CHEME 6880 | Final Project – Supporting Information

Using supervised learning methods to predict Buchwald-Hartwig amination yields from high throughput experimentation data

Nathan M. Lui

Contents

List of features	S	3
List of models (w/ implementation)		
Table S1	Performance and optimized hyperparameters of models trained on DFT features using leave-one-molecule-out testing.	5
Table S2	Performance and optimized hyperparameters of models trained on one-hot encoded features using leave-one-molecule-out testing.	7
Table S3	Performance and optimized hyperparameters of models trained on DFT encoded features using randomly sampled testing.	9
Figure S1	Observed vs. predicted plot for the test set molecules of the best linear model.	11
Figure S2	Observed vs. predicted plot for the test set molecules of the best linear model and Żurański model.	11
Figure S3	Observed vs. predicted plot for the test set molecules of the best support vector regressor.	12
Figure S4	Observed vs. predicted plot for the test set molecules of the best support vector regressor and Żurański model.	12
Figure S5	Observed vs. predicted plot for the test set molecules of the best <i>k</i> -nearest neighbor regressor.	13
Figure S6	Observed vs. predicted plot for the test set molecules of the best <i>k</i> -nearest neighbor regressor and Żurański model.	13
Figure S7	Observed vs. predicted plot for the test set molecules of the best tree-based regressor.	14
Figure S8	Observed vs. predicted plot for the test set molecules of the best tree-based regressor and Żurański model.	14
Figure S9	Observed vs. predicted plot for the test set molecules of the best neural network.	15
Figure S10	Observed vs. predicted plot for the test set molecules of the best neural network and Żurański model.	15
Attached Files		16
Supplementary	References	17

List of features

Reproduced from Supplementary Information of Ahneman et al.¹

* refers to atom-specific descriptors

Additive Descriptors (n = 19)

Еномо, Ецимо, Dipole Moment, Electronegativity, Hardness, Molecular Volume, Molecular Weight, Ovality, Surface Area, *C3 NMR Shift, *C3 Electrostatic Charge, *C4 NMR Shift, *C4 Electrostatic Charge, *C5 NMR Shift, *C5 Electrostatic Charge, *N1 Electrostatic Charge, *O1 Electrostatic Charge, V1 Frequency, V1 Intensity

Aryl Halide Descriptors (n = 27)

Еномо, Elumo, Dipole Moment, Electronegativity, Hardness, Molecular Volume, Molecular Weight, Ovality, Surface Area, *C1 NMR Shift, *C1 Electrostatic Charge, *C2 NMR Shift, *C2 Electrostatic Charge, *C3 NMR Shift, *C3 Electrostatic Charge, *C4 NMR Shift, *C4 Electrostatic Charge, *H2 NMR Shift, *H2 Electrostatic Charge, *H3 NMR Shift, *H3 Electrostatic Charge, V1 Frequency, V1 Intensity, V2 Frequency, V2 Intensity, V3 Frequency, V3 Intensity

Base Descriptors (n = 10)

Еномо, Ецимо, Dipole Moment, Electronegativity, Hardness, Molecular Volume, Molecular Weight, Ovality, Surface Area, *N1 Electrostatic Charge

Ligand Descriptors (n = 64)

Dipole Moment, *C1 NMR Shift, *C1 Electrostatic Charge, *C2 NMR Shift, *C2 Electrostatic Charge, *C3 NMR Shift, *C3 Electrostatic Charge, *C4 NMR Shift, *C4 Electrostatic Charge, *C5 NMR Shift, *C5 Electrostatic Charge, *C6 NMR Shift, *C6 Electrostatic Charge, *C7 NMR Shift, *C7 Electrostatic Charge, *C8 NMR Shift, *C8 Electrostatic Charge, *C9 NMR Shift, *C9 Electrostatic Charge, *C10 NMR Shift, *C10 Electrostatic Charge, *C11 NMR Shift, *C11 Electrostatic Charge, *C12 NMR Shift, *C12 Electrostatic Charge, *C13 NMR Shift, *C13 Electrostatic Charge, *C14 NMR Shift, *C14 Electrostatic Charge, *C15 NMR Shift, *C15 Electrostatic Charge, *C16 NMR Shift, *C16 Electrostatic Charge, *C17 NMR Shift,

