NANYANG TECHNOLOGICAL UNIVERSITY AI6123-TIME SERIES ANALYSIS

Assignment1 Individual NTAMBARA Etienne G2304253K February 29, 2024

NTAMBARA Etienne G2304253K¹²³ February 29, 2024

1. Intoduction

The wwwusage time series data consist of the number of users connected to the internet through a server. The data are collected at a time interval of one minute and there are 100 observations. I have conducted different fitted ARIMA models using R. The fitted models and diagnostic checking, AIC, BIC, and HQC results are presented in this report.

2. Results

2.1. Data Loading

The first step in order to work on our wwwusage dataset in to load data, this is the result of loaded data:

Figure 1. Loaded dataset.

WWW Usage Over Time 002 003 005 004 006 0080 100 Time (Minutes)

Figure 2. Original Plot of dataset.

2.2. Check Stationary or Nan-Stationary using Plot

To know that our time series is stationary we need to testify if its mean is constant over time and Covariance is not dependent on time lag and check if constant autocorrelation structure correlated with its past values should not change over time. Otherwise, our time series is non-stationary. Now let's analyse the below plot from the original dataset:

Above figure 2 shows that our time series is not stationary because between time 20-40 and 60-80 the variance is very high that's means the change in variance over time. Also, the mean is not constant because of upward trending.

2.3. ACF and PACF Plot for Original Dataset

To determine the order of AR and MA terms in ARIMA model, which is important for modeling and forecasting the time series data we need to plot ACF and PACF. plotted results shown below:

0.0 0.5 1.0

5

ACF of WWW Usage Data

PACF of WWW Usage Data

10

Lag

15

Figure 3. ACF and PACF Orginal data plot.

Our ACF from figure 3and PCF 3 has cut off at lag of 2.

3. Diffencing

Figure 4. Differencing Data.

The above figure 4 of differencing shows that our time series's data is now stationary.

3.1. ACF AND PACF after Differencing

Figure 5. ACF AND PACF after Differencing

3.2. ARIMA(1,1,1) Dignostic one time differencing

Figure 6. ARIMA(1,1,1) Dignostic

3.3. ARIMA(3,1,0) Dignostic one time differencing

Figure 7. ARIMA(3,1,0) Dignostic

3.4. ARIMA MODEL DIAGNOSTICS AIC two time differencing

ARIMA(5,2,5)

Figure 8. ARIMA(5,2,5)

3.5. ARIMA MODEL DIAGNOSTICS BIC/HQC two time differencing

Figure 9. ARIMA(2,2,0) Diagnostic

3.6. AIC,BIC and HQC Fitted Values and forecasted values analysis

Table 1. AIC, BIC, and HQC of the fitted models

Model	ARIMA	AIC	BIC	HQC
1	(3,1,0)	511.994	522.3745	513.1571
2	(1,1,1)	514.2995	522.0848	514.4082
3	(2,2,0)	511.4645	519.2194	511.5733
4	(5,2,5)	509.8191	538.2538	518.3627

.....GPT4 FOR EXPLANATION.....

3.7. Plot all above fitted models

table 1 show the results of all fitted models, now let visualise them on below plots.

Forecast with Best AIC Model: ARIMA(1,1,1)

Figure 10. Forecast fitted for ARIMA(1,1,1)

Forecast with Best AIC Model: ARIMA(5,2,5)

Figure 12. Forecast fitted for ARIMA(5,2,5)

Forecast with Best BIC/HQC Model: ARIMA(3,1,0)

Figure 11. Forecast fitted for ARIMA(3,1,0)

Forecast with Best BIC/HQC Model: ARIMA(2,2,0)

Figure 13. Forecast fitted for ARIMA(2,0,2)

