ANSWER KEY (AIPMT-2002)

Oues.	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
-	2		1								11		_			10			1)	
Ans	2	4	1	3	2	3	2	4	4	2	I	2	4	3	4	I	2	2	1	3
Ques.	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40
Ans	4	3	2	3	2	2	2	3	2	1	4	3	2	1	1	1	1	3	3	1
Ques.	41	42	43	44	45	46	47	48	49	50	51	52	53	54	55	56	57	58	59	60
Ans	1	2	3	1	3	2	1	2	3	4	2	1	3	4	3	2	2	1	1	1
Ques.	61	62	63	64	65	66	67	68	69	70	71	72	73	74	75	76	77	78	79	80
Ans	4	1	2	2	2	2	3	2	2	2	2	1	1	3	2	4	3	4	1	4
Ques.	81	82	83	84	85	86	87	88	89	90	91	92	93	94	95	96	97	98	99	100
Ans	2	1	2	4	2	2	3	3	1	2	1	2	1	1	2	3	2	3	2	2
Ques.	101	102	103	104	105	106	107	108	109	110	111	112	113	114	115	116	117	118	119	120
Ans	1	3	1	1	1	2	3	2	2	1	2	3	1	2	1	3	3	2	1	3
Ques.	121	122	123	124	125	126	127	128	129	130	131	132	133	134	135	136	137	138	139	140
Ans	3	3	2	1	3	4	1	1	3	2	2	4	1	2	1	1	2	1	4	2
Ques.	141	142	143	144	145	146	147	148	149	150	151	152	153	154	155	156	157	158	159	160
Ans	2	2	1	1	1	3	3	2	3	4	3	2	1	1	2	4	2	1	1	2
Ques.	161	162	163	164	165	166	167	168	169	170	171	172	173	174	175	176	177	178	179	180
Ans	2	3	3	2	1	2	1	2	2	4	1	2	1	2	3	2	2	2	1	3
Ques.	181	182	183	184	185	186	187	188	189	190	191	192	193	194	195	196	197	198	199	200
Ans	3	3	2	1	1	3	1	1	1	1	2	1	1	1	1	1	1	3	4	2

HINTS & SOLUTIONS

- 2. For damped oscillation amplitude $A = A_0 e^{-bt}$ $\frac{A_0}{3} = A_0 e^{-b(100 \text{ T})} \Rightarrow e^{-100bT} = \frac{1}{3}$ at t = 200 T, $A = A_0 e^{-b(200 \text{ T})} = A_0 (e^{-100bT})^2$ $\Rightarrow A = A_0 \left(\frac{1}{3}\right)^2 = \frac{A_0}{9}$
- **3.** Density of iron is more than Aluminium.
- 4. For given condition snell's law give 1. $\sin 45^{\circ} = \mu . \sin (90 - \theta_c)$

$$\frac{1}{\sqrt{2}} = \mu \cos \theta_c = \sqrt{\mu^2 - 1}$$

$$\Rightarrow \mu^2 = 1 + \frac{1}{2} \Rightarrow \mu^2 = \frac{3}{2} \Rightarrow \mu = \sqrt{\frac{3}{2}}$$

Alternate solution (objective method)

for given condition $\mu = \sqrt{1 + \sin^2 \theta}$

$$\Rightarrow \mu = \sqrt{1 + \sin^2 45^\circ} = \mu = \sqrt{1 + \frac{1}{2}} = \sqrt{\frac{3}{2}}$$

- 6. Extreme Mean Extreme position position position x = -a x = 0 x = +a P.E. (max) K.E. (Max.) (P.E.) Max.
- 13. Smooth surface is given so rolling motion is not possible. Sphere will perform linear motion.
- **14.** For the aparture, limit of resolution –

$$\frac{y}{D} \ge \frac{\lambda}{d} \implies y \ge \frac{\lambda D}{d}$$

$$y \ge \frac{5 \times 10^{-7}}{2 \times 10^{-3}} \times 50 \ge 1.25 \text{ cm}.$$

15. For image formation
$$f \le d/4$$

18.
$$P \propto (T^{4} - T_{0}^{4})$$

$$\frac{P_{2}}{P_{1}} = \frac{(1500)^{4} - (500)^{4}}{(1000)^{4} - (500)^{4}} = \frac{500^{4}(3^{4} - 1)}{500^{4}(2^{4} - 1)}$$

$$\frac{P_{2}}{60} = \frac{80}{15} \implies P_{2} = 320 \text{ W}$$

19. Use
$$\frac{dQ}{dt} = \frac{KA}{L} (T_1 - T_2)$$

20.
$$\%$$
n = $\left(1 - \frac{T_2}{T_1}\right) \times 100$

For 50%
$$\frac{50}{100} = 1 - \frac{500}{T_1} \Rightarrow T_1 = 1000 \text{ K}$$

For 60%
$$\frac{60}{100} = 1 - \frac{T_2}{1000} \Rightarrow T_2 = 400 \text{ K}$$

23.
$$\vec{a} = \frac{F}{m} = 2t^2\hat{i} + \frac{4}{3}t\hat{j}$$

 $\vec{dv} = (2t^2\hat{i} + \frac{4}{3}t\hat{j})dt$

Integrate on both sides

$$\vec{v} = 2\left[\frac{t^3}{3}\right]\hat{i} + \frac{4}{3}\left[\frac{t^2}{2}\right]\hat{j}$$
at $t = 3$ sec. $\vec{v} = \frac{2}{3}(3)^3\hat{i} + \frac{4}{6}(3)^2\hat{j}$

$$= 18\hat{i} + 6\hat{j}$$

24.

