Міністерство освіти і науки України Національний технічний університет України «Київський політехнічний інститут імені Ігоря Сікорського" Факультет інформатики та обчислювальної техніки

Факультет інформатики та обчислювальної техніки Кафедра інформатики та програмної інженерії

Звіт

з лабораторної роботи № 2 з дисципліни «Алгоритми та структури даних-1. Основи алгоритмізації»

«Дослідження ітераційних циклічних алгоритмів»

Варіант 6

Виконав	студент	<u> 111-13 Вдовиченко Станіслав Юріиович</u>
		(шифр, прізвище, ім'я, по батькові)
Перевіри	В	
rr		(прізвище, ім'я, по батькові)

Лабораторна робота 3 Дослідження ітераційних циклічних алгоритмів

• Мета – дослідити подання операторів повторення дій та набути практичних навичок їх використання під час складання циклічних програмних специфікацій.

• Постановка задачі (Варіант 6)

6. З точністю $\varepsilon = 10^{-5}$ обчислити значення функції e^x :

$$e^x = 1 + \frac{x}{1!} + \frac{x^2}{2!} + \frac{x^3}{3!} + \dots + \frac{x^n}{n!} + \dots$$

Задаємо значення епсилон (точність), задаємо значення змінної x і значення ітераційної змінної (початкове значення = 1).

Запишемо рекурентне відношення для кожного наступного члена і знайдемо значення функції за допомогою ітераційного циклу(до заданої точності).

• Математична модель

Змінна	Тип	Ім'я	Призначення
Епсилон	Дійсний	eps	Вхідні дані
Аргумент	Дійсний	X	Вхідні дані
Попереднє	Дійсний	previousComponent	Проміжний
значення			результат
компоненту			
послідовності			
Поточний	Дійсний	currentComponent	Проміжний
компонент			результат
послідовності			
Різниця	Дійсний	diff	Проміжний
поточного і			результат
попереднього			
значення			
Ітераційна	Цілий	n	Ітераційна
змінна			змінна
Функція е^х	Дійсний	functE	Вихідні дані

Розв'язання.

Програмні специфікації запишемо у псевдокоді та графічній формі у вигляді блок-схеми.

Крок 1. Визначимо основні дії.

Крок 2. Деталізуємо дію обчислення першого члена

Крок 3. Деталізуємо дію обчислення п-го члена послідовності.

п-ий член послідовності знайдемо за формулою:

$$x_n = x_{n-1} * \frac{x}{n}$$

Тоді до попереднього значення функції будем додавати n-ий член, поки різниця(diff) не буде менша за точність(eps).

Різницю (diff)знайдемо за формулою x_n-x_{n-1} .

Щоб знайти модуль різниці використовуємо функцію abs().

Факторіал розписуємо у формулі n-го члена (добуток попереднього члена на наступний), тобто:

$$\frac{x^3}{3!} = \frac{x^2}{2} * \frac{x}{3}$$

Початкове значення функції задаємо 1, номер ітерації -1, значення початкового члена послідовності -1.

• Псевдокод

Крок 1.

Початок

Введення даних

Декларування змінних

Обчислення значення функції за заданою точністю

Виведення даних

Кінець

Крок 2.

Початок

Введення х

eps:= 0.00001, n := 1, functE := 1, previousComponent := 1,diff := 1.

Обчислення значення функції за заданою точністю

Виведення даних

Кінець

Крок 3.

Початок

Введення х

eps:= 0.00001, n := 1, functE := 1, previousComponent := 1,diff :=1.

поки (diff >= eps)

Знаходження п-го члена

Знаходження нового значення функції

Знаходження різниці членів

Задання значень для продовження циклу

все поки

Виведення даних

Кінець

```
Крок 4.
```

Початок

```
Введення х eps:= 0.00001, n := 1, functE := 1, previousComponent := 1,diff :=1. поки (diff >= eps) currentComponent := previousComponent * ( x / n) ; \frac{3находження нового значення функції \frac{3}{2} Знаходження різниці членів \frac{3}{2} Задання значень для продовження циклу
```

все поки

Виведення даних

Кінепь

Крок 5.

Початок

```
Введення х eps:= 0.00001, n := 1, functE := 1, previousComponent := 1,diff :=1. поки (diff >= eps) currentComponent := previousComponent * ( x / n); functE := functE + currentComponent; Знаходження різниці членів Задання значень для продовження циклу
```

все поки

Виведення даних

Кінепь

Крок 6.

Початок

```
Введення х eps:= 0.00001, n := 1, functE := 1, previousComponent := 1,diff :=1. поки (diff >= eps) currentComponent := previousComponent * ( x / n); functE := functE + currentComponent; diff := abs(currentComponent - previousComponent); Задання значень для продовження циклу
```

все поки

Виведення даних

Кінець

Крок 7.

Початок

```
Введення х eps:= 0.00001, n := 1, functE := 1, previousComponent := 1,diff :=1. поки (diff >= eps) currentComponent := previousComponent * ( x / n) ; functE := functE + currentComponent; diff := abs(currentComponent - previousComponent); previousComponent := currentComponent; n++;
```

все поки

Виведення даних

Кінець

Крок 8.

