Corrigé du Devoir d'Optimisation n°1 (23-04-2019)

1. a) [4 points]

 $f:(x,y)\mapsto x^3+3xy^2-15x-12y$ est \mathcal{C}^{∞} sur \mathbb{R}^2 qui est ouvert, donc un extrémum local est un point critique. $\nabla f(x,y)=\left(\begin{array}{c}3x^2+3y^2-15\\6xy-12\end{array}\right)$ et $\nabla^2 f(x,y)=\left(\begin{array}{cc}6x&6y\\6y&6x\end{array}\right)$, de déterminant $36(x^2 - y^2)$ et de trace 12x.

Un point critique vérifie
$$x^2 + y^2 = 5$$
 et $xy = 2$, soit $(x + y)^2 = 9$ et $(x - y)^2 = 1$.
Pour $\begin{cases} x + y = 3 \\ x - y = 1 \end{cases}$, on a $(x, y) = (2, 1)$; pour $\begin{cases} x + y = 3 \\ x - y = -1 \end{cases}$, on a $(x, y) = (1, 2)$; pour $\begin{cases} x + y = -3 \\ x - y = 1 \end{cases}$, on a $(x, y) = (-1, -2)$ et pour $\begin{cases} x + y = -3 \\ x - y = -1 \end{cases}$, on a $(x, y) = (-2, -1)$.

Pour (1,2) et (-1,-2), le déterminant de la hessienne est < 0, donc 2 valeurs propres de signe opposé donc (1,2) et (-1,-2) ne sont pas des extrémums locaux. Pour (2,1), on a 2 valeurs propres stictement positives donc |(2,1)| est un minimum local, et pour (-2,-1) on a 2 valeurs propres strictement négatives donc |(-2,-1)| est un maximum local |[2pts]|. D'autre part, $f(x,0) = x^3 - 15x$ donc $\lim_{x \to +\infty} f(x,0) = +\infty$ et $\lim_{x \to -\infty} f(x,0) = -\infty$, donc f n'a pas d'extrémums globaux | [1pt].

b) [5 points]

g est de classe \mathcal{C}^{∞} sur \mathbb{R}^3 (foncion polynôme) avec $\nabla g(u) = \begin{pmatrix} 2(x-yz) \\ 2(y-xz) \\ 2(z-xy) \end{pmatrix}$ et $\nabla^2 g(u) = \begin{pmatrix} 2 & -2z & -2y \\ -2z & 2 & -2x \\ -2y & -2x & 2 \end{pmatrix}$. Les points critiques sont les solutions de $\begin{cases} x = yz \\ y = xz \end{cases}$. Comme x, y, zjouent le même rôle, on va travailler sur x, puis on permutera

- Si x=0, alors y=0 et z=0.
- Si $x \neq 0$, alors $y \neq 0$ et $z \neq 0$, puis, en multipliant la deuxième et la troisième équations, $yz = x^2yz$ donc, comme $yz \neq 0$, $x^2 = 1$.
 - ${\triangleright}$ Si x=1,alors y=z et $1=y^2,$ d'où les points (1,1,1) et (1,-1,-1).
- ▷ Si x = 1, alors y = z et z = y, a ou les points (1, 1, 1) et (1, -1, -1).
 ▷ Si x = -1, alors y = -z et $z = -y^2$ donc encore z = 1 et les points (-1, 1, -1) et (-1, -1, 1).

Finalement, les points critiques sont

$$u_0 = (0,0,0), u_1 = (1,1,1), u_2 = (-1,-1,1), u_3 = (-1,1,-1) \text{ et } u_4 = (1,-1,-1)$$
 [1,5pt].

