I. SECURITY PROOF

The security of the proposed PIB-MKEM scheme is guaranteed by following lemmas.

Lemma 1. If the BCDH assumption holds over the bilinear group $(e, p, g, \mathbb{G}, \mathbb{G}_T)$, then the proposed PIB-MKEM scheme is IND-MIS-CPA secure in the random oracle model.

Proof. Throughout the proof, we will demonstrate that if there exists a PPT adversary \mathcal{A} that can break the IND-MIS-CPA security of the proposed PIB-MKEM with a non-negligible advantage, then we can construct another PPT simulator \mathcal{C} that can also break the BCDH assumption with a non-negligible advantage. Specifically, this is achieved by letting \mathcal{C} simulates the security experiment played with \mathcal{A} as follows.

Setup phase: Initially, C receives an instance (g, g^a, g^b, g^c) of the BCDH problem over bilinear groups $(e, p, g, \mathbb{G}, \mathbb{G}_T)$. Its goal is to compute $D = e(g, g)^{abc}$. Then, it generates a Bloom filter $(H, L) \leftarrow \mathsf{BFGen}(m, k)$, and lets $g_1 = g^a$. In addition, it respectively simulates three random oracles $G: \{0,1\}^* \to \mathbb{G}, G': \{0,1\}^* \to \mathbb{G}$ and $\tilde{G}: \mathbb{G}_T \to \{0,1\}^\ell$ by maintaining three lists \mathcal{L}_G , $\mathcal{L}_{G'}$ and $\mathcal{L}_{\tilde{G}}$. Finally, it forwards the public parameter $\mathsf{pp} = \{e, p, g, g_1, \mathbb{G}, \mathbb{G}_T, H, G, G', \tilde{G}\}$ to \mathcal{R} , and implicitly assigns the master secret key as $\mathsf{msk} = \{a, b\}$.

Query phase: To answer queries issued by the adversary \mathcal{A} , the simulator C has to simulate responses from random oracles G, G' and \tilde{G} . Specifically, C responds as follows:

- $G(\mathrm{id}_{\mathsf{r}}|i)$: If there has been a tuple $(\mathrm{id}_{\mathsf{r}},i,Q,x,\gamma)\in\mathcal{L}_G$, then C directly returns Q as the response. Otherwise, it picks a random bit $\gamma\in\{0,1\}$ such that $\Pr[\gamma=0]=\sigma$, and chooses a random exponent $x\in\mathbb{Z}_p$. In the case of $\gamma=0$, it lets $Q=g^x$, and adds the tuple $(\mathrm{id}_{\mathsf{r}},i,Q,x,0)$ to \mathcal{L}_G . In the case of $\gamma=1$, it computes $Q=(g^b)^x$, and adds the tuple $(\mathrm{id}_{\mathsf{r}},i,Q,x,1)$ to \mathcal{L}_G . Finally, C returns Q to \mathcal{F}
- $G'(\mathsf{id}_s)$: If there has been a tuple $(\mathsf{id}_s, r, R) \in \mathcal{L}_{G'}$, then C directly returns R as the response. Otherwise, it randomly picks an integer $r \in \mathbb{Z}_p$, computes $R = g^r$, adds the tuple (id_s, r, R) to $\mathcal{L}_{G'}$, and returns R to \mathcal{A} .
- • G̃(w): If there has been a tuple (w, W) ∈ L̃_G, then C directly returns W as the response. Otherwise, it randomly selects a binary string W ∈ {0, 1}^ℓ, adds the tuple (w, W) to L̃_G, and returns W to A.

