Perry Hart K-theory reading seminar UPenn October 19, 2018

Abstract

We begin low-dimensional K-theory, which consists of the groups $K_0(-)$, $K_1(-)$, and $K_2(-)$. Specifically, we describe K_0 for rings and for topological spaces. The main sources for this talk are the following.

- nLab
- Charles Weibel's The K-book: an introduction to algebraic K-theory, Chapters I and II
- Eric M. Friedlander's An Introduction to K-theory, Chapter 1

1 K_0 for rings

The forgetful functor $U : \mathbf{Ab} \to \mathbf{CMon}$ admits a left adjoint $K : \mathbf{CMon} \to \mathbf{Ab}$, called the *group completion* functor. Specifically, for any commutative monoid (C, +), we call the abelian group K(C) the *Grothendieck group of* C, which is constructed as follows.

Consider $S := {C \times C}/_{\sim}$ where $(a_1, b_1) \sim (a_2, b_2)$ if

$$a_1 + b_2 + k = b_1 + a_2 + k$$

for some $k \in C$. Note that $\sim = \sim'$ where $(a_1, b_1) \sim' (a_2, b_2)$ if

$$(a_1 + k_1, b_1 + k_1) = (a_2 + k_2, b_2 + k_2)$$

for some $(k_1, k_2) \in C \times C$. Now define K(C) = (S, +), where + is inherited from C and acts componentwise on equivalence classes. Our definition of \sim' makes it clear that $[a_1, b_1]^{-1} = [b_1, a_1]$.

Proposition 1.1. The inclusion $C \hookrightarrow K(C)$ given by $x \mapsto [x] := [x,0]$ is injective iff C is a cancellation monoid.

Lemma 1.2 (Universal property of K(-)). Let B be an abelian group and $f: A \to B$ be a monoid homomorphism. Then we have a commutative diagram

$$\begin{array}{c} A \\ \downarrow \\ K(A) \xrightarrow{f} B \end{array}.$$

Proof. Define \tilde{f} by $[a_1, b_1] \mapsto f(a_1) - f(b_1)$.

Lemma 1.3. $K(C_1 \times C_2) \cong K(C_1) \times K(C_2)$.

Definition 1.4. A submonoid L of C is cofinal if for any $c \in C$, there is some $c' \in C$ such that $c + c' \in L$.

Proposition 1.5. Suppose that L is a cofinal submonoid of C.

- 1. Any element of K(C) can be written as [m] [n] for some $m, n \in C$.
- 2. $K(L) \le K(C)$.
- 3. Any element of K(C) can be written as [m] [l] for some $m \in C$ and $l \in L$.
- 4. If [m] = [m'], then m + l = m' + l for some $l \in L$.

Example 1.6.

- 1. $K(\mathbb{N}) \cong \mathbb{Z}$ via the mapping $[a_1, b_1] \mapsto a_1 b_1$.
- 2. $K(\mathbb{Z}^{\times}) \cong \mathbb{Q}^{\times}$ via the mapping $[a_1, b_1] \mapsto \frac{a_1}{b_1}$.

Let R be a unital ring. Let $(\mathbf{P}(R), \oplus, \otimes_R)$ denote the semiring of (isomorphism classes of) finitely generated projective R-modules. Let $K_0(R) = K(\mathbf{P}(R))$.

Lemma 1.7.
$$P(R_1 \times R_2) \cong P(R_1) \times P(R_2)$$
.

Therefore, K_0 can be computed componentwise by Lemma 1.3.

Now, $K_0(-)$ defines a functor from **Ring** to **Ab**. Let $f: R \to S$ be a ring homomorphism and P be a finitely generated projective R-module. Define the group map $K_0(f)$ as follows.

