Введение в математическую статистику ІІ

Леонид Иосипой

Программа «Математика для анализа данных» Центр непрерывного образования, ВШЭ

31 Октября 2018

• Оценка математического ожидания распределения

• Проверка гипотез

- Линейная регрессия
- Спасибо за внимание

Оценка математического ожидания

Выборочное среднее — среднее арифметическое по выборке.

Выборочная мода — самое распространённое значение.

<u>Выборочная медиана</u> — центральный элемент вариационного ряда.

Оценка математического ожидания

- Делается предположение о процессе, генерирующем данные, и задача состоит в том, чтобы определить, содержат ли данные достаточно информации, чтобы отвергнуть это предположение.
- Если информации не достаточно, то говорится, что опытные данные предположению (гипотезе) не противоречат.

Пример

Пусть $X_1, \ldots, X_n \sim \text{Ber}(p)$.

 $H_0: p = \frac{1}{2}$ (основная гипотеза).

 $H_1: p \neq \frac{1}{2}$ (альтернативная гипотеза).

Рассмотрим статистику $T = |\bar{X} - 1/2|$.

Если она достаточно большая, то основная гипотеза отклоняется.

выборка: $\mathbf{X} = (X_1, \dots, X_n)$

 $H_0: X_i \sim F_0$ нулевая гипотеза:

альтернатива: $H_1: X_i \sim F_1 \neq F_0$

статистика: $T(x_1,\ldots,x_n)$, $T(\mathbf{X})\sim G$ при $\mathbf{X}\sim F_0$

 $T(\mathbf{X}) \nsim G$ при $\mathbf{X} \sim F_1$

реализация выборки: $\mathbf{x} = (x_1, ..., x_n)$

реализация статистики: $t=\mathcal{T}(\mathbf{x})$

достигаемый уровень значимости: $p(\mathbf{x}) = \mathbb{P}(T(\mathbf{X}) \geq t \mid H_0)$

 $p(\mathbf{x})$ — вероятность при H_0 получить $T(\mathbf{x}) = t$ или ещё более экстремальное значение. Гипотеза отвергается при $p(\mathbf{x}) \leq \alpha$, α — уровень значимости.

Величина $p(\mathbf{x})$ называется p-value.

	H_0 верна	H_0 неверна
H_0 принимается	H_0 верно принята	Ошибка второго рода
		(False negative)
H_0 отвергается	Ошибка первого рода	H_0 верно отвергнута
	(False positive)	

Type I error (false positive)

Type II error (false negative)

Если величина p-value достаточно мала, то данные свидетельствуют против нулевой гипотезы в пользу альтернативы.

Если величина p-value недостаточно мала, то данные не свидетельствуют против нулевой гипотезы в пользу альтернативы.

При помощи инструмента проверки гипотез нельзя доказать справедливость нулевой гипотезы!

Вероятность отвергнуть нулевую гипотезу зависит не только от того, насколько она отличается от истины, но и от размера выборки.

По мере увеличения n нулевая гипотеза может сначала приниматься, но потом выявятся более тонкие несоответствия выборки гипотезе H_0 , и она будет отвергнута.

Джеймс Бонд говорит, что предпочитает мартини взболтанным, но не смешанным. Проведём слепой тест: n раз предложим ему пару напитков и выясним, какой из двух он предпочитает.

Выборка: бинарный вектор длины *п*: 1 — Джеймс Бонд предпочёт взболтанный, 0 — смешанный.

Нулевая гипотеза: Джеймс Бонд не различает два вида мартини, т.е. выбирает наугад.

Статистика: t =число единиц в выборке.

Если нулевая гипотеза справедлива и Джеймс Бонд не различает два вида мартини, то равновероятны все выборки длины n из нулей и единиц.

Пусть n=16, тогда существует $2^{16}=65536$ равновероятных варианта. Статистика t принимает значения от 0 до 16:

 H_1 : Джеймс Бонд предпочитает взболтанный мартини. При справедливости такой альтернативы более вероятны большие значения t (т.е., большие t свидетельствуют против H_0 в пользу H_1).

Вероятность того, что Джеймс Бонд предпочтёт взболтанный мартини в 12 или более случаях из 16 при справедливости H_0 , равна $\frac{2517}{65536} \approx 0.0384$.

0.0384 — достигаемый уровень значимости при реализации t=12.

 H_1 : Джеймс Бонд предпочитает какой-то определённый вид мартини. При справедливости такой альтернативы и очень большие, и очень маленькие значения t свидетельствуют против H_0 в пользу H_1).

