NUMERI PRIMI E CRITTOGRAFIA

- Parte I. Crittografia a chiave simmetrica dall'antichità all'era del computer
- Parte II. Note della Teoria dei Numeri concetti ed algoritmi a supporto della Crittografia
- Parte III. Crittografia a chiave pubblica il superamento del problema dello scambio delle chiavi
- Parte IV. Esercitazione di gruppo implementazione di un minisistema crittografico RSA

Franco Danielli

PARTE III

SISTEMI CRITTOGRAFICI A CHIAVE PUBBLICA

- L'idea di Diffie-Hellman: funzione unidirezionale con il *trapdoor*
- Funzioni unidirezionali in Aritmetica Modulare
- II Metodo RSA
- Strategie d'attacco al sistema RSA, sicurezza
- Sicurezza crittografica e potenza computazionale
- La firma digitale: autenticità e completezza del messaggio
- Stato dell'arte della Crittografia moderna

L'idea di Diffie-Hellman: Funzione unidirezionale con il "*Trapdoor*"

Esempio concettuale: manipolazione di un lucchetto

Concetto di Crittografia a Chiave Pubblica (Diffie-Hellman, 1976)

Implementazione del Sistema crittografico a chiave pubblica

Diffie ed Hellman presentarono l'idea del sistema a chiave pubblica, ma non riuscirono ad esibire una funzione unidirezionale (con il *trapdoor*) idonea a realizzarlo.

Ci riuscirono invece nel 1978 altri tre ricercatori americani del MIT di Boston: Rivest, Shamir, Adleman.

Nacque così il Sistema RSA, dalle iniziali dei suoi creatori.

A tutt'oggi, RSA è il sistema crittografico a chiave pubblica più diffuso ed affermato nel mondo.

Ricerca di funzioni unidirezionali per applicazioni in Crittografia (1)

Funzioni $f(x) = x^n$ in Aritmetica ordinaria

x	X^2	
1	1	1
2	4	8
3	9	27
4	16	64
5	25	125
6	36	216
7	49	343
8	64	512
9	81 729	
10	100	1000

In Aritmetica ordinaria, funzioni del tipo $f(x) = x^n$ sono regolari, monotone e facilmente invertibili: non possono essere funzioni unidirezionali

Ricerca di funzioni unidirezionali per applicazioni in Crittografia (2)

Funzioni $f(x) = x^n$ in Aritmetica Modulare

x	x² mod 11	x³ mod 11
1	1	1
2	4	8
3	9	5
4	5	9
5	3	4
6	3	7
7	5	2
8	9	6
9	4	3
10	1	10

In Aritmetica Modulare, funzioni del tipo $f(x) = x^n$ sono irregolari, caotiche ed imprevedibili: ottime candidate ad essere funzioni unidirezionali

Sistema RSA (Rivest, Shamir, Adleman - USA 1978)

A. Ogni utente del sistema crittografico costruisce le proprie chiavi, pubblica e privata

	Creazioni delle chiavi di Alice	Miniesempio
1	Sceglie due grandi numeri primi p, q	p = 31, q = 53
2	Calcola il prodotto $n = p \cdot q$	n = 31 x 53 = 1643
3	Calcola la funzione di Eulero $\Phi(n)$	$\Phi(n) = 30 \times 52 = 1560$
4	Sceglie un numero e coprimo con $\Phi(n)$	e = 439
5	Calcola d , inverso di e modulo $\Phi(n)$	d = 199
6	Rende pubblica la coppia (n, e)	1643, 439 Chiave pubblica
7	Tiene segreto il dato d	199 Chiave segreta
8	Distrugge tutti i dati intermedi $p, q, \Phi(n)$	-31, 53, 1560 -

Sistema RSA (Rivest, Shamir, Adleman - USA 1978)

