HANOI UNIVERSITY OF SCIENCE AND TECHNOLOGY ADVANCED PROGRAMS - PHYSICS HOMEWORK

1. MECHANICS

1.2 KINEMATICS

					G	rade t	able						
Question:	1	2	3	4	5	6	7	8	9	10	11	12	13
Points:	3	5	4	3	7	3	6	6	5	4	6	17	4
Score:													
Question:	14	15	16	17	18	19	20	21	22	23	24	25	Total
Points:	5	5	10	5	4	6	7	5	3	6	5	3	137
Score:													
. You are								for 180)km. I	then	begins	to rain	and yo
You are slow to (a) How	35 km h	⁻¹ . Yo	u arrive	e home	after o	driving		for 180)km. It	then l	begins '	to rain	and yo
slow to 6	35 km h	⁻¹ . Yo	u arrive	e home	after o	driving		for 180) km. It	then	begins	to rain	and yo
slow to 6	35 km h	⁻¹ . Yo	u arrive	e home	after o	driving		for 180) km. It	then	begins	to rain	and yo
slow to 6	35 km h	⁻¹ . Yo	u arrive	e home	after o	driving		for 180) km. It	then 1	begins	to rain	and yo
slow to 6	35 km h	⁻¹ . Yo	u arrive	e home	after o	driving		for 180) km. It	then	begins	to rain	and yo

2.	(\mathbf{a})	What is meant by:	5 p
		i. average speed,	[1]
		ii. average velocity.	[1]
	(b)	In a complete round trip, the outgoing $250\mathrm{km}$ is covered at $95\mathrm{km}\mathrm{h}^{-1}$, followed by a 1.0-h lunch break, and the return $250\mathrm{km}$ is covered at $55\mathrm{km}\mathrm{h}^{-1}$. Calculate for the round trip:	
		i. the average speed,	[2]
		ii. the average velocity.	[1]
			[+]
3.		fon's position vector is initially $\vec{\mathbf{r}}_0 = 5.0 \hat{\mathbf{x}} - 6.0 \hat{\mathbf{y}} + 2.0 \hat{\mathbf{z}}$, and 10s later is $\vec{\mathbf{r}} = -2.0 \hat{\mathbf{x}} + 8.0 \hat{\mathbf{y}} - 2.0 \hat{\mathbf{z}}$, in meters.	4 p
	(\mathbf{a})	In unit-vector notation, find the average velocity of the ion during the $10\mathrm{s}.$	[2]
	(b)	State and explain whether or not it is possible to determine the average speed of the ion with the given information.	[2]

Page 2 of 14

 $[{\rm Turn}\ {\rm over}$

4.	A bowling ball traveling with constant speed hits the pins at the end of a bowling lane $16.5\mathrm{m}$ long. The bowler hears the sound of the ball hitting the pins $2.80\mathrm{s}$ after the ball is released from his hands. What is the speed of the ball, assuming the speed of sound is $340\mathrm{ms^{-1}}$?	[3
5.	You throw a ball toward a wall at speed $25.0\mathrm{ms^{-1}}$ and at angle $\theta_0=40^\circ$ above the horizontal, as shown in Fig. 5.1. The wall is distance $d=22.0\mathrm{m}$ from the release point of the ball.	7 p
S	(a) How far above the release point does the ball hit the wall? θ_0	[3]
	Fig. 5.1	
	(a) Determine, for the velocity of the ball as it hits the wall,	
	i. the horizontal component,	[1]
	** 1	
	ii. the vertical component.	[2]

