(iv) 80°

(i) 50°

			202 MATHEN						
Tot	al mar	·ks: 80	WIATHEN	TATICS	Time: 3 hours				
i) ii) iii) iv) v)	Appro The quality All quality Internation	uestion paper consist vestions are compulso val & general choice s allocated to every q ck to ensure that all	s of 18 question. ory. have been provi vuestion are indi	s. ded in some ques cated against it.	aper and revise the antions. The properties of the antion of the anticated of the anticate				
			Section	1 – A					
1.	Cho	ose the correct ans	wer from the g	iven alternativ	es.				
	(a)	then the value of p	is	, ,	$px^2 - 2x + 3p$ and α	$+\beta = \alpha\beta$			
		$(i) - \frac{2}{3}$	$(ii)\frac{2}{3}$	(iii) $\frac{1}{3}$	(iv) $-\frac{1}{3}$				
	(b)	The pair of equation (i) a unique solution (iii) infinitely many	n.	(ii) exactly t	wo solutions.	1			
	(c)	If $x = 1$ is a common (i) 1		-ax + 2 = 0 and (iii) 3	$x^{2} + x + b = 0$, then a (iv) 4	ab = 1			
	(d)	sum of the first fou	r terms of the A	AP is	the 5 th term is 10, th	en the			
		(i) 5	(ii) 10	(iii) 20	(iv) 30				
	(e)	If $\tan 2\theta = \cot(\theta + 1)$ (i) 22°	5°), where 2θ a (ii) 25°	and $(\theta + 15^{\circ})$ are (iii) 30°	acute, the value of θ (iv) 35°	is 1			
	(f)	y-axis divides the j (i) 3:1		and Q(8, 3) in th (iii) 2 : 1	ne ratio (iv) 1 : 2	1			
	(g)	If tangents PA and each other at angle	_		with centre O are inc	clined to			

(ii) 60°

(iii) 70°

1

- An arc of a circle is of length 5π cm and the sector it bounds has an area of 20π (h) cm². The radius of the circle is 1 (i) 16 cm (ii) 12 cm (iii) 8 cm (iv) 4 cm The ratio of the total surface area to the lateral surface area of a cylinder with (i)
- base radius 80 cm and height 20 cm is 1 (iii) 4:1(i) 2:1(ii) 3:1(iv) 5:1Two dice are rolled once. The probability of getting such numbers on two dice, (i)
- whose product is a perfect square, is (iii) $\frac{9}{2}$
 - (i) 8

- (iv) $\frac{2}{9}$

Section - B

- 2. An army contingent of 616 members is to march behind an army band of 32 members in a parade. The two groups are to march in the same number of columns. What is the maximum number of columns in which they can march? 2
- Find the value of k for the quadratic equation kx(x-2)+6=0 has equal roots. 2 3.
- Find the values of y for which the distance between the points P(2, -3) and Q(10, y)4. is 10 units.
- In the adjoining figure, \triangle ABC is a right triangle in which 5. $\angle B = 90^{\circ}$ and BD \perp AC. If AB = x units, BC = y units and AC = z units, then find BD.

The length of the minute hand of a clock is 14 cm. Find the area swept by the 6. minute hand in 5 minutes.

Section - C

Answer any three from the following questions (a) to (e). 7.

 $3 \times 3 = 9$

2

2

- (a) On dividing $x^3 3x^2 + x + 2$ by a polynomial g(x), the quotient and remainder were (x-2) and (-2x+4) respectively. Find g(x).
- (b) Meena went to a bank to withdraw ₹2000. She asked the cashier to give her ₹50 and ₹100 notes only. Meena got 25 notes in all. Find how many notes of ₹50 and ₹100 she received.
- Solve the following pair of linear equations by cross-multiplication method: (c)

-3- *NB-T/M/1*

$$x - 3y - 7 = 0$$
$$3x - 3y - 15 = 0$$

- (d) A train travels 360 km at a uniform speed. If the speed had been 5 km/h more, it would have taken 1 hour less for the same journey. Find the speed of the train.
- (e) A sum of ₹700 is to be used to give seven cash prizes to students of a school for their overall academic performance. If each prize is ₹20 less than its preceding prize, find the value of each of the prizes.

8. Answer any two from the following questions (a) to (d).

 $2 \times 3 = 6$

- (a) In triangle ABC, right angled at B, if $\tan A = \frac{1}{\sqrt{3}}$, find the value of $\cos A \cos C \sin A \sin C$, with the help of a right triangle.
- **(b)** If $\sin(A B) = \frac{1}{2}$, $\cos(A + B) = \frac{1}{2}$, $0^{\circ} < A + B \le 90^{\circ}$, A > B, find A and B.
- (c) Prove that: $\frac{1+\sec A}{\sec A} = \frac{\sin^2 A}{1-\cos A}$, where angle A is an acute angle.
- (d) A tree breaks due to storm and the broken part bends so that the top of the tree touches the ground making an angle 30° with it. The distance between the foot of the tree to the point where the top touches the ground is 8 m. Find the height of the tree.

9. Case Study based question:

3

Four friends are seated at the points A, B, C and D on a lawn keeping social distancing, as shown in the figure above. One more friend wants to join them and sit exactly at the middle position E on a straight line between A and C. Based on the above information, answer the following questions (i) to (iii).

