	PP - PI T- 1 1 '-
	PROBLEM 1:
	Criver L. P. Masc C. X
	st Ax 16
	χ ≥ ο ·
()	a : a = b = 0
')	given b = 0
	(a) To prove: The aran i.P is feasible & deduc
	a lower bound.
	Proof: N.K.+ Ax < 0, so x = 0 is a sol.
	for the given problem
	and the second of the second o
	=> The problem is feasible.
	and the second s
	sul: X=0 in the problem, we get Z=0
	sul: X=0 in the problem, we get Z=0 which is the sours sound for the problem
	(b) To prove: The dore one is degenerate.
- //-	
	Proof: Adding slack variables, we get.
	× - 1 - A :
	$x_{S} = b - Ax$ $z = cx$
	WY T L-2 X AX
9 (847 %)	
You a	Sur non lasic Variables aqual to Zero,
	we get ×s=0.
	Since one (a) more lasic variables have the value
	Zero, the dictionary is degenarate.

(c) There are two possible sol for Ax =0 Trivial sol : when 2 = 0, this case pasier set is reduced to a single point of R" Non-Trivial Sol: X + 0, & A is a Singular matrix, this case the jesille sit is wounded as & can take any value. (d) Toprovi - The LP is unbounded or, its optimal Value is Zero. mox Cx 26=0. As we know 5. + Ax 5 b XZO Ax 60, so when x=0, it satisfies all the Conditions and 2 20. on substituting it in the objective function, we get optimal Value = 0. is when x \$ 0 , x can take any values to Satisfy the Condition Azéo which implies & can be taken any value without affecting the problem, => The problem is unlanded

(e) To prove the alon using duality theory.
W'K.T dual of the above L.P is
Min bTy
S. t ATy > C
y > 0
" b=0; we need to minimize 0.y
so what ever is the Value of y the optimal

Initial Dictionary :x= -0.5x, +5.522 + 2.5x3-9x4 71 = -0.5x, +1.5x2+0.5x3 -x4 z = 10x, -5712 -923 -2424 Substituting the non-basic Variables, 2,12, 23, 2, = 0 me get 25 = 0; 2, =0; 27 = 1 & Z=0. .. (0,0,0,0) is a solution for the given problem, => The problem is feasible. Since the Value of more than one basic variables (25, x6) is equal to zero, the given dictionary is 'degenerate'. (b) solving the alove problem using the following rule (i) largest coefficient rule for entering voriable (ii) Smallest induse Subscript for leaving Variable To prove ! The Simplex method Cycles after 6 itera - tions Prod: D, => 25=-0.5x, +5.5x2+2.523-924 26= -0.52, +1.52, +0.51, -24 Z = 10 x, -57x2 - 9x3 - 24x4

'x' is entering 2 25' is leaving Voriable. D2 = 2, = 11 2 + 523 - 1824 - 225 26 = -422 -223 + 829 + 25 27 = 1-11x2-5x3+18x4+225 Z = 532, + 4/2, -20424 -2025 It is antiving 2 26 is leaving voriable. D3 = x2 = -0.523 + 224 + 0.2525 - 0.25 x6 2, = -0.523 +424 + 0.75x5 - 2.75x6 27 = 1 + 0.5x3 - +24 -0.7525 + 2.7526. Z = 14.523 - 98x4 - 6.75x5 - 13.25 x6 1 x's is entering & 'x' is leaving Variable D4 => 23 = -2x, +824 + 1.5x5 -5.5x6 21-2x4-0.5x5+2.5x6 z = -29 x1 +1824 +1525 -9326 'z'g is enturing & z'z is leaving Variable D5 => X4 = 0.521 -0.522 -0.25 x5 +1.25x6 23= 221-422-0.525+4.5x1 z = -20x, -9x2 + 10.5x5 - 70.5x1 'xs' is entering & 'x' is leaving variable

