Algebraische Geometrie II

Inoffizielles Vorlesungsskript zur Vorlesung Algebraische Geometrie II von Prof. Walter Gubler im Sommersemester 2014 an der Universität Regensburg

Johannes Loher

10. April 2014

Inhaltsverzeichnis

Einleitung	i
1 Garben	1

Einleitung

- Die klassische algebraische Geometrie ist für Varietäten über algebraisch abgeschlossenen Körpern. Die Koordinatenringe sind dann immer reduzierte Algebren. In der algebraischen Schnitttheorie muss man aber nicht-reduzierte Algebren betrachten ("Multiplizitäten").
- In der Zahlentheorie wird man gezwungen, über Zahlenkörpern zu arbeiten. Dies sind endliche Körpererweiterungen von \mathbb{Q} , also nicht algebraisch abgeschlossen.
- Viele Klassifikationsprobleme führen auf Modulräume, die keine Varietäten sind.

Um diese Probleme zu lösen, hat Alexander Grothendieck zu Beginn der 60er Jahre die Theorie der Schemata eingeführt (EGA I - IV). Dies ist eine relative Theorie, das heißt es wird kein Grundkörpervorausgesetzt und die Koordinatenringe sind beliebige kommutative Ringe. Das heißt, man kann (beziehungsweise muss) die Methoden der kommutativen Algebra für die Beweise nutzen.

Erfolge: Weil-Vermutung (Deligne 70er), Fields-Medaillen, Schemata haben sich als Standard in der algebraischen und arithmetischen Geometrie durchgesetzt.

In dieser Vorlesung seien Ringe und Algebren immer kommutativ und mit Einselement, falls nichts anderes gesagt wird.

1 Garben

Garben sind abstrakte Verallgemeinerungen von Funktionenräumen. Sie sind fundamental für das Studium von Mannigfaltigkeiten und Schemata.

X sei ein topologischer Raum.

- **1.1 Definition.** Eine **Prägarbe** \mathcal{F} (von abelschen Gruppen) auf X besteht aus folgenden Daten:
- a) Für alle U offen in X sein $\mathcal{F}(U)$ eine abelsche Gruppe.
- b) Für alle $V \subseteq U$ offen in X sei $\rho_{UV} : \mathcal{F}(U) \to \mathcal{F}(V)$ ein Homomorphismus.
- c) Es sei $\mathcal{F}(\emptyset) = 0$.
- d) Für alle U offen in X sei $\rho_{UU} = \mathrm{id}_{\mathcal{F}(U)}$.
- e) Für alle $W \subseteq V \subseteq U$ offen in X sei $\rho_{UW} = \rho_{VW} \circ \rho_{UV}$.

Die Elemente von $\mathcal{F}(U)$ heißen **Schnitte** von \mathcal{F} über U. Der Homomorphismus $\rho_{UV}: \mathcal{F}(U) \to \mathcal{F}(V)$ heißt **Restriktionsabbildung** von U auf die offene Teilmenge V von U

- 1.2 Bemerkung. Analog definiert man Prägarben von Ringen, Algebren oder Mengen, ...
- **1.3 Definition.** Eine Prägarbe \mathcal{F} auf X heißt **Garbe**, falls zusätzlich für jede offene Menge U in X und jede offene Überdeckung $U = \bigcup_{i \in I} V_i$ von U folgendes gilt:
- f) Ist $s \in \mathcal{F}(U)$ und $\rho_{UV_i}(s) = 0$ für alle $i \in I$, so gilt bereits s = 0.
- g) Sind $s_i \in \mathcal{F}(V_i)$ für alle $i \in I$ mit $\rho_{V_i V_i \cap V_J}(s_i) = \rho_{V_j V_i \cap V_J}(s_j)$ für alle $i, j \in I$, so gibt es ein $s \in \mathcal{F}(U)$ mit $\rho_{UV_i}(s) = s_i$ für alle $i \in I$.

Eine Garbe ist also duch lokale Informationen vollständig bestimmt.

1.4 Bemerkung. Nach f) ist der Schnitt s in g) eindeutig bestimmt.

Beweis. Sind s, s' zwei solche Schnitte in g), so gilt:

$$\rho_{UV_i}(s - s') = \rho_{UV_i}(s) - \rho_{UV_i}(s') \stackrel{\text{g}}{=} s_i - s_i = 0$$

Also gilt nach f) schon s - s' = 0 und damit s = s'.

