Agenda

- Caminos de costo mínimo
 - Definición
 - Algoritmos para el cálculo del camino mínimo desde un origen en:
 - Grafos sin peso
 - Grafos con pesos positivos
 - Algortimo de Dijkstra: dos implementaciones
 - Grafos con pesos positivos y negativos
 - Grafos dirigidos acíclicos
 - Algoritmo para el cálculo de los caminos mínimos entre todos los pares de vértices

Camino de costo mínimo Definición

Sea G=(V,A) un grafo dirigido y pesado, el costo c(i,j) está asociado a la arista v(i,j).

Dado un camino: $v_1, v_2, v_3, \dots, v_{\mathcal{N}}$

El costo del camino es:

$$C = \sum_{i=1}^{N-1} c(i, i+1)$$

Este valor también se llama longitud del camino pesado. La longitud del camino no pesado es la cantidad de aristas

Camino de costo mínimo Definición (cont.)

El camino de costo mínimo desde un vértice v_i a otro vértice v_i es aquel en que la suma de los costos de las aristas es mínima.

Esto significa que:

$$C = \sum_{i=1}^{N-1} c(i, i+1)$$
 es mínima

Camino de costo mínimo

Ejemplos:

Ciudades conectadas por Rutas con distancias

Personas conectadas a través de las redes sociales

Camino de costo mínimo

Ejemplo:

Caminos posibles desde el vértice 1 al vértice 2

Camino de costo mínimo

Ejemplo:

Caminos posibles desde el vértice 1 al vértice 2

- Grafos sin peso
- Grafos con pesos positivos
- Grafos con pesos positivos y negativos
- Grafos dirigidos acíclicos

Los algoritmos calculan los caminos mínimos desde un vértice origen s a todos los restantes vértices del grafo

Grafos sin pesos

Ejemplos

• Seis grados de separación

Se le llama seis grados de separación a la hipótesis que intenta probar que cualquiera en la Tierra puede estar conectado a cualquier otra persona del planeta a través de una cadena de conocidos que no tiene más de cinco intermediarios (conectando a ambas personas con sólo seis enlaces)

Número de Erdős

Es un modo de describir la distancia colaborativa, en lo relativo a trabajos matemáticos entre un autor y Paul Erdős (matemático húngaro considerado uno de los escritores más prolíficos de trabajos matemáticos)

Si la **mujer de rojo** colabora directamente con Erdős en un trabajo, y luego el **hombre de azul** colabora con ella; entonces el hombre de azul tiene un número de Erdős con valor 2, y está "a dos pasos" de Paul Erdős (asumiendo que nunca ha colaborado directamente con éste).

• El número de Bacon es una aplicación de la misma idea en la industria fílmica- un cálculo que conecta actores que han aparecido junto al actor *Kevin Bacon* en alguna película.

Grafos sin pesos

Grafos sin pesos

Hilo de Twitter (X) de Diego Golombek, Año 2020.

- Para cada vértice v se mantiene la siguiente información:
 - D_v : distancia mínima desde el origen s (inicialmente ∞ para todos lo vértices excepto el origen con valor 0)
 - P_v: vértice por donde paso para llegar
 - Conocido: dato booleano que me indica si está procesado (inicialmente todos en 0)

(este último campo no va a ser necesario para esta clase de grafos)

• Estrategia: Recorrido en amplitud (BFS)

Pasos:

- Avanzar por niveles a partir del origen, asignando distancias según se avanza (se utiliza una cola)
- Inicialmente, es $D_w = \infty$. Al inspeccionar w se reduce al valor correcto $D_w = D_v + 1$
- Desde cada v, visitamos a todos los nodos adyacentes a v

Cola: V₂

Cola: $\frac{\forall_2}{\nabla_0} V_0$

Cola: $\frac{\forall_2}{\nabla_0} V_5 V_1 V_3$

Cola: $\frac{\forall_2}{\nabla_0} \frac{\forall_5}{\nabla_5} V_1 V_3$

Cola:
$$\forall_2 \forall_5 \forall_5 \forall_7 V_3 V_4$$

Cola: $\frac{\mathbf{V}_{2}\mathbf{V}_{0}\mathbf{V}_{5}\mathbf{V}_{1}\mathbf{V}_{3}\mathbf{V}_{4}\mathbf{V}_{6}$

Cola: $\frac{\mathbf{V}_{2}\mathbf{V}_{1}\mathbf{V}_{2}\mathbf{V}_{1}\mathbf{V}_{3}\mathbf{V}_{4}\mathbf{V}_{6}$

