Lecture Note 2

- Stationary Process
- Autocorrelation function
- Linear time series models
- Autoregressive of order one, AR(1), process

Stationary Process

Definition 1 (Weak stationarity). A stochastic process $\{y_t, t \in \mathcal{T}\}$ is said to be weakly stationary if it has a constant mean and constant variance and its covariance function, $\gamma(t_1, t_2)$, defined by

$$\gamma(t_1, t_2) = cov(y_{t_1}, y_{t_2}) = \mathbb{E}\{[y_{t_1} - \mathbb{E}(y_{t_1})][y_{t_2} - \mathbb{E}(y_{t_2})]\},\$$

depends only on the absolute difference $|t_1 - t_2|$, namely

$$\gamma(t_1, t_2) = \gamma(|t_1 - t_2|).$$

Definition 2 (Weakly trend stationary). A stochastic process $\{y_t, t \in \mathcal{T}\}$ is said to be weakly trend stationary if $y_t = x_t + d_t$, where x_t is weakly stationary and d_t is deterministic.

Definition 3. (White noise process) The process $\{\varepsilon_t, t \in \mathcal{T}\}$ is said to be a white noise process if it has **mean zero**, a **constant variance**, and ε_t and ε_s are **uncorrelated** for all $s \neq t$.

Autocorrelation function

ullet In Statistics, the correlation coefficient between two random variables X and Y is defined as

$$\rho_{X,Y} = \frac{\operatorname{cov}(X,Y)}{\sqrt{\operatorname{var}(X)\operatorname{var}(Y)}} = \frac{\mathbb{E}\{[X - \mathbb{E}(X)][Y - \mathbb{E}(Y)]\}}{\sqrt{\mathbb{E}\{[X - \mathbb{E}(X)]^2\}\mathbb{E}\{[Y - \mathbb{E}(Y)]^2\}}}$$

• When the sample $\{(x_t, y_t)|t=1, 2, \dots, T\}$ is available, the correlation can be consistency estimated by its sample counterpart

$$\hat{\rho}_{X,Y} = \frac{\frac{1}{T} \sum_{t=1}^{T} [(x_t - \bar{x})(y_t - \bar{y})]}{\sqrt{\frac{1}{T} \sum_{t=1}^{T} (x_t - \bar{x})^2 \frac{1}{T} \sum_{t=1}^{T} (y_t - \bar{y})^2}},$$

where $\bar{x} = \frac{1}{T} \sum_{t=1}^{T} x_t$ and $\bar{y} = \frac{1}{T} \sum_{t=1}^{T} y_t$.

• The correlation coefficient is between -1 and $1, -1 \le \rho_{XY} \le 1$.

• Let x_t be a weakly stationary process. The correlation coefficient between x_t and x_{t-k} is called lag-k autocorrelation of x_t and is commonly denoted by $\rho(k)$. Specifically, we define

$$\rho(k) = \frac{\operatorname{cov}(x_t, x_{t-k})}{\sqrt{\operatorname{var}(x_t)\operatorname{var}(x_{t-k})}} = \frac{\gamma(t, t-k)}{\operatorname{var}(x_t)} = \frac{\gamma(k)}{\gamma(0)}.$$

- $\rho(0) = 1$, $\rho(k) = \rho(-k)$, and $-1 \le \rho(k) \le 1$.
- $\hat{\rho}(k) = \frac{\frac{1}{T}\sum_{t=k+1}^{T}(x_t-\bar{x})(x_{t-k}-\bar{x})}{\frac{1}{T}\sum_{t=1}^{T}(x_t-\bar{x})^2}$ is a consistent estimator of $\rho(k)$. If $\{x_t\}_{t=1}^{T}$ is a sequence of independently identically distributed (iid) random variables and $\mathbb{E}(x_t)^2 < \infty$, then $\hat{\rho} \stackrel{a.s.}{\sim} \mathcal{N}(0,\frac{1}{T})$.

Generally, if x_t is a weakly stationary process satisfying, $x_t = \mu + \sum_{i=0}^q \delta_i \varepsilon_{t-i}$, where $\delta_0 = 1$ and $\{\varepsilon\}_i$ is a sequence of iid random variables with mean 0, then $\hat{\rho}(k) \stackrel{a.s.}{\sim} \mathcal{N}(\rho(k), \frac{1}{T} + \frac{2}{T} \sum_{i=1}^q \rho(i)^2)$.

