Graph Theory MATH 442 Term 2 [2018-09-11]
CPSC 536E -topics
matrix representation of graph a computing path
@ Google's page rank how connected is the graph?
3 useful to graphistique eigenvalue
major topics
TODO. D spectral graph theory
Ramsey's theory edge Co-plete graph; color ted or blue
clique: Smallest number of vertices.
R(3,3)=3 $R(4,4)=18$
Smallert 10mplett K(5°C)-1.3
graph so that for all red/blue colorings
the exists either a red 3-clique
or a plut 3- clave
Randow nalks on graphs
Give a graph, how many perfect matches are there?
1 9 planar graphs 2 graph drawing
characterization diasa on a plant a GRAPH DRAWTHE interested
Porters for things to look at a state of God ATTION
itul. PETER ENDES
D Thy for most time: (1) Tonning TAMASSIA (3) Green Theory
$\langle \Delta \rangle / \langle \Delta \rangle = 0$
things sabout planar & Croaph Theory with Applications J.A. Bondy U.S.R. Murh,
has to tell? read chapter as al.
how to tell? read chapter on planar graphs planar detection
Planet Officials

In a complete grouph for node a adjacent to all other 5 nodes, color them red or blue.

No nother how you color it, at least 3 edges are colored with the same color (either red or blue)

WLOG, let's say a is connected with b, c, d rolored blue. To avoid a clique with a, be, ed, bd hat to be colored red . In this way , buc, of form a rod 3-dique

Thus, Ko must have either a red 3-clique or ablue 3-clique.

- Bondy and Murty

 [1.1] Ps: planar graph: A graph which can be drawn in the plane in such a way that edges meet only at points corresponding to their common ends is called a planar graph, and such a drawing is called a planar embedding of the graph.
- [10.1] Paux planor graph: A graph is said to be embeddable in the plane, or planar, it it can be drawn in the plane so that its edges intersect only at their ends.
- [10.1] Prove plane graph. we often refer to a planar embedding G of a planer graph G as a plane graph; and we call the vertices of G points and its edges lines.
- [10.1] Pas THE JORDAN CURVE: Any simple closed curve C in the plane partitions the rest of the plane THEOREM into two disjoint archise-connected open sets.
- [10,1] Prus Ks is nonplanar:

Vac int(a) ext(c)

Vac int(a) ext(c)

νω ονο ε ent ((s)

νω ονο ε ent ((s)

νω ε (ent ((s))

νω ε (ent ((s)))

[10.1] P246 subdivision. May graph derived from a graph G by a sequence of edge subdivisions is called a subdivision of G or a G-subdivision

10.1] Bub. Proposition 10.3: A graph G is planer if and only if every subdivision of G is planer

10.1] Paul Theorem 10.4: A graph G is embeddable on the plane it and only it it is embeddable on the sphere. stereographic projection

[10.2] Paso Proposition 10.5: Let G be a planar graph, and let f be a face in some planar embedding of G. Then G admits a planar embedding whose outer face has the same boundary as f.

Proof icha - consider an embedding G of G on the sphere

[10.2] Poso Theorem 10.6: THE JORDAN-SCHÖNFLIESS THEOREM?

Any homeomorphism of a simple closed curve in the plane another simple closed curve can be extended to a homeomorphism of the plane.

- [10,2] Bis Theorem 10.7: In a nonseparable plane graph other than Ki or Ki, each face is bounded by a cycle. ?
- [10.2] Posse dual: Given a plane graph G, one can define a second graph G* as follows. Corresponding to each fare

 I ad G three is a vertex f* of G*, and corresponding to each edge e there is an edge e* of G*

 Two vertices f* and g* are joined by the edge e* in G* iff their corresponding faces f and g are spond
 by the edge e in G. Observe that if e is a cut edge of G. then f=g, so e* is a loop of G*, conversely, it
 is a loop of G, the edge e* is a cut edge of G*. The graph G* is called the chief of G.

[10.3] BES EULER'S FORMULA!

For a connected plane graph G.

Proof by inclustion

U(G) - e(G) + f(G)=2

[10.3] Past Corollary 10,20:

All planar embeddings of a connected planar graph have the same number of faces.

[10.3] P259 Corollary 10.21

Let G be a simple planar graph on at least three vertices. Them m < 3n-6. Furthermore, m=3n-6 it and only it every planar embedding of Gi is a triangulation.

[10.3] Pasa Corollary 10.22

Every simple planar graph has a vertex of degress at most five.

[10.3] Pasa Corollary 10.23.

proof: It ks were planar, corollary 10.21 would give 10 = e(ks) < 3v(Ks)-6=! Ks is nonplanar

[10.3] Posq Corollary 10.24:

K3,3 is nonplanar proof: If K3,3 were planar, K3,3 has no cycle of length < 4. so every fare of G has

degree >4. By Theorem 10.10, 4f(G) < Zicht)=2e(G)=18

10.2] Pass Theorem 10.10: If G is a place graph

2 d(f) = 2m

Euko's donala implies : f(G) & 4 VG) - e(G) + /(G)=2 6 - 9 + /(G)=2=> /(G)=5

10.5] Pobs Theorem 10.30: KURATOWSKI'S THEOREM

A graph is planar iff it contains no subdivision of either Ks or K3.3.

