Final Review Session

Learning Objectives

This review session has one objective, and that is to Work in groups to identify course objectives that you are not comfortable with.

- 1. The following sentences have errors or are missing something. Correct them or add the missing details.
 - (a) (Subspaces & Bases; Span; Linear Independence) A basis for the subspace V is a set S such that $\dim S = \dim V$ and $\operatorname{span}(S) = V$.
 - (b) **(Vectors)** \vec{w} is a convex combination of u and v if:

$$\vec{w} = \{ \vec{w} : \vec{w} = a\vec{u} + b\vec{v} \text{ for all } a, b \in [0, 1] \}$$

- (c) **(Determinants; Dot products)** If \vec{a} , \vec{b} , and \vec{c} are pairwise orthogonal vectors in \mathbb{R}^3 , then $\det \left[\vec{a} \mid \vec{b} \mid \vec{c} \right] = 1$.
- (d) (Eigenvectors & Diagonalization)
 Every matrix has a basis of eigenvalues.

2. (Linear Transformations)

A transformation $T: \mathbb{R}^n \to \mathbb{R}^m$ is called *almost linear* if for all $x, y \in \mathbb{R}^n$, we have $||T(x+y)|| \le ||T(x)+T(y)||$, and for all $\alpha \ge 0$ and $x \in \mathbb{R}^n$, we have $||T(\alpha x)|| \le \alpha ||T(x)||$.

- Write down a clear and concise explanation of what one must do in order to show that a transformation is almost linear.
- Show that the transformation $f: \mathbb{R} \to \mathbb{R}$ defined by $f(x) = x^2$ is not almost linear.
- Show that any linear transformation in almost linear.

3. (Inverses)

Mohammed has partially row-reduced the matrix *A* using the following steps. Use his work to write *A* as a product of elementary matrices. Use this to compute det *A*.

$$A = \begin{bmatrix} 0 & 0 & 0 & 2 \\ 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 1 & 0 & 3 & 0 \end{bmatrix} \xrightarrow{r_1 \leftrightarrow r_3} \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 2 \\ 1 & 0 & 3 & 0 \end{bmatrix} \xrightarrow{r_4 \rightarrow r_4 - r_1} \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 2 \\ 0 & 0 & 3 & 0 \end{bmatrix} \xrightarrow{r_4 \leftrightarrow r_3} \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 3 & 0 \\ 0 & 0 & 0 & 2 \end{bmatrix}$$

4. (Determinants and Inverses; Subspaces)

We define:

$$A = \begin{bmatrix} 0 & 3 & 2 \\ a & 0 & 0 \\ 8 & 2 & 0 \end{bmatrix}$$

- (a) For which values of *a* is the matrix *A* invertible?
- (b) What is the rank of *A* when it is not invertible?

- (c) In the above case, find a basis for the image of *A*.
- 5. (Eigenvalues & Diagonalization; Similar Matrices; Projections)

Let $T: \mathbb{R}^2 \to \mathbb{R}^2$ be the transformation which projects vectors onto the subspace $V = \text{span}\{\vec{v}\}$, where $\vec{v} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$.

- (a) Find an appropriate basis to express T as a matrix.
- (b) Is *T* one-to-one? Is *T* onto?
- (c) What are the eigenvectors of *T*? Is *T* diagonalizable?
- (d) Is *T* invertible?
- 6. (Computational Objectives; Representations of Lines; SLE)

Let
$$\vec{a} = \begin{bmatrix} -1 \\ 0 \\ 1 \end{bmatrix}$$
 and $\vec{b} = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$. Define:

$$V = \{ \vec{x} \in \mathbb{R}^2 | \vec{x} \perp \vec{a} \text{ and } \vec{x} \perp \vec{b} \}$$

- (a) Express V as the solution to an augmented matrix
- (b) Express V as a linear system
- (c) Express *V* in parametric form
- (d) Express *V* as the span of vectors
- (e) Sketch V.