TESTS OF DISCRETE SPACE-TIME SYMMETRIES

CHARGE CONJUGATION (C) INVARIANCE

PARITY (P) INVARIANCE

e electric dipole moment	$<$ 0.87 $ imes$ 10^{-28} ecm, CL $=$ 90%
μ electric dipole moment	$(-0.1 \pm 0.9) imes 10^{-19}~{ ext{ecm}}$
${\sf Re}(d_{ au}= au$ electric dipole moment)	-0.220 to 0.45×10^{-16} ecm, CL $=95\%$
$\Gamma(\eta ightarrow \pi^+ \pi^-)/\Gamma_{total}$	$<1.3 \times 10^{-5}$, CL = 90%
$\Gamma(\eta ightarrow 2\pi^0)/\Gamma_{ ext{total}}$	$<3.5 \times 10^{-4}$, CL = 90%
$\Gamma(\eta ightarrow 4\pi^0)/\Gamma_{ ext{total}}$	$<$ 6.9 \times 10 ⁻⁷ , CL = 90%
$\Gamma(\eta'(958) \rightarrow \pi^+\pi^-)/\Gamma_{\text{total}}$	$< 6 \times 10^{-5}$, CL $= 90\%$
$\Gamma(\eta'(958) \rightarrow \pi^0 \pi^0)/\Gamma_{total}$	$<4 \times 10^{-4}$, CL = 90%

```
\begin{array}{lll} \Gamma(\eta_{c}(1S) \to \ \pi^{+} \, \pi^{-})/\Gamma_{total} & <1.1 \times 10^{-4}, \ \text{CL} = 90\% \\ \Gamma(\eta_{c}(1S) \to \ \pi^{0} \, \pi^{0})/\Gamma_{total} & <4 \times 10^{-5}, \ \text{CL} = 90\% \\ \Gamma(\eta_{c}(1S) \to \ K^{+} \, K^{-})/\Gamma_{total} & <6 \times 10^{-4}, \ \text{CL} = 90\% \\ \Gamma(\eta_{c}(1S) \to \ K^{0}_{S} \, K^{0}_{S})/\Gamma_{total} & <3.1 \times 10^{-4}, \ \text{CL} = 90\% \\ \rho \ \text{electric dipole moment} & <0.54 \times 10^{-23} \ \text{e cm} \\ n \ \text{electric dipole moment} & <0.30 \times 10^{-25} \ \text{e cm}, \ \text{CL} = 90\% \\ \Lambda \ \text{electric dipole moment} & <1.5 \times 10^{-16} \ \text{e cm}, \ \text{CL} = 95\% \\ \end{array}
```

TIME REVERSAL (T) INVARIANCE

```
< 0.87 \times 10^{-28} \text{ ecm, CL} = 90\%
e electric dipole moment
                                                                                         (-0.1 \pm 0.9) \times 10^{-19} \text{ ecm}
\mu electric dipole moment
\mu decay parameters
        transverse e^+ polarization normal to plane of \mu
                                                                                         (-2 \pm 8) \times 10^{-3}
               spin, e^+ momentum
                                                                                         (-10 \pm 20) \times 10^{-3}
       \alpha'/A
                                                                                         (2 \pm 7) \times 10^{-3}
       \beta'/A
                                                                                         -0.220 to 0.45 \times 10^{-16} ecm, CL = 95%
Re(d_{\tau} = \tau \text{ electric dipole moment})
P_T in K^+ \rightarrow \pi^0 \mu^+ \nu_\mu
                                                                                         (-1.7 \pm 2.5) \times 10^{-3}
P_T \text{ in } K^+ \rightarrow \mu^+ \nu_\mu \gamma
                                                                                         (-0.6 \pm 1.9) \times 10^{-2}
Im(\xi) in K^+ \rightarrow \pi^0 \mu^+ \nu_\mu decay (from transverse \mu
                                                                                         -0.006 + 0.008
asymmetry A_{\mathcal{T}} in K^0-\overline{K}^0 mixing
                                                                                         (6.6 \pm 1.6) \times 10^{-3}
\operatorname{Im}(\xi) in K_{\mu 3}^0 decay (from transverse \mu pol.)
                                                                                         -0.007 \pm 0.026
A_T(D^{\pm} \to K_5^0 K^{\pm} \pi^+ \pi^-)
                                                                                   [b] (-12 \pm 11) \times 10^{-3}
A_T(D^0 \to K^+ K^- \pi^+ \pi^-)
                                                                                   [b] (1.7 \pm 2.7) \times 10^{-3}
A_T(D_S^{\pm} \to K_S^0 K^{\pm} \pi^+ \pi^-)
                                                                                   [b] (-14 \pm 8) \times 10^{-3}
\Delta S_T^+ (S_{\ell^-, K_S^0}^- - S_{\ell^+, K_S^0}^+)
                                                                                         -1.37 \pm 0.15
\Delta S_T^- (S_{\ell^-, K_S^0}^+ - S_{\ell^+, K_S^0}^-)
                                                                                         1.17 \pm 0.21
\Delta C_T^+ (C_{\ell^-, K_S^0}^- - C_{\ell^+, K_S^0}^+)
                                                                                         0.10 \pm 0.16
\Delta C_T^- (C_{\ell^-, K_c^0}^+ - C_{\ell^+, K_c^0}^-)
                                                                                         0.04 \pm 0.16
                                                                                         < 0.54 \times 10^{-23} ecm
p electric dipole moment
                                                                                         < 0.30 \times 10^{-25} \text{ ecm, CL} = 90\%
n electric dipole moment
n \rightarrow pe^{-}\overline{\nu}_{e} decay parameters
                                                                                   [c] (180.017 \pm 0.026)^{\circ}
        \phi_{AV}, phase of g_A relative to g_V
                                                                                  [d] (-1.2 \pm 2.0) \times 10^{-4}
        triple correlation coefficient D
                                                                                  [d] 0.004 \pm 0.013
        triple correlation coefficient R
                                                                                         < 1.5 \times 10^{-16} \text{ ecm, CL} = 95\%
\Lambda electric dipole moment
triple correlation coefficient D for \Sigma^- 
ightarrow ne^- \overline{
u}_e
                                                                                         0.11 \pm 0.10
```

CP INVARIANCE

$Re(d_{_{\mathcal{T}}}^{W})$		$<$ 0.50 $ imes$ 10 $^{-17}$ ecm, CL $=$ 95%
$\operatorname{Im}(d_{\tau}^{W})$		$< 1.1 imes 10^{-17}$ ecm, CL $= 95\%$
$\eta ightarrow \pi^+\pi^-e^+e^-$ decay-plane asymmetry		$(-0.6 \pm 3.1) \times 10^{-2}$
$\Gamma(\eta \to \pi^+\pi^-)/\Gamma_{\text{total}}$		$<1.3 \times 10^{-5}$, CL = 90%
$\Gamma(\eta \rightarrow 2\pi^0)/\Gamma_{\text{total}}$		$<3.5 \times 10^{-4}, CL = 90\%$
$\Gamma(\eta \to 4\pi^0)/\Gamma_{\text{total}}$		$<6.9 \times 10^{-7}$, CL = 90%
$\Gamma(\eta'(958) \rightarrow \pi^+\pi^-)/\Gamma_{\text{total}}$		$<6 \times 10^{-5}$, CL = 90%
$\Gamma(\eta'(958) \rightarrow \pi^0 \pi^0)/\Gamma_{\text{total}}$		$<4 \times 10^{-4}$, CL = 90%
$K^{\pm} \rightarrow \pi^{\pm} e^{+} e^{-}$ rate difference/sum		$(-2.2 \pm 1.6) \times 10^{-2}$
$\mathcal{K}^{\pm} ightarrow \ \pi^{\pm} \mu^{+} \mu^{-}$ rate difference/sum		0.010 ± 0.023
$\mathit{K}^{\pm} ightarrow \ \pi^{\pm} \pi^{0} \gamma$ rate difference/sum		$(0.0 \pm 1.2) \times 10^{-3}$
$\mathcal{K}^{\pm} ightarrow \ \pi^{\pm} \pi^{+} \pi^{-}$ rate difference/sum		$(0.04 \pm 0.06)\%$
$\mathcal{K}^{\pm} ightarrow \ \pi^{\pm} \pi^{0} \pi^{0}$ rate difference/sum		$(-0.02 \pm 0.28)\%$
$K^{\pm} \rightarrow \pi^{\pm}\pi^{+}\pi^{-} (g_{+} - g_{-}) / (g_{+} + g_{-})$		$(-1.5 \pm 2.2) \times 10^{-4}$
$K^{\pm} ightarrow \ \pi^{\pm} \pi^{0} \pi^{0} (g_{+} - g_{-}) / (g_{+} + g_{-})$		$(1.8 \pm 1.8) \times 10^{-4}$
$A_S = [\Gamma(K_S^0 ightarrow \pi^- e^+ u_e) - \Gamma(K_S^0 ightarrow \pi^+ e^- \overline{ u}_e)]$		$(2 \pm 10) \times 10^{-3}$
$\operatorname{Im}(\eta_{+-0}) = \operatorname{Im}(A(K_S^0 \to \pi^+\pi^-\pi^0, CP\text{-violating})$		-0.002 ± 0.009
$/A(K_I^0 \rightarrow \pi^+\pi^-\pi^0))$		
$\operatorname{Im}(\eta_{000}) = \operatorname{Im}(A(K_S^0 \to \pi^0 \pi^0 \pi^0)/A(K_L^0 \to \pi^0 \pi^0 \pi^0))$		-0.001 ± 0.016
$ \eta_{000} = A(\kappa_S^0 \to 3\pi^0)/A(\kappa_L^0 \to 3\pi^0) $		<0.0088, CL = 90%
<i>CP</i> asymmetry A in $K_S^0 \rightarrow \pi^+\pi^-e^+e^-$		$(-0.4 \pm 0.8)\%$
$\Gamma(\kappa_S^0 \to 3\pi^0)/\Gamma_{\text{total}}$		$< 2.6 \times 10^{-8}$, $CL = 90\%$
linear coefficient j for $K_L^0 ightarrow \pi^+\pi^-\pi^0$		0.0012 ± 0.0008
quadratic coefficient f for $K_I^0 \rightarrow \pi^+\pi^-\pi^0$		0.004 ± 0.006
$ \epsilon_{+-\gamma}^{\prime} /\epsilon$ for $K_L^0 \rightarrow \pi^+\pi^-\gamma$		<0.3, CL = 90%
$ g_{E1} $ for $K_I^0 \rightarrow \pi^+\pi^-\gamma$		<0.21, CL = 90%
$\Gamma(K_I^0 \to \pi^0 \mu^+ \mu^-)/\Gamma_{\text{total}}$	[e]	$< 3.8 \times 10^{-10}$, CL $= 90\%$
$\Gamma(\kappa_I^0 \to \pi^0 e^+ e^-)/\Gamma_{\text{total}}$	[e]	$< 2.8 \times 10^{-10}$, CL = 90%
$\Gamma(K_I^0 \to \pi^0 \nu \overline{\nu})/\Gamma_{\text{total}}$	[<i>f</i>]	$< 2.6 \times 10^{-8}$, CL = 90%
$A_{CP}(D^{\pm} \rightarrow \mu^{\pm} \nu)$		(8 ± 8)%
$A_{CP}(D^{\pm} \rightarrow K_I^0 e^{\pm} \nu)$		$(-0.6 \pm 1.6)\%$
$A_{CP}(D^{\pm} \rightarrow \kappa_{5}^{0} \pi^{\pm})$		$(-0.41 \pm 0.09)\%$
$A_{CP}(D^{\pm} \rightarrow K^{\mp}2\pi^{\pm})$		$(-0.18 \pm 0.16)\%$
$A_{CP}(D^{\pm} \rightarrow K^{\mp}\pi^{\pm}\pi^{\pm}\pi^{0})$		$(-0.3 \pm 0.7)\%$
$A_{CP}(D^{\pm} \rightarrow K_{5}^{0} \pi^{\pm} \pi^{0})$		$(-0.1 \pm 0.7)\%$
$A_{CP}(D^{\pm} \rightarrow K_S^0 \pi^{\pm} \pi^{+} \pi^{-})$		$(0.0 \pm 1.2)\%$
$A_{CP}(D^{\pm} \rightarrow \pi^{\pm}\pi^{0})$		·
$ACP(D \rightarrow \pi - \pi^{-})$		$(2.9 \pm 2.9)\%$

Created: 10/3/2016 15:03

 $\mathsf{HTTP:}//\mathsf{PDG.LBL.GOV}$

$A_{CP}(D^{\pm} \rightarrow \pi^{\pm} \eta)$ $A_{CP}(D^{\pm} \rightarrow \pi^{\pm} \eta'(958))$ $A_{CP}(\overline{K}^{0}/K^{0}K^{\pm})$ $A_{CP}(D^{\pm} \rightarrow K_{S}^{0}K^{\pm})$ $A_{CP}(D^{\pm} \rightarrow K^{+}K^{-}\pi^{\pm})$ $A_{CP}(D^{\pm} \rightarrow K^{\pm}K^{*0})$		$(1.0 \pm 1.5)\%$ (S = 1.4) $(-0.5 \pm 1.2)\%$ (S = 1.1) $(0.11 \pm 0.17)\%$ $(-0.11 \pm 0.25)\%$ $(0.37 \pm 0.29)\%$ $(-0.3 \pm 0.4)\%$
$A_{CP}(D^{\pm} \to \phi \pi^{\pm})$ $A_{CP}(D^{\pm} \to K^{\pm} K_{0}^{*}(1430)^{0})$ $A_{CP}(D^{\pm} \to K^{\pm} K_{2}^{*}(1430)^{0})$ $A_{CP}(D^{\pm} \to K^{\pm} K_{0}^{*}(800))$ $A_{CP}(D^{\pm} \to a_{0}(1450)^{0} \pi^{\pm})$ $A_{CP}(D^{\pm} \to \phi(1680) \pi^{\pm})$ $A_{CP}(D^{\pm} \to \pi^{+} \pi^{-} \pi^{\pm})$ $A_{CP}(D^{\pm} \to K_{S}^{0} K^{\pm} \pi^{+} \pi^{-})$		$(0.09 \pm 0.19)\% (S = 1.2)$ $(8^{+7}_{-6})\%$ $(43^{+20}_{-26})\%$ $(-12^{+18}_{-13})\%$ $(-19^{+14}_{-16})\%$ $(-9 \pm 26)\%$ $(-2 \pm 4)\%$ $(-4 \pm 7)\%$
$A_{CP}(D^{\pm} \rightarrow K^{\pm}\pi^{0})$ Local CPV in $D^{\pm} \rightarrow \pi^{+}\pi^{-}\pi^{\pm}$ Local CPV in $D^{\pm} \rightarrow K^{+}K^{-}\pi^{\pm}$ $ q/p $ of $D^{0}-\overline{D}^{0}$ mixing A_{Γ} of $D^{0}-\overline{D}^{0}$ mixing Where there is ambiguity, the CP test is labelled by the D^{0} of $A_{CP}(D^{0} \rightarrow K^{+}K^{-})$	decay	$(-4 \pm 11)\%$ 78.1% 31% $0.92^{+0.12}_{-0.09}$ $(-0.125 \pm 0.526) \times 10^{-3}$ y mode. $(-0.14 \pm 0.12)\%$
$A_{CP}(D^0 \to \rho(770)^0 \pi^0 \to \pi^+ \pi^- \pi^0)$ $A_{CP}(D^0 \to \rho(770)^- \pi^+ \to \pi^+ \pi^- \pi^0)$	[g] [g]	$(-5 \pm 5)\%$ $(0.01 \pm 0.15)\%$ $(0.0 \pm 0.6)\%$ $(0.3 \pm 0.4)\%$ $(1.2 \pm 0.9)\%$ $(-3.1 \pm 3.0)\%$ $(-1.0 \pm 1.7)\%$
$\begin{array}{l} A_{CP}(D^{0} \to \rho(1450)^{0} \pi^{0} \to \pi^{+} \pi^{-} \pi^{0}) \\ A_{CP}(D^{0} \to \rho(1450)^{-} \pi^{+} \to \pi^{+} \pi^{-} \pi^{0}) \\ A_{CP}(D^{0} \to \rho(1700)^{+} \pi^{-} \to \pi^{+} \pi^{-} \pi^{0}) \\ A_{CP}(D^{0} \to \rho(1700)^{0} \pi^{0} \to \pi^{+} \pi^{-} \pi^{0}) \\ A_{CP}(D^{0} \to \rho(1700)^{-} \pi^{+} \to \pi^{+} \pi^{-} \pi^{0}) \\ A_{CP}(D^{0} \to \rho(180) \pi^{0} \to \pi^{+} \pi^{-} \pi^{0}) \\ A_{CP}(D^{0} \to f_{0}(1370) \pi^{0} \to \pi^{+} \pi^{-} \pi^{0}) \\ A_{CP}(D^{0} \to f_{0}(1500) \pi^{0} \to \pi^{+} \pi^{-} \pi^{0}) \\ A_{CP}(D^{0} \to f_{0}(1710) \pi^{0} \to \pi^{+} \pi^{-} \pi^{0}) \\ A_{CP}(D^{0} \to f_{0}(1710) \pi^{0} \to \pi^{+} \pi^{-} \pi^{0}) \\ A_{CP}(D^{0} \to f_{0}(1710) \pi^{0} \to \pi^{+} \pi^{-} \pi^{0}) \\ A_{CP}(D^{0} \to f_{0}(1710) \pi^{0} \to \pi^{+} \pi^{-} \pi^{0}) \end{array}$	[g] [g] [g] [g] [g] [g] [g] [g] [g]	$(0 \pm 70)\%$ $(-20 \pm 40)\%$ $(6 \pm 9)\%$ $(-5 \pm 14)\%$ $(13 \pm 9)\%$ $(8 \pm 11)\%$ $(0 \pm 35)\%$ $(25 \pm 18)\%$ $(0 \pm 18)\%$ $(0 \pm 24)\%$ $(-4 \pm 6)\%$ $(6 \pm 8)\%$
		$(-13 \pm 23)\%$

$A_{CP}(D^0 \rightarrow$	$K^+K^-\pi^0$)		$(-1.0 \pm 1.7)\%$
	$K^*(892)^+K^- \to K^+K^-\pi^0$	[g]	$(-0.9 \pm 1.3)\%$
	$K^*(1410)^+ K^- \rightarrow K^+ K^- \pi^0)$	[g]	$(-21 \pm 24)\%$
	$(K^{+}\pi^{0})_{S}K^{-} \rightarrow K^{+}K^{-}\pi^{0})$	[g]	$(7\pm15)\%$
$A_{CP}(D^0 \rightarrow$	$\phi(1020)\pi^0 \to K^+K^-\pi^0$	[g]	$(1.1 \pm 2.2)\%$
$A_{CP}(D^0 \rightarrow$	$f_0(980)\pi^0 \to K^+ K^- \pi^0)$	[g]	$(-3 \pm 19)\%$
$A_{CP}(D^0 \rightarrow$	$a_0(980)^0 \pi^0 \rightarrow K^+ K^- \pi^0$	[g]	$(-5\pm16)\%$
$A_{CP}(D^0 \rightarrow$	$f_2'(1525)\pi^0 \to K^+K^-\pi^0$	[g]	$(0\pm160)\%$
$A_{CP}(D^0 \rightarrow$	$K^*(892)^- K^+ \rightarrow K^+ K^- \pi^0$	[g]	$(-5 \pm 4)\%$
	$K^*(1410)^- K^+ \rightarrow K^+ K^- \pi^0$	[g]	$(-17\pm29)\%$
	$(K^{-}\pi^{0})_{S-wave}K^{+} \to K^{+}K^{-}\pi^{0})$	[g]	$(-10 \pm 40)\%$
$A_{CP}(D^0 \rightarrow$			$(-0.20 \pm 0.17)\%$
$A_{CP}(D^0\to$	$K_S^0 \eta$)		$(0.5 \pm 0.5)\%$
$A_{CP}(D^0 \rightarrow$	$K_S^0 \eta')$		$(1.0 \pm 0.7)\%$
$A_{CP}(D^0\to$	$K_{S}^{0}\phi)$		$(-3 \pm 9)\%$
$A_{CP}(D^0 \rightarrow$			$(0.3 \pm 0.7)\%$
$A_{CP}(D^0 \rightarrow$	$\kappa^+\pi^-$)		$(0.0 \pm 1.6)\%$
$A_{CP}(D^0 \rightarrow$	$\kappa^-\pi^+\pi^0$)		$(0.1 \pm 0.5)\%$
$A_{CP}(D^0 \rightarrow$	$K^+\pi^-\pi^0$)		$(0\pm5)\%$
$A_{CP}(D^0 \rightarrow$			$(-0.1 \pm 0.8)\%$
	$K^*(892)^-\pi^+ \to K_S^0\pi^+\pi^-)$		$(0.4 \pm 0.5)\%$
	$K^*(892)^+\pi^- \to K_S^0\pi^+\pi^-)$		$(1\pm6)\%$
$A_{CP}(D^0 \rightarrow$	$\kappa_S^0 \rho^0 \rightarrow \kappa_S^0 \pi^+ \pi^-)$		$(-0.1 \pm 0.5)\%$
$A_{CP}(D^0 \rightarrow$	$K_S^0 \omega \rightarrow K_S^0 \pi^+ \pi^-)$		$(-13\pm7)\%$
$A_{CP}(D^0\to$	$K_S^0 f_0(980) \to K_S^0 \pi^+ \pi^-)$		$(-0.4 \pm 2.7)\%$
$A_{CP}(D^0\to$	$K_S^0 f_2(1270) \to K_S^0 \pi^+ \pi^-)$		$(-4 \pm 5)\%$
	$K_S^0 f_0(1370) \to K_S^0 \pi^+ \pi^-)$		$(-1\pm9)\%$
$A_{CP}(D^0\to$	$\overline{K}{}^{0} \rho^{0}(1450) \to K_{S}^{0} \pi^{+} \pi^{-})$		$(-4 \pm 10)\%$
$A_{CP}(D^0 \rightarrow$	$\overline{K}^0 f_0(600) \to K_S^0 \pi^+ \pi^-)$		$(-3 \pm 5)\%$
$A_{CP}(D^0\to$	$K^*(1410)^-\pi^+ \to K_S^0\pi^+\pi^-)$		$(-2 \pm 9)\%$
	$\kappa_0^*(1430)^-\pi^+ \to \kappa_S^0\pi^+\pi^-)$		$(4 \pm 4)\%$
$A_{CP}(D^0\to$	$\kappa_0^*(1430)^-\pi^+ \to \kappa_S^0\pi^+\pi^-)$		$(12\pm15)\%$
	$\kappa_2^*(1430)^-\pi^+ \to \kappa_5^0\pi^+\pi^-)$		$(3\pm6)\%$
	$\kappa_{2}^{*}(1430)^{+}\pi^{-} \rightarrow \kappa_{5}^{0}\pi^{+}\pi^{-})$		$(-10 \pm 32)\%$
	$\kappa^*(1680)^-\pi^+ \to \kappa_S^0\pi^+\pi^-)$		_
$A_{CP}(D^0 \rightarrow$	$K^{-}\pi^{+}\pi^{+}\pi^{-})$		$(0.2 \pm 0.5)\%$
$A_{CP}(D^0 \rightarrow$	$\kappa^{+}\pi^{-}\pi^{+}\pi^{-}$)		$(-2 \pm 4)\%$
$A_{CP}(D^0 \rightarrow$	$K^{+}K^{-}\pi^{+}\pi^{-}$)		$(-8 \pm 7)\%$
$A_{CP}(D^0 \rightarrow$	$K_1^*(1270)^+ K^- \to K^{*0} \pi^+ K^-)$		$(-1\pm10)\%$

