

Perfect Wireless Experience 完美无线体验

L850-GL Hardware User Manual

Version: 1.0.6

Update date: Feb 26th, 2018

Copyright

Copyright © 2017 Fibocom Wireless Inc. All rights reserved.

Without the prior written permission of the copyright holder, any company or individual is prohibited to excerpt, copy any part of or the entire document, or distribute the document in any form.

Notice

The document is subject to update from time to time owing to the product version upgrade or other reasons. Unless otherwise specified, the document only serves as the user guide. All the statements, information and suggestions contained in the document do not constitute any explicit or implicit guarantee.

Trademark

The trademark is registered and owned by Fibocom Wireless Inc.

Version Record

70.0.0	version record				
Version	Update date	Remark			
V1.0.0	2016-12-08	Draft			
V1.0.1	2016-12-16	Modify the PCIe Interface Application;			
V 1.U. I	2010-12-10	Update the Pin Definition: change pin65 to NC			
		Modify the description			
V1.0.2	2017-02-09	Update the content of PCIe			
		Add the power Consumption of 3CA			
	2017-07-26	Update timing of power on/off and reset			
V1.0.3		2. Update PCle, add USB support			
		3. Update power consumption, TX power, RX sensitivity and other data			
V4 0 4	2017-12-06	Update Storage and packing and PCIe signal description, power			
V1.0.4		consumption, CA combine			
		Modify CA combinations and TDD data throughput			
V1.0.5	2018-1-16	2. Modify description of power consumption condition			
		Optimize power on/off/reset timing			
V4.0.6	2049 2 26	1. Modify COEX pin define			
V1.0.6	2018-2-26	2. Del L850-GL-02 product model			

Applicability Table

	4-1								
No. Product model		Description							
1	L850-GL-00	NA							
2	L850-GL-01	NA							
3	L850-GL-03	NA							
4	L850-GL-05	NA							
5	L850-GL-10	NA							

Contents

1#	Forewo	rd		7#
	1.1#	Intr	oduction	7#
	1.2#	Ref	erence Standard	7#
	1.3#	Rel	ated Documents	7#
2#	Overvie	:W		8#
	2.1#	Intr	oduction	8#
	2.2#	Spe	ecification	8#
	2.3#	Wa	rning	9#
	2.3	.1#	FCC Statement	9#
	2.3	.2#	IC Statement	11#
	2.3	.3#	CE Statement	12#
	2.4#	CA	combinations	13#
	2.5#	App	olication Framework	14#
	2.6#	Har	dware Block Diagram	14#
3#	Applica	tion I	nterface	16#
	3.1# M.:		Interface	16#
	3.1.1#		Pin Map	16#
	3.1	.2#	Pin Definition	17#
	3.2#	Pov	ver Supply	21#
	3.2	.1#	Power Supply	21#
	3.2	.2#	Logic level	22#
	3.2	.3#	Power Consumption	23#
	3.3#	Cor	ntrol Signal	25#
	3.3	.1#	Module Start-Up	26#
		3.3	1.1# Start-up Circuit	26#
		3.3	1.2# Start-up Timing Sequence	26#
	3.3	.2#	Module Shutdown	27#
	3.3	.3#	Module Reset	28#
	3.3	.4#	PCIe Reset	29#
	3.4#	РС	le & USB	30#
	3.4	.1#	PCIe Interface	30#
		3.4	1.1# PCIe Interface Definition	30#
		3.4	1.2# PCIe Interface Application	31#

	3.4	.2#	USB Interface	33#
		3.4	2.1# USB Interface Definition	33#
		3.4	2.2# USB2.0 Interface Application	33#
		3.4	2.3# USB3.0 Interface Application	34#
	3.5#	US	M Interface	35#
	3.5	.1#	USIM Pins	35#
	3.5	2#	USIM Interface Circuit	35#
		3.5	2.1# N.C. SIM Card Slot	35#
		3.5	2.2# N.O. SIM Card Slot	36#
	3.5	.3#	USIM Hot-Plugging	37#
	3.5	4#	USIM Design	37#
	3.6#	Sta	tus Indicator	38#
	3.6	.1#	LED#1 Signal	38#
	3.7#	Inte	rrupt Control	39#
	3.7	.1#	W_DISABLE1#	39#
	3.7	.2#	BODYSAR	39#
	3.8#	Clo	ck Interface	40#
	3.9#	AN	T Tunable Interface	40#
	3.10#	Cor	nfiguration Interface	40#
	3.11#	Oth	er Interfaces	41#
4#	Radio F	requ	ency	42#
	4.1#	RF	Interface	42#
	4.1.	.1#	RF Interface Functionality	42#
	4.1.	2#	RF Connector Characteristic	42#
	4.1.	.3#	RF Connector Dimension	42#
	4.2#	Оре	erating Band	44#
	4.3#	Tra	nsmitting Power	45#
	4.4#	Red	ceiver Sensitivity	46#
	4.5#	GN	SS	47#
	4.6#	Ant	enna Design	48#
5#	Structur	e Sp	ecification	50#
	5.1#	Pro	duct Appearance	50#
	5.2#	Dim	nension of Structure	50#
	5.3#	М 2	Interface Model	51±

5.4#	M	I.2 Connector	51#
5.5#	St	torage	52#
		Storage Life	
5.6#	Pa	acking	52#
5	5.6.1#	Tray Package	52#
Ę	5.6.2#	Tray size	53#

1 Foreword

1.1 Introduction

The document describes the electrical characteristics, RF performance, dimensions and application environment, etc. of L850-GL (hereinafter referred to as L850). With the assistance of the document and other instructions, the developers can quickly understand the hardware functions of L850 modules and develop products.

1.2 Reference Standard

The design of the product complies with the following standards:

- 3GPP TS 34.121-1 V8.11.0: User Equipment (UE) conformance specification; Radio transmission and reception (FDD);Part 1: Conformance specification
- 3GPP TS 34.122 V11.13.0: Technical Specification Group Radio Access Network; Radio transmission and reception (TDD)
- 3GPP TS 36.521-1 V11.4.0: User Equipment (UE) conformance specification; Radio transmission and reception; Part 1: Conformance testing
- 3GPP TS 21.111 V10.0.0: USIM and IC card requirements
- 3GPP TS 51.011 V4.15.0: Specification of the Subscriber Identity Module -Mobile Equipment (SIM-ME) interface
- 3GPP TS 31.102 V10.11.0: Characteristics of the Universal Subscriber Identity Module (USIM) application
- 3GPP TS 31.11 V10.16.0: Universal Subscriber Identity Module (USIM) Application Toolkit(USAT)
- 3GPP TS 36.124 V10.3.0: Electro Magnetic Compatibility (EMC) requirements for mobile terminals and ancillary equipment
- 3GPP TS 27.007 V10.0.8: AT command set for User Equipment (UE)
- 3GPP TS 27.005 V10.0.1: Use of Data Terminal Equipment Data Circuit terminating Equipment (DTE - DCE) interface for Short Message Service (SMS) and Cell Broadcast Service (CBS)
- PCI Express M.2 Specification Rev1.1

1.3 Related Documents

- RF Antenna Application Design Specification
- L8-Family System Driver Integration and Application Guidance
- L8-Family AT Commands Manual

2 Overview

2.1 Introduction

L850 is a highly integrated 4G WWAN module which uses M.2 form factor interface. It supports LTE FDD/LTE TDD/WCDMA systems and can be applied to most cellular networks of mobile carrier in the world.

2.2 Specification

Specification					
	LTE FDD: Band 1, 2, 3, 4, 5, 7, 8, 11, 12, 13, 17, 18, 19, 20, 21, 26, 28, 29, 30, 66				
Operating Bond	LTE TDD: Band 38, 39, 40, 41				
Operating Band	WCDMA/HSPA+: Ba	and 1, 2, 4, 5, 8			
	GNSS/Beidou: supp	ort			
	LTE FDD	450Mbps DL/50Mbps UL(Cat 9)			
		347Mbps DL/30Mbps UL(Cat 9)			
Data Transmission	LTE TDD	When LTE TDD achieves maximum DL rate, its UL rate can			
Data Transmission		reach 10Mbps only			
	LINATO/LIODA	UMTS: 384 kbps DL/384 kbps UL			
	UMTS/HSPA+	DC-HSPA+: 42Mbps DL(Cat 24)/5.76Mbps UL(Cat6)			
Power Supply	DC 3.135V∼4.4V, T	ypical 3.3V			
	Normal operating temperature: -10°C ~+55°C				
Temperature	Extended operating temperature: -20°C ~+65°C				
	Storage temperature: -40°C ∼+85°C				
D	Interface: M.2 Key-B				
Physical characteristics	Dimension: 30 x 42 x 2.3mm				
Characteristics	Weight: About 5.8 g				
Interface					
Antonna Connaster	WWAN Main Antenr	na x 1			
Antenna Connector	WWAN Diversity Antenna x 1				
Function Interface	nction Interface USIM 3V/1.8V				

Specification					
	PCIe 1.0 X1				
	USB 2.0				
	USB 3.0(Base on Linux)				
	W_Disable#				
	Body Sar				
	LED				
	Clock				
	Tunable antenna				
	I2S(Reserved)				
	I2C(Reserved)				
Software					
Protocol Stack	IPV4/IPV6				
AT commands	3GPP TS 27.007 and 27.005				
Firmware update	PCIe				
	Multiple carrier				
Other feature	Windows MBIM support				
Other leature	Windows update				
	AGNSS				

Note:

When temperature goes beyond normal operating temperature range of -10°C∼+55°C, RF performance of module may be slightly off 3GPP specifications. For normal operating temperature, LTE FDD Band 4 and 13 can support temperature ranging from -20°C to +60°C.

2.3 Warning

2.3.1 FCC Statement

Federal Communication Commission Interference Statement

This device complies with Part 15 of the FCC Rules. Operation is subject to the following two conditions: (1) This device may not cause harmful interference, and (2) this device must accept any interference received, including interference that may cause undesired operation.

