Nombres complexes

imaginaires purs

Ecriture algébrique

Conjugué

 $\overline{z} = a - ib$

•
$$\overline{\overline{z}} = z$$

•
$$\overline{z+z'} = \overline{z} + \overline{z'}$$

•
$$\overline{z \times z'} = \overline{z} \times \overline{z'}$$

$$\bullet = \overline{\left(\frac{z}{z'}\right)} = \frac{\overline{z}}{\overline{z'}}$$

•
$$Re(z) = \frac{z + \overline{z}}{2}$$

•
$$Im(z) = \frac{z - \overline{z}}{2i}$$

Module

$$|z| = \sqrt{a^2 + b^2} = \sqrt{z \cdot \overline{z}}$$

$$\bullet ||z \cdot z'| = |z||z'|$$

•
$$|z|^2 = \overline{z}z$$

$$\bullet \ \left| \frac{z}{z'} \right| = \frac{|z|}{|z'|}$$

•
$$z^{-1} = \frac{\overline{z}}{|z|^2} = \frac{a - ib}{a^2 + b^2}$$

$$\bullet |z+z'| \le |z|+|z'|$$

•
$$|z-z''| \le |z-z'| + |z'-z''|$$

Nombres complexes de module 1

Ensemble
$$\mathbb{U}=\{z\in\mathbb{C}\setminus|z|=1\}$$

Dans le plan, U est représenté par le cercle trigonométrique

Forme trigonométrique

$$\cos(\theta) + i\sin(\theta) = e^{i\theta}$$

$$ullet |e^{i heta}|=1$$

•
$$e^{i\theta} = e^{i\theta'} \Leftrightarrow \theta = \theta' + 2k\pi$$

$$e^{i\pi} = -1$$
 $e^{i2\pi} = 1$ $e^{i\frac{\pi}{2}} = i$

Relations d'Euler

 $\forall \theta \in \mathbb{R}$

•
$$\cos(\theta) = \frac{e^{i\theta} + e^{-i\theta}}{2}$$

$$ullet \sin(heta) = rac{e^{i heta} - e^{-i heta}}{2i}$$

L'angle moitie

$$egin{aligned} 1+e^{i heta}&=2\cos\left(rac{ heta}{2}
ight)e^{irac{ heta}{2}} & 1-e^{i heta}&=-2i\sin\left(rac{ heta}{2}
ight)e^{irac{ heta}{2}} \ e^{ip}+e^{iq}&=2\cos\left(rac{p-q}{2}
ight)e^{irac{p+q}{2}} & e^{ip}-e^{iq}&=2i\sin\left(rac{p-q}{2}
ight)e^{irac{p+q}{2}} \end{aligned}$$

Formule de Moivre

$$egin{aligned} orall heta \in \mathbb{R}, orall n \in \mathbb{Z} \ \cos(n heta) + i\sin(n heta) = (\cos(heta) + i\sin(heta))^n \end{aligned}$$

Forme trigonométrique

$$z = |z|e^{i heta} = |z|(\cos(heta) + i\sin(heta))$$

Argument

$$\theta = \arg(z)$$

$\cos(\theta) = \frac{a}{\sqrt{a^2 + b^2}}$	$\sin(\theta) = \frac{b}{\sqrt{a^2 + b^2}}$	$\tan(\theta) = \frac{b}{a}$
rg(zz') = rg(z) + rg(z')	$rg(z^n)=nrg(z)$	$rg\left(rac{z}{z'} ight)=rg(z)-rg(z')$

Module

$$\rho = |z|$$

$$ullet \ \overline{z} = |z| e^{-i heta}$$

$$\bullet \ \ z^{-1} = \frac{1}{|z|} e^{i\theta}$$

•
$$zz' = |z||z'|e^{i(\theta+\theta')}$$

•
$$a\cos(t) + b\sin(t) = A\cos(t - \varphi)$$

Equations

Racine carre de un polynôme complexe

Soit
$$X=lpha+eta i$$
 on pose $\delta=r+si$ et $\delta^2=X\Leftrightarrow egin{cases} r^2+s^2=|X| \ r^2-s^2=Re(x) \ 2rs=Im(x) \end{cases}$

Equations de 2èm dégrée

si
$$\Delta
eq 0$$
 : $z_1 = rac{-b - \delta}{2a}$ et $z_2 = rac{-b + \delta}{2a}$

$$ullet$$
 si Δ réel positif : $z_1=rac{-b-\sqrt{\Delta}}{2a}$ et $z_2=rac{-b+\sqrt{\Delta}}{2a}$

