

SPORTON International Inc.

No. 52, Hwa Ya 1st Rd., Hwa Ya Technology Park, Kwei-Shan Hsiang, Tao Yuan Hsien, Taiwan, R.O.C. Ph: 886-3-327-3456 / FAX: 886-3-327-0973 / www.sporton.com.tw

FCC RADIO TEST REPORT

Applicant's company	Realtek Semiconductor Corp.		
Applicant Address	No. 2,Innovation Road II, Hsinchu Science Park, Hsinchu 300,Taiwan		
FCC ID	TX2-RTL8188EE		
Manufacturer's company	Realtek Semiconductor Corp.		
Manufacturer Address	No. 2, Innovation Road II, Hsinchu Science Park, Hsinchu 300, Taiwan		

Product Name	802.11b/g/n RTL8188EE NGFFCard		
Brand Name	Realtek		
Model No.	RTL8188EE		
Test Rule	47 CFR FCC Part 15 Subpart C § 15.247		
Test Freq. Range	2400 ~ 2483.5MHz		
Received Date	Jan. 19, 2012		
Final Test Date	May 06, 2014		
Submission Type	Class II Change		

Statement

Test result included in this report is for the IEEE 802.11n and IEEE 802.11b/g of the product.

The test result in this report refers exclusively to the presented test model / sample.

Without written approval of SPORTON International Inc., the test report shall not be reproduced except in full.

The measurements and test results shown in this test report were made in accordance with the procedures and found in compliance with the limit given in ANSI C63.10-2009, 47 CFR FCC Part 15 Subpart C.

The test equipment used to perform the test is calibrated and traceable to NML/ROC.

Table of Contents

1.	CER	RTIFICATE OF COMPLIANCE	1
2.	SUM	MMARY OF THE TEST RESULT	2
3.	GEN	NERAL INFORMATION	3
•	3.1.		
	3.2.		
	3.3.	. Table for Filed Antenna	5
	3.4.		
	3.5.		
	3.6.		
	3.7.		
	3.8.		
	3.9.		
4.	TEST	T result	12
	4.1.		
	4.2.		
	4.3.	·	
	4.4.		
	4.5.		
5.	LIST	OF MEASURING EQUIPMENTS	57
6.	MEA	ASUREMENT UNCERTAINTY	59
AF	PPEN	NDIX A. TEST PHOTOS	A1 ~ A8
AF	PPEN	NDIX B. ANTENNA LIST	

History of This Test Report

REPORT NO.	VERSION	DESCRIPTION	ISSUED DATE
FR211949-29	Rev. 01	Initial issue of report	Jun. 23, 2014

Issued Date :Jun. 23, 2014

Certificate No.: CB10305123

1. CERTIFICATE OF COMPLIANCE

Product Name : 802.11b/g/n RTL8188EE NGFFCard

Brand Name : Realtek

Model No. : RTL8188EE

Applicant: Realtek Semiconductor Corp.

Test Rule Part(s) : 47 CFR FCC Part 15 Subpart C § 15.247

Sporton International as requested by the applicant to evaluate the EMC performance of the product sample received on Jan. 19, 2012 would like to declare that the tested sample has been evaluated and found to be in compliance with the tested rule parts. The data recorded as well as the test configuration specified is true and accurate for showing the sample's EMC nature.

Sam Chen

SPORTON INTERNATIONAL INC.

Report Format Version: Rev. 01 FCC ID: TX2-RTL8188EE

Page No. : 1 of 61 Issued Date : Jun. 23, 2014

2. SUMMARY OF THE TEST RESULT

	Applied Standard: 47 CFR FCC Part 15 Subpart C					
Part	Rule Section	Result	Under Limit			
4.1	15.207	AC Power Line Conducted Emissions	Complies	12.74 dB		
4.2	15.247(b)(3)	Peak Output Power	Complies	4.38 dB		
4.3	15.247(d)	Radiated Emissions	Complies	2.53 dB		
4.4	15.247(d)	Band Edge Emissions	Complies	0.54 dB		
4.5	15.203	Antenna Requirements Complies		-		

Page No. : 2 of 61

Issued Date : Jun. 23, 2014

3. GENERAL INFORMATION

3.1. Product Details

IEEE 802.11n

Items	Description
Product Type	Diversity: WLAN (1TX, 1RX);
	Fixed: WLAN (1TX, 1RX);
	Single: WLAN (1TX, 1RX)
Radio Type	Intentional Transceiver
Power Type	From host system
Modulation	see the below table for IEEE 802.11n
Data Modulation	OFDM (BPSK / QPSK / 16QAM / 64QAM)
Data Rate (Mbps)	see the below table for IEEE 802.11n
Frequency Range	2400 ~ 2483.5MHz
Channel Number	11 for 20MHz bandwidth ; 7 for 40MHz bandwidth
Peak Output Power	MCS0 (20MHz): 25.50 dBm ; MCS0 (40MHz): 24.52 dBm
Carrier Frequencies	Please refer to section 3.4
Antenna	Please refer to section 3.3

IEEE 802.11b/g

Items	Description		
Product Type	Diversity: WLAN (1TX, 1RX);		
	Fixed: WLAN (1TX, 1RX);		
	Single: WLAN (1TX, 1RX)		
Radio Type	Intentional Transceiver		
Power Type	From host system		
Modulation	DSSS for IEEE 802.11b; OFDM for IEEE 802.11g		
Data Modulation	DSSS (BPSK / QPSK / CCK); OFDM (BPSK / QPSK / 16QAM / 64QAM)		
Data Rate (Mbps)	DSSS (1/ 2/ 5.5/11); OFDM (6/9/12/18/24/36/48/54)		
Frequency Range	2400 ~ 2483.5MHz		
Channel Number	11		
Peak Output Power	11b: 22.24 dBm ; 11g: 25.62 dBm		
Carrier Frequencies	Please refer to section 3.4		
Antenna	Please refer to section 3.3		

Report Format Version: Rev. 01 Page No. : 3 of 61
FCC ID: TX2-RTL8188EE Issued Date : Jun. 23, 2014

Items	Description		
Beamforming Function	☐ With beamforming		

Antenna and Band width

Antenna	Single (TX)		
Band width Mode	20 MHz	40 MHz	
IEEE 802.11b	٧	X	
IEEE 802.11g	٧	X	
IEEE 802.11n	٧	V	

IEEE 11n Spec.

Protocol	Number of Transmit Chains (NTX)	Data Rate / MCS
802.11n (HT20)	1	MCS 0-7
802.11n (HT40)	1	MCS 0-7

Note 1: IEEE Std. 802.11n modulation consists of HT20 and HT40 (HT: High Throughput).

Then EUT support HT20 and HT40.

Note 2: Modulation modes consist of below configuration: HT20/HT40: IEEE 802.11n

3.2. Accessories

N/A

Report Format Version: Rev. 01 Page No. : 4 of 61
FCC ID: TX2-RTL8188EE Issued Date : Jun. 23, 2014

3.3. Table for Filed Antenna

Ant.	Brand	Model Name	Antenna Type	Connector	Gain (dBi)
1	LYNwave ALA110-222050-300010		PIFA Antenna	I-PEX	3.5

Note: There are 3 configurations of EUT.

	Antenna Power		December 11 or	
Configuration	Туре	Chain	Type	Description
				The EUT supports 1TX/1RX function, and it
				supports TX/RX diversity function.
				Both Chain 1 and Chain 2 could be used as
Config.1 Diversity	NGFF	2 chains	PCIE	transmitting/receiving antenna, but only one of
				them could transmit/receive at the same time.
				Chain 1 generated the worst case than Chain
				2, so it is tested and recorded in the report.
	NGFF	2 chains	PCIE	The EUT supports 1TX/1RX function.
				Only Chain 1 could be used as transmitting
Config. 2 Fixed				antenna.
Config. 2 Fixed			USB	Both Chain 1 and Chain 2 could be used as
				receiving antenna, but only one of them could
				receive at the same time.
	NGFF	1 chain	PCIE	The EUT supports 1TX/1RX function.
Config. 3 Single				Only Chain 1 could be used as transmitting/
			USB	receiving antenna.

3.4. Table for Carrier Frequencies

There are two bandwidth systems.

For 20MHz bandwidth systems, use Channel 1~Channel 11.

For 40MHz bandwidth systems, use Channel 3~Channel 9.

Frequency Band	Channel No.	Frequency	Channel No.	Frequency
	1	2412 MHz	7	2442 MHz
	2	2417 MHz	8	2447 MHz
2400~2483.5MHz	3	2422 MHz	9	2452 MHz
2400~2463.5IVID2	4	2427 MHz	10	2457 MHz
	5	2432 MHz	11	2462 MHz
	6	2437 MHz	-	-

3.5. Table for Test Modes

Preliminary tests were performed in different data rate to find the worst radiated emission. The data rate shown in the table below is the worst-case rate with respect to the specific test item. Investigation has been done on all the possible configurations for searching the worst cases. The following table is a list of the test modes shown in this test report.