- $\nabla^2 g(u_0) = 2I_3$ donc (0,0,0) minimum local (3 valeurs propres positives) [1pt].
- $\nabla^2 g(u_1) = \begin{pmatrix} 2 & -2 & -2 \\ -2 & 2 & -2 \\ -2 & -2 & 2 \end{pmatrix} = 4I 2U$ où U matrice de rang 1 avec des 1 partout. U a

pour valeurs propres 0 (valeur propre double) et 3 (valeur propre simple obtenue par la trace). Donc $\nabla^2 g(u_1)$ a pour valeurs propres 4-0=4 et 4-6=-2. On a des valeurs propres de signes opposés, donc pas d'extrémum local en (1,1,1) [1pt].

•
$$\nabla^2 g(u_2) = \begin{pmatrix} 2 & -2 & 2 \\ -2 & 2 & 2 \\ 2 & 2 & 2 \end{pmatrix}$$
. On remarque ici que, $\nabla^2 g(u_1) - 4I = \begin{pmatrix} -2 & -2 & 2 \\ -2 & -2 & 2 \\ 2 & 2 & -2 \end{pmatrix}$

est de rang 1, donc que 4 est valeur propre double. On obtient la troisième valeur propre par la trace $2 + 2 + 2 - 2 \times 4 = -2$. On a encore des valeurs propres de signes opposés, donc pas d'extrémum local en (-1, -1, 1), (-1, 1, -1) et (1, -1, -1) [1pt].

 $g(x,x,x) = 3x^2 - 2x^3 = -2x^3 \left(1 - \frac{3}{2x}\right) \operatorname{donc} \lim_{x \to +\infty} g(x,x,x) = -\infty \text{ et } \lim_{x \to -\infty} g(x,x,x) = +\infty \operatorname{donc} \left[g \text{ n'admet pas d'extrémum global}\right] [\theta,5pt].$

2. [5 points]

a)
$$\nabla f(x,y) = \begin{pmatrix} 2x+y^2 \\ 2xy+6y^5 \end{pmatrix}$$
 et $\nabla^2 f(x,y) = \begin{pmatrix} 2 & 2y \\ 2y & 2x+30y^4 \end{pmatrix}$.

Les points critiques sont les solutions de $\left\{ \begin{array}{l} y^2=-2x\\ 2y(x+3y^4)=0 \end{array} \right..$

• Si y = 0, alors x = 0.

• Si $y \neq 0$, alors $x = -3y^4$ et $y^2 = 6y^4$, soit $y^2 = \frac{1}{6}$ et $x = -\frac{1}{12}$.

Finalement, (0,0), $\left(-\frac{1}{12}, -\frac{1}{\sqrt{6}}\right)$ et $\left(-\frac{1}{12}, \frac{1}{\sqrt{6}}\right)$ sont les points critiques [1pt].

$$\nabla^2 f\left(-\frac{1}{12}, \frac{\varepsilon}{\sqrt{6}}\right) = \begin{pmatrix} 2 & \frac{2\varepsilon}{\sqrt{6}} \\ \frac{2\varepsilon}{\sqrt{6}} & \frac{4}{6} \end{pmatrix}, \text{ de déterminant } \frac{8}{6} - \frac{4}{6} = \frac{2}{3} > 0 \text{ et de trace} > 0 \text{ donc}$$

$$f$$
 possède bien 2 minimums locaux $\left(-\frac{1}{12}, -\frac{1}{\sqrt{6}}\right)$ et $\left(-\frac{1}{12}, \frac{1}{\sqrt{6}}\right)$ avec $f\left(-\frac{1}{12}, -\frac{1}{\sqrt{6}}\right) = \frac{1}{12 \times 12}$

$$\frac{1}{12\times6} + \frac{1}{12\times3\times6} = \frac{3-6+2}{12\times36}$$
, soit $f\left(-\frac{1}{12}, \frac{\varepsilon}{\sqrt{6}}\right) = -\frac{1}{432}$ [1pt].

 $f(y^3,y)=y^6+y^5+y^6=y^5(1+2y)$ avec 1+2y>0 pour $y>-\frac{1}{2}$ donc, au voisinage de $(0,0),\ f(y^3,y)$ est du signe de y^5 , c'est-à-dire de y (> 0 pour y>0 et < 0 pour y<0) donc pas d'extrémum local en (0,0) [0,5pt].

