МИНОБРНАУКИ РОССИИ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ

«САНКТ-ПЕТЕРБУРГСКИЙ ПОЛИТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ ПЕТРА ВЕЛИКОГО»

Институт компьютерных наук и кибербезопасности Высшая школа технологий искусственного интеллекта

Отчёт по дисциплине «Математическая статистика»

ИДЗ №4 «Регрессионный анализ» Вариант **№25**

Студент:	 Салимли Айзек Мухтар Оглы
Преподаватель:	 Малов Сергей Васильевич
	« » 20 г

Содержание

\mathbf{B}	ведеі	ние	3
1	Пос	становка задачи	4
2	Зад	ача $1-$ зависимость Y от X	6
	2.1	Линейная модель	6
	2.2	Квадратичная модель	7
	2.3	Доверительные интервалы (99 %)	8
	2.4	Совместный доверительный эллипсоид (99 %)	8
	2.5	Проверка гипотез	8
	2.6	Анализ остатков	Ö
	2.7	Итог задачи 1	S
3	Зад	ача ${f 2}-$ влияние факторов A и B	9
	3.1	Статистическая модель	Ö
	3.2	F-тесты для факторов и взаимодействия	Ö
	3.3	Информационные критерии	10
	3.4	Визуальное взаимодействие	10
	3.5	Разложение сумм квадратов	10
	3.6	Проверка взаимодействия	11
	3.7	Анализ остатков	11
	3.8	Итог задачи 2	11
3:	жпю	иение	12

Введение

В данном отчете, приведено решение и реализация двух задач под вариантом №25, из ИДЗ№3. Для реализации программной части решения использоавлись:

• Среда разработки: Cursor IDE

• Язык программирования: Python 3.13

1 Постановка задачи

- 1. Результаты статистического эксперимента приведены в таблице 1. Требуется оценить характер зависимости наблюдаемой переменной Y от ковариаты X.
 - а) Построить графический результат эксперимента. Сформулировать линейную регрессионную модель переменной Y по переменной X. Построить МНК оценки параметров сдвига β_1 и масштаба β_2 . Построить полученную линию регрессии. Оценить визуально соответствие полученных данных и построенной оценки.
 - b) Сформулировать полиномиальную модель, включающую дополнительный член с X^2 . Построить МНК оценки параметров β_1 , β_2 , β_3 в данной модели. Изобразить графически полученную регрессионную зависимость. Оценить визуально соответствие полученных данных и построенной оценки.
 - с) На базе ошибок полиномиальной модели построить гистограмму. Проверить значимость отклонения от нормального распределения по χ^2 . Визуально оценить данный факт.
 - d) В предположении нормальности построить частные и совместные доверительные интервалы для параметров β_2 и β_3 уровня доверия $1-\alpha$.
 - е) Сформулировать гипотезы линейности зависимости и независимости наблюдаемой переменной Y от ковариаты X. Провести проверку значимости.
 - f) С использованием AIC и BIC выбрать наилучшую модель.
 - g) Интерпретировать полученные результаты. Написать отчет.

Таблица 1 (часть 1) $\alpha = 0.01; h = 1.60.$

No	1	2	3	4	5	6	7	8	9
Y	9.61	4.76	4.37	14.21	10.13	12.98	7.09	8.77	12.22
X	1	2	2	3	2	3	2	3	3
No	10	11	12	13	14	15	16	17	18
Y	6.38	8.57	7.99	7.92	7.72	8.12	8.13	8.12	10.21
X	3	3	3	3	3	3	3	3	3
No	19	20	21	22	23	24	25	26	27
Y	5.08	6.83	10.20	8.59	8.89	8.75	8.29	8.46	8.00
X	3	3	3	3	3	3	3	3	3

Таблица 1 (часть 2)

No	28	29	30	31	32	33	34	35	36
Y	11.93	8.68	8.41	8.20	8.13	8.68	8.41	7.30	17.78
X	3	3	3	3	3	3	3	3	3
No	37	38	39	40	41	42	43	44	45
Y	9.43	7.17	5.79	8.27	9.42	8.58	11.67	6.66	7.44
X	3	3	3	3	3	3	3	3	3
No	46	47	48	49	50				
Y	8.56	10.63	10.13	8.59	12.99				
X	3	3	3	3	3				

- 2. Результаты статистического эксперимента приведены в таблице 2. Требуется оценить характер зависимости наблюдаемой переменной Y от уровней факторов A и B.
 - а) Сформулировать модель двухфакторного дисперсионного анализа. Построить МНК оценки параметров и несмещенную оценку дисперсии.
 - Проверить визуально согласование исходных данных с предположением аддитивности влияния факторов. Построить графическую оценку зависимости уровней фактора A

при каждом фиксированном значении фактора B. Наблюдается ли эффект пересечения факторов.