(1) Construct the base extension $S \otimes_R P$ of P. This is the *unique S*-module compatible with the R-module structure on S induced by f, and its action is given by

$$(s', s \otimes p) \mapsto s's \times p.$$

This is also an R-module with $f(r) \cdot t := r \cdot t$ for $t \in S \otimes_R P$. We know that $P \oplus Q$ is free for some R-module Q. Since

$$S \otimes_R (P \oplus Q) \cong_S (S \otimes_R P) \oplus (S \otimes_R Q)$$

and $P \oplus Q$ is free over S via f, it follows that $S \otimes_R P$ is a finitely generated projective S-module.

- (2) We've just defined a monoid homomorphism $\tilde{f}: \mathbf{P}(R) \to \mathbf{P}(S)$.
- (3) Apply the universal property of K to find the filler

$$\begin{array}{cccc} \mathbf{P}(R) & & & \tilde{f} & & \mathbf{P}(S) \\ & & & & \downarrow & & \downarrow \\ K(\mathbf{P}(R)) & & & & \downarrow & K(\mathbf{P}(S)) \end{array},$$

and set $K_0(f) = f_*$.

Theorem 1.8 (Eilenberg swindle). Let $R^{\infty} = \coprod_{n \geq 1} R$. Suppose that $P \oplus Q = R^n$ as R-modules. Then

$$P \oplus R^{\infty} \cong P \oplus (Q \oplus P) \oplus (Q \oplus P) \oplus \cdots \cong (P \oplus Q) \oplus (P \oplus Q) \oplus \cdots \cong R^{\infty}.$$

Therefore, if we added R^{∞} to $\mathbf{P}(R)$, then we would have [P] = 0 for each finitely generated projective module P.

Example 1.9. If R is a field, then $\mathbf{P}(R) \cong \mathbb{N}$ and, by Example 1.6, $K_0(R) \cong \mathbb{Z}$.

We can generalize this phenomenon a bit.

Definition 1.10. A ring R has the invariant basis property (IBP) if $\mathbb{R}^n \ncong \mathbb{R}^m$ whenever $n \ne m$.

Note that any commutative ring has the IBP.

Definition 1.11. An R-module P is stably free of rank n-m if $P \oplus R^m \cong R^n$.

Lemma 1.12. The map $f: \mathbb{N} \to \mathbf{P}(R)$ defined by $n \mapsto R^n$ induces a homomorphism $\phi: \mathbb{Z} \to K_0(R)$.

- 1. ϕ is injective iff R has the IBP.
- 2. Suppose R has the IBP. Then $K_0(R) \cong \mathbb{Z}$ iff every finitely generated projective R-module is stably free. Proof.
 - 1. By Proposition 1.5(4), we know that [P] = [Q] in $K_0(R)$ iff $P \oplus R^m \cong Q \oplus R^m$ for some m.
 - 2. $[P] = [R^n]$ iff P is stably free.

Example 1.13. Suppose that R is commutative. There is a ring homomorphism $R \to F$ with F a field. Then the induced map $K_0(R) \to K_0(F) \cong \mathbb{Z}$ sends [R] to 1. Also, the map $\phi : \mathbb{Z} \to K_0(R)$ is injective by Lemma 1.12. Letting $K = \ker(K_0(R) \to \mathbb{Z})$, we get a split exact sequence of abelian groups

$$1 \longrightarrow K \longrightarrow K_0(R) \longrightarrow \mathbb{Z} \longrightarrow 1$$
,

so that $K_0(R) \cong \mathbb{Z} \oplus K$.

Example 1.14. A ring R is a *flasque* if there exists an R-bimodule M that is a finitely generated projective module on one side along with a bimodule isomorphism $R \oplus M \cong M$. In this case, since

$$P \oplus (P \otimes_R M) \cong P \otimes_R (R \oplus M) \cong P \otimes_R M$$
,

we see that $K_0(R) = 0$.

Example 1.15. A module is *semisimple* if it is the direct sum of simple modules. A ring R is *semisimple* if it a semisimple R-module. Notice that any semisimple module is both Noetherian and Artinian and that any module over a semisimple ring is semisimple.

