International Trade of Essential Goods During a Pandemic

Fernando Leibovici Federal Reserve Bank of St. Louis

Ana Maria Santacreu Federal Reserve Bank of St. Louis

> Fed Brown Bag June 22nd, 2020

Disclaimer: The following views are those of the authors and do not necessarily reflect the views of the Federal Reserve Bank of St. Louis or the Federal Reserve System.

International Trade of Essential Medical Goods

Some goods have proved critical to address ongoing COVID-19 pandemic:

- Personal protective equipment (PPE): Gloves, medical masks, face shields, ...
- Medical equipment: Respirators
- COVID-19 tests

International Trade of Essential Medical Goods

Some goods have proved critical to address ongoing COVID-19 pandemic:

- Personal protective equipment (PPE): Gloves, medical masks, face shields, . . .
- Medical equipment: Respirators
- COVID-19 tests

Key role of trade for countries to consume these goods in normal times

- Production of these goods is highly concentrated in a few locations
 - ▶ Only 20% of countries are net exporters of these goods
- Some countries are highly dependent on imports
 - \blacktriangleright e.g., US: $\approx 36\%$ of total absorption of these goods is imported

International Trade of Essential Medical Goods

Some goods have proved critical to address ongoing COVID-19 pandemic:

- Personal protective equipment (PPE): Gloves, medical masks, face shields, . . .
- Medical equipment: Respirators
- COVID-19 tests

Key role of trade for countries to consume these goods in normal times

- Production of these goods is highly concentrated in a few locations
 - ▶ Only 20% of countries are net exporters of these goods
- Some countries are highly dependent on imports
 - \blacktriangleright e.g., US: $\approx 36\%$ of total absorption of these goods is imported
- ⇒ Increasing unease about relying so much on other countries for these goods
- ⇒ To what extent does trade of these goods affect impact of a pandemic?

	But Why Would	Trade Matter	for the	Impact of a	Pandemic?
--	---------------	--------------	---------	-------------	-----------

 ${\bf 1.} \ \, {\bf Trade \ allows \ rapid \ and \ cheap \ access \ to \ goods \ from \ countries \ where \ less \ needed$

But Why Would Trade Matter for the Impact of a Pandemic?

- 1. Trade allows rapid and cheap access to goods from countries where less needed
- 2. Relying on other countries might make countries vulnerable if trade breaks down

But Why Would Trade Matter for the Impact of a Pandemic?

- 1. Trade allows rapid and cheap access to goods from countries where less needed
- 2. Relying on other countries might make countries vulnerable if trade breaks down

COVID-19:

- Global shock, all countries suddenly need more essential goods
- Adjusting production takes time, prices ration limited supply
- If trade breaks down (via prices or trade policy), countries that import these goods may face autarky with very limited access to them

⇒ This paper: Investigate role of trade of essential goods during pandemic

Sharp Trade Policy Changes During COVID-19

Data from Global Trade Alert + World Bank as of May 29:

Higher export controls

Lower import barriers

 \Rightarrow Key role of international trade of essential medical goods during a pandemic

This Paper

Question:

• What is the role of intl. trade of essential medical goods during a pandemic?

This Paper

Question:

• What is the role of intl. trade of essential medical goods during a pandemic?

To answer this question, we investigate:

- What is the cross-country impact of a pandemic?
- Oo countries prefer to be hit with a pandemic in a world with low trade barriers?
- 3 Do countries prefer to decrease trade barriers once the pandemic hits?

This Paper

Question:

• What is the role of intl. trade of essential medical goods during a pandemic?

To answer this question, we investigate:

- 1 What is the cross-country impact of a pandemic?
- 2 Do countries prefer to be hit with a pandemic in a world with low trade barriers?
- Oo countries prefer to decrease trade barriers once the pandemic hits?

