# 第 29 届全国青少年信息学奥林匹克竞赛 上海市选拔赛

# **SHTSC 2012**

# 第一试

竞赛时间: 2012年4月22日上午7:30-12:00

| 题目名称    | 火柴游戏        | 信用卡凸包      | 随机树          |
|---------|-------------|------------|--------------|
| 英文名称    | match       | card       | random       |
| 源程序     | match.pas 或 | card.pas 或 | random.pas 或 |
|         | match.cpp   | card.cpp   | random.cpp   |
| 输入文件名   | match.in    | card.in    | random.in    |
| 输出文件名   | match.out   | card.out   | random.out   |
| 每个测试点时限 | 1 秒         | 1 秒        | 1 秒          |
| 内存限制    | 128M        | 128M       | 128M         |
| 测试点数目   | 10          | 10         | 10           |
| 每个测试点分值 | 10          | 10         | 10           |
| 是否有部分分  | 否           | 否          | 否            |
| 题目类型    | 传统          | 传统         | 传统           |

上海市科技艺术教育中心

上海市选拔赛 第一试 火柴游戏

# 火柴游戏

# 【问题描述】

小明非常喜欢玩火柴游戏:首先用火柴棒摆出一个可能是错误的等式,然后通过添加、删除或移动火柴棒,使得等式成立。下图展示每个数字的样子:



我们只考虑形如"A = B"的式子,其中 A 和 B 是两个具有相同位数的整数。小明可进行三种操作:

- 1. 在任意位置添加一根火柴棒;
- 2. 从任意位置删除一根火柴棒;
- 3. 将任意一根火柴棒移动到另一个位置。

在完成所有操作后,等号两侧必须都是合法的数字,且完全相等。我们约定:

- 1. 小明不能消除任何数字,也就是说,可以删除一个数字的部分火柴,但 不能令它消失;
- 2. 小明不能增加任何数字,也就是说,可以在一个已有的数字上添加火柴, 或将火柴移动到一个已有的数字上,但不能凭空增加一个数字:
- 3. 小明不能拆分或者合并数字,比如将一个8变成两个1,或者将两个1合并成一个8:
- 4. 其中代表 1 的火柴棒必须靠右边摆放,放在左边不是有效的数字。每种操作都有一定的代价:
- ightharpoonup 对一个添加操作,如果这是第 i 次进行添加操作,这一步的费用为  $p_1*i+q_1$
- ightharpoonup 对一个删除操作,如果这是第 i 次进行删除操作,这一步的费用为  $p_2*i+q_2$
- ho 对一个移动操作,如果这是第 i 次进行移动操作,这一步的费用为  $p_3*i+q_3$

例如,小明在游戏中添加了 3 根火柴,移动了 1 根火柴,删除了 2 根火柴,那么他总的花费为 $[(p_1*1+q_1)+(p_1*2+q_1)+(p_1*3+q_1)]+(p_3*1+q_3)+[(p_2*1+q_2)+(p_2*2+q_2)]。$ 

小明想知道,他如何才能用最少的花费使等式成立。你能写个程序帮助他吗?

#### 【输入格式】

第 1 行,一个整数 L,表示等式中两个数的位数。

第 2-3 行,每行各一个长度为 L、仅由数字构成的字符串,表示等式两侧的数。

第 4 行,给出六个不超过 100 的非负整数  $p_1, q_1, p_2, q_2, p_3, q_3$ 。

上海市选拔赛 第一试 火柴游戏

# 【输出格式】

输出一行,包含一个整数,为使等式成立的最小的操作代价。

# 【输入样例1】

2

46

78

0 1 0 1 0 1

# 【输出样例1】

2

# 【输入样例2】

2

23

52

1 1 1 1 1 1

# 【输出样例2】

2

# 【数据规模】

对于 30%数据, 有  $L \le 20$ , 且  $p_1 = p_2 = p_3 = 0$ ;

对于 60%数据, 有 *L* ≤ 100;

对于 100%数据,有 *L* ≤ 200。

# 信用卡凸包

# 【问题描述】

信用卡是一个矩形,唯四个角作了圆滑处理,使它们都是与矩形的两边相切的 1/4 圆,如下图所示。现在平面上有一些规格相同的信用卡,试求其凸包的周长。注意凸包未必是多边形,因为它可能包含若干段圆弧。



