ECN 102, Summer 2020

Week 3 Recap Correlation and Regression

Correlation

• Sample correlation between x and y is given by

$$r_{xy} \equiv \frac{\sum_{i=1}^{n} (X_i - \overline{X})(Y_i - \overline{Y})}{\sqrt{\sum_{i=1}^{n} (X_i - \overline{X})^2} \sqrt{\sum_{i=1}^{n} (Y_i - \overline{Y})^2}}$$

- Positive if X and Y both tend to be above their means simultaneously; and if both tend to be below their means simultaneously
- Negative if X tends to be above its mean when Y is below its mean; and vice versa
- $r_{xy} = 1$ is a perfect positive correlation, $r_{xy} = -1$ is perfect negative correlation
- ρ_{xy} is the population correlation

Positive Correlation

Negative Correlation

Correlation Test

- Two-tailed example: $H_0: \rho_{xy}=0$ against $H_1: \rho_{xy}\neq 0$
- Therefore rejecting null hypothesis means we conclude non-zero correlation
- Use test-statistic

$$t \equiv \frac{r_{xy} - 0}{\sqrt{\frac{1 - r_{xy}^2}{n - 2}}} \sim T(n - 2)$$

- Then interpret t-statistic in the same way as before: find a critical value or a p-value
- Can also use cor.test() function in R

Population Regression

- Suppose we have population data for both X and Y
- The regression line is the line of best fit
- It's a line, so it can expressed in terms of an intercept and a slope

$$y = \beta_1 + \beta_2 x$$

- But it's only a line of best fit, usually not a line of perfect fit
- \bullet The difference between the actual data and the population regression line are called *disturbances*, denoted ϵ

Therefore can write $y_i = \beta_1 + \beta_2 x_i + \epsilon_i$ as exact relationship

Sample Regression

- We almost never have population data, we just have a sample
- So we do a regression line through the sample instead
- It's a line, so it can expressed in terms of an intercept and a slope

$$y=b_1+b_2x$$

- So b_1 is an estimate of β_1 and b_2 is an estimate of β_2
- But it's only a line of best fit, usually not a line of perfect fit
- The difference between the actual data and the sample regression line are called *residuals*, denoted *e*

Only have sample of red dots, so regression line is a little different

Therefore can write $y_i = b_1 + b_2 x_i + e_i$ as exact relationship

Finding Line of Best Fit

- The residuals capture how far the data are from the line
- Intuition: maximizing rightness is equivalent to minimizing wrongness
- The residuals capture how "wrong" the line is relative data
- So let's minimize an overall measure of the residuals
- We minimize the residual sum of squares (RSS),

RSS
$$\equiv \sum_{i=1}^{n} e_i^2 = \sum_{i=1}^{n} (Y_i - \widehat{Y}_i)^2$$

 This process gives b₁ and b₂, and the technique is called ordinary least squares (OLS)

Formulas for Line of Best Fit

Don't have to know how to minimize RSS yourself (ECN 140 stuff), so here are the results.

$$b_2 = \frac{\sum_{i=1}^n (X_i - \overline{X})(Y_i - \overline{Y})}{\sum_{i=1}^n (X_i - \overline{X})^2} = r_{xy} \times \frac{s_y}{s_x}$$

$$b_1 = \overline{Y} - b_2 \overline{X}$$

Coefficient of Determination

• Total variation in y is given by

Total Sum of Squares (TSS)
$$\equiv \sum_{i=1}^{n} (Y_i - \overline{Y})^2$$

Variation in y explained by x is given by

Explained Sum of Squares (ESS)
$$\equiv \sum_{i=1}^{n} (\widehat{Y}_i - \overline{Y})^2$$

• Variation in y not explained by x is given by

Residual Sum of Squares (RSS)
$$\equiv \sum_{i=1}^{n} (Y_i - \hat{Y}_i)^2$$

• R^2 captures proportion of variation in y explained by x

$$R^2 \equiv \frac{\mathsf{ESS}}{\mathsf{TSS}} = 1 - \frac{\mathsf{RSS}}{\mathsf{TSS}} = r_{xy}^2$$

Testing Regression

• The **standard error of the regression** (sometimes called the residual standard error or root mean square error) is really just the standard deviation of the residuals, given by

$$s_e \equiv \sqrt{rac{\mathsf{RSS}}{n-2}}$$

• The standard error of b_2 is given by

$$\operatorname{se}(b_2) = \frac{s_e}{\sqrt{\sum_{i=1}^n (X_i - \overline{X})^2}}$$

• For two-sided hypothesis $H_0: \beta_2 = 0$ against $H_1: \beta_2 \neq 0$, we use t-statistic

$$t \equiv \frac{b_2 - 0}{\mathsf{se}(b_2)} \sim T(n - 2)$$

• R automatically tests this

Testing R-squared

- Test $H_0: R^2 = 0$ against $H_1: R^2 > 0$
- One-sided test, so only reject null if test statistic is sufficiently larger than 0 in the positive direction
- Use the *F*-statistic

$$F \equiv \frac{R^2/(k-1)}{(1-R^2)/(n-k)} \sim F(k-1,n-k),$$

where k=2 is the number of coefficients estimated (i.e. β_1 and β_2)

• R automatically tests this as well