北京邮电大学 2020-2021 学年第 | 学期

《通信原理 I》期中考试(4学分)

一. 选择填空(每空1分)

空格号	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)
答案	В	D	A	С	Α	С	A	С	В	A
空格号	(11)	(12)	(13)	(14)	(15)	(16)	(17)	(18)	(19)	(20)
答案	D	С	D	С	D	A	С	A	С	В
空格号	(21)	(22)	(23)	(24)	(25)	(26)	(27)	(28)	(29)	(30)
答案	В	D	В	A	В	С	В	С	A	D
空格号	(31)	(32)	(33)	(34)	(35)	(36)	(37)	(38)	(39)	(40)
答案	A	A	D	В	D	С	D	В	В	D

1. 设下图中m(t)代表小明,h(t)代表小华。小明和小华的能量都是(1)J,小明加小华的能量是(2)J,小明与小华之间的互能量是(3)。

(1)(2)	(A) 1	(B) 2	(C) 4	(D) 6
(3)	(A) 正能量	(B) 负能量	(C) 暗能量	(D) 虚能量

2. 设载频 f_c 充分大,基带调制信号 m(t) 的均值为零、带宽为 W。将 DSB-SC 已调信号 $m(t)\cos(2\pi f_c t)$ 通过一个冲激响应为 $h(t)=\operatorname{Re}\left\{h_L(t)\mathrm{e}^{\mathrm{j}2\pi f_c t}\right\}$ 的带通滤波器,其中 $h_L(t)$ 是 h(t) 的复包络。该带通滤波器的等效基带冲激响应是(4)。当 $h_L(t)$ 的傅氏变换为(5)时,滤波器输出是上 边带 SSB 信号。

(4)	(A) $h(t)\cos(2\pi f_c t)$	(B) $h(t)$	(C) $\frac{1}{2}h_{L}(t)$	(D) $h_{\rm L}(t)e^{j2\pi f_{\rm c}t}$
(5)	$(A) \begin{cases} 1, & 0 \le f \le W \\ 0, & 其他f \end{cases}$	(B) $\operatorname{rect}\left(\frac{f}{W}\right)$	(C) $-\mathbf{j} \cdot \operatorname{sgn}(f)$	(D) $\begin{cases} 1, & -W \le f \le 0 \\ 0, & 其他f \end{cases}$

3. 假设二进制数据独立等概,速率为1kbit/s。下图是(6)的功率谱密度图。

(6)	(A) 双极性 NRZ 码	(B) 单极性 NRZ 码
(6)	(C) 单极性 RZ 码(半占空)	(D) 双极性 RZ 码(半占空)

