

Principal component analysis

DS-GA 1013 / MATH-GA 2824 Mathematical Tools for Data Science

https://cims.nyu.edu/~cfgranda/pages/MTDS_spring20/index.html

Carlos Fernandez-Granda

Discussion

Covariance matrix

The spectral theorem

Principal component analysis

Dimensionality reduction via PCA

Gaussian random vectors

Motivation: Multidimensional data

Probabilistic perspective: Data sampled from random vector $\tilde{\boldsymbol{x}}$

What is the center of the dataset?

Probabilistic perspective: Data sampled from random vector $ilde{x}$

What is the center of the dataset?

Center :=
$$\arg\min_{w \in \mathbb{R}^d} \mathrm{E}\left(||\tilde{x} - w||_2^2\right)$$

Probabilistic perspective: Data sampled from random vector \tilde{x}

What is the center of the dataset?

$$\begin{aligned} \mathsf{Center} &:= \mathsf{arg} \, \min_{w \in \mathbb{R}^d} \mathrm{E} \left(||\tilde{x} - w||_2^2 \right) \\ &= \mathsf{arg} \, \min_{w \in \mathbb{R}^d} \sum_{j=1}^d \mathrm{E} \left((\tilde{x}[j] - w[j])^2 \right) \end{aligned}$$

Probabilistic perspective: Data sampled from random vector \tilde{x}

What is the center of the dataset?

$$\begin{aligned} \mathsf{Center} &:= \arg \min_{w \in \mathbb{R}^d} \mathrm{E} \left(||\tilde{x} - w||_2^2 \right) \\ &= \arg \min_{w \in \mathbb{R}^d} \sum_{j=1}^d \mathrm{E} \left((\tilde{x}[j] - w[j])^2 \right) \\ &= \begin{bmatrix} \mathrm{E}(\tilde{x}[1]) \\ \cdots \\ \mathrm{E}(\tilde{x}[d]) \end{bmatrix} \end{aligned}$$

Probabilistic perspective: Data sampled from random vector \tilde{x}

What is the center of the dataset?

$$\begin{aligned} \mathsf{Center} &:= \arg\min_{w \in \mathbb{R}^d} \mathrm{E} \left(||\tilde{x} - w||_2^2 \right) \\ &= \arg\min_{w \in \mathbb{R}^d} \sum_{j=1}^d \mathrm{E} \left((\tilde{x}[j] - w[j])^2 \right) \\ &= \begin{bmatrix} \mathrm{E}(\tilde{x}[1]) \\ \cdots \\ \mathrm{E}(\tilde{x}[d]) \end{bmatrix} \\ &= \mathrm{E}(\tilde{x}) \end{aligned}$$

In practice, we have a dataset of *n d*-dimensional vectors $\mathcal{X} := \{x_1, \dots, x_n\}$

What is the center of the dataset?

In practice, we have a dataset of n d-dimensional vectors $\mathcal{X}:=\{x_1,\ldots,x_n\}$

What is the center of the dataset?

Reasonable choise: Sample mean

$$\operatorname{av}(\mathcal{X}) := \frac{1}{n} \sum_{i=1}^{n} x_{i}$$

Geometric center := arg
$$\min_{w \in \mathbb{R}^d} \sum_{i=1}^n ||x_i - w||_2^2$$

Geometric center :=
$$\arg\min_{w \in \mathbb{R}^d} \sum_{i=1}^n ||x_i - w||_2^2$$

= $\arg\min_{w \in \mathbb{R}^d} \sum_{i=1}^d \sum_{j=1}^n (x_i[j] - w[j])^2$

Geometric center :=
$$\arg\min_{w \in \mathbb{R}^d} \sum_{i=1}^n ||x_i - w||_2^2$$

$$= \arg\min_{w \in \mathbb{R}^d} \sum_{j=1}^d \sum_{i=1}^n (x_i[j] - w[j])^2$$

$$= \begin{bmatrix} \frac{1}{n} \sum_i x_i[1] \\ \cdots \\ \frac{1}{n} \sum_i x_i[1] \end{bmatrix}$$

Geometric center :=
$$\arg\min_{w \in \mathbb{R}^d} \sum_{i=1}^n ||x_i - w||_2^2$$

$$= \arg\min_{w \in \mathbb{R}^d} \sum_{j=1}^d \sum_{i=1}^n (x_i[j] - w[j])^2$$

$$= \begin{bmatrix} \frac{1}{n} \sum_i x_i[1] \\ \cdots \\ \frac{1}{n} \sum_i x_i[1] \end{bmatrix}$$

$$= \operatorname{av}(\mathcal{X})$$

Centering

$$c(x_i) := x_i - \operatorname{av}(\mathcal{X})$$

Projection onto a fixed direction

Projection onto a fixed direction

$$\operatorname{Var}\left(v^{T}\tilde{x}\right)$$

$$\operatorname{Var}\left(v^{T}\tilde{x}\right) = \operatorname{E}\left(\left(v^{T}\tilde{x} - \operatorname{E}(v^{T}\tilde{x})\right)^{2}\right)$$

$$Var\left(v^{T}\tilde{x}\right) = E\left(\left(v^{T}\tilde{x} - E(v^{T}\tilde{x})\right)^{2}\right)$$
$$= E\left(\left(v^{T}c(\tilde{x})\right)^{2}\right)$$

$$Var\left(v^{T}\tilde{x}\right) = E\left(\left(v^{T}\tilde{x} - E(v^{T}\tilde{x})\right)^{2}\right)$$
$$= E\left(\left(v^{T}c(\tilde{x})\right)^{2}\right)$$
$$= v^{T}E\left(c(\tilde{x})c(\tilde{x})^{T}\right)v$$

Covariance matrix

The covariance matrix of a random vector \tilde{x} is defined as

$$\begin{split} \Sigma_{\tilde{x}} &:= \mathrm{E} \left(c(\tilde{x}) c(\tilde{x})^T \right) \\ &= \begin{bmatrix} \mathrm{Var} \left(\tilde{x}[1] \right) & \mathrm{Cov} \left(\tilde{x}[1], \tilde{x}[2] \right) & \cdots & \mathrm{Cov} \left(\tilde{x}[1], \tilde{x}[d] \right) \\ \mathrm{Cov} \left(\tilde{x}[1], \tilde{x}[2] \right) & \mathrm{Var} \left(\tilde{x}[2] \right) & \cdots & \mathrm{Cov} \left(\tilde{x}[2], \tilde{x}[d] \right) \\ & \vdots & & \vdots & \ddots & \vdots \\ \mathrm{Cov} \left(\tilde{x}[1], \tilde{x}[d] \right) & \mathrm{Cov} \left(\tilde{x}[2], \tilde{x}[d] \right) & \cdots & \mathrm{Var} \left(\tilde{x}[d] \right) \end{bmatrix} \end{split}$$

$$Var \left(v^T \tilde{x} \right) = E \left(\left(v^T \tilde{x} - E(v^T \tilde{x}) \right)^2 \right)$$
$$= E \left(\left(v^T c(\tilde{x}) \right)^2 \right)$$
$$= v^T E \left(c(\tilde{x}) c(\tilde{x})^T \right) v$$
$$= v^T \Sigma_{\tilde{x}} v$$

