1

Control Systems

G V V Sharma*

	Contents		11	Root Locus	3
1	Signal Flow Graph 1.1 Mason's Gain Formula 1.2 Matrix Formula				
2	Bode Plot 2.1 Introduction				
3	Second order System 3.1 Damping	. 2			
4	Routh Hurwitz Criterion4.1Routh Array4.2Marginal Stability4.3Stability	. 2			
5	State-Space Model 5.1 Controllability and Observability	. 2	syster	stract—This manual is an inns based on GATE problems.I are available in the text.	
6	5.2 Second Order SystemNyquist Plot6.1 Introduction	2	Do	ownload python codes usin	g
7	Compensators 7.1 Phase Lead				
8	Gain Margin 8.1 Introduction	. 2 . 2 . 2	ave a	oo bitma.//aithab aam/aadam	oll/sobool/tmynls/
9	Phase Margin 9.1 Intoduction	. 3	1	co https://github.com/gadep control/codes	ani/school/trunk/
10	Oscillator 10.1 Introduction	. 3			
*The	e author is with the Department of Electrical Eng	ineering,			

*The author is with the Department of Electrical Engineering, Indian Institute of Technology, Hyderabad 502285 India e-mail: gadepall@iith.ac.in. All content in this manual is released under GNU GPL. Free and open source.

1 Signal Flow Graph

- 1.1 Mason's Gain Formula
- 1.2 Matrix Formula

2 Bode Plot

- 2.1 Introduction
- 2.2 Phase
- 3 SECOND ORDER SYSTEM
- 3.1 Damping
- 3.2 Peak Overshoot
- 3.3 Settling Time
 - 4 Routh Hurwitz Criterion
- 4.1 Routh Array
- 4.2 Marginal Stability
- 4.3 Stability
- 5 STATE-SPACE MODEL
- 5.1 Controllability and Observability
- 5.2 Second Order System
 - **6** Nyquist Plot
- 6.1 Introduction
- 7 Compensators
- 7.1 Phase Lead
- 7.2 Lag Lead
- 8 Gain Margin
- 8.1 Introduction
- 8.2 Example
- 8.1. Plot the Bode magnitude and phase plots for the following system

$$G(s) = \frac{75(1+0.2s)}{s(s^2+16s+100)}$$
(8.1.1)

Also compute gain margin and phase margin . **Solution:** From (8.1.1), we have

$$G(j\omega) = \frac{75(1 + 0.2j\omega)}{j\omega((j\omega)^2 + 16j\omega + 100)}$$
(8.1.2)

poles =
$$0$$
, $-8-6j$, $-8+6j$

zeros = -5

Gain and phase plots are shown in 8.1:a and 8.1:b The following code plots Fig 8.1:a and 8.1:b

Fig. 8.1: a

Fig. 8.1: b

8.2. Find $\angle G(j\omega) + 180^{\circ}$, where ω is frequency when gain = 1. This is known as *phase margin* (PM)

Solution:

$$\frac{75\sqrt{\omega^2 + 25}}{\omega\sqrt{(\omega + 6)^2 + 64}\sqrt{(\omega - 6)^2 + 64}} = 1 \quad (8.2.1)$$

Solving (8.2.1) (*or*)

from Fig 8.1:a frequency at which gain = 1 ,is gain crossover frequency ω_{gc} .

$$\implies \omega_{gc} = 0.757$$
 (8.2.2)

$$\angle G\left(\jmath\omega_{gc}\right) = -88.3\tag{8.2.3}$$

$$\implies PM = 91.7 \tag{8.2.4}$$

8.3. Find $-G(j\omega)$ db , where ω is frequency when phase = -180° . This is known as gain margin (GM)

Solution: From Fig 8.1:b ,we can say that phase never crosses -180° . So , the gain margin is *infinite*. Which means we can add any gain , and the equivalent closed loop system never goes unstable.

9 Phase Margin

9.1 Intoduction

10 OSCILLATOR

10.1 Introduction

11 Root Locus