Probability with Discrete Variables

Ben Goodrich January 24, 2019

Obligatory Disclosure

- Ben is an employee of Columbia University, which has received several research grants to develop Stan
- Ben is also a manager of GG Statistics LLC, which uses Stan for business purposes
- According to Columbia University <u>policy</u>, any such employee who has any equity stake in, a title (such as officer or director) with, or is expected to earn at least \$5,000.00 per year from a private company is required to disclose these facts in presentations

Sets

- A set is a collection of elements
- · Elements can be intervals and / or isolated elements
- · One often-used set is the set of real numbers, $\mathbb R$
- · Loosely, real numbers have decimal points
- · Integers are a subset of \mathbb{R} , denoted \mathbb{Z} , where the decimal places are .000...
- · Often negative numbers are excluded from a set; e.g. \mathbb{R}_+
- Sets can be categorical
- · In this session we are going to focus on some subset of $\mathbb Z$

Random Variables

- A function is a rule that UNIQUELY maps each element of an input set to some element of an output set
- A random variable is a FUNCTION from the sample space, Ω , to some subset of $\mathbb R$ with a probability-based rule

Sample Space

The sample space, denoted Ω , is the set of all possible outcomes of an observable random variable

- Suppose you roll a six-sided die. What is Ω ?
- Do not conflate a REALIZATION of a random variable with the FUNCTION that generated it
- By convention, a capital letter, X, indicates a random variable and its lower-case counterpart, x, indicates a realization of X

First Roll in Bowling

- · Each frame in bowling starts with $n=10\,\mathrm{pins}$
- You get 2 rolls per frame to knock down pins
- What is Ω for your first roll?
- · | is read as "given"
- · Hohn (2009) discusses a few distributions for the probability of knocking down $X \geq 0$ out of $n \geq X$ pins, including $\Pr\left(x|n\right) = \frac{\mathcal{F}_x}{-1+\mathcal{F}_{n+2}}$ where \mathcal{F}_x is the x-th Fibonacci number, i.e. $\mathcal{F}_0 = 1$, $\mathcal{F}_1 = 1$, and otherwise $\mathcal{F}_x = \mathcal{F}_{x-1} + \mathcal{F}_{x-2}$
- First 13 Fibonacci numbers are 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, and 233
- Sum of the first 11 Fibonacci numbers is 232

source("https://tinyurl.com/y9ubz73j")

```
# computes the x-th Fibonacci number without recursion and with vectorization
F <- function(x) {
  stopifnot(is.numeric(x), all(x == as.integer(x)))
  sqrt 5 <- sqrt(5) # defined once, used twice</pre>
  golden ratio <- (1 + sqrt 5) / 2
  return(round(golden ratio ^ (x + 1) / sqrt 5))
# probability of knocking down x out of n pins
Pr \leftarrow function(x, n = 10) return(ifelse(x > n, 0, F(x) / (-1 + F(n + 2))))
Omega <- 0:10 # 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10
round(c(Pr(Omega), total = sum(Pr(Omega))), digits = 3)
##
                                                                       total
## 0.004 0.004 0.009 0.013 0.022 0.034 0.056 0.091 0.147 0.237 0.384 1.000
x < - sample(Omega, size = 1, prob = Pr(Omega)) # realization of random variable
```

Second Roll in Bowling

- How would you compute the probability of knocking down the remaining pins on your second roll?
- Let X_1 and X_2 respectively be the number of pins knocked down on the first and second rolls of a frame of bowling. What function yields the probability of knocking down x_2 pins on your second roll?

·
$$\Pr\left(x_{2}|X_{1}=x_{1},n=10
ight)=rac{\mathcal{F}_{x_{2}}}{-1+\mathcal{F}_{10-x_{1}+2}} imes\mathbb{I}\left\{ x_{2}\leq10-x_{1}
ight\}$$

- $\mathbb{I}\left\{\cdot\right\}$ is an "indicator function" that equals 1 if it is true and 0 if it is false
- $\Pr\left(x_{2}|X_{1}=x_{1},n=10\right)$ is a CONDITIONAL probability
- Conditioning is a fundamental idea that means, "do an operation only in the subset where the condition(s) hold(s)"

