Part 3. Linear Algebraic Equations Ch 9. Gaussian Elimination

Lecture 10

Pitfalls of Elimination; Pivoting and Scaling 9.3, 9.4

Homeyra Pourmohammadali

Gaussian Elimination

Direct method for solving systems of linear equations

$$\begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} b_1 \\ b_2 \\ b_3 \end{pmatrix}$$

$$\begin{bmatrix} a_{11} & a_{,2} & a_{13} \\ 0 & a'_{22} & a'_{23} \\ 0 & 0 & a''_{33} \end{bmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} b_1 \\ b'_2 \\ b''_3 \end{pmatrix}$$
Forward Elimination

Back Substitution

$$x_1 \leftarrow x_2 \leftarrow x_3 = b_3'' / a_{33}''$$

Gaussian Elimination

- Exact solution in one pass
- Straight forward algorithm

- Not very efficient —lots of computations
- Divided by zero terms on diagonal
- Round-off errors

CHS/IGHS Beueyre

Operation Counting

Execution time, efficiency of method

Floating Point Operations (FLOPs): number of mathematical operations performed

$$\begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} b_1 \\ b_2 \\ b_3 \end{pmatrix}$$

Row # 2 = Row # 2 – (a_{21} / a_{11}) Row #1

Total Number of Flops Per System

Forward Elimination: $2n^3/3 + O(n^2)$ \leftarrow of order n^2 ,

neglect for large n

Backward Substitution: $n^2 + O(n)$

\boldsymbol{n}	Elimination	Back substitution	Total flops	$\frac{2n^3}{3}$	% due to Elimination
10	705	100	805	667	87.58
100	671550	10000	681550	666667	98.53
1000	6.67×10 ⁸	$1x10^{6}$	6.67×10 ⁸	6.67×10 ⁸	99.85

Number of Flops for Gauss Elimination.

- Large systems greatly increase computational effort
- Most effort is in elimination step

Pivoting

Rearrange the order of equations to avoid division by zero

Example 1. Pivot element
$$\begin{bmatrix} 0 & 1 & 2 \\ 0.01 & 3 & 3 \\ a_{11} = 0 & 7 & 1 \end{bmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 1 \\ 2 \\ 5 \end{pmatrix}$$

Row #
$$2 = \text{Row } # 2 - (a_{21} / a_{11}) \text{ Row } # 1$$

Partial pivoting interchanges row # 1 with row that has largest coefficient value, ∴ Row # 3

$$\begin{bmatrix} -10 & 7 & 1 \\ 0.01 & 3 & 3 \\ 0 & 1 & 2 \end{bmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 5 \\ 2 \\ 1 \end{pmatrix}$$
 Remember to pivot 5
$$\begin{bmatrix} 5 \\ 2 \\ 1 \end{bmatrix}$$
 Same equation set, same solutions

Partial Pivoting

• Useful for small (non-zero) pivot element values; can lead to round-off errors (operations with small, large values)

Scaling

• Change equations; so maximum coefficient value is 1 (normalizing)

Example 2. Use Gaussian elimination with 3 significant digits

$$\begin{cases} 2x_1 + 100,000x_2 = 100,000 \\ x_1 + x_2 = 2 \end{cases}$$

Row # 2 = Row # 2 - (a
$$_{21}$$
 / a $_{11}$) Row # 1
a $_{22}$ = 1 - (½) (100,000) = -50,000
b₂ = 2 - (½) (100,000) = -50,000

Example 3. Solve using scaling and pivoting with 3 significant digits

$$\begin{cases} 2x_1 + 100,000x_2 = 100,000 \\ x_1 + x_2 = 2 \end{cases}$$

- 1) Scale: Divide Eq. 1 by $100,000 \rightarrow \begin{cases} 0.00002x_1 + x_2 = 1 \\ x_1 + x_2 = 2 \end{cases}$
- 2) Pivot: $x_1 + x_2 = 2$ 0.00002 $x_1 + x_2 = 1$
- 3) Forward Elimination:

Row #
$$2 = \text{Row } # 2 - (0.00002 / 1) \text{ Row } # 1$$

$$x_2 = 1$$

$$x_1 = 1$$

Notes