Конспект по матану 10 класс

Коченюк Анатолий

1 октября 2018 г.

Глава 1

1 четверть

1.1 Функция

```
f(x): X \to Y \quad X, Y \subseteq \mathbb{R} \lim_{x \to a} f(x) = A a - \text{предельная точка } X \forall \varepsilon > 0 \exists \delta > 0 \forall x \in O_{\delta}(a) \Rightarrow f(x) \in O_{\varepsilon}(A) A \neq f(a), \text{ потому что она там может быть даже не определена} \begin{cases} a \in \mathbb{R}, O_{\delta}(a) = (a - \delta, a + \delta) \\ a = +\infty, O_{\delta}(a) = (\delta, +\infty) \\ a = -\infty, O_{\delta}(a) = (-\infty, -\delta) \\ \forall \varepsilon > 0 \exists \delta > 0: f(O_{\delta(a)}) \subset O_{\varepsilon}(A) \end{cases} Определение 1.1. f(x) - \delta.\delta. \iff |f(x)| \to \infty, x \to a \in \overline{\mathbb{R}} \iff \forall k > 0 \exists \delta > 0: \forall x \in O_{\delta}(a), x \neq a |f(x)| \geqslant K Определение 1.2. f(x) - \delta.M. \iff |f(x)| \to 0, x \to a \in \overline{\mathbb{R}} Теорема 1.1 (О представлении). A = \lim_{x \to a} f(x) \iff f(x) = A + g(x), g(x) - \delta.M. \text{ при } x \to a Определение 1.3 (По Гейне). A = \lim_{x \to a} f(x) \iff \forall x_n \to a (x_n \in X, x_n \neq a) \text{ выполияется } f(x_n) \to A
```

Пример:

Доказать на языке $\varepsilon-\delta$

$$\lim_{x\to 1} (3x-2) = 1$$
 $\forall \varepsilon > 0 \exists \delta = \delta(\varepsilon) \colon |x-1| < \delta \Rightarrow |3x-2-1| < \varepsilon$
Уметь по $\forall \varepsilon$ предъявлять соответствующее δ
 $|3x-3| < \varepsilon \Leftarrow 3|x-1| < \varepsilon \Leftarrow |x-1| < \frac{\varepsilon}{3} = \delta$
 $\Rightarrow \delta = \frac{\varepsilon}{3}$ – искомое

Пример:

$$\lim_{x\to -1} \frac{2x-1}{x+3} = -\frac{1}{2}$$
 $\forall \varepsilon > 0 \exists \delta = \delta(\varepsilon) \colon |x+1| < \delta \Rightarrow \left|\frac{2x+1}{x+3} + \frac{1}{2}\right| < \varepsilon$
 $\left|\frac{5(x+1)}{2(x+3)}\right| < \varepsilon$
 $\forall \varepsilon > 0 \exists \delta = \frac{1}{2} min\{1; \frac{2\varepsilon}{5}\}$
 $\Rightarrow |x+1| < \delta$
 $\delta < 1 \Rightarrow |x+3| > 1$
А тогда $\left|\frac{2x+1}{x+3} + \frac{1}{2}\right| = \left|\frac{5(x+1)}{2(x+3)}\right| = \frac{5|x+1|}{2|x+3|} < \frac{5}{2} \cdot \frac{\delta}{1} \leqslant \frac{5}{2} \cdot \frac{1}{2} \cdot \frac{2\varepsilon}{5} = \frac{\varepsilon}{2} < \varepsilon$ ч.т.п.

$$\exists f(x): E \to \mathbb{R} \quad E \subseteq \mathbb{R}$$

Определение 1.4. f(x) – ограничена сверху или ограничена снизу или ограничена на $E \iff \exists K \geqslant 0 : \forall x \in E$ выполняется $f(x) \leqslant K \lor -k \leqslant f(x) \lor |f(x)| \leqslant L$

Определение 1.5. f(x) называется локально ограниченной в точке a, которая либо принадлежит E, либо является предельной для $E \quad (a \in \overline{E}) \Longleftrightarrow \exists K \geqslant 0, \exists O(a): |f(x)| \leqslant K \forall x \in O(a) \cap E$

Лемма 1.1.
$$\lim_{x \to \frac{\pi}{4}} \frac{\left(\frac{\operatorname{tg} x + 1}{1 - \operatorname{tg} x}\right)}{\left(\frac{2 \operatorname{tg} x}{1 - \operatorname{tg}^2 x}\right)} \ f$$
 – локально ограничена $\forall a \in \overline{E} \not\Rightarrow f$ – ограничено на E

Доказательство. f(x) = x $E = \mathbb{R}$

в $\forall a \in \mathbb{R}$ она локально ограничена

$$\exists K = max\{|a+1|, |a-1|\}$$

$$\forall x \in O_1(a)$$
 выполняется $|x| \leqslant K$ $O_{\delta}(a) = (a - \delta, a + \delta)$

$$\overline{E} = E \cup \partial E$$

$$\exists O(a) \subset E$$

1.2 Предельный переход в неравенствах

Теорема 1.2 (1). \Box $\exists \lim_{x \to a} f(x) = A \ u \ \Box \ A < B \Rightarrow \exists O(a) : \forall x \in \overset{\circ}{O}(a) \cap E$ выполняется f(x) < B

Доказательство. $\exists \varepsilon > 0 : A + \varepsilon_1 < B$

По определению предела для этого $\varepsilon_1 \exists \delta : \forall x \in \overset{\circ}{O}_{\delta}(a) \cap E \quad |f(x) - A| < \varepsilon_1 \Rightarrow -\varepsilon_1 < f(x) - A < \varepsilon_1 \Rightarrow f(x) < f(x)$

т.о. (таким образом) эта
$$O_\delta(a)$$
 – искомая окрестность.

