VV285 RC Part V Differential Calculus First Derivative, Regulated Integral

Xingjian Zhang

Univerity of Michigan-Shanghai Jiao Tong University Joint Institute

June 20, 2020

Outline

- Big- and Small-"O" Notation
- Derivative of a Function
- Partial Derivative
- Jacobian
- * Second Derivative
- Product Rule
- Chain Rule
- Integral of Step Functions
- Mean Value Theorem

Something you need to pay attention to...

Think More and Be Interactive!

- ▶ Do think more about the question in "()". e.g. "(How to prove?)"
- ▶ You are welcome to ask questions in a adequate manner.
- Please open your camera so that I can receive more feedbacks from you. (Makes our life easier!)
- ► The class is designed to be interactive. However, if you really do not want to be asked at all, please type an "_" before your zoom name.

Big- and Small-"O" Notation

Landau Symbols:

Let $f: X \to V_1, g: X \to V_2$ and $x_0 \in X$. We say that

$$f(x) = o(g(x))$$
 as $x \to x_0$ \Leftrightarrow $\lim_{x \to x_0} \frac{\|f(x)\|_{V_1}}{\|g(x)\|_{V_2}} = 0$

and

$$f(x) = O(g(x))$$

has analogous definition as VV186.

Remark The meaning of f(x) = o(g(x)): f(x) is significantly less than g(x). The meaning of f(x) = O(g(x)): f(x) is not significantly greater than g(x).

Derivative of a Function

Let X,V be finite-dimensional vector spaces and $\Omega\subset X$ an open set. Then a map $f:\Omega\to V$ is called *differentiable at* $x\in\Omega$ if there exists a linear map $L_x\in\mathcal{L}(X,V)$ such that

$$f(x+h) = f(x) + L_x h + o(h) \qquad \text{as } h \to 0.$$
 (1)

In this case we call L_x the derivative of f at x and write

$$L_x = Df|_x = df|_x$$
.

We say that f is differentiable on Ω if it is differentiable for every $x \in \Omega$.

(How to prove derivative is well-defined? i.e. prove its uniqueness)

Exercise

Let f be a function and $f: X \to V$. Distinguish these maps by clarifying it maps from which vector space to which vector space. Are they linear?

- 1. *D*,
- 2. Df,
- 3. $Df|_x$
- 4. D^2
- 5. $D^2 f$,

What about $D^2f|_x$, $D^2f|_xy...$

Derivative of Linear Map

The derivative of a linear map L at some point is L itself. (Why?)

Example:

- 1. $Df|_z(h) = \overline{h}$, where $f(z) = \overline{z}$
- 2. $DA|_{x}(h) = Ah$
- 3. $D \operatorname{tr}|_A H = \operatorname{tr} H$
- 4. $DD|_f = Df$

Remark: For $A \in GL(n; \mathbb{C})$, you will prove (in Ex 5.1.(iii)) that

$$D \det_A H = \det A \operatorname{tr} (A^{-1} H)$$

(Recall that determinant is multi-linear, why it's derivative is not equal to itself?)

Exercise

Let A be a matrix.

Easy:

Calculate the derivative of $f(A) = A^3$.

Hard:

Prove the derivative of matrix inverse is: $D(\cdot)^{-1}|_A H = -A^{-1}HA^{-1}$.

(Hint: Start with $(A + H)^{-1} = (A(id + A^{-1}H))^{-1}$.)

The Derivative Is in the Form of Matrix

If exists,

$$Df|_{\times} \in \mathcal{L}(\mathbb{R}^n, \mathbb{R}^m) \cong \mathsf{Mat}(m \times n; \mathbb{R}).$$

How to obtain this matrix? Denote by e_j the jth standard basis vector in \mathbb{R}^n or \mathbb{R}^m . We consider the columns of $Df|_x$, which are given by $Df|_xe_j$, $j=1,\ldots,n$. Furthermore, the (i,j)th element of $Df|_x$ is given by $\langle e_i, Df|_xe_j \rangle$. (Recall *matrix elements* in *Exercise 2.2!*)

Partial Derivative

Let $\Omega \subset \mathbb{R}^n$ and $f: \Omega \to \mathbb{R}$ be differentiable on Ω . We then define the *partial derivative with respect to* x_i *at* $x \in \Omega$ by

$$\frac{\partial f}{\partial x_j}\Big|_{x} := \lim_{h \to 0} \frac{f(x + he_j) - f(x)}{h}$$

$$= \lim_{h \to 0} \frac{f(x_1, \dots, x_{j-1}, x_j + h, x_{j+1}, \dots, x_n) - f(x)}{h}$$