Cola: $\forall_2 \forall_5 \forall_5 \forall_4 \forall_5 \forall_4 \forall_6$

Valores iniciales de la tabla

V _i	D_{v}	P _v	Conoc
V_0	∞	0	0
V_1	8	0	0
V_2	0	0	0
V_3	∞	0	0
V_4	8	0	0
V_5	∞	0	0
V_6	∞	0	0

Algoritmos de Caminos mínimos basado en BFS

```
Camino min GrafoNoPesadoG,s) {
(1) para cada vértice v \in V
   D_{y} = \infty; P_{y} = 0; Conoc_{y} = 0;
(3) D_s = 0; Encolar (Q,s); Conoc_s = 1;
(4) Mientras (not esVacio(Q)) {
(5)
   Desencolar (Q, u);
(6) para c/vértice \mathbf{w} \in V adyacente a u {
           si (w no es conocido) {
(7)
                    D_{w} = D_{yy} + 1;
(8)
                    P_{...} = u;
(9)
                Encolar(Q, w); Conoc_{w} = 1;
(10)
(11)
(12)
(13)
```

Algoritmos de Caminos mínimos basado en BFS

```
Camino min GrafoNoPesadoG,s) {
(1) para cada vértice v \in V
   D_{y} = \infty; P_{y} = 0; Conoc = 0;
(3) D_s = 0; Encolar (Q,s); Conoc = 1;
(4) Mientras (not esVacio(Q)) {
      Desencolar (0, u);
(5)
(6) para c/vértice \mathbf{w} \in V adyacente a u {
          si (w no es conocido) {
(7)
                    D_{w} = D_{y} + 1;
(8)
                    P_{\omega} = u;
(9)
                Encolar(Q, w); Conoc = 1;
(10)
(11)
(12)
(13)
```


Valores iniciales de la tabla

V _i	D_{v}	P _v	Conoc
V_0	∞	0	0
V_1	8	0	0
V_2	0	0	0
V_3	∞	0	0
V_4	∞	0	0
V_5	∞	0	0
V_6	∞	0	0

Valores iniciales de la tabla

V _i	D_{v}	P _v
V_0	8	0
V_1	8	0
V_2	0	0
V_3	∞	0
V_4	∞	0
V_5	∞	0
V_6	∞	0

Algoritmos de Caminos mínimos basado en BFS

```
Camino min GrafoNoPesadoG,s) {
(1) para cada vértice v \in V
(2) D_{x} = \infty; P_{x} = 0;
(3) D_s = 0; Encolar (Q,s);
(4) Mientras (not esVacio(Q)) {
(5) Desencolar (Q, u);
(6) para c/vértice \mathbf{w} \in V adyacente a u {
          si (D_w = \infty) {
(7)
                    D_{w} = D_{y} + 1;
(8)
                    P_{..} = u;
(9)
               Encolar (0, w);
(10)
(11)
(12)
(13)
```


Valores 1° paso

V _i	D_{v}	P _v
V_0	1	V_2
V_1	8	0
V_2	0	0
V_3	∞	0
V_4	∞	0
V_5	1	V_2
V_6	∞	0

Valores finales de la tabla

V _i	D_{v}	P _v
V_0	1	V_2
V_1	2	V_0
V_2	0	0
V_3	2	V_0
V_4	3	V_1
V_5	1	V_2
V_6	3	V_3

Algoritmos de Caminos mínimos Grafos con pesos positivos

Encontrar los caminos más cortos desde Casita a cada una de las librerías Encontrar la ruta aérea más corta desde Buenos Aires a Asunción

Algoritmo de Dijkstra

• Estrategia: Algoritmo de Dijkstra

Pasos:

- Dado un vértice origen s, elegir el vértice v que esté a la menor distancia de s, dentro de los vértices no procesados
- Marcar v como procesado
- Actualizar la distancia de w adyacente a v

Algoritmo de Dijkstra (cont.)

- Para cada vértice *v* mantiene la siguiente información:
 - D_v: distancia mínima desde el origen (inicialmente ∞ para todos lo vértices excepto el origen con valor 0)
 - P_v: vértice por donde paso para llegar
 - Conocido: dato booleano que me indica si está procesado (inicialmente todos en 0)

Algoritmo de Dijkstra (cont.)

