${\bf NB}$: This document sums up as much symbols, notations and conventions used for the Maths 101 course as possible. If something is missing, please tell us.

Shortcuts

i.e. : $id \ est^1$, "that is",

e.g.: exempli gratia¹, "for example" (does **not** come from "example given").

Basic notations for functions

f(x): the value of the function f at the point x,

f(A): the image set of A by f, i.e. $\{f(x): x \in A\}$,

f(B): the pre-image set of B by f, i.e. $\{y \in B : \exists x \in A/f(x) = y\}$,

 \rightarrow : to specify the domain for a function, e.g. $\sin : \mathbb{R} \rightarrow \mathbb{R}$,

 $f_{|A}$: the restriction of the function $f: E \to F$ to the subset $A \subset E$.

Shortcuts for sums and products

$$\sum_{k=1}^{n} f(k) : \text{sum } f(1) + f(2) + \dots + f(n-1) + f(n) \text{ for } n \ge 1,$$

$$\prod_{k=1}^{n} g(k) : \text{product } g(1) \times g(2) \times \cdots \times g(n-1) \times g(n) \text{ for } n \ge 1,$$

$$\underset{k=1}{\overset{n}{\times}} E_k$$
: Cartesian product for spaces: $E_1 \times E_2 \times \cdots \times E_{n-1} \times E_n$ for $n \ge 1$,

$$\bigoplus_{k=1}^{n} E_k : \text{direct sum for spaces} : E_1 \oplus E_2 \oplus \cdots \oplus E_{n-1} \oplus E_n \text{ for } n \geqslant 1.$$

Logical binary predicates

 \Rightarrow : implies, e.g. $(x > 0) \Rightarrow (x \ge 0)$,

 \Leftrightarrow : is equivalent to, *i.e.* implies and is implied by,

 \neg : logical negation, e.g. $\neg(\omega > 0) \equiv \omega \leq 0$.

Binary predicates for set

 \in : belongs to, e.g. $n\in\mathbb{N},$

 \notin : do not belong to, e.g. $-1 \notin \mathbb{R}_+$,

 \subset : is included in, e.g. $\mathbb{N} \subset \mathbb{R}$,

 \supset : contains, e.g. $\mathbb{Z} \supset \{-1, 0, 1\},\$

 \subseteq : to precise that inclusion can be an equality, at the opposite of \subsetneq which exclude the equality,

\ : difference of two sets, e.g. $\mathbb{R}\setminus\mathbb{R}_- = \mathbb{R}_+^*$,

 \cap : intersection of two sets (also \cap), e.g. $\mathbb{C} \cap \mathbb{Z} = \mathbb{Z}$,

 \cup : union of two sets (also \bigcup), e.g. $\{0\} \cup \mathbb{N}^* = \mathbb{N}$,

¹It is latin.

```
\oplus: disjunct union of two sets (also [+]), e.g. \mathbb{R}_{-}^{*} \oplus \mathbb{R}_{+}^{*} (also \sqcup or [-]),
```

 $E_1 \times E_2$: Cartesian product of two sets E_1 and E_2 , i.e. $\{(x,y): x \in E_1, y \in E_2\}$,

 $E_1 \oplus E_n \ : \text{direct sum of two sets } E_1, E_2 \subset E, \ i.e. \ \{x+y: x \in E_1, y \in E_2\}, \ \text{where } E_1 \cap E_2 = \{0_E\}.$

Usual constants and functions

 π : (pi), usually defined by the quotient of any circle perimeter by its diameter,

e: base of the exponential function, i.e. $e \stackrel{\text{def}}{=} e^1 = \exp(1)$,

 $+\infty$: positive infinite, $-\infty$ negative infinite, ∞ infinite,

sign : sign function, i.e. sign : $\mathbb{R} \to \mathbb{R}, 0 \mapsto 0, x \mapsto 1$ if x > 0, -1 if x < 0, -1

exp: exponential function, i.e. $\exp : \mathbb{R} \to \mathbb{R}, x \mapsto \exp(x) = e^x$,

ln : Neperian logarithm function, *i.e.* ln : $\mathbb{R}_+^* \to \mathbb{R}, x \mapsto \ln(x)$,

