

FORMELSAMMLUNG FWL

Sommersemester 23

nach Vorlesung von Prof. Stücke und Prof. Sattler

Erstellt von Tony Pham, Max Forstner und Ayham Alhulaibi

Name: NAME

Letzte Änderung: 4. Juli 2023

Lizenz: GPLv3

Inhaltsverzeichnis

T	Grundlagen			
	1.1	Einheiten		
	1.2	Kugel .		
		_	alarprodukt	
			reuzprodukt	
	1.0			
	1.3		aloperatoren	
			echenregeln	
		1.3.2 Sp	pezielle Vektorfelder	
	1.4		nische Maße/Pegel	
		1.4.1 Re	echnen mit Pegeln / Logarithmen	
	1 -			
	1.5		mit Wurzeln	
	1.6	Rechnen :	mit Potenzen	
	1.7	Koordina	tensysteme	
		1.7.1 Uı	mrechnungstabelle	
			chema KOS Kugel/Zylinder	
			artesische Koordinaten	
			vlinderkoordinaten	
		1.7.5 K	ugelkoordinaten	
2	Max	xwell-Gle	ichungen	
	2.1		ekomponenten einer ebenen Welle	
	2.2		itze	
	2.2	Integraisa	11126	
3	Feld	l a m		
0				
	3.1	Elektrosta		
		3.1.1 Po	otential-/Poisson-Gleichung	
			andwertprobleme, -bedingungen (RB)	
			reen'sche Funktionen	
			ektrischer Dipol	
	2.0		-	
	3.2		tatik	
			ektorpotential	
		3.2.2 Ve	ektorpotential in Abhängigkeit von der Stromdichte	
		3.2.3 Bi	ot-Savart-Gesetz	
			agnetischer Dipol	
	3.3			
	5.5		ionäre Felder (Wechselstrom)	
			omplexe Feldgrößen	
	3.4	Skineffekt		
		3.4.1 Na	äherungen für Skineffekt	
	3.5		an Grenzflächen	
	0.0			
			renzfläche Dielektrikum-Leiter	
		3.5.3 G1	renzfläche an magn. Feldern	
4	Wel	llen		
	4.1	Wellengle	ichungen allgemein	
			eitbereich	
			requenzbereich	
			ereinfachung der Gleichungen	
	4.2	Ebene We	ellen	
		4.2.1 G	leichung Ebene Welle	
		4.2.2 ko	omplexer Amplitudendrehzeiger	
			ortpflanzungskonstante	
	4.3			
	4.0	_	en	
			ellenzahl	
			'ellenlänge	
		4.3.3 Ph	nasengeschwindigkeit	
			rechzahl/Brechungsindex	
			ruppengeschwindigkeit	
			sammenhang Gruppen- und Phasengeschwindigkeit	
			eldwellenwiderstand	
		4.3.8 Po	pynting-Vektor	
	4.4		ing im Medium	

		4.4.1	Allgemein (mit Verlusten)	8
		4.4.2	Im leeren Raum (Vakuum)	8
		4.4.3	Im verlustlosen Dielektrikum	8
		4.4.4	Im Dielektrikum mit geringen Verlusten	8
		4.4.5	Im guten Leiter	8
	4.5		Wellen an Grenzflächen	8
		4.5.1	Zwischen Dielektrika mit geringem Verlust	8
		4.5.2	Brechungsgesetz allgemein	8
	4.6	Senkre	echter Einfall	8
		4.6.1	Senkrechter Einfall ideales/verlustl. Dielekt	9
		4.6.2	Medium 1 oder 2: Luft	9
		4.6.3	beide Medien: nicht magnetisch	9
		4.6.4	Medium 2: idealer Leiter	9
		4.6.5	Stehwellenverhältnis (SWR)	9
	4.7		ger Einfall (allgemein)	9
		4.7.1	Brechungsgesetz	9
		4.7.2	Leistungsbilianz an Grenzflächen	9
		4.7.3	Totalrefexion/Grenzwinkel	9
		4.7.4	Brewster-/Polarisationswinkel	9
		4.7.5	Verlauf von r und t beim Grenzübergang	9
		4.7.6	Verlauf der Reflexionsfaktoren	9
		4.7.7	\prime .	10
		4.7.8	, ,	10
		4.7.9	Senkrechte Polarisation mit μ_r	11
		4.7.10	Parallele Polarisation mit μ_r	11
	4.8	Polaria	sation einer Welle	11
5	Leit	ungen		12
	5.1			12
		5.1.1		12
		5.1.2		12
		5.1.3		12
		00		
		5.1.4		12
	5.2		O Company of the comp	12
		5.2.1	Kenngrößen	
				12
		5.2.2	· ·	12 12
		5.2.2 $5.2.3$	verlustloser Reflexionsfaktor	
		5.2.3	verlustloser Reflexionsfaktor	12 12
		5.2.3 5.2.4	verlustloser Reflexionsfaktor	12 12 12
		5.2.3 5.2.4 5.2.5	verlustloser Reflexionsfaktor	12 12 12 13
		5.2.3 5.2.4 5.2.5 5.2.6	verlustloser Reflexionsfaktor	12 12 12 13 13
		5.2.3 5.2.4 5.2.5 5.2.6 5.2.7	verlustloser Reflexionsfaktor	12 12 12 13 13 13
		5.2.3 5.2.4 5.2.5 5.2.6 5.2.7 5.2.8	verlustloser Reflexionsfaktor Beliebiger Abschluss (Last) Angepasste (reflexionsfreie) Leitung Kurzschluss an Leitungsende Leerlauf an Leitungsende Leitung als Impedanz-Transformator Ohmscher Abschluss an Leitungsende	12 12 12 13 13 13 13
		5.2.3 5.2.4 5.2.5 5.2.6 5.2.7 5.2.8 5.2.9	verlustloser Reflexionsfaktor Beliebiger Abschluss (Last) Angepasste (reflexionsfreie) Leitung Kurzschluss an Leitungsende Leerlauf an Leitungsende Leitung als Impedanz-Transformator Ohmscher Abschluss an Leitungsende Position von Extrema	12 12 12 13 13 13 13 13
		5.2.3 5.2.4 5.2.5 5.2.6 5.2.7 5.2.8 5.2.9 5.2.10	verlustloser Reflexionsfaktor Beliebiger Abschluss (Last) Angepasste (reflexionsfreie) Leitung Kurzschluss an Leitungsende Leerlauf an Leitungsende Leitung als Impedanz-Transformator Ohmscher Abschluss an Leitungsende Position von Extrema Stehwellenverhältnis (SWR)	12 12 12 13 13 13 13
		5.2.3 5.2.4 5.2.5 5.2.6 5.2.7 5.2.8 5.2.9 5.2.10	verlustloser Reflexionsfaktor Beliebiger Abschluss (Last) Angepasste (reflexionsfreie) Leitung Kurzschluss an Leitungsende Leerlauf an Leitungsende Leitung als Impedanz-Transformator Ohmscher Abschluss an Leitungsende Position von Extrema Stehwellenverhältnis (SWR)	12 12 12 13 13 13 13 13
		5.2.3 5.2.4 5.2.5 5.2.6 5.2.7 5.2.8 5.2.9 5.2.10 5.2.11	verlustloser Reflexionsfaktor Beliebiger Abschluss (Last) Angepasste (reflexionsfreie) Leitung Kurzschluss an Leitungsende Leerlauf an Leitungsende Leitung als Impedanz-Transformator Ohmscher Abschluss an Leitungsende Position von Extrema Stehwellenverhältnis (SWR) Leistung	12 12 12 13 13 13 13 13 13
		5.2.3 5.2.4 5.2.5 5.2.6 5.2.7 5.2.8 5.2.9 5.2.10 5.2.11 5.2.12	verlustloser Reflexionsfaktor Beliebiger Abschluss (Last) Angepasste (reflexionsfreie) Leitung Kurzschluss an Leitungsende Leerlauf an Leitungsende Leitung als Impedanz-Transformator Ohmscher Abschluss an Leitungsende Position von Extrema Stehwellenverhältnis (SWR) Leistung Reflexionsfaktor mit Verlusten	12 12 12 13 13 13 13 13 13 13 13 13
	5.3	5.2.3 5.2.4 5.2.5 5.2.6 5.2.7 5.2.8 5.2.9 5.2.10 5.2.11 5.2.12 5.2.13	verlustloser Reflexionsfaktor Beliebiger Abschluss (Last) Angepasste (reflexionsfreie) Leitung Kurzschluss an Leitungsende Leerlauf an Leitungsende Leitung als Impedanz-Transformator Ohmscher Abschluss an Leitungsende Position von Extrema Stehwellenverhältnis (SWR) Leistung Reflexionsfaktor mit Verlusten Gleichspannungswert (=Endwert)	12 12 13 13 13 13 13 13 13 13 13 13
	5.3 5.4	5.2.3 5.2.4 5.2.5 5.2.6 5.2.7 5.2.8 5.2.9 5.2.10 5.2.11 5.2.12 5.2.13 Mehrf	verlustloser Reflexionsfaktor Beliebiger Abschluss (Last) Angepasste (reflexionsfreie) Leitung Kurzschluss an Leitungsende Leerlauf an Leitungsende Leitung als Impedanz-Transformator Ohmscher Abschluss an Leitungsende Position von Extrema Stehwellenverhältnis (SWR) Leistung Reflexionsfaktor mit Verlusten Gleichspannungswert (=Endwert) achreflexionen bei fehlender Anpassung	12 12 13 13 13 13 13 13 13 13 13 13 13
	5.3 5.4	5.2.3 5.2.4 5.2.5 5.2.6 5.2.7 5.2.8 5.2.9 5.2.10 5.2.11 5.2.12 5.2.13 Mehrfi Leitur	verlustloser Reflexionsfaktor Beliebiger Abschluss (Last) Angepasste (reflexionsfreie) Leitung Kurzschluss an Leitungsende Leerlauf an Leitungsende Leitung als Impedanz-Transformator Ohmscher Abschluss an Leitungsende Position von Extrema Stehwellenverhältnis (SWR) Leistung Reflexionsfaktor mit Verlusten Gleichspannungswert (=Endwert) achreflexionen bei fehlender Anpassung ngsparameter	12 12 13 13 13 13 13 13 13 13 13 13 14
		5.2.3 5.2.4 5.2.5 5.2.6 5.2.7 5.2.8 5.2.9 5.2.10 5.2.11 5.2.12 5.2.13 Mehrfi Leitur 5.4.1	verlustloser Reflexionsfaktor Beliebiger Abschluss (Last) Angepasste (reflexionsfreie) Leitung Kurzschluss an Leitungsende Leerlauf an Leitungsende Leitung als Impedanz-Transformator Ohmscher Abschluss an Leitungsende Position von Extrema Stehwellenverhältnis (SWR) Leistung Reflexionsfaktor mit Verlusten Gleichspannungswert (=Endwert) achreflexionen bei fehlender Anpassung ngsparameter Allgemein	12 12 13 13 13 13 13 13 13 13 13 13 14 14
		5.2.3 5.2.4 5.2.5 5.2.6 5.2.7 5.2.8 5.2.9 5.2.10 5.2.11 5.2.12 5.2.13 Mehrf Leitur 5.4.1 5.4.2	verlustloser Reflexionsfaktor Beliebiger Abschluss (Last) Angepasste (reflexionsfreie) Leitung Kurzschluss an Leitungsende Leerlauf an Leitungsende Leitung als Impedanz-Transformator Ohmscher Abschluss an Leitungsende Position von Extrema Stehwellenverhältnis (SWR) Leistung Reflexionsfaktor mit Verlusten Gleichspannungswert (=Endwert) achreflexionen bei fehlender Anpassung ngsparameter Allgemein Streifenleitung / Parallele Platten	12 12 13 13 13 13 13 13 13 13 13 13 14 14 14
		5.2.3 5.2.4 5.2.5 5.2.6 5.2.7 5.2.8 5.2.9 5.2.10 5.2.11 5.2.12 5.2.13 Mehrf Leitur 5.4.1 5.4.2 5.4.3	verlustloser Reflexionsfaktor Beliebiger Abschluss (Last) Angepasste (reflexionsfreie) Leitung Kurzschluss an Leitungsende Leerlauf an Leitungsende Leitung als Impedanz-Transformator Ohmscher Abschluss an Leitungsende Position von Extrema Stehwellenverhältnis (SWR) Leistung Reflexionsfaktor mit Verlusten Gleichspannungswert (=Endwert) achreflexionen bei fehlender Anpassung ngsparameter Allgemein Streifenleitung / Parallele Platten Doppelleitung	12 12 13 13 13 13 13 13 13 13 13 14 14 14 14
		5.2.3 5.2.4 5.2.5 5.2.6 5.2.7 5.2.8 5.2.9 5.2.10 5.2.11 5.2.12 5.2.13 Mehrf Leitur 5.4.1 5.4.2	verlustloser Reflexionsfaktor Beliebiger Abschluss (Last) Angepasste (reflexionsfreie) Leitung Kurzschluss an Leitungsende Leerlauf an Leitungsende Leitung als Impedanz-Transformator Ohmscher Abschluss an Leitungsende Position von Extrema Stehwellenverhältnis (SWR) Leistung Reflexionsfaktor mit Verlusten Gleichspannungswert (=Endwert) achreflexionen bei fehlender Anpassung agsparameter Allgemein Streifenleitung / Parallele Platten Doppelleitung	12 12 13 13 13 13 13 13 13 13 13 13 14 14 14
	5.4	5.2.3 5.2.4 5.2.5 5.2.6 5.2.7 5.2.8 5.2.9 5.2.10 5.2.11 5.2.12 5.2.13 Mehrf Leitur 5.4.1 5.4.2 5.4.3 5.4.4	verlustloser Reflexionsfaktor Beliebiger Abschluss (Last) Angepasste (reflexionsfreie) Leitung Kurzschluss an Leitungsende Leerlauf an Leitungsende Leitung als Impedanz-Transformator Ohmscher Abschluss an Leitungsende Position von Extrema Stehwellenverhältnis (SWR) Leistung Reflexionsfaktor mit Verlusten Gleichspannungswert (=Endwert) achreflexionen bei fehlender Anpassung agsparameter Allgemein Streifenleitung / Parallele Platten Doppelleitung Koaxialleitung	12 12 13 13 13 13 13 13 13 13 13 14 14 14 14
6	5.4	5.2.3 5.2.4 5.2.5 5.2.6 5.2.7 5.2.8 5.2.9 5.2.10 5.2.11 5.2.12 5.2.13 Mehrf Leitur 5.4.1 5.4.2 5.4.3 5.4.4	verlustloser Reflexionsfaktor Beliebiger Abschluss (Last) Angepasste (reflexionsfreie) Leitung Kurzschluss an Leitungsende Leerlauf an Leitungsende Leitung als Impedanz-Transformator Ohmscher Abschluss an Leitungsende Position von Extrema Stehwellenverhältnis (SWR) Leistung Reflexionsfaktor mit Verlusten Gleichspannungswert (=Endwert) achreflexionen bei fehlender Anpassung agsparameter Allgemein Streifenleitung / Parallele Platten Doppelleitung Koaxialleitung	12 12 13 13 13 13 13 13 13 13 13 14 14 14 14
6	5.4	5.2.3 5.2.4 5.2.5 5.2.6 5.2.7 5.2.8 5.2.9 5.2.10 5.2.11 5.2.12 5.2.13 Mehrf Leitur 5.4.1 5.4.2 5.4.3 5.4.4	verlustloser Reflexionsfaktor Beliebiger Abschluss (Last) Angepasste (reflexionsfreie) Leitung Kurzschluss an Leitungsende Leerlauf an Leitungsende Leitung als Impedanz-Transformator Ohmscher Abschluss an Leitungsende Position von Extrema Stehwellenverhältnis (SWR) Leistung Reflexionsfaktor mit Verlusten Gleichspannungswert (=Endwert) achreflexionen bei fehlender Anpassung agsparameter Allgemein Streifenleitung / Parallele Platten Doppelleitung Koaxialleitung	12 12 13 13 13 13 13 13 13 13 13 14 14 14 14
6	5.4 W el	5.2.3 5.2.4 5.2.5 5.2.6 5.2.7 5.2.8 5.2.9 5.2.10 5.2.11 5.2.12 5.2.13 Mehrf Leitur 5.4.1 5.4.2 5.4.3 5.4.4	verlustloser Reflexionsfaktor Beliebiger Abschluss (Last) Angepasste (reflexionsfreie) Leitung Kurzschluss an Leitungsende Leerlauf an Leitungsende Leitung als Impedanz-Transformator Ohmscher Abschluss an Leitungsende Position von Extrema Stehwellenverhältnis (SWR) Leistung Reflexionsfaktor mit Verlusten Gleichspannungswert (=Endwert) achreflexionen bei fehlender Anpassung ngsparameter Allgemein Streifenleitung / Parallele Platten Doppelleitung Koaxialleitung er al Leiter	12 12 13 13 13 13 13 13 13 13 13 14 14 14 14 14
6	5.4 W el	5.2.3 5.2.4 5.2.5 5.2.6 5.2.7 5.2.8 5.2.9 5.2.10 5.2.11 5.2.12 5.2.13 Mehrff Leitur 5.4.1 5.4.2 5.4.3 5.4.4	verlustloser Reflexionsfaktor Beliebiger Abschluss (Last) Angepasste (reflexionsfreie) Leitung Kurzschluss an Leitungsende Leerlauf an Leitungsende Leitung als Impedanz-Transformator Ohmscher Abschluss an Leitungsende Position von Extrema Stehwellenverhältnis (SWR) Leistung Reflexionsfaktor mit Verlusten Gleichspannungswert (=Endwert) achreflexionen bei fehlender Anpassung ngsparameter Allgemein Streifenleitung / Parallele Platten Doppelleitung Koaxialleitung eer al Leiter Wellenwiderstand	12 12 13 13 13 13 13 13 13 13 13 14 14 14 14 14 15
6	5.4 We l 6.1	5.2.3 5.2.4 5.2.5 5.2.6 5.2.7 5.2.8 5.2.9 5.2.10 5.2.11 5.2.12 5.2.13 Mehrf Leitur 5.4.1 5.4.2 5.4.3 5.4.4 Uenleit Koaxia 6.1.1 6.1.2	verlustloser Reflexionsfaktor Beliebiger Abschluss (Last) Angepasste (reflexionsfreie) Leitung Kurzschluss an Leitungsende Leerlauf an Leitungsende Leitung als Impedanz-Transformator Ohmscher Abschluss an Leitungsende Position von Extrema Stehwellenverhältnis (SWR) Leistung Reflexionsfaktor mit Verlusten Gleichspannungswert (=Endwert) achreflexionen bei fehlender Anpassung ngsparameter Allgemein Streifenleitung / Parallele Platten Doppelleitung Koaxialleitung eer al Leiter Wellenwiderstand Dämpfung	12 12 13 13 13 13 13 13 13 13 13 14 14 14 14 14 15 15
6	5.4 W el	5.2.3 5.2.4 5.2.5 5.2.6 5.2.7 5.2.8 5.2.9 5.2.10 5.2.11 5.2.12 5.2.13 Mehrf Leitur 5.4.1 5.4.2 5.4.3 5.4.4 Henleit Koaxia 6.1.1 6.1.2 Mikros	verlustloser Reflexionsfaktor Beliebiger Abschluss (Last) Angepasste (reflexionsfreie) Leitung Kurzschluss an Leitungsende Leerlauf an Leitungsende Leitung als Impedanz-Transformator Ohmscher Abschluss an Leitungsende Position von Extrema Stehwellenverhältnis (SWR) Leistung Reflexionsfaktor mit Verlusten Gleichspannungswert (=Endwert) achreflexionen bei fehlender Anpassung agsparameter Allgemein Streifenleitung / Parallele Platten Doppelleitung Koaxialleitung eer al Leiter Wellenwiderstand Dämpfung streifenleiter	12 12 13 13 13 13 13 13 13 13 13 14 14 14 14 14 15 15 15
6	5.4 We l 6.1	5.2.3 5.2.4 5.2.5 5.2.6 5.2.7 5.2.8 5.2.9 5.2.10 5.2.11 5.2.12 5.2.13 Mehrf Leitur 5.4.1 5.4.2 5.4.3 5.4.4 Enleit Koaxia 6.1.1 6.1.2 Mikros 6.2.1	verlustloser Reflexionsfaktor Beliebiger Abschluss (Last) Angepasste (reflexionsfreie) Leitung Kurzschluss an Leitungsende Leerlauf an Leitungsende Leitung als Impedanz-Transformator Ohmscher Abschluss an Leitungsende Position von Extrema Stehwellenverhältnis (SWR) Leistung Reflexionsfaktor mit Verlusten Gleichspannungswert (=Endwert) achreflexionen bei fehlender Anpassung ngsparameter Allgemein Streifenleitung / Parallele Platten Doppelleitung Koaxialleitung eer al Leiter Wellenwiderstand Dämpfung streifenleiter Effektive Permittivitätszahl	12 12 13 13 13 13 13 13 13 13 13 14 14 14 14 14 15 15 15 15
6	5.4 We l 6.1	5.2.3 5.2.4 5.2.5 5.2.6 5.2.7 5.2.8 5.2.9 5.2.10 5.2.11 5.2.12 5.2.13 Mehrft Leitur 5.4.1 5.4.2 5.4.3 5.4.4 Ilenleit Koaxia 6.1.1 6.1.2 Mikros 6.2.1 6.2.2	verlustloser Reflexionsfaktor Beliebiger Abschluss (Last) Angepasste (reflexionsfreie) Leitung Kurzschluss an Leitungsende Leerlauf an Leitungsende Leeitung als Impedanz-Transformator Ohmscher Abschluss an Leitungsende Position von Extrema Stehwellenverhältnis (SWR) Leistung Reflexionsfaktor mit Verlusten Gleichspannungswert (=Endwert) achreflexionen bei fehlender Anpassung agsparameter Allgemein Streifenleitung / Parallele Platten Doppelleitung Koaxialleitung er al Leiter Wellenwiderstand Dämpfung streifenleiter Effektive Permittivitätszahl Schmale Streifen	12 12 13 13 13 13 13 13 13 13 13 14 14 14 14 15 15 15 15 15
6	5.4 We l 6.1	5.2.3 5.2.4 5.2.5 5.2.6 5.2.7 5.2.8 5.2.9 5.2.10 5.2.11 5.2.12 5.2.13 Mehrft Leitur 5.4.1 5.4.2 5.4.3 5.4.4 Wikros 6.2.1 6.2.2 6.2.3	verlustloser Reflexionsfaktor Beliebiger Abschluss (Last) Angepasste (reflexionsfreie) Leitung Kurzschluss an Leitungsende Leerlauf an Leitungsende Leitung als Impedanz-Transformator Ohmscher Abschluss an Leitungsende Position von Extrema Stehwellenverhältnis (SWR) Leistung Reflexionsfaktor mit Verlusten Gleichspannungswert (=Endwert) achreflexionen bei fehlender Anpassung agsparameter Allgemein Streifenleitung / Parallele Platten Doppelleitung Koaxialleitung er al Leiter Wellenwiderstand Dämpfung streifenleiter Effektive Permittivitätszahl Schmale Streifen Breite Streifen	12 12 13 13 13 13 13 13 13 13 13 14 14 14 14 14 15 15 15 15