4. 零均值窄带平稳高斯过程的包络服从(7)分布。

• • •	(+ 1 to 1						
(7)	(A) 瑞利	(B) 拉普拉斯	(C) 莱斯	(D) 高斯			

5. 若能量信号x(t)的自相关函数是 $sinc(\tau)$,则其能量是(8)J,带宽是(9)Hz。

1					
	(8)(9)	(A) 1/4	(B) 1/2	(C) 1	(D) 2

	(/	$\underline{\kappa}$	(,) H1 - 1 - 1 H		$\tau) = \widehat{\hat{x}} (t + \tau) x (t)$	(15)°		
(10)	$(A) \frac{1}{2} \delta(f - 10)$	$0)+\frac{1}{2}\delta(f-$	+100)	(B) $\frac{1}{2}$	$\frac{1}{2}\delta(f-200)-\frac{1}{2}$	$\delta(f+200)$		
(10)	(C) $\frac{1}{2}\delta(f-200) + \frac{1}{2}\delta(f+200)$				(D) $\frac{1}{2}\delta(f-100) - \frac{1}{2}\delta(f+100)$			
(11)	$(A) -\cos(200z)$			(B) c	$\cos(200\pi t) - \sin(t)$	$(200\pi t)$		
(11)	$(C) -\cos(200x)$	$\frac{\pi t}{1} + \sin(20t)$	$0\pi t$)	(D) ($\cos(200\pi t) + \sin(200\pi t)$	$(200\pi t)$		
$ \begin{array}{ c c } \hline (12) \\ (13) \end{array} $ (A)	$\frac{1}{2}\cos(200\pi\tau)$	(B) $\frac{1}{2}$	$\sin(200\pi\tau)$	(C)	$\cos(200\pi\tau)$	(D) $\sin(200\pi\tau)$		
7. 假设二边	进制数据"1"、	"0"的出现	视概率不等	。下列信号	·中无直流分量的	勺是 <u>(14)</u> 。		
(14)	(A) 双极性 NF		т) <i>Б</i> П) 差分编码的双) 单极性 NRZ 码			
	(C) 数字双相) 早似注 NKZ 1			
8. 将模拟基	基带信号先微分 (A) AM	`再调频,卷 (B)			FM	(D) PM		
					1 141	(<i>D</i>) 1 W		
	SC 己调信号中 .) 帮助接收端级		•	<u>0)</u> 。	(B) 提高调制	対 率		
1 (16)) 减小带宽	<u> </u>			(D) 提高抗噪			
10		为一敃信号			生输称为(17)			
(17)			(B) 多址		マ間がク3 <u>(17)。</u> C) 复用	(D) 共享		
	数据信息序列	0000100001	10000 经运	+ A N AT & D T T	口目(10) 亿计			
$(19)_{\circ}$			10000 红人	J AMI 编码	后是 <u>(18)</u> ,经过	HDB3 编码后是		
(19) _° (18)	(A) 0000+00			J AMII 编码	后走 <u>(18)</u> , 经过 (B) 000+-00			
(19) _° (18) (19)	(A) 0000+00 (C) -00-+00	000-+000	0	J AMI 编码	T	0-+-000-		
(18) (19)	(C) $-00-+00$	000-+000	0		(B) 000+-00 (D) +00+-00	0-+-000-		
(18) (19) 12. 若序列	(C) $-00-+00$	000-+000 00+-+-00 编码结果是	0	:1010101	(B) 000+-00	0-+-000-		
(18) (19) 12. 若序列 (20) (A) 13. 设二进	(C) -00-+00 <i>a</i> ₀ <i>a</i> ₁ ,… 的差分 10101010 制数据独立等标	000-+000 00+-+-00 编码结果是 (B) 111 既,速率为	0 $- b_{-1}b_0b_1 \cdots = 1111111 \cdots$ $96kbit/s_{\circ}$	=1010101···· (C) 110	(B) 000+-00 (D) +00+-00 , 则 a_0a_1,\cdots 是 001100····	0-+-000- 0-+-000+ (20)°		
(18) (19) 12. 若序列 (20) (A) 13. 设二进	(C) -00-+00 a_0a_1 , 的差分 10101010 制数据独立等标 性 RZ 码的主瓣	000-+000 00+-+-00 编码结果是 (B) 111 既,速率为	0 $- b_{-1}b_0b_1 \cdots = 1111111 \cdots$ $96kbit/s_{\circ}$	=1010101···· (C) 110 双极性 NRZ	(B) 000+-00 (D) +00+-00 , 则 a_0a_1,\cdots 是 001100····	0-+-000- 0-+-000+ (20) ° (D) 0000000···		
(18) (19) 12. 若序列 (20) (A) 13. 设二进 1/3 的单极((21)(2) 14. 若四进	(C) -00-+00 a ₀ a ₁ , 的差分 10101010 制数据独立等标 性 RZ 码的主题 2) (A) 48 制 PAM 系统的	000-+000 00+-+-00 编码结果是 (B) 111 既,速率为 辞带宽是(22)	0 $-$ $b_{-1}b_{0}b_{1}\cdots =$ $111111\cdots$ $96kbit/s \circ$ $kHz \circ$ $(B) 96$	=1010101···· (C) 11 双极性 NRZ	(B) 000+-00 (D) +00+-00 , 则 a_0a_1,\cdots 是 001100···· Z 码的主瓣带宽	0-+-000- 0-+-000+ (<u>20</u>)。 (D) 0000000···· 是 <u>(21)</u> kHz,占空比为		
