Improved Classical and Quantum Algorithms for Subset-Sum

Xavier Bonnetain¹, Rémi Bricout^{2,3}, **André Schrottenloher**³, Yixin Shen⁴

¹ Institute for Quantum Computing, Department of Combinatorics and Optimization, University of Waterloo, Waterloo, ON, Canada

² Sorbonne Université, Collège Doctoral, F-75005 Paris, France
³ Inria. France

⁴ Université de Paris, IRIF, CNRS, F-75013 Paris, France

March 6, 2020

Outline

- Introduction
- 2 Representations
- 3 Subset-Sum with Quantum Search
- Subset-Sum with Quantum Walks

The Subset-Sum Problem

Problem

Given: $\mathbf{a} = (a_1, \dots, a_n)$ a vector of ℓ -bit integers, and an ℓ -bit target S, find $\mathbf{e} = (e_1, \dots, e_n) \in \{0, 1\}^n$ such that $\mathbf{e} \cdot \mathbf{a} = \sum_i e_i a_i = S \mod 2^{\ell}$.

- The decision version is NP-complete
- The low-density case $(\ell \gg n)$ is related to lattice SVP
- The high-density case ($\ell \ll n$) is solvable efficiently
- The density-1 case $(\ell \simeq \mathbf{n})$ is hard

Subset-sums in (post-quantum) cryptography

- Repeatedly used as a hard problem for post-quantum cryptography ^a
- Similar techniques that we will see in this presentation apply to other problems (generic decoding algorithms)
- Solving subset-sums is also useful in quantum hidden shift algorithms ^c

^aLyubashevsky, Palacio, and Segev, "Public-Key Cryptographic Primitives Provably as Secure as Subset Sum", TCC 10

^bKachigar and Tillich, "Quantum Information Set Decoding Algorithms", PQCrypto 17

^cBonnetain, Improved Low-qubit Hidden Shift Algorithms, 2019

The random Subset-Sum Problem

Problem

Given: $\mathbf{a} = (a_1, \dots, a_n)$ a vector of **n**-bit integers, and an **n**-bit target S, find $\mathbf{e} = (e_1, \dots, e_n) \in \{0, 1\}^n$ such that $\mathbf{e} \cdot \mathbf{a} = \sum_i e_i a_i = S \mod 2^n$; where \mathbf{a}, S are selected uniformly at random.

- Classical and quantum algorithms run in time $\widetilde{\mathcal{O}}(2^{\beta n})$: we are interested in the value of β
- In this talk, we optimize the time exponent (not the memory)
- We consider w.l.o.g. that e has Hamming weight $\frac{n}{2}$

Classical algorithms

The time is $\widetilde{\mathcal{O}}\left(2^{\beta \mathbf{n}}\right)$.

Technique	β	Ref.
MIM	0.5	HS74 (Slide 8)
4-list merge	0.5	SS81 (Slide 9)
{0,1}	0.3370	HGJ10 (Slide 18)
$\{-1,0,1\}$	0.2909	BCJ11 (Slide 23)
$\{-1,0,1\} + NN$	0.287	Ilya Ozerov's PhD thesis
$\{-1,0,1,2\}$	0.283	Ours

Classical algorithm: meet-in-the-middle

Cut the solution
$$\mathbf{e} = (\underbrace{0 \dots 0}_{\mathbf{n}/2 \text{ bits}} | \underbrace{* \dots *}_{\mathbf{n}/2 \text{ bits}}) + (\underbrace{* \dots *}_{\mathbf{n}/2 \text{ bits}} | \underbrace{0 \dots 0}_{\mathbf{n}/2 \text{ bits}})$$

$$\underbrace{2^{\mathbf{n}/2} \text{ choices: } L_I}$$

$$2^{\mathbf{n}/2 \text{ choices: } L_I$$

Then find $e_l \in L_l, e_r \in L_r$ s.t. $e_l \cdot a = -e_r \cdot a + S \mod 2^n$.

