0

CPS Term Project

IBK 기업은행 고객 대기시간 최적화

201831402 오승엽 2018312014 서영석

Index

- 1. 시뮬레이션 목적
- 2. 시뮬레이션 가정
- 3. Arena Model
 - 1. 데이터 수집
 - 2. 모델 설명
 - 3. 결과
- 4. 개선안(α,β,γ,δ)
- 5. 결론

1. 시뮬레이션 목적

[포인트 몬스터 은행 사용도 조사 결과] [대기증대로 인한 인터넷 전문 은행 사용자 증가]

- ・ 창구 업무 비율 불균형으로 인해 초래된 대기 시간 증대
- · 점심시간 Capacity 감소로 인한 대기 시간 증대
- 이러한 운영상 문제점은 고객의 불만 증가 및 타 은행 이탈로 이어짐
- 이러한 대기 시간으로 인해 인터넷 전문은행으로 이탈 고객의 수가 증가
- 현 상황에 대한 적절한 개선책을 확보하고, 도출된 개선책의 효과를 검증

2. 시뮬레이션 가정

- 1. 은행은 매일 아침 9시에 업무를 시작한다.
- 2. 오후 4시 이후에는 영업을 종료한다.
- 3. 오전 09~11, 점심 11~13, 오후 13~16으로 3단계로 구분
- 4. 오후 3시 30분 이후로는 신규 고객을 받지 않는다.
- 5. 프로세스 상 남아있는 고객들은 모두 서비스를 받는다.
- 6. 예금 창구는 4명, 대출 창구는 6명의 행원으로 구성된다.
- 7. 행원들은 2교대로 1시간 씩 점심시간을 할당 받는다.
- 8. 각 고객은 대기시간에 비례한 이탈 확률이 존재한다.

3.1 데이터 수집 (Arrival)

고객

3.1 데이터 수집

구분	오전	점심	오후
분포			
람다(초)	150.51	88.496	83.9587
추정 결과	P-value > 0.05	P-value > 0.05	P-value > 0.05
스궤줄(명/시간)	23.9038	40.6814	42.8642

- 시간대 별 수집한 데이터의 분포
- ・ 모두 지수 분포 형태이며, 카이제곱 및 스미느로프 검정 결과 통계적으로 적합
- ・ 람다의 역수 변환 후 3600을 곱하여 단위 시간 당 유입 고객 형태로 변환

3.1 데이터 수집

♦♦

영업점 허용 가능한 대기 시간 (단위=%)					
대기 시간	대기 시간 대기 가능 응답 비율				
5분 미만	2.7				
10분 미만	19.4				
15분 미만	미만 20.4				
20분 미만	20분 미만 26.5				
30분 미만 26.5					
30분 이상	4.4				

$$y = 1.4952x - 11.3667$$

[x=대기시간(분), y = 이탈 확률(%)]

[내방 고객 대상 허용 가능한 대기 시간 비율]

*영업점 내방 고객 300명 설문조사 결과.

[대기 시간에 따른 고객 이탈 확률 회귀식]

- ・ 포스텍, 하나금융융합기술원 연구팀이 일산 소재 하나은행 영업점에 내방한 고객을 상대로 한 설문 조사 결과를 참고
- ・ 각 고객의 대기시간에 따른 이탈 확률에 대한 회귀식 생성
- 대기열에서 빠져나올 시, 회귀식 결과에 따라 무작위 하게 서비스를 받지 않고 영업점 이탈

3.1 데이터 수집 (Service)

행원

3.1 데이터 수집 (Service)

- 예금, 대출 업무 소요 시간에 대한 분포 생성 결과
- 모두 삼각 분포 형태이며, 카이제곱 및 스미느로프 검정 결과 통계적으로 적합
- 해당 분포를 활용하여, Teller의 Service 시간 정의

3.2 모델 설명 (Overview)

3.2 모델 설명 (Queue Part)

3.2 모델 설명 (Queue Part)

