Rozwiązywanie układu równań liniowych Ax = b z wykorzystaniem blokowej metody SOR. Wyznaczanie promienia spektralnego macierzy iteracji.

Julia Kaznowska Piotr Wilczyński

IiAD MN gr.3

Styczeń 2022

1 Wstęp do zadania

Treść zadania:

14. (2 osoby) Rozwiązywanie układu równań liniowych Ax = b z wykorzystaniem blokowej metody SOR, gdzie $A(n \times n)$ jest macierzą postaci

$$A = \begin{pmatrix} A_{11} & A_{12} & 0 \\ A_{12}^T & A_{11} & A_{23} \\ 0 & A_{23}^T & A_{11} \end{pmatrix},$$

gdzie $A_{ij}(p \times p)$ i n=3p. Zakładamy, że A_{11} jest symetryczna i dodatnio określona. Do rozwiązania odpowiednich układów równań liniowych zastosować metodę Cholesky'ego–Banachiewicza (rozkład LDL^T). Wyznacz promień spektralny macierzy iteracji dla tej blokowej metody SOR.

Zadanie polega na rozwiązaniu układu równań liniowych Ax = b z wykorzystaniem metody blokowej SOR oraz na wyznaczeniu promienia spektralnego macierzy iteracji dla tej blokowej metody. Dana macierz $A(n \times n)$ ma postać:

$$A = \begin{pmatrix} A_{11} & A_{12} & 0 \\ A_{12}^T & A_{11} & A_{23} \\ 0 & A_{23}^T & A_{11} \end{pmatrix}$$

gdzie każdy z bloków A_{ij} jest $(p \times p)$. Naturalnie n=3p. Zakładamy również, że macierz A_{11} jest symetryczna i dodatnio określona. Do rozwiązywania późniejszych układów równań wynikających z blokowej metody SOR będziemy stosować metodę Cholsky'ego-Banachiewicza. Promień spektralny będziemy wyznaczać metodą potęgową.

2 Wstęp teoretyczny

Zadanie można podzielić na trzy części:

- 1. Rozwiązywanie układu równań liniowych Ax = b metodą blokową SOR
- 2. Wyznaczanie macierzy iteracji
- 3. Wyznaczanie promienia spektralnego macierzy iteracji

2.1 Blokowa metoda SOR

Metoda SOR jest uogólnieniem metody Gaussa-Seidla. Występuje w niej parametr $\omega \in \mathbb{R}$, nazywany parametrem relaksacji. Aby metoda była zbieżna $\omega \in (0,2)$. Wyprowadźmy wzory, które pomogą nam rozwiązać dany blokowy układ równań Ax = b.

$$\begin{pmatrix} A_{11} & A_{12} & 0 \\ A_{12}^T & A_{11} & A_{23} \\ 0 & A_{23}^T & A_{11} \end{pmatrix} \cdot \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} b_1 \\ b_2 \\ b_3 \end{pmatrix}$$

gdzie $x_1, x_2, x_3, b_1, b_2, b_3 \in \mathbb{R}^p$. Otrzymujemy:

$$\begin{pmatrix} A_{11}x_1 + A_{12}x_2 \\ A_{12}^Tx_1 + A_{11}x_2 + A_{23}x_3 \\ A_{23}^Tx_2 + A_{11}x_3 \end{pmatrix} = \begin{pmatrix} b_1 \\ b_2 \\ b_3 \end{pmatrix}$$

Stąd:

$$\begin{cases} A_{11}x_1 + A_{12}x_2 = b_1 \\ A_{12}^T x_1 + A_{11}x_2 + A_{23}x_3 = b_2 \\ A_{23}^T x_2 + A_{11}x_3 = b_3 \end{cases}$$

Po przekształceniu:

$$\begin{cases} x_1 = A_{11}^{-1}(b_1 - A_{12}x_2) \\ x_2 = A_{11}^{-1}(b_2 - A_{12}^Tx_1 - A_{23}x_3) \\ x_3 = A_{11}^{-1}(b_3 - A_{23}^Tx_2) \end{cases}$$

Mnożąc wszystkie strony równań przez parametr ω oraz dodając stronami doi-tegorównania x_i stronami:

$$\begin{cases} \omega x_1 + x_1 = \omega A_{11}^{-1}(b_1 - A_{12}x_2) + x_1 \\ \omega x_2 + x_2 = \omega A_{11}^{-1}(b_2 - A_{12}^T x_1 - A_{23}x_3) + x_2 \\ \omega x_3 + x_3 = \omega A_{11}^{-1}(b_3 - A_{23}^T x_2) + x_3 \end{cases}$$