# 【输入格式】

输入的第一行是一个正整数n,表示信用卡的张数。

第二行包含三个实数 *a*, *b*, *r*, 分别表示信用卡(圆滑处理前)竖直方向的长度、水平方向的长度,以及 1/4 圆的半径。

之后n行,每行包含三个实数 $x, y, \theta$ ,分别表示一张信用卡中心(即对角线交点)的横、纵坐标,以及绕中心**逆时针**旋转的**弧度**。

#### 【输出格式】

输出只有一行,包含一个实数,表示凸包的周长,四舍五入精确到小数点后 2位。

# 【输入样例1】

2

6.0 2.0 0.0

0.0 0.0 0.0

2.0 -2.0 1.5707963268

# 【输出样例1】

21.66

## 【样例1说明】

本样例中的 2 张信用卡的轮廓在上图中用实线标出,如果视 1.5707963268



为 $\frac{\pi}{2}$ ,则其凸包的周长为 $^{16}+4\sqrt{2}$ 。

# 【输入样例2】

3

6.0 6.0 1.0

4.0 4.0 0.0

0.0 8.0 0.0

0.0 0.0 0.0

# 【输出样例2】

41.60

# 【样例2说明】

本样例中的3张信用卡的轮廓在下图中用实线标出,其凸包的周长为。



# 【输入样例3】

3

6.0 6.0 1.0

4.0 4.0 0.1745329252

0.0 8.0 0.3490658504

0.0 0.0 0.5235987756

# 【输出样例3】

41.63

# 【样例3说明】

本样例中的 3 张信用卡的轮廓在下图中用实线标出,其凸包的周长约为 41.628267652。



# 【数据规模】

| 测试数据编号 | n     | r       | $\theta$              |
|--------|-------|---------|-----------------------|
| 1      | n = 1 | /       | /                     |
| 2      | n = 2 | r = 0.0 | 所有的 $\theta$ 均为 $0.0$ |
| 3      | n = 2 | /       | 所有的 $\theta$ 均为 $0.0$ |
| 4      | n = 2 | r = 0.0 | /                     |
| 5      | n = 2 | /       | /                     |

| 6  | $1 \le n \le 100$    | /       | 所有的θ均为0.0             |
|----|----------------------|---------|-----------------------|
| 7  | $1 \le n \le 100$    | /       | /                     |
| 8  | $1 \le n \le 10,000$ | /       | 所有的 $\theta$ 均为 $0.0$ |
| 9  | $1 \le n \le 10,000$ | r = 0.0 | /                     |
| 10 | $1 \le n \le 10,000$ | /       | /                     |

对于 100%的数据,有  $0.1 \le a, b \le 1000000.0$ ,以及  $0.0 \le r < \min\{a/4, b/4\}$ ,对所有的信用卡,有|x|,  $|y| \le 1000000.0$ ,以及  $0 \le \theta < 2\pi$ 。

# 【提示】

本题可能需要使用数学库中的三角函数。不熟悉使用方法的选手,可以参考下面的程序及其输出结果:

| 下面的程序及其输出结果:                                                            |              |
|-------------------------------------------------------------------------|--------------|
| Pascal 程序                                                               | 输出结果         |
| uses math;                                                              | 0.5000000000 |
| const Pi = 3.141592653589793;                                           | 0.5000000000 |
|                                                                         | 1.0000000000 |
| begin                                                                   | 1.5707963268 |
| writeln(sin(30.0 / 180.0 * Pi) : 0 : 10);                               | 1.5707963268 |
| writeln(cos(60.0 / 180.0 * Pi) : 0 : 10);                               | 0.7853981634 |
| writeln(tan(45.0 / 180.0 * Pi) : 0 : 10);                               |              |
| writeln(arcsin(1.0) : 0 : 10);                                          |              |
| writeln(arccos(0.0) : 0 : 10);                                          |              |
| writeln(arctan(1.0) : 0 : 10);                                          |              |
| end.                                                                    |              |
| C++程序                                                                   | 输出结果         |
| <pre>#include <iostream></iostream></pre>                               | 0.5000000000 |
| <pre>#include <math.h></math.h></pre>                                   | 0.5000000000 |
| using namespace std;                                                    | 1.0000000000 |
| const double Pi = 3.141592653589793;                                    | 1.5707963268 |
|                                                                         | 1.5707963268 |
| <pre>int main()</pre>                                                   | 0.7853981634 |
| {                                                                       |              |
| <pre>cout.setf(ios::fixed);</pre>                                       |              |
| <pre>cout.precision(10);</pre>                                          |              |
| cout< <sin(30.0 *="" 180.0="" pi)<<endl;<="" td=""><td></td></sin(30.0> |              |
| cout< <cos(60.0 *="" 180.0="" pi)<<endl;<="" td=""><td></td></cos(60.0> |              |
| cout< <tan(45.0 *="" 180.0="" pi)<<endl;<="" td=""><td></td></tan(45.0> |              |
| cout< <asin(1.0)<<endl;< td=""><td></td></asin(1.0)<<endl;<>            |              |
| cout< <acos(0.0)<<endl;< td=""><td></td></acos(0.0)<<endl;<>            |              |
| cout< <atan(1.0)<<endl;< td=""><td></td></atan(1.0)<<endl;<>            |              |
| return 0;                                                               |              |
| }                                                                       |              |

