Plasma Assisted Combustion Mechanism for Small Hydrocarbons

Andrey Starikovskiy Nickolay Aleksandrov

maintaining the data needed, and c including suggestions for reducing	lection of information is estimated to ompleting and reviewing the collect this burden, to Washington Headqu uld be aware that notwithstanding ar DMB control number.	ion of information. Send comments arters Services, Directorate for Infor	regarding this burden estimate mation Operations and Reports	or any other aspect of th , 1215 Jefferson Davis l	is collection of information, Highway, Suite 1204, Arlington		
1. REPORT DATE 2015		2. REPORT TYPE		3. DATES COVE 00-00-2015	red 5 to 00-00-2015		
4. TITLE AND SUBTITLE					5a. CONTRACT NUMBER		
Plasma Assisted Combustion Mechanism for Small Hydrocarbons					5b. GRANT NUMBER		
					5c. PROGRAM ELEMENT NUMBER		
6. AUTHOR(S)					5d. PROJECT NUMBER		
					5e. TASK NUMBER		
					5f. WORK UNIT NUMBER		
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) Princeton University, Princeton, NJ, 08544					8. PERFORMING ORGANIZATION REPORT NUMBER		
9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)					10. SPONSOR/MONITOR'S ACRONYM(S)		
					11. SPONSOR/MONITOR'S REPORT NUMBER(S)		
12. DISTRIBUTION/AVAILABILITY STATEMENT Approved for public release; distribution unlimited							
13. SUPPLEMENTARY NO AFOSR MURI 201	otes 5 Fifth Year Review	v Meeting					
14. ABSTRACT							
15. SUBJECT TERMS							
16. SECURITY CLASSIFIC	17. LIMITATION OF ABSTRACT	18. NUMBER OF PAGES	19a. NAME OF RESPONSIBLE PERSON				
a. REPORT unclassified	b. ABSTRACT unclassified	c. THIS PAGE unclassified	Same as Report (SAR)	45	RESPUNSIBLE PERSON		

Report Documentation Page

Form Approved OMB No. 0704-0188

Ignition, Combustion and Flame Control by Nonequilibrium Plasma

1814 - Brande. Flame/Field Interaction

W.T. Brande. Phil. Trans. Roy. Soc., 1814, 104, 51.

In 1860 Étienne Lenoir used an electric spark plug in his gas engine, the first internal combustion piston engine and is generally credited with the invention of the spark plug

Physics of Nonequilibrium Systems Laboratory

Propulsion Efficiency and Operating Regimes for Variety of Flight Systems

Physics of Nonequilibrium Systems Laboratory

Lean Ignition for Gas IC Engines

- Regular spark plugs $\lambda < 1.4$
- Regular spark plugs
 with thin (Iridium/Platinum)
 electrodes λ < 1.6
- RF, "plasma", etc. plugs $\lambda < 1.8$

GTE Lean Regimes

T = 700 - 1300 K

P = 20 - 30 atm

W = 10 - 1000 MW

Physics of Nonequilibrium Systems Laboratory

Decreasing of Ignition Delay Time - 1994

Kinetic Model: Previous Versions

D.V.Zatsepin, S.M.Starikovskaia, A.Yu.Starikovskii *Hydrogen oxidation in a stoichiometric hydrogen-air mixtures in the fast ionization wave*. Combust. Theory Modeling, 2001. V.5 pp.97-129.

N.A.Popov. Effect of a Pulsed High-Current Discharge on Hydrogen—Air Mixtures. Plasma Physics Reports, 2008, Vol. 34, No. 5, pp. 376–391.

I.N. Kosarev, N.L. Aleksandrov, S.V. Kindysheva, S.M. Starikovskaia, A.Yu. Starikovskii. Kinetics of ignition of saturated hydrocarbons by nonequilibrium plasma: C2H6- to C5H12-containing mixtures. Combustion and Flame 156 (2009) 221–233

A.Starikovskiy, N.Aleksandrov. *Plasma-assisted ignition and combustion.* Progress in Energy and Combustion Science 39 (2013) 61-110

Predictive Modeling:

Key to Applications

Major Pathways

Major Pathways

Major Pathways

$$HO_2(w) \rightarrow H + O_2$$
 $OH(w) + H_2 \rightarrow H_2O + H$

Cross-sections Available

Atmospheric	Saturated	Unsaturated	Oxygenated	Isomers
N2	CH4	C2H2	СО	iso-butane
O2	C2H6	C2H4	СНЗОН	iso-propane
CO2	С3Н8	С3Н6	С2Н5ОН	neo-pentane
H2O	C4H10		CH3OCH3 DME	
О3	C5H12			
Ar	H2			
N2O				

