Administració i Manteniment de Sistemes i Aplicacions (AMSA)

Arrancada del sistema (Booting)

Jordi Mateo jordi.mateo@udl.cat & Francesc Solsona francesc.solsona@udl.cat

Escola Politècnica Superior (EPS) https://www.eps.udl.cat/ · Departament d'Enginyeria Informàtica i Disseny Digital https://deidd.udl.cat/

Arrancada del sistema (*Booting*)

Etapes de l'arrancada

Figura 1: Etapes de l'arrancada d'un sistema linux

Què és el BIOS/UEFI?

El primer programa que s'executa quan encenem un ordinador és el BIOS (Basic Input/Output System) en equips més antics, o l'UEFI (Unified Extensible Firmware Interface) en sistemes més moderns. Aquest firmware, emmagatzemat en una memòria no volàtil (com ROM o memòria flash), és el responsable d'inicialitzar el maquinari i permetre l'arrencada del sistema operatiu.

• Configuració del sistema: Ajusta la data i l'hora, la seqüència d'arrencada, els dispositius de xarxa i altres perifèrics.

Què és el BIOS/UEFI?

El primer programa que s'executa quan encenem un ordinador és el BIOS (Basic Input/Output System) en equips més antics, o l'UEFI (Unified Extensible Firmware Interface) en sistemes més moderns. Aquest firmware, emmagatzemat en una memòria no volàtil (com ROM o memòria flash), és el responsable d'inicialitzar el maquinari i permetre l'arrencada del sistema operatiu.

- Configuració del sistema: Ajusta la data i l'hora, la seqüència d'arrencada, els dispositius de xarxa i altres perifèrics.
- Autotest d'engegada (POST): Realitza comprovacions inicials del sistema abans d'arrencar el sistema operatiu.

Què és el BIOS/UEFI?

El primer programa que s'executa quan encenem un ordinador és el BIOS (Basic Input/Output System) en equips més antics, o l'UEFI (Unified Extensible Firmware Interface) en sistemes més moderns. Aquest firmware, emmagatzemat en una memòria no volàtil (com ROM o memòria flash), és el responsable d'inicialitzar el maquinari i permetre l'arrencada del sistema operatiu.

- Configuració del sistema: Ajusta la data i l'hora, la seqüència d'arrencada, els dispositius de xarxa i altres perifèrics.
- Autotest d'engegada (POST): Realitza comprovacions inicials del sistema abans d'arrencar el sistema operatiu.
- Actualització de firmware: Tant el BIOS com la UEFI es poden actualitzar per corregir errors, millorar la compatibilitat o afegir noves funcions de seguretat. Compte: Actualitzar el firmware pot ser perillos, ja que un error durant el procés pot deixar el sistema inutilitzable.

• Emmagatzematge: La BIOS s'emmagatzema en un xip ROM, mentre que la UEFI pot estar en una memòria flash (NVRAM) o fins i tot en un disc dur.

- Emmagatzematge: La BIOS s'emmagatzema en un xip ROM, mentre que la UEFI pot estar en una memòria flash (NVRAM) o fins i tot en un disc dur.
- Arquitectura: La BIOS és *monolítica* i no es pot modificar fàcilment, mentre que la UEFI és *modular*, la qual cosa permet afegir mòduls com gestors d'arrencada o eines de diagnòstic.

- Emmagatzematge: La BIOS s'emmagatzema en un xip ROM, mentre que la UEFI pot estar en una memòria flash (NVRAM) o fins i tot en un disc dur.
- Arquitectura: La BIOS és *monolítica* i no es pot modificar fàcilment, mentre que la UEFI és *modular*, la qual cosa permet afegir mòduls com gestors d'arrencada o eines de diagnòstic.
- Seguretat: La UEFI ofereix funcions com *Secure Boot*, que protegeix el procés d'arrencada contra codi no autoritzat o maliciós.

- Emmagatzematge: La BIOS s'emmagatzema en un xip ROM, mentre que la UEFI pot estar en una memòria flash (NVRAM) o fins i tot en un disc dur.
- Arquitectura: La BIOS és *monolítica* i no es pot modificar fàcilment, mentre que la UEFI és *modular*, la qual cosa permet afegir mòduls com gestors d'arrencada o eines de diagnòstic.
- Seguretat: La UEFI ofereix funcions com *Secure Boot*, que protegeix el procés d'arrencada contra codi no autoritzat o maliciós.
- Preparació: La BIOS necessita una taula de particions MBR, mentre que la UEFI requereix una taula de particions GUID (GPT) i una partició *EFI*.

Taula de particions MBR

Estructura

- Bootloader de primera etapa (446 bytes):
 Conté el codi d'arrencada.
- Taula de particions (64 bytes): Conté la informació de les particions. Pot contenir fins a 4 entrades.
- Signatura (2 bytes): Marca de final de la taula de particions. Permet identificar la taula de particions com a vàlida.

Limitacions

Les principals limitacions de la MBR són la capacitat màxima de 2,2 TB i la limitació a 4 particions primàries.

Figura 2: Esquema MBR

Comparativa entre BIOS i UEFI

Característica	BIOS	UEFI
Capacitat de disc	Suporta fins a 2,2 TB	Suporta fins a 9,4 ZB
Interfície	Basada en text	Basada en gràfics
Seguretat	No té funcions de	Suporta Secure Boot, que
	seguretat avançades	evita l'arrencada de codi maliciós
Compatibilitat	Limitada amb sistemes moderns	Compatible amb sistemes moderns i anteriors
Velocitat d'arrencada	Més lenta	Més ràpida
Taua de particions	MBR	GPT
Particions	Suporta fins a 4 particions primàries	Suporta fins a 128 particions
Modularitat	No és modular	És modular, permet afegir mòduls i extensions

Què és la consola de la UEFI?

La **consola de la UEFI** és una interfície de línia de comandes que permet interactuar directament amb el firmware UEFI per realitzar tasques avançades de diagnòstic, configuració i manteniment del sistema.

Què és la consola de la UEFI?

La **consola de la UEFI** és una interfície de línia de comandes que permet interactuar directament amb el firmware UEFI per realitzar tasques avançades de diagnòstic, configuració i manteniment del sistema.

Funcions

Aquesta consola és útil per als administradors de sistemes per configurar el maquinari, comprovar el funcionament dels dispositius, accedir als sistemes de fitxers i fins i tot instal·lar o reparar sistemes operatius sense un entorn gràfic complet.

Accés

Per accedir a la consola de la UEFI, normalment s'ha de prémer una tecla específica durant l'engegada del sistema. Aquesta tecla pot ser F2, F10, F12, ESC o Supr en funció del fabricant del maquinari.

Què és la consola de la UEFI?

La **consola de la UEFI** és una interfície de línia de comandes que permet interactuar directament amb el firmware UEFI per realitzar tasques avançades de diagnòstic, configuració i manteniment del sistema.