$A_{CP}(D^0 \to K_1^*(1270)^- K^+ \to \overline{K}^{*0} \pi^- K^+)$	$(-10 \pm 32)\%$
$A_{CP}(D^0 \to K_1^*(1270)^+ K^- \to \rho^0 K^+ K^-)$	$(-7 \pm 17)\%$
$A_{CP}(D^0 \to K_1^*(1270)^- K^+ \to \rho^0 K^- K^+)$	$(10 \pm 13)\%$
$A_{CP}(D^0 \to K^*(1410)^+ K^- \to K^{*0} \pi^+ K^-)$	$(-20 \pm 17)\%$
$A_{CP}(D^0 \to K^*(1410)^- K^+ \to \overline{K}^{*0} \pi^- K^+)$	$(-1 \pm 14)\%$
$A_{CP}(D^0 \rightarrow K^{*0}\overline{K}^{*0} S$ -wave)	$(10 \pm 14)\%$
$A_{CP}(D^0 o\phi ho^0$ <i>S</i> -wave)	$(-3 \pm 5)\%$
$A_{CP}(D^0 o \phi ho^0$ <i>D</i> -wave)	$(-37 \pm 19)\%$
$A_{CP}(D^0 \rightarrow \phi(\pi^+\pi^-)_{S-wave})$	$(-9 \pm 10)\%$
$A_{CP}((K^-\pi^+)_{P-wave} (K^+\pi^-)_{S-wave})$	$(3\pm11)\%$
<i>CP</i> -even fraction in $D^0 ightarrow \pi^+\pi^-\pi^0$ decays	$(97.3 \pm 1.7)\%$
<i>CP</i> -even fraction in $D^0 \rightarrow K^+K^-\pi^0$ decays	$(73 \pm 6)\%$
<i>CP</i> -even fraction in $D^0 \to \pi^+\pi^-\pi^+\pi^-$ decays	$(73.7 \pm 2.8)\%$
$\Delta A_{CP}^{D^0} = A_{CP}(K^+K^-) - A_{CP}(\pi^+\pi^-)$	$(-0.32 \pm 0.22)\% (S = 1.9)$
Local <i>CPV</i> in D^0 , $\overline{D}^0 \rightarrow \pi^+\pi^-\pi^0$	4.9%
Local <i>CPV</i> in D^0 , $\overline{D}^0 \rightarrow \pi^+\pi^-\pi^+\pi^-$	41%
Local <i>CPV</i> in D^0 , $\overline{D}^0 \to \kappa_S^0 \pi^+ \pi^-$	96%
Local <i>CPV</i> in D^0 , $\overline{D}^0 \rightarrow K^+K^-\pi^0$	16.6%
Local <i>CPV</i> in D^0 , $\overline{D}{}^0 \rightarrow K^+K^-\pi^+\pi^-$	9.1%
$A_{CP}(D_s^{\pm} \rightarrow \mu^{\pm} \nu)$	$(5\pm6)\%$
$A_{CP}(D_{s}^{\pm} \rightarrow K^{\pm}K_{s}^{0})$	$(0.08 \pm 0.26)\%$
$A_{CP}(D_s^{\pm} \rightarrow K^+K^-\pi^{\pm})$	$(-0.5 \pm 0.9)\%$
$A_{CP}(D_s^{\pm} \rightarrow \phi \pi^{\pm})$	$(-0.38 \pm 0.27)\%$
$A_{CP}(D_s^{\pm} \rightarrow \kappa^{\pm} \kappa_S^0 \pi^0)$	$(-2 \pm 6)\%$
$A_{CP}(D_s^{\pm} \rightarrow 2K_S^0\pi^{\pm})$	$(3 \pm 5)\%$
$A_{CP}(D_s^{\pm} \rightarrow K^+K^-\pi^{\pm}\pi^0)$	$(0.0 \pm 3.0)\%$
$A_{CP}(D_s^{\pm} \rightarrow K^{\pm}K_S^0\pi^{+}\pi^{-})$	$(-6 \pm 5)\%$
$A_{CP}(D_{S}^{\pm} \rightarrow K_{S}^{0} K^{\mp} 2\pi^{\pm})$	$(4.1 \pm 2.8)\%$
$A_{CP}(D_{\mathbf{s}}^{\pm} \rightarrow \pi^{+}\pi^{-}\pi^{\pm})$	$(-0.7 \pm 3.1)\%$
$A_{CP}(D_{m{s}}^{\pm} ightarrow \ \pi^{\pm}\eta)$	$(1.1 \pm 3.1)\%$
$A_{CP}(D_{s}^{\pm} ightarrow \ \pi^{\pm}\eta')$	$(-2.2 \pm 2.3)\%$
$A_{CP}(D_s^{\pm} \rightarrow \eta \pi^{\pm} \pi^0)$	$(-1\pm4)\%$
$A_{CP}(D_s^{\pm} \rightarrow \eta' \pi^{\pm} \pi^{0})$	(0 ± 8)%
$A_{CP}(D_s^{\pm} \rightarrow \kappa^{\pm} \pi^0)$	$(-27 \pm 24)\%$
$A_{CP}(\overline{K}^0/K^0\pi^{\pm})$	$(0.4 \pm 0.5)\%$
$A_{CP}(D_s^{\pm} \rightarrow \kappa_S^0 \pi^{\pm})$	$(3.1 \pm 2.6)\%$ (S = 1.7)
$A_{CP}(D_s^{\pm} \rightarrow K^{\pm}\pi^{+}\pi^{-})$	$(4 \pm 5)\%$
$A_{CP}(D_s^{\pm} \to K^{\pm} \eta)$	$(9 \pm 15)\%$
$A_{CP}(D_s^{\pm} \rightarrow K^{\pm} \eta'(958))$	$(6 \pm 19)\%$
$NCP(S_S \rightarrow N_{eff}(930))$	(O T 19)/0

$A_{CP}(B^+ \rightarrow J/\psi(1S)K^+)$	$0.003 \pm 0.006 \ (S = 1.8)$
$A_{CP}(B^+ \rightarrow J/\psi(1S)\pi^+)$	$(0.1 \pm 2.8) \times 10^{-2} \text{ (S} = 1.2)$
$A_{CP}(B^+ \rightarrow J/\psi \rho^+)$	-0.11 ± 0.14
$A_{CP}(B^+ \to J/\psi K^*(892)^+)$	-0.048 ± 0.033
$A_{CP}(B^+ \rightarrow \eta_c K^+)$	$0.01 \pm 0.07~(S=2.2)$
$A_{CP}(B^+ \rightarrow \psi(2S)\pi^+)$	0.03 ± 0.06
$A_{CP}(B^+ \rightarrow \psi(2S)K^+)$	$0.012 \pm 0.020 \; (S = 1.5)$
$A_{CP}(B^+ \to \psi(2S) K^*(892)^+)$	0.08 ± 0.21
$A_{CP}(B^+ \rightarrow \chi_{c1}(1P)\pi^+)$	0.07 ± 0.18
$A_{CP}(B^+ \rightarrow \chi_{c0} K^+)$	$-0.20 \pm 0.18 \; (S = 1.5)$
$A_{CP}(B^+ \rightarrow \chi_{c1}K^+)$	-0.009 ± 0.033
$A_{CP}(B^+ \to \chi_{c1} K^*(892)^+)$	0.5 ± 0.5
$A_{CP}(B^+ o \overline{D}{}^0\pi^+)$	-0.007 ± 0.007
$A_{CP}(B^+ \rightarrow D_{CP(+1)}\pi^+)$	0.035 ± 0.024
$A_{CP}(B^+ \rightarrow D_{CP(-1)}\pi^+)$	0.017 ± 0.026
$A_{CP}(B^+ \rightarrow \overline{D}{}^0 K^+)$	$0.007 \pm 0.025 \; (S=1.5)$
$r_B(B^+ \rightarrow D^0 K^+)$	0.095 ± 0.008
$\stackrel{-}{\delta_B}$ (B ⁺ $\rightarrow D^0 K^+$)	$(123\pm10)^\circ$
$r_B(B^+ o\overline{D}{}^0K^{*+})$	$0.17 \pm 0.11 \ (S = 2.3)$
$\delta_B(B^+ o D^0 K^{*+})$	$(155 \pm 70)^{\circ} \ (S = 2.0)$
$A_{CP}(B^+ \rightarrow [K^-\pi^+]_D K^+)$	-0.58 ± 0.21
$A_{CP}(B^+ \to [K^-\pi^+\pi^0]_D K^+)$	$0.07 \pm 0.30 \; (S = 1.5)$
$A_{CP}(B^+ \to [K^+ K^- \pi^0]_D K^+)$	0.30 ± 0.20
$A_{CP}(B^+ \to [\pi^+\pi^-\pi^0]_D K^+)$	0.05 ± 0.09
$A_{CP}(B^+ \to [K^-\pi^+]_{\overline{D}}K^*(892)^+)$	-0.3 ± 0.5
$A_{CP}(B^+ \to [K^-\pi^+]_D^-\pi^+)$	0.00 ± 0.09
$A_{CP}(B^+ \to [K^-\pi^+\pi^0]_D\pi^+)$	0.35 ± 0.16
$A_{CP}(B^+ \to [K^+ K^- \pi^0]_D \pi^+)$	-0.03 ± 0.04
$A_{CP}(B^+ \to [\pi^+\pi^-\pi^0]_D\pi^+)$	-0.016 ± 0.020
$A_{CP}(B^+ \to [K^-\pi^+]_{(D\pi)}\pi^+)$	-0.09 ± 0.27
$A_{CP}(B^+ \to [K^-\pi^+]_{(D\gamma)}^{\tau}\pi^+)$	-0.7 ± 0.6
$A_{CP}(B^+ \rightarrow [K^-\pi^+]_{(D\pi)}K^+)$	0.8 ± 0.4
$A_{CP}(B^+ \rightarrow [K^-\pi^+]_{(D\gamma)}K^+)$	0.4 ± 1.0
$A_{CP}(B^+ \to [\pi^+\pi^-\pi^0]_D K^+)$	-0.02 ± 0.15
$A_{CP}(B^+ \rightarrow [\kappa_S^0 \kappa^+ \pi^-]_D \kappa^+)$	0.04 ± 0.09
$A_{CP}(B^+ \to [\kappa_S^0 K^- \pi^+]_D K^+)$	0.23 ± 0.13
$A_{CP}(B^+ \to [\kappa_S^0 \kappa^- \pi^+]_D \pi^+)$	-0.052 ± 0.034
$A_{CP}(B^+ \rightarrow [K_0^0 K^+ \pi^-]_D \pi^+)$	-0.025 ± 0.026
$A_{CP}(B^+ \to [K^*(892)^- K^+]_D K^+)$	0.03 ± 0.11
$A_{CP}(B^+ \to [K^*(892)^+ K^-]_D K^+)$	0.34 ± 0.21
P(P(S)) = P(S(S(S)) + P(S(S))	0.01 ± 0.21

$A_{CP}(B^+ \to [K^*(892)^+ K^-]_D \pi^+)$	-0.05 ± 0.05
$A_{CP}(B^+ \to [K^*(892)^- K^+]_D^- \pi^+)$	-0.012 ± 0.030
$A_{CP}(B^+ \rightarrow D_{CP(+1)}K^+)$	$0.170 \pm 0.033 \; (S=1.2)$
$A_{ADS}(B^+ \rightarrow DK^+)$	-0.52 ± 0.15
$A_{ADS}(B^+ \rightarrow D\pi^+)$	0.14 ± 0.06
$A_{ADS}(B^+ \to [K^-\pi^+]_D K^+\pi^-\pi^+)$	-0.33 ± 0.35
$A_{ADS}(B^+ \to [K^-\pi^+]_D \pi^+\pi^-\pi^+)$	-0.01 ± 0.09
$A_{CP}(B^+ \rightarrow D_{CP(-1)}K^+)$	-0.10 ± 0.07
$A_{CP}(B^+ \to [K^+ K^-]_D K^+ \pi^- \pi^+)$	-0.04 ± 0.06
$A_{CP}(B^+ \to [\pi^+\pi^-]_D K^+\pi^-\pi^+)$	-0.05 ± 0.10
$A_{CP}(B^+ \to [K^-\pi^+]_D K^+\pi^-\pi^+)$	0.013 ± 0.023
$A_{CP}(B^+ \to [K^+ K^-]_D \pi^+ \pi^- \pi^+)$	-0.019 ± 0.015
$A_{CP}(B^+ \to [\pi^+\pi^-]_D\pi^+\pi^-\pi^+)$	-0.013 ± 0.019
$A_{CP}(B^+ \to [K^-\pi^+]_D \pi^+\pi^-\pi^+)$	-0.002 ± 0.011
$A_{CP}(B^+ \rightarrow \overline{D}^{*0}\pi^+)$	-0.014 ± 0.015
$A_{CP}(B^+ \to (D_{CP(+1)}^*)^0 \pi^+)$	-0.02 ± 0.05
$A_{CP}(B^+ \to (D_{CP(-1)}^*)^0 \pi^+)$	-0.09 ± 0.05
$A_{CP}(B^+ \rightarrow D^{*0}K^+)$	-0.07 ± 0.04
$r_B^*(B^+ \to D^{*0}K^+)$	$0.114^{+0.023}_{-0.040} (S = 1.2)$
$\delta_B^*(B^+ \rightarrow D^{*0}K^+)$	$(310^{+22}_{-28})^{\circ} (S = 1.3)$
$A_{CP}(B^+ \to D_{CP(+1)}^{*0}K^+)$	-0.12 ± 0.08
$A_{CP}(B^{+} \rightarrow D_{CP(+1)}^{*0} K^{+})$ $A_{CP}(B^{+} \rightarrow D_{CP(-1)}^{*} K^{+})$	-0.12 ± 0.08 0.07 ± 0.10
$A_{CP}(B^+ \rightarrow D_{CP(-1)}^*K^+)$	0.07 ± 0.10
$A_{CP}(B^+ \to D_{CP(-1)}^* K^+)$ $A_{CP}(B^+ \to D_{CP(+1)} K^* (892)^+)$	$\begin{array}{c} 0.07 \pm 0.10 \\ 0.09 \pm 0.14 \end{array}$
$A_{CP}(B^{+} \rightarrow D_{CP(-1)}^{*}K^{+})$ $A_{CP}(B^{+} \rightarrow D_{CP(+1)}K^{*}(892)^{+})$ $A_{CP}(B^{+} \rightarrow D_{CP(-1)}K^{*}(892)^{+})$	0.07 ± 0.10 0.09 ± 0.14 -0.23 ± 0.22
$A_{CP}(B^{+} \to D_{CP(-1)}^{*}K^{+})$ $A_{CP}(B^{+} \to D_{CP(+1)}K^{*}(892)^{+})$ $A_{CP}(B^{+} \to D_{CP(-1)}K^{*}(892)^{+})$ $A_{CP}(B^{+} \to D_{s}^{+}\phi)$ $A_{CP}(B^{+} \to D^{*+}\overline{D}^{*0})$ $A_{CP}(B^{+} \to D^{*+}\overline{D}^{0})$	0.07 ± 0.10 0.09 ± 0.14 -0.23 ± 0.22 0.0 ± 0.4
$A_{CP}(B^{+} \to D_{CP(-1)}^{*}K^{+})$ $A_{CP}(B^{+} \to D_{CP(+1)}K^{*}(892)^{+})$ $A_{CP}(B^{+} \to D_{CP(-1)}K^{*}(892)^{+})$ $A_{CP}(B^{+} \to D_{S}^{+}\phi)$ $A_{CP}(B^{+} \to D^{+}\overline{D}^{*0})$ $A_{CP}(B^{+} \to D^{*+}\overline{D}^{0})$ $A_{CP}(B^{+} \to D^{+}\overline{D}^{*0})$	0.07 ± 0.10 0.09 ± 0.14 -0.23 ± 0.22 0.0 ± 0.4 -0.15 ± 0.11
$A_{CP}(B^{+} \rightarrow D_{CP(-1)}^{*}K^{+})$ $A_{CP}(B^{+} \rightarrow D_{CP(+1)}K^{*}(892)^{+})$ $A_{CP}(B^{+} \rightarrow D_{CP(-1)}K^{*}(892)^{+})$ $A_{CP}(B^{+} \rightarrow D_{s}^{+}\phi)$ $A_{CP}(B^{+} \rightarrow D^{*}+\overline{D}^{*}0)$ $A_{CP}(B^{+} \rightarrow D^{*}+\overline{D}^{0})$ $A_{CP}(B^{+} \rightarrow D^{+}\overline{D}^{*}0)$ $A_{CP}(B^{+} \rightarrow D^{+}\overline{D}^{*}0)$ $A_{CP}(B^{+} \rightarrow D^{+}\overline{D}^{0})$	0.07 ± 0.10 0.09 ± 0.14 -0.23 ± 0.22 0.0 ± 0.4 -0.15 ± 0.11 -0.06 ± 0.13
$A_{CP}(B^{+} \rightarrow D_{CP(-1)}^{*}K^{+})$ $A_{CP}(B^{+} \rightarrow D_{CP(+1)}K^{*}(892)^{+})$ $A_{CP}(B^{+} \rightarrow D_{CP(-1)}K^{*}(892)^{+})$ $A_{CP}(B^{+} \rightarrow D_{s}^{+}\phi)$ $A_{CP}(B^{+} \rightarrow D^{*}+\overline{D}^{*}0)$ $A_{CP}(B^{+} \rightarrow D^{*}+\overline{D}^{0})$ $A_{CP}(B^{+} \rightarrow D^{+}\overline{D}^{*}0)$ $A_{CP}(B^{+} \rightarrow D^{+}\overline{D}^{*}0)$ $A_{CP}(B^{+} \rightarrow D^{+}\overline{D}^{*}0)$ $A_{CP}(B^{+} \rightarrow K_{S}^{0}\pi^{+})$	0.07 ± 0.10 0.09 ± 0.14 -0.23 ± 0.22 0.0 ± 0.4 -0.15 ± 0.11 -0.06 ± 0.13 0.13 ± 0.18
$A_{CP}(B^{+} \to D_{CP(-1)}^{*}K^{+})$ $A_{CP}(B^{+} \to D_{CP(+1)}K^{*}(892)^{+})$ $A_{CP}(B^{+} \to D_{CP(-1)}K^{*}(892)^{+})$ $A_{CP}(B^{+} \to D_{S}^{+}\phi)$ $A_{CP}(B^{+} \to D^{*}+\overline{D}^{*}0)$ $A_{CP}(B^{+} \to D^{*}+\overline{D}^{0})$ $A_{CP}(B^{+} \to D^{+}\overline{D}^{*}0)$ $A_{CP}(B^{+} \to D^{+}\overline{D}^{*}0)$ $A_{CP}(B^{+} \to D^{+}\overline{D}^{0})$ $A_{CP}(B^{+} \to K_{S}^{0}\pi^{+})$ $A_{CP}(B^{+} \to K^{0}\pi^{+})$	0.07 ± 0.10 0.09 ± 0.14 -0.23 ± 0.22 0.0 ± 0.4 -0.15 ± 0.11 -0.06 ± 0.13 0.13 ± 0.18 -0.03 ± 0.07
$A_{CP}(B^{+} \rightarrow D_{CP(-1)}^{*}K^{+})$ $A_{CP}(B^{+} \rightarrow D_{CP(+1)}K^{*}(892)^{+})$ $A_{CP}(B^{+} \rightarrow D_{CP(-1)}K^{*}(892)^{+})$ $A_{CP}(B^{+} \rightarrow D_{s}^{+}\phi)$ $A_{CP}(B^{+} \rightarrow D^{*}+\overline{D}^{*}0)$ $A_{CP}(B^{+} \rightarrow D^{*}+\overline{D}^{0})$ $A_{CP}(B^{+} \rightarrow D^{+}\overline{D}^{*}0)$ $A_{CP}(B^{+} \rightarrow D^{+}\overline{D}^{*}0)$ $A_{CP}(B^{+} \rightarrow K_{s}^{0}\pi^{+})$ $A_{CP}(B^{+} \rightarrow K_{s}^{0}\pi^{+})$ $A_{CP}(B^{+} \rightarrow K^{0}\pi^{+})$ $A_{CP}(B^{+} \rightarrow K^{0}\pi^{+})$ $A_{CP}(B^{+} \rightarrow K^{0}\pi^{+})$	0.07 ± 0.10 0.09 ± 0.14 -0.23 ± 0.22 0.0 ± 0.4 -0.15 ± 0.11 -0.06 ± 0.13 0.13 ± 0.18 -0.03 ± 0.07 -0.017 ± 0.016
$A_{CP}(B^{+} \to D_{CP(-1)}^{*}K^{+})$ $A_{CP}(B^{+} \to D_{CP(+1)}K^{*}(892)^{+})$ $A_{CP}(B^{+} \to D_{CP(-1)}K^{*}(892)^{+})$ $A_{CP}(B^{+} \to D_{S}^{+}\phi)$ $A_{CP}(B^{+} \to D^{*}+\overline{D}^{*}0)$ $A_{CP}(B^{+} \to D^{*}+\overline{D}^{0})$ $A_{CP}(B^{+} \to D^{+}\overline{D}^{*}0)$ $A_{CP}(B^{+} \to D^{+}\overline{D}^{*}0)$ $A_{CP}(B^{+} \to D^{+}\overline{D}^{0})$ $A_{CP}(B^{+} \to K_{S}^{0}\pi^{+})$ $A_{CP}(B^{+} \to K^{0}\pi^{+})$	0.07 ± 0.10 0.09 ± 0.14 -0.23 ± 0.22 0.0 ± 0.4 -0.15 ± 0.11 -0.06 ± 0.13 0.13 ± 0.18 -0.03 ± 0.07 -0.017 ± 0.016 0.037 ± 0.021
$A_{CP}(B^{+} \rightarrow D_{CP(-1)}^{*}K^{+})$ $A_{CP}(B^{+} \rightarrow D_{CP(+1)}K^{*}(892)^{+})$ $A_{CP}(B^{+} \rightarrow D_{CP(-1)}K^{*}(892)^{+})$ $A_{CP}(B^{+} \rightarrow D_{s}^{+}\phi)$ $A_{CP}(B^{+} \rightarrow D^{*}+\overline{D}^{*}0)$ $A_{CP}(B^{+} \rightarrow D^{*}+\overline{D}^{0})$ $A_{CP}(B^{+} \rightarrow D^{+}\overline{D}^{*}0)$ $A_{CP}(B^{+} \rightarrow D^{+}\overline{D}^{*}0)$ $A_{CP}(B^{+} \rightarrow K_{s}^{0}\pi^{+})$ $A_{CP}(B^{+} \rightarrow K_{s}^{0}\pi^{+})$ $A_{CP}(B^{+} \rightarrow K^{0}\pi^{+})$ $A_{CP}(B^{+} \rightarrow K^{0}\pi^{+})$ $A_{CP}(B^{+} \rightarrow K^{0}\pi^{+})$	0.07 ± 0.10 0.09 ± 0.14 -0.23 ± 0.22 0.0 ± 0.4 -0.15 ± 0.11 -0.06 ± 0.13 0.13 ± 0.18 -0.03 ± 0.07 -0.017 ± 0.016 0.037 ± 0.021 0.004 ± 0.011
$A_{CP}(B^{+} \rightarrow D_{CP(-1)}^{*}K^{+})$ $A_{CP}(B^{+} \rightarrow D_{CP(+1)}K^{*}(892)^{+})$ $A_{CP}(B^{+} \rightarrow D_{CP(-1)}K^{*}(892)^{+})$ $A_{CP}(B^{+} \rightarrow D_{S}^{+}\phi)$ $A_{CP}(B^{+} \rightarrow D^{*}+\overline{D}^{*}0)$ $A_{CP}(B^{+} \rightarrow D^{*}+\overline{D}^{0})$ $A_{CP}(B^{+} \rightarrow D^{+}\overline{D}^{*}0)$ $A_{CP}(B^{+} \rightarrow D^{+}\overline{D}^{0})$ $A_{CP}(B^{+} \rightarrow K_{S}^{0}\pi^{+})$	0.07 ± 0.10 0.09 ± 0.14 -0.23 ± 0.22 0.0 ± 0.4 -0.15 ± 0.11 -0.06 ± 0.13 0.13 ± 0.18 -0.03 ± 0.07 -0.017 ± 0.016 0.037 ± 0.021 0.004 ± 0.011 -0.26 ± 0.27
$A_{CP}(B^{+} \rightarrow D_{CP(-1)}^{*}K^{+})$ $A_{CP}(B^{+} \rightarrow D_{CP(+1)}K^{*}(892)^{+})$ $A_{CP}(B^{+} \rightarrow D_{CP(-1)}K^{*}(892)^{+})$ $A_{CP}(B^{+} \rightarrow D_{S}^{+}\phi)$ $A_{CP}(B^{+} \rightarrow D^{*}+\overline{D}^{*}0)$ $A_{CP}(B^{+} \rightarrow D^{*}+\overline{D}^{0})$ $A_{CP}(B^{+} \rightarrow D^{+}\overline{D}^{*}0)$ $A_{CP}(B^{+} \rightarrow D^{+}\overline{D}^{*}0)$ $A_{CP}(B^{+} \rightarrow D^{+}\overline{D}^{0})$ $A_{CP}(B^{+} \rightarrow K_{S}^{0}\pi^{+})$ $A_{CP}(B^{+} \rightarrow K^{0}\pi^{+})$	0.07 ± 0.10 0.09 ± 0.14 -0.23 ± 0.22 0.0 ± 0.4 -0.15 ± 0.11 -0.06 ± 0.13 0.13 ± 0.18 -0.03 ± 0.07 -0.017 ± 0.016 0.037 ± 0.021 0.004 ± 0.011 -0.26 ± 0.27 0.06 ± 0.20
$A_{CP}(B^{+} \to D_{CP(-1)}^{*}K^{+})$ $A_{CP}(B^{+} \to D_{CP(+1)}K^{*}(892)^{+})$ $A_{CP}(B^{+} \to D_{CP(-1)}K^{*}(892)^{+})$ $A_{CP}(B^{+} \to D_{s}^{+}\phi)$ $A_{CP}(B^{+} \to D^{*}+\overline{D}^{*}0)$ $A_{CP}(B^{+} \to D^{*}+\overline{D}^{0})$ $A_{CP}(B^{+} \to D^{+}\overline{D}^{*}0)$ $A_{CP}(B^{+} \to D^{+}\overline{D}^{*}0)$ $A_{CP}(B^{+} \to D^{+}\overline{D}^{0})$ $A_{CP}(B^{+} \to K_{s}^{0}\pi^{+})$ $A_{CP}(B^{+} \to K^{0}\pi^{+})$ $A_{CP}(B^{+} \to \eta'K^{*}(892)^{+})$ $A_{CP}(B^{+} \to \eta'K_{0}^{*}(1430)^{+})$ $A_{CP}(B^{+} \to \eta'K_{0}^{*}(1430)^{+})$	0.07 ± 0.10 0.09 ± 0.14 -0.23 ± 0.22 0.0 ± 0.4 -0.15 ± 0.11 -0.06 ± 0.13 0.13 ± 0.18 -0.03 ± 0.07 -0.017 ± 0.016 0.037 ± 0.021 0.004 ± 0.011 -0.26 ± 0.27 0.06 ± 0.20 0.15 ± 0.13
$A_{CP}(B^{+} \to D_{CP(-1)}^{*}K^{+})$ $A_{CP}(B^{+} \to D_{CP(+1)}K^{*}(892)^{+})$ $A_{CP}(B^{+} \to D_{CP(-1)}K^{*}(892)^{+})$ $A_{CP}(B^{+} \to D_{S}^{+}\phi)$ $A_{CP}(B^{+} \to D^{*}+\overline{D}^{*0})$ $A_{CP}(B^{+} \to D^{*}+\overline{D}^{0})$ $A_{CP}(B^{+} \to D^{+}\overline{D}^{*0})$ $A_{CP}(B^{+} \to D^{+}\overline{D}^{*0})$ $A_{CP}(B^{+} \to D^{+}\overline{D}^{0})$ $A_{CP}(B^{+} \to K_{S}^{0}\pi^{+})$ $A_{CP}(B^{+} \to K_{S}^{0}\pi^{+})$ $A_{CP}(B^{+} \to \eta' K^{*})$ $A_{CP}(B^{+} \to \eta' K^{*})$ $A_{CP}(B^{+} \to \eta' K_{0}^{*}(1430)^{+})$ $A_{CP}(B^{+} \to \eta' K_{0}^{*}(1430)^{+})$ $A_{CP}(B^{+} \to \eta' K_{0}^{*}(1430)^{+})$ $A_{CP}(B^{+} \to \eta' K_{0}^{*}(1430)^{+})$	0.07 ± 0.10 0.09 ± 0.14 -0.23 ± 0.22 0.0 ± 0.4 -0.15 ± 0.11 -0.06 ± 0.13 0.13 ± 0.18 -0.03 ± 0.07 -0.017 ± 0.016 0.037 ± 0.021 0.004 ± 0.011 -0.26 ± 0.27 0.06 ± 0.20 0.15 ± 0.13 0.02 ± 0.06
$A_{CP}(B^{+} \to D_{CP(-1)}^{*}K^{+})$ $A_{CP}(B^{+} \to D_{CP(+1)}K^{*}(892)^{+})$ $A_{CP}(B^{+} \to D_{CP(-1)}K^{*}(892)^{+})$ $A_{CP}(B^{+} \to D_{S}^{+}\phi)$ $A_{CP}(B^{+} \to D^{*}+\overline{D}^{*}0)$ $A_{CP}(B^{+} \to D^{*}+\overline{D}^{0})$ $A_{CP}(B^{+} \to D^{+}\overline{D}^{*}0)$ $A_{CP}(B^{+} \to D^{+}\overline{D}^{0})$ $A_{CP}(B^{+} \to D^{+}\overline{D}^{0})$ $A_{CP}(B^{+} \to K_{S}^{0}\pi^{+})$ $A_{CP}(B^{+} \to K_{S}^{0}\pi^{+})$ $A_{CP}(B^{+} \to \eta'K^{+})$ $A_{CP}(B^{+} \to \eta'K^{*}(892)^{+})$ $A_{CP}(B^{+} \to \eta'K_{2}^{*}(1430)^{+})$ $A_{CP}(B^{+} \to \eta'K_{2}^{*}(1430)^{+})$ $A_{CP}(B^{+} \to \eta'K_{0}^{*}(1430)^{+})$	0.07 ± 0.10 0.09 ± 0.14 -0.23 ± 0.22 0.0 ± 0.4 -0.15 ± 0.11 -0.06 ± 0.13 0.13 ± 0.18 -0.03 ± 0.07 -0.017 ± 0.016 0.037 ± 0.021 0.004 ± 0.011 -0.26 ± 0.27 0.06 ± 0.20 0.15 ± 0.13 0.02 ± 0.06 0.05 ± 0.13

