Rapport de stage (Licence 3)

Fonction de croissance des groupes de type fini Université de Nantes

Simon Masson

21 Avril — 16 Mai 2014

Table des matières

Ι	Pré	liminaires et définitions	1
	1	Le groupe spécial linéaire $\mathrm{SL}_2(\mathbb{Z})$	1
	2	Notions de préordre ≼ et relation d'équivalence ~ associée	1
	3	Longueur, boule et cardinal	1
	4	Notions de théorie des groupes	2
II	$\mathbf{E}\mathbf{x}\mathbf{e}$	mples	3
	1	Le groupe additif $(\mathbb{Z}^p,+)$	3
	2	Le groupe de Heisenberg	
	3	Le groupe $\operatorname{PSL}_2(\mathbb{Z})$	7
ΙI	IThé	orème de Gromov	9
	1	Enoncé du théorème	9
	2	Définitions	9
	3	Propriétés des mots périodiques	9
	4	Application aux groupes	

I Préliminaires et définitions

1 Le groupe spécial linéaire $\mathrm{SL}_2(\mathbb{Z})$

Définition 1 (groupe spécial linéaire). Le groupe spécial linéaire est un sous-groupe de $GL_2(\mathbb{Z})$. Il contient les matrices de dimension 2 à coefficients dans \mathbb{Z} de déterminant 1.

$$\operatorname{SL}_2(\mathbb{Z}) = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix}, a, b, c, d \in \mathbb{Z}, ad - bc = 1 \right\}$$

Posons $S = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$ et $T = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$. On a la proposition suivante :

Proposition. Le groupe $SL_2(\mathbb{Z})$ est engendré par S et T.

On étudiera par la suite la croissance du groupe $PSL_2(\mathbb{Z})$, quotient de $SL_2(\mathbb{Z})$ par $\{\pm I\}$.

2 Notions de préordre \leq et relation d'équivalence \sim associée

Soient f, g des suites réelles positives, croissantes à partir d'un certain rang.

Définition 2 (préodre). On dit que $f(N) \leq g(N)$ s'il existe $A, N_A \in \mathbb{N}^*$ tels que

$$\forall N \geqslant N_A \qquad f(N) \leqslant g(AN)$$

Définition 3 (relation d'équivalence associée à \leq). On dit que $f(N) \sim g(N)$ s'il existe $A, N_A \in \mathbb{N}^*$ tels que

$$\forall N \geqslant N_A$$
 $f(N) \leqslant g(AN)$ et $g(N) \leqslant f(AN)$

Proposition.

$$f(N) \leq g(N)$$
 et $g(N) \leq f(N) \iff f(N) \sim g(N)$

Démonstration. Il s'agit de prouver le sens direct. On prend $M := \max(N_A, N_B)$, et alors pour tout $N \ge M$, on a $f(N) \le g(AN)$ et $g(N) \le f(BN)$. Donc $f \sim g$.

3 Longueur, boule et cardinal

Définition 4 (groupe de type fini). On dit qu'un groupe G est de type fini s'il est engendré par une partie finie S.

Définition 5 (longueur). Si $x \in G$, on appelle longueur de x relativement à S l'entier :

$$\ell_S(x) = \min \left\{ p \geqslant 1, \exists (s_1, \dots, s_p) \in S^p, x = \prod_{k=1}^p s_k \right\}$$

Par convention, $\ell_S(0) = 1$.

Définition 6 (boule de rayon N). Pour $n \in \mathbb{N}$, on appelle boule de rayon N l'ensemble

$$G_N = \{ x \in G, \ell_S(x) \leqslant N \}$$

Définition 7 (fonction de croissance). On définit la fonction de croissance du couple (G, S) par

$$\gamma_S: \mathbb{N} \longrightarrow \mathbb{N}^*$$

$$N \longmapsto \operatorname{Card}G_N$$

On illustrera par la suite toutes ces notions sur différents exemples.

4 Notions de théorie des groupes

On rappelle quelques notions de théorie des groupes :

Définition 8 (sous-groupe dérivé). Le sous-groupe dérivé [G, G] de G est le sous-groupe engendré par les commutateurs $[x, x] = xx'x^{-1}x'^{-1}$ pour $x, x' \in G$.

On notera par la suite $G^{(0)}=G$ et pour $n\in\mathbb{N},$ $G^{(n+1)}=[G^{(n)},G].$

Définition 9 (centre d'un groupe). Le centre d'un groupe G est l'ensemble

$$Z(G) = \{c \in G, \forall g \in G, gc = cg\}$$

Définition 10 (groupe nilpotent). On dit qu'un groupe G est nilpotent s'il existe $N \in \mathbb{N}$ tel que $G^{(N)} = \{1\}$.