Test Items	Mode	Data Rate	Channel	Chain
AC Power Line Conducted Emissions	Normal Link	-	-	-
Peak Output Power	802.11n HT20	MCS0	1/6/11	1
	802.11n HT40	MCS0	3/6/9	1
	11b/BPSK	1 Mbps	1/6/11	1
	11g/BPSK	6 Mbps	1/6/11	1
Radiated Emissions 9kHz~1GHz	Normal Link	-	-	-
Radiated Emissions 1GHz~10 th	802.11n HT20	MCS0	1/6/11	1
Harmonic	802.11n HT40	MCS0	3/6/9	1
	11b/BPSK	1 Mbps	1/6/11	1
	11g/BPSK	6 Mbps	1/6/11	1
Band Edge Emissions	802.11n HT20	MCS0	1/6/11	1
	802.11n HT40	MCS0	3/6/9	1
	11b/BPSK	1 Mbps	1/6/11	1
	11g/BPSK	6 Mbps	1/6/11	1

Based on original output power to test Radiated Emission and Band Edge Emission.

The following test modes were performed for all tests:

For Conducted Emission test:

After pretest, Configuration 1 (Diversity) and Configuration 2 (Fixed) have been evaluated to be the worst case, so the measurement will follow these same test configurations.

Report Format Version: Rev. 01 Page No. : 6 of 61 FCC ID: TX2-RTL8188EE Issued Date : Jun. 23, 2014

Mode 1. NGFF + PCIE + Diversity + PIFA antenna

Mode 2. NGFF + PCIE + Fixed + PIFA antenna

Mode 3. NGFF + USB + Fixed + PIFA antenna

Mode 1 is the worst case, so it was selected to record in this test report.

For Radiated Emission test below 1GHz test:

After pretest, Configuration 1 (Diversity) and Configuration 2 (Fixed) have been evaluated to be the worst case, so the measurement will follow these same test configurations.

Mode 1. NGFF + PCIE + Diversity + PIFA antenna

Mode 2. NGFF + PCIE + Fixed + PIFA antenna

Mode 3. NGFF + USB + Fixed + PIFA antenna

Mode 1 is the worst case, so it was selected to record in this test report.

For Radiated Emission test above 1GHz test:

After pretest, Configuration 1 (Diversity) has been evaluated to be the worst case, so the measurement will follow this same test configuration.

Mode 1. NGFF + PCIE + Diversity + PIFA antenna

3.6. Table for Testing Locations

Test Site Location					
Address:	s: No.8, Lane 724, Bo-ai St., Jhubei City, Hsinchu County 302, Taiwan, R.O.C.				
TEL:	886-3-6	656-9065			
FAX:	886-3-656-9085				
Test Site	No. Site Category Location FCC Reg. No. IC File No.				
03CH01	I-CB SAC Hsin Chu 262045 IC 4086D				
CO01-	СВ	Conduction	Hsin Chu	262045	IC 4086D

Open Area Test Site (OATS); Semi Anechoic Chamber (SAC).

3.7. Table for Class II Change

This product is an extension of original one reported under Sporton project number: FR211949 Below is the table for the change of the product with respect to the original one.

Modifications	Performance Checking
 It adds 3 NGFF main source type configurations for the device. There is no change in existing RF relevant 	AC Conducted Emissions Radiated Emissions Band Edge Emissions
portion	

Report Format Version: Rev. 01 Page No. : 7 of 61

FCC ID: TX2-RTL8188EE Issued Date : Jun. 23, 2014

3.8. Table for Supporting Units

For Test Site No: 03CH01-CB

For below 1GHz test:

Support Unit	Brand	Model	FCC ID
Notebook	DELL	E6220	DoC
Mouse	Logitech	M-U0026	DoC
Earphone	SHYARO CHI	MIC-04	N/A
AP Router	Planex	GW-AP54\$GX	KA220030603014-1
Test fixture	Realtek	PCIE Adapter	N/A

For above 1GHz test:

Support Unit	Brand	Model	FCC ID
Notebook	DELL	E6220	DoC
Test fixture	Realtek	PCIE Adapter	N/A

For Test Site No: CO01-CB

Support Unit	Brand	Model	FCC ID
Notebook	DELL	E6430	DoC
Mouse	Logitech	M-U0026	DoC
Earphone	SHYARO CHI	MIC-04	N/A
AP Router	Planex	GW-AP54SGX	KA220030603014-1
Test fixture	Realtek	PCIE Adapter	N/A

Report Format Version: Rev. 01
FCC ID: TX2-RTL8188EE

Page No. : 8 of 61 Issued Date : Jun. 23, 2014

3.9. Test Configurations

3.9.1. AC Power Line Conduction Emissions Test Configuration

Test Mode: Mode 1

Item	Connection	Shield	Length
1	Power Cable	No	1.8m
2	ANT Cable	Yes	0.3m
3	ANT Cable	Yes	0.3m
4	USB Cable	Yes	1.8m
5	Audio Cable	No	1.5m

Issued Date : Jun. 23, 2014

3.9.2. Radiation Emissions Test Configuration

Test Configuration: $30MHz\sim1GHz$ / Mode 1

Item	Connection	Shield	Length
1	Power Cable	No	1.8m
2	ANT Cable	Yes	0.3m
3	ANT Cable	Yes	0.3m
4	USB Cable	Yes	1.8m
5	Audio Cable	No	1.5m

Item	Connection	Shield	Length
1	Power Cable	No	1.8m
2	ANT Cable	Yes	0.3m
3	ANT Cable	Yes	0.3m

4. TEST RESULT

4.1. AC Power Line Conducted Emissions Measurement

4.1.1. Limit

For this product which is designed to be connected to the AC power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz shall not exceed below limits table.

Frequency (MHz)	QP Limit (dBuV)	AV Limit (dBuV)
0.15~0.5	66~56	56~46
0.5~5	56	46
5~30	60	50

4.1.2. Measuring Instruments and Setting

Please refer to section 5 of equipments list in this report. The following table is the setting of the receiver.

Receiver Parameters	Setting
Attenuation	10 dB
Start Frequency	0.15 MHz
Stop Frequency	30 MHz
IF Bandwidth	9 kHz

4.1.3. Test Procedures

- Configure the EUT according to ANSI C63.10. The EUT or host of EUT has to be placed 0.4 meter far
 from the conducting wall of the shielding room and at least 80 centimeters from any other
 grounded conducting surface.
- 2. Connect EUT or host of EUT to the power mains through a line impedance stabilization network (LISN).
- 3. All the support units are connected to the other LISNs. The LISN should provide 50uH/50ohms coupling impedance.
- 4. The frequency range from 150 kHz to 30 MHz was searched.
- 5. Set the test-receiver system to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- 6. The measurement has to be done between each power line and ground at the power terminal.

Report Format Version: Rev. 01 Page No. : 12 of 61

FCC ID: TX2-RTL8188EE Issued Date : Jun. 23, 2014

4.1.4. Test Setup Layout

LEGEND:

- (1) Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 to 40 cm long.
- (2) I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable may be terminated, if required, using the correct terminating impedance. The overall length shall not exceed 1 m.
- (3) EUT connected to one LISN. Unused LISN measuring port connectors shall be terminated in 50 Ω . LISN can be placed on top of, or immediately beneath, reference ground plane.
- (3.1) All other equipment powered from additional LISN(s).
- (3.2) Multiple outlet strip can be used for multiple power cords of non-EUT equipment.
- (3.3) LISN at least 80 cm from nearest part of EUT chassis.
- (4) Cables of hand-operated devices, such as keyboards, mice, etc., shall be placed as for normal use.
- (5) Non-EUT components of EUT system being tested.
- (6) Rear of EUT, including peripherals, shall all be aligned and flush with rear of tabletop.
- (7) Rear of tabletop shall be 40 cm removed from a vertical conducting plane that is bonded to the ground plane.

4.1.5. Test Deviation

There is no deviation with the original standard.

4.1.6. EUT Operation during Test

The EUT was placed on the test table and programmed in normal function.

4.1.7. Results of AC Power Line Conducted Emissions Measurement

Temperature	25℃	Humidity	52%
Test Engineer	Hank Yang	Phase	Line
Configuration	Normal Link	Test Mode	Mode 1

			0ver	Limit	LISN	Read	Cable		
	Freq	Level	Limit	Line	Factor	Level	Loss	Pol/Phase	Remark
	MHz	dBuV	dB	dBu∀	dB	dBuV	dВ		
1	0.15403	42.47	-23.31	65.78	0.08	42.23	0.16	LINE	QP
2	0.15403	22.33	-33.45	55.78	0.08	22.09	0.16	LINE	AVERAGE
3	0.18152	48.40	-16.01	64.42	0.08	48.16	0.16	LINE	QP
4	0.18152	29.53	-24.88	54.42	0.08	29.29	0.16	LINE	AVERAGE
5	0.24293	22.63	-29.37	52.00	0.08	22.38	0.17	LINE	AVERAGE
6	0.24293	42.62	-19.38	62.00	0.08	42.37	0.17	LINE	QP
7	4.092	29.89	-16.11	46.00	0.15	29.44	0.30	LINE	AVERAGE
8	4.092	38.55	-17.45	56.00	0.15	38.10	0.30	LINE	QP
9	5.277	39.27	-20.73	60.00	0.17	38.77	0.33	LINE	QP
10	5.277	32.32	-17.68	50.00	0.17	31.82	0.33	LINE	AVERAGE
11	23.636	33.17	-26.83	60.00	0.40	32.21	0.56	LINE	QP
12	23 636	28.25	-21.75	50.00	0.40	27.29	0.56	LINE	AVERAGE

Temperature	25℃	Humidity	52%
Test Engineer	Hank Yang	Phase	Neutral
Configuration	Normal Link	Test Mode	Mode 1

