3 Teoria K

- 46. Calculeu el grup de Grothendieck dels monoides/semigrups següents:
 - (i) $(\mathbb{P}, +)$, on $\mathbb{P} = \{n \in \mathbb{Z} : n > 0\}$ i + denota la suma habitual.
 - (ii) (\mathbb{P},\cdot) on \cdot denota el producte habitual.
 - (iii) $(\mathcal{P}(X), \cup)$, on $\mathcal{P}(X)$ és el conjunt de parts d'un conjunt X.
 - (iv) $(\emptyset, *)$, on * denota l'única possible operació binària.
 - (v) $\mathbb{N} \sqcup (0, \infty)$ amb operació definida de la manera següent: Si denotem els elements de \mathbb{N} per $(c_n)_{n \in \mathbb{N}}$ i els elements de $(0, \infty)$ per $(s_\alpha)_{\alpha \in (0,\infty)}$, aleshores $c_n + c_m = c_{n+m}$, $s_\alpha + s_\beta = s_{\alpha+\beta}$, i $c_n + s_\alpha = s_{n+\alpha}$.
- 47. Sigui I un anell (que no necessàriament conté una unitat). Definim I_+ com $I \times \mathbb{Z}$ amb operació (x, n)(y, m) = (xy + mx + ny, nm). Proveu que:
 - (i) I_+ és un anell amb unitat que conté I com ideal i a més $I_+/I \cong \mathbb{Z}$.
 - (ii) Si $\alpha: I \to I'$ és un morfisme d'anells (que potser no tenen unitat), llavors α té una única extensió $\alpha_+: I_+ \to I'_+$.
 - (iii) Si I té unitat de partida, llavors $I_+ \cong I \times \mathbb{Z}$, on el darrer és el producte cartesià d'anells amb operació component a component.
 - (iv) Suposem que K és un cos, que I no té unitat i a més té una estructura de K-espai vectorial compatible amb l'operació de l'anell. Proveu que llavors $\tilde{I} := I \times K$, amb operacions definides com ho fem per a I_+ , és un anell amb unitat que conté I com a ideal bilateral de forma minimal, en el sentit que si R és un anell amb estructura de K-espai vectorial que conté I com a ideal, llavors també ha de contenir \tilde{I} .
- 48. Calculeu $K_0(\mathbb{Z}/(m))$. (Indicació: feu servir el teorema xinès dels residus.)
- 49. Diem que un ideal I d'un anell commutatiu R és radical si $I \subseteq J(R)$, on J(R) és el radical de Jacobson. Si I és radical, llavors:
 - (i) Si M és un R-mòdul finitament generat, i $N \subseteq M$ és un submòdul tal que M = N + IM, llavors M = N. Proveu que, de fet, aquest enunciat implica que I és radical (i és equivalent al Lema de Nakayama).
 - (ii) Si P i Q són R-mòduls projectius finitament generats tals que $P/IP \cong Q/IQ$ com a R-mòduls (equivalentment, com R/I-mòduls), llavors $P \cong Q$.
 - (iii) Deduïu de (ii) que el morfisme de grups $\pi_* \colon \mathrm{K}_0(R) \to \mathrm{K}_0(R/I)$ induït pel pas al quocient $\pi \colon R \to R/I$ és injectiu.
- 50. Sigui R un anell semilocal. Proveu que llavors $K_0(R) \cong \mathbb{Z}^m$ per a un cert m.
- 51. Sigui I un ideal (bilateral) nilpotent d'un anell (no necessàriament commutatiu). Proveu que:
 - (i) $M_n(I)$ també és un ideal nilpotent de $M_n(R)$ per a tot n.
 - (ii) Si \overline{r} és un element idempotent de R/I, llavors existeix un element idempotent $e=e^2\in R$ tal que $\overline{e}=\overline{r}$ (on \overline{x} vol dir les classes mòdul I). (Indicació: Com que $r(1-r)\in I$, és un element nilpotent i per tant $(r(1-r))^n=0$. Considereu l'expansió binomial de $(r+(1-r))^{2n-1}$.)

- (iii) Proveu que $K_0(R/I) \cong K_0(R)$.
- (iv) Si R és un anell commutatiu semilocal amb exactament n ideals maximals i sabem que $J(R)^n = 0$, llavors $K_0(R) \cong \mathbb{Z}^n$.
- 52. Si R i S són anells, proveu que $K_1(R \times S) \cong K_1(R) \times K_1(S)$. Calculeu $K_1(\mathbb{Z}/(m))$. Trobeu també una expressió pel K_1 d'un producte d'anells locals.
- 53. Sigui K un cos, i $R = \operatorname{End}_K(V)$ on dim V és infinita numerable. Proveu que llavors $K_0(R) = \{0\}$. (Proveu, de fet, que $R \oplus R \cong R$).
- 54. Calculeu $K_1(F[t]/(t^m))$ on F és un cos i m > 0.
- 55. Sigui R un anell amb unitat i I un ideal de R. Suposem que la projecció natural $\pi \colon R \to R/I$ té una secció. Proveu que llavors tenim una successió exacta escindida

$$0 \to \mathrm{K}_0(I) \to \mathrm{K}_0(R) \to \mathrm{K}_0(R/I) \to 0.$$

56. Calculeu $K_0((m))$ per $m \in \mathbb{Z}$ (o sigui, el grup de Grothendieck de l'ideal (m)). Feu els casos m = 2, m = p un primer, $m = 2^r$. Indicació: Feu servir la successió exacta de Teoria K vista a classe (amb K_0 i K_1).