From Aristotelian Logic to Bivariate Probability

• In R, TRUE maps to 1 and FALSE maps to 0 when doing arithmetic operations

```
(TRUE & TRUE) == (TRUE * TRUE)

## [1] TRUE

(TRUE & FALSE) == (TRUE * FALSE)
```

[1] TRUE

- Can generalize to probabilities on the [0,1] interval to compute the probability that two (or more) propositions are true simultaneously
- reads as "and". **General Multiplication Rule**: $\Pr(A \cap B) = \Pr(B) \times \Pr(A|B) = \Pr(A) \times \Pr(B|A)$

Independence

- Loosely, A and B are independent propositions if A being true or false tells us nothing about the probability that B is true (and vice versa)
- Formally, A and B are independent iff $\Pr\left(A \mid B\right) = \Pr\left(A\right)$ (and $\Pr\left(B \mid A\right) = \Pr\left(B\right)$). Thus, $\Pr\left(A \cap B\right) = \Pr\left(A\right) \times \Pr\left(B\right)$.
- Why is it reasonable to think
 - Two rolls in the same frame are not independent?
 - Two rolls in different frames are independent?
 - Rolls by two different people are independent regardless of whether they are in the same frame?
- What is the probability of obtaining a turkey (3 consecutive strikes)?
- What is the probability of knocking down 9 pins on the first roll and 1 pin on the second roll?

Joint Probability of Two Rolls in Bowling

· How to obtain the joint probability, $\Pr(x_1 \cap x_2 | n = 10)$, in general?

$$egin{aligned} \Pr\left(x_1 igcap x_2 \middle| n = 10
ight) &= \Pr\left(x_1 \middle| n = 10
ight) imes \Pr\left(x_2 \middle| X_1 = x_1, n = 10
ight) \ &= rac{\mathcal{F}_{x_1}}{-1 + \mathcal{F}_{10+2}} imes rac{\mathcal{F}_{x_2}}{-1 + \mathcal{F}_{10-x_1+2}} imes \mathbb{I}\left\{x_2 \leq 10 - x_1
ight\} \end{aligned}$$

```
joint_Pr <- matrix(0, nrow = length(Omega), ncol = length(Omega))
rownames(joint_Pr) <- colnames(joint_Pr) <- as.character(Omega)
for (x1 in Omega) {
   Pr_x1 <- Pr(x1)
   for (x2 in 0:(10 - x1))
      joint_Pr[x1 + 1, x2 + 1] <- Pr_x1 * Pr(x2, 10 - x1)
}
sum(joint_Pr) # that sums to 1</pre>
```

[1] 1

joint_Pr: Row is roll 1, Column is roll 2

	0	1	2	3	4	5	6	7	8	9	10
0	0.000019	0.000019	0.000037	0.000056	0.000093	0.000149	0.000242	0.00039	0.000632	0.001022	0.001654
1	0.00003	0.00003	0.00006	0.00009	0.000151	0.000241	0.000392	0.000633	0.001025	0.001658	0
2	0.000098	0.000098	0.000196	0.000294	0.00049	0.000784	0.001274	0.002057	0.003331	0	0
3	0.000239	0.000239	0.000479	0.000718	0.001197	0.001916	0.003113	0.005029	0	0	0
4	0.000653	0.000653	0.001306	0.001959	0.003265	0.005225	0.00849	0	0	0	0
5	0.001724	0.001724	0.003448	0.005172	0.008621	0.013793	0	0	0	0	0
6	0.00467	0.00467	0.009339	0.014009	0.023348	0	0	0	0	0	0
7	0.012931	0.012931	0.025862	0.038793	0	0	0	0	0	0	0
8	0.036638	0.036638	0.073276	0	0	0	0	0	0	0	0
9	0.118534	0.118534	0	0	0	0	0	0	0	0	0
10	0.383621	0	0	0	0	0	0	0	0	0	0

