Pnu-Soal.ir

بعنفه مسله

روش های اراره بن بست(Dead lock handling)

4 روش برغور ربا بن بست وجور دارد.

1- پیشگیری از بن بست: برای پیشگیری از بن بست می بایست کاری کرد که یکی از شرایط چهارگانه وقوع بن بست نقض شود. بدین ترتیب هرکز بن بست رخ نفواهد داد.

- الله می توانند همزمان توسط چندین پردازش استفاده شوند. البته این روش برای یک سری از منابع که زاتا ماهیت غیر اشتراکی دارند قابل استفاده که می توانند همزمان توسط چندین پردازش استفاده شوند. البته این روش برای یک سری از منابع که زاتا ماهیت غیر اشتراکی دارند قابل استفاده نیست مثل چاپکر. البته با spool کردن فرومی چاپکر چندین پروسس می توانند در یک زمان فرومی های فود را تولید کنند ولی تمام دستگاه ها را نمی توان spool کرد مثل مدول پروسس.
- 🔏 نقفی گرفتن و منتظر ماندن : برای نقض این شرط، بایر مانع از ایبار موقعیتی شرکه در آن یک پردازه، منبعی را در افتیار کیرد و تقاضای منبع دیگری را نماید. رسیدن به این هدف با دو روش امکان پذیر است.
- A. همه منابع مورد نیاز پردازه ها در ابتدای شروع امرای پردازه اکر در دسترس باشنر به آن اختصاص داده شوند وکرنه اختصاص داده نشوند به عبارتی یا همه منابع اختصاص داده شوند یا هیهکدام اختصاص داده نشوند. به عنوان مثال پردازه ای که می بایست داده ها را از نوار مغناطیس خوانده سپس آنها را بر روی دیسکی کپی کرده و آنها را مرتب کرده و چاپ کند، می بایست در ابتدا چاپکر را که در انتهای کارش نیاز دارد به دست آورد ، پس از چاپکر به درستی استفاده نشده است ، زیرا در همین مین که که چاپکر برون کار در اختیار این پردازه بوده ، پردازه دیگری می توانست از این استفاده کند. پس عیب این پروتکل کاهش بهره وری سیستم است.
- B. هر پررازه ای که یک سری منابع را در افتیار دارد، و طلب منابع دیگری می کنر می بایست منابع در افتیارش را آزاد سازد، سپس تمام منابع را با هم تمویل بگیرد، مشکل این روش قمط زرگی (کرسنگی) است، یعنی پررازه ای که منابع متعردی نیاز دارد بایستی به طور نامعین در انتظار باشر پررا که به امتمال زیاد یکی از منابع مورد نیازش همواره توسط پررزاش دیگری استفاره شره است.
 - 🔏 نقف عرم پس گرفتن: جهت تعقق این شرط رو راه مل وجور دارد.

A. یکی این است که اگر پردازه ای درخواست منابعی را داد که آن منابع آزاد نباشند، تمام منابع در اختیار پردازه ی درخواست کننده پس گرفته شوند.

B راه مل دیگر آن است که بررسی شود که آیا پردازه های منتظر تمام منابع مورد نیاز پردازه درخواست کننده را دارند یا نه، که اگر داشته باشند منابع از پردازه های منتظر گرفته شره و به پردازه درخواست کننده را تنساب یابر و اگرپردازه یا پردازه های منتظر، منابع موردنیاز پردازه ی درخواست کننده را نراشته باشند، خود پردازه ی درخواست کننده باید منتظر بماند وممکن است در مین انتظار منابع در افتیارش نیز از وی گرفته شوند وبه پردازه های درگری انتساب یابند.

