WHERE_ROBOT

Table of Contents

Calling Syntax]
I/O Variables	1
Hypothesis	
Version Control	1
Function	1
Validity	1
Main Calculations	
Output Data	2

Calcula a posição da ferramenta em relação ao sistema da estação a partir dos ângulos de junta, comprimentos de ligamento e das descrições do sistema da ferramenta (trelw) e do sistema da base do robô (srelb).

Calling Syntax

trels = where_robot(theta, trelw, srelb, L)

I/O Variables

```
IN Double Array theta: [theta1 theta2 theta3] [degrees degrees]
IN Double Matrix trelw: Homogeneous Transformation Matrix 4x4
IN Double Matrix srelb: Homogeneous Transformation Matrix 4x4
IN Double Array L: [11 12] [meters meters]
OU Double Matrix trels: Homogeneous Transformation Matrix 4x4
```

Hypothesis

RRR planar robot.

Version Control

1.0; Leonardo da Cunha Menegon, Michel Kagan, Vinícius Nardelli; 01/05/2023; First issue.

Function

```
function [trels] = where_robot(theta,trelw,srelb,L)
```

Validity

arguments

```
theta (1,3) {mustBeNumeric, mustBeReal, mustBeFinite}
trelw {functions.mustBeHomTransfR}
srelb {functions.mustBeHomTransfR}
L (1,2) {mustBeNumeric, mustBeReal, mustBeFinite} = [0.5, 0.3]
end
```

Main Calculations

```
wrelb = functions.kin(theta, L);
brels = functions.tinvert(srelb);
wrels = functions.tmult(brels, wrelb);
```

Output Data

end

```
trels = functions.tmult(wrels, trelw);
```

Published with MATLAB® R2020a