FLAME RETARDANT POLYBUTYLENE TEREPHTHALATE RESIN COMPOSITION FOR ELECTRICAL AND ELECTRONIC PARTS FOR ONBOARD USE AND ELECTRONIC PARTS FOR ONBOARD USE COMPRISING THE SAME

Patent number:

JP2000178417

Publication date:

2000-06-27

Inventor:

ISHII HIROMITSU; KOMORI KENJI; MATSUMOTO

HIDEKI; YAMAUCHI KOJI

Applicant:

TORAY INDUSTRIES

Classification:

- international:

C08L67/02; C08K3/04; C08K5/098; C08K3/00;

C08K5/13; C08K5/20; C08K5/524; C08K7/02; C08K7/14;

C08K9/04; C08K9/08; C08L23/00; C08L69/00; B29C45/14; C08L67/02; C08L69/00; C08L23/00; C08L61/06; C08L71/12; C08L27/12; C08L83/04;

B29K67/00; C08K3/02

- european:

Application number: JP19980361762 19981221 Priority number(s): JP19980361762 19981221

Report a data error here

Abstract of JP2000178417

PROBLEM TO BE SOLVED: To obtain a flame retardant polybutylene terephthalate resin composition for electrical and electronic parts for onboard use excellent in flame retardance and heat, impact and heat cycle resistances. SOLUTION: This composition is obtained by compounding (A) 100 pts.wt. of a polybutylene terephthalate with (B) 1-200 pts.wt. of a polycarbonate and/or a polyethylene terephthalate, (C) 0.1-75 pts.wt. of a phenol resin and/or a phenoxy resin, (D) 0.1-50 pts.wt. of a red phosphorus having 0.1-1,000 &mu S/cm electroconductivity, (E) 1-200 pts.wt. of a fibrous reinforcing material, (F) 0-100 pts.wt. of a polyolefin resin, (G) 0-30 pts.wt. of an inorganic layer compound, (H) 0-10 pts.wt. of a fluorine-based resin, (I) 0-10 pts.wt. of a silicone-based compound, (J) 0-30 pts.wt. of a lubricant, (K) 0-30 pts.wt. of carbon black and (L) 0-10 pts.wt. of a hindered phenolic stabilizer and/or a phosphite-based stabilizer.

Data supplied from the esp@cenet database - Worldwide

(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出願公開番号 特開2000-178417 (P2000-178417A)

(43)公開日 平成12年6月27日(2000.6.27)

(51) Int.Cl.7 C 0 8 L 67/02 C 0 8 K 3/00 3/02 3/04 5/098	識別記号	FI COSL 67/02 COSK 3/00 3/02 3/04 5/098 未請求 請求項の数8 C	デーマコート*(参考) 4F206 4J002 CL (全13頁) 最終頁に続く
		(71) 出願人 000003159	
(21) 出願番号	特顯平10-361762	東レ株式	会社
(22) 出顯日	平成10年12月21日 (1998.12.21)	(72)発明者 石井 博士 愛知県名	央区日本橋室町2丁目2番1号 光 古屋市港区大江町9番地の1 東 社名古屋事業場内
			司 古屋市港区大江町 9 番地の 1 東 社名古屋事業場内
			樹 古屋市港区大江町 9 番地の 1 東 社名古屋事業場内
			最終頁に続く

(54) 【発明の名称】 車載用電気・電子部品用難燃性ポリプチレンテレフタレート樹脂組成物およびそれからなる車載 用電気・電子部品

(57) 【要約】 (修正有)

【課題】 難燃性、耐熱性、耐衝撃性および耐ヒートサイクル性に優れた車載用電気・電子部品用の難燃性ポリブチレンテレフタレート樹脂組成物。

【解決手段】 (A) ポリプチレンテレフタレート100重量部に対して、(B) ポリカーボネートおよび/またはポリエチレンテレフタレート1~200重量部、

(C) フェノール樹脂および/またはフェノキシ樹脂 0. 1~75重量部、(D) 導電率が 0. 1~1000 μS/cmの赤リン0. 1~50重量部、(E) 繊維状強化材1~200重量部、(F) ポリオレフィン樹脂 0~100重量部、(G) 無機層状化合物 0~30重量部、(H) フッ素系樹脂 0~10重量部、(I) シリコーン系化合物 0~10重量部、(J) 滑剤 0~30重量部、(K) カーボンブラック 0~30重量部、(L) ヒンダードフェノール系安定剤および/またはホスファイト系安定剤の~10重量部を配合。

1

【特許請求の範囲】

【請求項1】(A) ポリブチレンテレフタレート樹脂1 00重量部に対して、(B) ポリカーボネート樹脂およ び/またはポリエチレンテレフタレート樹脂1~200 重量部、(C)フェノール系樹脂および/またはフェノ キシ樹脂 0.1~75 重量部、(D) 導電率が 0.1~ 1000µS/cmの赤リン0.1~50重量部(ただ し導電率は、赤燐5gに純水100mLを加え、121 ℃で100時間抽出処理し、赤燐をろ過した後のろ液を 250mLに希釈した抽出水の導電率とする)、(E) 繊維状強化材1~200重量部、(F)ポリエチレン樹 脂およびポリオレフィン系共重合体のうちのいずれか1 種以上のポリオレフィン樹脂0~100重量部、(G) 無機層状化合物 0~30重量部、(H)フッ素系樹脂 0 ~10重量部、(I)シリコーン系化合物0~10重量 部、(J)滑剤O~30重量部、(K)カーボンブラッ クロ~30重量部、(L) ヒンダードフェノール系安定 剤および/またはホスファイト系安定剤0~10重量部 を配合してなる車載用電気・電子部品用難燃性ポリブチ レンテレフタレート樹脂組成物。

【請求項2】 (D) 赤リンが、熱硬化性樹脂で被覆された赤リンである請求項1記載の車載用電気・電子部品用難燃性ポリプチレンテレフタレート樹脂組成物。

【請求項3】 (F) ポリオレフィン樹脂として、無水マレイン酸またはグリシジルメタクリレートが共重合されたポリオレフィン系共重合体を必須成分として配合してなる請求項1~2のいずれか記載の車載用電気・電子部品用難燃性ポリプチレンテレフタレート樹脂組成物。

【請求項4】 (E) 繊維状強化材がガラス繊維である 請求項1~3のいずれか記載の車載用電気・電子部品用 難燃性ポリプチレンテレフタレート樹脂組成物。

【請求項5】 (F) 繊維状強化材が、表面にシランカップリング剤やエポキシ化合物を主成分とする集束剤が付着しているガラス繊維である請求項4記載の車載用電気・電子部品用難燃性ポリブチレンテレフタレート樹脂組成物。

【請求項6】 (B) の必須成分としてポリカーボネート樹脂を配合し、かつ、(J) 滑剤として、一部あるいは全部がカルシゥムやナトリゥムでケン化あるいは結合されている滑剤を必須成分として配合する場合であって、さらに(M) ホスファイト系安定剤および/または3価のリン化合物を0.1~5重量部配合してなる請求項1~5のいずれか記載の車載用電気・電子部品用難燃性ポリブチレンテレフタレート樹脂組成物。

