Problem set 5.:

Complex numbers – algebraic and polar forms of complex numbers

Question 1.

Calculate the following, giving your answers in algebraic form.

$$\sqrt{-16}$$

$$\sqrt{-25}$$

$$(2i)^2$$

$$2i + 5i$$

$$\frac{4i}{2i}$$

Question 2.

Let $z \in \mathbb{C}$, z = -2 + 7i. Determine the following:

$$\operatorname{Re} z$$

$$\operatorname{Im} z$$

$$-z$$

$$\overline{z}$$

Question 3.

Calculate the value $\frac{4+3i}{(2-i)^2}$ giving your answer in algebraic form.

Question 4.

Solve the following equation on the set of complex numbers: $\frac{x+i-3i\overline{x}}{x-4}=i-1$.

Question 5.

Find the complex number(s) $z \in \mathbb{C}$ satisfying the conditions:

$$\left| \frac{z-3}{2-\overline{z}} \right| = 1 \wedge \operatorname{Re}\left(\frac{z}{2+i}\right) = 2$$

Question 6.

Let $z \in \mathbb{C}$, z = 2 + 5i. Find the absolute value and the argument of z. Represent z on the complex plane (also called Gaussian plane).

Question 7.

Write the following complex numbers in polar form:

(a)
$$1 + i$$

(e)
$$4i$$

(b)
$$-\sqrt{3} + i$$

$$(f)$$
 i

$$(c) \quad \frac{9}{2} - \frac{9\sqrt{3}}{2}i$$

(d)
$$-\frac{\sqrt{14}}{2} - \frac{\sqrt{14}}{2}i$$

Question 8.

Calculate the following, using the polar form of complex numbers:

(a)
$$\left(\frac{9}{2} - \frac{9\sqrt{3}}{2}i\right) \left(-\frac{\sqrt{14}}{2} - \frac{\sqrt{14}}{2}i\right)$$

(b)
$$\left(-\frac{3\sqrt{3}}{2} - \frac{3}{2}i\right) \left(\frac{\sqrt{3}}{3} + \frac{1}{3}i\right)$$

(c)
$$\frac{-\frac{3\sqrt{3}}{2} - \frac{3}{2}i}{\frac{\sqrt{3}}{3} + \frac{1}{3}i}$$

(d)
$$\left(\frac{5\sqrt{3}}{12} - \frac{5}{12}i\right)^{10}$$

(e)
$$\left(-\frac{\sqrt{10}}{2} - \frac{\sqrt{10}}{2}i\right)^{15}$$

$$(f) \quad \left(\frac{5}{2} - \frac{5\sqrt{3}}{2}i\right)^{23}$$

(g)
$$(1+i)^8 \cdot (5\sqrt{3}-5i)^3$$

(h)
$$\left(\frac{\frac{3}{2} + \frac{3\sqrt{3}}{2}i}{-\frac{5\sqrt{3}}{2} + \frac{5}{2}i} \right)^{12}$$

(i)
$$\left(1 - \frac{\sqrt{3} - i}{2}\right)^{24}$$

Question 9.

Determine the complex roots below:

- (a) 2^{nd} roots of -60;
- (b) 3^{rd} roots of -60;
- (c) 6^{th} roots of $1 \sqrt{3}i$; (d) 5^{th} roots of $-7\sqrt{3} + 7i$;
- (e) 8^{th} roots of $-\frac{7}{2} + \frac{7}{2}i$;
- (f) 2^{nd} roots of $-6\sqrt{3} + 6i$;

(g)
$$7^{th}$$
 roots of $\frac{\left(\frac{1}{2} + \frac{\sqrt{3}}{2}i\right)^8}{(1+i)^5}$;

Question 10.

Using the polar form of complex numbers, calculate the value of $z = \frac{\left(2 + 2\sqrt{3}i\right)^{10}}{\left(-1 + i\right)^{83}}$, giving your answer both in algebraic and in polar forms. Find all complex numbers w such that $w^3 = z$, giving your answers in polar form.

Question 11.

Express $z = \frac{(1+i)^8}{(1-\sqrt{3}i)^6}$ in algebraic form.