알기 쉬운 정보보호개론 ③

흥미로운 암호 기술의 세계

INFORMATION SECURITY and CRYPTOGRAPHY

INFORMATION SECURITY and **CRYPTOGRAPHY**

CHAPTER 4 대칭 암호

Section 01 문자 암호에서 비트열 암호로

Section 02 일회용 패드-절대 해독 불가능한 암호

Section 03 DES

Section 04 트리플 DES

Section 05 AES 선정 과정

Section 06 Rijndael

Section 01 문자 암호에서 비트열 암호로

- 1.1 부호화
- **1.2 XOR**

1.1 부호화

- 암호화에 컴퓨터 사용이 필수
- 암호화 프로그램도 평문을 비트열로 변경 하고 비트열로 된 암호문을 출력
- 부호화(encoding)
 - 문자열을 비트열로 바꾸는 것

ASCII

• 문자열 midnight 을 다음과 같은 비트열로 부호화

```
m \rightarrow 01101101

i \rightarrow 01101001

d \rightarrow 01100100

n \rightarrow 01101110

i \rightarrow 01101001

g \rightarrow 01101000

t \rightarrow 01110100
```

Quiz 1 문자를 수로 대응시키는 것과 시저 암호

시저 암호에서 사용되는 알파벳은 A부터 Z까지 26문자이다. 지금 여기에서 A를 0, B를 1, ...Z를 25라는 숫자에 대응시킨다. 이와 같이 문자를 수로 대응시킬 때 시저 암호에서 『3문자 앞으로 평행 이동』이라는 암호화는 어떻게 계산하는 것인가?

1.2 XOR

- XOR은'익스클루시브 오아(exclusive or)', 또는 짧게 '엑스오아'라고 읽는다.
- 우리 말로는 배타적 논리합

```
0 XOR 0 = 0 (0과 0의 XOR은 0이 된다)
```

0 XOR 1 = 1 (0과 1의 XOR은 1이 된다)

1 XOR 0 = 1 (1과 0의 XOR은 1이 된다)

1 XOR 1 = 0 (1과 1의 XOR은 0이 된다)

한 비트의 XOR

• XOR은 ⊕이라는 기호를 써서 표현

a ⊕ b	설명
0 + 0 = 0	0과 0의 XOR은 0이 된다
0 \oplus 1 = 1	0과 1의 XOR은 1이 된다
1 \oplus 0 = 1	1과 0의 XOR은 1이 된다
1 + 1 = 0	1과 1의 XOR은 0이 된다

• 같은 숫자끼리의 XOR은 반드시 0이 된다

$$0 \oplus 0 = 0$$

$$1 \oplus 1 = 0$$

비트열 XOR

0 1 0 0 1 1 0 0 ... A

⊕ 10101010...B

1 1 1 0 0 1 1 0 ... A ⊕ B

비트열 XOR

```
1 1 1 0 0 1 1 0 ... A ⊕ B
```

암호화/복호화의 순서와 매우 비슷

- 평문 A를 키 B로 암호화하고, 암호문 A ⊕ B를 얻는다.
- 암호문 A ⊕ B를, 키 B로 복호화해서 평문 A를 얻는다.

XOR은 그림을 마스크한다

Section 02 일회용 패드 - 절대 해독 불가능한 암호

- 2.1 일회용 패드란?
- 2.2 일회용 패드의 암호화
- 2.3 일회용 패드의 복호화
- 2.4 일회용 패드는 해독할 수 없다
- 2.5 일회용 패드는 왜 사용되지 않은 것일까?

2.1 일회용 패드란?

