Laboratory work 1

1

employee (person_name, street, city)
works (person_name, company_name, salary)
company (company_name, city)

• Find the ID and name of each employee who works for "BigBank".

 \prod ID, person_name(σ company_name = "BigBank"(works))

• Find the ID, name, and city of residence of each employee who works for "BigBank".

 \prod ID, person_name, city (σ company_name = "BigBank"(employee × works))

• Find the ID, name, street address, and city of residence of each employee who works for "BigBank" and earns more than \$10000. •

∏ID, person_name, street, city (**o**company_name = "BigBank"∧salary > 10000(employee × works))

• Find the ID and name of each employee in this database who lives in the same city as the company for which she or he works.

 \prod ID, person_name (σ company.city = employee.city (employee \times company \times works))

- **2.** Consider the employee database of figure above. Give an expression in the relational algebra to express each of the following queries:
- Find the ID and name of each employee who does not work for "BigBank".

 \prod ID, person_name(σ company_name \neq "BigBank"(works))

• Find the ID and name of each employee who earns at least as much asevery employee in the database

 \prod ID, person_name(σ salary = max(salary) (works))

3. Consider the foreign-key constraint from the *dept_name* attribute of instructor to the *department* relation. Give examples of inserts and deletes to these relations that can cause a violation of the foreign-key constraint.

Insert into department values

Delete from instructor relation where department name

4. Consider the employee database of figure above. What are the appropriate primary keys? The primary key is ID