Sample covariance matrix

For a dataset $\mathcal{X} = \{x_1, \dots, x_n\}$

$$\Sigma_{\mathcal{X}} := \frac{1}{n} \sum_{i=1}^{n} c(x_i) c(x_i)^T$$

$$= \begin{bmatrix} \operatorname{var}(\mathcal{X}[1]) & \operatorname{cov}(\mathcal{X}[1], \mathcal{X}[2]) & \cdots & \operatorname{cov}(\mathcal{X}[1], \mathcal{X}[d]) \\ \operatorname{cov}(\mathcal{X}[1], \mathcal{X}[2]) & \operatorname{var}(\mathcal{X}[2]) & \cdots & \operatorname{cov}(\mathcal{X}[2], \mathcal{X}[d]) \\ \vdots & \vdots & \ddots & \vdots \\ \operatorname{cov}(\mathcal{X}[1], \mathcal{X}[d]) & \operatorname{cov}(\mathcal{X}[2], \mathcal{X}[d]) & \cdots & \operatorname{var}(\mathcal{X}[d]) \end{bmatrix}$$

where $\mathcal{X}_i := \{x[i]_1, \dots, x[i]_n\}$

 $\operatorname{var}\left(\mathcal{P}_{v}\,\mathcal{X}\right)$

$$\operatorname{var}\left(\mathcal{P}_{v}\,\mathcal{X}\right) \,:=\, \frac{1}{n}\sum_{i=1}^{n}\left(v^{T}x_{i}-\operatorname{av}\left(\mathcal{P}_{v}\,\mathcal{X}\right)\right)^{2}$$

$$\operatorname{var}(\mathcal{P}_{v} \mathcal{X}) := \frac{1}{n} \sum_{i=1}^{n} \left(v^{T} x_{i} - \operatorname{av}(\mathcal{P}_{v} \mathcal{X}) \right)^{2}$$
$$= \frac{1}{n} \sum_{i=1}^{n} \left(v^{T} \left(x_{i} - \operatorname{av}(\mathcal{X}) \right) \right)^{2}$$

$$\operatorname{var}(\mathcal{P}_{v} \mathcal{X}) := \frac{1}{n} \sum_{i=1}^{n} \left(v^{T} x_{i} - \operatorname{av}(\mathcal{P}_{v} \mathcal{X}) \right)^{2}$$

$$= \frac{1}{n} \sum_{i=1}^{n} \left(v^{T} \left(x_{i} - \operatorname{av}(\mathcal{X}) \right) \right)^{2}$$

$$= v^{T} \left(\frac{1}{n} \sum_{i=1}^{n} c(x_{i}) c(x_{i})^{T} \right) v$$

$$\operatorname{var}(\mathcal{P}_{v} \mathcal{X}) := \frac{1}{n} \sum_{i=1}^{n} \left(v^{T} x_{i} - \operatorname{av}(\mathcal{P}_{v} \mathcal{X}) \right)^{2}$$

$$= \frac{1}{n} \sum_{i=1}^{n} \left(v^{T} \left(x_{i} - \operatorname{av}(\mathcal{X}) \right) \right)^{2}$$

$$= v^{T} \left(\frac{1}{n} \sum_{i=1}^{n} c(x_{i}) c(x_{i})^{T} \right) v$$

$$= v^{T} \sum_{i=1}^{n} v^{T} v^{T}$$

Sample variance = 229 (sample std = 15.1)

Sample variance = 229 (sample std = 15.1)

$f(v) := v^T \Sigma_{\mathcal{X}} v \text{ for } ||v||_2 = 1$

$f(v) := v^T \Sigma_{\mathcal{X}} v \text{ for } ||v||_2 = 1$

Covariance matrix

The spectral theorem

Principal component analysis

Dimensionality reduction via PCA

Gaussian random vectors

Quadratic form

Function $f: \mathbb{R}^d \to \mathbb{R}$ defined by

$$f(x) := x^T A x$$

where A is a $d \times d$ symmetric matrix

Generalization of quadratic functions to multiple dimensions

Quadratic form

Function $f: \mathbb{R}^d \to \mathbb{R}$ defined by

$$f(x) := x^T A x$$

where A is a $d \times d$ symmetric matrix

Generalization of quadratic functions to multiple dimensions

Goal: Study quadratic forms when $||v||_2 = 1$

Motivation: If A is a covariance matrix, f encodes directional variance

► The function is continuous (second-order polynomial)

- ► The function is continuous (second-order polynomial)
- ▶ Unit sphere is closed and bounded (contains all limit points)

- ► The function is continuous (second-order polynomial)
- ▶ Unit sphere is closed and bounded (contains all limit points)
- ▶ Image of unit sphere is also closed and bounded

- ► The function is continuous (second-order polynomial)
- Unit sphere is closed and bounded (contains all limit points)
- ▶ Image of unit sphere is also closed and bounded
- Image cannot grow towards limit it does not contain

For any symmetric matrix $A \in \mathbb{R}^{d \times d}$, there exists $u_1 \in \mathbb{R}^d$ such that

$$u_1 = \arg\max_{||x||_2=1} x^T A x$$

Directional derivative

For any differentiable $f:\mathbb{R}^d o\mathbb{R}$ and any $v\in\mathbb{R}^d$ such that $||v||_2=1$

$$f'_{v}(x) := \lim_{h \to 0} \frac{f(x + hv) - f(x)}{h}$$
$$= \langle \nabla f(x), u \rangle$$

If $f'_{v}(x) > 0$, then $f(x + \epsilon v) > f(x)$ for sufficiently small $\epsilon > 0$

Characterizing maximum of quadratic form

At the maximum u_1 , we cannot have

$$f'_{v}(u_{1}) = \langle \nabla f(u_{1}), v \rangle$$

 $\neq 0$

for any v such that $u_1 + \epsilon v$ is in the constraint set

Characterizing maximum of quadratic form

At the maximum u_1 , we cannot have

$$f'_{v}(u_{1}) = \langle \nabla f(u_{1}), v \rangle$$

$$\neq 0$$

for any v such that $u_1 + \epsilon v$ is in the constraint set

Wait a minute, can $u_1 + \epsilon v$ be in our constraint set?

Tangent hyperplane

Unit sphere is level surface of

$$g(x) := x^T x$$

x + v is in the tangent plane of g at x if

$$\nabla g(x)^T v = 0$$

If v is in the tangent plane, then $g'_{v}(x) = 0$, so

$$g(x + \epsilon v) \approx g(x),$$

i.e. $x + \epsilon v$ is arbitrarily close to the level surface

Can this point be a maximum of the quadratic form?

Red arrow = gradient of quadratic form Green line = gradient of $g(x) := x^T x$

Characterizing maximum of quadratic form

lf

$$\langle \nabla f(u_1), v \rangle \neq 0$$

for some v in the tangent plane, then

$$f(u_1 + \epsilon v) > f(u_1)$$

for a point that is almost on the unit sphere

Characterizing maximum of quadratic form

lf

$$\langle \nabla f(u_1), v \rangle \neq 0$$

for some v in the tangent plane, then

$$f\left(u_1+\epsilon v\right)>f\left(u_1\right)$$

for a point that is almost on the unit sphere

Since f is continuous there exists a y on the sphere such that

$$f(y) \approx f(u_1 + \epsilon v) > f(u_1)$$

Where is the maximum?