Page 3 of 14 [Turn over

(b)	When the ball hits, has it passed the highest point on its trajectory?	
(a)	Define acceleration.	
(b)	A sports car moving at constant velocity travels $120\mathrm{m}$ in $5.0\mathrm{s}$. If it then brakes and comes to a stop in $4.0\mathrm{s}$, what is the magnitude of its acceleration (assumed constant)?	
$\vec{\mathbf{a}} =$	variable leaves the origin with an initial velocity $\vec{\mathbf{u}} = (3.00\hat{\mathbf{x}})\mathrm{ms^{-1}}$ and a constant acceleration $-1.00\hat{\mathbf{x}} - 0.500\hat{\mathbf{y}}$. When it reaches its maximum x coordinate, what is its velocity vector,	
$\vec{\mathbf{a}} =$	$-1.00\hat{\mathbf{x}} - 0.500\hat{\mathbf{y}}$. When it reaches its maximum x coordinate, what is its	
$\vec{\mathbf{a}} =$	$-1.00\hat{\mathbf{x}} - 0.500\hat{\mathbf{y}}$. When it reaches its maximum x coordinate, what is its	
$\vec{\mathbf{a}} =$	$-1.00\hat{\mathbf{x}} - 0.500\hat{\mathbf{y}}$. When it reaches its maximum x coordinate, what is its	
$\vec{\mathbf{a}} =$	$-1.00\hat{\mathbf{x}} - 0.500\hat{\mathbf{y}}$. When it reaches its maximum x coordinate, what is its	
$\vec{\mathbf{a}} =$	$-1.00\hat{\mathbf{x}} - 0.500\hat{\mathbf{y}}$. When it reaches its maximum x coordinate, what is its	
$\vec{\mathbf{a}} =$	$-1.00\hat{\mathbf{x}} - 0.500\hat{\mathbf{y}}$. When it reaches its maximum x coordinate, what is its	
$\vec{\mathbf{a}} =$ (\mathbf{a})	$-1.00\hat{\mathbf{x}} - 0.500\hat{\mathbf{y}}$. When it reaches its maximum x coordinate, what is its	
$\vec{\mathbf{a}} =$ (\mathbf{a})	$-1.00\hat{\mathbf{x}}-0.500\hat{\mathbf{y}}.$ When it reaches its maximum x coordinate, what is its velocity vector,	
$ec{\mathbf{a}} =$ (a)	$-1.00\hat{\mathbf{x}}-0.500\hat{\mathbf{y}}.$ When it reaches its maximum x coordinate, what is its velocity vector,	

Page 4 of 14 [Turn over

Hanoi University of Science and Technology - Advanced Programs - Physics Homework 8. In a jump spike, a volleyball player slams the ball from overhead and toward the opposite floor. [6] Controlling the angle of the spike is difficult. Suppose a ball is spiked from a height of 2.30 m with an initial speed of $20.0 \,\mathrm{m\,s^{-1}}$ at a downward angle of 18.0%. How much farther on the opposite floor would it have landed if the downward angle were, instead, 8.00°? 6 p 9. (a) In a uniform circular motion, explain why there is an acceleration even though the speed is [2] constant. (b) An Earth satellite moves in a circular orbit (uniform circular motion) 640 km above Earth's surface with a period of 98.0 min. The Earth's radius is 6400 km. Calculate, for the satellite, 5 p [2] i. its speed, [1]

Page 5 of 14 Turn over

ii. the magnitude of its centripetal acceleration.

Hanoi University of Science and Technology - Advanced Programs - Physics Homework 10. A world-class sprinter can reach a top speed (of about 11.5 m s⁻¹) in the first 18.0 m of a race. 4p(a) What is the average acceleration of this sprinter? [2][2] (b) How long does it take her to reach that speed? 11. Fig. 11.1 shows a general situation in which a stream of people attempt to escape through an exit door that turns out to be locked. The people move toward the door at speed $v_s = 3.50 \,\mathrm{m \, s^{-1}}, \text{ are each } d = 0.25 \,\mathrm{m} \text{ in}$ depth, and are separated by $L = 1.75 \,\mathrm{m}$. The arrangement in Fig. 11.1 occurs at time door 6 p Fig. 11.1 t = 0. (a) At what average rate does the layer of people at the door increase? [4]

(b)	At what time does the layer's depth reach 5.0 m?	[2]

Page 6 of 14 [Turn over

12.	The position of a particle moving along the x axis depends on the time according to the equation	
	$x = ct^2 - bt^3$	
	where x is in meters and t in seconds.	17 p
	(a) What are the units of the	
	\mathbf{i} . constant c ,	[1]
	ii. constant b .	[1]
	(b) Let the numerical values c and b be 3.0 and 2.0, respectively.	
	i. At what time does the particle reach its maximum positive x position?	[4]
	ii. From $t = 0.0 \mathrm{s}$ and $t = 4.0 \mathrm{s}$,	
	1. What distance does the particle move	[4]
		[+]
	2. and what is the displacement of the particle?	[1]

	1. $1.0 \mathrm{s}$,	[
	$2. 2.0 \mathrm{s},$	[
	3. $3.0 \mathrm{s}$,	[
	4. 4.0 s.	[
	ine the stopping distances for an automobile going with a constant initial speed of $95\mathrm{km}\mathrm{h}^{-1}$ nan reaction time of $0.40\mathrm{s}$ for	
		L
	acceleration of $-3.0\mathrm{ms^{-2}}$,	[
	acceleration of $-3.0 \mathrm{ms^{-2}},$	L
	acceleration of $-3.0\mathrm{ms^{-2}}$,	L
	acceleration of $-3.0\mathrm{ms^{-2}},$	L
	acceleration of $-3.0\mathrm{ms^{-2}}$,	L
	acceleration of $-3.0\mathrm{ms^{-2}}$,	L
(a) an	acceleration of $-3.0\mathrm{ms^{-2}},$	L
(a) an		

