Argumentation among Agents: Review and Commentary

Grigore Costin-Teodor Radu Ștefan-Octavian Vasiliu Florin Vintilă Eduard

• Reference: Iyad Rahwan's *Argumentation among Agents*, Chapter 5 in *Multiagent Systems*, by G. Weiss.

- Reference: Iyad Rahwan's *Argumentation among Agents*, Chapter 5 in *Multiagent Systems*, by G. Weiss.
- Our contribution: several new examples, and proofs for some merely stated claims.

- Reference: Iyad Rahwan's *Argumentation among Agents*, Chapter 5 in *Multiagent Systems*, by G. Weiss.
- Our contribution: several new examples, and proofs for some merely stated claims.
- What is the author attempting to formalize?

- Reference: Iyad Rahwan's *Argumentation among Agents*, Chapter 5 in *Multiagent Systems*, by G. Weiss.
- Our contribution: several new examples, and proofs for some merely stated claims.
- What is the author attempting to formalize?
- The philosopher's view of argumentation: the giving of claims in favor or against a statement that is open for debate.

• Idea: generalize common logics by admitting two kinds of inference rules – *strict* and *defeasible*.

- Idea: generalize common logics by admitting two kinds of inference rules – strict and defeasible.
- An argumentation system is a tuple $(\mathcal{L}, cont, S, D)$.

- Idea: generalize common logics by admitting two kinds of inference rules – strict and defeasible.
- An argumentation system is a tuple $(\mathcal{L}, cont, S, D)$.
- \mathcal{L} is some "logical language" (must contain \neg).

- Idea: generalize common logics by admitting two kinds of inference rules – strict and defeasible.
- An argumentation system is a tuple $(\mathcal{L}, cont, S, D)$.
- \mathcal{L} is some "logical language" (must contain \neg).
- The function

$$cont: \mathcal{L} o \mathcal{P}(\mathcal{L})$$

generalizes negation.

- Idea: generalize common logics by admitting two kinds of inference rules – strict and defeasible.
- An argumentation system is a tuple $(\mathcal{L}, cont, S, D)$.
- \mathcal{L} is some "logical language" (must contain \neg).
- The function

$$cont: \mathcal{L} o \mathcal{P}(\mathcal{L})$$

generalizes negation.

• S, D are respectively the sets of strict/defeasible inference rules.

• How does the *cont* function generalize negation?

- How does the *cont* function generalize negation?
- If $\varphi \in cont(\psi)$, then
 - if $\psi \notin cont(\varphi)$, then φ is a contrary of ψ ;
 - if $\psi \in cont(\varphi)$, then φ and ψ are contradictory.

- How does the *cont* function generalize negation?
- If $\varphi \in cont(\psi)$, then
 - if $\psi \notin cont(\varphi)$, then φ is a *contrary* of ψ ;
 - if $\psi \in cont(\varphi)$, then φ and ψ are contradictory.
- It is mandatory that

$$\neg \varphi \in cont(\varphi)$$
 and $\varphi \in cont(\neg \varphi)$

for any formula φ .

• An argument from a knowledge base $\mathcal K$ is defined similarly to a deduction in propositional logic. (The members of $\mathcal K$ play the role of the hypotheses.)

- An argument from a knowledge base $\mathcal K$ is defined similarly to a deduction in propositional logic. (The members of $\mathcal K$ play the role of the hypotheses.)
- Major difference: incorporation of the used inference rules.

- An argument from a knowledge base $\mathcal K$ is defined similarly to a deduction in propositional logic. (The members of $\mathcal K$ play the role of the hypotheses.)
- Major difference: incorporation of the used inference rules.
- The complete framework contains a partial order on defeasible rules. Using it, arguments may be compared.

 Henceforth, an argumentation framework will mean a finite directed graph (A, →), whose nodes are called "arguments". The adjacency relation is pronounced "defeats".

- Henceforth, an argumentation framework will mean a finite directed graph (A, →), whose nodes are called "arguments". The adjacency relation is pronounced "defeats".
- Hence, for arguments $p, q, p \rightarrow q$ means "p defeats q".

- Henceforth, an argumentation framework will mean a finite directed graph (A, →), whose nodes are called "arguments". The adjacency relation is pronounced "defeats".
- Hence, for arguments $p, q, p \rightarrow q$ means "p defeats q".
- Note how the structure of arguments is not taken into account anymore.

- Henceforth, an argumentation framework will mean a finite directed graph (A, →), whose nodes are called "arguments". The adjacency relation is pronounced "defeats".
- Hence, for arguments $p, q, p \rightarrow q$ means "p defeats q".
- Note how the structure of arguments is not taken into account anymore.
- Objective: define an "acceptable" argument.

