Report for Project5

Xiaozhi Li

October 6, 2017

FALL 2017 1

Fall 2017

Contents

1	Exe	ecutive Summary	•	
2	Exercise 8.4.1			
	2.1	Problem Statement	4	
	2.2	HOL Code		
	2.3	Session Transcript		
	2.4	Explain Result		
3	Exε	ercise 8.4.2	ļ	
	3.1	Problem Statement	ļ	
	3.2	HOL Code		
	3.3	Session Transcript		
	3.4			
4	Exc	cersice 8.4.3	7	
	4.1	Problem Statement	7	
	4.2	HOL Code		
	4.3	Session Transcript		
	4.4	Explain Result		
E		pendix A: source code for 8.4.1, 8.4.2, and 8.4.3	•	
J	ADI	Denuix A. Suulce cuue lui 0,4,1, 0,4,2, anu 0,4,3	ì	

Executive Summary

All requirements for this project are satisfied. Specifically, we utilized HOL to prove the following theorems:

```
\begin{aligned} & [\mathsf{conjSymAll}] \\ & \vdash \forall p \ q. \ p \land q \iff q \land p \end{aligned} \\ & [\mathsf{conjSymThm}] \\ & \vdash p \land q \iff q \land p \\ & [\mathsf{problem1Thm}] \\ & \vdash p \Rightarrow (p \Rightarrow q) \Rightarrow (q \Rightarrow r) \Rightarrow r \end{aligned}
```

All requirments of the project have been met, all theories and code compiled and ran within HOL and Latex.

Exercise 8.4.1

2.1 Problem Statement

Our task is to prove the theorem $\vdash p \Rightarrow (p \Rightarrow q) \Rightarrow (q \Rightarrow r) \Rightarrow r$

2.2 HOL Code

```
(* 8-4-1 *)
val problem1Thm =
let
val th1 =ASSUME ''p:bool''
val th2 =ASSUME ''p => q''
val th3 =ASSUME ''q => r''
val th4 =MP th2 th1
val th5 =MP th3 th4
val th6 = DISCH (hd(hyp th3)) th5
val th7 = DISCH (hd(hyp th2)) th6

in
DISCH (hd(hyp th1)) th7
end
```

2.3 Session Transcript

```
>>> # # # # # # # # ** Unicode trace now off
> *** Globals.show_assums now true ***
> # # # # # # # ** types trace now on
> # # # # # # # # # val problem1Thm =
[] |- (p :bool) ==> (p ==> (q :bool)) ==> (q ==> (r :bool)) ==> r:
thm
>
```

2.4 Explain Result

Hol is showing our theorem with no type errors, this means our tests have passed.

Exercise 8.4.2

3.1 Problem Statement

For 8.4.2 we need to prove the therom:

```
\vdash \ p \ \land \ q \iff q \ \land \ p
```

3.2 HOL Code

```
val conj1Thm =
val th2 = ASSUME "p/q"
val th3 =CONJUNCT1 th2
val th4 =CONJUNCT2 th2
val th5 =CONJ th4 th3
DISCH (hd(hyp th2)) th5
end;
val conj2Thm =
val th1 = ASSUME "q/p"
val th2 =CONJUNCT1 th1
val th3 =CONJUNCT2 th1
val th4 =CONJ th3 th2
DISCH (hd(hyp th1)) th4
end;
val conjSymThm =
IMP_ANTISYM_RULE conj1Thm conj2Thm;
```

Fall 2017 6

3.3 Session Transcript

```
> > > # # # # # # # * * types trace now on
> *** Globals.show_assums now true ***
> # # # # # # # * * Unicode trace now off
> # # # # # # # val conj1Thm =
[] |- (p :bool) / (q :bool) ==> q / \ p:
thm
> > # # # # # # # val conj2Thm =
[] |- (q :bool) / \ (p :bool) ==> p / \ q:
thm
> > * val conjSymThm =
[] |- (p :bool) / \ (q :bool) <=> q / \ p:
thm
> *** Emacs/HOL command completed ***
```

3.4 Explain Result

In 8.4.2, all of our theorem and theory have passed by HOL.

