Universidad de San Carlos de Guatemala Centro Universitario de Occidente División de Ciencias de la Ingeniería Curso: Concreto Armado 1 Ing. César Grijalva

PROYECTO CONCRETO ARMADO 1

Introducción

En el presente documento se evaluara el diseño, planificación y construcción tanto de losa y viga, de una residencia en la zona 2 del municipio de San Juan Ostuncalco, Quetzaltenango. En el contexto general del diseño de una losa, reviste una importancia especial en la seguridad, estabilidad y funcionalidad de la vivienda tomando en consideración características geográficas, y normativas específicas del ACI 318-19

El sistema de vigas y losas de una casa constituye el esqueleto estructural que sostiene todo el peso y las fuerzas que actúan sobre la edificación. Es esencial entender que este sistema no solo se encarga de soportar las cargas verticales, como el peso del techo, los pisos y los muebles, sino que también debe ser capaz de resistir las fuerzas horizontales que pueden ejercerse sobre la estructura.

Las cargas verticales, provenientes del propio peso de la construcción y de los elementos que en ella se encuentran, son una consideración básica en cualquier diseño estructural. Sin embargo, las cargas horizontales, como las ocasionadas por vientos fuertes o movimientos sísmicos, representan desafíos adicionales que deben ser tenidos en cuenta en el diseño.

Objetivos

Desarrollar un diseño estructural óptimo para el sistema de vigas y losas de una vivienda, que garantice su estabilidad, resistencia y durabilidad ante cargas verticales y horizontales, incluyendo vientos fuertes. y movimientos sísmicos.

Objetivos Específicos:

- Dimensionar y distribuir de manera eficiente las vigas y lasas en función de las cargas previstas, utilizando métodos de cálculo y análisis estructurales adecuados.
- Seleccione materiales estructurales adecuados que sean capaces de soportar las cargas verticales y horizontales, así como resistir la corrosión y otros efectos ambientales presentes en la región.
- Incorporar técnicas de refuerzo sísmico y diseño antisísmico en el sistema de vigas y losas, con el fin de mejorar su capacidad para resistir movimientos sísmicos y garantizar la seguridad de los ocupantes.

DISEÑO DE LOSA 1

Para datos Si f'c = 3000 psi y fy = °30

Dimensiones para Diseño de Losa en un Sentido

Α

-----ESTABLECIENDO CARGAS-----

Definiendo Cargas Muertas y Cargas Vivas

Cargas Muertas:

Según **el ASCE/SEI 7-16, ASCE (American Society of Civil Engineers)** las cargas muertas consisten en el peso de todos los materiales de construcción incorporados al edificio incluidos paredes, pisos, techos, escaleras, tabiques etc. Por lo tanto, se definirá la siguiente tabla:

Cargas Muc	ertas
Peso Propio, acabados sobre losa	180kg/m2
Total	180kg/m2

Carga Viva:

Según el ACI318-19 los valores mas usados para carga viva son

Techo Innaccesible	100kg/m2
	5
	150kg/m2 250kg/m2

REALIZACIÓN DE LOSA CON DATOS 1:

F'c = 3000PSI = 210kg/cm2

Fc = °30 = 2100kg/cm2

CARGA VIVA (L) = 250kg/m²

CARGA MUERTA (D) =180kg/m2

PESO CONCRETO Wc = 2400kg/m3

----- SENTIDO DEL TRABAJO Y ESPESOR DE LOSAS-----

Pre-dimensionamiento de losas.

Espesor de losa según ACI318-19, pág. 94.

Tabla 7.3.1.1 — Espesor mínimo de losas en una dirección macizas no preesforzadas

Condición de apoyo	h mínimo ⁽¹⁾
Simplemente apoyadas	ℓ/20
Un extremo continuo	ℓ/24
ambos extremos continuos	€/28
En voladizo	£/10

 $^{^{(1)}}$ Relaciones aplicables para concreto de peso normal y $\,f_y\,$ = 420 MPa.