Il n'y a donc aucun maximum local, puisqu'on n'a pas d'autres points critiques que les 3 considérés.

- **b)** Supposons $f(x,y) = (xy^2 + y^6) + x^2 \le 0$ avec $x^2 \ge 0$, donc, si $xy^2 + y^6 > 0$, f(x,y) > 0, ce qui est faux, donc $xy^2 + y^6 \le 0$. De même, $f(x,y) = (xy^2 + x^2) + y^6$ avec $y^6 \ge 0$, donc, si $f(x,y) \le 0$, $xy^2 + x^2 \le 0$.
 - Si y = 0, alors $x^2 \le 0$, soit x = 0.
- Si $y \neq 0$, en simplifiant la première inégalité par y^2 , on obtient $x \leq -y^4 < 0$. Puis, en simplifiant la deuxième par x < 0, on obtient $y^2 + x \geq 0$, d'où finalement $y^2 \leq x \leq -y^4$. On a donc, en particulier $y^2 y^4 = y^2(1 y^2) \geq 0$, soit $y \in [-1, 1]$ et, comme $y^2 \leq x \leq 0$, on a aussi $x \in [-1, 0]$. Finalement, si $f(x, y) \leq 0$, alors $f(x, y) \in [-1, 0] \times [-1, 1] = [-1, 5pt]$.

On a alors, $\inf_{\mathbb{R}^2} f = \min_{[-1,0]\times[-1,1]} f$ (on est sûr que ce minimum existe, puisque $[-1,0]\times[-1,1]$ est un compact sur lequel f est continue). Donc f admet aussi un minimum sur \mathbb{R}^2 , atteint en fait sur $[-1,0]\times[-1,1]$. Le minimum global est aussi un minimum local car \mathbb{R}^2 est un ouvert.

Ainsi,
$$\overline{\min_{\mathbb{R}^2} f = -\frac{1}{432} \text{ et argmin}_{\mathbb{R}^2} f = \left\{ \left(-\frac{1}{12}, -\frac{1}{\sqrt{6}} \right), \left(-\frac{1}{12}, \frac{1}{\sqrt{6}} \right) \right\}}. \text{ Comme } \mathbb{R}^2 \text{ est ouvert, un}$$

3. [4 points]

On pose u = (x, y) et $u_0 = (a, b)$. $f(u) = ||u||^2 + 2||u - u_0|| = ||u||^2 + 2(||u - u_0||^2)^{\frac{1}{2}}$. f est coercive continue, \mathbb{R}^2 est fermé, d'où l'existence d'un minimum [0,5pt]. De plus, f est différentiable sur $\mathbb{R}^2 \setminus \{u_0\}$ ouvert. Le minimum est donc :

- soit en u_0 ,
- soit en u_1 , solution de $\nabla f(u_1) = 0$ (un min sur un ouvert est aussi un min local).

Or $\nabla f(u) = 2u + \frac{2(u-u_0)}{\|u-u_0\|}$ donc $\nabla f(u_1) = 0$ équivaut à $u_1 \left[1 + \frac{1}{\|u-u_0\|}\right] = \frac{u_0}{\|u-u_0\|}$. On a alors $u_1 = \alpha u_0$ avec $\alpha > 0$. Mais $u = -\frac{u - u_0}{\|u - u_0\|}$ donne, en prenant la norme, $\|u\| = 1$ donc $\alpha \|u_0\| = 1$

Or on a $f(u_0) = ||u_0||^2$ et $f(u_1) = 1 + 2||u_0(\frac{1}{||u_0||} - 1)|| = 1 + 2|1 - ||u_0|||$. • Si $||u_0|| < 1$, $f(u_1) > 1$ et $f(u_0) < 1$ donc $\min_{\mathbb{R}^2} f = ||u_0||^2$ atteint en u_0 .

