U.I	114.00	- me mearest 1000				
	a) 10000	b) 1200	c) 12300	d)	12000	
Q.2	Round "89.749"	to the nearest 1 decim	al place			
	a) 89.7	b) 89.0	c) 80.0	d)	81.0	
Q.3	Round "7569" to	2 significant figures				
	a) 7600	b) 8000	c) 7500	d)	7570	
Q.4	The term to term	rule to get the next t	erm for the given infinite s	equence i	s	
	6, 8 , 10 , 12 , a) Add 2	b) Multiply b		d)	Divide by 2	
Q.5	The term to term	rule to get the next t	erm for the given infinite s	equence i	s representation de la compansion de la	
	3, 7, 11, 15, a) Add 4	 b) Multiply b		d)	Divide by 4	
Q.6	The next term of	f the sequence 9, 15, 2	1, 27 is			
	a) 30	b) 32	c) 33	d)	34	
Q.7	The seventh terr	m of the sequence 9, 1	5, 21, 27 is			
	a) 39	b) 40	c) 45	d)	56	
Q.8	Ali thinks of a nunumber is:	umber "n". He multipli	es the number by 100. The	algebraic	expression for	Ali's
	a) n + 10	b) n + 100	c) 10 n	d)	100 n	
Q.9	Ali thinks of a nu	umber "n". He multipli	es the number by 7 and the	en add 4.	The algebraic	
	expression for A	li's number is:				
	a) n	b) n + 7	c) 7n	d)	7n + 4	
Q.10	The first three to	erms of the sequence v	whose nth term is "2n + 5"			
	a) 5, 6, 7		c) 7, 8, 9		7, 10, 13	
Q.11	The first three to	erms of the sequence v	whose nth term is "3n + 2"			
	a) 3, 4, 5	b) 5, 8, 11	c) 6, 8, 10	d)	4, 7, 10	
Q.12			erm-to-term rule is 'subtra	act 2 then		
	multiply by 3'. \a) 6	What is the first term of b) 10	c) 18	d)	20	
Q.13		of a sequence is 30. Ter What is the first term o	m-to-term rule is 'subtract f the sequence?	2 then		
	a) 4		c) 6	d)	7 s to strod J	

Q.14	divide by 3'. \a) 13	What is the sec	23	()	30	d)	33		
- 45	The formula f	or nth term of	the sequenc	e 10, 100,	1000, 1000	00, is			
Q.15	a) 10 n		10 + n	c)		d)	none of these		
Q.16	The five cans	of soda cost \$	1.50. The cos	st of 1 can	of soda is_	Shindle y			
4.10	a) \$ 0.3		\$ 0.4		\$ 0.5	d)	\$ 0.6		
Q.17	The five cans	of soda cost \$	1.50. The cos	st of 3 cans	of soda is	may man and			
	a) \$ 0.9	b)			\$ 0.99	d)	\$ 0.68		
Q.18	The correct a	lgebraic expres	sion for the	followings	tatement	is:			
	"Divid	de 5x by 9 then	subtract fro	m 4"	, 5x	41	none of these		
						u)	none of these		
Q.19		expression for tract 3 from y t			nt is:				
	a) $\frac{3-y}{2}$		$\frac{5-y}{3}$		$\frac{y-3}{2}$	d)	none of these		
Q.20		expression for			2				
	"Add	3 into x then o	livide by 3"			CA.	(i)		
	a) $\frac{3+y}{2}$		$\frac{3-y}{3}$	c)	3	d)	none of these		
Q. 21	The place val	ue of 4 in "3.4	65" is						
	a) 4	b)	40	c)	0.4	d)	400		
Q.22	In which num	nber does the o	ligit 7 have tl	ne smallest	value?				
	a) 7580	b)	8750	c)	9357	d)	7772		
Q.23	The ascendin	g order of 6.09	9, 6.93, 6.19	, and 6.90	is:				
	a) 6.09, 6.19	9, 6.90, 6.93		b)	6.09, 6.90	, 6.19, 6.93			
	c) 6.90, 6.19	, 6.09, 6.93		d)	none of th	nese			
Q.24	The descend	ing order of 5.1	19, 5.53, 4.5	9, and 4.9	5 is:				
	a) 4.53, 5.19	9, 5.95, 4.59		b)	5.53, 5.19	9, 4.95, 4.59			
	c) 5.53, 5.19	, 4.59, 4.95		d)	none of t	hese			
Q.25	Estimated va	lue to nearest	whole numb	er of the gi	ven fractio	on is	3'. What is the f		
	a) 10	b)	1000	c)	1500	d)	100		
2.26		L bottle of a nays will the me		is told to t	ake 5ml o	f the medicine	three times a d	lay.	
	a) 40	b)	15	c)	20	d)	none of these		
10-	8								(11)
H	RCA®'				2		C	rade VII - `	VIII

