电学预科实验:

示波器和信号发生器的使用

【一、实验目的】

本实验主要利用示波器观察并测量由信号发生器产生的波形;旨在使同学们学会**示波器**和信号发生器的基本操作。

- 1. 了解示波器显示波形的原理;
- 2. 学会示波器的使用方法;
- 3. 学会用示波器测电压、时间[间隔](频率、周期、相位差)。

17. 快捷键/辅助功能键 18. LCD显示屏 13. 方向键 RIGOL DG4162 5.000,0 Vpp 0.000,0 Vpc 3. 菜单软键 4. 菜单翻页 5. CH1输出端 8. CH2同步输出端 11. 数字键盘 9. 通道控制区 6. CH1同步输出端

信号发生器: 提供输入信号

图1. 示波器采集的科学数据实例。

图2. 显示的波形的X、Y和Z成分。

示波器:测量电压随时间的变化

电子学仪器测试的基本工具

频谱:测量电压随频率的变化

图 1. 测量交流和直流电压

数字源表: 只显示电压的特征值

hpq03.eps

【二、实验仪器】

- 数字存储示波器(DS1102E, MSO1104Z, MSO2302A—多种型号,操作相似)
- 信号发生器(DG1022U, DG4162--两种不同型号)
- 信号电路板(DS1000D-TK)
- 一些信号源: 开关电源等

示波器前面板 (DS1102E)

信号发生器前面板

注意事项: CH1和CH2别混淆了,设置后别忘了按"Output"

【三、实验原理】

1. 示波器原理

- 示波器分为[早期]**模拟示波器**和[现在]**数字存储示波器**。
- [早期]模拟示波器主要由三部分组成: 阴极射线管,放大系统,触发、同步系统。电压信号经Y轴放大器放大后加到示波管的偏转板上,当示波器选择Y-T模式时,扫描、同步系统产生一个锯齿波电压加到X偏转板上,此时示波管上就能显示出输入电压的波形。

图 0-1 模拟示波器工作框图。S1 为同步选择开关, S2 为显示模式开关。

1. 示波器原理

• 示波器分为[早期]模拟示波器和[现在]数字存储示波器。

图 0-2 示波管结构

阴极被加热发射出大量电子,经聚焦加热后高速轰击荧光屏,发出荧光。在电子束路径两旁设置两对平行板电极,改变加在其上的电压,可控制电子束的运动。垂直方向的一对电极为水平(或X)偏转板,简称横偏板。水平方向的一对平行板电极为垂直(或Y)偏转板,简称纵偏板。若加在平行板上的电压u(单位V)使电子束沿纵向(或横向)偏转y(单位格),则定义u/y为偏转因数,记作K。因此,使电子束偏转y的电压可表示为: u=K/y。利用此式,可以测量出被测信号的电压值。

数字存储示波器的输入电路与模拟示波器相似。前置放大器的输出信号由跟踪/存储或取样/存储电路进行取样,并由A/D转换器数字化,A/D转换后信号变为数字形式存入到存储器。取样时钟驱动A/D转换器、取样器和存储器,使他们协调地工作。波形存储后,由微处理器将波形变为可视图形。

数字存储示波器工作原理图

两种示波器的区别

• 示波器分为模拟示波器和数字存储示波器。

从用途看,数字存储示波器和模拟示波器一样,是显示作为时间函数的电压波形(即Y-T模式)或两个函数之间的关系(即X-Y模式)。 但两者的工作原理有本质的差异。

模拟示波器的输入信号经过放大直接加到显示器的偏转板上来显示波形,在信号频率很低时显示屏上显示的是一个亮点在慢慢地移动,看不到一个完整的波形,当信号消失时显示屏上的波形也随即消失。

