1. Show that the converse of p4 is not true. That is, provide a counterexample of an asymmetric binary relation R with elements x and y such that $\neg xRy$ does not imply yRx.

The binary relation R is asymmetric if $xRy \Rightarrow yRx$ for all x, y.

Counterexample. Let R be the binary relation "is married to". Suppose $\neg xRy$; that is, x is not married to y. It is well known that this does not imply y is married to x. Thus, $\neg xRy$ does not imply yRx.

- 2. Consider the set of all triples where each component is a real number; that is, \mathbb{R}^3 . Let $x = (x_1, x_2, x_3)$ and $y = (y_1, y_2, y_3)$ and define the weak preference $x \leq^* y$ if $x_i \leq y_i$ for at least two out of the three components, i = 1, 2, 3.
 - (a) Show \leq^* is connected.

The binary relation R is connected if xRy or yRx for all x, y.

Proof. Let the binary relation \leq^* be defined for $x, y \in \mathbb{R}^3$ such that $x \leq^* y$ if $x_i \leq y_i$ for at least two out of the three components i = 1, 2, 3. The binary relation \leq on the real numbers is connected. Thus, $x_i \leq y_i$ or $y_i \leq x_i$ for i = 1, 2, 3. We now proceed with two cases:

- i. Suppose $x \preceq^* y$. Clearly, $x \preceq^* y$ or $y \preceq^* x$ is true.
- ii. Suppose $\neg(x \preccurlyeq^* y)$. That is, $x_i \leq y_i$ is not true for two out of the three components. Since \leq is connected, the components for which $x_i \leq y_i$ is not true instead satisfy $y_i \leq x_i$. Thus, for two out of the three components $y_i \leq x_i$. Therefore, $y \preccurlyeq^* x$.

The binary relation \leq^* is connected.

(b) Show \leq^* is not transitive by providing a counterexample.

The binary relation R is transitive if $(xRy \land yRz) \Rightarrow xRz$ for all x, y, z. Counterexample. Let x = (1, 2, 3), y = (2, 2, 1), and z = (2, 0, 2). It is clear that $x \leq^* y$ and $y \leq^* z$. Furthermore, it is clear that $\neg x \leq^* z$. Thus, \leq^* is not transitive.

- (c) Define the strict preference $x \prec^* y$ by $x \preccurlyeq^* y$ but not $y \preccurlyeq^* x$.
 - i. Explain why it is equivalent to say $x \prec^* y$ if $x_i < y_i$ for at least two out of the three components, i = 1, 2, 3.

If two of the three components satisfy $x_i \leq y_i$ then those same two may satisfy $y_i \leq x_i$ if the two components are equal. The strict preference \prec^* is stronger than \preceq^* in the same way that < is stronger than \leq . Thus, if we say $x \prec^* y$ then $x \preceq^* y$ is implied.

ii. Prove or give a counterexample. \prec^* is asymmetric.

The binary relation R is asymmetric if $xRy \Rightarrow \neg yRx$ for all x, y.

Proof. Let \prec^* be the binary relation defined as $x \preccurlyeq^* y \land \neg y \preccurlyeq^* x$. We proceed with a proof by contradiction. Suppose $x \prec^* y$; that is, $x_i < y_i$ for at least two i where i = 1, 2, 3. Further suppose $y \prec^* x$; that is, $y_i < x_i$ for at least two i. Thus two elements of $x_i < y_i$ and two elements of $y_i < x_i$. Since there are three elements in x and y each there must be at least one element pair, x_j and y_j , that satisfies $x_j < y_j$ and $y_j < x_j$. This is, clearly, a contradiction. There are no real numbers x_j and y_j that satisfy this condition. Thus, $\neg y \prec^* x$. Therefore, $x \prec^* y \Rightarrow \neg y \prec^* x$. That is, \prec^* is asymmetric.

iii. Prove or give a counterexample. \prec^* is negatively transitive. The binary relation R is negatively transitive if $\neg xRy \land \neg yRz \Rightarrow \neg xRz$

for all x, y.

Proof. $\neg x \prec^* y$ means $x_i \geq y_i$ for at least two i. This is equivalently $y \preccurlyeq^* x$. Similarly, $\neg y \prec^* z$ means $y_i \geq z_i$ for at least two i. This is equivalently $z \preccurlyeq^* y$. Thus negative transitivity of the strict preference can be expressed as transitivity of the weak preference. As proven in 2b, \preccurlyeq^* is not transitive. Thus, \prec^* is not negatively transitive.