

Attorney Docket No. 015389-002980US

In re: Cech et al.

Application No.: To be assigned

Filed: January 18, 2002

For: NOVEL TELOMERASE

PANEL A

PANEL B

FIGURE 2

FIGURE 3

FIGURE 4

FIGURE 5

FIGURE 6

FIGURE 7

FIGURE 8

FIGURE 9

1 AAAACCCCAA AACCCCCAAA CCCCTTTAG AGCCCTGCAG TTGGAAATAT
51 AACCTCAGTA TTAATAAGCT CAGATTAA ATATTAATTAA CAAAACCTAA
101 ATGGAGGTTG ATGTTGATAA TCAAGCTGAT AATCATGGCA TTCACTCAGC
151 TCTTAAGACT TGTGAAGAAA TTAAAGAAC TAAAACGTIG TACTCTTGGAA
201 TCCAGAAAGT TATTAGATGA AGAAATCAAT CTCAAAGTCAT TTATAAAGAT
251 TTAGAAGATA TTAAAATATT TGCGCAGACA AATATTGTTG CTACTCCACG
301 AGACTATAAT GAAGAAGATT TTAAAGTTAT TGCAAGAAAA GAAGTATTTT
351 CAACTGGACT AATGATCGAA CTTATTGACA AATGCTTAGT TGAACCTCTT
401 TCATCAAGCG ATGTTTCAGA TAGACAAAAA CTTCAATGAT TTGGATTITCA
451 ACTTAAGGGA AATCAATTAG CAAAGACCCA TTTATTAAACA GCTCTTCAA
501 CTCAAAAGCA GTATTTCTT CAAGACGAAT GGAACCAAGT TAGAGCAATG
551 ATTGGAAATG AGCTCTTCCG ACATCTCTAC ACTAAATATT TAATATTCCA
601 GCGAACTTCT GAAGGAACCTC TTGTTCAATT TTGCGGGAAAT AACGTTTTG
651 ATCATTGAA AGTCAACGAT AAGTTGACA AAAAGAAAAA AGGTGGAGCA
701 GCAGACATGA ATGAACCTCG ATGTTGATCA ACCTGCAAAT ACAATGTCAA
751 GAATGAGAAA GATCACTTTC TCAACAAACAT CAACGTGCCG AATTGGAATA
801 ATATGAAATC AAGAACCGAG ATATTTATT GCACTCATT TAATAGAAAT
851 ACCAATTCT TCAAAAAGCA TGAGTTGTG AGTAACAAAAA ACAATATTTC
901 AGCGATGGAC AGAGCTCAGA CGATATTCAC GAATATATTTC AGATTAAATA
951 GAATTAGAAA GAAGCTAAAA GATAAGGTTA TCGAAAAAAAT TGCCTACATG
1001 CTTGAGAAAG TCAAAGATT TAACTTCAAC TACTATTAA CAAAATCTG
1051 TCCTCTTCCA GAAAATTGGC GGGAACGGAA ACAAAAAATC GAAAACTTGA
1101 TAAATAAAAC TAGAGAAGAA AAGTCGAAGT ACTATGAAGA GCTGTTTAGC
1151 TACACAACTG ATAATAAAATG CGTCACACAA TTTATTAAATG AATTITTC
1201 CAATATACTC CCCAAAGACT TTTGACTGG AAGAAACCGT AAGAATTTC
1251 AAAAGAAAGT TAAGAAATAT GTGGAACCTAA ACAAGCATGA ACTCATT
1301 AAAAACTTAT TGCTTGAGAA GATCAATACA AGAGAAATAT CATGGATGCA
1351 GGTTGAGACC TCTGCAAAGC ATTITTTATT TTTGATCAC GAAAACATCT
1401 ACGTCTTATG GAAATTGCTC CGATGGATAT TCGAGGATCT CGTCGCTCG
1451 CTGATTAGAT GATTITCTA TGTCAACCGAG CAACAGAAAAA GTTACTCCAA
1501 AACCTATTAC TACAGAAAGA ATATTTGGGA CGTCATTATG AAAATGTCAA
1551 TCGCAGACTT AAAGAAGGAA ACGCTTGCTG AGGTCCAAGA AAAAGAGGTT
1601 GAAGAATGGA AAAAGTCGCT TGGATTGCA CCTGGAAAAC TCAGACTAAT
1651 ACCGAAGAAA ACTACTTCC GTCCAATTAT GACTTCAAT AAGAAGATTG
1701 TAAATTCAAGA CCGGAAGACT ACAAAATTAA CTACAAATAC GAAGTTATTG
1751 AACTCTCACT TAATGCTTAA GACATTGAAG AATAGAATGT TTAAAGATCC
1801 TTTGGATTG GCTGTTTTA ACTATGATGA TGTAATGAAA AAGTATGAGG
1851 AGTTTGTGTTG CAAATGGAAG CAAGTTGGAC AACCAAAACT CTTCTTGCA
1901 ACTATGGATA TCGAAAAGTG ATATGATAGT GTAAACAGAG AAAAACTATC
1951 AACATTCTA AAAACTACTA AATTACTTTC TTCAAGATTTC TGGATTATGA
2001 CTGCACAAAT TCTAAAGAGA AAGAATAACA TAGTTATCGA TTGCAAAAC
2051 TTTAGAAAGA AAGAAATGAA AGATTATTT AGACAGAAAT TCCAGAAGAT
2101 TGCACITGAA GGAGGACAAT ATCCAACCTT ATTCAAGTGTGTT CTTGAAAATG
2151 AACAAAATGA CTTAAATGCA AAGAAAACAT TAATTGTTGA AGCAAAGCAA
2201 AGAAATTATT TTAAGAAAGA TAACTTACTT CAACCAGTCAT TTAATATTG
2251 CCAATATAAT TACATTAAC TTAATGGGA GTTTTATAAA CAAACAAAAG
2301 GAATTCCCTCA AGGTCTTGA GTTTCATCAA TTTGTCATC ATTITATTAT

FIGURE 9 (cont.)

2351 GCAACATTAG AGGAAAGCTC CTTAGGATT CTTAGAGATG AATCAATGAA
2401 CCCTGAAAAT CCAAATGTTA ATCTTCTAAT GAGACTTACA GATGACTATC
2451 TTTTGATTAC AACTCAAGAG AATAATGCAG TATTGTITAT TGAGAAACTT
2501 ATAAACGTAA GTCGTAAAAA TGGATTAAA TTCAATATGA AGAAACTACA
2551 GACTAGTTT CCATTAAGTC CAAGCAAATT TGCAAAATAC GGAATGGATA
2601 GTGTTGAGGA GCAAAATATT GTTCAAGATT ACTGCGATTG GATTGGCATC
2651 TCAATTGATA TGAAAACCTCT TGCTTTAATG CCAAATATTA ACTTGAGAAT
2701 AGAAGGAATT CTGTGTACAC TCAATCTAAA CATGCAAACA AAGAAAGCAT
2751 CAATGTGGCT CAAGAAGAAA CTAAAGTCGT TTTTAATGAA TAACATTACC
2801 CATTATTTA GAAAGACGAT TACAACCGAA GACTTGCAG ATAAAACCTCT
2851 CAACAAGTTA TTATATTCAG GCGGTTACAA ATACATGCAA TGAGCCAAAG
2901 AATACAAGGA CCACTTTAAG AAGAACTTAG CTATGAGCAG TATGATCGAC
2951 TTAGAGGTAT CTAAAATTAT ATACTCTGTA ACCAGAGCAT TCTTTAAATA
3001 CCTTGTGTGC AATATTAAGG ATACAATT TTGGAGAGGAG CATTATCCAG
3051 ACTTTTCCT TAGCACACTG AAGCACTTTA TTGAAATATT CAGCACAAAAA
3101 AAGTACATTT TCAACAGAGT TTGCATGATC CTCAAGGCAA AAGAAGCAA
3151 GCTAAAAAGT GACCAATGTC AATCTCTAAT TCAATATGAT GCATAGTCGA
3201 CTATTCTAAC TTATTTGGA AAGTTAATT TCAATTGGT TCTTATATAC
3251 TGGGGTTTG GGGTTTGGG GTTTGGGG

FIGURE 10

1 MEVDVDNQAD NHGIHSALKT CEEIKEAKTL YSWIQQVIRC RNQSQSHYKD
51 LEDIKIFAQT NIVATPRDYN EEDFKVIARK EVFSTGLMIE LIDKCLVELL
101 SSSDVSDRQK LQCFGQLKG NQLAKTHLLT ALSTQKQYFF QDEWNQVRAM
151 IGNELFRHLY TKYLIFQRTS EGTLVQFCGN NVFDHLKVND KFDKKQKGGA
201 ADMNEPRCCS TCKYNVKNEK DHFLNNINVP NWNNMKSRTTR IFYCTHFNRN
251 NQFFKKHEFV SNKNNISAMD RAQTIFTNIF RFNRIRKKLK DKVIEKIAYM
301 LEKVKDFNPN YYLTKSCPLP ENWRERKQKI ENLINKTREE KSKYYEELFS
351 YTTDNKCVTQ FINEFFYNIL PKDFLTGRNR KNFQKKVKKY VELNKHELIH
401 KNLLLEKINT REISWMQVET SAKHFYYFDH ENIYVLWKLL RWIFEDLVVS
451 LIRCFFYVTE QQKSYSKTYY YRKNIWDVIM KMSIADLKKE TLAEVQEKEV
501 EEWKKSLGFA PGKLRLIPKK TTFRPIMTFN KKIVNSDRKT TKLTTNTKLL
551 NSHMLMLKTLK NRMFKDPFGF AVFNYDDVMK KYEEFVCKWK QVGQPKLFFA
601 TMDIEKCYDS VNREKLSTFL KTTKLLSSDF WIMTAQILKR KNNIVIDSKN
651 FRKKEMKDYF RQKFQKIALE GGQYPTLFSV LENEQNDLNA KKTLLIVEAKQ
701 RNYFKKDNLQ QPVINICQYN YINFNGKFYK QTGKIPQGLC VSSILSSFYY
751 ATLEESSLGF LRDESMNPEN PNVNLLMRLT DDYLLITTQE NNAVLFIEKL
801 INVSRENGFK FNMKKLQTSF PLSPSKFAKY GMDSVEEQNI VQDYCDWIGI
851 SIDMKTALM PNINLRIEGI LCTLNLMQT KKASMWLKKK LKSFLMNNT
901 HYFRKTITTE DFANKTLNKL FISGGYKYMQ CAKEYKDHFK KNLAMSSMID
951 LEVSKIYISV TRAFFKYLVC NIKDTIFGEE HYPDFFLSTL KHFIEIFSTK
1001 KYIFNRVCMI LKAKEAKLKS DQCQSLIQYD A

FIGURE 11

1 CCCCAAAACC CCAAAACCCC AAAACCCCTA TAAAAAAAAGA AAAAATTGAG
51 GTAGTTAGA AATAAAATAT TATTCCCGCA CAAATGGAGA TGGATATTGA
101 TTTGGATGAT ATAGAAAATT TACTTCCTAA TACATTCAAC AAGTATAGCA
151 GCTCTGTAG TGACAAGAAA GGATGCAAAA CATTGAAATC TGGCTCGAAA
201 TCGCCTTCAT TGACTATTCC AAAGTTGCAA AAACAATTAG AGTTCTACTT
251 CTCGGATGCA AATCTTATA ACGATTCTT CTTGAGAAAA TTAGTTTAA
301 AAAGCGGAGA GCAAAGAGTA GAAATTGAAA CATTACTAAT GTTAAATAA
351 AATCAGGTAA TGAGGATTAT TCTATTTTT AGATCACTTC TTAAGGAGCA
401 TTATGGAGAA ATTACTTAA TACTAAAAGG TAAACAGTT GGATTATTTC
451 CCTAGCCAAC AATGATGAGT ATATTAAATT CATATGAGAA TGAGTCAAAG
501 GATCTCGATA CATCAGACTT ACCAAAGACA AACTCGCTAT AAAACGCAAG
551 AAAAAGTTG ATAATCGAAC AGCAGAAGAA CTTATTGCAT TTACTATTG
601 TATGGTTTT ATTACAATTG TTTTAGGTAT CGACGGTGAA CTCCCGAGTC
651 TTGAGACAAT TGAAAAAGCT GTTTACAAC GAAGGAATCG CAGTTCTGAA
701 AGTTCTGATG TGTATGCCAT TATTITGTGA ATTAATCTCA AATATCTTAT
751 CTCATTAA TGGATAGCTA TAGAAACAAA CCAAATAAAC CATGCAAGTT
801 TAATGGAATA TACGTTAAAT CCTTTGGGAC AAATGCACAC TGAATTATA
851 TTGGATTCTT AAAGCATAGA TACACAGAAT GCTTTAGAGA CTGATTAGC
901 TTACAACAGA TTACCTGTT TGATTACTCT TGCTCATCTC TTATATCTT
951 AAAAGAAGCA GGCGAAATGA AAAGAAGACT AAAGAAAGAG ATTICAAAAT
1001 TTGTTGATT TCCTGTAACC GGAATTAAACA ACAAGAATAT TAGCAACGAA
1051 AAAGAAGAAG AGCTATCACA ATCCTGATT TCATAAGATT CAAAAATTCC
1101 AGGTAAGAGA GATACATTCA TTAAAATTCA TATATTATAG TTTTCATT
1151 CACAGCTGTT ATTTCTTT ATCTTAACAA TATTITGA TTAGCTGGAA
1201 GTAAAAAGTA TCAAATAAGA GAAGCGCTAG ACTGAGGTAA CTTAGCTTAT
1251 TCACATTCA AGATCGACCT TCATATATCC AATACGATGA TAAGGAAACA
1301 GCAGTCATCC GTTTAAAAA TAGTGCTATG AGGACTAAAT TTTAGAGTC
1351 AAGAAATGGA GCCGAAATCT TAATCAAAAA GAATTGCGTC GATATTGCAA
1401 AAGAATCGAA CTCTAAATCT TTCGTTAATA AGTATTACCA ATCTTGATTG
1451 ATTGAAGAGA TTGACGAGGC AACTGCACAG AAGATCATTA AAGAAATAA
1501 GTAACTTTA TTAATTAGAG AATAAACTAA ATTACTAATA TAGAGATCAG
1551 CGATCTTCAA TTGACGAAAT AAAAGCTGAA CTAAAGTTAG ACAATAAAA
1601 ATACAAACCT TGGTCAAAAT ATTGAGGAAG GAAAAGAAGA CCAGTTAGCA
1651 AAAGAAAAAA TAAGGCAATA AATAAAATGA GTACAGAAGT GAAGAAATAA
1701 AAGATTATT TTTTCATA ATTATTGAA AAGAGGGTT TTGGGGTTT
1751 GGGGTTTGG GG

FIGURE 12

1 CCCCCAAAACCCAAAAACCCAAAAACCCCTATAAAAAGAAAAATTGAGGTAGTTAGA 60
 1 GGGGTTTGGGTTTGGGTTGGGATATTTTTCTTTTAACTCCATCAAATCT
 a P Q N P K T P K P L * K K K K L R * F R -
 b P K T P K P Q N P Y K K R K N C G S L E -
 c P K P Q N P K T P I K K E K I E V V * K -
 61 AATAAAATATTATCCTGCACAAATGGAGATGGATATTGATTTGGATATAGAAAATT 120
 61 TTATTTATAATAAGGGCGTGTACCTCTACCTATAACTAAACCTACTATATCTTTAA
 a N K I L F P H K W R W I L I W M I . K I -
 b I K Y Y S R T N G D G Y C F G C Y R K F -
 c * N I I P A Q M E M D I D L D D X E N L -
 121 TACTTCCTAACATCAACAAGTATAGCAGCTTGAGTGACAAGAAAGGATGCAAA 180
 121 ATGAAGGATTATGTAAGTTGTCATATCGTCGAGAACATCACTGTTCTTCTACGTTT
 a Y F L I H S T S I A A L V V T R K D A K -
 b T S * Y I Q Q V * Q L L * Q E R M Q N -
 c L P N T F N K Y S S S C S D K K G C K T -
 181 CATTGAAATCTGGCTCGAAATCGCCTTCATTGACTATTCAAAGTTGCAAAAATTAG 240
 181 GTAACTTTAGACCGACGTTAGCGGAAGTAACTGATAAGCTTCAACGTTTGTAAATC
 a H C N L A R N R L H C L F Q S C K N N -
 b I E I W L E I A F I D Y S K V A K T I R -
 c L K S G S K S P S L T I P K L Q K Q L E -
 241 AGTTCTACTTCGGATGCAAATCTTATAACGATTCTTCTGAGAAAATTAGTTTAA 300
 241 TCAAGATGAAGAGCCTACGTTAGAAATATTGCTAAGAAAGAACTTTAATCAAATT
 a S S T S R M Q I F I T I L S C E N * F -
 b V L L E G C K S L * R F F L E K I S F K -
 c F Y F S D A N L Y N D S F L R K L V L K -
 301 AAAGCCGAGAGCAAAGACTAGAAATTGAAACATTACTAATGTTAAATAAAATCAGGTA 360
 301 TTTCGCCCTCGMTCTCATCTTAACCTTCTAATGATTACAAATTATTTAGTCCATT
 a K A E S K E * K L K H Y * C L N K I R -
 b K R R A K S R N C N I T N V * I K S G N -
 c S G E Q R V E I E T L L M F K * N Q V M -
 361 TGAGGATTATTCTATTTCAGATCACTCTTAAGGAGCATTATGGAGAAAATTACTAA 420
 361 ACTCCTAACATAGATAAAATCTAGTAAGAATTCTCGTAATACCTCTTTAATGAATT
 a C G L F Y F L D H F L R S I M E K I T -
 b E D Y S I F * I T S * G A L W R K L L N -
 c R I I L F F R S L L K E H Y G E N Y L I -
 421 TACTAAAAGTAAACAGTTGATTATTCCTAGCCAACATGATGACTATATTAAATT 480
 421 ATGATTTCCATTGTCAAACCTAACAAAGGGATCGGTTGTTACTACTCATATAATTAA
 a Y * K V N S L D Y F P S Q Q C C V Y * I -
 b T K R * T V W I I S L A N N D E Y I K F -
 c L K G K Q F G L F P * P T M M S I L N S -

FIGURE 12 (cont.)

