Blur robust and color constancy image description: extended study

Silvino, Alvaro J.

Mestrando em Ciência da Computação

Agenda

- Extratores de caracteristicas e descritores de imagens
- Exemplo de aplicações
- Descritores de imagens coloridas
 - Desafios
- Edge based color constancy
 - ▶ p Funt, Finlayson
 - Smeulders, Gevers
 - $ightharpoonup \phi_{\mathcal{D}}$ Weijer, Schmid
 - $ightharpoonup \phi_m$ Weijer, Schmid
- Experimentos e Bases Utilizadas
- Referências

Extratores de caracteristicas e descritores de imagens. Le Cun, Bengio [1]

- Organização hierarquica entre características
- Fácil relação de dependências entre características
- Contrução de "Manifolds"
- Clusterização Natural (Separação das categorias em diferentes distribuições)
- Permite aprendizado Semi-supervisionado
- Compartilhar as caracteristicas para diferentes tarefas
- Coerência espacial e temporal
- ► Permitir contrução de matrizes esparças (Sparsity)

Exemplo de aplicação [2,3,4]

- Indexação
- Segmentação

Descritores de imagens coloridas [1]

desafios

- Invariância a iluminação
- Invariância a embaçamento
 - Produzidos pela própria máquina fotográfica
 - Produzidos pela aplicação de filtros
- Invariância a rotação e translação da imagem (comuns em todos os descritores)

Edge based color constancy [2,3,4]

$$C \in \{R, G, B\}$$

$$C(\mathbf{x}) = m^b(\mathbf{x}) \int b(\lambda, \mathbf{x}) e(\lambda) f^C(\lambda) d\lambda$$

$$C(\mathbf{x}) = m^b(\mathbf{x}) b^C(\mathbf{x}) e^C$$

$$b^{C}(\mathbf{x}) = b(\lambda^{C}, \mathbf{x})$$
 $e^{C} = e(\lambda^{C})$

Edge based color constancy; Funt, Finlayson [3]

p

$$\frac{\partial}{\partial \mathbf{x}} \ln C(\mathbf{x}) = \frac{\partial}{\partial \mathbf{x}} \left(\ln b^C(\mathbf{x}) + \ln m^b + \ln e^C \right) = \frac{b_{\mathbf{x}}^C}{b^C}$$

$$p = \{p_1, p_2, p_3\} = \{\frac{R_x}{R}, \frac{G_x}{G}, \frac{B_x}{B}\}$$

Edge based color constancy; Smeulders, Gevers [4]

m

$$\frac{\partial}{\partial \mathbf{x}} \ln \frac{C\left(\mathbf{x}\right)}{D\left(\mathbf{x}\right)} = \frac{b_{\mathbf{x}}^{C}}{b^{C}} - \frac{b_{\mathbf{x}}^{D}}{b^{D}} = \frac{b_{\mathbf{x}}^{C}b^{D} - b^{C}b_{\mathbf{x}}^{D}}{b^{C}b^{D}}$$

$$p = \{m_1, m_2\} = \{\frac{R_{\chi}G - G_{\chi}R}{RG}, \frac{G_{\chi}B - B_{\chi}G}{GB}\}$$

Influência do Embaçamento na detecção das bordas

Degradação das bordas

Edge based color constancy [2]

 ϕ_{p}

$$\varphi_p^1 = \arctan\left(\frac{p_1}{p_2}\right), \varphi_p^2 = \arctan\left(\frac{p_2}{p_3}\right)$$

$$\varphi_p = \{\varphi_p^1, \varphi_p^2\}$$

Edge based color constancy [2]

 $ightharpoons \phi_m$

$$\varphi_m = \arctan\left(\frac{m_1}{m_2}\right)$$

- Logaritmo Utilizado foi o Ln+0.001
- Derivada utilizada foi a Gausiana de Laplace com desvio 2
- Histograma Normalizado construido N-dimensionalmente com 17 bins
- Distancia Euclidiana foi utilizada para verificar o grau de separação entre os histogramas

- Foram Utilizadas 4 bases onde a última foi contruida pela compilação de diversas bases utilizadas pela Simon Fraiser, no departamento de Visão computacional:
 - ► A primera base chamada de Real World Blured Data.[5]

Base 1

- Foram Utilizadas 4 bases onde a última foi contruida pela compilação de diversas bases utilizadas pela Simon Fraiser, no departamento de Visão computacional:
 - Segunda base, utilizadas pelo desenvolvedor do artigo, contém 20 objetos fotografados, sobre a influência de 11 variações de iluminações, totalizando 220 imagens.[5]

Base 2

- Foram Utilizadas 4 bases onde a última foi contruida pela compilação de diversas bases utilizadas pela Simon Fraiser, no departamento de Visão computacional:
 - Terceira base, utilizamos 6 objetos sob a influência de 9 variações de iluminações fluorecentes, totalizando 54 imagens.[5]

Base 3

- Foram Utilizadas 4 bases onde a última foi contruida pela compilação de diversas bases utilizadas pela Simon Fraiser, no departamento de Visão computacional:
 - Quarta e última base, foi compilado de diversos projetos de mestrado e doutorada da Univesidade de Simon Fraiser, foram aproveitas 36 imagens diferentes, com diversas superficies, como metálicas e transparentes, e também sobre a influência de 11 variações (todas consistente com todos os objetos), totalizando 396 imagens.[5]
 Base 4

Foram contruidos 5 tabelas com as seguintes considerações:

Tabela 1 - teste dos 4 métodos com classificador Knn=[1,2,3] com a base 3 (imagens sobre influência de luz florecente em 9 variaçõea diferenes com 6 objetos)

Metodo\número de k	K=1	K=3	K=5
p	0.833	0.667	0.500
m	0.667	0.333	0.250
φ_p	1.000	1.000	1.000
ϕ_m	1.000	1.000	1.000

Base 3

Tabela 2 - Teste dos 4 métodos com classificador Knn=1 com a base 2 (20 objetos) e o uso de filtro gaussiano com desvio 2 para embaçar a imagem.

