Computability via Recursive Functions

Justin Pumford

March 2020

1 Effective Calcubility and Computability

2 Primitive Recursive Functions

2.1 Functions

For this paper, \mathbb{N} refers to the set $\{0, 1, 2, 3, ...\}$

Definition. The following functions from $\mathbb{N} \oplus ... \oplus \mathbb{N}$ to \mathbb{N} are primitive recursive functions:

1. The unary constant function c:

$$c(x) = 0$$

2. The unary successor function s:

$$s(x) = x + 1$$

3. The n-ary projection function p:

$$1 \le i \le n$$
$$p(x_1, ..., x_n) = x_i$$

4. Function composition

Let f be an n-ary primitive recursive function and $g_1, g_2, ..., g_n$ all be m-ary primitive recursive functions. Then the m-ary composition h of f and $g_1, g_2, ..., g_n$ given by

$$h(x_1, x_2, ..., x_m) = f(g_1(x_1, x_2, ..., x_m), ..., g_n(x_1, x_2, ..., x_m))$$

is a primitive recursive function

5. Primitive recursion Let g be an n-ary primitive recursive function and f be an (n+2)-ary primitive recursive function. Then the (n+1)-ary primitive recursion h of f and g given by

$$h(0, x_1, ..., x_n) = g(x_1, ..., x_n)$$

$$h(s(x), x_1, ..., x_n) = f(x, h(x, x_1, ..., x_n), x_1, ..., x_n)$$

is a primitive recursive function

3 The Ackermann Function

Definition (The Ackermann Function). Let $n, m \in \mathbb{N}$. Then define A(n, m) as follows:

$$A(m,n) = \begin{cases} n+1 & m=0\\ A(m-1,1) & m>0 \land n=0\\ A(m-1,A(m,n-1)) & m>0 \land n>0 \end{cases}$$

Lemma 1. For any $m, n \in \mathbb{N}, A(m, n) \in \mathbb{N}$

Theorem 1. A(m, n) is a total function

Proof. We will proceed inductively to show that A(m, n) is defined for all $m, n \in \mathbb{N}$.

Clearly A(0, n) is defined for all $n \in \mathbb{N}$. Assume A(k, n) is defined for some $k \in \mathbb{N}$ and every $n \in \mathbb{N}$. Since k + 1 > 0, A(k + 1, 0) = A(k, 1), which is defined.

Now we assume A(k+1,j) is defined for some $j \in \mathbb{N}$. By Lemma 1, A(k+1,j) = a for some $a \in \mathbb{N}$. Then since j+1>0, A(k+1,j+1) = A(k,A(k+1,j)) = A(k,a). Since A(k,n) is defined for every $n \in \mathbb{N}$ by our inductive hypothesis, A(k,a) = A(k+1,j+1) is defined.

Theorem 2. For any $m, n, s \in \mathbb{N}$ where s > n, A(m, n) < A(m, s)

Proof. Use the proof of
$$A(m, n)$$
; $A(m, n + 1)$

Theorem 3. For any $m, n, s \in \mathbb{N}$ where s > m, A(m, n) < A(s, n)

Theorem 4. For any $m, n, s \in \mathbb{N}$, A(m, A(s, n)) < A(m + s + 2, n)

Proof. Proof here
$$\Box$$

Definition. Let P be the set of all primitive recursive functions so that if $f(x_1, x_2, ..., x_n) \in P$ and $m = max\{x_1, x_2, ..., x_n\}$, then there exists $t \in \mathbb{N}$ so that $f(x_1, x_2, ..., x_n) < A(t, m)$

Theorem 5. c(x), s(x), $p_i(x_1, x_2, ..., x_n) \in P$

Proof.

$$c(x) = 0 < x + 1 = A(0, x)$$

$$s(x) = x + 1 < x + 2 = A(1, x)$$

$$p_i(x_1, x_2, ..., x_n) = x_i \le m < m + 1 = A(0, m)$$

To verify x + 2 = A(1, x), we proceed by induction.

$$A(1,0) = A(1-1,1) = A(0,1) = 2 = 0 + 2$$
. Now assume $A(1,k) = k + 2$ for some $k \in \mathbb{N}$. Then $A(1,k+1) = A(1-1,A(1,k+1-1)) = A(0,A(1,k)) = A(0,k+2) = k+3 = (k+1)+2$.

