MASSACHUSETTS MATHEMATICS LEAGUE CONTEST 6 – MARCH 2010 ROUND 1 ALG 2: SIMULTANEOUS EQUATIONS AND DETERMINANTS

A '	NSWERS	
\boldsymbol{A}	13 W F. R. 3	

A)	 	
B)		
2)		
\sim	/	,

***** NO CALCULATORS IN THIS ROUND *****

A) Given: $\begin{cases} y = 17 - 2x \\ y = 3x + 2 \end{cases}$ Determine the value of k for which this system of lines determines a y = k

minimum number of points of intersection.

- B) Find <u>all</u> ordered pairs (x, y) satisfying $\begin{cases} x 2y = 1 \\ |x| + |y| = 1 \end{cases}$.
- C) Connecting the points A(3, 7), B(-1, 2), C(3x, -x) and D(10, 1) you have an outline of the deck in my backyard. It's a nondescript convex quadrilateral and finding its area is baffling my builders. If x > 0 and A and C are opposite vertices, compute the coordinates of C so the area of my deck is 52 square units.

Note: The area of a triangle with vertices at $(x_1, y_1), (x_2, y_2)$ and (x_3, y_3) can be computed

as
$$\frac{1}{2}\begin{vmatrix} x_1 & y_1 & 1 \\ x_2 & y_2 & 1 \\ x_3 & y_3 & 1 \end{vmatrix}$$
.