

Controling time-varying confounding in a cohort of bone marrow transplant patients, a comparison of g-methods.

Alexander Keil^a, Jessie K. Edwards ^a, Ashley I. Naimi^b, Stephen R. Cole ^a

^aDepartment of Epidemiology, University of North Carolina, Chapel Hill, NC; ^bDepartment of Epidemiology, Biostatistics, and Occupational Health, McGill University, Montréal

Introduction

Graft-versus-Host-Disease (GvHD) a serious side-effect of bone marrow transplant (BMT), also helps kill residual leukemia cells

Time varying confounding for GvHD → mortality by platelet count and leukemia relapse (see figure 1)

G-methods can appropriately estimate effect of GvHD → mortality, choice between methods depends on causal knowledge

Without causal knowledge choice of methods is unclear

137 bone marrow transplant patients We estimate GvHD → mortality using 3 g-methods

Causal graph U L_2 D_2 V_0 A_2 A_1

Notation

k={1,2,...} subscript indexes time
in days

- Ak GvHD at time k (yes or no)
- L_k Time varying confounders: relapse and platelet count (time varying confounders)
- V₀ Baseline confounders: age (spline), sex, cytomegalovirus status (yes or no), leukemia type (AML vs. others), transplant wait time (linear)
- D_k Death between day k-1 and kT Time to all-cause mortality

Distributions of time varying covariates: observed and G-formula under no intervention (natural course)

Methods

G-formula Using Monte Carlo approximation of parametric G-formula

- Pooled logistic model: generate conditional probabilities of all covariates
- Substitute probabilities under interventions
- Resample data under probabilities to generate data under interventions

Marginal structural mode Fit via IP weighting

- Pooled logistic model: generate conditional probabilities of GvHD
- Inverse probability weight the data
- Fit a marginal model to re-weighted data

Structural nested accelerated failure time model Fit via g-estimation

- Propose a total effect of exposure (total effect= ψ)
- Generate T^* = residual outcome not due to exposure via $T^* = \int_0^T exp(GvHD_k\psi)dk$
- Test $Pr(GvHD_k|prior\ confounders,\ T^*) = Pr(GvHD|prior\ confounders)$
- Pepeat 1-3 until exposure is not associated with "residual" outcome, that value of ψ is the estimate

Comparing methods We generated HRs and 95% confidence intervals to compare 3 g-methods with standard Cox regression

SNAFTM g-function

The g-function (top panel) and number of uncensored deaths (bottom) as a function of the proposed total effect of GvHD on mortality

MSM weights

Distribution and mean of time specific weights used to fit marginal structural model.

Hazard ratios

	Cox HR	95% CI
Crude	1.24	0.77, 2.00
Baseline adjusted	1.16	0.66, 2.03
Fully adjusted	2.36	1.30, 4.29
G formula	1.83	0.98, 3.40
MSM	1.18	0.70, 1.98
SNAFTM	2.00	

Hazard ratios, 95% confidence intervals from conventional Cox regression models and 3 g-methods on Bone Marrow Transplant data.

Survival curves

Survival curves generated by method by GvHD (always - top three lines vs. never = bottom three lines)

Conclusions

- Inverse probability weighting may be biased due to positivity violations
- Structural nested models relax restrictions but at a cost of efficiency
- In the absence of causal knowledge the g-formula is useful as a comparator to less modeling intensive methods

Funding sources

National Institute of Health Sciences Grant # T32 ES007018 (AK) NIH Grant #s R01CA117841 (JKE) and R01AI100654 (JKE and SRC) Post-Doctoral Research Award from the Fonds de recherche en santé du Québec (AIN)