Esercizio 1: Assembly

Si consideri la seguente funzione iterativa, per $n \in \mathbb{N}$:

$$n_{i+1} = \begin{cases} n_i/2 & \text{se } n_i \text{ è pari,} \\ 3 \cdot n_i + 1 & \text{se } n_i \text{ è dispari.} \end{cases}$$

Dato un qualunque naturale $n_0 \ge 1$, si può trovare un numero finito k di iterazioni tali per cui $n_k = 1$. Scrivere un programma che si comporta come segue:

- 1. Legge da tastiera un numero decimale su 8 bit. Sia tale valore n_0 .
- 2. Stampa, su righe distinte, tutti gli n_i con i da 1 a k.
- 3. Stampa il numero k di iterazioni corrispondenti al valore di n_0 immesso.
- 4. Termina.

Note:

- · Non è necessario validare l'input oltre quanto già fatto dai sottoprogrammi indecimal
- · Il valore k da trovare è il *primo* per cui $n_k = 1$.
- · Il valore massimo di k così definito, per i possibili valori di n_0 considerati in questo esercizio, è < 255.
- · Si consiglia di utilizzare questo limite come controllo di sicurezza per evitare loop infiniti.
- Il valore massimo n_i raggiungibile, per tutti i possibili valori di n_0 considerati in questo esercizio, è 13120 < hacken hack

Le stampe vanno formattate coma da gli esempi di output in .txt allegati al link: https://tinyurl.com/jnxrhhjc

Si ponga attenzione alla formattazione di questi file, che fa parte delle specifiche.

La documentazione Assembler in formato PDF è scaricabile al link: https://tinyurl.com/ys9euyc9

 $^{^1}$ Questa è nota come congettura di Collatz. È certamente vera per tutti i valori di n_0 considerati in questo esercizio.