Corrigé du devoir surveillé n°10

- 1. Le nombre 645312:
 - est divisible par 2, car il est pair;
 - est divisible par 3, car la somme de ses chiffres 6+5+4+3+1+2=21 est divisible par 3 $(21=7\times3)$;
 - n'est pas divisible par 5, car il ne se termine ni par 0, ni par 5.
- 2. On décompose 60 en produit de nombres premiers et on en déduit tous ses diviseurs :

60	2	Les diviseurs de 60 sont :	
30	2	1	
		1	$2 \times 5 = 10$
13	3	2	$3 \times 5 = 15$
15 5 1	5	3	$2 \times 2 \times 3 = 12$
1		5	$2 \times 2 \times 5 = 20$
		$2 \times 2 = 4$	$2 \times 3 \times 5 = 30$
		$2 \times 3 = 6$	$2 \times 2 \times 3 \times 5 = 60$

Remarque: On pouvait aussi écrire tous les produits qui donnent 60 :

$$60 = 1 \times 60 = 2 \times 30 = 3 \times 20 = [\cdots]$$

3. Le côté de chaque carreau doit être un diviseur de 210 et de 135; et on veut que ce côté soit le plus grand possible. On cherche donc le PGCD de 210 et 135.

On décompose en produits de nombres premiers :

Conclusion : PGCD (210, 135) = $3 \times 5 = 15$, donc chaque carreau mesure 15 cm de longueur.

De plus, il y a $210 \div 15 = 14$ carreaux en hauteur; et $135 \div 15 = 9$ carreaux en largeur, soit un total de

$$14 \times 9 = 126$$
 carreaux.

4. Le nombre $2^6 \times 3^4 \times 5^2$ est un carré parfait, car tous les exposants dans sa décomposition (en rouge) sont pairs. C'est le carré de $2^3 \times 3^2 \times 5^1$ (il suffit de diviser chaque exposant par 2).

Remarque : Il n'était pas utile de faire le calcul (assez difficile) pour justifier. Mais juste pour information, le nombre de l'énoncé vaut 129 600; et c'est le carré de 360.

5. (a)
$$\sqrt{45} - \sqrt{20} = \sqrt{9 \times 5} - \sqrt{4 \times 5} = \sqrt{9} \times \sqrt{5} - \sqrt{4} \times \sqrt{5} = 3\sqrt{5} - 2\sqrt{5} = 1\sqrt{5}$$
.

(b)
$$2\sqrt{12} - 5\sqrt{3} + \sqrt{27} = 2\sqrt{4 \times 3} - 5\sqrt{3} + \sqrt{9 \times 3} = 2 \times \sqrt{4} \times \sqrt{3} - 5\sqrt{3} + \sqrt{9} \times \sqrt{3} = 2 \times 2 \times \sqrt{3} - 5\sqrt{3} + 3\sqrt{3} = 4\sqrt{3} - 5\sqrt{3} + 3\sqrt{3} = 2\sqrt{3}.$$

6. Pour démontrer l'égalité de l'énoncé, on fait le produit en croix et on utilise l'identité remarquable n°3 :

$$(2-\sqrt{2})(2+\sqrt{2})=2^2-\sqrt{2}^2=4-2=2,$$

donc
$$\frac{2}{2-\sqrt{2}} = 2 + \sqrt{2}$$
.