ДЗ:

Теорема 1.3 (2). $\exists f(x) < g(x) \forall x \in E \ u \ \exists \lim_{x \to a} f(x) = A, \exists \lim_{x \to a} g(x) = B \Rightarrow A \leqslant B$

- 2a) контрпример, почему нельзя писать A < B
- 3) $\lim_{x \to +\infty} (\sqrt{x^2 + 1} x) = ?$
- 4) $\lim_{x \to \infty} \frac{\sqrt{x^2 + 1}}{x + 1}$ 5)

Лемма 1.2. f – ограничена на $E\Rightarrow f$ – локально ограничена $\forall a\in \overline{E}$

1.3 Неопределённости

$$\frac{0}{0}; \frac{\infty}{\infty}; 0 \cdot \infty; \infty - \infty; 1^{\infty}$$

Теорема 1.4 (Безу). $P_n(x) = (x - x_0)Q_{n-1}(x)$

$$\lim x + to - 1 \frac{x^2 + 3x + 2}{x^3 + 1} = \lim_{x \to -1} \frac{(x+1)(x+2)}{(x+1)(x^2 - x + 1)} = \lim_{x + to - 1} \frac{x+2}{x^2 - x + 1} = \frac{\lim_{x \to -1} (x+2)}{\lim_{x \to -1} (x^2 - x + 1)} = \lim_{x \to -1} \frac{x+2}{(x+1)(x^2 - x + 1)} = \lim_{x \to -1} \frac{x+2}{x^2 - x + 1} = \lim_{x \to -1} \frac{x+2}$$

$$= \frac{\lim_{x \to -1} x + \lim_{x \to -1} 2}{\lim_{x \to -1} x \cdot \lim_{x \to -1} x - \lim_{x \to -1} x + \lim_{x \to -1} 1}$$

$$\forall \varepsilon > 0 \exists \delta > 0 : \forall x : 0 < |x - 1| < \delta \Rightarrow \left| \frac{x^2 + 3x + 2}{x^3 + 1} - \frac{1}{3} \right| < \varepsilon$$

$$\left| \frac{x^2 + 3x + 2}{x^3 + 1} - \frac{1}{3} \right| = \left| \frac{x + 2}{x^2 - x + 1} - \frac{1}{3} \right| = \frac{|2x + 6 - x^2 + x - 1|}{|3(x^2 - x + 1)|} = \frac{|x^2 - 4x + 5|}{3(x^2 - x + 1)} = \frac{|x + 1| \cdot |x - 5|}{3(x^2 - x + 1)}$$

$$x^{2} + pz + q = (x + \frac{p}{2})^{2} + q - \frac{p^{2}}{4}$$

$$\leq \frac{|x+1| \cdot 7}{2 \cdot \frac{3}{4}} < \frac{\delta \cdot 28}{9} = \varepsilon$$

Пусть $\exists \delta = min\{1, \frac{0\varepsilon}{28}\}$ Решено.

Теорема 1.5 (о двух милиционерах). $\exists \forall x \in E \quad f(x) \leq g(x) \leq h(x)$

$$\exists \lim_{x \to a} f(x) = \lim_{x \to a} h(x) = A$$

$$\Rightarrow \exists \lim_{x \to a} g(x) = A$$

Доказательство. Воспользуемся языком последовательностей (Гейне)

Берём для $\forall x_n \to a$

 $f(x_n) \leqslant g(x_n) \leqslant h(x_n)$ Пользуемся теоремой о двух милиционерах для последовательностей. Таким образом $g(x_m) \to A \forall x_n \to A \Rightarrow \exists \lim_{n \to \infty} g(x) = A$

1.4 Замечательные пределы

1. $\lim_{x\to 0} \frac{\sin x}{x} = 1$ $\left(\frac{0}{0}\right)$ Было доказано, что $\forall x_n \to 0$ $\sin x \to \sin 0 = 0 \Rightarrow \lim_{x\to 0} \sin x = 0$ (непрерывность $y = \sin x$ в 0)

Определение 1.6. Пусть $f: E \to \mathbb{R}$ Функция f непрерывно в точке $a \in E$ (т.е. f(a) – определено заранее) $\iff \lim_{x \to a} f(x) = A$ и A = f(a), т.е. $\lim_{x \to a} f(x) = f(\lim_{x \to a} x) = f(a)$.

f коммутирует c пределом.

Было доказано (вопрос 13 п. 5), что $\forall x_n \to a \quad \sin x \to \sin a \iff \exists \lim_{x \to a} \sin x = \sin a \iff \Phi$ ункция была непрерывна в каждой точке из $\mathbb R$

Определение 1.7. $f: E \to \mathbb{R}$. Говорят, что f непрерывно на E, если f непрерывно в каждой точке из E.

Множество функций, непрерывных на E обозначают C(E)

 $x \in (0, \frac{\pi}{2})$ $\sin x < x < \operatorname{tg} x$

•
$$\frac{\sin x}{x} = \frac{|\sin x|}{|x|} < 1, \forall x \in \mathring{O}_{\delta}(0), \quad \delta < \frac{\pi}{2}$$

