Uphandi -homework week 10

Exercises 7.3

$$1a. e^{-0.3t} = 27$$
 $-0.3t = 2n(27)$
 $t = -102n(3)$
 $t = -102n(3)$
 $t = \frac{1}{2}2n(\frac{1}{2})$
 $2. e^{(2n \cdot 0.2)t} = 0.4$
 $2. e^{(2n \cdot 0.2)t}$

26.
$$2n(xy) = e^{x+y}$$

$$\frac{(xy)'}{xy} = (1+y')e^{x+y}$$

$$\frac{y+x}{dx} = e^{x+y} + \frac{dy}{dx} \cdot e^{x+y}$$

$$\frac{dy}{dx} = xy \cdot e^{x+y} - y$$

$$\frac{dy}{dx} = xy \cdot e^{x+y}$$

27.
$$e^{2x} = sm(x+3y)$$

 $2e^{2x} = cos(x+3y) \left[1+3\frac{dy}{dx}\right]$
 $dy = \frac{1}{3} \left[\frac{2e^{2x} - cos(x+3y)}{cos(x+3y)}\right]$
 $= \frac{2e^{2x}}{3cos(x+3y)} - \frac{1}{3}$
29. $\int (e^{3x} + 5e^{-x}) dx$
 $= \int e^{3x} \frac{d(3x)}{3} + \int 5e^{-x} \frac{d(-x)}{-1}$
 $= \frac{1}{3}e^{3x} - 5e^{-x} + C$
38. $\int \frac{e^{-4x}}{x^3} \frac{d(5x)}{x^3}$
 $= \frac{1}{2}e^{-4x^2} + C$
48. $\int \frac{\sqrt{2n\pi}}{x^3} \frac{2}{x^3}$
 $= \frac{1}{2}e^{-4x^2} + C$
48. $\int \frac{\sqrt{2n\pi}}{x^3} \frac{2}{x^3}$
 $= \frac{1}{2}e^{-4x^2} + C$
49. $\int \frac{e^{-x}}{1+e^{x}} \frac{d(1+e^{x})}{e^{x}}$
 $= \int sin(e^{x^2}) \int \sqrt{2n\pi}$
 $= \int sin(e^{x^2}) \int \sqrt{2n\pi}$
 $= \int sin(e^{x^2}) \int \sqrt{2n\pi}$
 $= \int (1+e^{x}) + C$
50. $\int \frac{dx}{1+e^{x}} dx - \int \frac{e^{x}}{1+e^{x}} \frac{d(1+e^{x})}{e^{x}}$
 $= x - ln(1+e^{x}) + C$
56. $y = 3^{-x}$
 $2n(y) = -x ln(3)$

dy = -ln(3)

dy = - 20(3). 3-x

59.
$$y=x^{\pi}$$
 $ln(y)=\pi ln(x)$
 $\frac{dy}{dx}=\frac{\pi}{x}$
 $\frac{dy}{dx}=\pi x^{\pi-1}$

62. $y=(ln A)^{\pi}$
 $ln(y)=\pi ln(ln A)$
 $\frac{dy}{dx}=\frac{\pi}{4}$

65. $y=2\sin 3k$
 $ln(y)=\sin (3k) \cdot ln(x)$
 $\frac{dy}{dx}=\frac{\pi}{4}$
 $\frac{dy}{dx}=\frac{\pi}{4}$
 $\frac{dy}{dx}=\frac{\pi}{4}$
 $\frac{dy}{dx}=\frac{\pi}{4}$
 $\frac{dy}{dx}=\frac{\pi}{4}$
 $\frac{dy}{dx}=\frac{1}{2\pi}$
 $\frac{dy}{dx}=\frac{1}{2\pi}$

$$\frac{1}{2 \ln(25)} - \frac{1}{2 \ln(5) \chi}$$

$$\frac{1}{2} \ln(\frac{3\chi}{3\chi+2}) = \frac{1}{2} \cdot \frac{3\chi+2}{3\chi} \cdot \frac{3\chi+2}{(3\chi+1)-3\chi(3)}$$

$$\frac{1}{2} \frac{1}{2} \cdot \frac{3\chi+2}{3\chi} \cdot \frac{3\chi+2}{(3\chi+1)^2}$$

$$= \frac{1}{\chi(3\chi+1)}$$

75.
$$y = \theta \sin\left(\frac{\ln(\theta)}{\ln(\theta)}\right)$$

$$\frac{dy}{d\theta} = \sin\left(\frac{\ln(\theta)}{\ln(\theta)}\right) + \theta \cdot \cos\left(\frac{\ln(\theta)}{\ln(\theta)}\right) \cdot \frac{1}{\theta \ln(\theta)}$$

$$= \sin\left(\frac{\ln(\theta)}{\ln(\theta)}\right) + \frac{\cos(\log_{\theta}\theta)}{\ln \theta}$$

