Diagonalization language

The diagonalization language is the set
$$L_d = \{ w \mid w = w_i, \ w_i \notin L(M_i) \}$$

In words, L_d contains all binary strings w_i such that the i-th TM does not accept w_i

Diagonalization language

The following table reports whether M_i accepts (1) or rejects (0) w_j

Non-RE languages
Undecidable languages
Undecidable problems for TMs
Post's correspondence problem
Other undecidable problems

Diagonalization language

We can interpret the *i*-th row of the table as the **characteristic vector** of language $L(M_i)$: an entry is 1 iff the corresponding string belongs to the language

Observation: The table represents the entire class RE. In fact, a language is in RE if and only if its characteristic vector is a row of the table

Diagonalization language

The following statements are logically equivalent

- the *i*-th element of the diagonal is 0
- $w_i \notin L(M_i)$
- $w_i \in L_d$

This means that, if we complement the diagonal, we obtain the characteristic vector of language L_d

This vector cannot be a row of the table, because the diagonal element of each row does not match with at least one position of the characteristic vector of language L_d — the interestion with the diagonal would match — be is the complement of the diagonal

Non-RE languages
Undecidable languages
Undecidable problems for TMs
Post's correspondence problem
Other undecidable problems

Diagonalization language

Theorem L_d is not in RE

Proof Let us assume that there is a TM M such that $L_d = L(M)$. Choose i such that $M_i = M$. Does the string w_i belong to L_d ?

If $w_i \in L_d$, then M_i accepts w_i because $L_d = L(M_i)$. But by definition of L_d , the *i*-th element of the diagonal is 0 and therefore M_i does not accept w_i

If $w_i \notin L_d$, then M_i does not accept w_i . But by definition of L_d , the *i*-th element of the diagonal is 1 and therefore M_i accepts w_i

We have therefore obtained a contradiction

Recursive languages

A language L is **recursive** (REC) if L = L(M) for some TM M such that

- if $w \in L$, then M halts in a final state
- if $w \notin L$, then M halts in a non-final state

If we think of L as a decision problem P_L , then we say that P_L is **decidable** whenever L is recursive, and P_L is **undecidable** otherwise

Decidability corresponds to the notion of algorithm: we have a sequence of steps that always ends and produces some answer

REC vs. RE\REC

Comparison:

- recursive language means that there is an algorithm for solving the associated decision problem, that is, we always have an answer
- language in RE that is non-recursive means that we can enumerate the positive instances of the problem, but we cannot conclude in a finite amount of time that an instance has a negative answer

The distinction between decidable / undecidable problems is often more important than the distinction between RE / non-RE problems

Language classes

- recursive = decidable = M always halts
- RE = M halts upon acceptance
- non-RE = we cannot compute; Example : L_d

Properties of recursive languages

Theorem If L is recursive, then \overline{L} is recursive

Proof If L is recursive, there is a TM M that always halts, such that L(M) = L. We construct a TM M' such that M' accepts when M does not, and *vice versa*. M' always halts and $L(M') = \overline{L}$

Corollary If L is in RE and \overline{L} is not in RE, then L cannot be a recursive language

Properties of RE languages

Theorem If L and \overline{L} are in RE, then L is recursive

Proof Let $L = L(M_1)$ and $\overline{L} = L(M_2)$. We build a multi-tape TM M that simulates M_1 and M_2 in parallel

If the input is in L, M_1 accepts and halts, then also M accepts and halts. If the input is not in L, then M_2 accepts and halts, so M rejects and halts

L and \overline{L}

Where can L and \overline{L} be placed ?

