N 2008 9184/1

$$|z^2| = 8^2 = 64$$

$$\arg(z^2) = 2 \times \frac{3\pi}{4} = \frac{3\pi}{2}$$

$$m = -\frac{\pi}{2} (\text{p.v.})$$

$$z^2 = 0 - 64i$$

correct answer (condone omission of 0)

M1

2 (i)
$$y = 2$$
 Equation of perpendicular bisector B1

$$y = 2$$
 and $2x + y = 4$, solving simultaneously

$$x = 1$$
, substitutes in given equation correctly A1

(ii)
$$r = \sqrt{(1+1)^2 + (-2 \times 1)^2}$$
 or equiv. correct method M1

$$r = 2\sqrt{2} \left(\sqrt{8}\right)$$
 obtain correct answer

(a)
$$1 + \left(-\frac{1}{4}\right)(-4x) + \frac{\left(-\frac{1}{4}\right)\left(-\frac{5}{4}\right)}{2.1}(-4x)^2 + \frac{\left(-\frac{1}{4}\right)\left(-\frac{5}{4}\right)\left(-\frac{9}{4}\right)}{3.2.1}(-4x)^3$$

=
$$1+x+\frac{5x^2}{2}+\frac{15}{2}x^3$$
 Use Binomial theorem/first three

M1

correct simplified answer

A1 A1

Valid for
$$-\frac{1}{4} < x < \frac{1}{4}$$

B1

(b)
$$\ln 5 + \ln \left(1 - \frac{3x}{5}\right)$$

Use log laws to obtain expandable

form and apply standard series

M1

$$\ln 5 - \left(\frac{3x}{5}\right) - \frac{\left(\frac{3x}{5}\right)^2}{2} - \frac{\left(\frac{3x}{5}\right)^3}{3} \quad \text{correct expansion of ln}$$

A1

$$\ln 5 - \frac{3x}{5} - \frac{9}{50}x^2 - \frac{9x^3}{125}$$

A1

Valid for
$$-\frac{5}{3} \le x < \frac{5}{3}$$

B1 [4]

8
$$\ln\left(\frac{x^3}{\sqrt{1+x^2}}\right) = 3\ln x - \frac{1}{2}\ln(1+x^2)$$

B1

(i)
$$\frac{d}{dx}(\ln y) = \frac{1}{y}\frac{dy}{dx}$$

B1

(ii)
$$\frac{d}{dx} \ln \left(\frac{x^3}{\sqrt{1+x^2}} \right) = \frac{3}{x} - \frac{x}{1+x^2}$$

Use chain rule

M1

a.e.f.

A1

$$\frac{1}{y}\frac{dy}{dx} = \frac{3}{x} - \frac{x}{1+x^2}$$

equating (i) + (ii) and

M1)

making
$$\frac{dy}{dx}$$
 subject

correct
$$\frac{dy}{dx}$$
 including y

A1

$$\frac{dy}{dx} = y \left(\frac{3}{x} - \frac{x}{1 + x^2} \right)$$

2-2

$$= \frac{x^2(3+2x^2)}{x\sqrt{(1+x^2)^3}}$$

$$\frac{dy}{dx} = 0 \text{ for } x = 0 \text{ (twice)}$$

a.e.f. in
$$x$$
 only

A1

9 For
$$x = -1$$
 $\frac{dy}{dx} = \frac{3}{4} + k$

For
$$x = 1$$
 $\frac{dy}{dx} = \frac{3}{4} - k$

$$\left(\frac{3}{4} + k\right)\left(\frac{3}{4} - k\right) = -1$$

$$\frac{9}{16} - k^2 + 1 = 0$$

$$k^2 = \frac{25}{16}$$

$$k = \frac{5}{4}$$

$$\int_0^y dy = \int_4^x \left(\frac{3}{4} - \frac{5}{4} x \right) dx$$

$$y\Big]_0^y = \frac{3}{4}x - \frac{5}{8}x^2\Big]_4^x$$

$$y = \frac{3}{4}x - \frac{5}{8}x^2 - 3 + 10$$

$$y = \frac{3}{4}x - \frac{5}{8}x^2 + 7$$

for both correct

B1

M1

A1

c.a.o

A1

Attempting to integrate and getting correct integrals M1A1

Use of limits to find constant M1

A1 [8]

/ / 10 (a)	a = . 105.	correct u ₁	. B1
	Un = 105 + (n-1)7 < 600		
	n < 71.7	Use term formula to find a no of terms	'M1
	71 terms	correct no of terms	A1
	$S_{71} = \frac{71}{2} [2 \times 105 + (71 - 1)7]$	use Sn formula	M1
	= 24 850	c.a.	A1
(b).	$\frac{11}{3} = \frac{6}{1-r}$	use S _∞ formula M1	
	$r = -\frac{7}{11}$	c.a.	A1
	$6\left \left(-\frac{7}{11}\right)\right ^{n-1} < 10^{-5}$	set up relevant inequality	
		using GP term	M1
	$n - 1 > \frac{\ln\left(\frac{10^{-5}}{6}\right)}{\ln\left(\frac{7}{11}\right)} = 29.4$	Use logs to solve	M1
	n > 30.4	correct solution	A1
	n = 31	c.a.o.	A1
11 (a)	$X \max = 5 (\text{when } \theta = \pi)$		B1
	y = 2 (5; 2)		B1
e .	$x_{\min} = 1 \text{ (when } \theta = 0\text{)}$		B1
	y = 2 (1; 2)		B1

