within_predictor('X')
# Throws error
tryCatch(
    is_valid(model),
    error = print
)
# Succeeds
is_valid(model + effect_size(icc = 0.1))</pre>
```

levels.mp_variable

Obtain Level of Observation for a Variable

Description

Returns which level a variable is observed at in the multilevel model.

```
## S3 method for class 'mp_variable'
levels(x)
```

mechanisms 11

Arguments

```
x a mp_variable.
```

Value

Returns a single integer of the level of observation

Examples

```
# Returns 1
levels(
    within_predictor(
        'X',
        weight = 1,
        mean = 5,
        sd = 10,
        icc = 0.1
    )
)
```

mechanisms

Helper functions for producing Missing Data Mechanisms

Description

Functions to generate data that always follows a specific mechanism in accordance to a single-level model.

Usage

```
# Generate MCAR data on outcome
MCAR(mis.rate)
# Generate MAR data on outcome due to `cause`
MAR(mis.rate, cause, r2, lower = TRUE)
```

Arguments

mis.rate A proportion for the missing data rate at population level

A character for a variable name that is the cause of missingness

A proportion of variance explained by the cause in the missing data indicator's latent propensity

A logical for the lower or upper tail being more likely to be missing

See Also

```
power_analysis
```

12 mlmpower

Examples

```
# Create Model
model <- (
    outcome('Y')
    + within_predictor('X')
    + effect_size(icc = 0.1)
)

# Induce MCAR data on outcome
set.seed(19723)
model |> power_analysis(50, 5, 50, mechanism = MCAR(0.25)) -> powersim_mcar

# Induce MAR data on outcome
set.seed(19723)
model |> power_analysis(
    50, 5, 50,
    mechanism = MAR(0.25, 'X', 0.6)
) -> powersim_mar
```

mlmpower

mlmpower Modeling Framework

Description

mlmpower constructs models by adding different features of the model using the plus sign (+).

Every model requires an outcome and an ICC specified in effect_size to be valid.

```
model <- outcome('y') + effect_size(icc = 0.1)</pre>
```

Once a model is constructed, we can add additional features to build the model out more. For example, we may want to include a level-1 predictor that is centered within cluster.

```
model <- model + within_predictor('x', icc = 0.0)</pre>
```

The additions can be chained together to produce the entire model object. For example, the previous two code blocks can be combined into one.

```
model <- (
   outcome('y')
   + effect_size(icc = 0.1)
   + within_predictor('x', icc = 0.0)
)</pre>
```

Finally, we can also wrap multiple variables into a list and add that. This feature can be useful when programmatically generating a model.

mp_corr_func 13

```
model <- (
   outcome('y')
   + effect_size(icc = 0.1)
   + lapply(1:10, \(i) within_predictor(paste0('x', i), icc = 0.0))
)</pre>
```

For more detailed information see the help vignette by running the following:

```
vignette('mlmpower')
```

See Also

Variables effect_size() correlations() random_slope() product()

mp_corr_func

Functions for Generating Correlations

Description

Specify a random correlation that is uniform between lower and upper

Usage

```
random(lower, upper)
fixed(value)
```

Arguments

lower the lower bound of the distribution.

upper the upper bound of the distribution.

value the fixed value for the correlation.

Value

A mp_corr_func that generates the desired correlation

See Also

```
correlations()
```

mp_parameters

Examples

```
# Create Model with random and fixed correlations
(
    outcome('Y')
    + within_predictor('X')
    + between_predictor('Z')
    + effect_size(icc = 0.1)
    # Defaults
    + correlations(
        within = random(0.1, 0.3),
        between = fixed(0.2)
)
```

mp_parameters

mp_parameters Object for mlmpower

Description

An S3 class that contains an base::environment with the following objects:

- r2: The population proportion of variance explained
- phi_b: The population predictor covariance matrix for between
- phi_p: The population within cluster covariance matrix for products
- phi_w: The population predictor covariance matrix for within
- mean_Z: The population mean for level-2 predictors
- mean_X: The population mean for level-1 predictors
- var_e: The population within residual variance
- tau: The population level-2 covariance matrix
- gammas: The regression coefficients
- mean_Y: The population mean of the outcome

See Also

parameters

parameters 15

parameters

 $Obtain \ {\tt mp_parameters} \ from \ objects$

Description

A generic function to obtain mp_parameters from defined models and data sets.

Usage

