Programación en FORTRAN

Nivel Básico - Sesión 1

Martin Josemaría Vuelta Rojas 27 de diciembre de 2017

SoftButterfly

Contenido

- 1. Preliminares
- 2. Introducción histórica
- 3. Entorno de desarrollo
- 4. Conceptos básicos

Preliminares

El curso básico de Fortran tiene por objetivo

 Que obtengan un conocimiento sólido de las carácteristicas de Fortran.

- Que obtengan un conocimiento sólido de las carácteristicas de Fortran.
- Que se familiarizen con el flujo de infromación en los programas desarrolados en Fortran.

- Que obtengan un conocimiento sólido de las carácteristicas de Fortran.
- Que se familiarizen con el flujo de infromación en los programas desarrolados en Fortran.
- Que tengan una introducción nuevas caracteristicas de los estándares recientes Fortran 2003 y 2008.

- Que obtengan un conocimiento sólido de las carácteristicas de Fortran.
- Que se familiarizen con el flujo de infromación en los programas desarrolados en Fortran.
- Que tengan una introducción nuevas caracteristicas de los estándares recientes Fortran 2003 y 2008.
- Que puedan contruir su entorno de darrollo para programar en Fortran cómodamente.

Metodolog'ia

Metodología

 Exposiciones dialogadas utilizando, apuntes, elementos de proyección fija.

Metodología

- Exposiciones dialogadas utilizando, apuntes, elementos de proyección fija.
- Talleres prácticos grupales en la elaboración de programas.

Metodología

- Exposiciones dialogadas utilizando, apuntes, elementos de proyección fija.
- Talleres prácticos grupales en la elaboración de programas.
- Las clases serán eminentemente prácticas en una relación 70% práctica - 30% teórica.

Referencias

Referencias

■ I. Chivers, J. Sleightholme, *Introduction to Programming with Fortran. With Coverage of Fortran 90, 95, 2003, 2008 and 77*, Springer-Verlag London, 2012.

Referencias

- I. Chivers, J. Sleightholme, Introduction to Programming with Fortran. With Coverage of Fortran 90, 95, 2003, 2008 and 77, Springer-Verlag London, 2012.
- Michael Metcalf, John Reid, Malcolm Cohen, Modern Fortran Explained, Oxford University Press, USA 2011

Referencias

- I. Chivers, J. Sleightholme, Introduction to Programming with Fortran. With Coverage of Fortran 90, 95, 2003, 2008 and 77, Springer-Verlag London, 2012.
- Michael Metcalf, John Reid, Malcolm Cohen, Modern Fortran Explained, Oxford University Press, USA 2011
- Morten Hjorth-Jensen, Computational Physics, Lecture Notes Fall 2015, Department of Physics, University of Oslo. 2015.

Materiales

Materiales

Repositorio del curso

Materiales

Repositorio del curso

• https://github.com/zodiacfireworks/course–fortran-basic

Materiales

Repositorio del curso

- https://github.com/zodiacfireworks/course–fortran-basic
- https://github.com/zodiacfireworks/course–fortran-intermediate

Materiales

Repositorio del curso

- https://github.com/zodiacfireworks/course–fortran-basic
- https://github.com/zodiacfireworks/course–fortran-intermediate

¡Importante!

Materiales

Repositorio del curso

- https://github.com/zodiacfireworks/course–fortran-basic
- https://github.com/zodiacfireworks/course–fortran-intermediate

¡Importante!

Cada alumno debera tener una cuenta en GitHub

Materiales

Repositorio del curso

- https://github.com/zodiacfireworks/course-fortran-basic
- https://github.com/zodiacfireworks/course-fortran-intermediate

¡Importante!

