

Politechnika Warszawska Wydział Matematyki i Nauk Informacyjnych

Automatyczna kategoryzacja tematyczna tekstów przy użyciu metryk w przestrzeni ciągów znaków

Natalia Potocka *Warszawa*, 21.04.2014

Plan działania

- Cel pracy
- O metrykach słów kilka
- Postęp prac
- Co dalej?

CEL PRACY

Celem pracy jest skategoryzowanie tekstów z polskiej Wikipedii pod względem tematu na podstawie liczności słów występujących w tekście. Można się spodziewać, że jeśli w dwóch tekstach występuje dużo podobnych do siebie słów, to pochodzą one z tej samej kategorii tematycznej.

CEL PRACY

Celem pracy jest skategoryzowanie tekstów z polskiej Wikipedii pod względem tematu na podstawie liczności słów występujących w tekście. Można się spodziewać, że jeśli w dwóch tekstach występuje dużo podobnych do siebie słów, to pochodzą one z tej samej kategorii tematycznei.

А		В		С		D	
całka	10	całka	5	niewłaściwy	3	ułamek	4
pochodna	5	pochodna	15	powieść	7	mianownik	5
niewłaściwa	4	granica	7	granica	15	niewłaściwy	6

CEL PRACY

Co ze słowami podobnymi? Przykładowo słowa *niewłaściwy* i *niewłaściwa* mają ten sam temat, różnią się tylko rodzajem (męski / żeński). W tekstach mogą też występować błędy ortograficzne, błędy spowodowane brakami znaków diaktrycznych (ą, ę, ł, ...) itd. Takie słowa również chcielibyśmy traktować jak "podobne". W celu określenia jak bardzo dwa słowa są do siebie podobne, posłużą *metryki określone na napisach*.

DEFINICJA

Napisem nazywamy skończone złączenie symboli (znaków) ze skończonego alfabetu, oznaczonego przez Σ . Produkt kartezjański rzędu $q, \Sigma \times \ldots \times \Sigma$ oznaczamy przez Σ^q , natomiast zbiór wszystkich skończonych napisów, które można utworzyć ze znaków z Σ oznaczamy przez Σ^* . Pusty napis, oznaczany ε , również należy do Σ^* . Napisy zwyczajowo będziemy oznaczać przez s, t oraz s, a ich s0 oznaczań przez s1 iliczbę znaków w napisie, przez s2.

DEFINICJA

Napisem nazywamy skończone złączenie symboli (znaków) ze skończonego alfabetu, oznaczonego przez Σ . Produkt kartezjański rzędu $q, \Sigma \times \ldots \times \Sigma$ oznaczamy przez Σ^q , natomiast zbiór wszystkich skończonych napisów, które można utworzyć ze znaków z Σ oznaczamy przez Σ^* . Pusty napis, oznaczany ε , również należy do Σ^* . Napisy zwyczajowo będziemy oznaczać przez s, t oraz s, a ich s0 oznaczań znaków w napisie, przez s1.

Przykład. Niech Σ będzie alfabetem złożonym z 26 małych liter alfabetu łacińskiego oraz niech s='ala'. Wówczas mamy |s|=3, $s\in\Sigma^3$ oraz $s\in\Sigma$. Pojedyncze znaki oznaczamy przez indeks dolny, stąd mamy $s_1='a'$, $s_2='l'$, $s_3='a'$. Podnapis oznaczamy przez m:n w indeksie dolnym, np. $s_{1:2}='al'$. Jeśli n< m, to $s_{m:n}=\varepsilon$, czyli napis pusty.

DEFINICJA

Funkcję d nazywamy metrykq na Σ^* , jeśli ma poniższe własności:

- $d(s,t) \ge 0$
- d(s,t) = 0 wtw s = t
- d(s,t) = d(t,s)
- $d(s,u) \le d(s,t) + d(t,u)$,

gdzie s, t, u są napisami.

DEFINICJA

Funkcję d nazywamy metrykq na Σ^* , jeśli ma poniższe własności:

- $d(s,t) \ge 0$
- d(s,t) = 0 wtw s = t
- d(s,t) = d(t,s)
- $d(s,u) \le d(s,t) + d(t,u)$,

gdzie s, t, u są napisami.

Nie wszystkie metryki na napisach posiadają wszystkie z wyżej wymienionych właśności.

DEFINICJA

Funkcję d nazywamy metrykq na Σ^* , jeśli ma poniższe własności:

- $d(s,t) \ge 0$
- d(s,t) = 0 wtw s = t
- d(s,t) = d(t,s)
- $d(s,u) \leq d(s,t) + d(t,u)$,

gdzie s, t, u są napisami.

