EC413 Lab 6 – Single-Cycle MIPS CPU Design and Enhancement

Prof. Martin Herbordt

1 Overview

The objective of this lab is to deepen your understanding of CPU operations by working with a single-cycle MIPS CPU. Starting with a basic CPU implementation, you will incrementally add, debug, and test several new instructions, enhancing both the control logic and datapath as needed.

2 Lab Tasks

Complete the following tasks. Since modifying parts of the CPU may affect its overall functionality, it's important to test your CPU after each modification.

1. Simulate the Basic CPU:

- Simulate the provided single-cycle CPU design using a predefined instruction sequence in tb_cpu.v.
- Generate outputs and analyze the CPU's behavior.

2. Add the SLT Instruction (Set on Less Than):

- Implement the SLT instruction.
- You only need to modify the ALU and ALU control logic to support this instruction. No additional hardware should be necessary beyond these modifications.

3. Add the ADDI Instruction (Add Immediate):

- Implement the ADDI instruction.
- Modify the control logic to handle this instruction without adding new hardware.
- General support for I-type ALU instructions is not required.

4. Add the J Instruction (Jump):

• Implement the J instruction as described in the textbook.

- Update the control logic and datapath accordingly.
- Reference: See Chapter 4, Section 4.4 of Computer Organization and Design by Patterson and Hennessy.

5. Add the BNE Instruction (Branch Not Equal):

- Implement the BNE instruction.
- Modify the control logic and datapath to support this new branch instruction.
- Additional hardware components may be required.

6. Add the LUI Instruction (Load Upper Immediate):

- Implement the LUI instruction.
- Update the datapath and control logic as necessary.
- Ensure thorough testing with relevant test cases.

7. Extra Credit - Implement I-Type ALU Instructions:

- Extend your CPU to support I-type versions of ALU instructions (e.g., ANDI, ORI).
- Adjust the control logic and datapath to handle these instructions.
- Provide comprehensive testing to verify functionality.

3 Report Requirements

For each task, provide the following in your lab report:

- **Description:** A detailed explanation of the modifications made to the CPU design, including any changes to the control logic and datapath.
- **Testbenches:** Include the testbenches you created for each instruction, along with simulation results.
- Diagrams: If you added hardware components (e.g., for BNE, LUI), include a modified datapath diagram highlighting the changes. (see Figure 1)

4 Datapath Diagram

This diagram should be a good starting point for the lab. You can modify it to show the hardware you added to support new instructions for the report.

Figure 1: Single-Cycle MIPS CPU Datapath Diagram

5 Grading Rubric

The lab will be graded out of 100 points, distributed as follows:

- 1. Task Completion (60 points total)
 - (a) Task 1: Simulate the Basic CPU (10 points)
 - Simulation results included and correct: 5 points
 - Analysis of CPU behavior: 5 points
 - (b) Task 2: Add SLT Instruction (10 points)
 - Correct modification of ALU and ALU control logic: 5 points
 - Testbench and simulation results demonstrating SLT: 5 points
 - (c) Task 3: Add ADDI Instruction (10 points)
 - Correct modification of control logic without new hardware: 5
 points
 - Testbench and simulation results demonstrating ADDI: 5 points
 - (d) Task 4: Add J Instruction (10 points)
 - Correct implementation of J instruction: 5 points

• Testbench and simulation results demonstrating J: 5 points

(e) Task 5: Add BNE Instruction (10 points)

- Correct implementation including necessary hardware changes:
 5 points
- Testbench and simulation results demonstrating BNE: 3 points
- Modified datapath diagram included: 2 points

(f) Task 6: Add LUI Instruction (10 points)

- Correct implementation including necessary hardware changes:
 5 points
- Testbench and simulation results demonstrating LUI: 3 points
- Modified datapath diagram included: 2 points

2. Report Quality (20 points total)

3. Demo (20 Points total, Mandatory for Credit)

- Successful demonstration of CPU functionality for the implemented instructions: **Required**
- Answer two questions asked by the TA to show your understanding of the lab:
 - **0 correct answers:** Demo failed; re-demo required.
 - 1 correct answer: 0 points for this section.
 - 2 correct answers: 20 points.
- Note: Failure to demo will result in zero credit for the lab.

4. Extra Credit (Up to 20 points)

• Implementation of I-type ALU instructions (e.g., ANDI, ORI): Points awarded based on correctness and thorough testing and demo.

5. Early Submission Bonus (Up to 8 points)

- Demo on Wednesday or earlier: +8 points
- Demo on Thursday: +5 points

6. Late Submission Penalty

 \bullet 10 points deducted for each business day late

6 Additional Instructions

- Code and Testbenches: The Verilog code for the CPU and the testbenches will be provided separately.
- **Assumptions:** Clearly state any assumptions made during your implementation.
- AI Usage: Do not use AI to write code for this lab. We will be very upset if you use them and may take further step.
- **Submission:** Submit your lab report as a PDF, along with any modified Verilog files. Zip them properly.

7 References

• D. A. Patterson and J. L. Hennessy, Computer Organization and Design: The Hardware/Software Interface, 5th ed. Morgan Kaufmann, 2013.