Real Analysis

ROB 501 Necmiye Ozay

- Open and closed sets (wrap up)
- Sequences

Announcements

- No new problem set this week.
- No lecture on Wednesday
- No recitation this week.

Review of last lecture

Let (X, ||.||) be a normed space. Let $P \subset X$.

- $p \in P$ is an **interior point of P** if there exist an $\varepsilon > 0$ s.t. $B_{\varepsilon}(p) \subset P$ (the open epsilon ball around p is contained in P)
- Interior of P: P°={set of all interior points} = {x ∈X | d(x,~P)>0}
- $x \in X$ is a **closure point of P** if for all $\varepsilon > 0$. $B_{\varepsilon}(x) \cap P \neq \emptyset$ (the distance of x to the set P is zero)
- Closure of P: \overline{P} ={set of all closure points} = {x \in X | d(x,P)=0} \overline{P} $\{x \in X \mid d(x,P)=0\}$

Def: 1) P is an **open set** if $P^o = P$. **Def:** 2)P is a **closed set** if $P = \overline{P}$.

In general, we have: $P^o \subset P \subset \overline{P}$.

(1) Is P=[0,1) a closed set? Not closed because I&P, d(1,P)=0, =>16P =>P + P. $\overline{P} = [0, 1]$ $P^{\circ} = (0, 1)$ 2) Is P=Q (set of rational numbers) closed? $x=\sqrt{2}\notin P$ but $d(\sqrt{2},P)=0$ = 0 = 0 R is not closed

Fact: $\overline{Q} = R$ = $\overline{Q} \neq Q$ = \overline{Q} R not closed! (but also R not open: $\overline{Q} \neq Q$)

Theorem: P is open iff ~P is closed

Theorem: Let (X, 11.11) be a normed space, and PCX a subset. Then P is open iff ~P is closed.

- · Poper <>> ~Pis closed ·
- · P closed () ~ P is open

Proof: P open
$$\iff$$
 $P^{\circ} = P$
 \iff $P = \{\{\{X\}\}\} \times \{\{X\}\}\} \times \{\{X\}\} \times \{\{X\}\}\} \times \{\{X\}\} \times \{\{X\}\}\} \times \{\{X\}\} \times \{\{X\}\} \times \{\{X\}\} \times \{\{X\}\}\} \times \{\{X\}\} \times$

Are there sets that are both open and closed? Yes, they are called CLOPEN sets. X is both open and closed. Ø is both open and closed (by convention).

Some facts

- Arbitrary unions of open sets are open
- Finite intersections of open sets are open
- Arbitrary intersections of closed sets are closed
- Finite unions of closed sets are closed

Ext: A countably infinite intersection of open sets that is not open.

A₁= (-2,2)

Yn > 1, define
$$a_n = 1 + \frac{1}{n} = \frac{n+1}{n}$$
 $A_2 = (\frac{-3}{2}, \frac{3}{2})$

Consider
$$A_n = (-a_n, a_n) =$$
 all A_n are open
$$\bigcap_{n=1}^{\infty} A_n = \lim_{k \to \infty} \bigcap_{n=1}^{k} A_n$$

$$[-1,1] \subset (-\alpha_n,\alpha_n) \quad \forall n \geqslant 1 \Rightarrow [-1,1] \subset \bigcap_{n=1}^{\infty} A_n$$

We note that |x| > 1 (this defines $^{n}[-1,1]$), $\exists k < ab$ s.f. $\frac{k+1}{2} < 1 \times 1 \implies x \notin A, = (-a_{k}, a_{k})$

s.f. $\frac{k+1}{k} < |x| = > x \notin A_k = (-a_k, a_k)$ $=> x \notin \bigcap_{n=1}^{\infty} A_n \quad (\sim [-1, 1] \cap \bigcap_{n=1}^{\infty} A_n = \emptyset)$

Exercise: Consider $B_n = (0, a_n)$ is $A_n =$

EX2: Infinite union of closed sets that are not closed.

A=2i3

A=2i3

$$C(osed)$$
 $E \times 2a)$
 $A_n = \begin{bmatrix} \frac{1}{n}, 2 - \frac{1}{n} \end{bmatrix}$
 $A_2 = \begin{bmatrix} \frac{1}{2}, \frac{3}{2} \end{bmatrix}$
 $A_3 = \begin{bmatrix} \frac{1}{3}, \frac{5}{6} \end{bmatrix}$
 $A_1 = \begin{bmatrix} \frac{1}{3}, \frac{5}{6} \end{bmatrix}$
all closed

Ex 2b) Let $S \subset X$ be any set.