(18) (19) 12. 若序列 (20) (A) 13. 设二进 1/3 的单极 (21)(22) 14. 若四进 (24)ms、符	(C) -00-+00 a_0a_1, \cdots 的差分 10101010 制数据独立等标 性 RZ 码的主题 2) (A) 48 制 PAM 系统的 号间隔是(25)m	000-+000 00+-+-00 编码结果是 (B) 111 既,速率为 辞带宽是(22)	0 $-$ $b_{-1}b_{0}b_{1}\cdots =$ $111111\cdots$ $96kbit/s \circ$ $kHz \circ$ $(B) 96$:1010101···· (C) 11 双极性 NR ((则其符号速	(B) 000+-00 (D) +00+-00 , 则 a_0a_1 ,…是 001100… Z 码的主瓣带宽	0-+-000- 0-+-000+ (<u>20</u>)。 (D) 0000000···· 是 <u>(21)</u> kHz,占空比为		
(18) (19) 12. 若序列 (20) (A) 13. 设二进 1/3 的单极 (21)(2) 14. 若四进 (24)ms、符 (23)(15. 某八进	(C) -00-+00 a ₀ a ₁ ,···· 的差分 10101010 制数据独立等析性 RZ 码的主题 2) (A) 48 制 PAM 系统的 号间隔是(25)m 24)(25) (000-+000 00+-+-00 编码结果是 (B) 111 既,速率为 辞带宽是(22) J比特速率是 IS。 A) 0.5	0 - - - - - - - - - - - - - - - - - - -	=1010101···· (C) 110 双极性 NR2 (则其符号速 (((())) (()) () () () () () () () () () () () ()	(B) 000+-00 (D) +00+-00 , 则 a_0a_1 ,…是 001100… Z 码的主瓣带宽 C) 144 基率是(23)kBaud (C) 2 、进制符号,接收	0-+-000- 0-+-000+ (20)。 (D) 00000000···· 是(21)kHz,占空比为 (D) 288 、比特间隔是 (D) 4		
(18) (19) 12. 若序列 (20) (A) 13. 设二进 1/3 的单极 (21)(22) 14. 若四进 (24)ms、符 (23)(15. 某八进 现有 30 个征	(C) -00-+00 a ₀ a ₁ , 的差分 10101010 制数据独立等标性 RZ 码的主瓣 2) (A) 48 制 PAM 系统的 号间隔是(25)m 24)(25) (制基带传输系统符号出错。该系统符号出错。该系统符号出错。该系统符号	000-+000 00+-+-00 编码结果是 (B) 111 既,速率为 辞带宽是(22) J比特速率是 IS。 A) 0.5	0 - - - - - - - - - - - - - - - - - - -	=1010101···· (C) 110 双极性 NR2 (则其符号速 (((())) (()) () () () () () () () () () () () ()	(B) 000+-00 (D) +00+-00 , 则 a_0a_1 ,…是 001100… Z 码的主瓣带宽 C) 144 E率是(23)kBaud	0-+-000- 0-+-000+ (20)。 (D) 00000000···· 是(21)kHz,占空比为 (D) 288 、比特间隔是 (D) 4		
(18) (19) 12. 若序列 (20) (A) 13. 设二进 1/3 的单极 (21)(2) 14. 若四进 (24)ms、符 (23)(15. 某八进 现有 30 个征	(C) -00-+00 a ₀ a ₁ ,··· 的差分 10101010 制数据独立等标性 RZ 码的主瓣 2) (A) 48 制 PAM 系统的 号间隔是(25)m 24)(25) (制基带传输系统符号出错。该系统符号出错。该系统符号出错。该系统符号出错。该系统符号出错。该系统符号出错。该系统符号出错。该系统符号出错。该系统符号出错。该系统符号出错。该系统符号出错。该系统符号出错。该系统符号出错。该系统符号出错。该系统符号记载。该系统符号记载。该系统符号记载。该系统符号记载。该系统符号记载。该系统符号记载。该系统行为,以及证据的表统行为,以及证据的证据的表统行为,以及证据的证据的证据的证据的证据的证据的证据的证据的证据的证据的证据的证据的证据的证	000-+000 00+-+-00 编码结果是 (B) 111 既,速率为 辞带宽是(22) J比特速率易 S.A) 0.5 统在 10s 时间 系统的误符号	0 - - - - - - - - - - - - - - - - - - -	1010101··· (C) 110 双极性 NRZ (则其符号速 (9×10 ⁶ 个八 ,其误比特 10 ⁻⁵ 9	(B) 000+-00 (D) +00+-00 , 则 a_0a_1 ,…是 001100… Z 码的主瓣带宽 C) 144 E率是(23)kBaud (C) 2 、进制符号,接收率至少是(27),	0-+-000- 0-+-000+ (20)。 (D) 00000000···· 是(21)kHz,占空比为 (D) 288 、比特间隔是 (D) 4 欠端收到的符号中发至多是(28)。 (D) 10 ⁻⁵		

