Matematica discreta e logica

Anno accademico 2022/2023 Corso di laurea in Informatica

Nicola Papini

Indice

1	Insi	iemi, funzioni e relazioni			
	1.1	Insiemi			
		1.1.1 Operazioni tra insiemi			
	1.2	Funzioni			
	1.3	Successioni			
		1.3.1 Relazioni ricorsive lineari omogenee			
		1.3.2 Relazioni ricorsive lineari non omogenee			
	1.4	Relazioni			
2	Cal	colo combinatorio			
	2.1	Disposizioni e combinazioni semplici			
	2.2	Disposizioni e combinazioni con ripetizione			
	2.3	Coefficiente binomiale			
	2.4	Cardinalità			
3	Nui	meri Interi			
	3.1	Rappresentazioni b-adiche			
	3.2	Equazioni Diofantee			
4	Cor	ngruenze 3			
	4.1	Classi di resto modulo n			
	4.2	Operazioni su \mathbb{Z}_n			
	4.3	Criteri di divisibilità			
		4.3.1 Divisibilità per 3 e per 9			
		4.3.2 Divisibilità per 2 e per 5			
		4.3.3 Divisibilità per 4 e per 25			
		4.3.4 Divisibilità per 11			
	4.4	Ancora congruenze			
	4.5	Crittografia RSA			
5	Strutture Algebriche 4				
_	5.1	Sottogruppi			
	5.2	Gruppi Simmetrici			
	5.3	Algebra di Boole: punto di vista reticolare			
	5.4	Algebra di Boole: punto di vista algebrico			
6	Log	ϵ ica			
	_	Linguaggio della logica proposizionale			
		Forma normale congiuntiva (FNC)			
	6.3	Algoritmo di Davis-Putnam			
	6.4	Logica dei Predicati			
	0.1	6.4.1 Semantica per formule di logica proposizionale			
		6.4.2 Forma normale prenessa			
7	Тоо	oria dei Grafi			
•		Criteri di Hamiltonianità			

1 Insiemi, funzioni e relazioni

1.1 Insiemi

Un insieme è definito come una collezione di elementi distinti tra loro. Un insieme non è ordinato, ossia non conta l'ordine degli elementi. Due insiemi si dicono equivalenti se contengono esattamente gli stessi elementi.

Esempi:

$$\{4,2,6\} = \{2,4,6\} \quad \mathbb{N} = \{0,1,2,3,\dots\} \quad \mathbb{Z} = \{\dots -2, -1, 0, 1, 2, \dots\} \quad \mathbb{Q} = \{\frac{a}{b} | a, b \in \mathbb{Z}, b \neq 0\}$$

Notazione.

- $x \in A$: x appartiene ad A, analogamente $x \notin A$ significanche x non appartiene ad A.
- $A \subseteq B$: A sottoinsieme di B, ossia ogni elemento di A è anche elemento di B.

Osservazione 1. $\forall A \text{ insieme } \emptyset \subseteq A. \text{ Inoltre } A = B \iff A \subseteq B \text{ } e \text{ } B \subseteq A$

Definizione 1 (Insieme delle parti). Sia A insieme, allora si dice insieme delle parti di A l'insieme composto da tutti i sottoinsiemi di A.

$$P(A) = \{x | x \subseteq A\}$$

Esempi:

Sia $A = \{1, \{2\}\}\$, allora:

$$1 \in A \text{ Vero}, \quad \{1\} \in A \text{ Falso}, \quad \{1\} \subseteq A \text{ Vero}, \quad \{2\} \subseteq A \text{ Falso}, \quad \{2\} \in A \text{ Vero}, \quad \{1\} \neq \{\{1\}\}$$

Sia
$$B = \{1, 2\}$$
, allora $P(B) = \{\emptyset, \{1\}, \{2\}, \{1, 2\}\}$

1.1.1 Operazioni tra insiemi

Siano A,B insiemi, allora sono definite le seguenti operazioni:

- 1. Unione, $A \cup B = \{x | x \in A \lor x \in B\}$
- 2. Intersezione, $A \cap B = \{x | x \in A \land x \in B\}$
- 3. Differenza, $A \setminus B = \{x | x \in A \land x \notin B\}$
- 4. Differenza simmetrica, $A\Delta B = (A \setminus B) \cup (B \setminus A) = (A \cup B) \setminus (A \cap B)$
- 5. Complementare di un'insieme A rispetto a U, $A^C = \{x \in U | x \notin A\}$. U è definito come insieme Universo, ossia l'insieme che contiene tutti gli elementi.

Proprietà:

- Proprietà commutativa: vale per unione, intersezione e differenza simmetrica.
- Proprietà associativa, vale per unione, intersezione e differenza simmetrica.
- \bullet Proprietà distributiva, siano A,B,C insiemi:

$$A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$$

$$A\cap (B\cup C)=(A\cap B)\cup (A\cap C)$$

Definizione 2 (Prodotto cartesiano). Siano A, B insiemi allora il loro prodotto cartesiano è definito come:

$$A \times B = \{(a, b) | a \in A \land b \in B\}$$

(a,b) è una coppia ordinata di due elementi. Vale l'uguaglianza $(a,b)=(c,d) \iff a=c \land b=d$. Inoltre $\{a,b\}=\{b,a\}$ ma $(a,b)\neq (b,a)$, nelle coppie ordinate l'ordine conta. Esempio:

Siano
$$A = \{a, b\}$$
 e $B = \{1, 2, 3\}$, allora $A \times B = \{(a, 1), (a, 2), (a, 3), (b, 1), (b, 2), (b, 3)\}$

Definizione 3 (Relazione). Siano A,B insiemi, una relazione R di A in B è un sottoinsieme del prodotto cartesiano $A \times B$ cioè $R \subseteq A \times B$. Scrivo aRb se $(a,b) \in R$.

Esempi:

- 1. \leq la relazione di minore uguale in \mathbb{R}
- 2. Relazione di uguaglianza
- 3. Ortogonalità tra retta e piano

La relazione inversa è definita come $R^{-1} = \{(b, a) | (a, b) \in R\}.$

1.2 Funzioni

Definizione 4 (Funzione). Siano A,B insiemi, F funzione di A in B, A dominio e B codominio, è una relazione $F \subseteq A \times B$ tale che per ogni $a \in A$ esiste un'unica coppia $(a,b) \in F$. Scrivo b = F(a) se $(a,b) \in F$.

Definizione 5 (Funzione). Equivalentemente dati A e B insiemi, una funzione $f: A \to B$ è una legge che associa ad ogni elemento $a \in A$ uno e uno solo elemento $b \in B$. Scrivo b = f(a).

Definizione 6 (Funzione iniettiva). Una funzione f si dice iniettiva se elementi diversi hanno immagini diverse, ossia se per ogni $a_1, a_2 \in A$ tale che $a_1 \neq a_2$ allora $f(a_1) \neq f(a_2)$. Analogamente se $f(a_1) = f(a_2)$ allora $a_1 = a_2$.

Definizione 7 (Funzione suriettiva). Una funzione f si dice suriettiva se per ogni $b \in B$, elemento del codominio, esiste almeno un elemento del dominio $a \in A$ tale che b = f(a). Ossia ogni elemento del codominio è immagine di almeno un elemento del dominio.

Definizione 8 (Funzione biettiva). Una funzione f si dice biettiva se f è iniettiva e suriettiva.

Figure 1: Funzione biettiva

Osservazione 2. Se F è una funzione non è detto che $F^{-1} = \{(b,a) | (a,b) \in F\}$ sia una funzione. f^{-1} è una funzione se e solo se f è biettiva.

Figure 2: Funzione inversa

Definizione 9 (Composizione di funzioni). Siano $f: A \to B$ e $g: B \to C$ funzioni allora definisco g composto $f, g \circ f: A \to C$ tale che $\forall a \in A$ $g \circ f(a) = g(f(a))$.

Proprietà:

- o non è commutativa cio
è $f\circ g\neq g\circ f$
- \circ è associativa cioè $\forall f, g, h : A \to A$ vale $(f \circ g) \circ h = f \circ (g \circ h)$. Dimostrazione. Per $a \in A$ si ha che

$$(f \circ g) \circ h(a) = f \circ g(h(a)) = f(g(h(a)))$$
$$f \circ (g \circ h)(a) = f(g \circ h(a)) = f(g(h(a)))$$

Definizione 10 (Funzione identità). Sia A insieme, definisco la funzione identità o identica su A come $i_A: A \to A$ tale che $i_A(x) = x \quad \forall x \in A$.

Definizione 11 (Funzione Inversa). Una funzione $f: A \to B$ si dice invertibile se esiste una funzione $g: B \to A$ tale che:

$$\begin{cases} g \circ f = i_A \\ f \circ g = i_B \end{cases}$$

Si dice che g è un'inversa sinistra e destra di f.

Proposizione 1. Sia $f: A \to B$ funzione, allora f è invertibile se e solo se f è biettiva e f^{-1} è la sua inversa sia destra che sinistra, cioè:

$$\begin{cases} f^{-1} \circ f = i_A \\ f \circ f^{-1} = i_B \end{cases}$$

Proposizione 2. Siano $f: A \to B \ e \ g: B \to C \ funzioni, allora:$

- Se f e g sono iniettive allora anche la composizione $g \circ f$ è iniettiva.
- Se f e g sono suriettive allora anche la composizione $g \circ f$ è suriettiva.

Dimostrazione.

- 1. $f \in g$ iniettive, siano $a_1, a_2 \in A$ tale che $g \circ f(a_1) = g \circ f(a_2)$. Allora $g(f(a_1)) = g(f(a_2))$ e $f(a_1), f(a_2) \in B$ ma g è iniettiva quindi $f(a_1) = f(a_2)$. Ora, f è iniettiva quindi $a_1 = a_2$. Quindi $g \circ f$ è iniettiva.
- 2. $f \in g$ suriettive, provo che per ogni $c \in C$ esiste $a \in A$ tale che $g \circ f(a) = c$. g è suriettiva quindi esiste $b \in B$ tale che g(b) = c. Analogamente per f esiste $a \in A$ tale che f(a) = b. Allora $g \circ f(a) = g(f(a)) = g(b) = c$.

Definizione 12 (Principio di induzione). Sia P(n) una proprietà dove $n \in \mathbb{N}$. Allora:

• I forma. Se P(0) è vera (caso base) e $\forall n \in \mathbb{N}, P(n) \Rightarrow P(n+1)$ (passo induttivo). Allora P(n) è vera $\forall n \in \mathbb{N}$.

- II forma. Se P(0) è vera $e \ \forall n \in \mathbb{N}, P(0), P(1), P(n) \Rightarrow P(n+1)$. Allora P(n) è vera $\forall n \in \mathbb{N}$.
- Principio del minimo. Sia $X \subseteq \mathbb{N}$ tale che $X \neq \emptyset$, allora esiste $x_0 = min(X)$, ovvero $x_0 \in X$ $e \ \forall x \in X$ $x_0 \leq x$.

1.3 Successioni

Definizione 13 (Successione). Una successione è una funzione $f: A \subseteq \mathbb{N} \to X$. Solitamente gli elementi della successione sono indicati con a_n dove n è l'indice naturale.

Definizione 14 (Successione ricorsiva). Una successione ricorsiva è una funzione in cui abbiamo assegnato un valore iniziale $a_0 = b$ e una legge per calcolare un termine della successione in funzione del termine, o termini, che lo precedono.

Esempio:

Successione di Fibonacci:

$$F_n = \begin{cases} F_0 = 0 \\ F_1 = 1 \\ F_n = F_{n-1} + F_{n-2} & n \ge 2 \end{cases}$$

Definizione 15 (Successione di ricorrenza lineare). $\{a_n\}_{n\in\mathbb{N}}$ successione definita dalla relazione ricorsiva lineare $a_n=c_1a_{n-1}+c_2a_{n-2}+\cdots+c_ka_{n-k}+c$ per $k\geq k$ con $c_1,c_2,\ldots,c_k\in\mathbb{R}$ costanti con $k\geq 1$.

Nel caso in cui il termine noto c=0 allora la relazione ricorsiva lineare si definisce omogenea e avrà quindi la forma $a_n=c_1a_{n-1}+c_2a_{n-2}+\cdots+c_ka_{n-k}$.

Definizione 16 (Formula chiusa). È una formula che permette di calcolare direttamente il termine generico di una relazione di ricorrenza lineare senza dover passare attraverso passaggi intermedi.

1.3.1 Relazioni ricorsive lineari omogenee

Algoritmo risolutivo di una relazione ricorsiva lineare omogenea:

Data la relazione ricorsiva lineare omogenea di grado k

$$a_n = \alpha_1 a_{n-1} + \alpha_2 a_{n-2} + \dots + \alpha_k a_{n-k}$$

1. Determinare il polinomio caratteristico

$$P(x) = x^k - \alpha_1 x^{k-1} - \alpha_2 x^{k-2} - \dots - a_k$$

- 2. Risolvere P(x) = 0 e trovare le radici x_1, x_2, \ldots, x_n
- 3. Se le radici sono tutte distinte allora la formula chiusa è

$$a_n = c_1 x_1^n + c_2 x_2^n + \dots + c_k x_k^n$$

altrimenti se le radici hanno molteplicità m_1, m_2, \dots, m_t tali che $m_1 + m_2 + \dots + m_t = k$

$$a_n = (b_1 + b_2 n + \dots + b_m n^{m-1}) x_1^n + \dots + (d_1 + d_2 n + \dots + d_{m_t} n^{m_t - 1}) x_t^n$$

4. Risolvo il sistema imponendo le condizioni iniziali

Esempi:

1. Uso la successione di Fibonacci

$$F_n = \begin{cases} F_0 = 0 \\ F_1 = 1 \\ F_n = F_{n-1} + F_{n-2} & n \ge 2 \end{cases}$$

(a) Scrivo il polinomio caratteristico di $F_n = F_{n-1} + F_{n-2}$ e trovo le radici:

$$p(x) = x^{2} - x - 1$$
$$x_{1,2} = \frac{1 \pm \sqrt{5}}{2} = \Phi$$

$$F_n = b_1 (\frac{1+\sqrt{5}}{2})^n + b_2 (\frac{1-\sqrt{5}}{2})^n$$

(c) Impongo le condizioni iniziali $F_0 = 0, F_1 = 1$

$$F_n = \begin{cases} F_0 = b_1 + b_2 = 0\\ F_1 = b_1(\frac{1+\sqrt{5}}{2}) + b_2(\frac{1-\sqrt{5}}{2}) = 1 \end{cases}$$

$$F_n = \begin{cases} b_2 = -b_1 \\ b_1(1+\sqrt{5}) + b_2(1-\sqrt{5}) = 2 \end{cases}$$

$$F_n = \begin{cases} b_1 = \frac{1}{\sqrt{5}} \\ b_2 = -\frac{1}{\sqrt{5}} \end{cases}$$

(d) Infine ottengo la formula chiusa dell'n-esimo numero della serie di Fibonacci

$$F_n = \frac{1}{\sqrt{5}} \left(\frac{1+\sqrt{5}}{2}\right)^n - \frac{1}{\sqrt{5}} \left(\frac{1-\sqrt{5}}{2}\right)^n$$

2. Esempio con relazione di ricorrenza lineare omogenea di grado 2.

$$\begin{cases} a_n = a_{n-1} + 6a_{n-2} \\ a_0 = 3, \ a_1 = 5 \end{cases}$$

Si procede in modo analogo a sopra. Quindi:

$$p(x) = x^2 - x - 6 = 0$$

$$x_1 = 3 \qquad x_2 = -2$$

$$a_n = b_1 3^n + b_2 (-2)^n$$

Impongo le condizioni iniziali:

$$\begin{cases} b_1 + b_2 = 0\\ 3b_1 - 2b_2 = 1 \end{cases}$$

$$\begin{cases} b_1 = \frac{1}{5} \\ b_2 = -\frac{1}{5} \end{cases}$$

Infine ottengo la formula chiusa:

$$a_n = \frac{1}{5}3^n - \frac{1}{5}(-2)^n$$

3. Caso in cui l'equazione caratteristica ha $\Delta=0$:

$$\begin{cases} a_n = 6a_{n-1} - 9a_{n-2} \\ a_0 = 1, \ a_1 = 2 \end{cases}$$

Scrivo polinomio caratteristico e trovo le radici:

$$p(x) = x^2 - 6x + 9 = 0 = (x - 3)^2$$

$$x_1 = x_2 = 3$$

Radice di molteplicità algebrica $m_a(x) = 2$. Impongo le condizioni iniziali:

$$\begin{cases} b_1 = 1 \\ b_2 = -\frac{1}{3} \end{cases}$$

Quindi ottengo la seguente formula chiusa:

$$a_n = 3^n - \frac{1}{3}n3^n = 3^n(1 - \frac{1}{3}n)$$

4. Caso radici con molteplicità maggiore di uno:

$$\begin{cases} a_n = 8a_{n-2} - 16a_{n-4} \\ a_0 = 1 \\ a_1 = 4 \\ a_2 = 28 \\ a_3 = 32 \end{cases}$$

L'equazione caratteristica è

$$P(x) = x^4 - 8x^2 + 16 = (x^2 - 4)^2 = 0$$

quindi le radici sono

$$x_1 = 2 \qquad x_2 = -2$$

con molteplicità

$$m_a(x_1) = 2 \qquad m_a(x_2) = 2$$

segue

$$a_n = (b_1 + b_2 n)2^n + (d_1 + d_2 n)(-2)^n$$

impongo le condizioni iniziali e trovo

$$\begin{cases} b_1 = 1 \\ b_2 = 2 \\ d_1 = 0 \\ d_2 = 1 \end{cases}$$

quindi la formula chiusa della relazione è

$$a_n = (1+2n)2^n + n(-2)^n$$

1.3.2 Relazioni ricorsive lineari non omogenee

Sono relazioni della forma

$$a_n = c_1 a_{n-1} + c_2 a_{n-2} + \dots + c_k a_{n-k} + f(n)$$

Algoritmo risolutivo:

- 1. Risolvo la parte omogenea e ottengo la sua formula chiusa a_n^0
- 2. Cerco soluzione particolare di f(n):
 - (a) Se $f(n) = cq^n$:
 - Se q non è una radice del polinomio caratteristico P(x) allora $b_n = \alpha q^n$
 - Se q radice di molteplicità m allora $b_n = \alpha n^m q^n$
 - (b) Se f(n) è un polinomio di grado K:
 - Se 1 non è radice di P(x) allora $b_n = \alpha_0 + \alpha_1 n + \cdots + \alpha_k n^k$
 - Se 1 è radice di molteplicità m allora $b_n = n^m(\alpha_0 + \alpha_1 n + \cdots + \alpha_k n^k)$

- 3. Sostituisco b_n in a_n e trovo α
- 4. Sostituisco α in b_n e trovo la soluzione particolare b_n
- 5. Sommo a_n^0 e b_n e ottengo la formula chiusa di a_n

Esempio.

$$\begin{cases} a_n = a_{n-1} + a_{n-2} + 3n + 1 & n \ge 2 \\ a_0 = 2 \\ a_1 = 3 \end{cases}$$

Risolvo la parte omogenea $a_n = a_{n-1} + a_{n-2}$ quindi

$$P(x) = x^2 - x - 1 = 0$$

con radici

$$x_1 = \frac{1 + \sqrt{5}}{2} \qquad x_1 = \frac{1 - \sqrt{5}}{2}$$

e ottengo la formula chiusa

$$a_n^0 = c_1 x_1^n + c_2 x_2^n$$

Considero la parte non omogenea f(n) = 3n + 1 polinomio in n di grado 1 quindi

$$b_n = c + dn$$

con c, d costanti di determinare. Sostituisco b_n dentro a_n

$$c + dn = c + d(n-1) + c + d(n-2) + 3n + 1 \quad \forall n \ge 2$$
$$n(-d-3) + (3d - c - 1) = 0$$

quindi

$$\begin{cases} -d-3=0\\ 3d-c-1=0 \end{cases}$$

quindi

$$d = -3$$
 $c = -10$

allora la soluzione particolare è

$$b_n = -3n - 10$$

unisco le due soluzioni e ottengo

$$a_n = a_n^0 + b_n = c_1 x_1^n + c_2 x_2^n - 3n - 10$$

impongo le condizioni iniziali

$$\begin{cases} c_1 + c_2 + 10 = 0\\ c_1(\frac{1+\sqrt{5}}{2}) + c_2(\frac{1-\sqrt{5}}{2}) - 10 - 3 = 3 \end{cases}$$

e ottengo

$$c_1 = 6 + 2\sqrt{5}$$
 $c_2 = 6 - 2\sqrt{5}$

sostituisco in a_n e ottengo la formula chiusa

$$a_n = (6 + 2\sqrt{5})(\frac{1+\sqrt{5}}{2})^n + (6 - 2\sqrt{5})(\frac{1-\sqrt{5}}{2})^n$$

1.4 Relazioni

Ricordiamo la definizione di relazione su un insieme A. R si dice relazione su un insieme A se $R \subseteq A \times A$. Quindi se $(a_1, a_2) \in \mathbb{R}$ scrivo a_1Ra_2

Definizione 17 (Relazione d'ordine parziale). Sia R relazione su A, R si dice relazione d'ordine parziale se verifica le seguenti proprietà:

- 1. Riflessiva: $\forall a \in A \Rightarrow aRa$, ossia (a, a)
- 2. Antisimmetrica: $\forall a, b \in A \text{ se } aRb \land bRa \Rightarrow a = b$
- 3. Transitiva: $\forall a, b, c \in A \text{ se } aRb \land bRc \Rightarrow aRc, \text{ ossia se } (a, b) \in R \text{ e } (b, c) \in R \Rightarrow (a, c) \in R$

Definizione 18 (Relazione d'ordine totale). Sia R relazione d'ordine su A, R si dice relazione d'ordine totale se $\forall a, b \in A$ vale aRb oppure bRa.

Definizione 19 (Insieme parzialmente ordinato). Sia A un insieme su cui è definita una relazione d'ordine R, allora la coppia (A, R) si dice insieme parzialmente ordinato. Se la relazione vale per ogni $a, b, c \in A$ allora si dice insieme totalmente ordinato.

Intuitivamente, in un insieme parzialmente ordinato non si richiede che tutte le coppie di elementi di A siano tra di loro confrontabili,mentre in un insieme totalmente ordinato tutte le coppie sono confrontabili.

Esempi:

- 1. (\mathbb{Z}, \leq) è un insieme totalmente ordinato.
- 2. X insieme su cui è definita la relazione d'inclusione \subseteq , $(P(X), \subseteq)$ è parzialmente ordinato.
- 3. Considero \mathbb{N} su cui definisco la relazione di divisibilità | per $a, b \in \mathbb{N}$. Si dice che a divide b e scrivo a|b se $\exists c \in \mathbb{N}$ tale che b=ac. Verifico le tre proprietà:
 - (a) $\forall a \in \mathbb{N} \ a | a \text{ perché } a = a \cdot 1$
 - (b) $\forall a, b \in \mathbb{N}$, se a|b e $b|a \Rightarrow a = b$. Dimostrazione. Per ipotesi a|b quindi $\exists c \in \mathbb{N}$ tale che $b = a \cdot c$. Analogamente $\exists d \in \mathbb{N}$ tale che $a = b \cdot d$. Quindi $b = a \cdot c = b \cdot d \cdot c \Rightarrow b - b \cdot d \cdot c = 0 \Rightarrow b(1 - dc) = 0$. Ora abbiamo due possibilità:
 - i. Se b=0 allora $a=b\cdot d=0$ cioè a=b=0.
 - ii. Se dc=1 poiché $c,d\in\mathbb{N}$ allora c=d=1 quindi a=b
 - (c) $\forall a, b \in \mathbb{N}$ se $a|b \in b|c$ allora a|c. Dimostrazione. Analogamente a quanto fatto prima $\exists a_1, b_1 \in \mathbb{N}$ tale che $b = a \cdot a_1$ e $c = b \cdot b_1$.

Allora $c = b \cdot b_1 = (a \cdot a_1)b_1 = a(a_1 \cdot b_1) = a$ ma $a_1, b_1 \in \mathbb{N}$ quindi $a_1 * b_1 \in \mathbb{N}$ ossia a|c. Quindi $(\mathbb{N}, |)$ è parzialmente ordinato.

Osservazione 3. $(\mathbb{Z}, |)$ non è parzialmente ordinato perché non vale la proprietà antisimmetrica. Infatti 2|-2 e -2|2 ma $2 \neq -2$.

Insiemi finiti parzialmente ordinati sono rappresentabili attraverso i Diagrammi di Hasse.

Definizione 20. Sia (A, \leq) insieme parzialmente ordinato con \leq relazione d'ordine generica. Dati $a, b \in A$, allora:

- 1. Se $a \leq b$ si dice che b sta sopra a
- 2. Se $c \in A$ tale che $a \leq c$ e $c \leq b$ allora c = a oppure a = b. Questo significa che non esistono elementi intermedi tra $a \in b$.

Per costruire un diagramma di Hasse utilizzo la seguente logica, dato A insieme parzialmente ordinato:

- $\bullet\,$ Rappresento gli elementi di A come vertici.
- Connetto $a, b \in A$ con una linea se b copre a.

Esempi:

1. Sia $X = \{1, 2, 3\}$ con relazione d'inclusione \subseteq . (X, \subseteq) .

2. $A = \{\text{divisori naturali di } 30\} = \{1, 2, 3, 5, 6, 10, 15, 30\}$. Considero (A, |).

Definizione 21 (Isomorfismo). Siano (A_1, \leq_1) e (A_2, \leq_2) insiemi parzialmente ordinati, una funzione $f: A_1 \to A_2$ si dice isomorfismo di insiemi parzialmente ordinati se:

- 1. f è biettiva rispetto alla relazione
- 2. $\forall a, b \in A_1$ si ha che $a \leq_1 b \iff f(a) \leq_2 f(b)$

Definizione 22 (Massimo/minimo). Sia A insieme su cui è definita la relazione d'ordine $\leq e$ sia $a \in A$. Allora:

- 1. a si dice massimo di A rispetto $a \leq se \ \forall b \in A \Rightarrow b \leq a$.
- 2. a si dice minimo di A rispetto $a \le se \ \forall b \in A \Rightarrow a \le b$.
- 3. a si dice elemento massimale di A se $\forall b \in A$ tale che $a \leq b$ vale b = a. Ossia a massimale se non c'è alcun elemento che lo copre a parte sé stesso.
- 4. a si dice elemento minimale di A se $\forall b \in A$ tale che $a \leq a$ vale b = a. Ossia a minimale se non c'è alcun elemento che gli stanno sotto a parte sé stesso.

Proposizione 3. Se esiste max(A) = a allora $a \ \grave{e} \ l'unico$ elemento massimale di A. Analogamente per il minimo se esiste max(A) = b allora $b \ \grave{e} \ l'unico$ elemento minimale di A.

Dimostrazione. Guardiamo il caso in cui a = max(A). Si fa in due passi:

- 1. Se $b \in A$ tale che $a \leq b$, poiché $a = max(A) \Rightarrow b \leq a$. Quindi b = a.
- 2. Se a' elemento massimale di A, poiché $a=max(A)\Rightarrow a'\unlhd a$. Quindi a'=a per definizione di massimale.

