5

10

15

20

Rec'd PCT/PTO 12 SEP 2004

ESTROGEN RECEPTOR α REGULATED GENE EXPRESSION, RELATED ASSAYS AND THERAPEUTICS

FIELD OF THE INVENTION

The present disclosure relates to a plurality of genes modulated by estrogen or other agents, such as hormones or combinations of hormones, in various types of tissue. In particular, one embodiment of the disclosure relates to a plurality of genes which demonstrates certain patterns of expression differing qualitatively or quantitatively, with and without exposure to estrogen and/or other hormone compositions. The disclosure further relates to the methods of using these genes in identifying agents that exert at least some of the biological effects of estrogen and/or other agents, and to pharmaceuticals and related therapies. The disclosure further relates to the use of the plurality of genes in methods of monitoring, in gene chips and in kits.

BACKGROUND OF THE INVENTION

Estrogens exert biological effects in numerous organs throughout the body. The role of estrogens in reproductive biology, the prevention of postmenopausal hot flashes, and the prevention of postmenopausal osteoporosis are well established. Many observational studies have suggested estrogens also reduce the risk of development of cardiovascular disease(1), at least in part by estrogens reducing LDL cholesterol levels and elevating HDL cholesterol levels(2,3). More recently, estrogens

have been suggested to inhibit the development of colon cancer(4), inhibit the development of Alzheimer's disease(5), and inhibit development of cataracts (6). The multitude of estrogen responses matches the widespread distribution of estrogen receptors (ER) throughout numerous organs, with ERα expression highest in uterus, pituitary, kidney and adrenal gland and ERβ expression highest in ovary, uterus, bladder and lung(7). While various estrogens have been profiled for biological activity, little is known regarding the patterns of gene expression which are responsible for these diverse activities.

5

10 '

15

20

Thus, a need exists for the systemic analysis of the regulation by estrogen and/or other hormonal compositions of gene expression in various tissues and the identification of the plurality of differentially expressed genes. The identification of candidate agents that at least partially exert the same differential expression and development of pharmaceuticals and new treatment methods based on such agents is highly desirable. There also exists a need for methods of monitoring conditions and for diagnostic products, including gene chips and kits, which may be used in the above-described analyses.

The embodiments provided herein relate generally to a plurality of genes, particularly a plurality of genes that are modulated by estrogen and/or other hormonal compositions in various organs, such as the uterus, kidney and pituitary gland. Such differentially expressed genes are useful in screening assays to examine the effects of a candidate agent on the expression of genes that are responsive to estrogen. A candidate agent that induces, in a given tissue, a gene expression profile that exhibits

one or more similarities to the gene expression profile of estrogen and/or other hormonal compositions, can be identified for possible use in pharmaceuticals. The invention also relates to the identification of estrogen responsive genes that are known to be associated with the inhibition of certain conditions, such as shock, post-menopausal calcium deficiencies, cardiovascular diseases, and conditions where there is decreased renal blood flow, such as those caused by diuretics or congestive heart failure.

BRIEF DESCRIPTION OF THE DRAWINGS

10

15

20

Figure 1 depicts a pattern analysis generated by a GeneChip microarray analysis. Specifically, WT or ERβKO ovariectomized mice were treated daily with vehicle or 20 μg/kg/day E2 for six weeks. Two hours following the final dose, the mice were euthanized and 13 tissues removed for RNA preparation. Two independent studies were performed, with total RNA pooled from two groups of three animals for each condition. Gene expression was quantified by GeneChip microarrays using murine U74 sub A arrays. Data were analyzed for patterns indicating either ERα or ERβ dependent regulation as shown. For ERα regulation, the defined search patterns (induction or repression) were for regulation by E2 in both wild type and ERβKO mice, in both sets of mice in both studies. For ERβ regulation, the defined search patterns were for regulation by E2 only in the wild type mice, with no change in basal expression in the ERβKO mice compared to the wild type mice. The number of genes in each tissue that matched the theoretical induction (↑) or repression (↓) patterns for ERα or ERβ are indicated.

Figures 2A-2C show a series of bar graphs showing gene expression levels of known genes regulated in the kidney in an ERα pattern. The expression levels (parts-per-million) are shown for the indicated genes in WT mice treated with vehicle (light blue bars), WT mice treated with E2 (dark blue bars), ERβKO mice treated with vehicle (light green bars), and ERβKO mice treated with E2 (dark green bars) using U74v2 subA, B, and C microarrays. Expression was measured in two independent sets of animals, with two groups of animals for each treatment in each study. A gene name abbreviation is shown above each graph, with the corresponding Unigene designation shown below. The genes are graphed in approximate order of regulation from largest induction (CYP7B1) to largest repression (BHMT).

5

10

20

Figure 3 shows histological sections of the kidney in in situ hybridization studies using antisense probes for CYP7B1, TF, STAT5A or GADD45G in ovariectomized mice treated with vehicle or $20 \,\mu g/\text{kg/day}$ E2 for six weeks. No signal was detected with the corresponding sense probes.

Figure 4 shows histological sections of the kidney in in situ hybridization using antisense probes for STAT5A or GAD45G in ovariectomized rats treated with vehicle or 20 μ g/kg/day E2 for six weeks. No signal was detected with the corresponding sense probes.

Figure 5A-5B show a series of graphs showing expression levels for various genes.

Ovariectomized WT mice were treated with vehicle or various doses of E2 for six weeks. (A) Kidney gene expression values (mean ± SEM) were determined by real-time PCR for each individual animal and normalized for GAPDH expression. The

mean expression level in vehicle-treated mice was defined as 1 for each gene. (B)

Uterine wet weights (mg) and gene expression values (mean ± SEM).

Figures 6A-6D show a series of bar graphs depicting relative expression levels for various genes. Ovariectomized WT mice were treated with vehicle, $20 \,\mu\text{g/kg/day}$ E2, 5 mg/kg/day W-0292, W-0070 or propylpyrazole triol (PPT) for six weeks. Kidney gene expression values were determined by real-time PCR for each individual animal and normalized for GAPDH expression. The mean expression level in vehicle-treated mice was defined as 1 for each gene. *p < 0.01 for comparison to vehicle treated animals.

5

10

15

20

Figures 7A-7D show bar graphs depicting expression levels of intact and Δ AF1-ER α mRNA determined in uterus and kidney by using a real-time PCR assay specific for exon 3 of the mouse ER α or ER β genes. Each graph utilizes a different scale. Expression levels were normalized for total RNA level to avoid GAPDH expression differences between kidney and uterus.

Figures 8A-8C show a series of relative expression levels for various genes in different types of mice. This figure also presents a model for AF1 or AF2 activation for each gene. Ovariectomized WT mice, ER α ER β KO mice (expressing only Δ AF1-ER α) or ER α KO mice (expressing Δ AF1-ER α along with ER β) were treated for 6 weeks with vehicle, 10 μ g/kg/day E2, 10 μ g/kg/day E2 + 5 mg/kg/day ICI182780, or 5 mg/kg/day tamoxifen. Kidney gene expression values were determined by real-time PCR for each individual animal and normalized for GAPDH expression. The mean expression level in vehicle-treated WT mice was defined as 1 for each gene. *p < 0.01 for comparison to vehicle treated animals. A model for the requirement of AF1 or AF2 for activation of

each gene is shown below each graph. The change in ER shape with tamoxifen (T) bound denotes the alternate helix 12 conformation induced by tamoxifen compared to E2. CA denotes coactivators.

SUMMARY OF EMBODIMENTS

5

10

15

20

One embodiment of the disclosure relates to a plurality of genes, each of whom is differentially expressed in tissue cells exposed to estrogen and/or other hormones or combination of hormones and tissue cells without said exposure, which plurality comprises a first group and a second group, wherein each gene in said first group is differentially expressed at a higher level in said tissue cells exposed to estrogen and/or a hormone or combinations of hormones than in said tissue cells without said exposure, wherein each gene in said second group is differentially expressed at a lower level in said tissue cells exposed to estrogen and/or a hormone or combinations of hormones than in said tissue cells without said exposure. Confirmation of such expression is confirmed by real-time PCR. Such cells preferably are from the kidney, pituitary or uterus. Exposure to estrogen and/or the other hormones is *in vivo* or *in vitro*. The higher level and lower levels are assessed using a predetermined statistical significance standard based on measurements of expression levels. The measurements can obtained using nucleotide arrays or nucleotide filters.

Another embodiment relates to a method for identifying an agent having the biological effect of estrogen and/or other hormones or combination of hormones, on gene expression in a given tissue, wherein said desired effect represents a first plurality of genes differentially expressed at various levels, which method comprises:

exposing, in vivo or in vitro, tissue cells to said agent;

measuring expression levels of a multiplicity of genes in said tissue cells exposed to said agent and tissue cells without said exposure, said multiplicity being greater than said first plurality;

determining, using a predetermined statistical significance standard, genes which are differentially expressed in said tissue cells exposed to said agent and said tissue cells without said exposure, said genes constitute a second plurality; and

comparing the expression levels of genes in said second plurality with the expression levels of genes in said first plurality,

wherein said agent is identified as having said desired effort if said first and second pluralities are the same and said expression levels in said first and second pluralities are substantially the same. The tissue preferably is kidney, uterus or pituitary tissue. Expression levels are confirmed by real-time PCR.

Another embodiment is directed to an agent identified by the above method.

Another embodiment is a pharmaceutical composition comprising this agent and a pharmaceutically acceptable excipient.

Another embodiment relates to a method for identifying an agent capable of maintaining vascular volume in septic shock, which method comprises:

exposing, in vivo or in vitro, kidney cells to the agent;

15

measuring expression levels of NTT73 and ABCC3 in said kidney cells exposed to the agent and kidney cells without the exposure;

comparing the expression levels of NTT73 and ABCC3 with the expression levels of genes in the plurality if genes described above with regard to the kidney, wherein the induced genes are NTT73 and ABCC3,

wherein said agent is identified as capable of maintaining vascular volume in septic shock if said expression levels of NTT73 and ABCC3 are substantially the same as said expression levels of genes in such plurality.

Another embodiment relates to a method of identifying an agent capable of enhancing calcium uptake in post-menopausal women, which method comprises:

exposing, in vivo or in vitro, kidney cells to said agent;

5

10

15

measuring expression levels of CYP7B1 in said kidney cells exposed to said agent and kidney cells without said exposure;

comparing the expression levels of CYP7B1 with the expression levels of genes in the plurality of genes in the kidney is induced CYP7B1,

wherein said agent is identified as capable of enhancing calcium uptake in post-menopausal women if said expression levels of CYP7B1 are substantially the same as said expression levels of genes in such plurality.

Another embodiment relates to a method for identifying an agent for treating cardiovascular disorders, which method comprises:

exposing, in vivo or in vitro, kidney cells to said agent;

5

10

20

measuring expression levels of BHMT and SAHH in said kidney cells exposed to said agent and kidney cells without said exposure;

comparing the expression levels of BHMT and SAHH with the expression levels of genes in the plurality of genes, wherein in the kidney BHMT and SAHH are repressed, wherein said agent is identified for treating cardiovascular disorders if said expression levels of BHMT and SAHH are substantially the same as said expression levels of genes in the such plurality.

Another embodiment relates to agents identified by any of the above methods and pharmaceutical agents comprising such agents and a pharmaceutically acceptable excipient.

Another embodiment relates to a solid substrate comprising any of the above described plurality of genes.

Another embodiment relates to a kit comprising any of the above plurality of genes.

DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS

The embodiments herein provide a plurality of genes modulated by estrogen and/or other hormonal compositions of interest in various types of tissue and the use of such a plurality of differentially expressed genes in screening for agents that exert at least some of the biological effects of estrogen and other hormonal compositions of

interest. Such identified agents can be used in pharmaceuticals and in related new therapeutic methods. The plurality of genes can be used in methods of monitoring.

Definitions:

5

10

15

20

In general, "a gene" is a region on the genome that is capable of being transcribed to an RNA that either has a regulatory function, a catalytic function and/or encodes a protein. A gene typically has introns and exons, which may organize to produce different RNA splice variants that encode alternative versions of a mature protein. "Gene" contemplates fragments of genes that may or may not represent a functional domain.

A "plurality of genes" as used herein refers to a group of identified or isolated genes whose levels of expression vary in different tissues, cells or under different conditions or biological states. The different conditions may be caused by exposure to certain agent(s) - whether exogenous or endogenous - which include hormones, receptor ligands, chemical compounds, etc. The expression of a plurality of genes demonstrates certain patterns. That is, each gene in the plurality is expressed differently in different conditions or with or without exposure to a certain endogenous or exogenous agents. The extent or level of differential expression of each gene may vary in the plurality and may be determined qualitatively and/or quantitatively according to this invention. A gene expression profile, as used herein, refers to a plurality of genes that are differentially expressed at different levels, which constitutes a "pattern" or a "profile." As used herein, the term "expression profile," "profile," "expression pattern," "gene expression profile," and "gene expression

pattern" are used interchangeably.

5

10

15

20

An "agent that exerts at least some of the biological effects of estrogen," as used herein refers to any factor, agent, compound whether endogenous or exogenous in origin, which is capable of binding and interacting with estrogen receptors and thereby eliciting certain biological effects of extrogen. The skilled artisan would know that, for instance, one of the biological effects of estrogen is to promote the development of the female reproductive system. Other biological effects of estrogen are well documented and discussed, infra.

Gene expression profiles may be measured, according to this invention, by using nucleotide or microarrays. These arrays allow tens of thousands of genes to be surveyed at the same time.

"<u>Hormones or combinations of hormones</u>" include for instance, combinations of estrogens or other hormones that are known to exert biological effects of estrogen.

As used herein, the term "microarray" refers to nucleotide arrays that can be used to detect biomolecules, for instance to measure gene expression. "Array," "slide," and "chip" are used interchangeably in this disclosure. Various kinds of arrays are made in research and manufacturing facilities worldwide, some of which are available commercially. There are, for example, two main kinds of nucleotide arrays that differ in the manner in which the nucleic acid materials are placed onto the array substrate: spotted arrays and *in situ* synthesized arrays. One of the most widely used

oligonucleotide arrays is GeneChipTM made by Affymetrix, Inc. The oligonucleotide probes that are 20- or 25-base long are synthesized in silico on the array substrate. These arrays tend to achieve high densities (e.g., more than 40,000 genes per cm²). The spotted arrays, on the other hand, tend to have lower densities, but the probes, typically partial cDNA molecules, usually are much longer than 20- or 25-mers. A representative type of spotted cDNA array is LifeArray made by Incyte Genomics. Pre-synthesized and amplified cDNA sequences are attached to the substrate of these kinds of arrays.

5

10

15

20

In one embodiment, the nucleotide is an array (i.e., a matrix) in which each position represents a discrete binding site for a product encoded by a gene (e.g., a protein or RNA), and in which binding sites are present for products of most or almost all of the genes in the organism's genome. In one embodiment, the "binding site" (hereinafter, "site") is a nucleic acid or nucleic acid analogue to which a particular cognate cDNA can specifically hybridize. The nucleic acid or analogue of the binding site can be, e.g., a synthetic oligomer, a full-length cDNA, a less-than full length cDNA, or a gene fragment.

Although the microarray may contain binding sites for products of all or almost all genes in the target organism's genome, such comprehensiveness is not necessarily required. Usually the microarray will have binding sites corresponding to at least about 50% of the genes in the genome, often at least about 75%, more often at least about 85%, even more often more than about 90%, and most often at least about 99%. Preferably, the microarray has binding sites for genes relevant to the action of the gene

expression modulating agent of interest or in a biological pathway of interest.

5

10

15

20

The nucleic acid or analogue are attached to a "solid support," which may be made from glass, plastic (e.g., polypropylene, nylon), polyacrylamide, nitrocellulose, or other materials. A preferred method for attaching the nucleic acids to a surface is by printing on glass plates, as is described generally by Schena et al., 1995, Quantitative monitoring of gene expression patterns with a complementary DNA microarray, Science 270:467-470. This method is especially useful for preparing microarrays of cDNA. See also DeRisi et al., 1996, Use of a cDNA microarray to analyze gene expression patterns in human cancer, Nature Genetics 14:457-460; Shalon et al., 1996, A DNA microarray system for analyzing complex DNA samples using two-color fluorescent probe hybridization, Genome Res. 6:639-645; and Schena et al., 1995, Parallel human genome analysis; microarray-based expression of 1000 genes, Proc. Natl. Acad. Sci. USA 93:10539-11286.

In a preferred embodiment, the microarray is a high-density oligonucleotide array, as described above. In a particularly preferred embodiment, the nucleotide arrays are the MG_U74 and MG_U74v2 arrays from Affymetrix.

"Polymerase Chain Reaction" or "PCR" is an amplification-based assay used to measure the copy number of the gene. In such assays, the corresponding nucleic acid sequences act as a template in an amplification reaction. In a quantitative amplification, the amount of amplification product will be proportional to the amount of template in the original sample. Comparison to appropriate controls provides a measure of the copy number of the gene, corresponding to the specific probe used,

5

10

15

20

according to the principle discussed above. Methods of "<u>real-time quantitative PCR</u>" using Taqman probes are well known in the art. Detailed protocols for real-time quantitative PCR are provided, for example, for RNA in: Gibson *et al.*, 1996, A novel method for real time quantitative RT-PCR. *Genome Res.* 10:995-1001; and for DNA in: Heid *et al.*, 1996, Real time quantitative PCR. *Genome Res.* 10:986-994.

A TaqMan-based assay can also be used to quantify polynucleotides. TaqMan based assays use a fluorogenic oligonucleotide probe that contains a 5' fluorescent dye and a 3' quenching agent. The probe hybridizes to a PCR product, but cannot itself be extended due to a blocking agent at the 3' end. When the PCR product is amplified in subsequent cycles, the 5' nuclease activity of the polymerase, for example, AmpliTaq, results in the cleavage of the TaqMan probe. This cleavage separates the 5' fluorescent dye and the 3' quenching agent, thereby resulting in an increase in fluorescence as a function of amplification (see, for example, http://www2.perkin-elmer.com).

Other suitable amplification methods include, but are not limited to, ligase chain reaction (LCR) (see, Wu and Wallace, 1989, *Genomics* 4: 560; Landegren *et al.*, 1988 *Science* 241: 1077; and Barringer *et al.*, 1990, *Gene* 89: 117), transcription amplification (Kwoh *et al.*, 1989, *Proc. Natl. Acad. Sci. USA* 86: 1173), self-sustained sequence replication (Guatelli *et al.*, 1990, *Proc. Nat. Acad. Sci. USA* 87: 1874), dot PCR, and linker adapter PCR, *etc.*

The "<u>level of mRNA</u>" in a biological sample refers to the amount of mRNA transcribed from a given gene that is present in a cell or a biological sample. One

aspect of the biological state of a biological sample (e.g. a cell or cell culture) usefully measured in the present invention is its transcriptional state. The transcriptional state of a biological sample includes the identities and abundances of the constituent RNA species, especially mRNAs, in the cell under a given set of conditions. Preferably, a substantial fraction of all constituent RNA species in the biological sample are measured, but at least a sufficient fraction is measured to characterize the action of an agent or gene modulator of interest. The level of mRNA may be quantified by methods described herein or may be simply detected, by visual detection by a human, with or without comparison to a level from a control sample or a level expected of a control sample.

