

Grundlagen der Energieübertragungstechnik

1. Rechnerische Behandlung des Drehstromsystems

1.1. Spannung u

Augenblickswert:
$$u(t) = \hat{u}\cos(\omega t + \varphi_u) = U\sqrt{2}\cos(\omega t + \varphi_u)$$

Scheitelwert / Amplitude: \hat{u}

Effektivwert (allg.):
$$U_{\rm eff}=U=\sqrt{\frac{1}{T}\int\limits_{t_0}^{t_0+T}u^2(\tau)\,{\rm d}\tau}$$
 \to bei sinusförmigen Größen: $U=\frac{\hat{u}}{\sqrt{2}}$

Phasenwinkel:
$$\varphi(t) = \omega t + \varphi_u \text{ mit } \omega = 2\pi f = \frac{2\pi}{T}$$

Nullphasenwinkel: φ_n

1.2. Stromstärke i

Augenblickswert:
$$i(t) = \hat{i}\cos(\omega t + \varphi_i) = I\sqrt{2}\cos(\omega t + \varphi_i)$$

Scheitelwert / Amplitude: \hat{i}

Effektivwert (bei sinusförmigen Größen): $I = \frac{i}{\sqrt{2}}$

Phasenwinkel: $\varphi(t) = \omega t + \varphi_i$ mit $\omega = 2\pi f = \frac{2\pi}{T}$

Nullphasenwinkel: φ_i

Phasenverschiebungswinkel:

$$\varphi = \varphi_{ui} = \varphi_u - \varphi_i$$

 $0<arphi\leq\pi$: Strom eilt der Spannung nach $-\pi < \varphi < 0$: Strom eilt der Spannung vor

1.3. Symmetrische Komponenten

zerlegen eines Dreileiter-Drehstromnetz in unabhängige Systeme (Mit-, Gegen- und Nullsystem)

Entsymmetrierungsmatrix T:

$$\begin{pmatrix} \underline{\boldsymbol{I}}_1 \\ \underline{\boldsymbol{I}}_2 \\ \underline{\boldsymbol{I}}_3 \end{pmatrix} = \begin{bmatrix} 1 & 1 & 1 \\ \underline{\boldsymbol{a}}^2 & \underline{\boldsymbol{a}} & 1 \\ \underline{\boldsymbol{a}} & \underline{\boldsymbol{a}}^2 & 1 \end{bmatrix} \cdot \begin{pmatrix} \underline{\boldsymbol{I}}_{(1)1} \\ \underline{\boldsymbol{I}}_{(2)1} \\ \underline{\boldsymbol{I}}_{(0)1} \end{pmatrix}$$

Symmetrierungsmatrix S:

$$\begin{pmatrix} \underline{\boldsymbol{I}}_{(1)1} \\ \underline{\boldsymbol{I}}_{(2)1} \\ \underline{\boldsymbol{I}}_{(0)1} \end{pmatrix} = \frac{1}{3} \cdot \begin{bmatrix} 1 & \underline{\boldsymbol{a}} & \underline{\boldsymbol{a}}^2 \\ 1 & \underline{\boldsymbol{a}}^2 & \underline{\boldsymbol{a}} \\ 1 & 1 & 1 \end{bmatrix} \cdot \begin{pmatrix} \underline{\boldsymbol{I}}_1 \\ \underline{\boldsymbol{I}}_2 \\ \underline{\boldsymbol{I}}_3 \end{pmatrix}$$

Mitsystem:

Gegensystem:

Nullsystem:

1.4. Stern-Dreieck-Umwandlung

$$\begin{array}{l} \underline{Z}_1 = \frac{\underline{Z}_{12}\underline{Z}_{31}}{\underline{Z}_{12} + \underline{Z}_{23} + \underline{Z}_{3}} \\ \underline{Z}_2 = \frac{\underline{Z}_{12}\underline{Z}_{23}}{\underline{Z}_{12} + \underline{Z}_{23} + \underline{Z}_{3}} \\ \underline{Z}_3 = \frac{\underline{Z}_{23}\underline{Z}_{31}}{\underline{Z}_{12} + \underline{Z}_{23} + \underline{Z}_{3}} \\ \underline{I}_1 = \underline{I}_{12} - \underline{I}_{31} \\ \underline{I}_2 = \underline{I}_{23} - \underline{I}_{12} \\ \underline{I}_3 = \underline{I}_{31} - \underline{I}_{23} \end{array}$$

