Листок 2

Задача 1. Нарисуйте характеристики и решите уравнения

- (a) $\frac{\partial u}{\partial x} + \frac{\partial u}{\partial y} = 0,$ (b) $3\frac{\partial u}{\partial x} 5\frac{\partial u}{\partial y} = 1.$

Задача 2. Пусть b- постоянное векторное поле на \mathbb{R}^n , причем $b_n \neq 0$. Используя метод характеристик выпишите формулу решения задачи Коши

$$\langle b, \nabla u(x) \rangle + u(x) = f(x), \quad u|_{x_n=0} = g(x_1, \dots x_{n-1}).$$

Задача 3. Пусть $\alpha \in \mathbb{R}$. Рассмотрим уравнение

$$x\frac{\partial u}{\partial x} + y\frac{\partial u}{\partial y} = \alpha u, \quad (x,y) \in \mathbb{R}^2.$$

- (а) Найдите характеристики.
- (a) Пандите характеристики. (b) Пусть $\alpha = 4$. Найдите u, удовлетворяющее условию u = 1 на $x^2 + y^2 = 1$. (c) Пусть $\alpha = 2$. Найдите u, удовлетворяющие условию $u(x,0) = x^2$, x > 0.
- (d) Какое условие теоремы о существовании и единственности решения задачи Коши нарушается в пункте (с).

Задача 4. Найдите характеристики для уравнения эйконала $|\nabla u|^2=1$ и найдите решения с начальными условиями:

(a)
$$u|_{x_1} = 0$$
, (b) $u|_{x_1} = x_2/2$, (c) $u|_{|x|=1} = 0$.

Задача 5. Найдите характеристики для уравнения $u_{x_1}u_{x_2}=u$ и найдите решение с начальным условием $u|_{x_1=0}=x_2^2$.

Задача 6. Найдите характеристики для уравнения $u_{x_1} + u_{x_2}^2/2 = 1$ и найдите решение с начальным условием $u|_{x_1=0}=x_2^2/2$.

Задача 7. Существует ли непостоянная непрерывно дифференцируемая функция u =u(x,y), удовлетворяющая уравнению $u_y + uu_x = 0$ на \mathbb{R}^2 ?

1