 ${\sf Red\ arrow=gradient\ of\ quadratic\ form}$

Characterizing maximum of quadratic form

We need

$$\langle \nabla f(u_1), v \rangle = 0$$

for all v in the tangent plane

Equivalent to $\nabla f\left(u_{1}\right)=\lambda_{1}\nabla g\left(u_{1}\right)$ for some $\lambda_{1}\in\mathbb{R}$. Then

$$\langle \nabla f(u_1), v \rangle = \lambda_1 \langle \nabla g(u_1), v \rangle$$

= 0

Maxima and minima satisfy $\nabla f\left(u_{1}\right)=\lambda_{1}\nabla g\left(u_{1}\right)$

Red arrow = gradient of quadratic form Green line = gradient of $g(x) := x^T x$

Maximum satisfies
$$\nabla f\left(u_{1}\right)=\lambda_{1}\nabla g\left(u_{1}\right)$$

$$\nabla f(x) = \nabla x^T A x$$
$$=$$

$$\nabla g(x) = \nabla x^T x$$
$$=$$

Maximum satisfies
$$\nabla f\left(u_{1}\right)=\lambda_{1}\nabla g\left(u_{1}\right)$$

$$\nabla f(x) = \nabla x^T A x$$
$$= 2A x$$

$$\nabla g(x) = \nabla x^T x$$
$$=$$

Maximum satisfies
$$\nabla f\left(u_1\right) = \lambda_1 \nabla g\left(u_1\right)$$

$$\nabla f(x) = \nabla x^T A x$$
$$= 2A x$$

$$\nabla g(x) = \nabla x^T x$$
$$= 2x$$

Maximum satisfies
$$\nabla f\left(u_{1}\right)=\lambda_{1}\nabla g\left(u_{1}\right)$$

$$\nabla f(x) = \nabla x^T A x$$
$$= 2A x$$

$$\nabla g(x) = \nabla x^T x$$
$$= 2x$$

so $Au_1 = \lambda_1 u_1$, i.e. u_1 is an eigenvector!

For any symmetric $A \in \mathbb{R}^{d \times d}$,

$$u_1 := \arg\max_{||x||_2=1} x^T A x$$

is an eigenvector of A. There exists $\lambda_1 \in \mathbb{R}$ such that

$$Au_1 = \lambda_1 u_1$$

Value of the maximum

We have

$$\max_{||x||_2=1} x^T A x = u_1^T A u_1$$
=

Value of the maximum

We have

$$\max_{||x||_2=1} x^T A x = u_1^T A u_1$$
$$= \lambda_1$$

Think about $A \in \mathbb{R}^{3 \times 3}$

We know u_1 attains maximum

Think about $A \in \mathbb{R}^{3 \times 3}$

We know u_1 attains maximum

What happens on plane orthogonal to u_1 ?

Without loss of generality assume $u_1 = e_3$

Constraint set?

Quadratic function?

Think about $A \in \mathbb{R}^{3 \times 3}$

We know u_1 attains maximum

What happens on plane orthogonal to u_1 ?

Without loss of generality assume $u_1 = e_3$

Constraint set? Circle

Quadratic function?

Think about $A \in \mathbb{R}^{3\times 3}$

We know u_1 attains maximum

What happens on plane orthogonal to u_1 ?

Without loss of generality assume $u_1 = e_3$

Constraint set? Circle

Quadratic function?

$$x^{T}Ax = \begin{bmatrix} x[1] \\ x[2] \end{bmatrix}^{T} \begin{bmatrix} A[1,1] & A[1,2] \\ A[2,1] & A[2,2] \end{bmatrix} \begin{bmatrix} x[1] \\ x[2] \end{bmatrix}$$

Think about $A \in \mathbb{R}^{3 \times 3}$

We know u_1 attains maximum

What happens on plane orthogonal to u_1 ?

Without loss of generality assume $u_1 = e_3$

Constraint set? Circle

Quadratic function?

$$x^{T}Ax = \begin{bmatrix} x[1] \\ x[2] \end{bmatrix}^{T} \begin{bmatrix} A[1,1] & A[1,2] \\ A[2,1] & A[2,2] \end{bmatrix} \begin{bmatrix} x[1] \\ x[2] \end{bmatrix}$$

So there exists eigenvector u_2 ...

Spectral theorem

If $A \in \mathbb{R}^{d \times d}$ is symmetric, then it has an eigendecomposition

$$A = \begin{bmatrix} u_1 & u_2 & \cdots & u_d \end{bmatrix} \begin{bmatrix} \lambda_1 & 0 & \cdots & 0 \\ 0 & \lambda_2 & \cdots & 0 \\ & & \ddots & \\ 0 & 0 & \cdots & \lambda_d \end{bmatrix} \begin{bmatrix} u_1 & u_2 & \cdots & u_d \end{bmatrix}^T,$$

Eigenvalues $\lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_d$ are real

Eigenvectors u_1, u_2, \ldots, u_n are real and orthogonal

Spectral theorem

$$\begin{split} \lambda_1 &= \max_{||x||_2 = 1} x^T A x \\ u_1 &= \arg\max_{||x||_2 = 1} x^T A x \\ \\ \lambda_k &= \max_{||x||_2 = 1, x \perp u_1, \dots, u_{k-1}} x^T A x, \quad 2 \leq k \leq d \\ \\ u_k &= \arg\max_{||x||_2 = 1, x \perp u_1, \dots, u_{k-1}} x^T A x, \quad 2 \leq k \leq d \end{split}$$

How do we prove this?

Formalize intuition from 3×3 case through induction

Mathematical induction

If a statement S_d dependent on d satisfies:

- $ightharpoonup \mathcal{S}_1$ holds (basis)
- ▶ If S_{d-1} holds then S_d holds (step)

Then \mathcal{S}_d is true for all natural numbers $d=1,2,\ldots$

Basis

For d=1 what is u_1 and λ_1 ?

We know u_1 exists and satisfies $Au_1=\lambda_1u_1$

Let us consider action of A on orthogonal complement of u_1

We know u_1 exists and satisfies $Au_1 = \lambda_1 u_1$

Let us consider action of A on orthogonal complement of u_1

We want matrix A' such that

$$A'u_1=0$$

$$A'x = x$$
 if $x \perp u_1$

We know u_1 exists and satisfies $Au_1 = \lambda_1 u_1$

Let us consider action of A on orthogonal complement of u_1

We want matrix A' such that

$$A'u_1 = 0$$

$$A'x = x$$
 if $x \perp u_1$

 $A - \lambda_1 u_1 u_1^T$ works

We want to apply assumption about $d-1 \times d-1$ matrices

We need to "compress" $A - \lambda_1 u_1 u_1^T$

We want to apply assumption about $d-1 \times d-1$ matrices

We need to "compress" $A - \lambda_1 u_1 u_1^T$

Let $V_{\perp} \in \mathbb{R}^{d-1 imes d}$ contain orthonormal basis of $\operatorname{span}(u_1)^{\perp}$

 $V_{\perp}V_{\perp}^{T}$ is projection matrix

We want to apply assumption about $d-1 \times d-1$ matrices

We need to "compress" $A - \lambda_1 u_1 u_1^T$

Let $V_{\perp} \in \mathbb{R}^{d-1 \times d}$ contain orthonormal basis of $\operatorname{span}(u_1)^{\perp}$

 $V_{\perp}V_{\perp}^{T}$ is projection matrix

$$V_\perp V_\perp^T (Au_1 - \lambda_1 u_1) V_\perp V_\perp^T =$$

We want to apply assumption about $d-1 \times d-1$ matrices

We need to "compress" $A - \lambda_1 u_1 u_1^T$

Let $V_{\perp} \in \mathbb{R}^{d-1 \times d}$ contain orthonormal basis of $\operatorname{span}(u_1)^{\perp}$

