This file is to collect various notes on our project on the higher symmetry and Seiberg duality.

1 Explicit configurations detecting anomalies

Here we describe geometries detecting $\int_{M_5} B\beta E$, $\int_{M_4} B\beta w_2$, etc. All cohomologies in this section is \mathbb{Z}_2 -valued.

Klein bottle: We start from the Klein bottle K as a nontrivial S^1 bundle over S^1 . Let us denote by a the Poincaré dual to the fiber S^1 , and t the Poincaré dual to the base S^1 .

We have
$$\beta a = ta$$
, since $\int_K \beta a = \int_K w_1 a$.

 T^4 bundle over S^1 : We now consider a T^4 bundle over S^1 . We denote four directions of T^4 as 1, 2, 3 and 4, and we let the directions 1 and 3 to flip the orientation when we go around S^1 . We let $a_{1,2,3,4} \in H^1(T^4)$ be the dual basis to the S^1 along four directions.

We now take
$$B = a_1 a_2$$
 and $E = a_3 a_4$. Then $\beta B = t B$ and $\beta E = t E$, and $\int B \beta E = 1$.

Realizing as SO(3) **bundles** We now look for SO(3) bundles realizing these B and E as w_2 in this T^4 bundle over S^1 .

We note that an SO(3) bundle over T^2 with two commuting holonomies around two directions

$$R_x = \text{diag}(+1, -1, -1), \qquad R_y = \text{diag}(+1, -1, -1)$$

has a nontrivial w_2 , since their lift to SU(2) is given by $i\sigma_x$ and $i\sigma_y$ which anticommute.

Luckily, these R_x and R_y are of order two, so we can put it over our T^4 bundle. Done.

2 Anomaly of trifundamental

Lee-kun's computation says that

$$(D\Omega^{\text{spin}})^6 (B[SU(2)^3/\mathbb{Z}_2^2]) = \mathbb{Z}_2$$

generated by

$$\int w_2 \beta w_2'.$$

We would like to know if a trifundamental fermion has this anomaly.

To see this, we need to compute the eta invariant under an explicit configuration where $\int w_2 \beta w_2' = 1$. Such a configuration is constructed above. Let us first find an explicit configuration of $SU(2)^{(1)} \times SU(2)^{(2)} \times SU(2)^{(3)}$ commuting up to $\mathbb{Z}_2 \times \mathbb{Z}_2$, which is generated by (-1, -1, +1)

and (-1, +1, -1). So we just have to choose, say,

holonomy around direction
$$1 = (i\sigma_x, i\sigma_x, 1),$$
 (2.1)

holonomy around direction
$$2 = (i\sigma_y, i\sigma_y, 1),$$
 (2.2)

holonomy around direction
$$3 = (i\sigma_x, 1, i\sigma_x),$$
 (2.3)

holonomy around direction
$$4 = (i\sigma_v, 1, i\sigma_v)$$
. (2.4)

Furthermore, the spinor on our T^4 bundle over S^1 is glued around S^1 via the action of $\Gamma_1\Gamma_3$, since we flip the directions 1 and 3.

These are enough data to construct the fermion bundle over our T^4 bundle over S^1 . Since the Euclidean spinor in 5d is pseudoreal, and our trifundamental is also pseudoreal, the tensor product is strictly real. The Dirac operator is therefore a real antisymmetric matrix, and the eigenvalues come in pairs $\pm \lambda$ except the zero modes. Therefore in our case the eta invariant reduces to the mod-2 index, and we just have to count the zero modes.

A Computation of $\Omega_5^{\text{spin}} \left(B\left(\frac{SO(4) \times SU(2)}{\mathbb{Z}_2} \right) \right)$

Let us consider the simplest case of the Seiberg duality and examine the anomaly consequences. For SO(4) gauge theory with $N_f=2$ flavors, fermions are charged under $\frac{SO(4)\times SU(2)}{\mathbb{Z}_2}$.

