Exercise 4

Name: Vivi Student ID: 24S153073 Grade:

Problem 1 Score: _____. Fréchet mean on hemisphere

Consider the (d-1)-dimensional hemisphere

$$\mathcal{M} = \{x = (x^{(1)}, \dots, x^{(d)}) \in \mathbb{R}^d : ||x|| = 1, x^{(d)} > 0\},\$$

viewed as a Riemannian submanifold of \mathbb{R}^d (with standard Euclidean inner product). The Riemannian distance between two points $x, y \in \mathcal{M}$ is given by

$$d: \mathcal{M} \times \mathcal{M} \to \mathbb{R}, \quad d(x, y) = \arccos(x^{\top} y).$$

Let $x_1, \dots, x_n \in \mathcal{M}$, and define

$$f: \mathcal{M} \to \mathbb{R}, \quad f(x) = \frac{1}{n} \sum_{i=1}^{n} \frac{1}{2} d(x, x_i)^2.$$

A minimizer of f can be interpreted as an intrinsic Fréchet mean of the points x_1, \dots, x_n on the hemisphere.

(1) Show that $f: \mathcal{M} \to \mathbb{R}$ is smooth. using the fllowing fact. Define the function

$$g: (-1,1] \to \mathbb{R}, \quad g(t) = \frac{1}{2}\arccos(t)^2.$$

There is a smooth function $\bar{g}:(-1,2)\to\mathbb{R}$ such that $\bar{g}=g$ for all $t\in(-1,1]$, and $\bar{g}'(t)=-\frac{\arccos(t)}{\sqrt{1-t^2}}$ for all $t \in (-1,1)$ and $\bar{g}'(1) = -1$.

(2) Given $x \in \mathcal{M}$, give an expression for the Riemannian gradient of f at x.

Solution: (1) To show that $f: \mathcal{M} \to \mathbb{R}$ which is a sum of functions is smooth, it suffices to show that the function

$$h: \mathcal{M} \times \mathcal{M} \to \mathbb{R}, \quad h(x,y) = \frac{1}{2}d(x,y)^2 = \frac{1}{2}\arccos(x^\top y)^2 = g(x^\top y)$$

is smooth. To do so, we build a smooth extension \bar{h} of h. As $\|x\| = \|y\| = 1$ and $x^{(d)}, y^{(d)} > 0$, we have $x^\top y = \sum_{i=1}^d x^{(i)} y^{(i)} = \sum_{i=1}^{d-1} x^{(i)} y^{(i)} + x^{(d)} y^{(d)} \in (-1,1]$. Thus we can have \bar{h} on $d^{-1}(-1,2)$ by defining $\bar{h}(x,y) = \bar{g}(x^\top y)$ for all $x,y \in \text{some neighborhood of } \mathcal{M}$. Then \bar{h} is smooth and therefore h is smooth, which implies that f is smooth.

(2) Consider the following function:

$$h: \mathcal{M} \to \mathbb{R}, \quad h(x) = g(x^{\top}y)$$

Given $x \in \mathcal{M}$, we compute the Riemannian gradient of h at first:

$$\begin{split} gradh(x) &= Proj(grad\bar{h}(x)) \\ &= (I - xx^\top)grad\bar{h}(x) \\ &= (I - xx^\top)y\bar{g}'(x^\top y) \\ &= -(I - xx^\top)y\frac{\arccos(x^\top y)}{\sqrt{1 - (x^\top y)^2}} \\ &= (x\cos(d(x,y)) - y)\frac{d(x,y)}{\sin(d(x,y))}. \end{split}$$

Therefore, the Riemannian gradient of f at x is

$$gradf(x) = \frac{1}{n} \sum_{i=1}^{n} gradh(x_i)$$
$$= \frac{1}{n} \sum_{i=1}^{n} (x \cos(d(x, x_i)) - x_i) \frac{d(x, x_i)}{\sin(d(x, x_i))}.$$

Problem 2 Score: _____. Product of spheres

Let $\mathcal{M} = \mathbb{S}^{m-1} \times \mathbb{S}^{n-1}$ which is an embedded submanifold of $\mathcal{E} = \mathbb{R}^m \times \mathbb{R}^n$. Endow $\mathbb{R}^m \times \mathbb{R}^n \cong \mathbb{R}^{m+n}$ with its usual Euclidean structure:

$$\langle (u,v),(u,v)\rangle = \begin{pmatrix} u^\top & v^\top \end{pmatrix} \begin{pmatrix} u \\ v \end{pmatrix} = u^\top u + v^\top v$$

for $(u,v) \in \mathbb{R}^m \times \mathbb{R}^n$. We can turn \mathcal{M} into a Riemannian manifold by using the Euclidean structure of the ambient space $\mathcal{E} = \mathbb{R}^m \times \mathbb{R}^n$. Let $M \in \mathbb{R}^{m \times n}$. Maximizers of the following function are closely related to the singular value decomposition:

$$f: \mathcal{M} \to \mathbb{R}, \quad f(x,y) = x^{\top} M y.$$

- (1) Show that $f: \mathcal{M} \to \mathbb{R}$ is smooth.
- (2) Give a formula for orthogonal projection from \mathcal{E} onto the tangent space $T_{(x,y)}\mathcal{M}$.
- (3) Given $(x,y) \in \mathcal{M}$, give an expression for the Riemannian gradient of f at (x,y).

