

SAR Test Report

Product Name : Voice Commander

Model No. : VC01

Applicant: The Navvo Group, LLC

Address : 6553 City West Pkwy Eden Prairie, MN

55344 USA

Date of Receipt : 2008/06/05

Issued Date : 2008/06/24

Report No. : 086175R-HPUSP09V01

Version : V1.0

The test results relate only to the samples tested.

The test report shall not be reproduced except in full without the written approval of QuieTek Corporation.

Test Report Certification

Issued Date: 2008/06/24

Report No.:086175R-HPUSP09V01

QuieTek

Product Name : Voice Commander

Applicant : The Navvo Group, LLC

Address : 6553 City West Pkwy Eden Prairie, MN 55344 USA

: Lite-On TECHNOLOGY CORP. Manufacturer

Model No. : VC01 **Trade Name** : VOCO

Applicable Standard : FCC Oet65 Supplement C June 2001

> IEEE Std. 1528-2003 47CFR § 2.1093

Test Result : Max. SAR Measurement (1g)

> 802.11b: 0.112 W/kg 802.11g: 0.061 W/kg

Application Type Certification

The test results relate only to the samples tested.

The test report shall not be reproduced except in full without the written approval of QuieTek Corporation.

Documented By

(Engineering Adm. Assistant / Nicole Huang)

Nicole Huang

Tested By

Approved By

Jung Chang

(Engineer / Jung Chang)

(D<mark>eputy Manager</mark> / Vincent Lin)