【請求項7】 請求項1~6のいずれか記載の車載用電気・電子部品用難燃性ポリブチレンテレフタレート樹脂組成物からなる車載用電気・電子部品。

【請求項8】 請求項1~6のいずれか記載の車載用電気・電子部品用難燃性ポリプチレンテレフタレート樹脂組成物からなる、金属がインサート成形された車載用電

気・電子部品。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、特定の非ハロゲン 系難燃剤を使用した難燃性強化ポリブチレンテレフタレート樹脂製の車載用電気・電子部品用樹脂組成物および それからなる車載用電気・電子部品に関する。更に詳し くは、耐熱性、衝撃強度および耐ヒートサイクル性に優れ、かつ、難燃性に優れる車載用電気・電子部品のため の樹脂組成物および車載用電気・電子部品に関する。

[0002]

【従来の技術】ポリブチレンテレフタレート樹脂(PBT)は、その優れた諸特性を生かし、機械機構部品、電気電子部品、自動車部品などの幅広い分野に利用されている。また、PBTに繊維強化材を複合することによって、さらに機械物性や耐熱性に優れる材料として広く用いられている。その繊維強化材の中ではとくにガラス繊維が多く使用されている。

【0003】PBTは本質的に可燃性であるため、自動 車室内に車載されるカーステレオ、テレビ、カーナビ内 部のフライバックトランス、フォーカスケース、トラン ス部材および接続部品のコネクターなどの車載用電気・ 電子部品、あるいは自動車エンジンルームに車載される イグニッションコイル外装ケース、クラッチボビン、エ アーフローセンサーボディー、ディストリービュターカ バーなどの車載用電気・電子部品においては、一般の化 学的、物理的諸特性のバランス以外に、火炎に対する安 全性、すなわち難燃性が要求される場合が多い。また、 自動車は夏・冬などの四季あるいは夜間・昼間などの外 気の温度の影響を受けやすいため、樹脂に金属などをイ ンサート成形し、高温と低温を繰り返しテストする耐ヒ ートサイクル性試験において短時間(サイクル)にクラ ックが発生しないことも要求される。さらにまた、自動 車室内や自動車エンジンルーム内は高温になり易く、耐 熱性が要求される場合が多い。

【0004】PBTに難燃性を付与する方法としては、 難燃剤としてハロゲン系有機化合物、さらに難燃助剤と してアンチモン化合物を樹脂にコンパウンドする方法が 一般的である。しかしながら、この方法には、燃焼の際 の発煙量が多い傾向があった。そこで、近年これらハロ ゲンを全く含まない難燃剤を用いることが強く望まれる ようになった。

【0005】これまで、ハロゲン系難燃剤を使わずに難燃化する方法としては、水酸化アルミニウム、水酸化マグネシウムなどの水和金属化合物を添加することが広く知られているが、充分な難燃性を得るためには、上記水和金属化合物を多量に添加する必要があり、PBT本来の特性が失われるという欠点を有していた。

【0006】一方、このような水和金属化合物を使わず に熱可塑性樹脂を難燃化する方法として赤リンを添加す 3

ることが、特開昭51-150553号公報、特開昭58-108248号公報、特開昭59-81351号公報、特開平5-78560号公報、特開平5-287119号公報、特開平5-295164号公報、特開平5-320486号公報、特開平5-339417号公報等で提案されている。

[0007]

【発明が解決しようとする課題】しかしながら、これらの樹脂組成物はいずれもハロゲン系難燃剤を用いない有用な難燃性樹脂材料ではあるが、これらから得られる車載用電気・電子部品は、衝撃強度、耐熱性あるいは耐ヒートサイクル性の何れかの性質が低下するため、破壊し易い、ハンダ付け時に溶融変形を起こし易い、製品の長期使用時にクラックがはいる可能性があるなどの問題を有していた。

【0008】そこで本発明は、非ハロゲン系難燃剤を使用し、耐熱性、衝撃強度、耐ヒートサイクル性および難燃性に優れ、車載用電気・電子部品用として好適な難燃性ポリブチレンテレフタレート樹脂組成物およびそれからなる車載用電気・電子部品を提供することを課題とする。

[0009]

【課題を解決するための手段】本発明者らは上記課題の解決のために鋭意検討を重ねた結果、PBTに、特定量のポリカーボネート樹脂および/またはポリエチレンテレフタレート樹脂、フェノール樹脂および/またはフェノキシ樹脂、赤リンおよび繊維状強化材を配合してなる難燃性ポリブチレンテレフタレート樹脂組成物が、高度に優れた難燃性を保持しつつ、特異的に耐熱性、衝撃強度および耐ヒートサイクル性が向上するため車載用電気・電子部品として極めて有用であることを見いだし、本発明をなすに至った。

【0010】すなわち本発明は、(A)ポリブチレンテレフタレート樹脂100重量部に対して、(B)ポリカーボネート樹脂および/またはポリエチレンテレフタレート樹脂1~200重量部、(C)フェノール系樹脂および/またはフェノキシ樹脂0.1~75重量部、

(D) 導電率が 0. 1~1000 μ S / c m の赤リン 0. 1~50 重量部 (ただし導電率は、赤燐 5 g に純水 100 m L を加え、121℃で100時間抽出処理し、赤燐をろ過した後のろ液を250 m L に希釈した抽出水の導電率とする。)、(E) 繊維状強化材1~200 重量部、(F) ポリエチレン樹脂およびポリオレフィン系 共重合体のうちのいずれか1種以上のポリオレフィン 樹脂 0~100 重量部、(G) 無機層状化合物 0~30 重量部、(H) フッ素系樹脂0~10 重量部、(I) シリコーン系化合物0~10 重量部、(J) 滑剤0~30 重量部、(K) カーボンブラック0~30 重量部、(L) ヒンダードフェノール系安定剤および/またはホスファイト系安定剤0~10 重量部を配合してなる車載用電気

・電子部品用難燃性ポリブチレンテレフタレート樹脂組成物、さらに、それからなる車載用電気・電子部品を提供するものである。

[0011]

【発明の実施の形態】以下に本発明の車載用電気・電子 部品用難燃性ポリブチレンテレフタレート樹脂組成物、 さらに、それからなる車載用電気・電子部品について具 体的に説明する。

【0012】本発明で用いる(A)ポリブチレンテレフタレート樹脂とは、テレフタル酸あるいはそのエステル形成性誘導体と1、4ーブタンジオールあるいはそのエステル形成性誘導体とを主成分とする原料から重縮合反応によって得られる重合体あるいは共重合体である。これら重合体あるいは共重合体の好ましい例としては、ポリブチレンテレフタレート、ポリブチレン(テレフタレート/アジペート)、ポリブチレン(テレフタレート/アジペート)、ポリブチレン(テレフタレート/デカンドカルボキシレート)、ポリブチレン(テレフタレート/デカンジカルボキシレート)などが挙げられ、単独で用いても2種以上混合して用いてもよい。なお、ここで「/」は、共重合を意味する。

【0013】また、この重合体または共重合体は、〇ークロロフェノール溶媒を用いて25℃で測定した固有粘度が0.36~1.60、特に0.52~1.25の範囲にあるものが好適である。固有粘度が0.36未満では、衝撃強度が不良であり、固有粘度が1.60を越えると成形性が不良になりいずれも好ましくない。また、(A) ポリブチレンテレフタレート樹脂の固有粘度が0.36~1.60の範囲内であれば、固有粘度の異なるポリブチレンテレフタレート樹脂の2種以上を併用し

てもよい。 【0014】さらにこれらポリブチレンテレフタレート 重合体または共重合体は、mークレゾール溶液をアルカ リ溶液で電位差滴定して求めたCOOH末端基量が1~ 50eq/t(ポリマ1トン当りの末端基量)の範囲に あるものが耐久性、異方性抑制効果の点から好ましく使 用できる。COOH末端基量が1未満では異方性抑制効 果が充分でなく、またCOOH末端基量が50を越える と耐久性が不良になりいずれも好ましくない。

