Logic Level MOSFETs

EE must confirm component ratings in the 'Original Data Sheets'

Parameter		Symbol	Maximum	Units
Drain-Source Voltage		V _{DS}	-30	V
Gate-Source Voltage		V _{GS}	±12	V
Continuous Drain	T _A =25℃		-4	
Current	T _A =70℃	'D	-3.2	A
Pulsed Drain Curren	t ^Ĉ	I _{DM}	-27	
Power Dissipation ^B	T _A =25℃	D	1.4	144
	T _A =70℃	PD	0.9	W
	AND THE PROPERTY OF THE PARTY O		(millionia	_

		V _{GS} =-10V, I _D =-4.0A	5 /	41	50	0
D	Otatia Dania Carras On Basistanas		T _J =125℃	62	75	mΩ
DS(ON)	Static Drain-Source On-Resistance	V _{GS} =-4.5V, I _D =-3.7A	-	47	60	mΩ
		V _{GS} =-2.5V, I _D =-2A		60	85	mΩ

AO4409

30V P-Channel MOSFET

Absolute Maximum Ratings T_A=25℃ unless otherwise noted

Parameter	11	Symbol	Maximum	Units
Drain-Source Voltag	e	V _{DS}	-30	V
Gate-Source Voltag	e	V _{GS}	±20	V
Continuous Drain	T _A =25℃		-15	
Current	T _A =70℃	'D	-12.8	Α

		V _{GS} =-10V, I _D =-15A		6.2	7.5	
R _{DS(ON)}	Static Drain-Source On-Resistance	- Water B. Company Section 5	T _J =125℃	8.2	11.5	mΩ
		V _{GS} =-4.5V, I _D =-10A		9.5	12	mΩ

AO4419

30V P-Channel MOSFET

Absolute Maximum Ratings T_A=25℃ unless otherwise noted

Parameter		Symbol	Maximum	Units
Drain-Source Voltag	e	V _{DS}	-30	V
Gate-Source Voltag	е	V _{GS}	±20	V
Continuous Drain	T _A =25℃		-9.7	
Current	T _A =70℃	ID .	-7.8	Α

		V _{GS} =-10V, I _D =-9.7A		16.5	20	0
R _{DS(ON)}	Static Drain-Source On-Resistance		T _J =125℃	24	29	mΩ
		V _{GS} =-4.5V, I _D =-7A		26	35	mΩ

AO4484 40V N-Channel MOSFET

Absolute Maximum Ratings T_J=25℃ unless otherwise noted

Parameter		Symbol	10 Sec	Steady State	Units
Drain-Source Voltag	je	V_{DS}		40	V
Gate-Source Voltag	е	V _{GS}		±20	V
Continuous Drain	T _A =25℃		13.5	10	
Current ^A	T _A =70℃	I _D	10.8	8	Δ
722	n			 	A

		V _{GS} = 10V, I _D = 10A	tie .	8.2	10	
R _{DS(ON)}	Static Drain-Source On-Resistance	-	T _J =125℃	12.5	16	mΩ
		$V_{GS} = 4.5V, I_D = 8A$		10	12.5	

AOD514/AOI514/AOY514

30V N-Channel AlphaMOS

Absolute Max	imum Ratings	T _A =25℃ unless	otherwise noted
--------------	--------------	----------------------------	-----------------

Parameter		Symbol	Maximum	Units
Drain-Source Voltag	je	V _{DS}	30	V
Gate-Source Voltag	е	V _{GS}	±20	V
Continuous Drain	T _c =25℃	i	46	
Current G	T _C =100℃	ID I	36	A

		V _{GS} =10V, I _D =20A		4.3	5.9	
R _{DS(ON)}	Static Drain-Source On-Resistance	Was a second and a second and a second and	T _J =125℃	5.4	7.5	mΩ
		V _{GS} =4.5V, I _D =20A		8.5	11.9	mΩ

AOD4184

AOD4184/AOI4184

40V N-Channel MOSFET

Absolute Maximum Ratings T_A=25℃ unless otherwise noted

Parameter		Symbol	Maximum	Units
Drain-Source Voltag	je	V _{DS}	40	V
Gate-Source Voltag	e	V _{GS}	±20	V
Continuous Drain	T _C =25℃		50	3
Current G	T _C =100℃	ID I	40	A

		V _{GS} =10V, I _D =20A	y.	6.7	8	m()
R _{DS(ON)}	Static Drain-Source On-Resistance		T _J =125℃	11	13	mΩ
		V _{GS} =4.5V, I _D =15A		8.5	11	mΩ

FQP30N06L

FQP30N06L

N-Channel QFET® MOSFET

60 V, 32 A, 35 mΩ

Absolute Maximum Ratings Tc = 25°C unless otherwise noted.

