07 - Tuple/Set

Ex. No.: 7.1 Date: 18.05.24

Register No.: 231901040 Name: Ramanitharan S

Binary String

Coders here is a simple task for you, Given string str. Your task is to check whether it is a binary string or not by using python set.

Examples:

Input: str = "01010101010"

Output: Yes

Input: str = "REC101"

Output: No

For example:

Input	Result
01010101010	Yes
010101 10101	No

```
a = input()
try:
    c = int(a)
    print("Yes")
except:
    print("No")
```

Ex. No.: 7.2 Date: 18.05.24

Register No.: 231901040 Name: Ramanitharan S

DNA Sequence

The **DNA sequence** is composed of a series of nucleotides abbreviated as 'A', 'C', 'G', and 'T'.

For example, "ACGAATTCCG" is a **DNA sequence**.

When studying **DNA**, it is useful to identify repeated sequences within the DNA.

Given a string s that represents a **DNA sequence**, return all the 10-letter-long sequences (substrings) that occur more than once in a DNA molecule. You may return the answer in **any order**.

Example 1:

Input: s = "AAAAACCCCCAAAAACCCCCCAAAAAGGGTTT"

Output: ["AAAAACCCCC", "CCCCCAAAAA"]

Example 2:

Input: s = "AAAAAAAAAAA"

Output: ["AAAAAAAAA"]

For example:

Input	Result
AAAAACCCCCAAAAAACCCCCCAAAAAAGGGTTT	AAAAACCCCC
	CCCCCAAAAA

```
def findRepeatedSequences(s):
```

```
sequences = {}
result = []
```

```
for i in range(len(s) - 9):
    seq = s[i:i+10]
    sequences[seq] = sequences.get(seq, 0) + 1
    if sequences[seq] == 2:
        result.append(seq)
    return result
s1 = input()
for i in findRepeatedSequences(s1):
    print(i)
```

Ex. No.: 7.3 Date: 18.05.24

Register No.:231901040 Name: Ramanitharan S

American keyboard

Given an array of strings words, return the words that can be typed using letters of the alphabet on only one row of American keyboard like the image below.

In the American keyboard:

- the first row consists of the characters "qwertyuiop",
- the second row consists of the characters "asdfghjkl", and
- the third row consists of the characters "zxcvbnm".

•

- Example 1:
- Input: words = ["Hello","Alaska","Dad","Peace"]
- Output: ["Alaska","Dad"]
- Example 2:
- **Input:** words = ["omk"]
- Output: []
- Example 3:
- **Input:** words = ["adsdf", "sfd"]
- Output: ["adsdf", "sfd"]

•

• For example:

Inpu t	Result
4	Alaska
Hello	Dad
Alaska	
Dad	
Peace	

```
def findWords(words):
  row1 = set('qwertyuiop')
  row2 = set('asdfghjkl')
  row3 = set('zxcvbnm')
  result = []
  for word in words:
    w = set(word.lower())
    if w.issubset(row1) or w.issubset(row2) or w.issubset(row3):
       result.append(word)
  if len(result) == 0:
     print("No words")
  else:
     for i in result:
       print(i)
```

a = int(input())

arr = [input() for i in range(a)]

findWords(arr)

Ex. No.: 7.4 Date: 18.05.24

Register No.: 231901040 Name Ramanitharan S

Print repeated no

Given an array of integers nums containing n + 1 integers where each integer is in the range [1, n] inclusive. There is only **one repeated number** in nums, return this repeated number. Solve the problem using \underline{set} .

Example 1:

Input: nums = [1,3,4,2,2]

Output: 2

Example 2:

Input: nums = [3,1,3,4,2]

Output: 3

For example:

Input	Result
13442	4

Program:

n =input().split(" ")

```
n = list(n)
for i in range(len(n)):
  for j in range(i+1,len(n)):
    if n[i] == n[j]:
        print(n[i])
    exit(0)
```

Ex. No.: 7.5 Date: 18.05.24

Register No.:231901040 Name: Ramanitharan S

Check Pair

Given a tuple and a positive integer k, the task is to find the count of distinct pairs in the tuple whose sum is equal to K.

Examples:

Input: t = (5, 6, 5, 7, 7, 8), K = 13

Output: 2 Explanation:

Pairs with sum K(=13) are $\{(5, 8), (6, 7), (6, 7)\}.$

Therefore, distinct pairs with sum K(=13) are $\{(5, 8), (6, 7)\}$.

Therefore, the required output is 2.

For example:

Input	Result
1,2,1,2, 5 3	1
1,2	0

```
def count_distinct_pairs(t, K):
    distinct_pairs = set()
    for i in range(len(t)):
        for j in range(i + 1, len(t)):
        if t[i] + t[j] == K:
```

```
distinct_pairs.add((min(t[i], t[j]), max(t[i], t[j])))
  return len(distinct_pairs)

t_input = input()

t = tuple(map(int, t_input.split(',')))

K = int(input())

print(count_distinct_pairs(t, K))
```