日本国特許庁 JAPAN PATENT OFFICE

別紙添付の書類に記載されている事項は下記の出願書類に記載されている事項と同一であることを証明する。

This is to certify that the annexed is a true copy of the following application as filed with this Office.

出 願 年 月 日 Date of Application: 2004年12月 2日

出 願 番 号 Application Number:

特願2004-349425

パリ条約による外国への出願 に用いる優先権の主張の基礎 となる出願の国コードと出願 番号

JP2004-349425

The country code and number of your priority application, to be used for filing abroad under the Paris Convention, is

出 顯 人 Applicant(s): 新日本製鐵株式会社 三菱日立製鉄機械株式会社

特許庁長官 Commissioner, Japan Patent Office 2006年 1月12日


```
特許願
【書類名】
             M04163
【整理番号】
             平成16年12月 2日
【提出日】
             特許庁長官殿
【あて先】
             B24B 05/37
【国際特許分類】
【発明者】
             大分県大分市大字西ノ洲1番地 新日本製鐵株式会社 大分製鐵
  【住所又は居所】
             所内
             本田 貴之
  【氏名】
【発明者】
             大分県大分市大字西ノ洲1番地 新日本製鐵株式会社 大分製鐵
  【住所又は居所】
             所内
             小林 真樹
  【氏名】
【発明者】
             大分県大分市大字西ノ洲1番地 新日本製鐡株式会社 大分製鐡
  【住所又は居所】
             所内
             中野 鉄也
  【氏名】
【発明者】
             広島市西区観音新町四丁目6番22号 三菱日立製鉄機械株式会
   【住所又は居所】
              社内
              山元 章弘
   【氏名】
【発明者】
              東京都港区芝四丁目10番1号 三菱日立製鉄機械株式会社内
   【住所又は居所】
              加賀 慎一
   【氏名】
【特許出願人】
              000006655
   【識別番号】
              新日本製鐵株式会社
   【氏名又は名称】
【特許出願人】
              502251784
   【識別番号】
              三菱日立製鉄機械株式会社
   【氏名又は名称】
【代理人】
              100097995
   【識別番号】
   【弁理士】
              松本 悦一
   【氏名又は名称】
   【電話番号】
              03-3503-2640
 【選任した代理人】
              100074790
   【識別番号】
   【弁理士】
   【氏名又は名称】
              椎名 彊
 【手数料の表示】
   【予納台帳番号】
              127112
              16,000円
   【納付金額】
 【提出物件の目録】
              特許請求の範囲 1
   【物件名】
              明細書 1
   【物件名】
              図面 1
   【物件名】
    【物件名】
              要約書 1
    【包括委任状番号】
                0103030
```

【書類名】特許請求の範囲

【請求項1】

圧延機のワークロールに弾性を有する回転砥石を押付けて研削するワークロールのオンライン研削方法であって、前記回転砥石がワークロールに接触した後、該回転砥石の押付負荷が予め設定した設定負荷Fになった際に、該回転砥石の前進速度を減速させて、前記回転砥石のワークロールへの押付負荷が設定研削押付負荷F0を超えるオーバーシュートを低減することを特徴とするワークロールのオンライン研削方法。

【請求項2】

前記予め設定した負荷Fが下記(A)式を満足する範囲の値であることを特徴とする請求項1に記載のワークロールのオンライン研削方法。

 $F \leq F_0 - K \times V \times \Delta t \cdot \cdot \cdot (A)$

ここに、F:設定負荷[N]、

F₀:設定研削押付負荷[N]、

K:砥石バネ剛性[N/mm]、

V1:減速前の砥石の前進速度[mm/s]、

Δ t :制御遅れ時間[s]

【請求項3】

前記回転砥石の減速後の前進速度 V 2 が、下記 (B) 式を満足することを特徴とする請求項1または請求項2に記載のワークロールのオンライン研削方法。

0. $6 \times (S \times F_0 / (K \times \Delta t)) \le V 2 \le S \times F_0 / (K \times \Delta t)$ · · · (B)

ここに、V2:回転砥石の減速後の前進速度[mm/s]、

S:設定研削押付負荷Foに対する許容オーバーシュート量の比率、

K:砥石バネ剛性[N/mm]、Δt:制御遅れ時間[s]

【書類名】明細書

【発明の名称】ワークロールのオンライン研削方法

【技術分野】

[0001]

本発明は、圧延機の操業中にワークロールを研削するオンライン研削方法に関する。 【背景技術】

[0002]