Funcions

Aquesta consola és útil per als administradors de sistemes per configurar el maquinari, comprovar el funcionament dels dispositius, accedir als sistemes de fitxers i fins i tot instal·lar o reparar sistemes operatius sense un entorn gràfic complet.

Accés

Per accedir a la consola de la UEFI, normalment s'ha de prémer una tecla específica durant l'engegada del sistema. Aquesta tecla pot ser F2, F10, F12, ESC o Supr en funció del fabricant del maquinari.

Nota: Es pot accedir a la UEFI des de l'entorn de Windows, Linux o macOS, però aquesta opció pot variar en funció del fabricant del maquinari. Per exemple, en Linux es pot accedir a la UEFI amb la comanda efibootmgr.

```
FS2: Alias(s):HD1b::BLK7:
           PciRoot (0x0) /Pci (0x17.0x0) /Pci (0x0.0x0) /NUMe (0x2.00-00-00-00-00-00-00-
00) /HD (1.GPT.8DD9095B-5B0C-45A3-A026-33DE34ED23B5.0x800.0x100000)
     RLKO: Alias(s):
           Pc i Root (0x0) /Pc i (0x11.0x0) /Pc i (0x3.0x0) /Sata (0x1.0x0.0x0)
     RLK2: Alias(s):
           PciRnat (0x0) /Pci (0x17.0x0) /Pci (0x0.0x0) /NUMe (0x1.00-00-00-00-00-00-00-
00)
     BLK6: Alias(s):
           PciRoot (0x0) /Pci (0x17.0x0) /Pci (0x0.0x0) /NUMe (0x2.00-00-00-00-00-00-00-
AA)
     BLK4: Alias(s):
           PciRoot (0x0) /Pci (0x17,0x0) /Pci (0x0,0x0) /NUMe (0x1,00-00-00-00-00-00-00-
00) /HD(2,GPT,7D330E0D-0E09-440C-A79D-9239BD9F11C0,0x12C800,0x200000)
     BLK5: Alias(s):
           PciRnat (0x0) /Pci (0x17.0x0) /Pci (0x0.0x0) /NUMe (0x1.00-00-00-00-00-00-00-
00) /HD (3. GPT .94B55114-4795-4748-AD0E-BB068D437691 .0x32C800 .0x24D3000)
     BLK8: Alias(s):
           PciRoat (0x0) /Pci (0x17.0x0) /Pci (0x0.0x0) /NUMe (0x2.00-00-00-00-00-00-00-
00) /HD (2, GPT, 760F1F2F-BA6F-479C-8D4D-8FA31D9226F6, 0x100800, 0x2517000)
     BLK9: Alias(s):
           PciRoot (0x0) /Pci (0x17.0x0) /Pci (0x0.0x0) /NUMe (0x2.00-00-00-00-00-00-00-
00) /HD (3_GPT_CD375C90-62B6-4507-9263-55BE97B26672_0x2617B00_0x1EB000)
Press ESC in 1 seconds to skip startup.nsh or any other key to continue.
She11>
```

La consola UEFI ofereix una sèrie de comandes similars a les que es troben en la línia de comandes de Linux, permetent un control detallat del sistema.

 map: Mostra els dispositius disponibles i les seves associacions amb les unitats lògiques del sistema. Ex: map fs* llista tots els sistemes de fitxers detectats.

- map: Mostra els dispositius disponibles i les seves associacions amb les unitats lògiques del sistema. Ex: map fs* llista tots els sistemes de fitxers detectats.
- mem: Mostra el contingut de la memòria i l'ús de la RAM. Ex: memmap mostra un mapa detallat de la memòria física.

- map: Mostra els dispositius disponibles i les seves associacions amb les unitats lògiques del sistema. Ex: map fs* llista tots els sistemes de fitxers detectats.
- mem: Mostra el contingut de la memòria i l'ús de la RAM. Ex: memmap mostra un mapa detallat de la memòria física.
- ls: Mostra els fitxers i directoris dins del sistema de fitxers accessible. Ex: [ls fs0:\EFI\Boot] llista els fitxers dins la partició EFI.

- map: Mostra els dispositius disponibles i les seves associacions amb les unitats lògiques del sistema. Ex: map fs* llista tots els sistemes de fitxers detectats.
- mem: Mostra el contingut de la memòria i l'ús de la RAM. Ex: memmap mostra un mapa detallat de la memòria física.
- · ls: Mostra els fitxers i directoris dins del sistema de fitxers accessible. Ex: [ls fs0:\EFI\Boot] llista els fitxers dins la partició EFI.
- cd: Permet navegar entre carpetes. Ex: cd EFI\Boot et mou a la carpeta d'arrencada dins la partició EFI.

- map: Mostra els dispositius disponibles i les seves associacions amb les unitats lògiques del sistema. Ex: map fs* llista tots els sistemes de fitxers detectats.
- mem: Mostra el contingut de la memòria i l'ús de la RAM. Ex: memmap mostra un mapa detallat de la memòria física.
- ls: Mostra els fitxers i directoris dins del sistema de fitxers accessible. Ex: [ls fs0:\EFI\Boot] llista els fitxers dins la partició EFI.
- cd: Permet navegar entre carpetes. Ex: cd EFI\Boot et mou a la carpeta d'arrencada dins la partició EFI.
- cp: Copia fitxers entre diferents ubicacions dins dels sistemes de fitxers accessibles. Ex:
 cp fs0:\EFI\Boot\bootx64.efi fs1:\EFI\Backup\ copia un fitxer d'arrencada entre dues particions.

- map: Mostra els dispositius disponibles i les seves associacions amb les unitats lògiques del sistema. Ex: map fs* llista tots els sistemes de fitxers detectats.
- mem: Mostra el contingut de la memòria i l'ús de la RAM. Ex: memmap mostra un mapa detallat de la memòria física.
- ls: Mostra els fitxers i directoris dins del sistema de fitxers accessible. Ex: [ls fs0:\EFI\Boot] llista els fitxers dins la partició EFI.
- cd: Permet navegar entre carpetes. Ex: cd EFI\Boot et mou a la carpeta d'arrencada dins la partició EFI.
- cp: Copia fitxers entre diferents ubicacions dins dels sistemes de fitxers accessibles. Ex:
 cp fs0:\EFI\Boot\bootx64.efi fs1:\EFI\Backup\ copia un fitxer d'arrencada entre dues particions.
- edit: Permet editar fitxers. Això és útil per modificar fitxers de configuració del sistema o scripts d'arrencada. Ex: edit fs0:\EFI\Boot\bootx64.efi obre un fitxer EFI per editar-lo.

Què és una partició EFI?

Una partició EFI és una partició especial del disc dur, requerida pels sistemes UEFI, que emmagatzema els fitxers necessaris per a l'arrencada del sistema operatiu. Aquesta partició sol ser de 100 a 550 MB, es formata amb el sistema de fitxers FAT32 i conté una carpeta anomenada EFI amb els fitxers necessaris per a l'arrencada.

