Escreva uma sequência com 15 valores inteiros em ordem aleatória.

- 3 Faça a remoção do elemento raiz e mostre como fica o heap após a remoção.
- 3.1 Repita o item 3 mais 4 vezes (ou seja, serão feitas 5 remoções).
- 4 Represente em um vetor como ficou o heap após as 5 remoções.
- ** Utilize o tipo de arquivo que preferir (slide, planilha, diagrama, etc), ou desenhe em seu caderno e envie a sequência de imagens em PDF.

Heap Máximo

- 1 Construa um heap máximo com estes valores, inserindo-os um a um conforme aparecem na sua lista.
 - Values (23 81 58 16 91 95 37 5 65 70 7 96 15 92 39)
 - Sempre que o operador > aparecer irá ter balanceamento na árvore heap, do contrário a inserção estará no lugar correto.
 - Se o operador < aparecer o vetor permanece com o elemento na posição de inserção.
 - n= n 1

Inserção dos números no vetor criado e representação da árvore e seu balanceamento:

1º número: 23

indx	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14
1ª itera	ação														
0→n	81	91	58	16	23										
indx	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14
2ª itera	acão														
0→n	91	81	58	16	23										
indx	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14
6º nún	nero. C	95													
0→n	91	81	58	16	23	95									
indx	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14
95 ≥ 5	8				*		5 95	58							
1ª itera								I			I				
0→n indx	91	81 1	58 2	16 <u>3</u>	23 4	95 5	6	7	8	9	10	11	12	13	14
95 <mark>≥</mark> 91				(3	81	9	5 58	95							

2ª itera	ação														
0→n	91	81	95	16	23	58									
indx	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14

7º número: 37

, 11411	ilero. c	, ,													
0→n	95	81	91	16	23	58	37								
indx	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14

8º número: 5

0→n	95	81	91	16	23	58	37	5							
indx	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14

9º número: 65

0→n	95	81	91	16	23	58	37	5	65						
indx	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14

1ª iteração

	açuo														
0→n	95	81	91	16	23	58	37	5	65						
indx	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14

0→n	95	81	91	65	23	58	37	5	16						
indx	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14

10º número: 70

		-													
0→n	95	81	91	65	23	58	37	5	16	70					
indx	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14

0→n	95	81	91	65	70	58	37	5	16	23					
indx	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14
11º nú	mero:	7													
0→n	95	81	91	65	70	58	37	5	16	23	7				
indx	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14

15° nú	mero:	39													
0→n	96	81	95	65	70	91	92	5	16	23	7	58	15	37	39
indx	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14

2 - Represente os elementos do heap como um vetor.

vetor final:

96	81	95	65	70	91	92	5	16	23	7	58	15	37	39
----	----	----	----	----	----	----	---	----	----	---	----	----	----	----

3 - Faça a remoção do elemento raiz e mostre como fica o heap após a remoção. Deletar raiz(chave 96);

2ª iteração, balanceamento da raiz com a folha de maior índice na linha seguinte;

 $3^{\underline{a}}$ iteração, se ainda necessário, continue fazendo o balanceamento nas demais linhas;

3.1 - Repita o item 3 mais 4 vezes (ou seja, serão feitas 5 remoções). Deletar raiz(chave 95);

Deletar raiz (chave 92)

Deletar raiz (chave 39) substitui 39[index 0] ↔ 15[ultimo_index]

Deletar raiz (chave 91) substitui $91[index 0] \leftrightarrow 7[ultimo_index]$

4 - Represente em um vetor como ficou o heap após as 5 remoções.

vetor final

Observações finais:

Foi analisado que existe um custo maior na remoção de uma raiz comparado a inserção ordenada. Visto que em todos os casos é necessario fazer um rebalanciamento na árvore, isso somente se executarmos uma recursão para deletar toda árvore à partir da raiz comparado a inserção de todos os elementos ordenados.