PAC Kinetic Mechanism N2(+)+O2=N2+O2(+)N2(c3pu) => N2(b3pg)N2(c3pu) => N2(b3pg) + hnN2(+)+O2=>N2+O2(+)N2(c3pu)+N=>N+N2(b3pg)N2(+)+O2=>O2(+)+N2N2(c3pu)+N=>N(2p)+N2H2(v)+N2=H2+N2N2(+)+O=N+NO(+)LT /-144.9 0.0/ N2(c3pu)+N2=>N2+N2O2(v) + H = O + OH(v)O(-)+N(+)=N+ON2(c3pu)+N2=>N2(a'1)+N2N2(+)+O=N2+O(+)N2(c3pu)+N2=N2+N2(a'1su)H2(v) + O = H + OH(v)H2(v)+O2=H2+O2O(-)+N(+) +O2=>NO+O2LT /-144.9 0.0/ CH4(v) + O = CH3 + OH(v)N2(c3pu)+N2=N2+N2(a1su)N2(+)+O3=>N2+O+O2(+)O(-)+N(+)+N2=>N2+NOC2H2(v) + O = C2H + OH(v)N2(+)+N2(a3su)=>N+N3(+)H2(v)+CO2=H2+CO2C2H4(v) + O = C2H3 + OH(v)N2(c3pu)+N2=N2+N2(b3pg)N2(+)+NO=N2+NO(+)O(-)+O(+)=>O+O(5p)LT /-144.9 0.0/ C2H6(v) + O = C2H5 + OH(v)O(-)+O(+)=>O(1d)+O(5s)C2H5OH(v) + O = H2C2O + OH(v)N2(+)+N2O=>N2+N2O(+)O(-)+O(+)=O+ON2(c3pu)+O2=>N2+2O(T)H2(v)+H2O=H2+H2OC3H8(v) + O = C3H7 + OH(v)N2(c3pu)+O2=>N2+2O(T)N2(+)+N=N(+)+N2LT /-144.9 0.0/ C4H10(v) + O = C4H9 + OH(v)N2(c3pu)+02=>N2(a3su)+02O(-)+O(+)+O2=>O2+O2N2(c3pu)+O2=>N2+O(T)+O(1d)N2(+)+H2=H2(+)+N2C5H12(v) + O = C5H11 + OH(v)O(-)+O(+)+N2=>N2+O2H2(v)+H2=H2+H2N2(c3pu)+02=>N2+02 LT /-144.9 0.0/ N2(+)+H2O=H2O(+)+N2O(-)+N2(+)=>N2+OH2+OH(V)=H+H2ON2(c3pu)+N0=>N2+N0 O(-)+N2(+)=>N+N+OH2(v)+OH=H2+OH CH4+OH(V)=CH3+H2ON2(+)+CO => CO(+)+N2O(-)+N2(+)+N2=>N2+N2OLT /-144.9 0.0/ C2H4+OH(V)=C2H3+H2ON2(+)+CO2=>CO2(+)+N2O(-)+N2(+)+O2=>N2O+O2C2H2+OH(V)=CH3+CON2(c3pu)+H2=>N2+2H(T)H2(v)+H=H2+HC2H6+OH(V)=C2H5+H2ON2(+)+N2+N2=N2+N4(+)O(-)+O2(+)=>O+O2LT /0.0 0.0/ N2(c3pu)+CH4=>N2+CH3+H(T)C3H8+OH(V)=NC3H7+H2OO(-)+O2(+)=>O+O+ON2(c3pu)+CH4=>N2+CH2+2H(T)N2(+)+N2+M=>N4(+)+MO(-)+O2(+)+O2=>O2+O3C4H10+OH(V)=PC4H9+H2OH2(v)+O=H2+ON2(c3pu)+CH4=>N2+CH2+H2 NC5H12+OH(V)=C5H11-1+H2OO(-)+O2(+)+N2=>N2+O3LT /0.0 0.0/ N2(c3pu)+CH4=>N2+CH+H(T)+H2N2(+)+N+N2=>N2+N3(+)O(-)+N3(+) =>N+N2+ON2(c3pu)+C2H2=>N2+C2H+H(T)N2(+)+H2=>HN2(+)+HN2(c3pu)+C2H2=>N2+CH+CH O(-)+N4(+) =>N2+N2+OH(T) + H2 = H + H2O(-)+O4(+)=>O+O2+O2CH4(v)+CH4=CH4+CH4N2(c3pu)+C2H4=>N2+C2H3+H(T)H(T) + M = H + MN2(+)+CH4=CH2(+)+N2+H2LT /-40.0 0.0/ N2(c3pu)+C2H4=>N2+C2H2+2H(T)N2(+)+CH4=CH3(+)+N2+HO(T) + H2 = O + H2O(-)+H2(+)=>H+OHN2(c3pu)+C2H4=>N2+CH2+CH2 