

Eje Temático N°5: Capa de Preprocesamiento

Sistema IoT para la Gestión y Monitoreo de Cultivos Inteligentes

Descripción del Proyecto: Este proyecto consiste en diseñar e implementar un sistema IoT que monitoree las condiciones ambientales de un cultivo, como temperatura, humedad y niveles de luz, y optimice el uso de recursos (agua, fertilizantes) mediante el uso de Edge y Fog Computing. El sistema debe ser capaz de procesar los datos localmente en dispositivos edge, aplicar lógicas de filtrado y normalización, y tomar decisiones en tiempo real para la automatización del riego y otras tareas cruciales.

En una instancia superior, no cubierta, los datos procesados se transmitirían a la nube para su almacenamiento y análisis más profundo.

Componentes del Proyecto:

1. Recolección de Datos (Capa de Percepción):

- **Sensores:** Sensores conectados a microcontroladores **ESP32-Wroom** para recolectar datos sobre las condiciones del cultivo.
- **Ejemplos de sensores:** Sensores de humedad del suelo, temperatura y humedad del aire, y luz.

2. Preprocesamiento de Datos en el Edge (Capa de Preprocesamiento):

- Implementación de Microservicios en Edge:
 - Los microcontroladores ESP32-Wroom actuarán como nodos edge que procesarán los datos recolectados en tiempo real.
 - Implementación de microservicios para filtrar datos (por ejemplo, eliminar lecturas anómalas) y normalizar las entradas antes de tomar decisiones automatizadas.

Toma de Decisiones en el Edge:

- Basado en las condiciones recolectadas, el sistema puede activar actuadores (por ejemplo, sistemas de riego) para ajustar automáticamente las condiciones del cultivo.
- Lógica para tomar decisiones inmediatas sin necesidad de enviar datos a la nube, reduciendo latencia y mejorando la eficiencia del sistema.

3. Gestión de Datos en el Fog (Capa de Preprocesamiento):

- Controladores Fog:
 - Un dispositivo fog (puede ser un microcontrolador más robusto o un pequeño servidor local) gestionará la integración de los datos provenientes de múltiples nodos edge.
 - Implementación de APIs para la comunicación entre los nodos edge y la capa de almacenamiento.
- Filtrado y Normalización Avanzada:

 El fog realiza un procesamiento adicional, como la agregación de datos de múltiples sensores o la ejecución de algoritmos más complejos que no pueden realizarse directamente en los dispositivos edge.

4. Transmisión y Almacenamiento de Datos:

- Optimización de la Transmisión:
 - Los datos preprocesados se transmiten eficientemente a la nube o a un servidor centralizado para su almacenamiento.
 - Uso de técnicas para asegurar que solo los datos relevantes y necesarios se transmitan, optimizando el uso de ancho de banda y almacenamiento.

5. Monitoreo y Control Remoto:

- Los usuarios pueden monitorear las condiciones del cultivo y controlar el sistema remotamente a través de una aplicación web o móvil conectada a la nube.
- Se pueden generar alertas automáticas para condiciones críticas que requieren intervención humana.

Resultados Esperados:

1. Capacidad de Implementación de Edge y Fog Computing:

 Los estudiantes deben demostrar que son capaces de diseñar e implementar una solución IoT que utilice edge y fog computing para procesar datos localmente y tomar decisiones en tiempo real.

2. Desarrollo de Microservicios para IoT:

 Implementación de microservicios que operan autónomamente en los dispositivos edge para gestionar tareas complejas como el control de riego basado en las condiciones ambientales.

3. Gestión Avanzada de Datos en el Edge:

 Aplicación de técnicas de filtrado y normalización de datos, asegurando que solo la información relevante y procesada sea transmitida a la nube.

Tecnologías Utilizadas:

- Microcontroladores: ESP32-Wroom
- **Sensores:** De humedad, temperatura, luz
- **Frameworks:** C++ para el desarrollo de hardware y para la gestión de tareas en tiempo real.
- Herramientas de Desarrollo: Visual Studio Code con PlatformIO
- Fog Computing: Microcomputadoras, microservidores, etc.