Suppose R is semisimple with summands V_1, \ldots, V_m . Then any finitely generated R-module has the form $\bigoplus_{i=1}^m V_i^{l_i}$, where each integer l_i is uniquely determined thanks to the Krull-Remak-Schmidt theorem. Hence $\mathbf{P}(R) \cong \mathbb{N}^m$, and $K_0(R) \cong \mathbb{Z}^m$.

Example 1.16. A ring R is von Neumann regular if for any $r \in R$, there exists $x_r \in R$ such that $rx_r r = r$. Any one-sided ideal in R is generated by an idempotent element. Let E/\sim denote the set of idempotent elements in R modulo the equivalence relation where $e_1 \sim e_2$ if the two generate the same ideal. Then E/\sim forms a lattice where the join and meet correspond to the addition and intersection of ideals, respectively.

Kaplansky (1998) proved that any projective R-module is a direct sum of (e) with e idempotent. It follows that $E/_{\sim}$ determines $K_0(R)$.

Proposition 1.17. Let R be a commutative ring. TFAE.

- 1. $R_{\text{red}} := \frac{R_{\text{nilradical}(R)}}{R_{\text{red}}}$ is a commutative von Neumann regular ring.
- 2. R has (Krull) dimension 0.
- 3. Spec(R) is compact, Hausdorff, and totally disconnected.

Lemma 1.18. If $I \subset R$ is a nilpotent ideal, then $\mathbf{P}\left(\frac{R}{I}\right) \cong \mathbf{P}(R)$, hence $K_0(R) \cong K_0\left(\frac{R}{I}\right)$.

Definition 1.19. Let R be a commutative ring. The rank of a finitely generated projective R-module P at a prime ideal \mathfrak{p} is the function

$$\operatorname{rk}:\operatorname{Spec}(R)\to\mathbb{N},\quad \mathfrak{p}\mapsto\dim_{R_{\mathfrak{p}}}(P\otimes R_{\mathfrak{p}}).$$

Proposition 1.20. The rank of a finitely generated projective module is

- (a) continuous and
- (b) a semiring homomorphism.

Definition 1.21. An R-module M is a componentwise free module if $R = \prod_{i=1}^{n} R_i$ and $M \cong \prod_{i=1}^{n} R_i^{c_i}$ for some integers c_i .

Note that M must be projective in this case.

Lemma 1.22. Let R be a commutative ring. The monoid L of finitely generated componentwise free R-modules is isomorphic to $[\operatorname{Spec}(R), \mathbb{N}]$.

Proof. Let $f: \operatorname{Spec}(R) \to \mathbb{N}$ be continuous. By some point-set topology, we see that im f is finite, say $\{n_1, \ldots, n_c\}$. It's also possible to write $R = R_1 \times \cdots \times R_c$. Then $R^f := R_1^{n_1} \times \cdots \times R_c^{n_c}$ is a finitely generated componentwise free R-module. Moreover, $f \mapsto R^f$ has inverse rk restricted to componentwise free modules.

Theorem 1.23 (Pierce). If R is a 0-dimensional commutative ring, then $K_0(R) \cong [\operatorname{Spec}(R), \mathbb{Z}]$ where [X,Y] denotes the semiring of continuous maps $f: X \to Y$.

Proof. We see that R_{red} is a commutative von Neumann regular ring by Proposition 1.17. Any ideal (d) in R_{red} where d is idempotent is componentwise free. By Example 1.16, every object X of $\mathbf{P}(R)$ is therefore componentwise free. Therefore,

$$\mathbf{P}(R_{\mathrm{red}}) \cong [\operatorname{Spec}(R_{\mathrm{red}}), \mathbb{N}]$$
 \downarrow
 $K_0(R_{\mathrm{red}}) \cong [\operatorname{Spec}(R_{\mathrm{red}}), \mathbb{Z}]$

As $\operatorname{Spec}(R_{\operatorname{red}})$ is homeomorphic to $\operatorname{Spec}(R)$, it follows by Lemma 1.18 that

$$K_0(R) \cong [\operatorname{Spec}(R_{\operatorname{red}}), \mathbb{Z}] \cong [\operatorname{Spec}(R), \mathbb{Z}].$$

When R is commutative, let $H_0(R) = [\operatorname{Spec}(R), \mathbb{Z}]$. If R is Noetherian, then $H_0(R) \cong \mathbb{Z}^c$ where $c < \infty$ denotes the number of components of $H_0(R)$. If R is a domain, then $H_0(R)$ is connected, implying $H_0(R) \cong \mathbb{Z}$.

