Devoir surveillé 1.

Samedi 1er octobre 2022, de 7h45 à 11h45.

Les calculatrices sont interdites

La présentation, la lisibilité et l'orthographe, ainsi que la rédaction, la clarté et la précision des raisonnements, entreront pour une part importante dans l'appréciation des copies.

En particulier, les résultats non justifiés ne seront pas pris en compte. Il est demandé d'encadrer ou de souligner les résultats, et de laisser une marge.

Dans un même exercice ou problème, on pourra admettre les résultats des questions non résolues afin de répondre aux questions suivantes. Les exercices ne sont pas classés par ordre de difficulté et peuvent être traités dans un ordre quelconque.

Exercice 1

Les questions de cet exercice sont indépendantes.

- 1°) Résoudre $2\sin^2(x) + \sin^2(2x) = 2$.
- 2°) En utilisant que $\frac{\pi}{4} = 2\frac{\pi}{8}$, calculer la valeur de tan $\left(\frac{\pi}{8}\right)$. En déduire la valeur de $\cos\left(\frac{\pi}{8}\right)$ puis de $\sin\left(\frac{\pi}{8}\right)$.
- 3°) Résoudre $\sin(x) \sin(7x) = \cos(4x)$.

Exercice 2

Résoudre l'inéquation :

$$2^x - 4 + 3 \times 2^{-x} > 0$$

Exercice 3

Pour tout entier naturel n, on considère la fonction f_n définie sur \mathbb{R}_+ par :

$$f_n(0) = 0$$
 et, pour tout $x > 0$, $f_n(x) = x(n-1 + \ln x)$.

Le plan est rapporté à un repère orthonormé d'origine O. On note C_n la courbe représentative de la fonction f_n .

On donne une valeur approchée de $e^{-1}:0,37$.

Toutes les courbes demandées sont à tracer dans un même repère, sur une feuille à part (papier millimétré inutile).

- 1°) Soit $n \in \mathbb{N}$. Étudier la continuité et la dérivabilité de la fonction f_n en 0.
- **2°)** Soit $n \in \mathbb{N}$. Établir le tableau de variations de la fonction f_n . Représenter la courbe C_1 .
- 3°) Soient n et n' deux entiers naturels tels que n' > n. Étudier la position relative des courbes C_n et $C_{n'}$.
- **4°)** Pour tout $n \in \mathbb{N}$, on note A_n le point de C_n où la tangente est horizontale. Montrer que tous les points A_n sont sur une même droite fixe que l'on explicitera.
- 5°) Soit $n \in \mathbb{N}$. Montrer, qu'en dehors de l'origine, C_n coupe l'axe des abscisses en un unique point B_n dont on précisera l'abscisse a_n . Établir que la tangente à C_n en B_n garde une direction fixe.
- **6**°) Soit x > 0 et $n \in \mathbb{N}$.

On note M le point de \mathcal{C}_n d'abscisse x et M' le point de \mathcal{C}_{n+1} d'abscisse $\frac{x}{e}$.

Exprimer $f_{n+1}\left(\frac{x}{e}\right)$ en fonction de $f_n(x)$.

En déduire une relation entre les vecteurs \overrightarrow{OM} et $\overrightarrow{OM'}$.

7°) Représenter les courbes C_2 et C_0 dans le repère. Illustrer graphiquement la relation vectorielle trouvée à la question précédente pour n=1 et une valeur quelconque de x.

Exercice 4

On souhaite déterminer l'ensemble \mathcal{E} des fonctions $f: \mathbb{R} \to \mathbb{R}$ telles que :

(*) :
$$\begin{cases} f \text{ est deux fois dérivable sur } \mathbb{R} \\ f'(0) = 1 \\ \forall x \in \mathbb{R}, \ (f'(x))^2 - (f(x))^2 = 1 \end{cases}$$

- 1°) Dans cette question, on note f une solution de (*).
 - a) Montrer que f(0) = 0.
 - **b)** Montrer que pour tout $x \in \mathbb{R}$: $f'(x) \neq 0$.
 - c) Montrer que pour tout $x \in \mathbb{R}$: f''(x) = f(x).
 - d) On pose u = f' + f et v = f' f. Justifier que u et v sont dérivables, et montrer que u' = u et que v' = -v. Quelles sont alors les formes de u et v?
 - e) En déduire que $f: x \mapsto \frac{1}{2} (e^x e^{-x})$
- 2°) Déterminer l'ensemble \mathcal{E} .

Exercice 5

On pose, pour tout $x \in \mathbb{R}$, $f(x) = \sqrt{|x^2 - 4x - 12|}$.

- 1°) a) En distinguant différents cas, proposer une expression de f(x) sans valeur absolue.
 - b) Montrer que f est dérivable au moins sur l'ensemble $D = \mathbb{R} \setminus \{x_1, x_2\}$ où x_1 et x_2 sont des réels à déterminer (on prendra $x_1 < x_2$). Calculer f'(x) sur D à l'aide de la question précédente.
 - c) Montrer que f n'est pas dérivable en x_1 , et que la courbe C de f admet une tangente verticale au point d'abscisse x_1 .

On admettra que le résultat est le même en x_2 .

- 2°) Dresser le tableau de variations de f.
- 3°) Montrer que \mathcal{C} est symétrique par rapport à la droite d'équation x=2.
- **4°) a)** Montrer que la droite d'équation y = x 2 est asymptote à la courbe \mathcal{C} en $+\infty$. Indication : on travaillera seulement sur $[x_2, +\infty[$.

 Quelles sont les positions relatives sur $[x_2, +\infty[$?
 - **b)** En déduire une asymptote à \mathcal{C} en $-\infty$.
- 5°) En utilisant les questions précédentes, donner l'allure de la courbe $\mathcal C$ dans un repère orthonormé.
- **6°)** On note Γ le cercle de centre $\Omega(2,0)$ et de rayon 4.
 - a) Déterminer l'équation de Γ .

 Indication: Γ est l'ensemble des points M(x,y) tels que $\|\overrightarrow{\Omega M}\|^2 = 16$.
 - b) On note Γ' la partie du cercle Γ située au-dessus de l'axe des abscisses. On note aussi \mathcal{C}' la portion de la courbe \mathcal{C} située entre x_1 et x_2 . Montrer que $\Gamma' = \mathcal{C}'$.