Курс «Численные методы» Ч.2.

ВОЛКОВ Василий Михайлович, Минск, БГУ v.volkov@tut.by

Лекция 3.

3.1 Понятие о жестких системах. Методы Гира (дифференцирования назад).

Условие устойчивости численных методов решения задачи Коши для систем ОДУ

Рассмотрим метод Адамса для задачи Коши

$$\frac{du}{dt} = \lambda u, \quad \lambda \le 0, \quad u(0) = u_0$$

Условие устойчивости метода Эйлера

$$\tau \leq \frac{2}{|\lambda|}$$

Для системы уравнений

$$\frac{d\mathbf{u}}{dt} = \mathbf{A}\mathbf{u}, \quad \mathbf{A} \le 0, \quad \mathbf{u}(0) = \mathbf{u}_0$$

$$\tau \le \frac{2}{\|\mathbf{A}\|}$$

$$\tau \le \frac{2}{\max |\lambda_A|}$$

Сравнить с условием сходимости метода простой итерации

Определение жесткой линейной системы

Система дифференциальных уравнений

$$u' = Au$$
, $u = (u_1, u_2, ..., u_n)^T$, $A \in \mathbb{R}^{n \times n}$.

называется жесткой, если собственные значения матрицы А обладают следующими свойствами:

1. система асимптотически устойчива;

$$\operatorname{Re}\{\lambda_k\} < 0, \quad k = \overline{1,n}$$

2.
$$s = \frac{\max |\operatorname{Re}\{\lambda_k\}|}{\min |\operatorname{Re}\{\lambda_k\}|} >> 1$$

Число **s** называется числом жесткости системы (сравнить понятия числа жесткости и числа обусловленности.

Жесткие системы общего вида

Система дифференциальных уравнений

$$\mathbf{u}' = \mathbf{f}(\mathbf{t}, \mathbf{u}), \quad \mathbf{u} = (u_1, u_2, ..., u_n)^T,$$

$$\mathbf{f} = (f_1, f_2, ..., f_n)^T.$$

называется **жесткой**, если собственные значения матрицы Якоби **J** вектор - функции **f** обладает теми же свойствами, что и матрица жесткой линейной системы:

$$\operatorname{Re}\{\lambda_k\} < 0, \quad k = \overline{1,n} \qquad s = \frac{\max |\operatorname{Re}\{\lambda_k\}|}{\min |\operatorname{Re}\{\lambda_k\}|} >> 1$$

Здесь λ_k — собственные значения матрицы Якоби $oldsymbol{J}$ вектор - функции $oldsymbol{f}$

Особенности поведения решений жестких систем

Если представить решение системы в виде разложения по собственным векторам матрицы, компоненты, TO соответствующие большим отрицательным собственным значениям, быстро затухают и спустя 5-10 шагов перестают вносить вклад в невязку метода. С точки зрения точности, после «выгорания» быстрых компонент, решение задачи в целом замедляется и шаг сетки, казалось бы, можно увеличить. Однако с увеличением шага условно устойчивый численный метод может потерять устойчивость и быстрые компоненты устремятся в бесконечность, качественно искажая поведение решения в целом. Чтобы такого не произошло, при интегрировании жестких систем следует использовать по возможности абсолютно устойчивые методы или методы с достаточно большой областью устойчивости. Идеальным вариантом являются А-устойчивые методы.

Что известно об устойчивости многошаговых методов

Утверждение 1. Не существует явных А- устойчивых методов.

Утверждение 2 (теорема **Далквиста)**. Не существует линейных А-устойчивых методов выше второго порядка точности.

Метод Гира для решения жестких систем

Идея метода Гира состоит в использовании неявных многошаговых методов вида (сравните с методами Адамса):

$$\frac{a_0 y_k + a_1 y_{k-1} + \dots + a_m y_{k-m}}{b_0 f_k} = b_0 f_k.$$

Коэффициенты a_k , k=0, ... m вычисляются из условия максимального порядка аппроксимация (минимума невязки), что приводит к следующей системе уравнений:

$$a_1 + 2a_2 + \ldots + ma_m = -1,$$

$$a_1 + 2^2 a_2 + \ldots + m^2 a_m = 0,$$

$$a_1 + 2^m a_2 + \ldots + m^m a_m = 0.$$

$$a_0 = -\sum_{k=1}^m a_k$$

Коэффициенты и области устойчивости.

m	a_0	a_1	a_2	a_3	a_4	$\psi(\tau)$
1	1/2	-1/2				O(au)
2	3/2	-4/2	1/2			$O(\tau^2)$
3	11/6	-18/6	9/6	-2/6		$O(\tau^3)$
4	25/12	-48/12	36/12	-16/12	3/12	$O(au^4)$

Замечание: область устойчивости лежит вне снаружи границ закрашенных областей

Область устойчивости

Областью устойчивости многошагового метода называется множество значений µ, для которых выполняется *условие корней*. Для определения границы области устойчивости из характеристического полинома

$$q^k = q^{k-1} + \tau \lambda \sum_{n=0}^m b_n q^{k-n}$$

выразим $\mu = \tau \lambda$:

$$\mu = \left(q^{k} - q^{k-1}\right) \left(\sum_{n=0}^{k} b_{n} q^{k-n}\right)^{-1}$$

Границе области устойчивости соответствует множество точек где

$$|q| \equiv 1$$
: $q = \exp(i\varphi)$, $\varphi \in [0, 2\pi]$.

Границы устойчивости метода Адамса

Границы устойчивости явного (а) и неявного (б) методов Адамса различного порядка точности

СПАСИБО ЗА ВНИМАНИЕ!