II Exemples

Dans ce chapitre, nous allons étudier trois exemples afin d'assimiler les nouvelles notions (longueur, croissance, etc.).

1 Le groupe additif $(\mathbb{Z}^p, +)$

On s'intéresse d'abord à \mathbb{Z}^2 , puis on généralisera avec \mathbb{Z}^p .

Pour $x=(p,q)\in\mathbb{Z}^2$, on utilise pour la longueur $\ell_S(x)=|p|+|q|$. En effet, pour $x\in\mathbb{Z}^2$ de décomposition dans la base canonique $x=pe_1+qe_2$, on a $\ell_S(x)\leqslant |p|+|q|$. De plus, on peut écrire $x=ae_1+a'(-e_1)+be_2+b'(-e_2)$. Donc p=a-a' et q=b-b', et $|p|+|q|\leqslant a+a'+b+b'$. Or, a+a'+b+b' est exactement le nombre d'éléments de S utilisés dans la décomposition de x. D'où $\ell_S(x)\geqslant |p|+|q|$ et donc $\ell_S(x)=|p|+|q|$. Cette définition correspond donc à la longueur vue précédemment.

Proposition. \mathbb{Z}^2 est à croissance polynomiale de degré 2.

Démonstration. (n° 1)

Examinons l'ensemble G_N (les éléments de longueur $\leq N$) : il est représenté sur la figure suivante.

FIGURE II.1 – Boule de rayon N dans \mathbb{Z}^2

Comme le montre la figure qui suit, on a pour $N \ge 1$, Card $G_N = \text{Card } G_{N-1} + 4N$.

FIGURE II.2 – G_5 en fonction de G_4

On en déduit :

$$\gamma_S(N) = \operatorname{Card} G_N = \operatorname{Card} G_{N-1} + 4N = \dots = \operatorname{Card} G_0 + 4\sum_{i=1}^N i = 1 + 4\frac{N(N+1)}{2} = 2N^2 + 2N + 1$$

On a prouvé que \mathbb{Z}^2 est à croissance de degré 2. Pour généraliser au cas de \mathbb{Z}^p pour $p \in \mathbb{N}$, on va effectuer une preuve géométrique que $\mathbb{Z}^2 \sim N^2$, mais cette démonstration sera applicable au cas général \mathbb{Z}^p .

Démonstration. (n° 2)

FIGURE II.3 – Encadrements de $\gamma_S(N)$ par des boules

On note Λ_k^p la boule de rayon k issue de la norme $\|\cdot\|_p$. Sur la figure de gauche, Λ_N^1 est coloré en gris, et si on trace tous les carrés de coté 1 de sommet inférieur gauche dans G_N , on a :

$$Aire(\cup carr\acute{e}s) = \gamma_S(N)$$

car tous les carrés sont d'aire égale à 1. On a donc l'encadrement suivant :

$$\Lambda_N^1 \leqslant \gamma_S(N) \leqslant \Lambda_{N+2}^1$$

Sur la figure de droite, on utilise la norme $\|\cdot\|_2$: on a $\Lambda^2_{r/\sqrt{2}} \leqslant \Lambda^1_r \leqslant \Lambda^1_{r+2} \leqslant \Lambda^2_{r+2}$. Comme l'aire d'un disque de rayon N est πN^2 , on a alors:

$$\pi(N/\sqrt{2})^2 \leqslant \Lambda_N^1 \leqslant \Lambda_{N+2}^1 \leqslant \pi(N+2)^2$$

On en déduit donc :

$$\pi N^2/2 \leqslant \gamma_S(N) \leqslant \pi N^2 + 4\pi N + 4\pi$$

et d'où:

$$\gamma_S(N) \sim N^2$$

Généralisation

En dimension 3, le volume d'une boule de rayon R est $\frac{4}{3}\pi R^3 \sim R^3$.

Proposition. En dimension p, le volume d'une boule de rayon R est polynomial de degré p.

Conséquence: Avec les groupes \mathbb{Z}^p , on effectue toutes les croissances polynomiales.

2 Le groupe de Heisenberg

Pour
$$m, n, p \in \mathbb{Z}$$
, $h(m, n, p) = \begin{pmatrix} 1 & n & p \\ 0 & 1 & m \\ 0 & 0 & 1 \end{pmatrix}$.
$$a = h(1, 0, 0) \qquad b = h(0, 1, 0) \qquad c = h(0, 0, 1)$$

Définition 11 (groupe de Heisenberg). Le groupe de Heisenberg G est le sous-groupe de $GL_3(\mathbb{Z})$

$$\{h(m, n, p) \mid m, n, p \in \mathbb{Z}\}\$$

Proposition. G est engendré par $\{a^{\pm 1}, b^{\pm 1}\}$.

