Inexect Accelerated Proximal Gradient

Author 1 Name, Author 2 Name *

September 29, 2025

This paper is currently in draft mode. Check source to change options.

Abstract

This is still a draft. [3].

2010 Mathematics Subject Classification: Primary 47H05, 52A41, 90C25; Secondary 15A09, 26A51, 26B25, 26E60, 47H09, 47A63. **Keywords:**

1 Introduction

Notations. Let $g: \mathbb{R}^n \to \overline{\mathbb{R}}$, we denote g^* to be the Fenchel conjugate. $I: \mathbb{R}^n \to \mathbb{R}^n$ denotes the identity operator. For a multivalued mapping $T: \mathbb{R}^n \to 2^{\mathbb{R}^n}$, gra T denotes the graph of the operator, defined as $\{(x,y) \in \mathbb{R}^n \times \mathbb{R}^n : y \in Tx\}$.

1.1 Epsilon subgradient and inexact proximal point

{def:esp-subgrad}

Definition 1.1 (ϵ -subgradient) Let $g: \mathbb{R}^n \to \overline{\mathbb{R}}$ be proper, lsc. Let $\epsilon \geq 0$. Then the ϵ -subgradient of g at some $\bar{x} \in \text{dom } g$ is given by:

$$\partial g_{\epsilon}(\bar{x}) := \{ v \in \mathbb{R}^n \mid \langle v, x - \bar{x} \rangle \le g(x) - g(\bar{x}) + \epsilon \, \forall x \in \mathbb{R}^n \}.$$

When $\bar{x} \notin \text{dom } g$, it has $\partial g_{\epsilon}(\bar{x}) = \emptyset$.

^{*}Subject type, Some Department of Some University, Location of the University, Country. E-mail: author.namee@university.edu.

Remark 1.2 $\partial_{\epsilon}g$ is a multivalued operator and, it's not monotone, unless $\epsilon = 0$, which makes it equivalent to Fenchel subgradient ∂q .

If we assume lsc, proper and convex g, we will now introduce results in the literatures that $\{\text{fact:esp-fenchel-ineq}\}\$ we will use.

Fact 1.3 (ϵ -Fenchel inequality) Let $\epsilon > 0$, then:

$$x^* \in \partial_{\epsilon} f(\bar{x}) \iff f^*(x^*) + f(\bar{x}) \le \langle x^*, \bar{x} \rangle + \epsilon \implies \bar{x} \in \partial_{\epsilon} f^*(x^*).$$

They are all equivalent if $f^{\star\star}(\bar{x}) = f(\bar{x})$.

Remark 1.4 The above fact is taken from Zalinascu [2, Theorem 2.4.2].

 $\{def:inxt-pp\}$ We will now define inexact proximal point based on ϵ -subgradient

Definition 1.5 (inexact proximal point) For all $x \in \mathbb{R}^n$, $\epsilon \geq 0$, $\lambda > 0$, \tilde{x} is an inexact evaluation of proximal point at x, if and only if it satisfies:

$$\lambda^{-1}(x - \tilde{x}) \in \partial_{\epsilon} g(\tilde{x}).$$

We denote it by $\tilde{x} \approx_{\epsilon} \operatorname{prox}_{\lambda q}(x)$.

{fact:resv-identity} Remark 1.6 This definition is nothing new, for example see Villa et al. [1, Definition 2.1]

Fact 1.7 (the resolvant identity) Let $T: \mathbb{R}^n \to 2^{\mathbb{R}^n}$, then it has:

$$(I+T)^{-1} = (I-(I+T^{-1})^{-1}).$$

Theorem 1.8 (inexact Moreau decomposition) Let $g : \mathbb{R}^n \to \overline{\mathbb{R}}$ be a closed, convex and proper function. It has the equivalence

$$\tilde{y} \approx_{\epsilon} \operatorname{prox}_{\lambda^{-1}q^{\star}}(\lambda^{-1}y) \iff y - \lambda \tilde{y} \approx_{\epsilon} \operatorname{prox}_{\lambda q}(y).$$

Proof. Consider $\tilde{y} \approx_{\epsilon} \operatorname{prox}_{\lambda^{-1}q^{\star}}(\lambda^{-1}y)$, then it has:

$$\tilde{y} \in (I + \lambda^{-1}\partial_{\epsilon}g^{*})^{-1}(\lambda^{-1}y)$$

$$\iff (\lambda^{-1}y, \tilde{y}) \in \operatorname{gra}(I + \lambda^{-1}\partial_{\epsilon}g^{*})^{-1}$$

$$\iff (\lambda^{-1}y, \tilde{y}) \in \operatorname{gra}(I - (I + \partial_{\epsilon}g \circ (\lambda I))^{-1})$$

$$\iff (\lambda^{-1}y, \lambda^{-1}y - \tilde{y}) \in \operatorname{gra}(I + \partial_{\epsilon}g \circ (\lambda I))^{-1}$$

