Problem Set 7b

Problem 1: Determining the type of a lightbulb

The lifetime of a type-A bulb is exponentially distributed with parameter λ . The lifetime of a type-B bulb is exponentially distributed with parameter μ , where $\mu > \lambda > 0$. You have a box full of lightbulbs of the same type, and you would like to know whether they are of type A or B. Assume an *a priori* probability of 1/3 that the box contains type-B lightbulbs.

1. You observe the value t_1 of the lifetime, T_1 , of a lightbulb. A MAP decision rule implies that the lightbulb is of type A if and only if $t_1 \ge \alpha$.

Assuming that $\mu \geq 2\lambda$, find α . Express your answer in terms of μ and λ . Use 'mu', 'lambda' and 'ln' to denote μ , λ , and the natural logarithm function, respectively. For example, $\ln \frac{2\mu}{\lambda}$ should be entered as 'ln((2*mu)/lambda)'.

 $\alpha =$

- 2. Assuming that $\mu \geq 2\lambda$, what is the probability of error of the MAP estimator?
- 3. Assume that $\lambda = 2$ and $\mu = 3$. Find the LMS estimate of T_2 , the lifetime of another lightbulb from the same box, based on observing $T_1 = 2$. Assume that conditioned on the bulb type, bulb lifetimes are independent. (For this part, you will need a calculator. Provide an answer with an accuracy of two decimal places.)

LMS estimate of $T_2 =$

Problem 2: Estimating the parameter of a geometric r.v.

We have k coins. The probability of Heads is the same for each coin and is the realized value q of a random variable Q that is uniformly distributed on [0, 1]. We assume that conditioned on Q = q, all coin tosses are independent. Let T_i be the number of tosses of the i^{th} coin until that coin results in Heads for the first time, for $i = 1, 2, \ldots, k$. (T_i includes the toss that results in the first Heads.)

You may find the following integral useful: For any non-negative integers k and m,

$$\int_0^1 q^k (1-q)^m dq = \frac{k!m!}{(k+m+1)!}.$$

- 1. Find the PMF of T_1 . (Express your answer in terms of t using standard notation.) For t = 1, 2, ..., we have $p_{T_1}(t) =$
- Find the least mean squares (LMS) estimate of Q based on the observed value, t, of T₁. (Express your answer in terms of t using standard notation.)
 E[Q | T₁ = t] =
- 3. We flip each of the k coins until they result in Heads for the first time. Compute the maximum a posteriori (MAP) estimate \hat{q} of Q given the number of tosses needed, $T_1 = t_1, \ldots, T_k = t_k$, for each coin. Choose the correct expression for \hat{q} .

Problem 3: Radiation from a remote star

Caleb builds a particle detector and uses it to measure radiation from a remote star. On any given day, the number of particles, Y, that hit the detector is distributed according to a Poisson distribution with parameter x. The parameter x is unknown and is modeled as the value of a random variable X that is exponentially distributed with parameter $\mu > 0$:

$$f_X(x) = \begin{cases} \mu e^{-\mu x}, & \text{if } x \ge 0, \\ 0, & \text{otherwise.} \end{cases}$$

The conditional PMF of the number of particles hitting the detector is

$$p_{Y|X}(y \mid x) = \begin{cases} \frac{e^{-x}x^y}{y!}, & \text{if } y = 0, 1, 2, \dots, \\ 0, & \text{otherwise.} \end{cases}$$

(a) Find the MAP estimate of X based on the observed value y of Y. Express your answer in terms of y and μ . Use 'mu' to denote μ .

 $\hat{x}_{\text{MAP}}(y) =$

- (b) Our goal is to find the LMS estimate for X based on the observed particle count y.
 - 1. We can show that the conditional PDF of X given Y is of the form

$$f_{X|Y}(x \mid y) = \frac{\lambda^{y+1}}{y!} x^y e^{-\lambda x}, \quad x > 0, y \ge 0.$$

Express λ as a function of μ . You may find the following equality useful:

$$\int_0^\infty a^{y+1} x^y e^{-ax} dx = y!, \quad \text{for any } a > 0.$$

 $\lambda =$

2. Find the LMS estimate of X based on the observed particle count y. Express your answer in terms of y and μ . Hint: You may want to express $xf_{X|Y}(x \mid y)$ in terms of $f_{X|Y}(x \mid y+1)$.

$$\hat{x}_{LMS}(y) =$$

Problem 4: LLMS estimation

Let X = U + W with $\mathbf{E}[U] = m$, var(U) = v, $\mathbf{E}[W] = 0$, and var(W) = h. Assume that U and W are independent.

1. The LLMS estimator of U based on X is of the form $\hat{U} = a + bX$. Find a and b. Express your answers in terms of m, v, and h using standard notation.

a =

b =

2. Suppose we further assume that U and W are normal random variables and then construct \hat{U}_{LMS} , the LMS estimator of U based on X, under this additional assumption. Would \hat{U}_{LMS} be the identical to \hat{U} , the LLMS estimator developed without the additional normality assumption in part (1)?

Problem 5: LLMS estimation with random sums

Let N be a geometric r.v. with mean 1/p; let A_1, A_2, \ldots be a sequence of i.i.d. random variables, all independent of N, with mean 1 and variance 1; let B_1, B_2, \ldots be another sequence of i.i.d. random variable, all independent of N and of A_1, A_2, \ldots , also with mean 1 and variance 1. Let $A = \sum_{i=1}^{N} A_i$ and $B = \sum_{i=1}^{N} B_i$.

1. Find the following expectations using the law of iterated expectations. Express each answer in terms of p using standard notation.

$$\mathbf{E}[AB] =$$

$$\mathbf{E}[NA] =$$

2. Let $\hat{N} = c_1 A + c_2$ be the LLMS estimator of N given A. Find c_1 and c_2 in terms of p. $c_1 =$

$$c_2 =$$

Problem 6: Estimating the parameter of a uniform r.v.

The random variable X is uniformly distributed over the interval $[\theta, 2\theta]$. The parameter θ is unknown and is modeled as the value of a continuous random variable Θ , uniformly distributed between zero and one.

1. Given an observation x of X, find the posterior distribution of Θ . Express your answers below in terms of θ and x. Use 'theta' to denote θ and 'ln' to denote the natural logarithm function. For example, $\ln(\theta)$ should be entered as ' $\ln(\theta)$ '.

For
$$0 \le x \le 1$$
 and $x/2 \le \theta \le x, f_{\Theta|X}(\theta \mid x) =$

- 2. Find the MAP estimate of Θ based on the observation X=x and assuming that $0 \le x \le 1$. Express your answer in terms of x. For $0 \le x \le 1$, $\hat{\theta}_{MAP}(x) =$
- 3. Find the LMS estimate of Θ based on the observation X=x and assuming that $0 \le x \le 1$. Express your answer in terms of x.

For
$$0 \le x \le 1, \hat{\theta}_{LMS}(x) =$$

4. Find the linear LMS estimate $\hat{\theta}_{LLMS}$ of Θ based on the observation X = x. Specifically, $\hat{\theta}_{LLMS}$ is of the form $c_1 + c_2 x$. Find c_1 and c_2 .

$$c_1 =$$

$$c_2 =$$