Chapter 2 – Combinational Digital Circuits

Part 1 – Gate Circuits and Boolean Equations

Overview

- Part 1 Gate Circuits and Boolean Equations
 - Binary Logic and Gates
 - Boolean Algebra
 - Standard Forms
- Part 2 Circuit Optimization
 - Two-Level Optimization
 - Map Manipulation
 - Practical Optimization (Espresso)
 - Multi-Level Circuit Optimization
- Part 3 Additional Gates and Circuits
 - Other Gate Types
 - Exclusive-OR Operator and Gates
 - High-Impedance Outputs

Binary Logic and Gates

- Binary variables take on one of two values.
- Logical operators operate on binary values and binary variables.
- Basic logical operators are the logic functions AND, OR and NOT.
- Logic gates implement logic functions.
- Boolean Algebra: a useful mathematical system for specifying and transforming logic functions.
- We study Boolean algebra as a foundation for designing and analyzing digital systems!

Binary Variables

- Recall that the two binary values have different names:
 - True/False
 - On/Off
 - Yes/No
 - 1/0
- We use 1 and 0 to denote the two values.
- Variable identifier examples:
 - A, B, y, z, or X₁ for now
 - RESET, START_IT, or ADD1 later

Logical Operations

- The three basic logical operations are:
 - AND
 - OR
 - NOT
- AND is denoted by a dot (·).
- OR is denoted by a plus (+).
- NOT is denoted by an overbar (), a single quote mark (') after, or (~) before the variable.

Notation Examples

• Examples:

- Y = A.B is read "Y is equal to A AND B."
- z = x + y is read "z is equal to x OR y."
- X = A is read "X is equal to NOT A."

Note: The statement:

```
1 + 1 = 2 (read "one <u>plus</u> one equals two")
```

is not the same as

Operator Definitions

Operations are defined on the values "0" and "1" for each operator:

AND	OR	NOT
$0 \cdot 0 = 0$	0 + 0 = 0	$\bar{0} = 1$
$0 \cdot 1 = 0$	0 + 1 = 1	$\bar{1} = 0$
$1 \cdot 0 = 0$	1 + 0 = 1	
1 · 1 = 1	1 + 1 = 1	

Truth Tables

- Truth table a tabular listing of the values of a function for all possible combinations of values on its arguments
- Example: Truth tables for the basic logic operations:

AND				
$X \mid Y \mid Z = X \cdot Y$				
0	0	0		
0	1	0		
1	0	0		
1	1	1		

OR			
X	$\mathbf{X} \mid \mathbf{Y} \mid \mathbf{Z} = \mathbf{X} + \mathbf{Y}$		
0	0	0	
0	1	1	
1	0	1	
1	1	1	

NOT			
X	$z = \overline{x}$		
0	1		
1	0		

Boolean Algebra

- B={0,1} kümesi üzerinde tanımlı
- İkili İşlemler : VE, VEYA (⋅, +)
- Birli İşlem: TÜMLEME ()

Axioms

Let a, b, $c \in B$

6. Inverse:

1.	Closure:	a + b = c	a · b=c
2.	Commutative:	a + b = b + a	a · b=b · a
3.	Distributive:	a+(b · c)=(a+b) · (a+c)	a · (b+c)=a · b+a · c
4.	Associative:	a+(b+c)=(a+b)+c	a · (b · c)=(a · b) · c
5.	Neutral Element	t:a+0=a	a · 1=a

a+a'=1

a · a ′=0

Boolean Operator Precedence

- The order of evaluation in a Boolean expression is:
 - 1. Parentheses
 - 2. NOT
 - 3. AND
 - 4. OR
- Consequence: Parentheses appear around OR expressions
- Example: F = A(B + C)(C + D)

Properties and Theorems

 These properties and theorems can be proved by using the axioms of Boole algebra.