5

10

15

20

A "biological sample," as used herein refers to any sample taken from a biological subject, in vivo or in situ. A biological sample may be a sample of biological tissue, or cells or a biological fluid. Biological samples may be taken, according to this invention, from any kind of biological species, any types of tissues, and any types of cells, among other things. Cell samples may be isolated cells, primary cell cultures, or cultured cell lines according to this invention. Biological samples may be combined or pooled as needed in various embodimets. Preferred tissues are from the uterus, kidney, pituitary glands, breast, brain and adipose tissue.

"Modulation of gene expression," as this term is used herein, refers to the induction or inhibition of expression of a gene. Such modulation may be assessed or measured by assays. Typically, modulation of gene expression may be caused by endogenous or exogenous factors or agents. The effect of a given compound can be

5

10

15

measured by any means known to those skilled in the art. For example, expression levels may be measured by PCR, Northern blotting, Primer Extension, Differential Display techniques, etc.

"Induction of expression" as used herein refers to any observable or measurable increase in the levels of expression of a particular gene, either qualitatively or quantitatively. The measurement of levels of expression may be carried out according to this invention using any techniques that are capable of measuring RNA transcripts in a biological sample. Examples of these techniques include, as discussed above, PCR, TaqMan, Primer Extension, Differential display and nucleotide arrays, among other things.

"Repression of expression." "Repression" or "inhibition" of expression, are used interchangeably according to this disclosure. It refers to any observable or measurable decrease in the levels of expression of a particular gene, either qualitatively or quantitatively. The measurement of levels of expression may be carried out using any techniques that are capable of measuring RNA transcripts in a biological sample. The examples of these techniques include, as discussed above, PCR, TaqMan, Primer Extension, Differential Display, and nucleotide arrays, among other things."

A "gene chip" or "DNA chip" is described, for instance, in U.S. Patent Nos.

5,412,087, 5,445,934 and 5,744,305 and is useful for screening gene expression at the mRNA level. Gene chips are commercially available.

5

10

15

20

A "kit" is one or more of containers or packages, containing at least one "plurality of genes," as described above, on a solid support. Such kit also may contain various reagents or solutions, as well as instructions for use and labels.

A "detectable label" or a "detectable molety" is a composition that when linked with a nucleic acid or a protein molecule of interest renders the latter detectable, via spectroscopic, photochemical, biochemical, immunochemical, or chemical means. For example, useful labels include radioactive isotopes, magnetic beads, metallic beads, colloidal particles, fluorescent dyes, electron-dense reagents, enzymes, biotin, digoxigenenin or haptens. A "labeled nucleic acid or oligonucleotide probe" is one that is bound, either covalently, through a linker or a chemical bond, or noncovalently through ionic, vander Waals, electrostatic, hydrophobic interactions, or hydrogen bonds, to a label such that the presence of the nucleic acid or probe may be detected by detecting the presence of the label bound to the nucleic acid or probe.

A "nucleic acid probe" is a nucleic acid capable of binding to a target nucleic acid or complementary sequence through one or more types of chemical bond, usually through complementary base pairing usually through hydrogen bond formation. As used herein, a probe may include natural (i.e., A, G, C, or T or modified bases (7-deazaguanosine, inosine, etc.). In addition, the bases in a probe may be joined by a linkage other than a phosphodiester bond, so long as it does not interfere with hybridization. It will be understood by one of skill in the art that probes may bind target sequences that lack complete complementarity with the probe sequence depending upon the stringency of the hybridization conditions. The probes are preferably directly

5

10

15

20

labeled with isotopes, for example, chromophores, luminphores, chromogens, or indirectly labeled with biotin to which a strepavidin complex may later bind. By assaying the presence or absence of the probe, one can detect the presence or absence of a target gene of interest.

"In situ hybridization" is a methodology for determining the presence of or the copy number of a gene in a sample, for example, fluorescence in situ hybridization (FISH) (see Angerer, 1987 *Meth. Enzymol* 152: 649). Generally, in situ hybridization comprises the following major steps: (1) fixation of tissue or biological structure to be analyzed; (2) prehybridization treatment of the biological structure to increase accessibility of target nucleic acid, and to reduce nonspecific binding; (3) hybridization of the mixture of nucleic acids to the nucleic acid in the biological structure or tissue; (4) post-hybridization washes to remove nucleic acid fragments not bound in the hybridization, and (5) detection of the hybridized nucleic acid fragments. The probes used in such applications are typically labeled, for example, with radioisotopes or fluorescent reporters. Preferred probes are sufficiently long, for example, from about 50, 100, or 200 nucleotides to about 1000 or more nucleotides, to enable specific hybridization with the target nucleic acid(s) under stringent conditions.

Hybridization protocols suitable for use with the methods of the invention are described, for example, in Albertson (1984) *EMBO J.* 3:1227-1234; Pinkel (1988) *Proc. Natl. Acad. Sci.* USA 85:9138-9142; *EPO* Pub. No. 430:402; *Methods in Molecular Biology*, Vol. 33: *In Situ* Hybridization Protocols, Choo, ed., Humana Press, Totowa, NJ (1994); *etc.*

"A predetermined statistical significance standard based on measurements of expression levels" is a confidence score based upon the assessment of four factors. Specifically, a score is assigned to each gene that reflects the confidence of the change. The score is based on four criteria: Fold Change, p-value (T-test), Present Calls, Frequency Value. For example, see the Table below:

TABLE I - Confidence criteria

5

	Fold Change		Score
	>2.0		5
	>1.5		0
10	<1.5		-3
	pValue	Score	
	<0.05		3
	0.05 to 0.1		2
	0.1 to 0.2		0
15	0.2 to 0.3		-1
	0.3 to 0.5		-3
	Present Calls		Score
	2-4		3
	1 .		1
20	0		0

Second Largest Frequency

>20 3

15 to 191

10-14 -1

5 <10 -3

10

15

Outliers (Max Freq/2nd largest)

>2.5 -3

"Data" refers to information obtained that relates to the expression of genes in response to exposure to estrogen or an agent of unknown biological effect. The plurality of genes identified by the disclosed methods are examples of such information. The information is stored in electronic or paper formats. Electronic format can be selected from the group consisting of electronic mail, disk, compact disk (CD) digital versatile disk (DVD), memory card, memory chip, ROM or RAM, magnetic optical disk, tape, video, video clip, microfilm, internet, shared network, shared server and the like; wherein data is displayed, transmitted or analyzed via electronic transmission, video display, telecommunication, or by using any of the above stored formats; wherein data is compared and compiled at the site of sampling specimens or at a location where the data is transported following a process as described above.

"Genes modulated by estrogen." Genes regulated by estrogen and/or
hormonal compositions and identified according to the disclosed methods, are listed in
Tables II, III and IV. Relevant Unigene codes or Genbank accession numbers are provided.

Identification of Genes Modulated by Estrogen

5

10

15

20

A. Biological Sample and Assay

One embodiment disclosed herein relates to a plurality of genes, each of which is differentially expressed in kidney cells exposed to estrogen or a candidate agent and kidney cells without exposure to estrogen or a candidate agent, which plurality comprises a first group and a second group, wherein each gene in said first group is differentially expressed at a higher level in said kidney cells exposed to estrogen or a candidate agent than in said kidney cells without said exposure, wherein each gene in the second group is differentially expressed at a lower level in said kidney cells exposed to estrogen or candidate agent than in said kidney cells without said exposure.

A biological sample of kidney cells are obtained according to methods well known to the skilled artisan. One group of kidney cells are exposed to estrogen. Such estrogen may be 17ß estradiol. The kidney cells may be from one or more animals of the same species or from a culture of kidney cells or kidney tissue. Preferably, such cells are from a mammal, most preferably a mouse, rat or human. Such animal must produce little or no estrogen. For instance, an aromatase knockout animal cannot produce estrogen. Because the major source of circulating estrogen is the ovary, ovariectomy dramatically decreases circulating estrogen levels. Thus, in one embodiment, ovariectomized animals are used. By "exposure" is meant a type and quantity of either in vivo or in vitro administration that is applicable to the source of the kidney cells and known and acceptable to those of skill of the art. The total RNA from

such cells is prepared by methods known to the skilled artisan, e.g., by Trizol (Invitrogen) followed by subsequent repurification, e.g, via Rneasy columns (Qiagen). The total RNA is used to generate a labeled target according to methods and using detectable labels well know in the art, as described above in detail. For instance, the RNA may be labeled with biotin to form a cRNA target for use in an assay. See a complete description of preferred methods in the Affymetrix GeneChip® technical manual (Pages 700217 through 700223), which is herein incorporated by reference.

5

10

15

20

The assay, according to the invention, may be any assay suitable to detect gene expression. For instance, mRNA, cDNA or protein expression may be detected. Many different types of assays are known, examples of which are set forth above, including analyses by nucleotide arrays and nucleotide filters. The hybridization conditions (temperature, time, and concentrations) are adjusted according to procedures also well known in the art, as described above. In a preferred embodiment, the assay of the invention involves the use of a high density oligonucleotide array. For instance, in a preferred embodiment, cRNA labeled with biotin is hybridized to a murine MG_U74Av2 probe array (Affymetrix, Santa Clara, Ca.) for 16 hours at 45 degrees. Eleven biotin-labeled cRNAs at defined concentration are spiked into each hybridization and used to convert average difference values to frequencies expressed as parts per million.

Other solid supports and microarrays are known and commercially available to the skilled artisan, as described above.

B. Measurements and Statistical Analysis

5

10

15

20

The assay of the invention is used to identify genes modulated by estrogen. Such modulation may be induction of expression (a plurality of genes belonging to a "first group") or repression of such expression (a plurality of genes belonging to a "second group"). Gene expression induction is indicated by a higher level of expression, whereas repression is indicated by a lower level of expression, as assessed using a predetermined statistical significance standard based on measurements of expression levels.

Thus, the genes expressed or repressed in kidney cells with estrogen exposure are compared to the genes expressed or repressed in kidney cells that were not exposed to estrogen. Pairwise comparisons are made between each of the treatments. A pairwise comparison is the expression data for a given gene under a given treatment condition compared to the expression data for this gene under a second treatment condition. The fold change ratio is then calculated, the p-value based on Student's t-test, the number of present calls, and the expression level for each comparison. A confidence score "CS" is defined as CS(x)= FC(x) + PV(x) + PC(x) + EL(x) where FC, PV, PC and EL are scores assigned to the fold change, p-value, number of present calls, and the expression level, respectively. FC(x) is assigned 5 if the fold change ratio was greater then 1.95 and is assigned 0 if the ratio is between 1.95 and 1.5. PV(x) is assigned 3 if the p-value is less then 0.05 and is assigned 2 if the p-value was between 0.05 and 0.1. PC(x) is assigned 3 if at least 50% of the samples are called P by the Affymetrix algorithm and assigned 1 if only

25% of the samples are called P. EL(x) is assigned 3 if at least two samples have frequency value of 20 or greater and assigned 1 if two samples only have a frequency greater then 15. Penalty points are assigned if the fold change is less then 1.5, the p-value is greater then 0.2 or the frequency values were below 15 ppm. CS(x) ranged for –14 to 14 with qualifiers having a score of 14 considered the most significant changes. Genes with 11 or more points in any one pairwise comparison is considered to be significant. Real-time PCR and histology analyses are then performed to confirm the identity of the genes, essentially as described previously (9,10), which are herein incorporated by reference. The above described analysis can be used to identify candidate agents that are "estrogen-like" in that they have a differential expression profile which is in the most preferred embodiment substantially the same as estrogen's. For instance, in one embodiment, the expression levels for the genes upon exposure to the respective compounds is at least within 50% of each other.

C. Biological Samples from other Organs

The above described methods, assay and analysis can be applied to biological samples from any tissue, including the uterus, pituitary gland, liver, brain, colon, breast, adipose tissue, etc. In preferred embodiments, the biological samples are from the kidney, pituitary gland and the uterus.

D. The Plurality of Genes

5

10

15

20

Pursuant to the above described methods, the genes listed in Table II were identified as being differentially expressed upon exposure to estrogen. Genes in which

expression is induced by estrogen are considered to be genes of the "first group," whereas genes that are repressed by estrogen are considered to be in the "second group".

Specifically, the estrogen modulated genes in the kidney are Tissue Factor, CYP7B1, BCAT1, STAT5A, GADD45G, BHMT, SAHH, NTT73, ABCC3. Of these genes, estrogen induced expression in all but BHMT and SAHH, where it repressed expression.

5

10

15

20

Thus, one disclosed embodiment is a plurality of genes, wherein in the first group, where gene expression in kidney cells is induced by estrogen exposure, the plurality of genes comprise NTT73 and ABCC3. Another disclosed embodiment is a plurality of genes wherein the "first group" comprises CYP7B1 in kidney cells. In another embodiment, the plurality of genes of the "second group," where gene expression in kidney cells is repressed by estrogen exposure, comprises at least BHMT and SAHH.

Another disclosed embodiment is directed to a plurality of genes in kidney cells, wherein the first group comprises Tissue Factor, CYP7B1, BCAT1, STAT5A, and GADD45G, and wherein said second group comprises BHMT.

Another disclosed embodiment is directed to a plurality of the genes wherein the first group comprises CYP7B1, TF, SCYA28, Iga, Vk28, PHD 2, ELF 3, TIM1, STAT5A, COR1, BCAT1, ABCC3, TIM2, NAT6, RGS3, GNBP3, BCL7A, 17βDHH, FYVE ZFP, NTT73, AGPS, TRIM2, HBACH, CIS2, CYP27B1, and STAT5B, wherein

said second group comprises SAHH, ADH1A7, RARRES2, and BHMT. Another disclosed embodiment relates to a plurality of genes, wherein the first group comprises COR1 and GNBP3.

The estrogen modulated genes in the pituitary gland are STAT5B, GADD45G,

Kallikrein-9, and FSHb, the expression of which is induced by estrogen for all but

FSHb, which is repressed.

Thus one embodiment relates to a plurality of genes in the pituitary gland, wherein the first group comprises STAT5B and GADD45G.

Another embodiment relates to a plurality of genes, wherein the first group

10 comprises STAT5B, GADD45G1 and Kallikreins genes in the pituitary.

Yet another embodiment relates to a plurality of genes, wherein the second group of genes in the pituitary gland comprise FSHb.

Pursuant to the above methods, the inventors discovered that the estrogen modulated genes in the uterus comprise SFRP4, Deiodinase (type II), Procollagen (type I, Alpha I), vimentin and IGFBP4, Scavenger receptor, Al121305, ALOX15, BCAT1, SiAMOX, C3, FOS, MAP2k1, CEBPb, EGR1 and CYP1A1. All of these genes are induced by estrogen in the uterus except for Scavenger receptor and CYP1A1, which are repressed.

15

20

Thus, one embodiment is directed to a plurality of genes in the uterus, wherein the first group comprises SFRP4, Deiodinase (type II), Procollagen (type I, Alpha I), vimentin and IGFBP4.

Another embodiment of the invention is directed to the plurality of genes, wherein the first group in the uterus comprises Al121305, ALOX15, BCAT1, SiAMOX, C3, FOX, MAP2k1, CEBPb and EGR1.

Another embodiment is directed to a plurality of genes wherein the first group in the uterus comprises SFRP4, Deiodinase (type II), Procollagen (type I, Alpha I), vimentin and IGFBP4, Scavenger receptor, Al121305, ALOX15, BCAT1, SiAMOX, C3, FOS, MAP2k1, CEBPb and EGR1.

In another embodiment, the plurality of genes in the second group in the uterus comprises CYP1A1.

In yet another embodiment, the plurality of genes in the second group in the uterus comprises Scavenger receptor.

Methods of identifying agents

5

10

15

20

Based upon the above described methods for determining differential expression of genes in various organs, another aspect of the invention relates to the identification of candidate agents that have the same or substantially the same biological effect of a known agent, such as estrogen or another hormonal combination of known biological effect. An "agent" could be any compound of unknown biological effect on genes in a given body site. Specifically, the invention relates to a method for identifying an agent having a desired effect on gene expression in an organ, wherein said desired effect represents a first plurality of genes differentially expressed at various levels, which method comprises:

exposing, in vivo or in vitro, organ cells to the agent;

5

10

15

measuring expression levels of a multiplicity of genes in the organ cells exposed to the agent and organ cells without the exposure, the multiplicity being greater than said first plurality;

determining, using a predetermined statistical significance standard, genes which are differentially expressed in the organ cells exposed to the agent and the organ cells without the exposure, the genes constitute a second plurality; and

comparing the expression levels of genes in the second plurality with the expression levels of genes in said first plurality,

wherein the agent is identified as having said desired effort if said first and second pluralities are the same and said expression levels in said first and second pluralities are substantially the same. The "organ cells" may be from any type of biological sample, as described above. In a preferred embodiment, such cells are from the kidney, pituitary gland or uterus. The "first plurality of genes" and "second plurality" of genes can be identified through a nucleotide array or filter, as described above. The comparing is performed using a suitable statistical technique with the assistance of known and commercially available programs, also as described above.

Another embodiment relates to an agent identified by the above method.

Yet another embodiment relates to a gene chip comprising any one or more of the above plurality of genes.

Pharmaceuticals and Methods of Treating

5

10

15

20

The identification of agents that induce or repress the expression of a gene associated with a given disorder or condition can lead to the development of pharmaceuticals that can be administered to a patient at therapeutically effective doses to prevent, treat, or control such disorder or condition.

Some conditions associated with estrogen regulation of gene expression in the kidney are known. For instance, in women, high estrogen levels preceding ovulation, during pregnancy, and resulting from estrogen administration commonly results in body water retention (23,24). Increased renal sodium reabsorption is a major mechanistic component for the elevated fluid retention (25). In rats, estrogen has been shown to increase thiazide-sensitive NaCl cotransporter expression levels(26), providing one possible molecular basis for estrogen effects on sodium retention.

Pursuant to the methods of the invention as disclosed above and as exemplified in greater detail in the Examples below, two additional estrogen regulated genes that influence sodium retention were identified. First, estrogen (E2) treatment increased mRNA levels for NTT73 (27), which is a sodium and chloride dependent transporter, known to regulate sodium retention. Second, E2 treatment also induced mRNA levels for ABCC3, a member of a family of genes which are known to modulate epithelial sodium channel activity (28). The physiological role of E2 regulation of these genes may lie in the large volume expansion required during pregnancy. The ED50 value for E2 activation of gene expression in the kidney was about 10-fold higher than that required for uterine weight increases (Figure 5), perhaps a mechanism to ensure

5

10

15

20

that normally estrogen actions only occur in the kidney when very high levels of estrogen are present, as during pregnancy.

