ISTANBUL TECHNICAL UNIVERSITY COMPUTER ENGINEERING DATA MINING - BLG 607

CHESS PUZZLE RATING PREDICTION

Seyyid Osman Sevgili

Instructor Prof. Dr. Şule Gündüz Öğüdücü

Outline

- Problem Definition
- Dataset Explanation
- Exploratory Data Analysis (EDA)
- Methodologies
- Results

Problem Definition

Predicting Chess Puzzle Ratings

- Enhancing user experience
- Empowering professional growth

Glicko-2 Challenges

- Dependent on user performance data
- Mathematically complex

Dataset Explanation

Field Name	Field Description	Field Type	Example Value
Puzzleld	Unique puzzle ID	string	00sHx
FEN	Board position in standard notation	string	q3k1nr/1pp1nQpp/3p4/1P2p3/4P3/B1PP1b2/B5PP/5K2 b k - 0 17
Moves	Solution to the puzzle in PGN	string	e8d7 a2e6 d7d8 f7f8
Rating	Puzzle rating	int	1760
RatingDeviation	Measure of uncertainty over difficulty	int	85
Popularity	Difference between upvotes and downvotes	int	10
NbPlays	Number of attempts at solving the puzzle	int	350
Themes	Puzzle themes	string	mates in 2 moves
GameUrl	Puzzle source link	string	https://lichess.org/game1
OpeningTags	Opening from which the puzzle originated	string	Sicilian Defense

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 3888765 entries, 0 to 3888764
Data columns (total 10 columns):

Ducu	cotamins (total 1	o co camin			
#	Column	Dtype			
0	PuzzleId	object			
1	FEN	object			
2	Moves	object			
3	Rating	int64			
4	RatingDeviation	int64			
5	Popularity	int64			
6	NbPlays	int64			
7	Themes	object			
8	GameUrl	object			
9	OpeningTags	object			
dtypes: int64(4), object(6)					

memory usage: 296.7+ MB

Exploratory Data Analysis (EDA)

UNIVARIATE ANALYSIS

- RatingDeviation < 107.5
- NbPlays > 10
- Popularity > 65.5

MULTIVARIATE ANALYSIS

MoveLength Rating Correlation

OUTLIER DETECTION

 Puzzles are shared one move earlier

Experiment Setup

BLUE -> Train (2137801 rows)

GREEN -> Test (668064 rows)

ORANGE -> Validation (534451 rows)

Methodology 1 Flatten

3340316 rows × 64 columns

Test MSE: 176159

Optuna

Tensorboard

Methodology 2 Graph

Engineered Features

ADVANTAGE

- Material advantage
- Central control

SAFETY

- King safety
- Total threats

MOBILITY

- Piece mobility
- Connectivity

OTHERS

- First played peace
- Game phase
- Game status
-

Test MSE: 163668

Methodology 3 CNN-GRU

One-Hot Encoding Visualization for FEN: 8/6r1/R1kp4/1pp1p1p1/4Pp2/2PP1P2/PP2K3/8 b - - 0 42

Test MSE: 142150

Results

LGBM-Graph

CNN-GRU

LGBM-Flattened

Rank 1	Team Name ↑↓	Preliminary Score 11	Final Score 11	Submissions 11
1	bread emoji	49141.5359	104540.656891	47
2	anansch	58810.4586	120682.234604	38
3	ousou	69890.9227	123103.229717	50
4	Andryyyyy	61381.3812	129245.229228	56
5	ToDoFindATeamName	65136.8232	132631.424731	53
6	alexmolas	74378.0110	137839.668622	22
7	dymitr	69202.5691	141488.501466	50
8	Feiwyth	70792.7182	146729.234115	6
9	NxGTR	73832.3591	150757.042522	35
10	BigData2024	74135.4586	154905.759042	51

Competition Results

POSITIVE

- I utilized both tree based and nn models.
- Graph representation for feature engineering
- Custom architecture CNN-GRU

NEGATIVE

- Low performance
- Huge data requires huge! hardware

Evaluation

OTHER APPROACHES

• Vision transformer based architectures. 150k as a final score.

FUTURE WORK

- Apply move to board and feed new board after each move to CNN.
- Ensemble architectures can be used.
- Move encoding can be improved.

Thank you for listening