

CSC 220: Computer Organization

Unit 10 Arithmetic-Logic Units

Prepared by:

Md Saiful Islam, PhD

Department of Computer Science

College of Computer and Information Sciences

Overview

- Arithmetic Unit Design
 - Primitive gates base implementation
 - MUX-based implementation
- Logic Unit Design
- Arithmetic-logic Unit Design
- Function Unit Design
 - Combinational Shifter

Chapter-8

M. Morris Mano, Charles R. Kime and Tom Martin, **Logic and Computer Design Fundamentals**, Global (5th) Edition, Pearson Education Limited, 2016. ISBN: 9781292096124

Arithmetic Unit Design

Designing a simple 4-bit AU

- 8 arithmetic operations
- Inputs:
 - X (4 bits)
 - Y (4 bits)
 - S (3 bits)
- Outputs:
 - G (4 bits)
 - C_{out} (final carry)
- The / and 4 on a line indicate that it's actually four lines

S ₂	S ₁	S ₀	Operation
0	0	0	G = X
0	0	1	G = X + 1
0	1	0	G = X + Y
0	1	1	G = X + Y + 1
1	0	0	G = X + Y'
1	0	1	G = X + Y' + 1
1	1	0	G = X - 1
1	1	1	G = X

The four-bit parallel adder

• The basic four-bit adder *always* computes S = A + B + CI.

- But by changing what goes into the adder inputs A, B and CI, we can change the adder output S.
- This is also what we did to build the combined adder-subtractor circuit.

The adder-subtractor

- Here the signal Sub and some XOR gates alter the adder inputs.
 - When Sub = 0, the adder inputs A, B, CI are Y, X, 0, so the adder produces G = X + Y + 0, or just X + Y.
 - When Sub = 1, the adder inputs are Y', X and 1, so the adder output is G = X + Y' + 1, or the two's complement operation X Y.

The multi-talented adder

- So we have one adder performing two separate functions.
- "Sub" acts like a function select input which determines whether the circuit performs addition or subtraction.
- "Sub" modifies the adder's inputs A and CI.

Modifying the adder inputs

- By following the same approach, we can use an adder to compute *other* functions as well.
- We just have to figure out which functions we want, and then put the right circuitry into the "Input Logic" box .

Some more possible functions

- We already saw how to set adder inputs A, B and CI to compute either X + Y or X Y.
- How can we produce the <u>increment function</u> G = X + 1?

One way: Set
$$A = 0000$$
, $B = X$, and $CI = 1$

• How about decrement: G = X - 1?

$$A = 1111 (-1), B = X, CI = 0$$

How about <u>transfer</u>: G = X?
 (This can be useful.)

$$A = 0000$$
, $B = X$, $CI = 0$

This is almost the same as the increment function!

The role of CI

- The transfer and increment operations have the same A and B inputs, and differ only in the CI input.
- In general we can get additional functions (not all of them useful) by using both CI = 0 and CI = 1.
- Another example:
 - Two's-complement subtraction is obtained by setting A = Y', B = X, and CI = 1, so G = X + Y' + 1.
 - If we keep A = Y' and B = X, but set CI to 0, we get G = X + Y'. This turns out to be a ones' complement subtraction operation.

Table of arithmetic functions

- Here are some of the different possible arithmetic operations.
- We'll need some way to specify which function we're interested in, so we've *randomly assigned* a selection code to each operation.

S ₂	S_1	S ₀	Arithmetic operation		
0	0	0	Х	(transfer)	
0	0	1	X + 1	(increment)	
0	1	0	X + Y	(add)	
0	1	1	X + Y + 1		
1	0	0	X + Y'	(1C subtraction)	
1	0	1	X + Y' + 1	(2C subtraction)	
1	1	0	X-1	(decrement)	
1	1	1	X	(transfer)	

Mapping the table to an adder

• This second table shows what the adder's inputs should be for each of our eight desired arithmetic operations.