This equipment has been tested and found to comply with the limits for a Class B digital device, pursuant to Part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference in a residential installation. This equipment generates, uses and can radiate radio frequency energy and, if not installed and used in accordance with the instructions, may cause harmful interference to radio communications. However, there is no guarantee that interference will not occur in a particular installation. If this equipment does cause harmful interference to radio or television reception, which can be determined by turning the equipment off and on, the user is encouraged to try to correct the interference by one of the following measures:

- Reorient or relocate the receiving antenna.
- Increase the separation between the equipment and receiver.
- Connect the equipment into an outlet on a circuit different from that to which the receiver is connected.
- Consult the dealer or an experienced radio/TV technician for help.

•

FCC Caution:

- Any changes or modifications not expressly approved by the party responsible for compliance could void the user's authority to operate this equipment.
- This transmitter must not be co-located or operating in conjunction with any other antenna or transmitter.

Radiation Exposure Statement:

This equipment complies with FCC radiation exposure limits set forth for an uncontrolled environment. This equipment should be installed and operated with minimum distance 20cm between the radiator & your body.

This device is intended only for OEM integrators under the following conditions:

- 1) The antenna must be installed such that 20 cm is maintained between the antenna and users, and the maximum antenna gain allowed for use with this device is 5 dBi.
- 2) The transmitter module may not be co-located with any other transmitter or antenna.

As long as 2 conditions above are met, further transmitter test will not be required. However, the OEM integrator is still responsible for testing their end-product for any additional compliance requirements required with this module installed.

IMPORTANT NOTE: In the event that these conditions can not be met (for example certain laptop configurations or co-location with another transmitter), then the FCC authorization is no longer considered valid and the FCC ID can not be used on the final product. In these circumstances, the OEM integrator will be responsible for re-evaluating the end product (including the transmitter) and obtaining a separate FCC authorization.

End Product Labeling

This transmitter module is authorized only for use in device where the antenna may be installed such that 20 cm may be maintained between the antenna and users. The final end product must be labeled in a visible area with the following: "Contains FCC ID: ZMOL850GLD". The grantee's FCC ID can be used only when all FCC compliance requirements are met.

Manual Information To the End User

The OEM integrator has to be aware not to provide information to the end user regarding how to install or remove this RF module in the user's manual of the end product which integrates this module. The end user manual shall include all required regulatory information/warning as show in this manual.

2.3.2 IC Statement

Industry Canada statement

This device complies with Industry Canada license-exempt RSS standard(s). Operation is subject to the following two conditions:

- 1) this device may not cause interference, and
- 2) this device must accept any interference, including interference that may cause undesired operation of the device.

Le présent appareil est conforme aux CNR d'Industrie Canada applicables aux appareils radio exempts de licence. L'exploitation est autorisée aux deux conditions suivantes:

- 1) l'appareil ne doit pas produire de brouillage, et
- 2) l'utilisateur de l'appareil doit accepter tout brouillage radioélectrique subi, même si le brouillage est susceptible d'en compromettre le fonctionnement.

This Class B digital apparatus complies with Canadian ICES-003.

Cet appareil numérique de la classe B est conforme à la norme NMB-003 du Canada.

This device complies with RSS-310 of Industry Canada. Operation is subject to the condition that this device does not cause harmful interference.

Cet appareil est conforme à la norme RSS-310 d'Industrie Canada. L'opération est soumise à la condition que cet appareil ne provoque aucune interférence nuisible.

FIDOCOM

This device and its antenna(s) must not be co-located or operating in conjunction with any other antenna or transmitter, except tested built-in radios.

Cet appareil et son antenne ne doivent pas être situés ou fonctionner en conjonction avec une autre antenne ou un autre émetteur, exception faites des radios intégrées qui ont été testées.

The County Code Selection feature is disabled for products marketed in the US/ Canada.

La fonction de sélection de l'indicatif du pays est désactivée pour les produits commercialisés aux États-Unis et au Canada.

Radiation Exposure Statement:

This equipment complies with IC radiation exposure limits set forth for an uncontrolled environment. This equipment should be installed and operated with minimum distance 20cm between the radiator & your body.

Déclaration d'exposition aux radiations:

Cet équipement est conforme aux limites d'exposition aux rayonnements IC établies pour un environnement non contrôlé. Cet équipement doit être installé et utilisé avec un minimum de 20 cm de distance entre la source de rayonnement et votre corps.

IC: 21374-L850GLD

2.3.3 CE Statement

► EU Regulatory Conformance

Hereby, We, Fibocom Wireless Inc. declares that the radio equipment type L850-GL is in compliance with the Directive 2014/53/EU.

In all cases assessment of the final product must be mass against the Essential requirements of the Directive 2014/53/EU Articles 3.1(a) and (b), safety and EMC respectively, as well as any relevant Article3.2 requirements.

The maximum antenna gain for is 5 dBi and the antenna separation distance is 20cm.

► Declaration of Conformity(should include manufacturer contact info.)

Please added certification standard in your user manual which depended on the test standards your device performed., If the DoC should be a simplified version, please take below as reference, The full text of the EU declaration of conformity is available at the following internet address: http://www.

fibocom.com

2.4 CA combinations

CA Combi	CA Combinations							
		1+3, 5, 8, 11, 18, 19, 20, 21, 26						
		2+4, 5, 12, 13, 17, 29, 30, 66						
		3+5, 7, 8, 19, 20, 28						
		4+5, 12, 13, 17, 29, 30						
	luter band	5+7, 30, 66						
2CA	Inter-band	7+20, 28						
20A		8+11						
		12+30						
		13+66						
		29+30						
	Intra-band(non-contiguous)	2, 3, 4, 7, 41						
	Intra-band(contiguous)	2, 3, 7, 40, 41						
		1+3+7, 1+3+8, 1+3+19, 1+3+20, 1+3+28, 1+7+20, 1+7+28,						
		1+8+11, 1+19+21						
	Inter-band	2+4+5, 2+4+13, 2+5+30, 2+12+30, 2+29+30, 2+5+66,						
	inter band	2+13+66						
		3+7+20, 3+7+28						
		4+5+30, 4+12+30, 4+29+30						
3CA	2 intra-band(non-contiguous)	2+2+5, 2+2+13						
	plus inter-band	4+4+5, 4+4+13						
		2+2+29						
	2 intra-band(contiguous)	3+3+1, 3+3+5, 3+3+7, 3+3+20, 3+3+28						
	plus inter-band	2+66+66, 5+66+66, 13+66+66						
		7+7+3, 7+7+28						
	Intra-band(non-contiguous)	41, 66						
	Intra-band(contiguous)	40, 41, 66						

2.5 Application Framework

The peripheral applications for L850 module are shown in Figure 2-1:

Figure 2-1 Application Framework

2.6 Hardware Block Diagram

The hardware block diagram in Figure 2-2 shows the main hardware functions of L850 module, including base band and RF functions.

Baseband contains the followings:

- GSM/UMTS/LTE FDD controller/Power supply
- NAND/internal LPDDR2 RAM
- · Application interface

RF contains the followings:

- RF Transceiver
- RF Power/PA
- RF Front end
- RF Filter
- Antenna Connector

Figure 2-2 Hardware Block Diagram

3 Application Interface

3.1 M.2 Interface

The L850 module applies standard M.2 Key-B interface, with a total of 75 pins.

3.1.1Pin Map

		CONFIC 2	75
74	+3.3V	CONFIG_2 GND	73
72	+3.3V		
70	+3.3V	GND	71
68	NC	CONFIG_1	69
66	SIM_DETECT(1.8V)	RESET#(1.8V)	67
64	COEX_TXD(1.8V)	NC	65
62	COEX RXD(1.8V)	ANTCTL2(1.8V)	63
60	COEX3(1.8V)	ANTCTL1(1.8V)	61
58	RFE_RFFE2_SDATA(3.3/1.8V)	ANTCTL0(1.8V)	59
56	RFE RFFE2 SCLK(3.3/1.8V)	GND	57
54	PEWAKE# (3.3V)	REFCLKP	55
52	CLKREQ# (3.3V)	REFCLKN	53
50	PERST# (3.3V)	GND	51
48	TX_BLANKING(1.8V)	PERp0	49
46	SYSCLK(1.8V)	PERn0	47
44	GNSS IRQ(1.8V)	GND	45
42	GNSS_SDA(1.8V)	PETp0	43
40	GNSS_SCL(1.8V)	PETn0	41
38	NC	GND	39
	UIM PWR	USB3.0_RX+	37
36	_	USB3.0_RX-	35
34	UIM_DATA	GND	33
32	UIM_CLK	USB3.0_TX+	31
30	UIM_RESET	USB3.0_TX-	29
28	I2S_WA(1.8V)	GND	27
26	W_DISABLE2#(3.3/1.8V)	DPR(3.3/1.8V)	25
24	I2S_TX(1.8V)	WOWWAN#(1.8V)	23
22	I2S_RX(1.8V)	CONFIG_0	21
20	I2S_CLK(1.8V)	Notch	
	Notch	GND	11
10	LED1#(3.3V OD)	USB D-	9
8	W_DISABLE1#(3.3/1.8V)	USB D+	7
6	FULL_CARD_POWER_OFF#(3.3/1.8V)	GND	5
4	+3.3V	GND	3
2	+3.3V	CONFIG 3	1

Figure 3-1 Pin Map

Note:

Pin "Notch" represents the gap of the gold fingers.