$A_{CP}(B^+ \rightarrow$	ωK^{*+})	0.29 ± 0.35
$A_{CP}(B^+ \rightarrow$	$\omega(\kappa\pi)^{*+}_0$	-0.10 ± 0.09
$A_{CP}(B^+ \rightarrow$	$\omega K_2^*(1430)^+)$	0.14 ± 0.15
$A_{CP}(B^+ \rightarrow$	$\kappa^{*0}\pi^{+})$	$-0.04 \pm 0.09 \; (S=2.1)$
$A_{CP}(B^+ \rightarrow$	$\kappa^*(892)^+\pi^0$)	-0.06 ± 0.24
$A_{CP}(B^+ \rightarrow$	$\kappa^+\pi^-\pi^+$)	0.027 ± 0.008
$A_{CP}(B^+ \rightarrow$	$K^+K^-K^+$ nonresonant)	0.06 ± 0.05
$A_{CP}(B^+ \rightarrow$	$f(980)^0 K^+)$	-0.08 ± 0.09
$A_{CP}(B^+ \rightarrow$	$f_0(1500) K^+)$	0.28 ± 0.30
$A_{CP}(B^+ \rightarrow$	$f_2'(1525)^0 K^+)$	$-0.08 {+0.05 \atop -0.04}$
$A_{CP}(B^+ \rightarrow$	κ_0^* (1430) $^0\pi^+$)	0.055 ± 0.033
$A_{CP}(B^+ \rightarrow$	$\kappa_2^*(1430)^0\pi^+)$	$0.05^{+0.29}_{-0.24}$
$A_{CP}(B^+ \rightarrow$	$\kappa^{+}_{\pi^{0}\pi^{0}}$	-0.06 ± 0.07
$A_{CP}(B^+ \rightarrow$	$\kappa^0 ho^+)$	-0.12 ± 0.17
$A_{CP}(B^+ \rightarrow$	$K^{*+}\pi^{+}\pi^{-}$)	0.07 ± 0.08
$A_{CP}(B^+ \rightarrow$	$\rho^0 K^*(892)^+)$	0.31 ± 0.13
$A_{CP}(B^+ \to$	$K^*(892)^+ f_0(980))$	-0.15 ± 0.12
$A_{CP}(B^+ \rightarrow$	$a_1^+ K^0$)	0.12 ± 0.11
$A_{CP}(B^+ \rightarrow$	$b_1^+ K^0$)	-0.03 ± 0.15
$A_{CP}(B^+ \rightarrow$	$\kappa^*(892)^0 \rho^+)$	-0.01 ± 0.16
$A_{CP}(B^+ \rightarrow$	$b_1^0 K^+$)	-0.46 ± 0.20
$A_{CP}(B^+ \rightarrow$	$\kappa^0 \kappa^+$)	0.04 ± 0.14
$A_{CP}(B^+ \rightarrow$	$\kappa^+ \kappa^0_S \kappa^0_S$)	$0.04^{+0.04}_{-0.05}$
$A_{CP}(B^+ \rightarrow$	$K^+K^-\pi^+$)	-0.118 ± 0.022
$A_{CP}(B^+ \to$	$K^+K^-K^+$)	-0.033 ± 0.008
$A_{CP}(B^+ \rightarrow$	ϕK^+)	$0.024 \pm 0.028 \; (S=2.3)$
	$X_0(1550)K^+)$	-0.04 ± 0.07
	$K^{*+}K^+K^-$)	0.11 ± 0.09
01	$\phi K^*(892)^+)$	-0.01 ± 0.08
$A_{CP}(B^+ \rightarrow$	$\phi(\kappa\pi)^{*+}_{0}$	0.04 ± 0.16
$A_{CP}(B^+ \rightarrow$	$\phi K_1(1270)^+)$	0.15 ± 0.20
$A_{CP}(B^+ \rightarrow$	$\phi K_2^*(1430)^+)$	-0.23 ± 0.20
$A_{CP}(B^+ \rightarrow$	$K^+\phi\phi$)	-0.10 ± 0.08
$A_{CP}(B^+ \rightarrow$	$K^+[\phi\phi]_{\eta_c})$	0.09 ± 0.10
$A_{CP}(B^+ \rightarrow$	$K^*(892)^+\gamma)$	0.018 ± 0.029
$A_{CP}(B^+ \rightarrow$		-0.12 ± 0.07
$A_{CP}(B^+ \rightarrow$		$-0.13 \pm 0.11 \; (S=1.1)$
$A_{CP}(B^+ \rightarrow$		-0.11 ± 0.33
$A_{CP}(B^+ \to$		0.03 ± 0.04
$A_{CP}(B^+ \rightarrow$	$\pi^{+}\pi^{-}\pi^{+}$)	0.057 ± 0.013

	⊥ 0 00
$A_{CP}(B^+ \rightarrow \rho^0 \pi^+)$	$0.18^{igoplus 0.09}_{-0.17}$
$A_{CP}(B^+ \to f_2(1270)\pi^+)$	0.41 ± 0.30
$A_{CP}(B^+ \to \rho^0(1450)\pi^+)$	$-0.1^{+0.4}_{-0.5}$
$A_{CP}(B^+ o \pi^+ \pi^- \pi^+ \text{ nonresonant})$	$-0.14^{igoplus 0.23}_{igoplus 0.16}$
$A_{CP}(B^+ o ho^+ \pi^0)$	0.02 ± 0.11
$A_{CP}(B^+ \rightarrow \rho^+ \rho^0)$	-0.05 ± 0.05
$A_{CP}(B^+ o \omega \pi^+)$	-0.04 ± 0.06
$A_{CP}(B^+ \rightarrow \omega \rho^+)$	-0.20 ± 0.09
$A_{CP}(B^+ \rightarrow \eta \pi^+)$	$-0.14 \pm 0.07 \; (S=1.4)$
$A_{CP}(B^+ o \eta \rho^+)$	0.11 ± 0.11
$A_{CP}(B^+ o \eta' \pi^+)$	0.06 ± 0.16
$A_{CP}(B^+ \rightarrow \eta' \rho^+)$	0.26 ± 0.17
$A_{CP}(B^+ o b_1^0\pi^+)$	0.05 ± 0.16
$A_{CP}(B^+ o p\overline{p}\pi^+)$	0.00 ± 0.04
$A_{CP}(B^+ \rightarrow p\overline{p}K^+)$	$0.00 \pm 0.04 \; (S = 2.2)$
$A_{CP}(B^+ \rightarrow p\overline{p}K^*(892)^+)$	$0.21 \pm 0.16 \; (S = 1.4)$
$A_{CP}(B^+ \to p\overline{\Lambda}\gamma)$	0.17 ± 0.17
$A_{CP}(B^+ o p\overline{\Lambda}\pi^0)$	0.01 ± 0.17
$A_{CP}(B^+ \rightarrow K^+ \ell^+ \ell^-)$	-0.02 ± 0.08
$A_{CP}(B^+ \rightarrow K^+ e^+ e^-)$	0.14 ± 0.14
$A_{CP}(B^+ \rightarrow K^+ \mu^+ \mu^-)$	0.011 ± 0.017
$A_{CP}(B^+ o K^{*+}\ell^+\ell^-)$	-0.09 ± 0.14
$A_{CP}(B^+ \rightarrow K^* e^+ e^-)$	-0.14 ± 0.23
$A_{CP}(B^+ \rightarrow K^* \mu^+ \mu^-)$	-0.12 ± 0.24
$\operatorname{Re}(\epsilon_{B^0})/(1+ \epsilon_{B^0} ^2)$	$(-0.4 \pm 0.4) \times 10^{-3}$
$A_{T/CP}$	0.005 ± 0.018
$A_{CP}(B^0 \to D^*(2010)^+ D^-)$	0.037 ± 0.034
$A_{CP}(B^0 \to [K^+K^-]_D K^*(892)^0)$	-0.20 ± 0.15
$A_{CP}(B^0 \to [K^+\pi^-]_D K^*(892)^0)$	-0.03 ± 0.04
$A_{CP}(B^0 \to [\pi^+\pi^-]_D K^*(892)^0)$	-0.09 ± 0.22
$A_{CP}(B^0 \to \eta' K^*(892)^0)$	-0.07 ± 0.18
$A_{CP}(B^0 \to \eta' K_0^*(1430)^0)$	-0.19 ± 0.17
$A_{CP}(B^0 \to \eta' K_2^*(1430)^0)$	0.14 ± 0.18
$A_{CP}(B^0 \to \eta K_0^*(1430)^0)$	0.06 ± 0.13
$A_{CP}(B^0 \to \eta K_2^*(1430)^0)$	-0.07 ± 0.19
$A_{CP}(B^0 \rightarrow b_1 K^+)$	-0.07 ± 0.12
$A_{CP}(B^0 \rightarrow \omega K^{*0})$	0.45 ± 0.25
$A_{CP}(B^0 \rightarrow \omega(\kappa\pi)^{*0}_0)$	-0.07 ± 0.09
$A_{CP}(B^0 \to \omega K_2^*(1430)^0)$	-0.37 ± 0.17
$A_{CP}(B^0 \to K^+\pi^-\pi^0)$	$(0 \pm 6) \times 10^{-2}$
CP(B / N N N)	(0 \(\tau \) \(\tau \)

$A_{CP}(B^0 o ho^- K^+)$	0.20 ± 0.11
$A_{CP}(B^0 \to \rho(1450)^- K^+)$	-0.10 ± 0.33
$A_{CP}(B^0 \to \rho(1700)^- K^+)$	-0.4 ± 0.6
$A_{CP}(B^0 \to K^+\pi^-\pi^0 \text{ nonresonant})$	0.10 ± 0.18
$A_{CP}(B^0 \rightarrow K^0 \pi^+ \pi^-)$	-0.01 ± 0.05
$A_{CP}(B^0 \to K^*(892)^+\pi^-)$	-0.22 ± 0.06
$A_{CP}(B^0 \to (K\pi)_0^{*+}\pi^-)$	0.09 ± 0.07
$A_{CP}(B^0 o (K\pi)_0^{*0} \pi^0)$	-0.15 ± 0.11
$A_{CP}(B^0 ightarrow~K^{*0}\pi^0)$	-0.15 ± 0.13
$A_{CP}(B^0 \to K^*(892)^0 \pi^+ \pi^-)$	0.07 ± 0.05
$A_{CP}(B^0 \to K^*(892)^0 \rho^0)$	-0.06 ± 0.09
$A_{CP}(B^0 \to K^{*0} f_0(980))$	0.07 ± 0.10
$A_{CP}(B^0 \rightarrow K^{*+}\rho^-)$	0.21 ± 0.15
$A_{CP}(B^0 \to K^*(892)^0 K^+ K^-)$	0.01 ± 0.05
$A_{CP}(B^0 \rightarrow a_1^- K^+)$	-0.16 ± 0.12
$A_{CP}(B^0 \rightarrow \kappa^0 \kappa^0)$	-0.6 ± 0.7
$A_{CP}(B^0 \rightarrow K^*(892)^0 \phi)$	0.00 ± 0.04
$A_{CP}(B^0 \to K^*(892)^0 K^- \pi^+)$	0.2 ± 0.4
$A_{CP}(B^0 \rightarrow \phi(K\pi)_0^{*0})$	0.12 ± 0.08
$A_{CP}(B^0 \to \phi K_2^*(1430)^0)$	-0.11 ± 0.10
$A_{CP}(B^0 \rightarrow K^*(892)^0 \gamma)$	-0.002 ± 0.015
$A_{CP}(B^0 \to K_2^*(1430)^0 \gamma)$	-0.08 ± 0.15
$A_{CP}(B^0 \rightarrow \rho^+\pi^-)$	$0.13 \pm 0.06 \; (S = 1.1)$
$A_{CP}(B^0 \rightarrow \rho^- \pi^+)$	-0.08 ± 0.08
$A_{CP}(B^0 ightarrow a_1(1260)^{\pm}\pi^{\mp})$	-0.07 ± 0.06
$A_{CP}(B^0 \rightarrow b_1^- \pi^+)$	-0.05 ± 0.10
$A_{CP}(B^0 \rightarrow p \overline{p} K^*(892)^0)$	0.05 ± 0.12
$A_{CP}(B^0 o p\overline{\Lambda}\pi^-)$	0.04 ± 0.07
$A_{CP}(B^0 \to K^{*0} \ell^+ \ell^-)$	-0.05 ± 0.10
$A_{CP}(B^0 \to K^{*0} e^+ e^-)$	-0.21 ± 0.19
$A_{CP}(B^0 \to K^{*0} \mu^+ \mu^-)$	-0.034 ± 0.024
$C_{D^*(2010)^-D^+}(B^0 \to D^*(2010)^-D^+)$	-0.01 ± 0.11
$C_{D^*(2010)^+D^-}(B^0 \to D^*(2010)^+D^-)$	$0.00 \pm 0.13 \; (S = 1.3)$
$C_{D^{*+}D^{*-}}(B^0 \to D^{*+}D^{*-})$	$0.01 \pm 0.09 \; (S = 1.6)$
$C_{+} (B^{0} \rightarrow D^{*+}D^{*-})$	$0.00 \pm 0.10 \; (S = 1.6)$
$C_{-}(B^{0} \rightarrow D^{*+}D^{*-})$	0.19 ± 0.31
$S_{-}(B^{0} \rightarrow D^{*+}D^{*-})$	$0.1 \pm 1.6 \; (S = 3.5)$
$C(B^0 \to D^*(2010)^+ D^*(2010)^- K_S^0)$	0.01 ± 0.29
$S(B^0 \to D^*(2010)^+ D^*(2010)^- \kappa_S^0)$	0.1 ± 0.4
$C_{D^+D^-}(B^0 \to D^+D^-)$	$-0.46 \pm 0.21 \; (S=1.8)$

$C_{J/\psi(1S)\pi^0} \; (B^0 o \; J/\psi(1S)\pi^0)$	-0.13 ± 0.13
$C(B^0 \to J/\psi(1S)\rho^0)$	-0.06 ± 0.06
$C(B^0 ightarrow J/\psi(1S) ho^0) \ C_{D_{CP}^{(*)}h^0} (B^0 ightarrow D_{CP}^{(*)}h^0)$	-0.02 ± 0.08
$S_{D_{CP}^{(*)}h^0}(B^0 \to D_{CP}^{(*)}h^0)$	-0.66 ± 0.12
$C_{K^0\pi^0} (B^0 \to K^0\pi^0)$	$0.00 \pm 0.13 \; (S = 1.4)$
$C_{\eta'(958)K_S^0}(B^0 \to \eta'(958)K_S^0)$	$-0.04 \pm 0.20 \; (S=2.5)$
$S_{\eta'(958)K_S^0}(B^0 \to \eta'(958)K_S^0)$	$0.43 \pm 0.17 \; (S = 1.5)$
$C_{\eta' K^0} (B^0 \rightarrow \eta' K^0)$	-0.06 ± 0.04
$C_{\omega K_S^0}(B^0 \to \omega K_S^0)$	$0.0 \pm 0.4 \ (S = 3.0)$
$S_{\omega K_S^0}(B^0 \to \omega K_S^0)$	0.70 ± 0.21
$C(B^0 \to K_S^0 \pi^0 \pi^0)$	0.2 ± 0.5
$S(B^0 \rightarrow K_S^0 \pi^0 \pi^0)$	0.7 ± 0.7
$C_{ ho^0 K_S^0} (B^0 o ho^0 K_S^0)$	-0.04 ± 0.20
$S_{ ho^0 K_S^0} (B^0 o ho^0 K_S^0)$	$0.50^{igoplus 0.17}_{igoplus 0.21}$
$C_{f_0(980)K_S^0}(B^0 \to f_0(980)K_S^0)$	0.29 ± 0.20
$S_{f_0(980)K_S^0}(B^0 \to f_0(980)K_S^0)$	-0.50 ± 0.16
$S_{f_2(1270)K_S^0}(B^0 \to f_2(1270)K_S^0)$	-0.5 ± 0.5
$C_{f_2(1270)K_S^0}(B^0 \to f_2(1270)K_S^0)$	0.3 ± 0.4
$S_{f_X(1300)K_S^0}(B^0 \to f_X(1300)K_S^0)$	-0.2 ± 0.5
$C_{f_X(1300)K_S^0}(B^0 \to f_X(1300)K_S^0)$	0.13 ± 0.35
$S_{K^0\pi^+\pi^-}$ $(B^0 \to K^0\pi^+\pi^-$ nonresonant)	-0.01 ± 0.33
$C_{K^0\pi^+\pi^-}^{}$ $(B^0 ightarrow~K^0\pi^+\pi^-$ nonresonant $)$	0.01 ± 0.26
$C_{\mathcal{K}^0_S\mathcal{K}^0_S}(B^0 o \mathcal{K}^0_S\mathcal{K}^0_S)$	$0.0 \pm 0.4 \; (S = 1.4)$
$S_{\kappa_S^0 \kappa_S^0} (B^0 \rightarrow \kappa_S^0 \kappa_S^0)$	-0.8 ± 0.5
$C_{K^+K^-K^0_S}^{}(B^0 \to K^+K^-K^0_S \text{ nonresonant})$	0.06 ± 0.08
$C_{K^+K^-K^0_S}^{}(B^0 o K^+K^-K^0_S)$ inclusive)	0.01 ± 0.09
$C_{\phi K_S^0} (B^0 \rightarrow \phi K_S^0)$	0.01 ± 0.14
$S_{\phi K_S^0}(B^0 o \phi K_S^0)$	0.59 ± 0.14
$C_{K_SK_SK_S}(B^0 \to K_SK_SK_S)$	-0.23 ± 0.14
$S_{K_SK_SK_S}(B^0 \to K_SK_SK_S)$	$-0.5\pm0.6\;(S=3.0)$
$C_{K^0_S\pi^0\gamma}(B^0 o K^0_S\pi^0\gamma)$	0.36 ± 0.33

$S_{\mathcal{K}^0_S\pi^0\gamma}(B^0 o \mathcal{K}^0_S\pi^0\gamma)$	-0.8 ± 0.6
$C_{K^*(892)^0\gamma}(B^0 \to K^*(892)^0\gamma)$	$-0.04 \pm 0.16 \; (S = 1.2)$
$S_{K^*(892)^0\gamma} (B^0 \rightarrow K^*(892)^0\gamma)$	-0.15 ± 0.22
$C_{\eta K^0 \gamma}(B^0 \to \eta K^0 \gamma)$	-0.3 ± 0.4
$S_{\eta K^0 \gamma}(B^0 \to \eta K^0 \gamma)$	-0.2 ± 0.5
$C_{K^0\phi\gamma}^{(B^0\gamma)}(B^0\to K^0\phi\gamma)$	-0.3 ± 0.6
$S_{K^0\phi\gamma} (B^0 \to K^0\phi\gamma)$	$0.7^{+0.7}_{-1.1}$
$C(B^0 o K_S^0 \rho^0 \gamma)$	-0.05 ± 0.19
$S(B^0 \rightarrow K_S^0 \rho^0 \gamma)$	0.03 ± 0.13 0.11 ± 0.34
$C(B^0 \to \rho^0 \gamma)$	0.4 ± 0.5
$S(B^0 \to \rho^0 \gamma)$	-0.8 ± 0.7
$C_{\pi\pi} (B^0 \rightarrow \pi^+\pi^-)$	-0.31 ± 0.05
$C_{\pi^0\pi^0}(B^0 \to \pi^0\pi^0)$	-0.43 ± 0.24
$C_{ ho\pi}~(B^0 ightarrow~ ho^+\pi^-)$	$-0.03 \pm 0.07 \; (S=1.2)$
$S_{ ho\pi} (B^0 o ho^+\pi^-)$	0.05 ± 0.07
$\Delta S_{ ho\pi}~(B^0 ightarrow~ ho^+\pi^-)$	0.01 ± 0.08
$C_{ ho^0\pi^0} \ (B^0 o \ ho^0\pi^0)$	0.27 ± 0.24
$S_{ ho^0 \pi^0} \; (B^0 o ho^0 \pi^0)$	-0.23 ± 0.34
$C_{a_1\pi} (B^0 \to a_1(1260)^+\pi^-)$	-0.05 ± 0.11
$S_{a_1 \pi} (B^0 \to a_1(1260)^+ \pi^-)$	$-0.2 \pm 0.4 \; (S=3.2)$
$\Delta C_{a_1 \pi} (B^0 \to a_1 (1260)^+ \pi^-)$	$0.43 \pm 0.14 \; (S=1.3)$
$\Delta S_{a_1 \pi} (B^0 \to a_1 (1260)^+ \pi^-)$	-0.11 ± 0.12
$C(\overline{B^0} \rightarrow b_1^- K^+)$	-0.22 ± 0.24
$\Delta C (B^0 \rightarrow b_1^- \pi^+)$	-1.04 ± 0.24
$C_{ ho^0 ho^0}~(B^0 ightarrow~ ho^0 ho^0)$	0.2 ± 0.9
$S_{ ho^0 ho^0} (B^0 ightarrow ho^0 ho^0)$	0.3 ± 0.7
$C_{\rho\rho} (B^0 \rightarrow \rho^+ \rho^-)$	0.00 ± 0.09
$S_{ ho ho} \left(B^0 ightarrow ho^+ ho^- ight)$	-0.14 ± 0.13
$ \lambda (B^0 \rightarrow J/\psi K^*(892)^0)$	<0.25, CL $=$ 95%
$\cos 2\beta \ (B^0 \rightarrow \ J/\psi K^*(892)^0)$	$1.7^{+0.7}_{-0.9} (S = 1.6)$
$\cos 2eta \; (B^0 o \; [{\kappa_S^0} {\pi^+} {\pi^-}]_{D^{(*)}} \; h^0)$	$1.0^{+0.6}_{-0.7} (S = 1.8)$
$(S_+ + S)/2 (B^0 \rightarrow D^{*-} \pi^+)$	-0.039 ± 0.011
$(S_{-} - S_{+})/2 (B^{0} \rightarrow D^{*-} \pi^{+})$	-0.009 ± 0.015
$(S_+ + S)/2 (B^0 \rightarrow D^- \pi^+)$	-0.046 ± 0.023
$(S_{-} - S_{+})/2 (B^{0} \rightarrow D^{-} \pi^{+})$	-0.022 ± 0.021
$(S_+ + S)/2 (B^0 \rightarrow D^- \rho^+)$	-0.024 ± 0.032

