Zaawansowane Metody Inteligencji Obliczeniowej Wykład 1: Agent i środowisko

Michał Kempka

Marek Wydmuch

Bartosz Wieloch

27 lutego 2023

Plan wykładu

- Ankieta
- 2 Informacje Organizacyjne
- 3 Agent i środowisko
- 4 Racjonalność i uczenie ze wzmocnieniem
- 5 Typy środowisk
- 6 Typy agentów
- Świat odkurzacza (przykład i zadania)

Ankieta "demograficzna"

https://tinyurl.com/zmio2023start

Plan wykładu

- Ankieta
- 2 Informacje Organizacyjne
- 3 Agent i środowisko
- 4 Racjonalność i uczenie ze wzmocnieniem
- 5 Typy środowisk
- 6 Typy agentów
- Świat odkurzacza (przykład i zadania)

Prowadzący

mgr inż. Michał Kempka mkempka@cs.put.poznan.pl

mgr inż. Marek Wydmuch kmwydmuch@cs.put.poznan.pl

O czym jest ten przedmiot?

Ogólnie, jednym zdaniem:

O tym jak podejmować dobre sekwencje decyzji.

O czym jest ten przedmiot?

A przez większość czasu:

Jak uczyć się podejmować dobre sekwencje decyzji, gdy nie wiemy jak działa świat.

O czym jest ten przedmiot?

Fundamentalny problem dla sztucznej inteligencji:

Jak uczyć się podejmować dobre sekwencję decyzji **w obliczu niepewności**.

Literatura

"Reinforcement Learning: An Introduction"
Richard S. Sutton and Andrew G. Barto, 2018
(http://incompleteideas.net/book/the-book.html)

"Artificial Intelligence: A Modern Approach"
Stuart J. Russell and Peter Norvig, 2010
(http://aima.cs.berkeley.edu/)

+ wybrane publikacje do ostatnich wykładów.

Przybliżony plan tematów

- Agent i środowisko
- 2 Wprowadzenie do uczenie ze wzmocnieniem i wieloręki bandyta
- 3 Proces Decyzyjny Markowa (MDP) i Programowanie Dynamiczne (DP)
- 4 Metoda Monte Carlo (MC) i Temporal-Difference Learning (TDL)
- 5 Optymalizacja metodą spadku wzdłuż gradientu (przypomnienie) i metody aproksymacyjne (przypomnienie?)
- 6 Ciągła przestrzeń stanów, (Deep) Q-Learning (DQN) i rozszerzenia
- 7 Problemy z ciągła przestrzenią akcji, Policy Gradient
- 8 Actor Critic (AC) i Deep Deterministic Policy Gradient (DDPG)
- 9 Planowanie i Monte Carlo Tree-Search (MCTS)
- 10 TD-Gammon, Deep Blue, AlphaGo, AlphaZero
- 11 Wnioskowanie probabilistyczne i sieci Baysowskie
- 12 State of the art: Proximal Policy Optimization (PPO), World Models i Dreamer oraz Reinforcement Learning from Human Feedback (RLHF) i ChatGPT

Wymagania

- Znajomość języka programowania Python, umiejętność obsługi Jupyter Notebooków/JupyterLab oraz znajomość biblioteki PyTorch będzie pomocna.
- Podstawy z rachunku prawdopodobieństwa, statystyki, rachunku różniczkowego.
- Znajomość optymalizacji metodą spadku wzdłuż gradientu będzie pomocna.
- Wstępna wiedza o uczeniu maszynowym i technikach przeszukiwania będzie pomocna.

Zajęcia i zasady zaliczenia

- Wykłady z elementami interaktywnymi. Ocena końcowa: z kolokwium + bonusy za aktywność.
- Laboratoria: ćwiczenia i zadania programistyczne zakładające znajomość wykładu.
 Ocena końcowa: mini-projekty od 3 do 5, różna punktacja + bonusy za aktywność, standardowe przedziały procentowe dla ocen (szczegóły na zajęciach laboratoryjnych).
- Jakiekolwiek wykryte próby oszustwa skutkują niepoprawialną 2. dla wszystkich zamieszanych osób.

