DS501: Machine learning, Part 1

Prof. Randy Paffenroth rcpaffenroth@wpi.edu

Worcester Polytechnic Institute

2014

Learning **objectives** for this machine learning class.

- Overview of machine learning
- Supervised classification.
 - K-nearest neighbors
 - Support vector machines

- Learn some Python packages, including:
 - scikit-learn

Basic definitions: Classification vs. Regression

Reg 185,00 10 ~16 Cluss, Fication Dies UFter 20 Da-la is used

Basic definitions: Supervised vs. Unsupervised Learning

We have four days we will cover four topics.

What about Unsupervised Regression?

scikit-learn

Iris data set

Features:

sepal length (cm)
sepal width (cm)
petal length (cm)
petal width (cm)

"Iris virginica" by Frank Mayfield - originally posted to Flickr as Iris virginica shrevei BLUE FLAG. Licensed under Creative Commons Attribution-Share Alike 2.0 via Wikimedia Commons -

http://commons.wikimedia.org/ wiki/File:Iris_virginica.jpg#medi aviewer/File:Iris_virginica.jpg

Catagories:

setosa versicolor virginica

"Kosaciec szczecinkowaty Iris setosa". Licensed under Creative Commons Attribution-Share Alike 3.0 via Wikimedia Commons -

http://commons.wikimedia.org/wiki/File:Kosaciec_szczeci nkowaty_lris_setosa.jpg#mediaviewer/File:Kosaciec_szcz ecinkowaty_lris_setosa.jpg

"Iris versicolor 3". Licensed under Creative Commons Attribution-Share Alike 3.0 via Wikimedia Commons http://commons.wikimedia.org/wiki/File:Iris_ver sicolor_3.jpg#mediaviewer/File:Iris_versicolor_ 3.jpg

Let's look at it in Python

What is PCA?

- Principle Component Analysis
 - Commonly used tool for visualization and data preprocessing.

Key idea of PCA

maximite the Vorionic of the projection!

X X Yola X Yola X X Yola X Yola

Sawres UF + Le B N,5 torce gingular value ne composition

Lets take a look at it in Python

scikit-learn

What is Linear Support Vector Machine (SVM)?

- Maximum margin classifier
 - Computes a linear "decision boundary" that splits the data into two regions.
 - Allows one to predict a classification of a point based upon which side of the decision boundary it lay on.

Let's derive SVM

maximize the minimum Distance

SVM

http://commons.wikimedia.org/wiki/File:Svm_max_sep_hyperplane_with_margin.png#mediaviewer/File:Svm_max_sep_hyperplane_with_margin.png

Let's look at SVM in Python

But wait! Training vs. testing!

20°C data For your al gorithm sore data For testing your Algorithm i v~damental avoid our Fitting

Back to Python

scikit-learn

What is K-NN?

- K-nearest neighbors
- Another common classification algorithm
 - Perhaps the most common

Let's try an example

Let's try K-NN in Python