$$\iff (\lambda^{-1}y - \tilde{y}, \lambda^{-1}y) \in \operatorname{gra}(I + \partial_{\epsilon}g \circ (\lambda I))$$

$$\iff (y - \lambda \tilde{y}, \lambda^{-1}y) \in \operatorname{gra}(\lambda^{-1}I + \partial_{\epsilon}g)$$

$$\iff (y - \lambda \tilde{y}, y) \in \operatorname{gra}(I + \lambda \partial_{\epsilon}g)$$

$$\iff y - \lambda \tilde{y} \in (I + \lambda \partial_{\epsilon}g)^{-1}y$$

$$\iff y - \lambda \tilde{y} \approx_{\epsilon} \operatorname{prox}_{\lambda g}(y).$$

At (1) we can use Fact 1.7, and it has $(\lambda^{-1}\partial_{\epsilon}g^{\star})^{-1} = \partial_{\epsilon}g \circ (\lambda I)$ by Fact 1.3 and the assumption that g is closed, convex and proper.

1.2 Inexact proximal gradient inequality

{ass:for-inxt-pg-ineq}

Assumption 1.9 (for inexact proximal gradient) The assumption is about (f, g, L). We assume that

- (i) $f: \mathbb{R}^n \to \mathbb{R}$ is a convex, L Lipschitz function.
- (ii) $g: \mathbb{R}^n \to \overline{\mathbb{R}}$ is a convex, proper, and lsc function which we do not have its exact proximal operator.

{def:inxt-pg} No, we develop the theory based on the use of epsilon subgradient as in Definition 1.1.

Definition 1.10 (inexact proximal gradient) Let (f, g, L) satisfies Assumption 1.9. Let $\epsilon \geq 0, \rho > 0$. Then, $\tilde{x} \approx_{\epsilon} T_{\rho}(x)$ is an inexact proximal gradient if it satisfies variational inequality:

$$\mathbf{0} \in \nabla f(x) + \rho(x - \tilde{x}) + \partial_{\epsilon} g(\tilde{x}).$$

Remark 1.11 We assumed that we can get exact evaluation of ∇f at any points $x \in \mathbb{R}^n$.

{lemma:other-repr-inxt-pg}

Lemma 1.12 (other representations of inexact proximal gradient) Let (f, g, L) satisfies Assumption 1.9, $\epsilon \geq 0, \rho > 0$, then for all $x \approx_{\epsilon} T_{\rho}(x)$, it has the following equivalent representations:

$$(x - \rho^{-1}\nabla f(x)) - \tilde{x} \in \rho^{-1}\partial_{\epsilon}g(\tilde{x})$$

$$\iff \tilde{x} \in (I + \rho^{-1}\partial_{\epsilon}g(\tilde{x}))^{-1}(x - \rho^{-1}\nabla f(x))$$

$$\iff x \approx_{\epsilon} \operatorname{prox}_{\rho^{-1}g}(x - \rho^{-1}\nabla f(x))$$

Proof. It's direct.

 $\{thm:inxt-pg-ineq\}$

Theorem 1.13 (inexact over-regularized proximal gradient inequality) Let (f, g, L) satisfies Assumption 1.9, $\epsilon \geq 0, B \geq 0, \rho > 0$. Consider $\tilde{x} \approx_{\epsilon} T_{B+\rho}(x)$. Denote F = f + g. If in addition, \tilde{x}, B satisfies the line search condition $D_f(\tilde{x}, x) \leq B/2||x - \tilde{x}||^2$, then it has $\forall z \in \mathbb{R}^n$:

$$-\epsilon \le F(z) - F(\tilde{x}) + \frac{B+\rho}{2} ||x-z||^2 - \frac{B+\rho}{2} ||z-\tilde{x}||^2 - \frac{\rho}{2} ||\tilde{x}-x||^2.$$

Proof. By Definition 1.10 write the variational inequality that describes $\tilde{x} \approx_{\epsilon} T_B(x)$, and the definition of epsilon subgradient (Definition 1.1) it has for all $z \in \mathbb{R}^n$:

$$\begin{split} -\epsilon & \leq g(z) - g(\tilde{x}) - \langle (B+\rho)(\tilde{x}-x) - \nabla f(x), z - \tilde{x} \rangle \\ & = g(z) - g(\tilde{x}) - (B+\rho)\langle \tilde{x}-x, z - \tilde{x} \rangle + \langle \nabla f(x), z - \tilde{x} \rangle \\ & \leq g(z) + f(z) - g(\tilde{x}) - f(\tilde{x}) - (B+\rho)\langle \tilde{x}-x, z - \tilde{x} \rangle - D_f(z,x) + D_f(\tilde{x},x) \\ & \leq F(z) - F(\tilde{x}) - (B+\rho)\langle \tilde{x}-x, z - \tilde{x} \rangle + \frac{B}{2} \|\tilde{x}-x\|^2 \\ & = F(z) - F(\tilde{x}) + \frac{B+\rho}{2} \left(\|x-z\|^2 - \|\tilde{x}-x\|^2 - \|z - \tilde{x}\|^2 \right) + \frac{B}{2} \|\tilde{x}-x\|^2 \\ & = F(z) - F(\tilde{x}) + \frac{B+\rho}{2} \|x-z\|^2 - \frac{B+\rho}{2} \|z - \tilde{x}\|^2 - \frac{\rho}{2} \|\tilde{x}-x\|^2. \end{split}$$