Figure: Our argumentation framework.

• $S^+ =$ the set of arguments defeated by some member of S.

Figure: Our argumentation framework.

- $S^+ =$ the set of arguments defeated by some member of S.
- In the figure, $\{p, q\}^+ = \{q, s, t\}$.

Figure: Our argumentation framework.

• $a^- =$ the set of arguments which defeat a.

Figure: Our argumentation framework.

- $a^- =$ the set of arguments which defeat a.
- In the figure, $s^- = \{p, s\}$.

Figure: Our argumentation framework.

• A set S of arguments is *conflict-free* if no argument in S defeats another also in S.

Figure: Our argumentation framework.

- A set S of arguments is conflict-free if no argument in S defeats another also in S.
- In the figure, $\{p, t\}$ and $\{r, t\}$ are conflict-free.

Figure: Our argumentation framework.

• A set S of arguments *defends* argument a if every argument which defeats a is defeated by S (i.e., is in S^+).

Figure: Our argumentation framework.

- A set S of arguments defends argument a if every argument which defeats a is defeated by S (i.e., is in S^+).
- In the figure, $\{p, t\}$ defends p.

Figure: Our argumentation framework.

ullet The *characteristic function* $\mathcal F$ is defined thus: $\mathcal F(S)=$ the set of arguments defended by S.

Figure: Our argumentation framework.

- The characteristic function \mathcal{F} is defined thus: $\mathcal{F}(S) = \text{ the set of arguments defended by } S.$
- In the figure, $\mathcal{F}(\{p,q,r\}) = \{p,r,t\}$ and $\mathcal{F}(\{r,t\}) = \{r,t\}$.

Figure: Our argumentation framework.

• A complete extension is a set S of arguments which is conflict-free and such that $\mathcal{F}(S) = S$ (i.e., it defends its own members and nothing else).

Figure: Our argumentation framework.

- A complete extension is a set S of arguments which is conflict-free and such that $\mathcal{F}(S) = S$ (i.e., it defends its own members and nothing else).
- By the remarks on previous slides, $\{r,t\}$ is a complete extension.

• The author exhibits an equivalent characterization of complete extensions via *labellings*.

- The author exhibits an equivalent characterization of complete extensions via *labellings*.
- An argument *p* is:
 - skeptically accepted iff p belongs to every extension;
 - credulously accepted iff p belongs to some extension;
 - rejected iff p doesn't belong to any extension.

Argumentation Games

 The author focuses on Dung's model to present a mechanism by which two agents can participate in a dispute where they can state and attack each other's arguments, much as in a real world debate.

Argumentation Games

- The author focuses on Dung's model to present a mechanism by which two agents can participate in a dispute where they can state and attack each other's arguments, much as in a real world debate.
- Objective: Formalize such an argumentation process and additionally enforce a set of constraints in order to capture various semantics (for example, an agent cannot contradict himself).

• Two players: PRO and OPP

- Two players: PRO and OPP
- PRO is the proponent who states the initial argument.

- Two players: PRO and OPP
- PRO is the proponent who states the initial argument.
- OPP is the opponent who begins by counter-attacking the argument proposed by PRO.

- Two players: PRO and OPP
- PRO is the proponent who states the initial argument.
- OPP is the opponent who begins by counter-attacking the argument proposed by PRO.
- Both players take turns in defeating the last argument that has been put forward by their counterpart player.

- Two players: PRO and OPP
- PRO is the proponent who states the initial argument.
- OPP is the opponent who begins by counter-attacking the argument proposed by PRO.
- Both players take turns in defeating the last argument that has been put forward by their counterpart player.
- The game is considered to be won by the player who states an argument a that cannot be defeated (i.e. $a^- = \emptyset$)

What is a dispute?

 The author calls the sequence of moves done by the players a dispute, a notion which is intensively used in further definitions and proofs.

What is a dispute?

- The author calls the sequence of moves done by the players a dispute, a notion which is intensively used in further definitions and proofs.
- However, a concrete definition is not provided. We attempt to state the following formal definition:

What is a dispute?

- The author calls the sequence of moves done by the players a dispute, a notion which is intensively used in further definitions and proofs.
- However, a concrete definition is not provided. We attempt to state the following formal definition:

Definition (dispute)

Given an argumentation framework (A, \rightharpoonup) , a dispute is a nonempty, possibly infinite sequence d of arguments in A with the following property: $d_{i+1} \rightharpoonup d_i$, whenever i and i+1 are in d's domain (i.e. every argument in the sequence defeats its preceding argument).

