μέχρι και 3ο κεφάλαιο

www.trapeza-thematon.gr

Θέμα: 1617

ΘΕΜΑ 2

Από εξωτερικό σημείο P ενός κύκλου (O, ρ) φέρνουμε τα εφαπτόμενα τμήματα PA και PB. Αν M είναι ένα τυχαίο εσωτερικό σημείο του ευθυγράμμου τμήματος OP, να αποδείξετε ότι:

- **α)** τα τρίγωνα PAM και PMB είναι ίσα. (Μονάδες 12)
- $\bf β$) οι γωνίες \hat{MAO} και \hat{MBO} είναι ίσες. (Μονάδες 13)

- **α)** Συγκρίνουμε τα τρίγωνα PAM και PMB. Έχουν:
 - PM κοινή πλευρά
 - PA = PB ως εφαπτόμενα τμήματα που άγονται από το P προς τον κύκλο
 - $\hat{OPA} = \hat{OPB}$, διότι η διακεντρική ευθεία PO διχοτομεί την γωνία των εφαπτομένων.

Από το κριτήριο $\Pi-\Gamma-\Pi$ τα τρίγωνα PAM και PMB είναι ίσα.

β) Από την ισότητα των τριγώνων PAM και PMB προκύπτει ότι $P\hat{A}M = P\hat{B}M$, καθώς οι γωνίες βρίσκονται απέναντι από την PM και στα δύο τρίγωνα.

Επίσης $\hat{OAP} = \hat{OBP} = 90^o$ διότι οι ακτίνες που καταλήγουν στα σημεία επαφής είναι κάθετες στις εφαπτόμενες ευθείες.

Άρα
$$\hat{MAO} = \hat{OAP} - \hat{PAM} = \hat{OBP} - \hat{PBM} = \hat{MBO}$$
.

Θέμα: 1620

ΘΕΜΑ 2

Στο παρακάτω σχήμα δίνεται κύκλος (O,R) και τα εφαπτόμενα τμήματα MA και MB. Προεκτείνουμε την AM κατά τμήμα

 $M\Gamma=MA$ και την OM κατά τμήμα $M\Delta=OM$.

- **α)** Να αποδείξετε ότι $MB=M\Gamma$. (Μονάδες 10)
- **β)** Να αποδείξετε ότι τα τρίγωνα OMB και $M\Gamma\Delta$ είναι ίσα. (Μονάδες 15)

- **α)** Ισχύει ότι MA=MB ως εφαπτόμενα τμήματα που άγονται από σημείο εκτός κύκλου (το σημείο M). Επίσης, από υπόθεση ισχύει ότι $M\Gamma=MA$ οπότε προκύπτει $MB=M\Gamma$ (1).
- **β)** Ακόμα ισχύει ότι και $\hat{AMO} = \hat{BMO}$ (2) γιατί η διακεντρική ευθεία \hat{OM} διχοτομεί τη γωνία των εφαπτομένων, η οποία είναι η \hat{AMB} .

Συγκρίνουμε τα τρίγωνα OMB και $M\Gamma\Delta$, τα οποία έχουν:

- $M\Delta = OM$, από την υπόθεση
- $MB = M\Gamma$, λόγω της (1)
- $\hat{BMO}=\Gamma\hat{M}\Delta$, διότι $\hat{AMO}=\Gamma\hat{M}\Delta$ (ως κατακορυφήν) και $\hat{AMO}=\hat{BMO}$ (λόγω της (2)).

Από το κριτήριο $\Pi-\Gamma-\Pi$ τα τρίγωνα OMB και $M\Gamma\Delta$ είναι ίσα.

Θέμα: 12417

ΘΕΜΑ 2

Έστω δύο κύκλοι (K,R) και (Λ,r) , με R=3, r=2 και $K\Lambda=4$. Να αποδείξετε ότι:

α) Οι κύκλοι (K,R) και (Λ,r) τέμνονται σε δύο σημεία, έστω A και B.

(Μονάδες 15)

β) $\hat{KAA} > \hat{AAK}$. (Μονάδες 10)

Απάντηση Θέματος: 12417

α) Έστω οι κύκλοι (K,R) και (Λ,r) , με R=3, r=2 και $K\Lambda=4$.

Έχουμε R+r=5 και R-r=1. Αφού $K\Lambda < R+r$ και $K\Lambda > R-r$, συμπεραίνουμε ότι οι κύκλοι (K,R) και (Λ,r) τέμνονται σε δύο σημεία A και B.

β) Στο τρίγωνο $AK\Lambda$ είναι $K\Lambda>AK$, αφού $K\Lambda=4$ και AK=R=3. Οπότε, οι απέναντι γωνίες $K\hat{A}\Lambda$ και $A\hat{\Lambda}K$ των άνισων πλευρών $K\Lambda$ και AK αντίστοιχα, θα είναι ομοίως άνισες. Δηλαδή, $K\hat{A}\Lambda>A\hat{\Lambda}K$.