TABLE OF CONTENTS

1. General Information 5 1.1 EUT Description 5 1.2 Test Environment 6 2. SAR Measurement System 7 2.1 ALSAS-10U System Description 7 2.1.1 Applications 7 2.1.2 Area Scans 7 2.1.3 Zoom Scan (Cube Scan Averaging) 8 2.1.4 ALSAS-10U Interpolation and Extrapolation Uncertainty 8 2.2.1 Isotropic E-Field Probe 8 2.2.1 Isotropic E-Field Probe Specification 10 2.3 Boundary Detection Unit and Probe Mounting Device 10 2.4 Daq-Paq (Analog to Digital Electronics) 11 Amplifier Range 11 2.5 Axis Articulated Robot 11 2.6 ALSAS Universal Workstation 12 2.7 Universal Device Positioner 12 2.8 Phantom Types 12 2.8 I APREL SAM Phantoms 13 2.8.2 APREL Laboratorics Universal Phantom 13 3. Tissue Simulating Liquid 14 3.1 The composition of the tissue simulating liquid 14 3.2 Tissue Calibration Result 14 4.1 SAR System Validation 16 4.1.2 Validation Re	_	cription	Page
1.2 Test Environment 6 SAR Measurement System 7 2.1 ALSAS-10U System Description 7 2.1.1 Applications 7 2.1.2 Area Scans 7 2.1.3 Zoom Scan (Cube Scan Averaging) 8 2.1.4 ALSAS-10U Interpolation and Extrapolation Uncertainty 8 2.2 Isotropic E-Field Probe 8 2.2.1 Isotropic E-Field Probe Specification 10 2.3 Boundary Detection Unit and Probe Mounting Device 10 2.4 Daq-Paq (Analog to Digital Electronics) 11 Amplifier Range 11 2.5 Axis Articulated Robot 11 2.6 ALSAS Universal Workstation 12 2.7 Universal Device Positioner 12 2.8 Phantom Types 12 2.8.1 APREL SAM Phantoms 13 2.8.2 APREL Laboratorics Universal Phantom 13 3.1 Tissue Simulating Liquid 14 3.1 The composition of the tissue simulating liquid 14 3.1 The composition of the tissue simulating liquid 14 3.2 Tissue Calibration Result 14 3.3 Tissue Dielectric Parameters for Head and Body Phantoms 15 4. SAR Measurement Procedure </th <th>1.</th> <th></th> <th></th>	1.		
2. SAR Measurement System 7 2.1 ALSAS-10U System Description 7 2.1.1 Applications 7 2.1.2 Area Scans. 7 2.1.3 Zoom Scan (Cube Scan Averaging) 8 2.1.4 ALSAS-10U Interpolation and Extrapolation Uncertainty. 8 2.2 Isotropic E-Field Probe 8 2.2.1 Isotropic E-Field Probe Specification 10 2.3 Boundary Detection Unit and Probe Mounting Device 10 2.4 Daq-Paq (Analog to Digital Electronics) 11 Amplifier Range. 11 2.5 Axis Articulated Robot 11 2.6 ALSAS Universal Workstation 12 2.7 Universal Device Positioner. 12 2.8 Phantom Types. 12 2.8.1 APREL SAM Phantoms 13 2.8.2 APREL Laboratories Universal Phantom 13 3. Tissue Simulating Liquid 14 3.1 The composition of the tissue simulating liquid 14 3.2 Tissue Calibration Result 14 3.3 Tissue Dielectric Parameters for Head and Body Phantoms 15 4. SAR Measurement Procedure 16 4.1 Validation Dipoles 16 4.1.2 Validation Result 16 </td <td></td> <td>1</td> <td></td>		1	
2.1 ALSAS-10U System Description 7 2.1.1 Applications 7 2.1.2 Area Scans 7 2.1.3 Zoom Scan (Cube Scan Averaging) 8 2.1.4 ALSAS-10U Interpolation and Extrapolation Uncertainty 8 2.2.1 Isotropic F-Field Probe 8 2.2.1 Isotropic E-Field Probe Specification 10 2.3 Boundary Detection Unit and Probe Mounting Device 10 2.4 Daq-Paq (Analog to Digital Electronics) 11 Amplifier Range 11 2.5 Axis Articulated Robot 11 2.6 ALSAS Universal Workstation 12 2.7 Universal Device Positioner 12 2.8 Phantom Types 12 2.8.1 APREL SAM Phantoms 13 2.8.2 APREL Laboratories Universal Phantom 13 3. Tissue Simulating Liquid 14 3.1 The composition of the tissue simulating liquid 14 3.2 Tissue Calibration Result 14 3.3 Tissue Dielectric Parameters for Head and Body Phantoms 15 4. SAR Measurement Procedure 16 4.1.1 Validation Dipoles 16 4.1.2 Validation Result 16 4.2 SAR Measurement Procedure	•		
2.1.1 Applications 7 2.1.2 Area Scans 7 2.1.3 Zoom Scan (Cube Scan Averaging) 8 2.1.4 ALSAS-10U Interpolation and Extrapolation Uncertainty 8 2.2 Isotropic E-Field Probe 8 2.2.1 Isotropic E-Field Probe Specification 10 2.3 Boundary Detection Unit and Probe Mounting Device 10 2.4 Daq-Paq (Analog to Digital Electronics) 11 Amplifier Range 11 2.5 Axis Articulated Robot 11 2.6 ALSAS Universal Workstation 12 2.7 Universal Device Positioner 12 2.8 Phantom Types 12 2.8.1 APREL SAM Phantoms 13 2.8.2 APREL Laboratories Universal Phantom 13 3. Tissue Simulating Liquid 14 3.1 The composition of the tissue simulating liquid 14 3.2 Tissue Calibration Result 14 3.3 Tissue Dielectric Parameters for Head and Body Phantoms 15 4. SAR Measurement Procedure 16 4.1.1 Validation Dipoles 16 4.1.2 Validation Result 16 4.2 SAR Measurement Frocedure 17 5. SAR Exposure Limits 18	۷.	•	
2.1.2 Area Scans. 7 2.1.3 Zoom Scan (Cube Scan Averaging) 8 2.1.4 ALSAS-10U Interpolation and Extrapolation Uncertainty 8 2.2 Isotropic E-Field Probe 8 2.2.1 Isotropic E-Field Probe Specification 10 2.3 Boundary Detection Unit and Probe Mounting Device 10 2.4 Daq-Paq (Analog to Digital Electronics) 11 Amplifier Range 11 2.5 Axis Articulated Robot 11 2.6 ALSAS Universal Workstation 12 2.7 Universal Device Positioner 12 2.8 Phantom Types 12 2.8.1 APREL SAM Phantoms 13 2.8.2 APREL Laboratories Universal Phantom 13 3. Tissue Simulating Liquid 14 3.1 The composition of the tissue simulating liquid 14 3.2 Tissue Calibration Result 14 3.3 Tissue Dielectric Parameters for Head and Body Phantoms 15 4. SAR Measurement Procedure 16 4.1.2 Validation Result 16 4.1.2 Validation Result 16 4.1.2 Validation Result 16 4.2 SAR Measurement Procedure 17 5. SAR Exposure Limits 18 <td></td> <td>•</td> <td></td>		•	
2.1.3 Zoom Scan (Cube Scan Averaging) 8 2.1.4 ALSAS-10U Interpolation and Extrapolation Uncertainty 8 2.2 Isotropic E-Field Probe 8 2.2.1 Isotropic E-Field Probe Specification 10 2.3 Boundary Detection Unit and Probe Mounting Device 10 2.4 Daq-Paq (Analog to Digital Electronics) 11 Amplifier Range 11 2.5 Axis Articulated Robot 11 2.6 ALSAS Universal Workstation 12 2.7 Universal Device Positioner 12 2.8 Phantom Types 12 2.8.1 APREL SAM Phantoms 13 2.8.2 APREL Laboratories Universal Phantom 13 3. Tissue Simulating Liquid 14 3.1 The composition of the tissue simulating liquid 14 3.2 Tissue Calibration Result 14 3.3 Tissue Dielectric Parameters for Head and Body Phantoms 15 4. SAR Measurement Procedure 16 4.1 SAR System Validation 16 4.1.2 Validation Dipoles 16 4.1.2 Validation Result 16 4.2 SAR Measurement Procedure 17 5. SAR Exposure Limits 18 6. Test Equipment List			
2.1.4 ALSAS-10U Interpolation and Extrapolation Uncertainty. 8 2.2 Isotropic E-Field Probe 8 2.2.1 Isotropic E-Field Probe Specification 10 2.3 Boundary Detection Unit and Probe Mounting Device 10 2.4 Daq-Paq (Analog to Digital Electronics) 11 Amplifier Range 11 2.5 Axis Articulated Robot 11 2.6 ALSAS Universal Workstation 12 2.7 Universal Device Positioner 12 2.8 Phantom Types 12 2.8.1 APREL SAM Phantoms 13 2.8.2 APREL Laboratories Universal Phantom 13 3. Tissue Simulating Liquid 14 3.1 The composition of the tissue simulating liquid 14 3.2 Tissue Calibration Result 14 3.3 Tissue Dielectric Parameters for Head and Body Phantoms 15 4. SAR Measurement Procedure 16 4.1 SAR System Validation 16 4.1.2 Validation Dipoles 16 4.1.2 Validation Result 16 4.2 SAR Measurement Procedure 17 5. SAR Exposure Limits 18 6. Test Equipment List 19 7. Measurement Uncertainty 20 <td></td> <td></td> <td></td>			
2.2 Isotropic E-Field Probe 8 2.2.1 Isotropic E-Field Probe Specification 10 2.3 Boundary Detection Unit and Probe Mounting Device 10 2.4 Daq-Paq (Analog to Digital Electronics) 11 Amplifier Range 11 2.5 Axis Articulated Robot 11 2.6 ALSAS Universal Workstation 12 2.7 Universal Device Positioner 12 2.8 Phantom Types 12 2.8.1 APREL SAM Phantoms 13 2.8.2 APREL Laboratories Universal Phantom 13 3. Tissue Simulating Liquid 14 3.1 The composition of the tissue simulating liquid 14 3.2 Tissue Calibration Result 14 3.3 Tissue Dielectric Parameters for Head and Body Phantoms 15 4. SAR Measurement Procedure 16 4.1 Validation Dipoles 16 4.1.2 Validation Result 16 4.2 SAR Measurement Procedure 17 5. SAR Exposure Limits 18 6. Test Equipment List 19 7. Measurement Uncertainty 20 8. Test Results 21		` <i>E E</i>	
2.2.1 Isotropic E-Field Probe Specification 10 2.3 Boundary Detection Unit and Probe Mounting Device 10 2.4 Daq-Paq (Analog to Digital Electronics) 11 Amplifier Range 11 2.5 Axis Articulated Robot 11 2.6 ALSAS Universal Workstation 12 2.7 Universal Device Positioner 12 2.8 Phantom Types 12 2.8.1 APREL SAM Phantoms 13 2.8.2 APREL Laboratories Universal Phantom 13 3. Tissue Simulating Liquid 14 3.1 The composition of the tissue simulating liquid 14 3.2 Tissue Calibration Result 14 3.3 Tissue Dielectric Parameters for Head and Body Phantoms 15 4. SAR Measurement Procedure 16 4.1 SAR System Validation 16 4.1.1 Validation Dipoles 16 4.1.2 Validation Result 16 4.2 SAR Measurement Procedure 17 5. SAR Exposure Limits 18 6. Test Equipment List 19 7. Measurement Uncertainty 20 8. Test Results 21			
2.3 Boundary Detection Unit and Probe Mounting Device 10 2.4 Daq-Paq (Analog to Digital Electronics) 11 Amplifier Range 11 2.5 Axis Articulated Robot 11 2.6 ALSAS Universal Workstation 12 2.7 Universal Device Positioner 12 2.8 Phantom Types 12 2.8.1 APREL SAM Phantoms 13 2.8.2 APREL Laboratories Universal Phantom 13 3. Tissue Simulating Liquid 14 3.1 The composition of the tissue simulating liquid 14 3.2 Tissue Calibration Result 14 3.3 Tissue Dielectric Parameters for Head and Body Phantoms 15 4. SAR Measurement Procedure 16 4.1 SAR System Validation 16 4.1.1 Validation Dipoles 16 4.1.2 Validation Result 16 4.2 SAR Measurement Procedure 17 5. SAR Exposure Limits 18 6. Test Equipment List 19 7. Measurement Uncertainty 20 8. Test Results 21 8.1 SAR Test Results Summary 21		-	
2.4 Daq-Paq (Analog to Digital Electronics) 11 Amplifier Range 11 2.5 Axis Articulated Robot 11 2.6 ALSAS Universal Workstation 12 2.7 Universal Device Positioner 12 2.8 Phantom Types 12 2.8.1 APREL SAM Phantoms 13 2.8.2 APREL Laboratories Universal Phantom 13 3. Tissue Simulating Liquid 14 3.1 The composition of the tissue simulating liquid 14 3.2 Tissue Calibration Result 14 3.3 Tissue Dielectric Parameters for Head and Body Phantoms 15 4. SAR Measurement Procedure 16 4.1 SAR System Validation 16 4.1.1 Validation Dipoles 16 4.1.2 Validation Result 16 4.2 SAR Measurement Procedure 17 5. SAR Exposure Limits 18 6. Test Equipment List 19 7. Measurement Uncertainty 20 8. Test Results 21 8.1 SAR Test Results Summary 21		•	
Amplifier Range 11 2.5 Axis Articulated Robot 11 2.6 ALSAS Universal Workstation 12 2.7 Universal Device Positioner 12 2.8 Phantom Types 12 2.8.1 APREL SAM Phantoms 13 2.8.2 APREL Laboratories Universal Phantom 13 3. Tissue Simulating Liquid 14 3.1 The composition of the tissue simulating liquid 14 3.2 Tissue Calibration Result 14 3.3 Tissue Dielectric Parameters for Head and Body Phantoms 15 4. SAR Measurement Procedure 16 4.1 SAR System Validation 16 4.1.1 Validation Dipoles 16 4.1.2 Validation Result 16 4.2 SAR Measurement Procedure 17 5. SAR Exposure Limits 18 6. Test Equipment List 19 7. Measurement Uncertainty 20 8. Test Results 21 8.1 SAR Test Results Summary 21		•	
2.5 Axis Articulated Robot 11 2.6 ALSAS Universal Workstation 12 2.7 Universal Device Positioner 12 2.8 Phantom Types 12 2.8.1 APREL SAM Phantoms 13 2.8.2 APREL Laboratories Universal Phantom 13 3. Tissue Simulating Liquid 14 3.1 The composition of the tissue simulating liquid 14 3.2 Tissue Calibration Result 14 3.3 Tissue Dielectric Parameters for Head and Body Phantoms 15 4. SAR Measurement Procedure 16 4.1 SAR System Validation 16 4.1.1 Validation Dipoles 16 4.1.2 Validation Result 16 4.2 SAR Measurement Procedure 17 5. SAR Exposure Limits 18 6. Test Equipment List 19 7. Measurement Uncertainty 20 8. Test Results 21 8.1 SAR Test Results Summary 21			
2.6 ALSAS Universal Workstation 12 2.7 Universal Device Positioner 12 2.8 Phantom Types 12 2.8.1 APREL SAM Phantoms 13 2.8.2 APREL Laboratories Universal Phantom 13 3. Tissue Simulating Liquid 14 3.1 The composition of the tissue simulating liquid 14 3.2 Tissue Calibration Result 14 3.3 Tissue Dielectric Parameters for Head and Body Phantoms 15 4. SAR Measurement Procedure 16 4.1 SAR System Validation 16 4.1.1 Validation Dipoles 16 4.2 SAR Measurement Procedure 17 5. SAR Exposure Limits 18 6. Test Equipment List 19 7. Measurement Uncertainty 20 8. Test Results 21 8.1 SAR Test Results Summary 21			
2.7 Universal Device Positioner 12 2.8 Phantom Types 12 2.8.1 APREL SAM Phantoms 13 2.8.2 APREL Laboratories Universal Phantom 13 3. Tissue Simulating Liquid 14 3.1 The composition of the tissue simulating liquid 14 3.2 Tissue Calibration Result 14 3.3 Tissue Dielectric Parameters for Head and Body Phantoms 15 4. SAR Measurement Procedure 16 4.1 SAR System Validation 16 4.1.1 Validation Dipoles 16 4.1.2 Validation Result 16 4.2 SAR Measurement Procedure 17 5. SAR Exposure Limits 18 6. Test Equipment List 19 7. Measurement Uncertainty 20 8. Test Results 21 8.1 SAR Test Results Summary 21			
2.8 Phantom Types 12 2.8.1 APREL SAM Phantoms 13 2.8.2 APREL Laboratories Universal Phantom 13 3. Tissue Simulating Liquid 14 3.1 The composition of the tissue simulating liquid 14 3.2 Tissue Calibration Result 14 3.3 Tissue Dielectric Parameters for Head and Body Phantoms 15 4. SAR Measurement Procedure 16 4.1 SAR System Validation 16 4.1.1 Validation Dipoles 16 4.1.2 Validation Result 16 4.2 SAR Measurement Procedure 17 5. SAR Exposure Limits 18 6. Test Equipment List 19 7. Measurement Uncertainty 20 8. Test Results 21 8.1 SAR Test Results Summary 21		2.6 ALSAS Universal Workstation	12
2.8.1 APREL SAM Phantoms 13 2.8.2 APREL Laboratories Universal Phantom 13 3. Tissue Simulating Liquid 14 3.1 The composition of the tissue simulating liquid 14 3.2 Tissue Calibration Result 14 3.3 Tissue Dielectric Parameters for Head and Body Phantoms 15 4. SAR Measurement Procedure 16 4.1 SAR System Validation 16 4.1.1 Validation Dipoles 16 4.1.2 Validation Result 16 4.2 SAR Measurement Procedure 17 5. SAR Exposure Limits 18 6. Test Equipment List 19 7. Measurement Uncertainty 20 8. Test Results 21 8.1 SAR Test Results Summary 21		2.7 Universal Device Positioner	12
2.8.2 APREL Laboratories Universal Phantom 13 3. Tissue Simulating Liquid 14 3.1 The composition of the tissue simulating liquid 14 3.2 Tissue Calibration Result 14 3.3 Tissue Dielectric Parameters for Head and Body Phantoms 15 4. SAR Measurement Procedure 16 4.1 SAR System Validation 16 4.1.1 Validation Dipoles 16 4.1.2 Validation Result 16 4.2 SAR Measurement Procedure 17 5. SAR Exposure Limits 18 6. Test Equipment List 19 7. Measurement Uncertainty 20 8. Test Results 21 8.1 SAR Test Results Summary 21		2.8 Phantom Types	12
3. Tissue Simulating Liquid 14 3.1 The composition of the tissue simulating liquid 14 3.2 Tissue Calibration Result 14 3.3 Tissue Dielectric Parameters for Head and Body Phantoms 15 4. SAR Measurement Procedure 16 4.1 SAR System Validation 16 4.1.1 Validation Dipoles 16 4.1.2 Validation Result 16 4.2 SAR Measurement Procedure 17 5. SAR Exposure Limits 18 6. Test Equipment List 19 7. Measurement Uncertainty 20 8. Test Results 21 8.1 SAR Test Results Summary 21		2.8.1 APREL SAM Phantoms	13
3.1 The composition of the tissue simulating liquid 14 3.2 Tissue Calibration Result 14 3.3 Tissue Dielectric Parameters for Head and Body Phantoms 15 4. SAR Measurement Procedure 16 4.1 SAR System Validation 16 4.1.1 Validation Dipoles 16 4.1.2 Validation Result 16 4.2 SAR Measurement Procedure 17 5. SAR Exposure Limits 18 6. Test Equipment List 19 7. Measurement Uncertainty 20 8. Test Results 21 8.1 SAR Test Results Summary 21			
3.2 Tissue Calibration Result 14 3.3 Tissue Dielectric Parameters for Head and Body Phantoms 15 4. SAR Measurement Procedure 16 4.1 SAR System Validation 16 4.1.1 Validation Dipoles 16 4.1.2 Validation Result 16 4.2 SAR Measurement Procedure 17 5. SAR Exposure Limits 18 6. Test Equipment List 19 7. Measurement Uncertainty 20 8. Test Results 21 8.1 SAR Test Results Summary 21	3.		
3.3 Tissue Dielectric Parameters for Head and Body Phantoms 15 4. SAR Measurement Procedure 16 4.1 SAR System Validation 16 4.1.1 Validation Dipoles 16 4.1.2 Validation Result 16 4.2 SAR Measurement Procedure 17 5. SAR Exposure Limits 18 6. Test Equipment List 19 7. Measurement Uncertainty 20 8. Test Results 21 8.1 SAR Test Results Summary 21			
4. SAR Measurement Procedure 16 4.1 SAR System Validation 16 4.1.1 Validation Dipoles 16 4.1.2 Validation Result 16 4.2 SAR Measurement Procedure 17 5. SAR Exposure Limits 18 6. Test Equipment List 19 7. Measurement Uncertainty 20 8. Test Results 21 8.1 SAR Test Results Summary 21		3.2 Tissue Calibration Result	14
4.1 SAR System Validation 16 4.1.1 Validation Dipoles 16 4.1.2 Validation Result 16 4.2 SAR Measurement Procedure 17 5. SAR Exposure Limits 18 6. Test Equipment List 19 7. Measurement Uncertainty 20 8. Test Results 21 8.1 SAR Test Results Summary 21	_	· · · · · · · · · · · · · · · · · · ·	
4.1.1 Validation Dipoles 16 4.1.2 Validation Result 16 4.2 SAR Measurement Procedure 17 5. SAR Exposure Limits 18 6. Test Equipment List 19 7. Measurement Uncertainty 20 8. Test Results Summary 21	4.		
4.1.2 Validation Result 16 4.2 SAR Measurement Procedure 17 5. SAR Exposure Limits 18 6. Test Equipment List 19 7. Measurement Uncertainty 20 8. Test Results 21 8.1 SAR Test Results Summary 21		-	
4.2 SAR Measurement Procedure 17 5. SAR Exposure Limits 18 6. Test Equipment List 19 7. Measurement Uncertainty 20 8. Test Results 21 8.1 SAR Test Results Summary 21			
5. SAR Exposure Limits			
6. Test Equipment List	_		
7. Measurement Uncertainty 20 8. Test Results	_		
8. Test Results			
8.1 SAR Test Results Summary			
		•	

