AGRÉGATION INTERNE DE MATHÉMATIQUES

épreuve 1

6 heures

Introduction et notations —

On désigne par E un espace vectoriel euclidien de dimension $n \ge 1$.

Si x et y sont deux vecteurs de E, on note x.y leur produit scalaire et $||x|| = \sqrt{x.x}$ la norme associée. Un réseau Λ de E est une partie de E vérifiant la propriété suivante :

il existe une base $\mathscr{B}=(e_1,\ldots,e_n)$ de E telle que Λ soit l'ensemble des combinaisons linéaires à coefficients entiers des éléments de \mathscr{B} :

$$\Lambda = \left\{ x \in E / \exists (x_1, \dots, x_n) \in \mathbf{Z}^n, \ x = \sum_{i=1}^n x_i e_i \right\}$$

On dit alors que Λ est le réseau défini par la base \mathcal{B} , et que \mathcal{B} est une **Z**-base de Λ .

Soit $u: E \to F$ une application linéaire, F étant un espace euclidien dont on note $\langle x, y \rangle$ le produit scalaire.

On dit que u est une isométrie si, pour tous $x,y \in E$, on a $x.y = \langle u(x), u(y) \rangle$, et que u est une similitude s'il existe une isométrie $v: E \to F$ et un nombre réel $\lambda > 0$ tel que $u = \lambda v$.

Si Λ est un réseau de E et Λ' un réseau de F, on dit que Λ et Λ' sont semblables s'il existe une similitude $u: E \to F$ telle que $u(\Lambda) = \Lambda'$.

On désigne par $GL_n(\mathbf{Z})$ l'ensemble des matrices M d'ordre n à coefficients dans \mathbf{Z} , inversibles dans $\mathcal{M}_n(\mathbf{R})$ et dont l'inverse M^{-1} est également à coefficients dans \mathbf{Z} .

On rappelle enfin la formule suivante : si Ω , \mathcal{B} , \mathcal{B}' sont trois bases de E, on a

$$\det_{\Omega} \mathscr{B}' = \det_{\Omega} \mathscr{B}. \det_{\mathscr{B}} \mathscr{B}'.$$

- Partie A -

On considère dans cette partie un réseau Λ de E, et (e_1, \ldots, e_n) une **Z**-base de Λ .

- 1. (a) Soit $M \in GL_n(\mathbf{Z})$; montrer que det $M = \pm 1$.
 - (b) Soit M une matrice à coefficients dans \mathbf{Z} telle que det $M=\pm 1$. Montrer que M appartient à $\mathrm{GL}_n(\mathbf{Z})$ (on pourra considérer la transposée de la comatrice de M).
 - (c) Montrer que $GL_n(\mathbf{Z})$ est un sous-groupe du groupe multiplicatif $(GL_n(\mathbf{R}), \times)$.
- 2. Vérifier que Λ est un sous-groupe de (E, +).
- 3. Montrer que deux bases \mathscr{B} et \mathscr{B}' de E définissent le même réseau Λ si et seulement si la matrice de passage P de \mathscr{B} à \mathscr{B}' appartient à $GL_n(\mathbf{Z})$.
- 4. On suppose dans cette question que n=2 et on note \mathbb{Z}^2 le réseau dont une \mathbb{Z} -base est la base canonique $(\varepsilon_1, \varepsilon_2)$ de \mathbb{R}^2 . Soit $x=a\varepsilon_1+b\varepsilon_2$ un vecteur de \mathbb{Z}^2 avec a et b deux entiers premiers entre eux.
 - (a) Montrer qu'il existe un vecteur y de \mathbb{Z}^2 tel que (x,y) est une \mathbb{Z} -base du réseau \mathbb{Z}^2 .
 - (b) Construire une telle base lorsque $x = 101\varepsilon_1 + 49\varepsilon_2$.
 - (c) Dans le cas général où $x = a\varepsilon_1 + b\varepsilon_2$ avec a et b deux entiers premiers entre eux, écrire un algorithme permettant de trouver les coordonnées d'un vecteur y tel que (x, y) est une \mathbf{Z} -base de \mathbf{Z}^2 .
 - (d) Soit $\Lambda = \{x_1 \varepsilon_1 + x_2 \varepsilon_2 ; (x_1, x_2) \in \mathbb{Z}^2 ; x_2 \equiv x_1 \mod 3\}$. Montrer que Λ est un réseau de \mathbb{R}^2 (on en exhibera une **Z**-base).

