

Universidade do Minho Escola de Engenharia

Sistemas Inteligentes

Sistema Multiagente para Gestão de Transplantes de Órgãos

Clara Cunha
Leonor Amorim
Manuel Carvalho
Nuno Matos

Mestrado em Engenharia Biomédica - Informática Médica 3 de janeiro de 2025

Resumo

O presente trabalho propõe o desenvolvimento de um sistema multiagente para a gestão de transplantes de órgãos, implementado em *Python* com recurso à biblioteca SPADE. O sistema é composto por agentes que simulam diferentes entidades envolvidas no processo de transplante. Através de uma arquitetura modular, foram implementadas funcionalidades que incluem a alocação de órgãos com base em critérios de compatibilidade sanguínea, grau de urgência e logística de transporte, bem como mecanismos de contingência para lidar com eventuais falhas operacionais. A validação do sistema foi realizada mediante a simulação de diversos cenários representativos, os quais demonstraram a sua eficácia na coordenação das operações.

Palavras-chave: Sistemas multiagente, Transplantes de órgãos

Conteúdo

1	IIItr	ouuçao			3	
2	Análise e Especificação					
	2.1	Descri	ção do Problema		3	
	2.2	Especi	ificação dos Requisitos		3	
3	Arq	uitetura	a		4	
4	Implementação					
	4.1	Parâme	etros		6	
	4.2	Classes	es		8	
		4.2.1	Órgão		8	
		4.2.2	Localização		9	
		4.2.3	Hospital		9	
		4.2.4	Paciente		9	
		4.2.5	Morte		10	
	4.3 Funções				10	
		4.3.1	Tempo de transporte		10	

		4.3.2	Compatibilidade sanguínea	11	
		4.3.3	Prioridade	11	
		4.3.4	Melhor hospital	11	
	4.4	4.4 Agentes		12	
		4.4.1	Agente Transplante (AT)	12	
		4.4.2	Agente Recetor (AR)	14	
		4.4.3	Agente Transporte (ATR)	15	
		4.4.4	Agente Hospital (AH)	15	
	4.5	Execuç	ção Principal	17	
5	Resu	ıltados	e Avaliação	17	
	5.1	Realiza	ação de um transplante com sucesso	17	
	5.2	Hospital sem recursos para realização do transplante			
		5.2.1	Paciente crítico	18	
		5.2.2	Paciente não crítico	19	
	5.3	Falha no transplante		20	
		5.3.1	Morte do paciente	20	
		5.3.2	Morte do órgão	20	
	5.4	Falha ı	no transporte do órgão	21	
	5.5	Tempo	o de viabilidade do órgão e tempo de vida do paciente	22	
6	Desa	afios e S	ugestões de Melhoria	22	
7	Con	clusões		23	

1 Introdução

O presente projeto consiste na elaboração de um sistema multiagente destinado à gestão de transplantes de órgãos, no qual agentes inteligentes são responsáveis por coordenar a alocação de órgãos entre dadores e recetores.

Este relatório inicia-se com a exposição do problema em análise, incluindo a identificação dos requisitos a cumprir. Segue-se a etapa de conceção da solução, onde são apresentadas a estratégia e a linha de raciocínio adotadas, bem como a arquitetura do sistema multiagente desenvolvido e a descrição do seu funcionamento. Adicionalmente, são descritos os testes realizados em diversos cenários com vista à validação do sistema. Por fim, são apresentadas algumas reflexões sobre o trabalho finalizado, destacando os principais desafios enfrentados e propondo sugestões e recomendações para a melhoria futura do sistema.

2 Análise e Especificação

2.1 Descrição do Problema

O projeto propõe a criação de um sistema multiagente para a gestão de transplantes de órgãos, no qual agentes inteligentes são responsáveis por coordenar a alocação de órgãos entre dadores e recetores. A solução deve considerar múltiplos fatores, tais como a compatibilidade entre dador e recetor, a urgência clínica dos pacientes e os requisitos logísticos necessários para garantir a viabilidade do transplante. Deste modo, o problema centra-se no desenvolvimento de agentes capazes de interagir e cooperar, culminando na criação de um sistema funcional que satisfaça todos os requisitos identificados.

2.2 Especificação dos Requisitos

Para atingir os objetivos propostos, o sistema multiagente deverá possuir as seguintes funcionalidades principais:

 Identificação do recetor mais adequado aquando da notificação da disponibilidade de um órgão, considerando a compatibilidade sanguínea, a urgência clínica e a proximidade geográfica entre o doador e o recetor.

- Verificação da disponibilidade de salas cirúrgicas e de equipas médicas no hospital do recetor selecionado, garantindo que todas as condições necessárias para a realização do transplante sejam cumpridas dentro do prazo exigido pela viabilidade do órgão.
- Implementação de mecanismos que permitem redirecionar o órgão para outro hospital, caso o hospital inicialmente designado não disponha dos recursos necessários no tempo requerido.
- Coordenação da logística de transporte para assegurar que o órgão chegue atempadamente ao hospital de destino, considerando a distância entre o local de origem do órgão e o hospital recetor.
- Simulação do tempo de transporte e do tempo de resposta do sistema para assegurar a viabilidade do órgão ao longo de todo o processo de transferência.
- Implementação de medidas de contingência em casos de falhas logísticas ou incompatibilidades, como a redistribuição do órgão para outro paciente elegível.

