H0E76A: Model Predictive Control

— Homework assignments —

Andrea Alboni

2024-2025

The assignments below are homework assignments related to the exercise sessions that are organized throughout the semester. The assignments count for 7/20 of the total marks on this course, and are graded based on the following deliverables

Deliverables

- A report containing the answers to the questions and any numerical values or plots that are asked in the assignments. You can write your solutions directly in this tex-file. Make sure to fill in your name above.
- A single zip-archive containing all the code to generate the plots included in your report. Make sure to add a readme file describing which script(s) to run (and the working directory from which to do so) to reproduce your results. It is recommended that you have at least one separate script per session.

Most of the assignments build upon the solutions obtained from the sessions. Solutions for the exercise sessions will be made available on Toledo shortly after each session. Before submitting your final report, make sure that you verify your solutions from the sessions if you reuse them here.

Session 1 LQR and Dynamic programming

Assignment 1.1

Compare the finite horizon controllers K_N you computed during the session with the infinite horizon LQR controller.

- Implement the infinite horizon LQR controller $u = K_{\infty}x$ (with initial state $x_0 = (10, 10)$).^a Write the obtained value for K_{∞} . **Remark.** Report your answers with at least four decimal places.
- Plot the simulated closed-loop trajectory of this controller with the trajectories of the finite-horizon controller. What happens as you increase *N*?
- Explain this observation based on the recursion relation used earlier and the discretetime algebraic Riccati equation (DARE).

Done.

Assignment 1.2

Numerically compare the quality of the finite-horizon LQR controller to the infinite horizon controller. For the same fixed x_0 as before and for N ranging from 1 to 10^a :

• Plot $V_N = x_0^{\mathsf{T}} P_N x_0$ versus N

^aUse solve_discrete_are from scipy.linalg.

- Plot $V_{\infty} = x_0^{\mathsf{T}} P_{\infty} x_0$ on the same axis (this is just a horizontal line).
- Approximate the infinite horizon cost for the finite-horizon controller using a long state and input trajectory:

$$\hat{V}_N = \sum_{k=0}^{\infty} (x_k^{\top} Q x_k + x_k^{\top} K^{\top} R K x_k) \approx \sum_{k=0}^{100} (x_k^{\top} Q x_k + x_k^{\top} K^{\top} R K x_k).$$

and add a plot of \hat{V}_N vs. N on the same figure.

• Describe what you observe: Do you observe convergence? Which quantities observe to which and in what direction? **Briefly** explain these observations.

Figure 1 illustrates the behavior of the value function V_N , V_∞ and \hat{V}_N as a function of the horizon N. Each curve represents a different computation of the cost. V_N , shown in cyan, which is converging from below represents the cost of following the MPC policy over a finite horizon N. Since it only considers the cost over the horizon without accounting for what happens beyond it, V_N tends to underestimate the total cost. As N increases, V_N includes the effects of more steps and approaches the infinite-horizon cost V_∞ . The value function \hat{V}_N , shown in green, represents the cost computed for the infinite sequence of actions when applying the MPC policy derived using horizon N. Initially, for small horizons (e.g. N < 4), the MPC policy produces an unstable trajectory, leading to an infinite cost. However, as N increases, the policy stabilizes, and \hat{V}_N converges from above to the infinite-horizon cost V_∞ . The magenta line represents the infinite-horizon optimal cost V_∞ , which is constant and provides a benchmark for comparison.

The figure highlights the importance of selecting an adequate prediction horizon in MPC. For small horizons, the controller may produce unstable trajectories, as evidenced by the infinite cost. Once the horizon is sufficiently long (e.g. $N \ge 4$), the MPC policy stabilizes, and both V_N and \hat{V}_N approach V_∞ , ensuring optimal and stable control.

Figure 1: Plot

 $^{^{}a}$ Hint: manually set the y-limit of the plot to [0, 2000]. Otherwise, the costs of unstable controllers will dominate the figure.

Session 2 LINEAR MPC AND CONVEX OPTIMIZATION

See the session 2 sheet for the set-up.

The goal of this assignment is to look more closely at what goes wrong in the final exercise of the session, and to gain some intuition about ways to fix it. In essence, the problem that occurs is a symptom of the myopic nature of MPC, that is, it can only take into account what happens in the very near future. To rectify this, we have to provide it with information about the long-term behavior of the system under the applied controls.

