Laboratorio Niveles de Red y Enlace

Redes de Comunicaciones (TB067)

Comunicación de Datos (86.12)

Los ejercicios se deben realizar en el orden que se presentan.

- 1. Responda las siguientes preguntas introductorias a las aplicaciones ping y traceroute.
 - a) ¿Cuál es la utilidad de las aplicaciones ping y traceroute?
 - b) Describa el principio de funcionamiento de ambas aplicaciones.

2. Fragmentación

IMUNES. Experimento: imunes-examples/Ping/ping.imn

a) Antes de iniciar el experimento, cambie el MTU de las interfaces como se indica en el siguiente cuadro:

Router	Interfaz	MTU
router0	eth1	1400
router1	eth0	1400
router6	eth1	1000
router7	eth0	1000

b) Inicie el Wireshark en pc1 y en server, luego ejecute los comandos:

Analice las diferencias de la respuesta a cada comando y en las capturas.

c) Con el Wireshark corriendo en pc1 y en server ejecute el comando:

Analice la fragmentación que se produjo y estudie los campos relevantes de ambas capturas.

3. Pruebas de ping

IMUNES. Experimento: imunes-examples/Ping/ping. imn

- a) Corra el Wireshark en la pc1, y luego verifique la disponibilidad de server (10.0.8.10) desde pc1 ejecutando ping -c 5 10.0.8.10.
- b) Analice los encabezados Ethernet, IP e ICMP Echo Request y Reply.
- c) La primera línea en la salida del ping muestra la cantidad de *data bytes*. ¿A qué se refiere esa cantidad?
- d) Analice la información provista en cada prueba y el resumen final.

Información útil:

- Display filter útil de Wireshark "not ripng and not rip".
- Para más información de la aplicación ping ejecutar " $man\ ping$ " en una terminal de comandos.

4. Pruebas de traceroute

IMUNES. Experimento: imunes-examples/Traceroute/traceroute.imn

- a) Inicie el Wireshark para capturar el tráfico en pc1, luego utilice la aplicación traceroute para verificar la ruta desde pc1 (10.0.0.21) hacia server (10.0.8.10) ejecutando traceroute 10.0.8.10. Analice la respuesta y compárelo con el diagrama de red. Compare la información de la captura con la del diagrama de red.
- b) Verifique la ruta en sentido contrario al anterior, es decir, desde server (10.0.8.10) hacia pc1 (10.0.0.21). Compare las direcciones IPs con las de la prueba anterior.
- c) Analice las capturas de tráfico en pc1. Las capturas de la prueba del ítem a) muestra todos los datagramas enviados y recibidos en pc1, mientras que en la captura de la prueba b) solo se ven algunos datagramas. ¿Por qué?

5. Simultaneidad utilizando traceroute

En una PC se ejecuta dos veces en simultáneo el comando traceroute. ¿Cómo identifica cada proceso de traceroute si los mensajes ICMPs que recibe corresponden a uno u otro proceso?

6. Simultaneidad utilizando ping

IMUNES. Experimento: imunes-examples/Ping/ping.imn

a) Si en una PC se ejecuta dos veces en simultáneo el comando ping~10.~0.~8.~10, salen de la PC mensajes ICMP generados por dos procesos diferentes. ¿Cómo

- identifica cada proceso de ping si los mensajes ICMPs que se reciben corresponden a uno u otro proceso?
- b) IMUNES: Demuestre la justificación del ítem anterior en el emulador. Corra el Wireshark en la pc1. Abra tres terminales, dos para ejecutar el ping en forma simultánea y una para ejecutar el comando ps.

Información útil:

• ps muestra información acerca de los procesos que corren en el sistema. Para más información ejecute man ps.

