Chương 2: Khối xử lý trung tâm CPU

Chương 2: Nội dung chính

- □ Sơ đồ khối tổng quát
- □ Chu kỳ xử lý lệnh
- □ Thanh ghi
- □ Khối điều khiển (CU)
- □ Khối số học và logic (ALU)
- □ Bus trong CPU

CPU - Sơ đồ khối tổng quát

CU: (Control Unit) Khối điều khiển

IR: (Instruction Register) Thanh ghi

lệnh

PC: (Program Counter) Bộ đếm

chương trình

MAR: (Memory Address Register)

Thanh ghi địa chỉ bộ nhớ

MBR: (Memory Buffer Register) Thanh

ghi nhớ đệm

A: (Accumulator Register) Thanh ghi

tích lũy

Y, Z: (Temporary Register) Thanh ghi

tạm thời

FR: (Flag Register) Thanh ghi cờ

ALU: (Arithmetic and Logic Unit) Khối

tính toán số học -logic

Chu kỳ xử lý lệnh

- 1. Khi một chương trình được chạy, hệ điều hành tải mã chương trình vào bộ nhớ trong
- 2. Địa chỉ lệnh đầu tiên của chương trình được đưa vào thanh ghi PC
- 3. Địa chỉ của ô nhớ chứa lệnh được chuyển tới bus A qua thanh ghi MAR
- 4. Tiếp theo, bus A truyền địa chỉ tới khối quản lý bộ nhớ MMU (Memory Management Unit)
- 5. MMU chọn ô nhớ và sinh ra tín hiệu READ

Chu kỳ xử lý lệnh

- 6. Lệnh chứa trong ô nhớ được chuyển tới thanh ghi MBR qua bus D
- 7. MBR chuyển lệnh tới thanh ghi IR. Sau đó IR lại chuyển lệnh tới CU
- 8. CU giải mã lệnh và sinh ra các tín hiệu xử lý cho các đơn vị khác, ví dụ như ALU để thực hiện lệnh
- 9. Địa chỉ trong PC được tăng lên để trỏ tới lệnh tiếp theo của chương trình sẽ được thực hiện
- 10. Thực hiện lại các bước 3->9 để chạy hết các lệnh của chương trình

Thanh ghi

- □ Thanh ghi là thành phần nhớ ở bên trong CPU:
 - Lưu trữ tạm thời lệnh và dữ liệu cho CPU xử lý
 - Dung lượng nhỏ, số lượng ít
 - Tốc độ rất cao (bằng tốc độ CPU)
- □ Các CPU thế hệ cũ (80x86) có 16 32 thanh ghi. CPU thế hệ mới (Intel Pentium 4, Core 2 Duo) có hàng trăm thanh ghi
- □ Kích thước thanh ghi phụ thuộc vào thiết kế CPU: 8, 16, 32, 64, 128 và 256 bit
 - 8086 và 80286: 8 và 16 bit
 - 80386, Pentium II: 16 32 bit
 - Pentium IV, Core Duo: 32, 64 và 128 bit

Thanh ghi tích lũy A (Accumulator)

- Thanh ghi tích lũy hay thanh ghi A là một trong những thanh ghi quan trọng nhất của CPU
 - Lưu trữ các toán hạng đầu vào
 - Lưu kết quả đầu ra
- □ Kích thước của thanh ghi A tương ứng với độ dài từ xử lý của CPU: 8, 16, 32, 64 bit
- □ Cũng được sử dụng để trao đổi dữ liệu với các thiết bị vào ra

Thanh ghi tích lũy

- \Box Ví dụ: thực hiện phép tính x + y -> s
 - Toán hạng x được đưa vào thanh ghi A
 - Toán hạng y được đưa vào thanh ghi Y
 - ALU thực hiện phép cộng A+Y, kết quả được lưu vào Z
 - Kết quả sau đó lại được đưa vào A

Bộ đếm chương trình PC

- Program Counter hay Instruction Pointer luu địa chỉ bộ nhớ của lệnh tiếp theo
- PC chứa địa chỉ ô nhớ chứa lệnh đầu tiên của chương trình khi nó được kích hoạt và được tải vào bộ nhớ
- Sau khi CPU chạy xong 1 lệnh, địa chỉ ô nhớ chứa lệnh tiếp theo được tải vào PC
- □ Kích thước của PC phụ thuộc vào thiết kế CPU: 8, 16, 32, 64 bit

Thanh ghi trạng thái FR

- Mỗi bit của thanh ghi cờ lưu trữ trạng thái kết quả phép tính được ALU thực hiện
- □ Có 2 kiểu cờ:
 - Cò trạng thái: CF, OF, AF, ZF, PF, SF
 - Cờ điều khiển: IF, TF, DF
- Các bit cờ thường được dùng là các điều kiện rẽ nhánh lệnh tạo logic chương trình
- Kích thước FR phụ thuộc thiết kế CPU