Symbol	Parameter	FQP30N06L	Unit
V _{DSS}	Drain-Source Voltage	60	V
I _D	Drain Current - Continuous (T _C = 25°C)	32	A
	- Continuous (T _C = 100°C)	22.6	A

R _{DS(on)}	Static Drain-Source	V _{GS} = 10 V, I _D = 16 A	100 S 100 S 100 S 100 S 100 S	0.035	()
	On-Resistance	V _{GS} =5 V, I _D =16 A	 0.035	0.045	

International Rectifier

SMPS MOSFET

PD - 93938B

IRF3708 IRF3708L

Symbol	Parameter	Max.	Units	
V _{DS}	Drain-Source Voltage	30	V	
V _{GS}	Gate-to-Source Voltage	±12	V	
I _D @ T _C = 25°C	Continuous Drain Current, V _{GS} @ 10V	62		
I _D @ T _C = 70°C Continuous Drain Current, V _{GS} @ 10V		52	Α	

-	manufacture (in the first control of the first cont	82 5	8	12.0		V _{GS} = 10V, I _D = 15A ③
R _{DS(on)}	Static Drain-to-Source On-Resistance	20	9.5	13.5	$\boldsymbol{m}\boldsymbol{\Omega}$	V _{GS} = 4.5V, I _D = 12A ③
			14.5	29		V _{GS} = 2.8V, I _D = 7.5A ③

IRL540, SiHL540

Vishay Siliconix

N-Channel MOSFET

		e noted)		
PARAMETER	SYMBOL	LIMIT	UNIT	
Drain-Source Voltage	V _{DS}	100	V	
Gate-Source Voltage	V _{GS}	± 10	V	
Continuous Drain Current	V at F O V T _C = 25 °C	100	28	32
Continuous Drain Current	V _{GS} at 5.0 V T _C = 100 °C	I _D	20	Α

Drain-Source On-State Resistance	Brown	$V_{GS} = 5.0 \text{ V}$	I _D = 17 A ^b	1	220	0.077	Ω
Dialit-Source Oit-State Resistance	PDS(on)	V _{GS} = 4.0 V	I _D = 14 A ^b	3)	120	0.11	52

International Rectifier

PD-9.1370C

IRL3705N

$$V_{DSS} = 55V$$
 $R_{DS(on)} = 0.01\Omega$
 $I_{D} = 89A$

The East of the Control of the Contr	VALUE OF THE PARTY	33-059	S	0.010		V _{GS} = 10V, I _D = 46A ④
R _{DS(on)}	Static Drain-to-Source On-Resistance		A - 5-3	0.012	Ω	V _{GS} = 5.0V, I _D = 46A ④
0		8-19)3 3 5.0 3	0.018		V _{GS} = 4.0V, I _D = 39A ④

International Rectifier

PD - 91257D

IRLML2402

$$V_{DSS} = 20V$$

$$R_{DS(on)} = 0.25\Omega$$

Parameter		Max.	Units
ID @ TA = 25°C	Continuous Drain Current, V _{GS} @ 4.5V	1.2	
I _D @ T _A = 70°C	Continuous Drain Current, V _{GS} @ 4.5V	0.95	A

0	Static Drain-to-Source On-Resistance	 _	0.25		
MDS(on)	Static Drain-to-Source On-Resistance	 _	0.35	22	V _{GS} = 2.7V, I _D = 0.47A ③

IRLML2502

International Rectifier

IRLML2502

Parameter		Max.	Units
V _{DS}	Drain- Source Voltage	20	V
I _D @ T _A = 25°C	Continuous Drain Current, V _{GS} @ 4.5V	4.2	
I _D @ T _A = 70°C	Continuous Drain Current, V _{GS} @ 4.5V	3.4	Α

Page	Static Drain-to-Source On-Resistance	-	0.035 0.045	0	V _{GS} = 4.5V, I _D = 4.2A ②
INDS(on)	State Drain-to-Source STF1C5Statice	1 to 3	0.050 0.080	Ω	V _{GS} = 2.5V, I _D = 3.6A ②

IRLZ44N

International TOR Rectifier

IRLZ44N

	Parameter	Max.	Units
I _D @ T _C = 25°C	Continuous Drain Current, V _{GS} @ 10V	47	
I _D @ T _C = 100°C	Continuous Drain Current, V _{GS} @ 10V	33	Α

		_		0.022		V _{GS} = 10V, I _D = 25A ④
R _{DS(on)}	Static Drain-to-Source On-Resistance	i 	10-0	0.025	Ω	V _{GS} = 5.0V, I _D = 25A ④
		-	-	0.035		V _{GS} = 4.0V, I _D = 21A ④

September 1997

NDP6020P / NDB6020P P-Channel Logic Level Enhancement Mode Field Effect Transistor

