Plant gas exchange

How do plants transpire?

Water potential gradients!

Transpiration regulation: Guard cells

Create open or closed stomata by changing turgor pressure

Respiration

How do plants respire?

Respiration

$$C_6H_{12}O_6 + 6O_2 \rightarrow 6CO_2 + 6H_2O + energy$$

$$C_6H_{12}O_6 + 6O_2 \rightarrow 6CO_2 + 6H_2O + energy$$

- 1. Glycolysis
- 2. Citric Acid Cycle
- 3. Electron Transport System

- 1. Glycolysis
- 2. Citric Acid Cycle
- 3. Electron Transport System

1. Glycolysis

- •function: make some ATP & substrate for making [x]H
- 2. Citric Acid Cycle
- 3. Electron Transport System

• Step 1: "Investment"

- Step 1: "Investment"
 - Use 2 ATP to create 2 phosphorylated 3-C sugars from glucose

Glucose (6 C)

- Step 1: "Investment"
 - Use 2 ATP to create 2 phosphorylated 3-C sugars from glucose

• Step 2: "Reward"

- Step 2: "Reward"
 - Use 2 phosphorylated 3-C sugars to create 4 ATP and Pyruvic acid

$$3C + 1P$$

$$3C + 1P$$

- Step 2: "Reward"
 - Use 2 phosphorylated 3-C sugars to create 4 ATP and Pyruvic acid

$$3C + 1P$$

 $\downarrow +P (NAD+ -> NADH)$
 $3C + 2P$
 $3C + 2P$
 $3C + 2P$

- Step 2: "Reward"
 - Use 2 phosphorylated 3-C sugars to create 4 ATP and Pyruvic acid

- Step 2: "Reward"
 - Use 2 phosphorylated 3-C sugars to create 4 ATP and Pyruvic acid

<u>Ingredients</u>

- Glucose
- ATP (2)

Outcomes

- Pyruvic acid
- ATP (4)
- NADH (2)

- 1. Glycolysis
- 2. Citric Acid Cycle
- 3. Electron Transport System

1. Glycolysis

2. Citric Acid Cycle

- function: make [x]H
- 3. Electron Transport System

- Step 1: Production of Acetyl CoA from pyruvic acid ("Transformation")
 - Produces CO₂ and NADH

• Step 2: Production of "energy packets" (NADH, FADH₂)

<u>Ingredients</u>

Pyruvic acid

Outcomes

- NADH
- FADH₂
- ATP
- CO₂

- 1. Glycolysis
- 2. Citric Acid Cycle
- 3. Electron Transport System

- 1. Glycolysis
- 2. Citric Acid Cycle
- 3. Electron Transport System
 - function: make ATP

"Cashing out" - Electron transport system

Respiration – Electron transport system

- Take reduced "energy packets" (NADH, FADH₂) and convert ADP to ATP
 - "Cashing in" electrons for ATP
 - Driven by a series of protein complexes along the mitochondrial membrane

NADH + ADP + P +
$$O_2$$
 -> NAD + H_2O + ATP
FADH₂ + ADP + P + O_2 -> FAD + H_2O + ATP

1 Glucose => 36 ATP (net)

1 Glucose => 36 ATP (net)

1760 kcal / 1 Glucose

1 Glucose => 36 ATP (net)

1760 kcal / 1 Glucose

19 kcal / 1 ATP

1 Glucose => 36 ATP (net)

1760 kcal / 1 Glucose

19 kcal / 1 ATP

(19 * 36) / 1760 = 39% total efficiency

Photosynthesis

Photosynthesis How do plants photosynthesize?

Chlorphyll
$$6CO_2 + 12H_2O + light \rightarrow C_6H_{12}O_6 + 6O_2 + 6H_2O$$
Enzymes

$$6CO_2 + 12H_2O + light \rightarrow C_6H_{12}O_6 + 6O_2 + 6H_2O$$
Enzymes

Photosynthesis – CO₂

Photosynthesis – CO₂

- CO₂ diffuses into plant leaves through stomata
- Ultimately reaches the chloroplasts
- Function: provides C

Photosynthesis – CO₂

• 1 acre corn plot takes up > 5000 lbs of CO₂ a year

$$6CO_2 + 12H_2O + light \rightarrow C_6H_{12}O_6 + 6O_2 + 6H_2O$$

Enzymes

Photosynthesis - Water

- Solution for CO₂ to dissolve
- Source of the electrons involved

$$6CO_2 + 12H_2O + light \rightarrow C_6H_{12}O_6 + 6O_2 + 6H_2O$$

Chlorophyl

$$6CO_2 + 12H_2O + light \rightarrow C_6H_{12}O_6 + 6O_2 + 6H_2O$$

Enzymes

Photosynthesis - Light

- Provides the energy for photosynthesis
- Absorbed in the red and blue portion of the spectrum

