DS-GA 1014 Optimization and Computational Linear Algebra

Lab 8: Graphs and linear algebra (& SVD)

prepared by Ying Wang

Singular Value decomposition

Theorem 3.1 (Singular value decomposition (SVD))

Let $A \in \mathbb{R}^{n \times m}$. Then there exists two orthogonal matrices $U \in \mathbb{R}^{n \times n}$ and $V \in \mathbb{R}^{m \times m}$ and a matrix $\Sigma \in \mathbb{R}^{n \times m}$ such that $\Sigma_{1,1} \geq \Sigma_{2,2} \geq \cdots \geq 0$ and $\Sigma_{i,j} = 0$ for $i \neq j$

$$A = U\Sigma V^{\mathsf{T}}$$
.

The columns u_1, \ldots, u_n of U (respectively the columns v_1, \ldots, v_m of V) are called the left (resp. right) singular vectors of A. The non-negative numbers $\Sigma_{i,i}$ are the singular values of A. Moreover rank $(A) = \#\{i \mid \Sigma_{i,i} \neq 0\}$.

Explain the following statement: For any $A \in \mathbb{R}^{m \times n}$, the set $\{Ax : ||x|| = 1\}$ is an ellipsoid. In other words, the image of the sphere under a linear transformation is always an ellipsoid.

- 1 U pothogonal -> preserve norm -> map the sphere to itself
- 2 E diagonal -> Stretch the sphere along each axis -> ellipsoid
- 1) U orthogonal = preserve norm = still ellipsoid

Singular Value decomposition

Let $A \in \mathbb{R}^{m \times n}$. Give a method for computing rank(A) using the SVD of A.

$$A = U \Sigma V^T$$

$$vank(A) = vank(\Sigma) = \# non-zero singular values$$

We know rank (AB)
$$\leq min(rank(A), rank(B))$$
.

 $rank(\Xi) = rank(U^{T}U\Xi) \leq rank(U\Xi) \leq rank(\Xi)$
 $\Rightarrow rank(\Xi) = rank(U\Xi)$

Left multiplication by an invertible matrix preserves $rank(\Xi) = rank(\Xi) = rank(U^{T})^{-1}U^{T}\Xi^{T}$
 $\leq rank(U^{T}\Xi^{T}) = rank(\Xi U) = rank(\Xi)$

right multiplication by an invertible matrix preserves rank

Singular Value decomposition

Midterm 2019 Q6: Let $M \in \mathbb{R}^{n \times m}$. Let $n \geq m$, and M have full rank. Let M have SVD $M = U\Sigma V^T$.

- 1. Show that M^TM is invertible.
- 2. Which vectors span the Im(M)? Write the matrix of orthogonal projection onto Im(M) and give a basis transformation for that matrix.
- 3. Let $w \in \mathbb{R}^n$, and u be the orthogonal projection of w onto Im(M). Show that $M^Tu = M^Tw$.
- 4. Show that $M(M^TM)^{-1}M^T$ is the matrix of an orthogonal projection onto Im(M).

(a)
$$Im(M) = i y \in R^n$$
: $\exists x \leq \pi$. $Mx = y \leq y = mx = u \geq v^T x$

$$let x = \sum_{i=1}^{m} a_i v_i$$

$$v^T x = (a_1 a_2 \dots a_m)^T$$

$$z v^T x = (0_1 a_1 0 x a_2 \dots a_m 0 x_m 0 \dots 0)^T$$

$$y = u \geq v^T x = \sum_{i=1}^{m} a_i a_i u_i$$

$$\Rightarrow Im(M) = span(u_1, u_2 \dots u_m)$$

$$let u_x = (u_1 u_2 \dots u_m)$$

PIncon) = U* U*

(3)
$$M^{T}u = U \sum_{i}^{T} u^{T}u = U \sum_{i}^{T} u^{T}u_{*}u_{*}u_{*}u$$

$$= U \sum_{i}^{T} u^{T}u \qquad u_{0} = \begin{pmatrix} -u_{1} - u_{1} - u_{2} \\ -u_{m} - u_{2} \end{pmatrix} \int_{1}^{m} du$$

$$= U \sum_{i}^{T} u^{T}u \qquad u_{m} = u \int_{1}^{\infty} u^{T}u \qquad u_{m$$

$$= M^{T} \omega$$

$$= (Mm^{T})^{-1} = v(\Sigma^{T} \Sigma)^{-1} v^{T}$$

$$= (Mm^{T})^{-1} m^{T} = (M \Sigma v^{T} v(\Sigma^{T} \Sigma)^{-1} v^{T} (M \Sigma v^{T})^{T}$$

$$= (M \Sigma v^{T} \Sigma)^{-1} \Sigma^{T} u^{T}$$

$$= (M \Sigma v^{T} \Sigma)^{-1} \Sigma^{T} u^{T}$$

• Adjacency matrix
$$A_{ij} = \begin{cases} A_{ij} = A_{ij} \end{cases}$$

• Adjacency matrix
$$A_{ij} = \begin{cases} 1 & inj \\ 0 & o.\omega. \end{cases} \Rightarrow A symmetriz$$

