IMPLEMENTASI DAN PERANCANGAN SISTEM PAKAR UNTUK DIAGNOSA PENYAKIT MATA PADA MANUSIA BERBASIS PEMROGRAMAN CLIPS

ISSN: 1979-2328

Nazrul Effendy ¹⁾, Febry Wikatmono ²⁾, M. Haekal Hasan ³⁾, Nandan Suteresna ⁴⁾
^{1,2,3,4)} Jurusan Teknik Fisika, Fakultas Teknik, Universitas Gadjah Mada
Jl. Grafika No.2, Yogyakarta 55281

 $E\text{-}mail: nazrul@gadjahmada.edu, Febry.cimot@gmail.com , prof_ekal@yahoo.com\\$

Abstraks

Seperti kita ketahui penyakit mata pada manusia ada bermacam-macam seperti Glaukoma, Hordeolum, Kalazion, Katarak, Konjungtivitis, Entropion. Penyakit mata adalah penyakit yang berbahaya, bila tidak segera didiagnosa dan diobati maka dapat menimbulkan kebutaan pada mata ataupun timbul penyakit lainnya. Penyakit mata tersebut dapat didiagnosa melalui gejala-gejala yang timbul yang diderita oleh manusia tersebut ataupun melalui gambaran klinisnya. Dengan menggunakan sistem pakar maka penyakit mata tersebut dapat didiagnosa dan diobati secara tepat dengan prinsip pembentukan basis aturan dan pembangunan komponen dilakukan pada lingkungan pengembangan, sedangkan lingkungan konsultasi digunakan sebagai sistem konsultasi oleh orang yang bukan ahli ataupun yang sudah ahli.

Sistem pakar sebagai sistem yang mengadopsi kepakaran manusia ke dalam komputer dan memiliki kedudukan strategis sebagai sistem yang dapat membantu menyelesaikan permasalahan di bidang kedokteran. Sulitnya menentukan jenis penyakit karena rumitnya berbagai gejala yang mengiringinya, dapat dibantu dengan merepresentasikan gejala suatu penyakit ke dalam suatu bahasa pemrograman komputer (Wardana, 2008). Pada penelitian ini, dikembangkan suatu metode untuk mediagnosa 26 jenis penyakit mata berdasarkan 53 jenis gejala , gambaran klinis yang mengiringi serata pengobatan yang sesuai. Lingkungan pengembangan sistem pakar pada penelitian ini menggunakan bahasa pemrograman CLIPS.

Kata Kunci: sistem pakar, penyakit mata, CLIPS.

1. PENDAHULUAN

Dalam ilmu penyakit mata, mata dikatakan dalam keadaan darurat bila terdapat keadaan dimana mata akan terancam kehilangan fungsi penglihatan atau akan terjadi kebutaan bila tidak dilakukan tindakan ataupun pengobatan secepatnya. Terancamnya mata untuk menjadi buta dapat diakibatkan oleh penyakit atau kelainan mata dan trauma mata. Biasanya penderita meminta tolong dokter dengan keluhan yang dapat memberikan pengarahan pada kemungkinan berat atau ringannya penderitaan si pasien. Keluhan yang biasa diberikan penderita dengan kelainan mata ialah mata merah, mata sakit, mata lelah, lihat ganda, tajam penglihatan menurun, pandangan tertutup, adanya kilatan lampu pada lapang pandang dan sakit kepala. Tidak semua mata yang merah akan terancam menjadi buta, demikian pula tidak semua penglihatan yang kurang, berarti dalam keadaan darurat atau memerlukan tindakan cepat (Illyas, 2000).

Clips (*C Language Integrated Production System*) merupakan suatu aplikasi atau program yang digunakan sebagai pengembangan sistem pakar pada penelitian ini. Fakta dan aturan pada setiap jenis penyakit ditanamkan pada program agar dapat mengetahui jenis penyakit yang sesuai dengan gejalanya yang telah ditanamkan pada program tersebut. Pada penelitian ini, dikembangkan suatu metode untuk mediagnosa 26 jenis penyakit mata berdasarkan 53 jenis gejala, gambaran klinis yang mengiringi, serata pengobatan yang sesuai. Tujuan utama penelitian ini adalah mengembangkan sistem pakar yang dapat mengimbangi keterbatasan dokter ahli dalam pemeriksaaan dan diagnosis penyakit mata.

