Построение модели нейронной сети которая будет рекомендовать соотношение матрица-наполнитель

Нейро́нная сеть (также иску́сственная нейро́нная сеть, ИНС, или просто нейросе́ть) — математическая модель, а также её программное или аппаратное воплощение, построенная по принципу организации нервных сетей (биологических нейронных сетей) — сетей нервных клеток (нейронов) живого организма.

Импортируем необходимые библиотеки

```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import tensorflow as tf
from tensorflow.keras import layers
from sklearn.model_selection import train_test_split
from sklearn import metrics
import pickle

import warnings

warnings.filterwarnings("ignore")
print(tf.__version__)

2.19.0
```

Загружаем итоговый набор данных

```
df = pd.read excel("db itog bez norm.xlsx")
df.drop("Unnamed: 0", axis=1, inplace=True)
df.head()
   Соотношение матрица-наполнитель Плотность, кг/м3
                                                       модуль
упругости, ГПа
                           1.857143
                                               2030.0
738.736842
                           1.857143
                                               2030.0
738.736842
                           1.857143
                                               2030.0
738.736842
3
                           2.771331
                                               2030.0
753.000000
                           2.767918
                                               2000.0
748.000000
   Количество отвердителя, м.%
                                Поверхностная плотность, г/м2 \
0
                          50.00
                                                          210.0
1
                         49.90
                                                          210.0
2
                         129.00
                                                          210.0
```

```
3
                          111.86
                                                             210.0
4
                          111.86
                                                             210.0
   Модуль упругости при растяжении, ГПа
                                             Прочность при растяжении, МПа
/
0
                                      70.0
                                                                      3000.0
1
                                      70.0
                                                                      3000.0
2
                                      70.0
                                                                      3000.0
                                                                      3000.0
3
                                      70.0
4
                                      70.0
                                                                      3000.0
   Шаг нашивки
                 Плотность нашивки
                                      Угол нашивки, град 0
0
                               60.0
            4.0
                               70.0
                                                           1
1
            4.0
2
            5.0
                               47.0
                                                           1
3
            5.0
                               57.0
                                                           1
4
            5.0
                                                           1
                               60.0
   Угол нашивки, град 90
                            Содержание эпоксидных групп, г
0
                         0
                                                   52.250000
1
                         0
                                                   72.600000
2
                         0
                                                   46.750000
3
                         0
                                                   48.989286
4
                         0
                                                   48.989286
   Потребление смолы,
                        г/м2 без ЭГ
0
                         167.750000
1
                         147,400000
2
                         173.250000
3
                         171.010714
4
                         171.010714
```

Подготавливаем датафреймы для создания обучающей и тестовой выборки, а именно исключаем и выносим в отдельный датафрейм переменные в отношении которых необходимо подготовить прогнозирующую модель

Создание обучающей и тестирующей выборки для прогноза по переменной "Соотношение матрица-наполнитель". Разделение по принципу 70% данных относится к обучающей выборки и 30% относится к тестирующей выборки.

```
X_train_smn, X_test_smn, y_train_smn, y_test_smn =
train test split(df x smn, df y smn, test size=0.3, random state=1
# Проверяем, что разделение прошло успешно
X train smn.shape
(647, 12)
# Проверяем, что разделение прошло успешно
X train smn.head()
     Плотность, кг/м3 модуль упругости, ГПа Количество отвердителя,
M.% \
          1862.679792
                                   341.672132
529
75.068600
638
          1856.196526
                                   465.688532
119.594890
421
          2097.110886
                                   764,246548
103.418855
          1976.868448
                                   630.925295
682
136,600341
245
          2005,412966
                                   414.375364
131.173357
     Поверхностная плотность, г/м2 Модуль упругости при растяжении,
ГПа
529
                          9.046203
73.006935
638
                        141.948041
74.222008
421
                        711,229254
74.070615
682
                        590.865535
73.559943
                        485.516113
245
70.838307
     Прочность при растяжении, МПа Шаг нашивки Плотность нашивки \
529
                                       10.264664
                       1399.118555
                                                          73.738350
638
                       2257.615117
                                       10.594981
                                                          64.509447
421
                       2751.750346
                                        7.927846
                                                          37.327435
682
                       3033.723583
                                        3.980068
                                                          43.107490
                                                          31.674189
245
                       2482.710947
                                        9.059405
     Угол нашивки, град 0 Угол нашивки, град 90 \
529
                        0
                                                1
638
                        0
                                                1
                        1
                                                0
421
                                                1
682
                        0
```

```
245
                                      Потребление смолы, г/м2 без ЭГ
     Содержание эпоксидных групп, г
529
                           41.665671
                                                            118.853356
638
                           39.055114
                                                            144.781121
421
                           26.837728
                                                             90.462225
682
                           58.489555
                                                            175.215897
245
                           69.896408
                                                            213.471301
```

Создаем нормализационный слой. Это предварительной обработки, который нормализует непрерывные признаки . Этот слой будет сдвигать и масштабировать входные данные в распределение, центрированное вокруг 0 со стандартным отклонением 1.

```
normalizer = layers.Normalization(axis=-1)
normalizer.adapt(np.array(X_train_smn))
```

Строим Последовательную модель нейросети. Модель строится на основе класса Sequential из библиотеки tensorflow.keras.

