SEMICONDUCTOR S

TELINK SEMICONDUCTOR

Datasheet for Telink BLE + IEEE802.15.4 Multi-Standard Wireless SoC TLSR8269F512

DS-TLSR8269F512-E24

Ver 2.5.0

2019/3/21

Keyword:

Bluetooth Smart; BLE Mesh; 6LoWPAN; Thread; Zigbee; RF4CE; HomeKit; 2.4GHz; Features; Package; Pin layout; Memory; MCU; Working modes; Wakeup sources; RF Transceiver; Baseband; Clock; Timers; Interrupt; Interface; PWM; Audio; QDEC; ADC; PGA; Electrical specification

Brief:

This datasheet is dedicated for Telink BLE + IEEE802.15.4 multi-standard SoC TLSR8269F512. In this datasheet, key features, working mode, main modules, electrical specification and application of the TLSR8269F512 are introduced.

Published by Telink Semiconductor

Bldg 3, 1500 Zuchongzhi Rd, Zhangjiang Hi-Tech Park, Shanghai, China

© Telink Semiconductor All Right Reserved

Legal Disclaimer

This document is provided as-is. Telink Semiconductor reserves the right to make improvements without further notice to this document or any products herein. This document may contain technical inaccuracies or typographical errors. Telink Semiconductor disclaims any and all liability for any errors, inaccuracies or incompleteness contained herein.

Copyright (c) 2019 Telink Semiconductor (Shanghai) Ltd, Co.

Information:

For further information on the technology, product and business term, please contact Telink Semiconductor Company (www.telink-semi.com).

For sales or technical support, please send email to the address of:

telinkcnsales@telink-semi.com

telinkcnsupport@telink-semi.com

Revision History

Version	Major Changes	Date	Author
1.0.0	Initial release	2016/2	J.H.P., L.Y., S.G.J., L.X., X.S.J., Cynthia
1.1.0	Added reference design	2016/5	H.Z.F., L.X., Cynthia
1.2.0	Updated DC characteristics and ordering information; Added TLSR8269F512AT32 package.	2016/7	L.J.R., X.S.J., Cynthia
1.3.0	Added I2C and SPI usage. Added pull-up resistor statement for I2C.	2016/10	Z.X.D., S.G.J., Cynthia
1.4.0	Updated reference design: mainly updated capacitance for DVDD3_F, DVDD3, AVDD3. Deleted Wakeup source – GPIO and renamed Wakeup source – pad as Wakeup source – IO.	2016/10	H.Z.F., Z.X.D., Cynthia
1.5.0	Added watchdog status bit and flag clearing. Marked retention analog registers in deep sleep. Introduced impact to the retention analog registers by watchdog reset, POR and chip software reset.	2016/10	Z.X.D., S.G.J., Cynthia
1.6.0	Updated Reset and Power Management.	2016/11	S.G.J., Cynthia
1.7.0	Modified I2C Master clock.	2016/12	Y.C.Q., Cynthia
1.8.0	Added TLSR8269F512AT48 package.	2017/3	X.S.J., Cynthia
1.9.0	Updated ordering information.	2017/3	X.S.J., Cynthia
2.0.0	Updated section 7.3.1 Communication protocol.	2017/6	S.G.J., Cynthia
2.1.0	Updated section 11.1ADC clock. Added section 10.6 Timing sequence.	2017/8	L.Y., Y.C.Q, Cynthia
2.2.0	Updated the followings sections: 4.3 System clock (0x66[4:0]),	2017/12	S.G.J., Y.C.Q., X.W.W.,

Datasheet for Telink TLSR8269F512

Datastreet for Tellifix TESTO208					
Version	Major Changes	Date	Author		
	7.1.1.3 GPIO lookup table (notes),		Cynthia		
	6.2 Register configuration and 10.7				
	Register table (removed QDEC				
	interrupt),				
	13.2 Recommended operating condition				
	(supply rise time).				
2.3.0	Updated section 1.4 Ordering	2018/10	YY, QRF,		
2.5.0	information.	2010/10	Cynthia		
	Updated section 1.2.3 Features of power				
	management module,	_			
2.4.0	4.2 Register table,	2019/1	LY, Cynthia		
	4.3 System clock,				
	13.3 DC characteristics				
2.5.0	Updated section 1 Overview,	2019/3	ZLH, XJ,		
2.3.0	3 BLE/802.15.4/2.4G RF Transceiver.	2013/3	Cynthia		

1 Table of contents

1	Overvie	W	11
	1.1 Blo	ock diagram	12
	1.2 Ke	y features	13
	1.2.1	General features	13
	1.2.2	RF Features	14
	1.2.3	Features of power management module	14
	1.2.4	USB features	15
	1.2.5	Flash features	15
	1.2.6	Zigbee RF4CE features	15
	1.2.7	6LowPAN and Thread features	16
	1.2.8	BLE Mesh features	16
	1.3 Ty	pical applications	17
	1.4 Or	dering information	18
	1.5 Pa	ckage	18
	1.6 Pir	n layout	21
	1.7 Te	link SDK	26
2	Memor	y and MCU	27
	2.1 M	emory	27
	2.1.1	SRAM/Register	27
	2.1.2	Flash	27
	2.1.2.	1 Page program	27
	2.1.2.	2 Sector erase	28
	2.1.2.	3 Block erase	28
	2.1.2.	4 Chip erase	28
	2.2 M	CU	28
	2.3 W	orking modes	28
	2.3.1	Active mode	2 9
	2.3.2	Idle mode	29
	2.3.3	Power-saving mode	29
		et	
	2.5 Pov	ver Management	
	2.5.1	Power-On-Reset (POR) and Brown-out detect	
	2.5.2	Working mode switch	36
	2.5.3	LDO and DCDC	
	2.6 Wa	keup sources	
	2.6.1	Wakeup source - USB	39
	2.6.2	Wakeup source – 32K timer	
	2.6.3	Wakeup source – IO	39
	2.6.4	Register table	40
3	BLE/802	2.15.4/2.4G RF Transceiver	42
	3.1 Blo	ock diagram	42
	3.2 Fu	nction description	42

3.2.1	Turn on/off	42
3.2.2	Air interface data rate and RF channel frequency	43
3.3 B	aseband	43
3.3.1	Packet format	43
3.3.2	RSSI	44
4 Clock		45
4.1 C	ock sources	45
4.2 R	egister table	45
4.3 Sy	ystem clock	47
4.4 N	lodule clock	48
4.4.1	ADC clock	48
4.4.2	DMIC clock	48
5 Timers		50
5.1 Ti	mer0~Timer2	50
5.1.1	Register table	50
5.1.2	Mode0 (System Clock Mode)	52
5.1.3	Mode1 (GPIO Trigger Mode)	52
5.1.4	Mode2 (GPIO Pulse Width Mode)	53
5.1.5	Mode3 (Tick Mode)	55
5.1.6	Watchdog	55
5.2 3	2K LTIMER	56
5.3 Sy	ystem Timer	56
6 Interru	pt Systempt System	58
6.1 In	terrupt structure	58
6.2 R	egister configuration	58
6.2.1	Enable/Mask interrupt sources	59
6.2.2	Interrupt mode and priority	59
6.2.3	Interrupt source flag	60
7 Interfa	ce	61
7.1 G	PIO	61
7.1.1	Basic configuration	61
7.1.1	.1 Multiplexed functions	61
7.1.1	.2 Drive strength	62
7.1.1	.3 GPIO lookup table	63
7.1.2	Connection relationship between GPIO and related modules	65
7.1.3	Pull-up/Pull-down resistor	69
7.2 S	WM and SWS	75
7.3 12	C	76
7.3.1	Communication protocol	76
7.3.2	Register table	77
7.3.3	I2C Slave mode	78
7.3.3	.1 DMA mode	79
7.3.3	.2 Mapping mode	80
7.3.4	I2C Master mode	81

7	.3.4.1 I2C Master Write transfer	81
7	.3.4.2 I2C Master Read transfer	82
7.3	.5 I2C and SPI Usage	82
7.4	SPI	83
7.4	.1 Register table	83
7.4	.2 SPI Master mode	84
7.4	.3 SPI Slave mode	85
7.4	.4 I2C and SPI Usage	86
7.5	UART	86
8 PW	M	89
8.1	Register table	89
8.2	Enable PWM	92
8.3	Set PWM clock	92
8.4	PWM waveform, polarity and output inversion	92
8.4	.1 PWM waveform	92
8.4	.2 Invert PWM output	93
8.4	.3 Polarity for signal frame	93
8.5	PWM mode	94
8.5	.1 Select PWM mode	94
8.5	.2 Continuous mode	94
8.5	.3 Counting mode	94
8.5	.4 IR mode	95
8.6	PWM interrupt	96
9 Au	oil	97
9.1	Audio input path	97
9.2	Audio input processing	97
9.3	Audio output path	99
9.3	.1 Rate Matching	100
9.3	.2 SDM	100
9.3	.3 Register configuration	101
9.4	Audio performance	103
10 Qu	adrature Decoder	104
10.1	Input pin selection	104
10.2	Common mode and double accuracy mode	104
10.3	Read real time counting value	106
10.4	QDEC reset	107
10.5	Other configuration	107
10.6	Timing sequence	108
10.7	Register table	109
11 AD	C	110
11.1	ADC clock	110
11.2	Set period	110
11.3	Select ADC input range	111
11.4	Select resolution and sampling time	111

11.5	Select input mode and channel	111
11.6	Enable auto mode and output	112
11.7	ADC done signal	112
11.8	ADC status	112
11.9	Battery detection	112
11.	9.1 Case 1: Battery directly connected to chip	113
11.	9.2 Case 2: Battery connected to chip via boost DCDC	113
11.10	Register table	114
12 PG	Α	118
12.1	Power on/down	118
12.2	Input channel selection	118
12.3	Gain setting	118
12.4	PGA output	119
12.5	Register table	119
13 Key	Electrical Specifications	121
13.1	Absolute maximum ratings	121
13.2	Recommended operating condition	121
13.3	DC characteristics	122
13.4	AC characteristics	122
14 Ap	olication	127
14.1	Application example for the TLSR8269F512ET48	127
14.	1.1 Schematic	127
14.	1.2 Layout	128
14.	1.3 BOM (Bill of Material)	128
14.2	Application example for the TLSR8269F512ET32	131
14.	2.1 Schematic	131
14.	2.2 Layout	132
14.	2.3 BOM (Bill of Material)	132

2 Table of Figures

Figure 1- 1 Block diagram of the system	12
Figure 1-2 Package dimension for the TLSR8269F512ET/AT48	3 (Unit: mm)19
Figure 1-3 Package dimension for the TLSR8269F512ET/AT32	2 (Unit: mm)20
Figure 1-4 Pin assignment for the TLSR8269F512ET/AT48	21
Figure 1-5 Pin assignment for the TLSR8269F512ET/AT32	24
Figure 2- 1 Physical memory map	27
Figure 2- 2 Transition chart of working modes	29
Figure 2-3 Block diagram for power up/down	33
Figure 2- 4 Power-up sequence	34
Figure 2- 5 Power-down sequence	35
Figure 2- 6 Wakeup sources	38
Figure 3- 1 Block diagram of RF transceiver	42
Figure 4- 1 Block diagram of system clock	
Figure 7-1 Logic relationship between GPIO and related mod	
Figure 7- 2 I2C timing chart	76
Figure 7-3 Byte consisted of slave address and R/W flag bit	
Figure 7- 4 Read format in DMA mode	79
Figure 7- 5 Write format in DMA mode	79
Figure 7- 6 Read format in Mapping mode	80
Figure 7- 7 Write format in Mapping mode	80
Figure 7-8 SPI write/read command format	
Figure 7- 9 UART communication	86
Figure 8-1 PWM output waveform chart	93
Figure 8-2 Continuous mode	94
Figure 8-3 Counting mode	95
Figure 8-4 IR mode	
Figure 9- 1 Audio input path	97
Figure 9- 2 Audio input processing	98
Figure 9-3 Audio output path	100
Figure 9- 4 Linear interpolation	100
Figure 9- 5 Block diagram of SDM	
Figure 10- 1 Common mode	105
Figure 10- 2 Double accuracy mode	
Figure 10- 3 Read real time counting value	
Figure 10- 4 Shuttle mode	
Figure 10- 5 Timing sequence chart	
Figure 11- 1 Sampling and analog-to-digital conversion proces	s110
Figure 11- 2 Battery detect case 1	
Figure 11- 3 Battery detect case2	
Figure 12- 1 PGA block diagram	118
Figure 14- 1 Schematic for the TLSR8269F512ET48	127

Figure 14- 2 Layout for the TLSR8269F512ET48	128
Figure 14- 3 Schematic for the TLSR8269F512ET32	
Figure 14- 4 Layout for the TLSR8269F512ET32	

3 Table of Tables

Table 1- 1	Ordering information of the TLSR8269F512	18
Table 1-2	Pin functions for the TLSR8269F512ET/AT48	21
Table 1-3	Pin functions for the TLSR8269F512ET/AT32	24
Table 2-1	Retention analog registers in deep sleep	30
Table 2- 2	Register configuration for software reset	31
Table 2-3	afe 3V analog register to control delay counter	34
Table 2-4	Characteristics of Power-up/ Power-down sequence	35
Table 2-5	3.3V analog registers for module power up/down control	36
Table 2-6	Analog registers for Wakeup	40
Table 2-7	Digital register for Wakeup	41
Table 3-1	Packet Format in standard 1Mbps BLE mode	43
Table 3- 2	Packet format in 802.15.4 mode	43
Table 4- 1	Register table for clock	45
Table 5- 1	Register configuration for Timer0~Timer2	50
Table 5- 2	Register table for System Timer	56
Table 6- 1	Register table for Interrupt system	58
Table 7- 1	GPIO lookup table	63
Table 7- 2	GPIO lookup table2	67
Table 7- 3	Analog registers for pull-up/pull-down resistor control	69
Table 7-4	Register configuration for I2C	77
Table 7-5	Register configuration for SPI	83
Table 7-6	SPI mode	84
Table 7-7	Register configuration for UART	87
Table 8- 1	Register table for PWM	89
Table 9- 1	Audio data flow direction	97
Table 9- 2	Register configuration related to audio input processing	98
Table 9-3	Register configuration related to audio output path	101
Table 9-4	Codec output with 32ohm load performance	103
Table 10- 1	Input pin selection	104
Table 10- 2	Timing	108
Table 10-3	Register table for QDEC	109
Table 11- 1	Register table related to SAR ADC	114
Table 12- 1	Analog register table related to PGA	119
Table 12- 2	Digital register related to PGA	120
Table 13- 1	Absolute Maximum Ratings	121
Table 13- 2	Recommended operation condition	121
Table 13-3	DC characteristics	122
Table 13-4	AC Characteristics	122
Table 14- 1	BOM table for the TLSR8269F512ET48	128
Table 14- 2	ROM table for the TI SR8269F512FT32	132

1 Overview

The TLSR8269F512 is Telink-developed BLE + IEEE802.15.4 multi-standard wireless SoC solution with internal Flash and audio support, which combines the features and functions needed for all 2.4GHz IoT standards into a single SoC. It's completely RoHS-compliant and 100% lead (Pb)-free.

The TLSR8269F512 combines the radio frequency (RF), digital processing, protocols stack software and profiles for multiple standards into a single SoC. The chip supports standards and industrial alliance specifications including Bluetooth Smart (up to Bluetooth 5), BLE Mesh, 6LoWPAN, Thread, Zigbee, RF4CE, HomeKit and 2.4GHz proprietary standard. The TLSR8269F512's embedded 512KB FLASH enables dynamic stack and profile configuration, and the final end product functionality is configurable via software, providing ultimate flexibility. The TLSR8269F512 also has hardware OTA upgrades support and multiple boot switching, allowing convenient product feature roll outs and upgrades.

The TLSR8269F512 supports concurrent multi-standards. For some use cases, the TLSR8269F512 can "concurrently" run two standards, for example, Bluetooth Smart and ZigBee/RF4CE can run concurrently with one application state but dual radio communication channels for interacting with different devices. The end product working in this mode can maintain active Bluetooth Smart connections to smart phones or other BLE devices while control and communicate with Zigbee/RF4CE devices at the same time. In this case, it's compatible with Bluetooth standard, supports BLE specification up to version 5.0, allows easy connectivity with Bluetooth Smart Ready mobile phones, tablets, laptops, which supports BLE slave and master mode operation, including broadcast, encryption, connection updates, and channel map updates. At the same time, it also supports IEEE 802.15.4 standard and Zigbee-compliant platform, and is perfect for creating interoperable solution for use within the home combined with leading Zigbee/RF4CE software stack. This feature enables products to bridge the smartphone and home automation world with a single chip and no requirement for an external hub.

The TLSR8269F512 integrates hardware acceleration to support the complicated security operations required by HomeKit, Thread and other standards without the requirement for an external DSP, thereby significantly reducing the product eBOM.

The TLSR8269F512 supports analog and digital microphones and audio output with enhanced voice performance for voice search and other such applications. The TLSR8269F512 also includes a full range of on-chip peripherals for interfacing with external components such as LEDs, sensors, touch controllers, keyboards, and motors. This makes it an ideal single-chip solution for IoT and human interface devices such as smart lighting, smart home devices, advanced remote controls, and wireless toys.

1.1 Block diagram

The TLSR8269F512 is designed to offer high integration, ultra-low power application capabilities. The system's block diagram is as shown in Figure 1-1.

Figure 1-1 Block diagram of the system

The TLSR8269F512 integrates strong 32-bit MCU, BLE/802.15.4/2.4G Radio, 32KB SRAM, 512KB internal Flash, 14bit ADC with PGA, 6-channel PWM (2-channel IR), one

DS-TLSR8269F512-E24 12 Ver2.5.0

quadrature decoder (QDEC), abundant GPIO interfaces, multi-stage power management module and nearly all the peripherals needed for IoT (Internet of Things) and human interface devices application development (e.g. Bluetooth Low Energy and Zigbee/IEEE 802.15.4/RF4CE).

With the high integration level of TLSR8269F512, few external components are needed to satisfy customers' ultra-low cost requirements.

1.2 Key features

1.2.1 General features

General features are as follows:

- 1) Embedded 32-bit high performance MCU with clock up to 48MHz.
- 2) Program memory: internal 512KB Flash.
- 3) Data memory: 32KB on-chip SRAM.
- 4) 12MHz/16MHz & 32.768KHz Crystal and 32KHz/32MHz embedded RC oscillator.
- 5) A rich set of I/Os:
 - → Up to 36/21 GPIOs depending on package option;
 - ♦ DMIC (Digital Mic);
 - ♦ AMIC (Analog Mic);
 - ♦ Mono-channel Audio output;
 - ♦ SPI;
 - → I2C;
 - ♦ UART with hardware flow control;
 - ♦ USB;
 - ♦ Debug Interface.
- 6) Up to 6 channels of PWM, 2-channel IR.
- 7) Sensor:
 - ♦ 14bit ADC with PGA;
 - → Temperature sensor.

- 8) One quadrature decoder.
- 9) Embedded hardware AES.
- 10) Operating temperature range:
 - ♦ ET versions: -40° C~+85°C;
 - \diamond AT versions: -40°C~+125°C.
- 11) Supports all 2.4GHz IoT standards into a single SoC, including BLE, BLE Mesh, Zigbee, RF4CE, Homekit, 6LowPAN, Thread and 2.4GHz proprietary technologies without the requirement for an external DSP.

1.2.2 RF Features

RF features include:

- 1) BLE/802.15.4/2.4GHz RF transceiver embedded, working in worldwide 2.4GHz ISM band.
- 2) Bluetooth 5 Compliant, 1Mbps and 2Mbps LE Enhancement FIPD version.
- 3) IEEE802.15.4 compliant, 250Kbps.
- 4) 2.4GHz proprietary 2Mbps mode with AFH (Adaptive Frequency Hopping) feature support.
- 5) Rx Sensitivity: -92dBm@BLE 1Mbps, -97dBm@ IEEE802.15.4 250Kbps, -88dBm @ 2.4G proprietary 2Mbps mode.
- 6) Tx output power: +7dBm.
- 7) Single-pin antenna interface.
- 8) RSSI monitoring.

1.2.3 Features of power management module

Features of power management module include:

- 1) Embedded LDO.
- 2) Battery monitor: Supports low battery detection.
- 3) Power supply: 1.9V~3.6V.
- 4) Multiple stage power management to minimize power consumption.
- 5) Low power consumption:

DS-TLSR8269F512-E24 14 Ver2.5.0

- ♦ Receiver mode current (Transceiver only): 12mA
- Transmitter mode current (Transceiver only): 15mA @0dBm power, 22mA
 @max power
- ♦ Suspend mode current: 10uA (IO wakeup), 12uA (Timer wakeup)
- ♦ Deep sleep mode current: 1.7uA

1.2.4 USB features

USB features include:

- 1) Compatible with USB2.0 Full speed mode.
- 2) Supports 9 endpoints.
- 3) Supports ISP (In-System Programming) via USB port.

1.2.5 Flash features

The TLSR8269F512 embeds Flash with features below:

- 1) Total 512KB (4Mbits);
- 2) Flexible architecture: 4KB per Sector, 64KB/32KB per block;
- 3) Up to 256 Bytes per programmable page;
- 4) Write protect all or portions of memory;
- 5) Sector erase (4KB);
- 6) Block erase (32KB/64KB);
- 7) Cycle Endurance: 100,000 program/erases;
- 8) Data Retention: typical 20-year retention.

1.2.6 Zigbee RF4CE features

Zigbee RF4CE features include:

- 1) Based on IEEE 802.15.4 Standard, certified RF4CE platform, with ZRC1.1/ZRC2.0 and MSO profile support;
- 2) Various transmission options including broadcast;
- 3) Provides a secured key generation mechanism;
- 4) Supports a simple pairing mechanism for devices with full application confirmation;

DS-TLSR8269F512-E24 15 Ver2.5.0

- 5) Only authorized devices are able to communicate;
- 6) Various power saving modes are supported for all device classes;
- 7) Supports AES-128bit encryption;
- 8) Extensible to vendor specific profiles;
- 9) Telink extended profile with audio support for voice command based searches;
- 10) Over the air (OTA) firmware upgrade with hardware support.

1.2.7 6LowPAN and Thread features

6LoWPAN and Thread features include:

- 1) Supports 6LowPAN, IPv6 and DHCPv6;
- 2) Supports UDP and DTLS;
- 3) Supports thread security and commission;
- 4) Supports networks of 250 nodes or greater.

1.2.8 BLE Mesh features

Telink Proprietary BLE Mesh features include:

- 1) Support flexible mesh control, e.g. N-to-1 and N-to-M;
- 2) Supports switch control for over 200 nodes without delay;
- 3) Supports real time status update for over 200 nodes;
- 4) Secure and safe control and scalable identification within network;
- 5) 8/16 groups can be controlled at the same time;
- 6) 128/256 nodes within mesh network;
- 7) Configurable to more or fewer hops (e.g. 4 hops) within mesh network, single hop delay less than 15ms;
- 8) Flexible RF channel usage with both BLE advertising channels and data channels for good anti-interference performance.

DS-TLSR8269F512-E24 16 Ver2.5.0

1.3 Typical applications

The TLSR8269F512 can be applied to IoT and human interface devices, such as BLE smart devices, BLE mesh devices, 6LoWPAN/Thread home automation devices, 2.4GHz IEEE 802.15.4, RF4CE remote control /set-top box, and Zigbee systems; its typical applications include, but are not limited to the following:

- ♦ Smartphone and tablet accessories;
- ♦ RF Remote Control;
- ♦ Sports and fitness tracking;
- ♦ Wearable devices;
- ♦ Wireless toys;
- ♦ Smart Lighting, Smart Home devices;
- ♦ Building Automation;
- ♦ Smart Grid;
- ♦ Intelligent Logistics/Transportation/City;
- ♦ Consumer Electronics;
- ♦ Industrial Control;
- ♦ Health Care.

