Just-in-Time Adaptive Interventions &

Micro-Randomized Trials

Susan Murphy

- Wearable wrist/chest bands provide multiple physiological sensor streams...;
 Self-report provides craving, burden,.....
- Stress-management exercises available on smartphone 24/7
- In which contexts should the smartphone remind the user to access the stressmanagement apps and practice the exercises?

Heartsteps

HeartSteps Activity Coach

 Wearable band senses activity and sleep quality; phone sensors measure busyness of calendar, location, weather; self-report provide burden, utility

O In which contexts should the smartphone ping and deliver tailored activity ideas?

Outline

Just-in-Time Adaptive Intervention (JITAIs)

What are they, Components, Motivation

Micro-Randomized Trials (MRTs)

- Using data to inform the development of JITAIs
- Key features
- Sample size considerations
- MRTs vs. other designs

Outline

Just-in-Time Adaptive Intervention (JITAIs)

What are they, Components, Motivation

Micro-Randomized Trials (MRTs)

- Using data to inform the development of JITAIs
- Key features
- Sample size considerations
- MRTs vs. other designs

Adaptive Intervention: 5 Elements

The adaptation is guided by consideration of

(1) Proximal and Distal Outcomes

The adaptation process is composed of

- (2) Tailoring Variables,
- (3) Decision Rules and
- (4) Intervention Options

The adaptation is triggered at

(5) Decision Points

JITAIs: Just-in-Time Adaptive Interventions

- A JITAI is an adaptive intervention
- That is
 - delivered when needed& where-ever needed

(Spruijt-Metz & Nilsen, 2014; Nahum-Shani et al. 2016)

Intervention to reduce heavy drinking and smoking by young adults

- Participants prompted 3/day by mobile device for assessments
 - Smoking urge, self-regulation demands, drinking behaviors
- Urge-surfing interventions delivered by the mobile device *only* if participant reports an urge to smoke.

(Witkiewitz et al., 2014)

Reducing Sedentary Behavior by Office Workers

- Software on the computer measures uninterrupted computer time via mouse and keyboard activity
- o Smartphone delivers a message to encourage a walking activity *only* if 30 min. of uninterrupted computer activity occurs

(Dantzig et al., 2013)

Commonalities?

 Both adaptive interventions and JITAIs are time-varying and adaptive

- However in JITAIs technology plays a critical role
 - Information can be obtained when/where needed
 - Interventions can be delivered when/where needed

Motivation for JITAIs

- 1. Individuals may need support when it is difficult or expensive to provide
- 2. Individuals are not always aware of when they need support
- 3. Intervention options may have negative effects (burden, habituation)

Just-in-Time Adaptive Intervention 5 Elements

The adaptation is guided by consideration of

(1) Proximal and Distal Outcome

In-the-Moment Impact

The adaptation process is composed of

- (2) Tailoring Variables,
- (3) Decision Rules and
- (4) Intervention Options

The adaptation is triggered at

(5) Decision Points

Real-Time

Distal Outcomes

The goal is to improve a longer-term, distal, outcome

• Substance use cessation; maintain increased activity level; maintain adherence to meds

To improve the distal outcome, the intervention options are formulated to target proximal outcomes

Proximal Outcomes

Mediators that may be critical to achieving the long-term goal

- 1) Short term targeted behavior
 - > Substance use over x hours
 - > Physical activity over x minutes
 - ➤ Adherence over next hour
- 2) Short term risk
 - > Current craving, stress
- 3) Engagement with mobile app/intervention burden

Intervention options

• Intervention options:

- Behavioral strategies, cognitive strategies, selfmonitoring, social linkages, motivational,...
- Whether to provide an intervention or whether to prompt self-monitoring
- How to provide an intervention option
- "Provide nothing" option
- Theoretically/scientifically driven (Klein et al., 2011; West & Michie, 2016)

Tailoring variables

Tailoring variables are moderators that inform which intervention option is best when, where and for whom.

- Often past proximal outcomes: stress, activity
- Risk & protective factors: busyness of calendar, current mood or craving, location, social context
- Adherence & burden

Decision Points

Typical decision points in JITAIs:

- Intervals in time (every x seconds, every x minutes, every x hours)
- When user requests help (presses "help" button")

Frequency is guided by the dynamics of the tailoring variables and "in-the-moment nature" of the intervention effect.

