

RESPIRAÇÃO MICROBIANA E DINÂMICA DE NUTRIENTES EM SOLO FERTILIZADO COM RESÍDUO INDUSTRIAL SALINO

Autores: Gustavo Frosi, Jessé Fink, Arthur A. Schwengber, Dayana Eckert, Caroline P. de Souza e Alan Lavratti.

Cuiabá, 24/07/2019

Projeto com resíduos industriais

Utilização de resíduos de indústrias locais;

Buscando os impactos nas características do solo (químicas, físicas e biológicas).

Introdução

Produção industrial = quantidade de resíduos produzidos.

Solução?

Problema!

De que maneira?

Reutilização dos subprodutos

Reduzir os impactos ambientais

Reaproveitar os recursos

Utilização na agricultura na forma de fertilizantes, condicionante ou outros.

Promoção

Introdução

• Produção de heparina através do processamento de vísceras suínas;

Gera um subproduto líquido denominado de líquido de quarta (L4);

Amplamente utilizado por agricultores e pecuaristas;

Objetivo

 Avaliar atributos químicos e microbiológicos de um solo que recebeu resíduo industrial da produção de heparina.

Materiais e métodos

- Experimento realizado no laboratório de solos do Instituto Federal do Paraná – Campus Palmas.
- O solo utilizado foi coletado da área experimental do próprio campus.
- Acondicionamento em frascos hermeticamente fechados.
 - Umidade a 60% CC;
 - Temperatura a 25°C;
- Tratamentos consistiram de doses crescente do resíduo sendo elas: 0, 10, 20, 40 e 60 m³ ha⁻¹ com 4 repetições.

Tabela 1. Composição do resíduo de fabricação de heparina (L4).

MO	N	Na	Mg	Ca	K	P	pН	
mg L ⁻¹								
52.343	143	2.400	826	200	150	1100	6,5	

Promoção

Materiais e métodos

Parâmetros avaliados:

- 1) Respiração basal do solo;
- 4) Teor de carbono orgânico;
 - 3) Condutividade elétrica;
 - 2) Teores de K, Na e P;
 - 5) pH do solo.

Materiais e métodos

- Dados submetidos a análise de variância e, quando significativos (p<0,05) foi realizada a análise de regressão;
- Programa estatístico utilizado: Sisvar 5.6;
- Programa para montagem dos gráficos: SigmaPlot 12.0;

 As doses crescentes do resíduo industrial tiveram efeito sobre as variáveis analisadas com exceção do teor de P disponível no solo.

Colonização microbiana

Promoção

ste O

Figura 1. C-CO₂ em mg kg⁻¹ acumulado ao longo do tempo diferentes doses do resíduo industrial aplicado.

Conclusão

pode ocasionar A utilização indiscriminada do resíduo problemas de salinidade no solo;

• O produto pode diminuir os teores de C-org pelo aumento da atividade microbiológica;

Estudos em andamento

Estudos em andamento:

Propriedades físicas do solo;

Demais componentes químicos;

Componentes produtivos das culturas.

Agradecimentos

