Hochschule Flensburg, University of Applied Sciences Darf nur für Zwecke der Lehre verwendet werden

student / weti-lab-vt10@hs-flensburg.de 1/16/2025 3:46 PM/4.0.547

PARK - Main Result

Calculation: AEP_Vestas_Normal_01

Setup
AEP scaled to a full year based on number of samples
Scaling factor from 31.0 years to 1 year: 0.032

Calculation performed in UTM (north)-WGS84 Zone: 32 At the site centre the difference between grid north and true north is: 0.6°

Wake Model: N.O. Jensen (RISØ/EMD) Park 2 2018

Wake decay constant
Wake decay constant: 0.085 Mixed farmland Hub height dependent
Reference WTG: 01_VESTAS V150-4.5 4500 150.0 !O! hub: 125.0 m (TOT: 200.0 m) (1)

Scaler/wind data
Name EMD Default Measurement Mast Scaler
Terrain scaling Measured Data Scaling (WAsP Stability / A-Parameter)
Micro terrain flow model Wasperiod Used period 1/1/1994 1:00:00 AM - 1/1/2025
Metero object(s) MCPLT - MCP session (1) - [Neural Network]
Displacement height WAsP version WASP 11 Version 11.04.0026

Power correction

Power curve correction (adjusted IEC method, improved to match turbine control)

		Min	Max	Avg	Corr.	Neg. corr. [%]	Pos. corr. [%]
Air density					[/0]	[\0]	[/0]
From air density settings	[°C]	7.6	7.6	7.6			
From air density settings	[hPa]	990.7	990.7	990.7			
Resulting air density	[kg/m ³]	1.229	1.229	1.229			
Relative to 15°C at sea level	[%]	100.4	100.4	100.4	0.2	0.0	0.2

Scale 1:25,000

Calculated Annual Energy for Wind Farm

		00								
					Specific	results¤)		Wind speed		
WTG combination	Result	Result-10.0%	GROSS (no loss)	Wake loss	Capacity	Mean WTG	Full load	free	wake reduced	
	PARK		Free WTGs		factor	result	hours			
	[MWh/y]	[MWh/y]	[MWh/y]	[%]	[%]	[MWh/y]	[Hours/year]	[m/s]	[m/s]	
Wind farm	112,331.2	101,098.1	120,537.1	6.8	36.6	14,442.6	3,209	7.0	6.8	
a) Based on Result-10.0%										

Calculated Annual Energy for each of 7 new WTGs with total 31.5 MW rated power

V	/TG type					Power	curve	Annual E	nergy		Wind s	peed
V	alid Manufact.	Type-generator	Power,	Rotor	Hub	Creator	Name	Result	Result-10.0%	Wake	free	reduced
			rated	diameter	height					loss		
			[kW]	[m]	[m]			[MWh/y]	[MWh/y]	[%]	[m/s]	[m/s]
1 Y	es VESTAS	V150-4.5-4,500	4,500	150.0	125.0	USER	Level 0 - Calculated - PO4-0S & PO4 - 12-2021	16,773.7	15,096	2.9	7.01	6.91
2 Y	es VESTAS	V150-4.5-4,500	4,500	150.0	125.0	USER	Level 0 - Calculated - PO4-0S & PO4 - 12-2021	16,397.9	14,758	5.1	7.02	6.84
3 Y	es VESTAS	V150-4.5-4,500	4,500	150.0	125.0	USER	Level 0 - Calculated - PO4-0S & PO4 - 12-2021	15,754.7	14,179	8.2	6.99	6.71
4 Y	es VESTAS	V150-4.5-4,500	4,500	150.0	125.0	USER	Level 0 - Calculated - PO4-0S & PO4 - 12-2021	16,085.0	14,476	6.3	6.99	6.77
5 Y	es VESTAS	V150-4.5-4,500	4,500	150.0	125.0	USER	Level 0 - Calculated - PO4-0S & PO4 - 12-2021	15,954.9	14,359	6.9	6.98	6.74
6 Y	es VESTAS	V150-4.5-4,500	4,500	150.0	125.0	USER	Level 0 - Calculated - PO4-0S & PO4 - 12-2021	15,767.4	14,191	9.2	7.04	6.72
7 Y	es VESTAS	V150-4.5-4,500	4,500	150.0	125.0	USER	Level 0 - Calculated - PO4-0S & PO4 - 12-2021	15,597.6	14,038	9.1	6.99	6.68

