DESIGN ANALYSIS

92196R01 DESIGN ANALYSIS 2ND COPY

BASIN F LIQUID
STORAGE TANK 102
DECONTAMINATION
FIELD DEMONSTRATION
ROCKY MOUNTAIN ARSENAL,
COLORADO

This document has been approved for public release and sale; its distribution is unlimited.

Prepared for U.S. Department of the Army Corps of Engineers, Omaha District Omaha, Nebraska July 1992

Woodward-Clyde Consultants 101 S. 108th Avenue Omaha, NE 68154

DTIC QUALITY INSPECTED 5

DISCLAIMER NOTICE

THIS DOCUMENT IS BEST QUALITY AVAILABLE. THE COPY FURNISHED TO DTIC CONTAINED A SIGNIFICANT NUMBER OF PAGES WHICH DO NOT REPRODUCE LEGIBLY.

DESIGN ANALYSIS

92196R01 DESIGN ANALYSIS 2ND COPY

Rocky Mountain Arsenal Information Center Commerce City, Colorado

BASIN F LIQUID
STORAGE TANK 102
DECONTAMINATION
FIELD DEMONSTRATION
ROCKY MOUNTAIN ARSENAL,
COLORADO

Prepared for U.S. Department of the Army Corps of Engineers, Omaha District Omaha, Nebraska July 1992

Woodward-Clyde Consultants 101 S. 108th Avenue Omaha, NE 68154

89C114MM

REPORT DOCUMENTATION PAGE

Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

1. AGENCY USE ONLY (Leave blan	k) 2. REPORT DATE 07/00/92	3. REPORT TYPE AND	3. REPORT TYPE AND DATES COVERED		
4. TITLE AND SUBTITLE BASIN F LIQUID STORAGE TANK 1 ROCKY MOUNTAIN ARSENAL, COLOR		ONSTRATION,	5. FUNDING NUMBERS		
6. AUTHOR(S)					
7. PERFORMING ORGANIZATION NA WOODWARD-CLYDE CONSULTANTS DENVER, CO	AME(S) AND ADDRESS(ES)		8. PERFORMING ORGANIZATION REPORT NUMBER 92196R01		
9. SPONSORING/MONITORING AGE ARMY CORPS OF ENGINEERS. OMAH OMAHA, NE			10. SPONSORING/MONITORING AGENCY REPORT NUMBER		
11. SUPPLEMENTARY NOTES	<u> </u>	<u> </u>			
12a. DISTRIBUTION / AVAILABILITY APPROVED FOR PUBLIC RE			12b. DISTRIBUTION CODE		
IT CONTAINS THE ENGINED DEMONSTRATION OF THE THE TANK. THE REPORT	PREPARED AS PART OF THE EERING CRITERIA AND DE	SIGN INFORMATION THE CRYSTALS AN WING 3 PARTS: D	APPLICABLE TO THE		
14. SUBJECT TERMS			15. NUMBER OF PAGES		
IRA F, INCINERATION, SQI		40 CCCUBITY CLASSICS	16. PRICE CODE		
17. SECURITY CLASSIFICATION OF REPORT UNCLASSIFIED	18. SECURITY CLASSIFICATION OF THIS PAGE	19. SECURITY CLASSIFIC OF ABSTRACT	ATION 20. LIMITATION OF ABSTRACT		

TABLE OF CONTENTS

1.0	INT	RODUCTI	ON	1-1
	1.1	BACKG	ROUND	1-2
	1.2	SITE DE	ESCRIPTION	1-3
	1.3	DOCUM	IENT ORGANIZATION	1-3
2.0	PAR	T 1 - GEN	ERAL DESCRIPTION	2-1
	2.1	PURPOS	SE	2-1
	2.2	AUTHO		2-1
	2.3		ABLE CRITERIA	2-1 2-2
	2.4	2.4 PROJECT DESCRIPTION		
		2.4.1	Phase One - Tank 102 Content Heating	
			and Crystal Dissolution	2-2
		2.4.2	Phase Two - Tank 102 Interior	
			Decontamination	2-2
3.0	PAR	RT 2 - DES	IGN REQUIREMENTS AND PROVISIONS	3-1
	3.1	CIVIL/S	STRUCTURAL ENGINEERING	3-1
		3.1.1	Tank Sludge Removal	3-1
		3.1.2	Tank Liner Decontamination and	
			Removal	3-5
		3.1.3	Contaminated Soil Removal	3-8
	3.2 MECHANICAL ENGINEERING		3-8	
		3.2.1	Liquid Heating and Recirculation	
			System	3-9
		3.2.2	Emission Control System	3-12
	3.3 ELECTRICAL ENGINEERING		3-15	
		3.3.1	Exterior Electrical	3-15
		3.3.2	Transformers	3-16
		3.3.3	Aerial Line Conductor	3-16
		3.3.4	Secondary Conductors	3-16
		3.3.5	Motor Control	3-17

TABLE OF CONTENTS (CONT'D)

	3.4	CHEMIC	CAL SAMPLING AND ANALYSIS PROVISIONS	3-17
		3.4.1	Crystal Dissolution	3-17
		3.4.2	Emissions Control System	3-19
		3.4.3	Tank Interior Decontamination	3-20
	3.5	FEDERA	AL, STATE AND LOCAL ENVIRONMENTAL PROTEC	ΠΟΝ
			IA AND PERMITS	3-20
		3.5.1	Scope	3-20
		3.5 2	Applicable and Relevant and	
			Appropriate Requirements (ARARs)	3-21
	3.6	HEALTH AND SAFETY DESIGN ANALYSIS		3-38
		3.6.1	Introduction	3-38
		3.6.2	Contamination Characterization	3-39
		3.6.3	Hazard Assessment and Risk Analysis	3-41
		3.6.4	Site-Specific Safety and Health Plan	
			Preparation	3-46
		3.6.5	Training	3-46
		3.6.6	Personal Protective Equipment	3-46
		3.6.7	Medical Surveillance	3-47
		3.6.8	Exposure Monitoring/Air Sampling	3-48
	3.7	DECON	FAMINATION	3-49
	3.8	SITE CO	NTROL	3-50
	3.9	EMERG	ENCY AND FIRST AID EQUIPMENT	3-50
	3.10	EMERG	ENCY RESPONSE AND CONTINGENCY PLANNING	3-50
	3.11	LOGS, R	EPORTS AND RECORDKEEPING	3-51
.0	CDEC	TEICATIO	ONS OUTLINE	4-1
.0	SI I'C		110 COLLECT	• •

TABLE OF CONTENTS (CONT'D)

APPENDICES

APPENDIX A - MANUFACTURER'S INFORMATION APPENDIX B - CIVIL/STRUCTURAL CALCULATIONS APPENDIX C - MECHANICAL DESIGN CALCULATIONS APPENDIX D - ELECTRICAL DESIGN CALCULATIONS

1.0
INTRODUCTION

Pursuant to the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA), the Program Manager for the Rocky Mountain Arsenal (PMRMA) is implementing the final disposal of the liquid removed from the former Basin F surface impoundment. This liquid is presently stored in three tanks and one pond. During storage of the Basin F liquid, crystals have precipitated from the liquid and accumulated in the bottom of the tanks and pond. These crystals will require removal and the tanks and ponds must be decontaminated and decommissioned after removal of the Basin F liquid.

The Basin F liquid has been characterized and a remedial alternative has been selected for its final treatment and disposal. A Submerged Quench Incinerator (SQI) is being constructed for incineration of the liquid.

and crystal removal alternatives assessment of the An decontamination/decommissioning is being conducted as part of the IRA process, and was submitted in Final Draft form in March 1992. The report contains recommendations for both the ponds and tanks. Mechanical removal as well as dissolution alternatives were evaluated for feasibility and cost effectiveness. recommended action at the tanks was to pilot test, in one of the tanks, the in situ dissolution of the crystals with heated water after the majority of the Basin F liquid was removed. After dissolution of the crystals and removal of the dissolution liquid, the tank liner, geonet, and appurtenances would be spray washed, removed and packaged for disposal. Then the tank and its roof would be decontaminated. Tank 102 was the logical selection for this test/demonstration as a result of the presence of Basin F liquid in the leak detection system of the tank.

This Preliminary Design Analysis for the Basin F Liquid Storage Tank 102 Decontamination Field Demonstration has been prepared as part of the Interim Response Action (IRA) at the Rocky Mountain Arsenal. This report contains the engineering criteria and design information applicable to the demonstration of the in situ dissolution of the crystals and decontamination of the tank.

1.1 BACKGROUND

Rocky Mountain Arsenal (RMA) occupies more than 17,000 acres in Adams County, Colorado northeast of metropolitan Denver. The property was purchased by the U.S. government in 1942 for use during World War II to manufacture and assemble chemical warfare materials and incendiary munitions. A significant amount of chemical warfare materials destruction took place during the 1950s, 1960s and 1970s. The last military operations ended in the early 1980s, and in November 1988, RMA was reduced to inactive military status reflecting the fact that the only remaining mission at the RMA is contamination cleanup. In addition to these military ac vities, major portions of the plant facilities were leased to private industries, including Shell Oil Company, for the manufacture of various insecticides and herbicides, between 1947 and 1982.

Disposal practices at RMA have included routine discharge of industrial and munitions waste effluent to evaporation basins. Spills of raw materials, process intermediates, and final products have occurred within the manufacturing complexes at RMA. In 1956, Basin F was constructed in the northern portion of RMA. Basin F had a surface area of 92.7 acres and a capacity of approximately 243 million gallons. The basin was created by construction of a dike around a natural depression and was lined with a 3/8-inch catalytically blown asphalt membrane. An earthen blanket approximately 1 foot thick was placed on top of the membrane to protect it. A vitrified clay pipe with chemically resistant sealed joints was installed between Basin F and the facilities where the wastes were generated. From August 1957 until its use was discontinued in December 1981, Basin F was the only evaporative disposal facility in service at RMA.

In 1986, the Department of the Army, Shell Oil Company, and the EPA Region VIII agreed that an accelerated remediation be conducted to contain the liquid and contaminated soils in and under Basin F.

The first Interim Response Action (IRA-1) for the Basin F liquid, sludge, and soils remediation resulted in the present situation with the Basin F liquid being stored in three lined storage tanks and one lined surface impoundment. The second Interim Response Action (IRA-2) addresses the treatment and disposal of the contents of the storage tanks and pond. This IRA was initiated in September 1988 and is in progress.

1.2 SITE DESCRIPTION

The tank farm lies at the southwest corner of the intersection of 9th and D Streets. The tank farm is comprised of three tanks numbered 101, 102, and 102. The three tanks are similar in size and design, and were built in 1987. They contain a total volume of about 4,000,000 gallons of Basin F liquid, each tank containing approximately 1/3 of the total volume. The tanks are 78.5 feet in diameter and about 40 feet in height. The tanks are lined with a 100-mil HDPE liner with a 200-mil synthetic drainage net leak detection system between the liner and the steel walls. Each tank is covered with an Alumadome roof. The roof of each tank is equipped with one 10-inch diameter rent, on 8-inch diameter gage port, and one hatch 24 inches square. Stairs welded to the walls of the tanks provide access to a deck at the top of the steel walls of the tanks. The hatch in each tank roof is located approximately 4 feet from the deck.

The synthetic liners in Tanks 101 and 103 are assumed to be intact, since no leakage has been detected in the leak detection system. The liner in Tank 102 appears to have been damaged, due to the presence of Basin F liquid in the leak detection system. Non-destructive T-scan tests have been run on all three tanks every six months and additional testing has been run on Tank 102. The results of these tests, available from PMRMA, indicate that the three tanks are currently structurally sound. The tank roof is made of aluminum sheets. The strength of the roof may have been affected by contact with the corrosive vapors from the liquid in the tanks.

1.3 DOCUMENT ORGANIZATION

This Preliminary Design Analysis is organized into four sections, Section 1.0 being this introduction. Section 2.0, General Description, contains a project description, statements of purpose, authority and applicable criteria, and a summary of the economic factors influencing the design criteria. Section 3.0, Design Requirements and Provisions, provides factors considered and criteria included in the design, with relevant justifications and design calculations. Section 4.0, Specification Outline, contains a listing of the specifications to be included in the final design. In general, a design analysis contains operation and maintenance (O&M) provisions; however, this project has no components requiring an O&M section and this section has been omitted.

2.0

PART 1 - GENERAL DESCRIPTION

This section provides the general description for the design analysis for the Basin F Liquid Storage Tank 102 Decontamination Demonstration Project. It contains statements of purpose, authority, applicable criteria, a description of the project and the design basis.

2.1 PURPOSE

Pursuant to CERCLA, the Basin F liquid currently stored in three tanks and one surf ce impoundment requires disposal, and the storage facilities must be decontaminated and decommissioned. During storage, the Basin F liquid precipitated crystals and these crystals must be removed and disposed to achieve decontamination. This project will demonstrate a method of dissolving the crystals in one of the storage tanks, Tank 102. The liquid formed during dissolution will be disposed of by incineration in the Submerged Quench Incinerator (SQI) and the tank will be decontaminated and decommissioned.

2.2 AUTHORITY

The implementation of this interim response action is being conducted as part of the IRA process for the RMA in accordance with the Federal Facility Agreement and the Technical Program Plan.

2.3 APPLICABLE CRITERIA

The following is a list of data and criteria which was furnished for use in the final design.

Rocky Mountain Arsenal, Draft Final Alternatives Evaluation for Basin F Ponds and Tanks Decontamination. Task IRA-2, March 1992, Contract No. DAAA 15-88-D-0022-0001.

Document and Submittal and Distribution List.

EM 385-1-1, U.S. Army Corps of Engineers, Safety and Health requirements Manual.

Architect-Engineer (A-E) Instruction Manual, dated January 1991.

2.4 PROJECT DESCRIPTION

The purpose of this project is to demonstrate the in situ dissolution of soluble solids present in Tank 102 and subsequently to decontaminate the tank. The project will be initiated after the Basin F liquid present in the tank has been removed. The removal of Basin F liquid will be done by the operator of the SQI facility. The description of this project can be conveniently divided into two phases as follows.

2.4.1 Phase One - Tank 102 Content Heating and Crystal Dissolution

The purpose of this phase of the project is to dissolve the soluble solids present in the tank. This will be done by adding an unsaturated liquid to the tank and operating a liquid heating and closed-loop circulation system to raise the temperature of the liquid in the tank to produce dissolution. The liquid used will be water or unsaturated Basin F liquid from Pond A. Based on the results of the Alternatives Report, a maximum temperature of 60° C will be used, and complete dissolution of all soluble material present is expected to occur within one week of operation. Significant evolution of ammonia, toxic organic, and odorous vapors may occur inside the tank during the liquid heating. An emission control system will be operated during this time to create a negative pressure in the tank headspace to prevent fugitive odor emissions. The vapors withdrawn from the tank will be treated using a combination of an ammonia scrubber and a granular activated carbon (GAC) air filter. When the dissolution of the soluble solids is complete, the liquid will be transferred via truck from Tank 102 to Pond A. The second phase of the project will then be implemented.

2.4.2 Phase Two - Tank 102 Interior Decontamination

This portion of the project will include removal and packaging of insoluble solids present in Tank 102, decontamination and disposal of the tank liner material, and decontamination of the tank walls and cover. An access hole will be cut in the tank wall to allow personnel to enter the tank and remove the solids present. These solids will be dewatered in a settling

tank and then placed in drums and delivered to a storage facility at RMA. The tank liner material will then be decontaminated, removed, and disposed at a appropriate off-site disposal facility. The tank walls and roof will then be decontaminated. An emission control system will be operated during this work to maintain a flow of air into the tank through the access hole. The gas will be treated using a combination of an ammonia scrubber and a GAC air filter.

3.0

PART 2 - DESIGN REQUIREMENTS AND PROVISIONS

3.1 CIVIL/STRUCTURAL ENGINEERING

The following section provides a brief explanation of the sludge removal, liner decontamination and removal, and tank decontamination during the Basin F Liquid Storage Tank 102 Decontamination Field Demonstration Project.

3.1.1 Tank Sludge Removal

Some insoluble debris (sludge) will likely remain at the conclusion of the dissolution process. The sludge is expected to be primarily composed of fine sands and silts from the bottom of Basin F that were pumped to the tank and suspended in the Basin F liquid during the first Interim Remedial Action (IRA-1). With time, the sludge has settled out. While some solids may become suspended by the recirculation during the dissolution process, it is assumed that much of the sludge volume will remain. The actual volume of the sludge is currently unknown, but it is estimated to be 180 cubic yards.

3.1.1.1 Equipment List

Settling Tanks ST-101,ST-102

3" Diaphragm Pump (Air Driven) P-108

3.1.1.2 Design Objective

The objective of this design is to remove the sludge from the tank, transfer it to the settling tank, and remove any free liquid.

3.1.1.3 Design Criteria

• Sludge removal will begin after the crystal dissolution is complete and all pumpable dissolution fluid has been removed.

- The sludge is estimated to be 12 inches deep with a volume of 180 cubic yards.
- All entries into the tank are confined space entries as defined in the proposed 29 CFR 1910.146 by the Occupational Health and Safety Administration (OSHA) or the final rule when promulgated.
- Lighting must be provided during all work activities.
- Tank venting and air treatment will be required during the entire sludge removal operation.
- The sludge will be removed using skid steer loaders.
- The sludge will be placed in drums, provided by the Contracting Officer (CO) and delivered to Building 785. Building 785 is the receiving area for on-site storage for PMRMA and is operated by a subcontractor. The subcontractor requires 24 hour advance notification of deliveries. Building 785 is located on the southeast corner of 7th Avenue and "E" Street.

3.1.1.4 Procedure

Grading for Staging Area

Using skid steers or similar low ground pressure equipment, the area between the northeast quadrant of the tank and the north and east berms will be graded as shown in the Drawings. At the west and south limits of grading, 1 foot high berms will be graded to run between the tank and the existing secondary containment berms. At no location will the existing surface be lowered by more than 6 inches, to protect the existing 100 mil secondary containment area.

100 mil HDPE Containment Pad

In the graded area, 100-mil HDPE liner will be placed. The liner will be laid up the side of the tank and the existing berms, 1 foot vertically. The liner will be laid across the 1-foot high berms and will be anchored at all edges using spikes, dirt fill, or other available means. All seams will be extrusion welded to manufacturer's specifications. At the locations specified in the Drawings, 200-mil geonet will be glued to the 100-mil liner to provide walkways.

Construct Tank Access

An access hole will be cut in the tank at the northeast quadrant in the same location that was used during liner construction. First, an access ramp will be built up to the bottom of the access hole will be built using flexible base material. The slope shall be no steeper than 5:1 (horizontal to vertical). Then, three hinges and two hasps will be welded to the tank along the locations of the proposed vertical cuts. The hatch will be cut. While cutting, water will be sprayed into the cut directly behind the cutting torch in order to keep the HDPE liner and geonet from igniting.

Install Wastewater Removal System

A flexible base pad, 15 feet by 30 feet by 1 foot thick will be built as shown on the Drawings. Two settling tanks (ST-101 and ST-102) will be erected on the pad. The wastewater removal system piping will consist of 3-inch PVC piping from the settling tanks to the pump, a 3-inch diaphragm pump, 2-inch diameter rubber suction hose from the pump to the tank for dewatering the sludge in situ, and a one-half inch suction line for dewatering drums and the containment area sump.

Install Lighting System

A manlift will be used to run the power cables through the access hatch in the roof and to suspend them from the roof supports. The lights will also be suspended from the roof supports. The system will be watertight.

Sludge Handling System

The sludge handling system will consist of a hopper (6 feet long by 1.5 feet deep by 3 feet wide) fabricated from steel plate. The bottom of the hopper will be sloped to a 6-inch diameter hole in the center. A chute will be fabricated from steel pipe to transfer the sludge from the hopper to the drum loading area on the outside of the tank as shown on the Drawings. A concrete form vibrator will be attached to the hopper to facilitate movement of the sludge through the chute. The liner and geonet will be removed in the location of the proposed hopper prior to the installation of the hopper. The hopper will be welded to the interior wall of the tank as shown on the Drawings.

Remove Sludge

Prior to removal, the sludge will be dewatered using the 2-inch diameter suction line. Liquid will be suctioned from sump holes that have been excavated in the sludge. The sludge will then be removed using two skid steer loaders. The sludge will be loaded into drums via the hopper and chute. Once a drum is filled, workers will insert a concrete "stinger" vibrator into the sludge to settle the solids. Any free liquid on the surface will be suctioned off using the one-half inch suction line. The drum will be sealed. Then the drum will be moved to the drum storage areas shown on the Drawings using an Integrated Tool Carrier (Caterpillar IT2) with a drum grapple. Drums will be transferred from the drum storage area onto flatbed trucks, or trailers, using a hydraulic crane, for transport to Building 785. The free liquid will be transferred via truck to the RMA CERCLA water treatment facility.

Decontaminate Skid Steers

The skid steers and other equipment will be decontaminated before leaving the tank using a pressure washer. Care will be taken to remove any solids from the underside and any hard to reach places. The equipment will then be loaded onto a flatbed truck or trailer prepared with a plastic sheet in the bed to catch any drips. The equipment will be transported to the CERCLA Wastewater Treatment Facility for final decontamination. The tires, skid plate, and other pieces will be removed to allow a thorough cleaning of the equipment.

3.1.2 Tank Liner Decontamination and Removal

Tank 102 is lined with a 100-mil HDPE liner and has a 200-mil geonet between the liner and the tank wall. The liner is believed to have been compromised during the initial filling of the tank in 1988. Samples collected from the eight bleed valves that drain the annular space (the geonet) indicate that the entire annular space may contain Basin F liquid. Non-destructive testing that is performed on the tanks as part of the monitoring program indicates that some corrosion has occurred, but that the structural integrity of the tank has not been reduced. The liquid in the annular space complicates the decontamination and removal task for sever I reasons: the liner will have to be decontaminated on both sides; the geonet is contaminated and possibly encrusted with crystals; and the tank wall and bottom are at least partially corroded.

3.1.2.1 Design Objective

The objective of the procedure in this section is to decontaminate and remove the liner and geonet, and to decontaminate the tank wall, floor and Alumadome roof.

3.1.2.2 Design Criteria

- The quantity of 100-mil HDPE liner to be decontaminated and removed is approximately 14,700 square feet (3.7 tons).
- The quantity of 200-mil HDPE geonet to be decontaminated and removed is approximately 12,000 square feet (1.3 tons).
- The surface area of the tank roof, walls and floor is approximately 19,600 square feet.
- The volume of decontamination water generated during decontamination to be treated at the CERCLA Wastewater Treatment Facility is approximately 275,000 gallons.

• Decontaminated materials must meet the EPA Land Disposal Restrictions and any restrictions dictated by the permitted TSD facility's permit.

3.1.2.3 Procedure

Install Tank Decontamination Hot Water Supply

Settling tank ST-101 will be used as a surge tank. Approximately 5600 gallons of clean water will be transferred to ST-101 using the water supply from SQI or tank trucks. The water will be circulated through he exchanger HE-101 using pump P-101, 4-inch diameter rubber hose for suction and discharge lines, and existing valves in the heating and recirculation system. The water will be heated and recirculated until it reaches 60° C.

Install Automatic Tank Washer

The wastewater removal piping will be altered to include a suction line from the bottom outlet of ST-101 to P-114 and 3-inch flexible hose to the tank washer. The 3-inch flexible hose will be run up the stairway, through the access hatch on the roof, and to the tank washer location. A manlift will be used to suspend the hose and the tank washer from the roof supports. The tank washer will be suspended from the roof in locations and heights shown on the Drawings.

Primary Decontamination of Tank Liner and Alumadome Roof

Using the manlift, the liner will be slit in 3-foot long horizontal cuts every 10 feet on center and the slits pulled out to allow water from the tank washer to wash the outside of the liner and geonet. The liner will also be cut around the perimeter along the bottom to allow the decontamination liquid behind the liner drain out. Before operating the washer, a sheet of HDPE will be extrusion welded to the liner across the access hatch and the hatch closed for the cleaning operation. The tank liner and roof will be washed using 5600 gallons at each of three locations shown on the Drawings. This is the only wash the roof will receive. At the conclusion of the cleaning, the water will be removed from the tank. The water will be pushed to a low spot and removed using the suction line. The water will be transferred to the settling tanks and allowed to settle for six hours. After that time, the supernate will be

pumped to a tank truck for transfer to the CERCLA Wastewater Treatment Facility and any sediments that have settled out will be drummed.

Removal and Final Decontamination of the Liner

The liner will be cut down and into manageable (3'6" square) pieces using the manlift and hook-blades. After the pieces are cut, they will be laid on the floor and washed using a pressure washer (4000-5000 psi, 60-80°C, and 3-5 gpm). Each side should be washed for 1 to 2 minutes or until all visible contamination is removed. The liner will then be squeegeed until it is near dry, removed from the tank, placed on pallets and bundled using nylon straps.

Wastewater will be handled in the same manner as during other activities.

Removal and Final Decontamination of the Geonet

These work activities will be the same as for the liner.

Decontaminate Tank Wall and Floor

Using a pressure washer (8000-10000 psi, 60-80°C, and 3-4 gpm) and a manlift, wash the tank wall starting at top and working around the tank and then down. Care shall be taken not to contaminate any surface which has already been cleaned, including the roof. Workers using spray wands will position the bucket on the manlift and the wand in such a manner as to minimize sprayback on themselves.

Decontaminate Appurtenances

All valves that are not connected to SQI piping, all blind flanges, and any other fittings or appurtenances will be removed, decontaminated using the pressure washer and replaced.

Decontaminate Equipment

All equipment that has been in contact with wastewater, sediments, or other contaminated items will be grossly decontaminated in the tank using the pressure washer. Items to be

decontaminated include: the tank washer and hoses; manlifts; pressure washer hoses and wands; any small tools used during liner removal; and the lighting and power cords. On the equipment, all removable plates and covers will be removed to allow any contamination to be cleaned. The equipment will then be transported to the CERCLA Wastewater Treatment Facility using flatbeds or trailers prepared with plastic lined beds to contain any contaminated runoff. The equipment will then be thoroughly decontaminated in the CERCLA decontamination bay.

Demobilize

Demobilization will include removing and transporting to storage any equipment owned by the Army; removing and drumming the flexible base used for pads; removing, decontaminating and drumming the 100-mil liner used for the containment area; regrading the containment area to existing; and seeding the area with natural grass.

3.1.3 Contaminated Soil Removal

Any soils contaminated during this work will be removed immediately. The soils will be removed to six inches beyond visible contamination or to the secondary containment geomembrane. The soils will be placed in drums and transported to a designated on-site warehouse. Work will be performed in a manner which minimizes the possibility of soil contamination. All work with a high risk of spillage shall have secondary containment in the form of a geomembrane with the edges raised to contain a spill or other suitable method. The Contractor is responsible for the cost of removing any soils contaminated by his/her operation.

No soil sampling or existing soil removal is proposed under this design.

3.2 MECHANICAL ENGINEERING

The following section provides a brief explanation of the mechanical systems and equipment necessary for the Basin F Liquid Storage Tank 102 Decontamination Field Demonstration Project. The section has been divided by the mechanical system/equipment function into two parts: liquid heating and recirculation system; and emission control system. A

mechanical equipment list is provided for each of these systems. Each system is described by a Design Objective, Design Criteria, and referenced design calculations.

3.2.1 Liquid Heading and Recirculation System

3.2.1.1 Equipment List

H-101 Heater Package

HE-101 & HE-102 Heat Exchangers

P-101 & P-102 Tank Fluid Pumps

3.2.1.2 Design Objective

The design objective of the equipment listed in Section 3.2.1.1 is to remove unsaturated liquid from Tank 102, heat this liquid in an external heat exchange system, and re-inject the liquid into Tank 102 for the purpose of dissolving the crystals present in the bottom of Tank 102.

3.2.1.3 Design Criteria

The system design is based on the following:

- Crystal dissolution will be initiated following removal of all pumpable liquid from Tank 102 by SQI operations. Liquid will be removed using SQI system piping connected to one of two 6-inch bottom nozzles on Tank 102.
- A maximum volume of 470 cubic yards of crystals must be dissolved based on results of field measurements presented in the Alternatives Evaluation Report. This assumes that salt crystals make up the total estimated volume of solids in tank.
- The maximum volume of liquid generated during dissolution of salt crystals

will be approximately 150,000 gallons based on results of crystals dissolution tests presented in the Alternatives Evaluation Report.

- The maximum liquid temperature in Tank 102 for dissolution of crystals will be 140° F based on test results presented in the Alternatives Evaluation Report.
- Liquid added to Tank 102 to dissolve crystals will be water or unsaturated Basin F liquid from Pond A. Water will be pumped by SQI operations into Tank 102 as needed. Addition of liquid will be through SQI facility piping connections to Tank 102.
- Operation of the system will be limited to 5 days maximum. The results presented in the Alternatives Evaluation Report support the assumption that this will be a sufficient period to completely dissolve crystals in the tank.
- Progress in achieving crystals dissolution will be monitored through collection
 of grab samples of circulating fluid and obtaining total dissolved solids and
 total suspended solids measurements for these samples using field instruments.
 Viewports will also be installed in the two manway covers to allow visual
 observation of crystal dissolution to the extent possible.
- Liquid will be removed from Tank 102 through the existing nozzles located on the bottom wall of the tank.
- The materials of construction for the heating and circulation system piping, pumps, valves and heat exchangers were selected to be compatible with the corrosive properties of Basin F liquid. Piping is either fiberglass reinforced plastic (FRP) or high density polyethylene (HDPE). Pump construction is FRP. Heat exchanger construction is Hastelloy. Valves are Buna-N diaphragm type.
- Liquid will be injected back into the tank through a perforated pipe extending across the diameter of the tank. This method will distribute the heated liquid

across the entire tank. The injection pipe will be inserted into the tank through new connections installed in two existing manways located on the tank wall. This will eliminate the need to penetrate the Tank 102 liner.

- A closed loop system will be used to heat and circulate the liquid including pumps, heat exchangers, and a heat system. Non-contact heat exchange will be used so that heat system will not come into contact with tank liquid. Two separate circulation/heat exchange loops will be used to allow increased control and flexibility. A single heat system, rented and mobile if available, will be used.
- The maximum design temperature for liquid in Tank 102 is 140° F. The heat exchange system design is based on a maximum exit temperature from heat exchanger of 160° F to reduce potential for off-gassing. The rate of heat input to the tank liquid will be controlled using automated controllers.
- The total heat exchange capacity for the system is based on heating a maximum volume of liquid of 150,000 gallons from an assumed minimum ambient temperature for early Fall operation of 40° F to a maximum final temperature of 140° F within 30 hours. The required heat load for this design basis was calculated to be approximately 6,000,000 BTU/hr.
- At the conclusion of crystal dissolution, all pumpable liquid will be transferred from Tank 102 to Pond A. Transfer will be accomplished using tank trucks.

3.2.1.4 Liquid Heating and Circulation System Design

The Drawings and Specifications for the project design are submitted concurrent with this Design Analysis Report as a separate package. Refer to Appendix A for manufacturer's information on equipment and to Appendix C for design calculations.

3.2.2 Emission Control System

3.2.2.1 Equipment List

D -101	High Capacity Ammonia Scrubber Tower
D-102	Low Capacity Ammonia Scrubber Tower
P-103	Scrubber Pump for High Capacity Ammonia Scrubber Tower
P-104 & P-105	Scrubber Pumps for Low Capacity Ammonia Scrubber Tower
P-106	Chemical Feed Pump for High Capacity Ammonia Scrubber Tower
P-107	Chemical Feed Pump for Low Capacity Ammonia Scrubber Tower
BL-101	Air Blower for High Capacity System
BL-102	Air Blower for Low Capacity System
F-101	High Capacity GAC Air Filter Unit
F-102	Low Capacity GAC Air Filter Unit
TK-104	Chemical Feed Tank for Ammonia Scrubber Towers

3.2.2.2 Design Objective

The design objective of the emission control system is to prevent the release to the atmosphere of ammonia vapors, toxic organic compounds, and odors during the project implementation. These objectives include maintaining a negative pressure in the sealed Tank 102 head space during crystal dissolution through tank liquid heating and recirculation,

purging Tank 102 and maintaining an adequate inflow of air through the access port during entry of personnel for decontamination of the Tank 102 interior, and treating the air before discharge.

3.2.2.3 Design Criteria

The system design is based on the following:

- The emission control system will be operated at all times while the crystal dissolution is in progress through operation of the liquid heating and recirculation system, and during the period the access port placed in the Tank 102 wall for entry for decontamination is open, until final decontamination has been completed.
- The air will be treated to remove ammonia vapors, toxic organic compounds, and odors before discharge to the atmosphere. The treatment for ammonia will be a wet packed tower scrubber system using slightly acidic water as the absorption medium. The treatment for organic compounds and odors will be granular activated carbon (GAC) air filters.
- During the liquid heating phase, the tank will remain sealed and the exhaust volume will be sufficient to handle "off-gassing", and the estimated infiltration into the tank. This volume is about 1300 cfm. During the decontamination phase, a large access port will be provided in the tank wall for personnel and equipment entry. An in-draft must be maintained, and additionally, some cooling effect is desired. The volume to meet those conditions is estimated to be about 13000 cfm. A scrubber sized for the high volume system will not provide effective scrubbing of the lower volume due to "channeling". Methods of meeting both requirements have been analyzed with a single system but it was concluded that two separate treatment systems are required.
- The design basis for the low volume system was to maintain a negative pressure of 0.1 inch water in the tank during operation of the liquid heating and recirculation system to prevent fugitive emissions of ammonia or odors

through gaps or seams in the tank cover.

- The design basis for the high volume system was to maintain a minimum air velocity of 200 fpm through the access port to prevent release of ammonia vapors or odors through this port and to provide a limited amount of temperature reduction in the tank interior.
- The maximum concentrations of ammonia and organic compounds in the vented air were estimated from results of off-gas tests presented in the Alternatives Evaluation Report. The estimated concentrations for the low volume operation are 1.4 mg/L ammonia and 0.0001 mg/L total organic compounds. The estimated concentrations for the high volume operation are 0.14 mg/L ammonia and 0.00001 mg/L total organic compounds.
- The design basis for the ammonia scrubber systems was a minimum of 99 percent removal. The design parameters for the ammonia scrubbers were obtained from a vendor and include an air to water volume to volume ratio approximately 550:1, a liquid loading rate of approximately 6 gpm/ft², and a packing bed depth of 6 feet.
- The GAC air filters essentially will remove 100 percent of toxic organic compounds and odors.
- The GAC air filters will be standard rented units obtained from a supplier. This supplier must have the necessary facilities and permits to regenerate the spent GAC after use. The RCRA waste list codes for the spent GAC are: F001, F002, F003, F039, K033, K097, P051, P071, U130.
- The blowdown water generated from operation of the ammonia scrubbers will be transferred using a tank truck to Pond A or the RMA CERCLA treatment facility. This water would be treated in the RMA CERCLA water treatment facility if possible; however, the high dissolved salt content may prevent this. However, the small total quantity of blowdown anticipated, less than 1500 gpd, may allow dilution with decontamination water before delivery to the

CERCLA facility.

3.2.2.4 Emission Control System Design

The Drawings and Specifications for the project design are submitted concurrent with this Design Analysis Report as a separate package. Refer to Appendix A for manufacturer's information on equipment and to Appendix C for design calculations.

3.3 ELECTRICAL ENGINEERING

The following section provides a brief explanation of the electrical systems and equipment necessary for the Basin F Liquid Storage Tank 102 Decontamination Field Demonstration project.

3.3.1 Exterior Electrical

There are three existing 25 kVA, 13.8 kV-480V transformers feeding the existing installation. These will be replaced by three 100 kVA, 13.8 kV-480V transformers and the fusible disconnect switches will be upgraded to 15A fuses.

The existing electrical switchrack, breakers,15 kVA transformer and distribution panel will be supplemented by new breakers and distribution terminal block to feed the new process equipment.

The existing site lighting will continue to be used with the contractor supplying portable, self-powered lighting equipment, if required, for night-time operation of the process equipment.

Aboveground, heavy wall metal conduit on sleepers will be used to route cable to individual equipment skids in the process area. Underground heavy wall PVC will be used to route cable to the DeCon trailer.

A leased 45 kW, 480V, 3 phase, portable generator will supply power to operate Scrubber D-102 through a manual transfer switch in the event of loss of power. The transfer of power

will occur in 5 minutes or less.

Grounding will be accomplished via 10 foot long, 3/4-inch diameter copper-clad ground rods at the switchracks (existing) and DeCon trailer (new). A grid consisting of 10 foot long, 3/4-inch diameter copper-clad ground rods and #4/0 Soft Drawn Bare Copper Cable will be located outside of the bermed area to prevent damage to the containment liner. The equipment skids will be grounded to the grid in accordance with NFPA 70.

The complete exterior system shall include the following material and equipment.

3.3.2 Transformers

The three existing 25 kVA, 13.8 kV-480V single phase distribution transformers will be replaced by three 100 kVA, 13.8 kV-480V single phase distribution transformers.

The DeCon trailer will be fed from a 15 kVA, 480V-240/120V single phase dry type transformer located at the trailer.

3.3.3 Aerial Line Conductor

No changes will be made to the existing three conductor, #2 AWG ACSR overhead line.

3.3.4 Secondary Conductors

Secondary conductors will be based on copper sized per NFPA70, using 75°C type THW or THWN 600V insulation. The color of the insulation of the ungrounded conductors of different voltage systems shall be as follows:

120/208 volt, 3-phase: red, black, and blue;

277/480 volt, 3-phase: yellow, brown, and orange;

120/240 volt, single phase: red and black.

3.3.5 Motor Control

Motor starters will be of either full voltage or reduced voltage, non-reversing type in a minimum NEMA 3R enclosure. Starters will include at a minimum: 250 VA control transformers, Hand-Off-Auto switches, manual start/stop pushbuttons and run and off lights.

3.4 CHEMICAL SAMPLING AND ANALYSIS PROVISIONS

This section describes the sampling and chemical analysis procedures to be conducted during the in situ dissolution process of Basin F crystal deposits in Tank 102 and subsequent tank interior decontamination. The discussion includes the sampling of the dissolution product, the air emissions generated during this process, and the sampling of the tank liner after decontamination for disposal in a RCRA subtitle C landfill. Samples collected for analyses off-site will be performed by an approved USACE laboratory. Methodologies to be used in the field and by the laboratory will be performed using established and recognized protocols such as USEPA Test Methods for Evaluating Solid Waste (SW-846), Third Edition, 1986, 40 CFR 60, Appendix A, and 40 CFR 61 Appendix B, American Society of Testing and Materials (ASTM) and National Institute of Occupational Safety and Health (NIOSH). All data generated for this project will be reviewed for completeness and verified in accordance with procedures and protocols specified by each method performed. All field data monitoring and sample collection will be fully documented in assigned field logbooks.

3.4.1 Crystal Dissolution

Grab samples of the dissolution product will be collected and monitored during the dissolution process as well as collecting separate grab samples for off-site testing. The field data will be used to determine the optimal dilution factor required for the SQI and to evaluate the rate of crystal dissolution. The method used for sample collection will consist of directly filling disposable plastic beakers from a sampling port from the in-line sampling port of the liquid heating and circulation system to obtain representative samples.

The results generated in the field will not require full data validation. However, each method listed below will be performed in accordance with quality assurance/quality control (QA/QC) protocols specified in each method. Each portable field instruments will also be

checked for working operation and be properly calibrated in accordance with manufacture specifications. Parameters to be monitored on-site will be as follows:

<u>Parameter</u>	Required Portable Instrumentation
Temperature	Thermocouple/meter
Specific Conductance	Conductivity meter and electrode
pH	pH meter and electrode
Density	Field hydrometer
Turbidity	Spectrophotometer

Duplicate grab samples and associated field QA/QC samples will be collected at the completion of the dissolution process based on field data from the in-line sampling port of the liquid heating and circulating system. Samples will be collected, preserved and containerized in accordance with each specific method listed below. The purpose of collecting and analyzing these samples by an approved USACE laboratory is for chemical characterization of the dissolution product, to monitor feed requirements necessary to optimize operations of the SQI system, and to evaluate field measurement for accuracy and precision obtained during actual field operations. The physical and chemical analysis to be performed on these samples will be as follows:

<u>Parameter</u>	Methodologies	
GC/MS volatiles	SW-846/8240	
GC/MS semivolatiles	SW-846/8270	
Pesticides/PCBs	SW-846/8080	
ICP metals	SW-846/3005/6010	
Common Anions	SW-846/300.0	
Mercury	SW-846/7470/7471	
Selenium	SW-846/270.3/7741	
Total kjeldahl nitrogen	SW-846/351.1/351.3	
Total dissolved solids	SW-846/160.1	
Total suspended solids	SW-846/160.2	

Specific conductance	SW-846/120.1
Heating value (BTU)	ASTM D2382
Specific gravity	ASTM D1429

3.4.2 Emissions Control System

Air monitoring in the field and air sampling for laboratory analysis will be performed during the dissolution process. Air monitoring in the field will be performed every two hours during field operations. Air samples for laboratory analysis will be collected daily. The purpose of monitoring air emissions during field operations is to qualitatively characterize air emissions and to evaluate the removal of ammonia and fugitive odor emissions.

Three in-line sampling ports are available for air sampling. The first sampling port is located at the connection of the in-line air scrubbing system to Tank 102 and will be used for sampling the headspace of the dissolution product present in the tank. The second in-line sampling port is located after the in-line ammonia scrubber, and the third after the GAC scrubber. Sampling port locations are presented in the drawings.

Field monitoring will be performed every hour during operation and will consist of attaching a small air pump to the sampling port and drawing air from the tank through a glass tube specifically designed to qualitatively measure the presence of ammonia. The presence of volatile organic compounds will be measured every hour using a portable organic vapor analyzer directly at the sampling port.

Additional air samples will be collected from all three sampling ports on a daily basis and shipped to an approved USACE laboratory for analysis. The results of these analyses will be used to chemically characterize the air emissions generated during the dissolution process and to evaluate the removal efficiency of fugitive compounds by the in-line scrubber system. Parameters and methodologies to be performed will be as follows:

<u>Parameter</u>	Methodology	Frequency
ammonia	NIOSH 205	daily
volatile organic compounds	USEPA T0-1/SW-846/8240	daily

semi-volatile compounds

USEPA T0-4/SW-846/8270

daily

3.4.3 Tank Interior Decontamination

The Basin F sludge collected from the bottom of tank 102 will be containerized and then transferred to the RMA waste management contractor. No additional chemical analysis of the containerized sludge is anticipated.

The tank liner material subsequent to removal and decontamination will be disposed as a hazardous material. Samples of the decontamination water vill be collected and analyzed by an approved USACE laboratory for GCLMS volatiles, semivolatiles, pesticides/PCBs, ICAP metals and mercury.

Wastewater generated during the decontamination process of the tank liner and tank interior will be containerized and transported to the RMA CERCLA wastewater treatment facility. No additional chemical analysis of the decontamination water is anticipated.

3.5 FEDERAL, STATE, AND LOCAL ENVIRONMENTAL PROTECTION CRITERIA AND PERMITS

3.5.1 Scope

In preparation for the implementation of the RMA Tank 102 Decontamination project, a review of applicable and relevant and appropriate requirements (ARARs) was conducted. The Corps of Engineers' (COE) request for proposal (RFP) requires that all permits needed to implement the decontamination process be identified. However, CERCLA Section 121(e) exempts any response action conducted entirely on-site at a site on the National Priority List (NPL) from having to obtain a federal, state, or local permit. In general, on-site actions need comply only with the substantive aspects of Applicable and Relevant and Appropriate Requirements (ARARs), and not with the corresponding administrative requirements. Since the RMA is a site designated on the NPL and the decontamination project will be conducted on-site, permits will not be required, but all substantive requirements must be met. This section outlines those substantive requirements.

3.5.2 Applicable and Relevant and Appropriate Requirements (ARARs)

3.5.2.1 Definition of ARARs

Cleanup standards for remedial actions must attain a general standard of cleanup that assures protection of human health and the environment, is cost-effective, and uses permanent solutions and alternative treatment technologies or resource recovery technologies to the maximum extent practical. In addition, CERCLA, as amended by SARA, requires that any hazardous substance or pollutant remaining on-site meets the level or standard of control established by ARAR standards, requirements, criteria, or limitations established under any federal environmental law, or any more stringent standards, requirements, criteria, or limitations promulgated in accordance with a state environmental statute.

A requirement may be either applicable or relevant and appropriate to remedial activities at a site, but not necessarily both. Applicable requirements are those cleanup standards, standards of control, and other substantive environmental protection requirements, criteria, or limitations promulgated under federal or state law that specifically address a hazardous substance, pollutant, contaminant, remedial action, location, or other circumstances at a site.

If a regulation is not applicable, it may still be relevant and appropriate. The basic considerations are whether the requirement (1) regulates or addresses problems or situations sufficiently similar to those encountered at the subject site (i.e., is relevant), and (2) is appropriate to the circumstances of the release or threatened release, such that its use is well suited to the particular site. Determining whether a requirement is relevant and appropriate is site-specific and must be based on best professional judgement. This judgement is based on a number of factors, including the characteristics of the remedial action, the hazardous substances present at the site, and the physical circumstances of the site and of the release. Compliance with all requirements found to be applicable or relevant and appropriate is mandatory under SARA.

Waivers of ARARs may be obtained under the provisions of CERCLA Section 121(d)(4) under certain circumstances. These waivers apply only to meeting ARARs with respect to remedial actions on-site; other statutory requirements, that remedies be protective of human

health and the environment, cannot be waived.

As stated above, CERCLA, as amended by SARA, requires that any hazardous substance or pollutant remaining on-site meets the level or standard of control established by applicable or relevant and appropriate regulations, standards, requirements, criteria, or limitations established under any federal environmental law, or any more stringent standards, requirements, criteria, or limitations promulgated pursuant to a state environmental statute. CERCLA Section 121(d)(2)(A) specifically limits the scope of state ARARs to standards, requirements, criteria, or limitations under environmental or facility siting laws that are promulgated and more stringent than federal requirements. The National Contingency Plan, which set forth the regulations that implement CERCLA, defines "promulgated" state requirements as state standards that are of general applicability and are legally enforceable.

"To be considered" (TBC) provisions are non-promulgated advisories, proposed rules, criteria, or guidance documents issued by the federal or state government that do not have the status of potential ARARs. However, these criteria and guidance are to be considered when determining protective cleanup levels where no ARAR exists, or where ARARs are not sufficiently protective of human health and the environment. In these circumstances, TBC values are used to establish remediation objectives.

3.5.2.2 Chemical-Specific ARARs

Chemical-specific requirements are based on health or risk-based concentration limits or discharge limitations in environmental media (i.e., soil, air) for specific hazardous chemicals. These requirements may be used to set cleanup levels for the chemicals of concern in the designated media, or to set a safe level of discharge (e.g., wastewater discharge, taking into account water quality standards) where a discharge occurs as part of the remedial activity.

Sources for potential target cleanup levels include selected standards, criteria, and guidelines that are typically considered as ARARs for remedial actions conducted under CERCLA. The chemical-specific ARARs and other criteria or guidelines to be considered are discussed below.

In general, very few cleanup standards exist for soil contamination. Often cleanup levels for non-petroleum wastes are based on a site-specific risk assessment, hazardous waste definition levels, or background levels. Recently, human health-based criteria for soil and water contaminant levels were published as guidance for RCRA Facility Investigations (EPA 530/SW-89-031, May 1989) (hereinafter referred to as the "RFI Guidance"). These standards were developed specifically for application in RCRA-related activities, although it appears they are used as proposed ARARs where no other standards exist. These guidelines are presented, therefore, as TBCs rather than chemical-specific ARARs and represent screening or "further action warranted" levels. Actual cleanup levels that may be applied to a particular area will depend on human health risk evaluations and site-specific requirements.

