Computer Circuit Fundamentals (Lab 8)

Comparator

Leonardo Fusser, 1946995

Experiment Performed on 8 November 2019
Report Submitted on 28 November 2019

TABLE OF CONTENTS

Objectives	3
·	
Design	3
Schematics	3
Ouestions	4

OBJECTIVES

- Learn about comparator logic.
- > Test comparator logic.

DESIGN

Experiment

This experiment consisted of testing the logic of a 1-bit comparator and 2-bit comparator. Based on our understanding of comparator logic, we applied that knowledge to test two separate logic circuits. The first one was a 1-bit comparator and the second was a 2-bit comparator. We used the 2-bit comparator logic diagram under "Schematics" to wire our circuit. Using the 2-bit comparator truth table under "Questions", we compared our results with the truth table.

SCHEMATICS

2-bit comparator logic diagram

QUESTIONS

Questions from the Experiment

1) 1-bit comparator truth table:

a)

INPUTS		OUTPUTS		
Α	В	A>B	A=B	A <b< td=""></b<>
0	0	0	1	0
0	1	1	0	0
1	0	0	0	1
1	1	0	1	0

b)

$$A=B = (A.B'+A'.B)'$$

2) 2-bit comparator truth table:

INPUTS			OUTPUTS			
A1	A0	B1	В0	A>B	A=B	A <b< td=""></b<>
0	0	0	0	0	1	0
0	0	0	1	0	0	1
0	0	1	0	0	0	1
0	0	1	1	0	0	1
0	1	0	0	1	0	0
0	1	0	1	0	1	0
0	1	1	0	0	0	1
0	1	1	1	0	0	1
1	0	0	0	1	0	0
1	0	0	1	1	0	0
1	0	1	0	0	1	0
1	0	1	1	0	0	1
1	1	0	0	1	0	0
1	1	0	1	1	0	0
1	1	1	0	1	0	0
1	1	1	1	0	1	0

A>B = A0.B1'.B0' + A1.B1' + A1.A0.B0' A=B = A1'.A0'.B1'.B0' + A1'.A0.B1'.B0 + A1.A0.B1.B0 + A1.A0'.B1.B0'A<B = A1'.B1 + A0'.B1.B0 + A1'.A0'.B0

3) Bonus Questions:

- Q: What is a comparator?
- A: A digital comparator is a combinational circuit that compares two digit or binary numbers.
- Q: What are the applications of a comparator?
- A: -Operational amplifiers
 - -Process controllers
 - -Servo-motor control