Solution: (1) Clearly, the function $\bar{f}: \mathbb{R}^{m+n} \to \mathbb{R}$, $\bar{f}(x,y) = x^{\top} M y$ is smooth, which can be a smooth extension of f. Therefore, f is smooth.

(2) Given $(x,y) \in \mathcal{M}$, we have the tangent space

$$T_{(x,y)}\mathcal{M} = T_{(x,y)}(\mathbb{S}^{m-1} \times \mathbb{S}^{n-1})$$
$$= T_{x}\mathbb{S}^{m-1} \times T_{y}\mathbb{S}^{n-1}$$

As the orthogonal projection from \mathbb{R}^m onto $T_x\mathbb{S}^{m-1}$ is $Proj_x(u)=(I-xx^\top)u$ and from \mathbb{R}^n onto $T_y\mathbb{S}^{n-1}$ is $Proj_y(v)=(I-yy^\top)v$, the orthogonal projection from $\mathbb{R}^m\times\mathbb{R}^n$ onto $T_{(x,y)}\mathcal{M}$ is

$$Proj_{(x,y)}(u,v) = ((I - xx^{\top})u, (I - yy^{\top})v).$$

(3) Given $(x,y) \in \mathcal{M}$, which is a Riemannian submanifold of $\mathbb{R}^m \times \mathbb{R}^n$,

$$\begin{split} gradf(x,y) &= Proj_{(x,y)}(grad\bar{f}(x,y)) \\ &= Proj_{(x,y)}(My, M^{\top}x) \\ &= ((I - xx^{\top})My, (I - yy^{\top})M^{\top}x) \end{split}$$

Problem 3 Score: . The product metric

Let $\mathcal{M}, \mathcal{M}'$ be embedded submanifolds of Euclidean spaces $\mathcal{E}, \mathcal{E}'$, respectively.

Turn \mathcal{M} and \mathcal{M}' into Riemannian manifolds by giving them the Riemannian metrics $\langle \cdot, \cdot \rangle^a$ and $\langle \cdot, \cdot \rangle^b$, respectively. We can turn $\mathcal{M} \times \mathcal{M}'$ into a Riemannian manifold by giving it the Riemannian product metric: for all (u, u'), (v, v') in the tangent space $T_{(x,x')}\mathcal{M} \times \mathcal{M}'$,

$$\langle (u, u'), (v, v') \rangle_{(x,x')} := \langle u, v \rangle_x^a + \langle u', v' \rangle_{x'}^b$$

- (1) What are the tangent spaces of $\mathcal{M} \times \mathcal{M}'$? How do they relate to $T_x \mathcal{M}$ and $T_{x'} \mathcal{M}'$?
- (2) For a smooth function $f: \mathcal{M} \times \mathcal{M}' \to \mathbb{R}$, show that

$$gradf(x, x') = (grad(x \mapsto f(x, x'))(x), grad(x' \mapsto f(x, x'))(x')),$$

where $x \mapsto f(x, x')$ and $x' \mapsto f(x, x')$ are functions from \mathcal{M} to \mathbb{R} obtained from f by fixing the other argument.

Solution: (1) $T_{(x,x')}\mathcal{M} \times \mathcal{M}' = T_x\mathcal{M} \times T_{x'}\mathcal{M}'$.

(2) Let $(x, u) \in T\mathcal{M}, (x', u') \in T\mathcal{M}'$ and smooth curves:

$$c: \mathbb{R} \to \mathcal{M}, \quad c(0) = x, \quad c'(0) = u,$$

 $c': \mathbb{R} \to \mathcal{M}', \quad c'(0) = x', \quad c'(0) = u'.$

Then define two new smooth curves:

$$C: \mathbb{R} \to \mathcal{M} \times \mathcal{M}', \quad C(t) = (c(t), x'),$$

$$C': \mathbb{R} \to \mathcal{M} \times \mathcal{M}', \quad C'(t) = (x, c'(t)).$$

Then.

$$\begin{split} \langle (u,u'), \operatorname{grad} f(x,x') \rangle_{(x,x')} &= Df(x,x')[u,u'] \\ &= Df(x,x')[u,0] + Df(x,x')[0,u'] \\ &= D(x \mapsto f(x,x'))(x)[u] + D(x' \mapsto f(x,x'))(x')[u'] \\ &= \langle u, \operatorname{grad} (x \mapsto f(x,x'))(x) \rangle_x^a + \langle u', \operatorname{grad} (x' \mapsto f(x,x'))(x') \rangle_{x'}^b \\ &= \langle (u,u'), (\operatorname{grad} (x \mapsto f(x,x')), \operatorname{grad} (x' \mapsto f(x,x'))) \rangle_{(x,x')} \,. \end{split}$$

As the quation above holds for all $(u, u') \in T_{(x,x')}\mathcal{M} \times \mathcal{M}'$, $gradf(x,x') = (grad(x \mapsto f(x,x'))(x), grad(x' \mapsto f(x,x'))(x))$ f(x,x')(x').