3 Arquitetura

A arquitetura do sistema é representada através de diagramas UML (*Unified Modeling Language*), os quais fornecem uma visão abrangente da estrutura e do comportamento dos seus componentes. Estes diagramas são fundamentais para compreender como os elementos interagem, como as funcionalidades são organizadas e como os processos fluem dentro do sistema.

A Figura 1 apresenta o diagrama de classes, que ilustra a estrutura estática do sistema. Este diagrama destaca as classes existentes, os respetivos atributos e métodos, bem como as relações entre elas, permitindo uma visão clara das responsabilidades de cada componente.

Por sua vez, o diagrama de atividades, ilustrado na Figura 2, descreve os fluxos de trabalho e os processos dinâmicos executados pelos agentes do sistema. Este diagrama detalha as diferentes etapas envolvidas e a forma como estas se interligam para alcançar os objetivos do sistema.

Figura 1: Diagrama de Classes.

Figura 2: Diagrama de Atividades.

4 Implementação

O ambiente de trabalho utilizado para o desenvolvimento do sistema foi o *PyCharm*, utilizando a linguagem *Python* na versão 3.9. A biblioteca SPADE (*Smart Python Agent Development Environment*) foi empregada para criar agentes inteligentes e permitir a comunicação entre eles. Adicionalmente, o sistema operativo utilizado foi o *Windows 11*.

4.1 Parâmetros

Para permitir a adaptação e avaliação do sistema em diferentes ambientes, foi desenvolvido o ficheiro parameters.py, no qual se definem diversos parâmetros configuráveis do sistema, descritos a seguir.

Definição dos parâmetros associados ao órgão:

- **organ_type_dic**: Dicionário que especifica atributos essenciais para cada tipo de órgão, como tempo máximo de isquemia, duração do procedimento cirúrgico e probabilidade de complicações na viabilidade do órgão e do paciente.
- ABO: Lista com os diferentes tipos sanguíneos possíveis.
- RH: Lista com os diferentes fatores Rh possíveis.

Definição dos parâmetros associados ao transporte:

- **speed_hellichoppa**: Velocidade do helicóptero de transporte, em km/h.
- **speed_car**: Velocidade do carro de transporte, em km/h.
- failure_rate: Taxa de falha para os órgãos durante o transporte, em percentagem.
- **delay_rate**: Taxa de atraso nos transportes, em percentagem.

Definição dos parâmetros associados ao hospital:

- hospital_number: Número de hospitais no sistema.
- min_rooms: Número mínimo de salas de operação em cada hospital.
- max_rooms: Número máximo de salas de operação em cada hospital.
- min_teams: Número mínimo de equipas médicas disponíveis em cada hospital.
- max_teams: Número máximo de equipas médicas disponíveis em cada hospital.
- min_pat_period: Período mínimo entre criação de novos pacientes.
- max_pat_period: Período máximo entre criação de novos pacientes.

Definição dos parâmetros associados ao paciente:

- min_start_urg: Nível mínimo de urgência do paciente na sua criação.
- max_start_urg: Nível máximo de urgência do paciente na sua criação.
- **urgency_increase_chance**: Probabilidade de aumento da urgência a cada hora, em percentagem.

- urg_heli: Percentagem de urgência acima da qual o transporte por helicóptero é considerado.
- **urg_thresh**: Percentagem mínima de urgência para que o paciente possa ser transferido para outro hospital.

Este ficheiro inclui ainda os parâmetros XMPP_SERVER e PASSWORD, permitindo que o sistema seja facilmente portável para diferentes ambientes de execução.

4.2 Classes

As classes implementadas no sistema dispõem de métodos getters e setters, que permitem o acesso e a atualização controlada dos atributos, e o método str para oferecer uma representação textual customizada de cada objeto. Seguem-se as descrições das classes implementadas.

4.2.1 **Órgão**

A classe Organ representa um órgão com atributos relacionados à sua identificação e características operacionais:

- id: Identificador único do órgão.
- name: Nome do tipo de órgão (e.g., rim, coração).
- **ABO**: Tipo sanguíneo do órgão.
- Rh: Fator Rh do órgão.
- ischemia_time: Período em que o órgão pode permanecer viável fora do corpo.
- op_time: Tempo necessário para a operação de transplante.
- op_kill_organ: Probabilidades de falha do órgão durante a operação.
- op_kill_patient: Probabilidade de morte do paciente devido à operação.
- hold: Estado do órgão, indicando se este se encontra em espera ou em uso.

Ao ser instanciado, um objeto desta classe inicializa automaticamente os seus valores com base em escolhas aleatórias e nas informações do dicionário organ_type_dic e nas listas ABO e RH provenientes do ficheiro de parâmetros.

4.2.2 Localização

A classe Location representa uma localização definida por duas coordenadas cartesianas, que são geradas aleatoriamente ao instanciar a classe, com valores entre 1 e 100:

- x: Coordenada X da localização.
- y: Coordenada Y da localização.

4.2.3 Hospital

A classe Hospital representa um hospital no sistema e contém as seguintes informações:

- **location**: Instância da classe Location, que armazena informações sobre a localização do hospital.
- jid: Identificador único do hospital, representado por uma string.
- heliport: Indicador booleano que determina se o hospital possui heliporto, com base na probabilidade definida pelo parâmetro heliport_chance no ficheiro de parâmetros.