	6.4	VSWR (Voltage Standing Wave Ratio) und Return Loss
	6.5	Lichtwellenleiter oder Glasfaser
	6.6	Leitungsparameter
		6.6.1 Streifenleitung / Parallele Platten
		6.6.2 Doppelleitung
		6.6.3 Koaxialleitung
		6.6.4 Allgemein
_	<i>~</i> .	
7		h-Diagramm
	7.1	Allgemein
		7.1.1 Normierte Impedanz
		7.1.2 verlustloser Reflexionsfaktor
	7.0	7.1.3 Schema und Kenngrößen
	7.2	Maxima/Minima bei stehender Welle
	7.3	Impedanz/Admittanz umrechnen 17 Von Last zu Quelle 17
	7.4	·
	7.5	Vorgehen mit geg. Eingangswiderstand
8	Ant	ennen 18
	8.1	Herz'scher Dipol (HDp)
		8.1.1 Allgemein
		8.1.2 Nahfeld
		8.1.3 Fernfeld
		8.1.4 Abgestrahlte Leistung im Fernfeld HDp
		8.1.5 Strahlungswiderstand HDp
		8.1.6 Verlustwiderstand HDp
	8.2	Magnetischer Dipol
		8.2.1 Fernfeld
		8.2.2 Abgestrahlte Leistung im Fernfeld
		8.2.3 Nahfeld
	8.3	Lineare Antenne
		8.3.1 Dipolantenne allgemein
		8.3.2 Eingangs-/Fußpunktimpedanz
		8.3.3 Strahlungsdichte
		8.3.4 abgestrahlte Wirkleistung
	8.4	Antennenkenngrößen
		8.4.1 Abgestrahlte Leistung
		8.4.2 Verlustleistung
		8.4.3 Wirkungsgrad
		8.4.4 Gewinn/Gain
		8.4.5 Richtcharakteristik
		8.4.6 Richtfunktion/-faktor
	8.5	Senden und Empfangen
		8.5.1 Wirksame/Effektive Antennenfläche
		8.5.2 Friis-Übertragungsgleichung
		8.5.3 Freiraumdämpfung
		8.5.4 Leistungspegel/Freiraumpegel
	8.6	Bezugsantennen
	8.7	Monopolantenne
	8.8	Richtcharakteristik Dipolantennen
	8.9	Blindwiderstand Dipolantennen
	8.10	Antennentabelle

23

9 Einheiten

1 Grundlagen

1.1 Einheiten

weitere Einheiten siehe Kapitel 9.

Größe	Symbol	Einheit
Permiabilitätskonstante	μ_0	$\frac{ extsf{Vs}}{ extsf{Am}}$
Dilelektrizitätskonstante	$arepsilon_0$	$\frac{\mathtt{As}}{\mathtt{Vm}}$
elek. Ladung/Fluss	Q,q	C = As
elek. Feldstärke	$ec{E}$	$\frac{\mathtt{V}}{\mathtt{m}}$
elek. Flussdichte	$ec{D}$	$rac{\mathtt{As}}{\mathtt{m}^2} = rac{\mathtt{C}}{\mathtt{m}^2}$
Kapazität	C	$F = rac{\mathtt{As}}{\mathtt{V}}$
mag. Fluss	ϕ,Φ	Wb = Vs
mag. Feldstärke	$ec{H}$	$\frac{A}{m}$
mag. Flussdichte	$ec{B}$	$T = \frac{{\tt Vs}}{{\tt m}^2}$
Induktivität	L	$H=rac{ extsf{Vs}}{ extsf{A}}$
Strahlungsdichte	S_{av}, I	$\frac{\mathtt{W}}{\mathtt{m}^2}$

1.2 Kugel

$$V = \frac{4}{3}\pi r^3 \qquad A = 4\pi r^2$$

1.2.1 Skalarprodukt

$$\begin{split} \vec{a} \cdot \vec{b} &= |\vec{a}| \cdot |\vec{b}| \cdot cos(\varphi) \qquad \vec{a} \cdot \vec{b} = 0 \\ cos(\varphi) &= \frac{\vec{a} \cdot \vec{b}}{|\vec{a}| \cdot |\vec{b}|} = \frac{a_x \cdot b_x + a_y \cdot b_y + a_z \cdot b_z}{|\vec{a}| \cdot |\vec{b}|} \end{split}$$

1.2.2 Kreuzprodukt

$$A_{Para} = |\vec{c}| = |\vec{a} \times \vec{b}| = |\vec{a}| \cdot |\vec{b}| \cdot \sin(\varphi)$$

$$\vec{a} \times \vec{b} = \begin{pmatrix} a_x \\ a_y \\ a_z \end{pmatrix} \times \begin{pmatrix} b_x \\ b_y \\ b_z \end{pmatrix} = \begin{pmatrix} a_y b_z - a_z b_y \\ a_z b_x - a_x b_z \\ a_x b_y - a_y b_x \end{pmatrix}$$

Trick: Regel von Sarrus anwenden!

1.3 Differential operatoren

Nabla-Operator

$$\nabla = \vec{\nabla} = \begin{pmatrix} \partial/\partial x \\ \partial/\partial y \\ \partial/\partial z \end{pmatrix}$$

Laplace-Operator

$$\Delta = \vec{\nabla} \cdot \vec{\nabla} = \text{div (grad)} = \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} + \frac{\partial^2}{\partial z^2}$$

Divergenz div: Vektorfeld \rightarrow Skalar S.382 Quelldichte, gibt für jeden Punkt im Raum an, ob Feldlinien entstehen oder verschwinden.

Rotation rot: Vektorfeld \rightarrow Vektorfeld S.382 Wirbeldichte, gibt für jeden Punkt im Raum Betrag und Richtung der Rotationsgeschwindigkeit an.

$$\boxed{ \operatorname{rot} \vec{F} = \nabla \times \vec{F} } = \begin{pmatrix} \frac{\partial F_z}{\partial y} - \frac{\partial F_y}{\partial z} \\ \frac{\partial F_x}{\partial z} - \frac{\partial F_z}{\partial x} \\ \frac{\partial F_y}{\partial x} - \frac{\partial F_x}{\partial y} \end{pmatrix} = \begin{vmatrix} \vec{e}_x & \vec{e}_y & \vec{e}_z \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial x} & \frac{\partial}{\partial z} \\ \vec{F}_x & \vec{F}_y & \vec{F}_z \end{vmatrix}$$

Vektorfeld skalar annotiert: $\vec{F} = \vec{F}(x; y; z) = F_x \vec{e}_x + F_y \vec{e}_y + F_z \vec{e}_z$

Gradient grad: Skalarfeld \rightarrow Vektor/Gradientenfeld zeigt in Richtung steilster Anstieg von ϕ

$$\boxed{ \left[\operatorname{grad} \phi = \nabla \cdot \phi \right] = \begin{pmatrix} \frac{\partial \phi / \partial x}{\partial \phi / \partial y} \\ \frac{\partial \phi / \partial z}{\partial \phi / \partial z} \end{pmatrix} = \frac{\partial \phi}{\partial x} \vec{e}_x + \frac{\partial \phi}{\partial y} \vec{e}_y + \frac{\partial \phi}{\partial z} \vec{e}_z$$

1.3.1 Rechenregeln

 $\begin{array}{lll} \phi, \psi \colon \text{Skalarfelder} & \vec{A}, \vec{B} \colon \text{Vektorfelder} \\ & \nabla \cdot (\vec{A} \times \vec{B}) & = & (\nabla \times \vec{A}) \cdot \vec{B} - (\nabla \times \vec{B}) \cdot \vec{A} \\ & \nabla \cdot (\phi \cdot \psi) & = & \phi(\nabla \psi) + \psi(\nabla \phi) \\ & \nabla \cdot (\phi \cdot \vec{A}) & = & \phi(\nabla \vec{A}) + \vec{A}(\nabla \phi) \\ & \nabla \times (\phi \cdot \vec{A}) & = & \nabla \phi \times \vec{A} + \phi(\nabla \times \vec{A}) \end{array}$

1.3.2 Spezielle Vektorfelder

quellenfreies Vektorfeld $\vec{F} \rightarrow$ Vektorpotential \vec{E}

$$\operatorname{div} \vec{F} = \boxed{\operatorname{div}(\operatorname{rot} \vec{E}) = 0} \quad \Leftrightarrow \quad \vec{F} = \operatorname{rot} \vec{E}$$

wirbelfreies Vektorfeld $\vec{F} \rightarrow$ Skalar
potential ϕ

$$\operatorname{rot} \vec{F} = \boxed{\operatorname{rot}(\operatorname{grad} \phi) = 0} \quad \Leftrightarrow \quad \vec{F} = \operatorname{grad} \phi$$

quellen- und wirbelfreies Vektorfeld \vec{F} :

$$\begin{aligned} & \operatorname{rot} \vec{F} = 0 \quad \operatorname{div} \vec{F} = 0 \\ & \operatorname{div} (\operatorname{grad} \phi) = \Delta \phi = 0 \quad \Leftrightarrow \quad \vec{F} = \operatorname{grad} \phi \\ & \operatorname{rot} (\operatorname{rot} \vec{F}) = \operatorname{grad} (\operatorname{div} \vec{F}) - \Delta \vec{F} \end{aligned}$$

1.4 Logarithmische Maße/Pegel

Feldgröße F_n : Spannung, Strom, \vec{E} -, \vec{H} -Feld, Schalldruck Leistungsgröße P_n : Energie, Intensität, Leistung Wichtig: Feldgrößen sind Effektivwerte!

• Dämpfungsmaß a in Dezibel [dB] und Neper [Np]

$$1 \, dB = 0, 1151 \, Np$$

$$1 \, Np = 8, 686 \, dB$$

$$a \, [dB] = 20 \cdot \log \frac{F_1}{F_2}$$

$$a \, [dB] = 10 \cdot \log \frac{P_1}{P_2}$$

$$\frac{F_1}{F_2} = 10^{\frac{a[dB]}{20dB}}$$

$$\frac{P_1}{P_2} = 10^{\frac{a[dB]}{10dB}}$$

$$a \, [Np] = \ln \frac{F_1}{F_2}$$

$$a \, [Np] = \frac{1}{2} \cdot \ln \frac{P_1}{P_2}$$

$$\frac{F_1}{F_2} = e^{a[Np]}$$

$$\frac{P_1}{P_2} = e^{2a[Np]}$$

Tony Pham

• absolute Pegel L mit Bezugsgrößen P_0, F_0

$L\left[\mathrm{dB}\right] = 20 \cdot \log \frac{F_1}{F_0}$	$L\left[\mathrm{dB}\right] = 10 \cdot \log \frac{P_1}{P_0}$
$\frac{F_1}{F_0} = 10^{\frac{L[\text{dB}]}{20\text{dB}}}$	$\frac{P_1}{P_0} = 10^{\frac{L[\text{dB}]}{10\text{dB}}}$

Einheit	Bezugswert	Formelzeichen
dBm, dB(mW)	$P_0 = 1mW$	$L_{ t P/mW}$
$\mathrm{dBW},\mathrm{dB(W)}$	$P_0 = 1W$	$L_{ t P/W}$

• relativer Pegel / Maß

Maß = Differenz zweier (Leistungs)pegel bei gleichem Bezugswert P_0

$$\Delta L = L_2 - L_1 = 10 \cdot \log\left(\frac{P_2}{P_1}\right) dB$$

1.4.1 Rechnen mit Pegeln / Logarithmen

Rechenregeln für Logarithmen (10er-Basis): x, y, a > 0

$$\begin{split} \log(x \cdot y) &= \log(x) - \log(y) & \log\left(\frac{x}{y}\right) = \log(x) - \log(y) \\ \log(x^a) &= a \cdot \log(x) & \log\sqrt[a]{x} = \frac{1}{a} \cdot \log(x) \\ \text{Pegel} &= 10 \cdot \log(\text{Faktor}) & \text{Faktor} &= 10^{\frac{\text{Pegel}}{10}} \end{split}$$

Rechnen mit Wurzeln 1.5

a: Radikant n: Wurzelexponent Merke:
$$\sqrt[n]{a \pm b} \neq \sqrt[n]{a} \pm \sqrt[n]{b}$$
 $x = \sqrt[n]{a} = a^{\frac{1}{n}}$
$$\sqrt[n]{a^m} = (a^m)^{\frac{1}{n}} = \left(a^{\frac{1}{n}}\right)^m = a^{\frac{m}{n}} = (\sqrt[n]{a})^m$$

$$\sqrt[m]{\sqrt[n]{a}} = \sqrt[m]{a^{\frac{1}{n}}} = \left(a^{\frac{1}{n}}\right)^{\frac{1}{m}} = a^{\frac{1}{m \cdot n}} = \sqrt[m \cdot n]{a}$$

$$\sqrt[n]{a} \cdot \sqrt[n]{b} = \left(a^{\frac{1}{n}}\right) \cdot \left(b^{\frac{1}{n}}\right) = (ab)^{\frac{1}{n}} = \sqrt[n]{ab}$$

$$\frac{\sqrt[n]{a}}{\sqrt[n]{b}} = \frac{a^{\frac{1}{n}}}{b^{\frac{1}{n}}} = \left(\frac{a}{b}\right)^{\frac{1}{n}} = \sqrt[n]{\frac{a}{b}} \quad (b > 0)$$

Rechnen mit Potenzen

a: Basis m, n: Exponent

a: Basis
$$m, n$$
: Exponent
$$a^{m} \cdot a^{n} = a^{m+n} \qquad \frac{a^{m}}{a^{n}} = a^{m-n} \quad (a \neq 0)$$

$$(a^{m})^{n} = (a^{n})^{m} = a^{m \cdot n} \qquad a^{n} \cdot b^{n} = (a \cdot b)^{n}$$

$$\frac{a^{n}}{b^{n}} = \left(\frac{a}{b}\right)^{n} \quad (b \neq 0) \qquad a^{b} = e^{b \cdot \ln a}$$

$$a^{0} = 1 \qquad a^{-n} = \frac{1}{a^{n}}$$

1.7 Koordinatensysteme

Umrechnungstabelle 1.7.1

Kart.	Zyl.	Kug.
x	$r\cos\varphi$	$r\sin\vartheta\cos\varphi$
y	$r\sin\varphi$	$r\sin\vartheta\sin\varphi$
_ z	z	$r\cos\vartheta$
$\sqrt{x^2 + y^2}$	r	
$\arctan \frac{y}{x}$	φ	
z	z	
$dx\cos\varphi + dy\sin\varphi$	dr	
$dy\cos\varphi - dx\sin\varphi$	$rd\varphi$	
dz	dz	
$\sqrt{x^2 + y^2 + z^2}$		r
$\arctan \frac{y}{x}$		φ
$\arctan \frac{\sqrt{x^2+y^2}}{z}$		θ
$dx \sin \theta \cos \varphi + dy \sin \theta \sin \varphi + dz \cos \theta$		dr
$dy\cos\varphi - dx\sin\varphi$		$r\sin\vartheta d\varphi$
$\frac{dx\cos\theta\cos\varphi}{dy\cos\theta\sin\varphi-dz\sin\theta} +$		$rd\vartheta$

Schema KOS Kugel/Zylinder

1.7.3 Kartesische Koordinaten

Variablen: x, y, z Einheitsvektoren: $\vec{e}_x, \vec{e}_y, \vec{e}_z$ Rechtssystem: $\vec{e}_x \times \vec{e}_y = \vec{e}_z$

Linienelemente: $ds = \sqrt{dx^2 + dy^2 + dz^2} = dx \cdot \vec{e}_x + dy \cdot \vec{e}_y + dz \cdot \vec{e}_z$

Volumenelemente: dV = dx dy dz

Flächenelemente: $dA_{xy}=dx\,dy\,\vec{e}_z$ $dA_{yz}=dy\,dz\,\vec{e}_x$ $dA_{xz}=dx\,dz\,\vec{e}_y$

Skalarfeld: $\phi = \phi(x; y; z)$ Vektorfeld: $\vec{F} = \vec{F}(x; y; z) = F_x \vec{e}_x + F_y \vec{e}_y + F_z \vec{e}_z$

 $\textbf{Gradient:} \quad \operatorname{grad} \phi \equiv \nabla \phi = \frac{\partial \phi}{\partial x} \vec{e}_x + \frac{\partial \phi}{\partial y} \vec{e}_y + \frac{\partial \phi}{\partial z} \vec{e}_z \qquad \qquad \textbf{Divergenz:} \quad \operatorname{div} \vec{D} \equiv \nabla \vec{D} = \frac{\partial D_x}{\partial x} + \frac{\partial D_y}{\partial y} + \frac{\partial D_z}{\partial z} \vec{e}_z$

 $\textbf{Rotation:} \quad \operatorname{rot} \vec{E} \equiv \nabla \times \vec{E} = \left[\frac{\partial E_z}{\partial y} - \frac{\partial E_y}{\partial z} \right] \vec{e}_x + \left[\frac{\partial E_x}{\partial z} - \frac{\partial E_z}{\partial x} \right] \vec{e}_y + \left[\frac{\partial E_y}{\partial x} - \frac{\partial E_x}{\partial y} \right] \vec{e}_z$

 $\textbf{La-Place}: \quad \Delta \equiv \nabla \cdot \nabla = \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} + \frac{\partial^2}{\partial z^2} \qquad \Delta \vec{E} = \operatorname{grad} \operatorname{div} \vec{E} - \operatorname{rot} \operatorname{rot} \vec{E} = \Delta E_x \vec{e}_x + \Delta E_y \vec{e}_y + \Delta E_z \vec{e}_z$

 $\Delta \vec{E} = \left[\frac{\partial^2 E_x}{\partial x^2} + \frac{\partial^2 E_x}{\partial y^2} + \frac{\partial^2 E_x}{\partial z^2} \right] \vec{e_x} + \left[\frac{\partial^2 E_y}{\partial x^2} + \frac{\partial^2 E_y}{\partial y^2} + \frac{\partial^2 E_y}{\partial z^2} \right] \vec{e_y} + \left[\frac{\partial^2 E_z}{\partial x^2} + \frac{\partial^2 E_z}{\partial y^2} + \frac{\partial^2 E_z}{\partial z^2} \right] \vec{e_z}$

1.7.4 Zylinderkoordinaten

Polarkoordinaten siehe S.386, Papula S.387,

Variablen: r, φ, z Einheitsvektoren: $\vec{e}_r, \vec{e}_\varphi, \vec{e}_z$ Rechtssystem: $\vec{e}_r \times \vec{e}_\varphi = \vec{e}_z$

Linienelemente: $ds = \sqrt{dr^2 + \mathbf{r}d\varphi^2 + dz^2} = dr \cdot \vec{e_r} + \mathbf{r}\,d\varphi \cdot \vec{e_\varphi} + dz \cdot \vec{e_z}$

Volumenelemente: $dV = \mathbf{r} dr d\varphi dz$

Flächenelemente: $dA_{r\varphi} = \mathbf{r} \, dr \, d\varphi \, \vec{e}_z$ $dA_{rz} = dr \, dz \, \vec{e}_{\varphi}$ $dA_{\varphi z} = \mathbf{r} \, d\varphi \, dz \, \vec{e}_r$

Skalarfeld: $\phi = \phi(x; \varphi; z)$ Vektorfeld: $\vec{F} = \vec{F}(r; \varphi; z) = F_r \vec{e}_r + F_\varphi \vec{e}_\varphi + F_z \vec{e}_z$

 $\textbf{Gradient:} \quad \operatorname{grad} \phi \equiv \nabla \phi = \frac{\partial \phi}{\partial r} \vec{e}_r + \frac{1}{r} \frac{\partial \phi}{\partial \omega} \vec{e}_\varphi + \frac{\partial \phi}{\partial z} \vec{e}_z$

Divergenz: div $\vec{D} \equiv \nabla \vec{D} = \frac{1}{r} \cdot \frac{\partial}{\partial r} (r \cdot \vec{D}_r) + \frac{1}{r} \cdot \frac{\partial \vec{D}_{\varphi}}{\partial \varphi} + \frac{\partial \vec{D}_z}{\partial z}$

 $\textbf{La-Place}: \Delta \phi = \frac{1}{r} \cdot \frac{\partial}{\partial r} \left(r \cdot \frac{\partial \phi}{\partial r} \right) + \frac{1}{r^2} \cdot \frac{\partial^2 \phi}{\partial \varphi^2} + \frac{\partial^2 \phi}{\partial z^2} \qquad \Delta \vec{E} = \operatorname{grad} \operatorname{div} \vec{E} - \operatorname{rot} \operatorname{rot} \vec{E} = \Delta E_r \vec{e}_r + \Delta E_\varphi \vec{e}_\varphi + \Delta E_z \vec{e}_z$