At (1), we used considered the following:

$$\langle \nabla f(x), z - x \rangle = \langle \nabla f(x), z - x + x - \tilde{x} \rangle$$

$$= \langle \nabla f(x), z - x \rangle + \langle \nabla f(x), x - \tilde{x} \rangle$$

$$= -D_f(z, x) + f(z) - f(x) + D_f(\tilde{x}, x) - f(\tilde{x}) + f(x)$$

$$= -D_f(z, x) + f(z) + D_f(\tilde{x}, x) - f(\tilde{x}).$$

At (2), we used the fact that f is convex hence $-D_f(z,x) \leq 0$ always, and in the statement hypothesis we assumed that B has $D_f(\tilde{x},x) \leq B/2||\tilde{x}-x||^2$.

Remark 1.14 When $\epsilon = 0$, $\rho = 0$, this reduces to proximal gradient inequality in the exact case.

1.3 Optimizing the inexact proximal point problem

In this section we will show an optimization problem that allows us to solve for some $\tilde{x} \approx_{\epsilon} \operatorname{prox}_{\lambda g}(z)$. Eventually we want to evaluate $T_{\rho}(x)$ of some F = f + g inexactly and, by Lemma 1.12, one can achieve that through inexact evaluation of $\operatorname{prox}_{\rho^{-1}g}$ in the sense of Definition 1.5. Most of these results are from the literature. To start, we must assume the following about a function $g: \mathbb{R}^n \to \overline{\mathbb{R}}$, with g closed, convex and proper.

 ${ass:for-inxt-prox}$ Assumption 1.15 (for inexact proximal operator)

This assumption is about (g, ω, A) . Let $m \in \mathbb{N}, n \in \mathbb{R}^n$, we assume that

- (i) $A \in \mathbb{R}^{m \times n}$ is a matrix.
- (ii) $\omega : \mathbb{R}^n \to \overline{\mathbb{R}}$ is a closed and convex function such that it admits proximal operator $\operatorname{prox}_{\lambda\omega}$ and, its conjugate ω^* is known.

(iii) $g := \omega(Ax)$ such that rng $A \cap \operatorname{ridom} g \neq \emptyset$.

Now, we are ready to discuss how to choose $\tilde{x} \approx_{\epsilon} \operatorname{prox}_{\lambda q}(x)$. Fix $y \in \mathbb{R}^n, \lambda > 0$, we are ultimately interested in minimizing:

 $\Phi_{\lambda}(u) := \omega(Au) + \frac{1}{2\lambda} \|u - y\|^2$ {eqn:primal-pp} (1.1)

This problem admits dual objective in \mathbb{R}^m :

 $\Psi_{\lambda}(v) := \frac{1}{2\lambda} \|\lambda A^{\top} v - y\|^2 + \omega^{\star}(v) - \frac{1}{2\lambda} \|y\|^2.$ {eqn:dual-pp} (1.2)

We define the duality gap

 $\mathbf{G}_{\lambda}(u,v) := \Phi_{\lambda}(u) + \Psi_{\lambda}(v).$ (1.3)

If strong duality holds, it exists (\hat{u}, \hat{v}) such that we have the following:

 $\mathbf{G}_{\lambda}(\hat{u},\hat{v}) = 0 = \min_{u} \Phi_{\lambda}(u) + \min_{v} \Psi_{\lambda}(v)$

The following theorem quantifies a sufficient conditions for $\tilde{x} \approx_{\epsilon} \operatorname{prox}_{\lambda q}(x)$. The theorem below is from [1, Proposition 2.2]. {thm:primal-dual-trans}

> Theorem 1.16 (primal translate to dual) Let (g, ω, A) satisfies assumption 1.15, $\epsilon \geq$ 0, then

> > $(\forall z \approx_{\epsilon} \operatorname{prox}_{\lambda q}(y)) (\exists v \in \operatorname{dom} \omega^{\star}) : z = y - \lambda A^{\top} v.$

This theorem that follows is from Villa et al. [1, Proposition 2.3], but put into our symbols and, Definition

Theorem 1.17 (duality gap of inexact proximal problem) Let (g, ω, A) satisfies Assumption 1.15, for all $\epsilon \geq 0$, $v \in \mathbb{R}^n$ consider the following conditions:

(i) $\mathbf{G}_{\lambda}(y - \lambda A^{\top}v, v) \leq \epsilon$. (ii) $A^{\top}v \approx_{\epsilon} \operatorname{prox}_{\lambda^{-1}g^{\star}}(\lambda^{-1}y)$.