			0ver	Limit	LISN	Read	Cable			
	Freq	Level	Limit	Line	Factor	Level	Loss	Pol/Phase	Remark	
	Mkz	dBuV	dВ	dBuV	dВ	dBuV	dB			
1	0.18541	49.38	-14.86	64.24	0.08	49.14	0.16	NEUTRAL	QP	
2	0.18541	33.51	-20.73	54.24	0.08	33.27	0.16	NEUTRAL	AVERAGE	
3	0.24293	25.16	-26.83	52.00	0.08	24.91	0.17	NEUTRAL	AVERAGE	
4	0.24293	42.90	-19.09	62.00	0.08	42.65	0.17	NEUTRAL	QP	
5 @	0.62054	33.26	-12.74	46.00	0.09	32.98	0.19	NEUTRAL	AVERAGE	
6	0.62054	33.68	-22.32	56.00	0.09	33.40	0.19	NEUTRAL	QP	
7	3.661	37.51	-18.49	56.00	0.15	37.06	0.29	NEUTRAL	QP	
8	3.661	29.10	-16.90	46.00	0.15	28.65	0.29	NEUTRAL	AVERAGE	
9	4.092	39.42	-16.58	56.00	0.16	38.96	0.30	NEUTRAL	QP	
10	4.092	29.33	-16.67	46.00	0.16	28.87	0.30	NEUTRAL	AVERAGE	
11	14.750	35.00	-25.00	60.00	0.30	34.25	0.44	NEUTRAL	QP	
12	14.750	25.14	-24.86	50.00	0.30	24.39	0.44	NEUTRAL	AVERAGE	

Note:

Level = Read Level + LISN Factor + Cable Loss.

Page No. : 15 of 61 Issued Date : Jun. 23, 2014

4.2. Peak Output Power Measurement

4.2.1. Limit

For systems using digital modulation in the 2400-2483.5MHz, the limit for peak output power is 30dBm. The limited has to be reduced by the amount in dB that the gain of the antenna exceed 6dBi. In case of point-to-point operation, the limit has to be reduced by 1dB for every 3dB that the directional gain of the antenna exceeds 6dBi.

4.2.2. Measuring Instruments and Setting

Please refer to section 5 of equipments list in this report. The following table is the setting of the peak power meter.

Power Meter Parameter	Setting
Bandwidth	50MHz bandwidth is greater than the EUT emission bandwidth
Detector	Peak

4.2.3. Test Procedures

Spectrum Parameter	Setting			
RF Output Power Method	ANSI C63.10 clause 6.10.2.1 (a) power meter method			
RF Output Power Method	ANSI C63.10 clause 6.10.2.1 (b) channel integration method			
RF Output Power Method	ANSI C63.10 clause 6.10.3.1 Method 1 - spectral trace			
kr Oulpui rowei Meiliod	averaging			
DE Output Bower Method	ANSI C63.10 clause 6.10.3.2 Method 2 - zero-span mode with			
RF Output Power Method	trace averaging			

4.2.4. Test Setup Layout

4.2.5. Test Deviation

There is no deviation with the original standard.

4.2.6. EUT Operation during Test

The EUT was programmed to be in continuously transmitting mode.

Report Format Version: Rev. 01 Page No. : 16 of 61
FCC ID: TX2-RTL8188EE Issued Date : Jun. 23, 2014

: 17 of 61

4.2.7. Test Result of Peak Output Power

Temperature	25°C	Humidity	63%
Test Engineer	Sean Ku	Configurations	IEEE 802.11n
Test Date	Feb. 10, 2012		

Configuration IEEE 802.11n MCS0 20MHz / Chain 1

Channel	Frequency	Conducted Power (dBm)	Max. Limit (dBm)	Result
1	2412 MHz	24.92	30.00	Complies
6	2437 MHz	25.50	30.00	Complies
11	2462 MHz	24.52	30.00	Complies

Configuration IEEE 802.11n MCS0 40MHz / Chain 1

Channel	Frequency	Conducted Power (dBm)	Max. Limit (dBm)	Result
3	2422 MHz	24.52	30.00	Complies
6	2437 MHz	24.23	30.00	Complies
9	2452 MHz	23.82	30.00	Complies

Temperature	25 ℃	Humidity	63%
Test Engineer	Sean Ku	Configurations	IEEE 802.11b/g
Test Date	Feb. 10, 2012		

Configuration IEEE 802.11b / Chain 1

Channel	Frequency	Conducted Power (dBm)	Max. Limit (dBm)	Result
1	2412 MHz	21.21	30.00	Complies
6	2437 MHz	22.05	30.00	Complies
11	2462 MHz	22.24	30.00	Complies

Configuration IEEE 802.11g / Chain 1

Channel	Frequency	Conducted Power (dBm)	Max. Limit (dBm)	Result
1	2412 MHz	25.19	30.00	Complies
6	2437 MHz	25.62	30.00	Complies
11	2462 MHz	24.96	30.00	Complies

Page No. : 18 of 61 Issued Date : Jun. 23, 2014

4.3. Radiated Emissions Measurement

4.3.1. Limit

30dBc in any 100 kHz bandwidth outside the operating frequency band. In case the emission fall within the restricted band specified on 15.205(a), then the 15.209(a) limit in the table below has to be followed.

Frequencies	Field Strength	Measurement Distance
(MHz)	(micorvolts/meter)	(meters)
0.009~0.490	2400/F(kHz)	300
0.490~1.705	24000/F(kHz)	30
1.705~30.0	30	30
30~88	100	3
88~216	150	3
216~960	200	3
Above 960	500	3

4.3.2. Measuring Instruments and Setting

Please refer to section 5 of equipments list in this report. The following table is the setting of spectrum analyzer and receiver.

Spectrum Parameter	Setting
Attenuation	Auto
Start Frequency	1000 MHz
Stop Frequency	10th carrier harmonic
RBW / VBW (Emission in restricted band)	1MHz / 3MHz for Peak, 1MHz / 10Hz for Average
RBW / VBW (Emission in non-restricted band)	100kHz / 300kHz for peak

Receiver Parameter	Setting
Attenuation	Auto
Start ~ Stop Frequency	9kHz~150kHz / RBW 200Hz for QP
Start ~ Stop Frequency	150kHz~30MHz / RBW 9kHz for QP
Start ~ Stop Frequency	30MHz~1000MHz / RBW 120kHz for QP

Report Format Version: Rev. 01 Page No. : 19 of 61
FCC ID: TX2-RTL8188EE Issued Date : Jun. 23, 2014

4.3.3. Test Procedures

Configure the EUT according to ANSI C63.10. The EUT was placed on the top of the turntable 0.8
meter above ground. The phase center of the receiving antenna mounted on the top of a
height-variable antenna tower was placed 3 meters far away from the turntable.

- 2. Power on the EUT and all the supporting units. The turntable was rotated by 360 degrees to determine the position of the highest radiation.
- 3. The height of the broadband receiving antenna was varied between one meter and four meters above ground to find the maximum emissions field strength of both horizontal and vertical polarization.
- 4. For each suspected emissions, the antenna tower was scan (from 1 m to 4 m) and then the turntable was rotated (from 0 degree to 360 degrees) to find the maximum reading.
- 5. Set the test-receiver system to Peak or CISPR quasi-peak Detect Function with specified bandwidth under Maximum Hold Mode.
- 6. For emissions above 1GHz, use 1MHz VBW and 3MHz RBW for peak reading. Then 1MHz RBW and 10Hz VBW for average reading in spectrum analyzer.
- 7. When the radiated emissions limits are expressed in terms of the average value of the emissions, and pulsed operation is employed, the measurement field strength shall be determined by averaging over one complete pulse train, including blanking intervals, as long as the pulse train does not exceed 0.1 seconds. As an alternative (provided the transmitter operates for longer than 0.1 seconds) or in cases where the pulse train exceeds 0.1 seconds, the measured field strength shall be determined from the average absolute voltage during a 0.1 second interval during which the field strength is at its maximum value.
- 8. If the emissions level of the EUT in peak mode was 3 dB lower than the average limit specified, then testing will be stopped and peak values of EUT will be reported, otherwise, the emissions which do not have 3 dB margin will be repeated one by one using the quasi-peak method for below 1GHz.
- 9. For testing above 1GHz, the emissions level of the EUT in peak mode was lower than average limit (that means the emissions level in peak mode also complies with the limit in average mode), then testing will be stopped and peak values of EUT will be reported, otherwise, the emissions will be measured in average mode again and reported.
- 10. In case the emission is lower than 30MHz, loop antenna has to be used for measurement and the recorded data should be QP measured by receiver. High Low scan is not required in this case.

Report Format Version: Rev. 01 Page No. : 20 of 61 FCC ID: TX2-RTL8188EE Issued Date : Jun. 23, 2014

4.3.4. Test Setup Layout

For Radiated Emissions: 9kHz ~30MHz

For Radiated Emissions: 30MHz~1GHz

For Radiated Emissions: Above 1GHz

Issued Date : Jun. 23, 2014

4.3.5. Test Deviation

There is no deviation with the original standard.

4.3.6. EUT Operation during Test

The EUT was programmed to be in continuously transmitting mode.

