Introdução ao projeto de sistemas digitais

Prof. Ilan Sousa Correa

Universidade Federal do Pará (UFPA)

Instituto de Tecnologia (ITEC)

Faculdade de Eng. da Computação e Telecomunicações (FCT)

Por que estudar projeto de sistemas digitais?

- Blocos básicos da construção de computadores
 - Mesmo programadores de alto nível precisam conhecer o hardware em algum nível
- Dispositivos eletrônicos estão se tornando digitais
 - o Chips menores e mais poderosos
 - Resultado:
 - Dispositivos melhores: Melhores gravadores de som, câmeras, carros, smartphones, equipamentos médicos,...
 - Novos dispositivos: Vídeo games, smartphones, ...
 - Podem ser chamados genericamente de sistemas embarcados

Sistemas digitais e sinais digitais

- Sinais analógicos
 - o Infinitas possibilidades de valores
 - Ex: tensão em um condutor gerada por um microfone

Sinais digitais

- Possibilidades finitas de valores
- o Ex: botão pressionado em um teclado

Benefícios da utilização de sinais digitais

- Sinais analógicos podem perder qualidade
 - Valores de tensão não são salvos/copiados/transmitidos perfeitamente
- Versão digitalizada permite salvar/copiar/ transmitir quase perfeitamente
 - Amostra da tensão a uma determinada taxa, salva a amostra em uma determinada codificação
 - o Há erro a amostragem
 - Mas é possível distinguir entre 0s e 1s.

Benefícios da utilização de sinais digitais

- Sinais digitais como áudio podem ser comprimidos
 - o Ex: MP3
 - Um CD pode armazenar:
 - Aproximadamente 20 músicas não comprimidas
 - Aproximadamente 200 músicas comprimidas
 - A compressão também se aplica a imagens (JPEG), vídeos (MPEG), e outros
 - Há ainda outros benefícios

Exemplo de um esquema de Compressão

00 --> 000000000

01 --> 1111111111

1X --> X

Codificação da informação digital

- Alguns tipos de entradas de dados são inerentemente digitais
 - Botão: pressionado (1), não pressionado (0);
- Outros tipos de entradas podem são digitais
 - o Necessitam de uma codificação
 - Vários botões: vermelho (000), azul (010)
- Sinais analógicos
 - Conversão AD
 - Codificação
 Prof. Ilan Correa

Exemplos de codificação de informação: ASCII e UNICODE

ASCII

- American Standard Code for Information Interchange
- Codificação de 7 ou 8 bits para cada letra, número ou símbolo

Unicode

- Codificação com 16 bits para cada letra, número ou símbolo
- Inclui suporte para caracteres de vários alfabetos diferentes

Símbolo	Codificação
R	1010010
S	1010011
T	1010100
L	1001100
N	1001110
Е	1000101
0	0110000
	0101110
<tab></tab>	0001001

Símbolo	Codificação
r	1110010
S	1110011
t	1110100
1	1101100
n	1101110
е	1100101
9	0111001
!	0100001
<spæe></spæe>	0100000

Exemplo:

Representação binária de uma palavra

1001100 0110000 1010100 1000101

Exemplos de codificação de informação: números binários

 Cada posição representa uma quantidade

Dez símbolos: 0, 1, ... 9.

$$\frac{1}{2^4} = \frac{1}{2^3} = \frac{0}{2^2} = \frac{1}{2^1} = \frac{1}{2^0}$$

- Dois símbolos: 0 e 1
- Combinação de símbolos para representar mais números

Implementando sistemas digitais: Processador vs Circuitos digitais

Implementando sistemas digitais: Processador vs Circuitos digitais

- Porque desenvolver um circuito digital, se já há processadores baratos disponíveis?
 - Processadores podem ser lentos para uma determinada aplicação
 - Outras restrições: energia, preço, tamanho
- Exemplo:

Tarefa	Processador	Circuito digital
Leitura	5	0.1
Compres.	8	0.5
Armazen.	1	0.8

(c)

(b)

Projeto de sistemas digitais

Introdução ao projeto de sistemas digitais

Motion a Detector Digital System Lamp b Detector Digital System Lamp b Detector Digital System Detector De

- Como se projetar sistemas digitais
 - Circuitos combinacionais: Circuito digital cuja saída depende somente das entradas
 - Circuito sequencial: Circuito digital cuja saída dependa das entradas e de valores anteriores.