Cada alumno debera tener una cuenta en GitHub

• https://github.com

Martín Josemaría Vuelta Rojas

Software Developer

- Software Developer
- Web Developer

- Software Developer
- Web Developer
- Investigador

- Software Developer
- Web Developer
- Investigador
- Programador

- Software Developer
- Web Developer
- Investigador
- Programador
 - En investigación:

- Software Developer
- Web Developer
- Investigador
- Programador
 - En investigación:
 - C, C++, Fortran, Python, R, Julia, Mathematica, Matlab, LaTeX

- Software Developer
- Web Developer
- Investigador
- Programador
 - En investigación:
 - C, C++, Fortran, Python, R, Julia, Mathematica, Matlab, LaTeX
 - En web:

- Software Developer
- Web Developer
- Investigador
- Programador
 - En investigación:
 - C, C++, Fortran, Python, R, Julia, Mathematica, Matlab, LaTeX
 - En web:
 - HTML, CSS, JavaScript, Python

- Software Developer
- Web Developer
- Investigador
- Programador
 - En investigación:
 - C, C++, Fortran, Python, R, Julia, Mathematica, Matlab, LaTeX
 - En web:
 - HTML, CSS, JavaScript, Python
 - En mobile:

- Software Developer
- Web Developer
- Investigador
- Programador
 - En investigación:
 - C, C++, Fortran, Python, R, Julia, Mathematica, Matlab, LaTeX
 - En web:
 - HTML, CSS, JavaScript, Python
 - En mobile:
 - Kotlin, Java, C++

- Software Developer
- Web Developer
- Investigador
- Programador
 - En investigación:
 - C, C++, Fortran, Python, R, Julia, Mathematica, Matlab, LaTeX
 - En web:
 - HTML, CSS, JavaScript, Python
 - En mobile:
 - Kotlin, Java, C++
 - Hobbie:

- Software Developer
- Web Developer
- Investigador
- Programador
 - En investigación:
 - C, C++, Fortran, Python, R, Julia, Mathematica, Matlab, LaTeX
 - En web:
 - HTML, CSS, JavaScript, Python
 - En mobile:
 - Kotlin, Java, C++
 - Hobbie:
 - Scala, Pixie, Clojure, Elixir, Haskel, Oz, Kotlin, ...

Martín Josemaría Vuelta Rojas

SoftButterfly

- SoftButterfly
- HackSpace Perú

- SoftButterfly
- HackSpace Perú
- Jupyter Notebook

- SoftButterfly
- HackSpace Perú
- Jupyter Notebook
- Fedora

- SoftButterfly
- HackSpace Perú
- Jupyter Notebook
- Fedora
- GNOME

- SoftButterfly
- HackSpace Perú
- Jupyter Notebook
- Fedora
- GNOME
- UNMSM

Martín Josemaría Vuelta Rojas

□ +51 982 042 088

Martín Josemaría Vuelta Rojas

□ +51 982 042 088

Martín Josemaría Vuelta Rojas

□ +51 982 042 088

martin.vuelta@gmail.com

in martinvuelta

Martín Josemaría Vuelta Rojas

□ +51 982 042 088

in martinvuelta

zodiacfireworks

Introducción histórica

En el origen ...

En el origen ...

• Código máquina en notación octal

En el origen ...

- Código máquina en notación octal
- Conocimiento muy detallado del hardware

En el origen ...

- Código máquina en notación octal
- Conocimiento muy detallado del hardware

A inicios de los 50s

En el origen ...

- Código máquina en notación octal
- Conocimiento muy detallado del hardware

A inicios de los 50s

Assembler

En el origen ...

- Código máquina en notación octal
- Conocimiento muy detallado del hardware

A inicios de los 50s

- Assembler
- Menos laborioso que el código máquina

En el origen ...

- Código máquina en notación octal
- Conocimiento muy detallado del hardware

A inicios de los 50s

- Assembler
- Menos laborioso que el código máquina
- Conocimiento detallado del hardware

En el origen ...

- Código máquina en notación octal
- Conocimiento muy detallado del hardware

A inicios de los 50s

- Assembler
- Menos laborioso que el código máquina
- Conocimiento detallado del hardware

El panorama general ...

En el origen ...

- Código máquina en notación octal
- Conocimiento muy detallado del hardware

A inicios de los 50s

- Assembler
- Menos laborioso que el código máquina
- Conocimiento detallado del hardware

El panorama general ...

Conocimiento del harware

En el origen ...

- Código máquina en notación octal
- Conocimiento muy detallado del hardware

A inicios de los 50s

- Assembler
- Menos laborioso que el código máquina
- Conocimiento detallado del hardware

El panorama general ...

- Conocimiento del harware
- Facilidad de cometer errores

En el origen ...

- Código máquina en notación octal
- Conocimiento muy detallado del hardware

A inicios de los 50s

- Assembler
- Menos laborioso que el código máquina
- Conocimiento detallado del hardware

El panorama general ...