 $V_{\perp}V_{\perp}^{T}$ is projection matrix

$$V_{\perp}V_{\perp}^{T}(Au_{1}-\lambda_{1}u_{1})V_{\perp}V_{\perp}^{T}=A-\lambda_{1}u_{1}u_{1}^{T}$$

We want to apply assumption about $d-1 \times d-1$ matrices

We need to "compress" $A - \lambda_1 u_1 u_1^T$

Let $V_{\perp} \in \mathbb{R}^{d-1 imes d}$ contain orthonormal basis of $\operatorname{span}(u_1)^{\perp}$

 $V_{\perp}V_{\perp}^{T}$ is projection matrix

$$V_{\perp}V_{\perp}^{T}(Au_1-\lambda_1u_1)V_{\perp}V_{\perp}^{T}=A-\lambda_1u_1u_1^{T}$$

We define symmetric $B := V_{\perp}^{T} (Au_1 - \lambda_1 u_1) V_{\perp} \in \mathbb{R}^{d-1 \times d-1}$

By induction assumption there exist $\gamma_1, \ldots, \gamma_{d-1}$ and w_1, \ldots, w_{d-1} such that

$$\begin{split} \gamma_1 &= \max_{||y||_2 = 1} y^T B y \\ w_1 &= \arg\max_{||y||_2 = 1} y^T B y \\ \gamma_k &= \max_{||y||_2 = 1, y \perp w_1, \dots, w_{k-1}} y^T B y, \quad 2 \leq k \leq d-2 \\ w_k &= \arg\max_{||y||_2 = 1, y \perp w_1, \dots, w_{k-1}} y^T B y, \quad 2 \leq k \leq d-2 \end{split}$$

For any
$$x\in \mathrm{span}(u_1)^\perp$$
, $x=V_\perp y$ for some $y\in \mathbb{R}^{d-1}$
$$\max_{||x||_2=1, x\perp u_1} x^T A x =$$

For any
$$x \in \text{span}(u_1)^{\perp}$$
, $x = V_{\perp}y$ for some $y \in \mathbb{R}^{d-1}$
$$\max_{||x||_2 = 1, x \perp u_1} x^T A x = \max_{||x||_2 = 1, x \perp u_1} x^T (A - \lambda_1 u_1 u_1^T) x$$

For any
$$x \in \operatorname{span}(u_1)^{\perp}$$
, $x = V_{\perp}y$ for some $y \in \mathbb{R}^{d-1}$
$$\max_{||x||_2 = 1, x \perp u_1} x^T A x = \max_{||x||_2 = 1, x \perp u_1} x^T (A - \lambda_1 u_1 u_1^T) x$$
$$= \max_{||x||_2 = 1, x \perp u_1} x^T V_{\perp} V_{\perp}^T (A u_1 - \lambda_1 u_1) V_{\perp} V_{\perp}^T x$$

For any
$$x \in \text{span}(u_1)^{\perp}$$
, $x = V_{\perp}y$ for some $y \in \mathbb{R}^{d-1}$
$$\max_{||x||_2 = 1, x \perp u_1} x^T A x = \max_{||x||_2 = 1, x \perp u_1} x^T (A - \lambda_1 u_1 u_1^T) x$$

$$= \max_{||x||_2 = 1, x \perp u_1} x^T V_{\perp} V_{\perp}^T (A u_1 - \lambda_1 u_1) V_{\perp} V_{\perp}^T x$$

$$= \max_{||y||_2 = 1} y^T B y$$

For any
$$x \in \operatorname{span}(u_1)^{\perp}$$
, $x = V_{\perp}y$ for some $y \in \mathbb{R}^{d-1}$
$$\max_{||x||_2 = 1, x \perp u_1} x^T A x = \max_{||x||_2 = 1, x \perp u_1} x^T (A - \lambda_1 u_1 u_1^T) x$$

$$= \max_{||x||_2 = 1, x \perp u_1} x^T V_{\perp} V_{\perp}^T (A u_1 - \lambda_1 u_1) V_{\perp} V_{\perp}^T x$$

$$= \max_{||y||_2 = 1} y^T B y$$

$$= \gamma_1$$

For any
$$x \in \operatorname{span}(u_1)^{\perp}$$
, $x = V_{\perp}y$ for some $y \in \mathbb{R}^{d-1}$
$$\max_{||x||_2 = 1, x \perp u_1} x^T A x = \max_{||x||_2 = 1, x \perp u_1} x^T (A - \lambda_1 u_1 u_1^T) x$$

$$= \max_{||x||_2 = 1, x \perp u_1} x^T V_{\perp} V_{\perp}^T (A u_1 - \lambda_1 u_1) V_{\perp} V_{\perp}^T x$$

$$= \max_{||y||_2 = 1} y^T B y$$

$$= \gamma_1$$

Inspired by this: $u_k := V_{\perp} w_{k-1}$ for k = 2, ..., d

For any $x \in \operatorname{span}(u_1)^{\perp}$, $x = V_{\perp} y$ for some $y \in \mathbb{R}^{d-1}$

$$\max_{||x||_{2}=1, x \perp u_{1}} x^{T} A x = \max_{||x||_{2}=1, x \perp u_{1}} x^{T} (A - \lambda_{1} u_{1} u_{1}^{T}) x$$

$$= \max_{||x||_{2}=1, x \perp u_{1}} x^{T} V_{\perp} V_{\perp}^{T} (A u_{1} - \lambda_{1} u_{1}) V_{\perp} V_{\perp}^{T} x$$

$$= \max_{||y||_{2}=1} y^{T} B y$$

$$= \gamma_{1}$$

Inspired by this: $u_k := V_{\perp} w_{k-1}$ for k = 2, ..., d

 u_1, \ldots, u_d are orthonormal basis

 $Au_k =$

$$Au_k = V_{\perp}V_{\perp}^T(A - \lambda_1 u_1 u_1^T)V_{\perp}V_{\perp}^TV_{\perp}w_{k-1}$$

$$Au_k = V_{\perp} V_{\perp}^T (A - \lambda_1 u_1 u_1^T) V_{\perp} V_{\perp}^T V_{\perp} w_{k-1}$$

= $V_{\perp} Bw_k$

$$Au_k = V_{\perp} V_{\perp}^T (A - \lambda_1 u_1 u_1^T) V_{\perp} V_{\perp}^T V_{\perp} w_{k-1}$$

$$= V_{\perp} Bw_k$$

$$= \gamma_{k-1} V_{\perp} w_{k-1}$$

$$Au_{k} = V_{\perp}V_{\perp}^{T}(A - \lambda_{1}u_{1}u_{1}^{T})V_{\perp}V_{\perp}^{T}V_{\perp}w_{k-1}$$

$$= V_{\perp}Bw_{k}$$

$$= \gamma_{k-1}V_{\perp}w_{k-1}$$

$$= \lambda_{k}u_{k}$$

$$Au_{k} = V_{\perp}V_{\perp}^{T}(A - \lambda_{1}u_{1}u_{1}^{T})V_{\perp}V_{\perp}^{T}V_{\perp}w_{k-1}$$

$$= V_{\perp}Bw_{k}$$

$$= \gamma_{k-1}V_{\perp}w_{k-1}$$

$$= \lambda_{k}u_{k}$$

 u_k is an eigenvector of A with eigenvalue $\lambda_k := \gamma_{k-1}$

Let $x \in \operatorname{span}(u_1)^{\perp}$ be orthogonal to $u_{k'}$, where $2 \leq k' \leq d$

$$w_{k'-1}^T y =$$

Let $x \in \operatorname{span}(u_1)^{\perp}$ be orthogonal to $u_{k'}$, where $2 \leq k' \leq d$

