MTH100 LINEAR ALGEBRA

Worksheet 1

Question 1. Reduce the following matrix to an RREF matrix using elementary row operations.

$$A = \begin{bmatrix} 1 & 2 & -3 & 0 \\ 2 & 4 & -2 & 2 \\ 3 & 6 & -4 & 1 \end{bmatrix}$$

Question 2. Reduce the following matrix to an RREF matrix using elementary row operations.

$$A = \begin{bmatrix} 1 & -2 & 3 & -1 \\ 2 & -1 & 2 & 2 \\ 3 & 1 & 2 & 3 \end{bmatrix}$$

Question 3. Explicitly describe all non-zero 2×2 RREF matrices. You may also try to do this for 2×3 and 3×3 RREF matrices.

Question 4. Define a relation T on the real number system \mathbf{R} by xTy if $y-x \in \mathbf{Z}$, the set of integers. Is T an equivalence relation? Justify your answer. If yes, can you find a special representative in each equivalence class, just as we could do for row equivalence of matrices?

Question 5. Prove that row-reduction is an equivalence relation on the set $\mathbf{R}^{m \times n}$ of all m by n matrices with real entries.

Question 6. Show that if E is an equivalence relation on a set X, then any two distinct equivalence classes must be disjoint. Also show that every element of X has to belong to an equivalence class.

The equivalence class of any element $a \in X$ is the set of all elements of X which are related to a, the formal definition is:

 $_{\square}[a] = \{x \in X : xEa, i.e.x \text{ is related to a under the ralation } E\}$

Question 7. Show that if P is a partition of a set X, then there exists an equivalence relation E on X such that the equivalence classes correspond to the parts of the given partition P.(Q.7) is the converse of Q.6)

Question 8. Find the solution set in the vector form for the homogeneous system Ax = 0 given A below. NB: A must be row-reduced to an RREF matrix in order to give the solution in standard form.

$$A = \begin{bmatrix} 1 & -2 & 3 & -1 \\ 2 & -1 & 2 & 2 \\ 3 & 1 & 2 & 3 \end{bmatrix}$$