Transmission-interval distributions and coronavirus control

Jonathan Dushoff, McMaster University

PHAC Technical Tuesday May 2020

Transmission intervals

- Sort of the poor relations of disease-modeling world
- ► Ad hoc methods
- ► Error often not propagated

How long is a disease generation? (present)

Definition

Generation Interval:

Interval between the time that an individual is infected by an infector and the time this infector was infected

Generation-interval distributions

Approximate generation intervals

- ► The generation distribution measures generations of the disease
 - Interval between "index" infection and resulting infection
- ► Link r (exponential growth rate) and R (effective reproductive number)

Transmission intervals drive epidemics

- ▶ Population-level speed of spread *r* is a product (sort of):
 - ▶ Strength $\mathcal{R} \times \dots$
 - Individual-level speed of transmission $g(\tau)$

Mechanistic perspective

- $\triangleright \mathcal{R}$ is known
- ▶ Quicker generations ⇒ faster population-level spread

HIV in sub-Saharan Africa

 $C \approx 18 \, \mathrm{month}$. Faster than expected.

Ebola outbreak

 $C \approx 1 \, \mathrm{month}$. Slower than expected.

Coronavirus speed

 $C \approx 5 \,\mathrm{day}$. Coronavirus!

Phenomenological perspective

- Population-level speed r is observed
- Quicker generations (low \bar{G}) \implies lower \mathcal{R}

Powers et al., https://www.pnas.org/ content/111/45/15867

Transmission intervals

- ► Generation interval: infection ⇒ infection
 - Drives epidemic, often unobserved
- ▶ Serial interval: symptoms ⇒ symptoms
 - ▶ Observable..., may be hard to define
- Other:
 - ▶ diagnosis ⇒ diagnosis
 - notification \improx notification
- ► Some cases are never symptomatic, or never diagnosed

Serial intervals

Steps

- Generation interval:
 - Latent + infectious waiting
- Serial interval:
 - Incubation + symptomatic waiting
- Report
 - Are there good names for these intervals?
 - e.g., infection to recorded date

Outline

Linking $r\mathcal{R}$

Serial-interval distributions

Evaluating interventions

Variants

Renewal-equation

- ▶ A broad framework that covers a wide range of underlying models
- $i(t) = \int k(\tau, t)i(t \tau) d\tau$
 - ightharpoonup i(t) is the *rate* of new infections (per-capita incidence)
 - ightharpoonup S(t) is the proportion of the population susceptible
 - $k(\tau)$ measures how infectious a person is (on average) at time τ after becoming infected
- k changes through time
 - proportion infected, control measures
- ▶ But we mainly focus on a particular profile $k(\tau)$

Infection kernel

- $k(\tau)$ is the expected rate at which you infect at time τ after being infected
- $\int_{\tau} k(\tau) d\tau$ is the expected number of people infected:
 - R the effective reproductive number
- $\blacktriangleright k(\tau)/\mathcal{R}$ is a distribution:
 - $g(\tau)$, the *intrinsic* generation distribution

Euler-Lotka equation

- ightharpoonup If we neglect S, we expect exponential growth
- $1 = \int k(\tau) \exp(-r\tau) d\tau$
 - ▶ i.e., the total of *discounted* contributions is 1
- ► $1/\mathcal{R} = \int g(\tau) \exp(-r\tau) d\tau$
- Note that $b(\tau) = k(\tau) \exp(-r\tau)$ is also a distribution
 - ► The initial "backwards" generation interval

Interpretation: generating functions

▶
$$1/\mathcal{R} = \int g(\tau) \exp(-r\tau) d\tau$$

$$ightharpoonup \mathcal{R} = 1/M(-r)$$

► J Wallinga, M Lipsitch; DOI: 10.1098/rspb.2006.3754

Compound-interest interpretation

- \blacktriangleright κ is the 'effective dispersion'
 - ► Equal to the squared coefficient of variation when *G* is gamma-distributed
- ▶ X is the compound-interest approximation to the exponential
 - Linear when $\kappa=1$ (i.e., when g is exponential)
 - lacktriangle Approaches exponential as $\kappa o 0$
- $r = (1/\bar{G}) \times \ell(\mathcal{R}; \bar{\kappa})$
- Park et al., Epidemics DOI:10.1101/312397