- Identity element: a+1=1 a · 0=0
 Transformation: (a')'=a
 Constant power: a+a+...+a=a a · a · ... · a=a
 Absoption: a+a · b=a a · (a+b)=a
- 5. De Morgan's Theorem:

$$(a+b)'=a' \cdot b'$$
 $(a \cdot b)'=a'+b'$

6. General De Morgan's Theorem: $f'(X1,X2,...,Xn,0,1,+,\cdot) \Leftrightarrow f(X1',X2',...,Xn',1,0,\cdot,+)$

Example 1: Boolean Algebraic Proof

- Our primary reason for doing proofs is to learn:
 - Careful and efficient use of the identities and theorems of Boolean algebra, and
 - How to choose the appropriate identity or theorem to apply to make forward progress, irrespective of the application.

Example 2: Boolean Algebraic Proofs

AB + A'C + BC = AB + A'C (Consensus Theorem)

Proof Steps

$$AB + A'C + BC$$

$$= AB + A'C + 1 \cdot BC$$

$$= AB + A'C + (A + A') \cdot BC$$

$$=AB +A'C + ABC + A'BC$$

$$=AB+A'(C+BC)$$

$$=AB+A'C$$

Axiom or Theorem

$$1 \cdot X = X$$

$$X + X' = 1$$

$$X(Y + Z) = XY + XZ$$

$$X + Y = Y + X$$

$$X(Y + Z) = XY + XZ$$

$$X + X \cdot Y = X$$

Example 3: Boolean Algebraic Proofs

•
$$(\overline{X} + \overline{Y})Z + X\overline{Y} = \overline{Y}(X + Z)$$

Proof Steps Axiom or Theorem $(\overline{X} + \overline{Y})Z + X\overline{Y}$

Boolean Function Evaluation

F1=
$$xy\overline{z}$$

F2= $x + \overline{y}z$
F3= $\overline{x}\overline{y}\overline{z} + \overline{x}yz + x\overline{y}$
F4= $x\overline{y} + \overline{x}z$

- If the the input number is = n
 There is 2ⁿ different input combinations
- •Hence, 2^{2^n} different Boolean functions can be defined

X	y	Z	F1	F2	F3	F4
0	0	0	0	0	1	0
0	0	1	0	1	0	1
0	1	0	0	0	0	0
0 2	2^{n} 1	1	0	0	1	1
1	0	0	0	1	1	1
1	0	1	0	1	1	1
1	1	0	1	1	0	0
1	1	1	0	1	0	0

Expression Simplification

Simplify to contain the smallest number of literals:

$$AB + \overline{A}CD + \overline{A}BD + \overline{A}C\overline{D} + ABCD$$

$$= AB + ABCD + A'CD + A'CD' + A'BD$$

$$= AB + AB(CD) + A'C(D + D') + A'BD$$

$$= AB + A'C + A'BD$$

$$= B(A + A'D) + A'C$$

$$= B(A + A')(A + D) + A'C$$

$$= B(A + D) + AC$$

5 literals

Complementing Functions

- Use DeMorgan's Theorem to complement a function:
 - 1. Interchange AND and OR operators
 - 2. Complement each constant value and literal
- Example: Complement $F = \overline{X}y\overline{Z} + X\overline{y}\overline{Z}$ $F \equiv (x + y' + z)(x + y' + z')$
- Example: Complement G = (a + bc)d' + e'G =

Overview – Canonical Forms

- What are Canonical Forms?
- Minterms and Maxterms
- Index Representation of Minterms and Maxterms
- Sum-of-Products (SOP) Representations
- Product-of-Sums (POS) Representations
- Representation of Complements of Functions
- Conversions between Representations

Canonical Forms

- It is useful to specify Boolean functions in a form that:
 - Allows comparison for equality.
 - Has a correspondence to the truth tables
- Canonical Forms in common usage:
 - Sum of Products (SOP)
 - Product of Sums (POS)

Minterms

- Minterms are AND terms with every variable present in either true or complemented form.
- Given that each binary variable may appear normal (e.g., x) or complemented (e.g., \overline{x}), there are 2^n minterms for n variables.
- Example: Two variables (X and Y) produce
 2 x 2 = 4 combinations:

```
XY (both normal)
```

 $X\overline{Y}$ (X normal, Y complemented)

XY (X complemented, Y normal)

XY (both complemented)

Thus there are four minterms of two variables.