Remark. The assignments in this session should be performed in discrete time.

Assignment 2.1

Consider the vehicle at a fixed position and velocity (p_0, v_0) . Suppose we apply the maximum brake, i.e., $u_t = u_{\min}$ for t = 0, ..., T. Write an expression of T as a function of v_0 , such the vehicle can come to standstill in T steps.

Given the system dynamics:

$$x_{t+1} = \begin{bmatrix} 1 & T_s \\ 0 & 1 \end{bmatrix} x_t + \begin{bmatrix} 0 \\ T_s \end{bmatrix} u_t$$
where $x_t = \begin{bmatrix} p_t \\ v_t \end{bmatrix}$ (1)

it is possible to develop the evolution of the state's elements over time:

$$\begin{cases} p_1 = p_0 + T_s v_0 \\ v_1 = v_0 + T_S u_{min} \end{cases}$$
 (2)

$$\begin{cases} p_1 = p_0 + T_s v_0 \\ v_1 = v_0 + T_S u_{min} \end{cases}$$

$$\begin{cases} p_2 = p_1 + T_s v_1 = p_0 + 2T_s v_0 + T_s^2 u_{min} \\ v_2 = v_1 + T_S u_{min} = v_0 + 2T_s u_{min} \end{cases}$$
(3)

Therefore we have that:

$$\begin{cases} p_T = p_{T-1} + T_s v_{T-1} = p_0 + T_s v_0 T + \frac{1}{2} T (T-1) T_s^2 u_{min} \\ v_T = v_0 + T_s T u_{min} \end{cases}$$
(4)

Since the objective is for the vehicle to come to a standstill in T steps:

$$v_T = v_0 + T_s T u_{min} = 0 \implies T = -\frac{v_0}{T_s u_{min}}$$
 (5)

Assignment 2.2

For a given T, compute the total braking distance, i.e., the distance travelled during the deceleration: $p_T - p_0$.

As previously stated, the vehicle's position after T steps can be expressed as:

$$p_T = p_{T-1} + T_s v_{T-1} = p_0 + T_s v_0 T + \frac{1}{2} T(T-1) T_s^2 u_{min}$$
 (6)

Therefore, the total braking distance is given by the difference between the final and initial positions:

$$p_T - p_0 = T_s v_0 T + \frac{1}{2} T (T - 1) T_s^2 u_{min}$$
 (7)

Assignment 2.3

Use the result of the previous exercises to formulate a constraint on a state x = (p, v) that will guarantee that there will always exist a control input that will keep future states in the set $S = \{x \mid p \le p_{\text{max}}\}$.

Given the total braking distance expression derived in the previous exercise, where T can be expressed as a function of the initial velocity v_0 , we can reformulate the total breaking distance as follows:

$$p_{T} - p_{0} = \frac{-v_{0}}{T_{s}u_{min}} T_{s}v_{0} + \frac{1}{2} \left(\frac{-v_{0}}{T_{s}u_{min}}\right) \left(\frac{-v_{0}}{T_{s}u_{min}} - 1\right) T_{s}^{2} u_{min}$$

$$= \frac{-v_{0}^{2}}{u_{min}} + \frac{1}{2}v_{0} \left(\frac{v_{0} + T_{s}u_{min}}{u_{min}}\right)$$
(8)

Therefore, the constraint that guarantees that there will always exist a control input that will keep future states in the set S, states within the breaking distance to p_{max} , is:

$$p_0 + (p_T - p_0) \le p_{max}$$

$$p_0 \le p_{max} - (p_T - p_0) = p_{max} + \frac{v_0^2}{u_{min}} - \frac{1}{2}v_0 \left(\frac{v_0 + T_s u_{min}}{u_{min}}\right)$$
(9)

Assignment 2.4

Write a function that takes the horizon N as an input and that for all initial states $[-10,0] \le x_0 \le [1,25]$ (sampled in a grid), checks whether your MPC controller is feasible at this initial state. Set $u_{\min} = -5$. Leave the other settings at the same values as the ones in the session. For all $N \in \{2,5,10\}$, make a plot showing the set of states that are feasible (this can be a simple scatter plot), and draw the boundary of the constraint you derived in Assignment 3. **Remark.** You only have to check the initial feasibility of the MPC problem, not recursive feasibility.

