Spatial Weights and Spatial Lag

SERGIO REY

Geographic Information Analysis

School of Geographical Sciences and Urban Planning Arizona State University

Geographic Information Analysis by Sergio Rey is licensed under a Creative Commons Attribution 4.0 International License.

Outline

- Spatial Weights: General Concepts
 - Identification Problem
 - Spatial Weights Matrix
- Types of Weights
 - Contiguity
 - Distance Based Weights
- Spatial Lag
 - Row Standardization
 - Spatial Lag

Outline

- Spatial Weights: General Concepts
 - Identification Problem
 - Spatial Weights Matrix
- Types of Weights
 - Contiguity
 - Distance Based Weights
- Spatial Lag
 - Row Standardization
 - Spatial Lag

Spatial Autocorrelation Statistic

Structure

- Formal Test of Match between Value Similarity and Locational Similarity
- Statistic Summarizes Both Aspects
- Significance
 - how likely is it (p-value) that the computed statistic would take this (extreme) value in a spatially random pattern

Locational Similarity

- Formalizing the notion of Neighbor
 - when two spatial units a-priori are likely to interact
- Spatial Weights
 - not necessarily geographical
 - many approaches

Why Spatial Weights

Identification Problem

- Spatial covariance $\sigma_{i,j}$
- n(n-1)/2 parameters
- We only have n observations in a cross section

Incidental Parameter Problem

- Number of parameters increases O(n²)
- More data (in the cross-section) is not the solution

Weights as a solution

Impose structure on the problem

- set some interactions to zero
- only let "neighbors" interact directly
- constrain the number of neighbors

Assume a single parameter

Spatial autocorrelation coefficient

Irregular Lattice (Polygons)

Neighbor Structure as a Graph

Outline

- Spatial Weights: General Concepts
 - Identification Problem
 - Spatial Weights Matrix
- Types of Weights
 - Contiguity
 - Distance Based Weights
- Spatial Lag
 - Row Standardization
 - Spatial Lag

Spatial Weights Matrix

Definition

- $n \times n$ positive matrix W, elements: $w_{i,j}$
- $w_{i,j} \neq 0$ for neighbor pairs, 0 otherwise
- $w_{i,i} = 0$, no self-neighbors

$$W = \begin{bmatrix} w_{1,1} & w_{1,2} & \dots & w_{1,n} \\ w_{2,1} & w_{2,2} & \dots & w_{2,n} \\ \vdots & \vdots & \ddots & \vdots \\ w_{1,1} & w_{1,2} & \dots & w_{1,n} \end{bmatrix}$$
(1)

Binary Contiguity

Binary

• $w_{i,j} = 1 \text{ or } 0$

Contiguity

- $w_{i,j} = 1$ if i and j are contiguous
- Share an edge or vertex
- $w_{i,j} = 0$ if i and j are noncontiguous

Binary Contiguity Example

$$W = \begin{bmatrix} 0 & 1 & 0 & 1 & 1 & 0 \\ 1 & 0 & 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 1 \\ 1 & 1 & 0 & 0 & 1 & 0 \\ 1 & 1 & 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \end{bmatrix}$$

How to Define W

- Geographic Weights
 - contiguity
 - distance
 - general
 - graph-based
- Socioeconomic Weights

Outline

- Spatial Weights: General Concepts
 - Identification Problem
 - Spatial Weights Matrix
- Types of Weights
 - Contiguity
 - Distance Based Weights
- Spatial Lag
 - Row Standardization
 - Spatial Lag

Contiguity Weights

- Contiguity
 - sharing a common boundary of non-zero length
- What is a non-zero boundary?
- Three Views of Contiguity
 - rook
 - queen
 - bishop

Example: Regular Lattice (n = 9)

1	2	2 3	
4	5	6	
7	8	9	

Rook Contiguity

$$W = \begin{bmatrix} 0 & 1 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 1 & 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 1 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 & 1 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 & 1 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 & 0 & 1 & 0 & 1 & 0 \\ \end{bmatrix}$$

Neighbors to center cell 5

Bishop Contiguity

Neighbors to center cell 5

Queen Contiguity

$$W = \begin{bmatrix} 0 & 1 & 0 & 1 & 1 & 0 & 0 & 0 & 0 \\ 1 & 0 & 1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 1 & 1 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 & 1 & 0 & 1 & 1 & 0 \\ 1 & 1 & 1 & 1 & 0 & 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 0 & 1 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 & 1 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 & 1 & 1 & 1 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 & 1 & 0 & 1 & 0 \end{bmatrix}$$

