You know the drill!

1. For a 2-sphere with coordinates (θ, φ) , write down the equations for parallel transport of a vector along a line of constant **longitude.** Then parallel transport the vector with components $V^{\mu}=(1,0)$ once around the line and write down the result. You may use any results from your homework without deriving them again.

For 5^{2} in $(0, \phi)$ we have: $\Gamma^{\phi}_{0\phi} = \Gamma^{\phi}_{\phi} = \cot \theta$, $\Gamma^{\phi}_{\phi\phi} = -\sin \cos \theta$

For 1/-transport of V We require: $\frac{dV^*}{d\lambda} + \int_{\partial A}^{A} \frac{dx^6}{d\lambda} V^A = 0$

For a line of constant long: tude: $x^h(x) = (\lambda, \phi_0) \Rightarrow \frac{d\theta}{d\lambda} = 1, \frac{d\phi}{d\lambda} = 0$

Then:

$$0: \frac{dv^{\circ}}{d\lambda} + \int_{\phi\phi}^{\phi} \frac{d\phi}{d\lambda} V^{\phi} = \frac{dv^{\circ}}{d\lambda} = 0 \Rightarrow V^{\circ} = constant$$

φ: $\frac{d\lambda}{dV} + \Gamma_{\phi\phi} \frac{d\theta}{d\theta} V^{\phi} + \Gamma_{\phi\phi} \frac{d\theta}{d\lambda} V^{\phi} = \frac{d\lambda}{dV} + coto V^{\phi} = 0$

$$\frac{dV^{\phi}}{d\lambda} = -\cot \theta V^{\phi} \Rightarrow V^{\phi} = Ae^{-\cot \theta \lambda} \Rightarrow V^{\phi}(\lambda=0) = 0 \Rightarrow A = 0$$

 $S_{\bullet} V_{ii}^{n} = (1,0)$

Alternatively:

 $V^h = (1,0)$ is tengent to the curve $X^h(\lambda) = (\lambda, \phi_0)$ and $X^h(\lambda)$ is a geodesic, so the tengent vector should not change as it is //-transported along $X^h(\lambda)$.

2. Consider the upper-half plane model of the hyperbolic plane $H = \{(x,y) \in \mathbb{R}^2 | y > 0\}$ with line element $ds^2 = \frac{dx^2 + dy^2}{y^2}$. Find the form of the divergence operator on a vector function $V^{\mu}(x,y)$ in the coordinate basis.

$$\nabla_{x} V^{h} = \partial_{x} V^{h} + \Gamma_{xx}^{h} V^{h} = \partial_{x} V^{l} + \partial_{x} V^{l} + \Gamma_{xx}^{l} V^{l} + \Gamma_{xx}^{l}$$