Lab 11: The Shor's Algorithm

Preliminaries

Refer to the teaching materials in Module 11.

Tasks

Run 'jupyter notebook', and create a notebook for this lab. Write your answers for all tasks into this notebook, and then convert it to pdf for submission to vUWS.

- 1. Suppose the two integers a and N satisfy that a < N and they are co-prime. Use Python code to solve the following tasks.
 - 1.1 Implement a Python function that takes these two integers as parameters and prints out all the values of $f_{a, N}(x) = a^x \mod N$, where x ranges from 0 to r, the period of $f_{a, N}(x)$. Specifically, the output should consist of r + 1 lines, with each line containing the value of x and the corresponding value of $f_{a, N}(x)$.
 - 1.2 Use the above function to output the result for a = 21 and N = 391.
 - 1.3 Let $r = f_{21, 391}(x)$. It should be even. Check if $21^{r/2} + 1$ is a multiple of 391.
 - 1.4 Calculate $gcd(21^{\frac{r}{2}} + 1, 391)$ and $gcd(21^{\frac{r}{2}} 1, 391)$. Verify that the product of these two resulting numbers equals 391.

Hint: According to Euclidean Algorithm,

$$\gcd\left(21^{\frac{r}{2}} + 1,391\right) = \gcd\left(21^{\frac{r}{2}} \mod 391 + 1,391\right)$$
$$\gcd\left(21^{\frac{r}{2}} - 1,391\right) = \gcd\left(21^{\frac{r}{2}} \mod 391 - 1,391\right)$$

- 2. Consider the 8×8 Vandermonde Matrix as defined in the lecture slides.
 - 2.1 Use manual calculation to give all entries in its second row.
 - 2.2 Use manual calculation to give all entries in its third row.

Note: Each entry should be given in the form of a complex number which can contain radicals but not sin()'s and cos()'s.

- 3. Suppose we have a signal S, which takes the form of $\cos(\theta) + i\sin(\theta)$, with θ rotating continuously from 0 to -2π in a constant speed. Let's assume that, in a certain time interval, S rotates from 0 to -2π exactly once. Thus, S has the frequency of 1 in this time interval. To detect this frequency, we sample 16 values from this signal during that time interval. The samples happen on $\theta = 0, -\frac{\pi}{8}, ..., -\frac{15\pi}{8}$, with a step of $-\frac{\pi}{8}$. You should roughly follow the notebook accompanying Lecture 11 to implement a circuit with QFT to detect the frequency of the signal S by processing these sample values.
- 4. Follow the notebook accompanying Lecture 11 to implement a circuit with Shor class to factor the integer 21.
 - 4.1 Try a = 4 and show it's not successful. Explain this by manually following Shor's algorithm.
 - 4.2 Try a = 2 and show it's successful.