Calculus I Review of basic functions

Todor Miley

2019

Outline

- A Catalog of Essential Functions
 - Linear Functions
 - Polynomials
 - Power Functions
 - Rational Functions
 - Algebraic Functions
 - Transcendental Functions
- New Functions from Old Functions

License to use and redistribute

These lecture slides and their LATEX source code are licensed to you under the Creative Commons license CC BY 3.0. You are free

- to Share to copy, distribute and transmit the work,
- to Remix to adapt, change, etc., the work,
- to make commercial use of the work,

as long as you reasonably acknowledge the original project.

- Latest version of the .tex sources of the slides: https://github.com/tmilev/freecalc
- Should the link be outdated/moved, search for "freecalc project".
- Creative Commons license CC BY 3.0:
 https://creativecommons.org/licenses/by/3.0/us/
 and the links therein.

Linear Functions

Definition (Linear Function)

A linear function is a function the graph of which is a line. We can write any linear function in slope-intercept form:

$$f(x) = mx + b$$
.

m is called the slope, and *b* is called the *y*-intercept.

f(x)	Direction	y-intercept
x+1	7	1
-0.5x + 0	>	0
_1	\rightarrow	-1

- m > 0 means the graph of f points up (\nearrow).
- m < 0 means the graph of f points down (\searrow).
- m = 0 means the graph of f is horizontal (\rightarrow) .
- *b* tells us the height of the point where the graph hits the *y*-axis.

Polynomials

Definition (Polynomial Function)

A polynomial function is a function f of the form

$$f(x) = a_0 + a_1x + a_2x^2 + \cdots + a_{n-1}x^{n-1} + a_nx^n,$$

where n is a non-negative integer and a_0, \ldots, a_n are real numbers, called the coefficients. If $a_n \neq 0$ the integer n is called the degree of f.

f(x)	Polynomial?	Degree	a_0	a ₁	a_2
$x^4 - x + 1$	Yes	4	1	-1	0
6	Yes	0	6	0	0
$3x^2 - \frac{1}{2}x + \sqrt{x}$	No				
$3x^2 - \frac{1}{2}x + \sqrt{2}$	Yes	2	$\sqrt{2}$	$-\frac{1}{2}$	3
$3x^2 - \frac{1}{2x} + \sqrt{2}$	No			_	

- Linear functions are polynomial (functions).
- So are quadratic functions. Their graphs are parabolas.
- And there are many more.

Linear

- Linear functions are polynomial (functions).
- So are quadratic functions. Their graphs are parabolas.
- And there are many more.

Quadratic

Todor Milev

- Linear functions are polynomial (functions).
- So are quadratic functions. Their graphs are parabolas.
- And there are many more.

Cubic

- Linear functions are polynomial (functions).
- So are quadratic functions. Their graphs are parabolas.
- And there are many more.

Quartic

- Linear functions are polynomial (functions).
- So are quadratic functions. Their graphs are parabolas.
- And there are many more.

Quintic

Definition (Power Function)

Let x > 0, a - arbitrary real number. The power function is defined as

$$f(x) = e^{a \ln x} = x^a .$$

x =base. a =exponent or power. First equality = one of ways to define for non-integer a (we study $\ln x$, e^x later).

If a - positive integer (1, 2, 3, ...)then x^a = polynomial function. $x^n = \underbrace{x ... x}$ when n-integer.

$$(x^{a})^{b} = x^{ab}$$

$$(xy)^{b} = x^{b}y^{b}$$

$$x^{a+b} = x^{a}x^{b}$$

$$x^{-a} = \frac{1}{x^{a}}$$

Definition (Power Function)

Let x > 0, a - arbitrary real number. The power function is defined as

$$f(x) = e^{a \ln x} = x^a .$$

x =base. a =exponent or power. First equality = one of ways to define for non-integer a (we study $\ln x$, e^x later).

If a - positive integer (1, 2, 3, ...)then x^a = polynomial function. $x^n = \underbrace{x ... x}$ when n-integer.

$$(x^{a})^{b} = x^{ab}$$

$$(xy)^{b} = x^{b}y^{b}$$

$$x^{a+b} = x^{a}x^{b}$$

$$x^{-a} = \frac{1}{x^{a}}$$

Definition (Power Function)

Let x > 0, a - arbitrary real number. The power function is defined as

$$f(x) = e^{a \ln x} = x^a .$$

x =base. a =exponent or power. First equality = one of ways to define for non-integer a (we study $\ln x$, e^x later).

If a - positive integer (1, 2, 3, ...)then x^a = polynomial function. $x^n = \underbrace{x ... x}$ when n-integer.

$$(x^{a})^{b} = x^{ab}$$

$$(xy)^{b} = x^{b}y^{b}$$

$$x^{a+b} = x^{a}x^{b}$$

$$x^{-a} = \frac{1}{x^{a}}$$

Definition (Power Function)

Let x > 0, a - arbitrary real number. The power function is defined as

$$f(x) = e^{a \ln x} = x^a .$$

x =base. a =exponent or power. First equality = one of ways to define for non-integer a (we study $\ln x$, e^x later).