Nie wszystkie metryki na napisach posiadają wszystkie z wyżej wymienionych właśności.

Metryki na napisach można podzielić na trzy grupy:

- oparte na operacjach edytowania (edit operations)
- oparte na q-gramach
- miary heurystyczne

DEFINICJA

Funkcję d nazywamy metrykq na Σ^* , jeśli ma poniższe własności:

- $d(s,t) \ge 0$
- d(s,t) = 0 wtw s = t
- d(s,t) = d(t,s)
- $d(s,u) \leq d(s,t) + d(t,u)$,

gdzie s, t, u są napisami.

Nie wszystkie metryki na napisach posiadają wszystkie z wyżej wymienionych właśności.

Metryki na napisach można podzielić na trzy grupy:

- oparte na operacjach edytowania (edit operations)
- oparte na q-gramach
- miary heurystyczne

OPERACJE EDYTOWANIA

Metryki oparte na operacjach edytowania zliczają liczbę opercji potrzebnych do przetworzenia jednego napisu w drugi. Najczęściej wymieniamymi operacjami są:

- zamiana znaku, np. $'ala' \rightarrow 'ela'$
- usunięcie znaku, np. $'ala' \rightarrow 'aa'$
- wstawienie znaku, np. $'ala' \rightarrow 'alka'$
- transpozycja dwóch przylegających znaków, np. $'ala' \rightarrow 'laa'$

Przykładowe metryki: Hamminga, najdłuższego wspólnego podnapisu (longest common substring), Levenshteina, optymalnego dopasowania napisów (optimal string alignment), Damareu-Levenshteina.

Metryka **najdłuższego wspólnego podnapisu**, ozn. d_{lcs} , zlicza liczbę usunięć i wstawień, potrzebnych do przetworzenia jednego napisu w drugi. Np. $d_{lsc}('leia', 'leela') = 3$, bo $leela \xrightarrow{us. e} lela \xrightarrow{us. l} lea \xrightarrow{wst. i} leia$.

Metryka **najdłuższego wspólnego podnapisu**, ozn. d_{lcs} , zlicza liczbę usunięć i wstawień, potrzebnych do przetworzenia jednego napisu w drugi. Np. $d_{lsc}('leia','leela') = 3$, bo $leela \xrightarrow{us.\ e} lela \xrightarrow{us.\ l} lea \xrightarrow{wst.\ i} leia$. Uogólniona **odległość Levenshteina**, ozn. d_{lv} zlicza ważoną sumę usunięć, wstawień oraz zamian znaków, potrzebnych do przetworzenia jednego napisu w drugi.

Metryka **najdłuższego wspólnego podnapisu**, ozn. d_{lcs} , zlicza liczbę usunięć i wstawień, potrzebnych do przetworzenia jednego napisu w drugi. Np. $d_{lsc}('leia','leela') = 3$, bo $leela \xrightarrow{us.\ e} lela \xrightarrow{us.\ l} lea \xrightarrow{wst.\ i} leia$. Uogólniona **odległość Levenshteina**, ozn. d_{lv} zlicza ważoną sumę usunięć, wstawień oraz zamian znaków, potrzebnych do przetworzenia jednego napisu w drugi.

Gdy za wagi przyjmuje się $1 \ \mathrm{mamy}$ do czynienia ze zwykłą odległością Levenshteina, np.

 $d_{lv}('leia', 'leela') = 2$, bo $leela \xrightarrow{us. e} lela \xrightarrow{zm. l \ na \ i} leia$.

Metryka najdłuższego wspólnego podnapisu, ozn. d_{lcs} , zlicza liczbę usunięć i wstawień, potrzebnych do przetworzenia jednego napisu w drugi. Np. $d_{lsc}('leia','leela') = 3$, bo $leela \xrightarrow{us.\ e} lela \xrightarrow{us.\ l} lea \xrightarrow{wst.\ i} leia$. Uogólniona odległość Levenshteina, ozn. d_{lv} zlicza ważoną sumę usunięć, wstawień oraz zamian znaków, potrzebnych do przetworzenia jednego

Gdy za wagi przyjmuje się $1 \,$ mamy do czynienia ze zwykłą odległością Levenshteina, np.

$$d_{lv}('leia', 'leela') = 2$$
, bo $leela \xrightarrow{us. e} lela \xrightarrow{zm. l \ na \ i} leia$. Gdy za wagi przyjmiemy np. $(0.1, 1, 1)$, $d_{lv}('leia', 'leela') = 1.1$, bo $leela \xrightarrow{us. e} lela \xrightarrow{zm. l \ na \ i} leia$

napisu w drugi.

