$Sample\ Questions-Mid-Session\ Test\ CHEM1011$

(Note your test will consist of only 20 questions similar to these examples).

1.	A 1.00 L	gas sample at 705 Torr and 47 °C has a mass of 0.988 g. The gas is most likely:
	(A)	CO (molar mass 28 g mol ⁻¹) $PV = \kappa R^{-1}$ (705)
	(B)	CF_4 (molar mass 88 g mol ⁻¹) $\eta = \sqrt{760}$
	(C)	$CH_4 \text{ (molar mass 16 g mol}^{-1})$ (0. 0821)(273+4
	(D)	CO_2 (molar mass 44 g mol ⁻¹) = 0.03531 mol = 0.98
	(E)	$Cl_2 \text{ (molar mass 71 g mol}^{-1})$ $= 0.988/0.03531 \text{ g}$
2.	The name	e of the compound BaCl ₂ .2H ₂ O is
	(A)	barium dichloride
	(B)	barium dichlorohydrate
	(C)	barium chloride dihydrate
	(D)	barium chloride
	(E)	barium dichloride dihydrate
3.	formula fo	compound of lead and oxygen was found to contain 90.66% Pb. What is the empirical or the compound? 100g contains 90.66g Pb. + 9.34 g O
	(A)	= 90,66 000 5 9.36 med 0
	(B)	Pb3O4 = 207.2 mol 16 & 16.00
	(C)	PbO ₉ = 0.4375 ml Pb & 0.5838 mol C
	(D)	PbO ₉ Pb ₉ O PbO ₂ = 0.4375 ml fb & 0.5838 md C = Ratio i :1.334 mol ratio = Ratio i :4 atom ratio
	(E)	PbO ₂ = 3 : 4 atom talco.
4.	The nucle	eus of the species F is made up of
	(A)	9 protons, 19 neutrons and 0 electrons
	(B)	9 protons, 10 neutrons and 0 electrons
	(C)	10 protons, 9 neutrons and 0 electrons
	(D)	10 protons, 9 neutrons and 10 electrons
	(E)	9 protons, 10 neutrons and 9 electrons
5.	(The atom	pount of iron is contained in 125 g of it? nic mass of iron is 55.85 g mol ⁻¹). $Mol = \frac{125}{55.85}$
	(A)	$\begin{array}{ccc} 1.12 \text{ mol} & \text{holar mas} & \text{33.63} \\ 0.447 \text{ mol} & = 2.24 \text{ mol} \end{array}$
	(B)	
	(C)	3.49 mol
	(D)	6.98 mol
	(E)	2.24 mol (
6.	The charg	ge on a halide ion is
	(A)	always -2
	(B)	may be -1, +1, +3, +5, or +7
	(C)	always +1
	(D)	always +1 always -1 F, Cl, Br, I
	(E)	-1 or +7