- Uma chave possui três terminais básicos
 - o Entrada, saída e controle
 - Corrente flui da entrada para a saída, se o terminal de controle possui tensão

Prof. Ilan Correa

UFPA/ITEC/FCT

2022.4 - Projetos de Hardware e Interfaceamento

• Em circuito digitais empregamos portas lógica e não transistores

- Em circuito digitais empregamos portas lógica e não transistores
 - o Construção de portas lógicas é feita a partir de transistores

Passo		Descrição			
Passo 1	Captura da função lógica	Criação de uma tabela verdade ou equações que descreve o comportamento do circuito combinacional			
Passo 2	Conversão para equação	Em caso de captura na forma de tabela-verdade, deve-se criar uma equação representada por OR de cada um dos mintermos. A equação pode ser simplificada.			
Passo 3	Implementação baseada em portas lógica	Para cada saída, deve-se criar um circuito lógico correspondente à equação encontrada.			

- Exemplo: Detector de 1s consecutivos in uma palavra de 8 bits
 - \circ 00011101 \rightarrow 1
 - \circ 10101011 \rightarrow 0
 - o **111**10000 → 1
- Passo 1: Captura da função lógica
- Passo 2: Escrita da equação
 - \circ y = abc + bcd + cde + def + efg + fgh
- Passo3: Implementação baseada em portas lógicas

• Conversão de uma tabela-verdade para equação lógica

En	tradas	Saída	Regra		
а	a b F		F = soma de		
0	0	1	a'b'		
0	1	1	a'b		
1	0	0			
1	1	0			

$$F = a'b' + a'b$$

а	b	С	F	
0	0	0	0	
0	0	1	0	
0	1	0	0	
0	1	1	0	
1	0	0	0	
1	0	1	1	ab'c
1	1	0	1	abc'
1	1	1	1	abc

$$F = ab'c + abc' + abc$$

Simplificação usando álgebra booleana

Comutativa

$$a + b = b + a$$

Distributiva

$$a * (b + c) = a * b + a * c$$

$$a + (b * c) = (a + b) * (a + c) \leftarrow (atenção!)$$

Associativa

$$(a + b) + c = a + (b + c)$$

$$(a * b) * c = a * (b * c)$$

Identidade

$$0 + a = a + 0 = a$$

Complemento

$$a + a' = 1$$

$$a * a' = 0$$

Alguns exemplos:

abc' equivalente a c'ba.

- Propriedade comutativa :

$$a*b*c' = a*c'*b = c'*a*b = c'*b*a = c'ba.$$

abc + abc' = ab

- Propriedade distributiva:
- abc + abc' = ab(c+c').
- Complemento c+c' = 1
- ab(c+c') = ab(1).
- Identidade
- ab(1) = ab*1 = ab

Simplificação usando álgebra booleana

$$X = \overline{\left(\overline{(\overline{A \cdot \overline{B} \cdot C}) + B}\right)} \cdot B \cdot \overline{(A + \overline{C})}$$

$$X = (\overline{A} + B + \overline{C} + B) \cdot B \cdot (\overline{A} \cdot C)$$

$$X = \overline{A} \cdot B \cdot \overline{A} \cdot C + B \cdot B \cdot \overline{A} \cdot C + \overline{C} \cdot B \cdot \overline{A} \cdot C + B \cdot B \cdot \overline{A} \cdot C$$

$$X = B \cdot \overline{A} \cdot C + B \cdot \overline{A} \cdot C + 0 + B \cdot \overline{A} \cdot C$$

$$X = B \cdot \overline{A} \cdot C$$

Simplificação usando álgebra booleana

		Year and a second control of	AND DESCRIPTIONS	CO.	
A		C	x	_	
0	0	0	0		
0	0	1	0		$x = \overline{A}BC +$
0	1	0	0		$x = \overline{A}BC + X$ $x = \overline{A}BC - X$ $x = BC(\overline{A})$ $x = BC + X$
0	1	1	1		$\rightarrow \overline{A}BC$
1	0	0	0		x = BC(A)
1	0	1	1		$\rightarrow A\overline{B}C$ $\gamma = BC +$
1	1	0	1		$\rightarrow AB\overline{C}$
1	1	1	1		$\rightarrow ABC$

