Markov chain

Transition matrix

$$\mathbf{P} = egin{bmatrix} p_{11} & p_{12} & \dots \ p_{21} & p_{22} & \dots \ \dots \end{bmatrix}$$

with $p_{ij} = \Pr(x_t = j | x_{t-1} = i)$. Each row is a PMF.

Example

$$\begin{bmatrix} 0.9 & 0.1 \\ 0.2 & 0.8 \end{bmatrix}$$

 p_{kk} are somewhat special in that they measure prob of **remaining** in state k.

Boundary condition

Where to start the system from?

Maybe some initial value x_0 . Say, start from employment, $x_0 = 1$.

Instead, more generally, start from π_0 , a PMF. This includes $\{1.0, 0.0\}$, but also $\{0.5, 0.5\}$.

One-period forecast

$$\Pr(x_1 = j) = ?$$

If initially I was employed, $x_0 = 1$, I can use conditional prob,

$$\Pr(x_1 = j) = \Pr(x_1 = j | x_0 = 1) = p_{1j}.$$

Enumerate the different ways in which x_1 can become 1:

- 1. $x_0 = 1$ (employment) and stayed there
- 2. $x_0 = 2$ (unemployment) and switched to 1

What is the prob of $x_0=1$? $\pi_{01}=0.5$

Maybe less confusing

We do start from $x_0 = 1$. But! forecast for 2 periods:

What is the prob of $x_2 = 1$?

Add up two paths through which I can be employed in period 2:

$$1.0.9 \times 0.9 = 0.81$$

$$2.0.1 \times 0.2 = 0.02$$

$$egin{aligned} \Pr(x_2=1|x_0=1) &= 0.81 + 0.02 = 0.83 \ \Pr(x_2=1|x_0=1) &= \sum_{k=1}^K \Pr(x_2=1|x_1=k) \Pr(x_1=k|x_0=1) \ &= \sum_{k=1}^K p_{k1} imes p_{1k} \end{aligned}$$

Back to q

Start from π_0 .

$$egin{aligned} \pi_{1j} := \Pr(x_1 = j) &= \sum_{k=1}^K \Pr(x_1 = j | x_0 = k) \Pr(x_0 = k) \ &= \sum_{k=1}^K p_{kj} \pi_{0k} = [\mathbf{P}' \pi_0]_j. \end{aligned}$$

In matrix notation

$$\pi_1 = \mathbf{P}' \pi_0,$$

or

$$\pi_t = \mathbf{P}' \pi_{t-1}$$
.

Break until 14:34

Check: if $x_0=1$ then $\pi_0=(1,0)=\mathbf{e}_1$ and

$$\pi_1 = \mathbf{P'e}_1$$

is the first row if ${\bf P}$, the conditional probs for time 1.

Two-period forecast

$$\pi_{t+2} = \mathbf{P}'\mathbf{P}'\pi_t = (\mathbf{P}^2)'\pi_t$$