Appendix A. SAR System Validation Data

Appendix B. SAR measurement Data

Appendix C. Test Setup Photographs & EUT Photographs

Appendix D. Probe Calibration Data

Appendix E. Dipole Calibration Data

1. General Information

1.1 EUT Description

Product Name	Voice Commander
Trade Name	VOCO
Model No.	VC01
FCC ID	WEA-VC02
TX Frequency	2412MHz ~ 2462MHz
Number of Channel	11
Type of Modulation	DSSS/OFDM
Antenna Type	Internal
Device Category	Portable
RF Exposure Environment	Uncontrolled
Max. Output Power	802.11b: 19.05 dBm
(Conducted)	802.11g: 21.85 dBm

1.2 Test Environment

Ambient conditions in the laboratory:

Items	Required	Actual
Temperature (°C)	18-25	20.9
Humidity (%RH)	30-70	50

Site Description:

Accredited by TAF
Accredited Number: 0914

Effective through: December 12, 2008

Site Name: Quietek Corporation

Site Address: No. 5, Ruei-Shu Valley, Ruei-Ping Tsuen,

Lin-Kou Shiang, Taipei,

Taiwan, R.O.C.

TEL: 886-2-8601-3788 / FAX: 886-2-8601-3789

E-Mail : service@quietek.com

2. SAR Measurement System

2.1 ALSAS-10U System Description

ALSAS-10-U is fully compliant with the technical and scientific requirements of IEEE 1528, IEC 62209, CENELEC, ARIB, ACA, and the Federal Communications Commission. The system comprises of a six axes articulated robot which utilizes a dedicated controller.

ALSAS-10U uses the latest methodologies and FDTD modeling to provide a platform which is repeatable with minimum uncertainty.

2.1.1 Applications

Predefined measurement procedures compliant with the guidelines of CENELEC, IEEE, IEC, FCC, etc are utilized during the assessment for the device. Automatic detection for all SAR

maxima are embedded within the core architecture for the system, ensuring that peak locations used for centering the zoom scan are within a 1mm resolution and a 0.05mm repeatable position. System operation range currently available up-to 6 GHz in simulated tissue.