• degree matrix $D = d_i ag(d_i d_i d_i d_i d_i d_i)$

Proposition 2.1

The matrix L satisfies the following properties:

- 1. L is symmetric and positive semi-definite.
- 2. The smallest eigenvalue of L is 0 and a corresponding eigenvector is the constant one vector $\mathbb{1} \stackrel{\text{def}}{=} (1, 1, \dots, 1)$.
- 3. L has n non-negative eigenvalues $0 = \lambda_1 \le \lambda_2 \le \cdots \le \lambda_n$.

The proposition above follows from the following key identity: for all $x \in \mathbb{R}^n$,

$$x^{\mathsf{T}}Lx = \sum_{i \sim j} (x_i - x_j)^2,\tag{1}$$

Handshaking lemma: let G be a graph with n nodes and m edges. Show that

$$\sum_{i=1}^{n} deg(\mathsf{node}_i) = 2m$$

(if there is a party with n attendees then an even number of people shakes an odd number of other people's hands)

$$\sum_{i=1}^{n} deg(i) = \sum_{i=1}^{n} \sum_{i=1}^{n} A_{i} = \sum_{i=1}^{n}$$

Previous lab question from Irina Espejo

Let G be a connected graph with n nodes and let A be its adjacency matrix. Show that the highest valued eigenvalue λ_1 is bounded by the maximum degree, that is

$$\lambda_1 \leq \max_{i \in \{1..n\}} deg(i)$$

Let u be an eigenvector associated with λ_1

Let i be the versex on which it takes maximum value Viz Ux VX

$$\lambda_{1} = \frac{\sum_{i} A_{ij} U_{i}}{U_{i}} = \frac{\sum_{i \neq j} U_{i}}{U_{i}} = \sum_{i \neq j} \frac{U_{i}}{U_{i}}$$

= max deg(i)

Previous lab question from Irina Espejo

Note that
$$V(k)$$
 and $O(k)$ are not necessarily # vertices and # edges

A c remove A will disconnect k
 $V(k) = 1$
 $V(k) = 1$
 $V(k) = 1$

The vertex connectivity v(G) of G as the minimum number of nodes whose removal would result in losing connectivity of the graph.

The edge connectivity e(G) of G as the minimum number of edges whose removal would result in losing connectivity of the graph.

Lemma: Let Q' be a graph obsoursed from Q by removing one vertex and all associated edges. Then 12(Q') = 12(Q)-1

Remove V(L) vertices to disconnect the graph $\Rightarrow Q'$ $\lambda_{S}(Q) \leq \lambda_{S}(Q') + V(Q) = V(Q) \quad V$

Note: The adjacency matrix for a disconnect matrix is $0 = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$ $\Rightarrow \lambda = 0$

WOLL , assume the last vertex is removed.

Connect the last node to the rest of nodes
$$\Rightarrow a^{\dagger}$$

$$L_{a}^{\dagger} = \begin{pmatrix} L_{a}^{-} + I & -1 \\ -1^{\top} & 0 \end{pmatrix}$$

 $\angle a^{+} = \begin{pmatrix} \angle a^{-} + I & -1 \\ -1^{\top} & & & \end{pmatrix}$ Let u be the eigenvector of La- associated with is chi)

(1.e. La-U= 12(G)U) and 1 TU=0

$$La^{+}(a) = \begin{pmatrix} (La^{-}+I) & 0 \\ -I^{T} & 0 \end{pmatrix} = \begin{pmatrix} \lambda(La^{-}) & 0 \end{pmatrix} = (\lambda(La^{-})+1) \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

-> (As(a)+1) is an eigenvalue of Lat

$$\lambda > (G^{\dagger}) \leq \lambda > (G^{\dagger}) + 1$$

Since at is obtained from a by adding edges, 22(6) = 22(6) from the previous question