The RFI guidance levels are based on EPA-derived chronic exposure assumptions and are highly conservative screening levels used at RCRA facilities to determine if a more detailed health risk evaluation (a Corrective Measure Study) is warranted. As mentioned previously, they do not necessarily represent target cleanup levels.

3.5.2.3 Location-Specific ARARs

Location-specific ARARs are restrictions placed on the types of activities that may occur in particular locations. The location of a site may be an important characteristic in determining its impact on human health and the environment. The ARARs may restrict or preclude certain remedial actions or may apply only to certain portions of a site.

Threatened/Endangered Species

The objective of the Endangered Species Act (ESA) is to conserve various species of fish, wildlife, and plants that are threatened with extinction. The ESA provides for the designation of critical habitats that are "specific areas within the geographical area occupied by the species...on which are found those physical or biological features essential to the conservation of the species...."

Section 7(a) of the ESA requires federal agencies "to ensure that the actions they authorize, fund, or carry out are not likely to jeopardize the continued existence of endangered or

threatened species, or adversely modify or destroy their critical habitats. Actions that might jeopardize listed species include those with direct and indirect effects, as well as the cumulative effects of other actions that are interrelated or interdependent with the proposed action" (EPA 1989).

The lead agency is required to identify whether a threatened or endangered species, or its critical habitat, will be affected by a proposed response action. If so, the agency must avoid or alter the action to ensure the species or its critical habitat are not adversely affected (EPA 1989).

Tank 102 is located outside of the RMA Bald Eagle Management Area (Figure RISR A1.6-2, Ebasco et al., May 1991) and Woodward-Clyde believes the proposed tank decontamination project will not affect any threatened or endangered species. A biological assessment may be required, however, to accurately rule out the possibility of adverse impacts to such species.

Wetlands and Floodplain Management

Executive Order 11990, regarding protection of wetlands, is considered applicable if remedial activities impact wetlands areas at the site. When remedial activities take place in the floodplain, Executive Order 11988, regarding protection of floodplains, is applicable. Remediation must then be conducted to avoid long- and short-term adverse impacts associated with the occupation or modification of floodplains.

The Basin F liquid storage tanks are located outside of the floodplain and are not in a wetlands area (Figures RISR A1.5-2 and RISR A1.6-1, Ebasco et al. May 1991), so floodplain and wetlands rules will not be ARARs for the decontamination project.

RCRA Location Requirements - RCRA Section 3004(o)(7)

RCRA contains a number of explicit limitations on where on-site storage, treatment, or disposal of hazardous waste may occur. In accordance with 40 CFR 264.18(a), new treatment, storage or disposal of hazardous waste is prohibited within 200 feet of a fault that has experienced displacement in Holocene time. Similarly, 40 CFR 264.18(b) limits the

placement of a hazardous waste treatment, storage, or disposal facility within a 100-year floodplain unless the facility was designed, constructed, operated, and maintained to avoid washouts. Finally, 40 CFR 264.18(c) prohibits the placement of non-containerized or bulk hazardous waste within salt dome formations, underground mines, and caves.

The RCRA location requirements will apply as follows to the Tank 102 decontamination project:

- 40 CFR 264.18(a) will not apply to the on-site management of hazardous wastes unless a new hazardous waste management unit is used to manage waste from the project. This section would apply to the off-site disposal of the liner and drain if they are disposed in a new unit.
- 40 CFR 264.18(b) will also not apply to the on-site management of hazardous wastes because Pond A, the submerged quench incinerator, and the on-site wastewater treatment plant are outside of the projected 100-year floodplain (Figure RISR A1.5-2, Ebasco et al. May 1991). This section would apply to the off-site disposal of the liner and drain if the disposal facility is in the floodplain.
- 40 CFR 264.18(c) will not apply to the Tank 102 project as proposed because disposal in salt dome formations and underground mines and caves is not planned.

National Historic Preservation Act (NHPA)

The objectives of the NHPA are to protect and restore areas, buildings, and objects significant to American history, engineering, architecture, or archaeology. The Tank 102 decontamination project is not expected to impact any areas, structures, or objects protected by the NHPA. The results of the RMA NHPA survey, which is still underway, must, however, be reviewed before an accurate determination may be made as to the applicability of NHPA regulations.

3.5.2.4 Action-Specific ARARs

Action-specific ARARs are usually technology- or activity-based requirements or limitations on actions taken with respect to hazardous waste. These requirements are triggered by the particular remedial activities that are selected to accomplish a remedy. These action-specific requirements do not in themselves determine the remedial alternative; rather, they indicate how a selected alternative can be achieved.

Clean Air Act

National Ambient Air Quality Standards, 40 CFR 50 National Emissions Standards for Hazardous Air Pollutants, 40 CFR 61 New Source Performance Standards, 40 CFR 60

These regulations implement and set rules for a regional air pollution control program to protect the public health and welfare. These regulations are applicable if a remedial action creates air emissions regulated by these standards.

The heating system used to redissolve the solids will be a closed loop circulation system and will vent only to the tank. Tank 102 will be maintained with a negative pressure in the tank headspace and will use an emissions control system to prevent any possibility of any toxic or odorous emission during the entire Phase One and Phase Two portions of this project as described in the published specifications. The emissions control system is comprised of an ammonia scrubber and GAC filter and will be utilized continuously for the length of the project. Ammonia concentrations in the vent gas are anticipated to be in the range of 0 to 2 mg/L. Total volatile organic compound (VOC) concentrations to the GAC filters are anticipated to be in the range of 0 to 0.001 mg/L. At a removal efficiency of 99 percent or better, total VOCs emitted to the air will be less than 0.0001 mg/L. Proper disposal techniques for on-site disposal of the ammonia scrubber water and off-site regeneration of spent GAC will be conducted as required to maintain emissions within these estimated ranges.

At maximum operational flowrate and with minimal 99 percent removal efficiency, VOC emissions will not exceed 0.0005 lb/hr or 4.26 lbs per year (1300 cfm x 28.317 l/ft³ x 0.0001

mg/L x 10⁻³ g/mg x 1/454 lb/g x 60 min/hr). Under these worst-case operational conditions, no existing federal air permitting regulations are triggered. A revised Air Pollution Emission Notification (APEN) should be filed with the State of Colorado due to the toxic status of some of the VOCs. The Air Pollution Control Division of the Colorado Department of Health would determine whether compliance with the substantive requirements associated with an air permit is applicable to the Tank 102 project.

Hazardous Materials Transportation Act

Hazardous Materials Transportation Regulations, 49 CFR Part 107, 171-177

These regulations apply to the transportation of hazardous materials. These regulations will be applicable to the off-site transportation of the liner and geonet drain, which will be RCRA-regulated hazardous wastes. The Hazardous Materials Regulations (HTR) specify a classification system for hazardous materials and provide requirements for packaging, transporting, and handling such materials. The HTR also detail procedures for hazard communication and incident reporting. The HTR were revised significantly on December 21, 1990 (55 FR 52402) and December 20, 1991 (56 FR 66124). The regulated community, however, has until October 1, 1993 to use the old U.S. Department of Transportation (DOT) classification scheme for most hazardous materials, including hazardous waste, and until October 1, 1996 for continued use of DOT specification packaging for domestic shipment of hazardous materials (49 CFR 171.14).

According to Ms. Ann Weiss of DOT headquarters, although the Basin F fluid is a poison B liquid, the Tank 102 liner and geonet drain should be classified as "hazardous waste, solid, not otherwise specified (NOS)." If, however, the liner or drain is judged to also be poisonous, the "poison B, solid" classification would apply.

Packaging of hazardous waste solids, NOS, must be in accordance with 49 CFR 173.510 (49 CFR 173.1300). (Note: these requirements are part of the old HTR, which most transporters are still using at this point in the regulatory transition period.) Transportation of the hazardous debris off-site must be in accordance with the RCRA regulations in 40 CFR, Parts 262 and 263 as well as with the DOT regulations. The debris will be accompanied by a properly prepared hazardous waste manifest so will not require a DOT

shipping paper [49 CFR 172.205(h)].

Resource Conservation Recovery Act

Identification and Listing of Hazardous Wastes, 40 CFR Part 261

These regulations define those solid wastes that are subject to regulation as hazardous waste under RCRA. These regulations will apply to the Tank 102 decontamination because new RCRA-regulated hazardous waste, the liner and geonet drain, which "contain" listed hazardous waste, will be generated. In addition, because the tank will be decontaminated by rinsing with water or another solvent, the rinsate will be characterized as a RCRA-listed hazardous waste due to the "mixture rule" [40 CFR 261.3(a)(2)]. Rinsate that carries a RCRA listing must be managed as hazardous waste.

Standards Applicable to Generators of Hazardous Waste, 40 CFR Part 262

These regulations set standards for the management of hazardous waste by generator. These regulations will be ARARs for the Tank 102 decontamination project because RCRA-regulated hazardous waste, the liner and geonet drain, will be generated during tank decontamination procedures. The regulations require a hazardous waste generator to have an EPA identification number; to manifest shipments of hazardous waste; to package, label, mark, and placard the shipments in accordance with DOT regulations; and to perform specified recordkeeping and reporting duties (see 40 CFR, part 262).

Standards Applicable to Transporters of Hazardous Waste, 40 CFR Part 263

These regulations establish standards that apply to person transporting hazardous waste within the U.S. These regulations will be ARARs for the off-site transportation of the tank liner and drain since the liner and drain will be RCRA-regulated hazardous waste. In addition, the DOT regulations will also apply. The RCRA regulations require hazardous waste transporters to have EPA identification numbers and comply with specified manifest and recordkeeping procedures (40 CFR 263.11 through 263.22). The regulations also detail actions which must be taken by a transporter in the event of a hazardous waste release during transportation (40 CFR 263.30 and 263.31).

Standards for Owners and Operators of Hazardous Waste Facilities, 40 CFR Part 264

These regulations establish minimum standards that define the acceptable management of hazardous waste for owners and operators of facilities which treat, store, or dispose of hazardous waste. The 40 CFR, Part 264 provisions which will be ARARs at the RMA for the Tank 102 decontamination are Subparts G (Closure and Post-Closure), O (Incinerators), I (Use and Management of Containers), J (Tank Systems), and possibly Subpart N (Landfills). The landfill to which the liner and drain are sent must be in compliance with all applicable provisions of 40 CFR Part 264 or Part 265.

General Closure Requirements

RMA expects to close Tank 102 after all waste and waste residues are removed from the tank. For facilities closed without leaving waste in place, the applicable sections of 40 CFR, Part 264, Subpart G would be Sections 264.111 through 264.115. These sections contain substantive provisions including the requirements:

- 1. To close a facility such that the need for further maintenance is minimized [40 CFR 264.111(a)].
- 2. That hazards to human health and the environment are minimized [40 CFR 264.111(b)].
- 3. That contaminated equipment, structures, and soils are removed and properly disposed or decontaminated (40 CFR 264.114).
- 4. Management of all hazardous waste in accordance with the appropriate RCRA requirements (40 CFR 264.114).

Should Tank 102 be closed with waste in place, the substantive provisions of Sections 264.116 through 264.120 would apply, as would the following requirements:

1. To eliminate free liquids by removal or solidification [40 CFR 264.228(a)].

- 2. To stabilize remaining waste and waste residues to support cover [40 CFR 264.228(a)].
- 3. To install final cover to provide long-term minimization of infiltration (40 CFR 264.310).
- 4. To conduct thirty-year, or as specified by the EPA, post-closure care and groundwater monitoring (40 CFR 264.310).

Tank Closure Requirements

The requirements applicable to Tank 102 closure are:

- Removal or decontamination of all contaminated debris [40 CFR 264.197(a)].
- Management of contaminated debris, as appropriate, as hazardous waste [40 CFR 264.197(a)].
- If the tank is closed leaving waste in place, landfill closure and post-closure requirements (40 CFR 264.310).

Container Storage Area

The solids removed from Tank 102 will be drummed and the containers sent to a container storage area. The RCRA regulations define containers as any portable device in which a material is stored, transported, treated, disposed of, or otherwise handled. If this type of facility is constructed, the design and operating requirements of 40 CFR Part 264 Subpart I will be addressed. The design requirements are summarized below, and the operation requirements are described below.

Design Requirements

There are two different design configurations for a container storage area: one configuration requires a containment system; the other configuration does not require this containment

configuration. The characteristics of the waste that is to be stored in the facility dictate which design configuration is selected.

A container storage area is not required to have a containment system if the following two conditions are met:

- The waste (other than F-listed dioxin wastes) contains no free liquids.
- The area is designed and operated to drain and remove precipitation, or the containers are protected from corract with accumulated precipitation.

Free liquids are defined in the regulations as any liquids which readily separate from the solid portion of a waste under ambient temperature and pressure. The paint filter liquids test, as outlined in "Test Methods for Evaluated Solid Waste, Physical/Chemical Methods," EPA Publications SW-846, is the method used to evaluate whether free liquids are present.

If the above two conditions cannot be met, the following design requirements must be incorporated into the container storage facility.

- The container storage areas must have a containment system that can contain 10 percent of the volume of containers or the volume of the largest container, whichever is greater.
- This containment system must have a base sufficiently impervious to contain leaks and spills until the release is detected and removed.
- The containment system must be designed and operated to drain and remove liquids, or the container must be protected form contact with liquids.
- The containment system must be designed to prevent run-on or to contain run-on.

Two additional requirements that must be included into both design configurations are listed below:

- Containers holding ignitable or reactive waste must be at least 50 feet from the facility's property line.
- Hazardous waste containers must be separated from units storing substances incompatible with the waste, using berms, dikes, walls, or other devices (40 CFR, Part 264, Subpart I).

Operating Requirements

If a container storage area is used to manage Tank 102 sludge, the following operating standards must be addressed:

- The containers holding hazardous waste must be in good condition (without rusting or structural defects).
- The container and its liner must be constructed of materials that are compatible with the types of waste being stored.
- Containers holding hazardous waste must always be closed during storage, except when waste is being removed from or added to the container.
- The container storage area must be inspected weekly. The inspections should be developed to identify the following conditions: leaking or deteriorating containers, or a deteriorating leak detection system (40 CFR, Part 264, Subpart I).

Regulations Governing Rinsate Management

RMA plans to send the Tank 102 decontamination rinsate to an on-site wastewater treatment plant. When generated, the rinsate will be a listed RCRA hazardous waste due to the mixture rule [40 CFR 261.3(a)(2)], so certain RCRA regulations will be applicable

to management of the rinsate. Facilities which meet the 40 CFR 260.10 definition of a wastewater treatment unit are excluded from the requirements of 40 CFR, Parts 264 and 265. The wastewater treatment unit exemption only applies to the unit, and to waste while it is in the unit. The exemption does not follow the waste, so treatment or storage of a hazardous waste before or after it is in the unit would require compliance with 40 CFR, Part 264 or Part 265, as appropriate, as would disposal of such a waste after it exits a wastewater treatment unit (EPA letter from Kenneth Gray to Brenner Munger; April 1, 1985). Wastes from the wastewater treatment unit at RMA may be hazardous wastes subject to relevant RCRA regulations, once they leave the unit.

Regulations Governing Dissolution Liquid Management

The two options being considered for management of the Tank 102 dissolution liquid are to store the liquid in Pond A and/or to dispose of the liquid in the submerged quench incinerator (SQI). Storage of the liquid in Pond A would trigger the 40 CFR, Part 264, Subpart K requirements, which apply to surface impoundments. Hazardous waste surface impoundment requirements include the following:

- 1. Surface impoundments must be lined. The liner must prevent migration of wastes from the impoundment [40 CFR 264.221(a)].
- 2. The impoundment must be designed, constructed, and maintained such that overtopping is prevented [40 CFR 264.221(f)].
- 3. Impoundment dikes must be designed, constructed, and maintained such that massive failure of the dikes is prevented [40 CFR 264.221(g)].
- 4. During construction and operation of the pond, inspections must be conducted as specified in 40 CFR 264.226.
- 5. The impoundment must be removed from service if the liquid level in the pond drops suddenly and is not due to changes in pond entry or exit flows, or if the dike leaks [40 CFR 264.227(a)].

- 6. Incompatible wastes may not be placed in the same surface impoundment without compliance with 40 CFR 264.17(b) (40 CFR 264.230).
- 7. Compliance with appropriate land disposal restriction provisions, including ensuring the waste meets treatment standards before it is deposited into the impoundment (49 CFR, Part 268).

Disposal in the SQI would trigger the 40 CFR, Part 264, Subpart O incinerator requirements. Subpart O substantive requirements which could apply to the SQI include the following:

- 1. Analysis of the waste feed (40 CFR 264.341).
- 2. Achievement of performance standards for hydrogen chloride, principal organic hazardous constituents, and particulates (40 CFR 264.342 and 264.343).
- 3. Monitoring of parameters such as combustion temperature, waste feed rate, combustion gas velocity, and carbon monoxide [40 CFR 264.345(b)].
- 4. Control of fugitive emissions and use of an automatic cutoff system (40 CFR 264.345).
- 5. Disposal of all hazardous waste and residues, including ash, scrubber water, and scrubber sludge (40 CFR 264.351).

Treatment/Storage/Disposal Facility (TSDF) Air Emissions Rules

On June 21, 1990 (55 FR 25454), EPA promulgated regulations governing emissions from (1) process vents associated with distillation, fractionation, thin-film evaporation, solvent extraction, and air and steam stripping operations, which manage hazardous waste that contains ten parts per million by weight (ppmw) or more of total organics and (2) leaks from equipment that holds or contacts hazardous waste that contains ten percent or more by weight of total organics. The current TSDF air emissions regulations will not be

applicable to the Tank 102 project because the tank contains less than ten ppmw and less than ten percent organics and the equipment involved in the project is not covered by the TSDF air emission rule. The crystals in the tank are mainly composed of sodium sulfate and sodium chloride, and the process equipment involved in the Tank 102 project includes a heat exchanger and wet scrubber, but no equipment regulated by the June 21, 1990 rule.

Although the process vent and equipment leak rule does not apply to the Tank 102 project, proposed Phase II of the TSDF air emissions regulations (July 56 <u>FR</u> 33490), which will apply to air emissions from tanks, surface impoundments, containers, and miscellaneous units, could be a TBC or an ARAR for the project. EPA explains in the proposed rule that

even if the managed waste contains less than 500 ppmv (the concentration cutoff for the Phase II rule), the rule could be relevant and appropriate (56 FR 33498).

Land Disposal Restrictions and the Proposed Contaminated Debris Rule

Land Disposal Restrictions, 40 CFR 268

These regulations establish a timetable for the restriction of burial or land disposal of hazardous waste. They also establish treatment standards which must be met prior to the placement of hazardous waste in land-based units. The regulations will apply to the Tank 102 decontamination project because hazardous waste (the liner and drain) generated during the decontamination procedures will be placed in a land-based disposal unit.

The 100-mil HDPE liner and 200-mil geonet drain from RMA's Basin F storage tank (Tank 102) are contaminated with wastes including F039, multi-source leachate, and will be subject (once removed from the tank) to the current land disposal restrictions. Current land disposal restrictions for F039 wastes specify concentration-based treatment standards for a large number of contaminants [40 CFR 268.43(a)]. The liner and drain may also be subject to other treatment standards, should treatment standards for other wastes contaminating the debris be more stringent than those for F039 waste. For example, the liner and drain are also contaminated with F001, F002, F003, K033, K097, P051, P071, and U130 wastes. Such wastes may have one or more contaminants with concentration standards below the F039 standard.

The treatment standards for organics in F039 waste are mainly based upon incineration, and for inorganics on stabilization (54 FR 48464). The national capacity variance for debris contaminated with waste that has treatment standards based on incineration and other specified treatment methods had applied to F039 wastes (EPA letter from Sylvia Lowrance to Douglas MacMillan; July 31, 1990), but expired on May 8, 1992. On May 8, 1992, EPA signed a rule granting a further capacity variance of one additional year to hazardous debris (debris contaminated with listed waste or which exhibits a hazardous characteristic) except for debris contaminated with listed solvents or dioxins or with California-list non-liquids (57 FR 20770; May 15, 1992).

According to Debbie Wood of EPA Headquarters, the new extension, to May 8, 1993, does not apply to F039 debris if the debris is also contaminated with listed solvents or dioxins; therefore, according to Ms. Wood, the RMA tank liner and drain would be currently subject to land disposal restrictions. The preamble to the Third rule, however, discusses F039 waste and states "when today's rule is effective, a generator does not have the option to continue classifying their multi-source leachate (under the waste code carry-through) as all the listed wastes from which it is derived; multi-source leachate must be classified as F039" (55 FR 22619; June 1, 1990). The regulations do not specify whether waste contaminated with F039 as well as listed solvents is covered under the variance, but in a Federal Register preamble (54 FR 8265; February 27, 1989), EPA states "it does not appear...that the statute is so explicit on the question of whether multi-source leachate not directly attributable to disposal of a particular spent solvent is necessarily to be classified as a spent solvent for purposes of the solvent prohibition date." It is WCC's opinion that the liner and drain would carry the F039 waste code as well as the other waste codes listed above since RMA records indicate that wastes other than leachate were disposed in Basin F. The liner and drain, therefore, would not be covered under the May 15, 1992 land disposal restrictions extension. In any case, RMA plans to remove the liner and drain from Tank 102 in 1993, with land disposal of the waste after May 8, 1993. If so, the liner and drain would be subject to full land disposal regulation.

On January 9, 1992, EPA proposed regulations which would govern the land disposal of debris contaminated with hazardous waste. These regulations would revise treatment standards for contaminated debris and, as proposed, are more lenient for that debris covered by the rule. For example, the January 9, 1992 rule proposes to allow debris contaminated

with listed waste to be sent to a Subtitle D landfill after treatment if it has been treated with an appropriate extraction or destruction treatment method. The deadline for the final contaminated debris LDR rule was extended by 30 days, so the final rule is due at the end of June 1992. The January 9, 1992 rule does not, however, specify alternate treatment standards for F039 debris. Should the rule be finalized as proposed, it appears that F039 debris would have to comply with the current, concentration-based, F039 treatment standards.

LDR Storage Prohibitions

Hazardous wastes restricted from land disposal may be stored at a facility only as specified in 40 CFR 268.50. At a TSDF, restricted waste may be stored for up to one year unless the implementing agency demonstrates the storage is not solely for "accumulation of such quantities of hazardous waste as are necessary to facilitate proper recovery, treatment, or disposal" [40 CFR 268.50(b)]. After one year of storage, the burden of proof is on the owner/operator of the facility to demonstrate that the storage is necessary "to facilitate proper recovery, treatment, or disposal" [40 CFR 268.50(c)]. The storage prohibitions of Sections 268.50(b) and (c) do not apply if the restricted waste meets the applicable land disposal treatment standards. For the issue of storage prohibition, it is important to determine the date on which the contaminated debris became or will become subject to land disposal restrictions. The one-year time period for the storage prohibition would begin once the waste becomes subject to 40 CFR Part 268.

LDRs and Treatment Facility Testing Requirements

Testing requirements for treatment facilities are specified in 40 CFR, Section 268.7(a), for those wastes subject to land disposal restrictions. Treatment facilities must test waste if the waste treatment standards are concentration-based.

Sampling Requirements for Hazardous Waste Landfills

A RCRA-permitted hazardous waste landfill must obtain chemical and physical data on a representative sample of a waste before the waste may be disposed at the landfill. The data may be obtained by the landfill owner/operator or provided by the waste generator. The

federal regulations do not specify tests which a disposal facility must perform on a waste before disposing of the waste. Analyzed parameters, analyses, and sampling frequency are site-specific and are detailed in the facility's Waste Analysis Plan [40 CFR 268.7(c)(2)].

REFERENCES

Ebasco Services Incorporated, Applied Environmental, Inc., CH2M Hill Datachem, Inc., R.L. Stollar and Associates. Draft Final, Remedial Investigation (RI) Summary Report, Appendix A - Environmental Setting, RI Approach, Nature and Extent of Contamination - Figures and Plates. Version 2.3, May 1991, Contract Number DAAA 15-88-D-0024.

U.S. Environmental Protection Agency (EPA). CERCLA Compliance with Other Laws Manual: Part II. Clean Air Act and Other Environmental Statutes and State Requirements. EPA/540/G-89/009. August 1989.

3.6 HEALTH AND SAFETY DESIGN ANALYSIS

3.6.1 Introduction

The work described in this implementation document involves the interim remediation of a hazardous waste site and is within the scope of part 1910.120 of title 29 of the Code of Federal Regulations (29 CFR 1910.120), "Hazardous Waste Operations and Emergency Response." This regulation requires the development and implementation of a written safety and health program for employees involved in hazardous waste operations and also requires that a site-specific safety and health plan be written to address the hazards of each phase of the site operation. The site-specific safety and health plan must include requirements and procedures for employee protection and responses to spills and emergencies. The safety and health plan developed for this site must also be in compliance with the current edition of the US Army Corps of Engineers "Safety and Health Requirements Manual" EM 385-1-1.

3.6.2 Contamination Characterization

Basin F liquid is an aqueous liquid containing a complicated mixture of hydrocarbons, chlorinated hydrocarbons, salts, metals, and other process intermediates, by-products, and wastes. It is known that quantities of ammonium phosphate, and later copper sulfate, were added to Basin F at different times. The total organic carbon content (as C) reported for Basin F liquid ranges from 18,000 mg/l to 23,000 mg/l. This indicates that Basin F liquid is approximately 2 percent organic carbon. The major organic species, identified in samples of Basin F liquid in 1988, was 4-nitrophenol. Historical analytical data indicate that a number of pesticides are also present in Basin F liquid, but these levels are relatively low when compared to the overall total organic content (TOC).

Basin F liquid is remarkable in the wide variety of inorganic and organic compounds contained in the liquid. Although the major metallic inorganic species are sodium and potassium, significant amounts of heavy metals, particularly copper, are also present. Analyses conducted to date do not distinguish between metals present as ionic species, metals present as amine complexes, and metals potentially present in more exotic organometallic forms.

Although a significant number of organic chemical species have been identified, many of the organic compounds present in Basin F liquid are unidentified despite the fact that the samples were analyzed for an extensive range of hazardous species including compounds referenced in U.S. Environmental Protection Agency SW-846, Test Methods for Evaluating Solid Waste, Physical and Chemical Methods, 1988. In part, this lack of identification of Basin F liquid organic species is caused by the difficulty of analyzing individual species in the complex matrix. The highly concentrated matrix has resulted in an unavoidable increase in baseline interference and higher detection limits. In addition, based on Shell's experience, many organics may be difficult to extract using standard extraction methods, due to the formation of emulsions.

Numerous studies conducted to characterize Basin F liquid indicate that its contaminants include: alcohols, fluoride, chloride, insecticides, chlorinated organics, chlorophenylmethyl sulfone, pesticides, chlorophenylmethyl sulfoxide, phenols, dicyclopentadiene, phosphorous, p,p-DDE, p,p-DDT, sulfate, acetophenone, aldrin, isodrin, arsenic, mercury, metals,

pentachloroethane, dibromochloropropane, tetrachloroethylene, dithiane, toluene, dieldrin, trichloroethane, xylene, dimethylmethyl phosphonate (DMMP), endrin, and diisopropylmethyl phosphonate (DIMP). Table 1 list results of several past and current analyses of Basin F liquid.

Basin F liquid is also remarkably high in urea according to historical results (Table 1). In general, the presence of urea would be indicative of a reducing chemical matrix. The extremely high chemical oxidation demand (COD) results suggest that Basin F liquid is a reducing matrix.

During the first Basin F IRA it was found that Basin F liquid, while still in the basin, tended to stratify. The stratification consisted of an aqueous layer on top, then a layer of crystallized material, beneath which was a layer of slushy and highly volatile organic fluids and sludges. This distinct stratification has not been observed in the tanks or Pond A, although a crystal layer has been observed on the bottom of Pond A and the tanks.

Basin F liquid was found to contain extremely high levels of total Kjeldahl nitrogen, expressed as N, in the range of 101 to 104 grams per liter (g/l). Approximately 50 percent of this amount is attributed to ammonia or ammonium ion, while the remainder of the reported nitrogen (as N) is present as urea (Shell 1986), although traces of nitrogen in other forms, such as nitrate, are undoubtedly present. Effervescence, noticed during sampling and filtering, is likely attributable to off-gassing of saturated or loosely complexed ammonia. The high ammonia content of Basin F liquid presents numerous problems in handling, transfer, and treatment.

Basin F liquid is of neutral Ph but is electrolytically corrosive. Although the ionic strength of Basin F liquid was not determined, Basin F liquid has an ionic strength (salt content) approximately ten times that of seawater. Basin F liquid was also found to contain near-saturated levels of ionic inorganic species. It is assumed from the history of liquid disposal in the basin and other information that the primary cationic species are Na⁺, K⁺, Cu⁺², Mg²⁺, and NH₄⁺, and that the anionic species are Cl., F., SO₄²⁻ and NO³⁻.

The high ionic strength has two major impacts on implementation of the treatment alternative. First, any further concentration of the liquid (liquid removal) will increase

salting-out of major species. Second, Basin F liquid is likely to be very corrosive because of the high salt content and the metal complexing capability of ammonia.

Personal air sampling including WPA Method T01/02/03 using Carbotrap 300 adsorbent, thermal desorption and GC/MS analysis was performed during the Basin F sampling activities in September/October 1991. Basin F liquids remained at ambient temperatures throughout the sampling activities.

The following contaminants were detected in the sample: acetone, acetonitrile, 2-butanone, trichloroethane, trichloroethene, benzene, tetrachoroethene, toluene, ethylbenzene, xylene, acetic acid. Contaminants were all detected at below ppm levels, and all were orders of magnitude lower than applicable Permissible Exposure Limits.

Freons, pentane, cyclopentane, styrene, and 2-methyl butanone were also detected during sampling. These compounds are all related to blowing styrenes. Since there is no historical evidence of these compounds in Basin F, they are presumed to be from the large pieces of styrofoam that were used for a floating bridge during field activities.

Basin F liquids were tested for volatile components in June of 1992. Samples of volatiles emitted when Basin F fluids were heated to 60° C were collected at Waterways Experiment Station. Below ppm concentrations of acetonitrile, and acetone were detected during sample analysis. Ammonia was detected at concentrations of 10 - 75 ppm.

3.6.3 Hazard Assessment and Risk Analysis

Exposure limits and properties of the contaminants identified in the Basin F liquids were reviewed and are included in Table 2. Permissible Exposure Limits promulgated by the Occupational Safety and Health Administration are listed for all compounds for which such limits have been identified. Similarly, Threshold Limit Values issued by the American Conference of Governmental Industrial Hygienists are also listed. For compounds with no identified exposure limits, D_T values were listed if available. Developed by the US Army

Medical Bioengineering Research and Development Laboratory, D_T values are conservative estimates of toxicity and may be based on very limited data.

Raoult's Law was used to preliminarily identify volatile contaminants of concern from this list of known contaminants. Based on these calculations, the following compounds were identified as a potential concern for inhalation exposure during field activities: 4-chlorophenyl methyl sulfoxide, ammonia, dimethyl methyl phosphonate, diisopropyl methyl phosphonate, dimethyl disulfide. A description of these calculations has been included in Attachment A.

The above assessment is considered a conservative as the results of the previous air sampling (Section 3.6.2), showed no significant volatile organic vapor hazard.

Ammonia and dimethyl disulfide are significant odor emitting compounds. Ammonia has been detected higher concentrations than any other contaminant during recent sampling events. As noted in Table 2, ammonia has an odor threshold of 0.3 - 40 mg/m³, and dimethyl disulfide has an odor threshold of 0.003 -0.029 mg/m³. The health effects of ammonia are mainly irritation of the respiratory tract and mucous membranes. It is expected that ammonia will be irritating to workers at concentrations well below their acute toxicity level. Dimethyl disulfide emitted significant odors during previous field activities involving Basin F liquids, however, no concentrations of dimethyl disulfide were detected during the most recent sampling events. Therefore, it is unknown whether this compound will be detected during this project. Due to the ability to detect ammonia and dimethyl disulfide at low concentrations, these compounds can be considered indicative of total organic vapor concentrations.

The greatest human health hazard during this project is expected to result from direct contact with Basin F liquids (i.e. skin contact or inhalation of aerosolized liquids). Not only are Basin F liquids known to be corrosive, but contaminants may be absorbed through the skin during contact.

The field activities for this project are outlined in section 3. A summary of the tasks is given below.

Site Preparation and Demobilization

Set up exclusion zones, decontamination trailer

- Collection of grab samples of the dissolution product
- Set up the propane tank
- Site grading
- Placing a 100 mil HDPE liner,
- Build a ramp to the bottom of the tank access opening
- Install a wastewater removal system
- Installation of the air treatment system nonintrusive activities
- Installation of the heating and recirculation system nonintrusive activities
- Install tank decontamination hot water supply
- Cut a hole in the tank

Intrusive Site Preparation

- Installation of the air treatment system cut the hole for installing the air duct
- Installation of the heating and recirculation system open the hatch for pipe installation
- Install lighting system
- Install sludge handling system
- Install automatic tank washer

Tank Decontamination

- Dewater sludge
- Remove sludge with skid steer loaders
- Primary decontamination of tank liner and alumadome roof
- Removal and final decontamination of the liner
- Removal and final decontamination of the geonet
- Decontaminate tank wall and bottom

Equipment Decontamination

- Decontaminate skid steers
- Decontaminate equipment

During field activities, physical hazards will include standard construction hazards. These will include but are not limited to confined space entry; uneven ground; slip, trips, and falls; sensory and dexterity hazards from wearing personal protective equipment (PPE); electrical hazards; cutting and welding hazards; heat and cold stress; noise; and physical and overhead hazards involved with the use of heavy equipment, personnel hoists, and cranes, ingress and egress into bermed area near the tank.

Chemical hazards during site preparation and demobilization are expected to be limited. Exposures to Basin F liquids are not anticipated. Personnel shall wear protective equipment during these activities which will protect them from physical construction hazards.

By the time the opening in the tank is made, the air handling system will be in place. This system is designed to pull 4 air exchanges per hour. The tank will be under negative pressure. It is anticipated that all contaminated materials will be pulled into the tank away from the breathing zone of the workers. When making the cut in the tank, it is critical that water is sprayed into the cut behind the cutting torch to keep the HDPE liner and the geonet from igniting.

To connect the hot water supply system, valves on ST101, P101, and HE101 must be opened. The potential exists for very small amounts of dilute Basin F liquids to be in the piping. Personnel must don splash protection to prevent exposure during this operation.

All intrusive site preparation activities, tank decontamination and equipment decontamination activities will require potential exposure to either high concentrations of Basin F liquids or aerosolized Basin F liquids. These activities must be conducted in self contained breathing apparatus or airlines, and skin protection.

Intrusive site preparations and tank decontamination will require personnel to enter the tank through either the side opening or through the roof hatch. Due to the potential chemical exposure hazards and the physical hazards caused by the use of mechanical equipment within the tank, entry into the tank must be treated as a confined space entry. Confined space permits must be prepared prior to entry for each work shift which will identify required safety equipment and procedures. Pre-entry air monitoring must be conducted.

Heat stress will be a significant hazard during intrusive site preparations and tank decontamination. Methods for limiting heat and cold stress shall be devised and implemented. Depending on site conditions either a work rest regime or use of appropriate personal cooling devices (section 4.8.1.3.10) shall be employed to prevent heat stress during intrusive activities. In addition, adequate precautions shall be made to prevent heat stress in workers who have not been acclimatized.

During site preparation the heating and recirculation system will be installed on site. These will include a 6,000 gallon propane tank and piping which will contain oil which will be heated to 300° F. Sources of ignition must be kept away from the propane tank, and personnel must be notified of the hazards associated with accidental breakage of the heated oil line.

The air treatment system will include a wet scrubber which will remove ammonia from the air by precipitating it out in solution. The result will be blowdown water which will contain ammonia and some volatile organics. Personnel will be required to connect and disconnect hoses when the blowdown water is pumped from the air treatment system to tank trucks on site. No significant inhalation exposure is anticipated for this activity. Personnel will be required to don protective equipment to prevent direct skin contact with blowdown water.

Similarly, liquids from the settling tanks will be pumped from the tanks to nearby tanker trucks. Personnel must don splash protection to prevent direct skin contact while connecting and disconnecting lines.

Disconnecting lines will be a potential physical and chemical exposure hazard during this work. Personnel must assure that lines are not under pressure and are not filled with contaminated liquids before breaking lines.

Additional hazards may be encountered during this work depending on site conditions. Potential hazards must be analyzed on a task-specific basis by a competent safety and health professional.

3.6.4 Site-Specific Safety and Health Plan Preparation

The site-specific safety and health plan will be written by or under the direction of an American Board of Industrial Hygiene Certified Industrial Hygienist experienced in hazardous waste work. The plan will be signed by the responsible contractor safety and health officer and project manager at a minimum. The contractor will certify in writing to the Contracting Officer (CO) that a fully appropriate and compliant plan has been produced and will supply the CO with a copy of said plan.

A fully trained and experienced Site Safety and Health Officer (SSHO), responsible to the CIH, may be delegated to implement the Safety and Health program and site specific elements on site, with the enforcement responsibility being retained by the site Safety and Health Manager.

At least one person certified in first aid/CPR by the Red Cross or equivalent agency shall be present on-site at all times.

3.6.5 Training

Due to the potential for chemical exposure on this site, and the requirement for use of self contained breathing apparatus or airlines, all personnel must, at a minimum, have successfully completed 40 hours of OSHA training. No one may fulfill this requirement by the grandfather allowance outlined in 29 CFR 1910.120.

Site specific training covering site hazards, procedures, and all contents of the SSHP shall be conducted by the SSHO for on-site employees and visitors prior to commencement of work or entering the exclusion zone.

3.6.6 Personal Protective Equipment

Due to the risk of exposure to a matrix of compounds with unknown health effects, concentrations of ammonia, 4-chlorophenyl methyl sulfoxide, diisopropyl methyl phosphonate, dimethyl disulfide, dimethylmethyl phosphonate. Self contained breathing apparatus or airlines and skin protection must be required during all activities where there

is a potential for inhalation of high concentrations of Basin F compounds or exposure to aerosolized Basin F liquids. During non-intrusive air monitoring, non-intrusive support activities, protective equipment levels can be downgraded to skin protection only. Site preparation, and demobilization may be conducted in protective equipment for site physical hazards. The effectiveness of air purifying respirator (APR) cartridges in removing the Basin F Liquid vapors from the air is unknown. APR, therefore, shall not be utilized during field activities for this project.

Appropriate PPE Levels must be confirmed with Industrial Hygiene monitoring (Section 3.6.8.1). Exposure to hazardous materials will be kept as low as reasonably achievable and will in no case exceed the permissible exposure limits specified in 29 CFR 1910.1000. In planning for worker protection, engineering controls to protect workers must be used whenever feasible, and personal protective equipment will be used only when engineering controls are not feasible.

3.6.7 Medical Surveillance

All personnel working on this site must participate in a medical surveillance program which is overseen by a licensed physician who is certified in Occupational Medicine by the American Board of Preventative Medicine or who is Board-eligible. The medical surveillance program must fully comply with 29 CFR 1910.120 (f) and ANSI 288.2. Due to the requirement for wearing self-contained breathing apparatus and the potential for exposure to contaminants of concern, the following are minimum requirements for the medical surveillance program.

- complete physical
- pulmonary function test
- CBC differential
- SMAC 22,
- urinalysis,

3.6.8 Exposure Monitoring/Air Sampling

3.6.8.1 Industrial Hygiene Monitoring

Monitoring of the workers breathing zone must be conducted during all intrusive activities to verify employee exposures.

A FID shall be used during all intrusive activities to document employee exposures to organic vapors. The FID shall be operated continuously throughout intrusive activities. A minimum of one documented reading every 30 minutes shall be obtained from within the breathing zone of the worker with the highest potential for exposure. Between documented sampling events, the FID may be placed within the work area for continuous area monitoring.

Area monitoring with a CGI shall be conducted continuously during all intrusive activities.

Monitoring for ammonia concentrations shall be conducted as needed during field activities. Monitoring will be required when ammonia concentrations are high enough to be irritating to any personnel on site. If concentrations which exceed 50% of the PEL are detected, personnel shall examine the air treatment system for possible malfunction. If concentrations cannot be controlled, a review of health and safety procedures and monitoring requirements may be required as high ammonia concentrations may indicative of exceedances of exposure limits for other organic contaminants.

Eight hour time weighted average samples must be collected to verify employee exposures. Personnel samples must be collected during initial intrusive activities on site. If concentrations are detected which exceed 50% of the permissible exposure limit, additional sampling may be required in order to determine appropriate engineering controls or protective equipment. The following methods shall be used to document exposures to potential contaminants:

COMPOUND	SAMPLING METHODOLOGY
4-Chlorophenyl methyl sulfoxide	PMRMA* CM03
Dimethyldisulfide	OSHA IMISD651
Dimethyl methyl phosphonate	PMRMA CM03
Diisopropyl methyl phosphonate	PMRMA CM03

^{*}These methodologies have been developed specifically for Rocky Mountain Arsenal. No NIOSH, OSHA or EPA methods are available for these compounds.

In addition, samples may be collected on a 3 stage carbon molecular sieve adsorption tube. Samples shall be analyzed by thermal desorption and mass spectrometer analysis. Some unknown contaminants may be identified by this method

3.6.8.2 Perimeter Air Monitoring

Additional perimeter air monitoring will not be needed for this project. The exhaust air will be monitored continuously throughout the project. A negative pressure will be exerted on the tank throughout the field activities, such that all exhaust air will pass through the monitoring system. In addition, ammonia and dimethyl disulfide will be detected by smell by workers in the area before concentrations of other volatiles become a concern. Detection of these compounds outside of the exclusion zone can be used as an indicator of a breakdown of the air treatment system.

3.7 DECONTAMINATION

Due to the potential for exposure to contaminants, equipment and personnel decontamination stations and shower facilities must be available on-site. All personnel who conduct work within the exclusion zone must 1) process through the decontamination zone and wash, rinse and remove contaminated PPE before entering the support zone, and 2) shower before leaving the site. At a minimum, a decontamination solution of Alconox and water will be used at wash stations within the decontamination line. Due to the potential

for exposure to highly toxic contaminants, the decontamination facilities must be completely set up prior to conducting any field operations. Personnel must practice emergency evacuations and emergency decontamination procedures before site work begins.

3.8 SITE CONTROL

Site control procedures must be established to reduce the accidental spread of hazardous substances from contaminated areas. At a minimum three work zones must be established: an exclusion zone, a contamination reduction zone and a support zone. The exclusion zone and contamination reduction zone must be set up around the active work site such that contaminated materials are not brought into the support zone nor removed from the site.

A communications system that includes a method of internal communications between field teams and the base of field operations and that includes external communications between on-site personnel and off-site personnel must be set up such that emergency situations and standard daily field decisions can be easily communicated.

A site map is provided in Figure G-7.

3.9 EMERGENCY AND FIRST AID EQUIPMENT

Due to the potential chemical and physical hazards at this site, the following emergency equipment shall, at a minimum, be immediately available on site: first aid kit, emergency eyewashes/showers, emergency use respirators, spill control materials and equipment, fire extinguishers.

3.10 EMERGENCY RESPONSE AND CONTINGENCY PLANNING

Due to the potential for exposure to hazardous materials, procedures that incorporate the requirements established in 29 CFR 1910.120(1) must be implemented at this site. As a minimum, the following subjects will be addressed: pre-emergency planning, incident reporting procedures, personnel roles/lines of authority, posted instructions/list of emergency contacts, emergency recognition and prevention, site topography/layout/prevailing winds, site evacuation procedures, emergency decontamination

and medical treatment, medical facility route map, critique and follow-up of emergency responses.

In case of a physical or chemical injury, the RMA Fire Department will be contacted for emergency medical treatment and ambulance service. The emergency medical facilities used for this work are:

AMI Presbyterian Aurora Hospital 700 Potomac (I-225 at 6th Avenue exit) Aurora, Colorado

For Chemical Agent Injuries (not anticipated)

Fitzsimmons Army Hospital Building 500 West Gate Peoria and Montview Aurora, Colorado

3.11 LOGS, REPORTS AND RECORDKEEPING

In order to maintain an effective safety and health program on this site, it is important that logs, reports and records be well maintained. The following documentation must be kept at this site:

- logs of daily activities and site safety and health field decisions,
- documentation of air monitoring results
- incident and accidents reports and documentation of all first aid treatments which are not otherwise reportable (in compliance with EM 385-1-1 Section 2),
- record of visitors sign-in, and
- records of all regularly scheduled supervisor safety meetings and field worker safety meetings (in compliance with EM 385-1-1, Section 01.C.).

ATTACHMENT A

Raoult's law was used to calculate the potential airborne concentration of the compound found in Basin F liquids. The maximum concentration of a contaminant detected during all sampling events was used to complete the calculation.

The following assumptions were required to make this assessment:

- Basin F liquids can be approximated by water
- Both Basin F liquids and water are ideal liquids
- Raoult's law is appropriate at low concentrations

$$Mole\ Fraction(x) = \frac{\frac{Mass}{MWc}}{\frac{Mass}{MWc} + \frac{1000 - Mass}{MWw}}$$

Given

 X_i = Mole fraction of the contaminant

Mass = grams/liter of solution of the contaminant

MW_c = molecular weight of the contaminant

 MW_w = molecular weight of the water

 V_C = vapor pressure of the contaminant at the temperature of the fluids in

question

 $P(mmHg) = (V_c)(X_1)$

P_a = Pressure of air in mm/Hg

 $(P/Pa)(10^{-6})$ = Concentration of the contaminant in air above the fluid surface

Example Calculation

Given

Mass = 6.09 E-02 g chloroform/l solution $MW_c = 119$ g/mol

 $MW_w = 18 \text{ g/mol}$

 $V_c = 160 \text{ mm Hg at } 20^{\circ}\text{C}$

700 mm H, P.

$$X_{1} = \frac{\frac{6.09E - 02 \ g/l}{119 \ g/mol}}{\frac{6.09E - 02 \ g/l}{119 \ g/mol} + \frac{1000 - 6.09E - 02 \ g/l}{18 \ g/mol}} = 9.21 \ E - 0.6 \ \frac{moles \ chloroform}{mole/water}$$

P =
$$(X_1)(V_c)$$

= $(9.21 \text{ E}-06)(160 \text{ mm Hg})$
= $1.47 \text{ E}-03 \text{ mm Hg}$

 $(P/P_a)(10^{-6})$

$$\frac{1.47 \ E-03 \ mm \ Hg}{700 \ mm \ Hg} (10^6)$$

2.1 ppm chloroform directly above Basin F liquid at 20°C

Values for concentrations directly above the liquid were compared to the most conservative of either OSHA PELs or ACGIH TLVs (see Table 2). For compounds with no established exposure limits, concentrations were compared to D_T values where available (see Table 2). Contaminants of concern were identified as any compound with a calculated concentration at or above the exposure limit or within a factor of 100 of the exposure limit. The following

contaminants of concern were identified as follows:

- 4-chlorophenyl methyl sulfoxide
- ammonia
- dimethyl methyl phosphonate
- diisopropyl methyl phosphonate
- dimethyl disulfide

SPECIFICATIONS OUTLINE

	Bidding Schedule
01010	Summary of Work
01025	Measurement and Payment
01100	Special Clauses
01200	Warranty of Construction
01300	Submittal Descriptions
01305	Submittal Procedures
01401	Safety, Health and Emergency Response
01402	Chemical Data Management
01430	Environment Protection
01440	Contractor Quality Control
01450	Spill Control
01510	Temporary Site Utilities and Services
02073	Removal and Disposition of Materials and Appurtenances from Existing Tanks
11200	Emission Control System

11205	Ammonia Scrubber Systems
11210	Chemical Storage Tank
11215	Granular Activated Carbon Filters
11300	Heating and Recirculation System
11305	Heat Source
11310	Pumps; Heating and Circulation System
11315	Heat Exchangers
15260	Piping Insulation
15280	Equipment Insulation
15510	Process Piping
15890	Ductwork
15910	Ductwork Accessories
15980	Instrumentation
15985	Sequence of Operation
16111	Conduit
16123	Wire and Cable
16170	Grounding and Bonding

16264	Diesel - Generator Set with Auxiliaries
16461	Dry Type Transformers
16476	Circuit Breakers
16480	Motor Control

APPENDIX A MANUFACTURER'S INFORMATION

MANUFACTURER'S INFORMATION FOR MECHANICAL EQUIPMENT FOR LIQUID HEATING AND RECIRCULATION SYSTEM

TAG Inc.