The cyan curve, in figure 2, 3 and 4, represents the derived constraint, denoting the boundary for feasible initial points given the initial velocities. States below this boundary ensure that the vehicle can decelerate and come to a complete stop within the allowed constraints, having a maximum final position $p_{max} = 1$. Thus, it is expected that only states below this line are classified as feasible initial states, as they satisfy the physical and control limitations of the system.

From figure 2, 3 and 4 it can be seen that the number of feasible initial states decreases as the prediction horizon N increases. This phenomenon arises because, with a longer prediction horizon, the Model Predictive Control (MPC) algorithm accounts for future constraints over a longer period. Specifically, the system becomes increasingly aware that with the minimum allowable braking input of $u_{min} = -5$, the car will not be able to stop in time if the initial velocity exceed a certain threshold, cyan line, with respect to the initial position.

Figure 2: N = 2

Figure 3: N = 5

Figure 4: *N*= 10

Session 3 MPC theory: Terminal ingredients

During the sessions, we have computed polyhedral invariant sets to use for the terminal ingredients in our MPC controller. Alternatively, we can use ellipsoidal sets. The goal of this assignment is to compute such sets in a few different ways and compare them with the invariant sets we've computed during the session.

Assignment 3.1

Let *K*, *P* denote the optimal, infinite-horizon LQR gain and the solution of the discrete-time Riccati equation, respectively. As shown in the lectures, any level set

$$\operatorname{lev}_{\alpha} V_{\infty} = \{x \mid V_{\infty}(x) = x^{\mathsf{T}} P x \leq \alpha\}$$

is a positive invariant set for the system under the policy u = Kx. However, not all states $x \in \text{lev}_{\alpha} V_{\infty}$ necessarily satisfy the state and input constraints. Write down the expression for the largest value of α such that

$$\begin{cases} x \in X \\ Kx \in U \end{cases} \forall x \in \operatorname{lev}_{\alpha} V_{\infty},$$

where $X = \{x \in \mathbb{R}^n \mid H_x x \le h_x\}$ and $U = \{u \in \mathbb{R}^m \mid H_u u \le h_u\}$ are the (polyhedral) sets of feasible states and inputs, respectively.

Hint. The notion of a support function might be of use.

pagine appunti 315-320.

Assignment 3.2

Plot the ellipsoidal set (You can use the given Ellipsoid class we provide, together with the function visualization.plot_ellipsoid for this) together with the polyhedral set $\{x \in \mathbb{R}^n \mid x \in X, \ Kx \in U\}$. Is the obtained ellipsoidal set a valid terminal set for the MPC problem?

Alternatively, we can more directly encode the requirements for the invariant set and solve a convex optimization problem to find it.

Let $E = \{x \in \mathbb{R}^n \mid x^\top Px \leq 1\}$ denote our candidate set, where now P is the positive definite shape matrix. Let $K \in \mathbb{R}^{m \times n}$ furthermore be a candidate state feedback gain. Our goal is to determine P and K to obtain the "largest" possible positive invariant set for $x_{t+1} = Ax_t + Bu_t$ under the policy $u_t = Kx_t$.

In figure 5, the ellipsoidal set *E* is shown in violet, while the polyhedral set *X* is represented in cyan.

Figure 5: Ellipsoidal set

Assignment 3.3

Formulate a constraint on P and K that guarantees that

$$x^{\top}Px \leq 1 \implies x^{\top}(A+BK)^{\top}P(A+BK)x \leq 1 \quad \forall x \in \mathbb{R}$$

To enforce positive invariance, if $x \in E$, then $x_{k+1} = (A + BK)x_k \in E$ too, we need:

$$x^{\top}(A + BK)^{\top}P(A + BK)x \le x^{\top}Px, \quad \forall x \in E$$
 (10)

Subtracting $x^T P x$ from both sides, we obtain:

$$x^{\mathsf{T}} \Big[(A + BK)^{\mathsf{T}} P(A + BK) - P \Big] x \le 0 \tag{11}$$

This implies:

$$(A+BK)^{\mathsf{T}}P(A+BK)-P\leq 0\tag{12}$$

The term $(A + BK)^T P(A + BK) - P$ represents the "transformed" shape of the ellipsoid E under the system dynamics, u = Kx. The constraint ensures that the transformed ellipsoid is contained within the original ellipsoid E, preserving invariance.