- Conocimiento del harware
- Facilidad de cometer errores
- Encontrar los errores en los programas era bastante difícil

Génesis 1953 ...

Génesis 1953 ...

John Backus envía una carta a su jefe en IBM pidiendo permiso para investigar una *mejor forma* de programar las computadoras. La carta contenia un esboo de projecto con un tiempo de desarrollo de 6 meses.

Génesis 1953 ...

John Backus envía una carta a su jefe en IBM pidiendo permiso para investigar una *mejor forma* de programar las computadoras. La carta contenia un esboo de projecto con un tiempo de desarrollo de 6 meses.

Así emepzo el proyecto que daría origen a Fortran

"The project completion was always six months away!"

John Backus

1957

En febrero FORTRAN, el primer lenguaje de programación de alto nivel, fue anunciado al mundo por John Backus y su equipo de IBM en la Western Joint Computer Conference celebrada en Los Ángeles.

1957

En febrero FORTRAN, el primer lenguaje de programación de alto nivel, fue anunciado al mundo por John Backus y su equipo de IBM en la Western Joint Computer Conference celebrada en Los Ángeles.

A mediados de abril de 1957 tuvo lugar la primera entrega del compilador de FORTRAN para IBM 704 a Westinghouse Bettis para su uso en el diseño de reactores nucleares.

Las versiones de FORTRAN

Las versiones de FORTRAN

1957 FORTRAN I

Las versiones de FORTRAN

1957 FORTRAN I

1958 FORTRAN II

Las versiones de FORTRAN

1957 FORTRAN I

1958 FORTRAN II

1958 FORTRAN III (No disponible al público)

Las versiones de FORTRAN

- 1957 FORTRAN I
- 1958 FORTRAN II
- 1958 FORTRAN III (No disponible al público)
- 1961 FORTRAN IV (Una versión mejorada de FORTRAN II)

Orígenes

```
DIMENSION A(11)
1
2
          READ A
3 2
          DO 3,8,11 J=1,11
4
   3
          I=11-J
           Y = SQRT(ABS(A(I+1))) + 5*A(I+1)**3
5
          IF (400>=Y) 8,4
          PRINT I,999.
7
   4
           GOTO 2
8
    8
           PRINT I,Y
9
   11
           STOP
10
```

Orígenes

```
C
            THE TPK ALGORITHM
 1
 2
     C
            FORTRAN I STYLE
 3
            FUNF(T) = SQRTF(ABSF(T)) + 5.0 * T * * 3
            DIMENSION A(11)
 4
 5
   1 FORMAT(6F12.4)
            READ 1.A
 6
            DO 10 J=1,11
            I = 11 - J
 8
            Y=FUNF(A(I+1))
 9
10
            IF(400.0-Y)4.8.8
       4 PRINT 5.I
11
            FORMAT(I10,10H TOO LARGE)
12
            GOTO 10
13
14
       8
            PRINT 9,I,Y
       9
            FORMAT(I10,F12.7)
15
            CONTINUE
16
17
            STOP 52525
```

1962 El primer comité de estandarización de la ASA (Ahora ANSI) se re reune.

- 1962 El primer comité de estandarización de la ASA (Ahora ANSI) se re reune.
- 1966 Publicación del ANSI X3.91966 (FORTRAN 66), el primer estándar.

- 1962 El primer comité de estandarización de la ASA (Ahora ANSI) se re reune.
- 1966 Publicación del ANSI X3.91966 (FORTRAN 66), el primer estándar.
- 1978 Publicación del ANSI X3.91978 (FORTRAN 77), tambien publicado como ISO 1539:1980.