Premenopausal women survive septic shock better than comparably aged males while postmenopausal women have a diminished survival advantage. Since volume loss is a major cause of morbidity in shock, it is expected that enhanced sodium and water retention due to elevated expression of NTT73(27) by E2 plays a role in this protective process. Thus, one disclosed embodiment relates to a method for identifying an agent capable of maintaining vascular volume in septic shock comprising exposing, *in vivo* or *in vitro*, kidney cells to an agent, measuring expression levels of NTT73 and ABCC3 in kidney cells exposed the agent and in kidney cells not exposed to the agent; comparing the expression levels of the NTT73 and ABCC3 with the expression levels of the genes kidney cells exposed to estrogen. The candidate agent identified by this process can be used in pharmaceuticals for purposes of maintaining vascular volume in the treatment of septic shock.

Another estrogen modulated gene in the kidney with biological significance is CYP27B1, the enzyme responsible for the rate limiting conversion of inactive 25-hydroxy vitamin D3 into active 1,25-dihidroxy vitamin D (29). This process is known to occur in the proximal tubules of the kidney and has been shown to be stimulated by estrogen treatment of birds(30). Urinary calcium excretion is increased in postmenopausal women, while estrogen treatment reduces urine calcium levels (31, 32). The presence of vitamin D receptors within the proximal convoluted tubule and collecting duct tubules of the kidney suggests that E2 induction of CYP27B1 is the

basis of this beneficial effect.

5

10

15

20

Thus, the invention relates to a method of identifying agents that are capable of enhancing calcium uptake in postmenopausal women comprising exposing, *in vivo* or *in vitro*, kidney cells to an agent, measuring expression levels of CYP7B1 in kidney cells exposed the agent and in kidney cells not exposed to the agent; comparing the expression levels of the CYP7B1 with the expression levels of the genes in kidney cells exposed to estrogen. The agent identified by this process can be used in pharmaceuticals for purposes of enhancing calcium uptake in postmenopausal women.

It is known that estrogen treatment reduces expression of betaine:homocysteine methyltransferase (BHMT) and S-adenosylhomocysteine hydrolase (SAHH), two enzymes involved in the methionine / homocysteine cycle (34). Elevated plasma homocysteine levels are now recognized as an important risk factor for the development of cardiovascular disease (35), and estrogen treatments reduced plasma homocysteine levels in postmenopausal women. Thus, the regulation of BHMT and SAHH provides a mechanistic link for this effect.

Thus, one embodiment disclosed herein relates to a method of identifying candidate agents for treating cardiovascular disorders comprising measuring expression of BHMT and SAHH in kidney cells exposed to an agent and in kidney cells with such exposure, comparing the expression levels of BHMT and SAHH with the expression levels of the genes in kidney cells exposed to estrogen. The agent identified by this process can be used in pharmaceuticals for purposes of treating

cardiovascular disorders.

5

10

15

20

Finally, E2 treatment induced expression of COR1 (chemokine orphan receptor 1, RDC1) an orphan G-protein coupled receptor (37), along with the guanylate nucleotide binding protein 3 (GNBP3) and the regulator of G-protein signaling 3 (RGS3), suggesting these proteins may form a functional unit. RDC1 is a receptor for the potent vasodilatory peptide adrenomedullin and calcitonin gene-related peptide, CGRP (38). Administration of CGRP to ovariectomized rats does not produce a decrease in kidney vascular resistance; however, in ovariectomized rats treated with E2 or in pregnant rats, injection of CGRP significantly decreases kidney vascular resistance (39). The observed increased expression of RDC1 in kidney provides a mechanism for the E2 induction of sensitivity to CGRP in the kidney, resulting in the large increase in renal flow seen during pregnancy (40).

Thus, one embodiment disclosed herein relates to a method of identifying candidate agents for treating conditions associated with reduced renal flow, such as caused by diuretics or congestive heart failure. Toxicity and therapeutic efficacy of such agents identified by the above methods can be determined by standard pharmaceutical procedures in cell cultures or experimental animals, for example, for determining the LD50 (the dose lethal to 50% of the population) and the ED50 (the dose therapeutically effective in 50% of the population). The dose ratio between toxic and therapeutic effects is the therapeutic index and can be expressed by the ratio, LD50/ED50. compounds that exhibit large therapeutic indices are preferred. While compounds that exhibit toxic side effects can be used, care should be taken to design

a delivery system that targets such compounds to the site of affected tissue to minimize potential damage to normal cells and thereby reduce side effects.

The data obtained from the cell culture assays and animal studies can be used to formulate a dosage range for use in humans. The dosage of such compounds likes preferably within a range of circulating concentrations that include ED50 with little or no toxicity. The dosage can vary within this range depending upon the dosage form employed and the route of administration.

5

10

15

20

The pharmaceuticals of the present invention can be formulated by standard techniques using one or more physiologically acceptable carriers or excipients and the biologically active agent. The agents and its physiologically acceptable salts and solvates can be formulated and administered orally, introraly, rectally, parenteraly, epicutaneously, topically, transdermally, subcutaneously, intramuscularly, intranasally, sublingually, intradurally, introcularly, intravenously, intraperioneally, or by inhalation.

With regard to oral administration, the pharmaceutical compositions can take the form of tablets or capsules prepared by conventional means with pharmaceutically acceptable excipient, such as binding agents etc. Tablets may be coated according to methods well known in the art. Liquid preparations can be in the form of solutions, suspensions and syrups or can be initially in dry form for constitution with water or other suitable vehicle. Other additives may include suspending agents, such as sorbitol syrup, cellulose derivatives or hydrogenated edible fats, emulsifying agents or non-aqueous solutions. Preparations for oral administration may also be formulated for a time or controlled release of the active ingredient using techniques well know in

the art of the invention.

Other formulations of the pharmaceuticals of the invention may be depot preparations for administration via implantation.

The pharmaceutical compositions of the present invention may be presented in a pack or dispenser device that contains one or more unit dosage forms containing the active ingredient. The pack can for example comprise metal or plastic foil, for example a blister pack. The pack or dispenser would contain instructions for administration.

Methods of Monitoring

The identification of the plurality of genes described above provides a powerful tool for assessing the progression of a state, condition or treatment. Specifically, a plurality of genes can be identified in a patient prior to an event, such as menopause, surgery, the onset of a therapeutic regime, or the completion of a 'therapeutic regime, to provide a base line result. This base-line can then be compared with the result obtained using identical methods either during or after such event. This information can be used for both diagnostic and prognostic purposes.

<u>Kits</u>

5

10

15

20

Another embodiment is directed to a kit containing a plurality of genes, preferably on a substrate. The kit also may comprise one or more containers or packages, along with reagents, solutions and possibly instructions for use.

* * *

All of the cited references are herein incorporated by reference. The invention is further described by the following Examples, which do not limit the invention in any manner.

5 <u>Examples</u>

Example 1: Introduction to Study and Animal-Related Procedures

Introduction

10

15

20

Estrogen receptors are expressed in numerous organs, although only a few organs are considered classical targets for estrogens. A systematic survey of estrogen regulation of approximately 10,000 genes in 13 tissues from wild type and ERβKO mice treated subcutaneously with vehicle or 17β-estradiol (E2) for six weeks was conducted. As expected, the uterus and pituitary had the greatest number of genes regulated by E2, while, surprisingly, the kidney had the third largest number of regulated genes. Some of these kidney regulations may provide mechanisms for known physiological effects of estrogens. For example, E2 induction of CYP27B1, the rate limiting enzyme in the synthesis of 1,25-dihydroxyvitamin D, may explain the ability of estrogens to decrease urinary calcium excretion in women. In situ hybridizations localized E2 regulation in the kidney to the juxtamedullary proximal and distal collecting tubule epithelial cells in both the mouse and rat. E2 regulations in the kidney were intact in the ERβKO mice, and the ERα selective agonist propyl pyrazole triol acted similarly as E2, together suggesting an ERα mediated mechanism. Finally,

the combination of the AF1-selective agonist tamoxifen plus mice expressing an AF1-deleted version of ERα (previously designated as ERα knockouts) allowed clear identification of genes dependent upon ERα AF1 activity and genes dependent upon ERα AF2 activity. Both AF1 and AF2 dependent genes were stimulated by E2 with the same ED₅₀, indicating that sensitivity of gene regulation in the kidney depends upon ER ligand binding and not on the subsequent ER activation mechanisms.

Animal-Related Procedure

5

10

15

20

Animals--Wildtype 129 strain female mice or Sprague-Dawley rats (bred at Wyeth or obtained from Taconic Farms) were placed on a casein-based diet at approximately 6 weeks of age. One week later, the animals were ovariectomized. Commencing the day after ovariectomy, each animal received a daily subcutaneous treatment with vehicle (50% DMSO, 50% phosphate buffered saline) or vehicle containing treatments for six weeks. Each group consisted of six or seven animals. Approximately 2 hours following the final treatment, the animals were euthanized with selected tissues frozen in liquid nitrogen for RNA analysis or on dry ice for histology.

Example 2: Preparation of Microarray

GeneChip--Total RNA was prepared separately from each individual organ by using Trizol (Invitrogen) followed by subsequent repurification on Rneasy columns (Qiagen). In general, two pools of RNA were created using equal amounts of RNA from three mice. For small organs such as pituitary, an equal amount of RNA from six animals was combined.

Target Preparation and Array Hybridization—Total RNA was used to generate biotin labeled cRNA target as described (8) which was hybridized to the murine MG_U74Av2 probe arrays (Affymetrix, Santa Clara, CA) for 16 h at 45°C. Eleven-biotin-labeled cRNAs at defined concentration were spiked into each hybridization and used to convert average difference values to frequencies expressed as parts per million.

Example 3: Data Selection and Analysis

5

10

15

20

Pairwise comparisons were made between each of the treatments. We calculated the fold change ratio, the p-value based on Student's t-test, the number of present calls, and the expression level for each comparison. A confidence score (CS) was defined as CS(x)= FC(x) + PV(x) + PC(x) + EL(x) where FC, PV, PC and EL are scores assigned to the fold change, p-value, number of present calls, and the expression level, respectively. FC(x) was assigned 5 if the fold change ratio was greater then 1.95 and was assigned 0 if the ratio was between 1.95 and 1.5. PV(x) was assigned 3 if the p-value was less then 0.05 and was assigned 2 if the p-value was between 0.05 and 0.1. PC(x) was assigned 3 if at least 50% of the samples are called P by the Affymetrix algorithm and assigned 1 if only 25% of the samples are called P. EL(x) was assigned 3 if at least two samples had a frequency value of 20 or greater and assigned 1 if two samples only had a frequency greater then 15. Penalty points were assigned if the fold change was less then 1.5, the p-value was greater then 0.2 or the frequency values were below 15 ppm. CS(x) ranged for –14 to 14 with qualifiers having a score of 14 considered the most significant changes. Genes with 11 or more

points in any one pairwise comparison were considered to be significant and were included for further analysis. Real-time PCR on individual RNA samples and histology analyses were performed essentially as described previously (9, 10).

Example 4: Discussion of Results

5

10

15

20

To begin a systematic survey of estrogen receptor regulation of gene expression in the mouse, ovariectomized wild-type (WT) and ERβKO mice were treated by daily subcutaneous administration of either vehicle or 20 μg/kg/day 17β-estradiol (E2) for six weeks. RNA prepared from 13 organs was analyzed by microarray for estrogen regulation of gene expression. The resulting data set was queried for genes whose regulation was dependent on ERα or ERβ. For ERα regulation, the basal expression level was predicted to be the same in WT and ERβKO mice, with E2 induction or suppression occurring in both WT and ERβKO mice (Figure 1). For ERβ regulation, basal expression was predicted to remain constant, with E2 induction or suppression occurring in WT mice but not in ERβKO mice. ERα pattern regulations were found in well known estrogen target tissues such as the uterus (514 inductions, 19 repressions), pituitary (56 inductions, 30 repressions) and bone marrow (3 inductions, 3 repressions). In contrast, essentially no genes could be discerned that fit the predicted ERβ regulation pattern in any tissue.

Surprisingly, the kidney had a very large number of genes regulated at least 2-fold by E2 (26 inductions, 4 repressions; Figure 2). To further characterize E2 regulation of gene expression in the kidney, in situ hybridization was used to localize E2 induction of CYP7B1, TF, STAT5A and GADD45G. In each case, induction of gene

5

10

15

20

expression occurred in the juxtamedullary region of the kidney (Figure 3) primarily in the proximal and distal tubule epithelium (not shown). Estrogen regulation of STAT5A and GADD45G also occurred in rat kidney juxtamedullary region (Figure 4), demonstrating that the estrogen responsiveness of kidney is not limited to the mouse.

The ED $_{50}$ s for E2 stimulation of CYP7B1, TF, STAT5A, and BCAT1 in the kidney were all very similar at about 3 µg/kg/day (Figure 5). Although this is approximately 10-fold greater than the ED $_{50}$ dose of E2 required for uterine weight increases, the ED $_{50}$ for gene induction in the uterus can vary by 20-fold, from 0.2 µg/kg/day E2 for BCAT1 induction to 2.7 µg/kg/day for c-fos (Figure 5). The E2 induction of gene expression in the kidney at the same dose as induction of well characterized genes such as c-fos in the uterus suggests that regulation of kidney gene expression occurs at physiological levels of E2.

Confirmation of the role of ER α in the induction of kidney gene expression was obtained with 4-propyl-1,3,5-Tris(4-hydroxy-phenyl) pyrazole (PPT) a compound which exclusively activates ER α but not ER β (11). Treatment with PPT induced expression of CYP7B1, TF, STAT5A and BCAT1 to a similar extent as did treatment with E2 (Figure 6). Further, two ER β selective agonists (W-0292 and W-0070, both approximately 75-fold selective for ER β compared to ER α by in vitro binding assays; data not shown) failed to stimulate expression of any of these four genes (Figure 6). Finally, in agreement with previous results, ER α mRNA was detectable within the mouse kidney (Figure 7). The regulation of these genes in WT and ER β KO mice, the similar E2 ED $_{50}$ for each gene, the activity of a selective ER α agonist, the inactivity of

5

10

15

20

selective ERβ agonists, and the expression of ERα within the kidney together suggest a single, ERα mediated pathway for regulation of these genes.

It has been recognized that a commonly utilized strain of ERαKO mice (12) in fact expresses an ERα protein lacking only AF1, due to alternative splicings of the exon containing the targeted knockout mutation(13, 14). The resulting truncated ERα proteins, referred to here as ΔΑF1-ERα, have the ability to stimulate expression of a synthetic estrogen response element driven promoter (14). As found previously for ERαΚΟ mice, the level of this misspliced transcript in the uterus of ERαERβΚΟ mice was lower than the level of full length message in WT mice (Figure 7). Again as expected, the amount of intact ERα mRNA was much lower in the whole kidney than in uterus from WT mice. However, the level of ΔΑF1-ERα mRNA was actually greater in the ERαERβΚΟ kidney than was intact ERα mRNA in WT kidney. No ERβ mRNA could be detected in either uterus or kidney from the ERαERβΚΟ mice.

The presence of ΔAF1-ERα at significant levels in the kidney allows determination of the relative contribution of AF1 and AF2 to E2 regulation of individual genes. To determine whether AF1 or AF2 regions of ERα were required for induction of CYP7B1, TF or BCAT1 in the kidney, WT, ERαERβKO or ERαKO mice were treated with E2 or the AF1 selective agonist tamoxifen (15). Expression of CYP7B1 was induced by E2 but not by tamoxifen in WT mice (Figure 8), suggesting that induction of CYP7B1 occurred through AF2. Consistent with this hypothesis, E2 also increased CYP7B1 expression in mice expressing ΔAF1-ERα (either ERαERβKO or ERαKO mice). This E2 induction was blocked by an excess of ICI-182780, confirming the

5

15

20

regulation occurred through ER. Together, these two lines of evidence suggest that induction of CYP7B1 is an AF2 dependent process. In contrast, TF expression was induced by both E2 and tamoxifen in WT mice. Neither compound could induce TF expression in ER α ER β KO mice (which express only Δ AF1-ER α). This suggests that induction of TF occurs through an AF1 mediated pathway. Finally, BCAT1 was also induced by both E2 and tamoxifen in WT mice. However, in ER α ER β KO mice, E2 stimulated BCAT1 expression but tamoxifen did not. These results suggest that BCAT1 expression can be stimulated through either AF1 or AF2 mechanisms. In WT mice, tamoxifen stimulates expression through AF1 only. Since Δ AF1-ER α lacks the AF1 region necessary for tamoxifen activity, tamoxifen cannot stimulate BCAT1 expression in ER α ER β KO mice. In contrast, E2, which can stimulate BCAT1 expression through either AF1 or AF2, can still stimulate expression in the Δ AF1-ER α expression mice.

Estrogen receptors α or β are found in almost all organs of the body, yet relatively few tissues are considered targets for estrogen action. To begin to develop a more complete understanding of estrogen biology, estrogen responsive genes in 13 tissues from WT and ER β KO mice were characterized. In general, many tissues showed patterns of E2 regulation consistent with an ER α mechanism, including such known target organs as uterus, pituitary, and bone. Surprisingly, no E2 regulations were found that fit the expected pattern for ER β regulations. This was true even in organs expressing moderately high levels of ER β such as the bladder and lung (7). At least three mechanisms could explain the lack of detection of expected ER β responses. First, it has been proposed that a major function of ER β is to modulate the

activity of ERα(16). For example, expression of the Ki-67 protein was constitutively elevated in uterus of ERβKO mice, i.e. in the ERβKO mice its expression was always equivalent to the E2 stimulated levels in WT animals (17). The survey criteria used here would not detect this pattern. Further analysis of these data has revealed many genes in multiple tissues which also have this "nonclassical" pattern of regulation whereby expression is constitutively elevated in both vehicle and E2 treated ERβKO mice (data not shown). Second, analysis of whole organs may easily miss regulations occurring in only selected cell subtypes within an organ. For example, initial analysis of kidney did not identify GADD45G as being regulated by E2, because GADD45G expression is regulated only in tubule epithelial cells. The unregulated expression of GADD45G throughout most of the kidney sufficiently diminished the fold induction so as to be less than 2-fold in whole organ samples. The combination of laser capture microdissection with microarray technology (18) should allow detection of ERβ regulated genes with a classical pattern of regulation.

This global survey demonstrates that, unexpectedly, the kidney had a very large number of regulated genes. Both genetic approaches (Figure 2) and pharmacological approaches (Figure 6) demonstrated that E2 regulation in the kidney was mediated through ERa. Expression of CYP7B1, TF, STAT5A, and even genes such as GADD45G which are expressed throughout the kidney showed regulation only in tubule epithelium (Figure 3). Additionally, KIM-1, the rat counterpart of mouse TIM1 and TIM2 (20) is also expressed in proximal tubule epithelial cells (21). Finally, ³H-E2 binding localizes to proximal tubule cells following administration to rats(22).

