OPERAÇÕES UNITÁRIAS III

PROF° KASSIA G SANTOS
DEPARTMENTO DE ENGENHARIA QUÍMICA
UFTM

AULAS 4 e 5

Sedimentação Industrial: Teste de Proveta

SEDIMENTAÇÃO

Processo de separação sólido-líquido promovido pela ação do campo gravitacional atuando sobre a suspensão, que possui constituintes com diferentes densidades.

SEDIMENTAÇÃO

Equipamento simples

Trabalha com altas capacidades (Q)

Batelada ou continuo

Clarificação

- ☐ Fluido limpo é o objetivo
- □ Pode ser necessário adicionar floculantes para remoção de sólidos finos.
- ☐ Exemplo: tratamento de água e rejeitos industriais.

Espessamento

- □Recuperação de sólidos;
- ☐ Adequar as concentrações a um processo subsequente;
- ☐ Facilitar transporte e descarte;
- □ Exemplo: processos de lixiviação, mineração, metalúrgicos, etc.

FATORES QUE AFETAM A SEDIMENTAÇÃO

Natureza dos sólidos

- tamanho (↑dp ↓t)
- densidade ($\uparrow \rho_p \downarrow t$)
- propriedades químicas

Concentração de Sólidos

• ↑Cv ↑t

SEDIMENTAÇÃO BATELADA

Teste de Proveta

Teste de proveta: acompanhamento da interface superior da suspensão com o tempo.

TESTE DE PROVETA

Hipóteses

1) Suspensão homogênea(Cv constante) **2)** Formação das Zonas de sedimentação

3) Alturas das Zonas A e D aumentam, Zona B desaparece **4) C**ompressão lenta dos sólidos, pequena variação na altura de D

SEDIMENTAÇÃO BATELADA

Teste de Proveta

Área de Secção cilíndrica Área de Secção retangular

Area: controla o tempo de sedimentação dos sólidos. É importante na determinação da capacidade do equipamento.

Altura: não altera a taxa de sedimentação, nem C₁. É importante ter altura suficiente para que a sedimentação aconteça livremente.

ESPESSADOR CONTÍNUO CONVENCIONAL

Tanque provido de um sistema de alimentação de suspensão e outro de retirada do espessado (raspadores), dispositivos para descarga do *overflow e do underflow. É o mais utilizado* industrialmente.

ESPESSADOR CONTÍNUO DORR OLIVER

Sedimentador:

- ☐ tanque cilíndrico de grande diâmetro (concreto, aço (<100 ft), terra compactada ou cimento.
- ☐ alimentação é introduzida lentamente (mínimo de turbulência)
- um mecanismo de varredura, acionado externamente, conduz os sólidos depositados até o ponto de descarga
- possui um dispositivo para remover os sólidos concentrados e um outro para remoção do líquido clarificado.

Hipóteses

☐ O funcionamento adequado de um espessador requer uma corrente de líquido clarificado isenta de sólidos. ☐ É necessário que a velocidade ascendente de líquido clarificado seja menor do que a velocidade de sedimentação dos sólidos, para que não ocorra o arraste dessas partículas. ☐ A capacidade do espessador é a medida do volume de suspensão que pode ser tratado por unidade de tempo, para a obtenção de um espessado com características pré-determinadas. ☐ Pra isso é necessário que o cálculo da capacidade seja feito para toda a faixa de concentrações de sólido existente dentro do espessador, desde a concentração de alimentação (Ca) até a concentração desejada da lama (L). □ O valor mínimo de capacidade é que deverá ser utilizado nos cálculos de projeto do espessador.

Nomenclatura

 $ext{C}^*$ - concentração de sólidos numa dada seção transversal do sedimentador: $\left(V_{\text{sólidos}}/V_{\text{suspensão}}\right)$

L- vazão de suspensão descendente num nível qualquer do sedimentador,

V- vazão de líquido ascendente num nível qualquer do sedimentador,

A- área da seção transversal do sedimentador, ub-índice: a - alimentação; L- lama ou lodo, F- vazão de alimentação,

Ca - Concentração de sólidos na alimentação;

U- vazão de lama que deixa o sedimentador.