1.4 Ordering information

Table 1-1 Ordering information of the TLSR8269F512*1

Product Series	Package	Temperature	Product Part	Packing	Minimum
Product Series	Туре	Range	No.	Method*2	Order Quantity
	48-pin	-40℃~+85℃	TLSR8269F512 ET48	TR	3000
TI CD82/05542	7x7mm TQFN	-40℃~+125℃	TLSR8269F512 AT48	TR	3000
TLSR8269F512	32-pin	-40℃~+85℃	TLSR8269F512 ET32	TR	3000
	5x5mm - TQFN	-40°C~+125°C	TLSR8269F512 AT32	TR	3000

1.5 Package

Package dimensions for the TLSR8269F512ET48/TLSR8269F512AT48 and TLSR8269F512ET32/TLSR8269F512AT32 are shown as Figure 1-2 and Figure 1-3.

-

¹ MSL (Moisture Sensitivity Level): The 8269 series is applicable to MSL3 (Based on JEDEC Standard J-STD-020).

[♦] After the packing opened, the product shall be stored at <30°C/ <60%RH and the product shall be used within 168 hours.
</p>

When the color of the indicator in the packing changed, the product shall be baked before soldering.

[♦] If baking is required, please refer to IPC/JEDEC J-STD-033 for baking procedure.

 $^{^{\}rm 2}\,$ Packing method "TR" means tape and reel. The tape and reel material DO NOT support baking under high temperature.

SYMBOL	DIMENSION (MM)			DIMENSION (MIL)		
STRIBUL	MIN .	NOM .	MAX.	MIN .	NOM .	MAX.
А	0.70	0.75	0.80	27.6	29.5	31.5
A1	0	0.02	0.05	0	0.79	1.97
А3	0	.20 RE	F	7	.9 REF	
Ь	0.18	0.25	0.30	7.1	9.8	11.8
D	6.90	7.00	7.10	271.7	275.6	279.5
D2	5.60	5.65	5.70	220.5	222.4	224.4
Е	6.90	7.00	7.10	271.7	275.6	279.5
E2	5.60	5.65	5.70	220.5	222.4	224.4
е	0.50 BSC			1	9.7BS0	
К	0.20			7.9		
L	0.35	0.40	0.45	13.8	15.7	17.7

NOTE:

- 1. DIMENSIONING AND TOLERANCING CONFORM TO ASME Y14.5M-1994.
- 2. REFER TO JEDEC STD. MO-220 WKKD-4.
- 3. DIMENSION "b" APPLIES TO METALLIZED TERMINAL AND IS MEASURED BETWEEN 0.18 AND 0.30mm FROM TERMINAL TIP.

 4. LEADFRAME MATERIAL IS 194FH AND THICKNESS IS 0.203MM (8 MIL).

 5. DIMENSION"D"&"E" WILL INCLUDE ALL SIDE BURR INDUCED DURING ASSEMBLY.

Figure 1-2 Package dimension for the TLSR8269F512ET/AT48 (Unit: mm)

DS-TLSR8269F512-E24 19 Ver2.5.0

Side View

SYMBOL	DIMENSION (MM)			DIMENSION (MIL)		
	MIN.	NOM.	MAX.	MIN.	NOM.	MAX.
A	0.70	0.75	0.80	27.6	29.5	31.5
A1	0	0.02	0.05	0	0.8	2.0
A3		0.20REF			7.9REF	
b	0.18	0.25	0.30	7.1	9.8	11.8
D	4.90	5.00	5.10	192.9	196.9	200.8
D2	3.40	3.50	3.60	133.9	137.8	141.7
Е	4.90	5.00	5.10	192.9	196.9	200.8
E2	3.40	3.50	3.60	133.9	137.8	141.7
e		0.50TYP			19.7TYP	
K	0.20			7.9		
L	0.35	0.40	0.45	13.8	15.7	17.7
h	0.30	0.35	0.40	11.8	13.8	15.7

- 1. DIMENSIONING AND TOLERANCING CONFORM TO ASME Y14.5M-1994.
- 2. POD REF BASED ON CUSTOMER SPECS.
- 2. POD REF BASED ON CUSTOMER SPECS.
 3. DIMENSION "b" APPLIES TO METALLIZED TERMINAL AND IS.
 MEASURED BETWEEN 0.18 AND 0.30mm FROM TERMINAL TIP.
 4. LEADFRAME MATERIAL IS 194FH AND THICKNESS IS 0.203MM (8 MIL).
- 5. DIMENSION"D"&"E" WILL INCLUDE ALL SIDE BURR INDUCED DURING ASSEMBLY.

Figure 1-3 Package dimension for the TLSR8269F512ET/AT32 (Unit: mm)

DS-TLSR8269F512-E24 20 Ver2.5.0

1.6 Pin layout

Pin assignment for the TLSR8269F512ET/AT48 is as shown in Figure 1-4:

Figure 1-4 Pin assignment for the TLSR8269F512ET/AT48

Functions of 48 pins for the TLSR8269F512ET/AT48 are described in Table 1-2:

Table 1-2 Pin functions for the TLSR8269F512ET/AT48

No.	Pin Name	Туре	Description	
1	DMIC_DI/PWM0/ANA_A<0>	Digital I/O	DMIC data input/PWM0/GPIO/ANA_A<0:	
2	DMIC_CLK/ANA_A<1>	Digital I/O	DMIC clock/GPIO/ANA_A<1>	
3	DO/PWM0_N/ANA_A<2>	Digital I/O	SPI data output/PWM0 inverting output/ GPIO/ANA_A<2>	
4	DI/PWM1/ANA_A<3>	Digital I/O	SPI data input/PWM1 output/GPIO/	

DS-TLSR8269F512-E24 21 Ver2.5.0

NI.	Datasheet ion Tellink TLSR6209F3				
No.	Pin Name	Туре	Description		
			ANA_A<3>/I2C_SDA (I2C serial data)		
5	CK/PWM1_N/ANA_A<4>	Digital I/O	SPI clock/PWM1 inverting output/GPIO/ ANA_A<4>/I2C_SCK (I2C serial clock)		
6	CN/PWM2_N/ANA_A<5>	Digital I/O	SPI chip select (Active low)/PWM2 inverting output/GPIO/ANA_A<5>		
7	UART_TX/ANA_A<6>	Digital I/O	UART_TX/GPIO/ ANA_A<6>		
8	DVSS	GND	Digital LDO ground		
9	VDDDEC	PWR	Digital LDO 1.8V output		
10	DVSS	GND	Digital LDO ground		
11	DVDD3	PWR	3.3V IO supply		
12	DVDD3 F	PWR	Connect external 10uF Capacitor		
13	UART_RX/SWM/ANA_A<7>	Digital I/O	UART_RX/Single Wire Master/ GPIO/ANA A<7>		
14	PWM2/SWS/ANA_B<0>	Digital I/O	PWM2 output/Single wire slave/GPIO/ ANA B<0>		
15	PWM2_N/ANA_B<1>	Digital I/O	PWM2 inverting output /GPIO/ANA_B<1>		
16	UART_TX/PWM3/ANA_B<2>	Digital I/O	UART_TX/PWM3 output/GPIO/ANA B<2>		
17	UART_RX/PWM3_N/ANA_B<3>	Digital I/O	UART_RX/PWM3 inverting output/GPIO/ANA_B<3>		
18	CN/PWM4/ANA_B<4>	Digital I/O	SPI chip select (Active low)/PWM4 output/GPIO/ ANA_B<4>		
19	DO/PWM4_N/ANA_B<5>	Digital I/O	SPI data output/PWM4 inverting output/GPIO/ ANA_B<5>		
20	DI/PWM5/ANA_B<6>	Digital I/O	SPI data input/PWM5 output/ GPIO/ ANA_B<6>/I2C_SDA (I2C serial data)		
21	CK/PWM5_N/ANA_B<7>	Digital I/O	SPI clock/ PWM5 inverting output/ GPIO/ ANA_B<7>/I2C_SCK (I2C serial clock)		
22	I2C_SDA/PWM0/ANA_C<0>	Digital I/O	I2C serial data /PWM0 output/ GPIO/ ANA_C<0>		
23	I2C_SCK/PWM1/ANA_C<1>	Digital I/O	I2C serial clock/PWM1 output/ GPIO/ ANA_C<1>		
24	UART_TX/PWM2/ANA_C<2>	Digital I/O	UART_TX/PWM2 output/ GPIO/ANA_C<2>/ (optional) 32KHz crystal output		
25	UART_RX/PWM3/ANA_C<3>	Digital I/O	UART_RX/PWM3 output/ GPIO /ANA_C<3>/ (optional) 32KHz crystal input		
26	UART_RTS/PWM4/ANA_C<4>	Digital I/O	UAR_RTS/PWM4 output/ GPIO /ANA_C<4>		
27	UART_CTS/PWM5/ANA_C<5>	Digital I/O	UART_CTS/PWM5 output/ GPIO /ANA_C<5>		
28	AVDD3	PWR	Analog 3.3V supply		
29	GPO/ANA_C<6>	Digital I/O	GPIO0/ANA_C<6>		
30	GP1/ANA_C<7>	Digital I/O	GPIO1/ANA_C<7>		
31	GP2/ANA_D<0>	Digital I/O	GPIO2/ANA_D<0>		
32	GP3/ANA_D<1>	Digital I/O	GPIO3/ANA D<1>		
	- 4	J 1, -	· ·		

No.	Pin Name	Туре	Description
33	GP4/ANA_D<2>	Digital I/O	GPIO4/ANA_D<2>
34	XC2	Analog O	12MHz/16MHz crystal output
35	XC1	Analog I	12MHz/16MHz crystal input
36	AVDD3	PWR	Analog 3.3V supply
37	ANT	Analog O	RF antenna
38	AVDD3	PWR	Analog 3.3V supply
39	GP5/ANA_D<3>	Digital I/O	GPIO5/ANA_D<3>
40	GP6/ANA_D<4>	Digital I/O	GPIO6/ANA_D<4>
41	RESETB	RESET Power on reset, active low	
42	PWM0/ANA_D<5>	Digital I/O PWM0 output/GPIO/ANA_D<5>	
43	PWM1/ANA_D<6>	Digital I/O PWM1 output/GPIO /ANA_D<6>	
44	PWM2/ANA_D<7>	Digital I/O	PWM2 output/GPIO /ANA_D<7>
45	PWM0/SDM_P/ANA_E<0>	Digital I/O PWM0 output/GPIO /SDM Positi output/ANA E<0>	
46	PWM1/SDM_N/ANA_E<1>	Digital I/O PWM1 output/GPIO /SDM Negation output /ANA_E<1>	
47	DM/ANA_E<2>	Digital I/O	USB data Minus/GPIO/ ANA_E<2>
48	DP/ANA_E<3>	Digital I/O USB data Positive/GPIO/ ANA_E<3>	

^{*}Note:

- 1) AMIC (Analog microphone): Either {ANA_C<5> & ANA_C<4>} or {ANA_C<3> & ANA_C<2>} can be used as differential input for AMIC. When {ANA_C<5> & ANA_C<4>} are used as AMIC_In, either from {ANA_C<3> & ANA_C<2>} should be used as Amic_Bias; vice versa.
- 2) I2C: ANA_C<0> and ANA_C<1> can be used as I2C. And I2C can also be multiplexed with SPI interface, i.e. I2C_SDA/I2C_SCK can be multiplexed with SPI_DI/SPI_CK respectively.
- 3) Pins with bold typeface can be used as GPIOS. All pins from ANA_A<0>~ANA_E<3> have configurable pull-up/pull-down resistor.
- 4) Pin drive strength: All pins support drive strength up to 4mA (4mA when "DS"=1, 0.7mA when "DS"=0) with the following exceptions: ANA_E<1> and ANA_E<0> support high drive strength up to 16mA (16mA when "DS"=1, 12mA when "DS"=0); ANA_E<3> and ANA_E<2> support high drive strength up to 12mA (12mA when "DS"=1, 8mA when "DS"=0). "DS" configuration will take effect when the pin is used as output. Please refer to section 7.1 for the corresponding "DS" register address and the default setting.

Pin assignment for the TLSR8269F512ET/AT32 is as shown in Figure 1-5:

Figure 1-5 Pin assignment for the TLSR8269F512ET/AT32

Functions of 32 pins for the TLSR8269F512ET/AT32 are described in Table 1-3:

Table 1-3 Pin functions for the TLSR8269F512ET/AT32

No.	Pin Name	Туре	Description	
1	DMIC_DI/PWM0/ANA_A<0>	Digital I/O	DMIC data input/PWM0/GPIO/ANA_A<0>	
2	DMIC_CLK/ANA_A<1> Digita		DMIC clock/GPIO/ANA_A<1>	
3	DI/PWM1/ANA_A<3>	Digital I/O	SPI data input/PWM1 output/GPIO/ ANA_A<3>/I2C_SDA (I2C serial data)	
4	CK/PWM1_N/ANA_A<4> Digital		SPI clock/PWM1 inverting output/GPIO/ ANA_A<4>/I2C_SCK (I2C serial clock)	
5	VDDDEC	PWR	Digital LDO 1.8V output	
6	DVSS	GND Digital LDO ground		

DS-TLSR8269F512-E24 24 Ver2.5.0

No.	Pin Name	Туре	Description
7	DVDD3	PWR	3.3V IO supply
8	DVDD3_F	PWR	Connect external 10uF Capacitor
9	UART_RX/SWM/ANA_A<7>	Digital I/O	UART_RX/Single Wire Master/ GPIO/ANA_A<7>
10	PWM2/SWS/ANA_B<0>	Digital I/O	PWM2 output/Single wire slave/GPIO/ ANA_B<0>
11	PWM2_N/ANA_B<1>	Digital I/O	PWM2 inverting output /GPIO/ANA_B<1>
12	CN/PWM4/ANA_B<4>	Digital I/O	SPI chip select (Active low)/PWM4 output/GPIO/ ANA_B<4>
13	DO/PWM4_N/ANA_B<5>	Digital I/O	SPI data output/PWM4 inverting output/GPIO/ ANA_B<5>
14	DI/PWM5/ANA_B<6>	Digital I/O	SPI data input/PWM5 output/ GPIO/ ANA_B<6>/I2C_SDA (I2C serial data)
15	CK/PWM5_N/ANA_B<7>	Digital I/O	SPI clock/ PWM5 inverting output/ GPIO/ ANA_B<7>/I2C_SCK (I2C serial clock)
16	UART_TX/PWM2/ANA_C<2>	Digital I/O	UART_TX/PWM2 output/ GPIO/ANA_C<2>/ (optional) 32KHz crystal output
17	UART_RX/PWM3/ANA_C<3>	Digital I/O	UART_RX/PWM3 output/ GPIO /ANA_C<3>/ (optional) 32KHz crystal input
18	UART_RTS/PWM4/ANA_C<4>	Digital I/O	UAR_RTS/PWM4 output/ GPIO /ANA_C<4>
19	UART_CTS/PWM5/ANA_C<5>	Digital I/O	UART_CTS/PWM5 output/ GPIO /ANA_C<5>
20	AVDD3	PWR	Analog 3.3V supply
21	GP4/ANA_D<2>	Digital I/O	GPIO4/ANA_D<2>
22	XC2	Analog O	12MHz/16MHz crystal output
23	XC1	Analog I	12MHz/16MHz crystal input
24	AVDD3	PWR	Analog 3.3V supply
25	ANT	Analog O	RF antenna
26	AVDD3	PWR	Analog 3.3V supply
27	GP5/ANA_D<3>	Digital I/O	GPIO5/ANA_D<3>
28	RESETB	RESET	Power on reset, active low
29	PWM0/SDM_P/ANA_E<0>	Digital I/O	PWM0 output/GPIO /SDM Positive output/ANA_E<0>
30	PWM1/SDM_N/ANA_E<1>	Digital I/O	PWM1 output/GPIO /SDM Negative output /ANA_E<1>
31	DM/ANA_E<2>	Digital I/O	USB data Minus/GPIO/ ANA_E<2>
32	DP/ANA_E<3>	Digital I/O	USB data Positive/GPIO/ ANA_E<3>

^{*}Note:

1) AMIC (Analog microphone): Either $\{ANA_C<5> \& ANA_C<4>\}$ or $\{ANA_C<3> \& ANA_C<2>\}$ can be used as differential input for AMIC. When $\{ANA_C<5> \& ANA_C<4>\}$ are used as AMIC_In, either from $\{ANA_C<3> \& ANA_C<2>\}$ should be used as Amic_Bias; vice versa.

- 2) I2C: I2C interface is multiplexed with SPI interface, i.e. I2C_SDA/I2C_SCK can be multiplexed with SPI_DI/SPI_CK respectively.
- 3) Pins with bold typeface can be used as GPIOS. All pins from ANA_A<0>~ANA_E<3> have configurable pull-up/pull-down resistor.
- 4) Pin drive strength: All pins support drive strength up to 4mA (4mA when "DS"=1, 0.7mA when "DS"=0) with the following exceptions: ANA_E<1> and ANA_E<0> support high drive strength up to 16mA (16mA when "DS"=1, 12mA when "DS"=0); ANA_E<3> and ANA_E<2> support high drive strength up to 12mA (12mA when "DS"=1, 8mA when "DS"=0). "DS" configuration will take effect when the pin is used as output. Please refer to section 7.1 for the corresponding "DS" register address and the default setting.

1.7 Telink SDK

A full featured SDK is provided with the chip for applications including IoT and human interface devices (HID). The customers can easily develop rich IoT and HID applications by employing the firmware, along with the system configuration data composed according to the specific hardware design.

DS-TLSR8269F512-E24 26 Ver2.5.0

2 Memory and MCU

2.1 Memory

The TLSR8269F512 embeds 32KB data memory (SRAM), and 512KB internal FLASH.

2.1.1 SRAM/Register

SRAM/Register memory map is shown as follows:

Figure 2-1 Physical memory map

Register address: from 0x800000 to 0x807FFF;

32KB SRAM address: from 0x808000 to 0x80FFFF.

Both register and SRAM address can be accessed via SPI/I2C, SWS/SWM interface.

2.1.2 Flash

The internal Flash mainly supports page program, sector/block/chip erase operations, and deep power down operation.

2.1.2.1 Page program

The page program mode allows up to 256 bytes data to be programmed at memory locations that have been erased.

DS-TLSR8269F512-E24 27 Ver2.5.0

2.1.2.2 Sector erase

The sector erase operation serves to erase all the data of the specified sector (4KB) to all 1s.

2.1.2.3 Block erase

The block erase operation serves to erase all the data of the specified block (32KB or 64KB) to all 1s.

2.1.2.4 Chip erase

The chip erase operation serves to erase data at all memory locations to all 1s.

Please refer to "AN_RSPH-E1_Telink RF SoC Programming Handbook" and "AN_15070101_Telink Internal 512KB (4Mbits) Flash Operation Manual" for Telink memory details.

2.2 MCU

The TLSR8269F512 integrates a powerful 32-bit MCU developed by Telink. The digital core is based on 32-bit RISC, and the length of instructions is 16 bits; four hardware breakpoints are supported.

2.3 Working modes

The TLSR8269F512 has four working modes: Active, Idle, Suspend and Deep Sleep. This section mainly gives the description of every working mode and mode transition.

DS-TLSR8269F512-E24 28 Ver2.5.0

Figure 2-2 Transition chart of working modes

2.3.1 Active mode

In active mode, the MCU block is at working state, and the TLSR8269F512 can transmit or receive data via its embedded RF transceiver. The RF transceiver can also be powered down if no data transfer is needed.

2.3.2 Idle mode

In Idle mode, the MCU block stalls, and the RF transceiver can be at working state or be powered down. The time needed for the transition from Idle mode to Active mode is negligible.

2.3.3 Power-saving mode

For the TLSR8269F512, there are two kinds of power-saving modes: suspend mode and deep sleep mode. The two modes have similar transition sequences but different register settings. For 1.8V digital core, it's still provided with the working power by 1.8V LDO in suspend mode; while in deep sleep mode, the 1.8V LDO will be turned off, and the digital core is powered down.

In suspend mode, the RF transceiver is powered down, and the clock of the MCU block is stopped. It only takes about 400us for the TLSR8269F512 to enter the active mode from suspend mode.

DS-TLSR8269F512-E24 29 Ver2.5.0

While in deep sleep mode, both the RF transceiver and the MCU block are powered down with only power management block being active. The transition time needed from deep sleep mode to active mode is 1ms, almost the same as power-up time.

Table 2-1 Retention analog registers in deep sleep

Address	Description	
0x34~0x39	buffer, watch dog reset clean	
0x3a~0x3b	buffer, power on reset clean	
0x3c		
0x3d	buffer, power on reset clean	
0x3e		

Analog registers (0x34 \sim 0x3e) as shown in Table 2- 1 are retained in deep sleep mode and can be used to store program state information across deep sleep cycles.

- ♦ Analog registers 0x3a~0x3e are non-volatile even when chip enters deep sleep or chip is reset by watchdog or software, i.e. the contents of these registers won't be changed by deep sleep or watchdog reset or chip software reset.
- ♦ Analog registers 0x34~0x39 are non-volatile in deep sleep, but will be cleared by watchdog reset or chip software reset.
- ♦ After POR (Power-On-Reset), all registers will be cleared to their default values, including these analog registers.

User can set flag in these analog registers correspondingly, so as to check the booting source by reading the flag.

For chip software reset, please refer to section 2.4 Reset.

DS-TLSR8269F512-E24 30 Ver2.5.0

2.4 Reset

The chip supports three types of reset methods, including POR (Power-On-Reset), watchdog reset and software reset.

- 1) POR: After power on, the whole chip will be reset, and all registers will be cleared to their default values.
- 2) Watchdog reset: A programmable watchdog is supported to monitor the system. If watchdog reset is triggered, registers except for retention analog registers 0x3a~0x3e will be cleared.
- 3) Software reset: It is also feasible to carry out software reset for the whole chip or some modules.
 - ♦ Setting address 0x6f[5] to 1b'1 is to reset the whole chip. Similar to watchdog reset (see section 2.3.3 Power-saving mode), retention analog registers 0x3a~0x3e are non-volatile, while other registers including 0x34~0x39 will be cleared by chip software reset.
 - ♦ Addresses 0x60~0x62 serve to reset individual modules: if some bit is set to logic "1", the corresponding module is reset.

Table 2- 2 Register configuration for software reset

Address	Mnemonic	Туре	Description	Reset Value	
			Reset control, 1 for reset, 0 for clear		
			[0] : SPI		
			[1] : I2C		
		R/W	[2]: USB		
0x60	RST0		[3]: rsvd	00	
			[4]: MCU		
			[5]: mac		
			[6]: AIF		
			[7]: zb		
	61 RST1	R/W	[0] system_timer		
			[1]algm		
0x61			[2]dma	df	
OXOI			[3]rs232	ui	
			[4]pwm0		
			[5]aes		

Address	Mnemonic	Туре	Description Description	Reset Value
			[6]bbpll48m	
			[7]swires	
			[0]sbc	
			[1]audio	
		R/W	[2]dfifo	
0x62	RST2		[3]adc	00
UXOZ			[4]mcic	00
			[5]soft reset to reset mcic enable	
			[6]rsvd (mspi)	
			[7] algs	
			[0]: suspend enable	
	PWDNEN	w	[5]: rst all (act as watchdog reset)	
0x6f			[6]: rsvd (mcu low power mode)	
0,01			[7]: stall mcu trig If bit[0] set 1, then	
			system will go to suspend. Or only	
			stall mcu	

2.5 Power Management

The multiple-stage Power Management (PM) module is flexible to control power state of the whole chip or individual functional blocks such as MCU, RF Transceiver, and peripherals.

2.5.1 Power-On-Reset (POR) and Brown-out detect

Figure 2-3 Block diagram for power up/down

The whole chip power up and down is controlled by the UVLO (Ultra-low Voltage Lockout) module and the external RESETB pin via the logic shown in the above diagram. UVLO takes the external power supply as input and releases the lock only when the power supply voltage is higher than a preset threshold. The RESETB pin has an internal pull-up resistor; an external Cap can be connected on the RESETB pin to control the POR delay.

