Physics 89 - Introduction to Mathematical Physics

deval deliwala

January 25, 2023

Contents

1	Diff	ference between Mathematics and Physics 2
2		Testing for Convergence
3	Con	mplex Numbers 8
	3.1	Taylor Series
	3.2	Complex Numbers
		3.2.0.1 Rules of Complex Numbers
	3.3	Applications
		3.3.0.1 Hydrodynamics
		3.3.0.2 The Complex Plane
		3.3.0.3 Euler's Identity
		3.3.0.4 Trigonometric Functions
	3.4	Hyperbolic Functions
		3.4.0.1 Identities
		3.4.0.2 Applications to Special Relativity

1 Difference between Mathematics and Physics

Example 1 - Electrostatics

Math Question

$$x + \frac{x^2}{2} + \frac{x^3}{3} + \frac{x^4}{4} + \dots = ?$$

Math Solution

$$x + \frac{x^2}{2} + \frac{x^3}{3} + \dots = -\log(1-x), \quad for -1 \le x \le 1$$

So,

$$-1 + \frac{1}{2} - \frac{1}{3} + \frac{1}{4} - \frac{1}{5} + \dots = -\log(2)$$

Example 2 - Diffusion

f(x, y, z, t) = density of diffusing material at time t

Let there exist a cube containing moles

$$\frac{\partial f}{\partial t} = D \left(\frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2} + \frac{\partial^2 f}{\partial z^2} \right)$$

where D is the diffusion coefficient, and the diffusion equation describes how f evolves with time

Math Question

Solve

$$\frac{\partial f}{\partial t} = D \left(\frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2} + \frac{\partial^2 f}{\partial z^2} \right)$$

given initial condition

f(x, y, z, 0) = concentrated lump at the origin

Math Solution

$$f(x, y, z, t) = \frac{N}{(4\pi Dt)(3/2)} e^{-\frac{x^2 + y^2 + z^2}{4Dt}}$$

where N is the number of moles released

2 Taylor Series

- Techniques for obtaining series
- Estimate error, converge?

Figure 1: Taylor Series Visualization

$$f(x) \approx f(0) + f'(0)x + \dots + \frac{1}{n!}f^{n}(0)x^{n}$$

$$f(x) \approx f(a) + f'(a)(x-a) + \frac{1}{2}f''(a)(x-a)^2 + \dots = \sum_{k=0}^{\infty} \frac{1}{k!}f^k(a)(x-a)^k$$

Question

How good is this approximation?

Big O notation

$$\sum_{k=0}^{n} \frac{1}{k!} f^{k}(0) x^{k} + O(x^{n+1})$$

Formally,

$$F(x) = o(x^{n+1}) \quad \text{as } x \to 0$$

 $|F| \le C|x|^{n+1}$ for some unexpected constant c

$$\lim_{x \to 0} \frac{F}{|x|^{n+1}} = 0$$

Example

$$e \approx 1.9 GeV \approx 3700 mc^2$$

Special Relativity

$$E_k = m_0 c^2 - mc^2 = \frac{mc^2}{\sqrt{1 - \frac{v^2}{c^2}}} - mc^2$$

$$\approx 0 + \frac{1}{2}mv^2 + \frac{3}{8}m\frac{v^4}{c^2} + \frac{5}{16}m\frac{v^8}{c^4}$$

$$f(v) = \frac{1}{2}mv^2 + \frac{3}{8}m\frac{v^4}{c^2} + \dots$$

$$\frac{1}{\sqrt{1-x}} \to \frac{mc^2}{\sqrt{1-\frac{v^2}{c^2}}}$$

$$(1+x)^P$$
, then set $p = \frac{1}{2}$

$$f(x) = (1+x)^n$$

$$f'(x) = p(1+x)^{p-1}$$

$$f^{k}(x) = p(p-1)\dots(p-k+1)(1+x)^{p-k} \to f^{k}(0)$$

= $p\dots(p-k+1)$

$$(1+x)^n \approx 1 + px + \frac{p(p-1)}{2!}x^2 + \dots + \frac{p!}{k!(p-k)!}x^k = \binom{p}{k}x^k$$

$$\sum_{k=0}^{n} \binom{p}{k} x^{k}$$
 generalized binomial coefficient

$$(1+x)^P = \sum_{k=0}^n \binom{p}{k} x^k + O(x^{n+1})$$

Question

Given $\frac{1}{\sqrt{1+x}}$ taylor series, how good is this approximation if x = 0.1?