Démonstration. Pour $m, n \in \mathbb{Z}$,

$$a^{n} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & n \\ 0 & 0 & 1 \end{pmatrix}, b^{m} = \begin{pmatrix} 1 & m & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}, c = bab^{-1}a^{-1}, a^{n}b^{m}c^{p} = \begin{pmatrix} 1 & m & p \\ 0 & 1 & n \\ 0 & 0 & 1 \end{pmatrix}.$$

Proposition. Son centre Z(G) est engendré par $\{c\}$.

Démonstration. Il est facile de montrer que

$$\forall k \in \mathbb{Z} \qquad b^k a = ab^k c^k \qquad \qquad ba^k = a^k bc^k \tag{II.1}$$

Pour $x \in Z(G)$ de la forme $x = a^m b^n c^p$, il faut donc xa = ax et xb = bx. Comme $c \in Z(G)$ et grâce aux formules (II.1), $xa = (a^m b^n c^p)a = (a^m b^n a)c^p = a^m (ab^n c^n)c^p = a^{m+1}b^n c^{n+p}$ $ax = a^{m+1}b^n c^p$ $bx = b(a^m b^n c^p) = (ba^m)(b^n c^p) = (a^m b c^m)(b^n c^p) = a^m b^{n+1} c^{p+m}$ On en déduit donc (en évaluant « terme à terme ») que $xb = a^m b^{n+1} c^p$

$$m = n = 0$$

Donc $x = c^p$ et Z(G) est engendré par c.

Proposition. Si $\ell_S(h(m,n,p)) \leqslant N$, alors

$$|m| \leqslant N$$
 $|n| \leqslant N$ $|p| \leqslant N^2$

 $D\acute{e}monstration$. On effectue une récurrence sur N:

La propriété est vraie au rang 0. Supposons la vraie au rang N, et prenons $x = a^m b^n c^p$ dans G de longueur N+1 (c'est le seul cas qui mérite d'être étudié). On pose $x = s_1 \cdots s_{N+1} = a^m b^n c^p$ avec $s_k \in S$. Quelles sont les valeurs possibles de s_1 ?

- Cas 1: $s_1 = a$
 - On note $y = s_2 \cdots s_{N+1} = a^{m-1}b^nc^p$. $\ell_S(y) \leqslant N$ donc par hypothèse de récurrence, $|m-1| \leqslant N$, $|n| \leqslant N$ et $|p| \leqslant N^2$. On a donc $|m| \leqslant N+1$, $|n| \leqslant N \leqslant N+1$ et $|p| \leqslant N^2 \leqslant (N+1)^2$.
- Cas 2: $s_1 = a^{-1}$
 - On traite ce cas de la même manière que précédemment.
- Cas 3: $s_1 = b^{-1}$
 - On note $y = s_2 \cdots s_{N+1} = (ba^m)b^nc^p = a^mb^{n+1}c^{p+m}$. Comme dans le cas $1, \ell_S(y) \leq N$ donc $|m| \leq N+1, |n| \leq N+1$ et $|p| \leq N^2 + |m| \leq (N+1)^2$.
- Cas $4: s_1 = b$

On traite ce cas de la même manière que précédemment.

Proposition. Le groupe de Heisenberg est à croissance polynomiale de degré 4.

 $D\'{e}monstration.$

1. D'après la proposition précédente, $\operatorname{Card} G_n = \operatorname{Card} \{(m,n,p) \mid \ell_S(h(m,n,p)) \leqslant N\}$. On en déduit que

$$\gamma_S(N) \leqslant \underbrace{(2N+1)^2}_{\text{choix pour } m, n \text{ choix pour } p} \underbrace{(2N^2+1)}_{p}$$

Donc
$$\gamma_S(N) \leq (4N^2 + 4N + 1)(2N^2 + 1) = 8N^4 + 8N^3 + 6N^2 + 4N + 1$$

$$\gamma_S(N) \le 8N^4 + 8N^3 + 6N^2 + 4N + 1$$

2. Comme $b^q a^q b^{-q} a^{-q} = c^{q^2}$, on a $\ell_S(c^{q^2}) \leq 4q$ et en particulier, $\ell_S(c) \leq 4$. Notons $p = E(\sqrt{q})$ et $r = q - p^2$. On a donc:

$$p \leqslant \sqrt{q} < p+1 \Longrightarrow p > \sqrt{q} - 1 \Longrightarrow p^2 \geqslant q - 2\sqrt{q} + 1$$

et

$$r = q - p^2 \leqslant q - (q - 2\sqrt{q} + 1) = 2\sqrt{q} - 1 \Longrightarrow p + r \leqslant \sqrt{q} + 2\sqrt{q} - 1 = 3\sqrt{q} - 1$$

