Contents

	3
	15
	17

CONTENTS

Chapter 1

Real Analysis

```
(1.5)
                             V[<, S] := \forall_{x, y \in S} (x < y \lor x = y \lor y < x)
                              Y[<, S] := \forall_{x, y, z \in S} ((x < y \land y < z) \implies x < z)
          [<,S] := (OrderTrichotomy[<,S]) \land (OrderTransitivity[<,S])
(1.7)
                        e[E, S, <] := (Order[<, S]) \land (E \subset S) \land (\exists_{\beta \in S} \forall_{x \in E} (x \le \beta))
                    low[E, S, <] := (Order[<, S]) \land (E \subset S) \land (\exists_{\beta \in S} \forall_{x \in E} (\beta \le x))
                     [\beta, E, S, <] := (Order[<, S]) \land (E \subset S) \land (\beta \in S \land \forall_{x \in E}(x \le \beta))
                     [\beta, E, S, <] := (Order[<, S]) \land (E \subset S) \land (\beta \in S \land \forall_{x \in E} (\beta \le x))
(1.8)
        P[\alpha, E, S, <] := (UpperBound[\alpha, E, S, <]) \land (\forall_{\gamma} (\gamma < \alpha \implies \neg UpperBound[\gamma, E, S, <]))
      \textbf{\textit{B}}[\alpha, E, S, <] := (LowerBound[\alpha, E, S, <]) \land (\forall_{\beta}(\alpha < \beta \implies \neg LowerBound[\beta, E, S, <]))
(1.10)
                       V[S,<] := \overline{\forall_E(((\emptyset \neq E \subset S) \land (\underline{Bound\,ed\,Above}[E,S,<]) \implies \exists_{\alpha \in S}(\underline{LU\,B}[\alpha,\overline{E},S,<])))}
                       \forall [S,<] := \forall_E (((\emptyset \neq E \subset S) \land (Bounded Below[E,S,<]) \implies \exists_{\alpha \in S} (GLB[\alpha,E,S,<])))
(1.11)
                         Implies GLBP roperty := LUBP roperty [S, <] \implies GLBP roperty [S, <]
(1) LUBProperty[S, <] \implies ...
  (1.1) \quad (\emptyset \neq B \subset S \land Bounded Below[B, S, <]) \implies \dots
      (1.1.1) Order[<, S] \land \exists_{\delta' \in S}(LowerBound[\delta', B, S, <])
      (1.1.2) \quad |B| = 1 \implies \dots
         (1.1.2.1) \quad \exists_{u'}(u' \in B) \quad \blacksquare \ u := choice(\{u'|u' \in B\}) \quad \blacksquare \ B = \{u\}
         (1.1.2.2) \quad \textbf{GLB}[u, B, S, <] \quad \blacksquare \quad \exists_{\epsilon_0 \in S} (\textbf{GLB}[\epsilon_0, B, S, <])
      (1.1.3) \quad |B| = 1 \implies \exists_{\epsilon_0 \in S} (GLB[\epsilon_0, B, S, <])
      (1.1.4) \quad |B| \neq 1 \implies \dots
         (1.1.4.1) \quad \forall_E((\emptyset \neq E \subset S \land Bounded Above[E, S, <]) \implies \exists_{\alpha \in S}(LUB[\alpha, E, S, <]))
         (1.1.4.2) L := \{ s \in S | LowerBound[s, B, S, <] \}
         (1.1.4.3) |B| > 1 \land OrderTrichotomy[<, S] | \exists b_{1' \in B} \exists b_{0' \in B} (b_{0'} < b_{1'})
         (1.1.4.4) \quad b_1 := choice(\{b_1' \in B | \exists_{b_0' \in B}(b_0' < b_1')\}) \quad \blacksquare \neg Lower Bound[b_1, B, S, <]
         (1.1.4.5) \quad b_1 \notin L \quad \blacksquare \ L \subset S
         (1.1.4.6) \quad \delta := choice(\{\delta' \in S | \underline{LowerBound}[\delta', B, S, <]\}) \quad \blacksquare \quad \delta \in L \quad \blacksquare \quad \emptyset \neq L
         (1.1.4.7) \quad \emptyset \neq L \subset S
         (1.1.4.8) \quad \forall_{y \in L}(LowerBound[y_0, B, S, <]) \quad \blacksquare \quad \forall_{y \in L} \forall_{x \in B}(y_0 \le x)
                                                                                                                                                                                                                   from: UpperBound
         (1.1.4.9) \quad \forall_{x \in B} (x \in S \land \forall_{y \in L} (y_0 \le x)) \quad \blacksquare \quad \forall_{x \in B} (UpperBound[x, L, S, <])
          (1.1.4.10) \quad \exists_{x \in S}(UpperBound[x, L, S, <]) \quad \blacksquare \quad BoundedAbove[L, S, <]
```

2

CHAPTER 1. REAL ANALIS

```
(1.1.4.11) \emptyset \neq L \subset S \land Bounded Above[L, S, <]
                   (1.1.4.12) \quad \exists_{\alpha' \in S}(LUB[\alpha', L, S, <]) \quad \blacksquare \quad \alpha := choice(\{\alpha' \in S | (LUB[\alpha', L, S, <])\})
                   (1.1.4.13) \quad \forall_{x}(x \in B \implies UpperBound[x, L, S, <])
                    (1.1.4.14) \quad \forall_x (\neg UpperBound[x, L, S, <] \implies x \notin B)
                   (1.1.4.15) \gamma < \alpha \implies \dots
                                                                                                                                                                                                                                                                                                                                                                                             from: LUB, 1.1.4.12, 1.1.4.14
                        (1.1.4.15.1) \quad \neg UpperBound[\gamma, L, S, <] \quad \blacksquare \quad \gamma \notin B
                   (1.1.4.16) \quad \gamma < \alpha \implies \gamma \notin B \quad \boxed{\gamma \in B \implies \gamma \ge \alpha}
                   (1.1.4.17) \forall_{\gamma \in B} (\alpha \leq \gamma) \mid LowerBound[\alpha, B, S, <]
                   (1.1.4.18) \quad \alpha < \beta \implies \dots
                         (1.1.4.18.1) \quad \forall_{v \in L} (y_0 \le \alpha < \beta) \quad \blacksquare \quad \forall_{v \in L} (y_0 \ne \beta)
                         (1.1.4.18.2) \beta \notin L \quad \square \neg LowerBound[\beta, B, S, <]
                   (1.1.4.19) \quad \alpha < \beta \implies \neg LowerBound[\beta, B, S, <] \quad \blacksquare \quad \forall_{\beta \in S} (\alpha < \beta \implies \neg LowerBound[\beta, B, S, <])
                   (1.1.4.20) \quad LowerBound[\alpha, B, S, <] \land \forall_{\beta \in S} (\alpha < \beta \implies \neg LowerBound[\beta, B, S, <])
                   (1.1.4.21) \quad \mathbf{GLB}[\alpha, B, S, <] \quad \blacksquare \quad \exists_{\epsilon_1 \in S} (\mathbf{GLB}[\epsilon_1, B, S, <])
            (1.1.5) |B| \neq 1 \implies \exists_{\epsilon_1 \in S} (GLB[\epsilon_1, B, S, <])
                                                                                                                                                                                                                                                                                                                                                                                                                  from: 1.1.3, 1.1.5
            (1.1.6) \quad (|B| = 1 \implies \exists_{\epsilon_0 \in S} (GLB[\epsilon_0, B, S, <])) \land (|B| \neq 1 \implies \exists_{\epsilon_1 \in S} (GLB[\epsilon_1, B, S, <]))
             (1.1.7) \quad (|B| = 1 \lor |B| \ne 1) \implies \exists_{\varepsilon \in S} (GLB[\varepsilon, B, S, <]) \quad \blacksquare \quad \exists_{\varepsilon \in S} (GLB[\varepsilon, B, S, <])
       (1.2) \quad (\emptyset \neq B \subset S \land Bounded Below[B, S, <]) \implies \exists_{\varepsilon \in S} (GLB[\varepsilon, B, S, <])
       (1.3) \quad \forall_B((\emptyset \neq B \subset S \land Bounded Below[B, S, <]) \implies \exists_{\epsilon \in S}(GLB[\epsilon, B, S, <]))
       (1.4) GLBProperty[S, <]
 (2) LUBProperty[S, <] \implies GLBProperty[S, <]
(1.12)
Field [F, +, *] := \exists_{0,1 \in F} \forall_{x,y,z \in F} \begin{cases} x + y \in F & \land & x * y \in F & \land \\ x + y = y + x & \land & x * y = y * x & \land \\ (x + y) + z = x + (y_0 + z) & \land & (x * y) * z = x * (y_0 * z) & \land \\ 1 \neq 0 & \land & x * (y_0 + z) = (x * y) + (x * z) & \land \\ 0 + x = x & \land & 1 * x = x & \land \\ \hline 0 + x = x & \land & 1 * x = x & \land \\ \hline 0 + x = x & \land & 1 * x = x & \land \\ \hline 0 + x = x & \land & 1 * x = x & \land \\ \hline 0 + x = x & \land & 1 * x = x & \land \\ \hline 0 + x = x & \land & 1 * x = x & \land \\ \hline 0 + x = x & \land & 1 * x = x & \land \\ \hline 0 + x = x & \land & 1 * x = x & \land \\ \hline 0 + x = x & \land & 1 * x = x & \land \\ \hline 0 + x = x & \land & 1 * x = x & \land \\ \hline 0 + x = x & \land & 1 * x = x & \land \\ \hline 0 + x = x & \land & 1 * x = x & \land \\ \hline 0 + x = x & \land & 1 * x = x & \land \\ \hline 0 + x = x & \land & 1 * x = x & \land \\ \hline 0 + x = x & \land & 1 * x = x & \land \\ \hline 0 + x = x & \land & 1 * x = x & \land \\ \hline 0 + x = x & \land & 1 * x = x & \land \\ \hline 0 + x = x & \land & 1 * x = x & \land \\ \hline 0 + x = x & \land & 1 * x = x & \land \\ \hline 0 + x = x & \land & 1 * x = x & \land \\ \hline 0 + x = x & \land & 1 * x = x & \land \\ \hline 0 + x = x & \land & 1 * x = x & \land \\ \hline 0 + x = x & \land & 1 * x = x & \land \\ \hline 0 + x = x & \land & 1 * x = x & \land \\ \hline 0 + x = x & \land & 1 * x = x & \land \\ \hline 0 + x = x & \land & 1 * x = x & \land \\ \hline 0 + x = x & \land & 1 * x = x & \land \\ \hline 0 + x = x & \land & 1 * x = x & \land \\ \hline 0 + x = x & \land & 1 * x = x & \land \\ \hline 0 + x = x & \land & 1 * x = x & \land \\ \hline 0 + x = x & \land & 1 * x = x & \land \\ \hline 0 + x = x & \land & 1 * x = x & \land \\ \hline 0 + x = x & \land & 1 * x = x & \land \\ \hline 0 + x = x & \land & 1 * x = x & \land \\ \hline 0 + x = x & \land & 1 * x = x & \land \\ \hline 0 + x = x & \land & 1 * x = x & \land \\ \hline 0 + x = x & \land & 1 * x = x & \land \\ \hline 0 + x = x & \land & 1 * x = x & \land \\ \hline 0 + x = x & \land & 1 * x = x & \land \\ \hline 0 + x = x & \land & 1 * x = x & \land \\ \hline 0 + x = x & \land & 1 * x = x & \land \\ \hline 0 + x = x & \land & 1 * x = x & \land \\ \hline 0 + x = x & \land & 1 * x = x & \land \\ \hline 0 + x = x & \land & 1 * x = x & \land \\ \hline 0 + x = x & \land & 1 * x = x & \land \\ \hline 0 + x = x & \land & 1 * x = x & \land \\ \hline 0 + x = x & \land & 1 * x = x & \land \\ \hline 0 + x = x & \land & 1 * x = x & \land \\ \hline 0 + x = x & \land & 1 * x = x & \land \\ \hline 0 + x = x & \land & 1 * x = x & \land \\ \hline 0 + x = x & \land & 1 * x = x & \land \\ \hline 0 + x = x & \land & 1 * x = x & \land \\ \hline 0 + x = x & \land & 1 * x = x & \land \\ \hline 0
                                                                                                             \exists_{-x \in F} (x + (-x) = \mathbb{0}) \land (x \neq \mathbb{0} \implies \exists_{1/x \in F} (x * (1/x) = \mathbb{1}))
                                           (1.14)
 (1) y = 0 + y = (x + (-x)) + y = ((-x) + x) + y = (-x) + (x + y) = \dots
 (2) (-x) + (x + z) = ((-x) + x) + z = (x + (-x)) + z = 0 + z = z
 (1) x + y = x = 0 + x = x + 0
 (2) y = 0
 (1) x + y = 0 = x + (-x)
```

(1.15)

