Canonicalizing Open Knowledge Bases using Embeddings and Side Information

Shikhar Vashishth, Prince Jain, Partha Talukdar Indian Institute of Science, India

Knowledge Graphs

- Knowledge in graph form
- Nodes represent entities
- Edges represent relationships
 b/w entities
- **Examples**: Freebase, Wikidata ...

^{*}Figure source: Mining Knowledge Graphs from Text, WSDM '18 tutorial

What are Open KGs?

- KGs with entities and relations not restricted to a defined set.
- Construction: Automatically extracting (noun-phrase, relation-phrase, noun-phrase) from unstructured text.
 - Obama was the President of US. → (Obama, was president of, US)
 - Examples: TextRunner, ReVerb, Ollie etc.

Use cases:

Extract knowledge from a new domains without supervision.

Challenges with Open KG

- Problem: May store redundant and ambiguous facts
 - (Barack Obama, was president of, US)
 - (Obama, born in, Honolulu)
- Querying for "Barack Obama" will not return all extracted facts.
- Solution: Need to Canonicalize Open KGs

Canonicalization

Noun Phrases

Barack Obama

Obama

George Bush

New York City

NYC

Relation phrases:

born_in

took_birth_in

is_employed_in

works_for

capital_of

Previous works

- **RESOLVER** system [Yates, 2009] uses string similarity based features to cluster phrases in **TextRunner**.
- [Galárraga, 2014] perform noun phrase canonicalization by clustering over manually-defined feature spaces which is followed by relation phrase canonicalization using AMIE [Galárraga, 2013]

Issues

- Surface form not sufficient for disambiguation
 - E.g. (US, America)
- Manual feature engineering is expensive and often sub-optimal
- **Sequentially canonicalizing** of noun and relation phrases can lead to error propagation

Contributions

- We propose CESI, a novel method for canonicalizing Open KBs using learned embeddings.
- CESI **jointly canonicalize** both noun phrase (NP) and relation phrase using relevant side information.
- We build a new data, ReVerb45K which has 20x more NPs than previous biggest dataset for the task.

CESI Overview

1. Side Information Acquisition:

Gathers various noun and relation phrase side Information

2. Embeddings Noun and relation phrases:

Learns specialized vector embeddings

3. Clustering Embeddings and Canonicalization:

- Clusters embeddings based on distance
- Assigns a representative to each noun and relation cluster

Side Information Acquisition

Involves identifying equivalence relations of form:

$$\circ$$
 $\mathbf{e_1} \equiv \mathbf{e_2}$ and $\mathbf{r_1} \equiv \mathbf{r_2}$

Entity Linking:

- Identify entity mention and link to KBs like Wikipedia
- US → United_States, America → United_States

Paraphrase database (PPDB):

- Large collection of paraphrases in English
- o management ≡ administration, head of ≡ chief of

Side Information Acquisition

- WordNet with Word-sense disambiguation:
 - Identify synsets of NPs
 - picture ≡ image, plant ≡ industry
- IDF Token Overlap:
 - NPs and relations sharing infrequent terms
 - Warren Buffett ≡ Mr. Buffett, Mr.Gates ≡ Bill Gates
- Used 9 types of side info, refer paper for more.
- Side information used as soft constraints

Embeddings Noun and Relation phrases

- Several KG embedding algorithms available, we use of HolE (Holographic Embeddings)
- HolE assigns a score η to each triple
 (v, r, v') in KB:

$$\eta = e_r^T (e_v \star e_{v'})$$

Learns embedding by optimizing:

$$c = a \star b$$

$$c_0 = a_0b_0 + a_1b_1 + a_2b_2$$

$$c_1 = a_0b_2 + a_1b_0 + a_2b_1$$

$$c_2 = a_0b_1 + a_1b_2 + a_2b_0$$

$$\sum_{i \in D_+} \sum_{j \in D_-} \max \left(0, \gamma + \sigma(\eta_j) - \sigma(\eta_i)
ight)$$

CESI Optimization Objective

$$\min_{\Theta} \left(\lambda_{str} \sum_{i \in D} \sum_{j \in D_{-}} \max(0, \gamma \ \sigma(\eta_{j}) - \sigma(\eta_{i})) \right)$$

HolE Objective

$$\sum_{\theta \in \mathscr{C}_{\mathsf{ent}}} \frac{\lambda_{\mathsf{ent},\theta}}{|\mathcal{Z}_{\mathsf{ent},\theta}|} \sum_{v,v' \in \mathcal{Z}_{\mathsf{ent},\theta}} \|e_v - e_{v'}\|^2$$

Noun phrase
Side Information

$$\sum_{\phi \in \mathscr{C}_{\mathsf{rel}}} \frac{\lambda_{\mathsf{rel},\phi}}{|\mathcal{Z}_{\mathsf{rel},\phi}|} \sum_{u,u' \in \mathcal{Z}_{\mathsf{rel},\phi}} \|r_u - r_{u'}\|^2$$

Relation phrase Side Information

$$\lambda_{\mathsf{reg}} \left(\sum_{v \in V} \|e_v\|^2 \sum_{r \in R} \|e_r\|^2 \right).$$

Regularization

Optimized using SGD

CESI Architecture

Experiments

Evaluation Metrics

Macro:

- Fraction of pure clusters
- \circ Precision = 2/3

Micro:

- Purity of clusters
- \circ Precision = 6/7

• Pairwise:

- Ratio of hits to all possible pairs
- Precision = 4/6

NP Canonicalization

Effect of Side Information

Side information improves performance

Relation Canonicalization

	Macro Precision	Micro Precision	Pairwise Precision	Induced Relation Clusters
		Base Data	set	
AMIE	42.8	63.6	43.0	7
CESI	88.0	93.1	88.1	210
	Am	biguous D	ataset	
AMIE	55.8	64.6	23.4	46
CESI	76.0	91.9	80.9	952
		ReVerb45	K	
AMIE	69.3	84.2	66.2	51
CESI	77.3	87.8	72.6	2116

CESI produces more and better relation canonicalized clusters

Qualitative Evaluation (t-sne)

Conclusion

- Canonicalization is necessary for Open KG
- Existing approaches are based on manually feature engineering which can be sub-optimal
- CESI, presents an embedding based joint noun and relation phrase canonicalization
 - Utilizes several types of side information
 - Obtains state-of-the-art results for the problem

Questions?

Contact email: shikhar@iisc.ac.in

Source code and data are available github.com/malllabiisc/cesi

References

- Vashishth, Shikhar, Prince Jain, and Partha Talukdar. "CESI: Canonicalizing Open Knowledge Bases using Embeddings and Side Information." *Proceedings of the 2018 World Wide Web Conference on World Wide Web*. International World Wide Web Conferences Steering Committee, 2018.
- 2. Galárraga, Luis, et al. "Canonicalizing open knowledge bases." *Proceedings of the 23rd acm international conference on conference on information and knowledge management.* ACM, 2014.
- 3. Galárraga, Luis Antonio, et al. "AMIE: association rule mining under incomplete evidence in ontological knowledge bases." *Proceedings of the 22nd international conference on World Wide Web*. ACM, 2013.