CS CamScanner

- What is the next number in the given sequence of 2005, 2010, 2015, 2020, ____? Q.27
- a) 2003 b) 2015 c) 2025
- 2050
- Simplify 15(400 + 350 50) and choose the correct answer. Q.28
 - a) 1050
- b) 1500
- 10500
- d) 10050

- Q.29 0.45 tonnes 450 g
 - a) =
- b) <
- none of these

- Q.30 15 tonnes _ 15000 kg
 - a)

- d) none of these

- Q.31 75 km 750 m
 - a) =
- b) <
- c)
- d) none of these

- Q.32 675 m = km
 - a) 675
- b) 6.75
- c) 0.675
- none of these

Q.33 The value of angle a in the given figure is

- 80°
- b) 58°
- 48° c)
- d) 60°

The value of angle b in the given figure is Q.34

- 80°
- 58° b)
- c) 48°
- d) 60°

Q.35 The value of angle c in the given figure is

- 80° a)
- 58° b)
- c) 48°
- d) 74°

- Q.36 At a football match in the camp stadium there were 6455 members. $\frac{3}{5}$ of the members were supporting Barcelona and the rest were supporting Real Madrid. The numbers of Barcelona supporters are
 - a) 4873
- b) 3873
- c) 4895
- d) 9445
- Q.37 At a football match in the camp stadium there were 6455 members. $\frac{3}{5}$ of the members were supporting Barcelona and the rest were supporting Real Madrid. The number of Real Madrid supporters are
 - a) 1583
- b) 2582
- c) 2852
- d) 8252
- Q.38 At a football match in the camp stadium there were 6455 members. $\frac{3}{5}$ of the members were supporting Barcelona and the rest were supporting Real Madrid. How many more members were supporting Barcelona than Real Madrid.
 - a) 1291
- b) 1582
- c) 1802
- d) 2212
- Q.39 A grocer sells 50 apples and 30 oranges. What percentage of apples he has sold if total fruits are 80?
 - a) 62.5 %
- b) 68 %
- c) 55 %
- d) 70 %

- Q.40 1.5375 + 0.3226 = _____
 - a) 18.016
- b) 1.8601
- c) 806.11
- d) 18601
- Q.41 When 2685 is added to 2313, the digit in the hundreds place of the answer is _____?
 - a) 8
- b) 3
- c) 9

- d) 6
- Q.42 Rehan had 35 marbles, his brother had 15 more marbles than Rehan. What percentage of marbles does Rehan have?
 - a) 37%
- b) 25.5 %
- c) 41.1 %
- d) 18.5 %

Q.43 The value of angle a in the given figure is

- a) 33°
- b) 43°
- c) 53°
- d) 63°

Q.44 The value of angle b in the given figure is

- a) 36°
- b) 46°
- c) 56°
- d) 66°

Q.45 The value of angle q in the given figure is

- a) 40°
- b) 50°
- c) 70°
- d) 60°

Q.46 The value of angle r in the given figure is

- a) 140°
- b) 116°
- c) 107°
- d) 160°

Q.47 The value of angle s in the given figure is

- a) 40°
- b) 104°
- c) 114°
- d) 144°

Q.48 The value of angle t in the given figure is

- a) 76°
- b) 86°
- c) 96°
- d) 106°
- Q.49 500 people watched a movies on Monday and 470 people watched it on Tuesday. How many people watched the movies in two days?
 - a) 570
- b) 470
- c) 770
- d) 970

