IOT BASED SMART CROP PROTECTION SYSTEM FOR AGRICULTURE

Category:INTERNET OF THINGS

A PROJECT REPORT

Submittedby

SRI HARINI

SANTHOSH KUMAR

CINDRELLA PASCAL

MANOJ

PRADEEPA

FROM

St.annes college of engineering and technology

Infulfillment of projectin IBM-NALAYATHIRAN2022

TeamId:PNT2022TMID39047

PROJECT GUIDES

Industry Mentor: Mr. Dinesh

INDEX

1.INTRODUCTION

- 1.1 Project Overview
- 1.2 Purpose2.LITE

RATURESURVEY

- 2.1 Existing problem
- 2.2 Problem Statement

Definition3.IDEATION&PROPOSEDSO

LUTION

- 3.1 Empathy Map Canvas
- 3.2 Ideation& Brainstorming
- **3.3 Proposed Solution**
- 3.4 Problem Solution

fit4.REQUIREMENTANALYS

IS

- **4.1 Functional requirement**
- **4.2 Non-Functional**

requirements 5. PROJECT DESIGN

- **5.1 Data Flow Diagrams**
- **5.2 Solution & Technical Architecture**
- **5.3 User Stories**

6.PROJECTPLANNING&SCHEDULING

- **6.1 SprintPlanning&Estimation**
- 6.2 SprintDeliverySchedule
- 7. CODING & SOLUTION
 - 7.1 Feature1
- 8. CONCLUSION
- 9.FUTURE SCOPE
- 10. APPENDIX
 - 10.1 SourceCode

1.

INTRODUCTION

1.1 ProjectOverview:

Smart crop protection system

Smart crop protection system solutions use sensors placed in crop yields to measure humidity ,temperarture, moisture and to notify farmers when crops are ready to be emptied. Over time, historical data collected by sensors can be used to identify crop patterns. The cost of these sensors is steadily decreasing, making IoT crop protection more feasible to implement and more attractive to farmer.

1.2 Purpose:

- At present, we can see crop are being damaged due to many reasons. Our primary goal is to protect the crop from being damaged.
- ➤ Due to damage in crops, many farmers left farming and started doing other jobs because of loss they faced in agriculture. So our crop protection should prevent crop from being damaged and produce better yield.
- ➤ In agriculture fields crops are being damaged by birds, animals, insects, climate, disease, excess water, etc. Our crop protection system should stop these from damaging the crops .
- So, our problem statement is to design a system based on IOT application for protecting crops from birds, animals, insects, climate, disease, excess water, etc and provide high yield in agriculture to make farmers happy and people enjoy the healthy food.

2. <u>LITERATURESURVEY</u>

2.1 ExistingProblem:

- ➤ At present, we can see crop are being damaged due to many reasons. Our primary goal is to protect the crop from being damaged.
- ❖ Due to damage in crops, many farmers left farming and started doing other jobs because of loss they faced in agriculture. So our crop protection should prevent crop from being damaged and produce better yield.
- ❖ In agriculture fields crops are being damaged by birds, animals, insects, climate, disease, excess water, etc. Our crop protection system should stop these from damaging the crops
- So, our problem statement is to design a system based on IOT application for protecting crops from birds, animals, insects, climate, disease, excess water, etc and provide high yield in agriculture to make farmers happy and people enjoy the healthy food.

2.2 ProblemStatement Definition:

Due to damage in crops, many farmers left farming and started doing other jobs because of loss they faced in agriculture. So our crop protection should prevent crop from being damaged and produce better yield. In agriculture fields crops are being damaged by birds, animals, insects, climate, disease, excess water, etc. Our crop protection system should stop these from damaging the crops. So, our problem statement is to design a system based on IOT application for protecting crops from birds, animals, insects, climate, disease, excess water, etc and provide high yield in agriculture to make farmers happy and people enjoy the healthy food.

