

andt/B

<110> BECQUART, JEROME

<120> ALBUMIN DERIVATIVES WITH THERAPEUTIC FUNCTIONS

<130> 06832.1429-03

<140> 10/073,118

<141> 2002-02-12

<150> 09/551,635

<151> 2000-04-18

<150> 09/004,319

<151> 1998-01-08

<150> 08/479,146

<151> 1995-06-07

<150> 08/295,078

<151> 1994-08-26

<150> 08/121,236

<151> 1993-09-13

<150> 07/955,243

<151> 1992-10-01

<150> 07/561,879

<151> 1990-08-02

<150> FR 89 10480

<151> 1989-08-03

<160> 41

<170> PatentIn Ver. 2.1

<210> 1

<211> 13

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: Synthetic
 restriction site

<220>

<221> modified_base

<222> (5)..(9)

<223> a, c, t, g, other unknown

<400> 1

ggccnnnnng gcc

```
<210> 2
<211> 31
<212> DNA
<213> Artificial Sequence
<223> Description of Artificial Sequence: Synthetic
      oligodeoxynucleotide
<400> 2
atctaaggaa atacaagctt atgaagtggg t
                                                                    31
<210> 3
<211> 46
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide
<400> 3
taaaaacaaa agatccccaa gcttggggat ctcccatgtc tctact
                                                                    46
<210> 4
<211> 12
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      adaptor
<400> 4
gatccgtcga cg
                                                                    12
<210> 5
<211> 28
<212> DNA
<213> Artificial Sequence
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide
<400> 5
aagctttaca acaaatataa aaacaatg
                                                                    28
<210> 6
<211> 73
<212> DNA
<213> Artificial Sequence
```

```
<220>
<223> Description of Artificial Sequence: Synthetic
     oligonucleotide
<400> 6
ttacattatt aatttaaaaa tggatttcaa agataaggct ttaaatgatc taaggccgcg 60
<210> 7
<211> 80
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide
<400> 7
ccttaggctt ataacatcac atttaaaagc atctcagcct accatgagaa taagagaaag 60
aaaatgaaga tcaaaagctt
<210> 8
<211> 31
<212> DNA
<213> Artificial Sequence
<223> Description of Artificial Sequence: Synthetic
      oligodeoxynucleotide
                                                                    31
gtgtttcgtc gagacgccca caagagtgag g
<210> 9
<211> 34
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      oligodeoxynucleotide
<400> 9
                                                                    34
ggtgtgtttc gtagatctgc acacaagagt gagg
<210> 10
<211> 38
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      oligodeoxynucleotide
```

.

<400> 10 ccaggggtgt gtttcgtcga aagaaagtgg tgctgggc	38
<210> 11 <211> 33 <212> DNA <213> Artificial Sequence	
<220> <223> Description of Artificial Sequence: Synthetic oligodeoxynucleotide	
<400> 11 ccaactctga caccgacgcc cacctgcttc agg	33
<210> 12 <211> 27 <212> DNA <213> Artificial Sequence	
<220> <223> Description of Artificial Sequence: Synthetic oligodeoxynucleotide	
<400> 12 gctagctttc gacgccgggg gaattcg	27
<210> 13 <211> 31 <212> DNA <213> Artificial Sequence	
<220> <223> Description of Artificial Sequence: Synthetic oligodeoxynucleotide	
<400> 13 gcagaaccag aaggacgcca aggtggagtt c	31
	31
gcagaaccag aaggacgcca aggtggagtt c <210> 14 <211> 30 <212> DNA	31
<pre>gcagaaccag aaggacgcca aggtggagtt c <210> 14 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> Description of Artificial Sequence: Synthetic</pre>	31

```
<212> DNA
<213> Artificial Sequence
<223> Description of Artificial Sequence: Synthetic
      oligodeoxynucleotide
<400> 15
                                                                   51
actgccaact ctgacaccta aaagcttgga tcccacctgc ttcaggggca g
<210> 16
<211> 50
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      oligodeoxynucleotide
<400> 16
ggtaggtcgt gtggacgcca gatctttgga aagaattgcc cgtctggaag
                                                                   50
<210> 17
<211> 40
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      oligodeoxynucleotide
<400> 17
                                                                    40
ctgcaggtta ggcgtcgcca accagttgct tcagctgtgc
<210> 18
<211> 12
<212> DNA
<213> Artificial Sequence
<223> Description of Artificial Sequence: Synthetic
      oligodeoxynucleotide
<400> 18
                                                                    12
gatcccctaa gg
<210> 19
<211> 25
<212> DNA
<213> Artificial Sequence
<223> Description of Artificial Sequence: Synthetic
      oligodeoxynucleotide
```