Page 8 of 14

[Turn over

(\mathbf{a})	magnitude,	[4]	<i>x</i> (m)				
			x_s		<u> </u>		
			0	1	2		(s)
				\mathbf{Fig}	. 14.1		
(h)							
(D)	direction.						
o. An Precar'	unmarked police car traveling a constant $95 \mathrm{km}\mathrm{h}^{-1}$ cisely $1.00 \mathrm{s}$ after the speeder passes, the police of a acceleration is $2.60 \mathrm{m}\mathrm{s}^{-2}$, how much time passes	ficer st	teps on t	the acce	erator.	If th	e police
. An Precar'	unmarked police car traveling a constant $95 \mathrm{km}\mathrm{h}^{-1}$ cisely $1.00 \mathrm{s}$ after the speeder passes, the police of	ficer st	teps on t	the acce	erator.	If th	e police
. An Precar'	unmarked police car traveling a constant $95 \mathrm{km}\mathrm{h}^{-1}$ cisely $1.00 \mathrm{s}$ after the speeder passes, the police of a acceleration is $2.60 \mathrm{m}\mathrm{s}^{-2}$, how much time passes	ficer st	teps on t	the acce	erator.	If th	e police
. An Precar'	unmarked police car traveling a constant $95 \mathrm{km}\mathrm{h}^{-1}$ cisely $1.00 \mathrm{s}$ after the speeder passes, the police of a acceleration is $2.60 \mathrm{m}\mathrm{s}^{-2}$, how much time passes	ficer st	teps on t	the acce	erator.	If th	e police
. An Precar'	unmarked police car traveling a constant $95 \mathrm{km}\mathrm{h}^{-1}$ cisely $1.00 \mathrm{s}$ after the speeder passes, the police of a acceleration is $2.60 \mathrm{m}\mathrm{s}^{-2}$, how much time passes	ficer st	teps on t	the acce	erator.	If th	e police
. An Precar'	unmarked police car traveling a constant $95 \mathrm{km}\mathrm{h}^{-1}$ cisely $1.00 \mathrm{s}$ after the speeder passes, the police of a acceleration is $2.60 \mathrm{m}\mathrm{s}^{-2}$, how much time passes	ficer st	teps on t	the acce	erator.	If th	e police
. An Precar'	unmarked police car traveling a constant $95 \mathrm{km}\mathrm{h}^{-1}$ cisely $1.00 \mathrm{s}$ after the speeder passes, the police of a acceleration is $2.60 \mathrm{m}\mathrm{s}^{-2}$, how much time passes	ficer st	teps on t	the acce	erator.	If th	e police
. An Precar'	unmarked police car traveling a constant $95 \mathrm{km}\mathrm{h}^{-1}$ cisely $1.00 \mathrm{s}$ after the speeder passes, the police of a acceleration is $2.60 \mathrm{m}\mathrm{s}^{-2}$, how much time passes	ficer st	teps on t	the acce	erator.	If th	e police
. An Precar'	unmarked police car traveling a constant $95 \mathrm{km}\mathrm{h}^{-1}$ cisely $1.00 \mathrm{s}$ after the speeder passes, the police of a acceleration is $2.60 \mathrm{m}\mathrm{s}^{-2}$, how much time passes	ficer st	teps on t	the acce	erator.	If th	e police

Page 9 of 14 [Turn over

The	plane is traveling horizontally with a speed of $250 \mathrm{km}\mathrm{h}^{-1}$.	10
(\mathbf{a})	How far in advance of the recipients (horizontal distance) must the goods be dropped?	[3
	v_{x0}	
	$ \begin{array}{ccc} \text{"Dropped"} \\ (v_1 = 0) \end{array} $	
	235 m $(v_{y0} = 0)$	
	r	
	Fig. 16.1	
(\mathbf{b})	Suppose the plane releases the supplies a horizontal distance of 425 m in advance of the mountain climbers. i. What vertical velocity (up or down) should the supplies be given so that they arrive precisely at the climbers' position?	[.
(b)	mountain climbers. $ {\bf i.} \ {\rm What} \ {\rm vertical} \ {\rm velocity} \ ({\rm up} \ {\rm or} \ {\rm down}) \ {\rm should} \ {\rm the} \ {\rm supplies} \ {\rm be} \ {\rm given} \ {\rm so} \ {\rm that} \ {\rm they} \ {\rm arrive} $	
(b)	mountain climbers. $ {\bf i.} \ {\rm What} \ {\rm vertical} \ {\rm velocity} \ ({\rm up} \ {\rm or} \ {\rm down}) \ {\rm should} \ {\rm the} \ {\rm supplies} \ {\rm be} \ {\rm given} \ {\rm so} \ {\rm that} \ {\rm they} \ {\rm arrive} $	[5
(b)	mountain climbers. $ {\bf i.} \ {\rm What} \ {\rm vertical} \ {\rm velocity} \ ({\rm up} \ {\rm or} \ {\rm down}) \ {\rm should} \ {\rm the} \ {\rm supplies} \ {\rm be} \ {\rm given} \ {\rm so} \ {\rm that} \ {\rm they} \ {\rm arrive} $	[5
(b)	i. What vertical velocity (up or down) should the supplies be given so that they arrive precisely at the climbers' position?	[5
(b)	i. What vertical velocity (up or down) should the supplies be given so that they arrive precisely at the climbers' position?	[5
(b)	i. What vertical velocity (up or down) should the supplies be given so that they arrive precisely at the climbers' position?	[5
(b)	i. What vertical velocity (up or down) should the supplies be given so that they arrive precisely at the climbers' position?	[5
(b)	i. What vertical velocity (up or down) should the supplies be given so that they arrive precisely at the climbers' position?	[5]
(b)	i. What vertical velocity (up or down) should the supplies be given so that they arrive precisely at the climbers' position?	
(b)	i. What vertical velocity (up or down) should the supplies be given so that they arrive precisely at the climbers' position?	
(b)	i. What vertical velocity (up or down) should the supplies be given so that they arrive precisely at the climbers' position?	[5