(b)
$$\cos\theta = \frac{3-x}{2}$$

substitute for $\cos\theta \& \sin\theta$

$$\sin\theta = \frac{y-2}{3}$$

$$\left(\frac{3-x}{2}\right)^2 + \left(\frac{y-2}{3}\right)^2 = 1$$

A1

Coefficients of x^2 and y^2 are NOT equal and so equation is NOT

A1

(c)
$$\frac{dy}{dx} = 3\cos\theta \frac{dx}{d\theta} = 2\sin\theta$$

using chain rule

M1

$$\frac{dy}{dx} = \frac{3\cos\theta}{2\sin\theta}$$

a.e.f

A1

where
$$\theta = \frac{\pi}{3}$$
 $x = 2$

$$y = 2 + \frac{3\sqrt{3}}{2}$$

use of values for $\theta = \frac{\pi}{3}$

M1

in tanget equation

$$\frac{dy}{dx} = \frac{3}{2} \cdot \frac{1}{\sqrt{3}} = \frac{\sqrt{3}}{2}$$

all correct values

A1

$$y - \left(2 + 3\frac{\sqrt{3}}{2}\right) = \frac{\sqrt{3}}{2}(x - 2)$$

$$2y = \sqrt{3}x + 4 + \sqrt{3}$$

a.e.f

Only one intersection so ONLY ONE ROOT B1 $f(x) = \ln(x+1) - \cos x$ f(0.8) = -0.108Use interval test M1 f(0.9) = 0.02Correct numerical values A1 Change of sign ⇒ root between 0.8, 0.9 valid conclusion A1 $f'(x) = \frac{1}{x+1} + \sin x$ correct f'(x)BI $x_2 = 0.9 - \frac{f(0.9)}{f(0.9)}$ correct NR structure M1 0.884542 correct numerical expression

$$f(0.88445) = -0.000079$$

 $f(0.88445) = +0.00005$

 $x_2 = 0.8845(4SF)$

change of sign interval test or further interaction \Rightarrow root lies between 0.88455 and 0.88455 M1 which is 0.8845 to 4SF as given by x_2 valid conclusion A1

(a)
$$\frac{1+x}{(2+x)(3x+5)} = \frac{1}{2+x} - \frac{2}{3x+5}$$
 correct method

M1

c.a.

(i)
$$\frac{1+\sqrt{3}}{(2+\sqrt{3})(3\sqrt{3}+5)} = \frac{1}{2+\sqrt{3}} - \frac{2}{3\sqrt{3}+5}$$

$$= \frac{2 - \sqrt{3}}{(2 + \sqrt{3})(2 - \sqrt{3})} - \frac{2(3\sqrt{3} - 5)}{(3\sqrt{3} + 5)(3\sqrt{3} - 5)}$$
Rationalise M1

$$= \frac{2 - \sqrt{3}}{1} - 2 \frac{\left(3\sqrt{3} - 5\right)}{2} \text{ one correct term}$$
 A1

$$= 7 - 4\sqrt{3}$$
 c.a.o A1

(ii)
$$\int_{-1}^{1} \left(\frac{1}{2+x} - \frac{2}{3x+5} \right) dx$$

=
$$\left[\ln(2+x) - \frac{2}{3}\ln(3x+5)\right]_{-1}^{1}$$
 attempting integral M1 correct integral A1
= $\ln 3 - \frac{2}{3}\ln 8 - \left(\ln 1 - \frac{2}{3}\ln 2\right)$ correct use of \int limits M1

$$= ln3 - \frac{4}{3}ln2$$
 correctly obtained A1

(b)
$$V = \pi \int_{\frac{\pi}{6}}^{\frac{5\pi}{6}} \cos ec^2 x dx$$

use correct form of

$$\int$$
 with limits M1

$$= \pi \left[-\cot x \right]_{\frac{\pi}{6}}^{\frac{5\pi}{6}}$$

$$= \pi \left[-\left(\frac{-1}{\sqrt{3}}\right) - \left(-\frac{1}{\sqrt{3}}\right) \right]$$

A1

$$=$$
 $\frac{2\pi}{\sqrt{2}}$

14 (a)
$$v = \frac{1}{3} \times 4x^2 \times h^2$$

$$h = \frac{3v}{4x^2}$$

R1

Height of triangular face, H is given by

$$H^2 = h^2 + x^2$$

$$= \frac{9V^2}{16x^4} + x^2$$

M1

$$= \frac{9V^2 + 16x^2}{16x^4}$$

A1

Area of triangular face, A

$$A = \frac{1}{2}.2xH = xH$$

s.o.i

B1

squaring expression for area

$$A^2 = x^2 H^2$$

M1

$$= \frac{x^2(9V^2 + 16x^6)}{16x^4}$$

substituting

M1

$$= \frac{9V^2}{16x^2 + x^4}$$

as required A

A1

Differentiating with respect to x

$$2A\frac{dA}{dx} = \frac{-32x.9v^2}{256x^4} + 4x^3$$

M1A1

A is least when
$$\frac{dA}{dx} = 0$$

i.e.
$$4x^3.256x^4 = 32x.9v^2$$

M1

$$x = \sqrt[6]{\frac{9V^2}{32}}$$

A1 [11]

(b) Finds volume of solid as $\frac{2}{3}\pi r^3 + 20\pi r^2$

B1

Uses $\frac{dv}{dt} = \frac{dv}{dr} \cdot \frac{dv}{dt}$ is chain rule

M1

Obtains $(2\pi r^2 + 40\pi)2$ or equiv.

A1

19 200 π

Ans

A1 [4]