Theorem 6. P is closed under composition

Proof. Let $f, g_1, g_2, ..., g_k \in P$, where f is k-ary and each g_i is j-ary. Let $x_1, x_2, ..., x_j \in \mathbb{N}$. Let $m = \max\{x_1, x_2, ..., x_j\}$. Let h be the j-ary primitive recursive function that results from function composition of f with $g_1, g_2, ..., g_k$. Let g_{max} be the g_i giving the maximum value in $\max\{g_1(x_1, ..., x_j), ..., g_k(x_1, ..., x_j)\}$. Let $m_g = g_{max}(x_1, ..., x_j)$ Since $g_{max} \in P$, there exists some $t_g \in \mathbb{N}$ so that $m_g < A(t_g, m)$. Similarly since $f \in P$, there exists some $t_f \in \mathbb{N}$ so that $h(x_1, ..., x_j) = f(g_1(x_1, ..., x_j), ..., g_k(x_1, ..., x_j)) < A(t_f, m_g)$. But since $m_g < A(t_g, m)$, by Theorem 2 $A(t_f, m_g) < A(t_f, A(t_g, m))$. By Theorem 4, $A(t_f, A(t_g, m)) < A(t_f + t_g + 2, m)$. Let $t = t_f + t_g + 2 \in \mathbb{N}$. Then $h(x_1, ..., x_j) < A(t, m)$. So $h \in P$.

Lemma 2. Let h be the primitive recursion of two functions $f, g \in P$. Let $x_1, ..., x_n \in \mathbb{N}$. Let $m = max\{x_1, ..., x_n\}$. Then there exists a $t \in \mathbb{N}$ such that for every $x \in \mathbb{N}h(x, x_1, ..., x_n) < A(t, x + m)$.

Proof. Since $f,g \in P$, there exist t_f and t_g so that for every $x \in \mathbb{N}$, $f(x,h(x,x_1,...,x_n),x_1,...,x_n) < A(t_f,\max\{x,h(x,x_1,...,x_n),x_1,...,x_n\})$ and $g(x_1,...,x_n) < A(t_g,\max\{x_1,...,x_n\})$. Choose t = We proceed by induction. oh man I have no idea where to continue on this one $h(0,x_1,...,x_n) = g(x_1,...,x_n) < \square$

Theorem 7. P is closed under primitive recursion

Proof. Let $f,g \in P$ and h be the primitive recursion of f and g. Let $x, x_1, ..., x_n \in \mathbb{N}$. Let $m = max\{x_1, ..., x_n\}$. Then by Lemma 2, there is a $t \in \mathbb{N}$ so that $h(x, x_1, ..., x_n) < A(t, x + m)$. Let $m' = max\{x, x_1, ..., x_n\} = max\{x, m\}$. Since $x + m \le m'$, $A(t, x + m) \le A(t, 2m')$ by Lemma 2. Since 2m' < 2m' + 3, A(t, 2m') < A(t, 2m' + 3) also by Lemma 2.

By Lemma ?, 2m' + 3 = A(2, m'), so A(t, 2m' + 3) = A(t, A(2, m')). By Theorem 4, A(t, A(2, m')) = A(t+2+2, m') = A(t+4, m'). So $h(x, x_1, ..., x_n) < A(t+4, m')$.

Therefore $h \in P$.

Theorem 8. P is precisely the primitive recursive functions

Proof. All $f \in P$ are primitive recursive by the definition of P. So it remains to show all primitive recursive functions are in P. Let f be a primitive recursive function. Then f can be created by applying function composition and primitive recursion to the constant, successor, and projection functions. The constant, successor, and projection functions are all in P, and P is closed under function composition and primitive recursion. Therefore $f \in P$. \square

Theorem 9. A(m,n) is not a primitive recursive function

Proof. Suppose that A is a primitive recursive function. Then $A \in P$. Then there exists a $t \in \mathbb{N}$ so that for any $m, n \in \mathbb{N}$, $A(m, n) < A(t, max\{m, n\})$. Set m = n = t. Then $max\{m, n\} = m = n = t$. So A(m, n) = A(t, t) < A(t, t) which is a contradition. Therefore A is not primitive recursive. \square

4 General Recursive Functions

4.1 Partial Functions

4.2 Definition of General Recursive Functions