Plan wykładu

- 1 Ankieta
- 2 Informacje Organizacyjne
- 3 Agent i środowisko
- 4 Racjonalność i uczenie ze wzmocnieniem
- 5 Typy środowisk
- 6 Typy agentów
- Świat odkurzacza (przykład i zadania)

Agent i środowisko

W ogólnym schemacie zadań które będziemy chcieli rozwiązywać możemy wydzielić dwa główne elementy:

- Środowisko definiuje problem który rozwiązujemy (na zasady jego działania nie mamy wpływu). Przykłady:
 - ► fizyczne, np. hala produkcyjna czy powierzchnia Marsa po której przemieszcza się robot (działa zgodnie z mechaniką świata)
 - ▶ plansza do gry wraz z zasadami gry lub gra komputerowa.
- Agent (od łac. agere, działać/czynić) ktoś lub coś co działa wykonuje akcje.
 Przede wszystkim mamy tutaj na myśli działanie autonomiczne w celu realizowania jakiegoś celu. Przykłady:
 - ► robot który fizycznie przemieszcza się na hali i przewozi paczki,
 - program grający w szachy.

Agent i środowisko

Schemat działania:

- Środowisko jest aktualnie w jakimś stanie (stan środowiska)
- Agent pomocą dostępnych sensorów postrzega ten stan (obserwacja)
- Agent na podstawie obserwacji, swojej wiedzy, sposobu wnioskowania itd. podejmuje działanie (akcję)
- Środowisko potencjalnie zmienia swój stan. Akcja podjęta przez agenta może (ale nie musi) wpłynąć na zmianę stanu środowiska.

Kroki powtarzane się aż do spełnienia warunku stopu (np. śmierci agenta).

Agent i środowisko

Rysunek: Schemat modelu agenta działającego w środowisku.

Przykłady

Robot rozwożący paczki w magazynie

- środowisko: magazyn
 - ► ściany, regały, alejki, ...
 - paczki do przewiezienia
 - reguły mówiące co jak się zachowuje (prawa fizyki, jak zaprogramowane są maszyny itd.)
- Agent: robot
 - sensory: kamery, lidary, czujniki dotyku, waga, itd.
 - efektory: kółka, chwytak, itd.

Przykłady

Program grający w szachy

- środowisko: gra
 - ► wirtualna plansza, pionki/figury
 - ► reguły gry w szachy
- Agent: program komputerowy
 - ► sensory: zna bezpośrednio cały stan planszy (lub obraz itp.)
 - ▶ akcje: wykonuje ruch figurą

Przykłady

Program inwestujący na giełdzie

- środowisko: giełda
 - ► reguły rynku, sprzedaży i kupna akcji
- Agent: program komputerowy
 - ► sensory: aktualne ceny kupna i sprzedaży, informacje
 - ▶ akcje: decyzje o zakupie lub sprzedaży konkretnej ilości wybranych akcji

Funkcja agenta

- Agent w trakcie swojego życia (całego czasu działania) widzi kolejne stany środowiska przez pryzmat swoich sensor (czyli obserwacje), pojedynczy **zaobserwowany** stan będziemy oznaczać jako S.
- Jego działanie (podejmowane akcje) opisuje **funkcja agenta**:

$$f:\mathcal{H}^* \to \mathcal{A}$$
,

gdzie \mathcal{H}^* to przestrzeń historii obserwacji, a \mathcal{A} to przestrzeń akcji.

- Funkcja agenta to abstrakcyjny matematyczny opis agenta
- Funkcja agenta musi być technicznie zaimplementowana (program agenta), np.:
 - lacktriangle poprzez stabularyzowana wersja funkcji agenta (na zasadzie zdefiniowania zasady "jeśli jakieś $\{S_1,S_2\dots S_t\}=h$ to wykonaj akcję a" dla wszystkich $h\in\mathcal{H}$)
 - zbiór reguł, itp.

Plan wykładu

- Ankieta
- 2 Informacje Organizacyjne
- 3 Agent i środowisko
- 4 Racjonalność i uczenie ze wzmocnieniem
- 5 Typy środowisk
- 6 Typy agentów
- Świat odkurzacza (przykład i zadania)

Racjonalność

- Nasz cel: budowanie "inteligentnych agentów".
- Przyjmujemy pogląd, że inteligencja jest równoznaczna z racjonalnością/racjonalnym działaniem.
- Racjonalność działanie w celu osiągnięcie jak najlepszego rezultatu lub w wypadku niepewności najlepszego oczekiwanego rezultatu.

Racjonalność

Agent racjonalny to NIE to samo co agent perfekcyjny:

- perfekcja wymaga wiedzy co się stanie **po** wykonaniu akcji
- agent racjonalny nie musi być wszechwiedzący
- racjonalność często wymaga od agenta aktywnego zdobywania informacji o środowisku i uczenia się

Przykład: chodzenie – czy warto:

- patrzeć pod nogi?
- patrzeć w górę?