Assignment 3.4

Show that the previous constraint can be written as the linear matrix inequality (LMI)

$$\begin{bmatrix} S & (AS + BF)^{\top} \\ AS + BF & S \end{bmatrix} \ge 0$$

Hint. Doing this involves the following steps.

- 1. multiply the inequality you obtained from the left and the right by P^{-1}
- 2. Introduce the change of variables
 - $S = P^{-1}$
 - F = KS
- 3. Apply the Schur complement lemma.

Given $P = P^{T}$ by construction, we can multiply the inequality by P^{-1} from the left and the right:

$$P^{-1}[(A+BK)^{\top}P(A+BK)-P]P^{-1} \le 0$$

$$P^{-1}(A+BK)^{\top}P(A+BK)P^{-1}-P^{-1} \le 0$$
(13)

Let's introduce the change of variables:

$$S = P^{-1} \implies P = S^{-1}$$

$$F = KS \implies K = FS^{-1}$$
(14)

Therefore, we have that:

$$S[A + B(FS^{-1})]^{\top} S^{-1}[A + B(FS^{-1})]S - S \le 0$$

$$S[A^{\top} + S^{-1}F^{\top}B^{\top}]S^{-1}[A + B(FS^{-1})]S - S \le 0$$

$$[AS + BF]^{\top} S^{-1}[AS + BF] - S \le 0$$

$$S - [AS + BF]^{\top} S^{-1}[AS + BF] \ge 0$$
(15)

Finally, applying the Schur complement lemma, we obtain the desired LMI:

$$\begin{bmatrix} S & (AS + BF)^{\mathsf{T}} \\ AS + BF & S \end{bmatrix} \ge 0 \tag{16}$$

Assignment 3.5

Recall from the lectures that

$$E \subseteq \{x \in \mathbb{R}^n \mid Hx \le g\} \iff \sigma_E(H_i) \le g_i, \forall i = 1, \dots, p,$$

where σ_E denotes the support function of the ellipsoid E and H_i the ith row of H. Use this fact to show that all states in our candidate invariant set E satisfy the state constraints if and only if

$$H_{x,i}^{\top}SH_{x,i}\leq h_{x,i}^2,\quad i=1,\ldots,m_x,$$

with $H_{x,i}$ the *i*th row of H_x and $h_{x,i}$ the *i*th coordinate of h_x (see Assignment 1) and $S = P^{-1}$ as before.

Hint. An expression for the support function of an Ellipsoid is given in the slides. (It's also a useful exercise to derive it yourself from the definition, but this is not part of the assignment)

Developing the definition of the ellipsoid *E*:

$$E \subseteq \{x \in \mathbb{R}^n \mid Hx \le g\} \equiv \left\{x \in \mathbb{R}^n \mid \begin{bmatrix} H_x \\ K^\top H_u \end{bmatrix} x \le \begin{bmatrix} h_x \\ h_u \end{bmatrix}\right\}$$

The support function of the ellipsoid *E* is given by:

$$\sigma_E(v) = \alpha^{1/2} ||P^{1/2}v||_2$$

Therefore, knowing that $P^{-1} = S$, we can write the support function as:

$$\sigma_{E}(H_{i}) = \alpha^{1/2} ||S^{1/2}H_{i}||_{2}$$

$$= \alpha^{1/2} [(S^{1/2}H_{i})^{\mathsf{T}} (S^{1/2}H_{i})]^{1/2}$$

$$= \alpha^{1/2} (H_{i}^{\mathsf{T}} S H_{i})^{1/2}$$
(17)

Since we are interested only in the states and $x^T P x \le 1 \implies \alpha = 1$:

$$\sigma_E(H_{x,i}) = \left(H_{x,i}^{\top} P H_{x,i}\right)^{1/2} \le g_{x,i} = h_{x,i} \implies \left(H_{x,i}^{\top} S H_{x,i}\right) \le h^2_{x,i}, \quad \forall i = 1, \dots, m_x$$
 (18)

Assignment 3.6

Similarly, show that u = Kx satisfies the input constraints for all $x \in E$, if and only if

$$h_{u,i}^2 - H_{u,i}^{\mathsf{T}} F P F^{\mathsf{T}} H_{u,i} \ge 0, \quad \forall i = 1, \dots, m_u.$$

Use the Schur complement lemma to write this constraint as an LMI in *F* and *S*.

