In [1]:

```
%config Completer.use_jedi=False
import os
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
```

Read data & check basic info

In [3]:

```
df = pd.read_csv('data/LTV.csv')
display(df.head().style.set_caption(f'IBM data for CLTV prediction of shape {df.shape}')
)
```

IBM data for CLTV prediction of shape (9134, 24)

	Customer	State	Customer Lifetime Value	Response	Coverage	Education	Effective To Date	EmploymentStatus	Gender	Income	Loi
0	BU79786	Washington	2763.519279	No	Basic	Bachelor	2/24/11	Employed	F	56274	Sub
1	QZ44356	Arizona	6979.535903	No	Extended	Bachelor	1/31/11	Unemployed	F	0	Sub
2	Al49188	Nevada	12887.431650	No	Premium	Bachelor	2/19/11	Employed	F	48767	Sub
3	WW63253	California	7645.861827	No	Basic	Bachelor	1/20/11	Unemployed	М	0	Sub
4	HB64268	Washington	2813.692575	No	Basic	Bachelor	2/3/11	Employed	М	43836	
4											Þ

In [4]:

```
print(df.info())
```

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 9134 entries, 0 to 9133
Data columns (total 24 columns):

	#	Column	Non-Null Count	Dtype
-				
	0	Customer	9134 non-null	object
	1	State	9134 non-null	object
	2	Customer Lifetime Value	9134 non-null	float64
	3	Response	9134 non-null	object
	4	Coverage	9134 non-null	object
	5	Education	9134 non-null	object
	6	Effective To Date	9134 non-null	object
	7	EmploymentStatus	9134 non-null	object
	8	Gender	9134 non-null	object
	9	Income	9134 non-null	int64
	10	Location Code	9134 non-null	object
	11	Marital Status	9134 non-null	object
	12	Monthly Premium Auto	9134 non-null	int64
	13	Months Since Last Claim	9134 non-null	int64
	14	Months Since Policy Inception	9134 non-null	int64

15	Number of Open Complaints	9134 non-null	int64
16	Number of Policies	9134 non-null	int64
17	Policy Type	9134 non-null	object
18	Policy	9134 non-null	object
19	Renew Offer Type	9134 non-null	object
20	Sales Channel	9134 non-null	object
21	Total Claim Amount	9134 non-null	float64
22	Vehicle Class	9134 non-null	object
23	Vehicle Size	9134 non-null	object

dtypes: float64(2), int64(6), object(16)

memory usage: 1.7+ MB

None

In [5]:

<pre>print(df.nunique())</pre>	
Customer	9134
State	5
Customer Lifetime Value	8041
Response	2
Coverage	3
Education	5
Effective To Date	59
EmploymentStatus	5
Gender	2
Income	5694
Location Code	3
Marital Status	3
Monthly Premium Auto	202
Months Since Last Claim	36
Months Since Policy Inception	100
Number of Open Complaints	6
Number of Policies	9
Policy Type	3
Policy	9
Renew Offer Type	4
Sales Channel	4
Total Claim Amount	5106
Vehicle Class	6
Vehicle Size	3
dtype: int64	

In [6]:

display(df.describe())

	Customer Lifetime Value	Income	Monthly Premium Auto	Months Since Last Claim	Months Since Policy Inception	Number of Open Complaints	Number of Policies	Total Claim Amount
count	9134.000000	9134.000000	9134.000000	9134.000000	9134.000000	9134.000000	9134.000000	9134.000000
mean	8004.940475	37657.380009	93.219291	15.097000	48.064594	0.384388	2.966170	434.088794
std	6870.967608	30379.904734	34.407967	10.073257	27.905991	0.910384	2.390182	290.500092
min	1898.007675	0.000000	61.000000	0.000000	0.000000	0.000000	1.000000	0.099007
25%	3994.251794	0.000000	68.000000	6.000000	24.000000	0.000000	1.000000	272.258244
50%	5780.182197	33889.500000	83.000000	14.000000	48.000000	0.000000	2.000000	383.945434
75%	8962.167041	62320.000000	109.000000	23.000000	71.000000	0.000000	4.000000	547.514839
max	83325.381190	99981.000000	298.000000	35.000000	99.000000	5.000000	9.000000	2893.239678