Архитектура нейросети

```
model_smn.summary()

Model: "sequential"

Layer (type)
Param #

normalization (Normalization) | (None, 12)

25 |
```

```
dense (Dense)
                                  (None, 16)
208
dense 1 (Dense)
                                  (None, 8)
136 l
dense 2 (Dense)
                                  (None, 8)
72
 dense 3 (Dense)
                                  (None, 1)
Total params: 1,302 (5.09 KB)
Trainable params: 425 (1.66 KB)
Non-trainable params: 25 (104.00 B)
Optimizer params: 852 (3.33 KB)
# Обучим модель
model history = model smn.fit(X train smn, y train smn, epochs=100,
verbose=1, validation split=0.2)
Epoch 1/100
17/17 -
                        — 1s 15ms/step - loss: 9.6223 -
root mean squared error: 3.1016 - val loss: 8.4052 -
val root mean squared error: 2.8992
Epoch 2/100
                        - 0s 9ms/step - loss: 8.6482 -
17/17 -
root mean squared error: 2.9403 - val loss: 7.5477 -
val root mean squared error: 2.7473
Epoch 3/100
                  Os 6ms/step - loss: 7.5147 -
17/17 -
root mean squared error: 2.7412 - val loss: 6.7121 -
val root mean squared error: 2.5908
Epoch 4/100
17/17 -
                        — 0s 10ms/step - loss: 6.6751 -
root mean squared error: 2.5833 - val loss: 5.8069 -
val_root_mean squared error: 2.4097
Epoch 5/100
         0s 8ms/step - loss: 6.0624 -
17/17 -
root mean squared error: 2.4614 - val loss: 4.8033 -
val root mean squared error: 2.1917
```

```
Epoch 6/100
17/17 —
                 ----- 0s 6ms/step - loss: 5.2216 -
root mean squared error: 2.2808 - val loss: 3.7722 -
val root mean squared error: 1.9422
Epoch 7/100
                    --- 0s 8ms/step - loss: 3.7897 -
17/17 -
root mean squared error: 1.9461 - val loss: 2.8226 -
val root mean squared error: 1.6801
Epoch 8/100
              Os 8ms/step - loss: 2.8949 -
17/17 —
root mean squared error: 1.6992 - val loss: 2.0711 -
val root mean squared error: 1.4391
Epoch 9/100
                 ———— 0s 7ms/step - loss: 2.0722 -
17/17 —
root mean squared error: 1.4389 - val loss: 1.6016 -
val root mean squared error: 1.2655
Epoch 10/100
root mean squared error: 1.2932 - val loss: 1.3546 -
val root mean squared error: 1.1639
Epoch 11/100
                  ----- 0s 7ms/step - loss: 1.4157 -
17/17 —
root mean squared error: 1.1895 - val loss: 1.2556 -
val root mean squared error: 1.1205
Epoch 12/100
                 ----- 0s 5ms/step - loss: 1.3422 -
17/17 ———
root mean squared error: 1.1578 - val loss: 1.1940 -
val root mean squared error: 1.0927
Epoch 13/100
            Os 7ms/step - loss: 1.2278 -
17/17 —
root mean squared error: 1.1078 - val loss: 1.1527 -
val root mean squared error: 1.0737
Epoch 14/100
17/17 -
                 ----- Os 8ms/step - loss: 1.2874 -
root mean squared error: 1.1337 - val loss: 1.1204 -
val_root_mean_squared_error: 1.0585
Epoch 15/100

0s 5ms/step - loss: 1.2136 -
root mean squared error: 1.1010 - val loss: 1.0893 -
val root mean squared error: 1.0437
Epoch 16/100
                     --- 0s 8ms/step - loss: 1.0045 -
17/17 -
root_mean_squared_error: 1.0016 - val loss: 1.0672 -
val root mean squared error: 1.0331
root mean squared error: 1.0098 - val loss: 1.0386 -
val root mean squared error: 1.0191
Epoch 18/100
```

```
17/17 —
                 ----- Os 8ms/step - loss: 1.0500 -
root mean squared error: 1.0244 - val loss: 1.0099 -
val root mean squared error: 1.0049
Epoch 19/100
             Os 8ms/step - loss: 0.9587 -
17/17 —
root mean squared error: 0.9790 - val loss: 0.9891 -
val root mean squared error: 0.9945
Epoch 20/100
                  ----- 0s 9ms/step - loss: 1.0023 -
17/17 -
root mean squared error: 1.0002 - val loss: 0.9674 -
val root mean squared error: 0.9836
Epoch 21/100
17/17 ———
                 Os 9ms/step - loss: 1.0113 -
root mean squared error: 1.0049 - val loss: 0.9471 -
val root mean squared error: 0.9732
Epoch 22/100
            Os 6ms/step - loss: 0.8907 -
17/17 ---
root mean squared_error: 0.9436 - val_loss: 0.9334 -
val root mean squared error: 0.9661
Epoch 23/100
17/17 ———
                  ----- 0s 7ms/step - loss: 0.9014 -