- 1회용 패드(one-time pad)
 - 전사공격에서 키공간을 모두 탐색하더라도해독할 수 없는 암호

2.2 일회용 패드의 암호화

• 평문과 랜덤한 비트열과의 XOR만을 취하 는 단순한 암호

일회용 패드 암호화 예

- 평문: midnight
 - ASCII로 부호화

문자	m	m i d n i g h t										
ASCII 코드	01101101 01101001 01100100 01101110 01101001 01100111 01101000 01110											
단어	m i d n i g h t											

• 키: 랜덤 비트열

키 01101011 11111010 01001000 11011000 01100101 11010101 10101111 0001110		키	01101011	11111010	01001000	11011000	01100101	11010101	10101111	00011100
--	--	---	----------	----------	----------	----------	----------	----------	----------	----------

일회용 패드 암호화 예

	01101101	01101001	01100100	01101110	01101001	01100111	01101000	01110100	midnight
\oplus	01101011	11111010	01001000	11011000	01100101	11010101	10101111	00011100	키
	00000110	10010011	00101100	10110110	00001100	10110010	11000111	01101000	암호문

2.3 일회용 패드의 복호화

• 암호문과 키의 XOR을 계산하면 평문

	00000110	10010011	00101100	10110110	00001100	10110010	11000111	01101000	암호문
0	01101011	11111010	01001000	11011000	01100101	11010101	10101111	00011100	7
	01101101	01101001	01100100	01101110	01101001	01100111	01101000	01110100	midnight

2.4 일회용 패드는 해독할 수 없다

- 현실적인 시간 내에 해독이 곤란하다는 의 미는 아니다.
- 키 공간 전체를 순식간에 계산할 수 있는 무한대의 계산력을 갖는 컴퓨터로도 일회 용 패드는 해독할 수 없다.
- 문자열이 복호화 되었다 하더라도, 그것이
 바른 평문인지 아닌지 판정할 수 없다

전사 공격

- 암호문을 복호화 해보면 도중에 모든 64비트 패턴이 등장한다
- 그 중에 나타날 수 있는 문자열 들
 - 규칙적인 문자열
 - aaaaaaaa, abcdefgh, zzzzzzzz 등
 - 의미 있는 영어 단어
 - midnight, onenight, mistress 등
 - 무의미한 문자열
 - %Ta_AjvX, HY(&JY!z, \$@~*₩^^), Er#f6)(%
- 따라서 어느 것이 바른 평문인지 알 수 없다
 - 즉 어떤 키를 사용하면 바르게 복호화 할 수 있는지 알 수 없다

전사 공격

- 일회용 패드에서는 키들을 적용하여 얻어 진 것이 바른 평문인지 아닌지를 판정하는 것이 불가능하다
- 그러므로 일회용 패드를 해독할 수 없다

2.5 일회용 패드는 왜 사용되지 않은 것일까?

- 키 배송
 - 키의 길이가 통신문의 길이와 같다
 - 기를 안전하게 보낼 수 있는 방법이 있다면 평문그 자체를 같은 방법으로 안전하게 보낼 수 있다
- 키 보존
 - 평문과 같은 비트 길이의 키를 안전하게 보존할수 있다면 평문 그 자체를 안전하게 보존해 둘수 있다

2.5 일회용 패드는 왜 사용되지 않은 것일까?

- 키 재이용
 - 과거에 사용한 랜덤한 비트열을 절대로 재이용해 서는 안 된다
- 키 동기화
 - 통신하는 동안 송신자와 수신자 사이에 키가 되는 비트열이 1 비트라도 어긋나서는 안 된다
- 키 생성
 - 난수를 대량으로 생성할 필요가 있다
 - 난수는 의사 난수가 아니라 실제 난수이어야 한다

Quiz 2 일회용 패드와 압축

일회용 패드의 이야기를 들은 앨리스는 다음 과 같이 생각했다.

일회용 패드에서는 키의 길이가 평문의 길이와 같다고 하는데, 나는 데이터를 압축하는 프로그램을 가지고 있다. 이것을 사용하면 일회용 패드의 키를 압축해서 짧게 할 수 있지 않을까?

앨리스의 생각은 옳은가?