CATATGAGAATGAGTCAAAGGATCTCGATACATCAGACTTACCAAAAGACAAACTCGCTAT
 481 ----- 540
 GTATACTCTTACTCGTTCTAGAGCTATGTAGTCTGAATGGTTCTGTTGAGCGATA

 H M R M S Q R I S I H Q T Y Q R Q T R Y -
 I C E C V K G S R Y I R L T K D K L A I -
 Y E N E S K D L D T S D L P K T N S L -

 AAAACGCAAGAAAAAGTTGATAATCGAACAGCGAGAAGAACTTATTGCATTTACTATTCG
 541 ----- 600
 TTTGCCCTCTTTCAAACTATTAGCTGTCGCTCTTGATAAACGTAATGATAAGC

 K T Q E K V C - S N S R R T Y C I Y Y S -
 K R K K K F D N R T A E E L I A F T I R -
 N A R K S L I I E Q Q K N L L H L L F V -

 TATGGGTTTATTACAATTGTTAGGTATCGACGGTGAACCTCCGAGTCTTGAGACAAT
 601 ----- 660
 ATACCCAAAATAATGTTAACAAATCCATAGCTGCCACTTGAGGGCTCAGAACTCTGTTA

 Y G F Y Y N C F R Y R R C T P E S C D N -
 M G F I T I V L G I D G E L P S L E T I -
 W V L L Q L F - V S T V N S R V L R Q L -

 TGAAAAGCTGTTACAACCTGAAGGAATCGCAGTTCTGAAAGTTCTGATGTGTATGCCAT
 661 ----- 720
 ACTTTTCGACAAATGTTGACTTCCTAGCGTCAAGACTTCAAGACTACACATACCGTA

 C K S C L Q L K E S Q F C K F - C V C H -
 E K A V Y N C R N R S S E S S D V Y A I -
 K K L F T T E G I A V L K V L M C M P L -

 TATTTGTGAATTAATCTCAAATATCTTATCTCAATTAAATGGATAGCTATAGAAACAAA
 721 ----- 780
 ATAAAACACTTAATTAGTTAGAGTTATAGAATAGAGTTAACCTATCGATATCTTGT

 Y F V N - S Q I S Y L N L M D S Y R N K -
 I L C I N L K Y L I S I - W I A I E T N -
 F C E L I S N I L S Q F N G - L - K Q T -

 CCAAATAAACCATGCAAGTTAATGAAATACGTTAAATCCTTGGACAAATGCACAC
 781 ----- 840
 GGTTTATGGTACGTTCAAATTACCTTATATGCAATTAGAAACCCGTGTTACGTGTC

 P N K P C K F N G I Y V K S F G T N A H -
 Q I N H A S L M E Y T L N P L G Q M H T -
 K - T Y Q V - W N I R - I L W D K C T L -

 TGAATTATATGGATTCTAAACCATAGATAACAGAAATGCTTAGAGACTGATTAGC
 841 ----- 900
 ACTTAAATATAACCTAAGAATTCTGATCTATGTCTTACGAAATCTCTGACTAAATCC

 C : Y I G F L K H R Y T E C F R D C F S -
 E F I L D S - S I D T Q N A L E T D L A -
 N L Y A : L K A - I H R M L - R L I - L -

 TTACAACAGATTACCTGTTGATTACTCTTGCTCATCTTATATCTTAAAGAAGCA
 901 ----- 960
 AATGTTGTCATAAGACAAACTAATGAGAACGAGTAGAGAAATATAGAAATTCTCGT

 L Q Q I T C F D Y S C S S L I S L K E A -
 Y N R L P V E I T L A H L L Y L - K K Q -
 T T D Y L F C L L L L I S Y I F K R S R -

 GCGAAATGAAAAGAACACTAAACAAAGAGATTCAAAATTGTTGATTCCTCTGTAACC
 961 ----- 1020
 CCGCTTACTTTCTGATTCTTCTAAAGTTAAACAACTAAGAACGATAGTGTAGGACTAAG

 G E M K R R L K K E I S K F V D S S V T -
 A K C K E D - R K R F Q N L L I L L - P -
 R N E K K T K E R D F K I C C F F C N R -

 GGAATTAAACAAAGAAATTAGCAACGAAAAAGAAGAGAGCTATCACAACTCTGATTG
 1021 ----- 1080
 CCTTAATTGTTCTCTTATAATCGTTGCTTTTCTCTCGATAGTGTAGGACTAAG

 G I N N K N I S N E K E E E L S O S C F -
 E L T T R I L A T K K K K S Y H N P D S -
 N - O D E Y - O P K R R R A I T I L I L -

FIGURE 12 (cont.)

1081 T T A A G A T T C A A A A A T T C C A G G T A A G A G A G A T A C A T T C A T T A A T T C A T A T A T A G
 a -
 b A A T T C T A A G T T T A A G G T C C A T T C T C T A T G T A A G T A A T T T A A G T A T A A T A T C
 c -
 L K I S K I P G K R D T F I K I H I L - -
 * R F Q K F Q V R E I H S L K F I Y Y S -
 K D F K N S R * E R Y I H * N S Y I I V -
 T T T T C A T T C A C A C C T G T T A T T T C T T T A T C T T A A C A A T A T T T T G A T T A G C T G G A A
 1140 a -
 b A A A A G T A A A G T G T C G A C A A T A A A A G A A A A T A G A A T T G T T A T A A A A A C T A A T C G A C C T T
 c -
 F F I S Q L L F S F I L T I F F D * L E -
 F S F H S C Y F L L S * Q Y F L I S W K -
 F H F T A V I F F Y L N N I F C L A G S -
 G T A A A A G T A T C A A T A A G A G A A G C G C T A G A C T G A G G T A A C T T A G C T T A T T C A C A T T C A T
 1200 a -
 b C A T T T T C A T A G T T A T T C T C T C G C G A T C T G A C T C C A T T G A A T C G A A T A A G T G T A A G T A
 c -
 V K S I K * E K R * T E V T * L I H I H -
 * K V S N K R S A R L R * L S L F T F I -
 K K Y Q I R E A L D C G N L A Y S H S * -
 A G A T C G A C C T T C A T A T C C A A T A C G A T G A T A A G G A A A C A G C A G T C A T C C G T T T A A A A A
 1260 a -
 b T C T A G C T G G A A G T A T A A G G T T A T G C T A C T A T T C C T T T G T C G T C A G T A G G C A A A A T T T T T
 c -
 R S T F I Y P I R C * G N S S H P F * K -
 D R P S Y I Q Y D D K E T A V I R F K N -
 I D L H I S N T M I R K Q Q S S V L K I -
 T A G T G C T A T G A G G A C T A A T T T T A G A C T C A A G G A A A T C G G A C G C G A A A T C T T A A T C A A A A A
 1320 a -
 b A T C A C G A T A C T C C T G A T T T A A A A T C T C A G T T C T T A C C T C G G C T T T A G A A T T A G T T T T T
 c -
 * C Y E D * I F R V K K W S R N L N Q K -
 S A M R T K F L E S R N G A E I L I K K -
 V L C G L N F * S Q E M E P K S * S K R -
 G A A T T G C G T C G A T A T T G C A A A A G A A T C G A A C T C T A A T C T T C G T T A A T A A G T A T T A C C A
 1380 a -
 b C T T A C G C A G C T A T A C G T T T C T T A G C T T G A G T T T A G A A A G C A A T T A T T C A T A A T G G T
 c -
 E L R R Y C K R I E L * I F R * V L P -
 N C V D I A K E S N S K S F V N K Y Y Q -
 I A S I L Q K N R T L N L S L I S I T N -
 A T C T T G A T T G A A G A G A T T G A C G A G G C A A C T G C A C A G A A G A T C A T T A A G A A A T A A A
 1440 a -
 b T A G A A C T A A C T T C T C T A A C T G C T C C G T T G A C C T G T C T T C T A G T A A T T C T T T A T T T
 c -
 I L I D C R D * R G N C T E D H * R N K -
 S C L I E E I D E A T A Q K I I K E I K -
 L D C L K R L T R Q L H R R S L K K * S -
 G T A A C T T T A T T A A T T A G A A T A A A C T A A T T A C T A A T A G A G A T C A C C G A T C T T C A A
 1500 a -
 b C A T T G A A A A T T A T C T C T T A T T G A T T T A T G A T T A T C T C T A G T C C T A G A A G T T
 c -
 V T F I N * R I N * I T N I E I S D L Q -
 * L L I R E * T K L L I * R S A I F N -
 N F Y * L E N K L N Y * Y R D Q R S S I -
 T T G A C G A A A A A A G C T G A A C T A A A G T T A G A C A A T A A A A A T C A A A C C T T G G T C A A A A T
 1560 a -
 b A A C T G C T T T A T T T C G A C T T C A A T C T G T T A T T T T A T G T T T G A C C A G T T T A
 c -
 L T K * K L N * S * T I K N T N L G Q N -
 C R N K S C T K V R Q * K I Q T L V K I -
 D E I K A E L K L D N K K Y K P W S K Y -
 A T T G A G G A A G C C A A G A G C C A C T T A G C A A A G A A A A A T A A G G C A A T A A A A A T G A
 1620 a -
 b T A A C T C C T T C T T C T G G T C A A T C G T T T C T T T T A T C C C T T A T T T A T T T A C T
 c -
 I E E G K E D Q L A K E K I R O * ! K C -
 L R K E K K T S * Q K K K * G N K * N E -
 C G R K R R P V S K R K N K A I N K M S -

FIGURE 12 (cont.)

1681 GTACAGAAGTGAAGAAATAAAAGATTTATTTTTCAATAATTATTCAAAGAGGGCTT
-----+-----+-----+-----+-----+-----+-----+-----+
CATGCTTCACTTCTTATTTCTAAATAAAAAAGTTATTAAATAACTTTCTCCCCAA 1740

a V Q K C R N K R F I F F N N L L K R G V -
b Y R S E E I K D L F F S I I Y C K E G F -
c T E V K K * K I Y F F Q * F I E K R G F -

1741 TTGGGTTTTGGGGTTTGGGG
-----+-----+-----+-----+-----+-----+-----+-----+
AACCCAAAACCCCAAAACCC 1762

a L C F W G F G -
b W G F G V L G -
c G V L G F W -

FIGURE 13

2 EVDLENOADNHGIIHSALKTCEEIKEAKTLYSWI0QKVICR0RN0SQSHYKDL 51
 19 ELELEMQENQNDIQVRVK. .IDDPKQY..LVNVTAACLLQEGSYYQDK 62
 52 EDIKIFAQTNIVATPRDYNEEDFKVIARKEVF. STGLMIELIDKCLVELL 100
 63 DERRVIIITKALL ...EVAESDPEFICQLAVYIRNELYIRTTTNYIVAF. 107
 101 SSSDVS0R0KL0CFCFG0LKG0NQLAKTHLLTALSTQKQYFFQDEWNQVRAM 150
 108 CVVHKNTQPFIEKYFNKA0LLPNDLLEVCEFA0VLYI 144
 151 IGNELFRHLYTKYLIFORTSEGT1VQFCGNNVFDHLKVNDKF0KKQGGA 200
 145 FDAT0EKF0NLYLDRILS0DIRKELTFRKCLQR0CVRSKF 181
 201 ADM0NE PRCCSTCKVN0VNEKDHF0LN0N1VPN0WNNMKSRTRIFYCTHF 247
 182 SEFNEYQLGKYCTES. QRKKTMFRYLSVTNKQWDQTKKK. 220
 248 NRNNQFFKKHEFVSNKNNISAMDRAQTIFTN1FRFNRIKKLKDKVIEKI 297
 221 RKENLLT0LQ0A0KES0D0SKRETG.DIMNVEDAIKALKPAVMK0I 264
 298 AYML0VKDFNFNYYLTKSCPLPENWRERKQK1ENLINKTREEKSKYEE 347
 265 AKR0NAMK.KHMKA0PKIPNSTLESKYLTFKD 294
 348 LFSYTTDNKC0VTQFINEFFYNILPKDFLTGRNRK0FQKKVKKYVELNKHE 397
 295 LIKFCHISEP.KERVYKILGKKYPKTEEEYKA0FGDSASAPFN.PE 338
 398 LIKHNLL0E0KINTREISWMQVETS0AKHF0YFDHENIYVLWKL0R0WIFEDL 447
 339 LAGKRMKIEISKTWENELSAKGNTAEVWDNLISSN0LPYMAMLRNLSN.. 386
 448 VVSL0RCFFYVTEQQKS0KTYYRKNI0WDVIMKMSIADLK0KETLAEVQE 497
 387ILKAGVSD. 394
 498 KEVEEWK0SLGFAPGK0LRLIPK0TTFRPIMTFNKKIVNS0RKT0KLTNT 547
 395TTHS 398
 548 KLLN0SHMLKTLK0R0MF0KDPFGFAVFN0YDDVMKKYEEFVCKW0QVGQPKL 597
 399 IVINK.ICEPKAVENSKM 415
 598 FFATMDIEKCYDSVNREKLSTFLKTTKLLSSDFWIMTA0QILKR0NNIVID 647
 416 F. PLQFFSAIEAVN. EA0TKGFKAKK.REN0NLKGQIEAVKE..VVE 457
 648 SKNFRK0EMK0YFRQKF0QKIALEG0QYPTLFSVLENEQ0DNLNAKKT0LIVE 697
 458 KTDEEKKDM.ELEQTEEGEFVKVNEGIGKQYINSIELAIK 496
 698 AK0RNYFKKDNL0LPV0VINICQ0NYINFNGKFYK0T0KGI0PQGLCVSSILSS 747
 497 IAVWK0NLDEIKGHTA0FSDVSGSMSTSMSG0ACKYGSVRTCLECALVGL 546
 748 FYYATLEESS0LGFLRDES0MN0PENPNVN0L0MRLTD0YLLITTQENN0AVLF1 797
 547 MVK0RCEKSSFY1FSSPSS0CNKCYLEVDL. 576
 798 EK0LIN0SRENGFKF0NMKK. LQTSFPLSPSKF0AKYGMDSV0E0Q0NIVQD0YCD 846
 577 ... PGDEL0RPSM0KLL0QEKGKLG0GG. TDFPYECIDEWT0K0N0KTHVD 617
 847 WIG0C0SID0MKT0L0MPN0INL0R0E0G0L0C0T0L0J0N0M0T0K0K0A0S0W0L0K0K0L0K0S0F0L0M 896
 618 NIVIL0SDMMIAEGYSDINVRGSSIVNSI.K0K0Y0K0D0E0V0N0 653
 897 NN0I0HYFRK0T0T0D0F0A0K0T0L0N0K0L0F0I0S0C0G0Y0K0M0C0A0E0Y0K0D0. HFK0K0N0L0M 945
 654 PNIK0IF. .AVD0LEG0Y0G.K0C0L0N0L0G0D0E0F0N0E0N0N0Y0I0K0F0G0M 687
 946 SSM0ID0L0EV0S0K0I0Y0S0V0T0R0A0F0K0Y0L0V0C0N0K0D0T0I0F0G0E0H0Y0P0D0F0L0S0T0L0K0H0F0I0E0 995
 688 SDSI.LKF0I0S0A0Q0G0GA.NM0V0E0 706
 996 IFSTK0K0Y0F0N0R0V0C0 1008
 707 VI..K0N0F0A0L0Q0K0G0 717