1.5 Beispiel. Sei x ein topologischer Raum. Für U offen in X sei

$$\mathcal{F}(U) := \{ f : U \to \mathbb{R} \mid f \text{ ist Funktion} \}.$$

Dies ist eine Garbe (abelscher Gruppen und sogar \mathbb{R} -Algebren) und die Restirktionsabbildungen sind gegeben durch:

$$\rho_{UV}: \mathcal{F}(U) \to \mathcal{F}(V), \ f \mapsto f|_{V}$$

Die Menge der stetigen Funktionen C(U) liefert eine **Untergarbe** \mathcal{F}' von \mathcal{F} ($\mathcal{F}'(U) := C(U)$), das heißt \mathcal{F}' ist auch eine Garbe, es gilt $\mathcal{F}'(U) \subseteq \mathcal{F}(U)$ für alle U offen und für die Restriktionen ist folgendes Diagramm kommutativ:

$$\begin{array}{ccc}
\mathcal{F}'(U) & \longrightarrow & \mathcal{F}(U) \\
\rho_{UV} \downarrow & & & \downarrow \rho_{UV} \\
\mathcal{F}'(V) & \longleftarrow & \mathcal{F}(V)
\end{array}$$

- **1.6 Beispiel.** Sein A eine fixierte abelsche Gruppe. Die zugehörige konstante Prägarbe \mathcal{F} ist definiert durch:
 - Es sei $\mathcal{F}(U) := \left\{ \begin{array}{ll} A & \text{falls } U \neq \emptyset \\ 0 & \text{falls } U = \emptyset \end{array} \right.$
 - Es sei $\rho_{UV} := \begin{cases} \operatorname{id}_A & \text{falls } V \neq \emptyset \\ 0 & \text{falls } V = \emptyset \end{cases}$

Falls X nicht zusammenhängend und $A \neq 0$ ist, dann ist \mathcal{F} keine Garbe. Sei zum Beispiel $X = \{p,q\}$ mit der diskreten Topologie. Seien außerdem $U = \{p,q\}$, $V_1 = \{p\}$, $V_2 = \{q\}$. Dann gilt $\mathcal{F}(U) = \mathcal{F}(V_1) = \mathcal{F}(V_2) = A$ und $\mathcal{F}(\emptyset) = 0$. Seien nun $s_1 \neq 0 \in \mathcal{F}(V_1)$ und $s_2 = 0 \in \mathcal{F}(V_2)$. Wäre \mathcal{F} eine Garbe, dann gäbe es ein $s \in \mathcal{F}(U) = A$ mit $\rho_{UV_i}(s) = s_i$. Dies ist aber offenbar nicht der Fall.

- **1.7 Beispiel.** Seien X,S topologische Räume und $\pi:S\to X$ eine Abbildung mit folgenden Eigenschaften:
- i) π ist surjektiv und ein lokaler Homö
omorphismus.
- j) $\pi^{-1}(x)$ ist für alle $x \in X$ eine abelsche Gruppe.
- k) Sei $S \times_X S := \{(s_1, s_2) \in S \times S \mid \pi(s_1) = \pi(s_2)\}$ das **Faserprodukt** über X mit der von $S \times S$ induzierten Topologie. Dann induzieren die Addition und Invertierung aus j) stetige Abbildungen $S \times_X S \to S$, $(s_1, s_2) \mapsto s_1 + s_2$, beziehungsweise $S \to S$, $s \mapsto -s$.

Die Abbildung π heißt **Projektion** und $\pi^{-1}(x)$ heißt **Faser** von x.

- Sei $U \subseteq X$ offen. Eine stetige Funktion $f: U \to S$ heißt **Schnitt**, wenn $\pi \circ f = \mathrm{id}_U$, das heißt für alle $x \in U$ gilt $f(x) \in \pi^{-1}(x)$.
- Es gibt einen kanonischen globalen Schnitt $X \to S$, $x \mapsto 0_x \in f^{-1}(x)$, den wir **Nullschnitt** nennen.
- Mit $\Gamma(U,S)$ bezeichnen wir den Raum der Schnitte von S über U, wir setzen also

$$\Gamma(U, S) := \{d : U \to S \mid f \text{ stetig}, \ \pi \circ f = \mathrm{id}_U \}.$$

Behauptung: Die Abbildung $U \mapsto \Gamma(U, S)$ zusammen mit der Restriktion $\rho_{UV}(f) := f|_V$ ist eine Garbe.