In this notation,

$$(Df|_{x})_{ij} = \frac{\partial f_{i}}{\partial x_{j}}$$

or rather

$$Df|_{x} = \left(\frac{\partial f}{\partial x_{1}} \cdots \frac{\partial f}{\partial x_{n}}\right) = \begin{pmatrix} \frac{\partial f_{1}}{\partial x_{1}} & \cdots & \frac{\partial f_{1}}{\partial x_{n}} \\ \vdots & & \vdots \\ \frac{\partial f_{m}}{\partial x_{1}} & \cdots & \frac{\partial f_{m}}{\partial x_{n}} \end{pmatrix} \Big|_{x}$$

Jacobian

Let $\Omega \subset \mathbb{R}^n$ and $f: \Omega \to \mathbb{R}^m$. Assume that all partial derivatives $\frac{\partial f_i}{\partial x_j}$ of f exist at $x \in \Omega$. The matrix

$$J_f(x) := \begin{pmatrix} \frac{\partial f_1}{\partial x_1} & \cdots & \frac{\partial f_1}{\partial x_n} \\ \vdots & & \vdots \\ \frac{\partial f_m}{\partial x_1} & \cdots & \frac{\partial f_m}{\partial x_n} \end{pmatrix} \bigg|_{x}$$

called the Jacobian of f.

If the derivative $Df|_x \in \mathcal{L}(\mathbb{R}^n, \mathbb{R}^m)$ exists, $J_f(x) \in \mathsf{Mat}(m \times n; \mathbb{R})$ is the representing matrix of $Df|_x$ w.r.t. the standard bases in \mathbb{R}^n and \mathbb{R}^m .

Remark: However, the existence of Jacobian $J_f(x)$ does not imply the differentiability of f at x.

Partial Derivatives and Continuity

- 1. All partial derivatives are bounded $\Rightarrow f$ is *continuous*;
- 2. All partial derivatives are continuous $\Rightarrow f$ is *continuously differentiable*.

Remark: Recall the difference between definition of continuous, differentiable, and continuously differentiable. A function can be differentiable while not continuously differentiable! There is a gap between these two results. We now have two simple ways to sufficiently deduce whether f is continuous or continuously differentiable at x. However, there is no simple way for us to conclude f is or not differentiable at x.

Example I

Let's look at this example, where partial derivatives are not all continuous and f is still differentiable. Define a function $f: \mathbb{R}^2 \to \mathbb{R}$

$$f(x,y) = \begin{cases} (x^2 + y^2) \sin\left(\frac{1}{\sqrt{x^2 + y^2}}\right), & \text{if } (x,y) \neq (0,0) \\ 0, & \text{if } (x,y) = (0,0) \end{cases}$$

$$\frac{\partial f}{\partial x} \bigg|_{(0,0)} = \lim_{h \to 0} \frac{f(h,0) - f(0,0)}{h} = 0$$

$$\frac{\partial f}{\partial x} \bigg|_{(x,y) \neq (0,0)} = 2x \sin\left(\frac{1}{\sqrt{x^2 + y^2}}\right) - \frac{x}{\sqrt{x^2 + y^2}} \cos\left(\frac{1}{\sqrt{x^2 + y^2}}\right)$$

$$\frac{\partial f}{\partial x} \text{ exists on } \mathbb{R}^2, \text{ but is not continuous on } (0,0).$$

Example II

We will verify whether f is differentiable on (0,0) or not with $Df|_{(0,0)} = (0,0)$. For $h = (h_1, h_2)^T$

$$\begin{split} f(h) &= f(0) + \left. Df \right|_{(0,0)} h + \left(h_1^2 + h_2^2 \right) \sin \left(\frac{1}{\sqrt{h_1^2 + h_2^2}} \right) \\ \lim_{h \to 0} \frac{\left| \left(h_1^2 + h_2^2 \right) \sin \left(\frac{1}{\sqrt{h_1^2 + h_2^2}} \right) \right|}{\|h\|} &= \lim_{h \to 0} \|h\| \cdot \left| \sin \left(\frac{1}{\sqrt{h_1^2 + h_2^2}} \right) \right| \end{split}$$

which implies that

$$(h_1^2 + h_2^2) \sin\left(\frac{1}{\sqrt{h_1^2 + h_2^2}}\right) = o(h)$$

Therefore, f is differentiable on (0,0).

