Exercise sheet 1

Manifolds, MTH406

- 1. Prove that any open subset of a smooth manifold is smooth.
- 2. Prove that the product of smooth manifolds is smooth.
- 3. Prove that any chart $\phi: U \to \mathbb{R}^n$ on a smooth manifold is a smooth map.
- 4. Prove that if $F: M \to N$ and $G: N \to P$ are smooth maps between manifolds, then the composition $G \circ F$ is also smooth.
- 5. Prove that if X_p is a derivation at $p \in M$, then $X_p(c) = 0$ for any constant function c.
- 6. Given a point p on a smooth manifold M, let F_p denote the ideal of germs that vanish at p. Prove that the dual of the vector space F_p/F_p^2 is isomorphic to $T_p(M)$.
- 7. Given a smooth manifold M and a curve $\gamma:(-\epsilon,\epsilon)\to M$ passing through a point $p\in M$ (i.e. $\gamma(0)=p$), let $[\gamma]_p$ denote the equivalence class of paths under the following equivalence relation. $\gamma_1\sim\gamma_2$ if and only if $\frac{\mathrm{d}}{\mathrm{d}t}(\phi\circ\gamma_1)|_{t=0}=\frac{\mathrm{d}}{\mathrm{d}t}(\phi\circ\gamma_2)|_{t=0}$.
 - (a) Prove that the equivalence relation is independent of the chart ϕ .
 - (b) Given an equivalence class of paths, $[\gamma]_p$, we can define a map $\nu_{[\gamma]_p}$: $C_p^\infty(M) \to \mathbb{R}$, $\nu_{[\gamma]_p}(f) = \frac{\mathrm{d}}{\mathrm{d}t} f(\gamma(t))$. Prove that $\nu_{[\gamma]_p}$ is a derivation. Prove that the map $[\gamma]_p \to \nu_{[\gamma]_p}$ is a bijection.