- 5. Soit \mathscr{B} une **Z**-base de Λ et Ω une base orthonormale de E. Montrer que $|\det_{\Omega}\mathscr{B}|$ ne dépend ni de la **Z**-base \mathscr{B} de Λ ni de la base orthonormale Ω de E. Ce nombre ne dépendant donc que du réseau Λ , on le note : $\det \Lambda$.
- 6. (a) Montrer qu'il existe un nombre réel A > 0 tel que, pour tout $x = \sum_{i=1}^{n} x_i e_i$ de E, on a

$$A \max_{1 \le i \le n} |x_i| \le ||x||.$$

- (b) En déduire que toute boule $\{x, ||x|| \le R\}$ centrée en l'origine et de rayon R > 0 ne contient qu'un nombre fini de vecteurs de Λ .
- (c) En déduire que $m(\Lambda) = \inf_{x \in \Lambda, x \neq 0} ||x||$ est un réel strictement positif et qu'il existe un vecteur $x_0 \in \Lambda$ tel que $m(\Lambda) = ||x_0||$.
- (d) On désigne par $S(\Lambda)$ l'ensemble $\{x \in \Lambda / ||x|| = m(\Lambda)\}$. Montrer que $S(\Lambda)$ est fini, puis que Card $S(\Lambda)$ est un entier pair et non nul.
- 7. On suppose que u_1, \ldots, u_k sont k vecteurs de Λ tels que, pour tout $x \in \Lambda$, il existe $(x_1, \ldots, x_k) \in \mathbf{Z}^k$ unique tels que $x = \sum_{i=1}^k x_i u_i$. Montrer que k = n et que (u_1, \ldots, u_k) est une base de E (on pourra considérer le \mathbf{Q} -espace vectoriel engendré par (e_1, \ldots, e_n)).
- 8. Soit $D_1 = \mathbf{R}e_1$ la droite engendrée par e_1 .

Montrer que $D_1 \cap \Lambda = \mathbf{Z}e_1$.

On suppose que $n \ge 2$. Soit F un supplémentaire de D_1 dans E, et p la projection de E sur F parallèlement à D_1 . Montrer que $\Lambda' = p(\Lambda)$ est un réseau de F, de \mathbf{Z} -base $(p(e_2), \ldots, p(e_n))$. Soit réciproquement (u'_2, \ldots, u'_n) une \mathbf{Z} -base de Λ' , et (u_2, \ldots, u_n) des éléments de Λ tels que $p(u_2) = u'_2, \ldots, p(u_n) = u'_n$. Montrer que (e_1, u_2, \ldots, u_n) est une \mathbf{Z} -base de Λ .

9. On note $\varphi_1: E \to \mathbf{R}$ la forme linéaire qui à tout vecteur $x_1e_1 + \cdots + x_ne_n$ de E associe x_1 et on pose $F_1 = \ker \varphi_1$.

Soit G un sous-groupe de Λ distinct de $\{0\}$.

- (a) Montrer qu'il existe $a_1 \in \mathbb{Z}$ tel que $\varphi_1(G) = a_1\mathbb{Z}$.
- (b) En déduire que, si n = 1, G est un réseau de E.
- (c) On suppose $n \geq 2$, et on note Λ_1 le réseau de F_1 de **Z**-base (e_2, \ldots, e_n) . On considère $H = G \cap F_1$. Montrer que H est un sous-groupe de Λ_1 .
- (d) On suppose $a_1 \neq 0$; soit $b \in G$ tel que $\varphi_1(b) = a_1$. Montrer que, pour tout x de G, il existe un unique couple $(m, v) \in \mathbf{Z} \times H$ tel que x = mb + v.
- (e) En déduire qu'il existe un sous-espace vectoriel F de E tel que G est un réseau de F (on pourra raisonner par récurrence sur n, en distinguant les cas $G \subset F_1$ et $G \not\subset F_1$).
- 10. Soit $b = r_1 e_1 + \cdots + r_n e_n$ un élément de $S(\Lambda)$.
 - (a) Soit k un entier ≥ 2 . Montrer que $\frac{1}{k}b$ n'est pas un élément de Λ .
 - (b) En déduire qu'il existe $s_1, \ldots, s_n \in \mathbb{Z}$ tels que $r_1 s_1 + \cdots + r_n s_n = 1$.
 - (c) Soit $f: E \to \mathbf{R}$ la forme linéaire sur E définie par $f(x_1e_1+\cdots+x_ne_n)=s_1x_1+\cdots+s_nx_n$. Montrer que $f(\Lambda)=\mathbf{Z}$, que $H=\Lambda\cap\ker f$ est un sous-groupe de Λ et que tout élément de Λ s'écrit de façon unique sous la forme ab+u, avec $u\in H$ et $a\in \mathbf{Z}$.
 - (d) Montrer qu'il existe une **Z**-base de Λ contenant le vecteur b.

