DA-IICT, B.Tech, Sem III

Autumn2017

- 1. Which of the following can be an electrostatic field?
 - (a) *x***i**,

- **(b)** $y\hat{i}$, **(c)** $(1/r)\hat{\theta}$, **(d)** $(1/s)\hat{\phi}$
- 2. A sphere of radius a is maintained at a uniform potential V_0 . Find the potential both, inside and outside the sphere.
- 3. A very long cylinder of radius a has a uniform surface charge of density σ . Find the electric potential both inside and outside the cylinder by solving the Laplace's Equation in the chargeless regions.
- 4. Two infinitely long wires running parallel to the x axis carry uniform charge densities $+\lambda$ and $-\lambda$.
 - (a) Find the potential at any point using the origin as the reference.
 - (b) Show that the equipotential surfaces are circular cylinders. Locate the axis and radius of the cylinder corresponding to a given potential V_0 .
- 5. An infinite plane has a uniform charge with surface density σ . Solve the Laplace's Eqn on the two sides of the plane and evaluate the electric field using the boundary conditions on the fields at the interface.
- 6. A chargeless region is bounded by two conducting surfaces.
 - (a) If conductor 1 is maintained at potential V_1 and 2 is grounded the potential in the region is given by the function $\Phi_1(x,y,z)$. If conductor 2 is maintained at potential V_2 and 1 is grounded the potential in the region is given by the function $\Phi_2(x,y,z)$. Now if conductor 1 is maintained at potential V_1 and conductor 2 is maintained at potential V_2 prove that the potential in the region will be given by the function $\Phi = \Phi_1 + \Phi_2$.

(b) If a charge Q_1 is placed on conductor 1 while 2 is chargeless the potential in the region is given by the function $\Phi_1(x,y,z)$. If a charge Q_2 is placed on conductor 2 while 1 is chargeless the potential in the region is given by the function $\Phi_2(x,y,z)$.

Now if charge Q_1 is placed on conductor 1 and charge Q_2 is placed on 2 prove that the potential in the region will be given by the function $\Phi = \Phi_1 + \Phi_2$.

This result can be extended to a region bounded by any number of conductors.