

SYNTAX ANALYSIS

- Syntax analysis or parsing is the second phase of a compiler.
- A lexical analyzer can identify tokens with the help of regular expressions and pattern rules.
- A lexical analyzer cannot check the syntax of a given sentence due to the limitations of the regular expressions.
- Regular expressions cannot check balancing tokens, such as parenthesis.
- Syntax analysis phase uses **Context-Free Grammar (CFG)**, which is recognized by push-down automata.

MODEL OF A COMPILER FRONT END LEXICAL SYNTAX PARSE TREE SOURCE TOKENS INTERMEDIATE THREE ADDRESS CODE PROGRAM **ANALYZER** CODE GENERATOR **ANALYZER** SYMBOL TABLE Divys-Compiler Design PPT

- A context-free grammar (grammar for short) consists of terminals, non-terminals, a start symbol and productions.
 - **Terminals** are the basic symbols from which strings are formed.
 - **☆** The term "token name" is a synonym for "terminal.

- A context-free grammar (grammar for short) consists of terminals, non-terminals, a start symbol and productions.
 - **Non-terminals** are syntactic variables that denote sets of strings. ❖
 - Non-terminals define sets of strings that help define the language generated by the grammar.
 - ♣ They also impose a hierarchical structure on the language that is useful for both syntax analysis and translation.

- In a grammar, one nonterminal is distinguished as the **start symbol**, and the set of strings it denotes is the language generated by the grammar.
- Conventionally, the productions for the start symbol are listed first.

- The **productions** of a grammar specify the manner in which the terminals and non-terminals can be combined to form strings. Each production consists of
 - A set of **production rules** which are the rules for replacing nonterminal symbols.
 - Production rules have the following form: variable→ string of variables and terminals.

The grammar with the following productions defines simple arithmetic expression

```
expr \rightarrow expr + term

expr \rightarrow expr - term

expr \rightarrow term

term \rightarrow term * factor

term \rightarrow term/factor

term \rightarrow factor

factor \rightarrow (expr)

factor \rightarrow id
```

In this grammar, the **terminal symbols** are : id + - * / () The **nonterminal symbols** are : expr, term, factor **Start symbol** : expr

Notational Conventions

- **†** These symbols are terminals:
 - a. Lowercase letters early in the alphabet, such as a, b, c.
 - b. Operator symbols such as +, *, and so on.
 - c. Punctuation symbols such as parentheses, comma, and so on.
 - **d.** The digits 0, 1, . . . , 9.
 - e. Boldface strings such as id or if, each of which represents a single terminal symbol.

Notational Conventions

- These symbols are non-terminals
 - a. Uppercase letters early in the alphabet, such as A, B, C.
 - b. The letter S, which, when it appears, is usually the start symbol.
 - c. Lowercase, italic names such as expr or stmt.
 - **d.** When discussing programming constructs, uppercase letters may be used to represent non-terminals for the constructs. For example, non-terminals for expressions, terms, and factors are often represented by E, T, and F, respectively.

Notational Conventions

- ♣ Uppercase letters, such as X, Y, Z, represent grammar symbols; that is, either non-terminals or terminals.
- Lowercase letters late in the alphabet, chiefly u, v, ..., z, represent (possibly empty) strings of terminals.
- Lowercase Greek letters α , β , γ for example, represent (possibly empty) strings of grammar symbols.

Notational Conventions

- A set of productions $A \to \alpha 1$, $A \to \alpha 2$, ..., $A \to \alpha k$ with a common head A (call them A-productions), may be written $A \to \alpha 1 |\alpha 2|$ $|\alpha k|$
- α 1, α 2,..., α k are called the alternatives for A.
- ♣ Unless stated otherwise, the head of the first production is the start symbol.

Notational Conventions

Using these conventions, the grammar for arithmetic expression can be rewritten as

$$E \rightarrow E + T \mid E - T \mid T$$

$$T \rightarrow T * F \mid T / F \mid F$$

$$F \rightarrow (E) \mid id$$

DERIVATION

- The construction of a parse tree can be made precise by taking a derivational view, in which productions are treated as rewriting rules.
- Beginning with the start symbol, each rewriting step replaces a nonterminal by the body of one of its productions.

