Régressions polynomiales

Cours 2 – Régularisation et sélection de modèle

1. Évaluation d'un modèle

1.1 Généralisation et surapprentissage

Défi principal de l'apprentissage supervisé :

 Il est relativement facile d'entraîner un modèle qui « marche » bien (faible erreur de prédiction) sur les données d'apprentissage Exemple extrême : apprentissage « par cœur »

Erreur sur les données d'apprentissage = 0

1.1 Généralisation et surapprentissage

Défi principal de l'apprentissage supervisé :

- Il est relativement facile d'entraîner un modèle qui « marche » bien (faible erreur de prédiction) sur les données d'apprentissage Exemple extrême : apprentissage « par cœur »
- Généralisation : capacité du modèle à faire de bonnes prédictions sur des données dont on ne connaît pas l'étiquette

1.1 Généralisation et surapprentissage

Défi principal de l'apprentissage supervisé :

- Il est relativement facile d'entraîner un modèle qui « marche » bien (faible erreur de prédiction) sur les données d'apprentissage Exemple extrême : apprentissage « par cœur »
- Généralisation : capacité du modèle à faire de bonnes prédictions sur des données dont on ne connaît pas l'étiquette
- Surapprentissage : quand la performance est meilleure sur les données d'apprentissage que sur de nouvelles données (overfitting)

Surapprentissage

Simulation : vrai modèle = polynôme de degré 3 + bruit.

Compromis biais-variance

1.2 Jeux d'entraînement et de test

 Erreur de généralisation : erreur que l'on peut attendre sur de nouvelles données (la définition formelle fait appel à l'espérance)

1.2 Jeux d'entraînement et de test

- Erreur de généralisation : erreur que l'on peut attendre sur de nouvelles données (la définition formelle fait appel à l'espérance)
- Elle est estimée en mettant de côté une partie des données :
 - On sépare les données en un jeu d'entraînement et un jeu de test (typiquement, 80%–20%)

1.2 Jeux d'entraînement et de test

> Performance qu'on peut espérer en prod.

- Erreur de généralisation : erreur que l'on peut attendre sur de nouvelles données (la définition formelle fait appel à l'espérance)
- Elle est estimée en mettant de côté une partie des données :
 - On sépare les données en un jeu d'entraînement et un jeu de test (typiquement, 80%–20%)

- Le jeu d'entraînement (train set) sert à apprendre le modèle
- Le jeu de test sert à estimer l'erreur de généralisation du modèle

Règle d'or

NE PAS TOUCHER au jeu de test sauf pour évaluer l'erreur de généralisation du modèle

- La validation croisée (cross-validation) permet :
 - d'utiliser toutes les données pour l'entraînement et pour la validation
 - d'obtenir une performance moyenne (+/- écart-type) moins sensible au choix du jeu de test
- On sépare le jeu de données en K blocs (folds)
 - En pratique, K=5 ou K=10 le plus souvent (équilibre entre le nombre d'expériences et la taille de chaque jeu d'entraînement)
- On utilise tour à tour chacun des blocs comme jeu de validation et l'union des autres comme jeu d'entraînement
- \Rightarrow K scores de performance \rightarrow **performance de généralisation** du modèle

Jeu de données

Estimation de l'erreur de généralisation

Puis on enterne sur l'integralité des données Co modéle final

Pourcentage d'erreur : proportion d'observations mal classifiées

- Pourcentage d'erreur : proportion d'observations mal classifiées
- Problème : cas où les classes ne sont pas équilibrées
 - Exemple : détection de fraude
 - 99% des observations ne sont pas des fraudes
 - Un modèle qui prédit toujours « non » a un pourcentage d'erreur de 1%.

