Bayesian Categorical Data Analysis

Andy Grogan-Kaylor

14 Jul 2020 15:05:48

Introduction

. clear all

The Importance of Thinking About Prior Information

Thinking Through Bayesian Ideas

Formal Derivation of Bayes Theorem

Following inspiration from Kruschke (2011).

Probability	A	Not A
В	P_1	$\overline{P_2}$
Not B	P_3	P_4

Filling in the probabilities.

$$\begin{array}{c|cccc} & \overline{\text{Probability}} & A & \text{Not A} \\ \hline \text{B} & P(A,B) & P(\text{not}A,B) \\ \text{Not B} & P(A,\text{not}B) & P(\text{not}A,\text{not}B) \end{array}$$

From the definition of conditional probability:

$$P(A|B) = P(A,B)/P(B)$$

$$P(B|A) = P(A,B)/P(A)$$

Then:

$$P(A|B)P(B) = P(A,B)$$

$$P(B|A)P(A) = P(A,B)$$

Then:

$$P(A|B)P(B) = P(B|A)P(A)$$

Then:

$$P(A|B) = \frac{P(B|A)P(A)}{P(B)}$$

Applying the Derivation to Data Analysis

Probability		Data	Not Data	
Hypothesis Not Hypothesis	,	(0,H) $(0, \operatorname{not} H)$	P(notD, H) $P(notD, notH)$)

From the definition of conditional probability:

$$P(D|H) = P(D,H)/P(H)$$

$$P(H|D) = P(D,H)/P(D)$$

Then:

$$P(D|H)P(H) = P(D,H)$$

$$P(H|D)P(D) = P(D,H)$$

Then:

$$P(D|H)P(H) = P(H|D)P(D)$$

Then:

$$P(H|D) = \frac{P(D|H)P(H)}{P(D)}$$

posterior \sim likelihood \times prior

Accepting the Null Hypothesis

We Are Directly Estimating The Probability of the Hypothesis Given The Data

- Could be large e.g. .8.
- Could be small e.g. .1.
- Could be effectively 0. (Essentially, we can accept a null hypothesis)

We Are Not Rejecting a Null Hypothesis

We are not imagining a hypothetical null hypothesis (that may not even be substantively meaningful), and asking the question of whether the data we observe are extreme enough that we wish to reject this null hypothesis.

- H_0 : $\bar{x} = 0$ or $\beta = 0$
- Posit H_A : $\bar{x} \neq 0$ or $\beta \neq 0$
- Observe data and calculate a test statistic (e.g. t). If test statistic > critical value, e.g. t > 1.96 then reject H_0 .
- We can never accept H_0 , only reject H_A .

Accepting Null Hypotheses

What is the effect on science and publication of having a statistical practice where we can never affirm $\bar{x} = 0$ or $\beta = 0$, but only reject $\bar{x} = 0$ or $\beta = 0$?

- Only affirm difference not similarity
- Publication bias

See https://agrogan1.github.io/Bayes/accepting-H0/accepting-H0.html

Bayesian statistics allow us to accept the null hypothesis H_0 .

Bayesian Categorical Data Analysis in Stata

```
. clear all
```

. use "../logistic-regression/GSSsmall.dta", clear

Frequentist Logistic Regression

```
. logit liberal i.race i.class
               log \ likelihood = -31538.733
Iteration 0:
               log likelihood = -31370.507
Iteration 1:
               log likelihood = -31369.841
Iteration 2:
               \log likelihood = -31369.841
Iteration 3:
Logistic regression
                                                  Number of obs
                                                                            53,625
                                                  LR chi2(5)
                                                                            337.78
                                                  Prob > chi2
                                                                            0.0000
                                                  Pseudo R2
Log likelihood = -31369.841
                                                                            0.0054
       liberal
                               Std. Err.
                                                    P>|z|
                                                               [95% Conf. Interval]
                       Coef.
          race
                                .0272062
        black
                    . 4443531
                                            16.33
                                                    0.000
                                                                  .39103
                                                                            .4976762
        other
                    .3190896
                                .0413275
                                             7.72
                                                     0.000
                                                               .2380891
                                                                            .4000901
         class
working class
                   -.1397848
                                 .041515
                                            -3.37
                                                     0.001
                                                              -.2211527
                                                                           -.0584169
                   -.0117948
                                .0416509
                                                                            .0698394
middle class
                                            -0.28
                                                     0.777
                                                               -.093429
                    .1512565
                                .0648962
                                             2.33
                                                     0.020
                                                               .0240624
                                                                            .2784507
  upper class
                   -.9900441
                                .0397384
                                           -24.91
                                                    0.000
                                                               -1.06793
                                                                           -.9121582
```

Bayesian Logistic Regression

Takes a few minutes since using MCMC (5-10 minutes).

```
. sample 10 // Random Sample To Speed This Example: DON'T DO THIS IN PRACTICE!!! (58,332 observations deleted)
```

