TUTORIAL SOBRE REDES NEURONALES APLICADAS EN INGENIERIA ELECTRICA Y SU IMPLEMENTACIÓN EN UN SITIO WEB

MARIA ISABEL ACOSTA BUITRAGO CAMILO ALFONSO ZULUAGA MUÑOZ

UNIVERSIDAD TECNOLOGICA DE PEREIRA FACULTAD DE INGENIERIA ELECTRICA PEREIRA

2000

TUTORIAL SOBRE REDES NEURONALES APLICADAS EN INGENIERIA ELECTRICA Y SU IMPLEMENTACIÓN EN UN SITIO WEB

MARIA ISABEL ACOSTA BUITRAGO CAMILO ALFONSO ZULUAGA MUÑOZ

Proyecto de grado presentado como requisito parcial para obtener el título de Ingeniero Electricista

Profesor Guia

HAROLD SALAZAR ISAZA

Ingeniero Electricista

UNIVERSIDAD TECNOLOGICA DE PEREIRA FACULTAD DE INGENIERIA ELECTRICA PEREIRA

2000

NOTA DE ACEPTACIÓN
RAMON ALFONSO GALLEGO R.
Profesor Calificador
HAROLD SALAZAR ISAZA
Profesor Guía
PEREIRA, OCTUBRE DE 2000

A todos y cada uno de los miembros de mi familia, quienes con su amor y comprensión han sido parte decisiva en mi vida y en mi formación como persona y como profesional.

MARIA ISABEL

A mis padres, quienes con su dedicación y esfuerzo durante toda la vida han hecho posible este logro y a quienes debo todo lo que soy.

A mi hermanita, que con su cariño y ternura ha sido siempre un apoyo y quien espero tome este logro, como incentivo para alcanzar los suyos propios.

CAMILO ALFONSO

A todos nuestros amigos quienes fueron siempre un gran apoyo en esta etapa de nuestras vidas, en nuestras largas jornadas de estudio y en los momentos en que necesitamos de un verdadero amigo a nuestro lado.

¾₹

AGRADECIMIENTOS

Los autores expresan su agradecimiento a:

HAROLD SALAZAR ISAZA, Ingeniero Electricista. Profesor de la facultad de Ingeniería Eléctrica, director del presente proyecto por toda su colaboración, paciencia y apoyo.

RAMON ALFONSO GALLEGO R., Doctor en Ingeniería Eléctrica. Profesor de la facultad de Ingeniería Eléctrica, por su colaboración logística y académica durante el desarrollo de este proyecto.

JUAN CARLOS y YOHANA, por su paciencia, compañía y dedicación en nuestras largas jornadas.

A todas aquellas personas que de una u otra forma contribuyeron a la realización de este trabajo.

CONTENIDO

		pág
INTRO	ODUCCIÓN	1
1.	CARACTERÍSTICAS PRINCIPALES DE LAS REDES NEURONALES	5
1.1	INTRODUCCIÓN A LAS REDES NEURONALES	5
1.2	FUNCIONAMIENTO DE UNA NEURONA BIOLÓGICA	8
1.3	CARACTERÍSTICAS DE UNA RED NEURONAL ARTIFICIAL	16
1.3.1	Notación	19
1.3.2	Funciones de transferencia	20
1.3.2.	1 Limitador Fuerte (<i>hardlim</i>)	21
1.3.2.	2 Función de Transferencia Lineal (<i>purelin</i>)	22
1.3.2.	3 Función de Transferencia Sigmoidal (<i>logsig</i>)	23
1.3.3	Topología de una red	24
2.	PRINCIPALES TIPOS DE REDES NEURONALES	33
2.1	PERCEPTRÓN	33
2.1.1	Antecedentes	33
2.1.2	Estructura de la Red	38
2.1.3	Regla de aprendizaje	41
2.1.4	Limitación de la Red Perceptrón	54
2.1.5	Perceptrón Multicapa	58
2.2	ADALINE	63
2.2.1	Antecedentes	63
2.2.2	Estructura de la red	65
2.2.3	Regla de aprendizaje	66
2.2.4	Principal aplicación de la Red Adaline	74

