Assignment 3

CSIT6000F December, 2019

Problem 1

KB

- 1. Mythical \Rightarrow Immortal
- 2. \neg Mythical $\Rightarrow \neg$ Immortal \land Mammal
- 3. Immortal \vee Mammal \Rightarrow Horned
- 4. Horned \Rightarrow Magic

CNF

- a) ¬ Mythical ∨ Immortal
- b) Mythical \vee (\neg Immortal \wedge Mammal)
- c) \neg (Immortal \vee Mammal) \vee Horned
- d) Horned \Rightarrow Magic

Using the statements above.

- From a and b: Immortal \vee Mammal
- From 3/c: we can assume is horned
- From 4/d: we can assume is magic

We can prove that unicorns are horned and magic. However we cant prove if he is mythical.

Problem 2

Vocabulary:

- Student(x): x is a student
- Takes(x,y): student x takes course y
- Failed(x,y): student x failed course y
- Person(x): x is a person

- Vegetarian(x): x is a vegetarian
- Likes(x,y): person x likes person y
- Smart(x): person x is smart
- Homework(x,y): student x does homework for student y
- a) $\exists x \ (Student(x) \land \neg [Takes(x, History) \land Takes(x, Biology)])$
- b) $\exists x (\text{Student}(x) \land \text{Failed}(x, \text{History}) \land \forall y (\text{Failed}(y, \text{History}) \Rightarrow x = y))$
- c) $\forall x (\text{Person}(\mathbf{x}) \land \forall y [\text{Vegetarian}(\mathbf{y}) \land \neg \text{Likes}(\mathbf{x}, \mathbf{y})]) \Rightarrow \text{Smart}(\mathbf{x})$
- d) $\forall x \forall y (\text{Person}(\mathbf{x}) \land \text{Smart}(\mathbf{y}) \land \text{Vegetarian}(\mathbf{y})) \Rightarrow \neg \text{Likes}(\mathbf{x}, \mathbf{y})$
- e) $\exists x \; \text{Student}(\mathbf{x}) \land (\forall y \; \text{Student}(\mathbf{y}) \land \neg \text{Homework}(\mathbf{y}, \mathbf{y})) \Rightarrow \text{Homework}(\mathbf{x}, \mathbf{y})$

Problem 3

Given: $\exists x, y [\text{Gray}(x) \land \text{Pink}(y) \land \text{Likes}(x,y)]$ Contradiction (Assume): $\forall x, y [\neg \text{Gray}(x) \lor \neg \text{Pink}(y) \lor \neg \text{Likes}(x,y)]$

Knowledge Base:

- 1. Pink(Sam)
- 2. Gray(Clyde)
- 3. Likes(Clyde, Oscar)
- 4. $Pink(Oscar) \vee Gray(Oscar)$
- 5. $Pink(Oscar) \Rightarrow \neg Gray(Oscar) \rightarrow \neg Pink(Oscar) \lor \neg Gray(Oscar)$
- 6. Likes(Oscar, Sam)
- 7. $\neg \operatorname{Gray}(x) \lor \neg \operatorname{Pink}(y) \lor \neg \operatorname{Likes}(x,y)$

Refutation:

- 8. From 6,7: \neg Gray(Oscar) $\lor \neg$ Pink(Sam)
- 9. From $1.8: \neg \text{Gray}(\text{Oscar})$
- 10. From 4,9: Pink(Oscar)
- 11. From 2,7,10: \neg Likes(Clyde, Oscar) !Contradicts 3!

Problem 4

Start true \subset HIRE. Choose provisional rule:

$$-r_{GPA} = \frac{4}{7} = 0,57$$
 $-r_{CU} = \frac{1}{4} = 0,25$

-
$$r_{UST} = \frac{1}{3} = 0.33$$
 - $r_{REC} = \frac{4}{8} = 0.5$

-
$$r_{HKU} = \frac{2}{4} = 0,67$$
 - $r_{EXP} = \frac{3}{4} = 0,75$

We choose EXP, and generate the rule: EXP \subset HIRE.

This rule still covers the negative instance 8.

Tomas Sousa Pereira

$$-r_{GPA} = \frac{4}{4} = 1$$
 $-r_{CU} = \frac{4}{7} = 0,57$ $-r_{UST} = \frac{5}{8} = 0,625$ $-r_{HKU} = \frac{5}{7} = 0,71$ $-r_{REC} = \frac{3}{3} = 1$

Between GPA and REC and choose GPA because is based on a larger sample, then this yields the rule: $EXP \wedge GPA \subset HIRE$.

Then we have to create more more rules.

Example	Attributes						Hire
	GPA	UST	HKU	CU	REC	EXP	111111111111111111111111111111111111111
2	1	1	0	0	0	0	0
4	1	1	0	0	1	0	1
6	1	0	0	1	1	0	0
7	1	0	1	0	1	0	0
8	0	1	0	0	0	1	0
9	0	0	1	0	0	0	0
10	0	0	0	1	1	0	0
11	0	0	0	1	1	0	0

Table 1: Reduced data. OK set.