Definizione 23 (Maggiorante). Sia $B \subseteq A$, si dice che $a \in A$ è un maggiorante di B in A se $b \subseteq a$ $\forall b \in B$.

Definizione 24 (Minorante). Sia $B \subseteq A$, si dice che $c \in A$ è un minorante di B in A se $c \subseteq a$ $\forall b \in B$.

Definizione 25 (Estremo superiore). Sia $B \subseteq A$ tale che A insieme parzialmente ordinato. L'estremo superiore di B in A, $sup_A(B)$, è, se esiste, il minimo dell'insieme dei maggioranti di A

$$M_A(B) = \{a \in A | a \text{ un maggiorante di } B \text{ in } A\}$$

ordinato con la relazione d'ordine indotta.

Definizione 26 (Estremo inferiore). L'estremo inferiore di B in A, $inf_A(B)$ è, se esiste, il massimo dei minoranti di A, $m_A(B)$.

Osservazione 4. Se esiste $\bar{b} = max(B)$ allora $\bar{b} = sup_A(B)$. Analogamente se esiste $b_0 = min(B) \Rightarrow b = inf_A(B)$.

Esempio:

Sia $A = \{a \in \mathbb{N} | a \text{ divide } 36\} = \{1, 2, 3, 4, 6, 9, 12, 18, 36\}$. Considero l'insieme $B = \{3, 4\}$ e cerco $\sup_A(B), \inf_A(B)$.

Si può osservare che l'insieme dei maggioranti di B ossia $M_A(B) = \{12, 36\}$, composto da multipli di 3 e 4, ha $min(M_A(B)) = 12$ rispetto alla relazione di divisibilità. Quindi $sup_A(B) = 12 = mcm(3, 4)$. Analogamente per quanto riguarda l'estremo inferiore si considerano i divisori di 3 e 4, $m_A(B) = \{1\}$, e quindi $inf_A(B) = 1 = MCD(3, 4)$.

Per
$$B_1 = \{9, 6\}$$
 si ha $sup_A(B_1) = 18$ e $inf_A(B_1) = 3$.
Per $B_1 = \{4, 6, 9\}$ si ha $sup_A(B_2) = 36$ e $inf_A(B_2) = 1$.

Definizione 27 (Reticolo). Un insieme parzialmente ordinato (A, \leq) si dice reticolo se $\forall a, b \in A$:

- $\exists inf_A(\{a,b\})$
- $\exists sup_A(\{a,b\})$

Notazione.

- $a \wedge b$ si definisce intersezione reticolare e indica l'inf.
- $a \lor b$ si definisce unione reticolare e indica il sup.

Proprietà algebriche reticoli:

Sia (A, \leq) reticolo. Allora:

1. Idempotenza: $\forall a \in A \ a \land a = a \ e \ a \lor a = a$

- 2. Commutativa: $\forall a, b \in A \ a \land b = b \land a \ e \ a \lor b = b \lor a$
- 3. Associativa: $\forall a, b, c \in A \ (a \land b) \land c = a \land (b \land c) \ e \ (a \lor b) \lor c = a \lor (b \lor c)$
- 4. Assorbimento: $\forall a, b \in A \ (a \land b) \lor a = a \in (a \lor b) \land a = a$
- 5. $\forall a, b \in A \ a \land b = a \iff a \leq b \iff a \lor b = b$

Esempi.

- 1. Sia $D_n = \{\text{divisori su } \mathbb{N} \text{ di } n\}$ ordinato con relazione di divisibilità. Allora $(D_n, |)$ è un reticolo, infatti $\forall a, b \in D_n$:
 - (a) $a \wedge b = mcm(a, b)$
 - (b) $a \lor b = MCD(a, b)$
- 2. Sia $X \neq \emptyset$ insieme, allora $(P(X), \subseteq)$ è un reticolo. E vale che $\forall Y, Z \subseteq X$:
 - (a) $Y \wedge Z = Y \cap Z$
 - (b) $Y \vee Z = Y \cup Z$
- 3. Sia $A_1 = \{1, 2, 3, 12, 18, 36\}$ ordinato per divisibilità. Questo non è un reticolo, infatti se considero l'insieme $B = \{2, 3\} \subseteq A_1$ si osserva che $\nexists sup_A(B)$.

Si vede graficamente che i vertici $\{2\}$ e $\{3\}$ sono entrambi connessi sia al $\{12\}$ che al $\{18\}$ cioè hanno due maggioranti quindi non esiste il minimo tra i maggioranti. Con la stessa logica si può osservare che $\nexists inf_A\{12,18\}$)

Definizione 28 (Sottoreticolo). Sia A un reticolo e sia $B \subseteq A$, B si dice un sottoreticolo di A se $\forall b, c \in B$ si ha:

- 1. $b \wedge_A c \in B$
- 2. $b \vee_A c \in B$

Esempio. Sia $A = \{1, 2, 3, 4, 6, 12, 18, 36\}$ quindi (A, |) reticolo. Allora:

- $B_1 = \{1, 2, 3, 4, 6, 12\} \subseteq A$ è un sottoreticolo di A
- $B_2 = \{1, 2, 3, 12, 18, 36\}$ non è un sottoreticolo di A. Infatti $2 \vee_A 3 = 6 \notin B_2$ e $12 \vee_A 18 = 6 \notin B_2$
- $B_3=\{1,4,6,36\}$ non è un sottoreticolo di A. Infatti $4\wedge_A 6=2\notin B_3$ e $4\vee_A 6=12\notin B_3$

Operazioni reticolari su insiemi notevoli:

(S, \leq)	$P(S),\subseteq$	$(\mathbb{N},)$
$x \wedge y = min\{x,y\}$	$x \wedge y = x \cap y$	$x \wedge y = MCD(x, y)$
$x \lor y = max\{x, y\}$	$x \lor y = x \cup y$	$x \lor y = mcm(x, y)$

Definizione 29 (Relazione di equivalenza). Sia A insieme e R relazione su A. Allora R relazione di equivalenza su A se verifica le seguenti proprietà:

- 1. Riflessiva: $\forall a \in A, aRa$
- 2. Simmetrica: $\forall a, b \in A \quad aRb \Longrightarrow bRa$
- 3. Transitiva: $\forall a, b, c \in A \quad aRb \land bRc \Longrightarrow aRc$

Esempio. Sia $A = \{X \subseteq \mathbb{N} | |X| < \infty\}$ definisco la relazione $X \sim Y$ se |X| = |Y|. Allora:

- 1. \sim è riflessiva: $\forall X \in A |X| = |X|$
- 2. \sim è simmetrica: $\forall X, Y \in A |X| = |Y| \Longrightarrow |Y| = |X|$
- 3. \sim è transitiva: $\forall X, Y, Z \in A$ se $|X| = |Y| \land |Y| = |Z| \Longrightarrow |X| = |Z|$

Definizione 30 (Classe di equivalenza). Data \sim relazione di equivalenza su A insieme. Per $a \in A$ definisco la classe di equivalenza di a rispetto $a \sim$ come $[a]_{\sim} = \{x \in A | x \sim a\}$. In questo caso l'elemento a si definisce rappresentante della classe.

Osservazione 5. Valgono le seguenti:

- $[a]_{\sim} \subseteq A$
- $a \in [a]_{\sim}$

Esempi:

- 1. = relazione di uguaglianza su A per $a \in A$, $[a]_{\sim} = \{a\}$
- 2. $\sim \text{su } \mathbb{Q} \text{ tale che } q \sim r \text{ se } |q| = |r| \text{ per } q \in \mathbb{Q}, [q]_{\sim} = \{-q, q\}$

Proposizione 4. Sia \sim una relazione di equivalenza definita su un insieme A. Allora per $x, y \in A$:

$$[x]_{\sim} = [y]_{\sim} \iff x \sim y$$

Dimostrazione.

- \implies Supponiamo per ipotesi che $[x]_{\sim} = [y]_{\sim}$. Allora $x \in [x]_{\sim} = [y]_{\sim}$ quindi $x \in [y]_{\sim} \implies x \sim y$.
- \Leftarrow Supponiamo per ipotesi che $x \sim y$ e voglio dimostrare che $[x]_{\sim} = [y]_{\sim}$ attraverso una doppia inclusione:
 - \subseteq Sia $z \in [y]_{\sim}$ allora $y \sim z$ ma $x \sim y$ e $y \sim z$ quindi per la proprietà transitiva, $x \sim z \Longrightarrow z \in [x]_{\sim} \Longrightarrow [y]_{\sim} \subseteq [x]_{\sim}$.
 - \supseteq Sia $w \in [x]_{\sim}$ allora $x \sim w$ e per la proprietà simmetrica si ha che $w \sim x$ ma $x \sim y$ quindi $w \sim y$. Ora, per ipotesi $x \sim y$ quindi $w \sim y$ ovvero $w \in [y]_{\sim} \Longrightarrow [x]_{\sim} \subseteq [y]_{\sim}$.

Per la doppia inclusività segue che le due classi sono uguali $[x]_{\sim} = [y]_{\sim}$.

Definizione 31 (Insieme quoziente). Si definisce insieme quoziente di un insieme A rispetto alla relazione \sim come l'insieme di tutte le classi di equivalenza di A, ossia:

$$\frac{A}{a} = \{[a]_{\sim} | a \in A\}$$

Definizione 32 (Sistema di rappresentanti). Sia \sim relazione di equivalenza su A insieme. Un sottoinsieme $\{a_i\}_{i\in I}$ di A si dice sistema di rappresentanti se per ogni possibile classe di equivalenza ho scelto uno e un solo elemento.

Definizione 33. Sia A un insieme $e F \subseteq P(A)$. F si dice partizione di A se e solo se:

- 1. $\forall X \in F, X \neq \emptyset$
- 2. $\forall X, Y \in F \ con \ Z \neq Y \ vale \ X \cap Y = \emptyset$
- 3. $U_{X \in F} = A$

Teorema 1. Sia A insieme $e \sim relazione di equivalenza su A. Allora <math>\frac{A}{\sim}$ è una partizione dell'insieme A.

Dimostrazione. Dimostro le tre proprietà che definiscono la partizione di un insieme.

- 1. Siano $\frac{A}{\sim} = \{[a] \sim | a \in A\}$ e $[x] \sim \subseteq A$ allora $[a] \sim \neq \emptyset \ \forall x \in A$ perché $x \in [x] \sim$.
- 2. Siano $[x]_{\sim}, [y]_{\sim} \in \frac{A}{\sim}$ con $[x]_{\sim} \neq [y]_{\sim}$, provo che $[x]_{\sim} \cap [y]_{\sim} = \emptyset$. Suppongo per assurdo che $[x]_{\sim} \cap [y]_{\sim} \neq \emptyset$ e sia $z \in [x]_{\sim} \cap [y]_{\sim}$. Allora:
 - (a) $z \in [x]_{\sim}$ quindi $z \sim x$, ovvero $x \sim z$ per simmetria.
 - (b) $z \in [y]_{\sim}$ quindi $z \sim y$.
 - (c) $x \sim z, z \sim y \Longrightarrow x \sim y$

Segue che $[x]_{\sim} = [y]_{\sim}$ ma questo è assurdo poiché per ipotesi ho scelto $[x]_{\sim} \neq [y]_{\sim}$.

- 3. Devo dimostrare che $\mathop{U}_{x\in A}[x]=A,$ uso la doppia inclusione:
 - $(\subseteq) \ \forall x \in A, \ [x] \subseteq A \Longrightarrow_{x \in A} U[x] \subseteq A$

$$(\supseteq) \ \forall x \in A, \, x \in [x] \subseteq \underset{x \in A}{U}[x] \Longrightarrow x \in \underset{x \in A}{U}[x] \Longrightarrow A \subseteq \underset{x \in A}{U}[x]$$

Esempio. Siano:

- $A = \{x, y, z, y\}$
- $F \subseteq P(A) = \{\{x\}m\{y\}, \{z, y\}\}$
- $\sim_F = \{(x, x), (y, y), (z, z), (t, t), (z, t), (t, z)\}$

Quindi

$$\frac{A}{\sim_F} = \{[x], [y], [z], [t]\} = \{\{x\}, \{y\}, \{z, t\}\} = F$$

Figure 3: Partizione di A

Osservazione 6. Siano A insieme, $\epsilon = \{relazioni\,di\,equivalenza\,su\,A\}\,\,e\,\,P = \{partizioni\,di\,A\}.$ Siano $f\colon\epsilon\to P\,\,e\,\,g\colon P\to\,\epsilon\,$. Allora: $\sim\to\frac{A}{\sim}\qquad p\to\sim_p$

$$\begin{cases} f \circ g = i_P \\ g \circ f = i_{\epsilon} \end{cases}$$

Quindi f e g sono biezioni.

Proposizione 5. Sia $f: A \to B$ funzione, definisco la relazione \sim_f su A, ponendo per $x, y \in A$, $x \sim_f y \iff f(x) = f(y)$. Allora \sim_f relazione di equivalenza su A, equivalenza indotta da f.

Definizione 34 (Relazione di congruenza modulo n). Sia $n \geq 2$ $n \in \mathbb{N}$, definisco per $x, y \in \mathbb{Z}$, $x \equiv y \pmod{n}$, oppure $x \equiv_n y$ (leggo x è congruo a y modulo n), se e solo se $n \mid (x - y)$.

Proposizione 6. $\forall n \in \mathbb{N}, n \geq 2, \equiv_n relazione di equivalenza su <math>\mathbb{Z}$.

Dimostrazione. Verifico le tre proprietà:

- 1. Riflessiva: $\forall z \in \mathbb{Z} \ n | (z z)$ quindi $z \equiv_n z$
- 2. Simmetrica: $\forall x, y \in \mathbb{Z}$ se $x \equiv_n y$ allora n|(x-y), quindi n|y-x cioè $y \equiv_n x$.
- 3. Transitiva: $\forall x, y, zi \in \mathbb{Z}$, se $x \equiv_n y$ e $y \equiv_n z$ allora n|x-y e n|y-z quindi n|((x+y)+(y-z)) ossia n|(x-z) quindi $x \equiv_n z$.

Osservazione 7. \equiv_n coincide con la relazione \sim_f dove $f: \mathbb{Z} \to \mathbb{Z}$ che associa a ogni elemento $x \in \mathbb{Z}$ il resto della divisione di x per n ossia f(x) = qn + r con $q, r \in \mathbb{Z}$, $0 \le r \le n$. Diciamo che due numeri sono congrui modulo n se e solo se hanno lo stesso resto.

Osservazione 8. $\{0, 1, 2, 3, \dots, n-1 \text{ è un sistema di rappresentanti per } \Xi_n$.

2 Calcolo combinatorio

L'obiettivo del calcolo combinatorio è quello di contare la cardinalità di insiemi finiti.

Regola della somma. Se un evento può accadere in n_1 modi e un secondo evento in n_2 modi, diversi dai precedenti, allora ci sono n_1+n_2 modi in cui uno dei due eventi può succedere. Esempio. Supponiamo A_1 , A_2 insiemi degli eventi tale che $|A_1|=n_1$, $|A_2|=n_2$ e $A_1\cap A_2=\emptyset$, allora $|A_1\cup A_2|=n_1+n_2$. Se $A_1\cap A_2\neq\emptyset$ allora $|A_1\cup A_2|=n_1+n_2-|A_1\cap A_2$. In generale se A_1,A_2,\ldots,A_s s insiemi con $|A_i|=n_i$ $\forall i=1,2,\ldots,s$ e sono a due a due disgiunti, allora $|A_1\cup A_2\cup\ldots\cup A_S|=\sum_{i=1}^s n_i$

Regola della prodotto. Se un evento può accadere in n_1 modi e un secondo evento, indipendente dal primo, può accadere in n_2 modi allora ci sono $n_1 \cdot n_2$ modi in cui entrambi gli eventi possono accadere. Esempi:

1. Ho 3 pa
ia di pantaloni e 4 paia di camicie. Quanti sono i possibili abbigliamenti? Chiamo
 $A_1 = \{pantaloni\}$ e $A_2 = \{camicie\}$

$$n_1 = 3$$
 $n_2 = 4$ $n_1 \cdot n_2 = 12$

In generale se A_1, A_2, \ldots, A_s s insiemi con $|A_i| = n_i \quad \forall i = 1, 2, \ldots, s$ allora $|A_1 \times A_2 \times \cdots \times A_s| = \prod_{i=1}^s |A_i|$. Ricorda che $A_1 \times A_2 \times \cdots \times A_s = \{(a_1, a_2, \ldots, a_s) | a_i \in A_i \forall i = 1, 2, \ldots, s\}$.

- 2. Siano A, B insieme con |A| = n, $|B| = m | \text{con } n, m \in \mathbb{N}$. Determinare il numero delle funzioni $f: A \to B$. Ora, siano $A = \{a_1, a_2, \dots, a_m\}$, $B = \{b_1, b_2, \dots, b_m\}$ e $F = \{funzioni \ di \ A \ in \ B\}$.
 - Per $f(a_1)$ ci sono m scelte, ovvero ognuno dei b_j con j = 1, 2, ..., m
 - Per $f(a_2)$ ci sono m scelte, ovvero ognuno dei b_j con $j=1,2,\ldots,m$
 - •
 - Per $f(a_n)$ ci sono m scelte, ovvero ognuno dei b_j con $j=1,2,\ldots,m$

Per la regola del prodotto $|F| = m \cdot m \cdot \dots \cdot m = m^n = |B|^{|A|}$

- 3. Determinare il numero di funzioni <u>iniettive</u> da A in B. Chiamo $I=\{f\in F|f\,\acute{e}\,iniettiva\}.$ Poiché f è iniettiva, allora:
 - Per $f(a_1)$ ci sono m scelte possibili, tutti gli elementi di B.
 - Per $f(a_2)$ ci sono m-1 scelte in $B \setminus \{f(a_1)\}$
 - :
 - Per $f(a_n)$ ci sono m-(n-1) scelte in $B\setminus\{f(a_1),\ldots,f(a_{n-1})\}$

Per la regola del prodotto $|I|=m(m-1)(m-2)\dots(m-n+1)=D(m,n),$ disposizioni semplici.

Osservazione 1. Se $n = 1 \iff D(m, 1) = m$. Se $n = m \iff D(m, m) = m!$

Definizione 1 (Permutazione). Ogni funzioni biunivoca $f: A \to A$ si chiama permutazione. intuitivamente si dice permutazione su A un qualsiasi ordinamento degli elementi di A.

$$P_n = n!$$

Esercizio. Determinare il numero di anagrammi delle seguenti parole:

- SOLE $\longrightarrow \#anagrammi = 4! = 24$
- CASA $\longrightarrow \#anagrammi = \frac{4!}{2!} = 12$
- COLTELLO $\longrightarrow \#anagrammi = \frac{8!}{2! \cdot 3!} = 3360$

2.1 Disposizioni e combinazioni semplici

Problema: Dato un insieme di n elementi, in quanti modi si possono scegliere k elementi senza ripetizione fra questi n? Analizziamo i diversi casi:

- 1. Caso in cui l'ordine della k-upla è importante: $D(n,k)=\frac{n!}{(n-k)!}\to$ numero di disposizioni semplici di classe k.
- 2. Non è importante l'ordine della k-upla: $C(n,k)\frac{n!}{k!(n-k)!}=\binom{n}{k}\to$ numero di combinazioni semplici di n elementi di classe k.

Esempi:

- 1. In quanti modi si possono assegnare le medaglie a 50 atleti? $n=50, \, k=3 \rightarrow D(50,3)=\frac{50!}{47!}=50\cdot 49\cdot 48$
- 2. Quanti sono i possibili podi, senza ordine, di 50 atleti? $C(50,3) = \frac{50\cdot49\cdot48\cdot4\pi!}{3!\cdot4\pi}$

Definizione 2 (Disposizione semplice). Si dice disposizione semplice di n oggetti di classe k, con $k \leq n$, un qualsiasi ordinamento di k elementi mutuamente distinti in A.

$$D(n,k) = \frac{n!}{(n-k)!}$$

Definizione 3. Si dice combinazione di n oggetti di classe k, con $k \le n$, un sottoinsieme di cardinalità k di un insieme di cardinalità n.

$$C(n,k) = \frac{n!}{k!(n-k)!}$$

2.2 Disposizioni e combinazioni con ripetizione

Problema: In quanti modi si possono scegliere k elementi, anche coincidenti, fra gli elementi di un insieme di n elementi? Anche in questo caso distinguiamo due casi:

- 1. Se è importante l'ordine $D^r(n,k)$ Disposizioni con ripetizione
- 2. Altrimenti $C^r(n,k)$ combinazioni con ripetizione

Definizione 4 (Disposizione con ripetizione). Si dice disposizione con ripetizione di n oggetti di classe k un qualsiasi ordinamento di k elementi, non necessariamente distinti, di A. k può essere minore uguale o maggiore di n.

$$D^r(n,k) = n^k$$

Definizione 5. Si dice combinazione con ripetizione di n oggetti di classe k un raggruppamento non ordinato (detto multinsieme di k elementi di A, eventualmente anche ripetuti.

$$C^{n}(n,k) = {k+n-1 \choose k} = \frac{(n+k-1)!}{(n-1)!k!}$$

Teorema 1. Se $A \ \dot{e} \ un \ insieme \ finito \ |A| = n \ allora \ |P(A)| = 2^n$.

Dimostrazione. Poniamo $Y = \{\text{funzioni da A in } \{0,1\}\}$ e sappiamo che

$$|Y| = |\{0, 1\}|^{|A|} = 2^n$$

Definisco

$$\mathcal{X}: P(A) \to Y$$

e prendo per ogni $B \in P(A)$, ossia $B \subseteq A$ quindi $\mathcal{X}(B)$ funzione caratteristica di B, cioè la funzione definita da

$$(\mathcal{X}(B))(a) = \begin{cases} 0 \text{ se } a \notin B \\ 1 \text{ se } a \in B \end{cases}$$

Quindi $\mathcal{X}(B): A \to \{0,1\}$ cioè $\mathcal{X}(B) \in Y$. Dimostro che \mathcal{X} è biettiva:

1. Iniettività. Siano $B_1, B_2 \in P(A)$ con $B_1 \neq B_2$ allora posso supporre che $b \in B_1 \setminus B_2$ altrimenti esiste $b \in B_2 \setminus B_1$. Allora nel primo caso

$$\mathcal{X}(B_1)(b) = 1$$

$$\mathcal{X}(B_2)(b) = 0$$

2. Suriettività. Voglio dimostrare che per ogni $f \in Y$ trovo $B \in P(A)$ tale che $f = \mathcal{X}(B)$. Sia $f \in Y$ allora $f : A \to \{0, 1\}$. Considero $\{a \in A | f(a) = 1\} = B$ allora $B \subseteq A$ cioè $B \in P(A)$ e vale che per ogni $x \in A$

$$\mathcal{X}(B)(x) = 1 \iff x \in B \iff f(x) = 1$$

Ciò prova che $\forall a \in A$ vale $\mathcal{X}(B)(a) = f(a)$ ovvero

$$\mathcal{X}(B) = f$$

cioè $\mathcal X$ è suriettiva.

Quindi ${\mathcal X}$ è una biezione e allora

$$|P(A)| = 2^n$$

2.3 Coefficiente binomiale

$$\binom{n}{k} = \frac{n!}{k|(n-k)!}$$

 $\binom{n}{k}$ è il numero dei sottoinsiemi di k
 elementi di un insieme di cardinalità n. Esempio. $X=\{a,b,c,d\} \ |X|=40$

- # di sottoinsiemi di cardinalità 2 di $X=\binom{4}{2}=\frac{4!}{2!2!}=6$. Questi sono $\{a,b\},\{a,c\},\{a,d\},\{b,c\},\{b,d\},\{c,d\}$
- # di sottoinsiemi di cardinalità 3 di $X = {4 \choose 3} = \frac{4!}{3!1!} = 4.$
- # di sottoinsiemi di cardinalità 4 di $X=\binom{4}{4}=\frac{4!}{4!0!}=1.$
- # di sottoinsiemi di cardinalità 1 di $X = \binom{4}{1} = \frac{4!}{1!3!} = 4$.
- # di sottoinsiemi di cardinalità 0 di $X = \binom{4}{0} = \frac{4!}{0!4!} = 1$. Ovvero \emptyset .

Quindi sia X insieme tale che |X|=n, allora:

$$\sum_{k=0}^{n} = |P(X)|$$

Proprietà dei coefficienti binomiali

Sia k tale che $0 \le k < n$. Allora:

- 1. $\binom{n}{0} = 1$. Attenzione 0! = 1
- $2. \binom{n}{1} = n$
- 3. $\binom{n}{n} = 1$
- 4. $\binom{n}{k} = \binom{n}{n-k} = \frac{n!}{(n-k)!(n-n+k)!} = \frac{n!}{(n-k)!k!}$

Formula del binomio di Newton. Se $n \in \mathbb{N}$ allora:

$$(x+y)^n = \sum_{k=0}^n \binom{n}{k} x^k y^{n-k}$$

Per esempio $(x+y)^5 = x^5 + 5x^4y + 10x^3y^2 + 10x^2y^3 + 5xy^4 + y^5$. Si ritrovano i valori dell'n-esimo livello del Triangolo di Tartaglia come coefficienti dei vari termini.

Teorema 2. Sia X un insieme |X| = n allora $|P(X)| = 2^n$

Dimostrazione. Per ogni $0 \le k \le n$ chiamo $P_k(X) = \{Y | Y \subseteq X \land |Y| = k\}$. Allora $P(X) = \bigcup_{k=0}^n A_k$.

$$|P(X)| = |\bigcup_{k=0}^{n} P_k(X)| = \sum_{k=0}^{n} {n \choose k} = \sum_{k=0}^{n} {n \choose k} 1^k 1^{n-k} = (1+1)^n = 2^n$$

Principio di inclusione ed esclusione P.I.E

$$|A \cup B| = |A| + |B| - |A \cap B|$$

In generale

$$|A_1 \cup A_2 \cup \dots \cup A_n| = \sum_{i=1}^n |A_i| - \sum_{1 \le i < j < n} |A_i \cap A_j| + \sum_{1 \le i < j < k < n} |A_i \cap A_k \cup A_k| - \dots + (-1)^{n+1} |A_1 \cup A_2 \cup \dots \cup A_n|$$

$$|A_1 \cup A_2 \cup \dots \cup A_n| = \sum_{\emptyset \neq I \subseteq \{1,2,\dots,k\}} (-1)^{|I|+1} |\bigcap_{i \in I} A_i|$$

Numero di funzioni suriettive di A in B

Siano A, B insiemi, |A| = n |B| = m. Se $m \ge n$, il numero di funzioni suriettive da A in B è dato da

$$S(n,m) = \sum_{j=0}^{m} (-1)^{j} \binom{m}{k} (m-j)^{n}$$

Dimostrazione. Procediamo per passi:

1. Per ogni $b \in B$ chiamo F_b l'insieme di tutte le funzioni $f: A \to B$ tale che $Im(f) = f(A) \subseteq B \setminus \{b\}$, ovvero $\forall a \in A f(a) \neq b$

$$\{funzioni\ suriettive\} = \{f|f:A \to B\} \setminus \bigcup_{b \in B} F_b$$

- 2. Poiché ogni elemento di F_b non è una funzione suriettiva e viceversa se $g:A\to B$ non è suriettiva, esiste un certo $c\in B$ tale che $g(a)\neq c\,\forall\,a$ cioè $g\in F_c$.
- 3. Allora il numero di funzioni suriettive è la cardinalità della differenza

$$S(n,m) = |\{f|f: A \to B\}| - |\bigcup_{b \in B} F_b| = m^n - |\bigcup_{b \in B} F_b|$$

4. Uso il principio di inclusione ed esclusione per calcolare $|\bigcup_{b\in B}F_b|$. Per ogni $J\subseteq B$ sia $F_j=\bigcap_{b\in j}F_b=\{f|f:A\to B\lor Im(f)\subseteq B\setminus J\}$ se |J|=J allora $|F_j|=(m-j)^n$. Questo è il numero di funzioni da un insieme di n elementi in uno di (m-j) elementi e ci sono $\binom{m}{j}$ sottoinsiemi di B di cardinalità j.

$$|\bigcup_{b \in J} F_b| = \sum_{\emptyset \neq J \subset B} (-1)^{|J|+1} |\bigcap_{b \in B} F_b| = \sum_{\emptyset \neq J \subset B} (-1)^{|J|+1} |F_j| =$$

$$\sum_{j=1}^{m=|B|} (-1)^{j+1} \binom{m}{j} (m-j)^n = m^n + \sum_{j=1}^m (-1)^j \binom{m}{j} (m-j)^n$$

E quindi otteniamo:

$$\sum_{j=0}^{m} (-1)^{j} {m \choose j} (m-j)^{n}$$

2.4 Cardinalità

Definizione 6 (Equipotenza). Siano A e B due insiemi. Diciamo che hanno la stessa cardinalità, oppure che sono equipotenti, se esiste una corrispondenza biunivoca tra i due insiemi, cioè esiste $f: A \to B$ che sia biettiva. In tal caso si scrive $A \sim B$.