Report Format Version: Rev. 01 Page No. : 22 of 61 FCC ID: TX2-RTL8188EE Issued Date : Jun. 23, 2014

4.3.7. Results of Radiated Emissions (9kHz~30MHz)

Temperature	25 ℃	Humidity	58%
Test Engineer	Kenneth Huang	Configurations	Normal Link
Test Date	May 06, 2014	Test Mode	Mode 1

Freq.	Level	Over Limit	Limit Line	Remark
(MHz)	(dBuV)	(dB)	(dBuV)	
-	-	-	-	See Note

Note:

The amplitude of spurious emissions which are attenuated by more than 20 dB below the permissible value has no need to be reported.

Distance extrapolation factor = 40 log (specific distance / test distance) (dB);

 $\label{eq:limits} \mbox{Limit line} = \mbox{specific limits (dBuV)} + \mbox{distance extrapolation factor}.$

Report Format Version: Rev. 01 Page No. : 23 of 61 FCC ID: TX2-RTL8188EE Issued Date : Jun. 23, 2014

4.3.8. Results of Radiated Emissions (30MHz~1GHz)

Temperature	25°C	Humidity	58%
Test Engineer	Kenneth Huang	Configurations	Normal Link
Test Mode	Mode 1		

Horizontal

	Freq	Level	Limit	Over Limit	Level					17Pos	A/Pos	Pol/Phase
	MHz	$\overline{d B u V / m}$	$\overline{dBuV/m}$	dB	dBu∀	dB	dB/m	dB		deg	Cm	
1 2 3 4 5	99.84 299.66 700.27	31.63 31.84	40.00 43.50 46.00 46.00	-8.37 -11.66 -12.51 -8.35	49.93 46.76 44.01	1.37 1.50 2.51 4.16	8.22 11.40 13.80 20.00	27.98 27.89 27.82 26.83 27.08 26.84	Peak Peak Peak Peak	0 0 0 0 0	400 400 400 400	HORIZONTAL HORIZONTAL HORIZONTAL HORIZONTAL HORIZONTAL HORIZONTAL

Report Format Version: Rev. 01 Page No. : 24 of 61 FCC ID: TX2-RTL8188EE Issued Date : Jun. 23, 2014

Vertical

	Freq	Level	Limit Line	Over Limit				Preamp Factor		T/Pos	A/Pos	Pol/Phase
	MHz	$\overline{dBuV/m}$	$\overline{\mathtt{dBuV/m}}$	dB	dBuV	dB	dB/m	dB		deg	Cm	
1 2 3 4 5 6	159.98 299.66 497.54 700.27	37.72	43.50 46.00 46.00	-10.38 -10.10 -12.02 -8.28	48.05 46.42 40.79 40.64	3.37 4.16	10.60 13.80 17.75 20.00	27.99 27.41 26.83 27.93 27.08 26.83	Peak Peak Peak Peak	0 0 0 0 0	100 100 100 100	VERTICAL VERTICAL VERTICAL VERTICAL VERTICAL VERTICAL

Note:

The amplitude of spurious emissions which are attenuated by more than 20 dB below the permissible value has no need to be reported.

Emission level (dBuV/m) = $20 \log Emission$ level (uV/m).

Corrected Reading: Antenna Factor + Cable Loss + Read Level - Preamp Factor = Level.

Page No. : 25 of 61

Issued Date : Jun. 23, 2014

4.3.9. Results for Radiated Emissions (1GHz \sim 10th Harmonic)

Temperature	25 ℃	Humidity	58%
Tost Engineer	Kannath Huana	Configurations	IEEE 802.11n MCS0 HT20 CH 1 /
Test Engineer	Kenneth Huang	Configurations	Chain 1
Test Date	Apr. 21, 2014	Test Mode	Mode 1

Horizontal

	Freq	Level		Over Limit					T/Pos	A/Pos	Pol/Phase
	MHz	dBuV/m	$\overline{\mathtt{dBuV/m}}$	- dB	dBuV	dB	dB/m	dВ	 deg	Cm	
1 2	4823.74 4823.80								236 236		HORIZONTAL HORIZONTAL

Vertical

	Freq	Level	Limi t Line					Preamp Factor		T/Pos		Pol/Phase
	MHz	$\overline{dBuV/m}$	$\overline{dBuV/m}$	- dB	dBuV	dB	dB/m	dB		deg	Cm	
1 2	4823.79 4823.83								Peak Average	12 12		VERTICAL VERTICAL

Report Format Version: Rev. 01 Page No. : 26 of 61 FCC ID: TX2-RTL8188EE Issued Date : Jun. 23, 2014

Temperature	25℃	Humidity	58%
Toot Engineer	Kannath Huana	Configurations	IEEE 802.11n MCS0 HT20 CH 6 /
Test Engineer	Kenneth Huang		Chain 1
Test Date	Apr. 21, 2014	Test Mode	Mode 1

Horizontal

	Freq	Level	Limi t Line	Over Limit	Read Level					T/Pos	A/Pos	Pol/Phase
	MHz	dBuV/m	$\overline{d \mathtt{BuV/m}}$	dB	dBuV	dB	dB/m	dВ		deg	Cm	
1 2 3 4	4873.59 4873.88 7310.08 7310.93	36.58 35.57	54.00 54.00	-17.42 -18.43	34.27 27.98	4.22 5.34	32.66 37.07		Average Average	192 193 300 300	100 100	HORIZONTAL HORIZONTAL HORIZONTAL HORIZONTAL

Vertical

	Freq	Level	Limit Line						Remark	T/Pos	A/Pos	Pol/Phase
	МНг	$\overline{dBuV/m}$	$\overline{dBuV/m}$	ďВ	dBuV	dB	dB/m	dB		deg	Cm	
1 2 3 4	4873.85 4873.92 7310.39 7311.92	43.95 48.85	74.00 74.00	-30.05 -25.15	41.64 41.26	4.22 5.34	32.66 37.07	34.57 34.82		32 32 173 173	100 100	VERTICAL VERTICAL VERTICAL VERTICAL

Page No. : 27 of 61 Issued Date : Jun. 23, 2014

Temperature	25℃	Humidity	58%
Toot Engineer	Kannath Huana	Configurations	IEEE 802.11n MCS0 HT20 CH 11 /
Test Engineer	Kenneth Huang	Configurations	Chain 1
Test Date	Apr. 21, 2014	Test Mode	Mode 1

Horizontal

	Freq	Level	Limit Line	Over Limit	Read Level					T/Pos	A/Pos	Pol/Phase
	MHz	$\overline{dBu\mathbb{V}/m}$	$\overline{dBuV/m}$	dB	dBuV	- dB	dB/m	dВ		deg	Cm	
1 2 3 4	4923.83 4924.03 7386.85 7386.90	46.51 48.31	74.00 54.00	-27.49 -5.69	44.07 40.61	4.23 5.36	32.76 37.18	34.55	Average	60 60 242 242	100 100	HORIZONTAL HORIZONTAL HORIZONTAL HORIZONTAL

Vertical

	Freq	Level	Limit Line	Over Limit				Preamp Factor	T/Pos	A/Pos	Pol/Phase
	MHz	$\overline{dBuV/m}$	$\overline{dBuV/m}$	ďВ	dBuV	dB	dB/m	dB	 deg	Cm	
1 2 3 4	4923.81 4924.49 7386.12 7386.96	43.28 49.12	74.00 74.00	-30.72 -24.88	40.84 41.42	4.23 5.36	32.76 37.18	34.55 34.84	43 43 152 152	100 100	VERTICAL VERTICAL VERTICAL VERTICAL

Page No. : 28 of 61 Issued Date : Jun. 23, 2014

Temperature	25 ℃	Humidity	58%
Toot Engineer	Kannath Uugna	Configurations	IEEE 802.11n MCS0 HT40 CH 3 /
Test Engineer	Kenneth Huang	Configurations	Chain 1
Test Date	Apr. 21, 2014	Test Mode	Mode 1

Horizontal

	Freq	Level	Limi t Line		Read Level					T/Pos	A/Pos	Pol/Phase
	MHz	dBuV/m	$\overline{\mathtt{dBuV/m}}$	- dB	dBuV	dB	dB/m	dB		deg	Cm	
1 2	4843.84 4843.85								Peak Average	305 305		HORIZONTAL HORIZONTAL

Vertical

	Freq	Level	Limi t Line		Read Level					T/Pos	A/Pos	Pol/Phase
	MHz	dBuV/m	$\overline{dBuV/m}$	ďВ	dBuV	dB	dB/m	dB		deg	Cm	
1	4843.71 4843.86								Peak Average	96 96		VERTICAL VERTICAL

Page No. : 29 of 61 Issued Date : Jun. 23, 2014

Temperature	25°C	Humidity	58%
Tost Engineer	Kenneth Huang	Configurations	IEEE 802.11n MCS0 HT40 CH 6 /
Test Engineer	kennein nuang	Configurations	Chain 1
Test Date	Apr. 21, 2014	Test Mode	Mode 1

Horizontal

	Freq	Level	Limi t Line		Read Level				Remark	T/Pos	A/Pos	Pol/Phase
	MHz	$\overline{dBuV/m}$	$\overline{\mathtt{dBuV/m}}$	ďВ	dBuV	dB	dB/m	dB		deg	Cm	
1 2 3 4	4871.24 4873.80 7311.00 7311.70	44.00 48.19	74.00 74.00	-30.00 -25.81	41.69 40.60	4.22 5.34	32.66 37.07	34.57 34.82		120 120 131 131	100 100	HORIZONTAL HORIZONTAL HORIZONTAL HORIZONTAL