 $(2) \quad x = -(-x)$

(1) $0 = x + (-x) = (-x) + x \quad \blacksquare \quad 0 = (-x) + x$

```
ultiplicative Cancellation: = (x \neq 0 \land x * y = x * z) \implies y = z
 Multiplicative I dentity Uniqueness := (x \neq 0 \land x \circ y = 0)
Multiplicative I nuar sell niqueness := (x \neq 0 \land x \circ y = 1) \implies y = 1/x
   \frac{\text{ouble Reci procal}}{\text{ouble Reci procal}} := (x \neq 0) \implies x = 1/(1/x)
(1.16)
(1) 0 * x = (0 + 0) * x = 0 * x + 0 * x   0 * x = 0 * x + 0 * x
(2) 0 * x = 0
(1) (x \neq 0 \land y \neq 0) \implies \dots
 (1.1) \quad (x * y = 0) \implies \dots
    (1.1.1) \quad \mathbb{1} = \mathbb{1} * \mathbb{1} = (x * (1/x)) * (y * (1/y)) = (x * y) * ((1/x) * (1/y)) = \mathbb{0} * ((1/x) * (1/y)) = \mathbb{0}
     (1.1.2) \quad 1 = 0 \land 1 \neq 0 \quad \blacksquare \perp
  (1.2) \quad (x * y = 0) \implies \bot \quad \blacksquare \quad x * y \neq 0
(2) (x \neq 0 \land y \neq 0) \implies x * y \neq 0
(1) x * y + (-x) * y = (x + -x) * y = 0 * y = 0  x * y + (-x) * y = 0
(2) \quad (-x) * y = -(x * y)
(3) x * y + x * (-y) = x * (y_0 + -y) = x * 0 = 0  x * y + x * (-y) = 0
(4) x * (-y) = -(x * y)
(1.17)
                                          \left( \begin{array}{ccc} Field[F,+,*] & \wedge & Order[<,F] & \wedge \\ \forall_{x,y,z \in F}(y_0 < z \implies x+y < x+z) & \wedge \\ \forall_{x,y \in F}((x>0 \land y>0) \implies x*y>0) \end{array} \right) 
             (1.18)
  (1.1) \quad 0 = (-x) + x > (-x) + 0 = -x \quad \blacksquare \quad 0 > -x \quad \blacksquare \quad -x < 0
(2) x > 0 \implies -x < 0
  (3.1) \quad 0 = x + (-x) < x + 0 = x \quad \blacksquare \quad 0 < x \quad \blacksquare \quad x > 0
(4) \quad -x < 0 \implies x > 0
(5) \quad x > 0 \implies -x < 0 \land -x < 0 \implies x > 0 \quad x > 0 \iff -x < 0
  (1.1) \quad (-y) + z > (-y) + y = 0 \quad \blacksquare \quad z + (-y) = 0
  (1.2) \quad x * (z + (-y)) > 0 \quad \blacksquare \quad x * z + x * (-y) > 0
                                                                                                                                                                  from: Field, NegationCommutativity
  (1.3) \quad x*z = 0 + x*z = (x*y + -(x*y)) + x*z = (x*y + x*(-y)) + x*z = \dots
  (1.4) \quad x * y + (x * z + x * (-y)) > x * y + 0 = x * y
```

(1.5) x * z > x * y

0

```
(2) (x > 0 \land y < z) \implies x * z > x * y
```

Negative Factor Flips Order := $(x < 0 \land y < z) \implies x * y > x * z$

 $(1) (x < 0 \land y < z) \Longrightarrow \dots$

(1.1) -x > 0 from: NegationOnOre.

 $(1.2) \quad (-x) * y < (-x) * z \quad \blacksquare \quad 0 = x * y + (-x) * y < x * y + (-x) * z \quad \blacksquare \quad 0 < x * y + (-x) * z$

 $(1.3) \quad 0 < (-x) * (-y+z) \quad \boxed{0} > x * (-y+z) \quad \boxed{0} > -(x * y) + x * z$

rom: NegationOnOrde

 $(1.4) \quad x * y > x * z$

(2) $(x < 0 \land y < z) \implies x * y > x * z$

Square Is Positive := $(x \neq 0) \implies x * x > 0$

 $(1) \quad (r > 0) \longrightarrow r * r > 0$

rom: Ordered Field

 $\overline{(2)} \quad (x < 0) \implies \dots$

 $(2.1) \quad -x > 0 \quad \blacksquare \quad x * x = (-x) * (-x) > 0 \quad \blacksquare \quad x * x > 0$

from: NegationOnOrder, Ordered Field, Negative Multiplication

 $(3) \quad (x < 0) \implies x * x > 0$

 $(4) \quad x \neq \emptyset \implies (x > \emptyset \lor x < \emptyset) \implies x * x > \emptyset \quad \blacksquare \quad x \neq \emptyset \implies x * x > \emptyset$

from: OrderTrichotomy, 1, 3

One Is Positive := 1 > 0

(1) $1 \neq 0 \quad \blacksquare \quad 1 = 1 * 1 > 0$

rom: Field, Square Is Positiv

ReciprocationOnOrder := $(0 < x < y) \implies 0 < 1/y < 1/x$

 $(1) \quad (0 < x < y) \implies \dots$

 $(1.1) \quad x * (1/x) = 1 > 0 \quad \blacksquare \quad x * (1/x) > 0$

from: Field, One1sPositio

 $(1.2) \quad 1/x < 0 \implies x * (1/x) < 0 \land x * (1/x) > 0 \implies \bot \quad \boxed{1/x > 0}$

 $(1.3) \quad y * (1/y) = 1 > 0 \quad \boxed{y} * (1/y) > 0$

from: NegativeFactorFlipsOrder, 1

(1.5) (1/x) * (1/y) > 0

 $(1.6) \quad 0 < 1/y = ((1/x) * (1/y)) * x < ((1/x) * (1/y)) * y = 1/x$

n: *Ordered Field*, 1, 1.4, 1.5

(1.19)

 $Ordered Field Q := Ordered Field [\mathbb{Q}, +, *, <] \qquad -$

Subfield $[K, F, +, *] := Field [F, +, *] \land K \subset F \land Field [K, +, *]$

Ordered Subfield $[K, F, +, *, <] := Ordered Field [F, +, *, <] \land K \subset F \land Ordered Field [K, +, *, <]$

 $Cut I[\alpha] := \emptyset \neq \alpha \subset \mathbb{Q}$

(1.3.1) $q \ge p$

 $\underbrace{\mathsf{Cuill}[\alpha]}_{} := \forall_{p \in \alpha} \forall_{q \in \mathbb{Q}} (q$

 $Cutll[\alpha] := \forall_{p \in \alpha} \exists_{r \in \alpha} (p < r)$

 $\mathbb{R} := \{ \alpha \in \mathbb{Q} | CutI[\alpha] \land CutII[\alpha] \land CutIII[\alpha] \}$

 $\underline{CutCorollaryl} := (\alpha \in \mathbb{R} \land p \in \alpha \land q \in \mathbb{Q} \land q \notin \alpha) \implies p < q$

 $(1) \quad (\alpha \in \mathbb{R} \land p \in \alpha \land q \in \mathbb{Q} \land q \notin \alpha) \implies \dots$

 $(1.1) \quad \forall_{p' \in \alpha} \forall_{q' \in \mathbb{Q}} (q' < p' \implies q' \in \alpha)$

from: Cut.

 $(1.2) \quad q$

110111. 1

 $(1.3) \quad (q \notin \alpha) \implies \dots$

from: 1, 1.3

 $(1.3.2) \quad (q = p) \implies (p \in \alpha \land p \notin \alpha) \implies \bot \quad \blacksquare \quad q \neq p$

 $(1.3.3) \quad q \ge p \land q \ne p \quad \blacksquare \quad p < q$

from:

 $(1.4) \quad q \notin \alpha \implies p < q \quad p < q$

(2) $(\alpha \in \mathbb{R} \land p \in \alpha \land q \in \mathbb{Q} \land q \notin \alpha) \implies p < q$

```
(1) (\alpha \in \mathbb{R} \land r, s \in \mathbb{Q} \land r < s \land r \notin \alpha) \implies \dots
                                                                                                                                                                                                                                                                                                                                        from: CutII, 1
    (1.1) \quad \forall_{s' \in \alpha} \forall_{r' \in \mathbb{Q}} (r' < s' \implies r' \in \alpha)
    (1.2) \quad s \in \alpha \implies (r \in \mathbb{Q} \implies (r < s \implies r \in \alpha)) \quad \blacksquare \quad s \in \alpha \implies r \in \alpha
    (1.3) \quad r \notin \alpha \implies s \notin \alpha \quad \blacksquare \quad s \notin \alpha
(2) \quad (\alpha \in \mathbb{R} \land r, s \in \mathbb{Q} \land r < s \land r \notin \alpha) \implies s \notin \alpha
<_{\mathbb{R}}[\alpha,\beta] := \alpha,\beta \in \mathbb{R} \land \alpha \subset \beta
(1) (\alpha, \beta \in \mathbb{R}) \implies \dots
    (1.1) \quad \neg(\alpha <_{\mathbb{R}} \beta \lor \alpha = \beta) \implies \dots
         (1.1.1) \quad \alpha \not\subset \beta \land \alpha \neq \beta
         (1.1.2) \quad \exists_{p'}(p' \in \alpha \land p' \notin \beta) \quad \blacksquare \quad p := choice(\{p' | p' \in \alpha \land p' \notin \beta\})
         (1.1.3) q \in \beta \implies ...
           (1.1.3.1) p, q \in \mathbb{Q}
           (1.1.3.2) q < p
             (1.1.3.3) q \in \alpha
         (1.1.4) \quad q \in \beta \implies q \in \alpha
         (1.1.5) \quad \forall_{q \in \beta} (q \in \alpha) \quad \blacksquare \quad \beta \subseteq \alpha
         (1.1.6) \quad \beta \subset \alpha \quad \blacksquare \quad \beta <_{\mathbb{R}} \quad \alpha
     (1.2) \quad \neg(\alpha <_{\mathbb{R}} \beta \lor \alpha = \beta) \implies \beta <_{\mathbb{R}} \alpha
     (1.3) \quad \neg(\alpha <_{\mathbb{R}} \beta \vee \alpha = \beta) \vee (\overline{\alpha} <_{\mathbb{R}} \beta \vee \alpha = \beta) \quad \blacksquare \quad (\beta <_{\mathbb{R}} \alpha) \vee (\alpha <_{\mathbb{R}} \beta \vee \alpha = \beta)
     (1.4) \quad \alpha = \beta \implies \neg(\alpha <_{\mathbb{R}} \beta \lor \beta <_{\mathbb{R}} \alpha)
    (1.5) \quad \alpha <_{\mathbb{R}} \beta \implies \neg (\alpha = \beta \lor \beta <_{\mathbb{R}} \alpha)
    (1.6) \quad \beta <_{\mathbb{R}} \alpha \implies \neg(\alpha = \beta \lor \alpha <_{\mathbb{R}} \beta)
    (1.7) \quad \alpha <_{\mathbb{R}} \beta \veebar \alpha = \beta \veebar \alpha <_{\mathbb{R}} \beta
(2) \quad (\alpha, \beta \in \mathbb{R}) \implies (\alpha <_{\mathbb{R}} \beta \veebar \alpha = \beta \veebar \alpha <_{\mathbb{R}} \beta)
(3) \quad \forall_{\alpha,\beta \in \mathbb{R}} (\alpha <_{\mathbb{R}} \beta \underline{\vee} \alpha = \beta \underline{\vee} \alpha <_{\mathbb{R}} \beta)
(4) OrderTrichotomy[\mathbb{R}, <_{\mathbb{R}}]
             rTransitivityOfR := OrderTransitivity[\mathbb{R}, <_{\mathbb{R}}]
(1) (\alpha, \beta, \gamma \in \mathbb{R}) \implies \dots
    (1.1) \quad (\alpha <_{\mathbb{R}} \beta \wedge \beta <_{\mathbb{R}} \gamma) \implies \dots
     (1.1.1) \quad \alpha \subset \beta \land \beta \subset \gamma
         (1.1.2) \quad \forall_{a \in \alpha} (a \in \beta) \land \forall_{b \in \beta} (b \in \gamma)
         (1.1.3) \quad \forall_{\alpha \in \alpha} (\alpha \in \gamma) \quad \blacksquare \quad \alpha \subset \gamma \quad \blacksquare \quad \alpha <_{\mathbb{R}} \quad \gamma
   (1.2) \quad (\alpha <_{\mathbb{R}} \beta \land \beta <_{\mathbb{R}} \gamma) \implies \alpha <_{\mathbb{R}} \gamma
(2) \quad (\alpha, \beta, \gamma \in \mathbb{R}) \implies ((\alpha <_{\mathbb{R}} \beta \land \beta <_{\mathbb{R}} \gamma) \implies \alpha <_{\mathbb{R}} \gamma)
(3) \quad \forall_{\alpha,\beta,\gamma \in \mathbb{R}} ((\alpha <_{\mathbb{R}} \beta \land \beta <_{\mathbb{R}} \gamma) \implies \alpha <_{\mathbb{R}} \gamma)
(4) OrderTransitivity[\mathbb{R}, <_{\mathbb{R}}]
 OrderOfR := Order[<_{\mathbb{R}}, \mathbb{R}]
LUBPropertyOfR := LUBProperty[\mathbb{R}, <_{\mathbb{R}}]
(1) \quad (\emptyset \neq A \subset \mathbb{R} \land Bounded Above[A, \mathbb{R}, <_{\mathbb{R}}]) \implies \dots
    (1.1) \quad \gamma := \{ p \in \mathbb{Q} | \exists_{\alpha \in A} (p \in \alpha) \}
    (1.2) \quad A \neq \emptyset \quad \blacksquare \ \exists_{\alpha}(\alpha \in A) \quad \blacksquare \ \alpha_0 := choice(\{\alpha \mid \alpha \in A\})
     (1.3) \quad \alpha_0 \neq \emptyset \quad \blacksquare \quad \exists_a (a \in \alpha_0) \quad \blacksquare \quad a_0 := choice(\{a | a \in \alpha_0\}) \quad \blacksquare \quad a_0 \in \gamma \quad \blacksquare \quad \gamma \neq \emptyset
     (1.4) Bounded Above [A, \mathbb{R}, <_{\mathbb{R}}] \quad \blacksquare \quad \exists_{\beta} (UpperBound[\beta, A, \mathbb{R}, <_{\mathbb{R}}])
```