Developing the definition of the ellipsoid *E*:

$$E \subseteq \{x \in \mathbb{R}^n \mid Hx \le g\} \equiv \left\{ x \in \mathbb{R}^n \mid \begin{bmatrix} H_x \\ K^\top H_u \end{bmatrix} x \le \begin{bmatrix} h_x \\ h_u \end{bmatrix} \right\}$$

As previously seen, knowing that $P^{-1} = S$, we can write the support function as:

$$\sigma_E(H_i) = \alpha^{1/2} (H_i^{\top} S H_i)^{1/2}$$
(19)

Since we are interested only in the inputs and knowing that $K = FS^{-1}$:

$$\sigma_{E}(K^{T}H_{u,i}) = \sigma_{E}(S^{-1}F^{T}H_{u,i})$$

$$= \left(H_{u,i}^{T}FS^{-1}SS^{-1}F^{T}H_{u,i}\right)^{1/2} \leq g_{u,i} = h_{u,i}$$

$$= \left(H_{u,i}^{T}FS^{-1}F^{T}H_{x,i}\right) \leq h^{2}_{u,i}$$

$$\implies h^{2}_{u,i} - H_{u,i}^{T}FPF^{T}H_{u,i} \geq 0, \quad \forall i = 1, ..., m_{u}$$
(20)

Applying the Schur complement lemma, we obtain the desired LMI:

$$\begin{bmatrix} h_{u,i}^2 & H_{u,i}^\top F \\ F^\top H_{u,i} & S \end{bmatrix} \ge 0 \tag{21}$$

Assignment 3.7

Since the volume of the ellipsoid is proportional to $\log \det P^{-1}$, we can now compute the largest (in terms of volume) invariant set by maximizing $\log \det S$ subject to the constraints in Assignments 4 to 6.

Implement this problem using cvxpy and plot the resulting ellipsoid (using the given utility code as before.)

TO BE DONE

Session 4 Nonlinear MPC

We revisit the autonomous parking task but in a slightly more challenging situation. Suppose that there is a vehicle in the adjacent parking spot.

Figure 6: Autonomous parking task with obstacle

Naturally, the vehicle can in no circumstance be allowed to collide with the stationary obstacle. The goal of this assignment is to modify the MPC formulation from the exercise session to include collision avoidance constraints.

One way of formulating the collision avoidance constraint is to cover each vehicle with a single row of circles as illustrated in fig. 7. Here, d denotes the horizontal distance between the center of each circle and its intersection with the rectangle, r denotes the radius of the circles, l is the length of the vehicle and w is the width of the vehicle.

Figure 7: Vehicle covering with 2, 3 and 5 circles respectively.

Assignment 4.1

Let n_c denote the number of circles used to cover the vehicle. Based on the figure, derive an expression for the **centers** $c_i \in \mathbb{R}^2$, $i = 0, ..., n_c - 1$ and the radius $r \in \mathbb{R}_+$ of the circles as a function of l, w and n_c . Assume that the origin lies in the center of the vehicle (i.e., the rectangle).

Consider a vehicle of l=4 and w=2, and take $n_{\rm c}=3$. To verify your results, use Circle and Rectangle from matplotlib.patches to plot it for this example.

Hint: This task involves only basic geometry.

Studying the figures, we can see derive an expression to compute d:

$$d = \frac{l}{2 * nc}$$
 where *nc* is the number of circles

Therefore the position of the center of the circles can be expressed as, taking into consideration the desired refernce frame:

$$c_i = \begin{bmatrix} -\frac{l}{2} + (1+2i)d \\ 0 \end{bmatrix}$$
 where c_i is the center of the i-th circle

Moroever, the radius of the circles, applying the Pitagora theorem, can be expressed as:

$$r = \sqrt{d^2 + \frac{w^2}{4}}$$

Below, Figure 8, a picture of the vehicle covered by 3 circles is shown.