 $\Delta \vec{E} = \left[\Delta E_r - \frac{2}{r^2} \frac{\partial E_\varphi}{\partial \varphi} - \frac{E_r}{r^2} \right] \vec{e}_r + \left[\Delta E_\varphi + \frac{2}{r^2} \frac{\partial E_r}{\partial \varphi} - \frac{E_\varphi}{r^2} \right] \vec{e}_\varphi + \left[\Delta E_z \right] \vec{e}_z$

1.7.5 Kugelkoordinaten

siehe Papula S.391/392

Variablen: r, ϑ, φ Einheitsvektoren: $\vec{e}_r, \vec{e}_\vartheta, \vec{e}_\varphi$ Rechtssystem: $\vec{e}_r \times \vec{e}_\vartheta = \vec{e}_\varphi$

Linienelemente: $ds = \sqrt{dr^2 + \mathbf{r^2}\sin^2\vartheta\,d\varphi^2 + \mathbf{r^2}d\vartheta^2} = dr \cdot \vec{e_r} + r\,d\vartheta \cdot \vec{e_\vartheta} + r\,\sin\varphi\,d\varphi \cdot \vec{e_\varphi}$

Volumenelemente: $dV = \mathbf{r}^2 \sin \vartheta \, dr \, d\vartheta \, d\varphi$

Flächenelemente: $dA_{r\vartheta} = \mathbf{r} dr d\vartheta \vec{e}_{\varphi}$ $dA_{r\varphi} = \mathbf{r} \sin \vartheta dr d\varphi \vec{e}_{\vartheta}$ $dA_{\vartheta\varphi} = \mathbf{r}^{2} \sin \vartheta d\vartheta d\varphi \vec{e}_{r}$

Skalarfeld: $\phi = \phi(r; \vartheta; \varphi)$ Vektorfeld: $\vec{F} = \vec{F}(r; \vartheta; \varphi) = F_r \vec{e}_r + F_\vartheta \vec{e}_\vartheta + F_\varphi \vec{e}_\varphi$

Gradient: grad $\phi \equiv \nabla \phi = \frac{\partial \phi}{\partial r} \vec{e}_r + \frac{1}{r} \frac{\partial \phi}{\partial \vartheta} \vec{e}_\vartheta + \frac{1}{r \sin \vartheta} \frac{\partial \phi}{\partial \varphi} \vec{e}_\varphi$

 $\mathbf{La\text{-Place}}: \Delta \phi = \frac{1}{r^2} \left\{ \frac{\partial}{\partial r} \left(r^2 \cdot \frac{\partial \phi}{\partial r} \right) + \frac{1}{\sin \vartheta} \cdot \frac{\partial}{\partial \vartheta} \left(\sin \vartheta \cdot \frac{\partial \phi}{\partial \vartheta} \right) + \frac{1}{\sin^2 \vartheta} \cdot \frac{\partial^2 \phi}{\partial \varphi^2} \right\}$

Laplace Operator in Kugelkoordinaten, angewandt auf einen Vektor:

$$\begin{split} \Delta \vec{E} &= \left[\Delta E_r - \frac{2}{r^2} E_r - \frac{2}{r^2 \sin \vartheta} \frac{\partial \left(\sin \vartheta \cdot E_\vartheta \right)}{\partial \vartheta} - \frac{2}{r^2 \sin \vartheta} \frac{\partial E_\varphi}{\partial \varphi} \right] \vec{e}_r \\ &\quad + \left[\Delta E_\vartheta - \frac{E_\vartheta}{r^2 \sin^2 \vartheta} + \frac{2}{r^2} \frac{\partial E_r}{\partial \vartheta} - \frac{2 \cot \vartheta}{r^2 \sin \vartheta} \frac{\partial E_\varphi}{\partial \varphi} \right] \vec{e}_\vartheta \\ &\quad + \left[\Delta E_\varphi - \frac{E_\varphi}{r^2 \sin^2 \vartheta} + \frac{2}{r^2 \sin \vartheta} \frac{\partial E_r}{\partial \varphi} + \frac{2 \cot \vartheta}{r^2 \sin \vartheta} \frac{\partial E_\vartheta}{\partial \varphi} \right] \vec{e}_\varphi \end{split}$$

Tony Pham 3 von 23

2 Maxwell-Gleichungen

differentielle Form

Integralform

$$\operatorname{div} \mathbf{D} = \nabla \cdot \mathbf{D} = \rho \qquad \qquad \underbrace{\operatorname{Gauß}} \qquad \oiint_{\partial V} \mathbf{D} \cdot d\mathbf{a} = \iiint_{V} \rho \cdot dV = Q(V)$$

Gaußsches Gesetz: Das elektrische Feld ist ein Quellenfeld. Die Ladung Q bzw. die Ladungsdichte ρ ist Quelle des elektrischen Feldes.

Der (elektrische) Fluss durch die geschlossene Oberfläche ∂V eines Volumens V ist gleich der elektrischen Ladung in seinem Inneren.

$$\operatorname{div} \mathbf{B} = \nabla \cdot \mathbf{B} = 0 \qquad \qquad \mathbf{Gauß} \qquad \mathbf{B} \cdot d\mathbf{a} = 0$$

Das magnetische Feld ist quellenfrei. Es gibt keine magnetischen Monopole. Der mag. Fluss durch die geschlossene Oberfläche & Veines Volumens Ventspricht der magnetischen Ladung in seinem Inneren, nämlich Null, da es keine magnetischen Monopole gibt.

$$\operatorname{rot} \mathbf{E} = \nabla \times \mathbf{E} = -\frac{\partial \mathbf{B}}{\partial t} \qquad \underbrace{\operatorname{Stokes}} \qquad \oint_{\partial A} \mathbf{E} \cdot d\mathbf{s} = -\iint_{A} \frac{\partial \mathbf{B}}{\partial t} \cdot d\mathbf{a} = -\frac{d\Phi_{\operatorname{eing.}}}{dt}$$

Induktionsgesetz: Jede zeitlichen Änderung eines Magnetfeldes bewirkt ein elektrisches Wirbelfeld. Die induzierte Umlaufspannung bzgl. der Randkurve ∂A einer Fläche A ist gleich der negativen zeitlichen Änderung des magnetischen Flusses durch diese Fläche.

$$\operatorname{rot} \mathbf{H} = \nabla \times \mathbf{H} = \mathbf{j} + \frac{\partial \mathbf{D}}{\partial t} \quad \text{Stokes} \quad \oint_{\partial A} \mathbf{H} \cdot d\mathbf{s} = \iint_{A} \mathbf{j} \cdot d\mathbf{a} + \iint_{A} \frac{\partial \mathbf{D}}{\partial t} \cdot d\mathbf{a}$$

Amperesches Gesetz: Jeder Strom und jede zeitlichen Änderung des elektrischen Feldes (Verschiebungsstrom) bewirkt ein magnetisches Wirbelfeld.

Die mag. Umlaufspannung bzgl. der Randkurve ∂A der Fläche A entspricht dem von dieser Fläche eingeschlossenen Strom. (inkl. Verschiebungsstrom)

Amperesches- /Durchflutungsgesetz:

Elek. Strom ist Ursache für ein magn. Wirbelfeld.

$$\oint_s \vec{H} \cdot d\vec{s} = \Theta = I = \iint_A \vec{J} \cdot d\vec{A} = \frac{d\Phi_e}{dt}$$

${\bf Induktions ge setz:}$

Ein sich zeitlich änderndes Magnetfeld erzeugt ein elek. Wirbelfeld.

Differentielles ohmsches Gesetz:

Bewegte elektrische Ladung erzeugt Magnetfeld

$$rot\vec{H} = \vec{J} = \kappa \cdot \vec{E}$$

Bei isotropen Stoffen sind ε u. μ Skalare:

$$\varepsilon = \varepsilon_0 \cdot \varepsilon_r \qquad \mu = \mu_0 \cdot \mu_r$$

Zeitbereich: $\frac{\partial}{\partial t}$ Harmonischer Frequenzbereich (komplexe Berechnung): jw

2.1 Feldstärkekomponenten einer ebenen Welle

Bei Ausbreitung in z-Richtung gibt es keine Amplitudenabhängigkeit von x,y d.h. $\frac{\partial \dots}{\partial x} = \frac{\partial \dots}{\partial y} = 0$ damit ergibt sich aus den Maxwell'schen Gleichungen:

$$\operatorname{rot} \underline{\vec{E}} = -\mathrm{j}\omega\mu\underline{\vec{H}} \qquad \operatorname{rot} \underline{\vec{H}} = \mathrm{j}\omega\varepsilon\underline{\vec{E}}$$

$$\operatorname{rot} \underline{\vec{E}} = \begin{pmatrix} \vec{e}_x & \vec{e}_y & \vec{e}_z \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ \underline{E}_x & \underline{E}_y & \underline{E}_z \end{pmatrix} = \begin{pmatrix} \frac{\partial \underline{E}_z}{\partial y} - \frac{\partial \underline{E}_y}{\partial z} \\ \frac{\partial \underline{E}_x}{\partial z} - \frac{\partial \underline{E}_z}{\partial x} \\ \frac{\partial \underline{E}_y}{\partial x} - \frac{\partial \underline{E}_z}{\partial y} \end{pmatrix} = \begin{pmatrix} 0 - \frac{\partial \underline{H}_y}{\partial z} \\ 0 - 0 \end{pmatrix} = -\mathrm{j}\omega\mu \begin{pmatrix} \underline{H}_x \\ \underline{H}_y \\ \underline{H}_z \end{pmatrix}$$

$$\operatorname{rot} \underline{\vec{H}} = \begin{vmatrix} \vec{e}_x & \vec{e}_y & \vec{e}_z \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \end{vmatrix} = \begin{pmatrix} \frac{\partial \underline{H}_z}{\partial y} - \frac{\partial \underline{H}_y}{\partial z} \\ \frac{\partial \underline{H}_x}{\partial z} - \frac{\partial \underline{H}_z}{\partial x} \\ \frac{\partial \underline{H}_x}{\partial z} - \frac{\partial \underline{H}_x}{\partial y} \end{pmatrix} = \begin{pmatrix} 0 - \frac{\partial \underline{H}_y}{\partial z} \\ \frac{\partial \underline{H}_x}{\partial z} - 0 \\ 0 - 0 \end{pmatrix} = \mathrm{j}\omega\varepsilon \begin{pmatrix} \underline{\underline{E}}_x \\ \underline{\underline{E}}_y \\ \underline{\underline{E}}_z \end{pmatrix}$$

2.2 Integralsätze

Fundamentalsatz der Analysis

Gauß: Vektorfeld das aus Oberfläche von Volumen strömt muss aus Quelle in Volumen Stokes: innere Wirbel kompensieren sich \rightarrow nur den Rand betrachten.

$$\begin{split} & \int_a^b \operatorname{grad} F \cdot d\vec{s} = F(b) - F(a) \\ & \iiint_V \operatorname{div} \vec{A} \cdot dV = \oiint_{\partial V} \vec{A} \cdot d\vec{a} \\ & \iint_A \operatorname{rot} \vec{A} \cdot d\vec{a} = \oint_{\partial A} \vec{A} \cdot d\vec{r} \end{split}$$

Tony Pham

3 Felder

Materialgleichungen

Verkopplung von \vec{E} - und \vec{H} -Felder über $\vec{J} = \kappa \vec{E}$.

Feldunterscheidung

$$\begin{array}{lll} \vec{E}(x,y,z) & \widehat{=} & \text{statisches Feld} \\ \vec{E}(x,y,z,t) & \widehat{=} & \text{station\"ares Feld} \\ \vec{E}(x,y,z,t) \cdot \cos(\omega t - \beta z) & \widehat{=} & \text{Welle} \end{array}$$

3.1 Elektrostatik

Wirbelfreie Felder \to Gradientenfeld \to elek. Ladungen sind Quellen des $\vec{E}\text{-Feldes}$ (Skalare Potenzialfkt. $\varphi)$

$$\begin{split} \operatorname{rot} \vec{E} &= 0 = \operatorname{rot} \operatorname{grad} E & \vec{E} &= -\operatorname{grad} \varphi \\ \operatorname{div} \vec{D} &= \rho & \vec{D} &= \varepsilon \vec{E} \\ \vec{E} &= -\operatorname{grad} \varphi &= -\left(\frac{\partial \varphi}{\partial x}\right) \vec{e}_x - \left(\frac{\partial \varphi}{\partial y}\right) \vec{e}_y - \left(\frac{\partial \varphi}{\partial z}\right) \vec{e}_z \end{split}$$

3.1.1 Potential-/Poisson-Gleichung

La-Place-Gleichung, wenn $\rho = 0$

$$\begin{aligned} \operatorname{div} \operatorname{grad} \varphi &= \Delta \varphi = -\frac{\rho}{\varepsilon} \\ \Delta \varphi + \underbrace{\frac{\operatorname{grad} \varepsilon \cdot \operatorname{grad} \varphi}{\varepsilon}}_{=0, \text{ wenn homogen}} &= -\frac{\rho(x,y,z)}{\varepsilon} \\ \underbrace{\frac{d^2 \varphi}{dx^2} + \frac{d^2 \varphi}{dy^2} + \frac{d^2 \varphi}{dz^2}}_{=0} &= -\frac{\rho(x,y,z)}{\varepsilon} \end{aligned}$$

Vereinfachung zu 1-dimensionalem System:

z.B. mit
$$\frac{\partial^2 \dots}{\partial y^2} = \frac{\partial^2 \dots}{\partial z^2} = 0 \quad \Rightarrow \frac{\partial^2 \varphi}{\partial x^2} = -\frac{\rho}{\varepsilon}$$

3.1.2 Randwertprobleme, -bedingungen (RB)

Dirichlet-RB: Gesuchte Potenzialfunktion φ nimmt an den Rändern einen bestimmten Wert an (Bsp.: $\rho_r=5V$)

Neumann-RB: Die Normalenableitung $\frac{\partial \varphi}{\partial n}$ der Fkt. φ nimmt an den Rändern einen bestimmten Wert an. (Bsp.: Grenzfläche unterschiedlicher Dielektrika)

3.1.3 Green'sche Funktionen

 $\bullet \ \mathbf{Skalarpotential} \ \mathrm{einer} \ \mathrm{Punktladung} \\$

$$\varphi(r) = \frac{Q}{4\pi\varepsilon_0 \cdot r} \qquad [V]$$

 \bullet $\mathbf{E}\text{-}\mathbf{Feld}$ einer Punktladung

$$\vec{E}(r) = \frac{Q}{4\pi\varepsilon_0 \cdot r^2} \cdot \vec{e_r} \qquad \left[\frac{V}{m}\right]$$

• **D-Feld** einer Punktladung

$$\vec{D}(r) = \frac{Q}{4\pi \cdot r^2} \cdot \vec{e_r} \qquad \left[\frac{As}{m^2} = \frac{C}{m^2} \right]$$

• Potentialfeld einer Ladungsdichteverteilung mit $\varphi(\infty) = 0$

$$\varphi(x, y, z) = \frac{1}{4\pi\varepsilon} \iiint_{V'} \frac{\rho(x', y', z')}{|\vec{r} - \vec{r}'|} dV'$$

mit der Green'schen Funktion $G\left(\vec{r},\vec{r}'\right)=\frac{1}{4\pi\varepsilon|\vec{r}-\vec{r}'|}$

$$\varphi(x,y,z) = \iiint_{V'} G\left(\vec{r}'\vec{r}'\right) \rho\left(\vec{r}'\right) dV'$$

3.1.4 Elektrischer Dipol

Dipolmoment $\vec{p} = Q \cdot \vec{d}$

$$\begin{split} \varphi &= \frac{Q}{4\pi\varepsilon_0} \left(\frac{1}{r_1} - \frac{1}{r_2}\right) \\ &= \frac{Q}{4\pi\varepsilon_0} \cdot \frac{r_2 - r_1}{r^2} \\ \vec{E} &= -\nabla \varphi \\ &= \frac{1}{4\pi\varepsilon_0} \cdot \left(\frac{3(\vec{p} \cdot \vec{r})\vec{r}}{r^5} - \frac{\vec{p}}{r^3}\right) \end{split}$$

$\varphi \approx \frac{Qd\cos\theta}{4\pi\varepsilon_0 r^2}$ $= \frac{1}{4\pi\varepsilon_0} \cdot \frac{\vec{p} \cdot \vec{r}}{r^3}$

3.2 Magnetostatik

Quellenfreie Wirbelfelder mit geschlossenen Feldlinien. Keine magnetischen Monopole: div $\vec{B}=0$. Skalarpotential φ_m existiert, wenn \vec{H} wirbelfrei ist: rot $\vec{H}=0$, wenn $\vec{J}=0$.

$$\begin{aligned} \operatorname{div} \vec{B} &= 0 = \operatorname{div} \operatorname{rot} B & \vec{H} &= -\operatorname{grad} \varphi_m \\ \operatorname{rot} \vec{H} &= \vec{J} & \vec{B} &= \mu \vec{H} \end{aligned}$$

3.2.1 Vektorpotential

Reine Hilfsgröße, in Analogie zum elek. Skalarpotential φ . Coulomb-Eichung, wenn div $\vec{A}=0$, gilt nur für zeitunabhängige Felder.

$$\Delta \vec{A} = -\mu \vec{J}$$
 $\vec{B} = \operatorname{rot} \vec{A}$ $\left[\vec{A} \right] = \frac{Wb}{m} = \frac{Vs}{m}$

3.2.2 Vektorpotential in Abhängigkeit von der Stromdichte

$$\vec{A}(x,y,z) = \frac{\mu}{4\pi} \iiint_{V'} \frac{\vec{J}(x',y',z')}{|\vec{r}-\vec{r}'|} dV'$$

3.2.3 Biot-Savart-Gesetz

$$\vec{H} = \frac{I}{4\pi} \oint_{C'} \operatorname{grad} \frac{1}{|\vec{r} - \vec{r}'|} \times d\vec{s}'$$

mit grad $\frac{1}{|\vec{r}-\vec{r}^{\,\prime}|} = -\frac{\vec{r}-\vec{r}^{\,\prime}}{|\vec{r}-\vec{r}^{\,\prime}|^3}$

$$\vec{H} = \frac{I}{4\pi} \oint_{C'} \frac{\mathrm{d}\vec{s}' \times (\vec{r} - \vec{r}')}{|\vec{r} - \vec{r}'|^3}$$

 \vec{r} : Aufpunkt \vec{r}' : Quellpunkt

3.2.4 Magnetischer Dipol

Strom I entlang eines Leiters: $\left[\vec{A}\right] = \frac{Vs}{m}$

$$\begin{split} \vec{A}(r) &= \frac{\mu_0 \cdot I}{4\pi} \int \frac{d\vec{R}}{|\vec{r} - \vec{R}|} = \frac{\mu_0}{4\pi} \frac{\vec{m} \times \vec{r}}{r^3} \\ \vec{B} &= \nabla \times \vec{A} = \frac{\mu_0}{4\pi} \left(\frac{3(\vec{m} \cdot \vec{r})\vec{r}}{r^5} - \frac{\vec{m}}{r^3} \right) \end{split}$$

3.3 Quasistätionäre Felder (Wechselstrom)

Homogenes, Isotropes Medium: $\varepsilon, \mu, \kappa = \texttt{kost}$. Leiter ist quasineutral: $\rho = 0$.

$$\begin{split} \operatorname{rot} \vec{E} &= -\frac{\partial \vec{B}}{\partial t} = -\mu \frac{\partial \vec{H}}{\partial t} & \operatorname{div} \vec{E} = 0 & \vec{D} = \varepsilon \vec{E} \\ \operatorname{rot} \vec{H} &= \vec{J} = \kappa \vec{E} & \operatorname{div} \vec{B} = 0 & \vec{B} = \mu \vec{H} \\ \operatorname{div} \vec{J} &= -\frac{\partial \rho}{\partial t} & \operatorname{div} \vec{H} = 0 & \vec{J} = \kappa \vec{E} \end{split}$$

3.3.1 Komplexe Feldgrößen

• komplexer Amplitudenvektor / Phasor:

$$J = J \cdot e^{j\varphi}$$

• komplexer Amplituden-Drehzeiger:

$$\underline{J}(t) = \underline{J} \cdot e^{jwt} = J \cdot e^{j(wt + \varphi)}$$

 \bullet Darstellung in karthesischen Koordinaten:

$$\underline{J} = \underline{J}_x \cdot \vec{e}_x + \underline{J}_y \cdot \vec{e}_y + \underline{J}_z \cdot \vec{e}_z$$

3.4 Skineffekt

 $[\sigma/\kappa]$: Leitfähigkeit $\frac{A}{Vm}=\frac{1}{\Omega m}=\frac{S}{m}$

Eindringtiefe/Äquivalente Leiterschichtdicke (Abfall der Amplitude: $A_0 \cdot \frac{1}{e}$):

$$\delta = \frac{1}{\alpha} = \frac{1}{\sqrt{\pi \mu \kappa f}} = \sqrt{\frac{2}{\omega \mu \kappa}} \qquad [\delta] = m$$

 $(Oberfl\"{a}chen) \textbf{widerstand} :$

$$R_{AC} = \frac{l}{\kappa \cdot A_{\tt eff}} \hspace{1cm} R_{DC} = \frac{l}{\kappa \pi R^2} \hspace{1cm} R_F = \frac{1}{\kappa \delta}$$

Feldstärke verglichen mit der Oberfläche:

$$\begin{split} H\left(x,t\right) &= H_0 \cdot e^{-x/\delta} \cdot \cos\left(\omega t - \frac{x}{\delta}\right) = H_0 \cdot e^{\alpha x} \cdot \cos(wt - \beta x) \\ &\to \text{gilt } analog \text{ für } E\text{-Feld.} \end{split}$$

Amplitude und **Phase** bezogen auf δ :

 $Amplitude: x = \delta \cdot \ln(\texttt{D\"{a}mpfungsfaktor})$

Dämpfung :
$$\alpha = \frac{1}{\delta}$$
 Phase : $\varphi = -\frac{x}{\delta}$

Leistung verglichen mit der Oberfläche:

$$P(x,t) = \frac{1}{2} \cdot E_0 \cdot e^{-x/\delta} \cdot H_0 \cdot e^{-x/\delta}$$

Rundleiter - Effektive Fläche:

$$\begin{split} A_{\text{eff}} &= A_{\text{ges}} - A_{\sigma} = R^2 \pi - (R - \delta)^2 \pi \\ &= 2 \cdot \pi \delta \left(R - \frac{\delta}{2} \right) \end{split}$$

Wenn die Länge nicht gegeben ist oder nach Wieviel % der Widerstand bei einer bestimmten Frequenz abnimmt, kann dies mit der folgenden Formel berechnet werden:

3.4.1 Näherungen für Skineffekt

nur für Rundleiter: $R_{DC} = \frac{l}{\kappa \pi r_0^2}$

Geometrische Beschreibung (Fehler < 6%)

$$\frac{R_{AC}}{R_{DC}} = \begin{cases} 1 & \text{für} \quad r_0 < \delta \\ \\ \frac{r_0^2}{2 \cdot \delta \cdot r_0 - \delta^2} & \text{für} \quad r_0 \ge \delta \end{cases}$$

Bessel-Funktion (Fehler < 6%):

$$\begin{split} \frac{R_{AC}}{R_{DC}} &= \begin{cases} 1 + \frac{1}{3}x^4 & \text{für} & x < 1 \\ x + \frac{1}{4} + \frac{3}{64x} & \text{für} & x > 1 \end{cases} \\ \frac{X_{AC}}{R_{DC}} &= \begin{cases} x^2 \left(1 - \frac{x^4}{6}\right) & \text{für} & x < 1 \\ x - \frac{3}{64x} + \frac{3}{128x^2} & \text{für} & x > 1 \end{cases} \\ \hline x &= \frac{r_0}{2\delta} & r_0 \triangleq \text{Außenradius} & X_{AC} = wL_0 \end{cases} \end{split}$$

Empirische Beschreibung (Fehler < 10%):

$$\frac{R_{AC}}{R_{DC}} = \begin{cases} 1 & \text{für} \quad r_0 < \delta \\ 1 + \left(\frac{r_0}{2,65 \cdot \delta}\right)^4 & \text{für} \quad \delta < r_0 < 2\delta \\ \\ \frac{r_0}{2 \cdot \delta} + \frac{1}{4} & \text{für} \quad 2\delta < r_0 < 5\delta \quad (1) \\ \\ \frac{r_0}{2 \cdot \delta} & \text{für} \quad 5\delta < r_0 \quad (2) \end{cases}$$

Anmerkung: (1) $\widehat{=}$ Kreisring mit Näherung (2) $\widehat{=}$ Ring mittig

3.5 E-Felder an Grenzflächen

3.5.1 Dielektrische Grenzfläche

Querschichtung:

$$D_{1n} = D_{2n} \qquad \qquad \varepsilon_1 E_{1n} = \varepsilon_2 E_{2n}$$

Schwächeres E-Feld bei höherem ε .