After both UVLO and RESETB release, there is further configurable delay before the system is released. This delay is adjusted by analog register 0x20. Since the content of 0x20 is reset to default only after power cycle, watchdog reset, or software reset, the delay change using 0x20 is only applicable when the chip has not gone through these reset conditions. For example, after deep sleep wakeup, the setting in 0x20 will take effect.

DS-TLSR8269F512-E24 33 Ver2.5.0

Table 2-3 afe 3V analog register to control delay counter

Address	Description	Default
0x20	r_dly: [7]:1: old delay mode, 0: waiting for xtal ready. [6:0]: delay, bit[0] is swapped with bit[6]. (32KHz counter). if r_dly[7] is 1, the following is the real delay: 7'b000_0000 4ms~33*0us delay 7'b100_0000 4ms~33*1us delay 7'b000_0010 4ms~33*2us delay 7'b100_0010 4ms~33*3us delay 7'b110_0010 4ms~ 2ms delay 7'b111_1110 1ms delay (32 cycles of 32K Hz) if r_dly[7] is 0, the real delay is xtal ready delay plus counter delay.	0xb0

Figure 2- 4 Power-up sequence

DS-TLSR8269F512-E24 34 Ver2.5.0

Power down

Figure 2-5 Power-down sequence

Table 2-4 Characteristics of Power-up/ Power-down sequence

Symbol	Parameter	Min.	Тур.	Max.	Unit
V_{POR}	VDD voltage when V _{UVLO} turns to high level	1.57	1.65	1.73	V
V_{Pdn}	VDD voltage when V _{UVLO} turns to low level	1.47	1.55	1.63	V
T_{PwRst}	Delay counter value	Confi	gurable via aı	nalog register	0x20

DS-TLSR8269F512-E24 35 Ver2.5.0

2.5.2 Working mode switch

The chip can switch to idle mode to stall the MCU.

To minimize power consumption, the chip can switch to power saving mode (suspend or deep sleep) correspondingly. In this case, the low-power 32KHz RC oscillator is still running, and the low frequency wakeup timer LTIMER can be programmed to stay alive. The device can be activated to working state via external pin trigger or internal wakeup timer.

User can directly invoke corresponding library function to switch working mode of the chip.

If certain module doesn't need to work, user can power down this module in order to save power.

Table 2-5 3.3V analog registers for module power up/down control

Address	Local name	Default Value	Description
			Power down 32KHz RC oscillator
afe3V_reg05<0>	32K_rc_pd	0	1: Power down 32KHz RC oscillator
			0: Power up 32KHz RC oscillator
			Power down 32k crystal
afe3V_reg05<1>	32k_xtal_pd	0	1: power down
			0: power up
			Power down of 32MHz RC
			oscillator
afe3V_reg05<2>	32M_rc_pd	0	1: Power down 32MHz RC
			oscillator
			0: Power up 32MHz RC oscillator
			Power down of 16MHz crystal
ofo3)/ #050E 43>	utal IDO ad	0	oscillator
afe3V_reg05<3>	xtal_LDO_pd	0	1: Power down
			0: Power up
			Power down of analog LDO
afe3V_reg05<4>	ldo_ana_pd	0	1: Power down
			0: Power up
	nm nd tompes		Power down master Bandgap
afe3V_reg05<5>	pm_pd_tempse	1	1: Power down
	n_3V		0: Power up

Address	Local name	Default Value	Description
afe3V_reg05<6>	reserved	1	Power down off-chip resistor bias 1: Power down
alesv_legos<0>	reserveu	1	0: Power up
	22211 120 1		Power down baseband pll LDO
afe3V_reg05<7>	BBPLL_LDO_pd 3V	1	1: Power down
	_3 v		0: Power up
			Power down SAR ADC
afe3V_reg06<0>	saradc_pd	1	1: Power down
			0: Power up
			Power down LNA LDO in RF
afe3V reg06<1>	rx_lnaLDO_pd	1	transceiver
_ 0			1: Power down
			0: Power up
	rx_anaLDO_pd	1	Power down analog LDO in RF
afe3V_reg06<2>			transceiver
			1: Power down
			0: Power up
		1	Power down RF LDO in RF
afe3V_reg06<3>	rx_rfLDO_pd		transceiver
			1: Power down
			0: Power up
ofo2)/ rog06 <4>	all DC ad	1	Power down Bandgap in PLL
afe3V_reg06<4>	pll_BG_pd	1	1: Power down
2f02\/ r0g06 <e></e>	rocorvod		0: Power up
afe3V_reg06<5>	reserved		Power down VCO LDO
afa2\/ rag06.465	all vee ide ad	1	Power down VCO LDO 1: Power down
afe3V_reg06<6>	pll_vco_ldo_pd	1	
			0: Power up
			Power down cp and prescaler
afe3V_reg06<7>	pll_cp_ldo_pd	1	analog circuit Ido 1: Power down
			0: power up

2.5.3 LDO and DCDC

The chip embeds LDO regulators to generate 1.8V regulated voltage. The internal LDO regulators serve to supply power for 1.8V digital core and analog modules in Active/Idle/Suspend mode.

The chip also embeds a boost DCDC which can step up input voltage to the range of 2.7~3.6V. The DCDC output serves to supply power for flash. For internal flash, the DCDC directly supplies power for it; while for external flash, the DCDC supplies power via the DVDD3F pin of the chip.

While in deep sleep mode, the embedded 1.8V LDO regulators and the boost DCDC will be turned off.

2.6 Wakeup sources

Figure 2-6 Wakeup sources

DS-TLSR8269F512-E24 38 Ver2.5.0

2.6.1 Wakeup source - USB

This wakeup source can only wake up the system from suspend mode.

First, set the digital core address 0x6e bit [2] to 1.

To activate this mode, 3V reg38 bit[5] should also be set to 1.

Once USB host sends out resuming signal, the system will be wake up.

2.6.2 Wakeup source – 32K timer

This wakeup source is able to wake up the system from suspend mode or deep sleep mode.

Address 3V reg38 bit[6] is the enabling bit for wakeup source from 32k timer.

2.6.3 Wakeup source – IO

This wakeup source is able to wake up the system from suspend mode or deep sleep mode. And IO wakeup supports high level or low level wakeup which is configurable via polarity control registers.

3v_reg38[4] should be set to 1b'1 to enable IO wakeup source.

Enabling control registers: PA[7:0] enabling control register is 3V_reg39[7:0], PB[7:0] enabling control register is 3V_reg40[7:0], PC[7:0] enabling control register is 3V_reg41[7:0], PD[7:0] enabling control register is 3V_reg42[7:0], and PE[3:0] enabling control register is 3V_reg43[3:0]. Total wakeup pin can be up to 36.

Polarity control registers: PA[7:0] polarity control register is 3V_reg33[7:0], PB[7:0] polarity control register is 3V_reg34[7:0], PC[7:0] polarity control register is 3V_reg35[7:0], PD[7:0] polarity control register is 3V_reg36[7:0], and PE[3:0] polarity control register is 3V_reg37[3:0].

The corresponding driver is available so that user can directly invoke it to use IO wakeup source.

DS-TLSR8269F512-E24 39 Ver2.5.0

2.6.4 Register table

Table 2- 6 Analog registers for Wakeup

Address Dec	Address Hex	Description	Default Value
r33	0x21	pa_pol	0x00
r34	0x22	pb_pol	0x00
r35	0x23	pc_pol	0x00
r36	0x24	pd_pol	0x00
r37[3:0]	0x25[3:0]	pe_pol[3:0]	0x00
r38[4]	0x26[4]	wkup from IO (pad)	0x00
r38[5]	0x26[5]	wkup dig (including usb)	0x00
r38[6]	0x26[6]	wkup 32k timer	0x00
r38[7]	0x26[7]	rsvd (wkup comparator)	0x00
r39	0x27	wkup_pa_en	0x00
r40	0x28	wkup_pb_en	0x00
r41	0x29	wkup_pc_en	0x00
r42	0x2a	wkup_pd_en	0x00
r43[3:0]	0x2b[3:0]	wkup_pe_en[3:0]	0x00
r68	0x44	State flag bits [0]:rsvd (wkup cmp) [1]: pm_irq (i.e. wkup_32k timer) [2]:wkup_dig [3] wkup_pad e.g. If bit[3] is 1, it indicates the system is wakened up by IO (pad) source. Write 1 to clean	0x00

DS-TLSR8269F512-E24 40 Ver2.5.0

Table 2-7 Digital register for Wakeup

Address	Mnemonic	Туре	Description	Reset Value
0x6e	WAKEUPEN	R/W	Wakeup enable [0]: enable wakeup from I2C host [1]: enable wakeup from SPI host [2]: enable wakeup from USB [3]: enable wakeup from gpio [4]: enable wakeup from I2C synchronous interface System resume control [5]: enable GPIO remote wakeup [6]: if set to1, system will issue USB resume signal on USB bus [7]: sleep wakeup reset system enable	00

3 BLE/802.15.4/2.4G RF Transceiver

3.1 Block diagram

The TLSR8269F512 integrates an advanced BLE/802.15.4/2.4GHz RF transceiver. The RF transceiver works in the worldwide 2.4GHz ISM (Industrial Scientific Medical) band and contains an integrated balun with a single-ended RF Tx/Rx port pin. No matching components are needed.

The transceiver consists of a fully integrated frequency synthesizer, a power amplifier, a modulator and a receiver. The transceiver can be configured to work in standard-compliant 1Mbps BLE mode, 2Mbps enhancement BLE mode, and IEEE 802.15.4 standard-compliant 250Kbps mode.

Figure 3-1 Block diagram of RF transceiver

The internal PA can deliver a maximum 8dBm output power, avoiding the needs for an external RF PA.

3.2 Function description

3.2.1 Turn on/off

For the sake of saving power, the transceiver can be turned on/off via the software. Setting the address 0x7c bit[6] to 1 enables the RF transceiver, while clearing the bit totally disables the RF transceiver.

DS-TLSR8269F512-E24 42 Ver2.5.0

MSB

3.2.2 Air interface data rate and RF channel frequency

Air interface data rate, the modulated signaling rate for RF transceiver when transmitting and receiving data, is configurable via related register setting: 250Kbps, 1Mbps, 2Mbps.

For the TLSR8269F512, RF transceiver can operate with frequency ranging from 2.400GHz to 2.4835GHz. The RF channel frequency setting determines the center of the channel.

3.3 Baseband

The baseband contains dedicated hardware logic to perform fast AGC control, access code correlation, CRC checking, data whitening, encryption/decryption and frequency hopping logic.

The baseband supports all mandatory features required by Bluetooth 5 and 802.15.4 specification.

3.3.1 Packet format

LSB

Packet format in standard 1Mbps BLE mode is shown as Table 3-1:

Table 3-1 Packet Format in standard 1Mbps BLE mode

LOD			11136
Preamble	Access Address	PDU	CRC
(1 octet)	(4 octets)	(2 to 257 octets)	(3 octets)

Packet length 80bit ~ 2120bit (80~2120us @ 1Mbps).

Packet format in 250Kbps 802.15.4 mode is shown as Table 3-2:

Table 3-2 Packet format in 802.15.4 mode

Preamble	SFD	Frame length	PSDU	CRC
(0~15 octets)	(1 octet)	(1 octet)	(Variable 0~127 octets)	(2 octets)
SHR		PHR	PHY payload	

DS-TLSR8269F512-E24 43 Ver2.5.0

3.3.2 RSSI

The TLSR8269F512 provides accurate RSSI (Receiver Signal Strength Indicator) indication which can be read on per packet basis.

4 Clock

4.1 Clock sources

The TLSR8269F512 embeds a 32MHz RC oscillator which can be used as clock source for system, ADC and DMIC. A 32KHz RC oscillator is also embedded to provide clock source for sleep state.

Other than the RC clock source, PLL generates a 192MHz clock source, which can be used as clock sources for system, ADC and DMIC.

External 12M/16M crystal is available via pin XC1, which can provide a 12MHz/16MHz clock source for system, ADC and DMIC. External 32K crystal is available via pin ANA C<3>, which can provide a 32KHz clock source for system.

4.2 Register table

Table 4-1 Register table for clock

Address	Mnemonic	Туре	Description	Reset Value
0x63	CLKENO	R/W	Clock enable control: 1 for enable; 0 for disable [0]: SPI [1]: I2C [2]: USB [3]: USB PHY [4]: MCU [5]: mac [6]: AIF [7]: zb	8c
0x64	CLKEN1	R/W	[0]system timer [1]algm [2]dma [3]rs232 [4]pwm0 [5]aes [6]clk32k for system timer [7]swires	00
0x65	CLKEN2	R/W	[0]32k for qdec	00

Address	Mnemonic	Туре	Description	Reset
		,,	·	Value
			[1]audio	
			[2]dfifo	
			[3]rsvd (key scan)	
			[4]mcic	
			[5]qdec	
			[6]32k for pwm	
			[7]rsvd (32k for keyscan)	
			System clock select	
			[4:0]: system clock divider (must exceed 1):	
			If $0x66[6:5]$ is set as $2b'01$, $F_{Sysclk} = F_{FHS}$	
			(CLKSEL[4:0]).	
			Fhs refers to {0x70[0], 0x66[7]} FHS_sel	
0x66	CLKSEL	R/W	[6:5]	ff
			2'b00:32m clock from rc	
			2'b01:hs divider clk	
			2'b10:16M clock from pad	
			2'b11:32k clk from pad	
			{0x70[0], 0x66[7]}: FHS sel	
0x67	I2S step	R/W	Reserved	33
0x68	I2S Mod	R/W	Reserved	2
0x69	Adc step[7:0]	R/W	ADC clock step[7:0]	00
0x6a	Adc mod[7:0]	R/W	Adc clock mod[7:0]	2
			[7]: adc clock enable	
			[6:4] :adc step[10:8]	
			[3:0] adc mod[11:8]	
0x6b	adcmodstep	R/W	Adc clock = fhs * step[10:0]/mod[11:0]	00
			Mod needs to be larger than or equal to	
			2*step	
			Fhs refers to {0x70[0], 0x66[7]} FHS_sel	
0x6c	DMIC_step	R/W	[7]:digital mic clock enable	1
OXOC	Divile_step	11,7 44	[6:0] step	
			[7:0] mod	
			DMIC clock =fhs*DMIC_step[6:0]/DMIC_mod	
0x6d	DMIC_mod	R/W	Mod needs to be larger than or equal to	2
			2*step	
			Fhs refers to {0x70[0], 0x66[7]} FHS_sel	
			{0x70[0], 0x66[7]}: fhs select	
0x70	FHS_sel	R/W	2'b00: 192M clock from pll	00
0.70	1113_361	11,700	2'b01: 32M clock from rc osc	00
			2'b1x: 16M clock from pad	

46

Address	Mnemonic	Туре	Description	Reset Value
0x71	DC/DC clk mod	R/W	Reserved	
0x73	Clk mux sel		[0]: clk32k select;0:sel 32k osc 1: 32k pad [1]dmic clock select, 1:select 32k (refer to bit[0] to decide which 32k; 0:dmic clk div [2] usb phy clock select,1 : 192M divider 0:48M pll [7:4] r_lpr_div, decide system clock speed in low power mode	0x14

4.3 System clock

Figure 4-1 Block diagram of system clock

DS-TLSR8269F512-E24 47 Ver2.5.0

There are four selectable clock sources for MCU system clock: 32MHz RC clock, HS divider clock (divided from a High speed clock), and Pad clock (12MHz/16MHz, 32.768KHz).

The high speed clock (FHS) is selectable via address {0x70[0], 0x66[7]} from the following sources: 192MHz clock from PLL, 32MHz RC clock, and 12MHz/16MHz Pad clock.

Register CLKSEL (address 0x66) serves to set system clock. System clock source is selectable via bit[6:5]. If address 0x66[6:5] is set to 2b'01 to select the HS divider clock, system clock frequency is adjustable via address 0x66[4:0].

 $F_{System clock} = F_{FHS} / (system clock divider value in address 0x66[4:0]).$

Note that address 0x66[4:0] should not be set as 0 or 1.

4.4 Module clock

Registers CLKEN0~CLKEN2 (address 0x63~0x65) are used to enable or disable clock for various modules. By disable the clocks of unused modules, current consumption could be reduced.

4.4.1 ADC clock

ADC clock derives from FHS. ADC clock is enabled via setting address 0x6b[7] to 1b'1.

ADC clock frequency dividing factor contains step and mod. Address 0x6b[6:4] and 0x69 serve to set ADC clock step[10:0]. Address 0x6b[3:0] and 0x6a serve to set ADC clock mod[11:0].

ADC clock frequency, F_{ADC clock}, equals to F_{FHS}* step[10:0] / mod[11:0].

4.4.2 DMIC clock

Address 0x6c[7] serves to enable DMIC clock.

DMIC clock pin can select 32KHz clock or derive from FHS. Address 0x73 serves to select DMIC clock source.

DS-TLSR8269F512-E24 48 Ver2.5.0

In normal DMIC working mode 0x73[1] needs to be set to 1b'0, DMIC clock divider is selected and frequency dividing factor should be further configured. DMIC clock frequency dividing factor contains step and mod. Address 0x6c[6:0] serves to set DMIC clock step[6:0], while address 0x6d serves set DMIC clock mod. In this situation, DMIC clock frequency, $F_{DMIC clock}$, equals to F_{FHS} * step[6:0] / mod[7:0].

When DMIC is not used, and a 32Khz clock is needed, bit[1] of 0x73 is set to 1b'1 to select the 32KHz clock. bit[0] can be configured to select 32KHz RC oscillator or 32.768KHz Pad clock.

5 Timers

5.1 Timer0~Timer2

The TLSR8269F512 supports three timers: Timer0~ Timer2. The three timers all support four modes: Mode 0 (System Clock Mode), Mode 1 (GPIO Trigger Mode), Mode 2 (GPIO Pulse Width Mode) and Mode 3 (Tick Mode), which are selectable via the register TMR_CTRL0 (address 0x620) ~ TMR_CTRL1 (address 0x621).

Timer 2 can also be configured as "watchdog" to monitor firmware running.

5.1.1 Register table

Table 5-1 Register configuration for Timer0~Timer2

Address	Mnemonic	Туре	Description	Reset Value
0x72	Wd_status	R/W	[0] watch dog status, write 1 to clear. [7:1] rsvd	
0x620	TMR_CTRL0	RW	[0]Timer0 enable [2:1] Timer0 mode. 0 using sclk, 1, using gpio, 2 count width of gpi, 3 tick [3]Timer1 enable [5:4] Timer1 mode. [6]Timer2 enable [7]Bit of timer2 mode	00
0x621	TMR_CTRL1	RW	[0]Bit of timer2 mode [7:1]Low bits of watch dog capture	00
0x622	TMR_CTRL2	RW	[6:0]High bits of watch dog capture. It is compared with [31:18] of timer2 ticker [7]watch dog capture	00
0x623	TMR_STATUS	RW	[0] timer0 status, write 1 to clear [1] timer1 status, write 1 to clear	

Address	Mnemonic	Туре	Description	Reset Value
			[2] timer2 status, write 1 to clear [3] rsvd	
0x624	TMR_CAPTO_0	RW	Byte 0 of timer0 capture	00
0x625	TMR_CAPTO_1	RW	Byte 1 of timer0 capture	00
0x626	TMR_CAPTO_2	RW	Byte 2 of timer0 capture	00
0x627	TMR_CAPTO_3	RW	Byte 3 of timer0 capture	00
0x628	TMR_CAPT1_0	RW	Byte 0 of timer1 capture	00
0x629	TMR_CAPT1_1	RW	Byte 1 of timer1 capture	00
0x62a	TMR_CAPT1_2	RW	Byte 2 of timer1 capture	00
0x62b	TMR_CAPT1_3	RW	Byte 3 of timer1 capture	00
0x62c	TMR_CAPT2_0	RW	Byte 0 of timer2 capture	00
0x62d	TMR_CAPT2_1	RW	Byte 1 of timer2 capture	00
0x62e	TMR_CAPT2_2	RW	Byte 2 of timer2 capture	00
0x62f	TMR_CAPT2_3	RW	Byte 3 of timer2 capture	00
0x630	TMR_TICK0_0	RW	Byte 0 of timer0 ticker	
0x631	TMR_TICK0_1	RW	Byte 1 of timer0 ticker	
0x632	TMR_TICK0_2	RW	Byte 2 of timer0 ticker	
0x633	TMR_TICK0_3	RW	Byte 3 of timer0 ticker	
0x634	TMR_TICK1_0	RW	Byte 0 of timer1 ticker	
0x635	TMR_TICK1_1	RW	Byte 1 of timer1 ticker	
0x636	TMR_TICK1_2	RW	Byte 2 of timer1 ticker	
0x637	TMR_TICK1_3	RW	Byte 3 of timer1 ticker	
0x638	TMR_TICK2_0	RW	Byte 0 of timer2 ticker	
0x639	TMR_TICK2_1	RW	Byte 1 of timer2 ticker	
0x63a	TMR_TICK2_2	RW	Byte 2 of timer2 ticker	
0x63b	TMR_TICK2_3	RW	Byte 3 of timer2 ticker	

5.1.2 Mode0 (System Clock Mode)

In Mode 0, system clock is employed as clock source.

After Timer is enabled, Timer Tick (i.e. counting value) is increased by 1 on each positive edge of system clock from preset initial Tick value. Generally the initial Tick value is set to 0.

Once current Timer Tick value matches the preset Timer Capture (i.e. timing value), an interrupt is generated, Timer stops counting and Timer status is updated.

Steps of setting Timer0 for Mode 0 is taken as an example.

1st: Set initial Tick value of Timer0

Set Initial value of Tick via registers TMR_TICKO_0~TMR_TICKO_3 (address 0x630~0x633). Address 0x630 is lowest byte and 0x633 is highest byte. It's recommended to clear initial Timer Tick value to 0.

2nd: Set Capture value of Timer0

Set registers TMR_CAPTO_0~TMR_CAPTO_3 (address 0x624~0x627). Address 0x624 is lowest byte and 0x627 is highest byte.

3rd: Set Timer0 to Mode 0 and enable Timer0

Set register TMR_CTRL0 (address 0x620) [2:1] to 2b'00 to select Mode 0; Meanwhile set address 0x620[0] to 1b'1 to enable Timer0. Timer0 starts counting upward, and Tick value is increased by 1 on each positive edge of system clock until it reaches Timer0 Capture value.

5.1.3 Mode1 (GPIO Trigger Mode)

In Mode 1, GPIO is employed as clock source. The "m0"/"m1"/"m2" register specifies the GPIO which generates counting signal for Timer0/Timer1/Timer2.

After Timer is enabled, Timer Tick (i.e. counting value) is increased by 1 on each positive/negative (configurable) edge of GPIO from preset initial Tick value. Generally the initial Tick value is set to 0. The "Polarity" register specifies the GPIO edge when Timer Tick counting increases.

Note: Refer to **Section 7.1.2** for corresponding "m0", "m1", "m2" and "Polarity" register address.

Once current Timer Tick value matches the preset Timer Capture (i.e. timing value), an interrupt is generated and timer stops counting.

Steps of setting Timer1 for Mode 1 is taken as an example.

1st: Set initial Tick value of Timer1

Set Initial value of Tick via registers TMR_TICK1_0~TMR_TICK1_3 (address 0x634~0x637). Address 0x634 is lowest byte and 0x637 is highest byte. It's recommended to clear initial Timer Tick value to 0.

2nd: Set Capture value of Timer1

Set registers TMR_CAPT1_0~TMR_CAPT1_3 (address 0x628~0x62b). Address 0x628 is lowest byte and 0x62b is highest byte.

3rd: Select GPIO source and edge for Timer1

Select certain GPIO to be the clock source via setting "m1" register.

Select positive edge or negative edge of GPIO input to trigger Timer1 Tick increment via setting "Polarity" register.

4th: Set Timer1 to Mode 1 and enable Timer1

Set address 0x620[5:4] to 2b'01 to select Mode 1; Meanwhile set address 0x620[3] to 1b'1 to enable Timer1. Timer1 starts counting upward, and Timer1 Tick value is increased by 1 on each positive/negative (specified during the 3rd step) edge of GPIO until it reaches Timer1 Capture value.