Figure 8: Vehicle covered by 3 circles

Assignment 4.2

Given that the current vehicle state is $x = (p_x, p_y, \psi, v)$, express the center \bar{c} of a circle in global coordinates, given that its local coordinates (aligned with the vehicle, as in the previous exercise) are given by c.

For a vehicle of length l=4, width w=2, with its center at p=(2,2) and heading angle $\psi=\frac{\pi}{4}$, use your result (combined with the previous assignment) to plot the covering circles on this vehicle for $n_{\rm c}=3$.

Hint: You can write your result in terms of the rotation matrix $R(\psi)$ defined by the heading angle ψ . There is no need to work out everything into individual components.

In order to go from local coordinates to global coordinates, we implement the rotation matrix $R(\psi)$:

$$R(\psi) = \begin{bmatrix} \cos(\psi) & -\sin(\psi) \\ \sin(\psi) & \cos(\psi) \end{bmatrix}$$

And we sum to the circles' local coordinates obtained previously the global coordinates of the vehicle:

$$c_{i,global} = Rc_{i,local} + p$$
 where p is the position of the center of the car $\begin{bmatrix} p_x \\ p_y \end{bmatrix}$

Below, Figure 9, a picture of the vehicle having a yaw, $\psi = \pi/4$, positioned in $p = [2,2]^{T}$ covered by 3 circles is shown.

Figure 9: Vehicle global coordinates covered by 3 circles

Assignment 4.3

Given that the controlled vehicle is covered by circles with centers \bar{c}_i $i=0,\ldots,n_c-1$ (expressed in global coordinates) and radius r, and similarly the obstacle vehicle is covered by circles with centers \bar{c}_i' and radius r'. Formulate a set of *smooth* constraints

$$g(\bar{c}_i, \bar{c}_i) \leq 0$$

on \bar{c}_i and \bar{c}'_j , $i, j \in 0, ..., n_c - 1$. which – when satisfied – guarantees that the intersection between the two vehicle rectangles is empty.

Additionally, show whether this set of constraints is convex or not.

Hint: Squaring can get rid of isolated points of non-smoothness.

To guarantee that the intersection between the two vehicles is empty, using circles, we can formulate a constraint based on the distance between the centers of the circles and the sum of their radii. To guarantee the smoothness of the constraint, we can square both distances.

The squared distance between the centers of the circles is:

$$d_c^2 = ||\bar{c}_i - \bar{c}_j'||_2^2 = (\bar{c}_i - \bar{c}_j')^{\top} (\bar{c}_i - \bar{c}_j') \quad \forall i, j$$

The squared sum of the radii is:

$$d_r^2 = (r + r')^2$$

Therefore, the constraint can be formulated as:

$$g(\bar{c}_i, \bar{c}'_j) = d_r^2 - d_c^2 \le 0$$

= $(r + r')^2 - (\bar{c}_i - \bar{c}'_j)^\top (\bar{c}_i - \bar{c}'_j) \le 0$ (22)

The euclidean norm squared is a convex function, the negative of a convex function is a concave function. Therefore, the constraint is concave because it is the sum between a concave function and a constant.

Assignment 4.4

Implement the constraint you derived into your MPC controller formulation. That is, enforce that

$$g(\bar{c}_i(x_t), \bar{c}'_i) \leq 0, \quad \forall i, j \in \{0, \dots, n_c - 1\}, \forall t \in 1, \dots, N.$$

where $\bar{c}_i(x_t)$ is the center (in global coordinates) of the i'th circle on the controlled vehicle expressed as a function of its state at time step t, \bar{c}'_j is the center (in global coordinates) of the j'th circle on the obstacle vehicle and g is the function you derived in the previous exercise. Using the following settings, Simulate your MPC controller for 100 time steps in closed loop. You can use the MPC model dynamics for the simulation (no model mismatch):

x_0	(0.3, -0.1, 0, 0)
N	30
$T_{ m s}$	0.08
Obstacle pos.	(0.25, 0) (heading 0)

Use plot_state_trajectory from given.plotting to visualize the state trajectory, including the obstacle (simply pass the function a list with only one state, since it is stationary). Is the trajectory collision-free? Does the car converge to a point that is entirely within the parking spot ^a?