Absolute Maximum Ratings T_c = 25°C unless otherwise noted

Symbol	Parameter	NDP6020P	NDB6020P	Units
V _{DSS}	Drain-Source Voltage	-2	V	
V _{GSS}	Gate-Source Voltage - Continuous	±6	3	V
I _D	Drain Current - Continuous	-2	4	Α

R _{DS(ON)}	Static Drain-Source On-Resistance	$V_{GS} = -4.5 \text{ V}, I_{D} = -12 \text{ A}$		0.041	0.05	Ω
			T _J = 125°C	0.06	0.08	
R _{DS(ON)}	Static Drain-Source On-Resistance	$V_{GS} = -2.7 \text{ V}, I_{D} = -10 \text{ A}$		0.059	0.07	
R _{DS(ON)}	Static Drain-Source On-Resistance	$V_{gs} = -2.5 \text{ V}, I_{D} = -10 \text{ A}$		0.064	0.075	

Vishay Siliconix

P-Channel 1.25-W, 2.5-V MOSFET

ABSOLUTE MAXIMUM RATINGS (TA = 25°C UNLESS OTHERWISE NOTED)							
Parameter			Unit				
Drain-Source Voltage							
Gate-Source Voltage			V				
T _A = 25°C	· ·	-2.3					
T _A = 70°C	lo —	-1.5					
	T _A = 25°C	Symbol V _{DS} V _{GS}	Symbol Limit V _{DS} -20 V _{GS} ±8 T _A = 25°C -2.3				

Drain-Source On-Resistance ^a	79_27	$V_{GS} = -4.5 \text{ V}, I_D = -2.8 \text{ A}$	0.105	0.130	0
	r _{DS(on)}	$V_{GS} = -2.5$ V, $I_D = -2.0$ A	0.145	0.190	32

Si2302DS

Vishay Siliconix

N-Channel 1.25-W, 2.5-V MOSFET

ABSOLUTE MAXIMUM RATINGS (TA = 25°C UNLESS OTHERWISE NOTED)							
Parameter		Symbol	Limit	Unit			
Drain-Source Voltage	V _{DS}	20	V				
Gate-Source Voltage	V _{GS}	±8	v				
0	T _A = 25°C	,	2.8				
Continuous Drain Current (T _J = 150°C) ^b	T _A = 70° C	ID	2.2				
				-			

Drain-Source On-Resistance ^a	[DD(wax	$V_{GS} = 4.5 \text{ V, } I_D = 3.6 \text{ A}$	0.07	0.085	Ω
	「DS(on)	$V_{GS} = 2.5 \text{ V}, I_D = 3.1 \text{ A}$	0.085	0.115	

RFP30N06LE, RF1S30N06LESM

Data Sheet

January 2004

30A, 60V, ESD Rated, 0.047 Ohm, Logic Level N-Channel Power MOSFETs

These are N-Channel power MOSFETs manufactured using the MegaFET process. This process, which uses feature sizes approaching those of LSI integrated circuits gives optimum utilization of silicon, resulting in outstanding performance. They were designed for use in applications such as switching regulators, switching converters, motor drivers and relay drivers. These transistors can be operated directly from integrated circuits.

These transistors incorporate ESD protection and are designed to withstand 2kV (Human Body Model) of ESD.

Formerly developmental type TA49027.

Ordering Information

PART NUMBER	PACKAGE	BRAND	
RFP30N06LE	TO-220AB	P30N06LE	
RF1S30N06LESM	TO-263AB	1S30N06L	

NOTE: When ordering use the entire part number. Add suffix, 9A, to obtain the TO-263 variant in tape and reel i.e. RF1S30N06LESM9A.

Features

- · 30A, 60V
- $r_{DS(ON)} = 0.047\Omega$
- · 2kV ESD Protected
- Temperature Compensating PSPICE[®] Model
- · Peak Current vs Pulse Width Curve
- · UIS Rating Curve
- · Related Literature
 - TB334 "Guidelines for Soldering Surface Mount Components to PC Boards"

Symbol

Packaging

JEDEC TO-220AB

JEDEC TO-263AB

RFP30N06LE, RF1S30N06LESM

					RFP30N06LE, F	RF1S30N	O6LESN	1 L	JNITS
Drain to Source Voltage (Note 1)			V _I	OSS		60			V
Drain to Gate Voltage (R _{GS} = 20kΩ) (Note 1)			V _[OGR		60			V
Gate to Source Voltage					+1	0, -8			٧
Continuous Drain Current				.I _D	Refer to Peak	30 Current	Curve		Α
Pulsed Avalanche Rating				EAS	Refer to	UIS Curve	е		
Power Dissipation				PD		96			W
Drain to Source On Resistance (Note 2)	r _{DS(ON)}	In = 30A	V _{GS} = 5V	Figure 9		1 -	1	0.047	2