DERIVATION

E.g. consider the following grammar, with a single non-terminal E

$$E \rightarrow E + E \mid E * E \mid - E \mid (E) \mid id$$

The production $E \rightarrow -E$ signifies that if E denotes an expression, then -E must also denote an expression.

The replacement of a single E by – E will be described by writing E => -E which is read, "E derives - E."

DERIVATION

- The production E -+ (E) can be applied to replace any instance of E in any string of grammar symbols by (E).
- e.g., $E * E \Rightarrow (E) * E \text{ or } E * E \Rightarrow E * (E)$
- We can take a single E and repeatedly apply productions in any order to get a sequence of replacements.

e.g.,
$$E \Rightarrow -E \Rightarrow -(E) \Rightarrow -(id)$$

- \bullet We call such a sequence of replacements a derivation of (id) from E.
- This derivation provides a proof that the string (id) is one particular instance of an expression.

Leftmost Derivation

A leftmost derivation is obtained by applying production to the leftmost variable in each step.

$$s \rightarrow AB$$
 $A \rightarrow aaA \mid \epsilon$
 $B \rightarrow Bb \mid \epsilon$

Leftmost Derivation

$$s \Rightarrow AB$$
 $\Rightarrow aaAB$
 $\Rightarrow aaB$
 $\Rightarrow aaBb$
 $\Rightarrow aab$

Rightmost Derivation

A leftmost derivation is obtained by applying production to the rightmost variable in each step.

$$egin{aligned} oldsymbol{s} &
ightarrow oldsymbol{AB} \ oldsymbol{A} &
ightarrow oldsymbol{aaA} & egin{aligned} arepsilon \ oldsymbol{B} &
ightarrow oldsymbol{Bb} & eta \end{aligned}$$

Rightmost Derivation

$$egin{aligned} s &\Rightarrow AB \ &\Rightarrow ABb \ &\Rightarrow Ab \ &\Rightarrow aaAb \ &\Rightarrow aab \end{aligned}$$

LEFTMOST & RIGHTMOST DERIVATION

Let any set of production rules in a CFG be

$$X \rightarrow X+X \mid X*X \mid X \mid a$$

over an alphabet {a}

The leftmost derivation for the string "a+a*a" may be

$$X \Rightarrow X + X \Rightarrow a + X \Rightarrow a + X^*X \Rightarrow a + a^*X \Rightarrow a + a^*a$$

The rightmost derivation for the string may be

$$X \Rightarrow X^*X \Rightarrow X^*a \Rightarrow X+X^*a \Rightarrow X+a^*a \Rightarrow a+a^*a$$

LEFTMOST DERIVATION

Step-wise derivation of the string is

Step 1

X

+

X

LEFTMOST DERIVATION

PARSE TREES

- Parse tree is a hierarchical structure which represents the derivation of the grammar to yield input strings.
- Simply it is the graphical representation of derivations.
- Root node of parse tree has the start symbol of the given grammar from where the derivation proceeds.
- Leaves of parse tree are labeled by non-terminals or terminals.
- **\Delta** Each interior node is labeled by some non terminals.

PARSE TREES

If $A \rightarrow xyz$ is a production, then the parse tree will have A as interior node whose children are x, y and z from its left to right.

PARSE TREES

YIELD OF A PARSE TREE

- The leaves of the parse tree are labeled by non-terminals or terminals and read from left to right, they constitute a sentential form, called the yield or frontier of the tree.
- The string **id** + **id** * **id**, is the yield of the parse tree.

AMBIGUITY

- An ambiguous grammar is one that produces more than one leftmost or more than one rightmost derivation for the same sentence.
- For most parsers, it is desirable that the grammar be made unambiguous, for if it is not, we cannot uniquely determine which parse tree to select for a sentence.
- In other cases, it is convenient to use carefully chosen ambiguous grammars, together with disambiguating rules that "throw away" undesirable parse trees, leaving only one tree for each sentence.

AMBIGUITY

★ Consider the input string id+id*id

 $E\Rightarrow E+E$

⇒id+E

 \Rightarrow id+E*E

⇒id+id*E

⇒id+id*id

AMBIGUITY

★ Consider the input string id+id*id

 $E\Rightarrow E^*E$

$$\Rightarrow E+E*E$$

- Grammars are describing most, but not all, of the syntax of the programming languages.
- E.g. Identifiers need to be declared before they are used cannot be described by a context-free grammar.
- The sequences of tokens accepted by a parser form a superset of the programming language.
- Subsequent phases of the compiler must analyze the output of the parser to ensure compliance with rules that are not checked by the parser.

