

列车牵引计算课程设计 报告

学院: <u>交通工程学院</u>

班 级: ____ 交通运输 211 班 ____

姓 名: ______刘杨天一______

学 号: _____202114503101

指导教师: _____徐焱

2024年6月

交 通 工 程 学 院

1解算所需公式

1.1公式

$$1.\ \omega_0{}' = 1.02 + 0.0035 v + 0.000426 v^2 (N/KN)$$

2.
$$W_0' = \sum \frac{\left(P \times \omega_0' \times g\right)}{10^3} (KN)$$

3.
$$\omega_0^{\prime\prime} = 0.92 + 0.0048v + 0.000125v^2 (N/KN)$$

4.
$$W_0^{"} = \frac{G \times \omega_0^{"} \times g}{10^3} (KN)$$

5.
$$W_0 = W_0' + W_0''(KN)$$

$$6. C = \sum F - W_0(KN)$$

$$7. c = \frac{C \times 10^3}{\left(\sum P + G\right) \times g} (N/KN)$$

8.
$$c = -\omega_0 = \frac{-W_0 \times 10^3}{\left(\sum P + G\right) \times g} (N/KN)$$

9.
$$\varphi_j = 0.356 \times \frac{0.4v + 100}{4v + 100}$$

10.
$$b = 1000\theta \times \varphi_i(N/KN)$$

11.
$$c = -(0.5b + \omega_0)(N/KN)$$

1.2公式计算说明(以10km/h时计算)

- 1.机车单位基本阻力 ω_0' ,将速度v = 10代入,得 $\omega_0' = 1.0976 = 1.10(N/KN)$ 。
- 2.机车基本阻力 W_0 , 查表知P=88, 双机P=176, 代入 ω_0 , 得 W_0 = 1.89728 = 1.90(N/KN)。
- 3.车辆单位基本阻力 $\omega_0^{"}$,将速度 $\nu = 10$ 代入,得 $\omega_0^{"} = 0.9805 = 0.98(N/KN)$ 。
- 4.车辆基本阻力 W_0'' ,代入 ω_0'' 得 $W_0'' = 48.093 = 48.09(KN)$ 。
- 5.列车基本阻力 W_0 ,代入 W_0 ′和 W_0 ′′得 $W_0 = 48.09 + 1.90 = 49.99(KN)$ 。
- 6.牵引运行时作用于列车的合力C,其中 $F = 221.7 \times 2$,计算得C = 393.41(KN)。
- 7.牵引运行时列车受到的单位合力c,代入数据得c = 7.747 = 7.75(N/KN)。
- 8. 情行时列车单位基本阻力c,计算得c = -0.98(N/KN)。
- 9.闸瓦换算摩擦系数 φ_i , 将速度v=10代入,得 $\varphi_i=0.264$ 。
- 10.列车单位制动力b, 其中 $\theta = 0.36$, 代入得b = 95.04(N/KN)。
- 11.常用制动时的列车单位合力c,代入得c = -48.5(N/KN)。

2 合力曲线图

plot.py

此程序使用matplotlib 模块对各速度下的合力进行描 点并连线成折线图。

3 计算

3.1 说明

- 1.本部分程序由刘杨天一(202114503101)和李荣鋆(202114503108)共同完成。
- 2.本部分计算使用积分法进行计算,公式如下:

$$t = \int dt = \int \frac{1}{\zeta \cdot c} \cdot dv \qquad S = \int dS = \int \frac{v}{\zeta \cdot c} \cdot dv$$