- b) Провести анализ ошибок. По гистограммам ошибок оценить визуально согласование с гипотезой нормальности.
- с) Провести дисперсионный анализ, начиная с проверки значимости взаимодействий факторов на результаты эксперимента.
- d) Выбрать наилучшую модель с использованием AIC и BIC.
- е) Интерпретировать полученные результаты. Написать отчет.

Таблица 2 (часть 1) $\alpha = 0.10; h = 1.50.$

No	1	2	3	4	5	6	7	8	9
Y	25.82	27.99	25.94	27.79	29.57	30.36	40.96	42.45	42.17
A	1	1	1	1	1	1	1	1	1
В	1	2	3	4	1	2	3	4	1
No	10	11	12	13	14	15	16	17	18
Y	39.55	38.61	38.20	31.38	34.95	38.52	29.80	31.13	30.07
A	1	1	1	1	1	1	1	1	2
В	2	3	4	1	2	3	4	1	1
No	19	20	21	22	23	24	25	26	27
Y	26.22	26.09	26.74	31.24	30.15	32.74	15.06	16.56	21.85
A	2	2	2	2	2	2	2	2	2
В	2	3	4	1	2	3	4	1	2

Таблица 2 (часть 2)

No	28	29	30	31	32	33	34	35	36
Y	20.93	29.53	39.53	39.64	39.96	39.64	39.96	32.35	22.17
A	2	2	2	2	2	2	2	3	3
В	3	4	1	2	3	4	1	1	2
No	37	38	39	40	41	42	43	44	45
Y	17.27	23.88	22.51	24.23	19.35	27.35	25.43	25.21	20.01
A	3	3	3	3	3	3	3	3	3
В	3	4	1	2	3	4	1	2	3
No	46	47	48	49	50				,
Y	21.22	21.22	21.22	21.22	21.22				
A	3	3	3	3	3				
В	4	1	2	3	4				

2 Задача 1 — зависимость Y от X

- n = 50 объём выборки, $i = 1, \dots, n$;
- x_i, y_i наблюдения;

•
$$\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i, \ \bar{y} = \frac{1}{n} \sum_{i=1}^{n} y_i;$$

•
$$S_{xx} = \sum_{i=1}^{n} (x_i - \bar{x})^2$$
, $S_{xy} = \sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y})$.

$$\sum x_i = 99$$
, $\sum y_i = 456.95$, $\bar{x} = 1.98$, $\bar{y} = 9.139$.

$$S_{xx} = 40.98$$
, $S_{xy} = -31.23$.

2.1 Линейная модель

$$y_i = \beta_1 + \beta_2 x_i + \varepsilon_i, \qquad \varepsilon_i \sim N(0, \sigma^2).$$

Оценки МНК.

$$\hat{\beta}_2 = \frac{S_{xy}}{S_{xx}} = -0.762, \qquad \hat{\beta}_1 = \bar{y} - \hat{\beta}_2 \bar{x} = 10.648.$$

$$\hat{y}_i = 10.648 - 0.762 \, x_i.$$

Сумма квадратов остатков.

$$RSS_{lin} = \sum_{i=1}^{n} (y_i - \hat{y}_i)^2 = 312.50.$$

Объяснённая дисперсия.

$$R_{\text{lin}}^2 = 1 - \frac{RSS_{\text{lin}}}{\sum_{i=1}^{n} (y_i - \bar{y})^2} = 0.071.$$