MANUFACTURER'S REPRESENTATIVES

6409 SOUTH LOCUST WAY • ENGLEWOOD, COLORADO 80111

303-771-3120 • FAX 303-779-5961 May 22, 1992

Mr. Bill Irving
Senior Engineer
Woodward-Clyde Federal Services
Stanford Place 3, Suite 612
4582 South Ulster St. Parkway
Denver, CO 80237

303-740-2635 FAX303-694-3946

Re: Rocky Mountain Arsenal Tank Solution Heating

Fulton Quotation No. 92FTC-0010-1

Dear Bill.

Fulton Thermal Corporation is pleased to offer their quotation for your 6 million BTU heater requirements. As you requested in our meeting, Fulton is also offering two 3 million BTU heaters.

The Fulton vertical heater design will provide years of trouble free service to you. The vertical layout prevents hot spots on the 2" tubes which is common in horizontal heaters. Fulton provides a high temperature safety switch with interlocks on each tube of the coil for shutdown and alarm signal at the terminal strip.

Either size heater will use the FT-1000 nitrogen blanketed expansion tank. The two heater option will use one expansion tank. The circulating pump is rated at 660 gpm.

Fulton is providing the skid with heater, circulating pump and by pass line with all associated piping and expansion tank. While a stack is quoted, you will want to define your specific site requirements for final design.

Thank you for your interest in the Fulton heater. We look forward to working with you.

Yours truly.

Tom Gray TG/km

Fulton Thermal Corporation P.O. Box 257 Pulaski, NY 13142

May 22, 1992 Quotation

Re: Woodward Clyde Engineers Rocky Mountain Arsenal Fulton Quote #92FTC-0010-1

Item 1

- One (1) each Model FT-0600-C, Fulton Thermopac Liquid Phase Thermal Fluid Heater, natural gas fired, modulating burner with 4 to 1 turndown, 1,500,000 BTU/hr. minimum output, fuel train built to IRI(FIA) standards, 6,000,000 BTU/hr net output at 5400′ elevation, standard controls, complete with NEMA 4 control panel, wiring, and TEFC blower motor, air filter at inlet of heater fan, burner top rain guard, stack high temperature switch for shutdown, stack and process thermocouples; and the following safety devices including:
 - A. High temperature safety switch with interlocks on each tube of the coil for shutdown and alarm signal at terminal strip Robert Shaw or equal.
 - B. Heater operation interlock with circulation pump.
 - C. Flow control switch on each tube of the coil for shutdown for pump and burner. Fulton or equal.
 - D. Thermal fluid temperature control Partlow Model MIC - 2000 or equal.
 - E. High system pressure switch for complete shutdown Honeywell Model L404 or equal.
 - F. Low system pressure switch for complete shutdown Honeywell Model L404 or equal.
 - G. Expansion tank low level switch for shutdown Square D Model HG or equal.
 - H. Heater outlet pressure gauge by Fulton or equal.
 - I. Heater inlet pressure gauge by Fulton or equal.
 - J. Pump supply (vacuum) gauge by Fulton or equal.
 - K. Flame safety relay Honeywell Model 4140 or equal.
 - L. Three position selector switch: off-pump on-heat on - S&S or equal.
 - M. Four indicating lights: 1. Power 2. Liquid level switch. 3. Flow. 4. Heat. - Solico or equal.

Heater designed for maximum operating temperature of 350 Deg. F, flow rate 660 GPM. 460/60/3 ODP motor voltage; 120/60/1 control and 15 Hp burner motor.

Note: All heaters are manufactured to the ASME Code, Section I. inspected and certified. A certificate is issued to customer with shipment of each heater. Please verify that you comply with all local codes when selecting heaters.

- All Fulton Thermal Fluid heaters are manufactured entirely at our factories in Pulaski, New York, USA.
- Note: Heaters are built with no refractory bricks and minimal refractory cement to prevent overheating and cracking of thermal fluid inside the heater should a power or circulating pump failure occur.
 - One (1) each Circulating Pump with air cooled mechanical seal designed for 350 Deg. F.maximum operating temperature, 660 GPM, at 55 PSI, 40 hp 3500 RPM. TEFC motor, complete less motor starter.
- One (1) each Deaerator cold-seal expansion tank, N2 regulator. safety valve, Model No.FT-1000-L, 264 gallon capacity, with liquid level switch. Verify capacity based on expansion rate at operating temperature. Suitable for a maximum total system fluid content of 800 gallons based on 25% expansion rate of the thermal fluid including the heater and cold seal expansion tank capacities already accounting for a total of 220 gallons.

 Nitrogen supplied to expansion tank at 80 psig through customer pressure reducing valve (2000 to 80 psig).
- Note: We may have to propose a different type of expansion tank, depending on the total system fluid capacity, the type of thermal fluid to be used as well as the location of the heaters and their users.
- Above equipment skid-mounted including a system by-pass pipe with automatic back pressure regulating valve with 25 psig spring for 660 gpm maximum flow; Deaerator cold-seal expansion tank located at a maximum of 10 ft. from the heater's floor level.

 Skid dimensions: 108"w x 108"d x 190"t. assumed inlet not higher than 128".

TOTAL PRICE F.O.B. PULASKI, N.Y....\$82350.00.

Item 1 Alternate

- Two (2) Model FT-0400-C, Fulton Thermopac Liquid Phase
 Thermal Fluid Heaters, each with natural gas fired,
 modulating burner with 4 to 1 turndown, 1,000,000 BTU/hr,
 minimum output, fuel train built to IRI(FIA) standards,
 3.000,000 BTU/hr net output at 5400′ elevation, standard
 controls, complete with NEMA 4 control panel, wiring, and
 TEFC blower motor, air filter at inlet of heater fan, burner
 top rain guard, stack high temperature switch for shutdown,
 stack and process thermocouples; and the following safety
 devices including:
 - A. High temperature safety switch with interlocks on each tube of the coil for shutdown and alarm signal at terminal strip Robert Shaw or equal.
 - B. Heater operation interlock with circulation pump.
 - C. Flow control switch on each tube of the coil for shutdown for pump and burner. Fulton or equal.
 - D. Thermal fluid temperature control Partlow Model MIC 2000 or equal.
 - E. High system pressure switch for complete shutdown Honeywell Model L404 or equal.
 - F. Low system pressure switch for complete shutdown Honeywell Model L404 or equal.
 - G. Expansion tank low level switch for shutdown Square D Model HG or equal.
 - H. Heater outlet pressure gauge by Fulton or equal.
 - I. Heater inlet pressure gauge by Fulton or equal.
 - J. Pump supply (vacuum) gauge by Fulton or equal.
 - K. Flame safety relay Honeywell Model 4140 or equal.
 - L. Three position selector switch: off-pump on-heat on - S&S or equal.
 - M. Four indicating lights: 1. Power 2. Liquid level switch. 3. Flow. 4. Heat. Solico or equal.

Heater designed for maximum operating temperature of 350 Deg. F, flow rate 660 GPM. 460/60/3 ODP motor voltage; 120/60/1 control and 7.5 Hp burner motor.

Note: All heaters are manufactured to the ASME Code, Section I, inspected and certified. A certificate is issued to customer with shipment of each heater. Please verify that you comply with all local codes when selecting heaters.

- All Fulton Thermal Fluid heaters are manufactured entirely at our factories in Pulaski, New York, USA.
- Note: Heaters are built with no refractory bricks and minimal refractory cement to prevent overheating and cracking of thermal fluid inside the heater should a power or circulating pump failure occur.

 Nitrogen supplied to expansion tank at 80 psig through customer pressure reducing valve (2000 to 80 psig).
 - One (1) each Circulating Pump with air cooled mechanical seal designed for 350 Deg. F.maximum operating temperature, 660 GPM, at 55 PSI, 40 hp 3500 RPM, TEFC motor, complete less motor starter.
- One (1) each Deaerator cold-seal expansion tank, N2 regulator, safety valve, Model No.FT-1000-L, 264 gallon capacity, with liquid level switch. Verify capacity based on expansion rate at operating temperature. Suitable for a maximum total system fluid content of 800 gallons based on 25% expansion rate of the thermal fluid including the heater and cold seal expansion tank capacities already accounting for a total of 220 gallons.
- Note: We may have to propose a different type of expansion tank, depending on the total system fluid capacity, the type of thermal fluid to be used as well as the location of the heaters and their users.
- Above equipment skid-mounted including a system by-pass pipe with automatic back pressure regulating valve with 25 psig spring for 660 gpm maximum flow; Deaerator cold-seal expansion tank located at a maximum of 10 ft. from the heaters' floor level.

 Skid dimensions:216"w x 86"d x 167"t, assumed inlet not higher than 105".

TOTAL PRICE F.O.B. PULASKI, N.Y....\$120,060.00.

Add for the following options:

Spare circulating pump with air cooled mechanical seal designed for 350 Deg. F. maximum operating temperature, 660 gpm, at 55 PSI, 40 Hp 3500 RPM TEFC motor, less motor starter....\$5580.00.

Skid mount second pump as spare......\$9750.00

One (1) 22" diameter x 6' high Steel Stack with 3" pipe support of stack weight to skid; includes hood and balancing barometric control; 4 wires used to hold stack are mounted to skid................\$4170.00.

Extra Instruction Manuals......\$34.00 each.

Start-up service by a factory technician is extra at \$550.00 per day plus travel and accommodation expenses. Weekend and Holiday rates are extra at \$825.00 per day plus expenses.

Start-up of the heater by a non-authorized Fulton Thermal Corporation engineer will void the warranty on the equipment suppplied.

Unit will be partially disassembled for shipping. Assembly required on site by others at customer's expense.

Please be aware that Fulton Thermal manufactures a custom designed product. The custom nature of our equipment necessitates incurring costs through the design, manufacture, shipment and installation process. Fulton's standard terms reflect an expenditure flow fair to both parties:

Payment Terms: 10% upon receipt of order.
20% with approval print submittal.
60% 1.5/10, Net 30 after shipment (invoice date).
10% After approved star-up or 90 days after shipment.

Delivery: Approval drawings 2 weeks after receipt of order and approval. Shipment 14 to 16 weeks after approval.

Typical Fulton Thermal Fluid Piping Schematic

Skid Mounted and Non-Skid Mounted Fulton Thermopac

Completely Skid Mounted Units (Heater, Pump, and Tank)

Completely skid mounted units come equipped with:

- A. Pipework between Deaerator Tank outlet and Pump suction including:
 - 1. Value
 - 2. Flexible Connector
 - 3. Y-Type Strainer
- B. Pipework between Pump discharge and Heater inlet including:
 - 1. Flexible Connector
 - 2. Valvu

Note: unit will be disassembled for shipping.

Skid Mounted Units Excluding Combination Tank (Heater and Pump)

Completely skid mounted units come equipped with:

- A. Pipework between Deaerator Tank outlet and Pump suction including:
 - 1. Valve
 - 2. Flexible Connector
 - 3. Y-Type Strainer
- B. Pipework between Pump discharge and Heater inlet including:
 - 1. Flexible Connector
 - 2. Valve

Expansion Tank is supplied separately when required.

Non-Skid Mounted Units (Heater, Pump, and Tank Without Skid Mounting)

No piping components are supplied as standard. However, they are available as options — consult factory.

Drawings are for reference only. Details may vary with model.

Specifications subject to change without notice.

DATE		·	
PROJECT NO.			
DACE NO	05	D.V	

5/19/92 I	NFO from Tom (Goy
Fluid 15	Thorminal 55	
Good for	-15 to 550°F	Flash Point @ 350°f
Cost \$8/	Gallon	Fire foint @ 410°F
SP. HT. =	0.53 Btu/#°F	Auto Ignition @ 675°F
	48.5 F/cu. A	Pour Pointe - 40°F.
	= 0.06 Btu/# -1	HR - F
	2.7 EP@ \$	
Heator @	5500 Ft. Elev	
	6 MBH	3 <u>FB H</u>
Bru Input	7.65 MBH	3.825 MBH
Comp. Blower	15-178	7/240
Pemp	40 to 50 HP	25 to 30 11P
	1081/08 1	216"486"
Foot Prini Hoight	190'	167 "
	128"	105"
max. Inlet height	82,350	120,060 for 2
PRICE	32,330	IRI PIPING
· Includes		NEMA 4 Electrical
	× 5/40/100/100	Skid mounting
		Bypass Piping
		Altitude Ratine
	**************************************	Raingund
.,,,,		INUT Filter
		FTIOCO EXP, trunk for 800 Gal total System Cap
		INCl. 200 gal for heaty
v		Nitrogen Blanket
		PRV
		3 way valve
Not Included		Nitrogan tant w/PRV
· · · · · · · · · · · · · · · · · · ·		15 ' Stack W/ Draft Reg. & Teonnectia
		Freight from Pulask, NY

MANUFACTURER'S INFORMATION FOR MECHANICAL EQUIPMENT FOR EMISSION CONTROL SYSTEM

BASIN F STORAGE TANK 102 DECONTAMINATION ROCKY MOUNTAIN ARSENAL, COLORADO

	CONFIRMATION NOTICE NO
Woodward-Clyde	Project No. 89C114MM File No. 23016A (1.1)
Date: 6-15-92	
Participants:	
(To):	Bill Modica/Ceilcote Air Pollution Control
(From):	Joseph Scott/WCC
(Others):	
Subject and Conclu	nsion: Additional information on ammonia scrubber design.
I called to obtain a	additional information requested by the COE. The type of packing
normally used in	both scrubber designs that Ceilcote had provided is nominal 2
polypropylene Tell	erettes. The air pressure loss for the SPT-24-72 tower with 24
diameter and 72"	packing operated at 20 gpm and 1,300 cfm is 2" water. The air
pressure loss for the	e SPT-72-72 tower with 72" diameter and 72" packing operated at 170
gpm and 13,000 cfr	n is 2" water. The sump capacity for each tower is approximately
1-1/2 minutes at li	iquid flow. Thus for the SPT-24-72 operated at 20 gpm the sump
•	s and for the SPT-72-72 operated at 170 gpm the sump volume is 255
gpm.	

CEILCOTE/AIR POLLUTION CONTROL 9A South Gold Dr. Trenton, NJ 08691 Phone: 609-890-2700 Fax: 609-890-1124

FACSIMILE MESSAGE

TO: Mr. BILL IRVING	Date: 4/20/92
Woodward Clyde Consultants	From: Bill Modica National Sales Manager
303-694-3946	Page 1 of 4 Pages
Ref: Rocky Mountain Arsenal	Page 1 0; _4 ; ugo.

B111:

Enclosed are a budget price sheet for the two ammonia scrubbing systems we discussed, as well as drawings for the two scrubbers.

As discussed, the two systems will be sized for 1400 ACFM and 13,000 ACFM. Removal efficiency for incoming ammonia gas will be 99% when using a dilute (pH 2-4) sulfuric acid solution as the scrubbing liquor.

Should you have any questions, please do not hesitate to call either me or your Ceilcote Sales Representative listed below.

cc: Tom Steinhauser Ross Equipment Co. Englewood, CO 303-740-9400

2"- in A20

EILCOTE AMMONIA SYSTEM SIZES AND PRICES - Woodward Clyde for Rocky Mount.
Arsenal Project
irflow volume is 1400 CFM
crubber Model No. is SPT- 24 -72 for 99% removal
lower is 24 inches diameter x 165 inches high (see Dwg. D-SPT-1)
Liquid recycle rate is 19 GPM
Liquid recycle rate is 19 GPM
The Fybroc pump size is 1 x 1-1/2 x 6 w/2 HP, 3500 RPM Motor
TRP ductwork from outlet of scrubber to inlet of fan is included

Based on an estimated 5 inches s.p., the fan will be a Ceilcote Model CLUB-1225, operating at 3375 RPM and with a 3 HP, TEFC Motor

BUDGET PRICING

Scrubber Model SPT- 24 -72 Pump Model No. 1 x 1-1/2 x 6 w/2 HP, 3500 RPM Motor PVC Recycle piping, unassembled pH (sulfuric acid) instrumentation and metering pumps Magnetrol liquid level controller (if desired) Ceilcote FRP Fan Interconnecting Ductwork	\$ 5,200 \$ 2,165 \$ 525 \$ 3,500 \$ 1,865 \$ 2,400 \$ 2,200
---	--

CEILCOTE AMMONIA SYSTEM SIZES AND PRICES
Airflow volume is 13000 CFM
Scrubber Model No. is SPT- 72 -72 for 99% removal
Tower is 72 inches diameter x 203 inches high (see Dwg. D-SPT-2)
Liquid recycle rate is 170 GPM
The Fybroc pump size is 2 x 3 x 6 w/7-1/2 HP, 3500 RPM Motor
The Fybroc pump size is 2 x 3 x 6 w/7-1/2 HP, included

Based on an estimated 5 inches s.p., the fan will be a Ceilcote Model CLUB-3650, operating at 1010 RPM and with a 25 HP, TEFC Motor

BUDGET PRICING

Scrubber Model SPT- 72 -120 Pump Model No. 2 x 3 x 6 w/7-1/2 HP, 3500 RPM Motor PVC Recycle piping, unassembled pH (sulfuric acid) instrumentation and metering pump Magnetrol liquid level controller (if desired) Ceilcote FRP Fan Interconnecting Ductwork	\$\$\$\$	19,250 2,600 1,030 3,500 1,865 9,350 5,800
---	----------	--

140 SHELDON RD.: BEREA, OH. 44017 (216) 243-0700: FAX (216) 243-9854

TO:	WOODWARD-CLYDE ATTN: JOB SCOTT 303-694-3946	
TOTAL	NUMBER OF PAGES INCLUDING THIS COVER SHEET 3	_
	5-1-92 SENT: 4:10 PM	
IF FO	OR SOME REASON YOU DO NOT RECEIVE ALL PAGES, PLEASE CA	LL

CEILCOTE SENDER'S NAME:

Ceilcote Air Pollution Control

FOB factory at LaPorte, Indiana, with no freight allowed. Terms: 30 days not. Subject to conditions of sale on back.

This quotation, for equipment manufactured by cyb, is valid for acceptance within 15 days. Purchased components such as motors, drives and vibration bases are subject to adjustment to price in effect at time of shipment, by reserves the right to qualify and correct clerical errors before acceptance.

Please reply to TYLER/Industrial 3530 W. PIMLICO AVENUE—ENGLEWOOD, COLORADO 80110 Area Code 303: 794-8112. FAX: 303-798-7404

May 8, 1992

FAX TO: Woodward-Clyde Consultants

ATTN: Joseph Scott

SUBJ: Tank venting fans

Gentlemen:

Per our discussion yesterday, we've figured rans for the two performance options you're considering. We've included an inexpensive factory applied polyurethane coating on the fan airstream for some improved resistance to the moisture present. The fan are as follows:

PRICE

13000 CFM
1 - New York Blower Series 20 General Industrial fan, size 404DH,
Arrangement 9-F, sized to exhaust 13000 CFM at 12"SP at 1227 RPM
and 36.1 BHP at std. air density.

To include: 40HP 3-60-230/460V TEFC motor, v-belt drive, belt guard, shaft & bearing guard, flanged inlet and outlet, housing drain with plug, access door, and 2 mil polyurethane airstream coating for corrosion resistance.

PRICE.....\$5390.00

1100 CFM
1 - New York Blower Series 20 General Industrial fan, size 194DH,
Arrangement 10, sized to exhaust 1100 CFM at 12 SP at 2437 RPM
and 4.5 BHP at std. air density.

To include: 7.5HP 3-60-230/460V TEFC motor and same accessories as above.

\$1610.00

f.o.b. Laporte, IN
Terms are net 30
Shipment in 7-8 weeks.

Dimensional information attached.

Please let us know if we can help further.

Sincerely, TYLER/industrial

Steve Tyler

ACCEPTED

BY

THE NEW YORK BLOWER COMPANY

DATE

B

| Customer Name: WOODWARD-CLYDE CONS. File # | Tagging: TANK VENTING Date 05-07-19921 nyb | The New York Blower | FAN-TO-SIZE (R) | PERFORMANCE RESULTS | Company | July 1989 Rel 6.0 | ----RUNTYPE 3 ----- | Size 404 (100 % Width Wheel) SERIES 20 GIDH Bare Fan - Standard Construction Materials Operating Conditions Performance @ Conditions ------Density: .075 Pounds/Cu.Ft. RPM: 1227 70 x Fahrenheit Temp: CFM: 13000 0 Ft. Above Sea Level | Outlet Velocity: 4483 Altitude: Static Pressure: 12.01 WG.
Actual BHP: 36.14
Static Eff: 68 % Point of Operation DESIRED OPERATING STANDARD | Mechanical Eff: 75.1 % _____ 13000 13000 CFM: 13000 Notes: 1 ..01 SP: 12 12.01 BHP: 36.14 36.14 36.14 Safe speed is 1639 at 70 x Fahrenheit Maximum Operating Temperature Customer Name: WOODWARD-CLYDE CONS. File # | Tagging: TANK VENTING Date 05-07-1992| _______ nyb | The New York Blower | FAN-TO-SIZE (R) | PERFORMANCE RESULTS Company | July 1989 Rel 6.0 | ----RUNTYPE 3 -----Size 194 (100 % Width Wheel) SERIES 20 GIDH Bare Fan - Standard Construction Materials Operating Conditions Performance @ Conditions ________ Density: .075 Pounds/Cu.Ft. RPM: 2437 70 x Fahrenheit CFM: 1100 Temp: O Ft. Above Sea Level | Outlet Velocity: 1667 Altitude: Ft/Min Static Pressure: 12.11 '' WG.
Actual BHP: 4.49 Point of Operation 46.7 % 47.3 % Static Eff: ~~~~~~~~~~~ OPERATING STANDARD Mechanical Eff: DESIRED 1100 CFM: 1100 1100 Notes : 8P: 12 12.11 12.11 BHP: 4.49 4.49 Safe speed is 3114 at 70 x Fahrenheit Maximum Operating Temperature

Series 20 GI Fans

Size 504 Arrangement 1 Series 20 G! Fan with flanged inlet and flanged outlet

INDUSTRIAL AIR-MOVING APPLICATIONS

- Dust collection
- Moisture blow-off
- Pneumatic conveying → Heat recovery Incinerators
 - Oven and dryer exhaust

TYPICAL USER INDUSTRIES

- Chemical industry
- Pulp and paper
- Forest products Petrochemical
- Food processing Pharmaceutical

Combustion air

- Primary metals
- Printing
- Woodworking

...for industrial air-moving and material-handling applications

This bulletin covers only Series 20 GI Fans, one of four nyb radial-blade fan lines which cover a wide range of performance and application requirements. Reference description of the other product lines appears on pages 22 and 23. The design parameters and standard features of Series 20 GI Fans are listed below.

- 14" through 85" wheel diameters
- 9" to 49" inlet diameters
- Available in a variety of packaged arrangements
- 2" to 22" static pressure
- 500 to 76,000 CFM
- Temperatures to 1000°F.

STANDARD FEATURES

Welded construction-provides rigidity for rugged industrial applications. In smaller sizes, welded housings and bases are bolted together so that housings can be unbolted and rotated to other discharge positions in the field.

Rotatable and reversible - Series 20 GI Fans with LS wheels, Sizes 144 through 364, can be rotated and reversed in the field to obtain clockwise or counterclockwise rotation and any of the available discharge positions... Series 20 GI Fans with DH wheels, Sizes 194 through 364, can be rotated to various discharge positions. DH wheels are either clockwise or counterclockwise and cannot be reversed in the field.

Lifting eyes-on all sizes for ease of handling.

Slip inlets and outlets—flanged connection, available as an option.

Bearings - ball or spherical roller bearings selected for extended service life over full catalog range [see page 24 for size and type].

Shafting-turned, ground, and polished shafting is straightened to close tolerance to minimize "run out" and ensure smooth operation.

Precision balancing—Series 20 GI Fan wheels are dynamically balanced before final assembly. After assembly, all fans are test-run at as-ordered operating speeds.

SERIES 20

Choice of two wheel designs

DH WHEEL

Available in Sizes 194 through 854.

Unique, high-efficiency radial wheel utilizes curved blades and a tapered frontplate to minimize turbulence and control flow through the wheel. Can be used for airstreams with moderate dust loads that do not contain large particles or wet, sticky materials. Performance is stable from wide-open to completely closed-off.

LS WHEEL

Available in Sizes 144 through 854.

Flat radial-blade design best for materialconveying applications with airstreams containing coarse material or heavy dust and particulate matter. As with the DH wheel, the LS wheel provides stable airflow performance over the entire pressure range, from wide-open to completely closed-off,

The New York Blower Company certifies that the General Industrial Fans shown herein are licensed to bear the AMCA Seal. The ratings shown are based on tests made in accordance with AMCA Standard 210 and comply with the requirements of the AMCA Certified Ratings Program.

Factory assembly of fans, motors, and drives minimizes costly field labor and allows factory test-running of the complete fan-motor-drive package.

Packaged

ARRANGEMENT 10

Arrangement 10 provides a compact package with good access to the motor, drive, and bearings for easy installation and maintenance.

Sizes 144 and 174 are available only with LS wheels. Sizes 194 through 364 are available with LS or DH wheels.

Maximum temperatures—standard fan: 200°F, heat fan: 600°F. Refer to page 11 for heat fan construction details.

ACCESSORIES

WEATHER COVER/ BELT GUARD

The four-piece steel assembly provides complete protection, and can be easily removed for inspection and maintenance. Louvered side panels provide ample motor ventilation.

POSITIVE SCREW ADJUSTMENT

Motor platform has threaded rods for ease in adjusting motor and setting proper belt tension.

VIBRATION ISOLATION

Rubber-in-shear or springtype isolation rails.

MAXIMUM MOTOR SIZE LIMITS

Motor frame sizes vary in length with different motor manufacturers. To determine whether a specific motor will fit, the frame size should be equal to or smaller than the maximum shown and the case length [NEMA C minus NEMA NW] must be equal to or less than the maximum allowable dimension shown.

DIMENSIONS [inches]

Size		imum frame	Maximum motor case
	Open	TE	length [C-NW]
144	184T	184T	14½
174	215T	215T	16¾
194	215T	215T	16⅙
224	256T	254T	18%
264	256T	254T	18%
294	284T	254T	19½
334	324T	286T	22½
364	324T	286T	22½

SERIES 20

arrangements

NOTE: See page 6 for unitary base option which provides packaged concept with larger fans and motors.

ARRANGEMENT 9

Packaged arrangement with motor slide base mounted on fan pedestal. Motor can be mounted on the left or right side of fan pedestal. Refer to chart below for maximum motor size limits.

Size 294

Maximum temperatures-standard fan: 300°F., heat fan: 600°F. Refer to page 11 for heat fan construction details.

Note: Motors weighing more than 600 pounds require special construction...consult nyb.

MAXIMUM MOTOR SIZE LIMITS

Size	case	ım motor length' NW]	Maximum Bit
	300°	600°	
144 174 194 224 264	10¼ 13¼ 16 17 20	8¾ 11¾ 14½ 15½ 18½	11½ 12% 16% 20% 20% 22¼
294 334 364 404 454	22½ 24 26½ 24 26	21 22% 25 22% 24%	26 ⁵ / ₈ 27 // ₈ 31 ¹ / ₈ 34 ⁷ / ₈ 39 ³ / ₈
504 574 644 714 784 854	28½ 29¼ 32 35 39 43	27 27% 30½ 33½ 37½ 41½	44% 51% 38 44 46 51

ARRANGEMENT S

Available in Sizes 404 through 574. Integral motor platform provides packaged convenience for larger motor horsepowers than standard Arrangement 9. Motor platform can be on the left or right side of fan pedestal. Refer to chart below for minimum and maximum motor size limits.

Maximum temperatures - standard fan: 300°E, heat fan: 600°F. Refer to page 11 for heat fan construction details.

AVAILABLE MOTOR SIZE LIMITS

Size	Maximu case I [C-	Minimum motor frame	
	300°	600°	size
404 454 504 574	271/4 28½ 30¼ 30¼	25¾ 27 28¾ 28¾	286T 324T 364T 364T

FOOTNOTES

- *Maximum motor case length [NEMA C minus NEMA NW] must be equal to or less than the maximum allowable dimension
- †Maximum motor rail size [NEMA AL dimension plus junction box if box is below motor≃BL] must be equal to or less than dimension shown.

	19	4					1)			Outle								diameter: 19¼" circumference: 5.01 ft.				
-		2"	SP	4"	SP	6"SP		8"SP		10	10'SP		12"SP		14"SP		16"SP		SP	20"\$P		22"\$P	
CFM	OV	RPM	₽ H₽	RPM	внр	RPM	BHP	RPM	вне	RPM	a HP	RPM	BHP	RPM	BHP	RPM	BHP	RPM	ВНР	RPM	BHP	RPM	ВНР
660 792 924 1056	1000 1200 1400 1600	1005 1017 1033 1053	0.44 0.50 0.56 0.63	1401 1408 1420 1432	0.91 1.00 1.11 1.22	1709 1714 1721 1730	1 43 1.57 1 71 1 86	1971 1972 1979 1985	1 99 2 16 2 35 2 54	2204 2204 2206 2212	2 61 2.82 3.03 3.27	2411 2410 2414 2416	3.24 3.49 3.76 4.02	2609 2603 2603 2606	3 94 4.21 4.50 4 81	2789 2782 2783 2784	4 56 4.96 5 30 5.64	2950 2952 2950 2948	5 41 5 75 6 11 6.48	3121 3114 3106 3105	6.19 6.57 6.94 7.35	3279 3267 3261 3259	7 02 7 4! 7.83 8 27
1188 1320 1452 1584	1800 2000 2200 2400	1074 1102 1131 1163	0 70 0 79 0 88 0 98	1446 1462 1480 1503	1.33 1.46 1.59 1.73	1742 1755 1769 1785	2.02 2.19 2.36 2.54	1996 2005 2018 2029	2 75 2.95 3 17 3 38	2221 2226 2238 2250	3.51 3.75 4.01 4.28	2423 2429 2440 2452	4.30 4.58 4.89 5.21	2610 2618 2624 2636	5.13 5.46 5.79 6.15	2785 2792 2800 2805	5 98 6 36 6 74 7 11	2951 2956 2963 2971	6.87 7.28 7.70 8.13	3108 3110 3118 3126	7.79 8 22 8.69 9 17	3256 3261 3265 3270	8 72 9 21 9 70 10.2
1716 1980 2244 2508	2600 3000 3400 3800	1198 1272 1353 1437	1 10 1 37 1 70 2 09	1526 1580 1644 1714	1.88 2.22 2.63 3.10	1803 1844 1896 1955	273 314 362 416	2046 2081 2120 2172	3.62 4.12 4.66 5.29	2263 2291 2330 2369	4.55 5.13 5.77 6.44	2461 2487 2518 2554	5.51 6.17 6.88 7.64	2645 2670 2695 2727	6 51 7.26 8.03 8.87	2817 2840 2862 2894	7 53 8.36 9.22 10.2	2978 2998 3021 3048	8 57 9 48 10 4 11.4	3131 3151 3170 3197	9 63 10.6 11.7 12.8	3276 3294 3316 3337	10.7 11.8 12.9 14.1
2772 3036 3300 3564 3828	4200 4600 5000 5400 5800	1526 1616 1709 1804 1903	2 56 3.09 3.70 4.41 5 23	1790 1869 1952 2039 2126	3 64 4.26 4 97 5.77 6 66	2018 2068 2162 7241 2322 -	4 77 5 47 6.25 7 14 8 13	2225 2288 2355 2424 2498	5.96 5.74 7.60 8.54 9.58	2420 2473 2531 2597 2666	7.21 8.04 8.96 9.99	2597 2647 2700 2759 2822	8.47 9.39 10.4 11.5 12.7	2767 2811 2860 2915 2973	9 79 10 8 11.8 13 0 14.3	2929 2968 3013 3061 3117	11.1 12.2 13.3 14.5 15.9	3081 3117 3158 3204 3254	12.5 13.6 14.5 16.2 17.5	3225 3263 3297 3341 3390	13 9 15 1 16.4 17.8 19.3	3368 3398	15.3 16.6

224 DH)			Outlet			er: 13 sq. ft.		1		l diam I circu		.2%" nce: 5.	.92 ft.			
	2*\$P		ŞP	4"	SP	6"	SP	8*	SP	10	10"SP		'SP	14'	'SP	16	'SP	18"SP		20"SP		22"SP	
CFM	OV	RPM	внР	RPM	внР	RPM	ВНР	RPM	ВНР	RPM	ВНР	RPM	BHP	RPM	ВНР	RFM	BHP	RPM	внр	RPM	внр	RPM	SHP
930 1116 1302 1488	1000 1200 1400 1600	851 861 876 895	0.53 0.62 0.71 0.81	1195 1195 1201 1211	1 09 1.24 1 39 1 55	1467 1463 1463 1467	1.72 1.92 2.13 2.35	1696 1692 1689 1689	2 40 2.65 2.91 3.19	1900 1895 1888 1886	3 13 3.43 3.74 4.08	2086 2075 2072 2067	3.92 4,24 4.62 5.00	2254 2245 2240 2234	4.74 5 11 5.53 5 96	2413 2402 2394 2388	5.62 6 02 6.47 6 96	2561 2551 2541 2536	6.53 6.98 7.45 8.00	2700 2690 3683 2674	7 48 7.95 8.50 9.06	2836 2822 2815 2805	8 49 8 97 9 55 10 1
1574 1860 2046 2232	1800 2000 2200 2400	915 940 956 992	0.91 1.04 1.17 1.31	1224 1240 1259 1278	1 72 1 91 2 10 2 31	1473 1485 1498 1513	2 58 2 83 3 08 3 35	1693 1698 1707 1719	3.49 3.79 4.11 4.44	1885 1891 1895 1904	4.42 4.80 5.17 5.56	2065 2065 2068 2073	5.41 5.82 6.26 6.71	2229 2729 2231 2235	6.42 6 90 7 40 7 92	2384 2381 2381 2381 2381	7,47 8 00 8 56 9.11	2529 2526 2524 2524	8 54 9 14 9 74 10 4	2667 2661 2659 2658	9 66 10 3 10 9 11 6	2796 2793 2789 2786	10 8 11 5 12 2 12 9
2418 2790 3162 3534	2600 3000 3400 3800	102) 1082 1148 1218	1.48 1.85 2.30 2.84	1302 1349 1404 1462	2.54 3.02 3.60 4.26	1530 1570 1617 1669	3 64 4 25 4 95 5 73	1731 1765 1805 1850	4.78 5.53 6,34 7.24	1916 1942 1979 2018	5.98 6.84 7.79 8.81	2083 2104 2134 2170	7.19 8.17 9.23 10.4	2238 2257 2284 2317	9.54 9.54 10.7 12.0	2386 2400 2424 2452	9 70 10 9 12.2 13 6	2525 2536 2556 2581	11 0 12 3 13 8 15 3	2661 2668 2685 2704	12.4 13.8 15.4 17.0	2787 2792 2804 2823	15 3 16 9 18.7
3906 4278 4650 5022 5394	4200 4600 5000 5400 5800	1292 1369 1451 1533 1615	3 48 4 23 5 12 6 12 7 25	1523 1588 1656 1725 1801	5 00 5 86 6 84 7 93 9 20	1724 1780 1840 1904 1972	7.57 8.65 9.86 11.2	1902 1953 2009 2066 2128	8 25 9.33 10 5 11 9 1 13 3	2053 2110 2163 2218 2273	9.92 11 1 12 5 13 9	2213 2259 2307 2356 2410	11 6 13 0 14.4 16 0 17.7	2353 2395 2441 2488 2541	13 3 14 8 16 4 18 1 19 9	2487 2523 2567 2614 2663	15 1 16.7 18.4 20 2 22 2	2611 2650 2689 2/32 2/77	16 9 18 6 20 4 22 3 24 4	2735 2765 2804 2847 2889	18 7 20 5 22.4 24 5 26.7	2851 2879	20 5 22.4

2	26	4		D			4)			Outlet	• • • • • • • • • • • • • • • • • • • •	diamet			į			eler: 2 miere		.84 (t.		
		2"	SP	4"	SP	6"	SP	8"	SP	10	'SP	12	SP	14	'SP	16	'SP	18′	'SP	20	'SP	22	"SP
CFM	OV	RPM	BHP	RPM	ВНР	RPM	BHP	RPM	внР	RPM	BHP	RPM	BHP	RPM	SHP	RPM	внР	RPM	ВНР	RPM	BHP	RPM	ВНР
1240 1488 1736 1984	1000 1200 1400 1600	737 746 759 775	0.71 0.82 0.95 1.08	1034 1035 1040 1049	1 46 1 65 1 86 2 07	1270 1267 1267 1271	2 30 2 56 2 84 3 14	1469 1465 1463 1463	3.20 3.54 3.89 4.27	1645 1641 1635 1633	4.18 4.58 4.99 5.44	1806 1797 1794 1790	5.24 5.66 6.17 6.68	1952 1944 1939 1934	6 33 6 82 7 38 7 96	2089 2080 2073 2068	7 50 8.04 8 64 9.29	2218 2210 2201 2196	8 72 9.31 9 95 10 7	2338 2329 2323 2316	9 99 10.6 11 3 12.1	2455 2444 2438 2429	11 3 12 0 12 7 13 5
2232 2480 2728 2975	1800 2000 2200 2400	793 814 836 859	1.22 1.39 1.55 1.76	1060 1074 1090 1107	2.30 2.55 2.81 3.08	1276 1286 1297 1310	3.78 4.12 4.47	1456 1470 1478 1489	4.66 5.06 5.49 5.93	1632 1637 1641 1649	5.90 6 40 6 90 7 42	1788 1788 1791 1796	7 22 7 77 8 36 8.96	1931 1930 1932 1935	8 57 9.21 9 87 10 6	2065 2062 2062 2062 2062	9.97 10.7 11 4 12 2	2190 2186 2186 2186	11 4 12 2 13 0 13 8	2310 2304 2303 2302	12 9 13.7 14 6 15.5	2422 2419 2415 2413	14 4 15 3 16.3 17 2
3224 3720 4216 4712	2600 3000 3400 3800	884 937 995 1055	1 97 2.47 3 08 3.80	1127 11 6 8 1216 1266	3 39 4 04 4 81 5 68	1325 1360 1401 1445	4.85 5.68 6.61 7.65	1499 1529 1563 1602	6 38 7 37 8 46 9.66	1659 1682 1714 1748	7 98 9.13 10 4 11.7	1804 1822 1848 1879	9 60 10.9 12 3 13.8	1938 1955 1978 2006	11.7 12.7 14.3 16.0	2066 2078 2099 2123	12 9 14.5 16 3 18.2	2186 2196 2213 2235	14 7 16 5 18 4 1 20 4	2305 2311 2325 2342	16.5 18.4 20.5 22.6	2413 2418 2428 2445	18 3 20 4 22 6 24 9
5208 5704 6200 6696 7192	4200 4600 5000 5400 5800	1119 1186 1257 1328 1399	4 65 5.65 6 83 8 16 9.67	1319 1375 1434 1494 1560	6 68 7 82 9 12 10 6 12 3	1493 1541 1593 1649 1708	10.1 11.5 13.2 15.0	1647 1691 1740 1789 1843	11 0 12 4 14 1 15.81 17.8	1787 1827 1873 1920 1968	13.2 14.8 16.5 18.6 20.6	1917 1956 1997 2040 2087	15.5 17.3 19.2 21.3 23.5	2038 2074 2114 2155 2201	17 8 19 8 21 9 24 1 26 6	2154 2185 2223 2263 2306	20 2 22 2 24.5 26 9 29 5	2261 2295 2329 2366 2405	22 5 24 8 27.2 29 8 32 5	2366 2395 2428 2466 2502	24 9 27 3 29.9 32 7 35.6	2469 2493	27.4 29 9

> 404 DH

Inlet diameter: 23" O.D. Outlet area: 2.90 sq. ft. inside Wheel diameter: 40"

Wheel circumference: 10.47 ft.

							-		1									,		· · · · · · · · · · · · · · · · · · ·			
		2"	SP	4"	SP	6"	SP	8"	\$P	10	'SP	12'	'SP	14'	SP	16	SP	18	'SP	50.	'SP	22	"\$P
CFM	ov	RPM	BHP	RPM	BHP	RPM	внр	RPM	8 HP	RPM	внР	RPM	BMP	RPM	ВНР	RPM	ВНР	RPM	BHP	RPM	BHP	RPM	5HP
2900 3480 4060 4640	1000 1200 1400 1600	467 472 480 489	1.67 1.67 1.92 2.20	658 657 659 664	3 16 3,55 3 96 4,40	810 806 805 806	5 09 5 66 6.24 6 85	939 933 930 929	7 18 7 92 8.70 9 47	1053 1046 1042 1039	9 39 10.3 11.3 12 3	1157 1149 1143 1140	11 8 12.9 14 0 15 2	1252 1244 1237 1233	14 2 15 5 16 9 18 2	1342 1333 1325 1318	16.8 18.3 19.8 21.3	1425 1417 1408 1400	19 4 21 2 27 9 24 5	1506 1496 1487 1480	22 2 24 1 26 0 27 9	1581 1570 1561 1552	25 1 27 1 29 2 31 3
5220 5800 6380 6960	1800 2000 2200 2400	501 512 526 540	2.51 2.85 3.23 3.64	671 679 689 689	4 88 5.39 5.94 6.53	809 614 820 829	7.49 8 16 8 86 9 62	929 937 936 941	10.3 11.1 12.0 12.9	1038 1038 1041 1044	13.2 14.2 15.3 16.3	1137 1135 1136 1140	16 3 17.5 18 7 20 0	1229 1227 1275 1227	19 5 20 9 27 2 23 7	1315 1312 1310 1309	27 9 24.4 25 9 27 4	1396 1392 1389 1388	26 3 28 0 29.7 31 4	1474 1469 1464 1463	29.8 31 7 33.5 35 5	1546 1541 1536 1533	33 4 35 4 37 4 39 5
7540 8700 9860 11020	2500 3000 3400 3800	555 585 617 651	4.10 5.14 6.36 7.80	710 735 764 793	7 15 8 58 10 2 12.0	638 859 883 910	10.4 12.2 14.1 16.4	949 967 987 1010	13.9 16.0 18.2 20.8	1049 1064 1082 1103	17.5 19.9 22.5 25.4	1142 1154 1170 1188	21.2 24.0 26.9 30.1	1228 1238 1251 1268	25 0 28 2 31 4 35 0	1312 1317 1329 1343	29.1 32.4 36.11 39.9	1388 1394 1401 1414	33 2 36 9 40 8	1463 1464 1471 1483	37.4 41.4 45.6 50.1	1532 1534 1538 1549	41.6 46.0 50.5 55.4
12180 13340 14500 15660 16820	4200 4600 5000 5400 5800	687 724 752 802 842	9 51 11 5 13 8 16.4 19 3	823 855 888 923 958	14.1 16.5 19.1 72.1 75.4	937 966 996 1028 1060	18.8 21.6 24.6 28.0 31.7	1036 1063 1092 1171 1152	23.6 26.7 30.2 33.6 38.1	1127 1152 1179 1206 1235	28.6 32.1 35.9 40.0 44.4	1209 1233 1259 1284 1311	33 6 37.5 41 7 46.0 50 9	1287 1308 1333 1357 1384	38 8 42 9 47 5 52 2 57 5	1361 1380 1404 1427 1452	44 1 48 5 53 5 58 6 64 1	1431 1448 1470 1494 1516	49 5 54 1 59 4 65 0 70.8	1496 1515 1533 1555 1579	54 8 60 0 65 4 71 3 77 6	1561 1577 1597 1616	60 4 65 8 71 8 77 9

4	.5	4	1)			Ouliet				"O.D. inside	- 1			eter: 4 mfere		l.81 ft		
		2"	SP	4"	SP	6"	\$P	8":	SP	10,	'SP	12	'SP	14	SP	16	SP	18	SP	20	SP	22'	"5P
CPM	٥V	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP	RPM	вня	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP
3690 4428 5166 5904	1000 1200 1400 1600	414 418 425 434	1.83 2.12 2.44 2.79	583 583 584 588	4.00 4.51 5.02 5.58	718 714 713 714	6 45 7 17 7 92 8 69	832 828 824 823	9 10 10 1 11 0 12 0	934 928 924 921	11.9 13.2 14.4 15.6	1025 1018 1013 1010	14 9 16 4 17 8 19.3	1111 1107 1096 1093	18 ! 19 7 21 4 23 2	1190 1181 1174 1170	21 3 23 3 25 2 27.2	1263 1255 1248 1243	24 7 26 9 29 1 31 3	1335 1325 1317 1312	28 2 30 7 33 0 35 5	1402 1392 1383 1376	31 8 34 5 37 1 39 7
6642 7380 8118 8856	1800 2000 2200 2400	444 454 466 478	3 18 3.61 4.10 4.61	59S 601 610 620	6.20 6.83 7.54 8.29	717 721 727 734	9 50 10 4 11.2 12 2	824 826 830 834	13 1 14 1 15 2 16 4	920 920 922 925	16.8 18 1 19.4 20.7	1008 1007 1007 1010	20 7 22 2 23 7 25 4	1089 1087 1087 1088	24 8 26 5 28 3 30 1	1163 1161 1162	29 0 31 0 32.9 35 0	1237 1734 1231 1230	33 4 35 6 37 7 39 9	1306 1302 1298 1297	37 9 40 3 42 6 45 1	1371 1366 1362 1361	42 4 45 0 47 6 50.4
9594 11070 12546 14022	2600 3000 3400 3800	492 519 547 577	5 20 5 52 8 07 9 91	629 653 677 703	9 08 10 9 12 9 15 3	742 761 782 806	13.2 15.5 18.0 20.8	841 857 875 875 895	176 20.3 23.2 26.4	930 943 959 978	22.2 25.2 28.6 32.3	1013 1023 1037 1053	26.9 30.41 34.2 38.3	1090 1098 1109 1124	31 9 35 8 39 9 44 4	1162 1168 1178 1190	37 0 41.2 45.9 50 7	1230 1235 1242 1253	42 2 46 9 51.8 57 1	1297 1298 1304 1315	47.6 52.6 57.9 63.8	1358 1360 1364 1373	52.9 58.5 64.2 70.5
15498 16974 18450 19926 21402	4200 4500 5000 5400 5800	609 642 676 711 745	12 1 14 6 17.5 20 8 24.5	730 758 787 818 849	17.9 20.9 24.3 28.1 32.3	831 856 883 911 939	23 9 27 4 31 2 35 6 40 3	919 942 968 994 1021	30 1 34.0 38.4 43.1 48.4	999 1021 1045 1069 1094	36.4 40.8 45.6 50.9 56.5	1071 1093 1116 1138 1163	42 7 47 6 53.0 58 5 64.8	1141 1159 1181 1202 1226	49 3 54 5 60 4 66 4 73 1	1206 1223 1244 1265 1287	56 0 61 6 68.0 74 5 81.6	1268 1283 1303 1324 1344	62 9 68 8 75 5 82 7 90 0	1326 1343 1359 1378 1399	69 7 76 3 83 2 90 7 98 7	1384 1396 1415 1433 1452	76 8 83 7 91 3 99 1 107

5		4					4)			Outlet	Inlet d area:				1			eler: 5 mfere	0½" nce: 1	3.22 f	l	
		2"	SP	4"	SP	6*	SP	8"	SP	10	'SP	12"	SP	14'	'SP	16'	'SP	18	SP	20	SP	55,	"SP
CFM	٥v	RPM	внР	RPM	внр	RPM	SHP	RPM	BHP	RPM	вне	RPM	внр	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP
4620	1000	369	2.27	521	4 97	641	8.03	743	11 3	834	14.9	916	18 6	992	22 5	1063	26 6	1129	30 8	1192	35 2	1252	39 7
5544	1200	373	2.63	521	5.60	638	8 93	739	12 6	829	16.4	911	20.5	985	24.6	1055	29 0	1122	33 6	1184	38 3	1243	43 1
6468	1400	380	3.02	522	6 25	637	9 86	736	13 8	825	17.9	905	22 2	981	26.8	1049	31 4	1115	36 3	1178	41 3	1236	46 4
7392	1600	387	3.47	526	6.97	638	10.8	735	15 0	822	19.4	902	24.1	976	28.9	1045	33.9	1110	39 1	1172	44 3	1229	49 6
8316	1800	396	3 96	531	7 71	640	11.8	735	16 3	822	21.0	900	25.9	9/3	31 0	1041	36 3	1105	41 7	1167	47.3	1224	\$3 0
9240	2000	406	4.51	537	8 51	644	12.9	738	17 6	822	22.5	900	27.8	971	33 1	1039	38.7	1102	44 4	1163	50 3	1220	\$6 3
10164	2700	416	5.10	545	9.39	649	14.0	741	19 0	824	24.2	901	29.7	971	35 3	1037	41.1	1100	47 1	1161	53.3	1218	\$9 6
11088	2400	427	5.74	553	10.3	656	15.2	746	20 5	827	25.9	902	31.7	972	37 5	1038	43.7	1100	49 9	1159	56 3	1216	62 9
12012	2600	439	6.48	562	113	663	16 5	751	22.0	831	27.7	905	33.6	974	39 9	1038	46 2	1099	52 7	1158	59.4	1215	66 3
13860	3000	463	8.12	583	13.6	660	19 3	765	25.3	842	31.5	914	38.0	981	44 7	1043	51 5	1103	58 6	1159	65.7	1215	73 1
15708	3400	489	10 1	604	16.1	699	22 4	781	28.9	857	35.7	926	42.8	991	49 9	1052	57 31	1110	64 7	1166	72.6	1218	80 3
17556	3800	516	12.4	628	19.1	720	26 0	801	33.1	873	40.4	941	47.8	1004	55 5	1064	63 4	1120	71 4	1175	79.7	1227	88 1
19404	4200	544	15 1	652	22.4	742	29 9	821	37.6	892	45 5	959	53.6	1019	61 7	1077	70.0	1:33	78 6	1186	87 4	1236	96 0
21252	4600	573	18.2	677	26.1	765	34 2	841	42.5	912	50.9	976	59.5	1036	68 2	1092	77.0	1:47	86 1	1199	95.5	1249	105
23100	5000	604	21.8	703	30.3	789	39 1	864	48.0	933	57 0	997	66.2	1055	75 4	1112	85.0	1:164	94 4	1214	104	1264	114
24948	5400	635	26 0	731	35.1	814	44 4	588	53.9	955	63.6	1018	73.4	1076	83 3	1130	93.2	1:183	103	1231	113	1260	124
26796	5800	666	30 6	759	40.4	839	50 3	912	60.5	977	70 €	1039	81.1	1096	91 4	1150	102	1:201	113	1250	123	1297	134

J is from housing side over inlet collar.