2.3	BACKPROPAGATION	81
2.3.1	Antecedentes	81
2.3.2	Estructura de la Red	85
2.3.3	Regla de aprendizaje	87
2.3.3.	1 Red Backpropagation con momemtun	106
2.3.3.	2 Red Backpropagation con rata de aprendizaje variable	108
2.3.3.	3 Método del gradiente conjugado	112
2.3.3.	4 Algoritmo Levenberg - Marquard	113
2.4	APRENDIZAJE ASOCIATIVO	120
2.4.1	Antecedentes	120
2.4.2	Estructura de la red	123
2.4.3	Regla de Hebb	127
2.4.4	Red Instar	133
2.4.5	Red Outstar	142
2.5	REDES COMPETITIVAS	149
2.5.1	Antecedentes	149
2.5.2	Red de Kohonen	153
2.5.3	Red de Hamming	160
2.5.4	Estructura general de una red competitiva	164
2.5.5	Regla de aprendizaje	167
2.5.6	Problemas de las redes Competitivas	171
2.5.7	Mapas de auto organización (SOM)	174
2.5.8	Learning Vector Quantization (LVQ)	177
2.6	REDES RECURRENTES	187
2.6.1	Red de Hopfield	187
2.6.1.	1 Antecedentes	187
2.6.1.	2 Estructura de la Red	188
2.6.1.	3 Regla de Aprendizaje	196
2.6.1.	4 Identificación de Sistemas No Lineales	200
2.6.2	Redes Multicapa	203
2.6.2.	1 Estructura de la Red	203

2.6.2.	2 Regla de Aprendizaje	205
2.6.3	Red de Elman	208
2.6.3.	1 Estructura de la Red	208
2.6.3.	2 Entrenamiento de la Red	210
3.	APLICACIONES DE LAS REDES NEURONALES A	
	INGENIERÍA ELÉCTRICA	211
3.1	DETECCIÓN DE OBSTÁCULOS POR MEDIO DE UN ROBOT	211
3.1.1	Descripción del problema	211
3.1.2	Justificación del tipo de red	213
3.1.3	Entrenamiento de la red	215
3.2	CONTROL DE GIRO DE UN MOTOR DE INDUCCIÓN	
	JAULA DE ARDILLA	220
3.2.1	Descripción del problema	220
3.2.2	Justificación del tipo de red	227
3.2.3	Entrenamiento de la red	228
3.3	FILTRO ADAPTIVO	230
3.3.1	Descripción del problema	230
3.3.2	Justificación del tipo de red	236
3.3.3	Entrenamiento de la red	237
3.4	PREDICCIÓN DE CONSUMO DE CARGA	242
3.4.1	Descripción del problema	242
3.4.2	Justificación del tipo de red	246
3.4.3	Entrenamiento de la red	249
3.5	CONTROL DE VOLTAJE POR INYECCIÓN DE REACTIVOS EN	
	UNA BARRA REMOTA	256
3.5.1	Descripción del problema	256
3.5.2	Justificación del tipo de red	261
3.5.3	Entrenamiento de la red	262
3.5.3.	1 Red Neuronal en configuración 3:10:1	262
3.5.3.	2 Red Neuronal en configuración 4:12:1	274

3.6	RECONFIGURACIÓN DE UN ALIMENTADOR PRIMARIO	284
3.6.1	Descripción del problema	284
3.6.2	Justificación del tipo de red	294
3.6.3	Entrenamiento de la red	297
3.7 I	DENTIFICACION DE UN SISTEMA DINAMICO NO LINEAL	301
3.7.1	Descripción del problema	301
3.7.2	Justificación del tipo de red	303
3.7.3	Entrenamiento de la red	304
3.7.3.	1 Identificación del sistema autónomo (u = θ) utilizando una red	
	dinámica multicapa	304
3.7.3.2 Identificación de la dinámica del sistema		311
4.	CONCLUSIONES	319
BIBLIOGRAFIA		326
ANEX	O	332

