GEOMETRY

Chapter 06

leroSecondary

Clasificación de los Triángulos

La forma en triángulo convierte en rígida a una estructura

1.- Clasificación según las medidas de los lados.

2.- Clasificación según las medidas de sus ángulos.

∆ Oblicuángulos

 Halle el menor valor entero del mayor ángulo agudo de un triángulo rectángulo, si BC > AB.

Halle el valor de x.

$$2x + 1 = 9$$

$$2x = 8$$

$$x = 4$$

Se tiene un triángulo equilátero ABC, donde el ángulo exterior de C mide x. Halle el valor de x.

Halle el valor de a.

$$a + 40^{\circ} + 40^{\circ} =$$
 180°
 $a + 80^{\circ} = 180^{\circ}$

$$a = 100^{\circ}$$

Halle el valor de x.

 $x = 30^{\circ}$

Los lados de un triángulo equilátero miden 2x, 12 y 3y. Calcule x + y.

Halle el valor de x, si AB = AC

△ABC: ISÓSCELES

$$2x + 5x + 5x = 180^{\circ}$$

 $12x = 180^{\circ}$

Tres alumnos con un lapicero cada uno (de la misma marca y modelo) unen sus lapiceros por los extremos. ¿Qué clase de triángulo formarán sus lapiceros?

© SACO OUYEROS