By invoking the above random oracles, the simulator C can answer the adversary \mathcal{A} 's queries in the following way:

• $Q_{\mathsf{RKeyGen}}(\mathsf{id}_r)$: A decapsulation key for id_r is assigned as $\mathsf{dk} = \{\mathsf{dk}_{i,1}, \mathsf{dk}_{i,2}\}_{i \in [m]} = \{G(\mathsf{id}_r || i)^a, G(\mathsf{id}_r || i)^b\}_{i \in [m]},$ associated with a binary string L. To produce such a key, C first retrieves the tuple $(\mathsf{id}_r, i, Q, x, \gamma) \in \mathcal{L}_G$ for each $i \in [m]^1$. If $\gamma = 0$ holds for all these tuples, then it lets $\mathsf{dk}_{i,1} = Q^a = (g^a)^x$ and $\mathsf{dk}_{i,2} = Q^b = (g^b)^x$ for $i \in [m]$. Otherwise, C aborts the simulation. Finally, C returns the resulted decapsulation key $\mathsf{dk} = \{\mathsf{dk}_{i,1}, \mathsf{dk}_{i,2}\}_{i \in [m]}$ to \mathcal{A} .

- $Q_{\mathsf{SKeyGen}}(\mathsf{id}_{\mathsf{S}})$: Recall that an encapsulation key for id_{S} is computed as $\mathsf{ek} = G'(\mathsf{id}_{\mathsf{S}})^b$. To generate such a key, C retrieves the tuple $(\mathsf{id}_{\mathsf{S}}, r, R) \in \mathcal{L}_{G'}$, assigns and returns $\mathsf{ek} = R^b = (g^b)^r$ to \mathcal{A} .
- Q_{Punc}(id_r, ct): Whenever A issues such a query, C punctures the corresponding decapsulation key dk to dk' as in the original puncture algorithm, and also updates the triple to (id_r, dk', P ∪ {ct}).

Challenge phase: The adversary \mathcal{A} chooses and submits four identities (id_{s_0} , id_{s_1} , id_{r_0} , id_{r_1}) to the challenger \mathcal{C} . After that, \mathcal{C} generates the challenge ciphertext by conducting the following steps:

- 1) Select a random integer $v \in \mathbb{Z}_p$, compute $V = g^v$, and implicitly assign $U = g^c$.
- 2) For each $j \in [k]$, compute $\delta_j = H_j(U \cdot V)$, and retrieve the corresponding tuples $(\mathrm{id}_{r0}, \delta_j, Q_0, x_0, \gamma_0) \in \mathcal{L}_G$ and $(\mathrm{id}_{r1}, \delta_j, Q_1, x_1, \gamma_1) \in \mathcal{L}_G$. If either $\gamma_0 \neq 1$ or $\gamma_1 \neq 1$, abort the simulation. Otherwise, for $\theta \in \{0, 1\}$, it holds that $G(\mathrm{id}_{r\theta} || \delta_j) = (g^b)^{x_\theta}$.
- 3) Retrieve $(id_{s_0}, r_0, R_0) \in \mathcal{L}_{G'}$ and $(id_{s_1}, r_1, R_1) \in \mathcal{L}_{G'}$, and randomly pick two symmetric keys $K_0, K_1 \in \{0, 1\}^{\ell}$. Then, choose a random bit $\beta \in \{0, 1\}$ and random binary string $W_j \in \{0, 1\}^{\ell}$, and compute

$$r_i^* = e(G(\mathrm{id}_{r_\beta}||\delta_i), V \cdot (g^b)^{r_\beta}), c_i^* = \mathsf{K}_\beta \oplus \mathsf{W}_i \oplus \tilde{G}(r_i^*).$$

4) Return $(K_{\beta}, \operatorname{ct}_{\beta})$, where $\operatorname{ct}_{\beta} = \{U, V, \{c_i^*\}_{j \in [k]}\}.$

In particular, according to the decapsulation procedure, note that the decapsulation for Ct* is as follows:

$$\mathsf{K}_{\beta} = c_{j}^{*} \oplus \tilde{G}\big(e(G(\mathsf{id}_{\mathsf{r}\beta}||\delta_{j}), \mathsf{ek}_{\beta})\big) \oplus \tilde{G}\big(e(G(\mathsf{id}_{\mathsf{r}\beta}||\delta_{j}), g_{1}^{c})\big)$$
$$= c_{j}^{*} \oplus \tilde{G}\big(e(G(\mathsf{id}_{\mathsf{r}\beta}||\delta_{j}), V \cdot (g^{b})^{r_{\beta}})\big) \oplus \tilde{G}(D^{x_{\beta}}),$$

where $D = e(g, g)^{abc}$.