Solution

Actual Answer
$$\rightarrow \frac{1}{\sqrt{1.1}} = 0.9534626$$

 $\text{Taylor Polynomials } x, x^2 \to 1 - \frac{0.1}{2} = 0.95 \quad / \quad 1 - \frac{0.5}{2} + \frac{3(0.5)^2}{8} = 0.95375 \quad \text{good approx}$

More Taylor Series

$$\sin x = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!} + \dots$$

$$\cos x = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \frac{x^6}{6!} + \dots$$

$$e^x = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \frac{x^4}{4!} + \dots$$

$$\cosh x = \frac{e^x + e^{-x}}{2} = 1 + \frac{x^2}{2!} + \frac{x^4}{4!} + \frac{x^6}{6!} + \dots$$
$$\sinh x = \frac{e^x - e^x}{2} = x - \frac{x^3}{3!} + \frac{x^5}{5!} + \dots$$

2.1 Testing for Convergence

If $\sum_{0}^{\infty} a_n x^n \leq \infty$ converges,

$$\sum_{n=0}^{\infty} a_n (\lambda X)^n \le \infty \qquad |\lambda| \le 1$$

Taylor Series have interval of convergence of the form

$$[-L,L]$$
 $(-L,L)$ $[-L,L)$ $(-L,L]$

Truncated Taylor Series Approximation

$$R_0(x) = f(x) - f(0) = f'(c)x$$

Figure 2: Remainder Visualized

Remainder Theorem

$$R_n(x) = f^{n+1}(c) \frac{x^{n+1}}{(n+1)!}$$
 for some $0 \le c \le x$

$$x = \frac{\pi}{2}$$

$$R = \sin\frac{\pi}{2} - \left(x - \frac{x^3}{6} + \frac{x^5}{120} - \frac{x^7}{5040} + \frac{x^9}{362880..} + 0\right)$$

$$= f^{10}(c)\frac{x^10}{10!} \quad 0 \le c \le \frac{\pi}{2}$$

$$|f^{11}(c)| = |-\cos c| < 1$$

 $|R_{10}| \le \frac{1}{11!} \left(\frac{\pi}{2}\right)^{11} \approx 3.6 \times 10^{-6}$

Technique for Solving Taylor Series by dividing two polynomials

$$f(x) = a_0 + a_1 x + \dots$$

$$g(x) = b_0 + b_1 x + \dots$$

$$\frac{f(x)}{g(x)} = (c_0 + c_1 x + c_2 x^2 + \dots)$$

$$a_0 + a_1 x + \dots = (b_0 + b_1 x + \dots)(c_0 + c_1 x + \dots)$$

$$a_0 = b_0 c_0$$

3 Complex Numbers

• Definition

• Functions: $\log z, \sqrt{z}, \sin z,$, etc.

• Applications: AC Circuits, Hydrodynamics

• Math Applications: \int_{∞}^{∞}

3.1 Taylor Series

$$f(x) = \frac{1}{1+x^2} = \frac{1}{1-(-x^2)} = 1 - x^2 + x^4 - x^6 + \dots = \sum_{n=0}^{\infty} (-1)^n x^{2n}$$

The interval of convergence for the taylor series of $\frac{1}{1+x^2}$ is from (-1,1), which is not readily apparent since

$$(x \pm 1, f(x) = \frac{1}{2}$$

$$(x \pm 1, f(x) = \frac{1}$$

Figure 3: taylor series of e^{1/x^2}

3.2 Complex Numbers

Introduced by Cardano in the 1500s with the intent of solving cubic equations.

Quadratic Equations

$$0 = x^2 + bx + c \quad x = -b \pm \frac{\sqrt{b^2 - 4ac}}{2a}$$

Cubic Equations

$$0 = x^{3} + ax + b \qquad \left(\frac{-b}{2} + \sqrt{\frac{b^{2}}{4} - \frac{a^{3}}{27}}\right)^{\frac{1}{3}}$$
$$x^{3} - x = 0 \to x = \frac{1}{\sqrt{3}} \left[\sqrt{-1}^{1/3} + (-\sqrt{-1})^{1/3}\right]$$

- consistency
- \bullet final answer is **real**
- simplifies computations

3.2.0.1 Rules of Complex Numbers

$$z = a + bi$$

$$i^2 = -1$$

$$(a+bi)(c+di) = (ac-bd) + (ad+bc)i$$

Example

$$(1+i)^2 = 2i$$
$$i^4 = 1$$

$$\frac{1}{a+bi} = \frac{(a+bi)}{(a-bi)(a+bi)} = \frac{(a-bi)}{a^2+b^2}$$
$$= \left(\frac{a}{a^2+b^2}\right) - \left(\frac{b}{a^2+b^3}\right)i$$

