CS9670: Lab 2 Report

The RL (Q-learning) solver code was run on test_rl_maze.py. The results for the prompts are given below.

1. Produce a graph where the x-axis indicates the episode # (from 0 to 200) and the y-axis indicates the average (based on 100 trials) of the cumulative discounted rewards per episode (100 steps). The graph should contain 4 curves corresponding to the exploration probability epsilon=0.05, 0.1, 0.3 and 0.5. The initial state is 0 and the initial Q-function is 0 for all state-action pairs.

> We get:

- **2.** Explain the impact of the exploration probability epsilon on the cumulative discounted rewards per episode earned during training as well as the resulting Q-values and policy.
- > From the graph above, it can be seen that increasing exploration probability (ϵ) reduces the converged policy's effectiveness estimated by the net discounted reward. This is generally true, although for some intermediate value of ϵ we could have a better result compared to lower exploration levels ($\epsilon \neq 0$). This can depend on the problem and its parameters. However, this trend is reasonable since higher values of ϵ cause lesser exploitation of actions that are already known to be better over others with some certainty, and it therefore stunts the accrual of more rewards.