4.2.4 Paciente

A classe Patient representa um paciente que necessita de um transplante de órgão, armazenando as seguintes informações:

- id: Identificador único do paciente.
- organ: Órgão que o paciente necessita, representado por uma instância da classe Organ.
- hospital: Hospital onde está localizado paciente, representado por uma instância da classe Hospital.
- **urgency**: Nível de urgência do caso do paciente, gerado aleatoriamente entre os valores definidos pelas constantes min_start_urg e max_start_urg no ficheiro de parâmetros e usada para priorizar o atendimento do paciente.
- **no_room**: Um valor booleano que indica se o paciente não tem quarto disponível no hospital, sendo inicialmente definido como *False*.

4.2.5 Morte

A classe KillChart regista os riscos associados a um transplante de órgão, tanto para o órgão quanto para o paciente. Esta classe é necessária para documentar os resultados dos transplantes, permitindo monitorizar o impacto das operações em cada um dos elementos envolvidos, e armazena as seguintes informações:

- organ: Órgão a ser transplantado.
- patient: Paciente que recebe o transplante.
- hospital: Hospital responsável pelo procedimento de transplante.
- kill_organ: Booleano que indica se o transplante resulta na destruição do órgão, inicializado como False.
- **kill_patient**: Booleano que indica se o transplante causa a morte do paciente, inicializado como *False*.

4.3 Funções

As funções implementadas têm o objetivo de otimizar o processo de transplantes de órgãos, ajudando a calcular tempos de transporte entre hospitais, verificar a compatibilidade sanguínea entre órgãos e pacientes, além de determinar a prioridade na alocação de órgãos com base em fatores como urgência e localização. A seguir, são descritas as principais funções desenvolvidas.

4.3.1 Tempo de transporte

A função calc_time calcula o tempo de viagem entre dois hospitais, considerando a distância entre eles, o meio de transporte e a urgência do paciente. Se ambos os hospitais possuem heliporto e o caso for urgente, o transporte será feito de helicóptero; caso contrário, será feito via terrestre.

A função three_way_time calcula o tempo de transporte máximo entre dois hospitais e um destino comum, utilizando a função calc_time, para transportar um órgão e um paciente, levando em consideração a urgência do caso. Esta retorna o maior tempo de viagem calculado, pois esse será o tempo total de deslocação.

4.3.2 Compatibilidade sanguínea

A função blood_compatibility verifica se o órgão e o paciente são compatíveis em termos de grupo sanguíneo e fator Rh, retornando *True* se o órgão for compatível com o paciente e *False* caso contrário.

4.3.3 Prioridade

A função priority_score calcula a pontuação de prioridade para um órgão com base na urgência do paciente, no tempo de transporte (utilizando a função calc_time) e no tempo de isquemia do órgão. Quanto menor o valor retornado, maior a prioridade do paciente para receber o órgão.

A função priority_neworgan seleciona o paciente com maior prioridade para receber um órgão. Esta filtra os pacientes que não possuem um órgão atribuído e que têm compatibilidade sanguínea com o órgão, utilizando a função blood_compatibility. Para cada paciente compatível, calcula-se a pontuação de prioridade usando a função priority_score. A lista de pacientes é então ordenada pela pontuação de prioridade e o paciente com a maior pontuação é selecionado. Assim, a função retorna um tuplo com o órgão, o hospital e o paciente selecionados.

A função priority_newpatients calcula a prioridade de alocação de órgãos para múltiplos pacientes, retornando uma lista de pacientes com maior prioridade para cada órgão disponível. Para cada tuplo órgão-hospital na lista de tuplos, a função verifica se o órgão não está em espera e calcula a prioridade de alocação para os pacientes do hospital correspondente usando a função priority_neworgan. O órgão é atribuído ao paciente mais prioritário, se encontrado, e o paciente é marcado como "em espera". A função retorna uma lista de tuplos com o órgão, o hospital e o paciente com maior prioridade para receber o órgão.

4.3.4 Melhor hospital

A função best_hospital_list ordena os hospitais por tempo de transporte entre o hospital do paciente, o hospital do órgão e o destino final, calculado usando a função three_way_time. O objetivo é encontrar o hospital mais adequado para realizar o transplante, considerando a urgência do caso e o tempo total de transporte entre os hospitais envolvidos.

4.4 Agentes

4.4.1 Agente Transplante (AT)

O Agente Transplante (AT) é responsável por coordenar a gestão de órgãos disponíveis para transplante, recebendo notificações de novos órgãos e verificando a compatibilidade com os pacientes na lista de espera. Ele mantém as seguintes listas:

- **torgan_tuple_list**: Lista de tuplos que armazena informações sobre órgãos disponíveis e os hospitais onde se encontram.
- **current_requests**: Lista que armazena mensagens de solicitação de salas para transplante, pendentes de resposta.
- patient_dic: Dicionário que organiza os pacientes por tipo de órgão requerido.
- hospital_list: Lista de hospitais no sistema.