FIGURE 14

132 LSTQKQYFFQDEWNQVRAMIGNEL..FRHLYTKYLIFQRTSE..GTLVQFC 178
 1 MSRRNQ.. .KKPQAPIGNETNLDFVLQNLEVYKSQIEHYKTQQQQI 43
 179 GNNVFHLKVNDKFDKKQKGGAADMNEPRCCSTCKYNVKNEKDHFLLNNIN 228
 44 KEEDLKLKFKNQDQDGNSGNDDDDEE.....NNSNKQELLRRVN 84
 229 VPNWNNMKSRTTRIFYCTHENRNNQFFKKHEFVSNNNISAMDRAQTIFTN 278
 85OIKQQVQLIKK..VGSKVEKDLNLNEDENKKN 114
 279 IFRFNIRKKLDKVIKIAIMLEKVKDFNFNYYLTKSCPLPENWRERKQ 328
 115 GLSEQQVKEEQLRTITEEQVKYQNLVFNMDYQLDLNESGGHRRHRRETDY 164
 329 KIENLINKTREEKSYYEELFSYTTDNKCVTQFINE..FFYNILPKDFLTG 377
 165 DTEKWFEISHDQK.. .NYVSIYANQKTSYCWLKDYFNK 200
 378 RNRKQNFQKKVKKYVELNKHELIHKNLLLEKINTREISWMQVETSAXHFYY 427
 201 NNYDHNLVNSINRLE..TEAEFYAFDDFSQTIKLTNNSYQTVNID.... 242
 428 FDHENIYVLWKLRLWI..FEDLVVSLIRCFFYVTEQQKSYSKYYYYRKNI 475
 243 VNFDNNLCLALLRFLLSLERFNILNIRSSY..TRNQYNFEKIGELLETI 290
 476 WDViMKMSIADLKKTETAEVQEKEVEEWKKSLGFAPGKLRLIPKKTTFRP 525
 291 FAVVFSHR ..HLQGIHLQVPCEAFQYLVNSSSQISVKDSQLQ 330
 526 IMTFNKKIVNSDRKTTKLTNTKLLNShLMLKTLKMRMFKDPPFGFAVFNY 575
 331 VYSFSTDLKLV..TNKVQDYFKFLQEFPRLTHSVSSQAIIPVSATNAVENL 378
 576 DDVMKKYEEFVCKWKQVCGQPKLF.. .FATMDIEKCYDS..VNREK 615
 379 NVLLKKVKH ..ANLNLVSIPTQFNFDYFVNLLQHLKLEFGLEPNILTQKQ 426
 516 LSTFL ..KTTKLLSSDFWIMTAQILKRKNNI..VIDSKNFRKKEMK 657
 427 LENLLLSIKOSKNLKFRLNFTYVAQETSRKQILKQATTIKNLKNNKNO 476
 558 DYFRQKFQKIALEGQGYPTLFSVLEN EQNDLNAKKTLIVEAKQRYFK 705
 477 EETPETKDET?SESTSGMKFDHLSLTTELEDFSVN.. .LQATQEIQY 520
 706 KDNELQPVN: CQYNYINSNQKFKQTKGIPQGLCVSSILSSFYyatLEE 755
 521 DSLHKLLIRSTNLKKFKLSSYKEMEKSXMDTFIDLKNI....YETLNN 564
 756 SSSLGFLRDESMPNPENPNVNLMLRTDDYLLITTOENNNAVLIEKLINVSR 805
 565 ..LKRCSYNISNPNGHISYELTN .. .KDSTFYKFKLTLNQE 600
 806 ENGFKNMKKLQTSPLSPSKFAKYGMDSVEEQNIVQDYCDWIGISIDMK 855
 601 LOHAKYTFK.. QNEFQFNNVSAKIESSSLESLEDIDSICKSIASCKNLO 648
 856 TLALMPNINLRIGILCTLNLMOT.. KKASMWLKK..KLKSFLMNNITH 901
 649 NVNI.. .IASLLYPNNIQKNPFNKPNNLLFFKQFEQLKNLENVSINC 691
 902 YFRKTI.. TTEDFANKTLNKLFISSGGYKYMCAKEYKDHFKKNLAMSSH 948
 692 ILDOHILNSISEFLEKNNKIKAFILKRYYLLQYYLDYTKLFKTLQQLPEL 741
 949 IDLEVSKIISVT ..RAFFKYLVCNIKDT..IFGEEHY 982
 742 NQVYINQQLEELTVSEVHKQVWENHKQAFYEPCLCEFIKESSQLQLIDF 791
 983 PDFFLS TLXHPIEIFSTKKY IFNRVCMILKAKEAKLKSDOCQSLIQ 1028
 792 DQNTVSDDSIIKILESISESKEYHHYRLNPSQSSSLIKSENEEIQELLK 840

FIGURE 15

4 617	DIDLDDEINLLPNTFNKYSSSCSDKGCKTLKSGSKSPSLTIPK... NVKSAKIESSSLESLEDISLCKSIASCNQLQNVNIIASLLYPNNIQKNP	47 666
48	LOKQLEFYFSANLYNDSFLRLKLVLKSGEQRVE...IETLLM	86
667	FNKPNNLFFFQFEGLKNLENVSINCILDQHILNSISEFLEKNKKIKAFIL	716

FIGURE 16

1 MEMDIDDDIENL . . . LPNTFNKYSSSCSDKKGCKTLKSGSKSPS.. 42
| | | | | . . . | : | | . . . | | | . .
491 TELAIKIAVNKNLDEIKGHTAIFSDVSGSMSTSHSGGAKKYGSVRTCLEC 540
| : | | | : : | . . . | : | . . . | . . . |
43 LTIPKLQKQ . . . LEFYFSDANLYNDSFLRKVLKSGEQRVEIETLL 85
| : | | | : : | . . . | : | . . . | . . . |
541 ALVLGLMVKQRCEKSSFYIFSSPSSQCNKCYL.EVDLPGDELRPSMQKLL 589

FIGURE 17

	Motif A	Motif B	Motif C	Motif D	Motif E
Consensus	h--hDn---h--h	h---+DP---SP	h-h---R	h-h---R	h-hGn-h
telomerase p123	GQPKLFFPATMDIEKCYDSYNTREKLSTFLKTTTQLL-100-RFYKQTKGIPQELCVSSILSSFYYATLEEESSLGFL	KQRNLHCTYDLYKRAFDSDIPHSVTLIOVLEIYKIN-	KYKYLGFQQ	KYKYLGFQQ	QDYCDWIGISI
Dong (LINE)	KQRNLHCTYDLYKRAFDSDIPHSVTLIOVLEIYKIN-	28-RQLAIKGIYQEDSLS?JWFCLALNPLSHQLHNDR	QAPTSBALCNAVULURRLLAGLA	QAPTSBALCNAVULURRLLAGLA	QAPTSBALCNAVULURRLLAGLA
a1 S. c. (group II)	FGGSNNPFPREVDLRKCFDTISHDLIIKELKRYISD-	26-HVPVGPRVCV	7-GIRYQYNVLPECEWKCSPAIEQSSMTKILEPFRKQN	7-GIRYQYNVLPECEWKCSPAIEQSSMTKILEPFRKQN	7-GIRYQYNVLPECEWKCSPAIEQSSMTKILEPFRKQN
HIV-RT	LKKKRSVTVLDVGDAYFSYPLDEDFRKYTAFTTIP-	68-RCYIREDGLEFQESSUSA?IVDLYVYDDLEFYSEPK			
L8543 .12 Y _n	VLPPELYPKKFDVKSCYDSIPRMECMRILDAALKN-				

FIGURE 18

telomerase p43 LQK**Q**LEFYFSDANLYNDSFLRKLVLSGEQR**N**EIETLLM
human La ICH**Q**EY**Y**FGDFNLPRDKFLKEQI.KLDEGWVPLEIMIK
Xenopus LaA ICE**Q**EY**Y**FGDHNLPRDKFLKQQI.LLDDGWVPLETMIK
Drosophila La ILR**Q**EY**Y**FGDANLNR**D**KFLREQIGKNEDGWVPLSVLVT
S. c. Lhplp CLK**Q**MEFYFSEFNFPYD**R**ELRTTAEK.NDGW**V**PISTIAT

FIGURE 19

1 aacticattta attactaatt taatcaacaa gattgataaa aagcagtaaa taaaacccaa
61 tagatttaat ttagaaagtta tcaattgaaa aatggaaattt gaaaacaact aagcacaata
121 gccaaaagcc gaaaaattgtt ggfgggact tgaatttagag atgcaagaaa accaaatga
181 tatataagggtt agggtaaga ttgacgatcc taagcaatat ctcgtgaacg tcactgcac
241 atgttttgtt taggaaggta gtactacta agataaagat gaaagaagat atatcatcac
301 taaagcacctt ctgaggtgg ctgagtcga tcctgagttc atctgctgtt tggcagttca
361 catccgtaat gaacttaca tcagaactac cactaactac attgttagcat ttgttgtt
421 ccacaagaat actcaaccat tcatcgaaaa gtactcaac aaagcagttt ttttgcttaa
481 tgacttactg gaagtctgtt aatttgcata gtttctctat atttttgatg caactgaatt
541 caaaaattttt tttttttttt ggtttttttt ttttttttttt ttttttttttt ttttttttttt
601 taagtgtttt caaagatgct tcagaagcaa gttttctttaa ttcaacgaaat actaacttgg
661 taagtattgtc actgaatctt aacgttggaa aacaatgttc cgtttacccctt cagtttccaa
721 caagttttttttt tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt
781 ggcataaaag gaatctgaag ataagtccaa gagagaaact ggagacataa tgaacgttga
841 agatgcaatc aaggctttaa aaccaggactt tttttttttt tttttttttt tttttttttt
901 catgtttttttt tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt
961 gaccccttcaag gatcttattttt tttttttttt tttttttttt tttttttttt tttttttttt
1021 gatcccttggtaa aaaaatacc ctaagaccga agaggaatc aaagcagccctt tttttttttt
1081 tgcattttttt tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt
1141 aacatggggaa aatgtttttt tttttttttt tttttttttt tttttttttt tttttttttt
1201 ttcaagcaat taactcccat atatggccat tttttttttt tttttttttt tttttttttt
1261 cggftttttttt tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt
1321 tgagaactttttttt tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt
1381 agttactaag ggattttttttt tttttttttt tttttttttt tttttttttt tttttttttt
1441 agcagttttttt tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt
1501 aacccggaa gggaaattttt tttttttttt tttttttttt tttttttttt tttttttttt
1561 cattttttttt tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt
1621 tgcaatctttt tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt
1681 gtatggttttttt tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt
1741 acgtttttttt tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt
1801 ttactttttttt tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt
1861 agagaaaggaa aacatggggaa gggaaattttt tttttttttt tttttttttt tttttttttt
1921 aaagaataaa actcacgtt acaatatgtt tttttttttt tttttttttt tttttttttt
1981 atatccatgtt atcaatgtt aacatgtt aatgtt aatgtt aatgtt aatgtt aatgtt
2041 tgaagttttttt tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt
2101 taatctttttt tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt
2161 aacatctttttt tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt
2221 cttttttttt tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt
2281 cttttttttt tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt
2341 atttaagttt tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt
2401 aaagaacaaa aaagattttttttt tttttttttt tttttttttt tttttttttt tttttttttt

FIGURE 20

MEIENNQAQQPKAEKLWWELELEMQENQNDIQVRVKIDDPKQYL
VNVTAAACLQEGSYYQDKDERRIITKALLEVAESDPEFICQLAVYIRNELYIRTTN
YIVAFCVVHKNTQPFIEKYFNKA VLLPNDLLEVCEFAQVLYIFDATEFKNLYLDRLS
QDIRKELTFRKCLQRCSVRSKFSEFNEYQLGKYCTESQRKKTMFRYLSVTNKQKWDQTK
KKRKENLLTKLQAIKESEDKSRETGDIMNVEDAIAKALKPAVMKKIAKRQNAMKKHMK
APKIPNSTLESKYLTFKDLIKFCHEPKERVYKILGKKYPKTEEEYKAAFGDSASAP
FNPELAGKRMKIEISKTWENELSAKGNTAEVWDNLISSNQLPYMAMLRNLSNILKAGV
SDTTHSIVINKICEPKAVENSKMFPLQFFSAIEAVNEAVTKGFKAKKRENMNLKGQIE
AVKEVVEKTDEEKDMELEQTEEGEFVKVNEGIGKQYINSIELAIKIAVNKNLDEIKG
HTAIFSDVSGSMSTSMSGGAKKYGSVRTCLECALVLGLMVKQRCEKSSFYIFSSPSSQ
CNKCYLEVDLPGDELPSMQKLLQEKGKLGGGDFPYECIDEWTKNKTHVDNIVLSD
MMIAEGYSDINVRGSSIIVNSIKKYKDEVNPNIKIFAVDLEGYGKCLNLGDEFNENNYI
KIFGMSDSILKFISAKQGGANMVEVIKNFALQKIGQK

FIGURE 21

1 tcaatactat taattaataa ataaaaaaaaa gcaaactaca aagaaaatgt caaggcgtaa
61 ctaaaaaaag ccataggcic ctataggcaa tgaaacaaat ctgatttg tattacaaa
121 tctagaagt tacaaaagcc agatgagca ttataagacc tagtagtaat agatcaaaga
181 ggaggatcic aagttttaa agttcaaaaa ttaagattag gatggaaact ctggcaacga
241 tgcgtatgtat gaagaaaaca actcaaataa ataataagaa ttataagga gagtcatt
301 gattaagtat caagttat tgataaaaaa agttggcti aaggtagaga aagattgaa
361 ttgaacgaa gtgaaaaca aaaagaatgg acyttctgaa tagcaagtga aagaagagta
421 attaagaacg attactgaag aataggtaa gtattaaat ttgtattt acatggacta
481 ccagttatgat taaaatgaga gtggggcca tagaagacac agaagagaaa cagattatgaa
541 tactgaaaaa tggttgaaa tatctatga ccaaaaaat tatgtatcaa ttacgc当地
601 ctaaaagaca tcataatgtt ggtggctaa agattattt aataaaaaca attatgtat
661 tcttaatgtt aacattaaaca gactagaaac tgaagccgaa ttctatgc当地 ttgtatgatt
721 ttacaaaaca atcaaactt ctaataatc ttactagact. gttacatag acgttaattt
781 tgataataat ctctgtatc tcgcattgct tagattttt ttatctatg aaagattca
841 tattttgatataaagatctt cttatacaag aaattaat aattttgaga aaatttggta
901 gctacttggaa actatctcg cagttgtctt ttctatcgc cacitacaag gcattcatt
961 acaagttcti tgcaagcgt tctaataattt agttacatcc tcatacataa ttacgc当地
1021 agatagctaa ttatgtat acctttctc tacagactt aaatttagttt acactaaca
1081 agtccaagat tattttaaatg tcttataaga attccctcg tttactatg taagctatg
1141 ggctatccc当地 gttatgtctt ctaacgc当地 agagaacctc aatgttttac ttaaaaagat
1201 caagcatctt aatcttattt tagtttctat ccctacctaa ttcaattttt atttctactt
1261 tggattttttaaataatgaa aattagatgaa ccaatataattt tgacaaaaca
1321 aaagcttggaa aatcttactt tgagtataaa ataataaaa aatcttataat ttttaagatt
1381 aaacttttac acctacgtt ctaagaaaac ctccagaaaaa cagatataa aacaagctac
1441 aacaatcaaa aatcttataaacaataaaaaa tcaagaagaa actcttggaa ctaagatgaa
1501 aactccaaggc gaaagcacaat gtttttgc当地 catcttctg aattaaccga
1561 gcttgaagat ttacgc当地 accttgc当地 tacccaaagaa attttatgata gcttgc当地
1621 acttttgc当地 agatcaacaa attttaagaa gttcaattttaaattt agttcaattttaaattt atgaaatgaa
1681 aaagtagaaaa atggatataat tcaatgtatctt taagaatattt tatgaaatctt taaacaatctt
1741 taaaagatgc tctgttataat tcaatgtatcc tcatggaaac atttctatg aactgacaaaa
1801 taaaagattctt accttttataat tcaatgtatctt gacccatcaat taagaattttaaattt aacacgctaa
1861 gttatctt aatggatataat tcaatgtatctt aaaatgtcaat aaatttgc当地
1921 ttccic当地 gaaagcttgc当地 agatatttgc当地 tagtttgc当地 aatcttattt ctcttgc当地
1981 aattttataat tcaatgtatctt ttatgc当地 cccatcaat tttagaaaaaa
2041 tccttcaat aagccccatc ttcttttcaat gttatctt aatggatataat ttttttgc当地
2101 aatgtatctt atcaactgtt ctcttgc当地 gcatatactt aatttctt aatggatataat
2161 agaaaaaaaat aaaaatataat aagcatatctt ttgttggaaa tatttttataat tcaatgtatctt
2221 tctgttattt acttataat ttttttataat tcaatgtatctt cctgttattt aatggatataat
2281 cattatattt caatggatataat aatggatataat gttatgttgc当地 cataatgttgc当地
2341 ccacaaagccaa aatggatataat aatggatataat gttatgttgc当地 atcaatgttgc当地
2401 ctttgc当地 atagatttttgc当地 accaaaacac ttttttgc当地 gttatgttgc当地
2461 agaatcttataat ttttttgc当地 agtcatatctt ttatgttgc当地 ttgttgc当地
2521 ctttgc当地 aatggatataat aatggatataat gttatgttgc当地 atcaatgttgc当地
2581 agggttttgc当地 gttatgttgc当地 acttataat cccatcttgc当地 ttgttgc当地
2641 ctttgc当地 atcaatgttgc当地 gttatgttgc当地 ttttttgc当地
2701 ttttttgc当地 ttttttgc当地 ttttttgc当地 ttttttgc当地
2761 atatatttttgc当地 gttatgttgc当地 ttttttgc当地 aatggatataat
2821 aaaaaatcg