Metodo\número de k	K=1
p	0.150
m	0.050
φ_p	0.800
Φ_m	0.750

Exemplo de uma imagem com embasamento

Tabela 3 - Teste dos 4 métodos com classificador Knn=1 com a base 1 Real World Blured Images (20 objetos não embaçados e 20 objetos embaçados)

Metodo\número de k	K=1
p	0.200
m	0.200
ϕ_p	0.850
ϕ_m	0.550

Base 1

Tabela 4 - Teste dos 4 métodos com classificador Knn=[1,3,5] com a base 2 (20 objetos sob 11 variações de iluminação)

Metodo\número de k	K=1	K=3	K=5
p	0.350	0.200	0.050
m	0.200	0.050	0.050
φ_p	0.600	0.400	0.350
ϕ_m	0.400	0.200	0.150

Base 2

Tabela 5 - Teste dos 4 métodos com Knn=1 com a base 2 (20 objetos) e transformação afim da imagem.

Metodo\número de k	K=1
p	0.200
m	0.050
φ_p	0.400
ϕ_m	0.150

Exemplo de uma imagem tabela 5

Tabela 6 - teste dos 4 métodos com classificador Knn=[1,2,3] com a base 4 (36 objetos sob 11 variações de iluminação)

Metodo\número de k	K=1	K=3	K=5
p	0.306	0.139	0.111
m	0.222	0.167	0.056
φ_p	0.917	0.944	0.833
ϕ_m	0.806	0.667	0.500

Base 4

Exemplos de Indexação[6]

Base 5 teste Com metodo M

Base 5 teste Com metodo P

Exemplos de Indexação[6]

Base 5 teste Com metodo thi p

Base 5 teste Com metodo Thi m

Conclusão

- São rápidos e deterministico.
- ► Edge based descritores ainda podem ser melhorados. [7]
- Outros paradgmas devem ser considerados para resolver esse problema.

Referências

- 1. B. Yoshua, C. Aaron and V. Pascal, Representation Learning: A Review and New Perspectives, Apr. 2014
- Joost van de Weijer, Cordelia Schmid, Blur Robust and Color Constancy Image Description, 2006
- 3. B.V. Funt and G.D. Finlayson, Color constant color indexing, IEEE Trans. On Pattern Analysis and Machine Intelligence, vol. 17, pp. 522n528, May 1995
- 4. Th. Gevers and A. Smeulders, Color based object recognition, Pattern Recognition, vol. 32, pp. 453n464, Mar. 1999
- 5. Base de dados: Barnard's Datasets http://lear.inrialpes.fr/people/vandeweijer/blur_data/blur.html
- 6. Código e experimento disponíveis em: https://github.com/alvarojoao/ImageProcessing/blob/master/Experimentos%20Projeto%20de%20imagem.ipynb

$$p_1^{\sigma} = \frac{(R \otimes G^{\sigma_b}) \otimes \frac{\partial}{\partial \mathbf{x}} G^{\sigma_d}}{R \otimes G^{\sigma_b} \otimes G^{\sigma_d}} = \frac{R \otimes \frac{\partial}{\partial \mathbf{x}} G^{\sqrt{\sigma_b^2 + \sigma_d^2}}}{R \otimes G^{\sqrt{\sigma_b^2 + \sigma_d^2}}} \qquad \sigma = \sqrt{\sigma_d^2 + \sigma_b^2}$$

$$R(x) = \alpha u(x) + \beta$$

$$p_{1}^{\sigma} = \frac{\frac{\partial}{\partial \mathbf{x}} \left(\alpha u \left(x \right) + \beta \right) \otimes G^{\sigma}}{\left(\alpha u \left(x \right) + \beta \right) \otimes G^{\sigma}} = \frac{\alpha \delta \left(x \right) \otimes G^{\sigma}}{\left(\alpha u \left(x \right) + \beta \right) \otimes G^{\sigma}}$$

$$p_{1}^{\sigma} = \frac{\frac{\partial}{\partial \mathbf{x}} \left(\alpha u \left(x \right) + \beta \right) \otimes G^{\sigma}}{\left(\alpha u \left(x \right) + \beta \right) \otimes G^{\sigma}} = \frac{\alpha \delta \left(x \right) \otimes G^{\sigma}}{\left(\alpha u \left(x \right) + \beta \right) \otimes G^{\sigma}}$$

$$p_1^{\sigma} = \frac{\alpha}{\beta + \frac{1}{2}\alpha} G^{\sigma}(0) = \frac{\alpha}{\beta + \frac{1}{2}\alpha} \frac{1}{\sigma\sqrt{2\pi}}$$

$$p_1^{\sigma} = \frac{\alpha}{\beta + \frac{1}{2}\alpha} G^{\sigma}(0) = \frac{\alpha}{\beta + \frac{1}{2}\alpha} \frac{1}{\sigma\sqrt{2\pi}}$$