Tolerance: *\footnote{\pi}"

Dimensions not to be used for construction unless certified.

Refer to page 4 for maximum motor size limits.

ARRANGEMENT 10

DIMENSIONS [Inches]

Size	A	В	C	D	E	F	G	н	J	K	L.	M	N	0
144 174 194 224 264 294 334 364	15½ 17½ 21¼ 25½ 28½ 39½ 39½	10½ 12% 14 16½ 18½ 21 23 25½	11% 13% 16 18% 21% 24% 27% 30%	8½ 10½ 10½ 13 15 16% 18¾ 20¼	94/s 11 /s 11 /s 14 16 /s 18 /4 20 3/s 22 /2	12 14½ 18 21¼ 24½ 27¾ 30¾ 34¼	10% 12% 13% 16% 18% 21% 23% 26%	30 34 / ₄ 36 / ₆ 41 / ₆ 44 / ₂ 48 53 / ₆ 56	1% 1% 3% 3% 4% 4% 4% 5%	234 34 41/2 56	9 11 13 15 17 19 21	7% 9% 9% 10% 12% 14 15%	20 22 22 26 26 26 29 30	19% 21% 33% 38% 41% 44 48% 50%

5	ize	Q	R	ş	Т	v	w		b	C	ď	Shalt diameter	Keyway	Base holes
12 22 3	44 74 94 24 64 94 34		5% 6% 7% 8% 9% 10% 11	16 ³ / ₈ 18 ³ / ₈ 17 ³ / ₈ 20 ³ / ₄ 20 ³ / ₄ 23 ³ / ₄ 23 ³ / ₄	7% 8% 9% 10% 12% 13% 16	6 1/2 8 8 1/4 9 3/4 1 1 1 1 1/4 1 4 1 4	8 9½ 10½ 11¾ 13 14¾ 17	101/4 131/8 15 171/8 201/4 23 251/4 281/2	16 19¼ 22¾ 26¾ 30¾ 34¾ 38¼ 42¾	11½ 13¾ 17 20 23 26¼ 29¼ 32¼	9% 11% 13 15% 17% 19% 22% 24%	17/16 17/16 11/10 11/10 11/16 11/16 11/16 23/16 23/16	% x Y, 6 % x Y, 6 % x Y, 0 % x Y, 4 % x Y, 4	%16 %16 %16 3/4 3/4 3/4

FAN DISCHARGES -VIEWED FROM DRIVE SIDE

CW TH CW BH CW UB CW DB CW BAU	TOP UP	Bottom	CW TAD Top Angular	Down		Boltom	CW TH
--	--------	--------	-----------------------	------	--	--------	-------

Clockwise -- Angular discharges at 45°

Counterclockwise - Angular discharges at 45°

DIMENSIONS [Inches] **FLANGED** INLET Holes O.D. Size 1.D.* B.C. Dia. No. **OPTION** 144 11 ½ 13½ 14 16 9889 7/16 7/16 12½ 14½ 194 10% 224 125/8 7/16 7/16 7/16 1/10 254 294 334 145/s 165/s 185/k 16½ 18½ 20% 8 8 16 16 18 20 22 24 205/8 221/2 16 16 16 9/16 9/16 9/16 9/16 9/16 Furnished with holes 27 starting on vertical centerline. 30 33 37 454 504 574 28% 32% Intet bar sizes: Sizes 144-174 10 ga. x 14 Size 194 7 ga. x 14 Sizes 224-364 31 35 %16 %16 %16 %16 39 43 47 51 24 24 24 24 361/2 41 45 644 714 784 854 401/2 49 53 X x 1½ Sizes 404-854 X x 2 481/2 Dimension shown is I D of inject collar

FLANGED		DI	MEN	SIO	NS (II	nches	\$] 	
OUTLET							Ho	ies
OPTION	Size	A	В	C	סי	W.	No.	Dia.
	144 174 194 224	10¾ 12¾ 13¼ 16	103/4 12 123/4 133/4	3/4 3/4 3/6 7/6	81/4 101/6 101/4 13	77/8 91/2 93/4 103/6	12 12 12	7/16 1/16 1/16 1/16
0 h	264 294 334 354	18 19% 21% 23%	153/6 17 185/a 201/4	7/8 7/8 7/8 7/8	15 16% 18¾ 20¼	123/8 14 153/6 173/4	16 16 16 20	7/16 7/16 7/18 7/18
1. Mounted flush with edge of housing outlet. 2. Holes furnished on	404 454 504 574	267/e 297/4 323/4 363/e	23 25 ³ / ₅ 27 ⁷ / ₆ 31 ¹ / ₄	11/4 11/6 11/4 11/4	22% 25¾ 28¾ 32%	19 213/a 23 % 27 1/a	24 24 24 32	9/16 9/16 9/10 9/10
4" centers on centerline. Outlet flange angles Sizes 144-174 11/2 x 11/4 x 3/16	644 714 784 854	40°/e 44°/8 48°/6 52'/a	34½ 375/6 40% 44%	11/6 11/6 11/6 11/6	36% 403/e 443/e 48%	30½ 335/s 36% 40½	32 36 40 44	9/16 9/16 9/16 9/16

of discharge

FAN DISCHARGES - VIEWED FROM DRIVE SIDE

CCW TH	CCW BH	CCW UB	CCW DB			CCW TAU
Top	Battom	Up	Down	Top Augular	Soltom	Top
Horizonta!	Harizontal	Blast	Blast	Down	Angular Up	Angelar Up

FAX TRANSMITTAL

DATE SENT TIME SENT May 18, 1992 3:13pm

PAGES PLUS COVER SHEET

GOULDS PUMPS, INC.

7100 S.W. SANDBURG STREET TIGARD, OREGON 97223 PHONE: (503) 684-2520

Woodward & Clyde

Joseph Scott

C.C.

Michael J. Gay

MESSAGE:

Reference:

Rocky Mountain Arsenal - Budget Proposal

Thank you for contacting Goulds Pumps concerning your pumping requirements. We are pleased to submit the following budget proposal.

For your H2SO4 Injection pump applications, we are offering our Model 3196STX Horizontal ANSI pump with our new 'X-series' bearing frame. The Model 3196 pricing includes 316SS construction with 316SS shaft sleeve, flood oil lubrication, cast iron baseplate, Rexnord coupling, John Crane double mechanical seal with provisions for customer supplied flush, 150# FF flanges, and TEFC Mill & Chem duty motor.

Our best estimate for shipment of the Model 3196STX is 10-12 weeks after receipt of approved drawings and subsequent release to manufacturing.

All pricing for the Model 3196STX is quoted F.O.B. Seneca Falls, NY. Estimated freight is approximately \$147.00 for both units.

Any purchase order resulting from this proposal will be subject to Goulds' Standard terms and conditions. Terms of payment will be 100% net thirty (30) days after shipment.

Thank you for considering Goulds Pumps. If you should have any questions concerning this proposal or if we can be of further assistance, please contact our office at your convenience.

Sincerely,

Ron Evancho

Sales Engineer

Michael J. Gay

District Engineer

CENTRIFUGAL PUMP QUOTATION

REPLY TO:

GOULDS PUMPS, INC. 7100 SW SANDBURG TIGARD, OR 97223 PHONE: (503)-684-2520

All quotations subject to terms and
conditions on the reverse side except
as noted on Pageattached.

SHIPMENT: Our best estimate at this time is ______weeks after complete engineering and manufacturing information and full approval to proceed with work.

To: Woodward & Clyde

4582 S. Ulster St. Parkway

Suite 1000

Denver, CO 80257

Date:

5/18/92 Budgetary Page: 1 of 2

Proposal No.:

Revision No.:

Copies:

Attention:

Joseph Scott

Inquiry Date:

5/14/92

Inquiry No.:

In answer to your inquiry, we propose to furnish GOULDS PUMPS as described below:

ITEM NO.					OPERATING C	ONDITIONS AN	ID PERFORMAN	CE
EQUIP. NO. SERVICE	H ₂ SO ₄ Inje	ection		Liquid Water	/H ₂ S0 ₄		Temp. ^O F -	Sp. Gr. @ P. Assumed 1.0
Quantity	Model	Size	Rotation	G.P.M.		T.D.H.	V.P.	Visc.
1	3196STX	1X1½-6	RH	20		60'	-	-
Casing	Impeller	Shaft	Sleeve	Eff.	Ra	ited B.H.P.	Max. B.H.P.	Suct, Press
316 SS	31655	316 SS	316 SS	32	%	0.95	2.6	-
Wear Plate	Lubrication Oil	Base Plate Cast Iron	Rexnord ES-2	Disch. Pre	ŀ	erf. Curve 029-1	NPSH _R	Assumed Adequate
Me	L chanical Seal — 東 欽	XXX	Imp. Type	la Rated	mpeller Diamet Min,	er Max,	Bull	etin
	ne Type 9T		0pen	7.00"	5.50"	8.00"	725	.104
Customer	l (Double) Supplied Fl	ush						

H.P. R.P.M. Enclosure Frame S.F./Insulation 1.15/F Phase Hertz Voltage Furnished By Goulds Furnished By Total Unit \$3,770.00ea. 285	H.P. R.P.M. Enclosure Frame S.F./Insulation Pump 3 1750 TEFC M&C 182T 1.15/F Phase Hertz Voltage Furnished By 3 60 460 Goulds Driver Total Unit \$3,770.00ea. 285	IVER-					ITEM	*PRICE	WEIGHT
Phase Hertz Voltage Furnished By 3 60 460 Goulds Driver Total Unit \$3,770.00ea. 285	Phase Hertz Voltage Furnished By 3 60 460 Goulds Driver Total Unit \$3,770.00ea. 285		R.P.M.	Enclosure	Frame	S.F./Insulation	Pump		
3 60 460 Goulds Driver Total Unit \$3,770.00ea. 285	3 60 460 Goulds Driver Total Unit \$3,770.00ea. 285	3	1750	TEFC M&C	182T	1.15/F			
3 60 460 Goulds Total Unit \$3,770.00ea. 285	3 60 460 Goulds Total Unit \$3,770.00ea. 285	Phase	Hertz	Voltage	Furnished By		- Daire		
Din 8 White	Dia 8 Walak	3	60	460	Goulds			\$3.770.00ea.	285
WITH THE FOLLOWING ADDITIONS MODIFICATIONS AND/OR REQUIREMENTS	WITH THE FOLLOWING ADDITIONS, MODIFICATIONS AND/OR REQUIREMENTS				<u> </u>		Price & Weight		
With the recession, we have		WITH THE	FOLLOWING A	DDITIONS, MODIFIC	ATIONS AND/OR RI	EQUIREMENTS	I Tice & Weight		
								1 3	
							i	1 1	
				•					
				•					
				•					

THIS QUOTATION VALID FOR 30 DAYS FROM DATE OF PROPOSAL SHOWN ABOVE.
* PRICES SHOWN ARE F.O.B. SHIPPING POINT

TERMS: NET 30 DAYS - SUBJECT TO CREDIT DEPT. APPROVAL

Michael Gay/Ron Evancho

GOULDS PUMPS, INC.

725.1C4

May 1, 1987 (Sup. 3/2/87) PAGE 2 OF 2

CENTRIFUGAL PUMP QUOTATION

REPLY TO:

GOULDS PUMPS, INC. 7100 SW SANDBURG **TIGARD, OR 97223** PHONE: (503)-684-2520

ΑII	quotations su	ıbject	to	terr	ns	anc
con	ditions on the	rever	se :	side	ex	ept
as r	oted on Page			_att	acl	ned.

SHIPMENT: Our best estimate at this ___weeks after complete engineering and manufacturing information and full approval to proceed with work.

2 of 2

To:

Woodward & Clyde

4582 S. Ulster St. Parkway

Joseph Scott

5/14/92

Suite 1000

Denver, CO 80257

Date: 5/18/92

Proposal No.: Budgetary

Revision No.:

Copies:

Page:

Inquiry Date: Inquiry No.:

Attention:

In answer to your inquiry, we propose to furnish GOULDS PUMPS as described below:

ITEM NO.				0	PERATING CO	ONDITIONS AN	D PERFORMAN	CE	
			•	Liquid			Temp. ^O F	Sp. Gr. @ P.	
EQUIP. NO. SERVICE	H ₂ SO ₄ Inject	tion		Water/H ₂ SO4			-	Assumed 1.0	
Quantity	Model	Size	Rotation	G.P.M.	T T	T.D.H.	V.P.	Visc.	
1	3196STX	2X3-6	RH	170		60'	-	-	
Casing	Impeller	Shaft	Sleeve	Eff.	Rat	ted B.H.P.	Max. B.H.P.	Suct, Press	
316SS	316SS	31655	316 SS	63.	5%	4.1	5.0	-	
Wear Plate	Lubrication	Base Plate	Coupling	Disch, Pre	ss Pe	erf. Curve	NPSHR	Assumed	
-	0il	Cast Iron	Rexnord ES-2	-	3	036-1	9.5'	Adequate	
Med	thanical Seal — XX	XXXX	Imp, Type	Impeller Diameter Rated Min, Max.			Bulletin		
ohn Crane	Type 9T ble)		Open	4.38"	4.00"	6.06"	725	5.1C10	

RIVER-					ITEM	*PRICE	WEIGHT
H.P.	R,P,M,	Enclosure	Frame	S.F./Insulation	Pump		
5	3500	TEFC M&C	184T	1.15/F			
Phase	Hertz	Voltage	Furnished By				
3	60	460	Goulds		Driver Total Unit	3,812.00ea.	3 03
						i i	

THIS QUOTATION VALID FOR 30 DAYS FROM DATE OF PROPOSAL SHOWN ABOVE.

* PRICES SHOWN ARE F.O.B. SHIPPING POINT

TERMS: NET 30 DAYS - SUBJECT TO CREDIT DEPT. APPROVAL

Michael Gay/Ron Evancho

GOULDS PUMPS, INC.

725.1C10May 1, 1987

May 1, 1987 (Sup. 3/2/87) PAGE 1 OF 2

Ι.					
	MO:	OR DI	RENSIO	N5 (T	EFC)
	MOTOR FRAME SIZE	C	DM	WT. INCL. CPLG.	BEDPLATE NUMBER
	56	10.50	3.50	35	ı
	1457	12.50	3.50	50	1
	1457	13.50	3.50	55	1
	182T	14.50	5.00	85	2
X	1847	15.50	5.00	100	2
	2137	18.00	6.00	150	2
	2157	19.50	6.00	170	2
	254T	22.50	6.50	245	3
	256T	24.00	6.50	285	3
	284T	25.50	7.50	390	3
	28475	24.50	7.50	360	3
	286T	27.00	7.50	495	3
	28675	26.00	7.50	425	3

		FUMP S	IZE	
	DISCHARGE SIZE	SUCTION SIZE	CASING CLASS	WEIGHT
_	ı	1 1/2	6	84
_	1 1/2	3	6	92
∇	2	3	6	95
	= 1	1 1/2	8	100
	3 1 1/2	3	8	108

	AVAILABLE OPTIONS
BEDPLATE	CAST IRON FABRICATED STEEL PERMABASET FRP W/ 1/2"NP BEDPLATE DRAIN FLEX MOUNTED STEEL 1 & 2 SEE DRAWING NO. ACHIEBA
BIESS DRIP PAN	□ FURNISHED TEXNOT FURNISHED
FLANGES	MISCH ANSI FLAT FACE 150H ANSI RAISED FACE 300H ANSI FLAT FACE 1300H ANSI RAISED FACE
COUPLING	GUARD COULDS

FURNISHED BY DOTHERS

							BEDPLA	TE DI	MENSI	2NC					
					HT		-	HG					WEIGHT		
	NO.	AH	HB	CAST IRON	STEEL	FRP	CAST IRON	CAST STEEL F	FRP	HE	HF	нн	CAST	STEEL	FRP
		10	35	3.00	2.88	3.19	2.69	2.88	3.00	4.00	32.50	1.19	75	27	22
X	2	12	39	3.25	3.31	3.69	3.06	3.19	3.12	4.50	36.50	1.38	80	102	29
	3	15	46	5.88	5.25	5.04	4.12	3.38	4.00	6.00	43.50	1.44	120	157	52

- ◆ TOLERANCE IS +.38 -0 FOR CAST IRON BEDPLATE.
- WMEN BOOM FLANGES ARE FURNISHED. DISCHARGE FLANGE WILL BE THREADED. AS FOLLOWS:

 | X | 1/2 8 : 4-5/8-11 UNC-28 | 1/2 X 3 8 : 4-3/4-10 UNC-28
- € WHEN FLEX MOUNTED STEEL BEDPLATE IS REQUIRED FOR MOTOR FRAMES 2541-28415. SEE DRAWING NO. 4038384 INSTALL FOUNDATION BOLTS IN PIPE SLEEVES. ALLOW FROM .75" TO 1.50" FOR GROUTING. SEE INSTRUCTION BOOK FOR DETAILS. FOR TAPPED OFENINGS REFER TO DRAWING NO. ADMISSA

CERTIFIED FOR CONSTRUCTION PURPOSES ONLY WHEN SIGNED.

SIGNATURE		DATE									
CUSTOMER . WOOD WI	AIZK.	۶ (Ci	40	Ε.						
GOULDS SERIAL NO.		_									
CUSTOMER P.D. NO.											
TTEM NO											
SERVICE. H2 SQ4.	IN	JJE	741	OP							

ISSUE DRAWING IS NOT TO SCALE DIMENSIONS IN INCHES WEIGHTS (LBS) ARE AFPROXIMATE

DRAWN DJN 4-9-91 APPROVED RAS

DRAWING

REVISION

ISSUE

ſ	MOT	OR DIN	ENSIC	N5 (T	EFC)
	MOTOR FRAME SIZE	c	DM	WT. INCL. CPLG.	BEDPLATE NUMBER
	56	10.50	3.50	35	ı
П	1437	12.50	3.50	50	1
	145T	13.50	3.50	55	1
X	1827	14.50	5.00	85	2
	IEST	15.50	5.00	100	2
	213T	18.00	6.00	150	2
	2157	19.50	6.00	170	2
П	2547	22.50	6.50	245	3
П	256T	24.00	6.50	285	3 .
	264T	25.50	7.50	390	3
	28475	24.50	7.50	360	3
	286T	27.00	7.50	435	3
П	26675	26.00	7.50	425	3

		PUMP S		
	DISCHARGE SIZE	SUCTION SIZE	CASING CLASS	WEIGHT
Z	ı	1 1/2	6	84
	1 1/2	3	6	92
	2	3	6	95
	3 1	1 1/2	В	100
	1 1 1/2	3	8	108

AV	AILABLE OPTIONS
BEDPLATE	CAST IRON FABRICATED STEEL PERMABASETH FRP W/ 1/2"NF BEDPLATE DRAIN FLEX MOUNTED STEEL 6 2 SEE DRAWING NO. ACH193A TY-BASETH
BIESS DRIP PAN	FURNISHED MENOT FURNISHED
FLANGES	MAISON ANSI FLAT FACE □ 150N ANSI RAISED FACE □ 300N ANSI FLAT FACE □ 300N ANSI RAISED FACE
COUPLING GUA FURNISHED BY	RD KGOULDS TOTHERS

Ī							BEDPLA	TE DI	MENSI	ONS					
ı				1	нт								WEIGHT		
Ì	NO.	AH	HB	CAST IRON	STEEL	FRP	CAST IRON	STEEL	FRP	HE	HF	нн	CAST IRON	STEEL	FRP.
		10	35	3.00	2.88	3,19	2.69	2.88	3.DD	4.00	32.50	1.19	75	87	22
V	2	12	39	3.25	3.31	3.69	3.06	3.19	3.12	4.50	36.50	1.38	80	102	29
	3	15	46	5.88	5.25	5.94	4.12	3.38	4.00	6.DD	43.50	1.44	120	157	52

- ◆ TOLERANCE IS +.98 -0 FOR CAST IRON BEDPLATE.
- WHEN BOCH FLANGES ARE FURNISHED. DISCHARGE FLANGE WILL BE THREADED. AS FOLLOWS:

 | X | 1/2 8 : 4-5/8-11 UNC-2B
 | 1/2 X 3 8 : 4-3/4-10 UNC-2B
- € WHEN FLEX MOUNTED STEEL BEDPLATE IS REQUIRED FOR MOTOR FRAMES 2541-26615. SEE DRAWING ND. AD3838A INSTALL FOUNDATION BOLTS IN PIPE SLEEVES, ALLOW FROM .75" TO 1.50" FOR GROUTING, SEE INSTRUCTION BOOK FOR DETAILS. FOR TAPPED OPENINGS REFER TO DRAWING NO. ADMISCA

CERTIFIED FOR CONSTRUCTION PURPOSES ONLY WHEN SIGNED.

SIGNATURE			DATE							
CUSTOMER WOODWAY	P	4	Çı	YPE	= .					
GOULDS SERIAL NO										
CUSTOMER P.O. NO										
ITEM NO				٠,						
SERVICE. HZS.04. I	NJ	72	ПC	Ŋ						

ISSUE DRAWING IS NOT TO SCALE DIMENSIONS IN INCHES WEIGHTS (LBS) ARE AFFROXIMATE

DJN DRAWN APPROVED RAS

DRAWING

ISSUE REVISION

SERIES B and D ELECTROMAGNETIC METERING PUMPS

■LMI'S ACCURATE, DEPENDABLE SÉRIES B METERING PUMP— CONTROL PANEL VIEW

■LMI'S TOTALLY ENCLOSED, CORROSION RESISTANT SERIES D METERING PUMP— PUMP HEAD VIEW

LMI'S SERIES B AND SERIES D METERING PUMPS

for accurate, dependable fluid metering

Series B7 Metering Pump with an LMI FP Series Flowmeter Pulser for proportional fluid metering.

Series B Metering Pump mounted on an LMI 50 gallon ultra-violet resistant polyethylene tank.

Series D7 with an LMI Liquitron, housed in a NEMA 4 enclosure, for instrument responsive control.

In addition to a wide range of control options, LMI's Series B and Series D Metering Pumps offer these advantages:

ELECTROMAGNETICALLY DRIVEN

Solid state encapsulated electronics isolated in compartment opposite liquid end.

No rotating masses such as motors or reduction gears. Low energy consumption—power used only during discharge portion of each stroke.

INHERENT PRESSURE RELIEF

Should the back pressure exceed the the strength of the magnetic force developed by the power coil, the pump will stop stroking, preventing any damage and eliminating the need for a pressure relief valve.

TOTALLY ENCLOSED, CORROSION RESISTANT

Pumps are enclosed in housings of corrosion-proof glass fiber reinforced polypropylene, protecting the pump from spilled chemical and corrosive atmosphere.

LOW MAINTENANCE

One moving unit, the armature-diaphragm assembly. No lubrication required.

Modular construction provides easy replacement of components and major assemblies.

LOCAL AVAILABILITY, LOCAL SERVICE AND REPAIR

Provided through LMI's international network of distributors and authorized repair centers.

LMI'S UNIQUE 4 FUNCTION VALVE

Provides the following added protection:

- 1. Anti-syphon protection—The positive diaphragm type feature of LMI's four function valve makes it possible to meter liquids "down-hill," even into the suction side of a well or circulating pump.
- 2. Back pressure function—Permits metering into atmospheric discharge (open tank) without over pumping due to discharge velocity.
- 3. Priming-line pressure release—Makes depressurizing the discharge line possible without loosening tubing or fittings and allows priming of the pump while it is connected to the pressurized line.
- 4. Pressure relief function—Although not required for electromagnetic pumps due to the inherent pressure relief, this added feature is designed to open at approximately 175 psi.

SELECTING YOUR PUMP

LMI chemical metering pumps are made by combining two major components: the drive assembly, which provides the power for the pumping action, and the liquid end, which is the area through which the pumped solution flows.

To arrive at the complete model number for your Series B or D metering pump, combine the drive assembly number (i.e. B74), the voltage code required (i.e. 1), and the liquid end chosen (i.e. 12S). These combined numbers are your final pump part number (B741-12S).

SELECTING THE DRIVE ASSEMBLY

To choose the correct combination for your application, begin by selecting the drive assembly with the control option, voltage code and output specifications to match your requirements. Listed below and on the following pages are the available control options, voltage codes and output specifications for Series B and Series D metering pumps.

1. CONTROL OPTIONS

DUAL MANUAL CONTROL—SERIES B1, D1

These pumps offer the versatility of independently adjustable stroke length and stroke frequency, allowing dual manual control of pump output.

INSTRUMENT RESPONSIVE CONTROL—SERIES B4, D4

Series B4 and D4 pumps will respond directly and proportionally to a 4-20 mA DC instrument signal through the built in signal receiver. At 4mA DC input signal, pump output is zero, with pump output increasing proportionally as input signal increases.

AUTOMATIC CONTROL—SERIES B7, D7*

These pumps respond to any dry switch closure, providing automatic stroke frequency control and proportional feeding. A mode switch allows you to choose this automatic stroke frequency control or dual manual control. Adjustable electronic pressure control is another unique, standard feature on these pump models.

*Series BE and DE pumps offer the automatic stroke frequency control feature of the B7 and D7 series with a spring loaded selector switch which must be held in place by the operator for the pump to function in the manual control mode. When switch is released, the pump stops, eliminating the possibility that the pump can be left in manual control mode on installations requiring automatically paced chemical feed.

2. OUTPUT SPECIFICATIONS

SERIES			LITERS PER HOUR			mL OR CC PER MIN.		TPUT TROKE	MAX INJECTION
D11 D71	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	PRESSURE
B11, B71	.008	1.6	.03	6	0.5	100	1.0	1.0	150 PSI (10.3 Bar)
BE2, B12, B72	.012	2.5	.05	9.5	.79	158	.16	1.58	100 PSI (6.9 Bar)
BE3, B13, B73	.022	4.5	.085	17.0	1.42	284	.28	2.84	
B14, B74, BE7	.04	7.0	.13	26.5	2.21	442	+	 	50 PSI (3.4 Bar)
B41*	0.	1.6	0.	6.0	0.		.44	4.42	30 PSI (2.07 Bar)
B42*	0.	2.5	0.	9.5		100	.1	1.0	150 PSI (10.3 Bar)
B43*	0.	4.5			0.	158	.16	1.58	100 PSI (6.9 Bar)
B44*	0.		0.	17.0	0.	284	.28	2.84	50 PSI (3.4 Bar)
D11, D71		7.0	0.	26.5	0.	442	.44	4.42	30 PSI (2.07 Bar)
	.012	2.5	.05	9.5	.79	158	.21	2.10	150 PSI (10.3 Bar)
DE2, D12, D72	.02	4.0	.76	15.2	1.28	252	.34	3.36	100 PSI (6.9 Bar)
DE3, D13, D73	.04	8.0	.15	30.3	2.51	505	.67	6.73	60 PSI (3.4 Bar)
DE4, D14, D74	.1	20.0	.38	76.0	6.3	1260	1.68	16.8	
D41*	0.	2.5	0.	9.5	0.	158		· -	20 PSI (2.07 Bar)
D42*	0.	4.0	0.	15.2	0.		.1	1.02	150 PSI (10.3 Bar)
D43*	0.	8.0	0.			253	.32	3.16	100 PSI (6.9 Bar)
D44*	0.	20.0	0.	30.3	0.	504	.63	6.3	60 PSI (3.5 Bar)
		20.0		76.0	0.	1262	1.6	15.8	20 PSI (2.07)

^{*}Series B4 and D4 pumps operate from a 4-20 mA signal source. Incoming signal automatically controls pump output from zero to maximum.

3. VOLTAGE CODES

The final digit of each drive assembly number designates both voltage and power cord/plug type. When ordering please indicate desired voltage by inserting one of the following digits in this position.

[1] 115 VAC

[5] 240 - 250 VAC, British (UK) Plug

[2] 230 VAC

[6] 240 - 250 VAC, Aust./N.Z. Plug

[3] 220 - 240 VAC, DIN Plug

[7] 220 VAC, Swiss Plug

You should now have a complete Drive Assembly part number, such as B721, where B7 indicates the control option you chose in step 1, 2 indicates the output range you require from step 2, and 1 indicates the voltage code you require from step 3.

ADDITIONAL SPECIFICATIONS

SERIES	PEAK INPUT POWER (WATTS)	AVERAGE INPUT POWER (WATTS @ MAX SPEED)	STROKE LENGTH ADJUSTABLE (0-100%) RECOMMENDED MIN.	STROKE FREQUENCY ADJUSTABLE (STROKES PER MINUTE)
B11, B71	248	29	15%	5 TO 100
B12, B13, B14	248	29	10%	5 TO 100
B41, B42, B43, B44	248	29	10%	0 TO 100
B72, B73, B74	248	29	10%	5 TO 100
D10, D11, D12, D13, D14	381	33	10%	3.75 TO 75
D40, D41, D42, D43, D44	381	33	10%	0 TO 75
D70, D71, D72, D73, D74	381	33	10%	3.75 TO 75

VOLTAGE: 115 VAC, 50/60 Hz, SINGLE PHASE 230-250 VAC, 50/60 Hz, SINGLE PHASE

DIMENSIONS

SERIES	LENGTH (Z) Inches (mm) MAX	WIDTH (Y) Inches (mm) MAX	HEIGHT (X) Inches (mm) MAX	SHIPPING WEIGHT LBS (Kg)
B1, B7	10.5 (267)	5.72 (146)	8 (203)	15 (6.9)
B4	10.75 (273)	5.72 (146)	8 (203)	15 (6.9)
D1, D7	11.625 (296)	5.72 (146)	9.25 (235)	19 (8.7)
D41, D42	10.75 (273)	5.72 (146)	9.25 (235)	19 (8.7)
D43	11.0 (280)	5.72 (146)	9.25 (235)	19 (8.7)
D44	11.70 (298)	5.72 (146)	9.25 (235)	19 (8.7)

SELECTING THE LIQUID HANDLING ASSEMBLY

Once you have selected the proper drive assembly, you must then select a liquid end compatible with both the drive assembly and the chemical you are pumping. Listed below are Series B and D drive assemblies and liquid ends compatible with each.

LIQUID END NO.	B11, B12, B41, B42, B71, B72	B13, B43, B73	B14, B44, B74	D10, D40, D70	D11, D41, D71	D12, D42, D72	D13, D43, D73	D14, D44, D74	COMMON USE CATEGORIES ++
11S+			*						Alkalies, Dilute Acids
12S+			*						Acids
15S+			*						Bioacids, Solvents, Alkalies, Acids
20HV							*		High Viscosity Materials, Polymers
20S+							*		Alkalies, Dilute Acids
24							*		Acids
25HV							*		High Viscosity Materials, Polymers
25P							*		Bioacids, Solvents, Alkalies, Acids
25T		1					*		Bioacids, Solvents, Alkalies, Acids
26S+							*		Acids
27							*		Solvents, High Temperature
30								*	Alkalies, Dilute Acids
34						;		*	Acids
35P								*	Bioacids, Solvents, Alkalies, Acids
35T								*	Bioacids, Solvents, Alkalies, Acids
36								*	Acids
37								*	Solvents, High Temperature
71FS					*	*			Hydrofluorosilic Acid
71S		*			*	*			Alkalies, Dilute Acids
71T		*			*	*			Alkalies, Dilute Acids
72S		*			*	*			Acids
72T		*			*	*			Acids
74		*			*	*			Acids
75HV		*				*			High Viscosity Materials, Polymers
75S	·	*			*	*			Bioacids, Solvents, Alkalies, Acids
76		*				*			High Viscosity Materials, Polymers
77		*			*	*			Solvents, High Temperature
85HV	*								High Viscosity Materials, Polymers
86	*								High Viscosity Materials, Polymers
91FS	*								Hydrofluorosilic Acid
91S	*								Alkalies, Dilute Acids
91T	*								Alkalies, Dilute Acids
92S	*								Acids
92T	*								Acids
94	*			*					Acids
95S	*								Acids
95T	*								Bioacids, Solvents, Alkalies, Acids
97	*			*					Solvents, High Temperature

⁺ These liquid handling assemblies are also available without LMI's unique 4-Function valve. To order a liquid handling assembly without this option, drop the 'S' at the end of the liquid handling number.

⁺⁺ For descriptive purposes only. This is not a recommendation of suitability for a specific chemical solution. Please consult your local LMI distributor for specific information.

Once you have determined which liquid ends are compatible with the chosen drive assembly, refer to the table below and choose the liquid end in that grouping which is constructed of materials most compatible with the chemical you are pumping.

LIQUID	MATERIALS OF CONSTRUCTION		_				
END NO.	HEAD	FITTINGS	VALVE BALLS	LIQUIFRAM	SEAL RINGS	CONNECTIONS	ACCESSORY
11S	Acrylic	PVC	Ceramic	Teflon Face	Polyprel [™]	Tubing .5"	4FV
12S	PVC	PVC	Ceramic	Teflon Face	Polyprel [™]	Tubing .5"	4FV
15S	Polypropylene	Polypropylene	Ceramic	Teflon Face	Teflon	Tubing .5"	4FV
20HV	Acrylic	Polypropylene	Çeramic	Teflon Face	Hypalon	Tubing .5" Discharge .938" Suction	
2 0S	Acrylic	PVC	Ceramic	Teflon Face	Hypalon	Tubing .5"	4FV
24	PVC	PVC	Ceramic	Teflon Face	Teflon	Pipe 1/2" NPT M	
25HV	Polypropylene	316 S.S.	316 S.S.	Teflon Face	Teflon	Tubing .5" Discharge .938" Suction	
25P	Polypropylene	Polypropylene	Ceramic	Teflon Face	Teflon	Pipe 1/2" NPT M	
25T	Polypropylene	Polypropylene	Ceramic	Teflon Face	Teflon	Tubing .5"	
26S	PVC	PVC	Ceramic	Teflon Face	Viton	Tubing .5"	4FV
27	316 S.S.	316 S.S.	316 S.S.	Teflon Face	Teflon	Pipe 1/2" NPT M	
30	Acrylic	PVC	Ceramic	Teflon Face	Teflon	Tubing .5"	
34	PVC	PVC	Ceramic	Teflon Face	Teflon	Pipe 1/2" NPT M	
35P	Polypropylene	Polypropylene	Ceramic	Teflon Face	Teflon	Pipe 1/2" NPT M	
35T	Polypropylene	Polypropylene	Ceramic	Teflon Face	Teflon	Tubing .5"	
36	PVC	PVC	Ceramic	Teflon Face	Teflon	Tubing .5"	
37	316 S.S.	316 S.S.	316 S.S.	Teflon Face	Teflon	Pipe 1/2" NPT M	
71FS	Acrylic	PVC	Teflon	Teflon Face	Hypalon	Tubing .5"	4FV
71S	Acrylic	PVC	Ceramic	Teflon Face	Teflon	Tubing .5"	4FV
71T	Acrylic	PVC	Ceramic	Teflon Face	Teflon	Tubing .5"	
72S	PVC	Polypropylene	Ceramic	Teflon Face	Teflon	Tubing .5"	4FV
72T	PVC	PVC	Ceramic	Teflon Face	Teflon	Tubing .5"	
74	PVC	PVC	Ceramic	Teflon Face	Teflon	Pipe 1/4" NPT M	
75HV	Polypropylene	316 S.S.	316 S.S.	Teflon Face	Teflon	Tubing .5" Discharge .938" Suction	
75S	Polypropylene	Polypropylene	Ceramic	Teflon Face	Teflon	Tubing .5"	4FV
75T	Polypropylene	Polypropylene	Ceramic	Teflon Face	Teflon	Tubing .5"	
76	Acrylic	Polypropylene	Ceramic	Teflon Face	Hypalon	Tubing .5" Discharge .938" Suction	
77	316 S.S.	316 S.S.	316 S.S.	Teflon Face	Teflon	Pipe 1/4" NPT F	
85HV	Polypropylene	316 S.S.	316 S.S.	Teflon Face	Teflon	Tubing .5" Discharge .938" Suction	
86	Acrylic	Polypropylene	Ceramic	Teflon Face	Hypalon	Tubing .5" Discharge .938" Suction	
91FS	Acrylic	PVC	Teflon	Teflon Face	Hypalon	Tubing .375"	- 4FV
918	Acrylic	PVC	Ceramic	Teflon Face	Teflon	Tubing .375"	4FV
91T	Acrylic	PVC	Ceramic	Teflon Face	Teflon	Tubing .375"	<u> </u>
92S	PVC	Polypropylene	Ceramic	Teflon Face	Teflon	Tubing .375"	4FV
92T	PVC	Polypropylene	Ceramic	Teflon Face	Teflon	Tubing .375"	1
94	PVC	PVC	Ceramic	Teflon Face	Teflon	Pipe 1/4" NPT F	
95S	Polypropylene	Polypropylene	Ceramic	Teflon Face	Teflon	Tubing .375"	4F <u>V</u>
95T	Polypropylene	Polypropylene	Ceramic	Teflon Face	Teflon	Tubing .375"	
97	316 S.S.	316 S.S.	316 S.S.	Teflon Face	Teflon	Pipe 1/4" NPT F	

ACCESSORIES

LMI offers a full line of chemical metering pump accessories to complete your installation including:

LIQUITRON

For use with Series B7 or D7 metering pumps to make stroke frequency vary in response to analog instrument signal. Available in single or dual and twin channel models.

FLOWMETER-PULSERS

For use with Series BE, DE, B7 and D7 metering pumps for chemical treatment proportional to water flow. Programmable for wide ratio range, with flow rates from 1 to 650 US GPM.

For more information on these and LMI's complete line of metering pumps and accessories, please contact your local distributor.

LIQUID METRONICS DIVISION, MILTON ROY

19 Craig Road, Acton, MA 01720-5495 • TEL (508) 263-9800 • TLX 95-1781 • FAX (508) 264-9172

BASIN F STORAGE TANK 102 DECONTAMINATION ROCKY MOUNTAIN ARSENAL, COLORADO

		CONFIRMATION NOTICE NO
Wood	ward-Clyde	Project No. 89C114MM File No. 23016A (1.1)
Date:	5-21-92	·
Partic	ipants:	
	(To):	Poly Cal Plastics, Inc.
	(From):	Joseph Scott/WCC
	(Others):	
Subjec	et and Conclus	sion: Price quote for plastic tanks. Called to obtain a price quote
for pri	mary sulfuric	acid tank and secondary containment tank for acid tank. Acid tank
110 g	allon capacity	closed top cross-linked polyethylene tank model # 089U, 30
diame	ter and 43" h	eight \$258/ea. Secondary containment tank: 225 gallon nomina
capaci	ty open top c	ross-linked polyethylene tank model # 074XL, 41" to 47" diameter
41" he	ight \$233/ea.	1/2" stainless steel couplings for outlets on acid tank model # 562
\$33/e	a. All prices	FOB French Camp, CA (near Stockton). Local representative is
<u>Tanks</u>	Plus, Inc. 457	7-3685.
	·	

OVERFLOW CONTAINMENT TANK

D :	
Primary	IODE
THILIDITY	IGIINS

Open Top Containment Tanks

Stock #	Gallons	Diameter .	Height	Stock #	Gallons	Diameter	Gallons Required	Height
010	55	23"	37½"	068XL	70	30"		
0890	110	30"	43"	074XL	225	41" to 47"	69 137	2' (cut)
02U	150	31" to 37"	45"	074XL	225 225	41" to 47"	187	41"
0 3U	200	37"	4'7¾''	036XL	350	41 10 47	250	41"
060U	235	41" to 49"	45"	058XL	1 No. 25 (1) 10 10	58½" to 72½"	294	4' 42"
04U	375	4'	4'9"	058XL		58½" to 72½"	294 469	
0 5U	500	4'	6′3⁄4″	038XL	670	61"	625	42'' 4'9''
057U		58½" to 72½"	48"	041XL	1300	7′8″	750	3'9"
SP078U	630	4'	7′8¼″	SP081XL	1250	6′3⁄4′′	730 788	9,
060	700	5′1″	5′5″	SP081XL	890	6'34"	875	4′2″ (cut)
SP076U	710	4'	8'3¾"	039XL	1010	5'1"	887	7′5"
023U	1050	5′1"	8′2½″	041XL	1300	7'8''	1312	3′9″
07U	1100	7′5″	4'2"	SP096XL	1400	9′11″	1375	
033U	1350	74" to 90"	64"	SP096XL	1750	9′11″	1687	2'4" (cut)
077U	1400	7'5"	5′2″	SP096XL	1750		1750	2'10" (cut)
SP017U	1500	5′1″	11'6"	SP069XL	2750	9′11″ 8′	1825	3' (cut) 7'10''
080	1600	7′8″	5′	SP096XL	2000	9'11"	2000	3′5″ (cut)
SP084U	1850	6'3/4"	9′6′′	SP069XL	2750	8′	2375 ·	7′10″
09U	2000	7'5''	7'2"	SP071XL	3750	9′11″	2500	6′11″
SP086U	2400	6′	12′8″	043 XL	3000	7'7''	3000	9'2"
010U	2500	7'10"	8′1″	SP071XL	3750	9'11"	3125	6′11″
SP079U	2800	9'11"	6′	SP049XL	3500	11111	3500	4'2" (cut)
SP087U	3050	6′	15′7″	SP059XL	4000	8′	3812	11'4"
012U	3100	7′7′′	10'2"	SP071XL	3750	9′11″	3875	6′11″
SP013U	4000	8′	11'6"	SP028XL	4800	9'11"	5000	8′10′′
SP061U	4200	9′11′′	8'4"	SP055XL	5250	11'11"	5250	6'3" (cut)
SP014U	5000	9′11″	9'10"	SP055XL	6600	11′11″	6250	8'
SP067U	6200	8′	17′6′′	SP056XL	8000	9′11″	7750	14'6"
SP015U	6500	9′11″	11′10″	SP030XL	8500	11'11"	8125	10'4"
SP080U	7100	9'11"	13"	SP030XL	8500	11'11"	8875	10'4"
SP054U	8200	9'11"	15′	SP031XL	10000	11'11"	10250	12′8″
				SP770XL	5750	14′	5980	5′
All tanks	oorn, a	4	-1 · · · - · · · · · · · · · · · · · · ·	SP771XL	8050	14'	8050	7'
Allidiks	carry a	6 year prorated	a warranty.	SP772XL	10360	14'	10580	, 9'
				SP773XL	12660	14′	12765	11'
		omica nia	_	SP774XL	14965	14'	14950	13′
OLY CF	AL PLA	STICS, INC	<i>:</i>					

k E, 8055 S. Ash St., French Camp, CA 95231 (209) 982-4904

⁴⁹⁰⁴ 26

STAINLESS STEEL FITTINGS

2" DIA. 4 BHST FULL HIPPLE (SHOWN W/DIP-

1" DIA. 4 BOLT FULL COUPLING

1" DIA. 4 BOLT HALF NIPPLE

#B521

TYPICAL PVC Flange Fitting, S.S. Studs

Plastic encased heads. PVC FLANGE THREADED STUD -PLASTIC ENCASED HEAD SP515

DIA 4 BOLT HALF COUPLING

#SP552

1" DIA. 4 BOLT FULL NIPPLE #A521

#567

STAINLESS STEEL FITTINGS W/GASKETS

FLEXIBLE CONNECTORS

44107	OILLIO	
Stock No.	Size	Description
518*	3/11	3-Bolt-Full Coupling
561*	1/2"	3-Bolt-Full Coupling
562**	1/2"	4-Bolt-1/2 Nipple
519*	(3/4"	3-Bolt-Full Coupling
A519**	3/4"	4-Bolt-1/2 Nipple
564*	3/4"	4-Bolt-Full Coupling
520**	3/4"	4-Bolt-Full Nipple
A520**	3/4"	3-Bolt-1/2 Nipple
521**	1 12 (4)	4-Bolt-1/2 Nipple
A521**	R'	4-Bolt-Full Nipple
B521*	12	4-Bolt-Full Coupling
522**	11/2"	4-Bolt-1/2 Nipple
523**	11/2"	4-Bolt-Full Nipple
A523*	11/2",	4-Bolt-Full Coupling
524**	2"	4-Bolt-1/2 Nipple - 316 S.S.
525**	2":	4-Bolt-Full Nipple 2/Dip Tube - 316 S.S.
567 *	2":	4-Bolt-1/2 Coupling
568*	2"	4-Bolt-Full Coupling
527**	3"	8-Bolt-1/2 Nipple

Stock No.	Description	
SP975	1" S.S.	
. SP976	11/2" S.S.	
SP977	2" S.S.	فتعتد
SP978	3" S.S.	A STO FLATE MIPPLE
SP979	4" S.S.	Cost Howe
		Seel annos
		SPECIE SPECIE
ف	ARCE STEEL BANGS	Mose area entirely
COSE	Sto Fite BAND FILE	105°
		. 05 ⁵ C
WILVE (ST.)	The Case	*
	200	get .
J-BOIL	SUP FOR!	Flexible Connector
i .	Available in S.S. or PVC	•

SPECIAL FITTINGS

11/2"

11/2"

527**	3″ -	8-Bolt-1/2 Nipple	
A527**	3″2	8-Bolt-Full Nipple w/Dip Tube	Stock No.
SP528**	3" 11-Bolt-1/2 Coupling		SP599
SPA528**	3"	11-Bolt-Full Coupling w/Dip Tube	SP590** SP591**
SP552**	4"	11-Bolt-1/2 Nipple	SP591C**
SPA552**	4"	11-Bolt-Full Nipple w/Dip Tube	
SP573*	4":	11-Bolt-1/2 Coupling s	
SP574*	4"	11-Bolt-Full Coupling	SP516**
SP576**	6"	11-Bolt-1/2 Nipple	SP539**
SP577**	6"	11-Bolt-Full Nipple	SP540**
SP580**	8″ 💥 🐃	½ Nipple	SP541**
SP581**	8":	Full Nipple	37341
SP583**	27	S.S. Vortex Fitting	
SP584**	3″.	S.S. Vortex Fitting	
SP585**	11/2"	S.S. Sparge Tube and Fitting	
SP586**	2"	S.S. Sparge Tube and Fitting	
SP598	24:	S.S. Relief Valve DOT Tank	
SP597	3¼′′x 3¼′′	Stainless Patch for Small Four Bolt Pa	ttern
SP596	5"x5"	Stainless Patch for Large Four Bolt Po	attern
SP595	7"x7"	Stainless Patch for Eight Bolt Pattern	
	100		

Description
PVC Relief Valve DOT Tank
Block Style with S.S. Studs
Block Style with Hasteloy Studs
Block Style with Hasteloy Studs and
longer bolts
PVC Flange fittings, S.S. Studs plastic
encased heads
PVC Flange fittings, S.S. Studs plastic
encased heads
PVC Flange fittings, S.S. Studs, plastic
encased heads
PVC Flange fittings, Hasteloy Studs,
plastic encased heads
PVC Flange fittings, Hasteloy Studs,
plastic encased heads
PVC Flange fittings, Hasteloy Studs,
plastic encased heads

GASKET MATERIAL

SP565 SP566

1/2"x4"x4" Polyethylene Foam Gasket 1½"x4"x4" Polyethylene Foam Gasket

*FEMALE **MALE

All Stainless Steel Fittings can be made from mild steel on special order. If longer bolts are necessary, place C- beside the stock number.

