■ Theory (Short Definitions)

- Naïve Bayes Classifier: A probabilistic machine learning algorithm based on Bayes' Theorem with an assumption of independence between features. It is best suited for classification tasks.
- GaussianNB: A variant of Naïve Bayes that assumes continuous features follow a normal distribution.
- Label Encoding: Converts categorical labels into numeric form for model compatibility.
- Confusion Matrix: A performance evaluation tool showing TP, FP, FN, and TN values to assess classifier accuracy.
- Precision, Recall, Accuracy: Metrics used to evaluate the model's performance on the test data.

Algorithm Steps

- 1. Import Libraries: Load necessary libraries for data handling, model building, and evaluation.
- 2. Load Dataset: Read the Iris.csv file using pandas and check for null values and structure.
- 3. Preprocess Data: Separate features and target label. Apply LabelEncoder to convert species into numeric format.
- 4. Split Data: Use train_test_split to divide data into training and testing subsets.
- 5. Train Model: Initialize and train a GaussianNB model on the training data.
- 6. Predict Results: Predict species using the test data.
- 7. Evaluate Model: Use confusion matrix, classification report, and metrics like precision, recall, accuracy, etc., to analyze the performance.

Conclusion

The Naïve Bayes classifier was successfully implemented on the Iris dataset. The model achieved high accuracy due to the simple structure and well-separated classes in the dataset. Key metrics such as accuracy, precision, and recall indicate that the classifier performs well for multi-class classification tasks. The confusion matrix and visualization further helped in understanding model errors class-wise.