$(S_{-} - S_{+})/2 (B^{0} \rightarrow D^{-} \rho^{+})$	-0.10 ± 0.06
$C_{\eta_c K_S^0} (B^0 \to \eta_c K_S^0)$	0.08 ± 0.13
$C_{c\overline{c}K(*)0} (B^0 \rightarrow c\overline{c}K(*)0)$	$(0.5 \pm 1.7) \times 10^{-2}$
$C_{J/\psi(nS)K^0}(B^0\to J/\psi(nS)K^0)$	$(0.5\pm 2.0)\times 10^{-2}$
$C_{J/\psi K^{*0}} (B^0 \rightarrow J/\psi K^{*0})$	0.03 ± 0.10
$S_{J/\psi K^{*0}} (B^0 \rightarrow J/\psi K^{*0})$	0.60 ± 0.25
$C_{\chi_{c0}K_S^0}(B^0 \rightarrow \chi_{c0}K_S^0)$	$-0.3^{+0.5}_{-0.4}$
$S_{\chi_{c0} \kappa_S^0} (B^0 \to \chi_{c0} \kappa_S^0)$	-0.7 ± 0.5
$C_{\chi_{c1}K_S^0}(B^0 \to \chi_{c1}K_S^0)$	0.06 ± 0.07
$\sin(2\beta_{\rm eff})(B^0 \to \phi K^0)$	0.22 ± 0.30
$\sin(2\beta_{\rm eff})(B^0 \to \phi K_0^*(1430)^0)$	$0.97^{igoplus 0.03}_{igoplus 0.52}$
$\sin(2\beta_{ m eff})(B^0 o [K_S^0 \pi^+ \pi^-]_{D^{(*)}} h^0)$	0.45 ± 0.28
$ \lambda (B^0 \to [K_S^0 \pi^+ \pi^-]_{D^{(*)}} \bar{h^0})$	1.01 ± 0.08
$ \sin(2eta+\gamma) $	>0.40, CL $= 90%$
$2 \beta + \gamma$	(83 ± 60)°
$\gamma(B^0 \rightarrow D^0 K^{*0})$	$(162 \pm 60)^{\circ}$
$A_{CP}(B o K^*(892)\gamma)$	-0.003 ± 0.017
$A_{CP}(b o s\gamma)$	0.015 ± 0.020
$A_{CP}(b ightarrow (s+d)\gamma)$	0.010 ± 0.031
$A_{CP}(B \rightarrow X_{S}\ell^{+}\ell^{-})$	0.04 ± 0.11
$A_{CP}(B \rightarrow K^* e^+ e^-)$	-0.18 ± 0.15
$A_{CP}(B \rightarrow K^* \mu^+ \mu^-)$	-0.03 ± 0.13
$A_{CP}(B \rightarrow K^* \ell^+ \ell^-)$	-0.04 ± 0.07
$A_{CP}(extsf{B} ightarrow \ \eta$ anything)	$-0.13 {+0.04 \atop -0.05}$
$Re(\epsilon_{B_{s}^{0}}) \ / \ (1 + \epsilon_{B_{s}^{0}} ^{2})$	$(-1.9\pm 1.0)\times 10^{-3}$
CP Violation phase eta_s	$(0.6 \pm 1.9) \times 10^{-2} \; rad$
$A_{CP}(B_s \rightarrow \pi^+ K^-)$	0.263 ± 0.035
$A_{CP}(B_s^0 \to [K^+ K^-]_D \overline{K}^* (892)^0)$	-0.04 ± 0.07
$\Gamma(\eta_c(1S) \to \pi^+\pi^-)/\Gamma_{\text{total}}$	$<1.1 \times 10^{-4}$, $CL = 90\%$
$\Gamma(\eta_c(1S) ightarrow \ \pi^0 \pi^0)/\Gamma_{\sf total}$	$<$ 4 $ imes$ 10 $^{-5}$, CL $=$ 90%
$\Gamma(\eta_c(1S) \rightarrow K^+K^-)/\Gamma_{total}$	$< 6 \times 10^{-4}$, $CL = 90\%$
$\Gamma(\eta_c(1S) ightarrow \ K_S^0 K_S^0)/\Gamma_{total}$	$< 3.1 \times 10^{-4}, CL = 90\%$
$(\alpha + \overline{\alpha})/(\alpha - \overline{\alpha}) \text{ in } \Lambda \rightarrow \underline{p}\pi^-, \overline{\Lambda} \rightarrow \overline{p}\pi^+$	0.006 ± 0.021
$\frac{[\alpha(\overline{\Xi}^{-})\alpha_{-}(\Lambda) - \alpha(\overline{\Xi}^{+})\alpha_{+}(\overline{\Lambda})]}{[\alpha(\overline{\Xi}^{-})\alpha_{-}(\Lambda) + \alpha(\overline{\Xi}^{+})\alpha_{+}(\overline{\Lambda})]}$	$(0\pm7)\times10^{-4}$
$(\alpha + \overline{\alpha})/(\alpha - \overline{\alpha})$ in $\Omega^- \to \Lambda K^-$, $\overline{\Omega}{}^+ \to \overline{\Lambda} K^+$	-0.02 ± 0.13
$(\alpha+\overline{\alpha})/(\alpha-\overline{\alpha})$ in $\Lambda_c^+\to\Lambda\pi^+$, $\overline{\Lambda}_c^-\to\overline{\Lambda}\pi^-$	-0.07 ± 0.31
$(\alpha + \overline{\alpha})/(\alpha - \overline{\alpha})$ in $\Lambda_c^+ \to \Lambda e^+ \nu_e$, $\overline{\Lambda}_c^- \to \overline{\Lambda} e^- \overline{\nu}_e$	0.00 ± 0.04

$$\begin{array}{ll} A_{CP}(\Lambda_b \to \ p\pi^-) \\ A_{CP}(\Lambda_b \to \ pK^-) \end{array}$$

$$\begin{array}{l} 0.06 \pm 0.07 \\ 0.00 \pm 0.19 \; (S=2.4) \end{array}$$

1.8)

1.8)

1.8)

1.5)

Created: 10/3/2016 15:03

CP VIOLATION OBSERVED

$Re(\epsilon)$		$(1.596 \pm 0.013) \times 10^{-3}$
charge asymmetry in $K^0_{\ell 3}$ decays		
$A_L=$ weighted average of $A_L(\mu)$ and $A_L(e)$		$(0.332 \pm 0.006)\%$
$A_L(\mu) = [\Gamma(\pi^-\mu^+ u_\mu) - \Gamma(\pi^+\mu^-\overline{ u}_\mu)]/{\sf sum}$		$(0.304 \pm 0.025)\%$
$A_L(e) = [\Gamma(\pi^- e^+ \nu_e) - \Gamma(\pi^+ e^- \overline{\nu}_e)]/\text{sum}$		$(0.334 \pm 0.007)\%$
parameters for $K_I^0 ightarrow 2\pi$ decay		
$ \eta_{00} = A(K_I^0 \to 2\pi^0) $		$(2.220 \pm 0.011) \times 10^{-3} \text{ (S} = 1.8)$
$A(\mathcal{K}_{S}^{0}\stackrel{-}{\rightarrow}2\pi^{0}) $		
$ \eta_{+-} = A(K^0_L \to \pi^+\pi^-) \ / \ A(K^0_S \to$		$(2.232 \pm 0.011) \times 10^{-3} \text{ (S} = 1.8)$
$\pi^+\pi^-) $		
$ \epsilon = (2 \eta_{+-} + \eta_{00})/3$		$(2.228 \pm 0.011) \times 10^{-3} (S = 1.8)$
$ \eta_{00}/\eta_{+-} $	[<i>h</i>]	$0.9950\pm0.0007\;(S=1.6)$
$Re(\epsilon'/\epsilon) = (1-ig \eta_{00}/\eta_{+-}ig)/3$	[<i>h</i>]	$(1.66 \pm 0.23) \times 10^{-3} (S = 1.6)$
Assuming CPT		
ϕ_{+-} , phase of η_{+-}		$(43.51 \pm 0.05)^{\circ} (S = 1.2)$
ϕ_{00} , phase of η_{00}		$(43.52 \pm 0.05)^{\circ} (S = 1.3)$
$\phi_{\epsilon} = (2\phi_{+-} + \phi_{00})/3$		$(43.52 \pm 0.05)^{\circ} (S = 1.2)$
Not assuming CPT		$(43.4 \pm 0.5)^{\circ} (S = 1.2)$
ϕ_{+-} , phase of η_{+-}		$(43.7 \pm 0.6)^{\circ} (S = 1.2)$
ϕ_{00} , phase of η_{00} $\phi_{\epsilon}=(2\phi_{+-}+\phi_{00})/3$		$(43.7 \pm 0.0)^{\circ} (S = 1.2)$ $(43.5 \pm 0.5)^{\circ} (S = 1.3)$
		, , , ,
CP asymmetry A in $K_L^0 o \pi^+\pi^-e^+e^-$ eta_{CP} from $K_L^0 o e^+e^-e^+e^-$		$(13.7 \pm 1.5)\%$
5. <u>L</u>		-0.19 ± 0.07
γ_{CP} from $K_L^0 \rightarrow e^+e^-e^+e^-$		$0.01 \pm 0.11 \ (S = 1.6)$
parameters for $\mathcal{K}^0_L o \pi^+\pi^-\gamma$ decay		2
$ \eta_{+-\gamma} = A(K_L^0 \to \pi^+\pi^-\gamma, CP) $		$(2.35 \pm 0.07) \times 10^{-3}$
violating)/A($\kappa^0_{\mathcal{S}} ightarrow \left. \pi^+ \pi^- \gamma ight) ight $		
$\phi_{+-\gamma}=$ phase of $\eta_{+-\gamma}$		$(44 \pm 4)^{\circ}$
$\Gamma(K_L^0 \to \pi^+\pi^-)/\Gamma_{total}$	[<i>i</i>]	$(1.967 \pm 0.010) \times 10^{-3} (S = 1.5)$
$\Gamma(K_L^0 ightarrow \pi^0 \pi^0)/\Gamma_{total}$		$(8.64 \pm 0.06) \times 10^{-4} (S = 1.8)$
$A_{CP}(B^+ \rightarrow D_{CP(+1)}K^+)$		$0.170\pm0.033\;(S=1.2)$
$A_{ADS}(B^+ \rightarrow DK^+)$		-0.52 ± 0.15
$A_{CP}(B^+ \to \eta K^+)$		-0.37 ± 0.08
$A_{CP}(B^+ \to f_2(1270)K^+)$		$-0.68^{+0.19}_{-0.17}$
		 -

$A_{CP}(B^+ \rightarrow \rho^0 K^+)$	0.37 ± 0.10
$A_{CP}(B^+ \to f_0(1370)\pi^+)$	0.72 ± 0.22
$\gamma(B^+\to D^{(*)0}K^{(*)+})$	(70 ± 9)°
$A_{CP}~(B^0 ightarrow~K^+\pi^-)$	-0.082 ± 0.006
$A_{CP}(B^0 \to \eta K^*(892)^0)$	0.19 ± 0.05
$S_{D^*(2010)^-D^+}(B^0 \to D^*(2010)^-D^+)$	-0.72 ± 0.15
$S_{D^*(2010)^+D^-}(B^0 \to D^*(2010)^+D^-)$	-0.73 ± 0.14
$S_{D^{*+}D^{*-}} (B^0 \to D^{*+}D^{*-})$	$-0.59\pm0.14\;(S=1.8)$
$S_{+} (B^{0} \rightarrow D^{*+}D^{*-})$	-0.73 ± 0.09
$S_{D^+D^-}(B^0 \to D^+D^-)$	$-0.99^{igoplus 0.17}_{igoplus 0.14}$
$S_{J/\psi(1S)\pi^0} \; (B^0 o \; J/\psi(1S)\pi^0)$	$-0.94 \pm 0.29 \; (S=1.9)$
$S(B^0 \rightarrow J/\psi(1S)\rho^0)$	$-0.66^{igoplus 0.16}_{-0.12}$
$S_{K^0\pi^0} (B^0 \to K^0\pi^0)$	0.58 ± 0.17
$S_{\eta'K^0}(B^0 \to \eta'K^0)$	0.63 ± 0.06
$S_{K^+K^-K^0_S}(B^0 o K^+K^-K^0_S)$ nonresonant)	-0.66 ± 0.11
$S_{K^+K^-K_S^0}$ $(B^0 \rightarrow K^+K^-K_S^0 \text{ inclusive})$	-0.65 ± 0.12
$S_{\pi\pi} (B^0 \rightarrow \pi^+\pi^-)$	-0.67 ± 0.06
$\Delta C_{ ho\pi}~(B^0 ightarrow~ ho^+\pi^-)$	0.27 ± 0.06
$S_{\eta_c \kappa_S^0} (B^0 \to \eta_c \kappa_S^0)$	0.93 ± 0.17
$\sin(2\beta) \ (B^0 \rightarrow J/\psi K_S^0)$	0.679 ± 0.020
$S_{J/\psi(nS)K^0}(B^0 \to J/\psi(nS)K^0)$	0.676 ± 0.021
$S_{\chi_{c1}\kappa_S^0}(B^0 \to \chi_{c1}\kappa_S^0)$	0.63 ± 0.10
$\sin(2\beta_{\text{eff}})(B^0 \to K^+K^-K^0_S)$	$0.77^{igoplus 0.13}_{igoplus 0.12}$
α	(93 ± 5)°
$Re(\epsilon_{m{b}}) \ / \ (1 + ig \epsilon_{m{b}}ig ^2)$	$(1.2 \pm 0.4) \times 10^{-3}$

CPT INVARIANCE

$(m_{W^+} - m_{W^-}) / m_{average}$	-0.002 ± 0.007
$(m_{e^+}^{}-m_{e^-}^{})\ /\ m_{\sf average}^{}$	$< 8 \times 10^{-9}$, CL $= 90\%$
$ q_{e^+}+q_{e^-} /e$	$< 4 \times 10^{-8}$
$(g_{e^+} - g_{e^-}) / g_{\text{average}}$	$(-0.5 \pm 2.1) \times 10^{-12}$
$(au_{\mu^+} - au_{\mu^-}) / au_{average}$	$(2 \pm 8) \times 10^{-5}$
$({\it g}_{\mu^+} - {\it g}_{\mu^-}) / {\it g}_{\sf average}$	$(-0.11 \pm 0.12) \times 10^{-8}$
$(m_{\tau^+} - m_{\tau^-})/m_{\text{average}}$	$< 2.8 \times 10^{-4}$, CL = 90%
$m_t - m_{\overline{t}}$	$-$ 0.2 \pm 0.5 GeV (S $=$ 1.1)

$(m_{\pi^+}^{}-m_{\pi^-}^{})\ /\ m_{average}^{}$		$(2 \pm 5) \times 10^{-4}$
$(\tau_{\pi^+} - \tau_{\pi^-}) / \tau_{average}$		$(6 \pm 7) \times 10^{-4}$
$(m_{K^+} - m_{K^-}) / m_{\text{average}}$		$(-0.6 \pm 1.8) \times 10^{-4}$
$(\tau_{K^+} - \tau_{K^-}) / \tau_{\text{average}}$		$(0.10 \pm 0.09)\% (S = 1.2)$
$K^\pm ightarrow \mu^\pm u_\mu$ rate difference/sum		$(-0.27 \pm 0.21)\%$
$\kappa^{\pm} ightarrow \pi^{\pm} \pi^{0}$ rate difference/sum	[;]	$(0.4 \pm 0.6)\%$
δ in $K^0 - \overline{K}^0$ mixing	נע	(0.4 ± 0.0)/0
real part of δ		$(2.5 \pm 2.3) \times 10^{-4}$
imaginary part of δ		$(-1.5 \pm 1.6) \times 10^{-5}$
Re(y), K_{e3} parameter		$(0.4 \pm 2.5) \times 10^{-3}$
$Re(x_{-})$, K_{e3} parameter		$(-2.9 \pm 2.0) \times 10^{-3}$
$ m_{K^0} - m_{\overline{K}^0} / m_{\text{average}}$	[<i>k</i>]	$< 6 \times 10^{-19}$, CL = 90%
$(\Gamma_{K^0} - \Gamma_{\overline{K}^0})/m_{\text{average}}$		$(8 \pm 8) \times 10^{-18}$
phase difference ϕ_{00} $ \phi_{+-}$		$(0.34 \pm 0.32)^{\circ}$
$Re(\frac{2}{3}\eta_{+-} + \frac{1}{3}\eta_{00}) - \frac{A_L}{2}$		$(-3 \pm 35) \times 10^{-6}$
$A_{CPT}(D^0 \rightarrow K^-\pi^+)$		0.008 ± 0.008
$\Delta S_{CPT}^{+} (S_{\ell^{+}, \mathcal{K}_{S}^{0}}^{-} - S_{\ell^{+}, \mathcal{K}_{S}^{0}}^{+})$		0.16 ± 0.23
$\Delta S_{CPT}^{-} (S_{\ell^{+},\mathcal{K}_{S}^{0}}^{+} - S_{\ell^{+},\mathcal{K}_{S}^{0}}^{-})$		-0.03 ± 0.14
$\Delta \mathcal{C}^+_{CPT} (\mathcal{C}^{\ell^+,\mathcal{K}^0_S} - \mathcal{C}^+_{\ell^+,\mathcal{K}^0_S})$		0.14 ± 0.17
$\Delta C_{CPT}^{-} (C_{\ell^{+}, K_{S}^{0}}^{+} - C_{\ell^{+}, K_{S}^{0}}^{-})$		0.03 ± 0.14
$ m_p - m_{\overline{p}} /m_p$	[/]	$< 7 \times 10^{-10}$, CL $= 90\%$
$(\frac{\dot{q}_{\overline{p}}}{m_{\overline{p}}} - \frac{\dot{q}_{p}}{m_{p}}) / \frac{\dot{q}_{p}}{m_{p}}$		$(-9 \pm 9) \times 10^{-11}$
$ q_{\overline{p}} ^{p}+ q_{\overline{\overline{p}}} /e$	[/]	$< 7 \times 10^{-10}$, CL = 90%
$(\mu_{p} + \mu_{\overline{p}}) / \mu_{p}$		$(0 \pm 5) \times 10^{-6}$
$(m_n - m_{\overline{n}})/m_n$		$(9 \pm 6) \times 10^{-5}$
$(m_{\Lambda}-m_{\overline{\Lambda}})\ /\ m_{\Lambda}$		$(-0.1 \pm 1.1) \times 10^{-5} \text{ (S} = 1.6)$
$(au_{\Lambda} - au_{\overline{\Lambda}}) / au_{\Lambda}$		-0.001 ± 0.009
$(au_{\Sigma^+}$ - $ au_{\overline{\Sigma}^-})$ / $ au_{\Sigma^+}$		-0.0006 ± 0.0012
$(\mu_{\Sigma^+} + \mu_{\overline{\Sigma}^-}) / \mu_{\Sigma^+}$		0.014 ± 0.015
$(m_{=-} - m_{=+}) / m_{=-}$		$(-3 \pm 9) \times 10^{-5}$
$(au_{=-} - au_{=+}) / au_{=-}$		-0.01 ± 0.07
$(\mu_{=-} + \mu_{=+}) / \mu_{=-} $		$+0.01\pm0.05$
$(m_{Q^-} - m_{\overline{Q}^+}) / m_{Q^-}$		$(-1 \pm 8) \times 10^{-5}$
$(au_{\Omega^{-}} - au_{\overline{\Omega}^{+}}) / au_{\Omega^{-}}$		0.00 ± 0.05
77 77 77		

TESTS OF NUMBER CONSERVATION LAWS

LEPTON FAMILY NUMBER

Lepton family number conservation means separate conservation of each of $\it L_e$, $\it L_{\mu}$, $\it L_{ au}$.

$\begin{split} &\Gamma(Z\rightarrow\ e^{\pm}\mu^{\mp})/\Gamma_{\rm total} \\ &\Gamma(Z\rightarrow\ e^{\pm}\tau^{\mp})/\Gamma_{\rm total} \\ &\Gamma(Z\rightarrow\ \mu^{\pm}\tau^{\mp})/\Gamma_{\rm total} \\ &\sigma(e^{+}e^{-}\rightarrow\ e^{\pm}\tau^{\mp})\ /\ \sigma(e^{+}e^{-}\rightarrow\ \mu^{+}\mu^{-}) \\ &\sigma(e^{+}e^{-}\rightarrow\ \mu^{\pm}\tau^{\mp})\ /\ \sigma(e^{+}e^{-}\rightarrow\ \mu^{+}\mu^{-}) \\ &\text{limit on } \mu^{-}\rightarrow\ e^{-}\ \text{conversion} \\ &\sigma(\mu^{-}32\text{S}\rightarrow\ e^{-}32\text{S})\ /\ \sigma(\mu^{-}32\text{S}\rightarrow\ \nu_{\mu}^{}32\text{P*}) \end{split}$	[<i>n</i>]	$<7.5 \times 10^{-7}$, CL = 95% $<9.8 \times 10^{-6}$, CL = 95% $<1.2 \times 10^{-5}$, CL = 95% $<8.9 \times 10^{-6}$, CL = 95% $<4.0 \times 10^{-6}$, CL = 95% $<7 \times 10^{-11}$, CL = 90%
$\sigma(\mu^- {\sf Ti} ightarrow e^- {\sf Ti}) / \ \sigma(\mu^- {\sf Ti} ightarrow {\sf capture})$		$<4.3 \times 10^{-12}$, CL = 90%
$egin{aligned} \sigma(\mu^-Pb & ightarrow $		$<4.6 \times 10^{-11}, CL = 90\%$
limit on muonium \rightarrow antimuonium conversion $R_g = G_C / G_F$		<0.0030, CL = 90%
$\Gamma(\mu^- ightarrow e^- u_e \overline{ u}_\mu) / \Gamma_{total}$	[0]	$<1.2 \times 10^{-2}$, CL = 90%
$\Gamma(\mu^- ightarrow e^- \gamma)/\Gamma_{\sf total}$		$<$ 5.7 \times 10 ⁻¹³ , CL = 90%
$\Gamma(\mu^- ightarrow e^- e^+ e^-)/\Gamma_{ ext{total}}$		$<1.0 \times 10^{-12}$, CL = 90%
$\Gamma(\mu^- o e^- 2\gamma)/\Gamma_{total}$		$< 7.2 \times 10^{-11}$, CL = 90%
$\Gamma(au^- ightarrow e^- \gamma)/\Gamma_{\sf total}$		$<3.3 \times 10^{-8}$, CL = 90%
$\Gamma(au^- ightarrow \ \mu^- \gamma) / \Gamma_{total}$		$<4.4 \times 10^{-8}$, CL = 90%
$\Gamma(au^- ightarrow e^- \pi^0)/\Gamma_{ ext{total}}$		$< 8.0 \times 10^{-8}$, CL = 90%
$\Gamma(au^- ightarrow \mu^- \pi^0)/\Gamma_{total}$		$<1.1 \times 10^{-7}$, CL = 90%
$\Gamma(au^- ightarrow e^- K_S^0)/\Gamma_{total}$		$< 2.6 \times 10^{-8}$, CL = 90%
$\Gamma(au^- ightarrow \mu^- K_S^0)/\Gamma_{total}$		$< 2.3 \times 10^{-8}$, CL = 90%
$\Gamma(au^- ightarrow e^- \eta)/\Gamma_{total}$		$< 9.2 \times 10^{-8}$, $CL = 90\%$
$\Gamma(\tau^- o \mu^- \eta)/\Gamma_{total}$		$< 6.5 \times 10^{-8}, CL = 90\%$
$\Gamma(au^- ightarrow~e^- ho^0)/\Gamma_{ m total}$		$<1.8 \times 10^{-8}$, CL = 90%
$\Gamma(au^- ightarrow~\mu^- ho^0)/\Gamma_{total}$		$<1.2 \times 10^{-8}$, CL = 90%
$\Gamma(au^- ightarrow \mathrm{e}^- \omega)/\Gamma_{total}$		$<4.8 \times 10^{-8}$, CL = 90%
$\Gamma(au^- ightarrow \ \mu^- \ \omega)/\Gamma_{total}$		$<4.7 \times 10^{-8}$, CL = 90%
$\Gamma(au^- ightarrow e^- K^*(892)^0)/\Gamma_{ ext{total}}$		$< 3.2 \times 10^{-8}$, CL = 90%
$\Gamma(au^- ightarrow \ \mu^- K^*(892)^0)/\Gamma_{ ext{total}}$		$< 5.9 \times 10^{-8}$, CL = 90%
$\Gamma(\tau^- \rightarrow e^- \overline{K}^* (892)^0) / \Gamma_{\text{total}}$		$<3.4 \times 10^{-8}$, CL = 90%
$\Gamma(\tau^- \to \mu^- \overline{K}^* (892)^0) / \Gamma_{\text{total}}$		$< 7.0 \times 10^{-8}, CL = 90\%$

