UNIVERSIDADE FEDERAL DE SANTA CATARINA DEPARTAMENTO DE ENGENHARIA DE PRODUÇÃO E SISTEMAS
Programação Linear Inteira e Mista Programação Linear Binária
Prof. Sérgio Fernando Mayerle

1. PROGRAMAÇÃO LINEAR INTEIRA E MISTA (A. H. Land & A. G. Doig, 1960)

1.1. Aplicações com variáveis inteiras

- Geração de portafólios de investimento
- Localização de facilities (fábricas, armazéns, postos de atendimento, etc)
- Problemas de cobertura
- Problemas de partição
- Problemas de alocação
- Problemas de seqüenciamento
- Problemas de roteamento

1.2. Definição 1

Seja o problema de programação linear inteira mista (PPLIM) apresentado na forma abaixo:

$$\langle \mathsf{p} \rangle$$
 Max $c^T x$

s.a: $x \in M$

onde
$$M = \{x \in \mathbb{R}^n \mid Ax = b, 0 \le x \le u, x_{j=1,...,K} \in \mathbb{Z}\}$$
.

1.3. Definição 2

Seja o problema de programação linear inteira mista relaxado (PPLIMR), obtido a partir de $\langle p \rangle$, na forma:

$$\langle \overline{\mathsf{p}} \rangle$$
 Max $c^T x$

s.a:
$$x \in \overline{M}$$

onde $\overline{M} = \{x \in \mathbb{R}^n \mid Ax = b, 0 \le x \le u\}$. Note-se que $M \subseteq \overline{M}$.

1.4. Proposição 1

- i) Se $\langle \overline{p} \, \rangle$ não tem solução, então $\langle p \, \rangle$ também não terá solução;
- ii) Se \overline{x}^* é a solução ótima de $\langle \overline{p} \rangle$ e $\overline{x}_j^* \in Z$, $\forall j = 1,...,K$, então \overline{x}^* é a solução ótima de $\langle \overline{p} \rangle$.

1.5. Proposição 2

Seja \overline{x}^* a solução ótima de $\langle \overline{\mathbf{p}} \rangle$, com $\overline{x}_j^* \not\in Z$ pelo menos para algum j=1,...,K. Sejam os conjuntos:

$$\overline{M}_{(I)} = \{ x \in \mathbb{R}^n \mid Ax = b, 0 \le x \le u, x_j \le \lfloor \overline{x}_j^* \rfloor \}$$

$$\overline{M}_{(II)} = \{ x \in \mathbb{R}^n \mid Ax = b, 0 \le x \le u, x_i \ge \lceil \overline{x}_i^* \rceil \}$$

onde $\lfloor v \rfloor$ é o maior inteiro menor que v , e $\lceil v \rceil$ é o menor inteiro maior que v .

- i) Se $\langle \mathbf{p} \rangle$ admite solução ótima x^* , então $x^* \in \overline{M}_{(I)} \cup \overline{M}_{(II)}$;
- ii) Se $x_{(I)}^* \in \overline{M}_{(I)}$ e $x_{(II)}^* \in \overline{M}_{(II)}$ são soluções que maximizam $c^T x$, sobre os conjuntos $\overline{M}_{(I)}$ e $\overline{M}_{(II)}$, respectivamente, se $c^T x_{(I)}^* \geq c^T x_{(II)}^*$ e se $x_{(I)}^*$ satisfaz as condições de integridades definidas para $\langle \mathsf{p} \rangle$, então $x_{(I)}^*$ é a solução ótima de $\langle \mathsf{p} \rangle$.

1.6. Algoritmo branch and bound

- Passo 1 Gere uma lista de PPL's inicialmente vazia. Resolva o PPLIM desconsiderando as restrições de integridade. Se este problema não tem solução viável, então PARE. O PPLIM também não terá solução viável. Em caso contrário, inclua este PPL na lista.
- Passo 2 Escolha, entre os PPL's da lista, aquele cujo valor da solução ótima seja o máximo. Se mais de um problema atender esta condição, desempate de qualquer forma, mas sempre a favor de soluções que satisfaças as condições de integridade do PPLIM.
- Passo 3 Retire o problema escolhido da lista e, se a sua solução satisfizer as condições de integridade, PARE. A solução ótima do PPLIM foi encontrada. Em caso contrário, tome uma variável inteira que não satisfaz a condição de integridade, isto é $\overline{x}_j^* \notin Z$, e gere dois novos PPL's, pela agregação das seguintes restrições adicionais:

Problema 1
$$x_j \leq \lfloor \overline{x}_j^* \rfloor$$

Problema 2
$$x_j \ge \lceil \overline{x}_j^* \rceil$$

Resolva cada PPL gerado, e se tiver solução ótima, inclua na lista.

Passo 4 Se a lista estiver vazia, então PARE, pois o PPLIM não tem solução viável. Em caso contrário volte ao Passo 2.