• si
$$\Delta$$
 réel négatif : $z_1=rac{-b-i\sqrt{|\Delta|}}{2a}$ et $z_2=rac{-b+i\sqrt{|\Delta|}}{2a}$ si $\Delta=0$: $z=rac{-b}{2a}$

Racines n° de l'unité et d'un nombre complexe a

Solutions de l'equation $z^n=1$:

$$\mathbb{U}_n=\{\omega_k=e^{irac{2k\pi}{n}}\setminus k\in\{0,1,\ldots,n-1\}\}$$

Resolution de $z^n = a$

$$z_k = \sqrt[n]{eta}e^{i(rac{lpha}{n} + rac{2k\pi}{n})} = \sqrt[n]{eta}e^{irac{lpha}{n}}\omega_k$$

Exponentielle complexe

Soit z = a + ib

$$ullet e^z=e^{a+ib}=e^a\cdot e^{ib}=e^a(\cos(b)+i\sin(b))$$

- $|e^z| = e^a$
- $arg(e^z) = b$

Nombres complexes et géométrie plane

Distance entre deux points

$$d(M,M^\prime) = |z^\prime - z|$$

Mesure d'un angle

$$(\overrightarrow{OM_1},\overrightarrow{OM_2})= \operatorname{arg}(rac{z_2}{z_1})$$

$$(\overrightarrow{AB}, \overrightarrow{AC}) = \arg(\frac{c-a}{b-a})$$

Alignement

$$M,\,M'$$
 et O sont alignés $\Leftrightarrow \arg(z)=\arg(z')[\pi]\Leftrightarrow rac{z'}{z}\in\mathbb{R}$ $A,\,B$ et C sont alignés $\Leftrightarrow Z=rac{c-a}{b-a}\in\mathbb{R}\Leftrightarrow Z=\overline{Z}$

Orthogonalité

$$OM \perp OM' \Leftrightarrow rg(z) = rac{\pi}{2} + rg(z')[\pi] \Leftrightarrow rac{z'}{z} \in i \cdot \mathbb{R} \ AB \perp CD \Leftrightarrow Z = rac{d-c}{b-a} \in i \cdot \mathbb{R} \Leftrightarrow Z = -\overline{Z}$$

Nombres complexes

imaginaires purs

Ecriture algébrique

Conjugué

$$\overline{z} = a - ib$$

$$\bullet$$
 $\overline{\overline{z}} = z$

•
$$\overline{z+z'} = \overline{z} + \overline{z'}$$

•
$$\overline{z \times z'} = \overline{z} \times \overline{z'}$$

$$\bullet = \overline{\left(\frac{z}{z'}\right)} = \frac{\overline{z}}{\overline{z'}}$$

•
$$Re(z) = \frac{z + \overline{z}}{2}$$

•
$$Im(z) = \frac{z - \overline{z}}{2i}$$

Module

$$|z| = \sqrt{a^2 + b^2} = \sqrt{z \cdot \overline{z}}$$

- $\bullet ||z \cdot z'| = |z||z'|$
- $|z|^2 = \overline{z}z$
- $\bullet \ \left| \frac{z}{z'} \right| = \frac{|z|}{|z'|}$
- $z^{-1} = \frac{\overline{z}}{|z|^2} = \frac{a ib}{a^2 + b^2}$
- $|z + z'| \le |z| + |z'|$
- $|z-z''| \le |z-z'| + |z'-z''|$

Nombres complexes de module 1

Ensemble $\mathbb{U}=\{z\in\mathbb{C}\setminus|z|=1\}$

• Dans le plan, U est représenté par le cercle trigonométrique

Forme trigonométrique

$$\cos(\theta) + i\sin(\theta) = e^{i\theta}$$

$$ullet |e^{i heta}|=1$$

•
$$e^{i\theta} = e^{i\theta'} \Leftrightarrow \theta = \theta' + 2k\pi$$

$$e^{i\pi}=-1$$
 $e^{i2\pi}=1$ $e^{irac{\pi}{2}}=i$

Relations d'Euler

 $\forall \theta \in \mathbb{R}$

•
$$\cos(\theta) = \frac{e^{i\theta} + e^{-i\theta}}{2}$$

•
$$\sin(\theta) = \frac{e^{i\theta} - e^{-i\theta}}{2i}$$

L'angle moitie

$$egin{aligned} 1+e^{i heta}&=2\cos\left(rac{ heta}{2}
ight)e^{irac{ heta}{2}} &1-e^{i heta}&=-2i\sin\left(rac{ heta}{2}
ight)e^{irac{ heta}{2}} \ e^{ip}+e^{iq}&=2\cos\left(rac{p-q}{2}
ight)e^{irac{p+q}{2}} &e^{ip}-e^{iq}&=2i\sin\left(rac{p-q}{2}
ight)e^{irac{p+q}{2}} \end{aligned}$$