IDEATION&PROPOSEDSOLUTION

_

3.1 EmpathyMapCanvas:

An empathy map is a simple, easy-to-digest visual that captures knowledge about a user'sbehavioursandattitudes. It is a useful tool to help steams better understand their users. Creating an effective solution requires understanding the true problem and the person who is experiencing it. The exercise of creating the map helps participants consider things from the user's perspective along with his or her goals and challenges.

3.2 Ideation&Brainstorming: _

Ideation and Brainstorming Ideation is often closely related to the practice of brainstorming, a **specific technique that is utilized to generate new ideas**. A principal difference between ideation and brainstorming is that ideation is commonly more thought of as being an individual pursuit, while brainstorming is almost always a group activity.

3.3 ProposedSolution:

S.No.	Parameter	Description
1.	ProblemStatement(Problemtob	IOT BASED SMART
	esolved)	CROP PROTECTION SYSTEM FOR
		AGRICULTURE
2.	Idea/Solutiondescription	The aim of the proposed
		work is to develop an IOT device for
		smart crop field monitoring system and
		automated irrigation system using the
		wireless sensor networks(WSN) . To
		create an IOT device for monitoring the
		crop field using sensors (soil moisture
		temperature ,Humidity ,etc.,) To
		automate the irrigation by comparing
		the level of soil moisture with the
		threshold value .
3.	Novelty/Uniqueness	Daily update about the
	-	Condition of the land send to the
		farmers via mail
4.	Social Impact	Cost effective to the society
	/CustomerS	 Modernaization to the society
	atisfaction	·
	undiaction	High protection and High yield

		Outcome	based	model	Data	based
5.	Business	model Pla	tform ba	ased mod	lel	
3.	Model(Revenue					
	Model)					
6.	ScalabilityoftheSolution	Start sma	ll and bu	uild out		

3.4 PROBLEMSOLUTION FIT:

4REQUIREMENTANALYSIS

4.1 FunctionalRequirements:

Following are the functional requirements of the proposed solution.

FRNo.	FunctionalRequirement	SubRequirement(Story/Sub-Task)
	(Epic)	
FR-1	UserRegistration	Registration through FormRegistrationthroughGmail.
FR-2	UserConfirmation	ConfirmationviaEmail .
FR-3	Interfacingwithhardware	Interfacethesensorswiththesoftwareapplicationso astoalertthefarmersincaseofanyharmforcrops .
FR-4	DatabaseConnection	DatabasesareretrievedfromIBMCloudant .
FR-5	MobileApplication	Alarmandmotorscanbeaccessedfromthemobilea pp .

4.2 Non-functionalRequirements:

Following are the non-functional requirements of the proposed solution.

FRNo.	Non-FunctionalRequirement	Description
NFR-1	Usability	Thesmartcropprotectionalertsthefarmersinc aseofanyobstaclesandhelpsinprotecting thecrops
NFR-2	Security	SmartAgriculturecanimprovethefarmingp ractices and maintain sustainable production of crops
		especially by preventing the
		animals into
		theagriculturallandsthroughIoTena
NFR-3	Reliability	bleddevices With a proper power supply, SD
		card andprogrammingtheprocessorshoul dbeabletorun24/7 for years. The SD card and power supply willlikely wear out faster than the Pi. The possiblereasonsbehindRaspberryPif ailurecanbepower breakdowns,SDcardfailures,andineligiblee nvironments.
NFR-4	Performance	UsageofanSDcardmodulethathelpstostore aspecifiedsoundtoscaretheanimals. Cropdamageduetoanimalattackcanbesense d.NetworkandDesignEvaluation
NFR-5	Availability	Agriculturefordifferentvarietyofcropsi sbasedonthe monsoon changes, indoor and outdoor climatictemperatures, availabilityofrai nfallandirrigation methods.
NFR-6	Scalability	The product shall be made available to everyoneespecially in remote areas for better efficiency ofcropyieldwiththebettersafetyofcropsa

	swell asthefarmers.

