We claim:

1. Substituted 3-phenyluracils of the general formula I

5 where

10

15

20

where X^1 and X^2 are each oxygen or sulfur; W is $-C(R^8) = X^5$, $-C(R^8)(X^3R^6)(X^4R^7)$, $-C(R^8) = C(R^9) - CN$, $-C(R^8) = C(R^9) - CO - R^{10}$, $-CH(R^8) - CH(R^9) - CO - R^{10}$, $-C(R^8) = C(R^9) - CH_2 - CO - R^{10}$, $-C(R^8) = C(R^9) - C(R^{11}) = C(R^{12}) - CO - R^{10}$ or $-C(R^8) = C(R^9) - CH_2 - CH(R^{13}) - CO - R^{10}$ where X^3 and X^4 are each oxygen or sulfur;

X³ and X⁴ are each oxygen or sulfur; X⁵ is oxygen, sulfur or a radical-NR¹⁴;

 R^{14} is hydrogen, hydroxyl, C_1 - C_6 -alkyl, C_3 - C_6 -alkenyl, C_3 - C_6 -alkynyl, C_3 - C_7 -cycloalkyl, C_1 - C_6 -haloalkyl, C_1 - C_6 -alkoxy- C_1 - C_6 -alkyl, C_1 - C_6 -alkoxy, C_3 - C_6 -alkenyloxy, C_3 - C_6 -alkynyloxy, C_5 - C_7 -cycloalkoxy, C_5 - C_7 -cyclo-

alkenyloxy, C_1-C_6 -haloalkoxy, C_3-C_6 -haloalkenyloxy, hydroxy- C_1-C_6 -alkoxy, cyano- C_1-C_6 -alkoxy, C_3-C_7 -cyclo-

alkyl- C_1 - C_6 -alkoxy, C_1 - C_6 -alkoxy- C_1 - C_6 -alkoxy, C_1 - C_6 -

alkoxy- C_3 - C_6 -alkenyloxy, C_1 - C_6 -alkylcarbonyloxy, C_1 - C_6 -haloalkylcarbonyloxy, C_1 - C_6 -alkylcarbamoyloxy, C_1 -

 C_6 -haloalkylcarbamoyloxy, C_1 - C_6 -alkoxycarbonyl- C_2 - C_6 -

alkoxy, C_1-C_6 -alkylthio- C_1-C_6 -alkoxy, $di-C_1-C_6$ -alkyl-

amino- C_1 - C_6 -alkoxy, phenyl which may carry from one to three of the following substituents: cyano,

nitro, halogen, C₁-C₆-alkyl, C₂-C₆-alkenyl, C₁-C₆-

haloalkyl, C₁-C₆-alkoxy and C₁-C₆-alkoxycarbonyl,

phenyl- C_1 - C_6 -alkoxy, phenyl- C_3 - C_6 -alkenyloxy or phenyl- C_3 - C_6 -alkynyloxy, where one or two methylene

groups of each of the carbon chains may be replaced with -O-, -S- or $-N(C_1-C_6-alkyl)$ - and each phenyl

30

25

ring may carry from one to three of the following substituents: cyano, nitro, halogen, C1-C6-alkyl, C_2-C_6 -alkenyl, C_1-C_6 -haloalkyl, C_1-C_6 -alkoxy, C_1-C_6 alkoxycarbonyl, heterocyclyl, heterocyclyl-C1-C6heterocyclyl-C3-C6-alkenyloxy or heterocyclyl-C3-C6-alkynyloxy, where one or two methylene groups of each of the carbon chains may be replaced with -0-, -S- or -N(C_1 - C_6 -alkyl)- and the heterocyclyl ring may be from three-membered to sevenmembered and saturated, unsaturated or aromatic and may contain from one to four hetero atoms selected from a group consisting of one or two oxygen or sulfur atoms and up to four nitrogen atoms and furthermore may carry from one to three of the following substituents: cyano, nitro, halogen, C1- C_6 -alkyl, C_2 - C_6 -alkenyl, C_1 - C_6 -haloalkyl, C_1 - C_6 -alkoxy or C₁-C₆-alkoxycarbonyl,

