

gereon.kremer@cs.rwth-aachen.de https://ths.rwth-aachen.de/teaching/

Satisfiability Checking - WS 2016/2017 Series 1

Exercise 1

Let $AP = \{a, b\}$ be a set of propositions and let

$$\varphi_1 := ((a \oplus \neg b) \to b) \lor (\neg a \leftrightarrow \neg b)$$

$$\varphi_2 := (((b \to \neg a) \oplus \neg b)$$

$$\varphi_3 := (\varphi_2 \land (a \lor \neg b))$$

be formulas over AP.

- a) What are the truth tables for the above formulas?
- b) What are $sat(\varphi_1)$, $sat(\varphi_2)$ and $sat(\varphi_3)$?
- c) Which of the above formulas are satisfiable, which are unsatisfiable, and which are tautologies?

Exercise 2

Let $AP = \{a, b\}$ be a set of propositions and let $\alpha, \beta \in Assigns$ with $\alpha(a) = 1$, $\alpha(b) = 1$ and $\beta(a) = 0$, $\beta(b) = 1$. Do the following hold?

- 1. $\alpha \models a \vee \neg b$
- **2.** $\beta \not\models \neg a \land \neg b$
- **3.** $\{\alpha, \beta\} \models a \land b$
- **4.** $\{\alpha, \beta\} \models a \rightarrow b$
- **5.** $a \lor b \models a \oplus b$
- **6.** $sat(a \leftrightarrow b) \subseteq sat(a \rightarrow b)$

Exercise 3

Let $AP := \{a, b\}$ be a set of propositions and let $\varphi := (a \leftrightarrow b)$ be a formula over AP. Give a formula equivalent to φ that contains only propositions from AP and

- 1. the operators \neg and \land ,
- 2. the operators \neg and \lor ,
- 3. or the operator ↑ (called NAND).

(The binary operator \uparrow has the following semantics: $\alpha \models (a \uparrow b)$ leftrightarrow $\alpha \models (\neg(a \land b))$ for all $a, b \in AP$ and $\alpha \in Assigns$.)