Anatomy of a Random Variable

Outline

- A Motivating Example: Monte Carlo Integration
- Rigorous Definitions of a Random Variable
- Law of large numbers and the Central Limit Theorem

$$X:\Omega o E$$

$$\sqrt{n}\left(ar{X}_n-\mu
ight) \stackrel{d}{
ightarrow} \mathcal{N}\left(0,\sigma^2
ight)$$

Monte Carlo Integration

$$I=\int_{\Omega}f(x)dx$$

$$X_i \sim U(\Omega)$$

$$Ipprox Q_N\equiv rac{\int_\Omega dx}{N}\sum_{i=1}^N f(X_i)$$

Monte Carlo Integration

Special Case: Expectation

$$ext{E}[X] = \int_{-\infty}^{\infty} x \, p(x) \, dx \ pprox rac{1}{N} \sum_{i=1}^{N} X_i$$

How accurate is this?

Random Variables

Why are probability distributions not enough?

consider this definition: Two random variables are equal if their propability distributions are the same.

$$A \sim \mathrm{Bernoulli}(0.5)$$

Random Variables

Given a probability space (Ω, \mathcal{F}, P) , and a measurable

Given a **probability space** (Ω, \mathcal{F}, P) , and a **measurable space** (E, \mathcal{E}) , an E-valued **random variable is a measurable function** $X : \Omega \to E$.

$$\omega\in\Omega$$

$$X(\omega) \in E$$

What is this function?

What is $\omega \in \Omega$?

Example: Coin World

$$egin{aligned} \Omega &= \{H,T\} \ E &= [0,1] \ X(\omega) &= \mathbf{1}_{\{H\}}(\omega) \end{aligned}$$

Example: Many coins

$$egin{aligned} \Omega &= \left\{ H, T
ight\}^\infty \ E &= \left[0, 1
ight] \ X_i(\omega) &= \mathbf{1}_{\left\{ H
ight\}}(\omega_i) \end{aligned}$$

What is $\omega \in \Omega$?

What is \mathcal{F} (and \mathcal{E})?

• " σ -algebra" or " σ -field"

- D: {1,2,33
- Subset of subsets of Ω (that is, $\mathcal{F}\subseteq 2^\Omega$) $Z^\Omega=\{\{0\},\{2\}\}\},\{0\}$
- Three requirements to be a σ -field
 - lacksquare $\Omega \in \mathcal{F}$

- [1,2], {1,5}, {2,3} {1.2,3}}
- lacksquare If $A\in\mathcal{F}$ then $A^c\in\mathcal{F}$ (where $A^c=\Omegaackslack\mathcal{F}$)
- $lacksquare ext{If } A_i \in \mathcal{F} ext{ for } i \in \mathbb{N} ext{ then } \cup_{i=1}^\infty A_i \in \mathcal{F}$
- $\sigma(\cdot)$ creates a σ -field from a set of generators

Borel Sigma Algebra

The Borel σ -algebra for a topological space Ω is the σ -field generated by all open sets in Ω .

The Borel σ -field on $\mathbb R$ is $\mathcal B=\sigma(\{(a,b):a,b\in\mathbb R\})$

- Is [1,2] in \mathcal{B} ?
- Is 1 in *B*?
- Is π in \mathcal{B} ?

- ullet $\Omega\in\mathcal{F}$
- If $A \in \mathcal{F}$ then $A^c \in \mathcal{F}$ (where $A^c = \Omega \backslash \mathcal{F}$)
- ullet If $A_i \in \mathcal{F}$ for $i \in \mathbb{N}$ then $\cup_{i=1}^\infty A_i \in \mathcal{F}$

What is P?

A probability measure P is a function $P:\mathcal{F}\to [0,1]$ having the following properties:

- 1. $0 \le P(A) \le 1 \quad \forall A \in \mathcal{F}$.
- 2. $P(\Omega) = 1$.
- 3. (Countable additivity) $P(A)=\sum_{n=1}^{\infty}P(A_n)$ whenever $A=\cup_{n=1}^{\infty}A_n$ is a countable union of disjoint sets $A_n\in\mathcal{F}$

Random Variables

Given a probability space (Ω, \mathcal{F}, P) , and a measurable space (E, \mathcal{E}) , an E-valued random variable is a measurable function $X:\Omega\to E$.

A function $f:\Omega\to E$ is measurable if for every $A\in\mathcal{E}$, the pre-image of A under f is in \mathcal{F} . That is, for all $A\in\mathcal{E}$

Are there functions that are not Borel-measurable?

Advantages over pdf definition

- Rigorous treatment of deterministic outcomes
- More sophisticated convergence concepts
- Better way of thinking about related random variables (personally, I think)

Break

Exercise 1.2.5. Let $\Omega = \{1, 2, 3\}$. Find a σ -field \mathcal{F} such that (Ω, \mathcal{F}) is a measurable space, and a mapping X from Ω to \mathbb{R} , such that X is not a random variable on (Ω, \mathcal{F}) .