 $D_1 \Rightarrow x_5 = 4x_1 - 8x_2 - 2x_3 + 9x_6$ x4 = -05x1+1.5x2+0.5x3-x6 Z = 22x, -932, -21x3 +2+x6 x6 is entering & xq is leaving. D7 => x6 = -0.5x, +1.522 + 0.523-x4 27=1-21 25=-0.52/+2.25 +2.23 -924 Z = 10x, -57x2 -9x3 -2+24 => D, = D7, so the simplese cycles after 6 iterat (c) using Blands Rule to solve the given problem. while Pb, it is the same as the above solution. After Do, we choose 2, is entiring & 24 is leaving Variable D7 => x, =3x2+23-224-226 27=1-322-23+224+226 25=422+223-824+X6 2 = -2712+23-4424-2026. 23' is entering & x7 is leaving. D8 => 23 = 1 -3x2 + 2x4 + 2x1 - x7 21=1-27 FINAL DICTIONARY x5= 2 -222-429 +526-287 Z = 1-3022-4224-1821-27 Sut, 22=24= 21=27 =0, weget \$3=1; 2,=1; 25=2 => (2,122,23,24) = (2,0,2,0) is a sol. with [Z=1]

PROBLEM 2:-

Crives L.P. - max $2x_1 + 3x_2 - 5x_3$ S.t $x_1 - z_2 \le 3$ $-x_1 + x_3 \le 6$ $-x_1 + x_3 \le 2$ $-z_1 + x_2 \le -4$ z_{11}, x_{21}, z_{32}

1) To check the quasility of the dual problem without computing it.

Initial dictionary of the alone lip

 $D \Rightarrow x_{4} = 3 - 2, +x_{2}$ $x_{5} = 6 + 2, -2_{3}$ $x_{6} = 2 + 2, -2_{3}$ $x_{7} = -4 + 2, -2_{2}$ $x_{7} = -2, +3x_{2} -5x_{3}$

Since the initial dictionary is infeasible, we need to solve the ausilory problem first to try to make the Dictionary pasible.

 $D' \Rightarrow x_4 = 3 - x_1 + x_2 + x_0$ $25 = 6 + x_1 - x_3 + x_0$ $x_6 = 2 + 2x_1 - x_3 + x_0$ $x_7 = -4 + x_1 - x_2 + x_0$ $x_7 = -x_0$

it has the least coefficient value.

D' = x = 4 - x + x 2 - 27 $2_4 = 7 - 2x_1 + 2x_2 - x_2$ 25=10 +22-23-27 x = 6 +2, +2 - 23 -27 2 = -4 +2, -762 + 27 I's the entering & 24 is the leaving variable. $D' \Rightarrow x_1 = 3.5 + x_2 - 0.5 x_4 - 0.5 x_7$ 20 = 0.5 + 0.524 -0.527 25 = 10 + 22 - 23 - 272, = 9.5 +222 - 23 -0.529 -1.527 2 = -0.5 -0.524 +0.527 'X7 is the entering & X' is the leaving Variable. $D_3' \Rightarrow x_7 = 1 + x_4 - 2x_0$. $x_1 = 3 + 2_2 - 24 + x_0$. 25= 9+12-23-24+220. 26 = 8 + 22, -23 -224+3x0 Z = -20. Since we have forled to to line, we can sal . lock our original problem. D, => 27 = 1+24 21= 3+22-264 25=9+12-23-29 26=8+222-23-224 2 = 6+5×2-5×3-2×4 Since, Iz is the entering variable & there is no leaving Variable, the give Lip's unlounded.