Maxterms

- Maxterms are OR terms with every variable in true or complemented form.
- Given that each binary variable may appear normal (e.g., x) or complemented (e.g., \overline{x}), there are 2^n maxterms for n variables.
- Example: Two variables (X and Y) produce 2 x 2 = 4 combinations:

```
X + Y (both normal)

X + \overline{Y} (x normal, y complemented)

\overline{X} + Y (x complemented, y normal)

\overline{X} + \overline{Y} (both complemented)
```

Maxterms and Minterms

 Examples: Two variable minterms and maxterms.

Index	Minterm	Maxterm
0	$\overline{x}\overline{y}$	x + y
1	x y	$x + \overline{y}$
2	x y	x + y
3	ху	$\overline{x} + \overline{y}$

 The index above is important for describing which variables in the terms are true and which are complemented.

Standard Order

- Minterms and maxterms are designated with a subscript
- The subscript is a number, corresponding to a binary pattern
- The bits in the pattern represent the complemented or normal state of each variable listed in a standard order.
- All variables will be present in a minterm or maxterm and will be listed in the same order (usually alphabetically)
- Example: For variables a, b, c:
 - Maxterms: $(a + b + \bar{c})$, (a + b + c)
 - Terms: (b + a + c), a c̄ b, and (c + b + a) are NOT in standard order.
 - Minterms: a b c, a b c, a b c
 - Terms: (a + c), b̄ c, and (ā + b) do not contain all variables

Purpose of the Index

The index for the minterm or maxterm, expressed as a binary number, is used to determine whether the variable is shown in the true form or complemented form.

For Minterms:

- "1" means the variable is "Not Complemented" and
- "0" means the variable is "Complemented".

For Maxterms:

- "0" means the variable is "Not Complemented" and
- "1" means the variable is "Complemented".

Index Example in Three Variables

- Assume the variables are called X, Y, and Z.
- The standard order is X, then Y, then Z.
- The Index 0 (base 10) = 000 (base 2) for three variables).
- All three variables are complemented for minterm 0 ($\overline{X}, \overline{Y}, \overline{Z}$) and no variables are complemented for Maxterm 0 (X,Y,Z).
 - Minterm 0, called m_0 is $\overline{X}\overline{Y}\overline{Z}$.
 - Maxterm 0, called M_0 is (X + Y + Z).
 - Minterm 6 ?
 - Maxterm 6 ?

Index Examples – Four Variables

Index Binary Minterm Maxterm

1 0001 abcd ? 3 0011 ? a+b+c 5 0101 abcd a+b+c 7 0111 ? a+b+c 10 1010 abcd a+b+c 13 1101 abcd ?	i	Patterr	n m _i	M_{i}
3 0011 ? $a+b+c=5$ 5 0101 $abcd$ $a+b+c=5$ 7 0111 ? $a+b+c=5$ 10 1010 $abcd$ $a+b+c=5$ 13 1101 $abcd$?	0	0000	abcd	a + b + c + d
5 0101 abcd a+b+c+ 7 0111 ? a+b+c+ 10 1010 abcd a+b+c+ 13 1101 abcd ?	1	0001	abcd	?
7 0111 ? a+b+c+ 10 1010 abcd a+b+c+ 13 1101 abcd ?	3	0011	?	a+b+c+d
10 1010 abcd a+b+c- 13 1101 abcd ?	5	0101	abcd	$a+\overline{b}+c+\overline{d}$
13 1101 abcd ?	7	0111	?	$a+\overline{b}+\overline{c}+\overline{d}$
	10	1010	abcd	$\bar{a}+b+\bar{c}+d$
15 1111 abcd $\bar{a} + \bar{b} + \bar{c}$	13	1101	abcd	?
	15	1111	abcd	$\bar{a} + \bar{b} + \bar{c} + \bar{d}$