Guess phase: At this moment, the adversary \mathcal{A} guesses and returns a bit $\beta' \in \{0, 1\}$ to the simulator C. Then, C randomly retrieves a tuple $(\mathrm{id}_{\mathsf{r}\beta'}, j^*, Q_{\beta'}, x_{\beta'}, 1) \in \mathcal{L}_G$ for some integer $j^* \in [k]$, randomly selects a tuple $(w^*, \mathsf{W}^*) \in \mathcal{L}_{\tilde{G}}$, and outputs $(w^*)^{1/x_{\beta'}}$ as the final solution of the received instance of the BCDH problem.

Probability Analysis. Throughout the simulation, observe that the simulator C's responses to random oracles G, G' and \tilde{G} are as in the real experiment, since each response is randomly and uniformly sampled from corresponding space. In addition, given implicitly assigned master secret key $msk = \{a, b\}$, all responses to encapsulation and decapsulation key queries have correct distributions. Consequently, if C does not abort the simulation, then it perfectly simulates the security experiment in the view of the adversary \mathcal{A} . Below we bound the probability that C does not abort the simulation, and denote this event by E_0 . Then, we capture the advantage of C solving the instance of the BCDH problem.

Assume that \mathcal{A} makes a total of q_{dk} queries to $Q_{\mathsf{RKeyGen}}(\cdot)$, then the probability that \mathcal{A} does not abort in the query phases is $\sigma^{q_{dk}}$. Similarly, \mathcal{A} does not abort in the challenge phase with probability $(1 - \sigma)^2$. Consequently, according to the analysis in [1] and [2], we have that

$$\Pr[\mathsf{E}_0] = \sigma^{q_{dk}} \cdot (1 - \sigma)^2,$$

¹If there dose not exist such a tuple in the list \mathcal{L}_G , the simulator C accesses the random oracle $G(\cdot)$ to generate one. Subsequent similar situations are all handled in this way.

which is maximized at $\sigma = q_{dk}/(q_{dk} + 2)$. If we employ this value as the probability of sampling $\gamma = 0$ from $\{0, 1\}$ when responding the random oracle $G(\cdot)$, then we further have that

$$\Pr[\mathsf{E}_0] \ge \frac{4}{e^2 (q_{dk} + 2)^2},$$

where $e \approx 2.7$ is the base of the natural logarithm.

Conditioned on the occurrence of the event E_0 , throughout the simulation, if \mathcal{A} never issues a query to the random oracle $\tilde{G}(\cdot)$ with the input $e(G(\mathrm{id}_{\mathsf{f}\beta'}||\delta_j),g_1^c)$ for any $j\in[k]$, then it obtains no information about the symmetric key contained in the challenge ciphertext ct^* . Therefore, the probability of its guess being correct (i.e., $\beta'=\beta$) is 1/2, and its advantage $\mathsf{Adv}^{\mathrm{IND-MIS-CPA}}_{\mathcal{A},\mathrm{PIB-MKEM}}(\lambda,m,k)=0$. In this case, the lemma holds trivially.

On the other hand, if \mathcal{A} has issued a query to the random oracle $\tilde{G}(\cdot)$ with the input $e(G(\mathrm{id}_{\mathsf{r}\beta'}||\delta_{j^*}),g_1^c)$ for some integer $j^* \in [k]$, then C correctly guesses $w^* = e(G(\mathrm{id}_{\mathsf{r}\beta'}||\delta_{j^*}),g_1^c)$ with probability $1/q_{\tilde{G}}$, where $q_{\tilde{G}}$ is the total number of queries issued to the random oracle $\tilde{G}(\cdot)$. We denote the event of its correct guess on j^* and w^* by E_1 . In this case, C correctly resolves the instance of the BCDH problem as follows:

$$D = (w^*)^{1/x_{\beta'}} = e(G(\mathsf{id}_{\mathsf{r}\beta'}||\delta_{j^*}), g_1^c)^{1/x_{\beta'}}$$