Section 03 **DES**

- DES(Data Encryption Standard)는 1977년에
 미국의 연방 정보처리 표준 규격(FIPS)으로 채택된 대칭 암호
- 전사공격으로 해독할 수 있는 수준

DES 콘테스트(DES Challenge)

- RSA사가 주관한 DES 키 찾아내기 콘테스트
- 1997년의 DES Challenge I
 - 96일
- 1998년의 DES Challenge II-1
 - 41일
- 1998년의 DES Challenge II-2
 - 56시간
- 1999년의 DES Challenge Ⅲ
 - 22시간 15분

3.1 암호화/복호화

- DES(Data Encryption Standard): 64비트 평문을 64비트 암호문으로 암호화하는 대 칭 암호 알고리즘
- 키의 비트 길이는 56비트 : 실제로 64비트 이지만 7비트마다 오류 검출 정보 1비트 추가됨
- 64비트 평문(비트열)을 하나의 단위로 모 아서 암호화(블럭암호)

블록 암호

- 블록 암호(block cipher)
 - 블록 단위로 처리를 하는 암호 알고리즘
 - 긴 비트 길이의 평문을 암호화하기 위해서는 평문을 64비트 블록으로 나누고 각각을 DES 로 반복하여 암호화함
 - 반복하여 암호화 하는 것을 mode라 함

DES의 암호화 · 복호화

DES 구조

- 페이스텔 네트워크(Feistel network)
 - 페이스텔 구조(Feistel structure)
 - 페이스텔 암호(Feistel cipher)
 - DES 외의 다른 블록암호도 채용
 - 여러 개의 라운드(round)로 구성
 - DES는 16라운드로 구성

페이스텔 네트워크

- 용어
 - 평문의 왼쪽 반 L, 오른쪽 반 R
 - 서브키(Subkey): 해당 라운드에서 부분적으로 사용하는 키
 - 라운드(round) 함수 F: R과 서브키를 가지고 L을 암호화 하기 위한 비트열을 생성하는 함수

페이스텔 네트워크의 1 라운드

- 1. 입력을 L과 R로 나눈다
- 2. R을 그대로 R로 보낸다
- 3. R을 라운드 함수 F로 보낸다
- 4. 라운드 함수 F는 R과 서브 키 K_1 을 입력으로 사용하여 랜덤하게 보이는 비트열을 계산한다
- 5. 얻어진 비트열과 L을 XOR 한다
- 6. 그 결과를 다음 라운드의 L로 사용한다

페이스텔 네트워크 1 라운드

페이스텔 네트워크의 1 라운드

페이스텔 네트워크의 1 라운드

- 1라운드 후 R은 전혀 암호화 되지 않음
- 다음 라운드에서 L과 R을 교환하여 입력
- 서브키는 새로운 서브키를 사용

페이스텔 네트워크 3 라운드

그림 4-4 ■ 페이스텔 네트워크의 암호화(3라운드)

페이스텔 네트워크 2회 통과

페이스텔 네트워크 복호화 (3라운드)

그림 4-6 • 페이스텔 네트워크의 복호화(3라운드)

페이스텔 네트워크의 특징

- 원하는 만큼 라운드수를 늘릴 수 있다
 - 아무리 라운드를 늘려도 복호화할 수 없게 될 염 려가 없음
- 라운드 함수 F에 어떤 함수를 사용해도 복호 화가 가능하다
 - 어떤 함수를 사용하더라도 복호화할 수 없게 될 염려가 없음
- 암호화와 복호화를 완전히 동일한 구조로 실 현할 수 있다

3.2 차분 해독법과 선형 해독법

- 차분 해독법 (Differential Cryptanalysis)
 - 블록암호 해독법
 - Biham과 Shamir가 개발
 - 평문의 일부를 변경할 때 암호문이 어떻게 변화하는지 관 찰하여 조사하는 암호 해독법
 - 입력하는 평문의 한 비트라도 달라지면 암호문이 달라지는
 는데 암호문의 변화의 틀을 조사해서 해독하는 방법
- 선형 해독법 (Linear cryptanalysis)
 - 마츠이(Matsui)가 개발
 - 평문과 암호문 비트를 몇 개 정도 XOR 해서 0이 되는 확률을 조사하는 암호 해독법

차분/선형 해독법 전제 조건

- 가정 : 암호 해독자가 임의로 만든 평문을 암호화 할 수 있어야 한다
- 공격자는 **선택평문공격**(CPA: Chosen Plaintext Attack)을 할수있다

AES(Adnvanced Encryption Standard) 와 차분/선형 해독법

• AES(Advanced Encryption Standard)는 차 분 해독법이나 선형 해독법으로 부터 안전하다

Section 04 트리플 DES

- 4.1 트리플 DES란?
- 4.2 트리플 DES 암호화
- 4.3 트리플 DES 복호화
- 4.4 트리플 DES의 현황

4.1 트리플 DES란?

