LP Equivalent: ℓ_{∞} - Norm Approximation

-
$$\ell_{\infty}$$
 - Norm: $||y||_{\infty} = \max_{i} |y_{i}| = \max_{i} \max_{i} (-y_{i}, y_{i})$
- Fitting/Approximation Problem: $|y_{i}|_{\infty} = \max_{i} |y_{i}|$

minimize
$$||Ax - b||_{\infty}$$

- LP Equivalent:

minimize
$$\underline{t}$$
 subject to $\underline{Ax - b} \leq \underline{t1}$ $\underline{-(Ax - b)} \geq \overline{t1}$

LP Equivalent: ℓ_{∞} - Norm Approximation

LP Equivalent: ℓ_{∞} - Norm Approximation

- Matrix Form:

minimize
$$\begin{bmatrix} \mathbf{0} & 1 \end{bmatrix}^T \begin{bmatrix} \mathbf{x} \\ t \end{bmatrix}$$
subject to $\begin{bmatrix} A & -1 \\ -A & -1 \end{bmatrix} \begin{bmatrix} \mathbf{x} \\ t \end{bmatrix} \leq \begin{bmatrix} \mathbf{b} \\ -\mathbf{b} \end{bmatrix}$