 Observation: A player could potentially counter-attack its counterpart player with any argument whatsoever that defeats the last move.

- Observation: A player could potentially counter-attack its counterpart player with any argument whatsoever that defeats the last move.
- This leads to multiple disputes based on the defeating argument chosen by the player, which can be conveniently modeled as a dispute tree, as shown by the author.

- Observation: A player could potentially counter-attack its counterpart player with any argument whatsoever that defeats the last move.
- This leads to multiple disputes based on the defeating argument chosen by the player, which can be conveniently modeled as a dispute tree, as shown by the author.
- Again, a definition is not provided. We attempt to adapt one from Modgil et al.

- Observation: A player could potentially counter-attack its counterpart player with any argument whatsoever that defeats the last move.
- This leads to multiple disputes based on the defeating argument chosen by the player, which can be conveniently modeled as a dispute tree, as shown by the author.
- Again, a definition is not provided. We attempt to adapt one from Modgil et al.

Definition (dispute trees)

Given an argumentation framework (A, \rightharpoonup) and an argument p in A, a dispute tree induced by p is a tree T rooted in p, where each node is labelled with an argument in A and for every node v, v has a child labelled x iff v's label is defeated by x.

An example from the book

Figure 5.3: Argumentation framework and dispute tree. (i) shows an argumentation framework, (ii) shows the dispute tree induced in a, and (iii) shows the dispute tree induced by a under protocol G, with the winning strategy encircled.

• The author establishes a rule (called protocol G) by which the PRO player cannot repeat an argument in a dispute.

- The author establishes a rule (called protocol G) by which the PRO player cannot repeat an argument in a dispute.
- We provide a definition with regard to a dispute tree:

- The author establishes a rule (called protocol G) by which the PRO player cannot repeat an argument in a dispute.
- We provide a definition with regard to a dispute tree:

Definition (dispute tree under protocol G)

Given a dispute tree T, we consider T to be under protocol G iff for an arbitrary dispute d in T and for any pair of arguments x, y stated by PRO at different indices in d, x is different than y.

- The author establishes a rule (called protocol G) by which the PRO player cannot repeat an argument in a dispute.
- We provide a definition with regard to a dispute tree:

Definition (dispute tree under protocol G)

Given a dispute tree T, we consider T to be under protocol G iff for an arbitrary dispute d in T and for any pair of arguments x, y stated by PRO at different indices in d, x is different than y.

• It is claimed by the author that the following property is true, to which we provide a proof:

- The author establishes a rule (called protocol G) by which the PRO player cannot repeat an argument in a dispute.
- We provide a definition with regard to a dispute tree:

Definition (dispute tree under protocol G)

Given a dispute tree T, we consider T to be under protocol G iff for an arbitrary dispute d in T and for any pair of arguments x, y stated by PRO at different indices in d, x is different than y.

 It is claimed by the author that the following property is true, to which we provide a proof:

Claim

If T is a dispute tree under protocol G, then T is finite.

• Let n = card(A) and d be a dispute in T of length of at least 2n arguments (we do not consider the other disputes, since we know they are of finite length).

- Let n = card(A) and d be a dispute in T of length of at least 2n arguments (we do not consider the other disputes, since we know they are of finite length).
- We shall prove that d is of finite length; more specifically, exactly of length 2n. We consider the argument d_{2n-1} from our sequence d.

- Let n = card(A) and d be a dispute in T of length of at least 2n arguments (we do not consider the other disputes, since we know they are of finite length).
- We shall prove that d is of finite length; more specifically, exactly of length 2n. We consider the argument d_{2n-1} from our sequence d.
- By protocol G, we have exactly n different arguments uttered by PRO, which cover all the arguments in the set A.

- Let n = card(A) and d be a dispute in T of length of at least 2n arguments (we do not consider the other disputes, since we know they are of finite length).
- We shall prove that d is of finite length; more specifically, exactly of length 2n. We consider the argument d_{2n-1} from our sequence d.
- By protocol G, we have exactly n different arguments uttered by PRO, which cover all the arguments in the set A.
- Assume that d_{2n} exists. This being the n+1'st argument stated by PRO, it must coincide with an argument that has been uttered before, since we have a total of only n different arguments to choose from (Dirichlet's box principle).

- Let n = card(A) and d be a dispute in T of length of at least 2n arguments (we do not consider the other disputes, since we know they are of finite length).
- We shall prove that d is of finite length; more specifically, exactly of length 2n. We consider the argument d_{2n-1} from our sequence d.
- By protocol G, we have exactly n different arguments uttered by PRO, which cover all the arguments in the set A.
- Assume that d_{2n} exists. This being the n+1'st argument stated by PRO, it must coincide with an argument that has been uttered before, since we have a total of only n different arguments to choose from (Dirichlet's box principle).
- However, this contradicts protocol G. Hence, *d* is finite.