WTG siting

	UTM (nor	th)-ETRS8	39 Zo	ne: 32								Calculation	n period
	Easting	Northing	Z	Row data/D	escription							Start	End
	_	_	[m]										
1 New	547,816	6,060,703	60.0	01_VESTAS	V150-4.5	4500	150.0	!O! hub:	125.0 m	(TOT:	200.0 m) (1)	1/1/1994	1/1/2025
2 New	547,696	6,061,714	60.0	02_VESTAS	V150-4.5	4500	150.0	!O! hub:	125.0 m	(TOT:	200.0 m) (7)	1/1/1994	1/1/2025
3 New	548,500	6,061,972	60.0	03_VESTAS	V150-4.5	4500	150.0	!O! hub:	125.0 m	(TOT:	200.0 m) (8)	1/1/1994	1/1/2025
4 New	548,532	6,060,864	60.0	04_VESTAS	V150-4.5	4500	150.0	!O! hub:	125.0 m	(TOT:	200.0 m) (9)	1/1/1994	1/1/2025
5 New	549,254	6,061,058	60.0	05_VESTAS	V150-4.5	4500	150.0	!O! hub:	125.0 m	(TOT:	200.0 m) (10)	1/1/1994	1/1/2025
6 New	549,128	6,061,708	60.0	06_VESTAS	V150-4.5	4500	150.0	!O! hub:	125.0 m	(TOT:	200.0 m) (11)	1/1/1994	1/1/2025
7 New	548,222	6,061,334	60.0	06 VESTAS	V150-4.5	4500	150.0	!O! hub:	125.0 m	(TOT:	200.0 m) (11)	1/1/1994	1/1/2025

Hochschule Flensburg, University of Applied Sciences Darf nur für Zwecke der Lehre verwendet werden

_ .

student / weti-lab-vt10@hs-flensburg.de calculated: 1/16/2025 3:46 PM/4.0.547

PARK - Production Analysis

Calculation: AEP_Vestas_Normal_01 $\,$ WTG: All new WTGs, Air density 1.229 kg/m³ Directional Analysis

Sector		0 N	1 NNE	2 ENE	3 E	4 ESE	5 SSE	6 S	7 SSW	8 WSW	9 W	10 WNW	11 NNW	Total
Model based energy	[MWh]	3,254.1	3,302.4	3,717.0	8,323.2	9,115.1	6,754.0	8,794.9	16,385.2	18,909.3	19,201.9	17,516.6	5,263.5	120,537.1
-Decrease due to wake losses	[MWh]	216.1	320.5	347.0	586.1	839.8	572.5	456.0	1,078.5	1,006.0	1,075.0	1,285.6	422.9	8,205.9
Resulting energy	[MWh]	3,038.0	2,981.8	3,370.1	7,737.1	8,275.3	6,181.5	8,338.9	15,306.7	17,903.3	18,126.9	16,231.0	4,840.6	112,331.2
Specific energy	[kWh/m ²]													908
Specific energy	[kWh/kW]													3,566
Decrease due to wake losses	[%]	6.6	9.7	9.3	7.0	9.2	8.5	5.2	6.6	5.3	5.6	7.3	8.0	6.81
Full Load Equivalent	[Hours/year]	96	95	107	246	263	196	265	486	568	575	515	154	3,566

Hochschule Flensburg, University of Applied Sciences Darf nur für Zwecke der Lehre verwendet werden

student / weti-lab-vt10@hs-flensburg.de 1/16/2025 3:46 PM/4.0.547

PARK - Power Curve Analysis

Calculation: AEP_Vestas_Normal_01 WTG: 1 - VESTAS V150-4.5 4500 150.0 !O!, Hub height: 125.0 m

Level 0 - Calculated - PO4-0S & PO4 - 12-2021

Source: Manufacturer

Source/Date Created by Created Edited Stop wind speed Power control CT curve type Generator type Specific power kW/m² [m/s]12/3/2021 8/30/2022 8/30/2022 Pitch User defined Variable 0.25

Based on Document no.: 0067-7057.V04.