数字存储示波器是对输入信号先进行取样和模-数转换,将输入的模拟信号转换为数字量并存储在存储器内,示波器内的微处理器则将存储器内的数字信号转换成可视波形。

数字存储示波器的另一个功能是能捕捉触发前的信号,显示屏中心所对应的是触发位置,右边是触发后的波形,左边是触发前的波形。

模拟示波器只能观察触发后的波形。

1. 示波器扫描触发原理

图 0-4 扫描不同步,图像不稳定。

Ts=Tv, 称为**扫描同步**,在屏上看到的是一幅稳定的波形,因为每次扫描起始点的数值相同。扫描不同步时,起始点的数值就不同,图像就会不停地跳动。

通过设置触发值来判定扫描开始和结束的时间,实现扫描同步。默认触发值是 0V,触发值超过信号最大值时无法判定扫描起始时间,图像跳动。

2. 示波器的测量

- 用示波器可以下面测量4个量:
- 1.电压
- 2.时间(间隔)
- 3.频率
- 4.相位差
- 下面我们学习:
- 1.示波测量电压
- 2.测量时间
- 3.观测李萨如(Lissajous)图形。

2.1. Y-T模式

(1) 示波测量电压

只要量出被测波形任何两点的垂直距离 Δy 就可知该两点间的电压差 $\Delta u_Y = K\Delta y$,其中K为偏转因数。若被测电压为简谐波,则只要量出电压波形峰-峰的间距 Δy 就可知其电压的有效值: $u_e = \frac{u_{pp}}{2\sqrt{2}} = \frac{K\Delta y}{2\sqrt{2}}$ 。其中 u_{pp} 为电压的峰-峰值。

(2) 测量时间(间隔)

用示波器可直观地测定时间(间隔)。在屏幕上,信号某两点之间的时间间隔 Δt ,等于该两点水平间距l乘以观测时的每格扫描时间 t_0 ,即: $\Delta t = lt_0$ 。

若观测的两点,正好是周期性信号相邻的两个同相位点,且间距为L (单位: 格),则其周期: $T=Lt_0$ 。

同频率的两个简谐信号之间的相位差为: $\varphi = \Delta t \cdot \frac{360^{\circ}}{T}$ 。其中 Δt 为两信号的对应同相位点间的时间间隔,T为它们的周期。

2.2 X-Y模式

3 信号发生器和示波器的阻抗设置

图 9 信号发生器和负载电路示意图

信号发生器BNC接头的阻抗是50欧,

- (1)负载阻抗设置为50欧时,为了给负载输出电压U,信号发生器的输出电压自动变为2U。如果负载实际为1MΩ,2U的电压几乎全部加在负载上。
- (2)负载阻抗设置为1MΩ欧时,为了给负载输出电压U,信号发生器的输出电压为U。如果负载实际为50Ω,只有U/2加在负载上。

本实验中所用的信号发生器(DG4162)的负载阻抗设置有 50 Ω 和高阻抗两种选项。当选 50 Ω 负载阻抗,而实际负载阻抗无穷大或为 1 $M\Omega$ 时,负载上的幅值为设置幅值的 2 倍。如果 信号发生器中设置的负载阻抗为高阻抗,而实际负载为 50 Ω 时,负载上的信号幅值为设置的信号幅值的一半。

4. 示波器探头的使用

图40. 带附件的典型无源探头。

图41. 在测量当前计算机总线和数据传输线中的快速时钟和边沿时 高性能探头至关重要。

带补偿的高阻无源探头原理

高阻无源探头具备较高的输入阻抗,因此负载效应较小;有可调的补偿电容,以 匹配示波器的输入;具备较高的动态范围,可以测试较大幅度的信号;通用性好。 不足之处是输入电容过大,带宽较低(一般500 MHz以内)。当接上示波器时,需要 调节电容值,与示波器输入电容匹配。

4 示波器探头的使用

补偿探头的操作步骤

在首次将探头与任一输入通道连接时,进行此项调节,使探头与输入通道 匹配。未经补偿或补偿偏差的探头会导致测量误差或错误。若调整探头补偿, 请按如下步骤进行:

- 1. 将示波器中探头菜单**衰减系数**设定为10X,将探头上的开关设定为10X, 并将示波器探头与通道1连接。将探头端部与探头补偿器的信号输出连接器相 连,基准导线夹与探头补偿器的地线连接器相连,打开通道1,然后按下 AUTO 键。注意设置示波器中的探头衰减系数为相同的值。此衰减系数将改 变仪器的垂直档位比例,以使得测量结果正确反映被测信号的电平。
 - 2. 检查所显示波形的形状。
- 3. 如必要,用非金属质地的改锥调整探头上的可变电容,直到屏幕显示的 波形如图 0-10中的 "补偿正确"。
 - 4. 必要时,重复以上步骤。

探头补偿

图 1-10 探头补偿连接

② 示波器需要输入探头衰减系数。此衰减系数将改变仪器的垂直档位比例,以使得测量结果正确反映被测信号的电平(默认的探头菜单衰减系数设定值为1X)。

设置探头衰减系数的方法如下:按 CH1 功能键显示通道 1 的操作菜单,应用与探头项目平行的 3 号菜单操作键,选择与您使用的探头同比例的衰减系数。如下图所示,此时设定的衰减系数为 10X。

CH1

耦合

直流

带宽限制

关闭

探头

数字滤波

探头比例

图 1-11图 1-12设定探头上的系数设定菜单中的系数

5. 与示波器相关的常用术语

- **带宽**: 带宽这个指标决定了示波器能够准确测量的频率范围。在信号频率提高时,示波器显示信号的能力会下降。示波器带宽是指正弦曲线输入信号被衰减到信号真是幅度70.7%(-3dB)的频率。如果没有足够的带宽,示波器将不能解析高频变化,幅度将失真,边沿将消失,细节将丢失。为确定能准确测量某信号的示波器带宽,应采用"五倍法则",即示波器的带宽应大于待测信号最高频率成分的5倍。使用五倍法则选择的示波器将在测量中提供小于2%的误差,这对一般应用足够了。
- **采样率**: 采样率用样点/秒(S/s或Sa/s)表示,指示波器获得信号样点的频度,示波器采样速度越快(即采样率越高),分辨率或显示的波形细节越高,丢失关键信息或事件的可能性越小。
- 记录长度(或存储深度):记录长度用构成一条完整的波形记录的点数表示。决定着每条通道可以捕获的数据量。由于示波器只能存储有限数量的样点,因此存储的波形时长(时间)与示波器的采样率成反比,即,时间间隔=记录长度/采样率。

【四、实验过程13:30-14:00】

• 1. 调出稳定波形

- (1)由信号发生器产生一个频率为1 KHz,峰峰值电压V_{PP}=4 V的正弦波信号,由CH1通道输出到示波器的CH1通道。点击示波器上的AUTO键,使显示出清晰稳定的波形。调节垂直控制(VERTICAL)和水平控制(HORIZONTAL)区域中的Scale和Position旋钮,观察显示的图像有何变化。调节触发区域的触发电平(LEVEL)旋钮,观察图像有何变化。当触发电平超过信号电压最大值时,观察图像是否稳定。改变信号参数,观察图像变化。
- 将调出的清晰稳定波形以图像和CSV两种格式存储。按下前面板上的 Storage按键,选择合适的存储要求。注意将参数一并存储。存储 CSV格式数据时,在"数据长度"(或数据来源)一栏选择"屏幕",不要选"内存"(因为存储"内存"可能需要几十分钟的时间)。

【四、实验过程14:00-14:15】

- (2)由信号发生器产生一个频率为1 KHz,峰峰值电压V_{PP}=4 V的方波(然后三角波)信号,由CH1通道输出到示波器的CH1通道。调节波形参数,观察波形变化。
- (3)由信号发生器产生两个频率为1 KHz,峰峰值电压V_{PP}=4 V的正弦波信号,经示波器显示出来。改变CH2的相位,观察图像的变化。改变CH2的频率为2 KHz,3 KHz,4 KHz时,这两路信号能否同时在示波器上显示出稳定的波形?当CH2频率为1.3 KHz,2.3 KHz时,两个信号能否同时稳定地显示出来?将触发源由CH1变为CH2,比较显示的波形情况有何变化?试解释为什么?

