$12n_{0279} \ (K12n_{0279})$

Ideals for irreducible components² of X_{par}

$$\begin{split} I_1^u &= \langle 27831408u^{16} + 38249416u^{15} + \dots + 40002991b + 40510496, \\ &- 24958754u^{16} - 42710149u^{15} + \dots + 40002991a - 62762092, \ u^{17} + u^{16} + \dots + u - 1 \rangle \\ I_2^u &= \langle b + u + 1, \ u^2 + a - 1, \ u^3 + u^2 + 1 \rangle \\ I_3^u &= \langle -u^3 + b - u, \ a + u + 1, \ u^4 - u^3 + 2u^2 - 2u + 1 \rangle \\ I_4^u &= \langle -u^3 + b - 2u - 1, \ a, \ u^4 - u^3 + 3u^2 - u + 1 \rangle \\ I_5^u &= \langle -au + 3b + a + 3u, \ a^2 + au - a - 3, \ u^2 + u + 1 \rangle \\ I_6^u &= \langle -2.19461 \times 10^{15}u^{13} - 2.90056 \times 10^{15}u^{12} + \dots + 6.79307 \times 10^{17}b - 2.81232 \times 10^{17}, \\ &- 3.53923 \times 10^{17}u^{13} - 5.35522 \times 10^{17}u^{12} + \dots + 7.20066 \times 10^{19}a - 1.96602 \times 10^{20}, \\ &u^{14} + u^{13} + \dots - 98u + 53 \rangle \\ I_7^u &= \langle b - 1, \ a, \ u^2 + u + 1 \rangle \\ I_8^u &= \langle b - u, \ a, \ u^2 + u + 1 \rangle \end{split}$$

* 8 irreducible components of $\dim_{\mathbb{C}} = 0$, with total 50 representations.

¹The image of knot diagram is generated by the software "**Draw programme**" developed by Andrew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modified some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).

² All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated in decimal forms when there is not enough margin.

$$I. \\ I_1^u = \langle 2.78 \times 10^7 u^{16} + 3.82 \times 10^7 u^{15} + \cdots + 4.00 \times 10^7 b + 4.05 \times 10^7, \ -2.50 \times 10^7 u^{16} - 4.27 \times 10^7 u^{15} + \cdots + 4.00 \times 10^7 a - 6.28 \times 10^7, \ u^{17} + u^{16} + \cdots + u - 1 \rangle$$

$$a_{11} = \begin{pmatrix} 1 \\ 0 \\ u \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} 1 \\ -u^{2} \\ \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} 0.623922u^{16} + 1.06767u^{15} + \dots - 4.19761u + 1.56893 \\ -0.695733u^{16} - 0.956164u^{15} + \dots + 4.01744u - 1.01269 \\ \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} 0.0718110u^{16} + 0.111510u^{15} + \dots - 0.180171u + 0.556248 \\ -0.695733u^{16} - 0.956164u^{15} + \dots + 4.01744u - 1.01269 \\ \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} 0.463872u^{16} + 0.672655u^{15} + \dots + 0.262187u - 0.138788 \\ -0.152299u^{16} - 0.109999u^{15} + \dots + 0.667583u - 0.892029 \\ \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} 0.683246u^{16} + 1.06132u^{15} + \dots + 4.69765u + 1.76057 \\ -0.917110u^{16} - 0.866468u^{15} + \dots + 2.11890u - 0.443964 \\ \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} 0.664842u^{16} + 0.607334u^{15} + \dots + 0.648473u + 2.52008 \\ -0.0486712u^{16} + 0.175319u^{15} + \dots + 0.946131u - 1.76684 \\ \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} 0.842480u^{16} + 0.580544u^{15} + \dots + 4.42105u + 1.28803 \\ 0.390419u^{16} + 0.580544u^{15} + \dots + 0.744719u + 0.433797 \\ \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} 0.842480u^{16} + 0.955949u^{15} + \dots + 0.0116457u + 2.65839 \\ -0.369554u^{16} + 0.163720u^{15} + \dots + 0.697278u - 1.38144 \\ \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} 0.295603u^{16} - 0.654268u^{15} + \dots + 1.33796u + 0.594847 \\ 0.323305u^{16} + 0.418596u^{15} + \dots + 2.19115u + 0.801058 \\ \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} 0.456059u^{16} + 0.624327u^{15} + \dots + 1.25113u + 2.05621 \\ -0.0909712u^{16} + 0.0800344u^{15} + \dots + 1.68586u - 1.61454 \end{pmatrix}$$

(ii) Obstruction class = -1

(iii) Cusp Shapes =
$$-\frac{217036647}{40002991}u^{16} - \frac{332499894}{40002991}u^{15} + \dots + \frac{1336970457}{40002991}u + \frac{36116891}{40002991}u$$