Simplificação usando álgebra booleana

	Α	В	С	D	Z	$z = \overline{A}BCD + A\overline{B}\overline{C}\overline{D} + A\overline{B}\overline{C}D + A\overline{B}C\overline{D} + A\overline{B}CD$
(0)	0	0	0	0	0	z nade i nade i nade i nade
(1)	0	0	0	1	0	$+ AB\overline{C}\overline{D} + AB\overline{C}D + ABC\overline{D} + ABCD$
(2)	0	0	1	0	0	
(3)	0	0	1	1	0	$z = \overline{A}BCD + A\overline{B}\overline{C}(\overline{D} + D) + A\overline{B}C(\overline{D} + D) +$
(4)	0	1	0	0	0	4.00(\overline{\sigma} + \sigma \cdot \overline{\sigma} + \sigma \overline{\sigma} + \sigma \cdot \
(5)	0	1	0	1	0	$AB\overline{C}(\overline{D} + D) + ABC(\overline{D} + D)$
(6)	0	1	1	0	0	$= \overline{A}BCD + A\overline{B}\overline{C} + A\overline{B}C + AB\overline{C} + ABC$
(7)	0	1	1	1	1→ ĀBCD	-ABCD + ABC + ABC + ABC + ABC
(8)	1	0	0	0	1→ AĒC̄D̄	$= \overline{A}BCD + A\overline{B}(\overline{C} + C) + AB(\overline{C} + C)$
(9)	1	0	0	1	1→ ABCD	$=\overline{A}BCD+A\overline{B}+AB$
(10)	1	0	1	0	1→ ABCD	$= \overline{A}BCD + A\overline{B} + AB$
(11)	1	0	1	1	1→ ABCD	$= \overline{A}BCD + A(\overline{B} + B)$
(12)	1	1	0	0	1→ ABCD	
(13)	1	1	0	1	1→ ABCD	$= \overline{A}BCD + A$
(14)	1	1	1	0	1→ ABCD	
(15)	1	1	1	1	1→ ABCD	$z = \overline{A}BCD + A = BCD + A$

Simplificação usando mapa de Karnaugh

A B C D X 0 0 0 0 0		ĒΒ	ĒВ	CD	CD
0 0 0 1 1 → ĀBCD			CD		
0 0 1 0 0	ĀĒ	0	1	0	0
0 0 1 1 0	,,,,			Ŭ	
0 1 0 0 0	ĀВ	0		0	0
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	AD	0		0	٠
0 1 1 0 0					
0 1 1 1 0	AB	0	1	1	0
1 0 0 0 0				7 · · · · · · · · · · · · · · · · · · ·	
1 0 0 1 0	ΑĒ	0	0	0	0
1 0 1 0 0					
1 0 1 1 0					
1 1 0 0 0					
1 1 0 1 1 → ABCD					
1 1 1 0 0					
1 1 1 1 1 → ABCD					

• Simplificação usando mapa de Karnaugh

Variáveis que sofrem alteração nos pares saem da equação

Variáveis que sofrem alteração nos pares saem da equação

Simplificação usando mapa de Karnaugh

Simplificação usando mapa de Karnaugh

Variáveis que sofrem alteração nos pares saem da equação

- Circuitos com mais de uma saída
 - Uma equação/tabela-verdade/circuito lógico para cada saída
 - Em alguns casos é possível reutilizar parte das portas lógicas do cálculo de uma das saídas no cálculo de outra saída.
 - o Ex:
 - $\mathbf{F} = \mathbf{ab} + \mathbf{c'}$
 - \blacksquare G = ab + bc

- Projeto utilizando blocos funcionais básicos pré-construídos → Decodificadores
 - Converte uma entrada binária para um formato no qual apenas um bit apresenta nível lógico alto
 - 2 bits \rightarrow 4 bits saída, n bits \rightarrow 2^n saídas

- Projeto utilizando blocos funcionais básicos pré-construídos → Multiplexadores
 - "Roteia" uma das entradas para a saída de acordo com uma entrada de controle
 - 2 entradas → 1 bits de seleção, n entradas
 → log(n) bits de seleção

Prof. Ilan Correa

UFPA/ITEC/FCT
2022.4 - Projetos de Hardware e Interfaceamento

- Projeto utilizando blocos funcionais básicos pré-construídos → Multiplexadores
 - Multiplexadores de barramento (ou de n bits)

- Projeto utilizando blocos funcionais básicos pré-construídos

 Multiplexadores
- Exemplo:
 - Display de um veículo que pode mostrar informações de temperatura do motor (T em °C), rendimento médio (A em km/L), rendimento instantâneo (I em km/L), autonomia (M em km)

- Comportamento n\u00e3o-ideal de portas l\u00f3gicas
 - Geralmente desconsideramos o atraso que um sinal sofre da entrada para a saída de uma porta lógica.
 - Na prática, em alguns casos é necessário considerar o atraso da porta lógica

Bibliografia

- Sistemas digitais: Projeto, Otimização e HDLs, Frank Vahid, Ed. Bookman, 1ª Ed., 2008
- Tocci, R. J., Widmer, N. S. Sistemas digitais. 7. ed. Rio de Janeiro: LTC, 1998.