Strategic Argumentation & Game Theory

- Background on the analysis of strategic argumentation
- Why Game Theory
- Important Game Theory Concepts

 Various argumentation systems introduced. Each defines restrictions regarding what agents can and cannot do (e.g. Prakken's framework)

- Various argumentation systems introduced. Each defines restrictions regarding what agents can and cannot do (e.g. Prakken's framework)
- Behaviour of agents must be analyzed. This is called a "strategy"

- Various argumentation systems introduced. Each defines restrictions regarding what agents can and cannot do (e.g. Prakken's framework)
- Behaviour of agents must be analyzed. This is called a "strategy"
- Parsons et al. introduce the dialogue system based on attitudes (e.g. confident, careful, thoughtful)

- Various argumentation systems introduced. Each defines restrictions regarding what agents can and cannot do (e.g. Prakken's framework)
- Behaviour of agents must be analyzed. This is called a "strategy"
- Parsons et al. introduce the dialogue system based on attitudes (e.g. confident, careful, thoughtful)
- Other models based on *social constructs* or *mental states* are proposed by Nishan et al. and Kraus et al.

 Previous euristic approaches only consider a subset of all strategies

- Previous euristic approaches only consider a subset of all strategies
- Game Theory provides a framework appropritate for a comprehensive analysis of strategic argumentation. It can be used for:

- Previous euristic approaches only consider a subset of all strategies
- Game Theory provides a framework appropriate for a comprehensive analysis of strategic argumentation. It can be used for:
 - Predicting the outcome of a specific scenario

- Previous euristic approaches only consider a subset of all strategies
- Game Theory provides a framework appropriate for a comprehensive analysis of strategic argumentation. It can be used for:
 - Predicting the outcome of a specific scenario
 - Designing a protocol such that a set of known agents behave in a desireable way (called mechanism design)

Glazer & Rubenstein's Model

- One of the first attempts of analyzing argumentation based on game theory
- Procedural rules (order and type of arguments) and persuation rules (how the outcome is chosen / who wins the debate)
- No correlation between the logical structure of the information presented and the choice of the outcome

Game Theory Concepts

• *I* is the set of self-interested agents

- *I* is the set of self-interested agents
- $\theta_i \in \Theta$ is the type of agent i

- *I* is the set of self-interested agents
- $\theta_i \in \Theta$ is the type of agent i
- $o \in \mathcal{O}$ is an outcome

- *I* is the set of self-interested agents
- $\theta_i \in \Theta$ is the type of agent i
- $o \in \mathcal{O}$ is an outcome
- utility function $u(o, \theta_i)$ defines how much agent i prefers outcome o

- *I* is the set of self-interested agents
- $\theta_i \in \Theta$ is the type of agent i
- $o \in \mathcal{O}$ is an outcome
- utility function $u(o, \theta_i)$ defines how much agent i prefers outcome o
- $s(\theta_i) \in \Sigma_i$ is a *strategy* of agent *i*

- *I* is the set of self-interested agents
- $\theta_i \in \Theta$ is the type of agent i
- $o \in \mathcal{O}$ is an outcome
- utility function $u(o, \theta_i)$ defines how much agent i prefers outcome o
- $s(\theta_i) \in \Sigma_i$ is a *strategy* of agent i
- $s = (s_1(\theta_1), \dots, s_l(\theta_l)) \in \mathcal{O}$ is a strategy profile

- *I* is the set of self-interested agents
- $\theta_i \in \Theta$ is the type of agent i
- $o \in \mathcal{O}$ is an outcome
- utility function $u(o, \theta_i)$ defines how much agent i prefers outcome o
- $s(\theta_i) \in \Sigma_i$ is a *strategy* of agent i
- $s = (s_1(\theta_1), \dots, s_l(\theta_l)) \in \mathcal{O}$ is a strategy profile
- for convenience:

$$s_{-i}(\theta_{-i}) = (s_1(\theta_1), \dots, s_{i-1}(\theta_{i-1}), s_{i+1}(\theta_{i+1}), \dots, s_l(\theta_l))$$

 $\theta_{-i} = (\theta_1, \dots, \theta_{i-1}, \theta_{i+1}, \dots, \theta_l)$

Let $s^* = (s_1^*, \dots, s_I^*)$ be a *strategic profile*. Formally, s^* is a *Nash equilibrium* if the following holds:

$$\forall i, \forall s_i^{'} \in \Sigma_i, u_i((s_i^*, s_{-i}^*), \theta_i) \geq u_i((s_i^{'}, s_{-i}^*), \theta_i).$$

Let $s^* = (s_1^*, \dots, s_l^*)$ be a *strategic profile*. Formally, s^* is a *Nash equilibrium* if the following holds:

$$\forall i, \forall s_{i}^{'} \in \Sigma_{i}, u_{i}((s_{i}^{*}, s_{-i}^{*}), \theta_{i}) \geq u_{i}((s_{i}^{'}, s_{-i}^{*}), \theta_{i}).$$

Informally, s^* is a *Nash equilibrium* if no agent would be better off utility-wise by changing its strategy, given that neither of the other agents changes its strategy.