3.3 Applications

Figure 4: 2D diagram of Sphere from above

3.3.0.1 Hydrodynamics

$$\vec{v}(x,y) = v_x \hat{i} + v_y \hat{j}$$

Problem

$$V_x, V_y = ?$$

Model

1. Incompressible

(a).
$$0 = \nabla \cdot \vec{v} = \frac{\partial v_x}{\partial x} + \frac{\partial v_y}{\partial y}$$

2. Irrotational

$$(b.) \quad 0 = (\nabla \times \vec{v})_z = \frac{\partial v_x}{\partial x} - \frac{\partial v_x}{\partial y}$$

Solving (a) and (b)

Set of **coupled** partial differential equations (PDEs)

- What are the Boundary Conditions?
 - an additional set of equations at the edges

(1.)
$$r = \sqrt{x^2 + y^2} \to \infty \quad \vec{v} \to v_0 \hat{i}$$

$$(2.) \quad \vec{v} \cdot \hat{r} = 0$$

Fact: Complex Numbers

Define z = x + iy, z is **not** the third coordinate

Define $U = v_x \hat{i} - iv_y$ and $U = f(z) \to \text{Equations (a.)}$ and (b.) are automatically satisfied.

Solution

$$U = v_0 \left(1 - \frac{R^2}{z^2} \right)$$

$$\frac{1}{z} = \frac{1}{x + iy} = \frac{x - iy}{x^2 + y^2}$$

$$\frac{1}{z^2} = \frac{x^2 - y^2 - 2ixy}{(x^2 + y^2)^2}$$

$$v_x = v_0 - \frac{v_0 R^2 (x^2 - y^2)}{(x^2 + y^2)^2}$$

Figure 5: complex plane

Figure 6: quadrant's of complex plane in polar coordinates

3.3.0.2 The Complex Plane

3.3.0.3 Euler's Identity

$$\cos \theta + i \sin \theta = e^{i\theta}$$

$$\begin{split} e^x &= 1 + \frac{x}{1} + \frac{x^2}{2} + \frac{x^3}{3!} + \dots \sum_{n=0}^{\infty} \frac{x^n}{n!} \\ e^{iy} &= 1 + \frac{iy}{1} - \frac{y^2}{2!} - \frac{iy^3}{3!} + \frac{y^4}{4!} + \dots \\ &= \left(1 - \frac{y^2}{2!} + \frac{y^4}{4!} + \dots\right) + \left(\frac{y}{1} - \frac{y^3}{3!} + \dots\right) i = \cos y + i \sin y \end{split}$$

Euler's Identities

$$e^{i\pi} = -1$$

 $1 = e^{2\pi i} = e^{2\pi ni}$ $n = 0, \pm 1, \pm 2, \dots$

$$\log z = ?$$

$$z = re^{i\theta}$$
$$\log z = \log r + i(\theta + 2\pi n)$$

$$\sqrt{z}$$

$$\begin{split} \sqrt{re^{iz}} &= \sqrt{r}e^{i\theta/2} \\ &= \sqrt{r}e^{\frac{i(\theta+2\pi)}{2}} \\ &= -\sqrt{r}e^{i\theta/2} \end{split}$$

3.3.0.4 Trigonometric Functions

$$\cos z = \frac{e^{iz} + e^{-iz}}{2}$$

$$\sin z = \frac{e^{iz} - e^{-iz}}{2i}$$

$$\cos(iy) = \frac{e^{-y} + e^{y}}{2} = \cosh y$$

$$\sin(iy) = i\frac{e^{y} - e^{-y}}{2} = i \sinh y$$

3.4 Hyperbolic Functions

$$\tanh = \frac{\sinh y}{\cosh y}$$

Everything is **Real** from now on.

3.4.0.1 Identities

$$\sinh(\alpha + \beta) = \sinh\alpha \cosh\beta + \cosh\alpha + \sinh\beta$$
$$\cosh(\alpha + \beta) = \cosh\alpha \cosh\beta + \sinh\alpha + \sinh\beta$$
$$\tanh(\alpha + \beta) = \frac{\tanh\alpha + \tanh\beta}{1 + \tanh\alpha \tanh\beta}$$

3.4.0.2 Applications to Special Relativity Relativistic Addition to Velocities

Figure 7: a train moving with a car moving inside of it, what would an observer calculate for the speed of the interior car?

$$iW = \frac{u+v}{1+\frac{uv}{c^2}} = c\frac{\tanh\alpha - \tanh\beta}{1+\tanh\alpha + \tanh\beta} = c\tanh(\alpha+\beta)$$

Figure 8: rapidity - using hyperbolic tangent establishes the bounds of velocity as c and -c