Complexities

Time: $\mathcal{O}\left(2^{\mathbf{n}/2}\right)$ (best worst-case time); **Memory:** $\mathcal{O}\left(2^{\mathbf{n}/2}\right)$

Horowitz and Sahni, "Computing Partitions with Applications to the Knapsack Problem", J. ACM

Schroeppel and Shamir's 4-list merging

By cutting in 4 instead of 2, we can decrease the memory to $2^{n/4}$.

$$\mathbf{e} = \underbrace{(*|0|0|0)}_{\mathbf{e_0} \in L_0} + \underbrace{(0|*|0|0)}_{\mathbf{e_1} \in L_1} + \underbrace{(0|0|*|0)}_{\mathbf{e_2} \in L_2} + \underbrace{(0|0|0|*)}_{\mathbf{e_3} \in L_3}$$

We now look for $(e_0, e_1, e_2, e_3) \in L_0 \times L_1 \times L_2 \times L_3$ s.t.

$$a \cdot (e_0 + e_1 + e_2 + e_3) = S \mod 2^n$$

 \Rightarrow there is still one solution among $2^{n/4} \times 2^{n/4} \times 2^{n/4} \times 2^{n/4}$.

Schroeppel and Shamir, "A $T = O(2^{n/2})$, $S = O(2^{n/4})$ Algorithm for Certain NP-Complete Problems". SIAM 81

Schroeppel and Shamir's 4-list merging (ctd.)

- Choose an n/4-bit number c mod M
- Repeat for every value of c:

Complexities

Time: $\mathcal{O}\left(2^{n/4} \times 2^{n/4}\right)$ Memory: $\mathcal{O}\left(2^{n/4}\right)$

Solution with prob. $2^{-n/4}$

Breaking the 2^{n/2} bound

- When we have one solution among 2^n tuples, we don't know of any better time than $2^{n/2}$
- The idea of Howgrave-Graham and Joux (HGJ): cut e with respect to its Hamming weight

Suppose that e is of weight n/2 (worst case). Write for example:

notice that:
$$\binom{n}{n/8}^4 \simeq 2^{2.174n} \ggg \binom{n}{n/2} \simeq 2^n$$
: many solution tuples!

Howgrave-Graham and Joux, "New Generic Algorithms for Hard Knapsacks", EC 10

Notations

We introduce distributions and weight constraints.

Distributions

 $\mathbf{e} \in D^{\mathbf{n}}[\alpha]$ if \mathbf{e} contains $\alpha \mathbf{n}$ "1" and $(1 - \alpha) \mathbf{n}$ "0".

Then if $\mathbf{e_1} \in D^{\mathbf{n}}[\alpha_1], \mathbf{e_2} \in D^{\mathbf{n}}[\alpha_2]$ we have $\mathbf{e_1} + \mathbf{e_2} \in D^{\mathbf{n}}[\alpha_1 + \alpha_2]$ with some probability (to be continued).

Weight constraints

e has "a cn-bit weight constraint" if we are able to constrain the (knapsack) weight of e as $e \cdot a = s \mod M$ for (previously) chosen cn-bit integers M and s.

If e_1 has a cn-bit-weight cons. and e_2 has a cn-bit-weight cons., then e_1+e_2 as well by linearity (but the precise moduli don't matter!)

Example: Schroeppel-Shamir

Generic layout

Solution

The solution e is the only vector with an n-bit weight constraint and $\mathbf{e} \in D^{\mathbf{n}}[1/2]$.

- We start from vectors e with a 0-bit weight constraint and distributions $D^{\mathbf{n}}[\alpha]$
- We sum them, trying to increase the weight constraint ("merging")
- Eventually we get to a n-bit weight constraint and a distribution $D^{\mathbf{n}}[1/2]$

Merging and filtering

Step 1: merging

Find pairs with more constrained weights.

