OP 09

Synthesis of decanoic acid-modified iron oxide nanocrystals using supercritical carbon dioxide as reaction medium

Authors and affiliation

Yasuhiko Orita*, 1, Keito Kariya1, Thossaporn Wijakmatee1, Yusuke Shimoyama1

- ¹ Department of Chemical Sciene and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8550, Japan
- *E-mail: orita.y.aa@m.titech.ac.jp

Key Word (3 words)

Supercritical carbon dioxide, iron oxide nanocrystals, surface modification

Abstract (less than 300 words)

Nanoparticle synthesis in liquid phase, such as heat-up and hydrothermal methods, has been typically applied to the preparation of organic modified nanocrystals (NCs), however, these methods cause the large amount of the liquid waste for the synthesis and washing of NCs [1, 2]. In contrast to them, supercritical CO₂ can be one of the appealing candidates to fabricate organic modified NCs because supercritical CO₂ was used as not only synthesis but also washing and drying solvent for the particle production, which enables the simple fabrication process without the liquid waste. Moreover, solvation power of supercritical CO₂ for the starting and intermediate molecule can be tuned by operating temperature and pressure, where this characteristic is expected to control the reaction for the formation of organic modified NCs.

In this contribution, we report a synthesis using supercritical CO_2 as reaction medium for organic-modified NCs. To investigate the effect of supercritical CO_2 , the synthesis was performed at N_2 atmosphere and at 30 MPa of CO_2 after introducing the starting materials of iron(III) acetylacetonate, pure water and decanoic acid into the high pressure cell. The reaction time and temperature were set at 18 h and 100° C, respectively. As a result, the yield of the solid materials significantly increased by using supercritical CO_2 of 30 MPa compared with the test at N_2 atmosphere. Additionally, supercritical CO_2 medium gave the NCs of α -Fe₂O₃ and γ -Fe₂O₃ with the unimodal size distribution where the mean size was 7.8 ± 2.0 nm. Moreover, the FT-IR and TG analysis supported that decanoic acid do not physical absorb to the surface but chemically attach to the surface of iron oxide NCs obtained in supercritical CO_2 .

References

- [1] J. Muro-Cruces et al. ACS Nano, 13 (2019) 7716-7728.
- [2] J. Zhang et al. Adv. Mater. 19 (2007) 201-204.

MTMS '21