Be certain to check compatibility of product with fittings.

OLY CAL PLASTICS, INC.

BASIN F STORAGE TANK 102 DECONTAMINATION ROCKY MOUNTAIN ARSENAL, COLORADO

		CONFIRMATION NOTICE NO.
Wood	ward-Clyde	Project No. 89C114MM File No. 23016A (1.1)
Date:	5-14-92	·
Partic	ipants:	
	(To):	Great Western Chemical Company
	(From):	Joseph Scott/WCC
	(Others):	·
Subjec	ct and Conclu	sion: Availability and Cost for Sulfuric Acid.
I calle	ed this Denve	r area chemical supplier to inquire what concentrations of sulfurio
acid tl	hey supply in	55-gallon drums and the cost. They stock 50% sulfuric acid in 55-
<u>gallon</u>	drums. The	e cost for purchase of one drum is \$0.405/lb or approximately
<u>\$260/</u>	drum. The	cost for purchase of two drums is \$0.291/lb or approximately
\$186/	drum. A \$40 c	deposit is required on each returnable drum.

BASIN F STORAGE TANK 102 DECONTAMINATION ROCKY MOUNTAIN ARSENAL, COLORADO

		CONFIRMATION NOTICE NO
Woodward-Clyde		Project No. 89C114MM File No. 23016A (1.1)
Date:	5-11-92	<u> </u>
Partic	ipants:	
	(To):	Steve Wood/Calgon Carbon Corporation
	(From):	Joseph Scott/WCC
	(Others):	
Subjec	et and Conclu	sion: Granular Activated Adsorption Units for Vent Gas Treatment.
I calle	d to obtain d	lesign cost information on the various GAC units Steve had sent me
<u>inform</u>	nation on. I	had received telefax information on four different types of units
<u>Calgo</u> 1	n markets.	
<u>1) Hig</u>	h Flow Vent	Sorb Unit. Contains 1,000 lbs GAC and maximum air flow is 1100
cfm at	15" water pr	essure loss. Unit sells for \$8,500 including GAC and is not available
as ren	tal. Return	of GAC to Calgon for thermal regeneration and disposal would be
\$1.50/	lb including	freight.
2) Vaj	oor-Pac Servi	ice Unit. Contains 1,800 lbs GAC and maximum air flow is 800 cfm
at 10"	water pressu	re loss. Would likely require two units to treat 1,100 cfm flow. Unit

' 1
is not sold. Rental would be \$6,500 for two months for each unit. This includes freight
to and from site and disposal of spent GAC.
3) Vapor Pac 10 Unit. Contains 12,000 lbs GAC and maximum air flow is 10,000 cfm
at 10" water pressure drop. Would likely require two units for 13,000 cfm flow. Unit
is not sold. Rental would be \$25,500 for two months for each unit. This includes freight
to and from site and disposal of spent GAC.
4) 12' Dual Bed Adsorber Odor Control System. Contains 12,500 lbs GAC and at
13,000 cfm pressure loss is 6" water. System is not available for rental and would have
to be fabricated for job. Purchase cost would be \$50,000 including GAC. Return of
GAC to Calgon for thermal regeneration and disposal would be \$1.50/lb. including
freight.
Steve recommended the Vapor Pac units for the 1,100 cfm system and the Vapor Pac
10 units for the 13,000 cfm system. The recommended type of GAC would be BPL 4x10
or BPL 6x16. There would be a one time charge of \$4,500 for analysis of GAC for
acceptance of RCRA GAC for regeneration and disposal.

Attention: Soc Scott

CALGON CARBON CORPORATION

2121 S. El Camino Real San Mateo, CA 94403-1801

Date: 5-8-92

Company: Woowney Cupe	Phone: (803) 740-3917
From: Steve Wood	Fax #: (30) 694-3946
Subject Careson Service Unios	No. Of Pages: 14
Comments:	
PLANSE FIND ENCLOSED 7	
THE VAPOR PAR CLAST. THE Songe	c UNIT CON HANDLE
THE AIR FLOW AND HAS A TO	orn peuc for THE
TWO (2) MONTH PROJECT OF 1965	30 EA. MORITOUAL
UNITS WOULD BE EXTRA.	
ON SECOND THOUGHT, I	BELIEVE THE
VADOR PAR ID LING MIGHT BE	A BETTER CHOICE.
BLOW IF YOU HAVE TO KIN TWO	(2) UNITS IN PROPERCE
THE VAPOR PM 10 CONTAINS 12,5	on 165 or Chesou
AND Continuous TO,000 CEM. 7	THE CINCOS ARE
more Removey AVMINING ANC	THE PEES ARE A
MORE REMOVELY AVAILABLE AND LUT LESS, THEY ME AS, SOD	6A. FOR TWO (2)
MONTHS, BOTH THE UNITS INC	WASE SPENT WHERON
HANDLING WHEN THE SUB IS L	omplete, persong
Spent CARBON ACCEPTANCE TES	TING.
THERE IS A ONE TIME Spen	T CARBON ACCOPTIONS
TESTING FEE LOR RELA CARBON O	DE ELSOOR
please Gills me 4 Come.	SHOULD YOU HAVE
ADDITIONIN QUESTIONS, RO	
	fraise who

Calgon Carbon Vapor-Pac Service Units are designed to remove volatile organic compounds from various vapor streams using granular activated carbon adsorption. The units are particularly suited for short term projects, or for low volume applications where VOC concentrations are relatively high. Common applications include control of industrial process vents, air stripper off-gases, or emissions of organic compounds from in-situ treatment of contaminated soils.

A unique feature of the Vapor-Pac unit is that it serves as both a shipping container and an adsorber, which is easily transported and installed. When the carbon is spent, the unit is simply disconnected and returned to Calgon Carbon for carbon reactivation - provided the spent carbon meets Calgon Carbon's acceptance criteria.

Each Vapor-Pac Service Unit contains 1800 lbs. of vapor phase granular activated carbon and is capable of handling flows up to 1000 cfm. Vapor-Pacs may be operated in series or parallel mode. Your Calgon Carbon representative is available to assist you in evaluating the suitability of the Vapor-Pac Service for your particular application.

FEATURES

- Allows for ease of installation.
- Constructed of corrosion resistant materials
- Designed for upflow operation in series or parallel mode
- Eliminates on-site carbon handling
- Minimizes spent carbon disposal problems
- Provides convenient carbon sampling device

SPECIFICATIONS

Vessel Dimensions: 44¼" x 44¼" x 89¾"

Inlet & Discharge

Connections: 6" Ø PS 15-69 Duct Flanges Carbon Volume: 60 cu. ft. (1800 lbs.)

Shipping Weight:

Virgin - 2200 lbs. Spent - 4000 lbs.

Temperature Rating:

150°F max.

Static Pressure rating above carbon level:

20" W.C. max.

Vacuum Pressure rating

above carbon level

2" W.C. max.

All units shipped F.O.B., Pittsburgh, Pennsylvania

MATERIALS OF CONSTRUCTION

Vessel: Polyethylene Frame: Carbon Steel coated with Sherwin Williams Tile Clad II

Inlet Flanges, Elbow.

Septa:

PVC

Discharge Flange:

Polyethylene

Fasteners & Bottom Valve Support Plate:

Sample Fittings &

316 Stainless Steel

Sample Canister:

PVC

CAUTION

Wet activated carbon preferentially removes oxygen from the air. In closed or partially closed containers and vessels, oxygen depletion may reach hazardous levels. If workers are to enter a vessel containing carbon, appropriate sampling and work procedures for potentially low-oxygen spaces should be followed, including all applicable Federal and State requirements.

For information regarding human and environmental exposure, call (412) 787-6700 and request to speak to Regulatory and Trade Affairs.

VAPOR PAC SERVICE FOR VOC CONTROL

Calgon Carbon's Vapor Pac Service meets industrial needs for cost-effective removal of volatile organic compounds (VOCs) at air emission sources.

The Vapor Pac Service features a small, easily transportable adsorber which contains 1,800 pounds of activated carbon. The adsorber can handle air flows up to 1,000 cfm.

Designed to remove both toxic and non-toxic VOCs, the adsorption system is especially useful for short-term projects and for treatment of low volume flows that contain low to moderate VOC concentrations. Common applications include VOC removal from process vents, soil remediation vents, and air stripper off-gases.

To accommodate a wide variety of process conditions, Vapor Pac adsorbers are available in two basic designs: a polyethylene model that offers excellent corrosion-resistance, and a stainless steel model than can withstand higher temperatures, and slight pressure or vacuum conditions.

Calgon Carbon provides the adsorber, carbon, spent carbon handling and carbon reactivation (after the carbon meets the company's acceptance criteria) as part of the Vapor Pac Service. Ductwork and fans are the only equipment requiring a capital expenditure by the user.

When carbon becomes saturated with VOCs, the system is replaced with another adsorber containing fresh carbon.

By utilizing this unique service, users can generally achieve VOC removal and regulatory compliance objectives, minimize operating costs, and eliminate maintenance costs* (as the equipment is owned and maintained by Calgon Carbon). Furthermore, because organic compounds are safely destroyed through the carbon reactivation process, costs and regulations typically associated with waste disposal can be eliminated.

Please contact a Calgon Carbon Technical Sales Representative to learn more about the advantages of the Vapor Pac Service for your specific VOC control needs.

*Damage to Vapor Pac Unit caused by negligence or misapplication is the responsibility of the user.

FEATURES AND BENEFITS OF VAPOR PAC SERVICE

- Adsorbers are specifically designed for case of installation and operation.
- Adsorbers are available in plastic (polyethylene) and metal (stainless steel) construction to accommodate a wide variety of applications.
- System can be operated in series or parallel mode or a combination of both modes to handle a variety of flows and concentrations.
- System exchange eliminates on-site carbon handling.
- Recycling of spent carbon eliminates disposal problems.
- Capital expenditure is climinated since Culgon Carbon Corporation owns and maintains equipment.

VAPOR PAC (PLASTIC CONSTRUCTION) SPECIFICATIONS

All units shipped F.O.B., Pittsburgh, Pennsylvania

MATERIALS OF CONSTRUCTION

VAPOR PAC (STAINLESS STEEL) SPECIFICATIONS

Vessel Dimensions, Diameter: 5'

Height: 7'3"

Inlet & Discharge
Connections: 8" © PS 15-69 Duct Flanges

Carbon Volume: 60 cu. ft. approx. (1800 lbs)

System Shipping Weight: New - 2840 lbs

Spent - 4640 lbs

Static Pressure Rating above
carbon level: 15 psig

Vacuum Pressure Rating above
carbon level: Full

All units shipped F.O.B., Pittsburgh, Pennsylvania

MATERIALS OF CONSTRUCTION

Vessel:316L Stainless Steel
Skid and Support Frame:304 Stainless Steel
Inict Flanges, Elbow, Septum:316L Strinless Steel
Discharge Flange:316L Stainless Steel
Fasteners & Bottom Valve Support Plate:
Sample Pittings & Sample Canister:

CAUTION

Wet activated carbon preferentially removes oxygen from air. In closed or partially closed comminers and vessels, oxygen depletion may reach hazardous levels. If workers are to enter a vessel containing activated carbon, appropriate sampling and work procedures should be followed, including all applicable federal and state requirements.

For information regarding human and environmental exposure, call Calgon Carbon's Regulatory and Trade Affairs personnel at (412) 787-6700.

INSTALLATION INSTRUCTIONS

See Bulletin #27-199 for details on how to install a Vapor-Pac.

SAFETY CONSIDERATIONS

See Safety Bulletin #27-198 for important safety considerations.

OPTIONAL EQUIPMENT

Inlet and outlet flange connectors for hose connections.

For additional information, contact Calgon Carbon Corporation, Box 717, Pittsburgh, PA 15230-0717, Phone (412) 787-6700

VAPOR-PAC 10 SERVICE FOR VOC CONTROL

The increasing emphasis on cleaner air presents industry with new challenges to control and reduce toxic volatile organic compounds (VOCs) at air emission sources.

To help plant managers comply with current and future VOC regulations, Calgon Carbon has available the Vapor-Pae 10 Service which utilizes adsorption on granular activated carbon to temove VOCs from air emissions and other vapors. The service also minimizes capital expenditures and climinates on-site spent carbon transfer and regeneration.

The Vapor-Pac 10 Service uses a transportable adsorber which contains approximately 12,500 pounds of granular activated carbon and can treat air flows up to 10,000 sefm. When the activated carbon has fully utilized its capacity to remove the VOCs, the onstream adsorber is replaced with one containing fresh carbon. The use of the Vapor-Pac 10 Service minimizes capital expenditure, as the only site facilities normally required would be ductwork and a tan. Calgon Carbon provides the entire service for the adsorption process which includes spent carbon removal, transport and reactivation. The use of the service is dependent upon the spent carbon material being acceptable by Calgon Carbon's reactivation facility. The Vapor-Pac 10 adsorbers are owned by Calgon Carbon, who will maintain the units in operable condition.

Vapor-Pac 10 units are ideally suited to remove low concentrations of VOCs from industrial plant emissions and soil remodiation vents, as well as VOCs from air stripper off-gases.

In order to handle a wide range of flows and VOC concentrations efficiently, the Vapor-Pac III unit as an option can contain two separate adsorber beds. Each bed would contain approximately 6,500 pounds of activated carbon. Depending on the flow and VOC concentration, the beds can be used one at a time or both beds can be operated in parallel and used simultaneously. A three-foot deep curbon bed in each section is provided for effective removal of VOCs, even during periods of peak concentrations.

To determine carbon life in the Vapor-Pac 10, Calgon Carbon recommends monitoring the performance via the storple ports which are provided. Frequency of unit exchange will depend on the types and concentrations of VOCs being treated. Exchange should be scheduled before carbon breakthrough occurs. If the beds are used sequentially, the timing of the breakthrough from the second bed can be estimated by comparing it with the breakthrough time for the first bed (assuming that they operate under similar conditions).

When an exchange is required, Calgon Carbon delivers a replacement unit from Physburgh, Pa. Upon delivery of the replacement, the unit containing the spent carbon is

removed from the process and the replacement unit is placed on-line to continue treatment. The unit removed from the process is returned to our reactivation facility, where it is emptied, inspected, refilled, and stored in preparation for the next exchange.

Your Calgon Carbon Technical Sales Representative can help in the evaluation of the suitability of the Vapor-Pac 10 Service to satisfy your air treatment requirements. If required, evaluation studies to determine applicability and economies can be arranged. Calgon Carbon offers other adsorption equipment, including permanent installations, smaller service equipment, and unique systems incorporating on-site regeneration to meet particular needs.

DENEFITS

- * Removes toxic YOCs
- · Illiminates on-site curbon handling
- Minimizes spent carbon disposal concerns
- · No major capital investment required
- Supply of virgin activated carbon
- . No on-site equipment required for loading or offloading

MHY 06:92

SPECIFICATIONS

From : -

LHEBUIY CHROUN

Vessel Dimensions	22'-4" x B'-()" x 8'-4"
11056 IZU'A VAUNDECHONA	7,51,07, 11% 4.
TOTAL CONTRACTORS	96W Lva 46
Carbon Weight (Approxima	(coal) 12,500 lbs (Coal)
Shipping Weight	12,000 lbs (Coconut) Presh 27,500 lbs (max)
Temperature Rating	4.500 -
Vacuum Prossure Rating	
	None.

MATERIALS OF CONSTRUCTION

Vessel	blue - ra - s - s
Internals	Duran Carbon Steel
	rpoxy Carbon Steel
and Associated Fittings	PVC

CAUTION

Wet activated carbon preferentially removes oxygen from the air. In closed or partially closed containers and vessels, oxygen depletion may reach hazardous levels. If workers enter a vessel containing curbon, appropriate sampling and weak procedures for potentially low oxygen spaces should be followed, including all applicable federal and state requirements.

for additional information regarding human and environmental exposure, please call Calgon Carbon's Regulatory & Trade Affairs department at (412) 787-6700.

For additional information, contact Calgon Carbon Corporation, Box 717, Pitisburgh, PA 15230-0717 Phone (412) 787-6700

Temperature Rating: Static Pressure Rating: Vacuum Pressure Rating: Materials of Construction:

Vessel -Internals -Internal Screen -Internal Coating -External Coating -Carbon Acceptance Canister -

Air Flow Rate: Internal X-Sectional Area: 150 deg. F 0.5 psig None

Carbon Steel Carbon Steel Polypropylene Coal Tar Epoxy Coal Tar Epoxy PVC

500 - 10,000 cfm 30 sq. ft.

Installation Instructions

Initial Set-Up:

Off-load vessel on level ground or concrete pad. Calgon Carbon's delivery truck is the only equipment needed for this step. For off-loading the vessel, the maximum overhead clearance needed is 20'; the maximum overall length needed is 80'.

Carbon Bed Inspection:

Open the carbon doors (square doors) on top of the vessel and inspect the carbon bed for settling that occurred during shipment. Some activated carbon may have to be added to "top-off" the bed so that short circuiting of the inlet stream does not occur. Extra carbon can be found in the storage compartment on the rear of the vessel.

Duct Connections:

Install 20" ID flexible inlet and outlet ductwork to the inlet and outlet manholes of the Vapor Pac 10 with banding. All manholes are marked "INLET" or "OUTLET" on the outside of the manhole cover for easy identification.

Operating Instructions

Start-up:

Once the Vapor-Pac 10 is in place with ductwork connected, startup is accomplished simply by starting the fan which supplies the contaminated air. The pressure across the unit should be checked to compare with design expectations.

If carbon acceptance has not yet been approved by Calgon Carbon, it will be necessary to obtain a sample of the spent carbon. The sample can be obtained using the carbon acceptance canister located on either end of the Vapor-Pac 10 unit. Simply open the 3/4" PVC valve upstream of the canister which is filled with approximately one quart granular activated carbon. When the carbon in the canister is spent, send the sample back to our laboratories in Fittsburgh, PA for testing.

October 22, 1990

Rev. 1

VAPOR-PAC 10 GENERAL INFORMATION

General Description

Calgon Carbon's Vapor-Pac 10 is to be used for the removal of Volatile Organic Compounds (VOC's) from miscellaneous vapor emissions using granular activated carbon adsorption. The unit is designed and fabricated to contain 12,000 to 14,000 pounds of vapor phase granular virgin or reactivated carbon for treatment of vapor streams up to 10,000 cfm. It is modular and serves as both adsorber and shipping container. No crane or additional equipment is required to off-load or load the adsorber.

The unit containing virgin or reactivated carbon is provided as a service of Calgon Carbon to remove VOC's from miscellaneous air/gas streams such as those from industrial processes, air-stripper off gases, and soil remediation processes. Thus, there is no need for large capital expenditure for equipment procurement, nor is there any on-going maintenance expenditure since the equipment is owned by Calgon Carbon Corporation.

The frequency of exchange of the units will depend on the type and amount of VOC's removed, and it is recommended that the effluent from the unit be monitored for breakthrough. A unit exchange should be scheduled before breakthrough occurs. When an exchange is required, simply call Calgon Carbon and we will ship the unit stored at our Pittsburgh, PA facility. When the fresh unit is delivered, the same truck will pick up the spent unit and return it to our Pittsburgh, PA reactivation facility — provided the spent carbon meets our acceptance criteria — where the spent carbon will be unloaded and reactivated. The returned unit will then be inspected, repaired if necessary, filled with virgin or reactivated carbon, and retained at our site, ready for the next exchange.

Specifications

Vessel Dimensions:
Bed Width:
Inlet Duct Connections:
Outlet Duct Connections:
Carbon Volume:
Carbon Weight (approximate):

Shipping Veight:

22'-4"L x 8'-0"W x 8'-4"H
3'-0"
20" ID (two each end)
20" ID (four on top)
425 cu. ft.
14,000 # 8x30 React C
12,500 # 6x16 BPL
12,000 # 6x16 GRC-11 & GRC-22
Empty - 13,500 #
Filled w/carbon - 27,500 (max)
Spent & washed - 35,000 # (max)

Operation:

The pressure across the carbon bed should be checked periodically. A sudden increase in pressure drop may indicate the entrapment of some solid materials in the carbon bed. Severe solid build-up may require the carbon to be replaced.

Monitoring:

Air monitoring on the Vapor-Pac 10 can be achieved using any of the four sampling taps located on the sides of the unit. Two sampling ports are located on the inlet plenmum and two are located on the outlet plenum. These ports are also convenient points at which pressure drop measurements can be taken. Close monitoring should be a routine practice so that lead time is available for unit replacement.

TYPE BPL GRANULAR CARBON

Type BPL Activated Carbon is designed for use in vapor phase applications, and is available in several mesh sizes to suit specific design requirements. It is made from selected grades of bituminous coal combined with suitable binders. These binders impart the superior hardness that is necessary for the long life expected in such applications. Produced under rigidly controlled conditions by high temperature steam activation, BPI. Carbon provides high surface area, fine pore structure, high density, high volume activity and ease of reactivation. Because of its unique raw material base, this adsorbent also offers unusual economy in use.

Applications of Type BPL cover the whole vapor adsorption field, typical of which is the familiar solvent recovery system. BPL is used for the adsorption and recovery of alcohols, chlorinated hydrocarbons, esters, ketones, ethers, hydrocarbons, and aromatics.

Type BPL is used almost universally as the catalyst support in the acctylene process for the production of vinyl chloride and vinyl acetate monomers. Here, high conversion rates and exceedingly long life mark its performance. It is also used as a direct catalyst in the production of phosgene and other similar reactions.

In fixed-bed adsorbers, Type BPL is used for the separation of hydrocarbon gas streams, such as the recovery of C₃ and C₄ cuts from natural gas. Similarly, organic sulfur, COS, and higher hydrocarbons are stripped from methane and hydrogen for catalytic conversion processes.

Other applications include purification of carbon dioxide for beverage use and dry ice; removal of chlorine, chlorinated organics and aromatics from anhydrous hydrogen chloride; purification of acetylene, hydrogen, compressed air, etc. Air sterilization for aerobic fermentation can be accomplished with deep beds of BPL. It is widely used in air conditioning systems and for abatement of air pollution where plant air exhausts are odorous or harmful.

Because of their unusual adsorptive powers and high volume activity, vapor phase carbons are widely used for military gas masks and industrial respirators.

PHYSICAL PROPERTIES

Total Surface Area Apparent Density (Bulk Density, dense packing), Typical, g/cc 0.48 lb/ft³ 30.0 Particle Density (Hg Displacement), g/cc.... 0.85 Real Density (He Displacement), g/cc 2.1 Pore Volume (Within Particle), cc/g 0.7 SPECIFICATIONS lodine Number, Minimum............ 1050 Carbon Tetrachloride Adsorption. Minimum, Weight %..... 60 Ash, Maximum, %...... 8 Apparent Density (Bulk Density, dense packing), g/cc, Minimum 0.47 COMMERCIAL INFORMATION

Shipping Points: Pittsburgh, Pennsylvania; Catlettsburg, Kentucky.

Mesh Sizes: 4×10 , 6×16 , and 12×30 U. S. Sieve Series.

Packaging: Packed in 55 gallon Leverpak drums, 200 lb. net, 217 lb. gross weight.

PORE STRUCTURE

The micropore structure of Type BPL carbon is illustrated at the right where the cumulative pore volume is plotted against pore diameter. The pore size distribution data are obtained from the water desorption isotherm.\(^1\) Examination of the curve indicates that a large portion of this micropore volume is in porce of 15 to 20 Angstrom units in diameter. These small porce are accessible to all common gases and vapors, and therefore provide the maximum surface area for adsorption. The structure of the porce provides good retention of the adsorbed molecules while at the same time allowing high working capacities in systems providing for reactivation of the carbon.

In addition to the micropore structure, Type BPL is permeated by a system of macropores (pores larger than 1000 Angstroms in diameter) which serve as avenues for the rapid diffusion of gases to and from the micropore surfaces. This enhances both adsorption and reactivation characteristics.

Hultols and Wiigi J. Am. Chem. Soc. 71, 2060 (1949)

PRESSURE DROP CHARACTERISTICS

Pressure drop, in inches of water per foot of bed depth, measured in air at 70° F. and 1 ATM, can be read above for standard mesh sizes of BPL Carbon. These data were obtained with a dense packing arrangement (30 lbs./ft.²) and should be used for design purposes.

Loose packed beds (26 lbs./ft.3) give a pressure drop approximately one-third of a dense bed. In making adsorption calculations a bulk density (of 30 lbs./ft.3) should be used.

Pore Diameter, Angstrom Units

SCREEN SIZE SPECIFICATIONS, U.S. SIEVE SERIES TYPE BPL STANDARD MESH SIZES

10
% Retained
0.5
30-50
30-50
5-20
0-3
16
% Retained
0-5
30-50
30-50
10-25
0-5
30
% Retained
0-5
10-30
40-65
10-35
0.5

For additional information, contact the Calgon Carbon Corporation, Box 717, Pittsburgh, PA 15230-0717 Phone: (412) 787-6700

CALGON CARBON CORPORATION

2121 S. El Camino Real San Mateo, CA 94403-1801

Attention:	Mr. Joe Scott	Date: May 1, 1992
Company:	Woodward Clyde Consultants	Phone: 303/740-3917
From:	Martha C. Alvarez	Fax #: 303/694-3946
Subject _	48" High Flow Ventsorb	No. Of Pages: 1 Of 3
Comments	:	
	Dear Mr. Scott:	
	Attached please f	ind the brochure for our 48" High Flow
	Ventsorb that Mr. Steve	en C. Wood had promised you. The
	drawing for a 12'"Dlam	ntor Dunl Bed will follow under sep-
	arate cover.	
	Thanks in advance	for your patience and cooperation.
		Regards,
		1 11 11
	11	alle Strace
	м	artha C. Alvarez
	Regi	onal Office Manager

PLEASE CALL IF YOU DO NOT RECEIVE THE TOTAL NUMBER OF PAGES

48" HIGH FLOW VENTSORB

SPECIFICATIONS

Canister: Polypropylane

Grating: FRP Fasteners: 316 SS

Max Temperature: 150° Max Pressure: 15 in. W.G. Max Vacuum: 10" in. W.G. Empty Weight: 140 Lbs.

Filled Weight: 1140 Lbs./BPL

Filled Weight: 1265 Lbs./IVP 4 x 6

Type GAC	Max. Lbs.	Max. Flow SCFM	△P @ Max. Flow In. W.G.
IVP 4 x 6	1125	1200	91/2
BPL 4 x 10	1000	1100	15
BPL 4 x 6	1000	1200	101/2

NOTE:

- 1. Optional flanged inlet/outlet are PS 15-69 std., 143/8 O.D. x 3/8" thick. (12) 7/16" diameter holes, equally spaced, 13" B.C.
- Pressure drop values based on average packed bed conditions. Actual conditions may be different resulting in higher or lower pressure drop.

27-161

CALGON CARBON CORPORATION

2121 S. El Camino Real San Mateo, CA 94403-1801

Attention: Joe Scott	Date: 5-5-92
Company: Woodwares Cupse	Phone: (303) 740 - 3917
From: Steve Wood	Fax # (303) 694-3946
Subject DUNG BETS VAPOR PHASE ADJURGER	No. Of Pages:
Comments:	
be-	Li Cara Cara
IT TOOK ME AU	STILE TO FIND A DROWING,
BUT HERE IT IS, GIVE	ME CAU IF YOU NEE
ADDITIONAL INFORMATIO	ME CALL IF YOU NEE
Ye	CZAROS.
	1
``	Law What
No.	

ID:4155744466

MAY 05'92 15:29 No.019 P.02

EL SELECTION AND SSEL APPURTENANCES D EY CUSTOMERS DE-

& VESSEL & FAN

LEGENO		
ITEM Nº	DESCRIPTION	
0	DOME MANWAY	
(2)	GASKETED SEAT DAMPER	
3	OUTLET NOZZLES	
4	STN. STL. GROUNDING RODS	
(5)	LIFTING LUGS	
<u>@</u>	CARBON REGENERATION OVER-FLOW ASSY.	
7	MANOMETER VI/TAPS & TUBING	
8	HOLD-DOWN BRACKETS	
9	INLET NOZZLE	
(O)	CARBON SAMPLE PROBES	
(//	TRANSITION	
(2)	FLEX CONNECTION	
(3)	DRAIN	
	^	

12,000 165 6A C Priconved BPL 4×10, or BPL 6×16 6" H20 AP a) 13,000 cfm Max vaccom 5-6" H20

GENERAL NOTES:

- I.ALL VESSEL, FAN AND DISCTWORK MATERIAL TO BE FIBERGLASS REINFORCED PLASTIC.
- 2. FABRICATION WILL BE AS PER A.S.T. M. SPECIFICATION D-3299 AND PS 15-69.
- 3. LIFTING LUGS AND HOLD-DOWN BRACKETS WILL BE CADMIUM PLATED STEEL.
- 4. GASKETING MATERIAL AND FLEX. CONNECTION WILL BE NEOPRENE.
- 5. VESSEL PIPING APPLIRTENANCES WILL BE SCHEDULE 80 C.P.V.C.
- 6 BOLTING HARDWARE WILL BE STAINLESS STEEL

		PLANT CLISTOMER GENERAL				
PROJECT		TITLE COLUMN CHATTA				
SCALE NONE	CALGON	ODOR CONTROL SYSTEM	7			
DRAWN BE	CALGON	B',10', \$12' DUAL BED ADSORB				
DATE 1-20-86		DWG, NO.	REY.			
CHK'D. ML	CALCON CARBON CORPORATION	90-30-0267				
APPRV'D.	P.O. BOX 717 PITTSBURGH,PA 15230-0717					

APPENDIX B CIVIL/STRUCTURAL CALCULATIONS

Subject Volume Calc	cs for liners	Project No. <u>896114 MM</u>			
	Observed Day To 1 / State	Task No5			
By G. Greg Lord	Checked By Togal / Staff	File No			
Date 5-8-9Z	Date 7/4/92	Sheet			
Problem: Calculate	Quantilies (in tens)	d materials			
Giveno Tank 10	z 78.5' 0 x 40' Hi	94			
	HDPE liner through o Geonet disinage net				
	1) Assume continuous ata				
Solutions	Total (wast	(85e) 5 Tons			
Liner-ber	$(78.5)^2 = 4840 \text{ sf}$				
Liner - side	\$				
r(2	8.5)(40)= 9865 st				
	14, 705 st				
0.498	#/sp . 14,705 sp = 7	, , , , , , , , , , , , , , , , , , ,			
Drainage ner		3,66 tons			
	5)/10 = 25 sheets				
25 sh	eeis x 12' x 40' = 12,0	20 sf = 1			
12,0	200 st x 0.77 #/sf = 20	20 /4an = 1.32 Tons			

Subje	ct_ <i>Vol</i>	um	e(alc					ation	Project		90114 -	
Ву _	66L	_			Check	ed By	TPS				·	,	
	5-8		9Z _				192					of	
Pro	bler	7.5	Car Jur Alui	ing med	dec dec	the onto	vo amin an	lume ation d ta	of of	water Liners walls.	gene , Ge	rated conets,	
6.	ren:		100	mi.	I H	DPE	E Li	nel	Through	hout		und side	
		The second secon	Alvi	made	one.	ro	Λ ><					gals/	
50	lutio	1	er -				Hom=	. g	4 5;	25.	25	2410 st	
		- 1	net-	ىب ،	alls		1 sic	1 1 1			12	000s	
	Te	2-10				, 1.5 + b	-= ofto				12	260 st 705 s 3 375	7
			1 1		\$ £		1 1	i i	+ 250 Juli ters	and the second second	* = Z	78,50	Dgzk
												-	

APPENDIX C MECHANICAL DESIGN CALCULATIONS

MECHANICAL DESIGN CALCULATIONS FOR LIQUID HEATING AND RECIRCULATION SYSTEM

Design Analysis SUBJECT:

PROJECT NO: 89C 114 MM DESIGN ITEM: Fluid distribution in Tank

TASK NO: 5.3

CHK.'D BY: Joseph Scott FILE NO. DATE: 6/3/72 SHEET: . 1 W. W. Irving 1 OF 5/28/92 DATE:

Design Criteria:

The fluid in the tank need not be energetically agitated to

stir up solids.

Existing suction outlets from tank will govern flow quantity.

- Dilution fluid may be either fresh water or fluid from Pond A.
- Heated fluid returned to tank to be evenly distributed across
- Two foot maximum depth of free fluid in tank.

Design Conditions for Design Basis:

- Do not cut new discharge openings into tank thru wall & liner.
- Cutting new openings thru the manholes is OK. No liner on inside.
- There are 3-6" connections low in tank for withdrawing fluid.

Type of System:

- Install a distribution header across the diameter of the tank. 1.
- Provide orifice holes at uniform intervals across distribution header, with one hole on each side, 15° below the horizontal.
- Select header with neutral bouyancy so top of header floats at surface.
- 4. Header to allow for thermal expansion.
- Corrosion of any common inexpensive steel material is severe.

Equipment Selection:

An HDPE pipe is selected because:

It has neutral bouyancy

It will not corrode

It is relatively inexpensive.

Orifices should be easily drilled.

Concerns about using this material:

The fluid temperature inside the header will be close to material temperature limit.

As you approach material temperature limit, material softens. If there are heavy solids concentrations in fluid, softned header material may erode. We are not sure how much to expect.

Connection to Existing Systems:

- Two of the existing 6" connections connect to the SQI but will not be used during this operation.
- A third 6" connection is not presently connected to anything.
- Connection to these lines will allow this installation without new holes.
- Use two distribution headers each taking half the total flow, and each extending half way across the tank, to return heated brine to the tank.

SUBJECT: Design Analysis

DESIGN #Fluid distribution in Tank PROJECT N89C 114 MM

TASK NO: 5.3

BY: W. W. IrvCHK.'D BY: 7/9
DATE: 5/28/92 DATE: 6/3/92

FILE NO. 1 SHEET: 2 OF

Calculations:

Flow Limits:

There are two 6" connections 8" from the bottom of the tank. Another 6" connection is 4'-0" from the bottom of the tank. We should not count on this upper connection as a suction point. We are therefore limited to the flow through 2-6" connections.

Based on several sources the entrance velocity from the tank into the pipe system should be limited to \approx 4.5 FPS 6" Pipe Area- Sq.Ft.= 0.1963 \mathcal{D}

Factors: Sp. Gr. = 1.2

Fluid Density = Water Density x Sp.Gr. 74.9 #/Cu.Ft. Wgt/ Gal.= Water Wgt/ Gal x Sp. Gr.= 10.0 #/Gal.

Area x Vel.= Vol. $f(\omega = 0.1963)$ x 4.5 = 0.88 CFS = 397 GPM Mass Flow 397 x 10.0 = 3970 #/Min

Size the system for 2-6" heating circuits at 400 GPM each. This is about as much as we can expect to get through each 6" tank connection. We don't want to circulate less because of our fluid temperature limit and desire to heat tank up in about 24 hours. Header velocity therefore will be 4.5 FPS. It is known from experience that if the orifice velocity is 3 times the header velocity, the flow thru the orifices will equalize. Therefore orifice velocity should be about 14 FPS, and the total area should be about 0.1963 ÷ 3 = 0.0654 Sq.Ft.

The following design calculations are for a single distribution header. The second header will be identical.

Header Length 39.25 Ft. Orifice Spacing- Designer's choice 3 Ft Orifices/Space 2 # of Orifices 26 Area/Hole=0.00250 ψ = 0.677 v= 0.625 v=0.0021 Sq.Ft. Flow/Hole 15.3 GPM = 0.034 CFS

Formula for Orifice Flow (RE: Kents where

Q = C x a x (2 x g x H) $^{\circ}$ 0.5 Q= 0.034 CFS 3.3 = H $^{\circ}$ 0.5 C= 0.61

H= 10.6 Ft. a= 0.00213 Sq. Ft.

Hdr.Entrance Press. ≈11 Ft g= 32.2 Ft./Sec/Sec

SUBJECT: Design Analysis

89C 114 MM DESIGN ITEM: Fluid Distribution in Tank PROJECT NO: TASK NO: 5.3

BY: W. W.CHK.'D BY: JP5 FILE NO. 1 3 SHEET:

DATE: 5/28/DATE: 6/3/92 ------

Check to determine flow variation from first to last orifice.

Given:

6" Header diameter

26 - 5/8" Diameter orifices

39.25 Ft. Header length

2 orifices every 3 feet

400 GPM = Flow entering header.

10.6 Ft. initial pressure.

Applicable formulas:

Pipe loss 0.2083*(100/C)^1.85*((q)^1.85)/d^4.8655

Eddy loss $K*((V)^2)/2*g$

Where:

C = 100 assm.'d; d = 5.761" K = 0.1

q = GPM V = FPS

Brine Friction Multiplier 1.36

To Point	GPM	Length	f rate Ft/100'	Friction Loss	Sect. Vel.	h loss @ hole
1	400	3	2.7	0.08	4.9	0.04
2	369	3	2.3	0.07	4.5	0.03
3	339	3	2.0	0.06	4.2	0.03
4	308	3	1.7	0.05	3.8	0.02
5	278	3	1.4	0.04	3.4	0.02
6	247	3	1.1	0.03	3.0	0.01
7	217	3	0.9	0.03	2.7	0.01
8	186	3	0.7	0.02	2.3	0.01
9	155	3	0.5	0.01	1.9	0.01
10	125	3	0.3	0.01	1.5	0.00
11	94	3	0.2	0.01	1.2	0.00
12	64	3	0.1	0.00	0.8	0.00
13	33	3	0.0	0.00	0.4	0.00
					-	
				0.41		0.18

0.81 Hdr. Loss=(Frict. Loss + h Loss)*Brine Mult. =

Orifice Flow Check Where Q=C*a*(2*g*H)^0.5

0.0338 CFS =15.2 GPM 1st Orifice = Last Orifice= 0.0338 CFS =15.2 GPM Subject Design ANALYSIS - Brine PIPE System Project No. 89C 114 MM MATERIAL SELECTION Task No._ 5/3 Checked By Joseph Scott BY WWI File No. Z Date 6/2/72 Date 6/1/92 Sheet____/ Design Criteria 1 Should not corrode during the short term operation 2. Should not erade during the operation. 3. Must not weaken at expected temperature. 4. Conditions for Design Basis 1 Maximum fluid temperature will be 2160°F 2 Amount of solids in the fluid stream is unknown 3 Fluid is extremely corrosive TYPE OF SYSTEM OPEN PIPING SYSTEM TYPE OF EQUIPMENT CONsidered: Carbon Steel - known to corrode Stainless stiel - Is attacked by this fluid and is exponsive. HDPE - Would not corrode, may orode, and expected fluid temperature, may soften pipe FRP - Would not corrode, would not erode, could take the expected temperature, and has been used elsowhere for handling this fluid. Selection; FRP TANK 400 gpm flow I KEEP SUCTION LINE SHORT - Connect to existing tank outled Connections 2 Pump to Heat Exchanger to be skid mounted 3. Maximum temperature leaving heat enchanger to be < 160 F CALCULATIONS Recommended blud velocity is 4 to 7 FPS for a drain line. (Res: Courier Design Monual, Pourt 3, tuble 13) ID of 6" Fibercost II = 6.625'00 - (118+.088) x2 = 6.213" = .21 S8 Ft.

400 gal = - 53.47 min x 1 min = 0.89 Ff3
7.4805 gal = 53.47 min x 6050 = 0.89 Ff3

· 88 FT /sec = 4.23 FPS 6" 13 OF for volocity.

Subject <u>BRINE BYPASS VALUE SECECTION</u> Project No. 89 C 11 4 M M

By WWI Checked By JP 5

Task No. 5

File No. 2

Date 6/0/22 Date 6/24/92 Sheet 1 of 1

TOTAL IDRINI FLOW = 400 GPM

BRINE I=LOW THRU HX = 167 GPM @ 15+51

BRINE BYPASS FLOW 233 GPM.