FIGURE 22

MSRRNQKKPQAPIGNETNLDFVLQNLEVYKSQIEHYKTQQQQIK
EEDLKLLKFKNQDQDGNSGNDDEENNSNKQQELLRRVNQIKQQVQLIKVGSKVEK
DLNLNEDENKKNGLSEQQVKEEQLRTITEEQVKYQNLVFNMDYQLDLNESGGHRRHRR
ETDYDTEKWFEISHDQKNYVSIYANQKTSYCWWLKDYFNKNYDHLNVSINRLETEAE
FYAFDDFSQTIKLTNNSYQTVNIDVNFDDNNLCILALLRFLLSLERFNILNIRSSYTRN
QYNFEKIGELLETIFAVVFSHRHLQGIHLQVPCEAFQYLVNSSSQISVKDSQLQVYSF
STDLKLVDTNKVQDYFKFLQEFPRLTHVSQQAIPVSAVENLNVLKKVKHANLNL
VSIPTQFNFDFYFVNQHLKLEFGLEPNILTQKLENLLSIKQSKNLKFLRLNFYTY
VAQETSRKQILKQATTIKNLKNKNQEEETPETKDETPESTSGMKFFDHLSELTELED
FSVNLQATQEIYDSLHKLLIRSTNLKKFKLSYKYEMEKSMDTFIDLKNIYETLNNLK
RCSVNISNPNGNISYELTNKDSTFYKFKLTLNQELQHAKYTFKQNEFQFNNVKSAKIE
SSSLESLEDIDSCKSIASCKNLQNVNIIASLLYPNNIQKNPFNKPNNLFFKQFEQLK
NLENVSINCILDQHILNSISEFLEKNKKIKAFILKRYYLLQYYLDYTKLFKTLQQLPE
LNQVYINQQLEELTVSEVHKQVWENHKQKAFYEPLCEFIKESSLQTLQLIDFDQNTVSD
DSIKKILESISESKYHHYLRLNPSQSSSLIKSENEEIQELLKACDEKGVLVKAYYKFP
LCLPTGTYYDYNNSDRW

FIGURE 23

MKILFEFIQDKLDIDLQTNSTYKENLKGCGHFNGLDEILTCFAL
PNSRKIALPCLPGDLSHKAVIDHCIYLLTGELEYNNVLTFGYKIARNEDVNNSLFCHS
ANVNVTLLGAAWKMFHSLVGTYAFVDLLINYTVIQFNGQFFTQIVGNRCNEPHLPPK
WVQRSSSSATAAQIKQLTEPVTKQFLHKLNISSSSFPYSKILPSSSIKKLTDLR
EAIFPTNLVKIPQRLKVRJNLTQKLLKRHKRLNYVSILNSICPLEGTVLDLSHLSR
QSPKERVLKFIIVILQKLLPQEMFGSKKNKGKIIKNLNLLSLPLNGYLPFDSSLKKL
RLKDFRWLFISDIWFTKHNFENLNQLAICFISWLFRQLIPKIIQTFFYCTEISSTVTI
VYFRHDTWNKLITPFIVEYFKTYLVENNVCRNHNSYTLSNFNHSKMRJIIPKKSNEFR
IIAIPCRGADEEEFTIYKENHKNAIQPTQKILEYLRNKRPTSFTKJISPTQIADRIKE
FKQRLLKKFNNVLPELYFMKFDVKSCYDSIPRMECMRILKDALKNENGFFVRSQYFFN
TNTGVLKLFNVVNASRVPKPYELYIDNVRTVHLSNQDVINVVEMEIFKTALWVEDKCY
IREDGLFQGSSLSAPIVDLVYDDLLEFYSEFKASPSQDTLILKLADDFLIISTDQQQV
INIKKLAMGGFQKYNAKANRDKILA VSSQSDDDTVIQFCAMHIFVKELEVWKHSSTMN
NFHIRSKSSKGIFRSLIALFNTRISYKTIDTNLNSTNTVLMQIDHVVKNISECYKSAF
KDLSINVQTQNMQFHSFLQRIIEMTVSGCPITKCDPLIEYEVRFTILNGFLESLSSNTS
KFKDNILLRKEIQHLQAYIYIYIHVN

FIGURE 24

Oxytricha
Euplotes

LCVSYILSSFYANLEENALQFLRKESMDPEKPETNLLMRLT
LCVSSILSSFYATLEESSLGFLRDESMNPENPNVNLLMRLT

FIGURE 25

human
tez1
EST2
p123

Motif 0

AKPLHWLMSVYVVELRSPPFYVTETTPQKNR
IS2IEWLVLGKRSNAKMCLSDFEKRKQIIFAEPIYWLYNSPIIPILOQSFFYITSSSDLRNR
LKDFRHLFISD---IWFTKHNFENLNQLAICFISHLPRQLIPKIIQTFFYCTEISSTVT-
TREISWMQVET-SAKHPYYFDHEN-IYVLWKLRLWIFEDLVVSLIRCPFYVTEQQKSYSK
.....***

Motif 1

LFFYRKSVHSKLQSIGIRQHLKRVQLRDVSEAEVRQHREARPALLTSRLRPIPCK--DGL
TVYFRKDIKLLCRPPI-TSMKMEAFEKINENNVRMDTQK-TTLPPAVIRLLPKK--NTP
IVYFRHDTWNKLITPFIVEYFKTYLVEVVCRNHNSYTLS--NPNHSKMRRIIPKKSNNEF
TYYYRKNIWDVIMKMSI-ADLKKEETLAEVQEKEVBEWKKS-LGFAPGKLRLIPKK--TTF
...*

Motif 2

RPIVNMDYVVGARTPRREKRAERLTSRVKALP-SVLNYERA
RLITN-LRKRFLIKGSNKKMLVSTNQTLRPVASILKHLINEESSGIPFKLEVYMKLLTF
RIIAIPCRGADEEEFTIYKENHKNAIQPTQKILEYLRNKRPTSFTKIYSPTQIADRIKEF
RPIMTFNKKIVNSDRKTTKLTNTKLLNSHMLKTLKN-RMFKDPPGPAVFNYDDVMKKY
**

Motif 3 (A)

KKDLLKHRMFGR-KKYFVRIDIKSCYDRIKQDLMFRIVKK-KLKDPPEPVIRKYATIHATS
KQRLLKKFNNVLPELYFMKFDVKSCYDSIPRMECMRILKD-ALKNENGFFVRSQYFPNTN
EEFVCKWKQVGQPKLFFATMDIEKCYDSVNREKLSTFLTTKLLSSDFWIMTAQILKRKN
.*.***. .*

FIGURE 26

ATTTATACTCATGAAAATCTTATTGAGTCATTCAAGACAAGCTGACATTGATCTACA
GACCAACAGTACTTACAAAGAAAATTAAAATGTGGTCACTTCAATGGCCTCGATGAAAT
TCTAACTACGTGTTCGCACTACCAAATTCAAGAAAATAGCATTACCATGCCTTCTGG
TGACTTAAGCCACAAAGCAGTCATTGATCACTGCATCATACCTGTTGACGGGCGAATT
ATACAACAAACGTACTAACATTGGCTATAAAATAGCTAGAAATGAAGATGTCAACAATAG
TCTTTTTGCCATTCTGCAAATGTTAACGTTACGTTACTGAAAGGCCTGCTGGAAAAT
GTTCCACAGTTGGTCGGTACATACGCATTGTTGATTATTGATCAATTATACAGTAAT
TCAATTAAATGGGCAGTTTCACTCAAATCGTGGTAACAGATGTAACGAACCTCATCT
GCCGCCAAATGGGTCACAGATCATCCTCATCATCCGCAACTGCTGCGCAAATCAAACA
ACTTACAGAACCGAGTACAAATAAACATTCTACACAAGCTCAATATAAATTCCCTTTC
TTTTTTCTTATAGCAAGATCCTCCTTCATCATCATCTATCAAAAGCTAACTGACTT
GAGAGAAGCTATTTCACAAATTGGTTAAAATTCTCAGAGACTAAAGGTACGAAT
TAATTGACGCTGCAAAGCTATTAAAGAGACATAAGCGTTGAATTACGTTCTATT
GAATAGTATTGCCCACCATTGGAAGGGACCGTATTGGACTTGTGCAATTGAGTAGGCA
ATCACCAAAGGAACGAGTCTGAAATTATCATTGTTATTACAGAAGTTATTACCCCA
AGAAATGTTGGCTCAAAGAAAATAAGGAAAATTATCAAGAATCTAAATCTTTATT
AAGTTACCCCTAAATGGCTATTACCATTTGATAGTTGTTGAAAAGTTAAGATTAAA
GGATTTCGGTGGTTGTCATTCTGATATTGGTCACCAAGCACAATTGAAAACCTT
GAATCAATTGGCGATTGTTCATTCCTGGCTATTAGACAACATAATTCCAAAATTAT
ACAGACTTTTACTGCACCGAAATATCTTACAGTACAGAATTGTTACTTAGACA
TGATACITGGAATAAACTTACACCCCTTTATCGTAGAATATTAAAGACGTACTTAGT
CGAAAACAACGTATGTAGAAACCATAATAGTTACACGTTGTCACATTCAATCATAGCAA
AATGAGGATTATACCAAAAAAAAGTAATAATGAGTTCAAGGATTATTGCCATCCATGCAG
AGGGGCAGACGAAGAAGAATTACAATTATAAGGAGAATCACAAAATGCTATCCAGCC
CACTAAAAAATTAGAATACCTAACAGAACAAAGGCCACTAGTTTACTAAATATA
TTCTCCAACGAAATAGCTGACCGTACAAAGAATTAAAGCAGAGACTTTAAAGAAATT
TAATAATGTCTTACCAAGAGCTTATTGATGTCAAATCTGCTATGATT
CATACCAAGGATGGAATGTATGAGGAACTCAAGGATGCGCTAAAAATGAAAATGGTT
TTTCGTTAGATCTCAATTCTCAATACCAATAAGGTGTATTGAAGTTATTAAATGT
TGTTAACGCTAGCAGAGTACCAAAACCTTATGAGCTATACATAGATAATGTGAGGACGGT
TCATTATCAAATCAGGATGTTATAAACGTTAGAGATGGAATATTAAAACAGCTT
GTGGGTTGAAGATAAGTGTACATTAGAGAACAGTGGCTTTTCAAGGCTCTAGTTATC
TGCTCCGATCGTTGATTGGTGTATGACGATCTCTGGAGTTTATAGCGAGTTAAAGC
CAGTCCTAGCCAGGACACATTAATTAAAAGCTGGCTGACGATTTCTTATAATATCAAC
AGACCAACAGCAAGTGTACATACCAAAAGCTGCCCCATGGGCGGATTCAAAAATATAA
TGCAGAACGCAATAGAGAACAAATTAGCCGTAAAGCTCCCAATCAGATGATGATACGGT
TATTCAATTGTCATGCAATGACATATTGTTAAAGAATTGGAAGTTGGAAACATTCAAG
CACAATGAATAATTCCATATCGTTGAAATCTAGTAAAGGGATATTGAAAGTTAAT
AGCGCTGTTAACACTAGAACATTAAACATTGACACAAATTAAATCAACAAA
CACCCTCTCATGCAAATTGATCATGTTGAAAGAACATTGGAATGTTATAAATCTGC
TTTAAGGATCTATCAATTAAATGTTACGCAAATATGCAATTTCATTGTTCTAACAG
CATCATTGAAATGACAGTCAGCGGTTGTCATTACGAAATGTGATCCTTAATCGAGTA
TGAGGTACGATTCAACCATATTGAATGGATTGGAAAGCCTATCTTCAAACACATCAA
ATTAAAGATAATATCATTCTTGTAGAAAGGAAATTCAACACTTGCAAGC

FIGURE 27

AKFLHWLMSVYVVELLRSFFYVTETTFQKNRLFFYRKSWSKLQSIGIRQHLKR
VQLRDVSEAEVRQHREARPALLTSRLRFIPKPDGLRPIVNMDYVVGARTFRREKR
AERLTSRVKALFSVLNYERA

FIGURE 28

GCCAAGTCCCTGCACTGGCTGATGAGTGTACGTCGTCGAGCTGCTCAGGTC
TTCTTTATGTCACGGAGACCACGTTCAAAAGAACAGGCTCTTTCTACC
GGAAGAGTGTCTGGAGCAAGTTGCAAAGCATTGGAATCAGACAGCACTTGAA
GAGGGTGCAGCTGCGGGACGTGCGGAAGCAGAGGTCAAGGCAGCATGGGA
AGCCAGGCCGCCCTGCTGACGTCCAGACTCCGCTTCATCCCCAAGCCTGACG
GGCTGCGGCCGATTGTGAACATGGACTACGTCGTGGGAGCCAGAACGTTCCG
CAGAGAAAAGAGGGCCGAGCGTCTCACCTCGAGGGTGAAGGCACTGTTCAGC
GTGCTCAACTACGAGCGGGCGCG

FIGURE 29

MTEHHTPKSRJLRFLENQYVYLCTLNDYVQLVLRGSPASSYSNICERLSDVQTFSIFLHSTVVGF
DSKPDEGVQFSSPKCSQSELIANVVQMFDESERRNLLMKGFSMNHEDFRAMHVNGVQNDLV
STFPNYLISILESKNWQLLEIIGSDAMHYLLSKGSIFEALPNDNYLQISGIPLFKNNVFEETVKRK
RTIETSITQNKSRKEVSWSISISRFSIFYRSSYKKFKQDLYFNLHSICDRNTVHMWLQWIFPRQFG
LINAFAQVKQLHKVIPLVSQSTVVPKRLLKVYPLIEQTAKRLHRISLSKVYNHYCPYIDTHDEKILS
YSLKPNQVFQFLRSILVRVFPKLIWGNQRIFEIILKDLTFLKLSRYESFLSYLMSNIKISEIEWLVL
GKRSNAKMCLSDFEKRKQIFAEIFYWLYNSFIIPILQSFFYITESSDLRNRTVYFRKDIWKLLCRPFIT
SMKMEAFEKINENNVRMDTQKTTLPPAVIRLLPKKNTFRLITNLRKRFLIKMGSNKKMLVSTNQT
LRPVASILKHLINEESSGIPFNLEVYMKLLTFKKDLLKHRMGRKKYFYRIDIKSCYDRIKQDLMFR
IVKKKLKDPEFVIRKYATIHATSDRATKNFVSEAFSYFDMVPFEKVVQLLSMKTSDTLFVDFVDY
WTKSSEIFKMLKEHLSGHIVKIGNSQYLQKVGIPQGSILSSFLCHFYMEDLIDEYLSFTKKGSVL
LRVVDDFLFITVNKKDAKKFLNLSLRGFEKHNFSTSLEKTVINFENSNGIINNTFFNESKKRMPFFG
FSVNMRSLDTLLACPKIDEALFNSTSVELTKHMGKSFFYKILRSSLASFAQVIFIDITHNSKFNSCCNI
YRLGYSMCMRAQAYLKRMKDIFIPQRMFITDLLVIGRKIWKKLAEILGYTSRRFLSSAEVKWLFC
LGMRDGLKPSFYHPCFEQLIYQFQSLTDLIKPLRPVLRQVLFLHRRJAD

FIGURE 30

FIGURE 30 (cont.)