2.1.2 Area Scans

Area scans are defined prior to the measurement process being executed with a user defined variable spacing between each measurement point (integral) allowing low uncertainty measurements to be conducted. Scans defined for FCC applications utilize a 10mm² step integral, with 1mm interpolation used to locate the peak SAR area used for zoom scan assessments.

Where the system identifies multiple SAR peaks (which are within 25% of peak value) the system will provide the user with the option of assessing each peak location individually for zoom scan averaging.

2.1.3 Zoom Scan (Cube Scan Averaging)

The averaging zoom scan volume utilized in the ALSAS-10U software is in the shape of a cube and the side dimension of a 1 g or 10 g mass is dependent on the density of the liquid representing the simulated tissue. A density of 1000 kg/m³ is used to represent the head and body tissue density and not the phantom liquid density, in order to be consistent with the definition of the liquid dielectric properties, i.e. the side length of the 1 g cube is 10mm, with the side length of the 10 g cube 21,5mm.

When the cube intersects with the surface of the phantom, it is oriented so that 3 vertices touch the surface of the shell or the center of a face is tangent to the surface. The face of the cube closest to the surface is modified in order to conform to the tangent surface.

The zoom scan integer steps can be user defined so as to reduce uncertainty, but normal practice for typical test applications (including FCC) utilize a physical step of 5x5x8 (8mmx8mmx5mm) providing a volume of 32mm in the X & Y axis, and 35mm in the Z axis.

2.1.4 ALSAS-10U Interpolation and Extrapolation Uncertainty

The overall uncertainty for the methodology and algorithms the used during the SAR calculation was evaluated using the data from IEEE 1528 based on the example f3 algorithm:

$$f_3(x, y, z) = A \frac{a^2}{\frac{a^2}{4} + {x'}^2 + {y'}^2} \cdot \left(e^{-\frac{2z}{a}} + \frac{a^2}{2(a+2z)^2} \right)$$

2.2 Isotropic E-Field Probe

The isotropic E-Field probe has been fully calibrated and assessed for isotropicity, and boundary effect within a controlled environment. Depending on the frequency for which the probe is calibrated the method utilized for calibration will change. A number of methods is used for calibrating probes, and these are outlined in the table below:

Calibration Frequency	Air Calibration	Tissue Calibration
2450MHz	TEM Cell	Temperature

The E-Field probe utilizes a triangular sensor arrangement as detailed in the diagram below:

SAR is assessed with a calibrated probe which moves at a default height of 5mm from the center of the diode, which is mounted to the sensor, to the phantom surface (in the Z Axis). The 5mm offset height has been selected so as to minimize any resultant boundary effect due to the probe being in close proximity to the phantom surface.

The following algorithm is an example of the function used by the system for linearization of the output from the probe when measuring complex modulation schemes.

$$V_i = U_i + U_i^2 \cdot \frac{cf}{dcp_i}$$

2.2.1 Isotropic E-Field Probe Specification

Calibration in Air	Frequency Dependent		
Calibration in All			
	Below 2GHz Calibration in air performed in a TEM Ce		
	Above 2GHz Calibration in air performed in waveguide		
Sensitivity	$0.70 \ \mu V/(V/m)^2 \ to \ 0.85 \ \mu V/(V/m)^2$		
Dynamic Range	0.0005 W/kg to 100W/kg		
Isotropic Response	Better than 0.2dB		
Diode Compression point	Calibration for Specific Frequency		
(DCP)			
Probe Tip Radius	< 5mm		
Sensor Offset	1.56 (+/- 0.02mm)		
Probe Length	290mm		
Video Bandwidth	@ 500 Hz: 1dB		
	@1.02 KHz: 3dB		
Boundary Effect	Less than 2% for distance greater than 2.4mm		
Spatial Resolution	Diameter less than 5mm Compliant with Standards		

2.3 Boundary Detection Unit and Probe Mounting Device

ALSAS-10U incorporates a boundary detection unit with a sensitivity of 0.05mm for detecting all types of surfaces. The robust design allows for detection during probe tilt (probe normalize) exercises, and utilizes a second stage emergency stop. The signal electronics are fed directly into the robot controller for high accuracy surface detection in lateral and axial detection modes (X, Y, & Z).

The probe is mounted directly onto the Boundary Detection unit for accurate tooling and displacement calculations controlled by the robot kinematics. The probe is connect to an isolated probe interconnect where the output stage of the probe is fed directly into the amplifier stage of the Daq-Paq.

Page: 10 of 23

2.4 Daq-Paq (Analog to Digital Electronics)

ALSAS-10U incorporates a fully calibrated Daq-Paq (analog to digital conversion system) which has a 4 channel input stage, sent via a 2 stage auto-set amplifier module. The input signal is amplified accordingly so as to offer a dynamic range from 5µV to 800mV. Integration of the fields measured is carried out at board level utilizing a Co-Processor which then sends the measured fields down into the main computational module in digitized form via an RS232 communications port. Probe linearity and duty cycle compensation is carried out within the main Daq-Paq module.

ADC	12 Bit
Amplifier Range	20mV to 200mV and 150mV to 800mV
Field Integration Local Co-Processor utilizing proprietary integration	
	algorithms
Number of Input Channels	4 in total 3 dedicated and 1 spare
Communication	Packet data via RS232

2.5 Axis Articulated Robot

ALSAS-10U utilizes a six axis articulated robot, which is controlled using a Pentium based real-time movement controller. The movement kinematics engine utilizes proprietary (Thermo CRS) interpolation and extrapolation algorithms, which allow full freedom of movement for each of the six joints within the working envelope. Utilization of joint 6 allows for full probe rotation with a tolerance better than 0.05mm around the central axis.

Robot/Controller Manufacturer	Thermo CRS	
Number of Axis	Six independently controlled axis	
Positioning Repeatability 0.05mm		
Controller Type	Single phase Pentium based C500C	
Robot Reach	710mm	
Communication	RS232 and LAN compatible	

Page: 11 of 23

2.6 ALSAS Universal Workstation

ALSAS Universal workstation allows for repeatability and fast adaptability. It allows users to do calibration, testing and measurements using different types of phantoms with one set up, which significantly speeds up the measurement process.

2.7 Universal Device Positioner

The universal device positioner allow complete freedom of movement of the EUT. Developed to hold a EUT in a free-space scenario any additional loading attributable to the material used in the construction of the positioner has been eliminated. Repeatability has been enhanced through the linear scales which form the design used to indicate positioning for any given test scenario in all major axes. A 15° tilt indicator is included for the of aid cheek to tilt movements for head SAR analysis. Overall uncertainty for measurements have been reduced due to the design of the Universal device positioner, which allows positioning of a device in as near to a free-space scenario as possible, and by providing the means for complete repeatability.

2.8 Phantom Types

The ALSAS-10U allows the integration of multiple phantom types. SAM Phantoms fully compliant with IEEE 1528, Universal Phantom, and Universal Flat.

2.8.1 APREL SAM Phantoms

The SAM phantoms developed using the IEEE SAM CAD file. They are fully compliant with the requirements for both IEEE 1528 and FCC Supplement C. Both the left and right SAM phantoms are interchangeable, transparent and include the IEEE 1528 grid with visible NF and MB lines.

2.8.2 APREL Laboratories Universal Phantom

The Universal Phantom is used on the ALSAS-10U as a system validation phantom. The Universal Phantom has been fully validated both experimentally from 800MHz to 6GHz and numerically using XFDTD numerical software. The shell thickness is 2mm overall, with a 4mm spacer located at the NF/MB intersection providing an overall thickness of 6mm in line with the requirements of IEEE-1528.

The design allows for fast and accurate measurements, of

handsets, by allowing the conservative SAR to be evaluated at on frequency for both left and right head experiments in one measurement.

3. Tissue Simulating Liquid

3.1 The composition of the tissue simulating liquid

INGREDIENT	900MHz	1800MHz	2450MHz	2450MHz
(% Weight)	Head	Head	Head	Body
Water				73.2
Salt				0.04
Sugar				0.00
HEC				0.00
Preventol				0.00
DGBE				26.7

3.2 Tissue Calibration Result

The dielectric parameters of the liquids were verified prior to the SAR evaluation using APREL Dielectric Probe Kit and Anritsu MS4623B Vector Network Analyzer.