【0015】本発明で(B)成分として用いるポリカーボネート樹脂は、芳香族2価フェノール系化合物とホスゲン、または炭酸ジエステルとを反応させることにより得られる芳香族ホモまたはコポリカーボネート樹脂であり、その粘度平均分子量は10000~100000の範囲のものであればよい。その粘度平均分子量の範囲内であれば、粘度平均分子量の異なるポリカーボネート樹脂の2種以上を併用してもよい。

【0016】ここで2価フェノール系化合物としては、 2,2-ビス(4-ヒドロキシフェニル)プロパン、

* *

2, 2ーピス(4ーヒドロキシー3, 5ージメチルフェ ニル) プロパン、ビス (4ーヒドロキシフェニル) メタ ン、1,1ービス(4ーヒドロキシフェニル)エタン、 2, 2ービス(4ーヒドロキシフェニル)ブタン、2, 2ービス (4ーヒドロキシー3, 5ージフェニル) ブタ ン、2,2ービス(4ーヒドロキシー3,5ージエチル フェニル)プロパン、2,2ービス(4ーヒドロキシー 3, 5-ジエチルフェニル)プロパン、1,1-ビス (4-ヒドロキシフェニル) シクロヘキサン、1-フェ ニルー1, 1ービス(4ーヒドロキシフェニル)エタン 等が使用でき、これら単独あるいは混合物として使用す ることができる。

【0017】本発明で(B)成分として用いるポリエチ レンテレフタレート樹脂は、テレフタル酸を酸成分にエ チレングリコールをグリコール成分に用いてなる、主鎖 にエステル結合を有する高分子量の熱可塑性ポリエステ ル樹脂であり、この他に酸成分として、イソフタル酸、 アジピン酸、シュウ酸などを、また、グリコール成分と して、グリコール成分として、プロピレングリコール、 1,4-ブタンジオール、ネオペンチルグリコール、 1、5-ペンタンジオール、1、6-ヘキサンジオー ル、デカメチレングリコール、シクロヘキサンジメタノ ール、シクロヘキサンジオールなど、あるいは分子量4 00~6000長鎖グリコール、すなわちポリエチレ ングリコール、ポリー1,3-プロピレングリコール、 ポリテトラメチレングリコールなどを20モル%以下用 いることもできる。

【0018】また、そのポリエチレンテレフタレート樹 脂は、O-クロロフェノール溶媒を用いて25℃で測定 した固有粘度が0.36~1.60、特に0.45~ 1. 15の範囲にあるものが好適である。固有粘度が 0.36未満では、衝撃強度が不良であり、固有粘度が 1.60を越えると成形性が不良になりいずれも好まし くない。また、このポリエチレンテレフタレート樹脂は 必要に応じ、固有粘度の異なる2種以上を併用すること もできる。

【0019】(B)成分のポリカーボネート樹脂、ポリ エチレンテレフタレート樹脂は、どちらか一方のみの配 合でも、また両方の併用でもよく、その配合量(併用の 場合はその合計) は、(A) ポリプチレンテレフタレー 40 ト樹脂100重量部に対して、1~200重量部、好ま しくは2~190重量部であり、1重量部未満では難燃 性が損なわれ、200重量部を越すと結晶化速度が遅く なり、射出成形性が損なわれるため不適当である。

【0020】本発明で(C)成分として使用されるフェ ノール系樹脂は、フェノール性水酸基を複数有する

(共) 重合体であり、例えば、ノボラック型、レゾール 型や熱反応型の樹脂、あるいはこれらを変性した樹脂が 挙げられる。これらは硬化剤未添加の未硬化樹脂でも、 半硬化樹脂でも、あるいは硬化樹脂であってもよい。中 50

でも、硬化剤未添加で、非熱反応性であるフェノールノ ボラック樹脂が難燃性、機械特性、経済性の点で好まし い。その形状は特に制限されず、粉砕品、粒状、フレー ク状、粉末状、針状、液状などいずれも使用できる。ま た、そのフェノール系樹脂は必要に応じ1種または2種 以上で使用することができる。

【0021】その1種のノボラック型フェノール樹脂 は、例えば、フェノール類とアルデヒド類のモル比を 1:0.7~1:0.9となるような比率で反応槽に仕 込み、更にシュウ酸、塩酸、硫酸、トルエンスルホン酸 等の触媒を加えた後、加熱し、所定の時間還流反応を行 い、その後、生成した水を除去するため真空脱水あるい は静置脱水し、更に残っている水と未反応のフェノール 類を除去する方法により得ることができる。これらの樹 脂あるいは複数の原料成分を用いることにより得られる 共縮合フェノール樹脂は単独であるいは2種以上で用い ることができる。

【0022】また、レゾール型フェノール樹脂は、例え ば、フェノール類とアルデヒド類のモル比を1:1~ 1:2となるような比率で反応槽に仕込み、水酸化ナト リュウム、アンモニア水、その他の塩基性物質などの触 媒を加えた後、ノボラック型フェノール樹脂と同様の反 応および処理をして得ることができる。

【0023】ここで、フェノール類とはフェノール、o ークレゾール、mークレゾール、p ークレゾール、チモ ール、pーtertーブチルフェノール、tertーブ チルカテコール、カテコール、イソオイゲノール、o-メトキシフェノール、4,4'ージヒドロキシフェニル -2, 2-プロパン、サルチル酸イソアミル、サルチル 30 酸ベンジル、サルチル酸メチル、2,6-ジーteェt 一ブチルーpークレゾール等が挙げられる。これらのフ ェノール類は1種または2種以上用いることができる。 一方、アルデヒド類とはホルムアルデヒド、パラホルム アルデヒド、ポリオキシメチレン、トリオキサン等が挙 げられる。これらのアルデヒド類は必要に応じて1種ま たは2種以上用いることができる。

【0024】フェノール系樹脂の分子量は特に限定され ないが、好ましくは数平均分子量で200~2,000 であり、特に400~1,500の範囲のものが機械的 物性、成形加工性、経済性に優れ好ましい。なおそのフ ェノール系樹脂の分子量は、テトラヒドラフラン溶液、 ポリスチレン標準サンプルを使用することによりゲルパ ーミエションクロマトグラフィ法で測定できる。

【0025】本発明で(C)成分として用いるフェノキ シ樹脂は、芳香族2価フェノール系化合物とエピクロル ヒドリンとを各種の配合割合で反応させることにより得 られる(共) 重合体であり、その配合割合により分子量 は異なる。そのフェノキシ(共)重合体の分子量は特に 制限はないが、粘度平均分子量が100~10000 0の範囲のものがよい。

れる。

【0026】ここで2価フェノール系化合物としては、2,2ービス(4ーヒドロキシフェニル)プロパン、2,2ービス(4ーヒドロキシー3,5ージメチルフェニル)プロパン、ビス(4ーヒドロキシフェニル)メタン、1,1ービス(4ーヒドロキシフェニル)ブタン、2,2ービス(4ーヒドロキシー3,5ージフェニル)ブタン、2,2ービス(4ーヒドロキシー3,5ージエチルフェニル)プロパン、1,1ービス(4ーヒドロキシー3,5ージエチルフェニル)プロパン、1,1ービス(4ーヒドロキシフェニル)シクロヘキサン、1ービスニルー1,1ービス(4ーヒドロキシフェニル)エタン、2,2ービス(4ーヒドロキシフェニル)メタン等が使用でき、これら単独あるいは混合物として使用することができる。

