Homework 3

1. Suppose the following assumptions hold:

Assumption 1.1: $\{Y_t, X_t'\}'$ is an i.i.d. random sample with

$$Y_t = X'_t \beta^0 + \varepsilon_t,$$

for some unknown parameter β^0 and unobservable random disturbance ε_t .

Assumption 1.2: $E(\varepsilon_t | X_t) = 0$ a.s.

Assumption 1.3:

(i) $W_t = W(X_t)$ is a positive function of X_t ;

(ii) The $K \times K$ matrix $E(X_t W X'_t) = Q_w$ is finite and nonsingular.

(iii) $E\left(W_t^8\right) \leq C < \infty$, $E\left(X_{jt}^8\right) \leq C < \infty$ for all $0 \leq j \leq k$, and $E\left(\varepsilon_t^4\right) \leq C$;

Assumption 1.4: $V_w = E\left(X_t W_t^2 X_t' \varepsilon_t^2\right)$ is finite and nonsingular.

We consider the so-called weighted least squares (WLS) estimator for β^0 :

$$\hat{\beta}_w = \left(n^{-1} \sum_{t=1}^n X_t W X'_t\right)^{-1} n^{-1} \sum_{t=1}^n X_t W Y_t.$$

(a) Show that $\hat{\beta}_w$ is the solution to the following problem

$$\min_{\beta} \sum_{t=1}^{n} W_t (Y_t - X'_t \beta)^2.$$

(b) Show that $\hat{\beta}_w$ is consistent for β^0 ;

(c) Show that $\sqrt{n} \left(\hat{\beta}_w - \beta^0 \right) \stackrel{d}{\to} N \left(0, \Omega_w \right)$ for some $K \times K$ finite and positive definite matrix Ω_w . Obtain the expression of Ω_w under (i) conditional homoskedasticity $E \left(\varepsilon_t^2 | X_t \right) = \sigma^2$ a.s. and (ii) conditional heteroskedasticity $E \left(\varepsilon_t^2 | X_t \right) \neq \sigma^2$.

(d) Propose an estimator $\hat{\Omega}_w$ for Ω_w , and show that $\hat{\Omega}_w$ is consistent for Ω_w under conditional homoskedasticity and conditional heteroskedasticity respectively.

(e) Construct a test statistic for H_0 : $R\beta^0 = r$, where r is a $J \times K$ matrix and r is a $J \times 1$ vector under conditional homoskedasticity and under conditional heteroskedasticity respectively. Derive the asymptotic distribution of the test statistic under H_0 in each case.

(f) Suppose $E\left(\varepsilon_t^2 | X_t\right) = \sigma^2\left(X_t\right)$ is known, and we set $W_t = \sigma^{-1}\left(X_t\right)$. Construct a test statistic for $H_0: R\beta^0 = r$, where r is a $J \times K$ matrix and r is a $J \times 1$ vector. Derive the asymptotic distribution of the test statistic under H_0 .

ANSWER:

(a)

$$\min_{\beta} \sum_{t=1}^{n} W_t (Y_t - X'_t \beta)^2$$

From

$$f.o.c: \min_{\beta} \sum_{t=1}^{n} W_t(-2X'_t\beta Y_t + 2X_tX'_t\hat{\beta}) = 0$$

we have

$$\hat{\beta}_w = \left(n^{-1} \sum_{t=1}^n X_t W_t X_t'\right)^{-1} n^{-1} \sum_{t=1}^n X_t W_t Y_t$$

(b)

$$\hat{\beta}_w = \left(n^{-1} \sum_{t=1}^n X_t W_t X_t'\right)^{-1} \left(n^{-1} \sum_{t=1}^n X_t W_t (X_t' \beta + \varepsilon_t)\right)$$
$$= \beta^0 + \left(n^{-1} \sum_{t=1}^n X_t W_t X_t'\right)^{-1} \left(n^{-1} \sum_{t=1}^n X_t W_t \varepsilon_t\right)$$

$$E\left|X_{jt}W_{t}X'_{lt}\right| \leq \left[E\left(X_{jt}^{2}W_{t}^{2}\right)E\left(X_{lt}^{2}\right)\right]^{1/2} \leq \left[E\left(X_{jt}^{4}\right)^{1/2}E\left(W_{t}^{4}\right)^{1/2}E\left(X_{lt}^{2}\right)\right]^{1/2}$$

