UNIOESTE – Universidade Estadual do Oeste do Paraná Departamento de Engenharias e Ciências Exatas Campus de Foz do Iguaçu

Microprogramação – microinstruções

Profs.: Newton Spolaôr e Fabiana Frata

Apoio: Camile Bordini

(lembrete sobre microinstrução)

- •Uma microinstrução pode ser entendida como uma instrução para controle em baixo nível
- •Por meio de uma microinstrução, é possível **ativar sinais de controle** da microarquitetura
- •Microinstruções compõem um *microprograma*, (assim como instruções de máquina compõem um código Assembly)
- •Assim como ocorrem com as instruções para arquitetura RISC-V, as microinstruções possuem um <u>formato pré-definido</u>
- •Na microarquitetura exemplo, esse formato é dado por <u>32 bits</u> distribuídos em <u>13 campos</u>.

(layout de microinstrução)

A M U	C O N	A L	S H	M M	D C	N	С	В	A	ADDR
X	D_	U 	"	RR		(C				

Na sua opinião, para que serve cada um dos 13 campos?

(vide caminho de dados a seguir para facilitar)

(layout de microinstrução)

MI	R							
A M U V	OZOO	A L U	S	M M R W N B A D D C	С	В	Α	ADDR
	_							

•AMUX:

- Multiplexador que controla a entrada do operando esquerdo da Unidade Lógica Aritmética (*Latch A*);
- Seu valor pode ser: 0: quando a entrada for o conteúdo de um registrador; e 1: quando a entrada for um dado da memória que estará armazenado no registrador MBR.

N=1: se bit de mais alta ordem do <u>resultado</u> da ALU é 1

N=0: caso contrário

Z=1: se <u>resultado</u> da ALU é zero

Z=0: caso contrário

• COND:

• Sinal de controle que entra na unidade lógica de microsequenciamento, a fim de informar se deve ou não acontecer um desvio dentro do microcódigo

Considera os sinais denominados N (negative) e Z (zero)
do resultado gerado pela ALU

• Os valores que este sinal de controle pode assumir são:

• 0: não desvie

• **2**: desvie se **Z**=**1**

• 1: desvie se N = 1

• 3: desvie sempre

(layout de microinstrução)

MI								
M	0	A	s	MMRWE	С	В	Δ	ADDR
U X	N D	Ū	Н	RRDDC			.	ADDIX

•ALU:

- Sinal de controle que indica a operação que a ALU deverá executar neste ciclo de clock.
- Os valores que este sinal pode assumir são:
 - **0**: soma (A + B)
- 2: repetir a entrada (A)
- **1**: and (A AND B)
- 3: complemento da entrada (NOT A)

(layout de microinstrução)

MI											_
M U X	C O N D	A L U	S H	M M B A R R	R W D D	E N C	С	В	A	ADDR	
^	Ĭ										

•SH:

- Sinal que indica quando irá ocorrer um deslocamento.
- Seus valores podem ser:
 - 0: <u>não</u> desloque
 - 1: desloque 1 bit à esquerda (SHIFT LEFT)
 - 2: desloque 1 bit à direita (SHIFT RIGHT)

(layout de microinstrução)

MI	R																		
M U X	0 2 0 0	A L U	SH	В	M A R	L	E N C	С		В		ļ	4		,	AD	DF	2	

•MBR:

- Sinal de controle que assume os seguintes valores:
 - 1: indica que o registrador MBR será carregado com o valor de saída do deslocador
 - 0: indica que <u>não vai ser carregado</u>.

(layout de microinstrução)

MI										
M U X	COND	A L U	S	M M B A R R	R W D D	ENC	С	В	A	ADDR

•MAR:

- Sinal de controle que assume os seguintes valores:
 - 1: indica que o registrador MAR será carregado com o valor contido no registrador B
 - 0: indica que não vai ser carregado.

(layout de microinstrução)

- •RD: quando este sinal de controle está com valor 1, o dado, contido no endereço de memória especificado pelo registrador MAR, é lido da memória e colocado em MBR (READ).
- •WR: quando este sinal de controle está com valor 1, o conteúdo do registrador MBR é escrito na memória, no endereço especificado pelo registrador MAR (WRITE, ou STORE).
- •ENC: indica se vai haver escrita no registrador destino.

(layout de microinstrução)

- C: indica o endereço do registrador destino
- •B: indica o endereço do segundo operando da ALU
- •A: indica o endereço do primeiro operando da ALU
- •ADDR: endereço para onde será desviado o microcódigo se a condição for aceita.

Temporização das microinstruções

Cada ciclo de clock é dividido em 4 subciclos, onde os eventos chave durante cada um dos subciclos são:

- 1 Carregar a próxima microinstrução a ser executada no registrador MIR (Registrador de microinstrução)
- 2 Colocar os **conteúdos dos operandos** dentro dos registradores A e B
- 3 Dar um tempo para que a **ALU** execute uma operação com os operandos e para que o **deslocador** produza uma saída estável e se necessário, carregar o registrador **MAR**
- 4 Armazenar o valor existente no **barramento** C no **registrador destino** e carregar **MBR**, se for necessário.

Exemplo de microprograma

Ver material complementar: "CISC zerada.doc"

• Por exemplo, vamos analisar a microinstrução

MAR:=PC; RD;

- Objetivos:
 - Registrador MAR deve receber o conteúdo de PC
 - Além disso, deve ser habilitado o sinal de leitura (RD) em memória
- Para isso ocorrer, quais os bits em cada um dos campos da microinstrução?

Comando	AMUX	COND	ALU	SH	MBR	MAR	RD	WR	ENC	C	В	A	ADDR
MAR:=PC; rd;													

• AMUX: x

 Observando o caminho de dados, nenhuma operação na ALU é necessária para realizar a microinstrução, portanto o bit desse campo pode ser qualquer um ("don't care")

• COND: 00

Não há nenhuma condição a ser avaliada na microinstrução, logo, não deve ser realizado nenhum desvio após a microinstrução terminar, seguindo para a microinstrução seguinte. Portanto, os bits devem ser 00 ("não desvie")

• ALU e SH: xx xx

 Como nenhuma operação na ALU é necessária, os bits desses campos não importam ("don't care")

• MBR: 0

Sinal 0 pois MBR não deve receber nenhum valor

MAR: 1

 Sinal 1 pois o regsitrador MAR deve receber algum valor (endereço de PC, contido no registrador Latch B)

• RD: 1

Sinal 1 pois deseja-se habilitar a memória para leitura

• WR: 0

WR

Sinal 0 pois não deseja-se habilitar a memória para escrita

 $\frac{\text{ENC}}{0}$

 Sinal 0 pois não deve haver escrita no banco de registradores

- "Don't care" pois não há registrador de destino

Latch B deve receber o endereço de PC (0000)

• A: xxxx

Não importa qual será o 1º operando da ALU

• ADDR: XXXXXXX

A

- "Don't care" pois ocorrerá desvios

Resultado

Comando	AMUX	COND	ALU	SH	MBR	MAR	RD	WR	ENC	C	В	A	ADDR
MAR:=PC;	X	00	XX	XX	0	1	1	0	0	xxxx	0000	XXXX	xxxxxx
rd;													