{thm:dlty-gap-inxt-pp}

(iii) $y - \lambda A^{\top} v \approx_{\epsilon} \operatorname{prox}_{\lambda q}(y)$.

They have (a) \Longrightarrow (b) \iff (c). If in addition $\omega^*(v) = g^*(A^\top v)$, then all three conditions are equivalent.

The following fact from the literature indicates that it's sufficient to minimize the dual problem Ψ_{λ} to obtain an element of the inexact proximal point operator. The following fact is Proposition [1, Theorem 5.1].

{fact:minimizing-dual-pp}

Fact 1.18 (minimizing dual of the proximal problem) Let \bar{v} be a solution of Ψ . Suppose that $(v_n)_{n\geq 0}$ is a minimizing sequence for Ψ . Let $z_n=y-\lambda A^{\top}v_n$, and $\bar{z}=y-\lambda A^{\top}\bar{v}$. If in addition, Φ_{λ} is L_1 Lipschitz continuous, then it has for all $k\geq 0$ the inequality:

$$\Phi_{\lambda}(z_n) - \Phi_{\lambda}(\bar{z}) \le L_1 \|z_n - \bar{z}\| \le L_1 \sqrt{2\lambda} (\Psi_{\lambda}(v_n) - \Psi_{\lambda}(\bar{v}))^{1/2}.$$

We remark that the above fact translates any algorithm that optimizes the function value of the dual problem into optimizing duality gap $\mathbf{G}(z_n, v_n)$. For this reason, the number of iterations of the inner loop required to achieve $\mathbf{G}(z_n, v_n) < \epsilon$ for a given e is related to the convergence rate of the algorithms used to optimize $\Psi_{\lambda}(v_n)$.

1.4 Literature reviews

1.5 Our contributions

2 The accelerated proximal gradient with controlled errors

In this section, we present an accelerated algorithm with controlled error using Definition 1.10, and show that it can have a convergence rate under certain error conditions.

{def:inxt-apg}

Definition 2.1 (our inexact accelerated proximal gradient)

Suppose that (F, f, g, L) and, sequences $(\alpha_k, B_k, \rho_k, \epsilon_k)_{k \geq 0}$ satisfies the following

- (i) $(\alpha_k)_{k>0}$ is a sequence such that $\alpha \in (0,1]$ for all $k \geq 0$.
- (ii) $(B_k)_{k>0}$ is a non-negative sequence, characterizing the potential line search routine.
- (iii) $(\rho_k)_{k\geq 0}$ be a sequence such that $\rho_k > 0$, characterizing the over-relaxation of the proximal gradient operator.
- (iv) $(\epsilon_k)_{k\geq 0}$ is a non-negative sequence characterizing the errors of inexact proximal evaluation.
- (v) (f, g, L) satisfies Assumption 1.9, and let F = f + g.

Denote $L_k = B_k + \rho_k$ for short. Given any initial condition $v_{-1}, x_{-1} \in \mathbb{R}^n$, the algorithm

generates the sequences $(y_k, x_k, v_k)_{k>0}$ such that they satisfy for all $k \geq 0$:

$$y_k = \alpha_k v_{k-1} + (1 - \alpha_k) x_{k-1},$$

$$x_k \approx_{\epsilon_k} T_{L_k}(y_k),$$

$$D_f(x_k, y_k) \le \frac{B_k}{2} ||x_k - y_k||^2,$$

$$v_k = x_{k-1} + \alpha_k^{-1} (x_k - x_{k-1}).$$

{lemma:inxt-apg-cnvg-prep1} Lemma 2.2 (inexact accelerated proximal gradient preparation stage I)

Let (f, g, L), and $(\alpha_k, B_k, \rho_k, \epsilon_k)_{k \geq 0}$, be given by Definition 2.1. Denote $L_k = B_k + \rho_k$. Then, for any $\bar{x} \in \mathbb{R}^n$, the sequences $(y_k, x_k, v_k)_{k \geq 0}$ generated satisfy for all $k \geq 1$ the inequality:

$$\begin{split} &\frac{\rho_k}{2} \|x_k - y_k\|^2 - \epsilon_k \\ &\leq (1 - \alpha_k) (F(x_{k-1}) - F(\bar{x})) + F(\bar{x}) - F(x_k) \\ &+ \max \left(1 - \alpha_k, \frac{\alpha_k^2 L_k}{\alpha_{k-1}^2 L_{k-1}}\right) \frac{\alpha_{k-1}^2 L_{k-1}}{2} \|\bar{x} - v_{k-1}\|^2 - \frac{\alpha_k^2 L_k}{2} \|\bar{x} - v_k\|^2. \end{split}$$

