# Дипломная работа

Комплекс алгоритмов улучшения изображений и компенсации их геометрических искажений

## Постановка задачи

#### В данной работе рассмотрены следующие задачи:

- 1. Определение параметров геометрических искажений кадров видеопоследовательности по отношению к опорному.
- 2. Отделение случайных составляющих геометрических искажений от регулярных трансформаций, связанных с управляемым движением камеры.
- 3. Определение побочных параметров видеопоследовательности, таких как наличие черезстрочной развертки, смазанность кадров, шумоподобность и др.

#### Основной целью работы было обеспечение следующих качеств алгоритмов:

- 1. Устойчивая работа с реальными изображениями низкого качества.
- 2. Работа в реальном времени на современных неспециализированных вычислительных средствах.

#### Ключевые особенности:

1. Во всех представленных алгоритмах в качестве критерия, определяющего степень различия двух кадров, использовалась функция среднеквадратичной невязки, т.е. функция

$$X(F(t-1), T_{Q}(F(t))) = \frac{1}{S(M)} \sum_{(i,j) \in M (dx,dy)} (F(t-1)_{ij} - F(t)_{i+dx, j+dy})^{2}$$

А искомые параметры определялись из минимума этой функции

$$Q = (dx, dy) = \arg\min_{(dx, dy) \in D} X(F(t-1), T_Q(F(t)))$$

Область сдвигов D и область M, по которой производятся вычисления, и другие параметры функции невязки выбирается специальным образом.

- 2. Производится не просто нахождение наилучшей оценки параметров, но и анализ функции невязки с целью определения степени надежности этой оценки, а также уменьшения количества вычислений за счет исключения маловероятных решений.
- 3. В данной работе в качестве модели геометрических искажений используется модель, использующая 4 параметра сдвиги по двум осям, угол поворота и коэффициент масштабирования.

Блок схема комплекса алгоритмов



#### Определение сдвига по сжатым кадрам

Определение параметров трансформации с использованием сжатых кадров осуществляется по следующей схеме:

1. Создание цепочки сжатых кадров разного масштаба





- 2. Итеративное определение целочисленного сдвига с постепенным уточнением масштаба путем оптимизированного перебора.
- 3. Уточнение полученного сдвига процедурами определения субпиксельного сдвига.

#### Использование окон наибольшей информативности

Определение параметров трансформации с использованием окон наибольшей информативности осуществляется по следующей схеме:

1. Выбор окон. Окна выбираются как окна, информативность которых максимальна. Сама информативность вычисляется по формуле

$$I(\vec{r}_k) = \min_{l=1..L} \frac{1}{\sqrt{dx^2(l) + dy^2(l)}} \sum_{(i,j) \in W(\vec{r}_k)} (F_{ij} - F_{i+dx(l),j+dy(l)})^2$$

- 2. Определение целочисленного сдвига по каждому из окон методом оптимизированного перебора или градиентного спуска.
- 3. Объединение информации о сдвигах отдельных окон и получение всех 4 параметров трансформации по формуле

$$Q = \arg\min_{\mathcal{Q}} \sum_{k=1}^{N} (\vec{\rho}_k - \tau_{\mathcal{Q}}(\vec{r}_k)) C_k^{-1} (\vec{\rho}_k - \tau_{\mathcal{Q}}(\vec{r}_k))^T$$

# Алгоритмы отделения шумовой и полезной составляющих геометрических трансформаций

Для адекватного отображения видеопоследовательности необходимо выделить шумовые составляющие геометрических трансформаций и компенсировать их, оставив полезную часть неизменной.

В данной работе было рассмотрено три типа алгоритмов разделения шумовой и полезной составляющих геометрических трансформаций:

- 1. Аппроксимация полезной составляющей параметрическими функциями.
- 2. Эмпирическое задание вида функции компенсации шумовой составляющей.
- 3. Выбор полезной составляющей путем минимизации критерия качества, выраженного формулой

$$J(...) = (\Delta \vec{r}_{a}(t) - \Delta \vec{r}_{sa}(t))^{4} + \alpha (\Delta \vec{r}_{sa}(t) - \Delta \vec{r}_{sa}(t-1))^{2} + \beta |\varphi_{a}(t) - \varphi_{sa}(t)|_{\varphi}^{2} + \gamma |\varphi_{sa}(t) - \varphi_{sa}(t-1)|_{\varphi}^{2} + \delta \cdot D^{2}(t, \Delta \vec{r}_{sa}(t), \varphi_{sa}(t))$$

## Программная реализация

#### Блок схема программы улучшения изображений



#### Алгоритмы определения параметров геометрических искажений

#### Сводная таблица характеристик алгоритмов

| Размер<br>изображения | Точность<br>определения<br>сдвига (пиксели) | Максимальный сдвиг (пиксели) | Точность<br>определения угла<br>поворота<br>(градусы) | Максимальный<br>угол поворота<br>(градусы) | Точность<br>определения<br>коэффициента<br>масштабирования | Количество<br>кадров в секунду |
|-----------------------|---------------------------------------------|------------------------------|-------------------------------------------------------|--------------------------------------------|------------------------------------------------------------|--------------------------------|
| 320x240               | 0.08                                        | 120                          | 0.034                                                 | 10                                         | 0.2%                                                       | 714                            |
| 640x480               | 0.07                                        | 260                          | 0.036                                                 | 8                                          | 0.2%                                                       | 232                            |