HP curve comparison - Note: For standard air density

Vmean	[m/s]	5	6	7	8	9	10
HP value Pitch, variable speed (2013)	[MWh]	8,677	12,863	16,760	20,128	22,908	25,089
VESTAS V150-4.5 4500 150.0 !O! Level 0 - Calculated - PO4-0S & PO4 - 12-2021	[MWh]	8,804	12,992	16,852	20,105	22,641	24,450
Check value	[%]	-1	-1	-1	0	1	3

The table shows comparison between annual energy production calculated on basis of simplified "HP-curves" which assume that all WTGs performs quite similar - only specific power loading (kW/m^2) and single/dual speed or stall/pitch decides the calculated values. Productions are without wake losses

The method is refined in EMD report "20 Detailed Case Studies comparing Project Design Calculations and actual Energy Productions for Wind Energy Projects worldwide", jan 2003.

Use the table to evaluate if the given power curve is reasonable - if the check value are lower than -5%, the power curve probably is too optimistic due to uncertainty in power curve measurement.

Power curve

Original data, Air density: 1.225 kg/m³

oga		., , .		.,
Wind speed	Power	Ср	Wind speed	Ct curve
[m/s]	[kW]		[m/s]	
3.0	81.0	0.28	3.0	0.89
3.5	172.0	0.37	3.5	0.85
4.0	285.0	0.41	4.0	0.83
4.5	424.0	0.43	4.5	0.83
5.0	596.0	0.44	5.0	0.82
5.5	808.0	0.45	5.5	0.82
6.0	1,061.0	0.45	6.0	0.81
6.5	1,360.0	0.46	6.5	0.81
7.0	1,710.0	0.46	7.0	0.81
7.5	2,106.0	0.46	7.5	0.80
8.0	2,549.0	0.46	8.0	0.79
8.5	3,021.0	0.45	8.5	0.76
9.0	3,471.0	0.44	9.0	0.70
9.5	3,861.0	0.42	9.5	0.63
10.0	4,180.0	0.39	10.0	0.56
10.5	4,372.0	0.35	10.5	0.49
11.0	4,470.0	0.31	11.0	0.42
11.5	4,494.0	0.27	11.5	0.36
12.0	4,500.0	0.24	12.0	0.31
12.5	4,500.0	0.21	12.5	0.27
13.0	4,500.0	0.19	13.0	0.24
13.5 14.0	4,500.0 4,500.0	0.17	13.5	0.22 0.19
14.0	4,500.0	0.15	14.0 14.5	
15.0	4,500.0	0.14	15.0	0.17
15.5	4,500.0	0.12	15.5	0.16 0.14
16.0	4,500.0	0.10	16.0	0.13
16.5	4,498.0	0.09	16.5	0.13
17.0	4,473.0	0.09	17.0	0.12
17.5	4.394.0	0.08	17.5	0.10
18.0	4.268.0	0.07	18.0	0.09
18.5	4.139.0	0.06	18.5	0.08
19.0	4,031.0	0.05	19.0	0.07
19.5	3,909.0	0.05	19.5	0.06
20.0	3.771.0	0.04	20.0	0.06
20.5	3,607.0	0.04	20.5	0.05
21.0	3.408.0	0.03	21.0	0.05
21.5	3.180.0	0.03	21.5	0.04
22.0	2,917.0	0.03	22.0	0.04
22.5	2,645.0	0.02	22.5	0.03
23.0	2,363.0	0.02	23.0	0.03
23.5	2,070.0	0.01	23.5	0.02
24.0	1,782.0	0.01	24.0	0.02
24.5	1.561.0	0.01	24.5	0.02

