Section 5.3

Problems: 3, 6a, 7

Problem 3

- a). Proof. We set g(x) := h(x) x, and observe that it is continuous on [0,3]. We see that g(0) = 1 and g(3) = -1. Thus based on the Intermediate Value Theorem, there exists $d \in [0,3]$, such that g(d) = 0, which means h(d) d = 0, thus h(d) = d.
- b). Proof. Because h is a differentiable function on [0,3], thus we can invoke the mean value theorem. That is, there exists $c \in (0,3)$ such that $h'(c) = \frac{h(3) h(0)}{3 0} = \frac{2 1}{3 0} = \frac{1}{3}$.
- c). Proof. Similar to part b), using the mean value theorem, we see there exists $c \in (0,1)$ such that $f'(c) = \frac{f(1)-f(0)}{1-0} = 1$. We see h is differentiable on [1,3] and we see that h(1) = 2 = h(3). Thus being fancy, we can utilise Rolle's theorem to show that there exists $d \in (1,3)$ such that f'(d) = 0. Finally, we see that $0 < \frac{1}{4} < 1$, and using Darboux's theorem, we know that there exists $L \in (c,d)$ such that $h'(L) = \frac{1}{4}$ (reminder: $(c,d) \subseteq [0,3]$).

Problem 6

a). Proof. We know that for all $x \in [0, a]$, there exists $c \in (0, x)$ such that $g'(c) = \frac{g(x) - g(0)}{x - 0} = \frac{g(x)}{x}$. And we know that $|g'(c)| \leq M$ for all $c \in [0, a]$, so $|\frac{g(x)}{x}| \leq M$. Because $x \in [0, a]$, we know that

$$\left| \frac{g'(x)}{x} \right| \le M$$

$$\implies |g'(x)| \le Mx$$

since x > 0.

Problem 7

Proof. We will use a indirect proof. Assume for contradiction that there exists more than one fixed points. That is, there exists a, b, which are elements of the interval such that $a \neq b$ and f(a) = a and f(b) = b. We know that f is differentiable on the interval [a, b] (Notice: this also implies continuity). Thus we can invoke the Mean Value Theorem. That is there exists $c \in (a, b)$ such that

$$f'(c) = \frac{f(b) - f(a)}{b - a} = \frac{b - a}{b - a} = 1$$

However, we know that $f'(x) \neq 1$. Consequently, we have arrived at our contradiction. \square

Section 6.2

Problems: 2a, 8

Problem 2

a).

Claim. f_n is continous at 0.

Proof. Given $\epsilon > 0$, we let $\delta = \frac{1}{n}$. We see that $|x - 0| = |x| < \frac{1}{n} \implies |f_n(0) - f_n(x)| = |0 - 0| < \epsilon$. Notice that we have chosen x in such a way such that $|x| < \frac{1}{n} \implies -\frac{1}{n} < x < \frac{1}{n}$, thus $f_n(x)$ always equals 0.

Claim. f is not continuous at θ .

Proof. $f(x) = \lim_{n\to\infty} f_n(x)$. We let $(a_n) = \frac{1}{n}$ for $n \in \mathbb{N}$. We see that $(a_n) \to 0$, but $|f(0) - f(a_n)| = 1 > 0$. Thus we se $f(x_n)$ does not converge to f(0), and by the Criterion for Discontinuity, we may conclude that f is not continuous at c.

Claim. f_n does not converge uniformly on \mathbb{R} .

Proof. We will use a indirect proof. Assume for contradiction that $f_n \to f$ uniformly. Let (f_n) be a sequence of functions that converges to f. Using the contrapostive statement of the Continuous Limit Theorem, if f is not continuous at 0, then there exists f_n is not continuous at 0. However, we know that f_n is continuous at 0 for all $n \in \mathbb{N}$. Thus we have arrived at our contradiction.

Problem 8

Proof. We see

$$\left| \frac{1}{g(x)} - \frac{1}{g_n(x)} \right| = \left| g_n(x) - g(x) \right| \left| \frac{1}{g(x)g_n(x)} \right|$$

We know that K is a compact set and $g(x) \neq 0$, thus we know |g(x)| has a minimum M > 0, that is $M \leq |g(x)|$, so $\frac{1}{|g(x)|} \leq M$. Now we will show $\frac{1}{|g_n(x)|}$ is bounded. We know for all $\epsilon > 0$, there exists $N \in \mathbb{N}$ such that $|g_n(x) - g(x)| < \epsilon$ whenever $n \geq N$ and $x \in K$. Thus, we choose some $\epsilon_1 < M$, and we know that

$$|g(x) - g(x)_n| < \epsilon_1$$

$$\implies |g(x)| < \epsilon_1 + |g_n(x)|$$

$$\implies |g_n(x)| > |g(x)| - \epsilon_1$$

$$\implies |g_n(x)| > M - \epsilon_1$$

$$\implies \frac{1}{|g_n(x)|} < \frac{1}{M - \epsilon_1}$$

let $P := \frac{1}{M(M-\epsilon_1)}$, we see that

$$\frac{1}{|g(x)g(x)|} < \frac{1}{M(M - \epsilon_1)} = P$$

Consequently, $\left|\frac{1}{g(x)} - \frac{1}{g_n(x)}\right| = |g(x) - g_n(x)| \left|\frac{1}{g(x)g_n(x)}\right|$. And so for any $\epsilon > 0$, we can choose an $N \in \mathbb{N}$ such that $n \geq N \implies |g(x) - g_n(x)| < \frac{\epsilon}{P} \implies \left|\frac{1}{g(x)} - \frac{1}{g_n(x)}\right| < \epsilon$, and we got our desired result.