

Processos Estocásticos e Aplicações

Licenciatura em Matemática Aplicada à Economia e Gestão

Nuno M. Brites Setembro de 2025

Conteúdo

			5
1	Intro	odução aos processos estocásticos	7
	1.1	Conceitos fundamentais	7
	1.2	Tipos clássicos de processos estocásticos	12
		1.2.1 Processos de incrementos independentes e estacionários	12
		1.2.2 Processo estocástico real de 2ª ordem	13
		1.2.3 Processos estacionários	14
		1.2.4 Martingalas	17
		1.2.5 Processos de Markov	18
2	Cad	leias de Markov em tempo discreto	19
	2.1	Introdução	19
		2.1.1 Conceitos básicos	
	2.2	Classificação de estados de uma C.M	23
		2.2.1 Decomposição do espaço de estados	31
	2.3	Probabilidades de absorção em estados recorrentes	
	2.4	Teoremas limite	36
3	Cad	leias de Markov em tempo contínuo	43
	3.1	Processo de Poisson homogéneo	43
	3.2	Processo de nascimento puro	50
	3.3	Processo de nascimento e morte	52
		3.3.1 Definição e equações de Chapman–Kolmogorov	52
		3.3.2 Tempo de espera	53
		3.3.3 Equações diferenciais de processos de nascimento e morte	54
4	Con	nplementos de processos estocásticos	59
	4.1	Processo de Wiener	59
	4.2	O integral de Itô	
5	Bibl	liografia	77

4 CONTEÚDO

Todas as informações relacionadas com esta UC encontram-se no Fénix.

Agradeço ao Professor Alfredo Egídio dos Reis (ISEG) a cedência de alguns exercícios presentes neste texto. Agradeço igualmente ao Professor Pedro Soares (ISEG) pela profunda e competente revisão do texto.

Todos os erros e omissões são da minha inteira responsabilidade. Caso detete algum erro ou gralha, muito agradeço que me informe. Sugestões e comentários também serão muito bem-vindos.

Obrigado,

Nuno M. Brites

nbrites@iseg.ulisboa.pt

ISEG, Setembro de 2025

Todos os direitos reservados. É expressamente proibida a reprodução, cópia, distribuição, comunicação pública, transformação ou qualquer outra forma de utilização, total ou parcial, dos conteúdos deste sítio, incluindo textos, código e imagens, sem autorização prévia e por escrito do autor. Qualquer utilização não autorizada constitui violação dos direitos de autor e poderá dar lugar à responsabilidade civil e criminal nos termos da lei em vigor.

2025 | Nuno M. Brites | nbrites@iseg.ulisboa.pt

6 CONTEÚDO

Capítulo 1

Introdução aos processos estocásticos

1.1 Conceitos fundamentais

Nesta secção procede-se a uma revisão sumária de noções basilares de probabilidade e de variáveis aleatórias. Seguidamente, introduz-se o conceito de processo estocástico, entendido como uma família de variáveis aleatórias definidas sobre um espaço de probabilidade e indexadas por um conjunto de parâmetros, usualmente interpretados como o tempo. Finalmente, analisam-se algumas classes fundamentais de processos estocásticos, em particular os processos com incrementos independentes e estacionários, bem como os processos estacionários em sentido forte e em sentido fraco.

Designa-se, como habitualmente, por **espaço amostral** o conjunto de todos os resultados possíveis de uma experiência aleatória, representado por Ω . No que se segue, consideramos que Ω é um conjunto não vazio.

Definição 1.1 (Sigma-álgebra). Uma σ -álgebra é uma família $\mathcal F$ de subconjuntos de Ω que satisfaz as seguintes propriedades:

- i) $\emptyset \in \mathcal{F} \in \Omega \in \mathcal{F}$:
- ii) Se $A \in \mathcal{F}$, então $A^c \in \mathcal{F}$, onde A^c denota o complementar de A relativamente a Ω ;
- iii) Se $A_n\subseteq \mathcal{F},\ n\in\mathbb{N}$, então $\bigcup_{n\in\mathbb{N}}A_n\in \mathcal{F}.$

Os elementos de \mathcal{F} designam-se por conjuntos mensuráveis (ou \mathcal{F} -mensuráveis, para explicitar a σ -álgebra a que pertencem).

Definição 1.2 (Medida de probabilidade). Uma medida de probabilidade P na σ -álgebra \mathcal{F} é uma função $P:\mathcal{F}\to [0,1]$ que satisfaz as seguintes propriedades:

- i) $P(\emptyset) = 0$;
- ii) $P(\Omega) = 1$;
- iii) Se $(A_n)_{n\in\mathbb{N}}$ é uma família de conjuntos dois a dois disjuntos em \mathcal{F} , então

$$P\left(\bigcup_{n\in\mathbb{N}}A_n\right) = \sum_{n\in\mathbb{N}}P(A_n).$$

Definição 1.3 (Espaço de probabilidade). Um espaço de probabilidade é um terno (Ω, \mathcal{F}, P) , onde Ω é um conjunto, \mathcal{F} é uma σ -álgebra em Ω e P é uma medida de probabilidade em \mathcal{F} .

Os elementos de \mathcal{F} chamam-se acontecimentos; $P(A), A \in \mathcal{F}$, representa a probabilidade do acontecimento A.

Definição 1.4 (Sigma-álgebra de Borel). Uma σ -álgebra de Borel, \mathcal{B} , definida num conjunto E satisfaz as seguintes propriedades:

- $\emptyset \in \mathcal{B}$ e $E \in \mathcal{B}$;
- \mathcal{B} é fechada relativamente ao complementar, isto é, $\forall A \in \mathcal{B} : A^c \in \mathcal{B}$;
- $\ \, \mathbb{B} \,\, \text{\'e fechada relativamente \'a reuni\'ao numer\'avel, isto\'e, se} \,\, A_i \in \mathbb{B} \,\, \text{para todo} \,\, i \in \mathbb{N}, \, \text{ent\'ao} \,\, \bigcup_{i=1}^n A_i \in \mathbb{B}.$

Uma σ -álgebra de Borel é um caso particular de uma σ -álgebra e aplica-se aos conjuntos abertos de E. A σ -álgebra de Borel mais comum é a σ -álgebra de Borel em $\mathbb R$, que se denota por $\mathcal B_{\mathbb R}$, ou simplesmente $\mathcal B$ caso não existam ambiguidades.

Definição 1.5 (Variável aleatória). Seja (Ω, \mathcal{F}, P) um espaço de probabilidade. Diz-se que uma função $X:\Omega \to \mathbb{R}$ é uma variável aleatória (v.a.) se

$$\forall B \in \mathcal{B}: X^{-1}(B) \in \mathcal{F},$$

onde \mathcal{B} denota a σ -álgebra de Borel em \mathbb{R} .

Adicionalmente, diz-que X é \mathcal{F} —mensurável, ou simplesmente mensurável quando a σ -álgebra associada estiver subentendida.

Em termos gráficos,

Teorema 1.1. Seja $X:\Omega
ightarrow \mathbb{R}$ uma variável aleatória. Defina-se

$$\sigma(X) = \{X^{-1}(B) : B \in \mathcal{B}\}.$$

Então, $\sigma(X)$ é a menor σ -álgebra sobre Ω para a qual X é mensurável. Esta -álgebra, que está contida em $\mathfrak F$, designa-se por -álgebra gerada por X.

Definição 1.6 (Média e variância). Sejam (Ω, \mathcal{F}, P) um espaço de probabilidade e $X : \Omega \to \mathbb{R}$ uma variável aleatória. Define-se o **valor esperado** (ou média) e a **variância** de X da seguinte forma:

1. Caso geral (medida de probabilidade *P*):

$$E(X) = \int_{\Omega} X dP, \quad \operatorname{Var}(X) = \int_{\Omega} (X - E(X))^2 dP,$$

desde que estes integrais existam e sejam finitos.

2. Caso discreto:

Se X assume valores em um conjunto discreto $\{x_1,x_2,\dots\}$ com probabilidades $p_i=P(X=x_i)$, então

$$E(X) = \sum_i x_i \, p_i, \quad \operatorname{Var}(X) = \sum_i (x_i - E(X))^2 \, p_i.$$

3. Caso contínuo:

Se X possui densidade $f_X(x)$ relativamente à medida de Lebesgue, então

$$E(X) = \int_{-\infty}^{+\infty} x f_X(x) \, dx, \quad \operatorname{Var}(X) = \int_{-\infty}^{+\infty} (x - E(X))^2 f_X(x) \, dx.$$

Definição 1.7. Sejam (Ω, \mathcal{F}, P) um espaço de probabilidade e X uma variável aleatória definida nesse espaço.

i) Diz-se que X é uma variável aleatória de quadrado integrável quando

$$E(X^2) < +\infty;$$

- ii) O espaço L^2 é o conjunto das variáveis aleatórias de quadrado integrável definidas em (Ω, \mathcal{F}, P) ;
- iii) A norma L^2 é a norma definida por

$$\forall X \in L^2 : ||X||_{L^2} = (E(X^2))^{1/2}.$$

 $\it Nota$. Relativamente à definiçao de espaço $\it L^2$, na realidade deveríamos dizer: "espaço constituído pelas classes de equivalência de variáveis aleatórias...", isto é, para duas variáveis aletórias $\it X$ e $\it Y$ definidas em $\it (\Omega, \mathcal{F}, P)$, considere-se a relação de equivalência

$$X \sim Y \iff P(X \neq Y) = 0$$

e constrói-se o espaço L^2 a partir da classe de equivalência $[X] = \{Y : X \sim Y\}$.

Definição 1.8. Seja $(X_n:n\in\mathbb{N})$ uma sucessão de variáveis aleatórias em L^2 . Diz-se que $(X_n:n\in\mathbb{N})$ converge para X em L^2 se

$$||X_n - X||_{L^2} \to 0$$
 quando $n \to +\infty$,

ou, de modo equivalente,

$$E((X_n - X)^2) \to 0$$
 quando $n \to +\infty$.

A este tipo de convergência chama-se convergência em média quadrática e representa-se por

$$X_n \xrightarrow{m.q.} X \quad \text{quando} \quad n \to +\infty$$

ou

$$\lim_{n \to +\infty} X_n = X.$$

Definição 1.9. Sejam X uma variável aleatória e $(X_n:n\in\mathbb{N})$ uma sucessão de variáveis aleatórias definidas no espaço de probabilidade (Ω,\mathcal{F},P) .

i) Diz-se que X_n converge quase certamente (q.c.), ou que converge com probabilidade 1 para X, e denota-se por

$$X_n \xrightarrow{q.c.} X \quad \text{ou} \quad \lim_{n \to +\infty} X_n = X \quad q.c.,$$

 $\text{se }X_n(\omega)\to X(\omega)\text{ para todo }\omega\in\Omega\smallsetminus N\text{, onde }N\in\mathcal{F}\text{ \'e um conjunto de medida nula, isto \'e, }P(N)=0.$

ii) Diz-se que X_n converge em probabilidade (ou converge estocasticamente) para X_n e denota-se por

$$X_n \overset{P}{\to} X \quad \text{ou} \quad P - \lim_{n \to +\infty} X_n = X,$$

se, para todo $\delta>0$,

$$P(|X_n-X|>\delta)\to 0\quad \text{quando}\quad n\to +\infty.$$

Quando se pretende estudar fenómenos que não têm qualquer evolução, usam-se **amostras aleatórias** (repetições de observações i.i.d.'s). Mas, e se estivermos perante **variáveis aleatórias** que já se observaram (ou podiam observar) no passado e que poderemos observar no futuro? Tal ocorre quando pretendemos estudar, por exemplo:

- cotação diária de uma ação na bolsa de valores;
- evolução da taxa de desemprego num dado período;
- número de pessoas que chegam a uma certa fila para serem atendidas;
- evolução da temperatura num local;
- ...

Nos casos acima descritos dispomos apenas de uma única observação (chamada **trajetória**) a partir da qual se pretende extrair conclusões. Nesta trajetória não existe independência entre observações. Tipicamente pretendemos fazer:

- previsão de observações futuras;
- identificação do tipo de evolução;
- filtragem (previsão com a ajuda de observações parciais).

Definição 1.10 (Processo estocástico). Um **processo estocástico** (PE) é uma família de v.a $\{X_t, t \in T\}$, definida sobre o mesmo espaço de probabilidade (Ω, \mathcal{F}, P) e assumindo valores num mesmo espaço mensurável (E, \mathcal{B}) , onde:

- *T* : espaço dos parâmetros (ou do tempo);
- Ω : espaço de resultados possíveis;
- $\mathcal{F}: \sigma{-}$ álgebra definida em Ω ;
- P: medida de probabilidade;
- *E* : conjunto de espaço de estados (a definir posteriormente);
- $\mathcal{B}: \sigma$ -álgebra de Borel definida em E.

Nota .

- Dado um espaço de probabilidade (Ω, \mathcal{F}, P) e um conjunto arbitrário T, um PE é uma função $X(t, \omega)$ definida em $T \times \Omega$, tal que, para cada $t \in T$, $X_t(\omega)$ é uma v.a..
- O conceito de PE generaliza o de v.a. fazendo-a depender de um parâmetros t com domínio em T. Assim, podemos interpretar um PE como uma família ordenada de v.a.'s.

■ Para cada ω_0 fixo, $\omega_0 \in \Omega$, $X(\omega_0,t)$ é uma função não aleatória de t. Deste modo, um PE pode identificar-se com um sistema que a cada ponto $\omega \in \Omega$, faz corresponder uma função de parâmetro t. Cada uma dessas funções diz-se uma trajetória ou realização do processo X.

Definição 1.11 (Trajetória de um processo estocástico). Chama-se **trajetória** ou **realização** de um processo estocástico X à coleção $\{X_t(\omega), t \in T\}, \ \forall \ \omega \in \Omega.$

Nota . Em geral $(E,\mathcal{B})=(\mathbb{R}^n,\mathcal{B}_{\mathbb{R}^n})$, onde:

- \mathbb{R}^n : conjunto dos possíveis valores do processo X_t ;
- $\mathfrak{B}_{\mathbb{R}^n}:\sigma$ —álgebra dos borelianos de \mathbb{R}^n ;
- Se n=1 o PE chama-se processo estocástico univariado;
- Se n > 1 o PE chama-se processo estocástico multivariado;
- t : instante onde é feita a observação ou o período relativo a essa observação;
- Se E for finito ou infinito numerável então X é um PE de espaço de estados discreto;
- Se $E=\mathbb{R}$ então X é um PE de valores reais;
- Se T for finito ou infinito numerável então X é um PE de tempo discreto (tipicamente $T=\mathbb{N}_0$ ou $T=\mathbb{Z}$);
- Se T for infinito não numerável então X é um PE de tempo contínuo (tipicamente $T=\mathbb{R}^+_0$ ou $T=\mathbb{R}$).

Segue-se um exemplo de uma trajetória de um PE:

Exemplo de uma trajetória de um processo estocástico

Exercício 1.1. Para cada um dos seguintes processos estocásticos indique o espaço parâmetro e o espaço de estados:

(a) Sejam X_i a quantidade de cerveja (em litros) pedida pelo i-ésimo cliente que entrou num bar e N(t) o

número de clientes que chegaram ao bar até ao instante t. O processo estocástico é

$$Z_t = \sum_{i=1}^{N(t)} X_i, \ t \ge 0,$$

onde Z_t representa a quantidade de cerveja pedida até ao instante t.

(b) Trinta e seis pontos são escolhidos aleatoriamente no Alaska de acordo com alguma distribuição de probabilidade. Centrado em cada um desses pontos é desenhado um círculo de raio aleatório originando assim uma região Δ do Alaska. Seja X(A) o preço do petróleo extraído no solo da região $A\cap\Delta$. O processo é

$$(X(B): B \subset Alaska).$$

- (c) Um bebé dorme numa de três posições: (i) de barriga para cima com feição radiante; (ii) enrolada na posição fetal; (iii) na posição fetal, chupando o dedo polegar. Seja X_t a posição de dormir do bebé no instante t. O processo é $(X_t:\,t\geq 0)$.
- (d) Seja X_n o estado (ligado ou desligado) de uma fotocopiadora de um escritório ao meio-dia do n—ésimo dia. O processo é $(X_n:\ n=1,2,\dots)$.

Exercício 1.2.

Seja $\Omega=\{\omega_1,\omega_2,\omega_3,\omega_4\}$ com $P(\omega_i)=1/4$, para i=1,2,3,4. Considere-se o processo estocástico $\{X(t,\omega):\ t\geq 0\}$ tal que

$$X(t, \omega_i) = t \times i, \quad i = 1, 2, 3, 4.$$

- (a) Classifique o processo em causa;
- (b) Determine a função distribuição de X para t=1;
- (c) Indique as trajectórias do processo;
- (d) Determine a função distribuição conjunta de (X(1), X(2), X(3)).

Exercício 1.3.

Considere uma sucessão infinita de provas de Bernoulli. Seja X_t o número de provas até obter um sucesso pela t-ésima vez, t=1,2,...

- (a) Defina o exposto como um processo estocástico, indicando o espaço dos parâmetros e dos estados.
- (b) Determine, para cada t, a função de probabilidade de X_t .
- (c) Represente graficamente uma trajectória do processo.
- (d) Determine a distribuição conjunta de (X_2, X_3, X_4) .
- (e) Calcule $P(X_4=x\mid X_3=x_3,X_2=x_2)$ e $P(X_4=x\mid X_3=x_3)$. Comente o resultado.
- (f) Determine a distribuição da v.a. "tempo ou número de provas entre dois sucessos de Bernoulli".
- (g) Determine a distribuição da v.a. "número de provas necessárias até à ocorrência de dois sucessos consecutivos de Bernoulli".

1.2 Tipos clássicos de processos estocásticos

1.2.1 Processos de incrementos independentes e estacionários

Definição 1.12 (Processo com incrementos inpedendentes). $\{X_t,\ t\in T\}$ é um PE com **incrementos** independentes sse

$$\forall \ n \in \mathbb{N}, \forall \ t_1, \dots, t_n \in T: \ t_1 < t_2 < \dots < t_n \implies X_{t_2} - X_{t_1}, X_{t_3} - X_{t_2}, \dots, X_{t_n} - X_{t_{n-1}}$$

são v.a.'s mutuamente independentes.

Definição 1.13 (Processo com incrementos estacionários). $\{X_t,\ t\in T\}$ tem **incrementos estacionários** sse $\forall\ s,t\in T,\ s< t,$ a distribuição de X_t-X_s depende apenas da amplitude t-s.

 $\begin{array}{l} \textit{Nota} \; . \; \text{Num PE com incrementos estacionários, a distribuição de} \; X_{t_{1+h}} - X_{t_1} \; \text{\'e a mesma de} \; X_{t_{2+h}} - X_{t_2} \text{,} \\ \forall \; t_1, t_2 \in T \, \text{e} \; \forall \; h \in \mathbb{R}_0^+ \; \text{tais que} \; t_1 + h, \; t_2 + h \in T. \end{array}$

Do ponto de vista da modelação, a propriedade de independência de incrementos pode ser postulada para o modelo quando os resultados obtidos em intervalo de tempo disjuntos forem independentes. Adicionalmente, a propriedade de estacionariedade de incrementos pode ser postulada para o modelo quando for plausível que a distribuição de resultados em qualquer intervalo de tempo depende apenas da amplitude desse intervalo.

Definição 1.14 (Processo de incrementos independentes e estacionários). Dado um PE $X:=\{X_t,\ t\in T\}$, onde T está munido de uma relação de ordem, X é um PE de **incrementos independentes e estacionários** sse tiver incrementos independentes e incrementos estacionários.

1.2.2 Processo estocástico real de 2^a ordem

Definição 1.15 (Processo Gaussiano). Diz-se que $\{X_t,\ t\in T\}$ é um **Processo Gaussiano** se

$$\forall \ n \in \mathbb{N}, \ \forall \ t_1, \dots, t_n \in T, \quad (X_{t_1}, X_{t_2}, \dots, X_{t_n}) \sim \mathbb{N}_n(\mu, \Sigma),$$

isto é, qualquer vetor finito de variáveis aleatórias do processo tem distribuição normal multivariada.

Definição 1.16 (Processo estocástico real de 2^a ordem). Diz-se que $\{X_t, t \in T\}$ é um **processo estocástico** real de 2^a ordem se, e só se,

$$\forall t \in T : E(X_t^2) < +\infty.$$

Nestes casos, a descrição do processo faz-se habitualmente em termos dos seus dois primeiros momentos:

- função média: $m(t) = E(X_t), \forall t \in T$;
- função de covariância: $\Gamma(s,t) = \operatorname{Cov}(X_s,X_t), \quad \forall \ s,t \in T.$

Em geral, a informação fornecida por m(t) e $\Gamma(s,t)$ não determina completamente a distribuição do processo. Contudo, no caso particular de um processo Gaussiano, a especificação destes dois primeiros momentos é suficiente para caracterizar completamente o processo.

Exemplo 1.1 (Ruído Branco Gaussiano). Chama-se **Ruído Branco Gaussiano** a um PE $\{\varepsilon_t,\ t\in T\}$ que satisfaz:

- $\forall t \in T, E(\varepsilon_t) = 0;$
- $\forall t \in T, \ Var(\varepsilon_t) = \sigma^2;$
- $\forall s, t \in T, s \neq t, Cov(\varepsilon_s, \varepsilon_t) = 0;$
- $\bullet \ \, \forall \,\, n \in \mathbb{N}, \forall \,\, t_1, t_2, \ldots, t_n \in T: (\varepsilon_{t_1}, \varepsilon_{t_2}, \ldots, \varepsilon_{t_n}) \,\, \text{\'e um vetor aleat\'orio Gaussiano}.$

1.2.3 Processos estacionários

Definição 1.17 (Processo estacionário em sentido forte). Diz-se que um PE $\{X_t, t \in T\}$ é **estacionário em sentido forte** (ou fortemente estacionário) se:

$$\forall \ n \in \mathbb{N}, \ \forall \ t_1, \dots, t_n \in T, \ \forall \ h \in \mathbb{R} \ \mathrm{tal} \ \mathrm{que} \ t_1 + h, \dots, t_n + h \in T,$$

$$(X_{t_1},\dots,X_{t_n})\stackrel{d}{=} (X_{t_1+h},\dots,X_{t_n+h}),$$

ou seja, a distribuição conjunta de qualquer vetor finito de variáveis do processo é invariante por translação do tempo.

Como consequência da estacionariedade forte, temos o seguinte Teorema:

Teorema 1.2. Se $\{X_t, t \in T\}$ é um PE de 2^a ordem e se é fortemente estacionário, então:

- $E(X_t) = m$, isto é, a média do processo é independente de t;
- $\forall h \in T, \ \Gamma(t,t+h) = Cov(X_t,X_{t+h}) = Cov(X_0,X_h) = \gamma(h)$, independente de t.

