

Project 1 Elektronisch product

Practicum 1

Practicum 1

Welkom in het lab bij het practicum van het Elektronisch product!

- 1. Overzicht practicum
- 2. Theorie
- 3. Opdracht 1: Basisopstelling
- 4. (Meet)apparatuur
- 5. Opdracht 2: Variaties
- 6. Opdracht 3: Verdieping
- 7. Opdracht 4: Extra (optioneel)
- 8. Afronden

Overzicht practicum

1. Overzicht practicum

Voorbereiding practicum 1

- Voorafgaand aan dit practicum heb je jouw Raspberry Pi Zero WH (Pi Zero) al geïnstalleerd en getest.
- Dat is gelukt?

Wat ga je doen?

- Dit is practicum 1 van een serie waarin je kennismaakt met elektronica en elektronische componenten.
- Elk practicum bestaat uit theorie, (meet)apparatuur leren gebruiken en schakelingen opbouwen en doormeten.

Wat heb je nodig?

- Zelf meenemen: Laptop, Pi Zero, micro USB-kabel, multimeter, breadboard, kabeltjes, sonde oscilloscoop
- Dit krijg je en mag je houden: LED's, weerstanden, drukknopjes, potmeter

Theorie

2. Theorie

Tijdens dit practicum wordt de volgende theorie uit het **Wiki document** behandeld:

- 1.1 Wet van Ohm
- 1.2 Schema
- 1.3 Raspberry Pi Zero
- 1.4 Breadboard
- 2.2 LED
- 2.5 Potmeter
- 2.7 Drukknop

NB: de Wiki zal vooraf elk practicum een update krijgen, dus houd de versies in de gaten.

Opdracht 1: Basisopstelling

De volgende (nieuwe) componenten gaan dit practicum gebruikt worden:

- Pi Zero
- LED + weerstand
- Potmeter
- Drukknop

Broncode:

- 1. Koppel de Pi Zero aan de laptop en zet de Pi Zero aan.
- 2. Download het practicum1.txt broncode bestand van BrightSpace.
- 3. Maak de practicum1 folder op de Pi Zero aan en plaats hierin de bestanden uit het .txt-bestand.

Opdracht 1a: een LED laten knipperen met behulp van een drukknopje (analoog).

1x weerstand 240 Ω R1

1x rode LED D1

1x drukknopje SW1A

Opdracht 1a

- 1. Koppel de Pi Zero aan de laptop en zet de Pi Zero aan.
- Bouw schema 1 op het breadboard na.
- Gebruik de drukknop om de LED te laten knipperen.

Schema 1

Opdracht 1b: een LED laten knipperen met behulp van de Pi Zero (digitaal).

1x weerstand 240 Ω R2

1x rode LED D2

Opdracht 1b

- 1. Koppel de Pi Zero aan de laptop en zet de Pi Zero aan.
- 2. Bouw schema 1 op het breadboard na.
- 3. Compileer de broncode: opdracht1b.cpp
- 4. Start het programma om de LED automatisch te laten knipperen: \$./opdracht1b

4 (Meet)apparatuur

4. (Meet)apparatuur

Tijdens dit practicum wordt de volgende (meet)apparatuur uit het Wiki document behandeld:

- 4.1 Multimeter
- Voor nu alleen een introductie:
 - 4.2 Labvoeding
 - 4.3 Functiegenerator
 - 4.4 Oscilloscoop

NB: de Wiki zal vooraf elk practicum een update krijgen, dus houd de versies in de gaten.

Opdracht 2: Variaties

Opdracht 2a: de multimeter gebruiken om de seriële schakeling door te meten.

2x weerstand 120Ω R3, R4

1x rode LED D3

Opdracht 2a

- 1. Koppel de Pi Zero aan de laptop en zet de Pi Zero aan.
- 2. Bouw schema 1 op het breadboard na.
- 3. Meet en noteer van de twee weerstanden en de LED de spanning (V) en de weerstand (R).
- 4. Meet en noteer de stroom (A).
- 5. Gebruik de Wet van Ohm om te bepalen of de gemeten waardes correct kunnen zijn.

Opdracht 2b: de multimeter gebruiken om de parallelle schakeling door te meten.