or $-N(R^{15})R^{16}$, where

 R^{15} and R^{16} are each hydrogen, C_1 - C_6 -alkyl, C_3 - C_6 -alkenyl, C_3 - C_6 -alkynyl, C_3 - C_6 -cycloalkyl, C_1 - C_6 -haloalkyl, C_1 - C_6 -alkoxy- C_1 - C_6 -alkyl, C_1 - C_6 -alkylcarbonyl, C_1 - C_6 -alkoxycarbonyl, C_1 - C_6 -alkoxycarbonyl- C_1 - C_6 -alkenyl or C_1 - C_6 -alkoxycarbonyl- C_2 - C_6 -alkenyl, where the alkenyl chain may additionally carry from one to three of the following radicals: halogen and cyano or phenyl which may carry from one to three of the following substituents: cyano, nitro, halogen, C_1 - C_6 -alkyl, C_1 - C_6 -haloalkyl, C_3 - C_6 -alkenyl, C_1 - C_6 -alkoxy and C_1 - C_6 -alkoxycarbonyl, or

 R^{15} and R^{16} together with the common nitrogen atom form a saturated or unsaturated 4-membered to 7-membered heterocyclic structure, where one ring member may be replaced with -O-, -S-, -N=, -NH- or -N(C_1 - C_6 -alkyl)-;

 R^6 and R^7 are each C_1-C_6 -alkyl, C_1-C_6 -haloalkyl, C_3-C_6 -alkenyl, C_3-C_6 -alkynyl, C_1-C_6 -alkoxy- C_1-C_6 -alkyl, or R^6 and R^7 together form a saturated or unsaturated,

15

10

5

20

25

30

35

10

15

20

30

35

two-membered to four-membered carbon chain which may carry an oxo substituent, where one member of this chain may be replaced with an oxygen, sulfur or nitrogen atom which is not adjacent to X^3 and X^4 , and where the chain may carry from one to three of the following radicals: cyano, nitro, amino, halogen, C_2-C_6 -alkenyl, C_1-C_6 -alkoxy, $C_1-C_6-alkyl$, alkenyloxy, C2-C6-alkynyloxy, C1-C6-haloalkyl, cyano- C_1-C_6 -alkyl, hydroxy- C_1-C_6 -alkyl, C_1-C_6 -alkoxy- C_1-C_6 alkyl, C_3-C_6 -alkenyloxy- C_1-C_6 -alkyl, C_3-C_6 -alkynyloxy- C_3-C_7 -cycloalkoxy, C₃-C₇-cycloalkyl, C_1-C_6 -alkyl, carboxyl, C₁-C₆-alkoxycarbonyl, C₁-C₆-alkylcarbonyl $oxy-C_1-C_6-alkyl$ and phenyl which may carry from one to three of the following radicals: halogen, cyano, nitro, amino, C₁-C₆-alkyl, C₁-C₆-haloalkyl, C₁-C₆alkoxy and C_1 - C_6 -alkoxycarbonyl, and where the chain may furthermore be substituted by a fused-on or spiral-bonded three-membered to seven-membered ring, and one or two carbon atoms of this ring may be replaced with oxygen, sulfur and unsubstituted or C₁-C₆-alkyl-substituted nitrogen atoms and this ring may carry one or two of the following substituents: cyano, C_1-C_6 -alkyl, C_2-C_6 -alkenyl, C_1-C_6 -alkoxy, C_1-C_6 cyanoalkyl, C1-C6-haloalkyl and C1-C6-alkoxycarbonyl;

25 R⁸ is hydrogen, cyano, C₁-C₆-alkyl, C₂-C₆-alkenyl, C₂-C₆-alkynyl, C₁-C₆-haloalkyl, C₃-C₇-cycloalkyl, C₁-C₆-alkoxy-C₁-C₆-alkyl or C₁-C₆-alkoxycarbonyl;

