Lecture-32

Sushrut Tadwalkar; 55554711

November 28, 2023

0.1 Continuity at a point

Definition: Continuous at a point

Let $(\mathcal{X}, \mathscr{T}_{\mathcal{X}})$, $(\mathcal{Y}, \mathscr{T}_{\mathcal{Y}})$, $(\mathcal{Z}, \mathscr{T}_{\mathcal{Z}})$ be given HTS's, with $f : \mathcal{X} \to \mathcal{Y}$ and $x \in \mathcal{X}$. To say "f is continuous at x" is to say that

for all
$$W \in \mathcal{N}_{\mathcal{Y}}(f(x))$$
, one has $f^{-1}(W) \in \mathcal{N}_{\mathcal{X}}(x)$.

Equivalently, for all $W \in \mathcal{T}_{\mathcal{V}}$ with $f(x) \in \mathcal{W}$, there exists $\mathcal{U} \in \mathcal{T}_{\mathcal{X}}$ with $x \in \mathcal{U}$ and $f(\mathcal{U}) \subseteq \mathcal{W}$.

Lemma

For $f: \mathcal{X} \to \mathcal{Y}$ as above, the following are equivalent:

- (a) f is continuous (on \mathcal{X}), i.e., $f^{-1}(\Omega)$ is open in \mathcal{X} , for each Ω open in \mathcal{Y} .
- (b) f is continuous at x, for each $x \in \mathcal{X}$.

Proof. (a⇒b) This is immediate.

(b \Rightarrow a) Given any open $\mathcal{W} \subseteq \mathcal{Y}$, define $\mathcal{U} = f^{-1}(\mathcal{W})$. To show \mathcal{U} is open, pick any $x \in \mathcal{U}$ and show $x \in \mathcal{U}^{\circ}$. Consider $y = f(x) \in \mathcal{W}$; by definition of "continuous at x", $\mathcal{U} \in \mathcal{N}(x)$, i.e., \mathcal{U} contains an open set \mathcal{V} with $x \in \mathcal{V} \subseteq \mathcal{U}$. Thus, $x \in \mathcal{U}^{\circ}$, as required.

Figure 1: Visualization of the proof.

Notation 1. Going forward, if it is not clarified what \mathcal{X} , \mathcal{Y} or \mathcal{Z} are, they will always be a HTS.

Proposition

If $f: \mathcal{X} \to \mathcal{Y}$ and $g: \mathcal{Y} \to \mathcal{Z}$, and f is continuous at x_0 , g is continuous at $y_0 = f(x_0)$, then $h = g \circ f$ is continuous at x_0 .

Figure 2: Visual representation showing that anything within δ of x gets mapped to an open neighbourhood around f(x).

Proof. Pick any open $W \subseteq \mathcal{Z}$ with $h(x_0) \in W$. Then

$$\begin{split} h^{-1}(\mathcal{W}) = & \{x \in \mathcal{X} : g \circ f(x) = h(x) \in \mathcal{W}\} \\ = & \{x \in \mathcal{X} : f(x) \in g^{-1}(\mathcal{W})\} \quad (g^{-1}(W) \text{ is an open neighbourhood of } y_0 \text{ by continuity of } g.) \\ = & f^{-1}(g^{-1}(\mathcal{W})) \quad \text{(open neighbourhood of } x_0 \text{ by continuity of } f.) \end{split}$$

Proposition

If $f, g: \mathcal{X} \to \mathbb{R}$ both continuous at $x_0 \in \mathcal{X}$, then as are the new functions

- (f+cg)(x) = f(x) + cg(x) for all $x \in \mathcal{X}$, and any $c \in \mathbb{R}$.
- (fg)(x) = f(x)g(x) for all $x \in \mathcal{X}$.
- $\bullet \ \left(\frac{f}{g}\right)(x) = \frac{f(x)}{g(x)} \text{ for all } x \in \mathcal{X}, \text{provided } g(x) \neq 0.$

Proof. Left as an exercise.

0.2 The metric case

Proposition

Let $(\mathcal{X}, d_{\mathcal{X}}), (\mathcal{Y}, d_{\mathcal{Y}})$ be metric spaces, $x \in \mathcal{X}$ and $f : \mathcal{X} \to \mathcal{Y}$. The following are equivalent:

- (a) f is continuous at x.
- (b) For all $\varepsilon > 0$, there exists $\delta > 0$ such hat for all x' with $d(x, x') < \delta$, $d_{\mathcal{Y}}(f(x), f(x')) < \varepsilon$.
- (c) For any sequence (x_n) in \mathcal{X} with $x_n \to x \in \mathcal{X}$, one has $f(x_n) \to f(x) \in \mathcal{Y}$.

Proof. (a \Rightarrow b) Assume (a); pick an arbitrary $\varepsilon > 0$. Let $\mathcal{V} = \mathbb{B}_{\mathcal{Y}}[f(x); \varepsilon)$; this is open, so $f^{-1}(\mathcal{V}) \in \mathscr{N}_{\mathcal{X}}(x)$, i.e., for some radius $\delta > 0$, we have $\mathbb{B}_{\mathcal{X}}[x; \delta) \subseteq f^{-1}(\mathcal{V})$. Then, $f(x') \in \mathcal{V}$ for all $x' \in \mathbb{B}_{\mathcal{X}}[x; \delta)$. Finally, express using $d_{\mathcal{Y}}$ to recover (b).

(b⇒c) is left as an exercise.

 $(c\Rightarrow a)$ We show this by contrapositive, i.e., $(\neg a)\Rightarrow (\neg c)$. Assume $(\neg a)$, i.e., f is not continuous at x. Then, for some $\mathcal{V}\in\mathscr{N}_{\mathcal{V}}(f(x))$, we have $x\notin (f^{-1}(\mathcal{V}))^{\circ}$. We then shrink \mathcal{V} is necessary to say $\mathcal{V}=\mathbb{B}[f(x);\varepsilon)$ for some $\varepsilon>0$. Now, if $f^{-1}(\mathcal{V})$ is not a neighbourhood of x, each ball $\mathbb{B}_{\mathcal{X}}\left[x;\frac{1}{n}\right)$ must contain a point of $\left[f^{-1}(\mathcal{V})\right]^{c}$; pick

one such point and call it x_n : $f(x_n) \notin \mathcal{V}$, i.e., $d_{\mathcal{Y}}(f(x_n), f(x)) \geq \varepsilon$, and yet $d_{\mathcal{X}}(x_n, x) < \frac{1}{n}$. This sequence (x_n) has $x_n \to x \ni \mathcal{X}$, but $\neg [f(x_n) \to f(x) \in \mathcal{Y}]$.

Note (Proof strategies). To *prove* continuity, use (b). To *disprove* continuity, use (c) $(\neg(c))$ just requires one sequence.)