- Q.50 What is 12 % of 200?
 - a) 24
- b) 12
- c) 36
- d) 28
- Q.51 The cost price of a shirt is \$ 125. What will be its price if it is increased by 5 %?
 - a) 131.25
- b) 132.25
- c) 133.26
- d) 140

Q.52	Which metric unit	would you use to me	asure the length of pencil!	
	a) km	b) I	c) m	d) cm
Q.53	Which metric unit	would you use to me	asure the distance betweer	Lahore and Islamabad?
	a) km	b) mm	c) m	d) cm
Q.54	The value of the ex	epression " $z^3 - 2$ w	/hen z = 3"	
	a) 20	b) 25	c) 15	d) none of these
Q.55	The value of the ex	pression		
	$\frac{Ah}{3}$ when A =	6 and h = 4		
	a) 6	b) 8	c) 10	d) none of these
Q. 56			o make a container. It uses ow much chemical is used t c) 15.50 kg	7.2 kg of chemical A, 5.3 kg of o make a container? d) 10.25 kg
Q.57			number by 0.01 and then n ber does Khan think of first	nultiplies the answer by 0.1.
	a) 400	b) 40	c) 4	d) none of these
Q.58	Maha thinks of a n He then divides th think of first?	umber. He divides his answer by 0.01 and	s number by 0.01 and then a gets a final answer of 2340	multiplies the answer by 0.1. . What number does Khan
	a) 23.4	b) 234	c) 2.34	d) 4.32
Q.59	Mr. Raj has Rs.992	00 in the bank. He wi	thdraws Rs.54500. How mu	ich money is left in the bank?
	a) 49000	b) 44000	c) 43200	d) 44700
Q.60	The 3 rd term of the sequence.	e sequence is 20. The	term to term rule is 'Add 6'	. What is the 2 nd term of the
	a) 10	b) 12	c) 14	d) 16
Q.61	The numbers of sid	des of a quadrilateral	are	
	a) even	b) odd	c) both a & b	d) none of these
Q.62	The 4 th term of the	e sequence is 25. The	term to term rule is 'Subtra	ct 5'. What is the 2 nd term of
	the sequence?			
	a) 5	b) 10	c) 15	d) 20

6

ე.63	The third term of a is the correct one for	sequence is 9. The eighth	term of the sequence	is 19. W	hich of these formula	
	a) Term = n + 9	b) Term = 2 n + 3	SI (a	-01	B (0	
- 64			c) Term = 3 n + 1	d)	none of these	
2.64		days in the month of Fo	ebruary in a leap year.			
	a) 21	b) 28	c) 29	d)	30	
Q.65	Work out (23.8 – 3	.4) ÷ (4 × 0.15)				
	a) 12	b) 14	c) 24	d)	34	
Q.66	Subtract the smalle	est 4-digit number from th	e greatest 4-digit numb	ber?		
	a) 9999	b) 100	c) 8999	d)	9000	
Q.67	72°, 97°, and 11	3° are three angles of a qu	adrilateral. Calculate it	s fourth	angle.	
	a) 68°	b) 78°	c) 88°	d)	98°	
Q.68	1 mile =	km.	auticipalitional syma			
Q.00	a) 1.4	b) 1.6	c) 1.8	d)	2	
				ol anicy		
Q.69	15 mile =	km	21	4)	44	
	a) 14	b) 24	c) 34	d)	A shape with 3 lines of symin	
Q.70	8 km =	miles		Istorati	a) Orde	
	a) 5	b) 6	c) 8	d)	10	
Q. 71	Which is further,	472 km or 300 miles?				
	a) 472 km	b) 300 miles	c) both a and b	d)	none of these	
Q.72	Number of lines o	f symmetry in an isosceles	Trapezium is/are?			
	a) Four	b) Three	c) Two	d)	One	
Q.73		f symmetry can we draw i	n an equilateral triangle	?		
4.75		b) Three	c) Two	d)	One	
0.74	a) Four	d Pyramid is also known as	ted a from the other			
Q.74		b) Tetrahedron	c) Quadrilateral	d)	none of these	
	a) Polygon					
Q.75	Number of vertice	es in a Triangular Prism are	c) 6	d)	7 modernom EST and store &	
	a) 4	b) 5	184 (2	33		
Q.76	Number of faces i	n a cube are	us. Each bus hald, 52 se	d)	10	
	a) 4	b) 6	c) 8	u)	need?	