If a - positive integer (1, 2, 3, ...)then x^a = polynomial function. $x^n = \underbrace{x ... x}$ when n-integer.

$$(x^{a})^{b} = x^{ab}$$

$$(xy)^{b} = x^{b}y^{b}$$

$$x^{a+b} = x^{a}x^{b}$$

$$x^{-a} = \frac{1}{x^{a}}$$

Definition (Power Function)

Let x > 0, a - arbitrary real number. The power function is defined as

$$f(x) = e^{a \ln x} = x^a .$$

x =base. a =exponent or power. First equality = one of ways to define for non-integer a (we study $\ln x$, e^x later).

If a - positive integer (1, 2, 3, ...)then x^a = polynomial function. $x^n = \underbrace{x ... x}$ when n-integer.

$$(x^{a})^{b} = x^{ab}$$

$$(xy)^{b} = x^{b}y^{b}$$

$$x^{a+b} = x^{a}x^{b}$$

$$x^{-a} = \frac{1}{x^{a}}$$

- n positive integer, $f(x) = x^{\frac{1}{n}} = \sqrt[n]{x}$ = the n^{th} root function. $\sqrt[n]{x} \ge 0$ for $x \ge 0$.
- For n = 2, we get the square root \sqrt{x} ; for n = 3 we get the cube root $\sqrt[3]{x}$, and so on.
- Let x > 0. For n = 2m + 1-odd, we can extend the definition of n^{th} root to negative numbers by $2^{m+1}\sqrt{-x} := -2^{m+1}\sqrt{x}$.
- In this course, even roots of negative numbers are not defined.
- The graph of \sqrt{x} is the top half of the parabola $x = y^2$. Similarly for $y = \sqrt[2m]{x}$, we graph top of $x = y^{2m}$.
- The graph of the cube root $f(x) = \sqrt[3]{x}$ is the graph of the polynomial $x = y^3$. Similarly for $y = \sqrt[2m+1]{x}$, we graph $x = y^{2m+1}$.

- n positive integer, $f(x) = x^{\frac{1}{n}} = \sqrt[n]{x}$ = the n^{th} root function. $\sqrt[n]{x} \ge 0$ for $x \ge 0$.
- For n = 2, we get the square root \sqrt{x} ; for n = 3 we get the cube root $\sqrt[3]{x}$, and so on.
- Let x > 0. For n = 2m + 1-odd, we can extend the definition of n^{th} root to negative numbers by $2^{m+1}\sqrt{-x} := -2^{m+1}\sqrt{x}$.
- In this course, even roots of negative numbers are not defined.
- The graph of \sqrt{x} is the top half of the parabola $x = y^2$. Similarly for $y = \sqrt[2m]{x}$, we graph top of $x = y^{2m}$.
- The graph of the cube root $f(x) = \sqrt[3]{x}$ is the graph of the polynomial $x = y^3$. Similarly for $y = \sqrt[2m+1]{x}$, we graph $x = y^{2m+1}$.

 $f(x) = x^{-1} = \frac{1}{x}$ is called the reciprocal function. Its graph has equation $y = \frac{1}{x}$, or xy = 1, and is an hyperbola with the coordinate axes as its

asymptotes.

Rational Functions

Definition (Rational Function)

A rational function is a quotient of two polynomials; that is, a function of the form

$$f(x)=\frac{g(x)}{h(x)},$$

where g and h are polynomials.

Example $(x/(x^2-1))$

The function

$$f(x) = \frac{x}{x^2 - 1}$$

is a rational function.

2019

Algebraic Functions

(Algebraic Function)

A function in x that can be constructed using x, constants, and finitely many of the operations +, -, *, /, and $\sqrt[n]{}$ is an algebraic function. Outside of present course: function f(x) = algebraic if it satisfies a polynomial equation with polynomial coefficients, i.e., $a_0(x) + a_1(x)f(x) + \cdots + a_n(x)(f(x))^n = 0$ for some polynomials $a_i(x)$.

Examples.

$$y = (x - 1)\sqrt{4 - x^2}$$

Transcendental Functions

Transcendental functions include many classes of functions.

- Trigonometric functions such as cos x, sin x, tan x, etc.
- Exponential functions such as 2^x , $\left(\frac{1}{2}\right)^x$, 5^x , e^x , etc.
- The logarithm function In x.
- And many more.
- Outside of the present course: by definition, a function is transcendental if it is not algebraic, i.e., if it satisfies no polynomial equation with polynomial coefficients.

