Analýza AES white-box schémat pomocí útoku postranním kanálem

Autor: Jakub Klemsa

Školitel: prof. RNDr. Václav Matyáš, M.Sc., Ph.D.

Katedra matematiky FJFI, ČVUT

24. března 2016

1. Ingredience

- Advanced Encryption Standard (AES)
- Od black-box k white-box modelu
- White-box AES (WBAES)
- Útok postranním kanálem (SCA)

2. Útok na WBAES

- Využití nástrojů SCA k útoku na WBAES
- Nové terče

3. Výsledky

- Reprodukce výsledků Bos et al.
- Výsledky použití všech 255 terčů
- Rozložení úspěšnosti terčů
- Útok "naslepo"

4. Budoucí práce

Advanced Encryption Standard (AES)

Symetrická bloková šifra

- standard vydaný NIST [6, 2001]
- dodnes považována za bezpečnou

Advanced Encryption Standard (AES)

Symetrická bloková šifra

- standard vydaný NIST [6, 2001]
- dodnes považována za bezpečnou
- 128-bitová varianta
- mezivýsledky zranitelné

Black-box model

Útočník má černou skříňku, která

- uchovává náhodný AES klíč
- zašifruje vloženou zprávu
- neunikne **žádná** další informace
 - mezivýsledky, doba šifrování, . . .

uhodnutý klíč snadno ověří

Black-box model

Útočník má černou skříňku, která

- uchovává náhodný AES klíč
- zašifruje vloženou zprávu
- neunikne **žádná** další informace
 - mezivýsledky, doba šifrování, . . .

Snaha útočníka: získat klíč

uhodnutý klíč snadno ověří

Gray-box model

Blíže realitě

- z hardwaru informace uniká
 - spotřeba energie, EM záření, . . .
- \Rightarrow útok postranním kanálem (dále)

White-box model

Útočník vykonává šifrování

- vidí mezivýsledky
- může měnit hodnoty, instrukce, ...
- klíč musí zůstat utajen

Pozorováni

Odolnost k white-box \Rightarrow odolnost ke gray-box

White-box model

Útočník vykonává šifrování

- vidí mezivýsledky
- může měnit hodnoty, instrukce, . . .
- klíč musí zůstat utajen

Pozorování

Odolnost k white-box \Rightarrow odolnost ke gray-box.

White-box AES (WBAES)

Představeno Chow et al. [3, 2002]

algebraický útok (Billet et al. [1, 2004])

Skrývá mezivýsledky

- plně tabulková implementace
- tabulky obklopené náhodnými bijekcemi
- vhodně se vyruší ⇒ zachová funkcionalitu

White-box AES (WBAES)

Představeno Chow et al. [3, 2002]

■ algebraický útok (Billet et al. [1, 2004])

Skrývá mezivýsledky

- plně tabulková implementace
- tabulky obklopené náhodnými bijekcemi
- vhodně se vyruší ⇒ zachová funkcionalitu

Utok postranním kanálem (SCA) I

Kombinuje

- zranitelnost mezivýsledků
- únik informace v gray-box modelu (nazveme stopa)

- - hledání náznaků očekávaných mezivýsledků ve stopách

Útok postranním kanálem (SCA) I

Kombinuje

- zranitelnost mezivýsledků
- únik informace v gray-box modelu (nazveme stopa)

Celá řada SCA

- přímé pozorování klíče (RSA)
- hádání klíče nezávisle po částech
 - hledání náznaků očekávaných mezivýsledků ve stopách

Útok postranním kanálem (SCA) II

Příklad útoku proti AES

- prochází hodnoty i-tého bytu klíče
 - dělí stopy podle *j*-tého bitu očekávaného mezivýsledku
 - nazveme *terč* (máme jich 8)
 - závisí na zprávě a klíči
- lacksquare max. rozdíl středních hodnot \sim správný klí ${\mathfrak d}$

Útok postranním kanálem (SCA) II

Příklad útoku proti AES

- prochází hodnoty *i*-tého bytu klíče
 - dělí stopy podle j-tého bitu očekávaného mezivýsledku
 - nazveme terč (máme jich 8)
 - závisí na zprávě a klíči
- lacksquare max. rozdíl středních hodnot \sim správný klíč

Útok postranním kanálem (SCA) II

Příklad útoku proti AES

- prochází hodnoty i-tého bytu klíče
 - dělí stopy podle j-tého bitu očekávaného mezivýsledku
 - nazveme terč (máme jich 8)
 - závisí na zprávě a klíči
- max. rozdíl středních hodnot \sim správný klíč

Pozorování (opakování)

Odolnost k white-box \Rightarrow odolnost ke gray-box (tj. SCA).