- Si $||u_0|| \ge 1$, $f(u_1) = 2||u_0|| 1$ et $f(u_0) f(u_1) = (||u_0|| 1)^2 \ge 1$. d'où :

$$\begin{cases} \bullet \text{ si } a^2 + b^2 < 1 \; ; \; \min_{\mathbb{R}^2} f = a^2 + b^2 \text{ et } \operatorname{Arg}_{\mathbb{R}^2} \min f = \{(a, b)\} \\ \bullet \text{ si } a^2 + b^2 \ge 1 \; ; \; \min_{\mathbb{R}^2} f = 2\sqrt{a^2 + b^2} - 1 \text{ et } \operatorname{Arg}_{\mathbb{R}^2} \min f = \{\left(\frac{a}{\sqrt{a^2 + b^2}}, \frac{b}{\sqrt{a^2 + b^2}}\right)\} \end{cases} [2pts].$$

4. [7 points]

 F_{α} est de classe \mathcal{C}^{∞} et \mathbb{R}^2 est un ouvert donc les extrémums globaux sont également des

extrémums locaux qui figurent parmi les points critiques. Si
$$u=(x,y)$$
, on a $\nabla F_{\alpha}(u)=\begin{pmatrix} \alpha y e^{xy}-2x\\ \alpha x e^{xy}-2y \end{pmatrix}$ et $\nabla^2 F_{\alpha}(u)=\begin{pmatrix} \alpha y^2 e^{xy}-2&\alpha e^{xy}(1+xy)\\ \alpha e^{xy}(1+xy)&\alpha x^2 e^{xy}-2 \end{pmatrix}$.

Étude des extrémums globaux [1,5pts].

- Le cas $\alpha = 0$, $(F_0(u) = -\|u\|^2)$ a peu d'intérêt et se traite rapidement : $\max_{\mathbb{R}^2} F_0 = 0$, $\operatorname{Argmax}_{\mathbb{R}^2} F_0 = \{(0,0)\} \text{ et inf}_{\mathbb{R}^2} F_0 = -\infty : \text{ pas de minimum}. \text{ Par ailleurs, } (0,0) \text{ seul point}$ critique donc pas d'autres extrémums locaux que (0,0)
- Le cas $\alpha < 0$ donne $F_{\alpha}(u) \le -\|u\|^2$ donc on a ici aussi $\inf_{\mathbb{R}^2} F_0 = -\infty$: pas de minimum Par contre, $-F_{\alpha}(u) \ge ||\underline{u}||^2$, donc $-F_{\alpha}$ est coercive et comme \mathbb{R}^2 est aussi un fermé, $-F_{\alpha}$ admet un minimum global, et $|F_{\alpha}|$ admet un maximum global
- Le cas $\alpha > 0$ donne $F_{\alpha}(n, n) \sim \alpha e^{n^2} \to +\infty$ quand $n \to +\infty$ et $F_{\alpha}(n, 0) = \alpha n^2 \to -\infty$ quand $n \to +\infty$: pas d'extrémums globaux [1,5pt].

Recherche des points critiques [2pts].

• Pour tout $\alpha \in \mathbb{R}$, (0,0) est un point critique mais il peut y en avoir d'autres!

On a $2xy = \alpha y^2 e^{xy} = \alpha x^2 e^{xy}$ donc $x^2 = y^2$ et $2x = \alpha y e^{xy}$:

 \rightarrow Si $\alpha > 0$, y = x et $e^{x^2} = \frac{2}{\alpha}$, d'où $x^2 = \ln \frac{2}{\alpha}$ qui n'est > 0 que si $\alpha < 2$. On a alors 2 autres points critiques $\left(\varepsilon\sqrt{\ln\left(\frac{2}{\alpha}\right)},\varepsilon\sqrt{\ln\left(\frac{2}{\alpha}\right)}\right)$ pour $\varepsilon\in\{-1,1\}$ si $\alpha\in]0,2[$

