## **SVT\_LP MODELS (NSVTLP, PSVTLP)**

#### 1. CONDITIONS OF EXTRACTION

- Maturity: Pre-Production
- Model parameters extraction based on lot: Q539TVB
- Geometrical extraction domain:
  - Drawn gate length : 10.0  $\geq$  L  $\geq$  0.06  $\mu$ m
  - Drawn transistor width :  $10 \ge W \ge 0.12 \mu m$
- Temperature extraction domain: -40 °C to 150 °C
- Bias extraction domain:
  - Gate bias: 0 ≤ |VGS| ≤ 1.32 V (VDD + 10%)
  - Drain bias: 0 ≤ |VDS| ≤ 1.32 V (VDD + 10%)
  - Bulk bias:  $0 \le |VBS| \le 1.32 \text{ V (VDD + } 10\%)$

#### 2. CONDITIONS OF SIMULATION

- Temperature: 25 °C
- Currents:

IDLIN = Ids at Vgs = 
$$1.2 \text{ V}$$
, Vds =  $50 \text{ mV}$  and Vbs =  $0 \text{ V}$ 

$$IG_ON = Igs$$
 at  $Vgs = 1.2 V$  and  $Vd = Vs = Vb = 0 V$ 

• Threshold voltage in linear and saturation regime

VTLIN is Vgs value at Vds = 50 mV, Vbs = 0 V and Ids= 40\*W/L nA.

VTSAT is Vgs value at Vds = 
$$1.2 \text{ V}$$
, Vbs =  $0 \text{ V}$  and Ids= $40 \text{*W/L nA}$ .

• Current derivatives:

$$Gm = \frac{\partial}{\partial V_{gs}} Ids$$
 at Vgs = VTLIN + 0.2 V, Vds = 0.6 V and Vbs = 0 V

$$Gd = \frac{\partial}{\partial V_{ds}} Ids$$
 at Vgs = VTLIN + 0.2 V, Vds = 0.6 V and Vbs = 0 V

Analog gain = Gm/Gd

#### Gate Capacitances:

CGGINV = CGG at Vgs = 1.2 V, Vds = 0 V and Vbs = 0 V 
$$CGD_0V = CGD$$
 at Vgs = 0 V, Vds = 0 V and Vbs = 0 V

$$VDD$$
 $CGGMEAN = \frac{1}{VDD} \cdot \int_{0}^{V} CGG \times dVgs \text{ with VDD} = 1.2 \text{ V and Vbs} = 0 \text{ V}$ 

TAU = CGGMEAN\*VDD/ION

• Diode Capacitances:

**Note**: the area and perimiters of source/drain junction diodes used for simulation are defined with the minimum poly-to-active distance specified in the DRM.

Transition frequency:

FT = frequency for which the small signal current gain H<sub>21</sub> is 0 dB (i.e.  $\left| \frac{I_d}{I_g} \right| = 0$  dB).

