Fiche d'exercices n°5 : primitives et intégrales

Prenez l'habitude de vérifier systématiquement vos résultats, par exemple avec www.wolframalpha.com.

Exercice 1. Calculer les primitives suivantes :

a)
$$\int (x^4 - 3x + 1) dx$$
 b) $\int (t + 1)^2 dt$ c) $\int (x - 1)^3 dx$ d) $\int \sqrt{s + 2} ds$
e) $\int (x + 1)^{1/3} dx$ f) $\int \frac{dy}{\sqrt{3y + 1}}$ g) $\int \frac{dx}{(2x + 1)^2}$ h) $\int \sin(2t) dt$
i) $\int \sin(1 - x) dx$ j) $\int \sin(3u - 2) du$ k) $\int \cos(5x + 1) dx$ l) $\int e^{2s} ds$

Exercice 2. En utilisant le formulaire des primitives usuelles, calculer les intégrales :

$$I_1 = \int_0^1 (x^3 + x^2 + x + 1) dx$$
 $I_2 = \int_0^1 (1+t)^2 dt$ $I_3 = \int_0^{\pi/2} \sin 2x dx$ $I_4 = \int_0^{\pi/2} \cos 2u du$

Exercice 3. Calculer les intégrales suivantes :

$$I_1 = \int_0^1 t \, e^x \, dt$$
 $I_2 = \int_0^1 t \, e^x \, dx$ $I_3 = \int_0^1 e^{tx} \, dx$ $I_4 = \int_0^1 e^x \, dt$

Exercice 4.

a. Soit u(x) une fonction dérivable. Quelles sont les primitives de $\frac{u'(x)}{u(x)}$?

b. En déduire les primitives de la fonction $\tan x$.

Exercice 5. Soient F et G deux fonctions données. On rappelle que (F(G(x)))' = F'(G(x)) G'(x). En utilisant ce résultat, calculer les primitives suivantes :

a)
$$\int y'(x)y(x) dx$$
 b) $\int u'(x)u(x)^4 dx$ c) $\int u'(x)u(x)^n dx$ d) $\int \frac{f'(x)}{f(x)} dx$
e) $\int \frac{y'(s)}{y(s)^2} ds$ f) $\int \frac{v'(x)}{\sqrt{v(x)}} dx$ g) $\int \frac{u'(x)}{u(x)^7} dx$ h) $\int \frac{v'(t)}{1 + v(t)^2} dt$
i) $\int y'(t)e^{y(t)} dt$ j) $\int u'(x)\sin u(x) dx$ k) $\int \frac{y'(x)}{\sqrt{1 - y(x)^2}} dx$ l) $\int y'(x)(1 + \tan^2 y(x)) dx$

Exercice 6. Calculer les primitives suivantes :

a)
$$\int \frac{dx}{1+x^2}$$
 b) $\int \frac{dx}{1+4x^2}$ c) $\int \frac{dx}{3+27x^2}$ d) $\int \frac{dx}{4+x^2}$ e) $\int \cos x \, e^{\sin x} \, dx$ f) $\int \sin^3 x \cos x \, dx$ g) $\int \frac{dx}{2x+3} \, dx$ h) $\int \frac{\ln x}{x} \, dx$ i) $\int \frac{2x}{x^2+1} \, dx$ j) $\int \frac{3x+1}{9x^2+6x+2} \, dx$ k) $\int \frac{\cos x}{\sin x} \, dx$ l) $\int \frac{1+\tan^2 x}{\tan^2 x} \, dx$