Längsschichtung:

$$E_{1t} = E_{2t}$$

$$\frac{D_{1t}}{\varepsilon_1} = \frac{D_2}{\varepsilon_2}$$

Höheres D-Feld (mehr Ladungen) bei höherem ε .

Schrägschichtung

$$\frac{\tan(\alpha_1)}{\tan(\alpha_2)} = \frac{E_{1t}/E_{1n}}{E_{2t}/E_{2n}} = \frac{D_{2n}/\varepsilon_2}{D_{1n}/\varepsilon_1} = \frac{\varepsilon_1}{\varepsilon_2}$$

3.5.2 Grenzfläche Dielektrikum-Leiter

Ladungen verschieben sich so lange, bis im Leiter kein Feld mehr herrscht. $\to E_{2t}, E_{2n}, D_{2t}, D_{2n} = 0$

Längsschichtung:

$$E_{1t} = E_{2t} = 0$$
 $D_{1t} = \varepsilon_1 E_{1t} = 0$

Felder stehen stets senkrecht auf elek. Leitern.

Querschichtung:

$$D_{1n} - D_{2n} = \frac{Q}{A}$$
 $D_{1n} = \frac{Q}{A}$ $E_{1n} = \frac{Q}{\varepsilon_1 A}$

D-Feld entspricht der Flächenladungsdichte des Leiters.

3.5.3 Grenzfläche an magn. Feldern Querschichtung:

$$B_{1n} = B_{2n} \mu_1 H_{1n} = \mu_2 H_{2n}$$

Schwächeres H-Feld bei höherem $\mu.$

Längsschichtung:

$$H_{1t} = H_{2t}$$
 $\frac{B_{1t}}{mu_1} = \frac{B_2}{u_2}$

Höheres B-Feld (mehr Fluss) bei höherem μ .

Schrägschichtung:

$$\frac{\tan(\alpha_1)}{\tan(\alpha_2)} = \frac{\mu_1}{\mu_2}$$

4 Wellen

4.1 Wellengleichungen allgemein

4.1.1 Zeitbereich

auch d'Alembertsche Gleichungen genannt:

$$\begin{split} \Delta \vec{E} - \kappa \mu \cdot \frac{\partial \vec{E}}{\partial t} - \varepsilon \mu \cdot \frac{\partial^2 \vec{E}}{\partial^2 t} &= \operatorname{grad} \frac{\rho}{\varepsilon} \\ \Delta \vec{H} - \kappa \mu \cdot \frac{\partial \vec{H}}{\partial t} - \varepsilon \mu \cdot \frac{\partial^2 \vec{H}}{\partial^2 t} &= 0 \end{split}$$

4.1.2 Frequenzbereich

auch Helmholtz-Gleichungen genannt: mit harmonischer Zeitabhängigkeit: $\frac{\partial}{\partial t} \rightarrow j\omega$

$$\Delta \underline{\vec{E}} - (\kappa \mu \cdot j\omega - \varepsilon \mu \cdot \omega^2) \cdot \underline{\vec{E}} = \operatorname{grad} \frac{\rho}{\varepsilon}$$
$$\Delta \underline{\vec{H}} - (\kappa \mu \cdot j\omega - \varepsilon \mu \cdot \omega^2) \cdot \underline{\vec{H}} = 0$$

4.1.3 Vereinfachung der Gleichungen

Bei quellfreiem, idealem Dielektrikum: $\rho = \kappa = \vec{J} = 0$

$$\begin{split} \Delta \vec{E} - \varepsilon \mu \frac{\partial^2 \vec{E}}{\partial t^2} &= 0 & \Delta \vec{H} - \varepsilon \mu \frac{\partial^2 \vec{H}}{\partial t^2} &= 0 \\ \Delta \underline{\vec{E}} + \varepsilon \mu \omega^2 \cdot \underline{\vec{E}} &= 0 & \Delta \underline{\vec{H}} + \varepsilon \mu \omega^2 \cdot \underline{\vec{H}} &= 0 \end{split}$$

Im elektrisch guten Leiter $\rho=0,\,\kappa\gg\omega\epsilon$

$$\Delta \vec{E} - \kappa \mu \frac{\partial \vec{E}}{\partial t} = 0 \qquad \qquad \Delta \vec{H} - \kappa \mu \frac{\partial \vec{H}}{\partial t} = 0$$

$$\Delta \underline{\vec{E}} - \kappa \mu \cdot j \omega \cdot \underline{\vec{E}} = 0 \qquad \qquad \Delta \underline{\vec{H}} - \kappa \mu \cdot j \omega \cdot \underline{\vec{H}} = 0$$

4.2 Ebene Wellen

Vereinfachung: harmonische Zeitabhängigkeit, keine Raumladungen $\rho=0$, keine Feldstärkekomponenten in Ausbreitungsrichtung $\frac{\partial^2}{\partial^2 x}=\frac{\partial^2}{\partial^2 y}=0$

$$\Delta \vec{E} = \frac{\partial \vec{E}}{\partial z^2} = j\omega\mu(\kappa + j\omega\varepsilon)\vec{E}$$
$$\Delta \vec{H} = \frac{\partial \vec{E}}{\partial z^2} = j\omega\mu(\kappa + j\omega\varepsilon)\vec{H}$$

TEM-Welle: \vec{E} und \vec{H} besitzen nur transversale (= $senkrecht\ zur\ Ausbreitungsrichtung\ stehende) Komponenten.$

4.2.1 Gleichung Ebene Welle

Tatsächlicher Zeitverlauf (**Realteil** von $\underline{\vec{E}}(z,t)$)

$$\vec{E}(z,t) = \underbrace{E_0 \cdot e^{-\alpha z}}_{\text{Amplitude}} \cdot \underbrace{\frac{\text{positive z-Richtung}}{\cos(\omega t - \beta z)} \cdot \vec{e}_z}_{\text{Zeit- und Raumabhängigkeit}}$$

4.2.2 komplexer Amplitudendrehzeiger

Achtung: **mit** e^{jwt} !, wenn **ohne**: komplexer Amplitudenvektor.

$$\boxed{\underline{\vec{E}}(z,t) = E_0 \cdot e^{-\alpha z} \cdot e^{j(\omega t - \beta z)} \cdot \vec{e}_z = E_0 \cdot e^{-\gamma z} \cdot e^{j\omega t} \cdot \vec{e}_z}$$

4.2.3 Fortpflanzungskonstante

Dämpfungskonstante
$$[\alpha] = \frac{\text{Np}}{m}$$
 Phasenkonstante $[\beta] = \frac{\text{rad}}{m}$
$$\underline{\gamma} = \alpha + j\beta = j\underline{k} = \sqrt{j\omega\mu(\kappa + \mathrm{j}\omega\varepsilon)} \quad \left[\frac{1}{m}\right]$$

4.3 Kenngrößen

4.3.1 Wellenzahl

Im Vakuum:
$$k_0 = \frac{\omega}{c_0}$$
 $\underline{k} = \beta - \mathrm{j}\alpha$
$$\beta = \hat{k} = \frac{\omega}{v_p} = \frac{2\pi}{\lambda} = \frac{2\pi f}{v_p} = |\vec{k}| \quad \left[\frac{\mathrm{rad}}{\mathrm{m}}\right]$$
$$= \frac{\omega \cdot n}{c_0} = n \cdot k_0 = \sqrt{\mu_r \cdot \varepsilon_r} \cdot k_0 = k_r \cdot k_0$$

4.3.2 Wellenlänge

Periodenlänge entlang der Ausbreitungsrichtung. Freiraumwellenlänge: im materiefreien Raum λ_0 . $[\lambda]=\mathtt{m}$

$$\lambda_0 = \frac{c_0}{f} = \frac{2\pi}{k_0}$$

$$\lambda = \frac{\lambda_0}{\sqrt{\mu_r \cdot \varepsilon_r}} = \frac{2\pi}{k} = \frac{v_p}{f} = \frac{\lambda_0}{n} = \frac{2\pi}{n \cdot k_0}$$

4.3.3 Phasengeschwindigkeit

$$v_p = \frac{dz}{dt} = \frac{\omega}{k} = \frac{1}{\sqrt{\mu_r \mu_0 \varepsilon_r \varepsilon_0}} = \frac{c_0}{\sqrt{\mu_r \varepsilon_r}} \qquad v_{p, \texttt{Medium} \leq c_0}$$

4.3.4 Brechzahl/Brechungsindex

$$n = \frac{c_0}{v_p} = \sqrt{\mu_r \varepsilon_r} \approx \sqrt{\varepsilon_r} \ge 1$$

4.3.5 Gruppengeschwindigkeit

$$v_g = \frac{d\omega}{dk} \widehat{=} \frac{\text{Wegstück der Wellengruppe}}{\text{Laufzeit der Wellengruppe}}$$

2 Wellen mit geringem Unterschied $\Delta \omega$ und $\beta = \omega \sqrt{\mu \varepsilon}$:

$$\begin{split} E_1(z,t) &= E \cos((\omega_0 - \Delta\omega)t - (\beta_0 - \Delta\beta)z) \\ E_2(z,t) &= E \cos((\omega_0 + \Delta\omega)t - (\beta_0 + \Delta\beta)z) \\ \Rightarrow E(z,t) &= 2E \cdot \underbrace{\cos(\omega_0 t - \beta_0 z)}_{\text{Grundfrequenz } \omega} \cdot \underbrace{\cos(\Delta\omega t - \Delta\beta z)}_{\text{Einhüllende } \Delta\omega} \\ v_p &= \frac{\omega_0}{\beta_0} \qquad v_g = \frac{\Delta\omega}{\Delta\beta} \qquad \text{Grenzwert:} \quad v_g = \frac{1}{d\beta/d\omega} \end{split}$$

4.3.6 Zusammenhang Gruppen- und Phasengeschwindigkeit

$$v_{ph} = \frac{\omega}{k} \Rightarrow k = \frac{\omega}{v_{ph}}$$

$$v_g\left(\omega, v_{ph}\right) = \frac{1}{\frac{\mathrm{d}k}{\mathrm{d}\omega}} = \frac{1}{\frac{\mathrm{d}}{\mathrm{d}\omega} \left[\frac{\omega}{v_{ph}}\right]} = \frac{1}{\frac{v_{ph} - \omega \frac{\mathrm{d}v_{ph}}{\mathrm{d}\omega}}{v_{ph}^2}} = \frac{v_{ph}}{1 - \frac{\omega}{v_{ph}} \frac{\mathrm{d}v_{ph}}{\mathrm{d}\omega}}$$
mit $v_{ph} = \frac{\omega}{k} \Rightarrow \omega = kv_{ph}$

$$v_g\left(k, v_{ph}\right) = \frac{\mathrm{d}\omega}{\mathrm{d}k} = \frac{\mathrm{d}}{\mathrm{d}k} \left[kv_{ph}\right] = v_{ph} + k \frac{\mathrm{d}v_{ph}}{\mathrm{d}k}$$

4.3.7 Feldwellenwiderstand

 Z_{F0} : im **materiefreien** Raum/Vakuum! Falls keine Verluste (ideal) $\rightarrow Z_F$ reell!

$$\begin{split} \underline{Z}_F &= \frac{\underline{E}_{\text{transversal}}}{\underline{H}_{\text{transversal}}} = \frac{\underline{E}_h}{\underline{H}_h} = -\frac{\underline{E}_r}{\underline{H}_r} = \frac{\omega \mu}{\underline{k}} = \sqrt{\frac{j\omega\mu}{\kappa + j\omega\varepsilon}} \\ Z_{F0} &= \sqrt{\frac{\mu_0}{\varepsilon_0}} = 120\pi\Omega \qquad Z_F = Z_{F0} \cdot \sqrt{\frac{\mu_r}{\varepsilon_r}} \end{split}$$

4.3.8 Poynting-Vektor

gibt Leistungsfluss einer EM-Welle und Richtung der Energieströmung

an.					
Zeitbereich	Frequenzbereich				
$ec{S} = ec{E} imes ec{H}$	$\underline{\vec{S}} = \frac{1}{2}(\underline{\vec{E}} \times \underline{\vec{H}}^*)$				
$\vec{S}_{av} = \overline{\vec{S}(t)} = \frac{1}{T} \int_0^T \vec{S}(t) dt$	$\vec{S}_{av} = \frac{1}{2} \operatorname{Re} \left\{ \underline{\vec{E}} \times \underline{\vec{H}}^* \right\}$				
Leistungsflussdichte, Intensität $S_{av} = \vec{S}_{av} $					

$$\begin{split} S_{av} &= \frac{1}{2} \cdot E \cdot H = \frac{1}{2} \cdot \frac{E^2}{Z_{F0}} = \frac{1}{2} \cdot H^2 \cdot Z_{F0} = \frac{P}{A_{\texttt{Fl\"{a}che}}} \\ P &= \iint \vec{S}_{\text{av}} \, d\vec{a} = Re \, \{ \underline{U} \cdot \underline{I}^* \} \\ P_1 &= P_0 \cdot e^{-2\alpha z} \qquad P_{\texttt{Leitung}} = \frac{1}{2} \cdot \frac{\hat{U}^2}{\cdot \text{Re}\{Z_L\}} \end{split}$$

4.4 Ausbreitung im Medium

 $\kappa=$ Leitfähigkeit

4.4.1 Allgemein (mit Verlusten)

$$\lambda = \frac{2\pi}{\beta} \qquad E_2 = E_1 e^{-\alpha z} \qquad v_p = \lambda \cdot f = \frac{\omega}{\beta}$$

$$\alpha = \omega \cdot \sqrt{\frac{\mu \varepsilon}{2} \cdot \left(\sqrt{1 + \frac{\kappa^2}{\omega^2 \cdot \varepsilon^2}} - 1\right)}$$

$$\beta = \omega \cdot \sqrt{\frac{\mu \varepsilon}{2} \cdot \left(\sqrt{1 + \frac{\kappa^2}{\omega^2 \cdot \varepsilon^2}} + 1\right)}$$

$$\underline{Z_F} = \underline{\frac{E}{\underline{H}}} = \sqrt{\frac{j\omega\mu}{\kappa + j\omega\varepsilon}} \quad \text{komplex, wenn } \alpha \neq 0$$

4.4.2 Im leeren Raum (Vakuum)

materiefreier Raum: $\mu_r = \varepsilon_r = 1$

$$\alpha = 0$$
 $\beta = \frac{\omega}{c_0}$ $\lambda_0 = \frac{c_0}{f}$ $v_p = c_0$ $Z_{F0} = \sqrt{\frac{\mu_0}{\varepsilon_0}} = 120\pi\Omega \approx 377\Omega$

4.4.3 Im verlustlosen Dielektrikum

verlustlos: $\kappa=0,$ maximale Wirkleistung Z_F rein reell \rightarrow ebene Welle

$$\alpha = 0 \qquad \beta = \frac{\omega}{c_0} \sqrt{\mu_r \varepsilon_r} = \omega \sqrt{\mu \varepsilon} = \frac{2\pi}{\lambda}$$

$$\lambda = \frac{c_0}{f} \frac{1}{\sqrt{\mu_r \varepsilon_r}} \qquad v_p = \frac{c_0}{\sqrt{\mu_r \varepsilon_r}} \qquad \boxed{Z_F = \sqrt{\frac{\mu}{\varepsilon}} = Z_{F0} \sqrt{\frac{\mu_r}{\varepsilon_r}}}$$

4.4.4 Im Dielektrikum mit geringen Verlusten

geringer Verlust: $0 < \kappa \ll \omega \varepsilon$

$$\alpha \approx \frac{\kappa}{2} \cdot \sqrt{\frac{\mu}{\varepsilon}} = \frac{\kappa}{2} \cdot Z_{F0} \sqrt{\frac{\mu_r}{\varepsilon_r}} \quad \beta \approx \omega \sqrt{\mu \varepsilon} \left(1 + \frac{1}{8} \cdot \frac{\kappa^2}{\omega^2 \varepsilon^2} \right)$$

$$\lambda = \frac{c_0}{f} \cdot \frac{1}{\sqrt{\mu_r \varepsilon_r}} \cdot \frac{1}{1 + \frac{1}{8} \left(\frac{\kappa}{\omega \varepsilon} \right)^2}$$

$$v_p = \frac{c_0}{\sqrt{\mu_r \varepsilon_r}} \cdot \frac{1}{1 + \frac{1}{8} \left(\frac{\kappa}{\omega \varepsilon} \right)^2}$$

$$\underline{Z}_F = \sqrt{\frac{\mu}{\varepsilon}} \left(1 - \frac{j\kappa}{\omega \varepsilon} \right)^{-1/2} \approx Z_{F0} \left(1 + \frac{j\kappa}{2\omega \varepsilon} \right)$$

4.4.5 Im guten Leiter

geringer Verlust: $\kappa \gg \omega \varepsilon$ $\mu = \mu_0 \cdot \mu_\tau$

$$\alpha \approx \beta \approx \sqrt{\frac{\omega\mu\kappa}{2}} = \frac{1}{\delta} \sim \sqrt{f} \qquad \lambda = 2\pi\sqrt{\frac{2}{\omega\mu\kappa}} = 2\pi\delta$$

$$v_p = \frac{2\pi}{\beta} = \omega\delta \qquad \boxed{\underline{Z}_F = \sqrt{\frac{j\omega\mu}{\kappa}} \approx \frac{1+j}{\kappa \cdot \delta} = \sqrt{\frac{\omega\mu}{\kappa}}e^{j\frac{\pi}{4}} = \sqrt{\frac{\omega\mu}{2\kappa}}(1+j)}$$

Feldstärken im Leiter: Winkel $\varphi=-\frac{z}{\delta}$ in DEGREE E_0, H_0 : Beträge/Amplituden!

$$\begin{split} H_0 &= \sqrt{\frac{\kappa}{\omega\mu}} \cdot E_0 \\ E(z,t) &= E_0 \cdot e^{-z/\delta} \cdot \cos(\omega t - \frac{z}{\delta}) \\ H(z,t) &= H_0 \cdot e^{-z/\delta} \cdot \cos(\omega t - \frac{z}{\delta} - \frac{\pi}{4}) \end{split}$$

siehe Analogie in Kapitel 3.4 (Skineffekt).

4.5 Ebene Wellen an Grenzflächen

4.5.1 Zwischen Dielektrika mit geringem Verlust

4.5.2 Brechungsgesetz allgemein

$$\frac{\sin\vartheta_2}{\sin\vartheta_1} = \frac{k_h}{k_g} = \sqrt{\frac{\mu_{r1}\varepsilon_{r1}}{\mu_{r2}\varepsilon_{r2}}} = \frac{n_1}{n_2} = \frac{v_{p,2}}{v_{p,1}} = \frac{\lambda_2}{\lambda_1}$$

4.6 Senkrechter Einfall

Gilt bei Einfallswinkel $\theta_h = 0$.