• Testing individual Autocorrelation Coefficient Function (ACF):

$$\mathcal{H}_0: \rho(k) = 0$$
, v.s. $\mathcal{H}_a: \rho(k) \neq 0 \longrightarrow \text{t-ratio} = \frac{\hat{\rho}(k)}{\sqrt{\frac{1}{T} + \frac{2}{T} \sum_{i=1}^q \hat{\rho}(i)^2}} \stackrel{a.s.}{\sim} \mathcal{N}(0, 1)$.

Or if we assume that $\rho_i = 0$ for all $i \neq k$ then:

t-ratio =
$$\sqrt{T}\hat{\rho}(k) \stackrel{a.s.}{\sim} \mathcal{N}(0,1)$$
.

• Joint test for several autocorrelations:

$$\mathcal{H}_0: \rho(1) = \rho(2) = \cdots = \rho(m) = 0$$
, v.s. $\mathcal{H}_a: \rho(i) \neq 0$ for at least one $i \in \{1, 2, \cdots, m\}$,

Box and Pierce(1970): $Q^*(m) = T \sum_{\ell=1}^{m} \hat{\rho}(\ell)^2 \stackrel{a.s.}{\sim} \chi^2(m)$,

Ljung and Pierce(1978): $Q(m) = T(T+2) \sum_{\ell=1}^{m} \frac{\hat{\rho}(\ell)^2}{T-\ell} \stackrel{a.s.}{\sim} \chi^2(m)$.

• Choice of m: $m \approx T^{1/3}$ or $m \approx \ln(T)$.

Linear time series models

Definition 4. A time series x_t is said to be linear if it can be written as:

$$x_t = \mu + \sum_{i=0}^{\infty} \delta_i \varepsilon_{t-i}, \text{ where } \varepsilon_t \stackrel{iid}{\sim} (0, \sigma^2).$$
 (1)

Q: What is the expected value, variance, and autocovariance function of x_t generated by (1)?

A:
$$\mathbb{E}(x_t) = \mu + \sum_{i=0}^{\infty} \delta_i \mathbb{E}(\varepsilon_{t-i}) = \mu.$$

$$\operatorname{var}(x_t) = \sum_{i=0}^{\infty} \delta_i^2 \operatorname{var}(\varepsilon_{t-i}) = \sigma^2 \sum_{i=0}^{\infty} \delta_i^2.$$

$$\gamma(\ell) = \operatorname{cov}(x_t, x_{t-\ell}) = \mathbb{E}(x_t - \mu)(x_{t-\ell} - \mu) = \mathbb{E}\left[\left(\sum_{i=0}^{\infty} \delta_i \varepsilon_{t-i}\right) \left(\sum_{j=0}^{\infty} \delta_j \varepsilon_{t-\ell-j}\right)\right]$$

$$= \sum_{i=0}^{\infty} \sum_{j=0}^{\infty} \delta_i \delta_j \mathbb{E}\left(\varepsilon_{t-i} \varepsilon_{t-\ell-j}\right) = \sum_{i=0}^{\infty} \delta_i \delta_{i-\ell} \mathbb{E}(\varepsilon_{t-i}^2) = \sigma^2 \sum_{i=0}^{\infty} \delta_i \delta_{i-\ell}$$

Q: Given the answer to the previous question, can we conclude that x_t is a weakly stationary process?

A: For x_t to be weakly stationary, we need its variance to exist, i.e. $\gamma(0) = \operatorname{var}(x_t) < \infty$. So, we need $\sum_{i=0}^{\infty} \delta_i^2 < \infty$. We also need the autocovariance function to exist, i.e. $\gamma(\ell) = \operatorname{cov}(x_t, x_{t-\ell}) < \infty$ for all ℓ . But note that, $\sum_{i=0}^{\infty} \delta_i \delta_{i-\ell} \leq \left(\sum_{i=0}^{\infty} \delta_i^2\right)^{1/2} \left(\sum_{i=0}^{\infty} \delta_{i-\ell}^2\right)^{1/2}$. So, if $\sum_{i=0}^{\infty} \delta_i^2 < \infty$, then $\gamma(\ell) < \infty$ for all ℓ . Assuming that $\sum_{i=0}^{\infty} \delta_i^2 < \infty$, x_t have constant mean and variance, and its autocovariance function only depends on the absolute value of the time distance. So, we can conclude that x_t is a weakly stationary process.

ullet The autocorrelation function of x_t is as follows:

$$\rho(\ell) = \frac{\gamma(\ell)}{\gamma(0)} = \frac{\sum_{i=0}^{\infty} \delta_i \delta_{i-\ell}}{\sum_{i=0}^{\infty} \delta_i^2}$$

Autoregressive of order one, AR(1), process

Definition 5. A time series process x_t is said to be Autoregressive of order one, AR(1), if it can be written as

$$x_t = \phi_0 + \phi_1 x_{t-1} + \varepsilon_t, \text{ where } \varepsilon_t \stackrel{iid}{\sim} (0, \sigma^2).$$
 (2)

Q: Suppose that x_t given by (2) is a weakly stationary process. Compute its mean, variance and autocovariance function.

