Technical Description

The Equipment Under Test (EUT) is a 2.4GHz Bluetooth 2.1 + EDR transceiver speaker. The EUT is power by an AC Adapter (Model: K15S140100U; Input 100-240V, 50/60Hz, 0.5A; Output: 14.0V, 1.0A) or 8x 1.5VDC AA size Alkaline Battery. The Bluetooth module in the EUT is operating in the frequency range from 2402MHz to 2480MHz (79 channels with 1MHz channel spacing). After pairing, the audio signal can be fed to the speaker. Also there is an Aux port for audio input only

2.4GHz Bluetooth Module:

Modulation Type: GFSK

Antenna Type: Integral, Internal

Frequency Range for 2.1: 2402MHz - 2480MHz, 1MHz channel spacing, 79

channels

Nominal field strength is 92.9dBµV/m @ 3m

Production Tolerance of field strength is 95.9 dBµV/m

Antenna gain is 0dBi

The functions of main ICs are mentioned below.

- **1. Part 1:** MCU_SOC Contains RF Preamplifier, mixing, IF amplifier, Demodulation
- 1)M1 acts as the 2.4GHz radio core of Bluetooth module
- 2)Crystal (16MHz) to provide system clock for M1
- 2. Part 2: Line Input, Bluetooth Input, Switch Function and Volume Control
- 1)U6 acts as XZD4558 SOP-8 Dual operational amplifier
- 2)U2 acts as SPDT Analog Switch CRT
- 3) U5 acts as Volume Control IC
- 3. Part 3: AUDIO AMPLIFIER IC
- 1) U4 acts as 15WClass-D Audio Power Amplifier with Power Limit IC AMP PAM8006A QFN5*5-32L
- **4. Part 4:** DC BATTERY INPUT POWER SUPPLY AMP_VDD U1,3 Manostat 5.0V_3.3V
- 1) U3 acts as 15WClass-D Audio Power Amplifier with Power Limit IC AMP PAM8006A QFN5*5-32L
- 2) U1 acts as a Voltage Regulator IC
- 3) Q4 acts as MOSFET XSZ2107
- 5. Part 5: LED1 KEY OPERATING And Working instructions LED

ZYM-BT55_V1.0
Bluetooth Module
Datasheet

Document History

Revision	Date	Change Reason
V1.0	2011-12-10	First release

Reproduction of this document in part or in whole, by any means is prohibited without written permission from JIAXING GLEAD ELECTRONICS Co.,Ltd. The information contained herein is believed to be accurate as of the date of publication. However, JIAXING GLEAD ELECTRONICS Co.,Ltd is not liable for any damages, including indirect or consequential from the use of software this document represents, or any reliance of the accuracy of this document. *JIAXING GLEAD ELECTRONICS* Co.,Ltd reserves the right to change the contents of this document at any time without notice. This document contains proprietary confidential trade secrets and may be subject to additional restrictions contained in the licensing agreement under which this document was obtained.

TABLE OF CONTENTS

1 Introduction and Block Diagram	4
1.1 General Introduction	4
1.2 Block Diagram	4
2 Key Features and Application Area	5
2.1 Key Features	5
2.2 Application Area	5
3 Technical Specifications	6
3.1 General Specification	
3.2 Electrical Characteristics	6
3.2.1 Absolute Maximum Rating	6
3.2.2 Recommended Operating Conditions	6
3.2.3 Stereo Codec: Analogue to Digital Converter	
3.2.4 Stereo Codec: Digital to Analogue Converter	7
4 Mechanical Dimensions and Pin Assignment	9
4.1 Mechanical Dimensions	9
4.2 Pin Assignment	10
5 Example Application Schematic	12
6 NOTICE!	
6.1 General information	13
6.2 Electro Static Discharge (ESD)	
7 Recommended Reflow Temperature Profile	
8 Order information	
8.1 Order information	
8.2 Contacts	

1 Introduction and Block Diagram

1.1 General Introduction

The ZYM-BT55 module from GLEAD is a complete Bluetooth® solution.It is built on CSR BC05 MultiMedia External Core and 8Mbit/16Mbit/32Mbit Flash memory.It's a short range,compact and cost effective module. Be able to be embedded into your any electronics devices which need Bluetooth® connection,such as PND, Car Audio, Home Audio, Car kit, Handsfree applications...

The ZYM-BT55 module is a power class2 Bluetooth® device, and is in compliance with version 2.1 of the Bluetooth® specification. It includes CSR BC05 MultiMedia Core and 8Mbit/16Mbit/32Mbit Flash memory, a radio front-end, antenna interface, supporting circuitry, together with some higher-level software protocols and applications such as L2CAP, SDP, GAP, HSP, HFP, A2DP, AVRCP, OPP and PBAP resided in the flash memory.