D'où

$$c^{q} = c^{p^{2}+r} = c^{p^{2}} \cdot (bab^{-1}a^{-1})^{r} \Longrightarrow \ell_{S}(c^{q}) \leqslant 4p + 4r \leqslant 12\sqrt{q} - 4$$

Il suit que $\ell_S(a^mb^nc^p) \le \ell_S(a^m) + \ell_S(b^n) + \ell_S(c^p) \le |m| + |n| + 12\sqrt{p} - 4 \le N + N + 12N - 4 = 14N - 4$

Donc on a trouvé au moins $(2N+1)^2(2N^2+1)$ éléments différents dans G_{14N-4} et donc $\gamma_S(14N-4) \geqslant 8N^4 + 8N^3 + 6N^2 + 4N + 1$, c'est-à-dire $\gamma_S(14N-4) \succeq 8N^4 + 8N^3 + 6N^2 + 4N + 1$.

On peut donc conclure:

$$\gamma_S(N) \sim N^4$$

Résultat de Gromov

Un résultat que M. Gromov a établi est le suivant :

Proposition. Un groupe de type fini est à croissance polynomiale si, et seulement s'il contient un sous-groupe nilpotent d'indice fini.

Comme G est à croissance de degré 4, il est donc nilpotent. En effet, prenons $x, x' \in G$.

$$[x, x'] = a^m b^n c^p a^{m'} b^{n'} c^{p'} a^{-m} b^{-n} c^{mn-p} a^{-m'} b^{-n'} c^{m'n'-p'} = c^{mn+m'n'}$$

Donc $G^{(1)} = \{c^n, n \in \mathbb{Z}\} = Z(G)$, et d'où $G^{(2)} = [Z(G), G] = \{1\}$. G est bien (2-)nilpotent.

3 Le groupe $PSL_2(\mathbb{Z})$

 $G = \mathrm{PSL}_2(\mathbb{Z})$ est le quotient de $\mathrm{SL}_2(\mathbb{Z})$ par $\{I, -I\}$.

$$A = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} \qquad C = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$$

 $\mathrm{SL}_2(\mathbb{Z})$ est engendré par A et C. On pose $B=AC=\begin{pmatrix} 0 & -1 \\ 1 & 1 \end{pmatrix}$. On note $a,b,\mathbf{1}$ les classes respectives de A,B et I dans G.

a est d'ordre 2 et b est d'ordre 3 car $A^2 = B^3 = -I$.

On pose $M_{\beta} = (B^{\beta_1}A) \cdots (M^{\beta_r}A)$ avec $\beta_i \in \{1, 2\}$ pour tout i.

Pour $(\alpha_1, \alpha_2) \in \{0, 1\}^2$, on considère $U = \{u_\gamma\}$ tels que :

$$\begin{cases} u_{\gamma} = a^{\alpha_1} \left(\prod_{k=1}^{r-1} b^{\beta_k} a \right) b^{\beta_r} a^{\alpha_2} & \text{si } r \geqslant 2 \\ u_{\gamma} = a^{\alpha_1} b^{\beta_r} a^{\alpha_2} & \text{si } r = 1 \end{cases}$$

Proposition. $\{\{1,a\},U\}$ est une partition de G.

Démonstration. a et b engendrent $\mathrm{PSL}_2(\mathbb{Z})$, et $a^2 = b^3 = 1$ donc $S = \{a, b, b^2\}$ est une partie génératrice de $\mathrm{PSL}_2(\mathbb{Z})$ qui ne possède pas 1. Les éléments de G sont tous de la forme u_γ , sauf a et 1. Donc $G = \{1, a\} \cup U$.

Notons m_{β} la classe de M_{β} dans G. Comme $a^2 = \mathbf{1}$, on a $m_{\beta} = (b^{\beta_1}a) \cdots (b^{\beta_r}a) = a^{\alpha_1}u_{\gamma}a^{\alpha_2+1}$. Comme m_{β} n'est pas une puissance de a, u_{γ} n'est égal ni à $\mathbf{1}$, ni à a. On a donc trouvé une partition de G.

