POTSDAM INSTITUTE FOR CLIMATE IMPACT RESEARCH UNIVERSITY OF POTSDAM

Introductory phase report

Optimal adjustment of the global trade system to local network disruption

Name: Sebastian Klipp

Matriculation number: 779142

Period: 1.5.15 - 31.9.15

E-Mail: sklipp@uni-potsdam.de

Supervisor: Leonie Wenz

Examiner Prof. Dr. Anders Levermann

Contents

Chapt	er 1 l	Introduction	
1.1	Introd	luction	
1.2	Motivation, connection to real world, extreme events, climate		
	change	e, examples	
Chapt	er 2	Γ heory	
2.1	MRIO	${ m Ts}$	
	2.1.1	Economic background	
	2.1.2	MRIOT in general	
	2.1.3	EORA MRIOT	
2.2	Econo	mic background	
	2.2.1	Begriffe	
	2.2.2	Supply Chains	
2.3	Linear	Optimisation - Simplex method	
	2.3.1	Mathematical derivation	
	2.3.2	Simplex application scheme	
	2.3.3	absolute value target function	
2.4	Graph	theory	
	2.4.1	disruption propagation	
	2.4.2	First, Second, Third order effects / direct indirect	
	2.4.3	Forward, backward effect	
2.5	compl	ex systems, linear responses, phase transition	
2.6	climat	e change and extreme events	
Chapt	er 3	Model setup	
3.1	proble	em specific linear optimisation problem	
	3.1.1	Target function	
	3.1.2	Final demand constraint	
	3.1.3	Supply scaling constraint	

	3.1.4 Production output balance constraint 6
	3.1.5 Linear problem 1 (LP1): Maximal adaptation 6
	3.1.6 Linear problem 2 (LP2): Reduced adaptation 6
	3.1.7 Treatment of EORA to fit my model 6
	3.1.8 Application on testworlds - behaviour knowledge 6
3.2	Analysis of the EORA network 6
3.3	Aggregated network
Chapte	er 4 Results 7
4.1	statistics
	4.1.1 $F(ir)$
	4.1.2 comp_ir(ir)
4.2	comparison LPS/LPG
4.3	absorption potential
4.4	linear response
4.5	phase transition
4.6	case studies incl. forward/backward effects
	4.6.1 Japan machinery drops out
	4.6.2 other forward effect example
	4.6.3 identify supply chains
4.7	??? time evolution ???
Chapte	er 5 Final 8
5.1	discussion
5.2	Ausblick
5.3	Appondix

Introduction

- 1.1 Introduction
- 1.2 Motivation, connection to real world, extreme events, climate change, examples

adsffdadf

Theory

adfdasfa

2.1 MRIOTs

- 2.1.1 Economic background
- 2.1.2 MRIOT in general
- 2.1.3 EORA MRIOT
- 2.2 Economic background
- 2.2.1 Begriffe
- 2.2.2 Supply Chains
- 2.3 Linear Optimisation Simplex method
- 2.3.1 Mathematical derivation
- 2.3.2 Simplex application scheme
- 2.3.3 absolute value target function
- 2.4 Graph theory
- 2.4.1 disruption propagation
- 2.4.2 First, Second, Third order effects / direct indirect
- 2.4.3 Forward, backward effect
- 2.5 complex systems, linear responses, phase transition
- 2.6 climate change and extreme events

Model setup

- 3.1 problem specific linear optimisation problem
- 3.1.1 Target function
- 3.1.2 Final demand constraint
- 3.1.3 Supply scaling constraint
- 3.1.4 Production output balance constraint
- 3.1.5 Linear problem 1 (LP1): Maximal adaptation
- 3.1.6 Linear problem 2 (LP2): Reduced adaptation
- 3.1.7 Treatment of EORA to fit my model
- 3.1.8 Application on testworlds behaviour knowledge
- 3.2 Analysis of the EORA network
- 3.3 Aggregated network

Results

- 4.1 statistics
- 4.1.1 F(ir)
- 4.1.2 comp_ir(ir)
- 4.2 comparison LPS/LPG
- 4.3 absorption potential
- 4.4 linear response
- 4.5 phase transition
- 4.6 case studies incl. forward/backward effects
- 4.6.1 Japan machinery drops out
- 4.6.2 other forward effect example
- 4.6.3 identify supply chains
- 4.7 ??? time evolution ???

Final

- 5.1 discussion
- 5.2 Ausblick
- 5.3 Appendix

Bibliography