CODING THEORY

Sayan Kar

August 12, 2025

Contents

1	Basi	cs	5
	1.1	Basic Notations and Definitions	5
	1.2	Formalizing Error Correction	6

Chapter 1

Basics

1.1 Basic Notations and Definitions

Definition 1.1.1: Code

A *code* C is a subset of Σ^n where Σ is an alphabet, where n is the block length of C. We typically use q to denote $|\Sigma|$.

Another way to view the definition of a code to be a map $C : [M] \to \Sigma^n$, where M = |C|.

Definition 1.1.2: Dimension of a code

Dimension of a code C, denoted as k, is defined as the following way,

$$k:=\log_q|C|.$$

Remark. Note that,

- 1. For any $C \subseteq \Sigma^n$, $k \le n$.
- 2. k can be non-integral.

One way to quantify *Redundancy* in a code is via its rate.

Definition 1.1.3: Rate of a Code

Rate of a code *C* of block length *n* and dimension *k*, denoted as *R*, is defined as

$$R:=\frac{k}{n}.$$

Example 1.1. Define a code $C \subseteq \{0,1\}^5$ that maps a binary string (x_1, x_2, x_3, x_4) to $(x_1, ..., x_4, x_1 \oplus ... \oplus x_4)$.

1.2 Formalizing Error Correction

Definition 1.2.1: Encoding & Decoding Functions

- Let $C \subseteq \Sigma^n$. An equivalent description of the code C is an injective mapping $E : [|C|] \to \Sigma^n$ called the *encoding function*.
- Let $C \subseteq \Sigma^n$ be a code. A mapping $D : \Sigma^n \to [|C|]$ is called a *decoding function*.