Multi-Agent Systems

Introduction to Reinforcement Learning:

Model-based Prediction and Control

Eric Pauwels (CWI & VU)

November 25, 2021

Reading

• Sutton & Barto: chapters 3 & 4

Outline

Reinforcement Learning: Markov Decision Process (MDP)

Optimal Policy and Bellman Optimality Equations

Taxonomy of RL problems

Model-based Prediction and Control

Markov decision processes (MDP)

- Markov decision processes (MDP) provide a formal model for a sequential decision problem;
- A finite MDP (S, A, P, R, γ) consists of:
 - **Discrete time** t = 0, 1, 2, ...
 - A discrete set of states s ∈ S
 - A discrete set of **actions** $a \in A(s)$ for each s
 - A transition function p(s'|s, a): probability of transitioning to state s' when taking action a at state s
 - A **reward function** r(s, a, s') = E[r|s, a, s']: expected reward when taking action a at state s and transitioning to s'
 - A planning horizon H or discount factor γ;
 - How important are future rewards?
 - shortsighted $0 \leftarrow \gamma \rightarrow 1$ farsighted

MDP - Policy - Bellman

Backup diagrams for Bellman equation (1)

$$v_{\pi}(s) = \sum_{a} \pi(a \, | \, s) q_{\pi}(s, a)$$
 (weighted mean over a)

$$q_{\pi}(s,a) = \sum_{\sigma'} p(s' \mid s,a) \Big[r(s,a,s') + \gamma v_{\pi}(s') \Big]$$

$$v_{\pi}(s) = \sum_{a} \pi(a \mid s) \sum_{c'} p(s' \mid s, a) \Big[r(s, a, s') + \gamma v_{\pi}(s') \Big]$$

Backup diagrams for Bellman equation (2)

$$q_{\pi}(s,a) = \sum_{s'} p(s' \mid s,a) \Big[r(s,a,s') + \gamma v_{\pi}(s') \Big]$$

$$q_{\pi}(s, a) = \sum_{s'} p(s' \mid s, a) \Big[r(s, a, s') + \gamma \sum_{a'} \pi(a' \mid s') q_{\pi}(s', a') \Big]$$

Bellman equation: Summary

• The definition of v_{π} can be rewritten recursively by making use of the transition model, yielding the **Bellman equation**:

$$v_{\pi}(s) = \sum_{a} \pi(a \mid s) \sum_{s'} p(s' \mid s, a) \Big[r(s, a, s') + \gamma v_{\pi}(s') \Big]$$

- This is a set of **linear equations**, one for each state, the solution of which defines the value of π
- A similar recursive definition holds for Q-values:

$$q_{\pi}(s,a) = \sum_{s'} p(s' \mid s,a) \Big[r(s,a,s') + \gamma \sum_{a'} \pi(a' \mid s') q_{\pi}(s',a') \Big]$$

Matrix form of Bellman equation

$$\mathbf{v}_{\pi} = \gamma P_{\pi} \mathbf{v}_{\pi} + \mathbf{r}_{\pi}$$
 or again $(I - \gamma P_{\pi}) \mathbf{v}_{\pi} = \mathbf{r}_{\pi}$

where

• square matrix P(s, s') is **transition probability** $s \to s'$ (under policy π):

$$P_{\pi}(s,s') := \sum_{a} \pi(a \,|\, s) p(s' \,|\, s,a)$$

• $\mathbf{r}_{\pi}(s)$ is **expected (immediate) reward** in s (under policy π):

$$\mathbf{r}_{\pi}(s) = \sum_{a} \pi(a \mid s) R(s, a)$$
 where $R(s, a) = \sum_{s'} p(s' \mid s, a) r(s, a, s')$

Solving the Bellman equation

$$\mathbf{v}_{\pi} = \gamma P_{\pi} \mathbf{v}_{\pi} + \mathbf{r}_{\pi}$$
 or again $(I - \gamma P_{\pi}) \mathbf{v}_{\pi} = \mathbf{r}_{\pi}$

- Notice that $\mathbf{v} = (I \gamma P)^{-1} \mathbf{r} = (I + \gamma P + \gamma^2 P^2 + ...) \mathbf{r}$
- Alternatively: solve iteratively (fix-point!)

Solving Bellman egs: Iteration to Fix-Point

Matrix form of Bellman equation corresponds to fix-point:

$$\mathbf{v} = \gamma P \mathbf{v} + \mathbf{r}$$

Iterative solution: (Dynamic Progamming DP) update rule:

$$\mathbf{v}^{k+1} = \gamma P \mathbf{v}^k + \mathbf{r}$$

Outline

Optimal Policy and Bellman Optimality Equations

Optimal value functions

• Value functions define a partial ordering over policies:

$$\pi \succ \pi' \iff v_{\pi}(s) \geq v_{\pi'}(s), \ \forall s \in S$$

 There can be multiple optimal policies but they all share the same optimal state-value function:

$$v^*(s) = \max_{\pi} v_{\pi}(s), \quad \forall s \in S$$

• They also share the same **optimal action-value function**:

$$q^*(s,a) = \max_{\pi} q_{\pi}(s,a), \quad \forall s \in S, a \in A$$

Backup Diagram for Bellman Optimality Equations

Optimize over actions!