- 1962 El primer comité de estandarización de la ASA (Ahora ANSI) se re reune.
- 1966 Publicación del ANSI X3.91966 (FORTRAN 66), el primer estándar.
- 1978 Publicación del ANSI X3.91978 (FORTRAN 77), tambien publicado como ISO 1539:1980.
- 1991 ISO/IEC 1539:1991 (Fortran 90)

- 1962 El primer comité de estandarización de la ASA (Ahora ANSI) se re reune.
- 1966 Publicación del ANSI X3.91966 (FORTRAN 66), el primer estándar.
- 1978 Publicación del ANSI X3.91978 (FORTRAN 77), tambien publicado como ISO 1539:1980.
- 1991 ISO/IEC 1539:1991 (Fortran 90)
- 1997 ISO/IEC 15391:1997 (Fortran 95)

- 1962 El primer comité de estandarización de la ASA (Ahora ANSI) se re reune.
- 1966 Publicación del ANSI X3.91966 (FORTRAN 66), el primer estándar.
- 1978 Publicación del ANSI X3.91978 (FORTRAN 77), tambien publicado como ISO 1539:1980.
- 1991 ISO/IEC 1539:1991 (Fortran 90)
- 1997 ISO/IEC 15391:1997 (Fortran 95)
- 2004 ISO/IEC 15391:2004 (Fortran 2003)

- 1962 El primer comité de estandarización de la ASA (Ahora ANSI) se re reune.
- 1966 Publicación del ANSI X3.91966 (FORTRAN 66), el primer estándar.
- 1978 Publicación del ANSI X3.91978 (FORTRAN 77), tambien publicado como ISO 1539:1980.
- 1991 ISO/IEC 1539:1991 (Fortran 90)
- 1997 ISO/IEC 15391:1997 (Fortran 95)
- 2004 ISO/IEC 15391:2004 (Fortran 2003)
- 2010 ISO/IEC 15391:2010 (Fortran 2008)

```
PROGRAM TPK
             THE TPK ALGORITHM
 2
   C
 3
   C
             FORTRAN 77 STYLE
             REAL A(0:10)
 4
             READ (5,*) A
             DO 10 I = 10, 0, -1
 6
                     Y = FUN(A(I))
                     IF ( Y . LT. 400) THEN
                              WRITE(6,9) I,Y
 9
                               FORMAT(I10. F12.6)
       9
10
                     FLSE
11
                              WRITE (6,5) I
12
       5
                               FORMAT(I10, 'TOO LARGE')
13
                     ENDIF
14
      10
            CONTINUE
15
16
            END
17
18
            REAL FUNCTION FUN(T)
            REAL T
19
            FUN = SORT(ABS(T)) + 5.0*T**3
20
            END
21
```

```
PROGRAM TPK
 1
   ! The TPK Algorithm
   ! Fortran 90 style
 4
          IMPLICIT NONE
          INTEGER :: I
                                  :: Y
6
          REAL
          REAL, DIMENSION(0:10) :: A
          READ (*,*) A
           DO I = 10, 0, -1 ! Backwards
9
                  Y = FUN(A(I))
10
                  IF ( Y < 400.0 ) THEN
11
                         WRITE(*,*) I, Y
12
13
                  ELSE
                         WRITE(*,*) I, ' Too large'
14
                  END IF
15
          END DO
16
          CONTAINS
                                    ! Local function
17
                  FUNCTION FUN(T)
18
                  REAL :: FUN
19
                  REAL, INTENT(IN) :: T
20
                  FUN = SQRT(ABS(T)) + 5.0*T**3
21
22
                  END FUNCTION FUN
           END PROGRAM TPK
23
```

```
module Functions
 1
           public :: fun
 2
           contains
 3
              function fun(t) result (r)
 4
                 real, intent(in) :: t
 5
 6
                real :: r
                 r = sqrt(abs(t)) + 5.0*t**3
              end function fun
           end module Functions
 9
10
           program TPK
11
          The TPK Algorithm
12
13
          F95 style
           use Functions
14
15
           integer :: i
           real
16
                                 :: v
           real, dimension(0:10) :: a
17
           read *, a
18
           do i = 10, 0, -1 ! Backwards
19
              y = fun(a(i))
20
              if (v < 400.0) then
21
                 print *, i, y
22
              else
23
24
                 print *, i, " Too large"
```

"I don't know what the programming language of the year 2000 will look like, but I know it will be called FORTRAN."

