Документация проекта

1. Описание структуры проекта

Проект состоит из следующих ключевых компонентов, каждый из которых выполняет уникальную роль в обеспечении обработки данных, построении моделей и предоставлении аналитики:

Каталоги

- airflow/
 - Управление рабочими процессами через DAGs и конфигурационные файлы Airflow.
 - Ключевые файлы:
 - airflow.cfg: Настройки для работы Airflow.
 - Dockerfile: Создание Docker-образа для Airflow.
 - requirements.txt: Зависимости Python.
- api/
 - Сервис FastAPI для управления моделями машинного обучения.
 - Ключевые файлы:
 - api router.py: Определение маршрутов API.
 - main.py: Точка входа для API.
 - Dockerfile: Docker-образ для FastAPI.
 - models/: Cохранённые модели.
- models/
 - Jupyter Notebook и документация для анализа и построения baseline-моделей.
 - Ключевые файлы:
 - base line.ipynb: Анализ данных и построение baseline.
 - baseline.md: Описание подхода baseline.
- front/
 - Интерфейс Streamlit для визуализации данных и взаимодействия с API.

• Ключевые файлы:

- front.py: Основной файл Streamlit-приложения.
- logs/:Логи с поддержкой ротации.

Другие ключевые файлы

- docker-compose.yml: Управление контейнерами для всех сервисов.
- LICENSE : Условия использования проекта.

2. Функционал АРІ

Общая информация

- Загрузка моделей:
 - Все доступные модели автоматически загружаются при запуске сервера. Используются Lifecycle Events для устойчивости системы.

Конечные точки

- 1. GET /models
 - Возвращает список всех моделей с подробной информацией о них.
 - Пример ответа:

```
[
    "id": "LinReg_GAZP",
    "name": "Model for GAZP (LinReg)",
    "type": "LinReg",
    "status": "loaded"
}
```

- 2. POST /set
 - Устанавливает активную модель по model id.
 - Пример запроса:

```
{
    "model id": "LinReg GAZP"
```

}

• Пример ответа:

```
"id": "LinReg_GAZP",
   "name": "Model for GAZP (LinReg)",
   "type": "LinReg",
   "status": "active"
}
```

3. POST /predict

- Выполняет предсказание на основе активной модели.
- Пример ответа:

```
{
   "predictions": [123.45, 678.90]
}
```

4. POST /fit

- Запускает процесс обучения модели с заданными гиперпараметрами.
- Пример ответа:

```
{
    "status": "Запущено обучение."
}
```

5. Дополнительные возможности

- Динамическое добавление новых моделей.
- Использование Pydantic для строгой валидации данных.

3. Функционал Streamlit-приложения

Основные возможности

1. Загрузка датасета

• Поддержка загрузки данных в формате CSV.

• Табличное отображение загруженного датасета.

2. Демонстрация аналитики (EDA)

- Отображение предварительно выполненного анализа через Jupyter Notebook.
- Интеграция HTML-конверсии для визуализации данных.

3. Создание моделей и настройка гиперпараметров

- Выбор типа модели (например, Linear Regression, ARIMA).
- Настройка гиперпараметров через удобный интерфейс.
- Запуск обучения и визуализация процесса.

4. Просмотр информации о моделях и метриках

- Просмотр ключевых параметров текущей модели.
- Загрузка и отображение кривых обучения.

5. Инференс (предсказание)

- Загрузка данных для предсказания.
- Отображение результатов в формате JSON.

6. Логирование

- Полноценное логирование операций в папку logs.
- Ротация логов для оптимального использования памяти.

Особенности

- Глубокая интеграция с FastAPI для выполнения всех операций.
- Удобный интерфейс для анализа данных и работы с моделями.
- Надёжная система логирования.

4. Минимальная инструкция для пользователя

Шаги для запуска

1. Клонируйте репозиторий:

```
git clone https://github.com/your-repo/project.git
cd project
```

2. Настройте окружение:

• Создайте файл .env и заполните его необходимыми параметрами.

3. Запустите контейнеры:

```
docker-compose up --build
```

4. Доступ к сервисам:

FastAPI: http://localhost:8080
 Jupyter: http://localhost:8888
 Streamlit: http://localhost:8501

Пример использования АРІ

Для предсказаний:

```
curl -X POST "http://localhost:8001/predict" -F "file=@data.csv"
```