Définition 2.8 - éléments associés

Deux un éléments d'un anneaux sont dits associés lorsqu'ils sont égaux à multiplication près par un élément inversible.

Définition 2.20 (1) - diviseurs de zéro

Soit $(A, +, \times)$ un anneau. on appelle diviseurs de zéro deux éléments a et b de A, tels que $ab = 0_A$

Définition 2.20 (2) - anneau intègre

Soit $(A, +, \times)$ un anneau. on dit que A est intègre lorsque :

- **1.** $A \neq \{0_A\}$
- $2. \times \text{est commutative}$
- **3.** A n'admet pas de diviseur zéro : $\forall (a,b) \in A^2, a \neq 0 \text{et} b \neq \Longrightarrow ab \neq 0$

Théorème 2.23 - caractérisation de la structure de corps

Soit $(\mathbb{K}, +, \times)$ un ensemble muni de deux lois de composition internes. \mathbb{K} est un corps si et seulement si :

- 1. $(\mathbb{K}, +)$ est un groupe abélien
- **2.** $(\mathbb{K} \setminus \{0_{\mathbb{K}}\}, \times)$ est un groupe abélien
- 3. \times est distributive sur +

Théorème 2.26 - caractérisation de sous-corps

Soit $(\mathbb{K}, +, \times)$ un corps et $L \subset \mathbb{K}$. L est un sous-corps de \mathbb{K} si et seulement si :

- 1. L est un sous-anneau de \mathbb{K}
- $\mathbf{2}$. tout élément non nul de L est inversible dans L

Proposition 2.29 - condition suffisante de caractère de corps

Tout anneau intègre fini est un corps.

Définition 2.30 - structure d'idéal

Soit $(A, +, \times)$ un anneau commutatif. On appelle $id\acute{e}al$ de A une partie I de A telle que :

- 1. (I,+) est un sous-groupe de (A,+)
- **2.** I est attracteur pour \times : $\forall i \in I, \, \forall a \in A, \, ai = ia \in I$