其中, ζ 为加速度系数, 这里取120; c 为拟合得到的关于 v 的表达式。

3.2 基本合力的解算

al.py

在此Python程序中,我们将公式和查表得到的各速度下的牵引力 F 写入程序,只需输入速度,即可得到所有的合力解算值。

3.3 合力曲线的拟合

nihe.py

此程序对列车在平坡时的牵引合力点进行了10次多项式拟合,我们引入了速度110和120时的 值来确保速度100时曲线的拟合精确度,拟合曲线见图 1-a。

nihe2.py

此程序对列车在平坡时的制动合力点进行了10次多项式拟合,我们引入了速度110和120时的 值来确保速度100时曲线的拟合精确度,拟合曲线见图 1-b。

图 1-a

图 1-b

3.4 速度的解算

在此部分中,我们使用 S 的积分公式,对每个坡段的末端速度进行解算。通过循环实现分度值0.1km/h的速度试凑,当允许差值小于阈值时停止试凑。

jifen.py

此程序解算列车在第一坡段的末端速度,得到第一坡段的末端速度为81.3km/h。

🗎 jifen2.py

此程序解算列车在第二坡段的末端速度,得到第一坡段的末端速度为99.3km/h。

jifen3.py

此程序解算列车在第三坡段的末端速度,得到第一坡段的末端速度为91.6km/h。

ifen4-1-2.py

在计算第四坡段的速度时,我们注意到在此坡段中,列车是先加速后减速至速度0的。借助 计算机,我们可以通过求解积分方程的方式求解列车可加速到的最大速度。

记牵引合力曲线为 f(v) ,制动合力曲线为 g(v) ,则积分方程可写为:

$$\int_{91.6}^{x} \frac{v}{120 \cdot f(v)} dv - \int_{0}^{x} \frac{v}{120 \cdot g(v)} dv = 4$$

求解得列车在此区间可加速到的最大速度为99.87km/h, 然后减速至0。

ifen4-1-1.py

此程序为检验程序,可以检验第四坡段的可加速最大速度是否正确,原理是分别对加速段和 减速段进行积分求得两段列车行驶的距离和,并与区间长度4km进行比较。

经过程序计算, 当最大速度为99.87时, 列车行驶4001.2m, 仅比区间长度长1.2m。

3.5 时间的解算

在此部分中,我们使用 t 的积分公式,对每个区段的行驶时间进行积分。

jifent1.py

此程序解算列车在第一坡段的行驶时间,得到第一坡段的行驶时间为6.66min。

jifent2.py

此程序解算列车在第二坡段的行驶时间,得到第二坡段的行驶时间为1.65min。

iifent3.pv

此程序解算列车在第三坡段的行驶时间,得到第三坡段的行驶时间为1.92min。

jifent4-1.py

此程序解算列车在第四坡段的牵引行驶时间,得到此段的行驶时间为1.45min。

jifent4-2.py

此程序解算列车在第四坡段的制动行驶时间,得到此段的行驶时间为1.76min。

3.6 汇总

结果汇总表:

坡度	坡段长度	工况	速度(km/h)	时间 (min)					
0	5000	牵引	0–81.30	6.66					
-2	2500	牵引	81.30-99.30	1.65					
5	3000	牵引	99.30–91.60	1.92					
0	2313	牵引	91.60-99.87	1.45					
0	1688	制动	99.87–0	1.76					
运行总时分=13.44(min)									

V-T图像:

■ v-t2.py

此程序使用matplotlib模块绘制了列车运行v-t图像,见图 2 。

图 2 列车运行v-t图像

4 附件

■ 附件一: SS8型电力机车双机重联牵引货物列车的单位合力计算表

项目	速度	0	10	20	30	40	50	60	75	84	90	100
1	$\omega_0{'}$	1.02	1.10	1.26	1.51	1.84	2.26	2.76	3.68	4.32	4.79	5.60
2	W_0	1.76	1.90	2.18	2.60	3.18	3.90	4.77	6.35	7.46	8.26	9.67
3	$\omega_0^{\prime\prime}$	0.92	0.98	1.01	1.18	1.31	1.47	1.66	1.98	2.21	2.36	2.64
4	$W_0^{\prime\prime}$	45.13	48.09	52.29	57.71	64.35	72.23	81.32	97.27	108.17	115.98	129.54
5	W_0	46.89	49.99	54.46	60.31	67.53	76.13	86.10	103.62	115.62	124.24	139.22
6	C	413.11	393.41	372.74	350.29	326.67	301.67	273.90	232.98	206.18	187.76	114.78
7	c 牵引	8.14	7.75	7.34	6.90	6.43	5.94	5.39	4.59	4.06	3.70	2.26
8	c 惰行	-0.92	-0.98	-1.07	-1.19	-1.33	-1.50	-1.70	-2.04	-2.28	-2.47	-2.74
9	φ_j	0.356	0.264	0.214	0.181	0.159	0.142	0.130	0.116	0.109	0.105	0.100
10	b	128.16	95.20	76.90	65.25	57.18	51.26	46.74	41.65	39.27	37.89	35.94
11	c 制动	-65.00	-48.59	-39.52	-33.81	-29.92	-27.13	-25.07	-22.87	-21.91	-21.39	-20.71
12	F合	460	443.4	427.2	410.6	394.2	377.8	360	336.6	321.8	312	v=99.7 254.0