3.1.2 Pin Definition

The pin definition is as follows:

Pin	Pin Name	I/O	Reset Value	Pin Description	Туре
				NC, L850 M.2 module is configured as	
1	CONFIG_3	0	NC	the WWAN – PCIe, USB3.0 interface	
				type	
2	+3.3V	PI		Power input	Power Supply
3	GND			GND	Power Supply
4	+3.3V	PI		Power input	Power Supply
5	GND			GND	Power Supply
6	FULL_CARD_		PU	Power enable, Module power on input,	CMOS
0	POWER_OFF#	'		internal pull up	3.3/1.8V
7	USB D+	I/O		USB Data Plus	0.33V
8	W_DISABLE1#		PD	MMMAN Disable, active low	CMOS
0	W_DISABLE I#	I	ואס	WWAN Disable, active low	3.3/1.8V
9	USB D-	I/O		USB Data Minus	0.33V
10	LED1#	0	Т	System status LED, Output open drain,	CMOS 3.3V
	LLU IT	<u> </u>	<u> </u>	CMOS 3.3V	0.000
11	GND			GND	Power Supply
12	Notch			Notch	
13	Notch			Notch	
14	Notch			Notch	
15	Notch			Notch	
16	Notch			Notch	
17	Notch			Notch	
18	Notch			Notch	
19	Notch			Notch	
20	I2S_CLK	0	PD	I2S Serial clock,	CMOS 1.8V
20	IZO_OLIV) D	Reserved	CIVICO 1.0V
				GND, L850 M.2 module is configured as	
21	CONFIG_0		GND	the WWAN – PCIe, USB3.0 interface	
				type	

Pin	Pin Name	I/O	Reset Value	Pin Description	Туре
22	12S_RX	I	PD	I2S Serial receive data, Reserved	CMOS 1.8V
23	WOWWAN#	0	PD	Wake up host, Reserved	CMOS 1.8V
24	I2S_TX	0	PD	I2S Serial transmit data, Reserved	CMOS 1.8V
25	DPR	I	PU	Body SAR Detect, active low	CMOS 3.3/1.8V
26	W_DISABLE2#	ı	PU	GNSS disable, active low,	CMOS 3.3/1.8V
27	GND			GND	Power Supply
28	I2S_WA	0	PD	I2S Word alignment/select, Reserved	CMOS 1.8V
29	USB3.0_TX-	0		USB3.0 Transmit data minus	
30	UIM_RESET	0	L	SIM reset signal	1.8V/3V
31	USB3.0_TX+	0		USB3.0 Transmit data plus	
32	UIM_CLK	0	L	SIM clock Signal	1.8V/3V
33	GND			GND	电源
34	UIM_DATA	I/O	L	SIM data input/output	1.8V/3V
35	USB3.0_RX-	ı		USB3.0 receive data minus	
36	UIM_PWR	0		SIM power supply, 3V/1.8V	1.8V/3V
37	USB3.0_RX+	I		USB3.0 receive data plus	
38	NC			NC	
39	GND			GND	Power Supply
40	GNSS_SCL	0	PU	I2C Serial clock, Reserved	CMOS 1.8V
41	PETn0	0		PCIe TX Differential signals Negative	
42	GNSS_SDA	I/O	PU	I2C Serial data input/output, Reserved	CMOS 1.8V
43	PETp0	0		PCle TX Differential signals Positive	
44	GNSS_IRQ	I	PD	GNSS Interrupt Request, Reserved	CMOS 1.8V
45	GND			GND	Power Supply

Reproduction forbidden without Fibocom Wireless Inc. written authorization - All Rights Reserved.

Pin	Pin Name	I/O	Reset Value	Pin Description	Туре
46	SYSCLK	0	PD	26M clock output	1.8V
47	PERn0	1		PCIe RX Differential signals Negative	
48	TX_BLANKING	0	PD	PA Blanking Timer, Reserved	CMOS 1.8V
49	PERp0	I		PCIe RX Differential signals Positive	
50	PERST#	ı	Т	Asserted to reset module PCIe interface default. If module went into core dump, it will reset whole module, not only PCIe interface. Active low, internal pull up(10KΩ)	CMOS 3.3V
51	GND			GND	Power Supply
52	CLKREQ#	0	Т	Asserted by device to request a PCIe reference clock be available (active clock state) in order to transmit data. It also used by L1 PM Sub states mechanism, asserted by either host or device to initiate an L1 exit. Active low, internal pull up(10KΩ)	CMOS 3.3V
53	REFCLKN	I		PCIe Reference Clock signal Negative	
54	PEWAKE#	0	L	Asserted to wake up system and reactivate PCle link from L2 to L0, it depends on system whether supports wake up functionality. Active low, open drain output and should add external pull up on platform	CMOS 3.3V
55	REFCLKP	1		PCIe Reference Clock signal Positive	
56	RFE_RFFE2_ SCLK	0		MIPI Interface Tunable ANT, RFFE2 clock, Open Drain output	CMOS 3.3/1.8V
57	GND			GND	Power Supply
58	RFE_RFFE2_ SDATA	0		MIPI Interface Tunable ANT, RFFE2 data, Open Drain output	CMOS 3.3/1.8V
59	ANTCTL0	0		Tunable ANT CTRL0	CMOS 1.8V
60	COEX3	I/O	PD	Wireless Coexistence between WWAN and WiFi/BT modules, based on BT-SIG	CMOS 1.8V

Pin	Pin Name	I/O	Reset Value	Pin Description	Туре
				coexistence protocol. COEX_EXT_FTA, Reserved	
61	ANTCTL1	0	-	Tunable ANT CTRL1	CMOS 1.8V
62	COEX_RXD	I	Т	Wireless Coexistence between WWAN and WiFi/BT modules, based on BT-SIG coexistence protocol. UART receive signal(WWAN module side), Reserved	CMOS 1.8V
63	ANTCTL2	0	-	Tunable ANT CTRL2	CMOS 1.8V
64	COEX_TXD	0	Т	Wireless Coexistence between WWAN and WiFi/BT modules, based on BT-SIG coexistence protocol. UART transmit signal(WWAN module side), Reserved	CMOS 1.8V
65	NC			NC	
66	SIM_DETECT	I	PD	SIM Detect, internal pull up(390K Ω), active high	CMOS 1.8V
67	RESET#	I		WWAN reset input, internal pull up(10KΩ), active low	CMOS 1.8V
68	NC			NC	
69	CONFIG_1	0	GND	GND, L850 M.2 module is configured as the WWAN – PCIe, USB3.0 interface type	
70	+3.3V	PI		Power input	Power Supply
71	GND			GND	Power Supply
72	+3.3V	PI		Power input	Power Supply
73	GND			GND	Power Supply
74	+3.3V	PI		Power input	Power Supply
75	CONFIG_2	0	GND	GND, L850 M.2 module is configured as the WWAN – PCIe, USB3.0 interface type	

Reset Value: The initial status after module reset, not the status when working.

H: High Voltage LevelL: Low Voltage Level

PD: Pull-Down

PU: Pull-Up

T: Tristate

OD: Open Drain

PP: Push-Pull

PI: Power Input

PO: Power Output

Note:

The unused pins can be left floating.

3.2 Power Supply

The power interface of L850 module as shown in the following table:

				DC Parameter (V)		
Pin	Pin Name	I/O		Minimum Value	Typical Value	Maximum Value
2, 4, 70, 72, 74	+3.3V	PI	Power supply input	3.135	3.3	4.4
36	UIM_PWR	РО	USIM power supply	-	1.8V/3V	-

L850 module uses PCIe interface, according to the PCIe specification, the PCIe Vmain should be used as the +3.3V power source, not the Vaux. The Vaux is the PCIe backup power source and it is not sufficient as the power supply. In addition, the DC/DC power supply other than PCIe ports should not be used as the external power cannot control the module status through the PCIe protocol.

3.2.1 Power Supply

The L850 module should be powered through the +3.3V pins, and the power supply design is shown in Figure 3-2:

Figure 3-2 Power Supply Design

The filter capacitor design for power supply as shown in the following table:

Recommended capacitance	Application	Description
220uF x 2	Voltage-stabilizing capacitors	Reduce power fluctuations of the module in operation, requiring capacitors with low ESR. LDO or DC/DC power supply requires the capacitor of no less than 440uF The capacitor for battery power supply can be reduced to 100~200uF
1uF, 100nF	Digital signal noise	Filter out the interference generated from the clock and digital signals
39pF, 33pF	700/800, 850/900 MHz frequency band	Filter out low frequency band RF interference
18pF, 8.2pF, 6.8pF	1500/1700/1800/1900, 2100/2300, 2500/2600MHzfrequency	Filter out medium/high frequency band RF interference

The stable power supply can ensure the normal operation of L850 module; and the ripple of the power supply should be less than 300mV in design. When the module operates with the maximum emission power, the maximum operating current can reach 1000mA, so the power source should be not lower than 3.135V, or the module may shut down or reboot. The power supply limits are shown in Figure 3-3:

Figure 3-3 Power Supply Limit

3.2.2 Logic level

The L850module 1.8V logic level definition as shown in the following table:

Parameters	Minimum	Typical	Maximum	Unit
1.8V logic level	1.71	1.8	1.89	V
V _{IH}	1.3	1.8	1.89	V
V _{IL}	-0.3	0	0.3	V

The L850module 3.3V logic level definition as shown in the following table:

Parameters	Minimum	Typical	Maximum	Unit
3.3V logic level	3.135	3.3	3.465	V
V _{IH}	2.3	3.3	3.465	V
V _{IL}	-0.3	0	0.3	V

3.2.3 Power Consumption

In the condition of 3.3V power supply, the L850 power consumption as shown in the following table:

Parameter	Mode	Condition	Average Current(mA)
l _{off}	Power off	Power supply, module power off	0.08
		DRX=6	3.3
	WCDMA	DRX=8	2.6
		DRX=9	2.4
Sleep	LTE FDD	Paging cycle #64 frames (0.64 sec DRx cycle)	3.8
	LTE TDD	Paging cycle #64 frames (0.64 sec DRx cycle)	4.2
	Radio Off	AT+CFUN=4, Flight mode	2.0
		WCDMA Data call Band 1 @+23.5dBm	580
		WCDMA Data call Band 2 @+23.5dBm	700
I _{WCDMA-RMS}	WCDMA	WCDMA Data call Band 4 @+23.5dBm	530
		WCDMA Data call Band 5 @+23.5dBm	480
		WCDMA Data call Band 8 @+23.5dBm	560
		LTE FDD Data call Band 1 @+23dBm	700
I _{LTE-RMS}	LTE FDD	LTE FDD Data call Band 2 @+23dBm	760
		LTE FDD Data call Band 3 @+23dBm	790

Reproduction forbidden without Fibocom Wireless Inc. written authorization - All Rights Reserved.

