Network Working Group Request for Comments: 1247 Obsoletes: RFC 1131 J. Moy Proteon, Inc. July 1991

OSPF Version 2

Status of this Memo

This RFC specifies an IAB standards track protocol for the Internet community, and requests discussion and suggestions for improvements. Please refer to the current edition of the `IAB Official Protocol Standards'' for the standardization state and status of this protocol. Distribution of this memo is unlimited.

Abstract

This memo documents version 2 of the OSPF protocol. OSPF is a link-state based routing protocol. It is designed to be run internal to a single Autonomous System. Each OSPF router maintains an identical database describing the Autonomous System's topology. From this database, a routing table is calculated by constructing a shortest-path tree.

OSPF recalculates routes quickly in the face of topological changes, utilizing a minimum of routing protocol traffic. OSPF provides support for equal-cost multipath. Separate routes can be calculated for each IP type of service. An area routing capability is provided, enabling an additional level of routing protection and a reduction in routing protocol traffic. In addition, all OSPF routing protocol exchanges are authenticated.

Version 1 of the OSPF protocol was documented in RFC 1131. The differences between the two versions are explained in Appendix F.

Please send comments to ospf@trantor.umd.edu.

1. Introduction

This document is a specification of the Open Shortest Path First (OSPF) internet routing protocol. OSPF is classified as an Internal Gateway Protocol (IGP). This means that it distributes routing information between routers belonging to a single Autonomous System. The OSPF protocol is based on SPF or link-state technology. This is a departure

[Moy]

[Page 1]

RFC 1247

OSPF Version 2

July 1991

from the Bellman-Ford base used by traditional internet routing protocols.

The OSPF protocol was developed by the OSPF working group of the Internet Engineering Task Force. It has been designed expressly for the internet environment, including explicit support for IP subnetting, TOS-based routing and the tagging of externally-derived routing information. OSPF also provides for the authentication of routing updates, and utilizes IP multicast when sending/receiving the updates. In addition, much work has been done to produce a protocol that responds quickly to topology changes, yet involves small amounts of routing protocol traffic.

The author would like to thank Rob Coltun, Milo Medin, Mike Petry and the rest of the OSPF working group for the ideas and support they have given to this project.

1.1 Protocol overview

OSPF routes IP packets based solely on the destination IP address and IP Type of Service found in the IP packet header. IP packets are routed "as is" -- they are not encapsulated in any further protocol headers as they transit the Autonomous System. OSPF is a dynamic routing protocol. It quickly detects topological changes in the AS (such as router interface failures) and calculates new loop-free routes after a period of convergence. This period of convergence is short and involves a minimum of routing traffic.

In an SPF-based routing protocol, each router maintains a database describing the Autonomous System's topology. Each participating router has an identical database. Each individual piece of this database is a particular router's local state (e.g., the router's usable interfaces and reachable neighbors). The router distributes its local state throughout the Autonomous System by flooding.

All routers run the exact same algorithm, in parallel. From the topological database, each router constructs a tree of shortest paths with itself as root. This shortest-path tree gives the route to each destination in the Autonomous System. Externally derived routing information appears on the tree as leaves.

OSPF calculates separate routes for each Type of Service (TOS). When several equal-cost routes to a destination exist, traffic is distributed equally among them. The cost of a route is described by a single dimensionless metric.

OSPF allows sets of networks to be grouped together. Such a grouping is

[Moy] [Page 2]

RFC 1247 OSPF Version 2 July 1991

called an area. The topology of an area is hidden from the rest of the Autonomous System. This information hiding enables a significant reduction in routing traffic. Also, routing within the area is determined only by the area's own topology, lending the area protection from bad routing data. An area is a generalization of an IP subnetted network.

OSPF enables the flexible configuration of IP subnets. Each route distributed by OSPF has a destination and mask. Two different subnets of the same IP network number may have different sizes (i.e., different masks). This is commonly referred to as variable length subnets. A packet is routed to the best (i.e., longest or most specific) match. Host routes are considered to be subnets whose masks are "all ones" (0xffffffff).

All OSPF protocol exchanges are authenticated. This means that only trusted routers can participate in the Autonomous System's routing. A variety of authentication schemes can be used; a single authentication scheme is configured for each area. This enables some areas to use much stricter authentication than others.

Externally derived routing data (e.g., routes learned from the Exterior Gateway Protocol (EGP)) is passed transparently throughout the Autonomous System. This externally derived data is kept separate from the OSPF protocol's link state data. Each external route can also be tagged by the advertising router, enabling the passing of additional information between routers on the boundaries of the Autonomous System.

