Week 2!!!

Learning Unit 2 – Graphical Summaries Your Plotting Professor Colton

LU 2 Outline

<u>Introduction</u>

Why Summaries and Plots?

Frequency Tables

Frequency Tables

Frequency Table Graphs

- Histograms
- Relative Frequency Histograms

Other Visual Tools

- Stem and Leaf Plots
- Dot Plots
- Time Series Plots
- Measures of Shape

Introduction – Why Summaries and Plots?

- Terrible idea to display raw information! Way too much!
- Two parts of any data analysis: Understanding and Relating!!

```
[1] Very Good Ideal
                          Very Good Very Good Fair
                                                         Premium
                                                                   Ideal
  [8] Very Good Very Good Ideal
                                     Ideal
                                               Fair
                                                         Very Good Very Good
 [15] Ideal
                          Ideal
                                     Good
                Premium
                                               Ideal
                                                         Ideal
                                                                   Very Good
                          Ideal
                                    Ideal
                                               Ideal
                                                                   Ideal
 [22] Premium
                Ideal
                                                         Ideal
 [29] Ideal
                Fair
                          Premium
                                    Premium
                                              Premium
                                                         Good
                                                                   Premium
                Very Good Ideal
                                                         Ideal
                                                                   Ideal
 [36] Premium
                                     Very Good Premium
 [43] Ideal
                Very Good Very Good Premium
                                               Very Good Ideal
                                                                   Premium
 [50] Very Good Very Good Ideal
                                               Very Good Very Good Premium
 [57] Ideal
                          Good
                                     Premium
                                              Very Good Very Good Ideal
 [64] Ideal
                Ideal
                          Ideal
                                    Ideal
                                               Premium
                                                         Ideal
                                                                   Ideal
                Very Good Premium
 [71] Fair
                                    Ideal
                                               Ideal
                                                         Ideal
                                                                   Very Good
 [78] Premium
                Premium
                          Ideal
                                    Very Good Premium
                                                         Very Good Very Good
 [85] Premium
                Ideal
                          Ideal
                                    Ideal
                                               Good
                                                         Very Good Ideal
[92] Ideal
                Ideal
                          Ideal
                                     Ideal
                                               Very Good Ideal
                                                                   Premium
[99] Ideal
                Ideal
Levels: Fair < Good < Very Good < Premium < Ideal
```

```
[1] 0.35 0.30 1.25 0.30 0.30 1.51 0.57 0.73 1.01 0.54 0.42 2.01 1.71 2.01 0.51 [16] 0.31 0.35 0.70 0.90 0.90 2.48 0.74 1.12 0.51 0.86 2.01 0.50 0.41 0.38 0.90 [31] 1.02 1.13 2.01 1.00 1.50 0.73 1.34 1.01 1.20 1.36 1.04 1.27 0.30 0.23 1.01 [46] 0.40 1.54 0.40 1.52 0.93 1.02 1.03 0.30 0.41 0.31 0.76 0.55 0.58 0.61 0.42 [61] 0.91 1.00 0.70 0.71 0.31 0.70 0.57 0.42 0.56 0.32 0.70 0.60 0.40 0.32 0.30 [76] 0.50 0.43 0.35 1.74 1.02 1.24 0.31 1.07 1.50 0.33 0.42 0.31 2.50 1.23 1.25 [91] 0.31 0.34 1.14 1.52 0.60 1.06 0.90 1.14 0.41 1.09
```


Review + New

What type of visual we can make depends on what type of data we have.

Qualitative (Categorical) Data

- Non-Numerical data with different categories.
- Ex) States, letter grades, class standing, etc.

Quantitative Data

- Numerical data, counts or measurements
- Arithmetic operations such as adding and averaging make sense
- Ex) Income, GPA, Height, Weight, etc.
- In creating graphs, it is important to first consider the distribution of a variable.
 - The **distribution** of a variable is a list of what values the variable can take on as well as how often it takes on these values.
- Often, the distribution of <u>quantitative variables</u> is <u>summarized in a table</u> like the following example.

Frequency Tables for Numeric Data

"Lount Sample Size

Frequency Tables

- Used to organize both quantitative and qualitative data sets.
- They also are helpful in some generating graphs we will discuss later!

