Notes on floating point

(Excess notation

First we need yet another righed integer representation. Idea is to use unsigned silvary, but subtract off a fixed bias to get the actual number

represented. It the width or wordsize the bias

e-g.	3	5.7	excess 5:
		r	exces(2: (far column)

	unsigned	exers 5	exen 2
111 101 100 011 010 001	6 5 4 3 2	1 0 -1 -2 -3 -4	4 3 2 1 0 -1
000	0	-5	

2 Recall scientific notation for decimal numbers:

for fixed size representation, and agree to use, e.g.

I slot for rign, 3 slots for exponent, 6 slots for significand.

sign exponent Montilla

A) 5.3 ×107 is some as 0.053 ×109. So would have used

+ 00900530000

This ambiguity is bad.

Therefore, insist number are normalized to have exactly one digit before decimal point. e.g. 0.053×109 -> 5.3×107.

No 'sign' slot for negative exponents. Designes could have chosen 2's complement or righted reginitude, but they didn't. Instead they use excess notation with a fixed bias.

e.g. with a bias of 500, +8.945 ×10⁻³ is writen with exponent

-3+500 = 497, astorning: +419 7 8 9 4 5 00

In real conjuters we use binary but the ideas are the same.

e.g. one possible approach is:

8 significand lits assure bihay point after 1st bit [different from text

$$e.g. + 17_{10} = + 10001_2$$

$$= + 1.0001_2 \times 2$$

$$= 10100_2$$

Note: let lit of righticavel is always 1 (lecause of normalization).

So he can assume it is there, and not warte space by stonly it.

With an implied bit, 17,0 becomes

011101100001000

See book for actual IEEE stordards
e.g. 1000 double: 64 bits, 11-bit exponent (bias 1023)

8-5. little double: 52-bit right-land, implied bit before bloom points.

Floating point anthretic

· for addition: align binary points; add; fruncate

· for multiplication: add exponents and multiply significands; truncate

try examples of these in decimal to get the idea

See also the suggested minital exercises.