

Axioma 2 (Element neutru):

- (a) ∃element neutru faţă de operatorul + notat cu 0 a.î.: \forall a∈B, a+0 = a;
- (b) ∃element neutru faţă de operatorul notat cu <mark>1</mark> a.î.: ∀ a∈B, a·1 = a;

Axioma 3 (Comutativitate):

- (a) \forall a,b∈B, a+b = b+a;
- (b) \forall a,b \in B, a \cdot b = b \cdot a;

Axioma 4 (Distributivitate):

- (a) \forall a,b,c∈B, a+(b·c) = (a+b) · (a+c);
- (b) \forall a,b,c \in B, a \cdot (b+c) = a \cdot b + a \cdot c;

Axioma 5 (Complementul): Pentru fiecare $x \in B$, există $x' \in B$ a.î.

- (a) x + x' = 1;
- (b) $x \cdot x' = 0$;

x' se numește complementul lui x (se mai noteaza \bar{x})

Axioma 6: Multimea B contine cel putin 2 elemente diferite. $x, y \in B, si x \neq y$

X	У	х·у
0	0	0
0	1	0
1	0	0
1	1	1

op.și

Х	У	х+у
0	0	0
0	1	1
1	0	1
1	1	1

op.sau

Op. booleeni se aplică în urm. ordine: Paranteze () NOT ' sau

AND •

$$ex: (x+xy)' pt x=0 xi y=1$$

$$(0+0\cdot 1)' = (0+0)' = (0)' = 1$$

Principiul dualitătii

O axiomà se poate obtine din duala sa modificand "+" cu"." elementul "O" cu elementul "1" (si inveta).

Use:
$$a + a' = 1$$

$$C$$

$$a \cdot a' = 0$$

Tedumele algebrei booleene

☐ T1 (Idempotența): ☐ T3 (Absorbţie):
(a)
$$x + x = x$$
; (b) $x \cdot x = x$; (b) $(y + x) \cdot x = x$:

(a)
$$y \cdot x + x = x$$
;
(b) $(y + x) \cdot x = x$;

☐ T5 (Asociativitate):
(a)
$$(x + y) + z = x + (y + z);$$

(b) $x \cdot (y \cdot z) = (x \cdot y) \cdot z;$

T2 (Prop. 0 si 1):
(a)
$$x + 1 = 1$$
;
(b) $x \cdot 0 = 0$;

Demonstratea tedremelor

ex: De Morgan

X	у	х′	y'	х+у	(x+y) '	x' · y'
0	0	1	1	0	1	1
0	1	1	0	1	0	0
1	0	0	1	1	0	0
1	1	0	0	1	0	0

Functii booleene

- \square O funcție de comutație de n variabile $f(X_0, X_1, ..., X_{n-1})$ unde variabilele X_i iau valorile 0 și 1, pentru i=0÷n-1, se definește ca o aplicație a mulțimii $\{0,1\}^n$ în multimea $\{0,1\}$.
- \square Prin $\{0,1\}^n$ s-a notat produsul cartezian al mulţimii {0,1} cu ea însăși de n ori.
- □ Domeniul de definiţie al funcţiei f este:

$$X = \{0,1\}^n = \{(X_0, X_1, ..., X_{n-1}) | X_0 \in \{0,1\}, X_1 \in \{0,1\}, ..., X_{n-1} \in \{0,1\}\}\}$$
 ale cărei elemente sunt n-upluri de 1 și 0 $\{X_0, ..., X_{n-1}\}$

ese:
$$T = xy + xy^2 + x^2y^2$$

 $T = 1 \text{ dacă} \left(x = 1 \text{ ii } y = 1 \text{ ii } z = 0 \text{ sau } z = 1 \right)$
 $x = 1 \text{ ii } y = 0 \text{ ii } z = 1$
 $x = 0 \text{ ii } y = 1 \text{ ii } z = 1$

X	У	Z	F
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1

Х	У	z	F'
0	0	0	0→1
0	0	1	0→1
0	1	0	0→1
0	1	1	1 →0
1	0	0	0→1
1	0	1	1 →0
1	1	0	1→0
1	1	1	1 →0

Echivalenta expresible

$$\xi = x \bar{y} + x y \bar{z}$$
 $= x \bar{z} (\bar{y} + y) = \bar{z}$

Porti logice

Name	Graphic Symbol	Functional Expression	Number of transistors	Delay in ns	
Inverter	s	$F = \chi'$	2	1	7
Driver	x	F = x	4	2	PORŢI
AND	<u>x</u>	F = xy	6	2.4	LOGIC
OR	<u>х</u>	F = x + y	6	2.4	П
NAND	х- у-	F = (xy)'	4	1.4	ELEM
NOR	;	F = (x + y)'	4	1.4	LEMENTARE
XOR	;	$F = x \oplus y$	14	4.2	R
XNOR	x y————————————————————————————————————	$F = x \odot y$	12	3.2	

Celula de insumara pe i bit

Aplicație: Să se realizeze descrierea prin tabel de adevăr și apoi să se găsească o formă echivalentă mai simplă pentru funcțiile logice care calculează suma, respectiv transportul (carry) pentru un rang arbitrar din cadrul adunării a două șiruri binare.

$$x_{n-1}...x_{i} x_{i-1}...x_{0} + (c_{0}=0)$$

 $y_{n-1}...y_{i} y_{i-1}...y_{0}$
 $c_{n} s_{n-1}...s_{i} s_{i-1}...s_{0}$

sum = a+b+ cin cout = cin a+ ab

Schema bloc și ecuațiile logice echivalente:

хi	yi	ci	si	C _{i+1}
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