2. Freileitungen und Kabel

2.1. Freileitungen

2.1.1 Durchhang der Freileitungsseile

f(x)	Durchhang an der Stelle $oldsymbol{x}$
G'	Gewichtskraft des Leiterseils pro Längeneinheit
F_H	Horizontalzugkraft
h	mittlere Höhe der Leiterseile

Durchhang:
$$f(x)=f_{\max}-\frac{G'}{2F_h}x^2)$$
 mit $f_max=\frac{G'}{8F_H}a^2$ mittlere Höhe: $h=h_{\mathrm{Mast}}-0,7\cdot f_{\max}$

Mindestabstand zum Erdboden (VDE 0210-1):

elektrischer Grundabstand

Mindestabstand: $h_{\min} = 5m + D_{el}$

Material:

z.B. AI/St 240/40:

Querschnitt des Aluminiumleiters $240 \mathrm{mm}^2$, Querschnitt des Stahlleiters 40mm^2

2.1.2 Bündelleiter

Ersatzradius

Anzahl der Teilleiter

Seilradius eines Teilleiters

Teilkreisradius r_T

für einen Bündelleiter mit 4 Teilleitern: $r_T = \sqrt{2} \frac{a}{2}$

Ersatzradius
$$r_b$$
: $r_n = \sqrt[n]{n \cdot r \cdot r_T^{n-1}}$

Abstand zwischen den Außenleitern

Ersatzabstand D_{ers} für Einfachsysteme: $D = \sqrt[3]{D_{12} \cdot D_{23} \cdot D_{31}}$

Ersatzabstand für Doppelsysteme mit γ -Verdrillung:

$$D = \sqrt[3]{D_{12} \cdot D_{23} \cdot D_{31} \cdot \frac{D_{12}' \cdot D_{23}' \cdot D_{31}'}{D_{11}' \cdot D_{22}' \cdot D_{33}'}}$$

typische Angabe des Werte:

 $4 \cdot \frac{21.7}{400} \,\mathrm{mm} \Rightarrow a = 400 \,\mathrm{mm}, r = \frac{21.7}{2} \,\mathrm{mm}$

2.1.3 Widerstandsbelag

Durch Ladungsträgerbewegung bei Stromfluss wird Joule'sche Wärme frei.

- Querschnitt
- Temperaturkoeffizient
- θ Celsiustemperatur

Widerstand pro Längeneinheit: $R_{20}' = \frac{1}{\kappa_{20} Q}$

mit Temperaturabhängigkeit: $R'_{\vartheta} = \frac{1}{K_{20}Q} \left[1 + \alpha(\vartheta - 20K) \right]$

im Bündelleiter: $R_B = \frac{1}{n} \cdot R$ mit R ist Widerstand des Teilleiters

2.1.4 Induktivitätsbelag

Induktivität einer Leiterschleife mit Hin- und Rückleiter: $L_{00} = l \frac{\mu_0}{\pi} \cdot (\frac{1}{4} + \ln \frac{d}{r})$

Koppelinduktivitäten:

$$M = M_{12} = M_{23} = M_{31} = \frac{\mu_0}{2\pi} l(\frac{1}{4} + \ln \frac{d^2}{rD})$$

Betriebsinduktivität:

$$L_b \cdot \underline{I}_1 = L_{00} \cdot \underline{I}_1 + M \cdot \underline{I}_2 + M \cdot \underline{I}_3 = (L_{00} - M) \cdot \underline{I}_1$$

Betriebsinduktivitätsbelag: $L_b' = (2 \ln \frac{D_{ers}}{r} + \frac{1}{2}) \cdot 10^{-4} \frac{H}{km}$

für Bündelleiter: $L_b' = (2 \ln \frac{D_{ers}}{r_B} + \frac{1}{2n}) \cdot 10^{-4} \frac{H}{km}$

2.1.5 Betriebsimpedanzen

Einfachseil:
$$\underline{Z}_b' = \underline{Z}_{(1)}' = R' + \mathrm{j}\omega \frac{\mu_0}{2\pi} (\ln \frac{D}{r} + \frac{1}{4})$$

Bündelleiter:
$$\underline{Z}_b' = \underline{Z}_{(1)}' = \frac{R'}{n} + \mathrm{j}\omega \frac{\mu_0}{2\pi} (\ln \frac{D}{r_D} + \frac{1}{4n})$$

Typische Werte (Al/St 240/40) bei 50Hz:

110kV 220kV	Einfachseil 2er-Bündel	$\underline{\boldsymbol{Z}}_b' = (0, 12 + j0, 4) \frac{\Omega}{\text{km}}$ $\underline{\boldsymbol{Z}}_b' = (0, 06 + j0, 3) \frac{\Omega}{\text{km}}$ $\underline{\boldsymbol{Z}}_b' = (0, 03 + j0, 25) \frac{\Omega}{\text{km}}$
220kV 380kV	2er-Bündel 4er-Bündel	$\underline{\underline{Z}}'_b = (0,06 + j0,3) \frac{\Omega}{\text{km}}$ $\underline{\underline{Z}}'_b = (0,03 + j0,25) \frac{\Omega}{\text{kr}}$

2.1.6 Nullimpedanz

Erdstromtiefe:
$$\delta = \frac{1,85}{\sqrt{\mu_0 \cdot \frac{1}{\rho} \cdot \omega}}$$

$$\underline{Z}_{(0)} = \frac{\underline{U}_{(0)}}{\underline{I}_{(0)}} = R' + 3\omega \frac{\mu_0}{8} + j\omega \frac{\mu_0}{2\pi} (3 \ln \frac{\delta}{\sqrt[3]{r \cdot D^2}} + \frac{1}{4})$$

$$\underline{Z}_{(0)} = \frac{\underline{U}_{(0)}}{\underline{I}_{(0)}} = \frac{R'}{n} + 3\omega \frac{\mu_0}{8} + j\omega \frac{\mu_0}{2\pi} (3 \ln \frac{\delta}{\sqrt[3]{r \cdot D^2}} + \frac{1}{4n})$$

2.1.7 Kapazitätsbelag

$$\begin{split} C_b' &= \frac{2\pi\epsilon_0}{\ln\!\left(\frac{D_{\mathrm{ers}}}{r_B\sqrt{1\!+\!\left(\frac{D_{\mathrm{ers}}}{2h}\right)^2}}\right)} \\ \text{für } D &\ll 2h \text{: } C_b' = \frac{2\pi\epsilon_0}{\ln\!\left(\frac{D_{\mathrm{ers}}}{r_B}\right)} \end{split}$$

2.1.8 Nullkapazität

$$C'_{(0)} = \frac{2\pi\epsilon_0}{3\ln\frac{2h}{\sqrt[3]{rD^2}}}$$

2.1.9 Ohmscher Querleitwert G'

Verluste durch Ableitströme über Isolatoren und durch Koronaverluste.

spezifische Arbeitsverluste: $P_V' = 3 \cdot \left(\frac{U_n}{\sqrt{3}}\right)^2 \cdot G_b' = U_n^2 \cdot G_b'$

Betriebsableitbelag: $G'_b = \frac{P'_V}{U^2}$

2.2. Kabel

Querschnitt: $Q = (r_a^2 - r_i^2)\pi$

Eindringtiefe: $\delta = \sqrt{\frac{2}{\omega \mu \kappa}}$

2.2.1 Widerstandsbelag R'

Widerstand pro Längeneinheit: $R'_{20}=\frac{1}{\kappa_{20}Q}$ mit Temperaturabhängigkeit: $R'_{\vartheta} = \frac{1}{K_{20}Q} \left[1 + \alpha(\vartheta - 20K) \right]$

Stromverdrängung / Skineffekt

für dicke massive Leiter. Erhöhung des ohmschen Widerstandes des Leiters.

Skineffekt-Korrekturfaktor RWechselstromwiderstand R_{-} Gleichstromwiderstand Frequenz

$$\begin{array}{l} \frac{R \approx}{R =} = 1 + y_s \\ y_s = \frac{x_s^4}{192 + 0.8 \cdot x_s^4} \\ x_s = \sqrt{\frac{2 \cdot \mu \cdot f \cdot k_s}{R_-^\prime}} \text{ mit } k_s = \begin{cases} 1 & \text{ für Rundleiter} \\ 0, 5 & \text{ für Segmentleiter} \end{cases} \end{array}$$

2.2.2 Induktivitätsbelag L'

Betriebsinduktivitäsbelag: $L_b' = \frac{L_B}{l} = \left(2 \ln \frac{D}{r} + \frac{1}{2}\right) \cdot 10^{-4} \frac{H}{km}$

Betriebsreaktanzbelag: $X_b' = \omega L_b'$

Induktivitätsbelag eines Hohlleiters:

 $\omega L_{b\text{HI}}' = \omega L_b' \cdot (0,96+0,051\frac{r_a-r_i}{r_a})$ für $0 < \frac{r_a-r_i}{r_a} < 0,6$

2.2.3 Kapazitätsbelag C'

Radialfeldkabel:

$$C_b' = \frac{2\pi\epsilon}{\ln\left(\frac{R_a}{R_i}\right)}$$

 $C'_{L} = 0$

$$\begin{aligned} & \overset{\text{Gurtelkabel:}}{C_b'} = \frac{2\pi\epsilon_0\epsilon_r}{\ln\sqrt{\frac{3c^2(R_a^2-c^2)^3}{R_i^2(R_a^6-c^6)}}} \end{aligned}$$

2.2.4 Ohmscher Querleitwert

$$G_h' = \tan \delta \cdot \omega C_h'$$

2.2.5 typische Werte

Symbol	Einheit	typische Werte
R' $X' = \omega L'_b$ $Y'_b = \omega C'_b$ Z_w	$[rac{\Omega}{\mathrm{km}}] \ [rac{\Omega}{\mathrm{km}}] \ [rac{\Omega}{\mathrm{km}}] \ [rac{\mu \mathrm{S}}{\mathrm{km}}] \ [\Omega]$	0,010,05 $0,10,2$ 50100 3263

3. Leitung im stationären und nichtstationären **Betrieb**

3.1. Vereinfachte Leitungsbetrachtung

vernachlässigen von G_b und Y_b

3.2. Leitungsgleichung für einphasige Leitung

$$\begin{array}{l} \frac{\partial^2 u}{\partial x^2} = L' \cdot C' \cdot \frac{\partial^2 u}{\partial t^2} + (R' \cdot C' + L' \cdot G') \cdot \frac{\partial u}{\partial t} + R' \cdot G' \cdot u \\ \frac{\partial^2 i}{\partial x^2} = L' \cdot C' \cdot \frac{\partial^2 i}{\partial t^2} + (R' \cdot C' + L' \cdot G') \cdot \frac{\partial i}{\partial t} + R' \cdot G' \cdot i \end{array}$$

 $\gamma = \alpha + j \cdot \beta = \sqrt{(R'(\omega) + j\omega L'(\omega)) \cdot (G'(\omega) + j\omega C'(\omega))}$

3.3. Leitungsgleichungen für Drehstromleitungen

Übertragungsmaß $\pmb{\gamma} = \alpha + \mathrm{j} \beta = \sqrt{(R' + \mathrm{j} \omega L') \cdot (G' + \mathrm{j} \omega C')}$ Betriebswellenimpendanz $\underline{Z}_W = \sqrt{\frac{R' + j\omega L'}{G' + i\omega C'}}$

Zweitorgleichung der verlustbehafteten Leitung:
$$\begin{pmatrix} \underline{U}_1 \\ \underline{I}_1 \end{pmatrix} = \begin{bmatrix} \cosh(\underline{\gamma} \cdot l) & \underline{Z}_w \cdot \sinh(\underline{\gamma} \cdot l) \\ \frac{1}{Z_w} \cdot \sinh(\underline{\gamma} \cdot l) & \cosh(\underline{\gamma} \cdot l) \end{bmatrix} \cdot \begin{pmatrix} \underline{U}_2 \\ \underline{I}_2 \end{pmatrix}$$

π - Ersatzschaltbild

Längsimpedanz $Z_l = Z_m \cdot \sinh(\gamma \cdot l)$

Queradmittanz $\frac{\underline{Y}_q}{2} = \frac{1}{Z_{out}} \cdot \tanh(\underline{\gamma} \cdot \frac{l}{2})$

3.4. verlustlose Fernleitung

Phasenmaß: $\beta = \omega \sqrt{L'C'}$ [1/km]

Wellenwiderstand für verlustlose Leitungen: $Z_W = \sqrt{\frac{\omega L'}{\omega C'}}$

Eine Leitung gilt als elektrisch kurz für $l < 200 \mathrm{km}$ (Freileitung) bzw. $l \leq 100 \mathrm{km}$ (Kabel)

Längsimpedanz (elektrisch lang): $\underline{Z}_l = Z_w j \sin(\beta l)$

Längsimpedanz (elektrisch kurz): $\underline{\boldsymbol{Z}}_l = \mathrm{j}\omega L' \cdot l$

Queradmittanz (elektrisch lang): $\frac{Y_q}{2} = \frac{1}{Z_{av}} j \tan \left(\frac{\beta l}{2} \right)$