🔏 نقف انتظار چرفشی:

جهت نقض انتظار پرفشی می بایست منابع را شماره گزاری کرد به طوری که هر پردازه بتواند منابع را در جهت صعودی شماره هایشان درخواست کند. به عنوان مثال اگر پردازه ای منبع شماره 3 را در افتیار داشته باشر، منبع شماره ی 1 را نمی تواند درخواست بکند، ولی می تواند منبع شماره ی کند. به عنوان مثال اگر پردازه ای منبع می بایست بر اساس 5 را درخواست کند. در این درخواست برای یک منبع می توان چندین نمونه از آن منبع را طلب کرد. شماره گزاری منابع می بایست بر اساس ترتیب نیاز به منابع صورت گیرد.به عنوان مثال، در مثال قبل می بایست شماره ی نوار مغناطیسی کمتر از شماره ی دیسک و شماره ی دیسک کمتر از شماره ی کنیم. فرض کنیم با اعمال این

شرط باز هع انتظار چرفشی داشته باشیع. در این صورت اگر شماره منبع در افتیار پردازه ی $f(R_{i-1}) \cdot p_{i-1}$ باشر،این پردازه در صورتی منتظر P_i است می رسیع. که می در انبع به رابطه به رابطه ی سیع. که می دانیع

$$f(R_0) < f(R_1) < \dots < f(R_n) < f(R_0)$$

$$f(R_0) < f(R_0)$$

نیست و برهان فلف اثبات می شور.

🖨 عیب روش پیشکیری از بن بست، بهره وری پایین منابع و کاهش توان عملیاتی سیستم می باشر

2- افتناب از بن بست:

در این روش با توبه به اطلاعاتی نظیر مراکثر نیاز پردازه ها به منابع و منابع تفصیص یافته به پردازه ها و موبودی، وقتی پردازه ای درخواست یک سری منابع را داشته باشد، اگر منابع موبود باشند، بررسی می کنیم که آیا با ابابت این درخواست سیستم به مالت امن میرود یا نه. اگر سیستم به مالت امن برود درخواست تفصیص داده می شود و گرنه از درخواست ابتناب می شود .

که مالت امن مالتی است که پردازه ها میتواننر به ترتیب فاص منابع مورد نیازشان را گرفته و اجرایشان را با موفقیت پشت سر بگزراننر. تعریف دیگر: مالتی است که در آن یک ترتیب امن(Safe sequence) از پردازه ها وجود داشته باشر.

تعریف ریگر: اگر سیستم بتواند منابع مورد درخواست را به ترتیبی تفصیص دهد که از بروز بن بست اجتناب شود کوئیم آن سیستم در مالت امن است -&Safe sequence (ترتیب امن) ترتیبی است از پردازه ها که می توانند با ترتیب معینی از تعویل گرفتن منابع،اجرایشان را فاتمه دهند.

برای امِتناب از بن بست رو راه ومور رارد:

1- از هر منبع فقط یک نمونه وجور راشته باشر: از گرافی شبیه گراف تفصیص منابع استفاره می شور.

2- از هر منبع بیش از یک نمونه وجور راشته باشر. از الگوریتم بانکراران استفاره می شور.

گراف تفهیهی منبع :این گراف شبیه گراف تفهیهی منابع است که علاوه بر یال های انتظار و تفهیهی شامل یک یال ارجا (claim eddge) می باشر که با نقطه چین نمایش راره می شور.به طوریکه R_i برین معناست که ممکن است رر آینره پررازه ی p_i رفواست منبع باشر که با نقطه چین نمایش راره می شور.به طوریکه یال ارجا می شور. R_i برین معناست که ممکن است را آینره پررازه ی R_i رفواست منبع R_i را راشته باشر.هریال تفهیمی پس از پایان تفهیمی تبریل به یال ارجا می شور.

با توجه به شکل اگر p_2 در لفظه ی فعلی درخواست R_2 را داشته باشر، این درخواست به وی اعطا نمی شود، زیرا سیستم به عالت نا امن می رود به طوری که ممکن است در آینده P_2 طلب P_1 و P_1 طلب P_2 را داشته باشر، که بن بست رخ می دهد

 \mathbf{Q} اکررر کراف بالایی P_1 ررفواست R_2 را داشته باشر، آیا این درفواست اجابت شور یا فیر؟ بله،اجابت می شور، زیرا در آینده ایجار علقه غیر ممکن است.

