Администрирование локальных сетей

Лабораторная 3

Скандарова Полина Юрьевна

Содержание

1	Цель работы	1
2	Выполнение лабораторной работы	1
3	Выводы	4
4	Контрольные вопросы	4

Список иллюстраций

Элементы списка иллюстраций не найдены.

Список таблиц

Элементы списка иллюстраций не найдены.

1 Цель работы

Познакомится с принципами планирования локальной сети организации.

2 Выполнение лабораторной работы

- 1. Используя графический редактор (в моём случае Dia), повторяю схемы L1 (рис. **001**), L2 (рис.**002**), L3 (рис. **003**), а также сопутствующие им таблицы VLAN (рис. **004**), IP-адресов (рис. **005**) и портов подключения оборудования планируемой сети (рис. **006**).
- 2. Рассмотренный выше пример планирования адресного пространства сети базируется на разбиении сети 10.128.0.0/16 на соответствующие подсети. Делаю аналогичный план адресного пространства для сетей 172.16.0.0/12 и 192.168.0.0/16 с соответствующими схемами сети и сопутствующими таблицами VLAN, IP-адресов и портов подключения оборудования.
- 3. При выполнении работы учитываю соглашение об именовании.

Рис. 001: Схема L1

Рис. 002: Схема L2

Рис. 003: Схема L3

	А	В	С
1	IР-адреса ▼	Примечание	VLAN ~
2	10.128.0.0/16	Вся сеть	
3	10.128.0.0/24	Серверная ферма	3
4	10.128.0.1	Шлюз	
5	10.128.0.2	Web	
6	10.128.0.3	File	
7	10.128.0.4	Mail	
8	10.128.0.5	Dns	
9	10.128.0.6-10.128.0.254	Зарезервировано	
10	10.128.1.0/24	Управление	2
11	10.128.1.1	Шлюз	
12	10.128.1.2	msk-donskaya-sw-1	
13	10.128.1.3	msk-donskaya-sw-2	
14	10.128.1.4	msk-donskaya-sw-3	
15	10.128.1.5	msk-donskaya-sw-4	
16	10.128.1.6	msk-pavlovskaya-sw-1	
17	10.128.1.7-10.128.1.254	Зарезервировано	
18	10.128.2.0/24	Сеть Point-to-Point	
19	10.128.2.1	Шлюз	
20	10.128.2.2-10.128.2.254	Зарезервировано	
21	10.128.3.0/24	Дисплейные классы (ДК)	101
22	10.128.3.1	Шлюз	
23	10.128.3.2-10.128.3.254	Пул для пользователей	
24	10.128.4.0/24	Кафедры (К)	102
25	10.128.4.1	Шлюз	
26	10.128.4.2-10.128.4.254	Пул для пользователей	
27	10.128.5.0/24	Администрация (А)	103
28	10.128.5.1	Шлюз	
29	10.128.5.2-10.128.5.254	Пул для пользователей	
30	10.128.6.0/24	Другие пользователи (Д)	104
31	10.128.6.1	Шлюз	
32	10.128.6.2-10.128.6.254	Пул для пользователей	
33			

Рис. 004: Таблица VLAN

	А	В
1	Column1 🔻	Column2
2	IP-адреса	Назначение
3	1	Шлюз
4	2–19	Сетевоеоборудование
5	20–29	Серверы
6	30–199	Компьютеры, DHCP
7	200–219	Компьютеры,Static
8	220–229	Принтеры
9	230–254	Резерв
10		

