历届试题选 (曲面积分)

(2005—2006)

二、设 Σ 是整个球面 $x^2+y^2+z^2=9$,取外侧,则 $\bigoplus_{\Sigma} z dx dy$ 的值是 _______。

(2005-2006)

四、计算 $I = \bigoplus_{\Sigma} [(x+y)^2 + z^2 + 2yz] dS$,其中 Σ 是球面 $x^2 + y^2 + z^2 = 2x + 2z$ 。 (2008—2009)

六、计算 $\iint_{\Sigma} xz dy dz + 4 dx dy$,其中 Σ 是抛物面 $z = 4 - x^2 - y^2$ 在 $z \ge 0$ 部分,方向取下侧。

(2010-2011)

七、计算 $I = \iint_{\Sigma} (x^3z + x) \, dy \, dz - x^2 yz \, dz \, dx - x^2 z^2 \, dx \, dy$, 其中 Σ 是抛物面 $z = 2 - x^2 - y^2$ ($1 \le z \le 2$)的

上侧。 (2010—2011)

八、计算 $I = \iint_{\Sigma} (y^2 - z) \, \mathrm{d} y \, \mathrm{d} z + (z^2 - x) \, \mathrm{d} z \, \mathrm{d} x + (x^2 - y) \, \mathrm{d} x \, \mathrm{d} y$, 其中 Σ 是锥面 $z = \sqrt{x^2 + y^2}$ $(0 \le z \le 1)$

的下侧。 (2010—2011)

九、计算 $I=\int\limits_{\Sigma} \frac{ax\mathrm{d}y\mathrm{d}z+(z+a)^2\mathrm{d}x\mathrm{d}y}{(x^2+y^2+z^2)^{\frac{1}{2}}}$, 其中 Σ 为下半球面 $z=-\sqrt{a^2-x^2-y^2}$ 的上侧,a 为大于零的常

数。 (2011—2012)

十、计算 $\iint_{\Sigma} (x+z) dS$,其中 Σ 是平面 z = x+1 被圆柱面 $x^2 + y^2 = 1$ 所截的部分. (2014—2015)

十一、计算 $\iint_{\Sigma} (x+y+z) dS$, 其中 Σ 是曲面 $x^2+y^2+z^2=a^2(a>0)$ 在 $z\geq 0$ 的部分. (2016—2017)

十二、计算 $\bigoplus_{y} y(x-z) dy dz + x^2 dz dx + (y^2 + xz) dx dy$, 其中 Σ 是正方体 $\Omega: 0 \le x \le a$,

$$0 \le y \le a, 0 \le z \le a$$
 的表面,取外侧. (2016—2017)

十三、计算曲面积分 $I=\iint_{\Sigma}(xy-y+y^2+z)\mathrm{d}S$,其中 Σ 为平面 x+y+z=1 在第一卦限中的部分.

(2017-2018)

十四、计算
$$I = \iint_{\Sigma} [(x+y+z)^2 - 2xz] dS$$
,其中 Σ 是球面 $x^2 + y^2 + z^2 = x + z$. (2017—2018)

十五、利用 Gauss 公式计算曲面积分 $I = \iint_{\Sigma} xz \mathrm{d}y \mathrm{d}z + 2zy \mathrm{d}z \mathrm{d}x + 3xy \mathrm{d}x \mathrm{d}y$,其中 Σ 为椭圆抛物面

$$z = 1 - x^2 - \frac{y^2}{4}$$
 (0 \le z \le 1) 的上侧. (2017—2018)

十六、计算 $I = \iint_{\Sigma} (y-z) \mathrm{d}y \mathrm{d}z + (z-x) \mathrm{d}z \mathrm{d}x + (x-y) \mathrm{d}x \mathrm{d}y$,其中 Σ 是上半球面 $x^2 + y^2 + z^2 = 2Rx$

$$(z \ge 0)$$
 被柱面 $x^2 + y^2 = 2rx$ (0 < $r < R$) 所截的部分,方向取上侧. (2017—2018)

十七、设曲面 Σ 为上半球面 $z=\sqrt{1-x^2-y^2}$ 的上侧,试将第二类曲面积分 $I=\iint\limits_{\Sigma}\mathrm{d}y\mathrm{d}z+\mathrm{d}z\mathrm{d}x+z\mathrm{d}x\mathrm{d}y$ 转

化成第一类曲面积分,并计算其值. (2018—2019)

十八、计算第二类曲面积分 $I=\iint\limits_{\Sigma}y^2\mathrm{d}y\mathrm{d}z+x^2\mathrm{d}z\mathrm{d}x+z^2\mathrm{d}x\mathrm{d}y$, 其中 Σ 是由三个坐标面和平面 x+y+z=1

所围成的空间有界区域的整个边界曲面,取外侧. (2018—2019)

十九、计算第二类曲线积分 $I = \oint_L (x^2 y \cos x + 2xy \sin x - e^x) dx + (x^2 \sin x - 2x) dy$,其中 L 是由上半圆 $y = \sqrt{2x - x^2}$,取逆时针方向. (2019—2020)

二十、计算第二类曲面积分 $I = \iint_{\Sigma} xz dS$,其中 Σ 是平面 x + y + z = 1 在第一卦限中的部分.

(2019-2020)

二十一、设曲面 Σ 为单位球面 $x^2+y^2+z^2=1$ 的外侧,计算第二类曲面积分

$$I = \bigoplus_{\Sigma} \frac{x^3 dy dz + y^3 dz dx + z^3 dx dy}{x^2 + y^2 + z^2}.$$
 (2019—2020)

二十二、计算第一类曲面积分 $I=\iint\limits_{\Sigma}(xz+yz+z^2)\mathrm{d}S$,其中 Σ 为平面 x+y+z=1 在第一卦限的部分.

(2020—2021)

二十三、计算第二类曲面积分 $I = \iint_{\Sigma} (y^2 + z^2)x dy dz + (x^2 + z^2)y dz dx + (x^2 + y^2)z dx dy$,

其中
$$\Sigma$$
是锥面 $z = \sqrt{x^2 + y^2}$ (0 $\leq z \leq$ 1) 的上侧. (2020—2021)

二十四、设 Σ 是 平面 $\frac{x}{2} + \frac{y}{3} + \frac{z}{4} = 1$ 在 第一卦 限 中 的 部 分 取 下 侧 , 则 第二类 曲 面 积 分 $\iint_{\Sigma} (6x + 4y + 3z) \mathrm{d}x \mathrm{d}y = \underline{\hspace{1cm}}. \qquad (2021-2022)$ 二十五、计算第一类曲面积分 $I = \iint_{\Sigma} \sqrt{1 + x^2 + y^2} \, \mathrm{d}S$,其中 Σ 为旋转抛物面 $2z = x^2 + y^2$ 在 $0 \le z \le 2$ 的部分. (2021-2022) 二十六、计算第二类曲面积分 $I = \iint_{\Sigma} x^3 \mathrm{d}y \mathrm{d}z + y^3 \mathrm{d}z \mathrm{d}x + (z^3 + x) \mathrm{d}x \mathrm{d}y$,其中 Σ 是上半球面 $z = \sqrt{1 - x^2 - y^2}$

与锥面 $z = \sqrt{x^2 + y^2}$ 所围成空间区域的整个边界曲面的外侧. (2021—2022)