Topic 4: Orthogonal contrasts

ANOVA: H_0 : $\mu_1 = \mu_2 = ... = \mu_t$

H₁: The mean of at least one treatment group is different

To test this hypothesis, a basic ANOVA allocates the variation among treatment means (SST) equally across the (t-1) treatment degrees of freedom and asks, "Is this average portion of SST significant?"

$$F = \frac{s_{among}^{2}}{s_{within}^{2}} = \frac{ns_{\overline{Y}}^{2}}{s^{2}} = \frac{MST}{MSE} = \frac{\frac{SST}{df_{trt}}}{\frac{SSE}{df_{error}}}$$

But what if the variation among treatment means is *not* distributed equally? Isn't there a better way to "spend" our treatment degrees of freedom?

$$TSS = SST + SSE$$

An orthogonal partition of the total SS

$$SST_{df=t-1} = \sum_{i=1}^{t-1} SSContrast_{i(df=1)}$$

An orthogonal partition of the treatment SS

Comparisons to determine which specific treatment means are different can be carried out by **partitioning the treatment sum of squares (SST)**.

The orthogonal contrasts approach to mean separation is described as *planned*, *single degree of freedom F tests*.

In effect, an experiment can be partitioned into (t-1) separate, independent experiments, one for each contrast.

1

Definitions of contrast and orthogonality

A contrast (Q) is a linear combination of terms (a polynomial) whose coefficients sum to zero:

$$Q = \sum_{i=1}^{t} c_i \overline{Y}_i$$
, with the constraint that $\sum_{i=1}^{t} c_i = 0$

Example:
$$\mu_1 = \mu_2$$

The c_i's are usually integers, and each contrast has one degree of freedom.

Now consider a pair of two contrasts:

$$Q_1 = \sum_{i=1}^t c_i \overline{Y}_i$$
 and $Q_2 = \sum_{i=1}^t d_i \overline{Y}_i$

These two contrasts are said to be **orthogonal** to one another if the sum of the products of their corresponding coefficients is zero:

Orthogonal if
$$\sum_{i=1}^{t} c_i d_i = 0$$

A set of more than two contrasts is said to be orthogonal only if each and every pair within the set exhibits pairwise orthogonality, as defined above.

The combined SS of a set of (t-1) orthogonal contrasts will equal SST.

Example: Three treatments $(T_1, T_2, \text{ and } T_3 \text{ (control)})$, with means $\mu_1, \mu_2, \text{ and } \mu_3$.

With two treatment df, there are in principle two independent comparisons we can make.

We *could* test the two hypotheses that μ_1 and μ_2 are not significantly different from the control:

1.
$$H_0$$
: $\mu_1 = \mu_3 \rightarrow 1\mu_1 + 0\mu_2 - 1\mu_3 = 0$
 $c_1 = 1, c_2 = 0, c_3 = -1$

2.
$$H_0$$
: $\mu_2 = \mu_3 \rightarrow 0\mu_1 + 1\mu_2 - 1\mu_3 = 0$
 $d_1 = 0, d_2 = 1, d_3 = -1$

These linear combinations of means are **contrasts** because:

$$\sum_{i=1}^{t} c_i = 0 \ (1+0+(-1)=0) \quad \text{and} \quad \sum_{i=1}^{t} d_i = 0 \ (0+1+(-1)=0)$$

However, these contrasts are **not orthogonal** because:

$$\sum_{i=1}^{t} c_i d_i \neq 0 \ (c_1 d_1 + c_2 d_2 + c_3 d_3 = 1*0 + 0*1 + (-1)*(-1) = 1)$$

Not every set of hypotheses can be tested using this approach.

