TITLE: SUPPORT VECTOR MACHINES (SVM) IN MACHINE LEARNING

▶ Introduction

- ▶ Support Vector Machines (SVM) is a powerful machine learning algorithm used for classification and regression tasks.
- SVM finds an optimal hyperplane to separate different classes while maximizing the margin.

► Linear SVM

▶ Basic form of linear SVM:

- ► Hyperplane equation: $w^Tx + b = 0$
- ▶ w: Weight vector
- x: Input vector
- ▶ b: Bias term

Margin and Support Vectors

- Explain the concept of margin and support vectors:
 - ▶ Margin: Distance between the hyperplane and the nearest data points of each class.
 - ▶ Support vectors: Data points that lie on the margin or violate the margin.

Maximizing the Margin

- SVM's objective: Maximize the margin while minimizing classification errors.
- ► Formulate the optimization problem:
 - ▶ Minimize $\frac{1}{2} | |w| |^2$ subject to yi(w^Txi + b) ≥ 1 for all data points (xi, yi).

► Kernel Trick

- Extend SVM to nonlinear classification using the kernel trick:
 - Nonlinear transformation: $\phi(x)$ maps input to a higher-dimensional feature space.
 - ▶ **Kernel function:** K(x, y) computes the inner product of transformed features.
 - ▶ **Popular kernels**: Linear, Polynomial, Radial Basis Function (RBF), Sigmoid.

► Soft Margin SVM

- Introduce soft margin SVM to handle overlapping classes or noisy data:
 - \blacktriangleright Allow some misclassification by introducing slack variables (ξ).
 - ▶ Update the optimization problem: Minimize $\frac{1}{2} | |w| |^2 + C\Sigma \xi_i$ subject to $yi(w^Txi + b) \ge 1 \xi_i$.

► Kernel SVM

- Discuss the application of kernels in SVM:
 - Kernels allow SVM to classify nonlinearly separable data.
 - Kernels implicitly map the data into higher-dimensional spaces.

► SVM for Regression

- Briefly explain SVM for regression tasks:
 - Find a hyperplane that fits as many points within a given ε-tube as possible.
 - \blacktriangleright Support vectors within the ϵ -tube determine the regression line.

Advantages of SVM

- ▶ Highlight the advantages of SVM:
 - ▶ Effective in high-dimensional spaces and with limited samples.
 - ▶ Handles both linear and nonlinear classification and regression tasks.
 - ▶ Robust against overfitting with the use of regularization parameter (C).

► Tuning Parameters

- Explain the importance of tuning SVM parameters:
 - ► C: Controls the trade-off between margin size and misclassification.
 - ► Gamma (for RBF kernel): Controls the influence of individual training samples.

▶ Applications

- ► Highlight real-world applications of SVM:
 - ▶ Image classification and object detection
 - ► Text classification and sentiment analysis
 - ▶ Bioinformatics and genomics
 - ► Fraud detection and anomaly detection

▶ Conclusion

- Recap the key points discussed:
 - ▶ Linear SVM, margin, and support vectors.
 - ▶ Kernel trick for nonlinear classification.
 - ▶ Soft margin SVM and handling misclassification.
 - ► Applications and advantages of SVM.
- ▶ Emphasize the versatility and power of SVM in various domains.

Thank You!