We produce L in time $\max(\min(|L_1|, |L_2|), |L|).$

Step 2: filtering

Keep only the $e_1 + e_2$ that conform to the expected distribution.

p is the "filtering probability" for: $D^{\mathbf{n}}[\alpha_1] \times D^{\mathbf{n}}[\alpha_2] \rightarrow$ $D^{\mathbf{n}}[\alpha_1 + \alpha_2]$

Merging and filtering (ctd.)

Heuristic

The vectors in L^f are uniformly distributed in $D^{\mathbf{n}}[\alpha_1 + \alpha_2]$.

Approximations

- Representation sets have size: $D^{\mathbf{n}}[\alpha] = \binom{\mathbf{n}}{\alpha} \simeq 2^{h(\alpha)\mathbf{n}}$
- $h(x) = -x \log x (1-x) \log(1-x)$
- In general we have a filtering probability $D^{\mathbf{n}}[\alpha_1] \times D^{\mathbf{n}}[\alpha_2] \to D^{\mathbf{n}}[\alpha_1 + \alpha_2]$ of: $\simeq 2^{(h(\alpha_1/(1-\alpha_2))-h(\alpha_1))\mathbf{n}}$

The HGJ algorithm

HGJ step 3: left-right split with a modulus

At this level we can afford to merge without filtering: find vectors $\mathbf{e} \in D^{\mathbf{n}}\left[\frac{1}{8}\right]$ with a c₂-weight constraint (on $\mathbf{e} \cdot \mathbf{a}$).

HGJ step 2 and 1: merge and filter

An optimization problem

We write all parameters in log_2 , relative to n:

$$|D^{\mathbf{n}/2}[\frac{1}{8}]| | h(1/8)/2 \simeq 0.2718$$

$$|L_{i}^{j}| | \ell_{i}^{j} | \ell_{i}^{j}$$

$$|L_{1}||L_{2}|/(2^{\mathbf{nd}}) | \ell_{1} + \ell_{2} - d$$

$$|L| \times p | \ell + \mathsf{pf}$$

We compute the filtering probabilities:

- $D^{\mathbf{n}}[0,\frac{1}{8}] \times D^{\mathbf{n}}[0,\frac{1}{8}] \to D^{\mathbf{n}}[0,\frac{1}{4}]: 2^{-0.02585\mathbf{n}}$
- $D^{\mathbf{n}}[0, \frac{1}{4}] \times D^{\mathbf{n}}[0, \frac{1}{4}] \to D^{\mathbf{n}}[0, \frac{1}{2}]$: $2^{-0.12256\mathbf{n}}$

Optimized parameters for HGJ

Better representations: BCJ

Sample distributions with $\{-1, 0, 1\}$.

- Of course we still need to obtain $D^{\mathbf{n}}\left[\frac{1}{2}\right]$ in the end
- The "-1" need to be canceled out by "1"
- The "-1" shouldn't sum up to "-2"!
- More parameters, new filtering probabilities
- Improvement on the time exponent: 0.291 < 0.337

Becker, Coron, and Joux, "Improved Generic Algorithms for Hard Knapsacks", EC 11

New results

Idea 1: do not saturate the lists

Starting lists are **not equal** to $D^{n/2}[*]$ but sampled u.a.r. from it.

BCJ without saturation: 0.289 < 0.291

Idea 2: still better representations

Why stop at "-1"? Add some "2".

- Of course we still need to obtain $D^{n}\left[\frac{1}{2}\right]$ in the end
- Some "1" can sum up to "2" (but not too much)
- A "-1" and a "2" give a "1"

BCJ without saturation and with "2": 0.283 < 0.289

Bonnetain et al., Improved Classical and Quantum Algorithms for Subset-Sum, ePrint 2020/168

Going Quantum

Classical search

Let
$$X = G \cup B$$

Search space, Good ones, Bad ones, size $S = S \cup B$
size $S = S \cup B \cup B$

Let Sample and Test be functions to sample x from X and test if $x \in G$, in time t_{Sample} and t_{Test} .