From assumption

$$E\left(W_t^8\right) \le C < \infty \quad E\left(X_{it}^2\right) \le C < \infty$$

we have

$$E\left|X_{jt}W_{t}X'_{lt}\right| < \infty \quad 0 \le j, l \le k$$

By WLLN,

$$\frac{1}{n} \sum_{t=1}^{n} X_{t} W_{t} X'_{t} \stackrel{p}{\rightarrow} E\left(X_{t} W_{t} X'\right) = Q_{w}$$

and

$$\left(\frac{1}{n}\sum_{t=1}^{n}X_{t}W_{t}X_{t}'\right)^{-1} \xrightarrow{p} Q_{w}^{-1}$$

$$E\left|X_{jt}W_{t}\varepsilon_{t}\right| \leq \left[E\left(X_{jt}^{2}W_{t}^{2}\right)E\left(\varepsilon_{lt}^{2}\right)\right]^{1/2} \leq \left[E\left(X_{jt}^{4}\right)^{1/2}E\left(W_{t}^{4}\right)^{1/2}E\left(\varepsilon_{lt}^{2}\right)\right]^{1/2}$$

From assumption

$$E\left(X_{it}^{2}\right) < \infty$$
 $E\left(W_{t}^{8}\right) < \infty$ $E\left(\varepsilon_{t}^{4}\right)$ $< C$

we have

$$E\left|X_{it}W_{t}\varepsilon_{t}\right|<\infty$$

By WLLN,

$$\frac{1}{n} \sum_{t=1}^{n} X_{t} W_{t} \varepsilon_{t} \stackrel{p}{\to} E\left(X_{t} W_{t} \varepsilon_{t}\right) = 0$$

So,

$$\left(n^{-1}\sum_{t=1}^{n} X_{t}W_{t}X'_{t}\right)^{-1}\left(n^{-1}\sum_{t=1}^{n} X_{t}W_{t}\varepsilon_{t}\right) \xrightarrow{p} Q_{w}^{-1} \cdot 0 = 0$$

$$\hat{\beta}_{w} \xrightarrow{p} \beta^{0}$$

 $\hat{\beta}_w$ is consistent for β^0 .

$$\sqrt{n}(\hat{\beta}_w - \beta^0) = \left(\frac{1}{n} \sum_{t=1}^n X_t W_t X_t'\right)^{-1} \sqrt{n} \left(\frac{1}{n} \sum_{t=1}^n X_t W_t \varepsilon_t\right)$$

Let $Z_t = X_t W_t \varepsilon_t$, $\bar{Z}_t = \frac{1}{n} \sum_{t=1}^n X_t W_t \varepsilon_t$. Then,

$$Var(Z_t) = E\left(X_t W_t^2 X_t' \varepsilon_t^2\right) = V_w$$

$$E\left|X_{jt}W_t^2X_{lt}\varepsilon_t^2\right| \le E\left(X_{jt}^2W_t^4X_{lt}^2\right)^{1/2} \cdot E\left(\varepsilon_t^4\right)^{1/2}$$

$$\le \left[E\left(X_{jt}^4\right)E\left(W_t^8\right)E\left(X_{lt}^4\right)\right]^{1/4} \cdot E\left(\varepsilon_t^4\right)^{1/2}$$

since $E\left(W_t^8\right)<\infty,\,E\left(X_{jt}^4\right)<\infty,\,E\left(\varepsilon_t^4\right)<\infty,$ we have

$$E\left|X_{jt}W_t^2X_{lt}\varepsilon_t^2\right| < \infty$$

By CLT,

$$\sqrt{n}\bar{Z} \stackrel{d}{\to} N\left(0, V_w\right)$$

$$\sqrt{n}(\hat{\beta}_w - \beta^0) = \left(\frac{1}{n} \sum_{t=1}^n X_t W_t X'_t\right)^{-1} \sqrt{n}\bar{Z} \stackrel{d}{\to} N\left(0, \Omega_w\right)$$