Figure 3.5: Backup diagrams for v_* and q_*

Bellman optimality equation in matrix form

$$v^*(s) = \max_{a \in A} \sum_{s'} p(s' \mid s, a) \left[r(s, a, s') + \gamma v^*(s') \right]$$

$$= \max_{a} \left(R(s, a) + \gamma \sum_{s'} \underbrace{p(s' \mid s, a)}_{T_a(s, s')} v^*(s') \right)$$

$$= \max_{a} \left(R(s, a) + \gamma \sum_{s'} T_a(s, s') v^*(s') \right)$$

or in matrix notation:

$$\mathbf{v}^* = \max_{\mathbf{a}} \left(R_{\mathbf{a}} + \gamma T_{\mathbf{a}} \mathbf{v}^* \right)$$

q^* versus v^*

$$V^*(s) = \max_{a} Q^*(s, a)$$

Why optimal value functions are useful

An optimal policy is **greedy** with respect to v^* or q^* :

$$\pi^*(s) \in \arg\max_{a} q^*(s,a) = \arg\max_{a} \left[\sum_{s'} p(s' \mid a,s) (r(s,a,s') + \gamma v^*(s')) \right]$$

a)	gridworld	

22.0	24.4	22.0	19.4	17.5
19.8	22.0	19.8	17.8	16.0
17.8	19.8	17.8	16.0	14.4
16.0	17.8	16.0	14.4	13.0
14.4	16.0	14.4	13.0	11.7

b)
$$V^*$$

Outline

Taxonomy of RL problems

Model-based vs model-free

- **Model-based:** the MDP = (S, A, P, R, γ) is completely specified;
 - Solve the Bellman (optimality) equations
 - Suffices to focus on state value function v(s);
- Model-free: only direct experience, i.e. sample paths (states, actions and rewards) are given. Put differently, only experience-based information is given!
 - Focus on state-action value function q(s, a)
 - Random search but Bellman equations allow to propagate values!

Taxonomy of RL problems

	Prediction Estimation:	(Optimal) Control Optimisation:
	Given π , what is v ?	What is optimal π ?
model-based	Policy evaluation	Policy improvement
(MDP given)	using	(+ Policy evaluation)
	Dyn. Programming (DP)	= Policy iteration
model-free	Monte Carlo (MC)	
(MDP unknown)	Temporal Diff ^{ing} (TD)	Generalized
	= "impatient MC"	Policy Iteration
	bootstrapping!	"simultaneous"

Outline

Reinforcement Learning: Markov Decision Process (MDP)

Optimal Policy and Bellman Optimality Equations

Taxonomy of RL problems

Model-based Prediction and Control

Model-based Prediction and Control

- Dynamic Programming (DP): Collection of algorithms that can be used to compute optimal policy given a completely specified model for the environment (MDP);
- **Policy evaluation:** given a policy π compute value functions $v_{\pi}(s)$ and $q_{\pi}(s, a)$;
- **Policy improvement:** given a policy π and corresponding value function v_{π} , can we find a better policy π' such that $v_{\pi'} \geq v_{\pi}$?
- **Policy iteration:** iteratively alternate between policy evaluation and improvement to find an optimal policy.

Policy evaluation, improvement and iteration

Policy evaluation (1)

- Rather than estimating value of each state independently,use
 Bellman equation to exploit the relationship between states
- Initial value function v_0 is chosen arbitrarily
- Policy evaluation = evaluate value function under the policy update rule:

$$v_{k+1}(s) \leftarrow \sum_{a} \pi(a \mid s) \sum_{s'} p(s' \mid s, a) \Big[r(s, a, s') + \gamma v_k(s') \Big]$$

- Apply to every state in each sweep of the state space
- Repeat over many sweeps
- Converges to the fixed point $v^k = v_\pi$

Policy evaluation (2): Algorithm

```
Input \pi, the policy to be evaluated;
Initialize v(s) = 0, for all s \in S
Repeat:
    \Delta \leftarrow 0:
    for each s \in S:
                        # single sweep over all states
        v \leftarrow v(s)
        v(s) \leftarrow \sum_{a} \pi(a|s) \sum_{s'} p(s'|s,a) (r(s,a,s') + \gamma v(s'))
        \Delta \leftarrow \max(\Delta, |v - v(s)|)
until \Delta < small positive number;
Output: v \approx v_{\pi}
```

Policy improvement

Policy **improvement**

Toncy improvement (1

- Policy evaluation yields v_{π} , the true value of π
- Use this to incrementally improve the policy by considering whether for some state s there is a better action $a \neq \pi(s)$
- Is **choosing** a **in** s and **then using** π better than using π , i.e.,

$$q_{\pi}(s, a) = \sum_{s'} p(s' | s, a) \Big[r(s, a, s') + \gamma v_{\pi}(s') \Big] > v_{\pi}(s)$$
?