```
parameters(object)
## S3 method for class 'mp_model'
parameters(object)
## S3 method for class 'mp_data'
parameters(object)
## S3 method for class 'mp_power'
parameters(object)
```

Arguments

object

an object which the mp_parameters are desired.

Details

Currently object can be:

- mp_model
- mp_data
- mp_power

If using on a mp_model and the model has random correlations then the average is used.

Value

A mp_parameters object

Examples

```
# Create Model
model <- (
    outcome('Y')
    + within_predictor('X')
    + effect_size(icc = 0.1)
)
# Create data set and obtain population parameters</pre>
```

power_analysis

```
model |> parameters()
# Set seed
set.seed(198723)
# Create data set and obtain population parameters
model |> generate(5, 50) |> parameters()
# Set seed
set.seed(198723)
# Create data set and obtain population parameters
model |> power_analysis(50, 5, 50) |> parameters()
```

power_analysis

Conduct a Power Analysis Based on mp_model

Description

This function will construct a multilevel power analysis via a Monte Carlo Simulation based on a constructed mp_model.

Usage

```
power_analysis(model, replications, n_within, n_between, ...)
```

Arguments

```
model a mp_model.

replications a single positive integer of the number of replications per condition.

n_within an integer vector of the desired within cluster observations.

n_between an integer vector of the desired between cluster observations.

other arguments passed to analyze().
```

Details

Specifying multiple n_within and n_between will produce a full factorial simulation design.

Specify a mechanism argument to pass down to the generate function. See the details of generate for more information about specifying missing data mechanisms. See mechanisms for predefined missing data mechanisms.

Specify an analyze argument to use custom analysis functions. These functions should map onto analyze's structure, but can allow for things like specifying multiple imputations etc. This is considered an advance usage that requires extreme care and caution.

Value

A mp_power object that contains the results. See print.mp_power for more information. The object has the following slots:

- sim: The information about the simulation
- power: The power power results per condition.
- estimates: The simulation summaries of the parameter estimates per condition.
- mean_parameters: The average population parameter per condition.

print.mp_correlations 17

See Also

```
generate()
mechanisms
```

Examples

```
# Create Model
model <- (
    outcome('Y')
    + within_predictor('X')
    + effect_size(icc = 0.1)
)
# Set seed
set.seed(19723)
# Create data set and analyze
# Note: Generally Use more than 50 replications
model |> power_analysis(50, 5, 50)
# Induce missing data on outcome with built in mechanisms
set.seed(19723)
model |> power_analysis(50, 5, 50, mechanism = MCAR(0.25)) -> powersim_mcar
```

```
print.mp_correlations Prints\ a\ mp\_correlations
```

Description

Prints a mp_correlations in a human readable format.

Usage

```
## S3 method for class 'mp_correlations' print(x, ...)
```

Arguments

```
x a mp_correlations.... other arguments not used by this method.
```

Value

Invisibly returns the original variable.

print.mp_effsize

Examples

```
model <- (
    outcome('Y')
    + within_predictor('X')
    + effect_size(
        icc = c(0.1, 0.2),
        within = 0.3
    )
)
# Print correlations only
print(model$corrs)</pre>
```

print.mp_effsize

 $Prints \ a \ {\tt mp_effsize}$

Description

Prints a mp_effsize in a human readable format.

Usage

```
## S3 method for class 'mp_effsize'
print(x, ...)
```

Arguments

```
x a mp_effsize.
```

... other arguments not used by this method.

Value

Invisibly returns the original variable.

Examples

```
model <- (
    outcome('Y')
    + within_predictor('X')
    + effect_size(
        icc = c(0.1, 0.2),
        within = 0.3
    )
)
# Print effect size only
print(model$effect_size)</pre>
```

print.mp_model 19

print.mp_model

Prints a mp_model

Description

Prints a mp_variable in a human readable format.

Usage

```
## S3 method for class 'mp_model'
print(x, ...)
```

Arguments

```
x a mp_model.
```

... other arguments not used by this method.

Value

Invisibly returns the original variable.

Examples

```
print(
   outcome('Y')
   + within_predictor('X')
   + effect_size(icc = cross_sectional)
)
```

 $\verb"print.mp_parameters"$

Prints a mp_parameters

Description

Prints a mp_parameters in a human readable format.

Usage

```
## S3 method for class 'mp_parameters'
print(x, ...)
```

Arguments

```
x a mp_parameters.... arguments passed to print().
```

20 print.mp_power

Value

Invisibly returns the original variable.

Examples

```
print(
    summary(
        outcome('Y')
        + within_predictor('X')
        + effect_size(icc = cross_sectional)
    )
)
```

print.mp_power

Prints a mp_power

Description

Prints a mp_power in a human readable format.

Usage