Vertical

	Freq	Level	Limi t Line	Over Limit	Read Level					T/Pos		Pol/Phase
	MHz	$\overline{dBuV/m}$	$\overline{\mathtt{dBuV/m}}$	dB	dBu∇	dB	dB/m	dB		deg	Cm	
1 2 3 4	4873.84 4873.86 7310.70 7311.47	44.00 35.58	74.00 54.00	-30.00 -18.42	41.69 27.99	4.22 5.34	32.66 37.07	34.57	Average	118 118 138	100 100	VERTICAL VERTICAL VERTICAL

Page No. : 30 of 61 Issued Date : Jun. 23, 2014

Temperature	25°C	Humidity	58%
Tost Engineer	Kannath Huana	Configurations	IEEE 802.11n MCS0 HT40 CH 9 /
Test Engineer	Kenneth Huang	Configurations	Chain 1
Test Date	Apr. 22, 2014	Test Mode	Mode 1

Horizontal

	Freq	Level	Limit Line		Antenna		A/Pos	T/Pos	Pol/Phase
			dBu√/m	 dBu√	 dB/m	 		deg	
1 2	4903.74 4903.84					Peak Average	100 100		HORIZONTAL HORIZONTAL

Vertical

			Limit	over	Read	Cable	ntenna	Preamp		A/Pos	T/Pos
	Freq	Level	Line	Limit	Level	Loss	Factor	Factor	Remark		Pol/Phase
	MHz	dBu∀/m	dBu∀/m	dB	dBu∀	dB	dB/m	dB			deg
1	4903.85	43.20	54.00	-10.80	38.94	5.95	33.51	35.20	Average	100	287 VERTICAL
2	4903.85	49.13	74.00	-24.87	44.87	5.95	33.51	35.20	Peak	100	287 VERTICAL

Note:

The amplitude of spurious emissions which are attenuated by more than 20 dB below the permissible value has no need to be reported.

Emission level (dBuV/m) = $20 \log Emission level (uV/m)$.

Corrected Reading: Antenna Factor + Cable Loss + Read Level - Preamp Factor = Level.

Page No. : 31 of 61 Issued Date : Jun. 23, 2014

Temperature	25°C	Humidity	58%				
Test Engineer	Kenneth Huang	Configurations	IEEE 802.11b CH 1 / Chain 1				
Test Date	Apr. 21, 2014	Test Mode	Mode 1				

Horizontal

	Freq	Level	Limi t Line		Read Level					T/Pos		Pol/Phase
	MHz	dBuV/m	dBuV/m	ďВ	dBuV	dB	dB/m	dB		deg	Cm	
1 2	4823.83 4823.86								Peak Average	12 1 12 1		HORIZONTAL HORIZONTAL

Vertical

	Freq	Level	Limi t Line		Read Level					T/Pos		Pol/Phase
	MHz	$\overline{dBuV/m}$	$\overline{dBuV/m}$	dB	dBu∀	dB	dB/m	dB		deg	Cm	
1 2	4823.84 4823.86								Average Peak	91 91		VERTICAL VERTICAL

Page No. : 32 of 61 Issued Date : Jun. 23, 2014

Temperature	25°C	Humidity	58%			
Test Engineer	Kenneth Huang	Configurations	IEEE 802.11b CH 6 / Chain 1			
Test Date	Apr. 21, 2014	Test Mode	Mode 1			

Horizontal

	Freq	Level		Over Limit						T/Pos	A/Pos	Pol/Phase
	MHz	dBuV/m	$\overline{d B u V/m}$	dB	dBuV	dB	dB/m	dB		deg	Cm	
1 2 3 4	4873.74 4873.87 7311.53 7311.87	38.32 37.50	54.00 54.00	-15.68 -16.50	36.01 29.92	4.22 5.34	32.66 37.07		Average Average	60 60 272 272	108 100	HORIZONTAL HORIZONTAL HORIZONTAL HORIZONTAL

Vertical

	Freq	Level	Limit Line	Over Limit	Read Level					T/Pos	A/Pos	Pol/Phase
	MHz	dBuV/m	$\overline{dBuV/m}$	ďВ	dBuV	dB	dB/m	дB		deg	Cm	
1 2 3 4	4873.83 4873.86 7311.00 7311.63	41.95 50.65	54.00 74.00	-12.05 -23.35	39.64 43.06	4.22 5.34	37.07	34.57 34.82	Average Peak	255 255 177 177	108 100	VERTICAL VERTICAL VERTICAL VERTICAL

Page No. : 33 of 61

Issued Date : Jun. 23, 2014

Temperature	25°C	Humidity	58%
Test Engineer	Kenneth Huang	Configurations	IEEE 802.11b CH 11 / Chain 1
Test Date	Apr. 22, 2014	Test Mode	Mode 1

Horizontal

	Freq	Level			Read Level					A/Pos	T/Pos	Pol/Phase
	MHz	dBu∀/m	dBu\√/m	dB	dBu∨	dB	dB/m	dB		cm	deg	
1	4923.70	50.81	74.00	-23.19	46.46	5.97	33.58	35.20	Peak	101	93	HORIZONTAL
2	4923.84	45.42	54.00	-8.58	41.07	5.97	33.58	35.20	Average	101	93	HORIZONTAL
3	7386.01	50.41	74.00	-23.59	42.09	7.17	36.61	35.46	Peak	120	318	HORIZONTAL
4	7386.02	37.88	54.00	-16.12	29.56	7.17	36.61	35.46	Average	120	318	HORIZONTAL

Vertical

	Freq	Level		0∨er Limit					Remark	A/Pos	T/Pos Pol/Phase
	MHz	dBu∀/m	dBu∀/m	dB	dBu∨	dB	dB/m	dB		cm	deg
1	4923.84	51.47	54.00	-2.53	47.12	5.97	33.58	35.20	Average	100	282 VERTICAL
2	4923.88	54.40	74.00	-19.60	50.05	5.97	33.58	35.20	Peak	100	282 VERTICAL
3	7384.60	53.86	74.00	-20.14	45.54	7.17	36.61	35.46	Peak	171	186 VERTICAL
4	7386,48	45.06	54.00	-8.94	36.74	7.17	36.61	35.46	Average	171	186 VERTICAL

Page No. : 34 of 61 Issued Date : Jun. 23, 2014

Temperature	25°C	Humidity	58%
Test Engineer	Kenneth Huang	Configurations	IEEE 802.11g CH 1 / Chain 1
Test Date	Apr. 21, 2014	Test Mode	Mode 1

Horizontal

	Freq	Level	Limit Line		Read Level					T/Pos	A/Pos	Pol/Phase
	MHz	dBuV/m	$\overline{\mathtt{dBuV/m}}$	- dB	dBuV	dB	dB/m	dВ		deg	Cm	
1 2	4823.54 4823.85								Peak Average	285 286		HORIZONTAL HORIZONTAL

Vertical

	Freq	Level	Limi t Line		Read Level					T/Pos		Pol/Phase
	MHz	$\overline{dBuV/m}$	$\overline{dBuV/m}$	₫B	dBu∀	- dB	dB/m	dB		deg	Cm	
1 2	4823.87 4824.15								Average Peak	157 157		VERTICAL VERTICAL

Page No. : 35 of 61 Issued Date : Jun. 23, 2014

Temperature	25°C	Humidity	58%
Test Engineer	Kenneth Huang	Configurations	IEEE 802.11g CH 6 / Chain 1
Test Date	Apr. 21, 2014	Test Mode	Mode 1

Horizontal

	Freq	Level	Limit Line		Read Level				Remark	T/Pos	A/Pos	Pol/Phase
	MHz	dBuV/m	$\overline{dBuV/m}$	ďВ	dBuV	dB	dB/m	dB		deg	Cm	
1 2 3 4	7310.83	37.48 48.95	54.00 74.00	-16.52 -25.05	35.17 41.36	4.22 5.34	32.66 37.07	34.57 34.82	Average	317 317 193 193	100 100	HORIZONTAL HORIZONTAL HORIZONTAL HORIZONTAL

Vertical

	Freq	Level	Limi t Line		Read Level					T/Pos	A/Pos	Pol/Phase
	MHz	$\overline{dBu\mathbb{V}/m}$	$\overline{\mathtt{dBuV/m}}$	dB	dBuV	——dB	dB/m	dB		deg	Cm	
1 2 3 4	4874.11 7303.53	48.34 35.64		-25.66 -18.36	46.03 28.05	4.22 5.34	32.66 37.07	34.57	Average	94 94 102 102	100 100	VERTICAL VERTICAL VERTICAL VERTICAL

Page No. : 36 of 61 Issued Date : Jun. 23, 2014

Temperature	25°C	Humidity	58%
Test Engineer	Kenneth Huang	Configurations	IEEE 802.11g CH 11 / Chain 1
Test Date	Apr. 21, 2014	Test Mode	Mode 1

Horizontal

	Freq	Level	Limi t Line	Over Limit	Read Level					T/Pos	A/Pos	Pol/Phase
-	MHz	dBuV/m	$\overline{dBu\mathbb{V}/m}$	dB	dBu∇	dB	dB/m	dB		deg	Cm	
1 2 3 4	4923.83 4923.90 7386.36 7386.46	47.06 36.15	74.00 54.00	-17.85	44.62 28.45	4.23 5.36	32.76 37.18	34.55	Average	284 284 217 217	100 100	HORIZONTAL HORIZONTAL HORIZONTAL HORIZONTAL

Vertical

	Freq	Level	Limi t Line	Over Limit					T/Pos	A/Pos	Pol/Phase
	MHz	$\overline{dBuV/m}$	$\overline{\mathtt{dBuV/m}}$	ďВ	dBuV	dB	dB/m	dB	 deg	Cm	
1 2 3 4	4923.84 4924.69 7385.37 7385.42	49.89 51.12	74.00 74.00	-24.11 -22.88	47.45 43.42	4.23 5.36	32.76 37.18	34.55 34.84	93 93 132 132	171 100	VERTICAL VERTICAL VERTICAL VERTICAL

Note:

The amplitude of spurious emissions that are attenuated by more than 20dB below the permissible value has no need to be reported.