Queradmittanz (elektrisch kurz): $\frac{\underline{Y}_q}{2} = j\omega C' \cdot \frac{l}{2}$

Zweitorgleichung $Z_w j \sin(\beta l) \left[\underline{\boldsymbol{U}}_2 \right]$ $\frac{1}{Z_{w}} j \sin(\beta l)$ $\cos(\beta l)$

3.5. Eingangsimpedanz

natürliche Leistung: $P_{\mathsf{nat}} = 3 \cdot \frac{U_1^2}{Z_W} = \frac{U_n^2}{Z_w}$

gibt einen Anhaltswert für die Übertragungsfähigkeit einer Leitung im symmetrischen Drehstromsystem

3.5.1 Kurzschluss $Z_2 = 0$

$$\underline{\boldsymbol{Z}}_1 = Z_W \cdot \mathrm{j} \tan(\tilde{\beta} l)$$

3.5.2 Leerlauf $I_2 = 0$

$$\begin{array}{|c|c|} \underline{Z}_1 = Z_W \cdot \frac{1}{\mathrm{j}\tan(\beta l)} \\ \underline{U}_1 = \cos(\beta l) \cdot \underline{U}_2 \end{array}$$

3.5.3 Abschluss mit der Wellenimpedanz $oldsymbol{Z_2} = Z_W$

Betrieb mit natürlicher Leistung:

- $|\underline{\boldsymbol{U}}_1| = |\underline{\boldsymbol{U}}_2|$ • $\angle(U, I) = 0$
- Phasendrehung von U und I um βl

3.6. Blindleistungskompensation

Querkompensationsgrad

 k_l Längskompensationsgrad wirksamer Kapazitätsbelag

wirksamer Induktivitätsbelag

wirksamer Wellenwiderstand
$$Z_{Wk} = \sqrt{\frac{L_w'}{C_w'}} = \sqrt{\frac{L'}{C'}} \cdot \sqrt{\frac{1-k_L}{1-k_Q}}$$

$$\begin{split} &\frac{P_{\mathsf{natk}}}{P_{\mathsf{nat}}} = \sqrt{\frac{1 - k_q}{1 - k_l}} \\ &\beta_k = \omega \sqrt{L'_{yy} \cdot C'_{yy}} = \omega \sqrt{L' \cdot C'} \cdot \sqrt{(1 - k_l) \cdot (1 - k_q)} \end{split}$$

3.7. Querkompensation

wirksamer Kapazitätsbelag: $C_w' = C' \cdot (1 - k_q) \Rightarrow (1 - k_q) = \frac{C_w'}{C'}$

Kompensationsblindleistung am Leitungsende
$$Q_2 = \frac{P_{\mathsf{nat}}}{\sin(\beta l)} \left[\sqrt{1 - \left(\frac{P_2}{P_{\mathsf{nat}}} \sin(\beta l)\right)^2} - \cos(\beta l) \right]$$

falls Leitung mit Kompensationsinduktivität L_k abgeschlossen ist:

 $\underline{I}_2 = \underline{I}_k = \frac{\underline{U}_2}{i\omega L_1}$

Kompensationsreaktanz: $X_k = \omega L_k = \frac{Z_w \cdot \sin(\beta l)}{1 - \cos(\beta l)}$

3.8. Längskompensation

wirksamer Induktivitätsbelag: $L'_w = L'(1 - k_l)$

Faustregel für die optimale Anzahl der Kondensatorbatterien: $0 < k_l \le 0, 5 \Rightarrow n = 1 \Rightarrow X_k = k_l \cdot 2Z_w \sin(\beta \frac{l}{2})$ $0, 5 < k_l \le 0, 67 \Rightarrow n = 2 \Rightarrow X_k = k_l \cdot \frac{3}{2} Z_w \sin(\beta \frac{l}{3})$ $0,67 < k_1 < 0,75 \Rightarrow n = 3 \Rightarrow X_k = k_1 \cdot \frac{4}{3} Z_w \sin(\beta \frac{1}{4})$

Komensationsblindleistung: $Q_K=3\cdot X_K\cdot I_K^2$ Leistungswinkel der kompensierten Leitung: $\vartheta_k=\beta_k l$ Grenzwinkel für Stabilität der Leitung: $\vartheta_{\mathsf{Grenz}}=42^\circ\ \vartheta=(\vartheta_M)_{\mathsf{grenz}}-(\vartheta_M+\vartheta_T)$ mit Transformatorwinkel $\vartheta_T\approx 3,5^\circ,\ \vartheta_M\approx 5,5^\circ$