	a) 8		10	c)	12	d)	14		
Q.78	Number of lines of sy	mmet	try in a kite are	mei	1 12				
	a) 0	b)			2	d)	3		
Q.79	Number of lines of sy	mmet	try in a regular pen		n are				
	a) 3	b)		c)		d)	6		
Q.80	Order of rotational sy	Η,		,		4			
12.55	a) 0	b)		c)	of any ord more to	d)	3		
Q.81		none		Don		001	(0)		
	Order of rotational sy a) 1	b)				41	SAN SHOTELL THE		
Q.82		Day	2	c)	3	d)	4		
Q.02	I have no lines of sym								
0.03	a) Rectangle		Parallelogram		Trapezium	d)	none of these		
Q.83	I have four lines of sy	mmet	try and four order o	of rot	ational symmetry				
	a) Rectangle	b)	Parallelogram		Trapezium	d)	Square		
Q.84	A shape with 3 lines of	of sym	metry and three si	des i	s				
	a) Circle	b)	Parallelogram	c)	Trapezium	d)	Equilateral triar	ngle	
Q.85	'I am 2D shape. I have	four	sides that are all th	ne sa	me lengths. My op	posite	angles are the	same	
	a) Rectangle	nt an		c)	Parallelogram	d)	Rhombus		
Q.86	I have three sides. All size.	my s	ides are of same le	ngth :	2000	THE		e	
	a) Scalene triangle c) Equilateral triang	le			es triangle of these				
Q.87	$\frac{1}{3}$ of $9kg = ?$								
	a) 3 kg	b)	1.5 kg	c)	6 kg	d)	none of these		
Q.88	$\frac{3}{7}$ of 2240 = ?	ы	060	bring	(a nonbun				
	a) 1172	b)	960		360	d)	460		
Q.89	A choir has 129 members a) 43	b)	of the members a	re m	ale, how many ma 46	les ar	e there? 88		
Q.90	A group of 312 studer	nts tra	ivels by bus. Each b	us ho	olds 52 students. H	ow m	any buses do the	ey	
	need?								
	need? a) 6		7	c)	8	d)	none of these		

Q.91	50)	f 140 = ?
Q.		10

b) 100

c) 15

A boy has drawn a ball from a bag containing balls numbered from 1 to 100. It is found to be 19 Q.92 more than the least two digit number. What is the number?

a) 10

b) 19

c) 29

d)

Adil has 84 cents to spend on pencils. Each pencil costs 12 cents. How many pencils can he buy? Q.93

a) 3

b) 4

c) 5

d) 7

Kaelan has 330 seeds to plant into trays. Each tray holds 33 seeds. He plants all the seeds. How 0.94 many trays does Kaelan use?

b) 10 c) 11

Q.95

Q.96

d) 12

b) = c) < d) none of these

d) none of these

Q.97

b) =

olos en no ec) <

d) none of these

 $\frac{7}{9}$ of 288 m Q.98

204

b) 214

c) 224

234

of \$168 Q.99

> a) 120

b) 130

c) 140

150

fraction. Q.100

a) Proper

b) Improper

Q.101 Which one of these cards gives a different answer from the other two?

 $40 \times \frac{3}{5}$

a) B is different from A and C

b) A is different from B and C

c) C is different from A and B

none of these d)

Which one of these cards gives a different answer from the other two? Q.102

$$A 14 \div \frac{2}{7}$$

B
$$20 \div \frac{5}{12}$$

C
$$26 \div \frac{13}{24}$$

B is different from A and C

b) A is different from B and C

C is different from A and B

none of these d)

Q.103 A student scored 80% in a math test that had 25 problems. How many problems in the test did the student answer correctly?

a) 10

b) 15

c) 20

Q.104 What is 33% of 50?

a) 13.5

b) 15.5

c) 14.5

16.5 d)