Decision Rules

Link tailoring variables to intervention options at decision points

- A decision rule is implemented at each decision point
- A JITAI often includes many different decision rules
- Development of decision rules is guided by an integration of empirical evidence, theory and clinical experience.

Decision Rules: Example 1

What to do when composite risk assessment at random prompt indicates risk

At self-report assessment

If composite substance abuse risk $\geq R_0$

Then, IO = {reminder to access intervention}

Else if composite substance abuse risk $< R_0$

Then, $IO = \{do \ nothing\}$

Tailoring Variable Proximal Outcome: Craving

Decision Point

Intervention

options

Decision Rules: Example 2

```
At 1 minute intervals 

If current accumulated computer activity > P_0

Then, IO= {recommend movement}

Else if current accumulated computer activity \leq

P_0

Then, IO = {do nothing}
```

200

Summary of JITAI elements

1. Outcomes

Distal (scientific/clinical goal) &
 Proximal Outcome (guided by mediational theories pinpointing the necessary processes needed to achieve the distal outcome)

2. Intervention options

- Guided by the proximal responses
- 3. Tailoring variables
 - o Guided by theory concerning moderation.
- 4. Decision points
 - Guided by the dynamics of the tailoring variable and inthe-moment nature of the effect of the intervention option.

5. Decision rules

Outline

Just-in-Time Adaptive Intervention (JITAIs)

What are they, Components, Motivation

Micro-Randomized Trials (MRTs)

- Using data to inform the development of JITAIs
- Key features
- Sample size considerations
- MRTs vs. other designs

Heartsteps

HeartSteps Activity Coach

 Wearable band senses activity and sleep quality; phone sensors measure busyness of calendar, location, weather; self-report provide burden, utility

 In which contexts should smartphone ping and deliver tailored activity ideas?

- Wearable wrist/chest bands provide multiple physiological sensor streams...;
 Self-report provides craving, burden,.....
- Stress-management exercises available on smartphone 24/7
- In which contexts should the smartphone remind the user to access the stressmanagement apps and practice the exercises?

Data from wearable devices that sense and provide treatments

- On each individual: $O_1, A_1, Y_2, \dots, O_t, A_t, Y_{t+1}, \dots$
- t. Decision point
- O_t : Observations at t^{th} decision point (high dimensional)
- A_t : Action at t^{th} decision point (intervention option)
- Y_{t+1} : Proximal response (e.g., reward, utility, cost)

- 1) Decision Points (Times at which a treatment can be provided.)
 - 1) Regular intervals in time (e.g. every 10 minutes)
 - 2) At user demand

HeartSteps: Approximately every 2-2.5 hours

Sense²Stop: Every 1 minute during 10 hour day.

- 2) Observations O_t
 - 1) Passively collected (via sensors)
 - 2) Actively collected (via self-report)

<u>HeartSteps</u>: classifications of activity, location, step count, busyness of calendar, usefulness ratings, adherence.....

<u>Sense²Stop</u>: classifications of stress, smoking detection, mood, driving,....

- 3) Actions A_t
 - 1) Intervention options that can be provided at a decision time
 - 2) Whether to provide an intervention

HeartSteps: Tailored activity recommendation notification by phone

Sense²Stop: Reminder to access app so as to practice stress-management exercises

Tailored Activity Recommendation

No Message or

4) Proximal Outcome (reward) Y_{t+1}

HeartSteps: Activity (step count) over next 30 minutes.

Sense²Stop: Stress over next 120 minutes

Micro-Randomized Trial

Randomize between intervention options at decision points → Each person may be randomized 100's or 1000's of times.

- These are sequential, "full factorial," designs.
- Design trial to detect main effects.

Why Micro-Randomization?

• Randomization (+ representative sample) is a gold standard in providing data to assess causal effects.

• Sequential randomizations (+ representative sample) will enhance replicability of data analyses (moderation, decision rule development).

Micro-Randomized Trial Elements

- 1. Record outcomes
 - Distal (scientific/clinical goal) & Proximal
 Outcome
- 2. Record context (sensor & self-report data)
- 3. Randomize among intervention options at decision points
- 4. <u>Use data after study ends to assess treatment</u> effects, develop warm-start JITAI

Micro-Randomized Trial

How to justify the trial costs?