Combinatorially, there are 9 possible arrangements, but the theory allows only 4 of them

L and \overline{L}

Possible arrangements for L and \overline{L}

- both L and \overline{L} are recursive
- both L and \overline{L} are not in RE
- L is RE but not recursive, and \overline{L} is not RE
- \bullet \overline{L} is RE but not recursive, and L is not RE

It is not possible that a language is recursive and the complement is RE but not recursive or not RE

It is not possible that a language and its complement are both RE but not recursive

Non-RE languages
Undecidable languages
Undecidable problems for TMs
Post's correspondence problem
Other undecidable problems

Example

Let us consider the language $\overline{L_d}$, which contains the strings w_i such that M_i accepts w_i

Since L_d is not RE, $\overline{L_d}$ is not recursive. It is possible that $\overline{L_d}$ is not RE, or alternatively RE but not recursive

We will prove later that $\overline{L_d}$ is RE but not recursive

Universal language

We want to encode pairs (M, w) consisting of

- one TM *M* with binary input alphabet
- one binary string w

We use enc(M) followed by 111, followed by w, and write enc(M, w).

Note: the sequence 111 never appears in enc(M)

The language L_u , called universal language, is the set

$$L_u = \{\operatorname{enc}(M, w) \mid w \in L(M)\}$$

In words, L_u is the set of binary strings that encode a pair (M, w) such that $w \in L(M)$

There exists a TM U, called **universal TM**, such that $L(U) = L_u$

U (multi-tape version) has four tapes

- tape 1 contains the input string enc(M, w)
- tape 2 simulates M's tape, using the 0^j format for each X_j tape symbol, and 1 as cell separator
- tape 3 records M's state, using the 0^{j} format for each state q_{i}
- tape 4: auxiliary copying tape, used to "enlarge" or "shrink" the available space for the 0^j representations in tape 2

Strategy exploited by U

- if enc(M) is invalid, U halts and rejects (in this case $L(M) = \emptyset$)
- write w on tape 2 using 1 as separator, 0^1 for $0 = X_1$, and 0^2 for $1 = X_2$

No encoding for B, use U's blank

- write the initial state on tape 3, using 0 for q_1 , and place the tape head of tape 2 on the first cell
- search on tape 1 for a transition of the form $0^{i}10^{j}10^{k}10^{l}10^{m}$, where
 - 0ⁱ is the state on tape 3
 - 0^j is M's tape symbol under the tape head of tape 2

Strategy exploited by U (cont'd)

- in order to simulate trasition $0^{i}10^{j}10^{k}10^{l}10^{m}$, the TM U
 - replaces the content of tape 3 with 0^k (new state)
 - replaces 0^j on tape 2 with 0^l (new tape symbol); if needed, we can "enlarge" or "shrink" U's tapes using the auxiliary tape (tape 4)
 - move the tape head of tape 2 to the left if m = 1 or to the right if m = 2, until the next 1 is reached (separator)
- if there is no transition $0^i 10^j 10^k 10^l 10^m$, M halts and U halts as well
- if M reaches a final state, then U halts and accepts

Non-RE languages
Undecidable languages
Undecidable problems for TMs
Post's correspondence problem
Other undecidable problems

Universal language

Theorem L_u is in RE but is not recursive

Proof L_u is in RE, since we have built the TM U

Let us assume that L_u is recursive. Then $\overline{L_u}$ is also recursive

Let M be a TM such that $L(M) = \overline{L_u}$. We build a new TM M' for L_d as follows (example of a reduction, a notion which we will introduce in the next section)

Universal language

On input $w = w_i$, M' builds $enc(M_i, w_i) = w_i 111w_i$

M always halts, and accepts if and only if $w_i \notin L(M_i)$. As a consequence, M' always halts, and $L(M') = L_d$

We have a **contradiction**, since L_d is not recursive

The halting problem

Given a TM M, we define H(M) the set of strings w such that M halts with input w

Let us consider the language L_h , called the halting problem

$$L_h = \{\operatorname{enc}(M, w) \mid w \in H(M)\}$$

There exists a TM M such that $L(M) = L_h$: M takes as input a pair enc(M', w) and simulates a computation of M' on w

M accepts whenever M' halts on w

Therefore L_h is a RE language

The halting problem

We can prove that L_h is not recursive (proof omitted)

Hence there is **no algorithm** that can state whether a given program ends or not on a given input

However, there exists a procedure that

- halts, if a given program ends on a given input
- cycles, if a given program does not end on a given input