root mean squared error: 0.9492 - val loss: 0.9216 -
val root mean squared error: 0.9600
Epoch 24/100 Os 5ms/step - loss: 0.9317 -
root mean squared error: 0.9647 - val loss: 0.9126 -
val root mean squared error: 0.9553
Epoch 25/100
17/17 —
                     --- 0s 5ms/step - loss: 0.9735 -
root mean squared error: 0.9838 - val loss: 0.8993 -
val root mean squared error: 0.9483
Epoch 26/100
            Os 5ms/step - loss: 0.8329 -
17/17 ———
root mean squared error: 0.9123 - val loss: 0.8898 -
val root mean squared error: 0.9433
Epoch 27/100
                  ------ 0s 4ms/step - loss: 0.8040 -
17/17 —
root mean squared error: 0.8963 - val loss: 0.8870 -
val root mean squared error: 0.9418
Os 4ms/step - loss: 0.8573 -
root mean squared error: 0.9245 - val loss: 0.8825 -
val_root_mean_squared_error: 0.9394
Epoch 29/100
                   ----- 0s 5ms/step - loss: 0.8434 -
17/17 —
root_mean_squared_error: 0.9169 - val_loss: 0.8775 -
val_root_mean squared error: 0.9368
Epoch 30/100
17/17 -
                   ——— 0s 4ms/step - loss: 0.7436 -
```

```
root mean squared error: 0.8613 - val_loss: 0.8694 -
val root mean squared error: 0.9324
Epoch 31/100
                  ----- 0s 5ms/step - loss: 0.7464 -
17/17 —
root mean squared error: 0.8638 - val loss: 0.8703 -
val root mean squared error: 0.9329
Epoch 32/100
                  ----- 0s 5ms/step - loss: 0.7625 -
17/17 —
root mean squared error: 0.8727 - val loss: 0.8639 -
val root mean squared error: 0.9295
Epoch 33/100
            Os 5ms/step - loss: 0.7377 -
17/17 —
root mean squared error: 0.8588 - val loss: 0.8704 -
val root mean squared error: 0.9330
Epoch 34/100
                       — 0s 8ms/step - loss: 0.7128 -
17/17 —
root mean squared error: 0.8441 - val loss: 0.8637 -
val root mean squared error: 0.9293
Epoch 35/100 Os 6ms/step - loss: 0.7760 -
root mean squared error: 0.8803 - val loss: 0.8650 -
val root mean squared error: 0.9301
Epoch 36/100
17/17 —
                      ── 0s 5ms/step - loss: 0.7004 -
root mean squared error: 0.8358 - val loss: 0.8661 -
val_root_mean squared error: 0.9306
Epoch 37/100
            Os 5ms/step - loss: 0.7225 -
17/17 ———
root mean squared error: 0.8500 - val loss: 0.8604 -
val root mean squared error: 0.9276
Epoch 38/100
                  _____ 0s 5ms/step - loss: 0.7000 -
17/17 <del>---</del>
root mean_squared_error: 0.8365 - val_loss: 0.8538 -
val root mean squared error: 0.9240
Epoch 39/100
17/17
                 ----- 0s 5ms/step - loss: 0.6887 -
root mean squared error: 0.8298 - val loss: 0.8591 -
val root mean squared error: 0.9269
Epoch 40/100
             Os 5ms/step - loss: 0.7338 -
17/17 —
root mean squared error: 0.8564 - val_loss: 0.8562 -
val root mean squared error: 0.9253
Epoch 41/100
root mean squared error: 0.8209 - val loss: 0.8557 -
val_root_mean_squared_error: 0.9250
Epoch 42/100 Os 5ms/step - loss: 0.6835 -
root mean squared error: 0.8266 - val loss: 0.8608 -
```

```
val root mean squared error: 0.9278
Epoch 43/100
17/17 ———
                 ----- 0s 5ms/step - loss: 0.7389 -
root mean squared error: 0.8586 - val loss: 0.8587 -
val root mean squared error: 0.9266
Epoch 44/100
           17/17 —
root mean squared error: 0.8254 - val loss: 0.8639 -
val root mean squared error: 0.9295
Epoch 45/100
                 ----- 0s 5ms/step - loss: 0.7053 -
17/17 —
root mean squared error: 0.8384 - val loss: 0.8694 -
val root mean squared error: 0.9324
Epoch 46/100 Os 5ms/step - loss: 0.6449 -
root mean squared error: 0.8029 - val loss: 0.8624 -
val root mean squared error: 0.9286
Epoch 47/100
                    --- 0s 5ms/step - loss: 0.6626 -
root mean squared error: 0.8134 - val loss: 0.8602 -
val root mean squared error: 0.9275
Epoch 48/100
root mean squared error: 0.8106 - val loss: 0.8599 -
val root mean squared error: 0.9273
root mean squared error: 0.8496 - val_loss: 0.8638 -
val root mean squared error: 0.9294
Epoch 50/100
17/17 ———— Os 4ms/step - loss: 0.6400 -
root mean squared error: 0.7996 - val loss: 0.8658 -
val root mean squared error: 0.9305
Epoch 51/100
           Os 4ms/step - loss: 0.6540 -
17/17 —