CutCorollaryII := $(\alpha \in \mathbb{R} \land r, s \in \mathbb{Q} \land r < s \land r \notin \alpha) \implies s \notin \alpha$

CHAPTER I. REAL ANALIS

```
(1.5) \quad \beta_0 := choice(\{\beta | UpperBound[\beta, A, \mathbb{R}, <_{\mathbb{R}}]\})
     (1.6) \quad UpperBound[\beta_0, A, \mathbb{R}, <_{\mathbb{R}}] \quad \blacksquare \quad \forall_{\alpha \in A} (\alpha \leq_{\mathbb{R}} \beta_0) \quad \blacksquare \quad \forall_{\alpha \in A} (\alpha \subseteq \beta_0) \quad \blacksquare \quad \forall_{\alpha \in A} \forall_{\alpha \in A} (\alpha \in \beta_0)
     (1.7) \quad (\alpha \in A \land a \in \alpha) \iff a \in \gamma \quad \blacksquare \ \forall_{a \in \gamma} (a \in \beta_0) \quad \blacksquare \ \gamma \subseteq \beta_0
     (1.8) \quad \beta_0 \subset \mathbb{Q} \quad \blacksquare \quad \gamma \subseteq \beta_0 \subset \mathbb{Q} \quad \blacksquare \quad \gamma \subset \mathbb{Q}
     (1.9) \quad \emptyset \neq \gamma \subset \mathbb{Q} \quad \blacksquare \quad Cut I[\gamma]
     (1.10) \quad (p \in \gamma \land q \in \mathbb{Q} \land q < p) \implies \dots
          (1.10.1) \quad p \in \gamma \quad \blacksquare \ \exists_{\alpha \in A} (p \in \alpha) \quad \blacksquare \ \alpha_1 \ := choice(\{\alpha \in A | p \in \alpha\})
       (1.10.2) \quad p \in \alpha_1 \land q \in \mathbb{Q} \land q 
     (1.11) \quad (p \in \gamma \land q \in \mathbb{Q} \land q < p) \implies q \in \gamma \quad \blacksquare \quad \forall_{p \in \gamma} \forall_{q \in \mathbb{Q}} (q < p \implies q \in \gamma) \quad \blacksquare \quad CutII[\gamma]
     (1.12) \quad p \in \gamma \implies \dots
          (1.12.1) \quad \exists_{\alpha \in A} (p \in \alpha) \quad \blacksquare \quad \alpha_2 := choice(\{\alpha \in A | p \in \alpha\})
          (1.12.2) \quad \alpha_2 \in \mathbb{R} \quad \blacksquare \quad CutII[\alpha_2] \quad \blacksquare \quad \exists_{r \in \alpha_2} (p < r) \quad \blacksquare \quad r_0 := choice(\{r \in \alpha_2 | p < r\})
          (1.12.3) r_0 \in \alpha_2 \ \blacksquare \ r_0 \in \gamma
          (1.12.4) \quad p < r_0 \quad \blacksquare \quad p < r_0 \land r_0 \in \gamma \quad \blacksquare \quad \exists_{r \in \gamma} (p < r)
     (1.13) \quad p \in \gamma \implies \exists_{r \in \gamma} (p < r) \quad \blacksquare \quad \forall_{p \in \gamma} \exists_{r \in \gamma} (p < r) \quad \blacksquare \quad CutIII[\gamma]
     (1.14) \quad CutI[\gamma] \wedge CutII[\gamma] \wedge CutIII[\gamma] \quad \boxed{\gamma} \in \mathbb{R}
     (1.15) \quad \forall_{\alpha \in A} (\alpha \subseteq \gamma) \quad \blacksquare \quad \forall_{\alpha \in A} (\alpha \leq_{\mathbb{R}} \gamma)
     (1.16) \quad \forall_{\alpha \in A} (\alpha \leq_{\mathbb{R}} \gamma) \land \gamma \in \mathbb{R} \quad \blacksquare \quad UpperBound[\gamma, A, \mathbb{R}, <_{\mathbb{R}}]
     (1.17) \quad \delta <_{\mathbb{R}} \gamma \implies \dots
         (1.17.1) \quad \delta \subset \gamma \quad \blacksquare \ \exists_s (s \in \gamma \land s \notin \delta) \quad \blacksquare \ s_0 := choice(\{s \in \mathbb{Q} | s \in \gamma \land s \notin \delta\})
          (1.17.2) \quad s_0 \in \gamma \quad \blacksquare \ \exists_{\alpha \in A} (s_0 \in \alpha) \quad \blacksquare \ \alpha_3 := choice(\{\alpha \in A | s_0 \in \alpha\})
          (1.17.3) \quad s_0 \in \alpha_3 \land s_0 \notin \delta \quad \blacksquare \quad \exists_{s \in \mathbb{Q}} (s \in \alpha_3 \land s \notin \delta)
          (1.17.4) \quad \delta \geq_{\mathbb{R}} \alpha_3 \implies \dots
            (1.17.4.1) \quad \alpha_3 \subseteq \delta \quad \blacksquare \quad \forall_{s \in \mathbb{Q}} (s \in \alpha_3 \implies s \in \delta) \quad \blacksquare \quad \neg \exists_{s \in \mathbb{Q}} (s \in \alpha_3 \land s \notin \delta)
             (1.17.4.2) \quad \neg \exists_{s \in \mathbb{Q}} (s \in \alpha_3 \land s \notin \delta) \land \exists_{s \in \mathbb{Q}} (s \in \alpha_3 \land s \notin \delta) \quad \blacksquare \ \bot
           (1.17.5) \quad \delta \geq_{\mathbb{R}} \alpha_3 \implies \bot \quad \blacksquare \quad \delta <_{\mathbb{R}} \alpha_3 \quad \blacksquare \quad \exists_{\alpha \in A} (\overline{\delta} <_{\mathbb{R}} \alpha) \quad \blacksquare \quad \exists_{\alpha \in A} (\overline{\gamma}(\alpha \leq_{\mathbb{R}} \delta))
          (1.17.6) \quad \neg \forall_{\alpha \in A} (\alpha \leq_{\mathbb{R}} \delta) \quad \blacksquare \quad \neg UpperBound[\delta, A, \mathbb{R}, <_{\mathbb{R}}]
     (1.18) \quad \delta <_{\mathbb{R}} \gamma \implies \neg UpperBound[\delta, A, \mathbb{R}, <_{\mathbb{R}}]) \quad \blacksquare \quad \forall_{\delta} (\delta <_{\mathbb{R}} \gamma \implies \neg UpperBound[\delta, A, \mathbb{R}, <_{\mathbb{R}}])
     (1.19) \quad UpperBound[\gamma, A, \mathbb{R}, <_{\mathbb{R}}] \land \forall_{\delta} (\delta <_{\mathbb{R}} \gamma \implies \neg UpperBound[\delta, A, \mathbb{R}, <_{\mathbb{R}}])
    (1.20) \quad LUB[\gamma, A, \mathbb{R}, <_{\mathbb{R}}] \quad \blacksquare \quad \exists_{\gamma \in S} (LUB[\gamma, A, \mathbb{R}, <_{\mathbb{R}}])
(2) \quad (\emptyset \neq A \subset \mathbb{R} \land Bounded Above[A, \mathbb{R}, <_{\mathbb{R}}]) \implies \exists_{\gamma \in S}(LUB[\gamma, A, \mathbb{R}, <_{\mathbb{R}}])
(3) \quad \forall_A ((\emptyset \neq A \subset \mathbb{R} \land Bounded Above[A, \mathbb{R}, <_{\mathbb{R}}]) \implies \exists_{\gamma \in S} (LUB[\gamma, A, \mathbb{R}, <_{\mathbb{R}}])) \quad \blacksquare \quad LUBProperty[\mathbb{R}, <_{\mathbb{R}}]
  +_{\mathbb{R}}[\alpha,\beta] := \alpha,\beta \in \mathbb{R} \land (\alpha +_{\mathbb{R}} \beta) = \{r + s | r \in \alpha \land s \in \beta\}
\mathbf{0}_{\mathbb{R}} := \{x \in \mathbb{Q} | x < 0\}
0InR := 0_{\mathbb{R}} \in \mathbb{R}
(1) \quad -1 \in 0_{\mathbb{R}} \land 1 \notin 0_{\mathbb{R}} \quad \blacksquare \quad \emptyset \neq 0_{\mathbb{R}} \subseteq \mathbb{Q} \quad \blacksquare \quad CutI[0_{\mathbb{R}}]
(2) \quad (x \in 0_{\mathbb{R}} \land y \in \mathbb{Q} \land y < x) \implies y < x < 0 \implies y < 0 \implies y \in \overline{0_{\mathbb{R}}} \quad \blacksquare \quad \forall_{x \in 0_{\mathbb{R}}} \forall_{y \in \mathbb{Q}} (y_0 < x \implies y \in 0_{\mathbb{R}}) \quad \blacksquare \quad CutII[0_{\mathbb{R}}]
(3) \quad y := x/2 \quad \blacksquare \quad (x \in 0_{\mathbb{R}}) \implies (x < y < 0) \implies \exists_{y \in 0_{\mathbb{D}}} (x < y) \quad \blacksquare \quad \forall_{x \in 0_{\mathbb{D}}} \exists_{y \in 0_{\mathbb{D}}} (x < y) \quad \blacksquare \quad CutIII[0_{\mathbb{R}}]
(4) \quad CutI[0_{\mathbb{R}}] \wedge CutII[0_{\mathbb{R}}] \wedge CutIII[0_{\mathbb{R}}] \quad \blacksquare \quad 0_{\mathbb{R}} \in \mathbb{R}
   \overrightarrow{lield} \ \underline{AdditionClosureOfR} := (\alpha, \beta \in \mathbb{R}) \implies ((\alpha +_{\mathbb{R}} \beta) \in \mathbb{R})
(1) (\alpha, \beta \in \mathbb{R}) \implies \dots
    (1.1) \quad (\alpha +_{\mathbb{R}} \beta) = \{r + s | r \in \alpha \land s \in \beta\}
     (1.2) \quad \emptyset \neq \alpha \subset \mathbb{Q} \land \emptyset \neq \beta \subset \mathbb{Q}
     (1.3) \quad \exists_a (a \in \alpha) \; ; \exists_b (b \in \beta) \quad \blacksquare \; a_0 \; := choice(\{a \mid a \in \alpha\}) \; ; \; b_0 \; := choice(\{b \mid b \in \beta\}) \quad \blacksquare \; a_0 + b_0 \in \alpha +_{\mathbb{R}} \beta
     (1.4) \quad \exists_{x}(x \notin \alpha) \; ; \; \exists_{y}(y_{0} \notin \beta) \quad \blacksquare \; x_{0} \; \vcentcolon= choice(\{x \mid x \notin \alpha\}) \; ; \; y_{0} \; \vcentcolon= choice(\{y \mid y \notin \beta\})
     (1.5) \quad \forall_{r \in \alpha}(r < x_0) \; ; \; \forall_{s \in \beta}(s < y_0) \quad \blacksquare \quad \forall_{r \in \alpha}\forall_{s \in \beta}(r + s < x_0 + y_0) \quad \blacksquare \quad x_0 + y_0 \notin \alpha +_{\mathbb{R}} \beta
```