### 3. MAIN ELECTRICAL CHARACTERISTICS OF NMOS SVT\_LP TRANSISTORS

| PARAMETERS                      | SVTLP_TT          | SVTLP_SS      | SVTLP_FF | units |
|---------------------------------|-------------------|---------------|----------|-------|
| 1                               | N-channel transis | tors (nsvtlp) |          |       |
| VTLIN W=1/L=10.0                | 263               | 283           | 242      | mV    |
| IDLIN W=1/L=10.0                | 1.22e-06          | 1.14e-06      | 1.31e-06 | А     |
| VTSAT W=1/L=10.0                | 252               | 273           | 231      | mV    |
| ION W=1/L=10.0                  | 9.87e-06          | 8.91e-06      | 1.09e-05 | Α     |
| VTLIN W=1/L=0.06                | 433               | 485           | 368      | mV    |
| IDLIN W=1/L=0.06                | 9.54e-05          | 8.06e-05      | 1.14e-04 | А     |
| VTSAT W=1/L=0.06                | 302               | 369           | 217      | mV    |
| ION W=1/L=0.06                  | 6.13e-04          | 5.04e-04      | 7.59e-04 | Α     |
| IOFF W=1/L=0.06                 | 3.61e-10          | 5.07e-11      | 3.84e-09 | Α     |
| IG_ON W=1/L=0.06                | 5.58e-12          | 2.80e-12      | 1.13e-11 | Α     |
| IG_OFF W=1/L=0.06               | 1.00e-12          | 4.97e-13      | 2.03e-12 | Α     |
| FT W=1/L=0.06                   | 1.62e+11          | 1.42e+11      | 1.87e+11 | Hz    |
| CGGinv W=1/L=0.06               | 1.17e-15          | 1.23e-15      | 1.10e-15 | F     |
| CGGmean W=1/L=0.06              | 1.01e-15          | 1.03e-15      | 9.82e-16 | F     |
| CGD 0V W=1/L=0.06               | 3.88e-16          | 3.83e-16      | 3.97e-16 | F     |
| CBD OFF <sup>a</sup> W=1/L=0.06 | 4.57e-16          | 5.17e-16      | 3.95e-16 | F     |
| Tau W=1/L=0.06                  | 2.0               | 2.5           | 1.6      | ps    |
| Gm W=1/L=0.06                   | 3.87e-04          | 3.49e-04      | 4.30e-04 | S     |
| Gd W=1/L=0.06                   | 5.06e-05          | 3.98e-05      | 6.63e-05 | S     |
| Gain W=1/L=0.06                 | 7.64e+00          | 8.78e+00      | 6.49e+00 |       |
| VTLIN W=0.12/L=0.06             | 379               | 429           | 317      | mV    |
| IDLIN W=0.12/L=0.06             | 1.27e-05          | 1.06e-05      | 1.53e-05 | Α     |
| VTSAT W=0.12/L=0.06             | 288               | 347           | 215      | mV    |
| ION W=0.12/L=0.06               | 8.43e-05          | 6.92e-05      | 1.04e-04 | Α     |
| IOFF W=0.12/L=0.06              | 6.18e-11          | 1.09e-11      | 4.85e-10 | Α     |
| FT W=0.12/L=0.06                | 1.27e+11          | 1.12e+11      | 1.45e+11 | Hz    |

Table 1: Main electrical characteristics for NMOS

a. Value coresponding to the minimum poly-to-acvtive distance specified in the DRM

### 4. MAIN ELECTRICAL CHARACTERISTICS OF PMOS SVT\_LP TRANSISTORS

| PARAMETERS                      | SVTLP_TT          | SVTLP_SS      | SVTLP_FF | units    |
|---------------------------------|-------------------|---------------|----------|----------|
|                                 | P-channel transis | tors (psvtlp) |          | <b>'</b> |
| VTLIN W=1/L=10.0                | 345               | 366           | 325      | mV       |
| IDLIN W=1/L=10.0                | 4.01e-07          | 3.72e-07      | 4.31e-07 | Α        |
| VTSAT W=1/L=10.0                | 336               | 357           | 316      | mV       |
| ION W=1/L=10.0                  | 3.22e-06          | 2.90e-06      | 3.57e-06 | Α        |
| VTLIN W=1/L=0.06                | 479               | 509           | 448      | mV       |
| IDLIN W=1/L=0.06                | 3.76e-05          | 3.27e-05      | 4.32e-05 | Α        |
| VTSAT W=1/L=0.06                | 347               | 391           | 298      | mV       |
| ION W=1/L=0.06                  | 3.11e-04          | 2.66e-04      | 3.61e-04 | Α        |
| IOFF W=1/L=0.06                 | 9.96e-11          | 2.30e-11      | 4.98e-10 | Α        |
| IG_ON W=1/L=0.06                | 1.46e-12          | 7.30e-13      | 2.93e-12 | Α        |
| IG_OFF W=1/L=0.06               | 4.89e-13          | 2.36e-13      | 1.02e-12 | Α        |
| FT W=1/L=0.06                   | 8.19e+10          | 7.31e+10      | 9.16e+10 | Hz       |
| CGGinv W=1/L=0.06               | 1.19e-15          | 1.25e-15      | 1.12e-15 | F        |
| CGGmean W=1/L=0.06              | 1.01e-15          | 1.04e-15      | 9.76e-16 | F        |
| CGD 0V W=1/L=0.06               | 3.57e-16          | 3.54e-16      | 3.62e-16 | F        |
| CBD OFF <sup>a</sup> W=1/L=0.06 | 4.34e-16          | 4.89e-16      | 3.77e-16 | F        |
| Tau W=1/L=0.06                  | 3.9               | 4.7           | 3.2      | ps       |
| Gm W=1/L=0.06                   | 2.70e-04          | 2.40e-04      | 3.06e-04 | S        |
| Gd W=1/L=0.06                   | 3.76e-05          | 3.03e-05      | 4.78e-05 | S        |
| Gain W=1/L=0.06                 | 7.18e+00          | 7.92e+00      | 6.39e+00 |          |
| VTLIN W=0.12/L=0.06             | 404               | 441           | 364      | mV       |
| IDLIN W=0.12/L=0.06             | 5.84e-06          | 5.02e-06      | 6.80e-06 | Α        |
| VTSAT W=0.12/L=0.06             | 315               | 359           | 267      | mV       |
| ION W=0.12/L=0.06               | 4.83e-05          | 4.09e-05      | 5.69e-05 | Α        |
| IOFF W=0.12/L=0.06              | 1.23e-11          | 2.88e-12      | 6.14e-11 | Α        |
| FT W=0.12/L=0.06                | 6.72e+10          | 6.01e+10      | 7.48e+10 | Hz       |