Approximating the rR relationship

Exponential growth rate (per generation)

Propagating error

Propagating error

Types of interval

Define:

- ▶ Intrinsic interval: How infectious is a patient at time τ after infection?
- Forward interval: When will the people infected today infect others?
- Backward interval: When did the people who infected people today themselves become infected?
- Censored interval: What do all the intervals observed up until a particular time look like?
 - Like backward intervals, if it's early in the epidemic

Growing epidemics

- Measured generation intervals look shorter at the beginning of an epidemic
 - A disproportionate number of people are infectious right now
 - They haven't finished all of their transmitting
 - We are biased towards observing faster events

Correcting backward intervals

Champredon and Dushoff, 2015. DOI:10.1098/rspb.2015.2026

Generations in space

- Local interactions
- ▶ ⇒ wasted contacts
- realized generation intervals smaller than intrinsic
- $ightharpoonup \implies$ intrinsic GIs over-estimate ${\cal R}$
- Trapman et al., 2016. JRS Interface DOI:10.1098/rsif.2016.0288

Observed and estimated intervals

Outbreak estimation

Park et al. JRSI, DOI: 10.1098/rsif.2019.0719

Outline

Linking rR

Serial-interval distributions

Evaluating interventions

Variants

Serial-interval distributions

The serial-mean paradox

- Serial intervals measure generations of the same process as generation intervals
 - Should have the same mean
 - But often larger variance
- Empirically, even the means are not the same!

Heterogeneity

- Generation intervals include latent period of infectors only (weighted average)
- Serial intervals average over infectees (everyone is infected once)
- Coronavirus: people diagnosed early are less likely to transmit

The link paradox

- ► Imagine a renewal process where symptoms in the infector cause symptoms in the infectee
 - Assume homogeneity
- ▶ This has to match the same rR link as the true process
- But it also can't (because the serial interval is in general broader than the generation interval)
 - All else equal, a broader interval means lower R.

The forward serial interval

Dynamical effects mean that the forward serial interval is shortened!

Observed epidemiological intervals

Outline

Linking rR

Serial-interval distributions

Evaluating interventions

Variants

Wuhan control measures

https://jamanetwork.com/journals/jama/fullarticle/2764658

Time-varying reproductive numbers

- ▶ Instantaneous \mathcal{R}_i (Cori):
 - \blacktriangleright $i(t) = \int \mathcal{R}_i(t)g(\tau)i(t-\tau)\,d\tau$
 - Counterfactual: how many cases per case if conditions were frozen at time t
- ▶ Case \mathcal{R}_c (Wallinga):
 - $i(t) = \int \mathcal{R}_c(t=\tau)g(\tau)i(t-\tau)\,d\tau$
- Moving from reports to infections
 - Deconvolution

Strength-like and speed-like interventions

- Strength-like: lockdown, vaccination
- Speed-like: diagnosis, contact tracing
 - Dushoff and Park, DOI: 10.1098/rspb.2020.1556

Estimating r vs. \mathcal{R}

- r is easier to estimate from time series
- r is a better indicator if changes are speed-like
- $ightharpoonup \mathcal{R}$ is a better indicator if changes are strength-like
 - and if it can be estimated well
- Both approaches require deconvolution

Unidentifiability

 Strength-like and speed-like interventions can give exactly the same incidence curves

Implications for intervention

Implications for intervention

Outline

Linking rR

Serial-interval distributions

Evaluating interventions

Variants

Variants

- ► The clearest view is of the rate of logistic growth of variant proportion
- Unaffected by sampling intensity
 - ► Also by "speed-like" changes in transmission intensity

Relationship between δ and $\mathcal{R}_{\mathrm{wt}}$

Variant has faster generations

Variant has slower generations

Thanks

- Organizers and audience
- Collaborators:
 - Li, Park, Weitz, Bolker, Earn, Champredon, Gharouni, Papst, Hampson, So . . .
- ► Funders: NSERC, CIHR, PHAC, WHO, McMaster