

Cambridge International Examinations

Cambridge International General Certificate of Secondary Education

CANDIDATE NAME			
CENTRE NUMBER		CANDIDATE NUMBER	
CHEMISTRY			0620/32
Paper 3 Theory	(Core)		May/June 2018
			1 hour 15 minutes
Candidates ans	wer on the Question Paper.		

READ THESE INSTRUCTIONS FIRST

No Additional Materials are required.

Write your Centre number, candidate number and name on all the work you hand in.

Write in dark blue or black pen.

You may use an HB pencil for any diagrams or graphs.

Do not use staples, paper clips, glue or correction fluid.

DO NOT WRITE IN ANY BARCODES.

Answer all questions.

Electronic calculators may be used.

A copy of the Periodic Table is printed on page 16.

You may lose marks if you do not show your working or if you do not use appropriate units.

At the end of the examination, fasten all your work securely together.

The number of marks is given in brackets [] at the end of each question or part question.

The syllabus is approved for use in England, Wales and Northern Ireland as a Cambridge International Level 1/Level 2 Certificate.

1 The names of nine gases are given.

ammonia

carbon monoxide

chlorine

ethane

ethene

helium

		nonam		
		hydrogen		
		neon		
		oxygen		
(a)	(a) Answer the following questions about these gases. Each gas may be used once, more than once or not at all. State which gas:			
	(i)	bleaches damp litmus paper		
			[1]	
	(ii)	dissolves in water to form an alkali		
	(11)			
			[1]	
((iii)	is a monatomic gas with ten protons in its nucleus		
			[1]	
(iv)	is formed when hydrocarbons undergo incomplete combustion		
'	,			
			[1]	
	(v)	is an unsaturated hydrocarbon.		
			[1]	
(b)	Dia	tomic hydrogen molecules contain covalent bonds.		
	Sta	te what is meant by the terms:		
	(i)	diatomic	••••	
			[1]	
	(ii)	covalent bonds		
			[1]	
			ניו	

(c) Complete the dot-and-cross diagram to show the electron arrangement in a molecule of chlorine. Show outer shell electrons only.

[2]

[Total: 9]

2 The table shows the percentage by volume of each of the gases present in the exhaust gases from a petrol engine with a catalytic converter.

name	percentage by volume
carbon monoxide	0.20
carbon dioxide	15.00
hydrocarbons	0.02
hydrogen	0.01
nitrogen	
oxides of nitrogen	0.02
water vapour	12.75
	total 100.00

(a) (i) Calculate the percentage by volume of nitrogen in the exhaust gases.

		%	[1]
	(ii)	Which gas shown in the table is present in the lowest percentage by volume?	
			[1]
(b)	(i)	Give one adverse effect of oxides of nitrogen on health.	
			[1]
	(ii)	Balance the chemical equation for the reaction of nitrogen dioxide with sodium hydroxide	de.
		$NO_2 +NaOH \rightarrow NaNO_3 + NaNO_2 + H_2O$	[2]
	(iii)	State the name of the salt with the formula NaNO ₃ .	
			[1]
(c)	Peti	rol contains saturated hydrocarbons.	
	Stat	te what is meant by the terms:	
	(i)	saturated	
			[1]
	(ii)	hydrocarbon	

.....[2]

(d) The table shows the composition of a sample of dry natural gas.

name of gas	percentage by volume
methane	95.0
ethane	3.2
propane	0.2
butane	0.1
carbon dioxide	0.5
nitrogen	1.0
	total 100.0

Calculate the percentage by volume of hydrocarbons in the sample of dry natural gas.

% [1

[Total: 10]

3 (a) The structures of two compounds, **A** and **B**, are shown.

compound A compound

(1)	How many different types of atoms are present in compound A?	
		[1]
(ii)	On structure B draw a circle around the alcohol functional group.	[1]
iii)	Compounds A and B are formed in the body by enzyme-catalysed reactions.	
	What is the purpose of a catalyst?	
		[1]
iv)	Enzymes are polymers of compounds called amino acids.	
	What is meant by the term polymer?	
		r4 ·

(b) Ethanoic acid is a carboxylic acid.

(i)	Give one property of ethanoic acid.	
		[1]

(ii) Complete the structure of ethanoic acid showing all of the atoms and all of the bonds.

[1]

(c)	Eth	anoic acid	can be made l	by the oxidati	on of ethanol.				
	(i)		ng point of ethat g point of ethat		C.				
			e physical stat our answer.	te of ethanol	at –120°C?				
	(ii)	Complete			anufacture of etl				
			a catalyst	addition	an enzyme	cracking			
			ethane	ethene	high	low			
		Ethanol ca	n be manufac	tured by the		of steam to			
		The react	ion takes pla	ace at a		. temperature	in the	presence	of
									[4]
								[Total:	12]

- 4 This question is about manganese and its compounds.
 - (a) Potassium manganate(VII) is soluble in water.

