Suppose $A\subseteq \mathscr{P}(A)$. Prove that $\mathscr{P}(A)\subseteq \mathscr{P}(\mathscr{P}(A))$ Scratch Work 3 Assume $A \subseteq \mathcal{P}(A)$ Givens Goal $A \subseteq \mathcal{P}(A)$ $\mathscr{P}(A)\subseteq\mathscr{P}(\mathscr{P}(A))$ Apply the definition of a subset Givens Goal

Book: How to Prove It: A Structured Approach 3rd Edition

 $\forall x (x \in \mathcal{P}(A) \implies x \in \mathcal{P}(\mathcal{P}(A)))$

 Goal

 $x \in \mathcal{P}(A) \implies x \in \mathcal{P}(\mathcal{P}(A))$

 Goal

 $\forall y(y\in x\implies y\in \mathscr{P}(A))$

Goal

 $y \in x \implies y \in \mathscr{P}(A)$

Goal

 $\forall z(z\in y\implies z\in A)$

Goal

 $z \in y \implies z \in A$

 Goal

 $z \in A$

 Goal

 $z\in A$

 Goal

 $z\in A$

Goal

 $z \in A$

Goal

 $z\in A$

 Goal

 $z\in A$

Goal

 $z\in A$

Goal

 $z \in A$

arbitrary element of $\mathscr{P}(A)$ and $x \in \mathscr{P}(\mathscr{P}(A))$, it follows that $\mathscr{P}(A) \subseteq \mathscr{P}(\mathscr{P}(A))$.

Assume $A \subseteq \mathcal{P}(A)$. Let x be an arbitrary element. Assume $x \in \mathcal{P}(A)$. Let y be an arbitrary element of x. Assume $y \in x$. Let z be an arbitrary element of y. Assume $z \in y$. Since $x \in \mathcal{P}(A)$, $x \subseteq A$. Since $y \in x$, $y \in A$. Since $y \in \mathcal{P}(A)$, $y \subseteq A$. Since $z \in y$, $z \in A$. Since z is an arbitrary element of y and $z \in A$, $y \subseteq A$ and $y \in \mathcal{P}(A)$. Since y is an arbitrary element of x and $y \in \mathcal{P}(A)$, $x \subseteq \mathcal{P}(A)$ and $x \in \mathcal{P}(\mathcal{P}(A))$. Since x is an

1

 ${\rm Givens}$

 $A \subseteq \mathscr{P}(A)$ $\forall k (k \in x \implies k \in A)$

 $y \in x$ $\mathbf{z} \in y$

Givens

 $A \subseteq \mathcal{P}(A)$ $\forall k (k \in x \implies k \in A)$ $y \in x \implies y \in A$

> $y \in x$ $z \in y$

Givens

 $A \subseteq \mathcal{P}(A)$ $\forall k (k \in x \implies k \in A)$

> $y \in A$ $y \in x$ $\mathbf{z} \in y$

Givens $\forall m (m \in A \implies m \in \mathcal{P}(A))$ $\forall k (k \in x \implies k \in A)$ $y\in A$

 $\mathbf{y} \in x$ $\mathbf{z} \in y$

Givens $\forall m (m \in A \implies m \in \mathscr{P}(A))$ $y \in A \implies y \in \mathcal{P}(A)$ $\forall k (k \in x \implies k \in A)$

 $y \in A$ $y \in x$ $\mathbf{z} \in y$

Givens

 $\forall k (k \in x \implies k \in A)$ $\forall m (m \in A \implies m \in \mathcal{P}(A))$ $y \in \mathcal{P}(A)$

 $y \in A$ $\mathbf{y} \in x$ $\mathbf{z} \in \underline{y}$

Givens $\forall k (k \in x \implies k \in A)$

 $\mathbf{y}\subseteq A$

 $y \in A$ $\mathbf{y} \in x$ $z \in y$

Givens $\forall k (k \in x \implies k \in A)$

 $\forall n (n \in y \implies n \in A)$

 $y \in A$ $\mathbf{y} \in x$ $\mathbf{z} \in y$

Givens

 $\forall k (k \in x \implies k \in A)$

 $\forall n (n \in y \implies n \in A)$ $z \in y \implies z \in A$

 $y \in A$ $\mathbf{y} \in x$ $\mathbf{z} \in y$

Givens

 $\forall k (k \in x \implies k \in A)$

 $\forall n (n \in y \implies n \in A)$ $z \in A$

> $y \in A$ $\mathbf{y} \in x$ $\mathbf{z} \in y$

Final Solution

Suppose $A\subseteq \mathscr{P}(A)$. Prove that $\mathscr{P}(A)\subseteq \mathscr{P}(\mathscr{P}(A))$

4.1

4.2

Task

Solution

Goal

 $y \in \mathcal{P}(A)$

Goal

 $y \subseteq A$

 Goal

 $x \in \mathcal{P}(\mathcal{P}(A))$

 Goal

 $x\subseteq \mathscr{P}(A)$

Iaroslav Baranov (kciray8@gmail.com)

August 30, 2020

1

 $\mathbf{2}$

Source

Exercise: 3.3.4

Task

ISBN-13: 978-1108439534

 $A\subseteq \mathscr{P}(A)$

Let x be an arbitrary element

 ${\rm Givens}$ $A \subseteq \mathcal{P}(A)$ Assume $x \in \mathcal{P}(A)$ ${\rm Givens}$

 $x \in \mathcal{P}(A)$ By the definition of a power set ${\rm Givens}$ $A \subseteq \mathscr{P}(A)$ $x \in \mathcal{P}(A)$ Apply the definition of a subset ${\rm Givens}$ $A \subseteq \mathscr{P}(A)$ $x \in \mathcal{P}(A)$

 $A \subseteq \mathscr{P}(A)$ Let y be an arbitrary element of \mathbf{x} Givens $A \subseteq \mathcal{P}(A)$ $x \in \mathscr{P}(A)$

Assume $y \in x$ By the definition of a power set

Givens

 $A \subseteq \mathscr{P}(A)$

 $x \in \mathcal{P}(A)$ $y \in x$

 ${\rm Givens}$

 $A \subseteq \mathscr{P}(A)$ $x \in \mathcal{P}(A)$

 $y \in x$

 ${\rm Givens}$

 $A \subseteq \mathscr{P}(A)$ $x \in \mathcal{P}(A)$

 $y \in x$

Givens

 $A \subseteq \mathscr{P}(A)$ $x \in \mathcal{P}(A)$

 $y \in x$

Givens $A \subseteq \mathscr{P}(A)$ $x \in \mathcal{P}(A)$

> $y \in x$ $\mathbf{z} \in y$

 ${\rm Givens}$

 $A \subseteq \mathscr{P}(A)$ $\mathbf{x}\subseteq A$

 $\mathbf{y} \in x$ $\mathbf{z} \in y$

By the definition of a subset

Let z be an arbitrary element of yAssume $z \in y$ By the definition of a power set

By the definition of a subset Universal instantiation (k = y)Modus Ponens $(y \in x)$

By the definition of a subset $(A\subseteq \mathcal{P}(A)$) Universal instantiation (m = y)Modus Ponens ($y \in A$) By the definition of a power set

 $\forall m(m \in A \implies m \in \mathcal{P}(A))$ By the definition of a subset $\forall m(m \in A \implies m \in \mathscr{P}(A))$ Universal Instantiation (n = z) $\forall m(m \in A \implies m \in \mathcal{P}(A))$ Modus Ponens ($z \in y$) $\forall m(m\in A\implies m\in \mathscr{P}(A))$ Now the goal follows from the givens 4