Crossings	u-Polynomials at each crossing
c_1	$u^{17} + 8u^{16} + \dots - 2u - 1$
c_2,c_5,c_6	$u^{17} + 4u^{15} + \dots + 2u + 1$
<i>c</i> ₃	$u^{17} + 3u^{16} + \dots + 96u + 29$
c_4, c_9, c_{12}	$u^{17} - u^{16} + \dots + u + 1$
c_7	$u^{17} - 2u^{16} + \dots + 4u - 1$
<i>c</i> ₈	$u^{17} + 4u^{16} + \dots + 358u - 23$
c_{10}	$u^{17} - 2u^{16} + \dots - 8u + 4$
c_{11}	$u^{17} - u^{16} + \dots + 192u + 79$

Crossings	Riley Polynomials at each crossing
c_1	$y^{17} + 36y^{16} + \dots + 70y - 1$
c_2, c_5, c_6	$y^{17} + 8y^{16} + \dots - 2y - 1$
<i>c</i> ₃	$y^{17} + 31y^{16} + \dots - 13636y - 841$
c_4, c_9, c_{12}	$y^{17} + 21y^{16} + \dots - 21y - 1$
	$y^{17} + 18y^{15} + \dots - 10y - 1$
<i>c</i> ₈	$y^{17} - 36y^{16} + \dots + 196750y - 529$
c_{10}	$y^{17} + 8y^{16} + \dots + 96y - 16$
c_{11}	$y^{17} - 33y^{16} + \dots - 62044y - 6241$

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.057958 + 1.037160I		
a = -1.281730 - 0.156187I	0.90500 - 3.77030I	1.82474 + 3.48475I
b = -0.146308 - 0.285619I		
u = -0.057958 - 1.037160I		
a = -1.281730 + 0.156187I	0.90500 + 3.77030I	1.82474 - 3.48475I
b = -0.146308 + 0.285619I		
u = 0.245125 + 1.028970I		
a = -1.09741 + 0.90076I	4.13880 - 5.40035I	4.91651 + 8.34008I
b = 0.457121 + 1.056880I		
u = 0.245125 - 1.028970I		
a = -1.09741 - 0.90076I	4.13880 + 5.40035I	4.91651 - 8.34008I
b = 0.457121 - 1.056880I		
u = -0.397934 + 0.813970I		
a = -0.976997 - 0.362526I	-0.17756 + 4.89986I	-2.88050 - 11.83276I
b = 1.21505 - 1.10098I		
u = -0.397934 - 0.813970I		
a = -0.976997 + 0.362526I	-0.17756 - 4.89986I	-2.88050 + 11.83276I
b = 1.21505 + 1.10098I		
u = 0.355960 + 0.790874I		
a = -0.144449 + 0.440961I	-0.33729 - 2.00763I	-4.27790 + 4.10487I
b = 0.821906 + 0.423349I		
u = 0.355960 - 0.790874I		
a = -0.144449 - 0.440961I	-0.33729 + 2.00763I	-4.27790 - 4.10487I
b = 0.821906 - 0.423349I		
u = 1.21780		
a = 1.23271	-2.39027	-14.2090
b = -0.577819		
u = 0.299458 + 0.466008I		
a = 2.32811 + 0.28399I	-3.08489 - 6.04547I	-8.76917 + 6.36123I
b = -1.079530 - 0.618458I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.299458 - 0.466008I		
a = 2.32811 - 0.28399I	-3.08489 + 6.04547I	-8.76917 - 6.36123I
b = -1.079530 + 0.618458I		
u = -0.108066 + 0.363788I		
a = 0.949976 - 0.957388I	0.52238 - 1.49726I	2.87825 + 5.01467I
b = 0.119264 + 0.837933I		
u = -0.108066 - 0.363788I		
a = 0.949976 + 0.957388I	0.52238 + 1.49726I	2.87825 - 5.01467I
b = 0.119264 - 0.837933I		
u = -0.71553 + 2.03646I		
a = 0.617685 + 0.005897I	17.8274 + 5.4627I	-0.12519 - 2.24848I
b = -1.02465 - 1.09864I		
u = -0.71553 - 2.03646I		
a = 0.617685 - 0.005897I	17.8274 - 5.4627I	-0.12519 + 2.24848I
b = -1.02465 + 1.09864I		
u = -0.72995 + 2.19477I		
a = 0.988459 + 0.323341I	17.5899 + 13.2299I	-0.46218 - 5.67701I
b = -1.07394 + 1.02493I		
u = -0.72995 - 2.19477I		
a = 0.988459 - 0.323341I	17.5899 - 13.2299I	-0.46218 + 5.67701I
b = -1.07394 - 1.02493I		

II.
$$I_2^u = \langle b + u + 1, u^2 + a - 1, u^3 + u^2 + 1 \rangle$$

$$a_{5} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} 1 \\ -u^{2} \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} -u^{2} + 1 \\ -u - 1 \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} -u^{2} - u \\ -u - 1 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} -u^{2} - u \\ -1 \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} -u^{2} - u + 1 \\ -u^{2} - u - 1 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} 2u + 1 \\ -u^{2} - u \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} u^{2} + u - 1 \\ u + 1 \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} u + 2 \\ -2u^{2} - 2u \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} u^{2} + u \\ -u^{2} \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} 2u + 2 \\ -u^{2} - 2u \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} 2u + 2 \\ -u^{2} - 2u \end{pmatrix}$$