O agente opera com três comportamentos principais:

- **ATListen(CyclicBehaviour)**: Este comportamento cíclico aguarda mensagens e processa-as com base na *performative* associada:
 - Inscrição de hospitais (subscribe): Recebe e processa inscrições de hospitais, adicionando-os à lista hospital_list.
 - Processamento de novos órgãos (subscribe_torgan): Regista a chegada de novos órgãos ao sistema, adicionando o órgão e o hospital associado à lista torgan_tuple_list. A função priority_neworgan é utilizada para determinar o paciente mais compatível com o órgão. Caso um paciente compatível seja identificado, o órgão e o paciente são colocados em estado "hold" para evitar que sejam re-associados enquanto o processo de alocação está em andamento. Um pedido é então enviado ao hospital do paciente para verificar a disponibilidade de condições para o transplante, e este pedido é adicionado à lista current_requests.
 - Atualização de lista de pacientes (inform_patient_list): Recebe uma lista de novos pacientes e integra-a no dicionário patient_dic. A função priority _newpatients é usada para determinar pacientes prioritários para os órgãos disponíveis. Caso um paciente compatível seja identificado, o órgão e o paciente são colocados em estado "hold" para evitar que sejam re-associados, e é enviado um pedido ao hospital do paciente para verificar a disponibilidade de condições. Este pedido é adicionado à lista current_requests.

- Confirmação de condições (confirm_room): Após a confirmação de condições por parte do hospital, o AT solicita ao ATR a logística para entrega do órgão.
- Recusa de condições (refuse_room): Caso o hospital recuse as condições para o transplante, o AT implementa medidas de contingência. Ele verifica a urgência do paciente, que é comparada com um limite (urg_thresh) (quanto maior o valor do nível de urgência, menos crítico é o paciente):
 - 1. Se o paciente não está numa situação crítica (o nível de urgência é maior que o limite de urgência), pode ser transportado para outro hospital. O AT procura outras salas disponíveis na hospital_list, excluindo o hospital original onde o paciente estava. A função best_hospital_list avalia os melhores hospitais disponíveis para o paciente. O melhor hospital da lista é escolhido e o AT solicita uma nova sala e equipa médica para o paciente. Este pedido é adicionado à lista current_requests.
 - 2. Se o paciente está em estado crítico, não pode ser transportado para outro hospital. Neste caso, o AT tenta encontrar outro paciente para o órgão através da função priority_neworgan. O paciente original é removido da lista de espera e marcando como "sem sala". Se um novo paciente for encontrado, o órgão e o novo paciente são colocados em estado de "hold" e é enviada uma mensagem ao hospital do paciente para verificar a disponibilidade de condições. Este pedido é adicionado à lista current_requests.
- Confirmação de condições noutro hospital (confirm_another_room): Após
 a confirmação de que um paciente e um órgão podem ser alocados noutro
 hospital, o AT solicita ao ATR a logística para o transporte do órgão e do
 paciente.
- Recusa de condições noutro hospital (refuse_another_room): Se não for possível encontrar um hospital com condições adequadas após tentar hospitais alternativos, o AT liberta o "hold" em órgãos e pacientes, e regista que não há hospitais adequados disponíveis.
- Sucesso na operação (confirm_op): O órgão e o paciente são removidos da lista de espera.
- Falha na operação (failure_op): A razão pode ser a morte do paciente, a destruição do órgão, ou ambos.
 - 1. Caso a falha seja por morte do paciente, o paciente é removido da lista e o órgão é libertado.

2. Caso a falha seja por destruição do órgão, o órgão é removido da lista e o paciente é libertado.

De seguida, o AT recalcula as prioridades dos pacientes e, caso um paciente compatível seja identificado, o órgão e o paciente são colocados em estado "hold" e é enviado um pedido ao hospital do paciente para verificar a disponibilidade de condições. Este pedido é adicionado à lista current_requests.

- Falha no transporte (failure_transport): O órgão correspondente é removido da lista de órgãos e o paciente é tirado do "hold".
- ATSend(CyclicBehaviour): Comportamento que envia as mensagens de solicitação de salas (armazenadas na lista current_requests) para os hospitais. Após o envio, a mensagem é removida da lista.
- PassTime(PeriodicBehaviour): Comportamento que simula a passagem do tempo. Ele reduz o tempo de isquemia dos órgãos e aumenta a urgência dos pacientes. Se o tempo de isquemia de um órgão ou a urgência de um paciente chegar a zero, o órgão ou paciente é removido da lista.

4.4.2 Agente Recetor (AR)

O Agente Recetor (AR) é responsável por gerir informações sobre pacientes e coordenar a comunicação com o AT para atualizar a lista de pacientes que aguardam órgãos para transplante. Ele mantém um dicionário principal:

• patient_dic: Armazena listas de pacientes compatíveis para cada tipo de órgão.

O agente opera com dois comportamentos:

• ARListen(CyclicBehaviour): Monitoriza continuamente mensagens recebidas, garantindo que o AR esteja sempre atualizado com as informações sobre novos pacientes e que elas sejam armazenadas corretamente para serem usadas posteriormente. São aguardadas mensagens do tipo *inform*, que contêm informações de um novo paciente associado a um órgão específico. O paciente é então adicionado à lista de pacientes do dicionário patient_dic e é inserido na chave correspondente ao tipo de órgão que ele necessita. Caso a mensagem recebida não seja do tipo esperado, o agente exibe um erro.

• ARSend(PeriodicBehaviour): É executado de forma periódica, com um intervalo de 5 segundos. O AR prepara e envia uma mensagem para o AT com a lista atualizada de pacientes. Depois de enviar a mensagem, a lista de pacientes é limpa para garantir que o AR envie apenas dados atualizados.