Po przerzuceniu ωx_i na prawą stronę otrzymujemy:

$$\begin{cases} x_1 = (1 - \omega)x_1 + \omega A_{11}^{-1}(b_1 - A_{12}x_2) \\ x_2 = (1 - \omega)x_2 + \omega A_{11}^{-1}(b_2 - A_{12}^Tx_1 - A_{23}x_3) \\ x_3 = (1 - \omega)x_3 + \omega A_{11}^{-1}(b_3 - A_{23}^Tx_2) \end{cases}$$

Powyższe wzory będą podstawą iteracji. Zaczynając od początkowego przybliżenia $x^{(0)}=(x_1^{(0)},x_2^{(0)},x_3^{(0)})^T\in\mathbb{R}^n$ obliczymy kolejne przybliżenia $x^{(k+1)}$ $(x_1^{(k)},x_2^{(k)},x_3^{(k)}\in\mathbb{R}^p)$. Tak jak w metodzie Gaussa-Seidla, będziemy korzystać z ńajnowszych"dostępnych przybliżeń.

Dla k = 0, 1, ...:

$$\begin{cases} x_1^{(k+1)} = (1-\omega)x_1^{(k)} + \omega A_{11}^{-1}(b_1 - A_{12}x_2^{(k)}) \\ x_2^{(k+1)} = (1-\omega)x_2^{(k)} + \omega A_{11}^{-1}(b_2 - A_{12}^Tx_1^{(k+1)} - A_{23}x_3^{(k)}) \\ x_3^{(k+1)} = (1-\omega)x_3^{(k)} + \omega A_{11}^{-1}(b_3 - A_{23}^Tx_2^{(k+1)}) \end{cases}$$

Oznaczmy:

$$\begin{cases} y_1^{(k+1)} = A_{11}^{-1}(b_1 - A_{12}x_2^{(k)}) \\ y_2^{(k+1)} = A_{11}^{-1}(b_2 - A_{12}^Tx_1^{(k+1)} - A_{23}x_3^{(k)}) \\ y_3^{(k+1)} = A_{11}^{-1}(b_3 - A_{23}^Tx_2^{(k+1)}) \end{cases}$$

Wtedy otrzymujemy układy równań liniowych:

$$\begin{cases} A_{11}y_1^{(k+1)} = b_1 - A_{12}x_2^{(k)} \\ A_{11}y_2^{(k+1)} = b_2 - A_{12}^T x_1^{(k+1)} - A_{23}x_3^{(k)} \\ A_{11}y_3^{(k+1)} = b_3 - A_{23}^T x_2^{(k+1)} \end{cases}$$

Ponieważ, będziemy wielokrotnie rozwiązywać układy równań z macierzą A_{11} , efektywnie będzie rozłożyć tę macierz. Będziemy używać rozkładu Cholsky'ego-Banachiewicza LL^T (ten rozkład jest tożsamy z rozkładem LDL^T , gdzie D jest macierzą jednostkową). Wiemy, że ten istnieje, ponieważ z założeń zadania A_{11} jest symetryczna i dodatnio określona.

2.1.1 Wyznaczanie rozkładu Cholsky'ego-Banachiewicza LL^T

Rozkład Chlosky'ego Banachiewicza wyznaczamy znanym algorytmem. Załóżmy, że macierz $A(n \times n)$ o elementach a_{ij} jest symetryczna i dodatnio określona. Wtedy:

$$\begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{12} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{1n} & a_{2n} & \dots & a_{nn} \end{pmatrix} = \begin{pmatrix} l_{11} & 0 & \dots & 0 \\ l_{21} & l_{22} & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ l_{n1} & l_{n2} & \dots & l_{nn} \end{pmatrix} \cdot \begin{pmatrix} l_{11} & l_{21} & \dots & l_{n1} \\ 0 & l_{22} & \dots & l_{n2} \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & l_{nn} \end{pmatrix}$$

Analizując wynik mnożenia macierzy po prawej stronie otrzymujemy algorytm: dla k=1,2,...,n:

dla
$$k = 1, 2, ..., n$$
:

- $l_{kk} = \sqrt{a_{kk} - \sum_{j=1}^{k-1} l_{kj}^2}$

- dla $i = k + 1, k + 2, ..., n$

- $l_{ik} = (a_{ik} - \sum_{j=1}^{k-1} l_{ij} l_{kj})/l_{kk}$

2.1.2 Rozwiązywanie równań $LL^Tx = b$

Załóżmy, że mamy dany układ równa
ń $LL^Tx=b,$ gdzie macierzLjest macierzą dolnotrójkatna. Wte
dy:

$$L\underbrace{L^Tx}_{u} = b$$

Najpierw rozwiązujemy układ równań Ly=b, a następnie $L^Tx=y$. W ten sposób wyznaczamy wektor x. Oba powyższe układy rozwiązujemy prosto i efektywnie, ponieważ zarówno L jak i L^T są macierzami trójkątnymi.