There exists a function $Sample_G$ that samples from G in time:

$$rac{\textit{N}}{\textit{T}}\left(t_{\mathtt{Sample}} + t_{\mathtt{Test}}
ight)$$

⇒ we transform a sampling procedure for the "search space" into a sampling procedure for the "solution space".

Quantum search (amplitude amplification)

Let QSample and QTest be quantum algorithms to quantumly sample X and quantumly test if $x \in G$, in time t_{Sample} and t_{Test} .

There exists an algorithm $QSample_G$ that samples G in time:

$$\sqrt{\frac{N}{T}} \left(t_{\mathtt{QSample}} + t_{\mathtt{QTest}} \right)$$

Quantum test: means testing any $x \in X$ in superposition Quantum sample: means producing a uniform superposition of X

Brassard et al., "Quantum amplitude amplification and estimation", 2002

Interlude: quantum memory models

What happens if *X* is in memory?

Classical sample: only reads a single $x \in X$ (easy)

Quantum sample: must read all of X in superposition (maybe

not easy): this is quantum random access

	Quantum random access		
Classical write	Classical memory		
	quantum random access	⇒ This section	
	QRACM		
Quantum write	Quantum memory	Previous quantum subset-sum algos	
	quantum random access		
	QRAQM		

Quantum algorithms for subset-sum

The time is $\widetilde{\mathcal{O}}\left(2^{\beta \mathbf{n}}\right)$.

Technique	β	Ref.	Classical version	Model
MIM	0.3334	BHT98	HS74	QRACM
4-list merge	0.3	BJLM13	SS81	QRAQM
{0,1}	0.241	BJLM13	HGJ10	QRAQM + conj.
{0,1}	0.2356	Ours	HGJ10	QRACM
$\{-1,0,1\}$	0.226	HM18	BCJ11	QRAQM + conj.
$\{-1,0,1,2\}$	0.2156	Ours		QRAQM + conj.
$\{-1,0,1,2\}$	0.2182	Ours		QRAQM

Subset-Sum with Quantum Search

"Sampling-and-filtering"

Let's separate:

- The sampled list
- The intermediate list

We turn samples from L_1 into:

Samples from L:

$$t_{\mathtt{Sample}(L)} = \max\left(rac{2^{\mathbf{nd}}}{|L_2|}, 1
ight) t_{\mathtt{Sample}(L_1)}$$

(find an element with same modulus)

• Samples from L^f :

$$t_{\text{Sample}(L_f)} = \frac{1}{n} t_{\text{Sample}(L)}$$

(wait until the filter is passed)

Quantum "sampling-and-filtering"

List L_1 size $|L_1|$ cons. c List L_2 size $|L_2|$ cons. c

$$\begin{array}{c} \text{List } \mathcal{L} \\ \text{size } |\mathcal{L}| = |\mathcal{L}_1| |\mathcal{L}_2|/(2^{\text{nd}}) \\ \text{cons. } \mathbf{c} + \mathbf{d} \end{array}$$

List
$$L^f$$

size $|L^f| = |L| \times p$
cons. $c + d$

Assume that we have quantum samples from L_1 .

Then we have:

Quantum samples from L:

$$t_{\mathtt{QSample}(L)} = \max\left(\sqrt{rac{2^{\mathsf{nd}}}{|L_2|}}, 1
ight) t_{\mathtt{QSample}(L_1)}$$

• Quantum samples from L^f :

$$t_{\mathtt{Sample}(L_f)} = \sqrt{rac{1}{p}} t_{\mathtt{Sample}(L)}$$

Using quantum search

Quantum search will square-root the sampling time of L^0 . But it's useless if the intermediate lists cost the same as before.

 \Rightarrow we make the tree unbalanced.

Details and result

- Unbalanced left-right split of L_0^3 and L_1^3 , unbalanced weights for the lists
- L_1^3, L_1^2, L_1^1 are intermediate lists stored in QRACM (classical data with quantum random access)
- only poly(n) quantum storage needed

$$\underbrace{0.226 \; (\text{HM18}) <}_{\text{We use only } \{0,1\}} \underbrace{0.2356}_{\text{We filter more efficiently representations}} \underbrace{0.241 \; (\text{BJLM13})}_{\text{We filter more efficiently representations}}$$

Subset-Sum with Quantum Walks

A classical walk for HGJ

Reduce the HGJ merging tree to a smaller tree, with smaller starting lists. Now L^0 does not always contain a solution.