Minterm and Maxterm Relationship

- Review: DeMorgan's Theorem $\overline{x \cdot y} = \overline{x} + \overline{y}$ and $\overline{x + y} = \overline{x}$
- Two-variable example: $M_2 = \overline{x} + y$ and $m_2 = x \cdot \overline{y}$ Thus M_2 is the complement of m_2 and viceversa.
- Since DeMorgan's Theorem holds for n variables, the above holds for terms of n variables
- giving: $M_i = m_i$ $m_i = M_i$

Thus M_i is the complement of m_i.

Minterm Function Example

- Find the truth table of $F_1 = m_1 + m_4 + m_7$
- $F_1 = \overline{x} \overline{y} z + x \overline{y} \overline{z} + x y z$

хуz	index	m ₁	+	m ₄	+	m ₇	= F ₁
000	0	0	+	0	+	0	= 0
001	1	1	+	0	+	0	= 1
010	2	0	+	0	+	0	= 0
011	3	0	+	0	+	0	= 0
100	4	0	+	1	+	0	= 1
101	5	0	+	0	+	0	= 0
110	6	0	+	0	+	0	= 0
111	7	0	+	0	+	1	= 1

Minterm Function Example

- $F(A, B, C, D, E) = m_2 + m_9 + m_{17} + m_{23}$
- F(A, B, C, D, E) = A'B'C'DE'+A'BC'D'E
 +AB'C'D'E+AB'CDE

Maxterm Function Example

Implement F₁ in maxterms:

$$\begin{aligned} F_1 &= & M_0 & \cdot & M_2 & \cdot & M_3 & \cdot & M_5 & \cdot & M_6 \\ F_1 &= & (x+y+z) \cdot (x+\overline{y}+z) \cdot (x+\overline{y}+\overline{z}) \\ & \cdot (\overline{x}+y+\overline{z}) \cdot (\overline{x}+\overline{y}+z) \\ & \underline{x} \ \underline{y} \ \underline{z} \ | \ \underline{M_0 \cdot M_2 \cdot M_3 \cdot M_5 \cdot M_6} = F_1 \\ \hline & 0 \ 0 \ 0 \ 0 \cdot 1 \cdot 1 \cdot 1 \cdot 1 \cdot 1 = 0 \\ & 0 \ 0 \ 1 \ 1 \ 1 \cdot 1 \cdot 1 \cdot 1 \cdot 1 = 1 \\ & 0 \ 1 \ 0 \ 2 \ 1 \cdot 0 \cdot 1 \cdot 1 \cdot 1 \cdot 1 = 0 \\ & 0 \ 1 \ 1 \ 3 \ 1 \cdot 1 \cdot 0 \cdot 1 \cdot 1 \cdot 1 = 1 \\ & 1 \ 0 \ 1 \ 5 \ 1 \cdot 1 \cdot 1 \cdot 1 \cdot 1 \cdot 1 = 0 \\ & 1 \ 1 \ 0 \ 6 \ 1 \cdot 1 \cdot 1 \cdot 1 \cdot 1 \cdot 1 = 1 \\ & 1 \ 1 \ 1 \ 7 \ 1 \cdot 1 \cdot 1 \cdot 1 \cdot 1 \cdot 1 = 1 \end{aligned}$$

Maxterm Function Example

- $F(A,B,C,D) = M_3 \times M_8 \times M_{11} \times M_{14}$
- F(A, B,C,D) = (A+B+C'+D')(A'+B+C+D)(A'+B+C'+D')(A'+B'+C'+D)