(e) On suppose $n \ge 2$. Soit F l'orthogonal de la droite $\mathbf{R}b$ engendrée par b, et p la projection orthogonale de E sur F. Montrer que $p(\Lambda)$ est un réseau de F.

Partie B : Réseaux et matrices de Gram -

Soit $\mathscr{E} = (e_1, \ldots, e_n)$ un système de n vecteurs de E. On appelle matrice de Gram associée à \mathscr{E} la matrice définie par les produits scalaires : $G = (e_i.e_j)_{i,j} \in \mathcal{M}_n(\mathbf{R})$. Soit une base orthonormale $\Omega = (\omega_1, \ldots, \omega_n)$ de E et $M = (m_{ij})$ la matrice de \mathscr{E} sur Ω (les colonnes de M contiennent les composantes des vecteurs e_i dans la base Ω).

- 1. Montrer que $G = {}^t MM$. En déduire que $\mathscr E$ est une base de E si et seulement si det $G \neq 0$.
- 2. Soit un réseau Λ de E, muni d'une **Z**-base $\mathscr E$ de matrice de Gram G. Montrer que

$$\det G = (\det \Lambda)^2.$$

- 3. Soit $\mathscr{B} = (b_1, \ldots, b_n)$ une famille de n vecteurs d'un réseau Λ . Montrer que \mathscr{B} est une **Z**-base de Λ si et seulement si $|\det_{\Omega} \mathscr{B}| = \det \Lambda$.
- 4. Soient Λ un réseau de E, F un espace euclidien, et Λ' un réseau de F.
 - (a) Montrer qu'il existe une isométrie $u: E \to F$ telle que $\Lambda' = u(\Lambda)$ si et seulement s'il existe une **Z**-base \mathcal{B} de Λ et une **Z**-base \mathcal{B}' de Λ' telles que les deux matrices de Gram G et G' associées à ces deux bases soient égales.
 - (b) Montrer que les deux propriétés suivantes sont équivalentes :
 - i. Λ et Λ' sont semblables.
 - ii. il existe une **Z**-base \mathcal{B} de Λ , une **Z**-base \mathcal{B}' de Λ' et un réel μ strictement positif tels que si G et G' sont les deux matrices de Gram associées à \mathcal{B} et \mathcal{B}' alors on a $G' = \mu G$.
 - (c) Pour tout réseau Λ on pose :

$$\Gamma_n(\Lambda) = m(\Lambda)^2 (\det \Lambda)^{-\frac{2}{n}}$$
.

Démontrer que si Λ et Λ' sont semblables, alors $\Gamma_n(\Lambda) = \Gamma_n(\Lambda')$ et Card $S(\Lambda) = \text{Card } S(\Lambda')$.

Partie C : Quelques exemples de réseaux -

On note, dans cette partie, $\mathscr{E}_n = (\varepsilon_1, \dots, \varepsilon_n)$ la base canonique de \mathbf{R}^n , que l'on munit de sa structure euclidienne usuelle.

