NEC

NPN SILICON TRANSISTOR 2SC3732

DESCRIPTION

The 2SC3732 is designed for general purpose amplifier and high speed switching applications.

FEATURES

- High Frequency Current Gain.
- High Speed Switching.
- Small Output Capacitance.

ABSOLUTE MAXIMUM RATINGS

Maximum Temperatures Storage Temperature -55 to +150 °C Junction Temperature 150 °C Maximum Maximum Power Dissipation ($T_a = 25$ °C) Total Power Dissipation 250 Maximum Voltages and Currents (Ta = 25 °C) V_{CBO} Collector to Base Voltage 40 V V_{CES} Collector to Emitter Voltage 40 ٧ V_{CEO} Collector to Emitter Voltage 15 V V_{EBO} Emitter to Base Voltage 5.0 Collector Current 200 I_{C} mΑ Collector Current (10 µs pulse) 500 lc

ELECTRICAL CHARACTERISTICS (Ta = 25 °C)

SYMBOL	CHARACTERISTIC	MIN.	TYP.	MAX.	UNIT	TEST CONDITIONS
ton	Turn-on Time		8.0	12	ns	V_{CC} = 3.0 V, I_C = 10 mA, I_{B1} = 3.0 mA, V_{BE} = -1.5 V
· ^t off	Turn-off Time		12	18	ns	V_{CC} = 3.0 V, I_C = 10 mA, I_{B1} = 3.0 mA, I_{B2} = -1.5 mA
t _{stg}	Storage Time		6.0	13	ns	$I_C = 10 \text{ mA}, I_{B1} = -I_{B2} = 10 \text{ mA}$
fT	Gain Bandwith Product	500	750		MHz	$V_{CE} = 10 \text{ V}, I_{E} = -10 \text{ mA}, f = 100 \text{ MHz}$
Cob	Output Capacitance		1.8	4.0	pF	V _{CB} = 5.0 V, I _E = 0, f = 1 MHz
pE+	DC Current Gain	40	90	200	_	V _{CE} = 1.0 V, I _C = 10 mA
V _{CE(sat)} *	Collector Saturation Voltage		0.15	0.25	· V	$I_C = 10 \text{ mA}, I_B = 1.0 \text{ mA}$
V _{BE(sat)} *	Base Saturation Voltage		0.80	0.85	V	I _C = 10 mA, I _B = 1.0 mA
ICBO	Collector Cutoff Current			0.1	μА	V _{CB} = 20 V, I _E = 0
IEBO	Emitter Cutoff Current			0.1	μА	V _{EB} = 3.0 V, I _C = 0

^{*} Pulsed PW \leq 350 μ s, Duty Cycle \leq 2 %

Classification of hFE

Rank	М	L	К
Range	40 to 80	60 to 120	100 to 200

Test Conditions : $V_{CE} = 1.0 \text{ V}$, $I_{C} = 10 \text{ mA}$

TYPICAL CHARACTERISTICS (Ta = 25 °C)

SWITCHING TIME TEST CIRCUIT

 t_{on} , t_{off} SWITCHING

