

Matching em Grafo Bipartido

ACADÊMICOS: ALEXANDRE CAETANO

ANDRÉ LUIS PERIPOLLI

PROFESSOR: DIEGO BUCHINGER

DISCIPLINA: COMPLEXIDADE DE ALGORITMO - CAL-0001

Índice

- Introdução
- Por Fluxo: Edmond-Karp
- Por Hopcroft-Karp
- Comparação: Edmonds-Karp x Hopcropf-Karp

- •O que é Grafo Bipartido?
- •O que é Matching?
- Designação
 - Tarefas x Máquinas
 - Recursos x Consumidores
 - Alunos x Disciplinas

Por Fluxo

- •Transformar grafo em direcionado.
- Criar Sorce (Fonte) para coluna U.
- Criar Sink (Dreno) para coluna V.
- •Atribuir capacidade máxima de 1 unidade para arestas.
- Calcular Fluxo máximo (Escolher Método).
- •Ford-Fulkerson vs Edmond-Karp.

S = Fonte

Matches: A-2, B-1


```
makeFlowGraph(G);
Enquanto(S->T){
    BFS(G);
    Update.Graph(G);
}
```


Por Fluxo - Edmond-Karp TEMPO

```
makeFlowGraph(G); \rightarrow \Theta(E + V)

Enquanto(S->T){ \rightarrow O(V*E)

BFS(G); \rightarrow O(V + E) \rightarrow O(EV^2 + E^2V)

Update.Graph(G); \rightarrow O(V)
```

Tempo: $O(EV^2 + E^2V) + \Theta(E + V) = O(EV^2 + E^2V)$

Por Fluxo - Edmond-Karp TEMPO

Tempo: $O(EV^2 + E^2V) + \Theta(E + V) = O(EV^2 + E^2V)$

Por Fluxo - Edmond-Karp TEMPO

Tempo: $\Omega(V^2/2) + \Theta(E + V) = \Omega(V^2)$

Por Fluxo - Edmond-Karp ESPAÇO

```
makeFlowGraph(G); \rightarrow \Theta(E + V)

Enquanto(S->T){ \rightarrow O(E+V) \rightarrow O(E+V)

Update.Graph(G); \rightarrow O(E)
```

Espaço: $O(E + V) + \Theta(E + V) = O(E + V)$

Por Fluxo - Edmond-Karp ESPAÇO

```
makeFlowGraph(G); \rightarrow \Theta(E + V)

Enquanto(S->T){ \rightarrow \Omega(V)

BFS(G); \rightarrow \Omega(V)

Update.Graph(G); \rightarrow \Theta(1)
```

Espaço: $\Omega(V) + \Theta(E) = \Omega(E + V)$

A

В

C

D

E

1

2

3

4

5

Matches = 0 Sem par: A, B, C, D, E BFS de U livre até V livre

Matches = A-1, B-4, C-2, D-3 Sem par: E BFS de E até 5

BFS

DFS

Matches

BFS

DFS

Matches: A-1, <u>B-4</u>, C-2, <u>D-3</u>

BFS

DFS

Matches: A-1, <u>B-5</u>, C-2, <u>D-4, E-3</u>

Sem par: *vazio*


```
Inicio
Grafo G;
Matches =0;
F={a, b, c, ...}; //Todo conjunto U
Enquanto (F!= Vazio)
  Augmenting_Path(G);
Return Matches;
Fim
Augmanting_Path(G)
  BFS();
  DFS();
```


Por Hopcroft-Karp - TEMPO

```
Inicio
Grafo G;
Matches =0;
F={a, b, c, ...}; //Todo conjunto U
Enquanto (F!= Vazio)
  Augmenting_Path(G);
Return Matches;
Fim
Augmanting_Path(G)
                          O(V + E)
  BFS();
                       - O(V + E)
  DFS();
```


Por Hopcroft-Karp - TEMPO

Inicio

```
Grafo G;

Matches =0;

F={a, b, c, ...}; //Todo conjunto U

Enquanto (F!= Vazio)

Augmenting_Path(G); O(V + E)

Return Matches;
```

Fim

Tempo: $O((V + E)^* VV)$

Por Hopcroft-Karp - TEMPO

Inicio

Fim

Tempo: $\Omega(V)$

Por Hopcroft-Karp - ESPAÇO

- O(V + E)

```
Inicio
Grafo G;
Matches =0;
F={a, b, c, ...}; //Todo conjunto U
Enquanto (F!= Vazio)
  Augmenting_Path(G);
Return Matches;
Fim
Augmanting_Path(G)
                          O(V + E)
  BFS();
```

DFS();

Por Hopcroft-Karp - ESPAÇO

Inicio

Grafo G;

Return Matches;

Fim

Espaço: O(V + E)

Por Hopcroft-Karp - ESPAÇO

Inicio

Fim

Espaço: Ω(V)

Comparação

Comparação

	ТЕМРО		ESPAÇO	
	Pior Caso	Melhor Caso	Pior Caso	Melhor Caso
Por Fluxo	$O(EV^2 + E^2V)$	$\Omega(V^2)$	O(V + E)	$\Omega(V + E)$
Por Hopcroft-Karp	O((V + E)* √V)	Ω(V)	O(V + E)	Ω(V)

Referência

CORNELL UNIVERSITY. The Edmund-Karp max-flow algorithm. In: Introduction to algorithm. Ithaca, New York: 2010 Disponível em:

http://www.cs.cornell.edu/courses/cs4820/2012sp/handouts/edmondskarp.pdf. Acesso em: 16 out. 2017.

FEOFILOFF, Paulo. Fluxo em redes. Universidade de São Paulo. Disponível em: http://www.ime.usp.br/~pf/flows/mynotes/FluxoEmRedes.pdf. Acesso em 16 out. 2017.

MAHAJAN, Meena. Matching in graphs. **The Institute of Mathematical Sciences.** 6 jan. 2010. Disponível em: http://www.imsc.res.in/~meena/matching/hopcroft-karp.pdf. Acesso em 16 out. 2017.

SANTIAGO, J. C. D, DOS SANTOS, H. C. Fluxo máximo e emparelhamento. **SlidePlayer.** Disponível em: http://slideplayer.com.br/slide/2263484/. Acesso em: 16 out. 2017.

CHEN Xi. **Analysis of algorithms I:** Edmonds-Karp and maximum bipartite matching. 2017. Disponível em: https://alg12.wikischolars.columbia.edu/file/view/MATCHING.pdf. Acesso em: 16 out. 2017

Obrigado!

ACADÊMICOS: ALEXANDRE CAETANO

ANDRÉ LUIS PERIPOLLI

PROFESSOR: DIEGO BUCHINGER

DISCIPLINA: COMPLEXIDADE DE ALGORITMO - CAL-0001