root mean squared error: 0.8086 - val loss: 0.8677 -
val root mean squared error: 0.9315
Epoch 52/100
                ----- 0s 4ms/step - loss: 0.6780 -
17/17 —
root mean squared error: 0.8232 - val loss: 0.8672 -
val_root_mean_squared error: 0.9313
Epoch 53/100 Os 5ms/step - loss: 0.6431 -
root mean squared error: 0.8017 - val loss: 0.8678 -
val root mean squared error: 0.9315
Epoch 54/100
                ----- 0s 5ms/step - loss: 0.6036 -
17/17 —
root mean squared error: 0.7761 - val loss: 0.8633 -
val root mean squared error: 0.9291
```

```
Epoch 55/100
            Os 5ms/step - loss: 0.6181 -
17/17 -
root mean squared error: 0.7859 - val loss: 0.8780 -
val root mean squared error: 0.9370
Epoch 56/100
                   --- 0s 4ms/step - loss: 0.6718 -
17/17 -
root mean squared error: 0.8194 - val loss: 0.8735 -
val root mean squared error: 0.9346
Epoch 57/100
           Os 4ms/step - loss: 0.6750 -
17/17 ---
root mean squared error: 0.8213 - val loss: 0.8710 -
val root mean squared error: 0.9333
Epoch 58/100
                ——— 0s 4ms/step - loss: 0.6887 -
17/17 —
root mean squared error: 0.8292 - val loss: 0.8731 -
val root mean squared error: 0.9344
Epoch 59/100
root mean squared error: 0.7984 - val loss: 0.8696 -
val root mean squared error: 0.9325
Epoch 60/100
                 ----- 0s 4ms/step - loss: 0.6216 -
17/17 —
root mean squared error: 0.7883 - val loss: 0.8870 -
val root mean squared error: 0.9418
Epoch 61/100
             17/17 -----
root mean squared error: 0.7929 - val loss: 0.8793 -
val root mean squared error: 0.9377
Epoch 62/100 Os 4ms/step - loss: 0.6100 -
root mean squared error: 0.7807 - val loss: 0.8767 -
val root mean squared error: 0.9363
Epoch 63/100
17/17 ---
                ----- 0s 4ms/step - loss: 0.6149 -
root mean squared error: 0.7840 - val loss: 0.8897 -
val_root_mean_squared_error: 0.9432
root mean squared error: 0.7811 - val loss: 0.8779 -
val root mean squared error: 0.9369
Epoch 65/100
                    --- 0s 4ms/step - loss: 0.6766 -
17/17 -
root_mean_squared_error: 0.8220 - val loss: 0.8882 -
val root mean squared error: 0.9424
root mean squared error: 0.8031 - val loss: 0.8890 -
val root mean squared error: 0.9429
Epoch 67/100
```

```
17/17 —
                 ----- 0s 4ms/step - loss: 0.5926 -
root mean squared error: 0.7692 - val loss: 0.8792 -
val root mean squared error: 0.9377
Epoch 68/100
             Os 5ms/step - loss: 0.6150 -
17/17 ----
root mean squared error: 0.7835 - val loss: 0.8751 -
val root mean squared error: 0.9355
Epoch 69/100
                  ----- 0s 5ms/step - loss: 0.6141 -
17/17 -
root mean squared error: 0.7833 - val loss: 0.8848 -
val root mean squared error: 0.9406
Epoch 70/100
17/17 ———
                ------ 0s 4ms/step - loss: 0.6014 -
root mean squared error: 0.7752 - val loss: 0.8916 -
val root mean squared error: 0.9443
Epoch 71/100
            Os 4ms/step - loss: 0.6131 -
17/17 ---
root mean squared_error: 0.7829 - val_loss: 0.8875 -
val root mean squared error: 0.9421
Epoch 72/100
                  ----- 0s 4ms/step - loss: 0.6243 -
17/17 ———
root mean squared error: 0.7899 - val loss: 0.8924 -
val root mean squared error: 0.9447
Epoch 73/100 Os 4ms/step - loss: 0.5664 -
root mean squared error: 0.7521 - val loss: 0.8866 -
val root mean squared error: 0.9416
Epoch 74/100
17/17 —
                   ----- 0s 4ms/step - loss: 0.6039 -
root mean squared error: 0.7767 - val loss: 0.8856 -
val root mean squared error: 0.9411
Epoch 75/100
            Os 4ms/step - loss: 0.6375 -
17/17 ———
root mean squared error: 0.7982 - val loss: 0.8991 -
val root mean squared error: 0.9482
Epoch 76/100
                 ----- 0s 4ms/step - loss: 0.5776 -
17/17 —
root mean squared error: 0.7597 - val loss: 0.8944 -
val_root_mean_squared_error: 0.9457
root mean squared error: 0.7726 - val loss: 0.8990 -
val_root_mean_squared_error: 0.9482
Epoch 78/100
                   ----- 0s 4ms/step - loss: 0.5550 -
17/17 —
root_mean_squared_error: 0.7448 - val_loss: 0.9030 -
val_root_mean squared error: 0.9503
Epoch 79/100
17/17 -
                   ——— 0s 4ms/step - loss: 0.5868 -
```

```