Definição 1.18 (Processo estacionário em sentido fraco). Um PE $\{X_t, t \in T\}$ é **estacionário em sentido** fraco (ou estacionário de 2^a ordem), sse:

- $\forall t \in T, E(X_t^2) < +\infty;$
- $\forall t \in T, E(X_t) = m$, independente de t;
- $\forall \ t \in T, \forall \ h \in T, \ Cov(X_t, X_{t+h}) = \gamma(h)$, isto é, a covariância apenas depende de h.

Nota . A função $\gamma(h), \ \forall \ h \in T$, chama-se **função de autocovariância**. Se h=0, então $Cov(X_t,X_{t+h})=Var(X_t)=\gamma(0), \ \forall \ t \in T$. A esta propriedade chama-se propriedade da homocedasticidade.

Vejamos agora que o Ruído Branco, $\{\varepsilon_t,\ t\in T\}$, é um exemplo de um PE estacionário de 2ª ordem:

Exemplo 1.2.

- $E(\varepsilon_t) = 0$;
- $Var(\varepsilon_t) = \sigma^2 \implies E(\varepsilon_t^2) < +\infty;$
- $t \neq s$, $Cov(\varepsilon_s, \varepsilon_t) = 0$, \Longrightarrow independência de t e de s.

Assim,

$$\gamma(h) = \begin{cases} \sigma^2, & h = 0, \\ 0, & h \neq 0. \end{cases}$$

Logo, estão satisfeitas as condições de estacionariedade fraca.

Nota (Observação importante).

Estacionariedade forte $+E(X_t^2)<+\infty \Rightarrow$ Estacionariedade fraca.

Estacionariedade fraca

⇒ Estacionariedade forte.

Exemplo 1.3. Considere o PE $(X_t,\ t\in\mathbb{N})$ onde X_t tem distribuição de Cauchy, isto é, com f.d.p. $f(x)=\frac{1}{\pi(1+x^2)}$. Uma vez que não existe $E(X_t)$, então $E(X_t^2)$ não está definido. Assim, o processo é fortemente estacionário mas não é fracamente estacionário.

Propriedade 1.1 (Propriedades da função de autocovariância em processos estacionários). A função de autocovariância $\gamma(h)$ goza das seguintes propriedades:

- $\gamma(h) = \gamma(-h), \ \forall \ h \in \mathbb{Z}$, isto é, a função de autocovariância é par;
- $\bullet \ \forall \ n \in \mathbb{N}, \forall \ a_j \in \mathbb{R}, \forall \ t_j \in \mathbb{Z}, \ j = 1, \ldots, n:$

$$\forall \ n \in \mathbb{N}, \ \forall \ a_1, \dots, a_n \in \mathbb{R}, \ \forall \ t_1, \dots, t_n \in \mathbb{Z}, \quad \sum_{j=1}^n \sum_{k=1}^n a_j a_k \, \gamma(t_j - t_k) \geq 0,$$

isto é, a função de autocovariância define uma forma quadrática não-negativa.

Definição 1.19 (Função de autocorrelação em processos estacionários). Seja $\{X_t, t \in T\}$ um PE estacionários Chama-se **função de autocorrelação** à função ρ definida por:

$$\rho(h) = Corr(X_t, X_{t+h}) = \frac{Cov(X_t, X_{t+h})}{\sqrt{V(X_t)}\sqrt{V(X_{t+h})}} = \frac{\gamma(h)}{\gamma(0)}.$$

Propriedade 1.2 (Propriedades da função de autocorrelação em processos estacionários). A função de autocorrelação $\rho(h)$ goza das seguintes propriedades:

- $\rho(h) = \rho(-h), \forall h \in \mathbb{Z}$, isto é, a função de autocorrelação é par;
- $\bullet \ \forall \ n \in \mathbb{N}, \forall \ a_j \in \mathbb{R}, \forall \ t_j \in \mathbb{Z}, \ j = 1, \dots, n:$

$$\sum_{i=1}^n \sum_{k=1}^n a_j a_k \rho(t_j - t_k) \geq 0,$$

isto é, trata-se de uma função semi-definida positiva.

Exercício 1.4.

Sejam X e Y duas variáveis aleatórias com média nula, não correlacionadas e com a mesma variância $\sigma^2>0$. Considere-se o PE $(Z_t:\ t\in\mathbb{Z})$ definido por:

$$Z_t = f(t) \cdot X + g(t) \cdot Y, \quad t \in \mathbb{Z},$$

onde f e g são função determinísticas.

- (a) Encontre expressões para f e g de modo a garantir que o processo $(Z_t: t \in \mathbb{Z})$ admita variância constante mas não seja necessariamente estacionário em sentido fraco.
- (b) Concretize f e g de modo a que $(Z_t:\ t\in\mathbb{Z})$ seja fracamente estacionário.

Exercício 1.5. Seja $\varepsilon=(\varepsilon_t:\ t\in\mathbb{Z})$ um ruído branco de variância $\sigma^2>0$. Considere os processos estocásticos $X=(X_t:\ t\in\mathbb{Z})$ e $Y=(Y_t:\ t\in\mathbb{Z})$ definidos do seguinte modo:

$$X_t = \varepsilon_t \quad \text{e} \quad Y_t = (-1)^t \varepsilon_t, \quad \forall \ t \in \mathbb{Z}.$$

(a) Prove que X e Y são fracamente estacionários.

(b) Mostre que o processo $(Z_t=X_t+Y_t:\ t\in\mathbb{Z})$ é um processo não estacionário.

Exercício 1.6. Considere um processo estocástico $Y=(Y_t:t\in\mathbb{Z})$ tal que $Y_t=\varepsilon_t-\theta\varepsilon_{t-1}$, $\theta\in[-1,1]$, onde $(\varepsilon_t:t\in\mathbb{Z})$ é um ruído branco gaussiano de variância $\sigma^2>0$.

- (a) Mostre que Y é gaussiano.
- (b) Determine a distribuição da variável aleatória $Y_t, \ \forall \ t \in \mathbb{Z}$.
- (c) Determine a função de autocorrelação de Y.
- (d) O que pode concluir quanto à estacionariedade forte e fraca de Y?

Exercício 1.7. Seja $X=(X_t:\ t\geq 0)$ um processo estocástico, definido sobre o espaço de probabilidade (Ω,\mathcal{F},P) , tal que, para todo $t\geq 0$, $X_t\sim \mathcal{N}(0,t)$, e $P(X_0=0)=1$.

- (a) Diga em que condições será X um processo de incrementos independentes e estacionários.
- (b) Supondo que X é um processo de incrementos independentes e estacionários, mostre que: (i) $\forall t,s \in [0,+\infty[$, com t>s, tem-se que $X_t-X_s\sim \mathcal{N}(0,|t-s|)$; (ii) X é um processo gaussiano centrado.
- (c) Considere o processo estocástico $Y=(Y_t:t\geq 0)$ tal que:

$$Y(t) = \begin{cases} t, & X_t \ge 0 \\ -t, & X_t < 0. \end{cases}$$

Mostre que Y é um processo estocástico de segunda ordem centrado. Será Y estacionário em algum sentido? Justifique.

Exercício 1.8. Sejam $X=(X_t:\ t\in\mathbb{Z})$ e $(\varepsilon_t:\ t\in\mathbb{Z})$ dois processos estocásticos definidos sobre o espaço de probabilidade (Ω,\mathcal{F},P) , tais que:

$$\forall \ t \in \mathbb{Z}, \quad X_t = \sum_{i=0}^{+\infty} \left(\frac{4}{5}\right)^j \varepsilon_{t-j}.$$

- (a) Explique em que condições será ε um ruído branco.
- (b) Suponha que ε é um ruído branco tal que $E[\varepsilon_t^2]=9/50$. (i) Prove que X é fracamente estacionário e indique as respetivas função média e função de autocovariância; (ii) Suponha agora que X é um processo gaussiano. Indique a distibuição do vector aleatório $(X_t,X_s),\ \forall\ t,s\in\mathbb{Z}.$
- (c) Considere o processo estocástico $Y=(Y_t:t\in\mathbb{Z})$ tal que:

$$Y_t = \begin{cases} 1/2, & X_t \ge 0 \\ -1, & X_t < 0, \end{cases}$$

admitindo que X está nas condições da alínea b) ii). Calcule a função média de Y e mostre que Y é fracamente estacionário.

Exercício 1.9. Seja $(\varepsilon_t:t\in\mathbb{Z})$ um ruído branco gaussiano de variância $\sigma^2>0$. Considere um outro processo estocástico $(Y_t:t\in\mathbb{Z})$ definido por:

$$Y_t = \varepsilon_t - \theta \varepsilon_{t-1} - \frac{\theta}{2} \varepsilon_{t-2}, \quad \theta \in [-1,1].$$

- (a) Defina processo gaussiano e mostre que Y é gaussiano.
- (b) Determine a função de autocorrelação do processo Y.

1.2.4 Martingalas

Do ponto de vista da modelação, as martingalas são apropriadas para modelar fenómenos aleatórios, tais como jogos de azar.

Definição 1.20 (Martingala). Um PE $\{X_t, t \in T\}$ é uma **Martingala** sse:

- $E(\mid X_t \mid) < +\infty;$
- $\bullet \ \, \forall \,\, n \in \mathbb{N}, \,\, \forall \,\, t_1 < \ldots < t_{n+1} \in T : E(X_{t_{n+1}} \mid X_{t_1}, \ldots X_{t_n}) = X_{t_n}.$

Exemplo 1.4. Considere-se E discreto e $T=\mathbb{N}$. Se interpretarmos X_n como a fortuna de um jogador após a realização do n-ésimo jogo, então a 2^{a} condição da definição anterior estabelece que a fortuna **esperada** após a (n+1)-ésima partida do jogo é igual à fortuna depois do n-ésimo jogo, independentemente do que ocorreu anteriormente.

Nota. Na definição de Martingala, podemos ainda considerar,

- $\blacksquare \ \, \text{Submartingalas, quando} \,\, \forall \,\, n \in \mathbb{N}, \,\, \forall \,\, t_1 < \ldots < t_{n+1} \in T : E(X_{t_{n+1}} \mid X_{t_1}, \ldots X_{t_n}) \leq X_{t_n}.$
- $\qquad \text{Supermartingalas, quando} \ \forall \ n \in \mathbb{N}, \ \forall \ t_1 < \ldots < t_{n+1} \in T : E(X_{t_{n+1}} \mid X_{t_1}, \ldots X_{t_n}) \geq X_{t_n}.$

Exercício 1.10.

Sejam X_0,X_1,\ldots v.a.'s independentes com média finita e nula e $S_n=\sum\limits_{i=0}^n X_i$. Mostre que o PE $\{S_n:\ n\in\mathbb{N}_0\}$ é uma Martingala.

Exercício 1.11.

Considere um jogo no qual, em cada jogada, o jogador pode ganhar ou perder um euro, com igual probabilidade. Após n jogadas o ganho desse jogador é dado por $S_n=\sum\limits_{i=i}^n X_i$, onde $X_1,X_2,...$ são v.a.'s independentes. Mostre que o PE $\{S_n:\ n\in\mathbb{N}\}$ é uma Martingala.

Exercício 1.12.

Sejam $X_1, X_2, ...$ são v.a.'s independentes com média unitária. Mostre que o PE $\{Z_n: n \in \mathbb{N}\}$, definido por

$$Z_n = \prod_{i=1}^n X_i$$

é uma Martingala.

Exercício 1.13.

Seja $(X_n,\ n=0,1,2,\dots)$ um PE com espaço de estados \mathbb{N}_0 , com média unitária para $n\geq 1$, com incrementos independentes e tal que $P(X_0=0)=1$.

- (a) O que significa dizer que o processo X tem incrementos independentes?
- (b) Prove que o processo $(X_n,\ n=0,1,2,\dots)$ é uma Martingala.
- (c) Sabendo que $Var(X_n)=1$, o que pode afirmar quanto à estacionariedade fraca do processo $(X_n,\ n=0,1,2,\dots)$?

1.2.5 Processos de Markov

Os processos de Markov são apropriados na modelação de fenómenos aleatórios cujo comportamento futuro não é alterado pelo conhecimento do seu passado, apenas interessa conhecer o estado presente, ou seja, a probabilidade de que o sistema físico esteja num determinado estado num dado instante t pode deduzir-se a partir do conhecimento desse estado num instante qualquer anterior e essa probabilidade não depende da "história" do sistema antes de t.

Definição 1.21 (Processo de Markov). Um PE $\{X_t, t \in T\}$ com espaço de estados E diz-se um **processo de Markov** (ou **Markoviano**) sse $\forall \ n \in \mathbb{N}, \ \forall \ t_1 < \ldots < t_{n+1} \in T, \ \forall \ x_1, \ldots, x_{n+1} \in E, \ \forall \ B \in \mathcal{B}$:

$$P(X_{t_{n+1}} \in B \mid X_{t_1} = x_1, \dots X_{t_n} = x_n) = P(X_{t_{n+1}} \in B \mid X_{t_n} = x_n).$$

Teorema 1.3. Se E for discreto e $T = \mathbb{N}$, a propriedade de Markov da definição anterior é equivalente à seguinte:

$$\forall \ n \in \mathbb{N}, \ \forall \ x_0, \dots, x_{n+1} \in E : P(X_0 = x_0, \dots, X_n = x_n) > 0, \text{ tem-se que}$$

$$P(X_{n+1} = x_{n+1} \mid X_0 = x_0, \dots X_n = x_n) = P(X_{n+1} = x_{n+1} \mid X_n = x_n).$$

Nota. Os processos de Markov, como quaisquer processos, são classificados de acordo com a natureza do espaço de estados E e do espaço dos parâmetros T. Uma classe especial de processos de Markov são as **Cadeias de Markov** (C.M.): processos de Markov com espaço de estados E **discreto**.

Assim, uma cadeia de Markov pode interpretar-se com um PE cujo desenvolvimento se pode considerar como uma série de transições entre valores determinados que têm a propriedade de que a distribuição de probabilidade do estado futuro do processo, sabendo-se que ele está num dado estado, depende apenas deste estado e não do modo de como o processo lá chegou. As C.M. são classificadas em **discretas** ou **contínuas**. Nesta UC iremos abordar ambos os casos.

Capítulo 2

Cadeias de Markov em tempo discreto

2.1 Introdução

Uma cadeia de Markov em tempo discreto, $\{X_t, t \in T\}$, é um PE de Markov cujo espaço de estados é **finito** ou **infinito numerável**.

2.1.1 Conceitos básicos

Definição 2.1 (Cadeia de Markov em tempo discreto). Um PE em tempo discreto $(X_n, n \in \mathbb{N}_0)$ com espaço de estados E discreto é uma **C.M. em tempo discreto** sse satisfaz a propriedade de Markov

$$\forall \ n \in \mathbb{N}, \ \forall \ x_0, \dots, x_{n+1} \in E^{n+1}: P(X_0 = x_0, \dots, X_n = x_n) > 0, \text{tem-se que}$$

$$P(X_{n+1} = x_{n+1} \mid X_0 = x_0, \dots X_n = x_n) = P(X_{n+1} = x_{n+1} \mid X_n = x_n).$$

Exercício 2.1. Seja $(X_n,\ n=1,2,\dots)$ uma sucessão de variáveis aleatórias i.i.d. com distribuição de probabilidade definida por:

$$P(X_n = x) = p(1-p)^x, \quad x = 0, 1, 2, \dots; \ p \in (0, 1).$$

Considere ainda o PE

$$Y = (Y_n = \sum_{i=1}^n X_i: \ n = 1, 2, \dots).$$

- (a) Identifique o espaço de estados de Y.
- (b) Mostre que $P(Y_{n+1} = y \mid Y_n = x)$ é independente de n.
- (c) Verifique que Y é uma Cadeia de Markov.
- (d) Calcule $P(Y_1 = y_1, Y_3 = y_3)$.

Exercício 2.2. Seja $(X_n,\ n=1,2,\dots)$ uma sucessão de variáveis aleatórias i.d.d. com distribuição de probabilidade definida por:

$$P(X_n = 1) = p = 1 - P(X_n = -1), \quad n = 1, 2, ...; \ p \in (0, 1).$$

Considere o PE $S=(S_n: n \geq 0)$, conhecido como passeio aleatório simples, definido por:

$$S_0 = 0 \quad \text{e} \quad S_n = \sum_{i=1}^n X_i, \ n = 1, 2, \dots$$

(a) Identifique o espaço de estados do processo S.

- (b) Prove que S é uma Cadeia de Markov para qualquer valor de p.
- (c) Determine para que valores de p, o passeio aleatório S é uma Martingala.
- (d) Calcule a função de autocovariância do processo S e verifique se o processo é estacionário em sentido fraco.

Associada a uma C.M. em tempo discreto tem-se a função de probabilidade de transição a um passo:

$$P(X_{n+1} = j \mid X_n = i) := P_{ij}(n, n+1),$$

que representa a probabilidade de X_{n+1} estar no estado j no instante n+1 sabendo que no instante n a cadeia estava no estado i.

Se as probabilidades $P_{ij}(n,n+1)$ não dependerem de n, então a C.M. em tempo discreto diz-se **homogénea**. Assim, numa C.M. homogénea observa-se

$$P(X_{n+1}=j\mid X_n=i):=P_{ij},\ \forall\ i,j\in E,\ \forall\ n\in\mathbb{N}_0.$$

Nota . A expressão $P(X_{n+1}=j\mid X_n=i):=P_{ij}$:

- representa a probabilidade da cadeia ir do estado i para o estado j num só passo;
- é independente de n, ou seja, é homogénea no tempo.

Nesta UC apenas iremos estudar C.M. homogéneas. As probabilidade de transição, P_{ij} , são fundamentais para o estudo da estrutura probabilística das C.M.

Definição 2.2 (Matriz de transição). Define-se **Matriz de transição** ou **Matriz de probabilidade de transição** de uma C.M. homogénea à matriz

$$\mathbb{P} = [P_{ij}]_{\ i,j \in E} = \begin{bmatrix} P_{00} & P_{01} & \dots & P_{0j} & \dots \\ P_{10} & P_{11} & \dots & P_{1j} & \dots \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ P_{i0} & P_{i1} & \dots & P_{ij} & \dots \\ \vdots & \vdots & \vdots & \vdots & \vdots \end{bmatrix}, \qquad E = \mathbb{N}_0$$

definida pelas probabilidades de transição P_{ij} do processo.

Nota . Na matriz de transição \mathbb{P} , observa-se:

- $0 \leq P_{ij} \leq 1, \ i,j=0,1,...$, uma vez que P_{ij} representa uma probabilidade;
- $\sum_{j=0}^{+\infty}P_{ij}=1$, uma vez que $\sum_{j\in E}P_{ij}=\sum_{j\in E}P(X_{n+1}=j\mid X_n=i)$. Isto quer dizer que a soma dos elementos de cada linha é igual a 1.

Exercício 2.3. Quatro bolas, duas brancas e duas pretas, são distribuídas em duas caixas A e B, de tal forma que, em cada caixa, ficam duas bolas. Tira-se uma bola de cada caixa e coloca-se cada uma na caixa oposta. Seja X_0 o número de bolas brancas que existiam inicialmente na caixa A. Para $n \geq 1$, seja X_n o número de bolas brancas que existirão na caixa A depois de se terem efetuado n trocas de bolas.

(a) Identifique o espaço de estados.

2.1. INTRODUÇÃO

(b) Determine a matriz das probabilidades de transição.

Teorema 2.1. Um processo estocástico $(X_t, t \in \mathbb{N}_0)$ com espaço de estados E é uma cadeia de Markov homogénea sse existe uma distribuição inicial de X_0 e uma matriz estocástica $\mathbb{P}=(P_{ij})_{i,j\in E}$ tais que, para todo $n\geq 0$ e para todo $(i_0,i_1,\ldots,i_n)\in E^{n+1}$,

$$P(X_0=i_0,\;X_1=i_1,\;\dots,\;X_n=i_n)=P(X_0=i_0)\prod_{k=0}^{n-1}P_{i_ki_{k+1}}.$$

Assim, a probabilidade de observar uma sequência de estados (isto é, a probabilidade conjunta) resulta simplesmente da probabilidade inicial e do produto sucessivo das probabilidades de transição entre estados consecutivos.

Exemplo 2.1. Considere uma CM com valores em $\{0,1\}$ e com distribuição inicial

$$\mu = (\mu(0), \mu(1)) = (0.6, 0.4),$$

isto é,

$$\mu(0) = P(X_0 = 0) = 0.6, \quad \mu(1) = P(X_0 = 1) = 0.4.$$

Assuma que a matriz de transição é:

$$\mathbb{P} = \begin{pmatrix} 0.7 & 0.3 \\ 0.2 & 0.8 \end{pmatrix},$$

onde:

- $P_{00} = 0.7 = P(X_{t+1} = 0 \mid X_t = 0)$
- $P_{01} = 0.3 = P(X_{t+1} = 1 \mid X_t = 0)$
- $P_{10} = 0.2 = P(X_{t+1} = 0 \mid X_t = 1)$
- $P_{11} = 0.8 = P(X_{t+1} = 1 \mid X_t = 1)$

Por exemplo, a probabilidade conjunta, por aplicação do Teorema acima, é obtida por:

$$P(X_0 = 0, X_1 = 1, X_2 = 0) = \mu(0) P_{01} P_{10} = P(X_0 = 0) P_{01} P_{10} = 0.6 \times 0.3 \times 0.2 = 0.036.$$

Outro exemplo:

$$P(X_0 = 1, X_1 = 1, X_2 = 1, X_3 = 0) = \mu(1) P_{11} P_{11} P_{10} = 0.4 \times 0.8 \times 0.8 \times 0.2 = 0.0512.$$

Exemplo 2.2 (Passeio aleatório como cadeia de Markov). Seja $(Y_n)_{n\geq 1}$ uma sequência de variáveis aleatórias i.i.d. com valores em $\mathbb Z$ e distribuição $p(k)=P(Y_n=k),\ k\in\mathbb Z$. Seja X_0 a posição inicial, com distribuição μ .

Definindo

$$X_n = X_0 + \sum_{m=1}^n Y_m, \quad n \in \mathbb{N}_0,$$

temos que $(X_n)_{n\in\mathbb{N}_0}$ é uma cadeia de Markov homogénea, com:

• Distribuição inicial: $\mu(i) = P(X_0 = i)$,

- Matriz de transição $\mathbb{P}=(P_{ij})_{i,j\in\mathbb{Z}}$ dada por

$$P_{ij} = P(X_{n+1} = j \mid X_n = i) = P(Y_{n+1} = j - i) = p(j - i).$$

Logo, pelo teorema acima, a probabilidade conjunta de qualquer trajetória (i_0, i_1, \dots, i_n) é

$$P(X_0=i_0,X_1=i_1,\dots,X_n=i_n)=\mu(i_0)\,P_{i_0i_1}\cdots P_{i_{n-1}i_n}=\mu(i_0)\,p(i_1-i_0)\cdots p(i_n-i_{n-1}).$$

Note-se que o passeio aleatório é um exemplo de uma CM homogénea, em que a matriz de transição é determinada pela distribuição dos incrementos.