Proposition.

$$\forall u \in U \qquad \exists! r \in \mathbb{N}^* \qquad \exists! \gamma \in \underbrace{\{0,1\}^2}_{\alpha_i} \times \underbrace{\{1,2\}^r}_{\beta_i} \qquad u = u_{\gamma}$$

Démonstration. Soient $r, s \in \mathbb{N}^*$ et $\gamma = ((\alpha_1, \alpha_2); (\beta_1, \dots, \beta_r)), \gamma' = ((\alpha'_1, \alpha'_2); (\beta'_1, \dots, \beta'_r))$ tels que $u_{\gamma} = u_{\gamma'}$

Comme $a = a^{-1}$ et $b^3 = 1$, on a :

$$u_{\gamma} = u_{\gamma'} \iff a^{\alpha_1} \left(\prod_{k=1}^{r-1} b^{\beta_k} a \right) b^{\beta_r} a^{\alpha_2} = a^{\alpha'_1} \left(\prod_{l=1}^{s-1} b^{\beta'_l} a \right) b^{\beta'_s} a^{\alpha'_2}$$

$$\iff a^{\alpha_1} \underbrace{\left(\prod_{k=1}^{r-1} b^{\beta_k} a \right) b^{\beta_r} a^{\alpha_2 + \alpha'_2} b^{3 - \beta'_s} \left(\prod_{l=1}^{s-1} a b^{3 - \beta'_l} \right)}_{d} a^{\alpha'_1} = \mathbf{1}$$

 $d = a^{\alpha_1 + \alpha_1'}$ donc d vaut 1 ou a. Il n'est donc pas de la forme m_{β} , ce qui impose $\alpha_2 + \alpha_2' \equiv 0 \mod 2$ et $\beta_r - \beta_s' \equiv 0 \mod 3$. Comme α_2 et α_2' valent 0 ou 1, on a nécessairement $\alpha_2 = \alpha_2'$. De même, $\beta_r = \beta_s'$.

En recommençant un nombre fini de fois, on prouve que $\gamma = \gamma'$.

Proposition. Le groupe modulaire $PSL_2(\mathbb{Z})$ est un groupe de type fini, engendré par $S = \{a, b, b^2\}$, et dont la croissance est exponentielle.

Démonstration. D'après la proposition précédente, $\ell_S(u_\gamma) \leq \alpha_1 + \alpha_2 + 3(r-1) + 2 \leq 3r+1$ Dans G, comptons les éléments de longueur $\leq 3r+1$: ils sont au moins 2^{r+2} (2 choix pour les β_i et 2 choix pour les α_i).

Donc $\gamma_S(3r+1) \geqslant 2^{r+2} \geqslant 2^r$.

On a donc $e^r \sim 2^r \leq \gamma_S(r)$, et comme la croissance est au plus exponentielle, on obtient :

$$\gamma_S(r) \sim e^r$$

III Théorème de Gromov

Maintenant que nous sommes habitués aux groupes et à l'étude de leur croissance, nous allons étudier le théorème de Gromov et sa preuve.

1 Enoncé du théorème

G est un groupe engendré par un ensemble fini, et γ est sa fonction de croissance.

Théorème (Gromov). Supposons G infini, m > 0, et $\gamma(m) - \gamma(m-1) \leq m$. Alors G possède un sous-groupe isomorphe à \mathbb{Z} d'indice $\leq m^4$.

2 Définitions

On utilise les mêmes définitions que dans les parties précédentes. On y ajoute un « vocabulaire » adapté : celui des mots.

Définition 12 (mot). Un mot est un élément du groupe.

Définition 13 (alphabet). La partie génératrice S engendre S^* appelé alphabet. C'est l'ensemble de tous les mots de S.

On désigne par 1 le mot vide.

Définition 14 (mot *p*-périodique). $v = v_1 \dots v_m \in S^*$ est *p*-périodique si $v_i = v_{i+p}$ pour $1 \le i < i + p \le m$.

3 Propriétés des mots périodiques

Lemme 1. Supposons que $p \in \{1, ..., m\}$, et $v = v_1 v_2 ... v_{p+m} \in S^*$ vérifiant $v_1 ... v_m = v_{p+1} ... v_{p+m}$. Alors v est p-périodique.

Démonstration. Prenons $1 \leq i < i + p \leq m + p$, c'est-à-dire $1 \leq i \leq m$. Par hypothèse, la i^elettre de $v_1 \dots v_m$ est la i^elettre de $v_{p+1} \dots v_{p+m}$. C'est exactement la définition de p-périodicité.

On note $(a, b) := \operatorname{pgcd}(a, b)$.