Let $s^* = (s_1^*, \dots, s_l^*)$ be a *strategic profile*. Formally, s^* is a *Nash equilibrium* if the following holds:

$$\forall i, \forall s_i^{'} \in \Sigma_i, u_i((s_i^*, s_{-i}^*), \theta_i) \geq u_i((s_i^{'}, s_{-i}^*), \theta_i).$$

Informally, s^* is a *Nash equilibrium* if no agent would be better off utility-wise by changing its strategy, given that neither of the other agents changes its strategy.

Problems:

Let $s^* = (s_1^*, \dots, s_l^*)$ be a *strategic profile*. Formally, s^* is a *Nash equilibrium* if the following holds:

$$\forall i, \forall s_i^{'} \in \Sigma_i, u_i((s_i^*, s_{-i}^*), \theta_i) \geq u_i((s_i^{'}, s_{-i}^*), \theta_i).$$

Informally, s^* is a *Nash equilibrium* if no agent would be better off utility-wise by changing its strategy, given that neither of the other agents changes its strategy.

Problems:

Can be multple Nash equilibria

Let $s^* = (s_1^*, \dots, s_l^*)$ be a *strategic profile*. Formally, s^* is a *Nash equilibrium* if the following holds:

$$\forall i, \forall s_{i}^{'} \in \Sigma_{i}, u_{i}((s_{i}^{*}, s_{-i}^{*}), \theta_{i}) \geq u_{i}((s_{i}^{'}, s_{-i}^{*}), \theta_{i}).$$

Informally, s^* is a *Nash equilibrium* if no agent would be better off utility-wise by changing its strategy, given that neither of the other agents changes its strategy.

Problems:

- Can be multple Nash equilibria
- Perfect knowledge of agent types is assumed

Formally, a strategy $s_i^* \in \Sigma_i$ is said to be *dominant* if

$$\forall s_{-i}, \forall s_{i}^{'}, u_{i}((s_{i}^{*}, s_{-i}), \theta_{i}) \geq u_{i}((s_{i}^{'}, s_{-i}), \theta_{i}).$$

Formally, a strategy $s_i^* \in \Sigma_i$ is said to be *dominant* if

$$\forall s_{-i}, \forall s_{i}^{'}, u_{i}((s_{i}^{*}, s_{-i}), \theta_{i}) \geq u_{i}((s_{i}^{'}, s_{-i}), \theta_{i}).$$

Informally, s_i^* is *dominant* if agent i maximizes its utility, regardless of the strategies of the other agents.

Formally, a strategy $s_i^* \in \Sigma_i$ is said to be *dominant* if

$$\forall s_{-i}, \forall s_{i}^{'}, u_{i}((s_{i}^{*}, s_{-i}), \theta_{i}) \geq u_{i}((s_{i}^{'}, s_{-i}), \theta_{i}).$$

Informally, s_i^* is *dominant* if agent *i* maximizes its utility, regardless of the strategies of the other agents.

Compared to the *Nash equilibrium*, it is more solid as no information about other agents needs to be assumed.

Formally, a strategy $s_i^* \in \Sigma_i$ is said to be *dominant* if

$$\forall s_{-i}, \forall s_{i}^{'}, u_{i}((s_{i}^{*}, s_{-i}), \theta_{i}) \geq u_{i}((s_{i}^{'}, s_{-i}), \theta_{i}).$$

Informally, s_i^* is *dominant* if agent *i* maximizes its utility, regardless of the strategies of the other agents.

Compared to the *Nash equilibrium*, it is more solid as no information about other agents needs to be assumed.

The downside is that there will be numerous settings where a dominant strategy cannot be found even for one agent.

The problem studied by mechanism design is that of achieving a desired outcome when dealing with a group of self-interested agents.

The problem studied by mechanism design is that of achieving a desired outcome when dealing with a group of self-interested agents.