LISTA DE FIGURAS

		pág
Figura 1.2.1 Ne	euronas Biológicas	9
Figura 1.2.2 Ca	ambios asociativos de las fuerzas sinápticas durante	
el	aprendizaje	11
Figura 1.2.3 Co	omunicación entre neuronas	13
Figura 1.2.4 Pro	oceso químico de una sinapsis	15
Figura 1.3.1 Ne	eurona Artificial	16
Figura 1.3.2 De	e la neurona biológica a la neurona artificial	16
Figura 1.3.3 Pro	oceso de una red neuronal	18
Figura 1.3.4 Ne	eurona de una sola entrada	20
Figura 1.3.5 Fu	nción de transferencia <i>hardlim</i>	21
Figura 1.3.6 Fu	nción de transferencia <i>hardlims</i>	22
Figura 1.3.7 Fu	nción de transferencia lineal	22
Figura 1.3.8 Fu	nción de transferencia sigmoidal	23
Figura 1.3.9 Ne	eurona con múltiples entradas	25
Figura 1.3.10 No	eurona con múltiples entradas, notación abreviada	26
Figura 1.3.11 C	apa de S neuronas	27
Figura 1.3.12 C	apa de S neuronas, notación abreviada	28
Figura 1.3.13 R	ed de tres capas	29

Figura 1.3.14 Red de tres capas, notación abreviada	29
Figura 1.3.15 Redes Recurrentes	30
Figura 1.3.16 Bloque de retardo	31
Figura 1.3.17 Bloque integrador	32
Figura 1.3.18 Clasificación de las Redes Neuronales	32
Figura 2.1.1 Modelo del Fotoperceptrón de Rosenblatt	35
Figura 2.1.2 Esquema de conexiones de un Perceptrón sencillo	35
Figura 2.1.3 Perceptrón según Minsky y Papert	37
Figura 2.1.4 Perceptrón	38
Figura 2.1.5 Función OR	42
Figura 2.1.6 Perceptrón aplicado a la función OR	43
Figura 2.1.7 Espacio de salida de una compuerta AND	43
Figura 2.1.8 Solución para una función AND y OR	44
Figura 2.1.9 Patrones de entrenamiento	47
Figura 2.1.10 Red Perceptrón que resolverá el problema de clasificación	
de patrones	48
Figura 2.1.11 Clasificación de los patrones de acuerdo a la iteración 0	49
Figura 2.1.12 Característica de decisión de la iteración 1	50
Figura 2.1.13 Característica de decisión final	53
Figura 2.1.14 Compuerta XOR	54
Figura 2.1.15 Plano formado por el problema de la XOR	55
Figura 2.1.16 Perceptrón multicapa para la XOR	58
Figura 2.1.17 Conexiones del Perceptrón	59
Figura 2.1.18 Notación compacta para la red tipo Perceptrón	59

Figura 2.1.19 Distintas formas de las regiones generadas por un		
Perceptrón multicapa	61	
Figura 2.2.1 Estructura de una red Adaline	65	
Figura 2.2.2 Adaline de una neurona y dos entradas	65	
Figura 2.2.3 Característica de decisión de una red tipo Adaline	66	
Figura 2.2.4 Actualización de pesos del algoritmo LMS	70	
Figura 2.2.5 Técnicas de codificación de información y modulación		
en amplitud	76	
Figura 2.2.6 Características de los cuatro filtros básicos	77	
Figura 2.2.7 Retardos en línea	79	
Figura 2.2.8 Filtro Adaptivo	80	
Figura 2.3.1 Red de tres capas	85	
Figura 2.3.2 Notación compacta de una red de tres capas	86	
Figura 2.3.3 Disposición de una red sencilla de tres capas	88	
Figura 2.3.4 Superficie típica de error	100	
Figura 2.3.5 Intervalo de la función t	101	
Figura 2.3.6 Red utilizada para aproximar la función	102	
Figura 2.3.7 Comportamiento típico del proceso de convergencia		
para una red Backpropagation	106	
Figura 2.3.8 Efecto del coeficiente de momentum	107	
Figura 2.3.9 Trayectoria de convergencia con momentum	108	
Figura 2.3.10 Característica de convergencia para una rata de		
aprendizaje variable	110	
Figura 2.3.11 Trayectoria del Gradiente conjugado	113	