= $e((g^b)^{x_{\beta'}}, (g^a)^c)^{1/x_{\beta'}} = e(g, g)^{abc}.$

Furthermore, according to the analysis in [1], the probability that the event E_1 happens is bounded as follows:

$$\Pr[\mathsf{E}_1] \geq \frac{2 \cdot \mathsf{Adv}^{\mathsf{IND\text{-}MIS\text{-}CPA}}_{\mathcal{A}, \mathsf{PIB\text{-}MKEM}}(\lambda, m, k)}{k \cdot a_{\tilde{\mathcal{A}}}}.$$

Therefore, the advantage of C solving the instance of the BCDH problem is captured as follows:

$$\begin{split} \mathsf{Adv}_C^{\mathsf{BCDH}}(\lambda) &= \Pr\left[C(g, g^a, g^b, g^c) = e(g, g)^{abc}\right] \\ &= \Pr[\mathsf{E}_0 \wedge \mathsf{E}_1] \\ &\geq \frac{8 \cdot \mathsf{Adv}_{\mathcal{A}, \mathsf{PIB-MKEM}}^{\mathsf{IND-MIS-CPA}}(\lambda, m, k)}{e^2 \cdot k \cdot q_{\tilde{G}} \cdot (2 + q_{dk})^2}. \end{split}$$

This completes the proof.

Lemma 2. If the BCDH assumption holds over the bilinear group $(e, p, g, \mathbb{G}, \mathbb{G}_T)$, then the proposed PIB-MKEM scheme is AUTH secure in the random oracle model.

Proof. Similarly, we will show that if there exists a PPT adversary \mathcal{A} that can break the AUTH security of our PIB-MKEM with a non-negligible advantage, then we can construct another PPT simulator C that can break the BCDH assumption with a non-negligible advantage. Specifically, C simulates the AUTH security experiment as follows.

Setup phase: Initially, C receives an instance (g, g^a, g^b, g^c) of the BCDH problem over bilinear groups $(e, p, g, \mathbb{G}, \mathbb{G}_T)$, and tries to compute $D = e(g, g)^{abc}$. To establish the system, C first produces a Bloom filter $(H, L) \leftarrow \mathsf{BFGen}(m, k)$, and lets $g_1 = g^a$. Then, it respectively simulates three random oracles $G: \{0,1\}^* \to \mathbb{G}$, $G': \{0,1\}^* \to \mathbb{G}$ and $\tilde{G}: \mathbb{G}_T \to \{0,1\}^\ell$ by maintaining three lists \mathcal{L}_G , $\mathcal{L}_{G'}$ and $\mathcal{L}_{\tilde{G}}$. Finally, it forwards the public parameter $\mathsf{pp} = \mathsf{pp}$

 $\{e, p, g, g_1, \mathbb{G}, \mathbb{G}_T, H, G, G', \tilde{G}\}$ to \mathcal{A} , and assigns the master secret key as $\mathsf{msk} = \{a, b\}$, which is unknown for C.

Query phase: The simulator C responds random oracles G, G' and \tilde{G} as follows:

- $G(\operatorname{id}_{\Gamma}|i)$: If there has been a tuple $(\operatorname{id}_{\Gamma},i,Q,x,\gamma)\in\mathcal{L}_G$, then C directly returns Q as the response. Otherwise, it picks a random bit $\gamma\in\{0,1\}$ such that $\Pr[\gamma=0]=\sigma$, and chooses a random exponent $x\in\mathbb{Z}_p$. In the case of $\gamma=0$, it lets $Q=g^x$, and adds the tuple $(\operatorname{id}_{\Gamma},i,Q,x,0)$ to \mathcal{L}_G . In the case of $\gamma=1$, it computes $Q=(g^c)^x$, and adds the tuple $(\operatorname{id}_{\Gamma},i,Q,x,1)$ to \mathcal{L}_G . Finally, C returns Q to \mathcal{A} .
- $G'(\mathsf{id}_{\mathsf{S}})$: If there has been a tuple $(\mathsf{id}_{\mathsf{S}},r,R,\zeta) \in \mathcal{L}_{G'}$, then C directly returns R as the response. Otherwise, it picks a random bit $\zeta \in \{0,1\}$ such that $\Pr[\zeta = 0] = \sigma$, and picks a random integer $r \in \mathbb{Z}_p$. In the case of $\zeta = 0$, it computes $R = g^r$, and adds the tuple $(\mathsf{id}_{\mathsf{S}},r,R,0)$ to $\mathcal{L}_{G'}$. In the case of $\zeta = 1$, it computes $R = (g^a)^r$, and adds the tuple $(\mathsf{id}_{\mathsf{S}},r,R,1)$ to $\mathcal{L}_{G'}$. Finally, C returns R to \mathcal{A} .
- $\tilde{G}(w)$: If there has already been a tuple $(w, W) \in \mathcal{L}_{\tilde{G}}$, then C directly returns W as the response. Otherwise, it randomly chooses a binary string $W \in \{0, 1\}^{\ell}$, adds the tuple (w, W) to $\mathcal{L}_{\tilde{G}}$, and returns W to \mathcal{A} .

Based on the above random oracles, the simulator C answers the adversary \mathcal{A} 's key queries as follows:

- $Q_{\mathsf{RKeyGen}}(\mathsf{id}_{\mathsf{r}})$: For each index $i \in [m]$, C first retrieves the tuple $(\mathsf{id}_{\mathsf{r}}, i, Q, x, \gamma) \in \mathcal{L}_G$. If $\gamma = 0$ holds for all these tuples, then it directly computes $\mathsf{dk}_{i,1} = Q^a = (g^a)^x$ and $\mathsf{dk}_{i,2} = Q^b = (g^b)^x$ for $i \in [m]$. Otherwise, C aborts the simulation. Finally, C returns the resulted decryption key $\mathsf{dk} = \{\mathsf{dk}_{i,1}, \mathsf{dk}_{i,2}\}_{i \in [m]}$ to \mathcal{A} .
- $Q_{\mathsf{SKeyGen}}(\mathsf{id}_{\mathsf{S}})$: C retrieves the tuple $(\mathsf{id}_{\mathsf{S}}, r, R, \zeta) \in \mathcal{L}_{G'}$. If $\zeta = 1$ then C aborts the simulation. Otherwise, it assigns and returns $\mathsf{ek} = R^b = (g^b)^r$ to \mathcal{A} .
- Q_{Punc}(id_r, ct): Whenever A issues such a query, C punctures the corresponding decryption key dk to dk' as in the original puncture algorithm, and also updates the triple to (id_r, dk', P ∪ {ct}).

Forgery phase: The adversary \mathcal{A} generates a forged symmetric key and ciphertext pair (K^*, Ct^*) under a sender's identity id_S^* and a receiver's identity id_T^* , and returns it to the simulator C. After that, C tries to compute $D = e(g,g)^{abc}$ as follows:

- 1) Parse the ciphertext ct^* as $\{U, V, \{c_j^*\}_{j \in [k]}\}$, randomly select an index $j^* \in [k]$, and compute $\delta_{j^*} = H_{j^*}(U \cdot V)$.
- 2) Respectively retrieve the tuples $(id_s^*, r, R, \zeta) \in \mathcal{L}_{G'}$ and $(id_r^*, \delta_{j^*}, Q, x, \gamma) \in \mathcal{L}_G$. If either $\gamma \neq 1$ or $\zeta \neq 1$, then C aborts the simulation. Otherwise, we have that the δ_{j^*} -th decapsulation key component for id_r^* is implicitly computed as $dk_{\delta_{j^*},2} = G(id_r^*||\delta_{j^*})^b = (g^{bc})^x$ and $G'(id_s^*) = (g^a)^r$. This implies that