ATGgtacgtgcggctcgagacttcagaatattgacacatcagGCTTTTGTCTTGAATGAGAGATGGTTGAACCCCTTT
TCAAATATCATCCATGCTCGAACAGCTAATATAACCAATTCAAGCTTACTGATCTTATCAAGCCGC
TAAGACCAGTTTGCACAGGTGTTATTTTACATAGAAGAATAGCTGATTAAtgtcaatttcaattttatatacatccctt
tattacttgttcttaacaatatttacaaatgtatgactgtcccccaaaagcaagcatactataggattcttagtaaagtaaaattaaatctgttatttagtttgattgacttgtctt
atcccttatacttttaagaaagattgacagtggttgctgactactgcccacatgcccataaacggggatggtaaacattaaaagtaatacatacgaggctaattccctttcatttag
aataaggaaagtggtttctataatgaataatgcccgcactaatgcaaaaaagacgaagattatctctaaacaagggggatagaacataccgaaggaaaagagagataat
accagggttgttgaagaaaggcaaggataatttggacaacaagcttcgcagatgacaggctaaattttggatggcaattttggtaaaaggcccagggttatccatggccg
gccttgtactgagacgaaaagaaactaaggatagtttgaataactaatagcttataatgtcttataaaggttttttccgtactcaatttgcattgggaaaagaaata
gtgttaagccattttggattccgaaatagccaaattcttgttccctcaaagcggaaagtctaaagaacttataagcttgcaggctcaaaaactccctgatttaaggag
gaatcttccaccgatgagaaatggatagcttacgcgtctgaggagaagcctaatttttgcaaaaaaagaaaatataitgggagacatctctgtatgcattggccg
gagtagtccagcggatccgtatgtcaataacttctatgttgcactgtcgcttcgactctcgtagctcagcagtaagtgcaccaaggtaacc

FIGURE 31

EST2 pep	FFYCTEISST	VITIVYFRHDT	WN---	KLIT	P----	FIVE	YFK-TYLVEN	40
Euplotes pep	FFYVTEQQKS	YSKTYYYRKN	IWDVI-MKMS	IAD---LKK	ETLA--EVQE			43
Trans of tetrahymen	-----KHKE	GSQIFYYRK	IWKLVSKLT	VKVRIQFSEK	NKQMKNNFYQ			44
Consensus	FFY.TE..K.	.S..YYRK.	IW...-KL..	-----F..KV..			50
EST2 pep	NVCRNHNSY-	-----	TLSNFNHSKM	RILPKKSNN	FRM	IAIPCRG		79
Euplotes pep	KEVEEWKKSL	-----	-GFAPCKI	RILPKKITT	FRP	IMTFNKK		78
Trans of tetrahymen	KIQLEEEENLE	KVEEKLIPED	SFQKYPQCKE	RILPKKGS	FRP	IMTFLRK		92
Consensus	K...E.....	-----	...F..GKE	RILPKKGS	FRP	IMTF.RK		100
EST2 pep	ADEEEFTIYK	ENHKNAIOP	TKILEYR	RNTK	RPTSFTKIYS	PTQLADRIKE		129
Euplotes pep	IVNSDRKTTK	LTTNTKLNS	HLMLXTE	KN-----	RMFK	-DPFGFAVFN		120
Trans of tetrahymen	DKQKNIK	--LNLNQILMDS	QLVFRNLKD	-----	ML-G	-QKIGYSVFD		130
ConsensusK..K	LN.N..L..S	QL.L..EKN	-----	-..IG..VF.		150
EST2 pep	FKQRLLKKEN	NVL-----	-----	PELYFMKFD	VKSCYD			157
Euplotes pep	YD-DVMKHYE	EFVCKWKQVG	QKIEFFATMD	IEKCYD				155
Trans of tetrahymen	NK-QISEKFA	QFIEKWKNKG	RECIEYYVTL	-----				158
Consensus	.K...KMF..	.F..KWK..G	...E.F.T.D	...CYD				186

FIGURE 32

S-1: FFY VTE TTF QKN RLF FYR KSV WSK

S-2: RQH LKR VQL RDV SEA EVR QHR EA

S-3: ART FRR EKR AER LTS RVK ALF SVL NYE

A-1: AKF LHW LMS VYV VEL LRS FFY VTE TTF Q

A-2: LFF YRK SVW SKL QSI GIR QHL KRV QLR DVS

A-3: PAL LTS RLR FIP KPD GLR PIV NMD YVV

FIGURE 33

FIGURE 34

Poly 4

5' - t a a g c c t c g
cag acc aaa gga att cca taa gg -3'
Q T K G I P Q G

4 (B')

5 (C')

3' - D D Y L L I T
ctg ctg atg gag gag tag tgg -5'
a a a a a a a a
t t t t t
c c

Poly 1

FIGURE 35

FIGURE 36

PCR Product M2 showed Reasonable Match
with Other Telomerase Proteins

Ot	LCVSYILSSFYANLEENALQFLRKESMDPEKPETNLLMRLT
Ea_p123	KGIPQGLCVSSILSSFYATLEESSLGFLRDESMNPENPNVNLLMRLTDYLLIT
Sp_M2	SILSSFLCHFYMEDLIDEYLSFTKKK-----GSVLLRVV
Sc_p103	DGLFQGSSLSSAPIVDLVYDDLLEFYSEFKASPS-----QDTLILKLADDFLIIS

Q H K V G I P Q G
caa Gaa gtt ggt atc cct cag gg..... <---Actual Genomic Sequence.

Poly 4
t t c
t a a g c c t c g
cag Gacc aaa gga att cca taa gg ----->

ag acc aaa gga att cca tca ggC TCA ATT CTG TCA TCT TTT TTG TGT CAT TTC TAT ATG
tc tgg ttt cct taa ggt agt ccG AGT TAA GAC AGT AGA AAA AAC ACA GTA AAG ATA TAC

K G I P S G S I L S S F L C H F Y M

GAA GAT TTG ATT GAT GAA TAC CTA TCG TTT ACG AAA AAG AAA GGA TCA GTG TTG TTA CGA
CTT CTA AAC TAA CTA CTT ATG GAT AGC AAA TGC TTT TTC TTT CCT AGT CAC AAC AAT GCT

E D L I D E Y L S F T K K K G S V L L R

GTA GTC gac gac tac ctc ctc atc acc
CAT CAG ctg ctg atg gag gag tag tgg

V V D D Y L L I T

<---- ctg ctg atg gag gag tag tgg
a a a a a a a a
t t t t t t
c c

Poly 1

....gac gat ttc ctc ttt ata aca..... <---Actual Genomic Sequence.

D D F L F I T

FIGURE 37

3' RT PCR Strategy

1. Synthesis of cDNA with QT Primer.

2. First Round PCR Using Outside Primer and QO Primer.

3. Second Round PCR Using Inside Primer and QI Primer.

4. Sequence Second Round PCR Products Using Inside Primer or QI Primer.

FIGURE 38

A

-Size Selected Libraries from P. Nurese

3 ~ 4 kb
5 ~ 6 kb
7 ~ 8 kb
11 ~ 12 kb

-Libraries from J.A. Wise

Sau 3a Partial Digest
Hind III Partial Digest

cDNA Libraries

GAD (Gal Activation Domain) Library
REP Library from R. Allshire
REP81ES Library (old)
REP81ES Library (new)
REP41ES Library

B.

C

D

FIGURE 39

FIGURE 40

5' RT PCR Strategy

1. Synthesis of cDNA with Specific Downstream Primer.

2. Ligate Oligo with 5'-P and blocked 3' to cDNA using T4 RNA Ligase.

3. First Round PCR

4. Second Round PCR

FIGURE 41

Alignment of RT Domains from Telomerase Catalytic Subunits.

FIGURE 42

FIGURE 43

Disruption strategy for the putative telomerase genes.

(These cells will show a senescence phenotype if the disrupted gene encodes a telomerase subunit.)

FIGURE 44

An Example of Confirmation of *tez1* disruption By PCR

FIGURE 45

Tez1 disruption causes progressive shortening of telomeres in *S. pombe*

FIGURE 46

```

1 ggtaccgatttactttcccttcataagctaattgcctcgaacgcctaaatctggaaatattttacaaga 80
81 actcaataacaataccaagtcaaattccaatatgaagggttatttagtgcataatattctatttgcgtta 160
161 ccaagtataaggacaaaagaacaacttcctccccctaaagactttactttattaatttactttcaaatatattcg 240
241 gttcgcttactttatcggtactgtttagctgcacttgcacccgttctacccgtcatggatat 320
321 agctttggagtagctcacagaaatccatcaaattctctgatgagactatattgattcattacagtcgtgcatttc 400
401 ttaacatggagccttacactttagatgagtcacgtgcacatggagtattggatcatccaaacgttgcctgaaaag 480
481 gttgataattttgcaaatcatgtccttagtgggttaatccgcggaaagttttgatgcacacgtcttagcatg 560
561 attgagatattcaaaaattctatccactacaactcccttaacgcggtttatttctatttctattctatgttgc 640
641 ccaaataatgttatcatctgtttaggccttccgttactcctggaatcgtacctttactattccccataatga 720
721 ataatctaaatttagttcgcttataattgatagtagtagaaagattggtactcgtgtaatgttatttagttaaa 800
801 gatactttgcaaaacattttagctatcattatataaaaaaaatccatataattataatcaatattgcggtc 880
881 actatttatttaaacgttatgatcagtaggacacttgcataatataatgttatgcttaatggttactgtacttgc 958

959 ATG ACC GAA CAC CAT ACC CCC AAA AGC AGG ATT CTT CGC TTT CTA GAG AAT CAA TAT GTA 1018
   1 M    T    E    H    H    T    P    K    S    R    I    L    R    F    L    E    N    Q    Y    V    20

1019 TAC CTA TGT ACC TTA AAT GAT TAT GTA CAA CTT GTT TTG AGA GGG TCG CCG GCA AGC TCG 1078
   21 Y    L    C    T    L    N    D    Y    V    Q    L    V    L    R    G    S    P    A    S    S    40

1079 TAT AGC AAT ATA TGC GAA CGC TTG AGA AGC GAT GTA CAA ACG TCC TTT TCT ATT TTT CTT 1138
   41 Y    S    N    I    C    E    R    L    R    S    D    V    Q    T    S    F    S    I    F    L    60

1139 CAT TCG ACT GTA GTC GGC TTC GAC AGT AAG CCA GAT GAA GGT GTT CAA TTT TCT TCT CCA 1198
   61 H    S    T    V    V    G    F    D    S    K    P    D    E    G    V    Q    F    S    S    P    80

```

FIGURE 46 (cont.)

1199 AAA TGC TCA CAG TCA GAG gtatataaaaaatggggatcgatataatggcag	1272
81 K C S Q S E	86
1273 CTA ATA GCG AAT GTT GTA AAA CAG ATG TTC GAT GAA AGT TTT GAG CGT CGA AGG AAT CTA	1332
87 L I A N V V K Q M F D E S F E R R R N L	106
1333 CTG ATG AAA GGG TTT TCC ATG gtaaggattctaattgtgaaatattacctgcaattactgtttcaaagaga	1405
107 L M K G F S M	113
1406 ttgtatataaccgataaaag AAT CAT GAA GAT TTT CGA GCC ATG CAT GTA AAC GGA GTA CAA AAT	1469
114 N H E D F R A M H V N G V Q N	128
1470 GAT CTC GTT TCT ACT TTT CCT AAT TAC CTT ATA TCT ATA CTT GAG TCA AAA AAT TGG CAA	1529
129 D L V S T F P N Y L I S I L E S K N W Q	148
1530 CTT TTG TTA GAA AT gtaaaataccggtaagatgttgcgcacttgaacaagactgacaagtata T ATC GGC	1601
149 L L L E I	I G 155
1602 AGT GAT GCC ATG CAT TAC TTA TTA TCC AAA GGA AGT ATT TTT GAG GCT CTT CCA AAT GAC	1661
156 S D A M H Y L L S K G S I F E A L P N D	175
1662 AAT TAC CTT CAG ATT TCT GGC ATA CCA CTT TTT AAA AAT AAT GTG TTT GAG GAA ACT GTG	1721
176 N Y L Q I S G I P L F K N N V F E E T V	195
1722 TCA AAA AAA AGA AAG CGA ACC ATT GAA ACA TCC ATT ACT CAA AAT AAA AGC GCC CGC AAA	1781
196 S K K R K R T I E T S I T Q N K S A R K	215
1782 GAA GTT TCC TGG AAT AGC ATT TCA ATT AGT AGG TTT AGC ATT TTT TAC AGG TCA TCC TAT	1841
216 E V S W N S I S R F S I F Y R S S Y	235
1842 AAG AAG TTT AAG CAA G gtaactaatactgttatcccttcataactaatttttag AT CTA TAT TTT AAC	
1907	
236 K K F K Q D	L Y F N 245
1908 TTA CAC TCT ATT TGT GAT CGG AAC ACA GTA CAC ATG TGG CTT CAA TGG ATT TTT CCA AGG	1967
246 L H S I C D R N T V H M W L Q W I F P R	265
1968 CAA TTT GGA CTT ATA AAC GCA TTT CAA GTG AAG CAA TTG CAC AAA GTG ATT CCA CTG GTA	2027
266 Q F G L I N A F Q V K Q L H K V I P L V	285
2028 TCA CAG AGT ACA GTT GTG CCC AAA CGT CTC CTA AAG GTA TAC CCT TTA ATT GAA CAA ACA	2087
286 S Q S T V V P K R L L K V Y P L I E Q T	305
2088 GCA AAG CGA CTC CAT CGT ATT TCT CTA TCA AAA GTT TAC AAC CAT TAT TGC CCA TAT ATT	2147
306 A K R L H R I S L S K V Y N H Y C P Y I	325
2148 GAC ACC CAC GAT GAT GAA AAA ATC CTT AGT TAT TCC TTA AAG CCG AAC CAG GTG TTT GCG	2207
326 D T H D D E K I L S Y S L K P N Q V F A	345
2208 TTT CTT CGA TCC ATT CTT GTT CGA GTG TTT CCT AAA TTA ATC TGG GGT AAC CAA AGG ATA	2267
346 F L R S I L V R F P K L I W G N Q R I	365
2268 TTT GAG ATA ATA TTA AAA G gtattgtataaaaatttattaccactaacgatttaccag AC CTC GAA ACT	2336
366 F E I I L K D	L E T 375

FIGURE 46 (cont.)