Optionally, you can also generate an animation using given.animation, but this is not a deliverable. (see the solution of the exercise session for some example code. You can use the argument obstacle_positions to visualize the obstacle.)

As can be seen in Figure 10, using the default values for Q, R, and N, the vehicle is not fully parked within the parking spot.

Figure 10: Parking trajectory using default parameters

Assignment 4.5

Play around with the tuning of Q, R, N or other controller parameters (perhaps even n_c , feel free to get creative) to obtain a controller which can (without collision) park the vehicle such that it is fully enclosed in the parking spot. Briefly describe your reasoning while tuning, report the final parameters that you changed from the provided defaults and illustrate the final result with a plot of the trajectory.

nc -> cambia quanto la macchina passa vicino a quella parcheggiata. più cerchi, più la macchina si avvicina siccome migliore è l'approssimazione della macchina da parte dei cerchi.

^a defined in the code as a rectangle with dimensions PARK_DIMS=(0.25, 0.12)

N -> più N è grande, più la macchina si avvicina alla posizione desiderata (centro del parcheggio, (0,0)), ma maggiore è il computational cost e time.

Q -> cambiare i primi due elementi sulla diagonale di Q aiuta, stiamo aumentando il costo legato alla posizione in x e in y, quindi la macchina tenderà a muoversi in quelle direzioni. Anche cambiare il terzo (relativo allo yaw) può aiutare.

- n_c: This parameter affects how closely the car passes by the parked car. Increasing the number
 of circles improves the approximation of the car by the circles, allowing the car to pass closer
 to the parked car.
- *N*: A larger prediction horizon *N* allows the car to get closer to the desired position (the center of the parking spot (0,0)). However, this also increases the computational cost and time.
- *Q*: Modifying the first two elements on the diagonal of *Q* helps by increasing the cost associated with the position in *x* and *y*. Consequently, the car will tend to improve along those directions. Additionally, changing the third element (related to the *yaw*) can also be beneficial.

Assignment 4.6

Measure your solver time. A quick and easy way to do this is to invoke perf_counter from the time module before and after your solver call, within the __call__ method of your controller. In general, if a solver returns its own time, its usually better to use this instead of measuring the time yourself, in order not to account for overhead in the modeling language. For this assignment, however, you can just use your own timing. You can log the solver time by creating a log class

```
from dataclasses import dataclass
from rcracers.simulator.core import BaseControllerLog, list_field
@dataclass
class ControllerLog(BaseControllerLog):
    solver_time: list = list_field()
```

and passing it as log to the simulate method:

```
from rcracers.simulator import simulate
log = ControllerLog()  # Initialize an empty log
x = simulate(..., log=log) # Simulate
print(log.solver_time)  # Now the solver times have been written
```

Within your solver call, you can then log it like this:

```
from time import perf_counter
def __call__(self, y, log) -> np.ndarray:
    start = perf_counter()
    solution = self.solve(y)
    stop = perf_counter()
    u = self.reshape_input(solution)
    log("solver_time", stop-start)
    return u[0]
```

Visualize the resulting solver time. Is your MPC controller real-time capable? How did you verify this? If it isn't, finetune your controller to obtain one that is real-time capable and still successfully parks into the parking area. Report your final tuning (any value that you changed from the provided defaults) and show the timings and state trajectory of the final controller.

Session 5 State estimation

The goal of this assignment is to further improve the MHE you developed in the associated exercise session. Specifically right now we only use the data provided within the horizon of the MHE optimization problem. Instead we would like to use past information as well, which we can do using priors.

Assignment 5.1

We will implement a prior update. Since you already have the EKF iterates available, these can be used to add the *filtering prior update* as described in the slides:

$$\Gamma_{T-N}(z) = \frac{1}{2} ||z - \hat{x}_{T-N}||_{(P_{T-N}^-)^{-1}}.$$

1. Note that the prior can already be passed to the provided build_mhe method:

```
fs, hs = get_system_equations(symbolic=True, noise=True)
loss = lambda w, v: w.T @ w + v.T @ v
solver = build_mhe(loss, f, h, 10, lbx=0.0, ubx=10.0, use_prior=True)

# you can solve the optimization problem as follows:
x, w = solver(P=np.eye(3), x0=np.zeros(3), y=np.zeros((10, 1)))
```

- 2. Alter your MHE class to use EKF internally. Keep in mind that you should produce \hat{x}_{T-N} using only measurements available before time step T-N and the same is true for P_{T-N}^- . How many past estimates \hat{x}_{T-N} and P_{T-N}^- should you store internally?
- 3. Verify, both for longer horizons (N = 25) and shorted (N = 10) ones that the filtering prior improves the behavior. Plot the estimated trajectories.
- 4. Does clipping the state estimates in the EKF aid the performance? Plot the result.