3.9. Übertragungsfähigkeit von Freileitungen

U_n [V]	Leiter	Z_W $[\Omega]$	P_{nat} $[\mathrm{MW}]$	$S_{\sf th}$ [MV A]
$10 \mathrm{kV}$	AI/St 50/8	330	0,3	3
$30 \mathrm{kV}$	AI/St 95/15	360	2,5	15
$110 \mathrm{kV}$	AI/St 240/40	365	33	123
$380 \mathrm{kV}$	Al/St $4 \cdot 240/40$	240	600	1700
$380 \mathrm{kV}$	Al/St $4 \cdot 550/70$	240	600	2633
735kV	Al/St $4 \cdot 680/85$	260	2080	5860

3.10. Wanderwellen

4. Transformatoren

4.1. Zweiwicklungstransformator

 $\underline{I}_2^{\times} = \frac{\underline{I}_2}{\mathrm{ii}} \; \mathsf{mit} \; w_1, w_2 \; \mathsf{sind} \; \mathsf{Windungszahlen}$

 $\underline{\boldsymbol{U}}_2^{\times}= \mathbf{\ddot{u}}\underline{\boldsymbol{U}}_2$ $\underline{\boldsymbol{Z}}_{2}^{\times} = \ddot{\mathbf{u}}^{2}\underline{\boldsymbol{Z}}_{2}$

 $\underline{\underline{U}}_2^\times \cdot \underline{\underline{I}}_2^\times = \mathtt{ü}\underline{\underline{U}}_2 \cdot \underline{\underline{\underline{I}}_2} = \underline{\underline{U}}_2 \cdot \underline{\underline{I}}_2$

Bemessungsstrom: $\underline{I}_r = \frac{S_{rT}}{\sqrt{3}U_{rT}}$

Kupferverluste: $P_{\text{cu}} = 3U_{R_h}I_1 = 3R_kJ_1^2$

4.1.1 Leerlauf

 $\begin{array}{l} \text{Leerlaufstrom: } \underline{I}_0 = \underline{I}_{\text{Fe}} + \underline{I}_h \\ \text{Hauptreaktanz: } X_h = \operatorname{Im} \left\{ \frac{\underline{U}_{r1}}{\underline{I}_h} \right\} \end{array}$

Eisenverluste (im Einphasentransformator): $R_{\rm Fe}=\frac{U_{r1}^2}{P_{\rm o}}=$ ü $^2\cdot\frac{U_{r2}^2}{P_{\rm o}}$

4.1.2 Kurzschluss

$$\underline{Z}_k = \underline{\underline{U}}_k = (R_1 + R_2^{\times}) + j(X_{\sigma 1} + X_{\sigma 2}^{\times}) = R_k + jX_k$$

relative Kurzschlussspannung:
$$u_k = \frac{U_k}{U_{r1}} = \frac{I_{r1} \cdot X_k}{U_{r1}} \cdot \left(\frac{U_{r1}}{U_{r1}}\right) = \frac{S_T \cdot X_k}{U_{r1}^2}$$

Bezogener Spannungsfall: $u_x = \frac{X_k S_{rT}}{U^2}$

4.1.3 Bemessungsstrom

$$X_h \to \infty$$
 $R_{\mathsf{Fe}} \to \infty$

$$R_k = R_1 + R_2^{\times} \quad X_k = X_{\sigma 1} + X_{\sigma 2}^{\times} \quad \underline{\boldsymbol{Z}}_k = R_k + \mathrm{j} X_k$$

4.1.4 Übersetzung ü

Übersetzung: ü = $\frac{w_1}{w_2}$ mit w_1 := Primärwicklung, w_2 := Se-

Leerlaufübersetzung $\ddot{\mathbf{u}}_0 = \frac{\underline{U}_1}{U_2} \approx \frac{w_1}{w_2}$

4.2. Drehstromtransformator

Kurzschlussspannung:
$$u_k = \frac{U_k T}{U_r T} = \frac{\frac{U_k T}{\sqrt{3}}}{\frac{U_r T}{\sqrt{3}}} = \frac{X_k \cdot I_r T}{\frac{U_r T}{\sqrt{3}}}$$

Bemessungsleistung: $S_{rT}=\sqrt{3}\cdot U_{rT}\cdot \overset{\vee}{I_{rT}}$ Kurzschlussreaktanz: $X_k=\frac{u_k\cdot U_{rT}^2}{S_{nT}}$