Charles Anthony Richard Hoare

Circa 1982

Aplicaciones

• Predicción del clima

- Predicción del clima
- Análisis de datos de sísmicos para la exploración de depositos de gas y petroleo

- Predicción del clima
- Análisis de datos de sísmicos para la exploración de depositos de gas y petroleo
- Análisis fianciero

- Predicción del clima
- Análisis de datos de sísmicos para la exploración de depositos de gas y petroleo
- Análisis fianciero
- Simulacion de choques vehiculares

- Predicción del clima
- Análisis de datos de sísmicos para la exploración de depositos de gas y petroleo
- Análisis fianciero
- Simulacion de choques vehiculares
- Análisis de datos de sondas espaciales

- Predicción del clima
- Análisis de datos de sísmicos para la exploración de depositos de gas y petroleo
- Análisis fianciero
- Simulacion de choques vehiculares
- Análisis de datos de sondas espaciales
- Modelación de armas nucleares

- Predicción del clima
- Análisis de datos de sísmicos para la exploración de depositos de gas y petroleo
- Análisis fianciero
- Simulacion de choques vehiculares
- Análisis de datos de sondas espaciales
- Modelación de armas nucleares
- Dinámica de fluidos computacionales

- Predicción del clima
- Análisis de datos de sísmicos para la exploración de depositos de gas y petroleo
- Análisis fianciero
- Simulacion de choques vehiculares
- Análisis de datos de sondas espaciales
- Modelación de armas nucleares
- Dinámica de fluidos computacionales
- "Numerical Wind Tunnel"

Intel

- Intel
- IBM

- Intel
- IBM
- NVIDIA

• WG5: https://wg5-fortran.org/

- WG5: https://wg5-fortran.org/
- Fortran Wiki: http://fortranwiki.org/

WG5: https://wg5-fortran.org/
 Fortran Wiki: http://fortranwiki.org/
 WG5: https://wg5-fortran.org/

Figura 1: Entorno de desarrollo VS Code

Que tiene un entorno de desarrollo

Que tiene un entorno de desarrollo

• Editor de código

Que tiene un entorno de desarrollo

- Editor de código
- Compiladores o intérpretes

Que tiene un entorno de desarrollo

- Editor de código
- Compiladores o intérpretes
- Debugger

Que tiene un entorno de desarrollo

- Editor de código
- Compiladores o intérpretes
- Debugger
- Otras utilidades

Editor de código

• VS Code + Fortran Package [\checkmark]

- VS Code + Fortran Package [✔]
- Sublime Text

- VS Code + Fortran Package [✔]
- Sublime Text
- Atom

- VS Code + Fortran Package [✔]
- Sublime Text
- Atom
- Vim

- VS Code + Fortran Package [✔]
- Sublime Text
- Atom
- Vim
- Emacs

- VS Code + Fortran Package [✓]
- Sublime Text
- Atom
- Vim
- Emacs
- ...

Compilador

■ GFortran [✔]

- GFortran [✔]
- Intel

- GFortran [✔]
- Intel
- IBM

- GFortran [✔]
- Intel
- IBM
- Oracle

- GFortran [✔]
- Intel
- IBM
- Oracle
- ...

Debuggers

■ gdb [**✓**]

- gdb [✔]
- idb

- gdb [✔]
- idb
- ddd

- gdb [✔]
- idb
- ddd
- totalview

- gdb [✔]
- idb
- ddd
- totalview
- · ...

VS Code en Ubuntu y derivados

VS Code en Ubuntu y derivados

Descargar el paquete .deb desde https://code.visualstudio.com/download

VS Code en Ubuntu y derivados

- Descargar el paquete .deb desde https://code.visualstudio.com/download
- Instalar el paquete desde la terminal

```
sudo dpkg -i <nombre del archivo>.deb
sudo apt-get install -f
```

VS Code en Ubuntu y derivados

- Descargar el paquete .deb desde https://code.visualstudio.com/download
- Instalar el paquete desde la terminal

```
sudo dpkg -i <nombre del archivo>.deb
sudo apt-get install -f
```

Actualizar el paquete e instalar code

```
sudo apt-get update
sudo apt-get install code # o también "code-insiders"
```

VS Code en Fedora/CentOS

VS Code en Fedora/CentOS

Descargar el paquete .rpm desde https://code.visualstudio.com/download

VS Code en Fedora/CentOS

- Descargar el paquete .rpm desde https://code.visualstudio.com/download
- Instalar el paquete desde la terminal según la versión Fedora/CentOs (yum o dnf)
- yum check-update sudo yum install <nombre del archivo>.rpm

- dnf check-update
- sudo dnf install <nombre del archivo>.rpm

Fortran en VS Code

Fortran en VS Code

 En la pestaña 'Extensiones' (Ctrl+Shift+X), instalar 'fortran 2.0' encontrado con el buscador y recargar la extensión.