圧延機の操業中にワークロール(以下単にロールとも称す)を研削し、圧延によって生じ るワークロール表面の凹凸をなくすことによって1本のロールによって圧延できる生産量 (ロール単位) を増大させるオンラインロール研削装置は、従来から連続熱間圧延工程(HOT) における仕上圧延機などに用いられている。

すなわち、板圧延機のワークロールは、鋼板を圧延すると鋼板に接触する部分のみが摩 耗し、鋼板に接触しない非圧延部分との間に摩耗段差が生じる。この摩耗段差が発生した ロールを用いて摩耗幅以上の幅を有する鋼板を圧延すると,板厚精度や平坦度を悪化させ るという問題があった。

そこで、広幅の板から狭幅の板の順に圧延するなど圧延スケジュールを制約する必要が生 じていた。しかし、オンラインロール研削装置を設置すれば、圧延の進行に伴って増大す る摩耗段差を圧延中に逐次研削・除去することが可能となるため、前記制約を撤廃してロ ール単位を増大させることができる。

[0003]

オンラインロールの研削装置においては、回転砥石(以下単に砥石とも称する)の破損 や研削装置の故障を回避するために、圧延材の圧延機への噛込み時および噛抜け時を避け た限られた時間内に非圧延部の摩耗段差を研削除去しなければならない。

そこで、効率的に磨耗段差を研削除去するためには、研削能力の高い砥石を用いるととも に、実研削時間をできる限り長く確保する必要がある。

[0004]

圧延材の圧延機への噛込み・噛抜けの衝撃で発生する振動によってロールと砥石が接 触して砥石が破損しないよう、非研削時は、砥石はロール表面から10mm~20mm程度離れて 待機している。

そして、研削可能なタイミングになったときに、砥石は前進を開始しロールにタッチした 後、予め設定した研削押付負荷になると研削を開始するが、実研削時間を長く確保するた めには、砥石の前進開始から前記設定研削押付負荷になるまでの研削準備時間を短縮する 必要がある。つまり、砥石前進速度を大きくする必要がある。

[0005]

砥石の研削能力はロールへの押付荷重によって変化するため、研削中は、押付荷重を内 蔵されたロードセルによって検出し、砥石の押付量を制御して押付荷重をコントロールす る必要があり、その研削装置の構造や基本的な制御方法は、例えば、特開平08-309 411号公報に開示されている。

その方法は、基本的にはロールのプロファイルを維持するために一定押付負荷で研削し、 一定の深さを研削する。意図的にプロファイルを変更する場合は、ロールの部位に応じて 押付荷重を変更し研削深さを制御するものである。

[0006]

しかし、この従来の方法は、研削開始の際に、砥石を高速で前進移動させると、急速に押 付荷重が増加し、研削押付荷重の設定値を大きくオーバーして過研削になったり、場合に よっては砥石が破損するという問題点があった。

特に、従来の連続熱間圧延工程の圧延機におけるオンライン研削では、60秒~120秒 の比較的長い圧延材噛込み中に研削を行うため研削時間に余裕があり、研削準備時間を短 縮するニーズは低かった。したがって、過研削や砥石破損を防止することを優先し、待機 位置から低速で砥石を先進させてロールにタッチさせる方法を採用していた。

しかし、例えば板厚が 6 mm以上の厚板を圧延する場合は、1基あるいは 2基の圧延機に

よる間欠圧延となるため、圧延材を噛込んで圧延している時間は最大でも10秒程度であり、ロール研削を一気に完了することはできず、研削可能なタイミングとしては、鋼板の 圧延方向を変更するターン時またはアイドル時しかない。

なお、アイドル時とは、先行被圧延材の圧延が完了し、後行被圧延材の噛込を待っている 状態でロールを空運転している時間をいい、20秒前後の短い時間である。

そこで、ロール研削時間をできる限り長く確保しつつ、回転砥石のワークロールへの押付 負荷が設定研削押付負荷を超えるオーバーシュートを低減することによって、過研削や砥 石破損を防止するオンラインロール研削方法を実現する必要があった。

【特許文献1】特開平08-309411号公報

【発明の開示】

【発明が解決しようとする課題】

[0007]

そこで、本発明は、回転砥石の前記研削準備時間ができる限り短く、かつ、回転砥石のワークロールへの押付負荷が設定研削押付負荷を超えるオーバーシュートを低減することができるワークロールのオンラインロール研削方法を提供することを課題とする。

【課題を解決するための手段】

[0008]