4.6.1 Verlustloses Dielektikum allgemein

gilt für $\kappa = 0$, keine Dämpfung.

rein reell:
$$Z_F = \sqrt{\frac{\mu_0 \mu_r}{\varepsilon_0 \varepsilon_r}}$$
 rein imaginär: $\gamma = j\omega\sqrt{\mu\varepsilon}$
$$r = r_e = \frac{Z_{F2} - Z_{F1}}{Z_{F1} + Z_{F2}} = \frac{\sqrt{\varepsilon_{r1}\mu_{r2}} - \sqrt{\varepsilon_{r2}\mu_{r1}}}{\sqrt{\varepsilon_{r1}\mu_{r2}} + \sqrt{\varepsilon_{r2}\mu_{r1}}}$$

$$t = t_e = \frac{2Z_{F2}}{Z_{F1} + Z_{F2}} = \frac{2\sqrt{\varepsilon_{r1}\mu_{r2}} + \sqrt{\varepsilon_{r2}\mu_{r1}}}{\sqrt{\varepsilon_{r1}\mu_{r2}} + \sqrt{\varepsilon_{r2}\mu_{r1}}}$$

4.6.2 Medium 1 oder 2: Luft

$$\begin{bmatrix} \mu_{r1} = \varepsilon_{r1} = 1 \end{bmatrix} \qquad \begin{bmatrix} \mu_{r2} = \varepsilon_{r2} = 1 \end{bmatrix}$$

$$r = \frac{\sqrt{\mu_{r2}} - \sqrt{\varepsilon_{r2}}}{\sqrt{\mu_{r2}} + \sqrt{\varepsilon_{r2}}} \qquad r = \frac{\sqrt{\varepsilon_{r1}} - \sqrt{\mu_{r1}}}{\sqrt{\varepsilon_{r1}} + \sqrt{\mu_{r1}}}$$

$$t = \frac{2\sqrt{\mu_{r2}}}{\sqrt{\mu_{r2}} + \sqrt{\varepsilon_{r2}}} \qquad t = \frac{2\sqrt{\varepsilon_{r1}}}{\sqrt{\mu_{r1}} + \sqrt{\varepsilon_{r1}}}$$

4.6.3 beide Medien: nicht magnetisch

Gilt für $\mu_{r1} = \mu_{r2} = 1$

$$r = \frac{\sqrt{\varepsilon_{r1}} - \sqrt{\varepsilon_{r2}}}{\sqrt{\varepsilon_{r1}} + \sqrt{\varepsilon_{r2}}} \qquad t = \frac{2}{1 + \sqrt{\frac{\varepsilon_{r2}}{\varepsilon_{r1}}}}$$

4.6.4 Medium 2: idealer Leiter

Für Leiter mit (geringen) Verlusten siehe Kapitel 4.4.5. $\vec{E}=0$ im idealen Leiter \to **Stehende** Welle!, vollständige Reflexion.

$$Z_{F2} = 0$$
 $r = -1$ $t = 0$ $\vec{S}_{av} = 0$

E und $H\!:$ zeitlich sowie örtlich zue
inander um 90° phasenverschoben.

$$\underline{E}_{1x} = -2j \cdot E_{h1} \cdot \sin(\beta_1 z) \qquad \underline{H}_{1y} = 2 \cdot \frac{E_{h1}}{Z_{F1}} \cdot \cos(\beta_1 z)$$

$$E_{1x}(z,t) = 2E_{h1} \cdot \sin(\beta_1 z) \cdot \sin(\omega t)$$

$$H_{1y}(z,t) = 2\frac{E_{h1}}{Z_{F1}} \cdot \cos(\beta_1 z) \cdot \cos(\omega t)$$

Annahme: Grenzfläche bei z=0.

$$H_{
m max},\,E_{
m min}$$
 bei $z=-n\cdot\lambda/2$
$$H_{min},\,E_{max}$$
 bei $z=-(2n-1)\cdot\lambda/4$

4.6.5 Stehwellenverhältnis (SWR)

siehe auch Kapitel 6.4.

$$SWR = \frac{E_{\max}}{E_{\min}} = \frac{H_{\max}}{H_{\min}} = \frac{E_h + E_r}{E_h - E_r} = \frac{1 + |r|}{1 - |r|} \quad 1 < s < \infty$$

4.7 Schräger Einfall (allgemein)

$$Z_F = \sqrt{\frac{\mu}{\varepsilon}} = Z_{F0} \sqrt{\frac{\mu_r}{\varepsilon_r}}$$

4.7.1 Brechungsgesetz

$$\frac{\sin\vartheta_2}{\sin\vartheta_1} = \frac{k_h}{k_t} = \sqrt{\frac{\mu_{r1}\varepsilon_{r1}}{\mu_{r2}\varepsilon_{r2}}} = \frac{n_1}{n_2} = \frac{v_{p,2}}{v_{p,1}} = \frac{\lambda_2}{\lambda_1}$$

4.7.2 Leistungsbilianz an Grenzflächen

Index n: Normalkomponente. Index 0: Amplitude/Betrag Index h: hinlaufende Welle Index r: rücklaufende Welle Index t: transmittierte Welle r_e : Reflexionsfaktor

$$S_{tn} = S_{hn} - S_{rn}$$
$$S_{t0} = S_{h0} \cdot \frac{\cos \theta_1}{\cos \theta_2} (1 - r_e^2)$$

4.7.3 Totalrefexion/Grenzwinkel

Grenzwinkel θ_g gibt an, bis zu welchem Winkel eine Welle von höherem in kleineres Dielektrikum $\varepsilon_1>\varepsilon_2$ eindringen kann. \to Brechungsgesetz beachten!

$$(1) \theta_g = \arcsin \sqrt{\frac{\mu_{r2} \varepsilon_{r2}}{\mu_{r1} \varepsilon_{r1}}} \qquad (2) \theta_g = \arcsin \sqrt{\frac{\mu_{r1} \varepsilon_{r1}}{\mu_{r2} \varepsilon_{r2}}}$$

(1): bei senkrechter transmittierter Welle $\theta_t = \sin 90^{\circ}$ (Sattler) (2): bei senkrechter einfallender Welle $\theta_h = \sin 90^{\circ}$ (Stücke)

Anmerkung zu (2):

4.7.4 Brewster-/Polarisationswinkel

Brewster-Winkel $\theta_b \to \text{KEINE}$ Reflexion r = 0.

• Parallele Polarisation: rechts: $\mu_{r1} = \mu_{r2}$

$$\sin \theta_b = \sqrt{\frac{\varepsilon_2(\mu_2 \varepsilon_1 - \mu_1 \varepsilon_2)}{\mu_1(\varepsilon_1^2 - \varepsilon_2^2)}} \quad \boxed{\tan \theta_b = \sqrt{\frac{\varepsilon_2}{\varepsilon_1}} = \frac{n_2}{n_1}}$$

Brewster-Winkel existiert nur, wenn $\varepsilon_{r1} \neq \varepsilon_{r2}$.

• Senkrechte Polarisation: rechts: $\varepsilon_{r1} = \varepsilon_{r2}$

$$\sin\theta_b = \sqrt{\frac{\mu_2(\mu_2\varepsilon_1 - \mu_1\varepsilon_2)}{\varepsilon_1(\mu_2^2 - \mu_1^2)}} \qquad \tan\theta_b = \sqrt{\frac{\mu_2}{\mu_1}}$$

Brewster-Winkel existiert nur, wenn $\mu_{r1} \neq \mu_{r2}$. Bei $\mu_{r1} = \mu_{r2} \rightarrow r \neq 0$ kein Brewster-Winkel $\theta_b \rightarrow \infty$!

4.7.5 Verlauf von r und t beim Grenzübergang

4.7.6 Verlauf der Reflexionsfaktoren

4.7.7 Senkrechte Polarisation ohne μ_r

 \vec{E} -Feld senkrecht, \vec{H} -Feld parallel. $\mu_{r1} = \mu_{r2} =$

$$Z_{F0} = 120\pi\,\Omega \qquad \qquad Z_{F(n)} = Z_{F0} \cdot \frac{1}{\sqrt{\varepsilon_{r(n)}}} \qquad \quad \frac{Z_{F1}}{Z_{F2}} = \frac{\sqrt{\varepsilon_{r2}}}{\sqrt{\varepsilon_{r1}}}$$

Brechungsgesetz: mit $\theta_h = \theta_r$

$$\boxed{\frac{\sin \theta_t}{\sin \theta_h} = \sqrt{\frac{\varepsilon_{r1}}{\varepsilon_{r2}}} = \frac{\lambda_2}{\lambda_1} = \frac{\beta_1}{\beta_2} = \frac{n_1}{n_2} \qquad \qquad \sin \theta_t = \sqrt{\frac{\varepsilon_{r1}}{\varepsilon_{r2}}} \cdot \sin \theta_h$$

Fresnelsche Formeln: $\theta_h = \theta_1 \quad \theta_t = \theta_2$

$$\begin{split} r_s &= r_{es} = r_{ms} = \\ &= \frac{Z_{F2} \cdot \cos \vartheta_1 - Z_{F1} \cdot \cos \vartheta_2}{Z_{F2} \cdot \cos \vartheta_1 + Z_{F1} \cdot \cos \vartheta_2} = \frac{\sqrt{\varepsilon_{r1}} \cdot \cos \vartheta_1 - \sqrt{\varepsilon_{r2}} \cdot \cos \vartheta_2}{\sqrt{\varepsilon_{r2}} \cdot \cos \vartheta_2 + \sqrt{\varepsilon_{r1}} \cos \vartheta_1} \\ &= \frac{\cos \vartheta_1 - \sqrt{\frac{\varepsilon_{r2}}{\varepsilon_{r1}} - \sin^2 \vartheta_1}}{\cos \vartheta_1 + \sqrt{\frac{\varepsilon_{r2}}{\varepsilon_{r1}} - \sin^2 \vartheta_1}} \\ t_{es} &= \frac{2 \cdot Z_{F2} \cdot \cos \vartheta_1}{Z_{F2} \cdot \cos \vartheta_1 + Z_{F1} \cdot \cos \vartheta_2} = \frac{2 \cdot \sqrt{\varepsilon_{r1}} \cdot \cos \vartheta_1}{\sqrt{\varepsilon_{r2}} \cdot \cos \vartheta_2 + \sqrt{\varepsilon_{r1}} \cdot \cos \vartheta_h} \\ &= \frac{2 \cos \vartheta_1}{\cos \vartheta_1 + \sqrt{\frac{\varepsilon_{r2}}{\varepsilon_{r1}} - \sin^2 \vartheta_1}} \\ &= 1 + r_s \\ t_{ms} &= \frac{2Z_{F1} \cdot \cos \vartheta_1}{Z_{F2} \cdot \cos \vartheta_1 + Z_{F1} \cdot \cos \vartheta_2} \\ &= \frac{2\sqrt{\frac{\varepsilon_{r2}}{\varepsilon_{r1}} \cos \vartheta_1}}{\cos \vartheta_1 + \sqrt{\frac{\varepsilon_{r2}}{\varepsilon_{r1}} - \sin^2 \vartheta_1}} \end{split}$$

Beziehungen Polarisation

 $=\frac{Z_{F1}}{Z_{F2}} \cdot t_{es} = \sqrt{\frac{\varepsilon_{r2}}{\varepsilon_{r1}}} \cdot t_{es}$

$$\begin{split} E_r &= r_s \cdot E_h & E_r &= r_p \cdot E_h \\ E_t &= t_{es} \cdot E_h & E_t &= t_{ep} \cdot E_h \\ H_r &= r_s \cdot H_h & H_r &= r_p \cdot H_h \\ H_t &= t_{ms} \cdot H_h & H_t &= t_{mp} \cdot H_h \\ E_t &= H_t \cdot Z_{F2} & E_t &= H_t \cdot Z_{F2} \\ E_h &= H_h \cdot Z_{F1} & E_h &= H_h \cdot Z_{F1} \end{split}$$

Richtungssinn Felder (Hand-Regel)

4.7.8 Parallele Polarisation ohne μ_r

 \vec{E} -Feld parallel, \vec{H} -Feld senkrecht. $\mu_{r1} = \mu_{r2} =$

Stücke: \vec{H}_h und \vec{H}_r zeigen in die selbe Richtung! Sattler: \vec{H}_h und \vec{H}_r zeigen in **entgegengesetzter** Richtung!

Fresnelsche Formeln (Stücke): $\theta_h = \theta_1 \quad \theta_t = \theta_2$

$$\begin{split} r_{ep} &= r_{mp} = r_p &= -r_{p,[\text{Sattler}]} \\ &= \frac{Z_{F1} \cdot \cos \vartheta_1 - Z_{F2} \cdot \cos \vartheta_2}{Z_{F1} \cdot \cos \vartheta_1 + Z_{F2} \cdot \cos \vartheta_2} \\ &= \frac{\cos \vartheta_1 - \sqrt{\frac{\varepsilon_{r1}}{\varepsilon_{r2}} - \frac{\varepsilon_{r1}^2}{\varepsilon_{r2}^2} \sin^2 \vartheta_1}}{\cos \vartheta_1 + \sqrt{\frac{\varepsilon_{r1}}{\varepsilon_{r2}} - \frac{\varepsilon_{r1}^2}{\varepsilon_{r2}^2} \sin^2 \vartheta_1}} \\ t_{ep} &= \frac{2 \cdot Z_{F2} \cdot \cos \vartheta_1}{Z_{F1} \cdot \cos \vartheta_1 + Z_{F2} \cdot \cos \vartheta_2} = (1 - r_p) \cdot \frac{\cos \vartheta_1}{\cos \vartheta_2} \\ &= \frac{2\sqrt{\frac{\varepsilon_{r1}}{\varepsilon_{r2}}} \cos \vartheta_1}{\cos \vartheta_1 + \sqrt{\frac{\varepsilon_{r1}}{\varepsilon_{r2}} - \frac{\varepsilon_{r1}^2}{\varepsilon_{r2}^2} \sin^2 \vartheta_1}} \\ &= \frac{Z_{F2}}{Z_{F1}} \cdot t_{mp} = \sqrt{\frac{\varepsilon_{r1}}{\varepsilon_{r2}}} \cdot t_{mp} \\ t_{mp} &= \frac{2 \cdot Z_{F1} \cdot \cos \vartheta_1}{Z_{F1} \cdot \cos \vartheta_1 + Z_{F2} \cdot \cos \vartheta_2} = 1 + r_p \end{split}$$

Fresnelsche Formeln (Sattler):

$$\begin{split} r_p &= r_{ep} = r_{mp} &= -r_{p, [\texttt{Stücke}]} \\ &= \frac{Z_{F2} \cdot \cos \vartheta_2 - Z_{F1} \cdot \cos \vartheta_1}{Z_{F2} \cdot \cos \vartheta_2 + Z_{F1} \cdot \cos \vartheta_1} \\ &= \frac{\sqrt{\varepsilon_{r1}} \cdot \cos \vartheta_2 - \sqrt{\varepsilon_{r2}} \cdot \cos \vartheta_1}{\sqrt{\varepsilon_{r2}} \cdot \cos \vartheta_1 + \sqrt{\varepsilon_{r1}} \cos \vartheta_2} \\ t_{ep} &= \frac{2Z_{F2} \cdot \cos \vartheta_1}{Z_{F1} \cdot \cos \vartheta_1 + Z_{F2} \cdot \cos \vartheta_2} \\ &= \frac{2 \cdot \sqrt{\varepsilon_{r1}} \cdot \cos \vartheta_1}{\sqrt{\varepsilon_{r2}} \cdot \cos \vartheta_1 + \sqrt{\varepsilon_{r1}} \cdot \cos \vartheta_2} \\ &= (1 + r_p) \cdot \frac{\cos \vartheta_1}{\cos \vartheta_2} \\ t_{mp} &= 1 - r_p = \frac{Z_{F1}}{Z_{F2}} \cdot t_{ep} \end{split}$$

4.7.9 Senkrechte Polarisation mit μ_r

 \vec{E} -Feld senkrecht, \vec{H} -Feld parallel. $\mu_{r1} \neq \mu_{r2}$

$$Z_{F0} = 120\pi\,\Omega \qquad Z_{F(n)} = Z_{F0} \cdot \sqrt{\frac{\mu_{r(n)}}{\varepsilon_{r(n)}}} \qquad \frac{Z_{F1}}{Z_{F2}} = \frac{\sqrt{\mu_{r1}\varepsilon_{r2}}}{\sqrt{\mu_{r2}\varepsilon_{r1}}}$$

Brechungsgesetz: mit $\theta_h = \theta$

$$\frac{\sin \theta_t}{\sin \theta_h} = \sqrt{\frac{\mu_{r1}\varepsilon_{r1}}{\mu_{r2}\varepsilon_{r2}}} = \frac{\lambda_2}{\lambda_1} = \frac{\beta_1}{\beta_2} = \frac{n_1}{n_2}$$

Fresnelsche Formeln: $\theta_h = \theta_1 \quad \theta_t = \theta_2$

$$\begin{split} r_s &= r_{es} = r_{ms} = \\ &= \frac{Z_{F2} \cdot \cos \vartheta_1 - Z_{F1} \cdot \cos \vartheta_2}{Z_{F2} \cdot \cos \vartheta_1 + Z_{F1} \cdot \cos \vartheta_2} \\ &= \frac{\cos \vartheta_1 - \sqrt{\frac{\mu_{r1} \varepsilon_{r2}}{\mu_{r2} \varepsilon_{r1}} - \frac{\mu_{r1}^2}{\mu_{r2}^2} \sin^2 \vartheta_1}}{\cos \vartheta_1 + \sqrt{\frac{\mu_{r1} \varepsilon_{r2}}{\mu_{r2} \varepsilon_{r1}} - \frac{\mu_{r1}^2}{\mu_{r2}^2} \sin^2 \vartheta_1}} \\ t_{es} &= \frac{2 \cdot Z_{F2} \cdot \cos \vartheta_1}{Z_{F2} \cdot \cos \vartheta_1 + Z_{F1} \cdot \cos \vartheta_2} \\ &= \frac{2 \cos \vartheta_1}{\cos \vartheta_1 + \sqrt{\frac{\mu_{r1} \varepsilon_{r2}}{\mu_{r2} \varepsilon_{r1}} - \frac{\mu_{r1}^2}{\mu_{r2}^2} \sin^2 \vartheta_1}} \\ &= 1 + r_s \\ t_{ms} &= \frac{2Z_{F1} \cdot \cos \vartheta_1}{Z_{F2} \cdot \cos \vartheta_1 + Z_{F1} \cdot \cos \vartheta_2} \\ &= \frac{2\sqrt{\frac{\mu_{r1} \varepsilon_{r2}}{\mu_{r2} \varepsilon_{r1}}} \cos \vartheta_1}{\cos \vartheta_1 + \sqrt{\frac{\mu_{r1} \varepsilon_{r2}}{\mu_{r2} \varepsilon_{r1}} - \frac{\mu_{r1}^2}{\mu_{r2}^2} \sin^2 \vartheta_1}} \\ &= \frac{2}{Z_{F1}} \cdot t_{es} \\ &= \sqrt{\frac{\mu_{r1} \varepsilon_{r2}}{\mu_{r2} \varepsilon_{r1}}} t_{es} \end{split}$$

4.7.10 Parallele Polarisation mit μ_r

 \vec{E} -Feld parallel, \vec{H} -Feld senkrecht. $\mu_{r1} \neq \mu_{r2}$

Stücke: \vec{H}_h und \vec{H}_r zeigen in die selbe Richtung! Sattler: \vec{H}_h und \vec{H}_r zeigen in **entgegengesetzter** Richtung!

Fresnelsche Formeln (Stücke): $\theta_h = \theta_1 \quad \theta_t = \theta_2$

$$r_{ep} = r_{mp} = r_{p} = -r_{p,[\text{Sattler}]}$$

$$= \frac{Z_{F1} \cdot \cos \vartheta_{1} - Z_{F2} \cdot \cos \vartheta_{2}}{Z_{F1} \cdot \cos \vartheta_{1} + Z_{F2} \cdot \cos \vartheta_{2}}$$

$$= \frac{\cos \vartheta_{1} - \sqrt{\frac{\mu_{r2}\varepsilon_{r1}}{\mu_{r1}\varepsilon_{r2}} - \frac{\varepsilon_{r1}^{2}}{\varepsilon_{r2}^{2}}\sin^{2}\vartheta_{1}}}{\cos \vartheta_{1} + \sqrt{\frac{\mu_{r2}\varepsilon_{r1}}{\mu_{r1}\varepsilon_{r2}} - \frac{\varepsilon_{r1}^{2}}{\varepsilon_{r2}^{2}}\sin^{2}\vartheta_{1}}}$$

$$t_{ep} = \frac{2 \cdot Z_{F2} \cdot \cos \vartheta_{1}}{Z_{F1} \cdot \cos \vartheta_{1} + Z_{F2} \cdot \cos \vartheta_{2}}$$

$$= \frac{2\sqrt{\frac{\mu_{r2}\varepsilon_{r1}}{\mu_{r1}\varepsilon_{r2}}\cos \vartheta_{1}}}{\cos \vartheta_{1} + \sqrt{\frac{\mu_{r2}\varepsilon_{r1}}{\mu_{r1}\varepsilon_{r2}} - \frac{\varepsilon_{r1}^{2}}{\varepsilon_{r2}^{2}}\sin^{2}\vartheta_{1}}}$$

$$= \frac{Z_{F2}}{Z_{F1}} \cdot t_{mp} = \sqrt{\frac{\mu_{r2}\varepsilon_{r1}}{\mu_{r1}\varepsilon_{r2}} \cdot t_{mp}}$$

$$t_{mp} = \frac{2 \cdot Z_{F1} \cdot \cos \vartheta_{1}}{Z_{F1} \cdot \cos \vartheta_{1} + Z_{F2} \cdot \cos \vartheta_{2}}$$

$$= \frac{2\cos \vartheta_{1}}{\cos \vartheta_{1} + \sqrt{\frac{\mu_{r2}\varepsilon_{r1}}{\mu_{r1}\varepsilon_{r2}} - \frac{\varepsilon_{r1}^{2}}{\varepsilon_{r2}^{2}}}\sin^{2}\vartheta_{1}}$$

$$= 1 + r_{p}$$

4.8 Polarisation einer Welle

11 von 23

Die Polarisation (Ausrichtung) bezieht sich **immer** auf das \vec{E} -Feld.