Parameter	Mode	Condition	Average
			Current(mA)
		LTE FDD Data call Band 4 @+23dBm	770
		LTE FDD Data call Band 5 @+23dBm	600
		LTE FDD Data call Band 7 @+23dBm	860
		LTE FDD Data call Band 8 @+23dBm	580
		LTE FDD Data call Band 11 @+23dBm	850
		LTE FDD Data call Band 12 @+23dBm	650
		LTE FDD Data call Band 13 @+23dBm	660
		LTE FDD Data call Band 17 @+23dBm	670
		LTE FDD Data call Band 18 @+23dBm	620
		LTE FDD Data call Band 19 @+23dBm	580
		LTE FDD Data call Band 20 @+23dBm	650
		LTE FDD Data call Band 21 @+23dBm	850
		LTE FDD Data call Band 26 @+23dBm	580
		LTE FDD Data call Band 28 @+23dBm	600
		LTE FDD Data call Band 30 @+22dBm	820
		LTE FDD Data call Band 66 @+23dBm	780
		LTE TDD Data call Band 38 @+23dBm	450
		LTE TDD Data call Band 39 @+23dBm	350
	LTE TDD	LTE TDD Data call Band 40 @+23dBm	380
		LTE TDD Data call Band 41 @+23dBm	460

In 3CA mode, the L850 power consumption as shown in the following table: :

3CA Combination	Condition	Average
SCA Combination	(LTE FDD 3CA, Full RB)	Current(mA)
1+3+7, 1+3+8, 1+3+19, 1+3+20, 1+3+28,	Band 1 @+22dBm	920
1+7+20, 1+7+28, 1+8+11, 1+19+21	Band 2 @+22dBm	900
2+4+5, 2+4+13, 2+5+30, 2+12+30, 2+29+30	Band 3 @+22dBm	1170

3CA Combination	Condition	Average
Control of the contro	(LTE FDD 3CA, Full RB)	Current(mA)
3+7+20, 3+7+28	Band 4 @+22dBm	930
4+5+30, 4+12+30, 4+29+30	Band 5 @+22dBm	710
5+66+2, 13+66+2	Band 7 @+22dBm	950
2+2+5, 2+2+13 3+3+7, 3+7+7, 3+3+20	Band 8 @+22dBm	650
4+4+5, 4+4+13	Band 11 @+22dBm	1000
5+66+66, 13+66+66, 66+66+2, 66+66+66	Band 12 @+22dBm	790
7+7+28, 3+3+28, 3+3+5, 1+3+3	Band 13 @+22dBm	700
	Band 19 @+22dBm	690
	Band 20 @+22dBm	730
	Band 21 @+22dBm	890
	Band 28 @+22dBm	670
	Band 30 @+21dBm	910
	Band 66 @+22dBm	820

Note:

The data above is an average value obtained by testing some samples.

3.3 Control Signal

The L850 module provides two control signals for power on/off and reset operations, the pin defined as shown in the following table:

Pin	Pin Name	I/O	Reset Value	Functions	Туре
6	FULL_CARD_POWER _OFF#	I	PU	Module power on/off input, internal pull up Power on: High/Floating Power off: Low	3.3/1.8V
67	RESET#	I	-	WWAN reset input, internal pull up($10K\Omega$), active low	1.8V
50	PERST#	I	Т	Asserted to reset module PCIe interface default. If module went into core dump, it will reset whole	CMOS 3.3V

Pin	Pin Name	I/O	Reset Value	Functions	Туре
				module, not only PCle interface.	
				Active low, internal pull up(10KΩ)	

Note:

RESET# and PERST# need to be controlled by independent GPIO, and not shared with other devices on the host.

3.3.1 Module Start-Up

3.3.1.1 Start-up Circuit

The FULL_CARD_POWER_OFF# pin needs an external 3.3V or 1.8V pull up for booting up. The VDD_1V8 should be provided from the external circuit. AP (Application Processor) controls the module start-up, and the circuit design is shown in Figure 3-4:

Figure 3-4 Circuit for Module Start-up Controlled by AP

3.3.1.2 Start-up Timing Sequence

When power supply is ready, the PMU of module will power on and start initialization process by pulling high FULL_CARD_POWER_OFF# signal. After about 10s, module will complete initialization process. The start-up timing is shown in Figure 3-5:

Figure 3-5 Timing Control for Start-up

Reproduction forbidden without Fibocom Wireless Inc. written authorization - All Rights Reserved.

Index	Minimum	Typical	Notes
t _{pr}	-	-	+3.3V power supply rises time. If power supply always ready, there is no t _{pr}
t _{on1}	10ms	30ms	If the RESET# has a residual voltage, then 30ms is necessary
t _{on2}	10ms	30ms	PERST# should de-asserted after FULL_CARD_POWER_OFF#

3.3.2 Module Shutdown

The module can be shut down by the following controls:

Shutdown Control	Action	Condition	
Software	Sending AT+CFUN=0 command	Normal shutdown(recommend)	
Hardware	Pull down	Only used when a hardware exception occurs	
	FULL_CARD_POWER_OFF# pin	and the software control cannot be used.	

The module can be shut down by sending AT+CFUN=0 command. When the module receives the software shutdown command, the module will start the finalization process (the reverse process of initialization), and it will be completed after t_{sd} time(t_{sd} is the time which AP receive OK of "AT+CFUN=0", if there is no response, the max t_{sd} is 5s). In the finalization process, the module will save the network, SIM card and some other parameters from memory, then clear the memory and shut down PMU. The software control timing is shown in Figure 3-6:

Figure 3-6 Software control power off timing

Index	Minimum	Typical	Maxim	Notes
t _{pd}	10ms	100ms	-	$\pm 3.3 \text{V}$ power supply goes down time. If power supply is always on, there is no t_{pd}
t _{off1}	10ms	30ms	-	RESET# should asserted before FULL_CARD_POWER_OFF#
t _{off2}	0ms	30ms	t _{off1}	PERST# should asserted after RESET#

3.3.3 Module Reset

The L850 module can reset to its initial status by pulling down the RESET# signal for more than 10ms (30msis recommended), and module will restart after RESET# signal is released. When customer executes RESET# function, the PMU remains its power inside the module. The recommended circuit design is shown in the Figure 3-7:

Figure 3-7 Recommended Design for Reset Circuit

There are two reset control timings as below:

- Host may keep FULL_CARD_POWER_OFF# high when system restarting, module reset timing is shown in the Figure 3-8;
- Host may assert FULL_CARD_POWER_OFF# high when system restarting, module reset timing is shown in the Figure 3-9;

Figure 3-8 Reset control timing1st

Figure 3-9 Reset control timing2nd

Index	Minimum	Typical	Notes
t _{res1}	10ms	30ms	RESET# should asserted time
t _{res2}	0ms	30ms	PERST# should asserted after RESET#. PERST# is not required for modem restart, thus this pin can be remains high during restart

Note:

RESET# is a sensitive signal, it's recommended to add a filter capacitor close to the module. In case of PCB layout, the RESET# signal lines should keep away from the RF interference and protected by GND. Also, the RESET# signal lines shall neither near the PCB edge nor route on the surface planes to avoid module from reset caused by ESD problems.

3.3.4 PCIe Reset

Module supports PCle goes in to D3cold L2 state in Win10 system. The D0->D3cold L2@S0/S0ix/S3 ->D0 timing is shown in figure 3-10:

Figure 3-10 PCIe reset timing

3.4 PCIe & USB

L850 module supports PCIe and USB interface for data request. PCIe & USB interface functions are as below table:

Interface	System	Priority	Description
PCle	Win10	High	Priority: PCle>USB. If PCle and USB ports connected both with PC, module will initial PCle first, then disable USB port
USB	Android/Linux	Low	It must disconnect PCIe port, only keep USB connecting. If keep PCIe and USB connecting both, it needs disable PCIe by BIOS/UEFI of PC

3.4.1PCle Interface

L850 module supports PCle 1.0 interface and one data transmission channel.

After L850 module is inserted into PC, PCIe interface can, work with the drive program, map an MBIM port and a GNSS port in Win10 system. While MBIM interface is used for initiating data service in Win10 system and GNSS interface for receiving GNSS data.

3.4.1.1 PCIe Interface Definition

Pin#	Pin Name	I/O	Reset Value	Description	Туре
41	PETn0	0	-	PCIe TX Differential signals	-
				Negative	
43	PETP0	0	-	PCIe TX Differential signals Positive	-
47	PERn0	ı	-	PCIe RX Differential signals	
77	LITTO	1		NegativeBit0	
49	PERP0	I	-	PCIe RX Differential signals Positive	-
53	REFCLKN	FCLKN I	1 -	PCIe Reference Clock signal	
JJJ KLI OL	THE OFFICE			Negative	
55	REFCLKP	l i	_	PCIe Reference Clock signal	
1 TEL CENT	INEI OEM	CLRF I	'	Positive	
				Asserted to reset module PCIe interface	
50	PERST#	ERST# I		default. If module went into coredump, it will	CMOS 3.3V
				reset whole module, not only PCIe interface. Active low, internal pull up($10K\Omega$)	

Pin#	Pin Name	I/O	Reset Value	Description	Туре
52	CLKREQ#	0	Т	Asserted by device to request a PCIe reference clock be available (active clock state) in order to transmit data. It also used by L1 PM Sub states mechanism, asserted by either host or device to initiate an L1 exit. Active low, internal pull up(10KΩ)	CMOS 3.3V
54	PEWAKE#	0	L	Asserted to wake up system and reactivate PCIe link from L2 to L0, it depends on system whether supports wake up functionality. Active low, open drain output and should add external pull up on platform	CMOS 3.3V

3.4.1.2 PCle Interface Application

The reference circuit is shown in Figure 3-11:

Figure 3-11 Reference Circuit for PCIe Interface

L850 module supports one PCIe 1.0 interface, including three difference pairs: transmit pair TXP/N, receiving pair RXP/N and clock pair CLKP/N.