<400> 19 gtgctgggca aacaagggga tacag	25
<210> 20 <211> 21 <212> DNA <213> Artificial Sequence	
<220> <223> Description of Artificial Sequence: Synthetic oligodeoxynucleotide	
<400> 20 ggcttaaagc aagtggtgct g	21
<210> 21 <211> 69 <212> DNA <213> Artificial Sequence	
<220> <223> Description of Artificial Sequence: Synthetic oligodeoxynucleotide	
<400> 21 tgctttgccg aggagggtaa ggaagacgct aagggtaagt ctgaagaaga agccttaggc ttaaagaaa	60 69
<210> 22 <211> 50 <212> DNA <213> Artificial Sequence	
<220> <223> Description of Artificial Sequence: Synthetic oligodeoxynucleotide	
<400> 22 cccgggaagc ttccttaggc ttaaagaaag tggtgctggg caaaaaaggg	50
<210> 23 <211> 39 <212> DNA <213> Artificial Sequence	
<220> <223> Description of Artificial Sequence: Synthetic oligodeoxynucleotide	
<400> 23 cccgggaagc ttttagaaag ctagcaccac gatgtctat	39

```
<210> 24
<211> 563
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: MstII-SmaI
      restriction fragment including the V1 and V2
      domains of the CD4 receptor of the HIV-1 virus
<400> 24
ccttaggctt aaagaaagtg gtgctgggca aaaaagggga tacagtggaa ctgacctgta 60
cagcttccca gaagaagagc atacaattcc actggaaaaa ctccaaccag ataaagattc 120
tgggaaatca gggctccttc ttaactaaag gtccatccaa gctgaatgat cqcqctqact 180
caagaagaag cctttgggac caaggaaact tccccctgat catcaagaat cttaagatag 240
aagactcaga tacttacatc tgtgaagtgg aggaccagaa ggaggaggtg caattgctag 300
tgttcggatt gactgccaac tctgacaccc acctgcttca ggggcagagc ctgacctga 360
ccttggagag ccccctggt agtagccct cagtgcaatg taggagtcca aggggtaaaa 420
acatacaggg ggggaagacc ctctccgtgt ctcagctgga gctccaggat agtggcacct 480
ggacatgcac tgtcttgcag aaccagaaga aggtggagtt caaaatagac atcgtggtgc 540
tagctttcta aaagcttccc ggg
<210> 25
<211> 2379
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Restriction .
      fragment HindIII coding for the protein fusion
      prepro-HSA-V1V2
<220>
<221> CDS
<222> (7)..(2370)
<400> 25
aagett atg aag tgg gta acc ttt att tcc ctt ctt ttt ctc ttt agc
                                                                   48
       Met Lys Trp Val Thr Phe Ile Ser Leu Leu Phe Leu Phe Ser
tcg gct tat tcc agg ggt gtg ttt cgt cga gat gca cac aag agt gag
                                                                   96
Ser Ala Tyr Ser Arg Gly Val Phe Arg Arg Asp Ala His Lys Ser Glu
15
gtt gct cat cgg ttt aaa gat ttg gga gaa gaa aat ttc aaa gcc ttg
Val Ala His Arg Phe Lys Asp Leu Gly Glu Glu Asn Phe Lys Ala Leu
                 35
gtg ttg att gcc ttt gct cag tat ctt cag cag tqt cca ttt gaa gat
                                                                   192
Val Leu Ile Ala Phe Ala Gln Tyr Leu Gln Gln Cys Pro Phe Glu Asp
             50
cat gta aaa tta gtg aat gaa gta act gaa ttt gca aaa aca tgt gtt
                                                                   240
His Val Lys Leu Val Asn Glu Val Thr Glu Phe Ala Lys Thr Cys Val
         65
```

