

StorScore Microsoft's System for SSD Qualification

Dr. Laura Caulfield, Mark Santaniello, Dr. Bikash Sharma

Cloud Server Infrastructure Engineering (CSI)

Who are we?

Unique Needs & Opportunities

- Microsoft's platform
- Workloads: Variety and Quantity
- Flexibility to modify stack
- Iterate on designs with vendors
- Wide variety of expertise
- Additional metrics

Many Resources & Concepts

What is StorScore?

StorScore is a <u>script</u> wrapper that <u>automates</u> industry-wide best practices for SSD performance testing, <u>existing</u> tools that are under active development for Windows and modern tools and techniques for data analysis.

Outline

• Recipes: Defining the Test Suite

• Scores: Managing the Output

• Endurance: Quantifying the Consumable

Outline

• Recipes: Defining the Test Suite

• Scores: Managing the Output

• Endurance: Quantifying the Consumable


```
test(
                        => 'foo',
    name_string
    write_percentage
                         => 0,
    access_pattern
                         => 'random',
    block_size
                         => '8K',
    queue_depth
                         => 32,
    warmup_time
                         => 60,
    run_time
                         => 3600
```

The entire contents of single.rcp

Reference the file from the cmd line:

```
$> StorScore --recipe=single.rcp
```

Reads like English

A Matrix of Tests

```
# vim: set filetype=perl:
require 'matrix.rpm';

do_matrix(
    access_patterns => [qw( sequential random )],
    write_percentages => [qw( 100 30 0 )],
    block_sizes => [qw( 2M 1M 512K 64K 16K 8K 4K 1K )],
    queue_depths => [qw( 256 64 16 4 1 )],
    warmup_time => 60,
    run_time => 3600
);

include 'targeted_tests.rcp';
```

 Mimics Test designer's whiteboard sketch

 "include" statements combine test files

Full functionality of Perl

```
do_workload( "Targeted Test Read Baseline" );
bg_exec( "smart_loop.cmd $gc{'target_physicaldrive'}" );
do_workload( "Targeted Test SMART Read Data " );
bg_killall();
```


Outline

• Recipes: Defining the Test Suite

• Scores: Managing the Output

• Endurance: Quantifying the Consumable

Results Parser

Raw Output Files → One Excel File
 (24 SSDs x 218 Workloads = 5,232 Files)

 Generate Pivot Tables & Grand 	aphs
---	------

Display Name	Write Mix	Access Size (kB)	Access Type	Queue Depth	Bandwidth (MB/s)	Average Latency (ms)
Device A	100%	16	random	1	54.32	1.04
Device B	100%	16	random	1	15.05	0.29
Device A	30%	16	random	1	20.01	1.39

Example Policy:
Bandwidth matters a lot, latency matters a little

Device A scores 72/100 Device B scores 65/100

Putting the "Score" in StorScore

- Goal: Enable data-driven decisions throughout the company
- Reduce data to one score per drive
 - Explainable
 - Repeatable
 - Representative

 Method: a weighted average of all the metrics for each workload

Display Name	Write Mix	Access Size (kB)	Access Type	Queue Depth	Bandwidth (MB/s)	Average Latency (ms)
Device A	100%	16	random	1	Z_AX0	Z_AX1
Device B	100%	16	random	1	Z_BX0	Z_BX1
Device A	30%	16	random	1	Z_AYO	Z_AY1

Step 1: Convert each value to z-score

Calculating Each Z-Score

A z-score (or standard score) is the number of standard deviations from the mean.

Drive: A

Wkld: X (4k, rand, QD = 1, 100% writes)

Metric: 0 (Read Latency)

- all drives
- workload X
- metric 0

- One z-score for each data point
- Positive = better than average

- Negative = worse than average
- Based on cohort of drives

Calculating the Weighted Average

General Policy:

- Can apply multiple policies at once
- Can use any kind of weight system (stay consistent within single policy)

Policy to Favor Mixed Workloads:

70/30 Read/Write Mix Workloads

100% Read & 100% Write Workloads

+

L ×

=

65 / 100

Scores

Scores' Breakdown

Outline

• Recipes: Defining the Test Suite

• Scores: Managing the Output

• Endurance: Quantifying the Consumable

SSD Failure Mechanism: Writes

Total Drive Writes

x Write Amplification Factor = P/E Cycles

Workload Dependent, Vendor Reported, Implementation Specific

Previously Available	New Telemetry
SMART "Media Wear Indicator"	SMART "Controller Writes"
Reported in units of 1% (300 TB for 30k, 1TB drive)	Reported in units of sectors or GB
4.7 months for 1 workload	1,700 workloads in 4.7 months

Endurance Results

Microsoft

Device E

Device F

Device H

Endurance Results

Conclusion

- How StorScore brings together existing work & concepts
- Simplicity of defining the inputs
- Spectrum of analysis tools
 - Directly and interactively with excel & pivot charts
 - Automated Score generation
 - Burrowing down into portions of the score
- Measuring endurance on many workloads

StorScore
enables data-driven decision
making process for Microsoft
cloud applications

Memory Thanks! Questions?

You may download StorScore for free at:

http://aka.ms/storScore

