

Power Electronics circuits / Equipments

1.0 Classification

PHASE CONTROLLER

CYCLO CONVERTER / MATRIX CONVERTER

2. Converter

Assumptions: 1.All the devices and circuit components are ideal.

2.Input is a pure sine wave.

- 2.1 Diode Circuits
- Uncontrolled Rectification
- Let α = the angle at which diode starts conducting.
 - β = the angle at which diode stops conducting.
 - γ = conduction angle = β α

2.1.1 Half Bridge: R-Load

$$V_i = V_m \sin \omega t = Ri = V_0$$

$$i = \frac{V_m}{R} \sin \omega t$$
, $i = I_{max}$ at $\omega t = \pi/2$

$$V_{avg} = V_m / \pi$$

$$V_{\rm rms} = V_{\rm m}/2$$

$$V_{\text{ripple}} = \sqrt{(V_{\text{rms}}^2 - V_0^2)}$$

 \rightarrow Measure of AC component in V_0

Ripple Factor =
$$V_{ripple} / V_0 = 1.21$$

2.1.2 Half Bridge: L-Load

$$\begin{aligned} &V_{i} = L \frac{di}{dt} = V_{m} \sin \omega t, \ i = I_{max} \ \text{at} \ \omega t = \pi \\ &i = \frac{V_{m}}{\omega L} (1 - \cos \omega t) \\ &V_{0} = V_{i} = V_{m} \sin \omega t \\ &V_{avg} = 0 \\ &\text{Power delivered to load} = V_{avg} I_{avg} = 0 \end{aligned}$$

2.1.2 Half Bridge: R-L-Load

$$\begin{split} & \text{Ri} + L\frac{\text{di}}{\text{dt}} = V_{\text{m}}\sin\omega t \\ & \text{i} = \frac{V_{\text{m}}}{Z}[\sin(\omega t - \phi) + k_{1}e^{-\frac{Rt}{L}}] \\ & \text{where } Z = \sqrt{R^{2} + \omega L^{2}} \; \& \; \phi = \tan^{-1}\frac{\omega L}{R} \\ & \text{At } \; \omega t = 0 \; , \; \text{i} = 0 \\ & \therefore \; \text{i} = \frac{V_{\text{m}}}{Z}[\sin(\omega t - \phi) + \sin(\phi)e^{-\frac{Rt}{L}}] \; \; 0 < \omega t < \; \beta \\ & \text{i} = \text{i}_{\text{max}} \qquad \pi/2 < \omega t < \; \pi \\ & V_{0} = R\text{i}_{\text{max}} \\ & V_{\text{avg}} = \; \frac{V_{\text{m}}}{2\pi}(1 - \cos\beta) \end{split}$$

Observation:

- γ increases with increase in 'L'.
- Avg. V_0 decreases with increase in 'L'.

What is the significance of γ ?

Or why should the current be continuous in the load?

Consider a DC motor driving a load

Developed Torque =
$$kI_FI_a = T_e$$

$$J\frac{d\omega}{dt} + B\omega + T_L = T_e$$

$$\frac{d\omega}{dt} = [T_e - T_L]/J$$

At Steady state
$$\frac{d\omega}{dt} = 0$$

Possible only if T_e is constant \Longrightarrow if T_a and T_F are constant.

If
$$I_a = 0$$
, $T_e = 0$
Speed will PULSATE

- \Rightarrow Always desirable to have finite I_a if not constant ' I_a '.
- \Rightarrow Just increasing 'L' is not a solution (γ increases with increasing 'L', but avg. V_0 decreases.)

S is closed to position 2

S is closed to position 3

$$Ri + L\frac{di}{dt} = 0$$

i decays slowly

$$V_0 = \text{constant with } \uparrow \beta$$

$$Ri + L\frac{di}{dt} = -V$$

i decays very fast

$$V_0 \downarrow \text{ with } \uparrow \beta$$

2.1.4 Freewheeling Diode

2.1.5 Load is R-L-E

• Case - 1: L=0

Diode can conduct when $V_m \sin \omega t = E$

$$\alpha = \omega t = \sin^{-1}(\frac{E}{V_{m}})$$

When diode is ON, $V_0 = V_i$

When diode is OFF, $V_0 = E$

Applying KVL, $V_i = Ri + E$

 $\overline{\mathbf{i}} = \overline{[\mathbf{V}_{m} \sin \omega t - \mathbf{E}]} / \mathbf{R}^{T}$

Diode turns off at $\beta = \pi - \alpha$

$$i = I_{max}$$
 at $\omega t = \pi/2$

Case – 2: R=0

$$\alpha = \omega t = \sin^{-1}(\frac{E}{V_m})$$

when diode is ON, $V_i = L \frac{di}{dt} + E$

'i' starts \uparrow beyond α

$$i = I_{max}$$
 at $\pi - \alpha$

$$i = I_{max}, \frac{di}{dt} = 0$$

$$V_i = E$$
 at $\omega t = \pi - \alpha$

$$V_0 = E$$
, for $0 < \omega t < \alpha$

$$V_0 = V$$
, for $\alpha < \omega t < \gamma$

$$V_0 = E$$
, for $\gamma < \omega t < 2\pi + \alpha$

$$i = 0$$
 at β when +ve $L \frac{di}{dt} = -ve L \frac{di}{dt}$

Case – 3: R-L-E Load

$$\alpha = \omega t = \sin^{-1}(\frac{E}{V_{\rm m}})$$

$$V_i = Ri + E + L \frac{di}{dt}$$

$$i = I_{max}$$
,

$$V_i = E + RI_{max}$$

$$\pi/2 < \omega t < \pi - \alpha$$

$$\therefore L \frac{di_{\text{max}}}{dt} = 0$$

Case – 4: R,L, Freewheel Diode

-ve voltage can not appear across the load For $\pi < \omega t < \beta$, 'i' starts flowing through freewheeling diode.

$$V_0 = 0$$
, beyond β , $V_0 = E$

Observations

- •when diode is OFF, V₀ depends on Load
- when diode is ON, $V_0 = V_i$

Assume that the load current is continuous Either D_1 or D_2 should be ON In +ve half D_1 is ON, D_2 can not conduct.

Proof:

Potential of Pt. A > Potential of Pt. C

Assume D₂ is ON

Potential of Pt. C = Potential of Pt. B

Potential of Pt. A > Potential of Pt. B

+ve voltage across D₁ is not possible

Assumptions is wrong.

- .. If 'i' is continuous in the +ve half D_1 conducts and during -ve half D_2 conducts.
- ⇒ Independent of type of load

Conclusions

- $\gamma \uparrow$ with load 'L'.
- For diode to conduct $V_D = 0$, V_A potential need not be +ve.
- Use of freewheeling diode $\uparrow \gamma$.
- If 'i' is discontinuous & load is R-L-E

then
$$\alpha = \sin^{-1}(\frac{E}{V_m})$$

• If 'i' is continuous, $\alpha = 0$,

independent of load \Rightarrow due to $L \frac{d1}{dt}$