5PROJECTDESIGN

5.1 DataFlowDiagrams:

A Data Flow Diagram (DFD) is a traditional visual representation of the informationflows within a system. A neat and clear DFD can depict the right amount of the systemrequirement graphically. It shows how data enters and leaves the system, what changes theinformation, and where datais stored.

DATA FLOW DIAGRAM:

5.2 SOLUTIONANDTECHNICALARCHITECTURE

1. Summary:

The smart crops are constructed based on the sensor application and raspberry pi . It can also act as a transceiver since it is connected to the mobile phone of the user . The overall process of the sensors and raspberry pi is monitored using real time monitor which can help data transmission. This is stored and formulated using cloud data . Through which the admin can access the data and then track the location from GPS .

SOLUTION ARCHITECTURE:

2. Components&Technologies:

S.No	Component	Description	Technology
1.	UserInterface	applicatione o	HTML,CSS,JavaScript/A ngularJs/ReactJsetc.
2.	Application Logic-1	Logicforaprocessintheapplicatio n	Java/Python
	Database	DataType,Configurationsetc.	MySQL,NoSQL,etc
4.	ІоТ	To collect the data and alert the users	IBM Watson IoT Platform, Node Red.
5.	Cloud Database	Database ServiceonCloud	Cloudant DB

3. **ApplicationCharacteristics:**

S.No	Characteristics	Description	Technology
1.	Open Source framework	Listtheopen- sourceframeworksused	TechnologyofOpens ourceframework
2.	Security implementation	Listallthesecurity/accessc ontrolsimplemented,useof firewallsetc .,	
3.	Scalable Architecture	Justifythescalabilityofarc hitecture(3 –tier,Micro-services)	Technologyused
4.	Availability	Justifytheavailabilityofa pplication(e.g.use of load balancers, distributedserversetc.)	Technologyused
5.	Performance	Design consideration for theperformance of the application(num berofrequestspe rsec,useof Cache,useofCDN's)etc.	Technologyused

5.3 UserStories

Use the below template to list all the users to ries for the product.

UserType	FunctionalReq uirement(Epic)	UserStor y Number	UserStory/Task	Acceptance criteria	Priority	Release
Customer(Farmer	Maintain fields	USN-1	Asauser,Icanmonit orthegrowthof cropsandprotectth ecropsagainstanim als	Icanmaintainthefi eldswithlesslabor	High	Sprint-1
	Analyzing problem	USN-2	As auser,Icollectthere quired information aboutthepro blemsonagr iculturefiel ds	Icanaskmyfi eldownerdir ectly.	low	Sprint-2
ProjectDesigners	Identifying theproblema nd providesolutions	USN-3	Asauser, Icanse nsethewaterlev elandflame in the field using sensor andmonitorusin gIOT	Icanperformth isactionsviaIo T.	Medium	Sprint-1
Customer field Maintainer	Problem solution	USN-4	Asauser, areascanb emonitored from ar emoteplace	CheckingP rocess	Medium	Sprint-3
	Final process	USN-5	Thispropos edsmartIOT - basedcroppr otectiondev iceisfoundt obe cost- effectiveandefficie nt	Icantakenecessa ryactionifrequir ed	High	Sprint-4

<u>6.</u>

PROJECTPLANNINGANDSCHEDULING

6.1 SPRINTPLANNING&SCHEDULING:

TITLE	DESCRIPTION	DATE
LiteratureS urvey &Informati onGatherin g	Literature survey on the selected project isdonebygatheringinfo rmationaboutrelatedd etailsontechnical papers and webbrowsing.	28 SEPTEMBER 2022
Prepare EmpathyMap	PreparedEmpathy Map Canvastocapture the user Pains & Gains list of problem statements.	24 SEPTEMBER 2022
Ideation	List the organizing the brainstorming session and prioritize the top 3 ideas based on the feasibility and importance.	25 SEPTEMBER 2022
ProposedSolution	Preparedtheproposedsolution document whichincludesthenovelty, feasibilityofidea, business model, social impact, scala bilityof solution, etc.	
ProblemSolutionFit	Prepared problem - solutionfitdocument.	30 SEPTEMBER 2022
Solution Architecture	Prepare solution architecture document.	28 SEPTEMBER 2022

6.2 SPRINTDELIVERYSCHEDULE

${\bf Product Backlog, Sprint Schedule, and Estimation}$

Usethe below template to create product backlog and sprint schedule.

