D. Zack Garza

3667 Christine Street, San Diego, CA, 92117 dzackgarza@gmail.com • +1 (530) 210-9130 • https://www.dzackgarza.com

EDUCATION	University of Georgia, Athens,GA, USA ■ Ph.D. in Mathematics (Expected)	Aug 2019 – Present
	 University of California, San Diego, La Jolla, CA, USA B.S. Mathematics Minor in Computer Science Major GPA: 3.723 	Aug 2015 – Jun 2018
	University of California, Berkeley, Berkeley, CA, USA	Sep 2014 – Jun 2015
	 Concurrent Enrollment CS 70: Discrete Mathematics and Probability Theory EE 20: Structure and Interpretation of Systems and Signals Cumulative GPA: 3.33 	
	Sierra College, Rocklin, California, USA	Sep 2011 – Jun 2014
	A.A. MathematicsA.S. PhysicsA.A. Fine Arts	
TEACHING	Private Tutoring	2014 – Present
	 Calculus, Linear Algebra, Differential Equations, Real Analysis, Abstract Algebra, Complex Analysi, Point-Set Topology, Number Theory, Probability 	
WORK	Retail Scientifics, San Diego, CA	Jan 2016 – Aug 2019
EXPERIENCE	 Data Scientist & Full Stack Engineer API development for real-time predictive modeling and machine learning. 	
	Google Summer of Code, Berkeley, CA	Apr 2015 – Aug 2015
	Student DeveloperContributed Haskell code to the open source project Hackage.	
	Shutterfly, Santa Clara, CA	Jun 2014 – Jan 2015
	 Software Engineer, Intern/Contractor Server-side OpenGL engine development for rendering 3D models. 	
AWARDS &	■ Diana C. Miles Scholarship	2017 – 2018
SCHOLARSHIPS	■ Errett Bishop Scholarship	2016 – 2017
	 Richard L. and Fern W. Erion and Laidlaw-Erion Scholarship Provost Honors (Muir College, UC San Diego) 	2016 – 2017 2015 – 2016
CAMPUS ACTIVITIES	Society of Undergraduate Mathematics Students , University of California, San President	Diego 2016 – 2018
	Mathematics Club, Sierra College	2013 – 2014
	 Officer 	
TECHNICAL SKILLS	Android, C, C++, ECMAScript, Bash, Git, HTML5/CSS3, Haskell, Java, Javascript, LATEX, MATLAB, Node, NumPy, OpenGL, PHP, Python, R, SAGE, SQL, Unix/Linux	
WORKSHOPS AND	 Mathematics Subject GRE Workshop 	Mar 2019
TALKS GIVEN	 Homotopy and the Hopf Fibration 	Jun 2018
	■ Topological Fixed Point Theorems	Mar 2018

	 Homology and The Snake Lemma Algebraic Geometry: A Historical Primer Introduction to Functional Programming Intermediate LaTeX Introduction to LaTeX Intermediate LaTeX Organizing Research Projects with LaTeX Category Theory as an Organizational Tool 	Nov 2017 Oct 2017 Oct 2017 May 2017 Apr 2017 Feb 2017 Jan 2017
	 Introduction to LaTeX Introduction to Category Theory, Part 2 Introduction to Category Theory, Part 1 Haskell for Mathematicians Discrete Mathematics: An Overview of Graphs and Trees 	Nov 2016 Nov 2016 Oct 2016 Oct 2016 May 2014
COURSEWORK	 Graduate Coursework Algebraic Topology Topics in Real Analysis: Quantum Mechanics (Graduate) Functional Analysis Algebra 	Fall 2017 – Spring 2018 Spring 2017 Fall 2016 – Winter 2017 Fall 2017
	 Undergraduate Coursework Cryptography Numerical Methods and Physical Modeling Image Processing 	Winter 2018 Fall 2017 Fall 2017
	 Applied Linear Algebra Partial Differential Equations Computer Vision Complex Analysis History of Mathematics (Hyperbolic Geometry) Theory of Computation Introductory Machine Learning Discrete Math and Graph Theory Design and Analysis of Algorithms 	Summer 2017 Summer 2017 Spring 2017 Spring 2017 Spring 2017 Winter 2017 Winter 2017 Winter 2017 Fall 2016
	 Number Theory Advanced Data Structures Knot Theory Point-Set Topology Mathematical Algorithms and Systems Analysis in Computer Science Probability Software Tools and Techniques Combinatorics Abstract Algebra Real Analysis 	Summer 2016 Spring 2016 Spring 2016 Winter 2015 Winter 2015 Winter 2015 Winter 2015 Fall 2015 – Spring 2016 Fall 2015 – Spring 2016
	 Mathematical Reasoning and Proof Vector Calculus Structure and Interpretation of Signals and Systems Assembly Programming (x86) C++ Programming Finite Mathematics and Linear Programming Discrete Mathematics and Probability Theory Structure and Interpretation of Computer Programs (Python) 	Summer 2015 Summer 2015 Spring 2015 Spring 2015 Spring 2015 Spring 2015 Fall 2014 Fall 2014
	 Elementary Statistics Introduction to Unix Discrete Mathematics Electrical Circuit Theory 	Summer 2014 Summer 2014 Spring 2014 Spring 2014

Differential Equations and Linear AlgebraData Structures	Spring 2014 Fall 2012
 General Chemistry Physics: Mechanics, Electromagnetism, Optics, and Waves Calculus: Single and Multivariable Systems Programming with C Discrete Structures in Computer Science Object-Oriented Programming 	Spring 2013 – Summer 2013 Fall 2012 – Spring 2013 Fall 2012 – Spring 2013 Fall 2012 Fall 2012 Spring 2012