5.1.4 Mode2 (GPIO Pulse Width Mode)

In Mode 2, system clock is employed as the unit to measure the width of GPIO pulse. The "m0"/"m1"/"m2" register specifies the GPIO which generates control signal for Timer0/Timer1/Timer2.

After Timer is enabled, Timer Tick is triggered by a positive/negative (configurable) edge of GPIO pulse. Then Timer Tick (i.e. counting value) is increased by 1 on each positive edge of system clock from preset initial Tick value. Generally the initial Tick value is set to 0. The "Polarity" register specifies the GPIO edge when Timer Tick starts counting.

Note: Refer to Section 7.1.2 for corresponding "m0", "m1", "m2" and "Polarity"

DS-TLSR8269F512-E24

53

Ver2.5.0

register address.

While a negative/positive edge of GPIO pulse is detected, an interrupt is generated and timer stops counting. The GPIO pulse width could be calculated in terms of tick count and period of system clock.

Steps of setting Timer2 for Mode 2 is taken as an example.

1st: Set initial Timer2 Tick value

Set Initial value of Tick via registers TMR_TICK2_0~TMR_TICK2_3 (address 0x638~0x63b). Address 0x638 is lowest byte and 0x63b is highest byte. It's recommended to clear initial Timer Tick value to 0.

2nd: Select GPIO source and edge for Timer2

Select certain GPIO to be the clock source via setting "m2" register.

Select positive edge or negative edge of GPIO input to trigger Timer2 counting start via setting "Polarity" register.

3rd: Set Timer2 to Mode 2 and enable Timer2

Set address 0x620[7:6] to 2b'01 and address 0x621 [0] to 1b'1.

Timer2 Tick is triggered by a positive/negative (specified during the 2nd step) edge of GPIO pulse. Timer2 starts counting upward and Timer2 Tick value is increased by 1 on each positive edge of system clock.

While a negative/positive edge of GPIO pulse is detected, an interrupt is generated and Timer2 tick stops.

4th: Read current Timer2 Tick value to calculate GPIO pulse width

Read current Timer2 Tick value from address 0x638~0x63b.

Then GPIO pulse width is calculated as follows:

GPIO pulse width

= System clock period * (current Timer 2 Tick – intial Timer 2 Tick)

For initial Timer2 Tick value set to the recommended value of 0, then:

GPIO pulse width = System clock period * current Timer2 Tick.

5.1.5 Mode3 (Tick Mode)

In Mode 3, system clock is employed.

After Timer is enabled, Timer Tick starts counting upward, and Timer Tick value is increased by 1 on each positive edge of system clock.

This mode could be used as time indicator. There will be no interrupt generated. Timer Tick keeps rolling from 0 to 0xffffffff. When Timer tick overflows, it returns to 0 and starts counting upward again.

Steps of setting Timer0 for Mode 3 is taken as an example.

1st: Set initial Tick value of Timer0

Set Initial value of Tick via address 0x630~0x633. Address 0x630 is lowest byte and address 0x633 is highest byte. It's recommended to clear initial Timer Tick value to 0.

2nd: Set Timer0 to Mode 3 and enable Timer0

Set address 0x620[2:1] to 2b'11 to select Mode 3, meanwhile set address 0x620[0] to 1b'1 to enable Timer0. Timer0 Tick starts to roll.

3rd: Read current Timer0 Tick value

Current Timer0 Tick value can be read from address 0x630~0x633.

5.1.6 Watchdog

Programmable watchdog could reset chip from unexpected hang up or malfunction.

Only Timer2 supports Watchdog.

Timer2 Tick has 32bits. Watchdog Capture has only 14bits, which consists of TMR_CTRL2 (address 0x622) [6:0] as higher bits and TMR_CTRL1 (address 0x621) [7:1] as lower bits. Chip will be reset when the Timer2 Tick[31:18] matches Watch dog capture.

1st: Clear Timer2 Tick value

Clear registers TMR_TICK2_0 ~TMR_TICK2_3 (address 0x638~0x63b). Address 0x638 is lowest byte and 0x63b is highest byte.

2nd: Enable Timer2

Set register TMR_CTRL0 (address 0x620) [6] to 1b'1 to enable Timer2.

3rd: Set 14-bit Watchdog Capture value and enable Watchdog

Set address 0x622[6:0] as higher bits of watchdog capture and 0x621[7:1] as lower bits. Meanwhile set address 0x622[7] to 1b'1 to enable Watchdog.

Then Timer2 Tick starts counting upwards from 0.

If bits[31:18] of Timer2 Tick value read from address 0x638~0x63b reaches watchdog capture, the chip will be reset, and the status bit in address 0x72[0] will be set as 1b'1 automatically. User can read the watchdog status bit after chip reset to check if the reset source is watchdog, and needs to write 1b'1 to this bit to manually clear the flag.

5.2 32K LTIMER

The TLSR8269F512 also supports a low frequency (32KHz) LTIMER in suspend mode or deep sleep mode. This timer can be used as one kind of wakeup source.

5.3 System Timer

The TLSR8269F512 also supports a System Timer.

In suspend mode, both System Timer and Timer0~Timer2 stop counting, and 32K Timer starts counting. When the chip restores to active mode, Timer0~Timer2 will continue counting from the number when they stops; In contrast, System Timer will continue counting from an adjusted number which is a sum of the number when it stops and an offset calculated from the counting value of 32K Timer during suspend mode.

Table 5-2 Register table for System Timer

Address	Mnemonic	R/W	Function	Default Value
0x740	Sys_timer[7:0]	R/W		00
0x741	Sys_timer[15:8]	R/W		00
0x742	Sys_timer[23:16]	R/W		00

DS-TLSR8269F512-E24 56 Ver2.5.0

Datasheet for Telink TLSR8269F512

Address	Mnemonic	R/W	Function	Default Value
0x743	Sys_timer[31:24]	R/W	System timer counter, write to set initial value. This is the sys timer counter	00
0x74c	Sys_timer_ctrl	R/W	[7]:cal 32k enable (16 cycles 32k, count sys clock cycles) [6]:1:at the pos of 32k clock to set 32k timer value [5]:suspend bypass system_timer module [4]:system timer ss enable [3] manual set 32k timer mode [2]:manual set 32k timer 1:write,0: read [1]:irq mask, 1: enable, 0: disable [0] rsvd	0x90

6 Interrupt System

6.1 Interrupt structure

The interrupting function is applied to manage dynamic program sequencing based on real-time events triggered by timers, pins and etc.

For the TLSR8269F512, there are 24 interrupt sources in all: 16 types are level-triggered interrupt sources (listed in address 0x640~0x641) and 8 types are edge-triggered interrupt sources (listed in address 0x642).

When CPU receives an interrupt request (IRQ) from some interrupt source, it will decide whether to respond to the IRQ. If CPU decides to respond, it pauses current routine and starts to execute interrupt service subroutine. Program will jump to certain code address and execute IRQ commands. After finishing interrupt service subroutine, CPU returns to the breakpoint and continues to execute main function.

6.2 Register configuration

Table 6-1 Register table for Interrupt system

Address	Mnemonic	Туре	Description	Reset	
Address	Willemonic	Туре	Description	Value	
			Byte 0 interrupt mask, level-triggered type		
			{irq_host_cmd,irq_uart,irq_ks,		
			irq_dma,usb_pwdn,time2,time1,time0}		
			[7] irq_host_cmd		
		RW	[6] irq_uart		
0x640	MASK_0		[5] rsvd (irq_ks)	00	
			[4] irq_dma		
			[3] usb_pwdn		
			[2] time2		
			[1] time1		
			[0] time0		
			Byte 1 interrupt mask, level-triggered type		
			{an_irq,irq_software irq_pwm,irq_zb_rt,irq		
0x641	MASK_1	RW	_udc[4:0]}	00	
			[7] an_irq		
			[6] irq_software irq_pwm		

DS-TLSR8269F512-E24 58 Ver2.5.0

Address Mnemonic		Туре	Description	Reset	
Addiess	Willemonic	Турс	Description	Value	
			[5] irq_zb_rt		
			[4] irq_udc[4]		
			[3] irq_udc[3]		
			[2] irq_udc[2]		
			[1] irq_udc[1]		
			[0] irq_udc[0]		
			Byte 2 interrupt mask, edge-triggered type		
			{gpio2risc[2:0],irq_stimer,pm_irq,irq_gpio,u		
			sb_reset,usb_250us}		
		RW	[7] gpio2risc[2]		
	MASK_2		[6] gpio2risc[1]		
0x642			[5] gpio2risc[0]	00	
			[4] irq_stimer		
			[3] pm_irq		
			[2] irq_gpio		
			[1] usb_reset		
			[0] usb_250us		
0x643	IRQMODE	RW	[0] interrupt enable	00	
0x043	INQIVIODE	INVV	[1] reserved (Multi-Address enable)	00	
			Byte 0 of priority		
0x644	PRIO_0	RW	1: High priority;	00	
			0: Low priority		
0x645	PRIO_1	RW	Byte 1 of priority	00	
0x646	PRIO_2	RW	Byte 2 of priority	00	
0x648	IRQSRC_0	R	Byte 0 of interrupt source		
0x649	IRQSRC_1	R	Byte 1 of interrupt source		
0x64a	IRQSRC_2	R	Byte 2 of interrupt source		

6.2.1 Enable/Mask interrupt sources

Various interrupt sources could be enabled or masked by registers MASK_0~MASK_2 (address 0x640~0x642).

6.2.2 Interrupt mode and priority

Interrupt mode is typically-used mode. Register IRQMODE (address 0x643)[0] should be set to 1b'1 to enable interrupt function.

IRQ tasks could be set as High or Low priority via registers PRIO_0~PRIO_2

(address 0x644~0x646). When more than one interrupt sources assert interrupt requests at the same time, CPU will respond depending on respective interrupt priority levels. It's recommended not to modify priority setting.

6.2.3 Interrupt source flag

Three bytes in registers IRQSRC_0~IRQSRC_2 (address 0x648~0x64a) serve to indicate IRQ sources. Once IRQ occurs from certain source, the corresponding IRQ source flag will be raised to "High". User could identify IRQ source by reading address 0x648~0x64a.

When handling edge-triggered type interrupt, the corresponding IRQ source flag needs to be cleared via address 0x64a. Take the interrupt source usb_250us for example: First enable the interrupt source by setting address 0x642 bit[0] to 1; then set address 0x643 bit[0] to 1 to enable the interrupt. In interrupt handling function, 24-bit data is read from address 0x648~0x64a to determine which IRQ source is valid; if data bit[16] is 1, it means the usb_250us interrupt is valid. Clear this interrupt source by setting address 0x64a bit[0] to 1.

As for level-type interrupt, IRQ interrupt source status needs to be cleared via setting corresponding module status register. Take Timer0 IRQ interrupt source for example, register TMR_STATUS (address 0x623) [0] should be written with 1b'1 to clear Timer0 status (refer to section 5.1.1).

DS-TLSR8269F512-E24 60 Ver2.5.0

7 Interface

7.1 **GPIO**

The TLSR8269F512ET/AT48 and TLSR8269F512ET/AT32 support up to 36 and 21 GPIOs respectively. Except for dedicated GPIOs, all digital IOs can be used as general purpose IOs.

All GPIOs (including ANA_A<0>~ANA_E<3>) have configurable pull-up/pull-down resistor. Please refer to **Section 7.1.3 Pull-up/Pull-down resistor** for details.

7.1.1 Basic configuration

Please refer to Table 7-1 in section 7.1.1.3 for various GPIO interface configuration.

7.1.1.1 Multiplexed functions

For a pin listed in Table 7-1, it acts as the function in the "Default Function" column by default.

If a pin with multiplexed functions does not act as GPIO function by default, to use it as GPIO function, first set the bit in "Act as GPIO" column to 1b'1. After GPIO function is enabled, if the pin is used as output, both the bits in "IE" and "OEN" columns should be cleared, then set the register value in the "Output" column; if the pin is used as input, both the bits in "IE" and "OEN" columns set to 1b'1, and the input data can be read from the register in the "Input" column.

To use a pin as certain multiplexed function (neither the default function nor GPIO function), first clear the bit in "Act as GPIO" column, and then configure register in "Pad Function Mux" column.

Take the DMIC_DI/PWM0/ANA_A<0> pin for example.

(1) The pin acts as GPIO function by default. If the pin is used as general output, both address 0x581[0] and 0x582[0] should be cleared, then configure address 0x583[0]. If the pin is used as general input, both address 0x581[0]

and 0x582[0] should be set to 1b'1, and the input data can be read from address 0x580[0].

- (2) To use the pin as DMIC_DI function, address 0x586[0] should be cleared and 0x5b0[0] should be set to 1b'1.
- (3) Addresses 0x586[0] and 0x5b0[0] should be cleared to use the pin as PWM0 function.

Take the PWM2/SWS/ANA_B<0> pin as another example.

- (1) The pin acts as SWS function by default.
- (2) To use it as GPIO function, first set address 0x58e[0] to 1b'1. If the pin is used as general output, both address 0x589[0] and 0x58a[0] should be cleared, then configure address 0x58b[0]. If the pin is used as general input, both address 0x589[0] and 0x58a[0] should be set to 1b'1, and the input data can be read from address 0x588[0].
- (3) To use it as PWM2 function, clear address 0x58e[0], and set 0x5b1[0] to 1b'1.

7.1.1.2 Drive strength

The registers in the "DS" column are used to configure the corresponding pin's driving strength: "1" indicates maximum drive level, while "0" indicates minimal drive level. The "DS" configuration will take effect when the pin is used as output. It's set as the strongest driving level by default. In actual applications, driving strength can be decreased to lower level if necessary.

All the pins support maximum drive level of 4mA ("DS"=1) and minimal drive level of 0.7mA ("DS"=0) with the following exceptions:

- ♦ ANA_E<1> and ANA_E<0>: maximum=16mA ("DS"=1), minimum=12mA ("DS"=0)
- ♦ ANA_E<3> and ANA_E<2>: maximum=12mA ("DS"=1), minimum=8mA ("DS"=0)

DS-TLSR8269F512-E24 62 Ver2.5.0

7.1.1.3 GPIO lookup table

Table 7-1 GPIO lookup table

	Default	Pad Func	GPIO Setting							
Pin	function	bit = 1	bit = 0	Input (R)	IE	OEN	Output	Polarity	DS	Act as GPIO
DMIC_DI/PWM0/ ANA_A<0>	GPIO	5b0[0] DMIC_DI	5b0[0] PWM0	0x580[0]	0x581[0]	0x582[0]	0x583[0]	0x584[0]	0x585[0]	0x586[0]
DMIC_CLK/ ANA_A<1>	GPIO			0x580[1]	0x581[1]	0x582[1]	0x583[1]	0x584[1]	0x585[1]	0x586[1]
DO/PWM0_N/ ANA_A<2>	GPIO	5b0[1] DO	5b0[1] PWM0_N	0x580[2]	0x581[2]	0x582[2]	0x583[2]	0x584[2]	0x585[2]	0x586[2]
DI/PWM1/ ANA_A<3>	GPIO	5b0[2] DI	5b0[2]PWM1	0x580[3]	0x581[3]	0x582[3]	0x583[3]	0x584[3]	0x585[3]	0x586[3]
CK/PWM1_N/ ANA_A<4>	GPIO	0x5b0[4]CK	0x5b0[4]PWM1_N	0x580[4]	0x581[4]	0x582[4]	0x583[4]	0x584[4]	0x585[4]	0x586[4]
CN/PWM2_N/ ANA_A<5>	GPIO	0x5b0[5]CN	0x5b0[5]PWM2_N	0x580[5]	0x581[5]	0x582[5]	0x583[5]	0x584[5]	0x585[5]	0x586[5]
UART_TX/ ANA_A<6>	GPIO		UART_TX	0x580[6]	0x581[6]	0x582[6]	0x583[6]	0x584[6]	0x585[6]	0x586[6]
UART_RX/SWM/ ANA_A<7>	GPIO	0x5b0[7]UART_RX	0x5b0[7]SWM	0x580[7]	0x581[7]	0x582[7]	0x583[7]	0x584[7]	0x585[7]	0x586[7]
PWM2/SWS/ ANA_B<0>	SWS	0x5b1[0]PWM2	0x5b1[0]SWS	0x588[0]	0x589[0]	0x58a[0]	0x58b[0]	0x58c[0]	0x58d[0]	0x58e[0]
PWM2_N/ ANA_B<1>	GPIO		0x5b1[1]PWM2_N	0x588[1]	0x589[1]	0x58a[1]	0x58b[1]	0x58c[1]	0x58d[1]	0x58e[1]
UART_TX/PWM3/ ANA_B<2>	GPIO	0x5b1[2]UART_TX	0x5b1[2]PWM3	0x588[2]	0x589[2]	0x58a[2]	0x58b[2]	0x58c[2]	0x58d[2]	0x58e[2]
UART_RX/PWM3_N/ ANA_B<3>	GPIO	0x5b1[3]UART_RX	0x5b1[3]PWM3_N	0x588[3]	0x589[3]	0x58a[3]	0x58b[3]	0x58c[3]	0x58d[3]	0x58e[3]
CN/PWM4/ ANA_B<4>	CN	0x5b1[4]CN	0x5b1[4]PWM4	0x588[4]	0x589[4]	0x58a[4]	0x58b[4]	0x58c[4]	0x58d[4]	0x58e[4]
DO/PWM4_N/ ANA_B<5>	DO	0x5b1[5]DO	0x5b1[5]PWM4_N	0x588[5]	0x589[5]	0x58a[5]	0x58b[5]	0x58c[5]	0x58d[5]	0x58e[5]
DI/PWM5/ ANA_B<6>	DI	0x5b1[6]DI	0x5b1[6]PWM5	0x588[6]	0x589[6]	0x58a[6]	0x58b[6]	0x58c[6]	0x58d[6]	0x58e[6]
CK/PWM5_N/ ANA_B<7>	СК	0x5b1[7]CK	0x5b1[7]PWM5_N	0x588[7]	0x589[7]	0x58a[7]	0x58b[7]	0x58c[7]	0x58d[7]	0x58e[7]
I2C_SDA/PWM0/ ANA_C<0>	GPIO	0x5b2[0]I2C_SDA	0x5b2[0]PWM0	0x590[0]	0x591[0]	0x592[0]	0x593[0]	0x594[0]	0x595[0]	0x596[0]
I2C_SCK/PWM1/ ANA_C<1>	GPIO	0x5b2[1]I2C_SCK	0x5b2[1]PWM1	0x590[1]	0x591[1]	0x592[1]	0x593[1]	0x594[1]	0x595[1]	0x596[1]

Datasheet for Telink TLSR8269F512

		Pad Func	GPIO Setting							
Pin	Default function	bit = 1	bit = 0	Input (R)	IE	OEN	Output	Polarity	DS	Act as GPIO
UART_TX/PWM2/ ANA_C<2>	GPIO	0x5b2[2]UART_TX	0x5b2[2]PWM2	0x590[2]	0x591[2]	0x592[2]	0x593[2]	0x594[2]	0x595[2]	0x596[2]
UART_RX/PWM3/ ANA_C<3>	GPIO	0x5b2[3]UART_RX	0x5b2[3]PWM3	0x590[3]	0x591[3]	0x592[3]	0x593[3]	0x594[3]	0x595[3]	0x596[3]
UAR_RTS/PWM4/ ANA_C<4>	GPIO	0x5b2[4]UART_RTS	0x5b2[4]PWM4	0x590[4]	0x591[4]	0x592[4]	0x593[4]	0x594[4]	0x595[4]	0x596[4]
UART_CTS/PWM5/ ANA_C<5>	GPIO	0x5b2[5]UART_CTS	0x5b2[5]PWM5	0x590[5]	0x591[5]	0x592[5]	0x593[5]	0x594[5]	0x595[5]	0x596[5]
GP0/ANA_C<6>	GPIO			0x590[6]	0x591[6]	0x592[6]	0x593[6]	0x594[6]	0x595[6]	0x596[6]
GP1/ANA_C<7>	GPIO			0x590[7]	0x591[7]	0x592[7]	0x593[7]	0x594[7]	0x595[7]	0x596[7]
GP2/ANA_D<0>	GPIO			0x598[0]	0x599[0]	0x59a[0]	0x59b[0]	0x59c[0]	0x59d[0]	0x59e[0]
GP3/ANA_D<1>	GPIO			0x598[1]	0x599[1]	0x59a[1]	0x59b[1]	0x59c[1]	0x59d[1]	0x59e[1]
GP4/ANA_D<2>	GPIO			0x598[2]	0x599[2]	0x59a[2]	0x59b[2]	0x59c[2]	0x59d[2]	0x59e[2]
GP5/ANA_D<3>	GPIO			0x598[3]	0x599[3]	0x59a[3]	0x59b[3]	0x59c[3]	0x59d[3]	0x59e[3]
GP6/ANA_D<4>	GPIO			0x598[4]	0x599[4]	0x59a[4]	0x59b[4]	0x59c[4]	0x59d[4]	0x59e[4]
PWM0/ANA_D<5>	GPIO		PWM0	0x598[5]	0x599[5]	0x59a[5]	0x59b[5]	0x59c[5]	0x59d[5]	0x59e[5]
PWM1/ANA_D<6>	GPIO		PWM1	0x598[6]	0x599[6]	0x59a[6]	0x59b[6]	0x59c[6]	0x59d[6]	0x59e[6]
PWM2/ANA_D<7>	GPIO		PWM2	0x598[7]	0x599[7]	0x59a[7]	0x59b[7]	0x59c[7]	0x59d[7]	0x59e[7]
PWM0/SDM_P/ ANA_E<0>	GPIO	0x5b4[0]PWM0	0x5b4[0]SDM_P	0x5a0[0]	0x5a1[0]	0x5a2[0]	0x5a3[0]	0x5a4[0]	0x5a5[0]	0x5a6[0]
PWM1/SDM_N/ ANA_E<1>	GPIO	0x5b4[1]PWM1	0x5b4[1]SDM_N	0x5a0[1]	0x5a1[1]	0x5a2[1]	0x5a3[1]	0x5a4[1]	0x5a5[1]	0x5a6[1]
DM/ANA_E<2>	DM		DM	0x5a0[2]	0x5a1[2]	0x5a2[2]	0x5a3[2]	0x5a4[2]	0x5a5[2]	0x5a6[2]
DP/ANA_E<3>	DP		DP	0x5a0[3]	0x5a1[3]	0x5a2[3]	0x5a3[3]	0x5a4[3]	0x5a5[3]	0x5a6[3]

*Notes:

(1) IE: Input enable, high active;

(2) OEN: Output enable, low active;

(3) Priority: "Act as GPIO" has the highest priority;

(4) For all unused GPIOs, corresponding "IE" must be set as 0;

(5) When SWS/ANA_B<0> "IE" is set as 1, this pin must be fixed as pull-up/pull-down state (float state is not allowed).

7.1.2 Connection relationship between GPIO and related modules

GPIO can be used to generate GPIO interrupt signal for interrupt system, counting or control signal for Timer/Counter module, or GPIO2RISC interrupt signal for interrupt system.

For the "Exclusive Or (XOR)" operation result for input signal from any GPIO pin and respective "Polarity" value, on one hand, it takes "And" operation with "irq" and generates GPIO interrupt request signal; on the other hand, it takes "And" operation with "m0/m1/m2", and generates counting signal in Mode 1 or control signal in Mode 2 for Timer0/Timer1/Timer2, or generates GPIO2RISC interrupt request signal.