How to Construct for Numeric Data

- 1. Data is **binned**, i.e. grouped together. All bins (aka **classes**) will have equal length.
 - This length is referred to as the bin / class width = upper limit lower limit
- 2. Then we *count* the number of observations in each bin.
- This count is referred to as the Frequency.
- Can also find the **Relative Frequency**, which is just the *proportion* (or *percent*) of data in each bin.
 - This is just the **Frequency** divided by the **Total**.

Carat	Frequency Relative Free	quency
[0.2,0.66]	95/200	0.475
(0.66,1.12]	56/ > 00	0.280
(1.12,1.58]	36	0.180
(1.58,2.04]	11	0.055
(2.04,2.5]	\mathcal{O}	0.010
	Total: 200	1.00

^{*} This can be referred to as **grouped data** now

LCQ: Frequency Tables

- Data (20 observations):
 - 38, 33, 5, 5, 47, 29, 24, 42, 3, 18, 30, 46, 25, 44, 40, 42, 39, 44, 29, 13

Construct a Frequency Table

Bin	Frequency	Relative Frequency
0-10		
10-20		
20-30		
30-40		
40-50		
Total:		

LCQ: Frequency Tables

- Data (20 observations):
 - 38, 33, 5, 5, 47, 29, 24, 42, 3, 18,
 30, 46, 25, 44, 40, 42, 39, 44, 29, 13

Construct a Frequency Table

	Bin	Frequency	Relative Frequency
	0-10	3	3/20 = 0.15
	10-20	2	2/20 = 0.1
20 ≤ x < 30	20-(30)	4	0.20
30 ≤ x < 40	30-40	4	0.20
	40-50	7	0.35
30	Total:	20	1.00

Check work:

Frequency Tables

Choosing the Bins

- Subjective choice
 - Depends on how granular (closely, exactly) you want to show the data.
- With more bins, each bin gets smaller (smaller class width).
 - So the data gets more spread out across the bins (smaller frequencies and relative frequencies).

Carat	Frequency	Relative Frequency
[0.2,0.66]	95	0.475
(0.66,1.12]	56	0.280
(1.12,1.58]	36	0.180
(1.58,2.04]	11	0.055
(2.04,2.5]	2	0.010

Carat	Frequency	Relative Frequency
[0.2,0.487]	70	0.350
(0.487,0.775]	43	0.215
(0.775,1.06]	31	0.155
(1.06,1.35]	28	0.140
(1.35,1.64]	15	0.075
(1.64,1.92]	4	0.020
(1.92,2.21]	7	0.035
(2.21,2.5]	2	0.010

Frequency Tables

[1] 0.35 0.30 1.25 0.30 0.30 1.51 0.57 0.73 1.01 0.54 0.42 2.01 1.71 2.01 0.51 [16] 0.31 0.35 0.70 0.90 0.90 2.48 0.74 1.12 0.51 0.86 2.01 0.50 0.41 0.38 0.90 [31] 1.02 1.13 2.01 1.00 1.50 0.73 1.34 1.01 1.20 1.36 1.04 1.27 0.30 0.23 1.01 [46] 0.40 1.54 0.40 1.52 0.93 1.02 1.03 0.30 0.41 0.31 0.76 0.55 0.58 0.61 0.42 [61] 0.91 1.00 0.70 0.71 0.31 0.70 0.57 0.42 0.56 0.32 0.70 0.60 0.40 0.32 0.30 [76] 0.50 0.43 0.35 1.74 1.02 1.24 0.31 1.07 1.50 0.33 0.42 0.31 2.50 1.23 1.25 [91] 0.31 0.34 1.14 1.52 0.60 1.06 0.90 1.14 0.41 1.09

<u>Advantage of Using Frequency Tables</u>

Great for condensing and summarizing the raw data.

Disadvantage of Using Frequency Tables

- We lose information.
- We no longer know what the specific values were, only what bin (range of values) they are in.
- So why not just use a lot of bins?????
 - Then we would be keeping more information right??

Carat	Frequency	Relative Frequency
[0.2,0.66]	95	0.475
(0.66,1.12]	56	0.280
(1.12,1.58]	36	0.180
(1.58,2.04]	11	0.055
(2.04,2.5]	2	0.010

Frequency Tables

Balancing Act

- Yes, using more bins keeps more info...
- But then it loses the conciseness that made it a good representation in the first place.
- Hard to really get anything from this frequency table...
- So you have to be smart about choosing the number / width of the bins (classes)!
 - We will learn how to set the ranges for each bin next class!