- (ii) Obstruction class = 1
- (iii) Cusp Shapes = $8u^2 + 7u + 3$

Crossings	u-Polynomials at each crossing
c_{1}, c_{7}	$u^3 - 2u^2 + u + 1$
c_2, c_5	$u^3 + u + 1$
c_3,c_{11}	$(u+1)^3$
c_4, c_{12}	$u^3 + u^2 + 1$
c_{6}, c_{8}	$u^3 + u - 1$
<i>c</i> ₉	$u^3 - u^2 - 1$
c_{10}	$u^3 + 3u^2 + 4u + 3$

Crossings	Riley Polynomials at each crossing
c_1, c_7	$y^3 - 2y^2 + 5y - 1$
c_2, c_5, c_6 c_8	$y^3 + 2y^2 + y - 1$
c_3, c_{11}	$(y-1)^3$
c_4, c_9, c_{12}	$y^3 - y^2 - 2y - 1$
c_{10}	$y^3 - y^2 - 2y - 9$

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.232786 + 0.792552I		
a = 1.57395 - 0.36899I	-2.26573 - 6.33267I	0.03790 + 8.49978I
b = -1.23279 - 0.79255I		
u = 0.232786 - 0.792552I		
a = 1.57395 + 0.36899I	-2.26573 + 6.33267I	0.03790 - 8.49978I
b = -1.23279 + 0.79255I		
u = -1.46557		
a = -1.14790	-2.04827	9.92420
b = 0.465571		

III.
$$I_3^u = \langle -u^3 + b - u, \ a + u + 1, \ u^4 - u^3 + 2u^2 - 2u + 1 \rangle$$

$$a_{5} = \begin{pmatrix} 1\\0 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 0\\u \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} 1\\-u^{2} \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} -u-1\\u^{3}+u \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} u^{3}-1\\u^{3}+u \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} -2u^{3}+3u^{2}-u+1\\-u^{3}+u^{2}-2u+1 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} -2u^{3}+3u^{2}-u+1\\-u^{3}+u^{2}-2u+1 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} u^{3}+2u^{2}+u\\-u^{3}+u^{2}-2u+2 \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} 2u^{3}-u^{2}+3u-2\\2u^{3}-u^{2}+3u-2 \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} -2u^{3}+2u^{2}-2u+3\\-u^{3}-2u \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} -3u^{3}+7u^{2}-8u+5\\-2u \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} -u^{3}+5u^{2}-4u+2\\-u^{3}+u^{2}-3u+2 \end{pmatrix}$$

- (ii) Obstruction class = 1
- (iii) Cusp Shapes = $5u^3 + 5u 1$

Crossings	u-Polynomials at each crossing
c_1	$u^4 + 2u^2 - 3u + 1$
c_2, c_5	$u^4 - 2u^3 + 2u^2 - u + 1$
<i>c</i> ₃	$u^4 - u^3 + 9u^2 - u + 1$
c_4,c_{12}	$u^4 - u^3 + 2u^2 - 2u + 1$
<i>c</i> ₆	$u^4 + 2u^3 + 2u^2 + u + 1$
	$(u^2 + u + 1)^2$
<i>C</i> ₈	$u^4 - 3u^3 + 8u^2 - 12u + 7$
<i>c</i> ₉	$u^4 + u^3 + 2u^2 + 2u + 1$
c_{10}	$u^4 + 2u^3 - u + 7$
c_{11}	$u^4 + 4u^3 - u^2 - 10u + 7$

Crossings	Riley Polynomials at each crossing
c_1	$y^4 + 4y^3 + 6y^2 - 5y + 1$
c_2, c_5, c_6	$y^4 + 2y^2 + 3y + 1$
<i>c</i> ₃	$y^4 + 17y^3 + 81y^2 + 17y + 1$
c_4, c_9, c_{12}	$y^4 + 3y^3 + 2y^2 + 1$
	$(y^2 + y + 1)^2$
<i>c</i> ₈	$y^4 + 7y^3 + 6y^2 - 32y + 49$
c_{10}	$y^4 - 4y^3 + 18y^2 - y + 49$
c_{11}	$y^4 - 18y^3 + 95y^2 - 114y + 49$

Solutions to I_3^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.621744 + 0.440597I		
a = -1.62174 - 0.44060I	3.28987 - 4.05977I	1.50000 + 4.33013I
b = 0.500000 + 0.866025I		
u = 0.621744 - 0.440597I		
a = -1.62174 + 0.44060I	3.28987 + 4.05977I	1.50000 - 4.33013I
b = 0.500000 - 0.866025I		
u = -0.121744 + 1.306620I		
a = -0.87826 - 1.30662I	3.28987 + 4.05977I	1.50000 - 4.33013I
b = 0.500000 - 0.866025I		
u = -0.121744 - 1.306620I		
a = -0.87826 + 1.30662I	3.28987 - 4.05977I	1.50000 + 4.33013I
b = 0.500000 + 0.866025I		