82.
$$y = t$$
. $\frac{\ln(e^{(sm+1)(en 3)})}{\ln(s)}$
 $\frac{dy}{dt} = \frac{1}{\ln(s)} \left[\ln(s) \cdot \sin(t) + \ln(s) \cdot t \cos(t) \right]$
 $= sm(t) + t \cdot \cos(t)$

85. $\int_{1}^{2} \frac{1}{2^{-t}} \frac{d(2^{-t})}{-2 \ln(s)} \frac{1}{2^{-t}} \frac{1}{2^{-$

=[] ln2(x)]"

= 2ln2(2)

111.
$$y = (x+1)^{x}$$
 $ln(y) = x \cdot ln(x+1) + \frac{x}{x+1}$
 $\frac{dy}{dx} = ln(x+1) + \frac{x}{x+1}$
 $\frac{dy}{dx} = (x+1)^{x} \cdot ln(x+1) + x \cdot (x+1)^{x-1}$

114. $y = t^{16}$
 $ln(y) = t^{16} \cdot ln(t)$
 $\frac{dy}{dt} = t^{16} \cdot (ln(t) + 1)$

116. $y = x \cdot sm(x) \cdot ln(x)$
 $\frac{dy}{dx} = cos(x) \cdot ln(x) + sm(x)$
 $\frac{dy}{dx} = x^{2m} \times \left[cos(x) \cdot ln(x) + sm(x)\right]$
 $\frac{dy}{dx} = x^{2m} \times \left[cos(x) \cdot ln(x) + sm(x)\right]$

118. $y = (ln(x))$
 $ln(y) = ln(x) \cdot ln(ln(x))$
 $ln(y) = ln(x) \cdot ln(ln(x))$
 $ln(y) = ln(x) \cdot ln(ln(x))$
 $\frac{dy}{dx} = ln(x) \cdot ln(x) \cdot \frac{x}{x}$