5

10

15

20

Together, these results suggest that ER α directly regulates gene expression in tubule epithelial cells.

Although the observed regulations in the kidney were mediated by ERα, the mechanism of activation of gene expression by ERα was gene specific. Thus studies using tamoxifen, which activates ERα through AF1, along with studies using ΔΑF1-ERαΚΟ mice (previously designated as ERΚΟ mice) together indicate that E2 induction of CYP7B1 expression occurred predominantly through an AF1-dependent mechanism, E2 induction of TF expression occurred predominantly through an AF2-dependent mechanism, and E2 induction of BCAT1 expression occurred through both AF1 and AF2 mechanisms (Figure 8). The ED₅₀ values for E2 stimulation of these three genes were all very similar (Figure 5). Thus, whether a gene is induced through either AF1 or AF2 mechanism does not influence the sensitivity of the gene in the kidney to plasma estrogen levels. Rather, the data indicate that the binding of E2 to ERα would be the rate limiting step in induction of gene expression in the kidney. The maximal fold regulation varied between genes and may depend upon whether and AF1 or AF2 dependent pathway is utilized.

Analysis of 10 kb of upstream putative promoter sequences of E2 induced genes identified good matches to the consensus estrogen response element (ERE) in only a few genes, although ERE half-sites could be identified in most promoters. Many of these genes may be activated through nonclassical ERα mechanisms such as the combination of an ERE half-site with Sp1 binding sites (41). It is unlikely that a nonclassical ERα / AP1 stimulatory mechanism is responsible for these regulations,

since ICI182780 functions as a partial agonist in this mechanism (42) while ICI182780 was a complete antagonist for E2 regulation of gene expression in the kidney (Figure 8). Additionally, E2 induced expression of the transcription factors PHD2, ELF3, STAT5A and STAT5B. It is possible that E2 induction of these transcription factors resulted in the subsequent increase in expression of the remaining genes. For example, CIS2 is a known target for induction by STAT transcription factors (43), suggesting that the E2 induction of CIS2 is mediated indirectly through the E2 induction of STAT5A and STAT5B.

5

TABLE II - Genes Regulated By Estrogen in Kidney, Uterus and Pituitary Gland

Kidney	Unigene Code	Full name	Why
Tissue Factor	Mm.3742	Coagulation factor III	Mechanism is ERα AF1 dependent
CYP7B1	Mm.6216	Cytochrome P450, 40 (25-hydroxyvitamin D3 1 alphahydroxylase)	Mechanism is $ER\alpha$ AF2 dependent
BCAT1	Mm.4606	Branched chain aminotransferase 1, cytosolic	Mechanism is $ER\alpha$ AF1 + AF2 dependent
STAT5A	Mm.4697	Signal transducer and activator of transcription 5A	Regulated in multiple species (mouse and rat)
GADD45G	Mm.9653	Growth arrest and DNA-damage-inducible 45 gamma	Regulated in multiple species (mouse and rat)
BHMT	Mm.21983	Betaine-homocysteine methyltransferase	A repression by estrogens
SAHH	Mm.2573	S-adenosylhomocysteine hydrolase	
NTT73	Mm.4327	SODIUM- AND CHLORIDE-DEPENDENT TRANSPORTER NTT73	
ABCC3	Mm.23942	ATP-binding cassette, sub-family C (CFTR/MRP), member 3	

TABLE II – Genes Regulated By Estrogen in Kidney, Uterus and Pituitary Gland

Uterus	Unigene Code	Full name	wny
SFRP4	Mm.42095	Secreted frizzled-related sequence protein 4	Induced by estrogens in mouse uterus and human endometrium
Deiodinase, type II	Mm.21389	Deiodinase, iodothyronine, type II	Induced by estrogens in mouse uterus and human endometrium
Procollagen, type I, alpha 1	Mm.22621	Procollagen, type I, alpha 1	Induced by estrogens in mouse uterus and human endometrium
vimentin	Mm.7	Vimentin	Induced by estrogens in mouse uterus and human endometrium
IGFBP4	Mm.22248	Insulin-like growth factor binding protein 4	Induced by estrogens in mouse uterus and human endometrium
Scavenger receptor	Mm.1227	Macrophage scavenger receptor 1	Repressed by estrogens in mouse uterus and human endometrium
AI121305	Mm.29959	RIKEN cDNA 1600029D21	a set of genes induced by estrogens with a range of ED50 values
ALOX15	Mm.4584	Arachidonate 15-lipoxygenase	a set of genes induced by estrogens with a range of ED50 values
BCAT1	Mm.4606	Branched chain aminotransferase 1, cytosolic	a set of genes induced by estrogens with a range of ED50 values
SIAMOX	Mm.7190	Amiloride binding protein 1 (amine oxidase, coppercontaining)	a set of genes induced by estrogens with a range of ED50 values
ឌ	Mm.19131	Complement component 3	a set of genes induced by estrogens with a range of ED50 values
FOS	Mm.5043	FBJ osteosarcoma oncogene	a set of genes induced by estrogens with a range of ED50 values
MAP2K1	Mm.1059	Mitogen activated protein kinase kinase 1	a set of genes induced by estrogens with a range of ED50 values
СЕВРЬ	Mm.4863	CCAAT/enhancer binding protein (C/EBP), beta	a set of genes induced by estrogens with a range of ED50 values
EGR1	Mm.181959	Early growth response 1	a set of genes induced by estrogens with a range of ED50 values
CYP1A1	Mm.14089	Cytochrome P450, 1a1, aromatic compound inducible	Repressed by estrogens

TABLE II - Genes Regulated By Estrogen in Kidney, Uterus and Pituitary Gland

Pituitary	Unigene Code	de Full name	Why
STAT5B	1	Signal transducer and activator of transcription 5B	Induced by estrogens
GADD45G	Mm.9653	Growth arrest and DNA-damage-inducible 45 gamma Induced by estrogens	Induced by estrogens
Kallikrein-9	Mm.200410	Kallikrein 9	Induced by 17b-estradiol, not by Premarin
FSHb	Mm.46711	Follicle stimulating hormone beta	Repressed by estrogens

TABLE III - Genès Regulated By Estrogen in the Uterus

Mousedata.	Pub Name	Gene Name	Tissue	Mean WT E2 Fold Change
Τ				
94120 s at	SPRR2F	small proline-rich protein 2F	Uterus	38.71
II I		ESTs, Weakly similar to AF189262_1 GABA-A receptor epsilon		
97413_at	UNK_A1121305	like subunit [R.norvegicus]	Uterus	31.68
101130 at		procollagen, type I, alpha 2	Uterus	29.57
	PDI2	peptidyl arginine deiminase, type II	Uterus	23.01
İ	ELF3	E74-like factor 3	Uterus	22.03
Г		peptidyl arginine delminase, type l	Uterus	21.72
_		lactotransferrin	Uterus	19.01
Π		Cluster Incl AI846720:UI-M-AN1-aff-h-09-0-UI.s1 Mus		
		musculus cDNA, 3' end /clone=UI-M-AN1-afi-h-09-0-UI		•
		/clone_end=3'/gb=Al846720 /gi=5490626 /ug=Mm.7124		
93481 at	UNK A1846720	/len=161 /STRA=for	Uterus	17.96
93097 at	ARG1	arginase 1, liver	Uterus	17.45
11 (3)		ESTs, Highly similar to TRANSLOCON-ASSOCIATED		
1	UNK AW227650	PROTEIN, GAMMA SUBUNIT [Rattus norvegicus]	Uterus	16.87
93797 g at	at LDH1	lactate dehydrogenase 1, A chain	Uterus	16.5
7 702707	0000	ارو مارائمه بامانه معاامته المسو	I Herris	16.48
101/01 81	SPRAZO		1 16021	
102805_at CEACAM1	CEACAM1	CEA-related cell adhesion molecule 1	Clerus	2 9
98064_at	GLYCAM1	glycosylation dependent cell adhesion molecule 1	Uterus	15.46
AFFX-				
GapdhMur/				
M32599_5_		Glyceraldehyde-3-phospate dehydrogenase 5' control	116	7 11
at	GAPDH5_Mm_AFFX	sequence (M. musculus) [AFFX]	Orerus	7.61
AFFX-				
GapdhMur/		•		
M32599_5_		Glyceraldehyde-3-phospate dehydrogenase 5' control	91	7 17
aţ	GAPDH5 Mm AFFX	sequence (M. musculus) [AFFX]	Sign	10.5
AFFX-				
GapdhMur/				
M32599_5_	1	Glyceraldehyde-3-phospate denydrogenase 5 control	Horne	15.2
ä	¬ι'	sequence (iv. inusculus) [ArrA]	3 1	
96605_at	UNK_AI787183	ESTS, Weakly similar to AF115426 1 LK8 [M:musculus]	2010	

TABLE III - Genes Regulated By Estrogen in the Uterus

Mousedata				Moon W/T E2
Qualifier	Pub_Name	Gene Name	Tissue	Tissue Fold Change
102806 g a				
ţ	CEACAM1	CEA-related cell adhesion molecule 1	Uterus	14.48
03860 1 24	11NK M17327	Mouse endogenous murine leukemia virus modified polytropic	1,4	0000
ğĮ.	OINI MITOET	providus DivA, comprete cos	Oterus	13.83
101707 at	ALDH1A7	alcohol dehydrogenase family 1, subfamily A7	Uterus	13.63
104486 at	UNK AI850558	ESTS, Highly similar to ALPHA-2-MACROGLOBULIN PRECI IRSOR [Homo caniens]	l Harrie	13.20
98423 at	G.1B2	gan inction membrane channel protein heta 2	I farie	12.6
104182 at	HGFAC	henatocyte growth factor activator		12
94789 r at	TUBB5	tubulin, beta 5	Uterus	11.55
98822_at	ISG15	interferon-stimulated protein (15 kDa)	Uterus	11.5
	UNK_AI465965	ESTs, Weakly similar to IgG Fc binding protein [M.musculus]	Uterus	10.95
ä	BCAT1	branched chain aminotransferase 1, cytosolic	Uterus	10.35
Į	CAPN5	calpain 5	Uterus	10.01
98092_at	D5WSU111E	DNA segment, Chr 5, Wayne State University 111, expressed	Uterus	9.77
	MUC1	mucin 1, transmembrane	Uterus	9.74
ايدا	H2-K2	histocompatibility 2, K region locus 2	Uterus	9.71
at	c3	complement component 3	Uterus	9.63
1	COL6A2	procollagen, type VI, alpha 2	Uterus	9.57
*	AKP2	alkaline phosphatase 2, liver	Uterus	9.36
103824 at	WFS1	(Wolfram syndrome 1 homolog (human)	Uterus	9.15
		Mouse MHC class I Q4 beta-2-microglobulin (Qb-1) gene,		
99378 f at	UNK_M18837	complete cds .	Uterus	8.9
99561_f_at	CLDN7	claudin 7	Uterus	8.84
94305 at	COLA1	procollagen, type I, alpha 1	Uterus	8.78
92223_at	C1QC	complement component 1, q subcomponent, c polypeptide	Uterus	8.63
100134_at	ENG	endoglin	Uterus	8.53
92550_at	KRT1-19	keratin complex 1, acidic, gene 19	Uterus	8.53
		ESTs, Highly similar to CARBONIC ANHYDRASE VI [Ovis		
103905_at	UNK_AI314958	aries]	Uterus	8.44
aţ	UNK_AI845584	[ESTs, Highly similar to DUS6_RAT DUAL SPECIFICITY PROTEIN PHOSPHATASE 6 [R.norvegicus]	Uterus	8.39
ļ	CYR61	cysteine rich protein 61	Uterus	8.3

TABLE III - Genes Regulated By Estrogen in the Uterus

1.4				Mean WT E2
Mousedata. Oralifier	Pub Name	Gene Name	Tissue	Fold Change
97819 at	GSTTL-PENDING	glutathione S-transferase like	Uterus	8.12
		Cluster Incl AW122413:UI-M-BH2.2-aow-f-03-0-UI.s1 Mus musculus cDNA, 3' end /clone=UI-M-BH2.2-aow-f-03-0-UI /clone_end=3' /ch=AW122413 /ci=6097916 /uc=Mm.7113		
93479 at	UNK AW122413	//en=470 /STRA=rev	Uterus	7.99
104099 at	PGLYRP	peptidoglycan recognition protein	Uterus	7.98
	PPICAP	peptidylprolyl isomerase C-associated protein	Uterus	7.86
į	11NK A1849207	FSTs Weakly similar to AF218940 1 formin-2 [M.musculus]	Uterus	7.77
	GNBZ	guanine nucleotide binding protein, beta 2	Uterus	7.56
	CSRP	cysteine rich protein	Uterus	7.56
94269 at	RABAC1	Rab acceptor 1 (prenylated)	Uterus	7.46
		Mouse endogenous murine leukemia virus modified polytropic	l Horne	7 39
jä	UNK_M1732/	provirus DinA, complete cas	Hornie	7.37
101110 at	COL6A3	procollagen, type VI, alpha 3	Sign	2
02074 24	33 POLYPEPTIDED	ESTs, Highly similar to G33_RAT GENE 33 POLYPEPTIDE□ IR porteolicies	Uterus	7.34
98758 at	ALOX15	arachidonate 15-lipoxygenase	Uterus	7.33
		Mouse MHC class I D-region cell surface antigen (D2d) gene,	1 1600	7.03
99379_f_at	UNK_M27034	complete cds	Oterus	717
93078 at	TA9	lymphocyte antigen 6 complex	Uterus	1.17
93290 at	PNP	purine-nucleoside phosphorylase	Uterus	7.12
101979 at	GADD45G	growth arrest and DNA-damage-inducible 45 gamma	Uterus	7.06
99452 at	LISCH7-PENDING	liver-specific bHLH-Zip transcription factor	Uterus	/
94274 at	PFDN5	prefoldin 5	Uterus	6.97
92880_at	MFGE8	milk fat globule-EGF factor 8 protein	Uterus	6.95
101294_g_a		-	011011	9
ىب	G6PD2	glucose-6-phosphate dehydrogenase 2	Silai	0.93
92759 at	LAMB3	laminin, beta 3	Uterus	0.00
92585 at	MAP2K1	mitogen activated protein kinase kinase 1	Uterus	0.80
95232 at	HNRPL	heterogeneous nuclear ribonucleoprotein L	Oterus	0.79
104410 at	MIDN-PENDING	midnolin	Uterus	6.75
96075 at	WDR1	WD repeat domain 1	Uterus	0.7
95631_at	PPP4C	protein phosphatase 4, catalytic subunit	Uterus	0.08

TABLE III - Genes Regulated By Estrogen in the Uterus

Mousedata.				Mean WT E2
Qualifier	Pub_Name	Gene Name	Tissue	Fold Change
100412_g_a				
ļ	AEBP1	AE-binding protein 1	Uterus	6.67
		ESTs, Weakly similar to cDNA EST EMBL: C07816 comes from		
96634_at	UNK_AI850090	this gene [C.elegans]	Uterus	6.65
97282_at	MELA	melanoma antigen, 80 kDa	Uterus	6.6
	RALY	hnRNP-associated with lethal yellow	Uterus	6.55
	KAP		Uterus	6.45
ᄧ	at RNP24-PENDING		Uterus	6.32
	COL3A1	procollagen, type III, alpha 1	Uterus	6.29
	CAR2		Uterus	6.28
103278 at	PDI4	peptidyl arginine deiminase, type IV	Uterus	
ā	nnxa	DEAD (aspartate-glutamate-alanine-aspartate) box polypeptide	l Herric	6.23
03702 24	1 4604	I IM and CU3 protoin 4	Horne	
ซี	i desti	Link and one protein i	2010	5
94817 at	SERPINH1	serine (of cysteine) proteinase innibitor, clade n (near snock protein 47), member 1	Uterus	90.9
99569 at	KRT2-18	keratin complex 2, basic, gene 18	Uterus	
क्र		melanoma X-actin	Uterus	5.94
1 .	RAMP3	receptor (calcitonin) activity modifying protein 3	Uterus	
102292 at	GADD45A	growth arrest and DNA-damage-inducible 45 alpha	Uterus	
1 1	ER3	immediate early response 3	Uterus	5.84
103438_at	DIO2	deiodinase, iodothyronine, type II	Uterus	
97882 at	SEC61A	SEC61, alpha subunit (S. cerevisiae)	Uterus	
93574_at	PEDF	pigment epithelium-derived factor	Uterus	5.81
99622_at	KLF4	Kruppel-like factor 4 (gut)	Uterus	
100981_at	IFIT1	interferon-induced protein with tetratricopeptide repeats 1	Uterus	5.74
		Cluster Incl AW048484:UI-M-BH1-alj-d-10-0-UI.s1 Mus		
		musculus cDNA, 3' end /clone=UI-M-BH1-alj-d-10-0-UI		
-		/clone_end=3' /gb=AW048484 /gi=5909018 /ug=Mm.43640		
99645_at	UNK_AW048484	//en=458 /STRA=for	Uterus	5.67
		ESTs, Weakly similar to CG1534 gene product		1
95444_at	UNK_AW122274	[D.melanogaster]	Uterus	
99931_at	LAMAS	laminin, alpha 5	Uterus	5.66
100130_at	NOC	Jun oncogene	Uterus	

TABLE III - Genes Regulated By Estrogen in the Uterus

Mousedata.				Mean WT E2
	Pub_Name	Gene Name	Tissue	Tissue Fold Change
100618 f at SLC25	SLC25A5	solute carrier family 25 (mitochondrial carrier; adenine nucleotide translocator), member 5	Uterus	5.64
101929_at	UNK_A1836322	Cluster Incl Al836322:UI-M-AQ0-aag-a-02-0-UI.s2 Mus musculus cDNA, 3' end /clone=UI-M-AQ0-aag-a-02-0-UI /clone_end=3' /gb=Al836322 /gi≂5470530 /ug=Mm.939 /len=211 /STRA=for	Uterus	5.63
100609 at	UNK AF049850	Cluster Incl AF049850:Mus musculus major histocompatibility locus class III region- complement C4 (C4) and cytochrome P450 hydroxylase A (CYP21OH-A) genes, complete cds; slp pseudogene, complete sequence; NG6, SKI, and complement factor B (Bf) genes, comp	Uterus	.5 85.58
1	UNK AI838592	ESTs, Moderately similar to ENDOTHELIAL ACTIN-BINDING PROTEIN (Homo sapiens)	Uterus	5.46
क	12	dynactin 1	Uterus	5.42
ਜ਼ ।	H2-BL	histocompatibility 2, blastocyst	Uterus	5.24
100557_g_a t	UNK AW121930	ESTs, Highly similar to EUKARYOTIC INITIATION FACTOR 4B [Homo sapiens]	Uterus	5.21
93985 at	UNK AW120868	ESTs, Highly similar to hypothetical protein [H.sapiens]	Uterus	5.18
j#	CP	ceruloplasmin	Uterus	5.14
	IER2	immediate early response 2	Uterus	5.13
99632_at	MAD2L1	MAD2 (mitotic arrest deficient, homolog)-like 1 (yeast)	Uterus	5.13
	FBLN1	fibulin 1	Uterus	5.1
	CISH3	cytokine inducible SH2-containing protein 3	Uterus	5.09
92611_at	GPIAP-PENDING	GPI-anchored membrane protein 1	Uterus	5.07
104333_at	D17H6S56E-5	DNA segment, Chr 17, human D6S56E 5	Uterus	5.07
101016_at	ARF1	ADP-ribosylation factor 1	Uterus	5.06
क	UNK AI849939	ESTs, Moderately similar to unnamed protein product [H.sapiens]	Uterus	5.05
94309 g at	FBLN1	fibulin 1	Uterus	4.95
99927 at	CFI	complement component factor i	Uterus	4.94
96278 at	UNK A1846553	ESTs, Weakly similar to DIA1_MOUSE DIAPHANOUS PROTEIN HOMOLOG 1 fM.musculus]	Uterus	4.84
2	`d			

