Национальный исследовательский университет «Высшая школа экономики»

Отчет по заданию $N_{0}6$

«Сборка многомодульных программ. Вычисление корней уравнений и определенных интегралов.»

Вариант 5 / 4 / 2

Выполнил: студент 212 группы Фортов Е. К.

Преподаватель: Монаков А. В.

Содержание

1.	Постановка задачи	2
2.	Математическое обоснование	3
3.	Результаты экспериментов	4
4.	Структура программы и спецификация функций	5
5 .	Сборка программы (Маке-файл)	8
6.	Отладка программы, тестирование функций	10
7.	Анализ допущенных ошибок	12
Сі	писок цитируемой литературы	13

1. Постановка задачи

Требуется написать программу, позволяющую с заданной абсолютной точностью $\varepsilon=0.0001$ вычислять площадь плоской фигуры, ограниченной тремя кривыми, уравнения которых: $f_1(x)=0.35x^2-0.95x+2.7$, $f_2(x)=3x+1$, $f_3(x)=\frac{1}{x+2}$. Для этого необходимо, прежде всего, реализовать функцию поиска абсцисс вершин фигуры с некоторой точностью ε_1 с помощью комбинированного метода (хорд и касательных). Отрезок, нужный для данного метода, следует вычислять аналитически. В другой функции, посчитывающей площадь фигуры, площадь надо считать как алгебраическую сумму определенных интегралов, вычислив эти интегралы по формуле трапеций с некоторой точностью ε_2 .

2. Математическое обоснование

Рассмотрим графики данных функций:

- $y_1(x) = 0.35x^2 0.95x + 2.7$ парабола, ветви которой направлены вверх.
- $y_2(x) = 3x + 1$ прямая, проходящая через точку (0, 1) и имеющая тангенс угла наклона = 3.
- $y_3(x) = \frac{1}{x+2}$ гипербола, смещенная влево на 2.

Для вычисления абсцисс точек пересечения функций с помощью комбинированного метода (хорд и касательных) были выбраны отрезки: для кривых $f_1(x)=0.35x^2-0.95x+2.7$, $f_3(x)=\frac{1}{x+2}$ отрезок [-1.9, -1.8] (на графике видно, что данные функции пересекаются на промежутке [-1.9, -1.8]; проверка критерия применимости: $F(x)=0.35x^2-0.95x+2.7-\frac{1}{x+2}$; $F''(x)=\frac{7}{10}x-\frac{19}{20}+\frac{1}{(x+2)^2}$; $F''(x)=\frac{7}{10}-\frac{2}{(x+2)^3}$; F''(-1.9)F'(-1.9)<0, F''(-1.8)F'(-1.8)<0, а так как на отрезке [-1.9, -1.8] функция монотонна, то получаем, что F''(x)F'(x)<0, то есть производные на этом отрезке имеют разные знаки, но, так как используется комбинированный метод, то приближение к корню все равно происходит с двух сторон), для кривых $f_1(x)=0.35x^2-0.95x+2.7$, $f_2(x)=3x+1$ отрезок [0.4, 0.5] (на графике видно, что данные функции пересекаются на промежутке [0.4, 0.5]; проверка критерия применимости: $F(x)=0.35x^2-3.95x+1.7$; $F'(x)=\frac{7}{10}x-\frac{79}{20}$; $F''(x)=\frac{7}{10}$; F''(0.4)F'(0.4)<0, F''(0.5)F'(0.5)<0, а так как на отрезке [0.4, 0.5] функция монотонна, то получаем, что F''(x)F'(x)<0, то есть производные на этом отрезке имеют разные знаки, но, так как используется комбинированный метод, то приближение к корню все равно происходит с двух сторон), для $f_2(x)=3x+1$, $f_3(x)=\frac{1}{x+2}$ отрезок [-0.2, 0] (на графике видно, что данные функции пересекаются на промежутке [-0.2, 0]; проверка критерия применимости: $F(x)=3x+1-\frac{1}{x+2}$; $F'(x)=3+\frac{1}{(x+2)^2}$; $F''(x)=-\frac{2}{(x+2)^3}$; F''(-0.2)F'(-0.2)<0, F''(0)F'(0)<0, а так как на отрезке [-0.2, 0] функция монотонна, то получаем, что F''(x)F'(x)<0, то есть производные на этом отрезке имеют разные знаки, но, так как используется комбинированный метод, то приближение к корню все равно происходит с двух сторон).