Emission level (dBuV/m) = $20 \log Emission level (uV/m)$.

Corrected Reading: Antenna Factor + Cable Loss + Read Level - Preamp Factor = Level.

Page No. : 37 of 61 Issued Date : Jun. 23, 2014

4.4. Emissions Measurement

4.4.1. Limit

30dBc in any 100 kHz bandwidth outside the operating frequency band. In case the emission fall within the restricted band specified on 15.205(a), then the 15.209(a) limit in the table below has to be followed.

Frequencies	Field Strength	Measurement Distance
·		
(MHz)	(micorvolts/meter)	(meters)
0.009~0.490	2400/F(kHz)	300
0.490~1.705	24000/F(kHz)	30
1.705~30.0	30	30
30~88	100	3
88~216	150	3
216~960	200	3
Above 960	500	3

4.4.2. Measuring Instruments and Setting

Please refer to section 5 of equipments list in this report. The following table is the setting of the spectrum analyzer.

Spectrum Parameter	Setting
Attenuation	Auto
Span Frequency	100 MHz
RBW / VBW (Emission in restricted band)	1MHz / 3MHz for Peak, 1MHz / 10Hz for Average
RBW / VBW (Emission in non-restricted band)	100 kHz / 300 kHz for Peak

4.4.3. Test Procedures

For Radiated band edges Measurement:

1. The test procedure is the same as section 4.3.3, only the frequency range investigated is limited to 100MHz around band edges.

For Radiated Out of Band Emission Measurement:

1. The radiated emission test is performed on each TX port of operating mode without summing or adding 10log (N) since the limit is relative emission limit.

Only worst data of each operating mode is presented.

4.4.4. Test Setup Layout

For Radiated band edges Measurement:

This test setup layout is the same as that shown in section 4.3.4.

For Radiated Out of Band Emission Measurement:

This test setup layout is the same as that shown in section 4.3.4.

 Report Format Version: Rev. 01
 Page No.
 : 38 of 61

 FCC ID: TX2-RTL8188EE
 Issued Date
 : Jun. 23, 2014

4.4.5. Test Deviation

There is no deviation with the original standard.

4.4.6. EUT Operation during Test

The EUT was programmed to be in continuously transmitting mode.

Report Format Version: Rev. 01 Page No. : 39 of 61 FCC ID: TX2-RTL8188EE Issued Date : Jun. 23, 2014

4.4.7. Test Result of Band Edge and Fundamental Emissions

Temperature	25°C	Humidity	58%
Toot Engineer	Kannath Huana	Configurations	IEEE 802.11n MC\$0 HT20 CH 1, 6, 11 /
Test Engineer	Kenneth Huang	Configurations	Chain 1
Test Date	Apr. 21, 2014	Test Mode	Mode 1

Channel 1

	Freq	Level	Limi t Line	Over Limit				Preamp Factor	Remark	T/Pos	A/Pos	Pol/Phase
-	MHz	dBuV/m	$\overline{\mathtt{dBuV/m}}$	dB	dBuV	dB	dB/m	дB		deg	Cm	
1 2 3 4	2390.00 2390.00 2408.83 2420.00	52.04 108.41		-5.73 -1.96			27.92 27.92 27.90 27.88	0.00	Peak Average Peak Average	84 84 84	148 148	HORIZONTAL HORIZONTAL HORIZONTAL HORIZONTAL

Item 3, 4 are the fundamental frequency at 2412 MHz.

Channel 6

	Freq	Level	Limi t Line	Over Limit	Read Level		Antenna Factor			T/Pos	A/Pos	Pol/Phase
-	MHz	dBuV/m	$\overline{dBuV/m}$	₫B	dBuV	dB	dB/m	dB		deg	Cm	
1 2 3 4 5	2355.20 2362.40 2444.33 2445.00 2483.50 2484.30		54.00	-15.18 -8.19 -9.33 -14.30	27.96 14.95 79.24 69.62 13.89 28.92	2.89 2.89 2.94 2.94 2.96	27.97 27.86 27.86 27.82	0.00 0.00 0.00 0.00	Peak Average Peak Average Average Peak	83 83 83 83 83	144 144 144 144	HORIZONTAL HORIZONTAL HORIZONTAL HORIZONTAL HORIZONTAL HORIZONTAL

Item 3, 4 are the fundamental frequency at 2437 MHz.

Channel 11

	Freq	Level	Limit Line		Read Level					T/Pos	A/Pos	Pol/Phase
	MHz	dBuV/m	$\overline{d B u V/m}$	₫B	dBu∀	dB	dB/m	dB		deg	Cm	
1 2 3 4	2459.00 2463.50 2483.50 2485.90	98.63 52.19				2.95 2.96	27.82	0.00	Peak Average Average Peak	84 84 84 84	148 148	HORIZONTAL HORIZONTAL HORIZONTAL HORIZONTAL

Item 1, 2 are the fundamental frequency at 2462 MHz.

Temperature	25 ℃	Humidity	58%
Test Engineer	er Kenneth Huang Configurations		IEEE 802.11n MCS0 HT40 CH 3, 6, 9 /
Test Engineer	kennein nuang	Configurations	Chain 1
Test Date	Apr. 21, 2014	Test Mode	Mode 1

Channel 3

	Freq	Level	Limi t Line		Read Level					T/Pos	A/Pos	Pol/Phase
	MHz	dBuV/m	$\overline{d B u \mathbb{V}/m}$	dB	dBu∇	dB	dB/m	dB		deg	Cm	
1 2 3 4	2387.60 2390.00 2426.33 2432.33	52.40 95.25		-7.65 -1.60		2.91 2.93	27.92 27.92 27.88 27.88	0.00	Peak Average Average Peak	86 86 86	148 148	HORIZONTAL HORIZONTAL HORIZONTAL HORIZONTAL

Item 3, 4 are the fundamental frequency at 2422 MHz.

Channel 6

	Freq	Level	Limit Line	Over Limit	Read Level		Antenna Factor		Remark	T/Pos	A/Pos	Pol/Phase
-	MHz	dBuV/m	$\overline{dBuV/m}$	dB	dBuV	dB	dB/m	dB		deg	Cm	
1 2 3 4 5	2389.60 2390.00 2446.33 2447.33 2483.50 2485.50	61.48 46.13 95.62 105.62 50.15 65.59	74.00 54.00 54.00 74.00	-12.52 -7.87	30.65 15.30 64.82 74.82 19.37 34.81	2.91 2.91 2.94 2.94 2.96 2.96	27.92 27.92 27.86 27.86 27.82 27.82	0.00 0.00 0.00 0.00	Peak Average Average Peak Average Peak	85 85 85 85 85	144 144 144 144	HORIZONTAL HORIZONTAL HORIZONTAL HORIZONTAL HORIZONTAL HORIZONTAL

Item 3, 4 are the fundamental frequency at 2437 MHz.

Channel 9

	Freq	Level	Limi t Line		Read Level					T/Pos	A/Pos	Pol/Phase
	MHz	dBuV/m	$\overline{\mathtt{dBuV/m}}$	dB	dBuV	dB	dB/m	dB		deg	Cm	
1 2 3 4	2461.33 2462.67 2483.50 2485.90	104.79 52.34	54.00 74.00		63.88 74.00 21.56 36.64	2.95 2.96	27.84 27.84 27.82 27.82	0.00 0.00	Average Peak Average Peak	82 82 82 82	146 146	HORIZONTAL HORIZONTAL HORIZONTAL HORIZONTAL

Item 1, 2 are the fundamental frequency at 2452 MHz.

Note:

Emission level (dBuV/m) = $20 \log Emission$ level (uV/m).

Corrected Reading: Antenna Factor + Cable Loss + Read Level - Preamp Factor = Level.

Temperature	25 ℃	Humidity	58%
Test Engineer	Kenneth Huang	Configurations	IEEE 802.11b CH 1, 6, 11 / Chain 1
Test Date	Apr. 22, 2014	Test Mode	Mode 1

Channel 1

			Limit	Over	Read	Cable	Antenna	Preamp		A/Pos	T/Pos	
	Freq	Level	Line	Limit	Level	Loss	Factor	Factor	Remark			Pol/Phase
-	MH=	dB+0//m	dBu∀/m	dB	dBu∖∕	——dB	dB/m	dB			doa	
	MHZ	abuv/m	abuv/m	ab	abuv	аь	OD/III	aв		cm	deg	
1	2385.60	52.04	54.00	-1.96	19.90	4.09	28.05	0.00	Average	150	260	HORIZONTAL
2	2386.00	60.64	74.00	-13.36	28.50	4.09	28.05	0.00	Peak	150	260	HORIZONTAL
3	2411.00	112.79			80.59	4.11	28.09	0.00	Peak	150	260	HORIZONTAL
4	2411.20	108.86			76.66	4.11	28.09	0.00	Average	150	260	HORIZONTAL

Item 3, 4 are the fundamental frequency at 2412 MHz.

