## 1.5. Integration by Parts

The method of integration by parts is based on the product rule for differentiation:

$$[f(x)g(x)]' = f'(x)g(x) + f(x)g'(x),$$

which we can write like this:

$$f(x)g'(x) = [f(x)g(x)]' - f'(x)g(x)$$
.

Integrating we get:

$$\int f(x) g'(x) dx = \int [f(x)g(x)]' dx - \int g(x)f'(x) dx,$$

i.e.:

$$\int f(x)g'(x) dx = f(x)g(x) - \int g(x)f'(x) dx.$$

Writing u = f(x), v = g(x), we have du = f'(x) dx, dv = g'(x) dx, hence:

$$\int u \, dv = uv - \int v \, du \, .$$

Example: Integrate  $\int xe^x dx$  by parts.

Answer: In integration by parts the key thing is to choose u and dv correctly. In this case the "right" choice is u = x,  $dv = e^x dx$ , so du = dx,  $v = e^x$ . We see that the choice is right because the new integral that we obtain after applying the formula of integration by parts is simpler than the original one:

$$\int \underbrace{x}_{u} \underbrace{e^{x} dx}_{dv} = \underbrace{x}_{u} \underbrace{e^{x}}_{v} - \int \underbrace{e^{x}}_{v} \underbrace{dx}_{du} = \underbrace{xe^{x} - e^{x} + C}_{v}.$$

Usually it is a good idea to check the answer by differentiating it:

$$(xe^x - e^x + C)' = e^x + xe^x - e^x = xe^x$$
.

A couple of additional typical examples:

Example: 
$$\int x \sin x \, dx = \cdots$$

u = x,  $dv = \sin x \, dx$ , so du = dx,  $v = -\cos x$ :

$$\cdots = \int \underbrace{x}_{u} \underbrace{\sin x \, dx}_{dv} = \underbrace{x}_{u} \underbrace{(-\cos x)}_{v} - \int \underbrace{(-\cos x)}_{v} \underbrace{dx}_{du}$$
$$= \boxed{-x \cos x + \sin x + C}.$$

Example: 
$$\int \ln x \, dx = \cdots$$

 $u = \ln x$ , dv = dx, so  $du = \frac{1}{x}dx$ , v = x:

$$\cdots = \int \underbrace{\ln x}_{u} \underbrace{dx}_{dv} = \underbrace{\ln x}_{u} \underbrace{x}_{v} - \int \underbrace{x}_{v} \underbrace{\frac{1}{x}}_{du} dx$$
$$= x \ln x - \int dx$$
$$= x \ln x - x + C.$$

Sometimes we need to use the formula more than once.

Example: 
$$\int x^2 e^x \, dx = \dots$$

 $u = x^2$ ,  $dv = e^x dx$ , so du = 2x dx,  $v = e^x$ :

$$\cdots = \int \underbrace{x^2}_{u} \underbrace{e^x dx}_{dv} = x^2 e^x - \int e^x 2x dx = \dots$$

u = 2x,  $dv = e^x dx$ , so du = 2dx,  $v = e^x$ :

$$\dots = x^{2}e^{x} - \int \underbrace{2x}_{u} \underbrace{e^{x} dx}_{dv} = x^{2}e^{x} - 2xe^{x} + \int 2e^{x} dx$$
$$= \underbrace{x^{2}e^{x} - 2xe^{x} + 2e^{x} + C}_{dv}$$

In the following example the formula of integration by parts does not yield a final answer, but an equation verified by the integral from which its value can be derived.