2337	TTC TTG AAA TTA TCG AGA TAC GAG TCT TTT AGT TTA CAT TAT TTA ATG AGT AAC ATA AAG	2396
376	F L K L S R Y E S F S L H Y L M S N I K	395
2397	gtaatatgc...aaatttttaccattaattaacaatcg ATT TCA GAA ATT GAA TGG CTA GTC CTT GGA	2465
396	I S E I E W L V L G	405
2466	AAA AGG TCA AAT GCG AAA ATG TGC TTA AGT GAT TTT GAG AAA CGC AAG CAA ATA TTT GCG	2525
406	K R S N A K M C L S D F E K R K Q I F A	425
2526	GAA TTC ATC TAC TGG CTA TAC AAT TCG TTT ATA ATA CCT ATT TTA CAA TCT TTT TTT TAT	2585
426	E F I Y W L Y N S F I I P I L Q S F F Y	445
2586	ATC ACT GAA TCA AGT GAT TTA CGA AAT CGA ACT GTT TAT TTT AGA AAA GAT ATT TGG AAA	2645
446	I T E S S D L R N R T V Y F R K D I W K	465
2646	CTC TTG TGC CGA CCC TTT ATT ACA TCA ATG AAA ATG GAA GCG TTT GAA AAA-ATA AAC GAG	2705
466	L L C R P F I T S M K M E A F E K I N E	485
2706	gtat...aaagtat...ttgc...aaaagctaatat...tcag AAC AAT GTT AGG ATG GAT ACT CAG AAA ACT	2775
486	N N V R M D T Q K T	495
2776	ACT TTG CCT CCA GCA GTT ATT CGT CTA TTA CCT AAG AAG AAT ACC TTT CGT CTC ATT ACG	2835
496	T L P P A V I R L L P K K N T F R L I T	515
2836	AAT TTA AGA AAA AGA TTC TTA ATA AAG gtat...at...ggcatcaatgtacttacttcaatctatta	2906
516	N L R K R F L I K	524
2907	ttagcag ATG GGT TCA AAC AAA AAA ATG TTA GTC AGT ACG AAC CAA ACT TTA CGA CCT GTG	2967
525	M G S N K K M L V S T N Q T L R P V	542
2968	GCA TCG ATA CTG AAA CAT TTA ATC AAT GAA GAA AGT AGT GGT ATT CCA TTT AAC TTG GAG	3027
543	A S I L K H L I N E E S S G I P F N L E	562
3028	GTT TAC ATG AAG CTT CTT ACT TTT AAG AAG GAT CTT CTT AAG CAC CGA ATG TTT GG gtaat	3088
563	V Y M K L L T F K K D L L K H R M F G	581
3089	tataatgcgcattcctcattataat...tcag G CGT AAG AAG TAT TTT GTA CGG ATA GAT ATA	3155
582	R K K Y F V R I D I	591
3156	AAA TCC TGT TAT GAT CGA ATA AAG CAA GAT TTG ATG TTT CGG ATT GTT AAA AAG AAA CTC	3215
592	K S C Y D R I K Q D L M F R I V K K K L	611
3216	AAG GAT CCC GAA TTT GTA ATT CGA AAG TAT GCA ACC ATA CAT GCA ACA AGT GAC CGA GCT	3275
612	K D P E F V I R K Y A T I H A T S D R A	631
3276	ACA AAA AAC TTT GTT AGT GAG GCG TTT TCC TAT T gtaagttat...ttcatt...aaat...ttacaa	3343
632	T K N F V S E A F S Y F	643
3344	attcttttag TT GAT ATG GTG CCT TTT GAA AAA GTC GTG CAG TTA CTT TCT ATG AAA ACA	3405
644	D M V P F E K V V Q L L S M K T	659
3406	TCA GAT ACT TTG TTT GAT TTT GTG GAT TAT TGG ACC AAA AGT TCT TCT GAA ATT TTT	3465
660	S D T L F V D F V D Y W T K S S S E I F	679
3466	AAA ATG CTC AAG GAA CAT CTC TCT GGA CAC ATT GTT AAG gtaat...ccatt...ttgaatt...taataaca	3532
680	K M L K E H L S G H I V K	692

FIGURE 46 (cont.)

3533	ctaatgaaactag	ATA GGA AAT TCT CAA TAC CTT CAA AAA GTT GGT ATC CCT CAG GGC TCA	3593
693	I G N S Q Y L Q K V G I P Q G S	708	
3594	ATT CTG TCA TCT TTT TTG TGT CAT TTC TAT ATG GAA GAT TTG ATT GAT GAA TAC CTA TCG	3653	
709	I L S S F L C H F Y M E D L I D E Y L S	728	
3654	TTT ACG AAA AAG AAA GGA TCA GTG TTG TTA CGA GTA GTC GAC GAT TTC CTC TTT ATA ACA	3713	
729	F T K K G S V L L R V V D D F L F I T	748	
3714	GTT AAT AAA AAG GAT GCA AAA AAA TTT TTG AAT TTA TCT TTA AGA G gtgagttgtgtcattcc	3777	
749	V N K K D A K K F L N L S L R G	764	
3778	taagttctaaccgttgaag	GA TTT GAG AAA CAC AAT TTT TCT ACG AGC CTG GAG AAA ACA GTA	3840
765	F E K H N F S T S L E K T V	778	
3841	ATA AAC TTT GAA AAT AGT AAT GGG ATA ATA AAC AAT ACT TTT TTT AAT GAA AGC AAG AAA	3900	
779	I N F E N S N G I I N N T F F N E S K K	798	
3901	H AGA ATG CCA TTC TTC GGT TTC TCT GTG AAC ATG AGG TCT CTT GAT ACA TTG TTA GCA TGT	3960	
799	R M P F F G F S V N M R S L D T L L A C	818	
3961	CCT AAA ATT GAT GAA GCC TTA TTT AAC TCT ACA TCT GTA GAG CTG ACG AAA CAT ATG GGG	4020	
819	P K I D E A L F N S T S V E L T K H M G	838	
4021	AAA TCT TTT TTT TAC AAA ATT CTA AG gtatactgtgtactgaataatagctgacaaaataatcg	A TCG	4089
839	K S F F Y K I L R	S	848
4090	AGC CTT GCA TCC TTT GCA CAA GTA TTT ATT GAC ATT ACC CAC AAT TCA AAA TTC AAT TCT	4149	
849	S L A S F A Q V F I D I T H N S K F N S	868	
4150	TGC TGC AAT ATA TAT AGG CTA GGA TAC TCT ATG TGT ATG AGA GCA CAA GCA TAC TTA AAA	4209	
869	C C N I Y R L G Y S M C M R A Q A Y L K	888	
4210	AGG ATG AAG GAT ATA TTT ATT CCC CAA AGA ATG TTC ATA ACG G gtgagtaacttatttaactaga	4274	
889	R M K D I F I P Q R M F I T D	903	
4275	aaagtcatataattaaaccttag	AT CTT TTG AAT GTT ATT GGA AGA AAA ATT TGG AAA AAG TTG GCC	4339
904	L L N V I G R K I W K K L A	917	
4340	GAA ATA TTA GGA TAT ACG AGT AGG CGT TTC TTG TCC TCT GCA GAA GTC AAA TG gtacgtgtc	4401	
918	E I L G Y T S R R F L S S A E V K W	935	
4402	ggtctcgagacttcagcaatattgacacatcag	G CTT TTT TGT CTT GGA ATG AGA GAT GGT TTG AAA	4468
936	L F C L G M R D G L K	946	
4469	CCC TCT TTC AAA TAT CAT CCA TGC TTC GAA CAG CTA ATA TAC CAA TTT CAG TCA TTG ACT	4528	
947	P S F K Y H P C F E Q L I Y Q F Q S L T	966	
4529	GAT CTT ATC AAG CCG CTA AGA CCA GTT TTG CGA CAG GTG TTA TTT TTA CAT AGA AGA ATA	4588	
967	D L I K P L R P V L R Q V L F L H R R I	986	
4589	GCT GAT TAA tgtcatttcaatttattatatacatccttattactggtgtcttaacaatattactaagtata	4665	
987	A D *	989	

FIGURE 46 (cont.)

FIGURE 47

1
GCCAAGTTCCCTGCACTGGCTG met ser val tyr val val glu leu leu
ATG AGT GTG TAC GTC GTC GAG CTG CTC

10
arg ser phe phe tyr val thr glu thr thr phe gln lys asn arg
AGG TCT TTC TTT TAT GTC ACG GAG ACC ACG TTT CAA AAG AAC AGG

20
leu phe phe tyr arg lys ser val trp ser lys leu gln ser ile
CTC TTT TTC TAC CGG AAG AGT GTC TGG AGC AAG TTG CAA AGC ATT

30
gly ile arg gln his leu lys arg val gln leu arg glu leu ser
GGA ATC AGA CAG CAC TTG AAG AGG GTG CAG CTG CGG GAG CTG TCG

40
glu ala glu val arg gln his arg glu ala arg pro ala leu leu
GAA GCA GAG GTC AGG CAG CAT CGG GAA GCC AGG CCC GCC CTG CTG

50
thr ser arg leu arg phe ile pro lys pro asp gly leu arg pro
ACG TCC AGA CTC CGC TTC ATC CCC AAG CCT GAC GGG CTG CGG CCG

60
ile val asn met asp tyr val val gly ala arg thr phe arg arg
ATT GTG AAC ATG GAC TAC GTC GTG GGA GCC AGA ACG TTC CGC AGA

70
glu lys ala glu arg leu thr ser arg val lys ala leu phe
GAA AAG ARG GCC GAG CGT CTC ACC TCG AGG GTG AAG GCA CTG TTC

80
100
ser val leu asn tyr glu arg ala arg arg pro gly leu leu gly
AGC GTG CTC AAC TAC GAG CGG GCG CGC CCC GGC CTC CTG GGC

90
ala ser val leu gly leu asp asp ile his arg ala trp arg thr
GCC TCT GTG CTG GGC CTG GAC GAT ATC CAC AGG GCC TGG CGC ACC

100
110
phe val leu arg val arg ala gln asp pro pro pro glu leu tyr
TTC GTG CTG CGT GTG CGG GCC CAG GAC CCG CCT GAG CTG TAC

120
130
140
phe val lys val asp val thr gly ala tyr asp thr ile pro gln
TTT GTC AAG GTG GAT GTG ACG GGC GCG TAC GAC ACC ATC CCC CAG

150
160
170
phe val leu arg leu thr glu val ile ala ser ile ile lys pro gln asn
GAC AGG CTC ACG GAG GTC ATC GCC AGC ATC ATC AAA CCC CAG AAC

180
asp arg leu thr glu val ile ala ser ile ile lys pro gln asn
GAC AGG CTC ACG GAG GTC ATC GCC AGC ATC ATC AAA CCC CAG AAC

FIGURE 47 (cont.)

FIGURE 47 (cont.)

390

leu gln thr val cys thr asn ile tyr lys ile leu leu leu gln
CTC CAG ACG GTG TGC ACC AAC ATC TAC AAG ATC CTC CTG CTG CAG

400

410

ala tyr arg phe his ala cys val leu gln leu pro phe his gln
GCG TAC AGG TTT CAC GCA TGT GTG CTG CAG CTC CCA TTT CAT CAG

420

gln val trp lys asn pro his phe ser cys ala ser ser leu thr
CAA GTT TGG AAG AAC CCA CAT TTT TCC TGC GCG TCA TCT CTG ACA

430

440

arg leu pro leu leu leu his pro glu ser gln glu arg arg asp
CGG CTC CCT CTG CTA CTC CAT CCT GAA AGC CAA GAA CGC AGG GAT

450

val ala gly gly gln gly arg arg pro ser ala leu arg gly
GTC GCT GGG GGC CAA GGG CGC CGC CGG CCC TCT GCC CTC CGA GGC

460

470

arg ala val ala val pro pro ser ile pro ala gln ala asp ser
CGT GCA GTG GCT GTG CCA CCA AGC ATT CCT GCT CAA GCT GAC TCG

480

thr pro cys his leu arg ala thr pro gly val thr gln asp ser
ACA CCG TGT CAC CTA CGT GCC ACT CCT GGG GTC ACT CAG GAC AGC

490

500

pro asp ala ala glu ser glu ala pro gly asp asp ala asp cys
CCA GAC GCA GCT GAG TCG GAA GCT CCC GGG GAC GAC GCT GAC TGC

510

pro gly gly arg ser gln pro gly thr ala leu arg leu gln asp
CCT GGA GGC CGC AGC CAA CCC GGC ACT GCC CTC AGA CTT CAA GAC

520

530

his pro gly leu met ala thr arg pro gln pro gly arg glu gln
CAT CCT GGA CTG ATG GCC ACC CGC CCA CAG CCA GGC CGA GAG CAG

540

thr pro ala ala leu ser arg arg ala tyr thr ser gln gly gly
ACA CCA GCA GCC CTG TCA CGC CGG GCT TAT ACG TCC CAG GGA GGG

550

560

arg gly gly pro his pro gly leu his arg trp glu ser glu ala
AGG GGC GGC CCA CAC CCA GGC CTG CAC CGC TGG GAG TCT GAG GCC

564

OP

TGA GTGAGTGTTGGCCGAGGCCTGCATGTCCGGCTGAAGGCTGAGTGTCCAGCACACCTGCGTTTCACTCCCCAC

CTGAGCGAGTGTCAGCCAAGGGCTGAGTGTCCAGCACACCTGCGTTTCACTCCCCAC

FIGURE 47 (cont.)

AGGCTGGCGTTCGGTCCACCCAGGGCCAGCTTTCTCACCA
CCCCACATAGGAATAGTCCATCCCCAGATTGCCATTGTTCAC
TTTGCCTTCCACCCCCACCATTCAAGTGAGACCTGAGAAGG
AAGGACCTGGAGCTTG
AATTGGAGTGACCAAAGGTGTGCCCTGTACACAGGCGAGG
ACCTGCACCTGGATGGGG
GTCCCTGTGGGTCAAATTGGGGGGAGGTGCTGTGGAGTAAA
AACTGAATATATGAGTT
TTTCAGTTTGGAAAAAAAAAAAAAAA

FIGURE 48

Motif -1	
Ep p123	...LVVSLIRCFYVTEQQKSYSKT...
Sp Tez1	...FIIPILQSFFYITESSDLRNRT...
Sc Est2	...LIPKIIQTFYCTEISSTVTIV...
Hs TCP1	...YVVELLRSFFYVTETTFQKNRL...
consensus	FFY TE
K	
Motif 0	p hhh K hR h R
Ep p123	...KSLGFAPGKLRLIPKKT--TFRPIMTFNKKIV...
Sp Tez1	...QKTTLPPAVIRLLPKKN--TFRLITNLRKRF...
Sc Est2	...TLSNFNHSKMRIIPKKSNNEFRIIAIPCRGAD...
Hs TCP1	...ARPALLTSRLRFIPKPD--GLRPIVNMDYVVG...
consensus	R PK RI
AF	
Motif A	h hDh GY h
Ep p123	...PKLFFATMDIEKYDSVNREKLSTFLK...
Sp Tez1	...RKKYFVRIDIKSCYDRIKQDLMFRIVK...
Sc Est2	...PELYFMKFDVKSCYDSIPRMECMRILK...
Hs TCP1	...PELYFVKVDVTGA YDTIPQDRLTEVIA...//...
consensus	F D YD
hPQG pS hh	
Motif B	
Ep p123	...NGKFYKQTKGIPQGLCVSSILSSFYA...
Sp Tez1	...GNSQYLQKVGVIPQGSILSSFLCHFYME...
Sc Est2	...EDKCYIREDGLFQGSSLSSAPIVDLVYD...
Hs TCP1	...RATSYVQCQGIPQGSILSTLLCSLCYG...
consensus	G QG S
Y	
Motif C	h F DDhhh
Ep p123	...PNVNLLMRLTDYLLITTQENN...
Sp Tez1	...KKGSVLLRVVDDFLFITVNKKD...
Sc Est2	...SQDTLILKLAADDFLIISTDQQQ...
Hs TCP1	...RRDGLLLRLVDDFLLVTPHLTH...
consensus	DD L
Gh h cK	
Motif D	
Ep p123	...NVSRENGFKFNMKKL...
Sp Tez1	...LNLSLRGFEKHNFST...
Sc Est2	...KKLAMGGFQKYNAKA...
Hs TCP1	...LRTLVRGVPEYGCVV...
consensus	G