 $\cos : \cos ine, \sin : \sin ine, \tan : tangent (\mathbb{R} \to \mathbb{R}),$

arccos: arc cosine, arcsin: arc sinus, arctan: arc tangent (reciprocal),

 \cosh : hyperbolic cosine, \sinh : hyperbolic sinus, \tanh : hyperbolic tangent ($\mathbb{R} \to \mathbb{R}$),

arccosh: arc hyperbolic cosine, arcsinh: arc hyperbolic sinus, arctanh: arc hyperbolic tangent (reciprocal),

det : determinant, com : comatrix,

E: integer part (lower), i.e. $E(x) \stackrel{\text{def}}{=} \max \{ n \in \mathbb{Z}, n \leq x \},$

floor: lower integer round, i.e. floor(x) $\stackrel{\text{def}}{=} [x] = E(x)$,

ceil: upper integer round, i.e. $ceil(x) \stackrel{\text{def}}{=} [x] = E(x) + 1$,

 $\delta_{i,j}:$ Kronecker's symbol, $\delta_{i,j}:(k,l)\mapsto 1$ if k=i and $l=j,\mapsto 0$ otherwise,

 γ : usually, EULER's constant,

 $\Gamma(x)$: usually, Euler's Gamma function,

 I_n : identity matrix of size $n \ge 0$.

Usual sets

 \emptyset : the empty set (it is unique, even if included in any set),

 $\{x: P(x)\}\ : \text{ set of all elements } x \text{ satisfying verifying a certain property}^2\ P(x),\ e.g.\ \{x\in\mathbb{R}: x\geqslant 0\} = \mathbb{R}_+$

 \mathbb{N} : non-negative natural numbers, $\mathbb{N} = \{0, 1, \dots, n-1, n, n+1, \dots\},\$

 $\mathbb{Z} : (\text{ring of the}) \text{ integer numbers, } \mathbb{Z} = \{\ldots, -n-1, -n, -n+1, \ldots, -1, 0, 1, \ldots, n-1, n, n+1, \ldots\},$

 $\mathbb{Q} \ : \text{(field of the) rational numbers, } \mathbb{Q} \stackrel{\text{\tiny def}}{=} \bigg\{ \frac{p}{q}, (p,q) \in \mathbb{Z} \times \mathbb{N}^* \bigg\},$

 $\mathbb{R} \,: \text{(field of the) real numbers, } \mathbb{R} \stackrel{\text{\tiny def}}{=} \Big\{ \lim_{n \to \infty} r_n, (r_n)_{n \in \mathbb{N}} \in \mathbb{Q}^{\mathbb{N}} \text{ being convergeant} \Big\},$

- [a,b]: segment (close interval), i.e. $[a,b] \stackrel{\text{def}}{=} \{x \in \mathbb{R} : a \leqslant x \leqslant b\}$,
- (a,b): open interval, i.e. $(a,b) \stackrel{\text{def}}{=} \{x \in \mathbb{R} : a < x < b\},\$
- [a,b): half-open on the right interval, i.e. $[a,b) \stackrel{\text{def}}{=} \{x \in \mathbb{R} : a \leqslant x < b\}$.
- (a, b]: half-open on the left interval, i.e. $(a, b] \stackrel{\text{def}}{=} \{x \in \mathbb{R} : a < x \leq b\}$,

²If you are curious, this page on Wikipédia explains *how* and *why* we have to limit the expressiveness of this way to define set.

 \mathbb{C} : (field of the) complex numbers, $\mathbb{C} \stackrel{\text{def}}{=} \{a + ib : a, b \in \mathbb{R}\},\$

 \mathbb{K} : any (commutative) field, usually understood as " \mathbb{R} or \mathbb{C} ",

 E^n : product set, set of the *n*-tuples of E, i.e. $\{(x_1,\ldots,x_n): \forall 1 \leq i \leq n, x_i \in E\}, e.g. \mathbb{R}^2 \simeq \mathbb{C}$,

 $\mathbb{M}_{n,m}(A)$: set of $n \times m$ -sized matrices $(n, m \in \mathbb{N})$, also written as $M_{n,m}(A)$,

Operators for sets

Card : cardinal of a set, *i.e.* number of its elements, also written $\operatorname{Card}(E) \stackrel{\text{def}}{=} |E| \stackrel{\text{def}}{=} \#E$,