Power and efficiency vs. wind speed

Data used in calculation, Mean air density: 1.229 kg/m³

Wind speed	Power	Ср
[m/s]	[kW]	
1.0	0.0	0.00
2.0	0.0	0.00
3.0	81.6	0.28
4.0	286.3	0.41
5.0	598.5	0.44
6.0	1,065.2	0.45
7.0	1,716.5	0.46
8.0	2,557.8	0.46
9.0	3,479.6	0.44
10.0	4,185.1	0.39
11.0	4,470.6	0.31
12.0	4,500.0	0.24
13.0	4,500.0	0.19
14.0	4,500.0	0.15
15.0	4,500.0	0.12
16.0	4,499.9	0.10
17.0	4,473.0	0.08
18.0	4,268.0	0.07
19.0	4,031.0	0.05
20.0	3,771.0	0.04
21.0	3,408.0	0.03
22.0	2,917.0	0.03
23.0	2,363.0	0.02
24.0	1,782.0	0.01

Hochschule Flensburg, University of Applied Sciences Darf nur für Zwecke der Lehre verwendet werden

_

student / weti-lab-vt10@hs-flensburg.de Calculated: 1/16/2025 3:46 PM/4.0.547

PARK - Wind Data Analysis

Calculation: AEP_Vestas_Normal_01 Wind data: 1 - 01_VESTAS V150-4.5 4500 150.0 !O! hub: 125.0 m (TOT: 200.0 m) (1); Hub height: 125.0

Site coordinates

UTM (north)-ETRS89 Zone: 32 East: 547,816 North: 6,060,703

01_VESTAS V150-4.5 4500 150.0 !O! hub: 125.0 m (TOT: 200.0 m) (1)

Masts used Take nearest

Winddata for site

Sector	Free mean wind speed	Wake reduced mean wind	Frequency
		speed	
	[m/s]	[m/s]	[%]
0 N	5.9	5.6	3.6
1 NNE	6.0	5.2	3.6
2 ENE	5.9	5.4	4.4
3 E	6.7	6.2	7.5
4 ESE	6.6	6.6	8.3
5 SSE	6.5	6.5	6.3
6 S	7.0	7.0	7.1
7 SSW	7.5	7.5	12.0
8 WSW	7.7	7.7	13.6
9 W	7.4	7.4	14.6
10 WNW	7.3	7.3	13.5
11 NNW	6.2	6.2	5.5
All	7.0	6.9	100.0

Energy Rose (WTG) (kWh/m²/year)

Frequency (%)

Hochschule Flensburg, University of Applied Sciences Darf nur für Zwecke der Lehre verwendet werden

_ .

student / weti-lab-vt10@hs-flensburg.de calculated: 1/16/2025 3:46 PM/4.0.547

PARK - Wind Data Analysis

Calculation: AEP_Vestas_Normal_01 Wind data: 2 - 02_VESTAS V150-4.5 4500 150.0 !O! hub: 125.0 m (TOT: 200.0 m) (7); Hub height: 125.0

Site coordinates

UTM (north)-ETRS89 Zone: 32 East: 547,696 North: 6,061,714

02_VESTAS V150-4.5 4500 150.0 !O! hub: 125.0 m (TOT: 200.0 m) (7)

Masts used Take nearest

Winddata for site

Sector	Free mean wind speed	Wake reduced mean	wind	Frequency
		speed		
	[m/s]	[m/s]		[%]
0 N	5.9		5.9	3.6
1 NNE	6.0		6.0	3.6
2 ENE	6.0		5.6	4.4
3 E	6.7		6.3	7.5
4 ESE	6.6		5.6	8.3
5 SSE	6.5		6.1	6.3
6 S	7.0		6.7	7.1
7 SSW	7.6		7.6	12.0
8 WSW	7.7		7.7	13.6
9 W	7.5		7.5	14.6
10 WNW	7.3		7.3	13.5
11 NNW	6.1		6.1	5.5
All	7.0		6.8	100.0

Energy Rose (WTG) (kWh/m²/year)

Frequency (%)

Hochschule Flensburg, University of Applied Sciences Darf nur für Zwecke der Lehre verwendet werden