上海市选拔赛 第一试 随机树

# 随机树

# 【问题描述】

一棵含n个叶结点的二叉树可以通过如下方式生成。初始时只有根结点。首先,将根结点展开(本题中的"展开"是指给一个叶结点添上左、右两个子结点):



然后,等概率地随机将两个叶结点中的一个展开,即生成以下两棵树之一: 之后,每次在当前二叉树的所有叶结点中,等概率地随机选择一个,将其展开。



不断地重复这一操作,直至产生n个叶结点为止。例如,某棵含5个叶结点的二叉树可能按如下步骤生成。



对于按这种方式随机生成的一棵含n个叶结点二叉树,求(1)<u>叶结点平均</u>深度的数学期望值;(2)<u>树深度</u>的数学期望值。约定根结点的深度为0。

# 【输入格式】

输入仅有一行,包含两个正整数q,n,分别表示问题编号以及叶结点的个数。

## 【输出格式】

输出仅有一行,包含一个实数 d,四舍五入精确到小数点后 6 位。如果 q=1,则 d 表示叶结点平均深度的数学期望值;如果 q=2,则 d 表示树深度的数学期望值。

上海市选拔赛 第一试 随机树

# 【输入样例1】

1 4

## 【输出样例1】

2.166667

# 【输入样例2】

2 4

## 【输出样例2】

2.666667

# 【输入样例3】

1 12

## 【输出样例3】

4.206421

## 【输入样例4】

2 12

## 【输出样例4】

5.916614

## 【样例1、样例2说明】

数学期望值是随机变量的值乘以其概率的总和:记随机变量 X 可能的取值为  $x_1, x_2, ..., x_n$ ,它们取到的概率分别为  $p_1, p_2, ..., p_n$ ,那么随机变量 X 的数学期望值就是

$$E(X) = \sum_{i=1}^{n} p_i x_i$$

例如, 掷一枚写有 1、2、3、4、5、6 这 6 个数的均匀骰子, 掷到的数的数学期望值是:

$$E = \frac{1}{6} \times 1 + \frac{1}{6} \times 2 + \frac{1}{6} \times 3 + \frac{1}{6} \times 4 + \frac{1}{6} \times 5 + \frac{1}{6} \times 6 = 3.5$$

尽管 3.5 不是骰子上的某个数。又如,一道 4 选 1 的选择题,答对得 5 分,不答不得分,答错倒扣 1 分。那么,当我们不答时,一定得 0 分;而等概率地随便猜一个时,得分的数学期望值是:

上海市选拔赛 第一试 随机树

本题中,根据二叉树的生成方式,当n=4时,下图中前四棵树被生成的概率均为1/6,最后一棵树被生成的概率为1/3。它们的<u>叶结点平均深度</u>分别是9/4、9/4、9/4、9/4、2,因此**叶结点平均深度**的数学期望值是

$$E = \frac{1}{6} \times \frac{9}{4} + \frac{1}{6} \times \frac{9}{4} + \frac{1}{6} \times \frac{9}{4} + \frac{1}{6} \times \frac{9}{4} + \frac{1}{3} \times 2 = \frac{13}{6}$$

而它们的**树深度**分别是 3、3、3、3、2, 因此**树深度**的数学期望值是

$$E = \frac{1}{6} \times 3 + \frac{1}{6} \times 3 + \frac{1}{6} \times 3 + \frac{1}{6} \times 3 + \frac{1}{3} \times 2 = \frac{8}{3}$$



# 【数据规模】

| 测试数据编号   | q     | n                 |
|----------|-------|-------------------|
| 1, 2     | q = 1 | $2 \le n \le 10$  |
| 3, 4, 5  |       | $2 \le n \le 100$ |
| 6, 7     | q = 2 | $2 \le n \le 10$  |
| 8, 9, 10 |       | $2 \le n \le 100$ |