Formule de Moivre

$$egin{aligned} orall heta \in \mathbb{R}, orall n \in \mathbb{Z} \ \cos(n heta) + i\sin(n heta) = (\cos(heta) + i\sin(heta))^n \end{aligned}$$

Forme trigonométrique

$$z = |z|e^{i heta} = |z|(\cos(heta) + i\sin(heta))$$

Argument

$$\theta = \arg(z)$$

$\cos(heta) = rac{a}{\sqrt{a^2 + b^2}}$	$\sin(\theta) = \frac{b}{\sqrt{a^2 + b^2}}$	$\tan(\theta) = \frac{b}{a}$
rg(zz') = rg(z) + rg(z')	$\arg(z^n) = n \arg(z)$	$rg\left(rac{z}{z'} ight) = rg(z) - rg(z')$

Module

$$ho = |z|$$

•
$$\overline{z} = |z|e^{-i\theta}$$

$$\bullet \ z^{-1} = \frac{1}{|z|} e^{i\theta}$$

•
$$zz' = |z||z'|e^{i(\theta+\theta')}$$

•
$$a\cos(t) + b\sin(t) = A\cos(t - \varphi)$$

Equations

Racine carre de un polynôme complexe

Soit
$$X=lpha+eta i$$
 on pose $\delta=r+si$ et $\delta^2=X\Leftrightarrow \begin{cases} r^2+s^2=|X| \\ r^2-s^2-Re(x) \end{cases}$

$$ext{et } \delta^2 = X \Leftrightarrow egin{cases} r^2 + s^2 = |X| \ r^2 - s^2 = Re(x) \ 2rs = Im(x) \end{cases}$$

Equations de 2èm dégrée

si
$$\Delta
eq 0$$
 : $z_1 = rac{-b - \delta}{2a}$ et $z_2 = rac{-b + \delta}{2a}$

- si Δ réel positif : $z_1=rac{-b-\sqrt{\Delta}}{2a}$ et $z_2=rac{-b+\sqrt{\Delta}}{2a}$
- si Δ réel négatif : $z_1=rac{-b-i\sqrt{|\Delta|}}{2a}$ et $z_2=rac{-b+i\sqrt{|\Delta|}}{2a}$ si $\Delta=0$: $z=\frac{-b}{2a}$

Racines n° de l'unité et d'un nombre complexe a

Solutions de l'equation $z^n = 1$:

$$\mathbb{U}_n=\{\omega_k=e^{irac{2k\pi}{n}}\setminus k\in\{0,1,\ldots,n-1\}\}$$

Resolution de $z^n = a$

$$z_k=\sqrt[n]{eta}e^{i(rac{lpha}{n}+rac{2k\pi}{n})}=\sqrt[n]{eta}e^{irac{lpha}{n}}\omega_k$$

Exponentielle complexe

Soit z = a + ib

- $ullet e^z=e^{a+ib}=e^a\cdot e^{ib}=e^a(\cos(b)+i\sin(b))$
- $|e^z| = e^a$
- $arg(e^z) = b$

Nombres complexes et géométrie plane

Distance entre deux points

$$d(M, M') = |z' - z|$$

Mesure d'un angle

$$(\overrightarrow{OM_1},\overrightarrow{OM_2}) = rg(rac{z_2}{z_1}) \ (\overrightarrow{AB},\overrightarrow{AC}) = rg(rac{c-a}{b-a})$$

Alignement

$$M,\,M'$$
 et O sont alignés $\Leftrightarrow \arg(z)=\arg(z')[\pi]\Leftrightarrow rac{z'}{z}\in\mathbb{R}$ $A,\,B$ et C sont alignés $\Leftrightarrow Z=rac{c-a}{b-a}\in\mathbb{R}\Leftrightarrow Z=\overline{Z}$

Orthogonalité

$$OM \perp OM' \Leftrightarrow rg(z) = rac{\pi}{2} + rg(z')[\pi] \Leftrightarrow rac{z'}{z} \in i \cdot \mathbb{R} \ AB \perp CD \Leftrightarrow Z = rac{d-c}{b-a} \in i \cdot \mathbb{R} \Leftrightarrow Z = -\overline{Z}$$