When, k = 1 it instead has:

$$\frac{\rho_0}{2} \|x_0 - y_0\|^2 - \epsilon_0
\leq (1 - \alpha_0)(F(x_{-1}) - F(\bar{x})) + F(\bar{x}) - F(x_0) + \frac{\alpha_0^2 L_0}{2} \|\bar{x} - v_{-1}\|^2 - \frac{\alpha_0^2 L_0}{2} \|\bar{x} - v_0\|^2.$$

Proof. Two intermediate results are in order before we can prove the inequality. Define $z_k := \alpha_k \bar{x} + (1 - \alpha_k) x_{k-1}$ for short. It has for all $k \ge 1$ the equality:

$$z_{k} - x_{k} = \alpha_{k}\bar{x} + (1 - \alpha_{k})x_{k-1} - x_{k}$$

$$= \alpha_{k}x^{+} + (x_{k-1} - x_{k}) - \alpha_{k}x_{k-1}$$

$$= \alpha_{k}\bar{x} - \alpha_{k}v_{k}.$$
(a)

It also has for all $k \geq 1$ the equality:

{eqn:inxt-apg-cnvg-prep1-a}

{eqn:inxt-apg-cnvg-prep1-b}
$$z_k - y_k = \alpha_k \bar{x} + (1 - \alpha_k) x_{k-1} - y_k$$
$$= \alpha_k \bar{x} - \alpha_k v_{k-1}.$$
 (b)

Let's denote $L_k = B_k + \rho_k$ for short. Recall that (f, g, L) satisfies Assumption 1.9, if we choose $x = y_k$ so $\tilde{x} = x_k \approx_{\epsilon} T_{L_k}(y_k)$, and set $z = z_k$, $\epsilon = \epsilon_k$ then Theorem 1.13 has:

$$\begin{split} &\frac{\rho_k}{2} \|x_k - y_k\|^2 - \epsilon_k \\ &\leq F(z_k) - F(x_k) + \frac{L_k}{2} \|y_k - z_k\|^2 - \frac{L_k}{2} \|z_k - x_k\|^2 \\ &\leq \alpha_k F(\bar{x}) + (1 - \alpha_k) F(x_{k-1}) - F(x_k) + \frac{L_k}{2} \|y_k - z_k\|^2 - \frac{L_k}{2} \|z_k - x_k\|^2 \\ &= \frac{(1 - \alpha_k) (F(x_{k-1}) - F(\bar{x})) + F(\bar{x}) - F(x_k) + \frac{\alpha_k^2 L_k}{2} \|\bar{x} - v_{k-1}\|^2 - \frac{\alpha_k^2 L_k}{2} \|\bar{x} - v_k\|^2 \\ &\leq (1 - \alpha_k) (F(x_{k-1}) - F(\bar{x})) + F(\bar{x}) - F(x_k) \\ &+ \max \left(1 - \alpha_k, \frac{\alpha_k^2 L_k}{\alpha_{k-1}^2 L_{k-1}}\right) \frac{\alpha_{k-1}^2 L_{k-1}}{2} \|\bar{x} - v_{k-1}\|^2 - \frac{\alpha_k^2 L_k}{2} \|\bar{x} - v_k\|^2. \end{split}$$

At (1) we used the fact that F = f + g hence F is convex. At (2) we used (a), (b). Finally, if k = 0, then take the RHS of = then:

$$\frac{\rho_0}{2} \|x_0 - y_0\|^2 - \epsilon_0$$

$$\leq (1 - \alpha_0)(F(x_{-1}) - F(\bar{x})) + F(\bar{x}) - F(x_0) + \frac{\alpha_0^2 L_0}{2} \|\bar{x} - v_{-1}\|^2 - \frac{\alpha_0^2 L_0}{2} \|\bar{x} - v_0\|^2.$$

The following proposition is a prototype of the convergence rate together with the error schedule that delivers convergence of algorithms satisfying Definition 2.1.

{prop:inxt-apg-cnvg-generic}

Proposition 2.3 (valid error schedule and convergence rate)

Let (f, g, L), $(\alpha_k, B_k, \rho_k, \epsilon_k)_{k \geq 0}$ be given by Definition 2.1. Fix any $\bar{x} \in \mathbb{R}^n$ for all $k \geq 0$ and assume that $\alpha_0 = 1$. Denote for brevity $\beta_0 = 1$, $\beta_k = \prod_{i=1}^k \max\left(1 - \alpha_i, \frac{\alpha_i^2 L_i}{\alpha_{i-1}^2 L_{i-1}}\right)$ and $L_k = B_k + \rho_k$. If for some fixed $\mathcal{E}_0 \geq 0$, $p \geq 1$ the parameter ρ_k , ϵ_k can satisfy for all $k \geq 0$ the condition

$$\frac{-\mathcal{E}_0 \beta_k}{k^p} \le \frac{\rho_k}{2} \|x_k - y_k\|^2 - \epsilon_k.$$

