Deep Learning for Audio

Lecture 6

Pavel Severilov

Al Masters

2023

1. Neural Vocoders

2. WaveNet

3. Parallel WaveGAN

4. DiffWave

- 1. Neural Vocoders
- 2. WaveNet
- 3. Parallel WaveGAN
- 4. DiffWave

Neural Vocoders

Neural Vocoders

Model	Model	MOS on
type		LJ Speech
Autoregressive	WaveNet	3.68
	WaveRNN	3.96
GAN	MelGAN	3.73
	Parallel	3.99
	WaveGAN	
Diffusion	WaveGrad	3.85
	DiffWave	4.07
	Griffin-Lim	3.68
	Ground	4.10
	Truth	

AlBadawy et al., Vocbench: A Neural Vocoder Benchmark for Speech Synthesis, IEEE ICASSP, 2022

- 1. Neural Vocoders
- 2. WaveNet
- 3. Parallel WaveGAN
- 4. DiffWave

WaveNet

Figure: WaveNet architecture: uses causal dilated convolutions

- The joint probability of a waveform $x = \{x_1, \dots, x_T\}$: $p(\mathbf{x}) = \prod_{t=1}^{T} p(x_t \mid x_{1:t-1})$
- ▶ Each conditional $p(x_t | x_{1:t-1})$ models the distribution for the timestamp t

Causal Convolution

Figure: Standard vs causal convolutions. Causal makes convs autoregressive

Dilated Convolution

Figure: Non-dilated vs dilated causal convolutions. Dilated convs increase receptive fields

Conditional gated units

Gated activation unit as used in the gated PixelCNN + condition y

$$\mathbf{z} = \tanh \left(W_{f,k} * \mathbf{x} + V_{f,k} * \mathbf{y} \right) \odot \sigma \left(W_{g,k} * \mathbf{x} + V_{g,k} * \mathbf{y} \right).$$

* – convolution, \odot – element-wise multiplication, $\sigma(\cdot)$ – sigmoid function, f and g – filter and gate, respectively, W – learnable convolution filter, V – learnable linear projection

Mu Law Encoding

- ▶ Raw audio \sim 16-bit integer values \Rightarrow softmax layer need to output 65,536 probabilities per timestep
- Solution: apply a μ -law transformation to the data, and then quantize it to 256 possible values:

$$f(x_t) = \operatorname{sign}(x_t) \frac{\ln(1 + \mu |x_t|)}{\ln(1 + \mu)}, \quad -1 < x_t < 1, \mu = 255$$

- 1. Neural Vocoders
- 2. WaveNet
- 3. Parallel WaveGAN
- 4. DiffWave

Parallel WaveGAN

Figure: Parallel WaveGAN

Yamamoto et al., Parallel Wavegan: A Fast Waveform Generation Model Based on Generative Adversarial Networks with Multi-Resolution Spectrogram, IEEE ICASSP, 2020

STFT Loss

$$\mathcal{L}_{\mathrm{s}}(\textit{G}) = \mathbb{E}_{\textbf{z} \sim \textit{p}(\textbf{z}), \textbf{x} \sim \textit{p}_{\textit{data}}} \left[\mathcal{L}_{\mathrm{sc}}(\textbf{x}, \hat{\textbf{x}}) + \mathcal{L}_{\mathrm{mag}}(\textbf{x}, \hat{\textbf{x}}) \right]$$

$$\mathcal{L}_{\mathrm{sc}}(\mathbf{x}, \mathbf{\hat{x}}) = \frac{\left\| |\mathrm{STFT}(\mathbf{x})| - \left| \mathrm{STFT}^{\mathrm{T}}(\mathbf{\hat{x}}) \right| \right\|}{\left\| |STFT(\mathbf{x})| \right\|_{F}}$$

$$\mathcal{L}_{\text{mag}}(\mathbf{x}, \mathbf{\hat{x}}) = \frac{1}{N} \left\| \log |\text{STFT}(\mathbf{x})| - \log |\text{STFT}(\mathbf{\hat{x}})| \right\|_{1}$$

$$\mathcal{L}_{\mathrm{aux}}(G) = rac{1}{M} \sum_{}^{M} \mathcal{L}_{\mathrm{s}}^{(m)}(G), \mathsf{M} - \mathsf{number of STFT losses}$$

m=1 Takaki et al., STFT Spectral Loss for Training a Neural Speech Waveform Model, IEEE ICASSP. 2019

GAN Loss

Discriminator Loss:

$$\mathcal{L}_{\mathrm{D}}(\textit{G},\textit{D}) = \mathbb{E}_{\textbf{x} \sim \textit{p}_{\mathrm{data}}}[(1-\textit{D}(\textbf{x}))^{2}] + \mathbb{E}_{\textbf{z} \sim \textit{N}(0,\textit{I})}[\textit{D}(\textit{G}(\textbf{z}))^{2}]$$

Generator Loss

$$L_{\mathrm{adv}}(G, D) = \mathbb{E}_{\mathbf{z} \sim \mathcal{N}(0, I)} \left[(1 - D(G(\mathbf{z})))^2 \right]$$

$$L_{\mathrm{G}}(G,D) = L_{\mathrm{aux}}(G) + \lambda_{\mathrm{adv}}L_{\mathrm{adv}}(G,D)$$

- 1. Neural Vocoders
- 2. WaveNet
- 3. Parallel WaveGAN
- 4. DiffWave

Diffusion models idea

Diffusion probabilistic model: parameterized Markov chain from data x_0 to the latent variable x_T

$$q(x_1, \dots, x_T|x_0) = \prod_{t=1}^T q(x_t|x_{t-1})$$

Reverse process: Markov chain from x_T to x_0 parameterized by θ :

$$p_{\text{latent}}(x_T) = \mathcal{N}(0, I), \quad p_{\theta}(x_0, \dots, x_{T-1} | x_T) = \prod_{t=1}^{I} p_{\theta}(x_{t-1} | x_t)$$

DiffWave

- ▶ **Sampling**: reverse process $x_T \sim \mathcal{N}(0, I)$, $x_{t-1} \sim p_{\theta}(x_{t-1}|x_t)$ for $t = T, T 1, \dots, 1$. x_0 sampled data.
- **Training**: $p_{\theta}(x_0) = \int p_{\theta}(x_0, \dots, x_{T-1}|x_T) \cdot p_{\text{latent}}(x_T) \mathbf{d}x_{1;T}$ (likelihood) is intractable to calculate ⇒ model trained by maximizing its variational lower bound (ELBO):

$$\begin{split} & \mathbb{E}_{q_{\text{data}}(x_0)} \log p_{\theta}(x_0) \geq \\ & \geq \mathbb{E}_{q(x_0, \dots, x_T)} \log \frac{p_{\theta}(x_0, \dots, x_{T-1} | x_T) \cdot p_{\text{latent}}(x_T)}{q(x_1, \dots, x_T | x_0)} := \text{ELBO} \end{split}$$

DiffWave: advantages

- ▶ Non-autoregressive: much faster than WaveNet
- ▶ Compact model: smaller footprint than flow-based models
- No auxiliary losses in training (e.g., spectrogram-based losses): no mode collapse like in GANs/VAEs