How do we interpret the result for some of the **social class** categories where the credibility interval includes 0?

```
. bayes: logit liberal i.race i.class
Burn-in ...
Simulation ...
Model summary
Likelihood:
 liberal _ logit(xb_liberal)
Prior:
 {liberal:i.race i.class _cons} ~ normal(0,10000)
                                                                               (1)
(1) Parameters are elements of the linear form xb_liberal.
Bayesian logistic regression
                                                    MCMC iterations
                                                                           12,500
Random-walk Metropolis-Hastings sampling
                                                    Burn-in
                                                                            2,500
                                                    MCMC sample size =
                                                                           10,000
                                                                            5,370
                                                    Number of obs
                                                    Acceptance rate
                                                                             .2129
                                                    Efficiency: min =
                                                                            .02443
                                                                 avg =
                                                                            .03574
Log marginal likelihood = -3183.4711
                                                                            .04685
                                                                 max =
```

					Equal-tailed		
liberal	Mean	Std. Dev.	MCSE	Median	[95% Cred.	Interval]	
race							
black	.548588	.0831709	.003843	.5476248	.3904489	.7067804	
other	.2686216	.1423001	.009104	.2736241	0167725	.5361192	
class							
working class	1566057	.1268648	.006531	1554297	4091349	.0968553	
middle class	016449	.1335839	.008162	013235	2721034	.2440431	
upper class	.2101377	.2057211	.010693	.2076646	2120719	.611688	
_cons	9900013	.1243759	.006097	9904929	-1.238569	7409336	

Note: Default priors are used for model parameters.

Blocking May Improve Estimation

. * bayes, block({liberal:i.race}): logit liberal i.race i.class // blocking may improve
> estimation

Bayesian Logistic Regression With Priors

Priors:

- Encode prior information: strong theory; strong clinical or practice wisdom; strong previous empirical results.
- May be helpful in quantitatively encoding the results of prior literature.
- May be especially helpful when your sample is small.

```
bayes, normalprior(5): logit liberal i.race i.class

Burn-in ...
Simulation ...

Model summary

Likelihood:
   liberal _ logit(xb_liberal)

Prior:
   {liberal:i.race i.class _cons} _ normal(0,25)
(1)
```

(1) Parameters are elements of the linear form x	b_liberal.	
Bayesian logistic regression	MCMC iterations =	12,500
Random-walk Metropolis-Hastings sampling	Burn-in =	2,500
	MCMC sample size =	10,000
	Number of obs =	5,370
	Acceptance rate =	.2792
	Efficiency: min =	.0218
	avg =	.03738
Log marginal likelihood = -3165.5355	max =	.05414

					Equal-tailed	
liberal	Mean	Std. Dev.	MCSE	Median	[95% Cred.	Interval]
race						
black	.5434675	.0861621	.003901	.5428555	.3787866	.7144542
other	.2799266	.1351239	.005807	.2873817	.0103018	.5362551
class						
working class	1525076	.1330829	.007231	1559297	4001128	.1047808
middle class	0050202	.1346973	.007531	0052376	25755	.2621892
upper class	.1991016	.2045538	.013855	.1896267	2107889	.5841896
_cons	9959125	.1288296	.007016	9929873	-1.244611	7511895

Note: Default priors are used for model parameters.

MCMC vs. ML

- . clear all
- . set obs 100 number of observations (_N) was 0, now 100
- . generate myestimate = rnormal() + 10 // simulated values of estimate
- . summarize myestimate

Variable	0bs	Mean	Std. Dev.	Min	Max
myestimate	100	9.845097	1.015819	7.351274	12.5474

- . local mymean = r(mean)
- . kdensity myestimate , ///
 > title("Likelihood of Estimate") ///
- > xtitle("Estimate") ytitle("Likelihood") ///
- > note("Vertical Line At Mean Value") ///
 > caption("ML gives point estimate; Bayes gives full range of distribution") ///
- > xline(`mymean', lwidth(1) lcolor(gold)) scheme(michigan)
- . graph export MCMC-ML.png, width(500) replace (file MCMC-ML.png written in PNG format)

Full Distribution of Parameters

- . clear all
- . use "../logistic-regression/GSSsmall.dta", clear
- . sample 10 // Random Sample for These Slides: DON'T DO THIS IN PRACTICE!!! (58,332 observations deleted)
- . bayes, normalprior(5): logit liberal i.race i.class

Vertical Line At Mean Value
ML gives point estimate; Bayes gives full range of distribution

Figure 1: MCMC vs. ML

Burn-in ... Simulation ... Model summary Likelihood: liberal _ logit(xb_liberal) {liberal:i.race i.class _cons} ~ normal(0,25) (1) (1) Parameters are elements of the linear form xb_liberal. Bayesian logistic regression MCMC iterations = 12,500 Random-walk Metropolis-Hastings sampling 2,500 Burn-in MCMC sample size = 10,000 Number of obs 5,359 Acceptance rate = .2154 Efficiency: min = .01525 .04114 avg = Log marginal likelihood = -3156.3553 max = .06464

					Equal-tailed	
liberal	Mean	Std. Dev.	MCSE	Median	[95% Cred.	Interval]
race						
black	.5371258	.088161	.005346	.533988	.3686128	.7075168
other	.0581145	.1310966	.010615	.0584126	2096021	.2948507
class						
working class	.1179909	.1478062	.007693	.1155219	1624791	.4134657
middle class	.2649346	.1482299	.005997	.2634409	006191	.5795305
upper class	.1883275	.2130126	.008378	.191786	2337438	.6073955
_cons	-1.233312	.1444018	.007068	-1.230555	-1.523936	9601146

Note: Default priors are used for model parameters.

[.] bayesgraph kdensity {liberal:2.race}, scheme(michigan)

Figure 2: Density Plot of Parameter