

WYPEŁNIA ZDAJĄCY Miejsce na naklejkę. Sprawdź, czy kod na naklejce to M-100. Jeżeli tak – przyklej naklejkę. Jeżeli nie – zgłoś to nauczycielowi.

Egzamin maturalny

Formuła 2023

MATEMATYKA Poziom rozszerzony

Symbol arkusza
MMAP-R0-100-2305

DATA: 12 maja 2023 r.

GODZINA ROZPOCZĘCIA: 9:00

CZAS TRWANIA: 180 minut

LICZBA PUNKTÓW DO UZYSKANIA: 50

WYPEŁNIA ZESPÓŁ NADZORUJĄCY

Uprawnienia zdającego do:

•	,, ,	
	dostosowania zasad ocen	iar

dostosowania w zw. z dyskalkulią.

Przed rozpoczęciem pracy z arkuszem egzaminacyjnym

- Sprawdź, czy nauczyciel przekazał Ci właściwy arkusz egzaminacyjny, tj. arkusz we właściwej formule, z właściwego przedmiotu na właściwym poziomie.
- Jeżeli przekazano Ci niewłaściwy arkusz natychmiast zgłoś to nauczycielowi. Nie rozrywaj banderol.
- Jeżeli przekazano Ci właściwy arkusz rozerwij banderole po otrzymaniu takiego polecenia od nauczyciela. Zapoznaj się z instrukcją na stronie 2.

Instrukcja dla zdającego

- Sprawdź, czy arkusz egzaminacyjny zawiera 27 stron (zadania 1–13).
 Ewentualny brak zgłoś przewodniczącemu zespołu nadzorującego egzamin.
- 2. Na pierwszej stronie arkusza oraz na karcie odpowiedzi wpisz swój numer PESEL i przyklej naklejkę z kodem.
- 3. Pamiętaj, że pominięcie argumentacji lub istotnych obliczeń w rozwiązaniu zadania otwartego może spowodować, że za to rozwiązanie nie otrzymasz pełnej liczby punktów.
- 4. Rozwiązania zadań i odpowiedzi wpisuj w miejscu na to przeznaczonym.
- 5. Pisz czytelnie i używaj tylko długopisu lub pióra z czarnym tuszem lub atramentem.
- 6. Nie używaj korektora, a błędne zapisy wyraźnie przekreśl.
- 7. Nie wpisuj żadnych znaków w tabelkach przeznaczonych dla egzaminatora. Tabelki umieszczone są na marginesie przy każdym zadaniu.
- 8. Pamiętaj, że zapisy w brudnopisie nie będą oceniane.
- 9. Możesz korzystać z *Wybranych wzorów matematycznych*, cyrkla i linijki oraz kalkulatora prostego. Upewnij się, czy przekazano Ci broszurę z okładką taką jak widoczna poniżej.

Zadania egzaminacyjne są wydrukowane na następnych stronach.

Zadanie 1. (0-2)

W chwili początkowej (t=0) masa substancji jest równa 4 gramom. Wskutek rozpadu cząsteczek tej substancji jej masa się zmniejsza. Po każdej kolejnej dobie ubywa 19% masy, jaka była na koniec doby poprzedniej. Dla każdej liczby całkowitej $t\geq 0$ funkcja m(t) określa masę substancji w gramach po t pełnych dobach (czas liczymy od chwili początkowej).

Wyznacz wzór funkcji m(t). Oblicz, po ilu pełnych dobach masa tej substancji będzie po raz pierwszy mniejsza od $1,5\,$ grama. Zapisz obliczenia.

Zadanie 2. (0-3)

Tomek i Romek postanowili rozegrać między sobą pięć partii szachów. Prawdopodobieństwo wygrania pojedynczej partii przez Tomka jest równe $\frac{1}{4}$.

Oblicz prawdopodobieństwo wygrania przez Tomka co najmniej czterech z pięciu partii. Wynik podaj w postaci ułamka zwykłego nieskracalnego. Zapisz obliczenia.

Zadanie 3. (0-3)

Funkcja f jest określona wzorem $f(x)=\frac{3x^2-2x}{x^2+2x+8}$ dla każdej liczby rzeczywistej x. Punkt $P=(x_0$, 3) należy do wykresu funkcji f.

Oblicz x_0 oraz wyznacz równanie stycznej do wykresu funkcji f w punkcie P. Zapisz obliczenia.

Zadanie 4. (0-3)

Liczby rzeczywiste x oraz y spełniają jednocześnie równanie x+y=4 i nierówność $x^3-x^2y\leq xy^2-y^3$.

Wykaż, że x=2 oraz y=2.

0-1-2-3

Zadanie 5. (0-3)

Dany jest trójkąt prostokątny ABC, w którym $| \not ABC | = 90^\circ$ oraz $| \not ACAB | = 60^\circ$. Punkty K i L leżą na bokach – odpowiednio – AB i BC tak, że |BK| = |BL| = 1 (zobacz rysunek). Odcinek KL przecina wysokość BD tego trójkąta w punkcie N, a ponadto |AD| = 2.