IV.
$$I_4^u = \langle -u^3 + b - 2u - 1, \ a, \ u^4 - u^3 + 3u^2 - u + 1 \rangle$$

$$a_{5} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} 1 \\ -u^{2} \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} 0 \\ u^{3} + 2u + 1 \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} u^{3} + 2u + 1 \\ u^{3} + 2u + 1 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} -u^{2} + u - 2 \\ -u^{2} + 2u - 2 \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} -u^{3} + u^{2} - 3u + 2 \\ -u^{3} - 3u + 1 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} 1 \\ -u^{2} \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} -u + 1 \\ -2u + 1 \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} -u^{3} - 2u - 1 \\ -u^{3} - 2u - 1 \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} u^{3} + 2u + 1 \\ u^{3} + u^{2} + 2u + 2 \end{pmatrix}$$

- (ii) Obstruction class = 1
- (iii) Cusp Shapes = $5u^3 u^2 + 5u$

Crossings	u-Polynomials at each crossing
c_1, c_3, c_6 c_9, c_{11}	$(u^2 - u + 1)^2$
c_2, c_{12}	$(u^2 + u + 1)^2$
c_4, c_5	$u^4 - u^3 + 3u^2 - u + 1$
c_7, c_8	$u^4 + u^3 - 2u + 1$
c_{10}	u^4

Crossings	Riley Polynomials at each crossing
c_1, c_2, c_3 c_6, c_9, c_{11} c_{12}	$(y^2 + y + 1)^2$
c_4, c_5	$y^4 + 5y^3 + 9y^2 + 5y + 1$
c_7, c_8	$y^4 - y^3 + 6y^2 - 4y + 1$
c_{10}	y^4

Solutions to I_4^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.148403 + 0.632502I		
a = 0	-4.05977I	0.24584 + 1.91854I
b = 1.12196 + 1.05376I		
u = 0.148403 - 0.632502I		
a = 0	4.05977I	0.24584 - 1.91854I
b = 1.12196 - 1.05376I		
u = 0.35160 + 1.49853I		
a = 0	4.05977I	-7.74584 - 7.60774I
b = -0.621964 + 0.187730I		
u = 0.35160 - 1.49853I		
a = 0	-4.05977I	-7.74584 + 7.60774I
b = -0.621964 - 0.187730I		

V.
$$I_5^u = \langle -au + 3b + a + 3u, \ a^2 + au - a - 3, \ u^2 + u + 1 \rangle$$

$$a_{5} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} 1 \\ u+1 \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} \frac{1}{3}au - \frac{1}{3}a - u \\ \frac{1}{3}au - \frac{1}{3}a - u \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} \frac{1}{3}au + \frac{2}{3}a - u \\ \frac{1}{3}au - \frac{1}{3}a - u \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} \frac{5}{3}au + \frac{1}{3}a \\ -\frac{1}{3}au - \frac{2}{3}a + 1 \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} \frac{2}{3}au + \frac{4}{3}a + u + 3 \\ -\frac{1}{3}au - \frac{2}{3}a + u + 1 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} 2au + a + 3u \\ -u - 1 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} au - a - 2 \\ -u \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} au - a - 2 \\ -u \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} -\frac{5}{3}au - \frac{4}{3}a - 2u \\ u + 1 \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} -\frac{4}{3}au - \frac{14}{3}a - 3u - 5 \\ -\frac{1}{3}au + \frac{1}{3}a + 1 \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} \frac{7}{3}au - \frac{1}{3}a + 2u - 3 \\ -2u - 1 \end{pmatrix}$$

- (ii) Obstruction class = 1
- (iii) Cusp Shapes = -2au 3a 5u 4

Crossings	u-Polynomials at each crossing
c_1	$u^4 - 5u^3 + 9u^2 - 5u + 1$
c_2, c_{12}	$u^4 - u^3 + 3u^2 - u + 1$
c_3	$u^4 + 4u^3 + 6u^2 + u + 1$
c_4, c_5	$(u^2+u+1)^2$
c_{6}, c_{9}	$u^4 + u^3 + 3u^2 + u + 1$
c_7	$u^4 + u^3 - 2u + 1$
c ₈	$u^4 + 4u^3 + 6u^2 + 7u + 7$
c_{10}	$u^4 + 6u^2 + 9u + 9$
c_{11}	$u^4 + u^3 + 3u^2 + 7u + 7$