Lexical Versus Syntactic Analysis

- ♣ Everything that can be described by regular expression can also be described by a grammar.
- Then, why regular expression is used to describe the lexical syntax of a language?

Lexical Versus Syntactic Analysis

- 1. Separating the syntactic structure of a language into lexical and non-lexical parts provide a convenient way of modularizing the front end of a compiler into two manageable-sized components.
- 2. The lexical rules of a language are frequently quite simple, and to describe them we do not need a notation as powerful as grammars.

Lexical Versus Syntactic Analysis

- 3. Regular expressions generally provide a more concise and easier-to-understand notation for tokens than grammars.
- 4. More difficult lexical analyzers can be constructed automatically from regular expressions than arbitrary grammars.

Lexical Versus Syntactic Analysis

- Regular expressions are most useful for describing the structure of constructs such as identifiers, constants, keywords and white space.
- ✿ Grammars are most useful for describing nested structures such as balanced parentheses, matching beginend's, corresponding if-then-else's and so on. These cannot be described by regular expressions.

Eliminating Ambiguity

- Sometimes an ambiguous grammar can be rewritten to eliminate the ambiguity.
- Consider the dangling else grammar

```
stmt → if expr then stmt
| if expr then stmt else stmt
| other
```

Here, other stands for any other statement

Eliminating Ambiguity

The compound conditional statement, $\text{ if } E_1 \text{ then } S_1 \text{ else if } E_2 \text{ then } S_2 \text{ else } S_3 \\ \text{has the parse tree}$

Eliminating Ambiguity

The grammar is ambiguous since the string if E_1 then if E_2 then S_1 else S_2 has two parse trees

Eliminating Ambiguity

- In all programming languages with conditional statements of this form, the first parse tree is preferred.
- The general rule is, "Match each else with the closest unmatched then".

Eliminating Ambiguity

Unambiguous grammar for if-then-else statements,

```
stmt → matched_stmt
| open_stmt
matched_stmt → if expr then matched_stmt else matched_stmt
| other
open_stmt → if expr then stmt
| if expr then matched_stmt else open_stmt
```

Elimination of Left Recursion

- A grammar is left recursive if it has a nonterminal A such that there is a derivation $A^*_{\Rightarrow}A\alpha$ for some string α .
- Top-down parsing methods cannot handle left recursive grammars, so a transformation is needed to eliminate left recursion.

Elimination of Left Recursion

- $A \rightarrow A\alpha \mid \beta$ is left recursive
- This can be made non-left recursive by

$$A \rightarrow \beta A'$$

 $A' \rightarrow \alpha A' \mid \epsilon$

Elimination of Left Recursion

Eliminate left recursion from the grammar

$$E \rightarrow E + T \mid T$$
 $T \rightarrow T * F \mid F$
 $F \rightarrow (E) \mid id$

After eliminating left recursion,
$$E \rightarrow TE'$$

$$E' \rightarrow +TE' \mid \epsilon$$

$$T \rightarrow FT'$$

$$T' \rightarrow *FT' \mid \epsilon$$

$$F \rightarrow (E) \mid id$$

Elimination of Left Recursion

Eliminate left recursion from the grammar

 $S \rightarrow ABC$

 $A \rightarrow Aa|Ad|b$

 $B \rightarrow Bb \mid e$

 $C \rightarrow Cc \mid g$

After eliminating left recursion,

 $S \rightarrow ABC$

 $A \rightarrow bA'$

 $A' \rightarrow aA' | \overline{\epsilon} | dA'$

 $B \rightarrow eB'$

 $B' \rightarrow bB' \mid \epsilon$

 $C \rightarrow gC'$

 $C' \rightarrow cC' \mid \epsilon \mid$

Elimination of Left Recursion

- Immediate left recursion can be eliminated by the following technique, which works for any number of A-productions.
- First group the productions as

$$A \rightarrow A\alpha_1 \mid A\alpha_2 \mid \cdots \mid A\alpha_m \mid \beta_1 \mid \beta_2 \mid \cdots \mid \beta_n$$

where no β_i begins with an A.