Chlorophyll

$$6CO_2 + 12H_2O + light \rightarrow C_6H_{12}O_6 + 6O_2 + 6H_2O$$
Enzymes

Photosynthesis - Chlorophyll

- Molecules that absorb light
- Come in different flavors
 - Absorb in different portions of the spectrum

$$6CO_2 + 12H_2O + light \rightarrow C_6H_{12}O_6 + 6O_2 + 6H_2O$$

Enzymes

Photosynthesis - enzymes

- Function: to catalyze the reactions
- Very temperature sensitive
- Example --> Rubisco

$$6CO_2 + 12H_2O + light \rightarrow C_6H_{12}O_6 + 6O_2 + 6H_2O$$
Enzymes

Photosynthesis - glucose

- Not actually the first product!
- Functions:
 - 1. Produce energy during respiration
 - 2. Lipid and starch formation
 - 3. Plant structure formation

$$6CO_2 + 12H_2O + light \rightarrow C_6H_{12}O_6 + 6O_2 + 6H_2O$$
Enzymes

Photosynthesis – Oxygen and Water

- By products
- May be recycled or emitted as gas through leaves

Two phases of photosynthesis

1.Light-dependent reactions2.Light-independent reactions (aka Dark reactions)

Light-dependent reactions

- 1. Photons of light are absorbed
- 2. Electrons are excited! (boosted to higher energy level)
- 3. Water is split
 - Releases electrons, hydrogen ions, and oxygen gas
- 4. Electrons flow down electron transport chain
- 5. ATP and NADPH are produced (stored energy)

- 1. Photons of light are absorbed
- 2. Electrons are excited! (boosted to higher energy level)
- 3. Water is split
 - Releases electrons, hydrogen ions, and oxygen gas
- 4. Electrons flow down electron transport chain
- 5. ATP and NADPH are produced (stored energy)

- 1. Photons of light are absorbed
- 2. Electrons are excited! (boosted to higher energy level)
- 3. Water is split
 - Releases electrons, hydrogen ions, and oxygen gas
- 4. Electrons flow down electron transport chain
- 5. ATP and NADPH are produced (stored energy)

- 1. Photons of light are absorbed
- 2. Electrons are excited! (boosted to higher energy level)
- 3. Water is split
 - Releases electrons, hydrogen ions, and oxygen gas
- 4. Electrons flow down electron transport chain
- 5. ATP and NADPH are produced (stored energy)

- 1. Photons of light are absorbed
- 2. Electrons are excited! (boosted to higher energy level)
- 3. Water is split
 - Releases electrons, hydrogen ions, and oxygen gas
- 4. Electrons flow down electron transport chain
- 5. ATP and NADPH are produced (stored energy)

Light-dependent reactions

1. Ingredients

- Light
- H2O
- NADP+
- ADP
- P

2. Outcomes

- ATP
- NADPH
- O2
- H+

Light-independent reactions ("dark reactions")

- 1. Take ATP and NADPH from light-dependent reactions
- 2. Convert CO₂ into sugars
- 3. Restart the cycle

1. Rubisco grabs CO₂ (1 carbon)

2. CO₂ (1 carbon) combines with RuBP (5 carbon)

6 molecules of carbon dioxide (CO₂) ru isco 6 molecules of 12 molecules of 3-phosphoglyceric acid (3PGA) ribulose 1,5-bisphosphate (RuBP) 12 ADP 6 ADP ◄ Calvin cycle 12 NADPH 12 NADP 10 molecules of glyceraldehyde 3-phosphate (GA3P) 12 molecules of glyceraldehyde 3-phosphate (GA3P) 2 molecules of glyceraldehyde 3-phosphate (GA3P) glucose and other sugars

2. GA3P (3 carbon) is produced

3. Some GA3P (3 carbon) are used for sugars, others restart the chain

Light-independent reactions

1. Ingredients

- CO₂
- RuBP
- NADPH
- ATP

2. Outcomes

- ADP
- NADP
- Sugars
- RuBP

All together now!

Photorespiration

Photorespiration

- Rubisco: RibUlose 1,5 BISphosphate Carboxylase and Oxygenase
- Catalyzes CO₂ and O₂
- Catalyzing O₂ leads to "wasteful" respiration (loss of CO₂)
- Increases as O₂ increases
- Increases with temperature

3 types of photosynthesis systems

- C₃: what we already covered
 - Most plants
- C₄: Separate carbon acquisition and sugar creation in space
 - Typically grasses
- CAM: Separate carbon acquisition and sugar creation in time
 - E.g., Cacti

C4 photosynthesis

- PEP carboxylase captures CO₂ and creates a 4 carbon sugar in mesophyll
- Moves sugar to bundle sheath, where CO2 is removed
 - Bundle sheath cells surround veins
- Calvin cycle progresses as normal
- "Costs" two extra ATPs

C4 photosynthesis - benefits

PEP carboxylase is not an oxygenase

- Good at capturing CO2
- Good in low CO2 environments
- Good in hot, dry environments
 - Can close stomata

CAM photosynthesis

- Opens stomata during the night
 - PEP carboxylase captures
 CO₂ and creates a 4 carbon sugar
- Closes stomata during the day
 - Calvin cycle

How is (C3) photosynthesis altered by the environment? Von Caemmerer and Farquhar (1981)

Von Caemmerer and Farquhar – main points

- Response of photosynthesis to environmental factors differs at low and high CO2
- Processes limiting photosynthesis differ at low and high CO2
- At low CO2, photosynthesis is limited by Rubisco carboxylation
- At high CO2, photosynthesis is limited by RuP2 regeneration
- Rates of biophysical processes can be extracted from gas exchange data and these match in vitro measurements
- Long-term response differs from the short-term response