Exercice 7. Calculer les intégrales suivantes par changement de variable :

$$I_{1} = \int_{0}^{\pi/2} \sin^{3} x \cos x \, dx \qquad I_{2} = \int_{0}^{1} e^{u} \cos(e^{u}) du \qquad I_{3} = \int_{0}^{\pi/4} \tan^{3} x \, dx$$

$$I_{4} = \int_{1}^{2} (3t - 1)^{-2/3} \, dt \qquad I_{5} = \int_{1}^{2} \frac{u + 1}{\sqrt{u^{2} + 2u}} du \qquad I_{6} = \int_{0}^{\sqrt{2}/2} \sqrt{\frac{1 + x}{1 - x}} \, dx \qquad I_{7} = \int_{0}^{1} \frac{e^{x}}{e^{x} + 1} \, dx$$

Exercice 8. Calculer les primitives ci-dessous. Dans chaque cas, on cherchera un changement de variable transformant le polynôme du second degré en un polynôme du type $1+X^2$ ou $1-X^2$ ou X^2-1 :

a)
$$\int \frac{dt}{t^2 + 4}$$
 b) $\int \frac{dt}{\sqrt{t^2 - 4}}$ c) $\int \frac{dt}{\sqrt{9 - 4t^2}}$ d) $\int \frac{dt}{t^2 + 2t + 5}$

Exercice 9. Calculer les primitives suivantes par intégration par parties :

a)
$$\int xe^x dx$$
 b) $\int t \sin t dt$ c) $\int \ln x dx$ d) $\int \ln(2s+3) ds$

e)
$$\int x \cos x \, dx$$
 f) $\int \ln(1+u^2) \, du$ g) $\int \arctan x \, dx$ h) $\int \ln^2 s \, ds$

i)
$$\int \frac{\ln x}{x^2} dx$$
 j) $\int u \ln u du$ k) $\int e^x \sin x dx$

Exercice 10.

a. Trouver
$$a$$
 et b tels que $\frac{1}{x(x-1)} = \frac{a}{x} + \frac{b}{x-1}$. En déduire les primitives de $\frac{1}{x(x-1)}$.

b. De façon plus générale, soit $P(x) = ax^2 + bx + c$ un polynôme du second degré admettant deux racines réelles distinctes r_1 et r_2 . Montrer qu'il existe deux réels α et β tels que $\frac{1}{ax^2 + bx + c} = \frac{\alpha}{x - r_1} + \frac{\beta}{x - r_2}$

Exercice 11. De façon similaire à l'exercice précédent, calculer les primitives suivantes :

a)
$$\int \frac{dx}{x(x+1)}$$
 b) $\int \frac{dt}{(t+2)(t+3)}$ c) $\int \frac{ds}{s^2-1}$ d) $\int \frac{dx}{x^2-3x+2}$

e)
$$\int \frac{dx}{x^2 - 5x + 6}$$
 f) $\int \frac{dy}{y^2 + 4y + 4}$ g) $\int \frac{du}{u^2 - 2u + 1}$ h) $\int \frac{x - 3}{x^2 - 6x + 9} dx$

Exercice 12. Identifier a priori la (ou les) méthode(s) qui semble(nt) adéquate(s) pour calculer chacune des primitives suivantes, puis les calculer effectivement :

a)
$$\int \frac{du}{u^2 + 5}$$
 b) $\int \frac{\ln t}{t} dt$ c) $\int x \ln x dx$ d) $\int \tan^3 s ds$

e)
$$\int e^x \cos x \, dx$$
 f) $\int \frac{3y}{\sqrt{y^2 - 5}} \, dy$ g) $\int \frac{\cosh x}{\sinh^5 x} \, dx$ h) $\int (u^2 + u + 1) \, e^u \, du$

i)
$$\int \frac{2x+3}{(x^2+3x+7)^3} dx$$
 j)
$$\int ye^{y^2} dy$$
 k)
$$\int t \arctan t dt$$
 l)
$$\int e^u \sin(e^u) du$$

m)
$$\int x^2 \sqrt{1+x^3} dx$$
 n) $\int \frac{ds}{s^2-4}$ o) $\int \frac{ds}{s^2+2s+5}$ p) $\int \frac{\ln(x)}{x^n} dx$ $(n \in \mathbb{N})$

Exercice 13. On note $I = \int_0^{2\pi} \cos^2 x \, dx$ et $J = \int_0^{2\pi} \sin^2 x \, dx$. On va dans cet exercice calculer ces intégrales de plusieurs façons différentes.

