MAT 2002 Assignment 4

Deadline: Friday 5:00 pm., 23 April

1. Let $\boldsymbol{x}(t)$ be the complex solution of $\frac{d\boldsymbol{x}(t)}{dt} = \mathbf{A}(t)\boldsymbol{x}(t)$, where $\mathbf{A}(t)$ is a real matrix. Proof that the real part, imaginary part and complex conjugation of $\boldsymbol{x}(t)$ are the solutions of the linear system.

2. Solve the following systems or the initial value problem:

$$(1) \ \mathbf{x}' = \left[\begin{array}{cc} 1 & 2 \\ 4 & 3 \end{array} \right] \mathbf{x},$$

$$(2) \ \mathbf{x}' = \left[\begin{array}{cc} 2 & -1 \\ 1 & 4 \end{array} \right] \mathbf{x};$$

(3)
$$\mathbf{x}' = \begin{bmatrix} 1 & -5 \\ 1 & -3 \end{bmatrix} \mathbf{x}, \mathbf{x}(0) = \begin{bmatrix} 2 \\ 1 \end{bmatrix}.$$

3. Let

$$oldsymbol{J} = \left[egin{array}{cc} \lambda & 1 \\ 0 & \lambda \end{array}
ight],$$

where λ is an arbitrary real number.

(1) Find J^2 , J^3 , J^4 ; Use the mathematical induction to prove that

$$\boldsymbol{J}^n = \left[\begin{array}{cc} \lambda^n & n\lambda^{n-1} \\ 0 & \lambda^n \end{array} \right].$$

(2) Determine $\exp(\mathbf{J}t)$; Use $\exp(\mathbf{J}t)$ to solve the initial value problem $\mathbf{x}' = \mathbf{J}\mathbf{x}, \mathbf{x}(0) = \mathbf{x}_0 = \begin{bmatrix} c_1 \\ c_2 \end{bmatrix}, c_1, c_2$ are constant real numbers.

1

4. Calculate $e^{\mathbf{A}t}$ if

$$(1) \mathbf{A} = \left[\begin{array}{cc} a & 0 \\ 0 & b \end{array} \right],$$

$$(2) \mathbf{A} = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix},$$

(3)
$$\mathbf{A} = \begin{bmatrix} 1 & -1 \\ 0 & 1 \end{bmatrix}$$
.

Verify directly that $\mathbf{x} = e^{\mathbf{A}t}\mathbf{x}_0$ is the solution to $\mathbf{x}' = \mathbf{A}\mathbf{x}, \mathbf{x}(0) = \mathbf{x}_0 = \begin{bmatrix} c_1 \\ c_2 \end{bmatrix}$. Note that a, b, c_1, c_2 are constant real numbers.

5. Recall that for the case when 3×3 coefficient matrix **A** has only one eigenvalue, we can use S - N decomposition for computing $e^{\mathbf{A}t}$ to obtain the general solution for $\mathbf{x}'(t) = \mathbf{A}\mathbf{x}(t)$. Define

$$\mathbf{A} = \left[\begin{array}{ccc} 5 & -1 & -2 \\ 2 & 1 & 0 \\ 1 & -1 & 3 \end{array} \right].$$

Solve the system $x'(t) = \mathbf{A}x(t)$ by using S - N decomposition.

6. Find the general solution and write down a fundamental matrix of the given system of equations. Please express the general solution in terms of real-valued function. $x'(t) = \mathbf{A}x(t)$, where

$$(1) \mathbf{A} = \begin{bmatrix} 1 & 0 & 0 \\ 2 & 1 & -2 \\ 3 & 2 & 1 \end{bmatrix},$$

(2)
$$\mathbf{A} = \begin{bmatrix} 2 & 0 & 0 \\ 1 & 2 & 1 \\ 1 & 0 & 1 \end{bmatrix}$$
,

(3)
$$\mathbf{A} = \begin{bmatrix} 1 & 2 & 1 \\ 1 & -1 & 1 \\ 2 & 0 & 1 \end{bmatrix}$$
.

7. Find the general solution of the given system of equations $\mathbf{x}' = \mathbf{A}\mathbf{x} + \mathbf{f}(t)$.

$$(1) \ \ \mathbf{A} = \left[\begin{array}{cc} 2 & 3 \\ -1 & -2 \end{array} \right], \ \boldsymbol{f} = \left[\begin{array}{c} e^t \\ t \end{array} \right],$$

(2)
$$\mathbf{A} = \begin{bmatrix} 2 & 1 \\ -5 & -2 \end{bmatrix}, \mathbf{f} = \begin{bmatrix} -\cos t \\ \sin t \end{bmatrix},$$

$$(3) \ \mathbf{A} = \left[\begin{array}{cc} 4 & 8 \\ -2 & -4 \end{array} \right], \ \boldsymbol{f} = \left[\begin{array}{c} t^{-3} \\ -t^{-2} \end{array} \right], \ t > 0,$$

(4)
$$\mathbf{A} = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ -6 & -11 & -6 \end{bmatrix}, \mathbf{f}(t) = \begin{bmatrix} 0 \\ 0 \\ e^{-t} \end{bmatrix}.$$

8. Assume that m is not an eigenvalue of matrix A. Proof nonhomogeneous linear differential equations

$$x' = Ax + ce^{mt}$$

has a solution

$$\boldsymbol{x}(t) = \boldsymbol{p}e^{mt}$$

where c, p are constant vectors.