Then for the sequence generated $(y_k, x_k, v_k)_{k\geq 0}$ by the algorithm, for all $k\geq 0$ they satisfy:

$$F(x_k) - F(\bar{x}) + \frac{\alpha_k^2 L_k}{2} \|\bar{x} - v_k\|^2 \le \beta_k \left(\frac{L_0}{2} \|\bar{x} - v_{-1}\|^2 + \mathcal{E}_0 \sum_{n=1}^k \frac{1}{n^p} \right).$$

Proof. Consider results from Lemma 2.2 has $\forall k \geq 1$:

$$\frac{\rho_{k}}{2} \|x_{k} - y_{k}\|^{2} - \epsilon_{k}
\leq (1 - \alpha_{k})(F(x_{k-1}) - F(\bar{x})) + F(\bar{x}) - F(x_{k})
+ \max\left(1 - \alpha_{k}, \frac{\alpha_{k}^{2}L_{k}}{\alpha_{k-1}^{2}L_{k-1}}\right) \frac{\alpha_{k-1}^{2}L_{k-1}}{2} \|\bar{x} - v_{k-1}\|^{2} - \frac{\alpha_{k}^{2}L_{k}}{2} \|\bar{x} - v_{k}\|^{2}.
\leq \max\left(1 - \alpha_{k}, \frac{\alpha_{k}^{2}L_{k}}{\alpha_{k-1}^{2}L_{k-1}}\right) \left(F(x_{k-1}) - F(\bar{x}) + \frac{\alpha_{k-1}^{2}L_{k-1}}{2} \|\bar{x} - v_{k-1}\|^{2}\right)
+ F(\bar{x}) - F(x_{k}) - \frac{\alpha_{k}^{2}L_{k}}{2} \|\bar{x} - v_{k}\|^{2}$$

For notation brevity, we introduce β_k , Λ_k :

$$\beta_0 = 1,$$

$$\beta_k := \prod_{i=1}^k \max \left(1 - \alpha_i, \frac{\alpha_i^2 L_i}{\alpha_{i-1}^2 L_{i-1}} \right),$$

$$\Lambda_k := -F(\bar{x}) + F(x_k) + \frac{\alpha_k^2 L_k}{2} ||\bar{x} - v_k||^2.$$

Now, suppose that in addition there is a non-negative sequence $(\mathcal{E}_k)_{k\geq 0}$ such that

- (i) For all $k \geq 0$, it has $\frac{-\mathcal{E}_k}{k^p} \leq (\rho_k/2) \|x_k y_k\|^2 \epsilon_k$ where $p \geq 1$, (ii) For all $k \geq 1$, it has $\mathcal{E}_k = \frac{\beta_k}{\beta_{k-1}} \mathcal{E}_{k-1}$, with $\mathcal{E}_0 \geq 0$.

These conditions are equivalent to the assumption that $\frac{-\mathcal{E}_0\beta_k}{k^p} \leq \frac{\rho_k}{2} ||x_k - y_k||^2 - \epsilon_k$. One can show that by unrolling recurrence on \mathcal{E}_k . Then (2.1) implies $\forall k \geq 1$:

{ineq:inxt-apg-cnvg-generic-pitem-1}

$$\frac{-\mathcal{E}_k}{k^p} \le \frac{\beta_k}{\beta_{k-1}} \Lambda_{k-1} - \Lambda_k \iff \Lambda_k \le \frac{\beta_k}{\beta_{k-1}} \Lambda_{k-1} + \frac{\mathcal{E}_k}{k^p}. \tag{2.1}$$

Now, we show the convergence of Λ_k , using the relations of \mathcal{E}_k , Λ_k , β_k above.

$$\Lambda_{k} \leq \frac{\beta_{k}}{\beta_{k-1}} \Lambda_{k-1} + \frac{\mathcal{E}_{k}}{k^{p}}$$

$$\leq \frac{\beta_{k}}{\beta_{k-1}} \Lambda_{k-1} + \frac{\beta_{k}}{\beta_{k-1}} \frac{\mathcal{E}_{k-1}}{k^{p}}$$

$$= \frac{\beta_{k}}{\beta_{k-1}} \left(\Lambda_{k-1} + \frac{\mathcal{E}_{k-1}}{k^{p}} \right)$$

$$\leq \frac{\beta_{k}}{\beta_{k-1}} \left(\frac{\beta_{k-1}}{\beta_{k-2}} \Lambda_{k-2} + \frac{\mathcal{E}_{k-1}}{(k-1)^{p}} + \frac{\mathcal{E}_{k-1}}{k^{p}} \right)$$