•
$$|\cos x| < \left|\frac{\sin x}{x}\right|$$

Задача 1.1. $\lim_{x\to 0} \frac{\sin 2x}{\sin 3x}$

Доказательство. $\lim_{x\to 0}\frac{\sin 2x}{\sin 3x}=\lim_{x\to 0}\frac{\sin 2x}{2x}\cdot\frac{3x}{\sin 3x}\cdot\frac{2}{3}=\lim_{x\to 0}\frac{\sin 2x}{2x}\cdot\lim_{x\to 0}\frac{3x}{\sin 3x}\frac{2}{3}$

$$\lim_{x \to 0} \frac{\sin 2x}{2x} = \lim_{t \to 0} \frac{\sin t}{t}$$

Следствия из предела №1:

$$\begin{array}{ll} \text{(a)} & \lim_{x\to 0} \frac{1-\cos x}{x^2} = \frac{1}{2} \quad \left(\frac{0}{0}\right) \\ & \cos 2\alpha = 1 - 2\sin^2\alpha = 2\cos^2\alpha - 1 = \cos^2\alpha - \sin^2\alpha \\ & \cos x = 1 - 2\sin^2\frac{x}{2} \Rightarrow 1 - \cos x = 2\sin^2\frac{x}{2} \\ & \lim_{x\to 0} \frac{1-\cos x}{x^2} = \lim_{x\to 0} \frac{2\sin^2\frac{x}{2}}{x^2} = 2\cdot\lim_{x\to 0} \frac{2\sin^2\frac{x}{2}}{\frac{x}{2}}\cdot\lim_{x\to 0} \frac{2\sin^2\frac{x}{2}}{\frac{x}{2}}\cdot\frac{1}{4} = \frac{1}{2}\cdot1\cdot1 = \frac{1}{2} \\ & \lim_{x\to 0} \frac{x\sin x}{1-\cos x} = \lim_{x\to 0} (\frac{x^2}{1-\cos x}\cdot\frac{\sin x}{x} = 2\cdot1 = 2) \text{ можем заменить предел произведения, так как оба выражения имеют предел} \end{array}$$

(b)
$$\lim_{x \to 0} \frac{\lg x}{x} = 1$$

 $\lim_{x \to 0} \frac{\sin x}{\cos x \cdot x} = \lim_{x \to 0} \frac{1}{\cos x} \cdot \lim_{x \to 0} \frac{\sin x}{x} = 1 \cdot 1$

$$\begin{array}{c}
x \to 0 \cos x \cdot x & x \\
\text{(c)} \lim_{x \to 0} \frac{\arcsin x}{x} = 1
\end{array}$$

 $\arcsin = (\sin \left| \left(-\frac{\pi}{2}, \frac{\pi}{2} \right) \right|^{-1}$

 $\arcsin(\sin x) \neq x$, no $\sin(\arcsin x) = x$

 $\arcsin a$ – тот корень уравнения $\sin x = a$, при котором $a \in \left[-\frac{\pi}{2}; \frac{\pi}{2}\right]$

 $y = \arcsin x$

 $x \to 0; x \in O_{\delta}(0) \Rightarrow x = \sin y$

$$\lim_{x\to 0}\frac{\arcsin x}{x}=\lim y\to ?\frac{y}{\sin y}$$

Лемма 1.3. Покажем (на языке Гейне) $x_n \to 0 \Rightarrow y_n \to 0 \forall x_n$

Доказательство. $x_n=m\sin y_n,y\quad y_n\in\left[-\frac{\pi}{2};\frac{\pi}{2}\right]\Rightarrow\{y_n\}$ – orp $\Rightarrow\cot\pi/\pi\ y_{n_k}$

Но мы только что доказали, что любая сходящаяся подпоследовательность $y_{n_k} \to 0 \Rightarrow$ сама $y_n \to 0$ Допустим противное:

 $\exists y_n \not\to 0$ пишем отрицание существования предела

 $\exists \varepsilon_0 \forall N : \exists n_N \geqslant N : |y_{n_N}| \geqslant \varepsilon_0 \quad N = 1, 2, 3, \dots$

рассмотрим последовательность $\{y_{n_N}\}\cap O_{\varepsilon_0}(0)=\emptyset$, но $\{y_{n_N}\}\subset [-\frac{\pi}{2};\frac{\pi}{2}]$ – orp! $\Rightarrow \{y_n\}$ – orp

Ещё один пример доказательства предела на языке $\varepsilon-\delta$

$$\lim_{x \to 1} \frac{\sqrt{x} - 1}{x - 1} = \lim_{x \to 1} x \to 1$$
 $\frac{\sqrt{x} - 1}{(\sqrt{x}) - 1)(\sqrt{x} + 1)} = \frac{1}{\lim_{x \to 1} \sqrt{x} + 1} = \frac{1}{2}$ Мы почитали этот предел, а теперь дока-

жем это на языке $\varepsilon-\delta$

$$\forall \varepsilon > 0 \exists \delta = \delta(\varepsilon) : \forall x \quad 0 < |x - 1| < \delta \text{ выполнено} \left| \frac{\sqrt{x} - 1}{x - 1} - \frac{1}{2} \right| < \varepsilon$$

$$\left| \frac{\sqrt{x} - 1}{x - 1} - \frac{1}{2} \right| = \left| \frac{1}{\sqrt{x} + 1} - \frac{1}{2} \right| = \frac{1}{2} \left| \frac{1 - \sqrt{x}}{\sqrt{x} + 1} \right| = \frac{1}{2} \frac{|\sqrt{x} - 1|}{|\sqrt{x} + 1|} \leqslant \frac{1}{2} |\sqrt{x} - 1| = \frac{1}{2} \left| \frac{(\sqrt{x} - 1)(\sqrt{x} + 1)}{\sqrt{x} + 1} \right| \leqslant \frac{1}{2} |(\sqrt{x} - 1)(\sqrt{x} + 1)|$$

$$1)(\sqrt{x}+1)| = \frac{1}{2}|x-1| < \frac{\delta}{2} = \varepsilon$$

$$\lim_{x \to 0} \frac{\arctan x}{x} = \lim_{x \to 0} x \to 0$$

$$x_n \to 0 \stackrel{?}{\Rightarrow} y_n \to 0 \quad y_n = \arctan x_n$$

 $x_n \to 0 \stackrel{?}{\Rightarrow} y_n \to 0 \quad y_n = \arctan x_n$ При $x \to 0 \sin x \to 0, \cos x \to 1 \Rightarrow \tan x \to 0$ при $x \to 0$ $\Rightarrow 0$ \Rightarrow

$$\exists \varepsilon_0 > 0: \forall N (=1,2,3) \exists n_N > N$$
 и $|y_{n_N}| > \varepsilon_0$

