## 감성 분석을 통한 호감도 예측



2022.04.06

김수영

## CONTENTS

- 1. Intro
- 2. Data
- 3. Experiment
- 4. Analysis
- 5. Conclusion
- 6. Future works







## Project Name: 감성적인 투표







## Intro





## Intro





## **Goals**

■ Text-based unseen data 활용 연구

■ 감성 분석을 통한 후보 호감도 예측



# Data



## **Data Collection**

#### **NAVER**



Date: 2/1 ~ 3/4

Data count: 2730K

**Method: Web Crawling** 

## **Data Pre-processing**

#### Data classification

#### Deduplication

| $272 \Lambda V$ | \ |
|-----------------|---|
| 2/3UK           | / |

| 이재명 | 336,049 |
|-----|---------|
| 윤석열 | 386,539 |
| 중복  | 104,414 |
| 총 합 | 827K    |



| 이재명 | 11,675 |
|-----|--------|
| 윤석열 | 16,140 |
| 중복  | 4,248  |
| 총 합 | 32K    |

Counter({('4tos\*\*\*\*', '2022.03.09. 09:45', '국민들께 의칩니다...가르쳐 주십쇼~~ 거릴 윤국암 개당 ...'): 2952, ('rrjj\*\*\*\*', '2022.03.09. 09:36', '아무리 눈치가 없어도 파란코트 박근혜 파란마스크 홍준표 그래도 윤석열 찍는 모자란 대구시민은 없겠제?'): 2910, ('slsw\*\*\*\*', '2022.03.09. 09:19', '전라도 20대 30대는 윤석열!!!!!!('): 2910, ()hh18\*\*\*\*', '2022.03.09. 09:43', '무조건윤석열'): 2562, ('jiny\*\*\*\*', '2022.03.09. 09:17', '결국 코로나땜시 투표 분산호과만있고 투표율은 예전이나 지금이나 도전개전이네~근데 무석한 대통령 나오면 안되는데 걱정이다 5년 주위에서 다 해져먹겠네~'): 562, ('kkhk\*\*\*\*', '2022.03.09. 10:29', '윤석열 대통령님 같이 좌파 빨갱이 공산당 멸공합시다!'): 1958, ('samy\*\*\*\*', '2022.03.09. 10:10', '보수는 마지막에강하다!...대구!....역시대구!....감사합니다 윤석열찍어주신.대구시민들최고!....'): 1958, ('ingc\*\*\*\*', '2022.03.09. 08:16:29', '투표 독려해서 윤석열 당선시킵시다'): 1957, ('duff\*\*\*\*', '2022.03.09. 08:20:05', '열심히 투표해서 정권교제합시다'): 1957, ('kj02\*\*\*\*', '2022.03.08. 11:14',

#### **Data**

#### > Naver news comment data

| 이재명 | 11,675 |
|-----|--------|
| 윤석열 | 16,140 |
| 중복  | 4,248  |
| 총 합 | 32,063 |



|       | 윤석열   | 이재명   | 총합     |
|-------|-------|-------|--------|
| Train | 9,000 | 9,000 | 18,000 |
| Test  | 1,000 | 1,000 | 2,000  |

#### > Naver movie review data

| Train | 150K |
|-------|------|
| Test  | 50K  |

|   | id      | document                                        | label |
|---|---------|-------------------------------------------------|-------|
| 0 | 6270596 | 굳ㅋ                                              | 1     |
| 1 | 9274899 | GDNTOPCLASSINTHECLUB                            | 0     |
| 2 | 8544678 | 뭐야 이 평점들은 나쁘진 않지만 10점 짜리는 더더욱 아니잖아              | 0     |
| 3 | 6825595 | 지루하지는 않은데 완전 막장임 돈주고 보기에는                       | 0     |
| 4 | 6723715 | 3D만 아니었어도 별 다섯 개 줬을텐데 왜 3D로 나와서 제 심기를 불편하게 하죠?? | 0     |



## Experiment



## Method1. Pre-trained model (KoBERT)

#### **KoBERT**





## Method2. Pre-trained model + Self-training





## Method2. Pre-trained model + Classic Self-training

#### Algorithm 1 Classic Self-training

- 1: Train a base model  $f_{\theta}$  on  $L = \{x_i, y_i\}_{i=1}^l$
- 2: repeat
- 3: Apply  $f_{\theta}$  to the unlabeled instances U
- 4: Select a subset  $S \subset \{(\boldsymbol{x}, f_{\boldsymbol{\theta}}(\boldsymbol{x})) | \boldsymbol{x} \in U\}$
- 5: Train a new model  $f_{\theta}$  on  $S \cup L$
- 6: until convergence or maximum iterations are reached

