Fondamenti di Elaborazione di Immagini Morfologia Matematica

Raffaele Cappelli raffaele.cappelli@unibo.it

Contenuti

- Introduzione alla morfologia matematica
 - □ Notazione e concetti di base
- Gli operatori di base
 - ☐ Dilatazione, erosione
- Altre operazioni
 - □ Apertura, chiusura
 - ☐ Hit-or-Miss transform
 - □ Estrazione del bordo
- Morfologia in scala di grigio

Morfologia matematica

- Branca della matematica che si rivolge all'elaborazione delle immagini
 - □ Derivata dalla teoria degli insiemi
 - ☐ Fornisce strumenti utili per
 - estrarre informazioni utili a rappresentare e descrivere la forma (contorno, scheletro, ...)
 - rimuovere particolari irrilevanti mantenendo le informazioni importanti sulla forma degli oggetti
 - Lavora su immagini binarie (appartiene alla più generale disciplina della topologia digitale), ma esistono estensioni per immagini grayscale
- Elemento strutturante
 - □ Piccola immagine binaria (es. 3x3 o 5x5) che viene utilizzata come parametro nelle operazioni morfologiche (anch'essa considerata un insieme di pixel di foreground)
 - Tipicamente quadrata (lato dispari) e centrata rispetto all'origine

Notazione di base

- Considera immagini digitali binarie (2 soli livelli di grigio)
 - □ Foreground (in genere 255 o 0, nel seguito indicato con *foreground*)
 - □ Background (in genere 0 o 255, nel seguito indicato come *≠foreground*)
- Sia F l'insieme di tutti i pixel di foreground e F* l'insieme di quelli di background di un'immagine Img:
 - \Box F = { $\mathbf{p} \mid \mathbf{p} = [x, y]^T$, Img[y, x]=foreground}
 - \Box $F^* = \{ \mathbf{p} \mid \mathbf{p} = [x, y]^T, \text{Img}[y, x] \neq \text{foreground} \}$
- Operazioni di base
 - □ Intersezione e unione: $A \cap B = \{\mathbf{p} \mid \mathbf{p} \in A \land \mathbf{p} \in B\}$ $A \cup B = \{\mathbf{p} \mid \mathbf{p} \in A \lor \mathbf{p} \in B\}$
 - \square Complemento: $A^c = \{ \mathbf{p} \mid \mathbf{p} \notin A \}$
 - □ Differenza: $A B = \{ \mathbf{p} \mid \mathbf{p} \in A \land \mathbf{p} \notin B \} = A \cap B^c$
 - □ Traslazione rispetto a un punto \mathbf{q} : $(A)_{\mathbf{q}} = \{\mathbf{p} \mid \mathbf{p} = \mathbf{a} + \mathbf{q}, \mathbf{a} \in A\}$
 - □ Riflessione rispetto all'origine: $A^r = \{\mathbf{p} \mid \mathbf{p} = -\mathbf{q}, \mathbf{q} \in A\}$

Morfologia matematica – Operatori di base

- Due operatori di base: Dilatazione ed Erosione
 - I due operatori su cui si basano la maggior parte delle operazioni morfologiche più complesse
- Dilatazione (Dilation)
 - \square La nuova immagine è l'insieme dei pixel tali che, traslando in essi S^r , almeno uno dei suoi elementi è sovrapposto a F

$$F \oplus S = \left\{ \mathbf{q} \mid \left(S^r \right)_{\mathbf{q}} \cap F \neq \emptyset \right\}$$

Morfologia matematica – Operatori di base (2)

- Erosione (Erosion)
 - \square La nuova immagine è l'insieme dei pixel tali che, traslando in essi S, l'intero elemento strutturante è contenuto in F

$$F \ominus S = \left\{ \mathbf{q} \mid \left(S \right)_{\mathbf{q}} \subseteq F \right\}$$

Ŋ

Dilatazione ed Erosione – Esempi

Dilatazione

Immagine originale

Erosione

Dilatazione ed Erosione – Esempi (2)

Cantami o Diva del pelide Achille l'ira funesta

Cantami o Diva del pelide Achille l'ira funesta

La dilatazione può aiutare a riempire "buchi" e altre simili imperfezioni

Binarizzazione

L'erosione può aiutare ad eliminare il rumore

Morfologia matematica: classi nella libreria

IAlgorithm

Algorithm

(*)