 $\mathcal{P}(E)$: set of subsets of E (also written 2^{E}),

 E^* : the set E without its zero³ 0, i.e. $E^* \stackrel{\text{def}}{=} E \setminus \{0\}$,

 E_{+} : the subset of non-negative³ elements of E, i.e. $E_{+} \stackrel{\text{def}}{=} E \cap [0, +\infty)$,

 E_{-} : the subset of non-positive³ elements of E, i.e. $E_{-} \stackrel{\text{def}}{=} E \cap (-\infty, 0]$,

 E^c : complementary set of E (when this is not ambiguous),

 δE : frontier of the set E, e.g. $\delta \mathcal{B}_2(0,1) = \mathcal{C}_2(0,1)$ (ball and sphere being centered at 0 and of radii 1, in 2D),

 E° : interior of the set E, *i.e.* $E^{\circ} \stackrel{\text{def}}{=} E \setminus \delta E$ (also written int(E)),

 $\overline{E} : \text{cloture of } E, \ i.e. \ \overline{E} \stackrel{\text{def}}{=} \bigg\{ \lim_{n \to +\infty} u_n, (u_n)_{n \in \mathbb{N}} \in E^{\mathbb{N}} \text{ being convergent} \bigg\},$

d(x,y): distance between two points x and y, usually d(x,y) = |x-y|,

d(x,A): distance from the point x to the subset $A \stackrel{\text{def}}{=} \inf_{a \in A} |x-a|$),

d(A,B): distance from two subsets A and $B \stackrel{\text{def}}{=} \inf_{(a,b) \in A \times B} |a-b|$,

A + B: sum of two subsets A and B (= { $a + b : (a, b) \in A \times B$ }),

A-B: subtraction of two subsets A and B (= $\{a-b:(a,b)\in A\times B\}$),

 $\operatorname{diam}(A)$: $\operatorname{diameter}$ of a subset A, i.e. $\operatorname{diam}(A) \stackrel{\text{def}}{=} \sup \{|x-y|, (x,y) \in A^2\},$

 χ_A : characteristic function for $A \subset E$, i.e. $E \to \{0,1\}, x \mapsto 1$ if $x \in A, 0$ otherwise,

 $\dim(E)$: dimension of a space E, $\dim_{\mathbb{K}}(A)$]: dimension of a subset $A \subset E$, has a \mathbb{K} -vectorial-space.

Orders and relationships

<: (strictly) lower than, e.g. $1 < \sqrt{2}$,

 \leq : lower or equal than, e.g. $1 \leq 1$,

>: (strictly) greater than, e.g. $1 > e^{-1}$,

 \geq : greater or equal than, e.g. $2 \geq 2$,

 \equiv : "same meaning", or semantical identity for formulas: $\neg(\neg P) \equiv P$,

 \simeq : similar, e.g. for numerical approximations: $\pi \simeq 3.14$,

 \sim : numerically equivalent, for a limit, e.g. $\frac{\sin(7x)}{x} \underset{x\to 0, x\neq 0}{\sim} 7$.

³When this as a meaning.

Other binary operators

```
\circ: composition of functions, if f: E \to F, g: F \to G, then f \circ g: E \to G, x \mapsto f(g(x)), \mathbf{x}.\mathbf{y}: inner product, also written \langle \mathbf{x}, \mathbf{y} \rangle, e.g. [1;2;3].[4;5;6] = 1*4+2*5+3*6=32, \mathbf{x} \times \mathbf{y}: vectorial product, e.g. [1;2;3] \times [4;5;6] = [-3;6;-6], |: divisibility (for integers, or polynomials), e.g. 1007 \mid 2014, |: non-divisibility (for integers, or polynomials), e.g. 2013 \nmid 2014, . mod .: used to write equality modulo another number, e.g. 17 = 2 \mod 5.
```

Usual unary operators

 $\mathcal{R}e$: real part for a complex number, i.e. $\mathcal{R}e(a+ib)=a$, $\mathcal{I}m$: imaginary part for a complex number, i.e. $\mathcal{I}m(a+ib)=b$, sup: best upper-bound of a set (smaller upper-bound), inf: best lower-bound of a set (bigger lower-bound), lim: limit, usually by precising $\lim_{x\to 0}$ to say "when x tends to 0", lim sup: upper limit (also written $\overline{\lim}$, or sometimes $\lim \uparrow$), liminf: lower limit (also written $\underline{\lim}$, or sometimes $\lim \downarrow$), arg: one argument (for a complex number), e.g. $\arg(e^{i\pi/4}) = \pi/4$ but $\pi/4 + 2\pi$ is also a valid argument.

