Macroinvertebrate Thermal Tolerance Index (MTTI)

Shannon Hubler, Sean Sullivan, Jen Stamp, Mark Fernandez

Western Maritime BCG Workgroup

April 1, 2022

Background

 Goal: Develop an index to represent thermal tolerances at the assemblage-level

- What it is not: Inferring, or predicting stream temperature
 - There are better methods available, with less error in predictions
- What it is: Realized thermal niche, for an assemblage
 - If every taxon had a vote, what would the temperature be?
 - A single numerical value, on the same scale as state Water Quality Standards

Building the dataset

- Geographic Area: all of Oregon and Washington
- Temperature: NorWeST modeled summer maximum temperature
 - MWMT = maximum weekly maximum temperature
 - Similar to OR and WA temperature water quality standards
 - 1993-2011 average MWMT vs Annual MWMT
- Bug data: local, state, federal, tribal
- Sites associated with NorWeST flowlines and MWMT (modeled temp)
 - Removed duplicates and non-wadeable sites
 - Calibration (CAL) = 3658 unique sites
 - Validation (VAL) = 603 unique sites
 - Independent sites from CAL
 - But on the same stream segments as CAL sites

Taxonomy

- Started with 786 taxonomic names
- Operational Taxonomic Units: 332 unique taxa
 - No ambiguous taxa allowed
 - Explored multiple taxonomic scales, but highest resolution performed best
 - For each taxonomic group, we examined WA optima
 - Minimal differences: roll all children taxa (e.g., species) into parent (e.g., genus)
 - Differing thermal sensitivities: keep lowest level IDs for that group (e.g., species retained, while genus dropped)

OTU Example: Baetis

Bio_ALL_TaxaID_v2	ct_CAL	ct_VAL	ct_NOT	MTTI_OTU_highres_v2	WAopt_nOcc_30plus
Baetidae	480	83	484	666	17.42
Baetis	1711	359	1410	666	17.06
Baetis alius	38	3	28	Baetis alius	15.91
Baetis bicaudatus complex	165	16	193	Baetis bicaudatus complex	12.33
Baetis flavistriga complex	76	11	45	Baetis flavistriga complex	19.89
Baetis notos	47	6	29	Baetis notos	22.09
Baetis piscatoris complex	42		38	Baetis piscatoris complex	14.53
Baetis rhodani group	38	3	42	Baetis rhodani group	15.48
Baetis tricaudatus complex	1964	250	2366	Baetis tricaudatus complex	18.32

OTU example: Orthocladius

Bio_ALL_TaxaID_v2	ct_CAL	ct_VAL	ct_NOT	MTTI_OTU_highres_v2	WAopt_nOcc_30plus
Orthocladiinae	1898	290	1809	666	17.86
Orthocladius	640	111	614	Orthocladius	17.09
Orthocladius (Euorthocladius)	6		8	Orthocladius	
Orthocladius (Mesorthocladius)	1			Orthocladius	
Orthocladius (Orthocladius)	1			Orthocladius	
Orthocladius (Symposiocladius)	201	16	154	Orthocladius (Symposiocladius)	17.26
Orthocladius complex	507	70	298	Orthocladius complex	20.92

Modeling a model???

MidColumbia Basin NorWeST Stream Temperature Model

Both figures from NorWeST website: https://www.fs.fed.us/rm/boise/AWAE/projects/NorWeST.html

Data sources

Level III Ecoregion	state	CAL	VAL	%CAL	%VAL
Coast Range	both	906	134	25	22
Cascades	both	785	104	21	17
Puget Lowlands	WA	518	166	14	28
North Cascades	WA	337	26	9	4
Blue Mountains	both	281	77	8	13
Klamath Mountains	both	213	35	6	6
Columbia Plateau	both	182	12	5	2
Willamette Valley	OR	169	22	5	4
East Cascades	both	146	22	4	4
Northern Rockies	WA	86	4	2	1
Northern Basin and Range	OR	34	1	1	0
Snake River Plains	OR	1	0	0	0
TOTAL		3658	603		

Source Type	%
Tribal	< 1
Federal	44
State	43
Local (county, city)	12

Are CAL and VAL similar populations?

