BAB 1 RELASI & FUNGSI

A. Relasi

Relasi biner menggambarkan ada tidaknya interaksi atau koneksi antara elemen-elemen dari 2 atau lebih himpunan dalam urutan tertentu.

Contoh 1:

Dua orang yaitu Harlan dan Herlian memiliki hubungan sebagai berikut; "Harlan adalah kakak kandung Herlian" jadi relasinya adalah hubungan famili.

Contoh 2:

Dalam himpunan program komputer, mungkin didefinisikan bahwa 2 program komputer berelasi jika keduanya mengakses data yang sama atau menghasilkan keluaran yang sama.

Relasi

- Relasi biner R antara himpunan A dan B adalah himpunan bagian dari $A \times B$.
- Notasi: $R \subseteq (A \times B)$.
- a R b adalah notasi untuk $(a, b) \in R$, yang artinya a dihubungankan dengan b oleh R
- $a \not\in b$ adalah notasi untuk $(a, b) \not\in R$, yang artinya a tidak dihubungkan dengan b oleh relasi R.
- Himpunan A disebut daerah asal (domain) dari R, dan himpunan B disebut daerah hasil (range) dari R.

Contoh 3: Misalkan $P = \{2, 3, 4\}$ dan $Q = \{2, 4, 8, 9, 15\}$. Jika kita definisikan relasi R dari P ke Q dengan

 $(p, q) \in R$ jika p habis membagi q

maka kita peroleh

$$R = \{(2, 2), (2, 4), (2, 8), (3, 9), (3, 15), (4, 4), (4, 8)\}$$

Contoh 4: Misalkan R adalah relasi pada $A = \{2, 3, 4, 8, 9\}$ yang didefinisikan oleh $(x, y) \in R$ jika x adalah faktor prima dari y. Maka

$$R = \{(2, 2), (2, 4), (2, 8), (3, 3), (3, 9)\}$$

Representasi Relasi

1. Representasi Relasi dengan Diagram Panah

2. Representasi relasi dengan pasangan terurut

Relasi R pada Contoh 3 dapat dinyatakan dengan pasangan terurut. $R = \{(2, 2), (2, 4), (2, 8), (3, 9), (3, 15), (4, 4), (4, 8)\}$

3. Representasi Relasi dengan Tabel

• Kolom pertama tabel menyatakan daerah asal, sedangkan kolom kedua menyatakan daerah hasil.

Tabel 1

Q
2
4
8
9
15
4
8

Tabel 2

A	A
2	2
2	4
2	8
3	3
3	9

4. Representasi Relasi dengan Matriks

- Misalkan R adalah relasi dari $A = \{a_1, a_2, ..., a_m\}$ dan $B = \{b_1, b_2, ..., b_n\}$.
- Relasi *R* dapat disajikan dengan matriks $M = [m_{ij}]$,

$$M = \begin{bmatrix} b_1 & b_2 & \dots & b_n \\ a_1 & m_{11} & m_{12} & \cdots & m_{1n} \\ m_{21} & m_{22} & \cdots & m_{2n} \\ \vdots & \vdots & \vdots & \vdots \\ a_m & m_{m1} & m_{m2} & \cdots & m_{mn} \end{bmatrix}$$

yang dalam hal ini

$$m_{ij} = \begin{cases} 1, & (a_i, b_j) \in R \\ 0, & (a_i, b_j) \notin R \end{cases}$$

Relasi R pada Contoh 3 dapat dinyatakan dengan matriks

$$\begin{bmatrix} 1 & 1 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 1 \\ 0 & 1 & 1 & 0 & 0 \end{bmatrix}$$

yang dalam hal ini, $a_1 = 2$, $a_2 = 3$, $a_3 = 4$, dan $b_1 = 2$, $b_2 = 4$, $b_3 = 8$, $b_4 = 9$, $b_5 = 15$.

5. Representasi Relasi dengan Graf Berarah

- Relasi pada sebuah himpunan dapat direpresentasikan secara grafis dengan **graf berarah** (*directed graph* atau *digraph*)
- Graf berarah tidak didefinisikan untuk merepresentasikan relasi dari suatu himpunan ke himpunan lain.
- Tiap elemen himpunan dinyatakan dengan sebuah titik (disebut juga simpul atau *vertex*), dan tiap pasangan terurut dinyatakan dengan busur (*arc*)
- Jika $(a, b) \in R$, maka sebuah busur dibuat dari simpul a ke simpul b. Simpul a disebut **simpul asal** (*initial vertex*) dan simpul b disebut **simpul tujuan** (*terminal vertex*).
- Pasangan terurut (a, a) dinyatakan dengan busur dari simpul a ke simpul a sendiri. Busur semacam itu disebut gelang atau kalang (loop).

Contoh 5: Misalkan $R = \{(a, a), (a, b), (b, a), (b, c), (b, d), (c, a), (c, d), (d, b)\}$ adalah relasi pada himpunan $\{a, b, c, d\}$.

