5 Credits **CRN 30719**

The Ultimate Calculus I

Dr. Jorge Basilio

Review Activity

gbasilio@pasadena.edu

Review of Theory

A few Important Definitions

Give precise definitions to the following.

- 1. Limit of f as x approaches $a \lim_{x\to a} f(x) = L$
- 2. Continuity of f at x = a
- 3. Limit of f as x approaches $+\infty$: $\lim_{x\to+\infty} f(x) = L$
- 4. Derivative of f at x = a: $f'(a) = \frac{df}{dx}\Big|_{x=a} = \frac{dy}{dx} = \dot{s}$
- 5. Equation of the tangent line to f at the point P = (a, f(a)).
- 6. Anti-derivative (or, indefinite integral) of f, $F(x) = \int f(x) dx$.
- 7. Definite integral of f, $\int_a^b f(x)dx$.

This one is complicated: to help, here's an outline:

- Step 1: Partition of [a, b] with n subintervals $[x_{i-1}, x_i]$, set Δx_i .
- Step 2: Pick $c_i \in [x_{i-1}, x_i]$.
- Step 3: Riemann sum: $\sum_{i=1}^{n} f(c_i) \Delta x_i$.
- Step 4: Definite Integral is the limit of Riemann sums, write this using math notatation.
- 8. Explain the difference between a definite integral and an anti-derivative

A few Important Theorems

Give a precise or "slogan form" of the following theorems.

- 1. Special Limits:
 - (a) $\lim_{x\to\pm\infty}\frac{1}{x}=$
- (b) $\lim_{x\to 0} \frac{\sin(x)}{x} =$
- (c) $\lim_{x\to 0} \frac{1-\cos(x)}{x} =$

2. Derivative Rules:

- (a) Power Rule (b) Product Rule (c) Quotient Rule (d) Chain Rule Rule
- (e) $\frac{d}{dx} \left[\sin(x) \right] =$ (f) $\frac{d}{dx} \left[\cos(x) \right] =$
- 3. Derivative Tests (DTs)
 - (a) ID Test (Increasing/Decreasing Test (b) First DT for Local Extrema
 - (c) Second DT for Concavity (d) Second DT for Local Extrema
- 4. **Fundamental Theorems of Calculus**
 - (a) Part I (b) Part II
- 5. (Optinal) Serious bonus points if you remember these without looking them up!!
 - (a) Intermediate Value Theorem (b) Extreme Value Theorem (c) Mean Value Theorem

A few Important Techniques

Know the following techniques to solve problems.

- 1. Calculate limits using limit rules and theorems
- 2. Compute tangent lines and use these to approximate a function
- 3. Implicit Differentiation 4. Related Rates
- 5. Calculate complicated derivatives using Derivative Rules (DRs)
- 6. Sketching a curve using f' and f''
- 7. *Optimization Problems* The largest.../The smallest...
- 8. Calculate anti-derivatives
- 9. Calculate definite integrals
- 10. Calculate integrals using *u-substittution*
- 11. Calculate areas using definite integrals
- 12. (Optinal) Calculate Riemann sums to approximate a definite integral using
 - (a) left-endpoints (b) right-endpoints (c) midpoints (d) trapezoids

Practice Problems

Solve the following.

1. Some algebra

(a) Long division: divide
$$x^4 + 2x^2 - 4x + 6$$
 by $x^2 + x + 3$

- (b) Complete the square: $x^2 + 5x 3$
- 2. Some trig
 - (a) Fill-out a complete unit circle
 - (b) Find all values of x where $cos(x) = \frac{\sqrt{3}}{2}$

3. If
$$f(x) = \frac{\cos((2x^2 - 3)^{94})}{7x^2 \cdot \tan(6x)} + \pi^2$$
, compute $f'(x)$

- 4. Find the equation of the tangent line of $g(x) = x \sin(x)$ at the point where $x = \pi/3$.
- 5. Compute: $\int (\pi \cos(x) + (x^3 x^5)^2) dx$
- 6. Compute: $\int (3(x^2+1)\sec^2(x^3+3x)) dx$
- 7. Evaluate: $\int_{-1}^{1} x^{99} dx$
- 8. Find: $\frac{d}{dx} \int_0^x \tan^3(t^2) dt$
- 9. Find $\frac{dy}{dx}$ as a function of x and y given that

$$xy + y^2 + x^2 = 3$$

10. Find the area above $y = \cos(x)$ and below $y = \sin(x)$ between their first two intersections (see diagram).

- 11. Given the cost and revenue functions C(x)=2x+10 and $R(x)=-2x^2+20x$ that represent the number of dollars spent or made, respectively, on the sale of x units of a certain commodity. What production levels maximize profits? Recall that the profit function is P(x)=R(x)-C(x).
- 12. A printer need to make a poster that will have a total area of $200 in^2$ and will have 1 inch margins on the sides, a 2 inch margin on the top and a 1.5 inch margin on the bottom (draw a picture!). What dimensions will give the largest printed area?