Cs231n Lecture 4 Summary Introduction to Neural Networks

- 1. Backpropagation
- 2. Neural Networks
- 3. Artificial Neural Network

1. Backpropagation

Backpropagation 은 한국말로 역전파라고 하며, 알고리즘의 일종이다. 먼저 내가 뽑고자 하는 타겟값과 모델이 계산한 아웃풋값이 얼마나 차이가 나는지 오차를 계산한다. 그리고 그 오차를 다시 뒤로 전파해나가면서 각 노드가 가지고 있는 weight(가중치)값을 업데이트 하는 과정이다.

Weight 값을 계산할 때 미적분의 chain rule 이 사용된다. Chain rule 을 사용해서 local gradient 값을 계산하고 앞에서 미리 계산되어서 넘어온 global gradient 값을 곱해서 최종적으로 gradient 값을 계산한다. Global gradient 는 upstream gradient 라고도 부른다.

이때 일일히 계산하지 않고 활성함수를 이용하면 더 빠른데, 활성함수의 종류에는 대표적으로 시그모이드 함수가 있다.

계산 과정에서 3개의 gate 가 사용되는데, add gate 는 gradient 를 그대로 전해주고 max gate 는 두 값 중 큰 값을 전해준다. 마지막으로 mul gate 는 서로의 값을 교환한다.

만약 변수가 숫자가 아닌 벡터라면 gradient는 자코비안 행렬 방식으로 나타내진다.

2. Neural Networks

W 가 행렬이고 x 가 입력 벡터일 때, s = Wx 라는 식으로 class score 를 계산했다. 이것을 Linear score function 이라고 부른다.

만약 layer 가 두개인 Neural Network 라면 parameter 2 개는 gradient 로 학습시키고 그 gradient 는 chain rule 을 이용해서 계산해서 구한다.

3. Artificial Neural Network

인공 뉴런에서 정보를 받아들일 때에는 Input을 받고 가중치 w를 곱해서 활성화 함수를 지나 output 으로 나가는 형태를 띄게 된다.

하지만 실제 생물학적 뉴런은 훨씬 더 복잡한 연산을 수행하기 때문에 인공 뉴런과 실제 뉴런이 유사하다고 말하는 것에는 경계심이 필요하다.

이 활성화 함수에는 많은 종류가 있는데, sigmoid(시그모이드), tanh, ReLU 등등이 있지만 현재 가장 많이 사용하는 함수는 ReLU 이다.

참고로 Neural Network 에서 layer 의 기준은 weight 를 갖고 있는지 여부이다. 따라서 input layer 에는 weight 이 없으므로 총 3 단계여도 2-layer Neural Net 이라고 부른다. 더하여 모든 Node(노드)가 연결되어 있는 layer 를 Fully-connected layer, 줄여서 FC layer 라고 부른다. Network 를 layer 형태로 구성하는 이유는 계산이 효율적이기 때문이다.