where $\Omega_w = Q_w^{-1} V_w Q_w^{-1}$, $Q_w = E(X_t W_t X'_t)$. (i) conditional homoskedasticity $E(\varepsilon_t^2 | X_t) = \sigma^2$

$$V_w = E\left(X_t W_t^2 X_t' \varepsilon_t^2\right) = E\left(E\left(X_t W_t^2 X_t' \varepsilon_t^2 | X_t\right)\right) = \sigma^2 E\left(X_t W_t^2 X_t'\right) = \sigma^2 Q_w^2$$

$$\Omega_w = \sigma^2 Q_w^{-1} Q_w^2 Q_w^{-1}$$

(ii) conditional heterosked asticity $E\left(\varepsilon_{t}^{2}\left|X_{t}\right.\right)\neq\sigma^{2}$

$$\Omega_w = Q_w^{-1} V_w Q_w^{-1}$$

(d)

(i) under conditional homoskedasticity:
$$\hat{\Omega}_w = s^2 \hat{Q}_w^{-1} \hat{Q}_{w^2} \hat{Q}_w^{-1}$$
, where $\hat{Q}_w^{-1} = \left(\frac{1}{n} \sum_{t=1}^n X_t W_t X'_t\right)^{-1} \stackrel{p}{\to} Q_w^{-1}$, $\hat{Q}_{w^2} = \frac{1}{n} \sum_{t=1}^n X_t W_t^2 X'_t \stackrel{p}{\to} Q_{w^2}$

$$\begin{split} s^2 &= \frac{1}{n-k} e'e = \frac{1}{n-k} \sum \left(Y_t - X'_t \hat{\beta} \right)^2 = \frac{1}{n-k} \sum \left[\varepsilon_t - X'_t \left(\hat{\beta} - \beta^0 \right) \right]^2 \\ &= \frac{n}{n-k} \left(\frac{1}{n} \sum \varepsilon_t^2 \right) + \left(\hat{\beta} - \beta^0 \right)' \left(\frac{1}{n-k} \sum X_t X'_t \right) \left(\hat{\beta} - \beta^0 \right) - 2 \left(\hat{\beta} - \beta^0 \right) \left(\frac{1}{n-k} \sum X_t \varepsilon_t \right) \\ &\stackrel{P}{\to} 1 \cdot \sigma^2 + 0 \cdot E \left(X_{it}^2 \right) \cdot 0 + 2 \cdot 0 = \sigma^2 \end{split}$$

$$s^2 \hat{Q}_w^{-1} \hat{Q}_{w^2} \hat{Q}_w^{-1} \xrightarrow{p} \sigma^2 Q_w^{-1} Q_{w^2} Q_w^{-1}$$

(ii) under conditional heterosked asticity: $\hat{\Omega}_w = \hat{Q}_w^{-1} \hat{V}_w \hat{Q}_w^{-1}$, where $\hat{Q}_w = \frac{1}{n} \sum_{t=1}^n X_t W_t X'_t$, $\hat{V}_w = \frac{1}{n} \sum_{t=1}^n X_t W_t^2 X'_t e_t^2$

$$\begin{split} \hat{V}_{w} &= \frac{1}{n} \sum_{t=1}^{n} X_{t} W_{t}^{2} X'_{t} e_{t}^{2} \\ &= \frac{1}{n} \sum_{t=1}^{n} X_{t} W_{t}^{2} X'_{t} \Big(\varepsilon_{t} - (\hat{\beta} - \beta^{0})' X_{t} \Big)^{2} \\ &= \frac{1}{n} \sum_{t=1}^{n} X_{t} W_{t}^{2} X'_{t} \varepsilon_{t}^{2} + \frac{1}{n} \sum_{t=1}^{n} X_{t} W_{t}^{2} X'_{t} \left[(\hat{\beta} - \beta^{0})' X_{t} X'_{t} (\hat{\beta} - \beta^{0}) \right] + \frac{1}{n} \sum_{t=1}^{n} X_{t} W_{t}^{2} X'_{t} \left[\varepsilon_{t} X'_{t} (\hat{\beta} - \beta^{0}) \right] \end{split}$$