From [1]



## **Data**

|                                  | Pre-trained model (KoBERT) | Self-training |
|----------------------------------|----------------------------|---------------|
| Labeled data<br>(movie review)   | 200K                       | 200K          |
| Unlabeled data<br>(news comment) | 18K                        | 18K           |
| Test<br>(news comment)           | 2K                         | 2K            |



### **Parameter**

|               | Pre-trained model (KoBERT)        | Self-training |
|---------------|-----------------------------------|---------------|
| Batch size    | 64 64                             |               |
| Epoch         | 5                                 | 5             |
| Learning rate | 1e-4                              | 1e-4          |
| Dropout       | 0.5                               |               |
| Iteration     | - 4                               |               |
| Optimizer     | AdamW AdamW                       |               |
| Criterion     | CrossEntropyLoss CrossEntropyLoss |               |



## **Experiment Result**

Method1. Pre-trained model (KoBERT)

68.16 %

#### Method2. Classic Self-training





# Analysis



## **Analysis**

1. Self-training with Noisy Student

2. Data ratio

3. Labeled data change

4. Test data change and F1-score measure



## 1. Self-training with Noisy Student



| Model / Unlabeled Set Size                                  | 1.3M               | 130M               |
|-------------------------------------------------------------|--------------------|--------------------|
| EfficientNet-B5                                             | 83.3%              | 84.0%              |
| Noisy Student Training (B5)<br>student w/o Aug              | <b>83.9%</b> 83.6% | <b>85.1%</b> 84.6% |
| student w/o Aug, SD, Dropout<br>teacher w. Aug, SD, Dropout | 83.2%<br>83.7%     | 84.3%<br>84.4%     |

From [1]



## 1. Self-training with Noisy Student



| Model / Unlabeled Set Size                                  | 1.3M           | 130M               |
|-------------------------------------------------------------|----------------|--------------------|
| EfficientNet-B5                                             | 83.3%          | 84.0%              |
| Noisy Student Training (B5) student w/o Aug                 | 83.9%<br>83.6% | <b>85.1%</b> 84.6% |
| student w/o Aug, SD, Dropout<br>teacher w. Aug, SD, Dropout | 83.2%<br>83.7% | 84.3%<br>84.4%     |

From [1]



[1] Xie, Qizhe, et al. "Self-training with noisy student improves imagenet classification." *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition*. 2020.

## 1. Self-training with Noisy Student





## 1. Self-training with Noisy Student - Result





#### 2. Data ratio

Labeled data: 200K

Unlabeled data: 18K

11:1

Labeled data: 2K
Unlabeled data: 18K

1:9

> Infer pseudo labels on **accumulated** unlabeled data

(1) 500 : 4500

(2) 1000 : 4500 + 4500

(3) 1500 : 9000 + 4500

(4) 2000 : 13500 + 4500



## 2. Data ratio - Result





## 3. Labeled Data Change (1:9)





## 4. Test data change and F1-score measure

> Test data change

| 0     | 1     |
|-------|-------|
| 71.6% | 28.4% |

| 0      | 1      |
|--------|--------|
| 58.05% | 41.95% |





## 4. Test data change and F1-score measure



Pre-trained model: 78.85



Pre-trained model: 77.20



## 4. Test data change and F1-score measure

| ative |
|-------|
|       |

**True** 

**False** 

| 2.8  | 1.4 |
|------|-----|
| 0.37 | 5.4 |

recall = 
$$\frac{2.8}{2.8 + 5.4}$$
 = 0.34

precision = 
$$\frac{2.8}{2.8 + 0.37}$$
 = 0.88



## Conclusion



#### **Conclusion**

- > Adding **noise** in Self-training can prevent learning incorrect pseudo labels
- > The use of self-training is helpful in the **fine-tuning** stage.





긍정: 23.6% 부정: 76.4%



긍정: 20.8% 부정: 79.2%

## **Self-training Effect**



- Time 27 hours (18K x 90m)
- Cost 2,700,000 (18K x150)



- Artificial intelligence is used to avoid borrowing human hands,
   but data labeling consumes a lot of manpower
- Self-training can overcome the limits of deep learning
- Unseen data input the field can be utilized in real time



## Future works



#### **Future works**

#### > Self-training performance

- Select confidence score
- KcBERT
- Experiment with large amounts of data
- Zoph, Barret, et al. "Rethinking pre-training and self-training." Advances in neural information processing systems 33 (2020): 3833-3845.

#### **▷** Multi-view Algorithm: Co-training

Several models work together to learn







## Thank you

