Data Preprocessing, Feature Selection, and Model Optimization

Steps for Data Exploration, Feature Selection, and Model Optimization

Import Necessary Libraries

- Key Points:
 - pandas, numpy
 - seaborn, matplotlib
 - sklearn.metrics (accuracy_score)
 - optbinning (BinningProcess)

Data Exploration

- Key Points:
 - Check for duplicates and missing values
 - Identify and manage outliers
 - Example code for missing values, duplicates, and outliers visualization

The pictures demonstrate that their lot of nan value in each columns. The most interesting that there are outliers for Total Visit columns

Feature Selection Using Correlation and Information Value (IV)

- Key Points:
 - Pearson correlation to check multicollinearity
 - Heatmap visualization
 - Remove highly correlated features with low IV values

		Bin	Count	Count (%)	Non-event	Event
Lead Origin		0 [3 0]	2911	0.3938041	2020	
Lead Origin		1 [1]	3903	0.5280032	2484	
Lead Origin		2 [2 4]	578	0.0781926	39	
Lead Origin	Totals		7392	1	4543	
Lead Source		0 [18 9 19 17	1554	0.2102273	1176	
Lead Source		1 [1]	2049	0.2771916	1377	
Lead Source		2 [7]	913	0.1235119	569	
Lead Source		3 [3]	2295	0.3104708	1381	
Lead Source		4 [21 10 14 13	581	0.0785985	40	
Lead Source	Totals		7392	1	4543	
		unique_bin	▼ top_bin	▼ freq_l		
18 Tags	4.82413		5 [16 26 20 5 18	15 1]	2842	
19 Lead Quality	2.008334		5 [5 3]		4664	
22 Lead Profile	1.088576		4 [4]		3314	b
31 Total Time Spent on Website	1.065929		5 [1.50, 416.50)		2860	
8 What is your current occupat	1.007207		3 [3 4 0 2]		4694	kı
4 Last Activity	0.845716		4 [3135]		3054	to
28 Last Notable Activity	0.661166		4 [6918]		2931	
1 Lead Source	0.658413		5 [3]		2295	tł
0 Lead Origin	0.609527		3 [1]		3903	
9 What matters most to you in	0.572587		2 [0 1]		5249	
7 How did you hear about X Ec	0.478849		4 [610]		4122	
6 Specialization	0.384737		5 [14 15 17 6 1	11]	2486	
33 Asymmetrique Activity Score	0.383068		5 Missing		3355	
23 City	0.356867		5 [60]		2645	
34 Asymmetrique Profile Score	0.182607		5 Missing		3355	
2 Do Not Email	0.108354		2 [0]		6794	

I exported the dataframe to binning_table.csv and iv.csv to know which variables has the top IV and need to be input to the model

Event rate WoE

2849 0.3854167

2849 0.3854167

IV

0.932526 -3.0927735 0.55856897 0.05087976

0.60952684 0.05721954

0.65841257 0.06342542

2.06E-05

891 0.3060804 0.3518888 0.04641371 0.00577196

1419 0.3635665 0.0932982 0.00454416 0.00056781

378 0.2432432 0.6683604 0.08433482 0.01034992 672 0.3279649 0.2507846 0.01686061 0.00210207

914 0.3982571 -0.0538869 0.00090693 0.00011335

541 0.9311532 -3.0711594 0.5561453 0.05083947

344 0.3767798 0.0366192 0.00016492

After that, transfor the original input to dataframe, replaced it with WOE value. There are some conditions that need to filter for useful variables:

The correlation must be below 0.7, if it is greater than 0.7 -> eliminate the lower IV variable. Only choose the varibles which has the IV > 0.07

Model Performance Summary

Key Points:

• Baseline Logistic Regression:

Accuracy: 0.81

• AUC: 0.88

Optimized Logistic Regression:

• Accuracy: 0.789

• AUC: 0.940

Optimized XGBoost:

• Accuracy: 0.904

• AUC: 0.966

Threshold Optimization for XGBoost

Key Points:

- Adjust decision threshold to optimize accuracy
- Example code for finding the best threshold
- Best Threshold: 0.45
- Best Accuracy: 0.906

I choose the Xgboost for choosing the threshold because the performance of this model seems outstands the other 2 model (Baseline Logistic regression model and Optimzed Logistic regression model)