Anti-Money Laundering (AML) Fraud Detection

Robins Yadav Feb 18, 2025

Table of Contents

- Project Overview & Goals
- Problem Statement
- Exploratory Data Analysis (EDA)
- Feature Engineering and Data Preprocessing
- Model Development and Evaluation
 - Model Selection and Training
 - Performance Metrics
- Deployment with GitHub Actions and AWS
- User Interface (Streamlit)
- Business Impact

Project Overview & Goals

Developed a Machine Learning system to detect potentially money laundering transactions, enhancing AML systems.

Addressed the challenge of high false positive and false negative rates in traditional AML systems.

Improved Precision & Recall compared to baseline methods.

Deployed the best model on AWS using Docker with ECR and EC2, and integrated into a CI/CD pipeline via GitHub Actions

Problem Statement

Problem: Money laundering is a massive financial problem (multi-billion dollar).

Challenge: Traditional AML systems suffer from High **False Positive** Rate and High **False Negative** Rate

Goal: Develop AI/ML system that significantly reduces both false positives and false negatives, improving efficiency and effectiveness.

Problem Statement

Big Picture

Source: United Nations – Office on Drugs and Crime

- Understanding the Data Structure and Content
 - Data source: IBM (Kaggle) Research Paper [arXiv] on Jan 25, 2024 describing generation of data
 - Data loading and inspection
 - Data Shape and Size
 - Data Types
 - Check for duplicates
 - Missing Values
 - Data Statistics

	Timestamp	From Bank	Account	To Bank	Account.1	Amount Received	Receiving Currency	Amount Paid	Payment Currency	Payment Format	ls Laundering
3507139	2022/09/07 12:15	29	80CF063F0	235843	80CFE1EB0	386006.86	Brazil Real	386006.86	Brazil Real	Cheque	0
2054082	2022/09/03 21:15	70	100428660	22732	80BFEBFF0	8638.95	US Dollar	8638.95	US Dollar	Cheque	0
4745576	2022/09/09 19:22	338871	8144F97F0	15964	8144FEB20	80.84	Euro	80.84	Euro	Credit Card	0

Target Variable Analysis

```
is_laundering
0 49946
1 54
```


• Days in week where Money Laundering occurred

Types of payment format in Money Laundering

• Types of payment currency in Money Laundering

Top 5 Currencies in Money Laundering

Banks involves in Money Laundering

Amount Received and Amount Paid

Feature Engineering and Data Preprocessing

- Feature Selection: Numerical Features
 - Check Multicollinearity
 - VIF is used to assess the multicollinearity among the independent (predictor) variables

feature	VIF
const	1.000189
amount_received	2854.096145
amount_paid	2854.096145

VIF = 1: No multicollinearity.

1 < VIF < 10: Moderate multicollinearity.

VIF > 10: High multicollinearity.

Conclusion: They are highly correlated therefore one of them need to be dropped

• Feature Selection method: *Recursive Feature Elimination, Feature Importance - ExtraTreesClassifier()*

Feature Engineering and Data Preprocessing

- Feature Selection: Categorical Features
 - Check Multicollinearity
 - Chi-square statistic is one way to show a relationship between two categorical variables.

Column	Hypothesis Result
from_bank	Fail to Reject Null Hypothesis - There is no relationship
account	Reject Null Hypothesis - There is a relationship
to_bank	Fail to Reject Null Hypothesis - There is no relationship
account_1	Reject Null Hypothesis - There is a relationship
receiving_currency	Fail to Reject Null Hypothesis - There is no relationship
payment_currency	Fail to Reject Null Hypothesis - There is no relationship
payment_format	Reject Null Hypothesis - There is a relationship
date	Reject Null Hypothesis - There is a relationship
day	Reject Null Hypothesis - There is a relationship
time	Reject Null Hypothesis - There is a relationship

Conclusion: Features like *account*, *account_1*, *date*, *day*, and *time* are important for model training and predictions

