

Thermostat intelligent » Groupe 11

Membres: AMZUR Soufiane DAUBRY Wilson

SERCU Stéphane

VERSTRAETEN Denis

Superviseur:

EPPE Stefan

Tables des matières

- 1. Introduction
- 2. Conception
- 3. Thermostats auxiliaires
- 4. Thermostat central
- 5. Perspectives d'évolution
- 6. Conclusion

Introduction

- Demande en objets intelligents croissante
- Création du thermostat connecté
 - Utilisation simple et intuitive pour l'utilisateur
- Périphériques
 - Central: Raspberry Pi Model 2b
 - Auxiliaires : Arduino Nano V2

Conception

- Diagramme complet
- Vue globale et structurée
- Partage efficace des différentes parties
- Développé dans la suite de la présentation

Hardware

- Arduino Nano V2
- Thermistance

- PIR
- Module Wi-Fi
- Vanne thermostatique

Software

Lecture des capteurs :

- PIR: HIGH ou LOW
- Vanne thermostatique : valeur analogique convertie en %
- Thermistance : valeur analogique convertie en tension, obtention de la température grâce à la loi de Steinhart-Hart

loop

Software

Serveur

Serveur

Serveur

Stockage des données

- Choix d'une base de données
- SQLite

- Rapide, local, par défaut dans Python
- Module Data

Stockage des données Implémentation actuelle

- Une nouvelle table par connexion
- Pas correct

Stockage des données Implémentation à venir

- Une table principale
- Une table de Remote Devices

Perspectives d'evolution

- Validation entière du système
- Analyse critique du sytème
- Modélisation dynamique du chauffage
- Modélisation de l'algorithme anticipatif
- Implémentation algorithme « smart »
- Tests et validation

Conclusion

- Câblage Remote Devices
- Implémentation Arduino
- Implémentation serveur
- Implémentation base de données
- Communication entre Remote Devices et serveur

Merci pour votre attention.

Bibliographie : cf.rapport intermédiaire

Relation de Steinhart-Hart

$$T(R) = (A_1 + B_1 ln \frac{R}{Ref} + C_1 ln^2 \frac{R}{Ref} + D_1 ln^3 \frac{R}{Ref})^{-1}$$

PARAMETER FOR DETERMINING NOMINAL RESISTANCE VALUES											
NUMBER	B _{25/85} (K)	NAME	TOL. B (%)	A	B (K)	C (K²)	D (K³)	A ₁	B ₁ (K ⁻¹)	C ₁ (K ⁻²)	D ₁ (K ⁻³)
1	2880	Mat O. with Bn = 2880K	3	- 9.094	2251.74	229098	- 2.744820E+07	3.354016E-03	3.495020E-04	2.095959E-06	4.260615E-07
8	3740	Mat B. with Bn = 3740K	2	- 13.8973	4557.725	- 98275	- 7.522357E+06	3.354016E-03	2.744032E-04	3.666944E-06	1.375492E-07
9	3977	Mat A. with Bn =3977K	0.75	- 14.6337	4791.842	- 115334	- 3.730535E+06	3.354016E-03	2.569850E-04	2.620131E-06	6.383091E-08
10	4090	Mat C. With Bn = 4090K	1.5	- 15.5322	5229.973	- 160451	- 5.414091E+06	3.354016E-03	2.519107E-04	3.510939E-06	1.105179E-07
11	4190	Mat D. with Bn = 4190K	1.5	- 16.0349	5459.339	- 191141	- 3.328322E+06	3.354016E-03	2.460382E-04	3.405377E-06	1.034240E-07
12	4370	Mat E. with Bn = 4370K	2.5	- 16.8717	5759.15	- 194267	- 6.869149E+06	3.354016E-03	2.367720E-04	3.585140E-06	1.255349E-07
13	4570	Mat F. with Bn = 4570K	1.5	- 17.6439	6022.726	- 203157	- 7.183526E+06	3.354016E-03	2.264097E-04	3.278184E-06	1.097628E-07

Avec R = $(V_T 10k\Omega)/(5V-V_T)$