Composition

- · The stochastic analogue to the **General Multiplication Rule** is composition
- Randomly draw a realization of x_1 and use that realization of x_1 when randomly drawing x_2 from its conditional distribution

```
S <- 10^6; yes <- 0
for (s in 1:S) {
    x1 <- sample(Omega, size = 1, prob = Pr(Omega))
    x2 <- sample(0:(10 - x1), size = 1, prob = Pr(0:(10 - x1), n = 10 - x1))
    if (x1 == 9 & x2 == 1) yes <- yes + 1
}
c(simulated = yes / S, truth = joint_Pr["9", "1"])</pre>
```

simulated truth ## 0.1188240 0.1185345

• As $S \uparrow \infty$, this process converges to $\Pr(X_1 = 9 \cap X_2 = 1)$

Aristotelian Logic to Probability of Alternatives

- What is the probability you fail to get a strike on this frame or the next one?
- Can generalize Aristotelian logic to probabilities on the [0,1] interval to compute the probability that one of two (or more) propositions is true
- · \bigcup is read as "or". **General Addition Rule**: $\Pr(A \bigcup B) = \Pr(A) + \Pr(B) \Pr(A \bigcap B)$
- If $Pr(A \cap B) = 0$, A and B are mutually exclusive (disjoint)

What is the probability that $X_2 = 9$?

	0	1	2	3	4	5	6	7	8	9	10
0	0.000019	0.000019	0.000037	0.000056	0.000093	0.000149	0.000242	0.00039	0.000632	0.001022	0.001654
1	0.00003	0.00003	0.00006	0.00009	0.000151	0.000241	0.000392	0.000633	0.001025	0.001658	0
2	0.000098	0.000098	0.000196	0.000294	0.00049	0.000784	0.001274	0.002057	0.003331	0	0
3	0.000239	0.000239	0.000479	0.000718	0.001197	0.001916	0.003113	0.005029	0	0	0
4	0.000653	0.000653	0.001306	0.001959	0.003265	0.005225	0.00849	0	0	0	0
5	0.001724	0.001724	0.003448	0.005172	0.008621	0.013793	0	0	0	0	0
6	0.00467	0.00467	0.009339	0.014009	0.023348	0	0	0	0	0	0
7	0.012931	0.012931	0.025862	0.038793	0	0	0	0	0	0	0
8	0.036638	0.036638	0.073276	0	0	0	0	0	0	0	0
9	0.118534	0.118534	0	0	0	0	0	0	0	0	0
10	0.383621	0	0	0	0	0	0	0	0	0	0

Marginal Distribution of Second Roll in Bowling

- · How to obtain $\Pr(x_2|n=10)$ irrespective of x_1 ?
- · Since events in the first roll are mutually exclusive, use the easy form of the General Addition Rule to "marginalize":

$$egin{aligned} \Pr\left(x_{2}|\,n=10
ight) &= \sum_{i:x_{i}\in\Omega_{X_{1}}} \Pr\left(x_{i}igcap x_{2}ig|\,n=10
ight) \ &= \sum_{i:x_{i}\in\Omega_{X_{1}}} \Pr\left(x_{2}|\,X_{1}=x_{i},n=10
ight) imes \Pr\left(x_{i}|\,n=10
ight) \end{aligned}$$

```
round(rbind(Pr_X1 = Pr(0mega), margin1 = rowSums(joint_Pr), margin2 = colSums(joint_Pr)), 3)
```

```
      0
      1
      2
      3
      4
      5
      6
      7
      8
      9
      10

      Pr_X1
      0.004
      0.004
      0.009
      0.013
      0.022
      0.034
      0.056
      0.091
      0.147
      0.237
      0.384

      margin1
      0.059
      0.176
      0.114
      0.061
      0.037
      0.022
      0.014
      0.008
      0.005
      0.003
      0.002
```

Marginal, Conditional, and Joint Probabilities

- To compose a joint (in this case bivariate) probability, MULTIPLY a marginal probability by a conditional probability
- To decompose a joint (in this case bivariate) probability, ADD the relevant joint probabilities to obtain a marginal probability
- To obtain a conditional probability, DIVIDE the relevant joint probability by the relevant marginal probability since

$$\Pr(A \cap B) = \Pr(B) \times \Pr(A|B) = \Pr(A) \times \Pr(B|A)$$

$$\Pr(A|B) = \frac{\Pr(A) \times \Pr(B|A)}{\Pr(B)} \text{ if } \Pr(B) > 0$$

- · This is Bayes Rule
- What is $Pr(X_1 = 3 | X_2 = 4, n = 10)$?