$$w_{k'-1}^T y = w_{k'}^T V_{\perp}^T V_{\perp} y$$

Let $x \in \text{span}(u_1)^{\perp}$ be orthogonal to $u_{k'}$, where $2 \leq k' \leq d$

$$w_{k'-1}^T y = w_{k'}^T V_{\perp}^T V_{\perp} y$$
$$= u_{k'}^T x$$

Let $x \in \text{span}(u_1)^{\perp}$ be orthogonal to $u_{k'}$, where $2 \leq k' \leq d$

$$w_{k'-1}^T y = w_{k'}^T V_{\perp}^T V_{\perp} y$$
$$= u_{k'}^T x$$
$$= 0$$

Let $x \in \operatorname{span}(u_1)^{\perp}$ be orthogonal to $u_{k'}$, where $2 \leq k' \leq d$

$$w_{k'-1}^T y = 0$$

$$\max_{||\boldsymbol{x}||_2 = 1, \boldsymbol{x} \perp \boldsymbol{u}_1, \dots, \boldsymbol{u}_{k-1}} \boldsymbol{x}^T \boldsymbol{A} \boldsymbol{x} =$$

Let $x \in \text{span}(u_1)^{\perp}$ be orthogonal to $u_{k'}$, where $2 \leq k' \leq d$

$$w_{k'-1}^T y = 0$$

$$\max_{||x||_2 = 1, x \perp u_1, \dots, u_{k-1}} x^T A x = \max_{||x||_2 = 1, x \perp u_1, \dots, u_{k-1}} x^T V_\perp V_\perp^T (A u_1 - \lambda_1 u_1) V_\perp V_\perp^T x$$

Let $x \in \text{span}(u_1)^{\perp}$ be orthogonal to $u_{k'}$, where $2 \leq k' \leq d$

$$w_{k'-1}^T y = 0$$

$$\max_{||x||_{2}=1, x \perp u_{1}, \dots, u_{k-1}} x^{T} A x = \max_{||x||_{2}=1, x \perp u_{1}, \dots, u_{k-1}} x^{T} V_{\perp} V_{\perp}^{T} (A u_{1} - \lambda_{1} u_{1}) V_{\perp} V_{\perp}^{T} x$$

$$= \max_{||y||_{2}=1, y \perp w_{1}, \dots, w_{k-2}} y^{T} B y$$

Let $x \in \text{span}(u_1)^{\perp}$ be orthogonal to $u_{k'}$, where $2 \leq k' \leq d$

$$w_{k'-1}^T y = 0$$

$$\max_{||x||_{2}=1, x \perp u_{1}, \dots, u_{k-1}} x^{T} A x = \max_{||x||_{2}=1, x \perp u_{1}, \dots, u_{k-1}} x^{T} V_{\perp} V_{\perp}^{T} (A u_{1} - \lambda_{1} u_{1}) V_{\perp} V_{\perp}^{T} x$$

$$= \max_{||y||_{2}=1, y \perp w_{1}, \dots, w_{k-2}} y^{T} B y$$

$$= \gamma_{k-1}$$

Let $x \in \text{span}(u_1)^{\perp}$ be orthogonal to $u_{k'}$, where $2 \leq k' \leq d$

$$w_{k'-1}^T y = 0$$

$$\max_{||x||_{2}=1, x \perp u_{1}, \dots, u_{k-1}} x^{T} A x = \max_{||x||_{2}=1, x \perp u_{1}, \dots, u_{k-1}} x^{T} V_{\perp} V_{\perp}^{T} (A u_{1} - \lambda_{1} u_{1}) V_{\perp} V_{\perp}^{T} x$$

$$= \max_{||y||_{2}=1, y \perp w_{1}, \dots, w_{k-2}} y^{T} B y$$

$$= \gamma_{k-1}$$

$$=\lambda_k$$

Covariance matrix

The spectral theorem

Principal component analysis

Dimensionality reduction via PCA

Gaussian random vectors

Spectral theorem

If $A \in \mathbb{R}^{d \times d}$ is symmetric, then it has an eigendecomposition

$$A = \begin{bmatrix} u_1 & u_2 & \cdots & u_d \end{bmatrix} \begin{bmatrix} \lambda_1 & 0 & \cdots & 0 \\ 0 & \lambda_2 & \cdots & 0 \\ & & \ddots & \\ 0 & 0 & \cdots & \lambda_d \end{bmatrix} \begin{bmatrix} u_1 & u_2 & \cdots & u_d \end{bmatrix}^T,$$

Eigenvalues $\lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_d$ are real

Eigenvectors u_1, u_2, \ldots, u_n are real and orthogonal

Variance in direction of a fixed vector \mathbf{v}

If random vector \tilde{x} has covariance matrix $\Sigma_{\tilde{x}}$

$$\operatorname{Var}\left(v^{T}\tilde{x}\right) = v^{T}\sum_{\tilde{x}}v$$

Principal directions

Let $u_1, \, \ldots, \, u_d$, and $\lambda_1 > \ldots > \lambda_d$ be the eigenvectors/eigenvalues of $\Sigma_{\tilde{x}}$

$$\begin{aligned} \lambda_1 &= \max_{||v||_2 = 1} \operatorname{Var}(v^T \tilde{x}) \\ u_1 &= \arg\max_{||v||_2 = 1} \operatorname{Var}(v^T \tilde{x}) \\ \lambda_k &= \max_{||v||_2 = 1, v \perp u_1, \dots, u_{k-1}} \operatorname{Var}(v^T \tilde{x}), \quad 2 \leq k \leq d \\ u_k &= \arg\max_{||v||_2 = 1, v \perp u_1, \dots, u_{k-1}} \operatorname{Var}(v^T \tilde{x}), \quad 2 \leq k \leq d \end{aligned}$$

Principal components

Let
$$c(\tilde{x}) := \tilde{x} - \mathrm{E}(\tilde{x})$$

$$\widetilde{pc}[i] := u_i^T c(\widetilde{x}), \quad 1 \leq i \leq d$$

is the *i*th principal component

$$Var(\widetilde{pc}[i]) :=$$

Principal components

Let
$$c(\tilde{x}) := \tilde{x} - \mathrm{E}(\tilde{x})$$

$$\widetilde{pc}[i] := u_i^T c(\widetilde{x}), \quad 1 \leq i \leq d$$

is the *i*th principal component

$$\operatorname{Var}(\widetilde{pc}[i]) := \lambda_i, \quad 1 \leq i \leq d$$

$$\mathrm{E}(\widetilde{pc}[i]\widetilde{pc}[j]) =$$

$$\mathbb{E}(\widetilde{pc}[i]\widetilde{pc}[j]) = \mathbb{E}(u_i^T c(\widetilde{x}) u_j^T c(\widetilde{x}))$$

$$E(\widetilde{pc}[i]\widetilde{pc}[j]) = E(u_i^T c(\widetilde{x}) u_j^T c(\widetilde{x}))$$
$$= u_i^T E(c(\widetilde{x}) c(\widetilde{x})^T) u_j$$

$$E(\widetilde{pc}[i]\widetilde{pc}[j]) = E(u_i^T c(\tilde{x}) u_j^T c(\tilde{x}))$$

$$= u_i^T E(c(\tilde{x}) c(\tilde{x})^T) u_j$$

$$= u_i^T \Sigma_{\tilde{x}} u_j$$

$$E(\widetilde{pc}[i]\widetilde{pc}[j]) = E(u_i^T c(\widetilde{x}) u_j^T c(\widetilde{x}))$$