Osservazione 2. \sim è una relazione di equivalenza fra la classe degli insiemi. Infatti:

- 1. \sim è riflessiva, $\forall A$ insieme prendi $f = id_A : A \rightarrow A$ quindi $id_A(a) = A \forall a \in A \Longrightarrow A \sim A$
- 2. \sim è simmetrica, se vale $A \sim B$ allora esiste $f: A \rightarrow B$ biunivoca e quindi esiste $f^-1: B \rightarrow A$ biunivoca $\Longrightarrow B \sim A$.
- 3. \sim è transitiva, se $A \sim B$ e $B \sim C$, allora esistono $f: A \rightarrow B$ e $g = B \rightarrow C$ biunivoche. Quindi $g \circ f: A \rightarrow C$ biunivoca $\Longrightarrow A \sim C$.

Definizione 7 (Cardinalità). Si chiama cardinalità di un insieme A la classe di equivalenza rispetto $a \sim a$ cui A appartiene. Si scrive |A| o Card(A).

Definizione 8. Un insieme $A \ \dot{e} \ \underline{finito} \ se \ \exists \ n \in \mathbb{N} \ tale \ che \ A \sim I_n = \{1, 2, 3, 4, \dots, n\}, \ I_0 = \emptyset.$ Altrimenti A si dice infinito.

Osservazione 3. Per gli insiemi finiti |A|=numero di elementi di A. Ovviamente se $n \neq m$ allora $I_n \not \sim I_m$. Quindi A è finito se e solo se non può essere messo in corrispondenza biunivoca con un suo sottoinsieme proprio. Ciò non vale se A è infinito.

Definizione 9 (Insieme numerabile). *Ogni insieme equipotente ad* \mathbb{N} *si dice numerabile.* $|\mathbb{N}| = \aleph_0$, *si legge Aleph zero.*

Teorema 3. Ogni unione numerabile o finita di insiemi numerabili è numerabile.

Dimostrazione. Analizziamo il caso più generale di unione numerabile di insiemi numerabili $A_1, A_2, \ldots, A_n, \ldots$, cioè $A_n \sim \mathbb{N}$, tale che siano a due a due disgiunti. Considero l'unione:

$$X = A_1 \cup A_2 \cup \cdots \cup A_n \cdots = \bigcup_{j \in \mathbb{N}} A_j$$

Per ipotesi ogni insieme A_j è numerabile, ossia $A_j \sim \mathbb{N}$ e quindi posso scrivere

$$A_{i} = \{a_{i_{1}}, a_{i_{2}}, a_{i_{3}}, \dots, a_{i_{n}}, \dots\} \quad \forall j \in \mathbb{N}$$

Adesso dobbiamo mettere in corrispondenza biunivoca l'insieme X con l'insieme \mathbb{N} . Procediamo con il procedimento diagonale di Cantor:

L'idea è quella di disporre gli insiemi considerati in una matrice infinita e trovare un modo di contare i suoi elementi. Osserviamo che non è possibile contare gli elementi in orizzontale o verticale poiché sia righe che colonne sono infinite, quindi procediamo a contare in diagonale e notiamo che in questo modo è possibile perché le diagonali sono finite. Ora, considero la diagonale j-esima, cioè

$$D_j = \{(a_{j,1}, a_{j-1,2}, a_{j-2,3}\dots) = \{a_{h,k} \in X | h+k = j+1\}$$

Ogni elemento $a_{h,k} \in X$ appartiene a una e una sola diagonale, precisamente a D_{h+k-1} quindi posso definire una corrispondenza biunivoca tra X e \mathbb{N} :

$$f: X = \bigcup_{j \in \mathbb{N}} A_j \to \mathbb{N}$$

$$f(a_{h,k}) = (\sum_{j=1}^{h+k-2} j) + k$$

quindi gli elementi di X vengono numerati:

$$a_{11} \to 1 \quad a_{21} \to 2 \quad a_{12} \to 3$$

$$a_{31} \rightarrow 4 \quad a_{22} \rightarrow 5 \quad \dots$$

ossia X è in corrispondenza biunivoca con \mathbb{N} e quindi è numerabile.

Corollario 1. $\mathbb{Z}, \mathbb{Q}, \mathbb{N} \times \mathbb{N}$ sono numerabili.

Dimostrazione.

- 1. $\mathbb{Z} = \{0, 1, 2 \dots\} \cup \{-1, -2, -3, \dots\} = \mathbb{N} \cup B = \{-n | n \in \mathbb{N}\}$ è ovvio che $B \sim \mathbb{N} \Rightarrow$ per il teorema allora anche \mathbb{Z} .
- 2. $\mathbb{N} \times \mathbb{N} = \{(a,b)|a,b \in \mathbb{N}, \text{ poniamo } \forall h \in \mathbb{N} \ A_h = \{(h,0),(h,1),(h,2)\dots\} = \{(h,n)|n \in \mathbb{N}\}.$ Ognuno di questi h è numerabile $(f:\mathbb{N} \to A_h \text{ con } n \to (h,n)$ è una biezione). Quindi $\mathbb{N} \times \mathbb{N} = \bigcup_{h \in \mathbb{N}} A_h$ è numerabile per il teorema.
- 3. $\mathbb{Q} = \{\frac{x}{y}|x, y \in \mathbb{Z} \ e \ y \neq 0\}$ è numerabile.

Principio della piccionaia. Siano A, B insiemi finiti e sia |A| = n e |B| = m. Allora $n \le m \iff \exists$ una funzione iniettiva $f: A \to B$. Se invece n > m, allora ogni funzione $f: A \to B$ non e mai iniettiva.

Questo è anche chiamato principio del portalettere. L'intuizione è che se n + k oggetti $(k \neq 0)$, in questo caso piccioni, sono messi in n cassetti, allora necessariamente almeno un cassetto deve contenere più di un oggetto.

Proposizione 1. Un insieme arbitrario A ha cardinalità inferiore (\leq) a quella di B insieme se esiste una funzione iniettiva da A in B.

$$|A| \leq |B| \iff \exists h : A \to B \ iniettiva$$

Teorema 4. Per ogni insieme A vale |A| < |P(A)|.

Dimostrazione. Procedo in due passi:

- 1. Provo che $|A| \leq |P(A)|$. Questo significa trovare una $f: A \to P(A)$ iniettiva. Considero f definita come $f(a) = \{a\}$ $\forall a \in A$. La funzione associa ad ogni elemento di A l'insieme composto solo da quell'elemento. Questa funzione è banalmente iniettiva, infatti se $a \neq b$ allora $\{a\} \neq \{b\}$.
- 2. Provo che $|A| \neq |P(A)|$. Questo significa provare che non può esistere una funzione biunivoca tra i due. Per assurdo sia $g: A \to P(A)$ una biezione. Ora, considero

$$U = \{ a \in A | a \notin g(a) \}$$

In pratica U è formato da tutti gli elementi di A che non appartengono all'insieme a cui sono associati. Quindi $U \subseteq A$ cioè $U \in P(A)$. Poiché g è una funzione biunivoca esiste un unico $c \in A$ tale che g(c) = U. Allora si hanno due casi:

- (a) Se $c \in U$ allora $c \in \{a \in A | a \notin g(a)\}$ e quindi $c \notin g(c)$ cioè $c \notin U$ e questo è assurdo perché avevamo supposto che $c \in U$.
- (b) Se $c \notin U$ allora non vale $c \notin g(c)$ cioè $c \in g(c)$ cioè $c \in U$ e questo è assurdo perchè avevamo supposto che $c \notin U$.

Corollario 2. Se A insieme numerabile allora |P(A)| ha cardinalità più che numerabile.

$$|P(\mathbb{N})| = 2^{\mathbb{N}} \ge \aleph_0 = |\mathbb{N}|$$

Da queste osservazioni e grazie al matematico Cantor si arriva all'idea che esistono infiniti più infiniti di altri. Per esempio l'insieme dei numeri reali $|\mathbb{R}| \sim 2^{\mathbb{N}} = |P(\mathbb{N})|$, ovvero esistono più numeri reali dei numeri naturali nonostante siano entrambi infiniti. Consiglio di guardare la dimostrazione di Cantor su questo ultimo fatto.

3 Numeri Interi

 $\mathbb{Z}=\{\ldots,-2,-1,0,1,2,\ldots\}$ insieme dotato di due operazioni, somma e prodotto, $(\mathbb{Z},+,\cdot)$ è un anello commutativo.

Definizione 1 (Anello commutativo). Un insieme A dotato di due operazioni:

- $Somma +: A \times A \rightarrow A$ $(a,b) \rightarrow a + b$
- $Prodotto : A \times A \rightarrow A$ $(a,b) \rightarrow a \cdot b$

si dice che A è un anello commutativo se valgono le seguenti proprietà:

- 1. $+ \grave{e}$ commutativa cio $\grave{e} \ \forall a, b \in A \ vale \ a + b = b + a$
- 2. + è associativa cioè $\forall a, b, b \in A$ vale (a + b) + b = a + (b + c)
- 3. Deve esistere un elemento neutro, lo zero, per la somma cioè esiste $0_A \in A$ tale che $\forall a \in A$ $a + 0_A = a$
- 4. Ogni elemento ammette un unico inverso per la somma cioè $\forall a \in A \exists ! b \in A \text{ tale che } a+b=0_A$ (si indica b=-a).
- 5. Il prodotto è commutativo cioè $\forall a, b \in A \ vale \ a \cdot b = b \cdot a$
- 6. il prodotto è associativo cioè $\forall a, b, c \in A \ vale \ a \cdot (b \cdot c) = (a \cdot b) \cdot c$
- 7. Esiste un unico elemento neutro rispetto al prodotto, l'unità, cioè esiste $1_A \in A$ tale che $\forall a \in A$ vale $a \cdot 1_A = a$
- 8. Valgono le leggi distributive, $\forall a, b, c \in A$:
 - $a \cdot (b+c) = ab + ac$
 - $(a+b) \cdot c = ac + bc$

In $\mathbb Z$ presi due numeri arbitrari possiamo sempre dividerli ottenendo un quoziente e un resto. Questa prende il nome di Divisione Euclidea.

Proposizione 1. Dati $a, b \in \mathbb{Z}$ con $b \neq 0$ esistono q e $r \in \mathbb{Z}$ tale che:

$$\begin{cases} a = b \cdot q + r \\ 0 \le r < |b| \end{cases}$$

Inoltre q e r sono unici.

Dimostrazione. Per prima cosa dimostriamo l'esistenza di r e q. Distinguiamo due casi:

1. Caso in cui a > 0.

Consideriamo l'insieme

$$S = \{ n \in \mathbb{N} | n = a - bm, \, m \in \mathbb{Z} \}$$

Allora $S \subseteq \mathbb{N}$ e $S \neq \emptyset$ perchè $a = a - b \cdot 0$ e poiché $a \geq 0 \Longrightarrow a \in S$. Applico il principio del buon ordinamento (Ogni sottoinsieme di \mathbb{N} ha minimo) e quindi esiste r = min(S).

Poiché $r \in S$ allora $r \ge 0$ ed esiste un certo $q \in \mathbb{Z}$ tale che r = a - bq. Ora, se r < |b| abbiamo finito.

Suppongo che $r \geq |b|$. Allora

$$r = a - bq = a - bq + |b| - |b| = a - b(a \pm 1) + |b|$$

Quindi

$$r - |b| = a - b(q \pm 1)$$

A questo punto, considerando $q\pm 1$ come numero intero, si ha che $r-|b|\in S$ poiché $r-|b|\geq 0$. Ma r-|b|< r perchè $b\neq 0\Longrightarrow |b|\geq 1$ cioè $r-|b|\in S$ e

$$r - |b| < r = min(S)$$

Questo è assurdo per definizione di minimo e quindi r < |b|.

2. Caso in cui a < 0.

Allora consideriamo -a>0 e per il caso precedente esistono $\overline{q},\overline{r}\in\mathbb{Z}$ tali che

$$\begin{cases} -a = b\overline{q} + \overline{r} \\ 0 \le \overline{r} < |b| \end{cases}$$

ora, se $\overline{r}=0$ si ha che $a=b(-\overline{q})+0$ quindi ponendo $q=-\overline{q}$ e $r=\overline{r}=0$ ho finito. Se invece $\overline{r}>0$ allora posso scrivere

$$a = b(-\overline{q}) - \overline{r} = b(-\overline{q}) - \overline{r} + |b| - |b| = b(-\overline{q} \pm 1) + (|b| - \overline{r})$$

Pongo

$$q = -\overline{q} + 1$$
 $r = |b| - \overline{r} > 0$

ed è ho finito.

Adesso dimostriamo l'<u>unicità</u>:

Siano

$$\begin{cases} a = bq + r \\ 0 \le r < |b| \end{cases} \begin{cases} a = bq_1 + r_1 \\ 0 \le r_1 < |b| \end{cases} \Longrightarrow \begin{cases} q = q_1 \\ r = r_1 \end{cases}$$

Suppongo l'esistenza di due quozienti e due resti diversi e mostro che in realtà coincidono. Considero

$$a = bq + r = bq_1 + r_1$$

Se $r = r_1$ allora $bq = bq_1 \Longrightarrow q = q_1$ ed ho finito.

Se $r \neq r_1$ posso supporre, senza perdere di generalità, $r_1 > r$. Quindi

$$0 < r_1 - r = (a - bq_1) - (a - bq) = bq - bq_1) = (b(q - q_1))$$

Applico il valore assoluto e trovo

$$|b||q - q_1| = |r - r_1|$$

Ma $r - r_1 > 0$ quindi

$$|b||q - q_1| = |r - r_1| = r - r_1 < r_1 < |b|$$

Ora, poiché $b \neq 0$ anche $|b| \neq 0$ quindi posso dividere e ottengo

$$|q - q_1| < 1$$

Ossia

$$|q - q_1| = 0 \Longrightarrow q = q_1$$

Quindi da $bq + r = bq_1 + r_1$ segue che $r = r_1$.

Definizione 2. Siano $a, b \in \mathbb{Z}$ diremo che b divide a, e scriveremo b|a, se esiste $q \in \mathbb{Z}$ tale che $a = b \cdot q$. Ossia il resto r della divisione è uguale a zero.

Definizione 3 (MCD). Siano $a, b \in \mathbb{Z}$ diremo che un elemento $d \in \mathbb{Z}$ è un massimo comune divisore tra $a \in b$ se:

- 1. $d|a \wedge d|b$
- 2. Se ogni volta che esiste un $c \in \mathbb{Z}$ tale che c|a e c|b allora c|d. Ossia d è il massimo tra tutti i numeri che dividono a e b.

Osservazione 1. se d è un massimo comune divisore allora anche -d lo è, a = dq = (-d)(-q). Si indica con MCD(a,b) il massimo comune divisore positivo.

Proprietà MCD:

- 1. MCD(a, b) = MCD(b, a) = MCD(|a|, |b|)
- 2. $MCD(ab, ac) = |a| \cdot MCD(b, c)$
- 3. $MCD(a,0) = |a| \ \forall a \neq 0$ questo perchè MCD(0,0) non è definito.

Definizione 4 (Coprimi). Diremo che $a, b \in \mathbb{Z}$ sono coprimi se MCD(a, b) = 1.

Osservazione 2. $MCD(a, b) = |b| \iff b|a$

Proposizione 2. Siano $a, b \in \mathbb{Z}$ tale che a = bq + r con $b \neq 0$ e $0 \leq r < |b|$. Allora MCD(a, b) = MCD(b, r).

Dimostrazione. Siano d = MCD(a,b) e f = MCD(b,r). Allora per definizione d|a e d|b quindi posso scrivere a = dx e b = dy con $x, y \in \mathbb{Z}$. Proviamo la doppia divisibilità, ossia che f|d e d|f.

1. Proviamo d|f.

Si ha che

$$r = a - bq = dx - dyq = d(x - qy)$$

Quindi d|r. Allora d|b e d|r e per definizione di f = MCD(b,r) segue che d|f.

2. Proviamo che f|d.

Per ipotesi f = MCD(b, r) quindi $f|b \in f|r$ e chiamo $b = ft \in r = fs$ con $t, s \in \mathbb{Z}$. Segue che

$$a = bq + r = ftq + fs = f(tq + s)$$

Quindi f|a. Ora, f|a e f|b e quindi per definizione di d = MCD(a, b) segue che f|d.

Ora, poiché $f|d \in d|f$ cioè $d = fw \in f = dy$ con $w, y \in \mathbb{Z}$. Poiché $f, d \geq 0 \Longrightarrow w, y \geq 0$ e quindi

$$d = fw = dyw$$

divido per d

$$1 = yw \iff w = y = 1$$

Ossia d = f.

Proposizione 3. Siano $a, b \in \mathbb{Z}$, se $(a, b) \neq (0, 0)$ allora esiste MCD(a, b).

Dimostrazione. Si basa sull'esempio pratico, usando l'algoritmo di Euclide: Siano $a, b \in \mathbb{Z}$ e $b \neq 0$ allora scrivo a = bq + r e ,per quanto appena dimostrato, vale MCD(a, b) = MCD(b, r).

Algoritmo Euclideo. Mi permette di trovare l'MCD tra due numeri interi a,b. Poiché MCD(a,b) = MCD(|a|,|b|) posso supporre che $a,b \geq 0$. Inoltre dal fatto che MCD(a,b) = MCD(b,a) posso supporre $a \geq b \geq 0$. Itero il seguente procedimento:

- 1. Divido a per b, $a = bq_1 + r_1$ con $0 \le r_1 < b$ $MCD(a, b) = MCD(b, r_1)$
 - Se $r_1 = 0$ ho finito $MCD(b, r_1) = b = MCD(a, b)$
- 2. Se $r_1 > 0$ allora $b = r_1q_2 + r_2$ con $0 \le r_2 < r_1$
 - Se $r_2 = 0$ allora $MCD(b, r_1) = r_1 = MCD(a, b)$
- 3. Se $r_2 > 0$ allora $r_1 = r_2 q_3 + r_3$ con $0 \le r_3 < r_2$
 - Se $r_3 = 0$ allora $MCD(a, b) = r_2$
- 4. Se $r_3 > 0$ allora $r_2 = r_3 q_4 + r_4$ con $0 \le r_4 < r_3$ \vdots

Ora, osservo che la successione dei resti $r_1 > r_2 > r_3 > r_4 > \cdots > r_n \ge 0$ è strettamente decrescente e quindi esiste un minimo intero n tale che $r_n > 0$ e $r_{n+1} = 0$. Allora si ha:

$$MCD(r_n, r_{n+1}) = r_n = MCD(r_{n-1}, r_n) = \dots = MCD(a, b)$$

e quindi

$$r_n = MCD(a, b)$$

è l'ultimo resto non nullo.

Teorema 1 (Formula di Bezout). Siano $a, b \in \mathbb{Z}$ tale che $(a, b) \neq (0, 0)$ e d = MCD(a, b). Allora esistono $\alpha, \beta \in \mathbb{Z}$ tale che

$$d = a\alpha + b\beta$$

Inoltre d divide ogni intero della forma $ax + by \ con \ x, y \in \mathbb{Z}$.

Dimostrazione. Sia

$$S = \{ n \in \mathbb{N}_{>0} | \exists \ x, y \in \mathbb{Z} \ t.c. \ n = ax + by \}$$

Allora $S \neq \emptyset$ poiché basta prendere x = a e $y = b \Longrightarrow aa + bb = a^2 + b^2 > 0$ quindi $a^2 + b^2 \in S$. Allora per il principio del buon ordinamento esiste c = min(S). Ora, provo che c = d mostrando prima che c|d e poi che $d|c \Longrightarrow c = d$.

1. Poiché $c \in S$ posso scrivere $c = a\alpha + b\beta$ per opportuni $\alpha, \beta \in \mathbb{Z}$. Dal fatto che d = MCD(a, b) si ha che

$$d|a \wedge d|b$$

e quindi

$$d|a\alpha \quad d|b\beta$$

da cui segue

$$d|(a\alpha + b\beta) = c$$

cioè

2. Per dimostrare che c|d basta provare che c|a e $c|b \Longrightarrow c|d$ per le proprietà dell'MCD. Mostro che c|a:

Faccio la divisione con resto di a per c, allora esistono unici $q, r \in \mathbb{Z}$ tale che a = cq + r con $0 \le r < c$. Faccio vedere che r = 0 procedendo per assurdo.

Suppongo che $r \neq 0$ allora 0 < r < c da cui segue

$$r = a - cq = a - (a\alpha + b\beta)q = a(1 - \alpha q) + b(-\beta)$$

Osservo che $(1 - \alpha q), (-\beta) \in \mathbb{Z}$ quindi $r \in S$ ma r < c = min(S) e questo è assurdo per definizione di minimo di un insieme. Quindi deve essere che r = 0, cioè:

$$a = cq \Longrightarrow c|a$$

Similmente si ottiene lo stesso risultato per quanto riguarda c|b.

Pertanto

$$c|MCD(a,b) = d$$

e quindi

$$\begin{cases} c|d \\ d|c \Longrightarrow c = d \\ d, c > 0 \end{cases}$$

Infine proviamo che d = min(S) = MCD(a, b) divide ogni elemento m = ax + by con $x, y \in \mathbb{Z}$. Divido m per d quindi m = dt + p con $t, p \in \mathbb{Z}$, $0 \le q < d$. Se $p \ne 0$ allora

$$0$$

$$p = m - dt = ax + by - (a\alpha + b\beta)t = a(x - \alpha t) + b(y - \beta t) \in S$$

е

$$p < min(S) = d$$

ma questo è assurdo. Segue che p=0 cio
è $m=dt\Longrightarrow d|m.$

Esempio. Sia MCD(168,22)=2 trovare $\alpha,\beta\in\mathbb{Z}$ tale che $MCD(168,22)=2=168\alpha+22\beta$

$$168 = 22 \cdot 7 + 14 \Longrightarrow 14 = 168 + 22(-7)$$

$$22 = 14 \cdot 1 + 8 \Longrightarrow 8 = 22 - 14 = 22 - (18 + 22(-7)) = 168(-1) + 22(8)$$

$$14 = 8 \cdot 1 + 6 \Longrightarrow 6 = 14 - 8 = 168(1 - (-1)) + 22(-7 - 8)$$
$$8 = 6 + 2 \Longrightarrow 2 = 8 - 6 = 168(-1 - 2) + 22(8 - (-15)) = 168(-3) + 22(23)$$

Quindi

$$\alpha = -3$$
 $\beta = 23$

Definizione 5 (mcm). Siano $x,y \in \mathbb{Z}$ tale che $(x,y) \neq (0,0)$, allora $[x,y] = mcm(x,y) = \frac{|xy|}{MCD(x,y)} \in \mathbb{Z}$. Alternativamente si definisce minimo comune multiple tra x e y ogni intero $z \in \mathbb{Z}$ tale che:

- 1. $x|z \wedge y|z$
- 2. $\forall w \in \mathbb{Z} \text{ tale che } x | w \text{ e } y | w \text{ vale } z | w$.

Teorema 2 (Teorema di Lamè). Siano $a, b \in \mathbb{N}$ con $a \geq b > 0$. Allora il numero D(a, b) di divisioni necessarie per trovare l'MCD(a, b) = d è minore o uguale di 5k dove k è il numero di cifre decimali di b.

Dimostrazione. Sia D(a,b)=n+1 con $n\in\mathbb{N}$ allora $d=MCD(a,b)=r_n$. Ricordiamo

$$a = bq_1 + r_1 \quad 0 \le r_1 < b$$

$$b = r_1q_2 + r_2 \quad 0 \le r_2 < r_1$$

$$r_1 = r_2q_3 + r_3 \quad 0 \le r_3 < r_2$$

$$\vdots$$

$$r_{n-1} = r_nq_{n+1} + 0 \quad r_{n+1} = 0$$

Ora, $\forall i=1,2,3,\ldots,n$ i quozienti $q_i\geq 1$. Inoltre $q_{n+1}\geq 2$ poiché altrimenti $r_{n-1}=r_n$ e questo sarebbe assurdo.

Quindi vale $r_n \ge 1 = f_2$ dove $\{f_n\}$ è la successione di Fibonacci. Allora:

$$r_{n-1} = r_n q_{n-1} \ge 2r_n \ge 2 = f_3$$

$$r_{n-2} = r_{n-1}q_n + r_n \ge r_{n-1} + r_n \ge f_2 + f_3 = f_4$$

$$\vdots$$

$$r_1 = r_2 q_3 + r_3 \ge r_2 + r_3 \ge f_n + f_{n-1} = f_{n+1}$$

$$b = r_1 q_2 + r_2 \ge \cdots \ge f_{n+1} + f_n = f_{n+2}$$

Ora, una proprietà della successione di Fibonacci $\{f_n\}_{n\in\mathbb{N}}$ è che $f_n \geq \phi^{n-2}$, dove $\phi = \frac{1+\sqrt{5}}{2}$ numero Aureo. Quindi:

$$b \ge f_{n+2} \ge \phi^n$$

Applico il logaritmo

$$\log_{10} b \ge \log_{10} \phi^n = n \log_{10} \phi$$

Quindi poiché $\log_{10}(\frac{1+\sqrt{5}}{2})>\frac{1}{5}$

$$\log_{10} b > \frac{n}{5}$$

Se b ha k cifre, allora

$$10^{k-1} \le bz 10^k$$
$$k - 1 \le \log_{10} b < k$$

Quindi

$$n < 5\log_{10} b < 5k$$

Ora, poiché $n, 5k \in \mathbb{N} \Longrightarrow n < 5k$ equivale a $n+1 \le 5k$ cioè

$$D(a,b) \le 5k$$

.

