

Why

1

Definition

Let $(A, +, \cdot)$ be an ring. A polynomial in A of degree d a finite sequence of length d+1. We call the elements of the sequence the coefficients of the polynomial.

Let $c = (c_0, c_1, \dots, c_{d-1}, c_d)$ be a polynomial of degree d. The polynomial function or function of the polynomial c is the function $f: A \to A$ defined by

$$f(a) = c_0 + c_1 a^1 + c_2 a^2 + \dots + c_d a^d.$$

In accordance with this terminology, we often call function $f: A \to A$ a polynomial if there exists a polynomial c so that f is the polynomial function of c.

The function $f: A \to A$ is a polynomial of degree 0 and order 1 if there exists c_0 so that

$$f(a) = c_0$$

for all $a \in A$.

The function $g: A \to A$ is a polynomial of degree 1 and order 2 if there exists c_0 and c_1 so that

$$g(a) = c_0 + c_1 a$$

¹Future editions will include, and most likely will build on quadratics.

The function $h: A \to A$ is a polynomial of degree 2 and order 3 if there exists c_0 and c_1 so that

$$h(a) = c_0 + c_1 a + c_2 a^2.$$

In other words, a second degree polynomial is a quadratic.

The function $p: A \to A$ is a polynomial of degree d and order d+1 if there exists a d+1 length sequence (c_0, c_1, \ldots, c_d) in A so that

$$p(a) = c_0 + c_1 a + \dots + c_d a^d.$$