Рис. 005: Таблица ІР-адресов

	Α	В	С	D	E
1	Устройство	Порт	Примечание	AccessVLAN ~	TrunkVLAN
2	msk-donskaya-gw-1	f0/1	UpLink		
3		f0/0	msk-donskaya-sw-1		2,3,101,102,103,104
4	msk-donskaya-sw-1	f0/24	msk-donskaya-gw-1		2,3,101,102,103,104
5		g0/1	msk-donskaya-sw-2		2,3
6		g0/2	msk-donskaya-sw-4		2,101,102,103,104
7		f0/1	msk-pavlovskaya-sw-1		2,101,104
8	msk-donskaya-sw-2	g0/1	msk-donskaya-sw-1		2,3
9		g0/2	msk-donskaya-sw-3		2,3
10		f0/1	Web-server	3	
11		f0/2	File-server	3	
12	msk-donskaya-sw-3	g0/1	msk-donskaya-sw-2		2,3
13		f0/1	Mail-server	3	
14		f0/2	Dns-server	3	
15	msk-donskaya-sw-4	g0/1	msk-donskaya-sw-1		2,101,102,103,104
16		f0/1-f0/5	dk	101	
17		f0/6-f0/10	departments	102	
18		f0/11-f0/15	adm	103	
19		f0/16-f0/24	other	104	
20	msk-pavlovskaya-sw-1	f0/24	msk-donskaya-sw-1		2,101,104
21		f0/1-f0/15	dk	101	
22		f0/20	other	104	
23					

Рис. 006: Таблица портов

3 Выводы

С принципами планирования локальной сети организации ознакомлена.

4 Контрольные вопросы

1. Что такое модель взаимодействия открытых систем (OSI)? Какие уровни в ней есть? Какие функции закреплены за каждым уровнем модели OSI? – Модель взаимодействия открытых систем (Open Systems Interconnection, OSI) — это стандартная модель, предложенная Международной организацией по стандартизации (ISO), которая описывает, как компьютерные системы должны взаимодействовать друг с другом. Она разделяет процесс коммуникации на семь уровней, каждый из которых отвечает за определенные функции. Вот краткое описание каждого уровня модели OSI и его функций: • Физический уровень (Physical Layer): передача битов по физической среде. • Канальный уровень (Data Link Layer): обеспечивает безошибочную передачу данных между соседними устройствами через общую среду передачи. • Сетевой уровень (Network Layer): занимается маршрутизацией и пересылкой пакетов данных через несколько сетей. • Транспортный уровень (Transport Layer): обеспечивает надежную передачу данных между узлами в сети. • Сеансовый уровень (Session Layer): устанавливает, поддерживает и завершает соединения между двумя узлами в сети. • Представительный уровень (Presentation Layer):обеспечивает структурирование и кодирование данных перед их передачей. • Прикладной уровень (Application Layer): предоставляет интерфейс для прикладных программ. Модель OSI помогает стандартизировать процесс взаимодействия между различными системами. что упрощает разработку сетевых приложений и обеспечивает их совместимость.