Вероятность того, что Джеймс Бонд предпочтёт взболтанный мартини в 12 или более случаях из 16 при справедливости H_0 , равна $\frac{5034}{65536} \approx 0.0768$.

0.0768 — достигаемый уровень значимости при реализации t=12.

Чем ниже достигаемый уровень значимости, тем сильнее данные свидетельствуют против нулевой гипотезы в пользу альтернативы.

Проверка гипотез

Достигаемый уровень значимости нельзя интерпретировать как вероятность справедливости нулевой гипотезы!

Термин «регрессия» ввел Ф. Гальтон в своей статье «Регрессия к середине в наследовании роста» (1885 г.), в которой он сравнивал средний рост детей Y со средним ростом их родителей X (на основе данных о 928 взрослых детях и 205 их родителях).

Гальтон заметил, что рост детей у высоких (низких) родителей обычно также выше (ниже) среднего роста популяции $\mu \approx \overline{X} \approx \overline{Y}$, но при этом отклонение от μ у детей меньше, чем у родителей. Другими словами, экстремумы в следующем поколении сглаживаются, происходит возвращение назад (регрессия) к середине.

По существу, Гальтон показал, что зависимость Y от X хорошо выражается уравнением

$$Y - \overline{Y} = \frac{2}{3}(X - \overline{X}).$$

Проиллюстрируем основные идеи регрессии на примере изучения зависимости между скоростью автомобиля V и расстоянием Y, пройденным им после сигнала об остановке.

Для каждого отдельного случая результат определяется в основном тремя факторами:

- ightharpoonup скоростью автомобиля V в момент подачи сигнала;
- ightharpoonup временем реакции $heta_1$ водителя на этот сигнал;
- тормозами автомобиля.

Автомобиль успеет проехать путь $\theta_1 V$ до момента включения водителем тормозов и еще $\theta_2 V^2$ после этого момента, поскольку согласно элементарным физическим законам теоретическое расстояние, пройденное до остановки с момента торможения, пропорционально квадрату скорости.

Таким образом, в качестве модели годится $Y = \theta_1 V + \theta_2 V^2$.

Для экспериментальных данных **методом наименьших квадратов** были подсчитаны значения $\theta_1 = 0.76$ и $\theta_2 = 0.056$.

Есть несколько **типичных ошибок** («тонких мест»), которые следует иметь в виду, применяя регрессионный анализ. Сами по себе они достаточно очевидны. Тем не менее, о них часто забывают при работе с реальными данными и в результате приходят к неверным выводам.

Существуют три вида лжи: ложь, наглая ложь и статистика. (Марк Твен)

Пример

При исследовании зависимости веса Z студентов двух групп от их роста X и размера обуви Y в первой группе было получено регрессионное уравнение

$$Z - \overline{Z} = 0.9(X - \overline{X}) + 0.1(Y - \overline{Y}),$$

а для второй группы:

$$Z - \overline{Z} = 0.2(X - \overline{X}) + 0.8(Y - \overline{Y}).$$

Как объяснить существенное различие коэффициентов этих двухмоделей?

Ответ: дело здесь в том, что X и Y сильно зависимы, вследствие чего общий «весовой» коэффициент при $(X - \overline{X}) + (Y - \overline{Y})$ случайным образом распределился между слагаемыми.

Пример

Во время второй мировой войны англичане исследовали зависимость точности бомбометания Z от ряда факторов, в число которых входили высота бомбардировщика H, скорость ветра V, количество истребителей противника X.

Как и ожидалось, Z увеличивалась при уменьшении H и V. Однако (что поначалу представлялось необъяснимым), точность бомбометания Z возрастала также и при увеличении X.

Ответ: дальнейший анализ позволил понять причину этого парадокса. Дело оказалось в том, что первоначально в модель не был включен такой важный фактор, как Y — облачность. Он сильно влияет и на Z (уменьшая точность), и на X (бессмысленно высылать истребители, если ничего не видно).

Пример

Если найти зависимость между ежегодным количеством ρ родившихся в Голландии детей Z и количеством прилетевших аистов X, то она окажется довольно значительной. Можно ли на основе этого статистического результата заключить, что детей приносят аисты?

Ответ: рассмотрим проблему на содержательном уровне. Аисты появляются там, где им удобно вить гнезда; излюбленным же местом их гнездовья являются высокие дымовые трубы, какие строят в голландских сельских домах. По традиции новая семья строит себе новый дом — появляются новые трубы и, естественно, рождаются дети. Таким образом, и увеличение числа гнезд аистов, и увеличение числа детей являются следствиями одной причины Y — образования новых семей.

Спасибо за внимание!

