Capítulo 5 – Amostragem de Solo

5.1 Considerações iniciais

Nessa aula, estudaremos uma importante etapa de reconhecimento da área em que iremos trabalhar e na determinação do manejo da fertilidade do solo: a amostragem de solo. É fundamental uma realização correta dessa, pois é a partir dela que as decisões referentes à calagem e adubação serão tomadas. Além disso, só a partir de uma boa amostragem do solo é que teremos resultados confiáveis para a tomada de decisão e, consequentemente, teremos condições de tornar a nossa atividade lucrativa.

5.2 Importância da amostragem

A amostragem é a primeira etapa da análise de solo. Por isso, todos os resultados são dependentes da qualidade desta etapa. Além disso:

- É um método simples e barato: em relação a outros custos do pomar, a análise de solo representa uma pequena fração e nos fornece grande quantidade de informações, que são necessárias para potencializar a produção.
- Uma correta análise de solo permite conhecer a área e, assim, planejar adequadamente a instalação do pomar.
- Permite realizar uma adubação correta, corrigindo as partes mais deficientes, bem como economizar fertilizantes em áreas onde não se faz necessário.

Além disso, o nosso sistema de adubação está baseado em adubar o solo, construindo a fertilidade, para que esse disponibilize os nutrientes quando a planta necessitar.

5.3 Instrumentos para amostragem

Para coletar as amostras de solo, precisamos basicamente 3 instrumentos: a pá de corte para a coleta do solo, um balde para homogeneizar as sub-amostras e uma embalagem para enviar as amostras para o laboratório. A pá de corte pode ser substituída por um trado ou outros tipos de equipamentos, como demonstrado na Figura 5.1.

Figura 5.1: Equipamentos que podem ser utilizados na amostragem de solo

O balde ou qualquer outro tipo de recipiente será utilizado para homogeneizar as sub-amostras, é de fundamental importância que este seja devidamente limpo, evitando contaminações que possam alterar o resultado da análise do solo.

A embalagem, geralmente de plástico, serve para proteger o solo até que chegue ao laboratório. Existem algumas embalagens padrão utilizadas pelos laboratórios, onde já é possível colocar todas as identificações necessárias. Também devemos tomar cuidado para evitar contaminações.

5.4 Metodologia de amostragem

A coleta de amostras consiste nas seguintes etapas:

5.4.1 Definição dos talhões homogêneos

A área deve ser dividida em partes que sejam mais homogêneas, para que as amostras coletadas sejam representativas. Assim, devemos considerar quais culturas existiam anteriormente, quais as práticas de adubação, a posição na paisagem (topo, encosta ou várzea), como o demonstrado na Figura 5.2, para podermos ajustar as recomendações de calagem e adubação a cada condição.

Figura 5.2: Plano de amostragem de uma propriedade, com diferentes declividades e usos do solo

5.4.2 Definição das sub-amostras

Em cada talhão que definirmos, deveremos coletar uma série de sub-amostras. A Comissão de Química e Fertilidade do Solo (2004) nos recomenda de 10-20 pontos de sub-amostragem, que são coletados aleatoriamente, caminhando em ziguezague dentro da área, como é visto na Figura 5.3.

Figura 5.3: Exemplo de caminhamento aleatório e pontos para a coleta de solo

5.4.3 Época de amostragem

A amostragem do solo pode ser realizada em qualquer época do ano, mas devemos nos atentar para o fato de que a correção de acidez precisa ser realizada de 3 a 6 meses antes da implantação do pomar. Assim, antes desse prazo, precisamos coletar as amostras, enviar para o laboratório de análise, interpretar os resultados, fazer as recomendações e comprar os corretivos e fertilizantes. Também, devemos evitar a amostragem logo após uma aplicação de fertilizantes, caso a área possuir uma cultura anual, pois ela ainda irá absorver e exportar esses nutrientes nos grãos. Por isso, devemos tentar amostrar o solo no final do ciclo de uma cultura e com a antecedência suficiente para podermos realizar as práticas de adubação antes da implantação do pomar.

5.4.4 Profundidade de amostragem

Como estamos trabalhando com plantas perenes, cujas raízes exploram uma profundidade grande do solo, devemos coletar as amostras na profundidade de 0 a 20 e 20 a 40 cm.

5.4.5 Coleta das amostras

No momento da coleta das amostras de solo, após definido o ponto de coleta, devemos remover o material orgânico (restos de palha, plantas, esterco, etc.) da superfície, para que na nossa coleta tenhamos apenas o solo. Devemos lembrar que a matéria orgânica é rica em nutrientes, assim, com sua presença, estaríamos elevando os teores da análise e nossa recomendação de adubação seria inferior ao necessário para a produção da nossa cultura.

Ao coletar com a pá de corte, abrimos uma pequena trincheira, deixando a linha de adubação da última cultura (caso exista) bem ao meio. Com a pá, coletamos uma fatia de 3 a 5 cm de solo, em toda a profundidade necessária e colocamos no balde para misturar as outras sub-amostras.

No caso de uso do trado, em cada um dos pontos de sub-amostragem definidos, devemos coletar 5 tradadas: 1 no centro, e quatro delas, em cruz, distantes aproximadamente 3 metros do ponto central. Isso porque, como o trado é pequeno, temos uma grande variabilidade. Assim, aumentamos os pontos coletados, tentando tornar nossa amostragem mais representativa. Observe a Figura 5.4.

Figura 5.4: Esquema de amostragem em cruz para coleta de solo com uso de trado

5.4.6 Homogeneização e secagem

Após o solo ser coletado em todos os pontos de sub-amostragem, procedemos a uma homogeneização, quebrando os torrões maiores para melhor misturar o solo e retirando algum excesso de material que não é solo (raízes grossas, pedras, palhas grosseiras, etc.).

Caso leve muito tempo até o envio das amostras para o laboratório, podemos secá-las a sombra, tomando o cuidado para evitar que ocorram contaminações e para que não se perca a identificação.

5.4.7 Embalagem e envio

Depois de bem misturada, devemos retirar uma pequena fração do solo coletado, de aproximadamente 500 g, acondicionar em um saco plástico limpo e identificar corretamente, especialmente quanto à profundidade de coleta e ao uso anterior. Uma informação importante para os laboratórios é o histórico de calagem e se foi feito uso de fosfato natural. A amostra será, então, levada a um laboratório de confiança, como o existente na Universidade Federal de Santa Maria ou outro que esteja localizado mais próximo.

A amostragem é a etapa que mais precisa de cuidado e atenção, pois qualquer erro irá comprometer as decisões futuras. Por isso, devemos tomar muito cuidado com a limpeza dos materiais utilizados, com a profundidade correta de amostragem e atenção para evitar contaminações.