$$= u_i^T E(c(\widetilde{x}) c(\widetilde{x})^T) u_j$$

$$= u_i^T \Sigma_{\widetilde{x}} u_j$$

$$= \lambda_i u_i^T u_j$$

$$E(\widetilde{pc}[i]\widetilde{pc}[j]) = E(u_i^T c(\tilde{x}) u_j^T c(\tilde{x}))$$

$$= u_i^T E(c(\tilde{x}) c(\tilde{x})^T) u_j$$

$$= u_i^T \Sigma_{\tilde{x}} u_j$$

$$= \lambda_i u_i^T u_j$$

$$= 0$$

Principal components

For dataset \mathcal{X} containing $x_1, x_2, \dots, x_n \in \mathbb{R}^d$

- 1. Compute sample covariance matrix $\Sigma_{\mathcal{X}}$
- 2. Eigendecomposition of $\Sigma_{\mathcal{X}}$ yields principal directions u_1, \ldots, u_d
- 3. Center the data and compute principal components

$$pc_i[j] := u_j^T c(x_i), \quad 1 \le i \le n, \ 1 \le j \le d,$$

where $c(x_i) := x_i - \operatorname{av}(\mathcal{X})$

First principal direction

First principal component

Second principal direction

Second principal component

Sample variance in direction of a fixed vector v

$$\operatorname{var}(\mathcal{P}_{v} \mathcal{X}) = v^{T} \Sigma_{\mathcal{X}} v$$

Principal directions

Let $u_1, \, \ldots, \, u_d$, and $\lambda_1 > \ldots > \lambda_d$ be the eigenvectors/eigenvalues of $\Sigma_{\mathcal{X}}$

$$\begin{split} &\lambda_1 = \max_{||v||_2 = 1} \text{var}\left(\mathcal{P}_v \; \mathcal{X}\right) \\ &u_1 = \text{arg}\max_{||v||_2 = 1} \text{var}\left(\mathcal{P}_v \; \mathcal{X}\right) \\ &\lambda_k = \max_{||v||_2 = 1, v \perp u_1, \dots, u_{k-1}} \text{var}\left(\mathcal{P}_v \; \mathcal{X}\right), \quad 2 \leq k \leq d \\ &u_k = \text{arg}\max_{||v||_2 = 1, v \perp u_1, \dots, u_{k-1}} \text{var}\left(\mathcal{P}_v \; \mathcal{X}\right), \quad 2 \leq k \leq d \end{split}$$

Sample variance = 229 (sample std = 15.1)

Sample variance = 229 (sample std = 15.1)

Sample variance = 531 (sample std = 23.1)

Sample variance = 531 (sample std = 23.1

Sample variance = 46.2 (sample std = 6.80)

Sample variance = 46.2 (sample std = 6.80)

Data set of 400 64 \times 64 images from 40 subjects (10 per subject)

Each face is vectorized and interpreted as a vector in \mathbb{R}^{4096}

Covariance matrix

The spectral theorem

Principal component analysis

Dimensionality reduction via PCA

Gaussian random vectors

Dimensionality reduction

Data with a large number of features can be difficult to analyze or process

Dimensionality reduction is a useful preprocessing step

If data are modeled as vectors in \mathbb{R}^p we can reduce the dimension by projecting onto \mathbb{R}^k , where k < p

For orthogonal projections, the new representation is $\langle v_1, x \rangle$, $\langle v_2, x \rangle$, ..., $\langle v_k, x \rangle$ for a basis v_1, \ldots, v_k of the subspace that we project on

Problem: How do we choose the subspace?

Dimensionality reduction

Data with a large number of features can be difficult to analyze or process

Dimensionality reduction is a useful preprocessing step

If data are modeled as vectors in \mathbb{R}^p we can reduce the dimension by projecting onto \mathbb{R}^k , where k < p

For orthogonal projections, the new representation is $\langle v_1, x \rangle$, $\langle v_2, x \rangle$, ..., $\langle v_k, x \rangle$ for a basis v_1, \ldots, v_k of the subspace that we project on

Problem: How do we choose the subspace?

Possible criterion: Capture as much sample variance as possible

For any orthonormal v_1, \ldots, v_k

$$\sum_{i=1}^k \mathsf{var}(\mathcal{P}_{\mathsf{v}_i}\,\mathcal{X}) =$$

For any orthonormal v_1, \ldots, v_k

$$\sum_{i=1}^k \operatorname{var}(\mathcal{P}_{v_i} \mathcal{X}) = \sum_{i=1}^k \frac{1}{n} \sum_{i=1}^n v_i^T c(x_i) c(x_j)^T v_i$$

For any orthonormal v_1, \ldots, v_k

$$\sum_{i=1}^{k} \operatorname{var}(\mathcal{P}_{v_i} \mathcal{X}) = \sum_{i=1}^{k} \frac{1}{n} \sum_{j=1}^{n} v_i^T c(x_j) c(x_j)^T v_i$$
$$= \sum_{i=1}^{k} v_i^T \Sigma_{\mathcal{X}} v_i$$

For any orthonormal v_1, \ldots, v_k

$$\sum_{i=1}^{k} \operatorname{var}(\mathcal{P}_{v_i} \mathcal{X}) = \sum_{i=1}^{k} \frac{1}{n} \sum_{j=1}^{n} v_i^T c(x_j) c(x_j)^T v_i$$
$$= \sum_{i=1}^{k} v_i^T \Sigma_{\mathcal{X}} v_i$$

By spectral theorem, eigenvectors optimize each individual term

Eigenvectors also optimize sum

For any symmetric $A \in \mathbb{R}^{d \times d}$ with eigenvectors u_1, \ldots, u_k

$$\sum_{i=1}^k u_i^T A u_i \ge \sum_{i=1}^k v_i^T A v_i.$$

for any k orthonormal vectors v_1, \ldots, v_k

Proof by induction on k

Base (k = 1)?

Proof by induction on k

Base (k = 1)? Follows from spectral theorem

Step

Let
$$S := \operatorname{span}(v_1, \ldots, v_k)$$

For any orthonormal basis for S b_1, \ldots, b_k of S

$$VV^T = BB^T$$

Step

Let
$$S := \operatorname{span}(v_1, \ldots, v_k)$$

For any orthonormal basis for \mathcal{S} b_1, \ldots, b_k of \mathcal{S}

$$VV^T = BB^T$$

Choice of basis does not change cost function

$$\sum_{i=1}^k v_i^T A v_i$$

Let
$$S := \operatorname{span}(v_1, \ldots, v_k)$$

For any orthonormal basis for S b_1, \ldots, b_k of S

$$VV^T = BB^T$$

$$\sum_{i=1}^{k} v_i^T A v_i = \operatorname{trace}\left(V^T A V\right)$$

Let
$$S := \operatorname{span}(v_1, \dots, v_k)$$

For any orthonormal basis for S b_1, \ldots, b_k of S

$$VV^T = BB^T$$

$$\sum_{i=1}^{k} v_i^T A v_i = \operatorname{trace} \left(V^T A V \right)$$
$$= \operatorname{trace} \left(A V V^T \right)$$

Let
$$S := \operatorname{span}(v_1, \ldots, v_k)$$

For any orthonormal basis for \mathcal{S} b_1, \ldots, b_k of \mathcal{S}

$$VV^T = BB^T$$

$$\sum_{i=1}^{k} v_i^T A v_i = \operatorname{trace} \left(V^T A V \right)$$
$$= \operatorname{trace} \left(A V V^T \right)$$
$$= \operatorname{trace} \left(A B B^T \right)$$