Selection code		Desired arithmetic operation		Requir	Required adder inputs		
52	S ₁	S ₀	G	(A + B + CI)	Α	В	CI
0	0	0	X	(transfer)	0000	X	0
0	0	1	X + 1	(increment)	0000	X	1
0	1	0	X + Y	(add)	У	X	0
0	1	1	X + Y + 1		У	X	1
1	0	0	X + Y'	(1C subtraction)	У′	X	0
1	0	1	X + Y' + 1	(2C subtraction)	У'	X	1
1	1	0	X - 1	(decrement)	1111	X	0
1	1	1	X	(transfer)	1111	X	1

- Adder input CI is always the same as selection code bit S_0 .
- B is always set to X.
- A depends only on S₂ and S₁.
- These equations depend on both the desired operations and the assignment of selection codes.

Building the input logic

- All we need to do is compute the adder input A, given the arithmetic unit input Y and the function select code S (actually just S_2 and S_1).
- Here is an abbreviated truth table:

S ₂	S ₁	Α
0	0	0000
0	1	У
1	0	У'
1	1	1111

• We want to pick one of these four possible values for A, depending on S_2 and S_1 .

Primitive gate-based input logic

- We could build this circuit using primitive gates.
- If we want to use K-maps for simplification, then we should first expand out the abbreviated truth table.
 - The Y that appears in the output column (A) is actually an input.
 - We make that explicit in the table on the right.
- Remember A and Y are each 4 bits long!

Primitive gate implementation

From the truth table, we can find an MSP:

$$A_i = S_2 Y_i' + S_1 Y_i$$

- Again, we have to repeat this once for each bit Y3-Y0, connecting to the adder inputs A3-A0.
- This completes our arithmetic unit.

Multiplexer-based implementation

Alternative Implementation using 4 bit adder circuit and multiplexers

Selection code		Desired arithmetic operation		Require	Required adder inputs		
S ₂	S ₁	S ₀	G	(X + Y + CI)	У	X	CI
0	0	0	Α	(transfer)	0000	Α	0
0	0	1	A + 1	(increment)	0000	Α	1
0	1	0	A + B	(add)	В	Α	0
0	1	1	A + B + 1		В	Α	1
1	0	0	A + B'	(1C subtraction)	B'	Α	0
1	0	1	A + B' + 1	(2C subtraction)	B'	Α	1
1	1	0	A - 1	(decrement)	1111	A	0
1	1	1	Α	(transfer)	1111	Α	1

S ₂	S_1	У
0	0	0000
0	1	В
1	0	B'
1	1	1111

Multiplexer-based implementation

S ₂	S_1	У
0	0	0000
0	1	В
1	0	B'
1	1	1111

Logic Unit Design

Most computers also support logical operations like AND, OR, XOR and NOT, but extended to multi-bit words instead of just single bits.

- **Inputs:**
 - X (4 bits)
- **Outputs:**
 - G (4 bits)

S ₁	S ₀	Output
0	0	<i>G</i> = X ∧ Y
0	1	$G = X \vee Y$
1	0	<i>G</i> = X ⊕ Y
1	1	G = X'

Bitwise operations: To apply a logical operation to two words X and Y, apply the operation on each pair of bits X_i and Y_i :

Single operand logical operation: "complementing" all the bits in a number.

Defining a logic unit

- A logic unit supports different logical functions on two multi-bit inputs X and Y, producing an output G.
- This abbreviated table shows four possible functions and assigns a selection code S to each.

S ₁	S ₀	Output
0	0	$G_i = X_i Y_i$
0	1	$G_i = X_i + Y_i$
1	0	$G_i = X_i \oplus Y_i$
1	1	$G_i = X_i'$

- We'll just use multiplexers and some primitive gates to implement this.
- Again, we need one multiplexer for each bit of X and Y.

Our simple logic unit

- Inputs:
 - -X (4 bits)
 - Y (4 bits)
 - S (2 bits)
- Outputs:
 - G (4 bits)

The arithmetic and logic units

- Now we have two pieces of the puzzle:
 - An arithmetic unit that can compute eight functions on 4-bit inputs.
 - A logic unit that can perform four functions on 4-bit inputs.
- We can combine these together into a single circuit, an arithmetic-logic unit (ALU).

Our ALU function table

- This table shows a sample function table for an ALU.
- All of the arithmetic operations have $S_3=0$, and all of the logical operations have $S_3=1$.
- These are the same functions we saw when we built our arithmetic and logic units a few minutes ago.
- Since our ALU only has 4 logical operations, we don't need S_2 . The operation done by the logic unit depends only on S_1 and S_0 .

