Weekly Meeting

Topic: Need A to be resolution IV

Presenter: Heng-Tse Chou @ NTHU STAT

Date: Jun. 19, 2024

Issues

- 1. Property α with design A having resolution IV.
- 2. Property β with design A having resolution IV.

Property α

 $\mathrm{SOA}(n,m,27,3)$ has property lpha iff:

- 1. A is resolution IV.
- 2. (B, B', B'') is resolution III, i.e., no repeated columns.

Property β

 $\mathrm{SOA}(n,m,27,3)$ has property β iff:

- 1. A is resolution IV.
- 2. $(B, B', B'') \subseteq \bar{A}$.
- 3. (B, B', B'') contains no 2 factor interaction from A.

Property lpha for k=4

α	β	$lpha \cdot eta$	$lpha \cdot eta^2$
14	23	1234	12^23^24
1^24	2^23	1^22^234	1^223^24
24	1^23	1^2234	$123^{2}4$
2^24	13	$12^{2}34$	$1^2 2^2 3^2 4$
123	12^24	$1^{2}34$	2^234^2
$1^2 2^2 3$	$1^{2}24$	134	234^2
12^23	$1^2 2^2 4$	234	1^234^2
$1^{2}23$	124	$2^{2}34$	134^2

Property lpha with k=4

This construction provides D with 8 factors (8/10).

Property α with k=6

α	eta	$lpha \cdot eta$	$lpha \cdot eta^2$
$5\cdot A_{(1)}$	$6 \cdot B_{(1)}$	$56\cdot A_{(1)}B_{(1)}$	$igg 56^2 \cdot A_{(1)} B_{(1)}^2 $
$5^2 \cdot A_{(1)}$	$6^2 \cdot B_{(1)}$	$oxed{5^26^2\cdot A_{(1)}B_{(1)}}$	$5^26\cdot A_{(1)}B_{(1)}^2$
$6\cdot A_{(1)}$	$5^2 \cdot B_{(1)}$	$5^26\cdot A_{(1)}B_{(1)}$	$56 \cdot A_{(1)} B_{(1)}^2$
$6^2 \cdot A_{(1)}$	$5 \cdot B_{(1)}$	$56^2 \cdot A_{(1)} B_{(1)}$	$5^26^2 \cdot A_{(1)} B_{(1)}^2$
$56\cdot A_{(2)}$	$oxed{56^2 \cdot B_{(2)}}$	$5^2 \cdot A_{(2)} B_{(2)}$	$6^2 \cdot A_{(2)} B_{(2)}^2$
$5^26^2\cdot A_{(2)}$	$oxed{5^26\cdot B_{(2)}}$	$5\cdot A_{(2)}B_{(2)}$	$6\cdot A_{(2)}B_{(2)}^2$
$56^2 \cdot A_{(2)}$	$oxed{5^26^2\cdot B_{(2)}}$	$6\cdot A_{(2)}B_{(2)}$	$5^2 \cdot A_{(2)} B_{(2)}^2$
$5^26\cdot A_{(2)}$	$56 \cdot B_{(2)}$	$6^2 \cdot A_{(2)} B_{(2)}$	$5 \cdot A_{(2)} B_{(2)}^2$

Property α with k=6

Where

$$A_{(1)} = (14, 1^24, 24, 2^24)$$

$$A_{(2)} = (123, 1^22^23, 12^23, 1^223)$$

$$B_{(1)} = (23, 2^23, 1^23, 13)$$

$$B_{(2)} = (12^24, 1^224, 1^22^24, 124)$$

This construction provides D with 32 factors (32/91).

Grouping with \boldsymbol{A} not having res. \boldsymbol{IV}

α	eta	$lpha \cdot eta$	$lpha \cdot eta^2$
$5\cdot A$	$6 \cdot B$	$56 \cdot AB$	$56^2 \cdot AB^2$
$5^2 \cdot A$	$6^2 \cdot B$	$5^26^2 \cdot AB$	$5^26\cdot AB^2$
$6\cdot A$	$5^2 \cdot B$	$5^26 \cdot AB$	$56\cdot AB^2$
$6^2 \cdot A$	$5 \cdot B$	$56^2 \cdot AB$	$5^26^2 \cdot AB^2$
$56 \cdot A$	$56^2 \cdot B$	$5^2 \cdot AB$	$6^2 \cdot AB^2$
$\boxed{5^26^2\cdot A}$	$5^26 \cdot B$	$5 \cdot AB$	$6 \cdot AB^2$
$56^2 \cdot A$	$5^26^2 \cdot B$	$6 \cdot AB$	$5^2 \cdot AB^2$
$5^26 \cdot A$	$56 \cdot B$	$6^2 \cdot AB$	$5 \cdot AB^2$

Grouping with \boldsymbol{A} not having res. \boldsymbol{IV}

This construction provides D with 64 factors (64/91).

Property β for s=2

 $P_0=$ all combinations of $e_3,\dots,e_k.$ $P=(I,P_0)$ $A=e_1P$ $B=e_2P$ $B'=e_1e_2P o S=(P_0,A,B,B')$

Property β for s=3

 $P_0 = \text{all combinations of } e_3, \ldots, e_k.$

$$P = (I, P_0, P_0^2)$$
 $A = e_1 P$
 $B = e_2 P$
 $B' = e_1 e_2 P$

 $B'' = e_1 e_2^2 P \to S = (P_0, A, B, B', B'')$

However, A does not have res. IV. s111 and s211 are not satisfied.

Post-Meeting Notes

New stuffs:

- ullet Find a criterion to quantify how close a design is to lpha property
- Simulated Annealing to generate a good design (See MaxPro)
- Minimum moment aberration as a criterion to start with.

Minimum moment aberration

For an (N, s^n) -design $D = [r_{ij}]_{N \times n}$ and a positive integer t, define the tth power moment to be $K_t(D) = [N(N-1)/2]^{-1} \sum_{1 \le i < j \le N} [\delta_{ij}(D)]^t$, where

$$\delta_{ij}(D) = \sum_{k=1}^{n} \delta(r_{ik}, r_{jk}) \tag{2}$$

is the number of coincidences between the *i*th and *j*th rows and $\delta(x,y)$ is the Kronecker delta function, equal to 1 if x = y and 0 otherwise. It is important to note that $n - \delta_{ij}(D)$ is known as the *Hamming distance* between the *i*th and *j*th rows in algebraic coding theory.