_

student / weti-lab-vt10@hs-flensburg.de Calculated: 1/16/2025 3:46 PM/4.0.547

PARK - WTG distances

Calculation: AEP_Vestas_Normal_01

WTG distances

Z	Nearest WTG	Z	Horizontal	Distance in
			distance	rotor diameters
[m]		[m]	[m]	
60.0	4	60.0	734	4.9
60.0	7	60.0	650	4.3
60.0	6	60.0	681	4.5
60.0	7	60.0	562	3.7
60.0	6	60.0	662	4.4
60.0	5	60.0	662	4.4
60.0	4	60.0	562	3.7
60.0		60.0	562	3.7
60.0		60.0	734	4.9
	[m] 60.0 60.0 60.0 60.0 60.0 60.0 60.0	[m] 60.0 4 60.0 7 60.0 6 60.0 7 60.0 6 60.0 5 60.0 4 60.0	[m] [m] 60.0 4 60.0 60.0 7 60.0 60.0 6 60.0 60.0 7 60.0 60.0 6 60.0 60.0 5 60.0 60.0 4 60.0 60.0 60.0	[m] [m] distance [m] 60.0 4 60.0 734 60.0 7 60.0 650 60.0 6 60.0 681 60.0 7 60.0 562 60.0 6 60.0 662 60.0 5 60.0 662 60.0 4 60.0 562 60.0 6 60.0 562 60.0 5 60.0 562 60.0 60.0 562

Scale 1:25,000

New WTG

Licensed user:

Hochschule Flensburg, University of Applied Sciences Darf nur für Zwecke der Lehre verwendet werden

_ _

student / weti-lab-vt10@hs-flensburg.de calculated: 1/16/2025 3:46 PM/4.0.547

PARK - Time varying AEP

Calculation: AEP_Vestas_Normal_01

Windfarm: 31.5 MW based on 7 turbines of type VESTAS V150-4.5 4500 150.0 !O!.

Selection: All new WTGs

Calculated mean yield per month and hour [MWh]. The result includes wake losses and any curtailment losses.

Values are scaled to a full year, see correction factors at main result page.

Hour/Month [MWh]	1	2	3	4	5	6	7	8	9	10	11	12	Grand Total
0	538	484	471	386	374	340	327	326	381	472	474	510	5,083
1	531	481	470	381	359	328	312	333	367	448	478	505	4,994
2	530	476	467	382	354	326	318	326	367	446	473	519	4,984
3	527	476	454	370	360	313	320	320	361	452	474	502	4,929
4	539	478	462	378	354	317	316	319	367	447	467	506	4,951
5	529	482	456	363	354	316	310	309	364	443	450	511	4,885
6	526	469	449	353	332	296	290	306	356	453	444	500	4,774
7	514	463	445	335	297	286	273	269	331	437	440	491	4,581
8	509	456	412	289	286	271	266	253	316	421	422	476	4,376
9	491	440	398	287	265	271	270	247	290	393	404	466	4,221
10	491	422	398	292	269	276	273	263	320	389	405	457	4,254
11	477	412	400	295	275	273	266	257	304	382	376	444	4,160
12	467	427	406	312	300	300	292	283	332	400	405	449	4,375
13	481	441	430	337	317	321	305	300	356	421	404	452	4,566
14	481	440	447	350	334	339	324	317	345	424	419	453	4,674
15	487	453	451	351	339	338	322	306	359	427	406	456	4,696
16	484	436	434	349	331	323	305	305	345	415	416	456	4,598
17	487	427	424	337	325	315	297	294	338	405	420	467	4,536
18	487	433	431	334	310	294	288	277	330	412	425	473	4,494
19	511	448	442	343	324	292	282	281	335	441	438	469	4,606
20	513	459	460	361	345	284	288	285	345	445	444	486	4,717
21	521	473	479	369	343	311	296	300	368	462	460	484	4,866
22	523	481	482	386	364	316	306	314	367	480	470	501	4,990
23	522	474	468	387	362	325	316	329	394	479	463	499	5,018
Grand Total	12,166	10,930	10,637	8,327	7,874	7,372	7,164	7,121	8,339	10,392	10,477	11,533	112,331