- zlomili všechny veřejně dostupné
- jen jedno tabulkové AES (Klinec [4])
 - není zřejmé, kudy informace uniká
- paměťové stopy
 - adresy čtení/zápisu
 - obsah paměti

Pozorování (opakování)

Odolnost k white-box \Rightarrow odolnost ke gray-box (tj. SCA).

- zlomili všechny veřejně dostupné
- jen jedno tabulkové AES (Klinec [4])
 - není zřejmé, kudy informace uniká
- paměťové stopy
 - adresy čtení/zápisu
 - obsah paměti

Pozorování (opakování)

Odolnost k white-box \Rightarrow odolnost ke gray-box (tj. SCA).

- zlomili všechny veřejně dostupné
- jen jedno tabulkové AES (Klinec [4])
 - není zřejmé, kudy informace uniká
- paměťové stopy
 - adresy čtení/zápisu
 - obsah paměti

Pozorování (opakování)

Odolnost k white-box \Rightarrow odolnost ke gray-box (tj. SCA).

- zlomili všechny veřejně dostupné
- jen jedno tabulkové AES (Klinec [4])
 - není zřejmé, kudy informace uniká
- paměťové stopy
 - adresy čtení/zápisu
 - obsah paměti

Pozorování (opakování)

Odolnost k white-box \Rightarrow odolnost ke gray-box (tj. SCA).

- zlomili všechny veřejně dostupné
- jen jedno tabulkové AES (Klinec [4])
 - není zřejmé, kudy informace uniká
- paměťové stopy
 - adresy čtení/zápisu
 - obsah paměti

Nové terče

WBAES obklopuje mezivýsledky mj. náhodným lineárním zobrazením

- **p**ůvodní terče \sim násobení mezivýsledku e.g. (0,0,1,0,0,0,0,0)
- nové terče ~ násobení lib. nenulovým vektorem
- ⇒ 255 nových terčů

Reprodukce výsledků Bos et al.

Bos et al. - útok na WBAES

- 8 původních + 8 dalších terčů (jiný přístup)
- všech 16 funguje
- reprodukujeme k porovnání s novými terči

Byte	Původní terče									
	1.	2.	3.	4.	5.	6.	7.	8.		
1.		55	90		149	207	224			
2.	248	218	239	244	247		251	247		
3.		212		25	230		99			
4.		252	226	247		255	241	252		
5.	247	104		225	229		225	249		
6.	252	255		241	242		4	255		
7.	47	233		228						
8.		253	253		255	251	1			
9.	224	196	231	249	253	238		253		
10.			255	245	255		234			
11.	245		250		190	255	236			
12.	254	255		255						
13.	241		254	190	160	193				
14.	235		254		255	2		255		
15.			246	195	255		246	155		
16.	252	255	254		251	245	235			

Tabulka : Pořadí správného kandidáta, $\blacksquare \sim 0$. Útok s použitím 1024 stop. Průměrně 2.9 terčů z 8 uspěje (36%).

Byte	Dalších 8 terčů									
	1.	2.	3.	4.	5.	6.	7.	8.		
1.	207		4	252	253	252				
2.	233	255	252		216	255	255			
3.	254	209			254	225	247	189		
4.	37		251			252	231	242		
5.	244		250	231	134	79	214	223		
6.		253	255	254				2		
7.		248	187	255	209		184	227		
8.		255	255	242	234	253		255		
9.	227	156	237	243	229	232				
10.		158	1		253					
11.	248		241	254	251	45	255	1		
12.		251	254	255	236	255		254		
13.	205	4	191	30			240	255		
14.		231	246		248	253				
15.	221	250	1		223		1	225		
16.	255		229	254		255	254	253		

Tabulka : Pořadí správného kandidáta, $\blacksquare \sim 0$. Útok s použitím 1024 stop. Průměrně 2.4 terčů z 8 uspěje (30%).