本発明は、前記課題を解決するためになされたものであり、その手段は、(1)圧延機の ワークロールに弾性を有する回転砥石を押付けて研削するワークロールのオンライン研削 方法であって、前記回転砥石がワークロールに接触した後、該回転砥石の押付負荷が予め 設定した設定した負荷 F になった際に、該回転砥石の前進速度を減速させて、前記回転砥石のワークロールへの押付負荷 F が設定研削押付負荷 F 0 を超えるオーバーシュートを低減することを特徴とするワークロールのオンライン研削方法である。

(2) 前記予め設定した負荷Fが下記(A)式を満足する範囲の値であることを特徴とする手段1に記載のワークロールのオンライン研削方法である。

 $F \leq F_0 - K \times V \times \Delta t \cdot \cdot \cdot (A)$

ここに、F:設定負荷[N]、

Fo:設定研削押付負荷[N]、

K:砥石バネ剛性[N/mm]、

V1:減速前の砥石の前進速度[mm/s]、

Δ t :制御遅れ時間[s]

- (3) 前記回転砥石の減速後の前進速度 V 2 が、下記(B) 式を満足することを特徴とする手段 1 または 2 に記載のワークロールのオンライン研削方法である。
- 0.6×(S×F₀/(K×Δt)) ≤V2≤S×F₀/(K×Δt) ···(B) ここに、V2:回転砥石の減速後の前進速度[mm/s]、

S:設定研削押付負荷Foに対する許容オーバーシュート量の比率、

K:砥石バネ剛性[N/mm]、

Δ t :制御遅れ時間[s]

【発明の効果】

[0009]

本発明によれば、弾性を有する回転砥石がワークロールに接触して、予め設定した設定 負荷Fになった段階で、該回転砥石の前進速度を減速することによって、回転砥石のワー クロールへの押付負荷が設定研削押付負荷を超えるオーバーシュート量を低減してオーバ ーシュートを許容値以内にすることができるので、ワークロールの過研削、回転砥石の破 損を防止することが可能になるなど、産業上有用な著しい効果を奏する。

【発明を実施するための最良の形態】

[0010]

本発明を実施するための最良の形態について、図1万至図4を用いて詳細に説明する。 本実施形態においては、被圧延材の代表例として厚鋼板について説明する。

図1は、本発明のオンライン研削方法の実施形態を例示する図である。

図1において、1はワークロール、2はバックアップロール、3はロール研削装置を示す

本実施形態においては、上下のワークロール1のそれぞれに左右一対、合計4台のロール 研削装置3が設けられており、図1に示すように、砥石をワークロール1の表面に押付け ながらロール軸方向に移動させることによってワークロール1の表面を研削することがで きる。

図1に示すように、砥石をロールに押付け、Δhの砥石たわみ量変化が生じれば砥石押付 荷重はAF変化する。

[0011]

図2は、従来のオンラインロール研削方法における回転砥石の前進速度が速い場合の押付 荷重の変動を例示する図であり、回転砥石がワークロールに接触した後も、速い速度で回 転砥石を前進させると、前記研削準備時間は短くなる。しかし、押付荷重は急速に上昇し 、押付荷重のフィードバック制御の遅れによって設定研削押付負荷であるF0を超えて許 容値以上のオーバーシュートが発生するため、過研削や回転砥石の破損の原因となるもの である。

また、図3は、回転砥石の前進速度が遅い場合の押付荷重の変動を例示する図であり、回 転砥石の前進速度を、遅く設定しておけば、前述のような許容値以上のオーバーシュート は発生しないが、設定研削押付負荷Foに到達するまでの研削準備時間が長くかかるので 、所定の研削を行うために必要な研削時間が長くなる。

[0012]

このため、本発明者等は、前記押付荷重のフィードバック制御の遅れがあっても、許容 値以上のオーバーシュートを発生させずに短時間に設定研削押付負荷Foまで到達する方 法について検討した。

まず、回転砥石の砥石バネ剛性をK[N/mm]、砥石の押付量(たわみ量)変化をΔ h [mm] とすると、図1に示す押付荷重変化:ΔF[N]は、

$$\Delta F = K \times \Delta h \qquad \cdot \cdot \cdot \qquad (1)$$

となる。

そして、回転砥石を待機位置から前進させ、ワークロールにタッチさせるときの前進速度 をV1[mm/s]とすれば、ワークロールにタッチした後からの経過時間をΔt[s]とすると回 転砥石の押付量変化:Δh[mm]は、