$$= \frac{\beta_{k}}{\beta_{k-2}} \left(\Lambda_{k-2} + \frac{\mathcal{E}_{k-2}}{(k-1)^{p}} + \frac{\mathcal{E}_{k-2}}{k^{p}} \right)$$
...
$$\leq \frac{\beta_{k}}{\beta_{1}} \left(\Lambda_{1} + \mathcal{E}_{1} \sum_{n=2}^{k} \frac{1}{n^{p}} \right)$$

$$\leq \frac{\beta_{k}}{\beta_{1}} \left(\frac{\beta_{1}}{\beta_{0}} \Lambda_{0} + \mathcal{E}_{1} \sum_{n=1}^{k} \frac{1}{n^{p}} \right)$$

$$= \frac{\beta_{k}}{\beta_{0}} \left(\Lambda_{0} + \mathcal{E}_{0} \sum_{n=1}^{k} \frac{1}{n^{p}} \right).$$

Therefore, it points to the following inequality:

$$F(x_k) - F(\bar{x}) + \frac{\alpha_k^2 L_k}{2} \|\bar{x} - v_k\|^2$$

$$\leq \beta_k \left(F(x_0) - F(\bar{x}) + \frac{\alpha_0^2 L_0}{2} \|\bar{x} - v_0\|^2 + \mathcal{E}_0 \sum_{n=1}^k \frac{1}{n^p} \right).$$

Finally, when $\alpha_0 = 1$, then the results from 2.2 with k = 0 simplifies the above inequality and give:

$$F(x_k) - F(\bar{x}) + \frac{\alpha_k^2 L_k}{2} \|\bar{x} - v_k\|^2 \le \beta_k \left(\frac{L_0}{2} \|\bar{x} - v_{-1}\|^2 + \mathcal{E}_0 \sum_{n=1}^k \frac{1}{n^p} \right).$$

Now, it only remains to determine the sequence α_k to derive a type of convergence rate for the algorithm because from the above theorem, we have the convergence rate β_k and, the error parameters ϵ_k , ρ_k both controlled by the sequence $(\alpha_k)_{k\geq 0}$.

3 Linear convergence for the inner loop proximal problem

In this section, we continue the discussion from [REF PREVIOUS SECTION]. The inner loop of the algorithm evaluates $x_k \approx_{\epsilon} T_{(B+\rho)}(y_k)$ for a given value of ϵ . To attain x_k , one approach is to utilise Theorem 1.17 numerically, usually using iterative algorithms.

The following assumption places additional assumption to the proximal problem for the inner loop.

{ass:pg-eb} Assumption 3.1 (gradient mapping error bound)

The following assumption is about (F, f, g, L, S, γ) . Assume that

- (i) (f, g, L) satisfies Assumption 1.9,
- (ii) Let $\tau > 0$ be the step size inverse, let T_{τ} be the proximal operator of f + g as given by $T_{\tau}(x) := \operatorname{prox}_{\tau^{-1}g}(x \tau^{-1}\nabla f(x)),$
- (iii) the gradient mapping \mathcal{G}_{τ} be given by: $\mathcal{G}_{t}(x) = \tau(x T_{t}(x))$,
- (iv) $S = \operatorname{argmin} f(x) + g(x) \neq \emptyset$,
- (v) the objective function is given by F = f + g.

In addition, assume that the optimization problem F satisfies the error bound condition if it has for all $\tau \geq L, x \in \mathbb{R}^n$ there exists $\gamma > 0$:

{def:ista} $\|\mathcal{G}_{\tau}(x)\| \ge \gamma \operatorname{dist}(x|S).$ Definition 3.2 (proximal gradient method) Suppose that (f, g, L) satisfies Assumption

1.9. Let $\tau \geq L$, and $x_0 \in \mathbb{R}^n$. Then an algorithm is a proximal gradient method if it generates iterates $(x_k)_{k\geq 0}$ such that they satisfies for all $k \geq 1$:

$$x_{k+1} = \operatorname{prox}_{\tau^{-1}g} \left(x_k + \tau^{-1} \nabla f(x_k) \right).$$

{ass:eb-for-pp} Assumption 3.3 (error bound for proximal problem)
This assumption is about $(g, \omega, A, \Psi_{\lambda}, \gamma)$ Here are the assumptions

- (i) (g, ω, A) satisfies Assumption 1.15.
- (ii) In addition, function Ψ_{λ} as given by (1.1) satisfies gradient mapping error bound (Assumption 3.1) where, $f(v) = \frac{1}{2\lambda} ||\lambda A^{\top} v y||^2$, $g(v) = \omega(Av) \frac{1}{2\lambda} ||y||^2$.

3.1 error bound and linear convergence

The following theorem characterize linear convergence of the proximal gradient method under gradient mapping error bound condition.