【0027】その形状は特に制限されず、粉砕品、粒状、フレーク状、粉末状、針状、液状などいずれも使用できる。また、そのフェノキシ系樹脂は必要に応じ、1種または2種以上使用することができ、さらにまた必要に応じて前記のフェノール系樹脂の1種以上と併用して 20用いてもよい。

【0028】本発明の(C)フェノール系樹脂および/またはフェノキシ系樹脂の配合量は、(A)ポリブチレンテレフタレート樹脂100重量部に対して0.1~75重量部、好ましくは0.5~50重量部であり、さらに好ましくは1~50重量部であり、0.1重量部未満では、難燃性が低下し、また、75重量部を越すと衝撃強度が低下するため不適当である。

【0029】本発明で(D)成分として使用される赤リ ンは、そのままでは不安定であり、また、水に徐々に溶 解したりする性質を有するので、これを防止する処理を 施したものが好ましく用いられる。このような赤リンの 処理方法としては、特開平5-229806号公報に記 載の、赤リンの粉砕を行わず、赤リン表面に水や酸素と の反応性が高い破砕面を形成せずに、赤リンを微粒子化 する方法、赤リンに水酸化アルミニウムまたは水酸化マ グネシウムを微量添加して赤リンの酸化を触媒的に抑制 する方法、赤リンをパラフィンやワックスで被覆し、水 分との接触を抑制する方法、 ε - カプロラクタムやトリ オキサンと混合することにより安定化させる方法、赤リ ンをフェノール系、メラミン系、エポキシ系、不飽和ポ リエステル系などの熱硬化性樹脂で被覆することにより 安定化させる方法、赤リンを銅、ニッケル、銀、鉄、ア ルミニウムおよびチタンなどの金属塩の水溶液で処理し て、赤リン表面に金属リン化合物を析出させて安定化さ せる方法、赤リンを水酸化アルミニウム、水酸化マグネ シウム、水酸化チタン、水酸化亜鉛などで被覆する方 法、赤リン表面に鉄、コバルト、ニッケル、マンガン、 スズなどで無電解メッキ被覆することにより安定化させ る方法およびこれらを組合せた方法が挙げられるが、好 ましくは、赤リンをフェノール系、メラミン系、エポキ シ系、不飽和ポリエステル系などの熱硬化性樹脂で被覆 することにより安定化させる方法や赤リンを水酸化アル ミニウム、水酸化マグネシウム、水酸化チタン、水酸化 亜鉛などで被覆することにより安定化させる方法であ る。また、上記の安定化方法を併用して用いてもよい。 【0030】また、樹脂に配合される前の赤リンの平均 粒径は、成形品の難燃性、衝撃強度や外観の点から50 \sim 0.01 μ mのものが好ましく、さらに好ましくは、 45~0.1μmのものである。また、本発明で使用さ れる(D) 赤リンは、熱水中で抽出処理した時の導電率 (即ち、赤リン5gに純水100mLを加え、オートク レープ中、121℃で100時間抽出処理し、赤リンろ 過後のろ液を250mLに希釈した抽出水で測定される 導電率) は、得られる成形品の難燃性、機械強度の点か $50.1 \sim 1000 \mu S/cm$ であり、好ましくは0.

【0031】本発明における導電率が0.1~1000 μ S/c mの赤燐の添加量は、ポリブチレンテレフタレート100重量部に対して0.1~50重量部、好ましくは0.1~30重量部、0.1~25重量部、より好ましくは1~20重量部、さらに好ましくは2~20重量部である。なかでも3~15重量部が、特に好ましい。

 $1\sim800\mu$ S/cm、さらに好ましくは $0.1\sim50$

は、燐化学工業社製"ノーバエクセル140"、"ノー

バエクセルF 5"およびこれらの市販品相当品が挙げら

OμS/cmである。このような赤燐の市販品として

【0032】本発明の(D) 赤リンは、さらに赤リンの 安定剤として金属酸化物を添加することにより、押出 し、成形時の安定性や強度、耐熱性などを向上させるこ とができる。このような金属酸化物の具体例としては、 酸化カドミウム、酸化亜鉛、酸化第一銅、酸化第二銅、 酸化第一鉄、酸化第二鉄、酸化コバルト、酸化マンガ ン、酸化モリブデン、酸化スズおよび酸化チタンなどが 挙げられるが、なかでも酸化カドミウム、酸化第一銅、 酸化第二銅、酸化チタンが好ましく、さらに好ましくは 酸化第一銅、酸化第二銅、酸化チタン、特に好ましくは 酸化チタンである。特に酸化チタンは赤燐の安定剤とし 40 てだけでなく、得られる成形品の非着色性や赤燐の分散 性を向上させる効果を有する。その金属酸化物の添加量 は機械物性、射出成形性の面からポリブチレンテレフタ レート (A) 100重量部に対して0.01~20重量 部が好ましく、特に好ましくは0.1~10重量部であ る。

【0033】本発明で用いる(E)繊維状強化材としては、ガラス繊維、アラミド繊維、炭素繊維などが挙げられ、特にガラス繊維が好ましい。上記のガラス繊維としては、通常のPBTの強化材に使用されるチョップドストランドタイプやロービングタイプのガラス繊維であり

(0)

アミノシラン化合物やエポキシシラン化合物などのシランカップリング剤および/またはビスフェノールAグリシジルエーテルやノボラック系エポキシ化合物などの1 種以上のエポキシ化合物などを含有した集束剤で処理されたガラス繊維が好ましく用いられる。

【0034】(E) 繊維状強化材の配合量は(A) ポリブチレンテレフタレート樹脂100重量部に対して、1~200重量部、好ましくは2~190重量部であり、1重量部未満では難燃性に劣り、200重量部を越すと成形時の流動性が大きく損なわれ実用の製造に適さないため不適当である。

【0035】本発明で使用される(F)ポリオレフィン 樹脂は、ポリエチレン樹脂やポリオレフィン系共重合体 であり、例えば、高密度ポリエチレン、低密度ポリエチ レン、超低密度ポリエチレン、ポリエチレン共重合体お よび上記のポリオレフィン樹脂に酸無水物あるいはグリ シジルメタクリレートがグラフトもしくは共重合された 共重合体が挙げられ、その中から選ばれる1種または2 種以上が使用される。また、上記のポリエチレン共重合 体の例としては、エチレンをモノマーとし、共重合可能 なモノマーとしてはプロピレン、ブテンー1、酢酸ビニ ル、イソプレン、ブタジエンあるいはアクリル酸、メタ クリル酸等のモノカルボン酸類あるいはこれらのエステ ル酸類、マレイン酸、フマル酸あるいはイタコン酸等の ジカルボン酸類等の通常の方法で製造される共重合体が 挙げられる。また、なかでもポリオレフィン樹脂に酸無 水物あるいはグリシジルメタクリレートがグラフトもし くは共重合された共重合体がPBTとの相溶性が良く、 好ましく用いられる。

【0036】(F)ポリオレフィン樹脂を配合する場合のその配合量は、(A)ポリブチレンテレフタレート樹脂100重量部に対して1~100重量部が好ましく、特に好ましくは1~90重量部以下であり、1重量部未満では、衝撃強度の改良効果が十分でなく、100重量部を越すと難燃性が低下するため好ましくない。