7. ARP y direccionamiento directo

IMUNES. Experimento: imunes-examples/Ping/ping. imn

- a) Configure los links en azul como se especifica en la imagen.
- b) Verifique el estado de la tabla ARP de pc1 ejecutando el comando arp -a
- c) Inicie el Wireshark en pc1 y ejecute ping -c 5 10.0.0.1. Observe los tiempos de respuesta de cada prueba. ¿Por qué el tiempo de la primer prueba es mayor al resto?
- d) Verifique nuevamente el estado de la tabla ARP de pc1 y compárelo con la ejecución anterior.
- e) Vuelva a ejecutar el comando ping y observe la diferencia de tiempos respecto a la ejecución anterior.
- f) Compare los tiempos de respuesta de las dos ejecuciones de ping con los tiempos entre cada *ICMP Echo Request* y *Replay* en el Wireshark.
- g) En las capturas del Wireshark, observe a qué dispositivos corresponden las direcciones MACs y las direcciones IPs del primer y segundo mensaje ICMP. Analice también el contenido de los mensajes *ARP Request* y *Reply*.
- h) Borre la *tabla ARP* con el comando arp -da, verifique su estado y vuelva a ejecutar el comando $ping -c \ 5 \ 10. \ 0. \ 0. \ 1$ observando específicamente el tiempo de la primer prueba.

Información útil:

- Se puede cambiar el Time Display Format de Wireshark con los siguientes shortcuts:
 - o Ctrl+Alt+4: Seconds Since Beginning of Capture
 - o Ctrl+Alt+6: Seconds Since Previous Displayed Packet
- Para más información de la aplicación arp ejecute man arp.

8. ARP y direccionamiento indirecto

- a) Antes de comenzar borre la *tabla ARP*. Luego, en pc1 inicie el Wireshark y ejecute ping -c 5 10. 0. 8. 10.
- b) Observe la *tabla ARP* de pc1. ¿Por qué la nueva entrada en la *tabla ARP* no corresponde a la de server? ¿A qué dispositivo corresponde y por qué?
- c) En las capturas del Wireshark, observe a qué dispositivos corresponden a las direcciones MACs e IPs del primer y segundo mensaje ICMP. Analice también el contenido de los mensajes ARP Request y Reply.
- d) Observe los tiempos de respuesta de cada prueba. ¿Por qué el tiempo de la primera prueba es mayor al resto?

Información útil:

• El comando netstat -rn4 muestra la tabla de ruteo IPv4.

9. IPv6 autoconfiguración stateless

IMUNES. Experimento: imunes-examples/ipv6. imn

a) Ingrese al Quagga de R1 y habilite la autoconfiguración *stateless* ejecutando los siguientes comandos:

```
conf t
int eth1
ipv6 nd prefix 2001:1318:100c:1::/64
ipv6 nd ra-interval 10
no ipv6 nd suppress-ra
```

Inicie el Wireshark en la interfaz eth1 de R1.

La interfaz eth0 de pc1 se encuentra intencionalmente desactivada, actívela ejecutando:

```
ifconfig ethO up
```

Confirme que la interfaz de pc1 tiene las direcciones IPv6 local y global ejecutando:

```
ifconfig eth0
```

- b) Estudie el procedimiento de autoconfiguración analizando las capturas de tráfico.
- c) En pc1 ejecute ping6 c = 5 + fc00:2::10 y analice la respuesta y las capturas.
- d) En pc1 ejecute traceroute6 fc00:2::10 y analice la respuesta y las capturas.

10. IPv6-over-IPv4

IMUNES. Experimento: tunel.imn

a) Inicie el experimento y configure el túnel aplicando las siguientes configuraciones en la terminal de *bash* de los routers:

router2:

```
ip tunnel add 6bone mode sit remote 10.0.4.2 local 10.0.2.1 ttl 64
ip link set 6bone up
ip address add 3ffe:29al:ff:fe::2 peer 3ffe:29al:ff:fe::1 dev 6bone
ip -6 route add fc00:9::/64 via 3ffe:29al:ff:fe::1
```

router4:

```
ip tunnel add 6bone mode sit remote 10.0.2.1 local 10.0.4.2 tt1 64
ip link set 6bone up
ip address add 3ffe:29al:ff:fe::1 peer 3ffe:29al:ff:fe::2 dev 6bone
ip -6 route add fc00:7::/64 via 3ffe:29al:ff:fe::2
```

b) Corra el Wireshark en el router2 interfaz eth1. Luego verifique la comunicación entre la PC y el servicio ejecutando el siguiente comando en host5: ping -c 10 fc00:9::1

Analice las capturas.