*C17 Electrostatic Charge, *H11 NMR Shift, *H11 Electrostatic Charge, *H3 NMR Shift, *H3 Electrostatic Charge, *H4 NMR Shift, *H4 Electrostatic Charge, *H9 NMR Shift, *H9 Electrostatic Charge, *P1 Electrostatic Charge, V1 Frequency, V1 Intensity, V2 Frequency, V2 Intensity, V3 Frequency, V3 Intensity, V4 Frequency, V4 Intensity, V5 Frequency, V5 Intensity, V6 Frequency, V6 Intensity, V7 Frequency, V7 Intensity, V8 Frequency, V8 Intensity, V9 Frequency, V9 Intensity, V10 Frequency, V10 Intensity

List of models examined (w/ implementation)

All models were trained on the original data as well as normalized data

- Linear models:
 - Ordinary Least Squares (LinearRegerssion()))
 - Ridge Regression (RidgeCV())
 - LASSO Regression (LassoCV())
 - Elastic Net (ElasticNetCV())
 - Stochastic Gradient Descent Regression (SGDRegressor())
 - o Generalized Linear Model GLM (TweedieRegressor())
- k-nearest Neighbors (KneighborRegressor())
- Support Vector Regression (SVR())
- Tree-based models:
 - Decision Tree Regression (DecisionTreeRegressor())
 - Random Forest Regression (RandomForestRegressor())
 - Gradient Boosted Regression Trees GBRT (GradienBoosingRegressor())
 - Adaboost Regression Tree (AdaboostRegressor())
 - XGBoosted Regression Tree (xgb.XGBRegressor())
- Neural Network Regression (MLPRegressor())

 $\textbf{Table S1} \mid \text{Performance and optimized hyperparameters of models trained on DFT features using leave-one-molecule-out testing.}$

Model	Optimized Model Hyper/parameters	Test RMSE	Test R ²
OLS		164612.23	-32733729.15
Scaled OLS		5.8 e11	-4.1e20
Ridge	$\alpha = 0.0910$	17.26430	0.63994
Scaled Ridge	$\alpha = 244.20$	17.86942	0.61426
LASSO	$\alpha = 39.49$	19.43688	0.54362
Scaled LASSO	$\alpha = 0.215$	18.18718	0.60042
Elastic Net	$\alpha = 39.49$	19.43688	0.54362
Elastic Net	ℓ_1 ratio = 1.0	19.43000	0.34302
Scaled Elastic Net	$\alpha = 0.093$	17.90920	0.61254
Scaled Elastic Net	ℓ_1 ratio = 0.1	17.90920	0.01234
	$\alpha = 1000$		
SGD Regression	learning rate: adaptive	1.3e13	-2.1e23
	using early stopping		
Scaled SGD	$\alpha = 0.1$		
Regression	learning rate: adaptive	17.94914	0.61081
	using early stopping		
GLM	Poisson regression	28.84749	-0.00528
	$\alpha = 1$		
Scaled GLM	Gaussian regression	18.23403	0.59836
	$\alpha = 0.2$		
Żurański GLM ²	Gaussian regression	17.92750	0.61175
	$\alpha = 0.1$		
l. nn	$k = 3$ distance metric: ℓ_1 -norm	15.43473	0.71221
k-nn	distance-weighted	13.43473	0.71221
	k = 5		
Scaled <i>k</i> -nn	distance metric: ℓ_1 -norm	12.25547	0.81856
Scaled k-IIII	distance-weighted	12.233 17	0.01030
Żurański k-nn²	k=3	12.2.5.5	0.=00:0
	distance metric: ℓ_2 -norm	13.24342	0.78813
SVR	C = 1000	18.27959	0.59635
Scaled SVR	C = 100	13.63759	0.77533
Żurański SVR ²	C = 0.5	22 25790	0.40152
Zuranski SVK ²	$\gamma = 0.007$	22.25789	0.40153