Check Correlation

In [7]:

plt.figure(figsize=[8, 6])

```
sns.heatmap(df.corr(), annot=True)
plt.title('Correlation heatmap')
plt.show()
```


Можно заметить высокую корреляцию между таргетом и Monthly Premium Auto. Отсортирует данные по этому признаку и построим график

In [8]:

```
df.sort_values(by=['Monthly Premium Auto'], ascending=True).reset_index()['Customer Life
time Value'].plot()
plt.title('Monthly Premium Auto - CLTV correlation')
plt.xlabel('Indexes sorted by Monthly Premium Auto')
plt.ylabel('CLTV')
plt.show()
```


Действительно, в среднем таргет растёт с ростом Monthly Premium Auto

Look at Monthly Premium Auto

In [8]:

```
plt.figure(figsize=[12, 4])
sns.histplot(df['Monthly Premium Auto'], color='magenta', kde=True)
plt.title('Histogram of Monthly Premium Auto')
plt.show()
```


Значения Monthly Premium Auto находятся в районе ~60-300, среднее значение ~90

In [9]:

```
plt.figure(figsize=[12, 4])
sns.boxplot(x=df['Monthly Premium Auto'])
plt.title('Boxplot of Monthly Premium Auto')
plt.show()
```


Достаточно много выбросов, но в основном они идут более менее непрерывно. Крайне отличающихся единичных выбросов нет

Look at LTV

In [10]:

```
plt.figure(figsize=[12, 4])
sns.histplot(df['Customer Lifetime Value'], color='magenta', kde=True)
plt.title('CLTV histogram')
plt.show()
```

CLTV histogram 1000 800 -

Среднее значение таргета находится в районе **8000**, при этом достаточно много значений находятся между **2000** и **5000**

In [11]:

```
plt.figure(figsize=[12, 4])
sns.boxplot(x=df['Customer Lifetime Value'])
plt.show()
```


По графику **boxplot** видно, что таргет имеет достаточно много выбросов, а также совсем экстремально большие значения в **70000-80000**, в то время как правая граница "усов" графика находится в районе **16000**. Для обучения моделей будем использовать логарифм таргета. Редкие большие значения удалим, чтобы модели не сбивались

Look at LTV for males and females separately

In [12]:

```
male_df = df.query('Gender == "M"')
female_df = df.query('Gender == "F"')
```

In [13]:

```
print('Male max LTV', male_df['Customer Lifetime Value'].max())
print('Male min LTV', male_df['Customer Lifetime Value'].min())
print('Male mean LTV', male_df['Customer Lifetime Value'].mean())
```

Male max LTV 83325.38119
Male min LTV 1898.007675
Male mean LTV 7909.55148797967

In [14]:

```
print('Female max LTV', female_df['Customer Lifetime Value'].max())
print('Female min LTV', female_df['Customer Lifetime Value'].min())
print('Female mean LTV', female_df['Customer Lifetime Value'].mean())
```

```
Female max LTV 73225.95652
Female min LTV 1898.683686
Female mean LTV 8096.60236975848
```

In [15]:

```
plt.figure(figsize=[12, 4])

plt.subplot(1, 2, 1)
sns.histplot(male_df['Customer Lifetime Value'], color='magenta', kde=True)
plt.title('CLTV histogram for males')

plt.subplot(1, 2, 2)
sns.histplot(female_df['Customer Lifetime Value'], color='magenta', kde=True)
plt.title('CLTV histogram for females')

plt.show()
```


Максимальные значения **LTV** находятся среди мужчин, в то время как в среднем женщины тратят чуть больше. Но в целом значения не сильно отличаются от значений общего датасета

Look at mean CLTV difference between states

In [17]:

```
values = df.groupby('State').mean()['Customer Lifetime Value'].values
features = df.groupby('State').mean()['Customer Lifetime Value'].index
indices = np.argsort(values)

plt.figure(figsize=[10, 4])
plt.title('Mean CLTV in States')
plt.barh(range(len(indices)), values[indices], color='magenta', align='center')
plt.yticks(range(len(indices)), [features[i] for i in indices])
plt.xlabel('CLTV')
plt.show()
```