- Pourcentage d'erreur : proportion d'observations mal classifiées
- Problème : cas où les classes ne sont pas équilibrées
 - **Exemple :** détection de fraude
 - 99% des observations ne sont pas des fraudes
 - Un modèle qui prédit toujours « non » a un pourcentage d'erreur de 1%.
- Matrice de confusion (confusion matrix)

		Classe réelle		
		0	1	
Classe	0	Vrais Négatifs (TN)	Faux Négatifs (FN)	
prédite	1	Faux Positifs (FP)	Vrais Positifs (TP)	

- Pourcentage d'erreur : proportion d'observations mal classifiées
- Problème : cas où les classes ne sont pas équilibrées
 - **Exemple :** détection de fraude
 - 99% des observations ne sont pas des fraudes
 - Un modèle qui prédit toujours « non » a un pourcentage d'erreur de 1%.
- Matrice de confusion (confusion matrix)

		True class		
		0	1	
Predicted	0	True Negatives (TN)	False Negatives (FN)	
class	1	False Positives (FP)	True Positives (TP)	

		Classe réelle		
		0	1	
Classe	0	Vrais Négatifs (TN)	Faux Négatifs (FN)	TN+FN
prédite	1	Faux Positifs (FP)	Vrais Positifs (TP)	TP+FP
		TN + FP	TP + FN	

- Sensibilité (sensitivity) = rappel (recall) = taux de vrais positifs = $\frac{TP}{TP + FN}$
- Spécificité (specificity) = taux de vrais négatifs (TN rate) = $\frac{TN}{TN + FP}$ Si on pr
- Précision (precision) = $\frac{TP}{TP + FP}$
- Précision (accuracy) = $\frac{TP + TN}{TP + FP + TN + FN}$
- Score F (F-score) = moyenne harmonique (précision, rappel) = $\frac{2 \text{ TP}}{\text{TP} + \text{FP} + \text{TP} + \text{FN}}$

1.5 Évaluation d'un modèle (régression)

Compter le nombre d'erreurs n'a pas de sens

1.5 Évaluation d'un modèle (régression)

- Compter le nombre d'erreurs n'a pas de sens
- Somme des carrés des erreurs : RSS $=\sum_{i=1}^{n}\left(y_{i}-f(\vec{x}_{i})\right)^{2}$
- Racine de l'erreur quadratique moyenne (Root Mean Squared Error) :

RMSE =
$$\sqrt{\frac{1}{n} \sum_{i=1}^{n} (y_i - f(\vec{x}_i))^2}$$

- Erreur carrée relative : RSE = $\frac{\sum_{i=1}^{n}(y_i-f(\vec{x}_i))^2}{\sum_{i=1}^{n}(y_i-\overline{y})^2}$ $\overline{y} = \sum_{l=1}^{n}y_l$
- Coefficient de détermination :

$$R^2 = 1 - \text{RSE} = \frac{\sum_{i=1}^n \left(y_i - \overline{y}\right) \left(f(\vec{x}_i) - \overline{f(\vec{x})}\right)}{\sqrt{\sum_{i=1}^n \left(y_i - \overline{y}\right)^2} \sqrt{\sum_{i=1}^n \left(f(\vec{x}_i) - \overline{f(\vec{x})}\right)^2}}$$

- Comment déterminer le meilleur modèle parmi ceux appris :
 - avec différents algorithmes d'apprentissage ;
 - avec différentes valeurs d'hyperparamètre(s) pour le même algorithme ?

- Comment déterminer le meilleur modèle parmi ceux appris :
 - avec différents algorithmes d'apprentissage ;
 - avec différentes valeurs d'hyperparamètre(s) pour le même algorithme ?
- Idée : sélectionner celui qui a la meilleure performance sur le jeu de test.

- Comment déterminer le meilleur modèle parmi ceux appris :
 - avec différents algorithmes d'apprentissage ;
 - avec différentes valeurs d'hyperparamètre(s) pour le même algorithme ?
- Idée : sélectionner celui qui a la meilleure performance sur le jeu de test.
- Problème : on ne peut plus déterminer l'erreur de généralisation car les données de test ont déjà servi.

- Comment déterminer le meilleur modèle parmi ceux appris :
 - avec différents algorithmes d'apprentissage ;
 - avec différentes valeurs d'hyperparamètre(s) pour le même algorithme ?
- Idée : sélectionner celui qui a la meilleure performance sur le jeu de test.
- Problème : on ne peut plus déterminer l'erreur de généralisation car les données de test ont déjà servi.
- On sépare les données en 3 jeux : apprentissage, validation et test.

Jeu de données

- Comment déterminer le meilleur modèle parmi ceux appris :
 - avec différents algorithmes d'apprentissage ;
 - avec différentes valeurs d'hyperparamètre(s) pour le même algorithme ?
- Idée : sélectionner celui qui a la meilleure performance sur le jeu de test.
- Problème : on ne peut plus déterminer l'erreur de généralisation car les données de test ont déjà servi.
- On sépare les données en 3 jeux : apprentissage, validation et test.