4.4.3 Agente Transporte (ATR)

O Agente Transporte (ATR) é responsável por processar pedidos de transporte de órgãos e pacientes, avaliando as condições de transporte, calculando distâncias e tempos, e enviando mensagens para notificar o sucesso ou a falha das operações.

O agente mantém um comportamento:

- ATRListen(CyclicBehaviour): Este comportamento executa uma ação cíclica, aguardando mensagens e processando-as com base na *performative* associada:
 - Requisição de transporte de órgão (request_transport): Verifica a urgência do paciente e calcula o tempo necessário para o transporte através da função calc_time, considerando a distância entre os hospitais e o meio de transporte disponível (carro ou helicóptero). Se o tempo de transporte é calculado como zero, isso significa que o órgão já está no hospital do paciente, e o ATR notifica o sucesso do transporte sem a necessidade de deslocamento. Caso contrário, o ATR simula o transporte, considerando possíveis falhas e atrasos.
 - **1.** Se ocorrer uma falha no transporte, o ATR simula o tempo de falha e notifica o AT sobre o problema para que este possa tomar medidas de contingência.
 - **2.** Se não houver falha, o ATR simula o transporte com um possível atraso, e então notifica o hospital de destino sobre a conclusão bem-sucedida do transporte.
 - Requisição de transporte de paciente (request_patient_transport): O ATR também lida com solicitações de transporte de pacientes, onde o transporte tanto do paciente quanto do órgão deve ser coordenado. O agente simula o tempo de transporte para ambos, considerando as condições de urgência e a infraestrutura dos hospitais envolvidos, e simula a viagem com possíveis atrasos.

4.4.4 Agente Hospital (AH)

O Agente Hospital (AH) é responsável pela gestão dos recursos de um hospital, incluindo a criação e a gestão de pacientes e órgãos, bem como a disponibilidade de salas cirúrgicas e equipas médicas para o procedimento operatório. O AH mantém as seguintes variáveis:

- hospital: instância da classe Hospital.
- available_rooms: número de salas cirúrgicas disponíveis para a cirurgia.
- available_teams: número de equipas médicas disponíveis para a cirurgia.
- id_atual_pat: identificador incremental para pacientes do hospital.
- id atual organ: identificador incremental para órgãos disponíveis no hospital.

O agente opera com vários comportamentos:

- PatientCreation(PeriodicBehaviour): Cria pacientes periodicamente com um identificador único, que é composto pelo ID do hospital e um número sequencial de paciente. A cada execução, ele envia uma mensagem para o AR, informando a criação do paciente.
- TorganCreation(PeriodicBehaviour): Cria órgãos periodicamente com um identificador único, que também é composto pelo ID do hospital e um número sequencial de órgão. Após a criação do órgão, o comportamento envia uma mensagem para o AT para notificar a criação do órgão.
- **SubscribeHospital(OneShotBehaviour)**: Inscreve-se, no AT, enviando informações sobre o hospital.
- AHListen(CyclicBehaviour): Este comportamento cíclico é responsável por escutar as mensagens recebidas e processá-las com base na *performative* associada. As ações realizadas para cada tipo de mensagem são as seguintes:
 - Requisição de sala (request_room) e request_another_room: Verifica se há salas e equipas disponíveis no hospital para realizar o procedimento. Caso haja disponibilidade, ele aloca os recursos necessários, diminuindo o número de salas e de equipas disponíveis, e envia uma resposta de confirmação. Caso contrário, envia uma resposta de recusa.
 - Confirmação de transporte (confirm_transport): Simula o tempo da operação (com base no tempo de operação do órgão) e depois faz a atualização dos recursos do hospital, aumentando o número de salas e equipas disponíveis. O comportamento também simula possíveis falhas durante o transplante, como a morte do paciente ou do órgão. Por fim, envia mensagens de confirmação ao AT se o procedimento for bem-sucedido ou mensagens de falha caso haja problemas.

4.5 Execução Principal

A execução principal do código configura e inicializa os agentes do sistema de transplante, criando os agentes necessários para simular o processo de alocação de órgãos e transplantes. Inicia-se com a criação dos agentes principais (AT, AR, ATR) e a inicialização dos agentes hospitalares (AH), com base no número de hospitais definidos. Cada agente é iniciado de maneira assíncrona, e o código aguarda até que todos estejam registados no servidor XMPP. O sistema permanece em execução enquanto os agentes principais estiverem ativos. No final, a função quit_spade() é chamada para encerrar o ambiente de execução e desconectar do servidor XMPP.

5 Resultados e Avaliação

Nesta secção são apresentados os resultados obtidos a partir dos testes realizados no sistema, com o objetivo de avaliar a sua eficácia em diferentes cenários, considerando tanto o sucesso quanto as falhas potenciais que podem ocorrer durante o processo de alocação, transporte e transplante de órgãos.

5.1 Realização de um transplante com sucesso

Neste teste é verificado o processo completo de realização de um transplante de fígado, em que o hospital tem todos os recursos necessários e o procedimento ocorre sem falhas.