#### Алгоритмы определения параметров геометрических искажений

Характеристики работы на реальных последовательностях низкого качества

| Определение сдвига |                                            | Определение всех 4 параметров<br>трансформации |                                            |                                          |  |
|--------------------|--------------------------------------------|------------------------------------------------|--------------------------------------------|------------------------------------------|--|
| Вероятность сбоя   | С.К.О. по сдвиту<br>при сбоях<br>(пиксели) | Вероятность сбоя                               | С.К.О. по сдвиту<br>при сбоях<br>(пиксели) | С.К.О. по углу<br>при сбоях<br>(градусы) |  |
| 0 %                | 0                                          | 0.6%                                           | 15                                         | 10                                       |  |

Характеристики работы при ограничении времени обработки каждого кадра (в обработку входит не только стабилизация и улучшения изображения, но и чтения информации и ее отображение)

| Размер изображения<br>(пиксели) | Количество точек на изображении (мегапиксели) | С.К.О. определения<br>сдвига (пиксели) |  |  |
|---------------------------------|-----------------------------------------------|----------------------------------------|--|--|
| 800x600                         | 0.48                                          | 0.07-0.08                              |  |  |
| 1024x768                        | 0.79                                          | 0.07-0.09                              |  |  |
| 1152x864                        | 1.00                                          | 0.3-0.4                                |  |  |
| 1280x1024                       | 1.31                                          | 0.3-0.4                                |  |  |
| 1600x900                        | 1.44                                          | 0.8-1.0                                |  |  |
| 1600x1024                       | 1.64                                          | обработка<br>отключается               |  |  |

#### Алгоритмы определения параметров геометрических искажений

Сравнение данных алгоритмов с другими опубликованными алгоритмами и коммерческими программными продуктами

| Название                                                                          | С.К.О.<br>определения<br>сдвига (пиксели) | Максимальный<br>сдвиг (пиксели) | С.К.О.<br>определения<br>угла (градусы) | Максимальный<br>угол (градусы) | Вероятность сбоя | Количество<br>кадров в<br>секунду |
|-----------------------------------------------------------------------------------|-------------------------------------------|---------------------------------|-----------------------------------------|--------------------------------|------------------|-----------------------------------|
| Описанный выше алгоритм.                                                          | 0.08                                      | 1 2 0                           | 0.036                                   | 1 0                            | 0 %              | 2 3 3                             |
| D y n a P e 1 S te a d y H a n d s D V 2, 2, 0, 2.                                | < 2                                       | ~ 3 0                           | < 0.2                                   | 1 0                            | 100%             | 1 4                               |
| DeShaker 1.6.                                                                     | 0.08                                      | 90                              | 0.02                                    | 1 0                            | 0.3%             | 6                                 |
| Video Stabilizer 2.6.0.0.                                                         | ~ 3                                       | 1 0                             | Ø                                       | Ø                              | 100%             | 4 0                               |
| С пектральный метод<br>компенсации смещений.                                      | 0.05                                      | 7                               | Ø                                       | Ø                              | 100%             | 2 1                               |
| Projection-Based Image<br>Registration in the Presence of<br>Fixed-Pattern Noise. | 0.06                                      | 8 0                             | Ø                                       | Ø                              | 1 .3 %           | 9 7                               |
| П олупиксельны й<br>пирамидальны й алгоритм.                                      | 0.03                                      | 4 5                             | 0.015                                   | 3 0                            | 2 %              | 4 4                               |
| Вейвлет метод.                                                                    | 0.04                                      | 3 0                             | Ø                                       | Ø                              | 10%              | 0 .1 2                            |

#### Модуль создания мозаики

#### Кадры исходной видеопоследовательности





Результирующий кадр мозаики



Полнофункциональный комплекс алгоритмов улучшения изображений и компенсации их геометрических искажений

Пример результата работы – случай больших сдвигов в присутствии черезстрочной развертки



Полнофункциональный комплекс алгоритмов улучшения изображений и компенсации их геометрических искажений

Пример результата работы – случай удержания слабоконтрастного изображения



Полнофункциональный комплекс алгоритмов улучшения изображений и компенсации их геометрических искажений

Пример результата работы – удержание низкокачественного изображения





### Выводы

- 1. Были созданы и реализованы различные алгоритмы оценки геометрических трансформаций кадров в видеопоследовательности.
- 2. Были созданы и реализованы алгоритмы отделения случайной составляющей геометрических трансформаций от регулярной, связанной с управляемым движением камеры.
- 3. Были созданы и реализованы алгоритмы определения и компенсации таких искажений изображений, как наличие черезстрочной развертки, шумоподобность, смазанность и др.
- 4. Был создан и реализован алгоритм создания кадра мозаики из последовательности входных кадров меньшего размера.
- 5. Была разработана и реализована система автоматического выбора оптимальных параметров алгоритмов на основе обучающих последовательностей.

## Выводы

- 6. Была проведена оптимизация разработанных алгоритмов и исследована их производительность. Разработанные алгоритмы обеспечивают обработку кадров размером 320 на 240 пикселей со скоростью 230 кадров в секунду. При этом полная обработка видеопоследовательности, включающая в себя, помимо представленных алгоритмов, также чтение информации и ее отображение, возможна в режиме реального времени (25 кадров в секунду) для кадров размером до 1.44 мегапикселя.
- 7. Было проведено исследование качества работы алгоритмов. Было установлено что на модельных кадрах величина ошибки определения сдвига не более 0.08 при максимальном сдвиге порядка полукадра. Ошибка определения угла поворота 0.036° при максимальном угле 8-10°. Ошибка определения коэффициента масштабирования 0.2%. На реальных последовательностях вероятность сбоя в определении сдвига не превышает 0.3%.
- 8. Был проведен сравнительный анализ работы данного алгоритма и других, как описанных в литературе, так и реализованных в виде коммерческих продуктов. Было показано, что представленные алгоритмы по крайней мере не хуже, а по многим показателем лучше остальных исследованных.