Metodi Computazionali della Fisica

Interpolazione

Problema da risolvere

- Data una lista di punti $[x_i, f_i]$, i=1,...n, stimare f(x) per valori arbitrari di x;
- graficamente: disegnare una curva regolare attraverso i vari punti.

Interpolazione & Curve-fitting

Spesso si hanno a disposizione insiemi di dati provenienti da misure sperimentali.

- Tipicamente, si vede che i dati di (output) variano ...
- ...al variare dei parametri di controllo (input).
- Esempi:
 - variazione della pressione con la profondità
 - variazione temporale della velocità del vento
 - variazione spaziale della temperatura

Metodo scientifico: i dati identificano una relazione da trovare.

Processo noto come curve fitting

Interpolazione & Curve-fitting

Pato un'insieme di dati di n+1 punti (x_i, y_i) identificare una funzione f(x) (la curva), che sia in qualche (ben-definito) modo il <u>best fit</u> dei dati

Itilizzato per:

- Identificare una *relazione* sottesa (modello/predizione)
- Interpolazione (riempimento dei vuoti)
- Estrapolazione (predizione al di fuori del range dei dati)

Interpolazione Vs Regressione

econda della qualità dei dati si possono usare diversi approcci.

confidenza e bassa dispersione nei dati:
c'è una relazione *polinomiale*Si vuole trovare un'espressione

Non si sa quale sia la relazione giusta Chiara dispersione dei dati Si vuole trovare un'espressione

Interpolazione

- nsideriamo il caso in cui non vi siano errori nei dati.
- na quindi $y_i = f(x_i)$ negli n+1 punti $x_0, x_1, \dots, x_i, \dots, x_n$
- rdinati $(x_i > x_{i-1})$ e spesso (ma non sempre)
- quispaziati.
- generale, non si conosce la funzione f(x).
- ncettualmente, l'interpolazione consiste di due parti:
- Sviluppare una semplice funzione g(x) che
 - approssimi f(x)
 - passi attraverso tutti i punti x_i

Interpolazione

ell'interpolazione è cruciale la selezione della funzione g(x).

tipi di funzione che in genere si considerano:

- Polinomi
- Splines
- Funzioni trigonometriche (per f periodiche)
- Funzioni spettrali (Fourier)
- Funzioni razionali (Padè)

Interpolazione polinomiale

consideri un insieme di n+1 valori $y_i=f(x_i)$ negli n+1 punti $x_0, x_1 ... x_i, ... x_n$ ordinati $(x_j > x_{j-1})$ in generale, dati n+1 punti, esiste un unico colinomio $g_n(x)$ di ordine n:

$$g_n(x) = a_0 + a_1 x + a_2 x^2 + \dots + a_n x^n$$

e passa attraverso tutti gli n+1 punti.

Interpolazione polinomiale

Vi è una varietà di modi per esprimere lo stesso polinomio.

Dui consideriamo il caso dei:

Polinomi interpolanti di Lagrange

Interpolazione polinomiale

Esistenza – esiste un polinomio che passa esattamente attraverso gli n+1 punti ? SI. Lo si dimostra costruendolo.

Unicità – Vi è più di un tale polinomio?
NO. Lo si dimostra.

Polinomio di Lagrange (n+1 punti)

ha di n+1 termini, dove -esimo termine Sia uguale a $f(x_i)$. Sia uguale a zero in tutti gli altri punti assegnati radici del polinomio i-

Ogni *i*-esimo termine è polinomio di grado *n*

esimo).

$$p_n(x) = \sum_{i=0}^n L_i(x) f(x_i)$$

$$L_i(x) = \prod_{k=0, k \neq i}^n \frac{(x - x_k)}{(x_i - x_k)}$$

$$L_i(x_j) = \delta_{ij} = \begin{cases} 1 & i = j \\ 0 & i \end{cases}$$

Interpolazione lineare (n+1=2)

 $n+1=2 \implies 2$ polinomi di ordine n=1 (2 rette)

$$p_{1}(x) = \sum_{i=0}^{1} L_{i}(x) f(x_{i})$$

$$= \frac{(x - x_{1})}{(x_{0} - x_{1})} f(x_{0}) + \frac{(x - x_{0})}{(x_{1} - x_{0})} f(x_{1})$$

$$p_{1}(x) = f(x_{0}) + \frac{f(x_{1}) - f(x_{0})}{x_{1} - x_{0}} (x - x_{0})$$

Polinomi di lagrange

Approssimazione del secondo ordine n+1=3

=> 3 polinomi quadratici (parabole)

terza forma quadratica radici in x_0 e x_1 ed un ore uguale a quello la funzione data in x_2 .

$$P(x_0) = 0$$

- $P(x_1) = 0$
- $\bullet P(x_2) = f_2$

Polinomi di Lagrange

La somma deve essere un unico polinomio del secondo ordine che passa attraverso tutti i punti assegnati.