Crossings	Riley Polynomials at each crossing
c_1	$y^4 - 7y^3 + 33y^2 - 7y + 1$
c_2, c_6, c_9 c_{12}	$y^4 + 5y^3 + 9y^2 + 5y + 1$
c_3	$y^4 - 4y^3 + 30y^2 + 11y + 1$
c_4, c_5	$(y^2+y+1)^2$
	$y^4 - y^3 + 6y^2 - 4y + 1$
<i>c</i> ₈	$y^4 - 4y^3 - 6y^2 + 35y + 49$
c_{10}	$y^4 + 12y^3 + 54y^2 + 27y + 81$
c_{11}	$y^4 + 5y^3 + 9y^2 - 7y + 49$

Solutions to I_5^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.500000 + 0.866025I		
a = -1.095530 - 0.257041I	4.05977I	0.24584 - 1.91854I
b = 1.12196 - 1.05376I		
u = -0.500000 + 0.866025I		
a = 2.59553 - 0.60898I	4.05977I	-7.74584 - 7.60774I
b = -0.621964 + 0.187730I		
u = -0.500000 - 0.866025I		
a = -1.095530 + 0.257041I	-4.05977I	0.24584 + 1.91854I
b = 1.12196 + 1.05376I		
u = -0.500000 - 0.866025I		
a = 2.59553 + 0.60898I	-4.05977I	-7.74584 + 7.60774I
b = -0.621964 - 0.187730I		

$$\begin{array}{c} \text{VI. } I_6^u = \langle -2.19 \times 10^{15} u^{13} - 2.90 \times 10^{15} u^{12} + \cdots + 6.79 \times 10^{17} b - 2.81 \times \\ 10^{17}, \ -3.54 \times 10^{17} u^{13} - 5.36 \times 10^{17} u^{12} + \cdots + 7.20 \times 10^{19} a - 1.97 \times \\ 10^{20}, \ u^{14} + u^{13} + \cdots - 98 u + 53 \rangle \end{array}$$

$$a_{11} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} 1 \\ -u^{2} \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} 0.00491515u^{13} + 0.00743713u^{12} + \dots - 1.48607u + 2.73033 \\ 0.00323066u^{13} + 0.00426988u^{12} + \dots + 2.16045u + 0.413997 \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} 0.00814581u^{13} + 0.0117070u^{12} + \dots + 0.674379u + 3.14433 \\ 0.00323066u^{13} + 0.00426988u^{12} + \dots + 2.16045u + 0.413997 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} 0.0123724u^{13} + 0.00795343u^{12} + \dots + 13.9704u - 1.71865 \\ 0.00300637u^{13} + 0.00251071u^{12} + \dots + 3.63641u - 0.788348 \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} -0.0104555u^{13} - 0.0107429u^{12} + \dots - 7.46839u + 0.477030 \\ -0.00265698u^{13} - 0.00317978u^{12} + \dots + 2.34330u + 0.220186 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} 0.00740443u^{13} + 0.00396765u^{12} + \dots + 8.94568u - 0.309042 \\ 0.00196165u^{13} + 0.00147507u^{12} + \dots + 3.38830u - 0.621258 \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} 0.00576580u^{13} + 0.00758083u^{12} + \dots + 0.830146u + 2.59522 \\ 0.00344632u^{13} + 0.00301915u^{12} + \dots + 2.30371u + 0.222657 \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} -0.00273723u^{13} - 0.000789063u^{12} + \dots - 3.15318u + 1.21964 \\ -0.00164957u^{13} - 0.00328941u^{12} + \dots - 0.583214u + 0.127768 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} -0.00210562u^{13} - 0.00837365u^{12} + \dots - 4.25378u + 1.54174 \\ 0.00386701u^{13} + 0.00234040u^{12} + \dots - 0.635377u + 0.240016 \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} 0.00720203u^{13} + 0.00988153u^{12} + \dots + 2.73758u + 2.32633 \\ 0.00313757u^{13} + 0.000888876u^{12} + \dots + 3.09172u + 0.122919 \end{pmatrix}$$

(ii) Obstruction class = -1

(iii) Cusp Shapes =
$$\frac{40856511771921327}{13415037849513161527}u^{13} + \frac{59994346491964077}{1358614961701335812}u^{12} + \cdots + \frac{13415037849513161527}{679307480850667906}u - \frac{6319351487276365787}{1358614961701335812}u^{13} + \frac{59994346491964077}{1358614961701335812}u^{12} + \cdots + \frac{13415037480850667906}{1358614961701335812}u^{13} + \frac{13415037480850667906}{1358614961701335812}u^{13} + \frac{1341503748085067906}{1358614961701335812}u^{13} + \frac{134150374809748077}{1358614961701335812}u^{13} + \frac{1341503748085067906}{1358614961701335812}u^{13} + \frac{1341503748085067906}{1358614961701335812}u^{13} + \frac{1341503748085067906}{1358614961701335812}u^{13} + \frac{134150374809748077}{1358614961701335812}u^{13} + \frac{1341503748077}{1358614961701335812}u^{13} + \frac{134150374807}{1358614961701335812}u^{13} + \frac{1341503748077}{1358614961701335812}u^{13} + \frac{1341503748077}{1358614961701335812}u^{13} + \frac{134150374807}{1358614961701335812}u^{13} + \frac{13415074807}{1358614961701335812}u^{13} + \frac{13415074807}{1358614961701335812}u^{13} + \frac{13415074747}{1358614961701335812}u^{13} + \frac{13415074747}{135861496170133581}u^{13} + \frac{13415074747}{135861496170133581}u^{13} + \frac{13415074747}{135861496170133581}u^{13} + \frac{13415074747}{135861496170133581}u^{13} + \frac{13415074747}{135861496170133581}u^{13} + \frac{13415074747}{135861496170133581}u^{13} + \frac{134150747}{135861496170133581}u^{13} + \frac{13415$$

