

National Institute of Technology, Delhi

Name of the Examination: B. Tech.

Branch

: Electrical & Electronics Engg.

Semester

: 3rd

Title of the Course

: Electromagnetic Field Theory

Course Code : EEL 203

Time: 2 Hours Maximum Marks: 25

Note: 1. Answer all the questions.

- 2. Do not write anything on the question paper except Roll number
- 3. Assume any data suitably if found missing
- Q.1. Find in cylindrical coordinates (a) a unit vector $P(\rho = 5, \phi = 53.13^{\circ}, z = -2)$ in the direction of $\overline{F} = \rho z \cos \phi \hat{a}_{\rho} \rho z \sin \phi \hat{a}_{\phi} + a \rho \hat{a}_{z}$; (b) a unit vector at P parallel to \hat{a}_{x} ; (c) unit vector at $Q(\rho = 5, \phi = -36.87, z = -2)$ parallel to \hat{a}_{x} ; (d) $\overline{G} = 2\hat{a}_{x} 4\hat{a}_{y} + 4\hat{a}_{z}$ at P
 - Q.2. Determine the divergence and curl of the following vector fields: (a) $\vec{G} = yz\hat{a}_x + 4xy\hat{a}_y + y\hat{a}_z$; (b)

$$\overline{A} = r^2 z \hat{a}_r + r^3 \hat{a}_\phi + 3rz^2 \hat{a}_z; \text{ (c) } \overline{A} = \frac{1}{\rho^2} \cos\theta \hat{a}_\rho + \rho \sin\theta \cos\phi \hat{a}_\theta + \cos\theta \hat{a}_\phi$$
 [6]

- Q.3. A sheet of charge $\rho_s = 2nC/m^2$ is on the plane x = 2 in free space and a line charge $\rho_t = 20nC/m$ is located at x = 1, z = 4. Find (a) the electric field at P(0,0,0); (b) \overline{E} and direction of \overline{E} at (4,5,6); (c) What is the force per unit length on the line charge?
- Q.4. Given the potential field V = 50 xyz volts in free space, find the total energy stored within the cube 0 < x, y, z < 2; (b) what value would be obtained by assuming a uniform energy density equal to the value at the centre of the cube?
 - Q.5. A point charge of $6\mu C$ is located at the origin, a uniform line charge density of $180 \, nC \, lm$ lies along the x-axis, and a uniform sheet charge of $25 \, nC \, lm^2$ lies in the z=0 plane. (a) find \overline{D} at A(1,2,4); (b) calculate the total electric flux leaving the surface of sphere of $4 \, m$ radius centered at the origin.

P.T.O

Q.6. A field is given in spherical coordinated at $P(r = 5, \theta = 30^{\circ}, \phi = 60^{\circ})$ as $\overline{E} = 20\hat{a}_r - 30\hat{a}_{\theta} + 60\hat{a}_{\phi}V/m$. Find the incremental work done in moving a $10\mu C$ charge a distance of $0.8\mu m$ in the direction (a) \hat{a}_r ; (b) $G = 2\hat{a}_x + 4\hat{a}_y - 3\hat{a}_z$ [3]