N2(+)+CH4=>N2+CH3(+)+HO(T) + M = O + MO(-)+CH4(+)=>H2+CH3CH4(v)+M=CH4+MO(-)+C2H2(+)=>H2+C2HLT /-61.0 0.0/ N2(c3pu)+C2H6=>N2+C2H5+H(T)N2(+)+C2H5OH=>N2+H5C2O(+)+HO(-)+C2H5OH(+)=>H2+H5C2OO2 + H(T) = O + OH(v)N2(c3pu)+C2H6=>N2+C2H4+2H(T)N2(+)+C2H2=>N2+C2H(+)+HN2(c3pu)+C2H6=>N2+C2H4+H2 O(-)+C2H4(+)=>H2+C2H3C2H6(v)+M=C2H6+MH2 + O(T) = H + OH(v)N2(c3pu)+C2H6=>N2+CH3+CH3 O(-)+C2H6(+)=>H2+C2H5LT /0.0 0.0/ CH4 + O(T) = CH3 + OH(v)C2H(+)+e=C2+HO(-)+C3H8(+)=>H2+C3H7C2H2 + O(T) = C2H + OH(v)N2(c3pu)+C2H5OH=>N2+C2H4OH+H(T)C2H(+)+e=CH+CO(-)+C4H10(+)=>H2+C4H9C2H2(v)+M=C2H2+MC2H4 + O(T) = C2H3 + OH(v)N2(c3pu)+C2H5OH=>N2+C2H3OH+2H(T)C2H(+)+C2H2=C4H2(+)+HO(-)+C5H12(+)=>H2+C5H11LT /0.0 0.0/ C2H6 + O(T) = C2H5 + OH(v)N2(c3pu)+C2H5OH=>N2+C2H5+HO C4H2(+)+C2H2=C6H3(+)+HN2(c3pu)+C2H5OH=>N2+CH3+CH2OH C2H5OH + O(T) = H2C2O + OH(v)C4H2(+)+C2H2=C6H4(+)+PHOTONC2H4(v)+M=C2H4+MC3H8 + O(T) = C3H7 + OH(v)C4H2(+)+e=C4H+HN2(c3pu)+C3H8=>N2+C3H7+H(T)LT /0.0 0.0/ C4H10 + O(T) = C4H9 + OH(v)N2(c3pu)+C3H8=>N2+C3H6+2H(T)C6H3(+)+e=C6H+H2O(-)+NO(+) =>NO+OC5H12 + O(T) = C5H11 + OH(v)N2(c3pu)+C3H8=>N2+C3H6+H2 C6H3(+)+e=C6H2+HO(-)+NO(+) =>N+O+OC2H5OH(v)+M=C2H5OH+M N2(c3pu)+C3H8=>N2+CH3+C2H5 C6H4(+)+e=C6H+H2+HO(-)+NO(+)+O2=>NO2+O2LT /0.0 0.0/ C6H4(+)+e=C6H2+H2O(-)+NO(+)+N2=>N2+NO2N2(c3pu)+C4H10=>N2+C4H9+H(T)C3H8(v)+M=C3H8+MN2(c3pu)+C4H10=>N2+C4H8+2H(T)N2(+)+C2H4=>N2+C2H3(+)+HO(-)+NO2(+) =>NO2+ON2(c3pu)+C4H10=>N2+C4H8+H2 LT /0.0 0.0/ HO2(v) = O2 + HO(-)+NO2(+) =>NO+O+ON2(c3pu)+C4H10=>N2+CH3+C3H7 H2O2(v) = OH + OHN2(c3pu)+C4H10=>N2+C2H5+C2H5 C2H3(+)+e=C2H2+HO(-)+NO3(+) =>NO+O+O2C4H10(v)+M=C4H10+MO(-)+N2O(+) =>N+NO+OLT /0.0 0.0/ N2(c3pu)+C5H12=>N2+C5H11+H(T)N2(+)+C2H6=>N2+C2H5(+)+H!H2O2+O = OH+HO2O(-)+N2O(+) =>N2O+ON2(c3pu)+C5H12=>N2+C5H10+2H(T)N2(+)+C3H8=>N2+C3H7(+)+HO(-)+N3O(+) =>N2+NO+O!H2O2+OH = H2O+HO2C5H12(v)+M=C5H12+MN2(c3pu)+C5H12=>N2+C5H10+H2 N2(+)+C4H10=>N2+C4H9(+)+HO(-)+N2O2(+)=>NO+NO+ON2(c3pu)+C5H12=>N2+CH3+C4H9 LT /0.0 0.0/ !HO2+0 OH+O2 N2(+)+C5H12=>N2+C5H11(+)+HO(-)+N2O2(+)=>N2+O+O2N2(c3pu)+C5H12=>N2+C2H5+C3H7 N2 + CO2(v) = CO2 + N2(v)!HO2+OH = H2O+O2