Crossings	u-Polynomials at each crossing
c_1	$u^{14} - 8u^{13} + \dots - 25u + 1$
c_2, c_5, c_6	$u^{14} - 4u^{12} + \dots + 9u + 1$
<i>c</i> ₃	$u^{14} + 42u^{12} + \dots + 78137u + 7937$
c_4, c_9, c_{12}	$u^{14} - u^{13} + \dots + 98u + 53$
	$(u^7 + u^6 - u^4 + 2u^3 + 2u^2 - 1)^2$
<i>C</i> ₈	$u^{14} - 16u^{12} + \dots - 13u - 1$
c_{10}	$u^{14} - 2u^{13} + \dots - 160u + 64$
c_{11}	$u^{14} - 19u^{12} + \dots - 10u + 173$

Crossings	Riley Polynomials at each crossing
c_1	$y^{14} + 32y^{13} + \dots - 313y + 1$
c_2,c_5,c_6	$y^{14} - 8y^{13} + \dots - 25y + 1$
c_3	$y^{14} + 84y^{13} + \dots - 978977713y + 62995969$
c_4, c_9, c_{12}	$y^{14} + 31y^{13} + \dots + 83040y + 2809$
<i>C</i> ₇	$(y^7 - y^6 + 6y^5 - 5y^4 + 10y^3 - 6y^2 + 4y - 1)^2$
C ₈	$y^{14} - 32y^{13} + \dots - 235y + 1$
c_{10}	$y^{14} + 24y^{13} + \dots + 21504y + 4096$
c_{11}	$y^{14} - 38y^{13} + \dots + 34846y + 29929$

Solutions to I_6^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.502626 + 0.663141I		
a = -0.514604 + 0.044435I	-0.37711 - 1.83261I	-2.26809 + 4.51372I
b = 0.676751 + 0.491075I		
u = 0.502626 - 0.663141I		
a = -0.514604 - 0.044435I	-0.37711 + 1.83261I	-2.26809 - 4.51372I
b = 0.676751 - 0.491075I		
u = 1.19118		
a = 1.38337	-2.39017	-14.4470
b = -0.577619		
u = 1.26649		
a = 1.09551	-2.39017	-14.4470
b = -0.577619		
u = -0.008952 + 0.262276I		
a = 2.85503 - 0.49795I	-0.37711 - 1.83261I	-2.26809 + 4.51372I
b = 0.676751 + 0.491075I		
u = -0.008952 - 0.262276I		
a = 2.85503 + 0.49795I	-0.37711 + 1.83261I	-2.26809 - 4.51372I
b = 0.676751 - 0.491075I		
u = -0.74076 + 1.86468I		
a = 1.085270 - 0.357270I	6.35486 - 2.92126I	1.82532 + 2.85511I
b = -0.850452 - 0.793787I		
u = -0.74076 - 1.86468I		
a = 1.085270 + 0.357270I	6.35486 + 2.92126I	1.82532 - 2.85511I
b = -0.850452 + 0.793787I		
u = -1.28802 + 1.77121I		
a = 0.796866 + 0.008028I	6.35486 + 2.92126I	1.82532 - 2.85511I
b = -0.850452 + 0.793787I		
u = -1.28802 - 1.77121I		
a = 0.796866 - 0.008028I	6.35486 - 2.92126I	1.82532 + 2.85511I
b = -0.850452 - 0.793787I		

Solutions to I_6^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.16280 + 2.37083I		
a = -1.063400 + 0.533787I	18.2464 - 3.4867I	0.16603 + 2.41435I
b = 0.962510 + 0.950397I		
u = -0.16280 - 2.37083I		
a = -1.063400 - 0.533787I	18.2464 + 3.4867I	0.16603 - 2.41435I
b = 0.962510 - 0.950397I		
u = -0.03091 + 2.59918I		
a = -0.549536 + 0.031095I	18.2464 + 3.4867I	0.16603 - 2.41435I
b = 0.962510 - 0.950397I		
u = -0.03091 - 2.59918I		
a = -0.549536 - 0.031095I	18.2464 - 3.4867I	0.16603 + 2.41435I
b = 0.962510 + 0.950397I		