Beweis. Dies ist klar. \Box

1.8 Bemerkung. Weil π ein lokaler Homöomorphismus ist, muss jeder Schnitt eine offene Abbildung sein (das heißt das Bild einer offenen Teilmenge ist offen). Falls zwei Schnitte in $x \in X$ übereinstimmen, dann stimmen sie auch auf einer Umgebung von x überein.

Beispiel. Die Abbildung $\mathbb{R} \to \{z \in \mathbb{C} \mid |z| = 1\}, \ t \mapsto e^{2\pi i t}$ ist eine Abbildung wie in Beispiel 1.7.

1.9 Bemerkung. Das Beispiel 1.7 erklärt die abstrakten Begriffe aus Definition 1.1. Wir werden sehen, dass jede Garbe durch einen topologischen Raum S und eine Abbildung $\pi:S\to X$ wie in Beispiel 1.7 dargestellt werden kann.

- **1.10 Beispiel.** In Beispiel 1.5 wählen wir ein $x \in X$. Wir definieren $f \sim g$, falls es eine Umgebung U von x gibt mit $f|_{U} = g|_{U}$. Dies liefert eine Äquivalenzrelation auf der Menge der reellwertigen Funktionen, die auf einer Umgebung von x definiert sind. Der **Halm** \mathcal{F}_x ist definiert als Raum der Äquivalenzklassen bezüglich dieser Äquivalenzrelation.
- **1.11 Definition.** Sei \mathcal{F} eine Prägarbe auf X, dann verallgemeinern wir die obige Konstruktion. Sei $x \in X$. Wir betrachten die Menge $\{(U,s) \mid s \in \mathcal{F}(U), U \text{ offene Umgebung von } x\}$. Wir definieren auf dieser Menge eine Relation auf folgende Weise: Es gelte $(U,s) \sim (V,t)$ genau dann, wenn es eine offene Umgebung $W \subseteq U \cap V$ von x mit $\rho_{UW}(s) = \rho_{VW}(t)$ gibt. Man zeigt leicht, dass dies eine Äquivalenzrelation ist. Der **Halm** \mathcal{F}_x ist definiert als der Raum der Äquivalenzklassen bezüglich dieser Äquivalenzrelation. Dies ist eine abelsche Gruppe:

$$[(U_1, s_1)] + [(U_2, s_2)] = [(U_1 \cap U_2, \rho_{U_1 \cup U_1 \cap U_2}(s_1) + \rho_{U_2 \cup U_1 \cap U_2}(s_2)].$$

Wir schreiben auch s_x anstatt von $[(U, s)] \in \mathcal{F}_x$.

1.12 Definition. Ein **Homomorphismus** $\varphi : \mathcal{F} \to \mathcal{G}$ **von (Prä-)Garben** auf x ist eine Familie von Homomorphismen $\varphi_U : \mathcal{F}(U) \to \mathcal{G}(U)$ abelscher Gruppen für alle U offen in X, sodass

$$\begin{array}{ccc}
\mathcal{F}(U) & \xrightarrow{\varphi_U} & \mathcal{G}(U) \\
\rho_{UV} \downarrow & & \downarrow \rho_{UV} \\
\mathcal{F}(V) & \xrightarrow{\varphi_V} & \mathcal{G}(V)
\end{array}$$

für alle $V \subseteq U$ offen in X kommutiert.

Wir können Homomorphismen $\varphi : \mathcal{F} \to \mathcal{G}$ und $\psi : \mathcal{G} \to \mathcal{H}$ von (Prä-)Garben zu einem Homomorphismus $\psi \circ \varphi : \mathcal{F} \to \mathcal{H}$ verknüpfen. Damit können wir auch Isomorphismen von (Prä-)Garben definieren.

Die (Prä-)Garben bilden eine Kategorie.

1.13 Proposition. Sei $\varphi : \mathcal{F} \to \mathcal{G}$ ein Homomorphismus von Garben auf X. Dann ist φ genau dann ein Isomorphismus von Garben, wenn $\varphi_x : \mathcal{F}_x \to \mathcal{G}_x$, $s_x \mapsto \varphi_x(s_x) \coloneqq [(U, \varphi|_U(s))]$ für alle $x \in X$ ein Isomorphismus abelscher Gruppen ist.

Beweis. Dies ist eine einfache Übung.

Beachte, dass diese Aussage nicht für Prägarben gilt.