Week 8: Pedram Nafisi Poor

Task 1:

Using the diagrams given in the presentation calculate how much (%) is the effect of applying different modifications (changing the gas, adding an extra pane, using a low emissivity coating) on the U value with respect to a benchmark case of double layer with air and no coating? (keep the gap thickenss to be 13 mm)

Answer

$$\label{eq:Uwindow} \begin{split} To \ calculate \ the \ U-value \ of \ a \ window, \\ U_{window} = \frac{U_{center}A_{center} + U_{edge}A_{edge} + U_{fram}A_{fram}}{A_{window}}, \end{split}$$

If it is a double - pane window, disregard the thermal resistances of glass layers,

$$\frac{1}{U_{double\,-pane\,(center\,region)}} \approx \frac{1}{h_i} + \frac{1}{h_{space}} + \frac{1}{h_0},\, h_{space} = h_{rad,\,space} + h_{conv,\,space}$$

The U_{center} , i.e. the h_{space} changes by changing the gas that fills the gap.

From the diagram in the right side, we can see that:

When the gap thickenss is 13 mm,

By changing the gas that fills the gap from air to argon, the U-value of the center of the glass decreases from $2.8 \frac{W}{m^2 K}$ to $2.65 \frac{W}{m^2 K}$, which means the U-value decreases about 6.43%;

By changing the gas that fills the gap from air to krypton, the U-value of the center of the glass decrease from 2.8 $\frac{W}{m^2 K}$ to 2.6 $\frac{W}{m^2 K}$, which means the U-value decreases abouth 7.14%.

From the diagram in the right side, we can see that:

When the gap thickenss is 13 mm, and the gas that fills the gap is air,

By adding an extra pane, the U-value of the center of the glass decreases from $2.8 \, \frac{W}{m^2 K}$ to $1.8 \, \frac{W}{m^2 K}$, which means the U-value decreases about 55.6%.

Another way to change the U_{center} , is to coat the glass surfaces with a film that has a low emissivity.

From the diagram in the right we can see that:

When the gap thickenss is 13 mm, and the gas fills the gap is air,

Then the gap thenenes is 15 mm, and the gas jins the gap is an,

4.5

Gas fill in gap

O Air

D Argon

Δ Krypton

E = 0.84

A Krypton

E = 0.84

Outer

glass

Inner

glass

Inner

glass

J Double-pane

glaszing

O 5 10 15 20 25

By coating the glass surfaces with a film that has the emissivity of 0.1, the U-value of the center of the glass decreases from 2.8 $\frac{W}{m^2K}$ to 1.8 $\frac{W}{m^2K}$, which means the U-value decreases about 55.6%.

Task 2:

Consider the house that we analysed in the alst two examples, calculate the heating and cooling load of the other windows which are fixed 14.4 m^2 on the west, fixed 3.6 m^2 on the south and an operable 3.6 m^2 on the south (the same window and frame type). How much does the total value change if I change the frame of the window from wooden one to aluminium?

(The questions exempli gratia:

- The net area of walls (excluding doors and windows) of a building located in Piacenza is 105.8 m², the calculated U value is 0.438 W/m²K for the winter and 0.435 W/m²K for the summer. Find the corresponding heating and cooling load.
- A fixed heat absorbing double layer glass (with a wooden frame) window at the east side of a building located in Piacenza has a surface of 14.4 m². In case there are no internal and external shading factors. Calculate the heating and cooling load of the corresponding to that window.)

