STM32在马达 控制中的应用

北京,南京,上海,深圳,杭州,天津,武汉,西安,成都,哈尔滨

大中华区 MCU技术支持中心

STM32 在马达控制中的应用

- **一** 可用于无刷马达控制的单片机
- 32位MCU: 基于ARM Cortex-M3内核及拥有丰富且强 劲的外围,可支持FOC控制(矢量控制)
- ☎ 面向高端应用
- ❷ 针对无刷马达控制的方案 带传感器/无传感器
 - ☞ 交流感应马达
 - BLDC
 - PMSM马达
- ☎ 无传感器方案的实现
- **梦** Starter Kit 可在数周内实现演示和开发用户的项目

高级定时器TIM1 (1/12)

结构图

高级定时器TIM1 (2/12)

- **一时钟**
 - 毋 最大可达72MHz: 精度可达13.8ns
- ❷ 边沿或中心对称模式
- 更新倍频模式(见下页)
 - ☑ 可保证在中心对称模式下无精度损失
 - ☎ 由每个PWM周期的中断或DMA实现

高级定时器TIM1 (3/12)

☎ 在PWM计数器上溢时产生更新事件可提高占空比精度

高级定时器TIM1 (4/12)

☎ 重复计数器

高级定时器TIM1 (5/12)

- 一 中断
 - 型 U中断(Update) --- 用于同步更新所有下列预装载寄存器:
 - ☎ 比较寄存器
 - ☎ 自动重载寄存器
 - **☞** PWM时钟预分频器
 - ☞ 输出比较或输入捕捉中断
 - **一**触发器中断
 - ☞ 紧急故障中断
- **DMA**
 - TIM1_CH1, TIM1_CH2, TIM1_CH3, TIM1_CH4
 - TIM1_UPDATE
 - TIM1_COM
 - TIM1_TRIG

高级定时器TIM1 (6/12)

■ DMA burst 传输

一次DMA事件允许更新多个寄存器的值,有效的利用了DMA

高级定时器TIM1 (7/12)

☞ PWM输出管理

查 硬件死区发生器: 8位寄存器,精度最大可达13.8ns(时钟为72MHZ),0~14us可编程(非线性)

- ☞ 每个通道极性可选
- ☞ 紧急故障输入
 - 查 关闭6个PWM输出并产生中断
 - # 异步动作

高级定时器TIM1 (8/12)

☞ 灵活的PWM端口设置

控制位					输出状态					
MOE	OSSI	OSSR	CCxE	CCxNE	OCx 输出状态	OCxN 输出状态				
1	X	0	0	0	输出禁止(与定时器断开)	输出禁止(与定时器断开)		PWM timer used as a		
		0	0	1	输出禁止(与定时器断开)	OCxREF + 极性	_			
		0	1	0	OCxREF + 极性	输出禁止(与定时器断开)	J	GP timer		
		0	1	1	OCxREF + 极性 + 死区	OCxREF反相 + 极性 + 死区	←	Motor Control (sinewave)		
		1	0	0	输出禁止(与定时器断开)	输出禁止(与定时器断开)				
		1	0	1	关闭状态(输出使能且为 无效电平)	OCxREF + 极性	Motor Control			
		1	1	0	OCxREF + 极性	关闭状态(输出使能且为 无效电平)	J	(6-steps)		
		1	1	1	OCxREF + 极性 + 死区	OCxREF反相 + 极性 + 死区	•	Motor Control (sinewave)		
0	0		0	0			•			
	0		0	1	 輸出禁止(与	完时 哭 烁 开)		Outputs disconnected from I/O ports		
	0		1	0	110 113 11. ()	/Сн.1 <u>ни г</u> уј / ј				
	0	X	1	1						
	1	Λ	0	0						
	1		0	1	 	能目为无效由平)	-	All PWMs OFF (low Z		
	1		1	0	人的心心 〈柳田区	.HG.LL/\$/G/X TG /		for safe stop)		
	1		1	1						

高级定时器TIM1 (9/12)

☞ 例子: 6步换相方法驱动BLDC马达

Step	High	Low	OC1	OC1N	OC2	OC2N	OC3	OC3N
1	T1	T4	oc1ref	0	0	1	0	0
2	T1	T6	oc1ref	0	0	0	0	1
3	T3	T6	0	0	oc2ref	0	0	1
4	T3	T2	0	1	oc2ref	0	0	0
5	T5	T2	0	1	0	0	oc3ref	0
6	T5	T4	0	0	0	0	oc3ref	0

高级定时器TIM1 (10/12)

- ☞ 紧急故障输入
 - ☞ 紧急故障输入可由下列事件产生:
 - ☎ 由BRK引脚输入: 其极性可编程且由使能位使能
 - **一**时钟安全系统
 - 当紧急故障发生时:
 - **四** MOE被清零
 - ❷ 状态位置1并产生中断
 - **四** PWM输出通道的电平由OISx位决定
 - ☎ 紧急故障输入的应用
 - **梦** 若AOE=1: MOE位保持O直到软件重新置1,一般用于功率模块电 路的保护
 - 查 若AOE=O: MOE位在下一个U事件重新置1,一般可用于电流调节

高级定时器TIM1 (11/12)

- 雪 禁烟保护模式
 - ☎ 安全级别高的寄存器能被上锁,防止软件跑飞后对功率器件造成 损坏
 - 查 包括: 死区、PWM输出极性、紧急故障输入使能......
 - ☎ 所有寄存器在上锁前可读/写,上锁后只读
 - **四** 2个上锁位一旦写值后就不能修改,直到MCU复位。
 - **四** 4个上锁等级针对不同的应用提供了灵活性
- **☞** GPIO配置也能上锁,以避免PWM功能端口被重新设为标 准输出口