A social choice function is defined as $f:\Theta_1\times\cdots\times\Theta_I\to\mathcal{O}$, s.t $f(\theta)\in\mathcal{O}$ and $\theta=(\theta_1,\ldots,\theta_I)$. Informally, a social choice function matches agent types to outcomes.

The problem studied by mechanism design is that of achieving a desired outcome when dealing with a group of self-interested agents.

A social choice function is defined as $f: \Theta_1 \times \cdots \times \Theta_I \to \mathcal{O}$, s.t $f(\theta) \in \mathcal{O}$ and $\theta = (\theta_1, \dots, \theta_I)$. Informally, a social choice function matches agent types to outcomes.

The probleme with it that it is based on private information of the agents (type). Agents cannot be trusted to be truthful.

• $\Sigma = \Sigma_1 \times \cdots \times \Sigma_I$ is a restricted set of strategies that agents can choose from

- $\Sigma = \Sigma_1 \times \cdots \times \Sigma_I$ is a restricted set of strategies that agents can choose from
- Σ_i is the set of strategies that agent *i* choosing from

- $\Sigma = \Sigma_1 \times \cdots \times \Sigma_I$ is a restricted set of strategies that agents can choose from
- Σ_i is the set of strategies that agent *i* choosing from
- $g:\Sigma\to\mathcal{O}$ is a function that matches strategy profiles to outcomes

- $\Sigma = \Sigma_1 \times \cdots \times \Sigma_I$ is a restricted set of strategies that agents can choose from
- Σ_i is the set of strategies that agent *i* choosing from
- $g: \Sigma \to \mathcal{O}$ is a function that matches strategy profiles to outcomes
- $\mathcal{M} = (\Sigma, g(\cdot))$ is called a mechanism.

- $\Sigma = \Sigma_1 \times \cdots \times \Sigma_I$ is a restricted set of strategies that agents can choose from
- \bullet Σ_i is the set of strategies that agent i choosing from
- $g:\Sigma\to\mathcal{O}$ is a function that matches strategy profiles to outcomes
- $\mathcal{M} = (\Sigma, g(\cdot))$ is called a mechanism.

A mechanism is said to define a game where the strategy choices of the agents are limited to Σ . To maximize its utility, agent i can only choose strategies from Σ_i .

 $\mathcal{M} = (\Sigma, g(\cdot))$ is a mechanism that implements the social function f, if there exists s^* an equilibrium s.t. $\forall \theta \in \Theta, g(s^*(\theta)) = f(\theta)$.

 $\mathcal{M} = (\Sigma, g(\cdot))$ is a mechanism that implements the social function f, if there exists s^* an equilibrium s.t. $\forall \theta \in \Theta, g(s^*(\theta)) = f(\theta)$.

Informally, a mechanism *implements* a social choice function f if the outcome induced by the mechanism is the same as the outcome returned by the function applied on the true types of the agents.

Formally, a mechanism is direct-revealing if $\forall i, \Sigma_i = \Theta_i$, and $\forall \theta \in \Theta, g(\theta) = f(\theta)$. Informally, the strategies of all agents are to announce a type θ_i' to the *mechanism*.

Formally, a mechanism is direct-revealing if $\forall i, \Sigma_i = \Theta_i$, and $\forall \theta \in \Theta, g(\theta) = f(\theta)$. Informally, the strategies of all agents are to announce a type θ_i' to the *mechanism*.

It is said that a social function $f(\cdot)$ is incentive compatible if it can be implemented by a direct mechanism $\mathcal M$ where all agents reveal their true type.

Revelation Principle

Revelation Principle

The definition of the mechanism states that the search space for strategies is infinite.

Revelation Principle

The definition of the mechanism states that the search space for strategies is infinite.

The *Revelation Principle* helps limit the search-space and states that:

Revelation Principle

The definition of the mechanism states that the search space for strategies is infinite.

The *Revelation Principle* helps limit the search-space and states that:

If there exists some mechanism that implements social choice function f in dominant strategies, then there exists a direct-revealing mechanism that implements f in dominant strategies and is truthful.

 Stems from a need for standardized representations of arguments.

- Stems from a need for standardized representations of arguments.
- Previous attempts unsuitable:

- Stems from a need for standardized representations of arguments.
- Previous attempts unsuitable:
 - designed to be used with specific tools

- Stems from a need for standardized representations of arguments.
- Previous attempts unsuitable:
 - designed to be used with specific tools
 - strong link between language and tool

- Stems from a need for standardized representations of arguments.
- Previous attempts unsuitable:
 - designed to be used with specific tools
 - strong link between language and tool
 - neglected formal logic due to user experience focus

Objectives:

- Objectives:
 - standardize communication between reasoning-based multi-agent systems

- Objectives:
 - standardize communication between reasoning-based multi-agent systems
 - facilitate the creation of such systems

- Objectives:
 - standardize communication between reasoning-based multi-agent systems
 - facilitate the creation of such systems
 - design an efficient and abstract format for exchanging data

Objectives:

- standardize communication between reasoning-based multi-agent systems
- facilitate the creation of such systems
- design an efficient and abstract format for exchanging data
- facilitate argument manipulation and visual representation

• Arguments are composed of networks of interlinked nodes.