TABLE III - Genes Regulated By Estrogen in the Uterus

Mousedata.			i	Mean WT E2
Qualifier	Pub_Name		enssi	Fold Change
103345 at	UNK AW046708	ESTs, Highly similar to SPECTRIN ALPHA CHAIN, NON- ERYTHROID (Rattus norvegicus)	Uterus	4.83
	SPRR		Uterus	4.83
101908_s_a				,
+	CEACAM2	CEA-related cell adhesion molecule 2	Uterus	4.8
104144_at	GTPBP2	GTP binding protein 2	Uterus	4.8
102362 i at	at JUNB	Jun-B oncodene	Uterus	4.79
GapdhMur/				
M32599_M_		Glyceraldehyde-3-phospate dehydrogenase middle control		
at	GAPDHM_Mm_AFFX	sequence (M. musculus) [AFFX]	Uterus	4.79
AFFX-		,		
GapdhMur/				
M32599_M_		Glyceraldehyde-3-phospate dehydrogenase middle control	_:	,
at	GAPDHM Mm AFFX	sequence (M. musculus) [AFFX]	Uterus	4./9
AFFX-				
GapdhMur/				
M32599_M_		ydrogenase middle control	:	
at	GAPDHM Mm AFFX		Uterus	
94246_at	ETS2	E26 avian leukemia oncogene 2, 3' domain	Uterus	
98930 at	COPE	coatomer protein complex, subunit epsilon	Uterus	
98928_at	CORO1B	coronin, actin binding protein 1B	Uterus	4.76
94821_at	XBP1	X-box binding protein 1	Uterus	4.69
95708 at	D3UCLA1	DNA segment, Chr 3, University of California at Los Angeles 1	Uterus	4.66
		ESTs, Moderately similar to CASEIN KINASE I, GAMMA		
96284_at	UNK_AW121446	ISOFORM [Bos taurus]	Uterus	4.64
		ESTs, Highly similar to DNA-DIRECTED RNA POLYMERASE		
104279_at	UNK_AW125116	II 14.4 KD POLYPEPTIDE [Homo sapiens; Cricetulus griseus]	Uterus	4.62
93541 at	TAGLN	transgelin	Uterus	
93798 at	LDH	lactate dehydrogenase 1, A chain	Uterus	
99926_at	PIGR	polymeric immunoglobulin receptor	Uterus	4
99338_at	UNK_AA674798	ESTs, Highly similar to TIP120 [R.norvegicus]	Uterus	4.6

TABLE III - Genes Regulated By Estrogen in the Uterus

Mariondata				Mean WT E2
Qualifier	Pub Name	Gene Name	Tissue	Tissue Fold Change
	GRN		Uterus	4.6
		nci Al553536:vw39e06.x1 Mus musculus cDNA, 3' end MAGE-1246210 /clone_end=3' /gb=Al553536	-	
99366_at	UNK_AI553536		Uterus	4.38
		Cluster Incl Al840158:UJ-M-AO0-acc-d-08-0-UI.s1 Mus		
		musculus cDNA, 3' end /clone=UI-M-AO0-acc-d-08-0-UI		
		/clone_end=3'/gb=Al840158/gi≈5474371/ug=Mm.19081	-	
103556_at	UNK_A1840158		Uterus	4.55
	MFAP2	microfibrillar-associated protein 2	Uterus	4.53
1	AMD2	S-adenosylmethionine decarboxylase 2	Uterus	4.5
102161 f at H2-Q2	H2-Q2	histocompatibility 2, Q region locus 2	Uterus	4.5
101955 at	HSPA5	heat shock 70kD protein 5 (glucose-regulated protein, 78kD)	Uterus	4.49
		O		
		Cluster Inici Ar I Uggoos, Milasculus Inidatum i		
		locus class III regions Hsc/0t gene, partial cds; smKINP, G/A,		
		NG23, MutS homolog, CLCP, NG24, NG25, and NG26 genes,		
		complete cds; and unknown genes /cds=(0,725) /gb=AF109905		
95654_at	UNK_AF109905	/gi=3986751 /ug=Mm.29	Uterus	4.49
		Cluster Incl AW123801:UI-M-BH2.1-apm-e-08-0-UI.s1 Mus		
		musculus cDNA, 3' end /clone=UI-M-BH2.1-apm-e-08-0-UI		
		//clone_end=3'/gb=AW123801/gi=6099331/ug=Mm.34796	;	•
98107_at	UNK_AW123801	/len=367 /STRA=for	Uterus	4.48
92925_at	CEBPB	CCAAT/enhancer binding protein (C/EBP), beta	Uterus	4.47
		expressed in non-metastatic cells 2, protein (NM23B)		
92625_at	NME2	(nucleoside diphosphate kinase)	Uterus	4.46
96283 at	ITM3-PENDING	integral membrane protein 3	Uterus	4.43
		Cluster Incl AF109906:Mus musculus MHC class III region RD		
		gene, partial cds; Bf, C2, G9A, NG22, G9, HSP70, HSP70,		
		HSC70t, and smRNP genes, complete cds; G7A gene, partial		
		cds; and unknown genes /cds=(0,3002) /gb=AF109906	-	7
97809_at	UNK_AF109906	//gi=3986763 /ug=Mm.28155 /len=300	Uterus	4.4

TABLE III - Genes Regulated By Estrogen in the Uterus

Marionato				Mean WT E2
Mouseuata. Qualifier	Pub Name	Gene Name	Tissue	Fold Change
		Cluster Incl AA763466:vw54f05.r1 Mus musculus cDNA, 5' end /clone=IMAGE-1247649 /clone end=5' /gb=AA763466		
103709_at	UNK_AA763466		Uterus	4.37
98562 at	C1OA	complement component 1, a subcomponent, alpha polypeptide Uterus	Uterus	4.37
ä	MYB	myeloblastosis oncodene	Uterus	4.37
99624 at	RPL5		Uterus	4.33
_ =	LSP1		Uterus	4.31
99942 s at	CNN1	calponin 1	Uterus	4.31
101055 at	PPGB	protective protein for beta-galactosidase	Uterus	4.3
100059 at	СУВА		Uterus	4.29
70000		ESTS, Highly similar to GLUTAMINYL-TRNA SYNTHETASE	Uterus	4.28
34000 at		ESTS, Highly similar to PROBABLE UBIQUITIN CARBOXYL-		
93751 at	UNK AW048157	TERMINAL HYDROLASE [Mus musculus]	Uterus	4.27
101061 at	UNK AI845293	ESTs, Highly similar to TRANSLOCON-ASSOCIATED PROTEIN, BETA SUBUNIT PRECURSOR [Homo sapiens]	Uterus	4.26
	DHCR7	7-dehydrocholesterol reductase	Uterus	4.25
03327 at	IINK AI842665	ESTs, Highly similar to HYPOTHETICAL 13.5 KD PROTEIN CASGS 7 IN CHROMOSOME III [Caenorhabditis elegans]	Uterus	4.25
		gamma-glutamyltransferase-like activity 1	Uterus	4.24
00106 at	98900	COP9 (constitutive photomorphogenic). subunit 6 (Arabidopsis) Uterus	Uterus	4.22
97160 at	SPARC	secreted acidic cysteine rich glycoprotein	Uterus	4.22
96943 at	UNK AW125234	ESTs, Highly similar to FUSCA PROTEIN FUS6 [Arabidopsis thaliana]	Uterus	4.2
97320 at		ESTs, Weakly similar to KE4_MOUSE HISTIDINE-RICH PROTEIN KE4_ [M.musculus]	Uterus	4.18
06253 24	IINK AW125346	ESTs, Moderately similar to AF151028_1 HSPC194	Uterus	4.17
94854 g at GNB	CNR1	guanine nucleotide binding protein, beta 1	Uterus	4.15
S LOCK	1010			

TABLE III - Genes Regulated By Estrogen in the Uterus

Mousedata.	Prib Name	Gana Nama	Tissue	Mean WT E2 Fold Change
		Chiefer Incl AE100005:Mus musculus major histocompatibility		
		Clastic close III regions Head of some sertial cds: smbND G7A		
		NOOS MAND FEBRUARY OF DESIGN NOSE AND MODERNAMES AN		
		INGZS, MUIS NOMOIOG, CLCP, NGZ4, NGZS, and NGZO genes,		
		complete cds; and unknown genes /cds=(0,3791)		
97894_at	UNK_AF109905	/gb=AF109905 /gi=3986751 /ug=Mm.2	Uterus	4.14
93390 g at	PROM	prominin	Uterus	4.13
		ESTs, Moderately similar to unnamed protein product		
103429 i at UNK	UNK_AW125330	[H.sapiens]	Uterus	4.1
96186 at	UNK A1839286	ESTs, Moderately similar to Unknown [H.sapiens]	Uterus	4.09
103335 at	LGALS9	lectin, galactose binding, soluble 9	Uterus	4.07
101393 at	ANXA3	annexin A3	Uterus	4.07
93389 at	PROM	prominin	Uterus	4.06
_	RBPMS	RNA-binding protein gene with multiple splicing	Uterus	4.06
96258_at	D13ERTD372E	DNA segment, Chr 13, ERATO Dol 372, expressed	Uterus	4.03
95161 at	D10ERTD73E	DNA segment, Chr 10, ERATO Doi 73, expressed	Uterus	4.03
96869_at	GABARAP	gamma-aminobutyric acid receptor associated protein	Uterus	4.02
101558_s_a				
ţ	PSMB5	proteasome (prosome, macropain) subunit, beta type 5	Uterus	4
		eukaryotic translation initiation factor 3, subunit 4 (delta, 44		
96883_at	EIF3S4	kDa)	Uterus	3.98
99549_at	OGN	losteoglycin	Uterus	3.95
101781 f at	11NK V00754	HISTONE H3.4	Uterus	3.95
· ii	33 POLYPEPTIDED	ESTs, Highly similar to G33 RAT GENE 33 POLYPEPTIDED		
ᅓ	[R.NORVEGICUS]	[R.norvegicus]	Uterus	3.91
92930 at	DLX5	distal-less homeobox 5	Uterus	3.91
95462 at	UNK_AW060951	ESTs, Highly similar to unknown [R.norvegicus]	Uterus	3.9
		proteosome (prosome, macropain) subunit, beta type 8 (large		
102791_at	PSMB8	multifunctional protease 7)	Uterus	3.89
95215 f at	UBC	ubiquitin C	Uterus	3.89
92850_at	UNK_A1836446	ESTs, Moderately similar to KIAA1398 protein [H.saplens]	Uterus	3.88
100332_s_a	PRDX5-RS3	peroxiredoxin 5. related sequence 3	Uterus	3.87
100561 at	IOGAP1	IO motif containing GTPase activating protein 1	Uterus	3.84
53				

PCT/US03/11240

TABLE III - Genes Regulated By Estrogen in the Uterus

Mousedata				Mean WT E2
Qualifier	Pub_Name	Gene Name	Tissue	Fold Change
98446_s_at		Eph receptor B4	Uterus	3.82
100771_at	TA27	lymphocyte antigen 57	Uterus	3.81
		Cluster Incl AI837116:UI-M-AK0-adc-e-09-0-UI.s1 Mus musculus cDNA, 3' end /clone=UI-M-AK0-adc-e-09-0-UI		
		/clone_end=3'/gb=AI837116/gi≂5471329 /ug=Mm.23723		
103547_at	UNK_A1837116	/len=323 /STRA=rev	Uterus	3.81
104365_at	SCAMP2	secretory carrier membrane protein 2	Uterus	3.8
		ESTs, Weakly similar to AF104033_1 MUEL protein		
93496_at	UNK_A1852098	[M.musculus]	Uterus	3.79
100970_at	AKT	thymoma viral proto-oncogene	Uterus	3.79
96318_at	D17WSU104E	DNA segment, Chr 17, Wayne State University 104, expressed Uterus	Uterus	3.78
93430_at	CMKOR1	chemokine orphan receptor 1	Uterus	3.75
92882_at	RAB1	RAB1, member RAS oncogene family	Uterus	3.74
97824_at	D11ERTD175E	DNA segment, Chr 11, ERATO Doi 175, expressed	Uterus	3.72
99991_at	IL17R	interleukin 17 receptor	Uterus	3.72
100684_at	PRKCSH	protein kinase C substrate 80K-H	Uterus	3.72
		ESTs, Moderately similar to epithelial protein up-regulated in		
96935_at	UNK_AW011791	carcinoma [H.sapiens]	Uterus	3.71
93500_at	ALAS1	amínolevuliníc acid synthase 1	Uterus	3.69
100554_at	PDLIM1	PDZ and LIM domain 1 (elfin)	Uterus	3.67
94105_at	CDC42	cell division cycle 42 homolog (S. cerevisiae)	Uterus	3.66
101486 at	PSMB10	proteasome (prosome, macropain) subunit, beta type 10	Uterus	3.66
		ESTs, Highly similar to AF177476_1 CDK5 activator-binding		
96155_at	UNK_AW049359	protein [R.norvegicus]	Uterus	3.65
99475_at	CISH2	cytokine inducible SH2-containing protein 2	Uterus	3.64
102767_at	AA536815	EST AA536815	Uterus	3.64
		Cluster Incl Al846773:UI-M-AO1-ael-f-02-0-UI.s1 Mus musculus cDNA 3' end /clone=UI-M-AO1-ael-f-02-0-UI		
		/clone_end=3 /gb=Al846773 /gi=5490679 /ug=Mm.22413		
104315_at	UNK_AI846773	/len=322 /STRA=for	Uterus	3.64
104389 at	UNK AW049360	ESTs, Weakly similar to T17295 hypothetical protein DKFZp434H132.1 - human [H.sapiens]	Uterus	3.63
	H			

TABLE III - Genes Regulated By Estrogen in the Uterus

ata.		one Name	Tissue	Mean WT E2 Fold Change
	0	X05862:Mouse H2B and H2A histone genes =(0,380) /gb=X05862 /gi=51302 /ug=Mm.21579		
93833_s_at UNK	UNK_X05862	Ţ	Uterus	3.61
101881 g_a	COI 1841	t edule III/X and nanellosom	Uterus	3.61
100569 at	150		Uterus	3.6
1		Mus musculus epithelial protein lost in neoplasm-a (Eplin)		C L
94561_at	UNK_A1836140	mRNA, complete cds	Uterus	3.59
l	CTSB		Uterus	3.57
96709 at	UNK A1839839	ESTs, Highly similar to EST00098 protein [H.sapiens]	Uterus	3.57
بيدا	ACTO	actin, gamma 2, smooth muscle, enteric	Uterus	3.55
99477 at	GNG12	guanine nucleotide binding protein (G protein), gamma 12	Uterus	3.55
94237 at	D6WSU137F	DNA segment. Chr 6. Wayne State University 137, expressed	Uterus	3.55
1	TBRG1	transforming growth factor beta regulated gene 1	Uterus	3.53
		ESTs, Highly similar to RAS-RELATED PROTEIN RAB-8		
94503 at	UNK A1842492	[Homo sapiens; Canis familiaris]	Uterus	3.5
99019 at		P450 (cytochrome) oxidoreductase	Uterus	3.49
		transducin-like enhancer of split 3, homolog of Drosophila		2 77
104623 at	TLE3	E(spl)	Uterus	
92866 at	H2-AA	histocompatibility 2, class II antigen A, alpha	Uterus	3.46
		Cluster Incl AA711773:vu58g05.r1 Mus musculus cDNA, 5' end		
		//clone=IMAGE-1195640 /clone_end=5' /gb=AA711773	 Horus	3 44
103200 at	UNK AA711773		201010	
·		Ciuster mai Alokoa 19.01-ivi-An I -ack-d-02-0-01.31 mus		
		iiiascalus		
104100 at	UNK A1845915	/len=208 /STRA=for	Uterus	3.42
		sema domain imminodobiilio domain (lg), transmembrane		
94063 at	SEMA4A	domain (TM) and short cytoplasmic domain, (semaphorin) 4A	Uterus	3.42
05750 at	11NK A1837369	ESTs. Highly similar to unnamed protein product [H.sapiens]	Uterus	3.42
937 32 at	ובוז	interferon inducible protein 1	Uterus	
9/409 al	11.11			

TABLE III - Genes Regulated By Estrogen in the Uterus

				Moon WIT E2
Mousedata.	P. ib. Name		Tissue	Fold Change
Ţ.,	INK AW122364	similar to ARGR_HUMAN ARGININE-RICH	Uterus	3.41
5	-11	Cluster Incl AW060515:UI-M-BH1-ann-d-07-0-UI.s1 Mus musculus cDNA, 3' end /clone=UI-M-BH1-ann-d-07-0-UI		
104110 at	INK AW060515	/cione_end=3 /go=Avvcoc313 /gi=occos200 /ug=iviii.21319 /	Uterus	3.39
; 	57		Uterus	3.39
j#		-phosphate dehydrogenase X-linked	Uterus	3.38
ਗ	COL5A2		Uterus	3.37
103016_s_a t			Uterus	3.36
AFFX-b- ActinMur/M	Č	TXT (anticocupie) [AFFX]	Uterus	3.35
12481 3 at	BACTING MIM AFFA			
AFFX-b- ActinMur/M 12481_3_at	BACTIN3_Mm_AFFX	Beta-actin 3' control sequence (M. musculus) [AFFX]	Uterus	3.35
AFFX-b- ActinMur/M	BACTIN3 Mm AFEY	Reta.actin 3' control sequence (M. musculus) [AFFX]	Uterus	3.35
06653 at		amyloid heta (A4) precursor protein	Uterus	3.35
90033 at	FT 1	ferritin light chain 1	Uterus	
97125 f at	LOC56628	MHC (A.CA/J(H-2K-f) class I antigen	Uterus	
94288 at	HIS1A	histone H1	Uterus	3.32
93276 at	HN1	hematological and neurological expressed sequence 1	Uterus	
93071_at	TIF1B	transcriptional intermediary factor 1, beta	Uterus	3.28
99032 at	RASD1	RAS, dexamethasone-induced 1	Uterus	
100428 at	LAMC2	laminin, gamma 2	Uterus	
		Cluster Incl Al132207:ue28g02.x1 Mus musculus cDNA, 3' end /clone=IMAGE-1481714 /clone_end=3' /gb=Al132207		
103708_at	UNK_A1132207	/gi=3602223 /ug=Mm.24090 /len=450 /STRA=tor	Orerus	3.43
		ESTS, Highly similar to ARGINYL-TRNA SYNTHETASE	41	3 23
96693_at	UNK_A1849453	[Cricetulus longicaudatus]	Oleius	
94831_at	CTSB	cathepsin B	Olerus	2.0
95493_at	COL6A1	procollagen, type VI, alpha 1	Uterus	

