Non-Linear Regression

Václav Šmídl

April 24, 2018

Linear regression and OLS

Fit by a linear function:

$$y_1 = ax_1 + b1, +e_1$$

 $y_2 = ax_2 + b1 +e_2,$
 \vdots \vdots \vdots

Minimize

$$\sum_i e_i^2 = \sum_i (y_i - ax_i - b)^2$$

Solution:

$$\frac{d(\sum_{i} e_{i}^{2})}{d\theta} = 0.$$

$$\hat{\theta} = (X^{T}X)^{-1}X^{T}\mathbf{y}.$$

Limit of fixed bases

Fit by a linear function:

$$y_i = a\phi_1(x_i) + b\phi_2(x_i) + e_i$$

What are the basis function?

Limit of fixed bases

Fit by a linear function:

$$y_i = a\phi_1(x_i) + b\phi_2(x_i) + e_i$$

What are the basis function? Basis functions are functions of data:

$$y_i = a\phi_1(\psi_1, x_i) + b\phi_2(\psi_2, x_i) + e_i$$

where ϕ_j are non-linear functions. Estimating new set of parameters $\theta = [a, b, \psi_1, \psi_2]$

$$\frac{d(y_i - a\phi_1(\psi_1, x_i) + b\phi_2(\psi_2, x_i))}{d\theta} = 0.$$

$$\hat{\theta} = ?$$

Neural networks

Feed forward NN:

$$z = \sigma_1 (W_1 x + b_1),$$

$$y = \sigma_2 (w_m z_m + b_m)$$

with vector-valued

- **activation** functions $\sigma_i()$,
- weights w_i
- biases b_i .

For Gaussian noise, MSE (mean square error) loss function:

$$L = \sum_{i=1}^{n} (y_i - \sigma_1(w_1\sigma_2(\cdots) + b_1))^2.$$

finding
$$\theta = [w_1, b_1, w_2, b_2, ...,]$$
 by

Neural networks

Feed forward NN:

$$z = \sigma_1 (W_1 x + b_1),$$

$$y = \sigma_2 (w_m z_m + b_m)$$

with vector-valued

- **activation** functions $\sigma_i()$,
- weights w_i
- biases b_i .

For Gaussian noise, MSE (mean square error) loss function:

$$L = \sum_{i=1}^{n} (y_i - \sigma_1 (w_1 \sigma_2 (\cdots) + b_1))^2.$$

finding $\theta = [w_1, b_1, w_2, b_2, \dots]$ by gradient descent method

$$\hat{\theta}^{(\tau+1)} = \hat{\theta}^{(\tau)} - \eta \nabla L(\hat{\theta}^{(\tau)}),$$

Regularizationwhere η is the (small) learning rate.

Example

Trivial NN with one hidden layer:

$$y_i = \sum_{i=1}^6 w_{2,i} \tanh(w_{1,j}x_i + b_{1,j}) + b_2,$$

tanh activation function on hidden layer and linear activation function on output.

Training:

- 1. random initialization,
- 2. 50000 steps,
- 3. rate $\eta = 0.001$,

Convergence issues

- ▶ Step-size tuning, schedule, annealing, ...
- ▶ Better gradient (ADAM) [Kingma, Ba, 2014].
- Higher order methods (half-quadratic approximation, Hessian, LMBFS)

Preventing overfitting

1. ridge regression

$$L = \sum_{i=1}^{m} (y_i - \sigma_1 (w_1 \sigma_2 (\cdots) + b_1))^2 + \alpha \sum_{k,l} w_{k,l}^2.$$

2. Automatic relevance determination (Laplace)

$$L = \sum_{i=1}^{m} (y_i - \sigma_1 (w_1 \sigma_2 (\cdots) + b_1))^2 + \sum_{k,l} \alpha_{k,l} w_{k,l}^2.$$

3. Stochastic gradient descent

$$\nabla L(\hat{\theta}) = \sum_{i=1}^{n} \nabla L(\hat{\theta}, x_i, y_i) \approx \nabla L(\hat{\theta}) = \sum_{i=\mathcal{I}} \nabla L(\hat{\theta}, x_i, y_i),$$

where \mathcal{I} is a random subsample of $\{1, \ldots, n\}$.

Points

	points
Ridge regression	10
ADAM (own implementation)	10
Stochastic Gradient Descent	10
Relevance determination	30