Channel 6

	Freq	Level	Limit Line	0ver Limit			Antenna Factor			A/Pos	T/Pos	Pol/Phase
	MHz	dBu√/m	$\overline{dBu \forall /m}$	dB	dBu∨	dB	dB/m	dB			deg	
1	2359.20	48.52	54.00	-5.48	16.48	4.07	27.97	0.00	Average	147	262	HORIZONTAL
2	2359.20	58.73	74.00	-15.27	26.69	4.07	27.97	0.00	Peak	147	262	HORIZONTAL
3	2437.80	114.68			82.37	4.13	28.18	0.00	Peak	147	262	HORIZONTAL
4	2438.60	110.60			78.29	4.13	28.18	0.00	Average	147	262	HORIZONTAL
5	2484.70	46.20	54.00	-7.80	13.78	4.16	28.26	0.00	Average	147	262	HORIZONTAL
6	2484.70	57.44	74.00	-16.56	25.02	4.16	28.26	0.00	Peak	147	262	HORIZONTAL

Item 3, 4 are the fundamental frequency at 2437 MHz.

Channel 11

			Limit	0∨er	Read	Cable	Antenna	Preamp		A/Pos	T/Pos	
	Freq	Level	Line	Limit	Level	Loss	Factor	Factor	Remark			Pol/Phase
	MHz	dBu∀/m	dBu∀/m	dB	dBu√	dB	dB/m	dB			deg	
1	2463.00	112.13			79.77	4.14	28.22	0.00	Peak	146	265	HORIZONTAL
2	2463.60	108.24			75.88	4.14	28.22	0.00	Average	146	265	HORIZONTAL
3	2487.90	62.05	74.00	-11.95	29.58	4.17	28.30	0.00	Peak	146	265	HORIZONTAL
4	2488.10	53.41	54.00	-0.59	20.94	4.17	28.30	0.00	Average	146	265	HORIZONTAL

Item 1, 2 are the fundamental frequency at 2462 MHz.

Temperature	25 ℃	Humidity	58%
Test Engineer	Kenneth Huang	Configurations	IEEE 802.11g CH 1, 6, 11 / Chain 1
Test Date	Apr. 21, 2014	Test Mode	Mode 1

Channel 1

	Freq	Level	Limi t Line		Read Level				Remark	T/Pos	A/Pos	Pol/Phase
	MHz	dBuV/m	$\overline{\mathtt{dBuV/m}}$	dВ	dBuV	dB	dB/m	дB		deg	Cm	
1 2 3 4	2389.80 2390.00 2413.50 2419.33	51.77 108.98	54.00			2.91 2.92	27.92 27.92 27.90 27.90	0.00	Peak Average Peak Average	80 80 80 80	146 146	HORIZONTAL HORIZONTAL HORIZONTAL HORIZONTAL

Item 3, 4 are the fundamental frequency at 2412 MHz.

Channel 6

	Freq	Level	Limit Line	Over Limit	Read Level		Antenna Factor			T/Pos	A/Pos	Pol/Phase
	MHz	dBuV/m	$\overline{dBuV/m}$	dB	dBuV	dB	dB/m	dB		deg	Cm	
1 2 3 4 5	2356.80 2358.80 2438.33 2444.33 2483.90 2488.70	46.58 58.58 108.84 99.33 43.51 54.92	54.00	-7.42 -15.42 -10.49 -19.08	15.72 27.72 78.04 68.53 12.73 24.15	2.89 2.89 2.94 2.94 2.96 2.97	27.97 27.86 27.86	0.00 0.00 0.00 0.00	Average Peak Peak Average Average Peak	79 79 79 79 79 79	146 146 146 146	HORIZONTAL HORIZONTAL HORIZONTAL HORIZONTAL HORIZONTAL HORIZONTAL

Item 3, 4 are the fundamental frequency at 2437 MHz.

Channel 11

	Freq	Level	Limit Line		Read Level					T/Pos	A/Pos	Pol/Phase
	MHz	dBuV/m	$\overline{d B u V/m}$	₫B	dBuV	₫B	dB/m	dB		deg	Cm	
1 2 3	2463.33 2464.00 2483.50 2483.70	98.93	54.00 74.00	-2.02 -0.54	77.80 68.14 21.20 42.68	2.95	27.84 27.84 27.82 27.82	0.00 0.00	Peak Average Average Peak	80 80 80 80	144 144	HORIZONTAL HORIZONTAL HORIZONTAL HORIZONTAL

Item 1, 2 are the fundamental frequency at 2462 MHz.

Note:

Emission level (dBuV/m) = $20 \log Emission$ level (uV/m).

Corrected Reading: Antenna Factor + Cable Loss + Read Level - Preamp Factor = Level.

For Emission not in Restricted Band

Plot on Configuration IEEE 802.11n MCS0 HT20 / Reference Level

Date: 22.APR.2014 22:39:40

Plot on Configuration IEEE 802.11n MCS0 HT20 / CH 1 / 30MHz~2400MHz (down 30dBc)

Date: 22.APR.2014 22:40:36

Plot on Configuration IEEE 802.11n MCS0 HT20 / CH 1 / 2500MHz~26500MHz (down 30dBc)

Date: 22.APR.2014 22:41:36

Plot on Configuration IEEE 802.11n MCS0 HT20 / CH 11 / 30MHz~2400MHz (down 30dBc)

Date: 22.APR.2014 22:42:56

Plot on Configuration IEEE 802.11n MCS0 HT20 / CH 11 / 2500MHz~26500MHz (down 30dBc)

Date: 22.APR.2014 22:43:40

Page No. : 46 of 61 Issued Date : Jun. 23, 2014

Plot on Configuration IEEE 802.11n MCS0 HT40 / Reference Level

Date: 22.APR.2014 22:23:35

Plot on Configuration IEEE 802.11n MCS0 HT40 / CH 3 / 30MHz~2400MHz (down 30dBc)

Date: 22.APR.2014 22:34:21

Plot on Configuration IEEE 802.11n MCS0 HT40 / CH 3 / 2500MHz~26500MHz (down 30dBc)

Date: 22.APR.2014 22:35:45

Plot on Configuration IEEE 802.11n MCS0 HT40 / CH 9 / 30MHz~2400MHz (down 30dBc)

Date: 22.APR.2014 22:37:11

Plot on Configuration IEEE 802.11n MCS0 HT40 / CH 9 / 2500MHz~26500MHz (down 30dBc)

Date: 22.APR.2014 22:37:49

Plot on Configuration IEEE 802.11b / Reference Level

Date: 22.APR.2014 22:54:02

Plot on Configuration IEEE 802.11b / CH 1 / 30MHz~2400MHz (down 30dBc)

Date: 22.APR.2014 22:56:12

Page No. : 50 of 61 Issued Date : Jun. 23, 2014

Plot on Configuration IEEE 802.11b / CH 1 / 2500MHz~26500MHz (down 30dBc)

Date: 22.APR.2014 22:57:01

Plot on Configuration IEEE 802.11b / CH 11 / 30MHz~2400MHz (down 30dBc)

Date: 22.APR.2014 22:58:15

Plot on Configuration IEEE 802.11b / CH 11 / 2500MHz \sim 26500MHz (down 30dBc)

Date: 22.APR.2014 22:59:09

Plot on Configuration IEEE 802.11g / Reference Level

Date: 22.APR.2014 22:45:47

Plot on Configuration IEEE 802.11g / CH 1 / 30MHz~2400MHz (down 30dBc)

Date: 22.APR.2014 22:47:55

Plot on Configuration IEEE 802.11g / CH 1 / 2500MHz~26500MHz (down 30dBc)

Date: 22.APR.2014 22:48:44

Plot on Configuration IEEE 802.11g / CH 11 / 30MHz~2400MHz (down 30dBc)

Date: 22.APR.2014 22:50:00

Plot on Configuration IEEE 802.11g / CH 11 / 2500MHz \sim 26500MHz (down 30dBc)

Date: 22.APR.2014 22:50:53

Page No. : 55 of 61 Issued Date : Jun. 23, 2014

4.5. Antenna Requirements

4.5.1. Limit

Except for special regulations, the Low-power Radio-frequency Devices must not be equipped with any jacket for installing an antenna with extension cable. An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this Section. The manufacturer may design the unit so that the user can replace a broken antenna, but the use of a standard antenna jack or electrical connector is prohibited. Further, this requirement does not apply to intentional radiators that must be professionally installed.

4.5.2. Antenna Connector Construction

Please refer to section 3.3 in this test report; antenna connector complied with the requirements.