 R^9 and R^{12} are each hydrogen, cyano, halogen, C_1 - C_6 -alkyl, C_1 - C_6 -alkoxy, halo- C_1 - C_6 -alkyl, C_1 - C_6 -alkylcarbonyl or C_1 - C_6 -alkoxycarbonyl;

 R^{10} is hydrogen, $O-R^{17}$, $S-R^{17}$, C_1-C_6 -alkyl which may furthermore carry one or two C_1-C_6 -alkoxy substituents or R^{10} is C_3-C_6 -alkenyl, C_3-C_6 -alkynyl, C_1-C_6 -haloalkyl, C_3-C_7 -cycloalkyl, C_1-C_6 -alkylthio- C_1-C_6 -alkyl, C_1-C_6 -alkylimino-oxy, $-N(R^{15})R^{16}$ or phenyl which may carry from one to three of the following substituents: cyano, nitro, halogen, C_1-C_6 -alkyl, C_2-C_6 -alkenyl, C_1-C_6 -haloalkyl, C_1-C_6 -alkoxy or

10

15

20

25

C₁-C₆-alkoxycarbonyl,

 R^{17} is hydrogen, C_1 - C_6 -alkyl, C_3 - C_6 -alkenyl, C_3 - C_6 -alkynyl, C_3 - C_7 -cycloalkyl, C_1 - C_6 -haloalkyl, C_3 - C_6 -haloalkenyl, cyano- C_1 - C_6 -alkyl, C_1 - C_6 -alkylthio- C_1 - C_6 -alkyl or C_1 - C_6 -alkyl-oximino- C_1 - C_6 -alkyl, C_1 - C_6 -alkylcarbonyl, C_1 - C_6 -alkylcarbonyl, C_1 - C_6 -alkylcarbonyl- C_1 - C_6 -alkoxycarbonyl- C_1 - C_6 -alkyl, phenyl or phenyl- C_1 - C_6 -alkyl, where each of the phenyl radicals in turn may carry from one to three of the following substituents: cyano, nitro, halogen, C_1 - C_6 -alkyl, C_1 - C_6 -alkoxycarbonyl; C_3 - C_6 -alkenyl, C_1 - C_6 -alkoxy and C_1 - C_6 -alkoxycarbonyl;

 R^{11} is hydrogen, cyano, halogen, C_1 - C_6 -alkyl, C_3 - C_6 -alkenyl, C_3 - C_6 -alkynyl, C_1 - C_6 -alkoxy- C_1 - C_6 -alkyl, C_1 - C_6 -alkoxycarbonyl, $-NR^{18}R^{19}$, where R^{18} and R^{19} have the same meanings as R^{15} and R^{16} , or phenyl which may furthermore carry from one to three of the following substituents: cyano, nitro, halogen, C_1 - C_6 -alkyl, C_1 - C_6 -haloalkyl, C_3 - C_6 -alkenyl, C_1 - C_6 -alkoxy and C_1 - C_6 -alkoxycarbonyl;

 R^{13} is hydrogen, cyano, C_1-C_6 -alkyl or C_1-C_6 -alkoxy-carbonyl;

or R^9 and R^{10} together form a two-membered to five-membered carbon chain in which one carbon atom may be replaced with oxygen, sulfur or unsubstituted or C_1 - C_6 -alkyl-substituted nitrogen;

R¹ is halogen, cyano, nitro or trifluoromethyl; R² is hydrogen or halogen;

R³ is hydrogen, nitro, C₁-C₆-alkyl, C₃-C₆-alkenyl, C₃-C₆-alkynyl, C₃-C₈-cycloalkyl, C₃-C₈-cycloalkylcarbonyl, cyano-C₁-C₆-alkyl, C₁-C₆-haloalkyl, C₁-C₆-alkoxy-C₁-C₆-alkyl, formyl, C₁-C₆-alkanoyl, C₁-C₆-alkoxycarbonyl, C₁-C₆-haloalkylcarbonyl, C₁-C₆-alkylcarbonyl-C₁-C₆-alkyl, C₁-C₆-alkylcarbonyl

alkoxycarbonyl- C_1 - C_6 -alkyl; a group -N(R^{20}) R^{21} , where R^{20} and R^{21} have one of the meanings of R^{15} and R^{16} ;