1,	Given in	Le unbalanced equation: $\frac{1}{2} P_4 + \frac{2}{2} Cl_2$	→ 4 PCl ₃
	The bala	nced equation shows that for e	very mole of Cl ₂ used that the number of mole of PCl ₃
	formed is	s	6 mol \longrightarrow 4 mol \longrightarrow 4 mol
	(A)	3	in 1 mol -> 4 mol
	(B)	2	- 2 0
	(C)	3/2	- 2 not
	(D)	2/3	_
	(E)	6	any CH ₄ molecules as C ₂ H ₄ molecules. The partial
8.	A gas mi	ixture contains four times as m	any CH ₄ molecules as C ₂ H ₄ molecules. The partial
	pressure	of CH ₄ is 100 mmHg. What is	s the partial pressure of C_2H_4 in the mixture?
	(A)	400 mmHg	PV = nRT
	(B)	25 mmHg ←	in Pongs
	(C)	20 mmHg	igas and I have
	(D)	500 mmHg	· h C2H4 = 1 C2H4 7 - = 1/2H4
	(E)	100 mmHg	$\frac{h c_2 H_4}{h c H_4} = \frac{n c_2 H_4}{n c H_4} = \frac{1}{4} = \frac{h c_2 H_4}{100 \text{ ma}}$
9.		4.00 x 10 ²⁴ dinitrogen oxide	ughing gas) is 44.02 g.mol ⁻¹ . A sample molecules. What is the mass of the sample in grams?
	(A)	$2.92 \times 10^2 \text{ g}$	$= \frac{(4.00 \times 10^{24}) \times 44.02 \text{ g}}{6.022 \times 10^{23}} \times 44.02 \text{ g}$
	(B)	29.2 g	(6 022×10 ²³)
	(C)	$1.51 \times 10^2 \text{ g}$	
	(D)	$3.42 \times 10^2 \text{ g}$	= 292 g.
	(E)	1.51 x 10 ⁻² g	
10.	What vol NaCl(aq)	dume of 0.202 M NaCl(aq) sho	uld be used to prepare 125 mL of 3.20 x 10 ⁻³ M
	(A)	25.3 mL	$V_1 = C_2 V_2$ $V_2(V_1) = (3.20 \times 10^{-3})(0.125L)$ $V_1 = 0.00198 L$ $V_2 = 1.98 mL$
	(B)	0.0808 mL (0.20	$2)(v_1) = (3.20 \times 10^{-1})(0.10^{-1})$
	((C))	1.98 mL	V = 0.00198 L
	(D)	7.89 mL	= 1,98 mL.
	(E)	0.400 mL	
11,	Calculate	e the number of moles of Ca(O	H) ₂ (aq) needed to react completely with 125 mL of 6.00
	M HCl(ac	g). 125 p	n L of 6.00 M HCl = /125 \ 6.00 mol HC
	(A)	0.0416 mol	n L of 6.00 M HCl = (125) 6.00 mol HC = 0.75 mol.
	(B)	0.750 mol	= 0,75 mill.
	(C)	3.00 mol	2+ 22- 04
	(D)	0.375 mol (Ca	QH), + 2HCl -> Ca +2Cl +2HO.
	(E)	1.50 mol	Inol + 2 mol . 1 - 0.375 mol
		Noce	(OH) + 2HCl -> Ca2++2Cl+2HO. Inol + 2 mol. (\(\frac{1}{2}\times 0.75 mol. \(\frac{1}{2}\times 0.375 mol.\)

12.	_	s of the following three anions are respectively, SO_3^{2-} CO_3^{2-}			
	(4)	phosphide ion, sulfite ion, southeneste ion			
	(A)	phosphide ion, sulfite ion, carbonate ion			
	(B)	phosphate ion, sulfate ion, carbonate ion			
	(C)	phosphite ion, sulfite ion, carbonite ion			
	(D)	phosphite ion, sulfate ion, carbonate ion phosphate ion, sulfite ion, carbonate ion			
	(E)	phosphate ion, suffice ion, caroonate ion			
13. For the reaction: $6 \text{ Na(l)} + \text{Al}_2\text{O}_3(s) \rightarrow 2 \text{ Al(l)} + 3 \text{ Na}_2\text{O}(s)$					
When 5.52 grams of Na (molar mass 23.0 g,mol ⁻¹) is reacted with excess Al ₂ O ₃ (s) (molar					
	mass 102	g.mol ⁻¹), 1.00 g of Al(1) (molar mass 27.0 g.mol ⁻¹) is produced. The percent yield of $6Na + Al_2O_3 \rightarrow 2Al + 3Na_2O_3$ $46.3\% \leftarrow 6(23) + 102 \rightarrow 2(27)$ $18.1\% \qquad 1389 + 1029 \rightarrow 549 \text{ at } 100\%$ $11.1\% \qquad 5.529 + x.s. \rightarrow 2.169 \text{ at } 100\%$ $39.1\% \qquad -\%$ yield = $\frac{1.00}{2.16} \times 100 = 46.3\%$			
	Al is:	6Na + Alzo3 -> 2Al + 3Nazo			
	(A)	$46.3\% \leftarrow 6(23) + 102 \rightarrow 2(27)$			
	(B)	18.1% 1389 + 1024 Sty at 100% yield.			
	(C)	11.1% 5.529 + 1.00 - 1.636			
	(D)	39.1% - 1/6 yeld = 2.16 x100 - 40.510			
	(E)	15.4%			
14.	4. The formula for sulfurous acid is				
	(A)	HSO ₃			
	(B)	$H_2SO_3 \iff$			
	(C)	H_2S			
	(D)	HSO ₄			
	(E)	H_2SO_4			
15.	Consider	the following reaction: $3 \text{ NO}_2(g) + \text{H}_2\text{O}(l) \rightarrow 2 \text{ HNO}_3(l) + \text{NO}(g)$			
How many mole of the excess reactant remain after the reaction is complete if 2.00 moles of $H_2O(1)$ and 5.00 moles of NO_2 (g) are used?					
	(A)	d 5.00 moles of NO ₂ (g) are used? 0.33 mol H ₂ O(l) \leftarrow 3 NO ₂ + H ₂ O \rightarrow 2 HNO ₃ + NO 4.00 mol NO ₂ (g) \Rightarrow 5 nol + 5 mol			
	(B)	4.00 mol NO ₂ (g) 5 4 5 4			
	(C)	1.67 mol $H_2O(1)$ = $Excess H_2O = 2 mol - \frac{5}{3} mol$ 3.00 mol $NO_2(g)$ = 0.33 mol.			
	(D)	$3.00 \text{ mol NO}_2(g)$ -0.33 mol			
	(E)	1.00 mol NO ₂ (g)			
16.		Bismark brown, has a molar mass of 228.3 g.mol ⁻¹ . Analysis shows that it is 30.68% any nitrogen atoms are in each Bismark brown molecule?			
	(A)	5 nol BB = 228,3g			
	(B)	0.5 30.68% of 228.3g = 70.048 of No in 1 mod.			
	(C)	5 ← I mol BB = 228.3g 0.5 30.68% of 228.3g = 70.04g of N in I mol. 1 :- I mol BB contains 70.04/14.01 mol of N. 4 = 4.999 mol N.			
	(D)	= 4,999 mol N.			
	(E)	3 : Imolewe BB contains 5 molewles N.			