Report Format Version: Rev. 01 Page No. : 56 of 61
FCC ID: TX2-RTL8188EE Issued Date : Jun. 23, 2014

5. LIST OF MEASURING EQUIPMENTS

Instrument	Manufacturer	Model No.	Serial No.	Characteristics	Calibration Date	Remark
EMI Test Receiver	R&S	ESCS 30	100355	9kHz ~ 2.75 GHz	Apr. 23, 2014	Conduction (CO01-CB)
LISN	F.C.C.	FCC-LISN-50-16-2	04083	150kHz ~ 100 MHz	Nov. 23, 2013	Conduction (CO01-CB)
LISN	Schwarzbeck	NSLK 8127	8127478	9kHz ~ 30MHz	Nov. 11, 2013	Conduction (CO01-CB)
COND Cable	Woken	Cable	01	150kHz ~ 30 MHz	Dec. 04, 2013	Conduction (CO01-CB)
Software	Audix	E3	5.410e	-	N.C.R.	Conduction (CO01-CB)
BILOG ANTENNA	Teseq GmbH	CBL 6112D	35236	30MHz ~ 2GHz	Nov. 29, 2013	Radiation (03CH01-CB)
Loop Antenna	Teseq	HLA 6120	24155	9kHz - 30 MHz	Nov. 05, 2012*	Radiation (03CH01-CB)
Horn Antenna	EMCO	3115	00075790	750MHz~18GHz	Nov. 01, 2013	Radiation (03CH01-CB)
Horn Antenna	SCHWARZBEAK	BBHA 9170	BBHA9170252	15GHz ~ 40GHz	Dec. 17, 2013	Radiation (03CH01-CB)
Pre-Amplifier	Agilent	8447D	2944A10991	0.1MHz ~ 1.3GHz	Nov. 12, 2013	Radiation (03CH01-CB)
Pre-Amplifier	Agilent	8449B	3008A02310	1GHz ~ 26.5GHz	Dec. 16, 2013	Radiation (03CH01-CB)
Pre-Amplifier	WM	TF-130N-R1	923365	26GHz ~ 40GHz	Oct. 23, 2013	Radiation (03CH01-CB)
Spectrum analyzer	R&S	FSP40	100019	9kHz~40GHz	Dec. 02, 2013	Radiation (03CH01-CB)
EMI Test Receiver	Agilent	N9038A	MY52260123	9kHz ~ 8GHz	Dec. 12, 2013	Radiation (03CH01-CB)
Turn Table	INN CO	CO 2000	N/A	0 ~ 360 degree	N.C.R	Radiation (03CH01-CB)
Antenna Mast	INN CO	CO2000	N/A	1 m - 4 m	N.C.R	Radiation (03CH01-CB)
RF Cable-low	Woken	Low Cable-1	N/A	30 MHz - 1 GHz	Nov. 17, 2013	Radiation (03CH01-CB)
RF Cable-high	Woken	High Cable-3	N/A	1 GHz - 40 GHz	Nov. 17, 2013	Radiation (03CH01-CB)
RF Cable-high	Woken	High Cable-4	N/A	1 GHz - 40 GHz	Nov. 17, 2013	Radiation (03CH01-CB)
Signal analyzer	R&S	FSV40	100979	9kHz~40GHz	Sep. 26, 2011	Conducted (TH01-CB)
Thermo-Hygro Meter	N/A	HC 520	#1	15~70 degree	Nov. 02, 2011	Conducted (TH01-CB)
RF Power Divider	HP	11636A	00306	2GHz ~ 18GHz	N/A	Conducted (TH01-CB)
RF Power Splitter	Anaren	44100	1839	2GHz ~ 18GHz	N/A	Conducted (TH01-CB)
RF Power Splitter	Anaren	42100	17930	2GHz ~ 18GHz	N/A	Conducted (TH01-CB)
RF Cable-high	Woken	High Cable-7	-	1 GHz – 26.5 GHz	Nov. 17, 2011	Conducted (TH01-CB)
RF Cable-high	Woken	High Cable-8	-	1 GHz – 26.5 GHz	Nov. 17, 2011	Conducted (TH01-CB)

Report Format Version: Rev. 01 FCC ID: TX2-RTL8188EE

Page No. : 57 of 61 Issued Date : Jun. 23, 2014

Instrument	Manufacturer	Model No.	Serial No.	Characteristics	Calibration Date	Remark
RF Cable-high	Woken	High Cable-9	•	1 GHz – 26.5 GHz	Nov. 17, 2011	Conducted (TH01-CB)
RF Cable-high	Woken	High Cable-10	-	1 GHz – 26.5 GHz	Nov. 17, 2011	Conducted (TH01-CB)
RF Cable-high	Woken	High Cable-11	-	1 GHz – 26.5 GHz	Nov. 17, 2011	Conducted (TH01-CB)
RF Cable-high	Woken	High Cable-12	-	1 GHz – 26.5 GHz	Nov. 17, 2011	Conducted (TH01-CB)
RF Cable-high	Woken	High Cable-13	-	1 GHz – 26.5 GHz	Nov. 17, 2011	Conducted (TH01-CB)
Power Sensor	Anritsu	MA2411B	0917223	300MHz~40GHz	Nov. 01, 2011	Conducted (TH01-CB)
Power Meter	Anritsu	ML2495A	1035008	300MHz~40GHz	Nov. 01, 2011	Conducted (TH01-CB)

Note: Calibration Interval of instruments listed above is one year.

N.C.R. means Non-Calibration required.

Page No. : 58 of 61 Issued Date : Jun. 23, 2014

[&]quot;*" Calibration Interval of instruments listed above is two years.

6. MEASUREMENT UNCERTAINTY

<u>Uncertainty of Conducted Emission Measurement (150kHz ~ 30MHz)</u>

	Un	certaint	by of x_i	
Contribution	Value	Unit	Probability Distribution k	$u(x_i)$
Receiver reading	0.026	dB	normal(k=2)	0.013
Cable loss	0.002	dB	normal(k=2)	0.001
AMN/LISN specification	1.200	dB	normal(k=2)	0.600
Mismatch Receiver VSWR 1 = AMN/LISN VSWR 2=	-0.080	dB	U-shaped	0.060
Combined standard uncertainty Uc(y)				1.2
Measuring uncertainty for a level of confidence	of 95% U	=2Uc(y	r)	2.4

<u>Uncertainty of Radiated Emission Measurement (30MHz ~ 1,000MHz)</u>

	Un	certain	by of x_i	
Contribution	Value	Unit	Probability Distribution k	$u(x_i)$
Receiver reading	±0.173	dB	k=1	0.086
Cable loss	±0.174	dB	k=2	0.087
Antenna gain	±0.169	dB	k=2	0.084
Site imperfection	±0.433	dB	Triangular	0.214
Pre-amplifier gain	±0.366	dB	k=2	0.183
Transmitter antenna	±1.200	dB	Rectangular	0.600
Signal generator	±0.461	dB	Rectangular	0.231
Mismatch	±0.080	dB	U-shape	0.040
Spectrum analyzer	±0.500	dB	Rectangular	0.250
Combined standard uncertainty Uc(y)		•		1.778
Measuring uncertainty for a level of confidence	of 95% U	=2Uc(y	')	3.555

 Report Format Version: Rev. 01
 Page No.
 : 59 of 61

 FCC ID: TX2-RTL8188EE
 Issued Date
 : Jun. 23, 2014

<u>Uncertainty of Radiated Emission Measurement (1GHz ~ 18GHz)</u>

	Un	certain	\mathbf{ty} of x_i	
Contribution	Value	Unit	Probability Distribution k	$u(x_i)$
Receiver reading	±0.191	dB	k=1	0.095
Cable loss	±0.169	dB	k=2	0.084
Antenna gain	±0.191	dB	k=2	0.096
Site imperfection	±0.582	dB	Triangular	0.291
Pre-amplifier gain	±0.304	dB	k=2	0.152
Transmitter antenna	±1.200	dB	Rectangular	0.600
Signal generator	±0.461	dB	Rectangular	0.231
Mismatch	±0.080	dB	U-shape	0.040
Spectrum analyzer	±0.500	dB	Rectangular	0.250
Combined standard uncertainty Uc(y)		1.839		
Measuring uncertainty for a level of confidence	of 95% U	=2Uc(y	')	3.678

<u>Uncertainty of Radiated Emission Measurement (18GHz ~ 40GHz)</u>

	Un	certain	ty of x_i	
Contribution	Value	Unit	Probability Distribution k	$u(x_i)$
Receiver reading	±0.186	dB	k=1	0.093
Cable loss	±0.167	dB	k=2	0.083
Antenna gain	±0.190	dB	k=2	0.095
Site imperfection	±0.488	dB	Triangular	0.244
Pre-amplifier gain	±0.269	dB	k=2	0.134
Transmitter antenna	±1.200	dB	Rectangular	0.600
Signal generator	±0.461	dB	Rectangular	0.231
Mismatch	±0.080	dB	U-shape	0.040
Spectrum analyzer	±0.500	dB	Rectangular	0.250
Combined standard uncertainty Uc(y)		1.771		
Measuring uncertainty for a level of confidence	of 95% U	=2Uc(y	′)	3.541

Report Format Version: Rev. 01
FCC ID: TX2-RTL8188EE

Page No. : 60 of 61 Issued Date : Jun. 23, 2014

Uncertainty of Conducted Emission Measurement

	Uncertainty of x_i			
Contribution	Value	Unit	Probability Distribution k	$u(x_i)$
Cable loss	±0.038	dB	k=2	0.019
Attenuator	±0.047	dB	k=2	0.024
Power Meter specification	±0.300	dB	Triangular	0.150
Power Sensor specification	±0.300	dB	Rectangular	0.150
Signal generator	±0.461	dB	Rectangular	0.231
Mismatch	±0.080	dB	U-shape	0.040
Spectrum analyzer	±0.500	dB	Rectangular	0.250
Combined standard uncertainty Uc(y)				0.863
Measuring uncertainty for a level of confidence of 95% U=2Uc(y)				1.726

Page No. : 61 of 61 Issued Date : Jun. 23, 2014