Chapter 2: Algorithm Analysis

Yangtao Ge

June 23, 2019

Abstract

This section discusses about:

- how to estimate the time required for a program
- how to reduce running time of a program
- The result of careless use of recursion
- very efficient algorithms to raise a number to a power
- compute GCD

1 Mathematical Background

Four definitions of the framework:

Definition 1.1 (Upper bound). T(N) = O(f(N)) if there are positive constants c and n_0 such that $T(N) \leq cf(N)$ when $N \geq n_0$

Definition 1.2 (Lower bound). $T(N) = \Omega(g(N))$ if there are positive constants c and n_0 such that $T(N) \ge cg(N)$ when $N \ge n_0$

Definition 1.3 (Envelope). $T(N) = \Theta(h(N))$ iff T(N) - O(h(N)) and $T(N) = \Omega(h(N))$

Definition 1.4. T(N) = o(p(N)) if for **all** positive constants c there exists an n_0 such that T(N) < cp(N) when $N > n_0$.

Ref: p.30 for detail theorem

Typical growth rates:

<u> </u>	
Function	Name
c	Constant
$\log N$	Logarithmic
$\log^2 N$	Log-Squared
N	Linear
$N \log N$	
N^2	Quadratic
N^3	Cubic
2^N	Exponential

Some Theorem from the definition:

Theorem 1.1. If $T_1(N) = O(f(N))$ and $T_2(N) = O(g(N))$, then:

1.
$$T_1(N) + T_2(N) = O(f(N) + g(N))$$

2.
$$T_1(N) * T_2(N) = O(f(N) * g(N))$$

Theorem 1.2. If T(N) is a polynomial of degree k, then $T(N) = \Theta(N^k)$

Theorem 1.3. $\log^k N = O(N)$ for any constant k, which tell us 'Logarithms grow very slowly

For big-O notation answers: Lower-order terms can generally be ignored e.g. $f(N) = 2N^2 + N$ then its big-O notation is $T(N) = O(N^2)$

For relative growth rates of two Function, we using 'L'Hopitals's rule' to determine it:

Theorem 1.4 (L'Hopitals's rule). If $\lim_{N\to\infty} f(N) = \infty$ and $\lim_{N\to\infty} g(N) = \infty$, then $\lim_{N\to\infty} \frac{f(N)}{g(N)} = \lim_{N\to\infty} \frac{f'(N)}{g'(N)}$

Four possible results:

- Limit is 0: f(N) = 0(g(N))
- Limit is $c \neq 0$: $f(N) = \Theta(g(N))$
- Limit is ∞ : g(N) = o(f(N))
- Limit does not exist: No relations

2 Model

Basically a normal computer which execute instructions sequentially. And it has infinite memory

3 What to Analyze

What we focus:

- Input size
- Running time

What we use:

- $T_{avg}(N)$: average running time reflect typical behaviour.
- $T_{worst}(N)$: worst running time a guarantee for performance on any possible input

Ref: pp. 33 - 35 (Maximum subsequence Sum Problem)

4 Running Time Calculations

We only focus on big-O notation answers.

4.1 A simple Example

Calculations of $\sum_{i=1}^{N} i^3$. The code is as follows:

```
return partialSum; // Line 4
```

Analysis:

}

- Line 1: 1 time for assignment
- Line 2: 2N + 2 times in total:
 - 1 time for initialization
 - -N+1 times for comparison
 - N times for increment
- Line 3: 4N times in total(2 multiplication, 1 addition, 1 assignment)
- Line 4: 1 time for return

In total 6N + 4, so we say that it is a O(N) method

4.2 General Rules

- 1. 'For' loops: $T = T_{statements} * iterations$ (at most)
- 2. 'Nested' loops: $T = T_{statements} * \prod SizeOfLoop$ (Analysis them insideout)
- 3. Consecutive statements: Use 'big-O' notation add e.g. O(N) followed by $O(N^2)$ is still $O(N^2)$
- 4. 'if-else': $T = \max(T_{Stat1}, T_{Stat2})$ (sometimes overestimate, but never underestimate)

4.3 Solution for the Problem of Maximum subsequence Sum

Four algorithms are provided here (Ref: pp.39 - 49)

4.4 Logarithms in the Running Time

Some Logarithms algorithms:

- divide-and-conquer algorithms: $O(N \log N)$ time
- General rules:
 - $-O(\log N)$: takes constant O(1) time to cut the problem size by a fraction (usually 1/2)
 - -O(N): constant time required to merely reduce the problem by a constant amount

Following subsection are some common Logarithmic algorithms:

- 4.4.1 Binary Search
- 4.4.2 Euclid's Algorithm
- 4.4.3 Exponentiation

4.5 A Grain of Salt

Sometimes, Worst case is better than average case:

- average case is very complex
- Analysis needs to be tightened
- average running time is less significant than worst case running time