Head Tissue Simulant Measurement						
Frequency	Description	Dielectric F	Tissue Temp.			
[MHz]	[MHz] Description $\epsilon_r \sigma [s/m]$					
	Reference result	39.2	1.8	N/A		
2450 MHz	± 5% window	37.24 to 41.16	1.71 to 1.89	IN/A		
	18-Jun-08	40.21	1.82	20.2		

Body Tissue Simulant Measurement							
Frequency	Description	Dielectric F	Tissue Temp.				
[MHz]	Description	ε _r	σ [s/m]	[°C]			
	Reference result	52.5	1.78	N/A			
2450MHz	± 5% window	49.875 to 55.153	1.691 to 1.869	IN/A			
	18-Jun-08	53.84	1.85	20.2			
2412 MHz	Low channel	53.91	1.84	20.2			
2437 MHz	Mid channel	53.86	1.85	20.2			
2462 MHz	High channel	53.72	1.86	20.2			

Page: 14 of 23

3.3 Tissue Dielectric Parameters for Head and Body Phantoms

The head tissue dielectric parameters recommended by the IEEE SCC-34/SC-2 in P1528 have been incorporated in the following table. These head parameters are derived from planar layer models simulating the highest expected SAR for the dielectric properties and tissue thickness variations in a human head. Other head and body tissue parameters that have not been specified in P1528 are derived from the tissue dielectric parameters computed from the 4-Cole-Cole equations described in Reference [12] and extrapolated according to the head parameters specified in P1528.

Target Frequency	He	ad	Вс	ody
(MHz)	ϵ_{r}	σ (S/m)	٤ _r	σ (S/m)
150	52.3	0.76	61.9	0.80
300	45.3	0.87	58.2	0.92
450	43.5	0.87	56.7	0.94
835	41.5	0.90	55.2	0.97
900	41.5	0.97	55.0	1.05
915	41.5	0.98	55.0	1.06
1450	40.5	1.20	54.0	1.30
1610	40.3	1.29	53.8	1.40
1800 – 2000	40.0	1.40	53.3	1.52
2450	39.2	1.80	52.7	1.95
3000	38.5	2.40	52.0	2.73
5800	35.3	5.27	48.2	6.00

(ϵ_r = relative permittivity, σ = conductivity and ρ = 1000 kg/m³)

Page: 15 of 23

4. SAR Measurement Procedure

4.1 SAR System Validation

4.1.1 Validation Dipoles

The dipoles used is based on the IEEE-1528 standard, and is complied with mechanical and electrical specifications in line with the requirements of both IEEE and FCC Supplement C. the table below provides details for the mechanical and electrical specifications for the dipoles.

Frequency	L (mm)	h (mm)	d (mm)
2450MHz	53.5	30.4	3.6

4.1.2 Validation Result

System Performance Check at 2450MHz

Validation Kit: ASL-D-2450-S-2

Frequency [MHz]	Description	SAR [w/kg] 1g	SAR [w/kg] 10g	Tissue Temp. [°C]
2450 MHz	Reference result ± 10% window	48.07 43.263 to 52.877	25.65 23.085 to 28.215	N/A
	18-Jun-08	48.221	25.017	20.2

Note: All SAR values are normalized to 1W forward power.

4.2 SAR Measurement Procedure

The ALSAS-10U calculates SAR using the following equation,

$$SAR = \frac{\sigma |E|^2}{\rho}$$

σ: represents the simulated tissue conductivity

ρ: represents the tissue density

The EUT is set to transmit at the required power in line with product specification, at each frequency relating to the LOW, MID, and HIGH channel settings.

Pre-scans are made on the device to establish the location for the transmitting antenna, using a large area scan in either air or tissue simulation fluid.

The EUT is placed against the Universal Phantom where the maximum area scan dimensions are larger than the physical size of the resonating antenna. When the scan size is not large enough to cover the peak SAR distribution, it is modified by either extending the area scan size in both the X and Y directions, or the device is shifted within the predefined area.

The area scan is then run to establish the peak SAR location (interpolated resolution set at 1mm²) which is then used to orient the center of the zoom scan. The zoom scan is then executed and the 1g and 10g averages are derived from the zoom scan volume (interpolated resolution set at 1mm³).

Page: 17 of 23

5. SAR Exposure Limits

SAR assessments have been made in line with the requirements of IEEE-1528, FCC Supplement C, and comply with ANSI/IEEE C95.1-1992 "Uncontrolled Environments" limits. These limits apply to a location which is deemed as "Uncontrolled Environment" which can be described as a situation where the general public may be exposed to an RF source with no prior knowledge or control over their exposure.

Limits for General Population/Uncontrolled Exposure (W/kg)

Type Exposure	Uncontrolled Environment Limit
Spatial Peak SAR (1g cube tissue for brain or body)	1.60 W/kg
Spatial Average SAR (whole body)	0.08 W/kg
Spatial Peak SAR (10g for hands, feet, ankles and wrist)	4.00 W/kg

Page: 18 of 23

6. Test Equipment List

Instrument	Manufacturer	Model No.	Serial No.	Last Calibration	Next Calibration
Data Acquisition Package	Aprel	ALS-DAQ-PAQ-2	QTK-337	Nov. 2006	only once
Aprel Laboratories Probe	Aprel	ALS-E020	264	Aug. 2007	Aug. 2008
Aprel Reference Dipole	Aprel	ALS-D-2450-S-2	QTK-319	May. 2008	May. 2010
2450Mhz					
Boundary Detection	Aprel	ALS-PMDPS-2	QTK-336	N/A	N/A
Sensor System					
Dielectric Probe Kit	Aprel	ALS-PR-DIEL	QTK-296	N/A	N/A
Universal Work Station	Aprel	ALS-UWS	QTK-326	N/A	N/A
Device Holder 2.0	Aprel	ALS-H-E-SET-2	QTK-294	N/A	N/A
Left Ear SAM Phantom	Aprel	ALS-P-SAM-L	QTK-292	N/A	N/A
Right Ear SAM Phantom	Aprel	ALS-P-SAM-R	QTK-288	N/A	N/A
Universal Phantom	Aprel	ALS-P-UP-1	QTK-246	N/A	N/A
Aprel Dipole Spacer	Aprel	ALS-DS-U	QTK-295	N/A	N/A
SAR Software	Aprel	ALSAS-10	Ver. 2.3.6	N/A	N/A
CRS C500C Controller	Thermo	ALS-C500	RCF0404433	N/A	N/A
CRF F3 Robot	Thermo	ALS-F3	RAF0412222	N/A	N/A
Power Amplifier	Mini-Circuit	ZHL-42	D051404-20	N/A	N/A
Directional Coupler	Agilent	778D-012	50550	N/A	N/A
Universal Radio	Rohde &	CMU 200	104846	Mar. 2008	Mar. 2009
Communication Tester	Schwarz				
Radio Communication	Anritsu	MT8820A	6200323183	Jul. 2007	Jul. 2008
Analyzer					
Vector Network	Anritsu	MS4623B	992801	Aug. 2007	Aug. 2008
Signal Generator	Anritsu	MG3692A	042319	Jun. 2008	Jun. 2009
Power Meter	Anritsu	ML2487A	6K00001447	Apr. 2008	Apr. 2009
Wide Bandwidth Sensor	Anritsu	MA2491	030677	Apr. 2008	Apr. 2009

Page: 19 of 23

7. Measurement Uncertainty

Exposure Assessment Measurement Uncertainty

Source of Uncertainty	Tolerance Value	Probability Distribution	Divisor	c, (1-g)	(10-g)	Standard Uncertainty (1-g) %	Standard Uncertainty (10-g) %
				1			
Measurement System							
recipatement by been				 			
Probe Calibration	3.5	normal	1	1	1	3.5	3.5
Axial Isotropy	3.7	rectangular	√3	(1-	(1-	1.5	1.5
			Y -	cp) ^{1/2}	cp) 1/2		
Hemispherical Isotropy	10.9	rectangular	√3	√cp	√cp	4.4	4.4
Boundary Effect	1.0	rectangular	√3	1	1	0.6	0.6
Linearity	4.7	rectangular	√3	1	1	2.7	2.7
Detection Limit	1.0	rectangular	√3	1	1	0.6	0.6
Readout Electronics	1.0	normal	1	1	1	1.0	1.0
Response Time	0.8	rectangular	√3	1	1	0.5	0.5
Integration Time	1.7	rectangular	√3	1	1	1.0	1.0
RF Ambient Condition	3.0	rectangular	√3	1	1	1.7	1.7
Probe Positioner	0.4	rectangular	√3	1	1	0.2	0.2
Mech.							
Restriction			_				
Probe Positioning	2.9	rectangular	√3	1	1	1.7	1.7
with respect to			1	l			
Phantom Shell Extrapolation and	3.7	rectangular	/5	1	1	2.1	2.1
Integration	3.1	rectangular	√3	1	1	2.1	2.1
Test Sample	4.0	normal	1	1	1	4.0	4.0
Positioning	4.0	normar	1	1	1	4.0	4.0
Device Holder	2.0	normal	1	1	1	2.0	2.0
Uncertainty			1	-	-		
Drift of Output	4.7	rectangular	√3	1	1	2.7	2.7
Power			l ' -				
Phantom and Setup							
Phantom	3.4	rectangular	√3	1	1	2.0	2.0
Uncertainty (shape &			1	l			
thickness tolerance)			_				
Liquid	5.0	rectangular	√3	0.7	0.5	2.0	1.4
Conductivity(target)	0.3				. F		0.0
Liquid	0.1	normal	1	0.7	0.5	0.1	0.0
Conductivity (meas.)	2.0	root angular	/5	0.6	n e	0.7	0.6
Liquid Permittivity(target)	2.0	rectangular	√3	0.6	0.5	0.7	0.6
Liquid	2.6	normal	1	0.6	0.5	1.6	1.3
Permittivity (meas.)	2.0	TOT MAT	l *	0.0	0.5	1.0	1.3
Combined Uncertainty		RSS				9.6	9.5
Combined Uncertainty		Normal(k=2)				19.3	18.9
(coverage factor=2)				l			