Dilatazione – Implementazione di base

```
// Costruisce l'array degli offset dell'elemento strutturante riflesso
int[] elementOffsets = MorphologyStructuringElement.CreateOffsets(
                                         StructuringElement, InputImage, true);
// Crea un cursore per scorrere l'immagine escludendo i pixel di bordo
var pixelCursor = new ImageCursor(
                 StructuringElement.Width / 2,
                 StructuringElement.Height / 2,
                 InputImage.Width - 1 - StructuringElement.Width / 2,
                 InputImage.Height - 1 - StructuringElement.Height / 2,
                 InputImage):
do
  foreach (int offset in elementOffsets)
    if (InputImage[pixelCursor + offset] == Foreground)
      Result[pixelCursor] = Foreground;
      break; // esce dal foreach
} while (pixelCursor.MoveNext());
```


Morfologia matematica – Altre operazioni

- Apertura (Opening)
 - □ Erosione seguita da dilatazione
 - Separa oggetti debolmente connessi e rimuove regioni piccole
- Chiusura (Closing)
 - Dilatazione seguita da erosione
 - □ Riempie buchi e piccole concavità e rafforza la connessione di regioni unite debolmente
- Hit-or-Miss Transform
 - \square Localizza i punti in cui S_1 è contenuto nel foreground e S_2 nel background
 - □ È un'operazione di pattern matching

$$F \circ S = (F \ominus S) \oplus S$$

$$F \bullet S = (F \oplus S) \ominus S$$

$$F * S = (F \ominus S_1) \cap (F^c \ominus S_2)$$
$$S = (S_1, S_2), S_1 \cap S_2 = \emptyset$$

Apertura – Implementazione di base

```
[AlgorithmInfo("Opening", Category = "Binary morphology")]
public class MorphologyOpening : MorphologyOperation
 public MorphologyOpening(Image<byte> inputImage, Image<byte>
                                       structuringElement, byte foreground)
    : base(inputImage, structuringElement, foreground)
 public override void Run()
   var erosion = new MorphologyErosion(InputImage,
                                           StructuringElement, Foreground);
    var dilation = new MorphologyDilation(erosion.Execute(),
                                           StructuringElement, Foreground);
    Result = dilation.Execute();
```

Apertura e Chiusura – Esempi

Apertura Apertura

Apertura e Chiusura – Esempi (2)

Binarizzazione

Hit-or-Miss Transform – Esempio

$$S_1(foreground)$$

 $S_2(background)$

Morfologia matematica: estrazione del contorno

- È possibile ottenere un'immagine contenente solo i pixel appartenenti al contorno di F sottraendo il risultato dell'erosione all'immagine stessa
 - ☐ L'elemento strutturante determina lo spessore del contorno

$$\beta_{S}(F) = F - (F \ominus S)$$

Morfologia in scala di grigio

- È possibile estendere le operazioni di base alle immagini grayscale
- Definizioni:
 - \Box f(x,y): immagine in scala di grigio
 - \Box b(x,y): elemento strutturante (Flat o Non-flat) con origine posta nel centro

Elementi strutturanti flat: operatori di base

- Dilatazione (Dilation)
 - \square Definita, per ogni posizione (x,y), come il valore massimo dell'immagine indicata da b quando l'origine di b si trova in (x,y)

$$[f \oplus b](x, y) = \max_{(s,t) \in b} \{f(x-s, y-t)\}$$

- Erosione (Erosion)
 - □ Definita, per ogni posizione (x,y), come il valore minimo dell'immagine indicata dalla riflessione di b quando l'origine di b si trova in (x,y)

$$[f \ominus b](x, y) = \min_{(s,t) \in b} \{f(x+s, y+t)\}$$

٧

Elementi strutturanti flat: esempio

Dilatazione

□ Le dimensioni delle componenti chiare vengono aumentate, mentre le dimensioni delle componenti scure vengono ridotte.

Erosione

Risultato opposto a quello della dilatazione.

Elementi strutturanti non-flat: operatori di base

Dilatazione (Dilation)

$$[f \oplus b_{NF}](x, y) = \max_{(s,t) \in b_{NF}} \{f(x-s, y-t) + b_{NF}(s,t)\}$$

Erosione (Erosion)

$$[f \ominus b_{NF}](x, y) = \min_{(s,t) \in b_{NF}} \{f(x+s, y+t) - b_{NF}(s,t)\}$$

- Attenzione:
 - □ Al contrario degli elementi strutturanti flat, il risultato di questi operatori non è necessariamente limitato dai valori di f, cosa che può portare a problemi nell'interpretazione dei risultati

Morfologia binaria e in scala di grigio: classi