1x weerstand 240 Ω R9

1x weerstand 1 k Ω R10

1x rode LED D6

Opdracht 2b

- 1. Koppel de Pi Zero aan de laptop en zet de Pi Zero aan.
- 2. Bouw schema 1 op het breadboard na.
- 3. Meet en noteer van de twee weerstanden en de LED de spanning (V) en de weerstand (R).
- 4. Meet en noteer op de drie testpunten de stroom (A).
- 5. Gebruik de Wet van Ohm om te bepalen of de gemeten waardes correct kunnen zijn.

Opdracht 2c: de multimeter gebruiken om de verbindingen van de drukknop door te meten.

1x drukknopje SW1A

Opdracht 2c

- 1. Koppel de Pi Zero aan de laptop en zet de Pi Zero aan.
- 2. Plaats de drukknop op het breadboard.
- 3. Meet en noteer van alle mogelijke combinaties van de 4 testpunten of het 'kortsluiting' of 'open klem' is.
- 4. Teken het (interne) schema van de drukknop.

Opdracht 3: Verdieping

Opdracht 3a: de kleuren van de RGB LED los en in combinaties tegelijk laten branden.

3x weerstand 240 Ω R15, R16, R17

8x drukknopje SW1, SW2, SW3

1x RGB LED D9

Opdracht 3a

- 1. Koppel de Pi Zero aan de laptop en zet de Pi Zero aan.
- Bouw schema 1 op het breadboard na.
- De RGB LED zal wit licht geven.
- Voeg voor elke RGB LED een drukknopje toe.
- Meet en noteer van de 2³ combinaties wat de kleuren zijn en merk de veranderingen in lichtintensiteit op.

Schema 1

Opdracht 3b: gebruik voor twee LED's maar een losse weerstand om componenten en energie te besparen.

1x weerstand 240 Ω R18
1x rode LED D10
1x rode LED D11

Opdracht 3b

- 1. Koppel de Pi Zero aan de laptop en zet de Pi Zero aan.
- 2. Bouw schema 1 op het breadboard na.
- 3. Meet en noteer de spanning (V) over en de stroom (A) door R18, D10 en D11.
- 4. Vervang D11 door een kabeltje.
- Meet en noteer de spanning (V) over en de stroom (A) door R18 en D10.
- 6. Vergelijk de lichtintensiteit tussen D10+D11 en D10 los.

Schema 1

Opdracht 3c: laat contactdender zien en los het erna softwarematig op.

1x drukknopje SW1A

Opdracht 3c

- 1. Koppel de Pi Zero aan de laptop en zet de Pi Zero aan.
- 2. Sluit het drukknopje op het breadboard aan.
- 3. Compileer de broncode: opdracht3c.cpp
- 4. Start het programma om de drukknop met contactdender te zien: \$./opdracht3c met
- 5. Start het programma om de drukknop zonder contactdender te zien: \$./opdracht3c zonder

Opdracht 4: Extra (optioneel)

7. Opdracht 4: Extra (optioneel)

Opdracht 4: gebruik de groene en de rode kleur van de RGB LED om op het oog ze beiden met dezelfde intensiteit te laten branden.

1x weerstand 240 Ω R19

1x weerstand 120 Ω R20, R21

1x potmeter 1 k Ω RV1

lx rode LED D10

1x RGB LED D12

7. Opdracht 4: Extra (optioneel)

Opdracht 4

- 1. Koppel de Pi Zero aan de laptop en zet de Pi Zero aan.
- 2. Bouw schema 1 op het breadboard na.
- 3. Gebruik de potmeter om de rode kleur op het oog even intens als de groene kleur te laten branden.
- 4. Meet en noteer de optimale instelling van de potmeter.

Tip: gebruik twee drukknopjes om de twee kleuren niet altijd gelijk aan te hebben staan.

Afronden

8. Afronden

Hoe is het gegaan?

Voorbereiding practicum 2

- Loop nog de theorie en opdrachten van practicum 1 door.
- Werk jouw aantekeningen bij.

Opruimen

- (Meet)apparatuur ontkoppelen en afsluiten.
- De Pi Zero afsluiten: \$ sudo shutdown -h now
- Materiaal en gereedschap opruimen.
- Neem al jouw spullen mee naar huis.

Bronvermelding

1] https://uelectronics.com/producto/led-5mm-difuso-rojo-amarillo-verde-azul-blanco/, bezocht sep 2021