A subdivision of Ks or Ks.s is consequently called a Kuralowski subdivision.

minor: A minor of a graph is any graph obtainable from G by means of a sequence of vertex and edge deletions and edge (contractions)?

Alternatively, consider a partition (Vo, Vi, ..., Vk) of V such that GIVi] is connected, Isisk, and let H be the graph obtained from G by deleting Vo and shrinking each induced subgraph GilVil, Isisk to a single vertex. The any Spanning subgraph Fof His a minor of G.

e.g. Ks is a minor of the Petersen graph because it can be obtained by contracting the live spoke edges of the latter graph.

Il Fis a minor of G, we will F & G.

Exe. find a Ks. minor from Petersen graph.

[10:5] P369 WAGNER'S THEOREM A graph is planar iff it has no kuratowski minor

- 1) any graph which contains an F-subclivial also has an F-minor
- 2) provided that F is a graph of maximum degree three or less, any graph which has an F-minor also contains an F-subdivision

[1.1] P3 loop: an edge with identical ends is called a loop link an edge with distinct ends is called a link parallel edges: two or more links with the same pair of ends are said to be parallel edges simple a graph is simple if it has no loops or parallel edges.

[D: Ballista et al.]

drawing: a drawing T of a graph (digraph) G is a function which maps each vertex v to a distinct point Tev) and each edge (u.v) to a simple open Jordan curve Teu.v), with endpoints Trus and Trus.

[1] Pr drawing planar: a drawing T is planar if no two distinct edges intersect. A gragh is planar if it admits a planar drawing

connected a graph is connected if there is a path between u and v for each pair cu.v) of {1} Ps

cutvertex: A cutvertex in graph G is a verter whose removal disconnects G.

biconnected: A connected graph with no culvertices is biconnected.

blocks. The maximal biconnected subgraphs of a graph are its blocks cometines called biconnected (omponents) A graphis planar iff its blocks one planar

(1) Pg important: 71) The steleton of a convex polyhectron is a planar triconnected graph.

72) A planar triconnected graph has a unique embedding, up to a reversal of the circular ordering of the neighbors of each vertex

(2.1) Piz drawing convention. A drawing convention is a basic rule that the drawing must satisfy to be admissible

· Polyline drawing

· Straightline dianing

· Orthogonal drawing

· Grid Drawing

· Plana Drawing

· Upword (resp. dominard) Drawing

12.13 Piu aesthetics . aesthetics specify graph properties of the cleaning that we would like to apply as much as possible, to achieve readability

- Crossings: minimize

- area minimize (good drawing, straight-live drawng where distance (u,v) > 1)

convey hull

- total edge length: minimize - maximum colye length: minimize.

- unitorm edge length minimise variance of lengths of the edges

- total bends minimize (important for orthogonal drawings) = maximum bends : minimize efficiency:

- uniform bends : minimize interactive orpplications

constraints:

reter to specific

subgraphs or

Sub distings

- angular resolution: maximize c straight-line draining)

- symmetry - aspect ratio: minimize longest-side: shortest side

[The Left-Right Planarity Test] by Ulrik Brandes

- Efficient Planarity Testing by John Hoperofl & Robert Tarjan (1974)
- A Depth-first-search Characterization of Planarity by H. De Fraysseix & P. Rosenstiehl

- On the Realization of Complexes in Euclidean Spaces 吴文俊 Wen-Tsun Wu (1955)
- {P4} There are only two significant ways to clean a simple cycle planarly, namely clockwise and counterclockwise.
- {Pu} Testing plannity amounts to deciding whether there is a consistent simultaneous orientation of all cycles
- 185 In any planar cleaning the back edges can be partitioned into left and right depending on whether their fundamental cycle is counterclockwise or clocknise.
- 1Pby In the oriented graph, we denote by Etw = {(Vw) E E: w EV} the set of all outgoing edges of vEV, so that E = Unev E'(w).
- 4P6) A DFS traversal yields a bipartition E=TUB of the edges, where those in T are called time edges, and the non-time edges in B are called back edges. We write unou for (u,v) ET
- 183 fundamental cycle: Coverw) = w + verw

 overlapping. Two cycles are called overlapping, it they share an edge.
- 1PB Lemma 3 Let G= (V, T+)B) be a DFS-oriented graph. (1) The fundamental cycles are exactly the simple directed cycles of G.
 (2) Two distinct fundamental cycles are either disjoint, or their intersection forms a tree path
- IPAS fork For two overlapping cycles, the last edge u -> v on the shared tree path together with succeeding edges e,=(v, w,), e==(v, w) on each cycle is called their fork, and v its branching point
- the incoming tree edge, or between any two consecutive outgoing edges it v is the
- 4P7) nested: Two overlapping fundamental cycles are called nested, if the part of one cycle that is not common to both is drawn completely inside the other cycle.
- {Pst Observation 1: In a planar drawing of a DFS-oriented graph G= (V, T & B) two overlapping cycles are nested, if and only if they are oriented alike.