2019

Combinations of Functions

Two functions f and g can be combined to form new functions f+g, f-g, $f\cdot g$, and $\frac{f}{g}$:

$$\begin{array}{rcl} (f+g)(x) & = & f(x)+g(x) \\ (f-g)(x) & = & f(x)-g(x) \\ (f\cdot g)(x) & = & f(x)\cdot g(x) \\ \left(\frac{f}{g}\right)(x) & = & \frac{f(x)}{g(x)} & \Big| \text{ for } g(x) \neq 0 \end{array}.$$

Let Dom(f) denote the domain of f. The function f+g is defined only if both f and g are defined, and similarly for the others. Therefore

$$\mathsf{Dom}(f+g) = \mathsf{Dom}(f) \cap \mathsf{Dom}(g)$$
 \cap stands for $\mathsf{Dom}(f-g) = \mathsf{Dom}(f) \cap \mathsf{Dom}(g)$ set intersection $\mathsf{Dom}(f \cdot g) = \mathsf{Dom}(f) \cap \mathsf{Dom}(g)$

$$\mathsf{Dom}(f \cdot g) = \mathsf{Dom}(f) \cap \mathsf{Dom}(g)$$
 $\mathsf{Dom}\left(\frac{f}{g}\right) = \mathsf{Dom}(f) \cap \mathsf{Dom}(g) \cap \{x | g(x) \neq 0\}$ right expr. stands for set where $g(x) \neq 0$

Definition (Composition of f and g)

If f and g are two functions, then the composition of f and g is written $f \circ g$ and is defined by the formula

$$(f\circ g)(x)=f(g(x)).$$

Imagine f and g as machines taking some input and producing some output. Then $f \circ g$ corresponds to attaching both machines end-to-end so that the output of g becomes the input of f.

The domain of $f \circ g$ is the set of all numbers x in the domain of g such that g(x) is in the domain of f. If the domain of f is A and the domain of g is B, we write this as

$$\{x \in B | g(x) \in A\}.$$

Example

Find
$$f\circ g,g\circ f,g\circ g$$
 and their domains, where $f(x)=\sqrt{x}$ and $g(x)=\sqrt{3-x}$.
$$(f\circ g)(x) = f(g(x))=f\left(\sqrt{3-x}\right)=\sqrt{\sqrt{3-x}}=\sqrt[4]{3-x}$$
 Domain:
$$3-x \geq 0 \\ -x \geq -3 \\ x \leq 3 \\ x \in (-\infty,3].$$

$$(g\circ f)(x) = g(f(x))=g(\sqrt{x})=\sqrt{3-\sqrt{x}}$$
 Domain:
$$x \geq 0 \\ 3-\sqrt{x} \geq 0 \\ -\sqrt{x} \geq -3 \\ \sqrt{x} \leq 3 \\ x \leq 9 \\ x \in [0,9]$$

Example

Find $f \circ g, g \circ f, g \circ g$ and their domains, where $f(x) = \sqrt{x}$ and $g(x) = \sqrt{3-x}$.

$$(g \circ g)(x) = g(g(x)) = g(\sqrt{3-x}) = \sqrt{3-\sqrt{3-x}}$$

Domain:

$$3-x \geq 0$$

$$-x \geq -3$$

$$x \leq 3$$

$$3-\sqrt{3-x} \geq 0$$

$$-\sqrt{3-x} \geq -3$$

$$\sqrt{3-x} \leq 3$$

$$3-x \leq 9$$

$$-x \leq 6$$

$$-\sqrt{3-x} \geq -3$$

$$\sqrt{3}-x \leq 3$$

$$-x \leq 6$$

$$\begin{array}{ccc} x & \stackrel{\frown}{=} & 0 \\ x & \stackrel{\frown}{\geq} & -6 \end{array}$$

$$x \in [-6,3].$$

Example

Give simplified f-las for $f \circ g$, $f \circ f$, $g \circ f$, $g \circ g$. Find the implied domains.

$$f(x) = \frac{2x - 1}{x + 2}$$

$$g(x) = \frac{2x + 3}{5x - 7}$$

$$(f \circ g)(x) = f(g(x)) = f\left(\frac{2x + 3}{5x - 7}\right) = \frac{2\left(\frac{2x + 3}{5x - 7}\right) - 1}{\frac{2x + 3}{5x - 7} + 2}$$

$$= \frac{\frac{2(2x + 3)}{5x - 7} - \frac{5x - 7}{5x - 7}}{\frac{2x + 3}{5x - 7}} = \frac{\frac{4x + 6 - (5x - 7)}{5x - 7}}{\frac{2x + 3 + (10x - 14)}{5x - 7}} = \frac{-x + 13}{12x - 11} \quad x \neq \frac{11}{12}, \frac{7}{5}$$

$$(f \circ f)(x) = f(f(x)) = f\left(\frac{2x - 1}{x + 2}\right) = \frac{2\left(\frac{2x - 1}{x + 2}\right) - 1}{\frac{2x - 1}{x + 2} + 2}$$

$$= \frac{3x - 4}{4x + 3}$$

$$(g \circ f)(x) = \frac{7x + 4}{3x - 19}$$

$$(g \circ g)(x) = \frac{19x - 15}{25x + 64}$$

$$(g \circ g)(x) = \frac{19x - 15}{25x + 64}$$

$$(x \neq -2, \frac{19}{3}, x \neq -2, \frac{19}{3},$$