目 录

1	误	差	()
	1. 1	误差的来源	()
	1. 2	误差、误差限和有效数字	()
	1. 3	相对误差和相对误差限)
	1. 4	数值运算中的误差估计	`)
	1.5	Still Advantage of the American	()
2	代数	插值与数值微分	()
	2. 1	线性插值与二次插值	()
	2. 1	.1 线性插值	()
	2. 1	.2 二次插值	()
	2. 2	n 次插值的 Lagrange 形式和 Newton 形式	()
	2. 2	. 1 n 次插值函数的 Lagragen 形式	()
	2. 2	. 2 n 次插值函数的 Newton 形式 ······	()
	2. 3	分段线性插值	()
	2.4	Hermite 插值 ·····	()
	2. 4	. 1 三次 Hermite 插值	()
	2. 4	. 2 2n + 1 次 Hermite 插值 ······	()
	2.5	三次样条插值	()
	2.6	数值微分	()
	2. 6	.1 使用 n 次插值函数求导数	()
	2. 6	.2 使用三次样条插值函数求导数	()
3	数据	拟合	()
	3. 1	单变量数据拟合及最小二乘法	()
	3. 2	多变量数据拟合	()
	3.3	非线性数据线性化	()
	3.4	正交多项式拟合	()
4	数值	积分	()

	4.1 梯形求积公式、抛物线求积公式和	Newton - Cotes 求积公式 ()
	4.1.1 梯形求积公式	()
	4.1.2 Simpson 求积公式 ···········	()
	4.1.3 Newton - Cotes 求积公式	()
	4.2 求积公式的代数精确度	()
	4.3 梯形求积公式和 Simpson 求积公式	的误差估计()
		()
	4.4.1 复化梯形求积公式及其误差估	5计()
	4.4.2 复化 Simpson 求积公式及其误	差估计()
	4.5 自动选取步长梯形法	()
	4.6 数值方法中的加速收敛技巧——R	ichardson 外推算法 ·····()
	4.7 Romberg 求积法	()
	4.7.1 Romberg 序列的推导	()
	4.7.2 Romberg 求积法的计算过程::	()
	4.8 Gauss 型求积公式	()
	4.8.1 Gauss - Legendre(勒让得)求和	识公式()
	4.8.2 Gauss - Leguerre(拉盖尔)求利	只公式()
	4.8.3 Gauss - Hermite 求积公式	()
í	5 解线性代数方程组的直接法 ·········	()
		()
	1 4/// 114 = 1 1=1	()
		()
		()
	5.2 LU 分解法 ···································	`)
		()
		()
	•	分解法()
	5.4 向量与矩阵范数)
		()
		()
	0.1.2 /=///03/0	(<i>′</i>
		()
	1	(
	5.4.5 系数矩阵误差对解的影响	······ ()

6	解线性代数方程组的迭代法	()
	6.1 几种常用的迭代格式	()
	6.1.1 简单迭代法(Jacobi 迭代) ·······	()
	6.1.2 Seidel 迭代法 ·····	()
	6.1.3 松弛法(SOR 迭代)	()
	6.2 迭代法收敛性理论	()
	6.2.1 三种迭代法迭代矩阵的谱半径与系数矩阵 A 的关系 ·········	()
7)
	7.1 对分法)
	7.2 迭代法	()
	7.2.1 迭代法	()
	7.2.2 迭代法的几何意义	()
	7.2.3 迭代法收敛条件	()
	7.2.4 迭代法的加速	()
	7.3 牛顿(Newton)法 ······	()
	7.3.1 牛顿公式	()
	7.3.2 牛顿法的收敛速度	()
	7.4 割线法	()
	7.5 解非线性方程组的迭代法和牛顿法	()
	7.5.1 迭代法	()
	7.5.2 牛顿法	()
8	矩阵特征值和特征向量的数值解法	()
	8.1 幂法	()
	8.1.1 幂法概述	()
	8.1.2 幂法的几点说明	()
	8.2 反幂法	()
	8.2.1 反幂法概述	()
	8.2.2 原点平移加速	()
	8.2.3 求已知特征值的特征向量		
	8.3 雅可比(Jacobi)方法	()
	8.3.1 平面旋转矩阵	()
	8.3.2 雅可比方法	()
	8.3.3 过关雅可比方法		

	8.4 QR	算法	()
	8. 4. 1	豪斯豪德尔(Householder)矩阵 ······	()
	8. 4. 2	化一般矩阵为拟上三角矩阵	()
	8. 4. 3	矩阵的正交三角分解	()
	8. 4. 4	QR 算法 ·····)
	8. 4. 5	QR 算法的收敛性·····	()
9	常微分方	了程初值问题的数值解法 ····································	()
	9.1 欧拉	江(Euler)法 ·····	()
	9. 1. 1	欧拉法的导出	()
	9. 1. 2	欧拉隐式公式和欧拉中点公式	()
	9. 1. 3	局部截断误差和方法的阶	()
	9. 1. 4	梯形公式及其预报校正法	,)
	9.2 龙榕	B - 库塔(Runge - Kutta)法 ······)
	9. 2. 1	二阶 R - K 法 ······	()
	9. 2. 2	四阶 R - K 法 ·····	()
	9.3 线性	±多步法	()
	9. 3. 1	用待定系数法构造线性多步法	()
	9.3.2	用数值积分法构造线性多步法公式	()