Решение

Домашнее задание

Дедлайн: к следующему уроку
Советуем регулярно выполнять ДЗ (наверстать пропуски тяжело)

- 1. Перевести из 10 в 16 систему 12345678, 1000000
- 2. Перевести из 16 в 10 систему 12345678, 1000000
- 3. Записать в виде логического выражение ответ Винни Пуха: "Сгущенного молока и меда и можно без хлеба"
- 4. Доказать тождества $A \to B = |A| |B, A \longleftrightarrow B = (A \&\& B) || (!A \&\& !B), таблицы истинности на Си можно распечатать**$
- 5. Прислать скриншот Boolean games by July Sudarenko
- 6. * Упростить выражение X =

 $X = (B \to A) \cdot \overline{(A + B)} \cdot (A \to C)$

1. Перевести из 10-тичной в 16-ричную

12345678

 $12345678 \% 16 = 14 \rightarrow \mathbf{E}$ 12345678 / 16 = 771604 $771604 \% 16 = 4 \rightarrow \mathbf{4}$ 771604 / 16 = 48225 $48225 \% 16 = 1 \rightarrow \mathbf{1}$ 48225 / 16 = 3014 $3014 \% 16 = 6 \rightarrow \mathbf{6}$ 3014 / 16 = 188 $188 \% 16 = 12 \rightarrow \mathbf{C}$ 188 / 16 = 11 $11 \rightarrow \mathbf{B}$

Результат: ВС614Е

1000000

 $1000000 \% 16 = 0 \rightarrow \mathbf{0}$ 1000000 / 16 = 62500 $62500 \% 16 = 4 \rightarrow \mathbf{4}$ 62500 / 16 = 3906 $3906 \% 16 = 2 \rightarrow \mathbf{2}$ 3906 / 16 = 244 $244 \% 16 = 4 \rightarrow \mathbf{4}$ 244 / 16 = 15

Результат: **F4240**

2. Перевести из 16-ричной в 10-тичную

12345678

1 + 16 * 0 = 1

2 + 16 * 1 = 18

3 + 16 * 18 = 291

4 + 16 * 291 = 4660

5 + 16 * 4660 = 74565

6 + 16 * 74565 = 1193046

7 + 16 * 1193046 = 19088743

8 + 16 * 19088743 = 305419896

Результат: 305419896

1000000

1 + 16 * 0 = 1

0 + 16 * 1 = 16

0 + 16 * 16 = 256

0 + 16 * 256 = 4096

0 + 16 * 4096 = 65536

0 + 16 * 65536 = 1048576

0 + 16 * 1048576 = 16777216

Результат: 16777216

3. Записать в виде логического выражения ответ Винни Пуха:

"Сгущенного молока и мёда и можно без хлеба"

Пусть:

А - Сгущенное молока

В - мёд

С – хлеб

Тогда:

A && B && (C || !C)

Но $(C \parallel !C)$ – это тождественная истина (логическая тавтология), т.е. всегда истинно. Поэтому его можно убрать.

Получаем:

A && B

Ответ:

в виде логического выражения ответ Винни Пуха: "Сгущенного молока и мёда и можно без хлеба" можно представить так:

A && B

т.е. Сгущенного молока и мёда :-)

4. Доказать тождества

A -> B = |A||B

A -> B это импликация. Смысл импликации можно представить таким образом - это обещание если A выполнится, то выполниться и B. Импликация ложна только в одном случае - если A истинно, а B ложно (нарушено "обещание"). Во всех остальных случаях "обещание" не нарушено, поэтому импликация истинна.

Таблица истинности:

A	В	A->B
0	0	1
0	1	1
1	0	0
1	1	1

Таблица истинности для выражения !А||В:

A	В	!A	!A B
0	0	1	1
0	1	1	1
1	0	0	0
1	1	0	1

Видно, что А -> В тождественно !А||В

A < -> B = (A && B) || (!A && !B)

A < -> B это эквивалентность. Эквивалентность (A < -> B) означает:

[&]quot; А и В одновременно истинны или одновременно ложны".

Через таблицу истинности.

Построим таблицу для всех комбинаций А и В:

A	\mathbf{B}	A<->B	(A && B)	(!A && !B)	$(A \&\& B) \parallel (!A \&\& !B)$
0	0	1	0	1	1
0	1	0	0	0	0
1	0	0	0	0	0
1	1	1	1	0	1

Вывод: Столбцы A < -> B и $(A \&\& B) \parallel (!A \&\& !B)$ полностью совпадают.

Через эквивалентные преобразования.

Операция && - логическое умножение Операция || - логическое сложение

Используем определение эквивалентности:

$$A < -> B = (A -> B) && (B -> A)$$

Раскрываем импликации (см задачу выше):

$$(A -> B) && (B -> A) = (!A || B) && (!B || A)$$

Раскрываем скобки:

$$(!A \parallel B) \&\& (!B \parallel A) = (!A \&\& !B) \parallel (!A \&\& A) \parallel (B \&\& !B) \parallel (B \&\& A)$$

Упрощаем

(!A && A) = 0

$$(B \&\& !B) = 0$$

Получаем:

$$A < -> B = (!A \&\& !B) || (A \&\& B)$$

Что и требовалось доказать.

5.

6. * Упростить выражение

$$X = (B \rightarrow A) \cdot \overline{(A + B)} \cdot (A \rightarrow C)$$

Упрощение логического выражения:

1 Заменим импликации и отрицание

Импликация:

$$B -> A = |B||A$$

Отрицание ИЛИ:

$$\overline{(A+B)}$$

= !А * !В (по закону де Моргана)

= !A && !B

Импликация:

$$A -> C = |A||C$$

Подставляем:

$$X = (!B||A) * (!A&&!B)* (!A||C)$$

2 Раскроем первые две скобки:

$$(!B || A) * (!A && !B) = (!B * !A && !B) || (A * !A && !B) = (!B * !A * !B) || (A * !A * !B)$$

Упрощаем:

$$(!B * !A * !B) = (!B * !A)$$

$$(A * !A * !B) = 0 * !B = 0$$

Итог:

$$(!B * !A) = (!B \&\& !A)$$

Получаем выражение:

$$X = (!B \&\& !A) * (!A||C)$$

3 Раскроем скобки:

$$(!B \&\& !A) * (!A||C) = (!B \&\& !A * !A) || (!B \&\& !A * C) = (!B *!A *!A) || (!B *!A * C)$$

Упрощаем

$$(!B * !A * !A) = (!B * !A)$$

Получаем выражение:

$$X = (!B * !A) || (!B * !A * C)$$

4 Выносим общий множитель:

$$X = (!B * !A) * (1 + C)$$

(1 + С) всегда равно 1 для любого С

$$X = (!B * !A) * 1 = (!B * !A) = !B && !A$$

ИТОГО

X = !B & !A