						P	IACENZ	A, Italy	9					WMO#:	160840
Lat	44.92N	Long:	9.73E	Elev:	138	StdP:	99.68		Time Zone:	1.00 (EU	W)	Period	89-10	WBAN:	99999
nnual H	eating and He	umidification	on Design C	onditions											
Coldest	- Charles	.00		Humi	dification Di	MCDB and	HR		1	Coldest mon	th WS/MCD	В	MCWS	PCWD	ľ
	Heating	TOB .		99.6%			99%		0.	4%	1	%	to 99.6	9% DB	
Month	99.6%	99%	DP	HR	MCDB	DP	HR	MCDB	WS	MCDB	WS	MCDB	MCWS	PCWD	
(0)	(6)	(e)	(4)	(0)	(1)	(9)	(h)	(1)	(1)	(k)	(1)	(m)	(n)	(0)	33
1	-6.2	-4.8	-11.6	1.4	3.1	-8.8	1.8	1.8	8.8	5.6	7.7	6.2	2.1	250	
inual C	ooling, Dehur	midificatio	n, and Entho	alpy Design	Conditions										
fottest	Hottest		707	Cooling D	B/MCWB					Evaporation	WB/MCDB			MCWS/	PCWD
Month	Month	.0.4	4%	15	5	2%			1.4%	1	%	1.2	1%	to 0.4	% DB
mack lift	DB Range	DB	MCWB	DB	MCWB	DB	MCW8	WB	MCDB	WB	MCDB	WB	MCDB	MCWS	PCWD
(*)	(6)	(0)	(4)	(0)	(1)	(9)	(h)	(0)	(i)	(k)	(1)	(m)	(n)	(0)	(0)
8	11.9	33.1	22.7	31.9	22.4	30.3	21.8	24.6	30.2	23.7	29.2	22.9	28.3	2.4	90

Answer:

First of all, define the cooling design temperature $T_{cooling}=24\,^{\circ}C$, and heating design temperature $T_{heating}=20\,^{\circ}C$, thus

$$\Delta T_{cooling} = 31.9 \,^{\circ}C - 24 \,^{\circ}C = 7.9 \,^{\circ}C = 7.9K$$

$$\Delta T_{heating} = 20^{\circ}C - (-4.8^{\circ}C) = 24.8^{\circ}C = 24.8K$$

From the table above, $DR = 11.9 \,^{\circ}C = 11.9K$

	Lationie									
Exposure	20"	25"	30°	35"	40"	450	50°	55°	60"	
North	F_d	125 128 253	115	103	- 93	84	76	69	62	. 5
		177		162	156	151	147	143	140	13
	E_d	530 200 730	196	193	190	189	188	187	187	18
	E_{ℓ}	282 204 485	203	203	204	205	207	210	212	21
South	E_d	166 166	193	196	200	204	209	214	219	22
	E_d	845 170 1015	170	170	170	170	170	170	170	17

Calculating the cooling load of the fixed window on the west:

 $q_{window_{west}} = A \times CF_{window_{west}}$

$$A = 14.4m^2$$

$$CF_{window_{west}(Heat\ Trasnfer\ Part)} = U_{window_{west}} (\Delta T_{cooling} - 0.46\ DR)$$

:The window has a fixed heat absorbing double layer glass with a wooden frame,

$$\therefore U_{window_{west}} = 2.84 \frac{w}{m^2 K}$$

Exposure	Single Family Detached	Multifamily		
North	0.44	0.27		
Northeast	0.21	0.43		
East	0.31	0.56		
Southeast	0.37	0.54		
South	0.47	0.53		
Southwest	0.58	0.61		
West	0.56	0.65		
Northwest	0.46	0.57		
Horizontal	0.58	0.73		

i.e.,
$$CF_{window_{west}(Heat\ Trasnfer\ Part)} = 2.84 \frac{w}{m^2 K} \times (7.9\ K\ -0.46 \times 11.9\ K) \approx 6.89 \frac{w}{m^2}$$

$$PXI_{window_{west}} = E_D + E_d = 559 + 188 = 747$$

SHGC = 0.54

No internal shading, so IAC = 1

$$FF_s = 0.56$$

$$CF_{window_{west}(Irradiation\ Part)} = PXI \times SHGC \times IAC \times FF_s$$

$$\begin{aligned} q_{window_{west}} &= A \times CF_{window_{west}} = A \times (CF_{window_{west}(Heat\,Trasnfer\,Part)} + CF_{window_{west}(Irradiation\,Part)}) \\ &\approx 14.4\,m^2 \times (6.89\,+747\times\,0.54\times\,1\times\,0.56) \frac{w}{m^2} \approx 3352.07\,W \end{aligned}$$