Start with true \subset OK. Generate a new rule:

$$- r_{GPA} = \frac{1}{4} = 0,25$$

$$- r_{CU} = \frac{0}{3} = 0$$

$$- r_{UST} = \frac{1}{3} = 0,33$$

$$- r_{REC} = \frac{1}{5} = 0,5$$

$$- r_{HKU} = \frac{0}{2} = 0$$

$$- r_{EXP} = \frac{0}{1} = 0$$

We choose UST, and generate the rule: UST \subset OK.

This rule still covers the negative instance 1 and 8. Then we have to create more rules.

$$- r_{GPA} = \frac{4}{4} = 1$$

$$- r_{REC} = \frac{3}{3} = 1$$

$$- r_{HKU} = \frac{5}{6} = 0,83$$

$$- r_{CU} = \frac{4}{5} = 0,8$$

$$- r_{EXP} = \frac{6}{7} = 0,857$$

Between GPA and REC and choose GPA because is based on a larger sample, then this yields the rule: UST \land GPA \subset OK. We dont have any postive instances left, so we are done.

When combining we have the rule: EXP \land UST \land GPA \subset HIRE.

Problem 5

Tomas Sousa Pereira

$$P(j|m) = \frac{P(j \land m)}{P(m)}$$

$$P(m) = P(m|a) + P(m|\overline{a}) = 0.70 + 0.01 = 0.71$$

$$P(j \land m) = \sum_{a} \sum_{b} \sum_{e} P(j, m, a, b, e) =$$

$$\sum_{a} \sum_{b} \sum_{e} P(j|a)P(m|a)P(a|b, e)P(b)P(e) =$$

$$\sum_{a} P(j|a)P(m|a) \sum_{b} \sum_{e} P(a|b, e)P(b)P(e) =$$

$$\sum_{a} P(j|a)P(m|a) \left[P(a|b, e)P(b)P(e) + P(a|b, \overline{e})P(b)P(\overline{e}) + P(a|\overline{b}, e)P(\overline{b})P(e) + P(a|\overline{b}, \overline{e})P(\overline{b})P(\overline{e}) + P(\overline{a}|b, e)P(b)P(e) + P(\overline{a}|b, \overline{e})P(b)P(\overline{e}) + P(\overline{a}|\overline{b}, e)P(\overline{b})P(e) + P(\overline{a}|\overline{b}, \overline{e})P(\overline{b})P(\overline{e}) \right] =$$

$$(0.9*0.7 + 0.05*0.01)*[0.95*0.001*0.002 + 0.94*0.001*(1 - 0.002) + 0.29*(1 - 0.001)*0.002 + 0.001*(1 - 0.001)*(1 - 0.002) + (1 - 0.95)*0.001*0.002 + (1 - 0.94)*0.001*(1 - 0.002) + (1 - 0.001)*(1 - 0.001)*0.002 + (1 - 0.001)*(1 - 0.002)] = 0.6305$$

$$P(j|m) = \frac{0.6305}{0.71} \approx 0.8880282 \approx 89\%$$

Problem 6

1. Yes. Possible paths:

 $Test1 \rightarrow Disease1 \rightarrow Symptom2 \leftarrow Disease2 \leftarrow Test2$

 $Test1 \rightarrow Disease2 \leftarrow Test2$

We can D-separate the nodes.

2. No. Possible paths

 $Disease1 \leftarrow Test1 \rightarrow Disease2$

 $Disease1 \rightarrow Symptom2 \leftarrow Disease2$

We cant d-separate. Test1 and Symptom2 have relation with both nodes.

3. Yes. Possible paths

 $Disease1 \rightarrow Symptom2 \leftarrow Disease2 \rightarrow Symptom3 \leftarrow Disease3$

 $Disease1 \leftarrow Test1 \rightarrow Disease2 \leftarrow Test3 \rightarrow Disease3$

We cant d-separate. We can D-separate the nodes by Disease 2.

Assignment 3

- 4. E = Test1. Knowing this we turn Disease1 and Disease2 independents by removing the common cause.
- 5. E = Disease2, Test1,Test3. Knowing this we make sure Disease1 and Disease3 independents by removing the Indirect Evidential Effect.

Problem 7

	Fed: contract	Fed: do nothing	Fed: expand
Pol: contract	1,7	4,9	6,6
Pol: idle	2,8	5,5	9,4
Pol: expand	3,3	7,2	8,1

Figure 1: Red best action to Fed. Green Best action to Pol.

The Nash equilibria of this game is when Politicians expand, and the Fed contract (3,3).

Problem 8

We can formulate the problem in the following table. We can find Nash Equilibria in positions (0,0) and (6,6).

	0	1	2	3	4	5	6
0	3,3	0,5	0,4	0,3	0,2	0,1	0,0
1	5,0	2.5,2.5	0,4	0,3	0,2	0,1	0,0
2	4,0	4,0	2,2	0,3	0,2	0,1	0,0
3	3,0	3,0	3,0	1.5,1.5	0,2	0,1	0,0
4	2,0	2,0	2,0	2,0	1,1	0,1	0,0
5	1,0	1,0	1,0	1,0	1,0	0.5,0.5	0,0
6	0,0	0,0	0,0	0,0	0,0	0,0	0,0

Table 2: In bold we can see Nash Equilibria