root mean squared error: 0.7658 - val loss: 0.8950 -
val root mean squared error: 0.9460
Epoch 80/100
                   ----- 0s 4ms/step - loss: 0.6097 -
17/17 —
root mean squared error: 0.7801 - val loss: 0.9046 -
val root mean squared error: 0.9511
Epoch 81/100
                   ----- 0s 4ms/step - loss: 0.5554 -
17/17 —
root mean squared error: 0.7449 - val loss: 0.9033 -
val root mean squared error: 0.9504
Epoch 82/100
                   Os 9ms/step - loss: 0.5888 -
17/17 —
root mean squared error: 0.7666 - val loss: 0.8968 -
val root mean squared error: 0.9470
Epoch 83/100
                       — 0s 5ms/step - loss: 0.6055 -
17/17 —
root mean squared error: 0.7779 - val loss: 0.9129 -
val root mean squared error: 0.9555
Epoch 84/100 Os 4ms/step - loss: 0.5671 -
root mean squared error: 0.7528 - val loss: 0.9040 -
val root mean squared error: 0.9508
Epoch 85/100
17/17 —
                      --- 0s 7ms/step - loss: 0.5571 -
root mean squared error: 0.7461 - val loss: 0.8937 -
val_root_mean squared error: 0.9454
Epoch 86/100
            Os 5ms/step - loss: 0.5729 -
17/17 ———
root mean squared error: 0.7568 - val loss: 0.9120 -
val root mean squared error: 0.9550
Epoch 87/100
                  ———— 0s 8ms/step - loss: 0.6042 -
17/17 <del>---</del>
root mean_squared_error: 0.7769 - val_loss: 0.9203 -
val root mean squared error: 0.9593
Epoch 88/100
17/17
                  ----- 0s 5ms/step - loss: 0.5571 -
root mean squared error: 0.7463 - val loss: 0.9120 -
val root mean squared error: 0.9550
Epoch 89/100
             Os 5ms/step - loss: 0.5692 -
17/17 —
root mean squared error: 0.7543 - val_loss: 0.9136 -
val root mean squared error: 0.9558
Epoch 90/100
17/17 ———— Os 6ms/step - loss: 0.5564 -
root mean squared error: 0.7458 - val loss: 0.9107 -
val_root_mean_squared_error: 0.9543
Epoch 91/100 Os 6ms/step - loss: 0.5458 -
root mean squared error: 0.7381 - val loss: 0.9088 -
```

```
val root mean squared error: 0.9533
Epoch 92/100
17/17 ———
                  ----- 0s 5ms/step - loss: 0.5445 -
root mean squared error: 0.7376 - val loss: 0.9251 -
val root mean squared error: 0.9618
Epoch 93/100
              Os 5ms/step - loss: 0.5727 -
17/17 —
root mean squared error: 0.7567 - val loss: 0.9135 -
val root mean squared error: 0.9558
Epoch 94/100
                  ---- 0s 6ms/step - loss: 0.5746 -
17/17 —
root mean squared error: 0.7576 - val loss: 0.9194 -
val root mean squared error: 0.9589
root mean squared error: 0.7099 - val loss: 0.9276 -
val root mean squared error: 0.9631
Epoch 96/100
                    --- 0s 8ms/step - loss: 0.5214 -
root mean squared error: 0.7213 - val loss: 0.9254 -
val root mean squared error: 0.9620
Epoch 97/100
root mean squared error: 0.7482 - val loss: 0.9140 -
val root mean squared error: 0.9560
Epoch 98/100
                 ——— 0s 8ms/step - loss: 0.5611 -
17/17 —
root mean squared error: 0.7482 - val_loss: 0.9263 -
val root mean squared error: 0.9625
Epoch 99/100
17/17 ———— Os 8ms/step - loss: 0.5845 -
root mean squared error: 0.7642 - val loss: 0.9183 -
val root mean squared error: 0.9583
Epoch 100/100 Os 5ms/step - loss: 0.5751 -
root mean squared error: 0.7574 - val loss: 0.9206 -
val root mean squared error: 0.9595
# Посмотрим на потери модели
model history.history
{'loss': [9.261905670166016,
 8.327838897705078,
 7.466700077056885.
 6.5802435874938965,
 5.62439489364624,
 4.583411693572998,
 3.5566720962524414,
 2.6491286754608154,
 1.9848363399505615,
```

```
1.6090381145477295,
1.4014173746109009,
1.309525489807129,
1.2357524633407593.
1.1786445379257202,
1.1326812505722046,
1.0866512060165405,
1.0482310056686401,
1.0095247030258179,
0.9753322005271912,
0.9480133056640625,
0.920687198638916,
0.8970826268196106,
0.8729844093322754,
0.8521742224693298,
0.8322960734367371,
0.8157261610031128,
0.8040559887886047,
0.7891897559165955,
0.7747093439102173,
0.7621809244155884,
0.7554405331611633,
0.7438270449638367,
0.7337678074836731,
0.7286124229431152,
0.7212194800376892,
0.7161349058151245,
0.7080916166305542,
0.7058077454566956,
0.7012231945991516,
0.6958186030387878,
0.6912018656730652,