Uczenie ze wzmocnieniem

 Uczenia ze wzmocnieniem (ang. reinforcement learning (RL)) – agent wykonuje akcję (ang. action), obserwuje nowy stan (ang. state) środowiska i otrzymuje nagrodę (ang. reward), która formalizuje cel agenta.

Rysunek: Schemat modelu uczenia ze wzmocnieniem.

Uczenie ze wzmocnieniem

- W kontekście uczenia ze wzmocnieniem racjonalny agent zawsze wybiera akcję, która maksymalizuje oczekiwaną wartość sumy wszystkich otrzymanych nagród, biorąc pod uwagę aktualną wiedzę agenta.
 - ► Zawsze dla każdej możliwej historii obserwacji.
 - ► Wiedza a priori (np. model środowiska) + historia wszystkich dotychczas zaobserwowanych stanów.
- Suma wszystkich otrzymanych nagród jest nazywana całkowitą nagrodą (ang. total reward) lub w bardziej ogólnie ujęciu miarą jakości.

Racjonalność w uczenie ze wzmocnieniem

Podsumowując racjonalność w uczeniu ze wzmocnieniem zależy od:

- miary jakości, która definiuje kryterium sukcesu,
- wiedzy a priori agenta o środowisku
- akcji które agent wykonuje,
- historii obserwacji agenta (zdobytego doświadczenia).

Racjonalność – przykłady

Pytanie

Czy cotygodniowe kupowanie losów Lotto jest racjonalne?

Pytanie

Czy ubezpieczanie samochodu od kradzieży jest racjonalne?

Plan wykładu

- 1 Ankieta
- 2 Informacje Organizacyjne
- 3 Agent i środowisko
- 4 Racjonalność i uczenie ze wzmocnieniem
- 5 Typy środowisk
- 6 Typy agentów
- Świat odkurzacza (przykład i zadania)

Obserwowalność środowiska

- Całkowicie obserwowalne stan całego środowiska znany w każdym momencie (np. szachy), w konsekwencji agent nie musi pamiętać poprzednio zaobserwowanych stanów
- Częściowo obserwowalne stan zawierający tylko część informacji lub zaszumione/niedokładne informacje (np. poker).
- **Nieobserwowalne** całkowity brak informacji, agent otrzymuje wyłącznie nagrodę (np. jednoręcy bandyci).

Przykłady – obserwowalność

Pytanie

Pasjans – obserwowalne?

Pytanie

Chińczyk (gra planszowa) – obserwowalne?

Liczność agentów w środowisku

- **Jednoagentowe** np. gra w *Breakout*.
- Wieloagentowe mogą być:
 - ▶ kompetytywne (racjonalność może wymagać losowości, np. poker)
 - ► kooperacyjne lub mieszane (racjonalność może wymagać komunikacji, np. ruch drogowy)

Przykłady – wieloagentowe?

Pytanie

Pasjans - wieloagentowe?

Pytanie

Chińczyk (gra planszowa) – wieloagentowe?

Determinizm środowiska

- **Deterministyczne** dana akcja w danym stanie będzie skutkować obserwacją zawsze tego samego, następnego stanu (np. balansowanie).
- Stochastyczne dana akcja w danym stanie może skutkować różnymi stanami i/lub nagrodami, zgodnie ze znanym lub nieznanym rozkładem prawdopodobieństwa (np. gra w ruletkę).

Uwagi:

- Agent nie jest w stanie przewidzieć następnego stanu gdy środowisko nie jest całkowicie obserwowalne lub gdy nie jest deterministyczne.
- Częściowa obserwowalność może wyglądać jakby środowisko nie było deterministyczne.

Przykłady – determinizm

Pytanie

Pasjans – deterministyczne?

Pytanie

Chińczyk (gra planszowa) – deterministyczne?

Statyczne i dynamiczne środowiska

- **Statyczne** środowisko 'czeka' na akcję (np. szachy, gry turowe).
- **Dynamiczne** środowisko zmienia się podczas gdy agent decyduje o kolejnej akcji (np. ruch drogowy, regulowanie temperatury).
- **Semidynamiczne** środowisko się nie zmienia, ale czas podejmowania decyzji wpływa na otrzymaną nagrodę (np. teleturniej).

Przykłady – statyczne?