gct Ala	gat Asp 80	Glu	tca Ser	gct Ala	gaa Glu	aat Asn 85	tgt Cys	gac Asp	aaa Lys	tca Ser	Ctt Leu 90	His	acc Thr	ctt Leu	ttt Phe	288
gga Gly 95	gac Asp	aaa Lys	tta Leu	tgc Cys	aca Thr 100	Val	gca Ala	act Thr	ctt Leu	cgt Arg 105	gaa Glu	acc Thr	tat Tyr	ggt Gly	gaa Glu 110	336
atg Met	gct Ala	gac Asp	tgc Cys	tgt Cys 115	gca Ala	aaa Lys	caa Gln	gaa Glu	cct Pro 120	Glu	aga Arg	aat Asn	gaa Glu	tgc Cys 125	ttc Phe	384
ttg Leu	caa Gln	cac His	aaa Lys 130	gat Asp	gac Asp	aac Asn	cca Pro	aac Asn 135	ctc Leu	ccc Pro	cga Arg	ttg Leu	gtg Val 140	aga Arg	cca Pro	432
gag Glu	gtt Val	gat Asp 145	gtg Val	atg Met	tgc Cys	act Thr	gct Ala 150	ttt Phe	cat His	gac Asp	aat Asn	gaa Glu 155	gag Glu	aca Thr	ttt Phe	480
ttg Leu	aaa Lys 160	aaa Lys	tac Tyr	tta Leu	tat Tyr	gaa Glu 165	att Ile	gcc Ala	aga Arg	aga Arg	cat His 170	cct Pro	tac Tyr	ttt Phe	tat Tyr	528
gcc Ala 175	ccg Pro	gaa Glu	ctc Leu	ctt Leu	ttc Phe 180	ttt Phe	gct Ala	aaa Lys	agg Arg	tat Tyr 185	aaa Lys	gct Ala	gct Ala	ttt Phe	aca Thr 190	576
gaa Glu	tgt Cys	tgc Cys	caa Gln	gct Ala 195	gct Ala	gat Asp	aaa Lys	gct Ala	gcc Ala 200	tgc Cys	ctg Leu	ttg Leu	cca Pro	aag Lys 205	ctc Leu	624
gat Asp	gaa Glu	ctt Leu	cgg Arg 210	gat Asp	gaa Glu	gly aaa	aag Lys	gct Ala 215	tcg Ser	tct Ser	gcc Ala	aaa Lys	cag Gln 220	aga Arg	ctc Leu	672
aag Lys	tgt Cys	gcc Ala 225	agt Ser	ctc Leu	caa Gln	aaa Lys	ttt Phe 230	gga Gly	gaa Glu	aga Arg	gct Ala	ttc Phe 235	aaa Lys	gca Ala	tgg Trp	720
gca Ala	gta Val 240	gct Ala	cgc Arg	ctg Leu	agc Ser	cag Gln 245	aga Arg	ttt Phe	ccc Pro	aaa Lys	gct Ala 250	gag Glu	ttt Phe	gca Ala	gaa Glu	768
gtt Val 255	tcc Ser	aag Lys	tta Leu	gtg Val	aca Thr 260	gat Asp	ctt Leu	acc Thr	aaa Lys	gtc Val 265	cac His	acg Thr	gaa Glu	tgc Cys	tgc Cys 270	816
cat His	gga Gly	gat Asp	ctg Leu	ctt Leu 275	gaa Glu	tgt Cys	gct Ala	gat Asp	gac Asp 280	agg Arg	gcg Ala	gac Asp	ctt Leu	gcc Ala 285	aag Lys	864
tat Tyr	atc Ile	tgt Cys	gaa Glu 290	aat Asn	caa Gln	gat Asp	tcg Ser	atc Ile 295	tcc Ser	agt Ser	aaa Lys	ctg Leu	aag Lys 300	gaa Glu	tgc Cys	912