The submonoid $L \subset \mathbf{P}(R)$ of componentwise free modules is cofinal, so that $K(L) \leq K_0(R)$. Moreover, $K(L) \cong H_0(R)$ by Lemma 1.22.

The rank of a projective module induces a homomorphism rank : $K_0(R) \to H_0(R)$. Since rank $(R^f) = f$ for any $R^f \in L$, we see that

$$1 \longrightarrow H_0(R) \cong K(L) \hookrightarrow K_0(R) \xrightarrow{\operatorname{rank}} H_0(R) \longrightarrow 1$$

splits. This implies that

$$K_0(R) \cong H_0(R) \oplus \widetilde{K}_0(R)$$

where $\widetilde{K}_0(R)$ denotes ker(rank).

Example 1.24. The Whitehead group of a group G is the quotient

$$\operatorname{Wh}_0(G) \equiv K_0(\mathbb{Z}[G])/\mathbb{Z},$$

where $\mathbb{Z}[G]$ denotes the group ring of G over \mathbb{Z} . The augmentation map $f: \mathbb{Z}[G] \to \mathbb{Z}$ induces a split exact sequence

$$1 \longrightarrow \operatorname{Wh}_0(G) \longrightarrow K_0(\mathbb{Z}[G]) \longrightarrow \underbrace{K_0(\mathbb{Z})}_{\mathbb{Z}} \longrightarrow 1.$$

Hence $K_0(\mathbb{Z}[G]) \cong \mathbb{Z} \oplus \operatorname{Wh}_0(G)$. Due to Theorem 2.11, if G is finite, then $\operatorname{Wh}_0(G) \cong \widetilde{K}_0(\mathbb{Z}[G])$ and $\mathbb{Z} \cong H_0(\mathbb{Z})$.

Definition 1.25.

- 1. A category \mathscr{C} is *preadditive* if each of its hom-sets is an abelian group.
- 2. A functor $F: \mathscr{C} \to \mathscr{D}$ of preadditive categories is additive if $F: \mathscr{C}(X,Y) \to \mathscr{D}(FX,FY)$ is a group homomorphism for any $X,Y \in \text{ob}\,\mathscr{C}$.

Definition 1.26. The rings R and S are *Morita equivalent* if there exists an additive equivalence between \mathbf{Mod}_R and \mathbf{Mod}_S .

Theorem 1.27. If R and S are Morita equivalent, then $K_0(R) \cong K_0(S)$.

Our results thus far can be extended to *symmetric monoidal* categories because these come equipped with a notion of direct sum enabling our Grothendieck construction.

Definition 1.28. Let S be a category equipped with a functor $\otimes : S \times S \to S$ and a *unit* object 1.

1. We say that $(S, \otimes, 1)$ is monoidal if it is equipped with natural isomorphisms

$$\alpha: (-\otimes -) \otimes - \xrightarrow{\cong} - \otimes (-\otimes -)$$
$$\lambda: 1 \otimes - \xrightarrow{\cong} - \qquad \rho: -\otimes 1 \xrightarrow{\cong} -$$

ranging over objects in S such that the following two diagrams commute:

(This is called the *pentagon identity*.)

2. We say that $(S, \otimes, 1)$ is symmetric monoidal if it is monoidal and is equipped with a braiding $B_{x,y}: x \otimes y \to y \otimes x$ for all $x, y \in \text{ob } S$ such that

$$B_{y,x} \circ B_{x,y} = \mathrm{Id}_{x \otimes y}$$

and the hexagon

commutes.