Conditioning on $X_2=4$

	0	1	2	3	4	5	6	7	8	9	10
0	0.000019	0.000019	0.000037	0.000056	0.000093	0.000149	0.000242	0.00039	0.000632	0.001022	0.001654
1	0.00003	0.00003	0.00006	0.00009	0.000151	0.000241	0.000392	0.000633	0.001025	0.001658	0
2	0.000098	0.000098	0.000196	0.000294	0.00049	0.000784	0.001274	0.002057	0.003331	0	0
3	0.000239	0.000239	0.000479	0.000718	0.001197	0.001916	0.003113	0.005029	0	0	0
4	0.000653	0.000653	0.001306	0.001959	0.003265	0.005225	0.00849	0	0	0	0
5	0.001724	0.001724	0.003448	0.005172	0.008621	0.013793	0	0	0	0	0
6	0.00467	0.00467	0.009339	0.014009	0.023348	0	0	0	0	0	0
7	0.012931	0.012931	0.025862	0.038793	0	0	0	0	0	0	0
8	0.036638	0.036638	0.073276	0	0	0	0	0	0	0	0
9	0.118534	0.118534	0	0	0	0	0	0	0	0	0
10	0.383621	0	0	0	0	0	0	0	0	0	0

Example of Bayes Rule

```
joint_Pr["3", "4"] / sum(joint_Pr[,"4"])
```

[1] 0.03221668

Bayesians generalize this by taking A to be "beliefs about whatever you do not know" and B to be whatever you do know in

$$\Pr(A|B) = \frac{\Pr(A) \times \Pr(B|A)}{\Pr(B)} \text{ if } \Pr(B) > 0$$

 Frequentists accept Bayes Rule but object to using the language of probability to describe beliefs about unknown propositions and insist that probability is a property of a process that can be defined as a limit

$$\Pr\left(A
ight) = \lim_{S \uparrow \infty} rac{ ext{times that } A ext{ occurs in } S ext{ independent tries}}{S}$$

Probability in Football

- What is the probability that the Patriots beat the Rams next Sunday?
- To a frequentist, it is infeasible to answer this question objectively and it should not be answered subjectively
- One way of understanding it from a Bayesian perspective is via betting: Do you want to risk \$6 to gain \$4 if the Patrios win? If so, you believe the probability the Patriots win is greater than 0.6.

$$\mathrm{Odds}\left(A\right) = \frac{\mathrm{Pr}\left(A\right)}{1 - \mathrm{Pr}\left(A\right)}$$

- Once you commit to a probability, the decision to bet is straightforward
- Everyone understands what you mean if you say the probability the Patriots beat the Rams is greater than 0.6. Why must science be different?

Objectivity and Subjectivity

- · Under weak and not particularly controversial assumptions, Bayesian inference is THE objective way to update your beliefs about (functions of) θ in light of new data y_1,y_2,\ldots,y_N
- · Nevertheless, the Bayesian approach is labeled subjective because it does not say what your beliefs about heta should be before you receive y_1, y_2, \ldots, y_N
- Thus, if you currently believe something absurd about heta now, your beliefs about heta will merely be less absurd after updating them with y_1, y_2, \ldots, y_N
- · The big problem is not that people believe wrong things now, but that they do not update their beliefs about θ according to Bayesian principles when they observe y_1, y_2, \ldots, y_N
- In fact, in some situations, observing data that contradicts people's previous beliefs makes them believe in their wrong beliefs more strongly
- · Bayesian principles are also used in formal models, but as an assumption about how people should behave rather than a behavioral description

(Dis)Advantages of Bayesian Inference

- · Bayesian inference remains useful in situations other paradigms specialize in:
 - Experiments: What are your beliefs about the ATE after seeing the data?
 - Repeated designs: Bayesian estimates have correct frequentist properties
 - Predictive modeling: If you only care about predictions, use the posterior predictive distribution
- Bayesian inference is very useful when you are using the results to make a decision or take an action; other paradigms are not
- Bayesian inference is orders of magnitude more difficult for your computer because it is attempting to answer a more ambitious question
- The Bayesian approach is better suited for convincing yourself of something than convincing other people