tgt Cys	gaa Glu	aaa Lys 305	cct Pro	ctg Leu	ttg Leu	gaa Glu	aaa Lys 310	tcc Ser	cac His	tgc Cys	att Ile	gcc Ala 315	gaa Glu	gtg Val	gaa Glu	960
aat Asn	gat Asp 320	gag Glu	atg Met	cct Pro	gct Ala	gac Asp 325	ttg Leu	cct Pro	tca Ser	tta Leu	gct Ala 330	gct Ala	gat Asp	ttt Phe	gtt Val	1008
gaa Glu 335	agt Ser	aag Lys	gat Asp	gtt Val	tgc Cys 340	aaa Lys	aac Asn	tat Tyr	gct Ala	gag Glu 345	gca Ala	aag Lys	gat Asp	gtc Val	ttc Phe 350	1056
ctg Leu	ggc Gly	atg Met	ttt Phe	ttg Leu 355	tat Tyr	gaa Glu	tat Tyr	gca Ala	aga Arg 360	agg Arg	cat His	cct Pro	gat Asp	tac Tyr 365	tct Ser	1104
gtc Val	gta Val	ctg Leu	ctg Leu 370	ctg Leu	aga Arg	ctt Leu	gcc Ala	aag Lys 375	aca Thr	tat Tyr	gaa Glu	acc Thr	act Thr 380	cta Leu	gag Glu	1152
Lys	Cys	Cys 385	Ala	Ala	Ala	Asp	Pro 390	His	Glu	Cys	Tyr	Ala 395	Lys	gtg Val	Phe	1200
gat Asp	gaa Glu 400	ttt Phe	aaa Lys	cct Pro	ctt Leu	gtg Val 405	gaa Glu	gag Glu	cct Pro	cag Gln	aat Asn 410	tta Leu	atc Ile	aaa Lys	caa Gln	1248
aat Asn 415	tgt Cys	gag Glu	ctt Leu	ttt Phe	gag Glu 420	cag Gln	ctt Leu	gga Gly	gag Glu	tac Tyr 425	aaa Lys	ttc Phe	cag Gln	aat Asn	gcg Ala 430	1296
Leu	Leu	Val	Arg	Tyr 435	Thr	Lys	Lys	Val	Pro 440	Gln	Val	Ser	Thr	cca Pro 445	Thr	1344
Leu	Val	Glu	Val 450	Ser	Arg	Asn	Leu	Gly 455	ГÀЗ	Val	Gly	Ser	Lys 460	tgt Cys	Cys	1392
Lys	His	Pro 465	Glu	Ala	Lys	Arg	Met 470	Pro	Cys	Ala	Glu	Asp 475	Tyr	cta Leu	Ser	1440
Val	Val 480	Leu	Asn	Gln	Leu	Cys 485	Val	Leu	His	Glu	Lys 490	Thr	Pro	gta Val	Ser	1488
Asp 495	Arg	Val	Thr	Lys	Cys 500	Cys	Thr	Glu	Ser	Leu 505	Val	Asn	Arg	cga Arg	Pro 510	1536
tgc Cys	ttt Phe	tca Ser	gct Ala	ctg Leu 515	gaa Glu	gtc Val	gat Asp	gaa Glu	aca Thr 520	tac Tyr	gtt Val	ccc Pro	aaa Lys	gag Glu 525	ttt Phe	1584

					acc Thr											1632
					aag Lys											1680
	_		_	_	aca Thr				_		_	_	_	_	_	1728
					gag Glu 580											1776
					ggt Gly											1824
					gtg Val											1872
					tcc Ser											1920
					aag Lys		_			_						1968
				_	ctg Leu 660		_	-	-	-		_	_	_		2016
	_				ttc Phe		_			_			_		_	2064
					atc Ile											2112
	_				gga Gly	_		_			_			_		2160
cag Gln	999 Gly 720	cag Gln	agc Ser	ctg Leu	acc Thr	ctg Leu 725	acc Thr	ttg Leu	gag Glu	agc Ser	ccc Pro 730	cct Pro	ggt Gly	agt Ser	agc Ser	2208
					agg Arg 740											2256