Carat	Frequency	Relative Frequency
[0.2,0.315]	30	0.150
(0.315,0.43]	40	0.200
(0.43,0.545]	10	0.050
(0.545,0.66]	15	0.075
(0.66,0.775]	18	0.090
(0.775,0.89]	2	0.010
(0.89,1]	13	0.065
(1,1.12]	23	0.115
(1.12,1.23]	10	0.050
(1.23,1.35]	11	0.055
(1.35,1.46]	1	0.005
(1.46,1.58]	14	0.070
(1.58,1.69]	1	0.005
(1.69,1.81]	3	0.015
(1.92,2.04]	7	0.035
(2.38,2.5]	2	0.010

Cumulative Frequency

Cumulative Frequency

- This is a running total of the frequencies
 - So for a class, it is the number of values less than or equal to that class.
- Can also do this as cumulative relative frequency.
 - So just continually add the relative frequencies as you move down the classes

Carat	Frequency	Relative Frequency	Cumulative Frequency	Cumulative Relative Frequency
[0.2,0.66]	95	0.475	95	0.475
(0.66,1.12]	56	0.280	151	0.755
(1.12,1.58]	36	0.180	187	0.935
(1.58,2.04]	11	0.055	198	0.990
(2.04,2.5]	2	0.010	200	1.000

LCQ: Cumulative Frequency

- Data (20 observations):
 - 38, 33, 5, 5, 47, 29, 24, 42, 3, 18,
 30, 46, 25, 44, 40, 42, 39, 44, 29, 13

Construct the rest of the earlier Frequency Table

Bin	Frequency	Relative Frequency	Cumulative Frequency	Cumulative Relative Frequency
0-10	3	0.15		
10-20	2	0.1		
20-30	4	0.20		
30-40	4	0.20		
40-50	7	0.35		
Total:	20	1		

LCQ: Cumulative Frequency

- Data (20 observations):
 - 38, 33, 5, 5, 47, 29, 24, 42, 3, 18, 30, 46, 25, 44, 40, 42, 39, 44, 29, 13

Construct the rest of the earlier Frequency Table

Bin	Frequency	Relative Frequency	Cumulative Frequency	Cumulative Relative Frequency
0-10	3	0.15	3	3 / 20 = 0.15
10-20	2	0.1	<i>3 + 2 = 5</i>	<i>5 / 20 = 0.25</i>
20-30	4	0.20	<i>5 + 4 = 9</i>	0.45
30-40	4	0.20	13	0.65
40-50	7	0.35	20	1
Total:	20	1		

Frequency Table Graphs

Graphs (in general)

- Use graphs to display data visually.
- Important to know which type of data (qualitative or quantitative) each different type graph we discuss shows.

Frequency Table Graphs

- Frequency tables help construct Histograms and Relative Frequency Histograms.
- To create these in graphs by hand or in Excel, you first have to make a frequency table.

Histograms

<u>Histograms</u>

- For **Quantitative** data.
- Each bar represents a bin from the Freq table.

Features

- **Bars touch!** This is because we have to <u>account for every possible</u> <u>value</u> along the x-axis.
- Each bar is the same width.
 - This makes <u>comparisons</u> across bars <u>valid!</u>
- Heights of each bar represents the <u>Frequency</u> for that bin.
- Sum of all the heights equals the total sample size.
- CAN'T tell the specific value of observations, only the interval its in.
 - This is why we <u>lose information</u> when <u>grouping</u> the data for Freq Tables / Histograms.

Advantages

- Pretty simple.
- Shows **shape** and **mode** (the most common value) well!

Carat	Frequency	Relative Frequency
[0.2,0.487]	70	0.350
(0.487,0.775]	43	0.215
(0.775,1.06]	31	0.155
(1.06,1.35]	28	0.140
(1.35,1.64]	15	0.075
(1.64,1.92]	4	0.020
(1.92,2.21]	7	0.035
(2.21,2.5]	2	0.010

LCQ: Histograms

- Data (20 observations):
 - 38, 33, 5, 5, 47, 29, 24, 42, 3, 18, 30, 46, 25, 44, 40, 42, 39, 44, 29, 13

Sketch a Histogram

Bin	Frequency	Relative Frequency
0-10	<i>3</i>	3/20 = 0.15
10-20	2	2/20 = 0.1
20-30	4	0.2
30-40	4	0.2
40-50	7	0.35
Total:	20	1

Questions we can ask:

Context: Lets say this data represents the scores for a football team.

