Linear Algebra Standards

How can we solve systems of linear equations?			Basis of solution space. I can find a ba-	
□ □ E1.	Systems as matrices. I can translate back and forth between a system of linear equations and the corresponding augmented matrix.	sis for the solution set of a homogeneous system of equations.		
		How car braically	${f n}$ we understand linear maps alge-	
□ □ E2 .	Row reduction. I can put a matrix in reduced row echelon form.	□ □ A1.	□ A1. Linear maps and matrices . I can translate back and forth between a linear transformation of Euclidean spaces and its standard matrix, and perform related computations.	
□ □ E3.	Systems of linear equations . I can compute the solution set for a system of linear equations.			
What is	a vector space?	$\Box \Box \mathbf{A2}.$	Linear map verification. I can deter-	
	Vector property verification. I can show why an example satisfies a given vec- tor space property, but does not satisfy an- other given property.		mine if a map between vector spaces of polynomials is linear or not.	
		□ □ A3.	Injectivity and surjectivity . I can determine if a given linear map is injective	
□ □ V2.	Vector space identification. I can list all eight properties of a vector space, infer which of these properties a given example satisfies, and thus determine if the example is a vector space.		and/or surjective.	
		□ □ A4.	Kernel and Image . I can compute a basis for the kernel and a basis for the image of a linear map.	
□ □ V3.	Linear combinations . I can determine if a Euclidean vector can be written as a linear combination of a given set of Euclidean vectors.	What algebraic structure do matrices have?		
		□ □ M1.	Matrix Multiplication. I can multiply matrices.	
□ □ V 4.	Spanning sets . I can determine if a set of Euclidean vectors spans \mathbb{R}^n .	□ □ M2.	Invertible Matrices . I can determine if a square matrix is invertible or not.	
□ □ V 5.	Subspaces . I can determine if a subset of \mathbb{R}^n is a subspace or not.	□ □ M3 .	Matrix inverses. I can compute the inverse matrix of an invertible matrix.	
What structure do vector spaces have? Ho			How can we understand linear maps geomet-	
	Linear independence . I can determine if a set of Euclidean vectors is linearly dependent or independent.	rically?		
		□ □ G 1.	Row operations. I can represent a row operation as matrix multiplication, and compute how the operation affects the determinant.	
□ □ S2.	Basis verification . I can determine if a set of Euclidean vectors is a basis of \mathbb{R}^n .			
□ □ S3.	Basis computation. I can compute a basis for the subspace spanned by a given set of Euclidean vectors.	□ □ G2 .	Determinants . I can compute the determinant of a square matrix.	
□ □ S4.	Dimension . I can compute the dimension of a subspace of \mathbb{R}^n .	□ □ G3.	Eigenvalues . I can find the eigenvalues of a 2×2 matrix.	
□ □ S 5.	Abstract vector spaces. I can solve exercises related to standards V3-S4 when posed in terms of polynomials or matrices.	□ □ G4.	Eigenvectors . I can find a basis for the eigenspace of a square matrix associated with a given eigenvalue.	