aag acc ctc tcc gtg tct cag ctg gag ctc cag gat agt ggc acc tgg Lys Thr Leu Ser Val Ser Gln Leu Glu Leu Gln Asp Ser Gly Thr Trp 755 760 765	2304
aca tgc act gtc ttg cag aac cag aag aag gtg gag ttc aaa ata gac Thr Cys Thr Val Leu Gln Asn Gln Lys Lys Val Glu Phe Lys Ile Asp 770 775 780	2352
atc gtg gtg cta gct ttc taaaagctt Ile Val Val Leu Ala Phe 785	2379
<210> 26 <211> 788 <212> PRT <213> Artificial Sequence	
<220> <223> Description of Artificial Sequence: Protein fusion prepro-HSA-V1V2	
<pre><400> 26 Met Lys Trp Val Thr Phe Ile Ser Leu Leu Phe Leu Phe Ser Ser Ala 1 5 10 15</pre>	
Tyr Ser Arg Gly Val Phe Arg Arg Asp Ala His Lys Ser Glu Val Ala 20 25 30	
His Arg Phe Lys Asp Leu Gly Glu Glu Asn Phe Lys Ala Leu Val Leu 35 40 45	
Ile Ala Phe Ala Gln Tyr Leu Gln Gln Cys Pro Phe Glu Asp His Val 50 55 60	
Lys Leu Val Asn Glu Val Thr Glu Phe Ala Lys Thr Cys Val Ala Asp 65 70 75 80	
Glu Ser Ala Glu Asn Cys Asp Lys Ser Leu His Thr Leu Phe Gly Asp 85 90 95	
Lys Leu Cys Thr Val Ala Thr Leu Arg Glu Thr Tyr Gly Glu Met Ala 100 105 110	
Asp Cys Cys Ala Lys Gln Glu Pro Glu Arg Asn Glu Cys Phe Leu Gln 115 120 125	
His Lys Asp Asp Asn Pro Asn Leu Pro Arg Leu Val Arg Pro Glu Val 130 135 140	
Asp Val Met Cys Thr Ala Phe His Asp Asn Glu Glu Thr Phe Leu Lys 145 150 155 160	
Lys Tyr Leu Tyr Glu Ile Ala Arg Arg His Pro Tyr Phe Tyr Ala Pro 165 170 175	
Glu Leu Leu Phe Phe Ala Lys Arg Tyr Lys Ala Ala Phe Thr Glu Cys 180 185 190	