1. Méthode 1

- **1.a.** Simplifier l'expression de I + J et calculer cette valeur.
- **1.b.** Par intégration par parties dans I, donner une relation entre I et J.
- **1.c.** En déduire les valeurs de I et J.

2. Méthode 2

2.a. Faire le changement de variable $t = x + \frac{\pi}{2}$ dans I. En déduire une relation entre I et J.

2.b. En utilisant la relation trouvée à la question 1.a., en déduire les valeurs de I et J.

3. Méthode 3

3.a. Rappeler les différentes expressions de $\cos 2x$ en fonction de $\sin x$ et $\cos x$.

3.b. En utilisant ces expressions, calculer directement les valeurs de I et J.

Exercice 14.

a. Exprimer $\sin 3x$ en fonction de $\sin x$, et exprimer $\cos 3x$ en fonction de $\cos x$.

b. En déduire les valeurs des intégrales $I_1 = \int_0^{\pi/2} \sin^3 x \, dx$ et $I_2 = \int_0^{\pi/2} \cos^3 x \, dx$

Pour vous entrainer...

Exercice 15. Calculer les primitives suivantes :

a) $\int e^{2x} dx$ b) $\int e^{-7x} dx$ c) $\int \cos 3x \, dx$ d) $\int \frac{dx}{x\sqrt{x}}$ e) $\int \sqrt{2x+1} \, dx$

Exercice 16. Calculer les primitives suivantes :

a) $\int xe^{x^2}dx$ b) $\int x^2e^{x^3+1}dx$ c) $\int \frac{e^{\sqrt{x}}}{\sqrt{x}}dx$ d) $\int \sqrt{e^x}dx$ e) $\int \frac{dx}{x(\ln x+1)}$

Exercice 17. Calculer les primitives suivantes :

a) $\int \frac{2x+5}{(x^2+5x+9)^m} dx$ b) $\int \frac{(\ln|u|)^3}{u} du$ c) $\int \frac{\sinh(x)}{\cosh^4(x)} dx$ d) $\int x^4 (x^5+3)^{1/3} dx$ e) $\int (\tan^4 x + \tan^2 x) dx$ f) $\int x(x^2+1)^3 dx$ g) $\int \frac{x}{\sqrt{x^2+1}} dx$ h) $\int \frac{dx}{x(\ln x)^2} dx$

Exercice 18. Calculer les intégrales suivantes :

 $I_1 = \int_0^1 t \, e^{t^2} dt$ $I_2 = \int_0^1 t^2 \, e^t dt$ $I_3 = \int_0^1 t \, e^t dt$ $I_4 = \int_0^1 \frac{\ln x}{x} \, dx$ $I_5 = \int_0^1 \frac{dx}{x \ln x} \, dx$

Exercice 19. Calculer les primitives suivantes :

a) $\int \frac{x+3}{x^2+1} dx$ b) $\int \frac{x^2+3x+1}{x^2+1} dx$ c) $\int \sin x \cos x dx$ d) $\int \frac{\sin x}{2+\cos x} dx$

e) $\int \frac{e^{\tan x}}{\cos^2 x} dx$ f) $\int f'(s) \cos f(s) ds$ g) $\int \frac{y'(t)}{\cos^2 y(t)} dt$

Exercice 20. Trouver a, b et c tels que $\frac{1}{x(x^2-1)} = \frac{a}{x-1} + \frac{b}{x} + \frac{c}{x+1}$. En déduire $\int_2^3 \frac{dx}{x(x^2-1)}$

Exercice 21. Calculer les primitives suivantes :

a) $\int x^2 \arctan x \, dx$ b) $\int \frac{\ln x}{x} \cos(1 + \ln^2 x) \, dx$ c) $\int \cos^3 x \, dx$ d) $\int \frac{1}{\sin x} \, dx$

e) $\int x \cos(3x) dx$ f) $\int \ln(x^2 + 1) dx$ g) $\int \frac{\sin x}{\cos x} dx$ h) $\int (x + 1) \sin(2x) dx$

Pour aller plus loin...