1. Is there a significant average treatment effect?

H₀:
$$\frac{\mu_1 + \mu_2}{2} = \mu_3$$
 \rightarrow $\mu_1 + \mu_2 - 2\mu_3 = 0$

2. Is there a difference between the two treatment effects?

$$H_0: \mu_1 = \mu_2 \rightarrow \mu_1 - \mu_2 = 0$$

$$c_1 = 1$$
, $c_2 = 1$, $c_3 = -2$ and $d_1 = 1$, $d_2 = -1$, $d_3 = 0$

$$c_1d_1 + c_2d_2 + c_3d_3 = 1 + (-1) + 0 = 0$$

Not all sets of orthogonal contrasts correspond to meaningful (or interesting) hypotheses.

Class comparisons

Example: Results of an experiment (CRD) to determine the effect of different acid seed treatments on the early growth of rice seedlings (mg dry weight).

Treatment		Replications							
Control	4.23	4.38	4.10	3.99	4.25	4.19			
HCl	3.85	3.78	3.91	3.94	3.86	3.87			
Propionic	3.75	3.65	3.82	3.69	3.73	3.73			
Butyric	3.66	3.67	3.62	3.54	3.71	3.64			

t = 4, r = 5, overall mean = 3.86

Results of the ANOVA

Source	df	SS	MS	F
Total	19	1.0113		_
Treatment	3	0.8738	0.2912	33.87
Error	16	0.1376	0.0086	

The planned questions:

- 1. Do acid treatments affect seedling growth?
- 2. Is the effect of organic acids different from that of inorganic acids?
- 3. Is there a difference in the effects of the two different organic acids?

Orthogonal coefficients for partitioning SST among three independent tests:

Comparisons	Control	HC1	Propionic	Butyric
Control vs. acid	3	-1	-1	-1
Inorganic vs. organic	0	2	-1	-1
Between organics	0	0	1	-1

Computation of Contrast SS

The SS for a single degree of freedom F test for linear combinations of *treatment means* is

$$SS(Q) = MS(Q) = \frac{(\sum c_i \overline{Y}_i)^2}{\sum (c_i^2 / r_i)}$$

This expression simplifies to $\frac{(\sum c_i \overline{Y}_i)^2}{(\sum c_i^2)/r}$ in balanced designs (all r's equal)

SS₁ (control vs. acid) =
$$[3(4.19) - 3.64 - 3.73 - 3.87]^2 / [(12)/5] = 0.74$$

SS₂ (inorg. vs. org.) = $[3.64 + 3.73 - 2(3.87)]^2 / [(6)/5] = 0.11$
SS₃ (between org.) = $[-3.64 + 3.73]^2 / [(2)/5] = 0.02$

You obtain the same results via a more intuitive sums of squares approach:

$$\mu_1 = 3.64$$
 $\mu = 3.685$ $\mu_2 = 3.73$

$$\mu_1 = 3.64 \qquad \mu = 3.685 \qquad \mu_2 = 3.73$$

$$SS_3 = r \sum_{i=1}^{2} (\overline{Y}_i - \overline{Y})^2 = 5 [(3.64 - 3.685)^2 + (3.73 - 3.685)^2] = 0.02$$

Orthogonal partitioning of SST via contrasts:

Source	df	SS	MS	F
Total	19	1.0113		
Treatment	3	0.8738	0.2912	33.87 ***
1. Control vs. acid	1	0.7415	0.7415	86.22 ***
2. Inorg. vs. Org.	1	0.1129	0.1129	13.13 **
3. Between Org.	1	0.0194	0.0194	2.26 NS
Error	16	0.1376	0.0086	

We conclude:

- 1. All three acids reduce seedling growth (F = 86.22, p < 0.0001)
- 2. Organic acids cause more reduction than the inorganic acid (F = 13.13, p = 0.0023)
- 3. There is no difference between the organic acids (F = 2.26, p = 0.1529)

With a set of (t-1) orthogonal contrasts:

- 1. Contrasts SS add up to the SST
- 2. The SS for one comparison contains no part of the SS of another comparison
- **3.** The conclusions are independent from each other

Construction of coefficients for class comparisons

- 1. When the two groups of means being compared each contain the same number of treatments, assign +1 to the members of one group and -1 to the members of the other.
- 2. When comparing groups containing different numbers of treatments, assign:

```
First group coefficients = number of treatments in the second group

Second group coefficients = number of treatments in the first group, with opposite sign
```

- 3. The coefficients for any comparison should be reduced to the smallest possible integers for each calculation. Thus +4, +4, -2, -2, -2 should be reduced to +2, +2, -1, -1, -1, -1.
- 4. The coefficients for an *interaction* comparison are determined by simply multiplying the corresponding coefficients of the two underlying main comparisons.

