Lecture 9

Rigid body kinematics: Angular velocity; Examples; Relation to Euler angle sequence

25 - 31 August, 2021

- I. **Properties**. Rigid body in 3D motion: $\mathbf{\omega}(t) = \dot{\varphi}\hat{\mathbf{n}}(t) = \mathrm{ax}\left(\dot{\mathbf{R}}_0 \cdot \mathbf{R}_0^T\right) = \mathrm{ax}\left(\mathbf{\Omega}(t)\right)$.
 - 1. Angular velocity ω is a vector.
 - 2. Can add / subtract angular velocities.
- II. Example: Relative angular velocity.

Rigid body \mathcal{B}_1 is *observed* by another rotating rigid body \mathcal{B}_2 to have angular velocity $\mathbf{\omega}_{1/2}$. If \mathcal{B}_2 is *measured* to have angular velocity $\mathbf{\omega}_{2/0}$ in a CS $\{\mathcal{E}_0, O, \hat{\mathbf{E}}_i\}$, find the angular velocity of $\mathbf{\omega}_{1/0}$ of \mathcal{B}_1 that would be observed in \mathcal{E}_0 .

 $\iff \mathcal{B}_1$ is measured by a rotating CS $\{\mathcal{E}'', G_2, \hat{\mathbf{e}}_i''\}$ to have angular velocity $\mathbf{\omega}_{1/2}$. If \mathcal{E}'' rotates at $\mathbf{\omega}_{1/0}$ with respect to CS \mathcal{E}_0 , find rotation rate of \mathcal{B}_1 with respect to \mathcal{E}_0 .

Example: 2D rotation from 3D description. A rigid body \mathscr{B} 's motion is described by a moving observer $\{\mathscr{E}_0, O, \hat{\mathbf{E}}_i(t)\}$ to be

$$\{\mathscr{E}_{0}, O, \hat{\mathbf{E}}_{i}(t)\} \xrightarrow{\mathsf{R}\left(\hat{\mathbf{E}}_{3}(t), \varphi(t)\right)} \{\mathscr{E}, G, \hat{\mathbf{e}}_{i}(t)\},$$

where \mathscr{E} is the rigid body's BFCS. Find angular velocity $\omega_{\mathscr{E}/\mathscr{E}_0}$ of the body \mathscr{B} with respect to \mathscr{E}_0 .

Solution:

- 1. Angular velocity tensor: $\Omega(t) = \dot{R}(t) \cdot R^{T}(t)$.
 - i. $\dot{R}(t)$: Time derivative of R(t) w.r.t. $\mathcal{E}_0(t)$!

$$[\mathsf{R}]_{\aleph_0} = \begin{pmatrix} \cos\varphi(t) & -\sin\varphi(t) & 0 \\ \sin\varphi(t) & \cos\varphi(t) & 0 \\ 0 & 0 & 1 \end{pmatrix}; [\dot{\mathsf{R}}]_{\aleph_0} = \dot{\varphi} \begin{pmatrix} -\sin\varphi(t) & -\cos\varphi(t) & 0 \\ \cos\varphi(t) & -\sin\varphi(t) & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

Therefore,
$$[\Omega(t)]_{\mathcal{E}_0} = \dot{\varphi} \begin{pmatrix} 0 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

2. Angular velocity $\omega_{\mathscr{C}/\mathscr{E}_0} = \operatorname{ax}(\Omega(t)) = \dot{\varphi}\hat{\mathbb{E}}_3$.

Remark: Angular velocity of \mathcal{B} as measured by observer \mathcal{E}_0 , **not** total (i.e. w.r.t. non-rotating CS).