(i) The distance between A and D is

(a) $\sqrt{72}$ units

(b) $\sqrt{73}$ units

-4-

(c) $\sqrt{74}$ units

(d) $\sqrt{75}$ units

(ii) The coordinates of the position of E are

 $(a)\left(\frac{3}{2},3\right)$

 $(b)\left(3,\frac{3}{2}\right)$

(c)(6,3)

(d) (3, 6)

(iii) x-axis divides the distance/length between B and D in the ratio

(a) 3:4

(b) 4:3

(c) 5:4

(d) 4:5

10. **a.** Construct an isosceles triangle whose base is 8 cm and altitude 4 cm and then another triangle whose sides are $1\frac{1}{2}$ times the corresponding sides of the isosceles triangle. (Traces of construction only is required.)

Or

3

- **b.** Draw a line segment AB of length 8 cm. Taking A as centre, draw a circle of radius 4 cm and taking B as centre, draw another circle of radius 3 cm. Construct tangents to each circle from the centre of the other circle. (Traces of construction only is required.)
- 11. **a.** A chord of a circle of radius 15 cm subtends an angle of 60° at the centre. Find the areas of the corresponding minor and major segments of the circle. [Use $\pi = 3.14$ and $\sqrt{3} = 1.73$]

Or

3

- **b.** How many silver coins, 1.75 cm in diameter and of thickness 2 mm, must be melted to form a cuboid of dimensions $5.5 \text{ cm} \times 10 \text{ cm} \times 3.5 \text{ cm}$?
- 12. Answer any two from the following questions (a) to (c).

 $2 \times 3 = 6$

(a) A student noted the number of cars passing through a spot on a road for 100 periods each of 3 minutes and summarised it in the table given below. Find the mode of the data:

Number of cars	0-10	10-20	20-30	30-40	40-50	50-60	60-70	70-80
Frequency	7	14	13	12	20	11	15	8

(b) The lengths of 40 leaves of a plant are measured correct to the nearest millimeter, and the data obtained is represented in the following table:

	,		<u>-</u>				
Length (in mm)	118-126	127-135	136-144	145-153	154-162	163-171	172-180
Number of leaves	3	5	9	12	5	4	2

Find the median length of the leaves.

-5- *NB-T/M/1*

(c) A box contains 90 discs which are numbered from 1 to 90. If one disc is drawn at random from the box, find the probability that it bears: (i) a two-digit number, (ii) a perfect square number, (iii) a number divisible by 5.

Section - D

13. **a.** Draw the graphs of the equations x-y+1=0 and 3x+2y-12=0. Determine the coordinates of the vertices of the triangle formed by these lines and the x-axis and shade the triangular region.

. 5

- **b.** Places A and B are 100 km apart on a highway. One car starts from A and another from B at the same time. If the cars travel in the same direction at different speeds, they meet in 5 hours. If they travel towards each other, they meet in 1 hour. What are the speeds of the two cars?
- 14. **a.** A statue, 1.6 m tall, stands on the top of a pedestal. From a point on the ground, the angle of elevation of the top of the statue is 60° and from the same point the angle of elevation of the top of the pedestal is 45°. Find the height of the pedestal.

Or 5

b. A 1.2 m tall girl spots a balloon moving with the wind in a horizontal line at a height of 88.2 m from the ground. The angle of elevation of the balloon from the eyes of the girl at any instant is 60°. After sometime, the angle of elevation reduces to 30°. Find the distance travelled by the balloon during the interval.

15. **a.** State and Prove Pythagoras Theorem.

Or

b. Sides AB and BC and median AD of a triangle ABC are respectively proportional to sides PQ and QR and median PM of Δ PQR. Show that Δ ABC ~ Δ PQR.

16. **a.** In the adjoining figure, XY and X'Y' are two parallel tangents to a circle with centre O and another tangent AB with point of contact C intersecting XY at A and X'Y' at B. Prove that $\angle AOB = 90^{\circ}$

Or

b. In the adjoining figure, O is the centre of the circle and TP is the tangent to the circle from an external point T. If $\angle PBT = 30^{\circ}$, prove that BA: AT = 2:1

17. **a.** A *gulab jamun*, contains sugar syrup up to about 30% of its volume. Find approximately how much syrup would be found in 45 *gulab jamuns*, each shaped like a cylinder with two hemispherical ends with length 5 cm and diameter 2.8 cm.

Or

-6-

5

- **b.** A container, opened from the top and made up of a metal sheet, is in the form of a frustrum of a cone of height 16 cm with radii of its lower and upper ends as 8 cm and 20 cm, respectively. Find the cost of the milk which can completely fill the container @ of $\ref{20}$ per litre. Also find the cost of metal sheet used to make the container, if it costs $\ref{8}$ per 100 cm². [Take $\pi = 3.14$]
- 18. **a.** The following distribution shows the daily pocket allowance of children of a locality. Find the mean pocket allowance by step-deviation method.

Daily pocket allowance (in ₹)	More than 11	More than 13	More than 15	More than 17	More than 19	More than 21	More than 23
Number of children	64	57	51	42	29	9	4

Or

5

b. The distribution of heights (in cm) of 96 children is given below:

Height (in cm)	Number of children
124-128	5
128-132	8
132-136	17
136-140	24
140-144	16
144-148	12
148-152	6
152-156	4
156-160	3
160-164	1

Draw a less than type cumulative frequency curve for this data and use it to compute median height of the children.