A purple crystal of potassium manganate(VII) was placed in the middle of a piece of damp filter paper.

After 1 hour, the purple colour had spread over most of the filter paper.

		at the start	after 1 hour
	Exp	lain these observations using the kinetic particle mo	del.
			[3]
(b)	Pot	assium manganate($ m VII$) is produced from manganes	${\sf se}({ m IV})$ oxide by an oxidation reaction.
	Wh	at is meant by the term oxidation?	
			[1]
(c)		assium manganate($ m VII$) decomposes when heat nganese($ m IV$) oxide.	ed. The products are oxygen and
	(i)	Describe a test for oxygen.	
		test	
		result	[2]
	(ii)	Manganese(IV) oxide reacts with concentrated hyd	

Balance the chemical equation for this reaction.

$$MnO_2 +HCl \rightarrow MnCl_2 + Cl_2 +H_2O$$
 [2]

(d) The table compares the reactivity of four metals with hydrochloric acid of the same concentration.

metal	reactivity with hydrochloric acid
lead	No bubbles seen. Metal does not disappear.
magnesium	Rapid formation of bubbles. Metal disappears rapidly.
manganese	Steady formation of bubbles. Metal disappears slowly.
tin	Bubbles formed slowly. Metal disappears very slowly.

least reactive ---

Use this information to put the metals in order of their reactivity. Put the least reactive metal first.

		[2]
(e)	Manganese is a transition element. Sodium is an element in Group I of the Periodic Table.	
	Describe three ways in which the properties of manganese differ from those of sodium.	
	1	
	2	
	3	

[Total: 13]

[3]

most reactive

(a) Electrolysis of concentrated aqueous sodium chloride can be done using the apparatus shown.

(1)	During electrolysis, a gas is produced at each electrode.	
	Complete the diagram to show how the gases can be collected.	[1]
(ii)	The positive electrode is called the anode.	
	State the name of the negative electrode.	
		[1]
(iii)	Predict the main products of the electrolysis of concentrated aqueous sodium chloride	at:
	the negative electrode	
	the positive electrode.	
		[2]
(iv)	Give the name of a suitable element to use as the electrodes in this electrolysis.	
		F41

(b)	Soc	Sodium hydroxide is manufactured by the electrolysis of sodium chloride.						
	(i)	After electrolysis, 1000 cm³ of solution contains 750 g of sodium hydroxide.						
		What mass of sodium hydroxide is present in 200 cm³ of this solution?						
		[1]						
	(ii)	What effect would impurities have on the melting point of sodium hydroxide?						
		[1]						
(c)		scribe how you could prepare a sample of solid sodium chloride from a solution of ium chloride.						
		[1]						
		[Total: 8]						

	6	This	question	is	about	isotope	S
--	---	------	----------	----	-------	---------	---

(a)	An	atom	of an	isotope	of nitroger	is repre	esented b	v the s	vmbol sh	iown.

¹⁵N

Des	scrib	e the	structu	re of a	n atom	of this	isotope	of nit	rogen
In y	our a	answ	er, inclu	ıde:					

•	the position	of the	protons,	neutrons	and	electrons	in the	atom
---	--------------	--------	----------	----------	-----	-----------	--------	------

	the number of protons, neutrons and electrons present in the atom.					
	[5]					
(b)	What is meant by the term isotopes?					
	[2]					
(c)	Give one industrial use of radioactive isotopes.					
	[1]					
	[Total: 8]					

7 (a) The properties of some Group VII elements are shown in the table.

element	melting point in °C	boiling point in °C	density at room temperature in g/cm³	colour
chlorine	-101	-35	0.0032	green
bromine	-7	59	3.1	red-brown
iodine	114	184		grey-black
astatine		337	6.4	

(i)	Complete	the	table	to	suggest
-----	----------	-----	-------	----	---------

- the density of iodine
- the melting point of astatine
- the colour of astatine.

[3]

(ii)	Suggest why the density of chlorine at room temperature is much lower than the density of bromine and astatine at room temperature.
	[1]
(iii)	Describe the trend in the boiling points of the halogens.
	[1]
(b) Aqu	ueous bromine reacts with aqueous potassium iodide.

Complete the word equation for this reaction.

[2]

(c) A compound has the formula $C_2F_4Cl_2$.

Calculate the relative molecular mass of $\rm C_2F_4C\it l_2$. Show all your working. Use your Periodic Table to help you.

relative molecular mass =[2]

[Total: 9]

8 The energy released by burning four different fuels is compared using the apparatus shown. A known mass of each fuel is burned and the temperature rise of the water is measured.

