

Joint Tech Internship Community Program

Assignment 1

SUBMITTED BY

PARTHASARATHI S

(parthasarathi262004@gmail.com)

Example Dataset: Car price prediction

Make	Year	Mileage	Engine	No.	of	Price
			size	doors		
Toyota	2018	30,000	2.0	4		5,00,000
Honda	2017	40,000	2.2	4		4,85,000
Ford	2019	20,000	2.5	2		5,20,000
BMW	2020	10,000	3.5	4		8,50,000

Features:

Features are individual measurable properties of the data. These are the input variables. The machine learning model used to make prediction using this input variables.

Ex: Make, year, Mileage, Engine size, number of doors are the input variables. This is called Features.

Label:

Label are the output variables that the model is trained to predict. Ex: Price is the output variable. This is called Label.

Prediction:

The model can used to make prediction on new data.

Outliers:

- Outliers are data points that significantly differ from the majority of the data in a dataset. Outliers does not make the pattern.
- Outliers are handled using data visualization.
- Decision trees are less sensitive to outliers.

Ex: Car mileage around 10,000 to 1,00,000. a car mileage at above 1,00,000 might be considered at outlier.

Training Data:

- Training dataset is used for training purpose and this thing is called train model.
- It has attributes used for training machine learning algorithm to prepare model. From that they find relationship.

Test Data:

 Testing dataset is used for testing purpose and this thing is called evaluate model. Testing error is occurred by accessing the model by providing the unknown data to the model.

Model:

Model is mathematical representation of algorithm that is trained using data to predict label.

Validation data:

- After training, validation data gives which model is best.
- Choose the best hyperparameters.

Hyperparameter:

- Hyperparameters are configuration setting defined before training that control the learning process.
- It is manually specified.

Epoch:

When we have input the entire dataset once. Entire dataset has passed through the network, the network has seen every single training example once.

Loss Function:

- Measures the difference between the predicted output of a model and actual target values.
- It quantifies a model prediction error and guides the optimization process.

Learning Rate:

It controls how fast or slow a model learn. A high learning rate can make the model miss the best solution, a low learning rate can make learning very slow.

Overfitting:

- Model learns the training data too well.
- It performs well on training data but poorly on unseen data.

Ex: Memorizing the prices in the table

Underfitting:

It performs poorly on both training data and new data because it fails to learn and generalize from the data effectively.

Ex: Predicting the same price for all cars.

Regularization:

- A technique used to reduce errors by fitting the function appropriately on the given training set and avoiding overfitting.
- Lasso regularization- L1 regularization
- Ridge regularization- L2 regularization
- Elastic net regularization- L1 and L2 regularization

Ex: L2 regularization to penalize large coefficients

Cross-Validation:

- It access the performance of machine learning model by dividing the dataset into multiple subsets.
- Minimize training time.
- Minimize running time.
- Maximum accuracy.

Feature Engineering:

It perform select, transform or create new features from raw data to improve the performance of machine learning models.

Ex: Combining mileage and year to create "age" feature.

Dimensionality Reduction:

- It used to reduce the number of features in a dataset while preserving much information as possible.
- This process helps in simplifying models and reduce the risk of overfitting.

Ex: Using PCA to combine Engine Size and Number of Doors into a single feature

Bias:

- It refers to error introduced by approximating a real world problems.
- It can lead to errors in prediction or estimations.
- High bias -training performance is low. It causes underfitting.

Ex: Consistently predicting lower prices than actual

Variance:

- High variance- Validation performance is low.
- It causes overfitting.

Ex: Predicting significantly different prices for similar cars based on minor changes in the data