 $(1.6) \quad \emptyset \neq \alpha +_{\mathbb{R}} \beta \subset \mathbb{Q} \quad \blacksquare \quad CutI[\alpha +_{\mathbb{R}} \beta]$

```
(1.7.1) \quad \exists_{r \in \alpha} \exists_{s \in \beta} (p = r + s) \quad \blacksquare (r_0, s_0) := choice((r, s) \in \alpha \times \beta | p = r + s)
         (1.7.2) \quad q 
        (1.7.3) \quad s_0 \in \beta \quad \blacksquare \quad q = (q - s_0) + s_0 \in \alpha +_{\mathbb{R}} \beta \quad \blacksquare \quad q \in \alpha +_{\mathbb{R}} \beta
     (1.8) \quad (p \in \alpha +_{\mathbb{R}} \beta \land q \in \mathbb{Q} \land q < p) \implies q \in \alpha +_{\mathbb{R}} \beta \quad \blacksquare \quad \forall_{p \in \alpha +_{\mathbb{R}} \beta} \forall_{q \in \mathbb{Q}} (q < p \implies q \in \alpha +_{\mathbb{R}} \beta) \quad \blacksquare \quad CutII[\alpha +_{\mathbb{R}} \beta]
    (1.9) p \in \alpha \implies \dots
         (1.9.1) \quad \exists_{r \in \alpha} \exists_{s \in \beta} (p = r + s) \quad \blacksquare (r_1, s_1) := choice(\{(r, s) \in \alpha \times \beta | p = r + s\})
        (1.9.2) \quad r_1 \in \alpha \quad \blacksquare \quad \exists_{t \in \alpha} (r_1 < t) \quad \blacksquare \quad t_0 := choice(\{t \in \alpha | r_1 < t\})
        (1.9.3) \quad \overline{s_1 \in \beta} \quad \blacksquare \quad t + s_1 \in \alpha +_{\mathbb{R}} \beta \land p = r_1 + \overline{s_1} < t + s_1 \quad \blacksquare \quad \exists_{r \in \alpha +_{\mathbb{R}} \beta} (p < r)
    (1.10) \quad p \in \alpha \implies \exists_{r \in \alpha +_{\mathbb{R}} \beta} (p < r) \quad \blacksquare \quad \forall_{p \in \alpha +_{\mathbb{R}} \beta} \exists_{r \in \alpha +_{\mathbb{R}} \beta} (p < r) \quad \blacksquare \quad CutIII[\alpha +_{\mathbb{R}} \beta]
    (1.11) \quad CutI[\alpha +_{\mathbb{R}} \beta] \wedge CutII[\alpha +_{\mathbb{R}} \beta] \wedge CutIII[\alpha +_{\mathbb{R}} \beta] \quad \blacksquare \quad \alpha +_{\mathbb{R}} \beta \in \mathbb{R}
(2) (\alpha, \beta \in \mathbb{R}) \implies ((\alpha +_{\mathbb{R}} \beta) \in \mathbb{R})
    \underline{ield} \, \underline{Additi} \underline{onCom} \underline{mutativ} \underline{ityOf} \, \underline{R} := (\alpha, \beta \in \mathbb{R}) \implies (\alpha +_{\mathbb{R}} \beta = \beta +_{\mathbb{R}} \alpha)
(1) \quad \alpha +_{\mathbb{R}} \beta = \{r + s | r \in \alpha \land s \in \beta\} = \{s + r | s \in \beta \land r \in \alpha\} = \beta +_{\mathbb{R}} \alpha
    ield\ \underline{Ad\ dition}\ \underline{Associativity}\ \underline{Of\ R}\ := (\alpha, \beta, \gamma \in \mathbb{R}) \implies \overline{((\alpha +_{\mathbb{R}} \beta) +_{\mathbb{R}} \gamma = \alpha +_{\mathbb{R}} (\beta +_{\mathbb{R}} \gamma))}
(1) (\alpha, \beta, \gamma \in \mathbb{R}) \implies \dots
    (1.1) \quad (\alpha +_{\mathbb{R}} \beta) +_{\mathbb{R}} \gamma = \{ (a+b) + c | a \in \alpha \land b \in \beta \land c \in \gamma \} = \dots
   (1.2) \quad \{a + (b+c) | a \in \alpha \land b \in \beta \land c \in \gamma\} = \alpha +_{\mathbb{R}} (\beta +_{\mathbb{R}} \gamma)
(2) \quad (\alpha, \beta, \gamma \in \mathbb{R}) \implies (\alpha +_{\mathbb{R}} \beta) +_{\mathbb{R}} \gamma = \alpha +_{\mathbb{R}} (\beta +_{\mathbb{R}} \gamma)
                                                   \text{ityOf } R := (\alpha \in \mathbb{R}) \implies 0_{\mathbb{R}} +_{\mathbb{R}} \alpha = \alpha
(1) \alpha \in \mathbb{R} \implies \dots
    (1.1) \quad (r \in \alpha \land s \in 0_{\mathbb{R}}) \implies \dots
       (1.1.1) \quad s < 0 \quad || r + s < r + 0 = r \quad || r + s < r \quad || r + s \in \alpha
    (1.2) \quad (r \in \alpha \land s \in 0_{\mathbb{R}}) \implies r + s \in \alpha \quad \blacksquare \quad \forall_{r \in \alpha} \forall_{s \in 0_{\mathbb{R}}} (r + s \in \alpha)
    (1.3) \quad (r \in \alpha \land s \in 0_{\mathbb{R}}) \iff (r + s \in \alpha +_{\mathbb{R}} 0_{\mathbb{R}}) \quad \blacksquare \quad \forall_{p \in \alpha +_{\mathbb{R}} 0_{\mathbb{R}}} (p \in \alpha) \quad \blacksquare \quad \alpha +_{\mathbb{R}} 0_{\mathbb{R}} \subseteq \alpha
    (1.4) p \in \alpha \implies \dots
     (1.4.1) \quad \exists_{r \in \alpha} (p < r) \quad \blacksquare \quad r_2 := choice(\{r \in \alpha | p < r\})
       (1.4.2) \quad p < r_2 \quad \blacksquare \quad p - r_2 < r_2 - r_2 = 0 \quad \blacksquare \quad (p - r_2) < 0 \quad \blacksquare \quad (p - r_2) \in 0_{\mathbb{R}}
        (1.4.3) 	 r_2 \in \alpha 	 \blacksquare 	 p = r_2 + (p - r_2) \in \alpha +_{\mathbb{R}} 0_{\mathbb{R}} 	 \blacksquare 	 p \in \alpha +_{\mathbb{R}} 0_{\mathbb{R}}
    (1.5) \quad p \in \alpha \implies p \in \alpha +_{\mathbb{R}} 0_{\mathbb{R}} \quad \blacksquare \quad \forall_{p \in \alpha} (p \in \alpha +_{\mathbb{R}} 0_{\mathbb{R}}) \quad \blacksquare \quad \alpha \subseteq \alpha +_{\mathbb{R}} 0_{\mathbb{R}}
    (1.6) \quad \alpha +_{\mathbb{R}} 0_{\mathbb{R}} \subseteq \alpha \wedge \alpha \subseteq \alpha +_{\mathbb{R}} 0_{\mathbb{R}} \quad \blacksquare \quad 0_{\mathbb{R}} +_{\mathbb{R}} \alpha = \alpha
(2) \quad \alpha \in \mathbb{R} \implies 0_{\mathbb{R}} +_{\mathbb{R}} \alpha = \alpha
   \exists_{-\alpha \in \mathbb{R}} (\alpha +_{\mathbb{R}} (-\alpha) = 0_{\mathbb{R}}) \implies \exists_{-\alpha \in \mathbb{R}} (\alpha +_{\mathbb{R}} (-\alpha) = 0_{\mathbb{R}})
(1) \alpha \in \mathbb{R} \implies \dots
    (1.1) \quad \beta := \{ p \in \mathbb{Q} | \exists_{r>0} (-p - r \notin \alpha) \}
    (1.2) \quad \alpha \subset \mathbb{Q} \quad \blacksquare \quad \exists_{s \in \mathbb{Q}} (s \notin \alpha) \quad \blacksquare \quad s_0 := choice(\{s \mid s \notin \alpha\}) \quad \blacksquare \quad p_0 := -s_0 - 1
    (1.3) \quad -p_0 \overline{-1} = -(-s_0 - 1) - 1 = s_0 \not \in \alpha \quad \blacksquare \quad -p_0 - 1 \not \in \alpha \quad \blacksquare \quad \exists_{r > 0} (-p_0 - r \not \in \alpha) \quad \blacksquare \quad p_0 \in \beta
    (1.4) \quad \emptyset \neq \alpha \quad \blacksquare \quad \exists_{q \in \alpha} \quad \blacksquare \quad q_0 := choice(\{q \in \mathbb{Q} | q \in \alpha\})
    (1.5) r > 0 \implies \dots
     (1.5.1) \quad q_0 \in \alpha \quad \blacksquare \quad -(-q_0) - r = q_0 - r < q_0 \quad \blacksquare \quad -(-q_0) - r < q_0 \quad \blacksquare \quad -(-q_0) - r \in \alpha
    (1.6) \quad \forall_{r>0} (-(-q_0) - r \in \alpha) \quad \blacksquare \quad \neg \exists_{r>0} (-(-q_0) - r \notin \alpha) \quad \blacksquare \quad -q_0 \notin \beta
    (1.7) \quad \emptyset \neq \beta \subset \mathbb{Q} \quad \blacksquare \quad CutI[\beta]
    (1.8) \quad (p \in \beta \land q \in \mathbb{Q} \land q < p) \implies \dots
        (1.8.1) \quad p \in \beta \quad \blacksquare \ \exists_{r>0} (-p - r \notin \alpha) \quad \blacksquare \ r_0 := choice(\{r > 0 | -p - r \notin \alpha\})
        (1.8.2) q 
         (1.8.3) \quad -q - r \notin \alpha \quad \blacksquare \quad q \in \beta
```

 $(1.9) \quad (p \in \beta \land q \in \mathbb{Q} \land q < p) \implies q \in \beta \quad \blacksquare \quad \forall_{p \in \beta} \forall_{q \in \mathbb{Q}} (q < p \implies q \in \beta) \quad \blacksquare \quad CutII[\beta]$