3.1 Rappresentazioni b-adiche

 $2019 = 2 \cdot 10^3 + 0 \cdot 10^2 + 1 \cdot 10 + 9 \cdot 10^0$ base 10 = scrivo il numero come somma di potenze di 10. In base 2 le cifre ammesse sono $\{0,1\}$, infatti:

$$\begin{array}{llll} 2019 = 2(1009) + 1 & 63 = 2(31) + 1 & 1 = 2 \cdot 0 + 1 \\ 1009 = 2(504) + 1 & 31 = 2(15) + 1 \\ 504 = 2(252) + 0 & 15 = 2(7) + 1 \\ 252 = 2(126) + 0 & 7 = 2(3) + 1 \\ 126 = 2(63) + 0 & 3 = 2(1) + 1 \end{array}$$

Quindi

$$2019 = (11111100011)_2 = 1 \cdot 2^{10} + 1 \cdot 2^9 + 1 \cdot 2^8 + \dots$$

Proposizione 4. Sia $b \in \mathbb{Z}$ tale che $b \ge 2$. Allora per ogni numero n > 0 esistono e sono unici un $k \in \mathbb{N}$ e $n_i \in \{0, 1, 2, ..., b-1\}$ con $n_k \ne 0$ tali che

$$n = n_k b^k + n_{k-1} b^{k-1} + \dots + n_1 b + n_0$$

Dimostrazione. Dimostro l'esistenza per induzione su n.

- 1. Se n = 1 allora k = 0 e $n_k = n_0 = 1$ quindi 1 = 1 e $n = n_0$.
- 2. Sia $n = n_k b^k + n_{k-1} b^{k-1} + \dots + n_1 b + n_0$ vera per ogni m con 0 < m < n, proviamolo per n. Divido con resto n per $b \neq 0$. Allora esistono $q, r \in \mathbb{N}$ tale che n = bq + r e $0 \leq r < b$. Ora, q < n perchè $b \geq 2$.
 - Se q = 0 prendo k = 0 e $n_0 = r = n$.
 - Se q > 0 allora 0 < q < n e per ipotesi induttiva ho che esistono $h \in \mathbb{N}$, $m_i \in \{0, \dots, b-1\} \, \forall i = 0, \dots, h$ con $m_h \neq 0$ tali che:

$$q = m_h b^h + m_{h-1} b^{h-1} + \dots + m_1 b + m_0$$

Allora da n = bq + r segue

$$n = b(m_h b^h + m_{h-1} b^{h-1} + \dots + m_1 b + m_0) + r =$$

$$m_h b^{h+1} + \dots + m_1 b^2 + m_0 b + r$$

Si prende k = h + 1, $n_i = m_{i-1} \ \forall i = 1, ..., k \ e \ n_0 = r$

Dimostro l'unicità.

Sia $n \ge 1$ tale che

$$n = n_k b^k + \dots + n_1 b + n_0 = l_n b^t + \dots + l_1 b + l_0$$

con $k, t \in \mathbb{N}$, $n_j, l_i \in \{0, 1, \dots, b-1\}$, $n_k \neq 0$ e $l_t \neq 0$. Provo che k = t e $\forall i = 0, \dots, k$ $n_i = l_i$.

$$n = \underbrace{(n_k b^{k-1} + \dots + n_2 b + n_1)}_{q} b + \underbrace{n_0}_{r}$$

poiché $0 \le n_0 < b$ si ha

$$q = n_k b^{k-1} + \dots + n_2 b + n_1$$

è il quoziente di n diviso b e $r=n_0$ è il resto della divisione. Analogamente per

$$n = (l_1b^{t-1} + \dots + l_2b + l_1)b + l_0$$

quindi

$$\begin{cases} n_0 = l_0 \\ l_1 b^{t-1} + \dots + l_2 b + l_1 = n_k b^{k-1} + \dots + n_2 b + n_1 \end{cases}$$

Questo perchè q < n e quindi per ipotesi induttiva si ha che q ha una sola scrittura in base b. Quindi

$$k - 1 = t - 1$$

$$n_j = l_j \qquad \forall j = 1, \dots, k$$

ossia

$$k = t$$
 $n_j = l_j \ \forall j = 0, \dots, k$

3.2 Equazioni Diofantee

Teorema 3. Dati $a, b, n \in \mathbb{Z}$ con $(a, b) \neq (0, 0)$, allora:

 \bullet L'equazione

$$ax + by = n (1)$$

ha soluzioni se e solo se MCD(a, b) = d divide n.

• Se (x_0, y_0) è una soluzione di (1) allora l'insieme di tutte e solo le soluzioni è

$$S = \{(x_0 + \frac{b}{d}k), y_0 - \frac{a}{d}k) | k \in \mathbb{Z} \}$$

Dimostrazione. Prima dimostro il punto 1.

 \implies Sia (x_0, y_0) una soluzione di (1) e proviamo che d|n. Allora vale $ax_0 + by_0 = n$, ora d = MCD(a, b) quindi d|a e d|b scrivo a = da' e b = db' con $a', b' \in \mathbb{Z}$. Quindi

$$n = a_0 + by_0 = da'x_0 + db'y_0 = d(a'x_0 + b'y_0) = d\underbrace{(a'x_0 + b'y_0)}_{\in \mathbb{Z}}$$

ossia d|n.

 \Leftarrow Viceversa sia d|n e provo che esiste una soluzione intera di (1). d = MCD(a,b) quindi per Bezout esistono $\alpha, \beta \in \mathbb{Z}$ tale che $d = a\alpha + b\beta$. Poiché d|n scrivo n = dt con $t \in \mathbb{Z}$ opportuno. Allora:

$$n = dt = (a\alpha + b\beta)t = a(\alpha t) + b(\beta t)$$

La coppia $(\alpha t, \beta t) \in \mathbb{Z} \times \mathbb{Z}$ è soluzione di (1).

Dimostro il punto 2.

 \subseteq Sia $(x_0 + \frac{b}{d}k, y_0 - \frac{a}{d}k) \in S$ provo che è soluzione dell'equazione. Facilmente si vede che $x_0 + \frac{b}{d}k, y_0 - \frac{a}{d}k \in \mathbb{Z}$ quindi

$$a(x_0 + \frac{b}{d}k) + b(y_0 - \frac{a}{d}k) = ax_0 + \frac{ab}{d}k + by_0 - \frac{ab}{d}k = ax_0 + by_0 = n$$

 \supseteq Viceversa sia $(\overline{x}, \overline{y})$ una soluzione intera dell'equazione, provo che $(\overline{x}, \overline{y}) \in S$. Allora $a\overline{x}, b\overline{y} = n = ax_0 + by_0$ quindi

$$a(\overline{x} - x_0) = b(y_0 - \overline{y}) \tag{2}$$

Quindi $d|a \wedge d|b$ cioè $\frac{a}{d}, \frac{b}{d} \in \mathbb{Z}$. Ora $\frac{b}{d}$ è coprimo con $\frac{a}{d}$ cioè $MCD(\frac{a}{d}, \frac{b}{d}) = 1$. Quindi (2) implica che $\frac{b}{d}|(\overline{x} - x_0)$ cioè esiste $k \in \mathbb{Z}$ tale che $\overline{x} - x_0 = \frac{b}{d}k$ quindi $\overline{x} = x_0 + \frac{b}{d}k$ e da (2) si trova $\overline{y} = y_0 - \frac{a}{d}k$, segue che

$$(\overline{x}, \overline{y}) = \{x_0 + \frac{b}{d}k, y_0 - \frac{a}{d}k\} \in S$$

Definizione 6 (Invertibile). Un elemento $a \in \mathbb{Z}$ è invertibile se esiste $b \in \mathbb{Z}$ tale che $a \cdot b = 1$. Segue che gli unici invertibili di \mathbb{Z} sono +1 e -1.

Definizione 7 (Irriducibile). Un elemento $a \in \mathbb{Z}$ è irriducibile se:

- $a \neq 0 \land a \neq \pm 1 \ (non \ \dot{e} \ invertibile)$
- Ogni volta che a = bc allora o $b = \pm 1$ o $c = \pm 1$.

Definizione 8 (Primo). Un elemento $a \in \mathbb{Z}$ è primo se:

- $a \neq 0$ e $a \neq \pm 1$
- Ogni volta che a|bc allora o a|b o a|c, con $b, c \in \mathbb{Z}$

Proposizione 5. Un elemento di \mathbb{Z} è primo se e solo se è irriducibile.

Dimostrazione.

 \implies Sia $a \in \mathbb{Z}$ elemento primo, provo che a è irriducibile.

Per ipotesi $a \neq 0$ e $a \neq \pm 1$. Per provare che a è irriducibile suppongo che sia a = bc con $b, c \in \mathbb{Z}$ e provo che o $b = \pm 1$ o $c = \pm 1$.

Poiché a=bc si ha che a|bc e quindi, essendo a primo, a|b cioè b=ah per qualche $h\in\mathbb{Z}.$ Oppure a|c cioè c=ak per qualche $k\in\mathbb{Z}.$

Se fosse b=ah allora si ottiene a=bc=ah e poiché $a\neq 0$, trovo 1=hc ma questo implica che $c=\pm 1$. Si ragiona analogamente se fosse c=ak e si ottiene quindi 1=kb quindi $b=\pm 1$.

 \Leftarrow Viceversa, sia $a \in \mathbb{Z}$ irriducibile proviamo che è un primo in \mathbb{Z} . Per ipotesi $a \neq 0$ e $a \neq \pm 1$. Suppongo che a|bc con $b, c \in \mathbb{Z}$ e provo che a|b o a|c.

Poiché a|bc segue che esiste $h \in \mathbb{Z}$ tale che bc = ah. Suppongo che $a \nmid b$ e provo che a|c. Considero MCD(a,b) = d, d|a e d|b ora a è un elemento irriducibile, quindi non ha divisori proprio, cioè

$$d = \begin{cases} |a| \\ 1 \end{cases}$$

Ora, poiché $a \nmid b$ segue che d = 1. Quindi MCD(a, b) = 1, applico Bezout, quindi esistono $\alpha, \beta \in \mathbb{Z}$ tale che $1 = \alpha a + \beta b$. Moltiplico per c:

$$c = ac\alpha + bc\beta = ac\alpha + ah\beta = a(c\alpha + h\beta)$$

ovvero a|c.

Teorema 4 (Teorema fondamentale dell'Aritmetica). Sia $n \in \mathbb{N}$ tale che n > 1. Allora n ammette una scrittura essenzialmente unica nella forma

$$n = p_1^{a_1} \cdot_2^{a_2} \cdot \dots \cdot p_s^{a_s}$$

con $s \in \mathbb{N}$, $s \geq 1$, p_1, p_2, \ldots, p_s irriducibili distinti e positivi e $a_1, a_2, \ldots, a_s \in \mathbb{Z}_{\geq 1}$.

Dimostrazione.

- 1. Dimostriamo l'esistenza. Procediamo per induzione su n.
 - (a) Per n = 2 cioè s = 1, p = 2 e $a_1 = 1$.
 - (b) Sia vero per ogni intero 1 < m < n e proviamolo per n. Se n è irriducibile allora abbiamo finito, poiché n = n e quindi prendo s = 1, $p_1 = n$ e $a_1 = 1$.

Sia n riducibile e sia n=ab con $a,b\in\mathbb{Z}$ tale che $a\neq\pm1$ e $b\neq\pm1$. Ora, poiché n>1 vale n=ab con a,b>1. Abbiamo 1< a< n e 1< b< n. Applico l'ipotesi induttiva e scrivo

$$a = q_1^{\alpha_1} q_2^{\alpha_2} \dots q_r^{\alpha_r}$$
 con q_i irriducibili, distinti e positivi

е

$$b=t_1^{\beta_1}t_2^{\beta_2}\dots t_h^{\beta_h}$$
 con t_i irriducibili, distinti e positivi.

Quindi

$$n = q_1^{\alpha_1} q_2^{\alpha_2} \dots q_r^{\alpha_r} t_1^{\beta_1} t_2^{\beta_2} \dots t_h^{\beta_h}$$

è una fattorizzazione in irriducibili.

- 2. Dimostriamo l'essenziale unicità per induzione sul numero m di fattori irriducibili di una fattorizzazione di lunghezza minima per n.
 - (a) Se m = 1 allora esiste una fattorizzazione per n della forma $n = p_1$, ciò significa che n è irriducibile e quindi per la proposizione precedente, n è primo.

Ora se fosse

$$n = q_1^{\beta_1} \cdot \dots \cdot q_r^{\beta_r} \tag{3}$$

con q_i irriducibili, distinti e positivi. Ora, poiché n è primo,

$$n|q_1^{\beta_1} \cdot q_i^{\beta_j} \dots q_r^{\beta_r} \Longrightarrow \exists j \text{ tale che } n|q_i$$

Ora q_j è irriducibili quindi $n|q_j$ e $n>1 \Longrightarrow n=q_j$.

Divido (2) per $n = q_j$, trovo

$$1 = q_1^{\beta_1} \cdot q_i^{\beta_j - 1} \dots q_r^{\beta_r}$$

poiché $q \neq \pm 1$ segue che $\beta_i = 0 \ \forall i \neq j$ e $\beta - 1 = 0 \Longrightarrow \beta_j = 1$ cioè

$$q_1^{\beta_1} \dots q_r^{\beta_r} = q_i = n \text{ e } n = n$$

è l'unica fattorizzazione.

(b) Siano

$$n = p_1^{a_1} \cdot \dots \cdot p_s^{a_s} = q_1^{b_1} \cdot \dots \cdot q_t^{b_t} \tag{4}$$

con $p_i, q_j > 0$ irriducibili, e supponiamo che sia $a_1 + a_2 + \cdots + a_j = m$. $p_1|n$ e p_1 è irriducibile e quindi è primo. Come prima

$$p_1|q_1^{b_1}\cdot\cdot\cdot\cdot q_t^{b_t}$$

si ha che esiste $k \in \{1, ..., t\}$ tale che $p_1|q_k$ ma q_k è irriducibile e quindi $p_1 = q_k$. Divido (3) per $p_1 = q_k$ e trovo

$$p_1^{a_1-1} \cdot \dots \cdot p_s^{a_s} = q_1^{b_1} \cdot \dots \cdot q_t^{b_k-1} \cdot \dots \cdot q_t^{b_t}$$

Poiché a sinistra ho m-1 fattori irriducibili posso applicare l'induzione e trovo che le due scritture sono identiche, cioè $s=t, \{p_1, \ldots, p_s\} = \{q_1, \ldots, q_t\}$ con gli stessi esponenti, segue l'unicità della scrittura per n.

Teorema 5 (Teorema di Euclide). I numeri interi primi sono infiniti.

Dimostrazione. Supponiamo per assurdo che i numeri primi positivi siano finiti e siano esattamente i seguenti p_1, p_2, \ldots, p_N .

Allora considero il numero

$$n = p_1 \cdot p_2 \cdot \dots \cdot p_N + 1$$

quindi, per il teorema fondamentale dell'aritmetica, n ammette una fattorizzazione in prodotto di primi. In particolare esiste almeno un primo che divide n. Cioè esiste un p_j con $j=1,\ldots,N$ tale che $p_j|n$. Ma ciò è assurdo perchè $n=p_1\cdot p_2\cdot \cdots\cdot p_N+1$ e n diviso per p_j ha resto 1. Quindi i primi sono infiniti.

Proposizione 6. Se p è un numero primo di \mathbb{Z} e p > 0 allora $\sqrt{p} \notin \mathbb{Q}$.

Dimostrazione. Per assurdo. Sia $\sqrt{p}=\frac{a}{b}$ con $a,b\in\mathbb{Z},\ b\neq 0$ e MCD(a,b)=1. Posso elevare al quadrato $p=\frac{a^2}{b^2}$ cioè $p\cdot b^2=a^2$ e quindi $p|a^2$. Per il teorema fondamentale dell'aritmetica se $a=p_1^{\alpha_1}p_2^{\alpha_2}\dots p_p^{\alpha_p}$ allora

$$a^2 = p_1^{2\alpha_1} p_2^{2\alpha_2} \dots p_p^{2\alpha_p}$$

quindi esiste j tale che $p|p_j$ ma p|a e $2\alpha_j$ è l'esponente di p di a^2 .

D'altra parte $a^2 = b^2 p$ e l'esponente di p del numero pb^2 deve essere dispari, infatti

$$b^2 = q_1^{2\beta_1} q_2^{2\beta_2} \dots q_k^{2\beta_k}$$

se $q_h = p$ allora l'esponente di p in pb^2 è $1 + 2\beta_h$ dispari. Ossia a sinistra l'esponente di p è pari mentre a destra è dispari e questo è assurdo perchè le due fattorizzazioni devono essere identiche. \square

Esempio. $p=2\Longrightarrow\sqrt{2}=\frac{a}{b}\Longrightarrow2b^2=a^2$ quindi a^2 è pari e allora $4|a^2$ e scrivo $a^2=4u$.

$$2b^2 = 4u \Longrightarrow b^2 = 2u$$

Ma questo è assurdo perchè avevamo supposto che a, b fossero coprimi cioè MCD(a, b) = 1 e invece, essendo entrambi pari, sono divisibili per due.

Teorema 6 (Teorema fondamentale dei numeri primi). Sia $\Pi(x)$ il numero di numeri primi p compresi tra 1 e x con $x \in \mathbb{R}$, x > 0. Allora

$$\Pi(x) \simeq \frac{x}{\log x} \qquad x \to \infty$$

Definizione 9 (Primo di Fermat). Un numero primo di Fermat p è un primo della forma

$$p = 2^m + 1$$

Osservazione 3. Se $2^m + 1$ è un primo allora $m = 2^n$ per qualche $n \in \mathbb{N}$.

Definizione 10 (Primo di Mersenne). Un numero primo di Mersenne p è un primo della forma

$$p = 2^k - 1$$

4 Congruenze

Sia $(A, +, \cdot, 0_A, 1_A)$ un anello commutativo.

Definizione 1 (Invertibile). Sia $a \in A$, a si dice invertibile in A se esiste $b \in A$ tale che $a \cdot b = 1_A$.

Definizione 2 (Divisore dello zero). Un elemento $a \in A$ è un divisore dello zero (d.d.z) se:

- $a \neq 0$
- $\exists b \in A, b \neq 0_A \text{ tale che } a \cdot b = 0_A$

 $\mathbb{Z}, \mathbb{Q}, \mathbb{R}$ non hanno d.d.z.

Definizione 3 (Campo). Un campo è un anello commutativo A in cui ogni elemento $a \in A$ tale che $a \neq 0$ è invertibile.

Definizione 4 (Dominio di Integrità). *Un anello commutativo che è privo di d.d.z si chiama Dominio di Integrità.*

Definizione 5 (Irriducibile). Sia A un dominio e $a \in A$. Allora diremo che a è un elemento irriducibile se:

- $a \neq 0_A$ e a non è invertibile
- Ogni volta che $a = b \cdot c$ con $b, c \in A$ allora b o c è invertibile.

Definizione 6 (Primo). a si dice elemento primo di A se :

- $a \neq 0_A$ e non è invertibile
- Ogni volta che a $|b \cdot c|$ allora a|b| o a|c|.

In generale, vale sempre $\{elementi\ primi\}\subseteq \{elementi\ irriducibili\}$. Se $A=\mathbb{Z}$ allora vale l'uguaglianza.

4.1 Classi di resto modulo n

Sia $n \geq 2$ e $n \in \mathbb{N}$. La relazione di congruenza \equiv modulo n, $a \equiv b \pmod{n}$ se e solo se $n \mid (a - b)$ $\forall a, b \in \mathbb{Z}$.

Definizione 7 (Classe di congruenza). Per ogni $a \in \mathbb{Z}$ indichiamo \overline{a} la sua classe di congruenza modulo n.

$$\overline{a} = \{b \in \mathbb{Z} | b \equiv a \pmod{n}\}$$

Indichiamo con $\mathbb{Z}_n = \frac{\mathbb{Z}}{\equiv} = \{\overline{a} | a \in \mathbb{Z}\}$ l'insieme quoziente, ossia l'insieme di tutte le classi di equivalenza.

Teorema 1. Se $n \geq 2$ allora $\mathbb{Z}_n = \{\overline{0}, \overline{1}, \overline{2}, \dots, \overline{n-1}\}$ e ha $n = |\mathbb{Z}_n|$ elementi.

Dimostrazione. Se $a \in \mathbb{Z}$ allora divido a per $n \Longrightarrow$ esistono unici $q, r \in \mathbb{Z}$ tale che a = qn + r e $0 \le r < n$. Questo significa che

$$n|qn = (a - r)$$

ovvero

$$a \equiv r (mod \, n)$$

ossia

$$\overline{a} = \overline{r}$$

di conseguenza $\in \{\overline{0}, \overline{1}, \overline{2}, \dots, \overline{n-1}\}.$

Infine per provare che sono tutte distinte, $i \neq j$ con $i, j \in \{\overline{0}, \overline{1}, \overline{2}, \dots, \overline{n-1}\}$ e 0 < |i-j| < n allora $i \not\equiv j \pmod{n}$ cioè

$$i \not\equiv j$$

quindi $\{\overline{0}, \overline{1}, \overline{2}, \dots, \overline{n-1}\}$ ha esattamente n elementi.

4.2 Operazioni su \mathbb{Z}_n

Definiamo due operazioni su \mathbb{Z}_n che lo rendono un Anello commutativo.

1. Somma
$$+: \mathbb{Z}_n \times \mathbb{Z}_n \to \mathbb{Z}_n$$

 $(\overline{a}, \overline{b}) \to \overline{a} + \overline{b} = \overline{a+b}$

2. Prodotto
$$\cdot : \mathbb{Z}_n \times \mathbb{Z}_n \to \mathbb{Z}_n$$

$$(\overline{a}, \overline{b}) \to \overline{a} \cdot \overline{b} = \overline{a \cdot b}$$

Le definizioni di somma e prodotto di \mathbb{Z}_n sono ben poste per il seguente teorema.

Teorema 2. Siano $a, b, c, d \in \mathbb{Z}$, se $a \equiv c \pmod{n}$ e $b \equiv d \pmod{n}$ allora

$$a + b \equiv c + d \pmod{n}$$

$$a \cdot b \equiv c \cdot d \pmod{n}$$

 $cio\grave{e}$

$$\begin{cases} \overline{a} = \overline{c} \\ \overline{a} = \overline{c} \end{cases} \implies \begin{cases} \overline{a+b} = \overline{c+d} \\ \overline{a \cdot b} = \overline{c \cdot d} \end{cases}$$

Dimostrazione.

1. Per ipotesi abbiamo che a-c=nh e b-d=nk con $h,k\in\mathbb{Z}$. Allora

$$a + b - (c + d) = a - c + b - d = nh - nk = n(h - k)$$

cioè

$$n|(a+b)-(c+d) \Longrightarrow a+b \equiv c+d (mod n)$$

2. Si ha che

$$ab - cd = ab - ad + ad - cd = a(b - d) + d(a - c) = a(nk) + d(nh) = n(ak + dh)$$

cioè

$$ab \equiv cd (mod \, n)$$

Esempio.

1. Sia $\mathbb{Z}_4 = \{\overline{0}, \overline{1}, \overline{2}, \overline{3}\}$

+	$\overline{0}$	$\overline{1}$	$\overline{2}$	$\overline{3}$		+	$\overline{0}$	$\overline{1}$	$\overline{2}$	$\overline{3}$
$\overline{0}$	$\overline{0}$	1	$\overline{2}$	3	•	$\overline{0}$	$\overline{0}$	$\overline{0}$	$\overline{0}$	$\overline{0}$
	1					1	$\overline{0}$	$\overline{1}$	$\overline{2}$	$\overline{3}$
	$\overline{2}$					$\overline{2}$	$\overline{0}$	$\overline{2}$	$\overline{0}$	$\overline{2}$
$\overline{3}$	3	$\overline{0}$	$\overline{1}$	$\overline{2}$		3	$\overline{0}$	$\overline{3}$	$\overline{2}$	$\overline{1}$

 \mathbb{Z}_4 non è un Dominio di integrità, ad esempio $\overline{2}$ è un d.d.z. infatti $\overline{2} \cdot \overline{2} = \overline{4} = \overline{0}$.

- 2. Sia $\mathbb{Z}_9=\{\overline{0},\overline{1},\overline{2},\overline{3},\overline{4},\overline{5},\overline{6},\overline{7}\}$ cerco d.d.z. e invertibili.
 - (a) $\overline{0}$ non è né d.d.z. né invertibile
 - (b) $\overline{1}$ è invertibile, $\overline{1} \cdot \overline{1} = \overline{1}$
 - (c) $\overline{2}$ è d.d.z, $\overline{2} \cdot \overline{4} = \overline{0}$
 - (d) $\overline{3}$ è invertibile, $\overline{3} \cdot \overline{3} = \overline{9} = \overline{1}$
 - (e) $\overline{4}$ è d.d.z, $\overline{4} \cdot \overline{2} = \overline{0}$
 - (f) $\overline{5}$ è invertibile, $\overline{5} \cdot \overline{5} = \overline{1}$
 - (g) $\overline{6}$ è d.d.z, $\overline{6} \cdot \overline{4} = \overline{0}$
 - (h) $\overline{5}$ è invertibile, $\overline{7} \cdot \overline{7} = \overline{1}$

Quindi

Vale sempre $\mathbb{Z}_n = \{\overline{0} \cup \{d.d.z\} \cup \{invertibili\}\}$

Proposizione 1. Sia $n \in \mathbb{Z}$, allora:

- Se $n \ e \ primo \Longrightarrow \mathbb{Z}_n = \{\overline{0}\} \cup \{invertibili\} \ e \ un \ campo \ finito \ e \ dominio$
- Se n non è primo $\Longrightarrow \mathbb{Z}_n$ ha d.d.z e non è un dominio.

Dimostrazione. Dimostriamo il secondo punto.

Possiamo scrivere n come $a \cdot b = n$ con $a \cdot b > 1$ e a, b < n. Allora $\overline{a} \neq \overline{0}$ e $\overline{b} \neq \overline{0}$ e

$$\overline{a} \cdot \overline{b} = \overline{a \cdot b} = \overline{n} = \overline{0}$$

Allora \overline{a} e \overline{b} sono d.d.z.

4.3 Criteri di divisibilità

Sia $n \in \mathbb{N}$ e sia $n = a_k a_{k-1} \dots a_1 a_0$ la sua scrittura in base b = 10 con $a_i = \{0, 1, \dots, 9\}$ cioè $n = a_k \cdot 10^k + a_{k-1} \cdot 10^{k-1} + \dots + a_1 \cdot 10 + a_0$.

4.3.1 Divisibilità per 3 e per 9

n è divisibile per tre, ossia 3|n, se e solo se la somma delle cifre $a_0 + a_1 + \cdots + a_k$ è divisibile per tre. Analogo per 9.

Dimostrazione. Dimostriamo il caso 9, il caso 3 si dimostra in modo analogo.

Osservo che $10^t \equiv 1^t \equiv 1 \pmod{9}$ quindi:

$$n = a_k \cdot 10^k + a_{k-1} \cdot 10^{k-1} + \dots + a_1 \cdot 10 + a_0 \equiv a_k + a_{k-1} + \dots + a_1 + a_0 \pmod{9}$$

quindi

$$9|n \Longleftrightarrow 9|a_k + a_{k-1} + \dots + a_1 + a_0$$

4.3.2 Divisibilità per 2 e per 5

Osservo che $10 \equiv 0 \pmod{2}$ quindi

$$10^t \equiv 0 \pmod{2}$$

segue che

$$n = a_k 10^k + \dots + a_1 10 + a_0 \equiv a_0 \pmod{2}$$

cioè 2|n se e solo se $2|a_0$. Per cinque si ragiona analogamente.