Example: A fertilizer experiment designed as a CRD with four treatments. The four treatments result from all possible combinations of two levels of both nitrogen ($N_0 = \text{no N}$, $N_1 = 100 \text{ kg N/ha}$) and phosphorus ($P_0 = \text{no P}$, $P_1 = 20 \text{ kg P/ha}$).

The questions intended by this treatment structure are:

- 1. Is there an effect of N on yield?
- **2.** Is there an effect of P on yield?
- **3.** Is there an interaction between N and P on yield?

Contrast coefficients for the three planned questions:

	N_0P_0	N_0P_1	N_1P_0	N_1P_1
Effect of N	1	1	-1	-1
Effect of P	1	-1	1	-1
Interaction (NxP)	1	-1	-1	1

If comparisons are orthogonal, the conclusion drawn for any one comparison is independent of (not influenced by) the others.

Trend comparisons

Experiments are often designed to characterize the effect of increasing levels of a factor on some response variable (i.e. the dose response relationship).

Such analyses are concerned with overall trends and **not** with pairwise comparisons.

Example: An experiment is conducted to determine the effect of a certain allele on the nitrogen content of seeds (in mg). The experiment involves a single factor (Allele A) at three levels:

- 1. Zero doses of allele A (homozygous BB individuals)
- 2. One dose of allele A (heterozygous AB individuals)
- 3. Two doses of allele A (homozygous AA individuals)

Nitrogen content (mg) of seeds of three different genotypes.

Genotype (BB) 0 doses, A allele	Genotype (AB) 1 dose, A allele	Genotype (AA) 2 doses, A allele
12.0	13.5	13.8
12.5	13.8	14.5
12.1	13.0	13.9
11.8	13.2	14.2
12.6	13.0	14.1
	12.8	
	12.9	
	13.4	
	12.7	
	13.6	

With three levels of dosage, the most complicated response the data can reveal is a quadratic relationship between dosage (D) and N content:

$$N = aD^2 + bD + c$$

R script:

The resultant ANOVA tables:

	Df	Sum Sq	Mean Sq	F value	Pr(>F)	
Dose	2	9.033	4.5165	38.603	4.777e-07	***
Residuals	17	1.989	0.1170			
	Df	Sum Sq	Mean Sq	F value	Pr(>F)	
Dose: Linear	1	9.025	9.025	77.137	1.00e-07	***
Dose: Quadratic	1	0.008	0.008	0.068	0.797	

MS Model = The *average* of the two effects.

Effect of gene dosage on N content

A similar dataset, but now the response variable is days to flowering (DTF).

Genotype (BB) 0 doses, A allele	Genotype (AB) 1 dose, A allele	Genotype (AA) 2 doses, A allele
58	71	73
51	75	68
57	69	70
59	72	71
60	68	67
	73	
	69	
	70	
	71	
	72	

The resultant ANOVA table:

	Dt	Sum Sq	Mean Sq	F value	Pr(>F)	
Dose	2	698.4	349.20	52.628	5.212e-08	***
Residuals	17	112.8	6.64			
	Df	Sum Sa	Mean Sq	F value	Pr(>F)	

Dose: Linear 1 409.6 409.6 61.73 4.66e-07 ***
Dose: Quadratic 1 288.8 288.8 43.52 4.53e-06 ***

Effect of gene dosage on days to flowering

Coefficients for trend comparisons

The c_i coefficients used for trend comparisons (linear, quadratic, cubic, quartic, etc.) among *equally spaced* treatments:

Number of Treatments	Response Component	c1 c2		c3	c4	c5	c6
2	Linear	-1	1				
2	Linear	-1	0	1			
3	Quadratic	1	-2	1			
	Linear	-3	-1	1	3		
4	Quadratic	1	-1	-1	1		
	Cubic	-1	3	-3	1		
	Linear	-2	-1	0	1	2	
5	Quadratic	2	-1	-2	-1	2	
5	Cubic	-1	2	0	-2	1	
	Quartic	1	-4	6	-4	1	
	Linear	-5	-3	-1	1	3	5
	Quadratic	5	-1	-4	-4	-1	5
6	Cubic	-5	7	4	-4	-7	5
	Quartic	1	-3	2	2	-3	1
	Quintic	-1	5	-10	10	-5	1

Example: Partitioning SST using orthogonal polynomials. Yield of Ottawa Mandarin soybeans grown in MN (bushels / acre). [adapted from ST&D 387]

Don	Row spacing (in inches)								
Rep.	18	24	30	36	42				
1	33.6	31.1	33	28.4	31.4				
2	37.1	34.5	29.5	29.9	28.3				
3	34.1	30.5	29.2	31.6	28.9				
4	34.6	32.7	30.7	32.3	28.6				
5	35.4	30.7	30.7	28.1	29.6				
6	36.1	30.3	27.9	26.9	33.4				
Means	31.15	31.63	30.17	29.53	30.03				

The contrast coefficients and the analysis, by hand:

		R	ow spaci	ng			<i>(</i>)		
	18	24	30	36	42	$\sum (c_i \overline{Y}_{i.})^2$	$\sum_{i} (c_i^2) / r$	SS	F
Means	35.15	31.63	30.17	29.53	30.03				
Linear	-2	-1	0	1	2	152.11	1.67	91.27	28.8***
Quadratic	2	-1	-2	-1	2	78.62	2.33	33.69	10.6**
Cubic	-1	2	0	-2	1	0.84	1.67	0.50	0.16 NS
Quartic	1	-4	6	-4	1	2.30	11.67	0.20	0.06 NS

Using R:

The results:

		Df	Sum Sq	Mean Sq	F value	Pr(>F)	
Spacing		4	125.66	31.42	9.900	6.08e-05	***
Spacing:	Linear	1	91.27	91.27	28.762	1.46e-05	***
Spacing:	Quadratic	1	33.69	33.69	10.618	0.00322	**
Spacing:	Cubic	1	0.50	0.50	0.159	0.69357	
Spacing:	Quartic	1	0.20	0.20	0.062	0.80519	
Residuals		25	79.33	3.17			

Unequally spaced treatments

An R script for a full regression analysis of the soybean yield data:

```
#Read in the dataset again
spacing_dat<-as.data.frame(spacing_dat)

#Assign Spacing as a numeric regression variable
spacing_dat$Spacing<-as.numeric(spacing_dat$Spacing)
str(spacing_dat, give.attr=F)

Spacing<-spacing_dat$Spacing
Spacing2<-Spacing^2
Spacing3<-Spacing^3
Spacing4<-Spacing^4
anova(lm(Yield ~ Spacing + Spacing2 + Spacing3 + Spacing4, spacing_dat))</pre>
```

The results:

```
    Df
    Sum
    Sq
    Mean
    Sq
    F
    value
    Pr(>F)

    Spacing
    1
    91.267
    91.267
    28.7623
    1.461e-05
    ***

    Spacing2
    1
    33.693
    33.693
    10.6183
    0.003218
    **

    Spacing3
    1
    0.504
    0.504
    0.1589
    0.693568

    Spacing4
    1
    0.197
    0.197
    0.0621
    0.805187

    Residuals
    25
    79.328
    3.173
```

Same results with both analyses. For unequally spaced treatment levels, regression analysis can be used but orthogonal contrasts with the given coefficients cannot.

Final comment about orthogonal contrasts:

Powerful as they are, contrasts are not always appropriate.

If you have to choose, meaningful hypotheses are more desirable than orthogonal ones!