Observações:

- 1. Na prática costuma-se descartar os PPL's cujo valor da função objetivo são menores que $(1+b)\cdot z^*$, onde z^* é o valor da função objetivo da melhor solução inteira conhecida até um determinado estágio da busca;
- 2. A solução dos PPL's descendentes poderão ser obtidas com a aplicação de técnicas de análise de pós-otimalidade. Em geral, uma iteração dual é suficiente para encontrar a solução destes novos problemas, partindo-se da solução do PPL que lhes deram origem.

Exemplo

Max
$$3x_1 + 3x_2 + 13x_3$$

s.a: $-3x_1 + 6x_2 + 7x_3 \le 8$
 $6x_1 - 3x_2 + 7x_3 \le 8$
 $0 \le x_1, x_2, x_3 \le 5$
 $x_1, x_2, x_3 \in I$

Problema		X1			X2			Х3			Z	Observação	
Número	Anterior	Inf.	Valor	Sup.	Inf.	Valor	Sup.	Inf.	Valor	Sup.		Obsel vação	
1	-	0,00	2,67	5,00	0,00	2,67	5,00	0,00	0,00	5,00	16,00	PPLIM original	
2	1	0,00	2,00	2,00	0,00	2,00	5,00	0,00	0,29	5,00	15,71	Ok	
3	1	3,00		5,00	0,00		5,00	0,00		5,00		Não existe solução	
4	2	0,00	2,00	2,00	0,00	2,33	5,00	0,00	0,00	0,00	13,00		
5	2	0,00	0,33	2,00	0,00	0,33	5,00	1,00	1,00	5,00	15,00	Ok	
6	5	0,00	0,00	0,00	0,00	0,00	5,00	1,00	1,14	5,00	14,86	Ok	
7	5	1,00		2,00	0,00		5,00	1,00		5,00		Não existe solução	
8	6	0,00	0,00	0,00	0,00	0,17	5,00	1,00	1,00	1,00	13,50	Ok	
9	6	0,00		0,00	0,00		5,00	2,00		5,00		Não existe solução	
10	8	0,00	0,00	0,00	0,00	0,00	0,00	1,00	1,00	1,00	13,00	Solução ótima	
11	8	0,00		0,00	1,00		5,00	1,00		1,00		Não existe solução	

Solução ótima

$$x_1 = 0$$

$$x_2 = 0$$

$$x_3 = 1$$

$$x_1 = 0$$

$$x_2 = 0$$

$$x_3 = 1$$

$$z^* = 13$$

2. PROGRAMAÇÃO LINEAR BINÁRIA (E. Balas, 1965)

2.1. Definição

Seja o PPLB (Problema de Programação Linear Binária) que segue:

Max
$$\sum_{j=1}^n c_j x_j$$
 s.a:
$$\sum_{j=1}^n a_{ij} x_j \le b_i \qquad \forall i=1,...,m$$

$$x_j \in \{0,1\} \qquad \forall j=1,...,n$$

no qual $c_1 \ge c_2 \ge \cdots \ge c_n \ge 0$.

2.1. Transformações de equivalência

No caso do problema não se adaptar à esta forma padrão, o mesmo deverá sofrer as seguintes transformações:

- a) efetue a substituição $x_i = 1 x'_i$ $\forall c_i < 0$;
- b) troque cada uma das restrições do tipo $\sum a_{ij}x_j=b_i$ por duas restrições: uma do tipo $\sum a_{ij}x_j \leq b_i$ e outra do tipo $\sum a_{ij}x_j \geq b_i$;
- c) troque cada uma das restrições do tipo $\sum a_{ij}x_j \geq b_i$ por uma restrição $-\sum a_{ij}x_j \leq -b_i$;
- d) reordene as variáveis do PPLB de modo que $c_1 \ge c_2 \ge \cdots \ge c_n$.

2.2. Algoritmo de Programação Linear Binária

O algoritmo proposto a seguir consiste em um processo de busca em uma árvore binária, na qual a cada nó n da árvore corresponde uma solução parcial do PPLB, cujos valores das k primeiras variáveis são conhecidas. A fim de se verificar a possibilidade de existência de uma solução viável e ótima, a partir desta solução parcial, dois testes deverão ser realizados.

2.2.1. Teste de Otimalidade

O teste de otimalidade considera o conhecimento prévio de uma solução ótima temporária, cujo valor da função objetivo é $z_{\acute{o}timo}$. Considerando que na solução parcial as k primeiras variáveis são conhecidas, uma estimativa do máximo do valor da função objetivo para uma solução completa derivada desta solução parcial, poderá ser feita através de:

$$z_{estimado} = \sum_{j=1}^{k} c_j x_j + \sum_{j=k+1}^{n} c_j$$

Se o valor de $z_{estimado}$ for superior ao valor de $z_{\acute{o}timo}$, então é possível que se encontre uma solução ótima a partir desta solução parcial. Em caso contrário, a melhor solução possível de ser encontrada não será melhor que a solução ótima temporária já disponível.