 $(1.7) \quad (p \in \alpha +_{\mathbb{R}} \beta \wedge q \in \mathbb{Q} \wedge q < p) \implies \dots$

```
(1.10) \quad p \in \beta \implies \dots
         (1.10.1) \quad p \in \beta \quad \blacksquare \quad \exists_{r>0} (-p - r \notin \alpha) \quad \blacksquare \quad r_1 := choice(\{r > 0 | -p - r \notin \alpha\})
         (1.10.2) \quad t_0 := p + (r_1/2)
         (1.10.3) r_1 > 0   r_1/2 > 0
         (1.10.4) \quad t_0 > t_0 - (r_1/2) = p \quad \blacksquare t_0 > p
         (1.10.5) \quad -t_0 - (r_1/2) = -(p + (r_1/2)) - (r_1/2) = -p - r_1
         (1.10.6) \quad -p - r_1 \notin \alpha \quad \blacksquare \quad -t_0 - (r_1/2) \notin \alpha \quad \blacksquare \quad \exists_{r>0} (-t_0 - r \notin \alpha) \quad \blacksquare \quad t_0 \in \beta
         (1.10.7) \quad t_0 > p \land t_0 \in \beta \quad \blacksquare \quad \exists_{t \in \beta} (p < t)
     (1.11) \quad p \in \beta \implies \exists_{t \in \beta} (p < t) \quad \blacksquare \quad \forall_{p \in \beta} \exists_{t \in \beta} (p < t) \quad \blacksquare \quad CutIII[\beta]
     (1.12) \quad CutI[\beta] \land CutII[\beta] \land CutIII[\beta] \quad \blacksquare \ \beta \in \mathbb{R}
     (1.13) \quad (r \in \alpha \land s \in \beta) \implies \dots
         (1.13.1) \quad s \in \beta \quad \blacksquare \quad \exists_{t>0} (-s-t \notin \alpha) \quad \blacksquare \quad t_1 := choice(\{t>0|-s-t \notin \alpha\}) \quad \blacksquare \quad -s-t_1 < -s = t 
         (1.13.2) \quad \alpha \in \mathbb{R} \land s, t_1 \in \mathbb{Q} \land -s - t_1 < -s \land -s - t_1 \notin \alpha \quad \blacksquare \ -s \notin \alpha
         (1.13.3) \quad \alpha \in \mathbb{R} \land r \in \alpha \land -s \notin \alpha \quad \blacksquare \quad r < -s \quad \blacksquare \quad r + s < 0 \quad \blacksquare \quad r + s \in 0_{\mathbb{R}}
     (1.14) \quad (r \in \alpha \land s \in \beta) \implies r + \overline{s} \in 0_{\mathbb{R}} \quad \blacksquare \quad \forall_{(r,s) \in \alpha \times \beta} (r + s \in 0_{\mathbb{R}}) \quad \blacksquare \quad \alpha +_{\mathbb{R}} \quad \overline{\beta} \subseteq 0_{\mathbb{R}}
     (1.15) \quad v \in 0_{\mathbb{R}} \implies \dots
         (1.15.1) \quad v < 0 \quad \blacksquare \quad w_0 := -v/2 \quad \blacksquare \quad w > 0
                                                                                                                                                                                                                                                                    from: ARCHIMEDEANPROPERTYOFO + LUB
         (1.15.2) \quad \exists_{n \in \mathbb{Z}} (nw_0 \in \alpha \land (n+1)w_0 \notin \alpha) \quad \blacksquare \quad n_0 := choice(\{n \in \mathbb{Z} \mid nw_0 \in \alpha \land (n+1)w_0 \notin \alpha\})
         (1.15.3) \quad p_0 := -(n_0 + 2)w_0 \quad \blacksquare \quad -p_0 - w_0 = (n_0 + 2)w_0 - w_0 = (n_0 + 1)w_0 \notin \alpha \quad \blacksquare \quad -p_0 - w_0 \notin \alpha \quad \blacksquare \quad p_0 \in \beta
         (1.15.4) \quad n_0 w_0 \in \alpha \land p_0 \in \beta \quad \blacksquare \quad n_0 w_0 + p_0 = n_0 (-v/2) + -(n_0 + 2) - v/2 = v \in \alpha +_{\mathbb{R}} \beta
     (1.16) \quad v \in 0_{\mathbb{R}} \implies v \in \alpha +_{\mathbb{R}} \beta \quad \blacksquare \quad \forall_{v \in 0_{\mathbb{R}}} (v \in \alpha +_{\mathbb{R}} \beta) \quad \blacksquare \quad 0_{\mathbb{R}} \subseteq \alpha +_{\mathbb{R}} \beta
     (1.17) \quad \alpha +_{\mathbb{R}} \beta \subseteq 0_{\mathbb{R}} \wedge 0_{\mathbb{R}} \subseteq \alpha +_{\mathbb{R}} \beta \quad \blacksquare \quad \alpha +_{\mathbb{R}} \beta = 0_{\mathbb{R}}
     (1.18) \quad \beta \in \mathbb{R} \land \alpha +_{\mathbb{R}} \beta = 0_{\mathbb{R}} \quad \blacksquare \quad \exists_{-\alpha \in \mathbb{R}} (\alpha +_{\mathbb{R}} (-\alpha) = 0_{\mathbb{R}})
(2) \quad \alpha \in \mathbb{R} \implies \exists_{-\alpha \in \mathbb{R}} (\alpha +_{\mathbb{R}} (-\alpha) = 0_{\mathbb{R}})
     [\alpha,\beta] :=
     x := \{x \in \mathbb{Q} | x < 1\}
   IsNot0 := 0_{\mathbb{R}} \neq 1_{\mathbb{R}}
                                                                                \mathsf{R} := (\alpha, \beta \in \mathbb{R}) \implies ((\alpha *_{\mathbb{R}} \beta) \in \mathbb{R})
                                                                                               \mathbf{R} := (\alpha, \beta \in \mathbb{R}) \implies (\alpha *_{\mathbb{R}} \beta = \beta *_{\mathbb{R}} \alpha)
                                                                                               := (\alpha, \beta, \gamma \in \mathbb{R}) \implies ((\alpha *_{\mathbb{R}} \beta) *_{\mathbb{R}} \gamma = \alpha *_{\mathbb{R}} (\beta *_{\mathbb{R}} \gamma))
                                                                                    := (\alpha \in \mathbb{R}) \implies 1_{\mathbb{R}} *_{\mathbb{R}} \alpha = \alpha
                                                                     \mathbf{POfR} := (\alpha \in \mathbb{R}) \implies \exists_{1/\alpha \in \mathbb{R}} (\alpha *_{\mathbb{R}} (1/\alpha) = 1_{\mathbb{R}})
     ield\ Distributativit yOf\ R:=(\alpha,\beta,\gamma\in\mathbb{R})\implies\gamma*_{\mathbb{R}}(\alpha+_{\mathbb{R}}\beta)=\gamma*_{\mathbb{R}}\alpha+\gamma*_{\mathbb{R}}\beta
      egin{aligned} \operatorname{cold} W & \operatorname{ith} R := \operatorname{Field}[\mathbb{R}, +_{\mathbb{R}}, *_{\mathbb{R}}] & - \\ \operatorname{cold} \operatorname{cold} W & \operatorname{ith} R := \operatorname{Ordered} \operatorname{Field}[\mathbb{R}, +_{\mathbb{R}}, *_{\mathbb{R}}, <_{\mathbb{R}}] \end{aligned}
  \mathbf{Q}_{\mathbb{R}} := \{ \{ r \in \mathbb{Q} | r < q \} | q \in \mathbb{Q} \}
                                                               oldsymbol{\mathsf{R}}:=OrderedSubfield[\mathbb{Q}_{\mathbb{R}},\mathbb{R},+_{\mathbb{R}},*_{\mathbb{R}},<_{\mathbb{R}}]
                                                 :=\mathbb{Q}_{\mathbb{R}}\simeq\mathbb{Q}
     \exists_{\mathbb{R}}(LUBProperty[\mathbb{R}, <_{\mathbb{R}}] \land OrderedSubfield[\mathbb{Q}, \mathbb{R}, +_{\mathbb{R}}, *_{\mathbb{R}}, <_{\mathbb{R}}] ) 
(1.20)
                                        opertyOf R := \forall_{x,y \in \mathbb{R}} (x > 0 \implies \exists_{n \in \mathbb{N}^+} (nx > y))
(1) (x, y \in \mathbb{R} \land x > 0) \implies \dots
    (1.1) \quad \underline{A} := \{ nx | n \in \mathbb{N}^+ \} \quad \blacksquare \quad (\emptyset \neq A \subset \mathbb{R}) \land (a \in A \iff \exists_{m \in \mathbb{N}^+} (mx = a)) 
     (1.2) \quad \neg \exists_{n \in \mathbb{N}^+} (nx > y) \implies \dots
         (1.2.1) \quad \neg \exists_{n \in \mathbb{N}^+} (nx > y) \quad \blacksquare \quad \forall_{n \in \mathbb{N}^+} (nx \le y) \quad \blacksquare \quad UpperBound[y_0, A, \mathbb{R}, <] \quad \blacksquare \quad Bounded Above[A, \mathbb{R}, <]
         (1.2.2) CompletenessOf R \mid LUBProperty[\mathbb{R}, <]
         (1.2.3) \quad (LUBProperty[\mathbb{R},<]) \land (\emptyset \neq A \subset \mathbb{R}) \land (Bounded Above[A,\mathbb{R},<]) \quad \blacksquare \quad \exists_{\alpha \in \mathbb{R}} (LUB[\alpha,A,\mathbb{R},<]) \quad . \quad .
```

```
(1.2.4) \quad \dots \alpha_0 := choice(\{\alpha \in \mathbb{R} | LUB[\alpha, A, \mathbb{R}, <]\}) \quad \blacksquare LUB[\alpha_0, A, \mathbb{R}, <]
            (1.2.5) x > 0 \quad \square \quad \alpha_0 - x < \alpha_0
             (1.2.6) \quad (\alpha_0 - x < \alpha_0) \land (LUB[\alpha_0, A, \mathbb{R}, <]) \quad \blacksquare \quad \neg UpperBound[\alpha_0 - x, A, \mathbb{R}, <]
            (1.2.7) \quad \neg UpperBound[\alpha_0 - x, A, \mathbb{R}, <] \quad \blacksquare \quad \exists_{c \in A}(\alpha_0 - x < c) \quad \dots
            (1.2.8) \quad \overline{ \ldots c_0 := choice(\{c \in A | \alpha_0 - x < c\})} \quad \blacksquare \quad (c_0 \in A) \land (\alpha_0 - x < c_0)
            (1.2.9) \quad (c_0 \in A) \land (a \in A \iff \exists_{m \in \mathbb{N}^+} (mx = a)) \quad \blacksquare \quad \exists_{m \in \mathbb{N}^+} (mx = c_0) \quad \dots
            (1.2.10) \quad \dots m_0 := choice(\{m \in \mathbb{N}^+ | mx = c_0\}) \quad \blacksquare \quad (m_0 \in \mathbb{N}^+) \land (m_0 x = c_0)
              (1.2.11) \quad (\alpha_0 - x < c_0) \land (m_0 x = c_0) \quad \blacksquare \quad \alpha_0 - x < c_0 = m_0 x \quad \blacksquare \quad \alpha_0 < m_0 x + x \quad \blacksquare \quad \alpha_0 < (m_0 + 1) x < m_0 < (m_0 + 1) x < (
            (1.2.12) m_0 \in \mathbb{N}^+ \blacksquare m_0 + 1 \in \mathbb{N}^+
            (1.2.13) \quad (m_0+1\in\mathbb{N}^+) \wedge (a\in A \iff \exists_{m\in\mathbb{N}^+}(mx=a)) \quad \blacksquare \quad (m_0+1)x\in A
            (1.2.14) \quad (\alpha_0 < (m_0 + 1)x) \land ((m_0 + 1)x \in A) \quad \blacksquare \ \exists_{c \in A} (\alpha_0 < c)
            (1.2.15) \quad \textbf{\textit{LUB}}[\alpha_0, A, \mathbb{R}, <] \quad \blacksquare \quad \textbf{\textit{UpperBound}}[\alpha_0, A, \mathbb{R}, <] \quad \blacksquare \quad \forall_{c \in A}(c \leq \alpha_0) \quad \blacksquare \quad \neg \exists_{c \in A}(c > \alpha_0) \quad \blacksquare \quad \neg \exists_{c \in A}(\alpha_0 < c) 
              (1.2.16) \quad (\exists_{c \in A}(\alpha_0 < c)) \land (\neg \exists_{c \in A}(\alpha_0 < c)) \quad \blacksquare \perp
       (1.3) \quad \neg \exists_{n \in \mathbb{N}^+} (nx > y) \implies \bot \quad \blacksquare \quad \exists_{n \in \mathbb{N}^+} (nx > y)
(2) \quad (x, y \in \mathbb{R} \land x > 0) \implies \exists_{n \in \mathbb{N}^+} (nx > y) \quad \blacksquare \quad \forall_{x, y \in \mathbb{R}} (x > 0 \implies \exists_{n \in \mathbb{N}^+} (nx > y))
  \bigcirc \text{DenseInR} := \forall_{x,y \in \mathbb{R}} (x < y \implies \exists_{p \in \mathbb{Q}} (x < \overline{p} < y)) 
(1) (x, y \in \mathbb{R} \land x < y) \implies \dots
      (1.1) \quad x < y \quad \blacksquare \quad (0 < y - x) \land (y - x \in \mathbb{R})
       (1.2) Archimedean Property Of R \land (0 < y - x) \land (y - x, 1 \in \mathbb{R}) \quad \exists \eta \in \mathbb{R} \mid (n(y - x) > 1) \dots
       (1.3) \quad \dots n_0 := choice(\{n \in \mathbb{N}^+ | n(y-x) > 1\}) \quad \blacksquare \quad (n_0 \in \mathbb{N}^+) \land (n_0(y-x) > 1)
       (1.4) \quad (n_0 \in \mathbb{N}^+) \land (x \in \mathbb{R}) \quad \blacksquare \quad n_0 x, -n_0 x \in \mathbb{R}
       (1.5) \quad Archimedean Property Of R \land (1 > 0) \land (n_0 x, 1 \in \mathbb{R}) \quad \blacksquare \quad \exists_{m \in \mathbb{N}^+} (m(1) > n_0 x) \dots
       (1.6) 	 \dots m_1 := \overline{choice}(\{m \in \mathbb{N}^+ | m(1) > n_0 x\}) \quad \blacksquare (m_1 \in \mathbb{N}^+) \land (m_1 > n_0 x)
       (1.7) \quad Archimedean Property Of R \land (1 > 0) \land (-n_0 x, 1 \in \mathbb{R}) \quad \blacksquare \ \exists_{m \in \mathbb{N}^+} (m(1) > -n_0 x) \ \dots
       (1.8) \quad \dots m_2 := choice(\{m \in \mathbb{N}^+ | m(1) > -n_0 x\}) \quad \blacksquare \quad (m_2 \in \mathbb{N}^+) \land (m_2 > -n_0 x)
       (1.9) \quad (m_1 > n_0 x) \land (m_2 > -n_0 x) \quad \blacksquare \quad -m_2 < n_0 x < m_1
       (1.10) \quad m_1, m_2 \in \mathbb{N}^+ \quad || |m_1 - (-m_2)| \ge 2
       (1.11) \quad (-m_2 < n_0 x < m_1) \land (|m_1 - (-m_2)| \ge 2) \quad \blacksquare \quad \exists_{m \in \mathbb{Z}} ((-m_2 < m < m_1) \land (m-1 \le n_0 x < m)) \quad \dots
       (1.12) \quad \dots \quad m_0 := choice(\{m \in \mathbb{Z} | (-m_2 < m < m_1) \land (m-1 \le n_0 x < m)\}) \quad \blacksquare \quad (-m_2 < m_0 < m_1) \land (m_0 - 1 \le n_0 x < m_0)
       (1.13) \quad (n_0(y-x) > 1) \wedge (m_0 - 1 \le n_0 x < m_0) \quad \blacksquare \quad n_0 x < m_0 \le 1 + n_0 x < n_0 y \quad \blacksquare \quad n_0 x < m_0 < n_0 y
      (1.14) \quad (n_0 \in \mathbb{N}^+) \land (n_0 x < m_0 < n_0 y) \quad \blacksquare \quad x < m_0 / n_0 < y
       (1.15) \quad \overline{m_0, n_0 \in \mathbb{Z} \quad \blacksquare \quad m_0/n_0 \in \mathbb{Q}}
      (1.16) \quad (m_0/n_0 \in \mathbb{Q}) \land (x < m_0/n_0 < y) \quad \blacksquare \quad \exists_{p \in \mathbb{Q}} (x < p < y)
(2) \quad (x,y \in \mathbb{R} \land x < y) \implies \exists_{p \in \mathbb{Q}} (x < p < y) \quad \blacksquare \quad \forall_{x,y \in \mathbb{R}} (x < y \implies \exists_{p \in \mathbb{Q}} (x < p < y))
(1.21)
                         mma := (0 < a < b) \implies (b^n - a^n \le (b - a)nb^{n-1})
(1) \quad (0 < a < b) \implies \dots
     (1.1) b^n - a^n = (b - a) \sum_{i=1}^n (b^{n-i}a^{i-1})
      (1.2) 0 < a < b \mid b/a > 1
      (1.3) \quad b/a > 1 \quad \blacksquare \quad \sum_{i=1}^{n} (b^{n-i}a^{i-1}) \le \sum_{i=1}^{n} (b^{n-i}a^{i-1}(b/a)^{i-1}) = \sum_{i=1}^{n} (b^{n-1}) = nb^{n-1} \quad \blacksquare \quad \sum_{i=1}^{n} (b^{n-i}a^{i-1}) \le \sum_{i=1}^{n} (b^{n-1}) = nb^{n-1} = nb^{n-1
     (1.4) \quad b^n - a^n = (b - a) \sum_{i=1}^n (b^{n-i}a^{i-1}) \le (b - a)nb^{n-1} \quad \blacksquare \quad b^n - a^n \le (b - a)nb^{n-1}
 (2) (0 < a < b) \implies (b^n - a^n \le (b - a)nb^{n-1})
     \operatorname{Root} E_{x} \operatorname{istence} \operatorname{In} R := \overline{\forall_{0 < x \in \mathbb{R}}} \overline{\forall_{0 < n \in \mathbb{Z}}} \exists !_{0 < y \in \mathbb{R}} (y_0^n = x)
(1) (0 < x \in \mathbb{R} \land 0 < n \in \mathbb{Z}) \implies \dots
      (1.1) \quad E := \{t \in \mathbb{R} | t > 0 \land t^n < x\} \quad \blacksquare \quad t \in E \iff (t \in \mathbb{R} \land t > 0 \land t^n < x)
      (1.2) \quad t_0 := x/(1+x) \quad \blacksquare \quad (t_0 = x/(1+x)) \land (t_0 \in \mathbb{R})
       (1.3) \quad 0 < x \quad \blacksquare \quad 0 < x < 1 + x \quad \blacksquare \quad t_0 = x/(1+x) > 0 \quad \blacksquare \quad t_0 > 0
```

```
(1.4) \quad 1 = (1+x)/(1+x) > x/(1+x) = t_0 \quad \blacksquare \quad 1 > t_0
(1.5) \quad (t_0 > 0) \land (1 > t_0) \quad \blacksquare \quad 0 < t_0 < 1
(1.6) \quad (0 < n \in \mathbb{Z}) \land (0 < t_0 < 1) \quad \blacksquare \ t_0^n \le t_0
(1.7) 0 < x \mid x > x/(1+x) = t_0 \mid x > t_0
(1.8) \quad (t_0^n \le t_0) \land (x > t_0) \quad \blacksquare \quad t_0^n < x
(1.9) \quad (t \in E \iff (t \in \mathbb{R} \land t > 0 \land t^n < x)) \land (t_0 \in \mathbb{R}) \land (t_0 > 0) \land (t_0^n < x) \quad \blacksquare \ t_0 \in E \quad \blacksquare \ \emptyset \neq E
(1.10) \quad t_1 := choice(\{t \in \mathbb{R} | t > 1 + x\}) \quad \boxed{\quad } (t_1 \in \mathbb{R}) \land (t_1 > 1 + x)
(1.11) \quad x > 0 \quad \blacksquare \quad t_1 > 1 + x > 1 \quad \blacksquare \quad t_1 > 1 \quad \blacksquare \quad t_1^n \ge t_1
(1.12) \quad (t_1^n \ge t_1) \land (t_1 > 1 + x) \land (1 > 0) \quad \blacksquare \quad t_1^n \ge t_1 > 1 + x > x \quad \blacksquare \quad t_1^n > x
(1.13) \quad (t \in E \iff (t \in \mathbb{R} \land t > 0 \land t^n < x)) \land (t_1^n > x) \quad \blacksquare \ t_1 \notin E \quad \blacksquare \ E \subset \mathbb{R}
(1.14) \quad (\emptyset \neq E) \land (E \subset \mathbb{R}) \quad \blacksquare \quad \emptyset \neq E \subset \mathbb{R}
(1.15) \quad t \in E \implies \dots
  (1.15.1) \quad (t \in E) \land (t \in E \iff (t \in \mathbb{R} \land t > 0 \land t^n < x)) \quad \blacksquare t^n < x
  (1.15.2) \quad (t_1^n > x) \land (t^n < x) \quad \blacksquare \quad t^n < x < t_1^n \quad \blacksquare \quad t < t_1
(1.16) \quad t \in E \implies t < t_1 \quad \blacksquare \quad \forall_{t \in E} (t \le t_1) \quad \blacksquare \quad UpperBound[t_1, E, \mathbb{R}, <] \quad \blacksquare \quad Bounded \ Above[E, \mathbb{R}, <]
(1.17) CompletenessOf R \mid LUBProperty[\mathbb{R}, <]
```