```
## S3 method for class 'mp_power'
print(x, ...)
```

Arguments

```
x a mp_power.... other arguments not used by this method.
```

Value

Invisibly returns the original variable.

Examples

```
# Create Model
model <- (
    outcome('Y')
    + within_predictor('X')
    + effect_size(icc = 0.1)
)
# Set seed
set.seed(19723)
# Create data set and analyze
# Note: Generally Use more than 50 replications
model |> power_analysis(50, 5, 50) -> powersim
# Print results
print(powersim)
```

print.mp_variable 21

print.mp_variable

Prints a mp_variable

Description

Prints a mp_variable in a human readable format.

Usage

```
## S3 method for class 'mp_variable'
print(x, ...)
```

Arguments

```
x a mp_variable.
```

... other arguments not used by this method.

Value

Invisibly returns the original variable.

Examples

product

Create a Product Term in a Model

Description

Creates a product term between two variables that can be added to a mp_model.

```
product(name1, name2, weight = 1)
```

22 random_slope

Arguments

name1 a character string that references the first variable's name
 name2 a character string that references the second variable's name
 weight a single numeric value specifying the variable's contribution to the variance explained metric. Weights are normalized across all variables of the same level.

Details

Currently the product term is only limited to cross-level interactions between a level-1 centered within cluster variable (icc = 0) and level-2 variable.

Value

A mp_action that can be added to a mp_model.

Examples

```
# Create Model
model <- (
    outcome('Y')
    + within_predictor('X', icc = 0.0)
    + between_predictor('Z')
)
# Add random slope to the model
model + product('X', 'Z')</pre>
```

random_slope

Create a Random Slope in a Model

Description

Creates a random slope that can be added to a mp_model.

Usage

```
random_slope(name, weight = 1)
```

Arguments

name a character string that references a variable's name

weight a single numeric value specifying the variable's contribution to the variance ex-

plained metric. Weights are normalized across all variables of the same level.

Value

A mp_action that can be added to a mp_model.

subset.mp_model 23

Examples

```
# Create Model
model <- (
    outcome('Y')
    + within_predictor('X')
    + effect_size(
        icc = 0.1,
        within = 0.1,
        random_slope = 0.03
    )
)
# Add random slope to the model
model + random_slope('X')</pre>
```

subset.mp_model

Subset a mp_model by Global ICC

Description

Subsets a mp_model with multiple ICC values specified in effect_size into a model with only the single ICC value.

Usage

```
## S3 method for class 'mp_model'
subset(x, icc, ...)
```

Arguments

```
x a mp_model object
icc a single numeric value to subset out of x
... other arguments not used by this method.
```

Value

A new mp_model with only the subset ICC

Examples

```
# Create Model
model <- (
    outcome('Y')
    + within_predictor('X')
    + effect_size(icc = cross_sectional)
)
# Obtain Model with only 0.15 ICC
model |> subset(icc = 0.15)
```

24 summary.mp_power

summary.mp_model

Obtain the Parameter Summaries for A mp_model

Description

Provide the summarized parameter estimates for a mp_model, including the variance explained break downs.

Usage

```
## S3 method for class 'mp_model'
summary(object, ...)
```

Arguments

```
object a mp_model
```

... other arguments not used by this method.

Value

A mp_parameters object that contains the population parameters based on the model. If random correlations are used the average correlation is used to compute the parameters. If multiple ICC's are specified then a named base::list is returned containing the parameter value for each ICC value.

Examples

```
summary(
   outcome('Y')
   + within_predictor('X')
   + effect_size(icc = cross_sectional)
)
```

summary.mp_power

Summarizes a mp_power

Description

Summarizes a mp_power in a human readable format. This is a simple wrapper for print.mp_power.

```
## S3 method for class 'mp_power'
summary(object, ...)
```

to_formula 25

Arguments

```
object a mp_power.... other arguments not used by this method.
```

Value

Invisibly returns the original variable.

Examples

```
# Create Model
model <- (
    outcome('Y')
    + within_predictor('X')
    + effect_size(icc = 0.1)
)
# Set seed
set.seed(19723)
# Create data set and analyze
# Note: Generally Use more than 50 replications
model |> power_analysis(50, 5, 50) -> powersim
# Summarizes results
summary(powersim)
```

to_formula

Convert mp_data to a stats::formula to be used for lme4::lmer

Description

Produces the formula including the centering functions based on a data set generated with generate.

Usage

```
to_formula(data, nested = FALSE)
```

Arguments

data the mp_data to be coerced.

nested logical value, if true then produce the nested restricted model

Value

