1. Bit - Difference

You're given a number N.

Find out the absolute difference between number of $\bf 1$ bits and number of $\bf 0$ bits in the binary representation of $\bf N$.

Input Format:

First line of input contains **T**, denoting number of testcases.

Next **T** lines contain single integer denoting **N** in each line.

Output Format:

Print the output according to the description.

Constraints:

```
1 \le T \le 10^2 0 \le N \le 10^9
```

Sample I/O:

Input 1:

3

10

7

3

Output 1:

0

3

2

Input 2:

5

57

30

9

72

128

Output 2:

2

3

0

3

6

2. Holy Cow!!!

Krishna had some cows, but last night, a thief stole all of them. So he decided to go to the market to purchase new ones.

At the market, there were 10 cows available, some were whites (denoted as $\mathbf{0}$) and some were blacks (denoted as $\mathbf{1}$). Krishna has a total of \mathbf{N} units of money to spend.

The prices of the cows are as follows:

- 1st cow costs 1 unit
- · 2nd cow costs 2 units
- 3rd cow costs 3 units
-

• 10th cow costs 10 units

Krishna will feel **Happy** if he can buy **X** white cows. Otherwise he will feel **Sad**.

Your task is to determine how Krishna feels based on what he can affort to buy.

Input Format:

First line of input contains two integers \mathbf{N} and \mathbf{X} , denoting units of money Krishna has and no. of white cows he wants to buy respectively.

Second line of input contains 10 space separated integers.

0 denotes white cow and **1** denotes black cow.

Output Format:

Print either **Happy** or **Sad** according to description.

Constraints:

 $1 \le N \le 10^3 1 \le X \le 10$

Sample I/O:

Input 1:

83

0100111010

Output 1:

Нарру

Input 2:

7.3

0100111010

Output 2:

Sad

Input 3:

153

1101010000

Output 3:

Нарру

Input 4:

103

1101010000

Output 4:

Sad