Organització de la partició EFI

Si observeu l'estructura d'una partició EFI, veureu una carpeta EFI amb subcarpetes per a cada sistema operatiu instal·lat, com ara Windows o Linux.

Aquestes subcarpetes contenen els fitxers necessaris per a l'arrencada del sistema operatiu, això ens permet indicar a la UEFI on es troba el bootloader de segona etapa de cada sistema operatiu.

Què és una partició EFI?

Una **partició EFI** és una partició especial del disc dur, requerida pels sistemes UEFI, que emmagatzema els fitxers necessaris per a l'arrencada del sistema operatiu. Aquesta partició sol ser de 100 a 550 MB, es formata amb el sistema de fitxers **FAT32** i conté una carpeta anomenada **EFI** amb els fitxers necessaris per a l'arrencada.

Organització de la partició EFI

Si observeu l'estructura d'una partició EFI, veureu una carpeta EFI amb subcarpetes per a cada sistema operatiu instal·lat, com ara Windows o Linux.

Aquestes subcarpetes contenen els fitxers necessaris per a l'arrencada del sistema operatiu, això ens permet indicar a la UEFI on es troba el bootloader de segona etapa de cada sistema operatiu.

Observacions sobre la UEFI

Importància de la partició EFI

La partició EFI és essencial per a l'arrencada del sistema operatiu en sistemes UEFI. Aquesta partició conté els fitxers necessaris per carregar el bootloader de segona etapa, com ara GRUB o el gestor d'arrencada de Windows. Sense aquesta partició, la UEFI no podria carregar el sistema operatiu i l'ordinador no podria arrencar.

Observacions sobre la UEFI

Importància de la partició EFI

La partició EFI és essencial per a l'arrencada del sistema operatiu en sistemes UEFI. Aquesta partició conté els fitxers necessaris per carregar el bootloader de segona etapa, com ara GRUB o el gestor d'arrencada de Windows. Sense aquesta partició, la UEFI no podria carregar el sistema operatiu i l'ordinador no podria arrencar.

Es pot arrencar sense una partició EFI?

Es podria arrencar un sistema operatiu sense una partició EFI, per fer-ho, s'hauria de configurar la UEFI per carregar el bootloader de segona etapa directament des del disc dur sense passar per la partició EFI. Això és poc comú i no es recomana, ja que la partició EFI facilita la gestió de l'arrencada i permet tenir múltiples sistemes operatius instal·lats en el mateix disc dur.

Bootloaders de segona etapa

El **bootloader** de segona etapa és responsable de carregar el **kernel** i el **initramfs** en la memòria RAM i iniciar el sistema operatiu. Aquest **bootloader** es troba en la partició EFI en sistemes UEFI o en el MBR en sistemes BIOS i és el responsable de carregar el sistema operatiu.

· LILO (Linux LOader): Un dels primers bootloaders de Linux, ara obsolet.

- · LILO (Linux LOader): Un dels primers bootloaders de Linux, ara obsolet.
- GRUB (GRand Unified Bootloader): El bootloader més utilitzat en sistemes Linux. Compatible amb BIOS i UEFI.

- · LILO (Linux LOader): Un dels primers bootloaders de Linux, ara obsolet.
- GRUB (GRand Unified Bootloader): El bootloader més utilitzat en sistemes Linux. Compatible amb BIOS i UEFI.
- **GRUB2**: Versió actualitzada de GRUB amb més funcionalitats i suport per a més sistemes de fitxers (FAT, NTFS,ext4). També ha millorat el *multiboot*.

- · LILO (Linux LOader): Un dels primers bootloaders de Linux, ara obsolet.
- GRUB (GRand Unified Bootloader): El bootloader més utilitzat en sistemes Linux. Compatible amb BIOS i UEFI.
- **GRUB2**: Versió actualitzada de GRUB amb més funcionalitats i suport per a més sistemes de fitxers (FAT, NTFS,ext4). També ha millorat el *multiboot*.
- **rEFInd**: Un gestor d'arrencada per a sistemes UEFI que permet arrencar múltiples sistemes operatius.

- · LILO (Linux LOader): Un dels primers bootloaders de Linux, ara obsolet.
- GRUB (GRand Unified Bootloader): El bootloader més utilitzat en sistemes Linux. Compatible amb BIOS i UEFI.
- **GRUB2**: Versió actualitzada de GRUB amb més funcionalitats i suport per a més sistemes de fitxers (FAT, NTFS,ext4). També ha millorat el *multiboot*.
- **rEFInd**: Un gestor d'arrencada per a sistemes UEFI que permet arrencar múltiples sistemes operatius.
- Systemd-boot: Un bootloader simple i r\u00e4pid dissenyat per a sistemes UEFI.No recomanat per a
 multiboot.

- · LILO (Linux LOader): Un dels primers bootloaders de Linux, ara obsolet.
- GRUB (GRand Unified Bootloader): El bootloader més utilitzat en sistemes Linux. Compatible amb BIOS i UEFI.
- **GRUB2**: Versió actualitzada de GRUB amb més funcionalitats i suport per a més sistemes de fitxers (FAT, NTFS,ext4). També ha millorat el *multiboot*.
- **rEFInd**: Un gestor d'arrencada per a sistemes UEFI que permet arrencar múltiples sistemes operatius.
- Systemd-boot: Un bootloader simple i r\u00e4pid dissenyat per a sistemes UEFI.No recomanat per a
 multiboot.
- Windows Boot Manager: El bootloader de Windows, que permet arrencar Windows i altres sistemes operatius.

GRUB

El fitxer de configuració principal de GRUB es troba a la ruta /boot/grub/grub.cfg, però aquest fitxer no s'ha d'editar directament, ja que es genera automàticament a partir dels fitxers de configuració situats a /etc/default/grub i els scripts en /etc/grub.d/ en entorns Linux.

El fitxer de configuració principal de GRUB es troba a la ruta /boot/grub.cfg, però aquest fitxer no s'ha d'editar directament, ja que es genera automàticament a partir dels fitxers de configuració situats a /etc/default/grub i els scripts en /etc/grub.d/ en entorns Linux.

Configuració

- set root='hd0,msdos1': Indica la partició arrel on es troba el sistema operatiu.
- linux /vmlinuz root=/dev/sda1: Indica la ruta del kernel i la partició arrel.
- · initrd /initramfs.img: Indica la ruta de l'initramfs.
- · boot: Inicia el sistema operatiu.

Exemple de configuració

set root='hd0,msdos1'
linux /vmlinuz root=/dev/sda1
initrd /initramfs.img
boot

Configuració del GRUB

El fitxer /etc/default/grub ens permet definir diferents parametres en forma de variables d'entorn per configurar diferents opcions d'arrancada.