1.2 Block Diagram

2 Key Features and Application Area

2.1 Key Features

- · A small and cost effective Bluetooth® System
- Bluetooth® specification v2.1 compliant
- Class 2, up to 10-meter range
- Complete 2.4GHz Bluetooth® System
- Power management: low power 1.8V operation for Bluetooth® core
- Bluetooth® Profile Supported: HSP, HFP, A2DP, AVRCP, OPP, PBAP
- Built in 16-bit Stereo Codec- 92dB SNR for DAC
- External antenna
- On-board flash memory (8Mbits/16Mbits/32Mbits)
- Optional echo cancellation software library
- Support multiple connections
- Support for 802.11 Co-existence
- Surface mount module for embedded applications
- Several firmware options
- Rewritable flash memory for easy upgrade route
- Custom firmware production available

2.2 Application Area

- Stereo Bluetooth® headset/headphone
- Automotive car kit applications
- Personal Navigation Device
- PDAs and other portable terminals
- · MP3 headset
- High-end noise cancellation mono headset

3 Technical Specifications

3.1 General Specification

No.	Items	Description		
1	Bluetooth Version	v2.1 + EDR		
2	Chipset	CSR BC57E687C		
3	Dimension	21mm x 13.5mm x 2.2mm		
4	Voltage	3.3V~4.2V DC		
5	Frequency Range	2402~2480MHz		
6	Maximum RF Transmit Power	4dBm (Class 1, Class 2 and Class 3 support)		
7	Receive Sensitivity	-92dBm (typ) π /4 DQPSK receiver sensitivity		
'	Neceive Sensitivity	and -84dBm (typ) 8DPSK receiver sensitivity		

3.2 Electrical Characteristics

3.2.1 Absolute Maximum Rating

Parame	ter	Min	Max	Unit
Storage temp	perature	-40	+105	$^{\circ}$
	VBAT	3.2	4.4	$^{\circ}$
Supply voltage	LED[1:0]		4.4	V
	VDD_CHG		6.5	V

3.2.2 Recommended Operating Conditions

Parameter	Minimum	Тур	Maximum	Unit
Operating temperature	-40	20	+85	$^{\circ}$
VCHG	4.75	5.00	5.75	V
VBAT	3.2	4.0	4.4	V
POWER	3.2	4.0	4.4	V
1V8	1.7	1.8	1.9	V

3.2.3 Stereo Codec: Analogue to Digital Converter

Analogue to Digital Converter					
Parameter	Conditions	Min	Тур	Max	Unit

Resolution	-		-	-	16	Bits
Input Sample Rate, F _{sample}	-		8	-	44.1	kHz
		F _{sample}				
	f _{in} = 1kHz	8kHz	-	79	-	dB
O'constitution	1 _{in}	11.025kHz	-	77	-	dB
Signal to Noise Ratio, SNR ^(a)	A-Weighted	16kHz	-	76	-	dB
ivalio, Siviv	THD+N < 1% 150mV _{pk-pk} input	22.050kHz	-	76	-	dB
		32kHz	-	75	-	dB
		44.1kHz	-	75	-	dB
Digital Gain	Digital Gain Resolution	-24	4	21.5	dB	
Analogue Gain	Analogue Gain Resolut	tion = 3dB	-	- Jan -	42	dB
Input full scale at	maximum gain (different	tial)	-	4	-	mV rms
Input full scale at minimum gain (differential)			-	800	-	mV rms
3dB Bandwidth			-	20	-	kHz
Microph <mark>one mode input i</mark> mpedance			-	6.0	-	Ω
THD+N (micropho	one input) @ 30mV rms	input	-	0.04	-	%

3.2.4 Stereo Codec: Digital to Analogue Converter

Digital to Analogue Converter Parameter Conditions Min Max Unit Typ Resolution 16 Bits Output Sample Rate, 96 kHz 8 Fsample F_{sample} $f_{in} = 1kHz$ 8kHz 95 dB $B/W = 20Hz \rightarrow 20kHz$ 11.025kHz 95 dB Signal to Noise A-Weighted 16kHz 95 dB Ratio, SNR THD+N < 0.01% 22.050kHz 95 dB 0dBFS signal 32kHz 95 dΒ Load = $100k\Omega$ 44.1kHz 95 dΒ 48kHz 95 dΒ Digital gain Digital gain Resolution = 1/32 -24 21.5 dΒ Analogue Gain Resolution = 3dB Analogue gain -21 dB

Output voltage full-scale swing (differential) ^(a)			750	-	mV rms
Allowed Load	Resistive	16(8)		O.C	Ω
Allowed Load	Capacitive			500	pF
THD+N 100kΩ load				0.01	%
THD+N 16Ω load			-	0.1	%
SNR (Load = 16Ω, 0dBFS input relative to digital silence)			-95	-	dB

4 Mechanical Dimensions and Pin Assignment

4.1 Mechanical Dimensions

Unit(mm)