- Lineare Polarisation Endpunkt des \vec{E} -Vektors beschreibt bei fortschreitender Welle eine Gerade (Linie).
 - horizontale Polarisation: E-Feld parallel zum Erdboden.
 - vertikale Polarisation E-Feld senkrecht zum Erdboden.
- Elliptische Polarisation Endpunkt des \vec{E} -Vektors beschreibt bei fortschreitender Welle eine Ellipse.
 - Zirkulare Polarisation: $|\vec{E}_x| = |\vec{E}_y|$ bei $\vec{E}_x \perp \vec{E}_y$ (90° Phasenverschiebung)

Tony Pham

5 Leitungen

5.1 Allgemeine Leitung (mit Verlusten)

Eingang: \underline{Z}_e Anfang: $\underline{Z}(l) = \underline{Z}_1$ Abschluss: $\underline{Z}_2 = \underline{Z}_{(l=0)}$ Referenzpunkt Last (l=0):

$$\begin{split} \underline{U}(l) &= \underline{U}_h \cdot e^{\underline{\gamma}l} + \underline{U}_r \cdot e^{-\underline{\gamma}l} \\ \underline{I}(l) &= \underline{I}_h \cdot e^{\underline{\gamma}l} + \underline{I}_r \cdot e^{-\underline{\gamma}l} \end{split}$$

5.1.1 Gleichungen

$$\begin{split} \underline{U}(l) &= \underline{U}_2 \cdot \cosh\left(\underline{\gamma}l\right) + Z_L \underline{I}_2 \cdot \sinh\left(\underline{\gamma}l\right) \\ &= \underline{U}_2 \cdot \left[\cosh\left(\underline{\gamma}l\right) + \frac{\underline{Z}_L}{\underline{Z}_2} \sinh\left(\underline{\gamma}l\right)\right] \\ \underline{I}(l) &= \underline{I}_2 \cdot \cosh\left(\underline{\gamma}l\right) + \frac{\underline{U}_2}{Z_L} \cdot \sinh\left(\underline{\gamma}l\right) \\ &= \underline{I}_2 \cdot \left[\cosh\left(\underline{\gamma}l\right) + \frac{\underline{Z}_2}{\underline{Z}_L} \sinh\left(\underline{\gamma}l\right)\right] \\ \underline{Z}(l) &= \frac{\underline{Z}_2 + \underline{Z}_L \tanh\left(\underline{\gamma}l\right)}{1 + \frac{\underline{Z}_2}{Z_L} \tanh\left(\underline{\gamma}l\right)} = \underline{Z}_L \frac{\underline{Z}_2 + \underline{Z}_L \tanh\left(\underline{\gamma}l\right)}{\underline{Z}_L + \underline{Z}_2 \tanh\left(\underline{\gamma}l\right)} \end{split}$$

komplexer $\underline{\gamma}$ nicht im TR berechenbar:

Lösung: $\alpha l \left[\frac{Np}{m}\right]$ und $\beta l \left[\frac{rad}{m}\right]$ einzeln berechnen, dann:

$$\begin{split} \cosh\left(\underline{\gamma}l\right) &= \frac{1}{2} \left[e^{\alpha l} \cdot e^{j\beta l} + e^{-\alpha l} \cdot e^{-j\beta l} \right] \\ \sinh\left(\underline{\gamma}l\right) &= \frac{1}{2} \left[e^{\alpha l} \cdot e^{j\beta l} - e^{-\alpha l} \cdot e^{-j\beta l} \right] \\ \tanh\left(\underline{\gamma}l\right) &= 1 - \frac{2}{e^{2\alpha l} \cdot e^{j2\beta l} + 1} \end{split}$$

 $e^{\pm \alpha l}$: Dämpfung $e^{\pm j\beta l}$: Phase (\angle im TR) Für Winkel αl bzw. βl auf **RAD** in TR!

5.1.2 Kenngrößen

• Leitungswellenwiderstand:

$$\underline{Z}_L = \sqrt{\frac{R' + j\omega L'}{G' + j\omega C'}} = \frac{\underline{U}_h}{\underline{I}_h} = -\frac{\underline{U}_r}{\underline{I}_r}$$

komplexer \underline{Z}_L nicht in TR berechenbar

Betrag: erst \underline{Z}_L^2 , dann $\sqrt{|Z_L^2|}$ ermitteln.

Phase: $0.5 \cdot \arg(\underline{Z}_L^2) \rightarrow \gamma$ analog vorgehen.

• Fortpflanzungskonstante:

$$\underline{\gamma} = \sqrt{(R' + j\omega L') \cdot (G' + j\omega C')} = \alpha + j\beta \left[\frac{1}{m}\right]$$
$$= j\omega \sqrt{L'C'} \cdot \sqrt{\frac{R'G'}{j^2\omega^2 L'C'} + \frac{G'}{j\omega C'} + \frac{R'}{j\omega L'} + 1}$$

• Reflexions faktor: $r(l) = r_1$: Leitungs eing ang $\underline{r}(l) = r_2 \cdot e^{-2\underline{\gamma}l} = \underline{r}_2 \cdot e^{-2\alpha l} \cdot e^{-2j\beta l}$

$$=\frac{\underline{U}_r(l)}{\underline{U}_h(l)} = -\frac{\underline{I}_r(l)}{\underline{I}_h(l)} = \frac{\underline{Z}(l) - \underline{Z}_L}{\underline{Z}(l) + \underline{Z}_L} = \frac{\underline{Z}(l)}{\underline{Z}_L^{(l)} - 1}$$

• weitere **Parameter**: meistens $\mu_r = 1$

$$\begin{split} \lambda_0 &= \frac{c_0}{f} \qquad \lambda = \frac{2\pi}{\beta} = \frac{c_0}{f\sqrt{\varepsilon_{r,\text{eff}} \cdot \mu_{r,\text{eff}}}} \\ l_{\text{elek.}} &= \beta \cdot l \qquad v_p = \frac{\omega}{\beta} = \frac{c_0}{\sqrt{\varepsilon_{r,\text{eff}} \cdot \mu_{r,\text{eff}}}} \end{split}$$

5.1.3 Kurzschluss und Leerlauf

Eingangswiderstand \underline{Z}_e am Leitungsende:

$$\begin{split} & \text{mit Kurzschluss} & & \underline{Z}_{e,\text{kurz}} = \underline{Z}_L \cdot \text{tanh} \Big(\underline{\gamma} l \Big) \\ & \text{im Leerlauf} & & \underline{Z}_{e,\text{leer}} = \frac{\underline{Z}_L}{\text{tanh} \Big(\underline{\gamma} l \Big)} \\ & \text{beliebige L\"{a}nge} & & \underline{Z}_L = \sqrt{\underline{Z}_{e,\text{kurz}}(l) \cdot \underline{Z}_{e,\text{leer}}(l)} \end{split}$$

5.1.4 Lange und Kurze Leitung

• kurze Leitung $\rightarrow l \ll \frac{\lambda}{4} \quad |\underline{\gamma} l| \ll 1$

$$\underline{U}(l) \approx \underline{U}_2 + \underline{I}_2 \cdot l(R' + jwL')$$
$$\underline{I}(l) \approx \underline{I}_2 + \underline{U}_2 \cdot l(G' + jwC')$$

Leitung wird durch konzentrierte Elemente ersetzt.

• lange Leitung $\rightarrow l \gg \frac{\lambda}{4} \quad |\underline{\gamma} l| \gg 1$ Abschluss egal, es wird nur $\underline{Z}_L = \underline{Z}(l)$ gemessen wird.

5.2 Verlustlose Leitung

5.2.1 Kenngrößen

$$\begin{split} R',G' &= 0 \to \alpha = 0 \qquad Z_L, v_p \nsim f \\ Z_L &= \sqrt{\frac{L'}{C'}} \to \text{rein reell!} \\ &\underline{\gamma} = j\beta = j\omega \sqrt{L'C'} \qquad \beta = \omega \cdot \sqrt{L'C'} \\ v_p &= \frac{\omega}{\beta} = \frac{1}{\sqrt{\mu\varepsilon}} = \frac{c_0}{\sqrt{\mu_r\varepsilon_r}} = \frac{1}{\sqrt{L'C'}} \\ \lambda &= \frac{2\pi}{\beta} = \frac{v_p}{f} = \frac{c_0}{f\sqrt{\mu_r\varepsilon_r}} = \frac{1}{f\sqrt{L'C'}} \end{split}$$

5.2.2 verlustloser Reflexionsfaktor

$$\begin{split} \underline{r}_{(l=0)} &= \underline{r}_2 \qquad 0 < r < 1 \qquad 0 < \Psi < 2\pi \quad \Psi \text{ in RAD!} \\ \underline{r}(l) &= \underline{r}_2 \cdot e^{-j2\beta l} = r \cdot e^{-j(\Psi_0 + 2\beta l)} = r \cdot e^{j\Psi} \\ &= \frac{\underline{Z}(l) - Z_L}{\underline{Z}(l) + Z_L} \\ \underline{r}_2 &= \frac{\underline{Z}_2 - Z_L}{\underline{Z}_2 + Z_L} = \frac{\underline{U}_2 - \underline{I}_2 Z_L}{\underline{U}_2 + \underline{I}_2 Z_L} \\ \underline{Z}_L &= \frac{1 + \underline{r}(l)}{1 - r(l)} \end{split}$$

$$\begin{split} U_{\text{max}} &= |U_h| \cdot (1 + |r(l)|) & \qquad U_{\text{min}} &= |U_h| \cdot (1 - |r(l)|) \\ I_{\text{max}} &= \left| \frac{U_h}{Z_L} \right| \cdot (1 + |r(l)|) & \qquad I_{\text{min}} &= \left| \frac{U_h}{Z_L} \right| \cdot (1 - |r(l)|) \end{split}$$

5.2.3 Beliebiger Abschluss (Last)

$$\begin{split} \underline{U}_2 &= \underline{U}_{(l=0)} = \underline{U}_h + \underline{U}_r & \underline{I}_2 = \underline{I}_{(l=0)} = \underline{I}_h + \underline{I}_r \\ \\ \underline{Z}(l) &= \frac{\underline{Z}_2 + jZ_L \tan(\beta l)}{1 + j\frac{\underline{Z}_2}{Z_L} \tan(\beta l)} = Z_L \frac{\underline{Z}_2 + jZ_L \tan(\beta l)}{Z_L + j\underline{Z}_2 \tan(\beta l)} \\ \\ \underline{U}(l) &= \underline{U}_2 \cdot \left[\cos(\beta l) + j\frac{Z_L}{\underline{Z}_2} \sin(\beta l) \right] \\ \\ \underline{I}(l) &= \underline{I}_2 \cdot \left[\cos(\beta l) + j\frac{\underline{Z}_2}{Z_L} \sin(\beta l) \right] \end{split}$$

Für **Beträge**/Amplitudenwerte:

 \rightarrow j weglassen.

Bildung von **stehenden** Wellen für alle Fälle $au\beta er$ bei Anpassung!

5.2.4 Angepasste (reflexionsfreie) Leitung

Eingangswiderstand $Z_1 \sim$ Leitungslänge, rein reell! Nur hinlaufende Welle, **reflexionsfrei**!

$$Z_L = Z_1 = Z_2 = Z(l)$$
 $r_A = 0$ SWR = 1
 $U(z) = U_h \cdot e^{j\beta z}$ $I(z) = I_h \cdot e^{j\beta z} = \frac{U_h}{Z_L} \cdot e^{j\beta z}$

Tony Pham 12 von 23

5.2.5 Kurzschluss an Leitungsende

$$\begin{split} \underline{Z}_2 &= 0 \qquad \underline{U}_2 = \underline{U}_{(l=0)} = 0 \to \underline{U}_h = -\underline{U}_r \qquad \underline{I}_h = \underline{I}_r \qquad r_2 = 0 \\ & \underline{Z}(l) = \frac{\underline{U}(l)}{\underline{I}(l)} = Z_L \cdot j \tan(\beta l) \qquad \to \text{rein imaginär!} \\ & \underline{U}(l) = \underline{U}_h \cdot 2j \sin(\beta l) = \underline{I}_2 Z_L \cdot j \sin(\beta l) \\ & I(l) = \underline{I}_h \cdot 2\cos(\beta l) = \underline{I}_2 \cdot \cos(\beta l) \qquad \underline{I}_2 = \frac{2\underline{U}_h}{Z_L} \end{split}$$

Um βl über Formel zu berechnen \to **Betrag** von $\frac{Z(l)}{Z_L}$ bilden! $l = \frac{\lambda}{4}$: Parallelresonanz (LL) $l = \frac{\lambda}{2}$: Serienresonanz (KS)

5.2.6 Leerlauf an Leitungsende

$$\begin{split} \underline{Z}_2 &= \infty \qquad \underline{I}_2 = \underline{I}_{(l=0)} = 0 \to \underline{I}_h = -\underline{I}_r \qquad \underline{U}_h = \underline{U}_r \qquad r_2 = +1 \\ \underline{Z}(l) &= \frac{\underline{U}(l)}{\underline{I}(l)} = -j \, \frac{Z_L}{\tan(\beta l)} \qquad \to \text{rein imaginär!} \\ \underline{U}(l) &= \underline{U}_h \cdot 2\cos(\beta l) = \underline{U}_2 \cdot \cos(\beta l) \qquad \underline{U}_2 = 2\underline{U}_h \\ \underline{I}(l) &= \underline{I}_h \cdot 2j\sin(\beta l) = \frac{\underline{U}_2}{Z_L} \cdot j\sin(\beta l) \end{split}$$

Um βl über Formel zu berechnen \to **Betrag** von $\frac{Z(l)}{Z_L}$ bilden! $l = \frac{\lambda}{4}$: Serienresonanz (KS) $l = \frac{\lambda}{2}$: Parallelresonanz (LL)

5.2.7 Leitung als Impedanz-Transformator

 $\lambda/4$ -Leitung mit Eingangswiderstand $\underline{Z}_e=\underline{Z}(l)$ aus 5.2.3:

$$\frac{\underline{Z}_e}{Z_L} = \frac{Z_L}{\underline{Z}_2} = \frac{\underline{Y}_2}{Y_L} \to Z_e = \frac{Z_L^2}{\underline{Z}_2}$$

Eine $\lambda/4$ -Leitung transformiert: L \leftrightarrow C, Kurzschluss \leftrightarrow Leerlauf, **großes** R \leftrightarrow **kleines** R

5.2.8 Ohmscher Abschluss an Leitungsende

Abstand **Spannung**smax. von der Last (also bei z=0) z_{\max} : $r_A \to \text{rein reell!}$ $z_{\max} = \frac{\lambda}{4\pi}(\theta_{\texttt{rad}} + 2n\pi)$

$$\begin{split} R_A > Z_L \to \theta_{\rm rad} = 0 & r_A > 0 & \to z_{\rm max} = \frac{\lambda}{2} \cdot n \\ \\ R_A < Z_L \to \theta_{\rm rad} = \pi & r_A < 0 & \to z_{\rm max} = \frac{\lambda}{4} \cdot n \end{split}$$

 $R_A>Z_L$: Erstes U_{max}/I_{min} entsteht an der Last. $R_A< Z_L$: Erstes U_{min}/I_{max} entsteht an der Last.

5.2.9 Position von Extrema

siehe auch Kapitel 7.2. gilt bei beliebigen Abschlüssen/Lasten! \rightarrow stehende Welle!

$$r_l = |r_A| \cdot e^{-j\Psi_r}$$
 $\rightarrow \Psi_r$ in rad \rightarrow Minimum (Knoten) der Spannun

 $f_{\min} \to \text{Minimum}(\text{Knoten})$ der Spannungen $f_{\max} \to \text{Maximum}(\text{Bäuche})$ der Spannungen

$$\begin{split} \lambda_{\min,\max} &= \frac{c_0}{f_{\min,\max}\sqrt{\mu_{r1}\varepsilon_{r1}}} \\ z_{\min} &= \frac{-n\cdot\lambda_{\min}}{2} \quad \rightarrow n = -\frac{2z}{\lambda_{\min}} \\ z_{\max} &= \frac{-(2n+1)\lambda_{\max}}{4} \quad \rightarrow n = -\frac{4z+\lambda_{\max}}{2\cdot\lambda_{\max}} \\ z &= \frac{\lambda_{\min}\cdot\lambda_{\max}}{4(\lambda_{\min}-\lambda_{\max})} \end{split}$$

5.2.10 Stehwellenverhältnis (SWR)

$$\begin{split} & \text{Smith-Chart: Kap. 7.1} & \quad \text{VSWR: Kap. 6.4} \\ & s = \text{SWR} = \frac{U_{\text{max}}}{U_{\text{min}}} = \frac{I_{\text{max}}}{I_{\text{min}}} = \frac{1 + |r(l)|}{1 - |r(l)|} = \frac{|U_h| + |U_r|}{|U_h| - |U_r|} = \frac{R_{\text{max}}}{Z_L} \\ & m = \text{SWR}^{-1} = \frac{R_{\text{min}}}{Z_L} & |r_2| = \frac{\text{SWR} - 1}{\text{SWR} + 1} = \frac{1 - m}{1 + m} \end{split}$$

5.2.11 Leistung

$$\begin{split} P_A &= P_H - P_R &= \frac{1}{2} \cdot \frac{\hat{U}_h^2}{Re\{Z_L\}} - \frac{1}{2} \cdot \frac{\hat{U}_r^2}{Re\{Z_L\}} \\ &= \frac{1}{2} \cdot \frac{\hat{U}_h^2}{Re\{Z_L\}} \cdot \left(1 - r^2\right) \\ &= P_{\max} \cdot \left(1 - r^2\right) \\ &= \underline{U}_A \cdot \underline{I}_A^* \\ P_V &= P_q - P_A \\ I(z) &= \hat{I} \cdot e^{-\alpha z} \angle \beta z \end{split}$$

5.2.12 Reflexionsfaktor mit Verlusten

 r_e : am **Eingang** r_a : am Abschluss/an der Last

$$r_e = r_a^{-2\gamma l} = r_a \cdot e^{-2\alpha l} \cdot e^{-j2\beta l}$$

$$\alpha = -\frac{\ln\left(\frac{r_e}{r_a}\right)}{2 \cdot l} \left[\frac{\text{Np}}{\text{m}}\right]$$

$$\beta = \frac{\varphi_2 - \varphi_1}{2 \cdot l} \left[\frac{\text{rad}}{\text{m}}\right]$$

5.2.13 Gleichspannungswert (=Endwert)

$$U_A = U_q \cdot \frac{R_A}{R_i + R_A}$$

5.3 Mehrfachreflexionen bei fehlender Anpassung

$$\begin{split} u_{1r} &= r_A \cdot u_{1h} \\ u_{2h} &= r_I \cdot u_{1r} = r_I \cdot r_A \cdot u_{1h} \\ u_{2r} &= r_A \cdot u_{2h} = r_I \cdot r_A^2 \cdot u_{1h} \\ u_{3h} &= r_I \cdot u_{2r} = r_I^2 \cdot r_A^2 \cdot u_{1h} \end{split}$$

$$\begin{split} \underline{r}_I &= \frac{R_I - Z_L}{R_I + Z_L} \\ \text{Reflexionsfaktor Leitungsende:} &\qquad \underline{r}_A &= \frac{R_A - Z_L}{R_A + Z_L} \\ \text{Hinlaufende Welle} &\qquad \underline{u}_{1h} &= \hat{u}_G \cdot \frac{Z_L}{Z_L + R_I} \\ \text{Signallaufzeit:} &\qquad t_d &= \frac{l}{c_0} \cdot \sqrt{\mu_r \varepsilon_r} \\ &= \frac{l}{v_p} \end{split}$$

5.4 Leitungsparameter

5.4.1 Allgemein

Für beliebige Leitergeometrie gelten folgende Zusammenhänge:

$$\boxed{LC = \mu \varepsilon} \quad \text{und} \quad \boxed{\frac{G}{C} = \frac{\kappa}{\varepsilon}}$$

Innere Induktivität:

$$L_i = \frac{R}{w}$$

Leitungen gehen HIN und ZURÜCK!!! Länge verdoppeln!!!

5.4.2 Streifenleitung / Parallele Platten

Für Sinus-Anregung:

$$\begin{split} I(l) &= \frac{U}{Z_L} = \underbrace{\frac{U_0}{Z_L}}_{I_0} \cdot e^{-j\beta l \cdot e^{j\omega t}} \\ \\ U(l) &= \int \vec{E} d\vec{s} \stackrel{b \gg d}{=} E \cdot d & \rightarrow E = \frac{U_0}{d} \cdot ^{-j\beta l} \cdot \vec{e}_x \\ \\ I(l) &= \oint \vec{H} d\vec{s} = H \cdot b & \rightarrow H = \frac{I_0}{b} \cdot ^{-j\beta l} \cdot \vec{e}_y \end{split}$$

b: Platten**breite d**: Abst

d: Abstand zwischen den Platten

5.4.3 Doppelleitung

 κ : Leitwert des Dielektrikums κ_L Leitwert des Leiters ${\bf r}$: Leiterradius ${\bf d}$: Abstand zw. Leitermitten

5.4.4 Koaxialleitung

Mit Hin- und Rückleiter. r_i : Innenradius r_a : Außenradius

 $0 < r < r_i$: Innenleiter, **keine** Felder!