Hour/Month [MW]	1	2	3	4	5	6	7	8	9	10	11	12	Grand Total
0	17.3	17.3	15.2	12.9	12.1	11.3	10.5	10.5	12.7	15.2	15.8	16.5	13.9
1	17.1	17.2	15.2	12.7	11.6	10.9	10.1	10.7	12.2	14.4	15.9	16.3	13.7
2	17.1	17.0	15.1	12.7	11.4	10.9	10.3	10.5	12.2	14.4	15.8	16.7	13.7
3	17.0	17.0	14.7	12.3	11.6	10.4	10.3	10.3	12.0	14.6	15.8	16.2	13.5
4	17.4	17.1	14.9	12.6	11.4	10.6	10.2	10.3	12.2	14.4	15.6	16.3	13.6
5	17.1	17.2	14.7	12.1	11.4	10.5	10.0	10.0	12.1	14.3	15.0	16.5	13.4
6	17.0	16.8	14.5	11.8	10.7	9.9	9.4	9.9	11.9	14.6	14.8	16.1	13.1
7	16.6	16.5	14.4	11.2	9.6	9.5	8.8	8.7	11.0	14.1	14.7	15.8	12.6
8	16.4	16.3	13.3	9.6	9.2	9.0	8.6	8.2	10.5	13.6	14.1	15.4	12.0
9	15.8	15.7	12.8	9.6	8.5	9.0	8.7	8.0	9.7	12.7	13.5	15.0	11.6
10	15.8	15.1	12.8	9.7	8.7	9.2	8.8	8.5	10.7	12.5	13.5	14.7	11.7
11	15.4	14.7	12.9	9.8	8.9	9.1	8.6	8.3	10.1	12.3	12.5	14.3	11.4
12	15.1	15.3	13.1	10.4	9.7	10.0	9.4	9.1	11.1	12.9	13.5	14.5	12.0
13	15.5	15.7	13.9	11.2	10.2	10.7	9.8	9.7	11.9	13.6	13.5	14.6	12.5
14	15.5	15.7	14.4	11.7	10.8	11.3	10.5	10.2	11.5	13.7	14.0	14.6	12.8
15	15.7	16.2	14.6	11.7	10.9	11.3	10.4	9.9	12.0	13.8	13.5	14.7	12.9
16	15.6	15.6	14.0	11.6	10.7	10.8	9.8	9.8	11.5	13.4	13.9	14.7	12.6
17	15.7	15.3	13.7	11.2	10.5	10.5	9.6	9.5	11.3	13.0	14.0	15.1	12.4
18	15.7	15.5	13.9	11.1	10.0	9.8	9.3	8.9	11.0	13.3	14.2	15.3	12.3
19	16.5	16.0	14.2	11.4	10.4	9.7	9.1	9.1	11.2	14.2	14.6	15.1	12.6
20	16.5	16.4	14.9	12.0	11.1	9.5	9.3	9.2	11.5	14.4	14.8	15.7	12.9
21	16.8	16.9	15.5	12.3	11.1	10.4	9.5	9.7	12.3	14.9	15.3	15.6	13.3
22	16.9	17.2	15.5	12.9	11.7	10.5	9.9	10.1	12.2	15.5	15.7	16.2	13.7
23	16.8	16.9	15.1	12.9	11.7	10.8	10.2	10.6	13.1	15.5	15.4	16.1	13.7
Grand Total	16.4	16.3	14.3	11.6	10.6	10.2	9.6	9.6	11.6	14.0	14.6	15.5	12.8

Project:

Exam_16.01

Licensed user:

Hochschule Flensburg, University of Applied Sciences Darf nur für Zwecke der Lehre verwendet werden

_

student / weti-lab-vt10@hs-flensburg.de calculated: 1/16/2025 3:46 PM/4.0.547

PARK - Time varying AEP

Calculation: AEP_Vestas_Normal_01

Windfarm: 31.5 MW based on 7 turbines of type VESTAS V150-4.5 4500 150.0 !O!.

Selection: All new WTGs

Calculated mean yield per month and hour [MWh]. The result includes wake losses and any curtailment losses.

Values are scaled to a full year, see correction factors at main result page.