- Address a question that can be stated clearly across disciplinary boundaries and be able to provide guarantees.
- Design trial so that a variety of further interesting questions can be addressed.

First Question to Address: Do the treatment actions impact the proximal outcome? (aka, is there a *main effect*?)

Micro-Randomized Trial for HeartSteps

- 42 day trial
- Whether to provide a tailored activity recommendation? $A_t \in \{0, 1\}$
- Test for main effects on proximal outcome
- Randomization in HeartSteps

$$P[A_t = 1] = .4 \ t = 1, \dots, T = 210$$

Time-varying Main Effects

Time varying potentially intensive/intrusive intervention options → potential for accumulating habituation and burden

 \longrightarrow

In the test statistic allow the main effect of the intervention options on proximal outcome to vary with time

Availability & the Treatment Effect

• Intervention options can not be delivered at a decision point if an individual is *unavailable*.

• The effect of a treatment option at a decision point is the difference in proximal outcome between *available* individuals assigned an activity recommendation and *available* individuals who are not assigned an activity recommendation.

Availability

• Intervention options can only be delivered at a decision point if an individual is *available*

• Set $I_t=1$ if the individual is available at decision point t, otherwise, $I_t=0$

• Availability is not the same as adherence, nor is it the same as interruptibility, receptivity

Potential Outcomes

Define

$$\bar{A}_t = \{A_1, A_2, \dots, A_t\}, \bar{a}_t = \{a_1, a_2, \dots, a_t\}$$

• Define $Y_{t+1}(\bar{a}_t)$ to be the observed response, Y_{t+1} if $\bar{A}_t = \bar{a}_t$, e.g., $Y_{t+1} = Y_{t+1}(\bar{A}_t)$

• Define $I_t(\bar{a}_{t-1})$ to be the observed "available for treatment" indicator if $\bar{A}_{t-1}=\bar{a}_{t-1}$

Main Effect

• Define the main effect at time t as

$$E[Y_{t+1}(\bar{A}_{t-1},1) - Y_{t+1}(\bar{A}_{t-1},0)|I_t(\bar{A}_{t-1}) = 1]$$

What does this main effect mean?

Main Effect

The randomization implies that

$$E[Y_{t+1}(\bar{A}_{t-1}, 1) - Y_{t+1}(\bar{A}_{t-1}, 0) | I_t(\bar{A}_{t-1}) = 1] =$$

$$E[Y_{t+1}|I_t = 1, A_t = 1] - E[Y_{t+1}|I_t = 1, A_t = 0]$$

Put

$$\beta(t) = E[Y_{t+1}|I_t = 1, A_t = 1] - E[Y_{t+1}|I_t = 1, A_t = 0]$$

Design of MRT

Determine the number of participants so that micro-randomized trial can detect a main effect on proximal outcome

The main effect is a time-varying main effect $\beta(t)$, t=1,...,T

The main effect is a causal effect.

Sample Size Calculation

• We calculate the number of subjects to test H_0 : no effect of the intervention option,

i.e.,
$$H_0: \beta(t) = 0, t = 1, 2,T$$

- Size to detect a low dimensional, smooth alternate H_1 .
 - Example: H_1 : $\beta(t)$ quadratic with intercept, β_0 , linear term, β_1 , and quadratic term β_2 and test

$$\beta_0 = \beta_1 = \beta_2 = 0$$

Sample Size Calculation

Alternative hypothesis is low dimensional → assessment of the effect of the activity recommendation uses contrasts of *between* subject responses + contrasts of within subject responses.

-- The required number of subjects will be small.

Test Statistic for Sample Size Calculation

Test statistic is based on a least squares projection of $E[Y_{t+1}|I_t=1,A_t]$ with functions of the form

$$\gamma(t) + \beta(t)(A_t - q_t)$$

where q_t is the randomization probability

 $q_t = .4$ in HeartSteps

• We are not assuming this "model" is correct......