Page 10 of 14 [Turn over

road A is	car moves at constant speed of $40 \mathrm{km} \mathrm{h}^{-1}$ along the d shown in Fig. 17.1. The radius of curvature at s 350 m and the total acceleration of the car at B is $\mathrm{m} \mathrm{s}^{-2}$.	5 p
(\mathbf{a})	Find the total acceleration of the car at Fig. 17.1	
	i. A,	[2]
	ii . C.	[1]
(b)	Find the radius of curvature at B.	[2]
insta	entripetal-acceleration addict rides in uniform circular motion with radius $r = 3.00 \mathrm{m}$. At one ant his acceleration is $\vec{\mathbf{a}} = 6.00 \hat{\mathbf{x}} - 4.00 \hat{\mathbf{y}} \mathrm{ms^{-2}}$. Let $\vec{\mathbf{r}}$ be his position vector with respect to the er of the orbit and $\vec{\mathbf{v}}$ be his velocity at that instant. Calculate the following products:	4 p
(\mathbf{a})	$ec{\mathbf{v}}\cdot ec{\mathbf{a}},$	[2]
(b)	$ec{\mathbf{r}} imes ec{\mathbf{a}}.$	[2]
	·····	-

Page 11 of 14

[Turn over

19.	Two particles move along an x axis. The position of particle 1 is given by $x = 6.00t^2 + 3.00t + 2.00$ (in meters and seconds); the acceleration of particle 2 is given by $a = -8.00t$ (in meters per second squared and seconds) and, at $t = 0$, its velocity is $20 \mathrm{ms^{-1}}$.	[6]
	When the velocities of the particles match, what is their velocity?	6 p
20.	A particle moves horizontally in uniform circular motion, over a horizontal xy plane. At one instant, it moves through the point at coordinates $(4.00 \mathrm{m}, 4.00 \mathrm{m})$ with a velocity of $(-5.00 \mathrm{m s^{-1}}) \hat{\mathbf{x}}$ and an acceleration of $(+12.5 \mathrm{m s^{-2}}) \hat{\mathbf{y}}$. Determine the coordinates of the center of the circular path.	[7]

Page 12 of 14 [Turn over

			$g = 9.8 \mathrm{m s^{-2}}.$
•			
•			To travel this distance
			2.2 m distance took 0.31 s
•			
•			1
•			
•			Fig. 21.1
	Fig. 22.1 shows the speed v versus height y of Distance d is $0.40 \mathrm{m}$. The speed at height y_{A} is v_{A}		· - · · · · · · · · · · · · · · · · · ·
			· - · · · · · · · · · · · · · · · · · ·
			· - · · · · · · · · · · · · · · · · · ·
		A. The speed	· - · · · · · · · · · · · · · · · · · ·
		A. The speed	· - · · · · · · · · · · · · · · · · · ·
	Distance d is 0.40 m. The speed at height y_A is v_A	A. The speed v v_A	· - · · · · · · · · · · · · · · · · · ·
	Distance d is 0.40 m. The speed at height y_A is v_A	A. The speed $v_A = -\frac{1}{3}v_A = -\frac{1}{3}v_A$	· - · · · · · · · · · · · · · · · · · ·

Page 13 of 14 [Turn over

Hanoi University of Science and Technology - Advanced Programs - Physics Homework		
24.	Estimate by what factor a person can jump farther on the Moon as compared to the Earth if the takeoff speed and angle are the same.	
	The acceleration due to gravity on the Moon is one-sixth what it is on Earth.	
25.	A ball is thrown horizontally from the roof of a building 7.5 m tall and lands 9.5 m from the base.	
	What was the ball's initial speed?	

Page 14 of 14 End of homework