Rachunek ppb i statystyka

Estymatory największej wiarygodności (MLE estimators)

Zakładamy że dane są niezależne obserwacje zmiennej losowej X o tym samym rozkładzie. Funkcja gęstości zmiennej X ma postać $f(x;\theta)$, gdzie θ to parametr/parametry rozkładu. Można też uważać, że dane są niezależne zmienne X_1, \ldots, X_n o tym samym rozkładzie. Prawdopodobieństwo zdarzenia można zatem zapisać jako funkcję wiarygodności L względem zmiennej θ

$$L(x;\theta) = P(X_1 = x_1, \dots, X_n = x_n) = \prod_{k=1}^n f(x_k; \theta).$$
 (1)

Zakładamy, że obserwowane wartości są typowe (najbardziej prawdopodobne). Chcemy zatem aby funkcja wiarygodności osiągała maksimum w pewnym punkcie $\hat{\theta}$. Oważ wyznaczona wartość $\hat{\theta}$ nazywana jest estymatorem największej wiarygodności parametru θ .

UWAGA: Bardzo często szukamy maksimum funkcji $\ln L(x;\theta)$, wyłącznie z powodów obliczeniowych; logarytm (naturalny) jako funkcja rosnąca daje tę samą odpowiedź.

Przykład:

P1: Rozważmy n niezależnych obserwacji z rozkładu $\operatorname{Exp}(\lambda)$. Prawdopodobieństwo zdarzenia $P(X_1 = x_1, \dots, X_n = x_n)$ jest równe – z racji niezależności – $L(\lambda) = \lambda^n \exp\left(-\sum_{k=1}^n x_i\right)$. Chcemy znaleźć wartość λ taka iż funkcja (λ) osiąga maksimum. a

Maksima funkcji $L(\lambda)$ oraz ln $L(\lambda)$ znajdują się w tym samym punkcie $\hat{\lambda}$. Obliczając – i przyrównując do zera, – pochodną $\frac{\partial \ln L}{\partial \lambda}$ otrzymujemy równanie

$$\frac{\partial \ln L}{\partial \lambda} = \frac{n}{\lambda} + \left(\sum_{k=1}^{n} x_i\right) = \frac{n}{\lambda} - n \cdot \bar{x} = 0,$$

skąd wynika, że $\hat{\lambda} = 1/\bar{x}$. Druga pochodna funkcji ln $L(\lambda)$ równa $\frac{\partial^2 \ln L}{\partial \lambda^2} = -\frac{n}{\lambda^2}$ jest ≤ 0 w każdym punkcie λ , czyli również dla wyznaczonej wcześniej wartości $\hat{\lambda}$, co dowodzi iż znaleźliśmy maksimum funkcji wiarygodności \equiv estymator MLE $\hat{\lambda}$ parametru λ .

Przykład:

 ${\bf P2}$: Rozważamy n niezależnych obserwacji z rozkładu ${\bf B}(n,p)$. Funkcja wiarygodności ma teraz postać

$$L(p) = P(X_1 = x_1, \dots, X_k = x_k) = \prod_{i=1}^k P(X_i = x_i) =$$

$$= p^{\sum x_i} (1-p)^{nk-\sum x_i} \prod_{i=1}^k \binom{n}{x_i} = p^{k\bar{x}} (1-p)^{nk-k\bar{x}} \prod_{i=1}^k \binom{n}{x_i}.$$
(2)

Logarytm funkcji wiarygodności ma zatem postać

$$\ln L(p) = \sum_{i=1}^{k} \ln \binom{n}{x_i} + k\bar{x} \ln p + k(n - \bar{x}) \ln(1 - p),$$

^aIntuicja: to, co obserwujemy, jest najbardziej prawdopodobne.

a jego pochodna to

$$\frac{\partial \ln L}{\partial p} = \frac{k\bar{x}}{p} - \frac{k(n - \bar{x})}{1 - p} = 0.$$

Rozwiązując powyższe równanie otrzymujemy dla estymatora MLE wyrażenie $\hat{p} = \frac{\bar{x}}{n}$. Druga pochodna funkcji wiarygodności to

$$\frac{\partial^2 \ln L}{\partial p^2} = -\frac{k\bar{x}}{p^2} - \frac{k(n-\bar{x})}{(1-p)^2} < 0,$$

dla $0 < \hat{p} < n$ zatem znaleźliśmy maksimum funkcji L(p).

Jeżeli $\hat{p} = 0$, to $x_1 = \ldots = x_k = 0$. Funkcja wiarygodności (2) ma postać $L(p) = (1-p)^{nk}$ i osiąga maksimum dla p = 0. Podobnie, jeżeli $\hat{p} = n$, to $x_1 = \ldots = x_k = n$. Funkcja wiarygodności (2) ma w tym wypadku postać $L(p) = p^{nk}$ i osiąga maksimum dla p = 1.

Witold Karczewski