TABLE III - Genes Regulated By Estrogen in the Uterus

				Mean WT F2
Mousedata.	Pub Name	Gene Name	Tissue	Fold Change
		e 2, alpha B1	Uterus	3.2
Γ		1		c c
101487_f_at LY6E	LY6E	lymphocyte antigen 6 complex, locus E	Oterus	3.10
100081 at	STIP1	stress-induced phosphoprotein 1	Uterus	3.18
1	CRIP	cysteine rich intestinal protein	Uterus	3.18
1.	GRP58	\Box	Uterus	3.16
1		proteasome (prosome, macropain) 26S subunit, non-ATPase,		
98522 at	PSMD8	. 8	Uterus	3.16
يوا	MAPK3	mitogen activated protein kinase 3	Uterus	3.14
1	SAT	nsferase	Uterus	3.14
		Mus musculus calmodulin III (Calm3) mRNA, 3' untranslated		,
92632_at	UNK_AI842328		Uterus	3.12
99997 at	11NK A1286698	ESTs. Highly similar to interleukin 17 receptor⊡ [M.musculus]	Uterus	3.12
94282 at		N-acylsphingosine amidohydrolase 1	Uterus	3.11
94788 f at	TUBBS	tubulin, beta 5	Uterus	3.11
. 1		Cluster Incl AW123232:UI-M-BH2.1-apd-g-08-0-UI.s1 Mus		
		musculus cDNA, 3' end /clone=UI-M-BH2.1-apd-g-08-0-UI		
		/clone_end=3'/gb=AW123232/gi=6098727/ug=Mm.18714		
103398 at	UNK AW123232	/len=469 /STRA=rev	Uterus	3.1
	COPZ1	coatomer protein complex, subunit zeta 1	Uterus	3.1
		ESTs. Moderately similar to ELL2 HUMAN RNA		
103891 i at UNK	UNK A1197161	POLYMERASE II ELONGATION FACTOR ELL2 [H.sapiens] Uterus	Uterus	3.09
	18	ESTS, Highly similar to PROTEOLIPID PROTEIN PPA1		
98104_at	UNK_AI842889	[Saccharomyces cerevisiae]	Uterus	3.08
102916_s_a			116001	3 08
	CREBL1	cAMP responsive element binding protein-like 1	Sign	
		ESTs, Highly similar to HYPOTHETICAL PROTEIN		
404504	LINIK AIGEDED	pombel	Uterus	3.07
101331 at	11	IESTs Weakly similar to hypothetical protein [H.sapiens]	Uterus	
100343 at	DELIC VINO	actin camma cytonlasmic	Uterus	3.04
965/3 at	ACIG	DNA segment Ohr 15 FRATO Doi 221 expressed	Uterus	
100948 at	UTSEKTUZZTE	שיייייייייייייייייייייייייייייייייייי		

TABLE III - Genes Regulated By Estrogen in the Uterus

Mousedata.				Mean WT E2
Qualifier	Pub Name	Gene Name	Tissue	Tissue Fold Change
101754 f at SPRB2G	SPRR2G	small proline-rich protein 2G	Uterus	3.02
97829 at	UNK A1838053	phatidylinositol synthase	Uterus	3.02
101896 f ot H2.1		lity 2 region	Uterus	3.01
99067 at	GAS6		Uterus	င
101571_g_a		A 50 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Herie	67
100000	IGEBP4	Insulin-like grown racion billuling protein 4 histocompatibility 2 class II antigen A beta 1	Uterus	3
100330 at	I INK AA833425	280 [H.sapiens]	Uterus	2.99
-	BCRP1-PENDING		Uterus	2.97
1	AHCY	S-adenosylhomocysteine hydrolase	Uterus	2.96
پ. ا	PAM	peptidylglycine alpha-amidating monooxygenase	Uterus	
1	SH3D19	SH3 domain protein D19	Uterus	2.95
97817 at	SPEC1-PENDING	small protein effector 1 of Cdc42	Uterus	
98543 at	CTSS	cathepsin S	Uterus	2.95
I		ESTS, Highly similar to PROTEIN TRANSPORT PROTEIN	į	
93548 at	UNK AW122942	SEC61 BETA SUBUNIT [Homo sapiens; Canis familiaris]	Uterus	2.94
1		Mouse (AKR/J) endogenous retrovirus, clone A-12, pol-env	. 61	2 03
97197_r_at	UNK_C78850	region	Orerus	2.33
		Cluster Incl AA822174:vp36a09.r1 Mus musculus cDNA, 5' end		
	72700044 71111	/clone=IMAGE-1078/44 /clone_end=5/gb=A46zz1/4 /-i=2882842 /=-Mm 4487 /len=329 /STBA=for	Heris	2.91
1023/U at	LEEF?	Agi-zoszosz / ug-mill: 1101 / mill sz / ug-mill: 1101 / mill sz / ug-mill: 1101 / ug-mill si / ug-mill: 1101 / ug-mill si / ug-mill: 1101 / ug	Uterus	
91 309 at	- The -	ESTs. Highly similar to T17338 hypothetical protein		
96732 at	UNK A1851081	DKFZp434O125.1 - human [H.sapiens]	Uterus	
ı	SI C12A4	solute carrier family 12, member 4	Uterus	
1	CKB	creatine kinase, brain	Uterus	
98417 at	MX1	myxovirus (influenza virus) resistance 1	Uterus	2.87
;] -	00730777	ESTS, Weakly similar to GDIS_MOUSE RHO GDP-	Uterus	
- 1	UNK AW125498	UISSUCIATION IN IDITION E promovered	Uterus	2.84
96356_at	AFUU/UIU	EST AFUOTOR		

TABLE III - Genes Regulated By Estrogen in the Uterus

ata.				Mean WT E2
Qualifier	Pub_Name		Tissue	Tissue Fold Change
		Ciuster Incl AW125446:UI-M-BH2.3-aqh-h-05-0-UI.s1 Mus musculus cDNA, 3' end /clone=UI-M-BH2.3-aqh-h-05-0-UI /clone_end=3' /ab=AW125446 /ai=6100976 /ua=Mm.27902		
95593_at	UNK_AW125446		Uterus	2.84
ä	SPI6	serine protease inhibitor 6	Uterus	2.84
ä	CEACAM1	CEA-related cell adhesion molecule 1	Uterus	2.83
		Cluster Incl AA919594:vz22b07.r1 Mus musculus cDNA, 5' end		
		/clone=IMAGE-1316437 /clone_end=5' /gb=AA919594		
92836_at	UNK_AA919594		Uterus	2.83
ł	TSBP		Uterus	2.83
1	SUPT5H	suppressor of Ty 5 homolog (S. cerevisiae)	Uterus	2.82
100064 f at GJA1	GJA1	gap iunction membrane channel protein alpha 1	Uterus	2.81
96632 at	MRGX-PENDING		Uterus	2.81
Т	MAPKAPK2	protein kinase 2	Uterus	2.8
101948_at	LAMB1-1	laminin B1 subunit 1	Uterus	2.8
101959_r_a				
	TFDP1	transcription factor Dp 1	Uterus	2.79
97203_at	MLP	MARCKS-like protein	Uterus	2.77
		ESTs, Weakly similar to polymerase I-transcript release factor	_	
97496 f at	UNK_AW048944	[M.musculus]	Uterus	2.76
101877_at	SLC31A1	solute carrier family 31, member 1	Uterus	2.76
		solute carrier family 7 (cationic amino acid transporter, y+		
104221_at	SLC7A5	system), member 5	Uterus	
98019_at	TGFB111	transforming growth factor beta 1 induced transcript 1	Uterus	2.75
101510 at	PSME1	protease (prosome, macropain) 28 subunit, alpha	Uterus	
		ESTs, Highly similar to C214_HUMAN 17.9 KDA MEMBRANE		
96340_at	UNK_AW124185	PROTEIN C210RF4 [H.sapiens]	Uterus	2.74
		Cluster Incl AF109906:Mus musculus MHC class III region RD		
		gene, partial cds; Bt, C2, G9A, NG22, G9, HSP70, HSP70,		
		HSC70t, and smRNP genes, complete cds; G7A gene, partial		
		cds; and unknown genes /cds=(0,2123) /gb≂AF109906		
96761_at	UNK_AF109906	/gi=3986763 /ug=Mm.29004 /len=212	Uterus	2.72
102990 at	COL3A1	procollagen, type III, alpha 1	Oterus	2.72
94224 s at UNK	UNK_M74123	Mus musculus (strain C578I/6) mRNA sequence	Uterus	2.71

TABLE III - Genes Regulated By Estrogen in the Uterus

				CT 17.6
Mousedata.			Ticelle	Mean W I Ez
Qualifier	rub Name	ESTS. Highly similar to RIBONUCLEASE INHIBITOR [Rattus		
100621 at	UNK AI848825		Uterus	2.7
₩ ₩		bridizing clone	Uterus	2.7
مدا		olypeptide	Uterus	2.68
		N-ASSOCIATED		
104248 at	UNK AW227650		Uterus	2.68
ਜ਼	114		Uterus	2.68
ät	2	nal transducer 2	Uterus	2.67
		ESTs, Highly similar to B-MYC TRANSFORMING PROTEIN		1
99514 at	UNK A1835443	[Rattus norvegicus]	Uterus	2.67
	l I	ESTs, Highly similar to CASEIN KINASE I, DELTA ISOFORM		Č
97262 at	UNK_AW050305	[Homo sapiens]	Uterus	2.00
95694 at	UNK X70956	M.musculus TOP gene for topoisomerase I, exons 19-21	Uterus	2.66
101078 at			Uterus	2.64
95660 at	UNK_AI851815	Mus musculus HSCO mRNA, complete cds	Uterus	2.63
		(membrane) aminopentidase (aminopentidase N		
99993 at	ANPEP	aminopeptidase M, microsomal aminopeptidase, CD13, p150)	Uterus	2.63
		ESTs, Weakly similar to CD63_MOUSE CD63 ANTIGEN□		
103494 at	UNK AI047972	[M.musculus]	Uterus	2.63
94929 at	PTPN1	protein tyrosine phosphatase, non-receptor type 1	Uterus	2.6
100610 at	CAPN4	calpain 4	Uterus	2.6
97890 at	SGK	serum/glucocorticoid regulated kinase	Uterus	2.6
		Cluster Incl AI838576: UI-M-AO0-abz-c-02-0-UI.s1 Mus		
		musculus cDNA, 3' end /clone=UI-M-AO0-abz-c-02-0-UI		
		//clone_end=3 /gb=Al838576 /gl=5472789 /ug=Mm.54120		
100889_at	UNK_AI838576	/len=181 /STRA=rev	Single I	
100475_at	ZFP147	zinc finger protein 147	Oriens	2.33
98946 at	WSB1	WSB-1	Uterus	
96912 s at	at CTLA2A	cytotoxic T lymphocyte-associated protein 2 alpha	Uterus	
		ESTs, Highly similar to AFLATOXIN B1 ALDEHYDE	91	2 57
96069_at	UNK_AI840094	REDUCTASE [Rattus norvegicus]	Orens	
100723 f a	SPRRZE	small proline-rich protein 2E	Uterus	
03058 at FIF1A	FIF1A	leukarvotic translation initiation factor 1A	Uterus	2.56
50000				

TABLE III - Genes Regulated By Estrogen in the Uterus

				Moan W/T E2
Mousedata. Oualifier	Pub Name	Gene Name	Tissue	Tissue Fold Change
		ATPase, H+ transporting lysosomal (vacuolar proton pump),	1 Horne	2 55
94301_at		9,2 KDa	S	2.30
93680_at	STK10	serine/threonine kinase 10	Uterus	2.33
93499 at	CAPPA1	capping protein alpha 1	Uterus	2.55
		Cluster Incl AJ237939:Mus musculus partial STAT5B gene,		
		exons 6-9 /cds=(0,618) /gb=AJ237939 /gi=5689871		•
100422 i at UNK	UNK AJ237939	/ug=Mm.4697 /len=619 /STRA=for	Uterus	2.53
	ıl ı	ESTs, Weakly similar to AF154120_1 sorting nexin 1		1
96333 g at UNK	UNK AW259199	[M.musculus]	Uterus	2.53
103918 at	" cr	solute carrier family 15 (H+/peptide transporter), member 2	Uterus	2.53
101982 at	VASP	vasodilator-stimulated phosphoprotein	Uterus	2.53
7 77 77 77 77 77 77 77 77 77 77 77 77 7	27.4	ostivating transcription factor 3	Uterus	2.53
104133 at ATES	MDCV DENIDING	MADE related gene X	Uterus	2.52
Sooss s at	90033_S_at IMRGA-PENDING	MONTHORIGO Garla A		
		Cluster Incl AI852661:UI-M-BHU-ajl-a-10-U-UI.ST Mus		
		musculus cDNA, 3' end /clone=UI-M-BH0-aji-a-10-0-UI		
		//clone_end=3'/gb=Al852661/gi=5496567/ug=Mm.2388	;	1
95397 at	UNK AI852661	/len=297 /STRA=for	Uterus	2.5
92809 r at		FK506 binding protein 4 (59 kDa)	Uterus	2.5
100136 at		lysosomal membrane glycoprotein 2	Uterus	2.5
	HMGB2	high mobility group box 2	Uterus	2.48
at		EST AI4282022	Uterus	
To	LLREP3	repeat family 3 gene	Uterus	
 	CTSB	cathepsin B	Uterus	2.46
			111	, c
92226 at	UNK_AA866971	ESTs, Moderately similar to hypothetical protein [H.saplens]	Uterus	2.43
96056 at	ARHC	aplysia ras-related homolog 9 (RhoC)	Uterus	
96920 at	1	insulin-like growth factor binding protein 5 protease	Uterus	
101019 at	Г	cathepsin C	Uterus	2.44
100600 at	1	CD24a antigen	Uterus	
94915 at	PPIB	peptidylprolyl isomerase B	Uterus	
93323 at	PLP2	proteolipid protein 2	Uterus	2.43

TABLE III - Genes Regulated By Estrogen in the Uterus

Mousedata. Qualifier	Pub_Name	Gene Name	Tissue	Mean WT E2 Tissue Fold Change
		Cluster Incl Al853294:UI-M-BH0-ajl-f-03-0-UI.s1 Mus musculus cDNA, 3' end /clone=UI-M-BH0-ajl-f-03-0-UI /clone_end=3'		
97386_at	UNK_A1853294	/gb=Al853294 /gi=5497200 /ug=Mm.29789 /len=413 /STRA=for Uterus	Uterus	2.43
96939_at	TRRP2	transient receptor protein 2	Uterus	2.43
95683_g_at	DDB1	damage specific DNA binding protein 1 (127 kDa)	Uterus	2.42
104292 at	EYA2	eyes absent 2 homolog (Drosophila)	Uterus	2.42
104300_at	IQGAP1	IQ motif containing GTPase activating protein 1	Uterus	2.42
95120_at	UNK_A1837621	ESTs, Highly similar to tetraspan NET-6 [H.saplens]	Uterus	2.41
98059_s_at	LMN/	lamin A	Uterus	2.4
93320_at	CPT1	carnitine palmitoyltransferase 1, liver	Uterus	2.39
94260_at	UNK_A1850352	ESTs, Moderately similar to KIAA0731 protein [H.sapiens]	Uterus	2.39
94238_at	UNK_AW228316	ESTs, Highly similar to serine protease [H.sapiens]	Uterus	2.39
		Cluster Incl AC002397:Mouse chromosome 6 BAC-284H12		
		(Research Genetics mouse BAC library) complete sequence		
		/cds=(108,488) /gb=AC002397 /gi=3287367 /ug=Mm.22195		
94206_at	UNK_AC002397	//en=568 /STRA=for	Uterus	2.38
0000		ESTS, Weakly similar to ENDOSOMAL P24B PROTEIN		
93330 at	UNK_AW121539	PRECURSUR (Saccharomyces cerevisiae)	Oterus	2.38
94060_at	UNK_A1852623	[ESTs, Weakly similar to Edp1 protein [M.musculus]	Uterus	2.38
94834_at	СТЅН	cathepsin H	Uterus	2.37
101029 f at	ACTC1	actin. alpha. cardiac	Uterus	2.37
100928 at FBLN2	FBLN2	fibulin 2	Uterus	2.37
92769_at	TSTAP91A	tissue specific transplantation antigen P91A	Uterus	2.36
96829 at	D19WSU162E	DNA segment, Chr 19, Wayne State University 162, expressed Uterus	Uterus	2.36
93309_at	FIN14	fibroblast growth factor inducible 14	Uterus	2.36
101054_at		la-associated invariant chain	Uterus	2.35
94839_at	NUCB	nucleobindin	Uterus	2.35
98437_at	CASP3	caspase 3, apoptosis related cysteine protease	Uterus	2.34
98465 f at	IF1204	interferon activated gene 204	Uterus	2.33
	REGULATOR IDROSOPHILA	ESTs, Highly similar to HOMEOTIC GENE REGULATOR		
98463_at	MELANOGASTER	[Drosophila melanogaster]	Uterus	2.33