Let
$$S := \operatorname{span}(v_1, \ldots, v_k)$$

For any orthonormal basis for S b_1, \ldots, b_k of S

$$VV^T = BB^T$$

$$\sum_{i=1}^{k} v_i^T A v_i = \operatorname{trace} \left(V^T A V \right)$$

$$= \operatorname{trace} \left(A V V^T \right)$$

$$= \operatorname{trace} \left(A B B^T \right)$$

$$= \sum_{i=1}^{k} b_i^T A b_i$$

Let
$$S := \operatorname{span}(v_1, \ldots, v_k)$$

For any orthonormal basis for S b_1, \ldots, b_k of S

$$VV^T = BB^T$$

Choice of basis does not change cost function

$$\sum_{i=1}^{k} v_i^T A v_i = \operatorname{trace} \left(V^T A V \right)$$

$$= \operatorname{trace} \left(A V V^T \right)$$

$$= \operatorname{trace} \left(A B B^T \right)$$

$$= \sum_{i=1}^{k} b_i^T A b_i$$

Let's choose wisely

We choose b orthogonal to u_1, \ldots, u_{k-1}

We choose b orthogonal to u_1, \ldots, u_{k-1}

By spectral theorem

$$u_k^T A u_k \ge b^T A b$$

We choose b orthogonal to u_1, \ldots, u_{k-1}

By spectral theorem

$$u_k^T A u_k \ge b^T A b$$

Now choose orthonormal basis b_1, b_2, \ldots, b_k for $\mathcal S$ so that $b_k := b$

We choose b orthogonal to u_1, \ldots, u_{k-1}

By spectral theorem

$$u_k^T A u_k \ge b^T A b$$

Now choose orthonormal basis b_1, b_2, \ldots, b_k for $\mathcal S$ so that $b_k := b$

By induction assumption

$$\sum_{i=1}^{k-1} u_i^T A u_i \ge \sum_{i=1}^{k-1} b_i^T A b_i$$

Conclusion

For any k orthonormal vectors v_1, \ldots, v_k

$$\sum_{i=1}^k \mathsf{var}(\mathsf{pc}[i]) \ge \sum_{i=1}^k \mathsf{var}(\mathcal{P}_{v_i}\,\mathcal{X}),$$

where
$$pc[i] := \{pc_1[i], \dots, pc_n[i]\} = \mathcal{P}_{u_i} \mathcal{X}$$

Faces

$$x_i^{\mathsf{reduced}} := \mathsf{av}(\mathcal{X}) + \sum_{j=1}^7 \mathsf{pc}_i[j]u_j$$

Projection onto first 7 principal directions

Projection onto first k principal directions

Nearest-neighbor classification

Training set of points and labels $\{x_1, l_1\}, \ldots, \{x_n, l_n\}$

To classify a new data point y, find

$$i^* := \arg\min_{1 \le i \le n} ||y - x_i||_2$$

and assign l_{i*} to y

Cost: $\mathcal{O}(nd)$ to classify new point

Nearest neighbors in principal-component space

Idea: Project onto first k main principal directions beforehand

Costly reduced to $\mathcal{O}(kd)$

Computing eigendecomposition is costly, but only needs to be done once

Face recognition

Training set: 360 64 \times 64 images from 40 different subjects (9 each)

Test set: 1 new image from each subject

We model each image as a vector in \mathbb{R}^{4096} (d = 4096)

To classify we:

- 1. Project onto first k principal directions
- 2. Apply nearest-neighbor classification using the ℓ_2 -norm distance in \mathbb{R}^k

Performance

Nearest neighbor in $\ensuremath{\mathbb{R}}^{41}$

Test image Projection Closest projection Corresponding image

Dimensionality reduction for visualization

Motivation: Visualize high-dimensional features projected onto 2D or 3D

Example:

Seeds from three different varieties of wheat: Kama, Rosa and Canadian

Features:

- Area
- Perimeter
- Compactness
- Length of kernel
- Width of kernel
- Asymmetry coefficient
- Length of kernel groove

Projection onto two first PDs

Projection onto two last PDs

Covariance matrix

The spectral theorem

Principal component analysis

Dimensionality reduction via PCA

Gaussian random vectors

Gaussian random variables

The pdf of a Gaussian or normal random variable \tilde{a} with mean μ and standard deviation σ is given by

$$f_{\tilde{a}}\left(a\right) = \frac{1}{\sqrt{2\pi}\sigma}e^{-\frac{\left(a-\mu\right)^2}{2\sigma^2}}$$

Gaussian random variables

Gaussian random variables

$$\mu = \int_{a=-\infty}^{\infty} a f_{\tilde{a}}(a) \, \mathrm{d}a$$

$$\sigma^2 = \int_{a=-\infty}^{\infty} (a-\mu)^2 f_{\tilde{a}}(a) \, da$$

Linear transformation of Gaussian

If \tilde{a} is a Gaussian random variable with mean μ and standard deviation σ , then for any $\alpha,\beta\in\mathbb{R}$

$$\tilde{b} := \alpha \tilde{a} + \beta$$

is a Gaussian random variable with $\alpha\mu+\beta$ and standard deviation $\left|\alpha\right|\sigma$

$$F_{\tilde{b}}(b) =$$

$$F_{\tilde{b}}(b) = P\left(\tilde{b} \leq b\right)$$

$$F_{\tilde{b}}(b) = P(\tilde{b} \leq b)$$

= $P(\alpha \tilde{b} + \beta \leq b)$

$$F_{\tilde{b}}(b) = P\left(\tilde{b} \le b\right)$$

$$= P\left(\alpha \tilde{b} + \beta \le b\right)$$

$$= P\left(\tilde{b} \le \frac{b - \beta}{\alpha}\right)$$

$$F_{\tilde{b}}(b) = P\left(\tilde{b} \le b\right)$$

$$= P\left(\alpha \tilde{b} + \beta \le b\right)$$

$$= P\left(\tilde{b} \le \frac{b - \beta}{\alpha}\right)$$

$$= \int_{-\infty}^{\frac{b - \beta}{\alpha}} \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{(a - \mu)^2}{2\sigma^2}} da$$

$$F_{\tilde{b}}(b) = P\left(\tilde{b} \le b\right)$$

$$= P\left(\alpha \tilde{b} + \beta \le b\right)$$

$$= P\left(\tilde{b} \le \frac{b - \beta}{\alpha}\right)$$

$$\int_{-\frac{b - \beta}{\alpha}}^{\frac{b - \beta}{\alpha}} 1^{(a-\mu)^2}$$

$$= \int_{-\infty}^{\frac{b-\rho}{\alpha}} \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{(a-\mu)^2}{2\sigma^2}} da$$

$$= \int_{-\infty}^{b} \frac{1}{\sqrt{2\pi}\alpha\sigma} e^{-\frac{2\sigma^2}{2\alpha^2} \frac{da}{\sigma^2}} dw$$

$$= \int_{-\infty}^{b} \frac{1}{\sqrt{2\pi}\alpha\sigma} e^{-\frac{(w-\alpha\mu-\beta)^2}{2\alpha^2\sigma^2}} dw$$

change of variables
$$w := \alpha a + \beta$$

Let $\alpha > 0$ (proof for a < 0 is very similar),

$$F_{\tilde{b}}(b) = P\left(\tilde{b} \le b\right)$$

$$= P\left(\alpha \tilde{b} + \beta \le b\right)$$

$$= P\left(\tilde{b} \le \frac{b - \beta}{\alpha}\right)$$

$$= \int_{-\infty}^{\frac{b - \beta}{\alpha}} \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{(a - \mu)^2}{2\sigma^2}} da$$

$$= \int_{-\infty}^{b} \frac{1}{\sqrt{2\pi}\sigma\sigma} e^{-\frac{(w - \alpha\mu - \beta)^2}{2\sigma^2\sigma^2}} dw \quad \text{change of variables } w := \alpha a + \beta$$

