MODULE 13: Selected Topics

Lecture 13.1 RISC Processors

Prepared By:

- Scott F. Midkiff, PhD
- · Luiz A. DaSilva, PhD
- Kendall E. Giles, PhD

Electrical and Computer Engineering
Virginia Tech

Lecture 13.1 Objectives

- Cite specific features to differentiate between CISC and RISC architectures
- Discuss the performance equation and how it relates to the performance of CISC and RISC processors
- Describe the concept of register windows

RISC Processors

- Traditional processors were Complex Instructions Set Computers (CISC)
- Reduced Instruction Set Computer (RISC) concept was a departure from the CISC approach
 - Use a "simple" instruction set to reduce the clock rate
 - Hardware resources saved due to simpler control can be reallocated to more on-chip registers, instructions pipelines, and cache memory for instructions and data

History of RISC Processors

- Concept used at by John Cocke at IBM in the mid-1970s in the Model 801 processor, but not widely disseminated
- 1980 paper by Patterson and Ditzel popularized the idea
 - Defined and disseminated the concept
 - Provide analysis to support the concept
- Several RISC processors were widely used MIPS, Motorola/IBM PowerPC, Sun SPARC, and others
- Availability of more hardware has blurred the differences between RISC and CISC architectures
 - RISC processors have become more complex
 - CISC processors have adopted some RISC ideas

CISC versus RISC

CISC

- Complex instruction set computers evolved as more functionality was added to processors
- Powerful instructions reduce program size
- Closely matched to highlevel languages

RISC

- Simple instructions with few operations and limited options
- Simplicity enables high clock rates (low execution time per instruction)
- Leverages compiler technology
- More "real estate" available for registers

As a checkpoint of your understanding, please pause the video and make sure you can do the following:

Cite specific features to differentiate between CISC and RISC architectures

If you have any difficulties, please review the lecture video before continuing.

Computer Performance Equation

Which factors lead to the best performance?

CISC Versus RISC Example

Compute 4×12

CISC

mov ax,12

mov bx,4

mul bx,ax

Cycles = 2 + 2 + 30

Cycles = 34

RISC

mov ax,0

mov bx,12

mov cx,4

LP: add ax,bx

loop LP

Cycles = 1+1+1+4(1+1)

Cycles = 11

CISC Versus RISC Example (cont'd)

- Cycles to perform the computation
 - CISC: 34 cycles (due to relatively expensive multiply)
 - RISC: 11 cycles (but depends on the data)
- For this particular example:
 - RISC requires fewer cycles, so it is likely faster
 - RISC cycles should be faster than CISC cycles, so the computation is, indeed, faster on a RISC
- Your results may vary!

Register Windows

- RISC architecture frees transistors for use as registers
- Register window concept grew out of RISC processors
- A procedure needs registers for four purposes
 - Registers to hold global data (for all procedures)
 - Registers to hold parameters from the calling procedure (inputs)
 - Registers for local data
 - Registers to hold parameters for called procedures (outputs)

Register Windows Example

As a checkpoint of your understanding, please pause the video and make sure you can do the following:

- Discuss the performance equation and how it relates to the performance of CISC and RISC processors
- Describe the concept of register windows

If you have any difficulties, please review the lecture video before continuing.

Summary

- Reduced Instruction Set Computers
 - Simplify the instruction set to reduce the number of cycles per instruction
 - Simpler control logic reduces the time per cycle
 - Savings in transistors can be used for registers, instruction pipelines, and cache
 - But, simpler instructions means that a program requires more instructions to be executed
- Today:
 - "RISC" processors use some more complex features
 - "CISC" processors have adopted some RISC features

MODULE 13: Selected Topics

Lecture 13.1 RISC Processors

Prepared By:

- Scott F. Midkiff, PhD
- · Luiz A. DaSilva, PhD
- Kendall E. Giles, PhD
 Electrical and Computer Engineering
 Virginia Tech