Sistem pakar dapat dibangun dengan berbagai perangkat lunak seperti CLIPS, Prolog, LISP dan berbagai perangkat lunak yang lain. CLIPS memiliki fasilitas yang lengkap untuk membangun suatu sistem pakar karena memiliki berbagai fitur seperti editor yang terintegrasi dan *debugging tool* (Giarratano).

2. DASAR TEORI

2.1 Sistem Pakar

Sistem pakar adalah sistem perangkat lunak komputer yang menggunakan ilmu, fakta, dan teknik berpikir dalam pengambilan keputusan untuk menyelesaikan masalah-masalah yang biasanya hanya dapat diselesaikan

oleh tenaga ahli dalam bidang yang bersangkutan. Pembentukan sistem pakar didasarkan pada suatu ide untuk mentransfer pengetahuan seorang pakar (atau sumber kepakaran yang lain) ke dalam komputer. Pengetahuan yang tersimpan ini selanjutnya digunakan untuk menyelesaikan permasalahan yang sesuai dengan bidang kepakaran tertentu. Peran sistem pakar dewasa ini semakin dirasa penting untuk menyelesaikan permasalahan diberbagai bidang, termasuk bidang kesehatan.

Sistem pakar terdiri dari dua bagian pokok, yaitu lingkungan pengembangan (development environment) dan lingkungan konsultasi (consultation environmet). Pembentkan basis aturan dan pembangunan komponen dilakukan pada lingkungan pengembangan, sedangkan lingkungan konsultasi digunakan sebagai sistem konsultasi oleh orang yang bukan ahli (Kusumadewi, 2003).

Gambar 1. Struktur sistem pakar (Achmad, 2006)

Berdasarkan pengalaman, kegagalan pembangunan sebuah sistem pakar disebabkan para ahli sangat susah untuk menyatakan secara tepat pengetahuan dan aturan yang digunakan untuk menyelesaikan masalah (Suyoto, 2004). Agar menjadi efektif, sistem pakar harus memuat sejumlah substansi kepakaran yang terorganisir (Hayes-Roth, Waterman, and Lenat, 1983; Klahr and Waterman, 1986).

2.2 Bahasa Pemrograman CLIPS

CLIPS (*C Language Integrated Production System*) adalah program *expert system* yang pertama kali di *release* tahun 1986 dan dikembangkan oleh Software Technology Branch (STB), NASA/Lyndon B. Johnson Space Center. Sejak perama kali dirilis, CLIPS menunjukkan perkembangan yang pesat, dan saat ini digunakan oleh ribuan orang untuk mengembangkan sistem pakar diseluruh dunia (Giarratano).

Terdapat tiga cara untuk merepresentasikan pengetahuan pada CLIPS yaitu (Giarratano).:

- 1. Rules, dirancang untuk pengetahuan heuristik yang berbasiskan pengalaman.
- 2. Deffunction dan generic function, dirancang untuk pengetahuan prosedural.
- 3. Object-oriented programming, juga dirancang untuk pengetahuan prosedural yang mendukung : classes, message-handlers, abstraction, encapsulation, inheritance, dan polymorphism. Aturan (rule) dapat mencocokkan antara objek dan fakta.

Sebagai perangkat pengembangan sistem pakar, CLIPS dilengkapi fitur yang lengkap mengenai elemen dasar sistem pakar, meliputi (Giarratano).:

- 1. Fact-list, dan instance-list, memuat berbagai data
- 2. Knowledge-base, memuat data base aturan
- 3. *inference engine*, mengontrol semua eksekusi aturan (kapan dan aturan mana yang harus di eksekusi) Penulisan program pada CLIPS dapat berupa serangkaian aturan (*rules*), fakta (*facts*) dan objek (*objects*). Namun CLIPS mempunyai kemampuan merepresentasikan walaupun hanya berupa aturan dan fakta.

3. METODE PENELITIAN

Penelitian diawali dengan pengumpulan fakta-fakta mengenai penyakit dan gejalanya. Berdasarkan pengumpulan tersebut, dirangkum penyakit dan gejala yang menyertai penyakit mata pada Tabel 1 dan Tabel 2.