FROM DIA-FLO DIAPHRAGM Walve Catalog Pg. 67 &71 $C_V = Q_a \sqrt{\frac{SG}{\Delta P}}$ $C_V = 233 \sqrt{\frac{1.2}{15}}$ $C_V = 66$ A. DIA FLO WEIR BOY Pattern - 21/2" Flanged End-Hard Rubber Lined has a CV = 80 @ 502 open and CV = 65 @ 402 open

Use a 21/2" value for Bypass

Subject Brine Pump					No. 896		
By WWI	Checked By	y Joseph	Scott		<u>5.3</u>		
Date 6/1/92		13/92					Z
Design Critoria 1. 800 GPM Tota 2. Highly Corre 3. 140°F Maxim 4. Ok is saal flu 5. Operating lit	sive fluid um fluid pu ishing fluid	mping tom leaks into	perature the brine	Systom			
Design Condition 1. 4.23 FPS br 2. Brine - 1.2 3. Brine Abs. 4. 400 GPM	ine velocity SP.9r; 74 Jisc = 4.5	thru pipi 1.9 #/Ff3 CP@ 70	10 /gal	like wat	er).		
4. 400 GPM 5. Prossure a 6. Heat exchan	t header 4	entrance	10.60 F	t of br	inc		-
Type of System	-"open" s	system ha	ndling high	ly corre	51V2 8 ;	toin	Fluid
CONSIDERED 1. HUSE PUI 2. Rotary Le 3. Prograssive 4. ANSI Fib	be - No s Cauty - Capa Can b Expenses - Cap	good - Lar be made be made co still exper move sel accidy & H	of corrosion of Stamless asive, but ative to de lead ok a	is too ok rosisten steel of will of other type	snall + alloy which w last fi	15, but all corr or cope 20,00	ration
	Ero	ll not c	Concern,	but impe	Her co	en be	provided
	w.	th a how	dened Su	rface to	ro duc	e ero	sion rate
PUMP TYPE S CONTROL - N	ELECTION - lanual open sw Seal flo	ation			omatica	ally S)	pep purp

Project No. 89C 114 mm Subject Design Analysis - Brins Pump Solection Checked By J/9 Task No. __ 5. 3 BY WWF File No._ Date 6/3/92 2 Date 6/2/92 Sheet_ CALCULATIONS Where Reynolds No. Re - 7740 x d x V x Sp.gr d = pipe 10 #1 inches = 6.213 M = abs. VISC. In contiposes V = PIPE Valocity = FPS SP.GR = 1.2 E = rel. roughness = . 009 (assumed) From Front Charts & = 1025 Rew = 7740x 6.213x 4.23x1 = 2.07x105 from Regnolds No. Charts for 1022 Friction Loss Multiplier = Sp.gr. x 50 = 12 1 1025 = 1.36 ITEM Element Ea 49+4 3·2 2. gate value 3. Side outlet Tee 40.0 3. 2 4. gate value 39.0 5. Check Velve 3.2 6. gate valve 3. L 7. gate Value 29 8. Ht. Excha. 9. gate value 3. L LOSSES SYSTEM 7.25 10. Plass at HDC 150 - Straight Pipe PIPING 4.05 102 - Elbows (10) 114 Tank outled 45 Elbows 3 29.00 Heat Exch 10.60 Hader 43.80 11 /10cc frichm factor From Brine mult vendar data 53.6 Safety Fact 1.1 Selection - 4x6x13 Pump @1150 RPM with 1214 impeller @ 70% off @ = 12.3 BHP Suy 20HP motor

Subj	ect DESIGN ANALYSIS		Project No. <u>89C // MM</u>
Ву	WWI	Checked By Joseph Scoff	Task No
Date	6/1/92	Date 6/3/92	File No. 4 Sheet of /
123 45 6 DI 23 456	Heut eachange sur Keep pressure dr Heat exchange are Hoater fluid tem Reduce heater fluid Passages must Passages must Passages must Passages must Passages must Maximum TANK F Maximum Fluid	t of fluid in about 24 Hrs rfuce subsect to severely cor op thru heat exchanger to a to be small as practical, be parature to go to 300" F for aid temperature once target be cleanable ture at start of heatup tund Temp temperature teaving heat exce though not necessarily thru greevily heat	rosive fluid 10 to 15 ps1 range ut fluid passages to be "jenerals." r quich heatup temperature 13 attained 40°F 140°F hanger 160°F
	UPE OF Equipment	We could operate but would the and thus the	this type is not good at a lower temperature on have to increase area,
	CALCULATION. I Contacted a very with a Selection as requested. Su transfer area and pressure drop was contracted.	ral or Double tube se design layout on setellay heat transfer sorvi ndor with the requirement for a singh heat exche bsoquent conversation in dica d slows would be half of ould be the some: d to assure that brine to 160°F. Assumption is that nes 140°F. Operator will	s and he came back anger instead of two tes that the heat that shown, but the compenature does not

303 692 8751

FROM AL T2

P.02 PAGE.002

92-05-12 DATE: ALFA-LAVAL THERMAL ITEM NO: SPIRAL HEAT EXCHANGER TYPE: SPECIFICATION SHEET 205 ft2 PLATE AREA: CUST REF: WOODWARD CLYDE CUSTOMER: 92-7-4845 A-L REF: PLANT LOCATION: QUOTE/CALC NO: SERVICE: Number of units connected in parallel/series 1/1 COLD SIDE HOT SIDE DUTY REQUIREMENTS per unit DOWTHERM BRINE Fluid 300000 200000 16/h Total fluid quantity 300.0 *F 50.0 In Temperature 'F 251.8 85.0 Out 20/ 12 20/ 15 Perm/Calc csi Prassure drop PHYSICAL PROPERTIES 56/ 56 70/ 70 1b/ft3 In/Out Density _0.930/0.930 0.450/0.450 Btu/1b, 'F In/Out Heat Capacity 1.000/1,000 сP 4.500/4.500 In/Out Viscosity 0.080/0.080.0 0.300/0.300 In/Out Btu/ft,n,'F Thermal Cond. PERFORMANCE DATA 6502.3 kBtu/h Heat Exchanged Countercurrent Flow direction 175.2 Btu/ft2,h,F Overall H.T.C. Service 3.00 Fouling Resistance*10000. FT2, H.F/BTU 1.9 * Excess Surface 178.2 ft2 Net Heat Transfer Area CONSTRUCTION DATA Flange Standard 48.00 10 cylindrical Width 23,50 าท Outer Diameter HASTELLOY C276 Plate Material open-roll open-roll Channel Closure 100.0 psig F 100.0 Design Overpressure 500.0 500.0 Design Temperature 6.0 4.0 in Connection Size ADDITIONAL DATA 5.36 4.94 ft3 Fluid Volume 2140/ 2840 16 Weight Empty/Operating 16 Shipping weight ft3 Shipping volume Width / Length/ Height

D. W. DAIGLER COMPANY

2055 S. Oneida, Suite 370 Denver, Colorado 80224 Phone: (303) 757-4981 FAX: (303) 692-8751

TO	WOUDWARD.	- eune		DATE	12 192
ATTN	BILL IR	UINCS	694-3946	PAGE	OF Z
SUBJEC	T BIZIA	UE HEATER	Z - Spira	l alfala	al
	Hadedis ne	urdesign.	(205 ft2)		
•	that will her 24 hrs. Di	- 1504,000 Banis = 150	16 of Brie	from 50 to	1400 ~
•	Hot side is	300°F Do	uthan - flo	my at 3	oco*/hr.
•	Max. wall t.	espectueis	158°F (Kega	thelow 16	o'F)
	Price = H				Si .
	, -	31655 =	. 27,	500. earl	
	Dineisions -	- une skisti	ing prent for y	forme.	
	Please cull a	itt ang gu	estime.		
			•	Thalyo	
		4		Chalie	Dilos
	Thenks for you	a patience.	Conversation	w/c. Pobos	
	(Diu 6-000-0)	. (/)	Same Outro	OIL Flow the some free will be the II HTC coefficient	
		'	Config. Wi but 4" Com Brine Will C	ll be Some uncefrons Connect Hot 514-	
	31			wheat cold side	

Subject DESIGN ANALYSIS - Thermal Fluid Piping Project No. 89C	-114 m m
By WWI Checked By Joseph Scott Task No. 5.3	
. 1 . File NO 3	
Date 6/3/9 Z Sheet	of
Design Criteria	
1. Select heater that will not require a stationery engineer t	o operati
2 Temperature of the fluid solected at 300°F	Selection
3. Fluid Circulation rate to be 300000 #/HR par heat exchange 4. Heater can be purchased but preferably rented if avai	
5. Since heater will be outside "bormed area, we must avoid a	
fluid transfer of brine to oil.	
6. Piping must be able to trunsport 300% and possible roug	h bandling
Design Conditions	
1. Fluid Selection . Thermind 55	
SP.GR = 48.5 =/F43 = 0.78	
SP. Ht. * 0.55 Bruly F	
Thermal Conductivity = 0.06 Btu/Ft-Hr-F VISCOSITY 217 CP	
Fluid temp 300°F	· ·
Type of System	. <u></u>
CONSIdorad	
Hot water - would need stationary anginer as it is high Steam " " " for the store	prossure
Thermal fluid - how prossure system - Skid mount unit	+ available
Also however, the oil field industry usos mubile	hotoi
heaters and there is a good chance we co	puld
rent this	
SELECTION - Thormal fluid - Carpon Steel piping	v
CALCULATIONS	
31R. PIRQ6: 200 PIPING - 300000 \$/HR = 647 G/2 N	
Flbows @ 6"=8 Fee 3162 x Q Srom Comero Gers & 6 1 G	n Pg.92
Tes>66 6 6 6 6 6 6 6 6 6	SP.91 = 2.7
	= 3.46
(ASSM. F. Hings add 50% to kight) 4 801 Ro = 1 x 10 5 for 6 PIP-	
Head LOSS CALCULATION Ro = 3162 x 333.5	
h= :03112x fx L x g2 4.026x 3.46 R = 7.5 (10.78 x 4.00)	
114 2 7 3 7 10 10 17 17	
hg= 103112x . W95x (200x65) 1667	
(6.065)5 TOTAL = 6 PIPE	10'
h = 9.87' 4' PIPE	16.5
hy: 103112x 1021 x (160x 1.5) x (333.5) HT. BACH. (4.026)3 CONTROL =	10
	72.5 x1.2=87 suy 90'
hy: 16.5	

ubject <i>Design Anal</i> y ww.Z	Checked By Joseph Scoff	Project No. <u>\$1C 114 mm</u> Task No. <u>5: 3</u> File No. <u>6</u>
eate 6/1/92	Date 6/3/92	Sheet f of /
2. Circulate = 6	ty of = 6 MBH CC 6PM of thermalfluid upment - mobile rented	equipment acceptable
2 Supply fluid a	+ 300°F	
Type of equipment	- Hot Cil heater supplying	ng Therminol 35
CONTRUL SYST-	on to include control equipment attached letter	uipment as described
	Il intent is to reduce the fi	had temperature as
tank	fluid approaches 146°	
	AD CALCULATIONS HAVE BEEN	
LOAD 6,00 Circulation Pat Fluid Tempora Fluid = The	In H_0 , is $1-5$ - CONDITIONS 0,000 Blub in 660 GPM $Q = 90'$ Head thur $300'$ is remind 55	ARa
LOAD 6,00 Circulation Rat Fluid Tempora Fluid = The SP.GR=	In Ho.'s 1-5 - CONDITIONS 0,000 Blub In 660 GPM $Q = 90'$ Head hur $300'$ f	ARa
LOAD 6,00 Circulation Rat Fluid Tempora Fluid = The SP.GR=	In He,'s 1-5 - CONDITIONS 0,000 Bhuh 10 660 GPM $Q = 90'$ Head thur $300'$ is 10 minol 55 0.78	ARa
LOAD 6,00 Circulation Rat Fluid Tempora Fluid = The SP.GR = SP. Ht. VISCOSIH	1. Ho.'s 1-5 - CONDITIONS 0,000 Bhuh 1. 660 GPM @ = 90' Head huc 300° 1° reminal 55 0.78 0.55 Bhu/H°F : 2.7 CP	ARa
LOAD 6,00 Circulation Pat Fluid Tempora Fluid = The SP.GR = SP. Ht. VISCOSIH	1. Ho.'s 1-5 - CONDITIONS 0,000 Btu h 1. 660 GPM @ = 90' Head two 300° 1° 27 minol 55 0.78 0.55 Bhu/H°F 1.7 CP	
LOAD 6,00 Circulation Rat Fluid Tempora Fluid = The SP.GR = SP. Ht. VISCOSIH	1. Ho.'s 1-5 - CONDITIONS 0,000 Bhuh 1. 660 GPM @ = 90' Head thur 300° 1° 17 minol 5'S 0.78 0.55 Bhu/H° F = 2.7 CP	
LOAD 6,00 Circulation Rat Fluid Tempora Fluid = The SP.GR = SP. Ht. VISCOSIH	1. Ho.'s 1-5 - CONDITIONS 0,000 Btu h 1. 660 GPM @ = 90' Head thuc 300° 1° 1. Thin of 55 0.78 0.55 Btu/H°F 1. 7.7 CP	
LOAD 6,00 Circulation eat Fluid Tempora Fluid = The SP.GR = SP. Ht. VISCOSIH	1. Ho.'s 1-5 - CONDITIONS 0,000 Bhuh 1. 660 GPM @ = 90' Head thur 300's trainol 5'S 0.78 0.55 Bhu/H*F = 2.7 CP	
LOAD 6,00 Circulation Rat Fluid Tempora Fluid = The SP.GR = SP. Ht. VISCOSIH	1. Ho.'s 1-5 - CONDITIONS 0,000 Bhuh 1. 660 GPM @ = 90' Head hur 300' if 1. minol 5'S 0.78 0.55 Bhu/H F 2.7 CP	
LOAD 6,00 Circulation eat Fluid Tempora Fluid = The SP.GR = SP. Ht. VISCOSIH	1. Ho.'s 1-5 - CONDITIONS 0,000 Bhuh 1. 660 GPM @ = 90' Head huc 300' f rminol 5'S 0.78 0.55 Bhu/H*F = 2.7 CP	
LOAD 6,00 Circulation Rat Fluid Tempora Fluid = The SP.GR = SP. Ht. VISCOSIH	1. Ho.'s 1-5 - CONDITIONS 0,000 Bhuh 1. 660 GPM @ = 90' Head thue 300' f trainol 5'S 0.78 0.55 Bhu/H = F 2.7 CP	
LOAD 6,00 Circulation Rat Fluid Tempora Fluid = The SP.GR = SP. Ht. VISCOSIH	Ho,'s 1-5 - CONDITIONS 0,000 Bhuh 12 660 GPM @ = 90' Head huc 300' f 2 rminol 5'S 0.78 0.55 Bhu/ β = F 2.7 CP	

Subject <i>PROPANE</i>	PIPE SIZE	Project No. 89C // M My
By WWI	Checked By J / S	Task No
Date 6/9/92	Date 6/24/52	File No. <u>6</u> Sheet / of /
Htg. Value = ; gas gravity =	Pg. 29 CP@100 = 6.5x10 SH Pq. 24 2312 Btu/Ff3 Pq. 8 1, 52 at STP Pq. 37	
Where	formula DP = 43.5 f x \frac{L}{ds} at an Reynolds NO	-
d= 2.067	" for 2 proce (43 x 1.52 = 1/14 / 1/2 x 3 mut / 44. Value = 7,734,000 ptu - 1/14 x x p 5.5x10-6	330 FH : 55.5 FH = . 925 FH = . 925 FH
where Vz	· 925 F+3/sec : 39.7 FPS 102330 Ft	
FROM PG	39.7x .1722 - 141,700 7.5×10-6 7.15-9; f= .021	
: AP = 4.	3.5x ,021 x 30 x ,114 118 PSI = ,272 PHzo = 3.	14 (1925) 14 Hz0
pete Simner		
860-860c		

Subject Thermal Fluid Bypass Valve S12/19

By WWI Checked By T19

Date 6/17/92

Date 6/17/92

Project No. 89C 1/4 mm

Task No. 6

File No. 5

Sheet 1 of ______

D AP=	
——————————————————————————————————————	
T	\$\int \text{AP= 12 PS1} = 35'
	= 35
1	

1. Valve pressure drop should so you of difference between supply & Return main pressure whiles the you drop exceeds 50% of abs.

Apstream pressure

6"Head loss to heat each. 10'
4" Head loss to heat each 8'
18'= 6.26PSI

Press. @ Bypess = 33PSI

Press. @ Valve JCt 21 PSI

Ap betweenlins 12 PSI

0.7 x 12 = 9.4PSI to 6PSI

Say = 7PSI

GPM =	333	= Qa
SG =	0.8	SP.Gr.
OP =	7 /	PS /
	Qal	
Cv =	333/	-8-7
Cr ≈	1/2	

Subject Tank 102 Hea	of Trans/	es Calculations	Project No. 89 C/14 m m
By J. Sroff		WW9	Task No.
Date 5-5-92			Sheetof3
As result of g	30 % sign h	design revie	w meeting on
Heating and cryslals will as much Basi	mixing now to	re place alt qui d'as possib	2 to dissolve in removal of le through
New design bus be heated in	15 /co	Volume of 1	190.1
From Treat m where Busin	1 1 Ass	sessment Repo	rt loi cus c From ciysluls
Vilone water 1	ogumpo	1 = 200 g	1/yd3
Resulting to tal	regular	1 = 94,00	o gu 1
Run hant	balani	c /19/10/4/7	
Joshin liquid Air log tags 1 No Insula from Constant hogy			, / c /~~
			000 Bh/hr 000 Bh/hr
Results of func Select 5,000,00 bysis, will h At 140°F, 0	C R 5 11	the think	45 c/rs = 2 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7
mainin leng	diglex		

SUBJECT: TANK 102 HEAT BALANCE CALCULATIONS
BY: J. SCOTT CHECKED BY: 229
DATE: 5-5-92
DATE: 6/2/92

PROJECT NO.: 89C114MM
TASK NO.: 5
SHEET: 2 of 3

RESULTS OF HEAT BALANCE FOR TANK 102

INPUT DATA:

VOLUME LIQUID IN TANK, GAL = 150400. INITIAL TEMPERATURE OF LIQUID IN TANK, F = 40.00 NO INSULATION ON TANK WALL AMBIENT AIR TEMPERATURE, F = 40.00 RATE OF VAPOR VENTING FROM TANK, CFM = 1100. RATE OF HEAT ADDITION TO TANK, BTU/HR = 2500000.

CALCULATED RESULTS:

MAXIMUM POSSIBLE TEMPERATURE > 160 F

		AVG. HEA	T LOSS TERMS,	BTU/HR	
TIME	TEMPERATURE	LOWER WALL	UPPER WALL	ROOF	VENT
(HR)	(F)				
•	• •				
0.0	40.0	14.	6.	4.	0.
2.4	45.0	5404.	17820.	12306.	80.
5.0	50.0	18640.	57418.	39983.	258.
7.6	55.0	33767.	99303.	68211.	460.
10.3	60.0	51999.	141128.	97425.	692.
13.1	65.0	69286.	184697.	127389.	958.
16.1	70.0	86911.	228056.	156780.	1261.
19.2	75.0	106225.	271867.	187335.	1609.
22.5	80.0	124592.	316399.	217338.	2007.
25.9	85.0	143500.	360631.	247656.	2463.
29.6	90.0	162948.	405344.	278289.	2985.
33.5	95.0	183645.	450854.	309445.	3584.
37.6	100.0	204241.	495868.	340276.	4270.
42.0	105.0	225377.	541243.	371343.	5056.
46.8	110.0	247054.	586979.	402114.	5958.
52.0	115.0	267313.	633076.	433615.	6993.
57.7	120.0	289934.	678601.	464741.	8180.
64.0	125.0	310868.	724367.	496025.	9542.
71.0	130.0	332072.	771427.	527467.	11106.
78.9	135.0	356044.	816622.	559067.	12902.
88.1	140.0	377923.	863110.	590824.	14965.
99.1	145.0	399380.	910147.	622132.	17335.
112.5	150.0	421766.	956485.	653751.	20058.
130.0	155.0	444421.	1003003.	685489.	23189.
155.2	160.0	467347.	1049702.	717344.	26788.
162.1	161.0	482532.	1077949.	736606.	29202.

SUBJECT: TANK 102 HEAT BALANCE CALCULATIONS
BY: J. SCOTT CHECKED BY: 2027
DATE: 5-5-92
DATE: 6/2/9~

PROJECT NO.: 89C114MM
TASK NO.: 5
SHEET: 3 07 3

BY: J. SCOTT CHECKED BY: 20219

DATE: 5-5-92

DATE: 6/2/9~

RESULTS OF HEAT BALANCE FOR TANK 102

INPUT DATA:

VOLUME LIQUID IN TANK, GAL = 150400. INITIAL TEMPERATURE OF LIQUID IN TANK, F = 40.00 NO INSULATION ON TANK WALL AMBIENT AIR TEMPERATURE, F = 40.00 RATE OF VAPOR VENTING FROM TANK, CFM = 1100.
RATE OF HEAT ADDITION TO TANK, BTU/HR = 5000000.

CALCULATED RESULTS:

MAXIMUM POSSIBLE TEMPERATURE > 160 F

		AVG. HEA	T LOSS TERMS,	BTU/HR	
TIME	TEMPERATURE	LOWER WALL	UPPER WALL	ROOF	VENT
(HR)	(F)				
0.0	40.0	14.	6.	4.	0.
1.2	45.0	5404.	17820.	12306.	80.
2.4	50.0	18640.	57418.	39983.	258.
3.7	55.0	33767.	99303.	68211.	460.
5.0	60.0	51999.	141128.	97425.	692.
6.3	65.0	69286.	184697.	127389.	958.
7.6	70.0	86911.	228056.	156780.	1261.
9.0	75.0	106225.	271867.	187335.	1609.
10.4	80.0	124592.	316399.	217338.	2007.
11.8	85.0	143500.	360631.	247656.	2463.
13.2	90.0	162948.	405344.	278289.	2985.
14.7	95.0	183645.	450854.	309445.	3584.
16.2	100.0	204241.	495868.	340276.	4270.
17.8	105.0	225377.	541243.	371343.	5056.
19.4	110.0	247054.	586979.	402114.	5958.
21.0	115.0	267313.	633076.	433615.	6993.
22.7	120.0	289934.	678601.	464741.	8180.
24.5	125.0	310868.	724367.	496025.	9542.
26.2	130.0	332072.	771427.	527467.	11106.
28.1	135.0	356044.	816622.	559067.	12902.
30.0	140.0	377923.	863110.	590824.	14965.
32.0	145.0	399380.	910147.	622132.	17335.
34.0	150.0	421766.	956485.	653751.	20058.
36.1	155.0	444421.	1003003.	685489.	23189.
38.3	160.0	467347.	1049702.	717344.	26788.
38.8	161.0	482532.	1077949.	736606.	29202.
_					

Subje										<i>5 /-e</i> By					10	u F	70 70	<u>15</u>	T	ask	No	۰		9	<u>.</u> 5	1/4	4/	4,	<u>m</u>
Date							·			/2/									F	ile I hee	No. et		/			of_	3	Z	
	Н	eat	. 7	L~ q	n 5	A	_	_	e f	/ r.	1	4)	1; 0	n i	ح د بر	,	Fe Z	r l	7	a.	n '	£	10	2	2		to.	^	
	•					-				Ţ	9,	/Bn1			, , ,	7-9).4.5 4.6.	<u>~</u> ハナ	•										
910	55																												
				~			~				•	- (<u></u>		-0) }													
																	`9	ın						i					
R	"C"	, () (. fc hea	<i>‡</i>	199	, , , †	1	<i>J</i>	hr	o L	, h	16	hi	9 4	χ.	n 9		S	, 5	مدار	7		Ci .	50	1				-
. /	Ma By	in to	4 10	<i>f</i> .	19.	o E	Но	h c	og Ira Ve	d d	5 p L	9 0 9 5	<i>(C)</i>	14	9 1.0	ا او و او و	n 5	e g	ig Far	he N	re ~ , ,	ا المر	pr	(c)	G.	مر ر بن ب	,e /	•	
	<i>b.c</i>		7	7	100	7/	6, c, j		/ c W	a /= ://	'	/·	n /e	e (), }	1	o /	/	/ /o s	67 A	0	j e	- /	5	Λ.; 4.)	<i>-</i> 7	5>		
	W,	[] [g]:	lo e _j lo	5 c e	`.	c/ cl To	L	.;/ 0 5	7 q 1	thate	10		+ ,6 h	Py	15 15 1	(i	jo.	5 5	Ьч	; 5 ° 9	Τ _{ζ,} ,	u	,,1	i.) B	e e		*****	
	C	nc	c	<u>,</u> /	· / / /	1/,		/14	í ľ	d		Ļ	· . u	<u>,</u> 1	119	<i>f</i>	V /	~e		, / 5	10:	·\	'	/	h e	' 4	/		
	<u> </u>	n c 9 1 c	c lost	7	hoo f	7	_ /	10 S	130	† 	c Y	liv hs	1	m	7/0	5 5	† g u	e :	ve	nt nt			P	C1	(10 F	ŋġ			
		19 /c	1 .				. :				- 3				7	3		:							/	4 -2	<i>,,</i>		
	<u>^</u>	105	<i>† / ^1</i>	J° 1	ê V 18	10	h.	ر در	(e1	10	b a	14) 17	• J		P 42	5.	19	77 9	0.	5	,		^					
1	<u>. i</u>																	-	1			ļ							

Subje	ect Tank	102 Hrgt	Transfer	1 Calcula	hons		C114 M. M
Ву -	J. 5107	1+	Checked	1By 2229		Task No	
Date	4-78	-9Z	Date	4/2/92		Sheet Z	of_32
						, + (1)	
	(V £)-==	specific head	of 11 dens tem	perature	1901d) 1901 1901	Bx/16-0F	
	1 Jun /	hr.	1-60"	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	4		
	Assure rect lire.	nes that and spare	hryt is r	at cap (apaci) reg (g b)	le com	of tank a air in far. ared to h) 4 11 4 2 J
	Liqui	d deasily	<u>~</u> 8.	33× /, Z =	10.0	00 gullon 5	
	Liguid	rapaco	, 01	~ 25 4, C	000 × 10.0	0 10.8 = 2,03	2,000 Bh/ F
/;	Joud 5	ume =	h	3try, 1967	wall	height of	kn E
Á	(40 a	159,716 159,716	- 7/3 1	179011	de, 1/2)	(11/4) (78.	5 1 2
		£	1			Apply .	
	(13,	08')x 1/	2 * //	14 × (7	18.5 J	= 31,652	

	Transfer Calculations	Project No. 89 C114 M M Task No. 5
By J. Scott	Checked By 2/2/	
		File No
Tetal air Valu	mc = 191,400 A73	
Moist ain a	+ 100 loF	nc hout of
p = 0.0663 c = 1.75 Bh	16/ F7 3 /16 - 9/7	
Afproximate hest	cujacity of hond space	= ,
191,400 × 0.060	63 x 1.75 = 22,207	Btv/F
heat capacity.	rhout reparty = 1:	
Siece he hogt	of tank wall and co-	- 7
5,00,000	/	_ 0
	.t wt = 553,000	
Assumer along on	m 10011 15 20 70 of	local and
Mat capiti	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0,2+55 3320
Tank wall and	cover heat repairing &	3,89 c A
ligural heat	ofact, (42 neg./c	· c /
Conduct Hen;	+ Balance Calculat	7095
General Ass	inplians ,,	
Denergy re	quired to heat tanks in tank head space o energy required to	= wall and rover
compared to	o energy required to	neat Yiguid.

Subject Tank 102 H	leal Transfer ralculations	Project No. 89C 114 M M
By J. Scoff	Checked By 2027	Task No5
Date 4- 78- 92	Date 6/2/02	Sheet
	tank herd space, 1 morature as liquid in 100 % humidis	
3) Current Charge Change Use as	50 I operation sched. will tale place do changes in SOI se operation to full or consistent ronditions of	re suggests r, ny summer. hadre rould arly winer. 7.5 mps and
4) Assum	object conditions of c est gerry, tomics of a time design of bout light on tank 15 combine tempings	1. 1. 1. 1. 4 G
5/10 0.7	to anding and cou	
design c	removed fixtoryh opery in for vent traytment oncludal that rate into tank through	of 910
Assume 1 cf head c. 1	15 1100 H/min gf 9 His displaces of e 1 spair of tank	10 of 1 juni de française : e
7) Final of 1s 140 o presented w.11 he muntal	target temperature of (60 °C) baged o in Alternatives Asser cat liquid to 140 in at this tempera	of ligured n. resilts something of and ture
.solve for	terms in heal bala	ince equation
$V_{\rho} C \frac{dT}{d\theta}$		

Subje	ot Tank	102 Hout	Transfer Co	Inly hon	Project N	lo. 896	114 MM	
ву J	Scott	Chec	ked By 2/2/0		Task No. File No			
Date	4-28-9	2 Date	6/2/2-		Sheet	5	of 32	
		1 11901 of						,
	· p =	density o	1.2 = 1	0,0 /5	41/0n. 1	F3 r 5/1	ndintual, bl	le }
	7 =	specific For brine liquid to	nopera tore	e 41 pr	7 times			
. L	quent To	of head	3/01	hout re		Бу		
	111111	540 PHO 1				+ +qx		
<u></u>	9vent =	heat loss	Through ga	:3 Uen :,v	1, Bt	161		
:	5 = r	density a	r legkage O of, fair gi	19 tr ty 540°F 1 40°F	1100 cd 1100 cd = 0,063	m, F. Fm 9 15 dy	an/ft	
	h7=0	nthulpy of tempolyture	moistain T B	at tank tilled	liquid			
	E9043	over frap	oped to	unge 9	16/0/	tc 140	2 5 /	

Subje	ect_7	ank	/0	7 Z	He	a t	77	91	y fe.	_	(a)	100	147	70	_	5	_	Proje	ect I	No	89	<u></u>	11	4 1	ان ب	<u> </u>
Ву	J	500	<i>#</i>				Che	ckec	Ву	2)	WS	1														
Date	4-	25-	9 2	; -			Date)	61	12/	lg r	-						She	et	6			of_	3	2	
				_		1				- 1				į				4						1		
	E 9 4 4 91	09 6/6	170 15,	л ,	d Ma	e XI V I V	e (i	70	1 Po) [15 1.	n y I f 5	e : 2	19	/4 0 / 1	^ ~~	000	P	5 y	100 191	110	r; e /4	e 4.	/	ر د	
	91. Eg	190	40	1	a.	5 50	5 F	/ e é	, f , e i	7 y	# 00.	7 1		6,		q	,,		Js	1						
	Equision Va		0,0	65	4 1 ^ 5 Z 1 .	1 4	35	05 5 1 3	; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;	7 Y	3 m 9 1 6,	5	1/2 1/2 3/1 2	<u>.</u>	7	/ n / n / 0	5	/ / ·		7	n		<i>J</i> = .			
	Ma 14) (0 fa (60	 - -	P	5 75	, , , , , , , , , , , , , , , , , , ,	, / , , ,	- e 8 4 e	// /	o v 7,	0	ve	·/	/	G .	n g	-e /s.	, ,	70 5	O	/=		\$		
	Est,	17u	170 60 51	Les Les	16	14 5 c	101 11	1,0 2,9 2,0	46 64	1000	10.	55 119 1	+1, 40	terre	5.	V15) a ://	/ K	// /0 43	2	/ bc	60	5			
	7	<i>r</i>	7. 1	20		w cl	911	7.	9 f	,)	6,0,	1 5 6	6 F	Í	9	<i>t</i>	G,	<i>y</i> /	~ (.	61	- /-	5 /				
	3. Cas	:		96		- 1a	nk	· · · ·	r v/4	//		0,0		j	7		he.	191	•						~ ~	
		M	V3	L he lug	1	• 1	01 101 101	1	•	3								1	5 / . in (5 /2	رم , ی _{ر ب} 2	C 6				
				lve est			9) <i>F</i>		Ja	'nk						7./.	/ ()					•	7		

Subject:

Ву

Date

Tank 102 Heat Transfer Calculations

Date

J. Scott 4-28-92 Checked By

2/2/02

Project No. 89C114M

Task No. <u>5</u> Sheet 7 of 32

EQUATION FOR ENTHALPY OF MOIST (100 % HUMIDITY) AIR

T = TEMPERATURE, F H = ENTHALPY, BTU/LB DRY AIR (from psychrometric tables)

Т	Н	H CALC	% ERROR
40	16.37	16.759005843	2.376%
50	21.99	21.818710494	-0.779%
60	28.93	28.436337584	-1.706%
70	37.67	37.100690878	-1.511%
80	48.82	48.45672815	-0.744%
90	63.22	63.356318101	0.216%
100	82.1	82.925773028	1.006%
110	107.09	108.655791763	1.462%
120	140.64	142.52136956	1.338%
130	186.45	187.14181942	0.371%
140	250.82	245.99453668	-1.924%

HCALC = EXP(A + B*T + C*T*T)

A = 1.7742856887

B = 0.0259026855

C = 0.0000053392

Subject: Tank 1

Tank 102 Heat Transfer Calculations

Project No.

89C114MM

By Date J. Scott 4-28-92 Checked By 229

Date 6/2/7

Task No.
Sheet 8 of 32

5

EQUATION FOR DENSITY OF MOIST (100% HUMIDITY) AIR

T = TEMPERATURE, F RHO = DENSITY, LB DRY AIR/FT**3

Т	RHO	RHO CALC	% ERROR
40	0.06442	0.06388	-0.838%
50	0.0629	0.06287	-0.042%
60	0.06135	0.08163	·· 0.454%
70	0.05975	0.06015	0.662%
80	0.05805	0.05842	0.645%
90	0.05623	0.05647	0.418%
100	0.05423	0.05427	0.069%
110	0.05201	0.05183	-0.343%
120	0.04952	0.04916	-0.732%
130	0.04669	0.04625	-0.952%
140	0.04346	0.04309	-0.840%
150	0.03974	0.03971	-0.085%
160	0.03545	0.03608	1.776%

RHO CALC = $A + B^*T + C^*T^*T$

A = 0.0655243556

B = 6.53147E-06

C = -1.19101E-06

		ster lalculations	Project No. 87 C 77 9 W W Task No
By J. 510 / +	Checked	By 2/2/9	File No
Date 4-28 - 92	Date	4/2/9-	Sheet9of3 Z
	loon! bir T	insulation	
		72	
Heat transfer at height below	5/ce 1 Wall aucy 2 / gu		~ of 790 / au. //
9 = UA	(Tw -	Ta) 1055 /100 /100/- 10	A3 - Q - 121 - 12 - 12 - 12 - 12 - 12 - 12
A action		transport of south	
	7		4. / 1.19. / 1.19
· ' ' '	9011	1 tank for ligu.	d volume V, gallong
A = 77 x (78	, 5 () (
		1/78,5 = 0,0 (crest included for adjust, on	
U = h,	1 + h	cosu	

Subje	ct_	Tank	k 10	z //	rgt	Trang	for	19/1	1.14	fro	n S		Pr	oject	No	890	: //	41	111	_
Ву ~	T,	5 r	edt		C	hecke	dBy 2	WW)	9				Fi	sk No le No						_ · _
Date	/	- 2.5	- 92			ate	t/2	192					SI	neet_	10)	of_	3	2	_ '. _ '.
		Tune	lan	1. 1	4 /s	1-5	Hand	500	1-											
	h	cad	5,	<i>←</i> ×	1,7	13×1	0-9	× ((79	, ₊ 4	59,	6)4	<u>- (</u>	Tw.	+4	5 7, e	J. *	1		
/	h d	= '	Va 501/	dist	ić n	tr4	ns fe		10	, f/ o , ,	1 C 1 8	17	7.	BA	c/h	,-f)	/ <u>₹</u>	ه / ^د	-	
			1 1	4 4	1 1	/_/	•	1						4				- 1		
1 1		1	/	1 11	1/2	11 -	1 1/2	-/ا د ه	-				1 1			1 1	3			
1			3			1 1	1 1	8 :	1 1	: 1			1 1	3.		1 1	3 :		wind	
h	(c)	10 = = 2	(0.	ovec;	4,000	transt. Fc	15/m/	70 =	113	11. 394 ed	n / _/	or m	the ph	160	v-L Vor	42- 1114	6/- 1 a	- Uq1	7	
1 :	- 1	1 1	3 3	1 1	1 1			1 1			: :	1	: :	;	: :			:		
	47	055	1	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1		100 100 190	i d k u	1 a). g. t	1	109	; /	10	5 5	f2 f2 1	ر بر ن پرس	щ б.			
	0		/		_	- 7,														
		- 61				a		15 6) (<i>4</i> 5	o	r ~ _	יושיי	5 .					
	1		į			<u> </u>					.,									
				•	• • •			3 1	1 1	1	~ t	-	BY	١/١	, , -	/+ ·	·_ 0	/=		
		\dot{h}_{l}	- - -	(005)	1.1 1.2 p	1001	4, (1	ent	Fo	7 +	ant	ر ابر ابر	HO	p)=	1.0	er,	Bto	14	(1-/4 (1-/4	i of
	<u>_</u>	Mos	rulatio	1	7 4	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	/ / / · / · / · / · / · / · / · / · / ·		, , , ;	ر ر د م ه ۰	/5			1/.			/			
	1	re lest	1	10		heg		eno	1	7h	(o)	g h	, '\ ,	A T	5					
	7																			
		Th	esm	n /	(on a	luch	w. L	10	\mathcal{F}_{μ}	401	OE G	=	2.,	7 B.	九- <i>1</i>	1/	hr-)	24 :	- 0/=	•
			1 1				1 1	1 1	- 1		1 1	1								
		11/,	n' (77	$\mathcal{O}^{\mathcal{D}}$, -,			, -						··········	-	

Woodward-Clyde Consultants

Subject Tank 102	Heat Tre	unster Calculations	Project No. 296 119 M M	
By Ji Sroff	Checked B	y 229	Task No. 5	
Date 4-28-92	Date	6/2/92	File No	
Insulation to	ictivity,	of librights insu	1. hon = 0,6 Bt-in/hr-A	70F
hinsulation = The fuse equa Simultaneous torins 910		156 tain the	6r 5:17-1 024004 1	
		11 above heigh		
	100 m.) HOVE	(weil)		
		Tw		
Hegt transtall at height a		from outer laye	1 of func wall	
Except for	fransford as the	cereg A terms		
Total wall ar		x 78,5 x 40 =	9864,6 112	

J	7.500	f			С	hecl	ked l	Зу	2	2) 5	7	,					Fi	ا ما	N۸								
ite	4-28	'-9"	2		D	ate		6,	12/	19.	<u> </u>						S	nee	et		/ 2	<u></u>		of_	<u></u>	32	
	As l	1 e f o 7 e g t	rε	Floc	9/1	,55	f4	m	ug ug	<i>1</i> 4	ļ	je w	9/	5 q	رس.	ے ,		a.	5		<u> </u>	. /	e			,	
	91055 Tro				1 1				1																		
. :	1/U	+ 7	/h.	9 ₁ /	+	1	/ h	110	e r									7			- 1						
	<i>y=</i>	over	9 / <u> </u>		0 6	.];	10	, ",	f_j			3 F	ر	16	v -	-/		4	0	/= /	-	<i>Z</i> .,					
h	U= h= line(ran f	5 H	{]] (() /4 h	27) K //	11.	10 nc.	1100	a . [] 4	3 /			6.1 14.1	- / ,		z_ /,,	10 nc		, , , , , , , , , , , , , , , , , , ,	B7	\ \ !	'41	-J)	130
11/0	9/1.66	ler	rs 15	ton	,	\mathcal{A}	60	a t	1	ันก	5 /~		<i>th</i>	100	, , , ,	4	5	Je	r /	,	W	4	//		; ; ;		
ν.																									· · · · · ·		
	h/1,00	3 1	1 1									1.0			:			- 1					: :	: .			
.,	Air Fura																										
	hair								-		1 1																
	U =	1.3	9	13 7	i /	1.1	•	1-	-	- (<i>j</i> -														:		:
: :	/15 is						1			1		19.	10	ر د کو در ی) de	5		7-4:	و ـ				(* <u>*</u>	7			
<u> </u>	a 50	3.		790			۲,	10		,																	
	Acco).; / /: /	A		ر ، کم	// ^	5	(,15	1/	<i>('</i>	5 /	, 4; m		, r	3	1	· ·	11	٠,	-		ý.·	ų r				
							X							7	- q							**********					
				· T	-				?	2	<u>\</u>	<u> </u>						Manage de company (1111-1111)									
				t			!				\bigcirc	To	ں 4/	m,	1,	m,	,						•				

Woodward-Clyde Consultants

Subject Tank 102 Heg	t Transl	les Calculations	Project No. 890 114 M M							
By J. Srolt	Checked B	y 229	Task No							
Date 4-28-92	Date	6/2/92	File No							
9 = UA (Tu	- 7a J									
91055 = 14/4 of	heat 1 3 tr/h	loss from tank 1	over to ambient							
Tw = temperally	of air	orter layer of temperature	Btr/hv-/J-9= funk loves, 01= /- /- /- /- /- /- /- /- /- /- /- /- /- /							
fempera	ture	cover for heat	Nans fel f							
Transfer arra	A :									
Cover is ma sheet, tack trangle of	1168	of 105 plyto le 13 an equal 114" 5, de.	of glinginum							
Arra per plate	//2	64 b = 11/8/1 h = b 5106	14" = 11,688 (0° = 10,122							
1/26h = 59, $A = 59, 15$	1 1 1	= 62/1/242								
U= hcon 1	7 19 0/									
			tank rover							
1		Vor (430 1.								
As before 9,	m (1st be same	as ryte of							
hout Mour th	10 ugh	Mark Cover								
71055 Transfer	arra	A same								
U= hair										
U = over all hair = transfer to Insico	transfer (c.c.)	coefficient, B	1 /hr-//2-0/2							

ву 🎵	T. 510	$f \neq$			Che	eckec	Ву	2	2)	2												
Date	4-2	8 - 9	2		Dat	e	61	12/	92	-					She	et	19	7		of	'Z	
	Air	Ta.	/m	7	19 n	s / +	1.76	10	1/	7,	c10	r, \$	<i>;</i>	Fr	7,00	7 ,	A S	5/7	r /2 /	4 1=		
	ha,	- ۲	1	. 6	1	l t	1v /	61	-	H	۲_	0/										
	The Simu Firm	1/16 75	91	055	7 -	to nJ	7	b Fi eri	a		71	30	V	' / /:	7	w	7					
1	OVer a	,										. .										
V	pc o who																					:
1	sn K	Ce 4 1	4.	900	1	<i>o</i> ,	1	į,	- /.	``````````````````````````````````````	·	//	90.	/	/	س در	r /	C	• •••	الرئ		
10	I/ 5 ₁	,		(Ž V a	: C	95-	•5 F	/ _/	2 _/	<i>3</i>)	./,	r / c	الا د	4		- <i>ب</i> -	1				
	16/66	: [4	fc.	/	9 14		7	10	11	16	> ^		<u> </u>		19.	w 1	d		1	£ 27		
		<i>y c</i>			(1.)	8/	1	a /	4	4/	7 9	<i>†</i> 2	16	<i>f</i> / .	10	ŕ	J #			96/		
	A Fo 16.	, v	149	/[r i g / <u>} :</u>	v e,) (L.	Ï	; C	ai q	,	7/-	ر بر م در م	.4	737	7	10	c s/	P	J- 225	4
	1 1 1	§ :	1 1	•	1	1	: :	§ .	1		1	1 1		1		1 :		/ .) /	9			
	Ing.	110	/s; / /	119	616	1	/	(1)	J pe	14	Λ,) م -د	<i>J</i>	0								<u> </u>
		lumi		o/	1	190	.1	,	1	7	90	K.	, _	91								
		10			1.			-	1 1		į.			1	C	Fπ	7					

Subject Tank 102 Host Transfer Calculations Project No. 896114mm

Subject / Gn R 10 L Hent 11915 1-21 (4/10/47) Project No. 772 119 10 19										
By J. Scott	Checked By ZJ 2J 7	Task No								
•	Shedhood by Way	File No.								
Date 7-28-92	Date 6/2/92	Sheet / 5 of 32								
1516 ness 07	1 Fiberglass insulation 11 below liquid level,	provided.								
	ratingst Bhillia									
The computer profiled 102 to 140	caram was used to to hay to the light The estimates were	e conducted								
25 4 000 gul	Vone liquid in pants									
1100 C/re a	11 104 En ge 10 7 747 100	and the state of t								
69/cc/n/7003	were conducted for 1 Uglies of 5,000,000 Colon letrons	295 fan T								
	19 / 5 0 5 5 000, 63 0 10 16 16 16 16 16 16 16 16 16 16 16 16 16									
1 he (15.1/5)	are allasked and are and tubular form,									
Frat Input 5,000,000 Blogs	None	52.1 hours								
10,000 00 Billion 10,000,000 000 01.162		22.7 hours 48.2 hours 22.0 hours								
Basad on three tank to aller the	results the design by enting system is 100 guid to be heated in of insulytion would, c to p time. The de he tant temporatur aviil be a hout inpu	sis for the . now Doo Br. /hr A ZY hours								
The installation	of insulation would, c.t.up time. The de he tast temporatur	sign basis for								
1,500,006	Bright a hoat info	t of apportonskly								

HEAT BALANCE CALCULATIONS FOR TANK 102 1 Inch of Insulation on Tank Outer Wall Below Liquid Level

ESULTS OF HEAT BALANCE FOR TANK 102

NPUT DATA:

VOLUME LIQUID IN TANK, GAL = 254000. INITIAL TEMPERATURE OF LIQUID IN TANK, F = 40.00 NO INSULATION ON TANK WALL AMBIENT AIR TEMPERATURE, F = 40.00
RATE OF VAPOR VENTING FROM TANK, CFM = 1100.
RATE OF HEAT ADDITION TO TANK, BTU/HR = 5000000.

ALCULATED RESULTS:

		AVG. HEA	T LOSS TERMS,	BTU/HR	
TIME	TEMPERATURE		UPPER WALL	ROOF	VENT
(HR)	(F)				
0.0	40.0	23.	6.	4.	0.
2.0	45.0	9127.	16398.	12306.	80.
4.1	50.0	31480.	52835.	39983.	258.
6.3	55.0	57026.	91377.	68211.	460.
8.4	. 60.0	87818.	129863.	97425.	692.
10.6	65.0	117013.	169955.	127389.	958.
12.9	70.0	146779.	209853.	156780.	1261.
15.2	75.0	179396.	250166.	187335.	1609.
17.6	80.0	210415.	291144.	217338.	2007.
20.0	85.0	242347.	331845.	247656.	2463.
22.5	90.0	275192.	372989.	278289.	2985.
25.1	95.0	310146.	414867.	309445.	3584.
27.7	100.0	344929.	456288.	340276.	4270.
30.4	105.0	380624.	498041.	371343.	5056.
33.2	110.0	417232.	540126.	402114.	5958.
36.1	115.0	451446.	582544.	433615.	6993.
39.1	120.0	489650.	624435.	464741.	8180.
42.2	125.0	525003.	666549.	496025.	9542.
45.4	130.0	560813.	709852.	527467.	11106.
48.7	135.0	601298.	751439.	559067.	12902.
52.1	140.0	638247.	794217.	590824.	14965.
55.7	145.0	674485.	837500.	622132.	17335.
59.4	150.0	712290.	880139.	653751.	20058.
63.3	155.0	750552.	922944.	685489.	23189.
67.3	160.0	789269.	965915.	717344.	26788.
68.2	161.0	814914.	991907.	736606.	29202.

UBJECT: TANK 102 HEAT BALANCE CALCULATIONS PROJECT NO.: 89C114MM Y: J. SCOTT CHECKED BY: WW = 0 TASK NO.: 5 SHEET: 1/9 = 0 + 3 = 0

ESULTS OF HEAT BALANCE FOR TANK 102

NPUT DATA:

VOLUME LIQUID IN TANK, GAL = 254000. INITIAL TEMPERATURE OF LIQUID IN TANK, F = 40.00 NO INSULATION ON TANK WALL AMBIENT AIR TEMPERATURE, F = 40.00RATE OF VAPOR VENTING FROM TANK, CFM = 1100.
RATE OF HEAT ADDITION TO TANK, BTU/HR = 10000000.

ALCULATED RESULTS:

		AVG. HEA	T LOSS TERMS,	BTU/HR	
TIME	TEMPERATURE	LOWER WALL	UPPER WALL	ROOF	VENT
(HR)	(F)				
(1111)	(-)				
0.0	40.0	23.	6.	4.	0.
1.0	45.0	9127.	16398.	12306.	80.
2.0	50.0	31480.	52835.	39983.	258.
3.1	55.0	57026.	91377.	68211.	460.
4.1	60.0	87818.	129863.	97425.	692.
5.2	65.0	117013.	169955.	127389.	958.
6.3	70.0	146779.	209853.	156780.	1261.
7.4	75.0	179396.	250166.	187335.	1609.
8.4	80.0	210415.	291144.	217338.	2007.
9.6	85.0	242347.	331845.	247656.	2463.
10.7	90.0	275192.	372989.	278289.	2985.
11.8	95.0	310146.	414867.	309445.	3584.
13.0	100.0	344929.	456288.	340276.	4270.
14.1	105.0	380624.	498041.	371343.	. 5056.
15.3	110.0	417232.	540126.	402114.	5958.
16.5	115.0	451446.	582544.	433615.	6993.
17.7	120.0	489650.	624435.	464741.	8180.
18.9	125.0	525003.	666549.	496025.	9542.
20.2	130.0	560813.	709852.	527467.	11106.
21.4	135.0	601298.	751439.	559067.	12902.
22.7	140.0	638247.	794217.	590824.	14965.
24.0	145.0	674485.	837500.	622132.	17335.
25.3	150.0	712290.	880139.	653751.	20058.
26.6	155.0	750552.	922944.	685489.	23189.
28.0	160.0	789269.	965915.	717344.	26788.
28.3	161.0	814914.	991907.	736606.	29202.

UBJECT: TANK 102 HEAT BALANCE CALCULATIONS
Y: J. SCOTT CHECKED BY: VY TASK NO.: 5
ATE: 4-28-92 DATE: 6/1/9 SHEET: 20 of 32

ESULTS OF HEAT BALANCE FOR TANK 102

NPUT DATA:

VOLUME LIQUID IN TANK, GAL = 254000. INITIAL TEMPERATURE OF LIQUID IN TANK, F = 40.00 THICKNESS OF INSULATION ON OUTER WALL BELOW LIQUID LEVEL, INCHES = 1.00 AMBIENT AIR TEMPERATURE, F = 40.00RATE OF VAPOR VENTING FROM TANK, CFM = 1100. RATE OF HEAT ADDITION TO TANK, BTU/HR = 5000000.

ALCULATED RESULTS:

		AVG. HEA	T LOSS TERMS,		
TIME	TEMPERATURE	LOWER WALL	UPPER WALL	ROOF	VENT
(HR)	(F)				
		_	_		•
0.0	40.0	1.	6.	4.	0.
2.0	45.0	1944.	16398.	12306.	80.
4.1	50.0	5921.	52835.	39983.	258.
6.2	55.0	10066.	91377.	68211.	460.
8.4	60.0	14266.	129863.	97425.	692.
10.5	65.0	18520.	169955.	127389.	958.
12.7	70.0	22718.	209853.	156780.	1261.
15.0	75.0	27041.	250166.	187335.	1609.
17.3	80.0	31276.	291144.	217338.	2007.
19.6	85.0	35614.	331845.	247656.	2463.
21.9	90.0	39898.	372989.	278289.	2985.
24.3	95.0	44228.	414867.	309445.	3584.
26.8	100.0	48612.	456288.	340276.	4270.
29.3	105.0	52963.	498041.	371343.	5056.
31.8	110.0	57266.	540126.	402114.	5958.
34.4	115.0	61652.	582544.	433615.	6993.
37.1	120.0	66058.	624435.	464741.	8180.
39.8	125.0	70401.	666549.	496025.	9542.
42.5	130.0	74755.	709852.	527467.	11106.
45.4	135.0	79210.	751439.	559067.	12902.
48.2	140.0	83588.	794217.	590824.	14965.
51.2	145.0	87951.	837500.	622132.	17335.
54.2	150.0	92348.	880139.	653751.	20058.
57.3	155.0	96754.	922944.	685489.	23189.
60.5	160.0	101171.	965915.	717344.	26788.
61.2	161.0	103814.	991907.	736606.	29202.
01.2	101.0	700074.		• =	

JBJECT: TANK 102 HEAT BALANCE CALCULATIONS
Y: J. SCOTT CHECKED BY: 4/2/
ATE: 4-28-92 DATE: 6/2/9 SHEET: 2/ of 3 Z

ESULTS OF HEAT BALANCE FOR TANK 102

NPUT DATA:

VOLUME LIQUID IN TANK, GAL = 254000. INITIAL TEMPERATURE OF LIQUID IN TANK, F = 40.00 THICKNESS OF INSULATION ON OUTER WALL BELOW LIQUID LEVEL, INCHES = 1.00 AMBIENT AIR TEMPERATURE, F = 40.00 RATE OF VAPOR VENTING FROM TANK, CFM = 1100. RATE OF HEAT ADDITION TO TANK, BTU/HR = 10000000.