Exercice 22. Calculer les primitives suivantes :

a)
$$\int \frac{e^{3x} - 2e^x}{e^x + 2} dx$$
 b) $\int \frac{x+5}{x^2 + 2x + 2} dx$ c) $\int \frac{2-x}{x^2 - 2x + 2} dx$

Exercice 23. Soit
$$I_n = \int_0^1 (1 - t^2)^n dt$$
.

Établir une relation entre I_n et I_{n+1} , et en déduire la valeur de I_n .

Exercice 24. Intégrales de Wallis

On pose : $W_n = \int_0^{\pi/2} \sin^n x \, dx$.

- a. Par le changement de variable $t = \pi/2 x$, montrer que $W_n = \int_0^{\pi/2} \cos^n x \, dx$.
- **b.** Calculer W_0 , W_1 et W_2 .
- c. Pour $n \geq 2$, remarquer que $W_n = W_{n-2} \int_0^{\pi/2} \sin^{n-2} x \cos^2 x \, dx$. Par intégrations par parties, en déduire que $nW_n = (n-1)W_{n-2}$.
- **d.** En déduire l'expression de W_n (on différenciera les cas n pair et impair).

Exercice 25. Soit $n \in \mathbb{N}$ et x un nombre réel. On pose $I_n(x) = \int_0^x t^n e^t dt$.

- **a.** En utilisant une intégration par parties, trouver une relation liant $I_n(x)$ à $I_{n+1}(x)$.
- **b.** Calculer $I_0(x)$, $I_1(x)$ et $I_2(x)$. En déduire la valeur de $I = \int_0^1 (t^2 3t + 1) e^t dt$

Exercice 26. Soit $f:[0,1] \to \mathbb{R}$ une fonction strictement croissante et continûment dérivable. On considère les deux intégrales :

$$I_1 = \int_0^1 f(t)dt$$
 et $I_2 = \int_{f(0)}^{f(1)} f^{-1}(s)ds$.

- ${\bf a.}\,$ Rappeler pour quoi f admet une fonction réciproque .
- **b.** Faire le changement de variable s = f(u) dans l'intégrale I_2 .
- **c.** Calculer I_2 en fonction de I_1 .
- **d.** Faire un dessin faisant apparaître f et f^{-1} , et interpréter ce résultat géométriquement.

Exercice 27.

- **a.** Rappeler les expressions de $\sin x$ et $\cos x$ en fonction de $\sin \frac{x}{2}$ et $\cos \frac{x}{2}$. En divisant ces expressions par $\cos^2 \frac{x}{2} + \sin^2 \frac{x}{2}$, déduire l'expression de $\sin x$ et $\cos x$ en fonction de $t = \tan \frac{x}{2}$.
 - **b.** Grâce au changement de variable $t = \tan x/2$, calculer les primitives : $\int \frac{dx}{\cos x}$ et $\int \frac{dx}{\sin x}$.

Exercice 28. Faire la division euclidienne de x^3 par $x^2 + 4$, c'est-à-dire trouver les polynômes P(x) et R(x) tels que $x^3 = P(x)(x^2 + 4) + R(x)$, avec R(x) de degré inférieur ou égal à 1. En déduire les primitives de $\frac{x^3}{x^2 + 4}$.

4

Exercice 29. Calculer $I = \int_0^{\ln 2} \sqrt{e^x - 1} \, dx$ grâce au changement de variable $u = \sqrt{e^x - 1}$.

Exercice 30. Essayer de calculer les primitives de $\frac{1}{\ln x}$.