Θέμα: 13757

ΘΕΜΑ 2

Δίνονται δύο κύκλοι (K,2) και $(\varLambda,5)$.

- **α)** Να υπολογίσετε το μήκος της διακέντρου $K\Lambda$, αν οι κύκλοι εφάπτονται εξωτερικά. (Μονάδες 6)
- **β)** Να υπολογίσετε το μήκος της διακέντρου $K\Lambda$, αν οι κύκλοι εφάπτονται εσωτερικά. (Μονάδες 6)
- **γ)** Μεταξύ ποιών τιμών βρίσκεται το μήκος της διακέντρου $K\Lambda$, αν ο κύκλος (K,2) βρίσκεται στο εσωτερικό του κύκλου $(\Lambda,5)$; Να αιτιολογήσετε την απάντησή σας.

(Μονάδες 6)

δ) Μεταξύ ποιών τιμών βρίσκεται το μήκος της διακέντρου $K\Lambda$, αν οι κύκλοι τέμνονται; Να αιτιολογήσετε την απάντησή σας. (Μονάδες 7)

Απάντηση Θέματος: 13757

ΛΥΣΗ

Έστω R=5 και ho=2.

α) Αν οι κύκλοι εφάπτονται εξωτερικά, Τότε για τη διάκεντρο $K\Lambda$ έχουμε:

$$K\Lambda = R + \rho = 5 + 2 = 7.$$

β) Αν οι κύκλοι εφάπτονται εσωτερικά, Τότε για τη διάκεντρο $K\Lambda$ έχουμε:

$$K\Lambda = R - \rho = 5 - 2 = 3.$$

γ) Για να είναι ο κύκλος (K,2) στο εσωτερικό του κύκλου $(\Lambda,5)$ θα πρέπει $K\Lambda < R-\rho$, δηλαδή $K\Lambda < 5-2$ ή $K\Lambda < 3$.

δ) Για να τέμνονται οι κύκλοι θα πρέπει $R-\rho < K \Lambda < R+\rho$, δηλαδή $5-2 < K \Lambda < 5+2$ ή $3 < K \Lambda < 7$.

Θέμα: 13758

ΘΕΜΑ 2

Δίνονται δύο κύκλοι (K,3) και $(\Lambda,8)$. Να βρείτε τη σχετική θέση των δύο κύκλων, αιτιολογώντας την απάντησή σας, όταν:

a) $K\Lambda = 13$.

(Μονάδες 5)

β) $K\Lambda = 2$.

(Μονάδες 5)

v) $K\Lambda=5$.

(Μονάδες 5)

δ) $K\Lambda = 11$.

(Μονάδες 5)

 ϵ) $K\Lambda=9$.

(Μονάδες 5)

Απάντηση Θέματος: 13758

ΛΥΣΗ

Έστω R=8 και $\rho=3$. Υπολογίζουμε τη διαφορά και το άθροισμα των δύο ακτίνων, δηλαδή $R-\rho=8-3=5$ και $R+\rho=8+3=11$.

α) Επειδή η διάκεντρος $K \Lambda = 13$ έχει μεγαλύτερο μήκος από το άθροισμα των δύο ακτίνων $R + \rho = 11$, ο κύκλος $(\Lambda,8)$ βρίσκεται στο εξωτερικό του κύκλου (K,3).

β) Επειδή η διάκεντρος $K \Lambda = 2$ έχει μικρότερο μήκος από τη διαφορά των δύο ακτίνων $R - \rho = 5$, ο κύκλος (K,3) βρίσκεται στο εσωτερικό του κύκλου $(\Lambda,8)$.

γ) Επειδή η διάκεντρος $K \Lambda = 5$ έχει ίσο μήκος με τη διαφορά των δύο ακτίνων $R - \rho = 5$, οι κύκλοι εφάπτονται εσωτερικά.

δ) Επειδή η διάκεντρος $K \Lambda = 11$ έχει ίσο μήκος με το άθροισμα των δύο ακτίνων $R + \rho = 11$, οι κύκλοι εφάπτονται εξωτερικά.

ε) Επειδή η διάκεντρος $K \Lambda = 9$ έχει μήκος μεταξύ της διαφοράς $R - \rho = 5$ και του αθροίσματος των δύο ακτίνων $R + \rho = 11$, οι κύκλοι τέμνονται.

Θέμα: 13759

ΘΕΜΑ 2

Δίνεται κύκλος με κέντρο O και ακτίνα $\rho=6$. Έστω d η απόσταση του κέντρου O του κύκλου από μια ευθεία (ε) . Να βρείτε τη σχετική θέση του κύκλου και της ευθείας (ε) στις εξής περιπτώσεις:

α)
$$d=3$$
. (Μονάδες 9)

β) d = 6.