TABLE III - Genes Regulated By Estrogen in the Uterus

Mousedata. Oualifier	Pub Name	Gene Name	Tissue	Mean WT E2 Fold Change
<u>پ</u>	SCML1	n midleg-like 1 (Drosophila)	Uterus	2.32
	W230209	ESTs, Moderately similar to unnamed protein product [H.sapiens]	Uterus	2.31
96345 at	D2UCLA1	DNA segment, Chr 2, University of California at Los Angeles 1	Uterus	2.31
07761 6 04	I INIK A1926774	ESTs, Moderately similar to G3P_MOUSE GLYCERALDEHYDE 3-PHOSPHATE DEHYDROGENASE	Silvelis	2.3
at a	VIIV	Vimentin	Uterus	2.3
ro,		Ivmohocyte antigen 57	Uterus	2.3
95128 at	NCOR2	nuclear receptor co-repressor 2	Uterus	2.29
s at	NEDD4	neural precursor cell expressed, developmentally down- regulated gene 4	Uterus	2.29
at l		cofilin 1, non-muscle	Uterus	2.29
ä	CTPS	cytidine 5'-triphosphate synthase	Uterus	2.28
92603 at	ATP6D	ATPase, H+ transporting, lysosomal (vacuolar proton pump), 42 kDa	Uterus	2.28
96708 at	LINK AW120643	ESTs, Highly similar to COP-COATED VESICLE MEMBRANE PROTEIN P24 PRECURSOR [Cricetulus griseus]	Uterus	2.28
99100 at		signal transducer and activator of transcription 3	Uterus	2.28
	UNK A1847697	ESTs, Weakly similar to AF077034 1 HSPC010 [H.sapiens]	Uterus	2.27
To	CAPP	capping protein beta 1	Uterus	2.27
94522 at		dynactin 3	Uterus	2.26
98472_at	H2-T23	histocompatibility 2, T region locus 23	Uterus	2.24
묾	AHCY	S-adenosylhomocysteine hydrolase	Uterus	2.24
1	F3	coagulation factor III	Uterus	2.23
104533 at	IINK AA764261	ESTs, Weakly similar to myelin transcription factor 1-like	Uterus	2.23
104669 at	IRF7	interferon regulatory factor 7	Uterus	
97885 at	1810009M01RIK	RIKEN cDNA 1810009M01 gene	Uterus	
92616_at	UBE1X	ubiquitin-activating enzyme E1, Chr X	Uterus	2
93046_at	NUP50	nucleoprotein 50	Uterus	2.2

TABLE III - Genes Regulated By Estrogen in the Uterus

				Moon Wir ED
Ħ ia	;			Wear wiles
Qualifier			-+	roid Charige
98608 at	D6ERTD109E	DNA segment, Chr 6, ERATO Doi 109, expressed	Uterus	2.19
1		placental growth factor	Uterus	2.19
Į=	KRT2-8	keratin complex 2, basic, gene 8	Uterus	2.19
, ta	017WSI 191F	tate University 91, expressed	Uterus	2.19
5		Г		
		miscallis cDNA 3' and /clope=11-M-AO0-acd-e-10-0-11		
		/		
10 0000	I INIV A 1944 DOG	CIONEENG=5	I feris	2.18
90030 at	`11 ~	Inhightinglike 3	Uterus	2.18
010 C	ייייייייייייייייייייייייייייייייייייייי		Henic	217
98129 at	ESEI	ciated protein	01010	71.0
98498_at	CASP7		Uterus	2.17
94247 at	ETS2	E26 avian leukemia oncogene 2, 3' domain	Uterus	2.16
100084 at	VIL2	villin 2	Uterus	2.15
93093 at	MCL1	Imyeloid cell leukemia sequence 1	Uterus	2.15
95109 at	UNK AW121447	ESTs, Weakly similar to SIK similar protein [M.musculus]	Uterus	2.15
101963 at	CTSL	cathepsin L	Uterus	2.14
102821_s_a				
<u>+-</u>	RASL	RAS-like, family 2, locus 9	Uterus	2.13
97240 g at	D19ERTD721E	DNA segment, Chr 19, ERATO Doi 721, expressed	Uterus	2.13
94257 at	ARHGDIB	rho, GDP dissociation inhibitor (GDI) beta	Uterus	2.12
			;	
101543 f at TUBA6	TUBAG	tubulin alpha 6	Uterus	7.11
100720 at	PABPC1	poly A binding protein, cytoplasmic 1	Uterus	2.11
100566 at	IGFBP5	Insulin-like growth factor binding protein 5	Uterus	2.1
		ESTs, Moderately similar to unnamed protein product	;	
95647 f at	UNK AI465845	[H.sapiens]	Uterus	2.1
94899 at	-	Rho interacting protein 3	Uterus	2.09
104716 at	RBP1	retinol binding protein 1, cellular	Uterus	2.08
		ESTs, Weakly similar to A53770 growth factor-responsive		
96338 at	UNK AW125059	protein, vascular smooth muscle - rat⊡ [R.norvegicus]	Uterus	2.08
103350 at	PSMD7	proteasome (prosome, macropain) 26S subunit, non-ATPase,	Uterus	2.08
100001		anhonor of midimentary homolog (Direcophila)	Uterus	2.08
94040 at	ובאח	לבווונסוכם להיישונים ומווים ומווים להיספלאיווים		

TABLE III - Genes Regulated By Estrogen in the Uterus

Marioodoto				Moan W/T E2
Qualifier	Pub Name	Gene Name	Tissue	Tissue Fold Change
क्र	UNK AW122255	rately similar to T00076 hypothetical protein human [H.sapiens]	Uterus	2.07
1	UNK AI843586	ESTs, Highly similar to PRE-MRNA SPLICING FACTOR SF2, P33 SUBUNIT [Homo sapiens]	Uterus	2.07
-		ESTs, Highly similar to LAMBDA-CRYSTALLIN [Oryctolagus	Uterus	2.07
Т	111	alpha responsive protein (15 kDa)	Uterus	2.06
	TXNRD1		Uterus	2.06
	HA1R-PENDING	Hoxa1 regulated gene	Uterus	2.05
1	EIF4A1	eukaryotic translation initiation factor 4A1	Uterus	2.05
]		protein phosphatase 2, regulatory subunit B (B56), gamma		
ä	PPP2R5C	isoform	Uterus	2.04
at	PSMB1	proteasome (prosome, macropain) subunit, beta type 1	Uterus	2.04
at at	TPI	triosephosphate isomerase	Uterus	2.04
101107 at	CALU	calumenin	Uterus	2.04
l		ESTs, Weakly similar to AF121217_1 pro-alpha-2(I) collagen		
99599_s_at	UNK	[R.norvegicus]	Uterus	2.03
96724_r_at	D17H6S56E-5	DNA segment, Chr 17, human D6S56E 5	Uterus	2.03
97994_at	TCF7	transcription factor 7, T-cell specific	Uterus	2.03
		ESTS, Moderately similar to APB3_RAT AMYLOID BETA A4		
95102 at	UNK AW123754	[R.norvegicus]	Uterus	2.02
94454 at	u m	proline rich protein expressed in brain	Uterus	2.02
 =	FXYD3	FXYD domain-containing ion transport regulator 3	Uterus	2.02
l	ANXA1	annexin A1	Uterus	2.01
		Cluster Incl Al843901:UI-M-AK1-aeu-g-04-0-UI.s1 Mus		
		musculus cDNA, 3' end /clone=UI-M-AK1-aeu-g-04-0-UI		
		//clone_end=3'/gb=Al843901/gi=5478114/ug=Mm.22/	:	70
104385 i at	at UNK Al843901	//en=300 /STRA=for	Uterus	2.01
93490 at	 INK A1841771	ESTs, Weakly similar to contains similarity to Saccharomyces cerevisiae MAF1 protein IC elegans	Uterus	. 2
5000		Oliverial Inc AW4252474 M BH2 4 and h 02 0 1 64 Mis		
		Ciuster Inci AW 123347.OFM-BRZ. 1-apy-11-03-0-01.51 was musculus cDNA, 3' end /clone=UI-M-BH2.1-apy-h-03-0-UI //clone end=3' /ch=AW/125347 /ni=6100877 /ig=Mm 24219		
95406 at	UNK AW125347	/den=331 /STRA=for	Uterus	1.99
	11			

TABLE III - Genes Regulated By Estrogen in the Uterus

Mousedata.	Pib Name	Gene Name	Tissue	
	- n			
REPRESSI				
93594 r at	FMP3	epithelial membrane protein 3	Uterus	0.55
, i	VAMP2	protein 2	Uterus	0.54
Т	FNPP2	hodiesterase 2	Uterus	0.52
	GAS1		Uterus	0.51
	ASNS		Uterus	0.48
1		mily IV B polynoptide 1	(Herris	0.46
ฐไ	CTP451		Uterus	
1020F at	DMD22	I myelin nrotein 22 kDa	Uterus	
ا ي	I IVII 22		Uterus	0.44
93013 at	ייייייייייייייייייייייייייייייייייייייי	stonin) recentor 5A	Uterus	0.41
101152 at	ACMIL	FSTS Highly similar to SERB HUMAN L-3-PHOSPHOSERINE		
92589 at	UNK A1846545	_	Uterus	0.4
		Cluster Incl AW045753:UI-M-BH1-akt-a-10-0-UI.s1 Mus		
		musculus cDNA, 3' end /clone=UI-M-BH1-akt-a-10-0-UI		
		/clone_end=3'/gb=AW045753 /gi=5906282 /ug=Mm.27893		
104217 at	UNK AW045753	/len=407 /STRA=rev	Uterus	
UV		stromal cell derived factor 5	Uterus	0.38
 		ESTs, Weakly similar to S36166 paired box transcription factor		
96672 at	UNK AW123564	Pax-6 - rat [R.norvegicus]	Uterus	
93543 f at		glutathione S-transferase, mu 1	Uterus	
93836 at	BNIP3	BCL2/adenovirus E1B 19 kDa-interacting protein 1, NIP3	Uterus	
98575 at	FASN	fatty acid synthase	Uterus	
99671 at	ADN	adipsin	Uterus	
101990 at	LDH2	lactate dehydrogenase 2, B chain	Uterus	
98588 at	FAH	fumarylacetoacetate hydrolase	Uterus	
92592 at	GDC1	glycerol phosphate dehydrogenase 1, cytoplasmic adult	Uterus	0.3
l L		ESTs, Moderately similar to PHOSPHOGLUCOMUTASE		
104313 at	UNK_A1842432	[Rattus norvegicus]	Uterus	0.3
		in the standards of the	Uterus	0.3
102094 1 at GS 1	14 GS 1 M1	grulariiloila o-nailbiciase, ilia i		

TABLE III - Genes Regulated By Estrogen in the Uterus

				!
Mousedata.				Mean WT E2
Qualifier	Pub_Name	Gene Name	Tissue	Fold Change
		ESTs, Highly similar to 2118318A promyelocyte leukemia Zn		
92202_g_at UNK	UNK_AI553024	finger protein [M.musculus]	Uterus	0.29
94056_at	SCD1	stearoyl-Coenzyme A desaturase 1	Uterus	0.27
		ESTs, Highly similar to p53 regulated PA26-T2 nuclear protein		
95731_at	UNK_A1843106	[H.sapiens]	Uterus	0.27
97844_at	RGS2	regulator of G-protein signaling 2	Uterus	0.26
94516_f_at	PENK2	preproenkephalin 2	Uterus	0.19
95082_at	IGFBP3	insulin-like growth factor binding protein 3	Uterus	0.19
94057_g_at SCD	SCD1	stearoyl-Coenzyme A desaturase 1	Uterus	0.19
101560_at	EMB	embigin	Uterus	0.18
93996_at	CYP2E1	cytochrome P450, 2e1, ethanol inducible	Uterus	0.18
101991_at	FMO1	flavin containing monooxygenase 1	Uterus	0.17
92877_at	TGFBI	transforming growth factor, beta induced, 68 kDa	Uterus	0.16
97402 at	TEMT	thioether S-methyltransferase	Uterus	0.15
100567_at	FABP4	fatty acid binding protein 4, adipocyte	Uterus	0.14
99104 at	ACRP30	adinocyte complement related protein of 30 kDa	Itenia	0.13

П	Ţ		160	,2B7	8	3 5		2	2 23	5	8	218	器	8	318	1	<u> </u>	Ŧ	=	3 ₽	2	=	2	Î	=	200	1	1	9	3	=[٣	2 6	812	2	5	8	-	Ė	2 2	
1	Ţ	Expr (Jevansm/ Kidney, mouse/St udy 2, U74v2/ER bKO kidney E2 kidney E2	4	350	361	200	8	. 38	298	8	998	3 8	82	126	3 42	1	\$	12	22	2 2	18	27	2 0		E S	8	9	4	27	92		₽	8	3 8	4	76		=	=	=	
Ш	<u>1</u>	se/Stu se/Stu v2/ER (11)	- F	7	4	e la	63	14	us r	9	m	7	10	4	N	1	2010	2	7	₹ ल	6	,	10	╁	ख	+	4	+	5	12	12	US	æ 6	500	ल	2	က	67	40	5 un	
		Expression (Newansur)		5	2	7		3.	4 6	R	2	4 6	-	9	4	╁	4 4	n	4	5	N	8	-	╁	n	1	m	N 5	4	9	m	4	8	9	8	16	S	8		4 67	
S C	S A		- 34	201	234	88 6	3 :-	12 13	178	228	26	8 8	3 8	97	= E	2 1	30 22	Ð	B)	0 1	10	32	13	1	2 5	2 4	1	20 %	12	4	2	10	18	8 5	2 +	42	4	8	8	13	
	ᆲ	n/ Expr (/evansm/l/d St dney, mouse/Stud N y 2, UT4v2/NT kidney E2				l	P. State of	8	785	3 8	\$	9 4	2 16	82	젊	<u></u>	2 ×	11	16	2 4		14	27	-	2	N =	4	ज इ	=	65	8	-	24	8 4	2 0	14	9	2	8	<u>=</u> 0	,
	2	Expr V (evansm/ Kitchey, t mouse/St udy 2, UT4v2AV T kidney E2 (82408))	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			F1 (11		5 (7	H		-	Ш	N			6				7	96	-	w).	a P) ()	<u>د د</u>	2 00	1,1	4	ব	ę.	한	-	21.2	7	45	4	∞ ₹	7
	Ş Ş	Expr (fevansm/ Kidney, I mouse/St udy 2, U74vZW T kidney vehicle (82407))				,	3	1:	i i	0-		-	0 00	-	7,	_	4 4	96	2	B 6	2 60	4	9	1	-6	96	7 72	77	F 140	18	60	.	F	∞		2 8	27	5	- PO	8 4	1
Study 2 WT	탕	Expr (levansm/k idney, mouse/Stu dy 2, UT4v2/WT kidney vehicle (82405))	1			•	4.4	1 2																																	
		Expr (levansm/ Kidney, mouse/St udy 1, UT4v2/KO E2 kidney (81038))	-	27.0	333	125	02- X-5	りにます	282	277	67	8	103	94	24	4	47	3 5	16	\$	9	28	7	0	16	8	1	4 (7 7	9	8	\$	30	38	3 5	2 69	Ξ	13	7	19	3
Study 1 ERbKO	<u>ء</u>	nsm/ ey. se/St f. 2/KO de de	1		8	77				•	6	4	*	_	7	1	8	~ ~	2	ल	5 12	9	9	†	4	0	40	+	2 3	F 150	N	ь	8	Ē.	o la	7 2	2	-	~	2	1
왕따	چ ا		Ε.	9 5	370	115	-	+	305	2 5	222	75	8 5	8	\$	2	5 6	3 1-	11	37	3 8	88	45	9	27	7	200	80 8	3 8	3 2	2	42	8	8 8	80	ě	0	12	16	41	3
	E	Expr (fevansm/K St Idney, mouse/Stu W dy 1, de U74/2/WT E2 kidney		5 a	1	5	2.	1 1	E	2 V	1 9	9	<u>ه</u> چ	2 2	77	+	₩ (2	mu	n cc	9	30	+	-	LO C	7 12	2	\$7 E	3 5	6	- 60	52	4	4 6	7 8	3	4	-co	6	2
Study	Veh	Expr (levansm/ Kidney, mouse/St udy 1, UT4v2vV T Vehicle kidney				0		174		4 6	4	0	4 n	2 60	1	8	0 1	14	=	99	0 9	9	120	gel I.gg	8	55	3 %	88	8 8	2 2	8	8	23	1,1	12	1 6	5 6	2.96	25	2.88	8
Approx	Ave	<u> </u>		4	91.00	Ιſ		i.	28.73	25.2	17.4	17.4	77	13.5	12.3	-	6.83	100	П	ì	Т		11	1			3.52						3.	8	6	ri e	1	12		Ц	ż
				Kalliden 6.1	kattionelin 1	kaliikrein 5	kalikrein 9 kansducer and activatorod transcriptions	signal transducer and activator of transcription.		de d	herve growu ractor, alpira kallikrein 8	kallikrein 21	kallikrein 13,kallikrein 28	Kallikein 10		solute carrier family 7 (cationic amino acid	transporter, y+ system), member 5	17h dehydmaenses A homolon	Bassing	RIKEN cDNA 1110003008 gene	reelin	nacental lactoren 2	cytokine Inducible SH2-containing protein 3	Tmprss2 Transmembrane protease, serine 2	MADZ (mitouc arrest dencient, notitolog/tive 1 (yeast)		2CYP2S1 Cytochrome P450		galanin	PAPEGA NGAP-11KB PROTEIN PRIKEN CONA 1110/018/123 gene	RIKEN cDNA 2700007F12 gene	growth arrest and DNA-damage-inducible 45	lunctophilin 3	Ш		A Charles and a local	NOLDA NUCIBOIAT PROTEIN 3A		Weakly similar to high mobility group 1 protein		p53 apoptosis effector related to Pmp22
		in denoted				1 6	Mm.200410	4	MILLACOF		Mm.5193	Mm.143833	Mm.143842	Mm. 78357	Mm.45188		Mm.27943	Mm.24361		1	- 1		1 1				Mm.23157 Mm.23710	ΙI	- 1			1	Mm.143762	Mm.27667	Mm.37753	Mm.31771	MM.29383	Mm.32795	Mm.87051	Mm.144157	Mm.28209
		Frommlar Sarr		M13500	VOUB29		M17962	A (257020 - 11)	M17979	V00829	X03994	П	- 1	1	AW120785			-		Н	-	Т	U88328	1		ΙI	AIB42542	П	- 1	Т	ı	l l	AFV53636	AW048768	AI852394	Al452189	AW121447	AW121080	AA982630	M31658	AI854029
		Fracment Name Evermiter Serr d Interne	The state of the s	100060 at	:1		41	1 . ; '	101289 f at		104497 f at	1 1	- 1	- 1	139531 at				1		- 1		92232 at					105737 at	١	1	162976 at		ı	П	Ш	1	١	133815 at 114394 at		100938 at	Н
	Potential	Š		۱			J. L. Carlo		10.00		T																														
	Potential			×	× ,	×	*		××	×	××	×	×	×,	(×	×	×	ж,	××	×	×	×,	××	×	*	×	×	×	×	× :	××		××	×	×	×	×	××	,	< ×	×