Differentiating with respect to *b*:

$$f_{\tilde{b}}(b) = \frac{1}{\sqrt{2\pi}\alpha\sigma}e^{-\frac{(b-\alpha\mu-\beta)^2}{2\alpha^2\sigma^2}}$$

Gaussian random vector

A Gaussian random vector \tilde{x} is a random vector with joint pdf

$$f_{\bar{x}}(x) = \frac{1}{\sqrt{(2\pi)^n |\Sigma|}} \exp\left(-\frac{1}{2}(x-\mu)^T \Sigma^{-1}(x-\mu)\right)$$

where $\mu \in \mathbb{R}^d$ is the mean and $\Sigma \in \mathbb{R}^{d \times d}$ the covariance matrix

 $\Sigma \in \mathbb{R}^{d imes d}$ is positive definite (positive eigenvalues)

Contour surfaces

Set of points at which pdf is constant

$$c = x^T \Sigma^{-1} x$$
 assuming $\mu = 0$

Contour surfaces

Set of points at which pdf is constant

$$\begin{split} c &= x^T \Sigma^{-1} x & \text{assuming } \mu = 0 \\ &= x^T U \Lambda^{-1} U x \end{split}$$

Set of points at which pdf is constant

$$c = x^{T} \Sigma^{-1} x \quad \text{assuming } \mu = 0$$

$$= x^{T} U \Lambda^{-1} U x$$

$$= \sum_{i=1}^{d} \frac{(u_{i}^{T} x)^{2}}{\sqrt{\lambda_{i}}}$$

Set of points at which pdf is constant

$$c = x^{T} \Sigma^{-1} x \quad \text{assuming } \mu = 0$$

$$= x^{T} U \Lambda^{-1} U x$$

$$= \sum_{i=1}^{d} \frac{(u_{i}^{T} x)^{2}}{\sqrt{\lambda_{i}}}$$

Ellipsoid with axes proportional to $\sqrt{\lambda_i}$

2D example

$$\mu = 0$$

$$\Sigma = \begin{bmatrix} 0.5 & -0.3 \\ -0.3 & 0.5 \end{bmatrix}$$

2D example

$$\mu = 0$$

$$\Sigma = \begin{bmatrix} 0.5 & -0.3 \\ -0.3 & 0.5 \end{bmatrix}$$

$$\lambda_1 = 0.8$$

$$\lambda_2 = 0.2$$

$$u_1 = \begin{bmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \end{bmatrix}$$

$$u_2 = \begin{bmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \end{bmatrix}$$

How does the ellipse look like?

Uncorrelation implies independence

If the covariance matrix is diagonal,

$$\Sigma_{\tilde{\mathbf{x}}} = \begin{bmatrix} \sigma_1^2 & 0 & \cdots & 0 \\ 0 & \sigma_2^2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \sigma_d^2 \end{bmatrix}$$

the entries of a Gaussian random vector are independent

$$\Sigma_{\tilde{x}}^{-1} = egin{bmatrix} rac{1}{\sigma_1^2} & 0 & \cdots & 0 \ 0 & rac{1}{\sigma_2^2} & \cdots & 0 \ dots & dots & \ddots & dots \ 0 & 0 & \cdots & rac{1}{\sigma_d^2} \end{bmatrix}$$

$$|\Sigma| = \prod_{i=1}^d \sigma_i^2$$

 $f_{\tilde{x}}(x)$

$$f_{\tilde{x}}\left(x
ight) = rac{1}{\sqrt{\left(2\pi
ight)^d |\Sigma|}} \exp\left(-rac{1}{2}\left(x-\mu
ight)^T \Sigma^{-1}\left(x-\mu
ight)
ight)$$

$$f_{\bar{x}}(x) = \frac{1}{\sqrt{(2\pi)^d |\Sigma|}} \exp\left(-\frac{1}{2}(x-\mu)^T \Sigma^{-1}(x-\mu)\right)$$
$$= \prod_{i=1}^d \frac{1}{\sqrt{(2\pi)}\sigma_i} \exp\left(-\frac{(x_i - \mu_i)^2}{2\sigma_i^2}\right)$$

$$f_{\tilde{x}}(x) = \frac{1}{\sqrt{(2\pi)^d |\Sigma|}} \exp\left(-\frac{1}{2}(x-\mu)^T \Sigma^{-1}(x-\mu)\right)$$

$$= \prod_{i=1}^d \frac{1}{\sqrt{(2\pi)\sigma_i}} \exp\left(-\frac{(x_i - \mu_i)^2}{2\sigma_i^2}\right)$$

$$= \prod_{i=1}^d f_{\tilde{x}_i}(x_i)$$

Linear transformations

Let \tilde{x} be a Gaussian random vector of dimension d with mean μ and covariance matrix Σ

For any matrix $A \in \mathbb{R}^{m \times d}$ and $\vec{b} \in \mathbb{R}^m$ $\tilde{y} = A\tilde{x} + \vec{b}$ is Gaussian with mean $A\mu + \vec{b}$ and covariance matrix $A\Sigma A^T$ (as long as it is full rank)

PCA on Gaussian random vectors

Let \tilde{x} be a Gaussian random vector with covariance matrix $\Sigma := U \Lambda U^T$

The principal components

$$\widetilde{pc} := U^T \widetilde{x}$$

are Gaussian and have covariance matrix

$$U^T\Sigma U=\Lambda$$

PCA on Gaussian random vectors

Let \tilde{x} be a Gaussian random vector with covariance matrix $\Sigma := U \Lambda U^T$

The principal components

$$\widetilde{pc} := U^T \widetilde{x}$$

are Gaussian and have covariance matrix

$$U^T \Sigma U = \Lambda$$

so they are independent

PCA on Gaussian random vectors

Let \tilde{x} be a Gaussian random vector with covariance matrix $\Sigma := U \Lambda U^T$

The principal components

$$\widetilde{pc} := U^T \widetilde{x}$$

are Gaussian and have covariance matrix

$$U^T\Sigma U=\Lambda$$

so they are independent

Often not the case in practice!

Maximum likelihood for Gaussian vectors

Log-likelihood of Gaussian parameters

$$\begin{split} &(\mu_{\mathsf{ML}}, \Sigma_{\mathsf{ML}}) \\ &:= \arg\max_{\mu \in \mathbb{R}^d, \Sigma \in \mathbb{R}^{d \times d}} \log \prod_{i=1}^n \frac{1}{\sqrt{(2\pi)^d \left| \Sigma \right|}} \exp\left(-\frac{1}{2} \left(x_i - \mu\right)^T \Sigma^{-1} \left(x_i - \mu\right)\right) \\ &= \arg\min_{\mu \in \mathbb{R}^d, \Sigma \in \mathbb{R}^{d \times d}} \sum_{i=1}^n \left(x_i - \mu\right)^T \Sigma^{-1} \left(x_i - \mu\right). \end{split}$$

Solution is sample mean and variance

Additional justification, but PCA is useful without Gaussian assumption!