рассмотрим $y_{n_N}=\arctan x_{n_k}\to a$ – ограничена $\Rightarrow \exists$ сходящаяся подпоследовательность $y_{n_N}>0$

Лемма 1.4. $\lim_{x \to \infty} (1 + \frac{1}{x})^x = e$ (1^{∞})

Доказательство. Классический вариант $\lim_{n\to+\infty} (1+\frac{1}{n})^n = e$

$$\lim_{n \to -\infty} (1 + \frac{1}{n})^n = e$$

$$\forall x_n \to \pm \infty \quad \lim_{x \to 0} (1 + \frac{1}{x_n})^{x_n} = e$$

Следствие: $\lim_{x\to 0} (1+x)^{\frac{1}{x}} = \lim_{y\to \infty} (1\frac{1}{y})^y = e, \quad y = \frac{1}{x}$

Лемма 1.5. $\lim_{x\to 0} \frac{\ln(1+x)}{r} = 1$

Доказательство.
$$\lim_{x_n \to 0} \frac{1}{x_n} ln(1+x_n) = \lim_{x_n \to 0} ln(1+x_n) \frac{1}{x_n} = lne = 1 \quad \forall x_n$$

Следствие:

$$\bullet \lim_{x \to 0} \frac{\ln(1+ax)}{r} = a$$

$$\bullet \lim_{x \to 0} \frac{\log_a(1+x)}{x} = \frac{1}{\ln a}$$

1. $y = \arcsin(\sin x)$ – нарисовать график

2. $y = \arctan(\tan x) - \text{нарисовать график}$

3.
$$\lim_{x \to 0} (1 + \tan x)^{\cot x}$$
 (1^{∞})

$$4. \lim_{x \to \frac{\pi}{2}} (\sin x)^{\frac{1}{\operatorname{ctg} x}}$$

5.
$$\lim_{x \to \infty} \left(\frac{2x+3}{2x+1} \right)^x$$

6.
$$\lim_{x \to \infty} \left(\frac{1+x}{2+x} \right)^{\frac{1-\sqrt{x}}{1-x}}$$

7.
$$\lim_{x \to \infty} \frac{\ln(2 + e^{3x})}{\ln(3 + e^{2x})}$$

8. Прошлое дз (на фотке в беседе)

$$\lim_{x \to \frac{\pi}{2}} (\sin x)^{\operatorname{tg} x}$$

$$x_n \to a \Rightarrow \ln x_n \to \ln a$$

$$f(x) \to A \Rightarrow \ln f(x) \to \ln A$$

$$\lim_{x \to \frac{\pi}{2}} \ln(\sin x)^{\operatorname{tg} x} = \lim_{x \to \frac{\pi}{2}} \frac{\sin x \cdot \ln(\sin x)}{\cos x} \stackrel{x = \frac{\pi}{2} - t}{=} \lim_{t \to 0} \frac{\cos t \cdot \ln(\cos t)}{\sin t} = \lim_{t \to 0} \frac{\cos t \cdot \ln(1 + (\cos t - 1))}{\sin t \cdot (\cos t - 1)} \cdot (\cos t - 1) \stackrel{y = \cos t - 1}{=} \lim_{t \to 0} \frac{\cos t \cdot \ln(1 + (\cos t - 1))}{\sin t \cdot (\cos t - 1)} = \lim_{t \to 0} \frac{\cos t \cdot \ln(1 + (\cos t - 1))}{\sin t \cdot (\cos t - 1)} \cdot (\cos t - 1)$$

$$\lim_{t \to 0} \frac{(\cos t - 1)}{\sin t} \cdot \lim_{y \to 0} \frac{\ln(1 + y)}{y} \cdot \lim_{t \to 0} \cos t = \lim_{t \to 0} \frac{\cos t - 1}{\sin t} = \lim_{t \to 0} \frac{t}{\sin t} \cdot \frac{-(1 - \cos t)^2}{t^2} \frac{-t^2}{t} = 0$$

$$\lim_{x \to \frac{\pi}{2}} \ln(\sin x)^{\lg x} = 0 \Rightarrow \lim_{x \to \frac{\pi}{2}} (\sin x)^{\lg x} = 1$$

4)
$$\lim_{x \to 0} \frac{e^x - 1}{x} = 1$$

 $\exists y = e^x - 1 \quad x \to 0 \Rightarrow y \to 0 \quad e^x = 1 + y \quad x = \ln(1 + y)$
 $\lim_{x \to 0} \frac{e^x - 1}{x} = \lim_{y \to 0} \frac{y}{\ln(1 + y)} \stackrel{3}{=} 1$

Следствие 1.1. $\lim_{x\to 0} \frac{a^x-1}{x} = \lim_{x\to 0} \frac{e^{\ln a}-1}{(x \cdot \ln a)} \cdot \ln a = \ln a$