4.3.3 Divisibilità per 4 e per 25

n è divisibile per 4/25 se le ultime due cifre decimali a_1a_0 sono divisibili per 4/25. Dimostrazione. Osservo che $100 = 2^25^2 \Rightarrow 100 \equiv 0 \pmod{4/25}$. Allora vale che $t \geq 2$, con t = h + 2 e $h \geq 0$, $10^t \equiv 10^h(100) \equiv 0 \pmod{4/25}$. Allora

$$n = \underbrace{a_k 10^k + \dots + a_2 10^2}_{\equiv 0 \mod(4/25)} + a_1 10 + a_0 \equiv a_1 10 + a_0 \pmod{4/25}$$

Segue che

$$4|n \iff 4|a_1a_0$$
$$25|n \iff 25|a_1a_0$$

4.3.4 Divisibilità per 11

n è divisibile per 11 se e solo se $a_0 - a_1 + a_2 - a_3 + \cdots + (-1)^n a_n$ è divisibile per 11. Ovvero se la somma delle cifre in posizione pari meno quella delle cifre in posizione dispari è divisibile per 11. Dimostrazione. Si ha che $10 \equiv -1 \pmod{11}$ quindi $10^t \equiv (-1)^t \pmod{11}$ quindi

$$\begin{cases} 10^{2t} \equiv 1 \pmod{11} \\ 10^{2t+1} \equiv -1 \pmod{11} \end{cases}$$

Allora

$$a_0 + a_1 10 + \dots + a_k 10^k \equiv a_0 - a_1 + a_2 \dots + (-1)^k a_k \pmod{11} \equiv S_p - S_d \pmod{11}$$

segue che $11|m \iff 11|S_p - S_d$

4.4 Ancora congruenze

Lemma 1. Sia p un numero primo positivo p > 0, allora $\forall x, t \in \mathbb{Z}$ vale

$$(x+y)^p \equiv x^p + y^p \pmod{n}$$

Dimostrazione. Per Newton

$$(x+y)^p = \sum_{k=0}^p \binom{p}{k} x^{p-k} y^k = x^p + y^p + \sum_{k=1}^{p-1} \binom{p}{k} x^{p-k} y^k$$

Provo che quando $1 \le k \le p-1$ allora $p \mid \binom{p}{k}$ cioè $\binom{p}{k} \equiv 0 \pmod{p}$. Infatti $\binom{p}{k} \in \mathbb{N}$ e

$$\binom{p}{k} = \frac{p(p-1)(p-2)\dots(p-k+1)}{k!} = \frac{N}{k!}$$

dove $N = p(p-1)(p-2)\dots(p-k+1)$. Ora, p|N, e inoltre $p \nmid k!$ perchè $1 \leq k < p$ e se p dividesse k! allora p dovrebbe dividere un j con $1 \leq j < k$ perchè p è primo. Questo è impossibile perchè $1 \leq j < p$. Segue che $p \nmid k!$ e quindi

$$p|\frac{N}{k!}$$

 $N = \frac{N}{k!}k! \Longrightarrow p|N \text{ e p è primo} \Longrightarrow p|\frac{N}{k!}k \Longrightarrow p|\frac{N}{k!} = \binom{p}{k}$. Segue che

$$(x+y)^p \equiv x^p + y^p + \sum_{n=0}^{\infty} 0 (x^p + y^+) (mod p)$$

Teorema 3. Sia $a \in \mathbb{Z}$ e $p \in \mathbb{P}$ con p > 0, allora

$$a^p \equiv a \pmod{p}$$

Dimostrazione. Distinguiamo due casi:

- 1. Caso a > 0. Procedo per induzione su a.
 - (a) Se a = 0 allora $0^p \equiv 0 (mopp)$
 - (b) Sia a>0 e assumo che valga $a^p\equiv a\,(mod\,p)$. Provo che vale $(a+1)^p\equiv a+1\,(mod\,p)$. Per il lemma 1

$$(a+1)^p \equiv a^p + 1^p (mod p)$$

per ipotesi induttiva

$$(a+1)^p \equiv a + 1 \pmod{p}$$

2. Caso a < 0. Osservo che $0 = (a + (-a))^p \equiv a^p + (-a)^p \pmod{p}$. Quindi

$$a^p \equiv -(-a)^p (mod \, p)$$

ora -a > 0 e per il caso precedente vale

$$(-a)^p \equiv -a \pmod{p}$$

Quindi trovo che

$$a^p \equiv -(-a)^p \pmod{p} \equiv -(-a) \pmod{p} \equiv a \pmod{p}$$

Corollario 1. Sia $p \in \mathbb{P}$ p > 0 e $a \in \mathbb{Z}$. Allora:

- se $MCD(a, p) \neq 1$ si ha che $a^{p-1} \equiv 0 \pmod{p}$
- se MCD(a, p) = 1 si ha che $a^{p-1} \equiv 1 \pmod{p}$

Dimostrazione.

1. Quando $MCD(a, p) \neq 1$ poiché p è primo MCD(a, p) = p cioè p|a cioè

$$a \equiv 0 \pmod{p}$$

e quindi

$$a^{p-1} \equiv 0 \pmod{p}$$

2. Quando MCD(a, p) = 1 per il teorema di Fermat si ha che

$$a^p - a \equiv 0 \pmod{p}$$

quindi

$$a(a^{p-1} - 1) \equiv 0 \pmod{p}$$

cioè

$$p|a(a^{p-1}-1)$$

Poiché p è primo segue che o p|a ma questo è falso perchè si avrebbe $MCD(a,p)=p\neq 1$. Oppure $p|a^{p-1}$ cioè

$$a^{p-1} - 1 \equiv 0 \pmod{p}$$

Esempio. Determinare il resto della divisione per 13 del numero 5648^{321} . Ossia risolvere $5648^{321} \pmod{13}$. Osservo che p=13 è primo e maggiore di zero. Quindi

$$a = 5648 = 13 \cdot 434 + 6 \equiv 6 \pmod{13}$$

Ora devo fare $6^{321} \pmod{13}$. Applico il corollario di Fermat

$$6^{12} \equiv 1 \pmod{13}$$

. Ora prendo 321 e lo divido con resto per 12.

$$321 = 12 \cdot 26 + 9$$

$$6^{321} = 6^{12 \cdot 26 + 9} = (6^{12})^{26} \cdot 6^9 \Longrightarrow (6^{12})^{26} \cdot 6^9 \equiv 1^{26} \cdot 6^9 \pmod{p}$$

$$6^2 = 36 = 26 + 10 \equiv 10 \pmod{13}$$

$$6^3 = 6^2 \cdot 6 \equiv 10 \cdot 6 = 60 = 52 + 8 \equiv 8 \pmod{13}$$

 $6^9 = (6^3)^3 = 8^3 = 512 = 13 \cdot 39 + 5 \equiv 5 \pmod{p}$

In conclusione

$$5648^{321} \equiv 5 \pmod{p}$$

Proposizione 2. La congruenza $ax \equiv b \pmod{n}$ ha soluzioni se e solo se MCD(a, n)|b.

Dimostrazione. Risolvere la congruenza $ax \equiv b \pmod{n}$ equivale a risolvere l'equazione diofantea $ax \pm ny = b$. Sappiamo che è risolvibile se e solo se MCD(a, n)|b.

Forma generale delle soluzioni di $ax \equiv b \pmod{n}$ quando MCD(a, n)|b. Se $x_0 \in \mathbb{Z}$ è una soluzione di $ax \equiv b \pmod{n}$ allora l'insieme di tutte e sole le soluzioni è

$$S = \{x_0 + k \cdot \frac{n}{d} | k \in \mathbb{Z}\}$$

Inoltre tra queste soluzioni abbiamo che $x_0, x_0 + \frac{n}{d}, x_0 + 2 \cdot \frac{n}{d}, \dots, x_0 + (d-1)\frac{n}{d}$ queste sono tutte:

- 1. Non congruenti tra di loro mod n.
- 2. Ogni soluzione di $ax \equiv b \pmod{n}$ è congrua ad una sola di queste mod n

Dimostrazione.

1. Per assurdo prendiamo due indici $0 \le i, j \le d-1$ con $i \ne j$ e suppongo che $x_0 + i \frac{n}{d} \equiv x_0 + j \frac{n}{d} \pmod{n}$. Allora vale

$$i \cdot \frac{n}{d} \equiv j \cdot \frac{n}{d} \pmod{n}$$

cioè

$$(i-j)\cdot \frac{n}{d} \equiv 0 \pmod{n}$$

Ricordo che d = MCD(a,n)|n. Quindi $n = d \cdot \frac{n}{d}$ con $\frac{n}{d} \in \mathbb{Z}$ quindi $(i-j) \cdot \frac{n}{d} = t \cdot n = t \cdot d \cdot \frac{n}{d}$ con $t \in \mathbb{Z}$. Trovo che $(i-j) = t \cdot d$ cioè d|(i-j). Ora però i < d e j < d quindi |i-j| < d. Devo avere che $(i-j) = h \cdot d$ per $h \in \mathbb{Z}$ perché d|(i-j) e $0 \le |i-j| = |h| \cdot d < d$. L'unica possibilità è che h = 0 cioè i-j = 0 ovvero i=j.

2. Sia $x_0 + k \frac{n}{d}$ con $k \in \mathbb{Z}$ una arbitraria soluzione di $ax \equiv b \pmod{n}$. Prendo k e lo divido con resto per d. Allora esistono $q, r \in \mathbb{Z}$ tale che

$$k = qd + r \quad 0 \le r \le d.1$$

Abbiamo che $x_0 + k \frac{n}{d} = x_0 + (qd + r) \frac{n}{d} = x_0 + qn + r \frac{n}{d} = x_0 + r \frac{n}{d} \pmod{n}$

Corollario 2. Se MCD(a, n) = 1 la congruenza $ax \equiv b \pmod{n}$ ammette infinite soluzioni intere che stanno in un'unica classe di congruenza modulo n.

Esempio. $3x \equiv 1 \pmod{5}$ a = 3 n = 5 b = 1 MCD(a, n) = d = 1

Una soluzione banale è $x_0 = 2 \Longrightarrow$ tutte le soluzioni sono $x_0 + kn = 2 + 5k, k \in \mathbb{Z}$. Le soluzioni sono tutti gli elementi della classe $\overline{2} \in \mathbb{Z}_5$.

Teorema 4 (Teorema cinese del resto). Siano $m_1, m_2, \ldots, m_s \in \mathbb{N}$ positivi e tali che $MCD(m_i, m_j) = 1 \,\forall i \neq j$. Allora per ogni scelta di $r_1, r_2, \ldots, r_s \in \mathbb{Z}$ il sistema di congruenza

$$\begin{cases} x_1 \equiv r_1 \pmod{m_1} \\ x_2 \equiv r_2 \pmod{m_2} \\ \vdots \\ x_s \equiv r_s \pmod{m_s} \end{cases}$$

ammette un'unica soluzione modulo $m_1 \cdot m_2 \cdot m_3 \cdot \cdots \cdot m_s$.

Dimostrazione. Chiamo $M=m_1\cdot m_2\cdot m_3\cdot \cdots \cdot m_s$ e $M_i=\frac{M}{m_i} \ \forall \ i=1,2,\ldots,s.$ Allora $MCD(M_i,m_i)=1$ poiché $\forall \ k\neq i\ MCD(m_j,m_i)=1$. Quindi per ogni i la congruenza

$$M_i x \equiv r_i \pmod{m_i}$$

ha soluzione unica modulo m_i , chiamo x_i una soluzione particolare, questo lo posso fare $\forall i = 1, \dots, s$. Considero il numero

$$y = M_1 x_1 + M_2 x_2 + \dots + M_s x_s$$

e vediamo che y risolve il sistema cioè che per ogni $i=1,\ldots,s$

$$y \equiv r_i \pmod{m_i}$$

infatti

$$y = M_1 x_1 + M_2 x_2 + \dots + M_s x_s \equiv 0 + 0 + \dots + M_i x_i + 0 + \dots + 0 \equiv M_i x_i \equiv r_i \pmod{m_i}$$

questo perchè x_i è soluzione di $M_i x \equiv r_i \pmod{m_i}$.

Esempio.

$$\begin{cases} x \equiv 3 \pmod{4} \\ x \equiv 2 \pmod{3} \\ x \equiv 4 \pmod{3} \end{cases} \implies \begin{aligned} m_1 &= 4 \quad m_2 = 3 \quad m_3 = 5 \\ M &= m_1 \cdot m_2 \cdot m_3 = 60 \\ M_1 &= \frac{60}{4} = 15 \quad M_2 = \frac{60}{3} = 20 \quad M_3 = \frac{60}{5} = 12 \end{aligned}$$

Per risolvere il sistema devo risolvere:

$$\begin{cases} 15x_1 \equiv 3 \pmod{4} \\ 20x_2 \equiv 2 \pmod{3} \\ 12x_3 \equiv 4 \pmod{5} \end{cases}$$

Quindi

$$\begin{cases} x_1 = 1 \\ x_2 = 1 \\ x_3 = 2 \end{cases}$$

La soluzione del sistema modulo 60 è

$$y = M_1 x_1 + M_2 x_2 + M_3 x_3 = 59$$

Definizione 8 (Funzione di Eulero). Sia $n \in \mathbb{Z}_{>0}$

$$\varphi(n) = |\{1 \le k \le n | MCD(k, n) = 1\}|$$

Teorema 5 (Eulero-Fermat). Sia n un intero positivo e $a \in \mathbb{Z}$ tale che (a.n) = 1. Allora

$$a^{\varphi(n)} \equiv 1 \pmod{n}$$

Definizione 9 (Unità). Sia A anello commutativo, le unità di A sono

$$U(A) = \{a \in A | a \ invertibile\}$$

Proposizione 3. Sia $n \in \mathbb{Z}$ $n \geq 2$ allora le unità dell'anello \mathbb{Z}_n sono

$$U(\mathbb{Z}_n) = {\overline{k} | (k, n) = 1}$$

Proposizione 4. Sia $n \in \mathbb{Z}$ $n \geq 2$ allora ogni elemento diverso da $\overline{0}$ di \mathbb{Z}_n è invertibile oppure un divisore dello zero.

Dimostrazione. Se $\overline{a} \in \mathbb{Z}_n$ tale che $\overline{a} \neq \overline{0}$, ovvero $n \nmid a$, e $\overline{a} \in U(\mathbb{Z}_n)$, cioè $(a,n) = d \neq 1$. Quindi osservo che $\frac{n}{d}$ è un intero, $1 < \frac{n}{d} < n$; quindi $\overline{\frac{n}{d}} \neq \overline{0}$. Ma

$$\overline{a}\frac{\overline{n}}{d} = \frac{\overline{a}\overline{n}}{d} = \frac{\overline{a}}{d}\overline{n} = \frac{\overline{a}}{d}\overline{0} = \overline{0}$$

Dalla proposizione 3 segue

$$n \ge 2$$
 $\varphi(n) = |U(\mathbb{Z}_n)|$

Proprietà di φ .

1. Se $a, b \in \mathbb{Z}_{>0}$ tale che (a, b) = 1, allora $\varphi(a \cdot b) = \varphi(a) \cdot \varphi(b)$

2. Se p primo positivo e $m \ge 0$ allora $\varphi(p^m) = p^{m-1}(p-1)$

Esempio. $\varphi(2^3 \cdot 3^4 \cdot 5^2 \cdot 7) = \varphi(2^3)\varphi(3^4)\varphi(5^2)\varphi(7) = 25920$

Definizione 10 (Isomorfismo tra anelli). Siano A,B anelli commutativi, una funzione biunivoca $f: A \to B$ e tale che $\forall a_1, a_2 \in A$ vale:

• $f(a_1 +_A a_2) = f(a_1) +_B f(a_2)$

• $f(a_1 \cdot_A a_2) = f(a_1) \cdot_B f(a_2)$

• $f(1_A) = 1_B$

si dice un isomorfismo tra A e B. A e B si dicono isomorfi e scrivo $A \simeq B$.

Definizione 11. Siano A_1, A_2 anelli commutativi, su $A_1 \times A_2 = \{(a_1, a_2) | a_1 \in A_1, a_2 \in A_2\}$ definisco:

• $(a_1, a_2) + (b_1, b_2) = (a_1 + b_1, a_2 + b_2)$

• $(a_1, a_2) \cdot (b_1, b_2) = (a_1 \cdot b_1, a_2 \cdot b_2)$

 $A_1 \times A_2$ è un anello commutativo prodotto diretto di A_1 e A_2 .

• $0_{A_1 \times A_2} = (0_{A_1}, 0_{A_2})$

• $1_{A_1 \times A_2} = (1_{A_1}, 1_{A_2})$

• $|A_1 \times A_2| = |A_1| \cdot |A_2|$ se finite

Teorema 6. Sia n intero, $n \geq 2$, $n = a \cdot b$ con $a, b \in \mathbb{Z}$ interi positivi, (a, b) = 1. Allora l'anello

$$Z_n \simeq \mathbb{Z}_a \times \mathbb{Z}_b$$

Dimostrazione. Provo che

$$f \colon \mathbb{Z}_n \to \mathbb{Z}_a \times \mathbb{Z}_b$$

 $[x]_{\equiv_n} \to ([x]_{\equiv_a}, [x]_{\equiv_b})$

è biettiva.

Per il teorema cinese dei resti, poiché n=ab e (a,b)=1 allora $\forall\,c,d\in\mathbb{Z}$ esiste un'unica soluzione di modulo n del sistema

$$\begin{cases} x \equiv c \pmod{a} \\ x \equiv d \pmod{b} \end{cases}$$
 (5)

Quindi per ogni $([c]_{\equiv_a}, [d]_{\equiv_b}) \in \mathbb{Z}_a \times \mathbb{Z}_b$ esiste un unico $[x]_{\equiv_n}$ tale che $f([x]_{\equiv_n}) = ([c]_{\equiv_a}, [d]_{\equiv_b})$. Segue che f è suriettiva.

Suppongo che $x, y \in \mathbb{Z}$ tale che $f([x]_{\equiv_n}) = f([y]_{\equiv_n})$ ovvero $([x]_{\equiv_a}, [x]_{\equiv_b}) = ([y]_{\equiv_a}, [y]_{\equiv_b})$ e mostro che $[x]_{\equiv_n} = [y]_{\equiv_n}$.

$$\begin{cases} [x]_{\equiv_b} = [y]_{\equiv_a} \\ [x]_{\equiv_b} = [y]_{\equiv_b} \end{cases} \implies \begin{cases} a|(x-y) \\ b|(x-y) \end{cases}$$

Quindi n = ab = mcm(a.b)|(x - y) ovvero $n|(x - y) \Rightarrow x \equiv y \pmod{n} \Rightarrow [x]_{\equiv_n} = [y]_{\equiv_n}$. Segue che f è iniettiva e quindi biettiva. Ora mostro le proprietà di un Isomorfismo tra anelli:

1.

$$f([x_1]_{\equiv_n} + [x_2]_{\equiv_n}) = f([x_1 + x_2]_{\equiv_n} = ([x_1 + x_2]_{\equiv_a}, [x_1 + x_2]_{\equiv_b} = ([x_1]_{\equiv_a}, [x_1]_{\equiv_b}) + ([x_2]_{\equiv_a}, [x_2]_{\equiv_b} = f([x_1]_{\equiv_n}) + f([x_2]_{\equiv_n})$$

2. Analogo ma con \cdot

3.
$$f([1]_{\equiv_n}) = ([1]_{\equiv_n}, [1]_{\equiv_n}) = 1_{\mathbb{Z}_a \times \mathbb{Z}_b}$$

Proposizione 5. Se $f: A \to B$ isomorfismo allora U(B) = f(U(A)) quindi

$$|U(A)| = |U(B)|$$

perchè f è una biezione.

Corollario 3. $(a,b)=1 \Longrightarrow \varphi(a,b)=\varphi(a)\cdot\varphi(b)$

Dimostrazione. $\varphi(ab) = |U(\mathbb{Z}_{ab})| \in \mathbb{Z}_{ab} \simeq \mathbb{Z}_a \times \mathbb{Z}_b$. Per la proposizione 5 si ha che

$$|U(\mathbb{Z}_{ab} \simeq \mathbb{Z}_a \times \mathbb{Z}_b)| = |U(\mathbb{Z}_a) \times U(\mathbb{Z}_b)| = |U(\mathbb{Z}_a)| \cdot |U(\mathbb{Z}_b)| = \varphi(a)\varphi(b)$$

Proposizione 6. Siano A,B anelli commutativi e $f: A \to B$ isomorfismo, allora $f_{U(A)}: U(A) \to U(B)$ è una biezione.

Proposizione 7. Siano A,B anelli commutativi, allora

$$U(A \times B) = U(A) \times U(B)$$

4.5 Crittografia RSA

Si base sul fatto che la fattorizzazione in numeri primi di un numero è un problema non trattabile dal punto di vista computazionale. Ogni utente U possiede una coppia di interi positivi che è di dominio pubblico

$$(n_u, e_u)$$

- n_u , chiamato modulo, è il prodotto di due numeri primi distinti p, q che devono essere segreti e molto grandi, più di 200 cifre.
- e_u , chiamato esponente pubblico, è un intero positivo coprimo con $\varphi(n_u)$ ossia $MCD(e_u, \varphi(n_u)) = 1$. Osservo che

$$\varphi(n_u) = \varphi(p)\varphi(q) = (p-1)(q-1)$$

• Inoltre calcolo d_u , esponente privato, tale che

$$d_u e_1 \equiv 1 \pmod{\varphi(n_u)}$$

Quindi la chiave pubblica è (n_u, e_u) e quella privata (n_u, d_u) . La chiave del metodo RSA sta nel fatto che per calcolare d_u a partire da e_u non basta conoscere n_u ma serve sapere la sua fattorizzazione che, come già detto, è un problema non trattabile da un punto di vista computazionale.

Esempio. Siano A, B utenti e M messaggio. A vuole mandare un messaggio M a B. A procede andando nell'elenco delle chiavi pubbliche per cercare la chiave di B e se $M > n_b$ allora A dovrà spezzare M in vari blocchi che risultino minori di n_b .

$$\begin{cases} 1 < M < n_b \\ (M, n_b) = 1 \end{cases}$$

Ora A manda $M^{e_B}(mod n_B)$ e B decodifica il messaggio con il suo esponente private d_B :

$$(M^{e_B})^{d_B} = M^{e_B d_B} \equiv M(mod \ n_B)$$

ricordando che d_B è conosciuto solo a B per $e_B d_B \equiv 1 \pmod{\varphi(n_B)}$ e teorema di Eulero-Fermat. Per verificare che il messaggio sia effettivamente mandato da A, questo lo firma con una firma F, tramite il suo d_A

$$F^{d_A} \mod n_A$$

e ${\cal B}$ lo trasforma con

$$(F^{d_A})^{e_A} \equiv F(mod \ n_A)$$

Quindi, riassumendo, il metodo si basa sull'elevato costo computazionale della fattorizzazione in primi e sul sistema di chiavi pubbliche e private.

Proposizione 8 (Test di primalità). Sia $n \in \mathbb{Z}$, allora se esiste $a \in \mathbb{Z}$ tale che

$$a^n \not\equiv a \pmod{n}$$

allora n non è primo.

Teorema 7 (Teorema di Wilson). Sia $p \in \mathbb{P}$ primo, allora

$$(p-1)! \equiv -1 \pmod{p}$$

5 Strutture Algebriche

Definizione 1 (Operazione binaria). Sia S insieme, un'operazione binaria su S è un' applicazione

$$*: S \times S \to S$$

 $(a,b) \to a*b$

Esempi: $(\mathbb{Z},+)$, $(\mathbb{R},*)$

Definizione 2 (Semigruppo). $Se * \grave{e}$ associativa cio \grave{e} se $\forall a,b,c \in S$ vale (a*b)*c = a*(b*c) allora l'insieme

$$(S, *)$$

si chiama Semigruppo.

Definizione 3 (Monoide). Un Semigruppo (S,*) che ha un elemento neutro $e \in S$ tale che $\forall a \in S$ vale a*e = e*a = a si chiama Monoide.

$$(S, *, e)$$

Osservazione 1. Se S è un Monoide esiste un unico elemento neutro.

Dimostrazione. Siano e e e' due elementi neutri per S, allora

$$e = e * e'$$

е

$$e' = e * e'$$

quindi

$$e = e'$$

Definizione 4 (Gruppo). Un gruppo è un Monoide (G, *, e) tale che ogni elemento ha un inverso, cioè:

- * è associativa
- Esempio. $e \in G$ elemento neutro $g * e = e * g = g \ \forall \ g \in G$
- $\forall g \in G$ esiste $g' \in G$ tale che g * g' = g' * g = e, g' si dice inverso di g.

D'ora in poi scriveremo $(G,\cdot,1_G)$ al posto di (G,*,e). Questa si chiama notazione moltiplicativa.

Osservazione 2. Sia $(G, \cdot, 1_G)$ un gruppo. Allora $\forall g \in G \exists ! g^{-1} \in G \text{ tale che } g \cdot g^{-1} = g - 1 \cdot g = 1_G$. Inoltre vale

$$(g^{-1})^{-1} = g$$
 $(g \cdot h)^{-1} = g^{-1} \cdot h^{-1}$

Dimostrazione. Siano g^\prime e $g^{\prime\prime}$ due inversi per g. Allora

$$g' = 1_G \cdot g' = (g'' \cdot g)g' = g''(g \cdot g') = g'' \cdot 1_G = g''$$

Definizione 5 (Gruppo Abeliano). Un gruppo $(G, \cdot, 1_G)$ si dice Abeliano se \cdot è commutativo cioè se $\forall g, h \in G$ vale $g \cdot h = h \cdot g$.

Esempi di gruppi:

- $(\mathbb{Z}, +, 0)$ è un gruppo Abeliano.
- $(\mathbb{R}^*, \cdot, 1)$ è un gruppo Abeliano. $\mathbb{R}^* = \mathbb{R} \setminus \{0\}$. L'inverso di $a \in \mathbb{R}^*$ è $a^{-1} = \frac{1}{a}$.
- $(\mathbb{Z}_n, +, \overline{0})$ è un gruppo Abeliano. L'inverso di \overline{a} è $-\overline{a} = \overline{(-a)}$.
- $(U(\mathbb{Z}_n,\cdot,1)$ è un gruppo abeliano di ordine $|U(\mathbb{Z}_n)|=\varphi(n)$.

Notazione additiva $(G, +, 1_G)$ utilizzata quando G è Abeliano.

