What is claimed:

2

3

mount aperture.

1	An optical component housing comprising a substrate having a					
2	substantially planar fiber mount region and an optical component mount region adjacent to					
3	the substantially planar fiber mount region.					
1	2. An optical component housing according to claim 1, wherein the					
2	substrate is selected from a group consisting of an aluminum oxide ceramic, a nickel-					
3	cobalt alloy, aluminum nitride ceramic, or silicon carbide ceramic.					
1	 An optical component housing according to claim 1, further 					
2	comprising a metallic mount pad formed over the substantially planar fiber mount region					
and configured to bond to a metal solder.						
1	4. An optical component housing according to claim 3, further					
2	comprising a metallized optical fiber coupled to the metallic mount pad by the metal					
3	solder.					
1	An optical component housing according to claim 1, further					
2.	comprising a fiber mount pad formed over the substantially planar fiber mount region and					
3	configured to bond to a glass solder.					
1	 An optical component housing according to claim 5, further 					
2	comprising a bare optical fiber coupled to the fiber mount pad by the glass solder.					
1	 An optical component housing comprising a substrate having an 					
2	optical component mount aperture formed therein and a substantially planar fiber mount					
3.	region formed on the substrate and adjacent to the optical component mount aperture.					
·1	8. An optical component housing according to claim 7, further					

comprising an optical component placed within an area defined by the optical component

1	An optical component housing according to claim 8, further				
2	comprising a metallic mount pad formed over the substantially planar fiber mount region				
3	and configured to bond to a metal solder.				
1	10. An optical component housing according to claim 9, further				
2	comprising a metallized optical fiber coupled to the metallic mount pad by the metal solder				
3	to optically couple the fiber and the optical component.				
1	11. An optical component housing according to claim 8, further				
2	comprising a fiber mount pad formed over the substantially planar fiber mount region and				
3	configured to bond to a glass solder.				
	40 An author common to be become a considerable defined 4. Continue				
1	12. An optical component housing according to claim 11, further				
2	comprising a bare optical fiber coupled to the fiber mount pad by the glass solder to				
3	optically couple the fiber and the optical component.				
1	13. A fiber-coupled optical component comprising:				
1	13. A fiber-coupled optical component comprising:				
2.	a substrate formed from a semiconductor of a first conductivity type and				
3	having an optical component region and a substantially planar fiber mount region adjacent				
4	to the optical component region;				
5	an active layer selected from a group consisting of a bulk gain material and				
6	a quantum well structure formed on the substrate over the optical component region;				
7	a semiconductor layer of a second conductivity type different from the				
8	substrate, the semiconductor layer formed over the active layer;				
9	an electrode layer of a high conductivity material formed over the				
10	semiconductor layer; and				
11	an optical output coupler formed on a surface of the active layer to provide				
12	radiation emitted from the active layer.				

I	14. A fiber-coupled optical component according to claim 13, further
2	comprising a metallic mount pad formed over the substantially planar fiber mount region
3	and configured to bond to a metal solder.
1	15. A fiber-coupled optical component according to claim 14, further
2	comprising a metallized optical fiber coupled to the metallic mount pad by the metal solde
3	to optically couple the fiber and the optical output coupler.
1	16. A fiber-coupled optical component according to claim 13, further
2	comprising a fiber mount pad formed over the substantially planar fiber mount region and
3	configured to bond to a glass solder.
1	17. A fiber-coupled optical component according to claim 16, further
2	comprising a bare optical fiber coupled to the fiber mount pad by the glass solder to
3	optically couple the fiber and the optical output coupler.
1	18. A method for forming a fiber-coupled optical component housing,
2	comprising the steps of:
3	a) forming a ceramic substrate;
4	b) forming an optical component mountable aperture on a surface of the
5	substrate;
6	c) forming a substantially planar fiber mount region on a surface of the
7	ceramic substrate and adjacent to the optical component mountable
8	aperture; and
9	d) placing an optical component within an area defined by the optical
0	component mountable aperture.
1	19. A method according to claim 18, further including the steps of:

3		mount region and configuring said mount pad to bond with a metal solder; and
5	f)	securing a metallized optical fiber to the metallic mount pad by the metal solder to optically couple the fiber and the optical component.
1 .	20.	A method according to claim 18, further including the steps of:
2 3 4	e)	forming a fiber mount pad over the substantially planar fiber mount region and configuring said mount pad to bond with a glass solder; and
5	f)	securing a bare optical fiber to the fiber mount pad by the glass solder to optically couple the fiber and the optical component.
the steps of:	21.	A method for forming a fiber-coupled optical component, comprising
3 4	a)	forming a substrate from a III/V semiconductor material of a first conductivity type;
567	b)	forming an active layer selected from a group consisting of a bulk gain material and a quantum well structure, the active layer being formed over a portion of the substrate;
8	c)	forming a semiconductor layer over the active layer from a III/V material of a second conductivity type different from the substrate;
10 11	d)	forming an electrode layer over the semiconductor layer from a high conductivity material;
12 13	e)	forming a substantially anti-reflective optical output coupler on a face of the active layer; and

4		f)	forming a substantially planar fiber mount region on a surface of the		
5			substrate and adjacent to the optical output coupler.		
1		22.	A method according to claim 21, further including the steps of:		
2	•	g)	forming a metallic mount pad over the substantially planar fiber		
3			mount region and configuring said mount pad to bond with a metal		
4			solder; and		
5		, h) ,	securing a metallized optical fiber to the metallic mount pad by the		
6			metal solder to optically couple the fiber and the optical output		
7	•		coupler.		
1		23.	A method according to claim 21, further including the steps of:		
2		g)	forming a fiber mount pad over the substantially planar fiber mount		
3 4			region and configuring said mount pad to bond with a glass solder; and		
5		h)	securing a bare optical fiber to the fiber mount pad by the glass		
6			solder to optically couple the fiber and the optical output coupler.		
1		24.	An optical component housing comprising:		
2		a high	thermal conductivity base;		
3		a low	thermal conductivity substrate having a substantially planar fiber		
4	mount region	therein and abutting the high thermal conductivity base with a surface at the			
5	same level as	the ba	ase;		
6		an un	packaged optical component mounted on the base adjacent to the		
7	aperture, said	comp	onent having a top surface metallized to serve as an electrode.		

PATENT

1	25. The optical component housing according to claim 24, further
2	comprising a metallized fiber mount pad formed over the substantially planar fiber mount
3	region, and a metallized optical fiber mounted to the fiber mount pad with a metal solder

1 26. The optical component housing according to claim 24, further 2 comprising a fiber mount pad formed over the substantially planar fiber mount region and 3 configured to bond to a glass solder, and a bare optical fiber mounted to the fiber mount 4 pad with a glass solder.