- 트리플 **DES**(triple-DES)
- DES는 전사공격으로 현실적인 시간 내에 해독 가 능
- DES를 대신할 블록 암호가 필요
- 이를 위해 개발된 것이 트리플 DES : TDES, 3DES
- DES보다 강력하도록 DES를 3단 겹치게 한 암호 알고리즘
- 트리플 DES의 키 : 56비트x3=168비트

4.2 트리플 DES 암호화

트리플 DES는 DES로도 사용

트리플 DES 종류

- DES
 - 모든 키에 같은 비트열을 사용
- DES-EDE2
 - 키1과 키3에 같은 키를 사용하고 키2에 다른 키를 사용
 - EDE는 암호화(Encryption)→복호화(Decryption)→ 암호화(Encryption) 순서
- DES-EDE3
 - 키1, 키2, 키3을 모두 다른 비트열을 사용

DES-EDE2

4.3 트리플 DES 복호화

- 암호화의 역순
- 키3, 키2, 키1의 순으로 복호화→암호화→ 복호화를 행한다

트리플 DES(DES-EDE3)의 복호화

4.4 트리플 DES 현황

- 현재도 은행 등에서 아직 사용
- 처리 속도는 빠르지 않고 안전성 면에서도 풀려버린 사례가 있음
- 우리나라에서는 3-DES를 표준으로 정하지 않음
- 우리나라 국가표준은 SEED(TTA 개발) 및 ARIA(학연관 공동개발)

Section 05 AES 선정 과정

- 5.1 AES란?
- 5.2 AES 선정 과정
- 5.3 AES 최종 후보 및 선정

5.1 AES란?

- AES(Advanced Encryption Standard)
 - DES를 대신한 새로운 표준 대칭 암호 알고리즘
 - AES의 후보로서 다수의 대칭 암호 알고리즘을 제안했지만, 그 중에서 **Rijndael**이라는 대칭 암호 알고리즘이 2000년에 AES로서 선정

5.2 AES 선정 과정(I)

- NIST(National Institute of Standard and Technology)에서 공모
- 경쟁방식에 의한 표준화(standardization by competition)
- 조건
 - _ 제한 없이 무료로 이용
 - ANSI C와 Java에 의한 구현
 - 암호해독에 대한 강도의 평가
 - 암호 알고리즘 설계 규격과 프로그램 공개

5.2 AES 선정 과정(II)

- 선정 시 고려 조건
 - 약점의 유무
 - 속도가 빠를 것
 - 단순하고 구현하기 쉬울 것
 - 키의 설정 속도
 - 계산 능력이 낮은 플랫폼에서 고 성능의 플랫폼까지 모두 효율적으로 동작할 것

5.3 AES 최종 후보 및 선정

- 1차 심사 통과: 15개
 - CAST256, Crypton, DEAL, DFC, E2, Frog, HPC, LOKI97, Magenta,
 MARS, RC6, Rijndael, SAFER+, Serpent, Twofish
- 2차 심사 통과: 5개

명칭	응모자
MARS	IBM
RC6	RSA
Rijndael	Daemen, Rijmen
Serpent	Anderson, Biham, Knudsen
Twofish	Counterpane사

• 최종 선정 : Rijndael(Joan Daemen, Vincent Rijmen)

Section 06 RIJNDAEL

- 6.1 Rijndael이란?
- 6.2 Rijndael의 암호화와 복호화
- 6.3 Rijndael의 해독
- 6.4 어떤 암호를 사용하면 좋은가?