10

15

20

25

30

35

phenyl or phenyl- C_1 - C_6 -alkyl, where each phenyl ring may carry from one to three of the following radicals: cyano, nitro, halogen, C_1 - C_6 -alkyl, C_2 - C_6 -alkenyl, C_1 - C_6 -haloalkyl, C_1 - C_6 -alkoxy and C_1 - C_6 -alkoxycarbonyl;

 R^4 is hydrogen, cyano, nitro, halogen, C_1 - C_6 -alkyl, C_2 - C_6 -alkenyl, C_2 - C_6 -alkynyl, C_3 - C_8 -cycloalkyl, C_1 - C_6 -haloalkyl, C_1 - C_6 -hydroxyalkyl, cyano- C_1 - C_6 -alkyl, C_1 - C_6 -alkoxy, C_1 - C_6 -alkylthio, C_1 - C_6 -alkoxy- C_1 - C_6 -alkyl, C_1 - C_6 -alkylthio- C_1 - C_6 -alkyl or phenyl which may carry from one to three of the following radicals: cyano, nitro, halogen, C_1 - C_6 -alkyl, C_2 - C_6 -alkenyl, C_1 - C_6 -haloalkyl, C_1 - C_6 -alkoxy and C_1 - C_6 -alkoxycarbonyl;

 R^5 is hydrogen, cyano, nitro, halogen, C_1 - C_6 -alkyl, C_2 - C_6 -alkenyl, C_2 - C_6 -alkynyl, C_3 - C_7 -cycloalkyl, C_1 - C_6 -haloalkyl, C_1 - C_6 -hydroxyalkyl, cyano- C_1 - C_6 -alkyl, C_1 - C_6 -alkoxy- C_1 - C_6 -alkylhio- C_1 - C_6 -alkyl, formyl, C_1 - C_6 -alkyl-carbonyl, C_1 - C_6 -haloalkylcarbonyl, C_1 - C_6 -alkoxycarbonyl, C_1 - C_6 -alkoxycarbonyl- C_2 - C_6 -alkenyl, -N(R^{22}) R^{23} , where R^{22} and R^{23} have one of the meanings of R^{15} and R^{16} , or phenyl which may carry from one to three of the following radicals: cyano, nitro, halogen, C_1 - C_6 -alkyl, C_2 - C_6 -alkenyl, C_1 - C_6 -haloalkyl, C_1 - C_6 -alkoxy and C_1 - C_6 -alkoxy-carbonyl, or

 R^4 and R^5 together form a saturated or unsaturated 3-membered or 4-membered carbon chain which may contain from one to three of the following hetero atoms: 1 or 2 oxygen atoms, 1 or 2 sulfur atoms and from 1 to 3 nitrogen atoms, and the chain may furthermore carry from one to three of the following radicals: cyano, nitro, amino, halogen, C_1 - C_6 -alkyl, C_2 - C_6 -alkenyl, C_1 - C_6 -alkoxy, C_1 - C_6 -alkoxycarbonyl;

with the proviso that R^4 may not be trifluoromethyl at the same time as R^5 is hydrogen when W is $-CH=CH-CO-R^{10}$ where R^{10} is C_1-C_6 -alkoxy or C_3-C_7 -cycloalkoxy, and with the proviso that R^4 and R^5 are not simultaneously hydrogen when W is $CH(R^8)-CH(R^9)-CO-R^{10}$ and R^9 is not halogen,

and the salts and enol ethers of those compounds I in

10

15

which R3 is hydrogen.