A function $f:\Omega\to E$ is measurable if for every $A\in\mathcal{E}$, the pre-image of A under f is in \mathcal{F} . That is, for all $A\in\mathcal{E}$

$$f^{-1}(A)\in \mathcal{F}$$

$$\mathcal{F} = \{\Omega,\emptyset,\{1\},\{2,3\}\}$$
 $X = \mathbf{1}_{\{1,2\}}$

https://timer.onlineclock.net/

Convergence

Review: For a (deterministic) sequence $\{x_n\}$, we say

$$\lim_{n o \infty} x_n = x$$

or

$$x_n o x$$

if, for every $\epsilon>0$, there exists an N such that $|x_n-x|<\epsilon$ for all n>N.

Convergence

In what senses can we talk about random variables converging?

- Sure ("pointwise")
- Almost Sure
- In Probability
- Weak ("in distribution"/"in law")

When are two R.V.'s the same?

$$X$$
 = Y if $X(\omega) = Y(\omega) \quad orall \omega \in \Omega$

In practice, there are often unimportant ω where this is not true.

We say that X is *almost surely* the same as Y if $P(\{\omega: X(\omega) \neq Y(\omega)\}) = 0$.

This is denoted $X \stackrel{a.s.}{=} Y$ and the terms almost everywhere (a.e.) and with probability 1 (w.p.1) mean the same thing.

Sure Convergence

$$X_n(\omega) o X(\omega) \quad orall\,\omega\in\Omega$$

Almost Sure Convergence

 $X_n \overset{a.s.}{ o} X$ if there exists $A \in \mathcal{F}$ with P(A) = 1 such that $X_n(\omega) o X(\omega)$ for each fixed $\omega \in A$.

Does sure convergence imply almost sure convergence?

Convergence in Probability

$$X_n \to_p X ext{ if } P(\{\omega: |X_n(\omega) - X(\omega)| > \epsilon\}) o 0 ext{ for any fixed } \epsilon > 0.$$

Does
$$X_n \stackrel{a.s}{ o} X$$
 imply $X_n o_p X$? Yes.

Convergence in Probability

Does $X_n \to_p X$ imply $X_n \stackrel{a.s}{\to} X$?

No.

PROOF. Consider the probability space $\Omega = (0,1)$, with Borel σ -field and the Uniform probability measure U of Example 1.1.11 Suffices to construct an example of $X_n \to_p 0$ such that fixing each $\omega \in (0,1)$, we have that $X_n(\omega) = 1$ for infinitely many values of n. For example, this is the case when $X_n(\omega) = \mathbf{1}_{[t_n,t_n+s_n]}(\omega)$ with $s_n \downarrow 0$ as $n \to \infty$ slowly enough and $t_n \in [0,1-s_n]$ are such that any $\omega \in [0,1]$ is in infinitely many intervals $[t_n,t_n+s_n]$. The latter property applies if $t_n = (i-1)/k$ and $s_n = 1/k$ when n = k(k-1)/2 + i, $i = 1,2,\ldots,k$ and $k = 1,2,\ldots$ (plot the intervals $[t_n,t_n+s_n]$ to convince yourself).

But there exists a subsequence n_k such that $X_{n_k} \stackrel{a.s.}{\to} X$.

Weak Convergence

Let $F_X: \mathbb{R} \to [0,1]$ be the cumulative distribution function of real-valued random variable X.

 $X_n \stackrel{D}{ o} X$ if $F_{X_n}(\alpha) o F_X(\alpha)$ for each fixed α that is a continuity point of F_X .

"Weak convergence", "convergence in distribution", and "convergence in law" all mean the same thing.

Convergence

In what senses can we talk about random variables converging?

- Weak ("in distribution"/"in law")

Convergence of MC integration

Let X_i be independent, identically distributed random variables with mean μ , and $Q_N \equiv \frac{1}{N} \sum_{i=1}^N X_i$.

$$Q_N\stackrel{?}{ o} \mu?$$

Convergence of MC integration

 $\exists \omega \in \Omega$ where you always sample the same point.

 $Q_N o \mu ext{ (sure)}?$

 $Q_N \stackrel{a.s.}{
ightarrow} \mu?$

Strong law of large numbers

Weak law of large numbers

measurements off in one direction to keep $|Q_N - \mu| > \epsilon$ decays with more samples.

Probability that there are enough

Convergence *Rate* of M.C. Integration

How do you quantify $|Q_N - \mu|$?

Run M sets of N simulations and plot a histogram of Q_N^j for $j \in \{1, \dots, M\}$.

Central Limit Theorem

Lindeberg-Levy CLT: If
$${
m Var}[X_i]=\sigma^2<\infty$$
, then $\sqrt{N}(Q_N-\mu)\stackrel{D}{
ightarrow}\mathcal{N}(0,\sigma)$

After many samples Q_N starts to look distributed like $\mathcal{N}(\mu, \frac{\sigma}{\sqrt{N}})$

Central Limit Theorem

Two somewhat astounding takeaways:

1. Error decays at $\frac{1}{\sqrt{N}}$ regardless of dimension.

2. You can estimate the "standard error" with

$$SE=rac{s}{\sqrt{N}}$$

where s is the sample standard deviation.