Espaces préhilbertiens

Nathan MAILLET

Dans toute la suite, $(E, \langle ., . \rangle)$ désigne un espace préhilbertien et x, y deux éléments de E

Égalités de polarisations

$$\langle x, y \rangle = \frac{\|x + y\|^2 - \|x - y\|^2}{4}$$
$$= \frac{\|x + y\|^2 - \|x\|^2 - \|y\|^2}{2}$$

Égalité du parallélogramme :

$$\|x + y\|^2 + \|x - y\|^2 = 2(\|x\|^2 + \|y\|^2)$$

Théorème de Pythagore :

$$x \perp y \iff ||x + y||^2 = ||x||^2 + ||y||^2$$

Procédé de Gram-Schmidt

Soit $(e_i)_{1 \leq i \leq n}$ une base de E euclidien. Il existe une unique base orthonormale $(\varepsilon_i)_{1 \leq i \leq n}$ telle que $P_{(e_i)}^{(\varepsilon_i)}$ soit triangulaire supérieure à diagonale strictement positive. La formule générale pour les ε_i est :

$$\epsilon_{i+1} = \frac{\epsilon_{i+1}'}{\left\|\epsilon_{i+1}'\right\|} \text{ avec } \epsilon_{i+1}' = e_{i+1} - \sum_{j=1}^{i} \langle e_{i+1}, \epsilon_j \rangle \epsilon_j$$

Théorème de projection

Soit F un sous espace vectoriel de E de dimension fini. La projection sur F parallèlement à F^{\perp} est la projection orthogonale sur F notée P_F . P_F est le seul point en lequel d(x,F) est atteinte. Si $(e_i)_1^n$

est une base orthonormale de F, on a :

$$P_F(x) = \sum_{i=1}^n \langle x, e_i \rangle e_i$$

Définition

Une famille $(e_i)_{i\in I}$ est orthonormale totale si elle est orthonormale et $\mathrm{Vect}\,(e_n,n\in\mathbb{N})$ est dense dans E.

Si $(e_n)_{n\in\mathbb{N}}$ est une famille orthonormale totale, on a :

$$\sum_{k=0}^{n} \langle x, e_k \rangle e_k \underset{n \to +\infty}{\longrightarrow} x$$

Définition

 $f\in \mathcal{L}(E)$ est dit symétrique ($f\in S(E))$ si $\langle x\,,f(y)\rangle=\langle f(x)\,,y\rangle$

Théorème spectrale

 $f \in S(E)$ si et seulement si il existe une base orthonormale qui diagonalise f

Si $S \in S_n(\mathbb{R}), S$ est diagonale dans une base orthonormale

Définition

Un élément f de $\mathcal{L}(E)$ est dit orthogonal si $\langle f(x), f(y) \rangle = \langle x, y \rangle$. C'est équivalent à : f conserve la norme

Groupe orthogonal -

Si E est de dimension $n, f \in O(E)$ si et seulement si il existe une base orthonormale dans laquelle la matrice de f est de la forme :

$$\begin{pmatrix} R_{\theta_1} & 0 & 0 & 0 & 0 \\ 0 & \ddots & 0 & 0 & 0 \\ 0 & 0 & R_{\theta_k} & 0 & 0 \\ 0 & 0 & 0 & I_p & 0 \\ 0 & 0 & 0 & 0 & -I_q \end{pmatrix}$$
 avec $\forall 1 \leq i \leq k, R_{\theta_i} = \begin{pmatrix} \cos(\theta_i) & -\sin(\theta_i) \\ \sin(\theta_i) & \cos(\theta_i) \end{pmatrix}$

$$\mathrm{avec} \ \forall 1 \leq i \leq k, R_{\theta_i} = \begin{pmatrix} \cos(\theta_i) & -\sin(\theta_i) \\ \sin(\theta_i) & \cos(\theta_i) \end{pmatrix}$$