Cys Gln Ala Ala Asp Lys Ala Ala Cys Leu Leu Pro Lys Leu Asp Glu 195 200 205

Leu Arg Asp Glu Gly Lys Ala Ser Ser Ala Lys Gln Arg Leu Lys Cys 210 215 220

Ala Ser Leu Gln Lys Phe Gly Glu Arg Ala Phe Lys Ala Trp Ala Val 225 230 235 240

Ala Arg Leu Ser Gln Arg Phe Pro Lys Ala Glu Phe Ala Glu Val Ser 245 250 255

Lys Leu Val Thr Asp Leu Thr Lys Val His Thr Glu Cys Cys His Gly 260 265 270

Asp Leu Glu Cys Ala Asp Asp Arg Ala Asp Leu Ala Lys Tyr Ile 275 280 285

Cys Glu Asn Gln Asp Ser Ile Ser Ser Lys Leu Lys Glu Cys Cys Glu 290 295 300

Lys Pro Leu Leu Glu Lys Ser His Cys Ile Ala Glu Val Glu Asn Asp 305 310 315 320

Glu Met Pro Ala Asp Leu Pro Ser Leu Ala Ala Asp Phe Val Glu Ser 325 330 335

Lys Asp Val Cys Lys Asn Tyr Ala Glu Ala Lys Asp Val Phe Leu Gly 340 345 350

Met Phe Leu Tyr Glu Tyr Ala Arg Arg His Pro Asp Tyr Ser Val Val 355 360 365

Leu Leu Leu Arg Leu Ala Lys Thr Tyr Glu Thr Thr Leu Glu Lys Cys 370 375 380

Cys Ala Ala Ala Asp Pro His Glu Cys Tyr Ala Lys Val Phe Asp Glu 385 390 395 400

Phe Lys Pro Leu Val Glu Glu Pro Gln Asn Leu Ile Lys Gln Asn Cys
405 410 415

Glu Leu Phe Glu Gln Leu Gly Glu Tyr Lys Phe Gln Asn Ala Leu Leu 420 425 430

Val Arg Tyr Thr Lys Lys Val Pro Gln Val Ser Thr Pro Thr Leu Val 435 440 445

Glu Val Ser Arg Asn Leu Gly Lys Val Gly Ser Lys Cys Cys Lys His
450 455 460

Pro Glu Ala Lys Arg Met Pro Cys Ala Glu Asp Tyr Leu Ser Val Val 465 470 475 480

Leu Asn Gln Leu Cys Val Leu His Glu Lys Thr Pro Val Ser Asp Arg 485 490 495

Val Thr Lys Cys Cys Thr Glu Ser Leu Val Asn Arg Arg Pro Cys Phe 500 505 510

Ser Ala Leu Glu Val Asp Glu Thr Tyr Val Pro Lys Glu Phe Asn Ala 515 520 525

Glu Thr Phe Thr Phe His Ala Asp Ile Cys Thr Leu Ser Glu Lys Glu 530 540

Arg Gln Ile Lys Lys Gln Thr Ala Leu Val Glu Leu Val Lys His Lys 545 550 555 560

Pro Lys Ala Thr Lys Glu Gln Leu Lys Ala Val Met Asp Asp Phe Ala 565 570 575

Ala Phe Val Glu Lys Cys Cys Lys Ala Asp Asp Lys Glu Thr Cys Phe 580 585 590

Ala Glu Glu Gly Lys Lys Leu Val Ala Ala Ser Gln Ala Ala Leu Gly 595 600 605

Leu Lys Lys Val Val Leu Gly Lys Lys Gly Asp Thr Val Glu Leu Thr 610 620

Cys Thr Ala Ser Gln Lys Lys Ser Ile Gln Phe His Trp Lys Asn Ser 625 630 635 640

Asn Gln Ile Lys Ile Leu Gly Asn Gln Gly Ser Phe Leu Thr Lys Gly
645 650 655

Pro Ser Lys Leu Asn Asp Arg Ala Asp Ser Arg Arg Ser Leu Trp Asp 660 665 670

Gln Gly Asn Phe Pro Leu Ile Ile Lys Asn Leu Lys Ile Glu Asp Ser 675 680 685

Asp Thr Tyr Ile Cys Glu Val Glu Asp Gln Lys Glu Glu Val Gln Leu 690 695 700

Leu Val Phe Gly Leu Thr Ala Asn Ser Asp Thr His Leu Leu Gln Gly 705 710 715 720

Gln Ser Leu Thr Leu Glu Ser Pro Pro Gly Ser Ser Pro Ser 725 730 735

Val Gln Cys Arg Ser Pro Arg Gly Lys Asn Ile Gln Gly Gly Lys Thr
740 745 750

Leu Ser Val Ser Gln Leu Glu Leu Gln Asp Ser Gly Thr Trp Thr Cys
755 760 765

Thr Val Leu Gln Asn Gln Lys Lys Val Glu Phe Lys Ile Asp Ile Val 770 780

Val Leu Ala Phe

785

```
<210> 27
<211> 132
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Leucine zipper
      of c-jun in a hybrid nucleotide HSA-CD4
<220>
<221> CDS
<222> (1)..(132)
<400> 27
aga tot ttg gaa aga att goo ogt otg gaa gaa aaa gtg aaa act otg
Arg Ser Leu Glu Arg Ile Ala Arg Leu Glu Glu Lys Val Lys Thr Leu
aaa gcc cag aac tct gag ctc gca tcc acg gcc aac atg ctg cgt gaa
                                                                   96
Lys Ala Gln Asn Ser Glu Leu Ala Ser Thr Ala Asn Met Leu Arg Glu
cag gtt gca cag ctg aag caa ctg gtt ggc gac gcc
                                                                   132
Gln Val Ala Gln Leu Lys Gln Leu Val Gly Asp Ala
<210> 28
<211> 44
<212> PRT
<213> Artificial Sequence
<223> Description of Artificial Sequence: Leucine zipper
      of c-jun in a hybrid protein HSA-CD4
Arg Ser Leu Glu Arg Ile Ala Arg Leu Glu Glu Lys Val Lys Thr Leu