Compounds of the general formula Ia or Ib

where the variables R^1 , R^2 , R^4 , R^5 , X^1 , X^2 and W have the meanings stated in claim 1 and R^3 is one of the following groups: C_1-C_6 -alkyl, C_3-C_6 -alkenyl or C_3-C_6 -alkynyl, with the proviso that R^4 may not be trifluoromethyl at the same time as R^5 is hydrogen when W is $-CH=CH-CO-R^{10}$ where R^{10} is C_1-C_6 -alkoxy or C_3-C_6 -cycloalkoxy.

- 3. A compound as claimed in claim 1 or 2, wherein W is $-C(R^8)=X^5$, $-C(R^8)(X^3R^6)(X^4R^7)$, $-C(R^8)=C(R^9)-CO-R^{10}$ or $-CH(R^8)-CH(R^9)-CO-R^{10}$.
- 4. A compound as claimed in claim 1 or 2, wherein R^3 is $C_1\text{-}C_6\text{-alkyl}$.
- 5. A compound as claimed in claim 1 or 2, wherein R² is hydrogen or fluorine.
- 6. A compound as claimed in claim 1 or 2, wherein R¹ is chlorine or bromine.
- 7. A compound as claimed in claim 1 or 2, wherein R^4 is C_1-C_6 -haloalkyl.
- 20 8. Enamine esters of the general formula II

$$\begin{array}{c|c}
R^3 & X^1 & R^2 \\
R^5 & C - OL1 & R^1
\end{array}$$
II

where R^1 , R^2 , R^3 , R^4 , R^5 , X^1 and W have the meanings stated in claim 1 and L^1 is C_1-C_6 -alkyl or phenyl.

9. Enamine-carboxylates of the general formula III

15

where the variables R^1 , R^2 , R^3 , R^4 , R^5 , X^2 and W have the meanings stated in claim 1 and L^1 is C_1-C_6 -alkyl or phenyl.

5 10. Pyrimidinone derivatives of the general formula
IVa or IVb

where the variables R^1 , R^2 , R^4 , R^5 , X^1 , X^2 and W have the meanings stated in claim 1 and Hal is halogen.

11. Enamine-amides of the formula VIII

where the variables R^1 , R^2 , R^3 , R^4 , R^5 , X^2 and W have the meanings stated in claim 1.

- 12. A herbicide containing an inert liquid or solid carrier and a herbicidal amount of at least one substituted 3-phenyluracil of the formula I as claimed in claim 1 or of the formula Ia or Ib as claimed in claim 2 or a salt or an enol ether of those compounds I in which R³ is hydrogen.
- 13. A method for controlling undesirable plant growth, wherein a herbicidal amount of a substituted 3-phenyluracil of the formula I as claimed in claim 1 or of the formula Ia or Ib as claimed in claim 2 or a salt or an enol ether of those compounds I in which R³ is

25

5

hydrogen is allowed to act on plants, on their habitat or on seed.

- 14. An agent for the desiccation and defoliation of plants, containing, in addition to conventional additives, an amount, having a defoliant or desiccant effect, of at least one substituted 3-phenyluracil of the formula I as claimed in claim 1 or of the formula Ia or Ib as claimed in claim 2 or a salt or an enol ether of those compounds I in which R³ is hydrogen.
- 10 15. A method for the desiccation and defoliation of plants, wherein an amount, having a defoliant and/or desiccant effect, of a substituted 3-phenyluracil I as claimed in claim 1 or Ia or Ib as claimed in claim 2 is allowed to act on the plants.
- 15 16. A method as claimed in claim 15, wherein cotton is defoliated.
 - 17. A pesticide containing inert carriers and a pesticidal amount of at least one substituted 3-phenyluracil of the formula I as claimed in claim 1 or of the formula Ia or Ib as claimed in claim 2 or of a salt or of an enol ether of those compounds I in which R³ is hydrogen.
 - 18. A method for controlling pests, wherein a pesticidal amount of a substituted 3-phenyluracil of the formula I as claimed in claim 1 or of the formula Ia or Ib as claimed in claim 2 or of a salt of an enol ether of those compounds I in which R³ is hydrogen is allowed to act on pests or their habitat.
- 19. A process for the preparation of a substituted 3-30 phenyluracil I as claimed in claim 1 or Ia or Ib as claimed in claim 2, wherein
 - a) an enamine ester of the formula II or an enaminecarboxylate of the formula III