0.6886048316955566,
0.6839228868484497,
0.6787930130958557,
0.6779356598854065,
0.6721822619438171,
0.6678324341773987,
0.6644562482833862,
0.6605589389801025,
0.6595175266265869,
0.6550401449203491,
0.6529672741889954,
0.6478049755096436,
0.6470639109611511,
0.6440303325653076,
0.6399769186973572,
0.6370531320571899,
0.6349833011627197,
```

```
0.6328302025794983,
0.6287987232208252,
0.6286587119102478,
0.6245461702346802.
0.6225168108940125,
0.6180999279022217,
0.6160736680030823,
0.6128274202346802,
0.6097449660301208,
0.6121860146522522,
0.607446551322937,
0.6051326394081116,
0.6027856469154358,
0.5995573997497559,
0.5964089632034302,
0.5990961790084839,
0.5961523056030273,
0.5931375622749329,
0.590187668800354,
0.587803304195404,
0.589832067489624,
0.5833613276481628,
0.5821890234947205,
0.5804935693740845,
0.5772608518600464,
0.5763463377952576,
0.5824345350265503,
0.5720189213752747,
0.5750992894172668,
0.571302056312561,
0.5653330683708191,
0.564086377620697,
0.5641186833381653,
0.5587901473045349,
0.557967483997345,
0.5568670034408569,
0.553088366985321,
0.5546130537986755,
0.5562941431999207,
0.5525319576263428,
0.5477803945541382,
0.5452204942703247],
'root_mean_squared_error': [3.043337821960449,
2.8857994079589844,
2.7325263023376465,
2.5651986598968506,
2.3715806007385254,
2.14089035987854,
1.8859140872955322,
```

```
1.6276143789291382,
1.4088422060012817,
1.2684786319732666,
1.1838147640228271.
1.1443450450897217,
1.1116440296173096,
1.0856540203094482,
1.0642750263214111,
1.0424256324768066,
1.0238314867019653,
1.0047510862350464,
0.9875890612602234,
0.9736597537994385,
0.9595244526863098,
0.9471444487571716,
0.9343363642692566,
0.9231328368186951,
0.9123026132583618,
0.9031755924224854,
0.8966916799545288,
0.8883635401725769,
0.880175769329071,
0.8730297088623047,
0.8691608309745789,
0.8624540567398071,
0.8566024899482727,
0.8535879850387573,
0.8492464423179626,
0.8462475538253784,
0.8414818048477173,
0.8401236534118652,
0.8373907208442688,
0.834157407283783,
0.8313854932785034,
0.8298221826553345,
0.8269963264465332,
0.8238889575004578,
0.823368489742279,
0.8198671936988831,
0.8172101378440857,
0.8151418566703796,
0.8127477765083313,
0.8121068477630615,
0.8093454837799072,
0.8080639243125916,
0.8048633337020874,
0.8044028282165527,
0.8025150299072266,
0.7999855875968933,
```

```
0.7981560826301575,
0.7968583703041077,
0.7955062389373779,
0.7929682731628418.
0.7928799986839294,
0.7902823090553284,
0.7889973521232605,
0.786193311214447,
0.7849035859107971,
0.7828329205513,
0.7808616757392883,
0.782423198223114,
0.7793885469436646,
0.7779027223587036,
0.7763926982879639,
0.7743109464645386,
0.7722752094268799,
0.7740130424499512,
0.7721089720726013,
0.7701542377471924,
0.7682367563247681,
0.7666833400726318,
0.7680052518844604,
0.763780951499939,
0.7630131244659424,
0.7619012594223022,
0.7597768306732178,
0.7591747641563416,
0.7631739974021912,
0.7563193440437317,
0.7583529949188232,
0.7558452486991882,
0.7518863677978516,
0.7510568499565125,
0.7510783672332764,
0.7475226521492004,
0.7469722032546997,
0.746235191822052,
0.7436991333961487,
0.7447234988212585,
0.7458512783050537,
0.7433249354362488,
0.7401219010353088,
0.7383904457092285]
'val_loss': [8.405193328857422,
7.54771614074707,
6.712080955505371,
5.806857585906982,
4.803343296051025,
```

```
3.772233486175537,
2.82258677482605,
2.0711276531219482,
1.6015647649765015,
1.3546206951141357,
1.255607008934021,
1.193969964981079,
1.1527286767959595,
1.1204265356063843,
1.0892513990402222,
1.067193627357483,
1.0386165380477905,
1.0099133253097534,
0.989105224609375,
0.9673846364021301,
0.947060227394104,
0.9333518743515015,
0.9215692281723022,
0.9125630259513855,
0.8993271589279175,
0.8898035883903503,
0.8869578838348389,
0.8824961185455322,
0.8775020241737366,
0.8693603873252869,
0.8702656030654907,
0.8638948202133179,
0.8704119324684143,
0.8636702299118042,
0.8650457859039307,
0.8660791516304016,
0.860426664352417,
0.853843092918396,
0.8590659499168396,
0.856156051158905,
0.8556830883026123,
0.860825777053833,
0.85867840051651,
0.8638899922370911,
0.8693864345550537,
