Hardware and Board Chapter 3

Circuit Board

Schematic of Circuit Board

Connector and LED

Schematic of Circuit Board

• CPU

Schematic of LEDs

- How does CPU control LEDs
 - LEDs' wiring with power
 - With a resister to Vcc
 - 0 on, 1 off
 - LEDs' wiring with CPU's IO pins
 - CPU IO Pins: PA2-PA0
 - LEDs' wiring with extended ports
 - Socket Pins: 10-8
 - The circuit of LEDs?

Circuit Materials

- Conductors
- Insulators
- Semiconductors
- Physical properties of materials
 - What signals can be utilized?
 - How are signals generated and affected by materials?
- Power supply and ground

- Resistor (ohm): Fig. 3-12b, how to use them?
 - Potentiometer
 - Photo resistor
 - Thermistor
- Factors
 - Tolerance (precision)
 - Power rating
 - Temperature coefficient
- Resistance
 - 10K-10M ohm in ICs (low power consumption)

Sensor

- How does a photo resistor work
 - Make a serial circuit of a photo resistor (R0) and a regular resistor (R1=10KΩ), and then measure the voltage on the regular resistor.
 - Assume the resistance of the photo resistor is

$$R0 = 10-L*c (K\Omega)$$

- I = V/(R0+R1) = V/(20-L*c)
- Vo = I*R1 = V*10/(20-L*c)
- L = (20-V*10/Vo)/c

- Capacitor (farad): Fig. 3-14b
 - Electric field
 - Bipolar/non-polarized
 - Polarized
 - Variable
- Factors
 - Tolerance (precision)
 - Temperature coefficient
- Capacitance
 - 10pf-100uf in ICs (high frequency)
 - 10mf-1f in big systems (appliance, camera, high energy reservation)

- Inductor (henry): Fig. 3-16b
 - Magnetic field
 - Air core
 - Iron core
- Factors
 - Tolerance (precision)
 - Power rating (inertial resistance, heat)
 - Size (hard to be made in ICs)
- Inductance
 - 1nh-10uh

- Diode : Fig. 3-17b
 - LED
 - Photo diode (reverse connection with power)
 - Zener (reverse connection with power)
- Transistor
 - BJT : Fig. 3-21b, 3-22b
 - JFET : Fig. 3-28
 - MOSFET : Fig. 3-25
 - CMOS

Sensors

- Changes in voltage or current, then detected by a sampling circuit as raw data.
- Light, temperature, magnetic
- Microphone (acoustic)
 - Vibration -> change in resistance or capacitance or inductance
- Accelerometer (motion)
 - Force -> change in capacitance or resistance

Design a Roomba

- Google "roomba video"
- How it bumps off the wall?
- How it moves along a spiral?
- How it prevents falling from a stair?
- How it detects if a part is missing?
- Must the data be accurate?
 - Does the data require precise resister or any circuit components?

- Oscillator: http://en.wikipedia.org/wiki/Electronic_oscillator
 - Clock, frequency generator (100KHz-100MHz), frequency filter
 - Precision
 - Atomic, 10⁻⁹ or better
 - Quaz, 10⁻⁵-10⁻⁷
 - Circuit, 10⁻²-10⁻⁴
- Connector: http://en.wikipedia.org/wiki/Electrical_connector
- Switch: http://en.wikipedia.org/wiki/Switch

- IC
 - Scale (number of gates)
 - SSI: 100
 - 74xx chips
 - MSI: 100-10K
 - LSI: 10K-100K
 - VLSI: 100K-1M
 - ULSI: >1M
 - Power consumption
 - Speed

- IC
 - Functionality
 - CPU
 - ADC, DAC
 - RAM, ROM
 - Power
 - Amplifier
 - IO
 - Reliability
 - Debugging

Packages

- Packages: http://en.wikipedia.org/wiki/Category:Chip_carriers
 - Factors: size, heat, frequency
 - SIP, single in-line package
 - DIP, dual in-line package
 - ZIP, zig-zag in-line package
 - QIP, quadruple in-line package
 - QFP, quad flat package
 - PGA, pin grid array
 - BGA, ball grid array
 - LGA, land grid array