CHAPTERS 27 AND 28 NOTES

ANISH SUNDARAM

Contents

27 Magnetic Field and Magnetic Forces	1
27.1 Magnetism	1
27.2 Magnetic Field	2
27.2.1 Magnetic Forces on Moving Charges	2
27.3 Magnetic Field Lines and Magnetic Flux	3
27.4 Motion of Charged Particles in a Magnetic Field	3

27 Magnetic Field and Magnetic Forces

But the *fundamental* nature of magnetism is the interaction of moving electric charges. Unlike electric forces, which act on electric charges whether they are moving or not, magnetic forces act only on *moving charges*.

27.1 Magnetism.

Remark. The earth itself is a magnet. Its north geographic pole is close to a magnetic south pole, which is why the north pole of a compass needle points north. The earth's magnetic axis is not quite parallel to its geographic axis (the axis of ro- tation), so a compass reading deviates somewhat from geographic north. This deviation, which varies with location, is called *magnetic declination or magnetic variation*.

Remark. While isolated positive and negative charges exist, there is no experimental evidence that one isolated magnetic pole exists; poles always appear in pairs. If a bar magnet is broken in two, each broken end becomes a pole

Date: July 6, 2021.

27.2 Magnetic Field.

Definition 1. Summary of Electric interactions:

- (1) A distribution of electric charge creates an electric field \vec{E} in the surrounding space.
- (2) The electric field exerts a force $\vec{F} = q\vec{E}$ on any other charge q that is present in the field.

Definition 2. Summary of Magnetic interactions:

- (1) A moving charge or a current creates a **magnetic field** (B) in the surrounding space (in addition to its *electric* field).
- (2) The magnetic field exerts a force \vec{F} on any other moving charge or current that is present in the field.

Magnetic Field strength can be found by the equation

$$B = \frac{\mu_0 I}{2\pi r}$$

where μ_0 is the permittivity of free space $(4\pi \cdot 10^{-7} \ T \cdot m/A)$ and r is the separation.

Remark. Like electric field, magnetic field is a vector field—that is, a vector quantity associated with each point in space. We will use the symbol \vec{B} for magnetic field.

27.2.1 Magnetic Forces on Moving Charges.

Definition 3. Key Characteristics of Magnetic Force on Moving Charges:

- (1) Force Magnitude is proportional to the magnitude of the charge.
- (2) The magnitude of the force is also proportional to the magnitude, or "strength," of the field.
- (3) The magnetic force depends on the particle's velocity.
- (4) The magnetic force \vec{F} does not have the same direction as the magnetic field \vec{B} but instead is always perpendicular to both \vec{B} and the velocity \vec{v} .

The Magnetic force can be found by the equation

$$F = |q|v \times B = |q|vBsin\phi$$

where ϕ is the angle between the direction of velocity and direction of the magnetic field and the magnitude is measured in teslas (1T = $1N/A \cdot m$) or in Gauss(1G = 10^{-4} T)

Remark. The magnetic field of the earth is 10^{-4} T 1 Gauss.

Remark. When a charged particle moves through a region of space where both electric and magnetic fields are present, both fields exert forces on the particle. The total force \vec{F} is the vector sum of the electric and magnetic forces:

$$\vec{F} = q(\vec{E} + \vec{v} \times \vec{B})$$

27.3 Magnetic Field Lines and Magnetic Flux.

Definition 4. Magnetic Field Lines: Just like an electric field, a magnetic field can be represented through field lines. The more lines there are in a given area the stronger the field, and they never intersect. Magnetic Field Lines are not lines of force, just direction.

Definition 5. Magnetic Flux(Φ_B): A measurement of the total magnetic field which passes through a given area. The total magnetic flux through the surface is the sum of the contributions from the individual area elements. Can be found using the following equation:

$$\Phi_B = \int B cos\phi dA = \int \vec{B} \cdot d\vec{A}$$

Magnetic Flux is scalar and its units are Weber (1 Wb = 1 $T \cdot m^2 = 1$ $N \cdot m/A)$

27.4 Motion of Charged Particles in a Magnetic Field.

Remark. Motion of a charged particle under the action of a magnetic field alone is always motion with constant speed.

Remark. When velocity and magnetic field are perpendicular, the particle exhibits circular motion. This relation is shown by

$$F = |q|vb = m\frac{v^2}{R}$$

whose radius can be found by

$$R = \frac{mv}{|q|B}$$

and whose angular speed can be found by

$$\omega = \frac{v}{r} = \frac{|q|B}{m}$$