Variable	Descripció
GRUB_BACKGROUND GRUB_TIMEOUT GRUB_DEFAULT	Imatge de fons que es mostrarà al menú d'arrencada. Temps en segons abans de carregar l'entrada predeterminada. Entrada per defecte que es carregarà (index o nom)
GRUB_CMDLINE_LINUX	Opcions de línia de comandes que es passen al nucli en arrencar el sistema.
GRUB_DISABLE_RECOVERY	Si true , desactiva les opcions de mode de recuperació.
GRUB_DISABLE_OS_PROBER GRUB_PRELOAD_MODULES	Si true , impedeix que GRUB busqui altres sistemes operatius instal·lats. Llista de mòduls GRUB que es carregaran abans de mostrar el menú
	d'arrencada.

Inici del sistema operatiu

El **kernel** és el nucli del sistema operatiu, responsable de gestionar els recursos del sistema, com la memòria, el processador, els dispositius d'entrada/sortida, la xarxa i els processos d'usuari. El kernel es carrega a la memòria RAM durant el procés d'arrencada i es troba normalment a la partició arrel del sistema de fitxers (generalment en /boot).

Per poder carregar el kernel, el bootloader ha de tenir informació sobre:

· La ruta del kernel (normalment un fitxer anomenat vmlinuz en sistemes Linux).

El **kernel** és el nucli del sistema operatiu, responsable de gestionar els recursos del sistema, com la memòria, el processador, els dispositius d'entrada/sortida, la xarxa i els processos d'usuari. El kernel es carrega a la memòria RAM durant el procés d'arrencada i es troba normalment a la partició arrel del sistema de fitxers (generalment en /boot).

Per poder carregar el kernel, el bootloader ha de tenir informació sobre:

- · La ruta del kernel (normalment un fitxer anomenat vmlinuz en sistemes Linux).
- · La partició arrel on es troba el sistema de fitxers.

El **kernel** és el nucli del sistema operatiu, responsable de gestionar els recursos del sistema, com la memòria, el processador, els dispositius d'entrada/sortida, la xarxa i els processos d'usuari. El kernel es carrega a la memòria RAM durant el procés d'arrencada i es troba normalment a la partició arrel del sistema de fitxers (generalment en /boot).

Per poder carregar el kernel, el bootloader ha de tenir informació sobre:

- · La ruta del kernel (normalment un fitxer anomenat vmlinuz en sistemes Linux).
- · La partició arrel on es troba el sistema de fitxers.
- Aquesta informació es troba en el fitxer de configuració del bootloader (com grub.cfg en el cas de GRUB).

El **kernel** és el nucli del sistema operatiu, responsable de gestionar els recursos del sistema, com la memòria, el processador, els dispositius d'entrada/sortida, la xarxa i els processos d'usuari. El kernel es carrega a la memòria RAM durant el procés d'arrencada i es troba normalment a la partició arrel del sistema de fitxers (generalment en /boot).

Per poder carregar el kernel, el bootloader ha de tenir informació sobre:

- · La ruta del kernel (normalment un fitxer anomenat vmlinuz en sistemes Linux).
- · La partició arrel on es troba el sistema de fitxers.
- Aquesta informació es troba en el fitxer de configuració del bootloader (com grub.cfg en el cas de GRUB).
- Un cop carregat el kernel a la memòria, aquest es prepara per iniciar el sistema operatiu carregant un sistema de fitxers temporal conegut com a **initramfs** (*initial RAM filesystem*).

Initramfs o initrd

L'Initramfs (Initial RAM Filesystem) és un petit sistema de fitxers integrat a la imatge del nucli Linux. Proporciona els fitxers necessaris perquè el kernel pugui muntar el sistema de fitxers arrel durant l'arrencada. A diferència de l'antic *Initrd*, que s'emmagatzemava en un disc separat, l'Initramfs es carrega completament a la memòria RAM com una imatge comprimida.

L'Initramfs (Initial RAM Filesystem) és un petit sistema de fitxers integrat a la imatge del nucli Linux. Proporciona els fitxers necessaris perquè el kernel pugui muntar el sistema de fitxers arrel durant l'arrencada. A diferència de l'antic Initrd, que s'emmagatzemava en un disc separat, l'Initramfs es carrega completament a la memòria RAM com una imatge comprimida.

• Objectiu: Proporcionar un sistema de fitxers temporal i petit que permeti muntar el sistema de fitxers arrel i carregar els mòduls necessaris per arrencar el sistema operatiu.

L'Initramfs (Initial RAM Filesystem) és un petit sistema de fitxers integrat a la imatge del nucli Linux. Proporciona els fitxers necessaris perquè el kernel pugui muntar el sistema de fitxers arrel durant l'arrencada. A diferència de l'antic Initrd, que s'emmagatzemava en un disc separat, l'Initramfs es carrega completament a la memòria RAM com una imatge comprimida.

- **Objectiu**: Proporcionar un sistema de fitxers temporal i petit que permeti muntar el sistema de fitxers arrel i carregar els mòduls necessaris per arrencar el sistema operatiu.
- Contingut: Conté els mòduls del kernel, les eines necessàries per muntar el sistema de fitxers arrel, els scripts d'arrencada i altres fitxers necessaris per iniciar el sistema.

L'Initramfs (Initial RAM Filesystem) és un petit sistema de fitxers integrat a la imatge del nucli Linux. Proporciona els fitxers necessaris perquè el kernel pugui muntar el sistema de fitxers arrel durant l'arrencada. A diferència de l'antic *Initrd*, que s'emmagatzemava en un disc separat, l'Initramfs es carrega completament a la memòria RAM com una imatge comprimida.

- Objectiu: Proporcionar un sistema de fitxers temporal i petit que permeti muntar el sistema de fitxers arrel i carregar els mòduls necessaris per arrencar el sistema operatiu.
- Contingut: Conté els mòduls del kernel, les eines necessàries per muntar el sistema de fitxers arrel, els scripts d'arrencada i altres fitxers necessaris per iniciar el sistema.
- **Configuració**: Es pot configurar durant la compilació del nucli o amb un fitxer de configuració específic.

L'Initramfs (Initial RAM Filesystem) és un petit sistema de fitxers integrat a la imatge del nucli Linux. Proporciona els fitxers necessaris perquè el kernel pugui muntar el sistema de fitxers arrel durant l'arrencada. A diferència de l'antic *Initrd*, que s'emmagatzemava en un disc separat, l'Initramfs es carrega completament a la memòria RAM com una imatge comprimida.

- Objectiu: Proporcionar un sistema de fitxers temporal i petit que permeti muntar el sistema de fitxers arrel i carregar els mòduls necessaris per arrencar el sistema operatiu.
- Contingut: Conté els mòduls del kernel, les eines necessàries per muntar el sistema de fitxers arrel, els scripts d'arrencada i altres fitxers necessaris per iniciar el sistema.
- **Configuració**: Es pot configurar durant la compilació del nucli o amb un fitxer de configuració específic.