Losa	A corta(m)	B larga(m)	Sentido R(A/B)	Definir sentido	Espesor de l	osa(m)
ı	3.1	6.5	• • •	1 sentido	3.1/24	0.129
Ш	3.5	7.1	0.49	1 sentido	3.5/28	0.125
III	1.2	7.1	0.17	1 sentido	1.2/10	0.12
					Espesor (m)	0.13
					-	

Se elige el mayor que es 0.129 y se redondea a **0.13m**

Por lo tanto la losa presentada es una losa de **1 sentido**, este tipo de losas se caracterizan porque trasladan las cargas en una sola dirección

------INTEGRACIÓN DE CARGAS------

Wlosa = tlosa*Wconc

CM= Wlosa+Ws/c

Se diseña sobre una

Base unitaria:

B=1m=100cm

	Wlosa	Espesor Losa 0.13		312 kg/m2
Carga muerta	Ws/c	0.13	CM*1m	180 kg/m2 492 kg/m
Carga viva			CV CV*1M	250 kg/m2 250 kg/m

Según AGIES: 8.3 Combinaciones de carga - Método de Resistencia

8.3.1 General — Se utilizarán las combinaciones de carga de esta sección para establecer las solicitaciones mayoradas que controlen el diseño por resistencia requerido en Sección 8.2.1. No aplica a dimensionamiento de cimentaciones.

8.3.2 — Carga de gravedad

1.4
$$M$$
 (CR1)
1.2 $M + 1.6 V + 0.5 (V_t o bien P_L o bien A_R)$ (CR2)

$$1.2 M + V + 1.6 (V_t o bien P_L o bien A_R)$$
 (CR3)

$W = W_U = CU = 1.2CMI + 1.6CVI$

CR1 Carga Ultima	688.8 kg/cm
CR2 Carga muerta Lineal	990.4 kg/cm
CR3 Carga viva Lineal	840.4 kg/cm

Análisis Estructural de losas en una dirección por coeficientes:

Según el ACI318-19: Debido a las cargas gravitatorias deben calcularse de acuerdo a siguiente la tabla :

Tabla 6.5.2 — Momentos aproximados para vigas continuas no preesforzadas y losas en una dirección

Momento	Ubicación	Condición	M_{n}
	Vanos extremos	Extremo discontinuo monolítico con el apoyo	$w_n \ell_n^2 / 14$
Positivo	vanos extremos	El extremo discontinuo no está restringido	$w_n \ell_n^2 / 11$
	Vanos interiores	Todos	$w_{\mu} \ell_{\pi}^{2} / 16$
	Cara interior de los apoyos	Miembros construidos monolíticamente con viga dintel de apoyo	$w_n \ell_n^2/24$
	exteriores	Miembros construidos monolíticamente con columna de apoyo	$w_u \ell_n^2 / 16$
	Cara exterior del primer	Dos vanos	$w_{\mu}\ell_{\pi}^{2}/9$
		Más de dos vanos	$w_n \ell_n^2 / 10$
	Las demás caras de apoyos	Todas	$w_n \ell_n^2 / 11$
	Cara de todos los apoyos que cumplan (a) o (b)	(a) Losas con luces que no excedan de 3 m (b) Vigas en las cuales la relación entre la suma de las rigideces de las columnas y la rigidez de la viga exceda de 8 en cada extremo del yano	$w_{\rm w}\ell_{\rm H}^2/12$

 $^{^{(1)}}$ Para calcular los momentos negativos, ℓ_n debe ser el promedio de las luces de los vanos adyacentes.

Representación de sección y formula de momento en cada tramo:

• Carga Ultima: W = 990.4

• Longitud: L(Dependiendo de cada tramo)

Diagramas de momentos No Balanceados

Balance de Momentos Negativos

Losa I y II:

Momento Pequeño Mb: 1057.53Momento Grande Mg: 1102.95

Evaluando Casos:

- Si Mb ≥ 0.8*Mg
- Si 1057.53 ≥ 882.36

Entonces:

Momento Balanceado

- Mb= (Mp+Mg)/2
- Mb=(1057.53+1102.95)/2
- Mb =1080.24 kg-m

Losa II y III:

- Momento voladizo Mv: 713.09
- Momento Losa Mlosa: 1102.95

Evaluando Casos:

- Si Mv < Mlosa
- Si 713.09 < 1102.95

Entonces:

Momento Balanceado

- Mb = (Mlosa + Mv)/2
- Mb = (1102.95+713.09)/2
- Mb = 908.02

Balance de Momentos Positivos

Momento(+) corregido= M(+)anterior +
$$\frac{(Mg1-Mb1)+(Mg2-Mb2)}{2}$$

Momento(+) corregido= 758.28 +
$$\frac{(1102.95-1080.24)+(1102.95-908.02)}{2}$$

Momento(+) Corregido = 867.09kg-m

Diagrama de Momentos Balanceados

------ CÁLCULO DE REFUERZO------

- Peralte (d)
 - \circ d= t-rec-0.95/2
 - o d=0.13m-2.5m-0.95/2
 - o d=10.025
- Separación Máxima
 - o **Smax:** 3*Espesor Losa o 45cm
 - 39cm
 - 45cm
 - Se selecciona el menor=**39cm**