Lemme 2. Supposons que $0 < q \le p$ et que $v \in S^*$ est un mot p-périodique qui possède un sous-mot q-périodique de longueur $\geqslant p+q-1$.

 $Alors\ v\ est\ d\text{-}p\'eriodique,\ o\`u\ d=(p,q).$

Démonstration. Soit $v_i \dots v_j$ un sous-mot q-périodique de longueur $\geqslant p+q-1$, donc $j \geqslant (i-1)+p+q-1$. On effectue la division euclidienne de p par q:p=tq+r avec $0 \leqslant r < q$.

Cas 1 r = 0.

On a donc q divise p. Pour i > 1, on a donc $v_{i-1} = v_{i-1+p} = v_{(i-1)+p-(t-1)q} = v_{i-1+q}$. Donc $v_{i-1} \dots v_j$ est lui-aussi q-périodique. De la même façon, pour j < |v|, on a $v_i \dots v_{j+1}$ est aussi q-périodique. En répétant le raisonnement (un nombre fini de fois), v est q-périodique.

Cas 2 r > 0.

On effectue une récurrence sur p.

Affirmation: $v_i \dots v_{i+q+r-2}$ est r-périodique.

En effet, $i \leqslant k < k+r \leqslant i+q+r-2 \iff i \leqslant k \leqslant i+q-2$, d'où $k+p \leqslant (i+q-2)+p \leqslant j$. Donc $v_k = v_{k+p} = v_{k+p-tq} = v_{k+r}$. D'où l'affirmation.

 $v_i ldots v_{i+q+r-2}$ est donc r-périodique, et sa longueur est q+r-1. Par l'hypothèse de récurrence appliquée à q < p, on a $v_i ldots v_j$ est (q,r)-périodique. Mais (q,r) = (p,q) = d, donc $v_i ldots v_j$ est d-périodique. Comme d divise p, on se reporte donc au **cas 1**.

Théorème (de périodicité). Supposons $v \in S^*$ de longueur $\geqslant m > 0$, et c le nombre de différents sous-mots de v de longueur m. On suppose de plus que $c \leqslant m$ et que $|v| \geqslant c + m$. Alors, il existe $0 et <math>\alpha, \beta, \gamma \in S^*$ tels que

$$v = \alpha \beta \gamma$$

avec $|\alpha| \leq c - p$, $|\gamma| \leq c - p$, et β est p-périodique.

Démonstration. On écrit $v = v_1 \dots v_M \ (v_i \in S)$.

Affirmation 0 :

 $\exists p \in \{1, \dots, c\} \ \textit{et un sous-mot p-p\'eriodique de } v \ \textit{de longueur} \geqslant m+p.$

Posons $w_i = v_i \dots v_{i+m-1}$. Donc w_1, \dots, w_{M-m+1} sont les sous-mots successifs de v de longueur m. Comme $M-m+1\geqslant c+1$, deux termes de w_1,\dots,w_{c+1} doivent être égaux. Notons $w_\lambda=w_\mu$. On pose $p=\mu-\lambda$. On a $0< p\leqslant c$, et $v_\lambda\dots v_{\lambda+m-1}=v_{\lambda+p}\dots v_{\lambda+p+m-1}$. Donc $v_\lambda\dots v_{\lambda+p+m-1}$ est p-périodique.

Prenons un sous-mot $w=v_i\dots v_j$ de v de longueur maximale, avec la propriété d'être p-périodique pour un $p\leqslant c$. On suppose que p est la plus petite période. Par l'affirmation $0, |w|=j-i+1\geqslant m+p\iff j\geqslant i+m+p-1$.

On va maintenant prouver que

$$i \leqslant (c+1) - p \tag{III.1}$$

Par l'absurde, on aurait i+p>c+1, et parmi les c+1 sous-mots successifs $w_{(i+p)-(c+1)},\ldots,w_{i+p-1}$, deux devraient être identiques, disons $w_k=w_l$. On pose q=l-k. Comme précédemment, puisque $w_k=w_l$ et d'après le premier lemme, $w':=v_k\ldots v_{k+q+m-1}$ est q-périodique. On peut supposer que q est minimal (w' n'est r-périodique pour aucun r<q, sinon on peut prendre un autre w'). Pour aboutir à une contradiction (raisonnement par l'absurde), on prouve les trois affirmations suivantes :

Affirmation 1:

k < i

Par l'absurde, supposons $k \ge i$.

Far l'absurde, supposons
$$k \ge i$$
.