- ① 각 고객은 도착 후, 번호표 발급을 통해 예금 고객과 대출 고객으로 분류
- ② 분류된 각 고객에 다음과 같은 특징을 할당
 - 개체 특성이 Client에서 Deposit Client 또는 Loan Client로 변경
 - · 대기시간 측정 시작 (TNOW)
 - · 각업무당 Service Time
- ③ 도착 시간에 따라 고객을 각각 다른 Hold 모듈로 전달

3.2 모델 설명 (Queue Part)

- ① 각고객은 Control Part에서 전달된 Signal에 따라 Hold 모듈에서 탈출
- ② Hold 모듈에서 탈출 시, 대기 시간에 따른 이탈 확률에 기반해 무작위로 이탈
- ③ 이탈하지 않은 고객들은 Record 모듈에서 대기시간 기록 후 Service Part로 이동

3.2 모델 설명 (Control Part)

- ① Hold 모듈에 묶여 있는 고객들을 제어하기 위한 Part이므로, 예금과 대출용 Loop를 생성하고, 스캔을 위한 개체를 하나씩만 생성
- ② 개체는 시간대에 따라 다른 Loop를 돌게 되며, 시간대가 변경되더라도 이전 시간대 Hold 모듈 Queue에 고객이 없어질 때까지 이동하지 않음
- ③ 유휴 중인 행원 발생 시, 각각 할당된 Hold 모듈로 Signal 전송 및 10초 Delay
 - ∵ 이전 업무 정리 및 고객이 창구111지 이동하는 시간 감안

3.2 모델 설명 (Service Part)

3.2 모델 설명 (Service Part)

- ① 각 고객은 해당 Part에 도착 후, 내방 목적과 시간대에 따라 분류되어, 해당 시간대에 내방 목적과 일치하는 업무를 할당 받은 행원에게 이동
- ② 이미 Hold 모듈에서 유휴 중인 행원이 발생한 것을 확인하고 해당 Part에 도착한 것이기 때문에, Process에서 Queue 발생 없이 즉시 유휴 중인 행원에게 할당

3.3 결과

Original	시간대 별 고객 수(명)		시간 평균대기	
창구 구분	예금	대출	예금	대출
오전	38.5	9.9	0.41	1.69
점심	61.9	16.4	31.06	38.63
오후	72.1	19.3	26.89	50.36

Original	일일 평균 고객 수(명)	일일 평균 대기시간(분)
이탈고객	21.3	36.03
예금	172.5	19.45
대출	45.6	30.22

점심시간 개선안 α

에금 창구 직원 4명 중 2명, 대출 창구 직원 중 6명 중 4명은 점심시간 15분을 단축 대신 비교적 한 가한 시간대인 오전 업무 출근 시간을 9시 15분으로 조정 그 외 인원들은 정시 출근 후 1시간의 점심시간 할당

4. 개선안 α

개선안 α	시간대 별 고객 수(명)		시간 평균대기	대 별 시간(분)
창구 구분	예금	대출	예금	대출
오전	38.1	9.6	0.57	2.03
점심	61.5	14.8	24.82 (20%▼)	23.31 (39.7% v)
오후	75.3	19.2	20.83 (22.5% *)	33.89 (32.7 ▼)

개선안 α	일일 평균 고객 수(명)	일일 평균 대기시간(분)
이탈고객	19 (10.8% ▼)	31.45 (12.7%▼)
예금	174.9	15.41 (20.8% <mark>▼</mark>)
대출	43.6	19.74 (34.67%▼)

10명의 행원은 동일하게 45분의 점심식사 시간을 가진다. 예금 창구의 경우 25분 간격, 대출 창구의 경우 15분 간격으로 출발

예금 A 출발 예금 B 출발 예금 A 도착 예금 C 출발 예금 B 도착 예금 D 출발 예금 C 도착 예금 D 도착

11시 11시 25분 11시 45분 11시 50분 12시 12시 15분 12시 35분 1시

4. 개선안 **β**

개선안 β	시간대 별 고객 수(명)		시간 평균대기	
창구 구분	예금	대출	예금	대출
오전	38.5	9.9	0.41	1.59
점심	62.6	14.4	23.15 (25.5%▼)	22.78 (41%▼)
오후	79.4	22.7	22.02 (18.1% <mark>▼</mark>)	39.32 (21.9%▼)