Example 1.29. The following are examples of a symmetric monoidal category.

- 1. Any k-vector space where $\otimes \equiv \otimes_k$ and $e \equiv k$.
- 2. The category of pointed topological spaces where $s \otimes t \equiv s \wedge t$ and $e \equiv S^0$.
- 3. Any category with finite coproducts where $s \otimes t \equiv s \coprod t$ and $e \equiv 0$.
- 4. Any category with finite products where $s \otimes t \equiv s \times t$ and $e \equiv *$.

Such a monoidal category is called *cartesian*. Any monoidal category whose unit is a terminal object is called *semicartesian*.

Suppose that the class of isomorphism classes of objects of a category S is a set and denote it by S^{iso} . If S is symmetric monoidal, then $(S^{\text{iso}}, \otimes)$ is an abelian monoid with identity element e. In this case, we define the *Grothendieck group of* S as $K_0(S)$.

2 Topological K-theory

Notation. \mathbb{F} stands for either \mathbb{R} or \mathbb{C} .

Definition 2.1. Let $f: F \to X$ and $g: G \to X$ be vector bundles.

- 1. The Whitney sum of f and g is the vector bundle $F \oplus G$ on X whose fiber at $x \in X$ is precisely $F_x \oplus G_x$.
- 2. The tensor product bundle $F \otimes G$ is defined similarly.

Definition 2.2. A vector bundle homomorphism from $\phi: E_1 \to X_1$ to $\psi: E_2 \to X_2$ is a pair of maps $f: E_1 \to E_2$ and $g: X_1 \to X_2$ such that

(i) the square

$$E_1 \xrightarrow{f} E_2$$

$$\downarrow^{\phi} \qquad \qquad \downarrow^{\psi}$$

$$X_1 \xrightarrow{g} X_2$$

commutes and

(ii) for each $x \in X_1$, the map $f \upharpoonright_{\phi^{-1}(x)} : \phi^{-1}(x) \to \psi^{-1}(g(x))$ is linear.

Definition 2.3 (Topological K-groups). Let $(\mathbf{Vect}_{\mathbb{F}}(X), \oplus)$ denote the abelian monoid of (isomorphism classes of) \mathbb{F} -vector bundles on a paracompact space X.

- $KU(X) \equiv K(\mathbf{Vect}_{\mathbb{C}}(X))$
- $KO(X) \equiv K(\mathbf{Vect}_{\mathbb{R}}(X))$

Note that these are commutative rings with identity.

We apply the notation $K_{\text{top}}(-)$ to topological spaces when we wish to omit the base field.

Both KU(-) and KO(-) define contravariant functors $\mathbf{Top} \to \mathbf{Ab}$. Let $f: Y \to X$ be a map of spaces and $\phi: E \to X$ be a vector bundle. Recall the pullback $f^*E = \{(y, e) \in Y \times E : f(y) = \phi(e)\}$ of E in \mathbf{Top} . Define the vector bundle $f^*(\phi): f^*E \to Y$ as the appropriate restriction of the projection map $\pi: Y \times E \to Y$. The assignment $\phi \mapsto f^*(\phi)$ defines a morphism $\mathbf{Vect}_{\mathbb{F}}(X) \to \mathbf{Vect}_{\mathbb{F}}(Y)$ of monoids. In turn, the universal property of K induces a unique morphism $f^*: K_{top}(X) \to K_{top}(Y)$.

Lemma 2.4. If X and Y are homotopy equivalent, then $K(X) \cong K(Y)$.

Proof. Apply the homotopy invariance theorem (HIT), which states that if Y is paracompact and $f, g: Y \to X$ are homotopic, then $f^*E \cong g^*E$ for any vector bundle E over X.

Example 2.5.

