Разработка рекомендательной системы на основе текущей сессии пользователя с использованием многоуровневого отбора кандидатов

Воробьева А.С., Мохов А.И.

Консультант: Кислинский В.Г.

Москва, 2020

Классические рекомендательные системы

Рекомендательная система — комплекс алгоритмов, программ и сервисов, задача которого предсказать, что может заинтересовать того или иного пользователя. В основе системы лежит информация о профиле человека и иные данные.

Постановка задачи

По сессии необходимо порекомендовать товары из интернет-магазина. Пример сессиий:

session	view	cart	order
0	id1, id2, id3	id2, id5, id6	id2, id7
1	id3, id6, id9	id11, id2, id6	id3, id1
2	id1, id2, id9	id11, id2, id6	id3, id1

Важный аспект задачи - известны лишь категории товаров, просмотры, добавления в корзину и заказы для конкретной сессии. **Нет привязки к пользователю!**

Примеры рекомендаций для просмотров

Защитное стекло Locase для Xiaomi Redmi Note 7, 2 штуки

В карточке товара находятся рекомендации, которые система автоматически сочла подходящими к текущему товару.

Рис.: Просмотренный товар

Все товком Locase

Рис.: Рекомендации на основе просмотров

Защитное стенло

Примеры рекомендаций для товаров в корзине

Рис.: Товары в корзине

После перехода в корзину система также формирует и показывает рекомендации, на основе товаров, которые лежат в корзине. Показывая релевантные для пользователя товары можно увеличить средний чек.

Рис.: Рекомендации на основе текущей корзины

Целевая функция. mAP@K

Precision at K (P@K) - доля рекомендованных объектов, которые входят в K первых релевантных объектов.

Есть список рекомендация r длины N и задано $K \leq N$. Есть истинный список рекомендаций Y, и первые K его элементов обозначим Y_k . Тогда можно посчитать P@k по формуле:

$$P@K = \frac{\sum_{i=1}^{K} \mathbb{1}_{Y_k}(r_i)}{K}$$
$$\mathbb{1}_{Y_k}(r_i) = \begin{cases} 1, r_i \in Y_k \\ 0, r_i \notin Y_k \end{cases}$$

Average precision at K (AP@K):

$$AP@K = \frac{\sum_{i=1}^{K} P@i}{K}$$

Целевая метрика - Average Precision @ K (AP@k):

$$Q(\hat{y}^{i}, y^{i}) = AP@K = \frac{1}{I} \sum_{i=1}^{I} AP@K^{i}$$
 (1)

Усредняя данную метрику по всем сессиям, получаем Mean AP@k.

Математическая постановка задачи

Введём отображение $f:id \to X$ - представление id в виде вектора в n-мерном пространства.

Пусть матрицы X^i_{view} и X^i_{cart} - матричные представления сессии под номером i. Элементами матрицы являются вектора x^i_{view} и x^i_{cart} соответственно, которые представляют уникальные товары в данной сессии, получаемые из отображения f.

Паре $(X^i_{\mathit{view}}, X^i_{\mathit{cart}})$ соответствует вектор y^i , состоящий из id товаров, которые находятся в **заказе**.

Необходимо найти:

$$\hat{y^i} = A(X_{view}^i, X_{cart}^i) : Q(\hat{y^i}, y^i) \to max$$
 (2)

То есть найти такое преобразовение A над исходными матрицами, что целевая метрика mAP@k достигала максимума.

Как мы решаем задачу

В качестве решения предлагается использовать двухуровневый подход:

- Отбор кандидатов с помощью простых моделей:
 - Обучение векторных представлений товаров (Word2Vec)
 - Матрица отношений
 - Использование популярных товаров в качестве кандидатов
- Ранжирование с использованием градиентного бустинга [1, 2].

В результате получаем список рекомендаций для сессии.

Word2Vec

Word2Vec - группа языковых моделей на нейронных сетях. Модели позволяют получить векторное представление (embedding) для слов (токенов)[3].

Пусть $w \in W$ - слово, в строковом формате. Введём отображение $f:W \to V$, переводящее множество W в V, где $V \in \mathbb{R}^n$.

Тогда в пространстве $\mathbb{R}^n(\mathbb{E}^n)$ определена **метрика** d, задающая расстояние между любой парой $(x,y)(x\in\mathbb{R}^n,y\in\mathbb{R}^n)$

$$d(x,y) = ||x-y|| = \sqrt{\sum_{i=1}^{n} (x_i - y_i)^2}$$
 (3)

Так же определено косинусное сходство между двумя элементами пространства \mathbb{R}^n :

$$sim(x,y) = \frac{(x,y)}{\|x\| \|y\|} = \frac{\sum_{i=1}^{n} x_i \cdot y_i}{\sqrt{\sum_{i=1}^{n} x_i^2} \cdot \sqrt{\sum_{i=1}^{n} y_i^2}}$$
(4)

Рис.: Архитектура word2vec

Матрица Отношений. Косинусное сходство

Дано множество сессий S, пусть $S_i, S_j (i \neq j)$ две сессии из этого множества, состоящие из некого набора id товаров. Составим для сессий матрицу C таким образом, что на пересечении индексов k, l будет 1, если товары встречаются в одной сессии и 0, если не встречаются.

Пример:

 $S_i = [1,2,3], S_j = [3,4,5].$ Число уникальных элементов 5. Матрица имеет размерность 5×5

	1	2	3	4	5
1	0	1	1	0	0
2	1	0	1	0	0
3	1	1	0	1	1
4	0	0	1	0	1
5	0	0	1	1	0

Выберем товары 2 и 3, посчитаем сходство между ними.

$$sim(c_2, c_3) = \frac{(c_2, c_3)}{\|c_2\| \|c_3\|} = \frac{1}{2\sqrt{2}}.$$
 (5)

Таким образом составляется и общая матрица отношений.