5)
$$\lim_{\substack{x \to 0 \ (1+x)^{\alpha} = 1}} \frac{(1+x)^{\alpha} - 1}{x} = \alpha \quad \alpha \in \mathbb{R} \ \exists \ y = (1+x)^{\alpha} - 1 \quad x \to 0 \Rightarrow y \to 0$$

$$\begin{array}{l} \mathbf{5)} \ \lim\limits_{x \to 0} \frac{(1+x)^{\alpha}-1}{x} = \alpha \quad \alpha \in \mathbb{R} \ \exists \ y = (1+x)^{\alpha}-1 \quad x \to 0 \Rightarrow y \to 0 \\ (1+x)^{\alpha} = 1+y \quad \alpha \ln(1+x) = \ln(1+y) \\ \lim\limits_{x \to 0} \frac{(1+x)^{\alpha}-1}{x} = \lim\limits_{x \to 0} \frac{y}{x} = \lim\limits_{x \to 0, y \to 0} \frac{y}{\ln(1+y)} \cdot \frac{\ln(1+y)}{x} = \lim\limits_{y \to 0} \frac{y}{\ln(1+y)} \cdot \lim\limits_{x \to 0} \frac{\alpha \ln(1+x)}{x} = 1 \cdot \alpha \cdot 1 = \alpha \\ \end{array}$$

Следствие 1.2. Покажем, $(x^{\alpha})' = \alpha x^{\alpha-1}, \alpha \neq 0$

$$(x^{\alpha})' = \lim_{\Delta x \to 0} \frac{(x + \Delta x)^{\alpha} - x^{\alpha}}{\Delta x} = \lim \Delta x \to 0 \frac{x^{\alpha} (1 + \frac{\Delta x}{x})^{\alpha} - x^{\alpha}}{\Delta x} = x^{\alpha} \lim_{\Delta x \to 0} \frac{(1 + \frac{\Delta x}{x})^{\alpha} - 1}{\frac{\Delta x}{x} \cdot x} = x^{\alpha - 1} \cdot \alpha$$

$$x = 0 \quad \lim_{\Delta x \to 0} \frac{(0 + \Delta x)^{\alpha} - 0^{\alpha}}{\Delta x} = \lim_{\Delta x \to 0} (\Delta x)^{\alpha - 1} = \begin{bmatrix} 0 & \alpha > 1 \\ 1 & \alpha = 1 \\ \infty & \alpha < 1 \end{bmatrix}$$

$$x^{\alpha-1} \cdot \alpha|_{x=0} = \begin{bmatrix} 0 & \alpha > 1\\ 1 = \alpha & \alpha = 1\\ \infty & \alpha < 1 \end{bmatrix}$$

8 ГЛАВА 1. 1 ЧЕТВЕРТЬ

$$\lim_{x \to 0} \frac{1 - \sqrt{\cos x}}{1 - \cos x} = \lim_{x \to 0} \frac{1 - \cos x}{1 + \sqrt{\cos x}} \cdot \frac{cy^2}{1 - \cos \sqrt{x} \cdot cy^2} = \lim_{x \to 0} \frac{1 - \cos x}{2 \cdot x^2} \cdot x^2 \cdot \frac{(\sqrt{x})^2}{1 - \cos \sqrt{x}} \cdot \frac{1}{(\sqrt{x})^2} = \frac{1}{2} \lim_{x \to 0} \frac{1 - \cos x}{x^2} \cdot \lim_{x \to 0} \frac{1 - \cos x}{1 - \cos x} \cdot \frac{1}{x^2} = \frac{1}{2} \lim_{x \to 0} \frac{1 - \cos x}{x^2} \cdot \frac{1}{1 - \cos x} \cdot \frac{1}$$

$$\lim_{x \to +\infty} \frac{\ln(2 + e^{3x})}{\ln(3 + e^{2x})} = \lim_{x \to +\infty} \frac{\ln(e^{3x}(2e^{-3x} + 1))}{\ln(e^{2x}(3e^{-2x} + 1))} = \lim_{x \to +\infty} \frac{3x + \ln(1 + 2e^{-3x})}{2x + \ln(1 + 3e^{-2x})} = \lim_{x \to +\infty} \frac{3 + \frac{\ln(1 + 2e^{-3x})}{x}}{2 + \frac{\ln(1 + 3e^{-2x})}{x}} = \frac{3}{2}$$

$$\lim_{x \to 0} x(e^{\frac{1}{x}} - 1) = \lim_{y \to \infty} \frac{e^{y} - 1}{y}$$

$$\lim_{y \to +\infty} \frac{e^y}{-} 1y = +\infty$$

1.
$$\lim_{x \to e} \frac{\ln x^3 - 3}{x - e}$$

2.
$$\lim_{x \to \frac{\pi}{4}} \frac{\sqrt[3]{\lg x} - 1}{2\sin^2 x - 1}$$

3.
$$\lim_{x \to 0} \frac{\ln(1 - \sin x)}{3^{\lg x} - 1}$$

4.
$$\lim_{x \to 2} \frac{2^x - x^2}{x - 2}$$

$$\begin{pmatrix} \frac{0}{0} \end{pmatrix} \lim_{x \to 0} \frac{\sqrt[5]{1+x} - \sqrt[4]{1+x}}{x} - \lim_{x \to 0} \frac{(1+x)^{\frac{1}{5}} - 1 - ((1+x)^{\frac{1}{4}} + 1)}{x} = \lim_{x \to 0} \frac{(a+x)^{\frac{1}{5}} - 1}{x} - \lim_{x \to 0} \frac{(1+x)^{\frac{1}{4}} - 1}{x} = \lim_{x \to 0} \frac{(1+x)^{\frac{1}{4}} -$$

$$\begin{pmatrix} 0 \\ 0 \end{pmatrix} \lim_{x \to -\frac{pz}{2} - \frac{\pi}{2}} \lim_{(\sin x + 1)(\sin x + 2)} \frac{(\sin x + 1)^2}{(\sin x + 1)(\sin x + 2)} = \frac{0}{-3} = 0$$

$$\begin{pmatrix} 0 \\ 0 \end{pmatrix} \lim_{x \to -\frac{pi}{2} - \frac{\pi}{2}} \frac{(\sin x + 1)^2}{(\sin x + 1)(\sin x + 2)} = \frac{0}{-3} = 0$$

