Homework 2

- 1 a) Write down explicit formulae expressing stereographic coordinates for n-dimensional sphere $(x^1)^2 + \ldots + (x^{n+1})^2 = R^2$ of radius R via coordinates x^1, \ldots, x^{n+1} and vice versa. (For simplicity you may consider cases n = 2, 3.)
- b)[†] Check that for unit sphere S^2 ($x^2 + y^2 + z^2 = 1$) all the points with rational cartesian coordinates x, y, z have rational stereographic coordinates u, v and vice versa.
- 2 Consider the Riemannian metric on the circle of the radius R induced by the Euclidean metric on the ambient plane.
 - a) Express it using polar angle as a coordinate on the circle.
- b) Express the same metric using stereographic coordinate t obtained by stereographic projection of the circle on the line, passing through its centre.
- **3** Consider the Riemannian metric on the sphere of the radius R induced by the Euclidean metric on the ambient 3-dimensional space.
 - a) Express it using spherical coordinates on the sphere.
- b) Express the same metric using stereographic coordinates u, v obtained by stereographic projection of the sphere on the plane, passing through its centre.
 - 4 Consider the surface L which is the upper sheet of two-sheeted hyperboloid in \mathbb{R}^3 :

L:
$$z^2 - x^2 - y^2 = 1$$
, $z > 0$.

- a) Find parametric equation of the surface L using hyperbolic functions \cosh, \sinh following an analogy with spherical coordinates on the sphere.
- b) Consider the stereographic projection of the surface L on the plane OXY, i.e. the central projection on the plane z = 0 with the centre at the point (0, 0, -1).

Show that the image of projection of the surface L is the open disc $x^2 + y^2 < 1$ in the plane OXY.

 $\mathbf{5}^*$ Consider the pseudo-Euclidean metric on \mathbf{R}^3 given by the formula

$$ds^2 = dx^2 + dy^2 - dz^2 \,. (1)$$

Calculate the induced metric on the surface L considered in the Exercise 4, and show that it is a Riemannian metric (it is positive-definite).

Perform calculations in spherical-like coordinates (see Exercise 4a) above) and in stere-ographic coordinates (see exercise 4b) above)

Remark The surface L sometimes is called pseudo-sphere. The Riemannian metric on this surface sometimes is called Lobachevsky (hyperbolic) metric.

The surface L with this metric realises Lobachevsky (hyperbolic) geometry, where Euclid's 5-th Axiom fails. This Riemannian manifold (manifold+Riemannian metric) we call Lobachevsky (hyperbolic) plane.

In stereographic coordinates we come to realisation of Lobachevsky plane on the disc in \mathbf{E}^2 . It is so called Poincare model of Lobachevsky geometry.

6* Find new coordinates x, y such that in these coordinates Lobachevsky plane (hyperbolic plane) can be considered as an upper half plane $\{x \in \mathbf{R}, y > 0\}$ in \mathbf{E}^2 and write down explicitly Riemannian metric in these coordinates.

Hint: You may use complex coordinates:

$$z = x + iy, \bar{z} = x - iy, w = u + iv, \bar{w} = u - iv$$

and find an holomorphic transformation w = w(z) of the open disc $w\bar{w} < 1$ onto the upper plane $\mathbf{Im} z > 0$.

Remark Later by default we will call "Lobachevsky (hyperbolic) plane" the realisation of Lobachevsky plane as an half-upper plane in \mathbf{E}^2 with coordinates $x, y \ (y > 0)$.

 7^{\dagger} Consider the metric induced on one-sheeted hyperboloid $x^2+y^2-z^2=1$ embedded in \mathbf{R}^3 with the pseudo-Euclidean metric $dx^2+dy^2-dz^2$ (see the exercise 5). Show that this metric is not Riemannian one.