Kurzschlussreaktanz:
$$X_k = \frac{u_k \cdot U_{TT}^2}{S_{TT}}$$

$$X_{k(Y)} = \frac{X_{k(\Delta)}}{3}$$

Bezogene Kurzschlussspannung: $u_k = u_R + ju_x$

Typische Werte:

Anwendung	S_r/MVA	$u_R/\%$	$u_x/\%$
Niederspannung	$0, 25 \dots 1, 6$	$1, 8 \dots 1, 0$	5, 8
Mittelspannung	$2, 5 \dots 25$	$1,0\ldots0,5$	$7 \dots 8, 5$
Hochspannung $110 \mathrm{kV}$	16 63	$0, 7 \dots 0, 6$	12
Hochspannung $220 \mathrm{kV}$	$100 \dots 400$	$0, 5 \dots 0, 3$	$12 \dots 14$
Hochspannung $380 \mathrm{kV}$	$630 \dots 1500$	0, 2	1316

4.3. Wicklungsverschaltung

4.3.1 Sternschaltung

4.3.2 Dreieckschaltung

4.3.3 Zickzackschaltung

5. Kurzschlussstromberechnung

$I_k^{\prime\prime}$	Anfangskurzschlusswechselstrom	
I_k	Dauerkurzschlussstrom	
$I_a = I_b$	Ausschaltwechselstrom	
i_p	Stoßkurzschlussstrom	

5.1. Allgemeines

Kurzschluss ist generatornah falls gilt: $I_k^{\prime\prime} \geq 2I_{rG}$

5.1.1 generatorfern

AC Anteil mit konst. Amplitude + auf Null abklingender aperiodischer DC

es gilt: $I_k^{\prime\prime} = I_b = I_k$

5.1.2 generatornah

AC Anteil mit abklingender Amplitude + auf Null abklingender aperiodischer DC Anteil

5.2. Dreipoliger Kurzschluss

unvermaschtes Netz: $i_p = \kappa \sqrt{2} \cdot I_k^{\prime\prime}$ vemaschtes Netz: $\kappa = 1,02 + 0.98e^{-3 \cdot R/X}$

$$_{k}^{"} = \frac{c \cdot \frac{U_{nN}}{\sqrt{3}}}{Z_{k}}$$

 $i_p = 1, 15 \cdot \kappa \sqrt{2} \cdot I_{\iota}^{\prime\prime}$

5.2.1 Symmetrischer Ausschaltwechselstrom

Geilanteil: $I_{dc} = \sqrt{2} I_k^{\prime\prime} e^{-2\pi f t R/X}$ Generatorfern: $I_b = I_k^{\prime\prime}$

Generatornah: $I_b = \mu \cdot I_b^{\prime\prime}$ mit μ siehe S. 177

5.3. Ersatzschaltungen und Ersatzimpedanzen

5.3.1 Synchrongenerator

$$x_d^{\prime\prime} = x_d^{\prime\prime} \frac{U_{rG}^2}{S_{rG}}$$

5.3.2 Netzeinspeisung

$$Z_Q = \frac{c \cdot U_{nQ}}{\sqrt{3} \cdot I_{kQ}^{\prime\prime}}$$

$$X_Q = \frac{Z_Q}{\sqrt{1 + (R_Q/X_Q)^2}}$$

$$\begin{split} Z_T &= u_{kT} \cdot \frac{U_{rT}^2}{S_{rT}} \\ R_T &= u_{RT} \cdot \frac{U_{rT}^2}{S_{rT}} = \frac{P_{kT}T}{3I_{rT}^2} \\ X_T &= \sqrt{Z_T^2 - R_T^2} \end{split}$$

5.4. unsymmetrische Kurzschlüsse

5.4.1 Zweipoliger Kurzschluss ohne Erdberührung

$$\begin{split} I_{k2}^{\prime\prime} &= \frac{c \cdot U_n}{2 \left| \underline{\boldsymbol{Z}}_{(1)} \right|} = \frac{\sqrt{3}}{2} I_k^{\prime\prime} \\ i_{p2} &= \frac{\sqrt{3}}{2} i_p = \kappa \cdot \sqrt{2} \cdot I_{k2}^{\prime\prime\prime} \end{split}$$

