1: If you know a population's standard deviation is 4.5, how large of a sample size is needed for the margin of error to be 0.5 when making a 95% confidence interval?

2: The following ten numbers were drawn from a normal distribution:

6.61 7.78 7.73 7.5 7.5 8.42 7.73 8.19 7.54 7.08

Those ten numbers have a mean of 7.608 and a sample standard deviation of 0.512. Find a 90% confidence interval for the population mean.

BHCC Mat-181 Chapter 5 Review

3: With a significance level of 0.02, test whether these two samples came from populations with equal means.

Sample 1 0.086 0.103 0.101 0.13 0.121 0.108

BHCC Mat-181 Chapter 5 Review

4: Ten students' scores on two exams are shown below. Determine a 95% confidence interval of the mean difference.

student	01	02	03	04	05	06	07	08	09	10
exam 1	84.4	68	76.2	84.4	84.6	88.4	78.6	93.8	53.6	76.3
exam 2	87.1	71	84.3	95.9	91.9	96.5	88.8	91.4	65.3	79.7

BHCC Mat-181 Chapter 5 Review

5: Let *X* and *Y* represent two populations.

$$X \sim \mathcal{N}(45, 7)$$

$$Y \sim \mathcal{N}(50, 9)$$

Let *W* represent a sampling distribution when drawing 5 from each population and finding the difference of means.

$$W = \frac{Y + Y + Y + Y + Y}{5} - \frac{X + X + X + X + X}{5}$$

The central limit theorem tells us W is normally distributed. Determine the mean and standard deviation of W.