9/14

Nathan Keough

Acknowledgements: Utilized the study session: Worked independently and checked work cooperatively with other classmates on this practice set.

1. Wade Exercise 1.3.0 Part a This is false:

Proof. Proof by counterexample: If $A \cap B = \emptyset \implies \sup(A \cap B) = DNE$.

2. Wade Exercise 1.3.0 Part b

Proof. Because $A \neq \emptyset$, and bounded above, $\exists \sup(A)$ by the Completeness Axiom.

We must show:

a. $\forall y \in B, y = \varepsilon \sup(A)$.

b. for all upper bounds N of B, $\varepsilon \sup(A) \leq N$.

(a) Let $y \in B$. Then $y = \varepsilon a$ for

some $a \in A$.

We know $a \leq \sup(A)$.

so by MP i, $\varepsilon a \leq \varepsilon \sup(A)$

Thus $y \leq \varepsilon \sup(A) \forall y \in B$,

 $\therefore \varepsilon \sup(A)$ is an upper bound of B.

(b) Recall \forall upper bound M of A, sup $A \leq M$.

Also notice that by definition of supremum, $a \leq \sup A \leq M$.

$$\begin{array}{ll} a \leq \sup A \leq M \implies \varepsilon a \leq \varepsilon \sup A \leq \varepsilon M \implies \varepsilon a \leq \varepsilon M \\ \implies y \leq \varepsilon M. \end{array}$$

So, εM is an upper bound of B, and $\varepsilon M \subseteq N$.

 \therefore sup $A \leq M$, thus ε sup $A \leq N$.

Since both a and b were shown, If $A \neq \emptyset$ and is a bounded subset of \mathbb{R} and $B = \{ \varepsilon x : x \in A \}$, then $\sup B = \varepsilon \sup A$

3. Wade Exercise 1.3.1 (no supporting work required)

(a)
$$E = \{x \in \mathbb{R} : x^2 + 2x = 3\}$$

 $\sup E = 1$

$$\inf E = -3$$

(b) $E = \{x \in \mathbb{R} : x^2 - 2x + 3 > x^2 \text{ and } x > 0\}$ $\sup E = 3/2$

$$\inf E = 0$$

1

- (c) $E = \{p/q \in \mathbb{Q} : p^2 < 5q^2 \text{ and } p, q > 0\}$ $\sup E = \sqrt{5}$ $\inf E = 0$
- (d) $E = \{x \in \mathbb{R} : x = 1 + -1^n/n \text{ for } n \in \mathbb{N}\}$ $\sup E = 3/2$ $\inf E = 0$
- (e) $E = \{x \in \mathbb{R} : x = 1/n + -1^n \text{ for } n \in \mathbb{N}\}$ $\sup E = 3/2$ $\inf E = 0$
- (f) $E = \{2 (-1)^n/n^2 : n \in \mathbb{N}\}$ $\sup E = 3$ $\inf E = 7/4$