Final Exam 2021

Instructors: Brian M. Kurkoski and Lei Liu June 7, 2021 13:30–15:10

SOLUTIONS

Exam policy:

- You may not connect to the internet, except to use the LMS.
- You may not communicate with anyone during the exam, except the instructor.
- This is an open-book exam. You may use only
 - Information Theory Lecture Notes by the instructor,
 - Elements of Information Theory by Cover and Thomas,
 - anything written in your own hand.
 - You can also use any material on the LMS on your device. Your device screen should not display pages other than the LMS.
- Not following the above rules could result in failing the course.

In addition:

- Calculators are not allowed and not needed. Numerical answers such as 5^7 and $1 + 2 \log 3$ are acceptable, but simplify as much as reasonably possible.
- You can write on the back of the paper.
- Students should wear a mask during the exam.

Question	Points	Score
1	25	
2	20	
3	25	
4	30	
Total:	100	

This exam has 6 pages.

- 1. Information theory concepts State the key ideas from information theory. (Do not write too much.)
 - (a) (5 points) Does compressing over blocks of length n and letting $n \to \infty$ make the "performance" of a source code *strictly* better? If so, state why. If not, show why not.
 - (b) (5 points) Your friend has a 16 pixel-by-16 pixel image, in which each pixel is either black or white with probability 0.5, and all pixels are independent. He wants to losslessly compress this to an 8 pixel-by-8 pixel image, again with black and white pixels. If this is possible, find a code or describe the procedure you would use to do so. If this is not possible, state the reason.
 - (c) (5 points) If possible, find a prefix code over an alphabet of size D=3 with codeword lengths (1,1,2,3). If not possible, explain the reason.
 - (d) (5 points) Let X and Y be independent and discrete. Find H(2X, -2Y) in terms of the entropies H(X), H(Y) and H(X, Y).
 - (e) (5 points) Consider a channel with capacity C = 0.5. Suppose a code with length $n = 10^6$ is used for this channel. What can you say about the number of message bits that can be reliably transmitted over this channel?

Solution:

- (a) No, it does not always reduce the compression rate, i.e. the "performance." If the source is D-adic, for example $p_X(x) \sim 2^{-i}$, then n = 1 compression is optimal.
- (b) This is not possible. Because the source consists of (0.5, 0.5) uniform bits, R > H(X) = 1 and lossless compression is not possible. (Lossy compression is possible.)
- (c) This is possible because the Kraft inequality is satisfied. An example is C = (0, 1, 20, 210).
- (d) Recall H(aX) = H(X) for any $a \neq 0$. In the same way, H(2X, -2Y) = H(X, Y) = H(X) + H(Y), where independence was used. Or: H(2X, -2Y) = H(2X) + H(-2Y) = H(X) + H(Y)
- (e) By the channel coding theorem, if R < C then reliable transmission is possible. So, no more than 5×10^5 message bits can be reliably transmitted.

2. Source coding-channel coding An information source consists of n_1 bits V_1, \ldots, V_{n_1} , i.i.d. distributed as $p_{\mathsf{V}}(v) = [1-p,p], \ v \in \{0,1\}$. A source encoder of rate $R_1 < 1$ compresses to a **binary** index $\mathbf{w} = (w_1, w_2, \ldots, w_{n_2})$.

(a) (5 points) How many bits n_2 are in the sequence **w**? In terms of n_1 and p, what is a lower bound on n_2 ?

Now, to reliably transmit this index **w** over a binary symmetric channel with error probability α , a channel encoder of rate $R_2 < 1$ encodes **w** to a codeword **x**.

(b) (5 points) How many bits n_3 are in the sequence \mathbf{x} ? In terms of n_2 and α , what is a lower bound on n_3 ?

At the destination, a decoder estimates $\hat{\mathbf{w}}$, which is decompressed to $\hat{\mathbf{v}}$.

(c) (10 points) Let the total rate be $R = R_1/R_2$. In terms of p and α , find a condition on R such that the probability of error $\Pr[V \neq \widehat{V}]$ can go to 0 as $n \to \infty$.

Solution: (a) The rate of the code is R_1 , so $n_2 = n_1 R_1$. Or, since the index set is $\{1, 2, \dots, 2^{n_1 R_1}\}$, this is described using $\log (2^{n_1 R_1}) = n_1 R_1$ bits.