ALCULATED RESULTS:

	•	AVG. HEA	T LOSS TERMS,	BTU/HR	
TIME (HR)	TEMPERATURE (F)	LOWER WALL	UPPER WALL	ROOF	VENT
0.0	40.0	1.	6.	4.	0.
0.0	40.0	1944.	16398.	12306.	80.
1.0	45.0		52835.	39983.	258.
2.0	50.0	5921.		68211.	460.
3.1	55.0	10066.	91377.		692.
4.1	60.0	14266.	129863.	97425.	
5.2	65.0	18520.	169955.	127389.	958.
6.2	70.0	22718.	209853.	156780.	1261.
7.3	75.0	27041.	250166.	187335.	1609.
8.4	80.0	31276.	291144.	217338.	2007.
9.4	85.0	35614.	331845.	247656.	2463.
10.5	90.0	39898.	372989.	278289.	2985.
11.6	95.0	44228.	414867.	309445.	3584.
12.8	100.0	48612.	456288.	340276.	4270.
13.9	105.0	52963.	498041.	371343.	5056.
15.0	110.0	57266.	540126.	402114.	5958.
16.1	115.0	61652.	582544.	433615.	6993.
17.3	120.0	66058.	624435.	464741.	8180.
18.5	125.0	70401.	666549.	496025.	9542.
19.6	130.0	74755.	709852.	527467.	11106.
20.8	135.0	79210.	751439.	559067.	12902.
22.0	140.0	83588.	794217.	590824.	14965.
23.2	145.0	87951.	837500.	622132.	17335.
24.4	150.0	92348.	880139.	653751.	20058.
25.6	155.0	96754.	922944.	685489.	23189.
26.9	160.0	101171.	965915.	717344.	26788.
27.1	161.0	103814.	991907.	736606.	29202.
27.1	101.0	200021.			

```
Project No. 89C114MM
Subject Tank 102 Heat Transfer Calculations
                                           Task No. 5
                Checked by WY
By J. Scott
                                           Sheet 22 of 32
Date_4-28-92
                Date \omega/2/9
C
\mathbf{C}
    HEAT BALANCE CALCULATIONS FOR TANK 102
\mathbf{C}
    CFM = RATE OF REMOVAL OF GAS FROM TANK THROUGH VENT, CFM
C
C
    HCAP = HEAT CAPACITY OF LIQUID IN TANK, BTU/LB/F
    OCONV = TOTAL CONVECTIVE LOSS THRU WALL AND ROOF, BTU/HR
\mathbf{C}
\mathbf{C}
    OIN = HEAT ADDED TO TANK, BTU/HR
C
    ORAD = TOTAL RADIATION LOSS THRU WALL AND ROOF, BTU/HR
    QVAP = TOTAL HEAT REMOVED FROM VAPOR VENTING, BTU/HR
C
    RHOL = DENSITY OF LIQUID IN TANK, LB/GAL
C
\mathbf{C}
    T = TEMPERATURE OF LIQUID IN TANK, F
\mathbf{C}
    TO = INITIAL TEMPERATURE OF LIQUID IN TANK, F
    TAIR = TEMPERATURE OF AMBIENT AIR, F
C
    TIME = ELAPSED TIME SINCE START OF HEATING, HR
\mathbf{C}
    TMAX = MAXIMUM POSSIBLE TEMPERATURE OF LIQUID IN TANK, F
\mathbf{C}
    VOL = VOLUME OF LIQUID IN TANK, GAL
\mathbf{C}
     WINS = THICKNESS OF INSULATION ON TANK OUTER WALL BELOW
C
LIQUID LEVEL, INCHES
\mathbf{C}
\mathbf{C}
   REAL*4 HCAP, QLOW, QHI, QROOF, QVAP, QIN, WINS
   REAL*4 RHOLT, TO, TAIR, TIME, TMAX, VOL, CFM
   REAL*4 TT(3),QQ(3)
   DATA HCAP/0.8/
   DATA RHOL/10.0/
C
\mathbf{C}
    READ IN DATA FOR RUN
C
    WRITE(*,100)
100 FORMAT(1X,'HEAT BALANCE CALCULATIONS FOR TANK 102')
   WRITE(*,110)
110 FORMAT(1X,'INPUT VOLUME OF LIQUID IN TANK, GAL')
   WRITE(*,120)
120 FORMAT(1X,'>')
   READ(*,*) VOL
   WRITE(*,130)
130 FORMAT(1X,'INPUT INITIAL TEMPERATURE OF LIQUID IN TANK, F')
    WRITE(*,120)
   READ(*,*) TO
    WRITE(*,140)
      FORMAT(1X.'INPUT THICKNESS OF INSULATION ON TANK WALL
140
BELOW',/,
   11X,'LIQUID LEVEL, INCHES')
```

```
Subject Tank 102 Heat Transfer Calculations
                                            Project No. 89C114MM
                Checked by WY
                                            Task No. 5
By J. Scott
                                            Sheet \underline{23} of \underline{32}
Date 4-28-92
                Date G/2/9V
   WRITE(*,120)
   READ(*,*) WINS
   WRITE(*,150)
150 FORMAT(1X,'INPUT AMBIENT AIR TEMPERATURE, F')
   WRITE(*,120)
   READ(*,*) TAIR
   WRITE(*,160)
160 FORMAT(1X,'INPUT RATE OF GAS VENTING FROM TANK, CFM')
   WRITE(*,120)
   READ(*,*) CFM
   WRITE(*,170)
170 FORMAT(1X,'INPUT RATE OF HEAT INPUT TO TANK, BTU/HR')
   WRITE(*,120)
   READ(*,*) QIN
\mathbf{C}
C
    COMPUTE MAXIMIM POSSIBLE TEMPERATURE IN TANK
\mathbf{C}
   TT(1) = TAIR + .01
   TT(2) = 160.
   QQ(1) = 0.0
   QQ(2) = 0.0
   QQ(3) = 0.0
\mathbf{C}
    USE BISECTION METHOD TO SOLVE EQUATIONS FOR HEAT TRANSFER
C
SO THAT
    RATE OF HEAT INPUT IS EQUAL TO RATE OF HEAT LOSS THROUGH
C
TANK WALL,
     TANK COVER, AND GAS VENTED AT TANK LIQUID TEMPERATURE
EOUAL TO
    MAXIMUM POSSIBLE TEMPERATURE
\mathbf{C}
\mathbf{C}
   CALL WALLOW(QLOW, VOL, WINS, TT(1), TAIR)
   CALL WALHI(OHI, VOL, TT(1), TAIR)
   CALL ROOF(QROOF,TT(1),TAIR)
   CALL VAPOR(QVAP,TT(1),TAIR,CFM)
   QQ(1) = QIN-(QLOW+QHI+QROOF+QVAP)
   IF(QQ(1).LE.0.0) GO TO 230
   CALL WALLOW(QLOW, VOL, WINS, TT(2), TAIR)
   CALL WALHI(QHI, VOL, TT(2), TAIR)
   CALL ROOF(QROOF,TT(2),TAIR)
   CALL VAPOR(QVAP,TT(2),TAIR,CFM)
   OO(2) = OIN-(QLOW+QHI+QROOF+QVAP)
   IF(OO(2),GT.0.0) GO TO 250
```

```
Subject Tank 102 Heat Transfer Calculations
                                            Project No. 89C114MM
                Checked by 2/\nu \le 1
                                            Task No. 5
By J. Scott
                                            Sheet \underline{24} of \underline{32}
                Date 6/1/92
Date 4-28-92
200 TT(3) = (TT(1) + TT(2))/2.
   CALL WALLOW(QLOW, VOL, WINS, TT(3), TAIR)
   CALL WALHI(OHI, VOL, TT(3), TAIR)
   CALL ROOF(QROOF,TT(3),TAIR)
   CALL VAPOR(QVAP,TT(3),TAIR,CFM)
   QQ(3) = QIN-(QLOW+QHI+QROOF+QVAP)
   IF(ABS(QQ(3)).LT.100) GO TO 220
   IF(QQ(3).LT.0.0) GO TO 210
   TT(1)=TT(3)
   QQ(1) = QQ(3)
   GO TO 200
210 TT(2) = TT(3)
   QQ(2) = QQ(3)
   GO TO 200
220 TMAX=TT(3)
   GO TO 270
230 WRITE(*,240)
240 FORMAT(1X,'MAXIMUM TEMPERATURE POSSIBLE IS LESS THAN'.
   1/,1X,'AMBIENT AIR TEMPERATURE. RUN STOPPED')
   GO TO 600
250 TMAX=161.0
   WRITE(*,260)
260 FORMAT(1X,'MAXIMUM TEMPERATURE POSSIBLE IS GREATER THAN',
   1/,1X,'160 F')
270 CONTINUE
C
    COMPUTE RATE OF TEMPERATURE INCREASE IN TANK 102
C
\mathbf{C}
C
    PRINT HEADINGS FOR OUTPUT
   OPEN(UNIT=6.FILE='LPT1')
    WRITE(6,300)
300 FORMAT(1X,'SUBJECT: TANK 102 HEAT BALANCE CALCULATIONS',7X,
   1'PROJECT NO.: 89C114MM')
   WRITE(6.310)
310 FORMAT(1X,'BY: J. SCOTT',8X,'CHECKED BY:',19X,'TASK NO.: 5')
   WRITE(6.320)
320 FORMAT(1X,'DATE: 4-28-92',7X,'DATE:',25X,'SHEET:',/)
    WRITE(6,325)
325 FORMAT(1X,72('-'),/)
    WRITE(6,330)
330 FORMAT(1X,'RESULTS OF HEAT BALANCE FOR TANK 102',/)
    WRITE(6,340)
```

Subject Tank 102 Heat Transfer Calculations Project No. 89C114MM Task No. 5 Checked by 2/2/9 By J. Scott Sheet 25 of 32 Date 4-28-92 Date____ 340 FORMAT(1X,'INPUT DATA:',/) WRITE(6,350) VOL 350 FORMAT(1X,5X,'VOLUME LIQUID IN TANK, GAL = ',F8.0) WRITE(6,360) TO 360 FORMAT(1X,5X,'INITIAL TEMPERATURE OF LIQUID IN TANK, F = ',F8.2) IF(WINS.LE.0.0) WRITE(6,370) 370 FORMAT(1X.5X.'NO INSULATION ON TANK WALL') IF(WINS.GT.0.0) WRITE(6,380) WINS 380 FORMAT(1X,5X,"THICKNESS OF INSULATION ON OUTER WALL BELOW LIQUID 1LEVEL, INCHES = ',F5.2) WRITE(6,390) TAIR 390 FORMAT(1X,5X,'AMBIENT AIR TEMPERATURE, F = ',F8.2) WRITE(6,400) CFM 400 FORMAT(1X,5X,'RATE OF VAPOR VENTING FROM TANK, CFM = ',F8.0) WRITE(6.410) QIN 410 FORMAT(1X,5X,'RATE OF HEAT ADDITION TO TANK, BTU/HR = ',F10.0) WRITE(6,420) 420 FORMAT(1X,//,1X,'CALCULATED RESULTS:',/) IF(TMAX.LE.160.0) WRITE(6,430) TMAX 430 FORMAT(1X,5X,'MAXIMUM POSSIBLE TANK TEMPERATURE, F = ',F8.2,/) IF(TMAX.GT.160.0) WRITE(6,440) 440 FORMAT(1X,5X,'MAXIMUM PÓSSIBLE TEMPERATURE > 160 F',//) WRITE(6,450) 450 FORMAT(1X,26X,'AVG. HEAT LOSS TERMS, BTU/HR') WRITE(6,460) 460 FORMAT(1X,2X,'TIME',4X,'TEMPERATURE',2X,'LOWER WALL',2X, 1'UPPER WALL',5X,'ROOF',8X,'VENT') WRITE(6,470) 470 FORMAT(1X,2X,'(HR)',8X,'(F)',/) C STEP UP LIQUID TEMPERATURE IN 5 F INCREMENTS. USE HEAT C **BALANCE EQUATION** TO SOLVE FOR TIME REQUIRED TO HEAT VOLUME OF LIQUID 5 F. THE RATE OF AT WHICH THE TANK CAN BE HEATED IS CALCULATED BY SUBTRACTING THE HEAT LOSS TERMS THROUGH TANK WALL, TANK COVER, AND GAS VENTED FROM **CONSTANT HEAT** INPUT TO ARRIVE AT NET ENERGY AVAILABLE FOR HEATING LIQUID. THE HEAT LOSS TERMS ARE AVERAGE VALUES CALCULATED FOR A LIQUID TEMPERATURE HALF WAY IN

```
Project No. 89C114MM
Subject Tank 102 Heat Transfer Calculations
                Checked by \frac{7}{4}
                                           Task No. 5
By J. Scott
                Date 4/2/av
                                           Sheet 26 of 32
Date 4-28-92
      BETWEEN THE PREVIOUS LIQUID TEMPERATURE AND THE NEW
TEMPERATURE INCREASED
    BY 5 F
C
\mathbf{C}
   TIME = 0.0
   T=TO
   CALL WALLOW(QLOW, VOL, WINS, T, TAIR)
   CALL WALHI(QHI, VOL, T, TAIR)
   CALL ROOF(QROOF,T,TAIR)
   CALL VAPOR(QVAP,T,TAIR,CFM)
   WRITE(6,500) TIME,T,QLOW,QHI,QROOF,QVAP
500 FORMAT(1X,F8.1,4X,F7.1,4X,F10.0,2X,F10.0,2X,F10.0,2X,F10.0)
510 TT(2) = T + 5.0
   IF(TT(2).GE.TMAX) GO TO 520
   TT(1) = T + 2.5
   CALL WALLOW(OLOW, VOL, WINS, TT(1), TAIR)
   CALL WALHI(QHI, VOL, TT(1), TAIR)
   CALL ROOF(QROOF,TT(1),TAIR)
   CALL VAPOR(QVAP,TT(1),TAIR,CFM)
   QQ(1)=QIN-(QLOW+QHI+QROOF+QVAP)
   TIME = TIME + 5.0*RHOL*VOL*HCAP/QQ(1)
   T=TT(2)
   WRITE(6,500) TIME,T,QLOW,QHI,QROOF,QVAP
   GO TO 510
520 TT(1) = (T + TMAX)/2.0
   TT(2) = TMAX
   CALL WALLOW(QLOW, VOL, WINS, TT(1), TAIR)
   CALL WALHI(QHI, VOL, TT(1), TAIR)
   CALL ROOF(QROOF,TT(1),TAIR)
   CALL VAPOR(QVAP,TT(1),TAIR,CFM)
   QQ(1) = QIN-(QLOW+QHI+QROOF+QVAP)
   TIME=TIME+(TMAX-T)*RHOL*VOL*HCAP/QQ(1)
   T=TT(2)
   WRITE(6,500) TIME, T, QLOW, QHI, QROOF, QVAP
600 CONTINUE
   CLOSE(6)
   END
C
\mathbf{C}
C
   SUBROUTINE WALLOW(QLOW, VOL, WINS, TLIQ, TAIR)
C
    CALCULATE HEAT LOSS THRU TANK WALL BELOW LIQUID LEVEL
C
```

```
Subject Tank 102 Heat Transfer Calculations
                                         Project No. 89C114MM
               Checked by <u>NWY</u>
                                         Task No. 5
By J. Scott
                                         Sheet<u>27</u> of <u>3</u>2
Date 4-28-92
               Date
C
   AWALL = SURFACE AREA OF TANK WALL BELOW LIQUID LEVEL, SQ FT
C
   CWALL = CONSTANT IN EQUATION FOR CONVECTIVE HEAT TRANSFER
C
COEFFICIENT
     EPS = EMISSION CONSTANT IN EQUATION FOR RADIATION HEAT
TRANSFER COEFFICIENT
    HCOND = CONDUCTIVE HEAT TRANSFER COEFFICIENT, BTU/HR/F/SQ
C
FT
    HCONV = CONVECTIVE HEAT TRANSFER COEFFICIENT, BTU/HR/F/SQ
C
FT
    HRAD = RADIATION HEAT TRANSFER COEFFICIENT, BTU/HR/F/SQ FT
C.
   KHDPE = THERMAL CONDUCTIVITY OF HDPE LINER, BTU*IN/HR/F/SQ
C
FT
   KINS = THERMAL CONDUCTIVITY OF INSULATION, BTU*IN/HR/F/SQ FT
C
   OLOW = TOTAL HEAT LOSS THRU WALL BELOW LIQUID LEVEL, BTU/HR
C
    TAIR = TEMPERATURE OF AMBIENT AIR, F
C
    TLIO = TEMPERATURE OF TANK LIQUID, F
C
C
    TW = TEMPERATURE OF OUTER SKIN OF TANK WALL, F
    VOL = VOLUME OF LIQUID IN TANK, GAL
C
C
    WIND = AMBIENT WIND VELOCITY, MPH
C
    WHDPE = LINER THICKNESS, INCHES
C
    WINS = INSULATION THICKNESS, INCHES
\mathbf{C}
   REAL*4 OLOW, TLIO, TAIR, AWALL, WIND, CWALL
   REAL*4 HCOND, KHDPE, KINS, WHDPE, WINS
   REAL*4 EPS,HCONV,HRAD,VOL,TW
   REAL*4 Q(3),T(3)
   DATA CWALL/1.394/
   DATA WIND/7.5/
   DATA EPS/0.8/
   DATA KINS/0.6/
   DATA KHDPE/2.7/
   DATA WHDPE/0.1/
   DO 10 I = 1,3
   Q(I) = 0.0
   T(I) = 0.0
10
   CONTINUE
   T(1) = TLIQ
   T(3) = TAIR
   IF(WINS.LE.0.0) GO TO 20
   HCOND = 1.0/(1.0/(KHDPE/WHDPE) + 1.0/(KINS/WINS))
   GO TO 30
   HCOND=KHDPE/WHDPE
```

20

Project No. 89C114MM Subject Tank 102 Heat Transfer Calculations Checked by 71214 Task No. 5 By J. Scott Sheet $\frac{28}{\text{ of }} \frac{32}{32}$ Date <u>4-28-92</u> Date 6/2/92 $HCONV = CWALL^*(1./24)^{**}.2^*(2./(T(1)+TAIR))^{**}.181^*(T(1)-TAIR)^{**}.266$ HCONV = HCONV*SORT(1.+1.277*WIND)HRAD = 0.1713E-8*EPS*((TAIR+459.6)**4-(T(1)+459.6)**4)/(TAIR-T(1))Q(1) = HCOND*(TLIQ-T(1))-(HCONV+HRAD)*(T(1)-TAIR) $HCONV = CWALL^*(1./24)^{**}.2^*(2./(T(3)+TAIR))^{**}.181^*(T(3)-TAIR)^{**}.266$ HCONV=HCONV*SQRT(1.+1.277*WIND) HRAD = 0.1713E-8*EPS*((TAIR+459.6)**4-(T(3)+459.6)**4)/(TAIR-T(3))Q(3) = HCOND*(TLIQ-T(3))-(HCONV+HRAD)*(T(3)-TAIR)T(2) = (T(1) + T(3))/2.0IF(ABS(T(1)-T(2)).LE.0.05) GO TO 100 $HCONV = CWALL^*(1./24)^{**}.2^*(2./(T(2)+TAIR))^{**}.181^*(T(2)-TAIR)^{**}.266$ HCONV=HCONV*SQRT(1.+1.277*WIND) HRAD = 0.1713E-8*EPS*((TAIR+459.6)**4-(T(2)+459.6)**4)/(TAIR-T(2))Q(2) = HCOND*(TLIQ-T(2))-(HCONV+HRAD)*(T(2)-TAIR)IF(Q(1)*Q(2).GE.0.0) GO TO 50 T(3) = T(2)**GO TO 40** T(1) = T(2)50 GO TO 40 -100 TW = T(2)AWALL=4.0*VOL/(78.5*7.481)OLOW=HCOND*(TLIQ-TW)*AWALL RETURN **END** C \mathbf{C} \mathbf{C} SUBROUTINE WALHI(QHI, VOL, TLIQ, TAIR) C CALCULATE HEAT LOSS THRU TANK WALL ABOVE LIQUID LEVEL C C AWALL = SURFACE AREA OF TANK WALL ABOVE LIQUID LEVEL, SQ FT C CWALL = CONSTANT IN EQUATION FOR CONVECTIVE HEAT TRANSFER C COEFFICIENT EPS = EMISSION CONSTANT IN EQUATION FOR RADIATION HEAT C TRANSFER COEFFICIENT HCOND = CONDUCTIVE HEAT TRANSFER COEFFICIENT, BTU/HR/F/SQ C FT HCONV = CONVECTIVE HEAT TRANSFER COEFFICIENT, BTU/HR/F/SQ C FT HFILM = HEAT TRANSFER COEFFICIENT AIR FILM INSIDE TANK, C BTU/HR/F/SQ FT HRAD = RADIATION HEAT TRANSFER COEFFICIENT, BTU/HR/F/SQ FT

```
Subject Tank 102 Heat Transfer Calculations
                                            Project No. 89C114MM
                                            Task No. 5
                Checked by 2029
By J. Scott
                                            Sheet 27 of 32
                Date l_1/2/9\sim
Date 4-28-92
    KHDPE = THERMAL CONDUCTIVITY OF HDPE LINER, BTU*IN/HR/F/SQ
С
FT
    OHI = TOTAL HEAT LOSS THRU WALL ABOVE LIQUID LEVEL, BTU/HR
C
    TAIR = TEMPERATURE OF AMBIENT AIR, F
C
    TLIQ = TEMPERATURE OF TANK LIQUID. F
C
    TW = TEMPERATURE OF OUTER SKIN OF TANK WALL, F
C
    VOL = VOLUME OF LIQUID IN TANK, GAL
C
\mathbf{C}
    WHDPE = LINER THICKNESS, INCHES
C
    WIND = AMBIENT WIND VELOCITY, MPH
\mathbf{C}
   REAL*4 OHI,TLIQ,TAIR,AWALL,WIND,CWALL
   REAL*4 HCOND, TW, HFILM, KHDPE, WHDPE
   REAL*4 EPS,HCONV,HRAD,VOL
   REAL*4 Q(3),T(3)
   DATA CWALL/1.394/
   DATA WIND/7.5/
   DATA EPS/0.8/
   DATA HFILM/1.47/
   DATA KHDPE/2.7/
   DATA WHDPE/0.1/
   DO 10 I = 1.3
   Q(I) = 0.0
   T(I) = 0.0
   CONTINUE
   HCOND=1.0/(1.0/HFILM+WHDPE/KHDPE)
   T(1) = TLIQ
   T(3) = TAIR
   HCONV = CWALL*(1./24)**.2*(2./(T(1)+TAIR))**.181*(T(1)-TAIR)**.266
   HCONV = HCONV*SQRT(1.+1.277*WIND)
   HRAD = 0.1713E-8*EPS*((TAIR+459.6)**4-(T(1)+459.6)**4)/(TAIR-T(1))
    Q(1) = HCOND*(TLIQ-T(1))-(HCONV+HRAD)*(T(1)-TAIR)
   HCONV=CWALL*(1./24)**.2*(2./(T(3)+TAIR))**.181*(T(3)-TAIR)**.266
   HCONV=HCONV*SQRT(1.+1.277*WIND)
   HRAD = 0.1713E-8*EPS*((TAIR+459.6)**4-(T(3)+459.6)**4)/(TAIR-T(3))
    Q(3) = HCOND*(TLIQ-T(3))-(HCONV+HRAD)*(T(3)-TAIR)
   T(2) = (T(1) + T(3))/2.0
40
   IF(ABS(T(1)-T(2)).LE.0.05) GO TO 100
    HCONV = CWALL^*(1./24)^{**}.2^*(2./(T(2)+TAIR))^{**}.181^*(T(2)-TAIR)^{**}.266
    HCONV = HCONV*SQRT(1. + 1.277*WIND)
    HRAD = 0.1713E-8*EPS*((TAIR+459.6)**4-(T(2)+459.6)**4)/(TAIR-T(2))
    Q(2) = HCOND*(TLIQ-T(2))-(HCONV+HRAD)*(T(2)-TAIR)
    IF(Q(1)*Q(2).GE.0.0) GO TO 50
    T(3) = T(2)
```

```
Subject Tank 102 Heat Transfer Calculations
                                          Project No. 89C114MM
                                          Task No. 5
               Checked by 2/2/2
By J. Scott
                                          Sheet30 of 32
Date 4-28-92
               Date 6/2/9~
   GO TO 40
   T(1) = T(2)
50
   GO TO 40
100 \text{ TW} = T(2)
   AWALL=9865-4.0*VOL/(78.5*7.481)
   QHI=HCOND*(TLIQ-TW)*AWALL
   RETURN
   END
C
C
\mathbf{C}
   SUBROUTINE ROOF(QROOF,TLIQ,TAIR)
\mathbf{C}
    CALCULATE HEAT LOSS THRU TANK ROOF
C
C
    AROOF = SURFACE AREA OF TANK ROOF, SQ FT
\mathbf{C}
   CROOF = CONSTANT IN EQUATION FOR CONVECTIVE HEAT TRANSFER
C
COEFFICIENT
     EPS = EMISSION CONSTANT IN EQUATION FOR RADIATION HEAT
TRANSFER COEFFICIENT
    HCONV = CONVECTIVE HEAT TRANSFER COEFFICIENT, BTU/HR/F/SQ
C
FT
    HFILM = HEAT TRANSFER COEFFICIENT FOR AIR FILM ON INSIDE OF
\mathbf{C}
TANK, BTU/HR/SQ FT/F
    HRAD = RADIATION HEAT TRANSFER COEFFICIENT, BTU/HR/F/SQ FT
C
    QROOF = TOTAL HEAT LOSS THRU TANK ROOF, BTU/HR
C
    TAIR = TEMPERATURE OF AMBIENT AIR, F
C
    TLIQ = TEMPERATURE OF TANK LIQUID, F
C
    TW = TEMPERATURE OF OUTER SKIN OF TANK ROOF, F
C
    WIND = AMBIENT WIND VELOCITY, MPH
C
\mathbf{C}
   REAL*4 QROOF, TLIQ, TAIR, AROOF, WIND, CROOF
   REAL*4 HFILM,TW
   REAL*4 EPS,HCONV,HRAD
   REAL*4 Q(3),T(3)
   DATA CROOF/1.61/
   DATA AROOF/6211/
    DATA WIND/7.5/
   DATA EPS/0.8/
   DATA HFILM/1.3/
    DO 10 I=1,3
    Q(I) = 0.0
    T(I) = 0.0
```

```
Subject Tank 102 Heat Transfer Calculations
                                            Project No. 89C114MM
                                            Task No. 5
                Checked by 224
By J. Scott
                                            Sheet 31 of 32
                Date 6/2/9~
Date 4-28-92
10
   CONTINUE
   T(1)=TLIQ
   T(3) = TAIR
   HCONV = CROOF*(1./24)**.2*(2./(T(1)+TAIR))**.181*(T(1)-TAIR)**.266
   HCONV = HCONV*SQRT(1. + 1.277*WIND)
   HRAD = 0.1713E-8*EPS*((TAIR+459.6)**4-(T(1)+459.6)**4)/(TAIR-T(1))
   O(1) = HFILM*(TLIO-T(1))-(HCONV+HRAD)*(T(1)-TAIR)
   HCONV = CROOF*(1./24)**.2*(2./(T(3)+TAIR))**.181*(T(3)-TAIR)**.266
   HCONV=HCONV*SQRT(1.+1.277*WIND)
   HRAD = 0.1713E-8*EPS*((TAIR+459.6)**4-(T(3)+459.6)**4)/(TAIR-T(3))
   Q(3) = HFILM*(TLIQ-T(3))-(HCONV+HRAD)*(T(3)-TAIR)
40
   T(2)=(T(1)+T(3))/2.0
   IF(ABS(T(1)-T(2)).LE.0.05) GO TO 100
   HCONV = CROOF*(1./24)**.2*(2./(T(2)+TAIR))**.181*(T(2)-TAIR)**.266
   HCONV = HCONV*SQRT(1. + 1.277*WIND)
   HRAD = 0.1713E-8*EPS*((TAIR + 459.6)**4-(T(2) + 459.6)**4)/(TAIR-T(2))
   Q(2) = HFILM*(TLIQ-T(2))-(HCONV+HRAD)*(T(2)-TAIR)
   IF(Q(1)*Q(2).GE.0.0) GO TO 50
   T(3) = T(2)
   GO TO 40
   T(1) = T(2)
50
   GO TO 40
100 \text{ TW} = T(2)
   QROOF=HFILM*(TLIQ-TW)*AROOF
   RETURN
   END
C
C
\mathbf{C}
   SUBROUTINE VAPOR(QVAP,T,TAIR,CFM)
C
    CALCULATE HEAT LOSS FROM GAS VENTED FROM TANK
C
C
C
    CFM = RATE OF VAPOR VENTING FROM TANK, CFM
    OVAP = TOTAL HEAT REMOVED FROM VAPOR VENTING, BTU/HR
C
C
    T = TEMPERATURE OF LIQUID IN TANK, F
    TAIR = TEMPERATURE OF AMBIENT AIR, F
C
   REAL*4 QVAP,T,TAIR,RHOAIR,HAIR,CFM
   REAL*4 H
   REAL*4 CRHO(3),CH(3)
   DATA CRHO/.0655243556,6.53147E-6,-1.19101E-6/
   DATA CH/1.7742856887,.0259026855,.0000053392/
```

Subject Tank 102 Heat Transfer Calculations

By <u>J. Scott</u>
Date <u>4-28-92</u>

Checked by 7/20

Date 6/2/9~

Project No. 89C114MM Task No. 5 Sheet 32 of 32

RHOAIR=CRHO(1)+TAIR*CRHO(2)+TAIR*TAIR*CRHO(3)
HAIR=EXP(CH(1)+CH(2)*TAIR+CH(3)*TAIR*TAIR)
H=EXP(CH(1)+CH(2)*T+CH(3)*T*T)
QVAP=CFM*RHOAIR*(H-HAIR)
RETURN
END

bjed J			ro t											,									ì	ask	No)							
																							F	ile	No.		,					<u>ー</u>	
ite	4	4/	27/	19	ンス					Da	ate		4	/27	1/9	2							S	Shee	et_					of_		2	
				·				,																									
C	9	10	، / ر	, A	ė	V	0	10	, ,	1 6		01	<i>Z'</i>	_ /	/;	90	′,	d	. /	2		16	1	15	1	/ (12		a	lv.	· ·	<u>n</u> g	
(1	y 5	/ _ح	/	O	د زا	5,	0/	U	/	0	7	f	2	r '	V	5 e		11		/	19	iU	′ , (/	ľ	76	۶ ,	7	17	9		
0	14	e5.	g	り	(9	/	10	• /	4	ク	01	ے د)							:	!											
	_	_	7_	ļ	ļ		/	1	,										1		Z	, /		~					-		÷		
	, ,	a11	く		01	70	(/	//	70	n;	>	1	7,	0 1		J	7	v	,,	7	•	'		-					***************************************				
-	T.		k	na construction of the con	d	1,.	a ,	m	رخ	6,	^		=				78	۶.	5														
/	19	"	<i>)</i>					,		-																							
1	le	16	h f		u/	ſ.	,	1,	9	נט	1		=	,,,,,,,		?																	
1	1	4	1	è				-	1		-								_		,,,,												
į	5	_	n	6	ZZ	/	~		1	0 /	•	1	01	20	V	4 (<u></u>	01	(1	5 4	اح ا	"	_/		, 1	//	70	,,	1			
ļ	;	10	5	<u> </u>	I	<u> </u>	i.	5		10	· (g /	ر م	/		ļ	4'	<u> </u>	0		G	,6.	ov	e I	Ź	۲, _ا	, /	٤	[]	14			
		b	, f 1	0	27	,		/	45	۶ ۶	U	ארי	7	/	19	v	10	1	^	` e	M	OU	γ,	1)	ס	a	/ /	4	17)		
	1		l	15	'ov	е			10	P		0/1	יע	9 /	20	1		07	_	Γ	n	106	14		n	0 2	9 4	> (
:			, 4				- 1	- 3	ì					:	3		:	: :	. 4														i
	/	619	15	/	0	7		11	9	01	u			7		υ	<u>.</u>		J		′ 1				/								
	n	a Ł	í	1					Α	14	2	^	۲.	, e	ς.	·	As	50	5 5	m	en	1	-	/) e	0	01	1	-				
1	-	1		3	į	1			- 1	-					š .									1	- 1			- 4	į.				
	1	ر مه (, fi	/ 1	T	a	~	/	5	4	/5	/	1		19	0	/	10	2		bo	[/	מס	7	-	······································	2	. 6	5				
				3			1	•	- 5	:		:	:	:	5	:	:	:		:	:	: :	: :	: ?			: :						
	V	0/0	m	e	0	F		/,	9	U.	10	/	Ç	e s	U	//	71	9		K	01	າ	Р	46	4								
	Ŋ	101	3	0	7,9	1/2	, /	's '	/	d	15	58	lι	1	d	/	10	8	,	19	5	^	C	ひり	01	Y.							
	/	<i>C</i> /	, m 3	/u	7	ν	0	۸ .	/	5/	a	1 8	1	//	1/6	. ~	/ .,	W	, f	4	,	130	151	'n								**********	
		11	90	21	d		1.	5			4	//	0		19	14	// c	10	/	y c	1	ر											-
			• :	3	- 1		- 1	- 1	- 3	- 1		1	1		\sim	•		3		_ :		<i>e 1</i> 1	1.,	(P									
	ν	01	un st	7 e	, 0	\mathcal{L}	l	V.	91	4) 7		/	1	1	<i>~</i>	1		TV [.	3	71 1		,,	, ,	C									
ļ		17	51	4 '	3	F		(0	ر ر	0	Ú	14	// (9 7	/	y	<i>[]</i>	ļ														
										*******	********			ļ								,											
. <u>.</u>	1/	1.	m	o	0	£	/	1,4	, ,	1 //	/		H	on	1	C	7 7	5/1	./		1	155	0/	(u	50	1							
		:				*		•				1	1	4	3		1								2								
	Va	I_{o}	M (2	(1	75	, /	4/	د/	•		2	l'	/	7/	14	لد /	(78	ر ، ح	,)	У	1)	1	/	27	F f	د :			- 200	
				ŀ		/						Ξ	4	76	6		y q	/ 3											000000000000000000000000000000000000000				
				No.		١,			-																. 7	Ż					1	<i>y'</i>	, 3
	K	0	10	11	\sim	1		V	0	Ιυ	n	1 6		07	1	α	ء (1 /	e /		•	46	6	40	1	ነ / ራ	2	50	5	76,		y a	/ -
	1		'		/									-		-	-				=	1	V	//)	17	5	()	74	/_		<u> </u>	
_	V	>		1					,		ļ	-	~	-		_	-	1	,	1		1	1	م. ا		1	16	<i>Z</i> .	/	, 3	1-	(117)
	K	ces	ان	ħ	ng		V	01	U	m	€		7~) Vr	1	C		Ju	<u></u>	97 1	۶۶ -	6/ c	11	41 G 1		2	0	1	u	7		410	J
			_		Ĭ								-	-	-						-	_	1	7.1	٠ ر	, 0		g	a	-		1	
	-			The composition		-	-				ļ							-			-			-		<u> </u>	ŀ	ļ	<u> </u>	,			
	-			Annata de la constante de la c							ļ	-	-	-						voquenus					***************************************	<u> </u>			ļ				
.ļ					<u>-</u>							-					1		·	*	·			1	1		<u> </u>		1				1

Sub	jec	<u> </u>	/ _c / _s	חנ	e	1	190	لمرابا	11	າ .	Tar	rk	Do	110	g '	(14	9/4		D, s	550	10)	10-	7 F	Proj	ect	No)	39		4	41	MA	4
Ву	J.	ے ۔	6	o f	t					С	hec	kec	Ву	, 1	ンス	19							T F	īask File	No No	o							
By Date	e '	4/	z.	7/	9 Z)				D	ate		41	127/	/qr	,							5	She	et_	2	?			of_		2	
	V	0/0	א ע	11	(ş F		β	45	n		F	/	/ ,	ی و	,,,	1	C				1							contra-	^			
	4	/	. [} `	-	=	4	4.	3	3							A			, , , , , ,													
	<i>(</i>	<i>4.</i> 7.	3 7	3		7	1	<i>x</i>] (7	8,	= 5	/. ′)	, 7 2 2	' 3	, ス	4	150 81	45 94	(1 []] []	- Y	/ 3 _	′ <i>†</i>	6	, z 2 ,	1	38	5	9	<i>4 /</i>	/		
1					j	1	.i	i		£										}				····	·								
	7	7	3 1 7 -	ί ς <i>}.</i>	Vo	/,	J	153	50/	9	У,	1	7	· ¬		fu	n	k		<i>۹</i> ,	FF.	r J				-							
	1	9	1	0	60)	F		6 2	?/	6	38	<u></u>		=	-	2	5	3,	7	0	0	Ĵ	99	//	0	, s						
	.]	=/	οh	1		9/	/ <i>F</i> e	· / ·	n 4	Ŧ	V	<u>و</u> ج ح			и.	550	-5.	5 N	30	7	£		P,	/υ	, ,	1	Ç	P	°C	;' F	1 - 7 (
	2	9 !5	γ. -3	40	70	7	qu	<i>-</i>	X	. /	, 8.	~ 3.	3	15,	19	41	(+	1,	ک	-		2.	5	-4	x /	0	6	165	5	/	,	<i>U 2</i>	j
				<i>y</i>		(/		•				מ		~ <i>1</i>							,									/		
	7	F	1 ") 4	7	<i>,</i>	10	ly	h ,	<i> </i> -	c	r/- 1	L1	3	17	ر ر ر	A	7	,	7	7	<i>†</i> •	41	73	9	: ,	3		7	3			
	L]) Z 1	<i>?}</i> z	9) U	2	9 H	, 3	=	<i>X</i>	L	1 ·	7 77	1 75	/ x	/	<i>。</i> フ	, 5,	Ω 5	7	, ,			, .j				-					
		, ,	<i>''</i> `	=	1		0		/	•																							
		••••••																															
																				· · · · · · · · · · · · · · · · · · ·													
					representative and the second					of creek chapters					***************************************																		