- Arguments are composed of networks of interlinked nodes.
- Two types of nodes:

- Arguments are composed of networks of interlinked nodes.
- Two types of nodes:
 - $-\mathcal{N}_I \subset \mathcal{N}$, information nodes (I-nodes)

- Arguments are composed of networks of interlinked nodes.
- Two types of nodes:
 - $-\mathcal{N}_I \subset \mathcal{N}$, information nodes (I-nodes)
 - N_S \subset N, scheme nodes (S-nodes)
- Schemes are classes of reasoning patterns.

- Arguments are composed of networks of interlinked nodes.
- Two types of nodes:
 - $-\mathcal{N}_I \subset \mathcal{N}$, information nodes (I-nodes)
 - N_S \subset N, scheme nodes (S-nodes)
- Schemes are classes of reasoning patterns.
- Schemes are divided into:

- Arguments are composed of networks of interlinked nodes.
- Two types of nodes:
 - $-\mathcal{N}_I \subset \mathcal{N}$, information nodes (I-nodes)
 - $-\mathcal{N}_{\mathcal{S}}\subset\mathcal{N}$, scheme nodes (S-nodes)
- Schemes are classes of reasoning patterns.
- Schemes are divided into:
 - $-\mathcal{S}^R \subset \mathcal{S}$, rule of inference schemes

- Arguments are composed of networks of interlinked nodes.
- Two types of nodes:
 - $-\mathcal{N}_I \subset \mathcal{N}$, information nodes (I-nodes)
 - $-\mathcal{N}_{\mathcal{S}}\subset\mathcal{N}$, scheme nodes (S-nodes)
- Schemes are classes of reasoning patterns.
- Schemes are divided into:
 - $-\mathcal{S}^R \subset \mathcal{S}$, rule of inference schemes
 - $-\mathcal{S}^{\mathcal{C}}\subset\mathcal{S}$, conflict schemes

- Arguments are composed of networks of interlinked nodes.
- Two types of nodes:
 - $-\mathcal{N}_I \subset \mathcal{N}$, information nodes (I-nodes)
 - $-\mathcal{N}_{\mathcal{S}}\subset\mathcal{N}$, scheme nodes (S-nodes)
- Schemes are classes of reasoning patterns.
- Schemes are divided into:
 - $-\mathcal{S}^R \subset \mathcal{S}$, rule of inference schemes
 - $-\mathcal{S}^{\mathcal{C}}\subset\mathcal{S}$, conflict schemes
 - $-\mathcal{S}^P \subset \mathcal{S}$, preference schemes

• S-nodes are actual applications of a scheme.

- S-nodes are actual applications of a scheme.
- S-nodes are of three types, for each scheme class:

- S-nodes are actual applications of a scheme.
- S-nodes are of three types, for each scheme class:
 - $-\mathcal{N}_{S}^{RA}\subset\mathcal{N}_{S}$, rule of inference application nodes (RA-nodes)

- S-nodes are actual applications of a scheme.
- S-nodes are of three types, for each scheme class:
 - $-\mathcal{N}_{S}^{RA} \subset \mathcal{N}_{S}$, rule of inference application nodes (RA-nodes)
 - $-\mathcal{N}_{c}^{CA} \subset \mathcal{N}_{S}$, conflict application nodes (CA-nodes)

- S-nodes are actual applications of a scheme.
- S-nodes are of three types, for each scheme class:
 - $-\mathcal{N}_{S}^{RA}\subset\mathcal{N}_{S}$, rule of inference application nodes (RA-nodes)

 - $-\mathcal{N}_{S}^{CA} \subset \mathcal{N}_{S}$, conflict application nodes (CA-nodes) $-\mathcal{N}_{S}^{PA} \subset \mathcal{N}_{S}$, preference application nodes (PA-nodes)

- S-nodes are actual applications of a scheme.
- S-nodes are of three types, for each scheme class:
 - $-\mathcal{N}_{S}^{RA}\subset\mathcal{N}_{S}$, rule of inference application nodes (RA-nodes)
 - $-\mathcal{N}_{S}^{CA} \subset \mathcal{N}_{S}$, conflict application nodes (CA-nodes) $-\mathcal{N}_{S}^{PA} \subset \mathcal{N}_{S}$, preference application nodes (PA-nodes)
- Example: $MP_1 \in \mathcal{N}_S^{RA}$, an RA-node implementing the modus ponens rule of inference scheme from propositional logic.