 $(1.18) \quad (LUBProperty[\mathbb{R}, <]) \land (\emptyset \neq E \subset \mathbb{R}) \land (Bounded Above[E, \mathbb{R}, <]) \quad \blacksquare \ \exists_{v \in \mathbb{R}} (LUB[y, E, \mathbb{R}, <]) \ \dots$

 $(1.19) \quad \ldots y_0 := choice(\{y \in \mathbb{R} | LUB[y, E, \overline{\mathbb{R}}, <]\}) \quad \blacksquare \quad LUB[y_0, E, \mathbb{R}, <]$

 $(1.20) \quad (LUB[y_0, E, \mathbb{R}, <]) \land (t_0 \in E) \land (t_0 > 0) \quad \blacksquare \ 0 < t_0 \leq y_0 \in \mathbb{R} \quad \blacksquare \ 0 < y_0 \in \mathbb{R}$

 $(1.21) \quad y_0^n < x \implies \dots$

$$(1.21.1) \quad k_0 := \frac{x - y_0^n}{n(y_0 + 1)^{n - 1}} \quad \blacksquare \quad k_0 \in \mathbb{R}$$

 $(1.21.2) \quad y_0^n < x \quad \blacksquare \quad 0 < x - y_0^n$

 $(1.21.3) \quad (n > 0) \land (y_0 > 0) \quad \blacksquare \quad 0 < n(y_0 + 1)^{n-1}$

$$(1.21.4) \quad (0 < x - y_0^n) \wedge (0 < n(y_0 + 1)^{n-1}) \ \, \blacksquare \ \, 0 < \frac{x - y_0^n}{n(y_0 + 1)^{n-1}} = k_0 \ \, \blacksquare \ \, 0 < k_0$$

 $(1.21.5) \quad (0 < 1 \in \mathbb{R}) \land (0 < k_0 \in \mathbb{R}) \quad \blacksquare \quad 0 < \min(1, k_0) \in \mathbb{R}$

 $(1.21.6) \quad \textit{QDenseInR} \land (0, \min(1, k_0) \in \mathbb{R}) \land (0 < \min(1, k_0)) \quad \blacksquare \quad \exists_{h \in \mathbb{Q}} (0 < h < \min(1, k_0)) \quad \dots \quad \exists_{h \in \mathbb{Q}} (0 < h < \min(1, k_0)) \quad \dots \quad \exists_{h \in \mathbb{Q}} (0 < h < \min(1, k_0)) \quad \dots \quad \exists_{h \in \mathbb{Q}} (0 < h < \min(1, k_0)) \quad \dots \quad \exists_{h \in \mathbb{Q}} (0 < h < \min(1, k_0)) \quad \dots \quad \exists_{h \in \mathbb{Q}} (0 < h < \min(1, k_0)) \quad \dots \quad \exists_{h \in \mathbb{Q}} (0 < h < \min(1, k_0)) \quad \dots \quad \exists_{h \in \mathbb{Q}} (0 < h < \min(1, k_0)) \quad \dots \quad \exists_{h \in \mathbb{Q}} (0 < h < \min(1, k_0)) \quad \dots \quad \exists_{h \in \mathbb{Q}} (0 < h < \min(1, k_0)) \quad \dots \quad \exists_{h \in \mathbb{Q}} (0 < h < \min(1, k_0)) \quad \dots \quad \exists_{h \in \mathbb{Q}} (0 < h < \min(1, k_0)) \quad \dots \quad \exists_{h \in \mathbb{Q}} (0 < h < \min(1, k_0)) \quad \dots \quad \exists_{h \in \mathbb{Q}} (0 < h < \min(1, k_0)) \quad \dots \quad \exists_{h \in \mathbb{Q}} (0 < h < \min(1, k_0)) \quad \dots \quad \exists_{h \in \mathbb{Q}} (0 < h < \min(1, k_0)) \quad \dots \quad \exists_{h \in \mathbb{Q}} (0 < h < \min(1, k_0)) \quad \dots \quad \exists_{h \in \mathbb{Q}} (0 < h < \min(1, k_0)) \quad \dots \quad \exists_{h \in \mathbb{Q}} (0 < h < \min(1, k_0)) \quad \dots \quad \exists_{h \in \mathbb{Q}} (0 < h < \min(1, k_0)) \quad \dots \quad \exists_{h \in \mathbb{Q}} (0 < h < \min(1, k_0)) \quad \dots \quad \exists_{h \in \mathbb{Q}} (0 < h < \min(1, k_0)) \quad \dots \quad \exists_{h \in \mathbb{Q}} (0 < h < \min(1, k_0)) \quad \dots \quad \exists_{h \in \mathbb{Q}} (0 < h < \min(1, k_0)) \quad \dots \quad \exists_{h \in \mathbb{Q}} (0 < h < \min(1, k_0)) \quad \dots \quad \exists_{h \in \mathbb{Q}} (0 < h < \min(1, k_0)) \quad \dots \quad \exists_{h \in \mathbb{Q}} (0 < h < \min(1, k_0)) \quad \dots \quad \exists_{h \in \mathbb{Q}} (0 < h < \min(1, k_0)) \quad \dots \quad \exists_{h \in \mathbb{Q}} (0 < h < \min(1, k_0)) \quad \dots \quad \exists_{h \in \mathbb{Q}} (0 < h < \min(1, k_0)) \quad \dots \quad \exists_{h \in \mathbb{Q}} (0 < h < \min(1, k_0)) \quad \dots \quad \exists_{h \in \mathbb{Q}} (0 < h < \min(1, k_0)) \quad \dots \quad \exists_{h \in \mathbb{Q}} (0 < h < \min(1, k_0)) \quad \dots \quad \exists_{h \in \mathbb{Q}} (0 < h < \min(1, k_0)) \quad \dots \quad \exists_{h \in \mathbb{Q}} (0 < h < \min(1, k_0)) \quad \dots \quad \exists_{h \in \mathbb{Q}} (0 < h < \min(1, k_0)) \quad \dots \quad \exists_{h \in \mathbb{Q}} (0 < h < \min(1, k_0)) \quad \dots \quad \exists_{h \in \mathbb{Q}} (0 < h < \min(1, k_0)) \quad \dots \quad \exists_{h \in \mathbb{Q}} (0 < h < \min(1, k_0)) \quad \dots \quad \exists_{h \in \mathbb{Q}} (0 < h < \min(1, k_0)) \quad \dots \quad \exists_{h \in \mathbb{Q}} (0 < h < \min(1, k_0)) \quad \dots \quad \exists_{h \in \mathbb{Q}} (0 < h < \min(1, k_0)) \quad \dots \quad \exists_{h \in \mathbb{Q}} (0 < h < \min(1, k_0)) \quad \dots \quad \exists_{h \in \mathbb{Q}} (0 < h < \min(1, k_0)) \quad \dots \quad \exists_{h \in \mathbb{Q}} (0 < h < \min(1, k_0)) \quad \dots \quad \exists_{h \in \mathbb{Q}} (0 < h < \min(1, k_0)) \quad \dots \quad \exists_{h \in \mathbb{Q}} (0 < h < \min(1, k_0)) \quad \dots \quad \exists_{h \in \mathbb{Q}} (0 < h < \min(1, k_0)) \quad \dots \quad \exists_{h \in \mathbb{Q}} (0 < h < \min(1, k_0)) \quad \dots \quad \exists_{h \in \mathbb{Q}} (0 < h < \min(1, k_0)) \quad \dots \quad \exists_{h \in \mathbb{Q}} (0 < h <$

$$(1.21.7) \quad \dots h_0 := choice(\{h \in \mathbb{Q} | 0 < h < min(1, k_0)\}) \quad \blacksquare \quad (0 < h_0 < 1) \land (h_0 < k_0 = \frac{x - y_0^n}{n(y_0 + 1)^{n-1}})$$

 $(1.21.8) \quad (y_0 > 0) \land (h_0 > 0) \quad \blacksquare \quad 0 < y_0 < y_0 + h_0$

$$(1.21.9) \quad \textit{Root Lemma} \land (0 < y_0 < y_0 + h_0) \quad \blacksquare \ (y_0 + h_0)^n - y_0^n < h_0 n (y_0 + h_0)^{n-1}$$

 $(1.21.10) \quad h_0 < 1 \quad \blacksquare \quad h_0 n(y_0 + h_0)^{n-1} < h_0 n(y_0 + 1)^{n-1}$

$$(1.21.11) \quad ((y_0+h_0)^n-y_0^n < h_0 n (y_0+h_0)^{n-1}) \wedge (h_0 n (y_0+h_0)^{n-1} < h_0 n (y_0+1)^{n-1}) \quad \blacksquare \ (y_0+h_0)^n-y_0^n < h_0 n (y_0+1)^{n-1} > 0$$

 $(1.21.12) \quad (0 < n(y_0+1)^{n-1}) \wedge (h_0 < k_0 = \frac{x-y_0^n}{n(y_0+1)^{n-1}}) \ \ \blacksquare \ h_0 n(y_0+1)^{n-1} < x-y_0^n = \frac{x-y_0^n}{n(y_0+1)^{n-1}}$

$$(1.21.13) \quad ((y_0+h_0)^n-y_0{}^n < h_0n(y_0+1)^{n-1}) \wedge (h_0n(y_0+1)^{n-1} < x-y_0{}^n) \quad \blacksquare \ (y_0+h_0)^n-y_0{}^n < x-y_0{}^n \quad \blacksquare \ (y_0+h_0)^n < x-y_0{}^n$$

 $(1.21.14) \quad (y_0 + h_0)^n - y_0^n < x - y_0^n \quad \blacksquare \quad (y_0 + h_0)^n < x$

 $(1.21.15) \quad (0 < y_0 \mathbb{R}) \land (0 < h_0 < \mathbb{R}) \ \blacksquare \ 0 < y_0 < y_0 + h_0 \in \mathbb{R}$

 $(1.21.16) \quad (t \in E \iff (t \in \mathbb{R} \land t > 0 \land t^n < x)) \land ((y_0 + h_0)^n < x) \land (0 < y_0 + h_0 \in \mathbb{R}) \quad \blacksquare \quad (y_0 + h_0)^n \in E$

 $(1.21.17) \quad ((y_0 + h_0)^n \in E) \land (y_0 < y_0 + h_0) \quad \blacksquare \quad \exists_{e \in E} (y_0 < e)$

 $(1.21.18) \quad \underline{LUB}[y_0, E, \mathbb{R}, <] \quad \blacksquare \quad \underline{UpperBound}[y_0, E, \mathbb{R}, <] \quad \blacksquare \quad \forall_{e \in E}(e \leq y_0) \quad \blacksquare \quad \neg \exists_{e \in E}(e > y_0)$