Test Statistic for Sample Size Calculation

Test statistic is based on least squares fit of

$$\gamma(t) + \beta(t)(A_t - q_t)$$
 to Y_{t+1} when $I_t = 1$

HeartSteps:

$$\beta(t) = \beta_0 + \beta_1 \lfloor \frac{t-1}{5} \rfloor + \beta_2 \lfloor \frac{t-1}{5} \rfloor^2$$

• You select parameterization of $\gamma(t)$

Alternative for Sample Size Calculation

• One calculates a sample size to detect a given alternative with a given power.

• Alternative:

$$H_1: \beta_i = d_i \bar{\sigma}, i = 0, 1, 2$$

where d_i is a standardized treatment effect.

Alternative for Sample Size Calculation

Average conditional variance is

$$\bar{\sigma}^2 = (1/T) \sum_{t=1}^T E[VAR(Y_{t+1}|I_t=1)]$$

Specify Alternative for Sample Size Calculation

Scientist indirectly specifies standardized d_i 's

- initial main effect: d_0 ,
- average main effect over trial duration:

$$\frac{1}{T} \sum_{t=1}^{T} \left(d_0 + d_1 \lfloor \frac{t-1}{5} \rfloor + d_2 \lfloor \frac{t-1}{5} \rfloor^2 \right),$$

– and day of maximal main effect: $-\frac{d_1}{2d_2}$

We solve for d_0 , d_1 , d_2

Test Statistic for Sample Size Calculation

• Put $Y_i = (Y_{i2}, \dots, Y_{iT+1})^T$ for i^{th} subject

q+3 is the total number of parameters;

 X_i is the associated design matrix (T by q+3)

N is sample size

Last 3 columns of X_i contain row entries:

$$I_{it}(A_{it} - q_t), I_{it}(A_{it} - q_t) \lfloor \frac{t-1}{5} \rfloor,$$

$$I_{it}(A_{it} - q_t) \lfloor \frac{t-1}{5} \rfloor^2$$
₅₀

Test Statistic for Sample Size Calculation

"GEE" test statistic is

$$N\hat{\beta}^T (K\hat{\Sigma}K^T)^{-1}\hat{\beta} = N\hat{\beta}^T (\hat{\Sigma}_{\beta})^{-1}\hat{\beta}$$

where $\hat{\Sigma}$ is the usual sandwich estimator of the variance-covariance and K is 3 by 3+q matrix picking out columns associated with coefficients β

Sample Size Calculation

• Under simplistic, incorrect (!), working assumptions, \sum_{β} only depends on polynomials in $\lfloor \frac{t-1}{5} \rfloor$, the marginal distribution of I_t and on the randomization probabilities.

• Σ_{β} does not depend on the form of $\gamma(t)$

Sample Size Calculation

• Under standard moment assumptions, the asymptotic distribution of the "GEE test statistic" is a Chi-Squared on 3 degrees of freedom with non-centrality parameter:

$$Nd^T(\Sigma_{\beta})^{-1}d$$

• Instead of a Chi-Squared on 3 degrees we use $\frac{3(N-q-1)}{N-q-3}F_{3,N-q-3}$ with the same noncentrality parameter.

HeartSteps Example

- Standardized d_i 's
 - initial effect: $d_0=0$
 - output average main effect
 - day of maximal main effect:

$$-\frac{d_1}{2d_2} = 28$$

Projection used to form test statistic:

$$\gamma(t) + \beta(t)(A_{it} - .4), t = 1, ..., 210$$

where

$$\gamma(t) = \gamma_0 + \gamma_1 \lfloor \frac{t-1}{5} \rfloor + \gamma_2 \lfloor \frac{t-1}{5} \rfloor^2$$

HeartSteps Sample Sizes Power=.80, False-positive error=.05

Standardized Average Main Effect over 42 Days	Sample Size For 70% availability or 50% availability
0.06 standard deviations	81 or 112
0.08 standard deviations	48 or 65
0.10 standard deviations	33 or 43
	55

Same Test Statistic for Analysis

"GEE" test statistic is

$$N\hat{\beta}^T(K\hat{\Sigma}K^T)^{-1}\hat{\beta}$$

where K is 3 by 3+p matrix picking out columns associated with β coefficients

No working assumptions

Small Sample Adjustment

• \hat{e}_{it} is the i^{th} subject, t^{th} time point residual and $\hat{e}_i = (\hat{e}_{i1}, \dots, \hat{e}_{iT})^T$