• If so, then the **policy improvement theorem** tells us that changing π to take a in s will increase its value:

$$orall s \in S, q_\pi(s,\pi'(s)) \geq v_\pi(s) \quad \Rightarrow \quad orall s \in S, v_{\pi'}(s) \geq v_\pi(s)$$

• In our case, $\pi=\pi'$ except that $\pi'(s)=a\neq\pi(s)$

• Applying to all states yields the **greedy** policy w.r.t. v_{π} :

$$\pi'(s) \leftarrow \arg\max_{a} q_{\pi}(s, a)$$

$$v_{\pi'}(s) = \max_{a} \sum_{s'} p(s' \mid s, a) \Big[r(s, a, s') + \gamma v_{\pi}(s') \Big]$$

• If $\pi = \pi'$, then $\nu_{\pi} = \nu_{\pi'}$ and for all $s \in S$:

$$v_{\pi'}(s) = \max_{a \in A} \sum_{s'} p(s' | s, a) \Big[r(s, a, s') + \gamma v'_{\pi}(s') \Big]$$

 This is equivalent to the Bellman optimality equation, implying that $v_{\pi} = v_{\pi'} = v^*$ and $\pi = \pi' = \pi^*$

Policy **iteration** (1)

Policy iteration = policy evaluation + policy improvement

$$\pi_0 \xrightarrow{\mathrm{E}} V^{\pi_0} \xrightarrow{\mathrm{I}} \pi_1 \xrightarrow{\mathrm{E}} V^{\pi_1} \xrightarrow{\mathrm{I}} \pi_2 \xrightarrow{\mathrm{E}} \cdots \xrightarrow{\mathrm{I}} \pi^* \xrightarrow{\mathrm{E}} V^*,$$

- Policy improvement makes result of policy evaluation obsolete
- Return to policy evaluation to compute $v_{\pi'}$
- Converges to the fixed point $v_{\pi} = v^*$

Policy **iteration** (2): geometric analogy

A geometric metaphor for convergence of GPI:

Compare to **EM-algorithm** in ML.

Policy iteration (3): Algorithm (for deterministic policy)

1. Initialization

$$V(s) \in \Re$$
 and $\pi(s) \in \mathcal{A}(s)$ arbitrarily for all $s \in \mathcal{S}$

2. Policy Evaluation

$$\Delta \leftarrow 0$$

For each $s \in S$:

$$v \leftarrow V(s)$$

$$V(s) \leftarrow \sum_{s'} \mathcal{P}_{ss'}^{\pi(s)} \left[\mathcal{R}_{ss'}^{\pi(s)} + \gamma V(s') \right]$$

$$\Delta \leftarrow \max(\Delta, |v - V(s)|)$$

until
$$\Delta < \theta$$
 (a small positive number)

3. Policy Improvement

$$policy\text{-}stable \leftarrow true$$

For each
$$s \in \mathcal{S}$$
:

$$b \leftarrow \pi(s)$$

$$\pi(s) \leftarrow \arg\max_{a} \sum_{s'} \mathcal{P}_{ss'}^{a} \Big[\mathcal{R}_{ss'}^{a} + \gamma V(s') \Big]$$

If
$$b \neq \pi(s)$$
, then policy-stable \leftarrow false

If policy-stable, then stop; else go to 2

Stopping policy evaluation early

Value iteration

- Compute optimal v^* first (iteratively), then derive optimal policy π^*
- Function iteration:

$$v_{k+1}(s) \leftarrow \max_{a} q_{k+1}(s, a),$$

$$q_{k+1}(s, a) \leftarrow \sum_{s'} p(s' \mid s, a) \Big[r(s, a, s') + \gamma v_k(s') \Big]$$

Turns Bellman optimality equation into an update rule:

$$v_{k+1}(s) \leftarrow \max_{a} \sum_{s'} p(s' \mid s, a) \Big[r(s, a, s') + \gamma v_k(s') \Big]$$

Efficiency of dynamic programming

- An MDP has $|A|^{|S|}$ deterministic policies
- But the worst-case computational complexity of dynamic programming is polynomial in |S| and |A|
- MDP planning can also be done with linear programming, which has better worst-case guarantees, but is impractical for large MDPs
- In very large MDPs, where even doing one sweep is infeasible, asynchronous dynamic programming must be used
- Convergence in the limit is guaranteed as long as every state is backed up infinitely often

Summary of terminology

Value iteration algorithms search for optimal value function
 v* from which policy is deduced:

$$v_1 \longrightarrow v_2 \longrightarrow \ldots \longrightarrow v^* \longrightarrow \pi^*$$

• **Policy iteration** algorithms evaluate the policy π by computing the (corresponding) value function v_{π} and uses v_{π} to improve the policy: va

$$\pi_1 \longrightarrow v_1 \longrightarrow \pi_2 \longrightarrow v_2 \longrightarrow \ldots \longrightarrow \pi^*$$

• **Policy search** algorithms use optimisation techniques to directly search for an optimal policy:

$$\pi_1 \longrightarrow \pi_2 \longrightarrow \ldots \longrightarrow \pi^*$$