C_L - Concentração da lama (underflow);

Balanço de massa Global:

F= U+C

Balanço de massa

Balanço de massa de sólido: m=ρ_sV_s

$$\Rightarrow U = \frac{LC^*}{C_L^*}$$

$$\begin{cases}
L = F \frac{C_a}{C^*} \\
U = F \frac{C_a^*}{C_L^*}
\end{cases}$$

Só há saída de sólidos no underflow (Concentração C* são volumétricas)

Balanço de massa

Balanço de massa do líquido entre um nível qualquer e o fundo: m=pV

$$\sum_{X} L(1-C^*) = \sum_{X} V + \sum_{X} U(1-C_L^*)$$

Entrada no VC Saída do VC Underflow

$$L(1-C^*) = V + \frac{LC^*}{C_L^*} (1-C_L^*)$$

$$\Rightarrow V = LC^* \left(\frac{1}{C^*} - \frac{1}{C_L^*}\right)$$

$$\Rightarrow U = \frac{LC^*}{C_L^*}; L = F \frac{C_a^*}{C^*}; U = F \frac{C_a^*}{C_L^*}$$

Balanço de massa

Balanço de massa do líquido entre um nível qualquer e o fundo: m=ρV

$$\frac{V}{A} = \frac{FC_a^*}{A} \left(\frac{1}{C^*} - \frac{1}{C_L^*} \right) = v$$

$$\frac{F}{A} = \frac{v}{C_a^* \left(\frac{1}{C^*} - \frac{1}{C_L^*}\right)}$$

Concentração mássica:

massa de sólidos / volume suspensão

$$\rightarrow C = C^* \rho_s$$

$$\frac{F}{A} = \frac{1}{C_a} \frac{v}{\left(\frac{1}{C} - \frac{1}{C_L}\right)}$$

Mas $\frac{V}{A} = v \rightarrow \text{velocidade do fluido}$

Equação de Projeto do Sedimentador

DIMENSIONAMENTO > Método de Coe e Clevenger

Cálculo da Área:

$$\frac{F}{A} = \frac{1}{C_a} \frac{v_0}{\left(\frac{1}{C_0} - \frac{1}{C_L}\right)}$$

Equação de Projeto do Sedimentador

- ☐ A relação (C)x(v) é estabelecida através vários testes de proveta, com diferentes C₀, variando de Ca a CL.
- ☐ Em cada teste é medida a velocidade de sedimentação livre (no início da sedimentação), que é relacionada com a respectiva concentração da suspensão.
- ☐ De posse dos diversos pares (v,C) pode-se calcular o valor mínimo de F/A na Eq. De projeto

C0 [g/L]	v0 [cm/min]	F/A	Α	D
10	30			
50	25	Escoll	ner a mai	or área,
30	23	para	garantir	que a
100	10	cama	ada limita	nte irá
			sediment	ar
150	2		Codimoni	ai.

Método de Kynch (1952)

Método de Kynch (1952)

Cálculo da Área:

$$\frac{F}{A} = \frac{1}{C_a} \frac{v}{\left(\frac{1}{C} - \frac{1}{C_L}\right)}$$

Equação de Projeto do Sedimentador

- □ A relação (C)x(v) é estabelecida através de 1 único ensaio de proveta, com a mesma C_a do equipamento industrial
- □ Calcular valores de A para C_a≤C≤C_L
- ☐ Projeto deve selecionar o maior valor de A obtido (ou menor capacidade F/A).

Zi é altura que a suspensão ocuparia se tivesse a concentração homogênea C.

Método Biscaia Jr (1982)

Cálculo da Área:

- ☐ Utiliza 1 único ensaio de proveta, com a mesma C_a do equipamento industrial
- ☐ Divide a curva do teste de proveta em parte linear e parte exponencial
- □ Projeto deve calcular o menor F/A e usar um fator de segurança de 1,2 x (F/A)min.

Cálculo da Altura

- Região Clarificada + região de Concentração constante.
 - H1=0,45 a 0,75. Usualmente H1=0,6

- Região cônica do fundo.
- H2=0,146*R

Região de concentração variável e compactação. Usa-se a correlação de Orr.

$$H_C = \frac{4}{3} \frac{FC_a^* t}{A} \left[\frac{\rho_S - \rho}{\rho_I - \rho} \right]; \text{ mas } C_a^* = \frac{C_a}{\rho_S}$$

t - tempo de residência da região de compactação; ρ_s - densidade do sólido;

 ρ - densidade do líquido; ρ_I - densidade do lodo, C_a - Concentração mássica.