```
a stats::formula
```

26 Variables

Examples

```
# Specify model
model <- (
    outcome('Y')
    + within_predictor('X')
    + effect_size(
        icc = 0.2,
        within = 0.3
    )
)
# Set seed
set.seed(198723)
# Create formula based on data set
model |> generate(5, 50) |> to_formula()
```

Variables

Functions for Creating Variables

Description

These functions are the building blocks used to create the multilevel model and are used to specify the names, properties, and variable types.

Usage

```
outcome(name, mean = 10, sd = 5, icc = NULL)
within_predictor(name, weight = 1, mean = 0, sd = 1, icc = NULL)
within_time_predictor(name, values, weight = 1)
between_predictor(name, weight = 1, mean = 0, sd = 1)
between_binary_predictor(name, proportion = 0.5, weight = 1)
```

Arguments

name	a character string for the specific variable's name	
mean	a single numeric value that specifies the variable's mean	
sd	a single numeric value that specifies the variable's standard deviation	
icc	a single numeric value between 0 and 1 that specifies the variable's intraclass correlation. If NULL then the global ICC specified in effect_size() is used instead.	
weight	a single numeric value specifying the variable's contribution to the variance explained metric. Weights are normalized across all variables of the same level.	
values	a numeric vector specifying the time scores that will be repeated within each cluster.	

Variables 27

proportion a single numeric value between 0 and 1 that specifies the proportion of 1's at the population.

Details

Note that specifying an icc = 0 in within_predictor() will result in a centered within cluster (CWC) predictor.

See vignettes for more details.

```
vignette(package = 'mlmpower')
```

Value

Returns a mp_variable object based on the variable's type.

Index

'+.mp_base' (mlmpower), 12	mechanisms, 9, 11, 16, 17 mlmpower, 12
analyze, 2, <i>16</i>	model (mlmpower), 12
analyze(), <i>16</i>	Modeling (mlmpower), 12
as.data.frame.mp_power,3	modeling (mlmpower), 12
as.list,4	mp_action, 22
as.list.mp_parameters,4	mp_action (mlmpower), 12
	mp_base (mlmpower), 12
base::as.data.frame,4	mp_corr (correlations), 6
base::environment, 14	mp_corr_func, 6, 13
base::list, 24	mp_correlations, 17
between_binary_predictor(Variables), 26	mp_correlations(correlations), 6
between_predictor(Variables), 26	mp_data, 2, 3, 5, 9, 15, 25
center, 5	mp_data(generate), 8
correlations, 6	<pre>mp_effect (effect_size), 7</pre>
correlations(), 13	mp_effsize, 18
cross_sectional (effect_size), 7	<pre>mp_effsize (effect_size), 7</pre>
cross_sectional (effect_size), /	mp_model, 6-10, 15, 16, 19, 21-24
data.frame, 5, 8, 9	<pre>mp_model (mlmpower), 12</pre>
	mp_parameters, 3, 4, 14, 15, 19, 24
effect_size, 7, 12, 23	mp_power, 3, 4, 15, 20, 24, 25
effect_size(), <i>13</i> , <i>26</i>	<pre>mp_power(power_analysis), 16</pre>
	mp_variable, 7, 11, 19, 21
fixed (mp_corr_func), 13	<pre>mp_variable (Variables), 26</pre>
fixed(), 7	
generate, 8, 16, 25	outcome, 12
generate(), 17	outcome (Variables), 26
generate(), 17	
is_valid, 10	parameters, 9, 14, 15
15_vallu, 10	power_analysis, 11, 16
levels.mp_variable, 10	print(), 19
list, 3–5, 9	print.mp_correlations, 17
lme4::lmer, 2, 25	print.mp_effsize, 18
lme4::lmer(), 3	print.mp_model, 19
longitudinal (effect_size), 7	print.mp_parameters, 19
Tongitudinar (errect_size), /	print.mp_power, 16, 20, 24
MAR (mechanisms), 11	print.mp_power, 70, 20, 27 print.mp_variable, 21
MCAR (mechanisms), 11	product, 21
mechanism (mechanisms), 11	product(), 13
meeriairisiii (meeriairisiiis), 11	produce(), 13

INDEX 29

```
random (mp_corr_func), 13
random(), 7
random_slope, 22
random_slope(), 13

stats::formula, 25
subset.mp_model, 23
summary.mp_model, 24
summary.mp_power, 24

to_formula, 25

variable (Variables), 26
Variables, 13, 26
variables (Variables), 26
within_predictor (Variables), 26
within_time_predictor (Variables), 26
```