Exercício 2.4.

Mostre que o processo aleatório definido no exemplo anterior é uma C.M. homogénea com matriz de transição com probabilidades

$$P_{xy} = p(y-x), \ \forall \ (x,y) \in \mathbb{Z}.$$

Exemplo 2.3 (Passeio aleatório unidimensional com passos -1,0,1). Trata-se de um caso particular do passeio aleatório unidimensional. Interpretação: uma partícula, no instante n, pode efetuar 3 movimentos:

- deslocar-se para a direita com probabilidade p;
- deslocar-se para a esquerda com probabilidade q;
- ullet manter-se na mesma posição com probabilidade r.

Se X_n representar a posição da partícula ao fim de n movimentos, tem-se

$$X_n = X_0 + \sum_{i=1}^n Y_i,$$

onde

$$Y_i = \begin{cases} 1, & \text{deslocamento para a direita}, \\ -1, & \text{deslocamento para a esquerda}, \\ 0, & \text{sem deslocamento}. \end{cases}$$

- $(Y_n, n \in \mathbb{N})$: sucessão de variáveis aleatórias independentes (representa os incrementos).
- $(X_n, n \in \mathbb{N}_0)$: passeio aleatório, isto é, uma CM homogénea com espaço de estados \mathbb{Z} e matriz de transição \mathbb{P} :

$$P_{ij} = P(X_n = j \mid X_{n-1} = i) = \begin{cases} p, & j = i+1, \\ q, & j = i-1, \\ r, & j = i. \end{cases}$$

Aqui, $P_{ij}=p(j-i)$ representa a distribuição de probabilidade dos incrementos Y_n . Tipicamente considera-se p=q=0.5 e r=0.

Nota. Notação:

$$P^m_{ij} = P(X_{n+m} = j \mid X_n = i)$$

representa a probabilidade de, em m passos, a cadeia de Markov homogénea passar do estado i para o estado j.

Teorema 2.2. Seja $\mathbb{P}=[P_{ij}]$ a matriz de transição a um passo de uma C.M. $(X_n,\ n\in\mathbb{N}_0)$. Então,

$$P_{ij}^{m} = \sum_{k=0}^{+\infty} P_{ik}^{r} \ P_{kj}^{s},$$

onde
$$(r,s)\in\mathbb{N}_0^2$$
 tal que $r+s=m$ e $P_{ij}^0=1$ se $i=j$, e $P_{ij}^0=0$ se $i\neq j$.

Este teorema mostra-nos como calcular probabilidades de transição em vários passos de uma cadeia de Markov. Em vez de irmos diretamente de i para j em m passos, podemos "partir o caminho" num estado intermédio k: primeiro percorrem-se r passos até k, e depois mais s passos de k até j, com r+s=m. A soma sobre todos os possíveis estados intermédios k garante que estamos a considerar todos os caminhos possíveis, refletindo a ideia fundamental da multiplicação de probabilidades em cadeias de Markov.

Exercício 2.5.

Considere m=2 e prove o Teorema anterior.

Teorema 2.3 (Equações de Chapman-Kolmogorov). O Teorema anterior pode ser re-escrito como

$$P_{ij}^{m+n} = \sum_{k \in E} P_{ik}^m P_{kj}^n, \quad \forall \ i, j \in E.$$

Assim, $P_{i,j}^m$ representa o elemento (i,j) da matriz potência de ordem m de \mathbb{P} .

2.2 Classificação de estados de uma C.M.

Torna-se importante o estudo limite de $P^n_{i,j}$ quando $n \to +\infty$. Espera-se que a influência do estado inicial i diminua com o tempo, e que o limite de $P^n_{i,j}$ quando $n \to +\infty$ seja independente de i.

Para se poder analisar o comportamento assintótico do processo, vamos introduzir alguns critérios de classificação de estados de uma C.M.. Consideremos, no que se segue, uma C.M. $(X_n, n \in \mathbb{N}_0)$ com matriz de transição $\mathbb{P} = [P_{i,j}], \ i,j \in E$.

Definição 2.3 (Estado acessível). Diz-se que o estado $j \in E$ é **acessível** a partir do estado $i \in E$, se para algum $n \in \mathbb{N}_0$ se observa $P^n_{ij} > 0$. Representação:

Figure 2.1: Estado acessível

Definição 2.4 (Estados em comunicação). Se dois estados $i, j \in E$ são acessíveis um relativamente ao outro, diz-se que intercomunicam ou que estão **em comunicação**. Representação:

Figure 2.2: Estados em comunicação

Nota . Se dois estados $i, j \in E$ não comunicam, então:

$$\forall n \in \mathbb{N}_0, \ P_{ij}^n = 0 \ \lor \ P_{ji}^n = 0.$$

Teorema 2.4. A intercomunicação dos estados define uma relação de equivalência.

Exercício 2.6.

Mostre o Teorema anterior. Sugestão: mostre que a intercomunicação entre estados é reflexiva, simétrica e transitiva.

Nota . A relação de equivalência do último Teorema induz uma partição do conjunto de todos os estados em classes de equivalência. Dentro de cada classe todos os estados comunicam entre si.

Exemplo 2.4. Considere a seguinte matriz de transição, com $E = \{0, 1, 2, ..., r\}$, de um passeio aleatório:

$$\mathbb{P} = \begin{bmatrix} 1 & 0 & 0 & 0 & \dots & 0 & 0 \\ q & 0 & p & 0 & \dots & 0 & 0 \\ 0 & q & 0 & p & \dots & 0 & 0 \\ \dots & \dots & \dots & \dots & \dots & \dots & \dots \\ 0 & 0 & 0 & 0 & q & 0 & p \\ 0 & 0 & 0 & 0 & \dots & 0 & 1 \end{bmatrix}.$$

A relação de equivalência de comunicação induz as classes:

$$\{0\}, \{1, 2, \dots, r-1\}, \{r\},$$

donde se conclui que: do estado 0 só se pode ir para o estado 0; todos os estados $1, 2, \dots, r-1$ comunicam entre si; do estado r só se pode ir para o estado r. Para r=5, isto é, 6 estados, a matriz de transição é:

$$\mathbb{P} = \begin{bmatrix}
1 & 0 & 0 & 0 & 0 & 0 \\
q & 0 & p & 0 & 0 & 0 \\
0 & q & 0 & p & 0 & 0 \\
0 & 0 & q & 0 & p & 0 \\
0 & 0 & 0 & q & 0 & p \\
0 & 0 & 0 & 0 & 0 & 1
\end{bmatrix}$$

e a representação gráfica é:

As classes de equivalência estão representadas por cores.

Definição 2.5 (Período). Chama-se **período** do estado i, e representa-se por d(i), ao máximo divisor comum de todos os inteiros $n \ge 1$ tais que $P_{ii}^n > 0$, isto é,

$$d(i) = \text{m.d.c.}(n \ge 1 : P_{ii}^n > 0).$$

Convenção: se $\forall n \geq 1, P_{ii}^n = 0$, então d(i) = 0.

Exemplo 2.5.

1. Considere a matriz de transição

$$\mathbb{P} = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}.$$

• Se começarmos no estado 1, no passo seguinte vamos sempre para 2.

• Só é possível regressar a $1 \text{ em } 2, 4, 6, \dots$ passos.

Portanto, o período de 1 (e também de 2) é d(1) = d(2) = 2.

2. Considere a matriz de transição

$$\mathbb{P} = \begin{bmatrix} 0.5 & 0.5 \\ 0.5 & 0.5 \end{bmatrix}.$$

- Se começarmos no estado 1, já no passo seguinte podemos ficar em 1 (probabilidade 0.5).
- Também conseguimos regressar em 2 passos, 3 passos, etc.

Portanto, o período de 1 (e também de 2) é d(1) = d(2) = 1.

Nota. Dois estados em comunicação têm o mesmo período, isto é,

$$i \longleftrightarrow j \iff d(i) = d(j).$$

Exercício 2.7. Determine o período dos estados do exemplo 2.4.

Exercício 2.8. Considere a C.M. de espaço de estados finito com matriz de transição

$$\mathbb{P} = \begin{bmatrix} 0 & 1 & 0 & \dots & 0 \\ 0 & 0 & 1 & \dots & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & \dots & 1 \\ 1 & 0 & 0 & \dots & 0 \end{bmatrix}, \quad E = \{0, 1, \dots, n-1\}.$$

Mostre que $d(i) = n, \ \forall \ n \in E$.

Definição 2.6 (Estado aperiódico. Cadeia aperiódica.). Um estado diz-se **aperiódico** se tem período um. A cadeia é **aperiódica** se todos os estados acessíveis entre si (isto é, na mesma classe de comunicação) são aperiódicos.

Definição 2.7 (Tempo mínimo de passagem). Seja T_{ij} a variável aleatória que representa o **tempo (mínimo)** de primeira passagem do estado i ao estado j,

$$T_{ij} = \inf\{n \ge 1 : X_n = j \mid X_0 = i\}.$$

A função de probabilidade de T_{ij} , representa a **probabilidade da primeira vez que a cadeia atinge** j **exatamente no passo** n, com ínício em i, isto é,

$$f_{ij}^n = P(T_{ij} = n), \quad n \ge 1.$$

Em particular,

$$f_{ij}^1 = P_{ij}$$
, para $i \neq j$.

Para $n \geq 2$ e $i \neq j$, f^n_{ij} satisfaz a **relação de recorrência**:

$$f_{ij}^n = \sum_{k \in E \backslash \{j\}} P_{ik} \, f_{kj}^{n-1}.$$

Isto significa que, para chegar a j pela primeira vez ao fim de n passos, a cadeia deve ir primeiro para um estado $k \neq j$ e depois chegar a j a partir de k em n-1 passos.

Teorema 2.5. Para todo $n \in \mathbb{N}$, as probabilidades de transição P_{ij}^n podem ser expressas em função das probabilidades de primeira passagem f_{ij}^k , do seguinte modo:

$$P_{ij}^{n} = \sum_{k=1}^{n} f_{ij}^{k} P_{jj}^{n-k},$$

onde:

- f_{ij}^k representa a probabilidade de atingir j pela primeira vez exatamente no instante k;
- P_{jj}^{n-k} representa a probabilidade de estar em j nos n-k instantes restantes, após o primeiro encontro no instante k;
- Somando sobre todos os possíveis instantes $k=1,2,\ldots,n$, obtemos a probabilidade de estar em j ao fim de n instantes.

Exemplo 2.6. Considere uma cadeia com estados $\{0,1\}$ e matriz de transição

$$\mathbb{P} = \begin{bmatrix} 0.5 & 0.5 \\ 0.2 & 0.8 \end{bmatrix}.$$

Queremos calcular P_{01}^2 , ou seja, a probabilidade de estar em 1 ao fim de 2 passos, partindo de 0. Pela aplicação do teorema anterior,

$$P_{01}^2 = f_{01}^1 \cdot P_{11}^1 + f_{01}^2 \cdot P_{11}^0 = f_{01} \cdot P_{11} + f_{01}^2 \cdot 1.$$

Probabilidades de primeira passagem:

$$f_{01} = P_{01} = 0.5, \quad f_{01}^2 = P_{00} \times f_{01} = 0.5 \cdot 0.5 = 0.25.$$

• Probabilidades de permanência em 1:

$$P_{11} = 0.8, \quad P_{11}^0 = 1.$$

Finalmente,

$$P_{01}^2 = f_{01} \cdot P_{11} + f_{01}^2 = 0.5 \cdot 0.8 + 0.25 = 0.65.$$

Este exemplo mostra como as **probabilidades de primeira passagem** f_{ij}^k determinam a evolução da cadeia ao longo de n passos.

Definição 2.8 (Estado recorrente e transitório). Seja

$$T_{ii} = \inf\{n \ge 1 : X_n = i\},\$$

- o tempo de retorno ao estado i, ou seja, o número de passos até regressar a i pela primeira vez.
 - O estado i diz-se recorrente se

$$P(T_{ii} < +\infty) = 1,$$

isto é, regressa-se a i em tempo finito com probabilidade 1.

O estado i diz-se transitório se

$$P(T_{ii} < +\infty) < 1,$$

isto é, existe uma probabilidade positiva de nunca mais regressar a i.

Teorema 2.6 (Critérios de recorrência/transitoriedade). Seja $P_{ii}^n = P(X_n = i \mid X_0 = i)$ e $f_{ii}^n = P(T_{ii} = n \mid X_0 = i)$, onde T_{ii} é o tempo mínimo de retorno a i. Então:

• O estado i é **recorrente** sse a probabilidade de regressar a i em algum instante é igual a 1, ou seja,

$$\sum_{n=1}^{+\infty} f_{ii}^n = P(T_{ii} < \infty \mid X_0 = i) = 1.$$

• O estado i é **recorrente** sse o tempo de retorno a i é finito com probabilidade 1:

$$P(T_{ii} < +\infty \mid X_0 = i) = 1.$$

 O estado i é recorrente sse a soma das probabilidades de estar em i ao longo de todos os instantes é infinita:

$$\sum_{n=1}^{+\infty} P_{ii}^n = +\infty.$$

Caso contrário, o estado i é **transitório**.

Além disso, se $i \longleftrightarrow j$ e i é recorrente, então j também é recorrente.

Nota . Consequências imediatas:

- numa classe de equivalência, todos os estados são recorrentes ou todos são transitórios;
- os estados recorrentes estão organizados em classes de comunicação que são fechadas.

Definição 2.9 (Classificação de estados recorrentes). Defina-se o tempo médio de retorno

$$\mu_i = E[T_{ii}] = \sum_{n=1}^{+\infty} n f_{ii}^n.$$

Um estado recorrente i é:

- recorrente positivo se $\mu_i < +\infty$;
- $\ \ \, \hbox{recorrente nulo se} \,\, \mu_i = +\infty; \\$
- recorrente ergódico se for recorrente positivo e aperiódico.

Definição 2.10 (Cadeia de Markov irredutível). Uma cadeia de Markov com espaço de estados E diz-se **irredutível** se, para quaisquer $i, j \in E$, existe $n \ge 1$ tal que

$$P_{ij}^n > 0.$$

Ou seja, todos os estados comunicam entre si.

Segue-se um pequeno resumo das principais propriedades e critérios de classificação dos estados de uma C.M. homogénea:

		Observações
Estado / Propriedade	Critério principal	adicionais
Recorrente	$P(T_{ii} < +\infty) = 1$	Regressa a i com probabilidade 1
	$\sum_{n=1}^{\infty} f_{ii}^n = 1$	Soma das probabilidades de
	$\sum_{n=1}^{\infty} P_{ii}^n = +\infty$	primeira passagem Soma das probabilidades de visita
Transitório	$P(T_{ii} < +\infty) < 1$	Existe probabilidade positiva de nunca regressar
	$\sum_{n=1}^{\infty} f_{ii}^n < 1$ $\sum_{n=1}^{\infty} P_{ii}^n < +\infty$	G
Recorrente positivo	$\mu_i = \sum_{n=1}^{\infty} n f_{ii}^n < +\infty$	Tempo médio de recorrência finito
Recorrente nulo	$\mu_i = \sum_{n=1}^{\infty} n f_{ii}^n = +\infty$	Tempo médio de recorrência infinito
Recorrente ergódico	Recorrente positivo e aperiódico	Permite aplicação de resultados de ergodicidade
Cadeia irredutível	$\forall i,j \in E, \exists n \geq 1: P_{ij}^n > 0$	Todos os estados comunicam entre si

Exemplo 2.7. Considere a cadeia com espaço de estados $\{0,1,2\}$ e matriz de transição

$$\mathbb{P} = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{bmatrix}.$$

Esta cadeia é irredutível porque, partindo de qualquer estado, é possível atingir qualquer outro estado num número finito de passos, com probabilidade positiva. Por exemplo:

$$0 \longrightarrow 1 \longrightarrow 2 \longrightarrow 0$$
,

o que permite circular por todos os estados.

Adicionalmente, todos os estados são recorrentes positivos (verifique!).

Teorema 2.7. Numa cadeia de Markov irredutível com espaço de estados finito ou infinito numerável, verifica-se que:

- ou todos os estados são transitórios;
- ou todos são recorrentes nulos;
- ou todos são recorrentes positivos.

Exercício 2.9. Seja X_0, X_1, X_2, \dots uma sucessão de variáveis aleatórias i.i.d.'s tal que:

$$P(X_i=-1)=P(X_i=1)=0.5, \quad i=0,1,2,\dots.$$

(a) Prove que $(X_n:\ n\in\mathbb{N}_0)$ é uma C.M. homogénea com matriz de transição

$$\mathbb{P} = \begin{bmatrix} 0.5 & 0.5 \\ 0.5 & 0.5 \end{bmatrix}.$$

- (b) Determine a probabilidade de que o processo $(X_n:n\in\mathbb{N}_0)$, partindo do estado 1, volte a atingir este estado, pela primeira vez, num número par de passos.
- (c) Considere o PE $(Y_n: n \in \mathbb{N})$ definido por:

$$Y_n = \begin{cases} X_{n-1} \cdot X_{n+1}, & n \text{ par} \\ X_n, & n \text{ impar} \end{cases}.$$

Verifique se Y é um ruído branco e, em caso afirmativo, identifique a sua variância. Prove que Y não é uma C.M.

Exercício 2.10. Considere uma estação de táxis, onde de s em s segundos chega um táxi. Se não existem clientes a ser servidos, o táxi parte de imediato, chegando outro s segundos depois. Caso contrário, os clientes vão sendo atendidos por ordem de chegada, havendo sempre um período de tempo constante de s segundos entre cada serviço. Durante esse período de tempo podem, no entanto, chegar novos clientes. Suponhamos que o número de chegadas ao n-ésimo período de tempo é uma variável aleatória Z_n cuja distribuição é independente do período em que ocorrem as chegadas, e é dada por

 $P(k \text{ clientes chegarem num intervalo de tempo entre 2 chegadas consecutivas de táxi}) = a_k$

onde
$$a_k \geq 0, \ \forall \ k \in \mathbb{N}_0$$
, e $\sum\limits_{k=0}^{+\infty} a_k = 1.$

O estado do sistema no início do (n+1)—ésimo período de tempo entre duas chegadas consecutivas de táxi é definido pelo número de clientes que esperam para serem atendidos, sendo esse número representado por $X_n,\ n\in\mathbb{N}_0.$

- (a) Prove que $\{X_n,\ n\in\mathbb{N}_0\}$ é uma C.M. homogénea. Indique os respetivos espaço de estados e matriz de transição.
- (b) Sabendo que no início de um determinado intervalo a fila tem zero clientes, qual a probabilidade de o sistema voltar a atingir este estado (pela primeira vez) ao fim de três chegadas de táxis?

Exercício 2.11. Seja $\{Y_i^{(n)}: i, n \in \mathbb{N}\}$ uma família de variáveis aleatórias independentes e identicamente distribuídas com distribuição binomial B(2; 0.5).

Considere um processo estocástico $\{X_n\}_{n\in\mathbb{N}_0}$ definido por:

$$X_0 = a, \quad \text{com } a \in \mathbb{N} \text{ fixo, e para todo } n \geq 1: \quad X_n = \begin{cases} \sum\limits_{i=1}^{X_{n-1}} Y_i^{(n)}, & \text{se } X_{n-1} \geq a. \\ a, & \text{se } X_{n-1} < a. \end{cases}$$

- (a) Identifique o espaço de estados do processo X.
- (b) Prove que X é uma C.M. homogénea e identifique a matriz de transição.

Exercício 2.12. Determinado ser vivo produz, durante a sua vida, um número de descendentes Y de acordo com uma distribuição dada por:

$$\forall \ k \in \mathbb{N}_0, \ P(Y=k) = \frac{\lambda^k}{k!} e^{-\lambda}, \quad \lambda > 0 \ \text{constante}.$$

A cada indivíduo i da população associamos uma v.a. $Y_i=$ número de descendentes do indivíduo i. Para cada $n\in\mathbb{N}_0$, define-se a v.a. X_n que representa o tamanho da população na geração de ordem n. Considere o PE $(X_n:\ n\in\mathbb{N}_0)$.

- (a) Prove que $(X_n:\ n\in\mathbb{N}_0)$ é uma C.M. homogénea.
- (b) Calcule a probabilidade de existirem $k \in \mathbb{N}_0$ indivíduos na geração de ordem n+2, sabendo que na geração de ordem n existiam $j \in \mathbb{N}_0$.

Exercício 2.13. Considere lançamentos repetidos de um dado honesto. Seja X_n o máximo dos números que ocorreram nos n primeiros lançamentos.

- (a) Indique o espaço de estados da C.M. $(X_n:\ n\in\mathbb{N})$ e a respetiva matriz de transição.
- (b) Determine $P(X_i = i), i = 1, 2, ..., 6$ e $P(X_2 = 3)$.
- (c) Desenhe o grafo da cadeia, classifique os seus estados, e analise o tipo de recorrência.
- (d) Verifique que a cadeia é aperiódica.

Exercício 2.14. Seja $(X_n:n\in\mathbb{N})$ uma C.M. com espaço de estados $E=\mathbb{N}_0$ e probabilidades de transição P_{ij} tais que:

$$P_{k0} = \frac{1}{k+2}$$
 e $P_{k,k+1} = \frac{k+1}{k+2}$.

Mostre que a cadeia é irredutível.

Exercício 2.15. Seja $(Z_n: n\in \mathbb{N}_0)$ uma C.M. homogénea com espaço de estados $E=\mathbb{N}_0$ e probabilidades de transição:

$$\mathbb{P} = \begin{bmatrix} 1 - a_0 & a_0 & 0 & 0 & \dots \\ 1 - a_1 & 0 & a_1 & 0 & \dots \\ 1 - a_2 & 0 & 0 & a_2 & \dots \\ \dots & \dots & \dots & \dots & \dots \end{bmatrix}, \quad 0 < a_i < 1, \ i = 0, 1, 2, \dots$$

- (a) A cadeia dada é irredutível e aperiódica? Justifique.
- (b) Determine a probabilidade f_{00}^n de que a cadeia, partindo do estado 0, volte novamente a esse estado, pela primeira vez, em n passos. De seguida, mostre que:

$$\sum_{n=1}^{M+1} f_{00}^n = 1 - \prod_{i=0}^M a_i.$$

(c) Atendendo aos resultados das alíneas anteriores, enuncie, em termos dos a_i 's, uma condição necessária e suficiente para que todos os estados sejam recorrentes. Justifique a sua resposta.