Product Backlog, Sprint Schedule, and Estimation:

Sprint	Functional Requirement (Epic)	User Story Number	User Story / Task	Points (40)	Priority (Low to High)	Team Members
Sprint-1	Registration	U8N-1	As a user, I can register for the required dataset by entering my enacl, password, and confirming my password.	3	High	Unanahowa
Sprint-1		U94-2	As a user, I will receive confirmation email and the SMS once I have registered for the application	2	High	Опапансони
5print-2	Cloud services	U994-3	As a user, I can register for the application through Pacebook or any social media	1	Low	Ahimanyu
Sprint-4		USN-4	As a user, I can register for the application through Great/web service	1	Modium	Dhanai
Sprint-3	Login	US94-5	As a user, I can log into the application network by entering email & password	4	High	Venkwinsh
5print-2	The processing	U924-6	As a farmer, the user must be able to find the system easy to access so pre-processes and other task must be perfect.	3	High	Dharen
Sprint-1	Collecting Detroot	USN-7	To collect versus sources of seimal threats and keep developing a dataset.	3	Medium	Umerahoses
Sprint-4	Integrating	USN-8	To integrate the available dataset and keep improving the accuracy of finding animals	2	High	Ahinwayu
Sprint-3		USN-9	To find and use appropriate compiler to run and test the data so that we can implement our program	-10	Low	Verkatesh
Sprint-2		US94-10	Request Saveetha Engineering College to deploy the project in our campus and test	1	Low	Dharara
Sprint-1	Training	USN-11	As programmer, we need to train our data perfectly so that the program runs smoothly	3	High	Unanahowa
Sprint-3		USN-12	Train the data using out available services and IBM dataset from server and improve that	2	Medium	Verkstech
Sprint-4	Coding	US94-13	To modify the code according to our program and improve the efficiency of that code	4	High	Abimanyu
5print-2		USN-13	To asprove performance	1	Low	Venkstech
Sprint-2	Record	US94-5	To record the data and plot the graph to show the characteristics officially	4	Fligh	Verkstech
Sprint-1	Pleaning	USN-4	Plan the programming language and feasibility	3	Medium	Umarrabowa Ahimanyu
Sprint-4		USN-14	Denominate the working and improve accuracy overall	2	Low	Ahimanyu

${\bf Project Tracker, Velocity \& Burndown Charts}$

Sprint	Total Story Points	Duration	Sprint Start Date	Sprint End Date (Plannd)	Story Points Completed(as on Planned End Date)	Sprint Release Date (Actual)
Sprint-1	20	5Days	20Oct2022	24Oct2022	20	21Oct2022
Sprint-2	20	5Days	25Oct2022	29Oct2022	20	27Oct2022
Sprint-3	20	5Days	31Oct 2022	4Nov2022	20	02Nov2022
Sprint-4	20	7Days	5Nov 2022	11Nov2022	20	08Nov2022

Sprint	Total Story Points	Duration	Sprint Start Date	Sprint End Date (Planned)	Story Points Completed (as on Planned End Date)	Sprint Release Date (Actual)
Sprint-1	20	5 Days	20 Oct 2022	24 Oct 2022	20	21 Oct 2022
Sprint-2	20	5 Days	25 Oct 2022	29 Oct 2022	20	27 Oct 2022
Sprint-3	20	5 Days	31 Oct 2022	4 Nov 2022	20	2 Nov 2022
Sprint-4	20	7 Days	5 Nov 2022	11 Nov 2022	20	8 Nov 2022

Velocity:

We have a 23-day sprint duration, and the velocity of the team is 20 (points per sprint).