S ₃	S ₂	S ₁	S ₀	Operation
0	0	0	0	G = X
0	0	0	1	G = X + 1
0	0	1	0	G = X + Y
0	0	1	1	G = X + Y + 1
0	1	0	0	G = X + Y'
0	1	0	1	G = X + Y' + 1
0	1	1	0	G = X - 1
0	1	1	1	G = X
1	X	0	0	G = X and Y
1	×	0	1	G = X or Y
1	X	1	0	G = X ⊕ Y
1	X	1	1	G = X'

A complete ALU circuit

G is the final ALU output.

- When S3 = 0, the final output comes from the arithmetic unit.
- When S3 = 1, the output comes from the logic unit.

Status bits: Additional outputs

- \cdot $C_{\text{out}}(C)$
- Over-flow (V)
- Zero (Z)
- Negative (N)
- The arithmetic and logic units share the select inputs S1 and S0, but only the arithmetic unit uses S2.
- Both the arithmetic unit and the logic unit are "active" and produce outputs.
 - The mux determines whether the final result comes from the arithmetic or logic unit.
 - The output of the other one is effectively ignored.
- Our hardware scheme may seem like wasted effort, but it's not really.
 - "Deactivating" one or the other wouldn't save that much time.
 - We have to build hardware for both units anyway, so we might as well run them together.

The all-important ALU

- We'll use the following general block symbol for the ALU.
 - A and B are two n-bit numeric inputs.
 - FS is an m-bit function select code, which picks one of 2^m functions.
 - The n-bit result is called G.
 - Several status bits provide more information about the output G:
 - V = 1 in case of signed overflow.
 - C is the carry out.
 - N = 1 if the result is negative.
 - Z = 1 if the result is 0.

S ₃	S ₂	S ₁	S ₀	Operation
0	0	0	0	G = X
0	0	0	1	G = X + 1
0	0	1	0	G = X + Y
0	0	1	1	G = X + Y + 1
0	1	0	0	G = X + Y'
0	1	0	1	G = X + Y' + 1
0	1	1	0	G = X - 1
0	1	1	1	G = X
1	X	0	0	G = X and Y
1	X	0	1	G = X or Y
1	X	1	0	$G = X \oplus Y$
1	X	1	1	G = X'

Combinational Shifter

• Bidirectional shift register with parallel load

- Disadvantage: 3 clock pulses required
- Ex: R1 \leftarrow sr R2

Combinational Shifter

- Transfer from a source to destination register
- One clock cycle

• Operations:

- Transfer
- Shift Left,
- Shift Right

4-Bit Basic Left/Right Shifter

• Serial Inputs:

- I_R for right shift
- I_L for left shift
- Logic Shift (zero) will be used
- Many options depending on instruction set

Shift Functions:

(S1, S0) = 00 Pass B unchanged

01 Right shift

10 Left shift

11 Unused

- Serial Outputs (we will ignore)
 - R for right shift (Same as MSB input)
 - L for left shift (Same as LSB input)

Function Unit Design

Function Unit = ALU + Shifter

• The function select code FS is 4 bits long, but there are only 15 different functions here.

FS	Operation
0000	F = A
0001	F = A + 1
0010	F = A + B
0011	F = A + B + 1
0100	F = A + B'
0101	F = A + B' + 1
0110	F = A - 1
0111	F = A
1000	$F = A \wedge B (AND)$
1001	$F = A \vee B (OR)$
1010	$F = A \oplus B (XOR)$
1011	F = A'
1100	F = B
1101	F = sr B (shift right)
1110	F = sl B (shift left)

Definition of Function Unit Select (FS) Codes

$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	FS(3:0) Select Select(3:0) Select(3:0) Microoperation 0000 0000 0000 0000 0000 0000 0000	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0001	FS(3:0)
	1000 0 1X00 XX $F \leftarrow A \land B$ 1001 0 1X01 XX $F \leftarrow A \lor B$ 1010 0 1X10 XX $F \leftarrow A \oplus B$ 1011 0 1X11 XX $F \leftarrow A$ 1100 1 XXXX 00 $F \leftarrow B$	0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101