Lab 2

PHONEME dataset Classification with MAP criterion PCA and MDA feature selection

Introduction. Phoneme dataset

Objectives:

- Work with a real dataset
- Split the dataset into training and test subsets
- Dimensionality reduction (feature selection) using PCA and MDA.
 Application to sinthetic and real datasets

PHONEME dataset:

- Each vector has been obtained computing $log(|TF(x(n))|^2)$ where the sequence x(n) corresponds to part of a recording of a phoneme at a sampling rate of 16 kHz.
- Vectors correspond to 5 posible phonemes or classes:
 'aa' (695) 'ao'(1022) 'dcl'(757) 'iy'(1163) 'sh'(872).
- For each vector we initially have 256 features, corresponding to the spectrum between 0 and 8 kHz.
- In the first part of Lab2 we will work just fith the first 64 samples (frequencies 0 to 2 kHz).

Example: one vector per class

Dataset partition into training and test sets

Generated variables:

Classifier design

Design of a linear (LC) and a quadratic (QC) clasifier

- Dataset with d=256 (or 64) features
- Reduced datset using manual selection of 2 features
- Reduced dataset (dimensión d') using PCA and MDA

Dimensionality reduction

Objective:

Reduce the number of features (assuming column vectors):

$$\mathbf{x}_k$$
 (*d* características) \Rightarrow $\mathbf{z}_k = \mathbf{W}^T \mathbf{x}_k$ (*d* 'características)

- Be careful !!! In the lab we will work with raw-vectors, so we need to compute the right product of W
- The dimensionality reduction helps to
 - Simplify the classifier structure
 - Reduce the computational cost
 - Remove redundant information
- Take into account...
 - The reduction matrix W must be created using the training dataset

Scatter matrix

$$\mathbf{m}_i = \frac{1}{N_i} \sum_{\mathbf{x} \in D_i} \mathbf{x}$$

Mean of samples from class i

$$\mathbf{m} = \frac{1}{N} \sum_{\mathbf{x} \in \{D_1, \dots, D_C\}} \mathbf{x} = \frac{1}{N} \sum_{i=1}^{C} N_i \mathbf{m}_i \qquad Mean of all samples$$

$$\mathbf{S}_T = \sum_{\mathbf{x} \in \{D_1, \dots, D_C\}} (\mathbf{x} - \mathbf{m}) (\mathbf{x} - \mathbf{m})^T$$
 Total data dispersion

$$\mathbf{S}_{T} = \sum_{i=1}^{c} \sum_{\mathbf{x} \in D_{i}} (\mathbf{x} - \mathbf{m}_{i}) (\mathbf{x} - \mathbf{m}_{i})^{T} + \sum_{i=1}^{c} \sum_{\mathbf{x} \in D_{i}} (\mathbf{m}_{i} - \mathbf{m}) (\mathbf{m}_{i} - \mathbf{m})^{T}$$

Sum of intra-class scatter matrices

Inter-class scatter matrix

PCA (Principal Component Analysis)

Objective:

- Maximize: $trace(\mathbf{W}^T\mathbf{S}_T\mathbf{W})$
- Constraints: $\mathbf{w}_{i}^{T}\mathbf{w}_{i}=E$

Solution (Matlab function pca.m):

Columns of W: eigenvalues associated to the largest eigenvalues d' of S_T:

$$\mathbf{S}_T \mathbf{w}_i = \lambda_i \mathbf{w}_i$$

Problem:

 PCA minimizes the approximation squared error but it does not guarantee the separability of the clases

PCA (Principal Component Analysis)

PCA Transformation

Obtention of the PCA matrix from the training dataset

$$\mathbf{W_pca} = [\mathbf{w}_1, \mathbf{w}_2, ..., \mathbf{w}_d] | (\text{pca.m})$$

• Projection to a smaller dimensión d'using **W** red= $[\mathbf{w}_1, \mathbf{w}_2, ..., \mathbf{w}_{d'}]$

Transformation of training and test datsets:

 Representation of training and test dataset for linear and quadratic classifiers, varying the dimensionality of the feature space, from d'=1 to d'=d.

MDA (Multiple Discriminant Analysis)

Objective:

- Maximize intra-class separability while minimizing the inter-class scatter
- We measure the separability and scatter using the ellipsoid volumes, assuming data Gaussianity

Formulation:

• Maximization: $\mathbf{W} = \arg \max_{\mathbf{W}} \frac{|\mathbf{W}^T \mathbf{S}_B \mathbf{W}|}{|\mathbf{W}^T \mathbf{S}_C \mathbf{W}|}$

Solution (Matlab function mda_clp.m):

- d' ≤ min(d,c-1) (c: number of classes)
- W columns: eigenvectors associated to the largest eigenvalues:

$$\mathbf{S}_{B}\mathbf{w}_{j} = \boldsymbol{\sigma}_{j}\mathbf{S}_{C}\mathbf{w}_{j} \qquad \Rightarrow \qquad \mathbf{S}_{C}^{-1}\mathbf{S}_{B}\mathbf{w}_{j} = \boldsymbol{\sigma}_{j}\mathbf{w}_{j}$$

Lab2

Part1:

- Use Phoneme dataset (c=5 clases, d=256 features)
- Train Lc and Qc classifiers using the first d=64 features
- Train Lc and Qc classifiers using d'=2 manually selected features

Part2:

- Use synthetic Gaussian datasets (c=3 clases, d=3 features) for different SNR values
- Train Lc and Qc classifiers using all the features
- Train Lc and Qc classifiers after dimensionality reduction using PCA and MDA

Part3:

- Use Phoneme dataset
- Train Lc and Qc classifiers using d' features seleted with PCA and MDA
- Show Lc and Qc training/test error curves for varying number of features selected with PCA and MDA

