

A Prediction Model Based on Deep Belief Network and Least Squares SVR Applied to Cross-Sectio Water Quality

2020年12月11日

开源情况

●开源代码:无

●数据集:

- ✓数据来源于河北廊坊数据监测站,三河东桥的水源质量数据
- ✓数据每四小时被收集一次
- ✓数据包含以下9个特征:水温、pH值、溶解氧、电导率、浊度、高锰酸钾指数、总磷、氨氮
- ✔ 使用前八个特征预测最后一个特征

简介&&主要贡献

- 水污染问题严重(人为因素+非人为因素)
- 使用水源质量参数预测、控制水污染
- 利用粒子群优化后的DBN神经网络,结合最小二乘支持向量回归(LSSVR)进行水质预测
- 对比BP、DBN、LSSVR、DBN-LSSVR 模型取得了更好的效果

基于DBN模型的特征抽取

- 由一系列的RBM单元组成,每层神经元之间不存在连接
- 可见层与隐层能量计 算方式:

$$E(v, h|\theta) = -\sum_{i=1}^{n} a_i v_i - \sum_{j=1}^{m} b_j h_i - \sum_{i=1}^{n} \sum_{j=1}^{m} v_i w_{ij} h_j$$

Figure 3. Deep belief network (DBN) model architecture.

基于DBN模型的特征抽取

● 可见层与隐层联合概率分布:

$$P(v, h|\theta) = \frac{e^{-E(v,h|\theta)}}{Z^{\theta}}$$

$$Z^{\theta} = \sum_{v,h} e^{-E(v,h|\theta)}$$

● 使用极大似然训练模型参数:

$$L(\theta) = \sum_{n=1}^{N} ln(v^{n}, h)$$

$$\theta = argmaxL(\theta) = argmax \sum_{n=1}^{N} ln(v^n, h)$$

使用粒子群算法优化DBN

●PSO算法:简单、易于实现、参数少、速度快

● 实现步骤:

- ◆ (1) 初始化粒子种群 (随机位置和速度)
- ◆ (2) 评估,寻找Pbest和Gbest
- ◆(3)以一定的速度进行更新

最小二乘支持向量回归机

- ●基于统计理论和结构风险最小化准则的方法
- 求解二次规划=》求解线性方程组
- 提高计算速度和收敛精度
- 训练方法:

$$minJ(\omega,\xi) = \frac{1}{2}\omega^T\omega + \frac{C}{2}\sum_{i=1}^{l}\xi^T\xi$$

$$s.t.y_i = \omega^T \varphi(x_i) + \mu + \xi_i \ (i = 1, 2, \dots, l)$$

基于PSO优化DBN网络和LSSVR的预测模型

● 实现步骤:

- ◆(1)训练DBN模型的每个RBM层
- ◆(2)使用PSO防止DBN陷入局部最优
- ◆(3)决定LSSVR参数
- ◆ (4)使用顶层LSSVR模型迭代更新每一层的RBM 参数, finetune整体的DBN网络

评价指标

• MAE, MPAE, RMSE, R²

$$MAE = \frac{1}{n} \sum_{i=1}^{n} |y_i - \hat{y}_i|$$

$$MAPE = \frac{1}{n} \sum_{i=1}^{n} \frac{\left| y_i - \hat{y}_i \right|}{y_i} \times 100$$

$$RMSE = \sqrt{\frac{1}{n} \sum_{i=1}^{n} (y_i - \hat{y}_i)^2}$$

$$R^{2} = \frac{\left(\sum_{i=1}^{n} (y_{i} - \overline{y_{i}}) \left(\hat{y}_{i} - \overline{\hat{y}_{i}}\right)\right)^{2}}{\sum_{i=1}^{n} (y_{i} - \overline{y_{i}})^{2} \sum_{i=1}^{n} \left(\hat{y}_{i} - \overline{\hat{y}_{i}}\right)^{2}}$$

实验结果一真实结果对比

实验结果

每四小时实验结果对比

Time	Original Value (mg/L)	BP Value (mg/L)	LSSVR Value (mg/L)	DBN Value (mg/L)	DBN-LSSVR Value (mg/L)	PSO-DBN-LSSVF Value (mg/L)
2019-02-20 00:00	13.22	8.6979	10.6828	10.1474	11.7031	12.5979
2019-02-20 04:00	13	9.1988	11.0839	11.0232	12.3903	12.9361
2019-02-20 08:00	13.43	8.7839	11.7840	10.2788	11.6919	12.5109
2019-02-20 12:00	13.14	9.2670	10.2441	11.1805	12.7838	12.9132
2019-02-20 16:00	13.2	8.7083	10.6196	10.6156	12.3741	12.6128
2019-02-20 20:00	13.08	9.5872	10.6417	12.1926	12.5264	13.1486
2019-02-21 00:00	12.78	9.6111	10.6462	12.1894	12.4182	13.1224
2019-02-21 04:00	12.92	9.3237	10.8038	11.4544	12.3650	12.9969
2019-02-21 08:00	12.99	9.0675	10.1418	10.9945	12.0069	12.6309
2019-02-21 12:00	12.9	9.3087	11.2319	11.6579	11.7297	12.7271
2019-02-21 16:00	12.59	9.1945	11.0802	11.6121	12.0948	12.6160
2019-02-21 20:00	12.74	9.4751	11.5087	12.0508	12.0435	13.0189
2019-02-22 00:00	12.84	8.6493	10.6011	10.3545	11.924	12.4661

实验结果一评价指标

Model	MAE	MAPE (%)	RMSE	R ² 0.2871
BP	4.0943	36.99	4.2746	
LSSVR	2.8406	19.86	2.4957	0.6142
DBN	2.6679	24.54	2.9354	0.6454
DBN-LSSVR	1.1290	10.48	1.3306	0.8714
PSO-DBN-LSSVR	0.4765	4.32	0.4877	0.9327

- 提出一种基于DBN的水质参数深度学习方法 预测断面水质
- 克服了随机初始化的DBN网络参数会影响模型的预测性能的缺点
- ●下一步研究方向:
 - ◆ 收集重金属参数、流量等水质数据
 - ◆调整深度学习模型参数

谢谢! 请多提意见!

http://ir.dlut.edu.cn