15

20

where L^1 is C_1 - C_6 -alkyl or phenyl, is cyclized and, if desired, the substituted 3-phenyluracil I in which R^3 is hydrogen is liberated from the resulting metal salt by means of an acid, or

- 5 b) a 3-phenyluracil I in which R³ is hydrogen is alkylated or acylated or
 - a 3-phenyluracil I in which R¹ is halogen is reacted with a metal cyanide or
 - d) a pyrimidinone derivative of the formula IVa or IVb

where Hal is halogen is reacted with a compound HO- $R^{3'}$, HS- $R^{3'}$ Me $^{\bullet}$ $^{\bullet}OR^{3'}$ or Me $^{\bullet}$ $^{\circ}SR^{3'}$, where Me $^{\bullet}$ is one equivalent of a metal ion, or

- e) a 3-phenyluracil I in which W is $-CO-R^8$ is acetalated with a compound $H-X^3R^6$, $H-X^4R^7$ or $H-X^3(R^6R^7)X^4-H$ or
- f) a 3-phenyluracil I in which W is $-C(R^8)(X^3R^6)(X^4R^7)$ is subjected to acetal cleavage or
- g) a 3-phenyluracil I in which W is $-C(R^s)=0$ is reacted with a phosphorylide of the formulae Va to Vd

 $R_3P=CR^9-CO-R^{10}$ Va,

 $R_3P=C(R^9)-CH_2-CO-R^{10}$ Vb, $R_3P=C(R^9)-C(R^{11})=C(R^{12})-CO-R^{10}$ Vc,

 $R_3P=C(R^9)-CH_2-CHR^{13}-CO-R^{10}$ Vd,

where R is a C-organic substituent, or with a phosphonium salt of the formulae VIa to VId

25 $R_3P^{\bullet}-CH(R^9)-CO-R^{10}$ Hal^o VIa,

 $R_3P^{\bullet}-CH(R^{\circ})-CH_2-CO-R^{10}$ Hale VIb,

 $R_3P^{\bullet}-CH(R^9)-CR^{11}=CR^{12}-CO-R^{10}$ Hal^{*} VIc,

 $R_3P^{\bullet}-CH(R^9)-CH_2-CHR^{13}-CO-R^{10}$ Hale VId,

where Hal is halogen, or with a phosphonate of the formulae VIIa to VIId

formulae VIIa to VIId

(RO),PO-CH(R°)-CO-R¹° VIIa,

20

. - 149 -O.Z. 0050/42684 VIIb, $(RO)_{2}PO-CH(R^{9})-CH_{2}-CO-R^{10}$ $(RO)_2PO-CH(R^9)-CR^{11}=CR^{12}-CO-R^{10}$ VIIc, (RO), PO-CH(R9)-CH2-CHR13-CO-R10 VIId, or a 3-phenyluracil I in which W is -C(R8)=O is reacted 5 h) with an amine, hydroxylamine or hydrazine H_2N-R^{14} or a 3-phenyluracil I in which W is $-C(R^8)=N-R^{14}$ is i) cleaved to give a compound I in which W is -C(R8)=0

10 k) a 3-phenyluracil I in which X² is oxygen is reacted with a sulfurization reagent or

or

1) a 3-phenyluracil I in which R⁵ is hydrogen is halogenated or

m) a 3-phenyluracil I in which W is cyano is reduced to a compound I in which W is formyl or

n) an enamide VIII as claimed in claim 11 is cyclized with a phosgenating or thiophosgenating agent or

o) a 3-phenyluracil I as claimed in claim 1, in which W is amino, is alkylated by the Meerwein method or

p) a 3-phenyluracil I as claimed in claim 1, in which W is bromine, iodine or O-SO₂CF₃, is coupled with an olefin under metal catalysis.