개선안 β	일일 평균 고객 수(명)	일일 평균 대기시간(분)
이탈고객	19.2 (9.85% ▼)	35.84 (0.5%▼)
예금	180.5	15.19 (21.9%▼)
대출	47	21.23 (29.7%▼)

점심시간 적심시간 #선안 비교

평균 대기 시간 변화량

항목 별 평균 대기 시간 변화량 우위 비교

대출 창구와 예금창구는 Trade - Off 관계 오전 예금 6, 대출 4로 운영, 예금 인원 2명은 점심식사 후 대출 창구로 이동 대출 행원 2명은 오전 2시간 내내 유휴 상태인 것을 확인 오전 예금 고객을 최소화하여 점심 시간 이후 병목 최소화에 목적

4. 개선안 γ

개선안 β	시간대 별 고객 수(명)			대 별 시간(분)
창구 구분	예금	대출	예금	대출
오전	37.9	9.9	0.20 (51.2%▼)	3.61 (113%▲)
점심	59.8	18.8	30.88 (0.6% *)	54.07 (40.0% <u></u>)
오후	76.9	20.5	26.58 (1.2%▼)	71.90 (42.8% <u></u>)

개선안 β	일일 평균 고객 수(명)	일일 평균 대기시간(분)
이탈고객	16.1 (24.41% <mark>▼</mark>)	36.27 (0.7%▲)
예금	174.6	19.22 (6.3%▼)
대출	49.2	43.19 (30.6%▲)

창구 비율 개선안 δ

대출 인원 2명이 오전, 점심 업무 시간동안 모든 업무를 맡도록 배치 즉, 오전 및 점심 2시간 동안 예금 6, 대출 6으로 운영 점심 시간이 종료되면 모든 업무를 맡도록 배치된 2명은 기존 업무 수행 행원 2명에게 돌아갈 부담은 귀지나, 구현된다면 가장 이상적인 조정안

4. 개선안 δ

개선안 β	시간대 별 고객 수(명)		시간 평균대기	
창구 구분	예급	대출	예금	대출
오전	38.6	10.5	0.29 (29.3% <mark>▼</mark>)	3.78 (124% <u></u>)
점심	62.7	15.8	29.3 (5.7%▼)	39.57 (2.4%▲)
오후	75.9	20.4	26.59 (1.1%▼)	51.3 (1.8%▲)

개선안 β	일일 평균 고객 수(명)	일일 평균 대기시간(분)
이탈고객	14.7 (30.99%▼)	40.29 (11.8%▲)
예금	177.2	18.73 (8.7% ▼)
대출	46.7	31.6 (4.6%▼)

5.결론

개선안 α

- 개선안 α보다 일일 평균 대기시간 감소에 효과적
- 2. 이탈고객감소多
- 3. 점심과 오후 비율이 유시한 은행에 효과적으로 적용 가능

점심시간 스케줄링 General!

개선안 β

- 1. 개선안α보다 점심시간대에효과적
- 2. 고객 대기가 점심시간에 가장 큰 은행에 효과적으로 적용 가능

점심시간 스케줄링 Lunch!

개선안 y

- 1. 여금 고객 대기시간 ▼ 대출 고객 대기시간 ▲
- 2. 대출 대기시간이적고 예금 대기시간이 매우 긴 은행의에 효과적으로 적용 가능

창구 비율 조정 **Deposit!**

개선안 δ

- 1. 개선안 y의 한계였던 대출고객 대기시간도 감소
- 2. 실현 가능하다면 가장 이상적인 조정안

창구 비율 조정 **Hybrid!**