Elimination of Left Recursion

★ Then replace the A-productions by

$$A \to \beta_1 A' \mid \beta_2 A' \mid \cdots \mid \beta_n A'$$

$$A' \to \alpha_1 A' \mid \alpha_2 A' \mid \cdots \mid \alpha_m A' \mid \epsilon$$

The non terminal A generates the same strings as before but it is no longer left recursive.

Elimination of Left Recursion

- The procedure eliminates all left recursion from the A and A' productions (provided no α i is ϵ), but it does not eliminate left recursion involving derivations of two or more steps.
- \bullet E.g. $s \rightarrow s$

Elimination of Left Recursion

INPUT: Grammar G with no cycles or ε-productions.

OUTPUT: An equivalent grammar with no left recursion.

```
1) arrange the nonterminals in some order A<sub>1</sub>, A<sub>2</sub>,..., A<sub>n</sub>.
2) for ( each i from 1 to n ) {
3) for ( each j from 1 to i − 1 ) {
4) replace each production of the form A<sub>i</sub> → A<sub>j</sub>γ by the productions A<sub>i</sub> → δ<sub>1</sub>γ | δ<sub>2</sub>γ | ··· | δ<sub>k</sub>γ, where A<sub>j</sub> → δ<sub>1</sub> | δ<sub>2</sub> | ··· | δ<sub>k</sub> are all current A<sub>j</sub>-productions
5) }
6) eliminate the immediate left recursion among the A<sub>i</sub>-productions
7) }
```

Elimination of Left Recursion

Eliminate left recursion from the grammar

 $S \rightarrow Aa|b$ $A \rightarrow Ac|Sd|\epsilon$ Substitute S in A \rightarrow Sd to obtain the following A-productions, A \rightarrow Ac | Aad | bd | ϵ

Eliminating left recursion yields the following grammar

 $S \rightarrow Aa \mid b$

 $A \rightarrow bdA' \mid A'$

 $A' \rightarrow cA' | adA' | \epsilon$

Left Factoring

- Left factoring is a grammar transformation that is useful for producing a grammar suitable for predictive or topdown parsing.
- ★ When the choice between two alternative A-productions is not clear, we may be able to rewrite the productions to defer the decision until enough of the input has been seen to make the right choice.

Left Factoring

For e.g., if we have two productions

 $stmt \rightarrow if expr then stmt else stmt$ | if expr then stmt

• On seeing the input if, we cannot immediately tell which production to choose to expand stmt.

Left Factoring

- In general, if $A \rightarrow \alpha \beta_1 \mid \alpha \beta_2$ are two productions, and the input begins with a non empty string derived from α , we do not know whether to expand A to $\alpha \beta_1$ or $\alpha \beta_2$
- We can defer the decision by expanding A to αA'
- After seeing the input derived from α we can expand A' to β_1 or β_2

Left Factoring

★ Left factored the original productions become,

$$A \rightarrow \alpha A'$$

$$A' \rightarrow \beta_1 \mid \beta_2$$

Left Factoring

INPUT: Grammar G.

OUTPUT: An equivalent left-factored grammar.

METHOD: For each nonterminal A, find the longest prefix α common to two or more of its alternatives. If $\alpha \neq \epsilon$ — i.e., there is a nontrivial common prefix — replace all of the A-productions $A \rightarrow \alpha \beta_1 \mid \alpha \beta_2 \mid \cdots \mid \alpha \beta_n \mid \gamma$, where γ represents all alternatives that do not begin with α , by

$$A \to \alpha A' \mid \gamma$$

 $A' \to \beta_1 \mid \beta_2 \mid \cdots \mid \beta_n$

Here A' is a new nonterminal. Repeatedly apply this transformation until no two alternatives for a nonterminal have a common prefix. \square

Left Factoring

Apply left factoring to the "dangling-else" problem

$$S \rightarrow i E t S \mid i E t S e S \mid a$$

 $E \rightarrow b$

$$S \rightarrow i E t S S' \mid a$$

 $S' \rightarrow e S \mid \epsilon$
 $E \rightarrow b$