VII.
$$I_7^u=\langle b-1,\; a,\; u^2+u+1\rangle$$

$$a_5 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_4 = \begin{pmatrix} 1 \\ u+1 \end{pmatrix}$$

$$a_8 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

$$a_7 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} u \\ 2u \end{pmatrix}$$

$$a_3 = \begin{pmatrix} u+1\\2u+1 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_6 = \begin{pmatrix} 1 \\ u+1 \end{pmatrix}$$

$$a_2 = \begin{pmatrix} 0 \\ u+1 \end{pmatrix}$$

$$a_1 = \begin{pmatrix} -1 \\ -1 \end{pmatrix}$$

$$a_9 = \begin{pmatrix} 1 \\ u+2 \end{pmatrix}$$

- (ii) Obstruction class = 1
- (iii) Cusp Shapes = -3

Crossings	u-Polynomials at each crossing
c_1, c_3, c_6 c_9, c_{11}	$u^2 - u + 1$
c_2, c_4, c_5 c_{12}	$u^2 + u + 1$
c_7, c_8	$(u+1)^2$
c_{10}	u^2

Crossings	Riley Polynomials at each crossing	
$c_1, c_2, c_3 \\ c_4, c_5, c_6 \\ c_9, c_{11}, c_{12}$	$y^2 + y + 1$	
c_7, c_8	$(y-1)^2$	
c_{10}	y^2	

Solutions to I_7^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.500000 + 0.866025I		
a = 0	0	-3.00000
$\frac{b = 1.00000}{u = -0.500000 - 0.866025I}$		
a = 0.900000 0.0000291 $a = 0$	0	-3.00000
b = 1.00000		

VIII.
$$I_8^u = \langle b - u, a, u^2 + u + 1 \rangle$$

$$a_{5} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} 1 \\ u+1 \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} u \\ u \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} 1 \\ u+1 \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} 2 \\ u+2 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} 1 \\ u+1 \end{pmatrix}$$

$$(u+2)$$

- $a_2 = \begin{pmatrix} u+2\\ u+1 \end{pmatrix}$
- $a_1 = \begin{pmatrix} -u \\ -u \end{pmatrix}$
- $a_9 = \begin{pmatrix} u \\ u-1 \end{pmatrix}$
- (ii) Obstruction class = 1
- (iii) Cusp Shapes = 0

Crossings	u-Polynomials at each crossing
c_1, c_3, c_6 c_7, c_8, c_9 c_{11}	$u^2 - u + 1$
c_2, c_4, c_5 c_{12}	$u^2 + u + 1$
c_{10}	u^2

Crossings	Riley Polynomials at each crossing
c_1, c_2, c_3 c_4, c_5, c_6 c_7, c_8, c_9 c_{11}, c_{12}	$y^2 + y + 1$
c_{10}	y^2

Solutions to I_8^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.500000 + 0.866025I		
a = 0	0	0
b = -0.500000 + 0.866025I		
u = -0.500000 - 0.866025I		
a = 0	0	0
b = -0.500000 - 0.866025I		

IX. u-Polynomials

Crossings	u-Polynomials at each crossing
c_1	$(u^{2} - u + 1)^{4}(u^{3} - 2u^{2} + u + 1)(u^{4} + 2u^{2} - 3u + 1)$ $\cdot (u^{4} - 5u^{3} + 9u^{2} - 5u + 1)(u^{14} - 8u^{13} + \dots - 25u + 1)$ $\cdot (u^{17} + 8u^{16} + \dots - 2u - 1)$
c_2,c_5	$((u^{2} + u + 1)^{4})(u^{3} + u + 1)(u^{4} - 2u^{3} + \dots - u + 1)(u^{4} - u^{3} + \dots - u + 1)$ $\cdot (u^{14} - 4u^{12} + \dots + 9u + 1)(u^{17} + 4u^{15} + \dots + 2u + 1)$
<i>c</i> ₃	$((u+1)^3)(u^2-u+1)^4(u^4-u^3+\cdots-u+1)(u^4+4u^3+\cdots+u+1)$ $\cdot (u^{14}+42u^{12}+\cdots+78137u+7937)(u^{17}+3u^{16}+\cdots+96u+29)$
c_4, c_{12}	$((u^{2} + u + 1)^{4})(u^{3} + u^{2} + 1)(u^{4} - u^{3} + \dots - 2u + 1)(u^{4} - u^{3} + \dots - u + 1)$ $\cdot (u^{14} - u^{13} + \dots + 98u + 53)(u^{17} - u^{16} + \dots + u + 1)$
c_6	$((u^{2} - u + 1)^{4})(u^{3} + u - 1)(u^{4} + u^{3} + \dots + u + 1)(u^{4} + 2u^{3} + \dots + u + 1)$ $\cdot (u^{14} - 4u^{12} + \dots + 9u + 1)(u^{17} + 4u^{15} + \dots + 2u + 1)$
c_7	$((u+1)^2)(u^2-u+1)(u^2+u+1)^2(u^3-2u^2+u+1)(u^4+u^3-2u+1)^2$ $\cdot ((u^7+u^6-u^4+2u^3+2u^2-1)^2)(u^{17}-2u^{16}+\cdots+4u-1)$
c ₈	$(u+1)^{2}(u^{2}-u+1)(u^{3}+u-1)(u^{4}-3u^{3}+8u^{2}-12u+7)$ $\cdot (u^{4}+u^{3}-2u+1)(u^{4}+4u^{3}+\cdots+7u+7)(u^{14}-16u^{12}+\cdots-13u-1)$ $\cdot (u^{17}+4u^{16}+\cdots+358u-23)$
c_9	$((u^{2} - u + 1)^{4})(u^{3} - u^{2} - 1)(u^{4} + u^{3} + \dots + 2u + 1)(u^{4} + u^{3} + \dots + u + 1)$ $\cdot (u^{14} - u^{13} + \dots + 98u + 53)(u^{17} - u^{16} + \dots + u + 1)$
c_{10}	$u^{8}(u^{3} + 3u^{2} + 4u + 3)(u^{4} + 6u^{2} + 9u + 9)(u^{4} + 2u^{3} - u + 7)$ $\cdot (u^{14} - 2u^{13} + \dots - 160u + 64)(u^{17} - 2u^{16} + \dots - 8u + 4)$
c_{11}	$((u+1)^3)(u^2-u+1)^4(u^4+u^3+\cdots+7u+7)(u^4+4u^3+\cdots-10u+7)$ $\cdot (u^{14}-19u^{12}+\cdots-10u+173)(u^{17}-u^{16}+\cdots+192u+79)$