$$\begin{pmatrix} 0 \\ 0 \end{pmatrix} \lim_{x \to 0} \frac{2^x + 3^x - 2}{x^2 - x} = \lim_{x \to 0} \frac{2^x - 1}{x^2 - x} + \lim_{x \to 0} \frac{3^x - 1}{x^2 - x} = \lim_{x \to 0} \frac{2^x - 1}{x} \frac{x}{x^2 - x} + \lim_{x \to 0} \frac{3^x - 1}{x} \frac{x}{x^2 - x} = \lim_$$

$$= \ln 2 \cdot (-1) + \ln 3 \cdot (-1) = -\ln 6$$

$$\left(\frac{\infty}{\infty}\right) \quad \lim_{x \to \infty} \frac{x^{\sqrt[4]{x^3 + 1} + \sqrt[3]{x^2 - 1}}}{x^2 - \sqrt{x + 2}} = \lim_{x \to \infty} \frac{x^{1 + \frac{3}{4}} \sqrt{1 + \frac{1}{x^3}} + x^{\frac{2}{3}} \sqrt{1 - \frac{1}{x^2}}}{x^2 (1 - \frac{\sqrt{x + 2}}{x^2})} = \lim_{x \to \infty} \frac{x^{-\frac{1}{4}} \sqrt{1 + x^{-3}} + x^{-1\frac{1}{3}} \sqrt{1 - x^{-2}}}{1 - \frac{\sqrt{x + 2}}{x^2}} = 0$$

$$\left(\frac{\infty}{\infty}\right) \quad \lim_{x \to \frac{\pi}{4}} \frac{\operatorname{tg}(x + \frac{\pi}{4})}{\operatorname{tg} 2x} = \lim_{x \to \frac{\pi}{4}} \frac{\left(\frac{\operatorname{tg} x + 1}{1 - \operatorname{tg} x}\right)}{\left(\frac{2 \operatorname{tg} x}{1 - \operatorname{tg}^2 x}\right)} \stackrel{t = \operatorname{tg} x}{=} \lim_{t \to 1} \frac{(1 + t)(1 - t^2)}{(1 - t) \cdot 2t} = \frac{2 \cdot 2}{2} = 2$$

$$(\infty - \infty)$$
 $\lim_{x \to \infty} (\sqrt{x+2} - \sqrt{x+1}) = \lim_{x \to \infty} \frac{(x+2)(x+1)}{\sqrt{x+2} + \sqrt{x+1}} = \frac{1}{\infty} = 0$

$$(\infty - \infty) \quad \lim_{x \to \infty} (\sqrt{x+2} - \sqrt{x+1}) = \lim_{x \to \infty} \frac{(x+2)(x+1)}{\sqrt{x+2} + \sqrt{x+1}} = \frac{1}{\infty} = 0$$

$$(\infty - \infty) \quad \lim_{x \to 2} \left(\frac{1}{x^2 - 4} - \frac{1}{4(x-2)} \right) = \lim_{x \to 2} \frac{4 - x - 2}{4(x-2)(x+2)} = \lim_{x \to 2} \frac{-(x-2)}{4(x-2)(x+2)} = -\frac{1}{16}$$

$$(\infty - \infty) \quad \lim_{x \to 0} (\operatorname{ctg} x - \frac{1}{\sin x}) = \lim_{x \to 0} \frac{\cos x - 1}{\sin x} = \lim_{x \to 0} \frac{\cos x - 1}{x^2} \cdot \frac{x^2}{x} \cdot \frac{x}{\sin x} = \frac{1}{2} \cdot 0 \cdot 1 = 0$$

$$(\infty - \infty) \quad \lim_{x \to 0} \left(\frac{2^x}{x} - \frac{3^x}{x}\right) = \lim_{x \to 0} \frac{2^x - 3^x}{x} = \ln 2 - \ln 3$$

$$(\infty - \infty)$$
 $\lim_{x \to 0} \left(\frac{2^x}{x} - \frac{3^x}{x} \right) = \lim_{x \to 0} \frac{2^x - 3^x}{x} = \ln 2 - \ln 3$

$$(\infty \cdot ?) \quad \lim_{x \to \infty} x (\ln(1+x) - \ln x) = \lim_{x \to \infty} \frac{\ln(1+\frac{1}{x})}{\frac{1}{2}} \stackrel{t = \frac{1}{x}}{=} \lim_{t \to 0} \frac{\ln(1+t)}{t} = 1$$

$$\left(\frac{\frac{\pi}{2}}{\infty}\right) \quad \lim_{x \to \infty} \frac{1}{x} \arctan x = 0$$

