from google.colab import drive
drive.mount('/content/drive')

→ Mounted at /content/drive

import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
%matplotlib inline

df = pd.read_csv('/content/drive/MyDrive/marketing_campaign_dataset.csv')

df.head()

₹	C	Campaign_ID	Company	Campaign_Type	Target_Audience	Duration	Channel_Used	Conversion_Rate	Acquisition_Cost	ROI	Location	
	0	1	Innovate Industries	Email	Men 18-24	30 days	Google Ads	0.04	\$16,174.00	6.29	Chicago	1/1/
	1	2	NexGen Systems	Email	Women 35-44	60 days	Google Ads	0.12	\$11,566.00	5.61	New York	1/2/
	2	3	Alpha Innovations	Influencer	Men 25-34	30 days	YouTube	0.07	\$10,200.00	7.18	Los Angeles	1/3/
	3	4	DataTech Solutions	Display	All Ages	60 days	YouTube	0.11	\$12,724.00	5.55	Miami	1/4/
	4	5	NexGen Systems	Email	Men 25-34	15 days	YouTube	0.05	\$16,452.00	6.50	Los Angeles	1/5/

df.duplicated().sum()

→ 0

df.isnull().sum()

Campaign_ID 0 Company Campaign_Type Target_Audience Duration Channel_Used Conversion_Rate Acquisition_Cost ROI 0 Location 0 Date 0 Clicks 0 Impressions Engagement_Score 0 Customer_Segment 0

df.info()

dtvna: int64

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 200005 entries, 0 to 200004
Data columns (total 15 columns):

```
Column
      #
                              Non-Null Count
                                                Dtype
          Campaign_ID
                              200005 non-null int64
                              200005 non-null object
          Company
          Campaign_Type
                              200005 non-null object
          Target_Audience
                             200005 non-null object
          Duration
                              200005 non-null object
          Channel Used
                              200005 non-null object
          Conversion_Rate
                             200005 non-null float64
          Acquisition_Cost 200005 non-null object
          ROI
                              200005 non-null float64
      9
          Location
                              200005 non-null object
      10 Date
                              200005 non-null
      11 Clicks
                              200005 non-null int64
                              200005 non-null
                                               int64
      12 Impressions
      13 Engagement_Score 200005 non-null int64
      14 Customer_Segment 200005 non-null object
     dtypes: float64(2), int64(4), object(9)
memory usage: 22.9+ MB
for col in df.columns:
    print(col, '\n', len(df[col].unique()))
→ Campaign_ID
      200005
     Company
      5
     Campaign_Type
     Target_Audience
     Duration
     Channel_Used
     Conversion_Rate
     Acquisition_Cost
      15001
     ROI
      601
     Location
     Date
      365
     Clicks
      901
     Impressions
      9001
     Engagement_Score
      10
     Customer_Segment
df['CTR(%)'] = df['Clicks'] / df['Impressions'] * 100
\label{eq:dfscaling} $$ df['Acquisition_Cost'] = df['Acquisition_Cost'].replace({'\$': '', ',': ''}, regex=True).astype(float) $$ df['Acquisition_Cost'] = df['Acquisition_Cost'].$
df['Acquisition_Cost']
```

_		Acquisition_Cost
	0	16174.0
	1	11566.0
	2	10200.0
	3	12724.0
	4	16452.0
	200000	18365.0
	200001	8168.0
	200002	13397.0
	200003	18508.0
	200004	13835.0
	200005 rd	ows × 1 columns
	dtyne: flo	at64

df['CPC'] = df['Acquisition_Cost'] / df['Clicks']

df.head()

_												
₹	Cam	paign_ID	Company	Campaign_Type	Target_Audience	Duration	Channel_Used	Conversion_Rate	Acquisition_Cost	ROI	Location	
	0	1	Innovate Industries	Email	Men 18-24	30 days	Google Ads	0.04	16174.0	6.29	Chicago	1/1/
	1	2	NexGen Systems	Email	Women 35-44	60 days	Google Ads	0.12	11566.0	5.61	New York	1/2/
	2	3	Alpha Innovations	Influencer	Men 25-34	30 days	YouTube	0.07	10200.0	7.18	Los Angeles	1/3/
	3	4	DataTech Solutions	Display	All Ages	60 days	YouTube	0.11	12724.0	5.55	Miami	1/4/
		5	NexGen	Fracil	Man 25 24	1E days	VauTuba	0.05	16452.0	6.50	Los	1 /E

15 days

YouTube

0.05

campaign_performance = df.groupby(['Channel_Used']).agg({'Engagement_Score':'mean'}).reset_index() campaign_performance