【0037】本発明で用いる(G)無機層状化合物は、単位結晶層が互いに積み重なり層状結晶構造を持ち劈開性を有している無機化合物である。無機層状化合物の具体例としては、カオリナイト、タルク、スメクタイト、バーミキュライト、マイカなどの珪酸塩や燐酸ジルコニウム、燐酸チタニウムなどの燐酸塩などが挙げられ、これらの無機層状化合物には、カップリング剤処理あるいは層間の無機イオンを有機イオンとイオン交換する有機化処理が行われていてもよい。また、(G)無機層状化

合物の添加量は、(A) ポリブチレンテレフタレート100重量部に対し0~30重量部であり、好ましくは0~25重量部であり、30重量部を越すと衝撃強度を損なうため好ましくない。また、無機層状化合物の平均粒径は0.1~4 μ mであり、好ましくは0.3~3 μ mであり、4 μ mを越すと衝撃強度を損なうため好ましくない。

10

【0038】本発明で用いる(H)フッ素系樹脂は、燃 焼時の液滴の落下 (ドリップ) が抑制される効果を発現 するフッ素系樹脂である。そのようなフッ素系樹脂とし ては、ポリテトラフルオロエチレン、ポリヘキサフルオ ロプロピレン、(テトラフルオロエチレン/ヘキサフル オロプロピレン) 共重合体、 (テトラフルオロエチレン /パーフルオロアルキルビニルエーテル) 共重合体、 (テトラフルオロエチレン/エチレン) 共重合体、(へ キサフルオロプロピレン/プロピレン) 共重合体、ポリ ビニリデンフルオライド、(ビニリデンフルオライド/ エチレン) 共重合体などが挙げられるが、中でもポリテ トラフルオロエチレン、(テトラフルオロエチレン/パ ーフルオロアルキルビニルエーテル)共重合体、(テト ラフルオロエチレン/ヘキサフルオロプロピレン). 共重 合体、 (テトラフルオロエチレン/エチレン) 共重合 体、ポリビニリデンフルオライドが好ましく、特にポリ テトラフルオロエチレン、 (テトラフルオロエチレン/ エチレン) 共重合体が好ましい。また、(H) フッ素系 樹脂の添加量は衝撃強度、成形性の面から(A)ポリブ チレンテレフタレート樹脂100重量部に対して通常0 ~10重量部であり、好ましくは0~8重量部、さらに 好ましくは0~6重量部であり、10重量部を越すと衝 撃強度を損なうため好ましくない。

【0039】本発明で用いる(I)シリコーン系化合物は、シリコーン樹脂および/またはシリコーンオイルのことである。本発明に使用されるシリコーン樹脂とは、下記一般式(1)~(4)で表される単位およびこれらの混合物から選ばれる化学的に結合されたシロキサン単位からなるポリオルガノシロキサンであり、室温で約200~3000000センチポイズの粘度ものが好ましいが、上記のシリコーン樹脂である限り、それに限定されるものではなく、製品形状がオイル状、パウダー状およびガム状であってもよく、官能基としてエポキシ基、メタクル基およびアミノ基が導入されていてもよい。

[0040] 【化1】

$$\begin{array}{ccc}
\mathbf{R} \\
\mathbf{R} - \mathbf{Si} - \mathbf{O} - \\
\mathbf{R}
\end{array}$$

$$\mathbf{R}$$

(ここで、Rはそれぞれ飽和または不飽和1価炭化水素基、水素原子、ヒドロキシル基、アルコキシル基、アリール基、ビニルまたはアリル基から選ばれる基を表す。)

【0041】本発明に使用されるシリコーンオイルとは、下記一般式(5)で表されるものである。使用するシリコーンオイルは、0.65~10000センチトークスの粘度のものが好ましいが、上記のシリコーンオイルである限り、それに限定されるものではなく、官能基としてエポキシ基、メタクル基およびアミノ基が導入されていてもよい。

【化2】

(ここで、Rはアルキル基またはフェニル基を表し、nは1以上の整数である。)

【0042】本発明ではシリコーン系化合物として、シリコーン樹脂および/またはシリコーンオイルを使用することができるが、難燃性、耐熱性、耐ヒートサイクル性等の面から、シリコーン樹脂が好ましい。

【0043】本発明の(I)シリコーン系化合物の添加 量は衝撃強度、成形性の面から(A)ポリプチレンテレ フタレート樹脂100重量部に対して通常0~10重量 部であり、好ましくは0~8重量部、さらに好ましくは 0~6重量部であり、10重量部を越すと衝撃強度を損 なうため好ましくない。

【0044】本発明の(J) 滑剤とは、プラスチック用 40 滑剤であり、ステアリン酸カルシウム、ステアリン酸バリウムなどの金属石鹸、脂肪酸エステル、脂肪酸エステルの塩(一部を塩にした物も含む)、エチレンビスステアロアマイドなどの脂肪酸アミド、エチレンジアミンとステアリン酸およびセバシン酸からなる重縮合物あるいはフェニレンジアミンとステアリン酸およびセバシン酸の重縮合物からなる脂肪酸アミド、ポリアルキレンワックス、酸無水物変性ポリアルキレンワックスなとが挙げられるがこれに限定されるものではない。(J) 滑剤の添加量は、(A) ポリブチレンテレフタレート100重 50

$$-\mathbf{o} - \mathbf{Si} - \mathbf{o} - (2)$$

$$\mathbf{R}$$

量部に対し0~30重量部であり、好ましくは0~25 重量部であり、30重量部を越すと衝撃強度を損なうた め好ましくない。

【0045】また、(B) 成分としてポリカーボネート 樹脂を配合する際に、滑剤として、一部あるいは全部が カルシゥムやナトリゥムなどでケン化あるいは結合され ている滑剤を用いる場合には、耐熱性や難燃性の悪化を 抑制するために、(M) ホスファイト系安定剤および/または3価のリン化合物を0.1~5重量部併用することが好ましい。ここで、ホスファイト系安定剤は、

(L) 成分として後述するホスファイト系安定剤と同じである。また、3価のリン化合物としては、限定されるものではないがリン酸、リン酸トリエチル、リン酸トリメチル、ポリリン酸およびリン酸塩などが挙げられ、特にリン酸やリン酸トリエチルが好ましく用いられる。それら配合量は、ポリブチレンテレフタレート樹脂(A)100重量部に対し0.1~5重量部、好ましくは0.1~3重量部、更に好ましくは0.1~2重量部であり、5重量部を越すと衝撃強度を損なうため好ましくない。

【0046】本発明の(K)カーボンブラックとは、プラスチックスに一般に配合しうる黒色顔料であり、カーボンブラックの添加量は、(A)ポリブチレンテレフタレート樹脂100重量部に対して0~20重量部、好ましくは0~18重量部、さらに好ましくは0~15重量部であり、30重量部を越すと衝撃強度を損なうため好ましくない。本発明の(L)ヒンダードフェノール系安定剤および/またはホスファイト系安定剤とは、長期間高温にさらされても極めて良好な耐熱エージング性を発揮するために有効な添加剤である。

【0047】このようなヒンダードフェノール系安定剤の例としては、トリエチレングリコールービス [3ー(3-t-ブチルー5-メチルー4-ヒドロキシフェニル)プロピオネート】、1,6-ヘキサンジオールービス [3-(3,5-ジーt-ブチルー4-ヒドロキシフェニル)プロピオネート】、ペンタエリスリチルーテトラキス [3-(3,5-ジーt-ブチルー4-ヒドロキシフェニル)プロピオネート】、2,2-チオージエチレンビス [3-(3,5-ジーt-ブチルー4-ヒドロ