(a)	Suggest two factors that should be kept constant in this experiment.
	1

(b) The table shows the temperature changes when four different fuels, A, B, C and D, are burned.

[2]

fuel	mass of fuel burned /g	initial temperature of the water /°C	final temperature of the water /°C
Α	2	20	30
В	1	18	24
С	4	21	37
D	2	20	28

	Which fuel gave the greatest temperature rise per gram?	
		[1]
(c)	Ethanol is a fuel.	
	Give one other use of ethanol.	
		[1]

(d) The energy level diagram for the complete combustion of ethanol is shown.

(e) A steel can is used in the experiment.

(i) Stainless steel is an alloy of iron.

What is meant by the term alloy?	

 (iii)	Suggest why stainless steel is used instead of pure iron for making cutlery.	

[Total: 11]

[2]

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge International Examinations Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cie.org.uk after

Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.

The Periodic Table of Elements

		\	Z He	helium 4	10	Ne	neon 20	18	Ā	argon 40	36	궃	krypton 84	54	Xe	xenon 131	98	Ru	radon			
		=			6	ш	fluorine 19	17	Cl	chlorine 35.5	35	B	bromine 80	53	Н	iodine 127	85	Ąŧ	astatine			
		>			80	0	oxygen 16	16	S	sulfur 32	34	Se	selenium 79	52	<u>e</u>	tellurium 128	84	Ъо	mninolod -	116	_	livermorium
		>			7	Z	nitrogen 14	15	۵	phosphorus 31	33	As	arsenic 75	51	Sb	antimony 122	83	Ξ	bismuth 209			
		≥			9	ပ	carbon 12	14	SS	silicon 28	32	Ge	germanium 73	20	Sn	tin 119	82	Pb	lead 207	114	Fl	flerovium
		≡			2	М	boron 11	13	Αl	aluminium 27	31	Ga	gallium 70	49	In	indium 115	81	1L	thallium 204			
											30	Zu	zinc 65	48	р О	cadmium 112	80	Нg	mercury 201	112	ပ်	copernicium
											29	Cn	copper 64	47	Ag	silver 108	62	Au	gold 197	111	Rg	roentgenium
	Group										28	Ż	nickel 59	46	Pd	palladium 106	78	£	platinum 195	110	Ds	darmstadtium
2001	Gre										27	ဝိ	cobalt 59	45	몬	rhodium 103	77	'n	iridium 192	109	Ħ	meitnerium
			- I	hydrogen 1							26	Fe	iron 56	44	R	ruthenium 101	92	SO	osmium 190	108	Hs	hassium
											25	Mn	manganese 55	43	ပ	technetium -	75	Re	rhenium 186	107	Bh	bohrium
					_	pol	ass				24	ပ်	chromium 52	42	Mo	molybdenum 96	74	≥	tungsten 184	106	Sg	seaborgium
				Key	atomic number	atomic symbo	name relative atomic mass				23	>	vanadium 51	41	g	niobium 93	73	д	tantalum 181	105	Op	dubnium
						atc	rei:				22	i=	titanium 48	40	Zr	zirconium 91	72	Ξ	hafhium 178	104	弘	rutherfordium
											21	Sc	scandium 45	39	>	yttrium 89	57–71	lanthanoids		89–103	actinoids	
		=			4	Be	beryllium 9	12	Mg	magnesium 24	20	Ca	calcium 40	38	Ś	strontium 88	56	Ba	barium 137	88	Ra	radium
		_			က	:=	lithium 7	11	Na	sodium 23	19	¥	potassium 39	37	В	rubidium 85	55	S	caesium 133	87	Ŧ	francium

71	Γn	lutetium 175	103	۲	lawrendum	I
70	ΥÞ	ytterbium 173	102	Š	nobelium	ı
69	E	thulium 169	101	Md	mendelevium	ı
89	ш	erbium 167	100	Fm	fermium	ı
29	웃	holmium 165	66	Es	einsteinium	ı
99	ص	dysprosium 163	86	ర్	californium	ı
65	Д	terbium 159	97	Ř	berkelium	ı
64	gq	gadolinium 157	96	Cm	curium	ı
63	En	europium 152	92	Am	americium	ı
62	Sm	samarium 150	94	Pu	plutonium	ı
61	Pm	promethium	93	ď	neptunium	ı
09	PZ	neodymium 144	92	\supset	uranium	238
69	Ā	praseodymium 141	91	Ра	protactinium	231
58	Ce	cerium 140	06	H	thorium	232
22	Гa	lanthanum 139	88	Ac	actinium	ı

lanthanoids

actinoids

The volume of one mole of any gas is 24 dm³ at room temperature and pressure (r.t.p.).