

Diskrete Strukturen und Logik

Vorlesung 02: Grundlagen

Prof. Dr. Tobias Mömke Universität Augsburg

4. November 2020

Diskrete Strukturen und Logik

4 Zählen

5 Zählkoeffizienter

Inzindenzsystem

Seien S, T Mengen und $I \subseteq S \times T$ eine Relation zwischen S und T ("Inzidenz").

Dann ist (S, T, I) ein **Inzidenzsystem**.

Seien $a \in S$ und $b \in T$:

- lacksquare a und b sind inzident, genau dann wenn $(a,b)\in I$
- Sonst: a und b sind nicht-inzident

Beispiel: Graph

Zweifaches Abzählen

Satz

Sei (S, T, I) ein Inzidenzsystem. Für $a \in S$ und $b \in T$,

r(a): Anzahl zu a inzidenter Elemente aus T

r(b): Anzahl zu b inzidenter Elemente aus S

Dann gilt

$$\sum_{a\in S}r(a)=\sum_{b\in T}r(b)$$

Beweis. Sei

$$S = \{a_1, a_2, \dots, a_m\}$$
 für ein $m \in \mathbb{N}^*$ und

$$T = \{b_1, b_2, \dots, b_n\}$$
 für ein $n \in \mathbb{N}^*$.

$$m \times n$$
 Matrix $M = (m_{ij})$ (Inzidenzmatrix):

$$m_{ij} = \left\{ egin{array}{ll} 1 & \mathsf{falls}\left(a_i,b_j
ight) \in I \ 0 & \mathsf{sonst} \end{array}
ight.$$

 $r(a_i)$: Anzahl Einsen in Zeile i $r(b_i)$: Anzahl Einsen in Spalte j

$$\sum_{a \in S} r(a) \quad \text{und} \quad \sum_{b \in T} r(b)$$

Summe aller Einsen in allen Zeilen respektive Spalten. Formal: Bijektionen zwischen Summen und Anzahl der Einsen.

F Beispiel

$$S = T = [8]$$

 i, j inzident, falls i Teiler von j , also $i|j$.

Fortsetzung vom Beispiel

Frage

Wie viele Teiler hat eine Zahl von 1 bis 8 im Durchschnitt?

Was heißt das formal?

Sei t(n) die Anzahl der Teiler von n. Dann ist der Durchschnitt

$$\bar{t}(n) = \frac{1}{n} \sum_{j=1}^{n} t(j)$$

Beispiel:
$$\bar{t}(8) = 1/8 \cdot \sum_{i=1}^{8} t(i)$$

Was ist \bar{t} für beliebige n?

Teiler nach Spalten zählen:

$$\tau = \sum_{i=1}^{n} t(i)$$

und daher $\bar{t}(n) = \tau/n$. Stattdessen: Wir zählen nach Zeilen.

Zeile i: Eins bei allen Vielfachen von i

Problem:

Teiler nach Spalten zählen:

$$\tau = \sum_{i=1}^n t(i)$$

und daher $\bar{t}(n) = \tau/n$. Stattdessen: Wir zählen nach Zeilen.

Zeile i: Eins bei allen Vielfachen von i

Problem:

i teilt nicht immer *n*.

Z.B. für n = 8 und i = 3: 8/3 = 2 + 2/3, aber nur 2 Einsen

Gaußklammern

Notation

Sei $x \in \mathbb{R}$ beliebig.

Obere Gaußklammer (ceiling):

 $\lceil x \rceil$ ist die kleinste Zahl $a \in \mathbb{Z}$ mit $a \ge x$.

Untere Gaußklammer (floor):

 $\lfloor y \rfloor$ ist die größte Zahl $b \in \mathbb{Z}$ mit $b \leq y$.

Beispiele:

$$[3.5] =$$
 $[3.5] =$
 $[-3] =$
 $[2] =$
 $[-3.5] =$
 $[-3.5] =$

T Zurück zum Beispiel

Erinnerung: Zeile *i* hat Eins für vielfache von *i*.

Anzahl der Einsen in Zeile i: $\lfloor n/i \rfloor$

Zweifaches Abzählen:

$$\bar{t}(n) = \frac{1}{n} \sum_{j=1}^{n} t(j) = \frac{1}{n} \sum_{i=1}^{n} \lfloor n/i \rfloor \sim \frac{1}{n} \sum_{i=1}^{n} \frac{n}{i} = \sum_{i=1}^{n} \frac{1}{i} = H_n$$

Zeichen ~: nicht genau gleich, es gibt einen Fehler.

