Guiados y No guiados

MODOS DE TRANSMISIÓN

- MEDIOS FÍSICOS
 - GUIADOS
 - PAR TRENZADO
 - COAXIAL
 - FIBRA ÓPTICA
 - NO GUIADOS
 - RADIO
 - MICROONDAS
 - SATÉLITE

Es el camino físico entre los extremos de transmisión y recepción

la transmisión se realiza mediante ondas electromagnéticas, que pueden viajar guiadas o no.

medios de transmisión guiados cuando las ondas viajan sobre un medio sólido o cable.

no guiados se caracterizan por la transmisión y recepción por medio de antenas sobre el espacio, también llamada transmisión inalámbrica.

Un *campo magnético* que *varía con el tiempo* actúa como fuente de *campo eléctrico*.

Un *campo eléctrico* que <u>varía con el tiempo</u> actúa como fuente de *campo magnético*.

Los campos variables \vec{E} y \vec{B} <u>se sustentan mutuamente</u> y forman una *onda electromagnética* que se propaga a través del espacio.

La transmisión se realiza mediante ondas electromagnéticas, que pueden viajar guiadas o no.

El espectro electromagnético es el conjunto de señales electromagnéticas, ordenadas según su frecuencia y longitud de onda.

los objetivos más importantes es maximizar la distancia y la velocidad de transmisión.

Ancho de banda: es el rango de frecuencia que ocupa la señal en el espectro.

Atenuación: se trata de la pérdida de energía de la señal en su viaje hacia el receptor.

Interferencias: son señales no deseadas, en bandas de frecuencia cercanas, que pueden generar problemas de distorsión o destrucción de la información.

PAR TRENZADO

- Consiste en dos alambres de cobre aislados
- Se trenzan para reducir interferencias
- Es el medio de transmisión más usado
- Se agrupan para formar cables mayores
- Transmite tanto señal analógica como digital
 - Analógica: AB=250 KHz ; Ampl. 5 ó 6 Km
 - Digital: V=100 Mbps ; Rep. 2 ó 3 Km

PAR TRENZADO

- Consiste en dos alambres de cobre aislados
- Se trenzan para reducir interferencias
- Es el medio de transmisión más usado
- Se agrupan para formar cables mayores
- Transmite tanto señal analógica como digital
 - Analógica: AB=250 KHz ; Ampl. 5 ó 6 Km
 - Digital: V=100 Mbps ; Rep. 2 ó 3 Km

Tipos de par trenzado

Conector RJ-45

Conexiones

PC -- red

Dos PCs

COAXIAL

COAXIAL

- Alambre de cobre formado por núcleo y malla
- Buena combinación de ancho de banda e inmunidad al ruido
- Dos clases de cable coaxial
 - Cable de 50 ohm: digital
 - Cable de 75 ohm: analógico
- Se usa para televisión, telefonía a gran distancia, LAN, etc.

FIBRA ÓPTICA

FIBRA ÓPTICA

- Fuente de luz, medio transmisor y detector
 - LED
 - Láser
- Reflexión total
 - Fibra multimodo
 - Fibra monomodo
- La luz se atenúa en la fibra: tres bandas
- Presenta dispersión
- Conexiones

Modo de funcionamiento de la fibra óptica

Reflexión total ----

Medio 1

Medio 2

FIBRA ÓPTICA MULTIMODO

FIBRA ÓPTICA MONOMODO

Fibra óptica: Conexiones

Empalme pegado

Adhesivo de indice de refracción adaptado

Capilar de vidrio. Superficie terminal pulida

Pérdidas del 10%

Empalme fundido
 Pérdidas mínimas

Conector ST

Conector SC

COMPARACIÓN

Fibra óptica -- Cable de cobre

- Ancho de banda superior
- Rep. cada 30 Km
- No interferencias electromagnéticas
- Más flexible y ligera

- Ancho de banda menor
- Rep. cada 5 Km
- Interferencias elect.
- Tecnología más familiar
- Interfaces más baratas

RADIO

RADIO

- Son omnidireccionales
- Un emisor y uno o varios receptores
- Bandas de frecuencias
 - LF, MF, HF y VHF
- Propiedades:
 - Fáciles de generar
 - Largas distancias
 - Atraviesan paredes de edificios
 - Son absorbidas por la Iluvia
 - Sujetas a interferencias por equipos eléctricos

RADIO

- Sus propiedades dependen de la frecuencia:
 - A baja frecuencia cruzan los obstáculos
 - A altas frecuencias tienden a viajar en línea recta y rebotan en los obstáculos
 - Tienen cinco formas de propagarse según la frecuencia: superficial, troposférica, ionosférica, en línea de visión y espacial

- Su alcance depende de:
 - Potencia de emisión
 - Sensibilidad del receptor
 - Condiciones atmosféricas
 - Relieve del terreno

c) Propagación en línea de vista (LOS) (por encima de 30 MHz)

MICROONDAS

MICROONDAS

- Frecuencias muy altas de 3 GHz a 100 GHz
- Longitud de onda muy pequeña
- Antenas parabólicas
- Receptor y transmisor en línea visual
- A 100m de altura se alcanzan unos 80 Km sin repetidores
- Rebotan en los metales (radar)

Antenas

Alcance de microondas

Caso ideal:

$$d(Km) = 7,14\sqrt{h(m)}$$

Caso real:

$$d(Km) = 7,14\sqrt{h(m)}$$
 $d(Km) = 7,14\sqrt{4/3 h(m)}$

SATÉLITES

SISTEMA IRIDIUM: 66 satélites en 6 órbitas

SATÉLITES : BANDAS DE MICROONDAS

Banda L	1 GHz		Antenas omnidireccionales
Banda S	2 GHz		NASA
Banda C	6/4 GHz	40	Comercial, teléfono
Banda X	8/7 GHz		Militar, Gobierno
Banda Ku	14/12 GHz	20	
Longitudes de	onda milimétricas		
Banda Ka	30/20 GHz	10	Intersatélite
Banda V	40 GHz		
Banda Q	60 GHz		

TIPOS DE SATÉLITES

Satélites de órbita baja (LEO)

Satélites de órbita media (MEO)

Satélites de órbita geoestacionaria (GEO)

Satélites de órbita altamente elíptica (HEO)

Ventajas de las comunicaciones por satélite

- 1.- Comunicaciones sin cables, independientes de la localización
- 2.- Cobertura de zonas grandes: país, continente, etc.
- 3.- Disponibilidad de banda ancha
- 4.- Independencia de la estructura de comunicaciones en Tierra
- 5.- Instalación rápida de una red
- 6.- Costo bajo por añadir un nuevo receptor
- 7.- Características del servicio uniforme
- 8.- Servicio total proporcionado por un único proveedor