Посчитаем ε_1 (точность, с которой считаются абсциссы точек пересечения наших функций). Производные наших функций таковы: $f_1'(x) = 0.7x - 0.95$, $f_2'(x) = 3$, $f_3'(x) = -\frac{1}{(x+2)^2}$. Их значения на концах выбранных отрезков: $f_1'(-1.9) = -2.28$, $f_1'(0.4) = -0.67$, $f_2'(0.5) = 3$, $f_2'(-0.2) = 3$, $f_3'(-1.8) = -25$, $f_3'(0) = -0.25$. Заметим, что максимальный по модулю рост (убывание) наблюдается у функции f_3 в точке -1.8, следовательно, $\varepsilon_1 = \left|\frac{\varepsilon}{f_3'(-1.8)}\right| = \left|\frac{0.0001}{-25}\right| \approx 0.00004$, что подавно меньше требуемой от нас точности.

Заметим, что так как абсциссы точек пересечения вычислены с точностью, удовлетворяющей требованиям задачи (см. абзац выше), достаточно вычислить площадь фигуры, ограничиваемой нашими кривыми, с точностью ε , и так как в конечной формуле будет 3 интеграла, то $\varepsilon_2 = \frac{\varepsilon}{3} \approx 0.0003$.

Рис. 1: Плоская фигура, ограниченная графиками заданных уравнений

3. Результаты экспериментов

Результаты проведенных вычислений: координаты точек пересечения (таблица 1) и площадь полученной фигуры.

Кривые	x	y
f_1 и f_2	0.448178	2.344534
f_2 и f_3	-0.152873	0.541381
f_1 и f_3	-1.821137	5.59087

Таблица 1: Координаты точек пересечения

Результаты можно представить не только в текстовом виде, но и проиллюстрировать графиком (рис. 2).

Рис. 2: Плоская фигура, ограниченная графиками заданных уравнений

4. Структура программы и спецификация функций

Модули:

integral.c - файл, содержащий основной код. Peaлизует функции integral, root, get_function. В него же подключаются функции из func.asm с помощью команды extern.

func.asm - ассемблерный файл, содержащий функции трех кривых, а также первые и вторые производные (для каждой функции).

Функции:

• Функции данных нам кривых:

```
global f1
f1:;0.35x^2-0.95x+2.7
; парабола, ветви направлены вверх
global f2
f2:;3x+1
; линейная функция с тангенсом угла наклона = 3
global f3
f3:;1/(x+2)
; гипербола, смещенная на 2 единицы влево
```

• Производные функций:

```
global f1_der_1
f1_der_1:;0.7x-0.95
; производная параболы - это линейная функция
global f2_der_1
f2_der_1:;3
; производная линейной функции - это тангенс ее угла наклона
global f3_der_1
f3_der_1:;-1/(x+2)^2
; производная гиперболы - это дробь с х в -2 степени
```

• Вторые производные функций:

```
global f1_der_2
f1_der_2:;0.7
; вторая производная параболы - это ее коэффициент а
global f2_der_2
f2_der_2:; 0
; вторая производная линейной функции - это 0
global f3_der_2
f3_der_2:; 2/(x+2)^3
; вторая производная гиперболы - это дробь с х в -3 степени
```

• Функция integral, считающая интеграл от функции f с помощью формулы трапеций, с точностью до ε (точность достигается благодаря использованию правила Рунге):

• Функция гооt, которая приближенно находит абсциссу точки пересечения функции с осью абсцисс с помощью комбинированного метода (хорд и касательных) с точностью до ε (точность достигается благодаря использованию условия того, что расстояние между точками а и b должно быть не больше удвоенного ε):