Canonical Sum of Products

- Any Boolean function can be expressed as a Sum of Minterms.
 - For the function table, the minterms used are the terms corresponding to the 1's
 - For expressions, <u>expand</u> all terms first to explicitly list all minterms. Do this by "ANDing" any term missing a variable v with a term ($\sqrt{+\overline{v}}$).
- **Example:** Implement $f = x + \overline{x} \overline{y}$ as a sum of minterms.

```
First expand terms: f = x(y + \overline{y}) + \overline{x} \overline{y}
Then distribute terms: f = xy + x\overline{y} + \overline{x} \overline{y}
Express as sum of minterms: f = m_3 + m_2 + m_0
```

Another SOP Example

$$F = A + \overline{B}C$$

- There are three variables, A, B, and C which we take to be the standard order.
- Expanding the terms with missing variables:

$$F = A(B + B')(C + C') + (A + A') B'C$$

- Distributing the literals over parenthesis
- = ABC + ABC' + AB'C + AB'C' + AB'C + A'B'C
- Collect terms
- = ABC + ABC' + AB'C + AB'C' + A'B'C
- Express as SOM:

$$= m_7 + m_6 + m_5 + m_4 + m_1 = m_1 + m_4 + m_5 + m_6 + m_7$$
Chapter 2 - Part 1 33

Shorthand SOP Form

From the previous example, we started with:

$$F = A + \overline{B}C$$

We ended up with:

$$F = m_1 + m_4 + m_5 + m_6 + m_7$$

This can be denoted in the formal shorthand:

$$F(A,B,C) = \Sigma_m(1,4,5,6,7)$$

 Note that we explicitly show the standard variables in order and drop the "m" designators.

Canonical Product of Sums

- Any Boolean Function can be expressed as a Product of Sums (POS).
 - For the function table, the maxterms used are the terms corresponding to the 0's.
 - For an expression, expand all terms first to explicitly list all maxterms. Do this by first applying the second distributive law, "ORing" terms missing variable v with a term equal to V ×V and then applying the distributive law again.
- Example: Convert to product of maxterms:

$$f(x,y,z) = x + \overline{x} \overline{y}$$

Apply the distributive law:

$$\overline{x} + \overline{x} \overline{y} = (x + \overline{x})(x + \overline{y}) = 1 \times (x + \overline{y}) = x + \overline{y}$$

Add missing variable z:

$$x + \overline{y} + z \times \overline{z} = (x + \overline{y} + z) (x + \overline{y} + \overline{z})$$

Express as POS: $f = M_2 \cdot M_3$

Another POS Example

- Find Product of Sums representation of f: f=AC'+BC+A'B'
- f=(AC'+BC+A') (AC'+BC+B')

```
f = ((AC'+B)(AC'+C)+A')((AC'+B)(AC'+C)+B')
f = ((A+B)(C'+B)(A+C)(C'+C)+A')((A+B)(C'+B)(A+C)(C'+C)+B')
f = ((A+B)(C'+B)(A+C)+A')((A+B)(C'+B)(A+C)+B')
f = ((A+B+A')(C'+B+A')(A+C+A')(A+B+B')(C'+B+B')(A+C+B')
f = (A'+B+C')(A+B'+C)
f = M_5 \cdot M_2
```

Function Complements

- The complement of a function expressed as a SOP is constructed by selecting the minterms missing in the SOP canonical forms.
- Alternatively, the complement of a function expressed by a SOP form is simply the POS with the same indices.
- Example: Given

$$F(x,y,z) = \Sigma_{m}(1,3,5,7)$$

$$F(x,y,z) = \Sigma_{m}(0,2,4,6)$$

$$F(x,y,z) = \Pi_{M}(1,3,5,7)$$

Implementation of Boolean Functions

- Using Switches
 - For inputs:
 - logic 1 is switch closed
 - logic 0 is switch open
 - For outputs:
 - logic 1 is <u>light on</u>
 - logic 0 is <u>light off</u>.
 - NOT uses a switch such that:
 - logic 1 is switch open
 - logic 0 is switch closed

