Subjectul A. MECANICĂ

Nr. item	Soluţie/Rezolvare
III.a.	
	Sistem conservativ, izolat $E_m = const$
	$E_m = E_c + E_p$
	$mgH = \frac{mv^2}{2}$
	Rezultat final: H = 500 <i>m</i>
b.	$mgH = mgh_1 + \frac{mv_1^2}{2} = \frac{mv^2}{2}$
	$E_{c1} = E_{p1}$
	$E_{c1} = E_{p1}$ $\frac{mv^2}{2} = 2\frac{m{v_1}^2}{2}$
	Rezultat final: $v_1 \cong 70.7 m/s$
C.	$L_t = E_{c2} - E_{c1}$
	$mgd - F_r d = 0 - \frac{m{v_1}^2}{2}$
	Rezultat final: $F_r = 2505N$
d.	$L_g = mg(H+d)$
	rezultat final: $L_g = 2505 J$