

Some preliminaries

Nonlinear system under interest

$$\begin{cases} \dot{x} = f(x,u) & \text{or} & \dot{x} = f(x) + g(x)u \\ y = h(x) & x \in \Re^n, u \in \Re^m, y \in \Re^p \end{cases}$$

An intuitive way to analyze/control/estimate such nonlinear systems can be made through the linearization of the previous system around a point

$$\dot{z} = \left(\frac{\partial f}{\partial x}\right)_{x_0, u_0} z + \left(\frac{\partial f}{\partial u}\right)_{x_0, u_0} v$$

$$y = \left(\frac{\partial h}{\partial x}\right)_{x_0, u_0} x$$

<u>Problem</u>: the linearization can modify the structural features of the system.

Example

$$\dot{\mathbf{x}}_1 = \mathbf{x}_2^3$$

$$\dot{\mathbf{x}}_2 = \mathbf{u}$$

Controllable system

Linearization around $(\mathbf{x}_0, \mathbf{u}_0) = ([0, 0]^T, 0)$

$$\dot{Z}_1 = 0$$

$$\dot{Z}_2 = v$$

$$\dot{Z}_2 = v$$

Loss of controllability

Mobile robot

$$\dot{x}_1 = \cos x_3.u_1$$

$$\dot{x}_2 = \sin x_3.u_1$$

$$\dot{x}_3 = u_2$$

 u_1 : longitudinal velocity

 u_2 : angular velocity

 (x_1, x_2) : longitudinal coordinates

Let us define
$$(X_0, u_0) = ([0, 0, 0]^T, [0, 0]^T)$$

$$\dot{z}_1 = u_1$$

$$\dot{z}_2 = 0 * u_1 = 0$$

The system is not controllable

$$\dot{z}_3 = u_2$$

Conclusion: there is a real interest to study/analyze the nonlinear system under their nonlinear representation.

Analytic function. A function $f: \Re \to \Re$ is analytic if and only if it is equal to its Taylor series in some neighborhood of every point.

Features.

The sums, products, ... of analytic functions are analytic.

Any analytic function is smooth, that is, infinitely differentiable.

Analytic functions admit isolated zeros.

Some examples: trigonometric functions, polynomial functions.

Property. If $f: \mathbb{R} \to \mathbb{R}$ is an analytic function, then

- either $f \equiv 0$
- or its zeros are isolated.

Corollary.

- If f_1 is analytic and f_2 is analytic ($f_2 \neq 0$), then f_1/f_2 is analytic.
- If $f_1.f_2 = 0$, then $f_1 = 0$ or $f_2 = 0$.

Meromorphic functions $f: \mathbb{R} \to \mathbb{R}$ is said meromorphic if $\exists f_1$ analytic and $\exists f_2 \neq 0$

analytic such
$$f = \frac{f_1}{f_2}$$

Class of nonlinear systems under consideration.

All the results givenin the sequel can be applied to linear systems.

Consider the set of variables

$$\left\{ x_{1},x_{2},...,x_{n},u_{1},u_{2},...,u_{m},\dot{u}_{1},\dot{u}_{2},...,\dot{u}_{m},...,u_{1}^{\left(k\right)},u_{2}^{\left(k\right)},...,u_{m}^{\left(k\right)}\right\}$$

Let *K* denote the field of meromorphic functions of

$$\left\{x_{1}, x_{2}, ..., x_{n}, u_{1}, u_{2}, ..., u_{m}, \dot{u}_{1}, \dot{u}_{2}, ..., \dot{u}_{m}, ..., u_{1}^{\binom{k}{l}}, u_{2}^{\binom{k}{l}}, ..., u_{m}^{\binom{k}{l}}\right\}$$

Example

$$f(x) = \frac{\left(x_2.\sin\left(x_2\right)\right).u^2 + u}{u + u.u.tg(x)} \qquad \qquad \frac{\left(x_2.\sin\left(x_2\right)\right) \in K}{tg(x) \in K} \implies f(x) \in K$$