Example: 
$$\int \sin x \, e^x \, dx = \dots$$

 $u = \sin x$ ,  $dv = e^x dx$ , so  $du = \cos x dx$ ,  $v = e^x$ :

$$\cdots = \int \underbrace{\sin x}_{u} \underbrace{e^{x}}_{dv} dx = \sin x \cdot e^{x} - \int e^{x} \cos x \, dx = \dots$$

 $u = \cos x$ ,  $dv = e^x dx$ , so  $du = -\sin x dx$ ,  $v = e^x$ :

$$\dots = \sin x \cdot e^x - \int \underbrace{\cos x}_{u} \underbrace{e^x}_{dv} dx$$
$$= \sin x \cdot e^x - \cos x \cdot e^x - \int e^x \sin x \, dx$$

Hence the integral  $I = \int \sin x \, e^x \, dx$  verifies

$$I = \sin x \cdot e^x - \cos x \cdot e^x - I.$$

i.e.,

$$2I = \sin x \cdot e^x - \cos x \cdot e^x,$$

hence

$$I = \frac{1}{2}e^x(\sin x - \cos x) + C.$$

1.5.1. Integration by parts for Definite Integrals. Combining the formula of integration by parts with the Evaluation Theorem we get:

$$\int_{a}^{b} f(x)g'(x) \, dx = [f(x)g(x)]_{a}^{b} - \int_{a}^{b} g(x)f'(x) \, dx \, .$$

Example: 
$$\int_0^1 \tan^{-1} x \, dx = \cdots$$

$$u = \tan^{-1} x$$
,  $dv = dx$ , so  $du = \frac{1}{1 + x^2} dx$ ,  $v = x$ :

$$\cdots = \int_0^1 \underbrace{\tan^{-1} x}_u \underbrace{dx}_{dv} = \underbrace{\left[ \tan^{-1} x \cdot \underbrace{x}_v \right]_0^1 - \int_0^1 \underbrace{x}_v \underbrace{\frac{1}{1+x^2} dx}_{du}}_{v}$$

$$= \left[ \tan^{-1} 1 \cdot 1 - \tan^{-1} 0 \cdot 0 \right] - \int_0^1 \frac{x}{1+x^2} dx$$

$$= \frac{\pi}{4} - \int_0^1 \frac{x}{1+x^2} dx$$

The last integral can be computed with the substitution  $t = 1 + x^2$ , dt = 2x dx:

$$\int_0^1 \frac{x}{1+x^2} dx = \frac{1}{2} \int_1^2 \frac{1}{t} dt = \frac{1}{2} \left[ \ln t \right]_1^2 = \frac{\ln 2}{2}.$$

Hence the original integral is:

$$\int_0^1 \tan^{-1} x \, dx = \boxed{\frac{\pi}{4} - \frac{\ln 2}{2}}.$$

1.5.2. Reduction Formulas. Assume that we want to find the following integral for a given value of n > 0:

$$\int x^n e^x \, dx \, .$$

Using integration by parts with  $u = x^n$  and  $dv = e^x dx$ , so  $v = e^x$  and  $du = nx^{n-1} dx$ , we get:

$$\int x^n e^x dx = x^n e^x - n \int x^{n-1} e^x dx.$$

On the right hand side we get an integral similar to the original one but with x raised to n-1 instead of n. This kind of expression is called a reduction formula. Using this same formula several times, and taking into account that for n=0 the integral becomes  $\int e^x dx = e^x + C$ , we can evaluate the original integral for any n. For instance:

$$\int x^3 e^x \, dx = x^3 e^x - 3 \int x^2 e^x \, dx$$

$$= x^3 e^x - 3(x^2 e^x - 2 \int x e^x \, dx)$$

$$= x^3 e^x - 3(x^2 e^x - 2(x e^x - \int e^x \, dx))$$

$$= x^3 e^x - 3(x^2 e^x - 2(x e^x - e^x)) + C$$

$$= x^3 e^x - 3x^2 e^x + 6x e^x - 6e^x + C.$$

Another example:

$$\int \sin^n x \, dx = \int \underbrace{\sin^{n-1} x \sin x \, dx}_{u}$$

$$= -\sin^{n-1} x \cos x + (n-1) \int \underbrace{\cos^2 x \sin^{n-2} dx}_{1-\sin^2 x}$$

$$= -\sin^{n-1} x \cos x + (n-1) \int \sin^{n-2} dx$$

$$- (n-1) \int \sin^n x \, dx$$

Adding the last term to both sides and dividing by n we get the following reduction formula:

$$\int \sin^{n} x \, dx = -\frac{\sin^{n-1} x \cos x}{n} + \frac{n-1}{n} \int \sin^{n-2} x \, dx \, dx.$$