Jeu de validation

- Le jeu d'entraînement sert à apprendre chacun des modèles
- Le jeu de validation sert à sélectionner le meilleur modèle
- Le jeu de test sert à estimer l'erreur de généralisation du modèle sélectionné

Jeu de validation

- Le jeu d'entraînement sert à apprendre chacun des modèles
- Le jeu de validation sert à sélectionner le meilleur modèle
- Le jeu de test sert à estimer l'erreur de généralisation du modèle sélectionné

- Problèmes:

- On utilise seulement une fraction des données pour l'entraînement
- Possiblité que le modèle sélectionné ait une meilleure performance sur ce jeu de validation précis à cause d'un artefact.

Validation croisée (sélection de modèle)

- On peut aussi utiliser la validation croisée pour la sélection de modèle
- On sépare le jeu d'entraînement en K blocs (ou folds)
- Pour chaque algorithme ou valeur d'hyperparamètre à évaluer :
 - On utilise tour à tour chacun des blocs comme jeu de validation et l'union des autres comme jeu d'entraînement
 - \Rightarrow on obtient K scores de performance \rightarrow performance moyenne
- On sélectionne l'algorithme ou la valeur d'hyperparamètre qui donne la meilleure performance moyenne
- On réentraîne sur le jeu d'entraînement l'algorithme sélectionné
- On estime l'erreur de généralisation en évaluant sur le jeu de test le modèle ainsi obtenu

Validation croisée (sélection de modèle)

Jeu de données

Validation croisée (sélection de modèle)

Pour chaque algorithme/valeur d'hyperparamètre

Pour chaque algorithme/valeur d'hyperparamètre

— meilleur algorithme/valeur d'hyperparamètre

Validation croisée imbriquée

- Utiliser une validation croisée :
 - pour la sélection de modèle (boucle interne)
 - et pour **l'évaluation** du modèle sélectionné (boucle externe)
- Peut devenir coûteux en calculs :
 - Exemple: si K = 5 pour la boucle interne, K=10 pour la boucle externe, et on a 10 valeurs d'hyperparamètre à évaluer: 500 modèles à entraîner.
 - Cependant, facile à paralléliser.

Optimisation d'hyperparamêtres Determiner K (nb de + proches voisil

Parex) Determiner K (No de + procheo voisile)
dans le ENN

6 rid search / recherche en grille Grid Search CV

1) Fixer une grille de valeurs de K

= lisk

[2,5,7,9,11...]

Sij (ai 2 hyperparam 2, et 22 2)

Pour chaque valeur de la grille

validation crossé pour évaluer la perf

GENERALISATION / SURAPPRENTISSAGE

2. Régularisation

Minimisation du nièque empirique

min
$$\frac{1}{n} \stackrel{\mathcal{E}}{\underset{i=1}{\sum}} L(y_i, f(\overline{z_i}))$$
 $f \in F$

respace des hypothèses

2.1 Régularisation

- Par principe, la minimisation du risque empirique conduit facilement au surapprentissage
- La régularisation consiste à contraindre le problème pour limiter la complexité du modèle
 - Complexité: notion théorique, par ex. Vapnik-Chervonenkis
 - Intuitivement : « flexibilité » des modèles que l'on peut apprendre
 - Proxys : nombre de paramètres ; amplitude possible de ces paramètres

$$\hat{f} = \underset{f \in \mathcal{F}}{\operatorname{arg\,min}} \frac{1}{n} \sum_{i=1}^{n} L(y_i, f(\vec{x}_i)) + \Omega(f) \quad \lambda > 0$$

$$\text{ERN} \qquad \text{coeff: cient de regularisation}$$

min (erreur + complexité)
On prefére un modèle Ocomplexe quite à l'Ilerreur

min Erreur + 7 Complexite sur le jeu du modèle d'apprentissage risque de sous-apprentissige * Plus 7 7, plus on vent un modèle simple (cas extrême: on ignore l'erreur) = on n'utilise pre les donnée

* λ=0: ERM non régularisée surapprentisege λ hyperparametre à determiner par recherche en grille