CPU Registers - FR

Flag	ZF	SF	CF	AF	F	OF	PF	1
Bit No	7	9	5	4	3	2	1	0

- □ ZF: Zero Flag, ZF=1 nếu kết quả =0 và ZF=0 nếu kết quả <>0.
- □ SF: Sign Flag, SF=1 nếu kết quả âm và SF=0 nếu kết quả dương
- □ CF: Carry Flag, CF=1 nếu có nhớ/mượn ở bit trái nhất
- □ AF: Auxiliary Flag, AF=1 nếu có nhớ ở bit trái nhất của nibble
- □ OF: Overflow Flag, OF=1 nếu có tràn, OF=0 ngược lại
- □ PF: Parity Flag, PF=1 nếu tổng số bit 1 trong kết quả là số lẻ, PF=0 ngược lại
- ☐ IF: Interrupt Flag, IF=1: ngắt được phép, IF=0: cấm ngắt

Thanh ghi trạng thái của 8086

Con trỏ ngăn xếp (SP: Stack Pointer)

- □ Ngăn xếp là 1 đoạn bộ nhớ đặc biệt hoạt động theo nguyên tắc vào sau ra trước (LIFO)
- Con trỏ ngăn xếp là thanh ghi luôn trỏ tới đỉnh của ngăn xếp
- 2 thao tác với ngăn xếp:
 - Push: đẩy dữ liệu vào ngăn xếp
 SP ← SP + 1
 {SP} ← Data
 - Pop: lấy dữ liệu ra khỏi ngăn xếp Register ← {SP} SP ← SP - 1

Stack

Các thanh ghi đa năng

- Có thể sử dụng cho nhiều mục đích:
 - Lưu các toán hạng đầu vào
 - Lưu các kết quả đầu ra
- □ Ví dụ: CPU 8086 có 4 thanh ghi đa năng
 - AX: Accumulator Register
 - BX: Base Register
 - CX: Counter Register
 - DX: Data Register

Thanh ghi lệnh IR

- Lưu trữ lệnh đang được xử lý
- □ IR lấy lệnh từ MBR và chuyển nó tới CU để giải mã lệnh

Thanh ghi MBR và MAR

- □ MAR: thanh ghi địa chỉ bộ nhớ
 - Giao diện giữa CPU và bus địa chỉ
 - Nhận địa chỉ bộ nhớ của lệnh tiếp theo từ PC và chuyển nó tới bus địa chỉ
- MBR: thanh ghi đệm bộ nhớ
 - Giao diện giữa CPU và bus dữ liệu
 - Nhận lệnh từ bus dữ liệu và chuyển nó tới IR

Các thanh ghi tạm thời

- CPU thường sử dụng một số thanh ghi tạm thời để:
 - Lưu trữ các toán hạng đầu vào
 - Lưu các kết quả đầu ra
 - Hỗ trợ xử lý song song (tại một thời điểm chạy nhiều hơn 1 lệnh)
 - Hỗ trợ thực hiện lệnh theo cơ chế thực hiện tiên tiến kiểu không trật tự (OOO Out Of Order execution)

Khối điều khiển CU

Khối điều khiển CU

- Điều khiển tất cả các hoạt động của CPU theo xung nhịp đồng hồ
- Nhận 3 tín hiệu đầu vào:
 - Lệnh từ IR
 - Giá trị các cờ trạng thái
 - Xung đồng hồ
- CU sinh 2 nhóm tín hiệu đầu ra:
 - Nhóm tín hiệu điều khiển các bộ phận bên trong CPU
 - Nhóm tín hiệu điều khiển các bộ phận bên ngoài CPU
- Sử dụng nhịp đồng hồ để đồng bộ hóa các đơn vị bên trong CPU và giữa CPU với các thành phần bên ngoài

Khối số học và logic ALU

Khối số học và logic ALU

- Bao gồm các đơn vị chức năng con để thực hiện các phép toán số học và logic:
 - Bộ cộng (ADD), bộ trừ (SUB), bộ nhân (MUL), bộ chia (DIV), ...
 - Các bộ dịch (SHIFT) và quay (ROTATE)
 - Bộ phủ định (NOT), bộ và (AND), bộ hoặc (OR), và bộ hoặc loại trừ (XOR)
- □ ALU có:
 - 2 cổng IN để nhận đầu vào từ các thanh ghi
 - 1 cổng OUT được nối với bus trong để gửi kết quả tới các thanh ghi

Bus trong

- Bus trong là kênh liên lạc của tất cả các thành phần trong CPU
- □ Hỗ trợ liên lạc 2 chiều
- Bus trong có giao diện để trao đổi thông tin với bus ngoài (bus hệ thống)
- Bus trong luôn có băng thông lớn và tốc độ nhanh hơn so với bus ngoài