Problem 4 Score: _____. Distorted \mathbb{R}^d Let U be an open subset of $\mathcal{E} = \mathbb{R}^d$, and denote the Euclidean inner product on \mathcal{E} by $\langle u, v \rangle_{\mathcal{E}} = u^\top v$. Let $G: U \to \mathbb{R}^{d \times d}$ be a smooth map such that G(x) is symmetric and positive definite for all $x \in U$. Let \mathcal{M} be U equipped with the Riemannian metric $\langle u, v \rangle_{\mathcal{M}} = u^{\top} G(x) v$.

- (1) Show that $\langle \cdot, \cdot \rangle_{\mathcal{M}}$ is a Riemannian metric on U.
- (2) Let $f: U \to \mathbb{R}$ be a smooth function. Derive an expression for the Riemannian gradient of $f, grad_M f$, in terms of the Euclidean gradient of f, $grad_{\mathcal{E}}f$.
- (3) If $U = \mathbb{R}^d$, argue that $R_x(u) = x + u$ is a retraction on \mathcal{M} . Write down Riemannian gradient descent on \mathcal{M} with retractions R. Compare this algorithm to
 - (a) gradient descent on \mathcal{E} with a preconditioner
 - (b) Newton's method on \mathcal{E}
- (4) Consider a particular case known as the Poincaré ball model of hyperbolic space. Let r>0 and $U=\{x\in\mathbb{R}^d:$ $||x||_{\mathcal{E}} < r$, and

$$G(x) = \frac{4r^4}{(r^2 - ||x||_{\mathcal{E}}^2)^2} I, \quad \forall x \in U.$$

With $f: \mathcal{M} \to \mathbb{R}$ smooth, give an expression for the Riemannian gradient of $f, grad_{\mathcal{M}}f$ in terms of the Euclidean gradient of f, $grad_{\mathcal{E}}f$.

Solution: (1) As U is an open subset of \mathbb{R}^d , for $x \in U, T_xU = \mathbb{R}^d$.

Then for $u, v \in T_x U = \mathbb{R}^d$, $\langle u, v \rangle_x = u^\top G(x) v$ is a inner product on $T_x U$ as G(x) is symmetric and positive definite. Furthermore, for smooth vector fields $V_1, V_2 : U \to \mathbb{R}^d$, the map $x \mapsto \langle V_1(x), V_2(x) \rangle_x = V_1(x)^\top G(x) V_2(x)$ is smooth. Therefore, $\langle \cdot, \cdot \rangle_{\mathcal{M}}$ is a Riemannian metric on U.

(2) For $v \in T_x U = \mathbb{R}^d$, we have

$$\begin{split} \langle grad_{\mathcal{M}}f(x),v\rangle_{\mathcal{M}} &= Df(x)[v] \\ &= v^{\top}G(x)grad_{\mathcal{M}}f(x) \\ &= \langle v,G(x)grad_{\mathcal{M}}f(x)\rangle_{\mathcal{E}} \\ &= \langle v,grad_{\mathcal{E}}f(x)\rangle_{\mathcal{E}} \,. \end{split}$$

Therefore, $grad_{\mathcal{E}}f(x) = G(x)grad_{\mathcal{M}}f(x)$, i.e., $grad_{\mathcal{M}}f(x) = G(x)^{-1}grad_{\mathcal{E}}f(x)$.

(3) For $x \in \mathbb{R}^d$, $u \in T_x \mathbb{R}^d = \mathbb{R}^d$, $R_x(u) = x + u$ is clearly smooth and $R_x(0) = x$.

$$\left. \frac{d}{dt} R_x(tu) \right|_{t=0} = \left. \frac{d}{dt} (x+tu) \right|_{t=0} = u.$$

Therefore, $R_x(u) = x + u$ is a retraction on \mathcal{M} .

The Riemannian gradient descent on \mathcal{M} with retractions R is given by

$$x_{k+1} = R_{x_k}(-\eta_k grad_{\mathcal{M}} f(x_k))$$

= $x_k - \eta_k G(x_k)^{-1} grad_{\mathcal{E}} f(x_k),$

which can be interpreted as the gradient descent on \mathcal{E} with a preconditioner $G(x_k)^{-1}$; and by setting $\eta_k = 1$, it is equivalent to Newton's method on \mathcal{E} .

3 / 4

(4) From (2), we have

$$\begin{split} grad_{\mathcal{M}}f(x) &= G(x)^{-1}grad_{\mathcal{E}}f(x) \\ &= \frac{(r^2 - \|x\|_{\mathcal{E}}^2)^2}{4r^4}grad_{\mathcal{E}}f(x). \end{split}$$