Количество уникальных іd товаров $> 2*10^6$. При создании dense матрицы неизбежно возникает ошибка, которая говорит о недостатке памяти.

Нет необходимости хранить нули - их очень много и они тоже место, поэтому используются sparse матрицы. Более того, можно хранить не матрицу отношений, а уже посчитанные значения косинусной схожести в матрице такого же размера и формата. Это избавляет от ненужных вычислений на этапе первичного отбора кандидатов.

```
from sklearn.metrics.pairwise import cosine_similarity as sim
similarities_view = sim(view.transpose(), dense_output=False)
similarities_cart_add = sim(cart.transpose(), dense_output=False)
```

view и cart - бинарные матрица отношений для просмотров и добавлений в корзину соотвесвенно.

Получение кандидатов

Используем word2vec и матрицу схожестей для получения кандидатов (*первичные рекомендации*), а так же добавляем к ним список 50 самых популярных товаров из списка заказов.

После получения рекомендации для каждой сессии, таблица будет выглядить следующим образом:

view	cart	order	prediction
$[id_{v1^1},,id_{vi^1}]$	$[\mathit{id}_{c1^1},,\mathit{id}_{cj^1}]$	$[id_{o1^1},, id_{ok^1}]$	$[p_1^1,,p_n^{-1}]$
$[id_{v1^m},,id_{vi^m}]$	$[id_{c1^m},,id_{cj^m}]$	$[id_{o1^m},,id_{ok^m}]$	$[p_1^m,,p_n^m]$

где p - множество состоящее из id товаров. Здесь уже можно посчитать map@k - его значение колеблется от 0.01 до 0.015.

Ранжирование

map@k зависит от порядка, поэтому необходимо учитывать релевантность товара из списка рекомендаций. Предлагается изменить таблицу следующим образом (операция Explode)

session_id	order	prediction	target
$session_1$	order ₁	$ ho_1^1$	y_1^1
$session_1$	$order_1$	$p_2^1[0]$	y_2^1
$session_1$	$order_1$	$p_{n}^{1}[0]$	y_n^1
session _m	order _m	$p_1^m[0]$	<i>y</i> ₁ ^m
session _m	order _m	$p_{n}^{m}[0]$	y _n ^m

$$y_i^j = \begin{cases} 1, p_i^j \in order^j \\ 0, p_i^j \notin order^j \end{cases}$$
 (6)

Если предлагаемый id находится в заказе для данной сессии, то ставим 1, если нет - 0.

Таким образом учитываем релевантность отдельного товара из рекомендации.

Learning To Rank. Yetirank

Обычно для задач ранжирования используется метрика NDCG, которая показывает качество ранжирования - отклонение полученных оценок релевантности от действительных. Метрика NCDG для сессии q, набора рекомендаций m_q и меток l_q определяется следующим образом:

$$NDCG(q_i) = \frac{DCG(q_i)}{IDCG(q_i)}$$
 (7)

$$DCG(q_i) = \sum_{k=1}^{m_q} \frac{I_{qk}}{\log_2(k+1)}$$
 (8)

 $ICDG(q_i)$ - это значение для правильного ранжирования. К сожалению, NCDG нельзя оптимизировать, т.к. она недифференцируема, поэтому вводится гладкая аппроксимация данной метрики **YetiRank**:

$$\mathbb{L} = -\sum_{i,j} \omega_{ij} \log \frac{e^{x_i}}{e^{x_i} + e^{x_j}} \tag{9}$$

Здесь (i,j) - индексы всех пар рекомендаций для сессии, ω_{ij} - вес пары рекомендаций, а x_i , x_j - предсказанные значения релевантности рекомендаций і и ј соответственно.

Таким образом в качестве модели на втором уровне используется градиентный бустинг над деревьями, где минимизируется YetiRank. В итоге модель учится предсказывать значение релевантности для товара. После этого необходимо собрать рекомендации обратно в вектор, но уже с учётом предсказанного значения релевантности.

Рассмотрим пример, где для сессии было получено 4 первичных предсказания:

session_id	order	prediction	relevance score
1	[2, 3, 1, 4]	4	0.1
1	[2, 3, 1, 4]	5	0.0
1	[2, 3, 1, 4]	1	0.3
1	[2, 3, 1, 4]	2	0.4

Собирая это в итоговое предсказания для сессии:

session_id	order	prediction	
1	[2, 3, 1, 4]	[2, 1, 4, 5]	

Кривые обучения и итоговые метрики

Благодаря переходу к задаче ранжирования удалось в разы улучшить целевую метрику mAP@k.

0.39 0.37 0.35 0.30 400 600 800 1k

Рис.: map@10 (train/test)

Рис.: NDCG

Рис.: Схема модели

- [1] Anna Veronika Dorogush, Vasily Ershov, and Andrey Gulin. Catboost: gradient boosting with categorical features support. arXiv preprint arXiv:1810.11363, 2018.
- [2] Andrey Gulin, Igor Kuralenok, and Dimitry Pavlov. Winning the transfer learning track of yahoo!'s learning to rank challenge with yetirank. In *Proceedings of the Learning to Rank Challenge*, pages 63–76, 2011.
- [3] Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Corrado, and Jeff Dean. Distributed representations of words and phrases and their compositionality. *Advances in neural information processing systems*, 26:3111–3119, 2013.