To do so:

- Quantitative dynamic trade model with essential goods
 - Preferences for essential goods are non-homothetic
 - Sectoral adjustment costs on capital and labor
 - ► Trade imbalances in essential goods
- Study impact of a pandemic across countries + international trade policy
- ullet Contrast with evidence from COVID-19 + evidence for broader set of essential goods

- 1. Impact of a pandemic across countries
 - Net importers of essential medical goods are worse off than net exporters

- 1. Impact of a pandemic across countries
 - Net importers of essential medical goods are worse off than net exporters
- 2. Trade policy at the onset of the pandemic
 - Net exporters: Better off in world with lower initial trade barriers
 - Net importers: Better off in world with higher initial trade barriers

- 1. Impact of a pandemic across countries
 - Net importers of essential medical goods are worse off than net exporters
- 2. Trade policy at the onset of the pandemic
 - Net exporters: Better off in world with lower initial trade barriers
 - Net importers: Better off in world with higher initial trade barriers
- 3. Trade policy changes during the pandemic
 - Net exporters: Better off in world that responds increasing trade barriers
 - Net importers: Better off in world that responds decreasing trade barriers

- 1. Impact of a pandemic across countries
 - Net importers of essential medical goods are worse off than net exporters
- 2. Trade policy at the onset of the pandemic
 - Net exporters: Better off in world with lower initial trade barriers
 - Net importers: Better off in world with higher initial trade barriers
- 3. Trade policy changes during the pandemic
 - Net exporters: Better off in world that responds increasing trade barriers
 - Net importers: Better off in world that responds decreasing trade barriers
- \Rightarrow We show trade policy changes during COVID-19 consistent with these findings

This Paper: Implications

Our paper has implications beyond COVID-19 and essential medical goods...

- 1. There is a broader range of essential goods subject to shocks
 - Food and agriculture: Natural disasters, famine, pests, global warming
 - · Defense and steel: Threats to national security, wars
 - \Rightarrow We document that trade policy looks different for these goods
 - ⇒ They are typically subject to higher trade barriers
- 2. Quantitative analysis of trade policy under uncertainty
 - Our work connects with theoretical studies from 70s and 80s (Feenstra 1977, Newbery and Stiglitz 1984, Eaton and Grossman 1985, Lapan 1988)
 - We study trade policy in an environment with uncertainty and agg. fluctuations

3. Trade policy in dynamic models of international trade

(Ravikumar, Santacreu, Sposi 2019; Kohn, Leibovici, Tretvoll 2020)

Model

- Two countries: Home, foreign
 - Present model for home, foreign is symmetric except for parameters
 - ▶ Will be specific about differences in quantitative analysis
- Two sectors: Essential (e), non-essential (c)
- In each country:
 - Household
 - Producer of a domestic variety in each sector
 - Producer of bundles of domestic and imported varieties in each sector
 - Essential and non-essential bundles are used for consumption and investment
- International trade
 - Goods: Essential and non-essential varieties
 - No trade in financial assets

Household: Preferences

Preferences

$$\mathbb{E}_0 \sum_{t=0}^{\infty} \beta^t \left[\ln c_t - \gamma \exp \left(\frac{\overline{e}_t}{e_t} \right) \right]$$

where...

- c_t: non-essential goods
- e_t: essential goods
- \overline{e}_t : "reference level" of essential good consumption (exogenous)

Household: Preferences

Preferences

$$\mathbb{E}_0 \sum_{t=0}^{\infty} \beta^t \left[\ln c_t - \gamma \exp \left(\frac{\overline{e}_t}{e_t} \right) \right]$$

where...

- ct: non-essential goods
- et: essential goods
- \overline{e}_t : "reference level" of essential good consumption (exogenous)

Idea

- Consumption of essential goods is high or low relative to some reference level
- e.g. Food consumption compared to physical needs
- e.g. Health services compared to medical needs

Household: Preferences

Preferences

$$\mathbb{E}_0 \sum_{t=0}^{\infty} \beta^t \left[\ln c_t - \gamma \exp \left(\frac{\overline{e}_t}{e_t} \right) \right]$$

where...

