Solution: Problem E

Detailed solution for Problem E:

We have two squares of equal side length a.

- S_1 : A square of side length a, centered at the origin (0,0) and aligned with the coordinate axes.

This means:

$$S_1: -\frac{a}{2} \le x \le \frac{a}{2}$$
 and $-\frac{a}{2} \le y \le \frac{a}{2}$.

The vertices of S_1 are:

$$A=\left(\frac{a}{2},\frac{a}{2}\right),\quad B=\left(\frac{a}{2},-\frac{a}{2}\right),\quad C=\left(-\frac{a}{2},-\frac{a}{2}\right),\quad D=\left(-\frac{a}{2},\frac{a}{2}\right).$$

The area of S_1 is a^2 .

- \mathbf{S}'_2 before rotation: We shall consider an axis-aligned square S'_2 of side length a, placed such that one of its vertices is at the origin (0,0) and the square extends into the first quadrant. Without rotation, its vertices are:

$$W' = (0,0), \quad X' = (a,0), \quad Y' = (a,a), \quad Z' = (0,a).$$

This square S'_2 also has area a^2 . In this configuration, S'_2 is not centered at the origin. Instead, it just has a vertex at the origin.

Now, Rotate S_2' by 45° Clockwise:

We rotate the square S'_2 by 45° **clockwise** about the origin as shown in the figure. A 45° clockwise rotation transforms a point (x, y) as follows:

- Rotation by 45° clockwise can be represented by the transformation:

$$(x', y') = \left(x\frac{\sqrt{2}}{2} + y\frac{\sqrt{2}}{2}, -x\frac{\sqrt{2}}{2} + y\frac{\sqrt{2}}{2}\right).$$

We now apply this rotation to each vertex of S'_2 :

1. W' = (0,0):

$$W = \left(0 \cdot \frac{\sqrt{2}}{2} + 0, \ -0 \cdot \frac{\sqrt{2}}{2} + 0\right) = (0, 0).$$

Figure 1: Desmos plot of S_1 (red) and S_2 (green) after rotating S'_2 by 45° clockwise about the origin.

2. X' = (a, 0):

$$X = \left(a\frac{\sqrt{2}}{2} + 0, -a\frac{\sqrt{2}}{2} + 0\right) = \left(\frac{a}{\sqrt{2}}, -\frac{a}{\sqrt{2}}\right).$$

3. Y' = (a, a):

$$Y = \left(a\frac{\sqrt{2}}{2} + a\frac{\sqrt{2}}{2}, -a\frac{\sqrt{2}}{2} + a\frac{\sqrt{2}}{2}\right).$$

We shall combine terms inside each coordinate: - For x': $a\frac{\sqrt{2}}{2}+a\frac{\sqrt{2}}{2}=a\sqrt{2}$. - For y': $-a\frac{\sqrt{2}}{2}+a\frac{\sqrt{2}}{2}=0$.

Thus:

$$Y = (a\sqrt{2}, 0).$$

4. Z' = (0, a):

$$Z = \left(0 + a\frac{\sqrt{2}}{2}, -0 + a\frac{\sqrt{2}}{2}\right) = \left(\frac{a}{\sqrt{2}}, \frac{a}{\sqrt{2}}\right).$$

After rotation, the square S_2 (rotated version of S'_2) has vertices:

$$W = (0,0), \quad X = \left(\frac{a}{\sqrt{2}}, -\frac{a}{\sqrt{2}}\right), \quad Y = (a\sqrt{2}, 0), \quad Z = \left(\frac{a}{\sqrt{2}}, \frac{a}{\sqrt{2}}\right).$$

The area of S_2 remains a^2 .

Note: S_2 is no longer axis-aligned nor centered at the origin. It has one vertex at the origin and is tilted 45° clockwise.

Visualizing the Overlap:

- S_1 is a square centered at the origin, with corners at $(\pm a/2, \pm a/2)$. - S_2 , after

the 45° clockwise rotation, has a vertex at W=(0,0), stretches to the right (positive x-direction) up to $Y=(a\sqrt{2},0)$, and also has vertices Z in the first quadrant and X in the fourth quadrant.

This configuration implies: - S_2 extends into both the first quadrant (Q1) and fourth quadrant (Q4), with the origin as a pivot point. - We will analyze the intersection $S_1 \cap S_2$ quadrant by quadrant.

Defining the Edges of S_2 :

The rotated square S_2 has vertices in the order $W \to Z \to Y \to X \to W$.

- 1. Edge WZ: Connects W=(0,0) to $Z=(a/\sqrt{2},a/\sqrt{2})$. Slope $=\frac{a/\sqrt{2}-0}{a/\sqrt{2}-0}=1$. Equation: y=x.
 - 2. Edge ZY: Connects $Z=(a/\sqrt{2},a/\sqrt{2})$ to $Y=(a\sqrt{2},0)$. Find the slope:

slope =
$$\frac{0 - a/\sqrt{2}}{a\sqrt{2} - a/\sqrt{2}} = \frac{-a/\sqrt{2}}{a(\sqrt{2} - 1/\sqrt{2})}$$
.

Simplify denominator: $\sqrt{2} - \frac{1}{\sqrt{2}} = \frac{2-1}{\sqrt{2}} = \frac{1}{\sqrt{2}}$.

Thus denominator = $a/\sqrt{2}$.

Slope =
$$\frac{-a/\sqrt{2}}{a/\sqrt{2}}$$
 = -1.