GPIO interrupt request signal = | ((input ^ polarity) & irq);

Counting (Mode 1) or control (Mode 2) signal for Timer0 = | ((input ^ polarity) & m0);

Counting (Mode 1) or control (Mode 2) signal for Timer1 = | ((input ^ polarity) & m1);

Counting (Mode 1) or control (Mode 2) signal for Timer2 = | ((input ^ polarity) & m2);

GPIO2RISC[0] interrupt request signal = | ((input ^ polarity) & m0);

GPIO2RISC[1] interrupt request signal = | ((input ^ polarity) & m1);

GPIO2RISC[2] interrupt request signal = | ((input ^ polarity) & m2);

Figure 7-1 Logic relationship between GPIO and related modules

DS-TLSR8269F512-E24 65 Ver2.5.0

Please refer to Table 7-2 and Table 6- 1 to learn how to configure GPIO for interrupt system or Timer/Counter (Mode 1 or Mode 2).

- (1) First enable GPIO function, IE and disable OEN.
- (2) GPIO IRQ signal: Select GPIO interrupt trigger edge (positive edge or negative edge) via configuring "Polarity", and set corresponding GPIO interrupt enabling bit "Irq". Then set address 0x5b5[3] to enable GPIO IRQ. Finally enable GPIO interrupt (irq_gpio at address 0x642[2]). User can read addresses 0x5e0 ~ 0x5e4 to see which GPIO asserts GPIO interrupt request signal. Note: 0x5e0[7:0] --> ANA_A<7>~ANA_A<0>, 0x5e1[7:0] --> ANA_B<7>~ANA_B<0>, 0x5e2[7:0] --> ANA_C<7>~ANA_C<0>, 0x5e3[7:0] --> ANA_D<0>, 0x5e4[3:0] --> {ANA_E<3>~ANA_E<0>}.
- (3) Timer/Counter counting or control signal: Configure "Polarity" (In Mode 1, it determines GPIO edge when Timer Tick counting increases; in Mode 2, it determines GPIO edge when Timer Tick starts counting) and set "m0/m1/m2". User can read addresses 0x5e8~0x5ec/0x5f0~0x5f4/0x5f8~0x5fc to see which GPIO asserts counting signal (in Mode 1) or control signal (in Mode 2) for Timer0/Timer1/Timer2. Note: Timer0: 0x5e8[7:0] --> ANA A<7>~ANA A<0>, 0x5e9[7:0] --> ANA B<7>~ANA B<0>, 0x5ea[7:0] --> ANA C<7>~ANA C<0>, 0x5eb[7:0] --> ANA D<7>~ANA D<0>, 0x5ec[3:0] --> {ANA_E<3>~ANA_E<0>}; ANA A<7> $^{\sim}$ ANA A<0>, Timer1: 0x5f0[7:0] --> 0x5f1[7:0] ANA B<7>~ANA B<0>, 0x5f2[7:0] --> ANA C<7>~ANA C<0>, 0x5f3[7:0] --> ANA D<7> $^{\text{ANA}}$ D<0>, 0x5f4[3:0] --> {ANA E<3> $^{\text{ANA}}$ E<0>}; Timer2: 0x5f8[7:0] --> ANA A<7>~ANA A<0>, 0x5f9[7:0] --> ANA B<7>~ANA B<0>, 0x5fa[7:0] --> ANA C<7>~ANA C<0>, 0x5fb[7:0] --> ANA D<7>~ANA D<0>, $0x5fc[3:0] --> {ANA E<3>^ANA E<0>}.$
- (4) GPIO2RISC IRQ signal: Select GPIO2RISC interrupt trigger edge (positive edge or negative edge) via configuring "Polarity", and set corresponding GPIO enabling bit "m0"/"m1"/"m2". Enable GPIO2RISC[0]/GPIO2RISC[1]/GPIO2RISC[2] interrupt, i.e. "gpio2risc[0]"

DS-TLSR8269F512-E24 66 Ver2.5.0

(address 0x642[5]) / "gpio2risc[1]" (address 0x642[6]) / "gpio2risc[2]" (address 0x642[7]).

Table 7-2 GPIO lookup table2

Pin	Input (R)	Polarity 1: active low 0: active high	Irq	m0	m1	m2
DMIC_DI/PWM0/ ANA_A<0>	0x580[0]	0x584[0]	0x587[0]	0x5b8[0]	0x5c0[0]	0x5c8[0]
DMIC_CLK/ ANA_A<1>	0x580[1]	0x584[1]	0x587[1]	0x5b8[1]	0x5c0[1]	0x5c8[1]
DO/PWM0_N/ ANA_A<2>	0x580[2]	0x584[2]	0x587[2]	0x5b8[2]	0x5c0[2]	0x5c8[2]
DI/PWM1/ ANA_A<3>	0x580[3]	0x584[3]	0x587[3]	0x5b8[3]	0x5c0[3]	0x5c8[3]
CK/PWM1_N/ ANA_A<4>	0x580[4]	0x584[4]	0x587[4]	0x5b8[4]	0x5c0[4]	0x5c8[4]
CN/PWM2_N/ ANA_A<5>	0x580[5]	0x584[5]	0x587[5]	0x5b8[5]	0x5c0[5]	0x5c8[5]
UART_TX/ ANA_A<6>	0x580[6]	0x584[6]	0x587[6]	0x5b8[6]	0x5c0[6]	0x5c8[6]
UART_RX/SWM/ ANA_A<7>	0x580[7]	0x584[7]	0x587[7]	0x5b8[7]	0x5c0[7]	0x5c8[7]
PWM2/SWS/ ANA_B<0>	0x588[0]	0x58c[0]	0x58f[0]	0x5b9[0]	0x5c1[0]	0x5c9[0]
PWM2_N/ ANA_B<1>	0x588[1]	0x58c[1]	0x58f[1]	0x5b9[1]	0x5c1[1]	0x5c9[1]
UART_TX/PWM3/ ANA_B<2>	0x588[2]	0x58c[2]	0x58f[2]	0x5b9[2]	0x5c1[2]	0x5c9[2]
UART_RX/PWM3_ N/ ANA_B<3>	0x588[3]	0x58c[3]	0x58f[3]	0x5b9[3]	0x5c1[3]	0x5c9[3]
CN/PWM4/ ANA_B<4>	0x588[4]	0x58c[4]	0x58f[4]	0x5b9[4]	0x5c1[4]	0x5c9[4]
DO/PWM4_N/ ANA_B<5>	0x588[5]	0x58c[5]	0x58f[5]	0x5b9[5]	0x5c1[5]	0x5c9[5]
DI/PWM5/ ANA_B<6>	0x588[6]	0x58c[6]	0x58f[6]	0x5b9[6]	0x5c1[6]	0x5c9[6]
CK/PWM5_N/ ANA_B<7>	0x588[7]	0x58c[7]	0x58f[7]	0x5b9[7]	0x5c1[7]	0x5c9[7]
I2C_SDA/PWM0/ ANA_C<0>	0x590[0]	0x594[0]	0x597[0]	0x5ba[0]	0x5c2[0]	0x5ca[0]

67

Datasheet for Telink TLSR8269F512

		5.1.11		Datasneet ioi		
Pin	Input (R)	Polarity 1: active low 0: active high	Irq	m0	m1	m2
I2C_SCK/PWM1/ ANA_C<1>	0x590[1]	0x594[1]	0x597[1]	0x5ba[1]	0x5c2[1]	0x5ca[1]
UART_TX/PWM2/ ANA_C<2>	0x590[2]	0x594[2]	0x597[2]	0x5ba[2]	0x5c2[2]	0x5ca[2]
UART_RX/PWM3/ ANA_C<3>	0x590[3]	0x594[3]	0x597[3]	0x5ba[3]	0x5c2[3]	0x5ca[3]
UAR_RTS/PWM4/ ANA_C<4>	0x590[4]	0x594[4]	0x597[4]	0x5ba[4]	0x5c2[4]	0x5ca[4]
UART_CTS/PWM5/ ANA_C<5>	0x590[5]	0x594[5]	0x597[5]	0x5ba[5]	0x5c2[5]	0x5ca[5]
GP0/ANA_C<6>	0x590[6]	0x594[6]	0x597[6]	0x5ba[6]	0x5c2[6]	0x5ca[6]
GP1/ANA_C<7>	0x590[7]	0x594[7]	0x597[7]	0x5ba[7]	0x5c2[7]	0x5ca[7]
GP2/ANA_D<0>	0x598[0]	0x59c[0]	0x59f[0]	0x5bb[0]	0x5c3[0]	0x5cb[0]
GP3/ANA_D<1>	0x598[1]	0x59c[1]	0x59f[1]	0x5bb[1]	0x5c3[1]	0x5cb[1]
GP4/ANA_D<2>	0x598[2]	0x59c[2]	0x59f[2]	0x5bb[2]	0x5c3[2]	0x5cb[2]
GP5/ANA_D<3>	0x598[3]	0x59c[3]	0x59f[3]	0x5bb[3]	0x5c3[3]	0x5cb[3]
GP6/ANA_D<4>	0x598[4]	0x59c[4]	0x59f[4]	0x5bb[4]	0x5c3[4]	0x5cb[4]
PWM0/ANA_D<5>	0x598[5]	0x59c[5]	0x59f[5]	0x5bb[5]	0x5c3[5]	0x5cb[5]
PWM1/ANA_D<6>	0x598[6]	0x59c[6]	0x59f[6]	0x5bb[6]	0x5c3[6]	0x5cb[6]
PWM2/ANA_D<7>	0x598[7]	0x59c[7]	0x59f[7]	0x5bb[7]	0x5c3[7]	0x5cb[7]
PWM0/SDM_P/ ANA_E<0>	0x5a0[0]	0x5a4[0]	0x5a7[0]	0x5bc[0]	0x5c4[0]	0x5cc[0]
PWM1/SDM_N/ ANA_E<1>	0x5a0[1]	0x5a4[1]	0x5a7[1]	0x5bc[1]	0x5c4[1]	0x5cc[1]
DM/ANA_E<2>	0x5a0[2]	0x5a4[2]	0x5a7[2]	0x5bc[2]	0x5c4[2]	0x5cc[2]
DP/ANA_E<3>	0x5a0[3]	0x5a4[3]	0x5a7[3]	0x5bc[3]	0x5c4[3]	0x5cc[3]

7.1.3 Pull-up/Pull-down resistor

All GPIOs (including ANA_A<0>~ANA_E<3>) support configurable $1M\Omega/10K\Omega$ pull-up resistor or $100K\Omega$ pull-down resistor which are all disabled by default. Analog registers including afe3V_reg08<4:7>, afe3V_reg10<4:7>~afe3V_reg18 serve to control the pull-up/pull-down resistor for each GPIO.

The DP pin also supports 1.5K Ω pull-up resistor for USB use. The 1.5K Ω pull up resistor is disabled by default and can be enabled via clearing analog register afe3V_reg00<4>. For the DP pin, user can only enable either 1.5K Ω pull up or $1M\Omega/10K\Omega$ pull-up/ $100K\Omega$ pull-down resistor at the same time.

Please refer to Table 7-3 for details.

Take the ANA_A<0> for example: Setting analog register afe3V_reg10<5:4> to 2b'01/2b'10/2b'11 is to enable $1M\Omega$ pull-up resistor/ $10K\Omega$ pull-up resistor/ $10K\Omega$ pull-down resistor respectively for ANA_A<0>; Clearing the two bits (default value) disables pull-up and pull-down resistor for ANA_A<0>.

Table 7-3 Analog registers for pull-up/pull-down resistor control

Address	Mnemonic	Default Value	Description	
			disable usb dp 1.5KOhm pull	
afe3V_reg00<4>	dp_pullup_res_enb	1	up resistor	
alesv_legoov42	up_pallap_res_ellb	1	1: disable	
			0: enable	
			Wake up mux ANA_E<2> pull	
	pullupdown_ctrl<1:0>		up/down controls	
			00 No pull up/down resistor	
afe3V_reg08<5:4>		00	01 1MOhm pull-up resistor	
			10 – 10kOhm pull-up resistor	
			11 – 100kOhm pull-down	
			resistor	
			Wake up mux ANA_E<3> pull	
			up/down controls	
			00 No pull up/down resistor	
afe3V_reg08<7:6>	pullupdown_ctrl<1:0>	00	01 1MOhm pull-up resistor	
			10 – 10kOhm pull-up resistor	
			11 – 100kOhm pull-down	
			resistor	

DS-TLSR8269F512-E24 69 Ver2.5.0

			atasheet for Telink TLSR8269F512
Address	Mnemonic	Default Value	Description
afe3V_reg10<5:4>	pullupdown_ctrl<1:0>	00	Wake up mux ANA_A<0> pull up/down controls 00 No pull up/down resistor 01 1MOhm pull-up resistor 10 10kOhm pull-up resistor 11 100kOhm pull-down resistor
afe3V_reg10<7:6>	pullupdown_ctrl<1:0>	00	Wake up mux ANA_A<1> pull up/down controls 00 No pull up/down resistor 01 1MOhm pull-up resistor 10 10kOhm pull-up resistor 11 100kOhm pull-down resistor
afe3V_reg11<1:0>	pullupdown_ctrl<1:0>	00	Wake up mux ANA_A<2>pull up/down controls 00 No pull up/down resistor 01 1MOhm pull-up resistor 10 10kOhm pull-up resistor 11 100kOhm pull-down resistor
afe3V_reg11<3:2>	pullupdown_ctrl<1:0>	00	Wake up mux ANA_A<3> pull up/down controls 00 No pull up/down resistor 01 1MOhm pull-up resistor 10 10kOhm pull-up resistor 11 100kOhm pull-down resistor
afe3V_reg11<5:4>	pullupdown_ctrl<1:0>	00	Wake up mux ANA_A<4> pull up/down controls 00 No pull up/down resistor 01 1MOhm pull-up resistor 10 10kOhm pull-up resistor 11 100kOhm pull-down resistor
afe3V_reg11<7:6>	pullupdown_ctrl<1:0>	00	Wake up mux ANA_A<5> pull up/down controls 00 No pull up/down resistor 01 1MOhm pull-up resistor 10 10kOhm pull-up resistor 11 100kOhm pull-down resistor

			atasheet for Telink TLSR8269F512
Address	Mnemonic	Default Value	Description
afe3V_reg12<1:0>	pullupdown_ctrl<1:0>	00	Wake up mux ANA_A<6> pull up/down controls 00 No pull up/down resistor 01 1MOhm pull-up resistor 10 – 10kOhm pull-up resistor 11 – 100kOhm pull-down resistor
afe3V_reg12<3:2>	pullupdown_ctrl<1:0>	00	Wake up mux ANA_A<7> pull up/down controls 00 No pull up/down resistor 01 1MOhm pull-up resistor 10 10kOhm pull-up resistor 11 100kOhm pull-down resistor
afe3V_reg12<5:4>	pullupdown_ctrl<1:0>	00	Wake up mux ANA_B<0> pull up/down controls 00 No pull up/down resistor 01 1MOhm pull-up resistor 10 10kOhm pull-up resistor 11 100kOhm pull-down resistor
afe3V_reg12<7:6>	pullupdown_ctrl<1:0>	00	Wake up mux ANA_B<1> pull up/down controls 00 No pull up/down resistor 01 1MOhm pull-up resistor 10 10kOhm pull-up resistor 11 100kOhm pull-down resistor
afe3V_reg13<1:0>	pullupdown_ctrl<1:0>	00	Wake up mux ANA_B<2> pull up/down controls 00 No pull up/down resistor 01 1MOhm pull-up resistor 10 10kOhm pull-up resistor 11 100kOhm pull-down resistor
afe3V_reg13<3:2>	pullupdown_ctrl<1:0>	00	Wake up mux ANA_B<3> pull up/down controls 00 No pull up/down resistor 01 1MOhm pull-up resistor 10 10kOhm pull-up resistor 11 100kOhm pull-down resistor

			atasheet for Telink TLSR8269F512
Address	Mnemonic	Default Value	Description
afe3V_reg13<5:4>	pullupdown_ctrl<1:0>	00	Wake up mux ANA_B<4> pull up/down controls 00 No pull up/down resistor 01 1MOhm pull-up resistor 10 - 10kOhm pull-up resistor 11 - 100kOhm pull-down resistor
afe3V_reg13<7:6>	pullupdown_ctrl<1:0>	00	Wake up mux ANA_B<5> pull up/down controls 00 No pull up/down resistor 01 1MOhm pull-up resistor 10 10kOhm pull-up resistor 11 100kOhm pull-down resistor
afe3V_reg14<1:0>	pullupdown_ctrl<1:0>	00	Wake up mux ANA_B<6> pull up/down controls 00 No pull up/down resistor 01 1MOhm pull-up resistor 10 10kOhm pull-up resistor 11 100kOhm pull-down resistor
afe3V_reg14<3:2>	pullupdown_ctrl<1:0>	00	Wake up mux ANA_B<7> pull up/down controls 00 No pull up/down resistor 01 1MOhm pull-up resistor 10 10kOhm pull-up resistor 11 100kOhm pull-down resistor
afe3V_reg14<5:4>	pullupdown_ctrl<1:0>	00	Wake up mux ANA_C<0> pull up/down controls 00 No pull up/down resistor 01 1MOhm pull-up resistor 10 10kOhm pull-up resistor 11 100kOhm pull-down resistor
afe3V_reg14<7:6>	pullupdown_ctrl<1:0>	00	Wake up mux ANA_C<1> pull up/down controls 00 No pull up/down resistor 01 1MOhm pull-up resistor 10 10kOhm pull-up resistor 11 100kOhm pull-down resistor

			atasheet for Telink TLSR8269F512
Address	Mnemonic	Default Value	Description
afe3V_reg15<1:0>	pullupdown_ctrl<1:0>	00	Wake up mux ANA_C<2> pull up/down controls 00 No pull up/down resistor 01 1MOhm pull-up resistor 10 - 10kOhm pull-up resistor 11 - 100kOhm pull-down resistor
afe3V_reg15<3:2>	pullupdown_ctrl<1:0>	00	Wake up mux ANA_C<3> pull up/down controls 00 No pull up/down resistor 01 1MOhm pull-up resistor 10 10kOhm pull-up resistor 11 100kOhm pull-down resistor
afe3V_reg15<5:4>	pullupdown_ctrl<1:0>	00	Wake up mux ANA_C<4> pull up/down controls 00 No pull up/down resistor 01 1MOhm pull-up resistor 10 10kOhm pull-up resistor 11 100kOhm pull-down resistor
afe3V_reg15<7:6>	pullupdown_ctrl<1:0>	00	Wake up mux ANA_C<5> pull up/down controls 00 No pull up/down resistor 01 1MOhm pull-up resistor 10 10kOhm pull-up resistor 11 100kOhm pull-down resistor
afe3V_reg16<1:0>	pullupdown_ctrl<1:0>	00	Wake up mux ANA_C<6> pull up/down controls 00 No pull up/down resistor 01 1MOhm pull-up resistor 10 10kOhm pull-up resistor 11 100kOhm pull-down resistor
afe3V_reg16<3:2>	pullupdown_ctrl<1:0>	00	Wake up mux ANA_C<7> pull up/down controls 00 No pull up/down resistor 01 1MOhm pull-up resistor 10 10kOhm pull-up resistor 11 100kOhm pull-down resistor

			atasheet for Telink TLSR8269F512
Address	Mnemonic	Default Value	Description
afe3V_reg16<5:4>	pullupdown_ctrl<1:0>	00	Wake up mux ANA_D<0> pull up/down controls 00 No pull up/down resistor 01 1MOhm pull-up resistor 10 - 10kOhm pull-up resistor 11 - 100kOhm pull-down resistor
afe3V_reg16<7:6>	pullupdown_ctrl<1:0>	00	Wake up mux ANA_D<1> pull up/down controls 00 No pull up/down resistor 01 1MOhm pull-up resistor 10 10kOhm pull-up resistor 11 100kOhm pull-down resistor
afe3V_reg17<1:0>	pullupdown_ctrl<1:0>	00	Wake up mux ANA_D<2> pull up/down controls 00 No pull up/down resistor 01 1MOhm pull-up resistor 10 10kOhm pull-up resistor 11 100kOhm pull-down resistor
afe3V_reg17<3:2>	pullupdown_ctrl<1:0>	00	Wake up mux ANA_D<3> pull up/down controls 00 No pull up/down resistor 01 1MOhm pull-up resistor 10 10kOhm pull-up resistor 11 100kOhm pull-down resistor
afe3V_reg17<5:4>	pullupdown_ctrl<1:0>	00	Wake up mux ANA_D<4> pull up/down controls 00 No pull up/down resistor 01 1MOhm pull-up resistor 10 10kOhm pull-up resistor 11 100kOhm pull-down resistor
afe3V_reg17<7:6>	pullupdown_ctrl<1:0>	00	Wake up mux ANA_D<5> pull up/down controls 00 No pull up/down resistor 01 1MOhm pull-up resistor 10 10kOhm pull-up resistor 11 100kOhm pull-down resistor

Address	Mnemonic	Default Value	Description
afe3V_reg18<1:0>	pullupdown_ctrl<1:0>	00	Wake up mux ANA_D<6> pull up/down controls 00 No pull up/down resistor 01 1MOhm pull-up resistor 10 - 10kOhm pull-up resistor 11 - 100kOhm pull-down resistor
afe3V_reg18<3:2>	pullupdown_ctrl<1:0>	00	Wake up mux ANA_D<7> pull up/down controls 00 No pull up/down resistor 01 1MOhm pull-up resistor 10 - 10kOhm pull-up resistor 11 - 100kOhm pull-down resistor
afe3V_reg18<5:4>	pullupdown_ctrl<1:0>	00	Wake up mux ANA_E<0> pull up/down controls 00 No pull up/down resistor 01 1MOhm pull-up resistor 10 - 10kOhm pull-up resistor 11 - 100kOhm pull-down resistor
afe3V_reg18<7:6>	pullupdown_ctrl<1:0>	00	Wake up mux ANA_E<1> pull up/down controls 00 No pull up/down resistor 01 1MOhm pull-up resistor 10 10kOhm pull-up resistor 11 100kOhm pull-down resistor

7.2 SWM and SWS

The TLSR8269F512 supports Single Wire interface. SWM (Single Wire Master) and SWS (Single Wire Slave) represent the master and slave device of the single wire communication system developed by Telink. The maximum data rate can be up to 2Mbps.

SWS usage is not supported in power-saving mode (deep sleep or suspend).

7.3 I2C

The TLSR8269F512 embeds I2C hardware module, which could act as Master mode or Slave mode. I2C is a popular inter-IC interface requiring only 2 bus lines, a serial data line (SDA) and a serial clock line (SCL).

7.3.1 Communication protocol

Telink I2C module supports standard mode (100kbps), Fast-mode (400kbps) and Fast-mode plus (1Mbps) with restriction that system clock must be by at least 10x of data rate.

Two wires, SDA and SCL (SCK) carry information between Master device and Slave device connected to the bus. Each device is recognized by unique address (ID). Master device is the device which initiates a data transfer on the bus and generates the clock signals to permit that transfer. Slave device is the device addressed by a master.

Both SDA and SCL are bidirectional lines connected to a positive supply voltage via a pull-up resister. It's recommended to use the internal 10K pull-up resistor first. In order to speed up the pull-up process, user can use external pull-up resistor with smaller resistance value (e.g. 3.3K or 4.7K) instead.

When the bus is free, both lines are HIGH. It's noted that data in SDA line must keep stable when clock signal in SCL line is at high level, and level state in SDA line is only allowed to change when clock signal in SCL line is at low level.