As the primal is unfounded we can now deduce that the Dual is infeasible. Dual of the above L.P is Min 34, +642+243-474 S. + 4, -42 - 243 - 44 22 -y, +y+ >3 4, +43 >-5 91, 4, 13, 4 20. Converting it to 5 td. form. Max -34, +64, -24, +444 s.t - y, + y + 24 , + 4 < -2 y, -y <-3 -y < 5 9,, 42, 43, 4, 20. Initial dictionary is D => 75= -2+7, -42-243-54 76 = -3 - 41 +44 y = 5 + 42 + 43 2 = -35, -672 - 253 + 454 Sina the Initial dictionary is ingrasible we need to some the ausiliary problem. D' => 45 = -2 + 4, - 42 - 243 - 44 + 40 y6 = -3 - y, +y9 + y0 $\frac{y_7 = 5}{z = -y_0} + \frac{y_1}{y_2} + \frac{y_3}{y_3} + \frac{y_5}{y_5}$

Now forcing y, to enter. we get. $D_1 \to y_0 = 3 + y_1 - y_4 + y_6$. 45=1+29,-4-273-244+y6. 77= 8+4,+42+43-4+46. 2 = -3 - 4, + 4 4 - 4. 'y' is the entering & y's is the leaving Varialh. 0, 7 94 = 0.5 + 9, -0.542 - 43 - 0.595 + 0.596 y = 2.5 +0.54, + y + 0.54 +0.54 47 = 7.5 +1.542+243+0.545+0.54 z = -2.5 -0.542 - 93 -0.542 -0.54 Since the above dictionary is final & Sul the mon lasic Variables (42, 43, 45, 91) =0, we get Z=-2.5, sin a the value of the ausilony prot is -ve, the given L.P is infeasible 3) To prove: If a problem is unlounded, then its dual is infrasible. Let i ua fesille sol. for P (Primal) & 'y'ddofes ille Sol for D conal). Then by Weak Duality theorem. CTX < bTy Sin a we are given prinal is unlounded, i.e cx =+ 2 we conthat D (Dune) is infrasible.

4) We, the Inverse isnet rue, if Friend is infeasive then purecastly (0) unlounded. Eg: give LP masc 2x,-x2 5. t 2,-x2 &1 -2,+2, 4-2 21,12,220. From the constrainty, we can conclude that the given LiP is inpeasible as the constraints 2,-2,51 & 2,-x, 22 cont 12 satisfied. During the Lip Min y, -2 42 5. t y, - 4, 22 -y, + y2 2-1 y, , 42 Zo. Converting to Standard form, we get. Masc - 4, + 242 5+ - 9, + 42 < - 2 7, - 4, 51 4, 442 20 From the Constraints, we can conclude that the dual is infeasible as the Constrainty 9, - 4, 51 & 9, - 4, 72 cant we satisfied => If the primal is infrasible, the primal during can be inflasible and not necessarily blunlounded.

PROBLEM 3:-

Given LP, Max $-x_1 - 2x_2$ $5 \cdot t - 2x_1 + 7x_2 \le 6$ $-3x_1 + 2z \le -1$ $9x_1 - 4x_2 \le 6$ $x_1 - 2z \le 3$ $7x_1 - 3x_2 \le 6$ $-5x_1 + 2x_2 \le -3$ $x_1 \ge 0, x_2 \ge 0$

1) (a) Duce form of alone L. P

Min 69, -92+693+394+695-396. S. t -29, -392+993+94+795-5962-1 79, +92-493-94-395+2962-29, 20, 9220, 9320, 9420, 9520, 9620.

(b) It is easier to some the Dual as all the primal objective loefficients are all negative, which helps us avoid the Initialisation phase.

I optimal Sol. & optimal Value of the given Lit.

Sin a use need to max -2, -2x 2 & we

know that 2, 2x 2 70.

Lits Start by assuming 2,= 22 = 0

on sut, the Constrainty -32, + 2, ≤-1 b -52, + 22, ≤-3 isn't Satisfied.

