

인공지능시스템

CNN Modules

Convolution

■ Convolution(합성곱) 연산 : 이미지와 필터(Filter 또는 Kernel)와의 합성곱을 이용하여 이미지의 인접한 공간적/지역적 특징 정보를 추출할 수 있음

■ 합성곱 예시

Conv filter - size

■ Input size & Filter size & Output size

Conv filter - stride

■ Stride: 합성곱을 계산하는 간격

stride = 1

*

output

stride = 2

*

output

Conv filter - padding

■ Padding: 합성곱 연산을 수행하면 input에 비해서 output의 크기가 줄어들게 됨 이를 보상하기 위하여 input 바깥부분에 0을 추가함 (zero padding)

4x4 with zero padding

0	0	0	0	0	0							4x4			
0					0			3x3							
0					0										
0					0	*									
0					0										
0	0	0	0	0	0	filter				output					

input

Conv filter – Output size

input size

Quiz1) input_size=7, kernel_size=3, stride=1 \rightarrow 5x5

Quiz2) input_size=7, kernel_size=3, stride=2 \rightarrow 3x3

output size = (input_size - kernel_size)/stride +1
 ※ input_size: input에 padding을 적용한 후의 size

32x32x3 image

5x5x3 filter

Activation map

128x128x10 feature map

5x5x10 filter

Activation map

Activation maps

3x32x32 image

Pytorch Convention

(#Batch, #Channel, H, W)

Pytorch Convention

(#Batch, #Channel, H, W)

2d Conv layer -Pytorch

CONV2D

CLASS torch.nn.Conv2d(in_channels, out_channels, kernel_size, stride=1, padding=0, dilation=1, groups=1, bias=True, padding_mode='zeros', device=None, dtype=None) [SOURCE]

nn.Conv2d(in_channels=3, out_channels=32, kernel_size=3,padding=0, stride=1)

2d Conv layer -Pytorch

CONV2D

CLASS torch.nn.Conv2d(in_channels, out_channels, kernel_size, stride=1, padding=0, dilation=1, groups=1, bias=True, padding_mode='zeros', device=None, dtype=None) [SOURCE]

nn.Conv2d(in_channels=3, out_channels=32, kernel_size=3,padding=0, stride=1)

CNN – Pooling Pytorch

MAXPOOL2D

CLASS torch.nn.MaxPool2d(kernel_size, stride=None, padding=0, dilation=1, return_indices=False, ceil_mode=False) [SOURCE]

AVGPOOL2D

CLASS torch.nn.AvgPool2d(kernel_size, stride=None, padding=0, ceil_mode=False, count_include_pad=True, divisor_override=None) [SOURCE]

Input_preprocess

• torch.permute() 를 이용하여 입력 데이터 Tensor의 순서를 BHWC→BCHW 순서로 바꾸어 준다.


```
class Net(nn.Module):
 def __init__(self):
     super(Net, self).__init__()
     self.conv1 = nn.Conv2d(in_channels=3, out_channels=32, kernel_size=(3, 3), padding=0, stride=(1, 1))
     self.conv2 = nn.Conv2d(32, 64, (4, 4))
     self.dropout = nn.Dropout(0.5)
     self.fc1 = nn.Linear(64*6*6, 10)
 def forward(self, x):
                            # 3x32x32
     x = self.conv1(x)
                            # 32x30x30
    x = F.relu(x)
     x = F.max_pool2d(x, 2) # 32x15x15
     x = self.conv2(x)
                            # 64x12x12
    x = F.relu(x)
     x = F_max_pool2d(x, 2) # 64x6x6
     x = torch.flatten(x, start_dim=1) # Fully Connected Layer를 통과할 수 있도록 쭉 펼침
     x = self.dropout(x)
     x = self.fc1(x)
     return x
```



```
class CNNet(nn.Module):
def __init__(self):
   super(CNNet, self).__init__()
   self.conv1 = nn.Conv2d(in channels=3, out channels=32, kernel size=3,padding=0, stride=1)
   self.conv2 = nn.Conv2d(32,64,4)
   self.dropout = nn.Dropout(0.5)
   self.fc1 = nn.Linear(64*6*6, 10)
   • nn module 의 Conv2d 로 conv1, conv2를 각각 정의함
     (channels size에 주의)
   • Dropout 은 학습되는 파라미터가 아니라 그냥 p 확률로 feature의 일부를 off한다.
   • Linear layer의 input 을 잘 계산할 것!
     (입력으로 들어오는 feature를 vectorize 한 크기를 계산)
```



```
class • forward는 레고 블럭처럼 이어 붙인다.
 F에서 relu와 max_pool2d를 사용할 수 있음

 torch.flatten으로 tensor를 vectorize 한다.

def forward(self, x):
                   # 3x32x32
  x = self.conv1(x)
                   # 32x30x30
  x = F.relu(x)
  x = F_max_pool2d(x, 2) # 32x15x15
  x = self.conv2(x) # 64x12x12
  x = F.relu(x)
  x = F_max_pool2d(x, 2) # 64x6x6
  x = torch.flatten(x, 1) # Fully Connected Layer를 통과할 수 있도록 쭉 펼침
  x = self.dropout(x)
  x = self.fc1(x)
  return x
```


i n p u t	C o R e L U	M a x P o o l	C o n v 2	R e L U	M a x P o o l	d r o p o u t	f c 1	s o f t m a x	o u t p u t	
-----------------------	-------------	---------------------------------	-----------------------	------------------	---------------------------------	---------------------------------	-------------	---------------	-------------	--

학습 결과

• Accuracy: 70.51%

Option2 (SGD + StepLR)

• Accuracy: 70.16%

thank you

본 과제(결과물)는 교육부와 한국연구재단의 재원으로 지원을 받아 수행된 디지털신기술인재양성 혁신공유대학사업의 연구결과입니다.