FIGURE 49

000537562 0142602

FIGURE 50

1 GCAGCGCTGC GTCCGTGTC GCACGTGGGA AGCCCTGGCC CCGGCCACCC
51 CCGCGATGCC GCGCGCTCCC CGCTGCCGAG CCGTGCCTC CCTGCTGC
101 AGCCACTACC GCGAGGTGCT GCCGCTGGCC ACGTCGTGC GGCGCCTGGG
151 GCCCCAGGGC TGGCGGCTGG TGCAAGCGG GGACCCGGCG GCTTCCGCG
201 CGNTGGTGGC CCANTGCNTG GTGTGCCTGC CCTGGGANGN ANGGCNGCCC
251 CCCGCCGCC CTCCTCCG CCAGGTGTCC TGCTGAANG ANCTGGTGGC
301 CCGAGTGCTG CANANGCTGT GCGANCACGG CGCGAANAAAC GTGCTGGCCT
351 TCGGCTTCGC GCTGCTGGAC GGGGCCCGCG GGGGCCCCCG CGAGGCCTTC
401 ACCACCAGCG TGCGCAGCTA CCTGCCAAC ACGGTGACCG ACGCACTGCG
451 GGGGAGCGGG GCGTGGGGGC TGCTGCCTGC CGCGTGGC GACGACGTGC
501 TGGTTCACCT GCTGGCACGC TGCGCGNTNT TTGTGCTGGT GGNTCCCAGC
551 TGCGCCTACC ANGTGTGCGG GCCGCCGCTG TACAGCTCG GCGCTGCNAC
601 TCAGGCCCGG CCCCCGCCAC ACGCTANTGG ACCCGAANGC GTCTGGGATC
651 CAACGGGCCT GGAACCATAAG CGTCAGGGAG GCCGGGGTCC CCCTGGGCTG
701 CCAGCCCCGG GTGCGAGGAG GCGCGGGGGC AGTGCCAGCC GAAGTCTGCC
751 GTGCCCAAG AGGCCAGGC GTGGCGCTGC CCCTGAGCCG GAGCGGACGC
801 CCGTTGGCA GGGTCCCTGG GCCCCACCCGG GCAGGACGCC TGGACCGAGT
851 GACCGTGGTT TCTGTGTGGT GTCACCTGCC AGACCCGCCG AAGAAGCCAC
901 CTCTTGAG GGTGCCTCT CTGGCACGCC CCACTCCCAC CCATCCGTGG
951 GCCGCCAGCA CCACGCCGGC CCCCCATCCA CATCGCGGCC ACCACGTCC
1001 GGGACACGCC TTGTCCCCCG GTGTACGCCG AGACCAAGCA CTTCCCTCTAC
1051 TCCTCAGGCC ACAAGNACAC TGCGNCCTC CTTCCCTACTC AATATATCTG
1101 AGGCCAGCC TGACTGGCGT TCGGGAGGTT CGTGGAGACA NTCTTTCTGG
1151 TTCCAGGCCT TGGATGCCAG GATTCCCCGC AGGTTGCCCG GCCTGCCCA
1201 GCGNTACTGG CAAATGCCGC CCCTGTTCT GGAGCTGCTT GGGAACACCG
1251 CGCAGTGCC CTACGGGTG TTCCCTCAAGA CGCACTGCC GCTGCAGCT
1301 GCGGTACCC CAGCAGCCGG TGTCTGTGCC CGGGAGAACGC CCCAGGGCTC
1351 TGTGGCGGCC CCCGAGGAGG AGGAACACAG ACCCCCGTCG CCTGGTGCAG
1401 CTGCTCCGCC AGCACAGCAG CCCCTGGCAG GTGTACGGCT TCGTGC
1451 CTGCTGCCT CGGCTGGTGC CCCCAGGCCT CTGGGGCTCC AGGCACAACG
1501 AACGCCGCTT CCTCAGGAAC ACCAAGAAGT TCATCTCCCT GGGGAAGCAT
1551 GCCAAGCTCT CGCTGCAGGA GCTGACGTGG AAGATGAGCG TGCGGGACTG
1601 CGCTTGGCTG CGCAGGAGCC CAGGGGTTGG CTGTGTTCCG GCCGCAGAGC
1651 ACCGTCTGCC TGAGGAGATC CTGGCCAAGT CCCTGCACG GCTGATGAGT
1701 GTGTACGTG TCGAGCTGCT CAGGTCTTTC TTTTATGTCA CGGAGACCAC
1751 GTTCAAAAG AACAGGCTCT TTTTCTACCG GAAGAGTGTGTC TGGAGCAAGT
1801 TGCAAAGCAT TGGAATCAGA CAGCACTTGA AGAGGGTGCA GCTGC
1851 CTGTCGGAAAG CAGAGGTCAAG GCAGCATCGG GAAGCCAGGC CCGCCCTGCT
1901 GACGTCCAGA CTCCGCTTCA TCCCCAAGCC TGACGGGCTG CGGCCGATTG
1951 TGAACATGGA CTACGTCGTG GGAGCCAGAA CGTCCGCAG AGAAAAGAGG
2001 GCCGAGCGTC TCACCTCGAG GGTGAAGGCA CTGTTCAGCG TGCTCAACTA
2051 CGAGCGGGCG CGGCCCGCCCG GCCTCTGGG CGCCTCTGTG CTGGGCGCTGG
2101 ACGATATCCA CAGGGCCTGG CGCACCTTCG TGCTGCCTGT GCGGGCCCAAG
2151 GACCCGCCGC CTGAGCTGTA CTTTGTCAAG GTGGATGTGA CGGGCGCGTA
2201 CGACACCACCCAGGACA GGCTCACCGA GGTCACTGCC AGCATCATCA
2251 AACCCAGAA CACGTACTGC GTGCGTCGGT ATGCCGTGGT CCAGAAGGCC

FIGURE 50 (cont.)

2301 GCCCATGGGC ACGTCCGCAA GGCCTTCAAG AGCCACGTCT CTACCTTGAC
2351 AGACCTCCAG CGTACATGC GACAGTCGT GGCTCACCTG CAGGANAACA
2401 GCCCGCTGAG GGATGCCGTC GTCACTGAGC AGAGCTCCTC CCTGAATGAG
2451 GCCAGCAGTG GCCTCTCGA CGTCTTCCTA CGCTTCATGT GCCACCACGC
2501 CGTGCACATC AGGGGCAAGT CCTACGTCCA GTGCCAGGGG ATCCCGCAGG
2551 GCTCCATCCT CTCCACGCTG CTCTGCAGCC TGTGCTACGG CGACATGGAG
2601 AACAAAGCTGT TTGCGGGGAT TCGGCGGGAC GGGCTGCTCC TCGGTTGGT
2651 GGATGATTTC TTGTTGGTGA CACCTCACCT CACCCACGCG AAAACCTTCC
2701 TCAGGACCCCT GGTCCGAGGT GTCCCTGAGT ATGGCTGCGT GGTGAACCTG
2751 CGGAAGACAG TGGTGAACCTT CCCTGTAGAA GACGAGGCCG TGGGTGGCAC
2801 GGCTTTGTT CAGATGCCGG CCCACGGCCT ATTCCCCCTGG TGCGGCCCTGC
2851 TGCTGGATAC CGGACCCCTG GAGGTGCAGA GCGACTACTC CAGCTATGCC
2901 CGGACCTCCA TCAGAGCCAG TCTCACCTTC AACCGCGGCT TCAAGGCTGG
2951 GAGGAACATG CGTCGCAAAC TCTTTGGGCTT CTTGCCGCTG AAGTGTACACA
3001 GCCTGTTCT GGATTGCAG GTGAACAGCC TCCAGACGGT GTGCACCAAC
3051 ATCTACAAGA TCCTCCTGCT GCAGGGTAC AGGTTTCACG CATGTGTGCT
3101 GCAGCTCCCA TTTCATCAGC AAGTTGGAA GAACCCCACA TTTTCCCTGC
3151 GCGTCATCTC TGACACGGCC TCCCTCTGCT ACTCCATCCT GAAAGCCAAG
3201 AACGCAGGGGA TGTGCGTGGG GGCCAAGGGC GCGCCGGCC CTCTGCCCTC
3251 CGAGGCCGTG CAGTGGCTGT GCCACCAAGC ATTCCCTGCTC AAGCTGACTC
3301 GACACCGTGT CACCTACGTG CCACCTCTGG GGTCACTCAG GACAGCCCAG
3351 ACGCAGCTGA GTCGGAAGCT CCCGGGGACG ACGCTGACTG CCCTGGAGGC
3401 CGCAGCCAAC CGGCCACTGC CCTCAGACTT CAAGACCATC CTGGACTGAT
3451 GGCCACCCGC CCACAGCCAG GCCGAGAGCA GACACCAGCA GCCCTGTCAC
3501 GCCGGGCTCT ACGTCCCAGG GAGGGAGGGG CGGCCACAC CCAGGCCCGC
3551 ACCGCTGGGA GTCTGAGGCC TGAGTGAGTG TTTGGCCGAG GCCTGCATGT
3601 CCGGCTGAAG GCTGAGTGTC CGGCTGAGGC CTGAGCGAGT GTCCAGCCAA
3651 GGGCTGAGTG TCCAGCACAC CTGCCGTCTT CACTCCCCA CAGGCTGGCG
3701 CTCGGCTCCA CCCCCAGGGCC AGCTTTCCCT CACCAGGAGC CCGGCTTCCA
3751 CTCCCCACAT AGGAATAGTC CATCCCCAGA TTCGCCATTG TTCACCCCTC
3801 GCCCTGCCCT CCTTGCCCTT CCACCCCCACCATCCAGGTG GAGACCCTGA
3851 GAAGGACCCCT GGGAGCTCTG GGAATTGGA GTGACCAAAG GTGTGCCCTG
3901 TACACAGGGCG AGGACCCCTGC ACCTGGATGG GGGTCCCTGT GGGTCAAATT
3951 GGGGGGAGGT GCTGTGGAG TAAAATACTG AATATATGAG TTTTCAGTT
4001 TTGAAAAAAA AAAAAAAA AAAAAAAA

FIGURE 51

GCAAGCGCTGCGTCCCTGCCTGGCACGTGGAAAGCCCTGGCCCCGGCACCCCCCGCGCTGCC
 1 +-----+-----+-----+-----+-----+-----+-----+-----+
 CGTGGCGACGCCAGGACGACGGTGCACCCCTGGGGACGGGGCGGTGGGGGCGCTACGG

 A A I R P A A H V G S P C P G H P K D A -
 Q R C V L L R T W E A L A P A T P A M P -
 S A A S C C A R G K P W F R P P F R C R -

 GCGGGCTCCCGCTGGCGAGCGGTGGCTGGCTGGCGAGCCACTAACGGGAGGGTGGCT
 61 +-----+-----+-----+-----+-----+-----+-----+-----+
 CGCGCGAGGGGGCGACGGCTGGCACGGAGGGACGAAGCGTGGTGATGGCGCTACAGGA

 A R S P L F S R A L P A P Q P L P R G A -
 R A P R C R A V R S L L R S H Y R E V L -
 A L P A A E P C A P C C A A T T A R C C -

 GCGGCTGGCCACGTTGGTGGGGCGCTGGGGCCCAAGGGCTGGCGCTGGTGACAGCGCG
 121 +-----+-----+-----+-----+-----+-----+-----+-----+
 CGCGACACGGTGCAGGACGGCGCGACCCCGGGGTCGGACCGCGACCACGTCGGCGCG

 A A G H V R A A P G A P G I A A G A A R -
 P L A T F V R R L G P Q G W R L V Q R G -
 R W P R S C G A W G P R A C C G W C S A G -

 GGACCGGGGGCTTTCGGCGCNAGGTGGTGGCCCANGGCNGTGGTGTGGCTGGCCCTGGGANGN
 181 +-----+-----+-----+-----+-----+-----+-----+-----+
 CCTGGGGCGCGAAAGGGCGCNACCAACGGGTNAACGNAACACACGGCACCGCACCGCTNCN

 G P G G F P R ? G G P ? ? G V R A L G ? -
 D P A A F R A ? V A ? C ? V C V P W ? ? -
 T R R L S A R W W P ? A W C A C F G ? ? -

 ANGGCGGCCCCCGCTGGCTTCTGGCTGGCCAGGTGGTGGTGGCTGAANGANCTGGTGCG
 241 +-----+-----+-----+-----+-----+-----+-----+-----+
 TNCCCGCGGCGGGCGCGGGGGAGGAAGGGCGTCCACAGGACAGGACTTCTNGACCCACCG

 ? A A P R R P L L P P C V L P E ? ? G G -
 ? ? F P A A P S P R Q V S C L ? ? L V A -
 G ? P P F P P P S A R C P A * ? ? W W P -

 CGAGGTGCTGCANANGCTGGGANCCCCGGGAANACGTGCTGGCCCTGGCTTGGCTTGG
 301 +-----+-----+-----+-----+-----+-----+-----+-----+
 GGCTCACGACGTNTACGACACGCTTGGCGCGGCTTNTTGACGGACUUAAGCCGAAGCG

 P S A A ? A V R ? R R E ? R A G L R L R -
 R V L ? ? I C ? R G A ? N V L A F G F A -
 E C C ? ? C A ? A A R ? T C W P S A S R -

 GCTGGACGGGGCCCGGGGGCCCCCGGAGGGCTTACACACAGGCGTGGCGAGCTA
 361 +-----+-----+-----+-----+-----+-----+-----+-----+
 CGACGACCTGGCGGG

 A A G R G P R G P P R G I H H Q R A Q L -
 L L D G A R G G F P E A F T T S V R S Y -
 C W T G P A G A P F R E S P P A C A A T -

FIGURE 51 (cont.)

FIGURE 51 (cont.)

FIGURE 51 (cont.)

FIGURE 51 (cont.)

TCCCTCACTGCGCAGTGAAGTGTAQGTRGTCAGGCCTCACGGTCTTTCTTTATGTC
 1681 -----+-----+-----+-----+-----+-----+-----+-----+-----+ 1740
 AGGAAGTGACCGACTACTCACACATGCCAGCAGCTGACGAGTCAGAAACAAAATACAGT

 a S C T G * V C T S S S C S C L S F M S -
 b F A I A D E C V R R R A A Q V F L L C H -
 c L H W I M S V Y V V E L L R S F F Y V T -

 CGGAGACCAOFTTCAAAAGAACAGGCTCTTTCTACCGGAAGAGTGTCTGGAGCAAGT
 1741 -----+-----+-----+-----+-----+-----+-----+-----+-----+ 1800
 GCCTCTGGGAGCAAACTTTCTCTCGAGAAAAAGATGGCTCTCACASACCTCTCA

 a R R P R F K R T G S F S T G R V S G A S -
 b G D H V S K E Q A L F L P E E C L E Q V -
 c E T T F Q K N R L F F Y R K S V W S K L -

 TGCAAACCATTTGAATCAGACAGCACTTGAAGAGGGTGCAGCTGOGGGAGCTGTCGGAAAG
 1801 -----+-----+-----+-----+-----+-----+-----+-----+-----+ 1860
 ACGTTTGTAACTTGTCTGTGACTCTCTCCCACGTO3AQRCCTCTGACAGCCTTC

 a C R A L E S D S T * R G C S C G S C R K -
 b A K H W N Q T A L E E C A A A C A V G S -
 c Q S T G T R Q H L K R V Q L R E L S E A -

 CAGAGGTCAGGCAAGCATGGCAACCCAGGCGGGCCCTGGTACAGTCAGACICCCCCTCA
 1861 -----+-----+-----+-----+-----+-----+-----+-----+-----+ 1920
 GTCTTCACTTGGTGTACCCCTTGGTGGGGCGGGCGGACTCGAGCTGACGAGCTG

 a Q R S G S I G K P G P P C * R F D S A S -
 b R G Q A A S C S O A R P A D V Q T P L H -
 c E V R Q H R E A R P A L L T S R L R F I -

 TCCCCCTAGCTGACGGGCTGCGGCCGATTGTGAAACATGGACTACGGTGTGGAGCCAGA
 1921 -----+-----+-----+-----+-----+-----+-----+-----+-----+ 1980
 AGGGGTGGGACTTCCCCGAGGGCGCTAACCTTGTCTGATGCAAGCACCCCTGGTCIT

 a S P S L T G C G R L * T W T T S W E P E -
 b P Q A * R A A A D C E H G L R R G S Q N
 c P K P D G L R P I V N M D Y V V G A R T

 CGTTCGGAGAGAAAAGAGGGCCGAGCTCTCACCTGGAGGGTGAAGRCACTGTTCAAGG
 1981 -----+-----+-----+-----+-----+-----+-----+-----+-----+ 2040
 GCAAGGGTCTCTTCTCCCGGCTGAGAGTGGAGCTCCACTTGGTGAACAAGTGCC

 a R S A E K R C P S V S P K G * R H C S A -
 b V P Q R K E G R A S H L E G E G T V Q R -
 c F R R E K R A E R L T S R V K A L F S V -

 TGCTCCTACTACCAUCGGGGGGGGGGGGGGGGGGCTCTGGGCGCCACTGTCTGGGCCCTGG
 2041 -----+-----+-----+-----+-----+-----+-----+-----+-----+ 2100
 ACGAGTTGAGTGTCTGGCGCGCGCGCGGGGGGGAGACGACGGACCGACCGACCG

 a C S T T S G R G A P A S W A P L C W A W -
 b A Q L R A G A A P R P F G R I C A G E P G -
 c L N Y E R A R R P G L L G A S V L G I D -

FIGURE 51 (cont.)