Walking on the graph

We use a (regular, undirected) Johnson graph J(D, L).

- A vertex contains a product of 8 small lists L_i^3 , $0 \le i \le 7$, of size $|L_i^3| = L$, chosen among distributions $|D^i| = D$, and the whole tree built from these lists.
- There are $\binom{D}{L}^8$ vertices.
- Some vertices are marked: they contain the knapsack solution.
- We go from one to another by changing an element in a list L_i^3 and updating the tree.

Cost of a classical random walk

We need procedures:

- To setup a starting arbitrary vertex (S)
- To move from one vertex to one of its neighbors (U)
- To check if a vertex is marked (trivial) (C)

We will find a marked vertex in time:

where $\frac{1}{\delta}$ is the number of updates before we reach a new uniformly random vertex. In a Johnson graph J(D,L), $\frac{1}{\delta} \simeq L$. (We need to replace all elements.)

As in quantum search, the walk transforms a uniform superposition over the whole graph into a superposition over marked vertices.

As in quantum search, the walk transforms a uniform superposition over the whole graph into a superposition over marked vertices.

As in quantum search, the walk transforms a uniform superposition over the whole graph into a superposition over marked vertices.

As in quantum search, the walk transforms a uniform superposition over the whole graph into a superposition over marked vertices.

Time of a quantum walk (MNRS framework)

- The setup now requires to create a superposition over all vertices
- ullet As in quantum search, we perform $\sqrt{\frac{1}{\epsilon}}$ steps instead of $\frac{1}{\epsilon}$
- But the mixing is also accelerated!

$$S + \underbrace{\sqrt{\frac{1}{\epsilon}}}_{\text{Walk steps}} \left(\underbrace{\sqrt{\frac{1}{\delta}} U}_{\text{Mixing time}} + C \right)$$

• The Update handles all vertices and all edges in superposition

Tracking the updates

 The update U must replace one element in a lower-level list and update the merging tree data structure.

• On average, there is a single replacement to make at each level (no problem classically).

Superposition updates

- The update needs to take a fixed time.
- Since we are handling all vertices and all edges in superposition, there are cases when updating the tree would cost an exponential time.

Can we abort the bad cases?

Not in the MNRS framework: the data structure (the tree) must depend only on the vertex (the initial lists).

The quantum walk conjecture of Helm and May (TQC18)

With an update of expected time $\mathcal{O}(1)$, we can still do the runtime analysis as if it had an exact time $\mathcal{O}(1)$.

Helm and May, "Subset Sum Quantumly in 1.17", TQC 18

- We have modified the data structure to guarantee the update time
- This reduces (marginally) the number of marked vertices

Fact

Previous quantum walks for subset-sum do not require the update conjecture.

 However, this data structure is not enough for our best algorithms . . .

Summary of quantum walk results

Technique	Time	Ref.	Classical version	Model
{0,1}	0.241	BJLM13	HGJ10	QRAQM + conj.
$\{-1,0,1\}$	0.226	HM18	BCJ11	QRAQM + conj.
$\{-1,0,1,2\}$	0.2156	Ours		QRAQM + conj.
$\{-1,0,1,2\}$	0.2182	Ours		QRAQM

Conclusion and open questions

On classical algorithms

More symbols and nearest-neighbor techniques should improve the exponent \Rightarrow how far could we go?

On quantum algorithms with quantum search

Better representations should improve the exponent . . . if we manage to make the optimization converge.

Conclusion and open questions (ctd.)

On quantum walks

- The update conjecture can be removed from previous works
 ... but not completely from ours
- It seems that we still need to adapt the MNRS Quantum Walk framework

ePrint 2020/168

Thank you!