

# Énoncés des exercices

#### EXERCICE 1 [Indication] [Correction]

Préciser la nature de la série de terme général  $u_n = \frac{n!}{n^n}$ 

#### EXERCICE 2 [Indication] [Correction]

Soit  $(u_n)$  une suite de  $\mathbb{R}^+$ . On suppose que la série  $\sum n^2 u_n^2$  converge.

Montrer qu'il en est de même de la série  $\sum u_n$ .

## EXERCICE 3 [Indication] [Correction]

Nature de la série  $\sum u_n$ , où  $u_0 \in \mathbb{R}$  et où pour tout  $n \geq 1$ ,  $u_n = \frac{1}{n} \exp(-u_{n-1})$ .

#### EXERCICE 4 [Indication] [Correction]

Soit  $(u_n)$  une suite de  $\mathbb{R}^+$  telle que  $\frac{u_{n+1}}{u_n} = 1 - \frac{\alpha}{n} + O\left(\frac{1}{n^2}\right)$ .

Montrer que  $\sum u_n$  converge si et seulement si  $\alpha > 1$ .

## EXERCICE 5 [Indication] [Correction]

Soient  $(u_n)$  et  $(v_n)$  deux suites à termes réels strictement positifs.

On suppose que pour  $n \ge n_0$ , on a l'inégalité  $\frac{u_{n+1}}{u_n} \le \frac{v_{n+1}}{v_n}$ .

Montrer que si la série  $\sum v_n$  converge, alors la série  $\sum u_n$  converge.

## EXERCICE 6 [Indication] [Correction]

Pour tout  $\alpha > 1$ , trouver un équivalent du reste  $R_N = \sum_{n=N+1}^{\infty} u_n$ , avec  $u_n = \frac{1}{n^{\alpha}}$ .

## Exercice 7 [Indication] [Correction]

Pour  $0 < \alpha < 1$  trouver un équivalent quand  $N \to \infty$  de  $S_N = \sum_{n=1}^N u_n$ , avec  $u_n = \frac{1}{n^{\alpha}}$ .



SÉRIES À TERMES RÉELS POSITIFS

Indications, résultats

## Indications ou résultats

## INDICATION POUR L'EXERCICE 1 [Retour à l'énoncé]

Pour tout  $n \geq 3$ , montrer que  $u_n \leq \frac{2}{n^2}$ .

## INDICATION POUR L'EXERCICE 2 [Retour à l'énoncé]

Pour tout entier  $N \ge 1$ , montrer que  $\left(\sum_{n=1}^N u_n\right)^2 \le \sum_{n=1}^\infty \frac{1}{n^2} \sum_{n=1}^\infty n^2 u_n^2$ 

## Indication pour l'exercice 3 [Retour à l'énoncé]

Pour tout  $n \ge 1$ , montrer que  $0 < u_n < \frac{1}{n}$ , puis  $u_n \sim \frac{1}{n}$ .

## INDICATION POUR L'EXERCICE 4 [Retour à l'énoncé]

Poser  $v_n = n^{\alpha} u_n$ , et vérifier que  $\ln v_{n+1} - \ln v_n = O\left(\frac{1}{n^2}\right)$ . En déduire qu'on peut écrire  $\lim_{n \to \infty} v_n = \mu$  avec  $\mu > 0$ .

## INDICATION POUR L'EXERCICE 5 [Retour à l'énoncé]

C'est du cours. Montrer qu'il existe  $\lambda > 0$  tel que  $\forall n \geq n_0, 0 \leq u_n \leq \lambda v_n$ .

## Indication pour l'exercice 6 [Retour à l'énoncé]

Avec 
$$f(x) = \frac{1}{x^{\alpha}}$$
, prouver que  $0 \le \int_{N+1}^{N+p+1} f(x) dx \le \sum_{n=N+1}^{N+p} u_n \le \int_{N}^{N+p} f(x) dx$ .