Wykaż, że $|ND| = \sqrt{3} + 1$.

Zadanie 6. (0-3)

Rozwiąż równanie

$4\sin(4x)\cos(6x) = 2\sin(10x) + 1$

Zapisz obliczenia.

Zadanie 7. (0-4)

Dany jest sześcian ABCDEFGH o krawędzi długości 6. Punkt S jest punktem przecięcia przekątnych AH i DE ściany bocznej ADHE (zobacz rysunek).

Oblicz wysokość trójkąta SBH poprowadzoną z punktu S na bok BH tego trójkąta. Zapisz obliczenia.

Zadanie 8. (0-4)

Czworokąt ABCD, w którym |BC|=4 i |CD|=5, jest opisany na okręgu. Przekątna AC tego czworokąta tworzy z bokiem BC kąt o mierze 60° , natomiast z bokiem AB – kąt ostry, którego sinus jest równy $\frac{1}{4}$.

Oblicz obwód czworokąta ABCD. Zapisz obliczenia.

Zadanie 9. (0-4)

Rozwiąż nierówność

$$\sqrt{x^2+4x+4} < \frac{25}{3} - \sqrt{x^2-6x+9}$$

Zapisz obliczenia.

Wskazówka: skorzystaj z tego, że $\sqrt{a^2} = |a|$ dla każdej liczby rzeczywistej a.

Zadanie 10. (0-4)

Określamy kwadraty K_1 , K_2 , K_3 , ... następująco:

- K₁ jest kwadratem o boku długości a
- K_2 jest kwadratem, którego każdy wierzchołek leży na innym boku kwadratu K_1 i dzieli ten bok w stosunku 1:3
- K_3 jest kwadratem, którego każdy wierzchołek leży na innym boku kwadratu K_2 i dzieli ten bok w stosunku 1:3

i ogólnie, dla każdej liczby naturalnej $n \ge 2$,

• K_n jest kwadratem, którego każdy wierzchołek leży na innym boku kwadratu K_{n-1} i dzieli ten bok w stosunku 1:3.

Obwody wszystkich kwadratów określonych powyżej tworzą nieskończony ciąg geometryczny.

Na rysunku przedstawiono kwadraty utworzone w sposób opisany powyżej.

Oblicz sumę wszystkich wyrazów tego nieskończonego ciągu. Zapisz obliczenia.

11. 0-1-2-3-4-5

Zadanie 11. (0-5)

Wyznacz wszystkie wartości parametru $m \neq 2$, dla których równanie

$$x^2 + 4x - \frac{m-3}{m-2} = 0$$

ma dwa różne rozwiązania rzeczywiste $\,x_1$, $x_2\,$ spełniające warunek $\,x_1^3+x_2^3>-28.$ Zapisz obliczenia.

Zadanie 12.

Funkcja f jest określona wzorem $f(x) = 81^{\log_3 x} + \frac{2 \cdot \log_2 \sqrt{27} \cdot \log_3 2}{3} \cdot x^2 - 6x$ dla każdej liczby <u>dodatniej</u> x.

12.1. 0–1–2

Zadanie 12.1. (0-2)

Wykaż, że dla każdej liczby dodatniej x wyrażenie

$$81^{\log_3 x} + \frac{2 \cdot \log_2 \sqrt{27} \cdot \log_3 2}{3} \cdot x^2 - 6x$$

można równoważnie przekształcić do postaci $x^4 + x^2 - 6x$.

Zadanie 12.2. (0-4)

Oblicz najmniejszą wartość funkcji f określonej dla każdej liczby <u>dodatniej</u> x. Zapisz obliczenia.

12.2. 0-1-2-3-4

Wskazówka: przyjmij, że wzór funkcji f można przedstawić w postaci $f(x) = x^4 + x^2 - 6x$.

Zadanie 13. (0-6)

W kartezjańskim układzie współrzędnych (x,y) prosta l o równaniu x-y-2=0 przecina parabolę o równaniu $y=4x^2-7x+1$ w punktach A oraz B. Odcinek AB jest średnicą okręgu $\mathcal O$. Punkt $\mathcal C$ leży na okręgu $\mathcal O$ nad prostą l, a kąt $BA\mathcal C$ jest ostry i ma miarę α taką, że $\lg \alpha = \frac{1}{3}$ (zobacz rysunek).

Oblicz współrzędne punktu C. Zapisz obliczenia.

BRUDNOPIS (nie podlega ocenie)

MATEMATYKA Poziom rozszerzony

Formula 2023

MATEMATYKA Poziom rozszerzony

Formula 2023

MATEMATYKA Poziom rozszerzony

Formula 2023