Page: 20 of 23

8. Test Results

8.1 SAR Test Results Summary

SAR MEASUREMENT

Ambient Temperature (°C): 20.9 ±2 Relative Humidity (%): 50

Liquid Temperature (°C): 20.2 ±2 Depth of Liquid (cm):>15

Product: Voice Commander

Test Mode: 802.11b

Test Mode: 802.11b							
Test Position	Antenna	Frequency		Conducted Power	SAR 1g	Limit	
Head/Body	Position	Channel	MHz	(dBm)	(W/kg)	(W/kg)	
Left-Cheek	Fixed	1	2412	19.05	0.086	1.6	
Left-Cheek	Fixed	6	2437	19.03	0.076	1.6	
Left-Cheek	Fixed	11	2462	19.01	0.098	1.6	
Left-Tilted	Fixed	1	2412	19.05	0.041	1.6	
Left-Tilted	Fixed	6	2437	19.03	0.033	1.6	
Left-Tilted	Fixed	11	2462	19.01	0.050	1.6	
Right-Cheek	Fixed	1	2412	19.05	0.112	1.6	
Right-Cheek	Fixed	6	2437	19.03	0.101	1.6	
Right-Cheek	Fixed	11	2462	19.01	0.077	1.6	
Right-Tilted	Fixed	1	2412	19.05	0.103	1.6	
Right-Tilted	Fixed	6	2437	19.03	0.062	1.6	
Right-Tilted	Fixed	11	2462	19.01	0.039	1.6	
Body-worn	Fixed	1	2412	19.05	0.038	1.6	
Body-worn	Fixed	6	2437	19.03	0.042	1.6	
Body-worn	Fixed	11	2462	19.01	0.091	1.6	

SAR MEASUREMENT

Ambient Temperature (°C): 20.9 ±2 Relative Humidity (%): 50

Liquid Temperature (°C): 20.2 ±2 Depth of Liquid (cm):>15

Product: Voice Commander

Test Mode: 802.11g

Test Position	Position Antenna		Frequency		SAR 1g	Limit
Head/Body	Position	Channel	MHz	(dBm)	(W/kg)	(W/kg)
Left-Cheek	Fixed	1	2412	21.85	**	1.6
Left-Cheek	Fixed	6	2437	21.72	**	1.6
Left-Cheek	Fixed	11	2462	21.69	0.042	1.6
Left-Tilted	Fixed	1	2412	21.85	**	1.6
Left-Tilted	Fixed	6	2437	21.72	**	1.6
Left-Tilted	Fixed	11	2462	21.69	**	1.6
Right-Cheek	Fixed	1	2412	21.85	0.061	1.6
Right-Cheek	Fixed	6	2437	21.72	0.047	1.6
Right-Cheek	Fixed	11	2462	21.69	**	1.6
Right-Tilted	Fixed	1	2412	21.85	**	1.6
Right-Tilted	Fixed	6	2437	21.72	**	1.6
Right-Tilted	Fixed	11	2462	21.69	**	1.6
Body-worn	Fixed	1	2412	21.85	**	1.6
Body-worn	Fixed	6	2437	21.72	**	1.6
Body-worn	Fixed	11	2462	21.69	**	1.6

Appendix

Appendix A. SAR System Validation Data

Appendix B. SAR measurement Data

Appendix C. Test Setup Photographs & EUT Photographs

Appendix D. Probe Calibration Data

Appendix E. Dipole Calibration Data

Appendix A. SAR System Validation Data

ALSAS-10U VER 2.3.6 APREL Laboratories

SAR Test Report

Report Date : 18-Jun-2008 Measurement Date : 18-Jun-2008

: Dipole-2450

Product Data
Device Name : Dipole
: Dipole

Type : Dipole Frequency : 2450.00 MHz

Max. Transmit Pwr : 1 W Drift Time : 0 min(s) Length : 51.5 mm Length Width : 3.6 mm
Depth : 30.4 mm : 3.6 mm

Power Drift-Start : 15.452 W/kg Power Drift-Finish: 16.145 W/kg

Power Drift (%) : 4.484

Phantom Data

: Uni-Phantom Type

Size (mm) : 280 x 280 x 200 : Center

Location

Tissue Data

Type : BODY
Serial No. : 325-B
Frequency : 2450.00 MHz : BODY

Last Calib. Date: 18-Jun-2008 Last Calib. Date: 18-Jun-2000
Temperature: 20.20 °C
Ambient Temp.: 20.90 °C
Humidity: 50.00 RH%
Epsilon: 53.84 F/m
Sigma: 1.85 S/m
Density: 1000.00 kg/cu. m

Probe Data

Name : Probe 264

: E020 Model

: E-Field Triangle Type

Serial No. : 264

Last Calib. Date: 21-Aug-2007 Frequency : 2450.00 MHz

Duty Cycle Factor: 1 Conversion Factor: 5.2

Probe Sensitivity: 1.20 1.20 1.20 $\mu V/(V/m)^2$

Compression Point: 95.00 mV Offset : 1.56 mm

Measurement Data

Crest Factor : 1
Tissue Temp. : 20.20 °C
Ambient Temp. : 20.90 °C
Area Scan : 5x7x1 : Measurement x=10mm, y=10mm, z=4mm
Zoom Scan : 7x7x7 : Measurement x=5mm, y=5mm, z=5mm

Frequency : 2450 MHz

1 gram SAR value : 48.211 W/kg 10 gram SAR value : 25.017 W/kg Area Scan Peak SAR : 54.014 W/kg Zoom Scan Peak SAR : 95.758 W/kg

This is previous page plot (zoom in)

Area Scan

Appendix B. SAR measurement Data

ALSAS-10U VER 2.3.6 APREL Laboratories

SAR Test Report-802.11b

: 18-Jun-2008 Report Date Measurement Date : 18-Jun-2008

Product Data

Device Name : Voice Commander
Type : Std Form Cell Phone Model

Model : VC01
Frequency : 2450.00 MHz
Drift Time : 0 min(s)
Length : 125.6 mm Width : 69.9 mm Depth : 23 mm
Antenna Type : Internal

Phantom Data

Type

: SAM-Left mm) : 280 x 280 x 280 on : Left Size (mm)

Location

Tissue Data

: HEAD Type : HEAD
Serial No. : 325-H
Frequency : 2450.00 MHz Type

Last Calib. Date: 18-Jun-2008 Temperature : 20.20 °C

Ambient Temp. : 20.90 °C

Humidity : 50.00 RH%

Epsilon : 40.21 F/m

Sigma : 1.82 S/m

Density : 1000.00 kg/cu. m

Probe Data
Name : Probe 264
Model : E020
: E-Field T Type : E-Field Triangle Serial No. : 264

Last Calib. Date: 22-Aug-2007 Frequency : 2450.00 MHz

Duty Cycle Factor: 1 Conversion Factor: 5

Probe Sensitivity: 1.20 1.20 1.20 $\mu V/(V/m)^2$

Compression Point: 95.00 mV Offset : 1.56 mm

Measurement Data

Crest Factor : 1
Tissue Temp. : 20.20 °C
Ambient Temp. : 20.90 °C
Area Scan : 6x6x1 : Measurement x=12mm, y=12mm, z=4mm
Zoom Scan : 7x7x7 : Measurement x=5mm, y=5mm, z=5mm

Power Drift-Start : 0.035 W/kg Power Drift-Finish: 0.036 W/kg

Power Drift (%) : 2.857

DUT Position : Touch Channel : 1

1 gram SAR value : 0.086 W/kg 10 gram SAR value : 0.069 W/kg Area Scan Peak SAR: 0.100 W/kg Zoom Scan Peak SAR: 0.162 W/kg