Neighbors to center cell 5

Irregular Lattice Contiguity

Irregular Lattice Contiguity

Irregular Lattice Contiguity

- Rook: 039 is not a neighbor of 067
- Bishop: 039 is a neighbor of 067
- Queen: 039 is a neighbor of 067

Point Contiguity Weights

Point Contiguity Weights

$$W = \begin{bmatrix} 0 & 1 & 0 & 1 & 0 & 0 \\ 1 & 0 & 1 & 1 & 1 & 0 \\ 0 & 1 & 0 & 0 & 1 & 1 \\ 1 & 1 & 0 & 0 & 1 & 1 \\ 0 & 1 & 1 & 1 & 0 & 1 \\ 0 & 0 & 1 & 1 & 1 & 0 \end{bmatrix}$$

Outline

- Spatial Weights: General Concepts
 - Identification Problem
 - Spatial Weights Matrix
- Types of Weights
 - Contiguity
 - Distance Based Weights
- Spatial Lag
 - Row Standardization
 - Spatial Lag

Lattice Distances

Distance Measures

- Point: (x_i, y_i)
- Interpoint Distances
- Metric
 - Euclidean: $d_{i,j}^e = \sqrt{(x_i x_j)^2 + (y_i y_j)^2}$
 - Manhattan: $d_{i,j}^{m} = |x_i x_y| + |y_i y_j|$
 - Minkowski: $d_{i,j}^p = (|x_i x_y|^p + |y_i y_j|^p)^{(1/p)}$

Distance Measures

Other

- Road network
- Actual travel time

Unprojected coordinates

- Straight line distance measure inappropriate
- Use great circle distance

Interpoint Distance

The coordinates of the points are (in arbitrary units): A (10, 10), B (20, 10), C (40, 10), D (15, 20), E (30, 20), and F (30, 30).

Interpoint Distance

Table: Interpoint Euclidean Distance for Point Layout

	В	С	D	Е	F
Α	10.0	30.0	11.2	22.4	28.3
В		20.0	11.2	14.1	22.4
С			26.9	14.1	22.4
D				15.0	18.0
Е					10.0

- $w_{i,j} = 1$ when $d_{i,j} \leq \delta$
- $w_{i,j} = 0$ if $d_{i,j} > \delta$
- ullet δ is a preset critical distance cutoff

- $w_{i,j} = 1$ when $d_{i,j} \leq \delta$
- $w_{i,j} = 0$ if $d_{i,j} > \delta$
- $\delta = 11.2$

$$\mathbf{W} = \begin{bmatrix} 0 & 1 & 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 & 0 \end{bmatrix}$$

- $w_{i,j} = 1$ when $d_{i,j} \leq \delta$
- $w_{i,j} = 0$ if $d_{i,j} > \delta$
- $\delta = 11.2$

$$\mathbf{W} = \begin{bmatrix} 0 & 1 & 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 & 0 \end{bmatrix}$$

Observation C is an island or isolate.

Solution to Islands

Maximum Nearest Neighbor Distance

10 (A-B), 10 (B-A), 14.1 (C-E), 11.2 (D-A and D-B), 10 (E-F), and 10 (F-E)

Threshold δ

- $\delta = MAX(nnd)$
- $\delta = 14.1$

- $w_{i,j} = 1$ when $d_{i,j} \leq \delta$
- $w_{i,j} = 0$ if $d_{i,j} > \delta$
- $\delta = 14.1$

$$\boldsymbol{W} = \begin{bmatrix} 0 & 1 & 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 1 & 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 & 0 \end{bmatrix}$$

Max nn-distance Band Weights

Properties

- Symmetric Matrix
- Avoids Islands

Problems

- Can create too many neighbors for clustered locations
- Variance in the connectivity cardinalities
- Driven by maximum nn-distance

