Part V

MODULAR POLYNOMIALS

Definition 5.1.1

Let R be a ring (such as $\mathbb{Z}, \mathbb{Q}, \mathbb{R}, \mathbb{C}, \mathbb{Z}/m$, etc.). Then a polynomial over R (or, a polynomial with coefficients in R) is an expression

$$f(T) = a_d T^d + \dots + a_1 T + a_0,$$

where T is the variable and the coefficients a_0, a_1, \dots, a_d belongs to R. The set of polynomials over R is denoted by R[T].

The addition and multiplication of polynomials are defined in the obvious way. (So, using terminology from Algebra, $(R[T], +, 0, \cdot, 1)$ is a ring.)

Example 5.1.2

Try to simplify $(\overline{2}T^2 + T)(\overline{3}T + \overline{2})$ over $\mathbb{Z}/6$.

Example 5.1.2

Try to simplify $(\overline{2}T^2 + T)(\overline{3}T + \overline{2})$ over $\mathbb{Z}/6$.

$$(\overline{2}T^2 + T)(\overline{3}T + \overline{2}) = \overline{2}T^2 \cdot \overline{3}T + T \cdot \overline{3}T + \overline{2}T^2 \cdot \overline{2} + T \cdot \overline{2}$$

$$= \overline{2} \cdot \overline{3}T^3 + \overline{3}T^2 + \overline{2} \cdot \overline{2}T^2 + \overline{2}T$$

$$= \overline{6}T^3 + \overline{3}T^2 + \overline{4}T^2 + \overline{2}T$$

$$= \overline{6}T^3 + \overline{3} + \overline{4}T^2 + \overline{2}T$$

$$= T^2 + \overline{2}T.$$

Polynomials over \mathbb{Z}/m can be obtained from those over \mathbb{Z} through the modulo reduction process:

$$a_d T^d + \dots + a_1 T + a_0$$

$$\overline{a_d} T^d + \dots + \overline{a_1} T + \overline{a_0}$$
 \pmod{m}

Such a process gives a surjective map respecting the addition, multiplication, and their neutral elements. (Using terminology from Algebra, it is a surjective homomorphism.)

Definition 5.1.3

Two integer polynomials f(T) and g(T) are congruence modulo m if for each exponent d, the coefficients of T^d in f(T) and g(T) are congruence modulo m.

This gives an equivalence relation on $\mathbb{Z}[T]$ and each equivalence class is called a *polynomial modulo* m.

Then the reduction map in previous slide identify the quotient set of $\mathbb{Z}[T]$ up to congruence modulo m (i.e. the set of polynomial modulo m) with $\mathbb{Z}/m[T]$. We'll thus not distinguish the two structures.

Polynomials over \mathbb{Z}/m may behave very different from the usual ones (over \mathbb{Z} , \mathbb{Q} , \mathbb{R} , or \mathbb{C}). However, when p is a prime, polynomials modulo p behave well.

In what follows, we will use the notation \mathbb{F}_p to denote the (ring) structure \mathbb{Z}/p (where p is a prime). The letter \mathbb{F} stands for "field", which means a ring in which nonzero = invertible.

Definition 5.1.4

The *degree* of a polynomial f(T) is the largest exponent d, for which the coefficient of T^d is nonzero.

Example 5.1.5

The degree of the integer polynomial $6T^3 + 7T^2 + 2T$ is 3, while the degree of the polynomial $\overline{6}T^3 + \overline{7}T^2 + \overline{2}T$ over $\mathbb{Z}/6$ is 2.

Usually, the degree of the zero polynomial is by convenience (1)

Theorem 5.1.6

Let f, g be two nonzero polynomials over \mathbb{F}_p , then we have

$$\deg(fg) = \deg f + \deg g.$$

Theorem 5.1.6

Let f, g be two nonzero polynomials over \mathbb{F}_p , then we have

$$\deg(fg) = \deg f + \deg g.$$

Proof. Suppose the leading terms of f and g are $\overline{a}T^{\deg(f)}$ and $\overline{b}T^{\deg(g)}$ respectively. Then we have

$$fg = (\overline{a}T^{\deg(f)} + \text{lower terms})(\overline{b}T^{\deg(g)} + \text{lower terms})$$

= $\overline{ab}T^{\deg f + \deg g} + \text{lower terms}.$

Note that, from $\overline{a} \neq 0$ and $\overline{b} \neq 0$, we have $p \nmid ab$ since p is a prime. Therefore, the degree of fg is $\deg f + \deg g$.

П

Theorem 5.1.6

Let f, g be two nonzero polynomials over \mathbb{F}_p , then we have

$$\deg(fg) = \deg f + \deg g.$$

N.B. this is not true for \mathbb{Z}/m with m composite. E.g. over $\mathbb{Z}/6$, we have

$$(\overline{2}T^2 + T)(\overline{3}T + \overline{2}) = T^2 + \overline{2}T.$$

$$\uparrow \qquad \downarrow \qquad \downarrow$$

But the degrees of the factors are 2 and 1.

Definition 5.1.7

We say that a congruence class $\overline{a} \in \mathbb{Z}/m$ is a <u>root</u> of the integer polynomial $f(T) \in \mathbb{Z}[T]$, or the integer a is a <u>root</u> of f(T) modulo m, if $f(a) \equiv 0 \pmod{m}$.

Definition 5.1.7

We say that a congruence class $\overline{a} \in \mathbb{Z}/m$ is a root of the integer polynomial $f(T) \in \mathbb{Z}[T]$, or the integer a is a root of f(T) modulo m, if $f(a) \equiv 0 \pmod{m}$.

Example 5.1.8

Let's consider 5 and the polynomial $f(T) = 3T^2 + 2T$.

The congruence classes $\overline{0}$ and $\overline{1}$ are roots of f in \mathbb{F}_5 , while $\overline{2}$, $\overline{3}$, and $\overline{4}$ are not.

Theorem 5.1.9

Consider a linear integer polynomial f(T) = aT + b. If $p \nmid a$, then f has a unique root in \mathbb{F}_p .

Proof. If $p \nmid a$, then a is invertible modulo p. Hence, by its cancelling property, we get a unique congruence class $-[a]_p^{-1}[b]_p$ being the root of f(T) in \mathbb{F}_p .

Theorem 5.1.9

Consider a linear integer polynomial f(T) = aT + b. If $p \nmid a$, then f has a unique root in \mathbb{F}_p .

N.B. this is not true for \mathbb{Z}/m with m composite.

E.g. in $\mathbb{Z}/6$, the linear polynomial 3T + 1 has no roots, while 3T + 3 has three roots: $\overline{1}$, $\overline{3}$, and $\overline{5}$.