الگوریتم بانگداران: این الکوریتم اولین بار توسط ریمسترا ارائه شد ، و به نام الکوریتم بانکدار معروف کردید، چرا که این الکوریتم شبیه، رفتار یک بانکدار شهر کوچک با مشتریانش طرامی شره است، یک بانکدار هرگز تمام سرمایه خورش را به مشتریان تفصیص نمی دهر و طوری عمل می کنند که بتواند کلیه نیاز های مشتریانش را بر آورده کند.

سافتمان راره های مورد نیاز (n تعداد پردازه ها و m تعداد منابع)

 $1.Max_{n \times m}$

برین معناست که پررازه p_i ، جهت اجرایش به k نمونه از منبع Max[i][j]=k هاز رارد Max[i][j]=k

2. $Alocation_{n \times m}$

به این معناست که در مال ماضر k نمونه از منبع R_j در افتیار پردازه p_i ، می باشر. Alocation[i][j]=k

3. Need $_{n\times m}$

به این معناست که پررازه p_i به پرازه R_j به این معناست که پررازه p_i به این معناست که پررازه R_j

می باشر Need[i][j] = Max[i][j] - Alocation[i][j] می باشر \triangle

به از منبع نوع را نشان می دهد. مثلا Available[j]=k به به از منبع نوع را نشان می دهد. مثلا k Available باشریعنی از منبع نوع k به تعداد k نمونه در دسترس وجود دارد.

اکر Request بردار درخواست منابع ، پردازه p_i باشر الکوریتم به صورت زیر نوشته می شود.

(2,8,3,5) الكوريتم) (2,8,3,5) (2,8,3,5) الكوريتم) الكوري

2- اگر Request $_i > Available$ باشربرین معناست که منابع کافی جهت تفهیمی به پررازه p_i ، وجود نرارد، و p_i می بایست منتظر بمانر.

 p_i ها به صورت زیر تغییر میی یابند. پررازه p_i به وی اعطاء می شور، بنابراین ساختمان راده ها به صورت زیر تغییر میی یابند.

 $Alocation_i + = Request_i$

 $Need-=Request_i$

 $Available -= Request_i$

4- فرافوانی الکوریتم امنیت: اگر عالت سیستم ناامن باشر سافتمان راره های تغییر یافته رر قسمت 3 به عالت اول بر کررانره می شور(اجتناب از بن بست) 5- یایان

(مرتبه اجرای الگوریتم بانگرار $m imes n^2$ می باشر $m imes n^2$ مرتبه اجرای الگوریتم بانگرار $oldsymbol{\otimes}$

الكوريتم امنيت

استفاره از بررار های work به طول m (متناظر با منابع) و Finish به طول n (متناظر با پررازه ها)

Finish[i]=False : i=1...n و براى work=Available -1

4 د به ازای i=1,...,n اگر چنین ای پیرا نشر برو به مرمله ی Finish[i]=Fals و i=1,...,n اگر چنین ای پیرا نشر برو به مرمله ی i=1,...,n د- به ازای i=1,...,n

(در این مرمله به رنبال پردازه ای می کردیم که به پایان نرسیره باشر و با منابع موجود بتوان اجرایش را به پایان رسانر)

3- زمانی به مرمله سه می آییم که پردازه ای پیدا شود که اجرایش تمام نشره و با استفاده از منابع موجود می تواند نیاز هایش را بر آورده کرده و finish[i] = true ,work + = Alocation .)

4- اگر برای تمام اها (i=1...n) آجرایش منابع در افتیارش را آزاد می سازد (i=1...n) باشد موجود اجرایشان را با موفقیت پشت بست سر بگذرانند و سیستم در عالت امن قرار دارد ولی اگر مراقل یک نا پیدا شود که Finish[i] باشد بدین معناست که با منابع موجود این پر دازه نمی تواند اجرایش را به اتمام برساند و سیستم در عالت نامن قرار دارد ولی اگر مراقل یک نا پیدا شود که Finish[i] باشد بدین معناست که با منابع موجود این پر دازه نمی تواند اجرایش را به اتمام برساند و سیستم در عالت ناامن قرار دارد.