Feature Engineering and Data Preprocessing

```
- Preprocessing datasets for modeling
   - Imputing, Scaling and encoding
def num_cat_transformer(numerical_features, categorical_features):
   # Preprocessing for numerical features:
   num transformer = make pipeline(
        SimpleImputer(strategy='median'), # Impute missing values with median
        RobustScaler() # Scale numerical features
   # Preprocessing for categorical features:
   # Frequency Encoding for high cardinality features
   freq_encoder = CountEncoder(normalize=True) # Normalize frequency encoding
   # One-Hot Encoding for low cardinality features
   one hot encoder = OneHotEncoder(handle unknown='ignore')
   # Apply different encodings to different categorical features
   cat_transformer = make_column_transformer(
        (freq_encoder, ['account', 'account_1']), # Frequency Encoding for account and account_1
        (one_hot_encoder, ['payment_format', 'day']), # One-Hot Encoding for others
        remainder="drop" # Drop columns not explicitly transformed
    column_transformer = make_column_transformer(
        (num transformer, numerical features), # Apply numerical transformer to numerical features
        (cat_transformer, categorical features), # Apply categorical transformer to categorical features
        remainder="drop" # Drop columns not explicitly transformed
    return column_transformer
```

Model Development and Evaluation

- Model Selection and Training
 - Model selected: Random Forest, AdaBoost, XGBoost
 - Training: Cross-Validation, Hyperparameters Tunning (GridSearch)
 - Class Imbalance: SMOTE

Model Development and Evaluation

Performance Metrics

```
Model performance on Train data:
                             Recall F1 Score
                                                           Confusion Matrix
          Model Precision
  Random_Forest 0.999900 0.999900 0.999900
                                                   [[39952, 1], [7, 39958]]
                                               [[37731, 377], [2228, 39582]]
       AdaBoost
                 0.968477 0.967404 0.967422
2
                                                [[39251, 51], [708, 39908]]
        XGBoost
                  0.990638 0.990503 0.990503
Model performance on Test data:
          Model Precision Recall F1 Score
                                                  Confusion Matrix
  Random_Forest 0.961823 0.9788 0.969589
                                             [[9787, 12], [200, 1]]
                                             [[9362, 4], [625, 9]]
       AdaBoost
                  0.921879 0.9371 0.907923
2
        XGBoost
                 0.957494 0.9765 0.966164
                                             [[9764, 12], [223, 1]]
```

Deployment with GitHub Actions and AWS

Deployment with GitHub Actions and AWS

Configure GitHub Actions workflows in the .github/workflows directory, the main.yaml

GitHub Actions

IAM User Creation: AmazonEC2ContainerRegistryFullAccess, AmazonEC2EullAccess

Create ECR repository for Docker image ECR Repo URI:

####.dkr.ecr.us-east-1.amazonaws.com/ aml_fraud_detector-container

Create and Launch FC2 instance. Steps: Update & then install Docker

Amazon EC2

EC2 Instance Self-hosted

runner

Configure EC2 as Self-Hosted Runner

Steps: GitHub > Settings > Actions > Runners > New self-hosted runner > choose os (Linux) >

> then run command one by one in EC2 instance > finally Enter runner name : self-hosted

GitHub Secrets Setup:

GitHub Secrets

Steps: Settings > Secrets and variables > actions > New repository secret >

AWS_ACCESS_KEY_ID = ##### AWS_SECRET_ACCESS_KEY = ####

AWS_REGION = us-east-1

AWS_ECR_LOGIN_URI = ####.dkr.ecr.us-east-1.amazonaws.com ECR_REPOSITORY_NAME = aml_fraud_detector-container

User Interface (Streamlit)

Specified Input Parameters

f	from_bank	account	to_bank	account_1	amount_received	receiving_currency	payment_currer
0	214,615	80E9CE540	10,232	808FADF50	10,162.68	US Dollar	US Dollar

Prediction Results

Predict

Fraud Detector Class Labels

	Class Labels
Not Fraud	0
Fraud	1

Prediction of the Given Transaction

Fraudulent Transaction

Prediction Probabilities

	Not Fraud	Fraud
0	0.35	0.65

Business Impact

Reduced Financial Losses:

Stops fraud and avoids fines by improving the detection of fraudulent transactions.

Enhanced Customer Trust:

Fewer mistakes, happier customers.

Improved Operational Efficiency:

Automating fraud detection using machine learning models, making it faster.

Follows the AML Rules:

Keeps the company safe and trusted.

Thank You!

Questions?