

Free Lunch For Few-Shot Learning: Distribution Calibration

Shuo Yang, Lu Liu, Min Xu ICLR 2021

Presented by Chenpei Huang

Outline

Introduction

Main Approach

Experiments

Conclusion

Background: Few-shot learning

- "Can machines think?", by Alan Turing
- Machine: powerful device, advanced model, large dataset
- Human: learn from only one-shot

Prior knowledge

Background: Few-shot learning

- Dataset:
 - 1. (Big) base dataset base classes
 - 2. (small) support dataset novel classes

base classes C_b and novel classes C_n

- N-way-K-shot: N classes, K samples in support dataset
- Query set: test samples in novel classes

support set
$$S = \{(x_i, y_i)\}_{i=1}^{N \times K}$$

query set $Q = \{(x_i, y_i)\}_{i=N \times K+1}^{N \times K+N \times q}$

Background: Few-shot learning

Few-shot problem

Few-shot solution

- 1. Model: constrain hypothesis space by prior knowledge
- 2. Algorithm: alter search strategy in hypothesis space by prior knowledge
- 3. Data: Augment training data by prior knowledge

Introduction

- Model trained with a wide coverage of data can generalize well.
- However, few training data makes the model overfit.
- Few-shot feature distribution needs calibration.

Figure 1: Training a classifier from few-shot features makes the classifier overfit to the few examples (Left). Classifier trained with features sampled from calibrated distribution has better generalization ability (Right).

Introduction

- What to generate: feature or data
 - 1. much lower dimensions => easier to calibrate
 - 2. Gaussian distribution
- How to generate augmented features

From similar classes in the base dataset

Estimate distribution => generate virtual features => supervise classification

	Arctic fox		
	mean sim	var sim	
white wolf	97%	97%	
malamute	85%	78%	
lion	81%	70%	
meerkat	78%	70%	
jellyfish	46%	26%	
orange	40%	19%	
beer bottle	34%	11%	

Outline

Introduction

Main Approach

Experiments

Conclusion

Main Algorithm

```
Algorithm 1 Training procedure for an N-way-K-shot task

Require: Support set features S = (x_i, y)_{i=1}^{N \times K} ① prepare base class mean/variance

Require: Base classes' statistics \{\mu_i\}_{i=1}^{|C_b|}, \{\Sigma_i\}_{i=1}^{|C_b|} ② make them Gaussian like

1: Transform (x_i)_{i=1}^{N \times K} with Tukey's Ladder of Powers as Equation 3 ② make them Gaussian like

2: for (x_i, y_i) \in S do

3: Calibrate the mean \mu' and the covariance \Sigma' for class y_i using x_i with Equation 6

4: Sample features for class y_i from the calibrated distribution as Equation For novel classes, calibrate distribution

5: end for — and generate samples

6: Train a classifier using both support set features and all sampled features as Equation 8
```

Base class statistics: calculate mean and variance of features

$$\mu_i = \frac{\sum_{j=1}^{n_i} x_j}{n_i}, \qquad \Sigma_i = \frac{1}{n_i - 1} \sum_{j=1}^{n_i} (x_j - \mu_i) (x_j - \mu_i)^T.$$

Tukey's Ladder of Powers Transformation (if possibly skewed)

$$\tilde{\mathbf{x}} = \begin{cases} \mathbf{x}^{\lambda} & \text{if } \lambda \neq 0 \\ \log(\mathbf{x}) & \text{if } \lambda = 0 \end{cases}$$

Decreasing λ makes the distribution less positively skewed and vice versa.

Calibration through statistics transfer

Find top-k similar base classes

$$\mathbb{S}_d = \{-\|\boldsymbol{\mu}_i - \tilde{\boldsymbol{x}}\|^2 \mid i \in C_b\},$$

$$\mathbb{S}_N = \{i \mid -\|\boldsymbol{\mu}_i - \tilde{\boldsymbol{x}}\|^2 \in topk(\mathbb{S}_d)\},$$

Calibrate to target Gaussian distribution

$$\mu' = \frac{\sum_{i \in \mathbb{S}_N} \mu_i + \tilde{x}}{k+1}, \Sigma' = \frac{\sum_{i \in \mathbb{S}_N} \Sigma_i}{k} + \alpha,$$

Hyperparameter indicates dispersion

Leverage the calibrated distribution

Generate feature vectors with certain label

$$\mathbb{D}_y = \{(\boldsymbol{x}, y) | \boldsymbol{x} \sim \mathcal{N}(\boldsymbol{\mu}, \boldsymbol{\Sigma}), \forall (\boldsymbol{\mu}, \boldsymbol{\Sigma}) \in \mathbb{S}^y \}.$$

Train a task-specific classifier

$$\ell = \sum_{(\boldsymbol{x}, y) \sim \tilde{S} \cup \mathbb{D}_{y, y \in \mathcal{Y}}} -\log \Pr(y | \boldsymbol{x}; \theta),$$

Outline

Introduction

Main Approach

• Experiments

Conclusion

Experiment Setup

Dataset: minilmageNet, tieredImageNet, CUB

Feature Extractor: WideResNet

Classifier: LR and SVM

Hyperparameter:

- Feature dimension 750
- Selected base class k=2
- Power transfer $\lambda = 0.5$
- $\alpha = 0.21, 0.21, 0.3$

Evaluation Metric

Top-1 accuracy on 5-way-1-shot and 5-way-5-shot settings

Performance comparison to state-of-the-art

Methods	miniImageNet		CUB		
Methods	5way1shot	5way5shot	5way1shot	5way5shot	
Optimization-based					
MAML (Finn et al. (2017))	48.70 ± 1.84	63.10 ± 0.92	50.45 ± 0.97	59.60 ± 0.84	
Meta-SGD (Li et al. (2017))	50.47 ± 1.87	64.03 ± 0.94	53.34 ± 0.97	67.59 ± 0.82	
LEO (Rusu et al. (2019))	61.76 ± 0.08	77.59 ± 0.12	-	-	
E3BM (Liu et al. (2020c))	63.80 ± 0.40	80.29 ± 0.25	-	-	
Metric-based					
Matching Net (Vinyals et al. (2016))	43.56 ± 0.84	55.31 ± 0.73	$ 56.53 \pm 0.99 $	63.54 ± 0.85	
Prototypical Net (Snell et al. (2017))	54.16 ± 0.82	73.68 ± 0.65	72.99 ± 0.88	86.64 ± 0.51	
Baseline++ (Chen et al. (2019a))	51.87 ± 0.77	75.68 ± 0.63	67.02 ± 0.90	83.58 ± 0.54	
Variational Few-shot(Zhang et al. (2019))	61.23 ± 0.26	77.69 ± 0.17	-	-	
Negative-Cosine(Liu et al. (2020a))	62.33 ± 0.82	80.94 ± 0.59	72.66 ± 0.85	89.40 ± 0.43	
Generation-based					
MetaGAN (Zhang et al. (2018))	52.71 ± 0.64	68.63 ± 0.67	-	-	
Delta-Encoder (Schwartz et al. (2018))	59.9	69.7	69.8	82.6	
TriNet (Chen et al. (2019b))	58.12 ± 1.37	76.92 ± 0.69	69.61 ± 0.46	84.10 ± 0.35	
Meta Variance Transfer (Park et al. (2020))	-	67.67 ± 0.70	-	80.33 ± 0.61	
Maximum Likelihood with DC (Ours)	66.91 ± 0.17	80.74 ± 0.48	77.22 ± 0.14	89.58 ± 0.27	
SVM with DC (Ours)	67.31 ± 0.83	82.30 ± 0.34	79.49 ± 0.33	$\textbf{90.26} \pm \textbf{0.98}$	
Logistic Regression with DC (Ours)	68.57 ± 0.55	$\textbf{82.88} \pm \textbf{0.42}$	79.56 ± 0.87	90.67 ± 0.35	

Keys:

- Simple LR and SVM classifier, even MLE, outperform state-ofthe-art
- 2. 10% surpass other generation-based method
- 3. Also compared to generation-based method, this method requires less training costs

Visualization of generated samples

Figure 2: t-SNE visualization of our distribution estimation. Different colors represent different classes. ' \bigstar ' represents support set features, 'x' in figure (d) represents query set features, ' \blacktriangle ' in figure (b)(c) represents generated features.

Apply DC on different backbones and baselines

Backbones	without DC	with DC
conv4 (Chen et al., 2019a)	ı	$54.62 \pm 0.64 (\uparrow 12.51)$
conv6 (Chen et al., 2019a)	46.07 ± 0.26	57.14 \pm 0.45 (\uparrow 11.07)
resnet18 (Chen et al., 2019a)	52.32 ± 0.82	$61.50 \pm 0.47 (\uparrow 9.180)$
WRN28 (Mangla et al., 2020)	54.53 ± 0.56	$64.38 \pm 0.63 (\uparrow 9.850)$
WRN28 + Rotation Loss (Mangla et al., 2020)	56.37 ± 0.68	68.57 \pm 0.55 (\uparrow 12.20)

Method	without DC	with DC
Baseline (Chen et al., 2019a)	42.11 ± 0.71	$54.62 \pm 0.64 (\uparrow 12.51)$
Baseline++ (Chen et al., 2019a)	48.24 ± 0.75	$61.24 \pm 0.37 \ (\uparrow 13.00)$

Role of Tukey's power transformation and feature generation

Figure 3: Left: Accuracy when increasing the power in Tukey's transformation when training with (red) or without (blue) the generated features. Right: Accuracy when increasing the number of generated features with the features are transformed by Tukey's transformation (red) and without Tukey's transformation (blue).

Other Hyper-Parameters

Top-k base classes selection

Figure 4: The effect of different values of *k*.

Dispersion of covariance matrix

Figure 5: The effect of different values of α .

Outline

Introduction

Main Approach

Experiments

Conclusion

Conclusion

 They propose a simple but effective distribution calibration strategy for few-shot classification.

 Without much parameters to learn, a simple logistic regression trained with generated features outperform current state-ofthe-art method.

 The calibrated distribution is visualized and demonstrates an accurate estimation of feature distribution.

