

云上的大数据

英特尔(中国)云计算创新中心架构师:朱海峰

THE NEW CENTER OF POSSIBILITY

Agenda

- 云化的大数据解决方案
- OpenStack Data Processing (Sahara)
- AWS:EMR
- Microsoft Azure: HD Insight

大数据的云化解决方案

需求:

- 前期硬件成本
- 容量规划
- Hadoop 经验

优势:

- 无硬件成本
- 无限缩放
- 按需付费
- 快速部署

云化大数据解决方案

- AWS EMR
- Microsoft Azure: HD Insight
- Openstack: Sahara

Openstack: Sahara

- Openstack简介
- Sahara简介
- 主要架构

Openstack简介

旨在为公共及私有云的建设与管理提供软件的开源项目。它的社区拥有超过130家企业及1350位开发者:

由NASA(美国国家航空航天局)和Rackspace合作研发并发起的,以Apache许可证授权的自由软件和开放源代码项目。

Openstack生态系统

- Libra
- Mistral
- Climate
- Kite
- Applied and Accepted
- Milk
- Murano by TC
- Docer
- Solum
- Rally
- Barbican
- Sitori
- Fuel

孵化项目

- 版本集成
- 一般18~24月完成项 目孵化
- 由技术委员会(TC) 决定是否完成孵化
- TC直接的孵化需求

Graduated

集成发布

- 每6个月发布一个版
- 技术委员会(TC)+ 版本发布经理& **PTLs**

Work with cloud ecosystem

Sahara简介

目标:实现基于Openstack上的Data Analytics Service

功能:在Openstack的云环境中,快速建立Hadoop的集群

价值:与亚马逊EMR类似,为临时的或突发的数据分析任务,提供数据分析即服

务 (Analytics as a Service)

之前的项目名称:Savanna

Sahara: Hadoop的云化

Sahara Key Features - Provision Cluster

Create/Terminate Cluster

- Heat API/Nova Direct API
- Integrate with Neutron/Nova Network
- Use Guide as a template
- Anti-affinity

Cluster Scaling

Add Node/Remove Node

Support More Plugins in Kilo

Vanilla/Hortonworks Data Platform/Cloudera/Spark/MapR/Storm

Sahara Key Features - Elastic Data Processing

Support Job Type

Hive/Pig/MapReduce/MapReduce Streaming/Java/Spark/Shell/HBase

Support Data Locality

Rack/Hypervisor/Swift

Data Source

- Internal: Internal HDFS(Ephemeral Disk/Cinder)
- External: Swift/HDFS

Run Job in Transient Cluster

系统架构

安装

- Install via Fuel
- Install via RDO
- Install into a virtual environment

Plugin

Provisioning Plugins

Vanilla Plugin

Hortonworks Data Platform Plugin

Spark Plugin

Cloudera Plugin

MapR Distribution Plugin

Sahara CDH Plugin

Step1: Create VM via Heat by using Cluster Template. CM must be included in one master machine. Step2: Use CM API Client to connect to CM and provision the other services in the cluster.

Sahara Working Flow

Fast Cluster Provisioning

- Provide the details Hadoop configuration, like size, topology, and others
- · Sahara will provision VMs, install and configure Hadoop
- Support Scale out Cluster to add/remove nodes

Analytic as a Service using Elastic Data Processing

- Choose type of the job: pig, hive, jar-file, etc.
- Select input and output data location (Swift support)
- Cluster will be removed automatically after the job completion

Sahara Data Processing:

—— Partner 1, Internal - HDFS Only

OpenStack support to create HDFS on Cinder or Ephemeral Disk. This method can provide a better data processing performance via Ephemeral Disk or to persist the data via Cinder with lower performance.

Sahara Data Processing: —— Partner 2, External - Swift

OpenStack use Swift as a data source to store input and output data. The benefit is to process the data directly and persist the data via Swift.

AWS:EMR

什么是EMR(Elastic MapReduce)

- AWS上的Hadoop生态系统

部署示例

AWS控制台

AWS命令行

或者使用您习惯的SDK:

•••••

多种实例满足不同需求

使用不同的实例构造最优的架构

通用型

m1系列 m3系列

批处理

CPU密集

c3系列 cc1.4xlarge cc2.8xlarge

机器学习

内存密集

m2系列 r3系列

Spark以及 交互式应用 磁盘及IO

d2系列 i2系列

大容量HDFS

按需灵活调整

轻松的增加或者减少集群的容量, 匹配计算需求。

类型	实例类型	数量
MASTER	m3.xlarge	1
TASK	c3.4xlarge	2 调整大小
CORE	c3.4xlarge	2 × X

价格灵活

充分利用竞价实例

数据存储:S3/HDFS

- ——使用Amazon S3做为数据持久存储
- Amazon S3
 - 计算和存储分离
 - 99.99999999% 的数据持久性
- 调整EMR集群的大小或者关闭集群的时候没有数据丢失
- 数据集中存储,供多个集群进行分析
- 更容易在集群中引入新技术

HDFS仍然可用

- 迭代型的作业
 - 对一份数据进行重复的处理
 - 或者考虑使用Spark&RDD
- I/O密集型的作业
 - 数据永久存储在S3,用S3DistCp将数据拷贝到HDFS做处理

