Handwritten Signature Identification and Verification

Marwan Mohamed Abd El-Halim El-Sayed 20191700620

Sara Adel El-Gebaly Mouhamed 20191700274

Mahmoud Mohamed Ahmed Orman 20191700606

Kirolos Nabil Mounir Fahmy 20191700460

Youssef Nader Michel Sobhy 20191700793

Data Preparation:

Classification Model:

Using Image Preprocessing class

- Normalize a picture pixel to 0-1 float (instead of 0-255 int).
- Add sample wise zero center (Zero center each sample by subtracting it by its mean).
- Add feature wise stdnorm (Scale each sample by the specified standard deviation. If no specified, std is evaluated over all samples data.

Using Image Augmentation class

This class is meant to be used as an argument of `input_data`. When training a model, the defined augmentation methods will be applied at training time only. Note that Image Preprocessing is like Image Augmentation but applies at both training time and testing time.

- Add random flip left right
- Add random rotation Randomly rotate an image by a random angle (-max_angle, max_angle).

Siamese Model:

- We used Pretrained weights of ImageNet
- Used batch normalization in the non-trainable layer
- Use batch generator function as preparation function to reduce the complexity of the memory

Models' descriptions and techniques:

Classification using Convolutional neural network model:

- Use 'tflearn' modules to train the model to classify between different persons' signatures
- Use One-hot encoding technique to label our training data
 - o Person A -> [1,0,0,0,0]
 - o Person B -> [0,1,0,0,0]
 - o Person c -> [0,0,1,0,0]
 - o Person D -> [0,0,0,1,0]
 - Person E -> [0,0,0,01]
- Use convnet cifar10 CNN architecture
- Use **softmax** as activation function in output layer with 5 neurons.

Classification using Siamese model:

- Use Siamese techniques which use Euclidean distance between two feature vectors .
- Use triplet loss concept to train the distance function.
- $l = \max(d(a, p) d(a, n) + margin, 0)$, where a is anchor, p is positive, and n is negative sample.

Object detection model using faster R-CNN:

- We take an image as input and pass it to the ConvNet which returns the feature map for that image.
- **Region proposal network** is applied on these feature maps. This returns the object proposals along with their object-ness score.
- A ROI pooling layer is applied on these proposals to bring down all the proposals to the same size
- Finally, the proposals are passed to a **fully connected layer** which has a SoftMax layer and a linear regression layer at its top, **to classify and output the bounding boxes for objects.**

Time:

Handwritten Signature Identification:

- Train -> 10 min (avg 44 sec for each epoch).
- Test -> 2 seconds

Handwritten Signature Verification:

• Train -> 955 seconds (avg 60 sec per epoch).

```
EPOCH: 13 (Epoch done in 60 sec)
Loss on train = 0.00000
Accuracy on test = 0.93333
EPOCH: 14 (Epoch done in 60 sec)
Loss on train = 0.00000
1/1 [======= ] - 1s 971ms/step
Accuracy on test = 0.93333
EPOCH: 15 (Epoch done in 59 sec)
Loss on train = 0.00000
Accuracy on test = 0.93333
Train Time: 955.3327951431274 Seconds
Model: "Encode_Model"
```

Image Classification accuracy:

Train Accuracy:

- Train data -> 160
- Validation data -> 40

Figure 1: Classification Train and validation accuracy

Train accuracy = 91.81%

Validation accuracy = 100.0%

Test Accuracy:

• Test data -> 40

```
[4, 0, 4, 0, 1, 4, 3, 4, 2, 2, 3, 2, 3, 2, 1, 4, 1, 1, 4, 2, 0, 2, 0, 1, 0, 2, 4, 3, 4, 3, 3, 3, 0, 1, 2, 0, 0, 3, 1, 1]
[4, 0, 4, 0, 1, 4, 3, 4, 2, 2, 3, 2, 3, 2, 1, 4, 1, 1, 4, 2, 0, 2, 0, 1, 0, 2, 4, 3, 4, 3, 3, 3, 0, 1, 2, 0, 0, 3, 1, 1]
Test acc = 100.0%
```

Figure 2:classification test accuracy

Test accuracy = 100.0%

Siamese Classification accuracy:

Train accuracy:

Test accuracy:

```
EPOCH: 13 (Epoch done in 60 sec)
Loss on train = 0.00000
1/1 [======= ] - 1s 975ms/step
Accuracy on test = 0.93333
EPOCH: 14 (Epoch done in 60 sec)
Loss on train = 0.00000
Accuracy on test = 0.93333
EPOCH: 15 (Epoch done in 59 sec)
Loss on train = 0.00000
Accuracy on test = 0.93333
Train Time: 955.3327951431274 Seconds
Model: "Encode_Model"
```

Figure 3:Siamese Train

Test accuracy = 93.3%