0.8623682856559753,
0.8601869940757751,
0.8598901629447937,
0.8638142347335815,
0.8657808303833008,
0.8676807284355164,
0.8672389984130859,
0.8677518963813782,
0.8632642030715942,
```

```
0.8780477046966553,
0.8734531998634338,
0.8710103034973145,
0.8731124401092529.
0.8696308135986328,
0.8869826197624207,
0.8792617917060852,
0.8766781091690063,
0.8896731734275818,
0.8778603076934814,
0.8881784081459045,
0.8889865279197693,
0.8791942000389099,
0.8751035928726196,
0.8848183155059814,
0.8916499018669128,
0.8875445127487183,
0.8924211263656616,
0.8866345286369324,
0.8856092095375061,
0.8990939855575562,
0.8943877816200256,
0.898996889591217,
0.9030351042747498,
0.8949810862541199,
0.9046469926834106,
0.9032623767852783,
0.8968498110771179,
0.91294264793396,
0.9039939641952515,
0.8936936855316162,
0.9120066165924072,
0.920314610004425,
0.9119778871536255,
0.9135839343070984,
0.910736620426178,
0.9088135957717896,
0.9251121282577515,
0.9135187864303589,
0.9194415211677551,
0.9275515675544739,
0.9254248738288879,
0.9139906764030457,
0.9263414740562439,
0.9183180928230286,
0.9205638766288757],
'val root mean squared error': [2.8991711139678955,
2.7473106384277344,
2.590768337249756,
```

```
2.4097421169281006,
2.19165301322937,
1.9422239065170288,
1.6800556182861328,
1.4391412734985352,
1.2655293941497803,
1.163881778717041,
1.1205387115478516,
1.0926892757415771,
1.0736520290374756,
1.0585020780563354,
1.0436720848083496,
1.0330506563186646,
1.0191253423690796,
1.0049444437026978,
0.9945377111434937,
0.9835571050643921,
0.9731702208518982,
0.9661014080047607,
0.9599839448928833,
0.955281674861908,
0.9483286142349243,
0.9432939887046814,
0.9417844414710999,
0.9394126534461975,
0.9367507696151733,
0.9323949813842773,
0.9328802824020386,
0.9294594526290894,
0.932958722114563,
0.9293385744094849,
0.930078387260437,
0.9306337237358093,
0.927591860294342,
0.9240363240242004,
0.926858127117157,
0.9252870082855225,
0.9250314235687256,
0.9278069734573364,
0.9266490340232849,
0.9294568300247192,
0.9324089288711548,
0.9286378622055054,
0.927462637424469,
0.9273025989532471,
0.9294160604476929,
0.9304734468460083,
0.9314938187599182,
0.9312566518783569,
```

```
0.9315320253372192,
0.9291201233863831,
0.9370419979095459,
0.9345871806144714.
0.9332793354988098,
0.9344048500061035,
0.9325399994850159,
0.9417975544929504,
0.9376896023750305,
0.936310887336731,
0.9432249069213867,
0.9369419813156128,
0.942432165145874,
0.9428608417510986,
0.9376535415649414,
0.9354697465896606,
0.9406478404998779,
0.9442721605300903,
0.9420958161354065,
0.9446804523468018,
0.941612720489502,
0.9410681128501892,
0.9482056498527527,
0.9457207918167114,
0.9481544494628906,
0.9502816200256348,
0.9460343718528748,
0.9511293172836304,
0.9504011869430542,
0.9470215439796448,
0.9554803371429443,
0.9507859945297241,
0.9453537464141846,
0.9549903869628906,
0.9593303203582764,
0.9549753069877625,
0.955815851688385,
0.9543251991271973,
0.9533171653747559,
0.9618275165557861,
0.9557817578315735,
0.9588751196861267,
0.9630947709083557,
0.9619900584220886,
0.9560285806655884,
0.9624663591384888,
0.9582891464233398,
0.9594601988792419]}
```

```
#Мы оцениваем модель на тестовых данных с помощью evaluate(). Оценка
MSE
model smn.evaluate(X test smn, y test smn)
              _____ 0s 2ms/step - loss: 1.0468 -
root mean squared error: 1.0228
[1.0267751216888428, 1.0132991075515747]
# Осуществляем прогноз и выводим метрики
y pred model = model smn.predict(X test smn)
print("Значения метрик:")
print("Корень из среднеквадратичной ошибки:",
np.sqrt(metrics.mean squared error(y test smn, y pred model)))
print("MSE:", metrics.mean squared error(y test smn, y pred model))
print("MAE:", metrics.mean_absolute_error(y_test_smn, y_pred_model))
print("R2", metrics.r2 score(y test smn, y pred model))
print("MAPE:", metrics.mean absolute percentage error(y test smn,
y pred model))
9/9
                   ---- 0s 4ms/step
Значения метрик:
Корень из среднеквадратичной ошибки: 1.0132991274489693
MSE: 1.0267751216888428
MAE: 0.8330175876617432
R2 -0.1282951831817627
MAPE: 0.3753160536289215
```