From the two Const raints we can see that only the value of 2, could be increased. So on kuping 2 = 0, we get $-32, \leq -1$ & $-52, \leq -3$ 2, 2 Y3 & 2,3/5 => 21=315 : the optimal Sol. is (2,1 x2) = (315,0) 2 optimal value is Z=-3/5 2) (a) Initial Dictionary of given L.P (i.e the prinal) P => 23 = 6+22,-722 24 = -1 + 32, -22 25 = 6-92, +422 26 = 3-21+22 21,22,23,24,25 27 = 6-72, +322 20,27, ×8 20 28 = -3 + 52, -22Z = -2, -222 Initial Dictionary of its Dual. D => 47 = 1-24, -34, +943 + 4+745-54 $\frac{y_8 = 2 + 7y_1 + y_2 - 4y_3 - y_4 - 3y_5 + 2y_6}{z = -6y_1 + y_2 - (y_3 - 3y_4 - (y_5 + 3y_6))}$ 9, , 42, 73, 74, 45, 41, 47, 4, 20 (b) Dictionary of Primal - Infeasible Cas conflicients one Dictionary of Dank => pasible

3) (a) Initial dictionary of given L.P D => 23 = 6 + 22, -72, 24 = -1 + 32, - 22 25 = 6 - 92, + 422 26 = 3 - 2, + 22 27 = 6 -72, +322 28 = -3 +52, -222 Z = -2, -212 Sin a D is infeasible, we must do the Initialisation Phase & solve the Austrary problem. So, now Z = - to, & new dictionary of the Auscillary problem is. D' = x0 = 3-5x, +2x2 + 28 263 = 9-32, -522 + 26 24 = 2 -22, +22 +28 25 = 9 -14x, + 6x2 + x8 21 = 6 -62, + 322 +28 27 = 9 -122, + 5x2 + 28 = = -3 + 5x, -22, -28 'x', is entering & x's is leaving variable. D" => 21 = 0.6 + 0.4 × 2 + 0.2 × 8 - 0.2 × 0 23 = 7.2 -6.222 +0.428 +0.620 24 = 0.8 + 0.2 22 + 0.6 28 + 0.4 20 25 = 0.6 +0.422 -1.828 +2.820 21 = 2.4 +0.622 -0.2268 +1.220 27 = 1.8 + 0.222 - 1.4 28 + 2.4 x. Z = -20

Sut back the original problem, we get. D* => 21 = 0.6 + 0.4 × 2 + 0.2 × 8 23 = 7.2 -6.2 22 + 0.428 24 = 0.8 + 0.222 + 0.628 25 = 0.6 + 0.422 -1.828 26 = 2.4+0.622 -0.228 27 = 1.8 +0.222 - 1.428 2 = -0.6 - 9.422 - 0.228 Sina, no entering variable, D* is final dictionary Sub 22 & 28 = 0, we get. 2,=0.6; 23=72; 24=0.8; 25=06; 26=2.4; 27=1.8 & value of Z=-0.6. optional Soc. (2,,22) = (0.6,0) option at Value = -0.6. (b) Initial dictionary of the Dual of the above D=> 47 = 1-24, -342+973+ 44+775-546 48 - 2 + 74, + 72 - 473 - 44 - 375 + 276 2 = -64, + 42 -643 -344 - 645 +376 y is entering & 'y's living Variable D' = 76 = 0.2 - 0.47, -0.642 +1.843 + 0.244 +1.445-0.24 48=2.4+6.24, -0.24, -0.44, -0.64, -0.24, -0.44 2=0.6-7.24, -0.842-0.643-2.444-1.84-0.647

Sina, no entering Variable, D'is final diction ony, Sul 4, 42, 43, 44, 45 dy = 0, we get. y6 = 0.2; y8 = 2.4 & z = 0.6 Since, we converted the min problem to max. problem; the optimal sol. (42, 42, 43, 44, 45, 41) = (0,0,0,0,0,0) optional Value = (-2) = -0.6. (c) Prince - dual Certificate verification. if x passible solution of grind It feasible Solution of Dual then CX* = dy* From 3(4) we know X = (0.6,0) & CX* = -0.6 11115 3(6) we know y* = (0,0,0,0,0,0 2) 2 dy =- 96 => (x* = dy* ". the primal - dual contificate is wrifted.