Cognome: Nome: Matricola:
Prova scritta di ASM - Modulo Analisi Esplorativa del 14.02.2017
La durata della prova è di 90 minuti. Si svolgano gli esercizi A e B riportando il risultato dove indicato.
Esercizio A (Punti: 14)
1. Decomposizione Spettrale e Analisi delle Componenti Principali
Alla matrice X sono associati i seguenti autovalori e autovettori normalizzati: $\lambda_1=9,\ \lambda_2=6,\ v_1=0$
$\begin{bmatrix} 1/\sqrt{5} \\ 2/\sqrt{5} \end{bmatrix} e \frac{v_2}{2\times 1} = \begin{bmatrix} 2/\sqrt{5} \\ -1/\sqrt{5} \end{bmatrix}.$
a. Determinare la matrice di varianze/covarianze $S = \begin{bmatrix} & & & & \\ & & & & \\ & & & & \\ & & & &$
b. Riportare
• varianza totale = e generalizzata =
• l'indice di variabilità relativo (<u>arrotondare al secondo decimale</u>) =
c. Determinare, <u>arrotondando al secondo decimale</u> , $S_{p \times p}^{1/2} = \begin{bmatrix} & & & & \\ & & & & \\ & & & & \\ & & & &$
d. Calcolare la correlazione tra la seconda colonna \tilde{x}_2 di $\tilde{X}_n \in \mathbb{R}^n$ e i punteggi y_2 della seconda componente
principale, <u>arrotondando al secondo decimale</u> . $n \times 1$ $n \times p$ $n \times 1$
=
2. Distanze e Cluster Analysis
· ·
a. Per una generica matrice di dati X_n , si riporti la definizione di distanza di Minkowski $d_m(u_i, u_l)$ di ordine $m \ge 1$ tra due unità statistiche u_i' e u_l' . $1 \times p 1 \times p$
$d_m(u_i, u_l) =$
b. Per una generica matrice di distanze $D_{n\times n}$ con elemento di posizione (i,l) pari a $d(u_i,u_l)$, si riporti la definizione di legame medio tra due gruppi G_1 e G_2 .
$d(G_1, G_2) =$

c. Si calcoli il valore dell'indice di similarità di Jaccard per il seguente esempio:

$$\left[\begin{array}{cccc}0&1&0&1&1\\0&1&0&1&0\end{array}\right]=\left[\begin{array}{c}u_1'\\u_2'\end{array}\right]$$

$$s_J(u_1, u_2) =$$

- 3. Analisi Fattoriale
- a. Si riportino le assunzioni del modello fattoriale con k fattori $x = \int\limits_{p \times k} \int\limits_{k \times 1} f + \int\limits_{p \times 1} u$.

$$- \mathbb{E}(\underset{p \times 1}{x}) =$$

$$-\mathbb{E}(f) =$$

$$-\mathbb{E}(f) = , \mathbb{C}\text{ov}(f) =$$

$$-\mathbb{E}(u) = , \mathbb{C}\text{ov}(u) =$$

$$-\mathbb{E}(u) =$$

$$, \mathbb{C}ov(\underbrace{u}_{n\times 1}) =$$

$$- \operatorname{Cov}(\underbrace{u}_{p \times 1}, \underbrace{f}_{k \times 1}) =$$

b. La seguente tabella riporta la stima della matrice di pesi fattoriali $\hat{\Lambda}_{5\times 2}$ di un modello fattoriale a due fattori ottenuta a partire dalla matrice di correlazione $R_{5\times5}$.

$$\hat{\Lambda}_{5\times2} = \begin{bmatrix} .56 & ? \\ .78 & -.53 \\ .65 & .75 \\ .94 & -.10 \\ ? & -.54 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \end{bmatrix}$$

a. Sapendo che le varianze specifiche di x_1 e x_5 sono pari a $\hat{\psi}_1=0.02$ e $\hat{\psi}_5=0.07$, determinare, arrotondando al secondo decimale,

$$\hat{\lambda}_{12} = \dots, \hat{\lambda}_{51} = \dots$$

4. Dimostrazione

Dimostrare che la matrice di centramento $\underset{n \times n}{H}$ è idempotente, giustificano tutti i passaggi.

Esercizio B (Punti: 13)

Si consideri il dataset iris presente nella libreria datasets che contiene n = 150 unità statistiche (fiori di genere Iris) relative alle 4 variabili

- Sepal.Length (lunghezza dei sepali)
- Sepal. Width (larghezza dei sepali)
- Petal.Length (lunghezza dei petali)
- Petal. Width (larghezza dei petali)

più l'ultima colonna Species che specifica la specie (con modalità setosa, versicolor e virginica).

1. Si consideri la matrice $X_{150\times4}$ che contiene le seguenti variabili: Sepal.Length, Sepal.Width, Petal.Length e Petal.Width. Si calcoli il quadrato della distanza di Mahalanobis di ciascuna unità statistica u_i' dal baricentro \bar{x}' e si riporti il valore medio e il valore massimo, arrotondando i calcoli al secondo decimale.

$$\frac{1}{150} \sum_{i=1}^{150} d_M^2(u_i, \bar{x}) = \dots$$

$$\max_{i=1,\dots,150} \{d_M^2(u_i, \bar{x})\} = \dots$$

- 2. Per la matrice di dati $X_{150\times4}$, utilizzare l'algoritmo delle K-medie (specificando algorithm = "Lloyd") per formare K=3 gruppi, inizializzando i centroidi con le osservazioni di riga 30, 80 e 110, ed eseguendo l'algoritmo una sola volta. Riportare
- a. la numerosità dei 3 gruppi ottenuti;
- b. i valori della tabella a doppia entrata che incrocia la classificazione ottenuta e la variabile Species;
- c. il valore medio della silhouette (<u>arrotondando al secondo decimale</u>) per i tre gruppi (utilizzando il comando **silhouette** presente nella libreria **cluster**) considerando come matrice delle distanze quella ottenuta con la metrica Euclidea.

a.	Numerosità	gruppo 1	l =	, gruppo $2 = \dots$, gruppo	3 =		
		setosa	versicolor	virginica				
b.	gruppo 1							
	gruppo 2							
	gruppo 3							
c.	Valore medi	o silhoue	tte per il gru	uppo 1 =	, gruppo $2 =$, grupp	oo 3 =	

- 3. Partendo dalla matrice $X_{150\times4}$ determinata al punto a., si calcoli la matrice dei dati standardizzati $Z_{150\times4}$. Si conduca l'analisi delle componenti principali basata su $Z_{150\times4}$ utilizzando il comando prcomp(), riportando (arrotondando alla seconda cifra decimale)
- a. la proporzione di varianza spiegata dalle prime due componenti principali
- b. l'equazione del punteggio (score) y_{i2} della seconda componente principale per l'i-sima unità statistica
- c. la correlazione tra i punteggi della prima componente principale e la prima colonna di ${\cal Z}$

		_								_	
•	Proporziono	di	verienze	eniorata	dalla	nrimo	duo	comi	nononti	principali	
a.	Proporzione	uı	varianza	spiegata	uane	brune	aue	COIII	DOMETIN	principan	

b. Punteggio y_{i2} della prima componente principale per l'i-sima unità statistica:

$$y_{i1} = \dots z_{i1} + \dots z_{i2} + \dots z_{i3} + \dots z_{i4}$$

c. Correlazione tra i punteggi della prima componente principale e la prima colonna di $Z:\ldots$