• Функция, передающая ссылку на функцию и ее производные по номеру функции static void get_function(int number, afunc *fp[])

Схема модулей и функций:

Рис. 3: Диаграмма компонентов программы

5. Сборка программы (Make-файл)

Make-file: CFLAGS += -std=gnu99 CFLAGS += -Wall -Werror -Wformat-security -Wignored-qualifiers -Winit-self \ -Wswitch-default -Wpointer-arith -Wtype-limits -Wempty-body \ -Wstrict-prototypes -Wold-style-declaration -Wold-style-definition \ -Wmissing-parameter-type -Wmissing-field-initializers -Wnested-externs \ -Wstack-usage=4096 -Wmissing-prototypes -Wfloat-equal -Wabsolute-value CFLAGS += -fsanitize=undefined -fsanitize-undefined-trap-on-error CC = gccLDLIBS = -lm.PHONY: clean all test integral: integral.o func.o \$(CC) \$(CFLAGS) -o integral func.o integral.o -m32 \$(LDLIBS) -no-pie -fno-pie all: integral integral.o: integral.c gcc -m32 -c -o integral.o integral.c \$(CFLAGS) func.o: func.asm nasm -f elf32 -o func.o func.asm clean: rm -rf *.o integral test: ./integral -R 1:2:10.7:10.9:0.000001:10.83754 ./integral -R 1:2:0.4:0.5:0.000001:0.448178 ./integral -R 1:2:0.43:0.45:0.000001:0.448178 ./integral -R 1:3:2.1:2.5:0.000001:2.350789 ./integral -R 1:3:2.005:2.45:0.00001:2.350789 ./integral -R 1:3:2.1:2.4:0.000001:2.350789 ./integral -R 2:3:-2.3:-2.1:0.000001:-2.18046 ./integral -R 2:3:-0.2:-0.1:0.000001:-0.152873 ./integral -R 2:3:-2.2:-2.15:0.000001:-2.18046 ./integral -I 1:0:1:0.000001:-2.341667 ./integral -I 1:1:1.5:0.000001:1.033333 ./integral -I 1:-5:-4.9:0.000001:1.59787 ./integral -I 2:1:2:0.000001:-5.5 ./integral -I 2:4:6.5:0.000001:41.875

```
./integral -I 2:-3:-2:0.000001:-6.5

./integral -I 3:0:2:0.000001:0.693147

./integral -I 3:-1:0:0.000001:0.693147

./integral -I 3:10:13.7:0.000001:0.268754

./integral -I 1:-1.821137:0.448178:0.000001:8.322253
```


Рис. 4: Зависимости между модулями программы

6. Отладка программы, тестирование функций

Тесты функции root:

- 1. Кривые $f_1(x) = 0.35x^2 0.95x + 2.7$ $f_2(x) = 3x + 1$ пересекаются в точке (0, 10.83754) вычислено путем решения квадратного уравнения (в этом тесте берем наибольший корень). Первые производные данных функций: $f_1'(x) = 0.7x 0.95$ и $f_2(x) = 3$. Вторые производные: $f_1''(x) = 0.7$ и $f_2''(x) = 0$. Для комбинированного метода возьмем изначальный отрезок (10.7, 10.9) вычислено аналитически. При задании точности в $\varepsilon = 0.000001$ численный ответ совпадает с правильным ответом и равен 10.83754.
- 2. Кривые $f_1(x) = 0.35x^2 0.95x + 2.7$ $f_2(x) = 3x + 1$ пересекаются в точке (0, 0.448178) наименьший корень уравнения второй степени. $f_1'(x) = 0.7x 0.95$ и $f_2''(x) = 3$. $f_1''(x) = 0.7$ и $f_2''(x) = 0$. Изначальный отрезок (0.4, 0.5) вычислено аналитически. При задании точности в $\varepsilon = 0.000001$ численный ответ совпадает с правильным ответом и равен 0.448178.
- 3. Кривые $f_1(x) = 0.35x^2 0.95x + 2.7$ $f_2(x) = 3x + 1$ пересекаются в точке (0, 0.448178) берем наименьший корень. $f_1'(x) = 0.7x 0.95$ и $f_2'(x) = 3$. $f_1''(x) = 0.7$ и $f_2''(x) = 0$. Возьмем более маленький отрезок (0.43, 0.45) вычислено аналитически. При задании точности в $\varepsilon = 0.000001$ численный ответ совпадает с правильным ответом и равен 0.448178.
- 4. Кривые $f_1(x)=0.35x^2-0.95x+2.7$ $f_3(x)=\frac{1}{x+2}$ пересекаются в точке (0, -1.821137) вычислено путем решения кубического уравнения. $f_1'(x)=0.7x-0.95$ и $f_3'(x)=-\frac{1}{(x+2)^2}$. $f_1''(x)=0.7$ и $f_3''(x)=\frac{2}{(x+2)^3}$. Возьмем изначальный отрезок (-1.83, -1.82). При задании точности в $\varepsilon=0.000001$ численный ответ равен -1.821138 и отличается от правильного ответа на 0.000001.
- 5. Кривые $f_1(x)=0.35x^2-0.95x+2.7$ $f_3(x)=\frac{1}{x+2}$ пересекаются в точке (0, -1.821137) вычислено путем решения кубического уравнения. $f_1'(x)=0.7x-0.95$ и $f_3'(x)=-\frac{1}{(x+2)^2}$. $f_1d''(x)=0.7$ и $f_3''(x)=\frac{2}{(x+2)^3}$. Возьмем отрезок побольше (-1.9, -1.8) вычислено аналитически. При задании точности в $\varepsilon=0.000001$ численный ответ совпадает с правильным ответом и равен -1.821137.
- 6. Кривые $f_1(x) = 0.35x^2 0.95x + 2.7$ $f_3(x) = \frac{1}{x+2}$ пересекаются в точке (0, -1.821137) получено из уравнения третьей степени. $f_1'(x) = 0.7x 0.95$ и $f_3'(x) = -\frac{1}{(x+2)^2}$. $f_1''(x) = 0.7$ и $f_3''(x) = \frac{2}{(x+2)^3}$. Возьмем отрезок еще больше (-3, -1) вычислено аналитически. При задании точности в $\varepsilon = 0.000001$ численный ответ совпадает с правильным ответом и равен -1.821137.
- 7. Кривые $f_2(x)=3x+1$ $f_3(x)=\frac{1}{x+2}$ пересекаются в точке (0, -2.18046) вычислено путем решения квадратного уравнения (в этом тесте берем наименьший корень). $f_2'(x)=3$ и $f_3'(x)=-\frac{1}{(x+2)^2}$. $f_2''(x)=0$ и $f_3''(x)=\frac{2}{(x+2)^3}$. Для комбинированного метода возьмем отрезок (-2.3, -2.1) вычислено аналитически. При задании точности в $\varepsilon=0.000001$ численный ответ совпадает с правильным ответом и равен -2.18046.
- 8. Кривые $f_2(x)=3x+1$ $f_3(x)=\frac{1}{x+2}$ пересекаются в точке $(0, -0.152873).f_2'(x)=3$ и $f_3'(x)=-\frac{1}{(x+2)^2}.$ $f_2''(x)=0$ и $f_3''(x)=\frac{2}{(x+2)^3}.$ Сейчас возьмем отрезок (-0.2, -0.1) вычислено аналитически. При задании точности в $\varepsilon=0.000001$ численный ответ совпадает с правильным ответом и равен -0.152873.

9. Кривые $f_2(x)=3x+1$ $f_3(x)=\frac{1}{x+2}$ пересекаются в точке (0, -0.152873). $f_2'(x)=3$ и $f_3'(x)=-\frac{1}{(x+2)^2}$. $f_2''(x)=0$ и $f_3''(x)=\frac{2}{(x+2)^3}$. Здесь возьмем довольно маленький отрезок - (-2.2, -2.15). При задании точности в $\varepsilon=0.000001$ численный ответ совпадает с правильным ответом и равен -2.18046.