- (Ps) return points: The return points of a tree edge vowE I are the ancestors u of v with u +v >w => x cou for some descendant x of w. The return points of a vertex UEV are formed by the union of all return points of outgoing edges (U.W) EEtcu) ETHB.
- 4Ps} lowpoint: The lowpoint of an edge is its lovest return point if any or its source if none exists
- [Pg] Observation 2: In a planar drawing of a connected DFS-oriented graph G = (V, Tt)B) with the root of the DFS tree on the outer face, overlapping fundamental cycles are nested according to their lowpoint order.
- 1993 left, right: the side of a back edge in a planar drawing is right, it its fundamental cycle is oriented clockwise, and left otherwise.
- {Pa} LR partition: Let G=(V, TUB) be a DFS-oriented graph. A partition B= LUR of its back edges into two classes, referred to as left and right, is called left-right partition, or LR partition for short, if every fork consisting of u > v ET and e, e, e Etcv) 11) all return edges of e, ending strictly higher than lowpt (e) belong to one class (2) all return edges of ex ending strictly higher than lowpt (e) to the other.
- Prog Lett-Right Planurity: A graph is planar it and only if it admits an LR partition.
- flog aligned: An LR partition is called aligned, it all return edges of a tire edge & that return to lowptie) are on the same side
- 4 Pu) Lemma 6 : Any LR partition can be turned into an aligned LR partition.
- (Pa) e. des: we have to define e. der if and only if the boupoint of e. is strictly long, than that of
 er. If both have the same lonpoint, but say, only er has another return point, we say that
 er is chordal and let eder

1P,2} Definition T Given an LR partition, let et < ... < et be the left outgoing edges of a verlex wand ex < ... < er its right outgoing edges. If v is not the root, let u be its parent. The clockwise lettright ordering, or LR ordering for short, of the edges around v is

Lcel, et, Rcel, ..., Lcel, el, Rcel, L(e,R), eR, R(eR), ..., LceR), eR R(eR)

where (u,v) is absent if v is the root, and Lee) and Ree) denote the left and right incoming back edges whose cycles share e. For two back edges b. = x. CTV, b. = X2 CTV ERE let z -> x, cx, y,), cx, y,) be the fork of C(b,), C(b). Then, b, comes after by in Rce) if and only if (x,y,) < (x,y). If b, b, E Lce), the order is reversed.

[Piz] Lemma of Criven an LR partition, LR ordering yields a planar embedding.

{Piu] Corollary? Let G = (V, THB) be a DFS-criented graph. For a pair of back edges b., bz CB with overlapping fundamental cycless let v, > · · · > Vk be the tree path of the intersection and (Vk.1, Vk), e., e. the corresponding tack with e. *> b, and e. *> bz. Then, b, and b, are subject to

a different-constraint, iff lowpoint(e) < lowpoint(b,) and lowpoint(e,) < lowpoint(b)

a same-constraint, iff lowpoint(e') < min { lowpoint(b), lonpoint(b)} for same e'scvi, w)

ETHB, 1 < i < k, w= Ue 1

PIB) Definition 10: Let $G = (V, T \uplus B)$ be a DFS-oriented graph such that each pair of back edges $b_1, b_2 \in B$ is subject to at most one type of constraint. The signed graph $CCG_1) = (B, E(G); \sigma : E(C) \rightarrow \{-1, +1\})$ with $\sigma(b_1, b_2) = \{-1, -1\}$ if $b_1, b_2 \in B$ are subject to a different constraint

is called continuint graph of Gi

flis) If any pair of back edges is subject to both a some-constraint and a different-constraint, no LR partition can exist and hence the graph is non-planar.

```
Algorithm 1: Lett-Right Planarity Algorithm

input: simple, undirected groph G=CV.E)

output: planar embedding Challs it graph is not planar)

it |V| > 2 and |E| > 3 |V| - 6 thr. HILT: not planar

for sc V do

if height [s] = 00 then

height [s] \( \to 0 \), append Roots \( \to 0 \)

DFS1 (s)
```

sort adjurency lists according to non-descending nesting depth for se Roots do DFS2(s)

tor e E do nesting depth [e] = sign (e). nesting depth [e]

sort adjaceny lists according to mon-decreasing nesting depth
for s & Rools do DFS3(s)

where
integer sign cedge e)

if ref[e] #1 then
side[e] # I then

side[e] # I then

side[e] # I then