- ct: non-essential goods
- et: essential goods
- \overline{e}_t : "reference level" of essential good consumption (exogenous)

Observation

- Akin to Stone-Geary: $\ln c_t + \gamma \ln (e_t \overline{e}_t)$
- Same idea and similar implications as our specification
- But key advantage of our specification: Avoids kink at \overline{e}_t (we have $e_t>0$ vs. $e_t>\overline{e}_t$ in Stone-Geary)

Household: Preferences (cont.)

Preferences

$$\mathbb{E}_0 \sum_{t=0}^{\infty} \beta^t \left[\ln c_t - \gamma \exp \left(\frac{\overline{e}_t}{e_t} \right) \right]$$

To illustrate...

Household: Income and Household's Problem

Income

- One unit of labor supplied inelastically at wage w_t
- ullet Own producers of domestic essential and non-essential varieties, earn $\pi_{c,t}$ and $\pi_{e,t}$

Household's problem:

$$\max_{\{c_t,e_t\}_{t=0}^{\infty}} \mathbb{E}_0 \sum_{t=0}^{\infty} \beta^t \left[\ln c_t - \gamma \exp \left(\frac{\overline{e}_t}{e_t} \right) \right]$$

subject to

$$p_{c,t}c_t + p_{e,t}e_t = w_t + \pi_{c,t} + \pi_{e,t} \quad \forall t = 0,...,\infty$$

Producers of Domestic Varieties in Sector $j \in \{c, e\}$

Technologies

- **1** Produce varieties: $Y_{j,t} = A_j N_{j,t}^{\alpha} K_{j,t}^{1-\alpha}$
- 2 Accumulate capital: $K_{j,t+1} = (1 \delta)K_{j,t} + I_{j,t}$

Sectoral adjustment costs

- Capital: $\phi_k(\mathcal{K}_{j,t+1},\mathcal{K}_{j,t}) = \frac{\Omega_k}{2} \left(\frac{\mathcal{K}_{j,t+1}}{\mathcal{K}_{j,t}} 1 \right)^2$
- Labor: $\phi_n(N_{j,t}, N_{j,t-1}) = \frac{\Omega_n}{2} \left(\frac{N_{j,t}}{N_{j,t-1}} 1 \right)^2$
- Denominated in units of non-essential goods

Alternative assumptions on decision-making

- Externality (baseline): Myopic firms, do not discount profits with household's SDF
- 2 No externality: Firms discount profits with household's SDF
 - ⇒ Producers of essential goods internalize importance of production in a pandemic?
 - ⇒ This talk: Myopic firms as the baseline

Producers of Domestic Varieties in Sector $j \in \{c, e\}$ (cont.)

Producers' problem:

$$\begin{aligned} \max \mathbb{E}_0 \sum_{t=0}^{\infty} m_t \left[q_{j,t} Y_{j,t} - w_t N_{j,t} - p_{c,t} I_{j,t} - p_{c,t} \phi_k (K_{j,t+1}, K_{j,t}) - p_{c,t} \phi_n (N_{j,t}, N_{j,t-1}) \right] \\ \text{subject to} \\ K_{j,t+1} &= (1-\delta) K_{j,t} + I_{j,t} \quad \forall t = 0, ..., \infty \\ Y_{j,t} &= A_j N_{j,t}^{\alpha} K_{j,t}^{1-\alpha} \qquad \forall t = 0, ..., \infty. \end{aligned}$$

where...

• control variables: $\{N_{j,t}, I_{j,t}, K_{j,t+1}, Y_{j,t}\}_{t=0}^{\infty}$

and...

- $m_t = \beta^t$ in baseline, $m_t = \mathsf{SDF}_t$ in model with no externality
- $q_{i,t}$: price of domestic variety j
- $p_{j,t}$: price of bundle of domestic and imported varieties from sector j

Producers of Composite Good $j \in \{c, e\}$

Technology

$$Q_{j,t} = \left[\omega_j Q_{j,h,t}^{rac{\sigma-1}{\sigma}} + (1-\omega_j) Q_{j,f,t}^{rac{\sigma-1}{\sigma}}
ight]^{rac{\sigma}{\sigma-1}}$$

where...

