TD N°5: Tableaux et matrices

Exercice 01_5:

L'algorithme de la première case du tableau suivant est écrit syntaxiquement correct. Repérer les erreurs syntaxiques dans chacune des écritures suivantes (de 2 à 4), s'il y en a.

Algo Exo1_5_1	<u>Algo</u> Exo1_5_2	<u>Algo</u> Exo1_5_3	<u>Algo</u> Exo1_5_4		
<u>Constantes</u>	<u>Constante</u>	<u>Constantes</u>			
N = 10	N = 10	N = 10			
<u>Variables</u>	<u>Variables</u>	<u>Variables</u>	<u>Variables</u>		
T: Tableau de N Entier	T: Tableau de N Entiers	T: Tableau de N Entier	T: Tableau de 10 Entier		
i, S : Entier	i, S : Entier	i, S : Entier	i, S : Entier		
<u>Début</u>	<u>Début</u>	<u>Début</u>	<u>Début</u>		
<u>Pr</u> i ← 1 à N :	<u>Pr</u> i ← 1 à N :		<u>Pr</u> i ← 1 à 10 :		
Lire(T(i))	Lire T(i)	Lire(T)			
FPr	FPr		<u>FPr</u>		
s ← 0	s ← 0	S(1) ← 0	s ← 0		
<u>Pr</u> i ← 1 à N :	<u>Pr</u> i ← 1 à N :	<u>Pr</u> i ← N à 1 Pas = -1 :	<u>Pr</u> i ← 1 à N :		
S ← S + T(i)			S ← S + T(i)		
FPr	FPr	FPr	FPr		
Ecrire(S)	Ecrire(S)	Ecrire(S)	Ecrire(S)		
<u>Fin</u>	<u>Fin</u>	<u>Fin</u>	<u>Fin</u>		

Exercice 02_5:

a- Écrire un algorithme qui permet à l'utilisateur de remplir un tableau de 30 caractères (dans une boucle à part), et affiche le <u>nombre</u> de voyelles de ce tableau. <u>Note</u> : les voyelles sont : a, e, i, o, u, y.

b- Écrire un algorithme qui permet à l'utilisateur de remplir un tableau de 25 entiers (dans une boucle à part), et affiche le nombre, la somme et le pourcentage d'éléments impairs du tableau.

Exercice 03 5:

Écrire un algorithme qui permet à l'utilisateur de remplir un tableau de 50 réels (dans une boucle à part), et d'afficher :

a- la plus grande valeur.

b- la <u>plus grande</u> valeur et son <u>indice</u>. S'il y a plusieurs éléments qui donnent la même plus grande valeur, l'algorithme devra afficher le plus petit indice.

c- la <u>plus grande</u> valeur et son <u>indice</u>. S'il y a plusieurs éléments qui donnent la même plus grande valeur, l'algorithme devra afficher tous les indices correspondants.

Exercice 04_5 (supplémentaire):

Écrire un algorithme qui demande à l'utilisateur d'entrer 10 entiers et de les stocker dans un tableau TAB puis d'afficher l'indice de l'élément qui donne le plus grand carré. S'il y a plusieurs éléments qui donnent le même plus grand carré, l'algorithme devra afficher le plus grand indice.

Exemple:

TAB	1	2	3	4	5	6	7	8	9	10
	0	4	-10	3	1	0	10	5	-7	2

Dans ce tableau, le plus grand carré (100) provient des deux éléments -10 (d'indice 3) et 10 (d'indice7). L'algorithme affiche le plus grand indice, à savoir 7.

TD : Initiation à l'algorithmique 1^{ère} Année (2020-2021)

Exercice 05_5:

Écrire un algorithme qui demande de remplir deux tableaux A et B, de 45 réels chacun (dans deux boucles à part), et de les additionner dans un troisième tableau C, élément par élément, d'afficher le contenu de T3, puis de calculer et d'afficher leur produit scalaire.

$$\sum_{i=1}^{45} T1(i) \times T2(i)$$

Exercice 06 5:

a- Écrire un algorithme qui demande un nombre Nb et affiche les Nb premiers nombres premiers (sans avoir à utiliser les tableaux).

b- Écrire un algorithme qui demande un nombre Nb inférieur à 100, et remplie un tableau de 100 éléments par les valeurs des Nb premiers nombres premiers. Il doit mettre dans les cases restantes du tableau la valeur -1. A la fin, l'algorithme doit afficher le contenu du tableau.

Exercice 07_5 (supplémentaire):

Écrire un algorithme pour convertir un nombre décimal compris entre 0 et 1000 vers le binaire. Le résultat doit être sauvegardé dans un tableau puis affiché de manière correcte.

Exercice 08_5:

Écrire un algorithme qui demande de remplir un tableau de 30 caractères (dans une boucle à part), et faire un décalage circulaire du tableau :

- a- vers la gauche d'une position.
- b- vers la droite d'une position.
- c- vers la droite de K positions.
- d- (**supplémentaire**) vers la gauche d'une position à partir du n^{ème} élément.

On doit à la fin, afficher pour chaque cas le contenu du tableau après décalage.

Exercice 09_5:

Écrire un algorithme qui demande de remplir un tableau de 20 chaines de caractères (dans une boucle à part), et d'inverser les valeurs de ce tableau (la valeur du 1^{er} élément sera rangée dans le dernier, celle du 2^{ème} élément sera rangée dans l'avant dernier et ainsi de suite):

- a- dans un autre tableau.
- b- dans le même tableau initial, sans utiliser aucun autre tableau intermédiaire.
- L'algorithme doit à la fin, afficher le tableau résultant.

Exercice 10 5:

Écrire un algorithme qui demande de remplir une matrice de 5×3 réels, et met Zéro dans tous les éléments de la ligne 4 et la colonne 2, puis affiche la matrice résultante.

Exercice 11 5:

- a- Écrire un algorithme qui demande de remplir un tableau de 25 réels et vérifie s'il est trié dans l'ordre croissant ou pas.
- b- Écrire un algorithme qui demande de remplir une matrice de 25×5 réels et vérifie si elle est triée dans l'ordre décroissant ou pas. <u>Note</u>: pour qu'une matrice soit triée, il faut que les lignes soient triées et que le dernier élément d'une ligne soit trié par rapport au premier élément de la ligne suivante.

Exercice 12_5 (supplémentaire):

Écrire un algorithme qui demande de remplir deux matrices A de 4×2 réels, et B de 2×3 réels, et calcule le produit matriciel dans une troisième matrice C, dont il affiche le contenu à la fin.