

SLD Research at NASA Numerical Modeling

Mark Potapczuk

Presented at WEZARD SLD Workshop
Brussels, Belgium
June 10, 2013

AEST - Atmospheric Environment Safety Technologies Project

Airframe Icing Simulation and Engineering Tool Capability

Develop and demonstrate 3-D capability to simulate and model airframe ice accretion and related aerodynamic performance degradation for current and future aircraft configurations in an expanded icing environment that includes freezing drizzle/rain.

Two Technology Fronts

- 1. Current and future airframes → swept wing
- 2. Expanded icing envelope → SLD, freezing drizzle and rain.

Expanded Icing Envelope (SLD)

- Technology Building Blocks:
 - 1. Experimental SLD Ice Accretion Simulation
 - 2. Computational SLD Ice Accretion Simulation

Assessment of Simulation Methods Current Capabilities for SLD Icing Simulation

Courtesy IPHWG – publicly re	not yet	Wing			d Areas				Area		Detecti	on Metho	lus	Air Data S	ensor:
		Вu			es emal					2					
publicly r	eleased	Вu			8 5					ssant			6		6
		6		0	urfac , exte ons)	area)	Thermal (Aft of protected area)	cal area)	Mechanical aft of protected area)	Fluid Freezing Point Depressant	ies urface)	nt or Tects)	Instrument (performance)	nt or fects)	nstrument (performance)
		Š	Tail	Radome	Non-lifting Surfaces (antenna, inlets, external modifications)	Thermal (protected area)	Thermal protecte	Mechanical (protected area)	Mechanical f protected	g Poin	Visual Cues (Reference Surface)	Instrument (position or installation effects)	t (perfc	Instrument (position or installation effects)	(perfo
FZDZ – freezing drizzle					Non-li Itenna mo	(pro	oft of p	M (prot	Meftofp	reezin	Vis	Installa	леш	Ins (po nstalia	пашп
ZRA – freezing rain				(ar	(ar		3		(8	luid F.		-	Inst	=	Instr
FZDZ	Icing Tunnels	STATES OF	STATE OF			STATE OF	NOVE :	10717	SICHEL	ш.	District .		7.00 H 11 H 10 H 10	Commission	
MVD <	Codes				-										
40µm	Tankers												-		
														《美国西蒙古》	
FZDZ	Icing Tunnels					A STATE OF	15/18						Sacra-		eserone
MVD >	Codes														STATISTICS.
40μm	Tankers														
FZRA	Icing Tunnels														
MVD <	Codes	_	_	88	14	_								A STATE OF	Mana
40µm	Tankers				-		-				/Acres of the second				
	Talikers														
FZRA	Icing Tunnels									Maria de la compansión de	Carlo Company of the			On Military have the beauty	
MVD >	Codes			11	13			-		_					
40µm	Tankers						-								
LEGEND														Industrial Section	
	The capability	exist	s tod	ay an	d is suitab	le to	be a	n elei	ment	ofal	AOC .			Ipdated FEB 200	
	The capability	is po	ssible	e. but	has not b	een	demo	nstra	ted (or the	ro ic limite	d or no	Diel o A		X25250
	The capability	is un	know	m or	does not	CLIFFO	ntly	wiet	iteu, (Ji tile	ie is iiifille	or no va	iiidati	on.	
- 11	may be possible to	test sm	all scale	installa	tion effects he	e lacon	casle in	etal stic							
., 0	Current 2D capabilité	es exist	with lar	ge drop	et effects, but	Imitatio	ns exist	in the	use of 31	O code	ently feasible	of Annual V			

Objective

 Develop and validate computational simulation capability for SLD ice build-up on aircraft surfaces.

Key Steps in Technology Development Roadmap

- Assess current capability for existing data sets.
 - 2D Airfoils
 - 3D Wings
 - More complex geometries
- Identify model weaknesses.
 - Droplet break-up
 - Droplet splashing
 - Droplet re-impingement
 - Ice shape surface motion
 - Variable density modeling

Just examples. Others might be identified and/or these may be removed.

- Design experiments to test and/or improve models.
- Implement improved models into simulation capability.
- Compare to experimental ice shapes from tunnel or flight.

Objective

Develop and validate computational simulation capability for SLD ice build-up on aircraft surfaces.

Key Steps in Technology Development Roadmap

- Water Film Flow, Roughness, & Heat Transfer
 - Define test objectives, conditions, measurements and model(s).
 - Develop diagnostic techniques (film thickness, velocity, shear, etc.).
 - Identify experimental facilities.
 - Conduct experiments.
 - Modify/update models in software.

Objective

 Develop and validate computational simulation capability for SLD ice build-up on aircraft surfaces.

