Somme des premiers	Somme des q	Nbre d'éléments
entiers	puissances	
$\sum_{k=1}^{n} k = \frac{n \times (n-1)}{2}$	$\sum_{n=0}^{n} q^{n} = \frac{1 - q^{n+1}}{1 - q}$	$\sum_{k=1}^{n} = (n-k+1)$

Suite arithmétique	Suite géométrique
$u_{n+1}=u_{n+1}+a$	$u_{n+1} = q \times u_n$
$u_n = u_{n_0} + a \times (n - n_0)$	$u_n = u_{n_0} \times q^{n - n_0}$

Raisonnement par récurrence

Initialisation	Hérédité	
$P(u_0)$	1. Démontrer u_{n+1} (l'écrire)	
	2. Partir u_n en ajoutant des termes.	

Trigonométrie

$$\cos x^2 + \sin x^2 = 1$$
(Pythagore)

	Cos	Sin
$\pi/6$	$\sqrt{3/2}$	1/2
$\pi/4$	$\sqrt{2/2}$	$\sqrt{2/2}$
$\pi/6$	1/2	$\sqrt{3/2}$

Coefficient directeur d'une droite	Formule de la droite	Vecteur directeur
		unecteur
$m=rac{y_B-y_A}{}$	ax + by + c = 0	$\underset{vd}{\rightarrow} (-b;a)$
$x_B - x_A$) u
(=-a pour b=1).		

Statistique descriptive

Ind. de tendance centrale	Moyenne/Médiane	
Ind. de dispersion	Écart-	Moyenne des
	type ($\sqrt{variance}$)	écarts à la
		moyenne

Dérivé et primitive

Dérivée	Connaitre les variations de $f(x)$ grâce au signe de la dérivée.
Tangente :	f'(a)(x-a)+f(a)
Primitive	Calculer l'aire sous la courbe : $\int f(x) dx = F(x) + C$

f(x)	u + v	u ⁿ	$u \times v$	$\frac{u}{v}$
f'(x)	u' + v'	$n \times u' \times u^{n-1}$	u'v + uv'	$\frac{u'v - uv'}{v^2}$

f(x)	e^u	ln (<i>u</i>)	cos u	sin u	tanu
f'(x)	u'e ^u	<u>u'</u>	$-u' \times \sin u$	$u' \times \cos u$	$u' \times (1 + (\tan u)^2)$
		\overline{u}			

Trouver une primitive	$\int u' \times v = [uv] - \int u \times v'$
Intégration par partie	Jant Lati

Identités remarquables	Factoriser et développer
pour les polyn. (appelé forme	Connaitre les variations de
canonique)	f(x).

Les polynômes

Trouver $f(x) = 0$	0 solution	1 racine	2 racines
$\Delta = b^2 - 4ac$	Δ< 0	$\Delta = 0$	$\Delta > 0$
	Racine :	$x_i = \frac{-}{-}$	$\frac{b \pm \sqrt{\Delta}}{2a}$

Les connecteurs logiques

<u> </u>			
$A\Rightarrow B$	• A est une condition suffisante de B.		
	• B nécessaire <i>A</i> .		
$A\Rightarrow B$	FAUX seulement si A est Vraie implique B est Faux.		
A et non(B)	Négation		
non(B)	Contraposée est vrai seulement si $A \Rightarrow B$ l'est aussi		
$\Rightarrow non(A)$			
$B\Rightarrow A$	Réciproque		

Limites

4 formes indéterminées	$-\infty + \infty, \frac{\infty}{\infty}, \frac{0}{0}, \infty \times 0.$
factoriser	
avec des racines	Multiplié par le conjugué $(a + \sqrt{b})(a - \sqrt{b})$
Limite polynômes en ±∞	Terme de plus haut degré.

Exponentielle	$e^{a+b}=e^a\times e^b$	$e^{a^n}=e^{n\times a}$
Logarithme népérien	$ \ln\left(\frac{a}{b}\right) = \ln(a) - \ln\left(b\right) $	$\ln(a^n) = n \times \ln\left(a\right)$

Cercle de rayon r et de centre $(a; b)$	$(x-a)^2 + (y-b)^2 = r^2$
---	---------------------------

Lettres grecques

9 1					
Α	Α	Alpha	Ξ	ξ	Xi
В	β	Bêta	П	π	Pi
Γ	γ	Gamma	Р	ρ	Rhô
Δ	δ	Delta	Σ	σ/ς	Sigma
E	ε	Epsilon	Т	τ	Tau
Θ	θ	Thêta	Υ	υ	Upsilon
K	К	Карра	Ф	ф	Phi
٨	λ	Lambda	Х	χ	Xi
M	μ	Mu	Ψ	ψ	Psi
IVI	μ	Mu	Ψ	Ψ	Psi

Unité et conversion

kilo	k	10^{-3}	Relation surface : $1km^2$ =
Hecto	h	10-2	$(10^3)^2m^2$
Déca	da	10-1	
Unité		$10^0 = 1$	Relation volume : $1km^3 = (103)^3 \dots 3$
Déci	d	10 ¹	$(10^3)^3m^3$
Centi	С	10 ²	Relation avec le litre
Milli	m	10 ³	• $1L = 1dm^3$
Micro	μ	10 ⁶	• 1L = 1 kg d'eau
Nano	n	10 ⁹	
			·

Volume

Forme	Volume
Sphère	$\frac{3}{4}\pi R^3$

Les combinaisons

Soit un ensemble E de n éléments. On souhaite connaitre le nombre de combinaison de k éléments possible. On ne tient pas compte de l'ordre des éléments.

Répétition	Avec (gamma)	Sans
Formule	$\Gamma_n^k = \frac{(n+k-1)!}{k! (n-1)!}$	$C_n^k = \binom{n}{k} = \frac{n!}{k! (n-k)!}$

Modèle stochastiques (tirage aléatoire)

Modélisé par la loi Binomiale de paramètre p et 2N

Bernoulli probabilité d'obtenir le nombre de succès k pour une expérience à deux issues (gagné et perdu) répété n fois de manière identique et indépendante.

$$P(x=i) = C_n^k p^k (1-p)^{n-k}$$