En déduire 
$$R_N = \sum_{n=N+1}^{\infty} \frac{1}{n^{\alpha}} \sim \frac{1}{(1-\alpha)N^{\alpha-1}}.$$

# INDICATION POUR L'EXERCICE 7 [Retour à l'énoncé]

Avec 
$$f(x) = \frac{1}{x^{\alpha}}$$
, prouver que  $0 \le \int_2^{N+1} f(x) dx \le \sum_{n=2}^N u_n \le \int_1^N f(x) dx$ .

En déduire 
$$S_N = \sum_{n=1}^N \frac{1}{n^{\alpha}} \sim \frac{1}{1-\alpha} N^{1-\alpha}$$
 quand  $N \to \infty$ .

Page 2 Jean-Michel Ferrard www.klubprepa.net ©EduKlub S.A.



# Corrigés des exercices

#### CORRIGÉ DE L'EXERCICE 1 [Retour à l'énoncé]

Pour tout  $n \ge 3$ , on  $n! = 2 \prod_{k=3}^{n} k \le 2 \prod_{k=3}^{n} n$ , c'est-à-dire  $n! \le 2n^{n-2}$ .

On en déduit  $u_n \leq \frac{2}{n^2}$ . La série  $\sum u_n$  est donc convergente.

# Corrigé de l'exercice 2 [Retour à l'énoncé]

Pour tout entier  $N \geq 1$ , et en utilisant Cauchy-Schwarz :

$$\left(\sum_{n=1}^{N} u_n\right)^2 = \left(\sum_{n=1}^{N} \frac{1}{n} n u_n\right)^2 \le \sum_{n=1}^{N} \frac{1}{n^2} \sum_{n=1}^{N} n^2 u_n^2 \le \sum_{n=1}^{\infty} \frac{1}{n^2} \sum_{n=1}^{\infty} n^2 u_n^2$$

La suite des sommes partielles de la série positive  $\sum u_n$  est donc majorée.

On en déduit que cette série est convergente.

#### CORRIGÉ DE L'EXERCICE 3 [Retour à l'énoncé]

Pour tout  $n \ge 1$ ,  $u_n = \frac{1}{n} \exp(-u_{n-1}) > 0$  et donc  $0 < \exp(-u_n) < 1$ .

On en déduit  $0 < u_n < \frac{1}{n}$  pour tout  $n \ge 2$ . Ainsi  $\lim_{n \to \infty} u_n = 0$ .

Il en découle  $\lim_{n\to\infty} \exp(-u_{n-1}) = 1$  et donc  $u_n = \frac{1}{n} \exp(-u_{n-1}) \sim \frac{1}{n}$ .

Conclusion : la série  $\sum u_n$  est divergente.

## CORRIGÉ DE L'EXERCICE 4 [Retour à l'énoncé]

On constate que 
$$\frac{v_{n+1}}{v_n} = \left(1 + \frac{1}{n}\right)^{\alpha} \frac{u_{n+1}}{u_n} = \left(1 + \frac{\alpha}{n} + \mathcal{O}\left(\frac{1}{n^2}\right)\right) \left(1 - \frac{\alpha}{n} + \mathcal{O}\left(\frac{1}{n^2}\right)\right) = 1 + \mathcal{O}\left(\frac{1}{n^2}\right).$$

On en déduit 
$$\ln v_{n+1} - \ln v_n = \ln \left(1 + O\left(\frac{1}{n^2}\right)\right) = O\left(\frac{1}{n^2}\right)$$
.

Ainsi la série de terme général  $w_n = \ln v_{n+1} - \ln v_n$  est convergente.

On sait que cela signifie que la suite de terme général  $\ln v_n$  est convergente.

Posons 
$$\lim_{n\to\infty} \ln v_n = \lambda$$
. Alors  $\lim_{n\to\infty} v_n = \mu$  avec  $\mu = \exp \lambda > 0$ .

On en déduit 
$$u_n \sim \frac{\mu}{n^{\alpha}}$$
.