This is previous page plot (zoom in)

Measurement Data

Crest Factor : 1
Tissue Temp. : 20.20 °C
Ambient Temp. : 20.90 °C
Area Scan : 6x6x1 : Measurement x=12mm, y=12mm, z=4mm
Zoom Scan : 7x7x7 : Measurement x=5mm, y=5mm, z=5mm

Power Drift-Start : 0.032 W/kg Power Drift-Finish: 0.032 W/kg

Power Drift (%) : 0.383

DUT Position : Touch Channel : 6

1 gram SAR value : 0.076 W/kg 10 gram SAR value : 0.056 W/kg Area Scan Peak SAR : 0.090 W/kg Zoom Scan Peak SAR: 0.139 W/kg

This is previous page plot (zoom in)

Measurement Data

Crest Factor : 1
Tissue Temp. : 20.20 °C
Ambient Temp. : 20.90 °C
Area Scan : 6x6x1 : Measurement x=12mm, y=12mm, z=4mm
Zoom Scan : 7x7x7 : Measurement x=5mm, y=5mm, z=5mm

Power Drift-Start : 0.025 W/kg Power Drift-Finish: 0.025 W/kg

Power Drift (%) : -0.200

DUT Position : Touch Channel : 11

1 gram SAR value : 0.098 W/kg 10 gram SAR value : 0.052 W/kg Area Scan Peak SAR : 0.120 W/kg Zoom Scan Peak SAR: 0.173 W/kg

This is previous page plot (zoom in)

Measurement Data

Crest Factor : 1
Tissue Temp. : 20.20 °C
Ambient Temp. : 20.90 °C
Area Scan : 6x6x1 : Measurement x=12mm, y=12mm, z=4mm
Zoom Scan : 7x7x7 : Measurement x=5mm, y=5mm, z=5mm

Power Drift-Start : 0.031 W/kg Power Drift-Finish: 0.031 W/kg

Power Drift (%) : 0.597

DUT Position : 15° Tilt Channel : 1

1 gram SAR value : 0.041 W/kg 10 gram SAR value : 0.098 W/kg Area Scan Peak SAR : 0.050 W/kg Zoom Scan Peak SAR: 0.075 W/kg

This is previous page plot (zoom in)

Crest Factor : 1
Tissue Temp. : 20.20 °C
Ambient Temp. : 20.90 °C
Area Scan : 6x6x1 : Measurement x=12mm, y=12mm, z=4mm
Zoom Scan : 7x7x7 : Measurement x=5mm, y=5mm, z=5mm

Power Drift-Start : 0.034 W/kg Power Drift-Finish: 0.034 W/kg

Power Drift (%) : 0.150

DUT Position : 15° Tilt Channel : 6

1 gram SAR value : 0.033 W/kg 10 gram SAR value : 0.098 W/kg Area Scan Peak SAR : 0.040 W/kg Zoom Scan Peak SAR: 0.075 W/kg

Crest Factor : 1
Tissue Temp. : 20.20 °C
Ambient Temp. : 20.90 °C
Area Scan : 6x6x1 : Measurement x=12mm, y=12mm, z=4mm
Zoom Scan : 7x7x7 : Measurement x=5mm, y=5mm, z=5mm

Power Drift-Start : 0.033 W/kg Power Drift-Finish: 0.033 W/kg

Power Drift (%) : -0.955

DUT Position : 15° Tilt Channel : 11

1 gram SAR value : 0.050 W/kg 10 gram SAR value : 0.032 W/kg Area Scan Peak SAR : 0.060 W/kg Zoom Scan Peak SAR: 0.098 W/kg

ALSAS-10U VER 2.3.6 APREL Laboratories

SAR Test Report-802.11b

Report Date : 18-Jun-2008 Measurement Date : 18-Jun-2008

Product Data

Device Name : Voice Community

Std Form Cell Phone

Model

: VC01 : 2450.00 MHz : 0 min(s) Frequency Drift Time : 125.6 mm Length Width : 69.9 mm : 23 mm Antenna Type : Internal

Phantom Data

: SAM-Right Type

Size (mm) : $280 \times 280 \times 280$ Location : Right

Tissue Data

Type : HEAD
Serial No. : 325-H
Frequency : 2450.00 MHz

Last Calib. Date: 18-Jun-2008 Temperature : 20.20 °C

Ambient Temp. : 20.90 °C

Humidity : 50.00 RH%

Epsilon : 40.21 F/m

Sigma : 1.82 S/m

Density : 1000.00 kg/cu. m

Probe Data

Name : Probe 264

: E020 Model

: E-Field Triangle Type

Serial No. : 264

Last Calib. Date: 22-Aug-2007 Frequency : 2450.00 MHz

Duty Cycle Factor: 1 Conversion Factor: 5

Probe Sensitivity: 1.20 1.20 1.20 $\mu V/(V/m)^2$

Compression Point: 95.00 mV Offset : 1.56 mm

Crest Factor : 1
Tissue Temp. : 20.20 °C
Ambient Temp. : 20.90 °C
Area Scan : 6x6x1 : Measurement x=12mm, y=12mm, z=4mm
Zoom Scan : 7x7x7 : Measurement x=5mm, y=5mm, z=5mm

Power Drift-Start : 0.057 W/kg Power Drift-Finish: 0.055 W/kg

Power Drift (%) : -3.508

DUT Position : Touch Channel : 1

1 gram SAR value : 0.112 W/kg 10 gram SAR value : 0.098 W/kg Area Scan Peak SAR : 0.140 W/kg Zoom Scan Peak SAR: 0.167 W/kg

Crest Factor : 1
Tissue Temp. : 20.20 °C
Ambient Temp. : 20.90 °C
Area Scan : 6x6x1 : Measurement x=12mm, y=12mm, z=4mm
Zoom Scan : 7x7x7 : Measurement x=5mm, y=5mm, z=5mm

Power Drift-Start : 0.054 W/kg Power Drift-Finish: 0.053 W/kg

Power Drift (%) : -1.581

DUT Position : Touch Channel : 6

1 gram SAR value : 0.101 W/kg 10 gram SAR value : 0.130 W/kg Area Scan Peak SAR : 0.129 W/kg Zoom Scan Peak SAR: 0.192 W/kg

Crest Factor : 1
Tissue Temp. : 20.20 °C
Ambient Temp. : 20.90 °C
Area Scan : 6x6x1 : Measurement x=12mm, y=12mm, z=4mm
Zoom Scan : 7x7x7 : Measurement x=5mm, y=5mm, z=5mm

Power Drift-Start : 0.030 W/kg Power Drift-Finish: 0.032 W/kg

Power Drift (%) : 0.185

DUT Position : Touch Channel : 11

1 gram SAR value : 0.077 W/kg 10 gram SAR value : 0.028 W/kg Area Scan Peak SAR : 0.090 W/kg Zoom Scan Peak SAR: 0.142 W/kg

Crest Factor : 1
Tissue Temp. : 20.20 °C
Ambient Temp. : 20.90 °C
Area Scan : 6x6x1 : Measurement x=12mm, y=12mm, z=4mm
Zoom Scan : 7x7x7 : Measurement x=5mm, y=5mm, z=5mm

Power Drift-Start : 0.067 W/kg Power Drift-Finish: 0.066 W/kg

Power Drift (%) : -1.492

DUT Position : 15° Tilt Channel : 1

1 gram SAR value : 0.103 W/kg 10 gram SAR value : 0.086 W/kg Area Scan Peak SAR : 0.130 W/kg Zoom Scan Peak SAR: 0.192 W/kg

Crest Factor : 1
Tissue Temp. : 20.20 °C
Ambient Temp. : 20.90 °C
Area Scan : 6x6x1 : Measurement x=12mm, y=12mm, z=4mm
Zoom Scan : 7x7x7 : Measurement x=5mm, y=5mm, z=5mm

Power Drift-Start : 0.047 W/kg Power Drift-Finish: 0.045 W/kg

Power Drift (%) : -4.750

DUT Position : 15° Tilt Channel : 6

1 gram SAR value : 0.062 W/kg 10 gram SAR value : 0.056 W/kg Area Scan Peak SAR : 0.084 W/kg Zoom Scan Peak SAR: 0.114 W/kg

Crest Factor : 1
Tissue Temp. : 20.20 °C
Ambient Temp. : 20.90 °C
Area Scan : 6x6x1 : Measurement x=12mm, y=12mm, z=4mm
Zoom Scan : 7x7x7 : Measurement x=5mm, y=5mm, z=5mm

Power Drift-Start : 0.028 W/kg Power Drift-Finish: 0.028 W/kg

Power Drift (%) : -0.667

DUT Position : 15° Tilt Channel : 11

1 gram SAR value : 0.039 W/kg 10 gram SAR value : 0.028 W/kg Area Scan Peak SAR : 0.050 W/kg Zoom Scan Peak SAR: 0.072 W/kg

