

This listing of claims will replace all prior versions, and listings, of claims in the application:

1. (Currently Amended) A method of animating a user-controlled character in a virtual three-dimensional environment of a dynamic three-dimensional game space, comprising:

rendering the three-dimensional environment of the three-dimensional game space in which the user-controlled character will be animated;

defining a tag at a location in the three-dimensional virtual environment that is external to the user-controlled character, and assigning tag information to the tag that designates a type of reaction for the user-controlled character and a type of reaction for an object associated with the tag when the user-controlled character comes in proximity to the tag;

animating the user-controlled character using a scripted animation sequence in response to user inputs;

detecting when the user-controlled character is within a predetermined proximity to the tag; and,

when the user-controlled character is within a predetermined proximity to the tag, using the location of the tag, at least one variable associated with the user-controlled character, and the tag information to dynamically modify the user-controlled character's animation and the animation of the object associated with the tag in real time;

wherein the tag is defined at the location such that the user does not know where in the three dimensional environment of the three dimensional game space the tag is located and the user does not know how the tag information and the at least one variable associated with the user controlled character will affect the animation tag is invisible to the user.

- 2. (Original) The method of claim 1, further including detecting when the character is no longer within the predetermined proximity to the tag and, upon such detection, returning to the scripted animation for the character.
- 3. (Original) The method of claim 1, further including using key frames, inbetweening and inverse kinematics to dynamically modify the character's animation when in proximity to the tag.
- 4. (Original) The method of claim 1, further including defining a human-like reaction as the type of reaction and dynamically generating an animation that corresponds to the human-like reaction for the character when in proximity to the tag.
- 5. (Previously Amended) The method of claim 1, wherein dynamically modifying the character's animation in real time includes causing the character to look at the location in the virtual world where the tag has been defined.
- 6. (Original) The method of claim 1, further including defining a plurality of said tags at different locations in the virtual world and assigning tag information to each tag, wherein each tag causes a different dynamic animation sequence to be generated for the character when the character is within a predetermined proximity thereto.

7. (Currently Amended) A method for controlling the animation of a user-controlled character in a virtual three-dimensional world of a dynamic three-dimensional game space, comprising:

rendering the three-dimensional environment of the three-dimensional game space in which the user-controlled character will be animated;

defining a plurality of tags at defined locations with the three-dimensional virtual world that are external to the user-controlled character, wherein each tag is associated with an object and each tag designates a reaction to be made by the user-controlled character and the associated object when the character is within a predefined virtual proximity to the tag;

assigning a priority value to each tag;

allowing a user to control the movement of the user-controlled character within the virtual world;

when the user-controlled character is not within the predefined virtual proximity to any of the tags, using a stored animation sequence to animate the character within the virtual world; and,

when the user-controlled character is within the predetermined virtual proximity to at least one of the tags, generating a dynamic animation sequence for the user-controlled character and the associated object based on the tag having the highest priority among the tags within the predetermined proximity to the character and at least one variable

associated with the user-controlled character; and using the location of the tag having the highest priority as a parameter for generating the dynamic animation sequence;

wherein the tag is defined at the location such that the user does not know where in the three-dimensional environment of the three-dimensional game space the tag is located and the user does not know how the tag information and the at least one variable associated with the user-controlled character will affect the animation invisible to the user.

- 8. (Previously Amended) The method of claim 7, further including detecting when the character is no longer within the predetermined proximity to any of the tags and, upon such detection, returning to the stored animation sequence for the character.
- 9. (Original) The method of claim 7, further including using key frames, inbetweening and inverse kinematics to generate the dynamic animation sequence for the character.
- 10. (Original) The method of claim 7, further including defining a human-like reaction as the reaction for each tag.
- 11. (Previously Amended) The method of claim 7, wherein the dynamic animation sequence causes the character to look at the location in the virtual world where the tag has been defined.
- 12. (Currently Amended) A method for animating an object in a virtual three-dimensional world of a dynamic three-dimensional game space, comprising:

rendering the three-dimensional environment of the three-dimensional game space in which the object will be animated;

defining a tag in the three-dimensional virtual world at a location that is external to the object, wherein the tag includes a reaction code which designates a reaction for the object when the object is within a defined virtual proximity to the location of the tag;

moving the object within the virtual world using a stored animation sequence when the object is not within the defined virtual proximity to the tag; and

dynamically generating an animation sequence for the object corresponding to the reaction code in the tag information, at least one variable associated with the object, and based on the location of the tag when the object is within the defined virtual proximity to the tag; and,

dynamically generating an animation sequence for an area in virtual proximity to the location of the tag;

wherein the tag is defined at the location such that the user does not know where in the three dimensional environment of the three dimensional game space the tag is located and the user does not know how the tag information and the at least one variable associated with the object will affect the animation invisible.

13. (Original) The method of claim 12, further including defining a plurality of said tags, wherein each tag has a different reaction code and is assigned a priority value, and further including using the priority value to determine which tag to base the

STERCHI et al. Appl. No. 10/078,526 August 29, 2006

dynamically generated animation sequence on when the object is within a defined proximity to more than one of the tags.

- 14. (Original) The method of claim 12, further including using key frames, inbetweening and inverse kinematics to generate the dynamic animation sequence for the object.
- 15. (Original) The method of claim 13, further including defining a human-like reaction as the reaction indicated by the reaction code for each tag.
- 16. (Previously Amended) The method of claim 15, wherein the dynamic animation sequence causes the object to look at the location in the virtual world where the tag has been defined.