- La actualización de la distancia de los adyacentes
 w se realiza con el siguiente criterio:
 - Se compara D_{w} con D_{v} + c(v,w)

Distancia de s a w (sin pasar por v)

Distancia de s a w, pasando por v

Se actualiza si $D_w > D_v + c(v,w)$

Algoritmo de Dijkstra Ejemplo

Valores	iniciales	de la	tabla

V	D_{v}	P _v	Conoc.
1	0	0	0
2	8	0	0
3	8	0	0
4	8	0	0
5	8	0	0
6	8	0	0

Algoritmo de Dijkstra Ejemplo (cont.)

T T 1	4		4		-
Valores a	il se	leccionar	\mathbf{e}	vértice	1
valuics t	11 30	icccionai		V CI LICC	1

•Actualiza la distancia de 3, 5 y 6

V	D_{v}	P _v	Conoc.
1	0	0	1
2	8	0	0
3	40	1	0
4	8	0	0
5	10	1	0
6	5	1	0

Valores	21	QQ.	leccionar	۵1	vértice	6
valuics	aı	SC.	icccionai	CI	VCITICC	U

- •Actualiza la distancia de 2 ($25 < \infty$)
- La distancia de 5 es mayor que la de la tabla (no se actualiza)

V	D_{v}	P _v	Conoc.
1	0	0	1
2	25	6	0
3	40	1	0
4	∞	0	0
5	10	1	0
6	5	1	1

Volores	٦1	seleccionar	۵1	riántica 5	,
valules	ai	Seleccional	CI	vertice 3	1

•Actualiza la distancia de 4 ($30 < \infty$)

V	D_{v}	P _v	Conoc.
1	0	0	1
2	25	6	0
3	40	1	0
4	30	5	0
5	10	1	1
6	5	1	1

Próximo	vértice a	a elegir

V	D_{v}	P _v	Conoc.
1	0	0	1
$\sqrt{2}$	25	6	0
3	40	1	0
4	30	5	0
5	10	1	1
6	5	1	1

V	D_{v}	P_{v}	Conoc.
1	0	0	1
2	25	6	1
3	40	1	0
4	30	5	0
5	10	1	1
6	5	1	1

- La distancia de 4 es igual que la de la tabla (no
- se actualiza)

V	D_{v}	P _v	Conoc.
1	0	0	1
2	25	6	1
3	40	1	0
4	30	5	0
5	10	1	1
6	5	1	1

V	D_{v}	P _v	Conoc.
1	0	0	1
2	25	6	1
3	35	4	0
4	30	5	1
5	10	1	1
6	5	1	1

V	D_{v}	P _v	Conoc.
1	0	0	1
2	25	6	1
3	35	4	0
4	30	5	1
5	10	1	1
6	5	1	1

- Como el vértice 3 no tiene adyacentes no conocidos, no hay actualizaciones.
- Como ya todos los vértices son conocidos, éstos son los Costos mínimos resultantes.

V	D_{v}	P _v	Conoc.
1	0	0	1
2	25	6	1
3	35	4	1
4	30	5	1
5	10	1	1
6	5	1	1

Algoritmo de Dijkstra

Dijkstra(G, w, s) {

```
(1) para cada vértice v \in V
                                                              Búsqueda secuencial en el
         D_{v} = \infty; \qquad P_{v} = 0;
                                                              arreglo D del vértice u tq
                                                              D., sea mínima y u no
(3) D_{s} = 0;
                                                              conocido
(4) para cada vértice v \in V {
         u = vérticeDesconocidoMenorDist;
(5)
                                                                  Indica que la distancia D...
(6)
        Marcar u como conocido;
                                                                  es el resultado final para
                                                                  llegar al vértice u.
        para cada vértice w \in V adyacente a u
(7)
             si (w no está conocido)
(8)
                 Si (D_{w} > D_{u} + C(u, w))  {
(9)
                            D_{w} = D_{u} + c(u, w);
(10)
(11)
                            P_{xx} = u;
                                                                      Para mejorar, cuando
(12)
                                                                      corresponda, las
(13)
                                                                      distancias a los
(14)
                                                                      advacentes de u.
```

Algoritmo de Dijkstra Tiempo de ejecución (I)

Si almacenamos las distancias en un vector, tendremos que :

- El bucle *para* de la línea (4) se ejecuta para todos los vértices
 - \rightarrow |V| iteraciones
- La operación *vérticeDesconocidoMenorDist* -línea (5)- es O(|V|) y dado que se realiza |V| veces
 - \rightarrow el costo total de *vérticeDesconocidoMenorDist* es $O(|V|^2)$
- El bucle *para* de la línea (7) se ejecuta para los vértices adyacentes de cada vértice. El número total de iteraciones será la cantidad de aristas del grafo.
 - \rightarrow |E| iteraciones
- El costo total del algoritmo es $(|V|^2 + |E|)$ es $O(|V|^2)$