Exercício 2.16. Uma dada empresa identificou seis estados associados ao comportamento diário dos seus colaboradores: 0,1,2,3,4,5. As transições de estado para estado podem ser modeladas por uma C.M. com matriz de transição:

$$\mathbb{P} = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 & 0 \\ 0.5 & 0 & 0.5 & 0 & 0 & 0 \\ 0.1 & 0 & 0.5 & 0.3 & 0 & 0.1 \\ 0 & 0 & 0 & 0.7 & 0.1 & 0.2 \\ 0.3 & 0 & 0 & 0.3 & 0.4 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \end{bmatrix}.$$

(a) Desenhe o grafo de \mathbb{P} .

(b) Identifique os estados transitórios e os estados recorrentes.

2.2.1 Decomposição do espaço de estados

Agora pretendemos decompor o espaço de estados de uma cadeia de Markov finita em subclasses. O objetivo é estudar propriedades da cadeia pela análise das propriedades de cada classe separadamente.

Definição 2.11 (Classe fechada). Uma classe fechada é uma classe de comunicação C tal que, se $i \in C$ e $P_{ij} > 0$, então $j \in C$, ou seja, a cadeia nunca pode sair de C depois de entrar.

Coloca-se agora a questão: como encontrar todos os estados que pertencem a uma mesma classe de comunicação (e, em particular, a uma classe fechada)? Seguem-se os passos:

- Passo 1: inclui-se em C todos os estados j para os quais $P_{ij} > 0$, isto é, $i \longrightarrow j$;
- Passo 2: inclui-se em C todos os estados k para os quais existe $j \in C$ com $P_{jk} > 0$, isto é, $j \longrightarrow k$ para algum $j \in C$ (propriedade da transitividade);
- Passo 3: repetir o Passo 2 até não se poder incluir mais estados em C;
- Passo 4: verificar se algum estado de C tem transições para fora.
 - Se não tiver, C é uma classe fechada.
 - Caso contrário, C é apenas uma classe de comunicação (não fechada).

Nota: se começarmos num estado **transitório** e aplicarmos o algoritmo, o conjunto construído acabará por conduzir a uma **classe fechada**. Assim, as classes fechadas são precisamente os **menores subconjuntos** do espaço de estados obtidos pela aplicação do algoritmo a todos os estados.

O resultado seguinte permite uma decomposição do espaço de estados de uma cadeia de Markov, chamada **decomposição canónica**.

Teorema 2.8 (Decomposição canónica). Seja $\mathbb P$ a matriz de transição de uma C.M. com espaço de estados E. Então, E pode ser decomposto numa união (finita ou infinita enumerável) da forma:

$$E = T \cup C_1 \cup C_2 \cup \dots,$$

onde:

- *T* é o conjunto dos estados transitórios;
- C_1, C_2, \dots são classes de comunicação disjuntas, fechadas e constituídas apenas por estados recorrentes.

Para cada $j \in C_a$, a probabilidade de atingir um estado $k \in E$ num número finito de passos é dada por:

$$\sum_{n=1}^{+\infty} f_{jk}^n = \begin{cases} 1, & \text{se } k \in C_a, \\ 0, & \text{se } k \notin C_a, \end{cases}$$

onde $f_{jk}^n=P(X_n=k,X_1\neq k,\dots,X_{n-1}\neq k\mid X_0=j)$ é a probabilidade de atingir k pela primeira vez no instante n, começando em j.

Adicionalmente, reordenando os estados de forma conveniente, a matriz de transição $\mathbb P$ pode ser escrita na forma em blocos:

$$\mathbb{P} = \begin{bmatrix} R & S \\ 0 & Q \end{bmatrix},$$

onde:

• R descreve as transições entre estados em T;

- S descreve as transições de T para as classes C_1, C_2, \ldots ;
- Q é uma matriz bloco-diagonal com submatrizes $P_1, P_2, ...$, onde cada $P_a = [P_{ij}]_{i,j \in C_a}$ representa as transições internas em cada classe recorrente.

Nota. A decomposição canónica do espaço de estados de uma C.M. é muito útil para analisar as propriedades da cadeia, como a recorrência e a transitoriedade dos estados, bem como a classificação dos estados em classes de comunicação. Em particular, quando o espaço de estados E de uma C.M. é finito, a classificação dos estados pode fazer-se da seguinte forma:

- Passo 1: decompor *E* em classes de equivalência (classes de comunicação);
- Passo 2: identificar quais dessas classes são fechadas;
- Passo 3:
 - em cada classe fechada, todos os estados são recorrentes positivos (porque a classe é finita e fechada);
 - nas classes não fechadas, todos os estados são transitórios.

Exemplo 2.8. Considere-se uma C.M com espaço de estados $E = \{1, 2, ..., 7\}$ e com matriz de transição

$$\mathbb{P} = \begin{bmatrix} 0 & 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 1/3 & 0 & 0 & 0 & 0 & 2/3 \\ 0 & 0 & 1/2 & 0 & 1/2 & 0 & 0 \\ 0 & 1/2 & 0 & 1/2 & 0 & 0 & 0 \\ 1/3 & 0 & 1/3 & 0 & 1/3 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 & 0 \\ 1/4 & 1/4 & 0 & 0 & 0 & 0 & 1/2 \end{bmatrix}.$$

ullet O grafo associado à matriz ${\mathbb P}$ é:

- Classes de equivalência (partição de E com base na relação de comunicação $i\longrightarrow j$):

$$\{1,3,5\},\{2,7\},\{4\},\{6\}.$$

Classes fechadas (classes de equivalência sem saída):

$$\{1,3,5\},\{6\}.$$

• Estados recorrentes positivos (estados em classes fechadas finitas):

• Estados transitórios (estados que podem sair da sua classe, ou que não são atingidos novamente):

Decomposição (separação entre transitórios e classes recorrentes):

$$E = T \cup C_1 \cup C_2 = \{2, 4, 7\} \cup \{1, 3, 5\} \cup \{6\}.$$

• A matriz de transição pode ser reescrita como:

$$\mathbb{P} = \begin{bmatrix} \frac{1}{0} & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1/2 & 1/2 & 0 & 0 & 0 \\ 0 & 1/3 & 1/3 & 1/3 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1/2 & 1/2 & 0 & 0 \\ 0 & 1/3 & 1/3 & 1/3 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1/2 & 1/2 & 0 \\ 0 & 0 & 0 & 0 & 1/2 & 1/2 & 0 \\ 0 & 1/4 & 0 & 0 & 1/4 & 0 & 1/2 \end{bmatrix} = \begin{bmatrix} P_1 & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & P_2 & \mathbf{0} \\ Q_1 & Q_2 & Q_3 \end{bmatrix},$$

onde P_i representa a matriz de probabilidades de transição da classe C_i e Q_i é a matriz associada a estados de transição. Nota: para re-escrever a matriz usou-se a permutação (6,1,3,5,2,4,7).

2.3 Probabilidades de absorção em estados recorrentes

Um dos cálculos de interesse na teoria das cadeias de Markov está relacionado com o tempo (ou número de transições) necessário, para que, a cadeia partindo de algum estado inicial, **atinja algum estado terminal de interesse**.

Este assunto está muitas vezes associado ao problema da determinação de **probabilidades de absorção**, com a seguinte formulação:

- Seja $E=T\cup C_1\cup C_2\cup ...$ a decomposição canónica do espaço de estados E, onde T é definido pelos estados transitórios da cadeia, e C_a , a=1,2,..., são classes fechadas e recorrentes.
- Se a cadeia parte de um estado recorrente em C_a , nunca mais deixará C_a (C_a é fechada).
- Se a cadeia parte de um estado transitório em T_i , a cadeia poderá ser absorvida por uma das classes C_a .

Nestas circunstâncias estamos interessados nas probabilidades de absorção.

Definição 2.12. Seja $C:=\bigcup_a C_a$ a união das classes fechadas de estados recorrentes, e seja T o conjunto de estados transitórios. Seja S a variável aleatória definida por

$$S := \min\{n \ge 1 : X_n \in C\},\$$

isto é, o instante da primeira entrada numa classe recorrente, partindo de um estado transitório.

Dado $X_0 = i$, com $i \in T$, o valor

$$a_{ij} := P(X_S = j \mid X_0 = i), \quad j \in C,$$

representa a probabilidade de a cadeia, partindo de i, ser absorvida no estado recorrente j.

Esta quantidade é chamada **probabilidade de absorção** do estado transitório i no estado recorrente j.

Teorema 2.9 (Probabilidades de absorção). Sejam $E=T\cup C_1\cup C_2\cup ...$ a decomposição canónica do espaço de estados E e $C=\bigcup_a C_a$ a união das classes fechadas de estados recorrentes.

Para cada par $(i,j) \in T \times C$, a **probabilidade de absorção** no estado j, partindo de i, é dada por

$$a_{ij} = P_{ij} + \sum_{k \in T} P_{ik} \, a_{kj},$$

onde P_{ik} são as probabilidades de transição de 1 passo da matriz \mathbb{P} .

Interpretação: a cadeia pode ser absorvida no estado $j \in C$ de forma imediata (via P_{ij}) ou, caso isso não ocorra, pode passar para um estado intermédio $k \in T$, a partir do qual será absorvida em j.

Exemplo 2.9.

- Em jogos de azar: a probabilidade de eventualmente ganhar ou perder tudo.
- Em processos sociais: a probabilidade de uma família atingir e permanecer num certo nível social.
- Em biologia: a probabilidade de uma espécie ou gene acabar por se fixar ou extinguir.

Exemplo 2.10. Num estudo no Reino Unido, após a Segunda Guerra Mundial, sobre a mobilidade social entre gerações foram identificados 3 níveis: 1 - superior, 2 - médio e 3 - inferior. Foram estimadas as probabilidades condicionais de um filho pertencer a uma classe social (nível superior, médio, ou inferior) mediante o nível social dos pais ser superior, médio ou inferior. Os resultados são apresentados na tabela seguinte:

		Filho	
Pai	Superior	Médio	Inferior
Superior	1.00	0.0	0.00
Médio	0.20	0.6	0.20
Inferior	0.05	0.5	0.45

Admitamos que as transições entre classes de gerações sucessivas é uma família que pode ser considerada como transições de uma cadeia de Markov.

- 1. Qual a probabilidade de um neto de uma família com nível médio (estado 2) seja o primeiro descendente a ser considerado com um nível social superior (estado 1), isto é, qual o valor de f_{21}^2 ?
- 2. Qual a probabilidade de que, em alguma geração, de uma família com nível social inferior (estado 3), seja atingida pela primeira vez o nível superior (estado 1)?

Solução

A matriz de transição é dada por

$$\mathbb{P} = \begin{bmatrix} 1 & 0 & 0 \\ 0.2 & 0.6 & 0.2 \\ 0.05 & 0.5 & 0.45 \end{bmatrix}, \quad E = \{1, 2, 3\} = T \cup C,$$

onde:

- $C = \{1\}$ (classe fechada).
- $T = \{2, 3\}$ (estados transitórios).

O grafo é

1. Pretende-se determinar a probabilidade de, começando no estado 2, o primeiro momento em que a cadeia entra no estado 1 seja no instante 2. Para tal, iremos usar a probabilidade de primeira passagem do estado 2 para o estado 1 em 2 passos, isto é,

$$\begin{split} f_{21}^2 &=& P(X_2=1, X_1 \neq 1 \mid X_0=2) \\ &=& P(X_2=1, X_1=2 \mid X_0=2) + P(X_2=1, X_1=3 \mid X_0=2) \\ &=& \sum_{k \neq 1} P_{2k} P_{k1} \\ &=& P_{22} P_{21} + P_{23} P_{31} \\ &=& 0.6 \times 0.2 + 0.2 \times 0.05 \\ &=& 0.13. \end{split}$$

2. Nesta questão, estamos interessados no cálculo do tempo necessário para que a cadeia, partindo de um estado inicial ("nível social inferior"), atinja um estado recorrente ("nível superior"). Podemos, portanto, utilizar as probabilidades de absorção e aplicar o Teorema anterior. Assim,

$$a_{31} = P_{31} + \sum_{k \in T} P_{3k} a_{k1} = P_{31} + P_{32} a_{21} + P_{33} a_{31}.$$

Uma vez que não sabemos o valor de a_{21} , podemos resolver o sistema:

$$\begin{cases} a_{31} = P_{31} + P_{32}a_{21} + P_{33}a_{31} \\ a_{21} = P_{21} + P_{22}a_{21} + P_{23}a_{31} \end{cases}$$

donde se obtém $a_{31}=1$ (e $a_{21}=1$), ou seja, com probabilidade 1, a cadeia partindo do estado 3 (nível social inferior) atingirá o estado 1 (nível superior) em alguma geração futura.

De modo a não existir confusão entre estado recorrente e estado absorvente, atente-se à seguinte tabela:

Estado	Definição formal	Exemplo simples
Absorvente	$P_{ii}=1.\ { m Uma}$ vez atingido, não se pode sair do estado.	Um estado que leva sempre a si próprio e nunca a
Recorrente	$P(\mbox{regressar a i em algum momento} \mid X_0 = i) = 1. \label{eq:problem}$	outros. Um estado que pertence a um ciclo fechado (ex.: $i \rightarrow j \rightarrow i$).

Relação:

- Um estado absorvente é recorrente (uma vez atingido, permanece-se nele para sempre, pelo que o regresso ocorre com probabilidade 1).
- Nem todo o estado recorrente é absorvente (um estado pode ser recorrente por pertencer a um ciclo de vários estados, sem ser obrigatoriamente absorvente).

Exemplo

Consideremos uma cadeia de Markov com três estados:

$$\mathbb{P} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix}$$

- **Estado 1:** é absorvente, pois $P_{11}=1$ e não há saídas para outros estados.
- Estados 2 e 3: não são absorventes (têm transições entre si), mas são recorrentes, porque formam um ciclo fechado $(2 \rightarrow 3 \rightarrow 2 \rightarrow 3 \rightarrow ...)$.

Assim, vemos que:

- O estado 1 é absorvente e, logo, recorrente.
- Os estados 2 e 3 são recorrentes, mas não absorventes.

Exercício 2.17. Os negócios do José flutuam em anos sucessivos entre 3 estados: 0 (bancarrota), 1 (perto da bancarrota) e 2 (solvência). A matriz de transição que indica a probabilidade de passagem de um estado para outro é:

$$\mathbb{P} = \begin{bmatrix} 1 & 0 & 0 \\ 0.5 & 0.25 & 0.25 \\ 0.5 & 0.25 & 0.25 \end{bmatrix}.$$

- (a) Qual a probabilidade dos negócios do José conduzirem a uma bancarrota sabendo que ele começou no estado de solvência?
- (b) A mãe do José considera ser mau para o nome da família permitir que os negócios do seu filho vão à bancarrota. Assim, quando o estado 0 é atingido, a mãe do José dá-lhe dinheiro efetivo de modo a que os negócios do José passem ao estado de solvência com probabilidade 1. A matriz de transição desta nova cadeia de Markov é dada por:

$$\mathbb{P} = \begin{bmatrix} 0 & 0 & 1 \\ 0.5 & 0.25 & 0.25 \\ 0.5 & 0.25 & 0.25 \end{bmatrix}.$$

A nova cadeia de Markov é iredutível e aperiódica? Sabendo que os negócios do José estão a correr bem (estado 2), qual a probabilidade da mãe do José ter necessidade de dar novamente dinheiro ao filho apenas daqui a 3 anos?

2.4 Teoremas limite

Seja $(X_n: n\in\mathbb{N}_0)$ uma C. M. definida num espaço de estados E, com matriz de transição \mathbb{P} e distribuição inicial $P(X_0=i),\ i\in E$. Existem duas questões pertinentes:

- Qual o comportamento de ${\cal X}_n$ após um "longo" número de transições?
- Poderá a cadeia atingir um "comportamento estável" após um "longo" número de transições à medida que $n \to +\infty$?

Em geral, a sucessão de v.a.'s $(X_n:n\in\mathbb{N}_0)$ não converge para um estado específico, uma vez que o processo mantém flutuações aleatórias devido às transições. No entanto, pode acontecer que a distribuição de X_n estabilize de algum modo após um elevado número de transições.

Definição 2.13 (Distribuição limite). Se existirem os limites

$$\pi_j = \lim_{n \to \infty} P(X_n = j) \quad \text{para cada } j \in E,$$

e o vetor $\pi=(\pi_j)_{j\in E}$ for uma distribuição de probabilidade (ou seja, $\pi_j\geq 0$ e $\sum_{j\in E}\pi_j=1$), então π designa-se por **distribuição limite** da cadeia.

Definição 2.14 (Distribuição estacionária). Um vetor $\pi=(\pi_j)_{j\in E}$ chama-se **distribuição estacionária** da cadeia se

$$\pi \mathbb{P} = \pi \iff \forall j \in E: \ \pi_j = \sum_{i \in E} \pi_i P_{ij}.$$

Por outras palavras, se a distribuição inicial for π , então X_n tem distribuição π para todo $n \geq 0$.

Em que condições a C.M. tem distribuição estacionária? Atente-se ao seguinte teorema:

Teorema 2.10. Uma C.M. irredutível (todos os estados comunicam entre si) tem uma distribuição estacionária $\pi = (\pi_j)_{j \in E}$ sse todos os estados forem recorrentes positivos. Adicionalmente, π é a única distribuição estacionária e é dada por

$$\pi_j = \frac{1}{\mu_j}, \ j \in E,$$

onde μ_i é o tempo médio de recorrência do estado j.

Qual a relação entre a existência de uma distribuição estacionária e o comportamento limite das probabilidades de transição a n passos, quando $n \to +\infty$?

Teorema 2.11. Se existir uma distribuição de probabilidade $\pi=(\pi_j)_{j\in E}$, tal que

$$\forall \ i,j \in E: \ \pi_j = \lim_{n \to +\infty} P^n_{ij},$$

então,

- (i) $\lim_{\substack{n \to \infty \\ \text{inicial}}} P(X_n = j) = \pi_j, \ \forall \ j \in E$, ou seja, π é a distribuição limite da cadeia, independente da distribuição limite da distribuição limite da distribuição limite da a distribuição limite da cadeia, independente da distribuição limite da a distribuição li
- (ii) π é estacionária: $\pi = \pi \mathbb{P}$.

Teorema 2.12. Em cadeias de Markov irredutíveis e aperiódicas, todos os seus estados são recorrentes positivos, isto é, a cadeia é **ergódica**:

(i) sse a distribuição estacionária π existe e é solução do sistema de equações lineares

$$\begin{cases} \pi_j = \sum\limits_{i \in E} \pi_i \ P_{ij}, & j \in E, \\ \sum\limits_{j \in E} \pi_j = 1 \end{cases},$$

tiver solução

$$\pi = [\pi_0 \quad \pi_1 \quad \dots], \ \operatorname{com} E = \mathbb{N}_0.$$

(ii) se tiver solução, será única, estritamente positiva e,

$$\pi_j = \lim_{n \to +\infty} P_{ij}^n, \quad \forall \ i, j \in E.$$

Exercício 2.18. Num dado centro comercial existem 4 restaurantes A, B, C e D. Desde que a Ana trabalha numa das lojas do centro, ela almoça regularmente num dos 4 restaurantes. Sabe-se ainda que a escolha diária do restaurante está de acordo uma C.M. homogénea com matriz de transição:

$$\mathbb{P} = \begin{bmatrix} 0.5 & 0.5 & 0 & 0 \\ 0.3 & 0 & 0.1 & 0.6 \\ 0.4 & 0 & 0.3 & 0.3 \\ 0 & 0 & 1 & 0 \end{bmatrix}.$$

Sabe-se que no primeiro dia de trabalho qualquer um dos 4 restaurantes tinha igual probabilidade de ser selecionado pela Ana.

- (a) Indique a distribuição inicial da cadeia dada.
- (b) Calcule a probabilidade de no segundo dia de trabalho a Ana selecione o restaurante B para almoçar.
- (c) Classifique quanto à recorrência todos os estados da cadeia.
- (d) Qual o número médio de dias entre dois almoços no restaurante B?

Exercício 2.19. Considere uma C.M. sobre o espaço um espaço de estados $E = \{1, 2, 3, 4, 5, 6\}$ e com matriz de transição:

$$\mathbb{P} = \begin{bmatrix}
0.5 & 0.5 & 0 & 0 & 0 & 0 \\
0.25 & 0.75 & 0 & 0 & 0 & 0 \\
0.25 & 0.25 & 0.25 & 0.25 & 0 & 0 \\
0.25 & 0 & 0.25 & 0.25 & 0 & 0.25 \\
0 & 0 & 0 & 0 & 0.5 & 0.5 \\
0 & 0 & 0 & 0 & 0.5 & 0.5
\end{bmatrix}.$$

- (a) Classifique os estados da cadeia identificando as classes fechadas e a periodicidade de todos os estados da cadeia.
- (b) Determine a parobabilidade de que a cadeia, partindo do estado 1, regresse novamente a 1, pela primeira vez, em n passos.
- (c) Determine o número médio de transições necessárias para que a cadeia, partindo de 1 volte a 1, isto é, o tempo médio de recorrência do estado 1.
- (d) Encontre a distribuição estacionária relativa à C.M. restrita ao sub-espaço $\{1,2\} \subset E$. A partir desta, determine o tempo médio de recorrência para o estado 1.

Exercício 2.20. Relativamente ao funcionamento de uma máquina analisa-se a durabilidade, em número de dias completos, de um certo tipo de peça. Para tal, considere-se que sempre que a peça falha a máquina pára, procedendo-se à substituição da peça por outra idêntica, de modo que no dia seguinte a máquina retoma o seu funcionamento com a nova peça.

Seja Z_{n+1} o tempo de vida (contado em dias completos) da peça instalada no n—ésimo dia, e denote por p_k a probabilidade de que uma peça nova dure k dias completos, com k=0,1,2,...

Represente por X_n o tempo de vida (contado em dias completos) que resta à peça que está em uso no n—ésimo dia de observação do processo.

(a) Prove que o processo $(X_n:n\in\mathbb{N}_0)$ é uma C.M. homogénea sobre o espaço \mathbb{N}_0 e com matriz de transição:

$$\mathbb{P} = \begin{bmatrix} p_0 & p_1 & p_2 & \dots \\ 1 & 0 & 0 & \dots \\ 0 & 1 & 0 & \dots \\ 0 & 0 & 1 & \dots \\ \dots & \dots & \dots & \dots \end{bmatrix}.$$

- (b) A cadeia $(X_n:\ n\in\mathbb{N}_0)$ é irredutível e aperiódica? Justifique.
- (c) Defina distribuição estacionária de uma C.M. e mostre que a cadeia dada possui distribuição estacionária sse o tempo médio de vida das peças novas é finito, isto é,

$$\sum_{k=0}^{+\infty} k p_k < +\infty.$$

Note que $p_0 + p_1 + p_2 + \dots = 1$.

(d) Sob que condição a cadeia dada é ergódica? Justifique.

Exercício 2.21.