- $Q_{j,h,t}$: Domestic variety
- $Q_{j,f,t}$: Imported variety
- $\omega_j \in (0,1)$: Weight across varieties

International trade

- Imported varieties subject to sector-specific iceberg trade cost au_j

Uses of composite goods

- Non-essential goods: Consumption, investment, adj. costs
- Essential goods: Consumption

Competitive Equilibrium

Home country:

- Given prices, allocations solve the household's problem
- 2 Given prices, allocations solve problem of domestic producers
- 3 Given prices, allocations solve problem of composite good producers
- **4** Labor market clears: $N_{c,t} + N_{e,t} = 1 \ \forall t$
- **6** Home essential goods market clearing: $Q_{e,h,t} + \tau_e^* Q_{e,h,t}^* = Y_{e,t} \ \forall t$
- **6** Home non-essential goods market clearing: $Q_{c,h,t} + \tau_c^* Q_{c,h,t}^* = Y_{c,t} \ \forall t$
- $m{0}$ Essential composite good market clearing: $e_t = Q_{e,t} \ orall t$
- 8 Non-essential composite good market clearing:

$$c_t + \sum_{j \in \{c,e\}} \left[I_{j,t} + \frac{\Omega_k}{2} \left(\frac{\mathcal{K}_{j,t+1}}{\mathcal{K}_{j,t}} - 1 \right)^2 + \frac{\Omega_n}{2} \left(\frac{\mathcal{N}_{j,t}}{\mathcal{N}_{j,t-1}} - 1 \right)^2 \right] = Q_{c,t} \ \forall t$$

⇒ Foreign country is symmetric except for some parameters

A Pandemic in Our Model

We model a pandemic as...

• An increase in \overline{e}_t (the reference level of essential goods)

Goal is to capture:

- Increased need for essential medical goods (e.g., PPE, COVID-19 tests, etc.)
- \bullet Utility is lower if these increased needs are not satisfied (e.g., disease, death, etc.)

Does not capture other important features of a pandemic:

- Lockdown policies and their economic consequences
- Endogeneity between increased needs and the level of economic activity

 \Rightarrow We take increased needs as exogenous, study role the of international trade

What is the Impact of a Pandemic in Our Model?

1. Sharp increase in the demand for essential medical goods

• Reallocation of demand from non-essential to essential goods

What is the Impact of a Pandemic in Our Model?

- 1. Sharp increase in the demand for essential medical goods
 - Reallocation of demand from non-essential to essential goods
- 2. Hard to adjust production and consumption in short-run, prices increase sharply

$$\frac{p_{e}}{p_{c}} = \gamma \frac{c}{e} \times \underbrace{\frac{\overline{e}}{e} \exp\left(\frac{\overline{e}}{e}\right)}_{\text{Extra term relative}}$$

to log-log preferences

What is the Impact of a Pandemic in Our Model?

- 1. Sharp increase in the demand for essential medical goods
 - Reallocation of demand from non-essential to essential goods
- 2. Hard to adjust production and consumption in short-run, prices increase sharply

$$rac{p_e}{p_c} = \gamma rac{c}{e} imes rac{\overline{e}}{e} \exp \left(rac{\overline{e}}{e}
ight)$$
Extra term relative to log-log preferences

3. Net exporters of essential medical goods are better off, net importers worse off

$$\mathsf{Real} \ \mathsf{Absorption}_t = \frac{\mathsf{PPI}_t}{\mathsf{CPI}_t} \times \mathsf{Real} \ \mathsf{Output}_t$$

- \Rightarrow corr $(p_e/p_c, PPI_t/CPI_t)>0$ for net exporters
- \Rightarrow corr $(p_e/p_c, PPI_t/CPI_t)<0$ for net importers

Quantitative Analysis

We quantitatively investigate:

- 1 What is the cross-country impact of a pandemic?
- Oo countries prefer to be hit with a pandemic in a world with low trade barriers?
- Oo countries prefer to decrease trade barriers once the pandemic hits?

