



# Stream-51: Streaming Classification & Novelty Detection From Videos

Ryne Roady\*, **Tyler L. Hayes**\*, Hitesh Vaidya, & Christopher Kanan

Rochester Institute of Technology

Email: tlh6792@rit.edu

Project Web: <a href="https://tyler-hayes.github.io/stream51">https://tyler-hayes.github.io/stream51</a>

Personal Web: <a href="https://tyler-hayes.github.io">https://tyler-hayes.github.io</a>

\* denotes equal contribution

Continual Al Talk: November 27, 2020

### Offline Training Does Not Suffice

Conventional offline training approaches have demonstrated weaknesses in "real-world learning."

#### Inflexible

- Real-world data comes from dynamic data distributions
- Must be able to robustly handle shifts in data and novel inputs

#### Inefficient

- Impossible to collect data for all potential scenarios
- Large amounts of supervised data may not be available for all domains

Intelligent agents should have the ability to dynamically adapt to their environment in real-time.

### Real-World Learning Scenarios

Find all cars, white lines, traffic signs, and pedestrians...



While ignoring trees, billboards, telephone polls, the sky...<sup>1</sup>

Find all cancerous cells...



While ignoring all other tissue and slide contaminates...<sup>2</sup>

- 1. Milford, Michael, et al. "Condition-invariant, top-down visual place recognition." ICRA-2014.
- 2. Hollon, Todd C., et al. "Near real-time intraoperative brain tumor diagnosis using stimulated Raman histology and deep neural networks." Nature Medicine 2020.

### Closed-World Is Dangerous and Unrealistic

Real-world consequences for misclassification





## Who's Liable? The AV or the human driver?

Columbia researchers use game theory to help policy makers create liability rules for accidents involving self-driving cars and those driven by people

JAN 14 2020 | BY HOLLY EVARTS | IMAGES CREDIT: SHARON DI AND XU CHEN/COLUMBIA ENGINEERING



Mew York Times

#### Warnings of a Dark Side to A.I. in Health Care

Last year, the Food and Drug Administration approved a device that can capture an image of your retina and automatically detect signs of ...

Mar 21, 2019



# AI and Healthcare: The Battle Against Misdiagnosis

The Verge

#### Why cancer-spotting AI needs to be handled with care

And in some areas where tech companies are pushing medical AI, this  $\dots$  But as there's no gold standard for cancer diagnosis, particularly early  $\dots$ 



### Lifelong Machine Learning Capabilities

#### Open Set Learning:

Determine if inputs are novel as the system learns

#### Online Streaming Learning:

- Retain knowledge from previous experiences
- Learn from large evolving data streams one sample at a time
- Closely related to transfer learning and domain adaptation
- Learning capabilities should be closer to humans



### **Open Set Learning**

Train a model to say "I don't know" for objects that it has not learned





Image: https://www.wjscheirer.com/projects/openset-recognition/

### Online Streaming Learning

- Learn from large evolving data streams one sample at a time
  - Non-stationary data streams cause catastrophic forgetting in conventional networks
- Retain knowledge from previous experiences
- Learner is on memory and compute budgets and can't store all previous training data



### Popular Continual Learning Datasets

 Several of the most popular training paradigms involve learning from static image datasets like MNIST, CIFAR, or ImageNet

#### Problems:

- No temporal dependence between frames, which is more realistic
- Classes are never revisited once they are learned
- Agents are provided large batches of i.i.d. data for each task



### Online Streaming Datasets

 More realistic training paradigms involve learning from temporally correlated video datasets like iCub, CORe50, and ToyBox

#### Problems:

- Each dataset is small scale with only 10-20 classes
- Videos collected in non-natural environments (i.e., first person, hand-held objects)
- No open set baselines





### Stream-51 Dataset

- We present the Stream-51 dataset, consisting of 51 training classes from diverse backgrounds and environments
- We establish protocols for streaming open set classification
  - 5,100 total static test images (50 samples per training class and 2,550 novel samples)

| DATASET     | CLASSES | IMAGES    | VIDEOS | VIDEOS/<br>CLASS | AVG FRAMES/<br>VIDEO | Acq          |
|-------------|---------|-----------|--------|------------------|----------------------|--------------|
| iCub-1 [12] | 10      | 8,000     | 40     | 4                | 200                  | hand held    |
| iCub-T [33] | 20      | 400,000   | 2,000  | 100              | 200                  | hand held    |
| CORe50 [28] | 10      | 165,000   | 550    | 55               | 300                  | hand held    |
| ToyBox [40] | 12      | 2,300,000 | 540    | 45               | 4,200                | hand held    |
| Stream-51   | 51      | 150,736   | 1,136  | 11-37            | 132.69               | natural/wild |