Cálculo da Altura

☐ Cálculo de t:

$$t = t_L - t_c$$

- t_c é o tempo em que a sedimentação deixa de ser livre (deixou de ser linear)
- t_L é o tempo para atingir a concentração do lodo C_L

□ Cálculo de ρ_L:

$$\rho_{L} = \frac{m_{L}}{V_{L}} = \frac{m_{s} + m_{A}}{V_{L}} = \frac{m_{s} + \rho V_{A}}{V_{L}} = \frac{m_{s} + \rho (V_{L} - m_{s} / \rho_{s})}{V_{L}}$$

CATÁLOGO (BOMBAS BETO)

VOLUME (L)	Ø A (mm)	B (mm)	C (mm)	D
2500		2860 mm	4060 mm	
2750		3080 mm	4280 mm	
3000	1200	3300 mm	4500 mm	2000 mm
3250		3520 mm	4720 mm	
3500		3740 mm	4940 mm	
3750		2310 mm	3810 mm	2600 mm
4750		2710 mm	4210 mm	
5750	1800	3110 mm	4610 mm	
6750		3510 mm	5010 mm	
7750		3910 mm	5410 mm	
8000		3110 mm	4610 mm	
9000		3410 mm	4910 mm	
10000	2200	3710 mm	5210 mm	3000 mm
11000		4010 mm	5510 mm	
12000		4310 mm	5810 mm	
13000		3800 mm	5260 mm	
14000		4050 mm	5510 mm	
15000	2500	4300 mm	5760 mm	3300 mm
16000		4550 mm	6010 mm	
17000		4800 mm	6260 mm	
18000		4560 mm	5860 mm	
19000		4760 mm	6060 mm	
20000	2800	4960 mm	6260 mm	3600 mm
21000		5160 mm	6460 mm	
22000		5360 mm	6660 mm	
23000		4800 mm	6160 mm	
24000		4950 mm	6310 mm	
25000	3000	5100 mm	6460 mm	3800 mm
26000		5250 mm	6610 mm	
27000		5400 mm	6760 mm	
35000	3500	5135 mm	6615 mm	4600 mm

Referências:

- ☐ G.J. Kynch, A Theory of Sedimentation, Trans. Faraday, 48, 166, 1952.
- ☐ F.M. Tiller, Revision of Kynch Sedimentation Theory, AIChE J., 275, 823, 1984.
- ☐ Cremasco, Operações Unitárias em Sistemas Particulados e Fluidomecânicos, Blusher, 2012.
- ☐ Perry 19.41 a 19.52.
- ☐ Massarani, Fluidodinâmica de Sistemas Particulados, 2001.

Atividades da Aula 5

Individual:

□ Ler a teoria no livro Cremasco ou outros livros e fazer um resumo de 1 folha.

Empresa

□ Procurar vídeos sobre o funcionamento de sedimentadores contínuos, suas aplicações industriais e cuidados e operação e colocar no site da empresa

AULA 6

Exercícios de Dimensionamento de Sedimentadores Contínuos

EX3 (Massarani, ex 12, pg142) Calcular o diâmetro e a altura do sedimentador Dorr-Oliver para operar com 30 m³/h de suspensão aquosa de cal. Dados: concentração de sólido na alimentação 0,08 g/cm³ de suspensão, concentração de sólido no lodo 0,25 g/cm³ de suspensão, densidade da cal 2,2 g/cm³ e temperatura 25°C. Ensaio de proveta a 25°C (0,08 g/cm³ de suspensão):

ti [min)	0	5	10	15	20	25	30	35	40	45
z (cm)	40	32,8	25,5	18,8	14,2	11,2	9,6	6,6	5,2	4,0

Dados:

D=? E H=?

 $Q = 30 \text{ m}^3/\text{h}$ $= 500000 \text{ cm}^3/\text{min}$

Ca=0,08 g/cm3 CL=0,25 g/cm3 $\rho_{\rm C}$ =2,2g/cm³

Água (ρ =1g/cm³; μ=1 cP).