Pytanie

Autonomiczny samochód – statyczne?

Pytanie

Kontrola jakości na linii produkcyjnej – statyczne?

Ciągłość środowiska

- Dyskretne akcje i stany są skończonymi zbiorami np. szachy. Warto zauważyć, że nagrodę uznaje się zwykle za niedyskretną i pomija w rozważaniach ciągłości środowisk.
- Ciągłe akcje i/lub stany są zmiennymi ciągłymi (liczbami rzeczywiste) np. ruch drogowy.

Uwaga:

 Wiele środowisk łączy w sobie elementy ciągłe i dyskretne. Przykładem takiego środowiska może być jazda samochodem (np. stan diod, zmiana biegu), a część ciągła (np. prędkość, prędkość skręcania kierownicą)

Przykłady - dyskretne?

Pytanie

Autonomiczny samochód – dyskretne?

Pytanie

Kontrola jakości na linii produkcyjnej – dyskretne?

Model środowiska

Nie jest to cecha środowiska, lecz stan wiedzy agenta (lub projektanta algorytmu), lecz z praktycznego punktu widzenia możemy tę wiedzę uznać za cechę środowiska.

- Znany model środowiska konsekwencje akcji lub ich rozkłady prawdopodobieństw (gdy środowisko jest stochastyczne) jest znany.
- Nieznany model środowiska
 - ► konsekwencje akcji nie są znane
 - racjonalność wymaga uczenia się (poznania środowiska)
 - ► cecha nie ma związku z tym czy środowisko jest całkowicie lub częściowo obserwowalne (układanie pasjansa vs. pisanie na maszynie z poprzestawianymi klawiszami)

Przykłady – znany model?

Pytanie

Chińczyk – znany model?

Pytanie

Autonomiczny samochód – znany model?

Plan wykładu

- Ankieta
- 2 Informacje Organizacyjne
- 3 Agent i środowisko
- 4 Racjonalność i uczenie ze wzmocnieniem
- 5 Typy środowisk
- 6 Typy agentów
- Świat odkurzacza (przykład i zadania)

Agent odruchowy (ang. reflex agent)

Odpowiada bezpośrednio na zaobserwowane stan, ignorując poprzednio zaobserwowane stany.

- akcja zależy tylko od aktualnej obserwacji
- ignoruje historię obserwacji (nie potrzebuje pamięci)
- może być racjonalny

Agent z modelem/pamięcią (ang. model-based agent)

Utrzymuje wewnętrzny stan aktualizowany po każdej nowej obserwacji i podejmuje decyzje na jego podstawie. Czyli śledzi informacje na temat aspektów środowiska, które nie są zawsze obserwowalne.

- aktualizuje swoją wiedzę o stanie świata po każdej obserwacji.
- wiedza ta może być niepewna (np. wnioskowanie o nieobserwowanej części środowiska)
- akcje podejmuje na podstawie swojej aktualnej wiedzy (w przeciwieństwie do aktualnej obserwacji)

Agent celowy (ang. goal-based agent)

Agent, który działa by osiągnąć jakiś cel. Zazwyczaj cel jest dyskretny (konkretny stan).

- agent zna cel który chce osiągnąć
- potrafi ocenić konsekwencje swoich akcji
- akcje zazwyczaj podejmuje na podstawie planowanie/przeszukiwania
- planowanie wymaga by model środowiska był znany

Agent z funkcją użyteczności (ang. utility-based agent)

- agent posiada funkcję użyteczności, za pomocą której ocenia użyteczność stanów i akcji
- wykonuje akcje na podstawie użyteczności akcji w aktualnym
- agent jest racjonalny jeśli funkcja użyteczności jest zgodna z miarą jakości

Zalety:

- kompromis między wieloma celami
- działanie na podstawie oczekiwanej użyteczności (gdy cele osiągalne stochastycznie)

Plan wykładu

- Ankieta
- 2 Informacje Organizacyjne
- 3 Agent i środowisko
- 4 Racjonalność i uczenie ze wzmocnieniem
- 5 Typy środowisk
- 6 Typy agentów
- 7 Świat odkurzacza (przykład i zadania)

Świat odkurzacza

Środowisko (pokoje do sprzątania):

- dwa pokoje: A (z lewej) i B (z prawej)
- w każdym pokoju jest albo czysto albo brudno
- robot zaczyna w losowym pokoju

Agent (robot odkurzacz):

- obserwacje to para: [lokalizacja robota, stan pokoju]
- robot może wykonać jedną z akcji: {(idź w) lewo, prawo, odkurz, czekaj}

Rysunek: Świat odkurzacza robota z dwoma pokojami

Pytanie

Ile jest możliwych różnych stanów tego świata?