Adjusted sandwich estimator:

$$\hat{\Sigma} =$$

$$\hat{\sigma}^{2} N \left(\sum_{i=1}^{N} X_{i}^{T} X_{i} \right)^{-1} \left\{ \sum_{i=1}^{N} X_{i}^{T} B_{i} \hat{e}_{i} \hat{e}_{i}^{T} B_{i} X_{i} \right\} \left(\sum_{i=1}^{N} X_{i}^{T} X_{i} \right)^{-1}$$

$$B_{i} = (I - H_{ii})^{-1}$$
57

$$B_i = (I - H_{ii})^{-1}$$

Simulation Results Type 2 Error Rate (2000 data sets)

Average Main Effect (Sample Size)	Power
0.05(115)	0.790
0.06(81)	0.794
0.07(61)	0.800
0.08(48)	0.801
0.09(39)	0.798
0.10(33)	0.803

Planning a Micro-Randomized Trial?

- 1) Be conservative in planning the trial:
 - 1) Under-estimate the amount of time participants are available for the intervention.
 - 2) Under-estimate the average standardized effect

Micro-Randomized Trial

- 2) Power to detect proximal main effect is robust to interactions and to delayed effects (e.g., burden)
- 3) Secondary data analyses concern time varying effect moderation and data analyses to construct data-driven decision rules for the JITAI

Micro-Randomized Trials: When are they (not) useful?

- NOT USEFUL: When malleable circumstances are rare: Want to learn the best type of alert to prevent suicide attempt
- USEFUL: When malleable circumstances change rapidly: Stress, urges to smoke, adherence, physical activity, eating
- NOT USEFUL: Proximal response cannot be feasibly assessed.
- USEFUL: Proximal response can be unobtrusively sensed or unobtrusively self-reported.

MRTs vs Other designs

- RCT
- N-of-1 Trials (& Crossover Trials)
- Factorial Designs

MRT vs. Randomized Control trial (RCT)

A randomized control trial (RCT) evaluating a JITAI compared to a suitable control.

- Assumes evidence exists to develop a high-quality
 JITAI including the
 - choice of tailoring variables & decision rules
- The primary aim of an RCT is to confirm the
 JITAI's effectiveness compared to an alternative
 - Is not well suited to constructing or optimizing a JITAI
- RCT is optimal for evaluation

MRT vs. N-of-1 Trial

N-of-1 Trials are usually multiple cross-over trials in which the order of the treatments are randomized within a person.

- RCT is too expensive or not feasible
 - Test: Is one-time treatment A better than one-time treatment B?
 - Ideally the treatments should have minimal delayed effects so (minimal carryover effects) or N-of-1 design should incorporate a suitable washout period

https://www.effectivehealthcare.ahrq.gov/ehc/products/534/1844/n-1-trials-report-130213.pdf

A factorial design

• is an experimental design involving more than one components (e.g., factors); the levels of the components can be meaningfully crossed.

ed. _		NO NO	YES
Treatment B	NO t	Neither A nor B	A only
	YES	B only	Both A and B

Treatment A

A MRT

- is a special form of a factorial; components are employed sequentially in time within a person.
- components can operate at different time scales
- randomization to subsequent components in a MRT may depend on outcomes of prior components

Components can be randomized at different time scales, e.g. in HeartSteps:

Factor 1: Tailored activity recommendation is randomized 5 times per day (yes/no)

Factor 2: Daily activity planning is randomized each evening (yes/no)

Randomization to subsequent components in a MRT may depend on outcomes of prior components, e.g. in Sense2Stop:

Randomization probabilities aim to result in an average of 1.5 reminders per day when the person is currently stressed and an average of 1.5 reminders per day when a person is not currently stressed.

Experimental Design Challenges

Micro-randomized trials are a new type of factorial design

- Time varying factors → time varying main effects, time-varying two-way interactions, different delayed effects
- ii. Design studies specifically to detect interactions between factors.
- iii. Calculator:

https://pengliao.shinyapps.io/mrt-calculator/

MRTs and MOST

The Multiphase Optimization Strategy (MOST)

Collaborators!

