Differentially Private Federated Learning in Medical Context: Phenomenal Classification of Diabetic Retinopathy

Saiprasanna Cheedepudi Ismail Hossain

Introduction

- Diabetic retinopathy (DR) is a complication of diabetes mellitus, the most common cause of vision loss among people with diabetic
- Federated learning is a response to the question: can a model be trained without the need to move and store the training data to a central location?
- Differential privacy (DP) is a strong, mathematical definition of privacy in the context of statistical and machine learning analysis.
- The effective outcome is to predict the test image that can be classified into class of diabetic retinopathy problem.

Data set

- It is image dataset and is classified into 5 classes as No Diabetic Retinopathy, Mild, Moderate, Severe, and Proliferative Diabetic Retinopathy (PDR).
- The data set consists of 35120 and 5590 retina images collected from the two different datasets respectively, links of Kaggle repository are given below:

Dataset-1: https://www.kaggle.com/datasets/tanlikesmath/diabetic-retinopathy-resized

Dataset-2: https://www.kaggle.com/competitions/aptos2019-blindness-detection/data

Data preparation

Dataset-2 (5590 images)Heterogeneous: K = 5

Homogeneous: K = 5

Client	Number of Images	Category
1	1805	No DR
2	370	Mild
3	999	Moderate
4	193	Severe
5	295	Proliferative DR

Client	Number of Images
1	1118
2	1118
3	1118
4	1118
5	1118

Dataset-1 (35120 images of 17560 persons)

Homogeneous: K = 5 Heterogeneous: K = 5

Client	Number of Images	Category
1	25810	No DR
2	2440	Mild
3	5292	Moderate
4	870	Severe
5	708	Proliferative DR

Client	Number of Images
1	3512
2	3512
3	3512
4	3512
5	3512

Process

 Solution for how Heterogeneous and Malicious Data can be handled:

Federated Learning with Self-Regulating Clients (FedSRC) [1]

Checkpoint-1: the client determines whether to proceed with local training or remove itself from the model update of the current round.

Checkpoint-2: the client determines if the model update should be sent to the central server or not

Solution how Data Privacy can be Preserved:

DPSDG – Differentially Private Stochastic gradient decent [2]

Added Gaussian Noise with aggregated gradient [2]

Laplace Noise can be added as it's better for getting good accuracy than Gaussian Noise

Process

Progress

1. Models selection

• SqueezeNet1.1, VGG-16, & ResNet50

2. Dataset

Two labeled datasets collected from Kaggle

3. Architecture

Initial architecture is drawn might be modified later.

4. Implementation

- SqueezeNet1.1 are experimented at google colab
- Will try to train other two models

5. Paper writing

- Created project at overleaf
- Following IEEE paper format
- Abstract part is added

Required Tools and Timeline

Software & Libraries:

Jupyter notebook, pytorch, tensorflow

Hardware:

GPU

Implementation and paper writing completion tentative time: 20-Nov-2022

Reference

- [1] https://www.researchgate.net/publication/361939981
- [2] https://arxiv.org/abs/2101.11693
- [3] https://github.com/ipc-lab/private-ml-for-health