Proposizione 1 (Legge di cancellazione). Siano $(G, \cdot, 1_G)$ un gruppo e siano $a, b, c \in G$. Allora:

- 1. Se $a \cdot b = a \cdot c \Longrightarrow b = c$
- 2. Se $b \cdot a = c \cdot a \Longrightarrow b = c$

Dimostrazione.

$$b = 1_G \cdot b = a^{-1} \cdot a \cdot b = a^{-1}(ab) = a^{-1}(ac) = (a^{-1}a)c = 1_G \cdot c = c$$

5.1 Sottogruppi

Definizione 6. Sia $(G, \cdot, 1_G)$ un gruppo e $H \subseteq G$. Allora diciamo che H è un sottogruppo (e scriveremo $H \leq G$) se:

- 1. $1_q \in H$
- 2. $H \ e \ chiuso \ per \ inversi, \ cio \ e \ h \in H \ allora \ h^{-1} \in H$
- 3. H è chiuso per il "prodotto" (si intende l'operazione definita sul gruppo), cioè se $x,y\in H$ allora $x\cdot y\in H$

Esempio. $(\mathbb{Z}, +, 0)$ con $H = 3\mathbb{Z} = \{3z | z \in \mathbb{Z}\}$. Allora $H \leq \mathbb{Z}$. Infatti:

- $1. \ 0=0\cdot 3\in H$
- $2. \ 3z \in H \Longrightarrow -3z = 3(-z) \in H$
- 3. $3m + 3n = 3(m+n) \in H$

Proposizione 2. Sia $(G, \cdot, 1_G)$ un gruppo $e H \subseteq G$. Allora $H \leq G$ se e solo se:

- H ≠ ∅
- $\forall x, y \in H \text{ vale } x \cdot y^{-1} \in H$

Dimostrazione. Dimostriamo la doppia implicazione.

- \implies Sia $H \leq G$ allora $1_G \in H$ e quindi $H \neq \emptyset$. Inoltre se $x,y \in H$ allora, poiché H è un sottogruppo, $y^{-1} \in H$ e $x \cdot y^{-1} \in H$.
- \longleftarrow 1. Poiché $H \neq$ prendo $x \in H$ e allora $x \cdot x^{-1} = 1_G \in H$
 - 2. Ora, se $h \in H$ faccio $G \cdot h^{-1} = h^{-1} \in H$
 - 3. Infine, prendo $x,y\in H$, allora per il punto 2 $y^{-1}\in H$ e quindi $x(y^{-1})^{-1}=x\cdot y\in H$

Definizione 7 (Classe laterale sinistra). Siano G un gruppo, $H \leq G$ e $x \in G$. Definiamo il sottoinsieme di G

$$xH = \{x \cdot h | h \in H\}$$

classe laterale sinistra di x modulo H. Inoltre su G definiamo una relazione binaria \sim_H ponendo $\forall x,y \in G \ x \sim_H y \ se \ x^{-1}y \in H \ e \ se \ y \in xH$.

Proposizione 3. \sim_H è una relazione di equivalenza.

Dimostrazione. Verifico le tre proprietà:

- 1. Riflessiva, $\forall x \in G$ $x \sim_H x$. Infatti $x \sim_h x$ è vera se $x^{-1}x \in H$ e questo è vero perché $x^{-1}x = 1_H \in H$.
- 2. Simmetrica, suppongo che $x \sim_H y$ sia vera, allora $x^{-1}y \in H$, ora H è un sottogruppo quindi è chiuso per inversi, allora $(x^{-1}y)^{-1} \in H$. Ma $(x^{-1}y)^{-1} = y^{-1}(x^{-1})^{-1} = y^{-1}x \in H$ cioè $y \sim_H x$ è vera.
- 3. Suppongo

$$\begin{cases} x \sim_H y \\ y \sim_H z \end{cases} \implies \begin{cases} x^{-1}y \in H \\ y^{-1}z \in H \end{cases}$$

e quindi $(x^{-1}y)(y^{-1}z) = x^{-1}yy^{-1}z = x^{-1}z \in H$ cioè $x \sim_H z$.

Osservazione 3. Per ogni $x \in G$ considero la sua classe di equivalenza:

$$[x]_{\sim_H} = \{ y \in G | y \sim_H x \}$$

allora

$$x \sim_H y \iff x^{-1}y \in H \iff \exists \ h \in H \ t.c. \ x^{-1}y = h$$

 $\iff x(x^{-1}y) = xh \ per \ un \ h \in H$
 $\iff y = xh \ per \ un \ h \in H \iff y \in xH$

Definizione 8 (Indice). Sia $H \leq G$ sottogruppo di un gruppo G. Si chiama indice di H in G il numero di classi laterali distinte di H in G cioè

$$\left|\frac{G}{\sim_H}\right| = [G:H]$$

Teorema 1 (Teorema di Lagrange). Sia G un gruppo di cardinalità finita |G| e sia $H \leq G$. Allora

$$|G| = [G:H] \cdot |H|$$

Dimostrazione. Proviamo innanzitutto che le classi laterali di G modulo H contengono ciascuna esattamente |H| elementi. Infatti presa xH esiste una biezione tra H e xH

$$\sigma_x \colon H \to xH$$

 $h \to xh$

Mostro che σ_x è una biezione:

• σ_x è iniettiva. Siano $h, k \in H$ e sia $\sigma_x(h) = \sigma_x(k)$. Allora

$$xh = xk \Rightarrow h = k$$

Quindi σ_x è iniettiva.

• σ_x è suriettiva. Per come è definito xH.

Quindi σ_x è una biezione quindi |H| = |xH| e questo vale $\forall x \in G$. Ora, poiché σ_x è una relazione di equivalenza, vale che la collezione di tutte le classi laterali sinistre di H in G è una partizione di G.

Se [G:H] = n e k_1, k_2, \ldots, k_n siano le n classi laterali distinte, $k_i = x_i H$). Allora

$$G = \bigcup_{i=1}^{n} k_i = k_1 \cup k_2 \cup \dots \cup k_n$$

quindi

$$|G| = \sum_{i=1}^{n} |k_i| = \sum_{i=1}^{n} |H| = n|H| = [G:H]|H|$$

Corollario 1. Se $G
in a un gruppo finito <math>in a H \le G \ allora \ |H| \ divide \ |G|$.

Definizione 9 (Potenza). Sia $(G,\cdot,1_G)$ un gruppo e siano $g\in G$ e $z\in\mathbb{Z}$. Definiamo

$$g^{z} = \begin{cases} g^{0} = 1_{g} & se \ z = 0\\ \underbrace{g \cdot g \cdot \dots \cdot g}_{z \ volte} & se \ z > 0\\ \underbrace{g^{-1} \cdot g^{-1} \cdot \dots \cdot g^{-1}}_{z \ volte} & se \ z < 0 \end{cases}$$

Proprietà:

- $g^{n+m} = g^n \cdot g^m = g^m \cdot g^n \ \forall m, n \in \mathbb{Z}$
- $g^{nm} = (g^n)^m$
- $g^{-n} = (g^{-1})^n = (g^n)^{-1}$

Osservazione 4. Se $g, h \in G$ allora in generale $(g \cdot h)^2 = g \cdot h \cdot g \cdot h \neq g^2 \cdot h^2$.

Definizione 10 (Sottogruppo ciclico generato). Sia G un gruppo e $g \in G$. Allora il sottogruppo ciclico generato di g è

$$\langle g \rangle := \{ g^z | z \in \mathbb{Z} \}$$

Questo è il più piccolo sottogruppo di g che contiene l'elemento g, cioè se $H \leq G$ e $g \in H$ allora $\langle g \rangle \subseteq H$.

Definizione 11 (Ordine). Sia G un gruppo e $g \in G$ chiamiamo ordine di g, e scriveremo |g| il più piccolo intero positivo $n \in \mathbb{N}$, $n \ge 1$, tale che $g^n = 1_G$, se esiste. Altrimenti $|g| = \infty$.

Esempi:

- $(\mathbb{R}^*, \cdot, 1)$ con -1 ho che $(-1)^2 = 1$ quindi |-1| = 2
- $(\mathbb{Z}, +, 0)$ 1 ha ordine infinito rispetto a +. Infatti

$$g^{z} = z \cdot g = \begin{cases} 0_{g} \text{ se } z = 0\\ g + g + \dots + g \text{ se } z > 0\\ (-g) + (-g) + \dots + (-g) \text{ se } z < 0 \end{cases}$$

Allora $\forall n \in \mathbb{N} \ n \cdot 1 = 1 + 1 + \dots + 1 = n \neq 0$ se $n \geq 1$. Quindi $|1| = \infty$

Osservazione 5. Se $g \in G$ e |g| = n allora $\langle g \rangle = \{1_G, g, g^2, \dots, g^{n-1} \ e \ | \ \langle g \rangle | = n$.

Lemma 1. Se G è un gruppo finito e $g \in G$, allora l'elemento $g^{|G|} = 1_G$

Dimostrazione. Considero < g >. Vale $< g > \le G$ quindi per il teorema di Lagrange | < g > | divide |G|. Sia n = | < g > | allora n = | < g > | e posso scrivere $|G| = n \cdot k$ per qualche $k \in \mathbb{N}$. Quindi

$$g^{|G|} = g^{n \cdot k} = (g^n)^k = 1_G$$

Osservazione 6. $Se |g| = n \ allora | < g > | = n \ e < g > = \{1_G, g, \dots, g^{n-1}\} \ e \ g^a = g^b \iff n|(a-b) \longleftrightarrow a \equiv b \pmod{n}.$

Osservazione 7. $Se |g| = \infty \ allora < g >= \{g^z | z \in \mathbb{Z}\} \ e \ g^a = g^b \Longleftrightarrow a = b.$

Dimostrazione. Se $g^a = g^b$ allora $g^{a-b} = g^a \cdot g - b = 1_G$ e allora poiché $|g| = \infty \Longrightarrow a - b = 0$ cioè a = b

Teorema 2. Sia $n \in \mathbb{N}$ e sia $a \in \mathbb{Z}$ tale che MCD(a, n) = 1. Allora

$$a^{\varphi(n)} \equiv 1 \pmod{n}$$

.

Dimostrazione. Sia $G = U(Z_n) = \{\overline{x} | MCD(x, n) = 1\}$ quindi $U(\mathbb{Z}_n), \overline{1}$) è un gruppo Abeliano di ordine finito $|U(\mathbb{Z}_n)| = \varphi(n)$.

Preso $a \in \mathbb{Z}$ tale che MCD(a,b) = 1 allora $\overline{a} \in U(\mathbb{Z}_n)$. Per il lemma 1

$$(\overline{a})^{|U(\mathbb{Z}_n)|} = 1_{U(\mathbb{Z}_n)}$$

cioè

$$(\overline{a})^{\varphi(n)} = \overline{1}$$

quindi

$$(\overline{a^{\varphi(n)}}) = \overline{1}$$

ossia

$$a^{\varphi(n)} \equiv 1 \pmod{n}$$

Corollario 2. Se $n = p \in \mathbb{P}$ allora $a^{p-1} \equiv 1 \pmod{n}$.

5.2 Gruppi Simmetrici

Sia X insieme e sia

$$Sym(X) = \{f | f : X \to X \ biunivoche\} = \{permutazioni \ su \ X\}$$

.

Definizione 12 (Gruppo simmetrico). $(Sym(X), \circ, id_x)$ è un gruppo, detto gruppo simmetrico su X. Inoltre $1_{Sym(X)} = id_x$.

Se
$$|X| = n < \infty$$
 allora $|Sym(X)| = n!$.

Definizione 13 (Supporto di f). Se $f \in Sym(X)$ si definisce supporto di f:

$$supp(f) = \{x \in X | f(x) \neq x\}$$

Proposizione 4. Siano $f, g \in Sym(X)$, se $supp(f) \cap supp(g) = \emptyset$ allora $f \circ g = g \circ f$. Si dice che sono due permutazioni a supporto disgiunto commutativo.

Definizione 14 (Prodotto cicli disgiunti). Sia $f \in Sym(X)$ allora esiste una scrittura di f con prodotto di cicli disgiunti, $f = c_1 c_2 \dots c_t$ con c_i l_i – ciclo $i = 1, \dots, t$. Tale scrittura è <u>unica</u> a meno dell'ordine dei cicli.

Definizione 15. L'ordine di f in Sym(X) è pari a

$$o(f) = mcm(l_1, l_2, \dots, l_t)$$

dove l_i è la lunghezza del ciclo.

Definizione 16. Data $f \in G$ con G gruppo finito, l'ordine di f è il minimo numero di applicazioni da ripetere per ottenere l'applicazione identica

$$o(f) = min\{k \ge 1 | f^k = 1_G\}$$

Osservazione 8. Data $f \in G$ con G gruppo finito e $o(f) = min\{k \ge 1 | f^k = 1_G\}$ allora

$$f^k = 1_q \iff n | k \ per k \in \mathbb{Z}$$

Esempi:

1. n = 7 e $X = \{1, 2, 3, 4, 5, 6\}$ e siano

Scriviamo le funzioni composte:

$$\sigma \circ \tau = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 1 & 3 & 2 & 4 & 6 & 5 \end{pmatrix} \qquad \tau \circ \sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 1 & 2 & 4 & 3 & 6 & 5 \end{pmatrix}$$

Attenzione $\sigma \circ \tau \neq \tau \circ \sigma$. Scrittura più agevole:

$$\sigma \circ \tau = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 4 & 1 & 3 & 2 & 6 & 5 \end{pmatrix} = (1, 4, 2)(3)(5, 6) = (1, 4, 2)(5, 6)$$

Per convenzione (3) non si riscrive perchè è un punto fisso. <u>Attenzione</u> (1,4,2) si dice 3-ciclo, analogamente (5,6) è un 2-ciclo.

2. Sia $f = (1 \ 3 \ 5 \ 7)(8 \ 9)(2 \ 4 \ 6)$ allora o(f) = mcm(4, 2, 3) = 12.

Definizione 17 (Partizione). Dato n numero intero positivo, il vettore $p = (l_1, l_2, \dots, l_t)$ con $l_i \ge 1$ tale che $l_1 \ge l_2 \ge \dots l_t$ e $l_1 + l_2 + \dots + l_t = n$ allora p si definisce una partizione di n.

Esempio. n = 3 P(3) = 3 P(n) =numero di partizioni di n, infatti:

Definizione 18 (Relazione di coniugio). Dati $f, g \in Sym(X)$, si definisce la relazione di coniugio (relazione di equivalenza su Sym(X)):

$$f \sim g$$
 se esiste $x \in Sym(X)$ tale che $g = x^{-1}fx$.

Proposizione 5. $Se |X| = n \ allora$

$$\frac{Sym(X)}{\sim} = P(n)$$

Definizione 19 (Trasposizione). Si definisce trasposizione un 2-ciclo.

Scrittura di f permutazione come prodotto di trasposizioni:

- 1. Scrivo f come prodotto di cicli disgiunti $f = c_1 c_2 \dots c_t$ con c_i =cicli disgiunti.
- 2. per $c=(i,i_2,\ldots,i_p)$ p-ciclo scrivo c
 come prodotto di trasposizioni

$$c = (i, i_p)(i, i_{p-1}) \dots (i, i_2)$$

Esempio. $(1\ 2\ 3) = (1\ 3)(1\ 2)$ oppure $(3\ 7\ 5\ 2) = (3\ 2)\ (3\ 5)\ (3\ 7)$

Teorema 3. Per $f \in Sym(X)$ se $f = t_1 \cdot t_2 \cdot t_3 \cdot \ldots \cdot t_k = s_1 \cdot s_2 \cdot s_3 \cdot \ldots \cdot s_h$ con t_1, \ldots, t_k e s_1, \ldots, s_h trasposizioni, allora

$$k \equiv h(mod \, 2)$$

Definizione 20 (Segno di f). Il segno di $f = t_1 \cdot t_2 \dots t_k$ permutazione è definito come

$$sgn(f) = \begin{cases} +1 \text{ se } k \text{ è pari} \\ -1 \text{ se } k \text{ è dispari} \end{cases}$$

Definizione 21. Data f permutazione allora diremo che:

- $f \grave{e} pari se sgn(f)=1$
- $f \ e \ dispari \ se \ sgn(f)=-1$

Esempio. $f=(1\ 2\ 3\ 4)(5\ 6\ 7)(8\ 9)=(1\ 4)(1\ 3)(1\ 2)(5\ 7)(5\ 6)(8\ 9)$ ha numero di trasposizioni pari a 6 quindi f è pari.

Osservazione 9. $sgn(f \circ g) = sgn(f) \cdot sgn(g)$

Definizione 22 (Gruppo alterno). Si definisce gruppo alterno su X

$$Alt(X) = \{ f \in Sym(X) | f \ e \ pari \}$$

5.3 Algebra di Boole: punto di vista reticolare

Definizione 23 (Reticolo). Un insieme parzialmente ordinato (A, \leq) si dice reticolo se $\forall a, b \in A$:

- $\exists inf_A(\{a,b\})$
- $\exists sup_A(\{a,b\})$

Definizione 24. A reticolo si dice distributivo se $\forall a, b, c \in A$:

- $a \lor (b \land c) = (a \lor b) \land (a \lor c)$
- $a \wedge (b \vee c) = (a \wedge b) \vee (a \wedge c)$

Esempio. Dato X insieme e A = P(X), ordinato per inclusione \subseteq , allora A è un reticolo distributivo. Vediamo due esempi di reticoli non distributivi:

1. Reticolo diamante

Questo reticolo non è distributivo, infatti:

- $a \wedge (b \vee c) = a$
- $(a \wedge b) \vee (a \wedge c) = 0$ e $a \neq 0$

2. Reticolo pentagonale:

Anche questo reticolo non è distributivo, infatti:

- $a \lor (b \land c) = a$
- $(a \lor b) \land (a \lor c) = c e a \neq c$

Definizione 25 (Sottoreticolo). Sia A un reticolo e sia $B \subseteq A$, B si dice un sottoreticolo di A se $\forall b, c \in B$ si ha:

- 1. $b \wedge_A c \in B$
- 2. $b \vee_A c \in B$

Definizione 26. Dati A_1, A_2 reticoli, $f: A_1 \to A_2$ si dice isomorfismo di reticoli se:

- ullet f \dot{e} biettiva
- $\forall x, y \in A \ vale$:

$$- f(x \wedge_{A_1} y) = f(x) \wedge_{A_2} f(y)$$

$$- f(x \vee_{A_1} y) = f(x) \vee_{A_2} f(y)$$

Esempio. Questi due reticoli sono isomorfi, ovvero hanno la stessa forma/struttura ma ne vengono cambiate le etichette.

Teorema 4. Dato A reticolo, A è un reticolo distributivo se e solo se non ha sottoreticoli isomorfi al reticolo pentagonale o al reticolo diamante.

Definizione 27. A reticolo si dice complementato se è limitato e:

- 1. $\exists 1 = max(A), \exists 0 = min(A)$
- 2. $\forall a \in A, \exists \overline{a} \in A \text{ tale che:}$
 - $a \vee \overline{a} = 1$
 - $a \wedge \overline{a} = 0$

 \overline{a} si dice a complementato.

Esempio. Dato X insieme e A = P(X) ordinato per \subseteq , per $Y \in A$ si ha che $\overline{Y} = X \setminus Y = C_X(Y)$

Definizione 28 (Algebra di Boole). Un'Algebra di Boole è un reticolo distributivo e complementato.

Esempio. $X \neq \emptyset$ e A = P(X) ordinato per inclusione \subseteq allora $A = (P(X), \subseteq)$ è un Algebra di Boole. In questo caso:

- $\bullet \land = \cap$
- \bullet $\lor = \cup$
- 1 = X
- $0 = \emptyset$

Osservazione 10. Dato n intero positivo, sia $D_n = \{d \in \mathbb{Z}_{>0} | d|n\}$ ordinato per divisibilità. Allora:

- $(D_n, |)$ è un reticolo distributivo, infatti $\forall x, y \in D_n$:
 - $-x \lor y = mcm(x,y)$
 - $-x \wedge y = MCD(x,y)$
- D_n è complementato se e solo se $n = p_1 \cdot p_2 \dots p_k$ con $p_i \in \mathbb{P}$ primi distinti.

Osservazione 11. Se A è un reticolo complementato non sempre il complemento è unico.

Esempio. Nel reticolo diamante a ha due complementi che sono b e c.

Proposizione 6. Se A è un reticolo distributivo e complementato, ovvero A è un Algebra di Boole, allora $\forall a \in A$ esiste un unico complemento di a, \overline{a} .

Dimostrazione. Sia $a \in A$ e siano $b, c \in A$ tale che

$$\begin{cases} a \lor b = 1 \\ a \land b = 0 \end{cases} \begin{cases} a \lor c = 1 \\ a \land c = 0 \end{cases}$$

Allora

$$b = b \lor 0 = b \lor (a \land c) = (b \lor a) \land (b \lor c) = 1 \land (b \lor c) = (a \lor c) \land (b \lor c) = (a \land c) \lor c = a \lor c = c$$

Quindi b = c, il complemento di a è unico.

5.4 Algebra di Boole: punto di vista algebrico

Considero \vee e \wedge come operazioni su A. Quindi sia $(A, +, \cdot, \bar{\cdot})$.

Proprietà:

- 1. Associativa, $\forall a, b, c \in A$:
 - a + (b + c) = (a + b) + c
 - $a \cdot (b \cdot c) = (a \cdot b) \cdot c$
- 2. Commutativa, $\forall a, b \in A$:
 - a + b = b + a
 - $a \cdot b = b \cdot a$
- 3. Distributiva $\forall a, b, c \in A$:
 - $a + (b \cdot c) = (a+b) \cdot (a+c)$
 - $a \cdot (b+c) = ab + ac$
- 4. Assorbimento, $\forall a, b \in A$:
 - $a + (a \cdot b) = a$
 - $\bullet \ a \cdot (a+b) = a$
- 5. Esistono $0, 1 \in A$ tale che $\forall a \in A$:
 - a + 0 = a
 - $a \cdot 0 = 0$
 - a + 1 = 1
 - $a \cdot 1 = a$
- 6. Complemento, $\forall a \in A \text{ esiste } \overline{a} \in A \text{ tale che:}$
 - $\bullet \ a \cdot \overline{a} = 0$
 - $a + \overline{a} = 1$
- 7. Leggi di De Morgan, $\overline{a+b}=\overline{a}\cdot\overline{b}$ e $\overline{a\cdot b}=\overline{a}+\overline{b}$
- 8. $\overline{\overline{a}} = a$

Ora, dato $(A,+,\cdot,\bar{\cdot})$ con le proprietà enunciate, definisco una relazione d'ordine \leq su A ponendo per $a,b\in A$ $a\leq b$ se $a\cdot b=a$ oppure a+b=b. Allora \leq è riflessiva, antisimmetrica e transitiva, ovvero (A,\leq) insieme parzialmente ordinato è un reticolo distributivo e complementato, dove $\forall\, a,b\in A$ vale:

$$\begin{cases} a \lor b = a + b \\ a \land b = a \cdot b \end{cases}$$

A è un algebra di Boole, definita dal punto di vista algebrico. Quindi un algebra di Boole può essere definita a seconda dei due punti di vista, algebrico e reticolare, che sono tra loro equivalenti poiché

quello che si ottiene è la stessa struttura matematica.

Principio di Dualità. Ogni proposizione universalmente vera in un'algebra di Boole, rimane universalmente vera scambiando + con \cdot e 0 con 1.

Proposizione 7. Sia n intero positivo e $(D_n, |)$, se $p^2|n$, con $p \in \mathbb{P}$, allora $(D_n, |)$ non è complementato.

Dimostrazione. $p \in D_n$ non ha complemento. Infatti se $a \in D_n$ fosse un complemento, allora

$$\begin{cases} a \lor p = mcm(a, p) = max(D_n) = n \\ a \land p = \underbrace{MCD(a, p)}_{\text{ovvero } p \nmid a} = 1 = min(D_n) \end{cases}$$

quindi $p^2 \nmid MCD(a, p)$ quindi è diverso da n. Quindi non esiste un complemento.

Definizione 29 (Atomo). Sia (A, \leq) un insieme parzialmente ordinato dotato di 0 = min(A). Un elemento $a \in A$, $a \neq 0 = min(A)$, si dice atomo di A se è un elemento minimale in $(A \setminus \{0\}, \leq)$.

Definizione 30 (Atomo alternativa). Sia $x \in B$ algebra di Boole e $x \neq 0$, è un atomo se per ogni $y \leq x$ vale y = x oppure y = 0.

Osservazione 12. $x \neq 0$ $x \in un$ atomo $\iff per u, v \in B$ se x = u + v allora $u, v \in \{0, x\}$.

Osservazione 13. $a \cdot x = x \iff x \le a \text{ quindi } a \cdot x = 0 \iff x \nleq a$

Lemma 2. Sia $x \in B$, algebra di Boole, un atomo. Allora:

- 1. $\forall a \in B \ vale \ a \cdot 0 = 0 \ oppure \ a \cdot x = x$
- 2. $\forall x_1, x_2 \text{ atomi tale che } x_1 \neq x_2 \text{ vale } x_1 \cdot x_2 = 0$

Dimostrazione.

- 1. Per osservazione 13 $a \cdot x \leq x$ quindi $a \cdot x = \{0, x\}$
- 2. Se $x_1 \neq x_2$ allora $x_1 \leq x_2$ e $x_2 \leq x_1$ quindi $x_1 \cdot x_2 = 0$

Proposizione 8. Se B algebra di Boole, |B| finita. Sia $X = \{x \in B | x \text{ atomo di } B\}$. Allora $X \neq \emptyset$ e se $a \in B$ è tale che $a \cdot x = 0 \ \forall x \in X$, allora a = 0.

П

Dimostrazione. Se per assurdo $a \neq 0$, quindi $Y = \{y \in B | y \leq x, y \neq 0\} \neq \emptyset$ finito. Dunque esiste almeno un elemento minimale $x_0 \in Y$ rispetto alla relazione d'ordine indotta.

 x_0 è un atomo di B, infatti $x_0 \neq 0$ e se $y \in B, y \neq 0$ tale che $y \leq x_0$ ma $x_0 \leq a$ quindi per transitività $y \leq a$ dunque $y \in Y$, poiché x_0 minimale in Y segue $y = x_0$.

Poiché $x_0 \le a$, vale $a \cdot x_0 = x_0$ ma x_0 è un atomo, ovvero $x_0 \in X$ di B e per ipotesi $a \cdot x_0 = 0$ e questo è assurdo perchè $x_0 \ne 0$.

Teorema 5 (Teorema di rappresentazione). Sia B algebra di Boole finita. Allora ogni $a \in B, a \neq 0$, si scrive in modo unico come somma di atomi di B, a meno dell'ordine degli addendi. Ovvero

$$a = \sum_{x \in X_a} x \ con \ X_a \subseteq X = \{atomi \ di \ B\}, X_a = \{x \in X | x \le a\}$$

Dimostrazione. Siano $a \in B$, $a \neq 0$, $X = \{x \in B | x \text{ atomo } e X_a = \{x \in X | x \leq a\}$. Dimostro l'esistenza.

Chiamo

$$b = \sum_{x \in X_a} x$$

e provo che b = a.