To do so, parametrize model:

- One period = One month
- Two countries: Home is U.S., foreign is the rest of the world
- Both countries are identical except for the sectoral productivities
 - ▶ Home: $A_c > A_e$
 - Foreign: $A_e^* > A_c^*$
 - Symmetry and normalization: $A_c = A_e^*$, $A_e = A_c^* = 1$
- Estimate parameters to match pattern of production and trade in the U.S.

Parametrization

Predetermined parameters

Parameter	Value	Description
β	0.9967	Discount factor (4% annual interest rate)
σ	4	Elasticity of substitution
α	0.66	Labor share
δ	0.06	Capital depreciation rate
$\Omega_k = \Omega_n$	6	Adjustment costs
$\omega_e = \omega_c$	0.50	Weight on home goods

Estimated parameters

Parameter	Value	Description
$A_c = A_e^*$	1.10	Sectoral productivities
γ	7.80×10^{-5}	Utility weight on essential goods
$ au_{e}$	1.52	Trade costs on essential goods
$ au_{c}$	1.44	Trade costs on non-essential goods
\overline{e}	0.14	Reference level of essential goods

	Targete	d	Untargeted	
	Home counti	ry S.S.	Foreign country S.S.	
Moment	Target value	Model	Model	
NX_e/GDP_e	-0.25	-0.25	0.18	
GDP_e/GDP	0.03	0.03	0.05	
M_e/p_ee	0.36	0.36	0.17	
M_c/p_cc	0.21	0.21	0.24	
e/\overline{e}	0.20	0.20	0.20	

$Implementation + Reference \ Level + Pandemic \ Shock$

Skipping some implementation details

- \bullet Essential goods \equiv PPE and other medical goods
- ullet Non-essential goods \equiv All other goods

Implementation + Reference Level + Pandemic Shock

Skipping some implementation details

- \bullet Essential goods \equiv PPE and other medical goods
- Non-essential goods \equiv All other goods

Key calibration challenge: Pinning down \overline{e} , adj. costs, and shock

- This talk:
 - 1 \overline{e} such that $e/\overline{e} = 0.20$
 - 2 Shock (AR1 with $\rho = 0.95$) \Rightarrow Quantity dynamics following pandemic
 - 3 Adj. cost \Rightarrow Price dynamics following pandemic

Implementation + Reference Level + Pandemic Shock

Skipping some implementation details

- \bullet Essential goods \equiv PPE and other medical goods
- Non-essential goods \equiv All other goods

Key calibration challenge: Pinning down \overline{e} , adj. costs, and shock

- This talk:
 - 1 \overline{e} such that $e/\overline{e} = 0.20$
 - 2 Shock (AR1 with $\rho = 0.95$) \Rightarrow Quantity dynamics following pandemic
 - 3 Adj. cost \Rightarrow Price dynamics following pandemic
- · Reasonable reference level?
 - \Rightarrow Income elasticity of essential good imports similar to data during normal times
 - ⇒ Similar effects to standard parametrizations of Stone-Geary

Implementation + Reference Level + Pandemic Shock

Skipping some implementation details

- \bullet Essential goods \equiv PPE and other medical goods
- ullet Non-essential goods \equiv All other goods

Key calibration challenge: Pinning down \overline{e} , adj. costs, and shock

- This talk:
 - 1 \overline{e} such that $e/\overline{e} = 0.20$
 - 2 Shock (AR1 with $\rho = 0.95$) \Rightarrow Quantity dynamics following pandemic
 - 3 Adj. cost \Rightarrow Price dynamics following pandemic
- Reasonable reference level?
 - \Rightarrow Income elasticity of essential good imports similar to data during normal times
 - ⇒ Similar effects to standard parametrizations of Stone-Geary

This talk: Pin down dynamics focusing on masks, Jan to Apr 2020

- Quantities: 59% increase in N95 masks by 3M in US (22m to 35m per month)
- Prices: 429% increase in price of masks imported from China

Q1: What is the cross-country impact of a pandemic?