Lys Ala Gln Asn Ser Glu Leu Ala Ser Thr Ala Asn Met Leu Arg Glu
                                 25
Gln Val Ala Gln Leu Lys Gln Leu Val Gly Asp Ala
         35
<210> 29
<211> 36
<212> DNA
<213> Artificial Sequence
<223> Description of Artificial Sequence: Synthetic
     oligonucleotide
```

```
<220>
<221> CDS
<222> (1)..(36)
<400> 29
tgc ttt tca gct ctg gaa gtc gat gaa aca tac gtt
                                                                    36
Cys Phe Ser Ala Leu Glu Val Asp Glu Thr Tyr Val
<210> 30
<211> 12
<212> PRT
<213> Artificial Sequence
<223> Description of Artificial Sequence: Synthetic
      peptide
<400> 30
Cys Phe Ser Ala Leu Glu Val Asp Glu Thr Tyr Val
                  5
<210> 31
<211> 27
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide
<220>
<221> CDS
<222> (1)..(27)
<400> 31
tca gct ctg gaa gtc gat gcc tta ggn
                                                                    27
Ser Ala Leu Glu Val Asp Ala Leu Gly
<210> 32
<211> 11
<212> PRT
<213> Artificial Sequence
<223> Description of Artificial Sequence: Synthetic
     peptide
<400> 32
Cys Phe Ser Ala Leu Glu Val Asp Ala Leu Gly
                  5
                                      10
```

```
<210> 33
<211> 35
<212> PRT
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      peptide
<400> 33
Cys Phe Ala Glu Glu Gly Lys Lys Leu Val Ala Ala Ser Gln Ala Ala
                                      10
Leu Gly Leu Lys Lys Val Val Leu Gly Lys Lys Gly Asp Thr Val Glu
Leu Thr Cys
         35
<210> 34
<211> 21
<212> PRT
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      peptide
<220>
<221> MOD RES
<222> (2)
<223> Ser, Pro, Thr or Ala
<220>
<221> MOD RES
<222> (7)
<223> Any amino acid
<220>
<221> MOD RES
<222> (13)
<223> Any amino acid
<400> 34
Cys Xaa Leu Gly Leu Lys Xaa Val Val Leu Gly Lys Xaa Gly Asp Thr
                                      10
Val Glu Leu Thr Cys
<210> 35
<211> 32
<212> PRT
<213> Artificial Sequence
```

```
<220>
<223> Description of Artificial Sequence: Synthetic
      peptide
<400> 35
Cys Phe Ala Glu Glu Gly Lys Glu Asp Ala Lys Gly Lys Ser Glu Glu
Glu Ala Leu Gly Leu Lys Lys Val Val Leu Gly Lys Lys Gly Asp Thr
<210> 36
<211> 22
<212> PRT
<213> Artificial Sequence
<223> Description of Artificial Sequence: Synthetic
      peptide
<400> 36
Arg Gly Val Phe Arg Arg Lys Lys Val Val Leu Gly Lys Lys Gly Asp
                                                           15
Thr Val Glu Leu Thr Cys
             20
<210> 37
<211> 22
<212> PRT
<213> Artificial Sequence
<223> Description of Artificial Sequence: Synthetic
      peptide
<220>
<221> MOD RES
<222> (8)
<223> Any amino acid
<220>
<221> MOD_RES
<222> (14)
<223> Any amino acid
<400> 37
Arg Gly Val Phe Arg Arg Lys Xaa Val Val Leu Gly Lys Xaa Gly Asp
                                      10
Thr Val Glu Leu Thr Cys
             20
<210> 38
<211> 30
```

```
<212> PRT
<213> Artificial Sequence
<223> Description of Artificial Sequence: Synthetic
      peptide
<400> 38
Cys Glu Val Glu Asp Gln Lys Glu Glu Val Gln Leu Leu Val Phe Gly
                                      10
Leu Thr Ala Asn Ser Asp Thr Asp Ala His Lys Ser Glu Val
                                  25
<210> 39
<211> 28
<212> PRT
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      peptide
<400> 39
Cys Thr Val Leu Gln Asn Gln Lys Lys Val Glu Phe Lys Ile Asp Ile
Val Val Leu Ala Phe Asp Ala His Lys Ser Glu Val
                                  25
<210> 40
<211> 15
<212> PRT
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      peptide
<400> 40
Cys Thr Val Leu Gln Asn Gln Lys Asp Ala His Lys Ser Glu Val
<210> 41
<211> 8
<212> PRT
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      peptide
<400> 41
Cys Asp Ala His Lys Ser Glu Val
```

Bi