Homework 6 (Week 11)

Due: Mon., 11/8/2021, 11:59 PM PST

Posted: 11/1/2021

1. In class we derived the generalization-error bound for a C-class problem with C > 2, from the training-set error, based on the growth function $m_{\mathcal{H}}(2N)$. In this problem, you will derive the generalization-error bound for a C-class problem from the test-set error and from a validation-set error with finite M.

Throughout this problem:

let $\underline{\underline{\tilde{\mathcal{L}}}}_{\mathcal{D}}$ denote the (in-sample) unnormalized confusion matrix based on dataset \mathcal{D} , so that entry $\left(\underline{\tilde{\mathcal{L}}}_{\mathcal{D}}\right)_{ij}$ = [number of data points labelled y=j that were misclassified as h=i];

also, let $\left(\underline{\underline{C}}_{\text{out}}\right)_{ij} = P\left[(h=i) \, AND \, (y=j)\right]$ be the ij^{th} entry of the out-of-sample confusion matrix $\underline{C}_{\text{out}}$.

(a) For a given single hypothesis h for the C-class problem (so $h \in \{1,2,\cdots,C\}$) tested using dataset \mathcal{D} that has N data points, give an expression for the total number of points that were misclassified n_{mis} , in terms of the entries $\left(\underline{\tilde{C}}_{\mathcal{D}}\right)_{ii}$.

Also give an expression for the error rate on \mathcal{D} , $E_{\mathcal{D}}(h)$, in terms of the entries $\left(\underline{\tilde{\mathcal{L}}}_{\mathcal{D}}\right)_{ij}$.

For the out-of-sample confusion matrix, give an expression for the total probability of error $P(h \neq y)$ in terms of the entries of $\underline{\underline{C}}_{out}$. **Hint:** are the

events for
$$\left(\underline{\underline{C}}_{\text{out}}\right)_{ij}$$
 and $\left(\underline{\underline{C}}_{\text{out}}\right)_{kl}$ mutually exclusive?

Use these results to give expressions for $\mu = P$ [incorrect classification] and $\nu =$ percent misclassified by h on \mathcal{D} .

Apply Hoeffding Inequality to $\boldsymbol{\mu}$ and $\boldsymbol{\nu}.$

Write the resulting expression in terms of E_D and E_{out} .

Reformulate to give an expression in the following form:

$$P[E_{\text{out}}(h) \le E_{\mathcal{D}}(h) + B(\delta)] \ge 1 - \delta.$$

in which you fill in for $B(\delta)$. **Hint:** this is similar to what we did in Lecture 7 for the C = 2 case.

Is this a generalization-error bound for test-set error, for a C > 2 class problem?

Comment: As you may have observed in the Midterm Assignment Pr. 1, the generalization-error bound based on a test set can be much tighter than the bound based on a training set and its VC dimension.

(b) Extend the result of (a) to a validation-set error on \mathcal{D}_{val} , in which the hypothesis set has $|\mathcal{H}| = M$, $0 < M < \infty$.

Hint: does the same technique applying a union bound that we did for the 2-class problem (Lecture 7) apply?

2. This problem concerns the generalization error bound in a transfer learning problem, as given in Lecture 13 (v2.1), Eq. (6).

In this problem you will study the effects of varying N_S , N_T , and α on the cross-domain generalization error bound.

Throughout this problem, let $\varepsilon_{\alpha\beta}$ be everything in the cross-domain generalizationerror bound (RHS of Lecture 13 (v2.1) Eq. (6)), except omitting $e_{S,T}^*$. Note that $e_{S,T}^*$ is a constant of the parameters we will be varying.

Also throughout this problem, use the values $d_{VC}=10$, $\delta=0.1$, $d_{\mathcal{H}\Delta\mathcal{H}}=0.1$. However, leave them as variables until you are ready to plot, or until you are asked for a number.

- (a) Give the simplified number (to two decimal digits) for $\epsilon_{\alpha\beta}$, for the following cases:
 - (i) $N_T = 1$, $N_S = 100$, $\alpha = 0.1$, 0.5, 0.9
 - (ii) $N_T = 10$, $N_S = 1000$, $\alpha = 0.1$, 0.5, 0.9
 - (iii) $N_T = 100$, $N_S = 10000$, $\alpha = 0.1$, 0.5, 0.9
 - (iv) $N_T = 1000$, $N_S = 100000$, $\alpha = 0.1$, 0.5, 0.9

Tip: put these in a table for easy viewing.

(v) Do any of these sets of numbers assure some degree of generalization (i.e., $\varepsilon_{\alpha\beta} < 0.5$, assuming $e_{S,T}^* \approx 0$)? If so, which?

Comment: As in the supervised learning case, these bounds can be very loose, but evidence indicates the functional dependence of $\varepsilon_{\alpha\beta}$ on its variables still generally apply.

- (b) For this part, let $N_S = 1000$ and plot $\varepsilon_{\alpha\beta}$ vs. α for $N_T = 10$, 100, 1000, 10000 (4 curves on one plot), over $0 \le \alpha \le 1$. Answer: what approximate value of α is optimal for each value of N_T ? Try to explain the dependence of $\varepsilon_{\alpha\beta}$ on α for different values of N_T , and any difference in optimal values of α .
- (c) For this part, let $N_T = 100$ and plot $\varepsilon_{\alpha\beta}$ vs. α for $N_S = 10$, 100, 1000, 10000 (4 curves on one plot), over $0 \le \alpha \le 1$. Answer: what approximate value of α is optimal for each value of N_T ? Try to explain the dependence of $\varepsilon_{\alpha\beta}$ on α for different values of N_S , and any difference in optimal values of α .

- (d) Common default values for α are $\alpha = 0.5$ and $\alpha = \beta$.
 - (i) In terms of minimizing the cross-domain generalization-error bound, which default choice looks better (based on your answers to (b) and (c) above)? Is that choice reasonably consistent with your results of (b) and (c)?
 - (ii) Give algebraic expressions for $\varepsilon_{\alpha\beta}(\alpha=0.5)$ and $\varepsilon_{\alpha\beta}(\alpha=\beta)$. Compare them algebraically: can you draw any conclusions about which is lower?
 - (iii) Plot $\varepsilon_{\alpha\beta}(\alpha=0.5)$ vs. N for $\beta=0.01,0.1,0.5$, for $1000 \le N \le 100000$ (3 curves on 1 plot). Repeat for $\varepsilon_{\alpha\beta}(\alpha=\beta)$. What conclusions can you draw from the plots?
- 3. (a) Is it possible to have a covariate shift while satisfying all of: $p_S(y|x) = p_T(y|x)$, $p_S(y) = p_T(y)$, $p_S(x|y) = p_T(x|y)$? If no, prove your answer; if yes, justify your answer.
 - (b) Is it possible to have a covariate shift while satisfying: $p_S(y|x) = p_T(y|x)$?

 If no, prove your answer; if yes, justify your answer.
 - (c) Is it possible to have a concept shift while satisfying: $p_S(y) = p_T(y)$ and $p_S(x) = p_T(x)$? If no, prove your answer; if yes, justify your answer.