Výsledky použití všech 255 terčů

Nagenerováno 8 instancí WBAES tabulek

- 255 terčů pro každý ze 16 bytů klíče a každou z 8 instancí
 - 32 640 útoků
 - doba běhu desítky hodin
- globální úspěšnost 29%
 - silní kandidáti rozdíl na druhého > 10%
 - úsp. 25%

Výsledky použití všech 255 terčů

Nagenerováno 8 instancí WBAES tabulek

- 255 terčů pro každý ze 16 bytů klíče a každou z 8 instancí
 - 32 640 útoků
 - doba běhu desítky hodin
- globální úspěšnost 29%
 - silní kandidáti rozdíl na druhého > 10%
 - úsp. 25%

Rozložení úspěšnosti terčů I

Mnoho terčů, málo měření (každý alespoň jednou úspěšný)

- shlukování terčů může jen vyvrátit uniformitu
 - cyklické rotace vektoru
 - hlubší význam v konstrukci

Obrázek : Úspěšnost shluků terčů, hexadecimální zápis reprezentanta.

Rozložení úspěšnosti terčů II

Fixované 4 bity vektoru (maskami 0xf0, 0x0f)

Obrázek: Úspěšnost shluků terčů, hexadecimální zápis fixovaných bitů.

Útok "naslepo"

Znali jsme klíč, úskalí útoku "naslepo"

- falešní kandidáti
 - rekordní rozdíl na druhého téměř 35%
 - ten samý se málokdy opakuje
- průměrný rozdíl správných 34%
 - klesá s počtem stop

Návrh

- menší počet stop a více terčí
- sčítání relativních rozdílů na druhého
 - hranice pro započítání (10%)
 - hranice pro skončení (75%)
- ⇒ zlomilo všechny instance (snad zlomí)

Útok "naslepo"

Znali jsme klíč, úskalí útoku "naslepo"

- falešní kandidáti
 - rekordní rozdíl na druhého téměř 35%
 - ten samý se málokdy opakuje
- průměrný rozdíl správných 34%
 - klesá s počtem stop

Návrh

- menší počet stop a více terčů
- sčítání relativních rozdílů na druhého
 - hranice pro započítání (10%)
 - hranice pro skončení (75%)
- ⇒ zlomilo všechny instance (snad zlomí)

Budoucí práce I

Nedořešené otázky

- ze které tabulky WBAES dochází k úniku
 - 3 nefungující způsoby
 - 2 způsoby s debuggerem
 - útok na indexy tabulek
- jak útok teoreticky podložit
 - proč se správný kandidát propadá na poslední místa

Budoucí práce II

Úspěšnost podle pozice ve stopě

■ místo úniku – max. rozdíl středních hodnot stop

Obrázek : Průměrná úpěšnost a její směrodatná odchylka napříč instancemi podle pozice bitu v rámci bytu ve stopě.

Literatura I

Joppe W Bos, Charles Hubain, Wil Michiels, and Philippe Teuwen. Differential computation analysis: Hiding your white-box designs is not enough.

Technical report, Technical report, Cryptology ePrint Archive, Report 2015/753. http://eprint.iacr.org/2015/753, 2015.

Stanley Chow, Philip Eisen, Harold Johnson, and Paul C Van Oorschot.

White-box cryptography and an aes implementation. In *Selected Areas in Cryptography*, pages 250–270. Springer, 2002.

Literatura II

D. Klinec.

Whitebox-crypto-AES.

Git repository.

https://github.com/ph4r05/Whitebox-crypto-AES.

Dušan Klinec.

White-box attack resistant cryptography. 2013.

197: Advanced encryption standard (aes).

Federal Information Processing Standards Publication, 197:441–0311, 2001.