process	R_1	R_2	R_3	R_4
p_1	3	2	1	4
p_2	0	2	5	2
<i>p</i> ₃	5	1	0	5
p_4	1	5	3	0
p_5	3	0	3	3

process	R_1	R_2	R_3	R_4
p_1	2	0	1	1
p_2	0	1	2	1
<i>p</i> ₃	4	0	0	3
p_4	0	2	1	0
p_5	1	0	3	3
sum	7	3	7	5

max

Alocation

مل. ابترا ماتریس Need = Max – Alocation و سازیم با توجه به Need = Max – Alocation خواهیم راشت

process	R_1	R_2	R_3	R_4
p_1	1	2	0	3
p_2	0	1	3	1
<i>p</i> ₃	1	1	0	2
p_4	1	3	2	0
p_5	2	0	0	3

Need

مال بررار Avalable , ا با تومِه به فرمول - sum ایبار می کنیم مال بررار Avalable ایبار می کنیم و بر رار work و بر رار work و بر رار بابترا به شکل زیر می باشنر.

	R_1	R_2	R_3	R_4
wark 31	1	2	2	2

	p_1	p_2	p_3	p_4	p_5
finish	f	f	f	f	f

	R_1	R_2	R_3	R_4
Available	1	2	2	2

پردازه هائی را که false هستنر با work مقایسه می کنیم. (مقایسه سطر های ماتریس Need با work)، که در اولین مقایسه ملامظه می شود که فقط پردازه و تا بر کرداند، کار را به همین ترتیب ازامه می دهیم.

	R_1	R_2	R_3	R_4		p_1	p_2	p_3	p_4	<i>p</i> ₅
work	5	2	2	5	finish	f	f	Т	f	f
	R_1	R_2	R_3	R_4		p_1	p_2	p_3	p_4	<i>p</i> ₅
work	7	2	3	6	finish	T	f	T	f	f
	R_1	R_2	R_3	R_4		p_1	p_2	p_3	p_4	<i>p</i> ₅
work	7	3	5	7	finish	T	T	T	f	f
	R_1	R_2	R_3	R_4		p_1	p_2	p_3	p_4	<i>p</i> ₅
work	7	5	6	7	finish	T	T	T	T	f
	R_1	R_2	R_3	R_4		p_1	p_2	p_3	p_4	<i>p</i> ₅
work	8	5	9	7	finish	Т	T	T	T	T

ملاعظه می شور که سیستم در هالت امن است و ترتیب اجرا به صورت p_3, p_1, p_2, p_4, p_5 می باشر در همین سئوال پردازه p_3 در همین سئوال پردازه p_3 در همین سئوال پردازه p_3 در همین سئوال پردازه و تا نیر در مالت باسخ داده شور یا نیر؟

مثال،سیستمی با پنج فراینر p_0 الی p_4 و سه نوع منبع C,B,A را رر نظر بگیریر منبع نوع P_4 رارای 10 نمونه، منبع نوع P_4 رارای 5 نمونه و منبع نوع P_4 رارای 8 نمونه می باشر، فرض کنیر در زمان P_5 وضیعت سیستم به صورت زیر باشر

process	A	В	С
p_0	7	5	3
p_1	3	2	2
p_2	9	0	2
<i>p</i> ₃	2	2	2
<i>p</i> ₄	4	3	3

process	A	В	С
p_0	0	1	0
p_1	2	0	0
p_2	3	0	2
p_3	2	1	1
p_4	0	0	2

max

S.Hemmati 2006

Allocation

الف. ماتریس Need را بیابیر

مل.

ب. آیا در لفظه فعلی سیستم در مالت امن است یا نه؟ اگر در مالت امن است توالی امن را بیابیر

ج. فرض کنیر در لفظه t_0 فراینر p_1 یک نمونه از منبع A و دو نمونه دیگر از منبع C درخواست کنر آیا این درخواست فورا پاسخ داده شود یا خیر.