MECHANICAL DESIGN CALCULATIONS FOR EMISSION CONTROL SYSTEM

Subj	ect	Ē	וףא	55 /	מפ	(0	nti	01	57	s fe	~~	<u> </u>	qu	jm	(n)	<i>f</i> :	5 e	lec	Íze	01			P	roje	ct N	اo	89	<u></u>	1/4	HM	m		
Зу																							Ta	ask	No.		5						
										O.	100		,		•				•				Fi	le I	۸o						1		
Date		7/	29	8/	92	2				Da	ate			4	12/	19							S	hee	t	_/			_ of		4		_
	7		•								,		-		_						1,			,		٨,,	h		-	-			
	<i>C</i>	PI	1	51	1	ว •		4	7 N ~ q	19	5	- 4	01	5 / 2 C	t v	7	, / j	4	r C	97	ر 4	1	64	U	V	ol Phi	ט א	<u>၂</u>					
	¢	7	, 7	9 4	. 5)	le.	, h	۰ ۷	/	1	٥٠	ກ	7	٩.	1/		/	20		di	م ر	10	9		ph.	3	e	0.	1 C	-		
		(/	5.1	9		_ <i>D</i>	<u>,</u>	55	ole	, † ;	00			47	d	2	0	1 <u>(</u>		‡ Į	ט /	7V 0 Z		4 T	he	47	g	6		\vdash		
	l	o A	(C	15	e 5	n	0 J	, <i>f</i>	Ÿ,	<i>u</i>	2	id	1 d	م . م م .	7	1	ζ	<u></u>	7	۷,	2 2	!	/	?	Ĭ-,	h c	0						
		1	٠.	1	. <i>H</i>	را .		1 14	7	1			\mathcal{H}	C	0	6		7	`a !	n		W	1//	1	1	00	51	5 J	1	-			
				•							, ,			/3					. 5.	~ /:		1 I Z	. /:	1: E		, j				,			
		5	"'((16	be	· ·	7/	9	UI	Ĭ	Ľ	,,	7	ر ار ر	, , /	/ /> c	, 7	ß	v	n	0	·	ą	,	4	rs no	Ļ	00	1	ļ			
		p	υ	m	0)	9	41	/	45	50	C1	4	/~ ~	1	a!	P	r'p	6	19	, j	11	5 J	نم	a	00	13	5/				-	
			7 ⁴	, vi	5/	10 10	9)	V:0 a	,) }	1	,/	ب إح	<i>^</i>		~					00		/										
					,,,,																								*	ļ			
7)		,			17.	, /		n e			S	74	/~	n												-		***************************************				
																									, , ,		a	7		, ,		7	
			V)	e 5	j g	n	7	ba.	<i>51</i>	5		j e	っ	1		14	0	O.	C	p	7	a	<i>f</i>	/	9	0		ر ا	/	00	9 7	0	
			n	vr	7/_	d i	4															*******					_		┪	-			
		A	m	m	0 1	n i	4		1	, 4	I- v	ry	/,	ℓ			10	/4	/	0	9	9 n	, د	5	0	, 0	00	/	, מת	9/	l		
-0	In						-		•	•					ì						-		1	- 1	•		•	į	1	i			
p.,	U	_	/1'	ve	n	Lo	ς,		(, ,	/ /	<i>,</i> /	Ċ	//	7 10	, ,	ρΈ	1/0	,/,	1 ں		6	1	10	/_		De	5 /	gν	2			
				Lo.	<i>(</i>	,	7		10		r, e	M	12	, /		£		a n	1 M	сЛ	1 4	۲	4	m	17.		a.	600	/ e				
			/	n	(T				1 /	-			ļ			<u></u>					,					_						
i			_/	M.	J	e l	ļ.,	3	7 6	7		2,	γ.	7	Z	,	ļ,	PI	24	1		ø,	لا	7	2		P	વ૮	10	12	9.		
		~~~~~		۷,	g c	21.0	1_		cc	ں ع	/4	Ь	01		19	l-e	(	PI	/- /	7 - 0	4	/ ر	<b>.</b>		7	9 f	•		-				
				<i>a</i> 1	12	f'	~5 1	ر ر	~P	, ,	ZS Lo	o f	<u> </u>	6	0			7 L	2/7	7				and formation of the second					1.				
			,	i				ļ		ļ	ļ	ļ	<u> </u>	ļ,						_		,					7						
P						Z	() 	91	m,	C	UM	6	0	†	1	30	<i>[</i>	1/2	01	1	7	5	7	( 1	(1)	ر ر اح	4/	10	1 86.4		، س	<b>,</b> ,	
	-,	05		<u> </u>			] /	$\mathcal{I}_{\tau}$	7	<b>,</b>	}		1	7	1	H		?		P	un	יקו	/	11	10	no	ر ا	7.,	1/2	ر ،	7		
						1	$ abla_c$	m	L	res	d	ov	<b>)</b>	6	0.	]	/:	5	P	رر	1	2									-	-	
			<u>.</u>	-		M	י מ	1,	1	2	; /	9	6	5	<u>ר</u> ן		ļ	En	d	5	ve	ħ.	,17		ر م	, <del>/</del>	-  -  -	L	96	. /	<u>,                                    </u>		
			<u> </u>		-	A	NS	I	P		47/	) _		3,	16	)	5 5		10	ر د ا	s /	<b>γ</b> υ	c J	50	1	,	4.	^ _					ļ
							Le	n		.] 7	7	10	4	)a	1	6.	Ζ,	Ku	1	1	0	m	P,	H	016					5	5	<u> </u>	
					***************************************	1	70	5/	10	<u> </u>	m	0	2	1	10	0	/	5/4 5 (	n	1	10	, ₅ '			5 7		d'	<i>c [</i>		60	V		
		į Į	-	ļ	***************************************	L		5/			M	0	to	~		1	1		<u> </u>		7	ľ	tt1 -	CIEO	j cj	<u> </u>	¥,	/			1		<u> </u>
	<b></b>		•	Ì	•	1		1	Ī		1			T	***************************************					-		7	, ye	ry lo	.ن.		. [			Vi (magazi i			

		I.m																<u>(                                    </u>	or:P	roje	t N	0	_	, .		7	-7 10	1
n., S	J.	500	1/				Ch	ook	od B	i, s	112	, 5	7						Ta	isk l	۱o	5	<del></del>				-	
Бу	-•																							-				· ·
Date	5	129	8/9	72			Da	te		6/2	1/9	<b>√</b>							S	heet					of_	4		
P-	-/0	7.		6.1	16.	1٠.٦	,		Le,	1	6	5 %		66.	o /	- 1	1 6	ران	. il		to	~	14	(1)	91	つ		
				$I_{p_{\eta}}$	455	B	u/a	200	gv	4/	CU	/9	٦.	י מי	,)	7	<u>/</u>	3	,	7,9	P	۵, ۰	,-	h	'an	1		
				m	e H	(1) (1)	2g,	,	0 U r b 9.	ηρ 9 ς	7	00	,	S 1	9	~1.	1		00	# भ	p	17	16	91	701	( p) [] p]		
				07	9 1	-c	ν γ	1 e	5 19 1 /1	n	o.	ען,	M	y K	ענ	1	ا		V 1	7/2	/	F1	g	14	91	<i>9</i> C		
				10	N)	V 0	/			7	12	0.	Λ) ~/	C	2		05	19	, , ,	d	. 1/	c	- - - -	L	n1	7		
						: 3	•		ž	i	3	: :		:		:	;		:		:	:	:	: 1	:	÷		
				<i>M</i> ₀	do		25/	B	4 3 107	3 5	er Is	se on	5	ک ۲ م	2	- 5 5	4, v	5 ^ c	,	7.4	5 M	0 J.	,	ν	7,			
					1.	ı · İ	- 1			1					1		- 1			1			1					
F	10	2		91	A.	C Fi	1		ter em	ر ر	. /	1	5 ) •		10	10	dr	96	5	0	V.	'つ / 5 /	**	1				
		-		/- [	/06 /e	<i>)</i>	07 Kr	24	12 40 c	1		$\subset$ $I$	سر		9	T	8	. <i>U</i>		/-		<i></i>	<i>v</i>					
				0	ر را	1/0	4,6	ş e	to	V 0	9 e	3	) Na	4 1 1 U	de Fa	4 1	d		e.	7 /2	/ w	bo	n	, f 15				
				a	4/	r	L	r	e 9 P (	cn	129	A		W	4 9	ŀе		B	A	<b>C</b>	cı	111	44					
				V	en	do	<i>r</i>	IV	1,60.	16	9	Ь	on Co		^е 00	( ( Ta	7	10	d	$\omega'$	V 0	27	יע?	₁ eu	) <del>-</del>	1		
				a,	nd	V f F3	he	Je i	19 p	, r 5 c	10	a,	c - 1	, 3	e 1 l	//	ho	5 1	V ₂	1   1   1   1   1   1   1   1   1   1	, , ,	<b>,</b> c	<b>,</b> ,	7	v	2		
					7) 5. C	13 L1	(	い0 レカ	. 10	-	ot ot	1	ے م	g 0	20	φυ (	/ -L	и 7	, , 1	5	_/	10.	v	10	10	ug (	2	
					ک _ر ک			) /     /	s fra 1 6	رے/	70	7	ľ	5		9	b Cə	+ A		7	<u></u>	3	6	+	6 / V-	3		
					ΑŽ	P =		10	7	'n	h	F 5	- 1-	H,	 (	D		a 7	Ĺ	6	20	C	F	<b>'</b>				
B	<u>Z</u> -	-/0	2	l		ν	cn	7	,	12.	00	2	c.	En	7	a	( )		fre	, 41	7	40	K	10	12			
					F1	//e	ν γ ()	y 4.	11 1	3.	m	05	of	7/	5	pr	15 25	6 J	م ا ا		05.5	o d	4	hro	AC	, 4	,,,	מ
			•		9 y .	s H	m		nel	v	111	9	O	V	c:			_/		Γ,	<b>4</b>	T	/		7/2	<u> </u>	Hz	7

	ct <u>Em is</u>															- 3	<u> </u>								•		115	Z ,	M: .	11	_
By J	T, 50	ott.					С	hec	kec	d By	, :	U Z	09	7													<u>·</u>				
Date	5/2	28	19	? 2	<u>&gt;</u> .		D	ate		6	:/z	19	v							S	Shee	et_		3		-	of_		4		_
		Ŋ	e 5 100	, g	n e/	o	6	fa m	pa	, <u>l</u>	<b>y</b> .	A	6 •	り	ν	e //	J	, ,		Λ	100	J		261	/ ,	K					
			12	2 9	К 5 р	g	1	60	C By	<i></i>	1	[]	9	/ /	/. 	4 ×	7	. <u>/</u>	1 c	00	7	4	-/	m 7.	, 3	9	+	رم ۱			
2)	)   // _. ,	g G	V	0	/υ.	mı			3,	15.	ķ,	25			•	**************************************										***************************************		•			
		1 es 1 m	iy.	n	1а	1 4	5.	د /	4	er M	7	1	/3 2	, 0	00	2	7/	Γ., (	Isg	91	7	9	96	2 0	0	F.	70	,7	~; g	://	2
0 -	101	/ V:v	Am 100	m 1	01 9	1 a	7	5   e	5 c . , /	10 10	66 51-c	101	( A	ır re	n	De Po	51 /4 14	91	7	0	/0	/ _G	/ <b>7</b>	, /	,	Ĺ	/i/ ) n s	19	7 7		
		N.	10 a	le , v!	1 1	5	p =	7 - e	. 7	2-	5	7 Z E11	2 -	9!	τ 2	7	2 ph	7 J	かよ 2- 2-	, 4 5	7. /	2	= /7	fo	9	( ) 9 [	£,	ሳ ነ	ラ	•	
P-	- /03	5	// //	70 90	1 9.	II ne	200	9.1 F	1	6	0		7	0	// ,	, //	10 15 100	J	(. 19	/ C	ç /	/4 . c	/c	/ !./	5 2 5	~ / , ,	ار ا ا	56 Po	0)	<i>- 0 5</i>	
		A	10 [NS	d	P	1		31	9	6	5 -	17	\ <b>Y</b>	e	n	1	5 c	, c	5	v 1			, 7	7.,	, /	Cu	G 4	ı.	7		
P-	106		ا ک	t i ber	47 , ,	,	/	7		, d	/	'nι	v	<u></u>	7	to	G	de	1	Ţ	14	Kr	(	کر ت	2	5	6	9	o		*****
				3	3.4	40	9	P	, 1		d	-		<u> </u>										9/	(, )	7	Z	27	J		
			<i>O</i> ,	) e		' 4	17	<i>c</i>				P	u			0,7			F												

Subject	Emiss.	104 (01)	Wol 275	stm Egui	prosent the	∠Project No	1. 89C 11419 M
				By 21219		Task No	5
					, <b>V</b>	File No	// //
Date 5	128/	92	Date	6/2/92	· · · · · · · · · · · · · · · · · · ·	Sheet	4 of 4
	101	for of free	13,000 Fed.	chn a	,4 90 of	odor Jo	s, F/ow be
		Cgibo Vapos were	n love - Pac select would	10 gen	ron from reviewed fuice fe best choi equined for 6	1 an	1 fbc un, fs Two flow
		F poxy	strell or a	ronstru 1114 x 1×16		2 - 4 = hr.gh A C	long/h+
B	10/	102 and	1 +6, GAC	ory a g	mmany 5	Crubb Tota	//om instanta
		Design, Blockers	Com	Davis	vendor		
		Indusk af 12 40 h	p, 3	C ( ) Tr, 1.	gul Fug Belt dy V 7016	(ven	000 c/n, w, 49
				-			
	1.0						



Task No. 5 File No.  Date 4-30-92  Date 5/27/92  Sheet of  Assumptions for object systems required  Will be two scrubber systems required  Will be two scrubber systems required  If you'll have been and corrections system  If you'll have been and corrections system  If you'll have been and corrections system  If you'll have been and recensive system  If you'll have been a long to the second of the second o	1 14 12/
Date 4-30-92 Date 5/27/92 Sheet of  Assumptions for disign of garage and single  Will be two scrubber systems required  If he winning at clased the coding epoch  of light hosping and contains please  If we ging of tank after areas hole  cot into side for entry during tank  interior decentaming the of for fage of  air into tank through seems in almostice  (out when many and will at -0.1 Inch was  If to che at any temperature of assumed  your final this air will form to form  with tank light of scrubber (wirst rase)  From off gas shall seem to form a 1400 c/m a  1400 r and 1000 are humidity  of Basin Flight of water minter.  Bant lassing and and and it is mintered.	
Assumptions for design of auropoura scrube  Will be two scrubber systems required  I) for verying of respect two coloring operations and circulation systems  If any of heating and circulation systems  If a purging of tank after areas hole  cot into sade for entry during tank  interior decontamination phase.  I) calculations for rule of lenkage of  all into tank through soons in alvanding  for cor with management at 100 china const  Assume that this air will some to equility  with that liquid at 140 of before  removal through scrubber will be 1400 china  140 of and 100 To humidity  From political scrubber will be 1400 china  In Alternatives Assessment Report studies  of Basin I lassifier at 140 of in winter  of Basin I liquid way for making  in acid and any it is maken of trapping armon  in acid and any it is maken of trapping armon	2
I) for vening of clased, tank dering extended light of the sold for characteristics of the sold light of the sold for the sold for the sold for entry during tank interest of extended for entry during tank interest for entry during tank interest for entry and sold lenkage of all into the at any temporative of assumed your about this air will some to equility with tank liquid at 190 of be have removal through scrubber will be 1400 clm a 190 of cand 100 of humidity.  From job cas shalles contacted by cut in Afternatives Assessment Report during the Basel dasparent maker.  Basel dasparent method of trapping amount in acid and any in a gament of the ched	5 e/s ,
The purying of lank after arees hold of the puring tank interior decontamination phase.  Interior tank through seaning in alvantamination of assumed and and the property of assumed as a sent of the property of assumed and through services. (werst rase)  The property of the property of the property of assumed and the property of the property o	
The purging of tank after arees hold of the puring tank interior decontamination phase.  Interior pha	·/// 2-7
1) Calculations for rule of leskage of air into tank through seems in alverting Course with my of any air air air air into the equilibriant for emotial through scrubber will be lifted com a lift of and loo To humid, ty  From policing to stroke will be 1400 c/m a lift for the form of gas strokes round be 1400 c/m a lift for the form of gas strokes round for the form of by the lift of by the lif	
Agrime that this air will rome to equilier with hink liquid at 140 of before removal through scrubber will be 1400 chm a 140 of and 100 70 humidity  From old gas shalles conducted by with 190 of and 100 70 humidity  In Alternatives Assessment Report during (175 3 dissolving at 140 of traffing amount in acid and angling amount collected)	
Agrime that this air will rome to equilier with hink liquid at 140 of before removal through scrubber will be 1400 chm a 140 of and 100 70 humidity  From old gas shalles conducted by with 190 of and 100 70 humidity  In Alternatives Assessment Report during (175 3 dissolving at 140 of traffing amount in acid and angling amount collected)	C
Assume that this air will rome to equilier with the figure of 1400 of be fore removal through scrubber will be 1400 cfm a 1400 of and 100 % humidity by with In Alternatives Assessment Regard during Crys of dissolving at 1400 f in water of Basin Fliquid fug for mixture approach for and and any in acid and any in a amount rottected	
So air 11th Scribber will be 1400 cfm a.  140 of and 100 To humidity  From old gas shalles ronducted by we in Afternature Assessment Report during Crys of dissolving at 140 of the water of Basin Fliguri fungtor mixture.  Basin Fliguri fungtor mixture.  Basin I lasporator me how of trapping ammon in acid and angles of gamount rollected.	
From jold gas shotes ronder to by we in Alfernation Assessment Report duling a confer of Basin Fligured foughts mixture.  Basin Fligured foughts mixture.  Basin I laborator method of trapping ammon in axid and angles of a gmount rollected.	
in acid and angles in amount collected	
in acid and ana - in amount collected	5 -
in acid and ana - in amount collected	
$\mathcal{A}\mathcal{H} \simeq \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A}$	, J
Based on Dragen hor modings	
$NH_3 = 1-25 \text{ mg/l}$	
However, 56 & segant ronversation with	



•	-						2		<u> </u>						7	<u> </u>			•		-		,	,										
ву 🎵	-	ς	- (	, ,	H	_				C	:he	cke	d B	, (	95	SR	) 			٠			T	ask	No	)			<u> </u>					_
⊳у √₁		<u> </u>		•	,						,,,,	CIC	ر <i>ت</i> ت	′ (	- -	1	· •						F	ile	No.									_
Date ⁽	ψ.	- 3	50	-	9	Z				E.	ate	e 5	5	2.	7	10	1 4			4			S	he	et_		Z			of_		<u>ک</u>		_
	_							,											- Announce						,			, ,		7	(			
		B	<b>,</b> ;	14			PI	9	n	10	9	1	47	-	, (	V	Ç	۶	**********		י ע	ءم	, /	٠,	/		1	7	۹/	1	,	,		
			1	20	ſ	<u>/~</u>	d	7	U	<i>\</i>	1	1.5	<u>.</u>	07	<b>7</b> .	/	ν,	1	P	9 6	) / /		12		طو ( ا	5		5	7	0	/ 6	7		-
		, ,	7'	a i	/		<u>                                     </u>	9	C	1		/	P	m		CL	/υ	10		, –	/		//	01			, , , , , , , , , , , , , , , , , , ,	9	_	~	_			1
		7	7	+		Λ.		ļ	ļ.,	11	4/_	3		_	.,,,	0	, (	) /	7		m u	1	0	/	U/	/ 2					.,			1
	*******	1	] -			14		ļ	'			<b>S</b>	ļ	ļ		J	•		-			/ [												
	······	$\mathcal{N}_{\ell}$	)	-	0	<b>Y</b>	o'	14	n	4	F	10	ŋ	/	So	/		1	و ج	C		/	/-	7	Y	,		1)	00	u e	ر.	<i>•</i> / ,		
:	•	14	6	0	1.	1	5	/ y	,	a	1	4/	7 9	ور			ر	/	أبرر	۲,	/,	<b>'</b>	M	01	<i>L_C</i>	1	م ٍ^	/	, 4	9	<u> </u>			
	<i>L</i>	7.	2 4	/		W	1/1	//		r,	61	~e5	ρ,	7 ]	<u>L</u>		na	51	_		-E,	25	c i	ل	a.		ب	10						
		a	55	اج	<i>,</i> ,	っ	p,	/2	0 1	;	-	-		! 		:									<u>i</u> :									1
			/	1	75	U	, ,		1		1/5	3	,,-	)	U	7. 2	′./	Ų	7	15			1			·	2,	/	7					1
			-				ļ		-		-	.		ļ																				
2/	<del> </del>		(	7	/	ب	/4	$\angle$	01	5		1	· 🖍	,	19	Je	•	07	7		, c	11	<u>^</u>		P	م (	<u> </u>	<i>i</i>	0					
		1	<i>ą į</i>	6		Ŧ	4 1	K	·		Jo		m	11	h 2	19	ر د		/ (	• [	ם, כ	• ,	/. _y	<b>/</b>		2 ×		Z	00	2	14	n		
		-	1 1	1	0	$v_{c}$	, 4			5	<u></u>	λ.	8		•	a !	((	<u>?</u> 5,	ح		6	0/	ď			13	, 0	0	0	C	ſυ	27		-
		<u>_</u> _		//		<i>V</i>	ļ	/	/	1	-	-		1	ļ			, .	,	7			10		/ 4			ζ				}		-
		4	7	/ <u>[</u>	. ,	70	V 1	]//		0	c		a .	T			/7 ·	, _/ /		, ,	. ,	/	/ .		<i>E.C.</i>	- 9	· /	1	ر دع د	5	 	_		-
		01	,, (	/ /	'/	7.	2 12.	<u>ک</u> ـــــــ		1 1	7		ענ	ļ		7 '	/	/	10	<i>' C</i> ₁			, -,											
		1	3	,	0	0	0	(	7	M		9	7		4	Ø	0/		· constant	6	0	7	20	h	v.	ر پیر	J	, ,	Ζ.,					
			•	. :							2	1			3	3 .	: :												- 1					
		/	Ι,	r			4	su		4	ζ ₁ ,	10 41	U 9	14		,	/z.	n !	_		_ کر	:	/	0	+			7.0	7-7	<i></i>		······		~
		0	<b>/</b>		(	4	5€	,			-	90	n d	ļ	1	P	$\gamma$	p.F.	79	Ž	ν,	~		/5		L1	27	9	/ _	り	J.,			-
		:				:	:	:	,	3	•	;		1	3	.4	ć				. 🖊 🗸 🕉				نو بـــــ		· · · · · · · · · · · · · · · · · · ·	1 1 10						-
		1	o r	) /	ρ [-	ſ.,	<i>بر بر</i> پ			1	1	9 7	15		1	<u> </u>	, 0							, .			,	·						
-		/	٠.	a work						***************************************			,			1				_	!													
	· · · · · · · · · · · · · · · · · · ·				N	77	17	1	1	· (	/ p	ر ر	<i> </i> -	c	4	Ś	Ξ	<b>,,,,</b> ,,,,,,,,		0,	. /	4	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	P	4	g	/,	P						
		į			.,				•					ļ.,		ļ		-								ر ،								_
				and the second		7			,	ļ					ļ.,	ļ		Z.,											***************************************					
3/			، د	N	4.	//		/	m	in	21	7/6	r	5	(	70	**	(C) •1																
		ļ.	_			ļ	ļ	ļ.,				///		.,		-	51 7			IJ	0	Ċ	/	z			T C' &	<u> </u>						
'.	1	ر (	-		,	J.	1/2	<b>'</b>				, <u>i</u>		3	*		-			1			•	مرت					Ĭ					
1 : :	:			- 3		1	: ,	1		3	:		:	:	1	:		: :		٤ :	: :	:								2				
1	n	,6	,	e (	1	1		lo	ارس	2	14	tu	~e			Y	0	Ċ	7					4						ļ	ļ	ļ		
									T,	1,						ļ	,				1			-}	, i		· · · · · · · · · · · · · · · · · · ·	£		ļ		ļļ		_
A	55	טו	ŋ	c	<i></i>	A	5 0	1	- 4	9	0 V	^	/,	9	01	d	·	5	18	40	17		5	tg	/c		1	CV	P	10	17	レー	· C	
	ی			4	<u> </u>	U	ļ.	/	_		-		-	ļ	- Constant	-		<u> </u>			ļ			<u> </u>			<u> </u>	<u></u>	1	-	ļ			-
	ļ			someodene e		-			-	***************************************			-		-	ļ		<u>.</u>								<b></b>	ļ	ļ	<b>_</b>					
												:		:	,																		:	1
1 : :	j	10		n r	a .	7,	57 //		100		<i>i i</i> .	11			manusian minima de la companio del companio del companio de la companio del companio de la companio del companio de la companio de la companio de la companio de la companio del companio d	4	ξ, <b>/</b>		· /	4	0								7		77			

Subject_	Jank 10	2 Ve	nt Ga	3 1660	Amorn	7" NH3 .	SCISERF	Project No.	89(1/4/9/19)
By T	Scotz	L .	Cł	necked By	55	Reill	) M	Task No	
								File No	
Date 4	-30 -	9 Z	Da	ate $5/a$	ス <i>구/(</i>	92	· · · · · · · · · · · · · · · · · · ·	Sheet/	of6
Ez	F1 M3 4	170 n	14	9010 8010	1 09	e, a.	nd 6	lowdo	wn /q/c
5 c	rubb-	<u>ا</u> ر	# 1	,		<b>45</b>			
J.	n/e+	945 4 ing	/, { /	100 NH3	c/m	, 100	7, 1	hun.d.	11000
	1.660			000	c/r	70	70 6		40°F
	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \								40°F
						(MH4)			cid to
	γH = Z	7	<b>&gt;</b>	1117	= 0	7.01	1 1 1		2
/	1 1 1	//z	, 504	reguir	e d	1 1 1	3 : : :		11/3 gdso19-1
								= sh	olch methic
		( V	lendor	re ()	orend	19/100			dissolved
R	501,0 14/c-	ds up	< 5 wg/r/	weig F	, 4 <del>/</del> , Y 6	Polaco	blou	lor rec	dissolved (consulation)
e	va por	9/100	10 55						
					***************************************				WANTED TO THE TOTAL TO THE TOTA

By J. 500 ft Checked By ESR File No.  Date 4-30-92 Date 5/27/92 Sheet 2 of 6  5 5 5 5 5 6 6 6 7 Ft V Date 5/27/92 Sheet 2 of 6  5 5 5 5 6 6 6 7 Ft V Date 5/27/92 Sheet 2 of 6  1900 ft many the part of the part	Subject Tank 102 Vens	Gas Treatment NHz Someber	Project No. <u>89C 114 M M</u>
Date 4-30-97 Date 5 27 92 Sheet 2 of 6  5 crubber # 1  1900 chino 190 ff. 100 7 hundry 19 hundry	By J. Scott	Checked by 2 31 4	Task No. 5
5 crobber # 1  Are the profession 190 F.  1900 th handly 14 thy 1 this History 2 Whs  Acrid To  Mark 170  Mark 190	Date 4-30-92	Date 5/27/92	2
Air at 140 ° A 100 % homed, by 24,6 in Hg  H = 0.1534 + 0.0429 = 0.1963 16 Hz 0/18 de, are 12-2)  1400 H3/min / 24.25 1/3/15 de, are = 57.73 16 de; ar/min = 11.33 16 Hz 0/min  0.1963 16 Hz 0/18 de, arx 57.73 16 de, ar/min = 11.33 16 Hz 0/min  1, 100 17 1/min x 28.32 1/1/3 × 1.4 mg NH3/2 x 0.001 g/m g  x 116 / 453.6 g = 0.12 2 16 NH3/min.	5 crubber #  Air Fin 1400 cAn w 140°F, 1007. humdiry 1.4 mg/ R. NH3  Acid In Ma 15/ hr 50% Hz 504  1.3955p g au.	H, 504 + 2 NH3 > Voice 100.	doct foot ongle 143 Idown Out 15/h
0.1963 16 H20/15 di, a. x 57,73 16 di, a. /min = 11.33 16 1/20/min \\ 1,900 17 /min x 28.32 1/1/3 x 1,4 mg NH3/2 x 0.001 g/m g  x 16/453.6 g = 0.12 2/5 NH3/min \\ 1/2504 1 2NH3 - (NH4)2504  1/2504 98.0 1 15/16mo/c NH3 12.03 15/16mo/e  (NH4)2 30 4. 132 013 18/16mo/e  0.122 16 NH3/min x 1 16 wich NH3/17,03 18 NH3 \\ 0.5 16 mo/c 1/2504/16 mo/c NH3 x 98.0 7 15 1/2504/15 mo/c 1/2504	Air 67 140°A	100 % hum, d, t, , 24, 6	Tal
1, yoo 17 7/min x 28.32 1/1/3 x 1,4 mg NH3/2 x 0.001 g/m g  x 1 15 / 453 6 g = 0.12 2 15 N/H3/arin .  H2504 1 2NH3 - (NH4/2504  1/2504 98,07 15/16mole NH3 17,03 15/16mole  (NH4) 2504 132 013 15/16mole  0,122 16 NH3/min x 1 16 ar of NH3/17,03 15 NH3  0,5 15 mole 1/2504/16 mole NH3 x 98.07 15 H2504/15 mole X2504	1400 Af 3/min /2	24,25 /13/15 di, air = 57.	.73 15 di, an/min
1, yoo 17 7/m, n x 28.32 1/f/ x 1,4 ng NH3/l x 0.001 y/m g  x 1 15 / 453 6 g = 0.12 2 15 N/H3 / ar, n  H2504 1 2NH3 - (NH4/2504  1/2504 98,07 15/16 mole NH3 17,03 15/15 mole  (NH4) 2504 132 013 15/15 mole  0,122 16 NH3/m, x 1 16 mole NH3/17,03 15 NH3  0,5 15 mole 1/2504/15 mole NH3 x 98.07 15 H2504/15 mole NH3 x 98.07	0.1963 14 1/20 /15	di, q. x 57,73. 16 d., aufani	n + 11, 33 16 1/20/min
H ₂ 50, 1 2NH ₃ - (NHy)z 504 1/2 504 98,07 15/16mole NH ₃ 17,03 15/15mole (NHy)z 504. 132 e13 15/16mole 0.122 16 NH ₃ /m., x 1 16 mole NH ₃ / 17,03 15 NH ₃ X. 0.5 15 mole /12 504 (15 mole NH ₃ x 98,07 15 mole N 504		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
1/2 504 98,07 15/16mole NH3 17,03 15/15mole  (NH4) 2 504 132 13 15/16mole  0.122 16 NH3 (m. 1 x 1 16 mole NH3/17,03 15 NH3 X  0.5 15 mole /12 504 (15 mole NH3 x 98,07 15 M; 504) 15 mole NS 504	× 1 16 / 453	16 g = 0.12 2 15 NHs/a	419
(NHy) 2 304. 132 013 15/15mole			
0.122 16 NH3/m. 1 x 1 16 w. cl. NH3/17, 03 15 NH3 X	1/2 504 98,07	19/16mole / NH3 17,	03 15/15 mole
0.122 16 NH3/m.g x 1 16 co of NH3/17,03 15 NH3 X.  0.5 16 mole /12504/15 mole NH3 x 98.07 15 H2504/15 mole NS 504  = 0.352 16 H2504/min.	(NH4)2304. 13	32.13 16/15mole	
	0, 122 16 NH3 /m, 2 0,5 14 mole /12504 = 0,35 2, 16 fi	x 1 16 w. cl. N/13/17,03 15 N. 1/16 m. le N/43 x 98.07 16 /1 1/250 y/12,12.	1/3 X 1/2 504 / 15 mile 1/2 504

Woodward-Clyde Consultants



Subject / and 102 Ve	ent bas Weatment PHz Schuber	Project No. 896 11404 M
By J. 500/+	Checked By ESR	Task No. 5
		File No.
Date 4-30-92	Date 5/27/92	Sheet3of6
0,12216 NH3/ = 0,47 4 15	(min + 0.352 15 H, 50 (N/14)2 504 /min	y / m i n
Air Out		
57.73 16 dry		
	100 % himid.	
$H = 0.01168 + 0$ $V = 16.28 \text{ ff}^3$	100741 = 0.0135 16 A	420/18 dry 9.1
57,73 16 lig air/2 = 0,78	19 H20/n - 15 H20/15 d	
	/min, V 16,78 /4 3/16 diga	
Blow down Out		
Must remove 1	(NH4), 804 produced in	1 6/2 in do wa
0.47416 (NH,)		
Oliwdown gt	5 % TOS polled.	1,50, 125/
[ [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [	6,005 genole/ 6 x 98 0,49 g/l = 0,5 g/kg	1.07 g/gmo/c = 0.05 % TDS
	2,11 be 4/2/32,124/	i & i i i i i i komunionominomini
5 70 anmonion	50/1/2 FE Gp. grav = 110	7 2 8
	04 /min x 0.05 15 (with 1250	
	1. x 0.95 16 ag/r/16 blo	
	nin / (8.33×1.028 15/gal)	
1,11 gul handown/m = 0',0045T	15 Hz 504/min	, 30g /X X (15/73),6 g

Subject Jank 102 Vent (	543 Ventment Pliz Derveyer	Project No. 272 119 1179
By J. Srolf	Checked By &SR	Task No
by V. 7/013	, , t	File No.
Date 4-30-92	Date 5 27 92	Sheet 4 of 6
Acid In		
	=0,35715 11,304 /min	
	Thire and spyrau	
0,35.7 16 A2504/1	min x 1/19 and 1,50 15.	H-50¢
	min /(8,33×1.395 15/99	
	1, x 0, 50 16 H20///	
= 0,35/19	1720/1119	
Makeup Wate		
Water Balance		
Aud In	10357	16 1/2 C/25 2 1
Ar Put Blowdown Out	_ 9,01	
Net		16 1/20/min
Make-up water	regularment +1, 9 16 = -,22 g	ipm
50% at 501/	crubber # 1 Design	= 0.7/4 /5/m/n
		= 0.714 15/m/g V = 0.06 / gpm
Blowdown (5	20 wt (NNy)250; ) =	9,5/19/min V
Make-cp Wate		< / g/p m /

By J. 5 ro 1 Checked By ESR  Date 4 - 30 - 92  Date 5 27 92  Sheet 5 of 6  File No.  Sheet 5 of 6  A r	Subject_	Tank	10	2	Ven	†	64	5	Tox	D.9 fr	me/	1+	NA	13 50						7 <u>C</u>	//	y n	r M	-	
Date 4-30-92. Date 5/27/92 Sheet 5 of 6  5 civil bor # 2  Air 17  Air at 13,000 c/m, 40 °F 24,6 in 1/9, 60% hom. 1/2,  H = 0.003.13 + 0.00069 = 0.00382 15 H20/16 dig air  V = 15.91 54 3/15 dig air 84 4 19 dig air  0.00382 15 H20/16 dig air 84 4 19 dig air 3.22 16 H20/min with 15,000 ft 3/min x 88.32 0/67 x 0.14 mg NH3/1 x 0.001 mg 19  X 1 15/453 6 g = 0.114 15 NH3/min x 1 15 mls x 15 NH3 x 0.5 15 mls is 60 ft 15 NH3 x 98.07 16 H2 Sey 116 mile 14,50 = 0.328 15 H, 50 ef min with 15 NH3 fm x 0.328 16 H2 Sey 116 mile 14,50 = 0.328 15 H, 50 ef min with 15 NH3 fm x 0.328 16 H2 Sey 116 mile 14,50 = 0.328 15 H, 50 ef min with 15 NH3 fm x 0.328 16 H2 Sey 116 mile 14,50 = 0.328 15 H2 Sey 116 mile 14,50 = 0.442 15 NH3/2 50 y 1 min with 15 NH3 fm x 0.328 16 H2 Sey 116 mile 14,50 = 0.442 15 NH3/2 50 y 1 min with 15 NH3/2 5	ву.7	5ro	1/			Ch	ecke	d By	8	5/	$\mathcal{Z}$								5 <u> </u>					-	
Scisber # 2  Air 17  Air 47 13,000 c/m, 40°F 24,6 in/19, 60% hom. 12,  H = 0.003.13 + 0.00069 = 0.0038215 H20/18 dip air  V = 15.41 rf 3/15 dip air  13,000 ft 3/min /15.4/. 11 // ol., air = 844.16 d., iir/min  0.00382 15 H,0/16 dip air × 89 4 15 dip air/min = 3.22 lb H20/min  13,000 ft 3/min × 28,32 0/ft 30 0,19 mg NH3/x 0,000 mg/g  X 1 15/453 6 g = 0,114 15 NH3/min = 0.000 mg/g  0.114 15 NH3/min × 1 boole NH3/17,03 15 NH3 × 0.5 15 mile H, 60, flictorie NH3  × 98.07 16 H, 20, flictorie H, 50 = 0.328 15 H, 50 4/min  0.114 15 NH3/min + 0.328 16 H, 50 4/min = 0.942 16 NH42, 50 4/min  Air 0+  844 16 dip air/min 1										,					ا	File I	No		5			6		-	
Air In   Date 7	<del>, , , ,</del>			: 8	Dat	te j	2/4	11	17	<u>し</u>	I		·		Shee	et	•	· ·	0	T			- 1		
And at 13,000 c/m, 40°F 24,6 in Ng, 60% hom. 1.4  H = 0.003.13 + 0.00069 = 0.00382 15 H20/19 dry and  V = 15.41 543/15 dry and  13,000 ft3/min /15.4/.// /// /// /// /// ///  0.00382 15 H20/16 dry and 844 16 dry and 3.22 /// ////  13,000 ft3/min × 28,32 0/ft3 × 0.14 mg NH3/f × 0.001 mg/g  × 1 15/453 6 g = 0.114 15 NH3/min 2  0.114 18 NH3/min × 1 16 mole NH3/17.03 15 NH3 × 0.5 15 mole 16.66, ///  × 98,07 15 H2504/16 min + 0.328 15 H2504/min = 0.442 16 NH4/2 504/min  0.114 15 NH3/min + 0.328 15 H2504/min = 0.442 16 NH4/2 504/min			_	Ł Z	2								***************************************							Account to the second s	-				
H = 0.003.13 + 0.00069 = 0.003.82 15 H20/16 dig air  V = 15.41 543/15 dig air  [3,000 H3/min /15.4/-11/16 dig air = 849.16 dig air  0.003.82 15 H20/16 dig air × 89 4 16 dig air/min = 3.22 lb H20/min =  13,000/13/min × 28.32 0/P3× 0,14 mg NH3/1× 0,00/ mg/g  × 1 15/453 6 g = 0.114 15 NH3/min =  0.114 16 NH3/min × 1 16 mble NH3/17,03 16 NH3 × 0.5 15 mble H, 60 g/16 mble NH3  × 98.07 16 H250 g/16 min e H250 g/16 min = 0.942 16 NH4/250 g/min  0.114 16 NH3/min + 0.328 16 H250 g/min = 0.942 16 NH4/250 g/min																					,				
13,000 ft3/min /15,4/-/f //f de, air = 844.16 d., air/min = 0.00382 15 H,0/16 J. a × 894 15 d., air/min = 3.22 le H20/min = 13,000 ft3/min × 28,32 0/ft3× 0,14 mg NH3/f × 0,001 mg/g × 1 16/453 6 g = 0,114 15 NH3/min = 1  O.114 16 NH3/min × 1 16 mole NH3/12,03 16 NH3 × 0.5 15 mole 14,60, (6 mole NH3 × 98,07 16 H, 50 g/min = 0.328 16 H, 50 g/min = 0.114 16 NH3/min + 0,328 16 H, 50 g/min = 0.942 16 NH4/2 50 g/min																							/. 1/		
0.00382 13 H, 0/16 1, a x 889 9 15 di, a r/min = 3.22 16 H20/min =  13,000 ft 3/min x 28,32 0/Ft 3x 0, 14 mg NH3/f x 0,00/mg/g  X 1 15/453 6 g = 0,114 15 NH3/min x  0.114 16 NH3/min x 1 16 mole NH3/17,03 16 NH3 x 0.5 15 mole 11,60,16 mole NH3  × 98,07 16 Hz 50 g ft 6 mic e Hz 50 g  0.114 16 NH3/min + 0.328 16 Hz 50 g/min = 0.942 16 NH4/z 50 g/min  Air Out  894 16 diy nin for, 1		= 0. = 15	003	5-13 [	+	0, 3/	00 15	0 O 4	69	1 = 9	, , ,	0.0	03	8	۷ 13	5 <i>H</i>	20	f 19	t d	1	91				
13,000 ft 3/m, n x 28,32 0/Ft x 0,14 mg NH3/1 x 0,00/mg/g  X 1 16/453 6 g = 0,114 15 NH3/m, 2 1  O.114 16 NH3/m, x 1 15 mole NH3/17,03 16 DH3 x 0.5 15 mole H, 60, 16 mole NH3  × 98,07 16 Hz 50, 116 mole H, 50, = 0.328 15 H, 50 y/m, i  O.114 16 NH3/m, h + 0,328 16 Hz 50 y/m = 0,942 16 WHy/z 50 y/m,  Air Out  844 16 dry not/m, 1	13,0	000 /	73/,	n 17	/	15	., 4,	1 <i>1</i>	7	/1/	<i>al.</i>	, a	, <b>,</b>	•	84	19	. 19	d	<u>-</u>	(, , ,	1	n, , -	ว .		
0.114 15 NH3 /min + 0.328 16 H2 SO4/min = 0.942 15 PH4 504/min  Air Out  844 16 dry que from 1	0.00	2382	1. 7.5	Η, α	· 2//	[G ]./	1, 0	, ,	,	18	94	1/4	<i>.</i> /,	(4)	/.	111-7		3.	22	16	$H_{\nu}$	0/r	410	_	_
0.114 16 NH3 /min + 0.328 16 H2 SOG /min = 0.942 16 PH4 2 SOG / From  Air Out  844 16 dry que for 12	13,0	00//	3/m.	n;	x 2	78 v.	32	2/		·3 /	0,	14	~ y	NH	3/1	1 +	0,	00	//	79	/9				
0.114 16 WH3 /min + 0, 328 16 A2 504/min = 0.942 16 WH4, 2504/ Hain  Air Out  844 16 dry 511/m, 1																			: 						
Air Out 844 16 dry 511 /100, 1	0.1/9	1 14 NA ×	3/m/ 98,	9× 07		6 MOI 12 SC	(c N	11/3 16%	/1. rsc (	7,03	3 16 2 5 6	D,	りょ く	( <i>0</i> ).3	28 28	15 , 15	role Hz	H., 50	60	21.	j )	/, / L	1/43		
844 16 dry nu for, 1	0.11	14 15	MH3	/m	ın	j C	Ž, 3.	2-8	15	H2	50,	/25	114	Ε (	9.4	42	16	P),	$H_{4,2}$	25	041	l kg	19		
	Air	Ου	7																						
A. S at 40 F 100 % hom. 1. y, 24. 6 10 14.	84	4 16	diy	50	//	/ /17 ,	/)												-					-	
	1.1	'af	4/0	5 4 7	<b>-</b>	10	8	7.	7,	un,	1,	77	2	4	<i>f</i> : 1		14 c								
844 16 dy an/min x 0.0063415 H20/ 15 dy air = 5.3515 H20/min	849	7 16	dyl	11/	MIZ	8 X	0.	00	63	419	H2	0/	15 c	1170	1,/	-	5.	35	75 /	4 ₂ C	/m	19			
899-16 di, an/min x 15.47 [43/16 di, air = 13.057 /43/min	84	9-16 c	1:, 0	11/	(m)	, x	15	.4	7	A.	3/13	6 d	7	411		- /	13	Q s	5 /	7 /	43	m	0		
Blowdown Out	Bloc	udou	7n	6 V	,†	,																			
0,992 16 My/2 504/19/2	0,	44Z	. /6	. (1	J.//.	1/2 3	04	/	ry ,	, 1															
0,442 15 (NH, 1.50g forin x 16 blow laws (0,05 15 (144)) 504 = 8,84 15 blow laws onin	0,49	12 15	(إلام) إلى	1.50	?4 /r	7/7	+	1 15	61	ow.	łow	/(	7,05	1.9	(131.	/ _Y ) _z	504	= ;	8.8	74	/5 b	;/o.u	Toa	241.	7
8,84 B blow do w n/min / (8.33 1/1028 1=14.11) = 1,03 gpm blowdows	8,84	15 b/ou	vdou	n/n	117	/18	1.33	4/	, o z	8 1	5/5-9	//	7	/,	0 3	3 9	pm	þ	10-	rdo	w -	1	سا		
8.84 19 blowdown/min x 0.95 15 14 0/16 blowlian + 8,10 15 14 0/min	8.84	14 blow	down	/m :	nx	0.	95	15	11/2	0/	16	þ/a	ناكر بيا	er n	1	8,	10	يا	11;	, 0/	، 1حر	7	<u> </u>		

ibject 1 4 A 2 10 4 16 4 16 4	Cour irregional Bus of too.	Project No. * 5
, J, Stoff	Checked By	Task No
ate 4-30-9 Z	Date 5/27/92	File No of of
1.03 gul blow lows for	11 x 3.785 A/g. / x 0,49 3 = 0,0042 /5 f/2504/min	9 1/2504 / 0 +
Acid In 0,328 + 0,004 =	0,332 19 1/2 50//11/11	
	X 1 16 acid 10.50 16/1350g -	
0.664 15 acid/ min / (	(8.33×1.395 15/1941) = 0.05 7	gal acid/min
	0.5015H20/18 and = 0.	
Make-up Wafer. ] Air In Acil In	+ 3,22 /6 //	20/m/n V
Blowdown Out	+ 0.33 15 H- - 8,90 15 H	0/11/2 D
MgKt-up water	10, 2, 16/min = 1.2	
	106605 H 2 Draign 154	
1	Mic Acid = 0.6	
Blowdown (5 70 (		
Make of Walra	= /,0 gp	

ubject Utility Water	Solenoid Value Selection	Project No: 89 C 1/4 m m
ww I	Checked By	Task No. 6
		File No.
te 6/18/92	Date	Sheet/of/
. Estimate 20 PSI . DP across value		
Assume min Fill Assume max. Fill		1. Samp
FLOW Require		
253 gel 5 mm	51 GPM (MIN)	
30 9al .	30 90/mm (max)	
ESTATE	m	
$C_{V} = \frac{G_{V}}{V_{H}}$	m = Pos man	
$C_{V} = \frac{5}{\sqrt{2}}$	= = 9.3 min for large un	it use 1" Cy = 11.5
CV = V30	= 5.5 max. for small an	17 USE 74 CV = 3 407 SMB11 DAT
2. <u>Selection</u> At Scrubber	- A/O1	
		20
Select \$50	<ul> <li>Red HAT, Cat. No 8221 G7</li> <li>1"NPT with 1" orifice 1</li> </ul>	
At Scrubber		
Select ASC	o Red Hat Cat. No. 8030 G3 3/4" NPT with 3/4" orisica, 1	Brass Body & Rung NDISC
70/1160,		
		man i v

Subject <i>DESIGN AN</i>	ALYSIS - EMISSION CONTROL	Duct Project No. 89C 114 MM
	_	
By $\omega \omega I$	Checked By Joseph Swift	File No
Date 4/2/42	Date 6/3/9 Z	Sheet of Z
Design Critoria		
a) Phase 1- Tank eva Wha	will be operated during it is virtually closed up. Yer cuate fluid vapors general tank	abolation is required to ated from heating, and
beer	k fluid has been removed a provided in the tank. produce an indraft the	Ventilation 1s provided ru the opening in case
the will	re are additional gasses	geng, but very little in the
Dosign Conditions  For Phase 1  INCIPATION HE	s boon estimated to be a	but 1100 Cfm. based on:
1. 1963 Ft. of 2. 0.55 cfm/	Joints at an estimated In. Ft of Joint from Carrier	1/64" Crack - design manual part 1 table 448.
assuming the	e cracks are similar to nemperature of air leavin	osidential Casement Windows.
Bfor Phase 2	/ / / bot L.J	the Tallahad Weaklekon
Manual by the	ACGIH, for a fumigat	using the Industrial Ventilation from booth (VS921) as
1. 1 20 01	modifying & suit: - changes per hour are	rocommended for Phipprotected
2. At this 1	entry though through the hast 100 PPm throw a 1	be allowed before entry : 20 chan leading door, or 500 FPM
	air Inlot door .	
Our operation	13 a tank with por	sonnel entry by people at level B protecti
Assume an 8	a tenk for 20 air Change 18 leading door at a in	let velocity of 200 FPM.
this result	, In 12800 cfm Say 1 200,000 Cu. Ft of volume	3000 Cfm). Since the tank
will only be	about 4 Changes / Hour.	Sinelwaned
a 20air Cha	nge punge, we need	5 trours purge time
- 11 Li.	tank 15 assumed to before be condinsation of	- My accom wall.
Duct materia	( should resist cor	roscon · During phase z temporatur
n AIR MUST PAS	o thru a packed tower 50	crubber at "the pross drop
and a cirbu ad	corptum unit, pross. drop ;	thru cerbon adsorption unit will  "Hid for the 1360cfm system  Wandramed Charle Consultants
be "Hzo for t	4 < 15000 Ctm >4.270m, and	Woodward-Clyde Consultants

Project No. 896 114 MM Subject DESIGN ANALYSI Task No. 5. 3 Checked By J/5 By WWI 7 File No.__ Date 6/3/92V Date 6/2/91 TYPE OF SYSTEM Since there will be condonsation on the duct walls, the duct material must pesist cocurssion. TYPE OF EQUIPMENT CONSIDERED - & Gulvanized or aluminum would probably corrode considering the nature of the fluid that is "off gassing" Stanless steel would probably not corrole but would be expension would not corrode & be ox for temperature FRP ductwork but is also expensive (though not like skunless) CPUC ductwork will take withstand corrosion and the temperature It is kess expensive than FRF; but doesn't come in Sizes Jarger than 12" Type G ductwork, which is a PVE Bucked with fibergless reinforcent · Busically this is FRP duction. It will withstand corrosion and temperature SELECTION - FRP (TYPE C) ductwort CALCULATIONS TANK CALC أوربيته نعه Tank Eut B = 0.5XVP VP-160 0.30 DUCT - 120 @ . 4 lec 0.48' 90° Ells -3 h=0.55 LVP 3 times 0,99 3 45° Ells h=0,275 VP Branch Exit 1 6. SCRUBBER @.4"/100° 0.10 Duct wen is Double Eller 1 h=155UP twee 0.66 ۶ 9. Elbow h = 1550P 0.33 0.69 10 Tee 1 h= 1.15x016 0.08 4"/100 11 Ductwerk 20 10 00 CAG 12 13 Dischy 92" LOSS at ALT & TEMP. CONDITION 13000 1300 SUCTION DUCK = 3.13 x / 5/5/x 122 = 32.6 \$2" \$cou. 1028 + Say 0.674" 10 046 Scrubby 2.0 2.00 Calculates Pischy Duct 0.79x 1/15 x 1.22 .006 0.6 STD. CON. 10.0 (or 6") CAG Sil" Altitude Conditions 15.2 4.0 and activork for large system and derate for HP select fars for 3,92"SP on ductions for small system derate for HP 1 1059

# APPENDIX D ELECTRICAL DESIGN CALCULATIONS

bject RMA Tank		trical loads	Project No. 89C/ Task No. 5	
E Pitchkolan	Checked By		File No	
te 6/23/92	Date		Sheet	of
quipment i	Hp/Pmc	Amperage	KVA S	tater Size
0101	20hp	· 34A	28 KVA	2
2/02	20 hp	34A	Z8 KVA	2
9703	5hp	9.5A	8 KVA	1
2104	340	GA	SEVA	
2/05	340	6 A	S KM	7
2106	35/w	3.30115 VAC	Z Lighting	NA
707	38/W	3.) @ 1/5 VAC	S Panel Load	NA
2101	40hp	GSA	5 4KVA	3
4/07	7.5hp	14A	12KVA	/
ghting Panel	15KVA	371,25A	15KVA	NA
Tradsformer				
ca Floodlights	4000W	8.33 A	Y KVA	NA
nk Lights	4000W	8.33 A	Y KUA	NA
Elin Trailer	25 KVA	100 Asernica 240/1704 1 B	25 KVA	NA
lding Recortade		60A	SOKVA	NA
1-101 Blower	15hp	26.25	22 KUA	Z
- 101 Circ Ping	Yohp	GSA	54KVA	3
		Tota/Connected	God 314 KVA	

Subject <u>ZMA Tank Delim</u>	Electrical Loads	Project No. <u>89C 114 M M</u>
By EPitchkolan		Task INO
Date 6/23/92	Date	Sheetof2
	1s. Max. Demond	
P103 Shp	lonly one of their will grown	le Shp-8KVA 6hp-10KVA
P105 3hp)		
BC101 - 40hp BC102 - 75hp		7.5hp - 12 KVA 40hp - 54KVA
BC102 - 1811 BC101 will other processe the tank is q	operate only after the 7 are shutdown - 8410	tank is goen and oz will not run after
	lighting will operate on	
SYKUA IDKUA YKW 68KUA	Gnnected Independent Max Den	Load 314 KVA Load 68 KVA NAND-246 KVA

Subject VOLTAGE DASP CA	COULATIONS	Project No. <u>89C114 M.M.</u>
By Ed Pitchkolan	Checked By	Task No
Date 6/23/92	Date	Sheetof
Vd: IR (Coso) From Okonite C	10 Amp Trip Breaker 50 - IN (Sing) italog Sulfetin EMB-8 50/. 8/+ (10) 05 /50+	28 Tobles 1-3
100057/( 1/4 = 74 + 1 1/4 = 9/v = = 450	7	
	OAMP Trip Breaker  (50)/.0	135 of Pistonec
Vd = 1.45 +  75 Vd = 1.61  780		

Subject		Project No
Ву	Checked By	Task No
σ,	•	File No.
Date	Date	Sheet Z of 3
P/02	SDAMP Tr. p Dreaker	155 Ft. Aistance
1/4 = (50) (, 269) Toward 1/4 = 1.67	(155), 8 + (50)(04) +, 19	
2/0/	100 Amp Trip Breaker	100 Fl. Pistone
Vd= 100(.169 1000++1 Vd=14 +.	(100)(8) + 150(,05) 1000# 3 ,35%	(100)(.6)
Vd= 40 (679)	40 AMP Trip Presker (100)(8) + 40(.066)(1000)	100 F By Lane
3 Val = 2.33	= .52	



Subject		Project No.	
•	Checked By	Task No	
Ву		File No.	
Date	Date	Sheetof	
DECON TRAILE	TO AMPTRIP BRINKON	115 F. Distance	
Vd = (70) / .26 $Vd = 1. 73 +$ $Vd = 2 = 40$		(11) 8)	
Incoming 611  503 kcm11  Vd = 350/100	750 AMP TPIP BROKEUM 222) (60) (8) +350/,04 154) (10000		
Not = .873 +			



Subject NMA TRNK	Down Brenzen	f CASLE Project	1 No. 89C114MM
By E Pitchkolau	Checked By	Task N	0
Date 6/24/97	Date		of
Equipment Group	ed Together a vik	i d	Cable Size (75%)
0 4E-101 None P-101 20hp	341 X / 25 -> 42	S => SOABKR	#4/2006
D 16E-102 Nove P107 202p	34M X1.25 > 42,	S => SORBKA.	#YAUS
3 D-101 nme B1-101 40hp D-103 5hp	74.5×1.25 -> 93	=> NOR ARA	#2AW5
9) 0-102 nnix B2-102 7.5 P-104 3 P-105 3	26 x1.25 → 37.5	<i>⇒</i> 40/1	#3AWG
\$ 14-101 am Blower 15 Cic. Prup 40	84x1.25 -> 1	105R =>11UR	#Z AWG
6 lighting Tank 4	000 Use Weld	ling Juthet	4 6AW4
1) Welding Recept	ich GOA	existing	NA
B) IS KUA XIEMA		existing	PA
(9) ZSKUN XFMR	52. A	X1,25=65 => 20A	* YAWG

Subject AMR Tonk	Dolan XFM. R. SIZING	Project No. <u>89C/14/4/4</u>
sy EPitchkolon		Task No
Date 6/1/92	Date	Sheetof
TRANSFORMER.	Szw6	
13.8KV #5 48	20 3 p	
260KVR rego change to 3-	11red - 3-25KUR exist 100KUR - For Fotalot Maximum Landing.	300KVA
100 A Servicy	n 480- Z40/20 V 10	
	ZYKUR - ZSKUR XFM	
The Electrica, 480-2084/12	Switchgear Anchorson	existing iskun;
existing par	icl. This will be reuse	<i>.</i>