Space. The space \mathcal{E} on the field K is defined such that the unit vectors of this space on K read as

$$dx_1, dx_2, ..., dx_n, du_1, ..., du_m, d\dot{u}_1, ..., d\dot{u}_m$$
 (n-1)

Interest of this notation. $y_1 = h_1(x)$

$$d\mathbf{y}_1 = \frac{\partial \mathbf{h}_1}{\partial \mathbf{x}_1} d\mathbf{x}_1 + \frac{\partial \mathbf{h}_1}{\partial \mathbf{x}_2} d\mathbf{x}_2 + \ldots + \frac{\partial \mathbf{h}_1}{\partial \mathbf{x}_n} d\mathbf{x}_n = \begin{bmatrix} \frac{\partial \mathbf{h}_1}{\partial \mathbf{x}_1} & \ldots & \frac{\partial \mathbf{h}_1}{\partial \mathbf{x}_n} \end{bmatrix} \cdot \begin{bmatrix} d\mathbf{x}_1 \\ \vdots \\ d\mathbf{x}_n \end{bmatrix}$$

$$\dot{y}_{1} = \frac{dy_{1}}{dt} = \frac{\partial h_{1}}{\partial x} \cdot \frac{dx}{dt} = \frac{\partial h_{1}}{\partial x} \dot{x} = \frac{\partial h_{1}}{\partial x} \left(f(x) + g(x)u \right) = h_{1}^{1}(x, u)$$

$$d\dot{y}_{1} = \underbrace{\sum_{i=1}^{n} \frac{\partial h_{1}^{1}}{\partial x_{i}} dx_{i}}_{\text{Expansion}} + \underbrace{\sum_{j=1}^{m} \frac{\partial h_{1}^{1}}{\partial u_{j}}}_{\text{Fonctions}(x)} du_{j} \in \mathcal{E}$$
Fonctions(x, u) Fonctions(x)
$$\in K \qquad \in K$$

Remark: contains the differential of all function of *K*.

An important problem in nonlinear control systems (for structure analysis).

$$dx_1 + x_3.dx_2 = (1, x_3, 0) \begin{bmatrix} dx_1 \\ dx_2 \\ dx_3 \end{bmatrix}$$

Does a function $\varphi \in K$ exist such that $\mathrm{d}\,\varphi = \mathrm{d}\mathrm{x}_1 + \mathrm{X}_3.\mathrm{d}\mathrm{x}_2 \ ?$

1-form. Given a function $\varphi \in K$ (called **0-form**). $\omega \in \mathcal{E}$ is a 1-form and reads as

$$\omega = \sum_{i=1}^{n} \alpha_{i}(.) dx_{i} + \sum_{j=0}^{n-1} \sum_{k=1}^{m} \beta_{kj}(.) du_{k}^{(j)}$$

$$\in K$$

$$\in K$$

Exact 1-form. Consider the 1-form $\omega \in \mathcal{E}$: it is exact if

$$\exists \varphi \in K \text{ such that } \omega = d \varphi$$

Some examples.

$$\omega_1 = dx_1 + x_2 dx_3 + X_3 dx_2$$

$$\omega_2 = x_1 dx_2 - x_2 dx_1$$

2-form.
$$\Omega$$
 is a 2-form $\iff \Omega = \sum_{i,j} \alpha_{ij} e_{ij}$

Exterior product

$$\alpha_{ij} \in K$$

$$e_{ij} = dx_i \wedge dx_j$$

Methodology. The function $\varphi \in K$ is a 0-form

- One differentiates $d \varphi = \sum_{i=1}^{n} \frac{\partial \varphi}{\partial x_{i}} dx_{i} + \sum_{j,k}^{m} \frac{\partial \varphi}{\partial u_{j}^{(k)}} du_{j}^{(k)}$
- One differentiates a second time ...

Properties.