• Provo che $a \cdot b = b$ infatti

$$a \cdot b = a \cdot \sum_{x \in X_a} x = \sum_{x \in X_a} ax = \sum_{x \in X_a} x = b$$

- Provo che $a \cdot \overline{b} = 0$ mostrando che $(a \cdot \overline{b})y = 0 \ \forall y \in X$.
 - 1. Se $y \in X_a$, ricordando che

$$\overline{b} = \overline{\sum_{x \in X_a} x} = \prod_{\substack{De \ Morgan}} \overline{x}$$

allora

$$(a\overline{b})y = a\prod_{x \in X_a} \overline{x}y = a(\prod_{x \in X_a \land x \neq y} \overline{x})\underbrace{y\overline{y}}_{=0} = 0$$

2. Se invece $y \notin X_a$, allora ay = 0 e quindi

$$a\bar{b}y = ay\bar{b} = 0 \cdot \bar{b} = 0$$

Dunque

$$a = a \cdot 1 = a(b + \overline{b}) = a \cdot b + a \cdot \overline{b} = b + 0 = b$$

Dimostro l'<u>unicità</u>.

Siano $X_1, X_2 \subseteq X$ tale che $a = \sum_{x \in X_1} x = \sum_{y \in X_2} y$. Provo che $X_1 = X_2$.

 \subseteq Sia $x_1 \in X_1$, allora

$$ax_1 = (\sum_{x \in X_1} x)x_1 = \sum_{x \in X_1} xx_1 = x_1 = 0$$

inoltre

$$0 \neq x_1 = ax_1 = (\sum_{y \in X_2} y)x_1 = \sum_{y \in X_2} yx_1$$

quindi esiste $y \in X_2$ tale che

$$y = x_1$$

ovvero $X_1 \subseteq X_2$

 \supseteq Si dimostra in modo analogo.

Teorema 6 (Teorema di struttura). Sia B algebra di Boole finita e sia $X = \{x | xatomo \ di \ B\}$. Allora B è isomorfa all'algebra di Boole di P(X).

Dimostrazione. Definisco $f: B \to P(X)$ ponendo $f(0) \neq \emptyset$ e, per $a \in B$ con $a \neq 0$, scrivo

$$a = \sum_{x \in X_a} x$$

e definisco $f(a) = X_a$ univocamente determinato. Provo che f è invertibile, infatti: Sia $g: P(X) \to B$ tale che

$$g(Y) = \sum_{x \in Y} x \in B$$

se $Y \notin \emptyset$ e $g(\emptyset) = 0$. Verifico che

$$\begin{cases} g \circ f = i_B \\ f \circ g = i_{P(X)} \end{cases}$$

Segue che f è biettiva poiché invertibile e quindi è un isomorfismo.

6 Logica

Definizione 1 (Proposizione). Una proposizione è un enunciato che può assumere solo valori vero o falso.

Vero è indicato con il simbolo "1" mentre falso con il simbolo "0". Esempi:

- 1. "due è un numero pari", Vero
- 2. "Esistono infinite coppie di primi (p,q) con $p,q\in\mathbb{P}$ tale che q=p+2, non si può dimostrare.
- 3. "Che ore sono?", non è una proposizione
- 4. "Questa affermazione è falsa", non è una proposizione

6.1 Linguaggio della logica proposizionale

Chiamo alfabeto

$$A = L \cup \{\land, \lor, \neg, \rightarrow, \leftarrow\} \cup \{\}, (\}$$

dove L è l'insieme delle variabili proposizionali.

Definizione 2 (Formula). Una stringa α di simboli dell'alfabeto A è una formula se è del tipo:

- 1. $\alpha \in L$
- 2. $\alpha = \neg \beta \ con \ \beta \ formula$.
- 3. $\alpha = (\beta \wedge \gamma)$, si può sostituire il connettivo logico \wedge con un qualsiasi altro.

Esempio. Siano $a,b,c\in L$ allora:

- $(a \lor (b \to \neg c))$ formula
- $\bullet \ (a \rightarrow b \rightarrow c)$ non è una formula perché ambigua
- $(a \to (b \to c) \text{ formula}$

Connettivi logici e valori di verità:

Siano α, β proposizioni, allora:

	(α	β	$\alpha \wedge \beta$	α	β	$\alpha \vee \beta$	α	β	$\alpha \to \beta$	α	β	$\alpha \longleftrightarrow \beta$
$\alpha \mid \neg \alpha$	(0	0	0	0	0	0	0	0	1	0	0	1
0 1	(0	1	0	0	1	1	0	1	1	0	1	0
1 0	-	1	0	0	1	0	1	1	0	0	1	0	0
		1	1	1	1	1	1	1	1	1	1	1	1

Osservazione 1. $\alpha \to \beta$ è sempre vera tranne nel caso in cui α è vera e β è falsa.

Esempio.

"Se due è dispari allora il sole gira intorno alla Terra"
$$\beta$$

La premessa α è falsa quindi qualsiasi sia l'implicazione β , l'implicazione è vera.

Semantica. (Assegnazione di valori di verità)

Sia Form(L) l'insieme delle formule dell'alfabeto A. Data una <u>valutazione</u> $v: L \to \{0,1\}$ definisco $\widetilde{v}: Form(L) \to \{0,1\}$ nel seguente modo:

- $a \in L$, pongo $\widetilde{v}(\alpha) = v(\alpha)$
- $\alpha = \neg \beta$, con β formula, pongo

$$\widetilde{v}(\alpha) = \begin{cases} 1 \text{ se } \widetilde{v}(\beta) = 0 \\ 0 \text{ se } \widetilde{v}(\beta) = 1 \end{cases}$$

- $\alpha = \beta \wedge \gamma$ allora pongo $\widetilde{v}(\alpha) = min(\widetilde{v}(\beta), \widetilde{v}(\gamma))$
- $\alpha = \beta \vee \gamma$ allora pongo $\widetilde{v}(\alpha) = max(\widetilde{v}(\beta), \widetilde{v}(\gamma))$
- $\alpha = \beta \rightarrow \gamma$ allora pongo

$$\widetilde{v}(\alpha) = \begin{cases} 0 \text{ se } \widetilde{v}(\beta) = 1 \text{ e } \widetilde{v}(\gamma) = 0 \\ 1 \text{ altrimenti} \end{cases}$$

• $\alpha = \beta \longleftrightarrow \gamma$ allora pongo

$$\widetilde{v}(\alpha) = \begin{cases} 1 \text{ se } \widetilde{v}(\beta) = \widetilde{v}(\gamma) \\ 0 \text{ altrimenti} \end{cases}$$

Esempio. Sia $(p \vee \neg (q \wedge \neg r)) \rightarrow (\neg \neg r))$, costruiamo l'albero di Parsing

Valutazione:

$$\begin{cases} p = 1 \\ q = 0 & \Longrightarrow v(\alpha) = 1 \\ r = 1 \end{cases}$$

Definizione 3 (Formula soddisfacibile). Una formula α si dice soddisfacibile se esiste almeno una valutazione v tale che $v(\alpha) = 1$ e si dice che α è vera mediante la valutazione v.

Definizione 4 (Tautologia). α è una tautologia se per ogni valutazione v vale $v(\alpha) = 1$.

Definizione 5 (Contraddizione). α è una contraddizione se per ogni valutazione v vale $v(\alpha) = 0$.

Definizione 6 (Conseguenza logica). Date due formule $\alpha, \beta \in Form(L)$ dico che β è conseguenza logica di α , scrivo $\alpha \models \beta$, se per ogni valutazione v tale che $v(\alpha) = 1$ vale $v(\beta) = 1$.

Definizione 7. Date due formule $\alpha, \beta \in Form(L)$ dico che α e β sono logicamente equivalenti, scrivo $\alpha \equiv \beta$, se per ogni valutazione v vale $v(\alpha) = v(\beta)$.

Esempi:

- 1. $(a \rightarrow b) \land \neg c$ soddisfacibile ma non tautologia
- 2. $(a \lor \neq a)$ tautologia
- 3. $(a \land \neq a \text{ contraddizione, cioè non soddisfacibile})$
- 4. $\alpha \wedge \beta \models \alpha$ per ogni $\alpha, \beta \in Form(L)$
- 5. $\alpha \equiv \neg \neg \alpha$

Equivalenze logiche:

• $\alpha \to \beta$ è logicamente equivalente a $\neg \beta \to \neg \alpha$, la seconda formula è la contronominale della prima.

α	β	$\alpha \to \beta$	$\neg \beta$	$\neg \alpha$	$\neg \beta \rightarrow \neg \alpha$
1	1	1	0	0	1
1	0	0	1	0	0
0	1	1	0	1	1
0	0	1	1	1	1

• $\alpha \to \beta \equiv \neg \alpha \lor \beta$

	α	β	$\alpha \to \beta$	$\neg \alpha$	β	$\neg \alpha \lor \beta$
Ī	1	1	1	0	1	1
	1	0	0	0	0	0
	0	1	1	1	1	1
	0	0	1	1	1	1

- $\alpha \longleftrightarrow \beta \equiv (\alpha \to \beta) \land (\beta \to \alpha) \equiv (\neq \alpha \lor \beta) \land (\neg \beta \lor \alpha)$, questo come conseguenza ha che per ogni α formula, esiste $\alpha' \in Form(L)$ tale che $\alpha' \equiv \alpha$ e in α' compaiono solo connettivi \neg, \land, \lor .
- Per le leggi di De Morgan $\neg(\alpha \land \beta) \equiv \neg\alpha \lor \neg\beta$ quindi $\alpha \land \beta \equiv \neg(\neg\alpha \lor \neg\beta)$

Osservazione 2. Ogni formula può essere scritta usando il connettivo logico NOR.

α	β	$\alpha \downarrow \beta$
1	1	0
1	0	0
0	1	0
0	0	1

Definizione 8 (Conseguenza logica). Date $\alpha_1, \alpha_2, \ldots, \alpha_n, \beta \in Form(L)$ allora $\alpha_1, \alpha_2, \ldots, \alpha_n \models \beta$ se per ogni valutazione di verità v tale che $v(\alpha_1) = v(\alpha_2) = \cdots = v(\alpha_n) = 1$ vale anche $v(\beta) = 1$.

Osservazione 3. $\alpha_1, \alpha_2, \dots, \alpha_n \models \beta$ equivale $a \alpha_1 \wedge \alpha_2 \wedge \dots \wedge \alpha_n \models \beta$.

6.2 Forma normale congiuntiva (FNC)

Definizione 9 (Letterale). a oppure $\neg a$ con $a \in L$ variabile proposizionale.

Definizione 10 (Disgiunzione elementare). $l_1 \vee l_2 \vee \cdots \vee l_n$ con l_i letterale per $i \in [1, n], n \geq 1$

Definizione 11 (FNC). $\alpha \in Form(L)$ è in FNC, forma normale congiuntiva se,

$$\alpha = \alpha_1 \wedge \alpha_2 \wedge \dots \wedge \alpha_m$$

con α_i disgiunzione elementare per ogni $1 \leq i \leq m$ e $m \geq 1$.

Esempio. Siano $a,b,c\in L$ variabili proposizionali. Allora:

- $a \lor b \lor \neg a$ è in FNC e disgiunzione elementare
- $(a \lor b \lor \neg c) \land (b \lor \neg a)$ è in FNC.

Analogamente posso definire la forma normale disgiuntiva scambiando \wedge e \vee .

Proposizione 1. Per ogni formula α esiste una formula α' tale che $\alpha' \equiv \alpha$ e α' è in FNC.

Algoritmo di trasformazione in FNC:

1. Elimino \rightarrow , \longleftrightarrow , usando le equivalenze logiche, e ottengo $\alpha_0 \equiv \alpha$ tale che α_0 contiene solo \neg , \wedge , \vee .

2. usando le leggi di De Morgan porto ¬ accanto alle variabili proposizionali. Per esempio

$$(\neg(\alpha \to \beta)) \equiv \neg(\neg\alpha \lor \beta) \equiv \neg\neg\alpha \land \neg\beta \equiv \alpha \land \neg\beta$$

3. Uso, eventualmente, le leggi distributive.

Esempio.

$$(a \land \neg c) \to (a \longleftrightarrow \neg b) \equiv) \neg (a \land \neg c) \lor ((a \to \neg b) \land (\neg b \to a)) \equiv$$

$$\neg (a \land \neg c) \lor ((\neg a \lor \neg b) \land (b \lor a)) \equiv (\neg a \lor c) \lor ((\neg a \lor \neg b) \land (b \lor a)) \equiv$$

$$((\neg a \lor c) \lor (\neg a \lor \neg b)) \land ((\neg a \lor c) \lor (b \lor a)) \equiv$$

$$(\neg \lor c \lor \neg a \lor \neg b) \land (\neg a \lor c \lor b \lor c) \equiv$$

$$\neg a \lor \neg b \lor c$$

Definizione 12. Insieme di letterali, interpreto $\{l_1, l_2, \ldots, l_n\}$, con l_i letterali, come $l_1 \vee l_2 \vee \cdots \vee l_n$. Un insieme di clausole $\{c_1, c_2, \ldots, c_m\}$, con c_i clausole e $c_i = \{l_{i1}, \ldots, l_{ij}\}$, lo interpreto come

$$(l_{11} \lor l_{12}, \lor \cdots \lor l_{1i}) \land (l_{21} \lor l_{22}, \lor \cdots \lor l_{2i}) \land (\dots) \dots$$

Esempio. Riprendendo l'esempio precedente la scrittura in clausole di $(\neg \lor c \lor \neg a \lor \neg b) \land (\neg a \lor c \lor b \lor c) \equiv$ è la seguente

$$\{\{\neg a,c,\neg a,\neg b\},\{\neg a,c,b,a\}\}=S_\alpha=$$
Insieme di Clausole

Trasferiamo la semantica da formule FNC a insieme di clausole:

- 1. Per $c = \{c_1, \ldots, c_n\}$ clausola, v valutazione, v(c) = 1 se e solo se $v(l_i) = 1$ per almeno una c_i .
- 2. Per $S = \{C_1, C_2, \dots, C_m\}$ insieme di clausole, v valutazione, v(S) = 1 se e solo se $v(C_i) = 1$ per ogni C_i .

Notazione:

- $\square =$ clausola vuota: $v(\square) = 0$ per ogni valutazione, ossia insoddisfacibile.
- = insieme di clausole vuoto: $v(\{\}) = 1$ per ogni valutazione, ossia tautologia.

Definizione 13 (Risolvente). Date due clausole $C = \{x_1, x_1, \dots, x_k, a\}$ e $D = \{y_1, y_2, \dots, y_t, \neg a\}$ con x_i, y_j letterali e a variabile proposizionale. Si chiama risolvente

$$Ris_a(C, D) = \{x_1, \dots, x_k, y_1, \dots, y_n\}$$

 $con x_i, y_i \neq a e \neg a$.

6.3 Algoritmo di Davis-Putnam

L'algoritmo di Davis-Putnam è utilizzato per provare la soddisfacibilità di una formula.

- 1. Elimino le tautologie
- 2. Scelgo una variabile proposizionale a, chiamata pivot
- 3. Costruisco un nuovo insieme di clausole così costituito

 $S' = \{ \text{clausole che non contengono ne } a \text{ ne } \neg a \} \cup \{ Ris_a(C, D) \text{ dove } C, D \in S, a \in C \text{ e } \neg a \in D \}$

Ora, abbiamo che S formula è soddisfacibile se e solo se S' è soddisfacibile. Ripetendo il procedimento alla fine ottengo o un insieme di vuote di clausole , oppure una clausola vuota \Box . Distinguo due casi:

- 1. in questo caso S è soddisfacibile
- 2. \square S è insoddisfacibile

Osservazione 4. A ogni passaggio dell'algoritmo mantengo la soddisfacibilità.

Esempio. Verificare la validità di $(a \to c) \land (b \to c) \models (a \lor b) \to c$. Questo equivale a verificare che $(a \to c) \land (b \to c) \land \neg ((a \lor c) \to c)$ è insoddisfacibile. In clausole:

$$S = \{ \{ \neg a, c \}, \{ \neg b, c \}, \{ a, b \}, \{ \neg c \} \}$$

- 1. Scelgo pivot a e ottengo $S_1 = \{ \{\neg b, c\}, \{\neg c\}, \{b, c\} \}$
- 2. Scelgo pivot c e ottengo $S_2 = \{\{\neg b\}, \{b\}\}\$
- 3. Scelgo pivot b e ottengo $S_3 = \{\Box\}$ quindi S è insoddisfacibile.

Esempio. Insieme di clausole:

$$S = \{\{a,b\},\{c,d\},\{e,f\},\{\neg a,\neg b\},\{\neg c,\neg d\},\{\neg e,\neg f\},\{\neg a,\neg c\},\{\neg b,\neg d\},\{\neg c,\neg e\},\{\neg d,\neg f\}\}\}$$

1. Pivot a:
$$S_1 = \{\{c.d\}, \{e, g\}, \{\neg c, \neg d\}, \{\neg e, \neg f\}, \{\neg b, \neg d\}, \{\neg c, \neg e\}, \{\neg d, \neg f\}, \{b, \neg b\}, \{b, \neg c\}\}\}$$

2. Pivot b:
$$S_2 = \{\{c.d\}, \{e, f\}, \{\neg c, \neg d\}, \{\neg e, \neg f\}, \{\neg c, \neg e\}, \{\neg d, \neg f\}, \{\neg c, \neg d\}\}$$

3. Pivot c:
$$S_3 = \{\{e, f\}, \{\neg e, \neg f\}, \{\neg d, \neg f\}, \{d, \neg d\}, \{d, \neg e\}\}$$

4. Pivot d:
$$S_4 = \{\{e, f\}, \{\neg e, \neg f\}, \{\neg e, \neg f\}\}$$

5. Pivot e: $S_5 = \{\{f, \neg f\}\} = \{\}$ Insieme vuoto di clausole quindi S_1 è soddisfacibile.

Trovare v valutazione che soddisfi S_i :

- f è una variabile esodata quindi posso scegliere v(f).
- Assegno v(e) = 1 per rendere vera S_4
- Assegno v(d) = 1 per rendere vera S_3
- Assegno v(c) = 0 per rendere vera S_2
- Assegno v(b) = 0 per rendere vera S_1
- \bullet Assegno v(a)=1 per rendere vera S

$$v = \begin{cases} a \to 1 \\ b \to 0 \\ c \to 0 \\ d \to 1 \\ e \to 1 \\ f \to 0 \end{cases}$$

 $\it Esempio.$ Trovare se la seguente formula è soddisfacibile o tautologia

$$\varphi := ((c \to (d \land f) \land ((e \lor f) \to a) \land ((c \land f) \to b)) \to (c \to b)$$

 φ è una tautologia $\iff \neg \varphi$ insoddisfacibile. Quindi:

$$\neg \varphi := \neg (\neg (\dots) \lor (c \to b)) \equiv (\dots) \land \neg (c \to b) \equiv$$
$$((\neg c \lor (d \land f) \land (\neg (e \lor f) \lor a) \land (\neg (c \land f) \lor b)) \land \neg (\neg c \lor b) \equiv$$
$$((\neg c \lor d) \land (\neg c \lor f) \land ((\neg e \lor a) \land (\lor \neg f) \land (\neg c \lor \neg f \lor b) \land c \land \neg b)$$

In clausole:

$$S_1 = \{ \{ \neg c, d \}, \{ \neg c, f \}, \{ \neg e, a \}, \{ a, \neg f \}, \{ \neg c, \neg f, b \}, \{ c \}, \{ \neg b \} \}$$

Osservo che a, d sono variabili monopolari \Rightarrow elimino clausole in cui compare.

- 1. Pivot c: $S_2 = \{ \{ \neg b \}, \{ f \}, \{ \neg f, b \} \}$
- 2. Pivot b: $S_3 = \{\{f\}, \{\neg f\}\}$
- 3. Pivot f: $S_4 = \{ \Box \}$

Quindi S_1 è insoddisfacibile ovvero $\neg \varphi$ è insoddisfacibile e quindi φ è una tautologia.

Proposizione 2. Sia S insieme di clausole, scelgo pivot a e sia S' l'insieme di clausole ottenuto applicando l'algoritmo di Davis-Putnam su S con pivot a. Allora S è soddisfacibile (SAT) se e solo se S' è SAT, ossia S e S' sono equisoddisfacibili.

Dimostrazione.

 \Rightarrow Suppongo S soddisfacibile ovvero esiste valutazione v tale che v(S)=1, provo che anche v(S')=1 cioè $S\models S'$.

$$S' = \{\{Clausole\ di\ S\ a\text{-}esonerate\} \cup \{Ris(C,D)|C,D \in S\ t.c.\ a \in C \land \neg a \in D\}\}$$

Se $C \in S$ clausola a-esonerata, $C \in S'$ e v(C) = 1. Considero $Ris_a(C, D) \in S'$ con $C, D \in S$, $a \in C$ e $\neg a \in D$. Poiché v(S) = 1 in parte v(C) = 1 = v(D). Siano

$$C = \{x_1, \dots, x_k, a\}$$
 $D = \{y_1, \dots, y_h, \neg a\}$ $x_i, y_j \neq a, \neg a$

allora

$$Ris_a(C, D) = \{x_1, \dots, x_k, y_1, \dots, y_h\}$$

1. Se v(a)=0 allora esiste i tale che $v(x_i)=1$ con $1\leq i\leq k$ perchè v(C)=1. Dunque

$$v(Ris_a(C,D)) = 1$$

2. Se v(a)=1 allora esiste j tale che $v(y_j)=1$ con $1\leq j\leq h$ perché v(D)=1, ma $v(\neg a)=0.$ Segue che

$$v(Ris_a(C,D)) = 1$$

Quindi v(S') = 1.

 \Leftarrow Suppongo che S' sia soddisfacibile e provo che S è soddisfacibile. Sia v valutazione tale che v(S') = 1, ossia v soddisfa tutte le clausole in S'.

- Siano $C_1, \ldots, C_n \in S$ le clausole contenenti il pivot a quindi $C_i = C_i \cup \{a\}$
- Siano $D_1, \dots, D_m \in S$ le clausole contenenti il pivot $\neg a$ quindi $D_j = D_j \cup \{\neg a\}$

Distinguo due casi:

1. Suppongo che esista un $1 \leq i \leq n$ tale che $v(C_i') = 0$. Allora dato che

$$Ris_a(C,D) = C'_i \cup D'_d$$

è soddisfatto da v,e $v(C_i')=0$ segue che $v(D_j')=1 \Rightarrow v(D_j)=1.$ Pongo

$$\hat{v} = \begin{cases} v(x) \text{ se } x \neq a \\ 1 \text{ se } x = a \end{cases}$$

ovvero $\hat{v}(a)=1$. Dunque $\hat{v}(D_j')=v(D_j)=1$ per ogni $1\leq j\leq m$. Inoltre $\hat{v}(C_i)=1$ per ogni $1\leq i\leq n$ poiché $a\in C_i$ e $\hat{v}(a)=1$. Segue che

$$\hat{v}(S) = 1$$

2. Suppongo che $v(C'_i) = 1$ per ogni $1 \le i \le n$. Definisco \tilde{v} valutazione

$$\tilde{v} = \begin{cases} v(x) \text{ se } x \neq a \\ 0 \text{ se x=a} \end{cases}$$

Quindi $\tilde{v}(a) = 0$ e osservo che $\tilde{v}(C_i) = 1$ per ogni $1 \le i \le n$ perchè $\tilde{v}(C_i') = 1$. Inoltre $\tilde{v}(D_j) = 1$ per ogni $1 \le j \le m$ perchè $\tilde{v}(\neg a) = 1$. Segue che

$$\tilde{v}(S) = 1$$

6.4 Logica dei Predicati

Definisco l'alfabeto

$$A = X \cup C \cup P \cup F \cup \{\forall\,,\exists\,\,\} \cup \{\neg,\land,\lor,\rightarrow,\longleftarrow\} \cup \{(,)\}$$

dove:

- X è l'insieme dei simboli di predicati $\{x_1, y_1, x_3, \dots, x_n\}$
- C è l'insieme dei simboli di costanti $\{c,d,e,\dots\}$
- $\bullet\,$ P è l'insieme dei simboli di predicati, ognuno con la sua arietà.
- F è l'insieme dei simboli di funzione $\{F_1, F_2, \dots, G_1, \dots\}$

Per arietà si intende il numero di argomenti che prende il predicato.

Definizione 14 (Termine). Ogni simbolo di variabile o di costante è un termine. Se F è un simbolo di funzione di arietà n e t_1, t_2, \ldots, t_n sono termini. Allora $F(t_1, t_2, \ldots, t_n)$ è un termine.

Osservazione 5. Un termine si dice chiuso se non contiene simboli di variabile.

Definizione 15 (Formula atomica). Dati t_1, t_2, \ldots, t_n termini e P simbolo di predicato di arietà n. Allora $P(t_1, t_2, \ldots, t_n)$ è una formula atomica.

Definizione 16 (Struttura adeguata ad A). Definita come

$$\Sigma = (\mathcal{S}, \mathcal{C}, \mathcal{P}, \mathcal{F})$$

dove

- S è un insieme non vuoto, detto supporto di Σ
- $C \subseteq S$ formato da k elementi, detti costanti
- F insieme di funzioni di arietà n $f = \underbrace{S \times S \times \cdots \times S}_{n \ volte} \rightarrow S$
- ullet \mathcal{P} insieme di relazioni su S

Definizione 17 (Interpretazione). Data Σ struttura adeguata ad A, un'interpretazione di A su Σ è una scelta di biezioni:

$$\begin{cases} f_1 = C \to \mathcal{C} \\ f_2 = F \to \mathcal{F} \text{ rispettando l'arietà} \\ f_3 = P \to \mathcal{P} \text{ rispettando l'arietà} \end{cases}$$

Esempio. Sia $A = C \cup F \cup X \cup P \cup \{ \forall, \exists \} \cup \{ \neg, \land, \lor, \rightarrow, \leftarrow, \longleftrightarrow \}$ con

- $C = \{c_0, c_1\}$ simboli di costante
- $F = \{f, g\}$ simboli di funzione di arietà 2
- $P = \{p\}$ simbolo di predicato di arietà 2

e sia $t_1 = f(c_0, g(c_0, c_1))$ termine. Diamo due interpretazioni:

1.
$$S = \mathbb{Z}, C = \{0, 1\}, \mathcal{F} = \{+, \cdot\}, \mathcal{P} = \{\subset\}$$
. In questa interpretazione t_1 corrisponde a

$$+(0, \cdot (0, 1)) = 0 + (1 \cdot 0) = 0 \in \mathcal{S}$$

2. $S = \mathbb{Z}, C = \{3, 5\}, \mathcal{F} = \{MCD, mcm\}, \mathcal{P} = \{\}$. In questa interpretazione t_1 corrisponde a

$$MCD(3, mcm(5,3)) = 3$$

Osservazione 6. Data un interpretazione di A su Σ ad ogni termine chiuso corrisponde uno e uno solo elemento del supporto S.

Definizione 18 (Assegnazione). Dato alfabeto A = (X, C, F, P) e una struttura adeguata $\Sigma = (S, C, F, P)$ ad A e un interpretazione i di A su Σ . Si dice assegnazione una funzione $a: X \to S$.