R direpresentasikan dengan graf berarah sbb:

6. Representasi relasi dengan sistem koordinat

R = {(Microsoft, Windows), (IBM, 0s/2), (Macintosh, MacOS)}

Sifat Relasi

1. Refleksif

Relasi R pada himpunan A disebut *refleksif* jika $(a,a) \in R$ untuk setiap anggota $a \in A$.

Apakah relasi berikut pada {1, 2, 3, 4} refleksif?

$$R = \{(1, 1), (1, 2), (2, 3), (3, 3), (4, 4)\}$$

$$R = \{(1, 1), (2, 2), (2, 3), (3, 3), (4, 4)\}$$

$$R = \{(1, 1), (2, 2), (3, 3)\}$$

$$Ya.$$

Contoh 6:

Misalkan $A = \{1, 2, 3, 4\}$, dan relasi R adalah relasi ' \leq ' yang didefinisikan pada himpunan A, maka

$$R = \{(1, 1), (1, 2), (1, 3), (1, 4), (2, 2), (2, 3), (2, 4), (3, 3), (3, 4), (4, 4)\}$$

Terlihat bahwa (1, 1), (2, 2), (3, 3), (4, 4) merupakan Unsur dari R. Dengan demikian R dinamakan bersifat **refleksif**.

Contoh 7:

Misalkan $A = \{2, 3, 4, 8, 9, 15\}.$

Jika kita definisikan relasi R pada himpunan A dengan aturan:

 $(a, b) \in R$ jika a faktor prima dari b

Perhatikan bahwa $(4, 4) \notin R$.

Jadi, jelas bahwa R tidak bersifat refleksif.

2. Simetris

- Relasi R pada himpunan A disebut simetris jika (b,a)∈R setiap kali (a,b)∈R untuk setiap a,b∈A.
- Relasi R pada himpunan A disebut antisimetris jika a = b setiap kali (a,b)∈R dan (b,a)∈R.

Apakah relasi berikut pada {1, 2, 3, 4} simetris atau antisimetris?

$$R = \{(1, 1), (1, 2), (2, 1), (3, 3), (4, 4)\}$$

simetris

$$R = \{(1, 1)\}$$

simetris & antisimetris

$$R = \{(1, 3), (3, 2), (2, 1)\}$$

antisimetris

$$R = \{(4, 4), (3, 3), (1, 4)\}$$

antisimetris

Contoh 8:

Misalkan R merupakan relasi pada sebuah himpunan Riil, yang dinyatakan oleh:

a R b jika dan hanya jika $a - b \in Z$. Periksa apakah relasi R bersifat simetris!

Misalkan a R b maka $(a - b) \in \mathbf{Z}$, Sementara itu jelas bahwa $(b - a) \in \mathbf{Z}$. Dengan demikian R bersifat **simetris**.

Contoh 9:

Tunjukan bahwa relasi '≤' merupakan pada himpunan **Z** bersifat antisimetris.

Jelas bahwa jika $a \le b$ dan $b \le a$ berarti a = b.

Jadi relasi '≤' bersifat antisimetris.

3. Transitif

Relasi R pada himpunan A disebut *transitif* jika setiap kali $(a,b)\in R$ dan $(b,c)\in R$, maka $(a,c)\in R$ untuk $a,b,c\in A$.

Apakah relasi berikut pada {1, 2, 3, 4} transitif?

$$R = \{(1, 1), (1, 2), (2, 2), (2, 1), (3, 3)\}$$
 Ya.

$$R = \{(1, 3), (3, 2), (2, 1)\}$$
 Tidak.

$$R = \{(2, 4), (4, 3), (2, 3), (4, 1)\}$$
 Tidak.

Contoh 10:

Misalkan $A = \{ 2, 3, 4, 5, 6, 7, 8, 9 \}$, dan relasi R Didefinisikan oleh:

a R b jika dan hanya jikan a membagi b, dimana a, b ∈ A, Dengan memperhatikan definisi relasi R pada himpunan A, maka : $R = \{(2, 2), (2, 4), (2, 6), (2, 8), (3, 3), (3, 6), (3, 9), (4, 4), (4, 8)\}$

Ketika $(2, 4) \in R$ dan $(4, 8) \in R$ terlihat bahwa $(2, 8) \in R$.

Dengan demikian R bersifat transitif.

Contoh 11:

R merupakan relasi pada himpunan bilangan asli **N** yang didefinisikan oleh:

$$R: a + b = 5, a, b \in A,$$

Dengan memperhatikan definisi relasi *R* pada himpunan *A*, maka:

$$R = \{(1, 4), (4, 1), (2, 3), (3, 2)\}$$

Perhatika bawa $(1, 4) \in R$ dan $(4, 1) \in R$, tetapi $(1, 1) \notin R$. Dengan demikian R tidak bersifat transitif.

LATIHAN

Tuliskan pasangan berurutan dalam relasi R dari $A = \{0, 1, 2, 3, 4\}$ Ke $B = \{0, 1, 2, 3\}$ dimana $(a, b) \in R$ bila dan hanya bila:

- a. a = b
- b. a + b = 4
- c. a > b