 $(1.21.19) \quad (\exists_{e \in E} (e > y_0)) \land (\neg \exists_{e \in E} (e > y_0)) \quad \blacksquare \perp$

 $(1.22) \quad y_0^n < x \implies \bot \quad \blacksquare \quad y_0^n \ge x$

 $(1.23) \quad y_0^n > x \implies \dots$

$$(1.23.1) \quad k_1 := \frac{y_0^{n} - x}{n y_0^{n-1}} \quad \blacksquare \quad (k_1 \in \mathbb{R}) \wedge (k_1 n y_0^{n-1} = y_0^{n} - x)$$

$$(1.23.2) \quad (0 < x) \land (0 < n \in \mathbb{Z}) \quad \blacksquare \quad y_0^n - x < y_0^n \le ny_0^n \quad \blacksquare \quad y_0^n - x < ny_0^n$$

$$(1.23.3) \quad y_0^n - x < ny_0^n \quad \blacksquare \quad k_1 = \frac{y_0^n - x}{ny_0^{n-1}} < \frac{ny_0^n}{ny_0^{n-1}} = y_0 \quad \blacksquare \quad k_1 < y_0$$

 $(1.23.4) \quad y_0^n > x \quad \blacksquare \quad 0 < y_0^n - x$

$$(1.23.5) \quad (n > 0) \land (y_0 > 0) \quad \blacksquare \ 0 < ny_0^{n-1}$$

$$(1.23.6) \quad (0 < y_0^n - x) \land 0 < (ny_0^{n-1}) \quad \blacksquare \quad 0 < \frac{y_0^{n} - x}{ny_0^{n-1}} = k_1 \quad \blacksquare \quad 0 < k_1$$

```
(1.23.7) \quad (k_1 < y_0) \land (0 < k_1) \quad \blacksquare \quad (0 < k_1 < y_0) \land (0 < y_0 - k_1 < y_0)
        (1.23.8) t \ge y_0 - k_1 \implies \dots
            (1.23.8.1) \quad t \ge y_0 - k_1 \quad \blacksquare \quad t^n \ge (y_0 - k_1)^n \quad \blacksquare \quad -t^n \le -(y_0 - k_1)^n \quad \blacksquare \quad y_0^n - t^n \le y_0^n - (y_0 - k_1)^n 
            (1.23.8.2) \quad \textbf{RootLemma} \wedge (0 < y_0 - k_1 < y_0) \quad \blacksquare \quad y_0^n - (y_0 - k_1)^n < k_1 n y_0^{n-1}
            (1.23.8.3) \quad \overline{(y_0^n - t^n \le y_0^n - (y_0 - \overline{k_1})^n) \wedge (y_0^n - (y_0 - \overline{k_1})^n} < k_1 n y_0^{n-1}) \quad \blacksquare \quad y_0^n - t^n < k_1 n y_0^{n-1}
            (1.23.8.4) \quad (k_1 n y_0^{n-1} = y_0^n - x) \wedge (y_0^n - t^n < k_1 n y_0^{n-1}) \quad \blacksquare \quad y_0^n - t^n < y_0^n - x \quad \blacksquare \quad -t^n < -x \quad \blacksquare \quad t^n > x
            (1.23.8.5) \quad (t \in E \iff (t \in \mathbb{R} \land t > 0 \land t^n < x)) \land (t^n > x) \quad \blacksquare \ t \notin E
        (1.23.9) \quad t \geq y_0 - k_1 \implies t \not\in E \quad \blacksquare \ t \in E \implies t < y_0 - k_1 \quad \blacksquare \ \forall_{t \in E} (t \leq y_0 - k_1) \quad \blacksquare \ UpperBound[y_0 - k_1, E, \mathbb{R}, <]
        (1.23.10) \quad (LUB[y_0, E, \mathbb{R}, <] \land (y_0 - k_1 < y_0)) \quad \blacksquare \quad \neg UpperBound[y_0 - k_1, E, \mathbb{R}, <]
        (1.23.11) \quad (UpperBound[y_0 - k_1, E, \mathbb{R}, <]) \land (\neg UpperBound[y_0 - k_1, E, \mathbb{R}, <]) \quad \blacksquare \perp
    (1.24) \quad y_0^n > x \implies \bot \quad \blacksquare \quad y_0^n \le x
    (1.25) Order[\mathbb{R}, <] \ \square \ OrderTrichotomy[\mathbb{R}, <]
    (1.26) \quad \overline{(OrderTrichotomy[\mathbb{R}, <]) \land (y_0^n \ge x) \land (y_0^n \le x)} \quad \boxed{y_0^n = x}
    (1.27) \quad (y_0^n = x) \land (y_0 \in \mathbb{R}) \quad \blacksquare \quad \exists_{v \in \mathbb{R}} (y^n = x)
    (1.28) y_1, y_2 := choice(\{y \in \mathbb{R} | y^n = x\})
    (1.29) \quad y_1 \neq y_2 \implies \dots
       (1.29.1) (OrderTrichotomy[\mathbb{R}, <]) \land (y_1 \neq y_2) \  \  \, \  \  \, (y_1 < y_2) \lor (y_2 < y_1) \ldots
        (1.29.2) 	 \dots (x = y_1^n < y_2^n = x) \lor (x = y_2^n < y_1^n = x) \blacksquare (x < x) \lor (x > x) \blacksquare \bot \lor \bot \blacksquare \bot
    (1.30) \quad y_1 \neq y_2 \implies \bot \quad \blacksquare \quad y_1 = y_2 \quad \blacksquare \quad \forall_{a,b \in \mathbb{R}} ((a^n = x \land b^n = x) \implies a = b)
    (1.31) \quad (\exists_{y \in \mathbb{R}}(y^n = x)) \land (\forall_{a,b \in \mathbb{R}}((a^n = x \land b^n = x) \implies a = b)) \quad \blacksquare \quad \exists!_{y \in \mathbb{R}}(y^n = x)
(2) \quad (0 < x \in \mathbb{R} \land 0 < n \in \mathbb{Z}) \implies \exists!_{y \in \mathbb{R}} (y^n = x) \quad \blacksquare \quad \forall_{0 < x \in \mathbb{R}} \forall_{0 < n \in \mathbb{Z}} \exists!_{0 < y \in \mathbb{R}} (y_0^n = x)
             \exists x istence In RCorollary := \forall_{0 < a \in \mathbb{R}} \forall_{0 < b \in \mathbb{R}} \forall_{0 < n \in \mathbb{Z}} ((ab)^{1/n} = a^{1/n}b^{1/n})

\mathbf{\tilde{R}} = \mathbb{R} \cup \{-\infty, +\infty\} \quad \wedge \quad -\infty < x < \infty \quad \wedge \\
x + \infty = +\infty \quad \wedge \quad x - \infty = -\infty \quad \wedge \quad \frac{x}{+\infty} = \frac{x}{-\infty} = 0 \quad \wedge \\
(x > 0) \implies (x * (+\infty) = +\infty \wedge x * (-\infty) = -\infty) \wedge \\
(x < 0) \implies (x * (+\infty) = -\infty \wedge x * (-\infty) = +\infty)

\mathbb{C} := \{ \langle a, b \rangle \in \mathbb{R} \times \mathbb{R} \}
     -[\langle a,b\rangle,\langle c,d\rangle] := \langle a+_{\mathbb{R}} c,b+_{\mathbb{R}} d\rangle
    \sum [\langle a, b \rangle, \langle c, d \rangle] := \langle a *_{\mathbb{R}} c - b *_{\mathbb{R}} d, a *_{\mathbb{R}} d + b *_{\mathbb{R}} c \rangle
    SubfieldC := Subfield[\mathbb{R}, \mathbb{C}, +, *]
i := \langle 0, 1 \rangle \in \mathbb{C}
     Property: = i^2 = -1
 Property := (a, b \in \mathbb{R}) \implies (\langle a, b \rangle = a + bi)
Conjugate[\overline{a+bi}] := a-bi
 Conjugate Properties := (w, z \in \mathbb{C}) \implies \dots
(1) \overline{z+w} = \overline{z} + \overline{w}
(3) Re(z) = (1/2)(z + \overline{z}) \wedge Im(z) = (1/2)(z - \overline{z})
(4) \quad 0 \le z * \overline{z} \in \mathbb{R}
 Absolute V alue C[|z|] = (z * \overline{z})^{1/2}
                                   roperties := (z, w \in \mathbb{C}) \implies \dots
(1) 123123
```

14 CHALLER I. KEAL ANALISIS

TODO: - MORE EXPLICIT MODUS PONENS ON OrderTrichotomyR ??? - name all properties - hyperlink all definitions ???

Chapter 2

Abstract Algebra

```
Relation(f, X) := f \subseteq X
Function(f, X, Y) := X \neq \emptyset \neq Y \land Relation(f, X \times Y) \land \forall_{x \in X} \exists !_{v \in Y} ((x, y) \in f)
(Function(f, X, Y) \land A \subseteq X \land B \subseteq Y) \implies \dots
(1) Domain(f) := X; Codomain(f) := Y
(2) Image(f, A) := \{f(a) | a \in A\}; Preimage(f, B) := \{a | f(a) \in B\}
(3) Range(f) := Image(Domain(f))
\begin{split} &Injective(f,X,Y) := Function(f,X,Y) \land \forall_{x_1,x_2 \in X} (x_1 \neq x_2 \implies f(x_1) \neq f(x_2)) \\ &Surjective(f,X,Y) := Function(f,X,Y) \land \forall_{y \in Y} \exists_{x \in X} (y_0 = f(x)) \end{split}
Bijective(f, X, Y) := Injective(f, X, Y) \land Surjective(f, X, Y)
                              nt := (Range(f) = Codomain(f)) \implies Surjective(f)
(Function(f, X, Y) \land Function(g, Y, Z)) \implies (f \circ g)(x) := f(g(x)); Function(f \circ g, X, Z)
     \frac{\text{ropertiesof Functions}}{\text{Function}} := (Function(f, A, B) \land Function(g, B, C) \land Function(h, C, D)) \implies \dots 
(1) h \circ (g \circ f) = (h \circ g) \circ f
(2) (Injective(f) \land Injective(g)) \implies Injective(g \circ f)
(3) (Surjective(f) \land Surjective(g)) \implies Surjective(g \circ f)
(4) \quad (Bijective(f,A,B)) \implies \exists_{f^{-1}}(Function(f^{-1},B,A) \land \forall_{a \in A}(f^{-1}(f(a))=a) \land \forall_{b \in B}(f(f^{-1}(b))=b))
(a,b) := a, b \in \mathbb{Z} \land a \neq 0 \land \exists_{c \in \mathbb{Z}} (b = ac)
              tyT heorems: =(a,b,c,m,x,y\in\mathbb{Z})\implies \dots
(1) (a|b) \Longrightarrow a|bc
(2) (a|b \wedge b|c) \implies a|c|
(3) (a|b \wedge b|c) \implies a|(bx + cy)
(4) \quad (a|b \wedge b|a) \implies a = \pm b
(5) (a|b \land a > 0 \land b > 0) \implies (a \le b)
(6) (a|b) \iff (m \neq 0 \land ma|mb)
   ivision Algorithm := (a, b \in \mathbb{Z} \land a > 0) \implies \exists !_{q,r \in \mathbb{Z}} (b = aq + r)
 \mathbb{C}\mathbb{D}(a,b,c) := a,b,c \in \mathbb{Z} \wedge a|b \wedge a|c|
     \mathbf{D}(a,b,c) := CD(a,b,c) \land \forall_d ((d|b \land d|c) \implies d|a)
                       t := 123123
```