Line through Z:

$$y - \frac{a}{\sqrt{2}} = -1\left(x - \frac{a}{\sqrt{2}}\right) \implies y = -x + a\sqrt{2}.$$

3. Edge YX: Connects $Y = (a\sqrt{2}, 0)$ to $X = (a/\sqrt{2}, -a/\sqrt{2})$. Slope:

$$\frac{-a/\sqrt{2} - 0}{a/\sqrt{2} - a\sqrt{2}} = \frac{-a/\sqrt{2}}{a/\sqrt{2} - a\sqrt{2}}.$$

Factor out $a/\sqrt{2}$:

$$a/\sqrt{2} - a\sqrt{2} = a\left(\frac{1}{\sqrt{2}} - \sqrt{2}\right) = a\left(\frac{1-2}{\sqrt{2}}\right) = \frac{-a}{\sqrt{2}}.$$

Numerator = $-a/\sqrt{2}$, Denominator = $-a/\sqrt{2}$. Slope = 1.

Equation through Y:

$$y = x - a\sqrt{2}.$$

4. Edge XW: Connects $X=(a/\sqrt{2},-a/\sqrt{2})$ to W=(0,0). Slope:

$$\frac{0 + a/\sqrt{2}}{0 - a/\sqrt{2}} = \frac{a/\sqrt{2}}{-a/\sqrt{2}} = -1.$$

Equation through W:

So the edges are:

$$WZ: y = x, \quad ZY: y = -x + a\sqrt{2}, \quad YX: y = x - a\sqrt{2}, \quad XW: y = -x.$$

Intersection with S_1 :

Recall S_1 :

$$-\frac{a}{2} \le x \le \frac{a}{2}, \quad -\frac{a}{2} \le y \le \frac{a}{2}.$$

 S_2 occupies a region around the origin but rotated. Let's consider each relevant quadrant.

Intersection in the First Quadrant (Q1):

In Q1: - S_1 constraints: $0 \le x \le a/2$, $0 \le y \le a/2$. - In Q1, S_2 near the origin is bounded below by WZ: y = x. To be inside S_2 , we must have $y \ge x$ in this region.

The upper edges of S_2 in Q1 are very high (like $y = -x + a\sqrt{2}$), which is well above y = a/2 since $a\sqrt{2} > a/2$. Thus, the top boundary in Q1 intersection is actually the top of S_1 , i.e. y = a/2.

Hence, in Q1, the intersection region is:

$$\{(x,y): 0 \le x \le a/2, \ x \le y \le a/2\}.$$

This is a right triangle with vertices: (0,0), (0,a/2), (a/2,a/2).

Area in Q1:

$$\frac{1}{2} \times \frac{a}{2} \times \frac{a}{2} = \frac{a^2}{8}.$$

Intersection in the Second Quadrant (Q2):

We check if S_2 extends into Q2 with y > 0. From the vertex configuration and the shape after rotation, S_2 mainly extends into Q1 and Q4. It does not have any part that goes into Q2 above the x-axis. Thus, there is no intersection region in Q2.

Intersection in the Fourth Quadrant (Q4):

In Q4: - S_1 constraints: $0 \le x \le a/2$, $-a/2 \le y \le 0$. - In Q4, the relevant edge of S_2 near the origin is XW: y = -x. To be inside S_2 in Q4, we must have $y \ge -x$ because the polygon opens above the line y = -x in that region.

We know $y \leq 0$ from S_1 , and $-a/2 \leq y \leq 0$.

At x = 0, $y \ge 0$ and $y \le 0$ implies y = 0.

At x = a/2, since $y \ge -x$ implies $y \ge -a/2$, and from S_1 , $y \le 0$. This forms another right triangle with vertices: (0,0), (0,-a/2), (a/2,-a/2).

Area in Q4:

$$\frac{1}{2} \times \frac{a}{2} \times \frac{a}{2} = \frac{a^2}{8}.$$

No Intersection in the Third Quadrant (Q3):

Since S_2 does not extend below y = 0 in a manner that would intersect S_1 in Q3, there is no intersection there.

Total Intersection Area:

We have: - Q1 intersection area: $a^2/8$ - Q4 intersection area: $a^2/8$ - Q2: No intersection - Q3: No intersection

Total intersection:

$$A(S_1 \cap S_2) = \frac{a^2}{8} + \frac{a^2}{8} = \frac{a^2}{4}.$$

Non-Overlapping Area of S_2 :

The area of S_2 is a^2 . The intersection is $a^2/4$. Thus:

$$A_{\text{non-overlap}} = A(S_2) - A(S_1 \cap S_2) = a^2 - \frac{a^2}{4} = \frac{3a^2}{4}.$$

Final Answer:

$$oxed{\mathbf{A}(\mathbf{S_1}\cap\mathbf{S_2})=rac{\mathbf{a^2}}{4}} ext{ and } \mathbf{A}_{ ext{non-overlap}}=rac{3\mathbf{a^2}}{4}$$

Mathematical Concepts Involved in Problem E...

- Coordinate Plane Visualization: Plotting squares S_1 and S_2 to see their relative positions.
- Square Geometry: Familiarity with side length, diagonals, and areas of squares.
- Rotation Transformations: A 45° clockwise rotation formula in coordinates.
- Line Equations and Slopes: Identifying the boundaries of S_2 after rotation by computing slopes and line equations.
- Intersection/Overlap Computation: Splitting the intersection region by quadrants and summing triangular areas.
- Area Computations: Using right triangles for partial overlaps and subtracting from the total area.
- Final Subtraction for Non-overlap: $a^2 \frac{a^2}{4} = \frac{3a^2}{4}$.

****** END OF SOLUTION: E ********