Quale può essere un'implementazione efficiente di questo metodo?

Polinomi di Lagrange

isto che per ogni insieme di n+1 punti esiste un unico polinomio olante di ordine *n* definito dalla formula di Lagrange:

$$p_n(x) = \sum_{i=0}^n \left(\prod_{k=0, k \neq i}^n \frac{x - x_k}{x_i - x_k} \right) f(x_i)$$

npi:

$$n = 1 \Rightarrow p_1(x) = f(x_0) \frac{x - x_1}{x_0 - x_1} + f(x_1) \frac{x - x_0}{x_1 - x_0}$$

 $n=0 \Rightarrow p_0(x)=f(x_0),$

Algoritmo di Neville (metodo recursivo)

arte dai polinomi di ordine zero alori $y_i = f(x_i)$) e si costruisce una **ienza** di interpolazioni *lineari* :

si costruisce il polinomio che passa da x_0 e x_1 con la formula:

$$S_{11} = \frac{(x - x_0)S_{10} + (x_1 - x)S_{00}}{S_{11}}$$

$$S_{00} = f(x_0)$$
$$S_{10} = f(x_1)$$

$$S_{10} = f(x_1)$$

$$S_{i\mathbf{Q}} = f(x_i)$$

$$|S_{n0}| = f(x_n)$$

Algorithmo di Neville

o stesso modo, dati

$$S_{10}, S_{20}$$

 S_{10}, S_{20} si ha il polinomio che passa da x_1 e x_2 :

$$S_{21} = \frac{(x - x_1)S_{20} + (x_2 - x)S_{10}}{x_2 - x_1}$$

ordine successivo, dati S_{11}, S_{21}

$$S_{11}, S_{21}$$

si costruisce il polinomio che passa da x_0 e x_2 cioè:

$$S = \frac{(x-x_0)S_{21} + (x_2-x)S_{11}}{(x-x_0)S_{21} + (x_2-x)S_{21}}$$

Algoritmo di Neville

per esempio:

$$\frac{(x-x_0)S_{21}+(x_2-x)S_{11}}{(x_2-x_0)}$$

$$= \int_{(x-x_0)} \left[\frac{(x-x_1)}{(x_2-x_1)} f(x) + \left(\frac{x_2-x_1}{(x_2-x_1)} f(x) \right) + \left(\frac{x_2-x_1}{(x_2-x_1)} f(x) \right) + \left(\frac{x_1-x_2}{(x_2-x_1)} f(x) \right) + \left(\frac{x_1-x_2}{(x_2-x_1)} f(x) \right) + \left(\frac{x_2-x_2}{(x_2-x_1)} f(x) \right) + \left(\frac{x_2-x_2}{(x_2-x_2)} f(x)$$

Algoritmo di Neville (pseudocodice)

 $S_{10} = f(x_1)$

 $S_{i0} = f(x_i)$

 $S_{n0} = f(x_n)$

array $(x_i)_{0:n}, (y_i)_{0:n}$

eger i, j, n

i=0 to n do

$$S_{i0} \leftarrow y_i$$

r j=1 to n do

end for

l for

for i=j to n do

$$S_{ij} \longleftarrow \frac{x - x_{i-j}}{x_i - x_{i-j}} S_{i,j-1} + \frac{x_i - x}{x_i - x_{i-j}} S_{i-1,j-1}$$

Valori assegnati (input) Arrays unidimensionali

Valori uscenti (output) Array bidimensionale

$$S_{22} = \frac{(x - x_0)S_{21} + (x_2 - x)S_{11}}{(x_2 - x_0)}$$

Esempio: ln(x)

Interpolazione di ln(2) assegnati i valori ln(1), ln(4) e ln(6)

- Punti assegnati: {(1,0), (4,1.3863), (6,1.79176)}
- Interpolazione lineare: $0 + \{(1.3863-0)/(4-1)\}(x-1) = 0.4621(x-1)$
- Interpolazione quadratica: 0.4621(x-1)+((0.40546-1.3863)/2)(x-1)(x-4)= 0.4621(x-1) - 0.49(x-1)(x-4)

Notare la divergenza per valori esterni al range dei dati assegnati.

Esempio: ln(x)

- L'interpolazione quadratica coglie un pò della curvatura.
- In qualche modo c'è un miglioramento dei risultati.
- Non è sempre una buona idea aumentare l'ordine del polinomio.

Problemi

E' sembre una buona idea usare polinomi di ordine via via superiore ?

Tendenza del polinomio a "oscillare"

Esempio

Dati da esperimento di scattering di neutroni (9 punti)

Interpolazione con polinomio di ordine 8

Curva teorica (campionata in 8 punti)

L'ordine elevato del polinomio comporta oscillazioni indesiderate.