2.1.3 Podsumowanie blokowego SOR

W ten sposób wyznaczamy $y_1^{(k+1)}, y_2^{(k+1)}, y_3^{(k+1)}.$ Wracając do blokowego SOR mamy:

$$\begin{cases} x_1^{(k+1)} = (1-\omega)x_1^{(k)} + \omega y_1^{(k+1)} \\ x_2^{(k+1)} = (1-\omega)x_2^{(k)} + \omega y_2^{(k+1)} \\ x_3^{(k+1)} = (1-\omega)x_3^{(k)} + \omega y_3^{(k+1)} \end{cases}$$

Iterację wykonujemy dopóki nie zostanie spełniony warunek stopu. Jako warunek stopu, weźmiemy warunek Gilla, ponieważ bierze on pod uwagę zarówno bezwzględną jak i względną różnicę pomiędzy kolejnymi iteracjami. Warunek Gilla:

$$||x^{(k+1)} - x^{(k)}|| < d_1||x^{(k)}|| + d_2$$

gdzie jako ||.|| przyjmiemy normą euklidesową. Wartości parametrów d_1 i d_2 ustalimy jako:

$$d_1 = 10^{-10}$$

$$d_2 = 10^{-20}$$

Kiedy zostanie spełniony warunek stopu w $x^{(k+1)}=(x_1^{(k+1)},x_2^{(k+1)},x_3^{(k+1)})^T$ powinniśmy mieć bardzo dobrze przybliżone rozwiązanie początkowego równania Ax=b.

2.2 Wyznaczenie macierzy iteracji B_{SOR}

Macierz iteracji dla metody SOR przedstawia się wzorem:

$$B_{SOR} = (D + \omega L)^{-1} \cdot ((1 - \omega)D - \omega U)$$

Przekształćmy ten wzór tak, aby móc stworzyć układ równań:

$$(D + \omega L) \cdot B_{SOR} = ((1 - \omega)D - \omega U)$$

Przedstawmy ten wzór w postaci macierzowej:

$$\begin{pmatrix} A_{11} & 0 & 0 \\ \omega A_{12}^T & A_{11} & 0 \\ 0 & \omega A_{23}^T & A_{11} \end{pmatrix} \cdot B_{SOR} = \begin{pmatrix} (1-\omega)A_{11} & -\omega A_{12} & 0 \\ 0 & (1-\omega)A_{11} & -\omega A_{23} \\ 0 & 0 & (1-\omega)A_{11} \end{pmatrix}$$

Macierz B_{SOR} zapiszmy jako:

$$\begin{pmatrix} X_{11} & X_{12} & X_{13} \\ X_{21} & X_{22} & X_{23} \\ X_{31} & X_{32} & X_{33} \end{pmatrix}$$

gdzie $X_{ii} \in \mathbb{R}^{(p \times p)}, i \in \{1, 2, 3\}$

Stąd możemy wyprowadzić następujący układ równań:

$$\begin{cases} A_{11}X_{11} = (1-\omega)A_{11} \\ A_{11}X_{12} = -\omega A_{12} \\ A_{11}X_{13} = 0 \\ \omega A_{12}^TX_{11} + A_{11}X_{21} = 0 \\ \omega A_{12}^TX_{12} + A_{11}X_{22} = (1-\omega)A_{11} \\ \omega A_{12}^TX_{13} + A_{11}X_{23} = -\omega A_{23} \\ \omega A_{23}^TX_{21} + A_{11}X_{31} = 0 \\ \omega A_{23}^TX_{22} + A_{11}X_{32} = 0 \\ \omega A_{23}^TX_{23} + A_{11}X_{33} = (1-\omega)A_{11} \end{cases}$$

Po przekształceniu wygląda on następująco:

$$\begin{cases} A_{11}X_{11} = (1 - \omega)A_{11} \\ A_{11}X_{12} = -\omega A_{12} \\ A_{11}X_{13} = 0 \\ A_{11}X_{21} = -\omega A_{12}^T X_{11} \\ A_{11}X_{22} = (1 - \omega)A_{11} - \omega A_{12}^T X_{12} \\ A_{11}X_{23} = -\omega A_{23} - \omega A_{12}^T X_{13} \\ A_{11}X_{31} = -\omega A_{23}^T X_{21} \\ A_{11}X_{32} = -\omega A_{23}^T X_{22} \\ A_{11}X_{33} = (1 - \omega)A_{11} - \omega A_{23}^T X_{23} \end{cases}$$

