Topic 3: Simple Linear Regression

<u>Outline</u>

- Simple linear regression model
 - Model parameters
 - Distribution of error terms
- Estimation of regression parameters
 - Method of least squares
 - Maximum likelihood

Data for Simple Linear Regression

- Observe i=1,2,...,n pairs of variables
- Each pair often called a <u>case</u>
- Y_i = ith response variable
- X_i = ith explanatory variable

Simple Linear Regression Model

- $Y_i = b_0 + b_1 X_i + e_i$
- b₀ is the intercept
- b_1 is the slope
- e_i is a random error term
 - E(e_i)=0 and $s^2(e_i)=s^2$
 - $-e_i$ and e_j are uncorrelated

Simple Linear Normal Error Regression Model

- $Y_i = b_0 + b_1 X_i + e_i$
- b₀ is the intercept
- b_1 is the slope
- e_i is a Normally distributed random error with mean 0 and variance σ^2
- e_i and e_j are uncorrelated \rightarrow indep

Model Parameters

- β_0 : the intercept
- β_1 : the slope
- σ^2 : the variance of the error term

Features of Both Regression Models

•
$$Y_i = \beta_0 + \beta_1 X_i + e_i$$

•
$$E(Y_i) = \beta_0 + \beta_1 X_i + E(e_i) = \beta_0 + \beta_1 X_i$$

- $Var(Y_i) = 0 + var(e_i) = \sigma^2$
 - Mean of Y_i determined by value of X_i
 - All possible means fall on a line
 - The Y_i vary about this line

Features of Normal Error Regression Model

•
$$Y_i = \beta_0 + \beta_1 X_i + e_i$$

- If e_i is Normally distributed then Y_i is $N(\beta_0 + \beta_1 X_i, \sigma^2)$ (A.36)
- Does <u>not</u> imply the collection of Y_i are Normally distributed

Fitted Regression Equation and Residuals

- $\hat{\mathbf{Y}}_i = \mathbf{b}_0 + \mathbf{b}_1 \mathbf{X}_i$
 - -b₀ is the estimated intercept
 - -b₁ is the estimated slope
- e_i: residual for ith case
- $e_i = Y_i \hat{Y}_i = Y_i (b_0 + b_1 X_i)$

Plot the residuals

Continuation of pisa.sas
Using data set from output statement

```
proc gplot data=a2;
  plot resid*year vref=0;
  where lean ne .;
  run;
```

vref=0 adds horizontal line to plot at zero

Least Squares

- Want to find "best" b₀ and b₁
- Will minimize $\Sigma(Y_i (b_0 + b_1X_i))^2$
- Use calculus: take derivative with respect to b₀ and with respect to b₁ and set the two resulting equations equal to zero and solve for b₀ and b₁
- See KNNL pgs 16-17

Least Squares Solution

$$b_1 = \frac{\sum (X_i - \overline{X})(Y_i - \overline{Y})}{\sum (X_i - \overline{X})^2}$$
$$b_0 = \overline{Y} - b_1 \overline{X}$$

 These are also maximum likelihood estimators for Normal error model, see KNNL pp 30-32

<u>Maximum Likelihood</u>

$$Y_i \sim N(\beta_0 + \beta_1 X_i, \sigma^2)$$

$$f_{i} = \frac{1}{\sqrt{2\pi\sigma}} e^{-\frac{1}{2} \left(\frac{Y_{i} - \beta_{0} - \beta_{1} X_{i}}{\sigma}\right)^{2}}$$

$$L = f_1 \cdot f_2 \cdot \dots \cdot f_n$$
 (likelihood function)

Find β_0 and β_1 which maximizes L

Estimation of σ^2

$$s^{2} = \frac{\sum (Y_{i} - \hat{Y}_{i})}{n-2} = \frac{\sum e_{i}^{2}}{n-2}$$
$$= \frac{SSE}{df_{E}} = MSE$$

$$s = \sqrt{s^2} = \text{Root}MSE$$

	Analysis of Variance					
			Sum of	Mean		
So	Source		Squares	Square	F Value	Pr > F
Mo	odel	1	15804	15804	904.12	<.0001
Er	ror	7 11	192.28571	17.48052		
Co	rrected Total	12	15997			
e /	Root MSE		4.1809 ′	7 R-Square	e 0.988	$M^{(0)}$
	Dependent Mea	n	693.6923	1 Adj R-Sq	0.986	59
	Coeff Var		0.6027	1		

Standard output from Proc REG

Properties of Least Squares Line

• The line always goes through $(\overline{X}, \overline{Y})$

•
$$\sum e_i = \sum (Y_i - (b_0 + b_1 X_i))$$

 $= \sum Y_i - \sum b_0 - \sum b_1 X_i$
 $= n\overline{Y} - nb_0 - nb_1 \overline{X} = n((\overline{Y} - b_1 \overline{X}) - b_0)$
 $= 0$

Other properties on pgs 23-24

Background Reading

- Chapter 1
 - 1.6: Estimation of regression function
 - 1.7: Estimation of error variance
 - 1.8 : Normal regression model
- Chapter 2
 - 2.1 and 2.2 : inference concerning β 's
- Appendix A
 - A.4, A.5, A.6, and A.7