【四、实验过程14: 15-14: 30】

- 2. 电压、时间间隔和频率的测量
- 调节信号发生器,使其输出一定幅值、频率分别为100 Hz和5 KHz的 正弦波信号。输入示波器,调出稳定波形。
- (1)利用示波器屏幕上的标尺测量信号的周期、频率、电压峰-峰值和有效值。
- (2)利用测量功能(示波器前面板上的"Measure"键)测量同一信号的周期、频率、电压峰-峰值和有效值,并于(1)的测量结果进行比较。

【四、实验过程14:30-14:45】

- 3. 波形的运算
- 将示波器CH1输入V_{PP}=5 V,频率为1 KHz的正弦波信号,CH2通道输入同等幅值、频率为3 KHz的正弦波。利用控制面板上的"MATH"按键,将两路波形相加,观察相加后的波形。将CH2的信号频率改为5 KHz、10 KHz后,观察相加后的波形。

【四、实验过程14:45-15:00】

- 4. 观测李萨如图形
- 选择示波器的X-Y模式("HORIZONTAL"区域,"Menu"按键, "时基"),示波器CH1和CH2通道中分别接入V_{PP}=5 V,频率分别为(1 KHz, 1 KHz)、(1 KHz, 2 KHz)、(1 KHz, 3 KHz)、 (2 KHz, 3 KHz)的信号,观察李萨如图形。改变CH2的相位,观察图形的变化。画出(CH1, CH2)频率分别为(1 KHz, 4 KHz)、(2 KHz, 5 KHz)的李萨如图形。

【四、实验过程15:00-15:10】

- 5. 信号发生器与示波器的阻抗设置
- 改变信号发生器与示波器的阻抗,50Ω和高阻(或者1MΩ),观察在各种阻抗组合下,示波器显示的幅值与信号发生器中设置的幅值是否相同。

• 【注:示波器和函数发生器里阻抗设置都在Utility里;有的示波器里没有50欧的选项,没有的可以不设,只改变信号发生器的阻抗。】

【四、实验过程15:10-15:30】

- 6. 探头的使用
- 利用示波器的探头测量信号板上的正弦,三角波等信号。注意:
- 【1】示波器通道的探头衰减系数与探头本身的衰减系数保持一致。
- 【2】测量前,确认探头补偿正确。

- 7.使用示波器观测一些常见信号源(自选)
- 电涌、电噪声
- 电信号在导线中的反射

万用表和直流电源

【一、实验目的】

- 学会正确的使用万用表和直流电源
- 1. 了解万用表不同测试挡位的意义和功能,能用万用表进行基本的电学测试。
- 2.了解直流电源的类型和工作模式,用直流电源测试二极管的伏安特性,用万用表和示波器对直流电源的输出电压进行测试。

【二、实验设备】

- 1. Fluke 数字万用表
- 2. 杭州大华DH1715A 双路稳压电源
- 3. Rigol **DP700/800**系列可编程线性直流电源

接线端

显示屏

说明 项目 项目 说明 已启用相对测量(仅限 17B+)。 (9) 已选中占空比 (17B+/18B+)。 (1) 高压 (10)已选中电阻或频率 (17B+/18B+)。 (2) 已选中通断性。 电容单位法拉。 (3) (11)已启用"显示保持"。 (4) (12)毫伏或伏特 已启用最小值或最大值模式(仅限 17B+)。 直流或交流电压或电流 (5) (13) 已启用 LED 测试(仅限 18B+)。 (6) (14)微安、毫安或安培 (7)已选中华氏温标或摄氏温标(仅限 17B+)。 (15) 已启用自动量程或手动量程。 已选中二极管测试。 电池电量不足,应立即更换。 (8) (16)