(Μονάδες 8)

y) d = 9.

(Μονάδες 8)

Απάντηση Θέματος: 13759

ΛΥΣΗ

α) Επειδή η απόσταση d=3 του κέντρου από την ευθεία (ε) είναι μικρότερη από την ακτίνα $\rho=6$ του κύκλου, η ευθεία (ε) έχει δύο κοινά σημεία με τον κύκλο, δηλαδή είναι τέμνουσα του κύκλου.

β) Επειδή η απόσταση d=6 του κέντρου από την ευθεία (ε) είναι ίση με την ακτίνα $\rho=6$ του κύκλου, η ευθεία (ε) έχει ένα κοινό σημείο με τον κύκλο, δηλαδή είναι εφαπτόμενη του κύκλου.

γ) Επειδή η απόσταση d=9 του κέντρου από την ευθεία (ε) είναι μεγαλύτερη από την ακτίνα $\rho=6$ του κύκλου, η ευθεία (ε) δεν έχει κοινά σημεία με τον κύκλο, δηλαδή είναι εξωτερική του κύκλου.

Θέμα: 13817

ΘΕΜΑ 2

Δίνεται κύκλος με κέντρο O και ακτίνα ρ . Σε σημείο B του κύκλου φέρουμε εφαπτόμενη ευθεία (ε) . Θεωρούμε στην ευθεία (ε) δύο σημεία A και Γ εκατέρωθεν του B έτσι ώστε $BA < B\Gamma$ και από τα σημεία αυτά, φέρουμε τα εφαπτόμενα τμήματα AZ και ΓM στον κύκλο.

α) Να γράψετε τα ευθύγραμμα τμήματα τα οποία είναι ίσα, αιτιολογώντας την απάντησή σας.

(Μονάδες 15)

β) Να αποδείξετε ότι $A \Gamma = A Z + M \Gamma$. (Μονάδες 10)

Απάντηση Θέματος: 13817

ΛΥΣΗ

- α) Από τα δεδομένα τα ευθύγραμμα τμήματα AB και AZ είναι εφαπτόμενα στον κύκλο από σημείο εκτός αυτού, άρα είναι ίσα, δηλαδή AB=AZ. Όμοια από το σημείο Γ που είναι εκτός του κύκλου τα ευθύγραμμα τμήματα ΓB , ΓM είναι εφαπτόμενα σε αυτόν, άρα $\Gamma B=\Gamma M$.
- **β)** Λόγω του ερωτήματος (α) έχουμε $A\Gamma = AB + B\Gamma = AZ + M\Gamma$.

Θέμα: 13835

ΘΕΜΑ 2

Τα σημεία A, K και Λ δε βρίσκονται στην ίδια ευθεία. Το σημείο A απέχει 4 από το K και 5 από το Λ .

α) Να αποδείξετε ότι $1 < K \Lambda < 9$. (Μονάδες 12)

β) Να βρείτε ένα σημείο B του επιπέδου διαφορετικό από το A, που να απέχει 4 από το K και 5 από το Λ . (Μονάδες 13)

- **α)** Τα τρία μη συνευθειακά σημεία A, K και Λ ορίζουν το τρίγωνο $AK\Lambda$. Λόγω της τριγωνικής ανισότητας ισχύει ότι $A\Lambda-AK< K\Lambda < A\Lambda+AK$. Άρα $5-4< K\Lambda < 5+4$ ή $1< K\Lambda < 9$.
- **β)** Το ζητούμενο σημείο είναι σημείο του κύκλου (K,4) και του κύκλου $(\Lambda,5)$. Σχεδιάζουμε δύο κύκλους: ο ένας έχει κέντρο το K και ακτίνα 4 και ο άλλος έχει κέντρο το B και ακτίνα 5. Από το α) ερώτημα για τη διάκεντρο των κύκλων έχουμε ότι:

$$A \varLambda - A K < K \varLambda < A \varLambda + A K$$
 ή $R -
ho < K \varLambda < R +
ho$, όπου

R είναι η ακτίνα του κύκλου με κέντρο το Λ και ρ είναι η ακτίνα του κύκλου με κέντρο το K. Άρα οι κύκλοι τέμνονται σε δύο σημεία. Το ένα είναι το Λ και το άλλο είναι το Λ , που είναι και το ζητούμενο σημείο.

Σημείωση ΜΕΘΟΔΙΚΟΥ: Η ενδεικτική απάντηση του Ι.Ε.Π. στο ερώτημα α) έχει λανθασμένα την ανισότητα ως

$$A \varLambda - A K < K \varLambda < A \varLambda + A$$
 αντί του ορθού

$$A\Lambda - AK < K\Lambda < A\Lambda + AK$$
.

