Sekvenčné logické obvody (SLO)

SLO je logický obvod, ktorých hodnoty výstupných premenných závisia od okamžitých hodnôt vstupných premenných a od predchádzajúceho stavu.

x - vstupné premenné

y - výstupné premenné

z - budiace funkcie

q - stavové premenné

c - hodinový signál (synchronizácia)

Stav systému je ucelovaný v jeho pamäti a vyjadruje to, čo sa odohralo na jeho vstupoch v minulosti. Stav systému reprezentuje tzv. vnutorné alebo stavové premenné. SLO:

Synchrónne - vnútorný stav systému sa zmení len po prívode synchronizačného signálu

Asynchrónne - vnútorný stav systému a jeho výstup sa zmení po zmene vstupných hodnôt.

Preklápací obvod (PO) - Plní funkciu pamäťového prvku. Je to jednobitová pamäť, schopná zapamätať si 1 alebo 0.

Podľa počtu stabilných stavov delíme PO na:

- Astabilné Nemá stabilný stav, neustále sa preklápa medzi dvomi nestabilnými stavmi.
- Monostabilné Má 1 stabilný stav
- Bistabilné Majú 2 stabilné stavy, z jedného stabilného stavu do druhého stabilného stavu ich možno preklápať vstupom.

RS preklápací obvod - Asynchrónny

Obvod má 2 vstupy a 2 výstupy.

- S Set Ním sa PO nastavuje do logickej 1 a vstup do stavu Q = 1
- R Reset Nulovanie PO, ak sa na vstup R privedie 1, výstup bude Q = 0

Ak na vstupe S = 0, R = 0=> výstup sa nemení Ak na vstupe S = 0, R = 1=> výstup Q = 0 Ak na vstupe S = 1, R = 0=> výstup Q = 1 Ak na vstupe S = 1, R = 1=> výstup nieje definovaný, táto situácia nesmie nastať, ide o takzvaný **HAZARDNÝ STAV**

Q_{n+1} - Nasledujúci stav Q_n - Predchádzajúci stav

Skrátená pravdivostná tabuľka

S	R	Q _{n+1}
0	0	Qn
0	1	0
1	0	1
1	1	X

Časový diagram RS PO

Úplná pravdivostná tabuľka, z nej vieme odvodiť vnútornú štruktúru RS PO

Qn	S	R	Q _{n+1}	$ar{Q}$
0	0	0	0	1
0	0	1	0	1
0	1	0	1	0
0	1	1	×	X
1	0	0	1	0
1	0	1	0	1
1	1	0	1	0
1	1	1	×	X

logická sieť RS PO realizovaná NAND

logická sieť RS PO realizovaná NOR

Graf prechodov

Určuje vstupy SR pri prechode

1 -> 0

0 -> 1

1 -> 1

0 -> 0

Vidíme to v úplnej pravdivostnej tabulke Qn -> Qn+1

$$\begin{aligned} Q_{n+1} &= S \; + \; \overline{R} \; * \; Q_n \; \underline{= \; \overline{\overline{S} * \overline{\overline{R}} * Q_n}} \\ \overline{Q} &= R \; + \; \overline{S} * \overline{Q} \; = \; \overline{\overline{R} * \overline{\overline{S} * \overline{Q}}} \end{aligned}$$

RS PO synchrónny - Doplníme ibvod hodnotami

AC = 0 -> pamäťové správanie (ostáva v predchádzajúcom stave)

C = 1 -> Podľa pravdivostnej tabulky

Zmena na výstupe sa udeje so zmenou synchronizačného impulzu.

JK preklápací obvod - Je to vylepšený RS PO bez hazardného stavu

Uplná pravdivostná tabuľka

Qn	J	K	Q _{n+1}	Q
0	0	0	0	1
0	0	1	0	1
0	1	0	1	0
0	1	1	1	0
1	0	0	1	0
1	0	1	0	1
1	1	0	1	0
1	П	1	0	1

! Nenastáva hazardný stav, ale preklopí sa do opačného stavu, ako bol doposial!

T preklápací obvod - Odvodený z JK PO tak, že má prepojené vstupy Má jediný vstup T, ak sa rovná jednej, preklopí sa do opačného stavu.

Asynchrónny

Keďže sú vstupy prepojenie nemôže nastať 01 a 10

Pravdivostná tabuľka odvodená porovnávacou metódou

Graf prechodov

Tabuľka prechodov

D preklápací obvod - Odvodený z RS PO, používa sa len synchrónny

Keďže sú vstupy prepojené cez invertor => nemože nastať 00 a 11

Graf prechodov