Tabel 1. Data Nama Penyakit Mata (www.medicastore.com)

No	Nama Penyakit Mata
1	Ablasio Retina
2	Blefaritis
3	Dakriosistitis
4	Degenerasi Makula
5	Eksoftalmos
6	Endoftalmitis
7	Episkleritis
8	Glaukoma
9	Hordeolum
10	Infeksi Herpes Simpleks Kornea
11	Infeksi Herpes Zoster Kornea
12	Kalazion
13	Katarak

No	Nama Penyakit Mata
14	Keratitis Pungtata Superfisialis
15	Keratitis Ulserativa Perifer
16	Keratokonjungtivitis Vernalis
17	Konjungtivitis
18	Melanoma Koroid
19	Oftalmia Neonatorum
20	Patah Tulang Orbita
21	Retinopati Diabetikum
22	Selulitis Orbitalis
23	Skleritis
24	Trakoma
25	Trombosis Sinus Karvenosus
26	Ulkus Kornea

ISSN: 1979-2328

 $\textbf{Tabel 2}. \ Data \ Gejala \ Mata \ (bersambung) \ (Illy as, 2001 \ \& \ www.medicastore.com)$

NO	GEJALA
1	Bayi berumur 1-7 hari
2	Usia 1-10 tahun
3	Usia 10-30 tahun
4	Usia diatas 30 tahun
5	Menderita penyakit diabetes
6	Terdapat bentuk kilatan cahaya
7	Penglihatan kabur
8	Mata merah
9	Mata berair
10	Mata bernanah
11	Kelopak mata terasa gatal
12	Peka terhadap cahaya (fotopobia)
13	Terdapat gangguan salah satu mata
14	1 atau 2 bola mata menonjol
15	Melihat Ganda
16	Jarang mengedip
17	Nyeri mata
18	Terjadi Paska operasi mata
19	Nyeri mata bila ditekan
20	Terjadi Penyempitan lapang pandang
21	Terjadi sakit kepala ringan
22	Sulit melihat benda-benda disisi lain
23	Terdapat sesuatu yang mengganjal di mata
24	Terdapat pembengkakan pada kelopak
25	Peradangan dibelakang kornea
26	Peningkatan tekanan dibola mata
27	Terdapat warna kemerahan / keabuan di bawah kelopak mata
28	Sulit melihat kegelapan atau pada malam hari
29	Melihat lingkaran disekeliling cahaya
30	Cahaya menyilaukan mata

Tabel 2. Data Gejala Mata (sambungan) (Illyas, 2001 & www.medicastore.com)

NO	GEJALA
31	Sering ganti kaca mata
32	Mata terasa gatal
33	Mata mengeluarkan kotoran
34	Terjadi peradangan konjungtiva
35	Mata terasa gatal hebat
36	Kotoran mata kental dan lengket
37	Terdapat keropeng pada kelopak mata ketika bangun tidur
38	Perubahan warna iris
39	Mata menonjol
40	Gangguan pergerakan mata
41	Memar disekitar mata
42	Mati rasa di daerah pipi / geraham atas
43	Melihat bintik-bintik yang melayang
44	Nyeri mata hebat
45	Bola mata membengkak
46	Demam
47	Terdapat bercak merah pada sklera
48	Pembengkakan kelenjar getah bening
49	Kornea terlihat keruh
50	Bulu mata melipat kedalam
51	Sakit kepala hebat
52	Terjadi koma
53	Terjadi Kejang-kejang

Pemecahan masalah (*problem-solving*) pada sistem ini menggunakan formulasi *generete-and-test*, dan sistem penyimpulan menggunakan metode *forward chaining*. Alur kerja program terlihat seperti suatu sistem hirarki. Formula *generete-and-test* dibagi menjadi dua bagian: *generator* dan *tester* . *Generator* membangkitkan pemecahan yang mungkin dan *tester* akan memotong solusi dalam cabang hirarki yang tidak memungkinkan menjadi solusi pemecahan. Hal ini diseleksi dari jawaban "y" dan "t" (masing-masing menyatakan "ya" dan 'tidak") yang menjadi jawaban setiap pertanyaan.