FIGURE 52

FIGURE 53

1

met

GCAGCGCTGCGTCCGTGCTGCGCACGTGGGAAGCCCTGGCCCCGGCCACCCCCGCG ATG

10

pro arg ala pro arg cys arg ala val arg ser leu leu arg ser
CCG CGC GCT CCC CGC TGC CGA GCC GTG CGC TCC CTG CTG CGC AGC

20

30

his tyr arg glu val leu pro leu ala thr phe val arg arg leu
CAC TAC CGC GAG GTG CTG CCG CTG GCC ACG TTC GTG CGG CGC CTG

40

gly pro gln gly trp arg leu val gln arg gly asp pro ala ala
GGG CCC CAG GGC TGG CGG CTG GTG CAG CGC GGG GAC CCG GCG GCT

50

60

phe arg ala leu val ala gln cys leu val cys val pro trp asp
TTC CGC GCG CTG GTG GCC CAG TGC CTG GTG TGC GTG CCC TGG GAC

70

ala arg pro pro pro ala ala pro ser phe arg gln val ser cys
GCA CGG CCG CCC CCC GCC GCC CCC TCC TTC CGC CAG GTG TCC TGC

80

90

leu lys glu leu val ala arg val leu gln arg leu cys glu arg
CTG AAG GAG CTG GTG GCC CGA GTG CTG CAG AGG CTG TGC GAG CGC

100

gly ala lys asn val leu ala phe gly phe ala leu leu asp gly
GGC GCG AAG AAC GTG CTG GCC TTC GGC TTC GCG CTG CTG GAC GGG

110

120

ala arg gly gly pro pro glu ala phe thr thr ser val arg ser
GCC CGC GGG GGC CCC CCC GAG GCC TTC ACC ACC AGC GTG CGC AGC

↑

130

tyr leu pro asn thr val thr asp ala leu arg gly ser gly ala
TAC CTG CCC AAC ACG GTG ACC GAC GCA CTG CGG GGG AGC GGG GCG

2008 RELEASE UNDER E.O. 14176

FIGURE 53 (cont.)

140 150

trp gly leu leu leu arg arg val gly asp asp val leu val his
TGG GGG CTG CTG CGC CGC GTG GGC GAC GAC GTG CTG GTT CAC

160

leu leu ala arg cys ala leu phe val val ala pro ser cys
CTG CTG GCA CGC TGC GCG CTC TTT GTG CTG GTG GCT CCC AGC TGC

170 180

ala tyr gln val cys gly pro pro leu tyr gln leu gly ala ala
GCC TAC CAG GTG TGC GGG CCG CCG CTG TAC CAG CTC GGC GCT GCC

190

thr gln ala arg pro pro pro his ala ser gly pro arg arg arg
ACT CAG GCC CGG CCC CCG CCA CAC GCT AGT GGA CCC CGA AGG CGT

200 210

leu gly cys glu arg ala trp asn his ser val arg glu ala gly
CTG GGA TGC GAA CGG GCC TGG AAC CAT AGC GTC AGG GAG GCC GGG

220

val pro leu gly leu pro ala pro gly ala arg arg arg gly gly
GTC CCC CTG GGC CTG CCA GCC CCG GGT GCG AGG AGG CGC GGG GGC

230 240

ser ala ser arg ser leu pro leu pro lys arg pro arg arg gly
AGT GCC AGC CGA AGT CTG CCG TTG CCC AAG AGG CCC AGG CGT GGC

250

ala ala pro glu pro glu arg thr pro val gly gln gly ser trp
GCT GCC CCT GAG CCG GAG CGG ACG CCC GTT GGG CAG GGG TCC TGG

260 270

ala his pro gly arg thr arg gly pro ser asp arg gly phe cys
GCC CAC CCG GGC AGG ACG CGT GGA CCG AGT GAC CGT GGT TTC TGT

280

val val ser pro ala arg pro ala glu glu ala thr ser leu glu
GTG GTG TCA CCT GCC AGA CCC GCC GAA GAA GCC ACC TCT TTG GAG

FIGURE 53 (cont.)

290 300
gly ala leu ser gly thr arg his ser his pro ser val gly arg
GGT GCG CTC TCT GGC ACG CGC CAC TCC CAC CCA TCC GTG GGC CGC

310
gln his his ala gly pro pro ser thr ser arg pro pro arg pro
CAG CAC CAC GCG GGC CCC CCA TCC ACA TCG CGG CCA CCA CGT CCC

320 330
trp asp thr pro cys pro pro val tyr ala glu thr lys his phe
TGG GAC ACG CCT TGT CCC CCG GTG TAC GCC GAG ACC AAG CAC TTC

340
leu tyr ser ser gly asp lys glu gln leu arg pro ser phe leu
CTC TAC TCC TCA GGC GAC AAG GAG CAG CTG CGG CCC TCC TTC CTA

350 360
leu ser ser leu arg pro ser leu thr gly ala arg arg leu val
CTC AGC TCT CTG AGG CCC AGC CTG ACT GGC GCT CGG AGG CTC GTG

370
glu thr ile phe leu gly ser arg pro trp met pro gly thr pro
GAG ACC ATC TTT CTG GGT TCC AGG CCC TGG ATG CCA GGG ACT CCC

380 390
arg arg leu pro arg leu pro gln arg tyr trp gln met arg pro
CGC AGG TTG CCC CGC CTG CCC CAG CGC TAC TGG CAA ATG CGG CCC

400
leu phe leu glu leu leu gly asn his ala gln cys pro tyr gly
CTG TTT CTG GAG CTG CTT GGG AAC CAC GCG CAG TGC CCC TAC GGG

410 420
val leu leu lys thr his cys pro leu arg ala ala val thr pro
GTG CTC CTC AAG ACG CAC TGC CCG CTG CGA GCT GCG GTC ACC CCA

430
ala ala gly val cys ala arg glu lys pro gln gly ser val ala
GCA GCC GGT GTC TGT GCC CGG GAG AAG CCC CAG GGC TCT GTG GCG

FIGURE 53 (cont.)

440 450
ala prc glu glu glu asp thr asp pro arg arg leu val gln leu
GCC CCC GAG GAG GAC ACA GAC CCC CGT CGC CTG GTG CAG CTG

460
leu arg gln his ser ser pro trp gln val tyr gly phe val arg
CTC CGC CAG CAC AGC AGC CCC TGG CAG GTG TAC GGC TTC GTG CGG

470 480
ala cys leu arg arg leu val pro pro gly leu trp gly ser arg
GCC TGC CTG CGC CGG CTG GTG CCC CCA GGC CTC TGG GGC TCC AGG

490
his asn glu arg arg phe leu arg asn thr lys lys phe ile ser
CAC AAC GAA CGC CGC TTC CTC AGG AAC ACC AAG AAG TTC ATC TCC

500 510
leu gly lys his ala lys leu ser leu gln glu leu thr trp lys
CTG GGG AAG CAT GCC AAG CTC TCG CTG CAG GAG CTG ACG TGG AAG

520
met ser val arg asp cys ala trp leu arg arg ser pro gly val
ATG AGC GTG CGG GAC TGC GCT TGG CTG CGC AGG AGC CCA GGG GTT

530 540
gly cys val pro ala ala glu his arg leu arg glu glu ile leu
GGC TGT GTT CCG GCC GCA GAG CAC CGT CTG CGT GAG GAG ATC CTG

550
ala lys phe leu his trp leu met ser val tyr val val glu leu
GCC AAG TTC CTG CAC TGG CTG ATG AGT GTG TAC GTC GTC GAG CTG

560 570
leu arg ser phe phe tyr val thr glu thr thr phe gln lys asn
CTC AGG TCT TTC TTT TAT GTC ACG GAG ACC ACG TTT CAA AAG AAC

580
arg leu phe phe tyr arg pro ser val trp ser lys leu gln ser
AGG CTC TTT TTC TAC CGG CCG AGT GTC TGG AGC AAG TTG CAA AGC

590 600
ile gly ile arg gln his leu lys arg val gln leu arg glu leu
ATT GGA ATC AGA CAG CAC TTG AAG AGG GTG CAG CTG CGG GAG CTG

FIGURE 53 (cont.)

610

ser glu ala glu val arg gln his arg glu ala arg pro ala leu
TCG GAA GCA GAG GTC AGG CAG CAT CGG GAA GCC AGG CCC GCC CTG

620

630

leu thr ser arg leu arg phe ile pro lys pro asp gly leu arg
CTG ACG TCC AGA CTC CGC TTC ATC CCC AAG CCT GAC GGG CTG CGG

640

pro ile val asn met asp tyr val val gly ala arg thr phe arg
CCG ATT GTG AAC ATG GAC TAC GTC GTG GGA GCC AGA ACG TTC CGC

650

660

arg glu lys arg ala glu arg leu thr ser arg val lys ala leu
AGA GAA AAG AGG GCC GAG CGT CTC ACC TCG AGG GTG AAG GCA CTG

670

phe ser val leu asn tyr glu arg ala arg arg pro gly leu leu
TTC AGC GTG CTC AAC TAC GAG CGG GCG CGC CCC GGC CTC CTG

680

690

gly ala ser val leu gly leu asp asp ile his arg ala trp arg
GGC GCC TCT GTG CTG GGC CTG GAC GAT ATC CAC AGG GCC TGG CGC

700

thr phe val leu arg val arg ala gln asp pro pro pro glu leu
ACC TTC GTG CTG CGT GTG CGG GCC CAG GAC CCG CCT GAG CTG

710

720

tyr phe val lys val asp val thr gly ala tyr asp thr ile pro
TAC TTT GTC AAG GTG GAT GTG ACG GGC GCG TAC GAC ACC ATC CCC

730

gln asp arg leu thr glu val ile ala ser ile ile lys pro gln
CAG GAC AGG CTC ACG GAG GTC ATC GCC AGC ATC AAA CCC CAG

740

750

asn thr tyr cys val arg arg tyr ala val val gln lys ala ala
AAC ACG TAC TGC GTG CGT CGG TAT GCC GTG GTC CAG AAG GCC GCC

760

his gly his val arg lys ala phe lys ser his val ser thr leu
CAT GGG CAC GTC CGC AAG GCC TTC AAG AGC CAC GTC TCT ACC TTG

FIGURE 53 (cont.)

770 780
thr asp ieu gln pro tyr met arg gln phe val ala his leu gln
ACA GAC CTC CAG CCG TAC ATG CGA CAG TTC GTG GCT CAC CTG CAG

790
glu thr ser pro leu arg asp ala val val ile glu gln ser ser
GAG ACC AGC CCG CTG AGG GAT GCC GTC GTC ATC GAG CAG AGC TCC

800 810
ser leu asn glu ala ser ser gly leu phe asp val phe leu arg
TCC CTG AAT GAG GCC AGC AGT GGC CTC TTC GAC GTC TTC CTA CGC

820
phe met cys his his ala val arg ile arg gly lys ser tyr val
TTC ATG TGC CAC CAC GCC GTG CGC ATC AGG GGC AAG TCC TAC GTC

830 840
gln cys gln gly ile pro gln gly ser ile leu ser thr leu leu
CAG TGC CAG GGG ATC CCG CAG GGC TCC ATC CTC TCC ACG CTG CTC

850
cys ser leu cys tyr gly asp met glu asn lys leu phe ala gly
TGC AGC CTG TGC TAC GGC GAC ATG GAG AAC AAG CTG TTT GCG GGG

860 870
ile arg arg asp gly leu leu leu arg leu val asp asp phe leu
ATT CGG CGG GAC GGG CTG CTC CTG CGT TTG GTG GAT GAT TTC TTG

880
leu val thr pro his leu thr his ala lys thr phe leu arg thr
TTG GTG ACA CCT CAC ACC CAC GCG AAA ACC TTC CTC AGG ACC

890 900
leu val arg gly val pro glu tyr gly cys val val asn leu arg
CTG GTC CGA GGT GTC CCT GAG TAT GGC TGC GTG GTG AAC TTG CGG

910
lys thr val val asn phe pro val glu asp glu ala leu gly gly
AAG ACA GTG GTG AAC TTC CCT GTA GAA GAC GAG GCC CTG GGT GGC

920 930
thr ala phe val gln met pro ala his gly leu phe pro trp cys
ACG GCT TTT GTT CAG ATG CCG GCC CAC GGC CTA TTC CCC TGG TGC

FIGURE 53 (cont.)

940

gly leu leu leu asp thr arg thr leu glu val gln ser asp tyr
GGC CTG CTG CTG GAT ACC CGG ACC CTG GAG GTG CAG AGC GAC TAC

950

ser ser tyr ala arg thr ser ile arg ala ser val thr phe asn
TCC AGC TAT GCC CGG ACC TCC ATC AGA GCC AGT GTC ACC TTC AAC

960

970

arg gly phe lys ala gly arg asn met arg arg lys leu phe gly
CGC GGC TTC AAG GCT GGG AGG AAC ATG CGT CGC AAA CTC TTT GGG

980

val leu arg leu lys cys his ser leu phe leu asp leu gln val
GTC TTG CGG CTG AAG TGT CAC AGC CTG TTT CTG GAT TTG CAG GTG

990

1000

asn ser leu gln thr val cys thr asn ile tyr lys ile leu leu
AAC AGC CTC CAG ACG GTG TGC ACC AAC ATC TAC AAG ATC CTC CTG

1010

leu gln ala tyr arg phe his ala cys val leu gln leu pro phe
CTG CAG GCG TAC AGG TTT CAC GCA TGT GTG CTG CAG CTC CCA TTT

1020

1030

his gln gln val trp lys asn pro thr phe phe leu arg val ile
CAT CAG CAA GTT TGG AAG AAC CCC ACA TTT TTC CTG CGC GTC ATC

1040

ser asp thr ala ser leu cys tyr ser ile leu lys ala lys asn
TCT GAC ACG GCC TCC CTC TGC TAC TCC ATC CTG AAA GCC AAG AAC

1050

1060

ala gly met ser leu gly ala lys gly ala ala gly pro leu pro
GCA GGG ATG TCG CTG CGG GCC AAG GGC GCC GGC CCT CTG CCC

1070

ser glu ala val gln trp leu cys his gln ala phe leu leu lys
TCC GAG GCC GTG CAG TGG CTG TGC CAC CAA GCA TTC CTG CTC AAG

1080

1090

leu thr arg his arg val thr tyr val pro leu leu gly ser leu
CTG ACT CGA CAC CGT GTC ACC TAC GTG CCA CTC CTG GGG TCA CTC

FIGURE 53 (cont.)

1100 1110
arg thr ala gln thr gln leu ser arg lys leu pro gly thr thr
AGG ACA GCC CAG ACG CAG CTG AGT CGG AAG CTC CCG GGG ACG ACG

1120
leu thr ala leu glu ala ala ala asn pro ala leu pro ser asp
CTG ACT GCC CTG GAG GCC GCA AAC CCG GCA CTG CCC TCA GAC

1130 1132
phe lys thr ile leu asp OP
TTC AAG ACC ATC CTG GAC TGA TGGCCACCCGCCACAGCCAGGCCAGAGCAGA
CACCAAGCAGCCCTGTCACGCCGGCTCTACGTCCCAGGGAGGGAGGGCGGCCACACCC
AGGCCCGCACCGCTGGGAGTCTGAGGCCTGAGTGAGTGTGTTGGCCGAGGCCTGCATGTCC
GGCTGAAGGCTGAGTGTCCGGCTGAGGCCTGAGCGAGTGTCCAGCCAAGGGCTGAGTGTC
CAGCACACCTGCCGTCTTCACTCCCCACAGGCTGGCGCTGGCTCCACCCCCAGGGCCAG
CTTTCYTCACCAGGAGCCGGCTTCCACTCCCCACATAGGAATAGTCCATCCCCAGATT
CGCCATTGTTCACCCYTCGCCCTGCCYTCCTTGCCCTCCACCCCCACCATCCAGGTGGA
GACCCCTGAGAAGGACCCCTGGAGCTCTGGGAATTGGAGTGACCAAAGGTGTGCCCTGTA
CACAGGCGAGGACCCCTGCACCTGGATGGGGTCCCTGTGGTCAAATTGGGGGAGGTGC
TGTGGAGTAAAATACTGAATATGAGTTTCAGTTTGRAAAAAAAAAAAAAAA
AAAAAAAAAA

FIGURE 54