ALSAS-10U VER 2.3.6 APREL Laboratories SAR Test Report-802.11b

: 18-Jun-2008 Report Date Measurement Date : 18-Jun-2008

Product Data

Device Name : Voice Commander
Type : Std Form Cell Phone Model

: VC01 : 2450.00 MHz : 0 min(s) : 125.6 mm Frequency Drift Time Length Width : 69.9 mm Depth : 23 mm Antenna Type : Internal : 23 mm

Phantom Data

: Uni-Phantom : 280 x 280 x 200 : Center Type

Size (mm)

Location

Tissue Data

: BODY Type Serial No. : 325-B Frequency : 2450.00 MHz

Last Calib. Date: 18-Jun-2008 Temperature : 20.20 °C Ambient Temp. : 20.90 °C Ambient Temp. : 20.90 °C

Humidity : 50.00 RH%

Epsilon : 53.84 F/m

Sigma : 1.85 S/m

Density : 1000.00 kg/cu. m

Probe Data

: E020 : E-Fie : Probe 264 Name

Model Type Type : E-Field Triangle Serial No. : 264

Last Calib. Date: 21-Aug-2007 Frequency : 2450.00 MHz

Duty Cycle Factor: 1 Conversion Factor: 5.2

Probe Sensitivity: 1.20 1.20 1.20 $\mu V/(V/m)^2$

Compression Point: 95.00 mV Offset : 1.56 mm

Crest Factor : 1
Tissue Temp. : 20.20 °C
Ambient Temp. : 20.90 °C

Area Scan : 6x6x1 : Measurement x=12mm, y=5mm, z=5mm: 6x6x1 : Measurement x=12mm, y=12mm, z=4mm

Power Drift-Start : 0.045 W/kg Power Drift-Finish: 0.045 W/kg

Power Drift (%) : -0.540

DUT Position : Touch

Channel : 1

1 gram SAR value : 0.038 W/kg 10 gram SAR value : 0.024 W/kg Area Scan Peak SAR : 0.045 W/kg Zoom Scan Peak SAR: 0.065 W/kg

Crest Factor : 1
Tissue Temp. : 20.20 °C
Ambient Temp. : 20.90 °C

Area Scan : 6x6x1 : Measurement x=5mm, y=5mm, z=5mm: 6x6x1 : Measurement x=12mm, y=12mm, z=4mm

Power Drift-Start : 0.032 W/kg Power Drift-Finish: 0.032 W/kg

Power Drift (%) : -0.198

DUT Position : Touch

Channel : 6

1 gram SAR value : 0.042 W/kg 10 gram SAR value : 0.029 W/kg Area Scan Peak SAR : 0.050 W/kg Zoom Scan Peak SAR : 0.078 W/kg

Crest Factor : 1
Tissue Temp. : 20.20 °C
Ambient Temp. : 20.90 °C

Area Scan : 6x6x1 : Measurement x=12mm, y=12mm, z=4mm Zoom Scan : 7x7x7 : Measurement x=5mm, y=5mm, z=5mm

Power Drift-Start : 0.047 W/kg Power Drift-Finish: 0.049 W/kg

Power Drift (%) : 3.480

: Touch DUT Position : 11 Channel

1 gram SAR value : 0.091 W/kg 10 gram SAR value : 0.049 W/kg Area Scan Peak SAR : 0.120 W/kg Zoom Scan Peak SAR: 0.171 W/kg

ALSAS-10U VER 2.3.6 APREL Laboratories SAR Test Report-802.11g

Report Date : 18-Jun-2008 Measurement Date : 18-Jun-2008

Product Data

Device Name : Voice Commander
Type : Std Form Cell Phone Model

: VC01 : 2450.00 MHz : 0 min(s) : 125.6 mm Model Frequency Drift Time Length Width : 69.9 mm Depth : 23 mm Antenna Type : Internal : 23 mm

Phantom Data

Type

: SAM-Left mm) : 280 x 280 x 280 on : Left Size (mm)

Location

Tissue Data

: BODY Type : BODY
Serial No. : 325-B
Frequency : 2450.00 MHz Type

Last Calib. Date: 18-Jun-2008 Temperature : 20.20 °C Ambient Temp. : 20.90 °C Ambient Temp. : 20.90 °C

Humidity : 50.00 RH%

Epsilon : 53.84 F/m

Sigma : 1.85 S/m

Density : 1000.00 kg/cu. m

Probe Data

: E020 : E-Fie : Probe 264 Name

Model Type Type : E-Field Triangle Serial No. : 264

Last Calib. Date: 21-Aug-2007 Frequency : 2450.00 MHz

Duty Cycle Factor: 1 Conversion Factor: 5.2

Probe Sensitivity: 1.20 1.20 1.20 $\mu V/(V/m)^2$

Compression Point: 95.00 mV Offset : 1.56 mm

Crest Factor : 1
Tissue Temp. : 20.20 °C
Ambient Temp. : 20.90 °C
Area Scan : 6x6x1 : Measurement x=12mm, y=12mm, z=4mm
Zoom Scan : 7x7x7 : Measurement x=5mm, y=5mm, z=5mm

Power Drift-Start : 0.046 W/kg Power Drift-Finish: 0.048 W/kg

Power Drift (%) : 4.347

DUT Position : Touch Channel : 11

1 gram SAR value : 0.042 W/kg 10 gram SAR value : 0.029 W/kg Area Scan Peak SAR : 0.050 W/kg Zoom Scan Peak SAR: 0.074 W/kg

ALSAS-10U VER 2.3.6 APREL Laboratories SAR Test Report-802.11g

Report Date : 18-Jun-2008 Measurement Date : 18-Jun-2008

Product Data

Device Name : Voice Commander
Type : Std Form Cell Phone Model

Model : VC01
Frequency : 2450.00 MHz
Drift Time : 0 min(s)
Length : 125.6 mm Width : 69.9 mm Depth : 23 mm Antenna Type : Internal : 23 mm

Phantom Data

Type

: SAM-Right (mm) : 280 x 280 x 280 ton : Right Size (mm)

Location

Tissue Data

: BODY Type : BODY
Serial No. : 325-B
Frequency : 2450.00 MHz Type

Last Calib. Date: 18-Jun-2008 Temperature : 20.20 °C

Ambient Temp. : 20.90 °C

Humidity : 50.00 RH%

Epsilon : 53.84 F/m

Sigma : 1.85 S/m

Density : 1000.00 kg/cu. m

Probe Data

: Probe 264 : E020 Name

Model Type Type : E-Field Triangle Serial No. : 264

Last Calib. Date: 21-Aug-2007 Frequency : 2450.00 MHz

Duty Cycle Factor: 1 Conversion Factor: 5.2

Probe Sensitivity: 1.20 1.20 1.20 $\mu V/(V/m)^2$

Compression Point: 95.00 mV Offset : 1.56 mm

Crest Factor : 1
Tissue Temp. : 20.20 °C
Ambient Temp. : 20.90 °C
Area Scan : 6x6x1 : Measurement x=12mm, y=12mm, z=4mm
Zoom Scan : 7x7x7 : Measurement x=5mm, y=5mm, z=5mm

Power Drift-Start : 0.043 W/kg Power Drift-Finish: 0.044 W/kg

Power Drift (%) : 2.325

DUT Position : Touch Channel : 1

1 gram SAR value : 0.061 W/kg 10 gram SAR value : 0.039 W/kg Area Scan Peak SAR : 0.070 W/kg Zoom Scan Peak SAR: 0.150 W/kg

Crest Factor : 1
Tissue Temp. : 20.20 °C
Ambient Temp. : 20.90 °C
Area Scan : 6x6x1 : Measurement x=12mm, y=12mm, z=4mm
Zoom Scan : 7x7x7 : Measurement x=5mm, y=5mm, z=5mm

Power Drift-Start : 0.032 W/kg Power Drift-Finish: 0.032 W/kg

Power Drift (%) : 0.657

DUT Position : Touch Channel : 6

1 gram SAR value : 0.047 W/kg 10 gram SAR value : 0.034 W/kg Area Scan Peak SAR : 0.050 W/kg Zoom Scan Peak SAR: 0.086 W/kg

802.11b EUT Right-Cheek Z-Axis plot Channel: 1

SAR-Z Axis at Hotspot x:0.00 y:0.00

802.11g EUT Right Cheek Z-Axis plot Channel: 1

Appendix C. Test Setup Photographs & EUT Photographs Test Setup Photographs

Left Head (EUT Cheek)

Right Head (EUT Tilted)

Left Head (EUT Tilted)

Body

Note: The positions used in the measurements were according to IEEE 1528-2003.

Test EUT Photographs