17. What energy is required to excite a hydrogen atom in its
$$n = 2$$
 state to the $n = 3$ state?

(A) $1.303 \times 10^{-25} \,\text{J}$ $\frac{1}{\lambda} = \text{Ru} \left(\frac{1}{n_1^2} - \frac{1}{n_2^2} \right)$

(B) $8.235 \times 10^6 \,\text{J}$ $= (1.098 \times 10^7) \left(\frac{1}{2^2} - \frac{1}{3^2} \right)$

(C) $1.818 \times 10^{-19} \,\text{J}$ $= 1525000 \,\text{m}^{-1}$

(D) $3.635 \times 10^{-19} \,\text{J}$ $= 1525000 \,\text{m}^{-1}$

(E) $3.029 \times 10^{-19} \,\text{J}$ $= 1000 \,$

(D)
$$3.635 \times 10^{-19} \text{J}$$
 $= 1525000 \text{ m}$.
(E) $3.029 \times 10^{-19} \text{J}$ $= 2.029 \times 10^{-19} \text{J}$ $= 3.029 \times 10^{-19} \text{J}$

Electromagnetic radiation with a frequency of 10.4 MHz has a wavelength of: 18.

(A)
$$6.89 \times 10^{-27} \,\mathrm{m}$$
 $C = 0.7$
(B) $9.61 \times 10^{-8} \,\mathrm{m}$ $C = 0.035 \,\mathrm{m}$

 $E = h \partial = \frac{h c}{r} = \frac{(6.626 \times 10^{34})(2.998 \times 10^{8})}{700 \times 10^{-9} \text{ m}}$ The energy per photon for visible light with a wavelength of 700 nm is: 19. $3.31 \times 10^{-31} \text{ J}$ (A) $2.84 \times 10^{-19} \,\mathrm{J}$ (B) $3.71 \times 10^{-19} \,\mathrm{J}$ (C)

(E)
$$9.96 \times 10^{-10} \,\mathrm{J}$$

An atom undergoes a transition from a higher to a lower state where the energy difference is 20. 3.03×10^{-19} J. The frequency of the photon emitted is:

(A)
$$4.57 \times 10^{-14} \text{ Hz}$$
 $E = 2.0$
(B) $4.57 \times 10^{14} \text{ Hz} \leftarrow 3.03 \times 10^{-19}$
(C) $2.99 \times 10^{13} \text{ Hz}$ $= \frac{19}{2.03 \times 10^{-34}} = \frac{3.03 \times 10^{-34}}{6.626 \times 10^{-34}} = \frac{3.03 \times 10^{-19}}{6.626 \times 10^$

- Which one of the following statements is true? 21.
 - A 2p orbital has two nodal planes (A)
 - A 2p orbital has no nodal planes (B)
 - (C) There are exactly three d orbitals in the 4d sublevel
 - (D) A 2s orbital has the quantum number m_l equal to \searrow
 - There are exactly three p orbitals in the 4p sublevel (E)

22. An unknown gas effuses at 1.05 times the rate of Cl₂ molecules, measured using the same apparatus under the same conditions of temperature and pressure. What is the probable identity of the unknown gas?

of the unknown gas?

