

64-189

Projekt: Entwurf eines Mikrorechners

http://tams.informatik.uni-hamburg.de/ lectures/2013ws/projekt/mikrorechner

Einführung –

Andreas Mäder, Bernd Schütz

Universität Hamburg Fakultät für Mathematik. Informatik und Naturwissenschaften Fachbereich Informatik

Technische Aspekte Multimodaler Systeme

卣

17. Oktober 2013

64-189 Projekt: Entwurf eines Mikrorechner

Organisation

► Termine

Zeit Donnerstag 14:00 – 18:30 Uhr Raum F-304 + Arbeitsräume: F-330a, F-333, F-326

- 1. Plenum
 - Einführung am Anfang
 - Vorstellung von (Zwischen-) Ergebnissen
- 2. praktische Arbeit in Kleingruppen
- Selbstorganisation der Arbeitsgruppen
- ▶ Info auf den Web-Seiten / im Wiki http://tams.informatik.uni-hamburg.de/lectures/2013ws/ projekt/mikrorechner

Ziel des Projekts

- ► Entwurf und Programmierung eines Mikrorechners
- ► aktuelle Architekturkonzepte
 - ► RISC-Befehlssatz
 - Pipelineverarbeitung
 - Caches
 - Sprungvorhersage
 - parallele Ausführungseinheiten
 - Pipeline Forwarding
 - virtueller Speicher
 - Interrupts

Motivation

Zwei Aspekte der Rechnerarchitektur

- 1. Hardwarestruktur: Art und Anzahl der Hardware-Betriebsmittel und deren Verbindungsstruktur
 - Mikroarchitektur, hier z.B. Harvard-Architektur
- 2. Operationsprinzip: das funktionelle Verhalten der Architektur
 - = ISA Instruction Set Architecture
 - = Programmierschnittstelle
- → Möglichkeiten zur Arbeit in dem Projekt

Arbeit in dem Projekt

1. Hardware-Bezug

- VHDL-Implementation der zugrundeliegenden Architektureinheiten
- Simulation der Hardwareeinheiten
- Synthesewerkzeuge zur Implementation

2. Software-Bezug

- Assembler
- Demonstrations- / Anwendungsprogramm
- Compiler
- Betriebssystemfunktionalität

64-189 Projekt: Entwurf eines Mikrorechners

Realisierung des Systems

FPGA-Prototypenplatine

64-189 Projekt: Entwurf eines Mikrorechner

- programmierbare Hardware: FPGA
 - Cyclone III EP3C25F324
 - ▶ 24 624 LEs \approx 290 000 Gatter
 - ▶ 594 Kbit (interner) Speicher
 - ▶ 66 Hardwaremultiplizierer: 18 × 18 bit
 - 4 PLLs
- Speicher
 - 1MB SRAM
 - 32MB DDR SDRAM
 - ▶ 16MB Flash
- ► Ein-/Ausgabe
 - 4 Taster
 - 4 LEDs

Realisierung des Systems (cont.)

▶ interner Aufbau

Motivation

Realisierung des Systems (cont.)

Realisierung des Systems (cont.)

I/O-Erweiterungsplatine

Realisierung des Systems (cont.)

- ▶ LCD Touch-Screen, 800 × 400
- VGA Ausgang
- ► Composite TV-Eingang
- ▶ 24-bit Audio I/O
- ▶ 10/100 Mbit Ethernet, PHY+MAC
- serieller Anschluss
- SD Karte

weiteres Vorgehen

- Grundlagenvermittlung / Vorlesung
- Festlegung der ISA
- 2.a Hardwareentwurf
- 2.b Softwareentwurf
 - Koordination
 - Diskussion der Ergebnisse

Plenum

Plenum

Kleingruppen

Kleingruppen

Plenum

Plenum

64-189 Projekt: Entwurf eines Mikrorechners

weiteres Vorgeher

Terminplanung

- 17.10. "Rechnerarchitekturen: grundlegende Konzepte"
- 24.10. "VLSI- und Systementwurf" "Einführung in VHDL"
 - + praktische Übungen mit den EDA-Werkzeugen
- 31.10. Festlegung der ISA

. .