L'Initramfs no sempre està present, pot estar buit o omès si el sistema no necessita un espai RAM inicial (per exemple, en sistemes simples o compilacions estàtiques del nucli).

Contingut de l'initramfs

1. **Fitxers Executables**: Com BusyBox, que encapsula moltes eines Unix bàsiques en un únic executable, proporcionant shells i utilitats com **Cp**, **Is**, **mount**, entre altres. A més, pot contenir llibreria dinàmiques i qualsevol programari que volguem executar durant l'arrencada.

Tots aquests elements es troben comprimits en un fitxer CPIO que es descomprimeix a la memòria RAM durant l'arrencada i que s'executen seguint un script d'arrencada anomenat /init.

Contingut de l'initramfs

- 1. **Fitxers Executables**: Com BusyBox, que encapsula moltes eines Unix bàsiques en un únic executable, proporcionant shells i utilitats com **cp**, **ls**, **mount**, entre altres. A més, pot contenir llibreria dinàmiques i qualsevol programari que volguem executar durant l'arrencada.
- 2. Mòduls del Kernel: Inclou controladors de maquinari necessaris per accedir a dispositius com discos, xarxes, sistemes RAID o LVM. Aquests mòduls es carreguen des de l'Initramfs si no estan compilats directament dins del nucli.

Tots aquests elements es troben comprimits en un fitxer CPIO que es descomprimeix a la memòria RAM durant l'arrencada i que s'executen seguint un script d'arrencada anomenat /init.

Contingut de l'initramfs

- 1. **Fitxers Executables**: Com BusyBox, que encapsula moltes eines Unix bàsiques en un únic executable, proporcionant shells i utilitats com **cp**, **ls**, **mount**, entre altres. A més, pot contenir llibreria dinàmiques i qualsevol programari que volguem executar durant l'arrencada.
- 2. Mòduls del Kernel: Inclou controladors de maquinari necessaris per accedir a dispositius com discos, xarxes, sistemes RAID o LVM. Aquests mòduls es carreguen des de l'Initramfs si no estan compilats directament dins del nucli.
- 3. Fitxers de Dispositiu i Sistemes Especials: El directori /dev conté fitxers de dispositiu com dev/tty o dev/null. La utilitat mdev o udev ajuda a gestionar dinàmicament aquests dispositius.

Tots aquests elements es troben comprimits en un fitxer CPIO que es descomprimeix a la memòria RAM durant l'arrencada i que s'executen seguint un script d'arrencada anomenat /init.

Configuració de l'initramfs

La configuració de l'**initramfs** es realitza en la compilació del nucli **make menuconfig** i es pot definir el contingut de l'**initramfs** amb un fitxer de configuració.

- · CONFIG_BLK_DEV_INITRD: Activa la creació de l'initramfs.
- · CONFIG_INITRAMFS_SOURCE: Especifica el fitxer CPIO, un directori o un fitxer d'especificació.

Tot i que l'initramfs es genera durant la compilació del nucli, es pot actualitzar manualment amb la comanda update-initramfs o dracut en funció de la distribució.

Cas d'ús: Actualitzar l'initramfs

 Actualització del nucli: Quan es compila o instal·la un nou kernel, l'initramfs associat ha de ser regenerat per garantir que carrega correctament els mòduls i el maquinari necessari.

Tot i que l'initramfs es genera durant la compilació del nucli, es pot actualitzar manualment amb la comanda update-initramfs o dracut en funció de la distribució.

Cas d'ús: Actualitzar l'initramfs

- Actualització del nucli: Quan es compila o instal·la un nou kernel, l'initramfs associat ha de ser regenerat per garantir que carrega correctament els mòduls i el maquinari necessari.
- Configuració RAID: Si es modifiquen o s'afegeixen sistemes *RAID*, l'initramfs ha de reflectir aquests canvis per assegurar un arrencada correcta.

Tot i que l'initramfs es genera durant la compilació del nucli, es pot actualitzar manualment amb la comanda update-initramfs o dracut en funció de la distribució.

Cas d'ús: Actualitzar l'initramfs

- Actualització del nucli: Quan es compila o instal·la un nou kernel, l'initramfs associat ha de ser regenerat per garantir que carrega correctament els mòduls i el maquinari necessari.
- Configuració RAID: Si es modifiquen o s'afegeixen sistemes *RAID*, l'initramfs ha de reflectir aquests canvis per assegurar un arrencada correcta.
- Xifrat de discos: Per a sistemes amb particions xifrades (*LUKS*), cal actualitzar l'initramfs després de canvis en la configuració de xifrat per poder accedir a les particions durant l'arrencada.

Tot i que l'initramfs es genera durant la compilació del nucli, es pot actualitzar manualment amb la comanda update-initramfs o dracut en funció de la distribució.

Cas d'ús: Actualitzar l'initramfs

- Actualització del nucli: Quan es compila o instal·la un nou kernel, l'initramfs associat ha de ser regenerat per garantir que carrega correctament els mòduls i el maquinari necessari.
- Configuració RAID: Si es modifiquen o s'afegeixen sistemes *RAID*, l'initramfs ha de reflectir aquests canvis per assegurar un arrencada correcta.
- Xifrat de discos: Per a sistemes amb particions xifrades (*LUKS*), cal actualitzar l'initramfs després de canvis en la configuració de xifrat per poder accedir a les particions durant l'arrencada.
- Configuració de xarxa: Si es canvien components de xarxa que s'utilitzen en el procés d'arrencada (sistemes amb arrencada PXE).

Cas d'us: USB amb clau de desxifrat

Un exemple de configuració avanzada seria l'ús d'un **USB amb clau** per desxifrar un disc dur amb **LUKS**. En aquest cas, el **initramfs** hauria de contenir un script que muntés el dispositiu USB, llegís la clau i desxifrés el disc dur.

```
#!/bin/busybox sh
mount -t proc proc /proc
mount -t sysfs sys /sys
mount /dev/sdb1 /mnt
KEYFILE=/mnt/keyfile
cryptsetup luksOpen /dev/sda1 crypted --key-file $KEYFILE
echo "Retira el dispositiu USB i prem Enter per continuar."
read
vgchange -a v
mount /dev/mapper/vg-root /mnt
exec switch root /mnt /sbin/init
```

PID 1: init/systemd

Quan s'acaba el procés d'inicialització del sistema en l'espai del kernel i es descomprimeix i executa l'initramfs, es produeix una transició important cap a l'espai d'usuari.