Größe des Fehlers innerhalb $\sum_{i=1}^{n} \frac{n}{i}$: Pro Summand höchstens 1 Summe der Fehler: höchstens n (Es gibt n Summandenden.) Wir teilen durch n.

Daher insgesamt: Fehler höchstens 1, d.h.,

$$\frac{1}{n}\sum_{i=1}^{n}\lfloor i/n\rfloor \leq \frac{1}{n}\sum_{i=1}^{n}i/n \leq \frac{1}{n}\sum_{i=1}^{n}\lfloor i/n\rfloor + 1$$

Zusammenfassung

Für jedes n: Durchschnittliche Anzahl der Teiler zwischen $H_n - 1$ und H_n Später: Harmonische Zahl H_n etwa In n.

Im Vergleich: Kryptographie basiert auf Schwierigkeit zu faktorisieren!

Diskrete Strukturen und Logik

4 Zählen

5 Zählkoeffizienten

Binomialkoeffizienten

(Wiederholung aus Vorkurs)

Gegeben: Menge M.

Potenzmenge $\mathcal{P}(M)$: Menge aller Teilmengen von M

Menge von Mengen $\mathcal{P}_k(M)$: k-elementige Teilmengen von M, d.h.

$$\mathcal{P}_k(M) = \{S \subseteq M : |S| = k\}$$

Binomialkoeffizienten:

$$\binom{n}{k} = |\mathcal{P}_k|$$

Beispiel: Anzahl der Möglichkeiten, 4 von 10 Vorlesungen auszuwählen.

Stirling Zahlen zweiter Art

Wir betrachten:

Mengen-Partition von *n*-Menge in *k* disjunkte Blöcke.

Kurz: *k*-Mengen-Partition

Anzahl möglicher k-Mengen-Partitionen: Stirling-Zahlen zweiter Art

$$S_{n,k} := |\{P \subseteq \mathcal{P}([n]) : |P| = k \text{ und } P \text{ ist Partition von } [n]\}|$$

Beispiel: $S_{5,2} = 15$

Zahl-Partitionen

Sei $n \in \mathbb{N}^*$.

k-**Zahl-Partition** von *n*:

$$n_1, n_2, \ldots, n_k$$
 mit $n_i \geq 1$ für $1 \leq i \leq k$, so dass $n_1 + n_2 + \cdots + n_k = n$.

Anzahl der möglichen k-Partitionen: $P_{n,k}$

Beispiel:
$$P_{8,4} = 5$$

[「] Reihenfolge

Bei Mengen-Partitionen und Zahl-Partitionen:

Reihenfolge spielt keine Rolle.

Beispiel:

$$\{\{a,b\},\{c\}\} = \{\{c\},\{a,b\}\}\$$

 $3+1+1=1+1+3$

Geeordnete Mengen- und Zahlpartitionen:

Zähle jede Reihenfolge einzeln.

Beispiel: Geeordnete 3-Zahl-Partitionen von 4:

$$1+1+2, 1+2+1, 2+1+1$$

Beachte: Wir unterscheiden nicht unterschiedliche Vorkommen gleicher Zahlen.

(Also
$$1' + 1'' + 2$$
 und $1'' + 1' + 2$ zählen nur ein Mal).

VWerkzeuge

Berechnung der Zählkoeffizienten:

Wir brauchen

- *k*-Permutationen
- Fallende Faktorielle
- Steigend Faktorielle

Permutationen

Definition

Sei *M* eine endliche Menge. Eine **Permutation** von *M* ist eine **bijektive** Funktion

$$\sigma\colon M\to M$$

Beispiel für $M = [4] = \{1, 2, ..., 4\}$:

Anzahl Permuationen

Satz

Sei M eine m-Mengen. Es gibt m! viele Permutationen von M.

Beweis. Ohne Beschränkung der Allgemeinheit: M = [m].

Für m = 1: Einzige Abbildung ist Identität, m! = 1.

Induktion: Angenommen n! Permutationen für n-Menge.

Wir zeigen: (n+1)! Permutationen für n+1-Menge.

- n+1 Möglichkeiten, $\sigma(1)$ zu wählen.
- Danach: Anzahl der Bijektionen $[n+1]\setminus\{1\}\to[n+1]\setminus\{\sigma(1)\}$ Bijektionen $f\colon M\setminus\{1\}\to[n], g\colon[n+1]\setminus\{\sigma(1)\}\to[n]$, betrachte $g^{-1}\circ\sigma'\circ f$ Daher äquivalent: Betrachte Bijektionen $\sigma'\colon[n]\to[n]$
- Nach Induktionsvoraussetzung: n! Permutationen für jede der n+1 Möglichkeiten

Damit insgesamt: $(n+1) \cdot n! = (n+1)!$ Permutationen

k-Permutationen

Definition

Sei M eine endliche Menge mit |M|=m und $k\in\mathbb{N}$, $k\leq m$. Eine k-Permutation von M ist eine Permutation von U für $U\in\mathcal{P}_k$.