Decision Tree	minimum samples per leaf = 300	24.25820	0.28913
Scaled Decision Tree	minimum samples per leaf = 300	24.25820	0.28913
Random Forest	trees = 300 $maximum features = 7$	13.17499	0.79031
Żurański Random Forest ²	trees = 20	19.29864	0.55009
Gradient Boosted Regression Trees	trees = 200	16.11411	0.68632
Adaboost Regression Trees	learning rate = 0.1 trees = 100 maximum tree depth = 3	18.80018	0.57303
XGBoost Regression Trees	learning rate = 0.3 number of trees = 20 maximum tree depth = 3 gamma = 0	17.14594	0.64486
Żurański XGBoost Regression Trees ²	learning rate = 0.3 number of trees = 15 maximum tree depth = 6 gamma = 0	17.37165	0.63545
Neural Network	$\alpha = 0.00001$ hidden layer nodes: 100	20.97158	0.46871
Scaled Neural Network	$\alpha = 0.0001$ hidden layer nodes: 6	15.22099	0.72013
Żurański Neural Network ²	$\alpha = 0.0001$ hidden layer nodes: 4	16.75460	0.66089

Table S2 | Performance and optimized hyperparameters of models trained on one-hot encoded features using leave-one-molecule-out testing.

Model	Optimized Model Hyper/parameters	Test RMSE	Test R ²
OLS		5.4e12	-3.6e22
Scaled OLS		5.8e14	-4.1e26
Ridge	$\alpha = 2.0236$	17.28109	0.63924
Scaled Ridge	$\alpha = 33.932$	17.28669	0.63901
LASSO	$\alpha = 0.0033$	17.15413	0.64453
Scaled LASSO	$\alpha = 0.00834$	17.15078	0.64466
Elastic Net	$\alpha = 0.0033$ $\ell_1 \text{ ratio} = 1.0$	17.15413	0.64453
Scaled Elastic Net	$\alpha = 0.00834$ $\ell_1 \text{ ratio} = 1.0$	17.15078	0.64466
SGD Regression	$\alpha = 0.001$ learning rate: adaptive using early stopping	17.40642	0.63399
Scaled SGD Regression	$\alpha = 0.1$ learning rate: adaptive using early stopping	17.19814	0.64270
GLM	Poisson regression $\alpha = 1$	18.71425	0.57886
Scaled GLM	Gaussian regression $\alpha = 0.2$	16.78881	0.65950
Żurański GLM²	Gaussian regression $\alpha = 0.1$	17.64454	0.62391
k-nn	$k = 5$ distance metric: ℓ_2 -norm distance-weighted	15.73572	0.70088
Scaled k-nn	$k = 5$ distance metric: ℓ_2 -norm distance-weighted	15.20846	0.72059
Żurański k-nn²	$k = 3$ distance metric: ℓ_2 -norm	15.48280	0.71042
SVR	C = 100	14.59498	0.74268
Scaled SVR	$C = 100$ $\gamma = 0.01$	14.19613	0.75655
Żurański SVR ²	$C = 0.5$ $\gamma = 0.007$	22.58015	0.38408