(A)
$$NH_3$$
 (molar mass = 17.0 g mol⁻¹)

Take X

Take X

The same conditions of temperature and pressure. What is the product recommendation of the unknown gas?

 H_2 (molar mass = 2.0 g mol⁻¹) (B)

(C)
$$\text{Xe (molar mass} = 2.0 \text{ g mol}^{-1})$$

 $\text{SO}_2 \text{ (molar mass} = 64.1 \text{ g mol}^{-1})$

(E)
$$I_2 \text{ (molar mass = 253.8 g mol}^{-1}\text{)} \frac{1.1025}{1} = \frac{71}{\text{min } x}$$

$$\frac{1.1025}{1} = \frac{64.4 \text{ g and}^{-1}}{1}$$

23.	Which of the following groups of elements are arranged in order of decreasing atomic radius (that is, from largest to smallest)?					
	(A)	Na, K, Rb				
	(B)	Ne, Na, Mg				
	(C)	Cl, Ar, K				
	(D)	Be, C, O				
	(E)	Ar, Kr, Ne				
24.		For which of the following atoms or ions is the electronic configuration given NOT the ground state configuration for that atom or ion?				
	(A)	N $1s^2 2s^2 2p^3$				
	(B)	·				
	(C)	S $1s^2 2s^2 2p^6 3s^2 3p^4$ Cr $1s^2 2s^2 2p^6 3s^2 3p^6 4s^2 3d^4$ \leftarrow 4.5 $3d^5$ Cl $1s^2 2s^2 2p^6 3s^2 3p^6$ SPECIAL STABILITY OF Ca ²⁺ $1s^2 2s^2 2p^6 3s^2 3p^6$ $\frac{1}{2}$ - FILLEN SET OF d ORBITALS				
	(D)	CI- 1s2 2s2 2p6 3s2 3p6 SPECIAL STABILITY OF				
	(E)	Ca2+ 1s22s22p63s23p6 3-FILLED SET OF of ORBITALS				
25.		te of the following statements is TRUE?				
43.	(A)	Silicon has 12 core electrons and 2 valence electrons				
	(B)	Isolated atoms of zinc are diamagnetic				
	(C)	Cl ⁺ is isoelectronic with Ar				
	(D)	The ionic radius of Fe ³⁺ is larger than the ionic radius of Fe ²⁺				
	(E)	Isolated atoms of silicon are diamagnetic				
26						
26.	The first five successive ionisation energies of an element are 0.807, 2.433, 3.666, 25.033, 32.834 MJ mol ⁻¹ . Which one element from those listed below could this element be?					
	(A)	В				
	(B)	С				
	(C)	N				
	(D)	O				
	(E)	F				
27.	In which one of the following species is the central atom (the first atom in the formula) unlikely to have an octet of valence electrons?					
	(A)	$\mathrm{BF_4}^-$				
	(B)	XeO ₃ ←				
	(C)	SiCl ₄				
	(D)	NH ₃				
	(E)	CH_2Cl_2				
28.	How many lone pairs of electrons are there in TOTAL in the Lewis structure of XeF ₄ ?					
	(A)	14				
	(B)	6 E ₃				
	(C)	4 Xe				
	(D)	12 F				
	(E)	2				

- 30. Which of the following elements has the lowest first ionisation energy?
 - (A) Cl
 - (B) K <
 - (C) Br
 - (D) F
 - (E) Mg
- 31. The correct ground state electronic configuration for the isolated iron(III) ion is:

(A)	1s 2s ↑↓ ↑↓ [2p ↑↓ ↑↓ ↑↓	3s ↑↓	3p ↑↓ ↑↓ ↑↓	3d ↑ ↑ ↑ ↑ ↑	4s (
(B)	$ \begin{array}{c c} 1s & 2s \\ \hline \uparrow\downarrow \end{array} $	2p ↑ ↑ ↑ ↑	3s ↑↓	3p ↑↓ ↑↓ ↑↓	3d ↑ ↑ ↑ ↑ ↑	4s
(C)	1s 2s ↑	2p 1↓ 1↓ 1↓	3s	3p ↑ ↑ ↑ ↑	3d ↑ ↑ ↑	4s
(D)	1s 2s ↑↓ ↑↓	2p ↑↓ ↑↓ ↑↓	3s ↑↓	3p ↑↓ ↑↓ ↑↓	3d	4s ↑↓
(E)	1s 2s	2p	3s ↑↓	3p	3d	4s