2.1 Régularisation

- Par principe, la minimisation du risque empirique conduit facilement au surapprentissage
- La régularisation consiste à contraindre le problème pour limiter la complexité du modèle
 - Complexité : notion théorique, par ex. Vapnik-Chervonenkis
 - Intuitivement : « flexibilité » des modèles que l'on peut apprendre
 - Proxys : nombre de paramètres ; amplitude possible de ces paramètres

$$\hat{f} = \operatorname*{arg\,min}_{f \in \mathcal{F}} \frac{1}{n} \sum_{i=1}^{n} L(y_i, f(\vec{x}_i)) + \lambda \Omega(f) \quad \lambda > 0$$

- Coefficient de régularisation $\lambda>0$: hyperparamètre qui gouverne l'importance relative entre la minimisation du risque empirique et la complexité $\Omega(f)$ du modèle.

2.1 Régularisation ridge

reseaux de neurons

- Exemple 1 : **Régularisation ridge** (ou ℓ_2 , ou weight decay) , Thi bokev
 - Pour un modèle paramètrique de paramètres $\theta_1, \theta_2, \dots, \theta_d$, $\Omega(\vec{\theta}) = \left| \left| \vec{\theta} \right| \right|_2^2 = \sum_{j=1}^d \theta_j^2 \text{ contrôle l'amplitude des paramètres}$

2.1 Régularisation ridge

Exemple 1 : Régularisation ridge (ou ℓ_2 , ou weight decay)

- 710
- Pour un modèle paramètrique de paramètres $\theta_1, \theta_2, \dots, \theta_d$, $\Omega(\vec{\theta}) = \left| \left| \vec{\theta} \right| \right|_2 = \sum_{j=1}^d \theta_j^2$ contrôle **l'amplitude des paramètres**

- Régression ridge: risque empirate
$$\underset{\vec{\beta} \in \mathbb{R}^{p+1}}{\operatorname{arg \, min}} \left(\frac{1}{n} \left(\vec{y} - X \vec{\beta} \right)^{\top} \left(\vec{y} - X \vec{\beta} \right) + \lambda \left| \left| \vec{\beta} \right| \right|_{2}^{2} \right)$$

Admet toujours une unique solution $\vec{\beta}^* = \left(X^\top X + \lambda I_p\right)^{-1} X^\top \vec{y}$ car ajouter une matrice diagonale à coefficients strictement positifs à $X^\top X$ la rend inversible

Chemin de régularisation (ridge)

Interprétation géométrique

2.2 Lasso (least absolute sporse selection greator)

- Exemple 2 : Régularisation ℓ_1
 - Pour un modèle paramètrique de paramètres $\theta_1, \theta_2, \dots, \theta_d$, $\Omega(\vec{\theta}) = \left| \left| \vec{\theta} \right| \right|_1 = \sum_{j=1}^d |\theta_j|$ contrôle **le nombre de paramètres non nuls** \rightarrow **parcimonie** (sparsity)

réduction de dineusion & apprentisurge en mêtre temps

59

Si 2 variables cométés et explication: Lasso: sélectione me seule d'entre elles => instabilité Internédiaire entre $l_1(lass)$ et $l_2(Ridge)$:

ElasticNet $\Omega(f) = \alpha \|\theta\|_2^2 + (1-\alpha) \|\theta\|_1$ $0 < \alpha < 1$ efet: sélectionne les variables explicatives le conclus entre elles ensemble

2.2 Lasso

- Exemple 2 : **Régularisation** ℓ_1
 - Pour un modèle paramètrique de paramètres $\theta_1, \theta_2, \ldots, \theta_d$, $\Omega(\vec{\theta}) = \left| \left| \vec{\theta} \right| \right|_1 = \sum_{j=1}^d |\theta_j| \text{ contrôle le nombre de paramètres non nuls} \rightarrow \text{parcimonie} \text{ (sparsity)}$
 - Lasso (Least Absolute Sparse Selection Operator):

$$\underset{\vec{\beta} \in \mathbb{R}^{p+1}}{\operatorname{arg\,min}} \frac{1}{n} \left(\vec{y} - X \vec{\beta} \right)^{\top} \left(\vec{y} - X \vec{\beta} \right) + \lambda \left| \left| \vec{\beta} \right| \right|_{1}$$

Résolu par l'algorithme du gradient.

Chemin de régularisation

Interprétation géométrique

Estimation par maximum a posteriori