Figura 2: Extensión fortran 2.0 en VS Code

Compilador y debugger en Ubuntu y derivados

Compilador y debugger en Ubuntu y derivados

Instalación de Gfortran

sudo apt-get install gfortran

Compilador y debugger en Ubuntu y derivados

- Instalación de Gfortran
- sudo apt-get install gfortran
- Instalación del paquete binutils
- sudo apt-get update
- sudo apt-get install binutils

Compilador y debugger en Ubuntu y derivados

- Instalación de Gfortran
- sudo apt-get install gfortran
- Instalación del paquete binutils
- sudo apt-get update
- sudo apt-get install binutils
- Instalación del paquete build-essential
- sudo apt-get update
- sudo apt-get install build-essential

Compilador y debugger en Fedora/CentOS

Compilador y debugger en Fedora/CentOS

Instalación de Gfortran

```
yum install gcc-gfortran
```

Compilador y debugger en Fedora/CentOS

Instalación de Gfortran

```
yum install gcc-gfortran
```

Instalación del paquete Development tools

```
yum clean all
yum groupinstall "Development tools"
```

Instalación de editor de código

VS Code

Instalación de editor de código

VS Code

Descargar el instalador desde https://code.visualstudio.com/download

Instalación de editor de código

VS Code

- Descargar el instalador desde https://code.visualstudio.com/download
- adasd

Instalación de compilador y debuger

Instalación del compilador TDM-GCC

Instalación de compilador y debuger

Instalación del compilador TDM-GCC

Descargar el paquete TDM-GCC según la versión de windows (32-64 bits) en http://tdm-gcc.tdragon.net/

Instalación de compilador y debuger

Instalación del compilador TDM-GCC

- Descargar el paquete TDM-GCC según la versión de windows (32-64 bits) en http://tdm-gcc.tdragon.net/
- asdasd

Conceptos básicos

Hello world!

Hello world!

 Se llama programa a un conjunto de instrucciones, realizadas computacionalmente en un tiempo determinado, aplicadas en la introducción, procesamiento o salida de datos.

Hello world!

- Se llama programa a un conjunto de instrucciones, realizadas computacionalmente en un tiempo determinado, aplicadas en la introducción, procesamiento o salida de datos.
- Un programa en fortran tiene la siguiente forma:

Hello world!

- Se llama programa a un conjunto de instrucciones, realizadas computacionalmente en un tiempo determinado, aplicadas en la introducción, procesamiento o salida de datos.
- Un programa en fortran tiene la siguiente forma:

```
PROGRAM hello_world
WRITE(*, *) Message
END PROGRAM hello_world
```

Scientific Hello world!

Scientific Hello world!

```
PROGRAM hello_world
 1
     IMPLICIT NONE
 2
 3
     ! Angulo de entrada
 4
     REAL(KIND=4) :: theta
 5
 6
     ! Resultado de aplicar la función seno
     REAL(KIND=4) :: sin of theta
 8
 9
     ! Mensaje
10
     CHARACTER(len=*), PARAMETER :: Message = 'Hello World'
11
12
     WRITE(*, *) 'Ingrese un ángulo [rad]: '
13
     READ(*, *) theta
14
     sin of theta = SIN(theta)
15
16
     WRITE(*, *) Message
17
18
     WRITE(*, *) "sin(", theta, ") = ", sin_of_theta
     END PROGRAM hello world
19
```

• El proceso de compilación se puede resumir en dos pasos

- El proceso de compilación se puede resumir en dos pasos
- Compilación

- El proceso de compilación se puede resumir en dos pasos
- Compilación
- Enlazado

- El proceso de compilación se puede resumir en dos pasos
- Compilación
- Enlazado
- El proceso de compilación en fortran posee la siguiente sintaxis:

- El proceso de compilación se puede resumir en dos pasos
- Compilación
- Enlazado
- El proceso de compilación en fortran posee la siguiente sintaxis:

```
fcomp [options] file1 [file2] [...] [fileN]
```

- El proceso de compilación se puede resumir en dos pasos
- Compilación
- Enlazado
- El proceso de compilación en fortran posee la siguiente sintaxis:

```
fcomp [options] file1 [file2] [...] [fileN]
```

- fcomp \Rightarrow denota el comando para llamar al compilador. (gfortran, ifort, ...)