Comme $l \in [(i+p)-(c+1), (i+p)-1], l \le i+p-1$ et donc $q = l-k \le i+p-1-k = \underbrace{(i-k-1)}_{\le 0 \text{ par}} + p < p$

De plus $w' = v_k \dots v_{k+q+m-1}$ est q-périodique de longueur $\geqslant p+q-1$. Par le second lemme, w est q-périodique, ce qui contredit la minimalité de p (période minimale).

Affirmation 2:

En joignant w et w', on peut trouver un sous-mot de longueur $\geqslant p+q-1$.

On l'exhibe facilement : c'est $v_i \dots v_{k+q+m-1}$. Sa longueur est :

$$k + q + m - 1 - (i - 1) = \underbrace{k}_{(i + p) - (c + 1)} + q + m - i \geqslant (i + p) - (c + 1) + q + m - 1 = p + q + \underbrace{(m - c)}_{\geqslant 0} - 1 \geqslant p + q - 1$$

Affirmation 3:

$$p = q$$

Si q < p, alors par l'affirmation 2 et le lemme 2, w est q-périodique, ce qui contredit la minimalité de p. De même, p < q contredit la minimalité de q.

De ces trois affirmations, on conclut que le sous-mot $v_k \dots v_i$ obtenu en joignant w et w' est ppériodique, et de longueur $\geqslant |w|$. Ceci contredit la maximalité de w (en terme de longueur), et (III.1) est prouvé.

En d'autres termes, $v_1 \dots v_{i-1}$ est de longueur $\leq c - p$. Par un argument symétrique, $v_{i+1} \dots v_M$ est aussi de longueur $\leq c - p$. On termine la preuve en écrivant $\alpha = v_1 \dots v_{i-1}, \beta = v_i \dots v_j$, et $\gamma = v_{j+1} \dots v_M$.

Prenons W un fermé de S^* . Notons γ_W la fonction de croissance associée à W:

$$\gamma_W(n) = \#\{w \in W, |w| \leqslant n\}$$

Remarquons que $\gamma_W(m) - \gamma_W(m-1)$ est le nombres d'éléments de longueur m.

Corollaire. On suppose $W \subset S^*$ fermé tel que $\gamma_W(m) - \gamma_W(n-1) \leqslant m$ pour $m \in \mathbb{N}^*$. Alors, il existe des constantes positives C et D telles que $\gamma_W(n) \leqslant Cn + D$ pour tout n. De plus, si W est infini, il existe $w \neq 1 \in W$ tel que $w^n \in W$ pour tout n.

Démonstration. On pose $c := \gamma_W(m) - \gamma_W(m-1)$, et on fixe $n \ge m+c$. On prend $v \in W$ de longueur n. D'après le théorème de périodicité, on peut écrire $v=\alpha\beta\gamma$, et v est complètement déterminé par :

- La période p de β $(1 \leq p \leq c)$;
- Le sous-mot α (de longueur $m \ge (c-p)+p$);
- Le sous-mot γ (de longueur m également).

Il y a donc au plus $c \cdot c \cdot c = c^3$ possibilités pour v, et on a donc établi que :

$$\gamma_W(n) - \gamma_W(n-1) \leqslant c^3 \qquad \forall n \geqslant m+c$$

Il suit que $\gamma_W(n) \leq c^3 \cdot n + D$ (pour un certain D).

Si W est infini, il possède des « longs » mots. Par le théorème de périodicité, et par le principe des tiroirs, $\exists w \neq 1$ dont toutes les puissances sont encore dans W.

Corollaire. Supposons que W est fermé, et que $\gamma_W(n)$ n'est majorée par aucune fonction linéaire (en n). Alors, pour tout n,

$$\gamma_W(n) \geqslant \frac{1}{2}(n+1)(n+2)$$

Démonstration. Par le corollaire précédent, notre hypothèse implique que :

$$\gamma_W(n) - \gamma_W(n-1) \geqslant n+1 \qquad \forall n > 0$$

On a alors:

$$\gamma_W(n) = \gamma_W(0) + (\gamma_W(1) - \gamma_W(0)) + \dots + (\gamma_W(n) - \gamma_W(n-1))
\geqslant 1 + 2 + \dots + (n+1)
= \frac{1}{2}(n+1) \cdot (n+2)$$

4 Application aux groupes

Définition 15. On étend l'ordre < sur S à un ordre sur S^* (que l'on note aussi <) tel que

$$v < w \iff \begin{cases} |v| < |w| \\ \text{ou } |v| = |w| \text{ et } v \text{ précède } w \text{ dans l'alphabet}. \end{cases}$$

Lemme 3. Soient $G' \subset G$ des groupes engendrés (respectivement) par S' et S finis, avec $S' \subset S$. Soient S' et S' leurs fonctions de croissance respective. On suppose que

$$\lim_{n \to \infty} \gamma(n)^{1/n} = 1$$

et qu'il existe $C \in \mathbb{R}$ tel que

$$\frac{\gamma(n)}{\gamma'(n)} \leqslant C$$
 pour n assez grand

Alors, G' est d'indice $\leq C$ dans G.