Θέμα: 13836

ΘΕΜΑ 2

α) Στο παρακάτω σχήμα για τους κύκλους (A, ρ) και (B, R) ισχύει $\rho < R$.

Να αποδείξετε ότι $B \Delta - A \Gamma < A B < A \Gamma + B \Delta$. (Μονάδες 10)

β) Ο χάρτης ενός κρυμμένου θησαυρού έχει δύο σταθερά σημεία A και B, τα οποία απέχουν μεταξύ τους 6. Επίσης γράφει ότι ο θησαυρός είναι κρυμμένος σε ένα σημείο το οποίο απέχει 3 από το A του χάρτη και 5 από το B του χάρτη. Ποια είναι τα σημεία του χάρτη στα οποία μπορεί να είναι κρυμμένος ο θησαυρός; (Μονάδες 15)

Απάντηση Θέματος: 13836

α) Οι κύκλοι είναι τεμνόμενοι.

Άρα ισχύει $R-\rho<\delta< R+\rho$, όπου ρ είναι η ακτίνα του κύκλου με κέντρο το A, R είναι η ακτίνα του κύκλου με κέντρο B και δ η διάκεντρός τους. Όμως η διάκεντρος είναι η AB και επιπλέον ισχύουν $A\Gamma=\rho$ και $B\Delta=R$. Επομένως $B\Delta-A\Gamma< AB< B\Delta+A\Gamma$.

β) Ο θησαυρός, επειδή απέχει 3 από το A και 5 από το B είναι σε σημείο του κύκλου με κέντρο το A και ακτίνα 3 και σε σημείο του κύκλου με κέντρο το B και ακτίνα 5. Σχεδιάζουμε δύο κύκλους (A,ρ) και (B,R) με $\rho=3$ και R=5. Τότε η AB=6 είναι η διάκεντρος του κύκλου και ισχύει $R-\rho < AB < R+\rho$ γιατί αντικαθιστώντας έχουμε 5-3<6<5+3, που είναι αληθές. Επομένως οι κύκλοι είναι τεμνόμενοι δηλαδή έχουν δύο κοινά σημεία τα E και E0. Αυτά τα σημεία έχουν την ιδιότητα να απέχουν E1 από το E2 από το E3, άρα είναι τα σημεία που μπορεί να κρύβεται ο θησαυρός.

Θέμα: 13844

ΘΕΜΑ 2

Στο παραπάνω σχήμα ισχύει ότι $B \varDelta < A \varDelta$, $AB = A \varGamma$ και $A \hat{\varDelta} \varGamma = 90^0$.

- **α)** Να αποδείξετε ότι $A \Gamma > B \Gamma$. (Μονάδες 10)
- **β)** Ποια είναι η μικρότερη γωνία του τριγώνου $AB\Gamma$; Να αιτιολογήσετε την απάντησή σας. (Μονάδες 15)

- α) Από το σημείο Γ που είναι εκτός της ευθείας AB έχουμε το κάθετο τμήμα $\Gamma\Delta$ και τα πλάγια τμήματα ΓB και ΓA . Το Δ είναι το ίχνος της καθέτου $\Gamma\Delta$ στην AB. Το ίχνος της $A\Gamma$ στην AB είναι το A, ενώ το ίχνος της $B\Gamma$ στην AB είναι το B. Εφόσον $A\Delta>B\Delta$, το ίχνος της $A\Gamma$ (δηλαδή το A) απέχει από το ίχνος της καθέτου (δηλαδή το Δ) περισσότερο από όσο απέχει το ίχνος της $B\Gamma$ (δηλαδή το B). Άρα $A\Gamma>B\Gamma$.
- **β)** Στο τρίγωνο $AB\Gamma$ η γωνία \hat{B} βρίσκεται απέναντι από την

πλευρά $A\Gamma$ του τριγώνου $AB\Gamma$, ενώ η γωνία \hat{A} βρίσκεται απέναντι από την πλευρά $B\Gamma$ του τριγώνου $AB\Gamma$. Εφόσον $A\Gamma>B\Gamma$, ομοίως άνισες είναι και οι απέναντι γωνίες, άρα $\hat{B}>\hat{A}$.

Επιπλέον, το τρίγωνο $AB\Gamma$ είναι ισοσκελές με $AB=A\Gamma$. Επομένως για τις γωνίες της βάσης του, $B\Gamma$ ισχύει ότι $\hat{B}=\hat{\Gamma}$. Άρα $\hat{\Gamma}>\hat{A}$.

Συνεπώς η μικρότερη γωνία του τριγώνου $AB\Gamma$ είναι η \hat{A} .