- 2. Какие функции выполняет коммутатор? Коммутатор (switch) это сетевое устройство, которое играет важную роль в локальной компьютерной сети (LAN). Его основная функция заключается в пересылке данных между устройствами в сети, обеспечивая эффективную и надежную передачу информации. Вот основные функции, которые выполняет коммутатор: Пересылка кадров (Frame forwarding) Фильтрация и обучение (Filtering and Learning) Управление коллизиями (Collision Management) Управление потоком (Flow Control) Дуплексный режим (Duplex Mode Management)
- 3. Какие функции выполняет маршрутизатор? Маршрутизатор (router) это сетевое устройство, которое работает на сетевом уровне (сетевой уровень OSI модели) и обеспечивает передачу данных между различными сегментами сети, используя информацию о маршрутах. Вот основные функции, которые выполняет маршрутизатор: Маршрутизация (Routing) Перенаправление (Forwarding) Фильтрация трафика (Traffic Filtering) Адресация (Addressing) Управление полосой пропускания (Bandwidth Management) Сегментация сети (Network Segmentation)
- 4. В чём отличие коммутаторов третьего уровня от коммутаторов второго уровня? Отличие между коммутаторами второго и третьего уровня связано с уровнем, на котором они работают в сетевой модели OSI, а также с функциональностью и способностью обрабатывать данные.
- 5. Что такое сетевой интерфейс? Сетевой интерфейс (Network Interface) представляет собой физическое или логическое устройство, которое позволяет компьютеру или другому сетевому устройству подключаться к сети для обмена данными. Сетевой интерфейс обеспечивает связь между устройством и сетью, позволяя передавать данные внутри и между сетями.
- 6. Что такое сетевой порт? Сетевой порт (Network port) это числовая адресная точка в компьютерной сети, которая используется для идентификации конкретного процесса или службы на устройстве в сети. Порты позволяют множеству приложений и служб работать параллельно на одном устройстве, обеспечивая таким образом многопроцессорный и многопользовательский доступ к ресурсам сети.
- 7. Кратко охарактеризуйте технологии Ethernet, Fast Ethernet, Gigabit Ethernet. • Ethernet - это стандартная технология локальных сетей (LAN), которая предоставляет возможность передачи данных по сетевым кабелям. Он работает на скоростях до 10 Мбит/с и использует различные типы кабелей, такие как коаксиальный кабель (10BASE5), витая пара (10BASE-T) и оптоволокно (10BASE-F). Ethernet был первоначально стандартизирован в IEEE 802.3 и стал доминирующим стандартом для проводных локальных сетей. • Fast Ethernet - это улучшенная версия технологии Ethernet, которая поддерживает скорости передачи данных до 100 Мбит/с. Он использует те же типы кабелей, что и Ethernet, но с повышенной скоростью передачи данных. Fast Ethernet был стандартизирован в IEEE 802.3u и быстро стал популярным выбором для более быстрых сетей в домашних и офисных средах. • Gigabit Ethernet - это следующий этап развития Ethernet, предоставляющий скорости передачи данных до 1 Гбит/с. Он использует высокоскоростные варианты витой пары (1000BASE-T) или оптоволокна (1000BASE-X) для обеспечения более высокой пропускной способности. Gigabit Ethernet часто используется в

- корпоративных сетях и дата-центрах для обеспечения высокой производительности и скорости обмена данными между устройствами.
- 8. Что такое IP-адрес (IPv4-адрес)? Определите понятия сеть, подсеть, маска подсети. Охарактеризуйте служебные ІР-адреса. Приведите пример с пояснениями разбиения сети на две или более подсетей с указанием числа узлов в каждой подсети. - • IP-адрес (Internet Protocol Address) - это числовой идентификатор, присваиваемый каждому устройству в компьютерной сети, подключенной к сети, использующей протокол IPv4. IPv4-адрес состоит из четырех октетов (байтов), разделенных точками, каждый из которых может принимать значения от 0 до 255. Например, 192.168.1.1. • Сеть - это группа компьютеров и других устройств, соединенных между собой для обмена данными и ресурсами. Каждое устройство в сети имеет свой собственный ІРадрес, который позволяет ему уникально идентифицироваться в сети. • Подсеть (Subnet) - это логический сегмент сети, который образуется путем разделения основной сети на более мелкие части для управления трафиком и повышения безопасности сети. • Маска подсети (Subnet Mask) - это 32-битовое значение, используемое для определения размера сети и подсети. Маска подсети указывает, какая часть ІР-адреса относится к сети, а какая к узлам в этой сети. Она состоит из последовательности единиц, за которыми следуют нули. Например, 255.255.255.0. • Служебные ІР-адреса - это специальные адреса, зарезервированные для определенных целей в сети. Они не используются для назначения устройствам в сети и предназначены для определенных служб или целей, таких как тестирование, маршрутизация, широковещательные и многоадресные коммуникации. Пример разбиения сети на две подсети с указанием числа узлов в каждой подсети: Предположим, у нас есть сеть с IP-адресом 192.168.1.0 и маской подсети 255.255.255.0 (24 бита для сети и 8 битов для узлов). Мы хотим разбить эту сеть на две подсети с равным количеством узлов. Мы можем использовать маску подсети 255.255.128 (или /25), что означает, что у нас есть 7 битов для узлов (2^7 = 128) и 1 бит для подсети. Таким образом, у нас есть две подсети: Подсеть 1: • IP-адрес: 192.168.1.0 • Маска подсети: 255.255.255.128 • Диапазон адресов: 192.168.1.1 - 192.168.1.126 (126 узлов) • Broadcast адрес: 192.168.1.127 Подсеть 2: • IP-адрес: 192.168.1.128 • Маска подсети: 255.255.255.128 • Диапазон адресов: 192.168.1.129 - 192.168.1.254 (126 узлов) • Broadcast адрес: 192.168.1.255 Таким образом, мы разбили исходную сеть на две подсети с равным количеством узлов.
- 9. Дайте определение понятию VLAN. Для чего применяется VLAN в сети организации? Какие преимущества даёт применение VLAN в сети организации? Приведите примеры разных ситуаций. VLAN (Virtual Local Area Network) это логическая сеть, которая создается внутри физической сети с целью разделения устройств на разные группы, независимо от их физического расположения в сети. Устройства в одной VLAN могут обмениваться данными как внутри VLAN, так и с устройствами в других VLAN, в зависимости от настроек маршрутизации или коммутации. Применение VLAN в сети организации: Сегментация сети: позволяет разделить сеть на логические сегменты согласно функциональным, безопасностным или организационным потребностям. Управление трафиком: позволяет администраторам сети управлять трафиком, применяя политики безопасности, качества

