Bio393: Genetic Analysis

Developmental genetics I

C. elegans

The cell lineage of *C. elegans* is known and invariant

The cell lineage of *C. elegans* is known and invariant

John Sulston

The cell lineage of *C. elegans* is known and invariant

John Sulston

C. elegans vulval development

Let's say you screened for mutants that failed to lay eggs

Called Egl for egg-laying defective

Bob Horvitz

No neuron

egl-1 = inducer of programmed cell death

Hermaphrodite-Specific Neuron (HSN) inappropriately dies

No neuron

tra-1 = inducer of sex determination

Mutants are partially male so HSNs die

No neuron

No neuronal signaling

egl-6 = seratonin signaling from HSN is defective

No neuron

No neuronal signaling

No vulva

lin-3 = lineage defective gene 3

Vulval cells are not specified

C. elegans

Sydney Brenner

H. Robert Horvitz

John E. Sulston

Three cells express vulval fates in wild-type animals

Wild type

P3.p P4.p P5.p P6.p P7.p P8.p

No cells express vulval fates in vulvaless mutants

Six cells express vulval fates in multivulva mutants

vulval cell fate
non-vulval cell fate

In developmental genetics, we seek to understand cell-cell interactions and tissue formation

How do we perturb this system (in addition to genetics)?

The Pn.p cells are equally potent and induced to make vulval cells

The Pn.p cells are equally potent and induced to make vulval cells

dig-1 displaced gonad mutants

Vulval mutants

Mutant	Phenotype
lin-1(0)	Muv
lin-3(0)	Vul
let-60(0)	Vul
let-60(gf)	Muv
let-23(0)	Vul
let-23(gf)	Muv

Mutant genotypes	Phenotype
lin-1(0)	Muv
lin-3(0)	Vul
let-60(0)	Vul
let-60(gf)	Muv
let-23(0)	Vul
let-23(gf)	Muv
lin-3(0); let-23(gf)	Muv
lin-3(0); let-60(gf)	Muv
let-23(0); let-60(gf)	Muv
let-23(gf); let-60(0)	Vul
let-60(0); lin-1(0)	Muv
let-23(0); lin-1(0)	Muv

Mutant genotypes	Phenotype
lin-1(0)	Muv
lin-3(0)	Vul
let-60(0)	Vul
let-60(gf)	Muv
let-23(0)	Vul
let-23(gf)	Muv
lin-3(0); let-23(gf)	Muv
lin-3(0); let-60(gf)	Muv
let-23(0); let-60(gf)	Muv
let-23(gf); let-60(0)	Vul
let-60(0); lin-1(0)	Muv
let-23(0); lin-1(0)	Muv

lin-3 → *let-23* →

vulval fate

Mutant genotypes	Phenotype
lin-1(0)	Muv
lin-3(0)	Vul
let-60(0)	Vul
let-60(gf)	Mu∨
let-23(0)	Vul
let-23(gf)	Mu∨
lin-3(0); let-23(gf)	Muv
lin-3(0); let-60(gf)	Mu∨
let-23(0); let-60(gf)	Muv
let-23(gf); let-60(0)	Vul
let-60(0); lin-1(0)	Muv
let-23(0); lin-1(0)	Muv

vulval fate

Mutant genotypes	Phenotype
lin-1(0)	Muv
lin-3(0)	Vul
let-60(0)	Vul
let-60(gf)	Mu∨
let-23(0)	Vul
let-23(gf)	Mu∨
lin-3(0); let-23(gf)	Muv
lin-3(0); let-60(gf)	Mu∨
let-23(0); let-60(gf)	Muv
let-23(gf); let-60(0)	Vul
let-60(0); lin-1(0)	Muv
let-23(0); lin-1(0)	Muv

 $lin-3 \longrightarrow let-23 \longrightarrow let-60 \longrightarrow lin-1 \longrightarrow vulval fate$

What is the source of the inductive signal?

No AC leads to no vulval cell specification and a vulvaless phenotype

Like *lin-3*, all other vulval mutants are epistatic to AC ablation

Mutant genotypes	Phenotype
AC ablation	Vul
lin-1(0)	Muv
lin-3(0)	Vul
let-60(gf)	Muv
let-23(gf)	Muv
AC ablation; let-23(gf)	Muv
AC ablation; let-60(gf)	Muv
AC ablation; lin-1(0)	Muv

A Ras pathway promotes vulval fates

Vulval mutants

Mutant	Phenotype
lin-1(0)	Muv
lin-3(0)	Vul
let-60(0)	Vul
let-60(gf)	Muv
let-23(0)	Vul
let-23(gf)	Muv
lin-2(0)	~Vul
lin-7(0)	~VuI
lin-10(0)	~Vul

A Ras pathway promotes vulval fates

Vulval mutants

Mutant	Phenotype
lin-1(0)	Muv
lin-3(0)	Vul
let-60(0)	Vul
let-60(gf)	Muv
let-23(0)	Vul
let-23(gf)	Muv
lin-2(0)	~VuI
lin-7(0)	~VuI
lin-10(0)	~VuI
lin-8(0); lin-9(0)	synMuv

The synMuv phenotype is caused by mutations in both class A and B genes

class A single mutant

class B single mutant

class AB double mutant

Double mutants within the same class have been reported to be non-Muv

	Class A	Class B
Class A	non-Muv	Muv
Class B		non-Muv

The vulval cell-fate decision models cell-fate decisions involved in carcinogenesis

The synMuv genes

class A		class B
lin-8lin-15Alin-38lin-36THAP	 lin-9 Mip130/ALY lin-13 Zn fingers lin-15B THAP lin-36 THAP lin-37 Mip40 lin-52 dLin52 lin-54 Mip120 lin-61 I(3)MBT lin-65 novel tam-1 RING finger 	dpl-1DPtrr-1TRRAPefl-1E2F4mys-1HATlin-35Rbepc-1E(Pc)lin-53RbAp48hda-1HDAC1let-418Mi-2mep-1Zn fingershpl-2HP1gap-1RasGAPsli-1c-Cblark-1Ack

NuRD-like, DRM and NuA4-like complexes affect the transcription of vulval genes

Cell autonomy of synMuv genes

Rescue vulval phenotype

Cell autonomy of synMuv genes

Cell non-autonomous action

hypodermis

Two decades of research in *Drosophila* and *C. elegans* led to these pathways

Nature Reviews | Molecular Cell Biology

Two decades of research in *Drosophila* and *C. elegans* led to these pathways

Nature Reviews | Molecular Cell Biology

We NEED basic research for this reason!