Gambar 2. Hirarki formula generete-and-test (Hayes-Roth, Waterman, and Lenat, 1983)

Program mengambil keputusan berdasarkan aturan-aturan yang dibangkitkan dari setiap pertanyaan yang diajukan pada pasien. Berikut penggalan program untuk mengumpulkan data:

Algoritma 1. Penggalan program awal inisialisasi

Algoritma 2. Penggalan program pengumpulan data

Ketika kumpulan data memenuhi ciri suatu penyakit tertentu, maka program akan mengeluarkan hasil diagnosa. Setiap jawaban yang berbeda dari setiap pertanyaan akan menghasilkan fakta yang berbeda dan pertanyaan yang dikeluarkan berikutnya juga berbeda karena penerapan sistem *generete-and-test*. Pada algoritma 3 terlihat bahwa penyakit *oftalmia neonatorium* akan terdiagnosa ketika terjadi kombinasi jawaban dari tiga gejala yang ditanyakan.

Algoritma 3. Penggalan Kumpulan Aturan Program

4. HASIL DAN PEMBAHASAN

Tampilan anatarmuka komputer dan *user* terlihat seperti pada Gambar 3. Setiap pasien dihadapkan pada pertanyaan yang mengharuskan untuk menjawab dengan menuliskan "y" atau "t".

Gambar 3. Tampilan antarmuka komputer dan user

Tampilan pada Gambar 3 memperlihatkan hasil diagnosa spesifik yang menunjukkan ciri-ciri penyakit *oftalmia neonatorium*. Apabila pada salah satu pertanyaan tersebut yang tidak benar atau (t) maka program tersebut tetap berjalan dengan merujuk ke daftar penyakit lainnya yang telah diprogram. Keadaan seperti ini terlihat pada Gambar 4.

Gambar 4. Diagnosa apabila ada program dengan jawaban tidak (t)

Dalam keadaan tertentu, program juga dapat memberi respon bahwa gejala di luar *data base* komputer. Hal ini sangat tergantung pada tahap pemeliharaan program selanjutnya. Penambahan dan *update* sistem menjadi mutlak diperlukan untuk menghadapi dinamika penyakit dan gejala yang mengiringinya. Gambar 5 menunjukkan kondisi tersebut.

ISSN: 1979-2328

Gambar 5. Diagnosa di luar data base komputer

5. KESIMPULAN DAN SARAN

Tujuan utama penelitian ini adalah mengembangkan sistem pakar yang dapat mengimbangi keterbatasan dokter ahli dalam pemeriksaaan dan diagnosis penyakit mata. Program pembuatan sistem pakar ini juga dapat digunakan oleh user yang bukan ahlinya untuk mendiagnosa penyakit mata. Sistem pakar ini tidak dapat 100% dijadikan sebagai *final decision* dalam menentukan penyakit yang dialami pasien. Penalaran yang diperoleh dari pengalaman yang dimiliki oleh *user* tetap menjadi faktor utama dalam sistem diagnosa penyakit mata. Namun, hasil program ini akan berusaha mengarahkan *user* untuk fokus terhadap penyakit yang dialami pasien berdasarkan gejala yang ditimbulkan.

Penyusunan database dari program harus terperinci agar memudahkan dalam penyusunan program. Hasil output dari program perlu dianalisis lebih lanjut sehingga hasilnya benar-benar akurat sesuai dengan target dari plan.

6. DAFTAR PUSTAKA

Ilyas, Sidarta, 2001, Penuntun Ilmu Penyakit Mata, Balai Penerbit FKUI, Jakarta

Ilyas, Sidarta, 2000, Kedaruratan Dalam Ilmu Penyakit Mata, Balai Penerbit FKUI, Jakarta

Achmad, Balza, 2006, Diktat Mata Kuliah Kecerdasan Buatan, Jurusan Teknik Fisika UGM, Yogyakarta

Giarratano, J. C., CLIPS User Guide, http://www.ghg.net/clips/download/documentation/

Hayes-Roth, F., Waterman, D.A., and Lenat, D.B,1983, *Building Expert Systems*, Addison-Wesley Publishing Company, Inc., Massachusetts

Klahr, P., Waterman, D.A., 1986. Expert Systems: Techniques, Tools and Applications, The Rand Corporation, Canada

Wardana, I Nyoman Kusuma, Implementasi Dan Perancangan Sistem Pakar Untuk Diagnosa Penyakit Mata Pada Manusia Berbasis Pemrograman Clips, Jurusan Teknik Fisika UGM, Yogyakarta

Suyoto, Intelegensi Buatan: Teori dan Pemrograman, Gava Media, Yogyakarta, 2004.

, http://www.medicastrore.com/.