Упражнения к ОТА и многочленам

- 1. Опишите все неприводимые многочлены в $\mathbb{R}[x]$.
- 2. Докажите, что многочлен $x^{44}+x^{33}+x^{22}+x^{11}+1$ делится на многочлен $x^4+x^3+x^2+x+1$.
- 3. Найдите все $n \in \mathbb{N}$, при которых многочлен $x^{2n} \pm x^n + 1$ делится на многочлен $x^2 \pm x + 1$.
- 4. Найдите все $n \in \mathbb{N}$, при которых многочлен $(x+1)^n + x^n + 1$ делится на многочлен (a) $x^2 + x + 1$; (b) $(x^2 + x + 1)^2$; (c) $(x^2 + x + 1)^3$.
- 5. Докажите, что, если $(x-1)|P(x^n)$ для некоторого многочлена P, то и $(x^n-1)|P(x^n)$.
- 6. Пусть z_1, z_2, \ldots, z_n вершины правильного n-угольника на комплексной плоскости, а z_0 его центр. Докажите, что для любого многочлена $P \in \mathbb{C}[x]$ степени не выше n-1 верно равенство $P(z_1) + P(z_2) + \ldots + P(z_n) = nP(z_0)$.

Формула Эйлера

Функции $\cos x$, $\sin x$, и e^x комплексного аргумента определяются как суммы ряда Тейлора соответствующих функций вещественной переменной в точке нуль.

- 7. Докажите формулы: $\cos x = \frac{e^{ix} + e^{-ix}}{2}$ и $\sin x = \frac{e^{-ix} e^{-ix}}{2i}$.
- 8. Проверьте в явном виде для степенных рядов, что с таким определением остаётся верным тождество $e^{x+y} = e^x e^y$.
- 9. Пусть a и b вещественные числа. Докажите равенство¹: $e^{a+bi} = e^a(\cos b + i\sin b)$.
- 10. Вычислите $e^{i\pi}$.
- 11. Решите уравнение $\cos x = 2$.
- 12. Найдите все периоды функции e^x .

Задачи

- 13. Найдите все многочлены P(x), удовлетворяющие тождеству $P(x)P(2x^2) = P(2x^3+x)$.
- 14. Докажите, что все корни производной многочлена $P \in \mathbb{C}[x]$ принадлежат выпуклой оболочке множества всех корней этого многочлена на комплексной плоскости³.
- 15. Пусть P(x) непостоянный многочлен степени n с рациональными коэффициентами, который нельзя представить в виде произведения двух непостоянных многочленов с рациональными коэффициентами. Докажите, что количество многочленов Q(x) с рациональными коэффициентами, степени, меньшей n, таких, что P(Q(x)) делится на P(x), (a) конечно; (b) не превосходит n.
- 16. Пусть $\alpha \in \mathbb{C}$ корень неприводимого многочлена $p \in \mathbb{Z}[x]$ степени $n \geqslant 2$. Докажите⁴, что существует вещественное число c > 0 такое, что для любого рационального числа $\frac{p}{q}$ выполняется неравенство $\left|\alpha \frac{p}{q}\right| > \frac{c}{q^n}$.
- 17. Придумайте вещественное число, не являющееся алгебраическим над Q.
- 18. Докажите, что, если многочлен с вещественными коэффициентами принимает только неотрицательные значения, то его можно представить в виде суммы квадратов двух многочленов с вещественными коэффициентами.
- 19. Многочлен двух переменных с вещественными коэффициентами принимает только неотрицательные значения. Всегда ли его можно представить в виде суммы квадратов нескольких многочленов с вещественными коэффициентами?

¹Это равенство называется формулой Эйлера.

 $^{^2}$ Определение производной функции $f \colon \mathbb{C} \to \mathbb{C}$ такое же, как для функций $\mathbb{R} \to \mathbb{R}$, только приращение аргумента должно стремиться к нулю по модулю.

³Это утверждение называется **теоремой Гаусса**—**Люка**.

⁴Теорема Лиувилля