Figure 7-2 I2C timing chart

7.3.2 Register table

Table 7-4 Register configuration for I2C

Address	Name	R/W	Description	Reset
				Value
0x00	12CSP	RW	I2C master clock speed	0x1f
0x01	I2CID	RW	[7:1] I2C ID	0x5c
			[0]: master busy	
0,,02	IDCNAST	DVA	[1]: master packet busy	
0x02	I2CMST	RW	[2]: master received status: 0 for ACK;	
			1 for NAK	
			[0]: address auto increase enable	
0x03	12CSCT	RW	[1]: I2C master enable	0x01
			[2] enable Mapping Mode	
0x04	I2CAD	RW	[7:0] data buffer in master mode	0x5a
0x05	I2CDW	RW	[7:0] Data buffer in master mode	0xf1
			[7:0] Data buffer for Read or Write in	
0x06	I2CDR	RW	master mode	0x00
			[0]: launch ID cycle	0x00
			[1]: launch address cycle	
			[2]: launch data write cycle	
			[3]: launch data read cycle	
0x07	I2CCLT	RW	[4]: launch start cycle	
			[5]: launch stop cycle	
			[6]: enable read ID	
			[7]: enable ACK in read command	
0x20	Reg_host_map_status	R	[6:0] I2C read address	0x00
			[0]:host_rd_clear_en	
0x21	i2c_status		[1]:host_cmd_irq_o:i2c host operation	0x01
			[±]ost_cina_iiq_o.izc nost operation	

Address	Name	R/W	Description	Reset Value
			have happened [2]:host_rd_tag_stat:i2c host operation have happened and is read operation	
0x22	clear_stats		[0]:write 1 clear software_irq [1]:write 1 clear host_cmd_irq [2]:write 1 clear host_rd_tag_stat [4]:write 1 set software_irq [5]write 1 clear ana_irq	
0x3e	Reg_host_map_adrl	R/W	Lower byte of Mapping mode buffer address	0x80
0x3f	Reg_host_map_adrh	R/W	Higher byte of Mapping mode buffer address	0xd7

7.3.3 I2C Slave mode

I2C module of the TLSR8269F512 acts as Slave mode by default. I2C slave address can be configured via register I2CID (address 0x01) [7:1].

Figure 7-3 Byte consisted of slave address and R/W flag bit

I2C slave mode supports two sub modes including Direct Memory Access (DMA) mode and Mapping mode, which is selectable via address 0x03[2].

In I2C Slave mode, Master could initiate transaction anytime. I2C slave module will reply with ACK automatically. To monitor the start of I2C transaction, user could set interrupt from GPIO for SCA or SCL.

DS-TLSR8269F512-E24 78 Ver2.5.0

7.3.3.1 DMA mode

In DMA mode, other devices (Master) could access (read/write) designated address in Register and/or SRAM of the TLSR8269F512 according to I2C protocol. I2C module of the TLSR8269F512 will execute the read/write command from I2C master automatically. But user needs to notice that the system clock shall be at least 10x faster than I2C bit rate.

The access address designated by Master is offset by 0x800000. In the TLSR8269F512, Register address starts from 0x800000 and SRAM address starts from 0x808000. For example, if Addr High(AddrH) is 0xaa and Addr Low (AddrL) is 0xcc, the real address of accessed data is 0x80aacc.

In DMA mode, Master could read/write data byte by byte. The designated access address is initial address and it supports auto increment by setting address 0x03[0] to 1b'1.

Read Format in DMA mode

Figure 7-4 Read format in DMA mode

Write Format in DMA mode

Figure 7-5 Write format in DMA mode

DS-TLSR8269F512-E24 79 Ver2.5.0

7.3.3.2 Mapping mode

Mapping mode could be enabled via setting register I2CSCT (address 0x03)[2] to 1b'1.

In Mapping mode, data written and read by I2C master will be redirected to specified 128-byte buffer in SRAM. User could specify the initial address of the buffer by configuring registers reg_host_map_adrl (address 0x3e, lower byte) and reg_host_map_adrh (address 0x3f, higher byte). The first 64-byte buffer is for written data and following 64-byte buffer is for read data. Every time the data access will start from the beginning of the Write-buffer/Read-buffer after previous I2C stop condition occurs. The last accessed data address during previous transfer could be checked in register reg_host_map_status (address 0x20) [6:0] which is only updated after I2C STOP occurs.

Read Format in mapping mode

Figure 7-6 Read format in Mapping mode

Write Format in mapping mode

Figure 7-7 Write format in Mapping mode

DS-TLSR8269F512-E24 80 Ver2.5.0

7.3.4 I2C Master mode

Address 0x03[1] should be set to 1b'1 to enable I2C master mode for the TLSR8269F512.

Address 0x00 serves to set I2C Master clock: F_{I2C} = (System Clock/(address 0x73[7:4]+1)) / (4 *clock speed configured in address 0x00). Since address 0x73[7:4] is set as 1 by default, the default F_{I2C} equals System Clock / (8 * address 0x00). If 0x73[7:4] is set as 0, F_{I2C} will change to System Clock / (4 * address 0x00).

A complete I2C protocol contains START, Slave Address, R/W bit, data, ACK and STOP. Slave address could be configured via address 0x01[7:1].

I2C Master (i.e. I2C module of the TLSR8269F512) could send START, Slave Address, R/W bit, data and STOP by configuring address 0x07. I2C master will send enabled cycles with correct sequence.

Address 0x02 serves to indicate whether Master/Master packet is busy, as well as Master received status. Bit[0] will be set to 1 when one byte is being sent, and the bit can be automatically cleared after a start signal/ address byte/acknowledge signal/data /stop signal is sent. Bit[1] is set to 1 when the start signal is sent, and the bit will be automatically cleared after the stop signal is sent. Bit[2] indicates whether to succeed in sending acknowledgement signal.

7.3.4.1 I2C Master Write transfer

I2C Master has 3 byte buffer for write data, which are I2CAD (0x04), I2CDW (0x05) and I2CDR (0x06). Write transfer will be completed by I2C master module.

For example, to implement an I2C write transfer with 3 byte data, which contains START, Slave Address, Write bit, ack from Slave, 1st byte, ack from slave, 2nd byte, ack from slave, 3rd byte, ack from slave and STOP, user needs to configure I2C slave address to I2CID (0x01) [7:1], 1st byte data to I2CAD, 2nd byte data to I2CDW and 3rd byte to I2CDR. To start I2C write transfer, I2CCLT (0x07) is configured to 0x3f. I2C Master will launch START, Slave address, Write bit, load ACK to I2CMST (0x02) [2], send I2CAD data, load ACK to I2CMST[2], send I2CDW data, load ACK to I2CMST[2], send I2CDR data, load ACK to I2CMST[2] and then STOP sequentially.

For I2C write transfer whose data is more than 3 bytes, user could split the cycles according to I2C protocol.

7.3.4.2 I2C Master Read transfer

I2C Master has one byte buffer for read data, which is I2CDR (0x06). Read transfer will be completed by I2C Master.

For example, to implement an I2C read transfer with 1 byte data, which contains START, Slave Address, Read bit, Ack from Slave, 1st byte from Slave, Ack by master and STOP, user needs to configure I2C slave address to I2CID (0x01) [7:1]. To start I2C read transfer, I2CCLT (0x07) is configured to 0xf9. I2C Master will launch START, Slave address, Read bit, load ACK to I2CMST (0x02) [2], load data to I2CDR, reply ACK and then STOP sequentially.

For I2C read transfer whose data is more than 1 byte, user could split the cycles according to I2C protocol.

7.3.5 I2C and SPI Usage

I2C hardware and SPI hardware modules in the chip share part of the hardware, as a result, when both hardware interfaces are used, the restrictions listed within this section need to be taken into consideration.

I2C and SPI hardware cannot be used as Slave at the same time. I2C Slave mode and SPI Master mode cannot be used at the same time. I2C Master mode and SPI Slave mode cannot be used at the same time.

I2C and SPI can be used as Master at the same time only when ANA_A<2>~ ANA_A<5> are configured as SPI pins and ANA_C<0>~ ANA_C<1> are configured as I2C pins (please refer to **Section 7.1.1 Basic configuration**). In this case, before each I2C/SPI operation, the corresponding I/Os need to be re-configured: for address 0x5b0[3], 0x5b0[4], 0x5b1[6] and 0x5b1[7], before I2C operation, the four bits should be set as 0; before SPI operation, the four bits should be set as 1.

7.4 SPI

The TLSR8269F512 embeds SPI (Serial Peripheral interface), which could act as Master mode or Slave mode. SPI is a high-speed, full-duplex and synchronous communication bus requiring 4 bus lines including a chip select (CS) line, a data input (DI) line, a data output (DO) line and a clock (CK) line.

7.4.1 Register table

Table 7-5 Register configuration for SPI

Address	Name	R/W	Description	Reset Value
0x08	SPIDAT	RW	SPI data access	
			[0]: p_csn	
			[1]: enable master mode	
			[2]: spi data output disable	
0x09	SPICT	RW	[3]: 1 for read command; 0 for write	
0x09	SPICI	KW	command	11
			[4]: address auto increase	
			[5]: share_mode	
			[6]: busy status	
			[6:0]: SPI clock speed	
0x0a	SPISP	RW	[7]: SPI function mode, p_csn, p_scl,	05
			p_sda and p_sdo function as SPI if 1	
OvOb	0.01 500.4005		[0]: inverse SPI clock output	0
0x0b SPIMODE	RW	[1]: dat delay half clk	U	

DS-TLSR8269F512-E24 83 Ver2.5.0

7.4.2 SPI Master mode

SPI for the TLSR8269F512 supports both master mode and slave mode and acts as slave mode by default. Address 0x09 bit[1] should be set to 1b'1 to enable SPI Master mode. Register SPISP is to configure SPI pin and clock: setting address 0x0a bit[7] to 1 is to enable SPI function mode, and corresponding pins can be used as SPI pins; SPI clock = system clock/((clock speed configured in address 0x0a bit[6:0] +1)*2).

Address 0x08 serves as the data register. One reading/writing operation of 0x08 enables the SPI_CK pin to generate 8 SPI clock cycles.

Telink SPI supports four standard working modes: Mode 0~Mode 3. Register SPIMODE (address 0x0b) serves to select one of the four SPI modes:

Table 7-6 SPI mode

SPI mode	CPOL/CPHA	SPIMODE register (Address 0x0b)
Mode 0	CPOL=0, CPHA=0	bit[0]=0, bit[1]=0
Mode 1	CPOL=0, CPHA=1	bit[0]=0, bit[1]=1
Mode 2	CPOL=1, CPHA=0	bit[0]=1, bit[1]=0
Mode 3	CPOL=1, CPHA=1	bit[0]=1, bit[1]=1

CPOL: Clock Polarity

When CPOL=0, SPI_CLK keeps low level in idle state;

When CPOL=1, SPI_CLK keeps high level in idle state.

CPHA: Clock Phase

When CPHA=0, data is sampled at the first edge of clock period

When CPHA=1, data is sampled at the latter edge of clock period

Address 0x09 bit[0] is to control the CS line: when the bit is set to 1, the CS level is high; when the bit is cleared, the CS level is low.

Address 0x09 bit[2] is the disabling bit for SPI Master output. When the bit is cleared, MCU writes data into address 0x08, then the SPI_DO pin outputs the data bit by bit during the 8 clock cycles generated by the SPI_CK pin. When the bit is set to 1b'1, SPI_DO output is disabled.

Address 0x09 bit[3] is the enabling bit for SPI Master reading data function. When the bit is set to 1b'1, MCU reads the data from address 0x08, then the input data from the SPI_DI pin is shifted into address 0x08 during the 8 clock cycles

generated by the SPI_CK pin. When the bit is cleared, SPI Master reading function is disabled.

Address 0x09[5] is the enabling bit for share mode, i.e. whether SPI_DI and SPI_DO share one common line.

Users can read address 0x09 bit[6] to get SPI busy status, i.e. whether the 8 clock pulses have been sent.

7.4.3 SPI Slave mode

SPI for the TLSR8269F512 acts as slave mode by default. SPI Slave mode support DMA. User could access registers of the TLSR8269F512 by SPI interface. It's noted that system clock of TLSR8269F512 shall be at least 5x faster than SPI clock for reliable connection. Address 0x0a should be written with data 0xa5 by the SPI host to activate SPI slave mode.

Address 0x09[4] is dedicated for SPI Slave mode and indicates address auto increment. SPI write command format and read command format are illustrated in Figure 7-8:

SPI Write Format SPIDI CMD(Write) Addr(High) Addr(Low) Data0 Data1 Data.... 0x00**SPIDO SPI Read Format** SPIDI CMD(Read) Addr(High) Addr(Low) 0x80 SPIDO Data0 Data1 Data...

Figure 7-8 SPI write/read command format

DS-TLSR8269F512-E24 85 Ver2.5.0

7.4.4 I2C and SPI Usage

I2C hardware and SPI hardware modules in the chip share part of the hardware, as a result, when both hardware interfaces are used, certain restrictions apply. See Section 7.3.5 I2C and SPI Usage for detailed instructions.

7.5 UART

The TLSR8269F512 embeds UART (Universal Asynchronous Receiver/Transmitter) to implement full-duplex transmission and reception. Both TX and RX interface are 4-layer FIFO (First In First Out) interface. Hardware flow control is also supported via RTS and CTS.

Figure 7-9 UART communication

As shown in Figure 7-9, data to be sent is first written into TX buffer by MCU or DMA, then UART module transmits the data from TX buffer to other device via pin TX. Data to be read from other device is first received via pin RX and sent to RX buffer, then the data is read by MCU or DMA.

If RX buffer of the TLSR8269F512 UART is close to full, the TLSR8269F512 will send a signal (configurable high or low level) via pin RTS to inform other device that it should stop sending data. Similarly, if the TLSR8269F512 receives a signal from pin CTS, it indicates that RX buffer of other device is close to full and the TLSR8269F512 should stop sending data.

DS-TLSR8269F512-E24 86 Ver2.5.0

Table 7-7 Register configuration for UART

Address	Name	R/W	Description	Reset Value
0x90	uart_data_buf0	R/W	write/read buffer[7:0]	
0x91	Uart_data_buf1	R/W	Write/read buffer[15:8]	
0x92	Uart_data_buf2	RW	Write/read buffer[23:16]	
0x93	Uart_data_buf3	R/W	Write/read buffer[31:24]	
0x94	uart_clk_div[7:0]	RW	uart clk div register:	0xff
0x95	Uart_clk_div[15:8]	R/W	uart_sclk = sclk/(uart_clk_div[14:0]+1) uart_clk_div[15] : 1: enable clock divider,0: disable.	0x0f
0x96	Uart ctrl0	R/W	[3:0] bwpc, bit width, should be larger than 2 Baudrate = uart_sclk/(bwpc+1) [4] rx dma enable [5] tx dma enable [6] rx interrupt enable [7]tx interrupt enable	0x0f
0x97	Uart_ctrl1	R/W	[0] cts select, 0: cts_i, 1: cts_i inverter [1]:cts enable, 1: enable, 0, disable [2]:Parity, 1: enable, 0 :disable [3]: even Parity or odd [5:4]: stop bit 00: 1 bit, 01, 1.5bit 1x: 2bits [6]: ttl [7]: uart tx, rx loopback	0x0e
0x98	Uart_ctrl2	R/W	[3:0] rts trig level[4] rts Parity[5] rts manual value[6] rts manual enable[7] rts enable	0xa5
0x99	Uart_ctrl3	R/W	[3:0]: rx_irq_trig level [7:4] tx_irq_trig level	0x44
0x9a	R_rxtimeout_o[7:0]	R/W	The setting is transfer one bytes need cycles base on uart_clk. For example, if transfer one bytes (1 start bit+8bits data+1 priority bit+2 stop bits) total 12 bits, this register setting should be (bwpc+1)*12.	0x0f
0x9b	R_rxtimeout_o[9:8]	R/W	2'b00:rx timeout time is r_rxtimeout[7:0] 2'b01:rx timeout time is r_rxtimeout[7:0]*2 2'b10:rx timeout time is r_rxtimeout[7:0]*3 3'b11: rx timeout time is r_rxtimeout[7:0]*4 R_rxtimeout is for rx dma to decide the end of each transaction. Supposed the interval between each byte in one transaction is very short.	0x00

Address	Name	R/W	Description	Reset Value
0х9с	Buf_cnt	R	[3:0]: r_buf_cnt [7:4]:t_buf_cnt	
0x9d	Uart_sts	R	[2:0] rbcnt [3] irq [6:4]wbcnt [6] write 1 clear rx [7] rx_err, write 1 clear tx	

Addresses $0x90^{\sim}0x93$ serve to write data into TX buffer or read data from RX buffer.

Addresses 0x94~0x95 serve to configure UART clock.

Address 0x96 serves to set baud rate (bit[3:0]), enable RX/TX DMA mode (bit[4:5]), and enable RX/TX interrupt (bit[6:7]).

Address 0x97 mainly serves to configure CTS. Bit[1] should be set to 1b'1 to enable CTS. Bit[0] serves to configure CTS signal level. Bit[2:3] serve to enable parity bit and select even/odd parity. Bit[5:4] serve to select 1/1.5/2 bits for stop bit. Bit[6] serves to configure whether RX/TX level should be inverted.

Address 0x98 serves to configure RTS. Bit[7] and Bit[3:0] serve to enable RTS and configure RTS signal level.

Address 0x99 serves to configure the number of bytes in RX/TX buffer to trigger interrupt.

The number of bytes in RX/TX buffer can be read from address 0x9c.

8 PWM

The TLSR8269F512 supports 6-channel PWM (Pulse-Width-Modulation) output. Each PWM#n ($n=0^{5}$) has its corresponding inverted output at PWM#n_N pin.

8.1 Register table

Table 8-1 Register table for PWM

Address	Mnemonic	Туре	Description	Reset
7 100 000		,,,,,		Value
			[0]: 0disable PWM0, 1enable PWM0	
			[1]: 0disable PWM1, 1enable PWM1	
			[2]: 0disable PWM2, 1enable PWM2	
0x780	0x780 PWM_EN	R/W	[3]: 0disable PWM3, 1enable PWM3	0x00
			[4]: 0disable PWM4, 1enable PWM4	
			[5]: 0disable PWM5, 1enable PWM5	
0x781	PWM_CLK	R/W	(PWM_CLK+1)*sys_clk	0x00
			[1:0]: 00-pwm0 normal mode	
	0x782 PWM_MODE		[1:0]: 01-pwm0 count mode	
0.700		5 /14/	[1:0]: 11-pwm0 IR mode	0.00
0x/82		R/W	[3:2]: 00-pwm1 normal mode	0x00
			[3:2]: 01-pwm1 count mode	
			[3:2]: 11-pwm1 IR mode	
0x783	PWM_CC0	R/W	[5:0]:1 'b1 invert PWM output	0x00
0x784	PWM_CC1	R/W	[5:0]:1'b1 invert PWM_INV output	0x00
0x785	PWM_CC2	R/W	[5:0]:1'b1 PWM' pola, low level first	0x00
0x788	PWM_PHASE0	R/W	[7:0] bits 7-0 of PWM0's phase time	0x00
0x789	PWM_PHASE0	R/W	[15:8] bits 15-8 of PWM0's phase time	0x00
0x78a	PWM_PHASE1	R/W	[7:0] bits 7-0 of PWM1's phase time	0x00
0x78b	PWM_PHASE1	R/W	[7:8] bits 15-8 of PWM1's phase time	0x00
0x78c	PWM_PHASE2	R/W	[7:0] bits 7-0 of PWM2's phase time	0x00
0x78d	PWM_PHASE2	R/W	[15:8] bits 15-8 of PWM2's phase time	0x00
0x78e	PWM_PHASE3	R/W	[7:0] bits 7-0 of PWM3's phase time	0x00
0x78f	PWM_PHASE3	R/W	[15:8] bits 15-8 of PWM3's phase time	0x00
0x790	PWM_PHASE4	R/W	[7:0] bits 7-0 of PWM4's phase time	0x00
0x791	PWM_PHASE4	R/W	[15:8] bits 15-8 of PWM4's phase time	0x00
0x792	PWM_PHASE5	R/W	[7:0] bits 7-0 of PWM5's phase time	0x00
0x793	PWM_PHASE5	R/W	[15:8] bits 15-8 of PWM5's phase time	0x00

DS-TLSR8269F512-E24 89 Ver2.5.0

Address	Mnemonic	Туре	Description	Reset
		1,750	25551,25551	Value
			[7:0] bits 7-0 of PWM0's high time or low	
0x794	PWM_TCMP0	R/W	time(if pola[0]=1)	0x00
			[15:8] bits 15-8 of PWM0's high time or	
0x795	PWM_TCMP0	R/W	low time	0x00
0x796	PWM_TMAX0	R/W	[7:0] bits 7-0 of PWM0's cycle time	0x00
0x797	PWM_TMAX0	R/W	[15:8] bits 15-8 of PWM0's cycle time	0x00
			[7:0] bits 7-0 of PWM1's high time or low	
0x798	PWM_TCMP1	R/W	time(if pola[1]=1)	0x00
			[15:8] bits 15-8 of PWM1's high time or	
0x799	PWM_TCMP1	R/W	low time	0x00
0x79a	PWM_TMAX1	R/W	[7:0] bits 7-0 of PWM1's cycle time	0x00
0x79b	PWM_TMAX1	R/W	[15:8] bits 15-8 of PWM1's cycle time	0x00
			[7:0] bits 7-0 of PWM2's high time or low	
0x79c	PWM_TCMP2	R/W	time(if pola[2]=1)	0x00
			[15:8] bits 15-8 of PWM2's high time or	
0x79d	PWM_TCMP2	R/W	low time	0x00
0x79e	PWM_TMAX2	R/W	[7:0] bits 7-0 of PWM2's cycle time	0x00
0x79f	PWM_TMAX2	R/W	[15:8] bits 15-8 of PWM2's cycle time	0x00
			[7:0] bits 7-0 of PWM3's high time or low	
0x7a0	PWM_TCMP3	R/W	time(if pola[3]=1)	0x00
			[15:8] bits 15-8 of PWM3's high time or	
0x7a1	PWM_TCMP3	R/W	low time	0x00
0x7a2	PWM TMAX3	R/W	[7:0] bits 7-0 of PWM3's cycle time	0x00
0x7a3	PWM TMAX3	R/W	[15:8] bits 15-8 of PWM3's cycle time	0x00
	-	,	[7:0] bits 7-0 of PWM4's high time or low	
0x7a4	PWM_TCMP4	R/W	time(if pola[4]=1)	0x00
			[15:8] bits 15-8 of PWM4's high time or	
0x7a5	PWM_TCMP4	R/W	low time	0x00
0x7a6	PWM_TMAX4	R/W	[7:0] bits 7-0 of PWM4's cycle time	0x00
0x7a7	PWM_TMAX4		[15:8] bits 15-8 of PWM4's cycle time	0x00
		[7:0] bits 7-0 of PWM5's high time or low		
0x7a8	PWM_TCMP5	R/W	time(if pola[5]=1)	0x00
			[15:8] bits 15-8 of PWM5's high time or	
0x7a9	PWM_TCMP5	R/W	low time	0x00
0x7aa	PWM TMAX5	R/W	[7:0] bits 7-0 of PWM5's cycle time	0x00

Address Mnemonic	Mnomoria	T		Rese
	Type	Description	Value	
0x7ab	PWM TMAX5	R/W	[15:8] bits 15-8 of PWM5's cycle time	0x00
	_		[7:0]PWM0 Pulse num in count mode and	
0x7ac	0x7ac PWM_PNUM0	R/W	IR mode	0x00
0x7ad	PWM PNUM0	R/W	[15:8]	0x00
		- 6	[7:0]PWM1 Pulse num in count mode and	
0x7ae	PWM_PNUM1	R/W	IR mode	0x00
0x7af	PWM_PNUM1	R/W	[15:8]	0x00
			INT mask	
			[0] PWM0 Pnum int	
			0: disable 1: Enable	
			[1] PWM1 Pnum int	
			0: disable 1: Enable	
			[2] PWM0 frame int	
			0: disable 1: Enable	
			[3] PWM1 frame int	
0x7b0	PWM_MASK	R/W	0: disable 1: Enable	0x00
	- I		[4] PWM2 frame int	
			0: disable 1: Enable	
			[5] PWM3 frame int	
			0: disable 1: Enable	
			[6] PWM4 frame int	
			0: disable 1: Enable	
			[7] PWM5 frame int	
	1		0: disable 1: Enable	
			INT status ,write 1 to clear	
			[0]:PWM0 pnum int(have sent PNUM	
			pulse,PWM_NCNT==PWM_PNUM)	
			[1]:PWM1 pnum int	
			[2]:PWM0 cycle done	
			int(PWM_CNT==PWM_TMAX)	
			[3]:PWM1 cycle done	
0 =1.4	51444414	5 /11/	int(PWM_CNT==PWM_TMAX)	0x00
0x7b1	PWM_INT	R/W	[4]:PWM2 cycle done	
			int(PWM_CNT==PWM_TMAX)	
			[5]:PWM3 cycle done	
			int(PWM_CNT==PWM_TMAX)	
			[6]:PWM4 cycle done	
			int(PWM_CNT==PWM_TMAX)	
			[7]:PWM5 cycle done	
		int(PWM_CNT==PWM_TMAX)		
0x7b4	PWM_CNT0	R	[7:0]PWM 0 cnt value	

Address	Mnemonic	Туре	Description	Reset Value
0x7b5	PWM_CNT0		[15:8]PWM 0 cnt value	
0x7b6	PWM_CNT1	R	[7:0]PWM 1 cnt value	
0x7b7	PWM_CNT1		[15:8]PWM 1 cnt value	
0x7b8	PWM_CNT2	R	[7:0]PWM 2 cnt value	
0x7b9	PWM_CNT2		[15:8]PWM 2 cnt value	
0x7ba	PWM_CNT3	R	[7:0]PWM 3 cnt value	
0x7bb	PWM_CNT3		[15:8]PWM 3 cnt value	
0x7bc	PWM_CNT4	R	[7:0]PWM 4 cnt value	
0x7bd	PWM_CNT4		[15:8]PWM 4 cnt value	
0x7be	PWM_CNT5	R	[7:0]PWM 5 cnt value	
0x7bf	PWM_CNT5		[15:8]PWM 5 cnt value	
0x7c0	PWM_NCNT0	R	[7:0]PWM0 pluse_cnt value	
0x7c1	PWM_NCNT0		[15:8]PWM0 pluse_cnt value	
0x7c2	PWM_NCNT1	R	[7:0]PWM1 pluse_cnt value	
0x7c3	PWM_NCNT1		[15:8]PWM1 pluse_cnt value	

8.2 Enable PWM

Register PWM_EN (address 0x780)[5:0] serves to enable PWM5~PWM0 respectively via writing "1" for the corresponding bits.