* Second Derivative (for Potential Function)

Extension: The second derivative of a potential function is in the form of a matrix called *Hessian*. And

$$\operatorname{Hess} f(x) = D(\nabla f)|_{x} = \begin{pmatrix} \frac{\partial^{2} f}{\partial x_{1} \partial x_{1}} \Big|_{x} & \frac{\partial^{2} f}{\partial x_{2} \partial x_{1}} \Big|_{x} & \cdots & \frac{\partial^{2} f}{\partial x_{n} \partial x_{1}} \Big|_{x} \\ \vdots & \vdots & & \vdots \\ \frac{\partial^{2} f}{\partial x_{1} \partial x_{n}} \Big|_{x} & \frac{\partial^{2} f}{\partial x_{2} \partial x_{n}} \Big|_{x} & \cdots & \frac{\partial^{2} f}{\partial x_{n} \partial x_{n}} \Big|_{x} \end{pmatrix}$$

where $\nabla f(x) = (Df|_x)^T$. How does Hessian work? We see that if $\tilde{h} \in \mathbb{R}^n$ is some other vector, $D^2f|_xh$ acts on \tilde{h} via

$$(D^2 f|_x h) \tilde{h} = (\operatorname{\mathsf{Hess}} f(x) h)^T \tilde{h} = \langle \operatorname{\mathsf{Hess}} f(x) h \,,\, \tilde{h} \, \rangle \in \mathbb{R}.$$

Furthermore, by Schwarz's Theorem, if $f \in C^2(\Omega, V)$, $\text{Hess} f(x) = \text{Hess} f(x)^T$. i.e.

$$\frac{\partial^2 f}{\partial x_i \partial x_j} = \frac{\partial^2 f}{\partial x_j \partial x_i}.$$

Product Rule

Let U, X_1, X_2, V be finite-dimensional vector spaces and $\Omega \subset U$ an open set. Let $f: \Omega \to X_1$ and $g: \Omega \to X_2$ be differentiable maps and $\odot: X_1 \times X_2 \to V$ a generalized product. Then $f \odot g: \Omega \to V$ is also differentiable and

$$D(f \odot g) = (Df) \odot g + f \odot (Dg). \tag{2}$$

At $x \in \Omega$ the right-hand side is interpreted as a linear map $U \to V$

$$u \mapsto D(f \odot g)|_{x}u = (Df|_{x}u) \odot g(x) + f(x) \odot (Dg|_{x}u). \tag{3}$$

Question: What is the derivative of $k(t) = f(t) \times g(t)$?

Chain Rule

Let U,X,V be finite-dimensional vector spaces and $\Omega\subset U,\Sigma\subset X$ open sets. Let $g:\Omega\to \Sigma$ and $f:\Sigma\to V$ be differentiable maps. Then the composition $f\circ g:\Omega\to V$ is also differentiable and for all $x\in\Omega$

$$D(f \circ g)|_{x} = Df|_{g(x)} \circ Dg|_{x}, \tag{4}$$

where the right-hand side is a composition of linear maps.

The proof is basically identical to that of 186 Theorem 3.1.12, the chain rule for functions of one real variable.

Exericise

Calculate the derivative of $tr(AA^T)$ in two ways:

- 1. By definition;
- 2. By chain rule and product rule.

Integral of Step Functions I

Let $I \subset \mathbb{R}$ be an interval and $(V, \|\cdot\|_V)$ a normed vector space. We say that a map $f: I \to V$ is *bounded* if

$$||f||_{\infty} := \sup_{x \in I} ||f(x)||_{V} < \infty.$$
 (5)

The set of all bounded functions $f: I \to V$ is denoted $L^{\infty}(I, V)$.

A sequence of functions $(f_n), f_n : I \to V, I \subset \mathbb{R}$, converges uniformly to $f : I \to V$ in a normed vector space $(V, \|\cdot\|_V)$ if

$$||f_n-f||_{\infty}:=\sup_{x\in I}||f_n(x)-f(x)||_V\xrightarrow{x\to\infty}0.$$

A function is *regulated* if it is the uniform limit of a sequence of step functions. (What is the closure of the set of step functions in the uniform norm?)

Integral of Step Functions II

The standard estimate

$$\left| \int_{a}^{b} f(x) dx \right|_{V} \leq \int_{a}^{b} \|f(x)\|_{V} dx \leq |b-a| \cdot \sup_{x \in [a,b]} \|f(x)\|_{V}.$$

is useful in some proof. You can consider it as a generalization of triangular inequality.