2.2.1 Rozwiązywanie pojedynczego równania

Możemy zauważyć, że wszystkie równania w powyższym układzie można przedstawić w postaci

$$A_{11} \cdot X = B$$

Zapiszmy je zatem w postaci macierzowej:

$$\begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \dots & a_{nn} \end{pmatrix} \cdot \begin{pmatrix} x_{11} & x_{12} & \dots & x_{1n} \\ x_{21} & x_{22} & \dots & x_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ x_{n1} & x_{n2} & \dots & x_{nn} \end{pmatrix} = \begin{pmatrix} b_{11} & b_{12} & \dots & b_{1n} \\ b_{21} & b_{22} & \dots & b_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ b_{n1} & b_{n2} & \dots & b_{nn} \end{pmatrix}$$

Teraz możemy stworzyć odpowiadający temu działaniu układ równań:

$$\begin{cases} a_{11}x_{11} + a_{12}x_{21} + \dots + a_{1n}x_{n1} = b_{11} \\ a_{21}x_{11} + a_{22}x_{21} + \dots + a_{2n}x_{n1} = b_{21} \\ \dots \\ a_{n1}x_{11} + a_{n2}x_{21} + \dots + a_{nn}x_{n1} = b_{n1} \\ a_{11}x_{12} + a_{12}x_{22} + \dots + a_{1n}x_{n2} = b_{12} \\ a_{21}x_{12} + a_{22}x_{22} + \dots + a_{2n}x_{n2} = b_{22} \\ \dots \\ a_{n1}x_{1n} + a_{n2}x_{2n} + \dots + a_{nn}x_{nn} = b_{nn} \end{cases}$$

Możemy zauważyć, że równania da się połączyć w bloki, na przykład:

$$\begin{cases} a_{11}x_{1i} + a_{12}x_{2i} + \dots + a_{1n}x_{ni} = b_{1i} \\ a_{21}x_{1i} + a_{22}x_{2i} + \dots + a_{2n}x_{ni} = b_{2i} \\ \dots \\ a_{n1}x_{1i} + a_{n2}x_{2i} + \dots + a_{nn}x_{ni} = b_{ni} \end{cases}$$

Każdy taki blok posiada swoją macierzową reprezentację:

$$\begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \dots & a_{nn} \end{pmatrix} \cdot \begin{pmatrix} x_{1i} \\ x_{2i} \\ \vdots \\ x_{ni} \end{pmatrix} = \begin{pmatrix} b_{1i} \\ b_{2i} \\ \vdots \\ b_{ni} \end{pmatrix}$$

gdzie i to numer kolumny macierzy X i B odpowiadającej danemu blokowi układu równań.

Dzięki tej obserwacji możemy zapisać p równań macierzowych (dla każdego bloku X_{ij} , gdzie $i,j \in \{1,2,3\}$) w postaci $A_{11}x = b$. Te natomiast możemy w łatwy sposób rozwiązać korzystając z omawianego wcześniej rozkładu Cholsky'ego-Banachiewicza LL^T .

2.3 Wyznaczanie promienia spektralnego macierzy

Promień spektralny jest maksymalnym modułem z wartości własnych macierzy. Wyznaczymy go korzystając z wbudowanych funkcji w MATLAB:

- eig(A) zwraca wartości własne macierzy A
- abs(x) zwraca wartość modułu x
- max(T) zwraca maksymalny element tablicy T

Promień spektralny macierzy A wyznaczamy przez:

3 Program

Główną funkcją programu w MATLAB jest funkcja zadanie
14(A, b, ω). Ta funkcja jako argumenty przyjmuje:

A - macierz A spełniająca założenia zadania

b - wektor $b \in \mathbb{R}^n$

 ω - wspołczynnik $\omega \in (0,2)$ metody SOR

Funkcja wypisuje oraz zwraca rozwiązanie danego równania i promień spektralny macierzy iteracji metody SOR. Aby zadanie14() działała poprawnie zdefiniowaliśmy szereg funkcji pomocniczych:

- matrixDivision(A) funkcja przyjmuje jako argument daną macierz A, a następnie zwraca określone w zadaniu bloki A_{11} , A_{12} , A_{23} .
- cholskyBanachiewicz (A) funkcja przyjmuje jako argument symetryczną i dodatnio określoną macierz A. Zwraca macierz L, spełniającą: $A = LL^T$.
- solveCholsky(L, b) funkcja przyjmuje jako argumenty macierz dolną trójkątną $L \in \mathbb{R}^{(p \times p)}$ oraz wektor $b \in \mathbb{R}^p$. Zwraca rozwiązanie równania $LL^Tx = b$
- conditionGill(Xold, Xnew) funkcja przyjmuje jako argumenty Xold, Xnew $\in \mathbb{R}^n$. Jeśli warunek Gilla dla danych wektorów jest spełniony, zwraca TRUE. W przeciwnym przypadku zwraca FALSE.
- norm
Euklides(x) zwraca normę euklidesową podanego jako argument wektor
ax.
- iterationMatrix(A11, A12, A23, w) funkcja zwraca macierz iteracji B_{SOR} wyznaczoną dla macierzy A określonej w zadaniu o blokach: A_{11} , A_{12} , A_{23} .
- getXBlock(M, L, p) funkcja pomocnicza dla funkcji iterationMatrix(). Wyznacza blok macierzy iteracji.

Dodatkowo w programie załączone są funkcje: testMatrixGenerator(p), która generuje macierz $A^{(3p\times 3p)}$ spełniającą założenia zadania i exampleHandler(A,b), która jest funkcją pomocniczą do opisywania przykładów.

4 Przykłady

Zaprezentujemy przykładowe działanie naszej funkcji dla sześciu różnych macierzy. Pierwsze dwie będą macierzami (6×6), kolejne dwie (9×9), piąta (30×30), a ostatnia (300×300). Dla każdej macierzy będziemy wyznaczali zależność liczby iteracji i promienia spektralnego macierzy iteracji od współczynnika relaksacji (na osi x będzie ω). Dodatkowo założymy, że wyniki dawane przez standardowe, wbudowane rozwiązywanie równań macierzowych w MATLAB (A\b) jest dokładne i wyliczymy odchylenie standardowe. Wszystkie macierze i obliczenia są zapisane w pliku examples.m.

4.1 Przykład 1

Macierz zapisana w examples.
m w zmiennej: Example 1 Odchylenie standardowe = 7.1347e-09
 Optymalny współczynnik relaksacji = 1.5152
 Liczba iteracji przy optymalnym współczynniku relaksacji = 35

Wykres zależności liczby iteracji od współczynnika relaksacji:

4.2 Przykład 2

Macierz zapisana w examples.m w zmiennej: Example
2 Odchylenie standardowe = 4.5700e-13 Optymalny współczynnik relaksacji = 1.0303 Liczba iteracji przy optymalnym współczynniku relaksacji = 8

Wykres zależności liczby iteracji od współczynnika relaksacji:

4.3 Przykład 3

Macierz zapisana w examples.
m w zmiennej: Example 3 Odchylenie standardowe = 2.4792e-11 Optymalny współczynnik relaksacji = 1.1717 Liczba iteracji przy optymalnym współczynniku relaksacji = 15

Wykres zależności liczby iteracji od współczynnika relaksacji:

4.4 Przykład 4

Macierz zapisana w examples.m w zmiennej: Example
4 Odchylenie standardowe = 2.1572e-10 Optymalny współczynnik relaksacji = 1.1111 Liczba iteracji przy optymalnym współczynniku relaksacji = 11

Wykres zależności liczby iteracji od współczynnika relaksacji:

4.5 Przykład 5

Macierz zapisana w examples.
m w zmiennej: Example
5 Odchylenie standardowe = 2.2021e-10 Optymalny współczynnik relaksacji = 1.5758 Liczba iteracji przy optymalnym współczynniku relaksacji = 42

Wykres zależności liczby iteracji od współczynnika relaksacji:

4.6 Przykład 6

Macierz zapisana w examples.
m w zmiennej: Example
6 Odchylenie standardowe = 1.5934e-10 Optymalny współczynnik relaksacji = 1.4141 Liczba iteracji przy optymalnym współczynniku relaksacji = 29

Wykres zależności liczby iteracji od współczynnika relaksacji:

5 Podsumowanie

W każdym z powyższych przykładów odchylenie standardowe jest rzędu równego lub mniejszego niż 10^{-9} . Dokładność można zwiększyć zmniejszając stałe w warunku stopu iteracji (warunku Gilla). Optymalny współczynnik relaksacji waha się pomiędzy 1, a 1.6. Wykres zależności zarówno potrzebnej liczby iteracji jak i promienia spektralnego w każdym z przykładów wygląda podobnie. Liczba iteracji dla optymalnego współczynnika relaksacji nie przekracza 50. Blokowy SOR przy powyższych założeniach wydaję się być bardzo skuteczną metodą wyznaczania rozwiązań układu równań liniowych Ax = b.