$\Gamma(au^- ightarrow e^- \eta'(958))/\Gamma_{total}$	$<1.6 \times 10^{-7}$, CL = 90%
$\Gamma(\tau^- o \mu^- \eta'(958))/\Gamma_{total}$	$<1.3 \times 10^{-7}$, CL = 90%
$\Gamma(\tau^- \rightarrow e^- f_0(980) \rightarrow e^- \pi^+ \pi^-)/\Gamma_{\text{total}}$	$< 3.2 \times 10^{-8}$, CL = 90%
$\Gamma(\tau^- \rightarrow \mu^- f_0(980) \rightarrow \mu^- \pi^+ \pi^-)/\Gamma_{\text{total}}$	$< 3.4 \times 10^{-8}, CL = 90\%$
$\Gamma(\tau^- ightarrow e^- \phi)/\Gamma_{\text{total}}$	$< 3.1 \times 10^{-8}$, CL = 90%
$\Gamma(\tau^- \to \mu^- \phi)/\Gamma_{\text{total}}$	$< 8.4 \times 10^{-8}$, CL = 90%
$\Gamma(\tau^- ightarrow e^- e^+ e^-)/\Gamma_{ m total}$	$< 2.7 \times 10^{-8}$, CL = 90%
$\Gamma(au^- ightarrow e^- \mu^+ \mu^-)/\Gamma_{ ext{total}}$	$< 2.7 \times 10^{-8}$, $CL = 90\%$
$\Gamma(au^- ightarrow e^+ \mu^- \mu^-)/\Gamma_{ ext{total}}$	$<1.7 \times 10^{-8}$, CL = 90%
$\Gamma(\tau^- o \mu^- e^+ e^-)/\Gamma_{\text{total}}$	$<1.8 \times 10^{-8}$, $CL = 90\%$
$\Gamma(au^- ightarrow \mu^+ e^- e^-)/\Gamma_{ ext{total}}$	$<1.5 \times 10^{-8}$, CL = 90%
$\Gamma(\tau^- o \mu^- \mu^+ \mu^-)/\Gamma_{\text{total}}$	$< 2.1 \times 10^{-8}$, $CL = 90\%$
$\Gamma(au^- ightarrow e^- \pi^+ \pi^-)/\Gamma_{\sf total}$	$< 2.3 \times 10^{-8}$, $CL = 90\%$
$\Gamma(\tau^- o \mu^- \pi^+ \pi^-)/\Gamma_{\text{total}}$	$< 2.1 \times 10^{-8}$, $CL = 90\%$
$\Gamma(au^- ightarrow e^- \pi^+ K^-)/\Gamma_{ ext{total}}$	$< 3.7 \times 10^{-8}, CL = 90\%$
$\Gamma(au^- ightarrow e^- \pi^- K^+)/\Gamma_{total}$	$< 3.1 \times 10^{-8}$, CL = 90%
$\Gamma(au^- ightarrow e^- \kappa_S^0 \kappa_S^0) / \Gamma_{ ext{total}}$	$< 7.1 \times 10^{-8}, CL = 90\%$
$\Gamma(au^- ightarrow e^- K^+ K^-)/\Gamma_{ ext{total}}$	$< 3.4 \times 10^{-8}$, CL = 90%
$\Gamma(\tau^- \to \mu^- \pi^+ K^-)/\Gamma_{\text{total}}$	$< 8.6 \times 10^{-8}$, CL = 90%
$\Gamma(\tau^- \to \mu^- \pi^- K^+)/\Gamma_{\text{total}}$	$<4.5 \times 10^{-8}$, CL = 90%
$\Gamma(au^- ightarrow \mu^- \kappa_S^0 \kappa_S^0) / \Gamma_{ ext{total}}$	$< 8.0 \times 10^{-8}, CL = 90\%$
$\Gamma(au^- ightarrow \mu^- K^+ K^-)/\Gamma_{total}$	$<4.4 \times 10^{-8}$, CL = 90%
$\Gamma(\tau^- \rightarrow e^- \pi^0 \pi^0) / \Gamma_{\text{total}}$	$<6.5 \times 10^{-6}$, CL = 90%
$\Gamma(\tau^- \to \mu^- \pi^0 \pi^0) / \Gamma_{\text{total}}$	$<1.4 \times 10^{-5}$, CL = 90%
$\Gamma(\tau^- \to e^- \eta \eta)/\Gamma_{\text{total}}$	$< 3.5 \times 10^{-5}$, CL = 90%
$\Gamma(\tau^- \to \mu^- \eta \eta)/\Gamma_{\text{total}}$	$<6.0 \times 10^{-5}$, CL = 90%
$\Gamma(\tau^- ightarrow e^- \pi^0 \eta) / \Gamma_{total}$	$< 2.4 \times 10^{-5}$, $CL = 90\%$
$\Gamma(au^- o \mu^- \pi^0 \eta)/\Gamma_{ ext{total}}$	$< 2.2 \times 10^{-5}$, $CL = 90\%$
$\Gamma(\tau^- \rightarrow e^- \text{light boson})/\Gamma_{\text{total}}$	$< 2.7 \times 10^{-3}$, $CL = 95\%$
$\Gamma(\tau^- \to \mu^- \text{ light boson})/\Gamma_{\text{total}}$	${<}5\times10^{-3}\text{, CL}=95\%$

LEPTON FAMILY NUMBER VIOLATION IN NEUTRINOS

$\sin^2(heta_{12})$		0.304 ± 0.014
Δm^2_{21}		$(7.53 \pm 0.18) \times 10^{-5} \text{ eV}^2$
$\sin^2(heta_{23})$ (normal mass hierarchy	/)	0.51 ± 0.05
$\sin^2(heta_{23})$ (inverted mass hierarch	ıy)	0.50 ± 0.05
Δm^2_{32} (normal mass hierarchy)	[p]	$(2.44 \pm 0.06) \times 10^{-3} \text{ eV}^2$
Δm_{32}^{2} (inverted mass hierarchy)	[<i>p</i>]	$(2.51 \pm 0.06) \times 10^{-3} \text{ eV}^2$
$\sin^2(heta_{13})$		$(2.19 \pm 0.12) \times 10^{-2}$
$\Gamma(\pi^+ o \mu^+ \nu_e)/\Gamma_{\text{total}}$	[q]	$< 8.0 \times 10^{-3}$, CL = 90%
$\Gamma(\pi^+ \rightarrow \mu^- e^+ e^+ \nu)/\Gamma_{\text{total}}$		$< 1.6 \times 10^{-6}$, CL = 90%

$\Gamma(0) + -1/\Gamma$		$< 3.8 \times 10^{-10}$, CL = 90%
$\Gamma(\pi^0 \to \mu^+ e^-)/\Gamma_{\text{total}}$ $\Gamma(\pi^0 \to \mu^- e^+)/\Gamma_{\text{total}}$		$<3.8 \times 10^{-9}$, CL = 90% $<3.4 \times 10^{-9}$, CL = 90%
$\Gamma(\pi^0 o \mu^+ e^-)/\Gamma_{ ext{total}}$ $\Gamma(\pi^0 o \mu^+ e^- + \mu^- e^+)/\Gamma_{ ext{total}}$		$<3.4 \times 10^{-3}$, CL = 90% $<3.6 \times 10^{-10}$, CL = 90%
$\Gamma(\eta \to \mu^+ e^- + \mu^- e^+)/\Gamma_{\text{total}}$		$<6 \times 10^{-6}$, CL = 90%
		$< 6 \times 10^{-4}$, CL = 90% $< 4.7 \times 10^{-4}$, CL = 90%
$\Gamma(\eta'(958) \rightarrow e\mu)/\Gamma_{\text{total}}$		$<4.7 \times 10^{-6}$, CL = 90%
$\Gamma(\phi(1020) \rightarrow e^{\pm}\mu^{\mp})/\Gamma_{\text{total}}$		$<2 \times 10^{-3}$, $CL = 90\%$ $<2.1 \times 10^{-8}$, $CL = 90\%$
$\Gamma(K^+ \to \mu^- \nu e^+ e^+)/\Gamma_{\text{total}}$	r1	
$\Gamma(K^+ \rightarrow \mu^+ \nu_e)/\Gamma_{\text{total}}$	[9]	$<4 \times 10^{-3}$, CL = 90%
$\Gamma(K^+ \rightarrow \pi^+ \mu^+ e^-)/\Gamma_{\text{total}}$		$<1.3 \times 10^{-11}$, CL = 90%
$\Gamma(K^+ \rightarrow \pi^+ \mu^- e^+)/\Gamma_{\text{total}}$		$<5.2 \times 10^{-10}$, CL = 90%
$\Gamma(\kappa_L^0 \to e^{\pm} \mu^{\mp})/\Gamma_{\text{total}}$		$<4.7 \times 10^{-12}$, CL = 90%
$\Gamma(K_L^0 ightarrow e^{\pm} e^{\pm} \mu^{\mp} \mu^{\mp})/\Gamma_{total}$	[<i>n</i>]	
$\Gamma(K_L^0 \to \pi^0 \mu^{\pm} e^{\mp})/\Gamma_{total}$	[<i>n</i>]	$< 7.6 \times 10^{-11}, CL = 90\%$
$\Gamma(\kappa_L^{ar{0}} ightarrow \ \pi^0 \pi^0 \mu^{\pm} e^{\mp})/\Gamma_{ ext{total}}$		$<1.7 \times 10^{-10}, CL = 90\%$
$\Gamma(D^+ ightarrow \ \pi^+ e^+ \mu^-)/\Gamma_{ ext{total}}$		$< 2.9 \times 10^{-6}$, CL = 90%
$\Gamma(D^+ o \pi^+ e^- \mu^+)/\Gamma_{ ext{total}}$		$< 3.6 \times 10^{-6}, CL = 90\%$
$\Gamma(D^+ o K^+ e^+ \mu^-)/\Gamma_{\text{total}}$		$<1.2 \times 10^{-6}$, CL = 90%
$\Gamma(D^+ o K^+ e^- \mu^+)/\Gamma_{\text{total}}$		$< 2.8 \times 10^{-6}$, CL = 90%
$\Gamma(D^0 \to \mu^{\pm} e^{\mp})/\Gamma_{\text{total}}$	[<i>n</i>]	$< 2.6 \times 10^{-7}$, CL = 90%
$\Gamma(D^0 ightarrow ~\pi^0 { m e}^\pm \mu^\mp)/\Gamma_{ m total}$	[<i>n</i>]	$< 8.6 \times 10^{-5}$, CL = 90%
$\Gamma(D^0 o \eta e^{\pm} \mu^{\mp})/\Gamma_{ ext{total}}$	[<i>n</i>]	$<1.0 \times 10^{-4}$, $CL = 90\%$
$\Gamma(D^0 ightarrow \pi^+ \pi^- e^{\pm} \mu^{\mp})/\Gamma_{\text{total}}$	[<i>n</i>]	$< 1.5 \times 10^{-5}$, $CL = 90\%$
$\Gamma(D^0 ightarrow ho^0 e^{\pm} \mu^{\mp})/\Gamma_{total}$	[<i>n</i>]	$<$ 4.9 \times 10 ⁻⁵ , CL = 90%
$\Gamma(D^0 \to \omega e^{\pm} \mu^{\mp})/\Gamma_{\text{total}}$	[<i>n</i>]	$<1.2 \times 10^{-4}$, CL = 90%
$\Gamma(D^0 ightarrow K^- K^+ e^{\pm} \mu^{\mp})/\Gamma_{ ext{total}}$	[<i>n</i>]	$< 1.8 \times 10^{-4}$, $CL = 90\%$
$\Gamma(D^0 o \phi e^{\pm} \mu^{\mp})/\Gamma_{ ext{total}}$	[<i>n</i>]	$< 3.4 \times 10^{-5}$, CL = 90%
$\Gamma(D^0 ightarrow \overline{K}{}^0 e^{\pm} \mu^{\mp})/\Gamma_{ ext{total}}$	[<i>n</i>]	$<1.0 \times 10^{-4}$, $CL = 90\%$
$\Gamma(D^0 \to K^- \pi^+ e^{\pm} \mu^{\mp})/\Gamma_{\text{total}}$	[<i>n</i>]	$< 5.53 \times 10^{-4}$, $CL = 90\%$
$\Gamma(D^0 \to \overline{K}^*(892)^0 e^{\pm \mu \mp})/\Gamma_{total}$	[<i>n</i>]	$< 8.3 \times 10^{-5}$, $CL = 90\%$
$\Gamma(D_s^+ ightarrow \pi^+ \mathrm{e}^+ \mu^-)/\Gamma_{total}$		$<1.2 \times 10^{-5}$, $CL = 90\%$
$\Gamma(D_s^+ \to \pi^+ e^- \mu^+)/\Gamma_{\text{total}}$		$< 2.0 \times 10^{-5}$, CL = 90%
$\Gamma(D_s^+ \to K^+ e^+ \mu^-)/\Gamma_{\text{total}}$		$<1.4 \times 10^{-5}$, CL = 90%
$\Gamma(D_s^+ \to K^+ e^- \mu^+)/\Gamma_{\text{total}}$		$<9.7 \times 10^{-6}$, CL = 90%
$\Gamma(B^+ \to \pi^+ e^+ \mu^-)/\Gamma_{\text{total}}$		$<6.4 \times 10^{-3}$, CL = 90%
$\Gamma(B^+ \to \pi^+ e^- \mu^+)/\Gamma_{\text{total}}$		$<6.4 \times 10^{-3}$, CL = 90%
$\Gamma(B^+ \to \pi^+ e^{\pm} \mu^{\mp})/\Gamma_{\text{total}}$		$<1.7 \times 10^{-7}$, CL = 90%
$\Gamma(B^+ \to \pi^+ e^+ \tau^-)/\Gamma_{\text{total}}$		$<7.4 \times 10^{-5}$, CL = 90%
$\Gamma(B^+ \to \pi^+ e^- \tau^+)/\Gamma_{\text{total}}$		$<2.0 \times 10^{-5}$, CL = 90%
$\Gamma(B^+ \to \pi^+ e^{\pm} \tau^{\mp})/\Gamma_{\text{total}}$		$< 7.5 \times 10^{-5}, CL = 90\%$
$\Gamma(B^+ \to \pi^+ \mu^+ \tau^-)/\Gamma_{\text{total}}$		$<6.2 \times 10^{-5}, CL = 90\%$
$\Gamma(B^+ \to \pi^+ \mu^- \tau^+)/\Gamma_{\text{total}}$		$< 4.5 \times 10^{-5}, CL = 90\%$
" " " ' ' ' total		, CL = 30/0

$\Gamma(B^+ o \pi^+\mu^\pm au^\mp)/\Gamma_{ ext{total}}$		$< 7.2 \times 10^{-5}$, CL = 90%
$\Gamma(B^+ \to K^+ e^+ \mu^-)/\Gamma_{\text{total}}$		$<9.1 \times 10^{-8}$, CL = 90%
$\Gamma(B^+ \to K^+ e^- \mu^+)/\Gamma_{\text{total}}$		$<1.3 \times 10^{-7}$, CL = 90%
$\Gamma(B^+ o K^+ e^\pm \mu^\mp)/\Gamma_{ ext{total}}$		$<9.1 \times 10^{-8}$, CL = 90%
$\Gamma(B^+ \to K^+ e^+ \tau^-)/\Gamma_{\text{total}}$		$< 4.3 \times 10^{-5}$, CL = 90%
$\Gamma(B^+ o K^+ e^- au^+)/\Gamma_{ ext{total}}$		$<1.5 \times 10^{-5}$, CL = 90%
$\Gamma(B^+ o K^+ e^\pm au^\mp)/\Gamma_{ ext{total}}$		$< 3.0 \times 10^{-5}$, CL = 90%
$\Gamma(B^+ \to K^+ \mu^+ \tau^-)/\Gamma_{\text{total}}$		$< 4.5 \times 10^{-5}, CL = 90\%$
$\Gamma(B^+ \to K^+ \mu^- \tau^+)/\Gamma_{\text{total}}$		$< 2.8 \times 10^{-5}$, CL = 90%
$\Gamma(B^+ \to K^+ \mu^{\pm} \tau^{\mp})/\Gamma_{\text{total}}$		$< 4.8 \times 10^{-5}$, CL = 90%
$\Gamma(B^+ \rightarrow K^*(892)^+ e^+ \mu^-)/\Gamma_{\text{total}}$		$<1.3 \times 10^{-6}$, CL = 90%
$\Gamma(B^+ \rightarrow K^*(892)^+ e^- \mu^+)/\Gamma_{\text{total}}$		$<9.9 \times 10^{-7}$, CL = 90%
$\Gamma(B^+ o K^*(892)^+ e^{\pm} \mu^{\mp})/\Gamma_{total}$		$<1.4 \times 10^{-6}$, CL = 90%
$\Gamma(B^0 ightarrow e^\pm \mu^\mp)/\Gamma_{ ext{total}}$	[<i>n</i>]	$< 2.8 \times 10^{-9}$, CL = 90%
$\Gamma(B^0 ightarrow \ \pi^0 { m e}^\pm \mu^\mp)/\Gamma_{ m total}$		$<1.4 \times 10^{-7}$, CL = 90%
$\Gamma(B^0 ightarrow \ K^0 e^\pm \mu^\mp)/\Gamma_{ ext{total}}$		$< 2.7 \times 10^{-7}$, CL = 90%
$\Gamma(B^0 \rightarrow K^*(892)^0 e^+ \mu^-)/\Gamma_{\text{total}}$		$<$ 5.3 \times 10 ⁻⁷ , CL = 90%
$\Gamma(B^0 \rightarrow K^*(892)^0 e^- \mu^+)/\Gamma_{\text{total}}$		$< 3.4 \times 10^{-7}$, CL = 90%
$\Gamma(B^0 ightarrow~K^*(892)^0e^\pm\mu^\mp)/\Gamma_{ ext{total}}$		$<$ 5.8 \times 10 ⁻⁷ , CL = 90%
$\Gamma(B^0 ightarrow e^{\pm} au^{\mp})/\Gamma_{ m total}$	[<i>n</i>]	$< 2.8 \times 10^{-5}$, CL = 90%
$\Gamma(B^0 ightarrow \ \mu^{\pm} au^{\mp})/\Gamma_{total}$	[<i>n</i>]	$< 2.2 \times 10^{-5}$, CL = 90%
$\Gamma(B ightarrow s e^{\pm} \mu^{\mp})/\Gamma_{ ext{total}}$	[<i>n</i>]	$< 2.2 \times 10^{-5}$, CL = 90%
$\Gamma(B ightarrow ~\pi { m e}^{\pm} \mu^{\mp})/\Gamma_{ m total}$		$<9.2 \times 10^{-8}$, CL = 90%
$\Gamma(B ightarrow ho e^{\pm} \mu^{\mp}) / \Gamma_{total}$		$< 3.2 \times 10^{-6}$, CL = 90%
$\Gamma(B ightarrow \ K { m e}^{\pm} \mu^{\mp})/\Gamma_{ m total}$		$< 3.8 \times 10^{-8}$, CL = 90%
$\Gamma(B ightarrow K^*(892) e^{\pm} \mu^{\mp})/\Gamma_{total}$		$< 5.1 \times 10^{-7}$, CL = 90%
$\Gamma(B_s^0 ightarrow e^{\pm} \mu^{\mp})/\Gamma_{ ext{total}}$	[<i>n</i>]	$<1.1 \times 10^{-8}$, CL = 90%
$\Gamma(J/\psi(1S) ightarrow \; e^{\pm}\mu^{\mp})/\Gamma_{\sf total}$		$< 1.6 \times 10^{-7}$, $CL = 90\%$
$\Gamma(J/\psi(1S) ightarrow~e^{\pm} au^{\mp})/\Gamma_{ ext{total}}$		$< 8.3 \times 10^{-6}$, $CL = 90\%$
$\Gamma(J/\psi(1S) ightarrow \ \mu^{\pm} au^{\mp})/\Gamma_{ ext{total}}$		$< 2.0 \times 10^{-6}$, $CL = 90\%$
$\Gamma(\Upsilon(1S) ightarrow \ \mu^{\pm} au^{\mp})/\Gamma_{total}$		$< 6.0 \times 10^{-6}, CL = 95\%$
$\Gamma(\Upsilon(2S) \rightarrow e^{\pm} \tau^{\mp})/\Gamma_{\text{total}}$		$< 3.2 \times 10^{-6}$, $CL = 90\%$
$\Gamma(\Upsilon(2S) ightarrow \ \mu^{\pm} au^{\mp})/\Gamma_{total}$		$< 3.3 \times 10^{-6}$, $CL = 90\%$
$\Gamma(\Upsilon(3S) \rightarrow e^{\pm} \tau^{\mp})/\Gamma_{\text{total}}$		$< 4.2 \times 10^{-6}, CL = 90\%$
$\Gamma(\Upsilon(3S) ightarrow \ \mu^{\pm} au^{\mp})/\Gamma_{ ext{total}}$		$< 3.1 \times 10^{-6}$, $CL = 90\%$
$\Gamma(\Lambda_c^+ \to pe^+\mu^-)/\Gamma_{\text{total}}$		$< 9.9 \times 10^{-6}$, $CL = 90\%$
$\Gamma(\Lambda_c^+ \to pe^-\mu^+)/\Gamma_{\text{total}}$		$<1.9 \times 10^{-5}$, CL = 90%

TOTAL LEPTON NUMBER

Violation of total lepton number conservation also implies violation of lepton family number conservation.

$\Gamma(Z \rightarrow pe)/\Gamma_{\text{total}}$		$<1.8 \times 10^{-6}$, CL = 95%
$\Gamma(Z \to p\mu)/\Gamma_{\text{total}}$		$<1.8 \times 10^{-6}$, CL = 95%
limit on $\mu^- \rightarrow {\rm e}^+$ conversion		
$\sigma(\mu^{-32}S \rightarrow e^{+32}Si^*)$ /		$< 9 \times 10^{-10}$, CL = 90%
$\sigma(\mu^{-32}S \rightarrow \nu_{\mu}^{32}P^*)$		
$\sigma(\mu^{-127} I \rightarrow e^{+127} Sb^*) /$		$< 3 \times 10^{-10}$, CL = 90%
$\sigma(\mu^{-127} extsf{I} ightarrow $		
$\sigma(\mu^-{\sf Ti} ightarrow e^+{\sf Ca})/$		$< 3.6 \times 10^{-11}$, CL $= 90\%$
$\sigma(\mu^-{\sf Ti} o{\sf capture})$		•
$\Gamma(\tau^- ightarrow e^+ \pi^- \pi^-)/\Gamma_{total}$		$<2.0 \times 10^{-8}$, CL = 90%
$\Gamma(\tau^- o \mu^+ \pi^- \pi^-)/\Gamma_{total}$		$<3.9 \times 10^{-8}$, CL = 90%
$\Gamma(au^- ightarrow~{ m e}^+\pi^-K^-)/\Gamma_{ m total}$		$<3.2 \times 10^{-8}$, CL = 90%
$\Gamma(au^- ightarrow e^+K^-K^-)/\Gamma_{ ext{total}}$		$<3.3 \times 10^{-8}$, CL = 90%
$\Gamma(au^- ightarrow \mu^+ \pi^- K^-)/\Gamma_{ ext{total}}$		$<4.8 \times 10^{-8}$, CL = 90%
$\Gamma(au^- ightarrow \ \mu^+ K^- K^-) / \Gamma_{total}$		$<4.7 \times 10^{-8}$, CL = 90%
$\Gamma(au^- ightarrow ho \mu^- \mu^-)/\Gamma_{total}$		$<4.4 \times 10^{-7}$, CL = 90%
$\Gamma(au^- ightarrow \overline{p}\mu^+\mu^-)/\Gamma_{total}$		$<3.3 \times 10^{-7}$, CL = 90%
$\Gamma(au^- ightarrow \overline{p}\gamma)/\Gamma_{\sf total}$		$<3.5 \times 10^{-6}$, CL = 90%
$\Gamma(au^- ightarrow \overline{p} \pi^0)/\Gamma_{ ext{total}}$		$<1.5 \times 10^{-5}$, CL = 90%
$\Gamma(au^- ightarrow \ \overline{p}2\pi^0)/\Gamma_{ ext{total}}$		$< 3.3 \times 10^{-5}$, CL = 90%
$\Gamma(au^- ightarrow \overline{p}\eta)/\Gamma_{\sf total}$		$< 8.9 \times 10^{-6}$, CL = 90%
$\Gamma(au^- ightarrow~ar{p}\pi^0\eta)/\Gamma_{total}$		$< 2.7 \times 10^{-5}$, CL = 90%
$\Gamma(au^- o \Lambda \pi^-)/\Gamma_{\sf total}$		$< 7.2 \times 10^{-8}$, CL = 90%
$\Gamma(au^- ightarrow \overline{\Lambda}\pi^-)/\Gamma_{\sf total}$		$<1.4 \times 10^{-7}$, CL = 90%
$t_{1/2}(^{76}\text{Ge} \rightarrow ^{76}\text{Se} + 2 e^{-})$		$>$ 1.9 $ imes$ 10 25 yr, CL $=$ 90%
$\Gamma(\pi^+ \to \mu^+ \overline{\nu}_e)/\Gamma_{\text{total}}$	[q]	$<1.5 \times 10^{-3}$, CL = 90%
$\Gamma(K^+ \to \pi^- \mu^+ e^+)/\Gamma_{\text{total}}$		$<$ 5.0 $ imes$ 10 $^{-10}$, CL $=$ 90%
$\Gamma(K^+ \rightarrow \pi^- e^+ e^+)/\Gamma_{\text{total}}$		$<$ 6.4 \times 10 $^{-10}$, CL $=$ 90%
$\Gamma(K^+ \rightarrow \pi^- \mu^+ \mu^+)/\Gamma_{\text{total}}$	[q]	$<1.1 \times 10^{-9}$, CL = 90%
$\Gamma(K^+ o \mu^+ \overline{ u}_e)/\Gamma_{total}$	[q]	$< 3.3 \times 10^{-3}$, CL = 90%
$\Gamma(K^+ o \pi^0 e^+ \overline{\nu}_e)/\Gamma_{\text{total}}$		$< 3 \times 10^{-3}$, CL = 90%
$\Gamma(D^+ ightarrow \pi^- 2e^+)/\Gamma_{ ext{total}}$		$<1.1 \times 10^{-6}$, CL = 90%
$\Gamma(D^+ o \pi^- 2\mu^+)/\Gamma_{ ext{total}}$		$< 2.2 \times 10^{-8}$, CL = 90%
$\Gamma(D^+ \to \pi^- e^+ \mu^+)/\Gamma_{\text{total}}$		$< 2.0 \times 10^{-6}$, CL = 90%
$\Gamma(D^+ o ho^- 2\mu^+)/\Gamma_{\text{total}}$		$<$ 5.6 \times 10 ⁻⁴ , CL = 90%
$\Gamma(D^+ \rightarrow K^- 2e^+)/\Gamma_{\text{total}}$		$< 9 \times 10^{-7}$, CL $= 90\%$
$\Gamma(D^+ \to K^- 2\mu^+)/\Gamma_{\text{total}}$		$<1.0 \times 10^{-5}$, CL = 90%
$\Gamma(D^+ ightarrow K^- e^+ \mu^+)/\Gamma_{ m total}$		$< 1.9 \times 10^{-6}$, CL $= 90\%$
	Down 22	Created: 10/2/2016 15.02
HTTP://PDG.LBL.GOV	Page 22	Created: 10/3/2016 15:03

$\Gamma(D^+ \rightarrow K^*(892)^- 2\mu^+)/\Gamma_{\text{total}}$		$< 8.5 \times 10^{-4}, CL = 90\%$
$\Gamma(D^0 \rightarrow 2\pi^- 2e^+ + \text{c.c.})/\Gamma_{\text{total}}$		$<1.12 \times 10^{-4}$, CL = 90%
$\Gamma(D^0 \rightarrow 2\pi^- 2\mu^+ + \text{c.c.})/\Gamma_{\text{total}}$		$<2.9 \times 10^{-5}$, CL = 90%
$\Gamma(D^0 \to K^-\pi^-2e^+ + c.c.)/\Gamma_{total}$		$<2.06 \times 10^{-4}$, CL = 90%
$\Gamma(D^0 \to K^- \pi^- 2\mu^+ + \text{c.c.})/\Gamma_{\text{total}}$		$< 3.9 \times 10^{-4}, CL = 90\%$
$\Gamma(D^0 \rightarrow 2K^-2e^+ + \text{c.c.})/\Gamma_{\text{total}}$		$<1.52 \times 10^{-4}$, CL = 90%
$\Gamma(D^0 \rightarrow 2K^- 2\mu^+ + \text{c.c.})/\Gamma_{\text{total}}$		$<9.4 \times 10^{-5}$, CL = 90%
$\Gamma(D^0 \rightarrow \pi^-\pi^-e^+\mu^+ + \text{c.c.})/\Gamma_{\text{total}}$		$< 7.9 \times 10^{-5}$, CL = 90%
$\Gamma(D^0 \rightarrow K^-\pi^-e^+\mu^+ + \text{c.c.})/\Gamma_{\text{total}}$		$<2.18 \times 10^{-4}$, CL = 90%
$\Gamma(D^0 \rightarrow 2K^-e^+\mu^+ + \text{c.c.})/\Gamma_{\text{total}}$		$<$ 5.7 \times 10 ⁻⁵ , CL = 90%
$\Gamma(D^0 o pe^-)/\Gamma_{\text{total}}$	[<i>r</i>]	$< 1.0 \times 10^{-5}$, CL = 90%
$\Gamma(D^0 \to \overline{p}e^+)/\Gamma_{\text{total}}$	[s]	$< 1.1 \times 10^{-5}$, CL $= 90\%$
$\Gamma(D_s^+ o \pi^- 2e^+)/\Gamma_{\text{total}}$		$< 4.1 \times 10^{-6}$, $CL = 90\%$
$\Gamma(D_s^+ \to \pi^- 2\mu^+)/\Gamma_{\text{total}}$		$<1.2 \times 10^{-7}$, $CL = 90\%$
$\Gamma(D_s^+ o \pi^- e^+ \mu^+)/\Gamma_{ ext{total}}$		$< 8.4 \times 10^{-6}$, $CL = 90\%$
$\Gamma(D_s^+ \to K^- 2e^+)/\Gamma_{\text{total}}$		$<$ 5.2 \times 10 ⁻⁶ , CL = 90%
$\Gamma(D_s^+ \to K^- 2\mu^+)/\Gamma_{\text{total}}$		$< 1.3 \times 10^{-5}$, $CL = 90\%$
$\Gamma(D_s^+ \to K^- e^+ \mu^+)/\Gamma_{\text{total}}$		${<}6.1 \times 10^{-6}$, CL $= 90\%$
$\Gamma(D_s^+ o K^*(892)^- 2\mu^+)/\Gamma_{total}$		$<1.4 \times 10^{-3}$, CL = 90%
$\Gamma(B^+ \to \pi^- e^+ e^+)/\Gamma_{\text{total}}$		$< 2.3 \times 10^{-8}$, $CL = 90\%$
$\Gamma(B^+ \to \pi^- \mu^+ \mu^+)/\Gamma_{\text{total}}$		$< 4.0 \times 10^{-9}$, CL $= 95\%$
$\Gamma(B^+ o \pi^- e^+ \mu^+)/\Gamma_{ ext{total}}$		$< 1.5 \times 10^{-7}$, CL $= 90\%$
$\Gamma(B^+ o ho^- e^+ e^+)/\Gamma_{ ext{total}}$		$< 1.7 \times 10^{-7}$, CL = 90%
$\Gamma(B^+ \to \rho^- \mu^+ \mu^+)/\Gamma_{\text{total}}$		$< 4.2 \times 10^{-7}$, CL = 90%
$\Gamma(B^+ o ho^- e^+ \mu^+)/\Gamma_{total}$		$< 4.7 \times 10^{-7}$, CL = 90%
$\Gamma(B^+ o K^- e^+ e^+)/\Gamma_{ ext{total}}$		$< 3.0 \times 10^{-8}$, CL = 90%
$\Gamma(B^+ o K^- \mu^+ \mu^+)/\Gamma_{\text{total}}$		$< 4.1 \times 10^{-8}$, CL = 90%
$\Gamma(B^+ \to K^- e^+ \mu^+)/\Gamma_{\text{total}}$		$<1.6 \times 10^{-7}$, CL = 90%
$\Gamma(B^+ \rightarrow K^*(892)^- e^+ e^+)/\Gamma_{total}$		$<4.0 \times 10^{-7}$, CL = 90%
$\Gamma(B^+ \to K^*(892)^- \mu^+ \mu^+)/\Gamma_{\text{total}}$		$< 5.9 \times 10^{-7}$, CL = 90%
$\Gamma(B^+ \rightarrow K^*(892)^- e^+ \mu^+)/\Gamma_{total}$		$< 3.0 \times 10^{-7}$, CL = 90%
$\Gamma(B^+ o D^- e^+ e^+)/\Gamma_{total}$		$< 2.6 \times 10^{-6}$, CL = 90%
$\Gamma(B^+ o D^- e^+ \mu^+)/\Gamma_{total}$		$<1.8 \times 10^{-6}$, CL = 90%
$\Gamma(B^+ o D^- \mu^+ \mu^+)/\Gamma_{total}$		$<6.9 \times 10^{-7}$, CL = 95%
$\Gamma(B^+ \to D^{*-}\mu^+\mu^+)/\Gamma_{\text{total}}$		$<2.4 \times 10^{-6}$, CL = 95%
$\Gamma(B^+ \to D_s^- \mu^+ \mu^+)/\Gamma_{\text{total}}$		$< 5.8 \times 10^{-7}$, CL = 95%
$\Gamma(B^+ o \overline{D}^{0}\pi^-\mu^+\mu^+)/\Gamma_{total}$		$<1.5 \times 10^{-6}$, CL = 95%
$\Gamma(B^+ \to \Lambda^0 \mu^+)/\Gamma_{\text{total}}$		$<6 \times 10^{-8}$, CL = 90%
$\Gamma(B^+ \to \Lambda^0 e^+)/\Gamma_{\text{total}}$		$< 3.2 \times 10^{-8}$, CL = 90%
$\Gamma(B^+ \to \overline{\Lambda}{}^0 \mu^+)/\Gamma_{total}$		$<6 \times 10^{-8}$, CL = 90%
$\Gamma(B^+ \to \overline{\Lambda}^0 e^+)/\Gamma_{\text{total}}$		$< 8 \times 10^{-8}$, CL = 90%

$\begin{array}{lll} \Gamma(B^0 \to \Lambda_c^+ \mu^-)/\Gamma_{\rm total} & <1.4 \times 10^{-6}, {\rm CL} = 90\% \\ \Gamma(B^0 \to \Lambda_c^+ e^-)/\Gamma_{\rm total} & <4 \times 10^{-6}, {\rm CL} = 90\% \\ \Gamma(\Lambda \to \pi^+ e^-)/\Gamma_{\rm total} & <6 \times 10^{-7}, {\rm CL} = 90\% \\ \Gamma(\Lambda \to \pi^+ \mu^-)/\Gamma_{\rm total} & <6 \times 10^{-7}, {\rm CL} = 90\% \\ \Gamma(\Lambda \to \pi^- e^+)/\Gamma_{\rm total} & <4 \times 10^{-7}, {\rm CL} = 90\% \\ \Gamma(\Lambda \to \pi^- e^+)/\Gamma_{\rm total} & <6 \times 10^{-7}, {\rm CL} = 90\% \\ \Gamma(\Lambda \to \pi^- \mu^+)/\Gamma_{\rm total} & <6 \times 10^{-7}, {\rm CL} = 90\% \\ \Gamma(\Lambda \to K^+ e^-)/\Gamma_{\rm total} & <2 \times 10^{-6}, {\rm CL} = 90\% \\ \Gamma(\Lambda \to K^- \mu^+)/\Gamma_{\rm total} & <3 \times 10^{-6}, {\rm CL} = 90\% \\ \Gamma(\Lambda \to K^- \mu^+)/\Gamma_{\rm total} & <2 \times 10^{-6}, {\rm CL} = 90\% \\ \Gamma(\Lambda \to K^- \mu^+)/\Gamma_{\rm total} & <3 \times 10^{-6}, {\rm CL} = 90\% \\ \Gamma(\Lambda \to K^0_S \nu)/\Gamma_{\rm total} & <2 \times 10^{-5}, {\rm CL} = 90\% \\ \Gamma(\Lambda_c^+ \to \bar{p} 2e^+)/\Gamma_{\rm total} & <2.7 \times 10^{-6}, {\rm CL} = 90\% \\ \Gamma(\Lambda_c^+ \to \bar{p} 2\mu^+)/\Gamma_{\rm total} & <9.4 \times 10^{-6}, {\rm CL} = 90\% \\ \Gamma(\Lambda_c^+ \to \bar{p} 2\mu^+)/\Gamma_{\rm total} & <9.4 \times 10^{-6}, {\rm CL} = 90\% \\ \Gamma(\Lambda_c^+ \to \bar{p} 2\mu^+)/\Gamma_{\rm total} & <9.4 \times 10^{-6}, {\rm CL} = 90\% \\ \Gamma(\Lambda_c^+ \to \bar{p} 2\mu^+)/\Gamma_{\rm total} & <9.4 \times 10^{-6}, {\rm CL} = 90\% \\ \Gamma(\Lambda_c^+ \to \bar{p} 2\mu^+)/\Gamma_{\rm total} & <1.6 \times 10^{-5}, {\rm CL} = 90\% \\ \Gamma(\Lambda_c^+ \to \bar{p} 2\mu^+)/\Gamma_{\rm total} & <1.6 \times 10^{-5}, {\rm CL} = 90\% \\ \Gamma(\Lambda_c^+ \to \bar{p} 2\mu^+)/\Gamma_{\rm total} & <7.0 \times 10^{-4}, {\rm CL} = 90\% \\ \Gamma(\Lambda_c^+ \to \bar{p} 2\mu^+)/\Gamma_{\rm total} & <1.6 \times 10^{-5}, {\rm CL} = 90\% \\ \Gamma(\Lambda_c^+ \to \bar{p} 2\mu^+)/\Gamma_{\rm total} & <1.6 \times 10^{-5}, {\rm CL} = 90\% \\ \Gamma(\Lambda_c^+ \to \bar{p} 2\mu^+)/\Gamma_{\rm total} & <1.6 \times 10^{-5}, {\rm CL} = 90\% \\ \Gamma(\Lambda_c^+ \to \bar{p} 2\mu^+)/\Gamma_{\rm total} & <1.6 \times 10^{-5}, {\rm CL} = 90\% \\ \Gamma(\Lambda_c^+ \to \bar{p} 2\mu^+)/\Gamma_{\rm total} & <1.6 \times 10^{-5}, {\rm CL} = 90\% \\ \Gamma(\Lambda_c^+ \to \bar{p} 2\mu^+)/\Gamma_{\rm total} & <1.6 \times 10^{-5}, {\rm CL} = 90\% \\ \Gamma(\Lambda_c^+ \to \bar{p} 2\mu^+)/\Gamma_{\rm total} & <1.6 \times 10^{-5}, {\rm CL} = 90\% \\ \Gamma(\Lambda_c^+ \to \bar{p} 2\mu^+)/\Gamma_{\rm total} & <1.6 \times 10^{-5}, {\rm CL} = 90\% \\ \Gamma(\Lambda_c^+ \to \bar{p} 2\mu^+)/\Gamma_{\rm total} & <1.6 \times 10^{-5}, {\rm CL} = 90\% \\ \Gamma(\Lambda_c^+ \to \bar{p} 2\mu^+)/\Gamma_{\rm total} & <1.6 \times 10^{-5}, {\rm CL} = 90\% \\ \Gamma(\Lambda_c^+ \to \bar{p} 2\mu^+)/$		
$ \Gamma(B^0 \to \Lambda_c^+ e^-)/\Gamma_{\text{total}} \\ \Gamma(\Lambda \to \pi^+ e^-)/\Gamma_{\text{total}} \\ \Gamma(\Lambda \to \pi^+ e^-)/\Gamma_{\text{total}} \\ \Gamma(\Lambda \to \pi^+ \mu^-)/\Gamma_{\text{total}} \\ \Gamma(\Lambda \to \pi^- \mu^+)/\Gamma_{\text{total}} \\ \Gamma(\Lambda \to \pi^- e^+)/\Gamma_{\text{total}} \\ \Gamma(\Lambda \to \pi^- e^+)/\Gamma_{\text{total}} \\ \Gamma(\Lambda \to \pi^- \mu^+)/\Gamma_{\text{total}} \\ \Gamma(\Lambda \to K^+ e^-)/\Gamma_{\text{total}} \\ \Gamma(\Lambda \to K^+ e^-)/\Gamma_{\text{total}} \\ \Gamma(\Lambda \to K^- e^+)/\Gamma_{\text{total}} \\ \Gamma(\Lambda \to K^- e^+)/\Gamma_{\text{total}} \\ \Gamma(\Lambda \to K^- \mu^+)/\Gamma_{\text{total}} \\ \Gamma(\Xi^- \to p \mu^- \mu^-)/\Gamma_{\text{total}} \\ \Gamma(\Xi^- \to p \mu^- \mu^-)/\Gamma_{\text{total}} \\ \Gamma(\Lambda_c^+ \to \overline{p} 2 \mu^+)/\Gamma_{\text{total}} \\ \Gamma(\Lambda_c^+ \to \overline{p} 2 \mu^+)/\Gamma_{\text{total}} \\ \Gamma(\Lambda_c^+ \to \overline{p} e^+ \mu^+)/\Gamma_{\text{total}} \\ \Gamma(\Lambda_c^+ \to \overline{p} e^+ \mu^+)/\Gamma_{\text{total}} \\ \Gamma(\Lambda_c^+ \to \overline{p} e^+ \mu^+)/\Gamma_{\text{total}} \\ \Gamma(\Lambda_c^- \to p$	$\Gamma(B^0 \to \Lambda_c^+ \mu^-)/\Gamma_{\text{total}}$	$<1.4 \times 10^{-6}$, CL = 90%
$\begin{array}{lll} \Gamma(\Lambda \to \ \pi^{+} e^{-})/\Gamma_{\rm total} & <6 \times 10^{-7}, {\rm CL} = 90\% \\ \Gamma(\Lambda \to \ \pi^{+} \mu^{-})/\Gamma_{\rm total} & <6 \times 10^{-7}, {\rm CL} = 90\% \\ \Gamma(\Lambda \to \ \pi^{-} e^{+})/\Gamma_{\rm total} & <4 \times 10^{-7}, {\rm CL} = 90\% \\ \Gamma(\Lambda \to \ \pi^{-} \mu^{+})/\Gamma_{\rm total} & <6 \times 10^{-7}, {\rm CL} = 90\% \\ \Gamma(\Lambda \to \ K^{+} e^{-})/\Gamma_{\rm total} & <2 \times 10^{-6}, {\rm CL} = 90\% \\ \Gamma(\Lambda \to \ K^{+} \mu^{-})/\Gamma_{\rm total} & <3 \times 10^{-6}, {\rm CL} = 90\% \\ \Gamma(\Lambda \to \ K^{-} e^{+})/\Gamma_{\rm total} & <2 \times 10^{-6}, {\rm CL} = 90\% \\ \Gamma(\Lambda \to \ K^{-} \mu^{+})/\Gamma_{\rm total} & <3 \times 10^{-6}, {\rm CL} = 90\% \\ \Gamma(\Lambda \to \ K^{0}_{S} \nu)/\Gamma_{\rm total} & <2 \times 10^{-5}, {\rm CL} = 90\% \\ \Gamma(\Lambda^{+}_{C} \to \ p \mu^{-} \mu^{-})/\Gamma_{\rm total} & <2.7 \times 10^{-6}, {\rm CL} = 90\% \\ \Gamma(\Lambda^{+}_{C} \to \ \overline{p} 2\mu^{+})/\Gamma_{\rm total} & <9.4 \times 10^{-6}, {\rm CL} = 90\% \\ \Gamma(\Lambda^{+}_{C} \to \ \overline{p} 2\mu^{+})/\Gamma_{\rm total} & <9.4 \times 10^{-6}, {\rm CL} = 90\% \\ \Gamma(\Lambda^{+}_{C} \to \ \overline{p} 2\mu^{+})/\Gamma_{\rm total} & <9.4 \times 10^{-6}, {\rm CL} = 90\% \\ \Gamma(\Lambda^{+}_{C} \to \ \overline{p} 2\mu^{+})/\Gamma_{\rm total} & <9.4 \times 10^{-6}, {\rm CL} = 90\% \\ \Gamma(\Lambda^{+}_{C} \to \ \overline{p} 2\mu^{+})/\Gamma_{\rm total} & <9.4 \times 10^{-6}, {\rm CL} = 90\% \\ \Gamma(\Lambda^{+}_{C} \to \ \overline{p} 2\mu^{+})/\Gamma_{\rm total} & <9.4 \times 10^{-6}, {\rm CL} = 90\% \\ \Gamma(\Lambda^{+}_{C} \to \ \overline{p} 2\mu^{+})/\Gamma_{\rm total} & <9.4 \times 10^{-6}, {\rm CL} = 90\% \\ \Gamma(\Lambda^{+}_{C} \to \ \overline{p} 2\mu^{+})/\Gamma_{\rm total} & <9.4 \times 10^{-6}, {\rm CL} = 90\% \\ \Gamma(\Lambda^{+}_{C} \to \ \overline{p} 2\mu^{+})/\Gamma_{\rm total} & <9.4 \times 10^{-6}, {\rm CL} = 90\% \\ \Gamma(\Lambda^{+}_{C} \to \ \overline{p} 2\mu^{+})/\Gamma_{\rm total} & <9.4 \times 10^{-6}, {\rm CL} = 90\% \\ \Gamma(\Lambda^{+}_{C} \to \ \overline{p} 2\mu^{+})/\Gamma_{\rm total} & <9.4 \times 10^{-6}, {\rm CL} = 90\% \\ \Gamma(\Lambda^{+}_{C} \to \ \overline{p} 2\mu^{+})/\Gamma_{\rm total} & <9.4 \times 10^{-6}, {\rm CL} = 90\% \\ \Gamma(\Lambda^{+}_{C} \to \ \overline{p} 2\mu^{+})/\Gamma_{\rm total} & <9.4 \times 10^{-6}, {\rm CL} = 90\% \\ \Gamma(\Lambda^{+}_{C} \to \ \overline{p} 2\mu^{+})/\Gamma_{\rm total} & <9.4 \times 10^{-6}, {\rm CL} = 90\% \\ \Gamma(\Lambda^{+}_{C} \to \ \overline{p} 2\mu^{+})/\Gamma_{\rm total} & <9.4 \times 10^{-6}, {\rm CL} = 90\% \\ \Gamma(\Lambda^{+}_{C} \to \ \overline{p} 2\mu^{+})/\Gamma_{\rm total} & <9.4 \times 10^{-6}, {\rm CL} = 90\% \\ \Gamma(\Lambda^{+}_{C} \to \ \overline{p} 2\mu^{+})/\Gamma_{\rm total} & <9.4 \times 10^{-6}, {\rm CL} = 90\% \\ \Gamma(\Lambda^{+}_{C} \to \ \overline$	$\Gamma(B^0 \to \Lambda_c^+ e^-)/\Gamma_{\text{total}}$	$<$ 4 \times 10 $^{-6}$, CL $=$ 90%
$\begin{array}{lll} \Gamma(\Lambda \to \ \pi^- e^+)/\Gamma_{\rm total} & <4 \times 10^{-7}, \ {\rm CL} = 90\% \\ \Gamma(\Lambda \to \ \pi^- \mu^+)/\Gamma_{\rm total} & <6 \times 10^{-7}, \ {\rm CL} = 90\% \\ \Gamma(\Lambda \to \ K^+ e^-)/\Gamma_{\rm total} & <2 \times 10^{-6}, \ {\rm CL} = 90\% \\ \Gamma(\Lambda \to \ K^+ \mu^-)/\Gamma_{\rm total} & <3 \times 10^{-6}, \ {\rm CL} = 90\% \\ \Gamma(\Lambda \to \ K^- e^+)/\Gamma_{\rm total} & <2 \times 10^{-6}, \ {\rm CL} = 90\% \\ \Gamma(\Lambda \to \ K^- \mu^+)/\Gamma_{\rm total} & <3 \times 10^{-6}, \ {\rm CL} = 90\% \\ \Gamma(\Lambda \to \ K^0_S \nu)/\Gamma_{\rm total} & <2 \times 10^{-5}, \ {\rm CL} = 90\% \\ \Gamma(\Xi^- \to \ p \mu^- \mu^-)/\Gamma_{\rm total} & <2 \times 10^{-6}, \ {\rm CL} = 90\% \\ \Gamma(\Lambda_c^+ \to \ \overline{p} 2 \mu^+)/\Gamma_{\rm total} & <2.7 \times 10^{-6}, \ {\rm CL} = 90\% \\ \Gamma(\Lambda_c^+ \to \ \overline{p} 2 \mu^+)/\Gamma_{\rm total} & <9.4 \times 10^{-6}, \ {\rm CL} = 90\% \\ \Gamma(\Lambda_c^+ \to \ \overline{p} 2 \mu^+)/\Gamma_{\rm total} & <9.4 \times 10^{-6}, \ {\rm CL} = 90\% \\ (<1.6 \times 10^{-5}, \ {\rm CL} = 90\% \\ <1.6 \times 10^{-5}, \ {\rm CL} = 90\% \\ \end{array}$	$\Gamma(\Lambda ightarrow \pi^+ e^-)/\Gamma_{total}$	$< 6 \times 10^{-7}$, CL = 90%
$\begin{array}{lll} \Gamma(\Lambda \to \ \pi^- \mu^+)/\Gamma_{\rm total} & <6 \times 10^{-7}, \ {\rm CL} = 90\% \\ \Gamma(\Lambda \to \ K^+ e^-)/\Gamma_{\rm total} & <2 \times 10^{-6}, \ {\rm CL} = 90\% \\ \Gamma(\Lambda \to \ K^+ \mu^-)/\Gamma_{\rm total} & <3 \times 10^{-6}, \ {\rm CL} = 90\% \\ \Gamma(\Lambda \to \ K^- e^+)/\Gamma_{\rm total} & <2 \times 10^{-6}, \ {\rm CL} = 90\% \\ \Gamma(\Lambda \to \ K^- \mu^+)/\Gamma_{\rm total} & <3 \times 10^{-6}, \ {\rm CL} = 90\% \\ \Gamma(\Lambda \to \ K_S^0 \nu)/\Gamma_{\rm total} & <2 \times 10^{-5}, \ {\rm CL} = 90\% \\ \Gamma(\Xi^- \to \ p\mu^- \mu^-)/\Gamma_{\rm total} & <4 \times 10^{-8}, \ {\rm CL} = 90\% \\ \Gamma(\Lambda_c^+ \to \ \overline{p}2e^+)/\Gamma_{\rm total} & <2.7 \times 10^{-6}, \ {\rm CL} = 90\% \\ \Gamma(\Lambda_c^+ \to \ \overline{p}2\mu^+)/\Gamma_{\rm total} & <9.4 \times 10^{-6}, \ {\rm CL} = 90\% \\ \Gamma(\Lambda_c^+ \to \ \overline{p}2\mu^+)/\Gamma_{\rm total} & <9.4 \times 10^{-6}, \ {\rm CL} = 90\% \\ \Gamma(\Lambda_c^+ \to \ \overline{p}2\mu^+)/\Gamma_{\rm total} & <1.6 \times 10^{-5}, \ {\rm CL} = 90\% \\ \end{array}$		$< 6 \times 10^{-7}$, CL = 90%
$\begin{array}{lll} \Gamma(\Lambda \to \ K^{+} e^{-})/\Gamma_{\rm total} & <2 \times 10^{-6}, {\rm CL} = 90\% \\ \Gamma(\Lambda \to \ K^{+} \mu^{-})/\Gamma_{\rm total} & <3 \times 10^{-6}, {\rm CL} = 90\% \\ \Gamma(\Lambda \to \ K^{-} e^{+})/\Gamma_{\rm total} & <2 \times 10^{-6}, {\rm CL} = 90\% \\ \Gamma(\Lambda \to \ K^{-} \mu^{+})/\Gamma_{\rm total} & <3 \times 10^{-6}, {\rm CL} = 90\% \\ \Gamma(\Lambda \to \ K^{0}_{S} \nu)/\Gamma_{\rm total} & <2 \times 10^{-5}, {\rm CL} = 90\% \\ \Gamma(\Xi^{-} \to \ p \mu^{-} \mu^{-})/\Gamma_{\rm total} & <2 \times 10^{-5}, {\rm CL} = 90\% \\ \Gamma(\Lambda^{+}_{c} \to \ \overline{p} 2e^{+})/\Gamma_{\rm total} & <2.7 \times 10^{-6}, {\rm CL} = 90\% \\ \Gamma(\Lambda^{+}_{c} \to \ \overline{p} 2\mu^{+})/\Gamma_{\rm total} & <9.4 \times 10^{-6}, {\rm CL} = 90\% \\ \Gamma(\Lambda^{+}_{c} \to \ \overline{p} 2\mu^{+})/\Gamma_{\rm total} & <9.4 \times 10^{-6}, {\rm CL} = 90\% \\ \Gamma(\Lambda^{+}_{c} \to \ \overline{p} 2\mu^{+})/\Gamma_{\rm total} & <1.6 \times 10^{-5}, {\rm CL} = 90\% \\ \end{array}$		$< 4 \times 10^{-7}$, CL = 90%
$\begin{array}{lll} \Gamma(\Lambda \to \ K^+ \mu^-)/\Gamma_{\rm total} & <3 \times 10^{-6}, {\rm CL} = 90\% \\ \Gamma(\Lambda \to \ K^- e^+)/\Gamma_{\rm total} & <2 \times 10^{-6}, {\rm CL} = 90\% \\ \Gamma(\Lambda \to \ K^- \mu^+)/\Gamma_{\rm total} & <3 \times 10^{-6}, {\rm CL} = 90\% \\ \Gamma(\Lambda \to \ K_S^0 \nu)/\Gamma_{\rm total} & <2 \times 10^{-5}, {\rm CL} = 90\% \\ \Gamma(\Xi^- \to \ p \mu^- \mu^-)/\Gamma_{\rm total} & <4 \times 10^{-8}, {\rm CL} = 90\% \\ \Gamma(\Lambda_c^+ \to \ \overline{p} 2e^+)/\Gamma_{\rm total} & <2.7 \times 10^{-6}, {\rm CL} = 90\% \\ \Gamma(\Lambda_c^+ \to \ \overline{p} 2\mu^+)/\Gamma_{\rm total} & <9.4 \times 10^{-6}, {\rm CL} = 90\% \\ \Gamma(\Lambda_c^+ \to \ \overline{p} 2\mu^+)/\Gamma_{\rm total} & <9.4 \times 10^{-6}, {\rm CL} = 90\% \\ \Gamma(\Lambda_c^+ \to \ \overline{p} 2\mu^+)/\Gamma_{\rm total} & <1.6 \times 10^{-5}, {\rm CL} = 90\% \\ \end{array}$		$< 6 \times 10^{-7}$, CL = 90%
$\begin{array}{lll} \Gamma(\Lambda \to K^- e^+)/\Gamma_{\rm total} & <2 \times 10^{-6}, {\rm CL} = 90\% \\ \Gamma(\Lambda \to K^- \mu^+)/\Gamma_{\rm total} & <3 \times 10^{-6}, {\rm CL} = 90\% \\ \Gamma(\Lambda \to K_S^0 \nu)/\Gamma_{\rm total} & <2 \times 10^{-5}, {\rm CL} = 90\% \\ \Gamma(\Xi^- \to p \mu^- \mu^-)/\Gamma_{\rm total} & <4 \times 10^{-8}, {\rm CL} = 90\% \\ \Gamma(\Lambda_c^+ \to \overline{p} 2e^+)/\Gamma_{\rm total} & <2.7 \times 10^{-6}, {\rm CL} = 90\% \\ \Gamma(\Lambda_c^+ \to \overline{p} 2\mu^+)/\Gamma_{\rm total} & <9.4 \times 10^{-6}, {\rm CL} = 90\% \\ \Gamma(\Lambda_c^+ \to \overline{p} e^+ \mu^+)/\Gamma_{\rm total} & <9.6 \times 10^{-5}, {\rm CL} = 90\% \\ \end{array}$		$< 2 \times 10^{-6}$, CL = 90%
$\begin{array}{lll} \Gamma(\Lambda \to \ K^- \mu^+)/\Gamma_{\rm total} & <3 \times 10^{-6}, \ {\rm CL} = 90\% \\ \Gamma(\Lambda \to \ K_S^0 \nu)/\Gamma_{\rm total} & <2 \times 10^{-5}, \ {\rm CL} = 90\% \\ \Gamma(\Xi^- \to \ p \mu^- \mu^-)/\Gamma_{\rm total} & <4 \times 10^{-8}, \ {\rm CL} = 90\% \\ \Gamma(\Lambda_c^+ \to \ \overline{p} 2 e^+)/\Gamma_{\rm total} & <2.7 \times 10^{-6}, \ {\rm CL} = 90\% \\ \Gamma(\Lambda_c^+ \to \ \overline{p} 2 \mu^+)/\Gamma_{\rm total} & <9.4 \times 10^{-6}, \ {\rm CL} = 90\% \\ \Gamma(\Lambda_c^+ \to \ \overline{p} e^+ \mu^+)/\Gamma_{\rm total} & <1.6 \times 10^{-5}, \ {\rm CL} = 90\% \\ \end{array}$		$< 3 \times 10^{-6}$, CL = 90%
$\begin{split} & \Gamma(\Lambda \to \ K_S^0 \nu)/\Gamma_{\text{total}} & <2 \times 10^{-5}, \text{CL} = 90\% \\ & \Gamma(\Xi^- \to \ p \mu^- \mu^-)/\Gamma_{\text{total}} & <4 \times 10^{-8}, \text{CL} = 90\% \\ & \Gamma(\Lambda_c^+ \to \ \overline{p} 2e^+)/\Gamma_{\text{total}} & <2.7 \times 10^{-6}, \text{CL} = 90\% \\ & \Gamma(\Lambda_c^+ \to \ \overline{p} 2\mu^+)/\Gamma_{\text{total}} & <9.4 \times 10^{-6}, \text{CL} = 90\% \\ & \Gamma(\Lambda_c^+ \to \ \overline{p} e^+ \mu^+)/\Gamma_{\text{total}} & <1.6 \times 10^{-5}, \text{CL} = 90\% \end{split}$		$< 2 \times 10^{-6}$, CL = 90%
$\begin{split} \Gamma(\Xi^{-} \to p \mu^{-} \mu^{-}) / \Gamma_{\text{total}} & <4 \times 10^{-8}, \text{CL} = 90\% \\ \Gamma(\Lambda_{c}^{+} \to \overline{p} 2 e^{+}) / \Gamma_{\text{total}} & <2.7 \times 10^{-6}, \text{CL} = 90\% \\ \Gamma(\Lambda_{c}^{+} \to \overline{p} 2 \mu^{+}) / \Gamma_{\text{total}} & <9.4 \times 10^{-6}, \text{CL} = 90\% \\ \Gamma(\Lambda_{c}^{+} \to \overline{p} e^{+} \mu^{+}) / \Gamma_{\text{total}} & <1.6 \times 10^{-5}, \text{CL} = 90\% \end{split}$		$< 3 \times 10^{-6}$, CL = 90%
$\begin{split} \Gamma(\Xi^{-} \to p \mu^{-} \mu^{-}) / \Gamma_{\text{total}} & <4 \times 10^{-8}, \text{CL} = 90\% \\ \Gamma(\Lambda_{c}^{+} \to \overline{p} 2 e^{+}) / \Gamma_{\text{total}} & <2.7 \times 10^{-6}, \text{CL} = 90\% \\ \Gamma(\Lambda_{c}^{+} \to \overline{p} 2 \mu^{+}) / \Gamma_{\text{total}} & <9.4 \times 10^{-6}, \text{CL} = 90\% \\ \Gamma(\Lambda_{c}^{+} \to \overline{p} e^{+} \mu^{+}) / \Gamma_{\text{total}} & <1.6 \times 10^{-5}, \text{CL} = 90\% \end{split}$	$\Gamma(\Lambda \to K_S^0 \nu)/\Gamma_{\text{total}}$	$< 2 \times 10^{-5}$, CL = 90%
$\Gamma(\Lambda_c^+ \to \overline{p}2\mu^+)/\Gamma_{\text{total}} $ <9.4 × 10 ⁻⁶ , CL = 90% $\Gamma(\Lambda_c^+ \to \overline{p}e^+\mu^+)/\Gamma_{\text{total}} $ <1.6 × 10 ⁻⁵ , CL = 90%		$< 4 \times 10^{-8}$, CL = 90%
$\Gamma(\Lambda_c^+ \to \overline{p}2\mu^+)/\Gamma_{\text{total}} $ <9.4 × 10 ⁻⁶ , CL = 90% $\Gamma(\Lambda_c^+ \to \overline{p}e^+\mu^+)/\Gamma_{\text{total}} $ <1.6 × 10 ⁻⁵ , CL = 90%	$\Gamma(\Lambda_c^+ \to \overline{p}2e^+)/\Gamma_{\text{total}}$	$< 2.7 \times 10^{-6}$, CL = 90%
$\Gamma(\Lambda_c^+ \rightarrow \overline{p}e^+\mu^+)/\Gamma_{\text{total}}$ <1.6 × 10 ⁻⁵ , CL = 90%		$< 9.4 \times 10^{-6}$, $CL = 90\%$
$\Gamma(\Lambda_c^+ \to \Sigma^- \mu^+ \mu^+)/\Gamma_{\text{total}}$ <7.0 × 10 ⁻⁴ , CL = 90%	$\Gamma(\Lambda_c^+ \to \overline{p}e^+\mu^+)/\Gamma_{\text{total}}$	$< 1.6 \times 10^{-5}$, $CL = 90\%$
	$\Gamma(\Lambda_c^+ o \Sigma^- \mu^+ \mu^+)/\Gamma_{total}$	$< 7.0 \times 10^{-4}, CL = 90\%$

BARYON NUMBER

$\Gamma(Z \rightarrow pe)/\Gamma_{total}$		$< 1.8 \times 10^{-6}$, CL = 95%
$\Gamma(Z o p\mu)/\Gamma_{total}$		$< 1.8 \times 10^{-6}$, CL $= 95\%$
$\Gamma(au^- o p \mu^- \mu^-)/\Gamma_{total}$		$<$ 4.4 \times 10 $^{-7}$, CL $=$ 90%
$\Gamma(au^- ightarrow \overline{p}\mu^+\mu^-)/\Gamma_{total}$		$< 3.3 \times 10^{-7}$, CL = 90%
$\Gamma(\tau^- o \overline{p}\gamma)/\Gamma_{\text{total}}$		$< 3.5 \times 10^{-6}$, CL = 90%
$\Gamma(\tau^- \to \overline{p}\pi^0)/\Gamma_{\text{total}}$		$< 1.5 \times 10^{-5}$, CL $= 90\%$
$\Gamma(\tau^- o \overline{p}2\pi^0)/\Gamma_{\text{total}}$		$< 3.3 \times 10^{-5}$, CL = 90%
$\Gamma(au^- o \overline{p}\eta)/\Gamma_{total}$		$< 8.9 \times 10^{-6}$, CL = 90%
$\Gamma(au^- ightarrow \overline{p}\pi^0\eta)/\Gamma_{ ext{total}}$		$< 2.7 \times 10^{-5}$, CL = 90%
$\Gamma(au^- o \Lambda \pi^-)/\Gamma_{total}$		$< 7.2 \times 10^{-8}, \ CL = 90\%$
$\Gamma(au^- o \overline{\Lambda}\pi^-)/\Gamma_{total}$		$< 1.4 \times 10^{-7}$, CL $= 90\%$
$\Gamma(D^0 \rightarrow pe^-)/\Gamma_{\text{total}}$	[<i>r</i>]	$< 1.0 \times 10^{-5}$, CL $= 90\%$
$\Gamma(D^0 \to \overline{p}e^+)/\Gamma_{\text{total}}$	[s]	$< 1.1 \times 10^{-5}$, CL $= 90\%$
$\Gamma(B^+ \to \Lambda^0 \mu^+)/\Gamma_{\text{total}}$		$< 6 \times 10^{-8}$, CL = 90%
$\Gamma(B^+ \to \Lambda^0 e^+)/\Gamma_{\text{total}}$		$< 3.2 \times 10^{-8}, CL = 90\%$
$\Gamma(B^+ \to \overline{\Lambda}{}^0 \mu^+)/\Gamma_{\text{total}}$		$< 6 \times 10^{-8}$, CL = 90%
$\Gamma(B^+ \to \overline{\Lambda}^0 e^+)/\Gamma_{\text{total}}$		$< 8 \times 10^{-8}$, CL = 90%
$\Gamma(B^0 \to \Lambda_c^+ \mu^-)/\Gamma_{\text{total}}$		$<1.4 \times 10^{-6}$, CL = 90%
$\Gamma(B^0 \to \Lambda_c^+ e^-)/\Gamma_{\text{total}}$		$< 4 \times 10^{-6}$, CL = 90%
p mean life	[t]	$>2.1 \times 10^{29}$ years, CL = 90%
ı	_ L-J	, , , , , , , , , , , , , , , , , , ,

A few examples of proton or bound neutron decay follow. For limits on many other nucleon decay channels, see the Baryon Summary Table.

$ au(N ightarrow e^+ \pi)$	$> 2000 \; (n), > 8200 \; (p) \times 10^{30} \; { m years, CL}$
$\tau(N \rightarrow \mu^+ \pi)$	=90% > 1000 (n), > 6600 (p) × 10 ³⁰ years, CL
$I(N \rightarrow \mu^+ \kappa)$	= 90%
$ au(N o e^+ K)$	$>$ 17 (n), $>$ 1000 (p) $ imes$ 10 30 years, CL $=$
	90%
$\tau(N \to \mu^+ K)$	$> 26 (n), > 1600 (p) \times 10^{30} \text{ years, CL} = 90\%$
limit on $n\overline{n}$ oscillations (free n)	$>0.86 \times 10^8$ s, CL = 90%
limit on $n\overline{n}$ oscillations (bound n)	$[u] > 1.3 \times 10^8 \text{ s, CL} = 90\%$
$\Gamma(\Lambda \to \pi^+ e^-)/\Gamma_{\text{total}}$	$< 6 \times 10^{-7}$, CL = 90%
$\Gamma(\Lambda \to \pi^+ \mu^-)/\Gamma_{\text{total}}$	$<$ 6 $ imes$ 10 $^{-7}$, CL $=$ 90%
$\Gamma(\Lambda \to \pi^- e^+)/\Gamma_{\text{total}}$	$<$ 4 $ imes$ 10 $^{-7}$, CL $=$ 90%
$\Gamma(\Lambda \to \pi^- \mu^+)/\Gamma_{\text{total}}$	$<$ 6 \times 10 $^{-7}$, CL $=$ 90%
$\Gamma(\Lambda \to K^+ e^-)/\Gamma_{\text{total}}$	$< 2 \times 10^{-6}$, CL = 90%
$\Gamma(\Lambda \to K^+ \mu^-)/\Gamma_{\text{total}}$	$< 3 \times 10^{-6}$, CL = 90%
$\Gamma(\Lambda \to K^- e^+)/\Gamma_{\text{total}}$	$< 2 \times 10^{-6}$, CL = 90%
$\Gamma(\Lambda \to K^- \mu^+)/\Gamma_{\text{total}}$	$< 3 \times 10^{-6}$, CL = 90%
$\Gamma(\Lambda \to \kappa_S^0 \nu)/\Gamma_{\text{total}}$	$<$ 2 $ imes$ 10 $^{-5}$, CL $=$ 90%
$\Gamma(\Lambda \to \overline{p}\pi^+)/\Gamma_{\text{total}}$	$< 9 \times 10^{-7}$, CL $= 90\%$
$\Gamma(\Lambda_c^+ o \overline{p} 2e^+)/\Gamma_{\text{total}}$	$< 2.7 \times 10^{-6}$, CL = 90%
$\Gamma(\Lambda_C^+ \to \overline{p}2\mu^+)/\Gamma_{\text{total}}$	$<$ 9.4 \times 10 ⁻⁶ , CL $=$ 90%
$\Gamma(\Lambda_c^+ \to \overline{p}e^+\mu^+)/\Gamma_{\text{total}}$	$<1.6 \times 10^{-5}$, CL = 90%
· C · · · · · · · · · · · · · · · · · ·	

ELECTRIC CHARGE (Q)

$$e \rightarrow \nu_e \gamma$$
 and astrophysical limits [v] $>6.6 \times 10^{28}$ yr, CL = 90% $\Gamma(n \rightarrow p \nu_e \overline{\nu}_e)/\Gamma_{\rm total}$ $<8 \times 10^{-27}$, CL = 68%

$\Delta S = \Delta Q RULE$

Violations allowed in second-order weak interactions.

$$\begin{array}{lll} \Gamma(K^{+}\to \pi^{+}\pi^{+}e^{-}\overline{\nu}_{e})/\Gamma_{total} & <1.3\times 10^{-8}, \ \text{CL} = 90\% \\ \Gamma(K^{+}\to \pi^{+}\pi^{+}\mu^{-}\overline{\nu}_{\mu})/\Gamma_{total} & <3.0\times 10^{-6}, \ \text{CL} = 95\% \\ \text{Re}(\textbf{x}_{+}), \ \textit{K}_{e3} \ \text{parameter} & (-0.9\pm3.0)\times 10^{-3} \\ x = A(\overline{K}^{0}\to \pi^{-}\ell^{+}\nu)/A(K^{0}\to \pi^{-}\ell^{+}\nu) = A(\Delta S = -\Delta Q)/A(\Delta S = \Delta Q) \\ \text{real part of } x & -0.002\pm0.006 \\ \text{imaginary part of } x & 0.0012\pm0.0021 \\ \Gamma(\Sigma^{+}\to n\ell^{+}\nu)/\Gamma(\Sigma^{-}\to n\ell^{-}\overline{\nu}) & <0.043 \\ \Gamma(\Sigma^{+}\to ne^{+}\nu_{e})/\Gamma_{total} & <5\times 10^{-6}, \ \text{CL} = 90\% \\ \Gamma(\Sigma^{+}\to n\mu^{+}\nu_{\mu})/\Gamma_{total} & <3.0\times 10^{-5}, \ \text{CL} = 90\% \end{array}$$

$$\begin{array}{ll} \Gamma(\Xi^0 \rightarrow \ \Sigma^- \, e^+ \, \nu_e)/\Gamma_{total} & <9 \times 10^{-4}, \, \mathrm{CL} = 90\% \\ \Gamma(\Xi^0 \rightarrow \ \Sigma^- \, \mu^+ \, \nu_\mu)/\Gamma_{total} & <9 \times 10^{-4}, \, \mathrm{CL} = 90\% \end{array}$$

$\Delta S = 2$ FORBIDDEN

Allowed in second-order weak interactions.

$\Gamma(\Xi^0 o p\pi^-)/\Gamma_{total}$	$< 8 \times 10^{-6}$, $CL = 90\%$
$\Gamma(\Xi^0 o pe^-\overline{\nu}_e)/\Gamma_{total}$	$< 1.3 \times 10^{-3}$
$\Gamma(\Xi^0 o p\mu^-\overline{\nu}_\mu)/\Gamma_{total}$	$< 1.3 \times 10^{-3}$
$\Gamma(\Xi^- ightarrow n\pi^-)/\Gamma_{total}$	$<1.9 \times 10^{-5}$, CL = 90%
$\Gamma(\Xi^- o ne^-\overline{ u}_e)/\Gamma_{ ext{total}}$	$< 3.2 \times 10^{-3}$, CL = 90%
$\Gamma(\Xi^- o n\mu^-\overline{ u}_\mu)/\Gamma_{total}$	$<1.5 \times 10^{-2}$, CL = 90%
$\Gamma(ar{\Xi}^- ightarrow p \pi^- \pi^-)/\Gamma_{total}$	$<$ 4 $ imes$ 10 $^{-4}$, CL $=$ 90%
$\Gamma(\Xi^- o p\pi^- e^- \overline{ u}_e)/\Gamma_{total}$	$< 4 \times 10^{-4}$, CL = 90%
$\Gamma(\Xi^- o p\pi^-\mu^-\overline{ u}_\mu)/\Gamma_{total}$	$< 4 \times 10^{-4}$, CL = 90%
$\Gamma(\Omega^- o \Lambda \pi^-)/\Gamma_{ ext{total}}$	$< 2.9 \times 10^{-6}$, CL = 90%

$\Delta S = 2 \text{ VIA MIXING}$

Allowed in second-order weak interactions, e.g. mixing.

$$m_{\mathcal{K}_{L}^{0}} - m_{\mathcal{K}_{S}^{0}}$$
 $(0.5293 \pm 0.0009) \times 10^{10} \ \hbar \ s^{-1} \ (S = 1.3)$ $m_{\mathcal{K}_{L}^{0}} - m_{\mathcal{K}_{S}^{0}}$ $(3.484 \pm 0.006) \times 10^{-12} \ \text{MeV}$

$\Delta C = 2 \text{ VIA MIXING}$

Allowed in second-order weak interactions, e.g. mixing.

$$\begin{split} \left| m_{D_1^0} - m_{D_2^0} \right| &= x \Gamma \\ \left(\Gamma_{D_1^0} - \Gamma_{D_2^0} \right) / \Gamma &= 2y \end{split} \qquad & (0.95^{+0.41}_{-0.44}) \times 10^{10} \ \hbar \ \text{s}^{-1} \\ \left(1.29^{+0.14}_{-0.18} \right) \times 10^{-2} \end{split}$$

$\Delta B = 2 \text{ VIA MIXING}$

Allowed in second-order weak interactions, e.g. mixing.

$$\chi_d$$
 0.1875 \pm 0.0017
$$\Delta m_{B^0} = m_{B^0_H} - m_{B^0_L}$$
 (0.5096 \pm 0.0034) \times 10¹² \hbar s⁻¹

HTTP://PDG.LBL.GOV Page 26 Created: 10/3/2016 15:03

$$\begin{array}{lll} x_d &= \Delta m_{B^0}/\Gamma_{B^0} & 0.775 \pm 0.006 \\ \Delta m_{B^0_s} &= m_{B^0_{sH}} - m_{B^0_{sL}} & (17.757 \pm 0.021) \times 10^{12} \ \hbar \ \text{s}^{-1} \\ x_s &= \Delta m_{B^0_s}/\Gamma_{B^0_s} & 26.81 \pm 0.10 \\ \chi_s & 0.499308 \pm 0.000005 \end{array}$$

$\Delta S = 1$ Weak Neutral Current forbidden

Allowed by higher-order electroweak interactions.

$$\begin{array}{lll} \Gamma(K^{+} \to \pi^{+} e^{+} e^{-})/\Gamma_{\rm total} & (3.00 \pm 0.09) \times 10^{-7} \\ \Gamma(K^{+} \to \pi^{+} \mu^{+} \mu^{-})/\Gamma_{\rm total} & (9.4 \pm 0.6) \times 10^{-8} \, ({\rm S} = 2.6) \\ \Gamma(K^{+} \to \pi^{+} \mu^{+} \mu^{-})/\Gamma_{\rm total} & (1.7 \pm 1.1) \times 10^{-10} \\ \Gamma(K^{+} \to \pi^{+} \pi^{0} \nu \overline{\nu})/\Gamma_{\rm total} & (1.7 \pm 1.1) \times 10^{-10} \\ \Gamma(K^{+} \to \pi^{+} \pi^{0} \nu \overline{\nu})/\Gamma_{\rm total} & (9 \times 10^{-9}, \, {\rm CL} = 90\% \\ \Gamma(K^{+} \to \pi^{+} \pi^{0} \nu \overline{\nu})/\Gamma_{\rm total} & (9 \times 10^{-9}, \, {\rm CL} = 90\% \\ \Gamma(K^{+} \to \pi^{0} \pi^{0} \mu^{+} \mu^{-})/\Gamma_{\rm total} & (2.9^{+1.5} \pm 1.5) \times 10^{-9} \\ \Gamma(K^{+} \to \pi^{0} \mu^{+} \mu^{-})/\Gamma_{\rm total} & (2.9^{+1.5} \pm 1.5) \times 10^{-9} \\ \Gamma(K^{+} \to \pi^{0} \mu^{+} \mu^{-})/\Gamma_{\rm total} & (9^{+6} \times 10^{-12}) \times 10^{-9} \\ \Gamma(K^{+} \to \pi^{0} \pi^{0} \mu^{+} \mu^{-})/\Gamma_{\rm total} & (9.4 \pm 0.1) \times 10^{-9} \\ \Gamma(K^{+} \to \pi^{0} \pi^{0} \mu^{+} \mu^{-})/\Gamma_{\rm total} & (9.4 \pm 0.1) \times 10^{-9} \\ \Gamma(K^{+} \to \pi^{0} \pi^{0} \mu^{+} \mu^{-})/\Gamma_{\rm total} & (9.4 \pm 0.1) \times 10^{-9} \\ \Gamma(K^{+} \to \pi^{0} \pi^{0} \mu^{+} \mu^{-})/\Gamma_{\rm total} & (9.4 \pm 0.1) \times 10^{-9} \\ \Gamma(K^{+} \to \pi^{0} \pi^{0} \mu^{+} \mu^{-})/\Gamma_{\rm total} & (9.4 \pm 0.6) \times 10^{-8} \\ \Gamma(K^{+} \to \pi^{0} \pi^{0} \mu^{+} \mu^{-})/\Gamma_{\rm total} & (9.4 \pm 0.6) \times 10^{-8} \\ \Gamma(K^{+} \to \pi^{0} \pi^{0} \mu^{+} \mu^{-})/\Gamma_{\rm total} & (2.9 \pm 0.27) \times 10^{-9} \\ \Gamma(K^{+} \to \pi^{0} \mu^{+} \mu^{-})/\Gamma_{\rm total} & (3.56 \pm 0.21) \times 10^{-8} \\ \Gamma(K^{+} \to \pi^{0} \mu^{+} \mu^{-})/\Gamma_{\rm total} & (2.6 \times 10^{-8}, \, {\rm CL} = 90\% \\ \Gamma(K^{+} \to \pi^{0} \mu^{+} \mu^{-})/\Gamma_{\rm total} & (2.6 \times 10^{-8}, \, {\rm CL} = 90\% \\ \Gamma(K^{+} \to \pi^{0} \mu^{+} \mu^{-})/\Gamma_{\rm total} & (2.6 \times 10^{-8}, \, {\rm CL} = 90\% \\ \Gamma(K^{+} \to \pi^{0} \pi^{0} \nu \overline{\nu})/\Gamma_{\rm total} & (2.6 \times 10^{-8}, \, {\rm CL} = 90\% \\ \Gamma(K^{+} \to \pi^{0} \pi^{0} \nu^{-})/\Gamma_{\rm total} & (2.6 \times 10^{-8}, \, {\rm CL} = 90\% \\ \Gamma(K^{+} \to \pi^{0} \pi^{0} \nu^{-})/\Gamma_{\rm total} & (2.6 \times 10^{-8}, \, {\rm CL} = 90\% \\ \Gamma(K^{+} \to \pi^{0} \pi^{0} \nu^{-})/\Gamma_{\rm total} & (2.6 \times 10^{-8}, \, {\rm CL} = 90\% \\ \Gamma(K^{+} \to \pi^{0} \pi^{0} \nu^{-})/\Gamma_{\rm total} & (2.6 \times 10^{-8}, \, {\rm CL} = 90\% \\ \Gamma(K^{+} \to \pi^{0} \pi^{0} \nu^{-})/\Gamma_{\rm total} & (2.6 \times 10^{-8}, \, {\rm CL} = 90\% \\ \Gamma(K^{+} \to \pi^{0} \pi^{0} \nu^{-})/\Gamma_{\rm total} & (2.6 \times 10^{-8}, \, {\rm CL} = 90\% \\ \Gamma(K^{+} \to \pi^{0} \pi^{0} \nu^{-}$$

$\Delta C = 1$ WEAK NEUTRAL CURRENT FORBIDDEN

Allowed by higher-order electroweak interactions.

$$\Gamma(D^{+} \rightarrow \pi^{+} e^{+} e^{-})/\Gamma_{\text{total}}$$
 <1.1 × 10⁻⁶, CL = 90%

$$\Gamma(D^{+} \rightarrow \pi^{+} \mu^{+} \mu^{-})/\Gamma_{\text{total}}$$
 <7.3 × 10⁻⁸, CL = 90%

$$\Gamma(D^{+} \rightarrow \rho^{+} \mu^{+} \mu^{-})/\Gamma_{\text{total}}$$
 <5.6 × 10⁻⁴, CL = 90%

$\Gamma(D^0 o \gamma \gamma)/\Gamma_{ ext{total}}$	$< 2.2 \times 10^{-6}$, $CL = 90\%$
$\Gamma(D^0 ightarrow e^+ e^-)/\Gamma_{\text{total}}$	$< 7.9 \times 10^{-8}$, CL = 90%
$\Gamma(D^0 o \mu^+ \mu^-)/\Gamma_{ ext{total}}$	$< 6.2 \times 10^{-9}$, CL = 90%
$\Gamma(D^0 ightarrow \ \pi^0 e^+ e^-)/\Gamma_{total}$	$<$ 4.5 \times 10 ⁻⁵ , CL = 90%
$\Gamma(D^0 ightarrow \ \pi^0 \mu^+ \mu^-)/\Gamma_{total}$	$< 1.8 \times 10^{-4}$, $CL = 90\%$
$\Gamma(D^0 ightarrow \eta e^+ e^-)/\Gamma_{ ext{total}}$	$<1.1 \times 10^{-4}, CL = 90\%$
$\Gamma(D^0 o \eta \mu^+ \mu^-)/\Gamma_{\text{total}}$	$<$ 5.3 \times 10 ⁻⁴ , CL = 90%
$\Gamma(D^0 ightarrow \ \pi^+\pi^-e^+e^-)/\Gamma_{ ext{total}}$	$< 3.73 \times 10^{-4}, CL = 90\%$
$\Gamma(D^0 ightarrow ho^0 e^+ e^-)/\Gamma_{ ext{total}}$	$<1.0 \times 10^{-4}, CL = 90\%$
$\Gamma(D^0 ightarrow \pi^+\pi^-\mu^+\mu^-)/\Gamma_{ ext{total}}$	$<$ 5.5 \times 10 ⁻⁷ , CL = 90%
$\Gamma(D^0 ightarrow ho^0 \mu^+ \mu^-)/\Gamma_{total}$	$< 2.2 \times 10^{-5}$, CL = 90%
$\Gamma(D^0 ightarrow \omega e^+ e^-)/\Gamma_{ ext{total}}$	$<1.8 \times 10^{-4}$, CL = 90%
$\Gamma(D^0 \to \omega \mu^+ \mu^-)/\Gamma_{\text{total}}$	$< 8.3 \times 10^{-4}, CL = 90\%$
$\Gamma(D^0 ightarrow K^- K^+ e^+ e^-)/\Gamma_{total}$	$<3.15 \times 10^{-4}$, CL = 90%
$\Gamma(D^0 o \phi e^+ e^-)/\Gamma_{\text{total}}$	$<$ 5.2 \times 10 ⁻⁵ , CL = 90%
$\Gamma(D^0 \rightarrow K^- K^+ \mu^+ \mu^-)/\Gamma_{\text{total}}$	$< 3.3 \times 10^{-5}$, CL = 90%
$\Gamma(D^0 \to \phi \mu^+ \mu^-)/\Gamma_{\text{total}}$	$< 3.1 \times 10^{-5}, CL = 90\%$
$\Gamma(D^0 ightarrow \ K^- \pi^+ e^+ e^-)/\Gamma_{total}$	$< 3.85 \times 10^{-4}, CL = 90\%$
$\Gamma(D^0 o K^- \pi^+ \mu^+ \mu^-)/\Gamma_{total}$	$<3.59 \times 10^{-4}$, CL = 90%
$\Gamma(D^0 ightarrow \ \pi^+\pi^-\pi^0\mu^+\mu^-)/\Gamma_{total}$	$< 8.1 \times 10^{-4}, CL = 90\%$
$\Gamma(D_s^+ \to K^+ e^+ e^-)/\Gamma_{\text{total}}$	$< 3.7 \times 10^{-6}$, CL = 90%
$\Gamma(D_s^+ \to K^+ \mu^+ \mu^-)/\Gamma_{\text{total}}$	$< 2.1 \times 10^{-5}$, CL = 90%
$\Gamma(D_s^+ \to K^*(892)^+ \mu^+ \mu^-)/\Gamma_{\text{total}}$	$<1.4 \times 10^{-3}$, $CL = 90\%$
$\Gamma(\Lambda_C^+ \to pe^+e^-)/\Gamma_{\text{total}}$	$< 5.5 \times 10^{-6}, CL = 90\%$
$\Gamma(\Lambda_c^+ \to p \mu^+ \mu^-)/\Gamma_{\text{total}}$	$<4.4 \times 10^{-5}, CL = 90\%$
C FF F // total	; cl = 3070

$\Delta B = 1$ Weak Neutral Current Forbidden

Allowed by higher-order electroweak interactions.

$\Gamma(B^+ o \pi^+ \ell^+ \ell^-)/\Gamma_{total}$		$<4.9 \times 10^{-8}$, CL = 90%
$\Gamma(B^+ o \pi^+ e^+ e^-)/\Gamma_{total}$		$< 8.0 \times 10^{-8}, CL = 90\%$
$\Gamma(B^+ o \pi^+ \mu^+ \mu^-)/\Gamma_{total}$		$(1.79 \pm 0.23) \times 10^{-8}$
$\Gamma(B^+ o \pi^+ \nu \overline{ u})/\Gamma_{total}$		$<9.8 \times 10^{-5}$, CL = 90%
$\Gamma(B^+ o K^+ \ell^+ \ell^-)/\Gamma_{total}$	[z]	$(4.51 \pm 0.23) \times 10^{-7} \text{ (S} = 1.1)$
$\Gamma(B^+ o K^+ e^+ e^-)/\Gamma_{total}$		$(5.5 \pm 0.7) \times 10^{-7}$
$\Gamma(B^+ \rightarrow K^+ \mu^+ \mu^-)/\Gamma_{\text{total}}$		$(4.43 \pm 0.24) \times 10^{-7} \text{ (S} = 1.2)$
$\Gamma(B^+ o K^+ \overline{ u} u) / \Gamma_{total}$		$<1.6 \times 10^{-5}$, CL = 90%
$\Gamma(B^+ \to \rho^+ \nu \overline{\nu})/\Gamma_{\text{total}}$		$< 2.13 \times 10^{-4}$, CL = 90%
$\Gamma(B^+ o K^*(892)^+ \ell^+ \ell^-)/\Gamma_{total}$	[z]	$(1.01 \pm 0.11) \times 10^{-6} \text{ (S} = 1.1)$
$\Gamma(B^+ \rightarrow K^*(892)^+ e^+ e^-)/\Gamma_{\text{total}}$		$(1.55^{+0.40}_{-0.31}) \times 10^{-6}$

$\Gamma(B^+ \to K^*(892)^+ \mu^+ \mu^-)/\Gamma_{total}$		$(9.6 \pm 1.0) \times 10^{-7}$
$\Gamma(B^+ \to K^*(892)^+ \nu \overline{\nu})/\Gamma_{\text{total}}$		$<$ 4.0 \times 10 ⁻⁵ , CL $=$ 90%
$\Gamma(B^+ \rightarrow K^+ \pi^+ \pi^- \mu^+ \mu^-)/\Gamma_{\text{total}}$		$(4.4 \pm 0.4) \times 10^{-7}$
$\Gamma(B^+ \to \phi K^+ \mu^+ \mu^-)/\Gamma_{\text{total}}$		$(7.9^{+2.1}_{-1.7}) \times 10^{-8}$
$\Gamma(B^0 \to \gamma \gamma)/\Gamma_{\text{total}}$		$< 3.2 \times 10^{-7}$, CL = 90%
$\Gamma(B^0 \rightarrow e^+e^-)/\Gamma_{\text{total}}$		$< 8.3 \times 10^{-8}$, CL = 90%
$\Gamma(B^0 \rightarrow e^+e^-\gamma)/\Gamma_{\text{total}}$		$< 1.2 \times 10^{-7}$, CL = 90%
$\Gamma(B^0 o \mu^+\mu^-)/\Gamma_{ ext{total}}$		$(3.9^{+1.6}_{-1.4}) \times 10^{-10}$
$\Gamma(B^0 \to \mu^+ \mu^- \gamma)/\Gamma_{\text{total}}$		$<1.6 \times 10^{-7}$, CL = 90%
$\Gamma(B^0 \rightarrow \mu^+ \mu^- \mu^+ \mu^-)/\Gamma_{\text{total}}$		$<$ 5.3 \times 10 ⁻⁹ , CL = 90%
$\Gamma(B^0 \rightarrow SP, S \rightarrow \mu^+\mu^-, P \rightarrow \mu^+\mu^-)/\Gamma_{\text{total}}$	[aa]	$<$ 5.1 \times 10 ⁻⁹ , CL = 90%
$\Gamma(B^0 \to \tau^+ \tau^-)/\Gamma_{\text{total}}$		$<$ 4.1 \times 10 ⁻³ , CL = 90%
$\Gamma(B^0 o \pi^0 \ell^+ \ell^-)/\Gamma_{total}$		$<$ 5.3 \times 10 ⁻⁸ , CL = 90%
$\Gamma(B^0 \to \pi^0 e^+ e^-)/\Gamma_{\text{total}}$		$< 8.4 \times 10^{-8}$, CL = 90%
$\Gamma(B^0 \to \pi^0 \mu^+ \mu^-)/\Gamma_{\text{total}}$		$<6.9 \times 10^{-8}$, CL = 90%
$\Gamma(B^0 \to \eta \ell^+ \ell^-)/\Gamma_{\text{total}}$		$<6.4 \times 10^{-8}$, CL = 90%
$\Gamma(B^0 o \eta e^+ e^-)/\Gamma_{ ext{total}}$		$<1.08 \times 10^{-7}$, CL = 90%
$\Gamma(B^0 o \eta \mu^+ \mu^-)/\Gamma_{total}$		$<1.12 \times 10^{-7}$, CL = 90%
$\Gamma(B^0 o \pi^0 \nu \overline{\nu})/\Gamma_{\text{total}}$		$<6.9 \times 10^{-5}$, CL = 90%
$\Gamma(B^0 ightarrow \ K^0 \ell^+ \ell^-)/\Gamma_{total}$	[z]	$(3.1^{+0.8}_{-0.7}) \times 10^{-7}$
$\Gamma(B^0 ightarrow \ \kappa^0 e^+ e^-)/\Gamma_{total}$		$(1.6^{+1.0}_{-0.8}) \times 10^{-7}$
$\Gamma(B^0 ightarrow \ \kappa^0 \mu^+ \mu^-)/\Gamma_{ ext{total}}$		$(3.39 \pm 0.34) \times 10^{-7}$
$\Gamma(B^0 \to \kappa^0 \nu \overline{\nu})/\Gamma_{\text{total}}$		$<4.9 \times 10^{-5}$, CL = 90%
$\Gamma(B^0 \to \rho^0 \nu \overline{\nu})/\Gamma_{\text{total}}$		$< 2.08 \times 10^{-4}$, $CL = 90\%$
$\Gamma(B^0 \to K^*(892)^0 \ell^+ \ell^-)/\Gamma_{\text{total}}$	[z]	$(9.9^{+1.2}_{-1.1}) \times 10^{-7}$
$\Gamma(B^0 ightarrow \ K^*(892)^0 e^+ e^-)/\Gamma_{ ext{total}}$		$(1.03^{+0.19}_{-0.17}) \times 10^{-6}$
$\Gamma(B^0 ightarrow \kappa^*(892)^0 \mu^+ \mu^-)/\Gamma_{total}$		$(1.02 \pm 0.09) \times 10^{-6}$
$\Gamma(B^0 o K^*(892)^0 u \overline{ u}) / \Gamma_{\text{total}}$		$<$ 5.5 \times 10 ⁻⁵ , CL = 90%
$\Gamma(B^0 o \phi \nu \overline{\nu})/\Gamma_{\text{total}}$		$< 1.27 \times 10^{-4}$, CL $= 90\%$
$\Gamma(B^0 o invisible)/\Gamma_{total}$		$< 2.4 \times 10^{-5}$, CL = 90%
$\Gamma(B^0 o u \overline{\nu} \gamma) / \Gamma_{\text{total}}$		$< 1.7 \times 10^{-5}$, CL = 90%
$\Gamma(B \rightarrow se^+e^-)/\Gamma_{\text{total}}$		$(6.7 \pm 1.7) \times 10^{-6} \text{ (S} = 2.0)$
$\Gamma(B o s\mu^+\mu^-)/\Gamma_{total}$		$(4.3 \pm 1.0) \times 10^{-6}$
$\Gamma(B o s\ell^+\ell^-)/\Gamma_{ ext{total}}$	[z]	$(5.8 \pm 1.3) \times 10^{-6} (S = 1.8)$
$\Gamma(B o \pi \ell^+ \ell^-)/\Gamma_{total}$		$<5.9 \times 10^{-8}$, CL = 90%
$\Gamma(B \rightarrow \pi e^+ e^-)/\Gamma_{\text{total}}$		$<1.10 \times 10^{-7}$, CL = 90%
$\Gamma(B \to \pi \mu^+ \mu^-)/\Gamma_{\text{total}}$		$<5.0 \times 10^{-8}$, CL = 90%
$\Gamma(B \rightarrow Ke^+e^-)/\Gamma_{\text{total}}$		$(4.4 \pm 0.6) \times 10^{-7}$
$\Gamma(B \rightarrow K^*(892) e^+ e^-)/\Gamma_{\text{total}}$		$(1.19 \pm 0.20) \times 10^{-6} \text{ (S} = 1.2)$
$\Gamma(B \to K \mu^+ \mu^-)/\Gamma_{\text{total}}$		$(4.4 \pm 0.4) \times 10^{-7}$
$\Gamma(B \rightarrow K^*(892)\mu^+\mu^-)/\Gamma_{total}$		$(1.06 \pm 0.09) \times 10^{-6}$

$$\begin{array}{lll} \Gamma(B\to K\ell^+\ell^-)/\Gamma_{\rm total} & (4.8\pm 0.4)\times 10^{-7} \\ \Gamma(B\to K^*(892)\ell^+\ell^-)/\Gamma_{\rm total} & (1.05\pm 0.10)\times 10^{-6} \\ \Gamma(B\to K\nu\overline{\nu})/\Gamma_{\rm total} & (1.7\times 10^{-5},\,{\rm CL}=90\% \\ \Gamma(B\to K^*\nu\overline{\nu})/\Gamma_{\rm total} & (7.6\times 10^{-5},\,{\rm CL}=90\% \\ \Gamma(\overline{b}\to \overline{s}\overline{\nu}\nu)/\Gamma_{\rm total} & (6.4\times 10^{-4},\,{\rm CL}=90\% \\ \Gamma(\overline{b}\to e^+e^-\,{\rm anything})/\Gamma_{\rm total} & (6.4\times 10^{-4},\,{\rm CL}=90\% \\ \Gamma(\overline{b}\to \nu\overline{\nu}\,{\rm anything})/\Gamma_{\rm total} & (3.2\times 10^{-4},\,{\rm CL}=90\% \\ \Gamma(B_s^0\to \gamma\gamma)/\Gamma_{\rm total} & (3.1\times 10^{-6},\,{\rm CL}=90\% \\ \Gamma(B_s^0\to \mu^+\mu^-)/\Gamma_{\rm total} & (2.9^{+0.7}_{-0.6})\times 10^{-9} \\ \Gamma(B_s^0\to \mu^+\mu^-)/\Gamma_{\rm total} & (2.8\times 10^{-7},\,{\rm CL}=90\% \\ \Gamma(B_s^0\to \mu^+\mu^-\mu^+\mu^-)/\Gamma_{\rm total} & (1.2\times 10^{-8},\,{\rm CL}=90\% \\ \Gamma(B_s^0\to \gamma^+\mu^-\mu^-)/\Gamma_{\rm total} & (3.2\times 10^{-8},\,{\rm CL}=90\% \\ \Gamma(B_s^0\to \gamma^+\mu^-\mu^-)/\Gamma_{\rm total} & (3.2\times 10^{-8},\,{\rm CL}=90\% \\ \Gamma(B_s^0\to \mu^+\mu^-\mu^-)/\Gamma_{\rm total} & (3.2\times 10^{-8},\,{\rm CL}=90\% \\ \Gamma(B_s^0\to \mu^+\mu^-\mu^-\mu^-)/\Gamma_{\rm total} & (3.2\times 10^{-8},\,{\rm CL}=90\% \\ \Gamma(B_s^0\to \mu^+\mu^-\mu^-)/\Gamma_{\rm total} & (3.2\times 10^{-8},\,{\rm CL}=90\% \\ \Gamma(B_s^0\to \mu^+\mu^-\mu^-\mu^-)/\Gamma_{\rm total} & (3.2\times 10^{-8},\,{\rm CL}=$$

$\Delta T = 1$ WEAK NEUTRAL CURRENT FORBIDDEN

Allowed by higher-order electroweak interactions.

$$\Gamma(t \rightarrow Z q(q=u,c))/\Gamma_{total}$$
 [bb] $<5 \times 10^{-4}$, CL = 95%

NOTES

- [a] C parity forbids this to occur as a single-photon process.
- [b] See the Particle Listings for the (complicated) definition of this quantity.
- [c] Time-reversal invariance requires this to be 0° or 180° .
- [d] This coefficient is zero if time invariance is not violated.
- [e] Allowed by higher-order electroweak interactions.
- [f] Violates *CP* in leading order. Test of direct *CP* violation since the indirect *CP*-violating and *CP*-conserving contributions are expected to be suppressed.
- [g] In the 2010 *Review*, the values for these quantities were given using a measure of the asymmetry that was inconsistent with the usual definition.
- [h] $Re(\epsilon'/\epsilon) = \epsilon'/\epsilon$ to a very good approximation provided the phases satisfy *CPT* invariance.

- [i] This mode includes gammas from inner bremsstrahlung but not the direct emission mode $K_I^0 \to \pi^+\pi^-\gamma(DE)$.
- [j] Neglecting photon channels. See, e.g., A. Pais and S.B. Treiman, Phys. Rev. **D12**, 2744 (1975).
- [k] Derived from measured values of ϕ_{+-} , ϕ_{00} , $|\eta|$, $|m_{K_L^0} m_{K_S^0}|$, and $\tau_{K_S^0}$, as described in the introduction to "Tests of Conservation Laws."
- [/] The $|m_p m_{\overline{p}}|/m_p$ and $|q_p + q_{\overline{p}}|/e$ are not independent, and both use the more precise measurement of $|q_{\overline{p}}/m_{\overline{p}}|/(q_p/m_p)$.
- [n] The value is for the sum of the charge states or particle/antiparticle states indicated.
- [o] A test of additive vs. multiplicative lepton family number conservation.
- [p] The sign of Δm_{32}^2 is not known at this time. The range quoted is for the absolute value.
- [q] Derived from an analysis of neutrino-oscillation experiments.
- [r] This limit is for either D^0 or $\overline{D}{}^0$ to pe^- .
- [s] This limit is for either D^0 or $\overline{D}{}^0$ to $\overline{p}e^+$.
- [t] The first limit is for $p \to anything$ or "disappearance" modes of a bound proton. The second entry, a rough range of limits, assumes the dominant decay modes are among those investigated. For antiprotons the best limit, inferred from the observation of cosmic ray \overline{p} 's is $\tau_{\overline{p}} > 10^7$ yr, the cosmic-ray storage time, but this limit depends on a number of assumptions. The best direct observation of stored antiprotons gives $\tau_{\overline{p}}/B(\overline{p} \to e^- \gamma) > 7 \times 10^5$ yr.
- [u] There is some controversy about whether nuclear physics and model dependence complicate the analysis for bound neutrons (from which the best limit comes). The first limit here is from reactor experiments with free neutrons.
- [v] This is the best limit for the mode $e^- \to \nu \gamma$. The best limit for "electron disappearance" is 6.4×10^{24} yr.
- [x] See the K_S^0 Particle Listings for the energy limits used in this measurement
- [y] See the K_L^0 Particle Listings for the energy limits used in this measurement.
- [z] An ℓ indicates an e or a μ mode, not a sum over these modes.
- [aa] Here S and P are the hypothetical scalar and pseudoscalar particles with masses of 2.5 GeV/c^2 and 214.3 MeV/c^2 , respectively.
- [bb] This limit is for $\Gamma(t \to Zq)/\Gamma(t \to Wb)$.