1º- Fazer o gráfico 2º- Calcular (F/A)min - Biscaia

$$\left(\frac{F}{A}\right)_{\min} = \frac{z_0}{\theta_{\min}} = \frac{40}{23} = 1,739 \frac{cm}{\min}$$

$$z_{\min} = \frac{C_a z_0}{C_L} = \frac{0,08 \cdot 40}{0,25} = 12,8cm$$

$$A = \frac{500000}{1,739} = 287500cm^2$$

$$A_p = 1, 2A = 345000cm^2$$

EX3 (Massarani, ex 12, pg142) Calcular o diâmetro e a altura do sedimentador Dorr-Oliver para operar com 30 m³/h de suspensão aquosa de cal. Dados: concentração de sólido na alimentação 0,08 g/cm³ de suspensão, concentração de sólido no lodo 0,25 g/cm³ de suspensão, densidade da cal 2,2 g/cm³ e temperatura 25°C. Ensaio de proveta a 25°C (0,08 g/cm³ de suspensão):

Dados:

D=? E H=?

 $Q = 30 \text{ m}^3/\text{h}$ $= 500000 \text{ cm}^3/\text{min}$

Ca=0,08 g/cm3 CL=0,25 g/cm3 $\rho_{\rm C} = 2,2g/{\rm cm}^3$

Água (ρ =1g/cm³; μ =1 cP).

$$\left(\frac{F}{A}\right)_p = \frac{500000}{345000} = 1,45$$

3º - Cálculo de H:

$$H = H_1 + H_2 + H_C$$

Calculando t:

$$t = t_L - t_c = 41 - 11 = 30 \,\text{min}$$

Calculando
$$\rho_L$$
:
$$\rho_L = \frac{m_s + \rho(V_L - m_s / \rho_s)}{V_L}$$

$$\rho_L = \frac{0,25 + 1(1 - 0,25 / 2,2)}{1} = 1,14$$

$$H_c = \frac{4}{3} \frac{1,45 \cdot 0,08 \cdot 30}{2,2} \left[\frac{2,2-1}{1,14-1} \right] = 18,6cm$$

$$H = 0,60+0,48+0,22=1,30m$$

$$H_C = \frac{4}{3} \frac{FC_a t}{\rho_S A} \left[\frac{\rho_S - \rho}{\rho_L - \rho} \right]$$

$$H_C = \frac{4}{3} \frac{FC_a t}{\rho_s A} \left[\frac{\rho_s - \rho}{\rho_I - \rho} \right]$$
 $H_1 = 0, 6m; \ H_2 = 0, 146R = 0, 146 \frac{6, 6}{2} = 0, 48m$

EX4 (Cremasco, ex 13.1, pg340) Dimensionar o sedimentador para realizar a clarificação de licor branco bruto , operando a 30 m³/h de suspensão, Ca= 60 g/L de suspensão e C_L = 170 g/L de suspensão, ρ_C =2,7 g/cm³ e ρ =1,1 g/cm³.

ti [min)	0	5	10	15	20	25	30	35	40	45
z (cm)	40	32,8	25,5	18,8	14,2	11,2	9,6	6,6	5,2	4,0

Método Kynch

Dados:

D=? E H=?

Q= 30 m³/h = 500000 cm³/min

Ca=0,06 g/cm³ CL=0,17 g/cm³ ρ_s =2,7g/cm³

Fluido: ρ=1,1g/cm³

1º- Fazer o gráfico e obter Zi manualmente

t	Z	Z _i	$C = \frac{C_a z_0}{z_i}$	$v = \frac{z_i - z}{t}$	$\frac{v}{\binom{1}{C}-\binom{1}{C_L}}$
15	18,8	35,8	-	-	-
25	11,2	26	-	-	-
35	6,6	20,5	-	-	-

EX4 (Cremasco, ex 13.1, pg340) Dimensionar o sedimentador para realizar a clarificação de licor branco bruto, operando a 30 m³/h de suspensão, Ca= 60 g/L de suspensão e C_1 = 170 g/L de suspensão, ρ_C = 2,7 g/cm³ e ρ = 1,1 g/cm³.

ti [min)	0	5	10	15	20	25	30	35	40	45
z (cm)	40	32,8	25,5	18,8	14,2	11,2	9,6	6,6	5,2	4,0

Método Kynch 1º- Ajustar equações para Z x t. Obter Zi pela derivada da função.

