Examenul național de bacalaureat 2023 Proba E. c)

Matematică M mate-info

BAREM DE EVALUARE ȘI DE NOTARE

Simulare

Filiera teoretică, profilul real, specializarea matematică-informatică Filiera vocațională, profilul militar, specializarea matematică-informatică

- Pentru orice soluție corectă, chiar dacă este diferită de cea din barem, se acordă punctajul corespunzător.
- Nu se acordă fracțiuni de punct, dar se pot acorda punctaje intermediare pentru rezolvări parțiale, în limitele punctajului indicat în barem.
- Se acordă zece puncte din oficiu. Nota finală se calculează prin împărțirea la zece a punctajului total acordat pentru lucrare.

SUBIECTUL I (30 de puncte)

1.	$z_1^2 + 4z_2 = (1+2i)^2 + 4(1-i) = 1 + 4i + 4i^2 + 4 - 4i =$	3 p
	$=5+4\cdot(-1)=5-4=1$	2p
2.	$f(x) = g(x) \Rightarrow x^2 - 2x + m - 1 = 0$	2p
	$\Delta = 0$ şi, cum $\Delta = 8 - 4m$, obținem $8 - 4m = 0$, deci $m = 2$	3 p
3.	$\lg(x^2+9) = \lg(10x^2) \Rightarrow x^2+9=10x^2$, de unde obţinem $x^2-1=0$	3 p
	x = -1, care nu convine; $x = 1$, care convine	2p
4.	Mulțimea A are 100 de elemente, deci sunt 100 de cazuri posibile	2p
	Numerele din mulțimea A , divizibile cu 9 , sunt $9 \cdot 0$, $9 \cdot 1$, $9 \cdot 2$, $9 \cdot 11$, deci sunt 12	
	cazuri favorabile, de unde obținem $p = \frac{12}{100} = \frac{3}{25}$	3 p
5.	$\overrightarrow{MD} = \overrightarrow{MA} + \overrightarrow{AD}$ și $\overrightarrow{ME} = \overrightarrow{MC} + \overrightarrow{CB} + \overrightarrow{BE}$	2p
	$\overrightarrow{MD} + \overrightarrow{ME} = \overrightarrow{MA} + \overrightarrow{MC} + \overrightarrow{AD} + \overrightarrow{BE} + \overrightarrow{CB} = \overrightarrow{0} + \overrightarrow{0} + \overrightarrow{CB} = \overrightarrow{CB}$	3p
6.	$2\sin x \cos x = 2\cos^2 x \Leftrightarrow 2\cos x (\sin x - \cos x) = 0$	2p
	Cum $x \in [0, \pi]$, obținem $x = \frac{\pi}{2}$ sau $x = \frac{\pi}{4}$	3p

SUBIECTUL al II-lea (30 de puncte)

1.a)	$\det(A(0)) = \begin{vmatrix} 0 & 1 & 2 \\ 1 & 0 & -1 \\ 2 & 2 & 1 \end{vmatrix} = 0 \cdot 0 \cdot 1 + 1 \cdot (-1) \cdot 2 + 1 \cdot 2 \cdot 2 - 2 \cdot 0 \cdot 2 - 1 \cdot 1 \cdot 1 - (-1) \cdot 2 \cdot 0 =$	3p
	=0-2+4-0-1-0=1	2p
b)	$\det(A(a)) = (a-1)^2$, pentru orice număr real a	3 p
	$\det(A(a)) = 0 \Leftrightarrow a = 1$, deci sistemul are soluție unică pentru $a \in \mathbb{R} \setminus \{1\}$	2p
c)	Pentru $a=1$, soluțiile sistemului de ecuații sunt $(\alpha, 2-\alpha, -2)$, unde $\alpha \in \mathbb{C}$	2p
	Cum α este număr întreg și $\alpha > 2 - \alpha > -2$, obținem $\alpha = 2$ sau $\alpha = 3$, deci soluțiile sunt $(2,0,-2)$ și $(3,-1,-2)$	3 p

2.a)	$1*\frac{1}{2} = \frac{1 \cdot \frac{1}{2}}{1 + \sqrt{(1 - 1^2)\left(1 - \left(\frac{1}{2}\right)^2\right)}} =$	3р
	$=\frac{\frac{1}{2}}{1+\sqrt{0}}=\frac{1}{2}$	2p
b)	$x*(-x) = \frac{-x^2}{1+ 1-x^2 } = \frac{-x^2}{2-x^2}$, pentru orice $x \in M$	3р
	$(x*(-x))+x^2 = \frac{x^2(1-x^2)}{2-x^2} \ge 0$, deci $x*(-x) \ge -x^2$, pentru orice $x \in M$	2p
c)	$a*b=1 \Rightarrow \sqrt{(1-a^2)(1-b^2)}=ab-1$, deci $ab \ge 1$	3p
	Cum $a, b \in M$, obținem $ab = 1$, deci perechile sunt $(-1, -1)$ și $(1,1)$, care convin	2p

(30 de puncte) **SUBIECTUL al III-lea**

	•	,
1.a)	$f'(x) = 1 - \frac{1}{e^x + x^2} \cdot (e^x + 2x) =$	3p
	$= \frac{x^2 - 2x}{e^x + x^2} = \frac{x(x - 2)}{e^x + x^2}, \ x \in \mathbb{R}$	2p
b)	Tangenta la graficul funcției f în punctul de coordonate $(a, f(a))$ este paralelă cu axa $Ox \Leftrightarrow f'(a) = 0$	3p
	$\frac{a(a-2)}{e^a + a^2} = 0 \Leftrightarrow a = 0 \text{ sau } a = 2$	2p
c)	Pentru orice $x \in (-\infty,0]$, $f'(x) \ge 0$, deci f este crescătoare pe $(-\infty,0]$; pentru orice $x \in [0,2]$, $f'(x) \le 0$, deci f este descrescătoare pe $[0,2]$; pentru orice $x \in [2,+\infty)$, $f'(x) \ge 0$, deci f este crescătoare pe $[2,+\infty)$	2p
	Cum f este continuă, $\lim_{x \to -\infty} f(x) = -\infty$, $f(0) = -1$ și $\lim_{x \to +\infty} f(x) = -1$, imaginea funcției f este $(-\infty, -1]$	3 p
2.a)	$\int_{0}^{3} f(x)\sqrt{x+3} dx = \int_{0}^{3} (x^{2}+1) dx = \left(\frac{x^{3}}{3} + x\right) \Big _{0}^{3} =$	3p
	=9+3=12	2p
b)	$\int_{-2}^{1} \frac{f(x)}{x^2 + 1} dx = \int_{-2}^{1} \frac{(x+3)'}{\sqrt{x+3}} dx = 2\sqrt{x+3} \Big _{-2}^{1} =$	3 p
	=4-2=2	2p
c)	$\frac{1}{f(x)} = \frac{\sqrt{x+3}}{x^2+1} \le \frac{2}{x^2+1} \text{, pentru orice } x \in [0,1], \text{ de unde obținem } \int_0^1 \frac{1}{f(x)} dx \le 2 \int_0^1 \frac{1}{x^2+1} dx = \frac{1}{x^2+1} $	3p
	$=2\arctan x \left \frac{1}{0} = \frac{\pi}{2} \right $	2p

Simulare