ПП	T	4	P N	ഗി	" =	6	छ्य	4	2	56	8	2 2	ï	SI 4	۱۳	9	-	ঞ্চ	2 19	ř		٥	8	* <u> </u>		T	40	4	٦	-	۴	<u>41.</u>	T	٩	무	7	<u> </u>	
	Expr (levansm/ Kldney, mouse/St udy 2, U74vZ/ER bKO kldney E2 (82412))		2 4	4	* =	2	8 8	3 23	R	83	11	9 5		2	22	÷	2	47	2 2	181	=	4	ō	E 6		1	6	LS	Ę	8	7	5	1	8	8	77	<u>\$</u>	
E2	nem Expr y, (fevan e/Stu Kidne mous ZER udy 2 UT4x/ y bKO y bKO 1) (8241	N	2	-	4	Z	===	22	H	5	4	34	+	╬	, -	-	╬	P	+	48	4 8	3	33	22 2	H	\dagger	9	9	1	13	12	=	†	=	- 6	9	38	
Ş.	Expr Movansm/ Kidney, St mouse/Stu dy 2. ER U74/2/ER bKO kidney vehiclo	4	a m	m	4 00	1 =	₽	2 199		- 6	4	a	+	8	-	_	•	<u>≅</u> ,	700	8	<u>ت</u>	3 4	\$	7 2	\mathbb{H}	+	18	۰	٤	==	9	~	╬	위	_	7	2 F	ļ
Study 2 ERbKO Veh	Expr (levansm/ Kidney, mouse/St udy 2, UT4v2/ER bKO kidney vehicle										- T	2		60 6		Ļ		6015	2 6	. 4	7	3) 82	7	ن د ا			9	. 4		14	P	4	E I	2	60		1	
E2	Expr (levansm/kl dney, mouse/Slud y 2, UT4v2MY kldney E2 (82409))		200	7			30			- 8		12		18				23	ŀ	174			B)	١												5	116	i E
E2	Expr (Jevansm/ Kldney, mouse/St udy 2, udy 2, UT4vZ/W T kldney E2 (82408))		20 4		8 6	۱	24 2				Ξ			22	24		=	32		80 175			117				13		'	8 1		6		12			27 1	
Veh	Expr (fevansm/ Kldney, mouse/St udy 2, U74v2/W T kldney vehide (82407))	2	9 M	2	2					19	4	=,	2	9	7 65			22		83 8	7	2 2		20			26	L		N N				14			24	
Study 2 WT	Expr (/evansm/k idney, mouse/Stu dy 2, U/74v2W/T kidney vehicle					6	23	- 4	1	2						ľ		2									ľ											
23	Expr (levansm/ Kidney, mouse/St udy 1, U74vZIKO E2 kidney (81038))	7	14	4	= :	Ž	90	8 6	25		17		12		24 B		13			285		53			130		8			7 5				8	13		28	
Study 1 ERbKO Veh	sea/St 14. 14. 12. 12. 12. 12. 12. 12. 12. 12. 12. 12	N	m	-	RVF	33	25	2/2	12	11	8	13	9	11	2 6		7			105		\$ \\	33	17	8		1	¥		8 8			Ŧ	15			16	
2	Expr (levansm/K Idney, mouse/Stu dy 1, U74x2MT E2 kidney (81036))	12	11	4	8	79	61	200	38	. A	37	23	<u>e</u>	39	23		3						206				,	9		23	L		,	F			12	
Study 1 WT	sm/ y, y/s s/St s/W (c)		es c		77	2 14	22	SI S	9 9	3	13	17	-	21	3		=	28	9	148	7	9	929	22	128		Q.	2 8		88				22			136	
Approx			2.81	2.70	2.66	2.60	2.57	2.52	2.41	, ,	2.31	2.24	2.23	1	222	1	2.20			1	2.09	2.08	2.08	2.08	1.97		0.50		OC'O	0.49	0.49	0.48	0.48	0.48	740	0.46	0.45	
						anglopoletin-like 2 DA117 Petrote add Induced 17	RIKEN CDNA 2810510801 gene			similar to TESTOSTERONE-REGULATED RP2	vascular endothellal growth factor	RIKEN cDNA 0610039J01 gene	stug, chicken homolog	caspase 3, apoptosis related cysteine protease	sodium channel, nonvoltage-gated 1 gamma	signal transducer and activator of transcription	58	NRIP1 Nuclear receptor mieracting protein 1, RIP140	RIKEN cDNA 1110017N23 gene	RIKEN CDNA 4933429H19 gene		ankyrin 1, erythroid	Oxysterol binding protein-like	ribosomal protein L12	hypoxta inducible factor 1, alpha subunit			Similar to TYROSINE-PROTEIN KINASE	KECEPION HEATPRECURSOR	paired-like homeodomain transcription factor 2			RIKEN cDNA 5033417D07 gene	protein kinase, cAMP dependent regulatory, type	7HBACH Cytosolic acyl coenzyme A thioester	RIKEN cDNA 4930434J08 gene	spinocerebellar ataxia 10 homolog (human)	
	Uniterne	Mm 40245	Mm.35319	Mm.27680	Mm.21070	Mm.19081	Mm.23230	Mm.89845	Mm.17850 Mm 23047		Mm.31540	Mm.41409	Mm.4272	Mm.34405	П	1	Mm.34064	Mm.74711	Mm.24411	Mm.200980	Mm.49448	Mm.4789	Mm.31024 Mm.218360	Mm.70127	Mm.3879		14m 22720	Will.337.30	Mm.214530	Mm.1385	Mm 23178	Mm.22808	Mm.27650	Mm.25594		Mm,59239	Mm.4098	Millionico
	Exemilar Sec. A Unione	A185/104	A1553493	1	11	- 1	П	П	-1	ı	AA959550	AI851899	U79550	U83720	AA815844	AAZTUBSI	AI851671	AA959574	AW230977	AV365688	AI481830	U76758	A1591488	AV291803	AF003695		AIDADAEA	Albestoe	AI931796	U70132	A1833080	AI851948	AW214502	AIR51427	0.077	ANZ06066	X61506	MATEURO
	Faoment Name	108070 01	Ш	1	Ш	103556 at	1 1		164051 at		1	165772 at			165710 at		113125 at		1 I	165032 i at		1 1	163370 at		1		1000707	1648GU SI		102788 s at							99127 at	
			\prod	\downarrow					1		\downarrow					_			\prod	1	ļ		-	\parallel			REPRESSIONS	-	\downarrow	+	\downarrow	-	L		_	+	\prod	$\frac{1}{1}$
	Potential Fig. 18 and 1	,	 x			×	××	×	× ,		× ,			×	×	×	×	×	×	×,		×	× ,	×	×			<u>.</u>	×	×	<u>.</u>	<u> </u>	×	,		× .	× ,	×

	٦	П		_			_	_	_		₹	60	副	øj.	ণ	=	<u>ت</u>	ज	च		8	۳	7	쁴	<u> </u>	<u>ما</u>	-	<u> </u>	1 2	160	Γ		П	П	7	Т
_		E2		_				~			Ļ		1		ᆲ	<u> </u>	۵	4		- 5		- 40	- 4	恕	2	ᆌ	- 1	3 5	1 2	ļ	L	1	Н	Ц	4	+
		73	Exar	(Jevansm)	Adney,	mouse/St	uoy 2.	U74VZEF	2	(82412))			176			-											۱	١								
		Veh	Expr (/evansm/	Kldney.	ğ	9.2.	ğ			Vehicle (82411))	I۳	. 6	446	15	7	36	13	6	=	23	B	18	26	29	٦	٦	8	7							ļ	
udy 2	ERPKO	П	Expr	_	õ	udy 2,	ZER			vehicle v	7	₹	257	5	2	25	7	7	₹	8	효	65	82	42	38	۳	X	\$ 1	\$ 5	3 2			П			T
S	Ξ	Ž	ฏ ≋		DSm2/A			y2.			6	1	125	4	7	4	4	2	6	12	46	4	S)	12	17	~	8	۶	2 6	6		l				\dagger
L		23	-	돌		St dney	STORE	× ×	<u>}</u>	kidney E2		ম	180	4	-	8	9	4	9	*	76	S	-6	23	98	7	2	١	= 4	 -	ŀ	-	H	Н	-	+
L		23	Exor	3	_	St mouse/St	udy 2,	× 545		(R2408))	12	<u>د</u>	470	14	#	5	15	9	=	27	198	16	56	71	83	8	4	3 5	2 8	 	-	ŀ		Н	\parallel	+
L	L	Veh Veh	, i	포		tr mouse/St	udy 2,	T 574/2	T kddney	vehicle	8	S		18	22	8	15	10	8	35	25	55				١	8		2 2			L	L			4
Study 2	¥	Veh	Pr	(/evansm	Idney.	mouse/Stu	dy 2,	174/2W	Idaney	vehicle	700		S								2				•			"								
		ជ		Expr	/evansm/	Kldney,	mouse/St	ξģ.	74V2/KO	E2 kidney	9	5	262	7	7	22	9	3	7	18	84	8	17	27	25	8	18	3	2 4	÷						
Shidy 1	ERBKO	Г		2	=	ŭ		0		Kidney E	ᅋ	8	998	18	18	14	9	14	5 8	47	212	-8	33	2	64	22	g	2	5	3 2		T				
is.	Ü	Š	ú	18	(/evansm/K		Ě					<u>د</u>	578	15	14	8	ii)	3	17	18	178	14	27	74	22	4	Ξ	20,	77 0	2 9		t				+
_	L	<u> </u>	-	in/ Expr	_		monse/Str	₹ 9	뽔	E2 kidney	ıω	5	1120	23	27	85	4	6	77	25	338	33	5	145	131	20	S	3 2	200	3 5	1	╀		H		+
Study	ķ	Š	ŭ	(levansm/	Kidney.	mouse/St	są,	542	T Vehicle	Adney (81010))						=	Ξ	0	2	2	65	88	0.38	0.38	35	Z	ឌ	0.32	215	0.48	2	ļ				1
L	Approx	Awe								100	0.44	0.44	ě	0.43	0.4	0.41	0.41	0.40	0.40		0.39	0.39		L	0.35	0.	ö		0.28	3 6	1	ļ		Ц		
										Vocas Case Name	Niowii Gerie, vanio	blotycan	Intenizing hormone beta		B-cell translocation gene 1, anti-proliferative	Edita EGF-like repeats and discordin I-like domains 3		Immune associated nucleotide 4	laminin, alpha 1	SIMILER TO TSC1_RAT HAMARTIN (TUBEROUS SCLEROSIS 1 PROTEIN HOMOLOG)	secreted phosphoprotein 1	bladder cancer associated protein homolog (human)	IGSF1 Immunoglobulin superfamily, member 1	RIKEN cDNA 6330403K07 gene	thymus cell antigen 1, theta	regutator of G-protein signaling 4	regulator of G-protein signaling 4	neuronaun	On the emitter	follide efferitation borners bets						
L										- Income	Mm.38027	Mm.2608	Mm.57061	Mm.29940		Mm.41716	Mm.22305	Mm.34232	Mm.243	Mm.169241	Mm.321	Mm.34330	Mm.24577	Mm.27768		Mm.41642	Mm.41842	Mm.140956	Mm.1333	MIII.002/3	WHILE-TO-					
										Contraction Comments	137525 at A1098139 Mm.3802	AV016819	U25145	AW047843	216410	AW123288	AI847273	AV066592	M36775	AI788603	X13986	AW121500	A1843147	A1838836	M12379	AW122295	AI854153	8999X	MESTER	1142032	Olkank					
										Commont Mome	137525 at	167023 f at	101738 at	104477 at	93104 at	162969 at	185569 at	170896 at	103729 at	132403 at	97519 at	98055 at	163224 at	95559 at	99057 at	133139 at	162964 at	97520 8 at	10054 at	100001 81	101101 01					
		Patential							_	4	Creaters Cruaters																									
		Potential								000	× Creaters	_\x	×	×	×	*	×	,	×	×	×	×	×	×	×	×	×	×	×,	,						

LIST OF REFERENCES

- 1. Grodstein, F., Manson, J. E., Colditz, G. A., Willett, W. C., Speizer, F. E. & Stampfer, M. J. (2000) Annals of Internal Medicine 133, 933-41.
- Barrett-Connor, E., Slone, S., Greendale, G., Kritz-Silverstein, D., Espeland,
 M., Johnson, S. R., Waclawiw, M. & Fineberg, S. E. (1997) Maturitas 27, 261-74.
 - 3. Godsland, I. F. (2001) Fertility & Sterility 75, 898-915.
 - 4. Nanda, K., Bastian, L. A., Hasselblad, V. & Simel, D. L. (1999) Obstetrics & Gynecology 93, 880-8.
- 5. Kawas, C., Resnick, S., Morrison, A., Brookmeyer, R., Corrada, M.,

 Zonderman, A., Bacal, C., Lingle, D. D. & Metter, E. (1997) Neurology 48, 1517-21.
 - 6. Worzala, K., Hiller, R., Sperduto, R. D., Mutalik, K., Murabito, J. M., Moskowitz, M., D'Agostino, R. B. & Wilson, P. W. (2001) Archives of Internal Medicine 161, 1448-54.
- 7. Kuiper, G. G., Carlsson, B., Grandien, K., Enmark, E., Haggblad, J., Nilsson, S. & Gustafsson, J. A. (1997) Endocrinology 138, 863-70.
 - 8. Hill, A. A., Hunter, C. P., Tsung, B. T., Tucker-Kellogg, G. & Brown, E. L. (2000) Science 290, 809-12.
 - 9. Shughrue, P., Scrimo, P., Lane, M., Askew, R. & Merchenthaler, I. (1997) Endocrinology 138, 5649-52.

10. Evans, M. J., Eckert, A., Lai, K., Adelman, S. J. & Harnish, D. C. (2001) Circulation Research 89, 823-830.

- 11. Kraichely, D. M., Sun, J., Katzenellenbogen, J. A. & Katzenellenbogen, B. S. (2000) Endocrinology 141, 3534-45.
- 5 12. Lubahn, D. B., Moyer, J. S., Golding, T. S., Couse, J. F., Korach, K. S. & Smithies, O. (1993) Proceedings of the National Academy of Sciences of the United States of America 90, 11162-6.
- Pendaries, C., Darblade, B., Rochaix, P., Krust, A., Chambon, P., Korach, K.
 S., Bayard, F. & Arnal, J. F. (2002) Proceedings of the National Academy of Sciences
 of the United States of America 99, 2205-2210.
 - 14. Couse, J. F., Curtis, S. W., Washburn, T. F., Lindzey, J., Golding, T. S., Lubahn, D. B., Smithies, O. & Korach, K. S. (1995) Molecular Endocrinology 9, 1441-54.
 - 15. Berry, M., Metzger, D. & Chambon, P. (1990) EMBO Journal 9, 2811-8.
 - 16. Hall, J. M. & McDonnell, D. P. (1999) Endocrinology 140, 5566-78.
- 15 17. Weihua, Z., Saji, S., Makinen, S., Cheng, G., Jensen, E. V., Warner, M. & Gustafsson, J. A. (2000) Proceedings of the National Academy of Sciences of the United States of America 97, 5936-41.
 - 18. Trogan, E., Choudhury, R. P., Dansky, H. M., Rong, J. X., Breslow, J. L. & Fisher, E. A. (2002) Proceedings of the National Academy of Sciences of the United States of America 99, 2234-2239.

20

19. Evans, M. J., Lai, K., Shaw, L. J., Harnish, D. C. & Chadwick, C. C. (2002) Endocrinology, In press.

20. McIntire, J. J., Umetsu, S. E., Akbari, O., Potter, M., Kuchroo, V. K., Barsh, G. S., Freeman, G. J., Umetsu, D. T. & DeKruyff, R. H. (2001) Nature Immunology 2, 1109-16.

5

- 21. Ichimura, T., Bonventre, J. V., Bailly, V., Wei, H., Hession, C. A., Cate, R. L. & Sanicola, M. (1998) Journal of Biological Chemistry 273, 4135-42.
- 22. Davidoff, M., Caffier, H. & Schiebler, T. H. (1980) Histochemistry 69, 39-48.
- 23. Aitken, J. M., Lindsay, R. & Hart, D. M. (1974) Clinical Science & Molecular Medicine 47, 179-87.
 - 24. Pirani, B. B., Campbell, D. M. & MacGillivray, I. (1973) Journal of Obstetrics & Gynaecology of the British Commonwealth 80, 884-7.
 - 25. Stachenfeld, N. S., DiPietro, L., Palter, S. F. & Nadel, E. R. (1998) American Journal of Physiology 274, R187-95.
- 15 26. Verlander, J. W., Tran, T. M., Zhang, L., Kaplan, M. R. & Hebert, S. C. (1998)

 Journal of Clinical Investigation 101, 1661-9.
 - 27. Farmer, M. K., Robbins, M. J., Medhurst, A. D., Campbell, D. A., Ellington, K., Duckworth, M., Brown, A. M., Middlemiss, D. N., Price, G. W. & Pangalos, M. N. (2000) Genomics 70, 241-52.

- 28. Reddy, M. M., Light, M. J. & Quinton, P. M. (1999) Nature 402, 301-4.
- 29. Fu, G. K., Lin, D., Zhang, M. Y., Bikle, D. D., Shackleton, C. H., Miller, W. L. & Portale, A. A. (1997) Molecular Endocrinology 11, 1961-70.
- 30. Tanaka, Y., Castillo, L. & DeLuca, H. F. (1976) Proceedings of the National

 Academy of Sciences of the United States of America 73, 2701-5.
 - 31. McKane, W. R., Khosla, S., Burritt, M. F., Kao, P. C., Wilson, D. M., Ory, S. J. & Riggs, B. L. (1995) Journal of Clinical Endocrinology & Metabolism 80, 3458-64.
 - 32. Grey, A. B., Stapleton, J. P., Evans, M. C., Tatnell, M. A. & Reid, I. R. (1996)

 Annals of Internal Medicine 125, 360-8.
- 10 33. Johnson, J. A. & Kumar, R. (1994) Seminars in Nephrology 14, 119-28.
 - 34. Hajjar, K. A. (2001) Journal of Clinical Investigation 107, 663-4.
 - 35. Bostom, A. G., Silbershatz, H., Rosenberg, I. H., Selhub, J., D'Agostino, R. B., Wolf, P. A., Jacques, P. F. & Wilson, P. W. (1999) Archives of Internal Medicine 159, 1077-80.
- 15 36. Walsh, B. W., Paul, S., Wild, R. A., Dean, R. A., Tracy, R. P., Cox, D. A. & Anderson, P. W. (2000) Journal of Clinical Endocrinology & Metabolism 85, 214-8.
 - 37. Libert, F., Parmentier, M., Lefort, A., Dumont, J. E. & Vassart, G. (1990)

 Nucleic Acids Research 18, 1917.
 - 38. Kapas, S. & Clark, A. J. (1995) Biochemical & Biophysical Research

Communications 217, 832-8.

- 39. Gangula, P. R., Zhao, H., Wimalawansa, S. J., Supowit, S. C., DiPette, D. J. & Yallampalli, C. (2001) Biology of Reproduction 64, 1776-83.
- 40. Cadnapaphornchai, M. A., Briner, V. A. & Schrier, R. W. (2001) in Diseases of the Kidney and Urinary Tract, ed. Schrier, R. W. (Lippincott Williams & Wilkins, Philadelphia), pp. 1459-1487.
 - 41. Safe, S. (2001) Vitamins & Hormones 62, 231-52.
 - 42. Paech, K., Webb, P., Kuiper, G. G., Nilsson, S., Gustafsson, J., Kushner, P. J. & Scanlan, T. S. (1997) Science 277, 1508-10.
- 10 43. Naka, T., Fujimoto, M. & Kishimoto, T. (1999) Trends in Biochemical Sciences 24, 394-8.