1)
$$dx_i \wedge dx_j = -dx_j \wedge dx_i$$

$$2) dx_i \wedge dx_i = 0$$

3)
$$d^2 \equiv 0$$
, i.e.: $d(dx) \equiv 0$

$$\begin{split} d\omega &= \left(\sum_{i=1}^{n} \frac{\partial \alpha_{1}}{\partial x_{i}} dx_{i}\right) \wedge dx_{1} + \ldots + \left(\sum_{i=1}^{n} \frac{\partial \alpha_{n}}{\partial x_{i}} dx_{i}\right) \wedge dx_{n} \\ &= \sum_{j < i} \sum_{i=1}^{n} \left(\frac{\partial \alpha_{j}}{\partial x_{i}} - \frac{\partial \alpha_{i}}{\partial x_{j}}\right) dx_{i} \wedge dx_{j} \end{split}$$

Exercice. Compute the 1-form and 2-form of $\varphi = x_1 x_2$

Problem of integration. Given a 1-form $\omega = \sum_{i=1}^{n} \alpha_i dx_i$

does it exist $\varphi \in K$ such that $\omega = d \varphi$? (In fact, is ω exact?)

One needs to solve

$$\alpha_1 = \frac{\partial \varphi}{\partial x_1} \quad \alpha_2 = \frac{\partial \varphi}{\partial x_2} \quad \cdots \quad \alpha_n = \frac{\partial \varphi}{\partial x_n}$$

Poincaré's lemma. Given a 1-form $\omega \in \varepsilon$, then ω is an exact 1-form

$$\Leftrightarrow \ \exists \varphi \ \text{such that} \ \omega = d \, \varphi \quad \Leftrightarrow \quad d \, \omega = 0$$

$$d \, \omega = \sum_{i=1}^n d \, \alpha_i \wedge dx_i$$

Example.
$$\omega = dx_1 + x_2 dx_3 + x_3 dx_2$$

Proof. Consider the 1-form $\omega = \sum_{i=1}^{n} \alpha_i dx_i$

$$\begin{split} d\omega = & \left(\frac{\partial \alpha_1}{\partial x_1} dx_1 + ... + \frac{\partial \alpha_1}{\partial x_n} dx_n \right)_n dx_1 + \left(\frac{\partial \alpha_2}{\partial x_1} dx_1 + ... + \frac{\partial \alpha_2}{\partial x_n} dx_n \right)_n dx_2 \\ & + ... + \quad \left(\frac{\partial \alpha_n}{\partial x_1} dx_1 + ... + \frac{\partial \alpha_n}{\partial x_n} dx_n \right)_n \end{split}$$

It yields
$$d\omega = \sum_{i,j} \frac{\partial \alpha_i}{\partial x_j} dx_j \wedge dx_i$$

From
$$dx_i \wedge dx_j = -dx_j \wedge dx_i$$

$$\rightarrow$$
 d $\omega = 0$

Exercice.
$$\omega = x_2 dx_1 - x_1 dx_2$$

$$\omega = \frac{x_2}{x_1^2} dx_1 - \frac{1}{x_1} dx_2$$

$$\omega = \frac{x_2}{{x_1}^2 + {x_2}^2} dX_1 - \frac{x_1}{{x_1}^2 + {x_2}^2} dx_2$$

Integration? Computation?

Given a 1-form $\omega \in \varepsilon$, does it exist $\varphi \in K$ and $\lambda \in K$ such that $\omega = \lambda \ d \ \varphi$?

Frobenius' theorem. (First version) Given a 1-form $\omega \in \varepsilon$. $\exists \varphi \in K$ and $\exists \lambda \in K$ such that $\omega = \lambda d\varphi \iff d\omega \wedge \omega = 0$

Exercice.
$$\omega = x_2 dx_1 - x_1 dx_2$$

$$\omega = dx_1 + x_1 dx_2 + x_2 dx_3$$

$$\omega = x_3 dx_1 + dx_3$$