Planning Questions

- How do we answer the "Wright challenge" (Show me where its wrong.)?
 - Do we need more SLD impingement data (different speeds, MVDs, more geometries — multi-element, 3D, etc.)?
 - If we can "calibrate" SLD impingement, do we need to be concerned with droplet dynamics (break up, splashing, etc.) and other potential "model weaknesses" on previous slide?
- Can we identify current model weaknesses, or fundamental experiments to ascertain? This would allow for specifics in roadmap.
- Is there research required on the computational methods themselves, i.e., "numerical" experiments.

Technology Development Roadmap

Current Activities

LEWICE3D/TRAJMC3D Version 2.2 Completed

Objectives:

- Modify LEWICE/TRAJCM3D ice accretion software to allow Super Cooled Large Droplet (SLD) and High Ice Water Content (HIWC) analysis.
- Predict rate ice will accrete due to SLD conditions with splashing and rate which crystals will impinge due to bouncing. Assessed SLD model against SLD data from Wichita State University Impingement database.

Results:

- SLD splashing, droplet breakup and ice crystal bouncing physics were added to the LEWICE3D/TRAJMC3D software.
- LEWICE3D/TRAJMC3D results were compared to SLD data from the Wichita State University Impingement database for several geometries. Comparisons were good for the all of the cases except the multi-element wing where LEWICE3D over-predicted collection efficiency on the main element and flap. This is thought to be due to deficiencies in the flow model.
- Delivered Version 2.2. of the TRAJMC3D software to Boeing Company and is currently available to the public.

Collection Efficiency

Robust Mesh Generation for Aircraft Icing Applications

Objective:

 To facilitate grid-based ice accretion simulations on realistic, three-dimensional configurations

Key Technology:

 Automated meshing with surface/volume mesh deformation

Approach:

- Adapt/develop meshing tools for
 - volume preserving surface mesh evolution
 - volume mesh deformation
 - mesh quality improvement
- Emphasize automation, efficiency, and robustness

Initial surface and volume meshes

- Step 1. Compute flow solution
- Step 2. Compute ice accretion rates (LEWICE3D)
- Step 3. Evolve surface and deform volume mesh

Deformed surface and volume meshes

Project Status:

- Basic toolset for evolution/deformation is complete
- Verification and validation is ongoing.

Modeling Improvements Required

SLD Modeling Improvements Required

- Droplet break-up
- **Droplet splashing**
- Droplet re-impingement
- Ice shape surface motion

SLD Droplet Experimental Research

Objective

Measure deformation and breakup of water droplets approaching leading edge (LE) of airfoil.

Approach

- Airfoil on a rotating arm, velocities 50-90 m/s
- Droplets fall along airfoil path, diameters 200-2000 μm
- High speed imaging capture droplet deformation
- Three airfoils of same geometry and chords of 0.210, 0.470 and 0.710 m
- Obtain droplet displacement, velocity, acceleration, Reynolds Number, Weber Number, Bond Number, vertical and horizontal deformation, and distance from LE where breakup begins

Conceptual View of Experiment

Project Status

Several tests completed; latest test conducted at INTA, Oct. 2012

Droplet Breakup Results

Run 072011.14B.1 droplet #1, droplet diameter = 1032 μ m, airfoil chord = 0.710 m, airfoil velocity = 90 m/sec

	1	1	1	1	•
Frame #	190	194	198	203	205
Time (μsec)	2520	2573	2627	2653	2720
x-distance (mm)	32	28	23	17	15

	1		*	*	*
Frame #	207	209	212	215	218
Time (μsec)	2747	2773	2813	2853	2893
x-distance (mm)	13	11	8	5	2

Droplet Breakup Results

Weber Number vs. Distance from Airfol

Run 072011.14C droplet #1, droplet diameter = 1062 μ m, airfoil chord = 0.710 m, airfoil velocity = 90 m/sec

$$We = \frac{\rho_{air} \cdot V_{slip}^{2} \cdot D}{\sigma_{w/a}}$$

Typical Splashing Results

GLC305 AOA=6, MVD=92

Escape Velocity of Splashed Droplets on an Iced Airfoil

Impact Locations and Flow Solution

Airfoil: GLC-305

Splash Droplet Diameter: 5 µm

Free Stream Velocity: 90 m/s

Ice Shape Surface Motion

- Most SLD encounters are at warm temperatures
- SLD ice shapes have been observed to slide on the surface in icing tunnel testing
- This ice shape motion is not well documented and the parameters under which it may occur are unknown
- No numerical models are available

Validation Data Requirements

Ice Shapes

- Significant database available for freezing drizzle conditions
- Freezing rain ice shapes are needed for further validation of current codes
- 3D ice shape measurements are starting to become available
- Ice shape mass values should be collected for comparison to numerical results

Collection Efficiency

- A small database is available over a limited range of SLD conditions
- A greater range of droplet sizes and airspeeds are needed to improve numerical modeling of SLD
- A new data collection method is needed that provides information on direct impingement, splashing, and re-impingement

Thank you for your attention. Questions?