Considere uma cadeia de Markov homogénea definida pelo seguinte grafo:

- (a) Determine a matriz das probabilidades de transição.
- (b) Em que condições esta cadeia é irredutível e aperiódica?
- (c) Determine a distribuição estacionária $\pi=(\pi_1,\pi_2,\pi_3).$
- (d) Calcule os valores de p e q tais que $\pi_1 = \pi_2 = \pi_3$.

Exercício 2.22.

Considere uma C.M. com espaço de estados $E = \{1, 2, 3, 4\}$ e matriz de transição

$$\mathbb{P} = \begin{bmatrix} 1/2 & 1/2 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 1/3 & 2/3 & 0 \\ 1/2 & 0 & 1/2 & 0 \end{bmatrix}$$

Classifique os estados.

Exercício 2.23.

Considere uma C.M. homogénea $\{X_n,\ n\geq 0\}$, com espaço de estados $E=\{1,2,3\}$ e matriz de probabilidades de transição a um passo:

$$\mathbb{P} = \left[\begin{array}{ccc} p & 1-p & 0 \\ 0 & 0 & 1 \\ 0 & 1-q & q \end{array} \right], \quad 0$$

- (a) Classifique, justificando, cada um dos estados da cadeia.
- (b) Calcule o limite

$$\lim_{n\to\infty}P(X_n=3).$$

Exercício 2.24.

Uma urna contém 6 bolas, das quais 3 são encarnadas e 3 são verdes. São selecionadas ao acaso da urna 2 bolas simultaneamente. Se uma for verde e a outra for encarnada, então são postas de lado e são colocadas duas bolas azuis na urna. Se não for o caso, colocam-se de volta as bolas retiradas na urna. O processo repete-se até só haver bolas azuis na urna.

Seja ${\cal X}_n$ o número de bolas encarnadas na urna depois da tiragem n.

- (a) Justifique que $\{X_n\}$ é uma C.M homogénea. Defina o espaço de estados e construa a respetiva matriz das probabilidades de transição.
- (b) Classifique, justificando, os estados da cadeia.
- (c) Calcule a probabilidade de, a determinada altura, a urna apenas conter bolas azuis partindo de $X_0=3$.

Exercício 2.25.

Considere uma C.M com estados 0 e 1, e matriz de transição

$$\mathbb{P} = \left[\begin{array}{cc} a & 1-a \\ 1-b & b \end{array} \right], \ 0 < a, \ b < 1.$$

- (a) Calcule a probabilidade do primeiro retorno ao estado 1 em n passos, $f_{11}^n,\ n=1,2,...$, e verifique que o estado 1 é recorrente positivo.
- (b) Calcule a distribuição limite (π_0, π_1) e discuta a sua existência. Relacione π_1 com a média do tempo de primeiro retorno ao estado 1.

Exercício 2.26.

Considere a C.M $(X_n,\ n=0,1,\cdots)$ com espaço de estados $E=\{0,1\}$ e tal que,

$$0 < p_{00} < 1$$
 e $0 < p_{11} < 1$.

- (a) Prove que a cadeia é recorrente positiva.
- (b) Determine a distribuição estacionária da cadeia.

Exercício 2.27.

Considere uma C.M com espaço de estados $E = \{1, 2, 3, 4\}$ e matriz de transição

$$\mathbb{P} = \begin{bmatrix} 1/3 & 2/3 & 0 & 0 \\ 1/2 & 1/2 & 0 & 0 \\ 1/4 & 0 & 1/4 & 1/2 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

2.4. TEOREMAS LIMITE 41

- (a) Classifique, justificando, os estados da cadeia.
- (b) Calcule $f_{34}(n)$, a probabilidade de a primeira visita ao estado 4 ter lugar no n-ésimo passo, partindo de 3, e calcule a probabilidade de absorção no estado 4, partindo de 3.

Exercício 2.28.

Considere uma C.M. definida pela matriz das probabilidades de transição:

$$\mathbb{P} = \left[\begin{array}{ccc} 0 & 2/3 & 1/3 \\ 3/8 & 1/8 & 1/2 \\ 1/2 & 1/2 & 0 \end{array} \right]$$

- (a) Verifique que a cadeia é irredutível e aperiódica.
- (b) Verifique a existência de distribuição limite e determine-a.

Exercício 2.29.

Considere uma C.M. $(X_n,\ n=0,1,\dots)$ com espaço de estados $E=\{1,2\}$, em que $P_{12}=P_{21}=1$ e $P(X_0=1)=P(X_0=2)=1/2.$

- (a) O que pode concluir quanto à convergência de $P_{ii}^n,\ i=1,2$, quando $n\to +\infty?$ Justifique.
- (b) Mostre que

$$P(X_n=1) = P(X_n=2) = 1/2, \quad \forall \, n=1,2,\dots,$$

isto é, a distribuição de X_n é estacionária. Comente e relacione justificadamente com a conclusão obtida na alínea anterior.

Capítulo 3

Cadeias de Markov em tempo contínuo

Neste capítulo iremos considerar $(X_t, t \in \mathbb{R}_0^+)$ uma C.M. com valores em \mathbb{N}_0 e espaço de parâmetro \mathbb{R}_0^+ .

Vamos admitir que $(X_t,\ t\in\mathbb{R}^+_0)$ é homogénea, isto é, tem probabilidade de transição estacionárias. Nestas condições, a função de probabilidade de transição

$$\forall t > 0, \ P_{ij}(t) = P(X_{t+n} = j \mid X_n = i), \quad i, j \in \mathbb{N}_0$$

é independente de $n \geq 0$.

3.1 Processo de Poisson homogéneo

O processo de Poisson homogéneo é um processo estocástico que modela a ocorrência de eventos aleatórios ao longo do tempo, onde os eventos ocorrem de forma independente e com uma taxa constante. É frequentemente utilizado para modelar fenómenos como chamadas telefónicas recebidas num call center, chegadas de clientes a um serviço, ou falhas em sistemas, entre outros.

Seja X_t uma função que conta o número de vezes que um determinado acontecimento ocorre durante o período de tempo de 0 a t. Assim, a aplicação $t \longrightarrow X_t$ é uma função em escada, não decrescente, em que os saltos correspondem às ocorrências dos acontecimentos:

Hipótese 3.1 (Postulados do processo de Poisson homogéneo).

- P0. $X_0 = 0$.
- P1. O número de acontecimentos que ocorrem em intervalos de tempo disjuntos são v.a.'s independentes (incrementos independentes).
- P2. A v.a. $X_{t_0+t}-X_{t_0}$ (isto é, o acréscimo no intervalo $[t_0,t_0+t]$) depende apenas de t, e não de t_0 ou de X_{t_0} (incrementos estacionários).

■ P3. A probabilidade de ocorrer **exatamente** um acontecimento num intervalo de tempo pequeno de amplitude *h* é proporcional a *h*. Assim,

$$P(h) = P(X_{t+h} - X_t = 1) = \lambda h + o(h), \quad h \to 0, \ \lambda > 0,$$

$$\text{ onde } g(h) = o(h), \ h \to 0 \iff \lim_{h \to 0} \frac{g(h)}{h} = 0.$$

■ P4. A probabilidade de ocorrerem **dois ou mais** acontecimentos num intervalo de tempo pequeno de amplitude h é negligível quando $h \to 0$. Assim,

$$P(X_{t+h} - X_t \ge 2) = o(h), \quad h \to 0.$$

Representemos por $P_n(t)=P(X_t=n)$ a probabilidade de ocorrerem n acontecimentos num intervalo de tempo [0,t]. Assim, num intervalo de amplitude t+h temos:

• Para n=0:

$$\begin{split} P_0(t+h) &= P_0(t) \cdot P_0(h), \\ &= P_0(t) \cdot [1 - P(X_{t+h} - X_t \ge 1)] \\ &= P_0(t) \cdot [1 - (P(X_{t+h} - X_t = 1) + P(X_{t+h} - X_t \ge 2))] \\ &= P_0(t) \cdot [1 - (\lambda h + o(h) + o(h))] \\ &= P_0(t) \cdot (1 - \lambda h + o(h)) \end{split} \tag{por P1}$$

Temos então que:

$$P_0(t+h) = P_0(t) \cdot (1 - \lambda h + o(h)) \iff \frac{P_0(t+h) - P_0(t)}{h} = -P_0(t) \cdot \frac{\lambda h + o(h)}{h}.$$

Aplicando limites, obtemos:

$$\lim_{h\to 0}\frac{P_0(t+h)-P_0(t)}{h}=-P_0(t)\cdot\lim_{h\to 0}\frac{\lambda h+o(h)}{h},$$

o que resulta em

$$\frac{d}{dt}P_0(t) = -\lambda P_0(t),$$

isto é, a probabilidade do acontecimento não se realizar no intervalo de tempo [0,t], $P_0(t)$, satisfaz a equação diferencial

$$P_0^{'}(t) = -\lambda P_0(t).$$

Multiplicando pelo fator integrante $e^{\lambda t}$, a solução desta equação diferencial é,

$$P_0(t) = K \cdot e^{-\lambda t}$$

onde K é uma constante de integração. Como $P_0(0)=1$, temos que K=1. Assim, a solução da equação diferencial é

$$P_0(t) = e^{-\lambda t}.$$

- Para $n \geq 1$:
 - se no intervalo $\left[0,t\right]$ ocorrem n eventos, no intervalo $\left[t,t+h\right]$ ocorrem zero;
 - se no intervalo [0,t] ocorrem n-1 eventos, no intervalo [t,t+h] ocorre 1;

- se no intervalo [0,t] ocorrem n-2 eventos, no intervalo [t,t+h] ocorrem 2;

- e assim sucessivamente.

Logo,

$$\begin{split} P_n(t+h) &= P_n(t) \cdot P_0(h) + P_{n-1}(t) \cdot P_1(h) + P_{n-2}(t) \cdot P_2(h) + \dots \\ &= P_n(t) \cdot P_0(h) + P_{n-1}(t) \cdot P_1(h) + \sum_{i \geq 2} P_{n-i}(t) \cdot P_i(h) \\ &= P_n(t) \cdot (1 - \lambda h + o(h)) + P_{n-1}(t) \cdot (\lambda h + o(h)) + \sum_{i \geq 2} P_{n-i}(t) \cdot P_i(h), \end{split}$$

donde se obtém:

$$P_n(t+h) - P_n(t) = P_n(t) \cdot (-\lambda h + o(h)) + P_{n-1}(t) \cdot (\lambda h + o(h)) + \sum_{i \geq 2} P_{n-i}(t) \cdot P_i(h).$$

Dividindo por h e aplicando o limite quando $h \to 0$, obtemos:

$$\begin{split} \lim_{h \to 0} \frac{P_n(t+h) - P_n(t)}{h} &= P_n(t) \cdot \lim_{h \to 0} \frac{-\lambda h + o(h)}{h} + P_{n-1}(t) \cdot \lim_{h \to 0} \frac{\lambda h + o(h)}{h} \\ &\quad + \lim_{h \to 0} \frac{\sum\limits_{i \ge 2} P_{n-i}(t) \cdot P_i(h)}{h}, \end{split}$$

ou seja,

$$\frac{d}{dt}P_n(t) = -P_n(t) \cdot \lambda + P_{n-1}(t) \cdot \lambda,$$

o que equivale a escrever que a probabilidade do acontecimento se realizar pelo menos uma vez no intervalo [0,t] satisfaz a equação diferencial

$$\boxed{P_n^{'}(t) = \lambda P_{n-1}(t) - \lambda P_n(t), \quad n \in \mathbb{N}.}$$

A solução desta equação diferencial, tendo em conta que $P_n(0)=0$, é dada por

$$P_n(t) = \frac{\lambda^n t^n}{n!} e^{-\lambda t}, \quad n \in \mathbb{N}.$$

Assim, podemos concluir que a probabilidade de ocorrerem n acontecimentos no intervalo de tempo [0,t] segue uma distribuição de Poisson com parâmetro λt , ou seja,

$$X_t \sim Po(\lambda t),$$

donde

$$P(X_t=n)=P_n(t)=\frac{(\lambda t)^n}{n!}e^{-\lambda t},\quad n\in\mathbb{N}_0.$$

Das propriedades da distribuição de Poisson, sabemos que $E(X_t) = \lambda t$, o que significa que o **número esperado** de acontecimentos num intervalo de amplitude t é proporcional à amplitude do intervalo.

No caso t=1, temos que $E(X_1)=\lambda$, pelo que:

- λ representa o número médio de acontecimentos que ocorrem por unidade de tempo;
- ullet λ designa a taxa de ocorrência, razão ou intensidade do processo de Poisson homogéneo.

Com base no exposto, podemos definir processo de Poisson homogéneo do seguinte modo:

Definição 3.1 (Processo de Poisson homogéneo). Um processo estocástico $(X_t,\,t\in\mathbb{R}^+_0)$ é um **processo de Poisson homogéneo** com taxa $\lambda>0$ sse:

- (i) $X_0 = 0$ quase certamente;
- (ii) tem incrementos independentes e estacionários;
- (iii) X_t tem distribuição de Poisson com parâmetro λt , i.e.

$$X_t \sim Po(\lambda t), \qquad t \geq 0.$$

Nota (Observações sobre o processo de Poisson homogéneo).

1. Dos postulados segue que, para quaisquer $0 \le s \le t$,

$$X_t - X_s \sim Po(\lambda(t-s)),$$

isto é, o número de acontecimentos num intervalo depende só da amplitude. Além disso, para $0 \le t_1 < \cdots < t_k$ e inteiros $n_1 \le n_2 \le \cdots \le n_k$,

$$\begin{split} P(X_{t_1} &= n_1, \dots, X_{t_k} = n_k) \\ &= P(X_{t_1} = n_1) \prod_{j=2}^k P(X_{t_j} - X_{t_{j-1}} = n_j - n_{j-1}) \\ &= \prod_{j=1}^k \frac{(\lambda(t_j - t_{j-1}))^{n_j - n_{j-1}}}{(n_j - n_{j-1})!} e^{-\lambda(t_j - t_{j-1})}, \end{split}$$

com a convenção $t_0=0$ e $n_0=0$.

2. O tempo de espera até ao primeiro acontecimento $L=\inf\{t>0:X_t>0\}$ tem função de distribuição

$$F_L(t) = P(L \le t) = 1 - P(L > t).$$

Note-se que o acontecimento $\{L>t\}$ significa "a primeira ocorrência ainda não aconteceu até ao tempo t". Isto é equivalente a "não houve nenhum acontecimento no intervalo [0,t]", o que corresponde a $\{X_t=0\}$. Assim,

$$P(L > t) = P(X_t = 0) = e^{-\lambda t}, \quad t > 0.$$

Logo,

$$F_L(t) = 1 - e^{-\lambda t}, \quad t \ge 0,$$
 (3.1)

e a f.d.p. é

$$f_L(t) = F_L'(t) = \lambda e^{-\lambda t}, \quad t > 0.$$

Consequentemente, $L \sim Exp(\lambda)$, com

$$E(L) = \frac{1}{\lambda}, \qquad \mathrm{Var}(L) = \frac{1}{\lambda^2}, \qquad M_L(u) = E[e^{uL}] = \frac{\lambda}{\lambda - u}, \quad u < \lambda.$$

3. Se T_1,T_2,\ldots são os tempos entre acontecimentos consecutivos, então $T_i\stackrel{iid}{\sim} \mathrm{Exp}(\lambda).$

Definindo $S_r=T_1+\cdots+T_r$ (tempo do r-ésimo acontecimento), temos $S_r\sim \Gamma(r,\lambda)$, com f.g.m.

$$M_{S_r}(u) = \left(\frac{\lambda}{\lambda - u}\right)^r, \quad u < \lambda,$$

e
$$E(S_r) = r/\lambda$$
, $Var(S_r) = r/\lambda^2$.

4. O processo de Poisson homogéneo é uma C. M. com valores em \mathbb{N}_0 e em tempo contínuo. As probabilidades de transição são dadas por

- $P(X_{t+h} X_t = 1 \mid X_t = x) = \lambda h + o(h);$
- $P(X_{t+h} X_t = 0 \mid X_t = x) = 1 \lambda h + o(h);$
- $P(X_{t+h} X_t \ge 2 \mid X_t = x) = o(h)$, com $o(h)/h \to 0$ quando $h \to 0$.

Pelo exposto, podemos dar uma outra definição de processo de Poisson:

Definição 3.2 (Processo de Poisson — formulação alternativa). Um processo de Poisson homogéneo com taxa $\lambda > 0$ é uma C. M. em tempo contínuo com estados em \mathbb{N}_0 , tal que, para todo $x \in \mathbb{N}_0$:

- $P(X_{t+h} X_t = 1 \mid X_t = x) = \lambda h + o(h),$
- $P(X_{t+h} X_t = 0 \mid X_t = x) = 1 \lambda h + o(h),$
- $P(X_{t+h} X_t \ge 2 \mid X_t = x) = o(h),$

 $\operatorname{com} X_0 = 0 \text{ q.c.}$

Existem cadeias de Markov mais gerais e que nos permitem descrever fenómenos análogos aos descritos pelos processos de Poisson. É o que veremos nas secções seguintes.

Exercício 3.1.

Seja $X=(X_t:t\geq 0)$ um processo estocástico real tal que $X_0=0$ q.c. e $X_t\sim Po(\cdot)$.

- (a) Em que condições será X um **processo de Poisson**?
- (b) Supondo que X é um processo de Poisson, prove que, para todos $t,s,h\in\mathbb{R}^+_0$ com t>s>h e todos $x,y\in\mathbb{N}_0$:

$$P(X_t - X_s = x, \ X_s - X_h = y) = \frac{e^{-\lambda(t-h)}\lambda^{x+y}(t-s)^x(s-h)^y}{x! \ y!}.$$

Exercício 3.2.

Considere uma estação de serviço de lavagem de automóveis, na qual apenas um carro é atendido de cada vez, segundo a ordem de chegada. Um estudo realizado pela empresa concluiu que as chegadas ocorrem segundo um **processo de Poisson** com intensidade média de 15 carros por hora. Denote por $N_t,\ t\geq 0$ o número de automóveis que chegam num intervalo de tempo de amplitude t minutos.

- (a) Identifique a distribuição de N_t , $\forall t \geq 0$. Justifique a sua resposta.
- (b) Mostre que

$$\lim_{h \to 0} \frac{P(N_h \ge 2)}{P(N_h = 1)} = 0.$$

(c) Prove que a condição anterior é equivalente a

$$\lim_{h\to 0} P(N_h>1\mid N_h\geq 1)=0.$$

O que pode concluir sobre o processo em causa?

(d) Qual é o tempo médio de espera entre duas chegadas consecutivas?

Exercício 3.3.

Seja $(N_t, t \ge 0)$ um processo de Poisson com intensidade $\lambda > 0$.

(a) Supondo que s < t, calcule:

- i. $E(N_t N_s)$
- ii. $Var(N_t N_s)$
- iii. $Cov(N_t, N_s)$
- (b) Os clientes de um vendedor de jornais chegam segundo um processo de Poisson com taxa média de 2 clientes por minuto.
 - i. Determine a probabilidade de **não chegarem clientes nos próximos três minutos**, sabendo que chegaram um ou mais clientes nos últimos cinco minutos.
- ii. O vendedor faz a seguinte aposta: paga ao seu assistente 1€ se o próximo cliente não chegar dentro de um minuto; caso contrário, o assistente paga-lhe 1€. Qual é o valor esperado do ganho do vendedor?

Exercício 3.4.

O volume de vendas de um determinado produto constitui um **processo de Poisson**, com volume médio de 4 unidades por dia.

- (a) Qual é a probabilidade de que, em dois dias, se vendam exatamente 6 unidades?
- (b) Qual é a probabilidade de que, em dois dias, se vendam mais de 6 unidades?
- (c) Determine o volume médio de vendas semanal.
- (d) Qual é a probabilidade de que um stock de 4 unidades dure menos de um dia?

Exercício 3.5.

Numa loja, os clientes chegam de acordo com um **processo de Poisson** com média de 30 por hora. Qual é a probabilidade de que o **intervalo de tempo entre chegadas sucessivas** seja:

- (a) Superior a 2 minutos?
- (b) Inferior a 4 minutos?
- (c) Entre 1 e 3 minutos?

Exercício 3.6.

Uma v.a. T diz-se sem memória se, e só se:

$$P(T > x + y \mid T > x) = P(T > y), \quad \forall x, y > 0.$$

- (a) Mostre que, se T for contínua, T é sem memória se e só se $T \sim Exp(\lambda)$ para algum $\lambda > 0$.
- (b) Se T assumir apenas valores inteiros positivos, T é sem memória para x e y não negativos **se e só se** existe uma constante p tal que

$$P(T = k) = p(1-p)^{k-1}, \quad k = 1, 2, 3, \dots$$

Exercício 3.7.

A chegada de passageiros a uma paragem de autocarro segue um **processo de Poisson** com intensidade λ . Suponha que um autocarro partiu no instante t=0, não tendo deixado nenhum passageiro em espera. Seja T o tempo de chegada do autocarro seguinte. Então, o número de pessoas na paragem aquando da sua chegada é N(T). Suponha que T é independente do processo de Poisson e tem distribuição uniforme no intervalo (1,2).

Calcule a **média** e a **variância** de N(T).

Exercício 3.8.

Sejam $(N_t,\ t\geq 0)$ um processo de Poisson com intensidade λ e

$$P_k(t) = P(N_t = k), \quad k = 0, 1, 2, \dots$$

(a) Deduza as equações diferenciais de $P_k(t)$:

$$\begin{split} P_0'(t) &= -\lambda P_0(t), \\ P_k'(t) &= -\lambda P_k(t) + \lambda P_{k-1}(t), \quad k=1,2,\ldots \end{split}$$

(b) A partir destas equações, encontre a função de probabilidade:

$$P_k(t) = \frac{(\lambda t)^k}{k!} e^{-\lambda t}, \quad k = 0, 1, 2, \dots$$

Exercício 3.9.

Para assegurar o bom funcionamento de um consultório médico, a direção determinou que, em qualquer instante durante o período de funcionamento, não poderia haver mais de N doentes no consultório. Apenas um doente é atendido de cada vez, segundo a respetiva ordem de chegada. Os doentes chegam ao consultório segundo um processo de Poisson de intensidade 1/2, ficando a aguardar a sua vez de atendimento apenas se, nesse momento, o número de utentes no consultório for inferior a N.