From optimal compression, an upper bound is $R_1 \ge H(V) = h(p)$, so we have $n_2 \ge n_1 h(p)$.

- (b) The rate of the code is R_2 , so $n_3 = \frac{1}{R_2}n_2 = \frac{R_1}{R_2}n_1$. For the BSC, $C = 1 h(\alpha)$. From $R_2 < C$, we have $n_3 > \frac{n_2}{1 h(\alpha)}$
- (c) As $n \to \infty$ we must have $R_1 > h(p)$ in order for source coding to succeed. And, we must have $R_2 < 1 h(\alpha)$.

$$R = \frac{R_1}{R_2} > \frac{h(p)}{1 - h(\alpha)}$$

3. Multiple access channel (MAC) Consider the following multiple access channel (MAC):

$$Y = X_1 \oplus X_2 \oplus N,$$

where \oplus denotes xor, $X_1, X_2 \in \{0, 1\}$ are two binary inputs, and $N \in \{0, 1\}$ is a binary noise with $p_N(0) = p$.

(a) (5 points) For fixed $X_1 = 0$, find the maximum achievable rate between X_2 and Y. Find the optimal distribution of X_2 which achieves this rate.

Solution: Since $X_1 = 0$, we have

$$Y = X_2 \oplus N$$
.

Thus,

$$R = \max_{p_{X_2}} I(X_2; Y|X_1) = \max_{p_{X_2}} H(Y) - H(N) = 1 - h(p).$$

The optimal distribution of X_2 is uniform distribution, i.e., $p_{X_2}(0) = p_{X_2}(1) = 1/2$.

(b) (10 points) Let R_1 be the achievable rate of X_1 and R_2 be the achievable rate of X_2 . Draw the capacity region (R_1, R_2) and label the rates on it.

Solution: The capacity region is given by

$$R_1 \le I(X_1; Y | X_2) = 1 - h(p),$$

$$R_1 \le I(X_2; Y|X_1) = 1 - h(p),$$

$$R_1 + R_2 \le I(X_1, X_2; Y) = 1 - h(p).$$

Note: The mutual information above are respectively maximized by the uniform distribution of X_1 , X_2 and $X_1 \oplus X_2$.

(c) (10 points) Give a scheme to achieve the whole capacity region in (b)?

Solution:

- Point A can be achieved by (a).
- Similarly, Point B can be achieved by $X_1 = 0$ and uniformly distributed X_2 , i.e., $p_{X_2}(1) = p_{X_2}(0) = 1/2$.
- Any point on segment AB can be achieved by the time sharing between A and B:

$$\alpha A + (1 - \alpha)B$$
,

where $\alpha \in [0, 1]$. Since the capacity region is dominated by segment AB. Therefore, the whole capacity region is achieved.

4. Multiple input and multiple output channel (MIMO) Channel Consider a MIMO channel:

$$\mathbf{y} = \mathbf{A}\mathbf{x} + \mathbf{n},\tag{1}$$

where $\mathbf{n} \sim \mathcal{N}(\mathbf{0}, \sigma^2 \mathbf{I})$ is a 3×1 noise vector, $\mathbf{x} = [x_1, x_2, x_3]^{\mathrm{T}}$ is a message vector with power constraint $\sum_{i=1}^{3} \mathrm{E}\{x_i^2\} = 1$, and \mathbf{A} is a channel matrix given by

$$\mathbf{A} = \left[\begin{array}{rrr} 3 & 1 & 1 \\ 1 & 2 & 2 \\ 1 & 2 & 2 \end{array} \right].$$

Assume that A is known at transmitter. The singular value decomposition (SVD) of A is given by

$$\mathbf{A} = \underbrace{\left[\begin{array}{cccc} 0 & \frac{2}{\sqrt{6}} & \frac{1}{\sqrt{3}} \\ \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{6}} & \frac{1}{\sqrt{3}} \\ -\frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{6}} & \frac{1}{\sqrt{3}} \end{array} \right]}_{\mathbf{V}^{\mathrm{T}}} \underbrace{\left[\begin{array}{cccc} 0 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 5 \end{array} \right]}_{\mathbf{\Lambda}} \underbrace{\left[\begin{array}{cccc} 0 & -\frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \\ \frac{2}{\sqrt{6}} & -\frac{1}{\sqrt{6}} & -\frac{1}{\sqrt{6}} \\ \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{3}} \end{array} \right]}_{\mathbf{V}},$$

where V is an orthogonal matrix.