 O hospital responsável pela operação começa o processo de confirmação das condições necessárias para realizar o procedimento.

```
Hospital 8 at Location [X=42, Y=81]:
Confirming conditions for Patient H8-P1: organ: liver; type: 0+; urgency: 9.
Available rooms: 4; Available teams: 7.
```

2. O transporte do órgão é iniciado.

```
Confirmation from Hospital 4 at Location [X=94, Y=23] for Patient H8-P1: organ: liver; type: 0+; urgency: 9. Initiating transport for Organ H4-O1: liver; type: AB+...
```

3. O órgão chega ao hospital onde o transplante será realizado.

the second special second seco

4. O órgão é transplantado com sucesso no paciente.

```
Patient H8-P1: organ: liver; type: 0+; urgency: 9 was successfully implanted with Organ H4-01: liver; type: AB+.

Patient H8-P1: organ: liver; type: 0+; urgency: 9 procedure successful in Hospital 8 at Location [X=42, Y=81]!
```

Exemplos de transplante para outros órgãos:

• Pulmão

5.2 Hospital sem recursos para realização do transplante

5.2.1 Paciente crítico

Neste teste, o hospital inicialmente recusa as condições para realizar a cirurgia de transplante e, como o paciente é crítico, o órgão selecionado é redistribuído a outro paciente elegível.

1. O hospital recusa ter as condições necessárias para a realização da operação. O órgão é redirecionado para outro paciente.

```
Conditions not met for Patient H7-P1: organ: pancreas; type: AB+; urgency: 8 in Hospital 7 at Location [X=96, Y=90] Searching for new patient for Organ H7-O1: pancreas; type: B+...
```

2. O hospital do novo rector confirma ter as condições necessárias para a realização da operação e o transporte do órgão é iniciado.

```
Confirmation from Hospital 9 at Location [X=57, Y=79] for Patient H9-P1: organ: pancreas; type: B+; urgency: 9. Initiating transport for Organ H7-O1: pancreas; type: B+...
```

3. O órgão chega ao hospital onde o transplante será realizado.

Organ H7-01: pancreas; type: B+ successfully arrived at Hospital 9 at Location [X=57, Y=79] for Patient H9-P1: organ: pancreas; type: B+; urgency: 9 by car in 0.7 hours, including a delay of 0.19 hours.

4. O órgão é transplantado com sucesso no paciente.

Patient H9-P1: organ: pancreas; type: B+; urgency: 9 was successfully implanted with Organ H7-01: pancreas; type: B+.

5.2.2 Paciente não crítico

Neste teste, o cenário envolve um hospital que inicialmente recusa as condições para realizar a cirurgia de transplante. Como resultado, o paciente é transportado para outro hospital que possui as condições necessárias para a operação.

1. O hospital recusa ter as condições necessárias para a realização da operação. O sistema procura por outros hospitais para o paciente ser transplantado.

```
Conditions not met for Patient #2-P4: organ: liver; type: 0+; urgency: 10 and Organ H12-011: liver; type: A+ in Hospital 2 at Location [X=32, Y=2]. Searching for rooms in other hospitals...
```

2. O hospital alternativo confirma ter as condições necessárias para a realização da operação e o transporte do órgão e do paciente é iniciado.

```
Hospital 15 at Location [X=66, Y=2] confirmed conditions for Patient H2-P4: organ: liver; type: 0+; urgency: 10 from other hospital 4 rooms and 6 teams now available.

Conditions met for Patient H2-P4: organ: liver; type: 0+; urgency: 10 and Organ H12-011: liver; type: A+ at Hospital 15 at Location [X=66, Y=2]. Initiating patient and organ transport...
```

3. O órgão e o paciente chegam ao hospital onde o transplante será realizado.

atient [2284] organ: liver; type: 0+; urgency: 10 arrived by car and Organ H12-011: liver; type: A+ arrived by car successfully at Hospital 15 at Location [X=66, Y=2] in 0.42 hours, including a delay of 0.0 hours

4. O órgão é transplantado com sucesso no paciente.

```
Patient H2-P4: organ: liver; type: 0+; urgency: 10 was successfully implanted with Organ H12-011: liver; type: A+.
```

Neste teste o percurso é o mesmo, mas neste caso tanto o órgão quanto o paciente são transportados de helicóptero. Para facilitar a identificação dos helicópteros, os parâmetros urg_heli e heliport_chance no ficheiro de parâmetros foram aumentados.

```
Conditions not met for Patient 17-P1: organ: liver; type: 0+; urgency: 7 and Organ H11-01: liver; type: AB- in Hospital 7 at Location [X=43, Y=12]. Searching for rooms in other hospitals...

Hospital 8 at Location [X=8, Y=49] confirmed conditions for Patient H7-P1: organ: liver; type: 0+; urgency: 7 from other hospital 3 rooms and 8 teams now available.

Conditions met for Patient H7-P1: organ: liver; type: 0+; urgency: 7 and Organ H11-01: liver; type: AB- at Hospital 15 at Location [X=10, Y=99]. Initiating patient and organ transport...

Patient H7-P1: organ: liver; type: 0+; urgency: 7 arrived by helicopter and Organ H11-01: liver; type: AB- arrived by melicopter successfully at Hospital 8 at Location [X=0, Y=49] in 0.3 hours, including a delay of 0.05 hours.

Patient H7-P1: organ: liver; type: 0+; urgency: 7 was successfully implanted with Organ H11-01: liver; type: AB-.
```

5.3 Falha no transplante

5.3.1 Morte do paciente

Neste cenário é verificada a morte do paciente durante o transplante e a medida de contingência implementada.

