NEC

NPN SILICON TRANSISTOR

2SC3616

DESCRIPTION

The 2SC3616 is designed for general-purpose applications

requiring High DC Current Gain.

This is suitable for all kind of driving, instead of Darlington

Transistor, or muting.

FEATURES

• High DC Current Gain.

 h_{FE} = 800 to 3200 (@ V_{CE} = 2.0 V, I_{C} = 300 mA)

• Low Collector Saturation Voltage.

*PW ≤ 10 ms, Duty Cycle ≤ 50 %

 $V_{CE(sat)} = 0.14 \text{ V TYP.}$ (@ $I_C/I_B = 300 \text{ mA}/3.0 \text{ mA}$)

- High V_{EBO} : V_{EBO}= 15V
- Large Current : I_{C(DC)} = 700 mA, I_{C(pulse)} = 1.0 A
- High Total Power Dissipation. : P_T = 0.75 W (T_a = 25 °C)

ABSOLUTE MAXIMUM RATINGS

PACKAGE DIMENSIONS in millimeters (inches) 5.2 MAX. XAW COLUMN 1. Emitter 2. Collector JEDEC: TO-92 3. Base IEC: PA33

ELECTRICAL CHARACTERISTICS (Ta = 25 °C)

SYMBOL	CHARACTERISTIC	MIN.	TYP.	MAX.	UNIT	TEST CONDITIONS
hFE1**	DC Current Gain	800		3200	_	$V_{CE} = 2.0 \text{ V, } I_{C} = 300 \text{ mA}$
hFE2**	DC Current Gain	640			-	$V_{CE} = 2.0 \text{ V, I}_{C} = 500 \text{ mA}$
fT	Gain Bandwidth Product	150	250		MHz	$V_{CE} = 5.0 \text{ V, } I_{E} = -300 \text{ mA}$
Cob	Output Capacitance		10		рF	$V_{CB} = 10 \text{ V}, I_E = 0, f = 1.0 \text{ MHz}$
ІСВО	Collector Cutoff Current			100	nΑ	$V_{CB} = 25 \text{ V, } I_{E} = 0$
I _{EBO}	Emitter Cutoff Current			100	nΑ	$V_{EB} = 10 \text{ V, } I_{C} = 0$
VBE**	Base to Emitter Voltage	600		700	mV	$V_{CE} = 2.0 \text{ V, I}_{C} = 50 \text{ mA}$
VCE(sat)**	Collector Saturation Voltage		0.14	0.3	V	$I_C = 300 \text{ mA}, I_B = 3.0 \text{ mA}$
VBE(sat)**	Base Saturation Voltage		0.77	1.2	٧	$I_C = 300 \text{ mA}, I_B = 3.0 \text{ mA}$
ton	Turn-On Time		0.13		μs	$/ V_{CC} = 10 \text{ V}, V_{BE(off)} = -2.7 \text{ V}$
t _{stg}	Storage Time		0.90		μs	I _C = 200 mA
^t off	Turn-Off Time		1.1		μs	$I_{B1} = -I_{B2} = 4.0 \text{ mA}$

^{**}Pulsed PW \leq 350 μ s, Duty Cycle \leq 2 %

Classification of h_{FE1}

Rank	M	L	К
Range	800 to 1600	1200 to 2400	2000 to 3200

Test Conditions: $V_{CE} = 2.0 \text{ V}$, $I_{C} = 300 \text{ mA}$

TYPICAL CHARACTERISTICS (Ta = 25 °C)