Q1: What is the cross-country impact of a pandemic?

Q1: What is the cross-country impact of a pandemic?

1/2 — Recall:

- Countries are identical except for sectoral productivities
 - $A_c > A_e \Rightarrow$ Home is a net importer of essential goods
 - $A_e^* > A_c^* \Rightarrow$ Foreign is a net exporter of essential goods

Q1: What is the cross-country impact of a pandemic?

2/2 — We find:

- ullet Limits to short-run adjustment \Rightarrow Higher prices \Rightarrow Hurt importers, benefit exporters
- Trade amplifies impact of pandemic for net importers, mitigates it for net exporters

Dynamics Following a Pandemic (cont.)

Which channels/ingredients are most important for our findings?

Dynamics Following a Pandemic (cont.)

Which channels/ingredients are most important for our findings?

In the paper, we show that:

- Sectoral adjustment costs: Important
 - Control speed at which production of essential goods can be scaled up
 - ► Lower adjustment costs ⇒ Importers less hurt, exporters less well off
- Non-hometetic preferences on essential goods: Important
 - ▶ High curvature to get large price change and heterogeneous impact across countries
 - lacktriangle Same as Stone-Geary w/shock to subsistence, eq Cobb-Douglas with shock to weight
- Sectoral trade imbalances: Important
 - Substantially smaller effects in world where sectoral trade flows are balanced
- Myopic firms: Important
 - ▶ Net importers less worse off if firms assign more weight to profits during pandemic
 - Trade policy implications: Different incentives of planner vs. individual firms for producing essential goods despite being less productive than trade partners

Q2: Do countries prefer to be hit with pandemic in a world with low trade barriers? (or... should we protect essential sectors?)

First pass at answering this question:

- Examine pandemic in a world with high initial trade barriers on essential goods
 - Global change in trade barriers, not unilateral
 - $au_e = 100$ instead of $au_e = 1.52 \Rightarrow \approx \mathsf{Autarky}$
- For each country, we now contrast world with high vs. low initial trade barriers
- Welfare analysis
 - This talk: Contrast welfare with high vs. low initial trade barriers
 - ▶ In progress: Optimal trade policy

1/3 — Net importer of essential goods:

- Better off with higher trade barriers at the onset of the pandemic
- More domestic production, lower imbalances \Rightarrow Smaller impact of higher p_e/p_c

2/3 — Net exporter of essential goods:

- · Worse off with lower trade barriers at the onset of the pandemic
- · Lower net exports, lower benefits from price increase

3/3 — Thus:

- Protection might be beneficial to mitigate foreign dependence in a global pandemic
- i.e. Self-insurance as a way to deal with global shock
- Yet, trade openness preferred without shocks, or even for domestic/local shocks

Q3: Do countries prefer to decrease trade barriers once the pandemic hits?

First pass at answering this question:

- Examine pandemic + increase of trade barriers during pandemic
 - au_e increases by 172% (1 log point) on impact, AR(1) with ho=0.95
 - ▶ Global change in trade barriers, not unilateral
- For each country, contrast baseline vs. raising trade barriers during pandemic

1/3 — Net importer of essential goods:

- Worse off with increasing trade barriers
- Even harder to purchase essential goods, prefers lower trade barriers and thus lower prices during pandemic!

2/3 — Net exporter of essential goods:

- Better off with increasing trade barriers
- Higher utility due to reallocation of essential goods from exports to domestic sales

3/3 — Time inconsistency problem in trade policy?

- Net importers want high initial trade barriers, but low trade barriers ex-post
- Net exporters want low initial trade barriers, but high trade barriers ex-post

Pandemic and Trade Policy: Long-Run Welfare Implications

Welfare implications under alternative scenarios:

- Compute consumption-equivalent gains/losses starting from arrival of a pandemic
- Express gains/losses as a permanent change in consumption of non-essential goods

We find...