$$E |X_{jt}W_{t}^{2}X_{lt}\varepsilon_{t}^{2}| \leq \left[E\left(X_{jt}^{2}W_{t}^{4}X_{lt}^{2}\right)E\left(\varepsilon_{t}^{4}\right)\right]^{1/2}$$

$$\leq \left[\left(EX_{jt}^{4}X_{lt}^{4}\right)\left(EW_{t}^{8}\right)\right]^{1/4}\left(E\varepsilon_{t}^{4}\right)^{1/2}$$

$$\leq \left(EX_{jt}^{8}\right)^{1/8}\left(EX_{lt}^{8}\right)^{1/8}\left(EW_{t}^{8}\right)^{1/4}\left(E\varepsilon_{t}^{4}\right)^{1/2}$$

$$\leq C < \infty$$

It is easy to proof

$$\begin{split} &\frac{1}{n}\sum_{t=1}^{n}X_{t}W_{t}^{2}X'_{t}\varepsilon_{t}^{2} \rightarrow E\left(X_{t}W_{t}^{2}X'_{t}\varepsilon_{t}^{2}\right) = V_{w} \\ &\frac{1}{n}\sum_{t=1}^{n}X_{t}W_{t}^{2}X'_{t}\left[\left(\hat{\beta}-\beta^{0}\right)'X_{t}X'_{t}\left(\hat{\beta}-\beta^{0}\right)\right] \rightarrow 0 \\ &\frac{1}{n}\sum_{t=1}^{n}X_{t}W_{t}^{2}X'_{t}\left[\varepsilon_{t}X'_{t}\left(\hat{\beta}-\beta^{0}\right)\right] \rightarrow 0 \end{split}$$

So,

$$\hat{\Omega}_w = \hat{Q}_w^{-1} \hat{V}_w \hat{Q}_w^{-1} \xrightarrow{p} Q_w^{-1} V_w Q_w^{-1} = \Omega_w$$

- (e)
- (i) under conditional homoskedasticity

$$\sqrt{n}(\hat{\beta}_w - \beta^0) \stackrel{d}{\to} N\left(0, \sigma^2 Q_w^{-1} Q_{w^2} Q_w^{-1}\right)$$

under $H_0: R\beta^0 = r$,

$$\sqrt{n}R(\hat{\beta}_w - \beta^0) \stackrel{d}{\to} N\left(0, \sigma^2 R Q_w^{-1} Q_{w^2} Q_w^{-1} R'\right)$$

$$\sqrt{n}(R\hat{\beta}_w - r) \left(\sigma^2 R Q_w^{-1} Q_w^2 Q_w^{-1} R'\right)^{-1} \sqrt{n} (R\hat{\beta}_w - r) \xrightarrow{d} \chi_J^2$$

by slustky theorem,

$$\sqrt{n}(R\hat{\beta}_w - r) \left(\sigma^2 R\hat{Q}_w^{-1} \hat{Q}_w^2 \hat{Q}_w^{-1} R'\right)^{-1} \sqrt{n}(R\hat{\beta}_w - r) \stackrel{d}{\to} \chi_J^2$$

(ii) under conditional heteroskedasticity

$$\sqrt{n}(\hat{\beta}_w - \beta^0) \stackrel{d}{\rightarrow} N\left(0, Q_w^{-1} V_w Q_w^{-1}\right)$$

under $H_0: R\beta^0 = r$,

$$\sqrt{n}R(\hat{\beta}_w - \beta^0) \xrightarrow{d} N\left(0, RQ_w^{-1}V_wQ_w^{-1}R'\right)$$

$$\sqrt{n}(R\hat{\beta}_w - r)(RQ_w^{-1}V_wQ_w^{-1}R')^{-1}\sqrt{n}(R\hat{\beta}_w - r) \xrightarrow{d} \chi_J^2$$

by slustky theorem,

$$\sqrt{n}(R\hat{\beta}_w - r) \left(R\hat{Q}_w^{-1}\hat{V}_w\hat{Q}_w^{-1}R'\right)^{-1} \sqrt{n}(R\hat{\beta}_w - r) \stackrel{d}{\to} \chi_J^2$$

