#### Análisis Dinámico del Rattleback

Laura Corzo<sup>1</sup> Deivy Olago<sup>2</sup> Santiago Vergara<sup>3</sup>

<sup>1</sup>Retos

February 27, 2025

#### Antecedentes

El rattleback no es homogéneo en su distribución de masa.



Figure: Sección transversal, P punto de contacto

#### Antecedentes

0

$$I = \begin{bmatrix} I_{11} & I_{12} & I_{13} \\ I_{21} & I_{22} & I_{23} \\ I_{31} & I_{32} & I_{33} \end{bmatrix}$$

• Para una elipsoide homogénea, los elementos fuera de la diagonal se anulan. Si estos valores no son cero, significa que hay una asimetría en la distribución de masa.

# Objetivos

**Objetivo General:** Estudiar la influencia de diferentes condiciones iniciales en la dinámica del rattleback mediante una simulación 3D, con el fin de determinar los factores que producen el acoplamiento entre sus movimientos.

- Analizar la asimetría en la distribución de masa del rattleback mediante el cálculo de su tensor de inercia y la relación entre sus ejes principales y su geometría.
- Derivar las ecuaciones de movimiento del rattleback en rodadura sin deslizamiento, considerando solo la interacción con la superficie a través de la fuerza normal y la gravedad, para explicar la inversión espontánea del giro.
- Identificar las condiciones geométricas y dinámicas que favorecen la inversión del giro, evaluando la influencia de la orientación inicial y la distribución de masa en la generación de torque.
- Desarrollar simulaciones numéricas del rattleback con un modelo poligonal 3D para estudiar su evolución y la inversión del giro, comparando los resultados con predicciones analíticas.

## Metodología

- Corroborar la asimetría del sistema
- ② Encontrar la expresión matemática del tensor de inercia
- Proponer un nuevo sistema de coordenadas alineado con los momentos principales de inerciao.
- Calcular las ecuaciones de movimiento
- Identificar términos asociados a pequeñas oscilaciones, bajas energías y contacto con la superficie
- Modelar el rattleback en 3D mediante un sistema poligonal
- Simular computacionalmente el movimiento del rattleback
- Oceanies
  Comparar los resultados teóricos y computacionales

### Resultados esperados

- Generación de Torque Preferencial: Demostrar que las oscilaciones longitudinales inducen un torque que favorece la rotación en un sentido específico, debido al ángulo casi constante entre el brazo de fuerza y la fuerza de reacción.
- Reversión Espontánea del Giro: Identificar un rango de condiciones iniciales de baja energía que conducen a una inversión del giro debido a la interacción entre las oscilaciones transversales y la dinámica del cuerpo rígido.
- Confirmación de la Naturaleza Cuasi-Periódica: Observar que, bajo ciertas condiciones iniciales de baja energía, el rattleback exhibe un comportamiento cuasi-periódico a largo plazo, alternando entre fases de oscilación y reversión del giro.