- 1) What is the range of scores?
- 2) How many games had 30 or more points (score \geq 30)?
- 3) What percentage of games had less than 20 points (score < 20)?

LCQ: Histograms

- Data (20 observations):
 - 38, 33, 5, 5, 47, 29, 24, 42, 3, 18, 30, 46, 25, 44, 40, 42, 39, 44, 29, 13

Sketch a Histogram

Bin	Frequency	Relative Frequency
0-10	3	3/20 = 0.15
10-20	2	2/20 = 0.1
20-30	4	0.2
30-40	4	0.2
40-50	7	0.35
Total:	20	1

Questions we can ask:

Context: Lets say this data represents the scores for a football team.

- 1) What is the range of scores? Scores range from 0 to 50
- 2) How many games had 30 or more points (score \geq 30)? 4 + 7 = 11
- 3) What percentage of games had less than 20 points (score < 20)? 0.1 + 0.15 = 0.25 or (3 + 2) / 20

Histograms again

Histograms by Midpoints

- Will also see classes defined by the Midpoints, rather than the lower and upper bounds
 - Midpoint = (Lower limit + Upper limit) / 2
- This is how we will make histograms on the Lab in Excel
- Can find the class width by subtracting consecutive midpoints!

Bin	Midpoint	Frequency	Relative Frequency		
0-10	(0+10)/2=5	3	0.15		
10-20	(10+20) / 2 = 15	2	0.1		
20-30	25	4	0.25		
30-40	35	4	0.25		
40-50	45	7	0.35		
Total:		20	1		

Histograms

Choosing the Bins

- Again bin selection has a big impact on the final graph.
- Don't want too few bins, cause then you don't really get any info...
- More bins is better (to an extent).
 - Shows the data more closely, can see more individual spikes.

Relative Frequency Histogram

Relative Frequency Histogram

- Same as a regular histogram, except now the Relative Frequencies (proportions, probabilities, %) are on the y-axis.
- Sum of all the height equals 1.

<u>Advantage</u>

- Useful when comparing groups with DRASTICALLY DIFFERENT sample sizes.
 - Just using counts could be misleading....

Cut	Frequency
Fair	1610
Good	4906

 Using proportions puts the bars on the same scale, making it a fair (visual) comparison

Stem and Leaf Plots

Stem and Leaf Plot

- (Weird) way to display quantitative data.
- Best for SMALL datasets.
- Two-sided chart that separates data values by digits.
- Displays the **shape** of the distribution and displays **all data values**.

Stem	Leaf	Count
4	88	2
4	2444	4
3	558	3
3	0002224	7
2	5699	4
2	022	3
1		
1	14	2

Data: 48, 48, 42, 44, 44, 44, 35, 35, 38, 30, 30, 30,...., 14

Stem (tens place)
Leaves (ones place)

Stem-and-leaf plot for the hotel rate data

	1-11-11-11-11-11-11-11-11-11-11-11-11-1
5	0 4
5	58
6	01134
6	5899
7	0122233334
7	555556777788889999
8	011134
8	5 5 6 9 9
9	3 3 4
9	01

Stem = tensLeaf = ones

Back-to-Back Stemplot

• Used to compare two distributions

Girls		Boys
9, 2	9	
6, 1, 0, 0	10	5, 8, 9
8, 7	11	0, 1, 1, 7
6, 6, 5, 5, 5, 4, 2	12	3, 7, 7, 8
7, 1, 0	13	3, 3, 4, 4, 6, 9
9, 8	14	4, 4, 5
8, 6, 2, 0, 0	15	0, 1, 2, 3, 7
7	16	2, 2, 2, 5, 8
	17	1, 6
8, 0	18	2, 8
9	19	5
4	20	

https://www.ck12.org/statistics/two-sided-stem-and-leaf-plots/

Dot Plots

Dot Plot

- Quick and easy method for organizing quantitative data, dots on a number line.
- Best for SMALL datasets.
- Displays the **shape** of the distribution and displays **all data values**.
- Can see "outliers".

How to Construct

Just stack dots above the value...

weight in kilograms

Measures of Shape

- Define how the data is distributed.
- Up to 2 things to report.
 - SHAPE: Is the data symmetric, right (positive) skewed, or left (negative) skewed?
 - MODALITY: Is the data unimodal, bimodal or multimodal?
 - Depending on the type of graph, this won't always be known. If you can't tell, don't report.

