- (a) As $\lambda \rightarrow \infty$, $\frac{6}{92}$ will have the smaller training RSS, as it allows for a potentially more complex fit with more parms, and thus will make training RSS smaller.
- (b.) This answer depends on the underlying structure/properties of the true data generating function of Eyi3. For example, of the true data generating function of Eyi3. For example, if Eyi3 generated from a 3rd degree polynomial in Xi, V I I would expect \hat{g}_2 to have smaller test set RSS. If I would expect \hat{g}_2 to have smaller test set RSS. If Eyi3 generated from 2rd degree polynomial, \hat{g}_1 test set Eyi3 generated from 2rd degree polynomial, \hat{g}_1 test set Eyi3 generated from 2rd degree polynomial, \hat{g}_1 test set Eyi3 generated from 2rd degree polynomial, \hat{g}_1 test set Eyi3 generated from 2rd degree polynomial, \hat{g}_1 test set Eyi3 generated from 2rd degree polynomial, \hat{g}_1 test set Eyi3 generated from 2rd degree polynomial, \hat{g}_1 test set Eyi3 generated from 2rd degree polynomial, \hat{g}_1 test set Eyi3 generated from 2rd degree polynomial, \hat{g}_1 test set Eyi3 generated from 2rd degree polynomial, \hat{g}_1 test set Eyi3 generated from 2rd degree polynomial, \hat{g}_1 test set Eyi3 generated from 2rd degree polynomial, \hat{g}_1 test set Eyi3 generated from 2rd degree polynomial, \hat{g}_1 test set Eyi3 generated from 2rd degree polynomial, \hat{g}_1 test set Eyi3 generated from 2rd degree polynomial, \hat{g}_1 test set Eyi3 generated from 2rd degree polynomial, \hat{g}_1 test set Eyi3 generated from 2rd degree polynomial, \hat{g}_1 test set Eyi3 generated from 2rd degree polynomial, \hat{g}_2 test set Eyi3 generated from 2rd degree polynomial, \hat{g}_2 test set Eyi3 generated from 2rd degree polynomial, \hat{g}_2 test set Eyi3 generated from 2rd degree polynomial, \hat{g}_2 test set Eyi3 generated from 2rd degree polynomial from 2rd degree Eyi3 generated from 2rd degree polynomial from 2rd degree Eyi3 generated from 2rd

thus again \hat{g}_2 will have train set RSS at least

Thus again \hat{g}_2 will have train set RSS will be smaller

as small and text set RSS will be smaller

for (\hat{g}_1) if DSP to closer to (3^{rd}) degree polynomial.

Thus here, $\hat{g}_1 = \hat{g}_2$, as both will try to

Thus here, $\hat{g}_1 = \hat{g}_2$, as both will try to

minimize SSE (and likely both perfectly interpolate

Note that their train at text RSS will be equal!