Q.105 125 toffees were distributed equally among 25 boys. How many toffees did each boy get?

a) 2

b) 3

Q.106 A local charity is collecting gifts for children in need. They have 9 children and 108 presents to share equally. How many gifts will each child receive?

a) 9

b) 10

c) 11

d) 12

Q.107 A group of students collected 264 toy soldiers as presents for the soldiers oversees. One box can hold 8 toy soldiers. How many boxes do they need to ship all the gifts?

b) 31

c) 32

d) 33

Q.108 Choose the correct option to complete given equivalent fractions.

$$\frac{3}{4} = \frac{21}{\Box}$$

a) 15

b) 18

c) 21

d) 28

Q.109 Choose the correct option to complete given equivalent fractions.

$$\frac{5}{7} = \frac{25}{1}$$

b) 32

35

Q.110 Express $\frac{3}{4}$ in percentage.

a) 25 %

b) 50 %

none of these

Q.111 Express $\frac{1}{3}$ as decimal

a) 0.33333 b) 0.131313 c) 0.232323

none of these

.112	$\frac{2}{7}$ is b	higger than $\frac{4}{9}$ becau	se se	venths are big	ger t	han	ninth	ıs.				
				False								
1.113	At an	athletics competition children?	tion,	20 % of the sp	ectat	ors	were	children. W	hat fra	ection of the spectato	ors	
	a) 1	1 5	b)	1/3		c)	$\frac{2}{3}$		d)	2 7		
1.114	At an	athletics competien not children?	tion,	20 % of the sp	ectat	ors	were	children. W	hat fra	ection of the spectato	ors	
	a)	1/3	b)	2 5		c)	4 5		d)	$\frac{3}{4}$		
2.115	In fra	action $\frac{4}{9}$, 4 parts w	ill be	coloured out	of 9.							
	a)	True	b)	False								
Q.116	Iam	thinking of a fra	ctior	. My fraction	is bi	gge	r tha	$n\frac{5}{8}$ but sma	ller th	$\frac{3}{4}$. When I divide	e	
		numerator by the										
	a)	1/16	b)	3 16		c)	11 16		d)	15 16		
Q.117	$\frac{2}{3}$ of	21 kg =	10									
	a)	7 kg	b)	14 kg		c)	21 k	g nemiA bas	d)	28 kg		
Q.118	10 n	nm = cm								nics as shown below:		
	a)	10	b)	100		c)	0.01		d)	Ars. Ars. Ars. attention the feast number		
Q.119	The	product of (0.3×0.	6) × 1	100 is								
	a)	1.8	b)	18		c)	180		d)	0.18		
Q.120	Wh	ich one of the follo	wing	shows the pro	duct				1000	angle will be		
		13 × 8	b)	17 × 9			11 :		d)	19 × 9		
Q.121	Wh	ich one of the follo	wing	does not show	v the	pro	duct?		walt			
		12 ÷ 4	b)			c)	3 ×	4	d)	2 × 4		
Q.122	The	first three multipl	es of	13 is	these	?			25 191	and the second labor		
	-1	15 20 2F	b)	13, 26, 39		c)		29, 39	d)	13, 17, 27		
Q.123	ln:	a cricket match. A	hma	d scored $\frac{3}{10}$ o	f the	run	s for	his team. V	What p	percentage of the		
		ns did Ahmad get		. 5								
	a)	20 %	b)	25 %		c)	30	%	d)	none of these		

CS CamScanner

Q.124 Jamil has these fraction cards. Which fraction card is different?

2)	24
aj	36

b)
$$\frac{18}{27}$$

c)
$$\frac{10}{16}$$

d)
$$\frac{14}{21}$$

Q.125 The fraction $\frac{124}{232}$

in simplest form is: b) $\frac{32}{}$

c) $\frac{27}{53}$

d) $\frac{17}{59}$

Q.126 Express 36.36 % as decimal.

- a) 0.3636
- b) 36.36
- c) 3.636
- d) none of these

Q.127 In the cricket match, $\frac{1}{5}$ of the spectators was supporting Red team. What fraction of the spectators was not supporting Red team?

