

Show the Proof

In [1]: import proveit
 # Automation is not needed when only showing a stored proof:
 proveit.defaults.automation = False # This will speed things up.
 proveit.defaults.inline_pngs = False # Makes files smaller.
 %show_proof

Out[1]:

]:		step type	requirements	statement
	0	modus ponens	1, 2	$t \in \mathbb{N}^+ \vdash \forall_{t \in \mathbb{N}^+} \left(\psi_t\rangle = \left(\frac{1}{2^{\frac{t}{2}}} \cdot \left(\sum_{k=0}^{2^t - 1} \left(\mathrm{e}^{2 \cdot \pi \cdot \mathrm{i} \cdot \varphi \cdot k} \cdot k\rangle_t \right) \right) \right) \right)$
	1	instantiation	3, 4 [*] , 5 [*] , 433 [*]	$ \begin{array}{c} t \in \mathbb{N}^{+} \vdash \\ \left(\left(\psi_{1}\rangle = \left(\frac{1}{\sqrt{2}} \cdot \left(\sum_{k=0}^{1} \left(e^{2\pi \cdot i \cdot \varphi \cdot k} \cdot k\rangle \right) \right) \right) \right) \wedge \left[\forall_{t \in \mathbb{N}^{+} + \psi_{t}\rangle = \left(\frac{1}{2^{\frac{t}{2}}} \cdot \left(\sum_{k=0}^{2^{t-1}} \left(e^{2\pi \cdot i \cdot \varphi \cdot k} \cdot k\rangle_{t+1} \right) \right) \right) \right] \right] \Rightarrow \left[\forall_{t \in \mathbb{N}^{+}} \left(\psi_{t}\rangle = \left(\frac{1}{2^{\frac{t}{2}}} \cdot \left(\sum_{k=0}^{2^{t-1}} \left(e^{2\pi \cdot i \cdot \varphi \cdot k} \cdot k\rangle_{t+1} \right) \right) \right) \right) \right] \right] $
		$P\left(t ight):\left \psi_{t} ight angle$	$= \left(\frac{1}{2^{\frac{t}{2}}} \cdot \left(\sum_{k=0}^{2^t - 1} \left(e^{2^t}\right)\right)\right)$	$(2\cdot\pi\cdoti\cdotarphi\cdot k\cdot k angle_t)$), $m:t$, $n:t$
	2	instantiation	<u>6, 7, 8</u>	$ \left(\psi_1\rangle = \left(\frac{1}{\sqrt{2}} \cdot \left(\sum_{k=0}^1 \left(\mathrm{e}^{2 \cdot \pi \cdot \mathrm{i} \cdot \varphi \cdot k} \cdot k\rangle \right) \right) \right) \right) \wedge \left[\forall_{t \in \mathbb{N}^+ \ \ \psi_t\rangle = \left(\frac{1}{2^{\frac{t}{2}}} \cdot \left(\sum_{k=0}^{2^{t-1}} (\mathrm{e}^{2 \cdot \pi \cdot \mathrm{i} \cdot \varphi \cdot k} \cdot k\rangle_t) \right) \right)} \left(\psi_{t+1}\rangle = \left(\frac{1}{2^{\frac{t+1}{2}}} \cdot \left(\sum_{k=0}^{(2 \cdot 2^t) - 1} \left(\mathrm{e}^{2 \cdot \pi \cdot \mathrm{i} \cdot \varphi \cdot k} \cdot k\rangle_{t+1} \right) \right) \right) \right) \right] $
			$\left(\frac{1}{\sqrt{2}} \cdot \left(\sum_{k=0}^{1} \left(\mathrm{e}^{2 \cdot \pi \cdot \mathrm{i}}\right)\right)\right)$	
		$\forall_{t \in \mathbb{N}^+ \mid \psi_t\rangle = \left(\frac{1}{2^{\frac{t}{2}}} \cdot \left(\sum_{k=0}^{2^t - 1} (e^{2 \cdot \pi \cdot \mathbf{i} \cdot \varphi \cdot k} \cdot k\rangle_t)\right)\right)} \left(\psi_{t+1}\rangle = \left(\frac{1}{2^{\frac{t+1}{2}}} \cdot \left(\sum_{k=0}^{(2 \cdot 2^t) - 1} \left(e^{2 \cdot \pi \cdot \mathbf{i} \cdot \varphi \cdot k} \cdot k\rangle_{t+1}\right)\right)\right)\right)$		
	3	theorem		$\vdash \ \forall_{P} \ \left(\left(P\left(1\right) \land \left[\forall_{m \in \mathbb{N}^{+} \ \ P(m)} \ P\left(m+1\right) \right] \right) \Rightarrow \left[\forall_{n \in \mathbb{N}^{+}} \ P\left(n\right) \right] \right)$
		proveit.numbers.number sets.natural numbers.fold forall natural pos		