X. Riley Polynomials

Crossings	Riley Polynomials at each crossing
c_1	$(y^{2} + y + 1)^{4}(y^{3} - 2y^{2} + 5y - 1)(y^{4} - 7y^{3} + 33y^{2} - 7y + 1)$ $\cdot (y^{4} + 4y^{3} + 6y^{2} - 5y + 1)(y^{14} + 32y^{13} + \dots - 313y + 1)$ $\cdot (y^{17} + 36y^{16} + \dots + 70y - 1)$
	$(y + 30y + \cdots + 10y - 1)$
c_2, c_5, c_6	$(y^{2} + y + 1)^{4}(y^{3} + 2y^{2} + y - 1)(y^{4} + 2y^{2} + 3y + 1)$ $\cdot (y^{4} + 5y^{3} + 9y^{2} + 5y + 1)(y^{14} - 8y^{13} + \dots - 25y + 1)$ $\cdot (y^{17} + 8y^{16} + \dots - 2y - 1)$
<i>c</i> ₃	$\frac{(y^{17} + 8y^{16} + \dots - 2y - 1)}{(y - 1)^3(y^2 + y + 1)^4(y^4 - 4y^3 + 30y^2 + 11y + 1)}$
	$(y^4 + 17y^3 + 81y^2 + 17y + 1)$
	$(y^{14} + 84y^{13} + \dots - 978977713y + 62995969)$
	$(y^{17} + 31y^{16} + \dots - 13636y - 841)$
	(3 3
c_4, c_9, c_{12}	$(y^2 + y + 1)^4(y^3 - y^2 - 2y - 1)(y^4 + 3y^3 + 2y^2 + 1)$
	$ (y^4 + 5y^3 + 9y^2 + 5y + 1)(y^{14} + 31y^{13} + \dots + 83040y + 2809) $
	$(y^{17} + 21y^{16} + \dots - 21y - 1)$
a.	$(y-1)^2(y^2+y+1)^3(y^3-2y^2+5y-1)(y^4-y^3+6y^2-4y+1)^2$
c_7	$(y^7 - y^6 + 6y^5 - 5y^4 + 10y^3 - 6y^2 + 4y - 1)^2$
	$(y^{17} + 18y^{15} + \dots - 10y - 1)$
c_8	$((y-1)^2)(y^2+y+1)(y^3+2y^2+y-1)(y^4-4y^3+\cdots+35y+49)$
	$((y^4 - y^3 + 6y^2 - 4y + 1)(y^4 + 7y^3 + 6y^2 - 32y + 49)$
	$(y^{14} - 32y^{13} + \dots - 235y + 1)(y^{17} - 36y^{16} + \dots + 196750y - 529)$
	(g 32g 200g 1)(g 30g 1100100g 620)
c_{10}	$y^{8}(y^{3} - y^{2} - 2y - 9)(y^{4} - 4y^{3} + 18y^{2} - y + 49)$
	$(y^4 + 12y^3 + 54y^2 + 27y + 81)(y^{14} + 24y^{13} + \dots + 21504y + 4096)$
	$(y^{17} + 8y^{16} + \dots + 96y - 16)$
c_{11}	(1)3(2 1)4(4 . 10 3 . 05 2 . 114 40)
	$(y-1)^3(y^2+y+1)^4(y^4-18y^3+95y^2-114y+49)$
	$(y^4 + 5y^3 + 9y^2 - 7y + 49)(y^{14} - 38y^{13} + \dots + 34846y + 29929)$
	$(y^{17} - 33y^{16} + \dots - 62044y - 6241)$