B. Cifratura di un messaggio nel Sistema RSA

	Bob vuole trasmettere un messaggio riservato ad Alice	Miniesempio	
1	Si procura la chiave pubblica autentica di Alice	<i>n</i> = 1643, e = 439	
2	Scrive il <i>plaintext</i> da trasmettere	plaintext = "w"	
3	Trasforma il <i>plaintext</i> in un numero m con il codice ASCII, verifica che $m < n$	m = ASC(w) = 119 < 1643	
4	Crea il crittogramma c col calcolo della potenza modulare $c = m^e \mod n$	$c = 119^{439} \mod 1643 = 1049$	
5	Spedisce il crittogramma c ad Alice sul canale insicuro	Bob $c = 1049$ Alice	

Sistema RSA (Rivest, Shamir, Adleman - USA 1978)

C. Decifrazione di un crittogramma nel Sistema RSA

	Alice decifra il crittogramma ricevuto da Bob con la propria chiave privata	Miniesempio
1	Alice ha ricevuto un crittogramma c da Bob	<i>c</i> = 1049
2	Per decifrare, Alice fa uso della propria chiave segreta <i>d</i> (oltre al modulo <i>n</i>)	<i>n</i> = 1643, <i>d</i> = 199
3	Decifra il crittogramma col calcolo della potenza modulare $m = c^d \mod n$	$m = 1049^{199} \mod 1643 = 119$
4	Recupera il <i>plaintext</i> decodificando <i>m</i> con il codice ASCII	<pre>plaintext = Character(119) = "w"</pre>

Il sistema RSA funziona sulla base del Teorema di Eulero:

Teorema di Eulero: $a^{1+\Phi(n)} \equiv a \pmod{n}$, a intero, n modulo > 0

Cifratura e decifrazione nel Sistema RSA:

messaggio: *m*

cifratura di m: $c = m^e \mod n$

decifrazione di c: $x = c^d \mod n = m^{e \cdot d} \mod n$

ma $d \in l$ 'inverso di $e \mod \Phi(n)$: $e \cdot d \equiv 1 \pmod {\Phi(n)}$

ovvero: $\mathbf{e} \cdot \mathbf{d} = \mathbf{1} + \mathbf{k} \cdot \Phi(\mathbf{n})$

da cui: $x = m^{1+k\cdot\Phi(n)} \equiv m \pmod{n}$

e poiché m < n: x = m

con ciò, il destinatario recupera il messaggio.

Attacco al Sistema RSA (ciphertext only)

- Oscar ha intercettato sul canale insicuro il crittogramma *c* indirizzato ad Alice
- Oscar conosce inoltre, come tutti, la chiave pubblica di Alice (n, e)
- Oscar sa anche che: $c = m^e \mod n$, $m = c^d \mod n$
- ma Oscar ignora la chiave segreta d (il "trapdoor" di Alice)

Che cosa può fare Oscar per forzare il sistema crittografico ed impadronirsi del *plaintext m* ?

1° strategia di attacco: Fattorizzazione di *n*

Oscar può provare a fattorizzare il modulo *n* per ricostruire la chiave privata *d* di Alice:

2° strategia di attacco: Calcolo di m per tentativi

Oscar può procedere per tentativi a trovare quel numero *x* la cui cifratura con la chiave pubblica di Alice dà luogo al crittogramma *c*:

Questo è un algoritmo per tentativi (forza bruta), a tempo esponenziale (cioè, inefficiente)

3° strategia: Calcolo di *m* per attacco ciclico

Partendo da c, Oscar applica iterativamente l'algoritmo di cifratura fino a ritrovare c stesso. Allora, l'iterato precedente è precisamente il messaggio m cercato. Con riferimento al miniesempio (n = 1643, e = 439, c = 1049) :

Sicurezza del sistema crittografico RSA

La sicurezza del sistema RSA nei confronti di un attacco si fonda sul fatto che, ad oggi, non si conoscono algoritmi efficienti per le attività di Crittoanalisi:

Quale strategia resta ad Oscar?

- Il sistema RSA è (almeno attualmente) al sicuro da attacchi tipo ciphertext only.
- Ad Oscar resta tuttavia una possibilità: quella di **spacciarsi per** uno dei due partner (Alice o Bob), sostituendo una propria chiave pubblica a quella del destinatario.
- Per questo motivo, nel sistema RSA occorre che il mittente accerti sempre la **chiave pubblica autentica** del destinatario prima di cifrare il messaggio e spedire il crittogramma.

