Assignment-Classification Algorithms

1.Problem Statement –

Client (Hospital Management) wants us to create a model which predict chronic kidney disease (CKD) based on the several parameters given in the data set.

Domain Selection-Machine Learning.

Learning Selection-Supervised Learning-Classification

2.Basic info about the dataset-

Parameters-AGE, BP, SG, AL, SU, RBC, PC. PCC, BA, BGR, BU, SC, SOD, POT, HMO, PCV, WC, PCV, WC, RC, HTN, DM, CAD, APPET, PE, ANE, CLASSIFICATION.

Independent (Input)- AGE, BP, SG, AL, SU, RBC, PC. PCC, BA, BGR, BU, SC, SOD, POT, HMO, PCV, WC, PCV, WC, RC, HTN, DM, CAD, APPET, PE, ANE.

Dependent (Output)- CLASSIFICATION

Rows-400

Columns-25

3.Pre-Processing Method-

Parameter has staring values we are converting nominal data to number data.

Algorithm used-One hot Encoding

4.Model used -

Machine learning algorithm used a chronic kidney disease prediction.

Algorithms used-Random Forest, Support Vector Machine, Decision tree, Logistic, K-Nearest Neighbour, Naive Bayes

5. Documentation on Confusion Matrix and clf-report-

Random Forest-

```
43]: print(cm)
      [[44 1]
      [ 1 74]]
44]: print(clf_report)
                    precision
                                recall f1-score
                                                   support
                        0.98
                                  0.98
                                            0.98
                                                        45
                 0
                1
                        0.99
                                  0.99
                                            0.99
                                                        75
                                            0.98
                                                       120
         accuracy
     macro avg
weighted avg
                        0.98
                                  0.98
                                            0.98
                                                       120
                        0.98
                                  0.98
                                            0.98
                                                       120
```

Decision Tree-

print(clf_rep	ort)			
	precision	recall	f1-score	support
0	0.84	0.96	0.90	45
1	0.97	0.89	0.93	75
accuracy			0.92	120
macro avg	0.91	0.92	0.91	120
weighted avg	0.92	0.92	0.92	120
print(cm)				
[[43 2]				

[[43 2] [8 67]]

SVM-

print(clf_report) precision recall f1-score support 0.00 0.00 0.00 45 1 0.62 0.77 75 1.00 0.62 120 accuracy macro avg 0.31 0.50 0.38 120 0.48 weighted avg 0.39 0.62 120 print(cm)

[[Ø 45] [Ø 75]]

Logistic-

print(clf_report)						
	precision	recall	f1-score	support		
0	0.98	1.00	0.99	45		
1	1.00	0.99	0.99	75		
accuracy			0.99	120		
macro avg	0.99	0.99	0.99	120		
weighted avg	0.99	0.99	0.99	120		
print(cm)						

[[45 0] [1 74]]

KNN-

print(cm)

[[37 8] [27 48]]

print(clf_report)

	precision	recall	f1-score	support
0	0.58	0.82	0.68	45
1	0.86	0.64	0.73	75
accuracy			0.71	120
macro avg	0.72	0.73	0.71	120
weighted avg	0.75	0.71	0.71	120

Navies Bayes-

	precision	recall	f1-score	support	
0	0.96	1.00	0.98	45	
1	1.00	0.97	0.99	75	
accuracy			0.98	120	
macro avg	0.98	0.99	0.98	120	
weighted avg	0.98	0.98	0.98	120	
[[45 0]					
[2 73]]					

5.Final Model-

Logistic Algorithm-Accuracy-0.99

Among trying all the algorithms Logistic Algorithm predicted the Overall performance –0.99 which good for the dataset given.

```
print(clf_report)
              precision recall f1-score
                                             support
                  0.98
           0
                            1.00
                                      0.99
                                                  45
                  1.00
                            0.99
                                      0.99
                                                  75
                                       0.99
                                                 120
    accuracy
   macro avg
                  0.99
                            0.99
                                       0.99
                                                 120
weighted avg
                  0.99
                            0.99
                                      0.99
                                                  120
print(cm)
[[45 0]
 [ 1 74]]
```