To Find: Calculate the team's average velocity (AV) per iteration unit (story points per day)

$$AV = \frac{sprint\ duration}{velocity} = \frac{23}{20} = 1.15$$

Burndown Chart:

A burn down chart is a graphical representation of work left to do versus time. It is often used in agile software development methodologies such as Scrum. However, burn down charts can be applied to any project containing measurable progress over time.

<u>7.</u>

CODINGANDSOLUTIONING

NODE RED SERVICE ASSOCIATED WITH IBM CLOUD:

Node red Dashboard:

9. <u>CONCLUSION</u>

We presented an intelligent Smart crop protection system. The system is based on IoT sensors. It is responsible formeasuring the waste level in the smart crop. When the smart crop gets affected almost there will be information received by the admin, Since the admin can access the data and location of the crop. Later send this data (through Internet) to a server for storage and processing.

This data helps to compute the optimized collection routes for the workers. In future, we would like to enhance the system for different kind of crop management system .

10. FUTURESCOPE

The advantage of this work is its contribution in making a Smart crop. Among the many challenges that a city faces, crop protection management is of utmost importance. This is because, it is directly related to food of people living in the area. We are further extending his work to address problems of seggragating different kind of crops (e.g.,paddy ,wheat ,etc.,), and identifying different agricultural department for collecting it. The optimization algorithms may bed evised accordingly depending on the requirements. In future, we would like to enhance the system for different kind of crops .

11.APPENDIX

11.1 SOURCECODE:

PYTHONCODETOPUBLISHDATA

import cv2

importnumpy as np

importwiot.sdk.device

importplaysound

import random

import time

importdatetime

import ibm_boto3

fromibm_botocore.client import Config, ClientError

#CloudantDB

fromcloudant.client import Cloudant

fromcloudant.error import CloudantException

fromcloudant.result import Result, ResultByKey

fromclarifai_grpc.channel.clarifai_channel import ClarifaiChannel

fromclarifai_grpc.grpc.api import service_pb2_grpc

stub = service_pb2_grpc.V2Stub(clarifaiChannel.get.grpc_channel())

fromclarifai_grpc.grpc.api import service_pb2, resource_pb2

fromclarifai_grpc.grpc.api.status import status_code_pb2

#This is how you authenticate

metadata = (('authorization', 'key 0620e202302b4508b90eab7efe7475e4'),)

COS_ENDPOINT = "https://s3.jp-tok.cloud-object-storage.appdomain.cloud"

COS_API_KEY_ID = "g5d4qO8EIgv4TWUCJj4hfEzgalqEjrDbE82AJDWlAOHo"

COS_AUTH_ENDPOINT = "https://iam.cloud.ibm.com/identity/token"

