Data Structures and Algorithms

(ESO207)

Lecture 36

A new algorithm design paradigm: Greedy strategy

part III

Continuing Problem from last class

Minimum spanning tree

Problem Description

Input: an undirected graph G = (V, E)

Aim: compute a spanning tree (V, E')

Lemma (proved in last class):

If $e_0 \in E$ is the edge of **least weight** in G, then there is a **MST** T containing e_0 .

How to use this **Lemma** to design an algorithm for **MST**?

Theorem:

A useful lesson for design of a graph algorithm

If you have a complicated algorithm for a graph problem, ...

> search for some graph theoretic property

to design simpler and more efficient algorithm

Two graph theoretic properties of MST

- Cut property
- Cycle property

Cut Property

Cut Property

Definition: For any subset $A \subseteq V$

$$\operatorname{cut}(A,\overline{A}) = \{ (u,v) \in E \mid$$

Cut-property:

The least weight edge of a $cut(A, \overline{A})$ must be in MST.

Proof of cut-property

Proof of cut-property

Let T be the MST, and $(u,v) \notin T$.

Question: What happens if we remove (x,y) from T, and add (u,v) to T.

Proof of cut-property

Let T be the MST, and $(u,v) \notin T$.

Question: What happens if we remove (x,y) from T, and add (u,v) to T.

Cycle Property

Cycle Property

Cycle-property:

Maximum weight edge of any cycle C can not be present in MST.

Proof of Cycle property

Let T be the MST, and $(u,v) \in T$.

Proof of Cycle property

Proof of Cycle property

Algorithms based on cut Property

An Algorithm based on cut property

```
Algorithm (Input: graph G = (V, E) with weights on edges)
T \leftarrow \emptyset;
A \leftarrow \{u\};
While (A \leftrightarrow V) do
            Compute the least weight edge from cut(A, \overline{A});
            Let this edge be (x,y), with x \in A, y \in A;
            T \leftarrow T \cup \{(x, y)\};
            A \leftarrow A \cup \{v\}:
Return T;
Number of iterations of the While loop:
Time spent in one iteration of While loop: O(m)
```

 \rightarrow Running time of the algorithm: O(mn)

Algorithm based on cycle Property

An Algorithm based on cycle property

Description

Number of iterations of the **While** loop: m-n+1Time spent in one iteration of While loop: O(n)Running time of the algorithm: O(mn)

Problem 3

Mobile towers on a road

A mobile tower can cover any cell phone within radius d.

Problem statement:

There are n houses located along a road.

We want to place mobile towers such that

- Each house is <u>covered</u> by at least one mobile tower.
- The number of mobile towers used is least possible.

Strategy 1:

Place tower at first house,

Remove all houses covered by this tower.

Proceed to the next uncovered house ...

Place tower at distance d to the right of the first house;

Remove all houses covered by this tower;

Proceed to the next uncovered house along the road...

Lemma: There is an optimal solution for the problem in which the <u>leftmost</u> tower is placed at distance d to the right of the first house

Homework ...

Ponder over the following questions before coming for the next class

- Use cycle property and/or cut property to design a new algorithm for MST
- Use some data structure to improve the running time of the algorithms discussed in this class to $O(m \log n)$