Figura 2.3.12 Trayectoria del algoritmo Levenberg-Marquardt	119
Figura 2.4.1 Asociador lineal con un limitador fuerte	124
Figura 2.4.2 Asociador para una fruta	126
Figura 2.4.3 Asociador lineal	128
Figura 2.4.4 Red Instar	133
Figura 2.4.5 Representación gráfica de la regla de Instar	136
Figura 2.4.6 Reconocimiento de una fruta por medio de una Instar	138
Figura 2.4.7 Red Outstar	143
Figura 2.4.8 Reconocimiento de una fruta mediante una Outstar	144
Figura 2.5.1 Conexiones de una red de Kohonen	157
Figura 2.5.2 Posible evolución de la vecindad en una red de Kohonen	158
Figura 2.5.3 Red de Hamming	161
Figura 2.5.4 Instar agrupadas en una capa	165
Figura 2.5.5 Capa Competitiva	166
Figura 2.5.6 Representación gráfica de la regla de Kohonen	168
Figura 2.5.7 Vectores de entrada	169
Figura 2.5.8 Vectores de entrada y vector de pesos	170
Figura 2.5.9 Proceso de entrenamiento	171
Figura 2.5.10 Pesos Finales	171
Figura 2.5.11 Variación de la rata de aprendizaje	172
Figura 2.5.12 Aprendizaje Inestable	173
Figura 2.5.13 Causa de la muerte de una neurona	173
Figura 2.5.14 On center/Off surround, para capas biológicas	175
Figura 2.5.15 Vecindarios	176

Figura 2.5.16 Mapa de auto organización	177
Figura 2.5.17 Red LVQ	177
Figura 2.5.18 Comportamiento de las neuronas en una red LVQ	179
Figura 2.5.19 Posición de los patrones de entrada	183
Figura 2.5.20 Esquema de la red LVQ que solucionará el ejemplo	184
Figura 2.5.21 Estado inicial del vector de peso	184
Figura 2.5.22 Resultado después de la primera y después de muchas	
Iteraciones	186
Figura 2.6.1 Circuito Eléctrico Red de Hopfield	188
Figura 2.6.2 Notación Compacta Red de Hopfield	190
Figura 2.6.3 Neurona Dinámica	200
Figura 2.6.4 Red Neuronal Dinámica Recurrente	201
Figura 2.6.5 Algoritmo de Chemotaxis	202
Figura 2.6.6 Red Dinámica Multicapa	204
Figura 2.6.7 Patrones de Entrenamiento de la Red Multicapa	206
Figura 2.6.8 Red de Elman	209
Figura 3.1.1 Robot	212
Figura 3.1.2 Red tipo Perceptrón	216
Figura 3.2.1 Corte típico de un motor de inducción jaula de ardilla	220
Figura 3.2.2 Desarrollo del momento de torsión de un motor de inducción	222
Figura 3.2.3 Diagrama Eléctrico y de contactos	224
Figura 3.3.1 Diagrama de bloques de un filtro adaptivo	232
Figura 3.3.2 Representación de un sistema de filtrado en el dominio	
del tiempo y en el dominio frecuencial	234

Figura 3.3.3	Señal original de ruido y señal que afecta el proceso	
	de medición	236
Figura 3.3.4	Estructura de un filtro adaptivo con una red Adaline	237
Figura 3.3.5	Señal recuperada por el filtro	240
Figura 3.4.1	Curvas de carga	246
Figura 3.4.2	Red Backpropagation 2:12:8:1 para predicción	
	de consumo de carga	248
Figura 3.4.3	Iteraciones Vs Error en una red de predicción	
	de consumo de carga	251
Figura 3.5.1	Sistema de tres barras	259
Figura 3.5.2	Red Neuronal en configuración 3:10:1	262
Figura 3.5.3	Error medio cuadrático utilizando trainrp	266
Figura 3.5.4	Error medio cuadrático utilizando trainbfg	269
Figura 3.5.5	Error medio cuadrático utilizando trainIm	272
Figura 3.5.6	Red neuronal en configuración 4:12:1	274
Figura 3.5.7	Error medio cuadrático utilizando trainbfg	278
Figura 3.5.8	Error medio cuadrático utilizando trainIm	281
Figura 3.6.1	Sistema de catorce nodos	284
Figura 3.6.2	Esquema general de la red LVQ para reconfiguración	295
Figura 3.6.3	Red LVQ	296
Figura 3.7.1	Péndulo Invertido	302
Figura 3.7.2	Red multicapa	304
Figura 3.7.3	Respuesta del sistema Vs red multicapa	310
Figura 3.7.4	Capa estática red recurrente	311

Figura 3.7.5 Error medio cuadrático utilizando trainlm	314
Figura 3.7.6 Comparación de la respuesta del sistema y la RN	316
Figura 3.7.7 Comparación de los planos de fase	317
Figura 3.7.8 Red neuronal con diferentes tiempos de simulación	318