What are we going to integrate? Vector-Valued functions. For now, however, we are integrating $f : [a, b] \to \mathbb{R}^n$ and

$$\int_{a}^{b} f(x)dx = \int_{a}^{b} \begin{pmatrix} f_{1}(x) \\ \vdots \\ f_{n}(x) \end{pmatrix} dx = \begin{pmatrix} \int_{a}^{b} f_{1}(x)dx \\ \vdots \\ \int_{a}^{b} f_{n}(x)dx \end{pmatrix}$$

Later, we will define the integral of general vector-valued function.

Mean Value Theorem I

Let X,V be finite-dimensional vector spaces, $\Omega\subset X$ open and $f\in C^1(\Omega,V)$. Let $x,y\in\Omega$ and assume that the line segment $x+ty,0\leq t\leq 1$, is wholly contained in Ω . Then

$$f(x+y) - f(x) = \int_0^1 Df|_{x+ty} y dt = \left(\int_0^1 Df|_{x+ty} dt\right) y.$$
 (6)

The integrals in (6) are integrals of elements of V (the integrand $Df|_{x+ty}y$) and $\mathcal{L}(X,V)$ (the integrand $Df|_{x+ty}$) (NOT trivial!). Here, the Mean Value Theorem can be understood as a generalization of the fundamental theorem of calculus. i.e.

$$f(x+y)-f(x)=\int_{x}^{x+y}f'(\xi)d\xi.$$

(How?)

Mean Value Theorem II

Mean Value Theorem is NOT trivial. See this example: $f:(x_1,x_2)\mapsto x_1^2+x_2^2$. We calculate f(x+y)-f(x) in three ways given by Mean Value Theorem.

Derivative Estimate

From the standard estimate and the Mean Value Theorem, we have

$$||f(x+y)-f(x)||_V \le ||y||_X \cdot \sup_{0 \le t \le 1} ||Df|_{x+ty}||,$$

where $\|Df|_{x+ty}\|$ denotes the operator norm of $Df|_{x+ty}\in\mathcal{L}(X,V)$.

Differentiating under an Integral

Let X,V be finite-dimensional vector spaces, $I=[a,b]\subset\mathbb{R}$ an interval and $\Omega\subset X$ an open set. Let $f:I\times\Omega\to V$ be a continuous function such that $Df(t,\cdot)$ exists and is continuous for every $t\in I$. Then

$$g(x) = \int_a^b f(t, x) dt$$

is differentiable in Ω and

$$Dg(x) = \int_a^b Df(t,\cdot)|_x dt$$

Recap of Euler Gamma Function I

An application of previous result is *Euler Gamma Function*. We look into

$$\Gamma(n) = \int_0^\infty x^{n-1} e^{-x} dx$$

which can be obtained by repeated integration by parts starting from the formula

$$\int_0^\infty e^{-x} dx = 1$$

when n=0. Now we are going to derive Euler's formula by repeated differentiation after introducing a parameter t. For t>0, let x=tu. Then dx=tdu and the above equation becomes

$$\int_0^\infty t e^{-tu} du = 1 \Leftrightarrow \int_0^\infty e^{-tu} du = rac{1}{t} \qquad (*)$$

Recap of Euler Gamma Function II

We need t > 0 in order that e^{-tx} is integrable over the region $x \ge 0$. Now, let's differentiate (*) iteratively, and substitute u with x:

$$\int_{0}^{\infty} -xe^{-tx} dx = -\frac{1}{t^{2}}$$

$$\int_{0}^{\infty} -x^{2}e^{-tx} dx = -\frac{2}{t^{3}}$$

$$\int_{0}^{\infty} x^{3}e^{-tx} dx = \frac{6}{t^{4}}$$

$$\int_{0}^{\infty} x^{4}e^{-tx} dx = \frac{24}{t^{5}}$$

$$\int_{0}^{\infty} x^{5}e^{-tx} dx = \frac{120}{t^{6}}$$

$$\int_{0}^{\infty} x^{n}e^{-tx} dx = \frac{n!}{t^{n+1}}$$

Recap of Euler Gamma Function III

Let t = 1, we find:

$$\Gamma(n) = \int_0^\infty x^{n-1} e^{-x} dx = (n-1)!$$

About Assignment 5

- (5.1) Derivative of Determinant
- (5.2) Application of Chain Rule
- (5.3) Second Derivative of a Potential Function (You can verify Schwarz's Theorem by this question).
- (5.4) Application of Product Rule
- (5.7) Dirichlet Integral (In VV286, we will learn brand-new techniques, *complex analysis*, to solve the same question!)
- (5.8) The Condition of Theorem 12.9.

Discussion

Have Fun And Learn Well!