Варіант №4

- 2. Густина дуги кривої $x = e' \cos t$, $y = e' \sin t$, z = e', $0 \le t \le \pi$ в кожній точці обернено пропорційна квадрату полярного радіуса і в точці (1,0,1) дорівнює одиниці. Знайти її масу.
- 3. Обчислити контурний інтеграл $\oint_L e^{y^2-x^2} \left(\cos 2xydx + \sin 2xydy\right)$, де L-коло $x^2+y^2=R^2$, двома способами: а) за формулою Гріна; б) безпосереднім інтегруванням.
- 4. Знайти площу замкненої області, обмеженої кривою $(x+y)^2 = ax$, a > 0, та віссю OX.
- 5. Довести, що вираз $\frac{yzdx+xzdy+xydz}{1+x^2y^2z^2}$ є повним диференціалом du та знайти функцію u .

Варіант №5

- 1. Знайти криволінійний інтеграл І-го роду $\int_L z dl$ вздовж кривої, утвореної при перетині поверхонь: $y^2 = 2x, \ z = \sqrt{2x 4x^2}$. Дати тлумачення цього інтеграла.
- 2. Знайти момент інерції відносно осі OZ першого витка однорідної гвинтової лінії $x = a\cos t, \ y = a\sin t, \ z = (ht)/(2\pi); \ 0 \le t \le 2\pi$.
- 3. Обчислити контурний інтеграл $\oint_L y \cos x dx + (\cos y + \sin x) dy$, де $L \text{еліпс} \frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$, двома способами: а) за формулою Гріна; б) безпосереднім інтегруванням.
- 4. Знайти площу фігури, обмеженої кривою $\left(\sqrt{x} + \sqrt{y}\right)^{12} = xy$ і осями координат.
- 5. Довести, що вираз $\frac{x}{y\sqrt{x^2+y^2}}dx \frac{x^2+\sqrt{x^2+y^2}}{y^2\sqrt{x^2+y^2}}dy$ є повним диференціалом du і знайти u.

Варіант №6

- 1. Знайти криволінійний інтеграл І-го роду $\int_L z dl$ вздовж кривої, утвореної при перетині поверхонь: $y = \frac{3}{8} x^2, \, x \ge 0, \, y = 6, \, z = x$. Дати тлумачення цього інтеграла.
- 2. Знайти масу першого витка гвинтової лінії $x = 3\cos t$, $y = 3\sin t$, z = 4t, густина якої в кожній точці дорівнює $\gamma(x, y, z) = 4z$.
- 3. Обчислити контурний інтеграл $\oint_L (1-x^2)ydx + (1+y^2)xdy$, де L коло $x^2+y^2=R^2$, двома способами: а) за формулою Гріна; б) безпосереднім інтегруванням.
- 4. Знайти площу одної пелюстки лемніскати Бернуллі $(x^2 + y^2)^2 = 2a^2(x^2 y^2)$ за допомогою криволінійного інтеграла.
- 5. Підібрати число n так, щоб вираз $\frac{(x-y)dx+(x+y)dy}{(x^2+y^2)^n}$ був повним диференціалом. Знайти відповідну функцію u.