Argument network

ullet An argument network Φ is a graph, consisting of:

Argument network

- An argument network Φ is a graph, consisting of:
 - a set $\mathcal{N} = \mathcal{N}_I \cup \mathcal{N}_S$ of vertices

Argument network

- An argument network Φ is a graph, consisting of:
 - a set $\mathcal{N} = \mathcal{N}_I \cup \mathcal{N}_S$ of vertices
 - a binary relation \xrightarrow{edge} : $\mathcal{N} \times \mathcal{N}$, representing edges, with the restriction that $\forall i \in \mathcal{N}_I, \forall j \in \mathcal{N}_I, \not\exists (i,j) \in \xrightarrow{edge}$

• A simple argument, in a network Φ and schemes $\mathcal S$ is a tuple $\langle P, \tau, c \rangle$, where:

- A simple argument, in a network Φ and schemes $\mathcal S$ is a tuple $\langle P, \tau, c \rangle$, where:
 - $-P\subseteq \mathcal{N}_I$ is a set of I-nodes, constituting the premises

- A simple argument, in a network Φ and schemes \mathcal{S} is a tuple $\langle P, \tau, c \rangle$, where:
 - $-P\subseteq \mathcal{N}_I$ is a set of I-nodes, constituting the premises
 - $\tau \in \mathcal{N}_{\mathcal{S}}^{RA}$ is an RA-node

- A simple argument, in a network Φ and schemes S is a tuple $\langle P, \tau, c \rangle$, where:
 - $-P \subseteq \mathcal{N}_I$ is a set of I-nodes, constituting the premises
 - $-\tau \in \mathcal{N}_{\mathcal{S}}^{RA}$ is an RA-node
 - $-c \in \mathcal{N}_I$ is an I-node representing the conclusion, with the condition that $\tau \xrightarrow{edge} c$, uses (τ, s) , $s \in \mathcal{S}$ and $\forall p \in P$ there is $p \xrightarrow{edge} \tau$

• The argument:

- The argument:
 - (P_1) The sun's UV helps produce Vitamin D in your body

- The argument:
 - (P_1) The sun's UV helps produce Vitamin D in your body
 - (P_2) Vitamin D is good for your health

- The argument:
 - (P_1) The sun's UV helps produce Vitamin D in your body
 - (P_2) Vitamin D is good for your health
 - (C_1) Therefore, the sun's UV is good for your health

- The argument:
 - (P_1) The sun's UV helps produce Vitamin D in your body
 - (P_2) Vitamin D is good for your health
 - (C_1) Therefore, the sun's UV is good for your health
- We construct the tuple $A_1 = \langle \{P_1, P_2\}, HS_1, C_1 \rangle$, a simple argument in natural language, where $P_1, P_2 \in \mathcal{N}_I$ are premises and $C_1 \in \mathcal{N}_I$ is the conclusion. $HS_1 \in \mathcal{N}_S^{RA}$ is an RA-node, that uses the hypothetical syllogism scheme from propositional logic.

Figure: Argument network using natural language

• Coming up with a rebuttal:

- Coming up with a rebuttal:
 - (P_3) The sun's UV causes skin cancer

Costin

- Coming up with a rebuttal:
 - (P_3) The sun's UV causes skin cancer
 - (P_4) Skin cancer is bad for your health

- Coming up with a rebuttal:
 - (P_3) The sun's UV causes skin cancer
 - (P_4) Skin cancer is bad for your health
 - (C_2) Therefore, the sun's UV is bad for your health

- Coming up with a rebuttal:
 - (P_3) The sun's UV causes skin cancer
 - (P_4) Skin cancer is bad for your health
 - (C_2) Therefore, the sun's UV is bad for your health
- We use the previous simple argument $A_1 = \langle \{P_1, P_2\}, HS_1, C_1 \rangle$ and similarly define another simple argument $A_2 = \langle \{P_3, P_4\}, HS_2, C_2 \rangle$, where $P_3, P_4 \in \mathcal{N}_I$ are premises and $C_2 \in \mathcal{N}_I$ is the conclusion. $HS_2 \in \mathcal{N}_S^{RA}$ is an RA-node, that uses the hypothetical syllogism scheme from propositional logic. Conflict is displayed with CA-nodes NEG₁ and NEG₂, instantiations of a conflict scheme based on propositional contraries.

Figure: Argument network containing a rebuttal in natural language