5.4.2 Zweipoliger Kurzschluss mit Erdberührung

$$I_{kE2E}^{\prime\prime\prime} = \frac{\sqrt{3} \cdot c \cdot U_n}{\left| \underline{Z}_{(1)} + 2\underline{Z}_{(0)} \right|}$$
$$i_{p2E} = \kappa \cdot \sqrt{2} \cdot I_{kE2E}^{\prime\prime\prime}$$

5.4.3 Einpoliger Erdschluss

$$I_{k1}^{"} = \frac{\sqrt{3 \cdot c \cdot U_n}}{\left| 2\underline{Z}_{(1)} + \underline{Z}_{(0)} \right|}$$
$$i_{p1} = \kappa \cdot \sqrt{2} \cdot I_{k1}^{"}$$

6. Synchrongenerator

6.1. stationärerer Betrieb

UKlemmenspannung Strangstrom U_p Polradspannung

 $\underline{U} = \underline{U}_n - (R + jX_d) \cdot \underline{I}$

$$\begin{array}{c|c} \operatorname{mit} X_d = \omega \cdot (L_h + L_\sigma) \\ \mathrm{j} X_h & \mathrm{j} X_\sigma & R \\ \hline \\ U_p & E & \underline{U} \\ \end{array}$$

bezogene synchrone Reaktanz $x_d = \frac{X_d \cdot I_{rG}}{U_{rG} / \sqrt{3}} \approx 2,0$ synchrone Reaktanz: $X_d = \frac{x_d \cdot U_{rG}^2}{S_{rG}}$ $X_d \cdot I_w = U_p \sin \theta_M \; \text{mit} \; \theta_M \; \text{ist} \; \text{elektrischer Polradwinkel}$

abgegebene Wirkleistung: $P = 3 \cdot U \cdot I_w$

übererregter Betrieb $ig|U_{m p}ig|>ig|Uig|$ Maschine gibt induktive Blindleistung ab (wirkt wie Kapazität)

 $\underline{I} = I_w - jI_b \Rightarrow Q > 0$

untererregter Betrieb $ig|U_{m p}ig|<ird|U_{m p}$ Maschine nimmt induktive Blindleistung auf (wirkt wie Induktivität)

 $I = I_w + jI_b \Rightarrow Q < 0$

7. Sternpunktbehandlung

7.1. Allgemeines

Spannung d. fehlerh. Außenleiter bei Erdberührung $U_{\mathsf{LE}(\mathsf{F})}$ Außenleiterspannung wenn kein Fehler wäre $U_{b(F)}$ I_{CF} kapazitiver Erdschlussstrom

Erdfehlerfaktor (Wirksamkeit der Sternpunkterdung): δ = $\overline{U_{\mathsf{h}(\mathsf{F})}}/\sqrt{3}$

Netz ist wirksam geerdet falls $\delta < 1.4$

Bei wirksamer Erdung hohe Erdkurzschlusströme aber geringe betriebsfrequente und transiente Überspannung

7.2. Netz mit isoliertem (freiem) Sternpunkt

Bei einpoligem Erdschluss vergrößern sich die Beträge der Leiter-Erde Spnnungen der gesunden Leiter um $\sqrt{3} \Rightarrow \delta = \sqrt{3}$ Fehlerstrom (bei Erdschluss in L1): $\underline{I}_1 = \underline{I}_{CF} = j\sqrt{3} \cdot 1, 1 \cdot U_n \omega C_E$

7.3. Netz mit Erdschlusskompensation

wirksamer Nullleitwert: $\underline{Y}_{(0)} = \frac{1}{\mathrm{j}3X_{\mathrm{FI}}} + \mathrm{j}\omega C_{\mathrm{E}}$ Fehlerstrom: $\underline{I}_{E(F)} = 3 \cdot \underline{I}_{(0)} = 3 \cdot \frac{U_b}{\sqrt{3}} \mathbf{j} \cdot (\omega C_E - \frac{1}{3X_{EL}})$ Strom durch die Erdlöschspule: $\underline{I}_{Sp} = \frac{U_b/\sqrt{3}}{i X_{Fl}}$

7.4. Netz mit niederohmiger Sternpunkterdung

meist in Freileitungsnetzen mit $U_n > 220 \mathrm{kV}$ bzw. Kabelnetzen mit $U_n \ge 110 \text{kV}$

Erdfehlerfaktor: $\delta = \left| \underline{\underline{a}}^2 + \frac{\underline{Z}_{(1)} - \underline{Z}_{(0)}}{2\underline{Z}_{(1)} + \underline{Z}_{(0)}} \right|$