แผนการสอนวิชา 240-371 แนะนำระบบควบคุม (Introduction to Control Systems)

รายละเอียดของวิหา

เป็นวิชาเลือก มีจำนวนหน่วยกิต 3 หน่วยกิต ซึ่งทำการสอนโดยการบรรยาย สัปดาห์ละ 3 ชั่วโมง รวมทั้งสิ้น 45 หน่วยชั่วโมง

รายละเอียดรายวิชา

วิชาแนะนำระบบควบคุม ทำการสอนเกี่ยวกับ การแนะนำระบบเปิดและปิด (Open and closed loop) แนะนำอุปกรณ์ต่างๆ เช่น กลไก มอเตอร์ ระบบกันกระเทือน เซ็นเซ อร์แบบต่างๆ เป็นต้น โมเดลในระบบความถี่ โมเดลในระบบเวลา เวลาการตอบสนอง การลด รูปของระบบย่อย เสถียรภาพของระบบ Steady state error, Root Locus, การตอบ สนองต่อความถี่ของระบบ การออกแบบตัวชดเชย

ระยะเวลาทำการสอน

เริ่มการสอน 28 ตุลาคม 2545 สิ้นสุดการสอน 14 กุมภาพันธ์ 2546

ผู้สอน

ดร. ธเนศ เคารพาพงศ์ kthanate@coe.psu.ac.th

นักศึกษาที่เรียน

ปริญญาตรี ชั้นปีที่ 3 ภาควิชาวิศวกรรมคอมพิวเตอร์ คณะวิศวกรรมศาสตร์

วัตถุประสงค์ของรายวิชา

วัตถุประสงค์ของรายวิชามีดังนี้

- 1. เพื่อให้นักศึกษาเข้าใจถึงหลักการควบคุมแบบต่างๆ
- 2. เพื่อให้นักศึกษาเข้าใจหลักการหาข้อผิดพลาดและการแก้ไขระบบควบคุม
- 3. เพื่อให้นักศึกษาออกแบบระบบควบคุมเบื้องต้น และการประยุกต์ใช้งาน

เนื้อหาวิชา

ลำดับที่	เนื้อหา	ระยะเวลา
1	Introduction	1
	When, where and how to use control system	
	Advantage of control system	
	Open loop	
	Closed loop	
2	Physical part	1
	Mechanical part, Damper, Bearing	
	Actuators	
	Sensors	
	Measuring devices	
	Mechanical systems	
3	Modeling in Frequency Domain	4
	Introduction	
	Laplace Transform	
	The Transfer functions	
	Electrical Transfer function	
	Mechanical Transfer function	
	Electro-mechanic transfer function	
	Linearity and non-linearity	
4	Modeling in the Time Domain	5
	Introduction	
	The Geneneral State Space representation	
	Applying the state space representation	
	Converting a transfer function to state space	
	function	
	Quiz 1	
5	Time Response	5
	Introduction	
	Poles, Zeros and system response	
	First order systems	
	Second order systems	

6	Reduction of multiple subsystems Introduction Block diagram Signal Flows Mason's roles Quiz 2	5
7	Stability	3
	Definitions	
	Routh-Herwitz criterion	
	Midterm	24
8	Steady-State Errors	4
	Definition	
	Type of steady-state errors	
	Steady-state error for disturbance	
	Quiz 3	
9	Root Locus Technique	5
	Introduction	
	Definition of Root Locus	
	Properties of Root Locus	
	Sketching the Root Locus	
	Quiz 4	
10	Frequency Response Technique	6
	Introduction	
	Asymptotic Approximations	
	Introduction to the Nyquist Criterion	
	Sketching the Nyguist Diagram	
	Quiz 5	
11	Design Via Frequency Response	6
	Introduction	
	Transient Response via Gain Adjustment	
	Lag Compensation	
	Lead Compensation	
	Lag-Lead Compensation	

Final 21

การประเมินผล

1. การแบ่งคะแนน

คะแนนที่เก็บ	Mid term
การทดสอบกลางภาค	35
การทดสอบปลายภาค	45
การทดสอบย่อยในชั้นเรียนและการบ้าน	20
รวม	100

2. หลักในการประเมิน

เป็นการพิจารณาจากคะแนนตามเกณฑ์ดังนี้

เกรด A คะแนนมากกว่าร้อยละ 80

เกรด B คะแนนอยู่ระหว่างร้อยละ 70-79

เกรด C คะแนนอยู่ระหว่างร้อยละ 60-69

เกรด D คะแนนอยู่ระหว่างร้อยละ 50-59

เกรด E คะแนนน้อยกว่าร้อยละ 50

เอกสารอ้างอิง

- 1. Control Systems Engineering 3rd Ed. Norman S. Nise, 2000
- 2. Linear Control Systems: Modelling, Analysis and Design, James R. Rowland, 1986
- 3. Modern Control Engineering, 2nd Ed. Kattuhiko Ogata, 1990
- 4. Automated Process Control Systems: Concept and Hardware, 2nd Ed. Ronal P. Hunter