Introduction to Quantum Computing

Week 6: Quantum Encryption in Action

Bernardo Villalba Frías, PhD

b.r.villalba.frias@hva.nl

Quantum Talent and Learning Center Amsterdam University of Applied Sciences

> Week 6 13th June 2025

Cryptography

- "Secure communication and data in the presence of third parties"
- Symmetric-key encryption
- Asymmetric-key encryption

Quantum Key Distribution

- Key exchange protocol between two remote users via:
 - An *insecure* quantum channel:
 - An adversary can perform arbitrary quantum operations on transmitted quantum systems
 - An authenticated classical channel:
 - Messages can be read by the adversary but not modified
- Proven to be information-theoretically secure (under certain assumptions)
- The exchanged keys can be used to implement a classical private–key cryptosystem
- Security of key is based on principles of quantum information
 - No-cloning theorem
 - Information gain implies disturbance

The BB84 Protocol

Requirements

- Assuming that the quantum theory is correct...
- Eight step protocol which requires Alice and Bob to:

 Operate within secured locations using only trusted devices and adhering strictly to the protocol

- Have true random number generators
- Share a classical authenticated channel
- Share a quantum channel
- Prepare and measure in the computational (Z) and X basis

Bob

- Alice randomly chooses a basis $B_i \in \{X, Z\}$ and, randomly and privately, picks a bit $b_i \in \{0, 1\}$
- Alice prepares qubit $|q_i\rangle$ according to:

$$egin{array}{c|c|c|c} B_i & b_i & | & |\psi_i
angle \ \hline Z & 0 & | & |0
angle \ Z & 1 & |1
angle \ X & 0 & |+
angle \ X & 1 & |-
angle \end{array}$$

• Alice sends the resulting qubit $|q_i\rangle$ to Bob

- Bob measures qubit $|q_i\rangle$ in a basis $\widetilde{B}_i \in \{X, Z\}$ that he picks randomly. He privately records the measurement outcome m_i
- Alice and Bob repeat the previous steps a large number of times (N)

- Alice and Bob publicly announce the N bases they have each used. Importantly, Alice does not reveal her b_i nor does Bob reveal his m_i
- Alice and Bob sift out the $M \leq N$ runs in which they used the same basis $(B_i = \widetilde{B}_i)$ and throw away the rest.

• Alice and Bob randomly pick a subset of the sifted pairs (b_i, m_i) and compare them using a classical communication channel. If the outcomes correlate perfectly, they can confidently use the remaining ones as a sifted key!

Alice:	B_i b_i q_i	Z X (1) (1) 1) -)	Z X (0) (0) 0) +)	X (0) +)	X (0) +
Bob:	B_i m_i q_i	Z X (1) (1) 1) ->	Z X 0 0 10 +>	X (0) +)	X (0) +

Sifted key:

Performance

• Randomness in selecting the basis B_i and \widetilde{B}_i would ensure a 75% of correctness in the message

$$\{B_i, b_i\} \rightarrow \begin{cases} B_i = \widetilde{B}_i & 50\% \\ B_i \neq \widetilde{B}_i & \begin{cases} b_i = m_i & 25\% \Rightarrow 75\% \\ b_i \neq m_i & 0\% \end{cases}$$

- However, when $B_i \neq \widetilde{B}_i$, it is just "chance"
- ⇒ better be safe
- Eavesdroppers have to randomly pick a basis $\overline{B_i}$, hence disturbance is introduced

Post-processing

- ullet To detect an eavesdropper with probability 99.9999% ightarrow need to compare 72 bits
- As a post-processing step, Alice and Bob apply additional operations on the remaining bits to obtain a shared private key:
 - Information reconciliation (e.g. cascade protocol)
 - Privacy amplification (e.g. hash function)

Characteristics

- Limited quantum complexity
 - Preparation to zero state, Pauli X gate, Hadamard gate, and measurement in the computational basis.
- Secure
 - Key is truly random (generated by Alice)
 - Eavesdroppers can be detected

Thank you

Thank you!