6	9/11/21 Notes	
	Last time: Dot Product	
	\vec{v} and \vec{v} are otherword if $\vec{v} \cdot \vec{v} = 0$) ;
	12.4 Cross Product	1 R ³
	goal gue two vectors 7= (U, U2, U37,	
	V= <v, v,="" v12=""> ER3. Construct a</v,>	(1)
	vector $\vec{w} = \langle w_1, w_2, w_3 \rangle \in \mathbb{R}^3$ so that \vec{w} is orthogonal to \vec{v} and \vec{v}	A both vector
¥-	(want to find w canomically)	L build Planes
	Hang. W. K. Hat Q(2 - 3 - 3 - (444 +	
	How?: We Know that of 0 = v. w = (v,w,+	w ₂ + V ₃ w ₃)
	Give "this formula" we want to find Kw,	w, w, 7= w
	Therefore, we multiply (1) by vs and (2) by us to obtain:	
	(1) (0 = V3 (1. 1) = (4,43) w, + (42 x3)	$w_1 + (v_2 v_3) w_3$
*	(0= U3 (2. 2 = (U2V,) W, + (U3V2)	N2+ (U3V3)W3
	Next subtract @ from (1)	
7	Next subtract (2) from (1) (1) 0 = V3 (1, 1) - V3 (1, 1)	has solution (x=b)
	= (U, V3 - U3V,)w, + (U2 V3 - U3 V2) W	2
	= - (-(v,v3 - v3v,)) W, + (v2V3-	U. V.) W.
	lance: (1) has at least the solution	V3 V2 /W2
6.	Hence: (a) has at least the solution $\left\{ w_1 = V_2 V_3 - U_3 V_2 \right\}$ $\left\{ w_2 = -\left(v_1 V_3 - v_3 V_1 \right) \right\}$	
a the second	1 W2 = - (U, V3 - U3V,)	
		next page

Inputting these to 1 we obtain 0=U,w, + Uzwz + Uzwz = U, (U2V3-U3V2) + U2 (-(U,V3-U3V,)) + U3 W3 = U, U2V3 - U, U3V2 - U, U2V3 + U2V3V, + U3W3 TU3 (U2V, -U,V2 + W3) Site note: either U3=0 Or W3=U,V2-U2V, Claim: (modulo the Setail that Uz may be O) we have the solution! W= (U2V3-U3V2, - (U1V3-U3V1), U1V2-U2V1) Now Check I Symbolically Def: The determinant of the 2x2 matrix is det [ab] = ab = +ad -bc Def: The determinant of the 3x3 matrix is det labe = labe = abe alteration in signs from 2x2 to 3x3 ... +,-,+,-,+,-

NB: This has been done in IR3. This only works in R3 (cross product) The cross product as a vector operation (vector in R3 x vector in R3 -> Vector in IR3) 0 x1 = Undefined - 1 is not in R3 <1,1> x (3,2) = undefined > not defined in IR3 Prop (Algebraic Properties of Cross product); 0 vx v = - vx v Proof: VXV = 1 1 K V, V2 V3 = 1 (V2U3-V3U2)-3 (V,U3-V3U,)+ K (V,U2-V2U,) = (V2U3-V3U2, -V1U3-V3U1, V1U2-V2U1) = \(- \left(\omega_2 \nabla_3 - \omega_3 \nabla_2 \right) , - \left(\omega_1 \nabla_2 \nabla_1 \right) \right) , - \left(\omega_1 \nabla_2 \nabla_2 \nabla_1 \right) \right) , - \left(\omega_1 \nabla_2 \nabla_2 \nabla_1 \right) \right) , - \left(\omega_1 \nabla_2 \nabla_2 \nabla_1 \right) \right) , - \left(\omega_1 \nabla_2 \nabla_2 \nabla_1 \right) \right) , - \left(\omega_1 \nabla_2 \nabla_2 \nabla_1 \right) \right) , - \left(\omega_1 \nabla_2 \nabla_2 \nabla_1 \right) \right) , - \left(\omega_1 \nabla_2 \nabla_2 \nabla_1 \nabla_2 \nabla_2 \nabla_2 \nabla_1 \nabla_2 \nab = - (U2V3 - U3V2, - (U,V3 -U3V1), U1V2 -U2V1) THE = - UXV

©
$$\vec{J} \times (\vec{J} \times \vec{w}) = (\vec{J} \cdot \vec{w})\vec{J} - (\vec{J} \cdot \vec{V})\vec{w}$$
 (ross product of cross product)

prop (geometric properties of cross product)

let $\vec{J}, \vec{J} \in \mathbb{R}^3$