t	Z	Z pred	-dz/dt	Zi	V	С	D
[min]	[cm]	[cm]	[cm/min]	[cm]	[cm/min]	[g/cm ³]	[m]
0	40.000	39.910		40.000	1.450	0.060	5.330
5	32.800	32.820		40.000	1.440	0.060	5.348
10	25.500	25.730		40.000	1.450	0.060	5.330
15	18.800	18.643	-0.929	32.736	0.929	0.073	5.648
20	14.200	14.529	-0.723	28.667	0.723	0.084	5.658
25	11.200	11.343	-0.558	25.141	0.558	0.095	5.609
30	9.600	8.886	-0.432	22.557	0.432	0.106	5.577
35	6.600	6.957	-0.346	18.717	0.346	0.128	4.598
40	5.200	5.357	-0.320	18.001	0.320	0.133	4.394
45	4.000	3.885	-0.294	17.244	0.294	0.139	4.112

$$z_i = z - \frac{dz}{dt} \cdot t \qquad v = \frac{z_i - z_i}{t}$$

EX4 (Cremasco, ex 13.1, pg340) Dimensionar o sedimentador para realizar a clarificação de licor branco bruto, operando a 30 m³/h de suspensão, Ca= 60 g/L de suspensão e C_L = 170 g/L de suspensão, ρ_C =2,7 g/cm³ e ρ =1,1 g/cm³. Método Kynch

$$D = -88,88997C^3 - 543,13469C^2 + 94,77386C + 1,64145$$

$$\frac{dD}{dC} = -88,88997 \cdot 3 \cdot C^2 - 543,13469 \cdot 2 \cdot C + 94,77386 = 0$$

$$C = 0.0855g / cm^3$$

$$D = 5,72m$$

EX4 (Cremasco, ex 13.1, pg340) Dimensionar o sedimentador para realizar a clarificação de licor branco bruto, operando a 30 m³/h de suspensão, Ca= 60 g/L de suspensão e C_1 = 170 g/L de suspensão, ρ_C = 2,7 g/cm³ e ρ = 1,1 g/cm³.

Método Kynch

Dados:

D=? E H=?

 $Q = 30 \text{ m}^3/\text{h}$ $= 500000 \text{ cm}^3/\text{min}$

Ca=0,06 g/cm3 CL=0,17 g/cm3 $\rho_{s} = 2.7 \text{g/cm}^{3}$

Fluido: $\rho = 1.1 \, \text{g/cm}^3$

3º - Cálculo de H: $H = H_1 + H_2 + H_C$

$$H = H_1 + H_2 + H_C$$

$$H_1 = 0,6m; \ H_2 = 0,146R = 0,146\frac{5,7}{2} = 0,42m$$

$$H_C = \frac{4}{3} \frac{FC_a t}{\rho_S A} \left[\frac{\rho_S - \rho}{\rho_L - \rho} \right]$$
 Calculando t: $t = t_L - t = 38 - 11 = 27 \text{ min}$

Calculando ρ_ι:

$$\rho_L = \frac{m_s + \rho(V_L - m_s / \rho_s)}{V_L}$$

$$\rho_L = \frac{0.17 + 1.1(1 - 0.17 / 2.7)}{1} = 1.2$$

$$\frac{F}{A}_{p} = \left(\frac{F}{A}\right)_{\min} = \frac{500000 \cdot 4}{\pi 572^{2}} = 1,94 \frac{cm}{\min}$$
15

$$H_c = \frac{4}{3} \frac{1,94 \cdot 0,06 \cdot 27}{2,7} \left[\frac{2,7-1,1}{1,2-1,1} \right] = 24,8cm$$

$$H = 0,75+0,42+0,25=1,42m$$

Conclusão: Sedimentador deve ter D=5,7 m e H=1,42 m

Atividade da aula: Resolva usando o Método Kynch e de Biscaia Jr

Ex: Determinar o diâmetro e a altura de um espessador Dorr para operar com 20 m³/h de uma suspensão aquosa de barita (ρ_s=4,1g/cm³) a 30°C. A concentração de sólidos na alimentação é de 103g/L de suspensão e o lodo final deve ter 346g/L de suspensão. Ensaio de proveta a 30°C conduziu aos seguintes resultados:

Tempo de sedimentação (min)	Altura da Interface Clarificada (cm)
0	40
2	37
5	32,4
10	24,9
14	18,8
18	12,6
23	8,5
26	7,4
30	6,3
33	5,6
40	4,8
45	4,5

Atividades da Aula 6

Individual:

☐ Refazer exercícios e fazer exercícios propostos de outros livros.

Empresa

☐ Fazer o Projeto Orientado de Sedimentadores. Escolher o tema. Procurar na literatura dados de teste de proveta do material escolhido. Usar os métodos de Kynch e Biscaia Jr e comparar. Usar uma área de projeto 20% superior a mínima.