(f) $\sqrt{n}(\hat{\beta}_w - \beta^0) \xrightarrow{d} N\left(0, Q_w^{-1} V_w Q_w^{-1}\right)$

$$V_w = E\left(X_t W_t^2 X_t' \varepsilon_t^2\right) = E\left(X_t W_t^2 X_t' E\left(\varepsilon_t^2\right)\right) = E\left(X_t X_t'\right)$$

$$Q_w = E\left(X_t W_t X_t'\right)$$

$$V_w = \frac{1}{n} \sum_{t=1}^{n} X_t X'_t \stackrel{p}{\to} V_w$$

$$Q_w = \frac{1}{n} \sum_{t=1}^{n} X_t X'_t W_t \stackrel{p}{\to} Q_w$$

$$\sqrt{n}(R\hat{\beta}_w - r) \left(R\hat{Q}_w^{-1}\hat{V}_w\hat{Q}_w^{-1}R'\right)^{-1} \sqrt{n}(R\hat{\beta}_w - r) \stackrel{d}{\to} \chi_J^2$$

2. Consider the problem of testing conditional homosked asticity (H_0 : $E\left(\varepsilon_t^2 | X_t\right) = \sigma^2$) for a linear regression model

$$Y_t = X'_t \beta^0 + \varepsilon_t,$$

where X_t is a $K \times 1$ vector consisting of an intercept and explanatory variables. To test conditional homoskedasticity, we consider the auxiliary regression

$$\varepsilon_t = vech(X_t X'_t)' \gamma + v_t$$
$$= U'_t \gamma + v_t$$

Suppose Assumptions 4.1, 4.2, 4.3, 4.4, 4.7 hold, and $E\left(\varepsilon_{t}^{4}\left|X_{t}\right.\right)\neq\mu_{4}$. That is, $E\left(\varepsilon_{t}^{4}\left|X_{t}\right.\right)$ is a function of X_{t} .

- (a) Show var $(v_t|X_t) \neq \sigma_v^2$ under H_0 . That is, the disturbance v_t in the auxiliary regression model displays conditional heteroskedasticity.
- (b) Suppose ε_t is directly observable. Construct an asymptotically valid test for the null hypothesis H_0 of conditional homoskedasticity. Justify your reasoning and test statistic.

ANSWER: Under H_0

$$\operatorname{var}(v_t | X_t) = \operatorname{var}(\varepsilon_t^2 | X_t)$$
$$= E(\varepsilon_t^4 | X_t) - \sigma^4$$
$$\neq cons \tan t$$

This means the disturbance v_t in the auxiliary regression model display conditional heteroskedasticity. According to the auxiliary regression model, the null hypothesis is equivalent to

$$H_0: R\gamma = 0$$

where $R=\left(\begin{array}{cc} 0 & I_J \end{array}\right),\,I_J$ is the identity matrix, and $J=\frac{K(K+1)}{2}-1.$ Then,

$$\sqrt{n}\hat{\gamma} = \sqrt{n}(\hat{\gamma} - \gamma_0) + \sqrt{n}(\gamma_0 - 0)$$
$$= \sqrt{n}(\hat{\gamma} - \gamma_0)$$
$$\stackrel{d}{\to} N\left(0, Q_u^{-1} V_v Q_u^{-1}\right)$$

where $V_v = E\left(U_t U'_t v_t^2\right)$.

It follows that a robust Wald test statistic

$$W = \sqrt{nR}\hat{\gamma} \left[RQ_u^{-1} V_v Q_u^{-1} R' \right]^{-1} \sqrt{nR} \hat{\gamma} \stackrel{d}{\to} \chi_J^2$$

Because $\hat{Q}_u \xrightarrow{p} Q_u$ and $\hat{V}_u \xrightarrow{p} V_u$, we have the Wald test statistic

$$W = \sqrt{n}R\hat{\gamma} \left[R\hat{Q}_u^{-1}\hat{V}_v\hat{Q}_u^{-1}R' \right]^{-1} \sqrt{n}R\hat{\gamma} \stackrel{d}{\to} \chi_J^2$$

by the Slutsky theorem.