K Nearest Neighbors Weights

Properties

- Avoids islands
- Same number of neighbors for all locations
- e.g., k = 3

$$\mathbf{W} = \begin{bmatrix} 0 & 1 & 0 & 1 & 1 & 0 \\ 1 & 0 & 0 & 1 & 1 & 0 \\ 0 & 1 & 0 & 0 & 1 & 1 \\ 1 & 1 & 0 & 0 & 1 & 0 \\ 0 & 1 & 1 & 0 & 0 & 1 \\ 0 & 1 & 1 & 1 & 1 & 0 \end{bmatrix}$$

K Nearest Neighbors Weights

Issues

- How to deal with ties?
- Not necessarily symmetric
 - Only symmetric if nn graph is identical to the mutual nn graph
 - No ties broken randomly
- Problems for certain statistical methods

Ties in Knn Weights: $d_{F,B} = d_{F,C} = 22.4$

Table: Interpoint Euclidean Distance for Point Layout

							Įυ	ı	U	- 1
	В	C 30.0 20.0	D	Е	F	_	1	0	0	1
Α	10.0	30.0	11.2	22.4	28.3		0	1	0	0
В		20.0	11.2	14.1	22.4	vv =	1	1	0	0
С			26.9	14.1	22.4				1	
D				15.0	18.0		١	4	1	1
Ε					10.0		Lυ	1	ı	'

Ties K Nearest Neighbors Weights

$$\mathbf{W} = \begin{bmatrix} 0 & 1 & 0 & 1 & 1 & 0 \\ 1 & 0 & 0 & 1 & 1 & \mathbf{0} \\ 0 & 1 & 0 & 0 & 1 & 1 \\ 1 & 1 & 0 & 0 & 1 & 0 \\ 0 & 1 & 1 & 0 & 0 & 1 \\ 0 & \mathbf{1} & 1 & 1 & 1 & 0 \end{bmatrix}$$

- Not symmetric
- B is a 3nn to F
- F is not a 3nn to B

Outline

- Spatial Weights: General Concepts
 - Identification Problem
 - Spatial Weights Matrix
- Types of Weights
 - Contiguity
 - Distance Based Weights
- Spatial Lag
 - Row Standardization
 - Spatial Lag

Spatial Lag

$$yI_i = \sum_j w_{i,j}^* y_j$$

Standardization

Row Standardization of W

$$w_{i,j}^* = \frac{w_{i,j}}{\sum_{j} w_{i,j}}$$
 (2)

Properties

- $0 \le w_{i,j}^* \le 1$

Example of Row Standardization

$$W = \begin{bmatrix} 0 & 1 & 0 & 1 & 1 & 0 \\ 1 & 0 & 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 1 \\ 1 & 1 & 0 & 0 & 1 & 0 \\ 1 & 1 & 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \end{bmatrix}$$

$$W^* = \begin{bmatrix} 0 & 1/3 & 0 & 1/3 & 1/3 & 0 \\ 1/3 & 0 & 0 & 1/3 & 1/3 & 0 \\ 0 & 0 & 0 & 0 & 1/2 & 1/2 \\ 1/3 & 1/3 & 0 & 0 & 1/3 & 0 \\ 1/4 & 1/4 & 1/4 & 1/4 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \end{bmatrix}$$

Outline

- Spatial Weights: General Concepts
 - Identification Problem
 - Spatial Weights Matrix
- Types of Weights
 - Contiguity
 - Distance Based Weights
- Spatial Lag
 - Row Standardization
 - Spatial Lag

Spatial Lag

$$yI_i = \sum_j w_{i,j}^* y_j$$

Spatial Lag

$$W^* = \begin{bmatrix} 0 & 1/3 & 0 & 1/3 & 1/3 & 0 \\ 1/3 & 0 & 0 & 1/3 & 1/3 & 0 \\ 0 & 0 & 0 & 0 & 1/2 & 1/2 \\ 1/3 & 1/3 & 0 & 0 & 1/3 & 0 \\ 1/4 & 1/4 & 1/4 & 1/4 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \end{bmatrix}$$

$$yl_2 = \sum_{j=1} w_{2,j}^* y_j$$

$$= w_{2,1}^* y_1 + w_{2,2}^* y_2 + w_{2,3}^* y_3 + w_{2,4}^* y_4 + w_{2,5}^* y_5 + w_{2,6}^* y_6$$

$$= 1/3(20) + 0(10) + 0(40) + 1/3(22) + 1/3(30) + 0(50)$$

$$= 1/3(20 + 22 + 30)$$

$$= 24.00$$