LISTA DE TABLAS

		pág
Tabla 1.3.1	Funciones de transferencia	24
Tabla 2.3.1	Set de entrenamiento de la red	103
Tabla 3.1.1	Comportamiento del robot	213
Tabla 3.1.2	Desigualdades que garantizan que el problema sea	
	linealmente separable	215
Tabla 3.1.3	Pesos iniciales	216
Tabla 3.1.4	Pesos finales red entrenada	217
Tabla 3.1.5	Simulación de la red para los patrones de entrenamiento	218
Tabla 3.1.6	Simulación de la red para las nuevas combinaciones	218
Tabla 3.2.1	Entradas a la red	225
Tabla 3.2.2	Salidas esperadas de la red	226
Tabla 3.2.3	Valores finales de los parámetros de la red finalizado el	
	proceso de entrenamiento	229
Tabla 3.3.1	Resultados del proceso de entrenamiento	239
Tabla 3.4.1	Datos de consumo de carga de una población	
	durante una semana	245
Tabla 3.4.2	Resultados obtenidos de la red entrenada	252
Tabla 3.4.3	Valores de la simulación	253

Tabla 3.5.1 Ecuaciones e incógnitas, barras tipo PV y PQ	257
Tabla 3.5.2 Ecuaciones e incógnitas, barras tipo P y PQV	258
Tabla 3.5.3 Datos de las líneas del sistema de tres barras	261
Tabla 3.5.4 Ybus del sistema de tres barras	261
Tabla 3.5.5 Patrones de entrenamiento	263
Tabla 3.5.6 Patrones de entrenamiento de la Red neuronal	263
Tabla 3.5.7 Pesos iniciales para la Red Neuronal	264
Tabla 3.5.8 Patrones de prueba de las Redes Neuronales	264
Tabla 3.5.9 Pesos finales de la Red Neuronal	267
Tabla 3.5.10 Simulación de la RN con los patrones de prueba	267
Tabla 3.5.11 Pesos finales de la RN entrenada con trainbfg	270
Tabla 3.5.12 Simulación de la RN con los patrones de prueba	270
Tabla 3.5.13 Pesos y ganancias de la RN entrenada con <i>trainIm</i>	273
Tabla 3.5.14 Simulación de RN con los patrones de prueba	273
Tabla 3.5.15 Patrones de entrenamiento	275
Tabla 3.5.16 Patrones de entrenamiento de la red neuronal	275
Tabla 3.5.17 Pesos iniciales para la red neuronal	276
Tabla 3.5.18 Patrones de prueba de las Redes Neuronales	276
Tabla 3.5.19 Pesos y ganancias de la RN entrenada con trainbfg	279
Tabla 3.5.20 Simulación de la RN con los patrones de prueba	279
Tabla 3.5.21 Pesos y ganancias de la RN con <i>trainlm</i>	282
Tabla 3.5.22 Simulación de la RN con los patrones de prueba	282
Tabla 3.6.1 Estructura del Sistema de catorce nodos	289
Tabla 3.6.2 Clasificación de las cargas según su tipo	289

Tabla 3.6.3	Niveles representativos de la demanda pico para el nodo #1	290
Tabla 3.6.4	Número total de combinaciones	292
Tabla 3.6.5	Configuraciones óptimas después de evaluar la 64	
	combinaciones	292
Tabla 3.6.6	Matriz de entrenamiento	293
Tabla 3.6.7	Pesos de la capa competitiva	299
Tabla 3.6.8	Pesos de la capa lineal	299
Tabla 3.7.1	Rangos del set de entrenamiento	305
Tabla 3.7.2	Patrones de entrenamiento	305
Tabla 3.7.3	Valores iniciales de los parámetros de la capa estática	306
Tabla 3.7.4	Valores finales de los parámetros de la capa estática	307
Tabla 3.7.5	Jacobiano de la red multicapa	307
Tabla 3.7.6	Matriz de pesos red de Hopfield equivalente	309
Tabla 3.7.7	Datos de entrenamiento	312
Tabla 3.7.8	Datos adicionales de entrenamiento	312
Tabla 3.7.9	Patrones de entrenameinto	313
Tabla 3.7.10	Pesos iniciales red recurrente	314
Tabla 3.7.1	1 Pesos finales red recurrente	315