6. 信号 $x(t) = \cos(200\pi t) - \sin(200\pi t)$ 的功率谱密度 $P_x(f) = \underline{(10)}$,希尔伯特变换 $\hat{x}(t) = \underline{(11)}$ 。 x(t)

17. 数字基带传输系统的接收端采用匹配滤波器能够(31)。

(31)	(A) 使采样点的信噪比最大	(B) 彻底消除噪声
(31)	(C) 保持波形无失真	(D) 缩减信号带宽

18. 在(32)条件下, AM 包络检波输出信噪比近似等于相干解调输出信噪比。

(32)	(A) 大信噪比	(B) 小信噪比	(C) 高调制效率	(D) 低调制效率

19. 假设二进制数据等概。对于相同的误比特率 $P_{\rm b}$,双极性 PAM 系统所需的 $E_{\rm b}/N_{\rm 0}$ 比单极性 PAM 系统低(33)dB。

(33)	(A) 0	(B) 1	(C) 2	(D) 3
()	()	()	()	()

20. 某 PAM 信号 s(t) 的单边功率谱密度如下图所示,该信号的绝对带宽是(34)kHz,3dB 带宽是(35)kHz,等效矩形带宽是(36)kHz。

21. 若基带调制信号的带宽是 4kHz,则 DSB-SC 已调信号的带宽是(37)kHz,SSB 已调信号的带宽是(38)kHz。

(27)(20)	(4) 2	(D) 4	(0) ((D) 0	
(37)(38)	(A) 2	(B) 4	[(C) 6	[(D) 8	

22. 设某十六进制 PAM 系统的数据速率是 1000bit/s,发送信号功率是P=1W,其平均比特能量是(39)mJ、平均符号能量是(40)mJ。

(39)(40)	(A) 0.5	(B) 1	(C) 2	(D) 4
----------	---------	-------	-------	-------

- 二 . (15 分) 白 高 斯 噪 声 通 过 某 带 通 滤 波 器 后 成 为 窄 带 高 斯 过 程 $n(t) = n_c(t)\cos(2\pi f_c t) n_s(t)\sin(2\pi f_c t)$ 。 n(t)的双边功率谱密度如下图所示,其中 $f_c = 10$ kHz,功率谱密度单位为 μ W/Hz。试:
- (1) 写出n(t)及其希尔伯特变换 $\hat{n}(t)$ 、同相分量 $n_c(t)$ 的功率;
- (2) 写出解析信号 $z(t)=n(t)+j\cdot\hat{n}(t)$ 的功率,并画出z(t)的功率谱密度图;
- (3) 写出复包络 $n_L(t) = z(t)e^{-j2\pi f_c t}$ 的功率,并画出 $n_L(t)$ 的功率谱密度图;
- (4) 画出 $n_c(t)$ 的功率谱密度图。

答案

(1) $P_n = P_{n_c} = P_{\hat{n}} = 12 \text{mW}$

(34)(35)(36)

- 三、(15 分)设某模拟调制系统的基带调制信号 $m(t) = 2\cos(200\pi t)$ V,频带已调信号s(t)的载波频率为 $f_c = 2000$ Hz。
- (1) 若采用调制指数为a=1的 AM 调制,试写出s(t)的表达式、调制效率;
- (2) 若采用上边带 SSB 调制, 试写出 s(t)的表达式、s(t)的复包络表达式;
- (3) 若采用调制指数为 β =4的FM调制,试写出s(t)的表达式、近似带宽;
- (4) 若采用相位偏移常数为 $K_p = 2 \operatorname{rad/V}$ 的 PM 调制,试写出s(t)的表达式。

答案

(1) $A_{c}[2+2\cos(200\pi t)]\cos(4000\pi t)$,或 $A_{c}[1+\cos(200\pi t)]\cos(4000\pi t)$ 。 A_{c} 任意。

调制效率为 1/3

(2)
$$s(t) = 2\cos(200\pi t)\cos(4000\pi t) - 2\sin(200\pi t)\cos(4000\pi t) = 2\cos(4200\pi t)$$

$$s_{\rm L}(t) = 2\cos(200\pi t) + j \cdot 2\sin(200\pi t) = 2e^{j200\pi t}$$

或者:
$$s_L(t) = m(t) + j \cdot \hat{m}(t) = 2e^{j200\pi t}$$
, $s(t) = Re\{s_L(t)e^{j4000\pi t}\} = 2\cos(4200\pi t)$

(3)
$$s(t) = \cos[4000\pi t + 4\sin(200\pi t)]$$
, $B \approx 2(\beta + 1)f_m = 1000 \text{ Hz}$