从HDFS到Amazon S3

LOCATION 'sampledata/userrecord/';

```
hive> create external table temp_user(
    firstname VARCHAR(64),
    lastname VARCHAR(64),
    address
              STRING,
              VARCHAR(64),
    country
              VARCHAR(64),
    city
              VARCHAR(64),
    state
   web
              STRING
    ROW FORMAT DELIMITED
    FIELDS TERMINATED BY ','
    LINES TERMINATED BY '\n'
    STORED AS TEXTFILE
```


从HDFS到Amazon S3

LOCATION 's3://hxyhivetest/userrecord/';

```
hive> create external table temp_user(
    firstname VARCHAR(64),
    lastname VARCHAR(64),
    address
              STRING,
              VARCHAR(64),
    country
              VARCHAR(64),
    city
              VARCHAR(64),
    state
   web
              STRING
    ROW FORMAT DELIMITED
    FIELDS TERMINATED BY ','
    LINES TERMINATED BY '\n'
    STORED AS TEXTFILE
```


数据处理

数据处理 / 分析

交互式分析

- 需要大量的数据(温数据/冷数据)
- 秒级得到结果反馈
- 样例: 自服务仪表板

实时分析

- 需要小量热数据和提出问题
- 短时间内得到结果反馈(毫秒级或者是秒级)
- 实时(事件)
 - 数据流实时响应事件
 - 样例: 账单/欺诈警报
- 近实时 (微-批量)
 - 近乎实时的小批量数据流事件处理
 - 样例: 1分钟指标

批量分析

- 需要大量的数据(温数据/冷数据)
- 分钟级或者是小时级得到结果反馈
- 样例: 生成每天, 每周。或者是每月的报告

通过机器学习预测

- 机器学习给计算机学习的能力,并且不需要显示的编程
- 机器学习算法:
- 监督式学习 ← "teach" 程序
 - 分类 ← 这是交易欺诈吗? (Yes/No)
 - 回归分析 ← 客户终身价值?
- 非监督式学习 ← 让它自己学习
 - 聚类←市场划分

分析工具和框架

机器学习

Mahout, Spark ML, Amazon ML

交互式分析

Amazon Redshift, Presto, Impala, Spark

批量分析

MapReduce, Hive, Pig, Spark

流处理

- 微-批量: Spark Streaming, KCL, Hive, Pig
- 实时: Storm, AWS Lambda, KCL

AWS上的大数据处理技术?

	Amazon Redshift	Impala	Presto	Spark	Hive
查询延迟性	Low	Low	Low	Low	Medium (Tez) – High (MapReduce)
持久性	High	High	High	High	High
数据卷	1.6 PB Max	~Nodes	~Nodes	~Nodes	~Nodes
托管型	Yes	Yes (EMR)	Yes (EMR)	Yes (EMR)	Yes (EMR)
存储	Native	HDFS / S3A*	HDFS / S3	HDFS / S3	HDFS / S3
SQL 兼容性	High	Medium	High	Low (SparkSQL)	Medium (HQL)

Low Low Low Medium High

Query Latency(Low is better)

AWS上的流处理技术?

Low

	Spark Streaming	Apache Storm	Amazon Kinesis Client Library	AWS Lambda	Amazon EMR (Hive, Pig)
规模 / 吞吐量	~ Nodes	~ Nodes	~ Nodes	Automatic	~ Nodes
批处理 or 实时	实时	实时	实时	实时	批处理
可管理性	Yes (Amazon EMR)	Do it yourself	Amazon EC2 + Auto Scaling	AWS managed	Yes (Amazon EMR)
容错性	Single AZ	可配置	Multi-AZ	Multi-AZ	Single AZ
编程语言	Java, Python, Scala	Any language via Thrift	Java, via MultiLangDaemon (.Net, Python, Ruby, Node.js)	Node.js, Java	Hive, Pig, Streaming languages

Low Low High

Query Latency (Low is better)

如何ETL?

Data Integration

Reduce the effort to move, cleanse, synchronize, manage, and automatize data related processes.

alteryx

Hadoop 场景 1: 批处理

每天250个Amazon EMR作业,处理30TB数据

http://aws.amazon.com/solutions/case-studies/yelp/

Hadoop 场景 2: 长期运行的集群

场景 3: 交互式查询

使用Presto进行PB级数据查询

http://nflx.it/1dO7Pnt

场景4:流式数据处理

MICROSOFT AZURE: HD INSIGHT

混合部署模式

混合 = 内部 + 云端

内部环境 Hortonworks Hadoop 将数据移动至 HDInsight

分析平台系统APS可查询 HDInsight 的数据并整合至到内部数据

Hadoop 场景 1: ETL 预处理

将暂存数据仓库中 ETL 的预处理任务交由 Hadoop 处理

将高成本数据仓库任务交由低成本 Hadoop 群集负责

Hadoop 场景 2:冷热存储

将海量历史数据转移至 Hadoop 的冷存储

在数据仓库中保存用于商业智能和分析的热数据

需要冷存储中的数据时,将其重新移入仓库

Hadoop 场景 3:真正的数据发现

在数据仓库中保存运维商业智能与分析的数据

让数据科学家通过原始数据(无格式或结构化数据)获得新发现

将发现的结果重新保存到数据仓库