Notations for the limits

```
ightarrow: for a limit: n \to +\infty means that "n tends to +\infty", x \to a^+: means that x tends to a by being lower than a, x \to a^-: means that x tends to a by being greater than a, f(x^+): limit of f at x for smaller values, i.e. f(x^+) \stackrel{\text{def}}{=} \lim_{y \to x^+} f(y), f(x^-): limit of f at x for bigger values, i.e. f(x^-) \stackrel{\text{def}}{=} \lim_{y \to x^-} f(y).
```

Autres notations

 $g^+: \text{non-negative part of } g, \ i.e. \ g^+ \stackrel{\text{def}}{=} \max\{g(x), 0\},$ $g^-: \text{non-positive part of } g, \ i.e. \ g^- \stackrel{\text{def}}{=} \min\{g(x), 0\},$ $\overline{z}: \text{conjugate of a complex number, } i.e. \ \overline{a+ib} \stackrel{\text{def}}{=} a-ib,$ $|z|: \text{absolute value of a number (real or complex), } e.g. \ |a+ib| \stackrel{\text{def}}{=} \sqrt{a^2+b^2} \text{ or } |-2.73| = 2.73,$ $\mathbf{x}, \mathbf{y}: \text{vector } x, y. \text{ Sometimes also written as } \overrightarrow{u}, \overrightarrow{v} \text{ etc,}$ $|\mathbf{x}|: \text{norm of the vector } \mathbf{x}, \ e.g. \ |[1;2;3]| = \sqrt{1^2+2^2+3^2} \simeq 3.741,$ $||.||: \text{unified notation for a norm, } ||.||_p: \text{norme } p, \ ||.||_{+\infty}]: \text{infinite norm,}$ $(u_n)_{n\in\mathbb{N}}: \text{the sequence of } u_n \in E, \ i.e. \text{ the function } u: \mathbb{N} \to E, n \mapsto u_n.$

Derivatives and differential calculus

f': derivative of f, e.g. $\ln'(x) = \frac{1}{x}, \forall x > 0$. May be written x (in physics),

f'': second derivative of f (or \ddot{x} in physics)), f''' third derivative, ..., $f^{(n)}$ n^{th} derivative for $n \ge 0$,

 $f^n: n^{\text{th}}$ power of f for $n \ge 0$ (be careful, it is not a derivative $f^{(n)}!$),

 $D_i f$: partial derivative of f for the jth coordinate,

 ∇f : gradient of f (also written $\mathbf{Grad} f$),

Div f: divergence of f.

Integrals

$$\int_a^b f(x) \mathrm{d}x \ : \text{integral of the function} \ f: x \mapsto f(x) \ \text{on} \ (a,b),$$

 $\int f$: integral of the function f on its domain (when it is not ambiguous),

 $\oint f(x) dx : \text{curvilinear integral of } f,$

 $\iint_{(a,b)\times(c,d)} f(x,y) dxdy : \text{double integral of the 2-variables function } f:(a,b)\times(c,d), (x,y)\mapsto f(x,y).$

Usual functions spaces

 $\mathcal{F}(E,F)$: functions from E to F, i.e. F^E ,

C(E, F): continuous functions from E to F,

C(E): continuous functions from E to E,

 $C_b(E,F)$: bounded and continuous functions from E to F,

 $\mathcal{C}^k(E,F): k$ -time differentiable functions, of k^{th} derivatives being continuous, from E to F ($k \in \mathbb{N}$),

 $\mathcal{C}^{\infty}(E,F)$: infinitely differentiable functions, from E to F,

 $\mathcal{L}(E,F)$: linear applications from E to F,

 $\mathcal{L}(E)$: linear applications from E to E.

 $\mathcal{L}_c(E,F)$: continuous and linear applications from E to F,

Want more? A list of mathematical symbols : en.wikipedia.org/wiki/Table_of_mathematical_symbols, on Wikipédia, and some others lists on mathematical notations, on Wikipédia.

⁴If it exists!