Критерий информативности. При k=2 параметрах

AIC =
$$n \ln \hat{\sigma}^2 + 2k = 50 \ln(6.510) + 4 = 237.52$$

Рис. 1: Точки и линейная регрессия

2.2 Квадратичная модель

$$y_i = \beta_1 + \beta_2 x_i + \beta_3 x_i^2 + \varepsilon_i.$$

Оценки МНК. Из $(X^{\top}X)^{-1}X^{\top}y$:

$$\hat{\beta}_1 = 11.004, \ \hat{\beta}_2 = -1.238, \ \hat{\beta}_3 = 0.124.$$

Сумма квадратов остатков.

$$RSS_{\text{quad}} = 309.92, \qquad R_{\text{quad}}^2 = 0.074.$$

AIC. $k = 3 \Rightarrow AIC = 50 \ln(6.598) + 6 = 239.36.$

Рис. 2: Линейная (сплошная) и квадратичная (штрих) регрессии

2.3 Доверительные интервалы (99 %)

$$\hat{\sigma}^2 = \frac{RSS_{\text{quad}}}{n - k} = 6.603, \qquad t_{0.995}(47) = 2.69.$$

$$SE(\hat{\beta}_2) = \sqrt{6.603 \cdot 0.0677} = 0.669, SE(\hat{\beta}_3) = \sqrt{6.603 \cdot 0.0050} = 0.181.$$

$$\beta_2$$
: $\hat{\beta}_2 \pm t \, \text{SE} = -1.238 \pm 2.69 \cdot 0.669 = \boxed{(-4.68; 2.20)},$
 β_3 : $\hat{\beta}_3 \pm t \, \text{SE} = 0.124 \pm 2.69 \cdot 0.181 = \boxed{(-0.72; 0.97)}.$

2.4 Совместный доверительный эллипсоид (99 %)

Неравенство

$$(\beta - \hat{\beta})^{\top} (X^{\top} X) (\beta - \hat{\beta}) \le 2\hat{\sigma}^2 F_{2,47}(0.99) = \boxed{67.43}$$

задаёт эллипс в плоскости (β_2, β_3) .

Параметры эллипса

$$\hat{\beta}_2 = -1.238,$$
 $\hat{\beta}_3 = 0.124,$ $a = \sqrt{c \lambda_{\text{max}}}, \ b = \sqrt{c \lambda_{\text{min}}}, \ c = 2F_{2,47}(0.99),$

где $\lambda_{\max}, \lambda_{\min}$ — собственные значения матрицы $\hat{\sigma}^2(X^\top X)^{-1}$.

Рис. 3: 99-% доверительный эллипсоид для параметров β_2, β_3

2.5 Проверка гипотез

Линейность $(H_0: \beta_3 = 0)$.

$$F = \frac{RSS_{\mathrm{lin}} - RSS_{\mathrm{quad}}}{1} \Big/ \frac{RSS_{\mathrm{quad}}}{n-3} = 0.153, \; p = 0.697 > 0.01 \; \Rightarrow \; H_0$$
 не отвергается.

Независимость $(H_0: \beta_2 = 0)$.

$$t = \frac{\hat{eta}_2}{\mathrm{SE}(\hat{eta}_2)} = -1.912, \; p = 0.062 > 0.01 \; \Rightarrow \; H_0$$
 не отвергается.

2.6 Анализ остатков

$$\chi^2 = \sum_{j=1}^m \frac{(O_j - E_j)^2}{E_j} = 9.50, \ p = 0.091; \qquad JB = \frac{n}{6}(s^2 + \frac{1}{4}k^2) = 6.72, \ p = 0.035.$$

Рис. 4: Остатки линейной (слева) и квадратичной (справа) моделей

2.7 Итог задачи 1

 $\Delta {
m AIC}=1.84 < 2 o$ линейная и квадратичная модели одинаково информативны; выбираем более простую. При этом $R^2\!pprox\!7\%$ — переменная X объясняет лишь малую часть дисперсии Y.