### Protocol for Streaming Open Set Classification



### **Open Set Classification Metrics**

- The streaming agent must learn a classifier H(X)=F(G(X)) to distinguish learned inputs from novel inputs
  - $\circ$  S(.) is an **acceptance score function** that uses a threshold  $\delta$  to determine if inputs are novel
  - We use a baseline softmax thresholding algorithm for open set classification
- We extend the area under the open set classification curve (OSC) metric (Dhamija et al., NeurIPS-2018) to the streaming setting by normalizing performance to an offline baseline

$$\hat{y}_{t,\text{novel}} = \begin{cases} 1 & \text{if } S(H(\mathbf{X}_t)) \ge \delta \\ 0 & \text{if } S(H(\mathbf{X}_t)) < \delta \end{cases}$$

$$\Omega_{\text{AUOSC}} = \min\left(1, \frac{1}{T} \sum_{t=1}^{T} \frac{\gamma_t}{\gamma_{\text{offline,t}}}\right)$$

### Experimental Results on Stream-51

- Overall accuracy on the dataset is 76.9% and overall AUOSC is 0.710
  - o ResNet-18 initialized from Places-365
- Full rehearsal models perform well, but are computationally expensive
- Fine-tune models perform poorly, but are cheap in compute
- ExStream and SLDA are the top performing streaming models and balance performance with compute





### Conclusions

- We introduced the Stream-51 dataset for learning from temporally correlated videos from natural environments
- We introduced protocols for streaming open set classification
- Future Work:
  - Evaluate more streaming models on Stream-51
  - Evaluate more open set classification methods
    - Examples: ODIN, DOC, Mahalanobis, etc.



### **Current Field Limitations**



#### Dataset limitations:

- Not enough large-scale streaming datasets
- CORe50 is one of the largest and most popular streaming datasets, but it only contains 10 object categories
- Stream-51 is larger, but still limited to only 51 classes

#### Task limitations:

- Almost everyone is still training in the incremental batch learning paradigm instead of the streaming paradigm
- Lots of groups are still evaluating on only permuted and incremental MNIST
  - These experiments usually do not scale up to larger, natural images
- Lots of groups still using task labels at test time

### **Current Field Limitations**

- No standardized evaluation procedure:
  - Everyone uses different datasets
  - Some researchers train in batches of multiple classes, while others train class by class
- No standardized evaluation metrics:
  - Most researchers agree on need for forward and backward transfer metrics, but everyone uses their own
  - A lot of researchers do not factor memory budgets and computational time into metrics, which is important for deployed agents
- Most researchers are focused on catastrophic forgetting and classification:
  - There is more to lifelong learning including: open-world learning, curriculum learning, etc.
  - Other problems should be studied including: regression, object detection, etc.



### Streaming Learning for Additional Problems

- Our lab has developed streaming models and protocols for several tasks
- Image Classification:
  - o REMIND (ECCV-2020)
  - Deep SLDA (CVPRW-2020)
  - ExStream (ICRA-2019)
  - FearNet (ICLR-2018)
- Visual Question Answering:
  - o REMIND (ECCV-2020)
- Object Detection:
  - o RODEO (BMVC-2020)

#### **Visual Question Answering**



#### **Object Detection**



### Acknowledgements: Co-Authors and Sponsors



Ryne Roady



Hitesh Vaidya



Chris Kanan







### Thank You!

Questions?

Tyler Hayes
<u>tlh6792@rit.edu</u>
<u>https://tyler-hayes.github.io</u>

- We introduced the Stream-51
   dataset for learning from temporally
   correlated videos and established
   baselines and metrics for streaming
   open set classification
- The dataset and code are publicly available:
  - https://tyler-hayes.github.io/str eam51
  - https://github.com/tyler-hayes/Stream-51