自动关机

本产品会在20分钟不活动之后自动关闭电源。

如要重新启动本产品,首先将旋钮调回 OFF 位置,然后调到所需位置。

如要禁用自动关机功能,则在本产品开机时按住 _____,直至 屏幕上显示 PoFF。

手动及自动量程选择

该产品有手动量程和自动量程两个选项。在自动量程模式下,该产品将会为检测到的输入选择最佳量程。这让您转换测试点而无需重置量程。您可以手动选择量程来改变自动量程。

默认情况下,该产品将会在包含多个量程的测量功能中使用 自动量程模式,并在屏幕上显示**自动量程**。

如要进入手动量程模式,请按 RANGE 。

相对测量(仅限 17B+)

该产品允许对除频率、电阻、通断性、占空比和二极管以外的所有功能使用相对测量。

要执行相对测量:

- 当该产品设在所需的功能时,用测试导线接触您想要用 作以后测量的依据的电路。
- 按 □□ 可以将测得的读数存储为参考值并激活相对测量模式。

最小值/最大值模式(仅限 17B+)

要将产品设置为最小值/最大值模式(对除电阻、电容、频率、占空比和二极管以外的所有功能可用):

- 1. 按一次 MINMAX 可以将产品设置为最大值模式。
- 2. 再按一次 MINMAX 可以将产品设置为最小值模式。
- 3. 按住 MINMAX 2 秒将恢复正常操作。

测量交流电压和直流电压

要测量交流电和直流电电压:

- 1. 将旋转开关转至 ⅰ、 Ϋ 或 ⇌ 选择交流电或直流电。
- 2. 按 ___ 可以在 mVac 和 mVdc 电压测量之间进行切换。
- 3. 将红色测试导线连接至 y n l 端子,黑色测试导线连接至 COM 端子。
- 4. 用探头接触电路上的正确测试点以测量其电压,如图 1 中所示。

图 1. 测量交流和直流电压

hpq03.eps

測量交流或直流电流

▲▲ 警告

为了防止可能发生的电击、火灾或人身伤害,测量电流时,先断开电路电源,然后再将电表连接到电路中。将产品与电路串联连接。

测量交流或直流电流:

- 1. 将旋转开关转至 😭 📙 或 🛣。
- 2. 按 ___ 可以在交流和直流电流测量之间进行切换。
- 3. 根据要测量的电流将红色测试导线连接至 A 或 mA μA 端子,并将黑色测试导线连接至 COM 端子。参见图 2。
- 4. 断开待测的电路路径。然后将测试导线衔接断口并施用 电源。

图 2. 测量交流和直流电流

hpq04.eps

测量电阻

要测量电阻:

- 将旋转开关转至 つ 。确保已切断待测电路的电源。
- 2. 将红色测试导线连接至 Ұл 端子,并将黑色测试导线连接至 COM 端子,如图 3 所示。
- 3. 将探针接触想要的电路测试点,测量电阻。
- 4. 阅读显示屏上的测出电阻。

通断性测试

要测试通断性:

选择电阻模式后,按一次 \square 以激活通断性蜂鸣器。如果电阻低于 70Ω ,蜂鸣器将持续响起,表明出现短路。参见图 3。

图 3. 测量电阻/通断性

hpq05.eps

测试二极管

▲小心

为避免对产品或被测试设备造成可能的损坏,请 在测试二极管之前断开电路的电源并将所有的高 压电容器放电。

- 1. 将旋转开关转至 "计。"
- 2. 按两次 以激活二极管测试。
- 将红色测试导线连接至 ¥n 端子, 黑色测试导线连接至 COM 端子。
- 4. 将红色探针接到待测的二极管的阳极而黑色探针接到阴 极。
- 5. 读取显示屏上的正向偏压。
- 6. 如果测试导线极性与二极管极性相反,显示读数为 OL。 这可以用来区分二极管的阳极和阴极。

测量电容

▲小心

为避免对产品造成损坏,请在测量电容之前断开电路的电源并将所有的高压电容器放电。

- 1. 将旋转开关转至 ╬ 。
- 将红色测试导线连接至 Yn l 端子, 黑色测试导线连接至 COM 端子。
- 3. 将探针接触电容器引脚。
- 4. 读数稳定后(最多 18 秒后),读取显示屏所显示的电容值。

测量温度(仅限17B+)

要测量温度:

- 1. 将旋转开关转至 ▮。
- 2. 将热电偶插入到该产品的 ¥n l 和 COM 端子中。 确保将热电偶标记有 "+"的插头插入到该产品上的 ¥n l 端子中。
- 3. 读取显示屏上的电压。
- 4. 按 □ 可以在 °C 和 °F 之间切换。

灣量頻率和占空比(仅限 17B+/18B+)

本产品在进行电压或电流测量的同时还可以测量频率或占空比。按 [Hz %] 可将本产品更改为测量频率或占空比。

- 1. 当该产品处于所需功能(交流电压或交流电流)下时, 按 [Hz *]。
- 2. 读取显示屏上的信号频率。
- 3. 如要进行占空比测量,则再按一次[Hz *]。
- 4. 阅读显示屏上的占空比百分数。

测试 LED (仅限 18B+)

▲小心

为了避免对本产品或被测设备造成可能的损坏, 请在切换至 LED TEST 功能之前将连接到任何危 险电压的所有测试导线断开。

本产品可以通过测量仪上的 LED 测试插孔或者通过测试导线来测试发光二极管 (LED)。

注意

不要使用 LED TEST 模式来进行 LED 老化测试。

通过 LED 测试插孔测量 LED:

- 1. 调节旋钮至 LED TEST。
- 2. 将 LED 引脚放在电表前侧的 LED 测试插孔中,如图 4 所示。

高端万用表才有此功能!

如果 LED 状态良好,本产品将会点亮被测的 LED,而且正极指示灯将会亮起,以指示 (+)管脚。如果 LED 破损, LED 不会点亮,两个正极指示器均不点亮。如果 LED 短路,LED 将不点亮,两个正极指示器将点亮。

图 4. LED 测试插孔

hpt07.eps

高端万用表才有此功能!

【三、实验原理-电源】

大华DH1715A

RIGOL DP800系列

电源的作用:将220VAC转化为设备所需要的直流电,几乎每台电子设备都需要直流电源,手机充电器就是一个直流电源。

【三、实验原理-电源】

前面板 后面板

三、实验原理-电源

- 1-显示屏
- **2**-通道(档位)选择与输 出开关
- 3-参数输入区
- 4-恢复出厂设置
- 5-确认键
- 6-删除或者返回
- 7-输出端子
- 8-功能菜单区
- 9-当前显示和表盘模式之间切换
- 10-菜单键
- 11-电源开关

三、实验原理-电源

四:实验过程(16:00-16:20)

- 1. 万用表的操作
- (1) 用万用表测两手之间的身体电阻。
- (2) 切换万用表到通断模式,将两个表笔短接,听短路时的嘀嘀声。
- (3) 切换万用表到二极管模式,测二极管的截止电压和电阻,判断二极管的极性。
- (4) 切换万用表到电容模式,测电容器的电容。
- (5) 切换万用表到交流档,测插座的交流电压,**档位选择正确,切 莫用手接触表笔端的金属**。【选作:没有把握的同学可以不做。】

四:实验过程(16:20-16:40)

- 2. 电源的操作
- (1)将电源采用恒压模式输出5V,12V,24V,用万用 表测试输出的电压值。
- (2) 用恒压模式给二极管供电,记录电压从0V升高至 0.3V时的电压电流曲线,每隔0.01V计一组数,测试二极管的伏安特性曲线。(锗二极管的截止电压约0.3V,硅二极管约0.7V)

四:实验过程(16:40-17:00)

- 3. 电源的纹波测试(选作)
- (1)将电源的输出设置为5V,将示波器的探头校准之后用接地夹子夹住电源输出端子的负极,探头的钩子钩住电源输出端子的正极。用示波器观测电压是否为5V。
- (2)将示波器的耦合模式切换到"交流",阻挡输入信号的直流成分, 就可以看到电压的纹波。
- (3) 按下 "RUN / STOP"键,停止测试之后就可以放大观察纹波,纹 波为5mV左右,测试纹波的峰峰值(Vp-p)和均方根值(Vrms)。

实验结束!

收拾好实验设备之后再离开!