- обслуживания (QoS) и т. д. Улучшенная безопасность: позволяет разделить чувствительные данные и сервисы от общего трафика в сети, улучшая безопасность и предотвращая несанкционированный доступ к данным. • Оптимизация ресурсов: позволяет оптимизировать использование сетевых ресурсов, направляя трафик только туда, где он необходим, и уменьшая перегрузку сети. Преимущества применения VLAN в сети организации: • Гибкость и масштабируемость: возможность быстро изменять конфигурацию сети, добавлять или удалять VLAN в зависимости от потребностей организации. • Улучшенная безопасность: возможность физической и логической изоляции сетевых сегментов, что усиливает безопасность и защищает от атак. • Эффективное использование ресурсов: возможность оптимизации сетевых ресурсов и уменьшения нагрузки на сеть за счет лучшего управления трафиком. • Улучшенное управление: централизованное управление и настройка VLAN облегчает администрирование сети и обеспечивает более гибкие возможности управления сетью. Примеры ситуаций применения VLAN: • Разделение отделов: создание VLAN для разных отделов организации (например, финансового, маркетингового, технического) для логического разделения сетевых ресурсов и безопасности данных. • Гостевая сеть: создание VLAN для гостевого Wi-Fi, чтобы отделить трафик гостевых пользователей от внутренней сети компании. • Группировка устройств: группировка сетевых устройств с общими потребностями (например, серверов, IP-телефонов, видеокамер) в отдельные VLAN для оптимизации трафика и улучшения производительности. • Сегментация по безопасности: создание отдельной VLAN для сегментации трафика с целью улучшения безопасности и защиты критически важных сетевых ресурсов.
- 10. В чём отличие Trunk Port от Access Port? Trunk Port и Access Port это два типа портов на коммутаторах, используемых в сетевых конфигурациях. Они имеют разные функции и настройки. Access Port предназначен для подключения устройств конечных пользователей, таких как компьютеры, принтеры или IP-телефоны. Trunk Port используется для соединения между коммутаторами или между коммутатором и маршрутизатором. Отличие между Trunk Port и Access Port: Трафик: Access Port передает трафик только одной VLAN, к которой он принадлежит. Trunk Port передает трафик с нескольких VLAN через один порт. Назначение: Access Port предназначен для подключения конечных устройств пользователей к сети. Trunk Port используется для соединения коммутаторов и передачи трафика между ними, а также для подключения к маршрутизаторам. Настройка: Access Port настраивается для принадлежности к определенной VLAN. Trunk Port настраивается для передачи трафика с нескольких VLAN и может быть настроен для передачи всех или определенных VLAN.