Change in G.P.E. = final energy – initial energy

Change in G.P.E. = final energy – initia

$$= -\frac{GMm}{4R} + \frac{GMm}{R} = \frac{GMm}{R} \left[1 - \frac{1}{4} \right]$$

$$= \frac{3}{4} \frac{GMm}{R} = \frac{3}{4} \frac{GM}{R^2} mR = \frac{3}{4} gmR$$

25.

$$\Rightarrow a = \frac{\text{net force}}{\text{mass}}$$
$$= \frac{100 - 50}{10}$$
$$= 5 \text{ m/sec}^2$$

27.
$$T = m(g + a) = 1000 (9.8 + 1)$$

= 10,800 N

26.

$$t_{A} = \sqrt{\frac{2h}{g}}$$

For particle (B) In vertical direction

Use
$$s = ut + \frac{1}{2}at^2$$

$$\Rightarrow h = \frac{1}{2}g t_B^2 \Rightarrow t_B = \sqrt{\frac{2h}{g}}$$

Here $\rho = kx$ where k is a constant mass of small element of dx length is dm = kx.dx

$$x_{cm} = \frac{\int x.dm}{\int dm} = \frac{\int_0^3 x(x dx)}{\int_0^3 x.dx} = \frac{\left[\frac{x^3}{3}\right]_0^3}{\left[\frac{x^2}{2}\right]^3} = \frac{\frac{27}{3}}{\frac{9}{2}} = 2$$

30.
$$P_1 = \sqrt{2mE_1}$$
; $P_2 = \sqrt{2mE_2}$

$$= \sqrt{2m\left(E_1 + \frac{300}{100}E_1\right)} = \sqrt{2m(4E_1)} = 2P_1$$

% change =
$$\frac{P_2 - P_1}{P_1} \times 100 = \frac{2P_2 - P_1}{P_1} \times 100 = 100\%$$

31.
$$\beta = \frac{\alpha}{1-\alpha} = 24$$

33.

$$\frac{\omega R}{\rho}$$
observer
(stationary)
$$n_{max} = n_0 \left(\frac{V}{V - \omega R} \right); n_{min} = n_0 \left(\frac{V}{V + \omega R} \right)$$

34.

- 37. The value of ρ does not depend on geometry but increases with increase in temperature.
- In A.C. circuit power loss $P = V I \cos \phi$ $P = VI = I^2R \quad (\because \phi = 0 \text{ at resonance})$
- 39. Inside the conductor E = 0 so potential remains same.
- **40.** T.P.D (V) = E Ir(Remember it)

$$V = E - \left(\frac{E}{R+r}\right)r = \frac{ER}{(R+r)}$$

from given conditions E = 2.2 & when R = 5 then TPD V = 1.8 V

therefore
$$1.8 = \frac{2.2 \times 5}{5 + r} \Rightarrow r = \frac{10}{9} \Omega$$

42.
$$V_{\text{common}} = \frac{C_1 V_1 + C_2 V_2}{C_1 + C_2} = (\because V_2 = 0)$$

$$\Rightarrow V_{\text{common}} = \frac{C_1 V}{C_1 + C_2}$$

43. E.P.E =
$$8 \left[\frac{1}{4\pi \in_0} \frac{(q)(-q)}{(\sqrt{3}b/2)} \right] = \frac{-4q^2}{\sqrt{3}\pi \in_0 b}$$

Note: distance between centre to any corner = $\frac{\sqrt{3}b}{2}$

45.
$$B_1 = B = \frac{\mu_0 I}{2R}$$

$$\therefore 2 \times 2\pi r = 2\pi R \qquad \qquad \therefore r = R/2$$

$$\Rightarrow B_2 = 4 \frac{\mu_0 I}{2R} = 4B$$

46. Lorentz forece
$$\vec{F}_L = \vec{F}_e + \vec{F}_m$$

= $q\vec{E} + q(\vec{v} \times \vec{B})$

47.
$$T = 2\pi \sqrt{\frac{1}{MB}} \Rightarrow T \propto \frac{1}{\sqrt{M}}$$

$$case I : M_1 = 2M + M$$

$$case II : M_2 = 2M - M$$

$$\frac{T_1}{T_2} = \sqrt{\frac{M}{3M}} = \frac{1}{\sqrt{3}} \Rightarrow T_2 = \sqrt{3} T_1$$

48. For electromagnetic wave

49.
$$t = nT$$
, $X = \frac{X_0}{2^n}$, $n = \frac{t}{T} = \frac{30}{10} = 3$

Active nuclei $X = \frac{4 \times 10^{16}}{(2)^3}$ and decayed nuclie $X = (X_0 - X) = 3.5 \times 10^{16}$

50.
$${}_{8}\mathrm{O}^{16} + {}_{1}\mathrm{H}^{2} \rightarrow {}_{Z}\mathrm{X}^{A} + {}_{2}\mathrm{He}^{4}$$
 use converstion of change and mass

120. Rate of increase of bacteria $\rightarrow \frac{dN}{dt}$

