Lecture 7: Classification Models and Cross Validation

INFO 1998: Introduction to Machine Learning

Agenda

- 1. Decision Trees
- 2. Logistic Regression and Its Applications
- 3. Cross Validation

Decision Trees

How Should I Spend My Weekends

A decision tree is a supervised machine learning model used to predict a target by learning decision rules from features. As the name suggests, we can think of this model as breaking down our data by making a decision based on asking a series of questions.

CART (Classification and Regression Trees)

- Used for Classification and Regression
- At each node, split on variables
- Each split minimizes error function
- Very interpretable
- Models a non-linear relationship!

Pros and Cons of Using Decision Trees

Pros	Cons
Easy to interpret	Overfitting 🙁
Requires little data preparation (robust to missing data)	Requires parameter tuning (max depth)
Can use a lot of features	
Can capture non-linear relationships	

How to Reduce Overfitting

1. Limit the max depth of the tree

Depth = 1

Depth = 2

When training a decision tree, we have to specify the maximum depth a constructed tree can have

How to Reduce Overfitting

2) Train multiple decision trees and determine final output based on output of each decision tree

This is called a Random Forest Classifier

Demo

Logistic Regression

Logistic Regression

Used for Binary Classification:

$$Y = \begin{cases} 1 \\ 0 \end{cases}$$

- Fits a linear relationship between the variables
- Transforms the linear relationship of probability that the outcome is 1 by using the sigmoid function

Formula:

$$P(x) = \frac{1}{1 + e^{-(\beta_0 + \beta_1 x_1 + \dots + \beta_k x_k)}} \longrightarrow \ln\left(\frac{P}{1 - P}\right) = \beta_0 + \beta_1 x_1 + \dots + \beta_k x_k$$

Logistic Function

$$\mathbf{P}(x) = \frac{1}{1+e^{-x}}$$

The Logistic Function "squeezes" numbers to be between 0 and 1

Allows us to interpret our prediction as a "probability" that something is true

Threshold

At what point point do we differentiate between our classifications?

- f(x) below threshold: predict 0
- f(x) above threshold: predict 1

Pros and Cons of Using Logistic Regression

Pros	Cons
Easy to interpret (probability)	Only Capable of Binary Classification
Computationally efficient to compute	
Does not require parameter tuning	

Logistic Regression is a simple model, therefore, oftentimes it is used as a good "baseline" to compare more complex models to

Demo

Cross Validation

Underfitting

Underfitting means we have <u>high bias</u> and <u>low variance</u>.

- Lack of relevant variables/factor
- Imposing limiting assumptions
 - Linearity
 - Assumptions on distribution
 - Wrong values for parameters

Overfitting

Overfitting means we have <u>low bias</u> and <u>high variance</u>.

- Model fits too well to specific cases
- Model is over-sensitive to sample-specific noise
- Model introduces too many variables/complexities than needed

Often used in practice with k=5 or k=10.

Create equally sized *k* partitions, or **folds**, of training data

For each fold:

- Treat the *k-1* other folds as training data.
- Test on the chosen fold.

The average of these errors is the validation error

Dataset

Fold 1 Fold 2 Fold 3 Fold 4 Fold 5

Test Sample

Training Sample

Training Sample

Training Sample

Training Sample

Calculate MSE = mse1

Training Sample

Test Sample

Training Sample

Training Sample

Training Sample

Calculate MSE = mse2

Training Sample

Training Sample

Test Sample

Training Sample

Training Sample

Calculate MSE = mse3

And so on

Fold 1 Fold 2 Fold 3 Fold 4 Fold 5

MSE = Avg(mse1...5)

Matters less how we divide up

Selection bias not present

Leave-1-Out Cross Validation

For each sample:

- Treat all other data as training data.
- Test on that one sample

The average of these errors is the validation error

Pro: Better on small datasets

Pro: More realistic (trained on most of the data)

Con: Takes longer to run

Demo

Review

Loss, Cost, and Score Functions

Loss Function

Penalty for missing a single data point

Cost Function

- Indicates how bad the whole model is
- Applies loss function to each point, then combines that into a single number
 - ex: average of (loss from each point)

Score Function

A more interpretable version of the cost function

Cost -> Accuracy Score

sklearn's score function is:

1 - ([Cost of model] / [Cost of baseline])

- 1 is very, very good
- 0 means you were as bad as the baseline
- <0 means either your baseline predictions were very good, or you really, really messed up

Balancing Bias and Variance

Error =
$$(Bias)^2$$
 + $(Variance)$ + (\mathcal{E})

Bias = expected loss of accuracy

Variance = inconsistency of model

 ε = irreducible error

Linear Regression

$$y = B_0 + B_I x_I + \dots + B_p x_p + \varepsilon$$

- x is an input; $x_1, x_2, ..., x_p$ are the features of x
- y is an output (usually a single value)
- B's are "weights"
 - A linear regression equation is defined by its B's
 - This linear regression equation is the "program" produced by ML
- Given a set of x's and y's, the program finds a set of B's that (almost) satisfies the equation above for all x's and y's
 - Minimizes bias, but not variance
 - Then, you can plug in the feature values of a new x and to predict its y

Coming Up

- Assignment 7: Due 4:30pm on Nov. 10
- Next Lecture: Linear Classifiers and Model Validation
- Final Project Check in: Due 4:30pm on Nov. 10