Look at mean CLTV difference between policy types

In [20]:

```
values = df.groupby('Policy Type').mean()['Customer Lifetime Value'].values
features = df.groupby('Policy Type').mean()['Customer Lifetime Value'].index
indices = np.argsort(values)

plt.figure(figsize=[10, 4])
plt.title('Mean CLTV in Policy Types')
plt.barh(range(len(indices)), values[indices], color='magenta', align='center')
plt.yticks(range(len(indices)), [features[i] for i in indices])
plt.xlabel('CLTV')
plt.show()
```


Look at Income

In [16]:

```
plt.figure(figsize=[12, 4])
sns.histplot(df['Income'], color='magenta', kde=True)
plt.title('Histogram of Income')
plt.show()
```


In [17]:

```
plt.figure(figsize=[12, 4])
sns.boxplot(x=df['Income'])
plt.title('Boxplot of Income')
plt.show()
```


Достаточно много людей не имеют дохода. Количество людей с разной суммой дохода не равной **0** распределено достаточно равномерно, явных выбросов нет

```
In [18]:
```

```
print(df.query('Income == 0')['EmploymentStatus'].unique())
['Unemployed']
```

Все, у кого доход равен 0, не устроены на работу

Look at Effective To Date

```
In [19]:
df['Effective To Date']
Out[19]:
        2/24/11
0
1
        1/31/11
        2/19/11
3
        1/20/11
         2/3/11
9129
        2/10/11
9130
        2/12/11
9131
         2/6/11
9132
         2/3/11
9133
        2/14/11
Name: Effective To Date, Length: 9134, dtype: object
In [20]:
print(df['Effective To Date'].apply(lambda x: x.split('/')[2]).unique())
['11']
```

Все данные по сроку действия страховки датированы 11-ым годом

```
In [21]:
```

```
sns.histplot(df['Effective To Date'].apply(lambda x: x.split('/')[0]), color='magenta')
plt.title('"Effective To Date" months histogram')
plt.show()
```



```
8 2000 - 1000 - 2 1 Effective To Date
```

Данные по месяцам имеют всего 2 уникальных значения

In [22]:

```
plt.figure(figsize=[12, 4])
sns.histplot(df['Effective To Date'].apply(lambda x: x.split('/')[1]), color='magenta')
plt.title('"Effective To Date" days histogram')
plt.show()
```


In [23]:

```
# Посмотрим на корреляцию дней и таргета
sns.heatmap(
    np.corrcoef(df['Effective To Date'].apply(lambda x: int(x.split('/')[1])), df['Custo
mer Lifetime Value']),
    annot=True
)
plt.title('Days-CLTV correlation heatmap')
plt.show()
```


По дням имеются значения от **1** до **31**, но в целом достать какую-то полезную информацию из

Еffective To

Date не видится возможным

Pie Plots

In [24]:

```
cols = df.columns
for col in cols:
    if df[col].nunique() < 10:</pre>
        labels = list(df[col].value counts().index)
        sizes = list(df[col].value_counts())
        explode = (0.05, ) * len(labels)
        plt.pie(sizes,
                labels=labels,
                autopct='%1.1f%%',
                startangle=90,
                pctdistance=0.9,
                explode=explode,
                radius=1)
        centre_circle = plt.Circle((0,0) , 0.70, fc='white')
        fig = plt.gcf()
        fig.gca().add_artist(centre_circle)
        plt.tight_layout()
        plt.title(col)
        plt.show()
```

State

Response

Coverage

Location Code

Urban 17.3%

Marital Status

Number of Open Complaints

Number of Policies

Policy Type

Special Auto

Corporate Auto 21.5%

Renew Offer Type

Sales Channel

Vehicle Class

LuxurxuGaSUV Sports Car

По этим диаграммам мы можем наблюдать, как распределены группы внутри признаков в процентах

In []: