

Data WareHouse Case Study

Prof. A. Peron

TPC-H

- ▶ A benchmark for decision support.
- www.tpc.org
- ► The TPC Benchmark™H (TPC-H) is a decision support benchmark. It consists of a suite of business oriented ad-hoc queries and concurrent data modifications.
- ▶ The queries and the data populating the database have been chosen to have broad industry-wide relevance while maintaining a sufficient degree of ease of implementation.
- ▶This benchmark illustrates decision support systems that:
 - Examine large volumes of data;
 - ▶ Execute queries with a high degree of complexity;
 - ▶ Give answers to critical business questions.

TPC-H

- ► TPC Benchmark[™] H is comprised of a set of business queries designed to exercise system functionalities in a manner representative of complex business analysis applications.
- ► These queries have been given a realistic context, portraying the activity of a wholesale supplier.
- ► TPC-H does not represent the activity of any particular business segment, but rather any industry which must manage sell, or distribute a product worldwide (e.g., car rental, food distribution, parts, suppliers, etc.).
- ▶ It includes:
 - ▶ a logical schema
 - ▶ a set of queries
 - a scalable set of data

TPC-H - Schema

SF is Scale Factor * Number of rows

 \longrightarrow

One-to-many association

TPC-H - Queries

- ► These selected queries provide answers to the following classes of business analysis:
 - Pricing and promotions;
 - Supply and demand management;
 - ▶ Profit and revenue management;
 - Customer satisfaction study;
 - Market share study;
 - ▶ Shipping management.
- ▶ The queries that have been selected exhibit the following characteristics:
 - ▶ They have a high degree of complexity;
 - ▶ They use a variety of access;
 - ▶ They are of an ad hoc nature;
 - ▶ They examine a large percentage of the available data;
 - ▶ They all differ from each other;
 - ▶ They contain query parameters that change across query executions.

- ▶ The benchmark can be downloaded at site www.tpc.org
- Complete documentation of the benchmark
- ► https://www.tpc.org/tpc_documents_current_versions/pdf/tpc-h_v3.0.1.pdf
- ▶ The documentation contains:
- ▶ A complete specification of the logical schema (relational schemata and data types).
- ▶ A set of predefined parametric queries.
- ▶The package for creating the set of data can be obtained at site
- ▶ https://www.tpc.org/tpc_documents_current_versions/current_specificati ons5.asp
- ▶ The package allows to generate data parametric with respect to a Scale Factor

Metrics for a DB with scale factor 1

Table Name	Cardinality (in rows)	Length (in bytes) of Typical ² Row	Typical ² Table Size (in MB)
SUPPLIER	10,000	159	2
PART	200,000	155	30
PARTSUPP	800,000	144	110
CUSTOMER	150,000	179	26
ORDERS	1,500,000	104	149
LINEITEM ³	6,001,215	112	641
NATION ¹	25	128	< 1
REGION ¹	5	124	< 1
Total	8,661,245		956

¹ Fixed cardinality: does not scale with SF.

² Typical lengths and sizes given here are examples, not requirements, of what could result from an implementation (sizes do not include storage/access overheads).

³ The cardinality of the LINEITEM table is not a strict multiple of SF since the number of lineitems in an order is chosen at random with an average of four (see Clause 4.2.5.2).

▶ Metrics for supported scale factor

Table 4: LINEITEM Cardinality shows the cardinality of the LINEITEM table at all authorized scale factors.

Table 4: LINEITEM Cardinality

Scale Factor (SF)	Cardinality of LINEITEM Table	
1	6001215	
10	59986052	
30	179998372	
100	600037902	
300	1799989091	
1000	5999989709	
3000	18000048306	
10000	5999994267	
30000	17999978268	
100000	59999969200	

- Download the dbgen package.
- ▶ Implement the DB in the DBMS PostgreSQL following the specification (structure and datatypes)
- ▶ Populate the DB using data generated by dbgen (csv files)

A SF = 10 is suggested

- Collect some table statistics
- Number of rows
- Table size
- Number of distinct values for each attribute
- MinValue and MaxValue for each meaningful attribute.

TPC-H queries (1)

- Local revenue value.
- ► Aggregation of the revenue of lineitems which are locally sold. Locally means that the customer and the supplier are in the same nation (→ region). The revenue is obtained by l_extendedprice * (1 l_discount) of the considered lineitems.
- The aggregations should be performed with the following rollup
- ▶ Month → Quarter → Year
- Type
- ▶ Nation → Region

TPC-H queries (2)

- Export/import revenue value.
- ▶ Aggregation of the export/import of revenue of lineitems between two nations (E,I) where E is the nation of the lineitem supplier and I the nations of the lineitem customer. The revenue is obtained by l_extendedprice * (1 l_discount) of the considered lineitems
- ▶The aggregations should be performed with the following rollup
- ▶ Month → Quarter → Year
- ► Type
- ► Nation → Region

TPC-H queries (3)

- Late delivery.
- ▶ Number of orders where at least one lineitem has been received later than the committed date.
- ►The aggregations should be performed with the following rollup
- ► Month → Year
- ► Nation → Region (Customer)

The same query can be issued with the following slicing

A specific Month

A specific Type of lineitem

TPC-H queries (4)

- Returned item loss.
- ➤ The query gives the revenue loss for customers who might be having problems with the parts that are shipped to them. Revenue lost is defined as sum(l_extendedprice*(1-l_discount)) for all qualifying lineitems.
- ▶The aggregations should be performed with the following roll-up
- ▶ Month → Quarter → Year
- ▶ Customer

The query can be issued with the following slicing (combined)

- ▶ Name of a customer
- ► A specific quarter