Also Permuationen der k-Elementigen Teilmengen von M.

Ähnlich zur Anzahl der Permuationen:

- m Möglichkeiten, das erste Element zu wählen
- lacktriangleq m-1 Möglichkeiten, das zweite Element zu wählen
- . . .
- lacktriangledown m-k+1 Möglichkeiten, das k-te Element zu wählen

Insgesamt: $m \cdot m - 1 \cdot \ldots \cdot m - k + 1$ Möglichkeiten.

Beweis: Übung

Faktorielle

Definition

Fallende Faktorielle:

$$n^{\underline{k}} := n \cdot n - 1 \cdot \ldots \cdot n - k + 1$$

Steigende Faktorielle:

$$n^{\overline{k}} := n \cdot n + 1 \cdot \ldots \cdot n + k - 1$$

Das Wort "Fakultät" (z.B. n!) hat den gleichen Urspung; man sagt "n factorial" auf englisch.

Damit gilt: Es gibt $n^{\underline{k}}$ k-Permutationen.

T Zurück zum Zählen

Zusammenfassung:

Anzahl Teilmengen: 2^n Anzahl k-Teilmengen: $\binom{n}{k}$ Anzahl Permutationen: n!Anzahl k-Permutationen: $n^{\underline{k}}$

Geeordnete Teilmengen und *k*-**Mengen-Partitionen**

Satz

Es gibt $k! \binom{n}{k}$ geordnete k-Teilmengen einer n-Menge M.

Beweis: Es gibt $\binom{n}{k}$ verschiedene k-Teilmengen und k! Reihenfolgen für jede Auswahl. (Wirklich formal: Benutze Bijektionen und Produktregel.)

Satz

Es gibt $k!S_{n,k}$ geordnete k-Mengen-Partitionen einer n-Menge M.

Beweis:

 $S_{n,k}$ ist Anzahl ungeordneter k-Mengen-Partitionen, für jede Auswahl k! Möglichkeiten.

T Zurück zu Binomialkoeffizienten

Interessante Einsicht:

Geeordnete k-Untermengen = k-Permutationen von M

Daher:

$$k! \binom{n}{k} = n^{\underline{k}}$$
$$\binom{n}{k} = \frac{n^{\underline{k}}}{k!} = \frac{n \cdot (n-1) \cdot \ldots \cdot (n-k+1)}{1 \cdot 2 \cdot \ldots \cdot k}$$

Geordnete Zahl-Partitionen

Erinnerung:

Wir unterscheiden 3+1+1 und 1+1+3, aber nicht 1'+1''+3 und 1''+1'+3.

Anzahl geeordneter Zahl-Partitionen von 3, 1, 1: 3 (und nicht 6).

Satz

Die Anzahl der geeordneten k-Zahl-Partitionen von n ist $\binom{n-1}{k-1}$.

Beweis.

F Beispiel

Sei
$$n = 6$$
 und $k = 3$

$$\binom{5}{2} = 10$$

geordnete k-Zahl-Partitionen von n.

Multimenge

Menge:

Gleiche Elemente werden nur ein Mal gezählt. Beispiel:

$${a, a, b, c} = {a, b, c}$$

Multimenge: Gleiche Schreibweise, aber mehrfach gezählt.

$$\{a,a,b,c\} \neq \{a,b,c\}$$

Die Vielfachheit von a ist 2 und die Vielfachheit von b ist 1.

Mächtigkeit einer Multimenge: Summe der Vielfachheiten

Konvention: Wenn nicht dazu gesagt, Menge.

Nur Multimenge, wenn explizit gesagt.

k-Multimengen

k-Multimenge über Menge M: Multimenge N, Mächtigkeit |N|=k, jedes Element von M. Beispiel: $\{a,b,b,c,c,d,d,d\}$ ist 8-Multimenge über $\{a,b,c,d\}$.

Satz

Die Anzahl der k-Multimengen über einer n-Menge ist

$$\frac{n^k}{k!}$$
.

Erinnerung: $n^{\overline{k}} = n \cdot (n+1) \cdot \ldots \cdot (n+k-1)$ Beweis.