Decision Tree	minimum samples per leaf = 10	15.94972	0.69269
Scaled Decision Tree	minimum samples per leaf = 10	15.94972	0.69269
Random Forest	trees = 50 maximum features = 11	14.36821	0.75061
Żurański Random Forest ²	trees = 20	16.72889	0.66193
Gradient Boosted Regression Trees	learning rate = 1.0 trees = 700	15.65603	0.70390
Adaboost Regression Trees	learning rate = 0.1 trees = 100 maximum tree depth = 5	19.81363	0.52576
XGBoost Regression Trees	learning rate = 0.3 number of trees = 40 maximum tree depth = 6 gamma = 0	14.81151	0.73499
Żurański XGBoost Regression Trees ²	learning rate = 0.3 number of trees = 15 maximum tree depth = 6 gamma = 0	15.93111	0.69341
Scaled Neural Network	$\alpha = 0.0001$ hidden layer nodes: 6	14.33062	0.75191
Żurański Neural Network ²	$\alpha = 0.0001$ hidden layer nodes: 4	14.77841	0.73617

Table S3 | Performance and optimized hyperparameters of models trained on DFT encoded features using a randomly sampled test set.

Model	Optimized Model Hyper/parameters	Test RMSE	Test R ²
OLS		15.17728	0.69440
Scaled OLS		15.15040	0.69548
Ridge	$\alpha = 0.001$	15.21968	0.69269
Scaled Ridge	$\alpha = 0.001$	15.17068	0.69466
LASSO	$\alpha = 6.85239$	17.17224	0.60878
Scaled LASSO	$\alpha = 0.00948$	15.40995	0.68496
Elastic Net	$\alpha = 6.85239$		0.60878
Elastic Net	$\ell_1 \text{ ratio} = 1.0$	17.17224	0.00878
Scaled Elastic Net	$\alpha = 0.00948$		0.68496
Scared Liastic Net	ℓ_1 ratio = 1.0	15.40995	0.00470
SGD Regression	$\alpha = 0.001$	1.4e13	-2.9e23
	learning rate: adaptive	1.1013	2.9023
Scaled SGD	$\alpha = 0.1$		
Regression	penalty: ℓ_1	15.99681	0.66050
	learning rate: adaptive		
GLM	Poisson regression	16.99227	0.61694
	$\alpha = 1$		
Scaled GLM	Poisson regression	13.05295	0.77396
	$\alpha = 0$		
Żurański GLM²	Gaussian regression	16.43260	0.64176
	$\alpha = 0.1$ $k = 5$		
<i>k</i> -nn	$\kappa = 3$ distance metric: ℓ_1 -norm	16.07998	0.65697
K-1111	distance-weighted	10.07770	0.03077
	k = 5		
Scaled <i>k</i> -nn	distance metric: ℓ ₁ -norm	15.57180	0.68970
.2 00.20 00 10 2222	distance-weighted		
	k=3	15.01102	0.55405
Żurański <i>k</i> -nn ²	distance metric: ℓ ₂ -norm	17.91193	0.57435
SVR	C = 1000	17.33799	0.60119
Scaled SVR	C = 100	11.58464	0.82195
	$\gamma = 0.01$	11.36404	0.82193
Żurański SVR ²	C = 0.5	20.50922	0.44196
	$\gamma = 0.007$	20.30722	0.44170
Decision Tree	minimum samples per leaf = 1	9.56427	0.87864

Scaled Decision Tree	minimum samples per leaf = 1	9.56427	0.87864
Random Forest	trees = 50	7.61278	0.92311
Żurański Random Forest ²	trees = 20	7.49203	0.92553
Gradient Boosted Regression Trees	learning rate = 1.0 trees = 700	8.39844	0.90642
Adaboost Regression Trees	learning rate = 0.1 trees = 10 maximum tree depth = 3	12.81256	0.78221
XGBoost Regression Trees	learning rate = 0.3 number of trees = 40 maximum tree depth = 9 gamma = 0	0.82505	0.99910
Żurański XGBoost Regression Trees ²	learning rate = 0.3 number of trees = 15 maximum tree depth = 6 gamma = 0	6.57220	0.94287

Figure S1 | Observed vs. predicted plot for the test set molecules of the best linear model (elastic net regression, $\alpha = 0.09332$, ℓ_1 ratio = 0.1, $R^2 = 0.61$).