1. O órgão chega ao sistema.

```
Organ H9-02: liver; type: B- info received
```

 O hospital confirma ter as condições necessárias para a realização da operação e o transporte do órgão é iniciado.

```
Confirmation from Hospital 9 at Location [X=99, Y=66] for Patient H14-P3: organ: liver; type: AB-; urgency: 4. Initiating transport for Organ H9-02: liver; type: B-...
```

- 3. O órgão chega ao hospital (com atraso) onde o transplante será realizado.
- 4. A cirurgia falha por morte do paciente.

Organ 19-02: liver; type: B- successfully arrived at Hospital 14 at Location [X=59, Y=90] for Patient H14-P3: organ

```
Procedure for Patient H14-P3: organ: liver; type: AB-; urgency: 4 and Organ H9-02: liver; type: B- failure: Patient died.
```

5. O órgão volta a estar disponível no sistema, é redistribuído a outro paciente e é iniciado o seu transporte.

```
Confirmation from Hospital 14 at Location [X=59, Y=90] for Patient H5-P8: organ: liver; type: 0+; urgency: 7. Initiating transport for Organ H9-02: liver; type: B-...
```

6. O órgão chega ao hospital onde o transplante será realizado com um pequeno atraso.

ngan HP-DZ: liver; type: 8- successfully arrived at Hospital 5 at Location [X=56, Y=88] for Patient H5-P8: organ: liver; type: 0+; urgency: 7 by car in 0.03 hours, in

7. O órgão é transplantado com sucesso no novo paciente.

```
Patient H5-P8: organ: liver; type: 0+; urgency: 7 was successfully implanted with Organ H9-02: liver; type: B-.
```

5.3.2 Morte do órgão

Neste cenário é verificada a destruição do órgão durante o transplante e a medida de contingência implementada.

 O hospital confirma ter as condições necessárias para a realização da operação e o transporte do órgão é iniciado.

```
Hospital 15 at Location [X=66, Y=2]:
Confirming conditions for Patient H15-P1: organ: heart; type: A+; urgency: 2.
Available rooms: 4; Available teams: 6.
```

```
Confirmation from Hospital 6 at Location [X=96, Y=86] for Patient H15-P1: organ: heart; type: A+; urgency: 2. Initiating transport for Organ H6-O2: heart; type: O+...
```

2. O órgão chega ao hospital onde o transplante será realizado.

Organ H6-02: heart; type: 0+ successfully arrived at Hospital 15 at Location [X=66, Y=2] for Patient H15-P1; organ: heart; type: A+; urgency: 2 by car in 0.45 hours, including a delay of 0.0 hours.

3. A cirurgia falha por destruição do órgão.

```
Procedure for Patient H15-P1: organ: heart; type: A+; urgency: 2 and Organ H6-02: heart; type: O+ failure: Organ destroyed.
```

4. O paciente volta a estar disponível no sistema e é encontrado um novo órgão para ele.

```
Hospital 15 at Location [X=66, Y=2]:
Confirming conditions for Patient H15-P1: organ: heart; type: A+; urgency: 2.
Available rooms: 4; Available teams: 6.
```

 O hospital confirma ter as condições necessárias para a realização da operação e o transporte do órgão é iniciado.

```
Confirmation from Hospital 11 at Location [X=15, Y=21] for Patient H15-P1: organ: heart; type: A+; urgency: 2. Initiating transport for Organ H11-010: heart; type: A+...
```

6. O órgão chega ao hospital onde o transplante será realizado.

n H11-010: heart; type: A+ successfully arrived at Hospital 15 at Location [X=66, Y=2] for Patient H15-P13 organ: heart; type: A+; urgency: 2 by car in 0.34 hours, including a delay of 0.07 hours.

7. O novo órgão é transplantado com sucesso no paciente.

```
Patient H15-P1: organ: heart; type: A+; urgency: 2 was successfully implanted with Organ H11-010: heart; type: A+.
```

5.4 Falha no transporte do órgão

 O hospital responsável pela operação começa o processo de confirmação das condições necessárias para realizar o procedimento.

```
Hospital 3 at Location [X=11, Y=62]:
Confirming conditions for Patient H3-P16: organ: liver; type: 0+; urgency: 6.
Available rooms: 4; Available teams: 1.
```

2. O hospital confirma ter as condições necessárias para a realização da operação e o transporte do órgão é iniciado.

```
Confirmation from Hospital 10 at Location [X=47, Y=55] for Patient H3-P16: organ: liver; type: 0+; urgency: 6. Initiating transport for Organ H10-O32: liver; type: AB+...
```

3. O órgão não chega ao hospital onde o transplante será realizado por falha no transporte.

```
Organ H10-032: liver; type: AB+ failed to arrive at Hospital 3 at Location [X=11, Y=62]
```

4. Por consequência, o paciente acaba por morrer à espera de um novo órgão.

```
Patient H6-P141: organ: heart; type: A+; urgency: 1 did not find a suitable organ in time and passed away...RIP Patient H3-P16: organ: liver; type: 0+; urgency: 1 did not find a suitable organ in time and passed away...RIP Patient H1-P54: organ: liver; type: 0-; urgency: 1 did not find a suitable organ in time and passed away...RIP Patient H3-P59: organ: liver; type: A+; urgency: 1 did not find a suitable organ in time and passed away...RIP Patient H10-P98: organ: liver; type: B-; urgency: 1 did not find a suitable organ in time and passed away...RIP
```

5.5 Tempo de viabilidade do órgão e tempo de vida do paciente

Este teste mostra dois rins que perderam a sua viabilidade devido ao tempo que passou.

```
Organ H5-025: kidney; type: A- did not find a suitable patient in time. Organ H7-032: kidney; type: B- did not find a suitable patient in time.
```

No próximo teste temos o caso de uma falha no transplante devido à destruição do órgão, onde depois o paciente acabou por morrer à espera de um novo órgão.

