Задание на четвертую неделю. Графы – 1

- **Ex. 1.** Существует ли граф на 8 вершинах, в котором 23 ребра и есть вершина степени 1?
- **Ex. 2.** В шахматном турнире по круговой системе с пятью участниками только Ваня и Леша провели одинаковое число встреч, а все остальные разное. Сколько встреч сыграли Ваня и Леша?
- **Ex. 3.** Докажите, что вершины связного графа G можно упорядочить так, что для каждого i, $1 \leqslant i \leqslant |V(G)|$, индуцированный подграф $G[\{v_1,\ldots,v_i\}]$ будет связным.
- **Ex. 4.** Докажите, что $\mathrm{rad}(G) \leqslant \mathrm{diam}(G) \leqslant \mathrm{rad}(G)$, и приведите примеры, когда достигается каждая из этих оценок.
- **Ex. 5.** В дереве на 2019 вершинах ровно три вершины имеют степень 1. Сколько вершин имеют степень 3?
- **Ex. 6.** Есть два дерева на п вершинах, каждое имеет диаметр длины d. Можно ли так добавить ребро между вершинами этих деревьев, чтобы длина диаметра полученного дерева равнялась d?
- **Ех. 7.** Докажите, что для любого $k \leq |V(G)|$. В графе G найдется k вершин $\{\nu_k\}_{i=1}^k$, в результате удаления которых вместе со всеми смежными ребрами, получается связный граф $G' = G[V \setminus \{\nu_i\}_{i=1}^k]$.
- **Ех. 8.** Граф получен из графа-цикла C_{2n} добавлением ребер, соединяющих противоположные вершины (v_1 соединена с v_{n+1} , v_2 с v_{n+2} и т.д.). При каких n получившийся граф правильно раскрашиваемый a) в два цвета; b0 в три цвета?

Бонусная задача. В некоторой группе из 12 человек среди каждых 9 найдутся 5 попарно знакомых. Докажите, что в этой группе найдутся 6 попарно знакомых.

Задание на четвертую неделю. Графы – 1

- **Ex. 1.** Существует ли граф на 8 вершинах, в котором 23 ребра и есть вершина степени 1?
- **Ex. 2.** В шахматном турнире по круговой системе с пятью участниками только Ваня и Леша провели одинаковое число встреч, а все остальные разное. Сколько встреч сыграли Ваня и Леша?
- **Ex. 3.** Докажите, что вершины связного графа G можно упорядочить так, что для каждого i, $1 \leqslant i \leqslant |V(G)|$, индуцированный подграф $G[\{v_1,\ldots,v_i\}]$ будет связным.
- **Ex. 4.** Докажите, что $\mathrm{rad}(G) \leqslant \mathrm{diam}(G) \leqslant \mathrm{rad}(G)$, и приведите примеры, когда достигается каждая из этих оценок.
- **Ex. 5.** В дереве на 2019 вершинах ровно три вершины имеют степень 1. Сколько вершин имеют степень 3?
- **Ex. 6.** Есть два дерева на п вершинах, каждое имеет диаметр длины d. Можно ли так добавить ребро между вершинами этих деревьев, чтобы длина диаметра полученного дерева равнялась d?
- **Ех. 7.** Докажите, что для любого $k \leq |V(G)|$. В графе G найдется k вершин $\{\nu_k\}_{i=1}^k$, в результате удаления которых вместе со всеми смежными ребрами, получается связный граф $G' = G[V \setminus \{\nu_i\}_{i=1}^k]$.
- **Ех. 8.** Граф получен из графа-цикла C_{2n} добавлением ребер, соединяющих противоположные вершины (v_1 соединена с v_{n+1} , v_2 с v_{n+2} и т.д.). При каких n получившийся граф правильно раскрашиваемый a) в два цвета; b0 в три цвета?

Бонусная задача. В некоторой группе из 12 человек среди каждых 9 найдутся 5 попарно знакомых. Докажите, что в этой группе найдутся 6 попарно знакомых.