· · · (2) $\Delta h = V 1 \times \Delta t$

で表されるので、ワークロールにタッチした後の押付荷重の変化は、

 $\Delta F = K \times V \ 1 \times \Delta t \quad \cdot \quad \cdot \quad (3)$

となる。

[0013]

したがって、砥石が高剛性であるほど、あるいは前進速度が速いほど短時間で押付荷重が 増大することとなる。また、前進速度が速いほど制御の遅れから大きくオーバーシュート する。

ここで(3)式からわかるように、回転砥石の剛性を小さくすることで押付荷重の急増を 低減できるが、研削による押付荷重で回転砥石が塑性変形しないように、回転砥石の剛性 は研削能力に必要な押付荷重から制約される。

[0014]

制御の遅れは、荷重検出のサンプリング時間、モータの制御特性などによって生じる。 したがって、回転砥石を高速前進させても過荷重が発生しないように、制御の遅れを補償 する目的でワークロールにタッチした後の押付荷重が設定研削押付荷重Foに到達する前 に前進速度を減速させる必要がある。制御上の送れ時間 Δ t が既知であれば、その送れ時 間を考慮して許容値以上のオーバーシュートを防止するためには回転砥石の前進速度を変 更する時点の設定負荷Fを (4) 式に示す値とすればよい。

 $F \le F_0 - K \times V \times \Delta t \cdot \cdot \cdot (4)$

しかし、砥石の砥石バネ剛性Kは一般的に1000N/mmから3000N/mmであるため、

 $5\,\mathrm{mm/s}$ の前進速度で砥石を押付けると、荷重検出のサンプリング時間を $1\,0\,\mathrm{msec}$ とすれば、サンプリング毎に $5\,0\,\mathrm{N}$ から $1\,5\,0\,\mathrm{N}$ の荷重変化が発生することになる。この荷重変化は砥石の設定研削押付負荷 F_0 が $5\,0\,0\,\mathrm{N}$ から $2\,0\,0\,\mathrm{N}$ が一般的であることを考慮すると比較的大きいため、許容値以上のオーバーシュートを確実に防止するには上記(4)式で示す設定負荷Fを越す前に砥石の前進速度を減速するように負荷設定するのが好ましい。

[0015]

そして、減速後の砥石は、その速度 V 2 で前進して設定研削押付負荷 F 0 を検知すると停止するものである。この際にも前記制御の遅れが生じるために、前記許容値以上のオーバーシュートが発生する恐れがあるために、制御遅れ時間 Δ t 、設定研削押付負荷 F 0 に対する許容オーバーシュート量の比率 S 等を考慮して下式(5)で算定した範囲内で、かつ、上限に近い値の前進速度にすることが好ましい。

 $0.6 \times (S \times F_0 / (K \times \Delta t)) \leq V 2 \leq S \times F_0 / (K \times \Delta t)$ · · · · (5) また、この減速後の砥石の前進速度 V 2 の下限を $0.6 \times (S \times F_0 / (K \times \Delta t))$ としたのは、これ以下では設定研削押付負荷 F_0 に達するまでの時間が不必要に長くなるからである。

[0016]

図4に示すように、回転砥石がワークロールに接触するまでは、回転砥石の前進速度を5mm/sとし、回転砥石がワークロールに接触した後に、例えば、押付荷重が1000 (N) に達した段階で、回転砥石の前進速度を5mm/sから1mm/sに減速させることによって、回転砥石のワークロールへの押付負荷が設定研削押付負荷 F_0 (1500N)を超えるオーバーシュートを低減して、許容オーバーシュート範囲内に収めつつ、設定研削押付負荷 F_0 への到達時間(研削準備時間)を短くすることができる。

【実施例】

[0017]

本発明におけるワークロールのオンライン研削方法の実施例を表1に示す。

発明例1~3は、砥石の前進速度の減速を開始する設定負荷Fが請求項2の計算式(A)を満足し、かつ、減速後の前進速度も請求項3の計算式(B)を満足する速度としたので、研削準備時間も短く、オーバーシュートも殆どなく、かつ、砥石の破損の発生もなく研削を開始できた。

[0018]

比較例1は、本発明の請求項2の比較例であり、砥石の前進速度を減速開始する設定負荷 Fが請求項2の計算式(A)を満足しなかった(計算値より大きい設定負荷とした)例で あり、オーバーシュート量が許容値内ではあるが大きなものとなった。

比較例 2 は、本発明の請求項 3 の比較例であり、砥石の減速後の前進速度 V 2 が請求項 3 の計算式 (B) を満足しなかった (計算値より若干速い速度とした) 例であり、オーバーシュート量が許容値内ではあるが大きなものとなった。