8.3 Set PWM clock

PWM clock derives from system clock. Register PWM_CLK (address 0x781) serves to set the frequency dividing factor for PWM clock. Formula below applies:

8.4 PWM waveform, polarity and output inversion

Each PWM channel has independent counter and 3 status including "Delay", "Count" and "Remaining". Count and Remaining status form a signal frame.

8.4.1 PWM waveform

When PWM#n is enabled, PWM#n enters Delay status. By default PWM#n outputs Low level at Delay status. The Delay status duration, i.e. Phase time, is configured in register PWM_PHASE#n (address 0x788~0x793). Phase difference DS-TLSR8269F512-E24

between PWM channels is allowed by different phase time configuration.

After Phase time expires, PWM#n exits Delay status and starts to send signal frames. First PWM#n is at Count status and outputs High level signal by default. When PWM#n counter reaches cycles set in register PWM_TCMP#n (address 0x794~0x795, 0x798~0x799, 0x79c~0x79d, 0x7a0~0x7a1, 0x7a4~0x7a5, 0x7a8~0x7a9), PWM#n enters Remaining status and outputs Low level till PWM#n cycle time configured in register PWM_TMAX#n (address 0x796~0x797, 0x79a~0x79b, 0x79e~0x79f, 0x7a2~0x7a3, 0x7a6~0x7a7, 0x7aa~0x7ab) expires.

An interruption will be generated at the end of each signal frame if enabled via register PWM_MASK (address 0x7b0[2:7]).

8.4.2 Invert PWM output

PWM#n and PWM#n_N output could be inverted independently via register PWM_CCO (address 0x783) and PWM_CC1 (address 0x784). When the inversion bit is enabled, the corresponding PWM channel waveform will be inverted completely.

8.4.3 Polarity for signal frame

By default, PWM#n outputs High level at Count status and Low level at Remaining status. When the corresponding polarity bit is enabled via register PWM_CC2 (address 0x785), PWM#n will output Low level at Count status and High level at Remaining status.

Figure 8-1 PWM output waveform chart

DS-TLSR8269F512-E24 93 Ver2.5.0

8.5 PWM mode

8.5.1 Select PWM mode

PWM0 and PWM1 support 3 modes, including Continuous (normal) mode, Counting mode, and IR mode. PWM2~PWM5 only support Continuous mode.

Register PWM_MODE (address 0x782) serves to select PWM0/PWM1 mode.

8.5.2 Continuous mode

PWM0~PWM5 all support Continuous mode. In this mode, PWM#n continuously sends out signal frames. PWM#n should be disabled via address 0x780 to stop it; when stopped, the PWM output will turn low immediately.

During Continuous mode, waveform could be changed freely. New configuration for PWM_TCMP#n and PWM_TMAX#n will take effect in the next signal frame.

A frame interruption will be generated (if enabled) after each signal frame is finished.

Figure 8-2 Continuous mode

8.5.3 Counting mode

Only PWM0 and PWM1 support Counting mode. In this mode, PWM#n (n=0,1) sends out specified number of signal frames which is defined as a pulse group. The number is configured via register PWM_PNUM0 (address 0x7ac~0x7ad) and PWM_PNUM1 (address 0x7ae~0x7af). After a pulse group is finished, PWM#n will be disabled automatically, and a Pnum interruption will be generated if enabled via register PWM MASK (address 0x7b0[0:1]).

DS-TLSR8269F512-E24 94 Ver2.5.0

Figure 8-3 Counting mode

Counting mode also serves to stop IR mode gracefully. Refer to **section 8.5.4** for details.

8.5.4 IR mode

Only PWM0 and PWM1 support IR mode. In this mode, specified number of frames is defined as one pulse group. In contrast to Counting mode where PWM#n (n=0,1) stops after first pulse group finishes, PWM#n will constantly send pulse groups in IR mode.

During IR mode, waveform could also be changed freely. New configuration for PWM_TCMP#n and PWM_TMAX#n will take effect in the next pulse group.

To stop IR mode and complete current pulse group, user can switch PWM#n from IR mode to Counting mode so that PWM#n will stop after current pulse group is finished. If PWM#n is disabled directly via PWM_EN (0x780[0:1]), PWM#n output will turn Low immediately despite of current pulse group.

A frame interruption/Pnum interruption will be generated (if enabled) after each signal frame/pulse group is finished.

DS-TLSR8269F512-E24 95 Ver2.5.0

Figure 8-4 IR mode

8.6 PWM interrupt

There are 8 interrupt sources from PWM function. After each signal frame, PWM#n will generate a frame-done IRQ (Interrupt Request) signal. In Counting mode and IR mode, PWM0/PWM1 will generate a Pnum IRQ signal after completing a pulse group. Interrupt status can be cleared via register PWM_INT (address 0x7b1).

DS-TLSR8269F512-E24 96 Ver2.5.0

9 Audio

9.1 Audio input path

There are two types of audio input path: digital microphone (DMIC) and analog input channel (AMIC), which is selectable by writing address 0xb03[1].

Figure 9-1 Audio input path

Table 9-1 Audio data flow direction

Da	Target SRAM	
	FIFO	
DMIC	Decimation/Filtering/ALC	٧
ANALOG CH		٧

A programmable 40 dB mono PGA (programmable gain amplifier) is built in for analog MIC. Mono digital MIC interface is also embedded in the TLSR8269F512.

DMIC interface includes one configurable clock line and one data line. After data sampling of DMIC interface (rising/falling edge is configurable by writing address 0xb03 [0]), sign extension and audio input processing, the signal can be written into FIFO.

Analog Input Channel can carry out signal amplification via PGA. The ADC converted input data is sent to the audio input processing module.

9.2 Audio input processing

Audio input processing mainly includes configurable decimation filter, LPF (Low Pass Filter), HPF (High Pass Filter), and ALC (Automatic Level Control). The LPF, HPF

DS-TLSR8269F512-E24 97 Ver2.5.0

and ALC can be enabled or bypassed via setting address 0xb05 [6]/[4]/[5].

Figure 9-2 Audio input processing

The decimation filter serves to down-sample the DMIC data to required audio data playback rate (e.g. 48K or 32K). Down-sampling rate of 1, 2, 3, 4, 5, 6, 7, 8, 16, 32, 64, 128 and 256 is supported, which is configurable by writing address 0xb04[3:0]. Its output is adjustable via address 0xb04[6:4].

The LPF serves to conduct frequency compensation.

The HPF serves to eliminate internal DC offset to ensure audio amplification range. Its output is adjustable via address 0xb05[3:0].

The ALC mainly serves to regulate DMIC input volume level automatically or manually. Setting or clearing address 0xb06[6] is to select automatic or manual mode.

Table 9-2 Register configuration related to audio input processing

Address	Mnemonic	Туре	Description	Reset value
0xb00	DFIFOAL	R/W	DFIFO memory address low byte	0x00
0xb01	DFIFOAH	R/W	DFIFO memory address high byte	0xb0
0xb02	DFIFOSIZE	R/W	DFIFO buffer size: (ADEC_FIFO_SIZE+1)X16	0x7f
0xb03	DFIFOAIN	R/W	[0]: D-MIC data select 0: rising edge of clock; 1: falling edge of clock. [1]: audio input select 0: D-MIC; 1: ADC [2]: bypass input [3]: disable D-MIC channel [4]: dfifo enable [5]: wptr enable [6]: wptr clear	0x00
0xb04	DFIFODEC	R/W	[3:0]: Decimation Ratio 0~7: [3:0] + 1	0x5b

DS-TLSR8269F512-E24 98 Ver2.5.0

Address	Mnemonic	Туре	Description	Reset value
			8: 16; 9: 32; 10: 64; 11: 128; else: 256 [6:4]: Decimation shift select (0 ~ 5)	
0xb05	ALC_HPF_LPF	R/W	[3:0]: HPF shift [4]: bypass HPF 1: bypass HPF, 0: use HPF [5]: bypass ALC 1: bypass ALC, 0: use ALC [6]: bypass LPF 1: bypass LPF, 0: use LPF	0x7b
0xb06	ALC_VOL_L	R/W	[5:0]: manual volume [6]: volume select 0: manual; 1: auto	0x20
0xb07	ALC_VOL_H	R/W	[5:0]: maximum volume	0x33
0xb08	ALC_VOL_THH	R/W	[6:0]: volume high threshold	0x7f
0xb09	ALC_VOL_THL	R/W	[6:0]: volume low threshold	0x20
0xb0a	ALC_VOL_THN	R/W	[6:0]: volume noise threshold	0x02
0xb0b	ALC_VOL_STEP	R/W	[3:0]: increase step [7:4]: decrease step	0x11
0xb0c	ALC_VOL_TICK_L	R/W	[7:0]: tick low byte	0x00
0xb0d	ALC_VOL_TICK_H	R/W	[5:0]: tick high byte volume increase interval defined as below: {ALC_VOL_TICK_H,ALC_VOL_TICK_L}*2^12* Tsclk	0x03
0xb10	WPTR_L	RO	[7:0]: dfifo write pointer low byte	
0xb11	WPTR_H	RO	[9:8]: dfifo write pointer high byte	

9.3 Audio output path

Audio output path mainly includes Rate Matching module and SDMDAC (Sigma-Delta Modulation DAC). The audio data fetched from SRAM is processed by the Rate Matching module, then transferred to the SDM as the input signal.

Figure 9-3 Audio output path

9.3.1 Rate Matching

The rate matching block performs clock rate conversion and data synchronization between two domains: the input audio data is fetched from SRAM which works in system clock domain with 24Mhz/32Mhz/48Mhz clocks and the SDM which works between 4Mhz and 8Mhz.

When needed, the audio data from SRAM is interpolated to the SDM input rate. If the audio sampling rate is ClkUsbIn (e.g. 48Khz), and the working clock of SDM is aclk i, then the interpolation ratio is given as follows:

$$\frac{\text{ClkUsbIn}}{\text{aclk i}} = \frac{\text{step_i}}{0x8000}$$

Where step i is configured in register RM_STEP (addresses 0x564~0x565).

Linear interpolation is used as shown below.

Figure 9-4 Linear interpolation

9.3.2 SDM

The SDM takes 16bits audio data from SRAM and provides 1bit modulated output. Only a simple passive filter network is needed to drive audio device directly.

Dither control can be added to the SDM to avoid spurs in output data. There are three dithering options: PN sequence, PN sequence with Shaping, and DC constant; only one type of input is allowed any time.

DS-TLSR8269F512-E24 100 Ver2.5.0

Figure 9-5 Block diagram of SDM

9.3.3 Register configuration

Address 0x560[1:0] should be set to 2b'11 to enable audio SDM output.

Input for dither control is selectable via address 0x560[6:2]. It's noted that only one input can be enabled at the same time. Bit[6] and bit[2] should be set to 1 to enable DC input; there are two PN generators to generate random dithering sequence, to enable the PN generator, bit[2:3] and bit[6] should be cleared, and bit[4]/bit[5]/bit[4:5] should be set to 1; to enable PN sequence with Shaping, bit[2] and bit[6] should be cleared, and bit[3], bit[4]/bit[5] /bit[4:5] should be set to 1. When PN sequence or PN with Shaping is used, address 0x562/0x563 serves to configure the number of bits used from PN1/PN2 generator; this essentially controls the scale of the dither sequence. When DC input is enabled, addresses 0x566~0x567 serve to configure the input constant value.

Address 0x561 is to adjust volume level.

Addresses 0x564~0x565 serve to set the value of step_i[15:0].

The base address and size in SRAM for the processed audio data are configurable via addresses 0x568~0x569, 0x56a, respectively.

Table 9-3 Register configuration related to audio output path

Address	Mnemonic	Туре	Description	Reset value
0x560	AUDIO_CTRL	RW	[0]1—enable audio, 0—disable audio [1]1enable SDM player, 0—disable SDM player [2]1—bypass pn generator and shaping, 0—not bypass pn generator and shaping [3]1enable shaping, 0disable shaping	06

DS-TLSR8269F512-E24 101 Ver2.5.0

Address	Mnemonic	Туре	Description	Reset value
			[4]1—enable pn2 generator, 0—disable pn2	
			generator	
			[5]1—enable pn1 generator, 0—disable pn1	
			generator	
			[6]1—enable const value input, 0—disable	
			const value input	
			[7]reserved	
			[0]Add a quarter	
0.564		5111	[1]Add a half	40
0x561	VOL_CTRL	RW	[6:2]shift left	40
			[7]1mute, 0normal	
			[4:0]pn1 generator bits used	
0x562	PN1_CTRL	RW	[7:5]reserved	00
			[4:0]pn2 generator bits used	
0x563	PN2_CTRL	RW	[7:5]reserved	00
0x564	ASCL_STEP0	RW	[7:0] low byte of step_i[7:0]	41
0.565	ACCI CTERA	5147	[7 0]	00
0x565	ASCL_STEP1	RW	[7:0]high byte of step_i [15:8]	00
0x566	CONST_L	RW	[7:0]low byte of const value, i.e, cst[7:0]	00
			[//o]/ow wyte or constraine, i.e., cot[//o]	
0x567	CONST_H	RW	[7:0]high byte of const value, i.e. cst[15:8]	00
0x568	BA_L	RW	[7:0]low byte of base address, i.e, ba[7:0]	00
0x569	BA_H	RW	[7:0]high byte of base address, i.e, ba[7:0]	b0
0x56a	BUF_SIZE	RW	[7:0]buffer size in words	7f
0x56b		R	Reserved	
		_		
0x56c	RPTR_L	R	[7:0]low byte of read pointer, i.e, rptr[7:0]	
05.61	DOTO !!	-	[7:0]bigh huto of good goints at a good [7:0]	
0x56d	RPTR_H	R	[7:0]high byte of read pointer, i.e. rptr[15:8]	
0x56e	_	R	Reserved	
OXJUE		IV.	NESCI VEU	
0x56f		R	Reserved	
3/13/31				

9.4 Audio performance

Table 9-4 Codec output with 32ohm load performance

Audio performance	Test result*
THD	-65.5dB @1KHz,max output
THD+N	-60dB @1KHz,max output
SNR	73dB @1KHz
ISO	64dB @1KHz
Max output	385mV rms
Bandwidth	20Hz ~ 20KHz

^{*} Note: The actual audio performance may vary depending on the output filter network configuration and the actual loading.

DS-TLSR8269F512-E24 103 Ver2.5.0

10 Quadrature Decoder

The TLSR8269F512 embeds one quadrature decoder (QDEC) which is designed mainly for applications such as wheel. The QDEC implements debounce function to filter out jitter on the two phase inputs, and generates smooth square waves for the two phase.

10.1 Input pin selection

The QDEC supports two phase input; each input is selectable from the 8 pins of PortE, PortD, PortC and PortB via setting address 0xd2[2:0] (for channel a)/0xd3[2:0] (for channel b).

Address 0xd2[2:0]/0xd3[2:0] Pin 0 ANA E<0> 1 ANA_E<1> 2 ANA D<2> 3 ANA_D<3> 4 ANA C<4> ANA_C<5> 6 ANA B<6> 7 ANA_B<7>

Table 10-1 Input pin selection

10.2 Common mode and double accuracy mode

The QDEC embeds an internal hardware counter, which is not connected with bus.

Address 0xd7[0] serves to select common mode or double accuracy mode.

For each wheel rolling step, two pulse edges (rising edge or falling edge) are generated.

If address 0xd7[0] is cleared to select common mode, the QDEC Counter value (real time counting value) is increased/decreased by 1 only when the same rising/falling edges are detected from the two phase signals.

DS-TLSR8269F512-E24 104 Ver2.5.0

Figure 10-1 Common mode

If address 0xd7[0] is set to 1b'1 to select double accuracy mode, the QDEC Counter value (real time counting value) is increased/decreased by 1 on each rising/falling edge of the two phase signals; the COUNTO will be increased/decreased by 2 for one wheel rolling.

DS-TLSR8269F512-E24 105 Ver2.5.0

Figure 10- 2 Double accuracy mode

10.3 Read real time counting value

Neither can Hardware Counter value be read directly via software, nor can the counting value in address 0xd0 be updated automatically.

To read real time counting value, first write address 0xd8[0] with 1b'1 to load Hardware Counter data into the QDEC_COUNT register, then read address 0xd0.

DS-TLSR8269F512-E24 106 Ver2.5.0

Figure 10-3 Read real time counting value

10.4 QDEC reset

Address 0xd6[0] serves to reset the QDEC. The QDEC Counter value is cleared to zero.

10.5 Other configuration

The QDEC supports hardware debouncing. Address 0xd1[2:0] serves to set filtering window duration. All jitter with period less than the value will be filtered out and thus does not trigger count change.

Address 0xd1[4] serves to set input signal initial polarity.

Address 0xd1[5] serves to enable shuttle mode. Shuttle mode allows non-overlapping two phase signals as shown in the following figure.

Figure 10-4 Shuttle mode

10.6 Timing sequence

Figure 10-5 Timing sequence chart

Table 10-2 Timing

Time interval	Min Value
Thpw (High-level pulse width)	2^ (n+1) *clk_32k *3 (n=0xd1[2:0])
Tlpw (Low-level pulse width)	2^(n+1) *clk_32k *3 (n=0xd1[2:0])
Triw (Interval width between two rising edges)	2^(n+1) *clk_32k (n=0xd1[2:0])
Tfiw (Interval width between two falling edges)	2^(n+1) *clk_32k (n=0xd1[2:0])

QDEC module works based on 32K clock to ensure it can work in suspend mode. QDEC module supports debouncing function, and any signal with width lower than the threshold (i.e. "2^(n+1) *clk_32k *3 (n=0xd1[2:0])) will be regarded as jitter. Therefore, effective signals input from Channel A and B should contain high/low level

DS-TLSR8269F512-E24 108 Ver2.5.0

with width Thpw/Tlpw more than the threshold. The 2ⁿ *clk_32k clock is used to synchronize input signal of QDEC module, so the interval between two adjacent rising/falling edges from Channel A and B, which are marked as Triw and Tfiw, should exceed "2ⁿ(n+1) *clk_32k".

Only when the timing requirements above are met, can QDEC module recognize wheel rolling times correctly.

10.7 Register table

Table 10-3 Register table for QDEC

Address	Mnemonic	Туре	Description	Reset value
040	ODEC COUNT	D	QDEC Counting value (read to clear):	
0xd0	QDEC_COUNT	R	Pulse edge number	
			[2:0]:	
			filter time (can filter 2^n *clk_32k*2 width	
			deglitch)	
0xd1	QDEC_CC	R/W	[4]: pola, input signal pola	
			0: no signal is low, 1: no signal is high	
			[5]:shuttle mode	
			1 to enable shuttle mode	
			[2:0] QDEC input pin select for channel a	
0xd2	QDEC_CHNA	R/W	choose 1 of 8 pins for input channel a	0x00
			{pb[7:6],pc[5:4],pd[3:2],pe[1:0]}	
			[2:0] QDEC input pin select for channel b	
0xd3	QDEC_CHNB	R/W	choose 1 of 8 pins for input channel b	0x01
			{pb[7:6],pc[5:4],pd[3:2],pe[1:0]}	
0xd6	QDEC_RST	R/W	[0]Write 1 to reset QDEC	0x0
0xd7	QDEC_DOUBLE	R/W	[0]Enable double accuracy mode	0x0
0xd8	DATA LOAD	R/W	[0]write 1 to load data	
UXUO	DATA_LOAD	n/ W	when load completes it will be 0	

DS-TLSR8269F512-E24 109 Ver2.5.0

11 ADC

The TLSR8269F512 integrates one ADC module, which can be used to sample battery voltage, temperature sensor, mono audio signals.

11.1 ADC clock

ADC clock derives from FHS. Please refer to **section 4.4.1** for ADC clock configuration.

Note: ADC clock must be lower than 5MHz when ADC reference voltage is selected as AVDD and must be no more than 4MHz when ADC reference voltage is selected as 1.224V or 1.428V.

11.2 Set period

In general, the ADC Control Module in Telink MCU divides the whole sampling and conversion process into three parts via time-division: Misc corresponding to auto channel 0, L (Left) corresponding to auto channel 1, and R (Right) corresponding to auto channel 2.

Figure 11-1 Sampling and analog-to-digital conversion process

In TLSR8269F512, only Misc and L (Left) channels are supported.

Addresses 0x30 and 0x31 serve to set lower byte and higher byte of the period (Sampling time plus converting time) for Misc:

Period of Misc = {ADCMAXMH, ADCMAXML} * system clock period.

DS-TLSR8269F512-E24 110 Ver2.5.0

Address 0x32 serves to set the period (Sampling time plus converting time) for L and R:

Period of L = Period of R = ADCMAXLR * 16 system clocks.

Since the TLSR8269F512 only supports mono (left channel) audio input, address 0x33[5:4] shall always be set to 2b'01 to skip the period for R (Right) channel, i.e., Auto channel 2.

11.3 Select ADC input range

Address 0x2b[1:0]/0x2b[3:2] serves to set reference voltage for Misc/L: 1.428V, AVDD or 1.224V.

ADC maximum input range is the same as the ADC reference voltage.

11.4 Select resolution and sampling time

Address 0x3c[5:3]/0x2f[2:0] serves to set resolution for Misc/L: 7, 9, 10, 11, 12, 13, 14bits. ADC data format is always 14bit no matter the conversion bit is set. For example, 12 bits resolution indicates higher 12 bits are valid bits and the lower 2 bits are invalid bits.

Address 0x3c[2:0]/0x3d[2:0] serves to set sampling time for Misc/L: 3, 6, 9, 12, 18, 24, 48 or 144 * ADC clock period. The lower sampling cycle, the shorter ADC convert time.

11.5 Select input mode and channel

The TLSR8269F512 ADC supports two input modes and 12 input channels.

Address 0x2c/0x2d serves to select input mode and channel for Misc/L.

Address 0x2c[6:5]/0x2d[6:5] serves to select differential mode or single-end input mode for Misc/L.

Take the Misc for example.

When address 0x2c[6:5] is set to 2b'00 to select single-end mode, 0x2c[4:0] serves to select input channel.