$$\begin{split} &\tilde{G}\big(e(\mathsf{dk}_{\delta_{j^*},2},G'(\mathsf{id}_{\mathtt{S}}^*))\cdot e(G(\mathsf{id}_{\mathtt{r}}^*||\delta_{j^*}),V)\big) \\ &= \tilde{G}\big(D^{x\cdot r}\cdot e(g^{c\cdot x},V)\big), \end{split}$$

where $D = e(g, g)^{abc}$.

3) Randomly select a tuple $(w^*, W^*) \in \mathcal{L}_{\tilde{G}}$, and calculates the solution of the received instance of the BCDH problem as follows:

$$D = (w^* \cdot e(g^c, V)^{1/x})^{1/(x \cdot r)}.$$

Probability Analysis. Observe that if the simulator C does not abort the simulation, then it perfectly simulates the AUTH security experiment in the adversary \mathcal{H} 's view. Denote by q_{dk} and q_{sk} the total numbers of queries issued to $Q_{\mathsf{RKeyGen}}(\cdot)$ and $Q_{\mathsf{SKeyGen}}(\cdot)$ by \mathcal{H} , respectively. Then, from the analysis in [1] and [2], we know that the probability that C does not abort in the query phase is $\sigma^{q_{dk}+q_{sk}}$. Analogously, the probability that C does not abort in the forgery phase is $(1-\sigma)^2$. Therefore, if we denote by E_0 the even that C does not abort throughout the whole simulation, then we have that

$$\Pr[\mathsf{E}_0] = \sigma^{q_{dk} + q_{sk}} \cdot (1 - \sigma)^2,$$

which is maximized at $\sigma' = (q_{dk} + q_{sk})/(q_{dk} + q_{sk} + 2)$. If we use σ' as the probability of C sampling 0 from $\{0,1\}$ in the query phase, then we further have that

$$\Pr[\mathsf{E}_0] \ge \frac{4}{e^2 \cdot (q_{dk} + q_{sk} + 2)^2}.$$

Furthermore, if C makes correct guess on j^* and w^* (denote

by this event E_1), then it gets a correct solution of the instance of the BCDH problem. The probability of E_1 is bounded as

$$\Pr[\mathsf{E}_1] \geq \frac{2 \cdot \mathsf{Adv}^{\mathsf{AUTH}}_{\mathcal{A}, \mathsf{PIB-MKEM}}(\lambda, m, k)}{k \cdot q_{\tilde{G}}},$$

where $q_{\tilde{G}}$ is the number of queries to the random oracle $\tilde{G}(\cdot)$ Finally, the advantage of C correctly solving the instance of the BCDH problem is captured as follows:

$$\begin{split} \mathsf{Adv}_C^{\mathsf{BCDH}}(\lambda) &= \Pr\left[C(g, g^a, g^b, g^c) = e(g, g)^{abc}\right] \\ &= \Pr[\mathsf{E}_0 \land \mathsf{E}_1] \\ &\geq \frac{8 \cdot \mathsf{Adv}_{\mathcal{A}, \mathsf{PIB-MKEM}}^{\mathsf{IND-MIS-CPA}}(\lambda, m, k)}{e^2 \cdot k \cdot q_{\tilde{G}} \cdot (q_{dk} + q_{sk} + 2)^2}. \end{split}$$

This completes the proof.

REFERENCES

- D. Boneh and M. Franklin, "Identity-based encryption from the weil pairing," in *Advances in Cryptology-CRYPTO 2001*. Springer, 2001, pp. 213–229.
- [2] G. Ateniese, D. Francati, D. Nuñez, and D. Venturi, "Match me if you can: Matchmaking encryption and its applications," in *Advances in Cryptology-CRYPTO 2019*. Springer, 2019, pp. 701–731.