- (a) Designe por $N_t,\ t\geq 0$, o número de doentes que chegam num intervalo de amplitude t.
- 1. Prove que:
 - i. $(N_t,\ t\geq 0)$ é uma C.M. homogénea em tempo contínuo e indique a respetiva probabilidade de transição.
 - ii. $(N_t, t \ge 0)$ é um processo de nascimento puro.
- 2. Sendo T uma v.a. que representa o tempo de espera entre duas chegadas consecutivas, prove que

$$P(T > t) = e^{-t/2}, \quad t > 0.$$

- 3. Qual é o tempo médio de espera entre chegadas?
- (b) Seja agora X_t , $t \ge 0$, o número total de doentes no consultório no instante t. Supondo que:

$$\forall \ k \in \{0,1,2,\dots,N\}: \ P(X_t = k) = \left(\frac{3}{2}\right)^k P(X_t = 0),$$

determine:

- 1. A probabilidade de que existam k doentes à espera de serem atendidos, num qualquer instante t.
- 2. O número médio de doentes no consultório, num qualquer instante t.

Exercício 3.10.

Considere um quiosque onde os clientes chegam segundo um processo de Poisson à razão de 32 clientes por dia, durante o horário diário de abertura do quiosque, correspondente a 8 horas. Designe por $N_t,\ t\geq 0$, o número de clientes que chegam ao quiosque num intervalo de tempo de amplitude t horas.

- (a) Identifique, justificando, a distribuição de N_t .
- (b) Sendo T_2 a v.a. que representa o instante de chegada (em horas) do segundo cliente ao quiosque, em cada dia, mostre que:

$$P(T_2>t)=e^{-4t}(1+4t), \quad t>0.$$

3.2 Processo de nascimento puro

Um processo de nascimento puro é uma generalização do processo de Poisson homogéneo, onde a probabilidade de um acontecimento ocorrer num certo instante depende do número de acontecimentos que já ocorreram. Assim, o processo de Poisson é um processo de nascimento puro com razão de nascimentos constante e igual a λ .

No que se segue, considere-se uma sequência de números positivos $\{\lambda_k,\ k\in\mathbb{N}_0\}$ e defina-se X_t como o **número de nascimentos** no intervalo [0,t].

Definição 3.3 (Processo de nascimento puro). Um processo estocástico $(X_t,\ t\in\mathbb{R}^+_0)$, com valores em \mathbb{N}_0 , é um **processo de nascimento puro** com taxa (ou razão de nascimento) $\{\lambda_k,\ k\in\mathbb{N}_0\}$ se for um processo de Markov homogéneo em tempo contínuo, que satisfaz os axiomas:

(i)
$$P(X_{t+h} - X_t = 1 \mid X_t = k) = \lambda_k h + o_{1,k}(h) = P_{k,k+1}(h)$$
.

(ii)
$$P(X_{t+h} - X_t = 0 \mid X_t = k) = 1 - \lambda_k h + o_{2,k}(h) = P_{kk}(h)$$
.

(iii)
$$P(X_{t+h} - X_t < 0 \mid X_t = k) = 0, \ k \in \mathbb{N}_0, \ \forall \ h > 0.$$

(iv)
$$X_0 = 0$$
 q.c.

Nota .

- 1. A condição (iv) pode ser relaxada conforme o estudo em causa. Ao considerar $X_0 \neq 0$, define-se X_t como o número de indivíduos no instante t, uma vez que o número de nascimentos em [0,t] é $X_t X_0$.
- 2. Uma vez que as probabilidades de transição dadas por (i) e (ii) são estacionárias, então $o_{1,k}(h)$ e $o_{2,k}(h)$ não dependem de t (são funções de h quando $h \to 0$).

Exemplo 3.1 (Processo de Yule). O processo de Yule é um processo de nascimento puro usado para modelar o crescimento populacional. Seja $\lambda_n=\lambda n$ (com $\lambda>0$) e X(0)=1.

Cada indivíduo origina novos indivíduos a uma taxa λ , logo a taxa total de nascimentos aumenta proporcionalmente ao tamanho da população.

A distribuição de X_t é:

$$P(X_t = k) = e^{-\lambda t} \big(1 - e^{-\lambda t} \big)^{k-1}, \qquad k = 1, 2, 3, \dots$$

e o valor médio é:

$$E(X_t) = e^{\lambda t}$$
.

Comparação com o processo de Poisson:

Característica	Poisson homogéneo	Nascimento puro (Yule)
Taxa de transição	$\lambda_n = \lambda$	$\lambda_n = \lambda n$
Média	$E(X_t) = \lambda t$	$E(X_t) = e^{\lambda t}$
Distribuição	$Poisson(\lambda t)$	Geométrica deslocada
Incrementos	Independentes e estacionários	Dependentes do estado

Interpretação intuitiva

- No processo de Poisson, os eventos ocorrem a um ritmo constante e independente do número de eventos anteriores.
- No processo de nascimento puro, o ritmo de ocorrência depende do número atual de indivíduos: quanto mais indivíduos houver, mais rapidamente ocorrem novos nascimentos.

• O processo de Poisson é um caso particular do processo de nascimento puro com taxas constantes:

$$\lambda_n = \lambda, \quad \forall n.$$

Exercício 3.11.

Considere um processo de nascimento puro $\{X_t,\ t\geq 0\}$ com taxas $\lambda_n=0.5n$ e condição inicial $X_0=1$. Seja t=2.

- 1. Calcule a probabilidade de que o número de indivíduos em t=2 seja no máximo 3.
- 2. Calcule $E(X_2)$ e interprete o resultado.
- 3. Discuta se o processo poderia diminuir num intervalo de tempo [t, t+h].

Teorema 3.1. Seja $P_n(t) = P(X_t = n)$. Para $t \ge 0$, $P_n(t)$ satisfaz o sistema de equações diferenciais

$$\begin{cases} P_0'(t) = -\lambda_0 P_0(t), \\ P_n'(t) = \lambda_{n-1} P_{n-1}(t) - \lambda_n P_n(t), \ n \geq 1 \end{cases}, \label{eq:power_power}$$

com as condições iniciais

$$\begin{cases} P_0(0) = P(X_0 = 0) = 1, \\ P_n(0) = P(X_0 = n) = 0, \ n > 0. \end{cases}$$

Definição 3.4 (Tempos de espera num processo de nascimento puro). Considere-se a variável aleatória

$$T_k = {\rm o} \ {\rm tempo} \ {\rm entre} \ {\rm o} \ k$$
-ésimo e o $(k+1)$ -ésimo nascimento,

isto é, o tempo de espera entre dois nascimentos consecutivos.

Definindo

$$S_k = \sum_{i=0}^{k-1} T_i,$$

temos que S_k é o **instante em que ocorre o** k-ésimo **nascimento**, isto é, o tempo total até ao k-ésimo nascimento.

Como visto anteriormente (ver (3.1)), o tempo até ocorrer o primeiro evento tem função de distribuição

$$F_{T_0}(t) = 1 - P(X_t = 0) = 1 - e^{-\lambda_0 t}, \qquad t > 0,$$

logo $T_0 \sim \text{Exp}(\lambda_0)$.

Pode demonstrar-se (ver Karlin & Taylor, A First Course in Stochastic Processes) que a sequência $(T_k)_{k\geq 0}$ é composta por variáveis aleatórias independentes (**mas não i.i.d**) e

$$T_k \sim \text{Exp}(\lambda_k), \quad \forall k \in \mathbb{N}_0.$$

Adicionalmente, se $(X_t)_{t\geq 0}$ for um processo de Poisson homogéneo com taxa λ , então

$$S_n \sim \Gamma(n,\lambda),$$

isto é, o instante do n-ésimo evento tem distribuição Gamma com forma n e parâmetro de taxa λ . (Nota: aqui usamos a parametrização por **taxa**; noutras fontes a segunda componente da Γ pode ser a escala $\theta = 1/\lambda$.)

Terminamos esta secção com um teorema, fundamental para caracterizar a evolução temporal do processo de nascimento puro, permitindo derivar explicitamente as distribuições de probabilidade dos estados ao longo do tempo:

Teorema 3.2. $P_k(t)$ verifica a equação de recorrência

$$P_k(t) = \lambda_{k-1} e^{-\lambda_k t} \int\limits_0^t e^{\lambda_k x} P_{k-1}(x) \, dx, \quad k \in \mathbb{N}.$$

Exercício 3.12.

Uma população de organismos evolui da seguinte forma: cada organismo existe independentemente dos outros e vive durante um tempo aleatório, distribuído exponencialmente com parâmetro θ , dividindo-se então em dois novos organismos. Por sua vez, a existência de cada organismo é também independente da dos outros e tem tempo de vida exponencialmente distribuído de parâmetro θ , e assim sucessivamente.

Seja X(t) o número de organismos existentes no instante t. Suponha que X(0)=1 e defina $P_n(t)=P(X(t)=n)$. Justifique que X(t) é um processo de nascimento puro, ou seja,

$$P_n'(t) = -\theta \left(n \, P_n(t) - (n-1) \, P_{n-1}(t) \right), \quad n=1,2,\dots \label{eq:pn}$$

Exercício 3.13.

Considere uma população de dimensão N(t) no instante t tal que N(0)=1. Admita que qualquer dos membros desta população se divide em dois novos membros no intervalo [t,t+h], com probabilidade $\lambda h + o(h)$, ou mantém-se inalterado neste intervalo, com probabilidade $1-\lambda h + o(h)$.

- (a) Prove que $(N(t),\ t\geq 0)$ é um processo de nascimento puro com taxa de natalidade $\lambda_n=n\lambda$, para todo n=1,2,....
- (b) Designe por $p_k(t) = P(N(t) = k)$, com k = 1, 2, ..., e prove que:

$$p'_{k}(t) = (k-1)\lambda p_{k-1}(t) - k\lambda p_{k}(t), \quad k = 1, 2, \dots$$

(c) Tendo em conta a equação diferencial anterior, conclua por indução que:

$$p_k(t) = e^{-k\lambda t} \left(e^{\lambda t} - 1\right)^{k-1}, \quad k = 1, 2, \dots.$$

Exercício 3.14.

Prove o Teorema 3.1.

3.3 Processo de nascimento e morte

3.3.1 Definição e equações de Chapman-Kolmogorov

Definição 3.5 (Processo de nascimento e morte). Um processo estocástico $(X_t, t \in \mathbb{R}_0^+)$, com valores em \mathbb{N}_0 , é um **processo de nascimento e morte** com taxas $\{\lambda_k : k \in \mathbb{N}_0\}$ e $\{\mu_k : k \in \mathbb{N}_0\}$ se for uma C.M. homogénea em tempo contínuo que satisfaz os axiomas:

- 1. $P_{i,i+1}(h) = P(X_{t+h} = i+1 \mid X_t = i) = \lambda_i h + o(h), \quad i \ge 0.$
- 2. $P_{i,i-1}(h) = P(X_{t+h} = i-1 \mid X_t = i) = \mu_i h + o(h), \quad i \ge 1.$
- 3. $P_{ii}(h) = P(X_{t+h} = i \mid X_t = i) = 1 (\lambda_i + \mu_i)h + o(h), \quad i \ge 0.$
- 4. $P_{ii}(0) = \delta_{ii}$.
- 5. $\mu_0 = 0$, $\lambda_0 > 0$, μ_i , $\lambda_i \ge 0$, $i \in \mathbb{N}_0$.

Nota: (i) δ_{ij} é o símbolo de Kronecker, i.e., $\delta_{ij}=1$ se i=j e $\delta_{ij}=0$ se $i\neq j$; (ii) os termos o(h) podem depender de i e satisfazem $o(h)\to 0$ quando $h\to 0$.

Quando ocorre um nascimento, o processo passa do estado i para i+1; quando ocorre uma morte, passa de i para i-1. Em suma, é a generalização do processo de nascimento puro que permite também mortes.

 ${\it Nota}$. Uma generalização óbvia dos processos de nascimento puro consiste em permitir que X_t decresça (por exemplo, através de mortes). Se $X_0=n$, o processo pode mover-se para os estados vizinhos n+1 ou n-1 após um tempo de espera aleatório.

Num processo de nascimento e morte (com espaço de estados \mathbb{N}_0) verifica-se, $\forall t \in \mathbb{R}_0^+$ e $\forall i, j \in \mathbb{N}_0$:

- 1. $P_{ij}(t) \ge 0$.
- 2. $\sum_{i=0}^{\infty} P_{ij}(t) = 1$.
- 3. Para quaisquer $s,t\in\mathbb{R}^+_0$, as **Equações de Chapman–Kolmogorov** são dadas por:

$$P_{ij}(t+s) = \sum_{k=0}^{\infty} P_{ik}(t) P_{kj}(s).$$
(3.2)

As probabilidades de transição e as leis marginais caracterizam a distribuição do processo. Se

$$q_i := P(X_0 = i), \qquad i \in \mathbb{N}_0,$$

então, para todo $n \in \mathbb{N}_0$,

$$\begin{split} P(X_t = n) &= \sum_{i=0}^{\infty} P(X_t = n, X_0 = i) \\ &= \sum_{i=0}^{\infty} P(X_0 = i) \, P(X_t = n \mid X_0 = i) \\ &= \sum_{i=0}^{\infty} q_i \, P_{in}(t). \end{split}$$

Logo, as distribuições marginais do processo de nascimento e morte são

$$\left| P(X_t = n) = \sum_{i=0}^{\infty} P_{in}(t) \, q_i, \quad n \in \mathbb{N}_0. \right|$$

3.3.2 Tempo de espera

Considere-se agora a variável aleatória

$$T_i = \text{tempo de espera de } X_t \text{ no estado } i.$$

É possível mostrar (ver, por exemplo, Karlin & Taylor) que, quando $h \to 0$,

$$P(T_i \ge t + h) = P(T_i \ge t) \cdot (1 - (\lambda_i + \mu_i)h + o(h)).$$

Nesta equação, dividindo por h e tomando o limite quando $h \to 0$, obtém-se

$$\frac{d}{dt}P(T_i \ge t) = -(\lambda_i + \mu_i) P(T_i \ge t),$$

cuja solução é:

$$P(T_i \ge t) = \exp\{-(\lambda_i + \mu_i)t\}.$$

Logo, a função de distribuição de T_i é

$$P(T_i \leq t) = 1 - \exp\{-(\lambda_i + \mu_i)t\}, \quad t \geq 0,$$

e, portanto,

$$T_i \sim \operatorname{Exp}(\lambda_i + \mu_i), \qquad 0 < \lambda_i + \mu_i < +\infty.$$

donde se obtém o tempo médio de espera:

$$E(T_i) = \frac{1}{\lambda_i + \mu_i}.$$

 Nota . O movimento de X_t pode ser descrito do seguinte modo. O processo permanece num certo estado i por um tempo aleatório T_i , com distribuição exponencial de parâmetro $\lambda_i + \mu_i$. Quando abandona o estado i, o processo transita para um dos estados vizinhos:

- com probabilidade $\lambda_i/(\lambda_i+\mu_i)$, passa para i+1;
- com probabilidade $\mu_i/(\lambda_i + \mu_i)$, passa para i-1.

Esquematicamente:

3.3.3 Equações diferenciais de processos de nascimento e morte

Equações de Chapman-Kolmogorov:

- Expressam como as probabilidades de transição entre estados se relacionam em diferentes instantes de tempo.
- Permitem calcular a probabilidade de ir de um estado inicial para um estado final através de todos os estados intermediários.

Equações diferenciais de Kolmogorov:

- São obtidas a partir das equações de Chapman–Kolmogorov.
- Descrevem explicitamente a evolução temporal das probabilidades de transição $P_{ij}(t)$.
- Para frente (Forward/Fokker-Planck), acompanham a evolução da densidade de probabilidade. As equações de avanço "olham para a frente" no tempo, isto é, descrevem como as probabilidades de estar em cada estado evoluem ao longo do tempo (a origem i é fixa e o estado final é móvel).
- Para trás (Backward), calculam a probabilidade futura de estados a partir do estado atual. As equações de atraso "olham para trás" no tempo, isto é, estudam como o estado inicial influencia a evolução futura (o destino j é fixo e o estado inicial é móvel).

Principais diferenças:

- As equações de Chapman-Kolmogorov mostram como as probabilidades de transição em diferentes instantes de tempo estão relacionadas, sem descrever diretamente a evolução temporal.
- As equações de Kolmogorov são equações diferenciais que descrevem explicitamente como essas probabilidades evoluem ao longo do tempo, seja para frente (densidade) ou para trás (probabilidade futura a partir do estado atual).

Pela relação (3.2), temos:

$$\begin{split} P_{ij}(t+h) &= \sum_{k=0}^{\infty} P_{ik}(h) \, P_{kj}(t) \\ &= P_{ii}(h) \, P_{ij}(t) + P_{i,i+1}(h) \, P_{i+1,j}(t) + P_{i,i-1}(h) \, P_{i-1,j}(t) + \sum_{k \notin \{i-1,i,i+1\}} P_{ik}(h) \, P_{kj}(t) \\ &= (1 - (\lambda_i + \mu_i)h) \, P_{ij}(t) + \lambda_i h \, P_{i+1,j}(t) + \mu_i h \, P_{i-1,j}(t) + o(h), \end{split}$$

assumindo que o processo é de saltos de primeiro vizinho, ou seja, $P_{ik}(h) = o(h)$ para $|k-i| \geq 2$.

Dividindo por h e aplicando o limite $h \to 0$, obtemos as equações de Kolmogorov de atraso:

$$P'_{ij}(t) = \lambda_i P_{i+1,j}(t) + \mu_i P_{i-1,j}(t) - (\lambda_i + \mu_i) P_{ij}(t), \quad i \geq 1. \label{eq:pprob}$$

Para i = 0, temos:

$$\boxed{P_{0j}'(t) = \lambda_0 P_{1j}(t) - \lambda_0 P_{0j}(t).}$$

As condições iniciais são:

$$P_{ij}(0) = \delta_{ij}, \quad i, j \in \mathbb{N}_0.$$

Por outro lado, a equação de Chapman-Kolmogorov também pode ser escrita na forma:

$$\begin{split} P_{ij}(t+h) &= \sum_{k=0}^{\infty} P_{ik}(t) \, P_{kj}(h) \\ &= P_{ij}(t) \, P_{jj}(h) + P_{i,j+1}(t) \, P_{j+1,j}(h) + P_{i,j-1}(t) \, P_{j-1,j}(h) + \sum_{k \notin \{j-1,j,j+1\}} P_{ik}(t) \, P_{kj}(h) \\ &= \left(1 - \left(\lambda_i + \mu_i\right)h\right) P_{ij}(t) + \lambda_{j-1}h \, P_{i,j-1}(t) + \mu_{j+1}h \, P_{i,j+1}(t) + o(h), \end{split}$$

assumindo saltos apenas entre estados vizinhos.

Dividindo por h e aplicando o limite $h \to 0$, obtemos as equações de Kolmogorov de avanço:

$$\boxed{P'_{ij}(t) = \lambda_{j-1}P_{i,j-1}(t) + \mu_{j+1}P_{i,j+1}(t) - (\lambda_j + \mu_j)P_{ij}(t), \quad j \geq 1,}$$

com o caso j = 0:

$$P'_{i0}(t) = \mu_1 P_{i1}(t) - \lambda_0 P_{i0}(t).$$

Se o comportamento do processo estabiliza quando $t \to +\infty$, sob condições adequadas (recorrência positiva e aperiocidade), as probabilidades de transição convergem para um **regime estacionário**:

$$\lim_{t \to +\infty} P_{ij}(t) = \pi_j,$$

onde π_i é a probabilidade de encontrar o sistema no estado j, independentemente do estado inicial i.

Neste caso, as equações de Kolmogorov de atraso ou avanço convergem para as **equações de Kolmogorov estacionárias**:

$$\begin{cases} \lambda_0 \pi_0 = \mu_1 \pi_1, & j = 0, \\ \lambda_{j-1} \pi_{j-1} + \mu_{j+1} \pi_{j+1} = (\lambda_j + \mu_j) \pi_j, & j \geq 1, \end{cases}$$

com a condição de normalização

$$\sum_{j=0}^{\infty} \pi_j = 1.$$

Estas equações permitem determinar a **distribuição estacionária** $(\pi_j)_{j\in\mathbb{N}_0}$ do processo de nascimento e morte.

Exercício 3.15.

Considere um sistema de self-service em que a probabilidade de haver uma chegada em (t,t+h), dado que existem j clientes a servirem-se no instante t, é igual a $ajh+o(h),\ j\geq 0$, quando $h\to 0$, onde a>0 é uma constante. Suponha que os clientes acabam o serviço segundo um processo de Poisson de intensidade 2a, e que estão reunidas todas as condições para modelar o sistema por um processo de nascimento e morte N_t .

- (a) Identifique um conjunto de axiomas que caracterize o processo $(M_t:\ t\geq 0)$, onde M_t representa o número de clientes que acabam de se servir num intervalo de tempo de amplitude t.
- (b) Identifique, justificando, as taxas de nascimento e morte do processo N_t .
- (c) Faça um diagrama de velocidades de transição de probabilidade para o processo N_t e escreva o correspondente sistema de equações de avanço de Kolmogorov.

Exercício 3.16.

Considere que os autocarros chegam a uma certa rua segundo um processo de Poisson de intensidade 10 por hora, e percorrem um intervalo de tempo constante igual a 10 minutos. Suponha que a rua não tem limitação para o número de veículos que nela podem transitar.

- (a) Após associar ao problema um processo de nascimento e morte, determine a distribuição de equilíbrio e interprete o significado de π_0 .
- (b) Determine o número médio de autocarros na rua depois de algumas horas desde o início da carreira.
- (c) O número de autocarros tende a aumentar ou diminuir com a passagem do tempo? Justifique.

Exercício 3.17.

Seja $(X(t),\ t\geq 0)$ um processo de nascimento e morte tal que:

$$\begin{array}{lcl} \lambda_n & = & \lambda q^n & 0 < q < 1, \; \lambda > 0, & n = 0, 1, 2, \dots \\ \mu_n & = & \mu & \mu > 0 & n = 1, 2, \dots \\ \mu_0 & = & 0 & \end{array}$$

Designe por $P_n(t) = P(X(t) = n)$. Prove que:

$$\begin{split} P_0'(t) &= -\lambda P_0(t) + \mu P_1(t), \\ P_n'(t) &= \lambda q^{n-1} P_{n-1}(t) - (\lambda q^n + \mu) P_n(t) + \mu P_{n+1}(t), \quad n \geq 1. \end{split}$$

Exercício 3.18.

Considere o processo estocástico N(t), que representa o número de linhas ocupadas numa central telefónica com um número elevado de linhas. Este processo é modelado por chegadas espontâneas de chamadas e término aleatório de chamadas, com os seguintes pressupostos:

- As chamadas chegam à central a uma taxa constante λ , independentemente do número de linhas ocupadas.
- Cada chamada em curso termina a uma taxa μ , independentemente das restantes. Assim, quando há k chamadas em curso (ou k linhas ocupadas), a taxa total de término é $k \mu$.
- (a) Mostre que as Equações de Kolmogorov de avanço associadas às probabilidades $P_i(t) = P(N(t) = i)$ são:

$$P_i'(t) = -(\lambda + i\,\mu)P_i(t) + \lambda P_{i-1}(t) + (i+1)\mu P_{i+1}(t), \quad i = 0, 1, 2, \dots$$

(b) Suponha que, para cada $i\in\mathbb{N}_0$, a função $P_i(t)$ é:

$$P_i(t) = \frac{(\lambda/\mu)^i}{i!} \left(1 - e^{-\mu t}\right)^i \exp\left\{-\frac{\lambda}{\mu} \left(1 - e^{-\mu t}\right)\right\}, \quad i = 0, 1, 2, \dots$$

Determine a probabilidade de todas as linhas estarem desocupadas no regime estacionário $(t \to +\infty)$ e deduza a forma da distribuição estacionária do número de linhas ocupadas.