PID 1: init/systemd

Quan s'acaba el procés d'inicialització del sistema en l'espai del kernel i es descomprimeix i executa l'initramfs, es produeix una transició important cap a l'espai d'usuari.

exec switch_root /mnt /sbin/init

PID 1: init/systemd

Quan s'acaba el procés d'inicialització del sistema en l'espai del kernel i es descomprimeix i executa l'initramfs, es produeix una transició important cap a l'espai d'usuari.

exec switch_root /mnt /sbin/init

En aquest moment, el sistema cedeix el control a un procés que s'executa en l'espai d'usuari. Aquest procés, anomenat PID 1, és el primer que es carrega i és essencial per a la gestió dels processos del sistema operatiu. Tradicionalment, el procés PID 1 en sistemes UNIX/Linux era el programa init, però en els sistemes moderns, systemd ha substituït init com a responsable principal de la gestió de processos.

1. **Gestió de la inicialització del sistema**. Carrega els serveis i dimonis necessaris per al bon funcionament del sistema.

- 1. **Gestió de la inicialització del sistema**. Carrega els serveis i dimonis necessaris per al bon funcionament del sistema
- 2. **Gestió dels processos del sistema**. Controla la creació, execució i finalització dels processos. Si un procés orfe (un procés que perd el seu procés pare) continua en execució, el PID 1 assumeix la seva gestió i, eventualment, la seva terminació.

- 1. **Gestió de la inicialització del sistema**. Carrega els serveis i dimonis necessaris per al bon funcionament del sistema
- 2. **Gestió dels processos del sistema**. Controla la creació, execució i finalització dels processos. Si un procés orfe (un procés que perd el seu procés pare) continua en execució, el PID 1 assumeix la seva gestió i, eventualment, la seva terminació.
- 3. Arrel de l'arbre de processos: Tots els altres processos del sistema pengen d'ell, directament o indirectament. Això fa que sigui fonamental per a l'estabilitat i la continuïtat del sistema.

- 1. **Gestió de la inicialització del sistema**. Carrega els serveis i dimonis necessaris per al bon funcionament del sistema.
- 2. **Gestió dels processos del sistema**. Controla la creació, execució i finalització dels processos. Si un procés orfe (un procés que perd el seu procés pare) continua en execució, el PID 1 assumeix la seva gestió i, eventualment, la seva terminació.
- 3. Arrel de l'arbre de processos: Tots els altres processos del sistema pengen d'ell, directament o indirectament. Això fa que sigui fonamental per a l'estabilitat i la continuïtat del sistema.
- 4. Apagat i reinici del sistema: El PID 1 també és responsable de controlar l'apagat i reinici del sistema, garantint que els processos es tanquin adequadament i que el sistema es desconnecti de manera segura

Systemd vs SysVinit

El canvi de **SysVinit** a **Systemd** en moltes distribucions de Linux va ser motivat per la necessitat de millorar l'eficiència i la gestió dels serveis del sistema.

SysVinit

- Seqüencial: Basat en scripts. Cada servei depèn de l'execució completa del servei anterior, la qual cosa pot ser lenta.
- Simple: Cada servei s'inicia amb un script directament llegible i modificable per l'administrador del sistema.
- Inflexible: Dificultat engestionar dependències. No permet arrencar serveis en paral·lel ni controlar els processos un cop arrencats.

Systemd

- Rendiment: Capacitat de carregar serveis en paral·lel. Reducció temps d'inici del sistema.
- Modularitat: Els serveis es gestionen a través d'unitats (unit files) que poden especificar dependències, condicions de reinici automàtic, etc.
- Cgroups: Limitar/gestionar els recursos assignats a cada servei.
- Monitoratge: Control i seguiment granular dels serveis amb journalctl.

Tot i les millores, **systemd** ha generat divisió en la comunitat Linux. Molts usuaris el consideren massa complex, monolític i que trenca amb la filosofia tradicional Unix de tenir eines petites que fan una sola tasca bé. D'altres valoren la simplicitat de **SysVinit**, on els scripts són més fàcils de modificar manualment.

Cas d'estudi: Backdoor en XZ Utils i l'impacte en Systemd (I)

Recents vulnerabilitats en paquets com **xz-utils** han posat en evidència la complexitat de *Systemd* i com una backdoor ocult pot comprometre gran part de la infraestructura moderna de Linux.

CVE-2024-3094: Vulnerabilitat que permet l'execució de codi maliciós en el sistema mitjançant un defecte en la descompressió de fitxers .xz.

Funcionament

liblzma és una llibreria de compressió que es pot enllaçar amb altres programes. Per exemple,
 OpenSSH es pot vincular a liblzma per gestionar la descompressió de fitxers de configuració.

Cas d'estudi: Backdoor en XZ Utils i l'impacte en Systemd (I)

Recents vulnerabilitats en paquets com **xz-utils** han posat en evidència la complexitat de *Systemd* i com una backdoor ocult pot comprometre gran part de la infraestructura moderna de Linux.

CVE-2024-3094: Vulnerabilitat que permet l'execució de codi maliciós en el sistema mitjançant un defecte en la descompressió de fitxers .xz.

Funcionament

- liblzma és una llibreria de compressió que es pot enllaçar amb altres programes. Per exemple, OpenSSH es pot vincular a liblzma per gestionar la descompressió de fitxers de configuració.
- En sistemes amb **systemd**, **OpenSSH** enllaça amb **systemd**, que a la vegada enllaça amb **liblzma**. Això permet a **XZ Utils** controlar indirectament serveis essencials com **sshd**.

Cas d'estudi: Backdoor en XZ Utils i l'impacte en Systemd (I)

Recents vulnerabilitats en paquets com **xz-utils** han posat en evidència la complexitat de *Systemd* i com una backdoor ocult pot comprometre gran part de la infraestructura moderna de Linux.

CVE-2024-3094: Vulnerabilitat que permet l'execució de codi maliciós en el sistema mitjançant un defecte en la descompressió de fitxers .xz.

Funcionament

- · liblzma és una llibreria de compressió que es pot enllaçar amb altres programes. Per exemple, OpenSSH es pot vincular a liblzma per gestionar la descompressió de fitxers de configuració.
- En sistemes amb **systemd**, **OpenSSH** enllaça amb **systemd**, que a la vegada enllaça amb **liblzma**. Això permet a **XZ Utils** controlar indirectament serveis essencials com **sshd**.
- Mitjançant una backdoor oculta en versions modificades de xz-utils, un atacant amb una clau de xifrat prèviament establerta podria carregar codi maliciós en certificats SSH i executar-lo en dispositius compromesos. Aquesta vulnerabilitat va afectar molts servidors Linux, que van actualitzar xz-utils amb la versió compromesa.

Cas d'estudi: Backdoor en XZ Utils i l'impacte en Systemd (II)

Com es va introduir la backdoor?

• El backdoor va ser introduït de manera gradual, començant amb contribucions sospitoses al projecte libarchive el 2021.

Aquests esdeveniments posen de manifest les contrapartides de la complexitat de **Systemd** i com una vulnerabilitat en un paquet aparentment inofensiu com **xz-utils** pot tenir un impacte significatiu en la seguretat del sistema i serveis crítics com **sshd**.

