

4Geeks Academy

Fecha: 11- 09 - 2025

Contenido:

Numpy

- Arrays de Numpy
- Operaciones con Arrays
- Matrices en Numpy
- Estadisticas con Numpy
- Mascaras

OBJETIVOS DE LA CLASE

• AL FINALIZAR ESTARÁS EN LA CAPACIDAD DE

Conocer las ventajas del uso de la librería Numpy para manejo de Arrays y Matrices en Python

NumPy

¿Que es Numpy?

Numpy (Numerical Python) es una librería numérica de Python.

Es Base de todos los calculos cientificos.

Es de código abierto, proporciona estructuras de datos matriciales y funciones matemáticas de alto nivel.

Arrays de NumPy

¿Qué son los Array / Arreglos?

En **Numpy** se trabaja con una estructura de datos llamada array o arreglos numéricos multidimensionales.

Parecidos a las listas de Python, heredan algunas propiedades como el ser mutables y poder realizar slicing.

Tienen diferencias importantes: Son menos pesados, más rápidos y permiten crear fácilmente arrays de (N) dimensiones.

Tipos de arrays:

Un Array unidimensional

Puede ser una fila o una columna de una tabla, igual que una lista, esta se conoce como vector.

Un Array bidimensional

Es lo que conocemos comúnmente como matriz.

Un Array Tridimensional o más

Una matriz de matrices, se denota como Tensor.

Crear Arrays

A partir de una lista

```
import numpy as np

my_list = [5,6,7,8,9]
print(np.array(my_list))
print(np.array(my_list).shape)
```

} [5 6 7 8 9] (5,)

A partir de secuencias

Crear Arrays

PREDEFINIDOS


```
>>> print(np.zeros(4))
[0. 0. 0. 0.]
>>> print(np.ones(6))
[1. 1. 1. 1. 1. 1.]
>>> print(np.full(shape=(2, 2), fill_value=5))
[[5 5]
 [5 5]]
>>> base = np.linspace(2, 6, 4)
>>> print(np.full_like(base, np.pi))
[3.14159265 3.14159265 3.14159265 3.14159265]
```


Crear Arrays

ALEATORIOS


```
>>> print(np.random.rand(2, 2))
[[0.62740202 0.11171536]
   [0.47526728 0.19739417]]
>>>
>>> print(np.random.uniform(low=0, high=1, size=6))
[0.7878737 0.3431897 0.77765595 0.60943181 0.30961326 0.60167083]
>>>
>>> print(np.random.randn(2, 2))
[[ 0.91140011 1.72792052]
   [-0.84028707 -0.27378577]]
>>>
>>> print(np.random.normal(loc=0, scale=2, size=6))
[-2.36743682 -3.12673482 -1.14254395 -3.19805542 -1.11930443 -2.70161226]
```


Tamaño de los Arrays

```
>>> B = np.reshape(a, [3,3])
>>> print(B)
[[1 2 3]
  [4 5 6]
  [7 8 9]]
```



```
>>> a = np.arange(1,10)
>>> print(a)
[1 2 3 4 5 6 7 8 9]
```


Slicing con Arrays

```
>>> matrix_cool = np.arange(9).reshape(3, 3)
>>> print(matrix_cool)
[[0 1 2]
  [3 4 5]
  [6 7 8]]
>>> print(matrix_cool[1, 2])
5
>>> print(matrix_cool[0, :])
[0 1 2]
```

```
>>> print(matrix_cool[:, 1])
[1 4 7]
>>> print(matrix_cool[:, 1:])
[[1 2]
  [4 5]
  [7 8]]
>>> print(matrix_cool[0:2, 0:2])
[[0 1]
  [3 4]]
```

Copiar Arrays

```
>>> a1 = np.array([2, 4, 6])
>>> a2 = a1.copy()
>>> a1[0] = 8
>>> print(a1)
>>> print(a2)
[8 4 6]
```


Operaciones con Arrays

Adición


```
>>> A = np.arange(5, 11)
>>> print(A)
[ 5  6  7  8  9  10]
>>> print(A + 10)
[15  16  17  18  19  20]
```

Sustracción

```
>>> B = np.full(4, 3)
>>> C = np.ones(4, dtype='int')
>>> print(B)
[3 3 3 3]
>>> print(C)
[1 1 1 1]
>>> print(B - C)
[2 2 2 2]
```


Operaciones con Arrays

Shape (forma)


```
>>> a = np.array([[2,3],[2,3],[2,3]])
>>> a.shape
(3, 2)
>>> b = np.array([[1,6,5,2,7],[1,2,7,0,9]])
>>> b.shape
(2, 5)
```

Multiplicación

Trasposición

Operaciones con Arrays

```
>>> # Aritmetica
>>> a = np.arange(4)
>>>
>>> print("a =", a)
a = [0 1 2 3]
>>> print("a + 5 =", a + 5)
a + 5 = [5678]
>>> print("a - 5 =", a - 5)
a - 5 = [-5 -4 -3 -2]
>>> print("a * 2 =", a * 2)
a * 2 = [0 2 4 6]
```

```
Otros
ejemplos
```

```
>>> print("a / 2 =", a / 2)
a / 2 = [0. 0.5 1. 1.5]
>>> print("a // 2 =", a // 2)
a // 2 = [0 0 1 1]
>>> print("-a = ", -a)
-a = [0 -1 -2 -3]
>>> print("a ** 2 = ", a ** 2)
a ** 2 = [0 1 4 9]
>>> print("a % 2 = ", a % 2)
a % 2 = [0 1 0 1]
```


ESTADÍSTICA

```
>>> height_list = [74, 74, 72, 72, 73, 69, 69, 71, 76, 71, 73, 73, 74, 74, 69, 70, 73, 75, 78, 79, 76, 74, 76, 72, 71, 75]
>>> print(np.mean(height_list))
73.1923076923077
>>> print(np.median(height_list))
73.0
>>> print(np.std(height_list))
2.572326554954764
>>> print(np.percentile(height_list,90))
76.0
```


MASCARAS

```
>>> a = np.arange(0,20).reshape(2,10)
>>> print(a)
[[0 1 2 3 4 5 6 7 8 9]
[10 11 12 13 14 15 16 17 18 19]]
>>> mascara = ((a \% 2) == 0)
>>> print(mascara)
[[ True False True False True False True False]
[ True False True False True False True False]]
>>> a[mascara]
array([ 0, 2, 4, 6, 8, 10, 12, 14, 16, 18])
```