PCIe can achieve the maximum transmission rate of 2.5 GT/s, and must strictly follow the rules below in PCB Layout:

- The differential signal pair lines shall be parallel and equal in length;
- The differential signal pair lines shall be short if possible and be controlled within 15 inch(380 mm) for AP end;
- The impedance of differential signal pair lines is recommended to be 100 ohm, and can be controlled to 80~120 ohm in accordance with PCle protocol;

- It shall avoid the discontinuous reference ground, such as segment and space;
- When the differential signal lines go through different layers, the via hole of grounding signal should be in close to that of signal, and generally, each pair of signals require 1-3 grounding signal via holes and the lines shall never cross the segment of plane;
- Try to avoid bended lines and avoid introducing common-mode noise in the system, which will influence the signal integrity and EMI of difference pair. As shown in Figure 3-12, the bending angle of all lines should be equal or greater than 135°, the spacing between difference pair lines should be larger than 20mil, and the line caused by bending should be greater than 1.5 times line width at least. When a serpentine line is used for length match with another line, the bended length of each segment shall be at least 3 times the line width (≥3W). The largest spacing between the bended part of the serpentine line and another one of the differential lines must be less than 2 times the spacing of normal differential lines (S1<2S);

Figure 3-12 Requirement of PCIe Line

• The difference in length of two data lines in difference pair should be within 5mil, and the length match is required for all parts. When the length match is conducted for the differential lines, the designed position of correct match should be close to that of incorrect match, as shown in Figure 3-13. However, there is no specific requirements for the length match of transmit pair and receiving pair, that is, the length match is only required in the internal differential lines rather than between different difference pairs. The length match should be close to the signal pin and pass the small-angle bending design.

Figure 3-13 Length Match Design of PCIe Difference Pair

3.4.2USB Interface

The L850 module supports USB2.0 which is compatible with USB High-Speed (480 Mbit/s) and USB Full-Speed (12 Mbit/s). It supports USB3.0 using for LTE cat9 high speed data throughput at the same time. For the USB timing and electrical specification of L850 module, please refer to Universal Serial Bus Specification 2.0" and "Universal Serial Bus Specification 3.0".

When module inserted PC, USB can enumerate three ACM and three NCM ports in Android/Linux system, the ports can be configured in practical application.

3.4.2.1 USB Interface Definition

Pin#	Pin Name	I/O	Description	Туре
7	USB D+	I/O	USB Data Plus	0.33V,
<i>'</i>	U3B_D+	1/0	USB Data Plus	USB2.0
9	USB_D-	I/O	USB Data Minus	0.33V,
9				USB2.0
29	USB3.0_TX-	0	USB3.0 Transmit data minus	-
31	USB3.0_TX+	0	USB3.0 Transmit data plus	-
35	USB3.0_RX-	I	USB3.0 receive data minus	-
37	USB3.0_RX+	I	USB3.0 receive data plus	-

3.4.2.2 USB2.0 Interface Application

The reference circuit is shown in Figure 3-14:

Figure 3-14 Reference Circuit for USB 2.0 Interface

Since the module supports USB 2.0 High-Speed, it is required to use TVS diodes with equivalent capacitance of 1pF or smaller ones on the USB_D-/D+ differential signal lines, it is recommended to use 0.5pF TVS diodes.

USB_D- and USB_D+ are high speed differential signal lines with the maximum transfer rate of 480 Mbit/s, so the following rules shall be followed carefully in the case of PCB layout:

- USB D- and USB D+ signal lines should have the differential impedance of 90 ohms.
- USB_D- and USB_D+ signal lines should be parallel and have the equal length, the right angle routing should be avoided.
- USB_D- and USB_D+ signal lines should be routed on the layer that is adjacent to the ground layer, and wrapped with GND vertically and horizontally.

3.4.2.3 USB3.0 Interface Application

The reference circuit is shown in Figure 3-15:

Figure 3-15 Reference Circuit for USB 3.0 Interface

USB 3.0 signals are super speed differential signal lines with the maximum transfer rate of 5Gbps. So the following rules shall be followed carefully in the case of PCB layout:

- USB3.0_TX-/USB3.0_TX+ and USB3.0_RX-/ USB3.0_RX+ are two pairs differential signal lines, the differential impedance should be controlled as100 ohms.
- The two pairs differential signal lines should be parallel and have the equal length, the right

Reproduction forbidden without Fibocom Wireless Inc. written authorization - All Rights Reserved.

angle routing should be avoided.

• The two pairs differential signal lines should be routed on the layer that is adjacent to the ground layer, and wrapped with GND vertically and horizontally.

3.5 USIM Interface

The L850 module has a built-in USIM card interface, which supports 1.8V and 3V SIM cards.

3.5.1 USIM Pins

The USIM pins description as shown in the following table:

Pin	Pin Name	I/O	Reset Value	Description	Туре
36	UIM_PWR	РО	-	USIM power supply	1.8V/3V
30	UIM_RESET	0	L	USIM reset	1.8V/3V
32	UIM_CLK	0	L	USIM clock	1.8V/3V
34	UIM_DATA	I/O	L	USIM data, internal pull up(4.7KΩ)	1.8V/3V
66	SIM_DETECT	I	PD	USIM card detect, internal 390K pull-up. Active high, and high level indicates SIM card is inserted; and low level indicates SIM card is detached.	1.8V

3.5.2 USIM Interface Circuit

3.5.2.1 N.C. SIM Card Slot

The reference circuit design for N.C. (Normally Closed) SIM card slot is shown in Figure 3-16:

Figure 3-16Reference Circuit for N.C. SIM Card Slot

The principles of the N.C.SIM card slot are described as follows:

- When the SIM card is detached, it connects the short circuit between CD and SW pins, and drives the SIM_DETECT pin low.
- When the SIM card is inserted, it connects an open circuit between CD and SW pins, and drives the SIM_DETECT pin high.

3.5.2.2 N.O. SIM Card Slot

The reference circuit design for N.O. (Normally Open) SIM card slot is shown in Figure 3-17:

Figure 3-17 Reference Circuit for N.O. SIM Card Slot

The principles of the N.O.SIM card slot are described as follows:

- When the SIM card is detached, it connects an open circuit between CD and SW pins, and drives the SIM_DETECT pin low.
- When the SIM card is inserted, it connects the short circuit between CD and SW pins, and drives the SIM DETECT pin high.

Reproduction forbidden without Fibocom Wireless Inc. written authorization - All Rights Reserved.

3.5.3 USIM Hot-Plugging

The L850 module supports the SIM card hot-plugging function, which determines whether the SIM card is inserted or detached by detecting the SIM_DETECT pin state of the SIM card slot.

The SIM card hot-plugging function can be configured by "AT+MSMPD" command, and the description for AT command as shown in the following table:

AT Command	Hot-plugging Detection	Function Description	
		Default value, the SIM card hot-plugging detection function is	
AT+MSMPD=1	Enable	enabled.	
AT TWISIVIPD-T		The module can detect whether the SIM card is inserted or not	
		through the SIM_DETECT pin state.	
		The SIM card hot-plugging detect function is disabled.	
AT+MSMPD=0	Disable	The module reads the SIM card when starting up, and the	
		SIM_DETECT status will not be detected.	

After the SIM card hot-plugging detection function is enabled, the module detects that the SIM card is inserted when the SIM_DETECT pin is high, then executes the initialization program and finish the network registration after reading the SIM card information. When the SIM_DETECT pin is low, the module determines that the SIM card is detached and does not read the SIM card.

Note:

By default, SIM_DETECT is active-high, which can be switched to active-low by the AT command. Please refer to the AT Commands Manual for the AT command.

3.5.4 USIM Design

The SIM card circuit design shall meet the EMC standards and ESD requirements with the improved capability to resist interference, to ensure that the SIM card can work stably. The following guidelines should be noted in case of design:

- The SIM card slot placement should near the module as close as possible, and away from the RF antenna, DC/DC power supply, clock signal lines, and other strong interference sources.
- The SIM card slot with a metal shielding housing can improve the anti-interference ability.
- The trace length between the SIM card slot and the module should not exceed 100mm, or it
 could reduce the signal quality.
- The UIM_CLK and UIM_DATA signal lines should be isolated by GND to avoid crosstalk

interference. If it is difficult for the layout, the whole SIM signal lines should be wrapped with GND as a group at least.

The filter capacitors and ESD devices for SIM card signals should be placed near to the SIM card slot, and the ESD devices with 22~33pF capacitance should be used.

3.6 Status Indicator

The L850 module provides three signals to indicate the operating status of the module, and the status indicator pins as shown in the following table:

Pin	Pin Name	I/O	Reset Value	Pin Description	Туре
10	LED1#	0	PD	System status LED, drain output.	CMOS 3.3V
23	WOWWAN#	0	PU	Module wakes up Host (AP), Reserved	CMOS 1.8V
48	TX_BLANKING	0	PD	PA Blanking output, external GPS control signal,Reserved	CMOS 1.8V

3.6.1 LED#1 Signal

The LED#1 signal is used to indicate the operating status of the module, and the detailed description as shown in the following table:

Module Status	LED1# Signal
RF function ON	Low level (LED On)
RF function OFF	High level (LED Off)

The LED driving circuit is shown in figure 3-18:

Figure 3-18 LED Driving Circuit

Note:

The resistance of LED current-limiting resistor is selected according to the driving voltage and the driving current.

3.7 Interrupt Control

The L850 module provides four interrupt signals, and the pin definition is as follows:

Pin	Pin Name	I/O	Reset Value	Pin Description	Туре	
8	W_DISABLE1#	I	PD	Enable/Disable RF network	CMOS 3.3V	
25	DPR	I	PU	Body SAR detection	CMOS 1.8V	
26	W_DISABLE2#	I	PU	GNSS Disable signal, Reserved	CMOS 1.8V	
44	GNSS_IRQ	I	PD	GNSS Interrupt Request, Reserved	CMOS 1.8V	

3.7.1 W_DISABLE1#

The module provides a hardware pin to enable/disable WWAN RF function, and the function can also be controlled by the AT command. The module enters the Flight mode after the RF function is disabled. The definition of W_DISABLE1# signal is as follows:

W_DISABLE1# signal	Function
High/Floating	WWAN function is enabled, the module exits the Flight mode.
Low	WWAN function is disabled, the module enters Flight mode.

Note:

The function of W DISABLE1# can be customized, please refer to the software porting guide.

3.7.2 BODYSAR

The L850 module supports Body SAR function by detecting the DPR pin. The voltage level of DPR is high by default, and when the SAR sensor detects the closing human body, the DPR signal will be pulled down. As the result, the module then lowers down its emission power to its default threshold value, thus reducing the RF radiation on the human body. The threshold of emission power can be set by the AT Commands. The definition of DPR signal as shown in the following table:

DPR signal	Function
High/Floating	The module keeps the default emission power
Low	Lower the maximum emission power to the threshold value of the module.

3.8 Clock Interface

The L850 module supports a clock interface, it can output 26MHz clock.

