- Define Variables
 - 2, = number of desks produce in a day.
- Deformulate objective function.

 max 700 x, + 900 x2
- (3) Formulate constraints.

$$3x_1 + 5x_2 \le 3600 \text{ (wood)}$$
 $x_1 + 2x_2 \le 1600 \text{ (labour)}$
 $50x_1 + 20x_2 \le 48000 \text{ (machine)}$
 $x_1 \ge 0$
 $x_2 \ge 0$

$$32, +52 \le 3600 \rightarrow 2 = 1200 2 = 720$$

 $22, +22 \le 1600 \rightarrow 2 = 1600 2 = 800$

$$50\%$$
, $+20\%$ $\leq 48000 = 5\%$, $+2\% \leq 48000$
 6% , 5% , $+2\%$, ≤ 4800 $\Rightarrow \%$, $=960$ $\%$, 2400

26	Resources	Consuption		Total Supply.
27		Desk	Table	
28	wood	3	5 .	340 units.
29	labour	bomin	120 min	200 x 8 x 1200 = 1600h
30	Machine time	50min	20 min	50 x 16h x 60 min =
31				48000
37				

Sammanee

UWU/JJT/18/022

The optimal solution of this LP is 884.21 & 189.47.

50,

To get the maximum total sales revenue, it need to make 884.21 desks & 189.47 tables per a day averagely.

The type of LP that this fomulation falls in to is finitely LP, because it has simpl unique optimal solution.

the state of the special forms of the second