キシフェニル)プロピオネート]、オクタデシルー3ー (3, 5-ジ-t-ブチルー4-t) ドロキシフェニル)プロピオネート、3, 5-ジ-t-ブチルー4-t ドロキシベンジルホスホネート ジエチルエステル、1, 3, 5- トリメチルー2, 4, 6- トリス(3, 5- ジーセーブチルー4ーは ドロキシベンジル)ベンゼン、ビスもしくはトリス(3ー t- ブチルー6ーメチルー4ー はドロキシフェニル)プロパン、N, N'ーへキサメチレンビス(3, 5- ジーt- ブチルー4ーは ドロキシーと ドロシンナマミド)、N, N'ートリメチレンビス(3, 5- ジーt- ブチルー4ーは ドロキシーと ドロシンナマミド)などが挙げられる。

13

【0048】また、ホスファイト系安定剤との例としては、トリス(2、4ージーtーブチルフェニル)ホスファイト、2、2ーメチレンビス(4、6ージーtーブチルフェニル)オクチルオスファイト、トリスノニルフェニルホスファイト、アルキルアリル系ホスファイト、トリアリルホスファイト、トリアリルホスファイト、ペンタエリスリトール系ホスファイト化合物などが挙げられる。また、本発明においては、このような(L)ヒンダードフェノール系安定剤および/またはホスファイト系安定剤を必要に応じて添加することができるが、その際の添加量は通常、ポリブチレンテレフタレート樹脂(A)100重量部に対し0~10重量部、好ましくは0~8重量部、更に好ましくは0~6重量部であり、1

0重量部を越すと衝撃強度を損なうため好ましくない。 【0049】さらに、本発明の車載用電気・電子部品用 難燃性強化ポリプチレンテレフタレート樹脂組成物に は、本発明の目的を損なわない範囲で、ガラスフレー ク、タルク、カオリン、マイカなどの板状無機充填材、 イオウ系およびアミン系などの酸化防止剤や熱安定剤、 紫外線吸収剤、離型剤、可塑剤、紫外線防止剤、本発明 以外の難燃剤および染料、顔料を含む着色剤などの通常 の添加剤を1種以上添加することができる。

【0050】本発明の車載用電気・電子部品用難燃性ポリブチレンテレフタレート樹脂組成物は通常の方法で製造されればよい。例えば、(A)ポリブチレンテレフタレート樹脂、(B)ポリカーボネート樹脂および/またはポリエチレンテレフタレート樹脂、(C)フェノール樹脂および/またはフェノキシ樹脂、(D)導電率が0.1~1000μS/cmの赤リン、(E)繊維強化材、およびその他必要に応じ配合される(F)ポリオレフィン樹脂、(G)無機層状化合物、(H)フッ素系材脂、(I)シリコーン系化合物、(J)滑剤、(K)カーボンブラック、(L)ヒンダードフェノール系安定剤おどの添加剤を予備混合して、または予備混合せずに押出機などに供給して十分溶融混練することにより樹脂組成物を調製するが、好ましくは、ハンドリング性や生産性の面から、

(A) ポリブチレンテレフタレート樹脂の一部、および 50

/または(B) ポリカーボネート樹脂および/またはポリエチレンテレフタレート樹脂の一部と(D) 赤リンを一旦溶融混練して赤リン濃度の高い樹脂組成物を製造し、残りの(A) ポリブチレンテレフタレート樹脂や(B) ポリカーボネート樹脂および/またはポリエチレンテレフタレート樹脂に上記の赤リン濃度の高い樹脂組成物およびその他配合成分(任意配合添加剤も含む)を溶融混練することにより調製される。

14

【0051】上記した赤リン濃度の高い樹脂組成物は、 10 いわゆるマスターペレットの形態で好ましく用いられる が、それに限定されず、いわゆるチップ状、粉末状、あ るいはそれらの混合物の形態であってもよい。また、マ スターペレツト製造時に配合するポリブチレンテレフタ レート樹脂、ポリカーボネート樹脂および/またはポリ エチレンテレフタレート樹脂はペレット状であることが 好ましいが、それに限定されず、いわゆるチップ状、粉 末状あるいは、チップ状と粉末状の混合物であってもよ い。さらに、マスターペレツトと配合するポリブチレン テレフタレート樹脂、ポリカーボネート樹脂および/ま たはポリエチレンテレフタレート樹脂の形態、大きさ、 形状はほぼ同等、あるいは互いに似通っていることが均 一に混合し得る点で好ましい。また、上記の赤リン濃度 の高い樹脂組成物を調整する際に、(C)フェノール樹 脂および/またはフェノキシ樹脂あるいは(F)ポリオ レフィン樹脂の一部または全量を併用調整してもよい。 【0052】本発明の樹脂組成物の予備混合の手段とし てはドライブレンドが挙げられ、その際にヘンシェルミ キサー等の機械的な混合装置を用いて混合すればよい。 また、(E) 繊維強化材は、2軸押出機などの多軸押出 機の元込め部とベント部の途中にサイドフィダーを設置 して添加する方法であってもよい。また、樹脂組成物を 製造するに際しては、例えば"ユニメルト"あるいは "ダルメージ"タイプのスクリューを備えた単軸押出 機、2軸押出機、3軸押出機およびニーダータイプの混 練機などを用いることができる。

【0053】かくして得られる難燃性ポリプチレンテレフタレート樹脂組成物は、通常の方法で成形することができ、例えば射出成形、押出成形、圧縮成形、シート成形、フィルム成形などによって、車載用電気・電子部品として用いられる成形物品とすることができる。

【0054】また、本発明の用途である車載用電気・電子部品は、例えば、自動車室内に車載されるカーステレオ、テレビ、カーナビ内部のフライバックトランス、フォーカスケース、トランス部材および接続部品のコネクターなどの車載用電気・電子部品、あるいは自動車エンジンルームに車載されるイグニッションコイル外装ケース、クラッチボビン、エアーフローセンサーボディー、ディストリービュターカバーなどの車載用電気・電子部品であり、例えば、通常の射出成形法によって、また、金属部品の一部を直接車載用電気・電子部品成形品と一

体化させるインサート成形による射出成形法によって、 それらの車載用電気・電子部品が製造される。

[0055]

【実施例】以下実施例により本発明の効果を更に詳細に 説明する。ここで部とはすべて重量部をあらわす。各特 性の測定方法は以下の通りである。

(1) 耐熱性 (熱変形温度)

東芝機械製IS55EPN射出成形機を用いて、成形温度270℃、金型温度80℃の条件で射出成形されたダンベル試験片を試験片として用い、ASTMD-648に従い、荷重0.45MPaの条件で熱変形温度を測定した。

【0056】(2)難燃性(UL94)

東芝機械製IS55EPN射出成形機を用いて、成形温度270 $^{\circ}$ 、金型温度80 $^{\circ}$ の条件で射出成形された難燃性評価用試験片についてUL94に定められている評価基準に従い難燃性を評価した。難燃性レベルはV $^{\circ}$ 0 $^{\circ}$ 7 $^{\circ}$ 7 $^{\circ}$ 8 $^{\circ}$ 9 $^{$

(3) 衝撃強度

東芝機械製IS55EPN射出成形機を用いて、成形温度270℃、金型温度80℃の条件で射出成形された1/8インチ厚みのアイゾット衝撃試験片をASTM D-256に従い、アイゾット衝撃強度を測定した。