Cas d'estudi: Backdoor en XZ Utils i l'impacte en Systemd (II)

Com es va introduir la backdoor?

- El backdoor va ser introduït de manera gradual, començant amb contribucions sospitoses al projecte libarchive el 2021.
- Durant el 2022, un desenvolupador desconegut, JiaT75, va guanyar influència dins del projecte xz-utils, substituint el contacte del mantenidor original i introduint canvis que van ocultar les vulnerabilitats.

Aquests esdeveniments posen de manifest les contrapartides de la complexitat de **Systemd** i com una vulnerabilitat en un paquet aparentment inofensiu com **xz-utils** pot tenir un impacte significatiu en la seguretat del sistema i serveis crítics com **sshd**.

Cas d'estudi: Backdoor en XZ Utils i l'impacte en Systemd (II)

Com es va introduir la backdoor?

- El backdoor va ser introduït de manera gradual, començant amb contribucions sospitoses al projecte libarchive el 2021.
- Durant el 2022, un desenvolupador desconegut, JiaT75, va guanyar influència dins del projecte xz-utils, substituint el contacte del mantenidor original i introduint canvis que van ocultar les vulnerabilitats.
- El 2023, *JiaT75* va introduir modificacions malicioses a **xz-utils**, aprofitant-les per comprometre sistemes a través de dependències amb Systemd.

Aquests esdeveniments posen de manifest les contrapartides de la complexitat de **Systemd** i com una vulnerabilitat en un paquet aparentment inofensiu com **xz-utils** pot tenir un impacte significatiu en la seguretat del sistema i serveis crítics com **sshd**.

El PID 1 executa els *targets* de systemd. En sistemes més antics, s'utilitzaven els *runlevels* d'init. Els targets representen un conjunt de serveis i mòduls que s'executen per a cada estat del sistema. La seva funció és definir l'estat del sistema i els serveis que s'han de carregar en aquest estat. La transició entre els *targets* es pot fer manualment amb la comanda **systemctl isolate** o automàticament amb la comanda **systemctl set-default**.

Targets de systemd

· default.target: Apunta a graphical.target o multi-user.target-

El PID 1 executa els targets de systemd. En sistemes més antics, s'utilitzaven els runlevels d'init. Els targets representen un conjunt de serveis i mòduls que s'executen per a cada estat del sistema. La seva funció és definir l'estat del sistema i els serveis que s'han de carregar en aquest estat. La transició entre els targets es pot fer manualment amb la comanda systemctl isolate o automàticament amb la comanda systemctl set-default.

- · default.target: Apunta a graphical.target o multi-user.target-
- graphical.target: Defineix un entorn gràfic.

El PID 1 executa els targets de systemd. En sistemes més antics, s'utilitzaven els runlevels d'init. Els targets representen un conjunt de serveis i mòduls que s'executen per a cada estat del sistema. La seva funció és definir l'estat del sistema i els serveis que s'han de carregar en aquest estat. La transició entre els targets es pot fer manualment amb la comanda systemctl isolate o automàticament amb la comanda systemctl set-default.

- · default.target: Apunta a graphical.target o multi-user.target-
- · graphical.target: Defineix un entorn gràfic.
- multi-user.target: Proporciona un entorn no gràfic, permetent múltiples usuaris al sistema, habitual per a servidors.

El PID 1 executa els targets de systemd. En sistemes més antics, s'utilitzaven els runlevels d'init. Els targets representen un conjunt de serveis i mòduls que s'executen per a cada estat del sistema. La seva funció és definir l'estat del sistema i els serveis que s'han de carregar en aquest estat. La transició entre els targets es pot fer manualment amb la comanda systemctl isolate o automàticament amb la comanda systemctl set-default.

- · default.target: Apunta a graphical.target o multi-user.target-
- graphical.target: Defineix un entorn gràfic.
- multi-user.target: Proporciona un entorn no gràfic, permetent múltiples usuaris al sistema, habitual per a servidors.
- rescue.target: Proporciona un entorn de rescat amb una consola de línia de comandes.

El PID 1 executa els *targets* de systemd. En sistemes més antics, s'utilitzaven els *runlevels* d'init. Els targets representen un conjunt de serveis i mòduls que s'executen per a cada estat del sistema. La seva funció és definir l'estat del sistema i els serveis que s'han de carregar en aquest estat. La transició entre els *targets* es pot fer manualment amb la comanda **systemctl isolate** o automàticament amb la comanda **systemctl set-default**.

- · default.target: Apunta a graphical.target o multi-user.target-
- · graphical.target: Defineix un entorn gràfic.
- multi-user.target: Proporciona un entorn no gràfic, permetent múltiples usuaris al sistema, habitual per a servidors.
- rescue.target: Proporciona un entorn de rescat amb una consola de línia de comandes.
- emergency.target: Ofereix un entorn d'emergència que inicialitza el mínim de serveis necessaris per a la solució de problemes.

Els **units** són els fitxers de configuració de **systemd** que defineixen els serveis, ens permeten gestionar-los i controlar-los. Aquests fitxers es troben a la carpeta **/etc/systemd/system/** i poden ser de diversos tipus.

Tipus d'unitats

• Serveis: Fitxers que defineixen com s'inicien, s'aturen i es gestionen els serveis. Ex: /etc/systemd/system/sshd.service (servei SSH).

Els **units** són els fitxers de configuració de **systemd** que defineixen els serveis, ens permeten gestionar-los i controlar-los. Aquests fitxers es troben a la carpeta **/etc/systemd/system/** i poden ser de diversos tipus.

- Serveis: Fitxers que defineixen com s'inicien, s'aturen i es gestionen els serveis. Ex: /etc/systemd/system/sshd.service (servei SSH).
- · Sockets: Units que gestionen els sockets de comunicació per als serveis.

Els **units** són els fitxers de configuració de **systemd** que defineixen els serveis, ens permeten gestionar-los i controlar-los. Aquests fitxers es troben a la carpeta **/etc/systemd/system/** i poden ser de diversos tipus.

- Serveis: Fitxers que defineixen com s'inicien, s'aturen i es gestionen els serveis. Ex: /etc/systemd/system/sshd.service (servei SSH).
- · Sockets: Units que gestionen els sockets de comunicació per als serveis.
- · Devices: Units que representen dispositius de maquinari.

Els **units** són els fitxers de configuració de **systemd** que defineixen els serveis, ens permeten gestionar-los i controlar-los. Aquests fitxers es troben a la carpeta **/etc/systemd/system/** i poden ser de diversos tipus.

- Serveis: Fitxers que defineixen com s'inicien, s'aturen i es gestionen els serveis. Ex: /etc/systemd/system/sshd.service (servei SSH).
- · Sockets: Units que gestionen els sockets de comunicació per als serveis.
- · Devices: Units que representen dispositius de maquinari.
- Mounts: Units que gestionen els punts de muntatge del sistema de fitxers.