Algoritmo de Dijkstra - Tiempo de Ejec. (II)

Dijkstra(G, w, s) { (1) para cada vértice $v \in V$ (2) $D_{v} = \infty; \quad P_{v} = 0;$ (3) $D_{s} = 0;$ (4) para cada vértice $v \in V$ { u = vérticeDesconocidoMenorDist; **(5)** Marcar u como conocido; (6) **para** cada vértice $w \in V$ adyacente a u**(7)** si (w no está conocido) (8) $si (D_{w} > D_{u} + c(u, w))$ { (9) $D_{w} = D_{u} + c(u, w);$ (10)(11) $P_{w} = u;$ (12)(13)**(14)**

Algoritmo de Dijkstra - Tiempo de Ejec. (II)

```
Dijkstra(G, w, s) {
```

```
Usar una HEAP para almacenar las
(1) para cada vértice v \in V
                                                    D_{v}. Con Delete-min se obtiene el
    D_{_{V}} = \infty; \qquad P_{_{V}} = 0;
                                                    vértice u tq D, sea mínima y u no
(3) D_{s} = 0;
                                                    conocido
(4) para cada vértice v \in V {
(5)
        u = vérticeDesconocidoMenorDist;
(6)
        Marcar u como conocido;
        para cada vértice w \in V adyacente a u
(7)
             si (w no está conocido)
(8)
                 si (D_{w} > D_{u} + c(u, w))  {
(9)
                            D_{w} = D_{u} + c(u, w);
(10)
(11)
                            P_{w} = u;
(12)
(13)
                                                Con Insert ( \mathbf{w}, \mathbf{D}_{\mathbf{w}} ) se actualiza la HEAP.
(14)
```

Algoritmo de Dijkstra Tiempo de ejecución (II)

Optimización: la operación *vérticeDesconocidoMenorDist* es más eficiente si almacenamos las distancias en una heap.

- La operación *vérticeDesconocidoMenorDist* -línea (5)- es O(log|V|) y dado que se realiza |V| veces
 - \rightarrow el costo total de *vérticeDesconocidoMenorDist* es $O(|V| \log |V|)$
- El bucle *para* de la línea (7) que se ejecuta para los vértices adyacentes de cada vértice, también supone *modificar* la prioridad (distancia) y *reorganizar* la heap luego de la línea (10). Cada iteración es O(log|V|)
 - \rightarrow realiza |E| iteraciones, O(|E| log|V|)
- El costo total del algoritmo es ($|V| \log |V| + |E| \log |V|$) es O($|E| \log |V|$)

Algoritmo de Dijkstra Tiempo de ejecución (III)

Variante para evitar modificar y reorganizar la heap:

la actualización de la heap luego de la línea (10) se puede resolver insertando el vértice w y su nuevo valor D_w cada vez que éste se modifica.

- El tamaño de la heap puede crecer hasta |E|. Dado que $|E| \le |V|^2$, $\log |E| \le 2 \log |V|$, el costo total del algoritmo no varía
- El costo total del algoritmo es O(|E| log|V|)

Algoritmos de Caminos mínimos Grafos con pesos positivos y negativos

Ejemplos:

- Simulaciones científicas
- Redes de flujo
- Protocolos de ruteo basados en vector de distancias

Algoritmos de Caminos mínimos Grafos con pesos positivos y negativos

• Estrategia: Encolar los vértices

Si el grafo tiene aristas negativas, el algoritmo de Dijkstra puede dar un resultado erróneo.

V	$\mathbf{D}_{\mathbf{v}}$	P _v	Conoc.
S	0	0	1
u	-5	S	1
V	2	S	1

Error!!

La distancia mínima de s a u es -8

Algoritmos de Caminos mínimos Grafos con pesos positivos y negativos (cont.)

Pasos:

- Encolar el vértice origen s.
- Procesar la cola:
 - Desencolar un vértice.
 - Actualizar la distancia de los adyacentes D_w siguiendo el mismo criterio de Dijkstra.
 - Si w no está en la cola, encolarlo.

