Álgebra Lineal I

Tarea 02

Profesor: Rivera Torres Francisco de Jesús Ayudante: Samayoa Donado Víctor Augusto Ayudante: Vargas Martínez Mario Raúl

Marzo 18, 2020

- 1. Dar un ejemplo de una transformación lineal $T:\mathbb{R}^2\longrightarrow\mathbb{R}^2$ tal que N(T)=R(T).
- 2. Dar un ejemplo de dos transformaciones lineales diferentes T y U tales que N(T) = N(U) y R(T) = R(U).
- 3. Sea W un subespacio de un espacio vectorial dimensionalemnte finito V. Demostrar que existe una proyección sobre W.
- 4. Sean V y W espacios vectoriales dimensionalmente finitos y $T:V\longrightarrow W$ lineal.
 - (a) Demostrar que si $\dim(V) < \dim(W)$, entonces T no puede ser suprayectiva.
 - (b) Demostrar que si $\dim(V) > \dim(W)$, entonces T no puede ser invectiva.
- 5. Sea V un espacio vectorial n-dimensional con una base ordenada β . Definiendo a $T:V\longrightarrow K^n$ mediante $T(x)=[x]_{\beta}$ demostrar que T es lineal.
- 6. Sea g(x) = 3 + x. Definase

$$T: \mathbb{P}_2(\mathbb{R}) \longrightarrow \mathbb{P}_2(\mathbb{R})$$
 $U: \mathbb{P}_2(\mathbb{R}) \longrightarrow \mathbb{R}^3$ $T(f(x)) = f'(x)g(x) + 2f(x)$ $U(a + bx + cx^2) = (a + b, c, a - b)$

Sean $\beta = \{1, x, x^2\}$, y $\gamma = \{e_1, e_2, e_3\}$ bases ordenadas de $\mathbb{P}_2(\mathbb{R})$ y \mathbb{R}^3 , respectivamente.

(a) Calcular directamente $[U]^{\gamma}_{\beta}$, $[T]_{\beta}$ y $[UT]^{\gamma}_{\beta}$. Luego utilizar el Teorema visto en clase para verificar el resultado.

- (b) Sea $h(x) = 3 2x + x^2$. Calcular $[h]_{\beta}$ y $[U(h)]_{\beta}^{\gamma}$. Luego, emplear $[U]_{\beta}^{\gamma}$ y utilizar el Teorema para verificar el resultado.
- 7. Sea A una matriz de $m \times n$. Demostrar que A es una matriz diagonal si y sólo si $A_{ij} = \delta_{ij} A_{ii}$ para toda i y toda j.
- 8. Sea V un espacio vectorial y sea $T:V\longrightarrow V$ lineal. Dempstrar que $T^2=T_0$ si y sólo si $R(T)\subseteq N(T)$. Donde $T_0(x)=0$ para todo $x\in V$.
- 9. Sean V, W y Z espacios vectoriales, y sean $T: V \longrightarrow W$ y $U: W \longrightarrow Z$ lineales.
 - (a) Si UT es inyectiva, demostrar que T es inyectiva. ¿Es U inyectiva?
 - (b) Si UT es suprayectiva, demostrar que U es suprayectiva. ¿Es T suprayectiva?
 - (c) Si U y T son biyectivas, demostrar que UT es biyectiva.
- 10. Sean V y W espacios vectoriales dimensionalmente finitos y sea T: $V \longrightarrow W$ lineal. Supóngase que $\dim(V) = \dim(W)$. Encontrar bases ordenadas β y γ para V y W, respectivamente, tales que $[T]^{\gamma}_{\beta}$ sea una matriz diagonal.
- 11. Sea V un espacio vectorial dimensionalmente finito y sea $T:V\longrightarrow V$ lineal
 - (a) Si rango(T) = rango (T^2) , demostrar que $R(T) \cap N(T) = 0$. Deducir que $V = R(T) \bigoplus N(T)$.
 - (b) Demostrar que existe un entero positivo k tal que $V = R(T^k) \bigoplus N(T^k)$.
- 12. Sean A y B matrices invertibles de $n \times n$. Demostrar que AB es invertible y que $(AB)^{-1} = B^{-1}A^{-1}$.
- 13. Sea A invertible. Demostrar que A^t es invertible y $(A^t)^{-1} = (A^{-1})^t$.
- 14. Demostrar que si A es invertible y AB=0, entonces B=0. Donde 0 representa la matriz cero.
- 15. Si $A^2 = 0$, demostrar que A no puede ser invertible.