Початок

```
Введення х eps:= 0.00001, n := 1, functE := 1, previousComponent := 1, diff := 1. поки (diff >= eps) currentComponent := previousComponent * ( x / n) ; functE := functE + currentComponent; diff := abs(currentComponent - previousComponent); previousComponent := currentComponent; n++;
```

все поки

Виведення functE

Кінець

• Блок-схема

• Випробування алгоритму

Перевіримо правильність алгоритму на довільних конкретних значеннях початкових даних.

Блок	Дія
	Початок
1	Введення х := 2.25
2	eps:= 0.00001, n := 1, functE := 1, previousComponent := 1, diff := 1
3	(1 > 0.00001); currentComponent := $1 * (2.25/1) = 2.25$; functE := $1 + 2.25 = 3.25$; diff := $(2.25 - 1) = 1.25$; previousComponent := 2.25 ; n = 2;
4	(1.25 > 0.00001); currentComponent := $2.25*(2.25/2) = 2.53125$; functE :=
	3.25 + 2.53 = 5.78125; diff := $(2.53125 - 2.25) = 0.28$; previousComponent := 2.53125 ; n = 3;
5	(0.28 > 0.00001); currentComponent := $2.53125*(2.25/3) = 1.89$; functE :=
	5.78125 + 1.89 = 7.679; diff := $(1.89 - 2.53125) = 0.63$; previousComponent := 1.89 ; n = 4;
6	(0.63 > 0.00001); currentComponent := 1.89 * $(2.25/4) = 1.067$; functE :=
	7.679 + 1.067 = 8.7475; diff := $(1.067 - 1.89) = 0.83$; previousComponent :=
	1.067; n = 5;
7	(0.83 > 0.00001); currentComponent := 1.067 * $(2.25/5) = 0.48$; functE :=
	8.7475 + 0.48 = 9.228; diff := $(0.48 - 1.067) = 0.587$; previousComponent :=
	0.48; n = 6;
8	(0.587 > 0.00001); currentComponent := $0.48 * (2.25/6) = 0.18$; functE :=
	9.228 + 0.18 = 9.408; diff := $(0.18 - 0.48) = 0.3$; previousComponent := 0.18;
	n=7;
9	(0.3 > 0.00001); currentComponent := $0.18 * (2.25/7) = 0.057$; functE := 9.408
	+0.057 = 9.4662; diff := $(0.057 - 0.18) = 0.122$; previousComponent := 0.057 ;
	n = 8;
10	(0.122 > 0.00001); currentComponent := $0.057 * (2.25/8) = 0.016$; functE :=
	9.4662 + 0.016 = 9.4825; diff := $(0.016 - 0.057) = 0.041$; previousComponent
	:= 0.016; n = 9;
11	(0.041 > 0.00001); currentComponent := $0.016 * (2.25/9) = 0.004$; functE :=
	9.4825 + 0.004 = 9.48658; diff := $(0.004 - 0.016) = 0.0122$;
10	previousComponent := 0.004; n = 10;
12	(0.0122 > 0.00001); currentComponent := $0.004 * (2.25/10) = 0.00091$; functE
	:= 9.48658 + 0.00091 = 9.4875; diff $:= (0.00091 - 0.004) = 0.0031$;
10	previousComponent := 0.00091; n = 11;
13	(0.0031 > 0.00001); currentComponent := $0.00091 * (2.25/11) = 0.00018$;
	functE := $9.4875 + 0.00018 = 9.48769$; diff := $(0.00018 - 0.00091) = 0.00072$;
	previousComponent := 0.00018; n = 12;

14	(0.00072 > 0.00001); currentComponent := $0.00018 * (2.25/12) = 0.000035$;
	functE := $9.48769 + 0.000035 = 9.48772$; diff := $(0.000035 - 0.00018) =$
	0.00015; previousComponent := 0.000035 ; n = 13;
15	(0.00015 > 0.00001); currentComponent := $0.000035 * (2.25/13) = 0.000006$;
	functE := $9.48772 + 0.000006 = 9.48773$; diff := $(0.000006 - 0.000035) =$
	0.00002; previousComponent := 0.000006; n = 14;
16	(0.00002 > 0.00001); currentComponent := $0.000006 * (2.25/14) = 0.0000009$;
	functE := $9.48773 + 0.0000009 = 9.48774$; diff := $(0.0000009 - 0.000006) =$
	0.000005; previousComponent := 0.0000009 ; n = 15;
17	(0.000005 < 0.00001)
18	functE := 9.48774
19	Виведення functE
	Кінець

• Висновок

Я дослідив подання операторів повторення дій та набув практичних навичок їх використання під час складання циклічних програмних специфікацій. Побудував алгоритм знаходження значення послідовності за допомогою циклу з передумовою, побудував псевдокод та блок-схему. Під час випробування дослідив значення послідовності після кожної ітерації.