Exercício 3.19.

Seja Y_n , n=0,1,..., uma cadeia de Markov com espaço de estados $E=\{0,1\}$ e matriz de transição \mathbb{P} :

$$\mathbb{P} = \begin{bmatrix} 0 & 1 \\ 1 - \alpha & \alpha \end{bmatrix}.$$

Considere ainda um processo de Poisson com parâmetro λ , $(N(t),\,t\geq 0)$. Mostre que o processo definido por $X(t)=Y_{N(t)},\,t\geq 0$, é um processo de nascimento e morte com dois estados, e determine os parâmetros λ_0 e μ_1 em função de α e λ .

Capítulo 4

Complementos de processos estocásticos

4.1 Processo de Wiener

Definição 4.1 (Filtração). Seja $X=(X(t),\ t\in T)$ um processo estocástico definido no espaço de probabilidade (Ω,\mathcal{F},P) , com conjunto de índices $T=[0,+\infty[$. Uma família de sub- σ -álgebras de \mathcal{F} , tal que para $s\leq t$ se tenha $\mathcal{F}_s\subset\mathcal{F}_t$, designa-se por **filtração**.

Denomina-se filtração natural do processo X a família

$$(\mathcal{F}_t = \sigma(X_s : 0 \le s \le t), \ t \in T),$$

formada pelas álgebras- σ geradas pelo processo X até ao instante t.

Um processo estocástico $X=(X(t),\ t\in T)$ está **adaptado** à filtração $(\mathcal{F}_t,t\in T)$ se, para todo $t\in T$, a variável aleatória X(t) é \mathcal{F}_t -mensurável, isto é, as imagens inversas dos conjuntos $B\in \mathcal{B}$ estão contidas em \mathcal{F}_t .

Em 1828, o botânico inglês Robert Brown observou pequenas partículas de pólen imersas num líquido a movimentarem-se de forma completamente aleatória. Mais tarde, em 1905, Albert Einstein justificou este movimento com a constante colisão entre as partículas e as moléculas do líquido envolvente e caracterizou-o por um processo estocástico que viria a ser chamado processo de Wiener. Finalmente, em 1918, apareceu a primeira definição matemática do termo através do matemático Norbert Wiener.

Definição 4.2 (Processo de Wiener padrão (ou movimento Browniano)). Um **processo de Wiener padrão** (ou **movimento Browniano**) é um processo estocástico $W=(W_t)_{t\geq 0}$ definido num espaço de probabilidade (Ω, \mathcal{F}, P) , que satisfaz as seguintes propriedades:

1. Condição inicial: $W_0=0$ quase certamente, isto é,

$$P(W_0 = 0) = 1;$$

2. Incrementos gaussianos: Para quaisquer instantes $0 \le s < t < \infty$, a variável aleatória $W_t - W_s$ é normalmente distribuída com média zero e variância t-s, ou seja,

$$W_t - W_s \sim \mathcal{N}(0, t - s);$$

3. Incrementos independentes: Para todo $n \in \mathbb{N}$ e qualquer sequência crescente de instantes $0 \le t_0 < t_1 < \dots < t_n$, os incrementos

$$W_{t_1}-W_{t_0},\;W_{t_2}-W_{t_1},\;\dots,\;W_{t_n}-W_{t_{n-1}}$$

são variáveis aleatórias independentes;

4. Trajetórias contínuas: Com probabilidade 1, a aplicação $t\mapsto W_t(\omega)$ é contínua para todo $\omega\in\Omega$, ou seja,

$$P(W \in C([0, \infty[)) = 1,$$

onde $C([0,\infty[)$ denota o espaço das funções contínuas em $[0,\infty[$.

Definição 4.3. Considere-se uma função $f:[0,t] \to \mathbb{R}$. Para uma partição $\mathcal{P}=\{0=s_0 < s_1 < \cdots < s_m=t\}$, denote-se

$$S(f, \mathcal{P}) = \sum_{i=0}^{m-1} |f(s_{i+1}) - f(s_i)|.$$

• A variação total de f no intervalo [0, t] é definida por

$$V_f([0,t]) := \sup_{\mathcal{P}} S(f,\mathcal{P}),$$

onde o supremo é tomado sobre todas as partições \mathcal{P} de [0,t].

• Diz-se que f é de variação limitada (ou de variação finita) no intervalo [0,t]) se

$$V_f([0,t]) < +\infty.$$

• Seja $(\mathcal{P}_n)_{n\geq 1}$ uma sequência de partições de [0,t] cujo diâmetro $\delta_n:=\max_i(s_{i+1}^n-s_i^n)$ satisfaz $\delta_n\to 0$. Se existir (e for finito) o limite

$$V_f^2([0,t]) := \lim_{n \rightarrow \infty} \sum_i \left(f(s_{i+1}^n) - f(s_i^n) \right)^2,$$

diz-se que f possui variação quadrática no intervalo [0,t], e o valor acima é a sua variação quadrática.

Note-se que, em geral, este limite pode depender da escolha da sequência de partições. Para funções contínuas de variação limitada, tem-se $V_f^2([0,t])=0$.

Definição 4.4 (Função delta de Dirac). Chama-se **função delta de Dirac** (ou simplesmente **delta de Dirac**) à distribuição $\delta(x)$ definida pelas seguintes propriedades:

- 1. $\delta(x) = 0$ para todo $x \neq 0$;
- $2. \int_{-\infty}^{+\infty} \delta(x) \, dx = 1;$

De forma informal, pode pensar-se em $\delta(x)$ como uma "função" que vale zero em todo o lado, excepto em x=0, onde assume um valor infinitamente grande de modo a que o seu integral total seja 1.

Nos processos estocásticos e, em particular, nas equações diferenciais estocásticas, o processo de Wiener representa o efeito acumulado das perturbações aleatórias na evolução de determinado fenómeno em estudo. Dada a importância deste processo, iremos apresentar algumas das suas propriedades.

Propriedade 4.1 (Propriedades do processo de Wiener). O processo de Wiener, W_t , possui as seguintes propriedades:

- 1. Existe uma versão separável e contínua do processo, isto é, com trajectórias quase certamente contínuas;
- 2. Para todo $t \geq 0$, $W_t \sim \mathcal{N}(0,t)$;

- 3. A função de covariância é dada por $Cov(W_s, W_t) = E(W_s W_t) = s \wedge t;$
- 4. W_t é um processo de Markov homogéneo;
- 5. A distribuição condicional de $W_{s+ au}$ dado $W_s=x$ é Normal com média x e variância au;
- 6. W_t é uma martingala em relação à sua filtração natural;
- 7. As trajectórias do processo de Wiener são, quase certamente, não diferenciáveis;
- 8. As trajectórias do processo de Wiener são, quase certamente, de variação ilimitada em qualquer intervalo;
- 9. Possui variação quadrática finita no intervalo [a,b], igual a b-a.

Nota (Ruído branco como derivada generalizada do processo de Wiener). Embora as trajectórias do processo de Wiener sejam, quase certamente, contínuas mas não diferenciáveis (propriedade 7), e possuam variação total infinita (propriedade 8), é possível interpretar a sua derivada no **sentido das distribuições generalizadas** (ou **distribuições de Schwartz**).

Neste contexto, define-se a derivada generalizada do processo de Wiener por

$$\frac{dW_t}{dt} = \xi_t,$$

onde ξ_t representa um **processo estocástico generalizado**, designado por **ruído branco** (white noise).

O ruído branco ξ_t caracteriza-se pelas seguintes propriedades:

- Média nula: $E(\xi_t) = 0$;
- Autocovariância: $E(\xi_s\,\xi_t)=\delta(t-s),$ onde δ é a função delta de Dirac.

Em termos intuitivos, o ruído branco pode ser entendido como a "derivada em ordem ao tempo" do processo de Wiener. Este formalismo é fundamental na formulação das **equações diferenciais estocásticas (EDEs)**, nas quais o termo de ruído branco modela uma perturbação aleatória que actua continuamente ao longo do tempo.

Na imagem seguinte apresentam-se duas trajetórias do processo de Wiener. As trajetórias foram obtidas por simulação numérica, considerando incrementos independentes e normalmente distribuídos com média zero e variância proporcional ao incremento temporal.

Exemplo de duas trajetórias do processo de Wiener

Exercício 4.1. Tirando partido das propriedades do processo de Wiener, calcule ou determine:

- 1. P(W(2.7) > 1.5).
- 2. P(-1.5 < W(2.7) < 1.5).
- 3. $P(W(2.7) < 1.5 \mid W(1.8) = 1)$.
- 4. $P(-1.5 < W(2.7) < 1.5 \mid W(1.8) = 1)$.
- 5. $E(W(t) \mid W(s), W(u))$, com 0 < u < s < t.
- 6. $Var(W(t) \mid W(s), W(u)), \text{ com } 0 < u < s < t.$
- 7. $P(W(2.7) > 1.5 \mid W(1.8) = 1, W(0.5) = -2).$
- 8. $E(W(2.7) \mid W(1.8) = 1, W(0.5) = -2).$
- 9. $P(W(1.8) < 1 \mid W(2.7) = 1.5)$.
- 10. $P(W(1.8) = 1 \mid W(2.7) < 1.5)$.
- 11. P(W(2.7) = 1.5, W(1.8) > 1).
- 12. P(W(2.7) < 1.5, W(1.8) = 1).
- 13. $P(-1 < W(2.7) W(1.8) < 1.4 \land 0.5 < W(1.6) W(0.9) < 1.5)$.
- 14. $P(-1 < W(2.7) W(1.8) < 1.4 \mid W(1.6) W(0.9) = 1.5)$.

Exercício 4.2.

Considere um movimento Browniano standard $(B(t),\ t \geq 0)$ nos instantes 0 < u < u + v < u + v + w, em que u,v,w>0. Calcule

$$E(B(u)B(u+v)B(u+v+w)).$$

Exercício 4.3.

Seja $(B(t),\ t\geq 0)$ com $B(0)\equiv 3$, um movimento Browniano com variância σ^2 . Determine

$$Cov(B(t), B(s)), t, s \ge 0.$$

Exercício 4.4.

Considere um movimento Browniano standard $(B(t),\ t\geq 0)$. Determine as funções de covariância para os processos estocásticos seguintes:

- (a) $U(t) = e^{-t}B(e^{2t}), t \ge 0.$
- (b) $V(t) = (1-t)B\left(\frac{t}{1-t}\right)$, para 0 < t < 1.
- (c) $W(t) = tB\left(\frac{1}{t}\right)$, com W(0) = 0.

Exercício 4.5.

Considere um movimento Browniano standard $(B(t),\ t\geq 0)$. Para t fixo e $M(t)=\max_{0\leq u\leq t}B(u)$, mostre que:

(a) M(t) e |B(t)| têm a mesma distribuuição com f.d.p.

$$f_{M(t)}(x) = \frac{2}{\sqrt{t}}\phi(x/\sqrt{t}), \ x > 0.$$

(b)
$$E(M(t)) = \sqrt{2t/\pi}$$
.

Exercício 4.6.

Sejam $B_1(t)$ e $B_2(t)$ dois movimentos Brownianos independentes e $R(t)=\sqrt{B_1(u)^2+B_2(u)^2},\,t\geq 0.$ Calcule E(R(t)).

Exercício 4.7.

As flutuações de preço das acções de determinada companhia são modeladas por um movimento Browniano $(A(t),\,t\geq 0)$. Suponha que a companhia entra em falência se o preço de mercado das acções atingir o nível zero.

Se o valor inicial das acções for A(0) = 5 u.m., determine a probabilidade de ...

- (a) ... a companhia entrar em falência no instante t=25.
- (b) ... as acções estarem acima de 10 unidades monetárias no instante t=25.

Exercício 4.8.

Considere um movimento Browniano com parâmetros $\mu=0.1$ e $\sigma=2$. Calcule a probabilidade do processo sair fora do intervalo (a,b] no ponto b, partindo de X(0)=0, para b=1,10,100 e a=-b.

Exercício 4.9.

A flutuação do preço de determinado tipo de acções pode ser descrita por um movimento browniano geométrico com desvio-padrão $\alpha=0$. Supondo que adquire estas acções, quais são as hipóteses de ver o seu capital investido duplicar?

4.2 O integral de Itô

Nota. No que se segue, adoptámos a seguinte notação para esperança matemática e probabilidade condicionadas:

$$E(\cdot \mid X_s = x) = E_{s,x}(\cdot)$$

е

$$P(\cdot \mid X_s = x) = P_{s,x}(\cdot).$$

Definição 4.5 (Processo de difusão). Seja (Ω, \mathcal{F}, P) um espaço de probabilidade e $(X_t, t \ge 0)$ um processo estocástico definido nesse espaço. Diz-se que X_t é um **processo de difusão** se satisfizer as seguintes propriedades:

- i) X_t é um processo de Markov;
- ii) As trajectórias de X_t são quase certamente contínuas;
- iii) $X_t \in L^2$, isto é, $E[X_t^2] < +\infty$;
- iv) Para todo $\varepsilon > 0$, tem-se

$$\lim_{\Delta \to 0^+} \frac{P_{s,x}(|X_{s+\Delta} - X_s| > \varepsilon)}{\Delta} = 0;$$

v) Existe, e é finito, o limite

$$\lim_{\Delta \rightarrow 0^+} E_{s,x} \left[\frac{X_{s+\Delta} - X_s}{\Delta} \right] = a(s,x);$$

vi) Existe, e é finito, o limite

$$\lim_{\Delta \to 0^+} E_{s,x} \left[\frac{(X_{s+\Delta} - X_s)^2}{\Delta} \right] = b(s,x).$$

Se as funções a(s,x) e b(s,x) forem independentes da variável temporal s, o processo diz-se **homogéneo**.

As funções a(s,x) e b(s,x) designam-se, respectivamente, por **coeficiente de tendência** (ou **momento** infinitesimal de primeira ordem) e **coeficiente de difusão** (ou **momento** infinitesimal de segunda ordem).

O coeficiente de tendência, a(s,x), mede a velocidade da média do processo no instante s, enquanto que o coeficiente de difusão, b(s,x), mede a intensidade das flutuações do processo, ou seja, mede a velocidade da variância do processo no instante s.

Nota: Existem na literatura definições alternativas para processo de difusão, algumas das quais assumem hipóteses adicionais ou diferentes.

Exercício 4.10 (Fonte: Braumann (2005)).

- (i) Mostre que o processo de Wiener W_t é um processo de difusão homogéneo com coeficiente de tendência nulo e coeficiente de difusão unitário.
- (ii) Mostre que $X_t=x_0+\sigma W_t$, com x_0 e σ constantes, sendo um processo de Wiener (não-padrão), é um processo de difusão homogéneo com coeficiente de tendência nulo e coeficiente de difusão σ^2 .
- (iii) Mostre que $Z_t = x_0 + \mu t + \sigma W_t$, com x_0 , μ e σ constantes, conhecido como movimento browniano com tendência, é um processo de difusão homogéneo com coeficiente de tendência μ e coeficiente de difusão σ^2 .

A caraterização, do ponto de vista probabilístico, de um processo de difusão recorre apenas aos seus momentos infinitesimais e às equações de Kolmogorov.

Teorema 4.1. Seja X_t um processo de difusão, como definido anteriormente, com função densidade de transição $p(t,y\mid s,x)$, contínua em s, com derivadas parciais de primeira e segunda ordem em relação a x finitas e contínuas em s. Nessas condições, verificam-se:

1. Equação de Kolmogorov progressiva (ou equação de Fokker-Planck):

$$\frac{\partial p}{\partial t} + \frac{\partial (a(s,x) p)}{\partial y} - \frac{1}{2} \frac{\partial^2 (b(s,x) p)}{\partial y^2} = 0,$$

com condição inicial

$$\lim_{t \downarrow s} p(t, y \mid s, x) = \delta(x - y),$$

onde δ representa a função delta de Dirac, e (s,x) está fixo;

2. Equação de Kolmogorov regressiva:

$$\frac{\partial p}{\partial s} + a(s,x) \frac{\partial p}{\partial x} + \frac{1}{2} b(s,x) \frac{\partial^2 p}{\partial x^2} = 0,$$

com condição inicial

$$\lim_{t\uparrow s} p(t,y\mid s,x) = \delta(x-y),$$

onde δ representa a função delta de Dirac, e (t,y) está fixo.

Considere-se o ponto $X(0)=X_0\in\mathbb{R}$ e o seguinte problema de Cauchy, induzido por uma equação diferencial ordinária:

$$\begin{cases} dX(t) = f(X(t))\,dt, & \text{para } t>0, \\ X(0) = X_0, \end{cases}$$

onde $f:\mathbb{R} \to \mathbb{R}$ é uma função diferenciável, e $X:\mathbb{R}^+_0 \to \mathbb{R}$ é a solução do problema (4.2).

Se interpretarmos X(t) como a trajectória de uma partícula, então dX(t)/dt representa a sua velocidade. É natural admitir que essa velocidade apresente pequenas oscilações que não são explicadas pela função f, ou seja, o sistema descrito na equação (4.2) não incorpora o efeito aleatório que as flutuações ambientais induzem na trajectória de X. Assim, torna-se necessário adicionar um ruido ao problema (4.2), de modo a reflectir a influência dessas flutuações sobre a dinâmica do sistema:

$$\begin{cases} dX(t) = f(X(t))\,dt + g(X(t))\,\xi(t)\,dt, & \text{para } t>0,\\ X(0) = X_0, & \end{cases}$$

onde $g(\cdot)$, que mede a intensidade das flutuações ambientais, é uma função dependente de X(t).

Considerando que $dW(t) = \xi(t) dt$, o sistema (4.2) pode reescrever-se da seguinte forma:

$$\begin{cases} dX(t) = f(X(t))\,dt + g(X(t))\,dW(t),\\ X(0) = X_0, \end{cases}$$

o qual representa uma Equação Diferencial Estocástica (EDE). A solução deste sistema é dada por:

$$X(t) = X_0 + \int_0^t f(X(s)) \, ds + \int_0^t g(X(s)) \, dW(s), \quad t > 0,$$

em que o primeiro integral é um integral de Riemann-Stieltjes. Contudo, o segundo integral **não existe** neste sentido, dado que as trajectórias do processo de Wiener são, quase certamente, de variação ilimitada no intervalo [0,t].

No entanto, como o processo de Wiener possui variação quadrática finita, é possível definir o segundo integral recorrendo à **definição de integral estocástico**.

Note-se que, como já referido, se omitiu a dependência explícita em ω na notação de X(t).

Mostraremos de seguida como obter a solução (4.2), bem como a definição do integral estocástico

$$\int_0^t g(X(s)) \, dW(s).$$

Suponhamos que desejamos calcular o seguinte integral:

$$\int_0^t W(t) \, dW(t).$$

Se aplicarmos as regras de cálculo habituais, obtemos como solução:

$$\frac{1}{2}W^2(t).$$

Vamos verificar se esta solução está correta.

Seja $f:[0,t]\to\mathbb{R}^+$, com f(u)=W(u), uma função, e sejam $\mathcal{P}_n=\{t_0^n,t_1^n,\dots,t_n^n\}$, $n=1,2,\dots$, partições do intervalo [0,t] com

$$0 = t_0^n < t_1^n < \dots < t_n^n = t \ge 0,$$

tais que os diâmetros

$$\delta_n = \max_{0 \le i \le n-1} |t_{i+1}^n - t_i^n|$$

satisfazem $\delta_n \to 0$ quando $n \to +\infty$.

Consideremos as somas de Riemann-Stieltjes aproximadoras do integral $\int_0^t f(u) \, dW(u)$:

$$\sum_{i=0}^{n-1} W(\xi_i^n) \big(W(t_{i+1}^n) - W(t_i^n) \big),$$

com $\xi_i^n \in [t_i^n, t_{i+1}^n]$, e usemos limites em média quadrática quando $n \to +\infty$ como possível definição do integral.

Consideremos o caso particular $\xi_i^n=(1-\lambda)t_i^n+\lambda t_{i+1}^n$, e definamos as somas de Riemann-Stieltjes:

$$S_{\lambda}(W(t)) = \sum_{i=0}^{n-1} W(\xi_i^n) \big(W(t_{i+1}^n) - W(t_i^n)\big).$$

Facilmente verificamos que, para λ fixo, o limite em média quadrática destas somas, quando $n \to +\infty$, é

$$\frac{W^2(t)}{2} + \left(\lambda - \frac{1}{2}\right)t.$$

Com efeito:

$$E\left[\left(S_{\lambda}(W(t))-\frac{W^2(t)}{2}-\left(\lambda-\frac{1}{2}\right)t\right)^2\right]\longrightarrow 0.$$

Este limite depende da escolha do valor de λ e, consequentemente, do ponto intermédio $\xi_i \in [t_i, t_{i+1}]$. Assim, **não existe** o integral no sentido de Riemann-Stieltjes, pois falha a existência de um limite comum para todas as escolhas de pontos intermédios.

Ao fixarmos $\lambda=0$, obtemos como ponto intermédio o ponto inicial do intervalo, isto é, $\xi_i=t_i$, e verificamos que

$$\int_0^t W(t)\,dW(t) = \frac{1}{2}W^2(t) - \frac{1}{2}t,$$

o que é um resultado **diferente** do indicado em (4.2). De facto, para diferentes valores de λ , obtemos diferentes integrais. Por exemplo, se considerarmos $\lambda = \frac{1}{2}$, o resultado do integral é:

$$\int_0^t W(t) \, dW(t) = \frac{1}{2} W^2(t).$$

O facto de diferentes valores de λ implicarem diferentes integrais levanta uma questão pertinente: **qual o valor** de λ **que devemos escolher?**

A escolha de $\xi_i = t_i$, ou seja, o ponto inicial, permite-nos definir integrais de funções mais gerais do que apenas o processo de Wiener. Isto conduz a integrais do tipo:

$$\int_0^t G(s) \, dW(s),$$

onde G pertence a uma vasta classe de funções com a propriedade de serem **não-antecipativas**. Veremos mais à frente como definir rigorosamente estas funções.

Como se referiu, a escolha de λ permite obter diferentes integrais. Assim:

- (i) Se $\lambda = 0$, escolhemos o ponto inicial do intervalo e obtemos o **integral de Itô**;
- (ii) Se $\lambda = \frac{1}{2}$, escolhemos o ponto intermédio do intervalo e obtemos o **integral de Stratonovich**.

