For the graph below, fill in the adjacency matrix.



|                       | <b>V</b> <sub>0</sub> | <b>V</b> <sub>1</sub> | <b>V</b> <sub>2</sub> | <b>V</b> <sub>3</sub> | <b>V</b> <sub>4</sub> | <b>V</b> <sub>5</sub> |
|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|
| V <sub>0</sub>        |                       |                       |                       |                       |                       |                       |
| <b>V</b> <sub>1</sub> |                       |                       |                       |                       |                       |                       |
| <b>V</b> <sub>2</sub> |                       |                       |                       |                       |                       |                       |
| <b>V</b> <sub>3</sub> |                       |                       |                       |                       |                       |                       |
| <b>V</b> <sub>4</sub> |                       |                       |                       |                       |                       |                       |
| <b>V</b> <sub>5</sub> |                       |                       |                       |                       |                       |                       |

In the graph below, use vertex  $V_0$  as the source vertex. Find the shortest path from  $V_0$  to all other vertices in the graph using Dijkstra's shortest path algorithm.