Switches in parallel => OR

Switches in series => AND

Normally-closed switch => NOT

Implementation of Boolean Functions (Continued)

Example: Logic Using Switches

- Light is on (L = 1) and off (L = 0), otherwise.
 - Sum of path functions:
 - L(A, B, C, D) = ABC'+AD
 - Product of cut functions:
 - f(A, B, C, D) = A (B+D) (C'+D)

Example: f_{AB}=?

- $f_{AB} = \Sigma_m(10,11,13,15)$
- $f_{AB} = \Pi_M(0,1,2,3,4,5,6,7,8,9,12,14)$

X ₁	x ₂	X ₃	X ₄	f _{AB} 0 0
0	0 0	0	0 1	0
0	0	0	1	0
	0	1	0	0
0	0	1	1	0
0	1	0	0	0
0 0 0	1	0	1	0
0	1	1	0	0
0	1	1	0	0
1	0	0	0	0
1	0	0	1	0
1	0	1	0	1
1	0	1	1	1
1	1	0	0	0
1	1	0	1	1
1	1	1	0	0
1	1	1	1	1

Example: f_{AB}=?

Sum of path functions:

$$f_{AB}$$
= $x_1x_2x_4 + x_1x_2x_2'x_1 + x_1x_2x_2'x_2 + x_1x_3x_4 + x_1x_3x_2'x_1 + x_1x_3x_2'x_2 + x_1x_1'x_2'x_4 + x_1x_1'x_1 + x_1x_1'x_2$
= $x_1x_2x_4 + x_1x_3x_4 + x_1x_3x_2'$

Product of cut functions:

$$f_{AB} = x_1(x_2 + x_3 + x_1')(x_2 + x_3 + x_2' + x_1 + x_2)(x_4 + x_2' + x_1')(x_4 + x_1 + x_2)$$

$$= x_1(x_2 + x_3 + x_1')(x_4 + x_2' + x_1')(x_4 + x_1 + x_2)$$
⁴¹

Logic Gates

- In the earliest computers, switches were opened and closed by magnetic fields produced by energizing coils in *relays*. The switches in turn opened and closed the current paths.
- Later, vacuum tubes that open and close current paths electronically replaced relays.
- Today, transistors are used as electronic switches that open and close current paths.

Logic Gate Symbols and Behavior

- Logic gates have special symbols.
- And waveform behavior in time follows:

Gate Delay

- In actual physical gates, if one or more input changes causes the output to change, the output change does not occur instantaneously.
- The delay between an input change(s) and the resulting output change is the gate delay denoted by t_G:

Logic Diagrams and Expressions

_	4.1	_		ı
l rı	ith	10	h	
111	ıth	Ta	IJ	e

Tradit table				
XYZ	$F = X + \overline{Y} \times Z$			
000	0			
001	1			
010	0			
011	0			
100	1			
101	1			
110	1			
111	1			

Equation

$$F = X + \overline{Y} Z$$

Logic Diagram

- Boolean equations, truth tables and logic diagrams describe the same function!
- Truth tables are unique; expressions and logic diagrams are not. This gives flexibility in implementing functions.

AND/OR Two-level Implementation of SOP Expression

The two implementations for F are shown below – it is quite apparent which is simpler!

SOP and POS Observations

- The previous examples show that:
 - Canonical Forms (Sum-of-minterms, Product-of-Maxterms), or other standard forms (SOP, POS) differ in complexity
 - Boolean algebra can be used to manipulate equations into simpler forms.
 - Simpler equations lead to simpler two-level implementations

• Questions:

- How can we attain a "simplest" expression?
- Is there only one minimum cost circuit?
- The next part will deal with these issues.