Lecture 15: Learning in Bayesian Networks

EMAT31530/March 2018/Raul Santos-Rodriguez

Have a look at ...

```
... Russell and Norvig (Ch. 14 and Ch. 15)
... The introduction to the book Graphical Models; Foundations of Neural
Computing (ed. M. Jordan)
... David barber's Bayesian reasoning and Machine Learning:
http://www.cs.ucl.ac.uk/staff/d.barber/brml/
... Kevin Murphy's Toolbox:
http://www.cs.ubc.ca/~murphyk/Software/
```

Bayesian learning 2/20

Outline

This lecture introduces the concept of learning in probabilistic graphical models. The objective is to discuss the following topics:

- Learning in Bayesian Networks
- Maximum likelihood
- Expectation-Maximization algorithm

Bayesian learning 3/20

Question

$$P(A, E, B, C, D) = P(A)P(E)P(B | A, E)P(C | B)P(D | A)$$

 $P(A, E, B, C, D) = P(E)P(B | E)P(A | B)P(C | B)P(D | A)$

Bayesian learning 4/20

Review

So far, we have studied:

- Concept of Bayesian network
- Conditional independence
- Inference in Bayesian networks
- Dynamic Bayesian networks

Bayesian learning 5/20

Why learning?

Knowledge acquisition bottleneck

- Knowledge acquisition is an expensive process
- Often we don't have an expert

Data is cheap

- Amount of available information growing rapidly
- Learning allows us to construct models from raw data

6/20

Problem formulation

- Given:
 - A Bayesian network structure.

■ A data set

X_1	X_2	<i>X</i> ₃	<i>X</i> ₄	<i>X</i> ₅
0	0	1	1	0
1	0	0	1	0
0	1	0	0	1
0	0	1	1	1
:	:	:	:	:

■ Estimate conditional probabilities:

$$P(X_1), P(X_2), P(X_3|X_1, X_2), P(X_4|X_1), P(X_5|X_1, X_3, X_4)$$

Bayesian learning 7/20

Example: one variable

Setting: Rating of a movie $\{1, 2, 3, 4, 5\}$

Parameters:
$$\theta = (P(1), P(2), P(3), P(4), P(5))$$

Training data:
$$D_{train} = \{1, 3, 4, 4, 4, 4, 4, 5, 5, 5\}$$

[Liang 2014]

Bayesian learning 8/20

Example: one variable

We want to find θ using D_{train} but ...

... P(R) is proportional to number of occurrences of R in D_{train}

$$\textit{D}_{\textit{train}} = \{1, 3, 4, 4, 4, 4, 4, 5, 5, 5\}$$

	R	P(R)	
	1	?	
) .	2	?	
٠.	3	?	
	1 2 3 4 5	?	
	5	?	

Bayesian learning 9/20

Example: one variable

We want to find θ using D_{train} but ...

... P(R) is proportional to number of occurrences of R in D_{train}

$$\textit{D}_{\textit{train}} = \{1, 3, 4, 4, 4, 4, 4, 5, 5, 5\}$$

	R	P(R)
	1	0.1
θ:	2	0
	3	0.1
	4	0.5
	5	0.3

Bayesian learning 10/20

Example: two variables

Setting: Rating of a movie $\{1, 2, 3, 4, 5\}$ and Genre of a movie $\{drama, comedy\}$

Parameters: P(G,R) = P(G)P(R|G)

Training data:
$$D_{train} = \{(d,4), (d,4), (d,5), (c,1), (c,5)\}$$

Bayesian learning 11/20

Example: two variables

We want to find θ using D_{train} but ...

... P(G), P(R|G) are proportional to number of occurrences of R, G in D_{train}

$$D_{train} = \{(d,4), (d,4), (d,5), (c,1), (c,5)\}$$

			G	R	P(R G)
	G	P(G)	d	4	2/3
θ :	d	3/5	d	5	1/3
	С	2/5	С	1	1/2
			С	5	1/2

Bayesian learning 12/20

Example: HMM

Setting: H_1, \ldots, H_n are the Hidden variables and E_1, \ldots, E_n are the observations

$$P(H,E) = \prod_{i=1}^{n} P_{trans}(H_i|H_{i-1})P_{emi}(E_i|H_i)$$

Parameters: $\theta = \{P_{trans}, P_{emi}\}$

Bayesian learning 13/20

Maximum likelihood

Maximum likelihood objective:

$$\max_{\theta} \prod_{x_i \in D_{train}} P(X = x_i | \theta)$$

Example: $D_{train} = \{(d, 4), (d, 5), (c, 5)\}$

$$p(X = x|\theta) = P(G = d)P(R = 4|d)P(G = d)P(R = 5|d)P(G = c)P(R = 5|c)$$

Solution: take logs and solve for the best $\theta = \theta^*$

Question: what if we don't have data for all events?

Bayesian learning 14/20

Maximum likelihood vs Bayesian learning

Maximum likelihood

- \bullet Assumes that θ is unknown but fixed parameter
- Finds θ^* , the value that maximizes the likelihood

Bayesian learning

- ullet Treats heta as a random variable
- Assumes a prior probability of $\theta : p(\theta)$
- Tries to compute the posterior probability of θ : $p(\theta|D)$

Bayesian learning 15/20

Expectation-Maximization (EM)

What if we don't observe some of the variables?

Example:
$$D_{train} = \{(?, 4, 5), (?, 4, 4), (?, 5, 3), (?, 1, 2), (?, 5, 4)\}$$

Bayesian learning 16/20

Expectation-Maximization (EM)

Variables: *H* is hidden, *E* is observed (to be *e*)

Example: $H = \{G\}, E = \{R_1, R_2\}$

Maximum likelihood objective:

$$\max_{\theta} \prod_{e \in D_{train}} P(E = e | \theta)$$

$$= \max_{\theta} \prod_{e \in D_{train}} \sum_{h} P(E = e, H = h | \theta)$$

Bayesian learning 17/20

Expectation-Maximization (EM)

Algorithm: Expectation Maximization

E-step:

Compute $q(h) = P(H = h|E = e, \theta)$ for each h

Create weighted points: (h, e) with weight q(h)

M-step:

Compute maximum likelihood (just count and normalise) to get $\boldsymbol{\theta}$

Repeat until convergence.

Bayesian learning 18/20

Model selection

Given a new dataset $\{A, B, C, D\}$, we can evaluate the probability of each model structure (using the parameters we learned by maximum likelihood) and pick the model with the highest P(A, B, C, D|parameters).

For more information:

http://research.microsoft.com/en-us/um/people/heckerman/tutorial.pdf

Bayesian learning 19/20

Next lecture

In the next lecture, we will present a application area: text mining!