Men 25-34

Email

```
<del>_</del>__
         Channel_Used Engagement_Score
     0
                 Email
                                 5.487842
             Facebook
                                  5.503748
     2
            Google Ads
                                  5.493989
     3
                                 5.489039
             Instagram
     4
               Website
                                  5.508828
              YouTube
                                 5.484802
     5
    4
```

Systems

```
plt.figure(figsize=(10, 5))
\verb|sns.barplot(x='Channel\_Used', y='Engagement\_Score', data=campaign\_performance)| \\
EG = campaign_performance['Engagement_Score'].values
for index, value in enumerate(EG):
    plt.text(index, value + 0.001, f'{value:.2f}', ha='center', va='bottom')
plt.title('Engagement Score by Channel Used')
plt.xlabel('Channel Used')
plt.ylabel('Engagement Score')
plt.show()
```

Angeles

16452.0 6.50

Engagement Score by Channel Used

Channal Head

df['Conversion_Rate'] = df['Conversion_Rate']*100

df2 = df[['CPC','CTR(%)','Conversion_Rate']]
df2

	CPC	CTR(%)	Conversion_Rate
0	31.964427	26.326743	4.0
1	99.706897	1.541938	12.0
2	17.465753	7.586386	7.0
3	58.635945	11.923077	11.0
4	43.408971	9.021662	5.0
200000	21.404429	14.328657	6.0
200001	35.824561	7.431551	2.0
200002	18.529737	7.572266	5.0
200003	35.053030	19.109663	10.0
200004	14.972944	12.680115	1.0

200005 rows × 3 columns

corr_matrix = df2.corr()
corr_matrix

∓ ₹		СРС	CTR(%)	Conversion_Rate
	CPC	1.000000	-0.368949	0.002533
	CTR(%)	-0.368949	1.000000	-0.000042
	Conversion Rate	0.002533	-0 000042	1 000000

```
plt.figure(figsize=(10, 5))
sns.heatmap(corr_matrix, annot=True, cmap='coolwarm')
plt.title('Campaign effectiveness')
plt.show()
```


perf_underperf = df.groupby(['Campaign_Type']).agg({'ROI':'mean'}).reset_index()
perf_underperf

₹		Campaign_Type	ROI
	0	Display	5.006497
	1	Email	4.994274
	2	Influencer	5.011040
	3	Search	5.008357
	4	Social Media	4.991781

```
plt.figure(figsize=(10, 5))
plt.scatter(perf_underperf['Campaign_Type'], perf_underperf['ROI'])
plt.title('Best performing and underperforming')
plt.xlabel('Campaign Type')
plt.ylabel('AVG ROI')
plt.show()
```


location_trend = df.groupby(['Location']).agg({'Engagement_Score':'mean'}).reset_index()
location_trend


```
plt.figure(figsize=(10,5))
sns.lineplot(x='Location', y='Engagement_Score', data=location_trend)
plt.title('Average Engagement Score by Location')
plt.xlabel('Location')
plt.ylabel('Engagement Score')
#plt.xticks(rotation=90)
plt.show()
```


df[['Date','Clicks']].head(35)

```
Date Clicks
0
      1/1/2021
1
      1/2/2021
                  116
2
      1/3/2021
                  584
      1/4/2021
3
                  217
4
      1/5/2021
                  379
5
      1/6/2021
                  100
6
      1/7/2021
                  817
7
      1/8/2021
                  624
8
      1/9/2021
                  861
     1/10/2021
9
                  642
    1/11/2021
10
                  321
    1/12/2021
                  659
11
12 13/01/2021
                  677
13 14/01/2021
                  994
14 15/01/2021
                  482
15 16/01/2021
                  299
16 17/01/2021
                  931
17 18/01/2021
                  218
18 19/01/2021
                  182
19 20/01/2021
                  193
20 21/01/2021
                  975
21 22/01/2021
                  319
22 23/01/2021
                  646
23 24/01/2021
                  764
24 25/01/2021
                  527
25 26/01/2021
                  809
26 27/01/2021
                  953
27 28/01/2021
                  604
28 29/01/2021
                  384
29 30/01/2021
                  952
30 31/01/2021
                  512
31
     2/1/2021
                  309
32
     2/2/2021
                  367
33
     2/3/2021
                  243
34
      2/4/2021
```

```
4
# Convert the 'Date' column to datetime format
df['Date'] = pd.to_datetime(df['Date'], dayfirst=True)
# Set 'Date' as the index
df.set_index('Date', inplace=True)
# Group by date and resample to monthly frequency, summing clicks for each month
click_trend = df['Clicks'].resample('M').sum()
# Display monthly summed click trend
print(click_trend)
→ Date
     2021-01-31
                   9321651
     2021-02-28
                  8433098
     2021-03-31
                  9357568
```