4주 1강

논리회로

- 부울 대수의 개념과 연산
 - 부울 대수
 - 하나의 명제가 참(1) 또는 거짓(0)인가를 판단하는 데 사용되는 수학적인 방법
 - 원소집합 {0, 1}이며, 연산자는 AND(·), OR(+), NOT(′)

표 3-4 부울 대수의 기본 연산 법칙

논리합	A+0=A, A+1=1, A+A=A, A+A'=1
논리곱	$A \cdot 0 = 0$, $A \cdot 1 = A$, $A \cdot A = A$, $A \cdot A' = 0$
교환법칙	A+B=B+A
결합법칙	$(A+B)+C=A+(B+C)$, $(A\cdot B)\cdot C=A\cdot (B\cdot C)$
분배법칙	$A \cdot (B+C) = A \cdot B + A \cdot C$
드모르 간 법칙	(A+B)'=A'·B', (A·B)'=A'+B'

- 논리회로의 개념과 연산
 - 논리회로
 - 디지털 정보 입력을 디지털 신호 0,1로 출력
 - 기본 게이트 AND, OR, NOT 게이트를 조합하여 구성
 - 범용 게이트 NAND, NOR 게이트는 트랜지스터로 제조

- 조합 논리회로
 - 입력 0과 1의 조합에 의해 출력이 결정, 현재의 입력의 조합에 의해서만 결정
- 순차 논리회로
 - 저장 능력이 있는 플립플롭과 게이트를 서로 연결하여 구성, 기억소자가 필요
- 플립플롭
 - 1비트 정보 저장
- 레지스터
 - 여러 개의 플립플롭을 상호 연결하고, 입출력 시점을 제어할 수 있는 조합 논리회로를 결선하여 회로를 구성하며, 일정 자리 수의 2진수를 저장할 수 있는 회로

표 3-5 2진수 0과 1의 디지털 정보의 개념

구분	의미	
下正	0 (off)	1 (on)
전기램프	(OFF)	(ON)
천공카드	(구멍 없음)	(구멍 있음)
스위치	(열림)	(단힘)
펄스신호	 (펄스 없음)	(펄스 있음)

- 기본 논리회로와 논리 게이트
 - 기본 논리회로/논리 게이트
 - 논리합(OR), 논리곱(AND), 논리부정(NOT) 등의 연산을 실행하기 위한 회로
 - 2개 이상의 입력 단자와 1개의 출력 단자로 구성되어 2진 데이터를 다룸
 - 하나 이상의 입력을 받아 결과를 0 또는 1로 출력

표 3-6 기본 논리 연산

변수 연산	AND	OR	NOT	
a b	a·b	a+b	a'	b'
0 0	О	0	1	1
0 1	0	1	1	0
1 0	0	1	0	1
1 1	1	1	0	0

- 기본 논리회로와 논리 게이트
 - AND(논리곱) 게이트
 - 모든 입력이 1일 때 출력이 1이 되고 하나 이상의 0이 입력되면 출력은 0 이 됨

$$F = A \cdot B$$

АВ	F = A · B
0 0	0
0 1	0
1 0	0
1 1	1

그림 3-7 AND 게이트의 기호와 진리표

- OR(논리합) 게이트

- 1 입력이 하나라도 있으면 출력은 1이 되고 모든 입력이 0일 때만 출력이 0이 됨

$$F = A + B$$

A B	F = A + B
0 0	0
0 1	1
1 0	1
1 1	1

그림 3-8 OR 게이트의 기호와 진리표

- NOT(논리부정) 게이트
 - 오직 하나의 입력과 하나의 출력을 가짐
 - 반전 또는 보수 기능을 수행
 - 입력이 0이면 출력은 1, 입력이 1이면 출력은 0이 됨
 - 인버터라고 부르기도 함

$$F = A'$$

Α	F = A'
0	1
1	0

그림 3-9 NOT 게이트의 기호와 진리표

- NAND(부정 논리곱) 게이트
 - NOT과 AND의 합성어(NOT+AND)
 - AND 게이트에 NOT 게이트를 직렬로 연결한 게이트
 - 모든 입력이 1이면 출력은 0, 하나의 입력이라도 0이면 출력은 1이 됨

$$F = (A \cdot B)'$$

АВ	F = (A · B)'
0 0	1
0 1	1
1 0	1
1 1	0

그림 3-10 NAND 게이트의 기호와 진리표

- NOR(부정 논리합) 게이트
 - NOT과 OR의 합성어(NOT+OR)
 - OR 게이트에 NOT 게이트를 직렬로 연결한 게이트
 - 하나라도 1이면 출력은 0 이 되고, 입력 수에 관계없이 모든 입력이 0이면 출력은 1 이 됨

$$F = (A + B)'$$

АВ	F = (A + B)'
0 0	1
0 1	0
1 0	0
1 1	0

그림 3-11 NOR 게이트의 기호와 진리표

- 기본 논리회로와 논리 게이트
 - XOR(배타적 논리합)게이트
 - AND, OR, NOT의 조합 논리
 - 2 입력 XOR 게이트의 경우 입력이 같으면 출력은 0이고, 입력이 서로 다르면 1이 출력
 - 입력 수에 상관없이 1의 개수가 홀수이면 출력은 1이고 짝수이면 0이 됨

$$F = A'B + AB'$$
 또는 $F = (A \oplus B)$

АВ	$F = A'B + AB'$ $= (A \oplus B),$
0 0	0
0 1	1
1 0	1
1 1	0

그림 3-12 XOR 게이트의 기호와 진리표

- XNOR(부정 배타적 논리합) 게이트
 - XOR 게이트의 보수를 구하는 게이트
 - 2 입력 XNOR 게이트의 경우 입력이 서로 다르면 출력은 0이 되고,
 - 입력이 서로 같으면 1이 출력
 - 입력 수에 무관하게 1의 개수가 홀수이면 출력은 0이고, 짝수이면 1이 됨

АВ	$F = AB + A'B'$ $= (A \oplus B)'$
0 0	1
0 1	0
1 0	0
1 1	1

그림 3-13 XNOR 게이트의 기호와 진리표

- 버퍼 게이트

- 오직 하나의 입력과 하나의 출력을 가짐
- 단순히 전달 기능만 수행하는 게이트
- 입력이 0이면 출력도 0, 입력이 1이면 출력도 1이 됨

F = A

Α	F
0	0
1	1

그림 3-14 버퍼 게이트의 기호와 진리표

수고하셨습니다.