Świat odkurzacza – funkcja agenta

Przykładowa funkcja agenta (postać stabularyzowana):

Historia obserwacji	Akcja
[A, czysto]	prawo
[A, brudno]	odkurz
[B, czysto]	prawo
$[B, \ \mathit{brudno}]$	odkurz
[A, czysto], [A, czysto]	prawo
[A, czysto], [A, brudno]	odkurz
•	:
•	

Świat odkurzacza – program agenta

Przykładowy program agenta:

- Jeśli $S_t = [A, brudno]$ lub $S_t = [B, brudno]$, to odkurz.
- Jeśli $S_t = [A, czysto]$, to prawo.
- Jeśli $S_t = [B, czysto]$, to lewo.

Tworząc agenta trzeba sobie odpowiedzieć na pytania:

- Jaka funkcja agenta jest odpowiednia?
- Jak ją zwięźle zaimplementować?

Świat odkurzacza – miara jakości

- Ocena agenta na podstawie stanów środowiska (potencjalnie będących konsekwencjami podejmowanych akcji)
- Miara jakości agenta dokonuje oceny sekwencji stanów środowiska, np.
 - \blacktriangleright +1 punkt: za każdy pokój posprzątany do momentu T
 - lacktriangledown +1 punkt: za każdy czysty pokój w danym kroku t i -1 punkt: za każdy wykonany ruch
- Miarę jakości często wybiera projektant agenta i powinna:
 - być oparta na stanach środowiska
 - odzwierciedlać faktyczny cel na którym nam zależy (nasze oczekiwania dotyczące środowiska)

Uwaga

 Miara nie powinna brać pod uwagę tego jak nam się wydaje, że agent powinien działać.

Załóżmy następującą miarę jakości:

• Agent jest nagradzany 10 punktami za każdy czysty pokoju po 100 krokach.

Pytanie

Pokaż, że następująca funkcja agenta odruchowego jest racjonalna:

- Jeśli $S_t = [A, brudno]$ lub $S_t = [B, brudno]$, to odkurz.
- Jeśli $S_t = [A, czysto]$, to prawo.
- Jeśli $S_t = [B, czysto]$, to lewo.

Funkcja agenta:

- Jeśli $S_t = [A, brudno]$ lub $S_t = [B, brudno]$, to odkurz.
- Jeśli $S_t = [A, czysto]$, to prawo.
- Jeśli $S_t = [B, czysto]$, to lewo.

Pytanie

Rozważmy zmodyfikowaną wersję środowiska, w której każdy ruch do sąsiedniego pokoju kosztuje agenta 1 punkt.

- 1 Czy agent opisany w poprzednim pytani (powyżej) jest nadal racjonalny?
- 2 Co w wypadku agenta z pamięcią? Jaka powinna być funkcja takiego agenta?
- 3 Co jeśli agent będzie w stanie obserwować obecność kurzu w obu pokojach, czy wtedy agent odruchowy może być racjonalny?

Pytanie

Rozważmy niedeterministyczną (stochastyczną) wersję środowiska w której robot odkurzacz jest dodatkowo wadliwy:

- w 50% przypadków akcja odkurzać się nie udaje i pozostawia kurz w pokoju nawet jeśli ten był czysty,
- w 25% przypadków czujniki kurzu w pokoju podaje nieprawidłową informację.

Co powinien uwzględniać racjonalny agent w tym wypadku?

Pytanie

Rozważmy niedeterministyczną wersję środowiska, w której w oprócz robota odkurzacza w pokojach znajdują się koty z kłaczącym futerkiem:

- W każdym kroku, pokój ma 10% szansy by znowu znowu się ubrudzić.
- Agent jest nagradzany 2 punktami za każdym razem kiedy wyczyści brudny pokój.

Co powinien uwzględniać racjonalny agent w tym wypadku?

Ankieta na koniec wykładu

https://tinyurl.com/zmio2023

Bibliografia

- [1] Russell, S. and Norvig, P. (2010). *Artificial Intelligence: A Modern Approach*. Prentice Hall, third edition.
- [2] Sutton, R. S. and Barto, A. G. (2018). *Reinforcement Learning: An Introduction*. The MIT Press, second edition.