

Project Initialization and Planning Phase

Date	10 th July 2024	
Team ID	SWTID1721205662	
Project Title	Early Prediction of Chronic Kidney Disease Using Machine Learning	
Maximum Marks	3 Marks	

Project Proposal (Proposed Solution) template

The primary objective of this project is to develop a robust machine learning model that can accurately detect chronic kidney disease (CKD) using patient data.

Project Overview		
Objective	Develop a robust machine learning model to accurately detect chronic kidney disease (CKD) using patient data.	
Scope	 Data preprocessing and cleaning. Feature selection and engineering. Training and evaluating multiple machine learning models. Selection of the best-performing model. Deployment in a user-friendly interface. 	
Problem Statement		
Description	Chronic kidney disease is a significant health issue requiring early detection to prevent severe complications. Current diagnostic methods are time-consuming and require extensive medical expertise.	
Impact	 Enable early detection and treatment of CKD. Reduce the burden on healthcare professionals. Improve patient outcomes with timely interventions. 	
Proposed Solution		
Approach	 Data Preprocessing: Handle missing values, normalize data, encode categorical variables. Feature Selection and Engineering: Identify relevant features, create new features if necessary. Model Training and Evaluation: Train multiple models, evaluate using metrics like accuracy, precision, recall, F1-score. 	

	 - Model Selection: Select and fine-tune the best-performing model. - Deployment: Develop and deploy a user-friendly interface
Key Features	 - Accuracy: High accuracy in detecting CKD. - Efficiency: Quick and automated detection. - User-Friendly Interface: Easy for healthcare providers to use. - Scalability: Can handle large data volumes.

Resource Requirements

Resource Type	Description	Specification/Allocation		
Hardware				
Computing Resources	CPU/GPU specifications, number of cores	e.g., 2 x NVIDIA V100 GPUs		
Memory	RAM specifications	e.g., 8 GB		
Storage	Disk space for data, models, and logs	e.g., 1 TB SSD		
Software				
Frameworks	Python frameworks	e.g., Flask		
Libraries	Additional libraries	e.g., scikit-learn, pandas, numpy		
Development Environment	IDE, version control	e.g., Jupyter Notebook, Git		
Data				
Data	44KB	e.g., Kaggle dataset		