【0057】(4)耐ヒートサイクル性

東芝機械製IS55EPN射出成形機を用いて、成形温度270℃、金型温度60℃の条件で、縦47mm、横47mm、高さ27mmの材質がS35C製鉄芯をインサート成形用の金型に設置し、樹脂厚み1.5mmで被 30 覆した成形品を、TABAI-TSV-40冷熱試験機を用いて-40℃×1h~130℃×1h~1h~1+10010 とする条件で、25+100 とする条件で、25+100 とずる条件で、25+100 とずる条件で

【0058】 [実施例1~39、比較例1~13] スクリュ径30mm、L/D35の同方向回転ベント付き2軸押出機 (日本製鋼所製、TEX-30 a) を用いて、

(A) 固有粘度が 0. 85 (25℃、o-クロルフェノール溶液) のポリプチレンテレフタレート樹脂(以下 PBTと略す) 100重量部に対して、(B) 固有粘度が 40 0. 65 (25℃、o-クロルフェノール溶液) のポリカーボネート樹脂(三菱エンプラ製"ユーピロン" S3 000、以下 PCと略す) および/または固有粘度が 0. 65 (25℃、o-クロルフェノール溶液) のポリエチレンテレフタレート樹脂(以下 PETと略す)、

(C) フェノール樹脂(住友デュレス社製PR53195) および/またはフェノキシ樹脂(東都化成社製"フェノトート" YP-50)、(D) 赤リン(燐化学工業社製"ノーバエクセル140") およびその他の添加剤を表1~2に示す割合で混合し、元込め部から添加し

た。

【0059】また、元込め部とベント部の途中にサイドフィダーを設置して(E)ガラス繊維(日東紡績社製 "CS3J948")を上記と同じく表1~2に示す添加量を添加した。そして、混練温度280℃、スクリュ回転150rpmの押出条件で溶融混合を行い、ストランドカッターによりペレット化した。さらに、得られたペレットを通常の方法で乾燥した後、射出成形によりASTMD-638に規定されている熱変形温度試験片、UL94に基く難燃性評価用試験片、およびASTMD-256に規定されている1/8インチ厚みアイゾット衝撃試験片等の試験片を調製した。各サンプルの熱変形温度、難燃性、衝撃強度および耐ヒートサイクル性、等の測定結果を上記の配合処方と同じく、表1~2に示す。

【0060】また、本発明のその他の添加剤は以下のとおりである。

(F) ポリオレフィン樹脂

F-1: ポリプロピレン (三井東圧化学製"三井ノー 20 ブレン" JS-G)

F-2: エチレン/グリシジルメタクリレート共重合体(住友化学製"ボンドファーストーE")

F-3: エチレン/ブテン-1/無水マレイン酸共重合体 (三井デュポンポリケミカル製 "MH5020")

- (G) 無機層状化合物: 竹原化学製のタルク "HE-5"
- (H) フッ素系樹脂: ポリテトラフルオロエチレン(三井デュポンフロロケミカル社製"テフロン6 J")
- (I) シリコーン系化合物: シリコーンパウダー(東レ・ダウコーニング・シリコーン製DC4-7051)【0061】(J)滑剤

J-1: 脂肪酸エステルの一部をカルシゥム塩にした 滑剤 (ヘキストジャパン製 "ヘキストワックスOP") J-2: エチレンジアミンとステアリン酸およびセバシン酸からなる重縮合物 (共栄社化学製 "ライトアマイドWH-255")

J-3: 酸無水物変性ポリアルキレンワックス (三井 石油化学工業製"三井ハイワックス1105A")

(K) カーボンブラツク (三菱化学製#3050)

(L)

L-1: ヒンダードフェノール系安定剤、ペンタエリスルチルーテトラキス [3-(3,5-ジーtープチル-4-ヒドロキシフェニル)プロピオネート] (チバ・ガイギー社製"IR-1010")

L-2: ホスファイト系安定剤、ペンタエリスリトール系ホスファイト化合物 (旭電化製 "PEP-24 G")

(M) 3価のリン化合物: 試薬1級リン酸トリエチ ル

50 [0062]

【表1】

		ート クル性 りか)	0 9											0 9						4 0						
		ボサップ イグ			-																	•			v	
	#	衝擊強度 (MPa)	2 6						0 6						-	1				1						
	奪	廉格性(UL-94) 1/32"	V-0	N-0		0-1	0-A:	n - ^	0 - A				N-0	0-A	0-A	6-7	6-2		7 - 7	ı u	V-2	. н	V- 1	ם.	0 - N	
	•	幕を選択している。	0	0	6	6	0	-	2 6	٦ ,	0	0	0	0	0	<	-	> <	> 11	2 0	٥ ٢	- <	<u>a</u>		3 6	
		が ラス 繊維	80	80	80	es re	110		> 5 ×	2 0	2 LT	1.5	2 2	e2	110	3	200	200	200	180	2 (7.0	181	261	2	
	~	赤沙	20	20	02	25	25	20	20	200	2 2	2 6	20	25	25		2 4	0.7	02	0 4 6	0.7) I) t	2 2	
#K	(重量部)	71/4沙	. 2	ı	1 0	1 5	1 5		م	, -	- L	→ -	7 2 2		1 5	,	<u>م</u>	•	1 0		۱ د	ر د د	ה ה ה		! 1	_
	粗欣物	71.7-1	5	1 0		ł	i	2.5	י מע) 		1 1	ء ا	;			٠ م	1 0	i	1] L		c T	ı	1	1.
		न स न	1	1	1	1	l	1	20		2 5			3 6	200		I _	1	ı	1	Į.	1	1 5	230	09	
		A Q	50	200	200	205	100	20	i	t]	ì	j	1 4	05		į	1	1	230	50	20	20	l	i	
		G E F	1.0	2 -		100	100	001	100	001	001	000	000	207	100		150	150	150	100	100	100	100	100	100	
				٦ ,	V	ۍ ح	ץ גה	9	2	∞					 2 4	- 1	-1	~3	က	4	2	9	!~	∞	ტ	
		E	1 1	图子	岩上	환영	등 Æ	强	摇	出	煜:	選:	图:	图:	米哥哥		粮	数	数	无数定	救	数	农	掇	容	

[0063]

【表2】

1)	