- Principal Components Analysis
 - Spatial, temporal, climate, size, disturbance

Statistical Methods: Weighted Averaging (WA)

- Paleolimnology: predict past conditions, based on taxa found in sediments
 - We use the same methods, but we apply them differently
- Developed in R, 'rioja' package
- First step: calculate thermal **optima** for all **taxa**
 - Across all sites where a taxon is present
 - Abundances are weighted by temperatures
 - $\Sigma_{sites}((RA * TEMPmwmt)/RA)$
 - All taxa have an optimum
 - Even the eurythermal taxa
- Second step: calculate the assemblage-level thermal response (MTTI) for a <u>site</u>
 - Across all taxa, within a site
 - Taxa abundances are weighted by their respective thermal optima
 - $\Sigma_{taxa}((RA * OPTIMAmwmt)/RA)$
- Tolerance down-weighting, deshrinking
- Taxonomy: Highest resolution model

Modeling Results

	Calib	Validation		
	Classical deskrinking, tolerance downweighted	Cross validation: bootstrapped (n = 1000)	Classical deskrinking, tolerance downweighted	
RMSE	2.7	2.7	2.4	
R2	0.69	0.67	0.66	
Max.Bias	2.6	2.8		

Classical deshrinking: tolerance downweighted

Classical deshrinking: tolerance downweighted

Model errors across the temperature gradient

How do these results compare to previous efforts?

- Huff, Hubler, Pan, Drake (2006): Oregon, statewide
 - Weighted averaging, inverse deshrinking
 - 7-day average maximum temperature (OR WQS, equivalent to MWMT)

Model	Temperature source	Taxa (n)	CAL (n)	VAL (n)	Cross Validation		Independent Validation			
					RMSE	r²	Max Bias	RMSE	r²	Max Bias
Huff et al 2006	Field	235 <mark>*</mark>	328	50	2.1	0.73	3.7	2.7	0.66	3.2
MTTI	Modeled stream network	332	3685	603	2.7	0.67	2.8	2.4	0.66	

^{*} No restrictions on number of occurrences. Only 87 taxa with 30 or more occurrences.

Is the MTTI biased? Sampling method

Also: No LAB effect observed

Spatial bias? Ecoregion

Temporal bias? Year, day of year

Natural gradients bias? Slope, elevation, size

- Cooler than expected: higher slopes and elevations, smaller watersheds
- Warmer than expected: lower slopes and elevations, larger watersheds

Is the MTTI biased? Disturbance

- IWI = Index of Watershed Integrity (source = StreamCat)
- MTTI warmer than expected at higher levels of disturbance

Other biases?

- ID Laboratory: minor
- Collection entity: minor

- Differences observed more likely due to study areas/monitoring designs
 - E.g., National Park Service MTTI tended to be cooler than modeled MWMT
 - Higher elevations, higher gradients, lower disturbances?

MTTI: Next Steps

- Incorporate feedback from PNW-BCG workgroup!
- Bias leave as is
 - Natural gradients to be factored out in setting reference expectations (later work)
- Repeatability
- Case study
 - Restoration project? (hopefully already included in Jen's database)
 - How does MTTI relate to thermal tolerance metrics?
 - Using MTTI (or thermal metrics?) to identify the appropriate Dissolved Oxygen standard in OR
- Validate R-code, input data files
 - Distributable R package
- Peer-reviewed journal article

Other stressors?

- Fine sediment: Macroinvertebrates
 - PNW = Fine Sediment Biotic Index (Relyea et al. 2012, Environmental Management)
 - Oregon = Biological Sediment Tolerance Index (Hubler et al. 2016, Ecological Indicators)
 - Use BCG Thermal database to update the model to cover OR & WA?
 - Are habitat protocols the same?
- Nutrients: Periphyton
 - Nutrient Scientific Technical Exchange Partnership & Support (N-STEPS)
 - Diatom tolerance index used in the National Rivers and Streams Assessment
 - Tetra Tech support (Mike Paul) to apply to data from ecoregions in Oregon and neighboring states
 - TAXONOMY LIMITATIONS!!!!!!!