$$\begin{array}{ll} (\infty \cdot 0) & \lim\limits_{\to \infty} x(2^{\frac{1}{x}} - 1) \stackrel{t = \frac{1}{x}}{= t} \lim\limits_{t \to 0} \frac{2^{t} - 1}{t} = \ln 2 \\ (1^{\infty}) & \lim\limits_{\to \frac{\pi}{4}} (\lg x)^{\lg 2x} = e^{A} = e^{-1} \\ \\ Limx_{\frac{\pi}{4}} \ln(\lg x)^{\lg 2x} = \lim\limits_{x \to \frac{\pi}{4}} \frac{2 \lg x}{1 - \lg^{2} x} \cdot \ln(\lg x) \stackrel{\lg x = 1 - t}{= t} \lim\limits_{t \to 0} \frac{2(1 - t)}{t(2 - t)} \ln(1 - t) = \frac{2 \cdot (-1)}{2} = -1 \\ (\infty \cdot 0) & \lim\limits_{x \to + 0} \frac{\ln(1 + 2 \operatorname{arctg} x(x\sqrt{x^{5} + x^{2}}))}{(1 + \operatorname{arcsin}(x^{2}))^{\frac{3}{4}} - 1} = \lim\limits_{x \to 0} \frac{\ln(1 + 2x^{2})}{\frac{3}{4}x^{2}} = \lim\limits_{x \to 0} \frac{2x^{2}}{\frac{3}{4}x^{2}} = \frac{8}{3} \\ & \operatorname{arctg}(x\sqrt{x^{5} + x^{2}}) = \operatorname{arctg} \sqrt{x^{7} + x^{4}} \sim \operatorname{arctg} x \sim x^{2} \\ (1 + \operatorname{arcsin}(x^{2}))^{\frac{3}{4}} - 1 \sim \frac{3}{4} \operatorname{arcsin} x^{2} \sim \frac{3}{4}x^{2} \\ & \frac{\operatorname{arcsin} x}{x} \to 1 \quad \operatorname{arcsin} x \sim x \\ \ln(1 + t) \sim t \Rightarrow \ln(1 + 2x^{2}) \sim 2x^{2} \\ & \lim\limits_{x \to \infty} \left(\frac{x + \sqrt{(2x)}}{x + \sqrt{3x}}\right)^{\sqrt{x}} = e^{A} \\ & A = \lim\limits_{x \to \infty} \sqrt{x} \ln\left(\frac{x + \sqrt{2x}}{x + \sqrt{3x}}\right) = \lim\limits_{x \to \infty} \sqrt{x} \ln\left(\frac{1 + \frac{\sqrt{2}}{\sqrt{x}}}{1 + \frac{\sqrt{3}}{\sqrt{x}}}\right) = \lim\limits_{x \to \infty} \frac{\ln(1 + \frac{\sqrt{2}}{\sqrt{x}}) - \ln(1 + \frac{\sqrt{3}}{\sqrt{x}})}{\frac{1}{\sqrt{x}}} \stackrel{t = \frac{1}{x}}{= \frac{1}{x}} \lim\limits_{t \to 0} \frac{\ln(1 + \sqrt{2}t) - \ln(1 + \sqrt{3})}{t} = \frac{1}{x} = \frac{1}{x} \lim\limits_{t \to 0} \frac{\ln(1 + \sqrt{2}t) - \ln(1 + \sqrt{3})}{t} = \frac{1}{x} \lim\limits_{t \to 0} \frac{\ln(1 + \sqrt{2}t) - \ln(1 + \sqrt{3})}{t} = \frac{1}{x} \lim\limits_{t \to 0} \frac{\ln(1 + \sqrt{2}t) - \ln(1 + \sqrt{3})}{t} = \frac{1}{x} \lim\limits_{t \to 0} \frac{\ln(1 + \sqrt{2}t) - \ln(1 + \sqrt{3})}{t} = \frac{1}{x} \lim\limits_{t \to 0} \frac{\ln(1 + \sqrt{2}t) - \ln(1 + \sqrt{3})}{t} = \frac{1}{x} \lim\limits_{t \to 0} \frac{\ln(1 + \sqrt{2}t) - \ln(1 + \sqrt{3})}{t} = \frac{1}{x} \lim\limits_{t \to 0} \frac{\ln(1 + \sqrt{2}t) - \ln(1 + \sqrt{3})}{t} = \frac{1}{x} \lim\limits_{t \to 0} \frac{\ln(1 + \sqrt{2}t) - \ln(1 + \sqrt{3})}{t} = \frac{1}{x} \lim\limits_{t \to 0} \frac{\ln(1 + \sqrt{2}t) - \ln(1 + \sqrt{3})}{t} = \frac{1}{x} \lim\limits_{t \to 0} \frac{\ln(1 + \sqrt{2}t) - \ln(1 + \sqrt{3})}{t} = \frac{1}{x} \lim\limits_{t \to 0} \frac{\ln(1 + \sqrt{2}t) - \ln(1 + \sqrt{3})}{t} = \frac{1}{x} \lim\limits_{t \to 0} \frac{\ln(1 + \sqrt{2}t) - \ln(1 + \sqrt{3})}{t} = \frac{1}{x} \lim\limits_{t \to 0} \frac{\ln(1 + \sqrt{3}t) - \ln(1 + \sqrt{3}t)}{t} = \frac{1}{x} \lim\limits_{t \to 0} \frac{\ln(1 + \sqrt{3}t) - \ln(1 + \sqrt{3}t)}{t} = \frac{1}{x} \lim\limits_{t \to 0} \frac{\ln(1 + \sqrt{3}t) - \ln(1 + \sqrt{3}t)}{t} = \frac{1}{x} \lim\limits_{t \to 0} \frac{1}{x$$

- готовиться к работе по нахождению пределов.
- $\lim_{x \to -1} \frac{x^2 x 2}{x^3 + 1}$
- $\lim_{x\to 0} \frac{\operatorname{tg} 3x}{\arcsin 2x}$
- $\lim_{x \to \infty} (\sqrt{x^2 2x 3} \sqrt{x^2 3x 4})$

$$\bullet \lim_{x \to \infty} \left(\frac{x^2 + 2}{x^2 - 3} \right)^{x^2}$$

- $\lim_{x \to \infty} x(e^{\sin \frac{1}{x}} 1)$
- $\bullet \lim_{x \to 0} \frac{2^{\sin x} + 2^{2x} 2}{x \sqrt{x}}$

1.5 Односторонние пределы

 $f:E o\mathbb{R},\ \exists\ a$ — предельная точка $E\quad (E\cap \overset{\circ}O(a)
eq\emptyset,\ \mathrm{rge}\ \overset{\circ}O(a)$ — произвольная проколотая окрестность. $f(x) o A, (x\in E) o a\Longleftrightarrow orall arepsilon>0 \exists \overset{\circ}O_\Delta(a): orall x\in \overset{\circ}O_\delta(a)\cap E$ выполняется |f(x)-A|<arepsilon