Licansad usar-

Hochschule Flensburg, University of Applied Sciences Darf nur für Zwecke der Lehre verwendet werden

_ .

student / weti-lab-vt10@hs-flensburg.de Calculated: 1/16/2025 3:46 PM/4.0.547

PARK - Time varying AEP

Calculation: AEP_Vestas_Normal_01

Windfarm: 31.5 MW based on 7 turbines of type VESTAS V150-4.5 4500 150.0 !O!.

Selection: All new WTGs

Calculated mean yield per month and hour [MWh]. The result includes wake losses and any curtailment losses.

Hours	Hours [%]	Hours accumulated	Power [MW]	Power (MW/WTG)
301	3.4	301	31.5	4.5
641	7.3	942	30.1 - 31.5	4.3 - 4.5
226	2.6	1168	28.8 - 30.1	4.1 - 4.3
190	2.2	1358	27.4 - 28.8	3.9 - 4.1
181	2.1	1539	26.0 - 27.4	3.7 - 3.9
184	2.1	1723	24.7 - 26.0	3.5 - 3.7
182	2.1	1905	23.3 - 24.7	3.3 - 3.5
189	2.2	2094	21.9 - 23.3	3.1 - 3.3
197	2.2	2290	20.5 - 21.9	2.9 - 3.1
212	2.4	2502	19.2 - 20.5	2.7 - 2.9
226	2.6	2728	17.8 - 19.2	2.5 - 2.7
241	2.7	2969	16.4 - 17.8	2.3 - 2.5
263	3.0	3232	15.1 - 16.4	2.2 - 2.3
286	3.3	3518	13.7 - 15.1	2.0 - 2.2
311	3.5	3829	12.3 - 13.7	1.8 - 2.0
336	3.8	4165	11.0 - 12.3	1.6 - 1.8
375	4.3	4540	9.6 - 11.0	1.4 - 1.6
408	4.7	4948	8.2 - 9.6	1.2 - 1.4
440	5.0	5388	6.8 - 8.2	1.0 - 1.2
482	5.5	5870	5.5 - 6.8	0.8 - 1.0
530	6.0	6400	4.1 - 5.5	0.6 - 0.8
571	6.5	6971	2.7 - 4.1	0.4 - 0.6
607	6.9	7579	1.4 - 2.7	0.2 - 0.4
622	7.1	8201	0.0 - 1.4	0.0 - 0.2
565	6.4	8766	0.0	0.0

Hochschule Flensburg, University of Applied Sciences Darf nur für Zwecke der Lehre verwendet werden

student / weti-lab-vt10@hs-flensburg.de 1/16/2025 3:46 PM/4.0.547

PARK - Scaling info

Calculation: AEP_Vestas_Normal_01

Scaler settings

RIX correction

Name EMD Default Measurement Mast Scaler Terrain scaling

Measured Data Scaling (WAsP Stability / A-Parameter)

No RIX correction from objects

Displacement height Site data: RESGEN (5) Micro terrain flow model

Site Data: Site data: RESGEN (5)

Obstacles:

All obstacles used

Roughness:

Terrain data files used in calculation:

C:\Users\student\Desktop\Exam_16_01_2025\Windpro_exam_16.01\ROUGHNESSLINE_ONLINEDATA_0.wpo Min X: 518,359, Max X: 578,403, Min Y: 6,030,681, Max Y: 6,091,978, Width: 60,044 m, Height: 61,297 m

Orography:

Terrain data files used in calculation:

 $\verb|C:\Users\tudent\Desktop\Exam_16_01_2025\Windpro_exam_16.01\CONTOURLINE_ONLINEDATA_0.wpo| \\$ Min X: 538,612, Max X: 558,177, Min Y: 6,051,218, Max Y: 6,071,644, Width: 19,565 m, Height: 20,426 m

Post calibration

Overall factor 1.0000 0.0000 Overall offset By sector No By month No By hour No By wind speed No

Licensed user:

Hochschule Flensburg, University of Applied Sciences Darf nur für Zwecke der Lehre verwendet werden

_ .

student / weti-lab-vt10@hs-flensburg.de Calculated: 1/16/2025 3:46 PM/4.0.547

PARK - Map

Calculation: AEP_Vestas_Normal_01

& WTG area

New WTG