- El proceso de compilación se puede resumir en dos pasos
- Compilación
- Enlazado
- El proceso de compilación en fortran posee la siguiente sintaxis:

```
fcomp [options] file1 [file2] [...] [fileN]
```

- fcomp \Rightarrow denota el comando para llamar al compilador. (gfortran, ifort, ...)
- options ⇒ opciones que permite el compilador. (-o, -f, -c, ...)

- El proceso de compilación se puede resumir en dos pasos
- Compilación
- Enlazado
- El proceso de compilación en fortran posee la siguiente sintaxis:

```
fcomp [options] file1 [file2] [...] [fileN]
```

- fcomp \Rightarrow denota el comando para llamar al compilador. (gfortran, ifort, ...)
- options ⇒ opciones que permite el compilador. (-o, -f, -c, ...)
- file \Rightarrow denota el archivo con su respectiva extensión (.f90, .f95, .o, ...)

- El proceso de compilación se puede resumir en dos pasos
- Compilación
- Enlazado
- El proceso de compilación en fortran posee la siguiente sintaxis:

```
fcomp [options] file1 [file2] [...] [fileN]
```

- fcomp \Rightarrow denota el comando para llamar al compilador. (gfortran, ifort, ...)
- options ⇒ opciones que permite el compilador. (-o, -f, -c, ...)
- file \Rightarrow denota el archivo con su respectiva extensión (.f90, .f95, .o, ...)
- Finalmente se obtiene un producto final.

Compilador

Compilador

 Programa escrito en un lenguaje de programación, que a su vez, traduce y genera otro programa en otro lenguaje de programación (código máquina), ambos equivalentes.

Compilador

- Programa escrito en un lenguaje de programación, que a su vez, traduce y genera otro programa en otro lenguaje de programación (código máquina), ambos equivalentes.
- En principio, al usar un compilador, se busca traducir y simplificar un lenguaje de mayor complejidad a uno mucho más cotidiano y manejable en términos informáticos.

Figura 3: Diagrama de bloques del proceso de compilación

Enlazado

Compilador

Enlazado

Compilador

 Se crea el código fuente en un editor de textos y se guarda con su respectiva extensión (.f, .f90, .f95)

 Se crea el código fuente en un editor de textos y se guarda con su respectiva extensión (.f, .f90, .f95)

editor nombre.extensión

 Se crea el código fuente en un editor de textos y se guarda con su respectiva extensión (.f, .f90, .f95)

editor nombre.extensión

 Se emplean caracteres ASCI en el código fuente (alfanuméricos, símbolos y espacio)

 Se crea el código fuente en un editor de textos y se guarda con su respectiva extensión (.f, .f90, .f95)

editor nombre.extensión

- Se emplean caracteres ASCI en el código fuente (alfanuméricos, símbolos y espacio)
- No hay distinción entre mayúsculas y minúsculas.

 Se crea el código fuente en un editor de textos y se guarda con su respectiva extensión (.f, .f90, .f95)

editor nombre.extensión

- Se emplean caracteres ASCI en el código fuente (alfanuméricos, símbolos y espacio)
- No hay distinción entre mayúsculas y minúsculas.
- Los caracteres propios del español no pueden ser utilizadas en las instrucciones (á, é, ñ)

Formato libre

Formato libre

 Aplicable a versiones de Fortran 90 en adelante, de extensión f.90, f.95, ...

- Aplicable a versiones de Fortran 90 en adelante, de extensión f.90, f.95, ...
- Permite un máximo de 132 caracteres.

- Aplicable a versiones de Fortran 90 en adelante, de extensión f.90, f.95, ...
- Permite un máximo de 132 caracteres.
- Se emplea el caracter (!) para empezar un comentario, sin que este se tome en cuentra durante la compilación.

- Aplicable a versiones de Fortran 90 en adelante, de extensión f.90, f.95, ...
- Permite un máximo de 132 caracteres.
- Se emplea el caracter (!) para empezar un comentario, sin que este se tome en cuentra durante la compilación.
- Se emplea el caracter (;) para separar dos instrucciones.