Metryka optymalnego dopasowania napisów, ozn. d_{osa} , zlicza liczbę usunięć, wstawień, zamian oraz transpozycji przylegających znaków, potrzebnych do przetworzenia jednego napisu w drugi. Np. $d_{osa}('leia', 'leela') = 2$, bo $leela \xrightarrow{us. e} lela \xrightarrow{zm. l na i} leia$.

Metryka optymalnego dopasowania napisów, ozn. d_{osa} , zlicza liczbę usunięć, wstawień, zamian oraz transpozycji przylegających znaków, potrzebnych do przetworzenia jednego napisu w drugi. Np. $d_{osa}('leia', 'leela') = 2$, bo $leela \xrightarrow{us. e} lela \xrightarrow{zm. l \ na \ i} leia$.

Metryka ta nie spełnia nierówności trójkąta:

$$2 = d_{osa}('ba', 'ab') + d_{osa}('ab', 'acb') \le d_{osa}('ba', 'acb') = 3$$

POSTĘPY PRAC

Co zostało zrobione?

 \bullet wczytano 1075~568artykułów z polskiej Wikipedii

Co zostało zrobione?

- wczytano 1 075 568 artykułów z polskiej Wikipedii
- ullet razem to 2~806~765 różnych słów...

Co zostało zrobione?

- wczytano 1 075 568 artykułów z polskiej Wikipedii
- razem to 2 806 765 różnych słów...
- ullet ... z czego 49% wystąpiło tylko w **jednym** tekście
- \bullet ... a 44% wystąpiło tylko jeden raz we wszystkich tekstach

Co zostało zrobione?

- ullet wczytano $1\ 075\ 568$ artykułów z polskiej Wikipedii
- razem to 2 806 765 różnych słów...
- ullet ... z czego 49% wystąpiło tylko w **jednym** tekście
- ullet ... a 44% wystąpiło tylko **jeden raz** we wszystkich tekstach

Po usunięciu tzw. *stopwords*, czyli słów nieistotnych w kontekście analizy, jak np. *a, bo, co, jak, to, w, z, że*, słów jednoliterowych oraz słów w językach obcych z niełacińskiego alfabetu, pozostało $2\ 805\ 858$ słów do analizy.

Co zostało zrobione?

- ullet wczytano $1\ 075\ 568$ artykułów z polskiej Wikipedii
- razem to 2 806 765 różnych słów...
- ullet ... z czego 49% wystąpiło tylko w **jednym** tekście
- ullet ... a 44% wystąpiło tylko **jeden raz** we wszystkich tekstach

Po usunięciu tzw. *stopwords*, czyli słów nieistotnych w kontekście analizy, jak np. *a, bo, co, jak, to, w, z, że*, słów jednoliterowych oraz słów w językach obcych z niełacińskiego alfabetu, pozostało $2\ 805\ 858$ słów do analizy.

Początkową pomysł polegał na wykorzystaniu wcześniej wspomnianych metryk do klastrowania metodą k-medoidów, przy czym maksymalna odległość w klastrze miała nie przekraczać zadanej liczby.

UŻyWająca używający użyła zużywające użyła zużywające używające UżyWa używające UżyWają użył używającą używają użył używająca używają użył używał używają używała używała używała używając używając

dodając podania kładac uznając uznawany uznawane o o uznawani uznawani uznawali uznawali uznawanej z uznawanej

 $\ensuremath{\mathrm{RYSUNEK}}$: Przykładowe klastry utworzone przy pomocy metryki Levenshteina. Maksymalna odległość w klastrze to 7

zużywającym
Zażywający
używające
używające
zużywające
zużywające
używające w używają
zużywającymi prese
zuży

kamieniach kamieniczki wamieniach kamienicy kamieniacy kamienicy kamienicy kamienicko

błoto błota

be be bloto błoto

be be bolon boysyżyło

boyłyżyło

boyła

 $\ensuremath{\mathrm{RYSUNEK}}$: Przykładowe klastry utworzone przy pomocy metryki lcs. Maksymalna odległość w klastrze to 7

UŻyWająca używający użyła zużywające zużywający używane używające UŻyWa używające uŻywają użył używające używający używał ryway używał używał zużywającą używającą używającą używano używającym

rowlandem
hollander
hofmanna polsce
roelandem
hollandem
hollande
lowlands
poddania

zrywających używających grajacych grajacych grających grapiących grapiących grapiących uznających użnających zbywających zużywających trawiących grywających

 ${
m Rysune}$ K : Przykładowe klastry utworzone przy pomocy metryki osa. Maksymalna odległość w klastrze to 7

Dziękuję za uwagę.