When address 0x2c[6:5] is set to 2b'01/10/11, differential input mode is selected,
DS-TLSR8269F512-E24

111

Ver2.5.0

the corresponding channel identified by address 0x2c[6:5] is selected as negative input, and the positive input is selectable via address 0x2c[4:0]. For example, if address 0x2c is set to 0x21 (i.e. 8b'00100001), $ANA_C<0>$ and $ANA_B<1>$ are selected as positive-end and negative-end input of differential mode; actual input signal for ADC is the difference of V_{ANA} C<0> and V_{ANA} C<0> minus V_{ANA} C<0 minus V_{ANA}

11.6 Enable auto mode and output

Address 0x33[3]/0x33[0] serves to enable Misc/L auto sampling and conversion mode. If address 0x33 is set as "0x10" (i.e. 8b'00010000) to select manual mode, one operation of writing address 0x35 with data "0x80" manually starts a sampling and conversion process.

Address 0x33[2] should be set to 1b'1 to enable ADC audio output.

Address 0x2c[7]/0x2d[7] serves to set data format during Misc/L period. Real time output data can be read from addresses 0x38~0x39.

11.7 ADC done signal

ADC done signal is selectable via address 0x33[7:6]. Generally 0x33[7:6] is set to "2b'01" (or 2b'11) to select "rising" method, which means a rising edge of "ADC Valid" signal indicates one analog-to-digital conversion process is done.

11.8 ADC status

ADC busy flag bit, i.e. address 0x3a[0], indicates whether ADC is busy.

11.9 Battery detection

The TLSR8269F512 ADC can be used to sample battery voltage via the Misc channel.

In this section, two cases are introduced.

For generic configuration, such as clock, period, resolution, sampling time, and etc., please refer to sections above.

DS-TLSR8269F512-E24 112 Ver2.5.0

11.9.1 Case 1: Battery directly connected to chip

This case applies to voltage detection for battery power which is directly connected to the chip.

Figure 11- 2Battery detect case 1

First write digital address **0x2c** with "**0x12**" (i.e. 8b'00010010) to select "1/3 voltage division detection" as single-end input.

Then write analog register **afe3V_reg02<5:4>** with **"2b'01"** to select IO power supply (1/3 Vddh) for 1/3 voltage division detection.

Set reference voltage (V_{REF}) as 1.428V or 1.224V via writing digital address 0x2b[1:0] with "2b'00" or "2b'10".

Battery voltage,
$$V_{\text{bat}}$$
, equals to $V_{\text{REF}} \times \frac{ADC \ output}{2^n} \times 3$.

*Note: In the formula above, ADC output is read from digital address {0x39, 0x38}, while "n" indicates the resolution configured in digital address 0x3c[5:3].

11.9.2 Case 2: Battery connected to chip via boost DCDC

This case applies to voltage detection for battery power which is not directly corrected to the chip, for example, it may be connected to the chip via a boost DCDC. In this case, the ANA_B<7> pin of the chip needs to be connected to the battery, where an internal 50KOhm/25KOhm divider network is used to perform voltage division. Other pins corresponding to ADC channels may be used for battery detection as well, but an external resistor divider network needs to be added.

DS-TLSR8269F512-E24 113 Ver2.5.0

Figure 11-3 Battery detect case2

First write digital address **0x2c** with "**0x12**" (i.e. 8b'00010010) to select "1/3 voltage division detection" as single-end input.

Then write analog register **afe3V_reg02<5:4>** with "**2b'10**" to select IO input battery voltage (1/3 ANA_B<7>) for 1/3 voltage division detection.

Set reference voltage (V_{REF}) as 1.428V or 1.224V via writing digital address 0x2b[1:0] with "2b'00" or "2b'10".

Battery voltage, V_{bat}, equals to
$$V_{REF} imes rac{\mathit{ADC output}}{2^n} imes 3$$
.

*Note: In the formula above, ADC output is read from digital address {0x39, 0x38}, while "n" indicates the resolution configured in digital address 0x3c[5:3].

11.10 Register table

Table 11-1 Register table related to SAR ADC

Address	Mnemonic	R/W	Description	Default value
		Dig	ital Register	
0x2b	ADCREF	RW	SAR ADC reference voltage selection [1:0]: Misc [3:2]: L 00: 1.428V 01: AVDD 10: 1.224V	0x0b
0x2c	ADCMUXM	RW	[4:0]: Analog input selection bit for Misc 00000: no input 00001: ANA_C<0>	0x02

DS-TLSR8269F512-E24 114 Ver2.5.0

Address	Mnemonic	R/W	Description	Default
				value
		Dig	ital Register	
			00010: ANA_C<1>	
			00011: ANA_C<6>	
			00100: ANA_C<7>	
			00101: ANA_B<0>	
			00110: ANA_B<1>	
			00111: ANA_B<2>	
			01000: ANA_B<3>	
			01001: ANA_B<4>	
			01010: ANA_B<5>	
			01011: ANA_B<6>	
			01100: ANA_B<7>	
			01101: pga_Vom (PGA minus output)	
			01110: pga_Vop (PGA positive output)	
			01111: tempsensor_n (temperature	
			sensor negative)	
			10000: tempsensor_p (temperature	
			sensor positive)	
			10001: AVSS	
			10010: 1/3 voltage division detection	
			(selectable via analog register	
			afe3V_reg02<5:4>)	
			others: reserved	
			[6:5]: Differential analog input selection	
			bits for Misc	
			00: single-end	
			01: ANA_B<1> as inverting input	
			10: ANA_B<3> as inverting input	
			11: pga_Vop (PGA positive output) as	
			inverting input	
			[7]: data format setting during Misc	
			period	
			0: unsigned	
			1: bit<14> is inverted	
0x2d	ADCMUXL	RW	[4:0]: Analog input selection bit for L	0x00

Address	Mnemonic	R/W	Description	Default value
		Dig	gital Register	
			[6:5]: Differential analog input selection bits for L [7]: data format setting during L period	
0x2e	ADCMUXR	RW	Refer to 0x2c Reserved	0x01
0x2f	ADCRES	RW	[2:0]: SAR ADC resolution selection for L 000: 7 001: 9 010: 10 011: 11 100: 12 101: 13 110: 14 111: 14	0x01
0x30	ADCMAXML	RW	ADC auto channel 0 (Misc) period low byte	0xe0
0x31	ADCMAXMH	RW	ADC auto channel 0 (Misc) period high byte Period = { ADCMAXMH, ADCMAXML}	0x00
0x32	ADCMAXLR	RW	system clocks ADC auto channel 1 (L)& 2 period Period = ADCMAXLR * 16 system clocks	0x06
0x33	ADCCTRL	RW	[0]: enable auto channel 1 (L) [2]: enable audio ADC output [3]: enable auto channel 0 (Misc) [5:4]: audio ADC mode 00: no audio; 01: mono; others: reserved [7:6]: ADC done signal select 01,11: rising; 10: falling	0x27
0x38	ADCOUTPUT0	R	ADC data lower bits	
0x39	ADCOUTPUT1	R	ADC data higher bits	

Address	Mnemonic	R/W	Datasneet for Tellrik TLSR Description	Default value
		Dig	ital Register	
0x3a	ADCBUSY	R	ADC status [0]: ADC busy flag	
0x3c	ADCMRESSAMP	RW	[5:3]: SAR ADC resolution selection for Misc Refer to 0x2f[2:0] [2:0]: Select number of clock cycles for ADC Misc sampling time 000: 3 cycles 001: 6 cycles 010: 9 cycles 011: 12 cycles 100: 18 cycles 101: 24 cycles 110: 48 cycles 111: 144 cycles	0x00
0x3d	ADCLSAMP	RW	[2:0]: Select number of clock cycles for ADC L sampling time Refer to 0x3c[2:0]	0x00
		An	alog register	
afe3V_reg02 <5:4>	batdet_ctl_3v <1:0>		choose IO power supply or IO input battery voltage for 1/3 voltage division detection 00: N/A 01: 1/3 Vddh (i.e. AVDD3) 10: 1/3 ANA_B<7> 11: N/A	00

12 PGA

The TLSR8269F512 integrates a PGA (Programmable Gain Amplifier) module.

The PGA serves to amplify the differential input signals from specified pins before ADC sampling. This function is especially necessary for weak mono audio signal input from analog microphone.

Figure 12-1 PGA block diagram

12.1 Power on/down

The PGA is powered down by default. Analog register afe1P8V_reg06<3> should be cleared to power on the PGA.

12.2 Input channel selection

Input channel for PGA is selectable from two groups via digital core address 0x28[0].

If the bit is cleared, ANA_C<3> and ANA_C<2> are selected as positive and minus input of the PGA.

If the bit is set to 1b'1, ANA_C<5> and ANA_C<4> are selected as positive and minus input of the PGA.

12.3 Gain setting

The PGA consists of two stages of amplifiers including pre-amplifier and post-amplifier. Each stage has configurable gain.

DS-TLSR8269F512-E24 118 Ver2.5.0

For pre-amplifier, there are two gain options: 0dB, 20dB. For post-amplifier, there are four gain options: 0dB, 3dB, 6dB, 9dB.

Analog register afe1P8V_reg07<0> serves to set the gain of pre-amplifier for PGA.

Analog register afe1P8V_reg07<2:1> serves to set the gain of post-amplifier for PGA.

12.4 PGA output

Analog register afe1P8V_reg06<2> serves to enable/disable PGA output. Disabling PGA output has a mute effect on audio input.

12.5 Register table

Table 12-1 Analog register table related to PGA

Address	Mnemonic	Default Value	Description			
			Mute analog PGA			
1P8V_reg06<2>	PGA_mute	1	1: Mute			
			0: Unmute			
1001/ rog06/2>	100/		Power down analog PGA			
1P8V_reg06<3>	PGA_pd	1	1: Power down			
			Analog PGA pre-amp and			
			post-amp gain setting			
			bit<0>: PGA pre-amp gain			
			Setting gain			
			0 OdB			
1P8V_reg07<2:0>	PGA_gain_ctrl<2:0>	000	1 20dB			
1P8V_1eg0/<2.0>	PGA_gain_ctri<2.0>	000	Bit<2:1>: PGA post-amp gain			
			Setting gain			
			00 0dB			
			01 3dB			
			10 6dB			
			11 9dB			

DS-TLSR8269F512-E24 119 Ver2.5.0

Table 12-2 Digital register related to PGA

Address	Mnemonic	R/W	Description	Default value
			[0] PGA input select	
0x28	PGASELI	RW	0: Select ANA_C<3> (Vip) and ANA_C<2> (Vim)	0
			1: Select ANA_C<5> (Vip) and ANA_C<4> (Vim)	

13 Key Electrical Specifications

13.1 Absolute maximum ratings

Table 13-1 Absolute Maximum Ratings

Characteristics	Sym.	Min.	Max	Unit	Test Condition
Supply Voltage	VDD	-0.3	3.9	V	All AVDD and DVDD pin must have the same voltage
Voltage on Input Pin	V_{ln}	-0.3	VDD+ 0.3	V	
Output Voltage	V_{Out}	0	VDD	٧	
Storage temperature Range	T _{Str}	-65	150	°C	
Soldering Temperature	T_{Sld}		260	°C	

CAUTION: Stresses above those listed in "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.

13.2 Recommended operating condition

Table 13-2 Recommended operation condition

Item	Sym.	Min	Тур.	Max	Unit	Condition
Power-supply voltage	VDD	1.9	3.3	3.6	V	
Supply rise time (from 1.6V to 2.8V)	t _R			0.5	ms	
Operating Temperature Bange	т	-40		85	°C	ET versions
Operating Temperature Range	T_{Opr}	-40		125	°C	AT versions

DS-TLSR8269F512-E24 121 Ver2.5.0

13.3 DC characteristics

Table 13-3 DC characteristics

Item	Sym.	Min	Тур.	Max	Unit	Condition
Tr. Commont		-	15	-	mA	Continuous Tx transmission, OdBm output power, Transceiver only
Tx Current	I _{Tx}	-	22	-	mA	Continuous Tx transmission, Maximum output power, Transceiver only
Rx Current	I _{Rx}	-	12	-	mA	Continuous Rx reception, Transceiver only
Sucpond Current	I _{Susp}	-	10	-	uA	IO wakeup
Suspend Current	I _{Susp} - 12 - uA		uA	Timer wakeup		
Deep sleep current	I _{Deep}	-	1.7	-	uA	

^{*}Note: All tests above are done at room temperature (T=25°C).

13.4 AC characteristics

Table 13-4 AC Characteristics

Item	Sym.	Min Typ		Max	Unit	Condition					
Digital inputs/outputs											
Input high voltage	VIH	0.7VDD		VDD	V						
Input low voltage	VIL	VSS		0.3VDD	V						
Output high voltage	VOH	VDD-0.3		VDD	V						
Output low voltage	VOL	VSS		0.3	V						
	USB characteristics										
USB Output Signal Cross-over Voltage	V _{Crs}	1.3	-	2.0	V						

DS-TLSR8269F512-E24 122 Ver2.5.0

Datasheet for Telink TLSR8269F3					TIK 1201(02031 012			
Item	Sym.	Min	Тур.	Max	Unit	Condition		
RF performance								
Item		Min	Тур	Max	Unit			
BLE 1Mbps RF_Rx performance								
Sensitivity	1Mbps	-93	-92	-90	dBm			
Frequency Offset Tolerance		-300		+300	KHz			
Co-channel rejection			-7		dB			
	±1 MHz offset		12		dB			
In-band blocking	±2 MHz offset		33		dB			
rejection	±3 MHz offset		35		dB			
	>4MHz offset		52		dB			
Image rejection			33		dB			
	BLE	1Mbps RF_T	x perform	ance				
Output power			7	8	dBm			
Modulation 20dB bandwidth			1.3		MHz			
	IEEE802.15.4 (250Kbps) RF_Rx performance							
Sensitivity	250Kbps		-97		dBm			
Frequency Offset Tolerance		-400		+400	KHz			
Co-channel rejection			-4		dB			

11	Control	D.C	T.			nk ILSR8269F512
Item	Sym.	Min	Тур.	Max	Unit	Condition
	-2 MHz		6		dB	
	offset				GB .	
	+2 MHz		6		dB	
	offset				ub	
In-band blocking	-3 MHz		19		dB	
rejection	offset		19		ив	
	+3 MHz		19		٩n	
	offset		19		dB	
	>4 MHz		20		40	
	offset		28		dB	
Image rejection			28		dB	
	IEEE802.1	5.4 (250Kbps	RF_Tx pe	erformance	•	
Output power			7	8	dBm	
Modulation 20dB			2.2		NAL 1—	
bandwidth			2.3		MHz	
	BLE	2Mbps RF_R	x perform	nance		
Sensitivity	2Mbps	-90	-89	-86	dBm	
Frequency Offset		200		. 200	1411	
Tolerance		-200		+200	KHz	
Co-channel rejection			-7		dB	
	±1 MHz		_			
	offset		-7		dB	
	±2 MHz				_	
In-band blocking rejection	offset		10		dB	
	±3 MHz					
	offset		23	23	dB	
	±4MHz				_	
	offset		32		dB	

Datasheet for Telink TLSR8269F512						
Item	Sym.	Min	Тур.	Max	Unit	Condition
	>5MHz		52		40	
	offset		52		dB	
Image rejection			30		dB	
	BLE	2Mbps RF_T	x perform	ance		
Output power			7	8	dBm	
Modulation 20dB			2.6			
bandwidth			2.6		MHz	
		12MHz/16N	1Hz crysta	I		
Nominal frequency (parallel resonant)	f _{NOM}		12		MHz	
Frequency tolerance	f_{TOL}	-20		+20	ppm	
Load capacitance	CL	5	12	18	pF	Programmable
Load capacitance	C _L	J	14	10	P.	on chip load cap
Equivalent series	ESR		50	100	ohm	
resistance						
		32.768KH	z crystal			
Nominal frequency	f _{NOM}		32.768		KHz	
(parallel resonant)						
Frequency tolerance	f_{TOL}	-100		+100	ppm	
Load capacitance	C_L	6		12.5	pF	Programmable
'						on chip load cap
Equivalent series	ESR		50	80	koh	
resistance					m	
32MHz RC oscillator						
Nominal frequency	f _{NOM}		32		MHz	

Datasheet for Telink TLSR8269F512

					ſ	
Item	Sym.	Min	Тур.	Max	Unit	Condition
Frequency tolerance	f_{TOL}		1		%	On chip calibration
		32kHz RC o	scillator			
Nominal frequency	f _{NOM}		32		kHz	
Frequency tolerance	f _{TOL}		0.03		%	On chip calibration
Calibration time			3		ms	
		AD	С			
Differential nonlinearity	DNL		3.3		LSB	
Integral nonlinearity	INL		6.7		LSB	
Signal-to-noise and distortion ratio (fin=1kHz, fS=16kHz)	SINAD		56		dB	
Spurious free dynamic range (fin=1kHz, fS=16kHz)	SFDR		63		dB	
Effective Number of Bits	ENOB		10.5		bits	
Sampling frequency	Fs			200	KHz	1.224V/1.428V reference
				250	KHz	AVDD reference

14 Application

14.1 Application example for the TLSR8269F512ET48

14.1.1 Schematic

Figure 14-1 Schematic for the TLSR8269F512ET48

14.1.2 Layout

Figure 14- 2 Layout for the TLSR8269F512ET48

(Left: Top view; Right: Bottom view)

14.1.3 BOM (Bill of Material)

Table 14-1 BOM table for the TLSR8269F512ET48

Quantity	Reference	Value	PCB Footprint	Description
2	CD1	220uF/16V	В	Capacitor
2	CD2	220uF/16V	В	Capacitor
	C1	1uF	0402	Capacitor
	C4	1uF	0402	Capacitor
	C5	1uF	0402	Capacitor
	C6	1uF	0402	Capacitor
10	C 9	1uF	0402	Capacitor
	C7	1uF	0402	Capacitor
	C21	1uF	0402	Capacitor
	C22	1uF	0402	Capacitor
	C23	1uF	0402	Capacitor

Quantity	Reference	Value	PCB Footprint	Description
	C24	1uF	0402	Capacitor
1	C14	220nF	0402	Capacitor
1	C14	0.1uF	0402	Capacitor
-	C8	10uF	0603C	Capacitor
	C26	10uF	0603C	Capacitor
4	C27	10uF	0603C	Capacitor
	C28	10uF	0603C	Capacitor
	C33	1.5pF	0402	Capacitor
2	C34	1.5pF	0402	Capacitor
1	D1	Blue	0603-LED	LED
1	D2	Green	0603-LED	LED
1	D3	White	0603-LED	LED
1	D4	Red	0603-LED	LED
1	J1	USB MiniABF	usb female thr 4pin	USB Jack
1	J7	USB_MiniABF	USB-MINI-F5	USB Jack
_	J2	HEADER 1X2	1x2-2.54mm (Male)	Header
	J9	HEADER 1X2	1x2-2.54mm (Male)	Header
	J10	HEADER 1X2	1x2-2.54mm (Male)	Header
	J11	HEADER 1X2	1x2-2.54mm (Male)	Header
9	J12	HEADER 1X2	1x2-2.54mm (Male)	Header
	J13	HEADER 1X2	1x2-2.54mm (Male)	Header
	J15	HEADER 1X2	1x2-2.54mm (Male)	Header
	J16	HEADER 1X2	1x2-2.54mm (Male)	Header
	J17	HEADER 1X2	1x2-2.54mm (Male)	Header
1	J3	HEADER 1X6	1x6-2.54mm (Male)	Header
1	J5	HEADER 3X2	2x3-2.54mm (Male)	Header
1	J8	HEADER 7X2	2x7-2.54mm (Male)	Header
1	J4	MM8130	MM8130-2600	RF Jack
_		21227	22	Not
1	J6	PJ327	PJ-327	mounted
1	L1	2.2nH	0402	Inductor
2	L2	150uH	08051	Inductor
2	L3	150uH	08051	Inductor
2	L4	BEAD_600	0402	Bead
	L5	BEAD_600	0402	Bead
1	L7	3.6nH	0402	Inductor
1	R3	1K	0402	Resistor
	R4	3.3K	0402	Resistor
4	R14	3.3K	0402	Resistor
7	R15	3.3K	0402	Resistor
	R8	3.3K	0402	Resistor

Datasheet for Telink TLSR8					
Quantity	Reference	Value	PCB Footprint	Description	
	R5	750R	0402	Resistor	
3	R6	750R	0402	Resistor	
	R7	750R	0402	Resistor	
1	R13	100K	0402	Resistor	
1	R9	10K	0402	Resistor	
2	R16	2.2K	0402	Not mounted	
	R17	2.2K	0402	Not mounted	
2	R23	33	0402	Resistor	
2	R24	33	0402	Resistor	
2	SW1	BUT1	butsmd2px4_00y3_00_nh	Button	
2	SW2	BUT1	butsmd2px4_00y3_00_nh	Button	
1	U1	TLSR8269F512ET48	qfn_7x7_48pin_0p5_4p20x4p20	SOC_RF	
1	U3	SPU0410LR5H	DMIC	Not mounted	
1	U4	XC6219_3.3V_SOT- 23-5	sot-23-5	LDO	
1	U5	MFI	MFI	Not mounted	
1	Y1	12Mhz - 12pf - +/-20ppm	OSCCC250X320X110	Crystal	
1	Y2	32.768Khz -9pf- +/-20ppm	OSC_2x6	Not mounted	

14.2 Application example for the TLSR8269F512ET32

14.2.1 Schematic

Figure 14-3Schematic for the TLSR8269F512ET32

DS-TLSR8269F512-E24 131 Ver2.5.0

14.2.2 Layout

Figure 14- 4 Layout for the TLSR8269F512ET32

(Up: Top view; Down: Bottom view)

14.2.3 BOM (Bill of Material)

Table 14-2 BOM table for the TLSR8269F512ET32

Quantity	Reference	Value	PCB Footprint	Description
	C2	1uF	0402	Capacitor
	C3	1uF	0402	Capacitor
6	C5	1uF	0402	Capacitor
О	C6	1uF	0402	Capacitor
	C7	1uF	0402	Capacitor
	C12	1uF	0402	Capacitor
	C4	10uF	0603C	Capacitor
4	C8	10uF	0603C	Capacitor
4	C11	10uF	0603C	Capacitor
	C15	10uF	0603C	Capacitor
2	C 9	1.5pF	0402	Capacitor
2	C10	1.5pF	0402	Capacitor

Quantity	Reference	Value	PCB Footprint	Description
	C13	ЗрҒ	0402	Capacitor
2	C14	3pF	0402	Capacitor
1	D1	Green	0603-LED	LED
1	D2	Blue	0603-LED	LED
1	D3	Red	0603-LED	LED
1	D4	White	0603-LED	LED
1	J2	USB_SMT_4PIN	USB Female 4pin	USB Jack
1	J5	MM8130	MM8130-2600	RF Jack
1	J4	Header 1X3	1x3-2.54mm (female)	Header
1	J18	HEADER 4X2	2x4-2.54mm (female)	Header
1	J20	Header 1X2	1x2-2.54mm (female)	Header
1	J21	HEADER 3X2	2x3-2.54mm (female)	Header
1	J22	HEADER 2X2	2x2-2.54mm (female)	Header
1	L8	7.5nH	0402	Inductor
1	L9	3.3nH	0402	Inductor
2	R2	33	0402	Resistor
2	R3	33	0402	Resistor
1	R4	10	0402	Resistor
	R5	750R	0402	Resistor
3	R7	750R	0402	Resistor
	R8	750R	0402	Resistor
1	R6	3.3K	0402	Resistor
1	SW1	But1	butsmd2px4_00y3_00_nh	Button
1	SW2	But2	butsmd2px4_00y3_00_nh	Button
1	U3	TLSR8269F512ET32	qfn_5x5_32pin_0p5_2p50x2p50	SOC_RF
1	U4	XC6219_3.3V_SOT-23-5	sot-23-5	LDO
1	Y3	12Mhz - 12pf - +/-20ppm	OSCCC250X320X110	Crystal