Excersice 8.4.3

4.1 Problem Statement

For 8.4.3 we need to prove the therom:

```
\vdash \ \forall \ p \ \ q. \ \ p \ \land \ q \ \iff \ q \ \land \ p
```

4.2 HOL Code

Notice in 8.4.3 we are extending the code from 8.4.2:

```
val conj1Thm =
val th2 = ASSUME "p/q"
val th3 =CONJUNCT1 th2
val th4 =CONJUNCT2 th2
val th5 =CONJ th4 th3
DISCH (hd(hyp th2)) th5
end;
val conj2Thm =
val th1 = ASSUME "q/p"
val th2 = CONJUNCT1 th1
val th3 =CONJUNCT2 th1
val th4 =CONJ th3 th2
DISCH (hd(hyp th1)) th4
end;
val conjSymThm =
IMP_ANTISYM_RULE conj1Thm conj2Thm;
val conjSymAll=GENL [''p:bool'', ''q:bool''] conjSymThm;
```

Fall 2017 8

4.3 Session Transcript

```
> > > # # # # # # # * * types trace now on
> *** Globals.show_assums now true ***
> # # # # # # # * * Unicode trace now off
> # # # # # # # * * Unicode trace now off
> # # # # # # # val conj1Thm =
[] |- (p :bool) / (q :bool) ==> q / \ p:
thm
> > # # # # # # # * val conj2Thm =
[] |- (q :bool) / (p :bool) ==> p / \ q:
thm
>
*** Emacs/HOL command completed ***

> # val conjSymThm =
[] |- (p :bool) / (q :bool) <=> q / \ p:
thm
> val conjSymAll =
[] |- !(p :bool) (q :bool). p / \ q <=> q / \ p:
thm
> thm
```

4.4 Explain Result

All tests from 8.4.3 have been passed in HOL.

Appendix A: source code for 8.4.1, 8.4.2, and 8.4.3

```
The following code is from proj5Script.sml
(* Author: Xiaozhi Li
(* All HOL script files are ML modules, so we need to declare the file
(* example 1 Script as an ML structure. Do this with the "structure: command
(* as the very first executable line. The very last executable line is "end" *)
structure proj5Script = struct
(*\ Note:\ everything\ after\ new\_theory\ must\ be\ part\ of\ a\ val\ assignment , when
(* using Holmake. Otherwise, there will be compilation errors. If you don't
(* want to assign an expression to a name, just use "val <math>\_ = < expression > "
                                                      * )
(* The "_" indicates that we don't want to have a name.
open HolKernel Parse boolLib bossLib;
val _ = new_theory "proj5";
(* val problem1Thm
(* [] | -p \Longrightarrow (p \Longrightarrow q) \Longrightarrow (q \Longrightarrow r) \Longrightarrow r
(* 8-4-1 *)
val problem1Thm =
let
val th1 =ASSUME ''p:bool''
\mathbf{val} th2 =ASSUME ''p \Longrightarrow q''
val th3 = ASSUME "q \implies r"
val th4 ≡MP th2 th1
val th5 ≡MP th3 th4
val th6 = DISCH (hd(hyp th3)) th5
val th7 = DISCH (hd(hyp th2)) th6
DISCH (hd(hyp th1)) th7
end
```

FALL 2017 10

```
val _ =save_thm("problem1Thm",problem1Thm);
(* 8-4-2*)
val conj1Thm =
val th2 =ASSUME "p/\q"
val th3 =CONJUNCT1 th2
val th4 =CONJUNCT2 th2
val th5 =CONJ th4 th3
DISCH (hd(hyp th2)) th5
end;
val conj2Thm =
val th1 = ASSUME "q/p"
val th2 =CONJUNCT1 th1
val th3 =CONJUNCT2 th1
val th4 =CONJ th3 th2
DISCH (hd(hyp th1)) th4
end;
val conjSymThm =
IMP\_ANTISYM\_RULE~conj1Thm~conj2Thm~;
val _ =save_thm("conjSymThm",conjSymThm);
(*******)
(* 8-4-3 *)
val conj1Thm =
val th2 = ASSUME "p/q"
val th3 =CONJUNCT1 th2
val th4 =CONJUNCT2 th2
val th5 =CONJ th4 th3
in
```

FALL 2017 11

```
DISCH (hd(hyp th2)) th5
\mathbf{end};
val conj2Thm =
\mathbf{val} th1 =ASSUME ''q/\p''
val th2 = CONJUNCT1 th1
val th3 = CONJUNCT2 th1
val th4 =CONJ th3 th2
in
DISCH (hd(hyp th1)) th4
end;
val conjSymThm =
IMP_ANTISYM_RULE conj1Thm conj2Thm;
val conjSymAll=GENL [''p:bool'', ''q:bool''] conjSymThm;
val _=save_thm("conjSymAll", conjSymAll)
val _=export_theory();
end (* structure *)
```