Figure S2 | Observed vs. predicted plot for the test set molecules of the best linear model (blue, elastic net regression, $\alpha = 0.09332$, ℓ_1 ratio = 0.1, $R^2 = 0.61$) and Żurański model (orange, generalized linear model, $\alpha = 0.1$, $R^2 = 0.61$).

Figure S3 | Observed vs. predicted plot for the test set molecules of the best support vector regressor ($C = 100, R^2 = 0.78$).

Figure S4 | Observed vs. predicted plot for the test set molecules of the best support vector regressor (blue, C = 100, $R^2 = 0.78$) and Żurański model (orange, C = 0.5, $\gamma = 0.007$, $R^2 = 0.40$).

Figure S5 | Observed vs. predicted plot for the test set molecules of the best *k*-nearest neighbor regressor (k = 5, distance metric: ℓ_1 , distance weighted, $R^2 = 0.82$).

Figure S6 | Observed vs. predicted plot for the test set molecules of the best k-nearest neighbor regressor (blue, k = 5, distance metric: ℓ_1 , distance weighted, $R^2 = 0.82$) and Żurański model (orange, k = 3, distance metric: ℓ_2 , unweighted, $R^2 = 0.79$).

Figure S7 | Observed vs. predicted plot for the test set molecules of the best tree-based regressor (random forest, trees = 300, feature-limited, $R^2 = 0.79$).

Figure S8 | Observed vs. predicted plot for the test set molecules of the best tree-based regressor (orange random forest, trees = 300, feature-limited, $R^2 = 0.79$) and Żurański model (random forest, trees = 20, $R^2 = 0.55$).

Figure S9 | Observed vs. predicted plots for the test set molecules of the best neural network (6 hidden nodes in a single layer, $R^2 = 0.72$).

Figure S10 | Observed vs. predicted plot for the test set molecules of the best neural network (blue, 6 hidden nodes in a single layer, $R^2 = 0.72$) and Żurański model (orange, 4 hidden nodes in a single layer, $R^2 = 0.66$).

Attached files

dataProcessing.ipynb

Python notebook for pre-processing of data, conversion from smiles to features, and pickling of final datasets/indices

analysis-lomocv.ipynb

Python notebook for training/testing models on the DFT featurized dataset using the leave-one-molecule-out CV/split method.

DFT-LOMOCV.txt

Model parameters and training/testing errors for models trained on the DFT featurized dataset using the leave-one-molecule-out CV/split method.

analysis-randomCV.ipynb

Python notebook for training/testing models on the DFT featurized dataset using the random CV/split method.

DFT-RandomCV.txt

Model parameters and training/testing errors for models trained on the DFT featurized dataset using the random CV/split method.

analysis-onehot-lomocv.ipynb

Model parameters and training/testing errors for models trained on the one-hot encoded dataset using the leave-one-molecule-out CV/split method.

OneHot-LOMOCV.txt

Model parameters and training/testing errors for models trained on the one-hot encoded dataset using the leave-one-molecule-out CV/split method.

analysis-onehot-rCV.ipynb

Model parameters and training/testing errors for models trained on the one-hot encoded dataset using the random CV/split method.

OneHot-RandomCV.txt

Model parameters and training/testing errors for models trained on the one-hot encoded dataset using the random CV/split method.

Supplementary References

- 1. Ahneman, D. T., Estrada, J. G., Lin, S., Dreher, S. D. & Doyle, A. G. Predicting reaction performance in C–N cross-coupling using machine learning. *Science* (80-.). **360**, 186–190 (2018).
- Żurański, A. M., Martinez Alvarado, J. I., Shields, B. J. & Doyle, A. G. Predicting Reaction Yields via Supervised Learning. *Acc. Chem. Res.* 54, 1856–1865 (2021).