{thm:lin-cnvg-ista-eb} Theorem 3.4 (linear convergence under gradient mapping error bound)

Assume that (F, f, g, L, S, γ) is given by Assumption 3.1. Under this assumption, the iterates $(x_k)_{k\geq 0}$ given by Definition 3.2 satisfies for all $k\geq 0, \bar{x}\in S$ the inequality:

$$F(x_{k+1}) - F(\bar{x}) \le \left(1 - \frac{\gamma}{2\tau}\right) \left(F(x_k) - F(\bar{x})\right).$$

Hence, the algorithm generates $F(x_k) - F(\bar{x}) \leq \mathcal{O}((1 - \gamma/(2\tau))^k)$.

Proof. Two important immediate results will be presented first. Consider the proximal gradient inequality from 1.13, but with $\rho = 0, \epsilon = 0, B = \tau$, then for all x such that $\|\mathcal{G}_{\tau}(x)\| > 0$ it has for $\tilde{x} = T_{\tau}(x), z \in \mathbb{R}^n$ the inequality

$$0 \leq F(z) - F(\tilde{x}) + \frac{\tau}{2} \|x - z\|^2 - \frac{\tau}{2} \|z - \tilde{x}\|^2$$

$$= F(z) - F(\tilde{x}) - \frac{\tau}{2} \|x - \tilde{x}\|^2 + \tau \langle x - z, x - \tilde{x} \rangle$$

$$= F(z) - F(\tilde{x}) - \frac{1}{2\tau} \|\mathcal{G}_{\tau}(x)\|^2 + \langle x - z, \mathcal{G}_{\tau}(x) \rangle$$

$$\leq F(z) - F(\tilde{x}) - \frac{1}{2\tau} \|\mathcal{G}_{\tau}(x)\|^2 + \|x - z\| \|\mathcal{G}_{\tau}(x)\|$$

$$= F(z) - F(\tilde{x}) + \|\mathcal{G}_{\tau}(x)\|^2 \left(\frac{\|x - z\|}{\|\mathcal{G}_{\tau}(x)\|} - \frac{1}{2\tau}\right).$$

Now, for all $z = \bar{x} \in S$, from Assumption 3.3 it has

$$\frac{\|x-z\|}{\|\mathcal{G}_{\tau}(x)\|} \le \frac{\|x-z\|}{\gamma \operatorname{dist}(x|S)} \le \frac{1}{\gamma}.$$

Hence for all $\bar{x} \in S$ it has

{ineq:lin-cnvg-ista-eb-pitem1} $0 \le F(\tilde{x}) - F(\bar{x}) \le \|\mathcal{G}_{\tau}(x)\|^2 \left(\frac{1}{\gamma} - \frac{1}{2\tau}\right). \tag{3.1}$

Obviously it has $\gamma^{-1} - (1/2)\tau^{-1} > 0$. When z = x, we have the inequality:

{ineq:lin-cnvg-ista-eb-pitem2} $F(\tilde{x}) - F(x) \le -\frac{1}{2\tau} \|\mathcal{G}_{\tau}(x)\|^2. \tag{3.2}$

To derive the linear convergence, we use (3.1) with $x = x_k$, $\tilde{x} = x_{k+1}$:

$$0 \le \|\mathcal{G}_{\tau}(x_k)\|^2 \left(\frac{1}{\gamma} - \frac{1}{2\tau}\right) - F(x_{k+1}) + F(\bar{x})$$
$$= \frac{1}{2\tau} \|\mathcal{G}_{\tau}(x_k)\|^2 \left(\frac{2\tau}{\gamma} - 1\right) - F(x_{k+1}) + F(\bar{x})$$

$$\leq \left(\frac{2\tau}{\gamma} - 1\right) (F(x_k) - F(x_{k+1})) - F(x_{k+1}) + F(\bar{x})$$

$$= \left(\frac{2\tau}{\gamma} - 1\right) (F(x_k) - F(\bar{x}) + F(\bar{x}) - F(x_{k+1})) - F(x_{k+1}) + F(\bar{x})$$

$$= \frac{2\tau}{\gamma} (F(\bar{x}) - F(x_{k+1})) + \left(\frac{2\tau}{\gamma} - 1\right) (F(x_k) - F(\bar{x})).$$

At (1) we used (3.2). Multiple bothside by $\frac{\gamma}{2\tau}$ then we are done.

3.2 characterizing linear convergence of the proximal problem

References

- [1] S. VILLA, S. SALZO, L. BALDASSARRE, AND A. VERRI, Accelerated and inexact forward-backward algorithms, SIAM Journal on Optimization, 23 (2013), pp. 1607–1633.
- [2] C. Zalinescu, Convex analysis in general vector spaces, World Scientific, River Edge, N.J.; London, 2002.
- [3] M. Zhang, M. Zhang, F. Zhang, A. Chaddad, and A. Evans, Robust brain MR image compressive sensing via re-weighted total variation and sparse regression, Magnetic Resonance Imaging, 85 (2022), pp. 271–286.