高级定时器TIM1 (12/12)

- ☞ 调试特性
 - ☎ 针对马达控制此类应用,断点调试须慎重对待
 - ☎ 标准断点会对功率器件造成损坏
 - ☑ 闭环系统不能在停止后在断点处继续

- 季 专门有一个标志位用于配置当断点发生后PWM定时器的行为
 - ❷ 标准模式: 定时器继续运行
 - ☑可能会对功率器件造成损坏,因为此时固定的占空比被加到了功率器件上(中断不会被执行)
 - **☞ 安全模式**:定时器停止运行,PWM停住输出
 - ☎此时对功率器件是安全的,且定时器可在断点处继续运行

速度和位置检测

- 四 由通用定时器处理,使用专门的模式
 - ☑ 这些功能在所有的通用定时器上都可实现
- ∰ Hall 传感器
 - ◢ Hall 传感器接口为异或输入
- ☎ 编码器
 - ☞ 编码器模式1, 2 & 3 (2x, 4x)
- ☞ 测速发电机反馈
 - ☎ 输入捕捉模式检测周期

TIM在编码器模式下的框图

TIM与编码器接口

- ☞ 编码器与STM32接口举例
 - ◢ 增量编码器可与MCU直接连接而无需外部接口电路
 - ☑ 编码器的第三个表示零位的输出(Z或Index)可连到外部中断口,以此来触发定时器的计数器复位

编码器模式下计数器的动作

编码器的关键特性

- ┛ 可编程的计数率
 - 型 x4: 标准模式, 所有边沿有效
 - ☎ 1000线的编码器每转一周可发出4000个计数脉冲
 - **四** x2: 只对A或B计数,但仍可确定方向
 - ☞ 转速模式: 对编码器计数时钟进行运算
- **☞** 可编程的编码器精度
 - <u>当自动重载寄存器设为编码器每转一周可发出的计数脉冲时,计</u>
 数器就直接得到了转子位置或角度信号
 - ── 当自动重载寄存器设为OxFFFF时,与使用自由运行定时器的设计相兼容
- ☞ 编码器每转一周可发出一个或多个中断
 - 一个,每360°;
 - 學 多个,每60°,90°,...(依赖于自动重载寄存器的配置)

TIM 与 Hall接口

定时器同步配置(1/3)

一由于拥有触发输出及多个可选的触发输入,3个通用定时器与PWM定时器能连接在一起串联或同步使用

☞ 输入脚TI1 及 TI2也可用作触发器

定时器同步配置(2/3)

- - ₩ 计数器复位
 - 毋 计数器使能
 - **里** 更新事件
 - ☞ 输出比较信号

→ 当配置为从模式时,定时器可工作

在如下模式:

- ☎ 触发模式
- 一 门控模式
- ☎ 复位模式
- ☞ 外部时钟模式

定时器同步配置(3/3)

當 举例: BLDC马达换相: 一个通用定时器检测Hall位置, 触发PWM定时器换相

主定时器 (TIM)

ADC 特性 (1/3)

- ◢ ADC转换速度为1MHZ, 精度为12位
 - ☎ 采样时间可编程(1.5~239.5cy),最小采样时间: 107ns
- ✓ ADC输入范围: 0<=VIN<=VREF+</p>
- **四** 18个通道
 - ☎ 16个外部通道
 - ❷ 2个内部通道:温度传感器和参考电压
- 一 中断
- **梦** DMA --- 仅ADC1有
- 暫 转換通道編组
 - ☎ 常规转换组:最大16个通道
 - ☎ 注入转换组:最大4个通道

注入转换模式

當规转换扫描模式

☞ 注入转换扫描模式

ADC 特性 (2/3)

ADC WATCHDOG

- ☞ 基于定序器的扫描模式:
 - ☎ 任意通道,任意次序
 - ☎ 最大16个通道的常规转换(结果由DMA存储)
 - ☎ 最大4个通道的注入转换(结果相应寄存器存储)
- ☎ 多触发源
 - ☞ 每个组可被来自定时器的6个事件触发
 - ☑ 可由外部事件和软件触发

ADC 特性 (3/3)

- **對**转換数据可向左或向右对齐
- ₩ 4个偏移补偿寄存器
 - 补偿外部电路的偏移,如运放。如需要可提供带符号值
- ☎ 每个通道可单独编程采样时间,可以采样不同输入阻抗的信号
 - ☎ 从1.5cy(Rin<1.2K)到239.5cy(Rin<350K), 共8个值</p>
 - 查 当采样率为1MSps时,可不用电压跟随器

ADC双模式(1/2)

- ◢ 只能在拥有2个ADC的MCU中实现
 - ☎ ADC1和ADC2可分别单独使用或耦合在一起使用(分主 / 从)

ADC双模式(2/2)

Fast Interleaved mode on 1 regular channel in continuous conversion mode

隔行扫描模式下的DMA传输

☞ 隔行扫描模式: 两ADC连续对同一通道采样

STM32如何实现ADC同步

- #PWM定时器中的同步单元可实现ADC同步
- ☞ 可有2个选择:
 - 查直接由PWM定时器计数器的峰顶、谷底或两者中的任 一个同步
 - 一由PWM定时器的第4个输出比较产生的延时同步
- ◢ ADC的结果可由转换完成中断处理或由DMA存储

直接同步

→ PWM定时器的U事件触发两个ADC,使其工作在 注入同时转换模式下

四由于连续采样相电流,不会产生误差

STM32 演示套件

- 罗 三相半桥功率驱动板,3电阻法读取相电流
- ☞ 完整的软件库可驱动PMSM或AC马达
- 查 该套件包含一个带编码器和Hall传感器的PMSM马达

Thank You I

STM32 Releasing your creativity