3.8. Model Accuracy's Report

ME 0.3035616	RMSE 3.113754	MAE 2 405275	MPE	MAPE	MASE	ACF1	Theil's U
	3.113754	2 405275					
		2.100210	0.2805566	1.917463	0.5315228	-0.01715517	NA
2.5855588	11.351388	9.265086	-1.4666403	4.437330	2.0474185	0.64113200	1.477598
sment for	Model ARI			rpe dbl			
ME	RMSE	MAE	MPE	MAPE	MASE	ACF1	Theil's U
0.230588	3.044632	2.367157	0.2748377	1.890528	0.5230995	-0.003095065	NA
2.168862	12.071916	10.086919	-1.2910728	4.816833	2.2290289	0.659781410	1.616196
	ME 0.230588	ME RMSE 0.230588 3.044632	ME RMSE MAE 0.230588 3.044632 2.367157	ME RMSE MAE MPE 0.230588 3.044632 2.367157 0.2748377	A matrix: 2 × 8 of type dbl ME RNSE MAE MPE MAPE 2.30588 3.044632 2.367157 0.2748377 1.890528	ME RMSE MAE MPE MAPE MASE 2.230588 3.044632 2.367157 0.2748377 1.890528 0.5230995	A matrix: 2 × 8 of type dbl MAPE MAPE MASE ACF1 230588 3.044632 2.367157 0.2748377 1.890528 0.5230995 -0.003095065

Figure 14. Forecast fitted for ARIMA(1,1,1) and ARIMA(3,1,0)

		Model ARIN	M/E 2 E).					
ccuracy Ass	essmerre ron	Model AKI		: 2 × 8 of type	e dbl			
	ME	RMSE	MAE	MPE	MAPE	MASE	ACF1	Theil's U
Training set	0.1330769	2.714929	2.097323	0.2171532	1.640865	0.463471	0.05077024	NA
Test set	-8.3453303	12.521428	9.401544	-4.1107056	4.575738	2.077573	0.64418970	1.750413
iccuracy Ass	essment for	Model ARIM	IA(2,2,0):					
ccuracy Ass	essment for	Model ARIM		x: 2 × 8 of typ	e dbl			
iccuracy Ass	essment for ME	Model ARIM			e dbl MAPE	MASE	E ACF1	Theil's
Training set	ME		A matri MAE	MPE		MASE 0.5550897		Theil's N

Figure 15. Forecast fitted for ARIMA(5,2,5) and ARIMA(2,2,0)

3.9. Residual Results Analysis for each Model

Figure 16. Residual ARIMA(1,1,1)

Figure 16, The ARIMA(1,1,1) model's diagnostic plots demonstrate a strong match; residuals show up as white noise with no discernible patterns or systematic structure. The Ljung-Box test, which yields a high p-value of 0.4499,lags of 10, and $Q^* = 7.8338$, indicates that there is

no significant autocorrelation in the residuals, as suggested by the ACF plot. The model's assumptions are supported by the residual distribution, which closely approaches a normal distribution.

Figure 17. Residual ARIMA(3,1,0)

Figure 17,The residuals for an ARIMA(3,1,0) model are randomly distributed around zero, with no discernible trend or seasonality, according to the diagnostic plots. The autocorrelations are within the confidence bounds, as indicated by the ACF plot, indicating a well-fitting model. The Ljung-Box test findings validate the validity of the model by confirming that there is no substantial autocorrelation in the residuals, with a high p-value of 0.7218 and total lags of 10, $Q^* = 4.4913$.

Figure 18. Residual ARIMA(5,2,5)

The diagnostic figure 18 for the ARIMA(5,2,5) model display a histogram that approximates a normal distribution, randomly behaved residuals, and ACF values within confidence bounds indicating no autocorrelation. With a p-value of 0.1297, the Ljung-Box test shows that there is no discernible autocorrelation in the residuals. These diagnostics collectively imply that the ARIMA(5,2,5) model provides a sufficient fit to the data.

Figure 19. Residual ARIMA(2,2,0)

Figure 19 The ARIMA(2,2,0) model's residuals randomly oscillate around zero, demonstrating how well the model fits the data. Since all of the spikes in the ACF plot are contained within the confidence intervals, there is no discernible autocorrelation. The appropriateness of the model is confirmed by the Ljung-Box test, which yielded a p-value of 0.5717,Q* = 6.6784, indicating the absence of significant autocorrelation in the residuals.

Acknowledgement

Codes

References

¹Nanyang Technological University (NTU), Singapore ²School of Computer Science and Engineering (SCSE) ³Master of Science in Artificial Intelligence. Correspondence to: Ntambara Etienne <ntam0001@e.ntu.edu.sg>.