```
import pandas as pd
import numpy as np
from sklearn.preprocessing import MinMaxScaler
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import LSTM, Dense
from sklearn.metrics import mean_squared_error
import matplotlib.pyplot as plt
```

Load the data
data = pd.read_csv (r'/content/npa1.csv')
data.head()

→ ▼		S.N.	Open	High	Low	Close	Change	Per Change (%)	Turnover	Dat
	0	1	2,772.23	2,805.57	2,742.53	2,755.62	-5.29	-0.19	21,713,431,007.73	8/1/202
	1	2	2,708.24	2,791.02	2,707.57	2,760.90	64.25	2.38	21,911,503,161.05	7/31/202
	2	3	2,669.41	2,709.89	2,609.02	2,696.65	35.55	1.33	17,266,391,542.96	7/30/202
	3	1	2,706.73	2,737.68	2,655.15	2,661.09	-20.46	-0.76	19,609,177,106.29	7/29/202
	4	2	2,606.42	2,708.58	2,606.40	2,681.56	113.42	4.41	15,810,596,235.45	7/28/202
Next step			Generate witl	da	ata 🧧	View	recomme	ended	New interaction sheet	ve

Convert the Date column to datetime format
data['Date'] = pd.to_datetime(data['Date'], format='%m/%d/%Y')

data = data.sort_values(by='Date')
data.head()

→		S.N.	0pen	High	Low	Close	Change	Per Change (%)	Turnover	Date	
	2196	314	904	904	904	904	1.35	0.15	0	2015-01-01	ıl.
	2195	313	918	918	918	918	13.82	1.53	0	2015-01-04	
	2194	312	920	920	920	920	2.27	0.25	0	2015-01-05	
	2193	311	917	917	917	917	-2.36	-0.26	0	2015-01-06	
	2192	310	925	925	925	925	7.13	0.78	0	2015-01-07	
Next step		G	enerate		data	a (Viev	v recommended	Ne	ew interactive	

```
# Remove commas from the numerical columns and convert them to float
data['Open'] = data['Open'].str.replace(',',.'').astype(float)
data['High'] = data['High'].str.replace(',','').astype(float)
data['Low'] = data['Low'].str.replace(',','').astype(float)
data['Close'] = data['Close'].str.replace(',','').astype(float)
data['Turnover'] = data['Turnover'].str.replace(',', '').astype(float)
# Create moving averages
data['MA7'] = data['Close'].rolling(window=7).mean()
data['MA30'] = data['Close'].rolling(window=30).mean()
# Create lag features
data['Lag1'] = data['Close'].shift(1)
data['Lag2'] = data['Close'].shift(2)
data['Lag3'] = data['Close'].shift(3)
# Extract date features
data['Day'] = data['Date'].dt.day
data['Month'] = data['Date'].dt.month
data['Year'] = data['Date'].dt.year
data['DayOfWeek'] = data['Date'].dt.dayofweek
# Drop rows with NaN values that were created by rolling window and lagging
data = data.dropna()
# Split the data into training and testing sets
train size = int(len(data) * 0.8)
test_size = len(data) - train_size
train, test = data.iloc[:train_size], data.iloc[train_size:]
# Select the features for modeling
features = ['Close', 'MA7', 'MA30', 'Lag1', 'Lag2', 'Lag3']
train_X = train[features].values
train_y = train['Close'].values
test_X = test[features].values
test_y = test['Close'].values
# Scale the features
scaler_X = MinMaxScaler(feature_range=(0, 1))
train_X_scaled = scaler_X.fit_transform(train_X)
test_X_scaled = scaler_X.transform(test_X)
# Scale the target (Close price)
scaler_y = MinMaxScaler(feature_range=(0, 1))
train_y_scaled = scaler_y.fit_transform(train_y.reshape(-1, 1))
test_y_scaled = scaler_y.transform(test_y.reshape(-1, 1))
# Reshape the data to be compatible with LSTM [samples, time steps, features]
train_X_scaled = train_X_scaled.reshape((train_X_scaled.shape[0], 1, train_X_scaled.shape[1]
test X scaled = test X scaled.reshape((test X scaled.shape[0], 1, test X scaled.shape[1]))
```

2 of 15 12/4/2024, 12:04 PM

```
# Build the Vanilla RNN model
model = Sequential()
model.add(SimpleRNN(50, return sequences=True, input shape=(1, len(features))))
model.add(SimpleRNN(50, return_sequences=False))
model.add(Dense(25))
model.add(Dense(1))
# Compile the model
model.compile(optimizer='adam', loss='mean_squared_error')
# Train the model
history=model.fit(train_X_scaled, train_y_scaled, batch_size=1, epochs=10)
# Make predictions
train_predict_scaled = model.predict(train_X_scaled)
test_predict_scaled = model.predict(test_X_scaled)
# Inverse transform the predictions
train_predict = scaler_y.inverse_transform(train_predict_scaled)
test_predict = scaler_y.inverse_transform(test_predict_scaled)
# Calculate RMSE
train_rmse = np.sqrt(mean_squared_error(train_y, train_predict))
test_rmse = np.sqrt(mean_squared_error(test_y, test_predict))
print(f'Train RMSE: {train_rmse}')
print(f'Test RMSE: {test_rmse}')
     Epoch 1/10
     /usr/local/lib/python3.10/dist-packages/keras/src/layers/rnn/rnn.py:204: UserWarning:
       super().__init__(**kwargs)
     1734/1734 -
                                   - 5s 1ms/step - loss: 0.0028
     Epoch 2/10
                                  - 5s 1ms/step - loss: 6.9141e-04
     1734/1734
     Epoch 3/10
                                   - 3s 1ms/step - loss: 3.1506e-04
     1734/1734
     Epoch 4/10
                                --- 5s 2ms/step - loss: 3.3469e-04
     1734/1734
     Epoch 5/10
                                   - 5s 2ms/step - loss: 5.1667e-04
     1734/1734
     Epoch 6/10
                                   - 3s 1ms/step - loss: 5.0864e-04
     1734/1734
     Epoch 7/10
     1734/1734
                                   - 3s 1ms/step - loss: 1.5808e-04
     Epoch 8/10
                                 — 3s 2ms/step - loss: 1.3216e-04
     1734/1734 ·
     Epoch 9/10
     1734/1734 -
                                  - 4s 1ms/step - loss: 1.4885e-04
     Epoch 10/10
     1734/1734 -
                                   - 3s 1ms/step - loss: 1.8923e-04
     55/55
                                1s 7ms/step
```

Actual Train Predict

```
14/14 -
                                us isms/step
     Train RMSE: 49.69045808699103
     Test RMSE: 44.93775511511812
# Calculate MSE
train_mse = mean_squared_error(train_y, train_predict)
test_mse = mean_squared_error(test_y, test_predict)
print(f'Train MSE: {train_mse}')
print(f'Test MSE: {test_mse}')
     Train MSE: 2469.1416248950122
     Test MSE: 2019.4018347863253
# Plot the results: Actual vs Predicted Close Prices
plt.figure(figsize=(16,8))
plt.plot(data['Date'], data['Close'], label='Actual')
plt.plot(data['Date'][:train_size], train_predict, label='Train Predict')
plt.plot(data['Date'][train_size:], test_predict, label='Test Predict')
plt.xlabel('Date')
plt.ylabel('Close Price')
plt.legend()
plt.title('Actual vs Predicted Close Prices')
plt.show()
# Plot the Moving Averages
plt.figure(figsize=(16,8))
plt.plot(data['Date'], data['Close'], label='Actual')
plt.plot(data['Date'], data['MA7'], label='MA7')
plt.plot(data['Date'], data['MA30'], label='MA30')
plt.xlabel('Date')
plt.ylabel('Close Price')
plt.legend()
plt.title('Moving Averages')
plt.show()
# Plot the Lag Features
plt.figure(figsize=(16,8))
plt.plot(data['Date'], data['Close'], label='Actual')
plt.plot(data['Date'], data['Lag1'], label='Lag1')
plt.plot(data['Date'], data['Lag2'], label='Lag2')
plt.plot(data['Date'], data['Lag3'], label='Lag3')
plt.xlabel('Date')
plt.ylabel('Close Price')
plt.legend()
plt.title('Lag Features')
plt.show()
                                          Actual vs Predicted Close Prices
```


2015	2016	2017	2018	2019	2020	2021	2022	2023	2024	2025
					Date					

```
last_data_point = data[features].iloc[-1].values.reshape(1, -1)
scaled_last_data_point = scaler_X.transform(last_data_point)
# Initialize lists to store future predictions
future_predictions = []
num_future_days = 60 # Number of future days to predict
# Predict future values
for _ in range(num_future_days):
    scaled_last_data_point = scaled_last_data_point.reshape((1, 1, len(features)))
    future_pred_scaled = model.predict(scaled_last_data_point)
   future_pred = scaler_y.inverse_transform(future_pred_scaled)
   # Append the prediction to the future_predictions list
   future_predictions.append(future_pred[0][0])
   # Update the scaled_last_data_point with the new predicted value
    new_data_point = np.append(scaled_last_data_point.flatten()[1:], future_pred_scaled)
    scaled_last_data_point = new_data_point.reshape(1, -1)
# Create a DataFrame for future predictions
future_dates = pd.date_range(data['Date'].iloc[-1] + pd.Timedelta(days=1), periods=num_fu
future_df = pd.DataFrame({'Date': future_dates, 'Predicted Close': future_predictions})
```

1/1 _____ Ac 210mc/ston

Prepare the last available data point for future prediction

1/ 1	 v s	בבטוווס/ סנכף
1/1	0s	15ms/step
1/1	0s	20ms/step
1/1	0s	16ms/step
1/1	0s	15ms/step
1/1	0s	15ms/step
1/1	0s	16ms/step
1/1	0s	18ms/step
1/1	0s	19ms/step
1/1	0s	16ms/step
1/1	0s	17ms/step
1/1	0s	19ms/step
1/1	0s	15ms/step
1/1	0s	16ms/step
1/1	0s	15ms/step
1/1	0s	15ms/step
1/1	0s	15ms/step
1/1	0s	16ms/step
1/1	0s	16ms/step
1/1	0s	16ms/step
1/1	0s	15ms/step
1/1	0s	15ms/step
1/1	0s	19ms/step
1/1	0s	18ms/step
1/1	 0s	19ms/step
1/1	0s	18ms/step
1/1	0s	15ms/step
1/1	 0s	17ms/step
1/1	 0s	15ms/step
1/1	0s	15ms/step
1/1	0s	20ms/step
1/1	 0s	16ms/step
1/1	0s	18ms/step
	0s	16ms/step
1/1	0s	16ms/step
1/1	0s	16ms/step
1/1	0s	17ms/step
1/1	0s	18ms/step
1/1	0s	17ms/step
	0s	16ms/step
	0s	16ms/step
-	0s	21ms/step
1/1	0s	20ms/step
1/1	0s	16ms/step
-	0s	15ms/step
1/1	0s	20ms/step
-	0s	16ms/step
1/1	0s	16ms/step
1/1	0s	15ms/step
1/1	0s	15ms/step
	0s 0s	17ms/step 16ms/step
	0S	15ms/step
1/ 1	U S	אטר / פווורד / ארבוורד

```
- 0s 27ms/step
     1/1 -
                            0s 27ms/step
# Plot the future predictions
plt.figure(figsize=(16,8))
plt.plot(data['Date'], data['Close'], label='Actual')
plt.plot(future_df['Date'], future_df['Predicted Close'], label='Future Predictions', lin
plt.xlabel('Date')
plt.ylabel('Close Price')
plt.legend()
plt.title('Future Predictions')
plt.show()
# Create a DataFrame for future predictions
future_dates = pd.date_range(data['Date'].iloc[-1] + pd.Timedelta(days=1), periods=num_fu
print(pd.DataFrame({'Date': future_dates, 'Predicted Close': future_predictions}))
# Plot the actual data and future predictions
plt.figure(figsize=(16, 8))
plt.plot(data['Date'], data['Close'], label='Actual')
plt.plot(future_df['Date'], future_df['Predicted Close'], label='Future Predictions', lin
plt.xlabel('Date')
plt.ylabel('Close Price')
plt.legend()
plt.title('Future Predictions')
plt.savefig('future_predictions.png') # Save the plot
```

plt.show(block=True) # Prevent the plot from disappearing immediately

	Date	Predicted Close
0	2024-08-02	2681.122803
1	2024-08-03	2583.027588
2	2024-08-04	2403.443115
3	2024-08-05	2685.738770
4	2024-08-06	2621.886719
5	2024-08-07	2540.573486
6	2024-08-08	2611.764160
7	2024-08-09	2516.338867
8	2024-08-10	2406.755859
9	2024-08-11	2614.525879
10	2024-08-12	2542.761719
11	2024-08-13	2457.254150
12	2024-08-14	2548.495850
13	2024-08-15	2459.779297
14	2024-08-16	2385.295898
15	2024-08-17	2546.201172
16	2024-08-18	2468.400146
17	2024-08-19	2393.378662
18	2024-08-20	2489.539062
19	2024-08-21	2406.176514
20	2024-08-22	2351.372314
21	2024-08-23	2481.073730
22	2024-08-24	2400.535889
23	2024-08-25	2339.706299
24	2024-08-26	2433.290039
25	2024-08-27	2353.454102
26	2024-08-28	2311.431641
27	2024-08-29	2419.245117
28	2024-08-30	2338.460449
29	2024-08-31	2291.344727
30	2024-09-01	2378.776611
31	2024-09-02	2301.280029
32	2024-09-03	2268.810791
33	2024-09-04	2360.469971
34	2024-09-05	2280.910645
35	2024-09-06	2245.707764
26	2024 00 07	2225 501465

סכ	Z0Z4-09-07	Z3Z3.301403
37	2024-09-08	2249.787354
38	2024-09-09	2225.179688
39	2024-09-10	2304.311523
40	2024-09-11	2226.713623
41	2024-09-12	2201.446289
42	2024-09-13	2273.227539
43	2024-09-14	2199.134033
44	2024-09-15	2181.321777
45	2024-09-16	2250.289062
46	2024-09-17	2174.952637
47	2024-09-18	2157.868652
48	2024-09-19	2221.830322
49	2024-09-20	2149.389648
50	2024-09-21	2137.560303
51	2024-09-22	2197.957031
52	2024-09-23	2124.960205
53	2024-09-24	2114.625000
54	2024-09-25	2171.221191
55	2024-09-26	2100.533936
56	2024-09-27	2093.989502
57	2024-09-28	2146.939453
58	2024-09-29	2076.262695
59	2024-09-30	2071.536133


```
import pandas as pd
import numpy as np
from sklearn.preprocessing import MinMaxScaler
from sklearn.metrics import mean_squared_error
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import SimpleRNN, GRU, LSTM, Dense
import matplotlib.pyplot as plt
# Load the data
data = pd.read_csv('/content/npa1.csv') # Update this path to your dataset
data['Date'] = pd.to_datetime(data['Date'], format='%m/%d/%Y')
data = data.sort_values(by='Date')
# Remove commas from numerical columns and convert them to float
for col in ['Open', 'High', 'Low', 'Close', 'Turnover']:
    data[col] = data[col].str.replace(',', '').astype(float)
# Create moving averages
data['MA7'] = data['Close'].rolling(window=7).mean()
data['MA30'] = data['Close'].rolling(window=30).mean()
# Create lag features
data['Lag1'] = data['Close'].shift(1)
data['Lag2'] = data['Close'].shift(2)
data['Lag3'] = data['Close'].shift(3)
# Extract date features
data['Day'] = data['Date'].dt.day
data['Month'] = data['Date'].dt.month
data['Year'] = data['Date'].dt.year
data['DayOfWeek'] = data['Date'].dt.dayofweek
# Drop rows with NaN values
data = data.dropna()
# Train-test split
train_size = int(len(data) * 0.8)
train, test = data.iloc[:train_size], data.iloc[train_size:]
# Fastura calaction
```

```
# Learnie Petecrion
features = ['Close', 'MA7', 'MA30', 'Lag1', 'Lag2', 'Lag3']
train_X = train[features].values
train_y = train['Close'].values
test_X = test[features].values
test_y = test['Close'].values
# Scale the features
scaler_X = MinMaxScaler(feature_range=(0, 1))
train_X_scaled = scaler_X.fit_transform(train_X)
test_X_scaled = scaler_X.transform(test_X)
# Scale the target (Close price)
scaler_y = MinMaxScaler(feature_range=(0, 1))
train_y_scaled = scaler_y.fit_transform(train_y.reshape(-1, 1))
test_y_scaled = scaler_y.transform(test_y.reshape(-1, 1))
# Reshape the data to [samples, time steps, features]
train_X_scaled = train_X_scaled.reshape((train_X_scaled.shape[0], 1, train_X_scaled.shape[1])
test_X_scaled = test_X_scaled.reshape((test_X_scaled.shape[0], 1, test_X_scaled.shape[1]))
# Function to build and train models
def build_and_train(model_type):
    model = Sequential()
    if model_type == "Vanilla RNN":
        model.add(SimpleRNN(50, return_sequences=True, input_shape=(1, len(features))))
        model.add(SimpleRNN(50, return_sequences=False))
    elif model_type == "GRU":
        model.add(GRU(50, return_sequences=True, input_shape=(1, len(features))))
        model.add(GRU(50, return_sequences=False))
    elif model_type == "LSTM":
        model.add(LSTM(50, return_sequences=True, input_shape=(1, len(features))))
        model.add(LSTM(50, return_sequences=False))
    model.add(Dense(25))
    model.add(Dense(1))
    # Compile the model
    model.compile(optimizer='adam', loss='mean_squared_error')
    # Train the model
    model.fit(train_X_scaled, train_y_scaled, batch_size=1, epochs=10, verbose=0)
    return model
# Train each model and evaluate performance
results = {}
for model_type in ["Vanilla RNN", "GRU", "LSTM"]:
    print(f"Training {model_type}...")
    model = build_and_train(model_type)
    # Predictions
```

```
train_predict_scaled = model.predict(train_X_scaled)
   test_predict_scaled = model.predict(test_X_scaled)
   # Inverse scaling
   train_predict = scaler_y.inverse_transform(train_predict_scaled)
   test_predict = scaler_y.inverse_transform(test_predict_scaled)
   # Calculate MSE and RMSE
   train_mse = mean_squared_error(train_y, train_predict)
   test_mse = mean_squared_error(test_y, test_predict)
   train_rmse = np.sqrt(train_mse)
   test_rmse = np.sqrt(test_mse)
    results[model_type] = {'Train MSE': train_mse, 'Train RMSE': train_rmse,
                          'Test MSE': test_mse, 'Test RMSE': test_rmse}
   print(f"{model_type} - Train MSE: {train_mse}, Train RMSE: {train_rmse}")
    print(f"{model_type} - Test MSE: {test_mse}, Test RMSE: {test_rmse}")
# Compare results
results_df = pd.DataFrame(results).T
results_df[['Train MSE', 'Test MSE']].plot(kind='bar', figsize=(12, 6), title="Model Compar
plt.ylabel('MSE')
plt.show()
results_df[['Train RMSE', 'Test RMSE']].plot(kind='bar', figsize=(12, 6), title="Model Comp
plt.ylabel('RMSE')
plt.show()
print(results_df)
     Training Vanilla RNN...
     /usr/local/lib/python3.10/dist-packages/keras/src/layers/rnn/rnn.py:204: UserWarning:
       super().__init__(**kwargs)
     1s 7ms/step 14/14 0s 9ms/step
    Vanilla RNN - Train MSE: 130.58317858896402, Train RMSE: 11.427299706797053
    Vanilla RNN - Test MSE: 169.89776418542797, Test RMSE: 13.03448365626456
     Training GRU...
     /usr/local/lib/python3.10/dist-packages/keras/src/layers/rnn/rnn.py:204: UserWarning:
      super().__init__(**kwargs)
    55/55 Os 5ms/step 14/14 Os 2ms/step
    GRU - Train MSE: 683.8862538018477, Train RMSE: 26.151218973536352
    GRU - Test MSE: 1202.5541961162785, Test RMSE: 34.677863199976414
    Training LSTM...
     /usr/local/lib/python3.10/dist-packages/keras/src/layers/rnn/rnn.py:204: UserWarning:
       super().__init__(**kwargs)
     55/55 ---
               ----- 0s 5ms/step
     14/14 — 0s 2ms/step
     LSTM - Train MSE: 460.2050247749649, Train RMSE: 21.4523897217761
     LSTM - Test MSE: 725.3171855384221, Test RMSE: 26.93171337918221
```

Model Comparison (MSF)

	Train MSE	Train RMSE	Test MSE	Test RMSE
Vanilla RNN	130.583179	11.427300	169.897764	13.034484
GRU	683.886254	26.151219	1202.554196	34.677863
LSTM	460.205025	21.452390	725.317186	26.931713

Start coding or $\underline{\text{generate}}$ with AI.