Calculating the heating load of the fixed window on the west:

$$q_{window_{west}} = A \times HF_{window_{west}} = A \times U_{window_{west}} \Delta T_{heating}$$

= 14.4 m² × 2.84 $\frac{w}{m^2 K}$ × 24.8K ≈ 1014.22 W

When the frame were to be aluminium, $U_{window_{west}} = 3.61 \frac{w}{m^2 K}$, HSGC = 0.56

$$CF'_{window_{west}(Heat\ Trasnfer\ Part)} = U'_{window_{west}} \left(\Delta T_{cooling} - 0.46\ DR \right)$$

= $3.61 \frac{w}{m^2 K} \times (7.9\ K - 0.46 \times 11.9\ K) \approx 8.76 \frac{w}{m^2}$

Cooling load $q'_{window_{west}} = A \times CF'_{window_{west}}$ $= A \times \left(CF'_{window_{west}(Heat\ Trasnfer\ Part)} + CF'_{window_{west}(Irradiation\ Part)} \right)$ $\approx 14.4\ m^2 \times (8.76 + 747 \times 0.56 \times 1 \times 0.56) \frac{w}{m^2} \approx 3499.48\ W$

Heating load $q'_{window_{west}} = A \times HF'_{window_{west}} = A \times U'_{window_{west}} \Delta T_{heating}$ = 14.4 $m^2 \times 3.61 \frac{w}{m^2 K} \times 24.8 K \approx 1289.20 W$

Calculating the cooling load of the fixed window on the south:

 $q_{window_{south}} = A \times CF_{window_{south}}$

$$A = 3.6 m^2$$

 $CF_{window_{south}(Heat\,Trasnfer\,Part)} = U_{window_{south}} \left(\Delta T_{cooling} \, - 0.46 \, DR \right)$

:The window has a fixed heat absorbing double layer glass with a wooden frame,

$$\therefore U_{window_{wast}} = 2.84 \ \frac{w}{m^2 K}$$

i.e.,
$$CF_{window_{south}(Heat\ Trasnfer\ Part)} = 2.84 \frac{w}{m^2 K} \times (7.9\ K\ -0.46 \times 11.9\ K) \approx 6.89 \frac{w}{m^2}$$

$$PXI_{window_{south}} = E_D + E_d = 348 + 209 = 557$$

$$SHGC = 0.55$$

No internal shading, so IAC =1

$$FF_s = 0.47$$

 $CF_{window_{south}(Irradiation\ Part)} = PXI \times SHGC \times IAC \times FF_s$

 $q_{window_{south}} = A \times CF_{window_{south}} = A \times (CF_{window_{south}(Heat\ Trasnfer\ Part)} + CF_{window_{south}(Irradiation\ Part)})$ $\approx 3.6\ m^2 \times (6.89\ +557 \times 0.54 \times 1 \times 0.47) \frac{w}{m^2} \approx 553.72\ W$

Calculating the heating load of the fixed window on the south:

$$q_{window_{south}} = A \times HF_{window_{south}} = A \times U_{window_{south}} \Delta T_{heating}$$

= $3.6 \text{ } m^2 \times 2.84 \frac{w}{m^2 K} \times 24.8K \approx 253.56 \text{ } W$

When the frame were to be aluminium, $U_{window_{south}} = 3.61 \frac{W}{m^2 K}$, HSGC = 0.56

$$CF'_{window_{south}(Heat\ Trasnfer\ Part)} = U'_{window_{south}} \left(\Delta T_{cooling} - 0.46\ DR \right)$$