(4)
$$s(t) = \cos \left[4000\pi t + 4\cos(200\pi t) \right]$$

四、(15 分)设 $s_1(t) = \sum_{n=-\infty}^{\infty} a_n g_1(t-nT_b)$, $s_2(t) = \sum_{n=-\infty}^{\infty} a_n g_2(t-nT_b)$, 其中 a_n 以独立等概方式取值

于
$$\pm 1$$
, $g_1(t) = \operatorname{rect}\left(\frac{t}{T_b}\right)$, $g_2(t) = g_1\left(t + \frac{T_b}{2}\right) + g_1\left(t - \frac{T_b}{2}\right)$ 。 试求:

- (1) $g_1(t)$ 、 $g_2(t)$ 的傅氏变换 $G_1(f)$ 、 $G_2(f)$;
- (2) $s_1(t)$ 的功率谱密度、主瓣带宽;
- (3) $s_2(t)$ 的功率谱密度、主瓣带宽。

答案:

(1)
$$G_1(f) = T_b \cdot \operatorname{sinc}(fT_b)$$
, $G_2(f) = 2T_b \operatorname{sinc}(fT_b) \cos(\pi f T_b) = 2T_b \operatorname{sinc}(2f T_b)$

方法 1: $g_2(t)$ 是 $g_1(t)$ 左移 $\frac{T_b}{2}$ 、右移 $\frac{T_b}{2}$ 、结果是宽度加倍的矩形,故 $G_2(f) = 2T_b \cdot \text{sinc}(2fT_b)$

方法 2:
$$G_2(f) = G_1(f) \left[e^{j\pi f T_b} + e^{-j\pi f T_b} \right] = 2T_b \operatorname{sinc}(fT_b) \cos(\pi f T_b)$$

(2)
$$P_1(f) = \frac{1}{T_b} |G_1(f)|^2 = T_b \cdot \text{sinc}^2(fT_b)$$
,主瓣带宽 $\frac{1}{T_b}$

(3)
$$P_2(f) = \frac{1}{T_b} |G_2(f)|^2 = 4T_b \cdot \text{sinc}^2(2fT_b)$$
,主辦带宽 $\frac{1}{2T_b}$

五. (15 分) 某基带传输系统在比特周期 $[0,T_b]$ 内等概发送 $s_1(t) = \begin{cases} 1, & 0 \le t \le T_b \\ 0, & \text{其他} t \end{cases}$ 或

 $s_2(t)=-s_1(t)$ 。 发送信号叠加了双边功率谱密度为 $N_0/2$ 的加性白高斯噪声 $n_{\rm w}(t)$ 后通过对 $s_1(t)$ 匹配的匹配滤波器 h(t),然后在 $t=T_{\rm b}$ 时刻采样判决。已知h(t)的能量为 1。试:

- (1) 求出平均比特能量 $E_{\rm h}$;
- (2) 写出匹配滤波器冲激响应h(t)的表达式;
- (3) 求出发送 $s_1(t)$ 、 $s_2(t)$ 条件下采样值y的均值以及采样点的信噪比;
- (4)写出最佳判决门限,求出系统的平均误比特率。 答案:
- (1) $E_{\rm h} = T_{\rm h}$

(2) $h(t) = K \cdot s_1(T_b - t)$ 。 h(t) 的能量为 1, $s_1(t)$ 的能量为 T_b ,故 $K = \frac{1}{\sqrt{T_b}}$,

$$h(t) = \frac{1}{\sqrt{T_{\rm b}}} s_1(T_{\rm b} - t) = \frac{1}{\sqrt{T_{\rm b}}} s_1(t)$$

(3)
$$y = \int_{-\infty}^{\infty} \left[s_i(\tau) + n_w(\tau) \right] h(T_b - \tau) d\tau = \frac{1}{\sqrt{T_b}} \int_{-\infty}^{\infty} s_i(\tau) s_1(\tau) d\tau + \underbrace{\int_{-\infty}^{\infty} n_w(\tau) h(T_b - \tau) d\tau}_{T_b}$$

发送 $s_1(t), s_2(t)$ 条件下均值分别是 $\sqrt{T_b}$, $-\sqrt{T_b}$, 方差是 $\sigma^2 = \frac{N_0}{2} E_h = \frac{N_0}{2}$, 信噪比 $\frac{2E_b}{N_0} = \frac{2T_b}{N_0}$

(4) 门限是 0,
$$P_{\rm b} = P(e \mid s_2) = P(Z > 0) = \frac{1}{2} \operatorname{erfc}\left(\sqrt{\frac{T_{\rm b}}{N_0}}\right)$$