Session 6 Optimization

The goal of this assignment is to get familiar with methods for solving nonlinear MPC problems. Due to the nonlinearity of the dynamics, the OCP will be nonconvex and therefore, the methods from during the session will no longer be applicable.

The given code (problem.py), defines a few test problems and some data-structures that you can use to build your nonlinear solver. Have a brief look at this file, and read the comments therein to get acquainted with the provided ingredients. You will not be required to make any changes in this file.

A scaffolding for your own implementation is given in template.py. Throughout this assignment, you will fill in the blanks in this file, to finally obtain a solver for nonlinear optimal control problems.

6.1 Building the solver

We will build a Newton-Lagrange method for multiple shooting (i.e., simultaneous approach).

Assignment 6.1

Implement the Newton-Lagrange method (SQP) by completing the auxiliary functions used by newton_lagrange in the provided template. Particularly, the functions lqr_factor_step, lqr_solve_step and update_iterate need to be implemented. The former two functions should implement Algorithms 2 and 3 in the related lecture slides. In update_iterate, you can for now assume that the option linesearch is False.

Run the function test_linear_system and present the output. This function calls your SQP solver on a problem involving a linear system. Is the output what you expect? Why?

<Paste the output of the program here.>

6.2 Nonlinear test case

Now that you have tested your implementation on a linear system, we will move on to a nonlinear example.

Consider the continuous time dynamics

$$\dot{x}_1 = 10(x_2 - x_1)$$

$$\dot{x}_2 = x_1(u - x_3) - x_2.$$

$$\dot{x}_3 = x_1x_2 - 3x_3$$

which are discretized using the foward Euler scheme. This system is already implemented in problem.py under ToyDynamics. The problem that you can pass to your SQP solver is described by ToyProblem.

Assignment 6.2

Construct an initial guess of all zeros for the inputs, the states and the costates. However, for the states, keep in mind that the first entry must be the provided initial state, i.e., problem.x0. Run your solver with this initial state. Give the cost and constraint violation of the last iterate (printed automatically using the Logger class in given.problem). Use the provided animate_iterates function to animate the states and inputs over the iterates and to export a figure of the final solution. Add this plot in your report. Does your solution look plausible?

Assignment 6.3

Simulate the system and use this as an initial guess.

You may find that the solver now fails to converge. Why do you think this happens? **Hint.** Plot the state trajectory you used as an initial guess. Does it look like the solution you just obtained in the previous exercise? Why is this important?

6.3 Adding Line Search

Assignment 6.4

Implement line search and the experiment of Assignment 3. Use

$$\phi(z) = J_N(z) + c ||h(z)||_1$$

as a merit function (see problem.build_cost_and_constraint).

Hint. Make sure to set linesearch=True in the cfg argument of the solver, which is expected to be an instance of NewtonLagrangeCfg.

Now does it converge? Give the output of the method at the final iterate and use this to argue that your method indeed converged to something meaningful. Do you notice any difference with respect to the solution in Assignment 2? How do you explain this?

Assignment 6.5

Run it on the parking example. Use initial condition all zeros (except $x_0 = problem.x0$). Does it converge? Why?

Hint. During the Newton-Lagrange iterations, check whether the Hessian of the QP cost is positive definite.

6.4 Adding Regularization

Assignment 6.6

Implement regularization in the function regularize. This method should check whether the QP is convex. If not, it should add λI to the Hessian \overline{Q} of the cost function, where λ is (approximately) the smallest constant such that $\overline{Q} + \lambda I$ is positive definite. To do so set $\lambda = 10^{-6}$ and double it every time the result is not positive definite.

With this modification, run the method again on the Parking problem. Does it converge? **Hint.** Make sure to set cfg.regularize to True!