## DSA - Seminar 6

# **Problems**

Representations on a hash table

- 1. collision resolution with separate chaining
- 2. collision resolution with coalesced chaining

see lectures



## Problem 1:

<u>Iterator</u> for a <u>SortedMap</u> represented on a <u>hash table</u>, collision resolution with separate chaining.

- Assume on our example
  - We memorize only the keys from the Map
  - Keys are integer numbers

## <u>EX</u>:

- Keys from the map: 5, 28, 19, 15, 20, 33, 12, 17, 10
   Keys have to be unique!
- HT
  - m = 9
  - Hash function defined with the division method
    - h(k) = k mod m

## Problem 1.1: Representation: SortedMap on a hash table

[...] collision resolution with separate chaining.

- 5, 28, 19, 15, 20, 33, 12, 17, 10
- HT: m = 9 ;  $h(k) = k \mod m$

| k    | 5 | 28 | 19 | 15 | 20 | 33 | 12 | 17 | 10 |
|------|---|----|----|----|----|----|----|----|----|
| h(k) | 5 | 1  | 1  | 6  | 2  | 6  | 3  | 8  | 1  |



Representation?

## Problem 1.2: Iterator for a SortedMap represented on a hash table

[...] collision resolution with separate chaining.

• 5, 28, 19, 15, 20, 33, 12, 17, 10



Complexity for mergeList ?

### subalgorithm init(it, sm):

it.sm ← sm
mergeLists (sm, it.l)
it.currentNode ← it.l.head
end-subalgoritm

### Representation:

#### TNode:

e: TElem // key, value

next: 个TNode

#### SortedMap:

m: Integer

T : (个TNode)[]

h: TFunction

R: relation

Structure not optimized for iteration

### IteratorSortedMap:

sm: SortedMap

I: TList

currentNode: 个TNode

## DSA - Seminar 6

# Problem 2:

# Map

- representation on a hash table
- collision resolution with coalesced chaining

Implement operations: init, search, remove.

5/16/2023

## Map on a hash table collision resolution with coalesced chaining

Representation:

### Map:

m: Integer

t: TKey[]

next: Integer[]

firstFree: Integer

h: Tfunction

**Ex:** 5, 18, 16, 15, 13, 31, 26

• HT:

- m = 13

 firstFree is considered to be the first empty position from left to right (empty positions are no longer linked)

| K    | 5 | 18 | 16 | 15 | 13 | 31 | 26 |
|------|---|----|----|----|----|----|----|
| h(k) | 5 | 5  | 3  | 2  | 0  | 5  | 0  |

|      | 0  | 1  | 2  | 3  | 4  | 5 | 6  | 7  | 8  | 9  | 10 | 11 | 12 |
|------|----|----|----|----|----|---|----|----|----|----|----|----|----|
| t    | 18 | 13 | 15 | 16 | 31 | 5 | 26 |    |    |    |    |    |    |
| next |    |    | -1 | -1 |    |   | -1 | -1 | -1 | -1 | -1 | -1 | -1 |
|      | 1  | 4  |    |    | 6  | 0 |    |    |    |    |    |    |    |

## Map on a hash table collision resolution with coalesced chaining

### **Subalgorithm** init (map):

- @ initialize the hash function
- @ initialize the value of m

...

### end-subalgorithm

### **Function** search(map, k):

// implement a simple version:

// return the position where the key was found, or -1

// in case of a real map, you return the value associated to the key

...

### end-function

5, 18, 16, 15, 13, 31, 26

|      | 0  | 1  | 2  | 3  | 4  | 5 | 6  | 7  | 8  | 9  | 10 | 11 | 12 |
|------|----|----|----|----|----|---|----|----|----|----|----|----|----|
| t    | 18 | 13 | 15 | 16 | 31 | 5 | 26 |    |    |    |    |    |    |
| next |    |    | -1 | -1 |    |   | -1 | -1 | -1 | -1 | -1 | -1 | -1 |
|      | 1  | 4  |    |    | 6  | 0 |    |    |    |    |    |    |    |

### Representation:

### Map:

m: Integer

t: Tkey []

next: Integer [] firstFree: Integer

h: Tfunction