La firma digitale nel sistema crittografico

La firma autografa identifica il mittente di una lettera, o il contraente di un contratto.

La firma "digitale" ne ha tutte le caratteristiche:

- Autenticazione del mittente (accertamento della sua identità)
- ☐ Verifica dell'**integrità** del messaggio (accertamento che il messaggio non sia stato manipolato da altri)
- Non ripudiabilità del messaggio (accertamento della responsabilità del mittente)

Nel sistema RSA la firma digitale si può realizzare in modo molto semplice, scambiando il ruolo delle chiavi.

Firma digitale nel sistema RSA

	Procedura	Miniesempio	
1	Alice costruisce le sue chiavi RSA	$n_A = 1643$ $e_A = 439$ $d_A = 199$	
2	Bob costruisce le sue chiavi RSA	$n_B = 1769$ $e_B = 247$ $d_B = 823$	
3	Bob crea il messaggio $m_B = 119$ per Alice e ne calcola il crittogramma $c_B = m_B^{eA} \mod n_A$	$m_B = 119$ $c_B = 119^{439} \mod 1643 = 1049$	
4	Bob firma il crittogramma c_B con la sua chiave privata $s_B = c_B^{dB} \mod n_B$	$c_B = 1049$ $s_B = 1049^{823} \mod 1769 = 1550$	
5	Alice riceve da Bob il crittogramma firmato (s _B , c _B)	Bob (1550, 1049) Alice	
6	Alice verifica la firma con la chiave pubblica di Bob: $s_{B}^{\ eB} \equiv c_{B} \ (\text{mod } n_{B})$?	1550 ²⁴⁷ ≡ 1049 (mod 1769) ? ⇒ Vero !	
7	Se si, Alice decifra il crittogramma con la propria chiave segreta: $m_B = c_B^{dA} \mod n_A$	m _B = 1049 ¹⁹⁹ mod 1643 = 119	
8	Se no, Alice rifiuta il messaggio:	il mittente non è Bob, oppure il messaggio è stato manipolato	

Sicurezza crittografica e Progresso tecnologico

Ipotesi di implementazione RSA su computer, oggi:

Frequenza CPU	Modulo RSA	Tempo Crittografia	Tempo Crittoanalisi	Sicurezza
GHz (10 ⁹ op/s)	$n \approx 10^{100}$	$T = k \cdot L(n)$ $= 1s$	$T = k \cdot \sqrt{n}$ $= 10.000h$	ок

Progresso tecnologico dei computer, fra 10÷20 anni:

THz (10 ¹² op/s)	$n \approx 10^{100}$	$T = \underline{k} \cdot L(n)$ $= 1 \text{ms}$	$T = \underline{k} \cdot \sqrt{n} = 10h$	KO !!
--------------------------------	----------------------	--	--	-------

Ma basta aumentare di un po' le cifre del modulo n:

THE BUSINESS OF	remaine an arr p		1134413 111	
THz (10 ¹² op/s)	<i>n</i> ≈ 10 ¹⁰⁶	$T = \underline{k} \cdot L(n)$ $= 1,06 \text{ ms}$	$T = \underline{k} \cdot \sqrt{n}$ $= 10.000h$	ок

Conclusione: il progresso tecnologico (velocità di calcolo dei computer) favorisce più la Crittografia della Crittoanalisi.

Stato dell'arte della Crittografia moderna

Il sistema RSA a chiave pubblica costituisce la soluzione definitiva dello scambio delle chiavi fra Alice e Bob:

Dopo lo scambio, la comunicazione sul canale insicuro avviene con un sistema a chiave simmetrica, tipo DES, AES (più veloce):

Crittografia e Matematica

È un problema matematico mai risolto:

la fattorizzazione di un numero composto

ad aver dato realtà e successo all'intuizione geniale di Diffie ed Hellman:

il sistema crittografico a chiave pubblica