4.2 Pin Assignment

Pin No.	Name	Pad Type	Description		
1	AIO1	Bi-directional	Analogue programmable input/output line		
2	AIO0	Bi-directional	Analogue programmable input/output line		
3	RESET	CMOS input with weak internal pull-up	Reset if low. Input debounced so must be low for >5ms to cause a reset		
4	GND	VSS	Ground connection		
5	PIO9				
6	PIO10				
7	PIO11	Bi-directional with	7.		
8	PIO12	programmable strength internal	Programmable input/output line		
9	PIO13	strength internal pullup/down			
10	PIO14	paliap/down			
11	PIO15				
12	GND	VSS	Ground connection		
13	VDD		3.3V power supply		
14	VDD USB	Power	Positive supply for UART/USB ports		
15	1V8		1.8V power supply		
16	GND	VSS	Ground connection		
17	USB_DP	Bi-directional	USB data plus with selectable internal 1.5kΩ pull-up resistor		
18	USB_DN	Bi-directional	USB data minus		
19	UART_RT S	Bi-directional CMOS output, tri-state, withweak internal pull-up	UART request to send active low		
20	UART_CT S	CMOS input with weak internal pulldown	UART clear to send active low		
21	UART_RX	CMOS input with weak internal pulldown	UART data input		
22	UART_TX	Bi-directional CMOS output, tri-state, with weak internal pull-up	UART data output		
23	PCM_IN	CMOS input, with weak internal pulldown	Synchronous data input		
24	PCM_SYN C	Bi-directional with weak internal pulldown	Synchronous data sync		
25	PCM_CLK	Bi-directional with weak internal pulldown	Synchronous data clock		
26	PCM_OUT	CMOS output, tristate, with weak internal pull-down	Synchronous data output		

27	SPI_CSB	Input with weak internal pull-up	Chip select for SPI, active low	
28	SPI_MISO	CMOS output, tristate, with weak internal pull-down	SPI data output	
29	SPI_CLK	Input with weak internal pull-down	SPI clock	
30	SPI_MOSI	CMOS input, with weak internal pulldown	SPI data input	
31	VRE_IN	Analogue	Enable,active high	
32	VDD_BAT	Power	Lithium ion/polymer battery positive terminal. Battery charger output and input to switch-mode regulator	
33	GND	VSS	Ground connection	
34	VDD_CHG	Charger input	Lithium ion/polymer battery charger input	
35	LED1	Open drain output	LED driver	
36	LED0	Open drain output	LED driver	
37	GND	VSS	Ground connection	
38	SPK_L_N	Analogue	Speaker output negative, left	
39	SPK_L_P	Analogue	Speaker output positive, left	
40	SPK_R_N	Analogue	Speaker output negative, right	
41	SPK_R_P	Analogue	Speaker output positive, right	
42	GND	VSS	Ground connection	
43	MIC_BIAS	Analogue	Microphone bias	
44	MIC_B_P	Analogue	Microphone input positive, right	
45	MIC_B_N	Analogue	Microphone input negative, right	
46	MIC_A_P	Analogue	Microphone input positive, left	
47	MIC_A_N	Analogue	Microphone input negative, left	
48	GND	VSS	Ground connection	
49	PIO0	Bi-directional with	Programmable input/output line (external RXEN)	
50	PIO1	programmable strength internal	Programmable input/output line (external TXEN)	
51	PIO2	pullup/down	Programmable input/output line	
52	PIO3		Programmable input/output line	
53	GND	VSS	Ground connection	
54	RF	Bi-directional	RF input/output	
55	GND	VSS	Ground connection	
56	PIO4	B. P. C. 1 19		
57	PIO5	Bi-directional with		
58	PIO6	programmable strength internal	Programmable input/output line	
59	PIO7	pullup/down		
60	PIO8	F mak, as m.		

5 Example Application Schematic

6 NOTICE!

This chapter contains important information for the safe and reliable use of the ZYM-BT55 BT Module. Please read this chapter carefully before starting to use the ZYM-BT55 BT Module.

6.1 General information

Bluetooth technology is in fact a kind of short distance wireless communication technology, which can effectively simplify the palmtop computer, notebook computer and mobile phone, and other mobile phones for communication between terminal equipment, can also be successful. These simplify the equipment and Internet communication between the Internets, so that these moderns communication equipment and data transmissions between the Internets' become more quickly and efficiently, to widen the road for wireless communications.

6.2 Electro Static Discharge (ESD)

The following Electro Static Discharge (ESD) precautions are recommended:

- Protective outer garments
- Handle device in ESD safeguarded work area
- Transport device in ESD shielded containers
- Monitor and test all ESD protection equipment
- Treat the ZYM-BT55 BT Module as Extremely sensitive to ESD

7 Recommended Reflow Temperature Profile

The module must go through 120°C baking for at least 4 hours before reflow process.

推荐回流温度条件(Typical reflow condition)

8 Order information

8.1 Order information

Device		Order		
Bovios	Туре	Size(mm)	Shipment Method	Number
ZYM-BT55 BT Module based on CSR BC57E687C chip	PCB PAD	21x 13.5 x 2.2	Carrier Tape	ZYM-BT55

8.2 Contacts

JIAXING GLEAD ELECTRONICS CO.,LTD.

Address: JinFuLai building room 801-809, Dabao Road No.49-1,

Xin' an Street 28, Baoan District, Shenzhen City

TEL:+86-755-83868856

FAX:+86-755-83869254

http://www.glead.com.cn