Chapter 3

Linear Algebra

```
Matrix(A, m, n) := [a_{i,j}]_{m \times n} := m \text{ rows, } n \text{ columns of real numbers}
+(A,B) := (A+B = [a_{i,j} + \overline{b_{i,j}}]_{m \times n}) \wedge (Matrix(A,m,n)) \wedge (Matrix(B,m,n))
*(r,A) := (r*A = [ra_{i,j}]_{m \times n}) \wedge (Matrix(A, m, n))
*(A,B) := (A*B = \left[\sum_{k=1}^{p} (a_{i,k}b_{k,j})\right]_{m \times n}) \wedge (Matrix(A,m,p)) \wedge (Matrix(B,p,n))
T(A) := (A^T = [a_{j,i}]_{n \times m}) \wedge (M \operatorname{atrix}(A, m, n))
AddCom := A + B = B + A \quad \blacksquare \leftarrow A + B = [a_{i,j} + b_{i,j}] = [b_{i,j} + a_{i,j}] = B + A
AddAssoc := (A + B) + C = \overline{A} + (B + C) \quad \blacksquare \leftarrow (A + B) + \overline{C} = [(a_{i,j} + b_{i,j}) + c_{i,j}] = [a_{i,j} + (b_{i,j} + c_{i,j})] = A + (B + C)
 AddId := A + O = A = O + A \quad \blacksquare \leftarrow A + O = [a_{i,j} + 0] = A = [0 + a_{i,j}] = O + A
 AddInv := A + (-A) = O = (-A) + A \quad \blacksquare \leftarrow A + (-A) = [a_{i,j} - a_{i,j}] = O = [-a_{i,j} + a_{i,j}] = (-A) + A
 MulAssoc := (A * B) * C = A * (B * C) \blacksquare \leftarrow

\overline{(1) \quad (A * B) * C = \left[\sum_{k_1=1}^{p_1} (a_{i,k_1} b_{k_1,j})\right] * C = \left[\sum_{k_2=1}^{p_2} (\sum_{k_1=1}^{p_1} (a_{i,k_1} b_{k_1,k_2}) c_{k_2,j})\right] = \left[\sum_{k_2=1}^{p_2} \sum_{k_1=1}^{p_1} (a_{i,k_1} b_{k_1,k_2} c_{k_2,j})\right] = \dots}

(2) \quad \dots \left[ \sum_{k_1=1}^{p_1} \sum_{k_2=1}^{p_2} (a_{i,k_1} b_{k_1,k_2} c_{k_2,j}) \right] = \left[ \sum_{k_1=1}^{p_1} (a_{i,k_1} \sum_{k_2=1}^{p_2} (b_{k_1,k_2} c_{k_2,j})) \right] = \dots = A * (B * C)
 LeftDist := (A + B) * C = A * C + B * C  \blacksquare \leftarrow
(1) (A+B)*C = [a_{i,j}+b_{i,j}]*C = \left[\sum_{k=1}^{p} ((a_{i,k}+b_{i,k})c_{k,j})\right] = \dots
(2)  ... \left[ \sum_{k=1}^{p} (a_{i,k} c_{k,j} + b_{i,k} c_{k,j}) \right] = \left[ \sum_{k=1}^{p} (a_{i,k} c_{k,j}) \right] + \left[ \sum_{k=1}^{p} (b_{i,k} c_{k,j}) \right] = A * C + B * C 
 \overline{Right}Dist := C * \overline{(A+B) * C} = C * A + \overline{C} * B
Scalar1 := r(sA) = (rs)A = s(rA)
Scalar2 := A(rb) = r(AB)
Scalar3 := (r + s)A = rA + rS
Scalar4 := r(A + B) = rA + rB
Trans1 := A = (A^T)^T \quad \blacksquare \leftarrow A = [a_{i,j}] = [a_{i,j}]^T = ([a_{i,j}]^T)^T = (A^T)^T
Trans2 := (A + B)^T = A^T + B^T
Trans3 := (A * B)^T = B^T * A^T \quad \blacksquare \leftarrow (A * B)^T = \left[ \sum_{k=1}^p (a_{i,k} b_{k,j}) \right]^T = \left[ \sum_{k=1}^p (a_{j,k} b_{k,i}) \right] = \left[ \sum_{k=1}^p (b_{k,i} a_{j,k}) \right] = \left[ \sum_{k=1}^p (b_{i,k}^T a_{k,j}^T) \right] = B^T * A^T = \left[ \sum_{k=1}^p (a_{i,k} b_{k,k}) \right]^T = \left[ \sum_{k=1}^p (a_{i,k} b_{k,k}) \right] = \left[ \sum_{k=1}^p (a_{i,k} b_{k,k})
Sym(A) := A = A^T; SkewSym(A) := A = -A^T
SymGen := Sym(A + A^T) \quad \blacksquare \leftarrow (A + A^T)^T = A^T + (A^T)^T = A^T + A = A + A^T
SkewSymGem := SkewSym(A - A^T) \quad \blacksquare \leftarrow -(A - A^T)^T = -(A^T - (A^T)^T) = -(A^T - A) = (A - A^T)^T = -(A^T - A) = (A^T - A) = (
SymDec := A = (1/2) * (A + A^{T}) + (1/2) * (A - A^{T})
Square(A) := Matrix(A, n, n)
 Diagonal(A) := (Square(A)) \land (i \neq j \implies a_{i,j} = 0)
Scalar(A) := (Diagonal(A)) \land (a_{i,i} = k)
 I := (Scalar(I)) \land (i_{d,d} = 1)
 MulId := A * I = A = I * A
```

 $UpperTriangular(A) := (Square(A)) \land (i > \implies a_{i,j} = 0)$

```
LowerTriangular(A) := (Square(A)) \land (i < j \implies a_{i,j} = 0)
  Invertible(A) := \exists_{A^{-1}}(A * A^{-1} = I = A^{-1} * A)
UniqueInverse := ((A * B_1 = I) \land (A * B_2 = I)) \implies B_1 = B_2
  Inv1 := (Invertible(A) \land Invertible(B)) \implies (A * B)^{-1} = B^{-1} * A^{-1} \blacksquare \leftarrow
(1) (A * B) * (A * B)^{-1} = I \blacksquare B * (A * B)^{-1} = A^{-1} \blacksquare (A * B)^{-1} = B^{-1} * A^{-1}
 Inv2 := (Invertible(A)) \implies ((Invertible(A^{-1}) \land (A = (A^{-1})^{-1}))
  InvTrans := (Invertible(A)) \implies ((Invertible(A^T) \land ((A^T)^{-1} = (A^{-1})^T)) \blacksquare \leftarrow
\overline{(1) \quad A^T * (A^{-1})^T = (A^{-1} * A)^T = I^T = I \quad \blacksquare \ (A^{-1})^T = (A^T)^{-1}}
Sys(A, X, B) := (A * \overline{X} = B) \land (Matrix(A, m, n)) \land (Matrix(X, n, \overline{1})) \land (Matrix(B, m, \overline{1}))
 Sol(X, A, B) := Sys(A, X, B)
TrivSol(X, A, B) := (Sol(X, A, B)) \land (a_{i,j} = 0)
  RREF(A) := (Definition 1.18)
  Elementary RowOperation(\phi) := (Definition 1.19)
  RowEquiv(A,B) := \exists_{\Phi}(\forall_{\phi \in \Phi}(ElementaryRowOperation(\phi)) \land |\Phi| \in \mathbb{N} \land \Phi(A) = B)
(A \neq O) \implies (\exists_R (RREF(B) \land RowEquiv(A, B))) (By Gauss-Jordan Elimination)
(Sys(A, X_1, B) \land Sys(C, X_2, D) \land RowEquiv([A|B], [C|D])) \implies (X_1 = X_2) (By algebra on systems of equations)
(RowEquiv(A, B)) \implies (Sys(A, X_1, O) \land Sys(B, X_1, O)) (Corollary)
(m < n) \implies (\exists_X (\neg TrivSol(X, A, O))) \quad \blacksquare \ (\forall_X (TrivSol(X, A, O)) \implies (m \ge n) \quad \blacksquare \leftarrow (m < n) \quad \blacksquare (
(1) Let B = GaussJordan(A) and let r be the number of non-zero rows of B \blacksquare r \le m
(2) \quad (r \le m) \land (m < n) \quad \blacksquare \quad r < n \quad \blacksquare \quad 0 < n - r
(3) The solution of B will have r fixed variables and n - r free variables which is also more then zero
(4) The solution of B will have at least one free variable that can be non-zero, i.e., non-trivial
 Elem(A) := Row Equiv(A, I)
\overline{(Elem_i(A))} \Longrightarrow (Invertible(A) \land \overline{Elem_i(A^{-1})})
(ElementaryRowOperation(\phi) \land (B = \phi(A))) \implies (Elem(E) \land B = E * A)
(RowEquiv(A, B)) \iff (B = \Pi(E_i) * A)
(RowEquiv(I, B)) \iff (B = \Pi(E_i))
(\forall_X (TrivSol(X, A, O)) \implies (RowEquiv(A, I)) \blacksquare \leftarrow
(1) Let B = GaussJordan(A) \square RowEquiv(A, B)
(2) \quad \forall_X (TrivSol(X, B, O) \quad \blacksquare \quad n \ge n \quad \blacksquare \quad n = n \quad \blacksquare \quad B = I
(3) RowEquiv(A, B) \blacksquare RowEquiv(A, I)
(Invertible(A)) \iff (A = \Pi(E_i)) \blacksquare \leftarrow
(1) Invertible(A) \implies \dots
       (1.1) \quad AX = O \quad \blacksquare \quad X = A^{-1}O = O \quad \blacksquare \quad \forall_X (TrivSol(X, A, O))
        (1.2) \quad \forall_X (TrivSol(X, A, O) \quad \blacksquare \quad RowEquiv(A, I) \quad \blacksquare \quad A = \Pi(E_i)
(2) A = \Pi(E_i) \implies \dots
       (2.1) \Pi(E_{-i}^{-1}) = A^{-1} \blacksquare Invertible(A)
(3) (Invertible(A)) \iff (A = \Pi(E_i))
(Invertible(A)) \iff (RowEquiv(I,A))) \quad \blacksquare \leftarrow (RowEquiv(I,B) \iff B = \Pi(E_i)) \land ((Invertible(A)) \iff (A = \Pi(E_i)))
(\forall_X(TrivSol(X,A,O))) \implies (Invertible(A)) \blacksquare \leftarrow
\overline{(1) \ ((\forall_X (TrivSol(X,A,O)) \implies (RowEquiv(A,I))) \land ((Invertible(A)) \iff (RowEquiv(I,A))))}
(Invertible(A)) \implies (\forall_X (TrivSol(X,A,O))) \quad \blacksquare \leftarrow AX = O \quad \blacksquare \quad X = A^{-1}O = O \quad \blacksquare \quad \forall_X (TrivSol(X,A,O)) = AX = A^{-1}O = O \quad \blacksquare \quad \forall_X (TrivSol(X,A,O)) = AX = A^{-1}O = O \quad \blacksquare \quad \forall_X (TrivSol(X,A,O)) = AX = A^{-1}O = O \quad \blacksquare \quad \forall_X (TrivSol(X,A,O)) = AX = A^{-1}O = O \quad \blacksquare \quad \forall_X (TrivSol(X,A,O)) = AX = A^{-1}O = O \quad \blacksquare \quad \forall_X (TrivSol(X,A,O)) = AX = A^{-1}O = O \quad \blacksquare \quad \forall_X (TrivSol(X,A,O)) = AX = A^{-1}O = O \quad \blacksquare \quad \forall_X (TrivSol(X,A,O)) = AX = A^{-1}O = O \quad \blacksquare \quad \forall_X (TrivSol(X,A,O)) = AX = A^{-1}O = O \quad \blacksquare \quad \forall_X (TrivSol(X,A,O)) = AX = A^{-1}O = O \quad \blacksquare \quad \forall_X (TrivSol(X,A,O)) = AX = A^{-1}O = O \quad \blacksquare \quad \forall_X (TrivSol(X,A,O)) = AX = A^{-1}O = O \quad \blacksquare \quad \forall_X (TrivSol(X,A,O)) = AX = A^{-1}O = O \quad \blacksquare \quad \forall_X (TrivSol(X,A,O)) = AX = A^{-1}O = O \quad \blacksquare \quad \forall_X (TrivSol(X,A,O)) = AX = A^{-1}O = O \quad \blacksquare \quad \forall_X (TrivSol(X,A,O)) = AX = A^{-1}O = O \quad \blacksquare \quad \forall_X (TrivSol(X,A,O)) = AX = A^{-1}O = O \quad \blacksquare \quad \forall_X (TrivSol(X,A,O)) = AX = A^{-1}O = O \quad \blacksquare \quad \forall_X (TrivSol(X,A,O)) = AX = A^{-1}O = O \quad \blacksquare \quad \forall_X (TrivSol(X,A,O)) = AX = A^{-1}O = O \quad \blacksquare \quad \forall_X (TrivSol(X,A,O)) = AX = A^{-1}O = O \quad \blacksquare \quad \forall_X (TrivSol(X,A,O)) = AX = A^{-1}O = O \quad \blacksquare \quad \forall_X (TrivSol(X,A,O)) = AX = A^{-1}O = O \quad \blacksquare \quad \forall_X (TrivSol(X,A,O)) = AX = A^{-1}O = O \quad \blacksquare \quad \forall_X (TrivSol(X,A,O)) = AX = A^{-1}O = O \quad \blacksquare \quad \forall_X (TrivSol(X,A,O)) = AX = A^{-1}O = O \quad \blacksquare \quad \forall_X (TrivSol(X,A,O)) = AX = A^{-1}O = O \quad \blacksquare \quad \forall_X (TrivSol(X,A,O)) = AX = A^{-1}O = O \quad \blacksquare \quad \forall_X (TrivSol(X,A,O)) = AX = A^{-1}O = O \quad \blacksquare \quad \forall_X (TrivSol(X,A,O)) = AX = A^{-1}O = O \quad \blacksquare \quad \forall_X (TrivSol(X,A,O)) = AX = AX = O \quad \blacksquare \quad \forall_X (TrivSol(X,A,O)) = AX = AX = O \quad \blacksquare \quad \forall_X (TrivSol(X,A,O)) = AX = AX = O \quad \blacksquare \quad \forall_X (TrivSol(X,A,O)) = AX = AX = O \quad \blacksquare \quad \forall_X (TrivSol(X,A,O)) = AX = AX = O \quad \blacksquare \quad \forall_X (TrivSol(X,A,O)) = AX = AX = O \quad \blacksquare \quad \forall_X (TrivSol(X,A,O)) = AX = AX = O \quad \blacksquare \quad \forall_X (TrivSol(X,A,O)) = AX = AX = O \quad \blacksquare \quad \forall_X (TrivSol(X,A,O)) = AX = AX = O \quad \blacksquare \quad \forall_X (TrivSol(X,A,O)) = AX = AX = O \quad \blacksquare \quad \forall_X (TrivSol(X,A,O)) = AX = AX = O \quad \blacksquare \quad \forall_X (TrivSol(X,A,O)) = AX = AX = O \quad \blacksquare \quad \forall_X (TrivSol(X,A,O)) = AX = AX = O \quad \blacksquare \quad \forall_X (TrivSol(X,A,O)) = AX = AX = O \quad \blacksquare \quad \forall_X (Tri
```