Pin	Pin Name	I/O	Reset Value	Pin Description	Туре	
16	46 SYSCLK O	0		26M clock output, default disabled	1.8V	
46 SYSCLK O		can be used for external GPS, etc	1.0 V			

3.9 ANT Tunable Interface

The module supports ANT Tunable interfaces with two different control modes, i.e. MIPI interface and 3bit GPO interface. Through cooperating with external antenna adapter switch via ANT Tunable, it can flexibly configure the bands of LTE antenna to improve the antenna's working efficiency and save space for the antenna.

Pin	Pin Name	I/O	Pin Description	Туре	
56	RFE_RFFE2_	0	Tunable ANT control, MIPI Interface,	CMOS 3.3/1.8V	
	SCLK		RFFE2 clock, Open Drain output		
58	RFE_RFFE2_	0	Tunable ANT control, MIPI Interface,	CMOS 3.3/1.8V	
	SDATA		RFFE2 data, Open Drain output	0.000	
59	ANTCTL0	0	Tunable ANT control, GPO interface,	CMOS 1.8V	
	ANTOTEO		Bit0		
61	ANTCTL1	0	Tunable ANT control, GPO interface,	CMOS 1.8V	
	ANTOILI		bit1	CIVICO 1.0V	
63	ANTCTL2	0	Tunable ANT control, GPO interface,	CMOS 1.8V	
03	ANTOTEZ		Bit2	CIVIOS 1.8V	

3.10 Configuration Interface

The L850 module provides four config pins for the configuration as the WWAN-PCIe, USB3.0 type M.2 module:

Pin	Pin Name	I/O	Reset Value	Pin Description	Туре
1	CONFIG_3	0	-	NC	
21	CONFIG_0	0	L	Internally connected to GND	

Pin	Pin Name	I/O	Reset Value	Pin Description	Туре
69	CONFIG_1	0	L	Internally connected to GND	
75	CONFIG_2	0	L	Internally connected to GND	

The M.2 module configuration as the following table:

Config_0	Config_1	Config_2	Config_3	Module Type and Main	Port
(pin21)	(pin69)	(pin75)	(pin1)	Host Interface	Configuration
GND	GND	GND	NC	WWAN-USB3.1, PCIe Gen1	0

Please refer to PCI Express M.2 Specification Rev1.1" for more details.

3.11 Other Interfaces

The module does not support other interfaces yet.

4 Radio Frequency

4.1 RF Interface

4.1.1 RF Interface Functionality

The L850 module supports two RF connectors used for external antenna connection. As the Figure 4-1 shows, "M" is for Main antenna, used to receive and transmit RF signals; "D/G" is for Diversity antenna, used to receive the diversity RF signals.

Figure 4-1 RF connectors

4.1.2RF Connector Characteristic

Rated Condition		Environment Condition
Frequency Range	DC to 6GHz	Temperature Range
Characteristic Impedance	50Ω	-40°C to +85°C

4.1.3RF Connector Dimension

The L850 module adopts standard M.2 module RF connectors, the model name is 818004607 from ECT company, and the connector size is 2*2*0.6m. The connector dimension is shown as following picture:

Figure 4-2 RF connector dimensions

Figure 4-3 0.81mm coaxial antenna dimensions

Figure 4-4 Schematic diagram of 0.81mm coaxial antenna connected to the RF connector

4.2 Operating Band

The L850 module operating bands of the antennas are as follows:

Band 1 2100MHz LTE FDD/WCDMA 1920 - 1980 2110 - 2170 Band 2 1900MHz LTE FDD/WCDMA 1850 - 1910 1930 - 1990 Band 3 1800MHz LTE FDD 1710 - 1785 1805 - 1880 Band 4 1700MHz LTE FDD/WCDMA 1710 - 1755 2110 - 2155 Band 5 850MHz LTE FDD/WCDMA 824 - 849 869 - 894 Band 7 2600Mhz LTE FDD 2500 - 2570 2620 - 2690 Band 8 900MHz LTE FDD 2500 - 2570 2620 - 2690 Band 1 1500MHz LTE FDD 1427.9 - 1447.9 1475.9 - 1495.9 Band 11 1500MHz LTE FDD 699 - 716 729 - 746 Band 12 700MHz LTE FDD 777 - 787 746 - 756 Band 13 700MHz LTE FDD 704 - 716 734 - 746 Band 17 700MHz LTE FDD 815 - 830 860 - 875 Band 18 800MHz LTE FDD 832 - 862 791 - 821 Band 20 800MHz LTE	Operating Band	Description	Mode	Tx (MHz)	Rx (MHz)
Band 3 1800MHz LTE FDD 1710 - 1785 1805 - 1880 Band 4 1700MHz LTE FDD/WCDMA 1710 - 1755 2110 - 2155 Band 5 850MHz LTE FDD/WCDMA 824 - 849 869 - 894 Band 7 2600Mhz LTE FDD 2500 - 2570 2620 - 2690 Band 8 900MHz LTE FDD 2500 - 2570 2620 - 2690 Band 8 900MHz LTE FDD 2570 - 1447.9 1475.9 - 1495.9 Band 11 1500MHz LTE FDD 1427.9 - 1447.9 1475.9 - 1495.9 Band 12 700MHz LTE FDD 699 - 716 729 - 746 Band 13 700MHz LTE FDD 777 - 787 746 - 756 Band 17 700MHz LTE FDD 815 - 830 860 - 875 Band 18 800MHz LTE FDD 830 - 845 875 - 890 Band 20 800MHz LTE FDD 832 - 862 791 - 821 Band 21 1500MHz LTE FDD 814 - 849 859 - 894 Band 28 700MHz LTE FDD	Band 1	2100MHz	LTE FDD/WCDMA	1920 - 1980	2110 - 2170
Band 4 1700MHz LTE FDD/WCDMA 1710 - 1755 2110 - 2155 Band 5 850MHz LTE FDD/WCDMA 824 - 849 869 - 894 Band 7 2600Mhz LTE FDD 2500 - 2570 2620 - 2690 Band 8 900MHz LTE FDD 2500 - 2570 2620 - 2690 Band 8 900MHz LTE FDD 380 - 915 925 - 960 Band 11 1500MHz LTE FDD 1427.9 - 1447.9 1475.9 - 1495.9 Band 12 700MHz LTE FDD 699 - 716 729 - 746 Band 13 700MHz LTE FDD 777 - 787 746 - 756 Band 13 700MHz LTE FDD 704 - 716 734 - 746 Band 18 800MHz LTE FDD 815 - 830 860 - 875 Band 19 800MHz LTE FDD 830 - 845 875 - 890 Band 20 800MHz LTE FDD 832 - 862 791 - 821 Band 21 1500MHz LTE FDD 814 - 849 859 - 894 Band 28 700MHz LTE FDD 703	Band 2	1900MHz	LTE FDD/WCDMA	1850 - 1910	1930 - 1990
Band 5 850MHz LTE FDD/WCDMA 824 - 849 869 - 894 Band 7 2600Mhz LTE FDD 2500 - 2570 2620 - 2690 Band 8 900MHz LTE FDD 2500 - 2570 2620 - 2690 Band 8 900MHz LTE FDD 925 - 960 Band 11 1500MHz LTE FDD 1427.9 - 1447.9 1475.9 - 1495.9 Band 12 700MHz LTE FDD 699 - 716 729 - 746 Band 13 700MHz LTE FDD 777 - 787 746 - 756 Band 17 700MHz LTE FDD 704 - 716 734 - 746 Band 18 800MHz LTE FDD 815 - 830 860 - 875 Band 19 800MHz LTE FDD 830 - 845 875 - 890 Band 20 800MHz LTE FDD 832 - 862 791 - 821 Band 21 1500MHz LTE FDD 1447.9 - 1462.9 1495.9 - 1510.9 Band 26 850MHz LTE FDD 814 - 849 859 - 894 Band 28 700MHz LTE FDD N/A 716 - 7	Band 3	1800MHz	LTE FDD	1710 - 1785	1805 - 1880
Band 7 2600Mhz LTE FDD 2500 - 2570 2620 - 2690 Band 8 900MHz LTE FDD/WCDMA 880 - 915 925 - 960 Band 11 1500MHz LTE FDD 1427.9 - 1447.9 1475.9 - 1495.9 Band 12 700MHz LTE FDD 699 - 716 729 - 746 Band 13 700MHz LTE FDD 777 - 787 746 - 756 Band 17 700MHz LTE FDD 704 - 716 734 - 746 Band 18 800MHz LTE FDD 815 - 830 860 - 875 Band 19 800MHz LTE FDD 830 - 845 875 - 890 Band 20 800MHz LTE FDD 832 - 862 791 - 821 Band 21 1500MHz LTE FDD 1447.9 - 1462.9 1495.9 - 1510.9 Band 26 850MHz LTE FDD 814 - 849 859 - 894 Band 28 700MHz LTE FDD N/A 716 - 728 Band 30 2300MHz LTE FDD N/A 716 - 728 Band 66 1700MHz LTE FDD 1710 - 1780 </td <td>Band 4</td> <td>1700MHz</td> <td>LTE FDD/WCDMA</td> <td>1710 - 1755</td> <td>2110 - 2155</td>	Band 4	1700MHz	LTE FDD/WCDMA	1710 - 1755	2110 - 2155
Band 8 900MHz LTE FDD/WCDMA 880 - 915 925 - 960 Band 11 1500MHz LTE FDD 1427.9 - 1447.9 1475.9 - 1495.9 Band 12 700MHz LTE FDD 699 - 716 729 - 746 Band 13 700MHz LTE FDD 777 - 787 746 - 756 Band 17 700MHz LTE FDD 704 - 716 734 - 746 Band 18 800MHz LTE FDD 815 - 830 860 - 875 Band 19 800MHz LTE FDD 830 - 845 875 - 890 Band 20 800MHz LTE FDD 832 - 862 791 - 821 Band 21 1500MHz LTE FDD 1447.9 - 1462.9 1495.9 - 1510.9 Band 26 850MHz LTE FDD 814 - 849 859 - 894 Band 28 700MHz LTE FDD N/A 716 - 728 Band 30 2300MHz LTE FDD N/A 716 - 728 Band 66 1700MHz LTE FDD 1710 - 1780 2110 - 2200 Band 38 2600MHz LTE TDD 2570 - 2620<	Band 5	850MHz	LTE FDD/WCDMA	824 - 849	869 - 894
Band 11 1500MHz LTE FDD 1427.9 - 1447.9 1475.9 - 1495.9 Band 12 700MHz LTE FDD 699 - 716 729 - 746 Band 13 700MHz LTE FDD 777 - 787 746 - 756 Band 17 700MHz LTE FDD 704 - 716 734 - 746 Band 18 800MHz LTE FDD 815 - 830 860 - 875 Band 19 800MHz LTE FDD 830 - 845 875 - 890 Band 20 800MHz LTE FDD 832 - 862 791 - 821 Band 21 1500MHz LTE FDD 1447.9 - 1462.9 1495.9 - 1510.9 Band 26 850MHz LTE FDD 814 - 849 859 - 894 Band 28 700MHz LTE FDD 703 - 748 758 - 803 Band 29 700MHz LTE FDD N/A 716 - 728 Band 30 2300MHz LTE FDD 1710 - 1780 2110 - 2200 Band 38 2600MHz LTE FDD 2570 - 2620	Band 7	2600Mhz	LTE FDD	2500 - 2570	2620 - 2690
Band 12 700MHz LTE FDD 699 - 716 729 - 746 Band 13 700MHz LTE FDD 777 - 787 746 - 756 Band 17 700MHz LTE FDD 704 - 716 734 - 746 Band 18 800MHz LTE FDD 815 - 830 860 - 875 Band 19 800MHz LTE FDD 830 - 845 875 - 890 Band 20 800MHz LTE FDD 832 - 862 791 - 821 Band 21 1500MHz LTE FDD 1447.9 - 1462.9 1495.9 - 1510.9 Band 26 850MHz LTE FDD 814 - 849 859 - 894 Band 28 700MHz LTE FDD 703 - 748 758 - 803 Band 29 700MHz LTE FDD N/A 716 - 728 Band 30 2300MHz LTE FDD 2305 - 2315 2350 - 2360 Band 66 1700MHz LTE FDD 1710 - 1780 2110 - 2200 Band 38 2600MHz LTE TDD 2570 - 2620	Band 8	900MHz	LTE FDD/WCDMA	880 - 915	925 - 960
Band 13 700MHz LTE FDD 777 - 787 746 - 756 Band 17 700MHz LTE FDD 704 - 716 734 - 746 Band 18 800MHz LTE FDD 815 - 830 860 - 875 Band 19 800MHz LTE FDD 830 - 845 875 - 890 Band 20 800MHz LTE FDD 832 - 862 791 - 821 Band 21 1500MHz LTE FDD 1447.9 - 1462.9 1495.9 - 1510.9 Band 26 850MHz LTE FDD 814 - 849 859 - 894 Band 28 700MHz LTE FDD 703 - 748 758 - 803 Band 29 700MHz LTE FDD N/A 716 - 728 Band 30 2300MHz LTE FDD 2305 - 2315 2350 - 2360 Band 66 1700MHz LTE FDD 1710 - 1780 2110 - 2200 Band 38 2600MHz LTE TDD 2570 - 2620	Band 11	1500MHz	LTE FDD	1427.9 - 1447.9	1475.9 - 1495.9
Band 17 700MHz LTE FDD 704 - 716 734 - 746 Band 18 800MHz LTE FDD 815 - 830 860 - 875 Band 19 800MHz LTE FDD 830 - 845 875 - 890 Band 20 800MHz LTE FDD 832 - 862 791 - 821 Band 21 1500MHz LTE FDD 1447.9 - 1462.9 1495.9 - 1510.9 Band 26 850MHz LTE FDD 814 - 849 859 - 894 Band 28 700MHz LTE FDD 703 - 748 758 - 803 Band 29 700MHz LTE FDD N/A 716 - 728 Band 30 2300MHz LTE FDD 2305 - 2315 2350 - 2360 Band 66 1700MHz LTE FDD 1710 - 1780 2110 - 2200 Band 38 2600MHz LTE TDD 2570 - 2620	Band 12	700MHz	LTE FDD	699 - 716	729 - 746
Band 18 800MHz LTE FDD 815 - 830 860 - 875 Band 19 800MHz LTE FDD 830 - 845 875 - 890 Band 20 800MHz LTE FDD 832 - 862 791 - 821 Band 21 1500MHz LTE FDD 1447.9 - 1462.9 1495.9 - 1510.9 Band 26 850MHz LTE FDD 814 - 849 859 - 894 Band 28 700MHz LTE FDD 703 - 748 758 - 803 Band 29 700MHz LTE FDD N/A 716 - 728 Band 30 2300MHz LTE FDD 2305 - 2315 2350 - 2360 Band 66 1700MHz LTE FDD 1710 - 1780 2110 - 2200 Band 38 2600MHz LTE TDD 2570 - 2620	Band 13	700MHz	LTE FDD	777 - 787	746 - 756
Band 19 800MHz LTE FDD 830 - 845 875 - 890 Band 20 800MHz LTE FDD 832 - 862 791 - 821 Band 21 1500MHz LTE FDD 1447.9 - 1462.9 1495.9 - 1510.9 Band 26 850MHz LTE FDD 814 - 849 859 - 894 Band 28 700MHz LTE FDD 703 - 748 758 - 803 Band 29 700MHz LTE FDD N/A 716 - 728 Band 30 2300MHz LTE FDD 2305 - 2315 2350 - 2360 Band 66 1700MHz LTE FDD 1710 - 1780 2110 - 2200 Band 38 2600MHz LTE TDD 2570 - 2620	Band 17	700MHz	LTE FDD	704 - 716	734 - 746
Band 20 800MHz LTE FDD 832 - 862 791 - 821 Band 21 1500MHz LTE FDD 1447.9 - 1462.9 1495.9 - 1510.9 Band 26 850MHz LTE FDD 814 - 849 859 - 894 Band 28 700MHz LTE FDD 703 - 748 758 - 803 Band 29 700MHz LTE FDD N/A 716 - 728 Band 30 2300MHz LTE FDD 2305 - 2315 2350 - 2360 Band 66 1700MHz LTE FDD 1710 - 1780 2110 - 2200 Band 38 2600MHz LTE TDD 2570 - 2620	Band 18	800MHz	LTE FDD	815 - 830	860 - 875
Band 21 1500MHz LTE FDD 1447.9 - 1462.9 1495.9 - 1510.9 Band 26 850MHz LTE FDD 814 - 849 859 - 894 Band 28 700MHz LTE FDD 703 - 748 758 - 803 Band 29 700MHz LTE FDD N/A 716 - 728 Band 30 2300MHz LTE FDD 2305 - 2315 2350 - 2360 Band 66 1700MHz LTE FDD 1710 - 1780 2110 - 2200 Band 38 2600MHz LTE TDD 2570 - 2620	Band 19	800MHz	LTE FDD	830 - 845	875 - 890
Band 26 850MHz LTE FDD 814 - 849 859 - 894 Band 28 700MHz LTE FDD 703 - 748 758 - 803 Band 29 700MHz LTE FDD N/A 716 - 728 Band 30 2300MHz LTE FDD 2305 - 2315 2350 - 2360 Band 66 1700MHz LTE FDD 1710 - 1780 2110 - 2200 Band 38 2600MHz LTE TDD 2570 - 2620	Band 20	800MHz	LTE FDD	832 - 862	791 - 821
Band 28 700MHz LTE FDD 703 - 748 758 - 803 Band 29 700MHz LTE FDD N/A 716 - 728 Band 30 2300MHz LTE FDD 2305 - 2315 2350 - 2360 Band 66 1700MHz LTE FDD 1710 - 1780 2110 - 2200 Band 38 2600MHz LTE TDD 2570 - 2620	Band 21	1500MHz	LTE FDD	1447.9 - 1462.9	1495.9 - 1510.9
Band 29 700MHz LTE FDD N/A 716 - 728 Band 30 2300MHz LTE FDD 2305 - 2315 2350 - 2360 Band 66 1700MHz LTE FDD 1710 - 1780 2110 - 2200 Band 38 2600MHz LTE TDD 2570 - 2620	Band 26	850MHz	LTE FDD	814 - 849	859 - 894
Band 30 2300MHz LTE FDD 2305 - 2315 2350 - 2360 Band 66 1700MHz LTE FDD 1710 - 1780 2110 - 2200 Band 38 2600MHz LTE TDD 2570 - 2620	Band 28	700MHz	LTE FDD	703 - 748	758 - 803
Band 66 1700MHz LTE FDD 1710 - 1780 2110 - 2200 Band 38 2600MHz LTE TDD 2570 - 2620	Band 29	700MHz	LTE FDD	N/A	716 - 728
Band 38 2600MHz LTE TDD 2570 - 2620	Band 30	2300MHz	LTE FDD	2305 - 2315	2350 - 2360
	Band 66	1700MHz	LTE FDD	1710 - 1780	2110 - 2200
Band 39 1900MHZ LTE TDD 1880 - 1920	Band 38	2600MHz	LTE TDD	2570 - 2620	
	Band 39	1900MHZ	LTE TDD	1880 - 1920	
Band 40 2300MHz LTE TDD 2300 - 2400	Band 40	2300MHz	LTE TDD	2300 - 2400	
Band 41 2500MHZ LTE TDD 2496 - 2690	Band 41	2500MHZ	LTE TDD	2496 - 2690	
GPS L1 - / 1575.42±1.023	GPS L1	-	-	/	1575.42±1.023
GLONASS L1 - / 1602.5625±4	GLONASS L1	-	-	/	1602.5625±4

Operating Band	Description	Mode	Tx (MHz)	Rx (MHz)
BeiDou	-	-	1	1561.098±2.046

4.3 Transmitting Power

The transmitting power for each band of the L850 module as shown in the following table:

Mode	Band	3GPP Requirement(dBm)	Tx Power(dBm)	Note
	Band 1	24+1.7/-3.7	23.5±1	-
	Band 2	24+1.7/-3.7	23.5±1	-
WCDMA	Band 4	24+1.7/-3.7	23.5±1	-
	Band 5	24+1.7/-3.7	23.5±1	-
	Band 8	24+1.7/-3.7	23.5±1	-
	Band 1	23±2.7	23±1	10MHz Bandwidth, 1 RB
	Band 2	23±2.7	23±1	10MHz Bandwidth, 1 RB
	Band 3	23±2.7	23±1	10MHz Bandwidth, 1 RB
	Band 4	23±2.7	23±1	10MHz Bandwidth, 1 RB
	Band 5	23±2.7	23±1	10MHz Bandwidth, 1 RB
	Band 7	23±2.7	23±1	10MHz Bandwidth, 1 RB
	Band 8	23±2.7	23±1	10MHz Bandwidth, 1 RB
	Band 11	23±2.7	23±1	10MHz Bandwidth, 1 RB
LTE FDD	Band 12	23±2.7	23±1	10MHz Bandwidth, 1 RB
LIEFUU	Band 13	23±2.7	23±1	10MHz Bandwidth, 1 RB
	Band 17	23±2.7	23±1	10MHz Bandwidth, 1 RB
	Band 18	23±2.7	23±1	10MHz Bandwidth, 1 RB
	Band 19	23±2.7	23±1	10MHz Bandwidth, 1 RB
	Band 20	23±2.7	23±1	10MHz Bandwidth, 1 RB
	Band 21	23±2.7	23±1	10MHz Bandwidth, 1 RB
	Band 26	23±2.7	23±1	10MHz Bandwidth, 1 RB
	Band 28	23+2.7/-3.2	23±1	10MHz Bandwidth, 1 RB
	Band 30	23±2.7	22±1	10MHz Bandwidth, 1 RB

Mode	Band	3GPP Requirement(dBm)	Tx Power(dBm)	Note
	Band 66	23±2.7	23±1	10MHz Bandwidth, 1 RB
	Band 38	23±2.7	23±1	10MHz Bandwidth, 1 RB
LTE TDD	Band 39	23±2.7	23±1	10MHz Bandwidth, 1 RB
LIETUU	Band 40	23±2.7	23±1	10MHz Bandwidth, 1 RB
	Band 41	23±2.7	23±1	10MHz Bandwidth, 1 RB

4.4 Receiver Sensitivity

The receiver sensitivity for each band of the L850 module as shown in the following table:

Mode	Band	3GPP Requirement (dBm)	Rx Sensitivity(dBm) Typical	Note
	Band 1	-106.7	-110	BER<0.1%
	Band 2	-104.7	-110	BER<0.1%
WCDMA	Band 4	-106.7	-110	BER<0.1%
	Band 5	-104.7	-111	BER<0.1%
	Band 8	-103.7	-110	BER<0.1%
	Band 1	-96.3	-101.5	10MHz Bandwidth
	Band 2	-94.3	-101.5	10MHz Bandwidth
	Band 3	-93.3	-102	10MHz Bandwidth
	Band 4	-96.3	-102	10MHz Bandwidth
	Band 5	-94.3	-103	10MHz Bandwidth
	Band 7	-94.3	-101	10MHz Bandwidth
LTE FDD	Band 8	-93.3	-102.5	10MHz Bandwidth
	Band 11	-96.3	-99	10MHz Bandwidth
	Band 12	-93.3	-102.5	10MHz Bandwidth
	Band 13	-93.3	-102.5	10MHz Bandwidth
	Band 17	-93.3	-102.5	10MHz Bandwidth
	Band 18	-96.3	-103	10MHz Bandwidth
	Band 19	-96.3	-103	10MHz Bandwidth

Mode	Band	3GPP Requirement (dBm)	Rx Sensitivity(dBm) Typical	Note
	Band 20	-93.3	-102.5	10MHz Bandwidth
	Band 21	-96.3	-99	10MHz Bandwidth
	Band 26	-93.8	-103	10MHz Bandwidth
	Band 28	-94.8	-103	10MHz Bandwidth
	Band 29	-93.3	-101	10MHz Bandwidth
	Band 30	-95.3	-99.5	10MHz Bandwidth
	Band 66	-95.8	-101.5	10MHz Bandwidth
	Band 38	-96.3	-101	10MHz Bandwidth
LTE TDD	Band 39	-96.3	-101.5	10MHz Bandwidth
LIETUU	Band 40	-96.3	-100.5	10MHz Bandwidth
	Band 41	-94.3	-100	10MHz Bandwidth

Note:

The above values are measured for the dual antennas situation (Main+Diversity). For single main antenna (without Diversity), the sensitivity will drop around 3dBm for each band of LTE.

4.5 GNSS

L850 module supports GNSS/BeiDou and AGNSS functions, and adopts RF Diversity and GNSS/Beidou integrated antenna.

Description	ı	Condition	Test Result
		GPS fixing	120mA / -130dbm
		GPS tracking	120mA / -130dbm
		GLONASS fixing	120mA / -130dbm
		GLONASS tracking	125mA / -130dbm
Power		BeiDou fixing	120mA / -130dbm
		BeiDou tracking	120mA / -130dbm
		GPS Sleep	0.7mA
		GLONASS Sleep	0.8mA
		BeiDou Sleep	0.7mA
TTFF	GPS	Cold start	37s / -130dBm

Description	1	Condition	Test Result
		Warm start	34s / -130dBm
		Hot Start	2s / -130dBm
		Cold start	31s / -130dBm
	GLONASS	Warm start	22s / -130dBm
		Hot Start	3s / -130dBm
		Cold start	148s / -130dBm
	BeiDou	Warm start	148s / -130dBm
		Hot Start	3s / -130dBm
	AGNSS	Cold start	TBD
	0.00	Tracking	-160dBm
	GPS	Acquisition	-149dBm
0 "" "	GLONASS	Tracking	-160dBm
Sensitivity		Acquisition	-146dBm
	D :D	Tracking	-160dBm
	BeiDou	Acquisition	-141dBm

Note:

Please note that GPS current is tested with RF disabled.

4.6 Antenna Design

The L850module provides main and diversity antenna interfaces, and the antenna design requirements as shown in the following table:

L850 module Main antenna requirements		
Frequency range	The most proper antenna to adapt the frequencies should be used.	
	WCDMA band 1(2100) : 250 MHz	
	WCDMA band 2(1900) : 140 MHz	
Bandwidth(WCDMA)	WCDMA band 4(1700) : 445 MHz	
	WCDMA band 5(850) : 70 MHz	
	WCDMA band 8(900) : 80 MHz	
Bandwidth(LTE)	LTE band 1(2100): 250 MHz	

L850 module Main antenna req	uirements
	LTE band 2(1900): 140 MHz
	LTE Band 3(1800): 170 MHz
	LTE band 4(1700): 445 MHz
	LTE band 5(850): 70 MHz
	LTE band 7(2600): 190 MHz
	LTE Band 8(900): 80 MHz
	LTE Band 11(1500): 68 MHz
	LTE Band 12(700): 47 MHz
	LTE Band 13(700): 41 MHz
	LTE Band 17(700): 42 MHz
	LTE Band 18(800): 80 MHz
	LTE Band 19(800): 80 MHz
	LTE band 20(800): 71 MHz
	LTE band 21(1500): 63 MHz
	LTE band 26(850): 80 MHz
	LTE band 28(700): 100 MHz
	LTE band 29(700): 12 MHz
	LTE band 30(2300): 55 MHz
	LTE band 66(1700): 490 MHz
	LTE band 38(2600): 50 MHz
	LTE Band 39(1900): 40 MHz
	LTE band 40(2300): 100 MHz
	LTE band 41(2500): 194 MHz
	GPS: 2 MHz
Bandwidth(GNSS/BeiDou)	GLONASS: 8 MHz
	BeiDou: 4 MHz
Impedance	50Ohm
Input power	> 26dBm average power WCDMA & LTE
Recommended standing-wave ratio (SWR)	≤ 2: 1

5 Structure Specification

5.1 Product Appearance

The product appearance for L850 module is shown in Figure 5-1:

Figure 5-1 Module Appearance

5.2 Dimension of Structure

The structural dimension of the L850 module is shown in Figure 5-2:

Figure 5-2 Dimension of Structure

5.3 M.2 Interface Model

The L850 M.2 module adopts 75-pin gold finger as external interface, where 67 pins are signal pins and 8 pins are notch pins as shown in Figure 3-1. For module dimension, please refer to <u>5.2 Dimension of Structure</u>. Based on the M.2 interface definition, L850 module adopts Type 3042-S3-B interface (30x42mm, the component maximum height on t top layer is 1.5mm, PCB thickness is 0.8mm, and KEY ID is B).

Use ONLY when a double slot is being specified

□ Label included in height dimension

⊠⊠ Key G is intended for custom use. Devices with this key will not be M.2-compliant. Use at your own risk!

Insulating label allowed on connector-based designs

5.4 M.2 Connector

The L850 module connects to AP via M.2 connector, it is recommended to use M.2 connector from LOTES company with the model APCI0026-P001A as shown in Figure 5-3. The package of connector, please refer to the specification.

Figure 5-3 M.2 Dimension of Structure

5.5 Storage

5.5.1 Storage Life

Storage Conditions (recommended): Temperature is $23 \pm 5 \,\Box$, relative humidity is less than RH 60%. Storage period: Under the recommended storage conditions, the storage life is 12 months.

5.6 Packing

The L850 module uses the tray sealed packing, combined with the outer packing method using the hard cartoon box, so that the storage, transportation and the usage of modules can be protected to the greatest extent.

Note:

The module is a precision electronic product, and may suffer permanent damage if no correct electrostatic protection measures are taken.

5.6.1 Tray Package

The L850 module uses tray package, 20 pcs are packed in each tray, with 5 trays in each box and 6 boxes

in each case. Tray packaging process is shown in Figure 5-4:

Figure 5-4 Tray Packaging Process

5.6.2 Tray size

The pallet size is 330*175*6.0mm, as shown in Figure 5-5:

Figure 5-5Tray Size (Unit: mm)

ITEM	DIM(Unit: mm)
L	330.0±0.5
W	175.0±0.5
н	6.0±0.3
Т	0.5±0.1
A0	43±0.3
В0	33.0±0.3
A1	294.0±0.3
B1	159.0±0.3
С	20.0±0.5
D	9.0±0.5
Е	24.5±0.5
F	187.5±0.2
G	105.0±0.2
J	9.0±0.2