Par comparaison avec les séries de Riemann, on peut conclure :  $\sum u_n$  converge  $\Leftrightarrow \alpha > 1$ .

Page 3 Jean-Michel Ferrard www.klubprepa.net ©EduKlub S.A.



## Corrigé de l'exercice 5 [Retour à l'énoncé]

L'hypothèse s'écrit :  $\frac{u_{n+1}}{v_{n+1}} \le \frac{u_n}{v_n}$ .

La suite de terme général  $q_n = \frac{u_n}{v_n}$  est donc décroissante, au moins à partie de  $n_0$ .

On en déduit  $0 \le q_n \le \lambda = q_{n_0}$  pour tout  $n \ge n_0$ . Ainsi :  $\forall n \ge n_0, 0 \le u_n \le \lambda v_n$ .

Dans ces conditions on sait que la convergence de  $\sum v_n$  implique celle de  $\sum u_n$ .

#### Corrigé de l'exercice 6 [Retour à l'énoncé]

On a  $u_n = f(n)$ , où l'application  $x \to f(x) = \frac{1}{x^{\alpha}}$  est positive décroissante sur  $\mathbb{R}^{+*}$ .

On en déduit, pour tout  $n \ge 2 : 0 \le \int_n^{n+1} f(x) dx \le u_n \le \int_{n-1}^n f(x) dx$ .

On somme de n = N + 1 à n = N + p:  $0 \le \int_{N+1}^{N+p+1} f(x) dx \le \sum_{n=N+1}^{N+p} u_n \le \int_{N}^{N+p} f(x) dx$ .

Une primitive de f est  $x \to F(x) = \frac{1}{(1-\alpha)x^{\alpha-1}}$ . On a  $\lim_{x \to +\infty} F(x) = 0$  car  $\alpha > 1$ .

Avec ces notations :  $0 \le F(N+p+1) - F(N+1) \le \sum_{n=N+1}^{N+p} u_n \le F(N+p) - F(N)$ .

On en déduit, quand  $p \to +\infty$ :  $0 \le -F(N+1) \le R_N \le -F(N)$ .

Or  $-F(N+1) \sim -F(N) = \frac{1}{(1-\alpha)N^{\alpha-1}}$ .

Conclusion : pour tout  $\alpha > 1$ , un équivalent de  $R_N = \sum_{n=N+1}^{\infty} \frac{1}{n^{\alpha}}$  est  $\frac{1}{(1-\alpha)N^{\alpha-1}}$ .

## Corrigé de l'exercice 7 [Retour à l'énoncé]

On a  $u_n = f(n)$ , où l'application  $x \to f(x) = \frac{1}{x^{\alpha}}$  est positive décroissante sur  $\mathbb{R}^{+*}$ .

On en déduit, pour tout  $n \ge 2 : 0 \le \int_n^{n+1} f(x) dx \le u_n \le \int_{n-1}^n f(x) dx$ .

On somme de n = 2 à  $n = N : 0 \le \int_{2}^{N+1} f(x) dx \le \sum_{n=1}^{N} u_n \le \int_{1}^{N} f(x) dx$ .

Une primitive de f est  $x \to F(x) = \frac{1}{(1-\alpha)}x^{1-\alpha}$ . On a  $\lim_{x \to +\infty} F(x) = +\infty$  car  $0 < \alpha < 1$ .

Avec ces notations :  $0 \le F(N+1) - F(2) + u_1 \le S_N \le F(N) - F(1) + u_1$ .

Or  $F(N+1) \sim F(N) = \frac{1}{1-\alpha} N^{1-\alpha}$ .

On en déduit  $S_N = \sum_{n=1}^N \frac{1}{n^{\alpha}} \sim \frac{1}{1-\alpha} N^{1-\alpha}$  quand  $N \to \infty$ .

Page 4 Jean-Michel Ferrard www.klubprepa.net ©EduKlub S.A.