 $D\acute{e}monstration$. Soit $\varepsilon > 0$.

$$\begin{array}{c} \text{Affirmation} : \\ \forall k \in \mathbb{N}, \ il \ y \ a \ une \ infinit\'e \ de \ n \in \mathbb{N} \ tels \ que \ \frac{\gamma'(k+n)}{\gamma'(n)} \leqslant 1 + \varepsilon. \end{array}$$

Par l'absurde, on aurait : $\exists k, N$ tels que $\frac{\gamma'(k+n)}{\gamma'(k)} > 1 + \varepsilon$ pour tout $n \geqslant N$. Mais alors pour $r \geqslant N$, on aurait:

$$\frac{\gamma'(r)}{\gamma'(N)} = \underbrace{\frac{\gamma'(r)}{\gamma'(r-k)}}_{>1+\varepsilon} \cdot \underbrace{\frac{\gamma'(r-k)}{\gamma'(r-2k)}}_{>1+\varepsilon} \cdot \dots \cdot \underbrace{\frac{\gamma'(r-(l-1)k)}{\gamma'(r-lk)}}_{>1+\varepsilon} \cdot \underbrace{\frac{\gamma'(r-lk)}{\gamma'(N)}}_{>1+\varepsilon} \geqslant (1+\varepsilon)^{l+1}$$

Donc $\frac{\gamma'(r)}{\gamma'(N)} \geqslant (1+\varepsilon)^{l+1} \geqslant (1+\varepsilon)^l$. Comme $S' \subset S$, $\gamma(r) \geqslant \gamma'(r)$, et donc $\gamma(r) \geqslant \gamma'(N)(1+\varepsilon)^l$. Donc γ n'est pas sous-exponentielle, ce qui est absurde.

Soient k donné, et $g_1, \ldots g_t \in G$ de longueur (dans S) $\leq k$. Montrons que t est borné par Cindépendamment de k: prenons m assez grand tel que $\gamma(k+m) \leqslant C \cdot \gamma'(k+m)$ et posons $p = \gamma'(m)$. Soient h_1, \ldots, h_p des éléments distincts de longueur $\leq m$ dans G'. Alors les $g_i h_i$ sont tous distincts, de longueur (dans X) $\leq k + m$. D'où $tp \leq \gamma(k+m)$, et donc (pour m assez grand),

$$t \leqslant \frac{\gamma(k+m)}{\gamma'(m)} \leqslant C \cdot \frac{\gamma'(k+m)}{\gamma'(m)}$$

Donc pour tout $\varepsilon > 0$, il y a une infinité de m tels que $t \leq C \cdot (1 + \varepsilon)$, et donc $t \leq C$.

On peut désormais prouver ce théorème (version simplifiée du théorème de Gromov):

Théorème (Gromov, simplifié). Si G est infini, et que $c := G(m) - G(m-1) \leqslant m$, alors, G a un sous-groupe $G' \cong \mathbb{Z}$ d'indice $\leqslant \frac{c^4}{2}$.

Démonstration. On considère G engendré par $A = S \cup S^{-1}$. Par le premier corollaire du théorème de périodicité, $\gamma(n) \leq c^3 n + D$ (où D est une constante). D'autre part, La seconde partie de ce même corollaire indique que G a un sous-groupe (qu'on note G') $\cong \mathbb{Z}$. Notons $G' = \langle a \rangle$ avec $|a| \leqslant c$ (G') est le sous-groupe engendré par a). On introduit alors la fonction γ' relative aux longueurs dans $S' := \{a\} : \gamma'(n) = 2n + 1$. Bien-sûr, on ne sait pas si $S' \subset S$, mais en posant $S'' = S \cup S'$, il est facile de voir que γ'' (définie de la même manière que γ') satisfait :

$$\gamma'(n) \leqslant \gamma(cn) \leqslant c^4 n + D$$

On a alors $\frac{\gamma''(n)}{\gamma'(n)} \leqslant \frac{c^4}{2} + \varepsilon$ pour *n* assez grand, et $\varepsilon > 0$. En appliquant le dernier lemme, on conclut que G' est d'indice $\leq \frac{c^4}{2}$ dans G.