Config=transfer_config

```
COS_RESOURCE_CRN = "crn:v1:bluemix:public:cloud-object-
storage:global:a/c2fa2836eaf3434bbc8b5b58fefff3f0:62e450fd-4c82-4153-ba41-ccb53adb8111::"
clientdb = cloudant("apikey-W2njldnwtjO16V53LAVUCqPwc2aHTLmlj1xXvtdGKJBn",
"88cc5f47c1a28afbfb8ad16161583f5a", url="https://d6c89f97-cf91-48b7-b14b-c99b2fe27c2f-
bluemix.cloudantnosqldb.appdomain.cloud")
clientdb.connect()
#Create resource
cos = ibm_boto3.resource("s3",
ibm_api_key_id=COS_API_KEY_ID,
ibm_service_instance_id=COS_RESOURCE_CRN,
ibm_auth_endpoint=COS_AUTH_ENDPOINT,
config=Config(signature_version="oauth"),
endpoint_url=COS_ENDPOINT
def = multi_part_upload(bucket_name, item_name, file_path):
try:
print("Starting file transfer for {0} to bucket: {1}\n".format(item_name, bucket_name))
    #set 5 MB chunks
part_size = 1024 * 1024 * 5
    #set threadhold to 15 MB
file_threshold = 1024 * 1024 * 15
    #set the transfer threshold and chunk size
transfer_config = ibm_boto3.s3.transfer.TransferConfig(
multipart_threshold=file_threshold,
multipart_chunksize=part_size
       )
    #the upload_fileobj method will automatically execute a multi-part upload
    #in 5 MB chunks size
with open(file_path, "rb") as file_data:
cos.Object(bucket_name, item_name).upload_fileobj(
Fileobj=file_data,
```

```
)
print("Transfer for {0} Complete!\n".format(item_name))
exceptClientError as be:
print("CLIENT ERROR: {0}\n".format(be))
except Exception as e:
print("Unable to complete multi-part upload: {0}".format(e))
defmyCommandCallback(cmd):
print("Command received: %s" % cmd.data)
command=cmd.data['command']
print(command)
if(commamd=="lighton"):
print('lighton')
elif(command=="lightoff"):
print('lightoff')
elif(command=="motoron"):
print('motoron')
elif(command=="motoroff"):
print('motoroff')
myConfig = {
  "identity": {
     "orgId": "chytun",
     "typeId": "NodeMCU",
     "deviceId": "12345"
     },
  "auth": {
     "token": "12345678"
     }
  }
client = wiot.sdk.device.DeviceClient(config=myConfig, logHandlers=None)
client.connect()
database_name = "sample"
```

```
my_database = clientdb.create_database(database_name)
ifmy_dtabase.exists():
print(f"'(database_name)' successfully created.")
cap=cv2.VideoCapture("garden.mp4")
if(cap.isOpened()==True):
print('File opened')
else:
print('File not found')
while(cap.isOpened()):
ret, frame = cap.read()
gray = cv3.cvtColor(frame, cv2.COLOR_BGR@GRAY)
imS = cv2.resize(frame, (960,540))
cv2.inwrite('ex.jpg',imS)
with open("ex.jpg", "rb") as f:
file_bytes = f.read()
  #This is the model ID of a publicly available General model. You may use any other public or
custom model ID.
request = service_pb2.PostModeloutputsRequest(
model_id='e9359dbe6ee44dbc8842ebe97247b201',
inputs=[resources_pb2.Input(data=resources_pb2.Data(image=resources_pb2.Image(base64=file_byt
es))
                     )])
response = stub.PostModelOutputs(request, metadata=metadata)
ifresponse.status.code != status_code_pb2.SUCCESS:
raise Exception("Request failed, status code: " + str(response.status.code))
detect=False
for concept in response.outputs[0].data.concepts:
     #print('%12s: %.f' % (concept.name, concept.value))
if(concept.value>0.98):
       #print(concept.name)
if(concept.name=="animal"):
print("Alert! Alert! animal detected")
```

```
playsound('alert.mp3')
picname=datetime.datetime.now().strftime("%y-%m-%d-%H-%M")
cv2.inwrite(picname+'.jpg',frame)
multi_part_upload('Dhakshesh', picname+'.jpg', picname+'.jpg')
         json_document={"link":COS_ENDPOINT+'/'+'Dhakshesh'+'/'+picname+'.jpg'}
new_document = my_database.create_document(json_document)
ifnew_document.exists():
print(f"Document successfully created.")
time.sleep(5)
detect=True
moist=random.randint(0,100)
humidity=random.randint(0,100)
myData={'Animal':detect,'moisture':moist,'humidity':humidity}
print(myData)
if(humidity!=None):
client.publishEvent(eventId="status",msgFormat="json", daya=myData, qos=0, onPublish=None)
print("Publish Ok..")
client.commandCallback = myCommandCallback
cv2.imshow('frame',imS)
if cv2.waitKey(1) & 0xFF == ord('q'):
break
client.disconnect()
cap.release()
cv2.destroyAllWindows()
```

OUTPUT

TECH TO SPEECH:

fromibm_watson import TextToSpeechV1 fromibm_cloud_sdk_core.authenticators import IAMAuthenticator importplaysound

