

Elementare Vektorrechnung und das Skalarprodukt

Kleine Verständnisfragen - formulieren Sie selber!

- 1. Wodurch unterscheidet sich die Statik von der Festigkeitslehre?
- 2. In welcher Form kann das Versagen eines Bauteils auftreten?
- 3. Welche Grundbeanspruchungsarten kennen Sie?
- 4. Erklären Sie den Unterschied zwischen dem Freimachen und dem Freischneiden!
- 5. Wie ist die Spannung definiert?
- 6. Erklären Sie die Begriffe Normal- und Tangentialspannung und wodurch sie sich unterscheiden.
- 1. Aufgabe: Gegeben sei folgendes System, wie skizziert

Gegeben: q, EA, a, b

- a.) Bestimmen Sie die Auflagerkraft am Lager B.
- b.) Bestimmen Sie die Stabkraft F_s .
- c.) Bestimmen Sie die Federkraft F_c
- 2. Aufgabe: Auf drei Pfosten gleicher Dehnsteifigkeit liegt ein starrer Balken:

(Gegeben: *F, a, EA*)

- a.) An welcher Stelle *x* muss die Kraft *F* angreifen, damit der Balken in horizontaler Lage verbleibt?
- b.) Wie groß sind dann die Spannungen in den Pfosten?
- c.) Welche Schrägstellung des Balkens tritt für x = 2/3 a auf?

3. Aufgabe: Zug und Druck

Ein Zugstab aus Vergütungsstahl 34CrM04 mit Kreisringquerschnitt

 $(d_{a\cdot} = 25 \text{ mm}, s = 2.5 \text{ mm})$ und einer Länge von $l_{\theta} = 1.2 \text{ m}$ (im unbelasteten Zustand) wird durch eine mittig angreifende statische Kraft von F = 60 kN auf Zug beansprucht.

Werkstoffkennwerte 34CrM04:

 $R_{p02} = 680 \ N/mm^2$

 $R_m = 1050 \ N/mm^2$

 $E = 208\ 000\ N/mm^2$

 μ = 0,30

- a.) Berechnen Sie aus den Dehnungen die unbekannten Kräfte F_x und F_y
- b.) Berechnen Sie die Sicherheiten gegen Fließen (S_F) und gegen Bruch (S_B). Sind die Sicherheiten ausreichend?

- d.) Die Verringerung des Außendurchnnessers (Δd_a soll auf 0,01 mm begrenzt werden. Ermitteln Sie für diesen Fall den zulässigen Wert der ZugkraftF.
- e.) Eine zweite Variante des Zugstabes aus derselben Stahlsorte (34CrM04) soll eine Zugkraft von $F^* = 150 \text{ kN}$ aufnelnnen. Berechnen Sie die erforderliche Wanddicke s, falls der Außendurchmesser unverändert bleiben soll ($d_a = 25 \text{ mm}$) und eine Sicherheit von $S_F = 1.4$ gegenüber Fließen gefordert wird.

Hinweis:

Die in DIN EN 10002 nicht enthalten Kennwerte σ_p ; σ_E liegen in der Regel dicht beieinander oder fallen zusammen