	Welfare gain/loss for		
	Home country	Foreign country	
Baseline	-1.05%	-0.27%	
High initial trade barriers	-0.75%	-0.73%	
Raise trade barriers when pandemic hits	-1.79%	-0.32%	

	Essential	Goods	and	International	Trade	Policy:	Evidence
--	-----------	-------	-----	---------------	-------	---------	----------

Q4: Findings on trade policy in essential goods consistent with the data?

1. Trade barrier changes after COVID-19

Q4: Findings on trade policy in essential goods consistent with the data?

1. Trade barrier changes after COVID-19

- Are trade policy changes systematically related to trade imbalances pre-COVID-19?
- Focus on subset of medical goods essential to combat COVID-19
- Data on trade policy changes from Global Trade Alert up to mid-April 2020
 - Export curbs
 - Import liberalization
- Data on sectoral trade imbalances from COMTRADE for 2018

Q4: Findings on trade policy in essential goods consistent with the data?

1. Trade barrier changes after COVID-19

	Number of	Share of countries by row (%)		
	countries	Import liberalization	Export curbs	
Surplus	22	18.2	86.4	
Deficit	87	28.7	46.0	

Q4: Findings on trade policy in essential goods consistent with the data?

1. Trade barrier changes after COVID-19

	Number of	Share of countries by row (%)		
	countries	Import liberalization	Export curbs	
Surplus	22	18.2	86.4	
Deficit	87	28.7	46.0	

Consistent with the model...

- \Rightarrow Net exporters more likely to introduce export curbs than net importers
- \Rightarrow Net importers more likely to lower import barriers than net exporters

Q4: Findings on trade policy in essential goods consistent with the data?

Q4: Findings on trade policy in essential goods consistent with the data?

- Are essential goods subject to higher trade barriers than non-essential goods?
- Consider broader range of essential goods: Food/agriculture, defense, medical
- Data from UNCTAD:
 - Tariffs: Effectively applied tariffs, year 2018
 - Non-tariff barriers: Frequency index (share of goods), coverage ratio (share of trade), vears 2012-2018

Q4: Findings on trade policy in essential goods consistent with the data?

	Avg. Tariffs (%)	Frequency index (%)	Coverage index (%)
Food	7.9	92.59	92.96
Defense	7.2	90.58	87.73
Medical	1.7	74.51	86.00
Non-essential	5.4	50.21	64.12

Q4: Findings on trade policy in essential goods consistent with the data?

	Avg. Tariffs (%)	Frequency index (%)	Coverage index (%)
Food	7.9	92.59	92.96
Defense	7.2	90.58	87.73
Medical	1.7	74.51	86.00
Non-essential	5.4	50.21	64.12

- ⇒ Trade barriers on essential goods typically larger than on non-essential goods
- \Rightarrow One exception: Tariffs on medical imports. Lack of awareness of their importance pre-COVID-19?

Concluding Remarks

Q: What is the role of intl. trade of essential medical goods during a pandemic?

We find:

- Net trade position key for whether trade amplifies or mitigates pandemic
- · Net importers better off with higher initial trade barriers, lower upon pandemic
- Net exporters better off with lower initial trade barriers, higher upon pandemic
- Trade policy implications consistent with data

Big picture:

- · Optimal trade policy may differ between essential and non-essential goods
- Protectionism might be optimal as self-insurance against global shocks?
- Much broader reach than medical: e.g., food, defense, their inputs, etc.

Concluding Remarks

Q: What is the role of intl. trade of essential medical goods during a pandemic?

We find:

- Net trade position key for whether trade amplifies or mitigates pandemic
- Net importers better off with higher initial trade barriers, lower upon pandemic
- · Net exporters better off with lower initial trade barriers, higher upon pandemic
- Trade policy implications consistent with data

Lots more work to do:

- Tighten calibration: Reference level, adjustment costs, shock
- Additional channels: Financial markets, stockpiling/inventories
- · Additional results: Unilateral vs. global trade policy, optimal trade policy