2.2.2. Teste de Viabilidade

O teste de viabilidade, por sua vez, considera que para cada restrição deve ser satisfeita a seguinte condição:

$$\sum_{j=1}^{k} a_{ij} x_j + \sum_{j=k+1}^{n} a_{ij} x_j \le b_i$$

ou:

$$\sum_{j=1}^{k} a_{ij} x_j \le b_i - \sum_{j=k+1}^{n} a_{ij} x_j \le b_i - \sum_{j=k+1}^{n} \min(0; a_{ij})$$

Então, se para alguma restrição:

$$\sum_{j=1}^{k} a_{ij} x_j > b_i - \sum_{j=k+1}^{n} \min(0; a_{ij})$$

conclui-se que não existirão valores para as variáveis ainda não conhecidas que permitam a obtenção de uma solução satisfaça a restrição.

No caso de falha de um destes dois testes, é necessário rever os valores atribuídos as k primeiras variáveis.

2.2.3. Algoritmo propriamente dito

Passo 0 Monte o PPLB em sua forma padrão. Faça $z_{\acute{o}timo} = -\infty$ e k = 1;

Passo 1 Faça $x_k = 1$. Verifique se:

$$z_{estimado} = \sum_{j=1}^{k} c_j x_j + \sum_{j=k+1}^{n} c_j > z_{\text{\'otimo}}$$

е

$$\sum_{i=1}^{k} a_{ij} x_{j} \le b_{i} - \sum_{i=k+1}^{n} \min(0; a_{ij}) \forall i = 1, ..., m$$

Em caso de sucesso vá para o passo 3;

Passo 2 Faça $x_k = 0$. Verifique se:

$$z_{estimado} = \sum_{j=1}^{k} c_j x_j + \sum_{j=k+1}^{n} c_j > z_{\text{\'otimo}}$$

е

$$\sum_{j=1}^{k} a_{ij} x_j \le b_i - \sum_{j=k+1}^{n} \min(0; a_{ij}) \forall i = 1, \dots, m$$

Em caso de fracasso vá para o passo 4;

- Faça k = k + 1. Se $k \le n$, volte ao passo 1. Senão, uma solução completa, melhor que Passo 3 a solução ótima temporária, foi encontrada. Guarde esta solução como sendo a nova solução ótima temporária. Atualize o valor de $z_{\acute{o}timo}$.
- Backtrack. Encontre $K = \{j \mid x_j = 1 \ e \ 0 < j < k\}$. Se $K = \emptyset$, então PARE; a Passo 4 solução ótima temporária é a solução ótima do problema. Em caso contrário, determine $k = \max\{j \mid j \in K\}$ e retorne ao passo 2.

2.3. Exemplo

$$\begin{array}{lll} \text{Max} & 10x_1 + 9x_2 + 7x_3 + 5x_4 + 2x_5 + 1x_6 \\ \text{s.a:} & 1x_1 - 2x_2 + 2x_3 + 1x_4 - 2x_5 + 1x_6 \leq 1 \\ & 2x_1 + 1x_2 - 2x_3 - 1x_4 + 1x_5 + 2x_6 \leq 2 \\ & 3x_1 + 2x_2 - 1x_3 + 3x_4 - 4x_5 + 1x_6 \leq 2 \\ & x_1, x_2, x_3, x_4, x_5, x_6 \in \{0,1\} \end{array}$$

$$c^T = [10 \quad 9 \quad 7 \quad 5 \quad 2 \quad 1]$$

$$A = \begin{bmatrix} 1 & -2 & 2 & 1 & -2 & 1 \\ 2 & 1 & -2 & -1 & 1 & 2 \\ 3 & 2 & -1 & 3 & -4 & 1 \end{bmatrix} \qquad b = \begin{bmatrix} 1 \\ 2 \\ 2 \end{bmatrix}$$

$$b = \begin{bmatrix} 1 \\ 2 \\ 2 \end{bmatrix}$$

k	x_j	$\sum_{j=1}^{k} c_j x_j$	$\sum_{j=k+1}^{n} c_j$	$Z_{\it estimado}$	$\sum_{j=1}^{k} a_{ij} x_j$	$b_i - \sum_{j=k+1}^n \min(a_{ij};0)$	OK 1	OK 2	Z^*
0									-∞
1	1	10	24	34	(1;2;3)	(5;5;7)	ok	ok	
2	1,1	19	15	34	(-1;3;5)	(3;5;7)	ok	ok	
3	1,1,1	26	8	34	(1;1;4)	(3;3;6)	ok	ok	
4	1,1,1,1	31	3	34	(2;0;7)	(3;2;6)	ok	-	
4	1,1,1,0	26	3	29	(1;1;4)	(3;2;6)	ok	ok	
5	1,1,1,0,1	28	1	29	(-1;2;0)	(1;2;2)	ok	ok	
6	1,1,1,0,1,1	29	0	29	(0;4;1)	(1;2;2)	ok	-	
6	1,1,1,0,1,0	28	0	28	(-1;2;0)	(1;2;2)	ok	ok	28
5	1,1,1,0,0	26	1	27			-		
3	1,1,0	19	8	27			-		
2	1,0	10	15	25			-		
1	0	0	24	24			-		
	Fim								

Solução ótima

$$x_1 = 1$$
 $x_2 = 1$ $x_3 = 1$ $x_4 = 0$ $x_5 = 1$ $x_6 = 0$ $Z^* = 28$