Signals and Systems Laboratory Indian Institute of Technology Jammu Experiment No.-8

Objective- (a) Sampling and Reconstruction of a Sinusoidal Signal:

Apparatus- Python+matplotlib.

Theory-

If we sample the continuous-time signal $x_c(t) = cos(4000\pi t)$ with sampling period $T = \frac{1}{6000}$, we obtain $x[n] = x_c(nT) = cos(4000\pi Tn) = cos(\omega_0 n)$, where $\omega_0 = 4000\pi T = \frac{2\pi}{3}$. In this case, $\Omega_s = \frac{2\pi}{T} = 12000\pi$, and the highest frequency of the signal is $\Omega_0 = 4000\pi$, so the conditions of the Nyquist sampling theorem are satisfied and there is no aliasing. The Fourier transform of $x_c(t)$ is $X_c(j\Omega) = \pi \delta(\Omega - 4000\pi + \pi \delta(\Omega + 4000\pi))$. and Figure 1(a) shows $X_s(j\Omega) = \frac{1}{T} \sum_{k=-\infty}^{\infty} X_c(j(\Omega - k\Omega_s))$, for $\Omega_s = 12000\pi$. Note that $X_c(j\Omega)$ is a pair of impulses at $\Omega = \pm 4000\pi$, and we see shifted copies of this Fourier transform centered on $\pm \Omega_s$, $\pm 2\Omega_s$, etc. Plotting $X(e^{j\omega}) = X_s(j\omega T)$ as a function of the normalized frequency $\omega = \Omega T$ gives Figure 1 (b), where we have used the fact that scaling the independent variable of an impulse also scales its area, i.e., $\delta \frac{\omega}{T} = T\delta(\omega)$. Note that the original frequency $\Omega_0 = 4000\pi$ corresponds to the normalized frequency $\omega_0 = 4000\pi T = \frac{2\pi}{3}$, which satisfies the inequality $\omega_0 < \pi$, corresponding to the fact that $\omega_0 = 4000\pi < \frac{\pi}{T} = 6000\pi$. Figure 1 (a) shows the frequency response of the ideal reconstruction filter $H_r(j\omega)$ for the given sampling rate of $\omega_s = 12000\pi$. It is clear from this figure that the signal that would be reconstructed would have frequency $\omega_0 = 4000\pi$, which is the frequency of the original signal $x_c(t)$.

Figure 1: Continuous-time (a) and Discrete-time (b) Fourier transforms for sampled cosine signal with frequency $\Omega_0 = 4000\pi$ and sampling period $T = \frac{1}{6000}$.

Algorithm-

- a. Start the process.
- b. Frequency domain analysis of time delay and time scaling property of signal x(n).

- c. Execute the program.
- d. Plot the output for each function.
- e. Stop the process.

Observations-

Result- Performed frequency domain analysis of time delay and time scaling property of signal x(n). **Precautions:-**

- Program must be written carefully to avoid errors.
- \bullet Programs can never be saved as standard function name.
- Commands must be written in proper format.