PAC Pathways: C₂H₄-air

PAC Pathways: C₂H₄-air

PAC Pathways: C₂H₄-air

Pathway analysis in ignition process at the time of T=1360K for $\emptyset=1$, Ar=92%, P=2.1atm and initial T=1350K. Konnov, 2014

Where PAC Experimental Data is Available

Avalanche to Streamer Transition in Uniform Electric Field (air, 1 bar, 300 K, 1 cm, various E/n)

Mechanism Validation

T = 300 K T = 300 - 800 K T = 800 - 1700 K

Slow Oxidation of H₂, C1-C10 P = 1-10 Torr

Fast Gas Heating Mechanism. N_2 - O_2 mixtures P = 0.2 - 1 atm

Oxidation Chains Development in Lean H₂, CO, C1-C4 - Air Mixtures. P = 1 atm Ignition Delay Time Reduction. H_2 , C1-C5, C_2H_2 , $C_2H_5OH - O_2$ -Ar Mixtures. P = 0.3-0.5 atm

Sensitivity Analysis for Discharge and Combustion Stages

SDBD Discharge and Fast Heating

Gate = 0.5 ns

Time shift between frames is 1 ns

The movie duration is 41 ns

Impulse Parameters

V = 14 kV

 $t_{1/2} = 20 \text{ ns}$

Frequency = 1 kHz

Velocity = 0.4 mm/ns

Physics of Nonequilibrium Systems Laboratory

Potential Energy Curves of Molecular Hydrogen

$$H_2(b^3\Sigma_u)$$
, 8.9 eV
 $\sigma_{max} = 0.33 A^2 (17 eV)$

$$H_2(a^3\Sigma_g)$$
, 11.8 eV $\sigma_{max} = 0.12 A^2 (15 eV)$

$$H_2(B^1\Sigma_u)$$
, 11.3 eV
 $\sigma_{max} = 0.48 A^2 (40 eV)$

$$H_2(C^1\Pi_u)$$
, 12.4 eV
 $\sigma_{max} = 0.40 A^2 (40 eV)$

Potential Energy Curves of Molecular Oxygen

Potential Energy Curves of Molecular Nitrogen

$$N_2(A^3\Sigma_u^+)$$
, 6.2 eV $\sigma_{max} = 0.08 A^2 (10 eV)$

$$N_2(B^3\Pi_g)$$
, 7.35 eV
 $\sigma_{max} = 0.20 A^2 (12 eV)$

$$N_2(C^3\Pi_u)$$
, 11.03 eV $\sigma_{max} = 0.98 A^2 (14 eV)$

Major Channels of Hot Atoms Production

$$N_2 + e = N_2(C^3\Pi_{II}) + e;$$
 $k = f(E/n)$

$$N_2(C^3\Pi_{11}) + H_2 = N_2 + 2H(^1S) + 6.55 \text{ eV}; \quad k = 3.2 \times 10^{-10} \text{ cm}^3/\text{s}$$

$$N_2(C^3\Pi_{II}) + O_2 = N_2 + 2O(^3P_1^1D) + 3.9 \text{ eV}; k = 2.7x10^{-10} \text{ cm}^3/\text{s}$$