A:
$$\mathbb{E}(x_t) = \phi_0 + \phi_1 \mathbb{E}(x_{t-1}) = \phi_0 + \phi_1 \mathbb{E}(x_t) \Rightarrow \mathbb{E}(x_t) = \frac{\phi_0}{1-\phi_1}.$$

 $\operatorname{var}(x_t) = \phi_1^2 \operatorname{var}(x_{t-1}) + \operatorname{var}(\varepsilon_t) = \phi_1^2 \operatorname{var}(x_t) + \sigma^2 \Rightarrow \operatorname{var}(x_t) = \frac{\sigma^2}{1-\phi_1^2}.$
 $\gamma(\ell) = \operatorname{cov}(x_t, x_{t-\ell}) = \operatorname{cov}(\phi_0 + \phi_1 x_{t-1} + \varepsilon_t, x_{t-\ell}) = \phi_1 \operatorname{cov}(x_{t-1}, x_{t-\ell}) = \phi_1 \gamma(\ell - 1).$ By substituting, $\gamma(\ell - 1) = \phi_1 \gamma(\ell - 2)$, we can further write, $\gamma(\ell) = \phi_1^2 \gamma(\ell - 2)$. By repeating

this for ℓ times we can get $\gamma(\ell) = \phi_1^{\ell} \gamma(0) = \phi_1^{\ell} \frac{\sigma^2}{1 - \phi_1^2}$.

Q: Find the condition(s) under which x_t given by (2) is a weakly stationary process.

A: By substituting $x_{t-1} = \phi_0 + \phi_1 x_{t-2} + \varepsilon_{t-1}$ into the equation for x_t , we get

$$x_t = \phi_0 + \phi_0 \phi_1 + \phi_1^2 x_{t-2} + \varepsilon_t + \phi_1 \varepsilon_{t-1}.$$

By substituting $x_{t-2} = \phi_0 + \phi_1 x_{t-3} + \varepsilon_{t-2}$, we can further write

$$x_t = \phi_0(1 + \phi_1 + \phi_1^2) + \phi_1^3 x_{t-3} + \varepsilon_t + \phi_1 \varepsilon_{t-1} + \phi_1^2 \varepsilon_{t-2}.$$

Repeating this for n times, we get

$$x_{t} = \phi_{0}(1 + \phi_{1} + \phi_{1}^{2} + \dots + \phi_{1}^{n}) + \phi_{1}^{n}x_{t-n} + \varepsilon_{t} + \phi_{1}\varepsilon_{t-1} + \phi_{1}^{2}\varepsilon_{t-2} + \dots + \phi_{1}^{n}\varepsilon_{t-n}.$$

If $|\phi_1| < 1$, as $n \to \infty$, we get

$$x_t = \phi_0(1 + \phi_1 + \phi_1^2 + \cdots) + \varepsilon_t + \phi_1\varepsilon_{t-1} + \phi_1^2\varepsilon_{t-2} + \cdots$$

Since $|\phi_1| < 1$, $1 + \phi_1 + \phi_1^2 + \dots = \frac{1}{1 - \phi}$. Hence,

$$x_t = \frac{\phi_0}{1 - \phi} + \sum_{i=0}^{\infty} \phi_1^i \varepsilon_{t-i}.$$

So, if $|\phi_1| < 1$, we can present AR(1) process as a linear time series process where $\mu = \frac{\phi_0}{1-\phi}$ and $\delta_i = \phi_1^i$. We know that a linear time series process is weakly stationary if $\sum_{i=0}^{\infty} \delta_i^2 < \infty$. Here we have $|\phi_1| < 1$, therefore $\sum_{i=0}^{\infty} \delta_i^2 = \sum_{i=0}^{\infty} (\phi_1^2)^i = \frac{1}{1-\phi_1^2} < \infty$. So, we can conclude that a AR(1) process is weakly stationary if $|\phi_1| < 1$.