Desarrollo de las Semanas:

Semana 15 (12/08 - 18/08): Introducción a Fog y Edge Computing

Objetivo Principal: Comenzar con la implementación de las bases del sistema IoT, enfocándose en la configuración del entorno y la comprensión de las estrategias para distribuir la carga computacional entre el edge y el fog.

Lunes (12/08):

- Tema: Introducción a Fog y Edge Computing.
- Actividades:
 - Explicación de los conceptos básicos de Fog y Edge Computing.
 - Configuración del entorno de desarrollo con Visual Studio Code y PlatformIO.
 - Exploración de casos de uso en loT que requieren procesamiento en el edge.

Miércoles (14/08):

- Tema: Implementación inicial en dispositivos Edge.
- Actividades:
 - Comienzo del desarrollo de microservicios básicos en el ESP32-Wroom.
 - Configuración de sensores (humedad, temperatura, luz) y prueba de recolección de datos.
 - Tarea: Continuar el desarrollo en casa, implementando la lógica básica de recolección de datos y toma de decisiones simple (por ejemplo, activar riego si la humedad es baja).

Entrega de la Semana:

- Entorno configurado.
- Microservicios básicos funcionando en los dispositivos edge, recolectando y procesando datos simples.

Semana 16 (19/08 - 25/08): Microservicios en Dispositivos Edge

Objetivo Principal: Desarrollar microservicios más complejos que funcionen de manera autónoma en los dispositivos edge y conecten con la arquitectura de fog computing.

Lunes (19/08):

- Tema: Desarrollo de Microservicios en Edge.
- Actividades:
 - o Implementación de lógicas de filtrado de datos en el edge.
 - Optimización de la recolección y procesamiento de datos para mejorar la eficiencia.
 - Conexión entre diferentes nodos edge (ESP32-Wroom) para compartir y comparar datos recolectados.

Miércoles (21/08):

- **Tema:** Integración con Fog Computing.
- Actividades:
 - Configuración de un nodo fog (puede ser un microcontrolador más robusto o un mini-servidor) para gestionar los datos recolectados por los nodos edge.
 - Desarrollo de APIs simples para permitir la comunicación entre los nodos edge y el fog.
 - Tarea: Optimizar la comunicación y asegurar que los datos procesados en el edge se transmitan correctamente al fog.

Entrega de la Semana:

- Microservicios más avanzados en los dispositivos edge.
- Nodo fog configurado y conectado con los dispositivos edge.
- Comunicación básica establecida entre edge y fog.

Semana 17 (26/08 - 01/09): Controladores Fog y API para la Gestión de Datos

Objetivo Principal: Finalizar el sistema integrando todas las partes y optimizando el procesamiento y la transmisión de datos. Preparar el sistema para su conexión con la capa de almacenamiento.

Lunes (26/08):

- Tema: Desarrollo de Controladores Fog y Lógicas de Filtrado.
- Actividades:
 - Implementación de controladores fog que gestionen el procesamiento avanzado de datos (agregación, filtrado avanzado).
 - Optimización de la lógica de filtrado y normalización de datos en el edge para asegurar que solo los datos relevantes se envíen al fog.
 - Desarrollo de APIs para integrar y facilitar la transmisión de datos a la capa de almacenamiento o la nube.

Miércoles (28/08):

- **Tema:** Integración Final y Optimización del Sistema.
- Actividades:
 - Realización de pruebas integradas para asegurar que todos los componentes (edge, fog, APIs) funcionen en conjunto sin problemas.
 - Depuración y mejora de la eficiencia del sistema.
 - Preparación para la siguiente unidad, donde se trabajará en la conexión del sistema con la capa de almacenamiento y procesamiento en la nube.
 - Tarea: Documentar el proyecto hasta el punto alcanzado y preparar una presentación del avance.

Entrega de la Semana:

- Sistema IoT completamente funcional con nodos edge y fog operativos.
- Controladores fog y APIs implementados y probados.

• Preparación para la siguiente etapa del proyecto (integración con la nube).

Este programa asegura que los estudiantes desarrollen el proyecto de manera secuencial, comprendiendo cómo cada parte del sistema interactúa y contribuye al objetivo final, lo que les permitirá comprender como se construye el EDGE integrado al FOG, antes de subir al CLOUD.

Firma del Docente