Datos						
f'c	210.00 kg/cm ²	b	100.00 cm			
fy	2100.00 kg/cm ²	d	10.03 cm			
Asmin	2.34 cm ²	Varilla propuesta	#3			
Smax	39.00 cm	Av	0.71 cm ²			

Losa	Signo	Momento con el extremo	As(cm2)	asmin	As a colocar	Separacion	smax	S a colocar	Armado	Armado Final
	•	396.57	2.12 cm ²		2.34 cm ²	30.45 cm		30.45 cm	#3@0.3	#3@0.12
I	+	679.84	3.67 cm ²		3.67 cm ²	19.43 cm		19.43 cm	#3@0.19	#3@0.12
LvII		1080.24	5.91 cm ²	2.34 cm ²	5.91 cm ²	12.07 cm	39.00 cm	12.07 cm	#3@0.12	#3@0.12
lyll	+	867.09	4.71 cm ²		4.71 cm ²	15.14 cm		15.14 cm	#3@0.15	#3@0.12
y	-	908.02	4.94 cm ²		4.94 cm ²	14.44 cm		14.44 cm	#3@0.14	#3@0.12

Armado General

#3@0.12

ESQUEMA DE LOSA 1, EN UN SENTIDO

DISEÑO DE LOSA 2

Para datos Si f'c = 4000 psi y fy = °40

DEBIDO A QUE LOS DATOS SON LOS MISMOS EXEPTUANDO

---f'c y fy---

SE OMITE EL PROCEDIMIENTO PREVIO HASTA EL CALCULO DE REFUERZO

REALIZACIÓN DE LOSA CON DATOS 2:

F'c = 4000PSI = 281kg/cm2

Fc = °40 = 2810kg/cm2

CARGA VIVA (L) = 250kg/m^2

CARGA MUERTA (D) =180kg/m2

PESO CONCRETO Wc = 2400kg/m3

Dimensiones para Diseño de Losa en un Sentido

------ CÁLCULO DE REFUERZO------

- Peralte (d)
 - o d= t-rec-0.95/2
 - o d=0.13m-2.5m-0.95/2
 - o d=10.025
- Separación Máxima
 - o **Smax:** 3*Espesor Losa o 45cm
 - 39cm
 - 45cm
 - Se selecciona el menor=**39cm**

Datos						
f'c	281.00 kg/cm ²	b	100.00 cm			
fy	2810.00 kg/cm ²	d	10.03 cm			
Asmin	2.34 cm ²	Varilla propuesta	#3			
Smax	39.00 cm	Av	0.71 cm ²			

Losa	Signo	Momento con el extremo	As(cm2)	asmin	As a colocar	Separacion	smax	S a colocar	Armado	Armado Final
	-	396.57	1.58 cm ²		2.34 cm ²	30.45 cm		30.45 cm	#3@0.3	#3@0.16
I	+	679.84	2.73 cm ²		2.73 cm ²	26.15 cm		26.15 cm	#3@0.26	#3@0.16
LvII	-	1080.24	4.37 cm ²	2.34 cm ²	4.37 cm ²	16.29 cm	39.00 cm	16.29 cm	#3@0.16	#3@0.16
lyll	+	867.09	3.49 cm ²		3.49 cm ²	20.41 cm		20.41 cm	#3@0.2	#3@0.16
II y II	-	908.02	3.66 cm ²		3.66 cm ²	19.47 cm		19.47 cm	#3@0.19	#3@0.16

Armado General # 3 @ 0.16

ESQUEMA DE LOSA 2, EN UN SENTIDO

...

DISEÑO DE VIGA 1

Para datos Si f'c = 3000 psi y fy = °30

Elementos de carga y medida para diseño de Viga

A partir de la distribución óptima de cargas y medidas en la losa previamente realizada, se determina el área tributaria requerida para que la viga reciba la carga adecuada.