Тесты функции root:

- 1. Посчитаем определенный интеграл функции $y_1(x) = 0.35x^2 0.95x + 2.7$ с нижней границей в 0 и верхней 1. Получаем 2.341667. Теперь воспользуемся функцией гоот и с точностью $\varepsilon = 0.000001$ найдем то же значение.
- 2. Посчитаем определенный интеграл функции $y_1(x) = 0.35x^2 0.95x + 2.7$ с нижней границей в 1 и верхней 1.5. Получаем 1.033333. Теперь воспользуемся функцией гоот и с точностью $\varepsilon = 0.000001$ находим 1.033352. Абсолютная погрешность = 0.000019. Относительная погрешность = 0.000018.
- 3. Посчитаем определенный интеграл функции $y_1(x) = 0.35x^2 0.95x + 2.7$ с нижней границей в -5 и верхней -4.9. Получаем 1.5978767. Теперь воспользуемся функцией гоот и с точностью $\varepsilon = 0.000001$ получаем результат такой же результат.
- 4. Посчитаем определенный интеграл функции $y_2(x) = 3x + 1$ с нижней границей в 1 и верхней 2. Получаем 5.5. Теперь воспользуемся функцией гоот и с точностью $\varepsilon = 0.000001$ получаем результат такой же результат.
- 5. Посчитаем определенный интеграл функции $y_2(x) = 3x + 1$ с нижней границей в 4 и верхней 6.5. Получаем 41.875. Теперь воспользуемся функцией гоот и с точностью $\varepsilon = 0.000001$ получаем результат такой же результат.
- 6. Посчитаем определенный интеграл функции $y_2(x) = 3x + 1$ с нижней границей в -3 и верхней -2. Получаем -6.5. Теперь воспользуемся функцией гоот и с точностью $\varepsilon = 0.000001$ получаем результат такой же результат.
- 7. Посчитаем определенный интеграл функции $y_3(x) = \frac{1}{x+2}$ с нижней границей в 0 и верхней 2. Получаем 0.693147. Теперь воспользуемся функцией гоот и с точностью ε = 0.000001 получаем 0.693148. Абсолютная погрешность = 0.000001. Относительная погрешность = 0.000001.
- 8. Посчитаем определенный интеграл функции $y_3(x) = \frac{1}{x+2}$ с нижней границей в -1 и верхней 0. Получаем 0.693147. Теперь воспользуемся функцией гоот и с точностью ε = 0.000001 получаем 0.693148. Абсолютная погрешность = 0.000001. Относительная погрешность = 0.000001.
- 9. Посчитаем определенный интеграл функции $y_3(x) = \frac{1}{x+2}$ с нижней границей в 10 и верхней 13.7. Получаем 0.268754. Теперь воспользуемся функцией гоот и с точностью $\varepsilon = 0.000001$ получаем 0.268755. Абсолютная погрешность = 0.000001. Относительная погрешность = 0.000001.

7. Анализ допущенных ошибок

- 1. При использовании ключа -root (-r) при вызове главной программы integral. сприводило к двойному подсчету абсцисс точек пересечения прямых. Исправлено: дублирование кода убрано.
- 2. При подсчете второй производной третьей функции вещественный стек оставался непустым, что приводило к краху программы при дальнейшем запуске. Исправлено: теперь все функции после отработки оставляют пустой стек.
- 3. Вторая производная третьей функции считалась не совсем точно, так как при подсчете «в лоб» квадратичной функции вероятна потеря точности. Исправлено (улучшено): теперь многочлен второй степени считается по схеме Горнера.
- 4. При вызове программы с ключом -iterations (-i) количество итераций всегда было равно 0. Исправлено: после каждого вызова функции количество итераций сохраняется в отдельную переменную и лишь потом обнуляется (во временной переменной).

Список литературы