U $2 \times 3 = S$ anything $\begin{cases} Singleton \ set \ 2 \times 3 \end{cases}$ $Singleton \ set \ 2 \times 3 \end{cases}$ bc. $B_{\epsilon}(x) \cap 2 \times 3 \neq \emptyset$ all closed $Singleton \ set \ 2 \times 3 \Rightarrow 0$ bc. $B_{\epsilon}(x) \cap 2 \times 3 \neq \emptyset$ $Singleton \ set \ 2 \times 3 \Rightarrow 0$ $Singleton \ set \ 3 \times 3 \Rightarrow 0$ $Singleton \ set \ 3 \times 3 \Rightarrow 0$ $Singleton \ set \ 3 \times 3 \Rightarrow 0$ $Singleton \ set \ 3 \times 3 \Rightarrow 0$ $Singleton \ set \ 3 \times 3 \Rightarrow 0$ $Singleton \ set \ 3 \times 3 \Rightarrow 0$ $Singleton \ set \ 3 \times 3 \Rightarrow 0$ $Singleton \ set \ 3 \times 3 \Rightarrow 0$ $Singleton \ set \ 3 \times 3 \Rightarrow 0$ $Singleton \ set \ 3 \times 3 \Rightarrow 0$ $Singleton \ set \ 3 \times 3 \Rightarrow 0$ $Singleton \ set \ 3 \times 3 \Rightarrow 0$ $Singleton \ set \ 3 \times 3 \Rightarrow 0$ S

Def. Boundary of a set, $\partial P = \overline{P} \cap (\sim P)$ Exercise: Prove that $\partial P = \overline{P} \setminus P^{\circ}$.

Note: $\partial x = \emptyset$. (e.g. \mathbb{R}^n has no boundary $\partial \mathbb{R}^n = \emptyset$)

SEQUENCES

Given (X, 11.11) a normed space.

Def: A set of vectors (xn) indexed by counting numbers is called a sequence.

- sometimes we denote sequences by 2xn3 or 2xn3n=1.

Def: A sequence converges to a point $\times EX$ if $\forall E$, $\exists N(E) < 00$ s.t. $\forall n > N$, $||x-x_n|| < E$.

Notation: $x = \lim_{n \to \infty} x_n$ or $x_n = x_n$

Proposition: If $x_n \rightarrow x$ and $x_n \rightarrow y$, then x = y.

(limits of sequences are unique)

Proof: Idea: $||x-y|| = ||x-x_n+x_n-y||$ show this is 0.

will $\Rightarrow a$

Let $\varepsilon>0$ be given. Because $x_n\to x$, $\exists N(\varepsilon)<\infty$ s.t. $\forall n > N$, $||x_n-x||<\frac{\varepsilon}{2}$

Because $x_n \rightarrow y$, $\exists M(\varepsilon) < \infty \text{ s.t. } \forall m \geqslant M$, $\|x_m - y\| < \frac{\varepsilon}{2}$.

Let $L = \max(M, N) < \infty$, then $\forall l \ge L$ $\|x - y\| \le \|x - x_{\ell}\| + \|y - x_{\ell}\| \le \varepsilon$ (we showed that $\forall \ell \ge L$ $\forall \ell \ge L$

x is limit point of T it I a sequence (xn) satisfying:

a)
$$\forall n > 1$$
, $x_n \in P \setminus \{x\}$
b) $x_n \longrightarrow x$

Proposition: X is a limit point of

P <>> x & P\ 2x3

Proof:

(=>) If x is a limit point of P, \exists a sequence (x_n) s.t. $\forall n > 1$, $x_n \in P \setminus \{x_n\}$ and $x_n \to x$.

Ex: P=[1,2)U\23,53 Let's cansider &13. 53,53 P(212 = [1,2] 0 23,53 G limit paint We can consider the sequence x=1+ 1/2n EP1 213 4n Xn Let consider 338: 3 is not a limit point 3 \$ P1 \ 233 = [1,2] U\ 25\ 3 is called an isolation point. The set of limit points of Pis [1,2]

(=) Next lecture

+6 3,.

OFFICE HOURS

$$x \in P^{\circ}$$
 if $\exists E \text{ s.f.}$

$$B_{E}(x) \subset P.$$

$$(x, np)$$
 (x, np)

$$J(x, \sim P) > 0$$

$$P = \begin{bmatrix} 1 & 1 \\ 1 & 2 \end{bmatrix}$$

$$P = \begin{bmatrix} -0 & 1 \\ 0 & 0 \end{bmatrix}$$

$$J(I, \sim P) = 0 \implies I \notin P^{\circ}$$

$$NP = R \setminus P$$
 $p^{\circ} = 0$

$$p^{\circ} = (1, 2)$$

XEP IF YESO, BELX) NPFØ

$$X_n = 1 + \frac{2}{n}$$
 $(x_n \rightarrow 1)$
Claim: x_n converges to 1:
 $E = 0.1$, can you find an $\frac{N}{2}$ s.t. $\frac{1}{2}$ $\frac{1}{2}$

$$E = 0.01$$
, $\sqrt{1 + \frac{2}{n}} < 0.01$
 $n > 201$ $N(0.01) = 201$

Def: A sequence converges to a point x EX

if $\forall \xi$, $\exists N(\xi) < 00$ s.t. $\forall n > N$, $||x-x_n|| < \xi$.

yk-gklk-1

JKIK-1 = CFXIKI

y = Cxx+Vk

y = Z - K

y = Cxx + Vx

aug mented senser model 2 Z -> comes from

The divice

The divice

Z kIK-1

Z KIK-1

Z KIK-1

Z KIK-1