ر. اگر پررازه p_4 در فواست سه نمونه از منبع A و سه نمونه ریگر از منبع B را درفواست کنر، آیا این درفواست می بایست بر آورده شود یا فیر.

process	A	В	C
p_0	7	4	3
p_1	1	2	2
p_2	6	0	0
<i>p</i> ₃	0	1	1
p_4	4	3	1

الف. با توجه به Need = max-Allocation راريع

Need

ب. ابترا بررار Available را می سازیع

C (آزار) B (آزار

 $_{j}$ ز از $_{j}$ راز از $_{j}$ (3,3,2) $\xrightarrow{p_{1}}$ (5,3,2) $\xrightarrow{p_{3}}$ (7,4,3) $\xrightarrow{p_{4}}$ (7,4,5) $\xrightarrow{p_{2}}$ (10,4,7) $\xrightarrow{p_{0}}$ (10,5,7)

همانطور که مشاهره می شور ترتیب اجراء $p_1, p_3, p_4, p_2, p_0 > یک ترتیب امن است . لزا سیستم <math>p_1, p_3, p_4, p_2, p_0 > 2$ نکته:اگر $p_1, p_3, p_4, p_2, p_0 > 2$ نکته:اگر $p_1, p_3, p_4, p_2, p_0 > 2$ نکته:اگر $p_1, p_3, p_4, p_2, p_3 > 2$ نخصیص منابع انتفاب شور $p_1, p_2, p_3 > 2$ نخصیص منابع انتفاب شور $p_1, p_2, p_3 > 2$ نخصیص منابع مورد نیاز و تمام شرن،کل منابع فود را آزاد می کند. $p_1, p_2, p_3 > 2$ نفر $p_2, p_3, p_4, p_2, p_3 > 2$ نفر $p_1, p_2, p_3, p_4, p_3, p_4, p_5 > 2$ نفر $p_1, p_2, p_5 > 2$ نفر $p_2, p_3, p_4, p_5 > 2$ نفر $p_1, p_2, p_5 > 2$ نفر $p_1, p_2, p_3, p_4, p_5 > 2$ نفر $p_1, p_2, p_5 > 2$ نفر $p_1, p_2, p_3, p_5 > 2$ نفر $p_1, p_2, p_5 > 2$ نفر $p_1, p_2, p_3, p_5 > 2$ نفر $p_1, p_2, p_5 > 2$ نفر $p_1, p_2, p_3, p_5 > 2$ نفر $p_1, p_2, p_3, p_5 > 2$ نفر $p_1, p_2, p_3, p_5 > 2$ نفر $p_1, p_2, p_5 > 2$ نفر $p_1, p_2, p_3, p_5 > 2$ نفر p_1, p_2, p

process	A	В	С
p_0	0	1	0
p_1	₿	0	2
p_2	3	0	2
p_3	2	1	1
p_4	0	0	2

process	A	В	С
p_0	7	4	3
p_1	0	2	0
p_2	6	0	0
<i>p</i> ₃	0	1	1
p_4	4	3	1

 همانطور که مشاهره می شور ترتیب اجراء $p_1, p_3, p_4, p_0, p_2 > یک ترتیب امن است . لزا اگر به درخواست های <math>p_1$ در لفظه p_1 پاسخ بگوئیع مطمئن هستیع که سیستع در عالت امن باقی خواهر مانر.

ب. اگر در فواست فوق را بر آور ده سازیم ما تریس های Need و Need به صورت زیر در فواهند آمر

process	A	В	С
p_0	0	1	0
p_1	2	0	0
p_2	3	0	2
p_3	2	1	1
p_4	₿	₿	2

Allocation

process	A	В	C
p_0	7	4	3
p_1	1	2	2
p_2	6	0	0
p_3	0	1	1
<i>p</i> ₄	0	0	1

Need

(0,0,2) منابع آزاد (بردار Available) را با هر سطر ما آر منابع آزاد (بردار Need) را با هر سطر ما تریس Need مقایسه کنیم، هیچ کرام از سطرهای ما تریس Need از بردار مذکور کمتر نیست لزا این وضیعت نا امن می باشر

Pnu-Soal.ir