Els **units** són els fitxers de configuració de **systemd** que defineixen els serveis, ens permeten gestionar-los i controlar-los. Aquests fitxers es troben a la carpeta **/etc/systemd/system/** i poden ser de diversos tipus.

- Serveis: Fitxers que defineixen com s'inicien, s'aturen i es gestionen els serveis. Ex: /etc/systemd/system/sshd.service (servei SSH).
- · Sockets: Units que gestionen els sockets de comunicació per als serveis.
- · Devices: Units que representen dispositius de maquinari.
- Mounts: Units que gestionen els punts de muntatge del sistema de fitxers.
- · Paths: Units que monitoren els canvis en fitxers o directoris específics.

Els **units** són els fitxers de configuració de **systemd** que defineixen els serveis, ens permeten gestionar-los i controlar-los. Aquests fitxers es troben a la carpeta **/etc/systemd/system/** i poden ser de diversos tipus.

- Serveis: Fitxers que defineixen com s'inicien, s'aturen i es gestionen els serveis. Ex: /etc/systemd/system/sshd.service (servei SSH).
- · Sockets: Units que gestionen els sockets de comunicació per als serveis.
- · Devices: Units que representen dispositius de maquinari.
- Mounts: Units que gestionen els punts de muntatge del sistema de fitxers.
- Paths: Units que monitoren els canvis en fitxers o directoris específics.
- Timers: Units que planifiquen tasques per a la seva execució en moments específics.

Els **units** són els fitxers de configuració de **systemd** que defineixen els serveis, ens permeten gestionar-los i controlar-los. Aquests fitxers es troben a la carpeta **/etc/systemd/system/** i poden ser de diversos tipus.

- Serveis: Fitxers que defineixen com s'inicien, s'aturen i es gestionen els serveis. Ex: /etc/systemd/system/sshd.service (servei SSH).
- · Sockets: Units que gestionen els sockets de comunicació per als serveis.
- · Devices: Units que representen dispositius de maquinari.
- Mounts: Units que gestionen els punts de muntatge del sistema de fitxers.
- · Paths: Units que monitoren els canvis en fitxers o directoris específics.
- Timers: Units que planifiquen tasques per a la seva execució en moments específics.
- Targets: Units que agrupen altres units per a l'arrencada d'estats del sistema.

Executar els startup scripts

Un cop en l'espai d'usuari, el PID 1 executa els startup scripts del sistema, com ara el /etc/rc.local o els scripts de systemd.

[Unit] Description=Network Connectivity Wants=network.target After=network.target [Service] Type=oneshot ExecStart=/usr/local/bin/network-start ExecStop=/usr/local/bin/network-stop RemainAfterExit=ves [Install] WantedBy=multi-user.target

- Unit: Dependències i l'ordre d'execució. Ex:
 network.target indica que el servei depèn de la disponibilitat de la xarxa.
- Service: Com s'executa el servei. Ex:

 [ExecStart] i [ExecStop indiquen els scripts que s'executen en iniciar i aturar el servei. El paràmetre [RemainAfterExit] indica que el servei es manté actiu després de finalitzar i el type [oneshot] indica que el servei s'executa una sola vegada.
- Install: En quin target s'instal·la el servei. Ex: multi-user.target.

Un cop s'han carregat tots els serveis i el sistema està en marxa, els usuaris poden iniciar sessió al sistema. Els scripts de l'usuari es troben a la carpeta /etc/profile.d/ i s'executen quan l'usuari inicia sessió.

· /etc/profile: Conté la configuració global per a tots els usuaris. S'executa en iniciar sessió en un entorn de shell.

- · /etc/profile: Conté la configuració global per a tots els usuaris. S'executa en iniciar sessió en un entorn de shell.
- · /etc/bashrc: Proporciona configuració per a shells interactius. S'executa cada vegada que s'inicia una nova sessió de shell.

- · /etc/profile: Conté la configuració global per a tots els usuaris. S'executa en iniciar sessió en un entorn de shell.
- · /etc/bashrc: Proporciona configuració per a shells interactius. S'executa cada vegada que s'inicia una nova sessió de shell.
- ~/.bashrc: Fitxer de configuració específic per a l'usuari, que s'executa en iniciar una sessió de shell interactiu.

- · /etc/profile: Conté la configuració global per a tots els usuaris. S'executa en iniciar sessió en un entorn de shell.
- · /etc/bashrc: Proporciona configuració per a shells interactius. S'executa cada vegada que s'inicia una nova sessió de shell.
- ~/.bashrc: Fitxer de configuració específic per a l'usuari, que s'executa en iniciar una sessió de shell interactiu.
- ~/.bash_profile: S'executa quan l'usuari inicia sessió a la terminal. Normalment, s'utilitza per configurar l'entorn de l'usuari, incloent la configuració de l'PATH.

- · /etc/profile: Conté la configuració global per a tots els usuaris. S'executa en iniciar sessió en un entorn de shell.
- · /etc/bashrc: Proporciona configuració per a shells interactius. S'executa cada vegada que s'inicia una nova sessió de shell.
- ~/.bashrc: Fitxer de configuració específic per a l'usuari, que s'executa en iniciar una sessió de shell interactiu.
- ~/.bash_profile: S'executa quan l'usuari inicia sessió a la terminal. Normalment, s'utilitza per configurar l'entorn de l'usuari, incloent la configuració de l'PATH.
- ~/.bash_logout: S'executa quan l'usuari tanca la sessió de shell. Aquí es poden incloure comandes de neteja o tancament.

- · /etc/profile: Conté la configuració global per a tots els usuaris. S'executa en iniciar sessió en un entorn de shell.
- · /etc/bashrc: Proporciona configuració per a shells interactius. S'executa cada vegada que s'inicia una nova sessió de shell.
- ~/.bashrc: Fitxer de configuració específic per a l'usuari, que s'executa en iniciar una sessió de shell interactiu.
- ~/.bash_profile: S'executa quan l'usuari inicia sessió a la terminal. Normalment, s'utilitza per configurar l'entorn de l'usuari. incloent la configuració de l'PATH.
- ~/.bash_logout: S'executa quan l'usuari tanca la sessió de shell. Aquí es poden incloure comandes de neteja o tancament.
- ~/.bash_history: Fitxer que emmagatzema l'històric de les comandes executades per l'usuari en la sessió de shell

Això és tot per avui

PREGUNTES?

Materials del curs

- · Organització AMSA-GEI-IGUALADA-2425
- · Materials Materials del curs
- · Laboratoris Laboratoris
- · Recursos Campus Virtual

TAKE HOME MESSAGE: El procés d'arrencada és un procés complex. Els administradors de sistemes han de conèixer aquest procés per poder gestionar i solucionar problemes durant l'arrencada del sistema i garantir un sistema segur, estable i eficient.

Figura 4: Això és tot per avui