 $r_i < r < r_a$: Zwischenbereich, nur hier Felder vorhanden! $r_a < r < \infty$: Außenbereich, **keine** Felder!

$$\begin{split} & \underline{\vec{H}}(r,z) = \frac{\hat{I}}{2\pi r} \cdot e^{-j\beta z} \cdot \vec{e}_{\varphi} = \frac{\hat{U}}{2\pi r \cdot Z_L} \cdot e^{-j\beta z} \cdot \vec{e}_{\varphi} \\ & \underline{\vec{E}}(r,z) = \frac{\hat{U}}{r \cdot \ln{(r_a/r_i)}} \cdot e^{-j\beta z} \cdot \vec{e}_r \\ & S_{av} = \frac{1}{2} \cdot \left(\frac{\hat{I}}{2\pi r}\right)^2 \cdot Z_{F0} \\ & Z_L = \frac{Z_{F0}}{2\pi} \sqrt{\frac{\mu_r}{\varepsilon_r}} \ln{\left(\frac{r_a}{r_i}\right)} \stackrel{\mu_r = 1}{=} \frac{60\Omega}{\sqrt{\varepsilon_r}} \cdot \ln{\frac{r_a}{r_i}} \\ & Z_L = \frac{\hat{U}}{\hat{I}} \\ & P = \frac{1}{2} \cdot \frac{\hat{U}^2}{\text{Re}\{Z_L\}} \end{split}$$

Bei realer Beschreibung: $\kappa < \infty$ zusätzliche Feldkomponente:

$$\vec{E}_z \approx E_r \cdot \sqrt{\frac{\omega \cdot \varepsilon}{\kappa}} \cdot \vec{e}_z$$

Dielektrische Dämpfungsverluste: für sehr hohe f $G \ll \omega C$, $\tan \delta = (G/\omega C) < 0, 1$

$$\alpha_d = \frac{\sqrt{\varepsilon_r} \pi f}{c_0} \cdot \tan \delta \sim f$$

6 Wellenleiter

6.1 Koaxial Leiter

6.1.1 Wellenwiderstand

$$Z_L = \frac{Z_{F0}}{2\pi} \sqrt{\frac{\mu_r}{\varepsilon_r}} \ln\left(\frac{r_a}{r_i}\right) \stackrel{\mu_r=1}{=} \frac{60\Omega}{\sqrt{\varepsilon_r}} \cdot \ln\frac{r_a}{r_i}$$

6.1.2 Dämpfung

Hin- und Rückleiter! Ohmsche Verluste $R \ll \omega L$

$$\alpha_L = \frac{\sqrt{\frac{f \cdot \mu}{\pi \cdot \kappa}}}{120\Omega} \cdot \frac{\sqrt{\varepsilon_r}}{D} \cdot \frac{1 + \frac{D}{d}}{\ln \frac{D}{d}}$$

Dämpfungsminimum für $\frac{1+\frac{D}{d}}{\ln\frac{D}{d}}=1$

bei vorgegebenen Außendurchmesser: $\frac{D}{d} = 3,59$

<u>Dielektrische Verluste</u> $G \ll \omega C, \tan \delta = (G/\omega C)$

$$\alpha_d = \frac{\sqrt{\varepsilon_r} \pi f}{c_0} \cdot \tan \delta \sim f$$

6.2 Mikrostreifenleiter

w := Leiterbahnbreite h := Substratbreite

6.2.1 Effektive Permittivitätszahl

Unterschiedliche Phasengeschwindigkeit \rightarrow Dispersion

$$\varepsilon_{r, \rm eff} = \frac{\varepsilon_r + 1}{2} + \frac{\varepsilon_r - 1}{2\sqrt{1 + 10 \cdot \frac{h}{w}}}$$

Je größer $\frac{\mathbf{w}}{\mathbf{h}}$ desto mehr nähert sich $\varepsilon_{r,\mathtt{eff}}$ an ε_{r} und

$$\lambda = \frac{\lambda_0}{\sqrt{\varepsilon_{r,\text{eff}} \cdot \mu_{r,\text{eff}}}}$$

6.2.2 Schmale Streifen (ca 20-200 Ω)

$$Z_L = \frac{60\Omega}{\sqrt{\varepsilon_{r,\text{eff}}}} \cdot \ln\left(\frac{8\text{h}}{\text{w}} + \frac{\text{w}}{4\text{h}}\right)$$

6.2.3 Breite Streifen (ca $20-200\Omega$)

$$Z_L = \frac{120\pi\Omega}{\sqrt{\varepsilon_{r, \rm eff}}} \cdot \frac{1}{\frac{\rm w}{\rm h} + 2, 42 - 0, 44 \cdot \frac{\rm h}{\rm w} + \left(1 - \frac{\rm h}{\rm w}\right)^6}$$

6.3 Hohlleiter

$$f_c = \frac{c_0}{2a}$$

6.4 VSWR (Voltage Standing Wave Ratio) und Return Loss

Überlagerung von einlaufender und reflektierender Welle. Wenn Transmission vorhanden \to Teil der Welle wird an der Grenzfläche transmittiert. Abhängigkeit vom Reflexionsfaktor

Reflexionsfaktor

$$\underline{r}_2 = \underline{r}(z=0) = \frac{Z_2 - \underline{Z}_L}{Z_2 + \underline{Z}_L}$$

VSWR

$$s = \text{VSWR} = \frac{1 + |r|}{1 - |r|} \ge 1$$
$$|r| = \frac{s - 1}{s + 1}$$

Return Loss

$$\alpha_r = -20\log(r)dB$$

Missmatch Loss

$$ML = -10\log(1 - r^2)dB$$

6.5 Lichtwellenleiter oder Glasfaser

 $\mathsf{APF} := \mathsf{All}\ \mathsf{Plastic}\ \mathsf{Fiber}$

POF := Polymerfaser

LWL := Lichtwellenleiter

 $B \cdot l :=$ Bandbreitenlängenprodukt

Dispersion:

Die von der Frequenz des Lichts abhängende Ausbreitungsgeschwindigkeit des Lichts in Medien. Dies hat zur Folge, dass Licht an Übergangsflächen unterschiedlich stark gebrochen wird. Somit verflacht sich beispielsweise ein (Dirac-)Impuls zu einer Gauß'schen Glocke.

Stufenprofil:

Multimode: leichtes Einkoppeln, geringes $B \cdot l$ wegen Modendispersion

Single/Monomode: schwieriges Einkoppeln, großes $B \cdot l,$ keine Modendispersion

Gradientenprofil:

Multimode: Kompromiss beim Einkoppeln und Reichweite mit $B \cdot l$

Bandbreitenlängenprodukt:

$$B' = B \cdot l[\frac{MHz}{km}] = \text{konstant}$$
 $B \sim \frac{1}{l}$ und $l \sim \frac{1}{B}$

Bandbreite ist gegen Übertragungslänge austauschbar, solange Dämpfung keine Rolle spielt.

6.6 Leitungsparameter

6.6.1 Streifenleitung / Parallele Platten

Für Sinus-Anregung:

$$\begin{split} I(l) &= \frac{U}{Z_L} = \underbrace{\frac{U_0}{Z_L}}_{I_0} \cdot e^{-j\beta l} \cdot e^{j\omega t} \\ \\ U(l) &= \int \vec{E} d\vec{s} \stackrel{b \gg d}{=} E \cdot d \to \\ \\ I(l) &= \oint \vec{H} d\vec{s} = H \cdot b \to \\ \end{split} \qquad \begin{split} E &= \frac{U_0}{d} \cdot e^{-j\beta l} \cdot \vec{e}_x \end{split}$$

b: Platten**breite**

d: Abstand zwischen den Platten

$$R' = \frac{2}{\delta \kappa b} \left[\frac{\Omega}{m} \right] \qquad L' = \frac{\mu d}{b} \left[\frac{H}{m} \right]$$
$$G' = \frac{\kappa b}{d} \left[\frac{S}{m} \right] \qquad C' = \frac{b\varepsilon}{d} \left[\frac{F}{m} \right]$$

6.6.2 Doppelleitung

 κ : Leitwert des Dielektrikums κ_L Leitwert des Leiters ${\bf r}$: Leiterradius ${\bf d}$: Abstand zw. Leitermitten

$$R' = \frac{1}{\pi a \delta \kappa_L} \left[\frac{\Omega}{m} \right]$$

$$L' = \frac{\mu}{\pi} \cosh^{-1} \frac{d}{2r} \left[\frac{H}{m} \right]$$

$$G' = \frac{\pi \kappa}{\cosh^{-1} (d/2r)} \left[\frac{S}{m} \right]$$

$$C' = \frac{\pi \varepsilon}{\cosh^{-1} (d/2r)} \left[\frac{F}{m} \right]$$

6.6.3 Koaxialleitung

 r_i : Innenradius r_a : Außenradius

$$\begin{split} \vec{H}(r,z) &= \frac{\hat{I}}{2\pi r} \cdot e^{-j\beta z} \cdot \vec{e}_{\varphi} \\ \vec{E}(r,z) &= \frac{\hat{I}}{2\pi r} \cdot Z_{F0} \cdot e^{-j\beta z} \cdot \vec{e}_{r} &= \frac{\hat{U}}{r \cdot \ln{(r_{a}/r_{i})}} \cdot e^{-j\beta z} \cdot \vec{e}_{r} \\ S_{av} &= \frac{1}{2} \cdot \left(\frac{\hat{I}}{2\pi r}\right)^{2} \cdot Z_{F} \end{split}$$

$$R' = \frac{1}{2\pi\delta\kappa_L} \left(\frac{1}{r_a} + \frac{1}{r_i}\right) \left[\frac{\Omega}{m}\right]$$

$$L' = \frac{\mu_0\mu_r}{2\pi} \ln \frac{r_a}{r_i} \left[\frac{H}{m}\right]$$

$$G' = \frac{2\pi\kappa}{\ln(r_a/r_i)} \left[\frac{S}{m}\right]$$

$$C' = \frac{2\pi\varepsilon_0\varepsilon_r}{\ln(r_a/r_i)} \left[\frac{F}{m}\right]$$

6.6.4 Allgemein

Für beliebige Leitergeometrie gelten folgende Zusammenhänge:

$$LC = \mu \varepsilon \quad \text{und} \quad \frac{G}{C} = \frac{\kappa}{\varepsilon}$$

Innere Induktivität:

$$L_i = \frac{R}{w}$$

Leitungen gehen HIN und ZURÜCK!!! Länge verdoppeln!!!

Smith-Diagramm

7.1Allgemein

Normierte Impedanz

gilt nur für verlustlose Leitung!

$$\underline{z}_n = \frac{\underline{Z}(l)}{Z_L} = \frac{\underline{Z}_2 + jZ_L \cdot \tan(\beta l)}{Z_L + j\underline{Z}_2 \cdot \tan(\beta l)} \qquad = \frac{\frac{\underline{Z}_2}{Z_L} + j\tan(\beta l)}{1 + j\frac{\underline{Z}_2}{Z_L} \cdot \tan(\beta l)}$$

allgemeine Gleichung mit Verlusten (siehe auch Kap. 5.1.1.) Ersetze: $\tan \rightarrow \tanh \text{ und } \beta l \rightarrow \gamma l$

7.1.2 verlustloser Reflexionsfaktor

Immer gültig, auch ohne Quelle! siehe auch Kap. 5.2.2. 0 < r < 1 $0 < \Psi < 2\pi \, [360^{\circ}]$ $\underline{r}_{(l=0)} = \underline{r}_2$

 L_n : reale Leitungslänge von Last zu Eingang.

$$\begin{array}{l} \underline{r_n} = \underline{r_2} \cdot e^{-j2\beta L_n} = \underline{r_2} \cdot e^{-j4\pi \frac{L_n}{\lambda}} \\ \\ = |\underline{r_2}| \cdot e^{j(\Psi_0 - 2\beta L_n)} \\ \\ = \frac{\underline{z_n - 1}}{\underline{z_n + 1}} \\ \\ \underline{r_2} = \frac{\underline{Z_2 - Z_L}}{\underline{Z_2 + Z_L}} = \frac{\underline{U_2 - \underline{I_2}Z_L}}{\underline{U_2 + \underline{I_2}Z_L}} \end{array}$$

7.1.3 Schema und Kenngrößen

Werte von Anpassungsfaktor $m \to \text{Werte von Re}\left\{\underline{z}_n\right\}: 0 \le m \le 1$

$$\begin{split} m &= \frac{1 - |\underline{r}|}{1 + |\underline{r}|} = \frac{U_{min}}{U_{max}} = \frac{I_{min}}{I_{max}} \qquad |\underline{r}| = \frac{1 - m}{1 + m} \qquad \text{SWR} = \frac{1}{m} \\ &\underline{z}_n = \frac{\underline{Z}_n}{Z_L} = \frac{1 + \underline{r}(l)}{1 - \underline{r}(l)} \qquad |\underline{r}(l)| = \frac{\text{SWR} - 1}{\text{SWR} + 1} = \frac{1 - m}{1 + m} \\ &\underline{r}_n = \frac{\underline{Z}_n - Z_L}{\underline{Z}_n + Z_L} = \frac{\underline{z}_n - 1}{\underline{z}_n + 1} = \frac{1 - \underline{y}_n}{1 + \underline{y}_n} \\ &\text{SWR} = \frac{1}{m} = \frac{U_{\text{max}}}{U_{\text{min}}} = \frac{I_{\text{max}}}{I_{\text{min}}} = \frac{1 + |r(l)|}{1 - |r(l)|} = \frac{|U_h| + |U_r|}{|U_h| - |U_r|} = \frac{R_{\text{max}}}{Z_L} \end{split}$$

Maxima/Minima bei stehender Welle

Bei verlustloser Leitung:

$$\begin{split} U_{\text{max}} &= |U_h| \cdot (1 + |r(l)|) & U_{\text{min}} &= |U_h| \cdot (1 - |r(l)|) \\ I_{\text{max}} &= \left| \frac{U_h}{Z_L} \right| \cdot (1 + |r(l)|) & I_{\text{min}} &= \left| \frac{U_h}{Z_L} \right| \cdot (1 - |r(l)|) \end{split}$$

Für **Spannungen**: Abstand von der Last z: n = 0, 1, 2, 3...

$$z_{\min} = \frac{\lambda}{4\pi} (\theta_{rad} + (2n+1)\pi) \qquad \qquad z_{\max} = \frac{\lambda}{4\pi} \cdot (\theta_{rad} + 2n\pi)$$

$$\boxed{ \begin{tabular}{l} {\bf Minima alle} $\frac{\lambda}{2} \to \frac{l}{\lambda} = 0.5 \end{tabular} } \begin{tabular}{l} {\bf Maxima alle} $\frac{\lambda}{4} \to \frac{l}{\lambda} = 0.25 \end{tabular}$$

→ Schnittpunkte mit der reellen Achse!

Strommaxima sind an Spannungsminima und umgekehrt.

Impedanz/Admittanz umrechnen

Spiegelung von \underline{z}_n um Mittelpunkt ergibt y_n . (Phase $\pm 180^{\circ}/\pm \pi$)

7.4 Lastseite \rightarrow Quelle

- 1. $Z_L = Z_B$ ins Diagramm einzeichnen
- 2. Lastimpedanz bestimmen, wenn z.B. Parallelschaltung etc.
- 3. Normieren

$$\underline{z}_n = \frac{\underline{Z}(l)}{Z_L}$$

- 4. Im Chart eintragen
- 5. Linie vom Mittelpunkt durch $\underline{z}_n s$ nach außen Ablesen und Notieren:
 - \rightarrow Relative Länge $\left|\frac{l}{\lambda}\right|$
 - → Relativer Winkel in **Degree**
- 6. Kreis einzeichen

Ablesen und Notieren:

- → Maxima: rechter Schnittpunkt mit Re-Achse
- → Minima: linker Schnittpunkt mit Re-Achse
- $\rightarrow r$ abmessen und aus oberer Skala auslesen
- 7. Um Leitungslänge im UZS laufen \rightarrow Linie vom Mittelpunkt durch neuen Punkt nach außen

Ablesen und Notieren:

- →Relativer Winkel
- 8. Wenn $\alpha \neq 0$
 - \rightarrow Dämpung ausrechen \rightarrow Um Faktor nach innen Spiralieren
- 9. Dieser Punkt ist \underline{z}_e
- 10. Eingangsimpedanz ablesen

Positive/negative Blindwerte bewegen sich im/gegen den Uhrzeigersinn. Wirkwiderstände bewegen sich immer zum Leerlaufpunkt.

Vorgehen mit geg. Eingangswiderstand

Wenn mit dem Smith-Diagramm gearbeitet wird, liefert dies die Schritte 3 und 4

1. Lastimpedanz

$$\underline{Z}_A = \frac{1}{\frac{1}{R_A} + j\omega C_A}$$

2. Reflexion am Leitungsende

$$\underline{r}_A = \underline{r}(z=0) = \frac{Z_A - \underline{Z}_L}{Z_A + Z_L}$$

3. Reflexion am Leitungsanfang

$$\underline{r}_E = \underline{r}(z = d) = \underline{r}_A \cdot e^{-j2\beta d}$$

4. Bestimmung der Impedanz

$$\underline{Z}_E = \underline{Z}_L \cdot \frac{1 + \underline{r}_E}{1 - r_E}$$

5. Eingangswiderstand

$$\underline{Z}_E = \frac{1}{\frac{1}{\underline{Z}_E} + j\omega C_E}$$

17 von 23 Tony Pham

8 Antennen

8.1 Herz'scher Dipol (HDp)

8.1.1 Allgemein

r: Antennenabstand

$$\begin{split} & \underline{\vec{H}} = -\frac{I_0 \Delta l' \beta^2}{4\pi} e^{-j\beta r} \cdot \sin \vartheta \left(\frac{1}{j\beta r} + \frac{1}{(j\beta r)^2} \right) \vec{e}_{\varphi} \\ & \underline{\vec{E}} = -\frac{Z_F I_0 \Delta l' \beta^2}{2\pi} e^{-j\beta r} \cdot \cos \vartheta \left(\frac{1}{(j\beta r)^2} + \frac{1}{(j\beta r)^3} \right) \vec{e}_{r} \\ & - \frac{Z_F I_0 \Delta l' \beta^2}{4\pi} e^{-j\beta r} \cdot \sin \vartheta \left(\frac{1}{(j\beta r)} + \frac{1}{(j\beta r)^2} + \frac{1}{(j\beta r)^3} \right) \vec{e}_{\vartheta} \end{split}$$

Im Zeitbereich

$$\begin{split} E_{r}(t) &= \frac{Z_{F}I_{0}l}{2\pi r^{3}\beta}\cos\vartheta\left[\sin(\omega t - \beta r) + \beta r\cos(\omega t - \beta r)\right] \\ E_{\vartheta}(t) &= \frac{Z_{F}I_{0}l}{4\pi r^{3}\beta}\sin\vartheta\left[\sin(\omega t - \beta r) + \beta r\cos(\omega t - \beta r) - (\beta r)^{2}\sin(\omega t - \beta r)\right] \\ H_{\varphi}(t) &= \frac{I_{0}l}{4\pi r^{2}}\sin\vartheta\left[\cos(\omega t - \beta r) + \beta r\sin(\omega t - \beta r)\right] \end{split}$$

8.1.2 Nahfeld (Fresnel-Zone)

$$\frac{\lambda}{2\pi R} \gg 1$$
 oder $\beta R \ll 1$ oder $r \ll \lambda$ \approx Faktor 10

Überwiegend **Blindleistungsfeld**, da \vec{E} zu \vec{H} 90° phasenverschoben. Lösung entspricht dem quasistatischem Dipolfeld. \rightarrow **keine** Wellenausbreitung!

$$\begin{split} \boxed{ & \underline{\vec{H}} \approx \frac{I_0 \Delta l'}{4\pi r^2} \cdot \sin\vartheta \cdot \vec{e}_{\varphi} \\ & \underline{\vec{E}} \approx \frac{I_0 \Delta l'}{2\pi j \omega \varepsilon r^3} \cos\vartheta \cdot \vec{e}_r + \frac{I_0 \Delta l'}{4\pi j \omega \varepsilon r^3} \sin\vartheta \cdot \vec{e}_{\vartheta} \end{split}}$$

8.1.3 Fernfeld (Fraunhofer-Zone)

$$\frac{\lambda}{2\pi R} \ll 1$$
 oder $\beta R \gg 1$ oder $r \gg \lambda$ \approx Faktor 10

Überwiegend **Wirkleistungsfeld**, \vec{S} in Richtung $\vec{e_r}$ \rightarrow Kugelwelle, \vec{E} und \vec{H} in Phase, fallen mit $\frac{1}{r}$ ab.

$$\begin{split} & \underline{\vec{H}} \approx j \frac{\beta I_0 \Delta l'}{4\pi r} \cdot e^{-j\beta r} \cdot \sin\vartheta \cdot \vec{e}_{\varphi} \\ & \underline{\vec{E}} \approx j \frac{\beta Z_F I_0 \Delta l'}{4\pi r} \cdot e^{-j\beta r} \cdot \sin\vartheta \cdot \vec{e}_{\vartheta} \end{split}$$

8.1.4 Abgestrahlte Leistung im Fernfeld HDp

$$\begin{split} P_{\rm rad} &= P_s = \frac{Z_{F0}I_0^2\beta^2(\Delta l')^2}{12\pi} = \frac{I_0^2Z_F\pi}{3} \cdot \frac{\Delta l'^2}{\lambda^2} \\ &= 40\pi^2\Omega \cdot \left(\frac{I_0\Delta l'}{\lambda}\right)^2 \\ \vec{S}_{av} &= \frac{Z_FI_0^2\beta^2(\Delta l')^2}{32\pi^2r^2} \cdot \sin^2\vartheta \cdot \vec{e}_r \\ &= \frac{1}{2}\operatorname{Re}\left\{\vec{E} \times \vec{H}^*\right\} \end{split}$$

8.1.5 Strahlungswiderstand HDp

$$R_s = \frac{2}{3}\pi Z_F \left(\frac{\Delta l'}{\lambda}\right)^2 = 80\pi^2 \Omega \left(\frac{\Delta l'}{\lambda}\right)^2$$