121. $t(x) = xe^{-x}$

2. $t'(x) = e^{-x} - x \cdot e^{-x}$

3. $t'(x) = e^{-x} - x \cdot e^{-x}$

3. $t'(x) = e^{-x} - x \cdot e^{-x}$

3. $t'(x) = e^{-x} - x \cdot e^{-x}$

4. $t'(x) = e^{-x} - x \cdot e^{-x}$

3. $t'(x) = e^{-x} - x \cdot e^{-x}$

4. $t'(x) = e^{-x} - x \cdot e^{-x}$

3. $t'(x) = e^{-x} - x \cdot e^{-x}$

4. $t'(x) = e^{-x} - x \cdot e^{-x}$

3. $t'(x) = e^{-x} - x \cdot e^{-x}$

4. $t'(x) = e^{-x} - x \cdot e^{-x}$

3. $t'(x) = e^{-x} - x \cdot e^{-x}$

4. $t'(x) = e^{-x} - x \cdot e^{-x}$

3. $t'(x) = e^{-x} - x \cdot e^{-x}$

3. $t'(x) = e^{-x} - x \cdot e^{-x}$

4. $t'(x) = e^{-x} - x \cdot e^{-x}$

3. $t'(x) = e^{-x} - x \cdot e^{-x}$

4. $t'(x) = e^{-x} - x \cdot e^{-x}$

5. $t''(x) = e^{-x} - x \cdot e^{-x}$

6. $t''(x) = e^{-x} - x \cdot e^{-x}$

12. $t'(x) = e^{-x} - x \cdot e^{-x}$

13. $t'(x) = e^{-x} - x \cdot e^{-x}$

14. $t'(x) = e^{-x} - x \cdot e^{-x}$

15. $t'(x) = e^{-x} - x \cdot e^{-x}$

16. $t'(x) = e^{-x} - x \cdot e^{-x}$

17. $t'(x) = e^{-x} - x \cdot e^{-x}$

18. $t'(x) = e^{-x} - x \cdot e^{-x}$

19. $t'(x) = e^{-x} - x \cdot e^{-x}$

20. $t'($

123. f(x) = x2/n(x) f'(x) = 2xln(x) + x2 (-x) 0=(x)/26. 2xln(x)-x=0 x (2ln(x)-1)=0 x= {0, e-1/2} $f''(x) = 2\ln(\frac{1}{x}) - 1 - 1$ Since $f''(e^{-\gamma_2}) < 0$ and $f'(e^{-\gamma_2}) = 0$, (e-1/2, 1/2e) is an absolute maximum point 131. STI+(dy)2 dx note that & y= enccosx) = STY4 1+ tan2x dx =[ln|secx+tanx]] + : ln (J2+1) 1352 at X near 0, t(x)= t(z)+ f,(3)(x-5) => exzea + ea (x-a) => ex=1+x b. error = \e^012 - (112) = 0,02140 **C** .

for $x \neq 0$, the approximation appears to underestimate e^x .

(Since e^x is a concave up function)

136a.
$$y=e^{x}$$
 $\frac{dy}{dx}=e^{x}$
 $\frac{dy}{dx}=e^{x}$

for every value of x , $\frac{d^{2}y}{dx^{2}} > 0$
 $\Rightarrow e^{x}$ is concave up over every interval of x -value,

 e^{x}
 e^{x}

Area ABCD = IAD1 e^{x}
 e^{x}
 e^{x}
 e^{x}
 e^{x}

Anea AEFD = IAD1 e^{x}
 e^{x}
 e^{x}
 e^{x}

Anea AEFD = IAD1 e^{x}
 e^{x}
 e^{x}
 e^{x}

Anea AEFD = IAD1 e^{x}
 e^{x}
 e^{x}
 e^{x}
 e^{x}
 e^{x}
 e^{x}

Anea AEFD = IAD1 e^{x}
 e^{x}

Frequency 1.5

Figure 1.55 x
$$\frac{1}{2}$$
 in $\frac{1-155}{2}$ $\frac{1}{2}$ $\frac{1}{2}$

=e-1=+

- Rim la (sinck)

53. Aim
$$(Anx)^{1/4}x$$

66. Aim $(Anx)^{1/4}x$

79. $(Anx)^{1/4}x$

66. Aim $(Anx)^{1/4}x$

79. $(Anx)^{1$

$$= e^{x+n} \times \ln(1+\frac{1}{x})$$

frends to 1 as x tends to po while g tends to e as x tends to co

$$= 6 - x = 6$$

$$\lim_{x \to 0^{-}} f(x) = \lim_{x \to 0^{+}} f(x) = \lim_{x \to 0^{-}} - \frac{x_{2}}{7}$$

$$\lim_{x \to 0^{-}} f(x) = \lim_{x \to 0^{+}} f(x) = \lim_{x \to 0^{-}} - \frac{x_{2}}{7}$$

$$\lim_{x \to 0^{-}} f(x) = \lim_{x \to 0^{+}} f(x) = \lim_{x \to 0^{-}} - \frac{x_{2}}{7}$$

$$f'(0) = \lim_{h \to 0} \frac{h}{f(0+\mu) - f(0)} = \frac{\mu}{6 - \frac{\mu}{(0+\mu)^3}} = \frac{\mu}{\mu}$$

Exercises 7.8

12.
$$lm e^{x} = lm e^{x} = 0$$
 (shower)

13. $lm e^{x} = 0$ (shower)

14. $lm e^{x} = 0$ (shower)

9.
$$\frac{1}{x+1}$$
 2. $\frac{e^x}{e^x} = 2$ (same rate)

$$= \frac{1}{x^{2}} \times \frac{1}{x^{2}}$$

than X'n for any n>0

22.
$$\lim_{x\to\infty} \frac{\ln(x)}{\sum_{i=0}^{\infty} x^i} = \lim_{x\to\infty} \inf_{i=0}^{\infty} \frac{\ln(x)}{x^i}$$
 form

this snows that ln(x) grows slower than any polynomial except for n=0 (constant polynomial).