Example. Angular velocity using the **z-x-z** or **3-1-3** Euler angle sequence. Consider a rigid body with BFCS located at any time *t* by :

$$\{\mathscr{E}_0, \hat{\mathbf{E}}_i\} \xrightarrow{\mathsf{R}_{\varphi}(t)} \{\mathscr{E}', \hat{\mathbf{e}}_i'(t)\} \xrightarrow{\mathsf{R}_{\theta}(t)} \{\mathscr{E}'', \hat{\mathbf{e}}_i''(t)\} \xrightarrow{\mathsf{R}_{\psi}(t)} \{\mathscr{E}, \hat{\mathbf{e}}_i(t)\}$$

$$\mathsf{R}_{\varphi}(t) = \mathsf{R}\big(\hat{\mathbf{E}}_{3}, \varphi(t)\big); \; \mathsf{R}_{\theta}(t) = \mathsf{R}\left(\hat{\mathbf{e}}_{1}'(t), \theta(t)\right); \; \mathsf{R}_{\psi}(t) = \mathsf{R}\left(\hat{\mathbf{e}}_{3}''(t), \psi(t)\right)$$

Find the rigid body's angular velocity $\omega_{\mathscr{E}/\mathscr{E}_0}$

Solution I.
$$\{\mathscr{E}_0, O, \hat{\mathbf{E}}_i(t)\} \xrightarrow{\mathsf{R}(t)} \{\mathscr{E}, \hat{\mathbf{e}}_i(t)\}$$
 with $\mathsf{R}(t) = \mathsf{R}_{\psi} \cdot \mathsf{R}_{\theta} \cdot \mathsf{R}_{\varphi}$. Find $\Omega(t) = \dot{\mathsf{R}}(t) \cdot \mathsf{R}^T(t)$.

Solution II. Use relative angular velocity.

$$1. \, \boldsymbol{\omega}_{\mathscr{C}/\mathscr{C}_0} = \boldsymbol{\omega}_{\mathscr{C}/\mathscr{C}''} + \boldsymbol{\omega}_{\mathscr{C}''/\mathscr{C}'} + \boldsymbol{\omega}_{\mathscr{C}'/\mathscr{C}_0} = \dot{\boldsymbol{\psi}} \hat{\mathbf{e}}_3'' + \dot{\boldsymbol{\theta}} \hat{\mathbf{e}}_1' + \dot{\boldsymbol{\phi}} \hat{\mathbf{E}}_3$$

2. Need
$$[\boldsymbol{\omega}_{\mathscr{E}/\mathscr{E}_0}]_{\mathscr{E}_0} = \dot{\boldsymbol{\psi}}[\hat{\mathbf{e}}_3'']_{\mathscr{E}_0} + \dot{\boldsymbol{\theta}}[\hat{\mathbf{e}}_1']_{\mathscr{E}_0} + \dot{\boldsymbol{\varphi}}[\hat{\mathbf{E}}_3]_{\mathscr{E}_0}$$

3.
$$\hat{\mathbf{e}}_3'' = \mathbf{R}_{\theta} \cdot \mathbf{R}_{\varphi} \cdot \hat{\mathbf{E}}_3$$
 and $\hat{\mathbf{e}}_1' = \mathbf{R}_{\varphi} \cdot \hat{\mathbf{E}}_1 \implies$

$$[\hat{\mathbf{e}}_3'']_{\mathscr{E}_0} = [\mathsf{R}_{\varphi}]_{\mathscr{E}_0}[\mathsf{R}_{\theta}]_{\mathscr{E}'}[\hat{\mathbf{E}}_3]_{\mathscr{E}_0} \text{ and } [\hat{\mathbf{e}}_1']_{\mathscr{E}_0} = [\mathsf{R}_{\varphi}]_{\mathscr{E}_0}[\hat{\mathbf{E}}_1]_{\mathscr{E}_0}$$

4. Know $[R_{\varphi}]_{\mathscr{E}_0}$ and $[R_{\theta}]_{\mathscr{E}'}$ — 2D rotations.

I. **Example**. Robotic arm carrying a disc \mathcal{D} .

Find $\omega_{\mathcal{D}}$ assuming that each joint rotates with respect to the previous joint at the rate $\dot{\theta}$, and the base rotates at the rate $\dot{\varphi}$.