- 1. $K_{\text{top}}(*) = \mathbb{Z}$.
- 2. If X is contractible, then the HIT implies that $KO(X) = KU(X) = \mathbb{Z}$
- 3. According to I.4.9 of *The K-book*, we have

$$KO(S^1) \cong \mathbb{Z} \times C_2$$

 $KU(S^1) \cong \mathbb{Z}$
 $KO(S^2) \cong \mathbb{Z} \times C_2$
 $KU(S^2) \cong \mathbb{Z} \times \mathbb{Z}$
 $KO(S^3) \cong KU(S^3) \cong \mathbb{Z}$
 $KO(S^4) \cong KU(S^4) \cong \mathbb{Z} \times \mathbb{Z}$

Definition 2.6. The *dimension* of a vector bundle E over X is the continuous homomorphism $\widehat{\dim}(E)$: $X \to \mathbb{N}$ given by $x \mapsto \dim(E_x)$.

Definition 2.7. A vector bundle $p: E \to X$ is a componentwise trivial bundle if $X = \coprod_{i \in S} X_i$ where S is a set, each X_i is a clopen component of X, and $p \upharpoonright_{p^{-1}(X_i)}$ is trivial. In this case, if S is finite, then we say that E has finite type.

Lemma 2.8. The submonoid of componentwise trivial bundles over X is isomorphic to $[X, \mathbb{N}]$.

Proof. Send a given map $f: X \to \mathbb{N}$ to $T^f := \coprod_{i \in \mathbb{N}} (f^{-1}(i) \times \mathbb{F})$. Conversely, if E is a componentwise trivial bundle, then $E \cong T^{\widehat{\dim}(E)}$.

Thus, the submonoid of trivial bundles and the submonoid of componentwise trivial bundles are naturally isomorphic to \mathbb{N} and $[X,\mathbb{N}]$, respectively. When X is compact, these are cofinal in $\mathbf{Vect}_{\mathbb{F}}(X)$ thanks to the following theorem (proven using Riemannian geometry).

Theorem 2.9 (Subbundle). Let $p: E \to X$ be a vector bundle such that X is paracompact.

- (a) For any subbundle F of E, there is a subbundle F^{\perp} of E such that $E \cong F \oplus F^{\perp}$.
- (b) E has finite type if and only if there is another bundle E' such that $E \oplus E'$ is trivial.

We now can deduce that

$$\mathbb{Z} \leq [X, \mathbb{Z}] \leq K_{\text{top}}(X).$$

Note 2.10.

1. We have a split exact sequence.

$$1 \longrightarrow \widetilde{K}_{\text{top}}(X) \longrightarrow K_{\text{top}}(X) \xrightarrow{\widehat{\text{dim}}} [X, \mathbb{Z}] \longrightarrow 1 ,$$

where $\widetilde{K}_{\text{top}}(X)$ denotes $\ker \left(\widehat{\dim}\right)$.

2. The map of monoids $\mathbf{Vect}_{\mathbb{R}}(X) \to \mathbf{Vect}_{\mathbb{C}}(X)$ given by $[E] \mapsto [E \otimes \mathbb{C}]$ extends by universality to a homomorphism $KO(X) \to KU(X)$. Likewise, the forgetful functor $\mathbf{Vect}_{\mathbb{C}}(X) \to \mathbf{Vect}_{\mathbb{R}}(X)$ extends to a homomorphism $KU(X) \to KO(X)$.

Finally, to state a nice early connection between algebraic and topological K-theory, let X be a compact Hausdorff space and $\mathcal{C}(X,\mathbb{F})$ denote the ring of continuous functions $X \to \mathbb{F}$. For any vector bundle $p: E \to X$ over \mathbb{F} , set

$$\Gamma(X, E) = \{s : X \to E : p \circ s = \mathrm{Id}_X\},\,$$

the vector space of global sections of E.

Theorem 2.11 (Swan). The mapping $E \mapsto \Gamma(X, E)$ induces isomorphisms $KO(X) \cong K_0(\mathcal{C}(X, \mathbb{R}))$ and $KU(X) \cong K_0(\mathcal{C}(X, \mathbb{C}))$.