Another shape

Uniform

Roughly same height across.

http://mathcenter.oxford.emory.edu/site/math117/shapeCenterAndSpread/

LCQ: Measures of Shape

Describe the SHAPE and MODALITY of each histogram

a)

b)

c)

d)

e)

f)

LCQ: Measures of Shape

Describe the SHAPE and MODALITY of each histogram

- a) Symmetric and unimodal
- b) Negative (left) skew and unimodal
- c) Right skewed (positive) and unimodal
- d) Roughly uniform (implies symmetric); can't say anything about the modality
- e) Not symmetric and bimodal
- f) Non symmetric (maybe roughly symmetric) and multimodal

Overall Example

- <u>Setup</u>: Penalty minutes per player during the 14-15 season for the Miami University RedHawks Ice Hockey Team are located in the table below as well as in the dataset "2014 RedHawk Hockey".
- Here are 3 different graphs to display the same info. Notice what information you can get (and what you can't) from each display.

- All display shape (right skewed) and modality (unimodal)
- Histogram only shows mode as 0 20, whereas stemplot and dotplot show its really just 0 5 or 0 (most exact)
- All show outliers, but with histogram we only know the range of the outlier (80 – 100), whereas stemplot and ~ dot plot shows us it is 99
- Stemplot and ~ dotplot show all values

Time Series Plots

Time Series Plot

- Displays <u>changes</u> in a <u>quantitative</u> variable <u>over time</u> (aka time series data).
- <u>Time values</u> on x-axis and values on y-axis.
 - Time is measured over equally spaced increments, e.g. days, months, years, etc.
- Best way to see <u>trends</u> (long-term upwards or downwards) over time!
- Also shows seasonal variation (cyclical pattern)!
 - This can be interpreted as change over time that has a regular pattern that repeats.
 - Examples: Hourly temperatures, monthly gymenrollment

How to Construct

 Line graph (connect the dots) with time values on x-axis and values on y-axis.

https://wwwbis.sidc.be/silso/datafiles

Scales of Time Series Plots

Scales of Time Series Plots

- This is something that you need to pay attention to when interpreting a time series plot.
- Very easy to <u>manipulate</u> axes to <u>change the</u> <u>interpretation</u> of a visual.
 - Horizontal stretches make the changes over time seem more gradual.
 - Whereas <u>vertical stretches</u> make make changes seem <u>way more drastic</u>.

Moore/Notz, Statistics: Concepts and Controversies, 10e, © 2020 W. H. Freeman and Company

PROBLEM SESSION!!!!!!!!!

Problem #1

As part of the marketing team at an Internet music site, you want to understand who your customers are. You send out a survey to 25 customers asking for demographic information. One of the variables is the customer's age.

| 20 | 38 | 35 | 30 | 22 | 34 | 44 | 44 | 29 | 35 | 30 | 26 | 48 |

20	38	35	30	22	34	44	44	29	35	30	26	48
30	25	32	22	42	14	32	29	48	44	11	32	

- a) Make a histogram of the data using a bar width of 10 years.
- b) Make a histogram of the data using a bar width of 5 years.
- c) Make a relative frequency histogram of the data using a bar width of 5 years.
- d) Make a stem-and-leaf plot of the data.

Problem #1 Solution

Problem #3

For the histogram that you made in Exercise 1a:

- a) Is the distribution unimodal or multimodal?
- b) Where is (are) the mode(s)?
- c) Is the distribution symmetric?
- d) Are there any outliers?

Problem #3 Solution

- a) Unimodal
- b) Around 35
- c) Fairly symmetric
- d) No outliers

Problem #78

Here is a histogram and time series plot of the monthly CPI as reported by the Bureau of Labor Statistics from 2008 through 2013.

- a) What features of the data can you see in the histogram that aren't clear from the time series plot?
- b) What features of the data can you see in the time series plot that aren't clear in the histogram?
- c) Which graphical display seems the more appropriate for these data? Explain.
- d) Write a brief description of monthly CPI over this time period.

Here is the time series plot for the same data.

Problem #78 Solution

- a) The frequency of the different CPI values
- b) The trend of the values over time for the CPI
- c) The time series plot
- d) The monthly CPI increased until July 2008 and decreased slightly for August and September. Then decreased sharply during the months of October through December where it hit its all-time low. The CPI had a slow, but steady increase until about December 2010 when it started increasing sharply. CPI have increased overall, except for slight dips from Oct-Dec 2011 and March July 2012.