[0019]

また、従来例1は、砥石の前進速度を5mm/sのまま減速させなかった例であり、オーバーシュート量を許容値内に収めることができるにロールタッテ部で過荷重となって狙い以上に深く研削するとともに、砥石変形が大きく、亀裂が発生した。

従来例 2 は、砥石の前進速度を最初から 1 mm/sの低速に設定したままとした例であり、オーバーシュートの発生はなかったが、研削準備時間が長くなった。

_	2000	1 年 末 全		_	14.77	可容力		_	_		בעונקטכן	を出る				水以		
1000		1000		2 1000		1000	1000	31 1000 I	2000	0000		1000	Course /active		Ď I	中国儿园		
		1900	0037	1500		1500	1000	1500	1000	1500		1500	l	FOIN	4	一部定研削押付負荷		
	1000	1000	1000	1000		1000		500		500		1000		計算値	Ī	滅滅開始神付		
	1			500	500	1100	1100	300	3	400	3	1000	4000	設た道	50	負債 F [N/mm]		
	•		ď		n		n	10	5		7	,	п	A L UII/ BJ	<	演送側の側端送り		
			0.9~1.0	200	0.9~1.5	9.5		0.0		0.75	043~			1 7 T		をからい	東部の疾患は野	
	-		٠	2							5		_	P			4 2/m パーカード	
	-	ñ		دن	٥	٥	ے	,	_ 	A. R.	•	3	-	3	2	: :	日祖朝朝朝旧出	
		150		150	- 5	120	100	200	100	20	100	3	100	5		音の音	1 - 1 - 1	
		- 00	2	0.1		2 - 80	9	n 1 120	٤	2 -		0	1	30	١	小路 一 奥姆丽	ーンユートマ	
		٥	3	۵	,	<u>۔</u>		ω		<u>۔</u>		د:	,		,	首一日標個	が回る	EG III III
	-		د.			ن	,	cu		د	,	٥	,	٥	,	米積個		+ [
			#	7. E.	古口	# C	1	黒っ		iic	1	1		Ĭ	1		T WE	######################################

【図面の簡単な説明】

[0020]

【図1】本発明のオンラインロール研削方法の実施形態を例示する図であり、圧延機を側面から見た断面図である。

【図2】従来のオンラインロール研削方法におけるオーバーシュートを例示する図である。

【図3】従来のオンラインロール研削方法における砥石の前進速度が遅い場合の押付 荷重の変動を例示する図である。

【図4】本発明のオンラインロール研削方法における押付速度と押付荷重の変動を例示する図である。

【符号の説明】

[0021]

- 1 ワークロール
- 2 バックアップロール
- 3 ロール研削装置

【図21

【図3】

【図4】

【要約】

【課題】回転砥石のワークロールへの押付負荷が設定研削押付負荷を超えるオーバーシュートを低減することができるワークロールのオンラインロール研削方法を提供する。 【解決手段】圧延機のワークロールに弾性を有する回転砥石を押付けて研削するワークロー

ールのオンライン研削方法であって、前記回転砥石がワークロールに接触した後、該回転砥石の押付負荷が予め設定した設定負荷Fになった際に、該回転砥石の前進速度を減速させて、前記回転砥石のワークロールへの押付負荷が設定研削押付負荷Foを超えるオーバーシュートを低減することを特徴とするワークロールのオンライン研削方法。

【選択図】図4

1

特願2004-349425

出 願 人 履 歴 情 報

識別番号

[000006655]

1. 変更年月日 [変更理由]

1990年 8月10日

L 変更理田」 住 所 新規登録

東京都千代田区大手町2丁目6番3号

新日本製鐵株式会社

特願2004-349425

出 願 人 履 歴 情 報

識別番号

[502251784]

1. 変更年月日 [変更理由] 住 所 氏 名

2002年 7月11日 新規登録 東京都港区芝4丁目10番1号 三菱日立製鉄機械株式会社

Document made available under the **Patent Cooperation Treaty (PCT)**

International application number: PCT/JP2005/022052

International filing date:

01 December 2005 (01.12.2005)

Document type:

Certified copy of priority document

Document details:

Country/Office: JP

Number:

2004-349425

Filing date:

02 December 2004 (02.12.2004)

Date of receipt at the International Bureau: 02 March 2006 (02.03.2006)

Remark:

Priority document submitted or transmitted to the International Bureau in

compliance with Rule 17.1(a) or (b)