A.1 Leray-Serre SS (preparatory)

For the various input of cohomology groups, see Appendix A of our WZW paper. For the fibration

$$BSO(3) \rightarrow B\left(SO(3) \times SO(3)\right) = B\left(\frac{SO(4)}{\mathbb{Z}_2}\right) \rightarrow BSO(3)$$
 (A.1)

one has

Here we expect non-trivial differentials to be absent (for the region of interest) from the explicit consideration of generators (since there are W_3 and W'_3 , there should be $(W_3)^2$, $(W'_3)^2$, and $W_3W'_3$)

or by requiring proper reproduction of the \mathbb{Z}_2 cohomology (which we expect to be generated by w_2, w_2', w_3 , and w_3'). Then, for the fibration

$$BSU(2) \rightarrow B\left(\frac{SO(4)\times SU(2)}{\mathbb{Z}_2}\right) \rightarrow B\left(\frac{SO(4)}{\mathbb{Z}_2}\right)$$
 (A.3)

we can further plug it into

Taking the normalization of instanton number into account (see Ohmori-san's e-mail on 2020-08-19), the differential $d_2: E_{0,4} \to E_{5,0}$ seems to be non-trivial.

So we believe the integral cohomology structure to be

where the reduction to \mathbb{Z}_2 cohomology are

$$W_3 \rightarrow w_3 p_1 \rightarrow (w_2)^2$$
 (A.6)

A.2 Atiyah-Hirzebruch SS

Having obtained (co)homology groups, one can fill in the E^2 -page of the AHSS:

Based on our belief, $d^2:E^2_{4,0}\to E^2_{2,1}$ and $d^2:E^2_{4,1}\to E^2_{2,2}$ should be a dual of

$$Sq^2w_2 = (w_2)^2$$

 $Sq^2w_2' = (w_2')^2$
(A.8)

and also $\boxed{d^2:E^2_{5,0}\to E^2_{3,1}}$ and $\boxed{d^2:E^2_{5,1}\to E^2_{3,2}}$ should be a dual of

$$Sq^2w_3 = w_2w_3$$

 $Sq^2w_3' = w_2'w_3'$
(A.9)

and finally $\boxed{d^2:E^2_{6,0} o E^2_{4,1}}$ should be a dual of

$$Sq^2(w_2w_2') = w_3w_3' + (w_2)^2w_2' + w_2(w_2')^2$$
 (A.10)

then the would-be- E_3 -page is given by

A.3 Adams SS

According to our naive guess, the module $\widetilde{H}^*(B\left(\frac{SO(4)\times SU(2)}{\mathbb{Z}_2}\right);\mathbb{Z}_2)_{\leq 5}$ consists of

To be consistent with the AHSS computation, it seems that $w_3w_2' + w_2w_3'$ should be modded out (is it an obvious consequence of the transgression in LSSS...?) and the remaing part (*) turns out to be

$$(w_3)^2 w_3' + w_3 (w_3')^2$$

$$w_2 w_3 w_3' + w_3 w_2' w_3'$$

$$w_3 w_3'$$

$$w_2 w_3' = w_3 w_2'$$

$$(A.13)$$

and therefore one concludes

$$\widetilde{H}^*(B\left(\frac{SO(4)\times SU(2)}{\mathbb{Z}_2}\right); \mathbb{Z}_2)_{\leq 5} = J[2] \oplus J[2] \oplus \mathcal{A}_1 /\!\!/ \mathcal{E}_0[4] \oplus J[5]. \tag{A.14}$$

This leads to the following Adams chart:

and it indeed seems to be compatible with the AHSS computation. If the above argument (and beliefs) is correct, then the anomaly should be captured by

$$w_2w_3' (= w_3w_2'). (A.15)$$

A.4 Seiberg dual

The dual theory is SO(2) gauge theory with $N_f=2$ flavors, and the fermions are charged under

$$\frac{SO(2) \times SU(2)}{\mathbb{Z}_2} = U(2) \tag{A.16}$$

Its spin bordism is known, and the relevant group turns out to be trivial:

$$\Omega_5^{\text{spin}}(BU(2)) = 0. \tag{A.17}$$

This means there is no anomaly for fermions on the dual side, and thus the $B\beta E$ anomaly cannot be canceled by fermions.

References