$$O_2 + e = e + 2O(^3P,^1D) + 1.3 eV;$$
 $k = f(E/n)$

$$H_2 + e = e + 2H(^1S) + 4.4 eV;$$
 $k = f(E/n)$

Chain Initiation/Branching Reactions

```
H + O_2 = O + OH
                                                          k = 1.6x10^{-10} x exp(-7470/T) cm^3/s
                                                          k(300) = 2.5 \times 10^{-21} \text{ cm}^3/\text{s}
                                                          k(hot) = 1.6x10^{-10} cm^3/s
                                                          k(300, 1 \text{ atm}) = 1.6 \times 10^{-12} \text{ cm}^3/\text{s} T_{crit} \sim T_{autoignition}
H + O_2 + M = HO_2 + M
O + H_2 = H + OH
                                                          k = 8.5 \times 10^{-20} \times T^{2.67} \times exp(-3160/T) cm^3/s
                                                          k(300) = 9.3x10^{-18} \text{ cm}^3/\text{s}
                                                          k(hot) = 1.5x10^{-10} cm^3/s
                                                          k(^{1}D) = 1.1x10^{-10} \text{ cm}^{3}/\text{s}
O + O_2 + M = O_2 + M
                                                          k(300, 1 atm) = 2.2x10^{-14} cm^3/s
                                                                                                                          T<sub>crit</sub> ~ 650K
                                                          k \sim 2m/M k_{gk} \sim 1.6x10^{-10} cm^3/s
H(hot) + (N_2, H_2) = H + (N_2, H_2)
                                                          k \sim 2m/M k_{gk} \sim 1.3 \times 10^{-10} \text{ cm}^3/\text{s}
O(hot) + (N_2, O_2) = O + (N_2, O_2)
H(hot) + O_2 = H + O + O
H(hot) + H_2 = H + H + H
O(^{1}D) + (M) = O + (M)
                                                          k = 2.6 \times 10^{-11} \text{ cm}^3/\text{s} \text{ (M = O_2)}
                                                          k = 1.3x10^{-11} \text{ cm}^3/\text{s} \text{ (M = N<sub>2</sub>)}
                                                          k = 5.2 \times 10^{-11} \text{ cm}^3/\text{s} \text{ (M = H<sub>2</sub>)}
```

Radicals Production Increase in Cold H₂-Air Mixture Due to Hot Atoms Formation

Mechanism of Fast Heating in Discharge Plasmas (high E/N)

 $e + O_2^+ \rightarrow O + O^* + \Delta E$ $O_2^- + O_2^+ + M \rightarrow 2O_2 + M + \Delta E$ $e + O_4^+ \rightarrow O_2 + O_2 + \Delta E$

High (> 200 Td) E/N:

electron-ion and ion-ion recombination kinetics

Fractional Electron Power Transferred Into Heat in N₂:O₂ Mixtures

$$E/N = 10^3 \text{ Td}$$

Oxygen is required for efficient fast heating!

$$AB^+ + O_2^- (+ M) \rightarrow products + \Delta E$$

$$N_2(A,B,C,a) + O_2 \rightarrow e + 2O + \Delta E$$

Experimental Setup

Hexane Oxidation by Pulsed Nanosecond

Hydrocarbon Oxidation Efficiency for C_1 - C_6 / O_2 / Air Mixtures

Physics of Nonequilibrium Systems Laboratory

Calculated and Measured Times of Oxidation

Chemical Reactions with Excited Reagents

AB(v)+C = A + BC(w)Rate constant from modified α -model (Starikovskii, Lashin 1996)

$$H_2(v=1) + O = OH(w=1) + H$$
 (R1)
 $H_2(v=0) + O = OH(w=0) + H$ (R2)

 $(k_{R1}/k_{R2})_{exp} = 2600 (O'Neal, Benson 1973); (k_{R1}/k_{R2})_{theor} = 2750$

Kinetics. Influence of Vibrations

Influence of Vibrational Excitation on Low-Temperature Kinetics

CH4-air

C4H10-air

Experiments: L Wu, J Lane, N P Cernansky, D L Miller, A A Fridman, A Yu Starikovskiy, *Proc. of Comb. Inst.*, 2010

Modelling: D Levko, A I Schedrin, V V Naumov, S Starikovskaia, 2010

Influence of Vibrational Excitation on Low-Temperature Kinetics: H₂O₂ Decomposition

Measured and calculated OH decay time. P = 1 atm. a) $3\%H_2 + air$; b) $0.3\%C_4H_{10} + air$.

Discharge Dynamics

Active Particle Production – Discharge Phase

 $U_s = 943.6 \text{ m/s}$; $P_0 = 17 \text{ Torr}$; $P_5 = 1.04 \text{ atm}$; $T_5 = 1525 \text{ K}$

Plasma Ignition Sensitivity

Major Pathways

Princeton Plasma Combustion Kinetics

Major Pathways

Princeton Plasma Combustion Kinetics

Major Pathways

Princeton Plasma Combustion Kinetics

Mechanism Validation

Other Major Results

3 NEW MECHANISMS:

- Radicals Production Increase Due to Translationally Hot Atoms Formation
- Mechanism of Fast Heating in Plasmas at high E/n
- Vibrational Decomposition of Peroxides (HO2, H2O2, etc)

EXPERIMENTAL DATABASE:

 Plasma Ignition Delay Time database for H2, C1-C5, acetylene, ethylene, ethanol

The work was supported by

AFOSR Technical Monitor Dr Chiping Li

