Accueil / Cours / Cy	rcle Ingénieur / Promo 2025 ING1 / 2025 ING1 S5 FPVA / Sections / Évaluation du 07/11			
/ <u>Évaluation 2 - Inté</u>	g <u>rales multiples</u>			
Commencé le	Monday 7 November 2022, 11:00			
État	Terminé			
Terminé le	Monday 7 November 2022, 11:53			
Temps mis	52 min 26 s			
Points	6,00/10,00			
Note	12,00 sur 20,00 (60 %)			
Question 1				
Correct				
Note de 1,00 sur 1,00				
_				
	e $0 \leq x \leq 1,\ 0 \leq y \leq 3$ et S est le rectangle $-2 \leq x \leq 0,\ -3 \leq y \leq 0$ alors $\iint_R f(x,y)dA = -\iint_S f(x,y)dA$.			
If R is the rectangle	$0 \le x \le 1,\ 0 \le y \le 3$ and S is the rectangle $-2 \le x \le 0,\ -3 \le y \le 0$ then $\iint_R f(x,y)dA = -\iint_S f(x,y)dA$.			
Veuillez choisir une	réponse.			
◯ Vrai				
■ Faux				
● raux ▼				
La réponse correcte est « Faux ».				
•				
Question 2				
Correct				
Note de 1,00 sur 1,00				
Si R est la région à	l'intérieur d'un cercle de rayon a , centré à l'origine, alors $\iint_R f(x,y)dA=\int_{-a}^{+a}\int_0^{\sqrt{a^2-x^2}}f(x,y)dydx.$			
if R is the region in	side a circle of radius a , centered at the origin, then $\iint_R f(x,y)dA=\int_{-a}^{+a}\int_0^{\sqrt{a^2-x^2}}f(x,y)dydx.$			
Veuillez choisir une	réponse.			
O Vrai				
■ Faux				
La réponse correcte	est « Faux »			

Question **3**

Note de 1,00 sur 1,00

Si R est la région $x^2+y^2\leq 4$, alors $\iint_R (x^2+y^2)\,dA=\int_0^{2\pi}\int_0^2 r^2\,dr\,d\theta$. If R is the region $x^2+y^2\leq 4$, then $\iint_R (x^2+y^2)\,dA=\int_0^{2\pi}\int_0^2 r^2\,dr\,d\theta$.

Veuillez choisir une réponse.

- O Vrai
- Faux

La réponse correcte est « Faux ».

Question ${f 4}$

Correct

Note de 1,00 sur 1,00

Si R est la région $0 \le z \le \sqrt{1-x^2-y^2}$, alors $\iiint_R (-xz) \, dA = 0$. If R is the region $0 \le z \le \sqrt{1-x^2-y^2}$, then $\iiint_R (-xz) \, dA = 0$.

Veuillez choisir une réponse.

- Vrai
- Faux

La réponse correcte est « Vrai ».

Question 5

Correct

Note de 1,00 sur 1,00

Si R est la région en dessous du cône z=r, au dessus du plan xy, et à l'intérieur de la sphère $x^2+y^2+z^2=8$, alors son volume est donné par $\int_0^{2\pi}\int_{\pi/4}^{\pi/2}\int_0^{\sqrt{8}}\rho^2\sin\phi\,d\rho\,d\phi\,d\theta$.

If R is the region below the cone z=r, above the xy plane, and inside the sphere $x^2+y^2+z^2=8$, then its volume is given by $\int_0^{2\pi}\int_{\pi/4}^{\pi/2}\int_0^{\sqrt{8}}\rho^2\sin\phi\,d\rho\,d\phi\,d\theta.$

Veuillez choisir une réponse.

- O Vrai
- Faux 🗸

La réponse correcte est « Faux ».

Question **6**Incorrect
Note de 0,00 sur 1,00

Calculer $\iint_R y^2 x \, dx \, dy$ où R est la région grise donnée par la figure ci-dessous. Donner le résultat sous forme décimale, avec deux chiffres après la virgule.

Calculate $\iint_R y^2 x \, dx \, dy$ where R is the gray region given by the figure below. Give the result under decimal form, with two digits after the comma.

Réponse : 9,02

La réponse correcte est : 9,14

Question **7**Incorrect
Note de 0,00 sur 1,00

Calculer $\iint_R xy \, dA$ où R est la région donnée dans la figure ci-dessous. Donner le résultat sous forme décimale, avec deux chiffres après la virgule.

Compute $\iint_R xy \, dA$ where R is the region given in the figure below. Give the result under decimal form, with two digits after the comma.

Réponse : 1,00 ▶

La réponse correcte est : 0,33

Question 8		
Correct		
Note de 1,00 sur 1,00		

Calculer $\iiint_R e^{-x-y-z} dV$ où R est une boite rectangulaire dont les coordonnées des sommets sont donnés ci-dessous. Donner le résultat sous forme décimale, avec deux chiffres après la virgule.

Compute $\iiint_R e^{-x-y-z} dV$ where R is a rectangular box which corners coordinates are given below. Give the result under decimal form, with two digits after the comma.

(0,0,0) , (1,0,0) , (0,2,0) , (0,0,3)

Réponse : 0,52 ✔

La réponse correcte est : 0,52

Question **9**

Non répondue Noté sur 1,00

Calculer $\iint_R \sqrt{x^2+y^2}\,dA$ où R est la région $4 \le x^2+y^2 \le 9$. Donner le résultat sous forme décimale, avec deux chiffres après la virgule. Compute $\iint_R \sqrt{x^2+y^2}\,dA$ where R is the region $4 \le x^2+y^2 \le 9$. Give the result under decimal form, with two digits after the comma.

Réponse :

La réponse correcte est : 39,8

Question 10

Non répondue Noté sur 1,00

Calculer $\iiint_R (x^2 + y^2 + z^2)^{-1/2} dV$ où R est une hémisphère centrée à l'origine et de rayon 5. Donner le résultat sous forme décimale, avec deux chiffres après la virgule.

Compute $\iiint_R (x^2 + y^2 + z^2)^{-1/2} dV$ where R is an hemisphere centered at the origin and of radius 5. Give the result under decimal form, with two digits after the comma.

Réponse :

La réponse correcte est : 78,54

▼ Évaluation 1 - Dérivées partielles

Aller à...