3 Задача 2 — влияние факторов A и B

3.1 Статистическая модель

$$y_{ijk} = \mu + \alpha_i + \beta_j + (\alpha\beta)_{ij} + \varepsilon_{ijk}, \quad \varepsilon_{ijk} \sim N(0, \sigma^2),$$

$$i = 1, \dots, 4, \ j = 1, \dots, 4, \ k = 1, \dots, n_{ij}, \sum_i \alpha_i = \sum_j \beta_j = \sum_i (\alpha\beta)_{ij} = \sum_j (\alpha\beta)_{ij} = 0.$$

3.2 Г-тесты для факторов и взаимодействия

$$F_H = \frac{MS_H}{MS_E}, \qquad MS_H = \frac{SS_H}{df_H}, \ MS_E = \frac{SS_E}{df_E}, \ H \in \{A, B, AB\}.$$

Таблица 5: F-тесты для факторов и взаимодействия

Источник Н	SS_H	df_H	MS_H	MS_E	F_H
\overline{A}	979.34				
B	513.23				
$A \times B$	1047.67	9	116.41	2.76	42.18

Критические значения: $F_{3,32}^{0.99}=4.01,\ F_{9,32}^{0.99}=3.04.$ Поскольку все наблюдаемые $F_H\gg F_{crit},$ отвергаем нулевые гипотезы об отсутствии эффекта как факторов A,B, так и их взаимодействия

 $A \times B$ (уровень значимости 1%):

$$p_A < 10^{-15}, \qquad p_B < 10^{-12}, \qquad p_{AB} = 3 \cdot 10^{-15}.$$

3.3 Информационные критерии

Таблица 6: Информационные критерии моделей

Модель	k	$\hat{\sigma}^2$	AIC	BIC
A * B	16		197.5	
A + B	7		302.1	
A	4	21.66	314.0	321.5

3.4 Визуальное взаимодействие

Рис. 5: Профильные графики: средние Y при разных B

3.5 Разложение сумм квадратов

$$SS_{\rm T} = \sum_{i,j,k} (y_{ijk} - \bar{y}_{...})^2,$$

$$SS_A = \sum_i n_{i\cdot} (\bar{y}_{i\cdot.} - \bar{y}_{...})^2 = 979.34,$$

$$SS_B = \sum_j n_{\cdot j} (\bar{y}_{\cdot j\cdot.} - \bar{y}_{...})^2 = 513.23,$$

$$SS_{AB} = \sum_{i,j} n_{ij} (\bar{y}_{ij\cdot.} - \bar{y}_{i\cdot.} - \bar{y}_{\cdot j\cdot.} + \bar{y}_{...})^2 = 1047.67,$$

$$SS_E = SS_{\rm T} - SS_A - SS_B - SS_{AB} = 88.30.$$

Источник	SS	df	MS	F
\overline{A}	979.34	3	326.45	326.45/2.76 = 118.3
B	513.23	3	171.08	171.08/2.76 = 62.0
AB	1047.67	9	116.41	116.41/2.76 = 42.18
E	88.30	32	2.76	

3.6 Проверка взаимодействия

$$F_{AB} = \frac{MS_{AB}}{MS_E} = 42.18, \quad p = 3 \cdot 10^{-15} \ll 0.01.$$

3.7 Анализ остатков

Jarque-Bera для полной модели:

$$JB = \frac{n}{6} \left(s^2 + \frac{1}{4}k^2 \right) = 1.10, \quad p = 0.576.$$

Рис. 6: Гистограммы остатков полной (слева) и аддитивной (справа) моделей

3.8 Итог задачи 2

- Значимы главные эффекты A, B и взаимодействие $A \times B \ (p < 10^{-12})$.
- Лучшая по AIC/BIC модель: $Y \sim A*B$. Остатки нормальны, $\hat{\sigma}^2 = 2.76$.

Заключение

В задаче 1 слабая и статистически незначимая зависимость Y от X, при $R^2 \approx 7\%$ достаточно линейной модели. В задаче 2 найдено сильное влияние как каждого фактора, так и их взаимодействия; выбрана полная модель A*B.

$$F_c rit = F_{\alpha, df_H, df_E} = \frac{1}{B(\frac{df_H}{2}, \frac{df_E}{2})} \int_0^{\frac{df_H}{df_H + df_E x}} t^{\frac{df_H}{2} - 1} (1 - t)^{\frac{df_E}{2} - 1} dt$$

В 13 определении -> компактно записать задачи

$$H_0: a = a_0 T = \sqrt{(n-1)} \frac{\hat{x} - a}{s} T S_{n-1} \phi(x) = \begin{cases} 0, & T \in [-x_\alpha, x_\alpha] \\ 1, & x \notin [-x_\alpha, x_\alpha] \end{cases} x_\alpha = S^{-1}{}_n - 1(1 - \alpha/2)$$