Table 2: Main electrical characteristics for PMOS

a. Value coresponding to the minimum poly-to-acvtive distance specified in the  $\ensuremath{\mathsf{DRM}}$ 

# 5. ELECTRICAL BEHAVIOR VERSUS GATE LENGTH AND CHANNEL WIDTH FOR NMOS SVT\_LP TRANSISTORS



Figure 1 : ION/ $\Box$ =ION\*L/W versus drawn gate length for NMOS SVT\_LP transistors (W = 1  $\mu$ m)



Figure 2 : IOFF versus drawn gate length for NMOS SVT\_LP transistors (W = 1  $\mu$ m)





Figure 3 : Threshold voltage VTLIN versus drawn gate length for NMOS SVT\_LP transistors (W = 1  $\mu$ m)



Figure 4 : DIBL= VTLIN-VTSAT versus drawn gate length for NMOS SVT\_LP transistors (W = 1  $\mu$ m)



Figure 5 : GM\*Ld versus drawn gate length for NMOS SVT\_LP transistors (W = 1  $\mu$ m)



Figure 6 : GD\*Ld versus drawn gate length for NMOS SVT\_LP transistors (W = 1  $\mu$ m)





Figure 7 : GAIN versus drawn gate length for NMOS SVT\_LP transistors (W = 1  $\mu$ m)



Figure 8 : ION versus drawn channel width for NMOS SVT\_LP transistors (L = 0.06  $\mu$ m)



Figure 9 : IOFF versus drawn channel width for NMOS SVT\_LP transistors (L = 0.06  $\mu$ m)



Figure 10 : Threshold voltage VTLIN versus drawn channel width for NMOS SVT\_LP transistors (L = 0.06  $\mu$ m)

## 6. ELECTRICAL BEHAVIOR VERSUS GATE LENGTH AND CHANNEL WIDTH FOR PMOS SVT\_LP TRANSISTORS



Figure 11 : ION versus drawn gate length for PMOS SVT\_LP transistors (W = 1  $\mu$ m)



Figure 12 : IOFF versus drawn gate length for PMOS SVT\_LP transistors (W = 1  $\mu$ m)





Figure 13 : Threshold voltage VTLIN versus drawn gate length for PMOS SVT\_LP transistors (W = 1  $\mu$ m)



Figure 14 : DIBL= VTLIN-VTSAT versus drawn gate length for PMOS SVT\_LP transistors (W = 1  $\mu$ m)



Figure 15 : GM\*Ld versus drawn gate length for PMOS SVT\_LP transistors (W = 1  $\mu$ m)



Figure 16 : GD\*Ld versus drawn gate length for PMOS SVT\_LP transistors (W = 1  $\mu$ m)



Figure 17 : GAIN versus drawn gate length for PMOS SVT\_LP transistors (W = 1  $\mu$ m)



Figure 18 : ION versus drawn channel width for PMOS SVT\_LP transistors (L = 0.06  $\mu$ m)



Figure 19 : IOFF versus drawn channel width for PMOS SVT\_LP transistors (L = 0.06  $\mu$ m)



Figure 20 : Threshold voltage VTLIN versus drawn channel width for PMOS SVT\_LP transistors (L = 0.06  $\mu$ m)