Vamos agora dedicar-nos ao estudo do integral de Itô. Começamos com a introdução de algumas definições e resultados importantes.

Definição 4.6. Seja $W(t), t \ge 0$, um processo de Wiener padrão definido num espaço de probabilidade (Ω, \mathcal{F}, P) .

1. Chama-se filtração natural do processo de Wiener até ao instante s>0 à σ -álgebra

$$\mathcal{M}_s = \sigma(W(u), \ 0 \le u \le s);$$

2. Chama-se σ -álgebra dos incrementos futuros do processo de Wiener à σ -álgebra

$$\mathcal{M}_s^+ = \sigma(W(u) - W(s), \ u \ge s);$$

- 3. Uma família $\{\mathcal{A}_s:0\leq s\leq t\}$ de σ -álgebras é chamada **filtração não-antecipativa**, relativamente a W(s), se:
 - $\mathcal{A}_s \supset \mathcal{M}_s$, $0 \le s \le t$;
 - \mathcal{A}_s é independente de $\mathcal{M}_s^+, \ \forall s \geq 0$.

Informalmente, podemos dizer que a filtração \mathcal{A}_s contém toda a informação disponível do processo até ao instante s.

A escolha da filtração não-antecipativa \mathcal{A}_s costuma coincidir com a própria filtração natural do processo de Wiener, \mathcal{M}_s , desde que não seja necessário incluir informação adicional sobre o processo. Caso contrário, considera-se uma filtração **maior** (por exemplo, de modo a incluir a condição inicial de um problema de Cauchy), desde que a mesma seja não-antecipativa.

Definição 4.7 (Processo não-antecipativo). Um processo estocástico G(t) é chamado de **não-antecipativo**, relativamente à filtração \mathcal{A}_t , se G(t) é \mathcal{A}_t -mensurável, para todo $t \geq 0$ (ou seja, G(t) depende apenas da informação disponível até ao instante t).

Tendo em conta estas definições, podemos definir o integral de Itô para uma classe especial de funções não-antecipativas, as **funções em escada**. Nota: na realidade, para definir o integral de Itô, não basta que G seja não-antecipativa. É necessário que $G=G(t,\omega)$ seja conjuntamente mensurável.

Definição 4.8 (Espaço de Hilbert). Chama-se **espaço de Hilbert**, no intervalo [0,t], e representa-se por $H^2[0,t]$, ao espaço das funções

$$G:[0,t]\times\Omega\to\mathbb{R}$$

que verificam as seguintes condições:

- G é conjuntamente mensurável relativamente à medida de Lebesgue l em [0,t] e à medida de probabilidade P;
- *G* é não-antecipativa;
- $\quad \ \ \int_0^t E[G^2(u,\omega)]\,du < +\infty.$

 $\it Nota$. Nesta última definição considerámos, de modo abusivo, uma qualquer função $\it G$ com a propriedade de ser conjuntamente mensurável relativamente às medidas $\it l$ e $\it P$.

Formalmente, deveríamos referir-nos ao conjunto das funções conjuntamente mensuráveis que sejam **quase iguais**, no seguinte sentido: duas funções G_1 e G_2 dizem-se quase iguais quando o conjunto de pontos (t,ω) onde diferem tem medida nula relativamente à medida produto $l \times P$.

Assim, a função G é, na realidade, um **representante da classe de equivalência** das funções conjuntamente mensuráveis relativamente à relação de equivalência de quase-igualdade.

Deste modo, para simplificar a linguagem, referimo-nos à função G como um representante da classe de equivalência, em vez de referir explicitamente a própria classe de equivalência.

Definição 4.9 (Função em escada). Uma função G, no espaço $H^2[0,t]$, é chamada de **função em escada** se existir uma partição $\{0=t_0 < t_1 < ... < t_n=t\}$ do intervalo [0,t] tal que:

$$G(t) = G(t_i), t_i \le t \le t_{i+1}, i = 0, ..., n-1.$$

Note-se que $G(t_i)$ é \mathcal{A}_{t_i} -mensurável, pois G é não-antecipativa.

Ao espaço de funções em escada de $H^2[0,t]$, chamamos $H^2_{\cal E}[0,t]$.

69

Definição 4.10 (Integral de Itô para funções em escada). Seja G uma função em $H_E^2[0,t]$. O integral de Itô da função G no intervalo [0,t] é dado por:

$$\int_0^t G(s) \, dW(s) = \sum_{i=0}^{n-1} G(t_i) \left(W(t_{i+1}) - W(t_i) \right).$$

Teorema 4.2 (Propriedades do integral de Itô). Sejam F e G duas funções em $H_E^2[0,t]$, e $\alpha,\beta\in\mathbb{R}$ duas constantes. Verificam-se as seguintes propriedades:

1. Linearidade:

$$\int_0^t \left(\alpha F(s) + \beta G(s)\right) \, dW(s) = \alpha \int_0^t F(s) \, dW(s) + \beta \int_0^t G(s) \, dW(s);$$

2. Esperança nula:

$$E\left[\int_0^t F(s) \, dW(s)\right] = 0;$$

3. Isometria de Itô:

$$E\left[\left(\int_0^t F(s)\,dW(s)\right)^2\right] = E\left[\int_0^t \left(F(s)\right)^2\,ds\right] = \int_0^t E\left[\left(F(s)\right)^2\right]\,ds.$$

Definimos, assim, o integral de Itô para funções em escada, ou seja, funções no espaço $H_E^2[0,t]$. Vamos agora generalizar este integral para funções genéricas em $H^2[0,t]$, através da existência de sucessões aproximadoras de funções em escada.

Teorema 4.3 (Aproximação em média quadrática). Seja $G \in H^2[0,t]$ uma função. Então, existe uma sucessão de funções limitadas em escada, $G_n \in H^2_E[0,t]$, tal que:

$$E\left[\int_0^t |G(s)-G_n(s)|^2\,ds\right] \xrightarrow{m.q.} 0, \quad n \to +\infty.$$

Definição 4.11. Sejam G e G_n como no teorema anterior. O **integral de Itô** da função G no intervalo [0,t] é definido como:

$$\int_0^t G(s)\,dW(s) = \lim_{n\to +\infty} \int_0^t G_n(s)\,dW(s),$$

onde o limite é tomado em média quadrática.

Teorema 4.4 (Propriedades do integral de Itô). Sejam F e G duas funções em $H^2[0,t]$, e $\alpha,\beta\in\mathbb{R}$ duas constantes. Verificam-se as seguintes propriedades:

1. Linearidade:

$$\int_0^t \left(\alpha F(s) + \beta G(s)\right) \, dW(s) = \alpha \int_0^t F(s) \, dW(s) + \beta \int_0^t G(s) \, dW(s).$$

2. Esperança nula:

$$E\left[\int_0^t F(s)\,dW(s)\right]=0.$$

3. Isometria de Itô:

$$E\left[\left(\int_{0}^{t} F(s) \, dW(s)\right)^{2}\right] = E\left[\int_{0}^{t} F(s)^{2} \, ds\right] = \int_{0}^{t} E\left[F(s)^{2}\right] \, ds.$$

4. Covariância:

$$E\left[\int_0^t F(s) \, dW(s) \int_0^t G(s) \, dW(s)\right] = E\left[\int_0^t F(s) G(s) \, ds\right].$$

5. **Distribuição normal no caso determinístico** (se G(s) for determinística):

$$\int_0^t G(s)\,dW(s) \sim \mathcal{N}\left(0,\int_0^t G^2(s)\,ds\right).$$

O integral de Itô para funções no espaço $H^2[0,t]$ pode ser estudado como função do seu limite superior, ou seja, como um **integral indefinido**.

A prova destas propriedades encontra-se fora do âmbito desta unidade curricular.

Definição 4.12 (Integral indefinido de Itô). Seja $G \in H^2[0,d]$ uma função, e [0,d] um intervalo. O integral de Itô da função G, considerando t como limite superior de integração, é dado por:

$$Z(t) = \int_0^t G(s) \, dW(s) = \int_0^d G(s) \, I_{[0,t]}(s) \, dW(s).$$

Teorema 4.5. Seja Z(t) o processo estocástico definido acima. São válidas as seguintes propriedades:

- 1. Z(t) é uma martingala relativamente à filtração A_t ;
- 2. Z(t) possui uma versão contínua (com trajectórias quase certamente contínuas);
- 3. Z(t) tem incrementos não correlacionados.

As classes de funções até aqui apresentadas são bastante simples. Na prática, interessa-nos estudar integrais de Itô em que a função G não pertence apenas ao espaço $H^2[0,t]$, mas sim a uma classe mais ampla: o espaço $M^2[0,t]$.

Definição 4.13. Dizemos que $G(s,\omega)$ é uma função no espaço $M^2[0,t]$ se:

- 1. É conjuntamente mensurável;
- 2. É **não-antecipativa** em relação à filtração A_s ;

71

3. O integral

$$\int_0^t G^2(s)\,ds$$

existe e é finito quase certamente.

Note-se que a exigência

$$\int_0^t G^2(s)\,ds < +\infty$$

é mais fraca do que a condição exigida para o espaço H^2 . Assim, temos a inclusão:

$$H^2[0,t] \subset M^2[0,t]$$

A extensão do integral de Itô a funções do espaço $M^2[0,t]$ é feita de forma semelhante à aproximação por funções em escada em $H^2_E[0,t]$, com a diferença de que a **convergência requerida é mais fraca**.

Teorema 4.6. Seja $G \in M^2[0,t]$. Então, existe uma sucessão de funções limitadas em escada $G_n \in H^2_E[0,t]$ tal que:

$$\int_0^t (G(s)-G_n(s))^2\,ds \to 0 \quad \text{quase certamente}, \quad n \to +\infty$$

Definição 4.14. Sejam G e G_n como no teorema anterior. O **integral de Itô** da função G no intervalo [0,t] é definido por:

$$\int_0^t G(s)\,dW(s) = P - \lim_{n \to +\infty} \int_0^t G_n(s)\,dW(s),$$

onde o limite é tomado em probabilidade.

Nota (Nota sobre propriedades do integral). Dada a natureza das funções no espaço $M^2[0,t]$, não existe garantia de que as propriedades clássicas do integral de Itô — tais como esperança nula, isometria, e covariância — se verifiquem, pois os respetivos momentos podem não existir.

Finda a apresentação do integral de Itô, é agora necessário introduzir as **regras de cálculo** destes integrais: o chamado **cálculo de Itô**.

O cálculo de Itô difere do cálculo clássico devido à introdução de uma nova regra de diferenciação — a regra da cadeia de Itô. Apresentamos de seguida a definição de processo de Itô e o respetivo teorema de Itô, base fundamental do cálculo de integrais estocásticos.

Definição 4.15 (Processo de Itô). Sejam:

- $(W(t), t \ge 0)$ o processo de Wiener;
- X_0 uma variável aleatória \mathcal{A}_0 -mensurável;

- F uma função conjuntamente mensurável, adaptada à filtração \mathcal{A}_s e tal que

$$\int_0^d |F(s)|\,ds < +\infty \quad \text{quase certamente};$$

• $G \in M^2[0,d]$.

Define-se o **processo de Itô** no intervalo $t \in [0, d]$ como:

$$X(t) = X_0 + \int_0^t F(s) \, ds + \int_0^t G(s) \, dW(s).$$

Este processo pode também ser representado na forma diferencial:

$$dX(t) = F(t) dt + G(t) dW(t).$$

Teorema 4.7 (Teorema de Itô). Seja $X(t,\omega)$ um processo de Itô como definido anteriormente, e seja Y(t)=h(t,X(t)), onde h, $h_t(t,x)$ e $h_{xx}(t,x)$ são funções contínuas. Então:

- (i) $Y(t)=Y(t,\omega)$ é um processo de Itô com condição inicial $Y_0=h(0,X_0)$;
- (ii) a forma diferencial de Y(t) é dada pela **regra da cadeia de Itô**:

$$dY_t = \left(\frac{\partial h(t,X_t)}{\partial t} + \frac{\partial h(t,X_t)}{\partial x}F(t) + \frac{1}{2}\frac{\partial^2 h(t,X_t)}{\partial x^2}G^2(t)\right)dt + \frac{\partial h(t,X_t)}{\partial x}G(t)dW_t;$$

(iii) a forma integral de Y(t) é dada por:

$$Y_t = Y_0 + \int\limits_0^t \left(\frac{\partial h(s,X_s)}{\partial s} + \frac{\partial h(s,X_s)}{\partial x} F(s) + \frac{1}{2} \frac{\partial^2 h(s,X_s)}{\partial x^2} G^2(s) \right) ds + \int\limits_0^t \frac{\partial h(s,X_s)}{\partial x} G(s) dW_s.$$

Finda a apresentação de definições, propriedades e teoremas relativos ao cálculo de Itô, podemos agora abordar a resolução de equações diferenciais estocásticas, ou seja, o cálculo das suas soluções. Começamos pela definição de solução de uma equação diferencial estocástica de Itô.

No que se segue, consideramos:

- $W=(W_t,\ t\geq 0)$ é um processo de Wiener;
- X_0 é uma variável aleatória independente do processo de Wiener;
- $\mathcal{A}_t = \mathcal{F}(X_0, W_s), \ 0 \le s \le t;$
- F,G duas funções definidas em [0,T], conjuntamente mensuráveis, com T>0.

Definição 4.16 (Solução de uma EDE de Itô). Um processo estocástico X_t é solução da equação diferencial estocástica de Itô

$$\begin{cases} dX_t = F(X_t,t)\,dt + G(X_t,t)\,dW_t, & 0 \leq t \leq T \\ X(0) = X_0, \end{cases}$$

se satisfizer as seguintes condições:

- (i) $X \in \mathcal{F}_t$ -mensurável;
- (ii) F é não-antecipativa e

$$\int_0^T F(X_s,s)\,ds<+\infty;$$

(iii) G é não-antecipativa e

$$\int_0^T G^2(X_s, s) \, ds < +\infty;$$

(iv)
$$X_t=X_0+\int_0^t F(X_s,s)\,ds+\int_0^t G(X_s,s)\,dW_s \quad q.c., \quad \forall t\in [0,T].$$

Teorema 4.8 (Teorema de existência e unicidade de soluções de EDE de Itô). Sejam $F: \mathbb{R} \times [0,T] \to \mathbb{R}$ e $G: \mathbb{R} \times [0,T] \to \mathbb{R}$ duas funções contínuas que satisfazem as seguintes condições:

(i)
$$|F(x,t)-F(y,t)| \le L|x-y|$$
 e $|G(x,t)-G(y,t)| \le L|x-y|$, para todo o $t \in [0,T]$ e $x,y \in \mathbb{R}$;

(ii)
$$|F(x,t)| \le L(1+|x|)$$
 e $|G(x,t)| \le L(1+|x|)$, para todo o $t \in [0,T]$ e $x \in \mathbb{R}$,

onde L > 0 é uma constante.

Seja X_0 uma variável aleatória, independente dos incrementos futuros do processo de Wiener, tal que

$$E(|X_0|^2) < +\infty.$$

Nestas condições, existe uma única solução X_t da equação diferencial estocástica de Itô:

$$\begin{cases} dX_t = F(X_t,t)\,dt + G(X_t,t)\,dW_t, & 0 \le t \le T \\ X(0) = X_0. \end{cases}$$

Esta solução é um processo de Markov e, se F e G forem contínuas em t, trata-se também de um processo de difusão.

A unicidade enunciada significa o seguinte: se X_t e Y_t forem soluções da equação (4.8), então

$$P(X_t = Y_t) = 1, \quad \forall t \in [0, T].$$

As condições impostas às funções F e G correspondem, respetivamente, a uma condição de Lipschitz (continuidade uniforme) e a uma restrição de crescimento linear.

A demonstração deste teorema recorre ao *Lema de Gronwall* e pode ser encontrada em qualquer bom livro sobre equações diferenciais estocásticas.

Exercício 4.11 (Fonte: Braumann (2005)). Determine d(tW(t)) e utilize o resultado para mostrar que

$$\int_0^t s\,dW(s) = tW(t) - \int_0^t W(s)\,ds.$$

Exercício 4.12 (Fonte: Braumann (2005)). Mostre que a equação dY(t) = Y(t) dW(t), com Y(0) = 1, tem como solução

$$Y(t) = \exp\left(W(t) - \frac{t}{2}\right), \quad \text{para } t \geq 0.$$

Exercício 4.13. Considere a seguinte EDE:

$$dY(t) = \mu dt + \sigma dW(t), \quad Y(0) = y_0.$$

Mostre que a sua solução é dada por:

$$Y(t) = y_0 + \mu t + \sigma W(t).$$

Sugestão: esta EDE é linear com coeficientes constantes. Resolva-a diretamente por integração.

Exercício 4.14. Considere a seguinte EDE, conhecida como modelo de Ornstein-Uhlenbeck:

$$dX(t) = -\theta X(t) dt + \sigma dW(t), \quad X(0) = x_0.$$

Mostre que a solução deste modelo é dada por:

$$X(t) = x_0 e^{-\theta t} + \sigma \int_0^t e^{-\theta(t-s)} \, dW(s).$$

Sugestão: aplique a mudança de variável $Z(t)=e^{\theta t}X(t)$ e resolva a EDE resultante.

Exercício 4.15. Considere a seguinte EDE, conhecida como modelo de Vasicek:

$$dY(t) = b(A-Y(t))\,dt + \sigma\,dW(t), \quad Y(0) = y_0.$$

Mostre que a solução deste modelo é dada por:

$$Y(t) = A + (y_0 - A)e^{-bt} + \sigma \int_0^t e^{-b(t-s)} dW(s).$$

Sugestão: aplique a mudança de variável Z(t) = Y(t) - A e resolva a EDE resultante.

Exercício 4.16. Considere a seguinte EDE, conhecida como modelo de **Gompertz** (ou de **Fox**):

$$dX(t) = rX(t)(\ln K - \ln X(t)) dt + \sigma X(t) dW(t), \quad X(0) = x_0.$$

Mostre que a solução deste modelo é dada por:

$$X(t) = \exp\biggl(\ln K + e^{-rt} \bigl(\ln x_0 - \ln K\bigr) - \frac{\sigma^2}{2r} \bigl(1 - e^{-rt}\bigr) + \sigma \int_0^t e^{-r(t-s)} \, dW_s \biggr) \,.$$

Sugestão: aplique a mudança de variável $Z(t) = \ln X(t)$ e resolva a EDE resultante.

Exercício 4.17. Considere a seguinte EDE, conhecida como modelo de Black-Scholes:

$$dY(t) = rY(t) dt + \sigma Y(t) dW(t), \quad Y(0) = y_0.$$

Mostre que a solução deste modelo é dada por:

$$Y(t) = y_0 e^{\left(r - \frac{\sigma^2}{2}\right)t + \sigma W(t)}.$$

Sugestão: aplique a mudança de variável $Z(t) = \ln Y(t)$ e resolva a EDE resultante.

Exercício 4.18. Seja X(t) o valor de uma ação no instante $t \ge 0$, assumindo que satisfaz o modelo de Black-Scholes, com X(0) = \$52.800, r = 0.312/trimestre e $\sigma^2 = 0.087/\text{trimestre}$. Determine:

- (a) $P(X(2 \text{ trimestres}) > \$70.000 \mid X(1 \text{ trimestre}) = \$60.500)$
- (b) E(X(1 trimestre))
- (c) $P(\$55.000 \le X(1 \text{ trimestre}) \le \$65.000)$
- (d) Var(X(1 trimestre))
- (e) $E(X(2 \text{ trimestres}) \mid X(0.5 \text{ trimestre}) = \$54.200 \text{ e } X(1 \text{ trimestre}) = \$60.500)$
- (f) $P(X(2 \text{ trimestres}) > \$70.000 \mid X(0.5 \text{ trimestre}) = \$54.200 \text{ e } X(1 \text{ trimestre}) = \$60.500)$
- (g) $Var(X(2 \text{ trimestres}) \mid X(1 \text{ trimestre}) = \$60.500)$
- (h) $E(X(2 \text{ trimestres}) \mid X(1 \text{ trimestre}) = \$60.500)$

Sugestão: Use o facto de que $X(t) = X(0) \cdot e^{Z(t)}$, com Z(t) gaussiano. Logo,

$$X^{2}(t) = X(0)^{2} \cdot e^{2Z(t)}$$

e então,

$$E(X^2(t)) = X(0)^2 \cdot E(e^{2Z(t)}) = X(0)^2 \cdot \exp\left(E(2Z(t)) + \frac{1}{2} Var(2Z(t))\right).$$

Exercício 4.19. Considere a seguinte EDE, conhecida como modelo de log-normal inverso:

$$dY(t) = -\frac{\sigma^2}{2}Y(t)\,dt + \sigma Y(t)\,dW(t), \quad Y(0) = y_0. \label{eq:definition}$$

Mostre que a solução deste modelo é dada por:

$$Y(t) = y_0 \, e^{\sigma W(t)}.$$

Sugestão: aplique a mudança de variável $Z(t) = \ln Y(t)$ e resolva a EDE resultante.

Exercício 4.20. Considere a seguinte EDE, conhecida como modelo de Gompertz com parâmetro limite:

$$dX(t) = (X(t) - \gamma)(\alpha - \beta \ln(X(t) - \gamma))dt + \sigma(X(t) - \gamma)dW(t), \quad X(0) = x_0$$

Mostre que a solução deste modelo é dada por:

$$X_t = \gamma + \exp\left\{e^{-\beta t}\left(\ln(x_0 - \gamma) + \frac{1}{\beta}\left(\alpha - \frac{\sigma^2}{2}\right)(e^{\beta t} - 1)\right) + \sigma e^{-\beta t}\int_0^t e^{\beta s}dW_s\right\}.$$

Sugestão: aplique a mudança de variável $Y(t) = \ln(X(t) - \gamma)$ e resolva a EDE resultante.

Capítulo 5

Bibliografia

Principal

■ Muller, D. (2007) Processos Estocásticos e Aplicações. II Série, nº3, Coleção Económicas. Almedina.

Secundária

■ Muller, D. (2011) Probabilidades e Processos Estocásticos. II Série, nº17, Coleção Económicas. Almedina.

 Taylor, H. M., Karlin, S. (1998) An Introduction to Stochastic Modeling (3rd Edition), Academic Press, New York.

Todos os direitos reservados. É expressamente proibida a reprodução, cópia, distribuição, comunicação pública, transformação ou qualquer outra forma de utilização, total ou parcial, dos conteúdos deste sítio, incluindo textos, código e imagens, sem autorização prévia e por escrito do autor. Qualquer utilização não autorizada constitui violação dos direitos de autor e poderá dar lugar à responsabilidade civil e criminal nos termos da lei em vigor.