8.1.6 Verlustwiderstand HDp

$$R_v = \frac{l}{\sigma \cdot A_\delta}$$

8.2 Magnetischer Dipol

Dipolmoment: $\vec{m} = \vec{I}\pi\vec{a}^2\vec{e}_z$ $m = I \cdot A$

$$\begin{split} \underline{\vec{H}} &= -\frac{j\omega\mu\beta^2 m}{2\pi Z_{F0}} e^{-j\beta r} \cdot \cos\vartheta \left(\frac{1}{(j\beta r)^2} + \frac{1}{(j\beta r)^3}\right) \vec{e}_r \\ &- \frac{j\omega\mu\beta^2 m}{4\pi Z_{F0}} e^{-j\beta r} \cdot \sin\vartheta \left(\frac{1}{(j\beta r)} + \frac{1}{(j\beta r)^2} + \frac{1}{(j\beta r)^3}\right) \vec{e}_\vartheta \\ \underline{\vec{E}} &= \frac{j\omega\mu\beta^2 m}{4\pi} e^{-j\beta r} \sin\vartheta \left(\frac{1}{j\beta r} + \frac{1}{(j\beta r)^2}\right) \vec{e}_\varphi \end{split}$$

mag. Vektorpotenzial \vec{A} :

$$\vec{A} = \frac{\mu m}{4\pi r^2} (1 + j\beta r) e^{-j\beta r} \sin \vartheta \cdot \vec{e}_{\varphi}$$

 P_{rad} : elek. Dipol der Länge l $\widehat{=}$ mag. Dipol der Fläche A

$$\Delta l = eta \cdot A_{ exttt{Kreis}} = eta \cdot \pi \ a^2 \qquad \qquad rac{m}{v_p} = p^2 \ a^2 \qquad \qquad rac{m}{v_p} = p^2 \ a^2 \ a^2$$

8.2.1 Fernfeld

$$\begin{split} E &\approx -\frac{\beta m \omega \mu}{4\pi r} e^{-j\beta r} \sin \vartheta \cdot \vec{e}_{\varphi} \\ H &\approx -\frac{\beta m \omega \mu}{4\pi r Z_{F0}} e^{-j\beta r} \sin \vartheta \cdot \vec{e}_{\vartheta} \end{split}$$

8.2.2 Abgestrahlte Leistung im Fernfeld

$$\begin{split} P_{\rm rad} &= P_s = \frac{Z_F \beta^4 m^2}{12\pi} = \frac{m^2 \mu \omega^4}{12\pi v_p^3} \\ S_{av} &= \frac{Z_F \beta^4 m^2}{32\pi^2 r^2} \cdot \sin^2 \vartheta \cdot \vec{e}_r \\ &= \frac{1}{2} \operatorname{Re} \left\{ \vec{E} \times \vec{H}^* \right\} \end{split}$$

8.2.3 Nahfeld

$$E \approx -\frac{jm\omega\mu}{4\pi r^2} \sin\vartheta \cdot \vec{e}\varphi$$

$$H \approx \frac{m}{4\pi r^3} (2\cos\vartheta \cdot \vec{e}_r + \sin\vartheta \cdot \vec{e}_\vartheta)$$

8.3 Lineare Antenne

Stromverteilung auf linearen Antennen nicht konstant:

$$I(z') = I_0 \cdot \sin \left[\beta \left(\frac{l}{2} - |z'|\right)\right]$$

8.3.1 Dipolantenne allgemein

l: Antennen**länge** r: Antennen**abstand**

$$\begin{split} & \underline{\vec{H}} = j \frac{I_0}{2\pi r} \cdot e^{-j\beta r} \cdot \frac{\cos\left[\left(\frac{\beta l}{2}\right)\cos\vartheta\right] - \cos\left(\frac{\beta l}{2}\right)}{\sin\vartheta} \cdot \vec{e}_{\varphi} \\ & \underline{\vec{E}} = H \cdot Z_{F0} \cdot \vec{e}_{\vartheta} \\ & I_0 = \sqrt{\frac{2 \cdot P_s}{R_s}} \qquad R_s \to \text{siehe Antennentabelle Kap. 8.10} \end{split}$$

$$\begin{array}{ll} \textbf{Halbwellen} \text{dipol: } l = \frac{\lambda}{2} & \quad \underline{\underline{Z}}_s = (\overline{73}, \overline{13} + j \overbrace{42, 54}^{X_s}) \Omega \\ \textbf{Ganzwellen} \text{dipol: } l = \lambda & \quad \underline{\underline{Z}}_s = (\overline{199}, \overline{09} + j \overline{125}, \overline{41}) \Omega \end{array}$$

8.3.2 Eingangs-/Fußpunktimpedanz

Bei leerlaufender Leitung entstehen in Längsrichtung stehende Wellen. Um max. Wirkleistung zu übertragen, muss die Eingangs-/Fußpunktimpedanz Z_A reell bzw. die Leitung in Resonanz sein.

$$\begin{split} P_{max} &\to n \cdot \frac{\lambda}{4} \\ \underline{Z}_A &= \underline{Z}_s \frac{|I_0|^2}{|I_0(z'=0)|^2} = \frac{\underline{Z}_s}{\sin^2 \left[\beta \frac{l}{2}\right]} \end{split}$$

Strom am Fußpunkt:

$$I(z'=0) = I_0 \cdot \sin\left[\beta\left(\frac{l}{2}\right)\right]$$

komplexe Strahlungsleistung:

$$P_s+jQ_s=\underline{Z}_s\cdot\frac{|I_0|^2}{2}=\underline{Z}_A\cdot\frac{|I_0(z'=0)|^2}{2}$$

8.3.3 Strahlungsdichte

$$\vec{S}_{av} = \frac{Z_F I_0^2}{8\pi^2 r^2} \left(\frac{\cos\left(\frac{\beta l}{2}\cos\vartheta\right) - \cos\left(\frac{\beta l}{2}\right)}{\sin\vartheta} \right)^2 \cdot \vec{e}_r$$

$$S_{av} = S_{iso} \cdot D_{max} = S_{iso} \cdot D_{max} \cdot C^2(\vartheta, \varphi)$$

8.3.4 abgestrahlte Wirkleistung

$$P_{s} = \int_{A} S_{av} \cdot d\vec{a}$$

$$= \int_{\varphi=0}^{2\pi} \int_{\vartheta=0}^{\pi} S_{av} \cdot r^{2} \sin \vartheta \, d\vartheta \, d\varphi$$

$$P_{s} = \frac{Z_{F} I_{0}^{2}}{4\pi} \cdot \int_{\vartheta=0}^{\pi} \frac{\left(\cos\left(\frac{\beta l}{2}\cos\vartheta\right) - \cos\left(\frac{\beta l}{2}\right)\right)^{2}}{\sin\vartheta} d\vartheta$$

$$= \frac{Z_{F} I_{0}^{2}}{4\pi} \cdot x$$

Numerische Lösung des Integrals ergibt Faktor x: bei **Halbwellen**dipol: x=1,2188 bei **Ganzwellen**dipol: x=3,3181

8.4 Antennenkenngrößen

 X_A wird kompensiert \rightarrow max. Wirkleistungsübertragung

8.4.1 Abgestrahlte Leistung

$$P_s = P_{rad} = \frac{1}{2} \cdot I_A^2 \cdot R_s$$

8.4.2 Verlustleistung

$$P_V = \frac{1}{2} \cdot I_A^2 \cdot R_V$$

8.4.3 Wirkungsgrad

wenn R_V vorhanden \rightarrow wirkt sich auf G aus!

$$\eta = \frac{P_s}{P_s + P_V} = \frac{R_s}{R_s + R_V}$$

8.4.4 Gewinn/Gain

Verlustlose Antenne, wenn $\eta=1$

$$G = \eta \cdot D$$
 bei $\eta = 1 \rightarrow G = D$

8.4.5 Richtcharakteristik

 $C_i \stackrel{\triangle}{=}$ isotroper Kugelstrahler als Bezugsgröße in Hauptabstrahlrichtung

$$C_{i}(\vartheta,\varphi) = \frac{E(\vartheta,\varphi)}{E_{i}} = \frac{H(\vartheta,\varphi)}{H_{i}} \qquad C_{i} > 1$$

$$C(\vartheta,\varphi) = \frac{E(\vartheta,\varphi)}{E_{\max}} = \frac{H(\vartheta,\varphi)}{H_{\max}} = \frac{U(\vartheta,\varphi)}{U_{\max}} \qquad 0 \le C(\vartheta,\varphi) \le 1$$

$$C(\vartheta,\varphi) = \left| \frac{\cos\left(\frac{\beta L}{2}\cos\vartheta\right) - \cos\left(\frac{\beta L}{2}\right)}{\sin\vartheta} \right|$$

8.4.6 Richtfunktion/-faktor

$$\begin{split} D_{\text{eff}}(\vartheta,\varphi) &= \frac{S(\vartheta,\varphi)}{S_i} = C_i^{\mathbf{2}}(\vartheta,\varphi) = D_{\text{max}} \cdot C^{\mathbf{2}}(\vartheta,\varphi) \\ D_{max} &= \max\{D(\vartheta,\varphi)\} = \frac{S_{\text{max}}}{S_i} \\ \text{Halbwellendipol} \quad l = \frac{\lambda}{2} \\ D_{\text{eff}}(\vartheta,\varphi) &= 1,64 \cdot \left(\frac{\cos\left(\frac{\pi}{2}\cos\vartheta\right)}{\sin\vartheta}\right)^{\mathbf{2}} \\ \text{Ganzwellendipol} \quad l = \lambda \end{split}$$

$$D_{\texttt{eff}}(\vartheta,\varphi) = 2,41 \cdot \left(\frac{\cos\left(\pi\cos\vartheta\right) + 1}{2\sin\vartheta}\right)^{\mathbf{2}}$$

8.5 Senden und Empfangen

Bei Anpassung: $R_e = R_s \rightarrow \text{max}$. Wirkleistung wird übertragen!

 R_s : Strahlungswiderstand s: Sender e: Empfänger r: **Abstand** von der Antenne

$$P_e = \frac{1}{2} \cdot R_s \cdot I^2 = \frac{U_0^2}{8R_s} \qquad S_s = \frac{1}{2} H_0^2 Z_{F0} = \frac{1}{2} \frac{E_0^2}{Z_{F0}}$$
$$= \frac{E_0^2 \cdot l_{\text{eff}}^2}{8R_s}$$

8.5.1 Wirksame/Effektive Antennenfläche

$$A_{\rm eff} = \frac{P_e}{S_s} = \frac{U_0^2}{8R_s} \frac{2Z_{F0}}{E_0^2} \qquad A_{\rm eff} = \frac{\lambda^2}{4\pi} \cdot G = \frac{Z_{F0}}{4R_S} \cdot l_{\rm eff}^2 \label{eq:Aeff}$$

Beim Hertzschen Dipol:

$$A_{\rm eff} = \frac{\lambda^2}{4\pi} \cdot \frac{3}{2} \sin^2 \vartheta$$

8.5.2 Friis-Übertragungsgleichung

$$\begin{split} S_{iso} &= \frac{P_s}{4\pi r^2} & S_s = S_{iso} \cdot D_s \\ S_{iso,\max} &= \frac{P_s}{4\pi r^2} \cdot G \\ A_{\text{eff,n}} &= \frac{\lambda^2}{4\pi} \cdot D_n(\vartheta, \varphi) \cdot \eta_n & A_{\text{eff,n}} \bigg|_{\max} = \frac{\lambda^2}{4\pi} \cdot G_n \\ P_e &= S_s \cdot A_{\text{eff,e}} \\ &= S_s \cdot \frac{\lambda^2}{4\pi} \cdot D_e(\vartheta, \varphi) \cdot \eta_e \\ \frac{P_e}{P_s} &= A_{\text{eff,e}} \cdot A_{\text{eff,s}} \cdot \frac{1}{\lambda^2 r^2} \\ &= D_e(\vartheta, \varphi) \cdot \eta_e \cdot D_s(\vartheta, \varphi) \cdot \eta_s \cdot \left(\frac{\lambda}{4\pi r}\right)^2 \\ \frac{P_e}{P_s} \bigg|_{\max} &= G_s \cdot G_e \cdot \left(\frac{\lambda}{4\pi r}\right)^2 \end{split}$$

Reziprozität: Sende- und Empfangscharakteristik sind identisch!

8.5.3 Freiraumdämpfung

d: Abstand zur Antenne

$$F = \frac{P_s}{P_e} \cdot \left(\frac{4\pi d}{\lambda}\right)^2 \qquad [1]$$

$$a_0 = 20 \log \left(\frac{4\pi d}{\lambda}\right) = 20 \log \left(\frac{4\pi df}{c_0}\right) \qquad [\text{dB}]$$

Freiraumdämpfung wird durch räumliche Verteilung der Strahlung verursacht, **nicht** durch Wirkverluste des Ausbreitungsmediums.

8.5.4 Leistungspegel/Freiraumpegel

$$L = 10 \lg \left(\frac{P}{1 \text{mW}}\right) \quad [\text{dBm}]$$

$$L_e = L_s + g_s + g_s - a_0 \quad [\text{dB}]$$

8.6 Bezugsantennen

$$g = 10 \cdot log(G) dB$$

mit \mathcal{P}_0 : Eingangsleistung der Antenne

$\mathbf{G} {\rightarrow} \mathbf{Bezugsantenne:}$

Elementardipol zu Kugelstrahler

$$D=1,50\rightarrow g=1,76\text{dBi}$$

Halbwellendipol zu Kugelstrahler

$$D = 1,64 \rightarrow q = 2,15 \text{dBi}$$

EIRP: Eqivalent Isoropic Radiated Power

$$EIRP = P_0 \cdot G_i[dBi]$$

ERP: Eqivalent Radiated Power (verlustloser Halbwellendipol)

$$ERP = P_0 \cdot G_d[dBd]$$

8.7 Monopolantenne

Verhält sich wie ein Dipol, der nur in die obere Hälfte abstrahlt. Strahlungswiderstand halbiert sich und Richtfaktor verdoppelt sich gegenüber der Dipolantenne.

Geometrisch zu kurze Antennen können durch breiteren Drahtdurchmesser, Fußpunktinduktivität oder Dachkapazität elektrisch verlängert werden.

20 von 23

Tony Pham

8.8 Richtcharakteristik Dipolantennen

5.4.4 Richtcharakteristik der Dipolantenne

Robert Sattler

 θ_{3dB} =36,3°

 $R=105\Omega$

D=2,22

 $\ell \approx 3\lambda/2$

Felder, Wellen und Leitungen

180

210

240

0

300

S. 36

8.9 Blindwiderstand Dipolantennen

180

210

240

270

5.4.5 Blindwiderstand Dipolantenne

REGENSBURG

 $R=106\Omega$

D=3,28

 θ_{3dB} =32,6°

330

300

Aus dem Nahfeld des Hertzschen Dipols lässt sich durch Überlagerung der Blindwiderstand der Dipolantenne berechnen: → Formel (4-70) in [11]

0.5

270

Für maximale Leistungsübertragung ist ein reeller Eingangswiderstand erforderlich. Dies ist der Fall, wenn die Leitung in Resonanz ist. Man spricht von Resonanzantennen, wenn $\ell \approx n \cdot \lambda/2$.

Je größer der Durchmesser a der Antenne, desto kürzer/länger ist die Länge bei Halb-/Ganzwellenresonanz.

Robert Sattler

Felder, Wellen und Leitungen

S. 37

8.10 Antennentabelle

Antennenart	Darstellung, Belegung	Richtfaktor, Gewinn Linear,(in dB)	wirksame Antennen - fläche	effektive Höhe	Strahlungs- Widerstand	vertikales Richtdiagramm (3-dB-Bereich)	horizontales Richtdiagramm
isotrope Antenne	fiktiv	1:(0dB)	$\frac{\lambda^2}{4\pi} = 0.08\lambda^2$	_	_	+	+
Hertzscher Dipol, Dipol mit End- kapazität		1,5; (1,8dB)	$\frac{3\lambda^2}{8\pi} = 0.12 \lambda^2$	l	$80\left(\frac{\pi l}{\lambda}\right)^2\Omega$	90° &	+
kurze Antenne mit Dachkapazität auf lei- tender Ebene $h << \lambda$	1000	3;(4.8dB)	$\frac{3\boldsymbol{\lambda}^2}{16\boldsymbol{\pi}} = 0.06\boldsymbol{\lambda}^2$	h	$160\left(\frac{\pi h}{\lambda}\right)^2\Omega$	£, H ₈	+
kurze Antenne auf leitender Ebene h << %		3; (4,8dB)	$\frac{3\lambda^2}{16\pi} = 0.06\lambda^2$	<u>h</u> 2	$40\left(\frac{\pi\hbar}{\lambda}\right)^2\Omega$	45° ⊗	+
2 /4 - Antenne auf leitender Ebene	1/4 59	3,28;(5,1dB)	0,065 2 ²	$\frac{\lambda}{2\pi} = 0.16 \lambda$	40Ω	19° ⊗	+
kurzer Dipol / << %	, J. P	1,5;(1,8dB)	$\frac{3\lambda^2}{8\pi} = 0.12\lambda^2$	1/2	$20\left(\frac{\pi l}{\lambda}\right)^2\Omega$	90° ⊗ H ₀	+
2/2 - Dipol	2/2	1,64;(2,1dB)	0,13 2 ²	$\frac{\lambda}{\pi} = 0.32\lambda$	73Ω	78° 8 8	+
λ -Dipol		2,41;(3,8dB)	0,19 2 ²	>> λ	200Ω	Entropy Hope	# = 90°
1 /2 -Schleifendipol	1/2 p	1,64;(2,1dB)	0.13 2 ²	$\frac{2\lambda}{\pi} = 0.64\lambda$	290Ω	(78° ⊗ H _P	+
Schlitzantenne in Halbraum strahlend	2/2 9 9 0° 0° p	3,28;(5,1dB)	0,26 2 2	-	≈ 500 Ω	$\begin{array}{c} H_{\varphi} \\ \hline 78^{\circ} \\ \hline -90^{\circ} \le \varphi \le 90^{\circ} \end{array}$	ϑ=90° ⊗ H ₃ ν
kleiner Rahmen, n-Windungen, beliebige Form	Fläche A $\varphi = 0^{\circ} \bigcirc \bullet \varphi$	1,5;(1,8dB)	$\frac{3\lambda^2}{8\pi} = 0.12\lambda^2$	<u>2πηΑ</u> λ	$\frac{31000 n^2 (\text{A/m})^2}{(\lambda/m)^4}$	φ = 90° Eυ	φ=0° θ=90°
Spulenantenne auf langem Ferritstab l >> D	$ \begin{array}{c c} & & & & & & & & & & & & & & & & \\ \hline & & & & & & & & & & & & & & & & & & $	1,5; (1,8dB)	$\frac{3\lambda^2}{8\pi} = 0.12\lambda^2$	$\frac{\pi^2 n \mu_r D^2}{2 \lambda}$	19100 $n^2 \mu_r^2 \left(\frac{D}{\lambda}\right)^4$	φ=90°	\$990°
Linie aus Hertzschen Dipolen $l >> \lambda$		$\approx \frac{4}{3} \frac{l}{\lambda}$	$\frac{/\lambda}{8} \approx 0.12/\lambda$	_	_	E. → ⊙ H _φ 50° 2//	+
Zeile aus Hertzschen Dipolen l>> 1	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\approx \frac{8}{3} \frac{l}{\lambda}$	$\frac{l \lambda}{4} = 0.25 \lambda$	_		H ₂ V ⊙ E _φ	$\varphi = 0^{\circ}$ $\varphi = 0^{\circ}$ \Leftrightarrow Θ Θ Θ Θ Θ Θ
einseitig strahlende Fläche $a >> \lambda$, $b >> \lambda$	b	$\approx \frac{6.5 \cdot 10^6 ab}{\lambda^2}$	ab	-	_	51° λ /b φ=0°	9=90°
Yagi - Uda-Antenne mit 4 Direktoren		≈5+10// 1	-	-	-	$ \begin{array}{c} $	$ \begin{array}{ccc} \vartheta = 90^{\circ} \\ & & & & & & & & \\ & & & & & & & & \\ & & & & $

Tony Pham 22 von 23

9 Einheiten

b Elimeteen						
Symbol	Größe	Einheit				
A, W	Arbeit, Energie	J = VAs = Ws				
$ec{A}$	mag. Vektorpotential	$\frac{Vs}{m} = \frac{Wb}{m} \ (\vec{B} = \nabla \times \vec{A})$				
$ec{B}$	mag. Flussdichte	$T = \frac{Vs}{m^2}$				
C	Kapazität	$F = \frac{As}{V}$				
$ec{D}$	dielek. Verschiebung/Flussdichte	$\frac{As}{m^2} = \frac{C}{m^2}$				
e, q, Q	(Elementar-)ladung	C = As				
$ec{E}$	elek. Feldstärke	$\frac{V}{m}$				
$ec{H}$	mag. Feldstärke/Erregung	$\frac{A}{m}$				
$ec{J}$	Stromdichte	$\frac{A}{m^2}$				
$ec{J}_F$	Flächenstromdichte	$\frac{A}{m}$				
L	Induktivität	$\frac{kgm^2}{A^2s^2} = \frac{Wb}{A} = 1\Omega s$				
$ec{M}$	Drehmoment	J = Nm = VAs				
F	Kraft	$\frac{kgm}{s} = N$				
R_{mag}	mag. Widerstand	$\frac{S}{s} = \frac{A}{Vs}$				
$ec{S}$	Poynting-Vektor	$\frac{W}{m^2}$				
\mathbf{Z}	Wellenwiderstand	Ω				
δ_s	Eindringtiefe	m				
ε	Dielektrizitätskonstante	$rac{As}{Vm}$				
arphi	elek. Skalarpotential	V				
$arphi_m$	mag. Skalarpotential	A				
ho	Raumladungsdichte	$\frac{As}{m^3}$				
ho	spez. Widerstand	$\frac{\Omega mm^2}{m} = \frac{VAmm^2}{m}$				
κ,σ	elek. Leitfähigkeit	$\frac{S}{m} = \frac{A}{Vm}$				
λ	Wellenlänge	m				
μ	Permiabilitätskonstante	$\frac{Vs}{Am}$				
Φ_e	elek. Fluss	C = As				
Φ_m	mag. Fluss	$Wb = Vs = \frac{T}{m^2}$				

Tony Pham 23 von 23