= $3.61 \frac{w}{m^2 K} \times (7.9\ K - 0.46 \times 11.9\ K) \approx 8.76 \frac{w}{m^2}$

Cooling load
$$q'_{window_{south}} = A \times CF'_{window_{south}}$$

$$= A \times \left(CF'_{window_{south}(Heat\ Trasnfer\ Part)} + CF'_{window_{south}(Irradiation\ Part)} \right)$$

$$\approx 3.6 \ m^2 \times (8.76 + 557 \times 0.56 \times 1 \times 0.47) \frac{W}{m^2} \approx 559.30 \ W$$

Heating load $q'_{window_{south}} = A \times HF'_{window_{south}} = A \times U'_{window_{south}} \Delta T_{heating}$

$$= 3.6 \, m^2 \times 3.61 \, \frac{W}{m^2 K} \times 24.8 \, K \approx 322.30 \, W$$

Calculating the cooling load of the operable window on the south:

 $q_{window_{south}} = A \times CF_{window_{south}}$

$$A = 3.6 m^2$$

$$CF_{window_{south}(Heat\ Trasnfer\ Part)} = U_{window_{south}} \left(\Delta T_{cooling} - 0.46\ DR \right)$$

:The window has an operable heat absorbing double layer glass with a wooden frame,

$$\therefore U_{window_{wast}} = 2.87 \frac{w}{m^2 K}$$

i.e.,
$$CF_{window_{south}(Heat\ Trasnfer\ Part)} = 2.87 \frac{W}{m^2 K} \times (7.9\ K\ -0.46 \times 11.9\ K) \approx 6.96 \frac{W}{m^2}$$

$$PXI_{window_{south}} = E_D + E_d = 348 + 209 = 557$$

SHGC = 0.46

No internal shading, so IAC =1

$$FF_s = 0.47$$

$$CF_{window_{south}(Irradiation\ Part)} = PXI \times SHGC \times IAC \times FF_{s}$$

$$q_{window_{south}} = A \times CF_{window_{south}} = A \times (CF_{window_{south}(Heat\,Trasnfer\,Part)} + CF_{window_{south}(Irradiation\,Part)})$$

$$\approx 3.6 \; m^2 \times (6.96 + 557 \times 0.54 \times 1 \times 0.47) \frac{W}{m^2} \approx 553.98 \; W$$

Calculating the heating load of the fixed window on the south:

$$q_{window_{south}} = A \times HF_{window_{south}} = A \times U_{window_{south}} \Delta T_{heating}$$

= $3.6 \text{ m}^2 \times 2.87 \frac{w}{m^2 \text{ K}} \times 24.8 \text{ K} \approx 256.23 \text{ W}$

When the frame were to be aluminium, $U_{window_{south}} = 4.62 \frac{w}{m^2 K}$, HSGC = 0.55

$$CF'_{window_{south}(Heat\ Trasnfer\ Part)} = U'_{window_{south}} \left(\Delta T_{cooling} - 0.46\ DR \right)$$

= $4.62 \frac{w}{m^2 K} \times (7.9\ K - 0.46 \times 11.9\ K) \approx 11.21 \frac{w}{m^2}$

Cooling load $q'_{window_{south}} = A \times CF'_{window_{south}}$

$$= A \times \left(CF'_{window_{south}(Heat\ Trasnfer\ Part)} + CF'_{window_{south}(Irradiation\ Part)} \right)$$

$$\approx 3.6 \ m^2 \times (11.21 + 557 \times 0.55 \times 1 \times 0.47) \frac{W}{m^2} \approx 558.70 \ W$$

Heating load
$$q'_{window_{south}} = A \times HF'_{window_{south}} = A \times U'_{window_{south}} \Delta T_{heating}$$

 $= 3.6 \, m^2 \, \times 4.62 \, \frac{w}{m^2 K} \, \times 24.8 \, K \approx 412.47 \, W$