1. O hospital recusa ter as condições necessárias para a realização da operação. O sistema procura por outros hospitais para o paciente ser transplantado.

```
Conditions not met for Patient Ho-P20: organ: kidney; type: A-; urgency: 5 and Organ Ho-O33: kidney; type: A- in Hospital 6 at Location [X=96, Y=86]. Searching for rooms in other hospitals...
```

2. O hospital alternativo confirma ter as condições necessárias para a realização da operação e o transporte do órgão e do paciente é iniciado.

```
Hospital 10 at Location [X=47, Y=55] confirmed conditions for Patient Ho-P20: organ: kidney; type: A-; urgency: 5 from other hospital 0 rooms and 3 teams now available.

Conditions met for Patient Ho-P20: organ: kidney; type: A-; urgency: 5 and Organ Ho-O33: kidney; type: A- at Hospital 15 at Location [X=66, Y=2]. Initiating patient and organ transport...
```

3. O órgão e o paciente chegam ao hospital onde o transplante será realizado.

tient [6-120] organ: kidney; type: A-; urgency: 5 arrived by car and Organ MG-033: kidney; type: A- arrived by car successfully at Mospital 10 at Location [Xe47, Y+55] in 0.39 hours, including a delay of 0.0 hour

4. A cirurgia falha por destruição do órgão.

```
Procedure for Patient H6-P20: organ: kidney; type: A-; urgency: 5 and Organ H6-033: kidney; type: A- failure: Organ destroyed.
```

5. O paciente morre à espera de um novo órgão.

```
Patient H6-P20: organ: kidney; type: A-; urgency: 1 did not find a suitable organ in time and passed away...RIP Patient H4-P211: organ: liver; type: B+; urgency: 1 did not find a suitable organ in time and passed away...RIP
```

6 Desafios e Sugestões de Melhoria

Durante o desenvolvimento do sistema, foram enfrentados diversos desafios de implementação que exigiram adaptações na abordagem para garantir o funcionamento adequado.

Um dos principais desafios foi relacionado à serialização e desserialização dos objetos. Durante esse processo, cópias dos objetos são criadas na memória, o que significa que, ao alterar um atributo de instância, é necessário garantir que a instância original seja modificada. Um exemplo disso ocorre com as instâncias de pacientes, que são serializadas e enviadas várias vezes para diferentes agentes. Quando um paciente é selecionado para

operação, é crucial impedir que ele seja novamente selecionado para transplante. Para isso, foi necessário alterar o atributo "hold" na instância do agente AT, garantindo que a instância original fosse modificada adequadamente.

Outro desafio foi a dificuldade de testar componentes isolados do sistema. Durante o desenvolvimento, observou-se que muitas funcionalidades só poderiam ser testadas efetivamente quando as dependências relacionadas também estivessem prontas, o que resultou num volume elevado de código por testar.

Diversas melhorias podem ser implementadas para tornar o sistema mais robusto e capaz de lidar de maneira mais eficiente com as complexidades e imprevistos associados ao processo de alocação de órgãos.

A primeira melhoria sugerida está relacionada à atualização do tempo de vida dos órgãos e do estado clínico dos pacientes. No sistema atual, o tempo de isquemia do órgão é contabilizado no momento da escolha do paciente, considerando o tempo de transporte. No entanto, este tempo não é atualizado enquanto o órgão está a ser transportado, o que afeta os casos em que a cirurgia não é bem-sucedida, mas o órgão permanece viável para um novo transplante. De forma similar, o nível de urgência do paciente não evolui quando este é selecionado. A proposta consiste em implementar uma atualização contínua do tempo de isquemia dos órgãos durante o transporte, bem como uma evolução dinâmica da urgência dos pacientes enquanto aguardam a operação

A segunda melhoria diz respeito à possibilidade de um paciente ser associado a múltiplos órgãos simultaneamente. Atualmente, o sistema restringe a alocação de um órgão por paciente, limitando a flexibilidade da gestão de recursos.

Outra melhoria é a possibilidade de o paciente morrer durante o transporte. Atualmente, o sistema não considera o risco de mortalidade dos pacientes críticos enquanto os órgãos estão em transporte. A proposta é introduzir uma probabilidade de mortalidade baseada na urgência do paciente. Caso o paciente morra antes de metade do trajeto, o órgão deve retornar ao hospital de origem para ser redistribuído, caso contrário o órgão fica no hospital de destino.

7 Conclusões

O sistema multiagente desenvolvido demonstrou-se eficaz na simulação de transplantes de órgãos, conseguindo gerir com sucesso o fluxo de informações entre os agentes envolvidos.

Durante o desenvolvimento foram enfrentadas algumas dificuldades e muitas vezes foi necessário recuar para reformular o raciocínio ou corrigir erros. Através da prática constante e da aplicação dos conhecimentos adquiridos ao longo da unidade curricular, foi possível superar essas dificuldades e desenvolver soluções funcionais e alinhadas aos objetivos do projeto.

Embora diversas possibilidades tenham sido exploradas durante a implementação, a verdade é que ainda muito pode ser feito com o objetivo de otimizar este sistema.