THEOREM 5.1: The n-th differences of an n-th degree polynomial are constant and all the higher differences are zero.

5.2 NEWTON'S FORWARD AND BACKWARD DIFFERENCE FORMULAE

Suppose we are given the values ... y_{-2} , y_{-1} , y_0 , y_1 , y_2 , ... of a function for $x = \dots$, x_{-2} , x_{-1} , x_0 , x_1 , x_2 , ..., where $x_{r+1} - x_r = h(r=\dots,-2, -1, 0, 1,\dots)$ and we wish to find $f(x_0+ph)$ where in general -1 . Now we have found that

$$P_{n}(x) = f(x_{0}) + (x-x_{0})f(x_{0},x_{1}) + (x-x_{0})(x-x_{1})f(x_{0},x_{1},x_{2}) + \dots + (x-x_{0})(x-x_{1})f(x_{0},x_{1},x_{2}) + \dots + (x-x_{0})f(x_{0},x_{1},x_{2}) + \dots + (x-x_{0})f(x_{0},x_{2},x_{2}) + \dots$$

is the polynomial that interpolates the given function at the points (x_r, y_r) , r = 0, 1, ..., n. Now

$$f(x_0,x_1) = \frac{\Delta y_0}{h},$$

$$f(x_0, x_1, x_2) = \frac{\Delta^2 y_0}{2!h^2}$$

$$f(x_0, x_1, ..., x_n) = \frac{\Delta^n y_0}{n!h^n}$$

Also if we let $x = x_0 + ph$ then

$$x - x_0 = ph$$

 $x - x_1 = x - x_0 - (x_1 - x_0) = ph - h = h(p - 1)$
 $x - x_2 = x - x_1 - (x_2 - x_1) = h(p - 1) - h = h(p - 2)$

$$x - x_n = h(p - n).$$

Substitution in P (x) gives

$$y_{p} \approx P_{n}(x_{0} + ph) = y_{0} + p\Delta y_{0} + \frac{p(p-1)}{2!} \Delta^{2} y_{0} + ... + \frac{p(p-1)...(p-n+1)}{n!} \Delta^{n} y_{0}$$
(5.1)

This is the Newton's forward difference formula for equally spaced data.

ALTERNATIVE DERIVATION:

Using the operator notation we have

$$y_{p} = E^{p}y_{0} = (1 + \Delta)^{p}y_{0}$$

$$= y_{0} + p\Delta y_{0} + \frac{p(p-1)}{2!} \Delta^{2}y_{0} + \frac{p(p-1)(p-2)}{3!} \Delta^{3}y_{0} + \dots$$

which is the same formula as above.

NEWTON'S BACKWARD DIFFERENCE FORMULA:

We have

$$y_{p} \approx (E^{-1})^{-p} y_{0} = (1 - \nabla)^{-p} y_{0}$$

$$= y_{0} + p \nabla y_{0} + \frac{p(p+1)}{2!} \nabla^{2} y_{0} + \frac{p(p+1)(p+2)}{3!} \nabla^{3} y_{0} + \dots$$
 (5.2)

This is called Newton's backward difference formula. The two Newton's formulae are usually used for interpolation near the beginning or the end of a table. If we are interested in a value in the middle, we should make use of a formula which uses values symmetrically placed about y. We shall discuss such formulae in the next section.

EXAMPLE 5.2: The following table lists values of the function $y = \sin(x^2 + 1) + \cos x$ at certain points. Estimate y(-0.4) from the given data.

					1	
				0.1	0.3	0.5
X	-0.5	-0.3	-0.1	0.1	0.0	1 0265671
	1.0000	to be and a supplier of	1 041026	1 841836	1.8419634	1.8263671
. y	-0.5 1.8265671	1.8419634	1.841836	1.041000		
my to make	A STATE OF THE STA		11. 11. 12. 14. 14.	-		

SOLUTION: Since the point -0.4 lies near the beginning of the table, Newton's forward difference formula would be appropriate. The difference table is as follows:

Now
$$f(x_0 + ph) = y_p \approx y_0 + p\Delta y_0 + \frac{p(p-1)}{2} \Delta^2 y_0 + \frac{p(p-1)(p-2)}{6} \Delta^3 y_0 + \dots$$

Here
$$x_0 = -0.5$$
, $h = 0.2$ and $x = -0.4$.

But we have
$$x = x_0 + ph$$
, so $-0.4 = -0.5 + p(0.2)$ or $p = 0.5$.

Let p = 0.5 and substitute for y_0 , Δy_0 , $\Delta^2 y_0$ etc. We have

$$f(-0.4) \approx 1.8378641.$$

Compare this with the exact value of $\sin(x^2+1) + \cos x$ at -0.4 which is 1.8378...

5.3 THE LOZENGE DIAGRAM

In this section we introduce the lozenge diagram which is very useful in finding interpolation formulae of various kinds. this purpose we introduce the notation

$$C(p,n) = \frac{p(p'+1)(p-2), (p-n+1)}{p!}$$

In this notation Newton's forward difference formula becomes

EXERCISE 5

1. A function y = f(x) is given by the following table.

1		_	<u> </u>					
							5	
	f(x)	2	3	10	29	66	127	218

By constructing a difference table, determine the order of the most appropriate polynomial approximation to this data. Hence find

- a) f(1.5) Using Newton's forward formula
- b) f(5.5) Using Newton's backward formula
- c) f(3.5) Using i) Stirling's ii) Bessel's

iii) Everett's formulae.

2. From the following data:

$\begin{bmatrix} x \end{bmatrix} = 0$	0.2 0.4	0.6 0.8	1.0 1.0
y -1.651 C	0.300 2.178	13 505 3 900	1.0 1.0 2.582 -0.627
		3.303 3.800	2.582 -0.627

- a) approximate y(0.1), y(0.45), y(1.1)
- b) estimate y(0.25) using Newton's forward formula and Stirling's formula:
- Construct a difference table for the following data, and hence estimate y(0.5437).

	Tv	0.51	10			
٠.		1	0.52	0.53	0.54	0.55
	y	0.5292437	0.5378987	0.5464641	0.5549392	0.5633233
•	1 1	0.00	10.57			0.000000
	у	0.5716157	0.5798158			

4. Find the sum of series

$$S_n = I^2 + 2^2 + \dots + n^2$$

by constructing a difference table and then using Newton's

5. Find a formula for the function f(x) given by the following table:

X	0.1		
f(x)	2 2	3 10	
-	.5.8.0.10	4 12 4 14	5
	0 1 2	14	,0115.2

5.5 STIRLING S INTERPOLATION FORMULA

If we take average of the two Gauss formulae we get

$$y_{p} \approx y_{0} + C(p,1) \frac{\delta y_{-1/2} + \delta y_{1/2}}{2} + \frac{C(p+1,2) + C(p,2)}{2} \delta^{2} y_{0} + C(p+1,3) \frac{\delta^{3} y_{-1/2} + \delta^{3} y_{1/2}}{2} + \dots$$

or

$$y_p \approx y_0 + p\mu\delta y_0 + \frac{p^2}{2!}\delta^2 y_0 + \frac{p(p^2-1)}{3!}\mu\delta^3 y_0 + \frac{p^2(p^2-1)}{4!}\delta^4 y_0^+...$$
 (5.5)

This is known as Stirling's interpolation formula. Note that this formula can also be obtained from the lozenge diagram by applying rules 3a and 3b [start at y_0 and go horizontally to the right].