(a) (5 points) Find the equivalent parallel AWGN channels for the MIMO channel.

Solution: Let $\tilde{\mathbf{x}} = \mathbf{V}\mathbf{x}$, $\tilde{\mathbf{y}} = \mathbf{\Lambda}^{-1}\mathbf{V}\mathbf{y}$, and $\tilde{\mathbf{n}} = \mathbf{\Lambda}^{-1}\mathbf{V}\mathbf{n}$. Then we obtain the following parallel Gaussian AWGN channels:

$$\tilde{\mathbf{y}} = \boldsymbol{\Lambda}^{-1} \mathbf{V} \mathbf{y} = \boldsymbol{\Lambda}^{-1} \mathbf{V} \mathbf{V}^{\mathrm{T}} \boldsymbol{\Lambda} \mathbf{V} \mathbf{x} + \boldsymbol{\Lambda}^{-1} \mathbf{V} \mathbf{n} = \mathbf{\tilde{x}} + \mathbf{\tilde{n}},$$

where $\tilde{\mathbf{n}} \sim \mathcal{N}(0, \sigma^2 \mathbf{\Lambda}^{-2})$. (Note: $1/0 = \infty$.)

(b) (10 points) Find the optimal power allocation for the parallel AWGN channels in (a).

Solution: The optimal power allocation is given by water filling:

$$p_i^* = (v - \sigma^2/\lambda_i^2)^{\dagger}, \quad i = 1, 2, 3.$$

Since $\lambda_1=0$, we have $p_1^*=0$. Furthermore, following the power constraint, we have $p_2^*+p_3^*=1$.

• Case 1: When $\sigma^2 > \frac{100}{21}$, we have

$$p_1^* = p_2^* = 0,$$

 $p_2^* = 1.$

• Case 2: When $\sigma^2 \leq \frac{100}{21}$, we have

$$\begin{split} p_1^* &= 0, \\ p_2^* &= \frac{1 - \frac{21}{100}\sigma^2}{2} = \frac{1}{2} - \frac{21}{200}\sigma^2, \\ p_3^* &= 1 - p_2^* = \frac{1}{2} + \frac{21}{200}\sigma^2. \end{split}$$

(c) (10 points) Based on the result in (b), find the capacity of the MIMO channel in (1).

Solution: The capacity of the MIMO channel is given by:

$$C = \frac{1}{2}\log\left(1 + \frac{4p_2^*}{\sigma^2}\right) + \frac{1}{2}\log\left(1 + \frac{25p_3^*}{\sigma^2}\right).$$

• Case 1: When $\sigma^2 > \frac{100}{21}$, we have

$$C = \frac{1}{2}\log\left(1 + \frac{25}{\sigma^2}\right).$$

• Case 2: When $\sigma^2 \leq \frac{100}{21}$, we have

$$C = \frac{1}{2} \log \left(\frac{29}{50} + \frac{2}{\sigma^2} \right) + \frac{1}{2} \log \left(\frac{29}{8} + \frac{25}{2\sigma^2} \right).$$

(d) (2 points) Let $\sigma^2 = 6$. Calculate the optimal power allocation in (b) and the capacity in (c).

Solution: Since $\sigma^2 = 6 > \frac{100}{21}$, following Case 1 in (b), we have

$$p_1^* = p_2^* = 0,$$

 $p_3^* = 1.$

Following Case 1 in (c), we have

$$C = \frac{1}{2} \log \frac{31}{6}.$$

(e) (3 points) Let $\sigma^2 = 2$. Calculate the optimal power allocation in (b) and the capacity in (c).

Solution: Since $\sigma^2 = 2 < \frac{100}{21}$, following Case 2 in (b), we have

$$\begin{split} p_1^* &= 0, \\ p_2^* &= \frac{1}{2} - \frac{21}{200} \sigma^2 = \frac{29}{100}, \\ p_3^* &= 1 - p_2^* = \frac{1}{2} + \frac{21}{200} \sigma^2 = \frac{71}{100} \end{split}$$

Following Case 2 in (c), we have

$$C = \frac{1}{2}\log\frac{79}{50} + \frac{1}{2}\log\frac{79}{8} = \log\frac{79}{20}.$$