1.2 Definitions of commonly used terms

Here is a collection of definitions for terms that have a specific meaning to the protocol and that are used throughout the text. The reader unfamiliar with the Internet Protocol Suite is referred to [RS-85-153] for an introduction to IP.

Router

A level three Internet Protocol packet switch. Formerly called a gateway in much of the IP literature.

Autonomous System

A group of routers exchanging routing information via a common routing protocol. Abbreviated as AS.

Internal Gateway Protocol

The routing protocol spoken by the routers belonging to an Autonomous system. Abbreviated as IGP. Each Autonomous System has

[Moy]

[Page 3]

RFC 1247

OSPF Version 2

July 1991

a single IGP. Different Autonomous Systems may be running different IGPs.

Router ID

A 32-bit number assigned to each router running the OSPF protocol. This number uniquely identifies the router within an Autonomous System.

Network

In this paper, an IP network or subnet. It is possible for one

physical network to be assigned multiple IP network/subnet numbers. We consider these to be separate networks. Point-to-point physical networks are an exception - they are considered a single network no matter how many (if any at all) IP network/subnet numbers are assigned to them.

Network mask

A 32-bit number indicating the range of IP addresses residing on a single IP network/subnet. This specification displays network masks as hexadecimal numbers. For example, the network mask for a class C IP network is displayed as 0xffffff00. Such a mask is often displayed elsewhere in the literature as 255.255.255.0.

Multi-access networks

Those physical networks that support the attachment of multiple (more than two) routers. Each pair of routers on such a network is assumed to be able to communicate directly (e.g., multi-drop networks are excluded).

Interface

The connection between a router and one of its attached networks. An interface has state information associated with it, which is obtained from the underlying lower level protocols and the routing protocol itself. An interface to a network has associated with it a single IP address and mask (unless the network is an unnumbered point-to-point network). An interface is sometimes also referred to as a link.

Neighboring routers

Two routers that have interfaces to a common network. On multi-access networks, neighbors are dynamically discovered by OSPF's Hello Protocol.

Adjacency

A relationship formed between selected neighboring routers for the purpose of exchanging routing information. Not every pair of neighboring routers become adjacent.

[Moy] [Page 4]

RFC 1247 OSPF Version 2 July 1991

Link state advertisement

Describes to the local state of a router or network. This includes the state of the router's interfaces and adjacencies. Each link state advertisement is flooded throughout the routing domain. The collected link state advertisements of all routers and networks forms the protocol's topological database.

Hello protocol

The part of the OSPF protocol used to establish and maintain neighbor relationships. On multi-access networks the Hello protocol can also dynamically discover neighboring routers.

Designated Router

Each multi-access network that has at least two attached routers has

a Designated Router. The Designated Router generates a link state advertisement for the multi-access network and has other special responsibilities in the running of the protocol. The Designated Router is elected by the Hello Protocol.

The Designated Router concept enables a reduction in the number of adjacencies required on a multi-access network. This in turn reduces the amount of routing protocol traffic and the size of the topological database.

Lower-level protocols

The underlying network access protocols that provide services to the Internet Protocol and in turn the OSPF protocol. Examples of these are the X.25 packet and frame levels for PDNs, and the ethernet data link layer for ethernets.

1.3 Brief history of SPF-based routing technology

OSPF is an SPF-based routing protocol. Such protocols are also referred to in the literature as link-state or distributed-database protocols. This section gives a brief description of the developments in SPF-based technology that have influenced the OSPF protocol.

The first SPF-based routing protocol was developed for use in the ARPANET packet switching network. This protocol is described in [McQuillan]. It has formed the starting point for all other SPF-based protocols. The homogeneous Arpanet environment, i.e., single-vendor packet switches connected by synchronous serial lines, simplified the design and implementation of the original protocol.

Modifications to this protocol were proposed in [Perlman]. These modifications dealt with increasing the fault tolerance of the routing protocol through, among other things, adding a checksum to the link

[Moy] [Page 5]

RFC 1247 OSPF Version 2 July 1991

state advertisements (thereby detecting database corruption). The paper also included means for reducing the routing traffic overhead in an SPF-based protocol. This was accomplished by introducing mechanisms which enabled the interval between link state advertisements to be increased by an order of magnitude.

An SPF-based algorithm has also been proposed for use as an ISO IS-IS routing protocol. This protocol is described in [DEC]. The protocol includes methods for data and routing traffic reduction when operating over broadcast networks. This is accomplished by election of a Designated Router for each broadcast network, which then originates a link state advertisement for the network.

The OSPF subcommittee of the IETF has extended this work in developing the OSPF protocol. The Designated Router concept has been greatly enhanced to further reduce the amount of routing traffic required. Multicast capabilities are utilized for additional routing bandwidth reduction. An area routing scheme has been developed enabling