- 1. Le réseau \mathbb{Z}^n . On désigne par \mathbb{Z}^n le réseau dont une \mathbb{Z} -base est \mathscr{E}_n . Calculer det \mathbb{Z}^n , $m(\mathbb{Z}^n)$, $S(\mathbb{Z}^n)$ et Card $S(\mathbb{Z}^n)$.
- 2. Le réseau D_n . On suppose que $n \ge 2$, et on désigne par D_n la partie de \mathbb{Z}^n définie par :

$$D_n = \{x = (x_1, \dots, x_n) \in \mathbf{Z}^n / x_1 + \dots + x_n \equiv 0 \mod 2\}$$

- (a) Montrer que D_n est un sous-groupe de $(\mathbf{Z}^n, +)$.
- (b) On pose $e_1 = \varepsilon_1 + \varepsilon_2$ et $e_j = \varepsilon_j \varepsilon_{j-1}$ pour $j \in \{2, ..., n\}$. Montrer que D_n est un réseau de \mathbb{R}^n admettant $B = (e_i)_{1 \le i \le n}$ comme **Z**-base.
- (c) Calculer $m(D_n)$, $S(D_n)$ et Card $S(D_n)$.

- (d) Calculer $\det D_n$.
- (e) Calculer la matrice de Gram associée à B.
- (f) Montrer que D_2 est semblable à \mathbb{Z}^2 . Donner une similitude f telle que $f(\mathbb{Z}^2) = D_2$.
- (g) Montrer que, pour $n \ge 3$, D_n n'est pas semblable à \mathbb{Z}^n .
- 3. Le réseau A_2 .

Soit H le plan de \mathbb{R}^3 d'équation $x_1 + x_2 + x_3 = 0$. On définit : $A_2 = H \cap \mathbb{Z}^3$.

- (a) Montrer que $\mathscr{B} = (\varepsilon_2 \varepsilon_1, \varepsilon_2 \varepsilon_3)$ est une **Z**-base de A_2 , qui est donc un réseau de H.
- (b) Calculer la matrice de Gram associée à B.
- (c) Calculer $m(A_2)$, $S(A_2)$ et Card $S(A_2)$.
- (d) i. Montrer que A_2 n'est pas semblable à D_2 .
 - ii. Montrer que A_2 est semblable au réseau de \mathbf{R}^2 défini par $\Lambda = \mathbf{Z}u_1 + \mathbf{Z}u_2$ où $u_1 = (1,0)$ et $u_2 = (\frac{1}{2}, \frac{\sqrt{3}}{2})$ (on pourra utiliser la question 4b de la partie précédente).
 - iii. Justifier par un dessin l'appellation « réseau hexagonal » parfois donnée à Λ .

Partie D -

- 1. On suppose dans cette question que $n \ge 2$. Soit Λ un réseau de E et b_1 un élément de $S(\Lambda)$. D'après la dernière question de la partie A, il existe une \mathbf{Z} -base (b_1, u_2, \ldots, u_n) de Λ contenant b_1 , et, si p est la projection orthogonale de E sur $(\mathbf{R}b_1)^{\perp}$, $\Lambda' = p(\Lambda)$ est un réseau de $(\mathbf{R}b_1)^{\perp}$, dont $(p(u_2), \ldots, p(u_n))$ est une \mathbf{Z} -base d'après la question \mathbf{A} -8.
 - (a) Montrer que det $\Lambda = ||b_1|| \det \Lambda'$.
 - (b) Soit un vecteur $x' \in \Lambda'$, et $x_0 \in \Lambda$ tel que $p(x_0) = x'$. On écrit $x_0 = \alpha b_1 + x'$, α étant un nombre réel.

Montrer qu'il existe un entier m tel que $(m-\alpha)^2 \leqslant \frac{1}{4}$.

On pose $x = x_0 - mb_1$; montrer que $x \in \Lambda$, que p(x) = x', puis, en utilisant la propriété que b_1 est de norme minimum, que $||x||^2 \le \frac{4}{3}||x'||^2$.

- 2. Soit Λ un réseau de E.
 - (a) Montrer qu'il existe une **Z**-base (u_1, \ldots, u_n) de Λ telle que

$$\prod_{i=1}^{n} \|u_i\|^2 \leqslant \left(\frac{4}{3}\right)^{\frac{n(n-1)}{2}} (\det \Lambda)^2 \tag{1}$$

(on pourra raisonner par récurrence sur n).