6.1 Rijndael이란?

- 벨기에 연구자 Joan Daemen과 Vincent Rijmen이 설계한 블록 암호 알고리즘
- 블록 길이
 - 128비트
- 키의 비트 길이
 - 128비트 ~ 256비트
 - 32비트 단위로 선택
 - 실재로 128, 192, 256비트

6.2 Rijndael의 암호화와 복호화(I)

- 복수의 **라운드(round)**로 구성(10~14)
- SPN(Substitution-Permutation Network) 구조
- SubBytes(바이트 대체)
- ShiftRows(행 이동)
- MixColumns(열 섞기)
- AddRoundKey(라운드 키와 XOR)

6.2 Rijndael의 암호화와 복호화(II)

- AES 규격 : 입력 블록 128비트, 키 길이 128, 192, 256 비트
- SubBytes (바이트 대체)
 - 16바이트 입력에 대하여 각각 1바이트씩 처리
 - 1바이트 값을 인덱스하고 256개의 치환표로 부터 1개의 값을 얻음
 - 256 문자판과 단일치환암호와 동일

6.2 Rijndael의 암호화와 복호화(II)

- ShiftRow (행 이동)
- MixColumns(열 섞기)
 - 4바이트의 값을 비트 연산을 써서 다른 4바이 트 값으로 변환
- AddRoundKey(라운드키와 XOR)

SubByte(바이트 대체)

그림 4-11 • SubBytes(바이트 대체)

ShiftRows(행 이동)

MixColumns(열 섞기)

AddRoundKey(라운드 키와

XOR)

그림 4-14 • AddRoundKey(라운드 키와 XOR)

Rijndael의 복호화

- AddRoundKey->InvMixColumns->InvShiftRow
 ->InvSubBytes
- AddRoundKey에서 XOR 연산을 하므로 암호화 와 복호화는 동일한 처리를 함

InvMixColumns(역 열 섞기)

InvShiftRows(역 행 이동)

InvSubBytes(역 바이트 대체)

그림 4-17 • InvSubBytes(역 바이트 대체)

6.3 Rijndael 해독

- Rijndael 알고리즘의 수학적 구조
 - Rijndael의 수식을 수학적인 조작에 의해 풀수 있다면, Rijndael을 수학적으로 해독할 수 있을 것이다
- Rijndael에 대한 유효한 공격은 현재로서 는 발견되지 않았다.

6.4 어떤 암호를 사용하면 좋은가?

DES

- 사용하지 말것
- 과거 소프트웨어와의 호환성 유지를 위해 필요

• 트리플 DES

- 호환성 때문에 앞으로도 당분간 사용
- 점차 AES로 대체

• SEED 및 ARIA

- 우리나라 표준

AES(Rijndael)

- 고속
- 다양한 플랫폼
- 현재 까지 안전
- 사용 권장
- AES 최종 후보 5개도 사용가능

Quiz 3 대칭암호에서 키의 비트 길이는 얼마만큼 필요한가?

지금 당신이 이용할 수 있는 컴퓨터 파워를 다음과 같이 가정한다.

- 컴퓨터 1대는 1초간에 10²⁰개의 키를 시험할 수 있다.
- 컴퓨터는 10¹⁰⁰대 존재한다.
- 전체 컴퓨터는 10²⁰년을 움직인다.

이 정도의 컴퓨터 파워를 사용해도 키 공간에 속하는 키 전부를 전사 공격으로 조사할 수 없도록 하기위해서는 키의 비트 길이는 몇 비트면 되는가?

Quiz 4 대칭 암호의 기초 지식

다음 문장 중 바른 것에는 ○, 틀린 것에는 X를 표시하시오.

- (1) 대칭 암호에서는 암호화 키와 복호화 키는 같다.
- (2) 장래에 컴퓨터의 계산력이 충분히 높아지면 일회용 패드의 암호문을 현실적인 시간 내에 해독할 수 있게 된다.
- (3) 키의 길이가 56비트일 때 전사 공격으로 바른 키가 발견되기 까지 평균 시행 회수는 약 2²⁸회 이다.
- (4) AES는 강한 대칭 암호 알고리즘이지만, 상용으로 이용하기 위해서는 NIST에 대해 특허료를 지불하여야 한다.
- (5) 현재 DES는 현실적인 시간 내에 해독할 수 있다.
- (6) AES로 선정된 암호 알고리즘은 Rijndael이다.