Ya que la dirección principal de distribución de cargas de la Losa es de un sentido, el área tributaria sobre ella se establece de esta manera:

Estableciendo Medidas:

Magnitud de carga (carga ultima previamente establecida) = **990.4kg/m2**

Ancho tributario = 3.3m

- Carga distribuida= 990.40*3.3
- Carga distribuida= 3268.82kg/m

Carga distribuida

Momentos Establecidos

M-=3268.82*
$$\frac{6.5^2}{12}$$
 = 8238.89kg-m

M+=3268.22*
$$\frac{6.5^2}{24}$$
= 4119.45 kg-m

CALCULO DE VIGA

Mu:	823889 kg-cm	
Mu:	823889 kg-cm	
Mu:	411945 kg-cm	
b	25 cm	
d	30 cm	
h	35 cm	
rec	5 cm	
f'c	3000 PSI	210 kg/cm2
fy	30000 PSI	2100 kg/cm2
Φ	0.9	

	ACERO MINIMO	
4.140393356	5	a) $\frac{0.80\sqrt{f_c'}}{F}b_w d$
ASMIN=	4 cm2	14 ,
		b) $\frac{1}{F_y} b_w d$

ACERO MAXIMO

Asmax 36.3019971

	ACERO POR FLEXION:			
As5000kg-m	Asflexión	110.7755468	=	16.7244532 cm2
As4000kg-m	Asflexion	110.7755468	=	16.7244532 cm2
As6000kg-m	Asflexion	119.7654546	=	7.73454543 cm2

CHEQUEO

Asmin

4

≤

Asflexion

16.7216.727.73

≤

Asmax

36.3019971

ARMADO DE CAMAS DE ACERO DE VIGAS

AsCamaSuperior (CS)

2 Varillas

Asmin=

4 cm2

1/3*As-=

5.57 cm2

AsCamaInferior (CI)

2 Varillas

Asmin=

4 cm2

1/2*As-=

8.36 cm2

1/2*As+ =

3.87 cm2

DISEÑO DE VIGA 2

Para datos Si f'c = 4000 psi y fy = °40

DEBIDO A QUE LOS DATOS SON LOS MISMOS EXEPTUANDO ----f´c y fy---

SE OMITE EL PROCEDIMIENTO PREVIO HASTA EL CALCULO DE VIGA

CALCULO DE VIGA

Mu:	823889 kg-cm	
Mu:	823889 kg-cm	
Mu:	411945 kg-cm	
b	25 cm	
d	30 cm	
h	35 cm	
rec	5 cm	
f´c	4000 PSI	281 kg/cm2
fy	40000 PSI	2810 kg/cm2
Φ	0.9	

ACERO MINIMO

3.579299918 3.7366548

ASMIN= 4 cm2

ACERO MAXIMO

Asmax 33.4141071

	ACERO PO	ACERO POR FLEXION:		
As5000kg-m	Asflexión	115.5140028	=	11.9859972 cm2
As4000kg-m	Asflexion	115.5140028	=	11.9859972 cm2
As6000kg-m	Asflexion	121.8170854	=	5.68291464 cm2

CHEQUEO

Asmin

4

≤

Asflexion

12.00 12.00

5.68

≤

Asmax

33.4141071

ARMADO DE CAMAS DE ACERO DE VIGAS

AsCamaSuperior (CS)

2 Varillas

Asmin=

4 cm2

1/3*As-=

4.00 cm2

AsCamaInferior (CI)

2 Varillas

Asmin=

4 cm2

1/2*As-=

6.00 cm2

1/2*As+ =

2.84 cm2

Conclusión

Por lo tanto, el presente documento enuncia y desarrolla de manera integral el diseño, planificación y construcción de los elementos estructurales clave, como las losas y vigas, en una residencia ubicada en la zona 2 del municipio de San Juan Ostuncalco, Quetzaltenango. Se ha destacado la importancia crucial de estos elementos en la seguridad, estabilidad y funcionalidad de la vivienda, considerando las características geográficas específicas de la región y las normativas del ACI 318-19.

El sistema de vigas y losas, como esqueleto estructural, desempeña un papel fundamental al soportar tanto las cargas verticales como las horizontales que actúan sobre la edificación. Es esencial comprender que estas estructuras no solo sostienen el peso del techo, los pisos y los muebles, sino que también deben ser capaces de resistir fuerzas externas como vientos intensos o movimientos sísmicos.

Bibliografía

- (S/f). Agies.org. Recuperado el 2 de mayo de 2024, de https://www.agies.org/wp-content/uploads/2020/08/15072020-NSE-2-2018-Demandas-estructurales-y-condiciones-de-carga.pdf
- Neville, G. B. (2010). Concrete manual IBC and Aci318-19: Concrete quality and field practices. ICC Publications.
- Mccormac. (1983). Diseno De Concreto Reforzado. Longman.
- Fratelli, M. G. (1999). Diseo Estructural En Concreto Armado. Autores Editores.

Anexos

Link Video:

https://youtu.be/uU-keC2tpl8?si=hU-cklJKiNiuLUID