(b) En déduire l'inégalité:

$$m(\Lambda)^2 \leqslant \left(\frac{4}{3}\right)^{\frac{n-1}{2}} (\det \Lambda)^{\frac{2}{n}}.$$
 (2)

Par l'inégalité (2) on a : $\Gamma_n(\Lambda) \leqslant (\frac{4}{3})^{\frac{n-1}{2}}$. La borne supérieure des nombres $\Gamma_n(\Lambda)$, Λ parcourant l'ensemble des réseaux de E, est donc définie ; on la note γ_n . D'après ce qui précède, $\gamma_n \leqslant (\frac{4}{3})^{\frac{n-1}{2}}$.

3. (a) Montrer que $\gamma_2 = \frac{2}{\sqrt{3}}$ (on pourra considérer le réseau A_2).

- (b) Réciproquement, soit un réseau Λ d'un espace vectoriel euclidien E de dimension 2, tel que $\Gamma_2(\Lambda) = \frac{2}{\sqrt{3}}$. On se propose de montrer que Λ est semblable au réseau A_2 .
 - i. Justifier le fait qu'on peut se ramener au cas où $m(\Lambda)=1$, ce que l'on suppose désormais.
 - ii. Soit (u_1, u_2) une **Z**-base de Λ vérifiant l'inégalité (1). Montrer que $||u_1|| = ||u_2|| = 1$ et que le déterminant de (u_1, u_2) dans une base orthornormale de E est égal à $\pm \frac{\sqrt{3}}{2}$.
 - iii. Conclure.

- Partie E -

Dans ce qui suit, E désigne un plan euclidien et (e_1, e_2) une base orthonormale de E. Soit p un nombre premier, K le corps $\mathbf{Z}/p\mathbf{Z}$ et m un diviseur de p-1; on note $f_m: K^* \to K^*$ le morphisme de groupes multiplicatifs défini par $f_m(x) = x^m$.

- 1. (a) Montrer que, pour tout élément $y \in f_m(K^*), y^{(p-1)/m} 1 = 0$.
 - (b) En déduire que Card $f_m(K^*) \leq \frac{p-1}{m}$, puis que Card $\ker f_m \geq m$.
 - (c) En déduire que le polynôme $X^m 1$ est scindé dans K[X].
- 2. On suppose que m=4.
 - (a) Déduire de la question précédente qu'il existe $u \in \mathbb{Z}$ tel que $u^2 + 1 \equiv 0 \mod p$.
 - (b) Soit Λ le réseau de E de **Z**-base $(pe_1, ue_1 + e_2)$. Montrer que, pour tout $x \in \Lambda$, $||x||^2$ est un entier divisible par p.
 - (c) Montrer qu'il existe un vecteur non nul de Λ dont le carré de la norme vaut p (on pourra utiliser l'inégalité (2)).
 - (d) En déduire que, pour tout nombre premier $p \equiv 1 \mod 4$, il existe $a, b \in \mathbf{Z}$ tels que $p = a^2 + b^2$.
- 3. On suppose que m = 8.
 - (a) Montrer que le polynôme X^4+1 est scindé dans K[X]. En déduire qu'il existe $u\in \mathbb{Z}$ tel que $u^2+2\equiv 0 \mod p$ (si z est une racine de X^4+1 , on pourra calculer $(z-\frac{1}{z})^2$).
 - (b) En déduire que, pour tout nombre premier $p \equiv 1 \mod 8$, il existe $a,b \in \mathbf{Z}$ tels que $p = a^2 + 2b^2$ (on considéra le réseau de E de \mathbf{Z} -base $(pe_1, ue_1 + \sqrt{2}e_2)$).
- 4. On suppose que m=3.
 - (a) Montrer que $X^2 + X + 1$ est scindé dans K[X]. En déduire qu'il existe $u \in \mathbf{Z}$ tel que $u^2 + 3 \equiv 0 \mod p$.
 - (b) Soit Λ le réseau de E de **Z**-base $(pe_1, ue_1 + \sqrt{3}e_2)$. Montrer que, pour tout $x \in \Lambda$, $||x||^2$ est un entier divisible par p, et que $||x||^2$ est soit impair, soit divisible par 4.
 - (c) En déduire que, pour tout nombre premier $p \equiv 1 \mod 3$, il existe $a,b \in \mathbf{Z}$ tels que $p = a^2 + 3b^2$.