Proposizione 3. Ogni assegnazione $a:X\to S$ si estende in modo unico ad una funzione $\overline{a}:\{termini\ su\ A\}\to S.$

Definizione 19 (Valutazione). Data Σ struttura, i interpretazione e a assegnazione. Ad ogni formula atomica $p(t_1, \ldots, t_n)$ è associato un valore di verità

$$v_a(p(t_1,\ldots,t_n)) = \begin{cases} 1 & se\ (\mathcal{F}_1,\ldots,\mathcal{F}_n) \in R \quad (\mathcal{F}_1,\ldots,\mathcal{F}_n) \ soddisfa\ R \\ 0 & se\ (\mathcal{F}_1,\ldots,\mathcal{F}_n) \notin R \end{cases}$$

al simbolo di predicato corrisponde una relazione R in S tramite l'interpretazione i. Si ha

$$v_a: \{formule\ atomiche\ su\ A\} \to \{0,1\}$$

Definizione 20 (Formula). Dato A = (X, C, F, P) alfabeto. sono formule su A le seguenti:

- formule atomiche
- $se \alpha \stackrel{.}{e} una formula allora \neg \alpha \stackrel{.}{e} una formula$
- se α, β formule allora $(\alpha \wedge \beta), (\alpha \vee \beta), (\alpha \rightarrow \beta), (\alpha \longleftrightarrow \beta)$ sono formule
- se α formula e $x \in X$ simbolo di variabile allora $(\forall x\alpha), (\exists x\alpha)$ sono formule

Definizione 21. Sia α formula indico con $var(\alpha) = simboli di variabili in a. Ora, sia <math>x \in var(\alpha)$, x si dice vincolata se ricade nel campo di azione di un quantificatore $\forall \exists$. Altrimenti si dice libera.

Definizione 22 (Enunciato). Formula priva di variabili libere.

Osservazione 7. Date un interpretazione e un assegnazione a ad ogni termine t su alfabeto A è associato un elemento $\overline{t^a} \in S$.

Esempio. Dato t:+(x,c), considero l'interpretazione $\Sigma=(\mathbb{Z},0,+,\emptyset)$, data l'assegnazione $a:x\to 1$, a t corrisponde

$$\overline{t^a}: +(1,0) = 1$$

Quindi ad ogni formula atomica $\alpha = P(t_1, \dots, t_n)$ corrisponde un valore di verità

$$v_a(\alpha) = \begin{cases} 1 \text{ se } \overline{P}(\overline{t_1^a}, \dots, \overline{t_n^a}) \text{ è vera} \\ 0 \text{ altrimenti} \end{cases}$$
 (6)

Esempio. Sia $\alpha: P(x,c)$ con $P \in \mathcal{P}$ e sia interpretazione $\mathcal{S} = \mathbb{Z}, P \to <, c \to 1$ e $a: x \to 0$ allora

$$v_a(\alpha) = <(0,1) = 1 \text{ perch\'e } 0 < 1$$

Definizione 23 (Istanziazione). Data $a: X \to \mathcal{S}$ assegnazione, $x \in X$ e $s \in \mathcal{S}$, definisco una nuova assegnazione $a(x \leftarrow s)$ tale che

$$a(x \leftarrow s)(y) = \begin{cases} a(y) \text{ se } y \neq x \\ a(x) = s \end{cases}$$

 $si\ chiama\ istanziazione.$

6.4.1 Semantica per formule di logica proposizionale

Data α formula su A, Σ struttura adeguata, i interpretazione di A su Σ e $a: X \to S$ assegnazione, definisco $v_a(\alpha) \in \{0,1\}$ nel modo seguente:

1. Se α formula atomica, vedi equazione (6).

2.
$$v_a(\neg \alpha) = \begin{cases} 0 \text{ se } v_a(\alpha) = 1\\ 1 \text{ se } v_a(\alpha) = 0 \end{cases}$$

3.
$$v_a(\alpha_1 \wedge \alpha_2) = \begin{cases} 1 \text{ se } v_a(\alpha_1) = v_a(\alpha_2) = 1 \\ 0 \text{ altrimenti} \end{cases}$$

4.
$$v_a(\alpha_1\vee\alpha_2)=\begin{cases} 0\text{ se }v_a(\alpha_1)=v_a(\alpha_2)=0\\ 1\text{ altrimenti} \end{cases}$$

5.
$$v_a(\alpha_1\to\alpha_2)=\begin{cases} 0\text{ se }v_a(\alpha_1)=1\text{ e }v_a(\alpha_2)=0\\ 1\text{ altrimenti} \end{cases}$$

6.
$$v_a(\alpha_1\longleftrightarrow\alpha_2)=\begin{cases} 1\text{ se }v_a(\alpha_1)=v_a(\alpha_2)\\ 0\text{ altrimenti} \end{cases}$$

7.
$$v_a(\forall\,x\alpha)=\begin{cases} 1\text{ se per ogni }s\in S\text{ vale }v_{a(x\leftarrow s)}(\alpha)=1\\ 0\text{ altrimenti} \end{cases}$$

8.
$$v_a(\exists\ x\alpha) = \begin{cases} 1 \text{ se esiste } s \in S \text{ tale che } v_{a(x \leftarrow s)}(\alpha) = 1 \\ 0 \text{ altrimenti} \end{cases}$$

Se $v_a(\alpha) = 1$ scrivo $\Sigma \models_a \alpha$ e dico che α è vera in Σ sotto l'assegnazione a.

Definizione 24 (Logicamente valida). α formula su A, diciamo che α è logicamente valida se per ogni struttura adeguata Σ e per ogni interpretazione i di A in Σ per ogni assegnazione a vale $\Sigma \models_a \alpha$.

Definizione 25 (Soddisfacibile). α è soddisfacibile se esiste una struttura adeguata Σ , una interpretazione i di A in Σ esiste a assegnazione tale che $\Sigma \models_a \alpha$.

Definizione 26 (Insoddisfacibile). α è insoddisfacibile se per ogni struttura adeguata Σ , per ogni interpretazione i di a in Σ e per ogni assegnazione a, vale $\Sigma \not\models_{\sigma} \alpha$.

Esempio. Sia A simbolo di predicato allora:

- $\forall x(A(x) \land \neg A(x))$ è insoddisfacibile
- $\forall x(A(x) \vee \neg A(x))$ è logicamente valida

• $\exists x(A(x))$ è soddisfacibile ma non logicamente valida.

Definizione 27 (Logicamente equivalente). α, β formule, $\alpha \equiv \beta$, ossia α è logicamente equivalente a β , se per ogni struttura adeguata Σ , per ogni interpretazione i e per ogni assegnamento a, vale $\Sigma \models_a \alpha$ se e solo se $\Sigma \models_a \beta$.

Definizione 28 (Conseguenza logica). α, β formule, $\alpha \models \beta$, ossia β è conseguenza logica di α , se per ogni Σ , i, a vale che se $\Sigma \models_a \alpha$ allora $\Sigma \models_a \beta$

Osservazione 8. $\alpha \equiv \beta$ è vera se e solo se $\alpha \models \beta$ e $\beta \models \alpha$.

6.4.2 Forma normale prenessa

Una formula si dice in forma normale prenessa se essa è composta da una parte sinistra contenente solo quantificatori e variabili e una parte destra non contenente alcun quantificatore. *Esempio*.

- 1. $\forall x \exists y (A(x,y) \land B(x))$ è in FNP
- 2. $\forall x(\exists y A(x,y) \land B(x))$ non è FNP

Teorema 1. Per ogni formula α esiste α_1 formula in forma normale prenessa tale che $\alpha \equiv \alpha_1$.

Valgono le seguenti equivalenze logiche:

- 1. $\neg \forall x\alpha \equiv \exists x \neg \alpha$ $\neg \exists x\alpha \equiv \forall x \neg \alpha$
- 2. $\forall x\alpha \land \forall x\beta \equiv \forall x(\alpha \land \beta)$ $\exists x\alpha \lor \exists x\beta \equiv \exists x(\alpha \lor \beta)$ Attenzione: $\forall x\alpha \lor \forall x\beta \not\equiv \forall x(\alpha \lor \beta)$
- 3. Se $x \notin var(\beta)$, allora:
 - $\forall x \alpha \lor \beta \equiv \forall x (\alpha \lor \beta)$
 - $\exists x\alpha \land \beta \equiv \exists x(\alpha \land \beta)$
 - $\forall x \alpha \land \beta \equiv \forall x (\alpha \land \beta)$
 - $\exists x\alpha \lor \beta \equiv \exists x(\alpha \lor \beta)$
- 4. $\forall x \forall y \alpha \equiv \forall y \forall x \alpha$ $\exists x \exists y \alpha \equiv \exists y \exists x \alpha$

Esempio.

$$\forall x P(x) \to \forall x Q(x) \equiv \neg \forall x P(x) \lor \forall x Q(x) \equiv \exists x \neg P(x) \lor \forall x Q(x) \equiv \exists x \neg P(x) \lor \forall y Q(y) \equiv \forall y \exists x (\neg P(x) \lor Q(y))$$

Esempio.

$$\exists \ x(\exists \ xQ(x,z) \lor \exists \ x(P(x)) \to \neg(\neg \exists \ xP(x) \land \forall \ x\exists \ zQ(z,x)) \equiv \ \text{De Morgan}$$

$$\neg \exists \ z(\exists \ xQ(x,z) \lor \exists \ xP(x)) \lor (\exists \ xP(x) \lor \neg \forall \ x\exists \ zQ(z,x)) \equiv \ 1 + \text{De Morgan}$$

$$\forall \ z(\neg \exists \ xQ(x,z) \land \neg \exists \ xP(x)) \lor (\exists \ xP(x) \lor \exists \ x\forall \ z\neg Q(z,x)) \equiv$$

$$\forall z (\forall x \neg Q(x, z) \land \forall x \neg P(x)) \lor (\exists x P(x) \lor \exists x \forall z \neg Q(z, x)) \equiv$$

$$\forall z \forall x (\neg Q(x, z) \land \neg P(x)) \lor \exists x (P(x) \lor \forall z \neg Q(z, x)) \equiv$$

$$\forall z \forall x (\neg Q(x, z) \land \neg P(x))) \lor \exists \forall z (P(x) \lor \neg Q(z, x)) \equiv$$

Rinomino x con y e z con w:

$$\forall z \forall x (\neg Q(x,z) \land \neg P(x)) \lor \exists y \forall w (P(y) \lor \neg Q(w,y)) \equiv \text{Uso } 3$$

$$\forall z \forall x ((\neg Q(x,z) \land \neg P(x)) \lor \exists y \forall w (P(y) \lor \neg Q(w,y)) \equiv \text{Uso } 3$$

$$\forall z \forall x \exists y \forall w ((\neg Q(x,z) \land \neg P(x)) \lor (P(y) \lor \neg Q(w,y)) \equiv$$

$$\forall z \forall x \exists y \forall w ((\neg Q(x,z) \lor P(y) \lor \neg Q(w,y)) \land (\neg P(x) \lor P(y) \lor \neg Q(w,y))$$
(7)

Infine ottengo una FNPC ossia una FNP congiuntiva.

Definizione 29 (Skolem). La forma di Skolem è una FNP senza quantificatori esistenziali.

Proposizione 4. Ogni formula α è equisoddisfacibile ad una formula α_1 in forma di Skolem. α_1 è una skolemizzazione di α .

Esempio.

- 1. $\alpha = \exists x \forall y (A(x,y) \land Q(x))$ con c simbolo di costante diventa $\alpha_1 = \forall y (A(x,y) \land Q(x))$
- 2. $\alpha = \exists x \forall y \exists z (P(x,y) \to Q(x,z))$ sostituisco x con c costante, z con f(y) con f simbolo di funzione che non compariva già, diventa $\alpha_1 = \forall y (P(c.y) \to Q(x,f(y)))$
- 3. (4) diventa $\forall z \forall x \forall w ((\neg Q(x,z) \lor P(f(z,x)) \lor \neg Q(w,f(z,x)) \land (\neg P(x) \lor P(f(z,x)) \lor \neg Q(w,f(z,x)))$
- 4. $\forall x \exists y \forall z \exists w A(x, y, z, w)$ diventa $\forall x \forall z A(x, f(x), z, g(x, z))$

Definizione 30. Sia α formula, definisco H_{α} = universo di Herbrand di α = {costanti c_i che sono in α e ne aggiungo una se non ce ne sono e tutti i termini ottenibili applicando i simboli di funzione in α a termini di H_{α} }.

Esempio.

1.
$$\alpha = \forall x \exists y A(x,y) \Longrightarrow H_{\alpha} = \{c\}$$

2.
$$\beta = \forall x \exists y A(f(x), y) \Longrightarrow H_{\beta} = \{c, f(c), f(f(c)), \dots\}$$

3.
$$\gamma = \forall x A(f(x,y), c, g(z) \Longrightarrow H_{\gamma} = \{x, f(c,c), g(c), f(f(c,c), g(c)), \dots\}$$

 α formula sull'alfabeto A, definisco struttura di Herbrand

$$\Sigma_H = (H_\alpha, \mathcal{C}, \mathcal{F}, \mathcal{P})$$

Interpretazione di Herbrand. Per f simbolo di funzione in α di arietà n, definisco

$$\overline{f}: \underbrace{H_{\alpha} \times \cdots \times H_{\alpha}}_{\text{n volte}} \to H_{\alpha}$$

tale che $\overline{f}(t_1,\ldots,t_n)=f(t_1,\ldots,t_n)$

Teorema 2. Sia α formula in forma di Skolem. Allora α è soddisfacibile se e solo se è soddisfacibile in una sua interpretazione di Herbrand.

Esempio. Verificare la validità di $\exists x(A(x) \land B(x)) \land \neg(\exists x(c(x) \land A(x)) \models \exists (B(x) \land \neg C(x))$. Valida se e solo se è insoddisfacibile la formula:

$$\exists \ x(A(x) \land B(x)) \land \neg(\exists \ x(C(x) \land A(x)) \models \neg \exists \ x(B(x) \land \neg C(x)) \equiv$$

Skolemizzazione della formula:

$$\exists \ x \forall \ y (A(x) \land B(x) \land (\neg C(y) \lor \neg A(y)) \land (\neg B(y) \lor C(y))) \equiv$$

La metto in FNPC:

$$\forall y (A(c) \land B(c) \land (\neg (C(y) \lor \neg A(y)) \land (\neg B(y) \lor C(y)))$$

In clausole:

$$S = \{\{A(c)\}, \{B(c)\}, \{\neg C(y), \neg A(y)\}, \{\neg B(y), C(y)\}\}$$
$$H_s = \{c\}$$

Sostituisco y con c:

$$\overline{S} = \{ \{A(c)\}, \{B(c)\}, \{\neg C(c), \neg A(c)\}, \{\neg B(c), C(c)\} \}$$

- 1. Pivot A(c): $\overline{S}_1 = \{\{B(c)\}, \{\neg B(c), C(c)\}, \{\neg C(c)\}\}$
- 2. Pivot B(c): $\overline{S}_2 = \{ \{ \neg C(c) \}, \{ C(c) \}$
- 3. Pivot C(c): $\overline{S}_3 = \{\Box\}$ insoddisfacibile.

7 Teoria dei Grafi

Definizione 1 (Grafo). Si definisce grafo G la coppia G=(V,E), dove V è l'insieme dei vertici e $E \subseteq V^{[2]} = \{\{u,v\}|u,v\in V \ con \ u\neq v\}$ insieme degli archi/lati.

Definizione 2 (Grafo semplice). Un grafo senza cappi o archi paralleli.

Definizione 3 (Multigrafo). G=(V,E,f) con $f:E\to V^{[2]}$

Definizione 4 (Cammino). $v_0l_0, v_1l_1, \ldots, v_nl_n$, dove non si ripetono archi ma è accettabile la ripetizione di vertici, tale che $\forall i \ v_i \in V, \ \forall i \ l_i = \{v_{i-1}, v_i\} \in E \ con \ l_i \neq l_j \ con \ i \neq j.$

- Se anche $v_i \neq v_j \ \forall i \neq j \ con \ 1 \leq i, j \leq n-1$, allora si dice cammino semplice.
- Se $v_0 = v_n$ si dice cammino chiuso o circuito.

- La lunghezza di un cammino è il numero di archi da cui è composto.
- Un cammino semplice chiuso di lunghezza maggiore di due si dice ciclo.

Definizione 5 (Grafo connesso). Un grafo G si dice connesso se $\forall u, v \in V$ esiste un cammino da u a v.

Definizione 6 (Sottografo). G'=(V',E') sottografo di G=(V,E) se $V'\subseteq V$ e $E'\subseteq E\cap V^{[2]}$ Esempio.

G' è un sottografo di G.

Definizione 7 (Sottografo indotto). G' è un sottografo indotto da V' se oltre a $V' \subseteq V$ vale anche $E' \subseteq E \cap V^{'[2]}$.

Definizione 8 (Cammino euleriano). Un cammino è euleriano se passa una e una sola volta per ogni arco del grafo.

Definizione 9 (Grafo euleriano). Dato G multigrafo, questo si dice euleriano se ha un circuito euleriano.

Definizione 10 (Grado di un vertice). Sia v vertice del multigrafo G, il grado di v è dato da

 $d_G(v) = numero di archi incidenti su v$

Se $f_G(v) = 0$ allora v si dice isolato.

Lemma 1. In G=(V,E) vale

$$\sum_{v \in V} d_G(v) = 2|E|$$

Corollario 1 (Strette di mano). Ogni grafo non orientato ha un numero pari di vertici con grado dispari.

Teorema 1 (Eulero). Sia G grafo privo di vertici isolati, allora G è euleriano se e solo se è connesso ed ogni vertice ha grafo pari.

Teorema 2. Sia G grafo privo di vertici isolati, allora G ha un cammino non chiuso euleriano se e solo se è connesso ed h esattamente solo due vertici u e v di grado dispari. In questo caso il cammino euleriano inizierà da u e finirà in v.

Definizione 11. Sia G=(V,E) grafo, questo si dice hamiltoniano se ha un ciclo hamiltoniano, ossia un ciclo che passa una e una sola volta per ogni vertice $v \in V$.

Esempio.

Ciclo hamiltoniano in viola

Definizione 12. K_n grafo completo su n vertici $\{v_1, \ldots, v_n\} = V$, $K_n = (V, V^{[2]})$ è hamiltoniano. Un grafo completo è sempre hamiltoniano.

Teorema 3 (Teorema di Ore). Sia G=(V,E) con $|V| \geq 3$. Se per ogni $u,v \in V$ non adiacenti $d_G(u) + d_G(v) \geq |V|$ allora G è hamiltoniano.

Dimostrazione. Si procede per induzione su k =numero di coppie di vertici non adiacenti di G.

- 1. Caso base. Per $k=0\Rightarrow {\bf G}$ è un grafo completo quindi hamiltoniano.
- 2. Passo induttivo. Supponiamo che $k \geq 1$ allora in G esistono $u,v \in V$ non adiacenti. Considero il grafo G' ottenuto da G aggiungendo l'arco e = (u,v). Ora, G' continua a soddisfare le ipotesi del teorema perchè ho lo stesso numero di vertici e un arco in più. Inoltre, G' ha una coppia in meno di vertici adiacenti, quindi per ipotesi induttiva G' è hamiltoniano, ossia esiste un ciclo hamiltoniano C di G'. Quindi:
 - Se $e \notin C$ allora C è un ciclo hamiltoniano anche di G.
 - Se $e \in C$ allora:

Scrivo
$$C - e = \{v = v_1, v_2, \dots, v_m\}$$
 dove $V = \{v_1, \dots, v_n\}$. Definisco

$$W = \{v_i | (v, v_{i+1} \in E) = \{v \ \hat{e} \ adiacente \ a \ v_{i+1} \ in \ G\}$$

Quindi $|U|=d_G(u)$ e $|W|=d_G(v)$. Per ipotesi $|U|+|W|\geq n=|V|$. Ora $u\notin U\cup W$ perchè sennò u,v sarebbero adiacenti, quindi $|U\cup W|\leq n$.

Quindi $U \cap W \neq 0$ perchè $|U \cup W| = |U| + |W| - |U \cap \overline{W}|$. Sia $v_j \in U \cap W$, allora (u, v_j) e (v, v_{j+1}) sono archi di G. Allora parto da v_j seguo il lato (v, v_{j+1}) , percorro il ciclo da v_{j+1} a u, seguo il lato (u, v_j) e infine da v_j a v, ottenendo un ciclo hamiltoniano.

Teorema 4. Sia G=(V,E) e $n=|V|\geq 3$ e $d_G(v)\geq \frac{n}{2} \ \forall \ v\in V\Rightarrow G$ è hamiltoniano.

7.1 Criteri di Hamiltonianità

- Un eventuale ciclo hamiltoniano passa da ogni arco incidente su vertici di grado due.
- Se G è hamiltoniano, allora togliendo $k \ge 1$ vertici da G, insieme a tutti gli archi incidenti su di essi, ottengo al più k componenti connesse.

Definizione 13 (Distanza). Sia G=(V,E) grafo e $u,v \in V$ la distanza d(u,v) è il cammino di lunghezza minima tra u e v. Infinito se non esiste un cammino.

Definizione 14 (Diametro). Il diametro diam(G) è la massima distanza tra vertici $max\{d(u,v)|u,v\in V\}$.

Definizione 15 (Calibro). Il calibro g(G) di un grafo G è definito come la minima lunghezza di un ciclo in G. Infinito se G è aciclico, ossia non ha cicli.

Definizione 16 (Circonferenza). La circonferenza è la massima lunghezza di un ciclo.

Definizione 17 (Colorazione). Una funzione $c:V\to C$, dove C è l'insieme dei colori, è una colorazione di G se vale $\forall\,(u,v)\in E$ $c(u)\neq c(v)$. Se -C-=k allora G è k-colorabile. Il numero cromatico di G è definito come

$$\mathcal{X}(G) = min\{k|G|k - colorabile\}$$

Definizione 18 (Grafo bipartito). Sia G=(V,E) si dice bipartito se esiste una partizione di $V=(X,\overline{X})$ tale che $X\cap \overline{X}=V$ e $X\cap \overline{X}=\emptyset$ e per ogni $(u,v)\in E$ vale $u\in X,v\in \overline{X}$ oppure $u\in \overline{X},v\in X$. Ovvero se l'insieme dei suoi vertici può essere partizionato in due sottoinsieme e ogni vertice di una di queste parti è collegato solo a vertici dell'altra parte.

$$\mathcal{X}(G_{bipartito}) = 2$$

Osservazione 1. Un grafo G è bipartito con $|V| \ge 2$ è bipartito se e solo se non contiene cicli dispari, ossia un ciclo con un numero dispari di vertici.

Definizione 19 (Isomorfismo). G=(V,E) e G'=(V',E') sono grafi isomorfi se esiste un isomorfismo, ossia una funzione $f:V\to V'$ biettiva tale che $\forall u,v\in V$ vale che $(u,v)\in E$ se e solo se $(f(u),f(v))\in E'$. In pratica una funzione che mantiene l'adiacenza tra i vertici.

Definizione 20 (Grafo piano). G=(V,E) si dice grafo piano se $V\subseteq \mathbb{R}^2$ e i lati sono curve semplici che si intersecano solo nei vertici.

Definizione 21. Una curva semplice è una funzione $\gamma:[0,1]\to\mathbb{R}^2$.

Definizione 22. G=(V,E) si dice planare se è isomorfo a un grafo piano.

Esempio.

Non è piano ma è planare, infatti è isomorfo a:

Definizione 23. Sia G=(V,E), definisco le facce di G:

 $con f_3$ la faccia infinita, ossia tutto il resto del piano.

Teorema 5 (Formula di Eulero). $Sia\ G\ un\ grafo\ piano\ e\ connesso\ con\ n\ vertici,\ m\ archi\ e\ f\ facce,\ allora$

$$n - m + f = 2$$

Dimostrazione. Per induzione sul numero di archi m.

- 1. Caso base. Se m=0 allora G è costituito da un unico vertice, quindi f=1 e 1+1-0=2 ossia la formula vale.
- 2. Passo induttivo. Studiamo due casi:
 - (a) Supponiamo che esista $v \in V$ tale che $d_G(v) = 1$. Sia G' il grafo ottenuto togliendo v più l'arco su di esso incidente. G' è un grafo piano e connesso quindi le ipotesi continuano a valere. G' ha m-1 lati quindi posso usare l'ipotesi induttiva $(n-1)-(m-1)+f=2 \Rightarrow n-m+f=2$.

(b) Ogni vertice ha grado maggiore o uguale a due. Quindi esiste C ciclo in G, per $e \in C$ arco del ciclo che separa due facce di G. Considero G_0 il grafo ottenuto togliendo l'arco e. Quindi G_0 ha n vertici, m-1 lati e f-1 facce. Allora per ipotesi induttiva n-(m-1)+(f-1)=2 e quindi n-m+f=2.

Proposizione 1. Sia G=(V,E) grafo planare, scrivo n=|V| e m=|E|, se $n \ge e$ allora:

- $m \ge 3(n-2)$
- Se G non è un albero, pongo g=g(G) calibro. Allora $m \leq \frac{g(n-2)}{g-2}$ con $g \geq 3$

Dimostrazione. A meno di isomorfismo, suppongo G piano. Eventualmente aggiungendo dei lati, posso supporre G connesso.

- Se G è aciclico allora G è un albero, quindi m=n-1 e $n-1\leq 3(n-2\ \forall\,n\geq 3.$
- Se G non è un albero e $g = g(G) \ge 3$. Per α faccia di G indico $p(\alpha)$ il numero di archi del bordo di α ossia il perimetro. Osservo che ogni arco è al massimo nel bordo di due facce. Ora, sia F l'insieme delle facce di G, |F| =numero di facce di G. Quindi

$$\sum_{\alpha \in F} p(\alpha) \le 2m$$

Inoltre osservo che $p(\alpha) \geq g \ \forall \alpha \in F$. Quindi

$$2m \geq \sum_{\alpha \in F} p(\alpha) \geq |F|g = fg$$

ma per Formula di Eulero f=m-n+2 quindi

$$2m \ge (m - n + 2)g$$

Quindi $gn-2g \geq gm-2m$ e allora

$$m \ge \frac{g(n-2)}{g-2}$$

Osservazione 2. $A \to B$ equivale $a \neg B \to \neg A$, quindi se un grafo non rispetta $m \le \frac{g(n-2)}{g-2}$ non è planare.

Corollario 2. $K_{3,3}$ non è planare.

Infatti

Segue che n=6, m=9, g=4 e quindi

$$9 = m \nleq \frac{g(n-2)}{g-2} = 8$$

Osservazione 3. $K_{3,3}$ è un grafo bipartito.

Corollario 3. K_5 non è planare.

Infatti

Segue che n=5, m=10, g=3 e quindi

$$10 = m \nleq 3(n-2) = 9$$

Osservazione 4. Tutti i sottografi di un grafo planare sono planari.

Corollario 4. Se G=(V,E) planare allora esiste $v \in V$ tale che $d_G(v) \leq 5$.

Dimostrazione. Se fosse $d_G(v) \geq 6$, $\forall v \in V$, $6n \leq \sum_{v \in V} d_G(v) = 2n$ quindi $n \geq 3n$ e questo è assurdo.

Definizione 24 (Suddivisione elementare). Sia G=(V,E). Per suddivisione elementare di archi di un grafo si intende un'operazione che modifica un suo arco (u,v) in due spigoli (u,w) e (w,v) incidenti in un nuovo vertice w.

Un grafo G'=(V',E') ottenuto da G con un numero finito di suddivisioni elementari è una suddivisione di G.

Teorema 6 (Teorema di Kuratowski). Un grafo G è planare se e solo se non ha sottografi isomorfi a suddivisioni di $k_{3,3}$ o k_5 .

Teorema 7 (Teorema dei quattro colori). Ogni grafo planare è 4-colorabile.