- a) $\frac{1}{4}$
- b) $\frac{2}{5}$
- c) $\frac{4}{5}$
- d) =

Q.128 Four students Risba, Arsia, Yashfa and Aimen wrote a five digit decimal number in their notebooks as shown below:

Risba [4.9857]

Arsia [56.489]

Yashfa [894.531]

Aimen [0.0723]

Who wrote the least number?

- a) Aimen
- b) Arsia
- c) Yashfa
- d) Risha

Q.129 Maha measures three of the angles of a quadrilateral like 120°,130°, 95°. Then the fourth angle will be

- a) 15⁰
- b) 30⁰
- c) 63⁰
- d) 53⁰

Q.130 Can we draw a Quadrilateral with two reflex angles?

- a) No
- b) Yes

Q.131 If two lines intersect each other at the angle of 90° then these lines are called _____

a) Parallel lines

b) Perpendicular lines

c) Transversal lines

d) none of these

Q.132 A line that crosses a pair of parallel lines is called a

a) Bisector

b) Perpendicular

c) Transversal

d) none of these

Angles between two parallel lines, intersected by transversa	l line are supplementary
angles therefore they add up to	

a) 180°

0.133

- b) 230°
- c) 360°
- 250° d)

0.134 Vertically opposite angles are equal to each other.

- a) True
- False

Q.135 Alternate angles are not equal to each other.

- a) True
- b) False

Q.136 The size of the angle ADC is

- a) 135⁰
- b) 45⁰
- $200^{\,0}$ d) $140^{\,0}$

Q.137 The size of the reflex angle ADC is _

- a) 235⁰
- b) 245⁰
- c) 225 ⁰
- d) 240°

Q.138 Reflex angles are more than 180 and less than 360 degrees.

- a) True
- b) False

Q.139 Obtuse angles are more than 90 and less than 180 degrees.

- a) True
- b) False

Q.140 The size of the angle "c" is _

a) 83⁰

43⁰

c) 23⁰

70°

Q.141 The size of the angle "c" is _

- a) 41⁰
- c) 51⁰

- b) 61⁰
- d) 77°

Q.142 Calculate the third angle of a triangle if other two angles are 53 degree and 44 degrees.

a) 83⁰

- b) 30°
- c) 86°
- d) 50°
- Q.143 Many angles are created when two parallel lines are crossed by a third line.

 The lines PQ and RS are parallel and intersected by a transversal line.

 Check the following facts. Is it true or false?

Angle a and c are vertically opposite angles, therefore they are equal to each other.

- a) True
- b) False
- Q.144 $\angle a + \angle b = 180^{\circ}$
 - a) True
- b) False
- Q.145 Angle d and h are corresponding angles, therefore they are equal to each other.
 - a) True
- b) False
- Q.146 Calculate the size of the angle marked with letter a in the given diagram.

- a) 97⁰
- b) 107⁰
- c) 180 °
- d) 150⁰
- Q.147 AB, AC and AD are of the same length. Calculate the size of the angle ABC
 - a) 64°

b) 67⁰

c) 80°

- d) 50⁰
- Q.148 AB, AC and AD are of the same length. Calculate the size of the angle ADC

b) 47⁰

c) 80°

d) 57⁰

14

q.149	AB, AC and AD of	the same length. Calculate the size of the angle BC
0.143		angle Bo

- 125°
- 180 °

- 127⁰
- 150°

Q.150 Angle ABC and ACB are equal to each other because triangle ABC is an isosceles triangle.

a) True

- 0.151 Find the missing angle of Quadrilateral

 - 60 °

0.152 Calculate the value of m.

a) 63°

c) 73 °

Q.153 The sum of angles on a straight line is ____

- a) 180° b) 230° c) 360°

Q.154 The sum of all angles of a quadrilateral is

- a) 180°
- b) 230° c) 360°

Q.155 Angles are said to be complementary if their sum is 90 degrees.

- a) True
- b) False

Q.156 The line that intersects a pair of parallel lines is known as transversal

- a) True
- b) False

Q.157 One whole turn is ____

- a) 180⁰
- b) 230⁰
- 360° c)

Q.158 An acute angle is less than_

- a) 80°
- b) 30°
- 90 °
- 50°