- Aplicable a versiones de Fortran 90 en adelante, de extensión f.90, f.95, ...
- Permite un máximo de 132 caracteres.
- Se emplea el caracter (!) para empezar un comentario, sin que este se tome en cuentra durante la compilación.
- Se emplea el caracter (;) para separar dos instrucciones.
- En caso falte espacio en una línea, el caracter (&) permite continuar las instrucciones en la siguiente línea, colocándolo al final de la línea anterior y al inicio de la línea por comenzar.

- Aplicable a versiones de Fortran 90 en adelante, de extensión f.90, f.95, ...
- Permite un máximo de 132 caracteres.
- Se emplea el caracter (!) para empezar un comentario, sin que este se tome en cuentra durante la compilación.
- Se emplea el caracter (;) para separar dos instrucciones.
- En caso falte espacio en una línea, el caracter (&) permite continuar las instrucciones en la siguiente línea, colocándolo al final de la línea anterior y al inicio de la línea por comenzar.
- Aquí falta el apartado 5 !!!!!!!!!

- Aplicable a versiones de Fortran 90 en adelante, de extensión f.90, f.95, ...
- Permite un máximo de 132 caracteres.
- Se emplea el caracter (!) para empezar un comentario, sin que este se tome en cuentra durante la compilación.
- Se emplea el caracter (;) para separar dos instrucciones.
- En caso falte espacio en una línea, el caracter (&) permite continuar las instrucciones en la siguiente línea, colocándolo al final de la línea anterior y al inicio de la línea por comenzar.
- Aquí falta el apartado 5 !!!!!!!!!

- Aplicable a versiones de Fortran 90 en adelante, de extensión f.90, f.95, ...
- Permite un máximo de 132 caracteres.
- Se emplea el caracter (!) para empezar un comentario, sin que este se tome en cuentra durante la compilación.
- Se emplea el caracter (;) para separar dos instrucciones.
- En caso falte espacio en una línea, el caracter (&) permite continuar las instrucciones en la siguiente línea, colocándolo al final de la línea anterior y al inicio de la línea por comenzar.
- Aquí falta el apartado 5 !!!!!!!!!

Formato fijo

• Aplicable a versiones anteriores a Fortran 90, de extensión .f, .for, ...

- Aplicable a versiones anteriores a Fortran 90, de extensión .f, .for, ...
- Permite un máximo de 72 caracteres.

- Aplicable a versiones anteriores a Fortran 90, de extensión .f, .for, ...
- Permite un máximo de 72 caracteres.
- Se emplea el caracter (C) para comenzar un comentario.

- Aplicable a versiones anteriores a Fortran 90, de extensión .f, .for, ...
- Permite un máximo de 72 caracteres.
- Se emplea el caracter (C) para comenzar un comentario.
- Se permite una sola instrucción por línea, comenzando a partir del séptimo caracter.

- Aplicable a versiones anteriores a Fortran 90, de extensión .f, .for, ...
- Permite un máximo de 72 caracteres.
- Se emplea el caracter (C) para comenzar un comentario.
- Se permite una sola instrucción por línea, comenzando a partir del séptimo caracter.
- La continuación de una instrucción en una siguiente línea está dada por algún caracter no alfanumérico en el sexto caracter.

- Aplicable a versiones anteriores a Fortran 90, de extensión .f, .for, ...
- Permite un máximo de 72 caracteres.
- Se emplea el caracter (C) para comenzar un comentario.
- Se permite una sola instrucción por línea, comenzando a partir del séptimo caracter.
- La continuación de una instrucción en una siguiente línea está dada por algún caracter no alfanumérico en el sexto caracter.
- Los primeros cinco caracteres en una línea de instrucción se pueden emplear en caso se requiera una etiqueta (número positivo diferente de cero con un máximo de cinco dígitos).

- Aplicable a versiones anteriores a Fortran 90, de extensión .f, .for, ...
- Permite un máximo de 72 caracteres.
- Se emplea el caracter (C) para comenzar un comentario.
- Se permite una sola instrucción por línea, comenzando a partir del séptimo caracter.
- La continuación de una instrucción en una siguiente línea está dada por algún caracter no alfanumérico en el sexto caracter.
- Los primeros cinco caracteres en una línea de instrucción se pueden emplear en caso se requiera una etiqueta (número positivo diferente de cero con un máximo de cinco dígitos).
- Apartado 6!!!