1.5.1 Левосторонний предел

$$\lim_{x \to a = 0} f(x) = A \Longleftrightarrow \forall \varepsilon > 0 \\ \exists \delta > 0 : \forall x \in E \cap (a - b, a) \ \text{и} \ -\delta < x - a < 0 \ \text{выполняется} \ |f(x) - A| < \varepsilon|$$

1.5.2 Правосторонний

$$\lim_{x \to a+0} f(x) = A \Longleftrightarrow \forall \varepsilon > 0 \\ \exists \delta > 0 : \forall x \in E \cap (a,a+b) \text{ и } -\delta < x-a < 0 \text{ выполняется } |f(x)-A| < \varepsilon |f(x)-A|$$

Если a=0, то пишут просто $x \underset{x>0}{\rightarrow} -0$ и $x \underset{x>0}{\rightarrow} +0$

$$sign \ x = \begin{bmatrix} 1, & x > 0 \\ 0, & x = 0 \\ -1, & x < 0 \end{bmatrix}$$

$$\lim_{x \to +0} sign \ x = 1 \quad \lim_{x \to -0} sign \ x = -1$$

Теорема 1.6 (Признак существования $\lim_{x\to a} f(x)$ при $x\to a$). $\lim_{x\to a} f(x)$ – существует $\iff \exists \lim_{x\to a-0} f(x) = 0$ $\lim_{x \to a+0} f()$

Доказательство.

- \Rightarrow очевидно, потому что определение полного предела не исключает возможности, что x только < a или только > a, а тогда и будут получаться односторонние пределы.
- ← От противного. ⊐ односторонние пределы существуют и равны, а полный предел не существует. Напишем отрицание существования предела.

$$\exists arepsilon_o>0: \forall \delta>0 \exists x_\delta \in E\cap \overset{\circ}{O}(a)$$
 для которого $|f(x_\delta)-A|\geqslant arepsilon_0$

В качестве
$$\delta=\frac{1}{n}\to 0, n\in\mathbb{N}$$
 и тогда $\exists x_n\in E\cap \overset{\circ}{O}_{\frac{1}{n}}(a):|f(x_n)-A|\geqslant \varepsilon_0$

Имеем бесконечное количество точек $\{x_n\}$. Каждое x_n либо > 0 либо < 0.

Ясно, $\exists \infty$ много номеров, для которых выполняется: либо > a либо < a

Таким образом $\exists x_{n_k} : x_{n_k} < a$ либо $x_{n_k} > a$

Не умаляя общности (далее НУО) считаем, что $\exists x_{n_k} > a$

Но тогда получается, что нашлось такое $\varepsilon_0>0: \forall \delta>0 \exists x_{n_k}\in E\cap (a,a+\delta)$ и при этом $|f(x_{n_k})-A|>\varepsilon_0$

Это означает, что $\lim_{x\to a+0} f(x)$ не существует.??!

Очевидные свойства переводятся на

Пример:

$$\begin{pmatrix} \frac{0}{0} \end{pmatrix} \lim_{x \to +0} \frac{\sqrt{x^2 + x^3}}{x} = \lim_{x \to +0} \sqrt{\frac{x^2 + x^3}{x^2}} = \lim_{x \to +0} \sqrt{1 + x} = 1$$

$$\begin{pmatrix} \frac{0}{0} \end{pmatrix} \lim_{x \to -0} \frac{\sqrt{x^2 + x^3}}{x} = \lim_{x \to -0} \left(-\sqrt{\frac{x^2 + x^3}{x^2}} \right) = -1$$

$$\begin{pmatrix} 0 \\ 0 \end{pmatrix} \quad \lim_{x \to -0} \frac{\sqrt{x^2 + x^3}}{x} = \lim_{x \to -0} \left(-\sqrt{\frac{x^2 + x^3}{x^2}} \right) = -1$$

Ещё один признак существования предела

последовательность $\{x_n\}$ – фундаментальная или последовательность Коши $\iff \forall \varepsilon > 0 \exists N : \forall n, m \geqslant$ $N |x_n - x_m| < \varepsilon$

Теорема 1.7. Коши Последовательность x_n – сходится $\iff x_n$ – фундаментальная последовательность

Теорема 1.8. Коши $\exists \ f: E \to \mathbb{R}, \quad a$ – конечная предельная точка $a \in E$ Тогда $\exists \lim_{x \to a} f(x) = A$ – конечный $\iff \forall \varepsilon > 0 \exists \delta > 0 : \forall x', x'' \in \mathop{O}_{\circ, \delta}(a) \cap E$ выолняется $|f(x') - f(x'')| < \varepsilon$

Доказательство.

$$\Rightarrow \exists \lim_{x \to a} f(x) = A$$

т.е. по
$$\forall \varepsilon > 0 \exists \delta : \forall x \in \mathop{O}_{\circ}(a) \cap E \quad |f(x) - A| < \frac{\varepsilon}{2}$$

Теперь возьмём любые две точки $x'x'' \in O_{\mathfrak{s}}(a) \cap E$

Рассмотрим
$$|f(x') - f(x'')| = |(f(x') - A)|$$

ДЗ на 02.10.2018:

$$1. \lim_{x \to \frac{\pi}{4}} \frac{\cos 2x}{\pi - 4x}$$

2.
$$\lim_{x \to 0} \frac{\sqrt[3]{1+x}-1}{\arcsin \sqrt[5]{x}}$$

3.
$$\lim_{x \to 1} \frac{2^{2x} - 12 \cdot 2^x + 20}{2^{2x} - 5 \cdot 2^x + 6}$$

4.
$$\lim_{x \to \infty} x^2 (2^{\frac{1}{x}} - 3^{\frac{1}{x}})$$