Тестируем вручную прогнозную способность нейросети на первой строке датафрейма

```
j = np.array([[2030.0, 738.736842, 50.00, 210.0, 70.0, 3000.0, 4.0, 60.0, 1, 0, 52.250000, 167.750000]])
print(model_smn.predict(j))

1/1 ______ 0s 24ms/step
[[2.7351878]]
```

Правильное значение должно было быть: 1.857143

Визуализируем результаты работы нейросети

```
# Строим график потерь модели
plt.figure(figsize=(17, 5))
plt.plot(model_history.history["loss"], label="ошибка на обучающей
выборке")
plt.plot(model_history.history["val_loss"], label="ошибка на тестовой
выборке")
plt.title("График потерь модели")
```

```
plt.ylabel("Значение ошибки")
plt.xlabel("Эпохи")
plt.legend(["Ошибка на обучающей выборке", "Ошибка на тестовой
выборке"], loc="best")
plt.show()
```



```
# График расхождения тестовых и прогнозных значений plt.figure(figsize=(17, 5)) plt.title(f"Тестовые и прогнозные значения") plt.plot(y_test_smn.values, label="Tect") plt.plot(model_smn.predict(X_test_smn.values), label="Прогноз") plt.legend(loc="best") plt.ylabel('Соотношение матрица/наполнитель') plt.xlabel("Количество наблюдений") plt.show()

9/9 ———— Оs 2ms/step
```



```
test_predictions = model_smn.predict(X_test_smn).flatten()
a = plt.axes(aspect="equal")
plt.scatter(y_test_smn, test_predictions)
```


Сохраняем итоговую модель

```
with open('model_smn.pkl', 'wb') as file:
   pickle.dump(model_smn, file)
```

Вывод Метрики нейросети показали следующие результаты: Корень из среднеквадратичной ошибки: 1.0132991274489693 MSE: 1.0267751216888428 MAE: 0.8330175876617432 R2 -0.1282951831817627 MAPE: 0.3753160536289215

В целом прогнозная способность модели оказалась недостаточно точной. В целом МАЕ позволяет в какой-то мере понимать приблизительный результат соотношения матрицынаполнителя. Необходимо отметить, что изменения количество слоев нейронов и увеличение количества эпох обучения в целом не дало намного лучшего результата. Поэтому нужно рассматривать либо иные модели нейронных сетей для решения данной задачи либо обратить внимание на предоставленные данные (с целью уточнения важности

критериев, способов их сбора и возможно дополнительной их обработки, создания или вычленения новых признаков).