			1																		
					組成物		(金属)					٠.							}		
\$. 4	Ь	D.	71.1-1	72.143	赤い	1, 7,	4.14	がアイン樹脂			2歳、シュ	- 1	延			デザン	安定剂		電子 元	
	mГ	ن ن	田T	透而	極			F-1 [F-2 F	F-3	÷ 2/			<u>-</u>	2	1-3			L-2		19
•	90,	5	1	r	ın	2.0	8 0	1	5			<u> </u>	ı	1	1	1	.1	1	ı	1	
	100	3 5		<u>م</u> ا د	. ro	20	0 8	1	ŀ		ı	1	1	1		l		1	1 1		
٠,	200	3 5		, ru	ß	20	8 0	l	s S	<u>ا</u>	<u> </u>	ı	1	l	1	1	i]		•	
米別717	3 5	200		10	ıc	2 0	8 0	1	2		1		1	1	1	<u> </u>	l		! !	 	
- -	82	8 8		വ	ഹ	.20	8 0	l	ເນ	1	i	1			1	1	. I	: 1	1		
1 03	2	20	1	2	3	20	0 8	ţ	 ري	1	1	ı	1	→	· -			l	1	1	
女植例21	100	20		\$	S	0		[ا م	 I	1	1		· i	۱		ı	-	١	1	
	8	20		ro	മ	20		ı	י פ	1	 I	 	 [. <u>-</u>	<u>-</u> -		L.C	 !	1	ı	
1 00	100	20		ھ	ശ	20	8 0	1	ф	1	ı	!	1	!	 			- 6	ı	1	
1 8	100	60		ιų	ى	20		1	ro -	1	1	ļ	}	1	1			_	~	ı	
9	100	22		r.	Ŋ	20	8 0	1	د	1	ı	I	1	l ·	1 '		L	•	3 6	6	
3 0		2.0	. 1	, rc	ເນ	20		1	ಬ		~ 4	 -		 -	1			 9 5	ب خ	4 1	
10		, 1		تئ	ம	20	0 8	i	ប		1	i	ı	l	ı	1	1			}	
	90	1		٠υ	ស	20	8 0	ı	1		ı	1	1	1	1	 	1		1	ı	
9 6		l		ı,	5	20	8 0	I	ស			1	ı	!	,	1	1	1 1	1	ı	
ار در	100	1		ស	හ	2 0		Ì	ಬ	I	ı		۱ .	!	1	ì	1	1	ı	1	
1	100			ß	മ	20		1	rt —		ı	1		1 •			1	١	ļ	ı	
	100	١	23	പ	ıa	20	8 0	ı	ro i		1		ı	- ;	j ,-		1	1	ł	l	
(7)	100	١	_	LO.	រភ	0 8		1	ı Q	1	ı	1	1 :	1	- 1		i	. 1	ı	1	
67	100	1	20	ഹ	ស	2 0		 	ည ၊	l	l	1		1	1	1	5.5	1	ļ	1	
ന	200	1	20	ហ	ស	20		l	ດ ເ	1	 			1	1	ı	1	0.2	l	1	
က	100	1	2	re.	rc	20		1	ΩI		1	 			1	ı	1	1	27	ł	20
က	100		20	2	ഹ	20		i	ו מ	ı	١,	,	1 -	-	,				0.2)
ຄວ	100	!	20	വ	ເລ	20	0 8	1.	ים ו		-		 +		٠.		, u.	6	7 0	2 0	
GC3	180	25	52	ro	വ	20		1	ည	ı	_	-	7	-	4	1	1				
つは毎日	\ E	50	,	2	5	:	•	5	1	1	ı	1	ı	ì	1	1	1	1		1 1	
子女を	100	-	20	دی	2	20	8 0	വ	1	1			ı		·	l]			
۱ یا	3			,		1				1	1										

[0064]

【表3】

22

表2 (2)

		特性				
例	熱変形	群燃性 (1	JL-94)	衝撃致度	耐ヒート サイクル性	成形品 外観
	祖度 (TC)	1/32"	1/64"	(MPa)	(多(分表)	
実実実実実実実実実実実実実実実実実実実実実実実実実実実実実のでは、111111111111111111111111111111111111	199 199 199 199 199 199 199 199 199 199	V-0 V-0 V-0 V-0 V-0 V-0 V-0 V-0 V-0 V-0	V-2 V-2 V-0 V-2 V-2 V-1 V-2 V-2 V-2 V-2 V-2 V-2 V-2 V-2 V-2 V-2	115 122 108 111 114 114 114 113 114 111 120 109 107 111 111 111 110 111 110 113	85 80 80 80 80 80 80 80 80 80 80	良良特良良特特的良良良特良良特的人民良良特特好好に好好にに好好好に好好に好好に好好にに好好好に好好に比好好に比好好好に 良良良良 良良良 日 東京島 民皇日 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日
比較例12 比較例13	205 205	V-1 V-1	V-2 V-2	8.8 8.5	5 5	一部労る 一部労る

【0065】表1の実施例1~14に示すように、PBTに、本発明の特定量のPCおよび/またはPET、フェノール樹脂および/またはフェノキシ樹脂、赤リンおよび繊維強化材を配合することにより、耐熱性、耐衝撃性および耐ヒートサイクル性に優れ、かつ優れた難燃性の車載用電気・電子部品用に好適な樹脂組成物が得られる。また、表1の比較例1~11に示すように、PBTに、PCもPETも配合されていない場合、PCおよび/またはPETの配合量が多過ぎる場合、あるいは必須成分の何れか1種が添加されていない場合は、優れた上記の特性の一部もしくは難燃性のいずれかの特性が大きく劣り、車載用電気・電子部品として使用に耐えうる材料でない。

【0066】表2の実施例15~39より、本発明で特定したポリオレフィン樹脂を併用配合すると、本発明の優れた特性を保持しつつ、衝撃強度に大きな改善効果が認められた。また、本発明の組成物にタルクと滑剤の何れかもしくは併用配合すると、本発明の優れた特性を保40持しつつ、成形品外観の改善に効果が認められた。また、本発明の組成物にフッ素系樹脂、シリコーン系化合物および安定剤の何れかもしくは併用配合することによって、更に向上した難燃性が得られた。

【0067】また、表2の実施例20、26、39のように、本発明の(B)成分としてPCを用い、かつ滑剤

として、I-1 (脂肪酸エステルの一部をカルシゥム塩にした滑剤)を配合した場合、3価のリン化合物やホスファイト系安定剤を併用配合することが良好な耐熱性と難燃性のために好適である。表2の実施例23、26等のように、本発明によると、カーボンブラックを併用配合しても優れた性能を維持することができるので、黒着色品で使用することもできる。また、表2の比較例12~13のように、ポリオレフィン樹脂としてポリプロピレンを用いた場合は、耐熱性と射出成形性には優れるものの、難燃性と衝撃強度が大きく損なわれるため、車載用電気・電子部品として使用に耐えうる材料でなかった。

[0068]

【発明の効果】本発明により、PBTに、PCおよび/またはPET、フェノール樹脂および/またはフェノキシ樹脂、赤リンおよび繊維強化材を配合することによつて、難燃性、耐熱性、耐衝撃性および耐ヒートサイクル性に優れる車載用電気・電子部品用の非ハロゲン系難燃のポリブチレンテレフタレート用樹脂組成物が得られる。そして、その樹脂組成物から得られる本発明の車載用電気・電子部品は、それら部品で要求される難燃性、耐熱性、耐衝撃性および耐ヒートサイクル性を満足差せることができる。

フロントページの続き

	au milan 🗖		FΙ		テーマコード(参考)
(51) Int. Cl. ⁷	識別記号		C08K	5/13	
C 0 8 K	5/13		CUOK	5/20	
	5/20			5/524	
	5/524			7/02	
	7/02			7/14	
	7/14			9/04	
	9/04			9/08	
	9/08		C O O T	23/00	•
C 0 8 L	23/00		C 0 8 L		
	69/00	•		69/00 45/14	
// B29¢	45/14		B 2 9 C	45/14	
(C08L	67/02				
	69:00				
	23:00				
	61:06				
	71:12				
	27:12				
	83:04)				
B 2 9 K	67:00				
			h	(** **)	4F206 AA03E AA04 AA16 AA24
(72) 発明者	山内 幸二		FY	(多考)	AA25 AA28 AA33 AA37 AB06
	愛知県名古屋市港区大江町9番地の1	東			AB07 AB11 AB16 AB18 AB22
	レ株式会社名古屋事業場内				AB25 AE00 AE09 AH17 AH33
					JA07
					4J002 BB034 BB054 BB064 BB074
		,			BB104 BD144 BD154 BD164
•					BN054 CC033 CC043 CC053
					CEOO3 CFO6X CFO7W CGOOX
					CL064 CP034 CP054 CP094
					DA017 DA039 DA056 DH048
					DJ008 DJ038 DJ048 DJ058
					DL007 EN109 EW069 FA047
		٠			FB076 FB086 FB087 FB097
					FB266 FD017 FD136 GN00
					GQ00