Erratum: Observational Constraints on the Ultra-high Energy Cosmic Neutrino Flux from the Second Flight of the ANITA Experiment

P. W. Gorham¹, P. Allison¹, B. M. Baughman², J. J. Beatty², K. Belov³, D. Z. Besson⁴, S. Bevan⁵, W. R. Binns⁶, C. Chen⁷, P. Chen⁷, J. M. Clem⁸, A. Connolly⁵, M. Detrixhe⁴, D. De Marco⁸, P. F. Dowkontt⁶, M. DuVernois¹, E. W. Grashorn², B. Hill¹, S. Hoover³, M. Huang⁷ M. H. Israel⁶, A. Javaid⁸, K. M. Liewer⁹, S. Matsuno¹, B. C. Mercurio², C. Miki¹, M. Mottram⁵, J. Nam⁷, R. J. Nichol⁵, K. Palladino², A. Romero-Wolf¹, L. Ruckman¹, D. Saltzberg³, D. Seckel⁸, R.Y. Shang⁷, G. S. Varner¹, A. G. Vieregg³, Y. Wang⁷¹

¹ ¹Dept. of Physics and Astronomy, Univ. of Hawaii, Manoa, HI 96822. ²Dept. of Physics, Ohio State Univ., Columbus,
OH 43210. ³Dept. of Physics and Astronomy, Univ. of California Los Angeles, CA 90095. ⁴Dept. of Physics and Astronomy, Univ. of Kansas, Lawrence, KS 66045. ⁵Dept. of Physics and Astronomy, Univ. College London, London, United Kingdom. ⁶Dept. of Physics, Washington Univ. in St. Louis, MO 63130. ⁷Dept. of Physics,
National Taiwan Univ., Taipei, Taiwan. ⁸Dept. of Physics, Univ. of Delaware, Newark, DE 19716. ⁹Jet Propulsion Laboratory, Pasadena, CA 91109.

In a recent article [1] we reported a limit on the cosmic neutrino flux from the second flight of the ANITA experiment. The limit was based on observing two events passing all cuts on a background of 0.97 ± 0.42 .

One of the first steps in the blind analysis procedure was inserting twelve pulser events at undisclosed random times to mimic a neutrino signal. These events would be removed upon unblinding the analysis. This was one of two ways that the analysis employed a blind analysis technique. After publication, we subsequently determined that due to a clerical error one of the two surviving events, Event 8381355, was actually one of the inserted pulser events. The fact that this event survived its subsequent scrutiny we consider as a demonstration that the blinding procedure was truly valid.

The net result is that ANITA-II observed one event on a background of 0.97 ± 0.42 . The new limit, which is 33-34% stronger, is shown in in Figure 1. Now the actual limit is essentially the same as the expected limit so we no longer show both curves. The ANITA-II 90% CL integral flux limit on a pure E^{-2} spectrum for 10^{18} eV $\leq E_{\rm V} \leq 10^{23.5}$ eV is $E_{\rm V}^2F_{\rm V} \leq 1.3\times10^{-7}$ GeV cm $^{-2}$ s $^{-1}$ sr $^{-1}$. An updated evaluation of confidence limits for constraining representative models is given in Table I. The changes result in an improvement in the constraints on the given strong-source evolutionary models, the majority of which are now excluded at >90% confidence.

FIG. 1: ANITA-II limit for 28.5 days livetime. The blue curve is the new actual limit, based on the one surviving candidate. Other limits are from AMANDA, RICE, Auger, HiRes, and a revised limit from ANITA-I. The BZ (GZK) neutrino model range is determined by a variety of models. Full citations are given in the original article.

Model & references	predicted $N_{\rm v}$	CL,%
Baseline models:		
Various	0.3-1.0	
Strong source evolution models:		
Aramo et al. 2005	2.4	85
Berezinsky 2005	5.1	98
Kalashev et al. 2002	5.6	99
Barger, Huber, & Marfatia 2006	3.5	93
Yuksel & Kistler 2007	1.7	74
Models that saturate all bounds:		
Yoshida et al. 1997	30	> 99.999
Kalashev et al. 2002	19	> 99.999
Aramo et al. 2005	16	99.999
Waxman-Bahcall fluxes:		
Waxman, Bahcall 1999, evolved sources	1.4	
Waxman, Bahcall 1999, standard	0.5	

TABLE I: Expected numbers of events N_V from several cosmogenic neutrino models, and confidence levels for exclusion by ANITA-II observations when appropriate. Citations are given in the original article.