Étude des extrémums locaux :

- Le cas de (0,0) [2pts] : $\nabla^2 F_{\alpha}(0,0) = \begin{pmatrix} -2 & \alpha \\ \alpha & -2 \end{pmatrix}$, de déterminant $4 \alpha^2$ et de trace -4 :
 - \triangleright Si $|\alpha| < 2$, $\nabla F_{\alpha}(0,0)$ a 2 valeurs propres strictement négatives : (0,0) maximum local ;
- \triangleright Si $|\alpha| > 2$, $\nabla F_{\alpha}(0,0)$ a 2 valeurs propres de signes opposés et (0,0) n'est pas un extrémum local ;
- ightharpoonup Si $|\alpha|=2$, $\nabla F_{\alpha}(0,0)$ a au moins une valeur propre nulle et il faut étudier directement le signe de $F_{\alpha}(h,k) F_{\alpha}(0,0)$.
- signe de $F_{\alpha}(h, k) F_{\alpha}(0, 0)$. \rightarrow Si $\underline{\alpha = 2}$, $F_2(h, k) - F_2(0, 0) = 2(e^{hk} - 1) - (h^2 + k^2) = 2hk + h^2k^2 - (h^2 + k^2) + o(\|(h, k)\|^4) = -(h - k)^2 + h^2k^2 + o(\|(h, k)\|^4)$ qui est > 0 si h = k et < 0 si k = 0 et $h \neq 0$ donc (0, 0) n'est pas extrémum local.
- \rightarrow Si $\underline{\alpha = -2}$, $F_{-2}(h,k) F_{-2}(0,0) = -2(e^{hk} 1) (h^2 + k^2) = -(h+k)^2 h^2k^2 + o(\|(h,k)\|^4) \le 0$ et (0,0) maximum local, ce que l'on pouvait prévoir, puisque (0,0) est dans ce cas le seul point critique et que l'on a un maximum global.

• Les autres points critiques [1,5pt]

- $ightharpoonup Si \ \underline{\alpha < -2}$, on est dans un cas où (0,0) n'est pas extrémum local et où l'on a un maximum global (et par conséquent aussi local) : ce maximum est donc nécessairement atteint en les points $\left(\varepsilon\sqrt{\ln\left(\frac{-\alpha}{2}\right)}, -\varepsilon\sqrt{\ln\left(\frac{-\alpha}{2}\right)}\right)$, pour $\varepsilon\in\{-1,1\}$ qui sont donc maximums globaux et locaux. On peut aussi le vérifier à l'aide de $\nabla^2F_{\alpha}(u)$.
- peut aussi le vermer à l'aide de \mathbf{V} l' $\alpha(x)$. \Rightarrow Si $0 < \alpha < 2$, $\nabla^2 F_{\alpha}(x, x) = \begin{pmatrix} 2(x^2 - 1) & 2(1 + x^2) \\ 2(1 + x^2) & 2(x^2 - 1) \end{pmatrix}$ car $\alpha e^{x^2} = 2$. $\nabla^2 F_{\alpha}(x, x)$ est de déterminant $-16x^2 < 0$ donc pas d'extrémum local en (x, x), où $x \neq 0$.

Finalement, il n'y a jamais de minimum local ni global et pas non plus de maximum local et global si $\alpha \geq 2$. Pour $\alpha \in [-2,2[$, seul (0,0) est maximum local et maximum global pour $\alpha \in [-2,0]$. Enfin, pour $\alpha < -2$, $\left(\sqrt{\ln\left(\frac{-\alpha}{2}\right)},-\sqrt{\ln\left(\frac{-\alpha}{2}\right)}\right)$ et $\left(-\sqrt{\ln\left(\frac{-\alpha}{2}\right)},\sqrt{\ln\left(\frac{-\alpha}{2}\right)}\right)$ sont maximums globaux et locaux.