El costo total del algoritmo es O(|V| |E|)

Algoritmos de Caminos mínimos

Grafos con pesos positivos y negativos (cont.)

```
Camino min GrafoPesosPositivosyNegativos (G,s)
(1) D_s = 0; Encolar (Q,s);
(2) Mientras (not esVacio(Q)) {
      Desencolar (Q, u);
(3)
          para c/vértice \mathbf{w} \in V adyacente a u {
(4)
       si (D_{w} > D_{u} + C(u, w))  {
(5)
              D_{u} = D_{u} + C(u, w);
(6)
           P_{w} = u;
(7)
           si (w no está en Q)
(8)
               Encolar (0, w);
(9)
(10)
(11)
(12)
```

Algoritmos de Caminos mínimos

Grafos con pesos positivos y negativos (cont.)

Orden que se toma el Vértice	Vértices	Distancia (S,v)	Vértice Previo	<u>Encolado</u>
1°	S	0		0 1
	a	∞		0
	b	∞		0
	c	∞		0
	d	∞		0
	e	∞		0

Algoritmos de Caminos mínimos Grafos acíclicos

- Encontrar la ganancia máxima en un período de tiempo
- Determinar el tiempo requerido para completar una tarea

Algoritmos de Caminos mínimos Grafos acíclicos

- Estrategia: Orden Topológico
 - Optimización del algoritmo de Dijkstra
 - La selección de cada vértice se realiza siguiendo el orden topológico
 - Esta estrategia funciona correctamente, dado que al seleccionar un vértice *v*, no se va a encontrar una distancia *dv* menor, porque ya se procesaron todos los caminos que llegan a él

El costo total del algoritmo es O(|V| + |E|)

Algoritmos de Caminos mínimos

Grafos acíclicos (versión general)

```
Camino min GrafoDirigidoAcíclico(G,s) {
   Ordenar topológicamente los vértices de G;
   Inicializar Tabla de Distancias (G, s);
   para c/vértice u del orden topológico
         para c/vértice w \in V adyacente a u
               si (D_w > D_u + c(u, w))  {
                  D_{w} = D_{u} + c(u, w);
                  P_{\omega} = u;
```

Algoritmos de Caminos mínimos

Grafos acíclicos (versión detallada)

```
Camino min GrafoDirigidoAcíclico (G,s) {
Calcular el grado in de todos los vértices;
Encolar en Q los vértices con grado in = 0;
para cada vértice v € V
    D_{v} = \infty; P_{v} = 0;
D_s = 0;
Mientras (!esVacio(0)) {
    Desencolar (Q, u);
     para c/vértice w \in V advacente a u \in V
           Decrementar grado de entrada de w
           si (grado in[w] = 0)
                Encolar (Q, w);
       \mathbf{si} (D_{,,} != \infty)
        si D_{w} > D_{u} + c(u, w)  {
                 D_{w} = D_{yy} + c(u, w);
                P_{u} = u;
```

Caminos mínimos entre todos los pares de vértices

- Estrategia: Algoritmo de Floyd
 - Lleva dos matrices D y P, ambas de |V| x |V|

Matriz de costos mínimos

Matriz de vértices intermedios

El costo total del algoritmo es $O(|V|^3)$

Camino de costo mínimo entre cada par de vértices

```
para i=1 hasta cant Vértices(G)
       para j=1 hasta cant Vértices(G)
                D[i,i] = A[i,i]
                                               Toma cada vértice como intermedio,
                                              para calcular los caminos
para k=1 hasta cant Vértices(G)
         para i=1 hasta cant Vértices(G)
       para j=1 hasta cant Vértices(G)
                si (D[i,j] > D[i,k] + D[k,j]) {
                                                        Distancia entre los
                                                        vértices i y j, pasando
             D[i,j] = D[i,k] + D[k,j];
                                                        por k
                     P[i,j] = k;
```

Camino de costo mínimo entre cada par de vértices

K=1

• Ejemplo:

$\mathbf{D}_{\mathbf{i},\mathbf{j}}$	1	2	3	4
1	0	1	5	∞
2	8	0	2	9
3	∞	∞	0	2
4	4	∞	∞	0

\						
	$D_{i,j}$	1	2	3	4	
*	1	0	1	5	∞	
	2	8	0	2	9	
	3	8	∞	0	2	
	4	4	∞ <u>5</u>	∞ <u>9</u>	0	

$$D (4,2) > D(4,1) + D(1,2) \longrightarrow D (4,2) = D(4,1) + D(1,2)$$

 $\infty > 4 + 1 \longrightarrow D (4,2) = 5$

$$D (4,3) > D(4,1) + D(1,3) \longrightarrow D (4,3) = D(4,1) + D(1,3)$$

 $\infty > 4 + 5 \longrightarrow D (4,3) = 9$

Camino de costo mínimo entre cada par de vértices

• Ejemplo:

$\mathbf{D}_{\mathbf{i},\mathbf{j}}$	1	2	3	4
1	0	1	5	∞
2	8	0	2	9
3	8	∞	0	2
4	4	8	8	0

		4
ĸ	_	1
Γ		- 1

$\mathbf{D}_{\mathbf{i},\mathbf{j}}$	1	2	3	4
1	0	1	5	∞
2	∞	0	2	9
3	∞	∞	0	2
4	4	<u>5</u>	<u>9</u>	0

			>		
	$\mathbf{D}_{i,j}$	1	2	3	4
	1	0	1	5 <u>3</u>	∞ <u>10</u>
•	2	∞	0	2	9
	3	∞	8	0	2
	4	4	<u>5</u>	9- 7	0

Camino de costo mínimo entre cada par de vértices

• Ejemplo:

$\mathbf{D}_{i,j}$	1	2	3	4
1	0	1	5	∞
2	8	0	2	9
3	8	∞	0	2
4	4	8	∞	0

K=	1
----	---

$\mathbf{D}_{\mathbf{i},\mathbf{j}}$	1	2	3	4
1	0	1	5	∞
2	∞	0	2	9
3	∞	∞	0	2
4	4	<u>5</u>	<u>9</u>	0

K=2

$\mathbf{D}_{i,j}$	1	2	3	4
1	0	1	<u>3</u>	<u>10</u>
2	∞	0	2	9
3	∞	∞	0	2
4	4	<u>5</u>	<u>7</u>	0

$\mathbf{D}_{\mathbf{i},\mathbf{j}}$	1	2	3	4
1	0	1	<u>3</u>	10 <u>5</u>
2	∞	0	2	9 <u>4</u>
3	∞	∞	0	2
4	4	<u>5</u>	<u>7</u>	0

Camino de costo mínimo entre cada par de vértices

• Ejemplo:

$\mathbf{D}_{i,j}$	1	2	3	4
1	0	1	5	8
2	8	0	2	9
3	8	∞	0	2
4	4	8	∞	0

K=1

$\mathbf{D}_{i,j}$	1	2	3	4
1	0	1	5	∞
2	8	0	2	9
3	8	∞	0	2
4	4	<u>5</u>	<u>9</u>	0

K=2

K=4

$\mathbf{D}_{\mathbf{i},\mathbf{j}}$	1	2	3	4
1	0	1	<u>3</u>	<u>10</u>
2	∞	0	2	9
3	∞	∞	0	2
4	4	<u>5</u>	<u>7</u>	0

$\mathbf{D}_{\mathrm{i,j}}$	1	2	3	4
1	0	1	<u>3</u>	<u>5</u>
2	∞	0	2	<u>4</u>
3	∞	∞	0	2
4	4	<u>5</u>	7	0

$\mathbf{D}_{\mathbf{i},\mathbf{j}}$	1	2	3	4
1	0	1	<u>3</u>	<u>5</u>
2	<u>∞ 8</u>	0	2	<u>4</u>
3	<u>∞ 6</u>	<u>∞ 7</u>	0	2
4	4	<u>5</u>	7	0

Camino de costo mínimo entre cada par de vértices

• Ejemplo:

$D_{i,j}$	1	2	3	4
1	0	1	5	∞
2	∞	0	2	9
3	∞	∞	0	2
4	4	8	8	0

$\mathbf{D}_{\mathbf{i},\mathbf{j}}$	1	2	3	4
1	0	1	<u>3</u>	<u>5</u>
2	<u>8</u>	0	2	<u>4</u>
3	<u>6</u>	<u>7</u>	0	2
4	4	<u>5</u>	7	0

Matriz inicial de costos entre cada par de vértices

Matriz luego de aplicar Floyd con los costos entre cada par de vértices

Grafos	BFS O(V+E)	Dijkstra O(E log V)	Algoritmo modificado (encola vértices) O(V*E)	Optimización de Dijkstra (sort top) O(V+E)
No pesados	Óptimo	Correcto	Malo	Incorrecto si tiene ciclos
Pesados	Incorrecto	Óptimo	Malo	Incorrecto si tiene ciclos
Pesos negativos	Incorrecto	Incorrecto	Óptimo	Incorrecto si tiene ciclos
Grafos pesados acíclicos	Incorrecto	Correcto	Malo	Óptimo

Correcto → adecuado pero no es el mejor Malo → una solución muy lenta