

SDD: System Design Document

Transport Efficiency Manager

Riferimento	
Versione	1.1
Data	04/12/2020
Destinatario	Prof.ssa F. Ferrucci
Presentato da	Team NC08
Approvato da	

Revision History

Data	Versione	Descrizione	Autori
28/11/2020	0.1	Creazione parte 1 (Introduzione) e parte 2 (Architettura del sistema corrente)	Francesca Moschella, Federica Attianese, Federica Pica
28/11/2020	0.2	Prima stesura	Francesca Moschella, Federica Attianese, Federica Pica
30/11/2020	0.2.1	Aggiornamento, divisione in sottosistemi e schema E-R	Francesca Moschella, Federica Attianese, Federica Pica
03/12/2020	1.0	Modifiche e revisione stesura	Francesca Moschella, Federica Attianese, Federica Pica
04/12/2020	1.1	Revisione ed ultimazione	Francesca Moschella, Federica Attianese, Federica Pica

Indice dei contenuti

1. Introduzione	4
1.1 Obiettivi del sistema	4
1.2 Design Goals	4
1.3 Priorità dei design goal	6
1.4 Trade-offs	7
1.5 Definizioni, acronimi e abbreviazioni	7
1.6 Riferimenti	7
1.7 Overview	8
2. Architettura del Sistema corrente	8
3. Architettura del Sistema proposto	8
3.1 Panoramica	8
3.2 Decomposizione in sottosistemi	9
3.2.1 Decomposizione in Sottosistemi	
3.3 Mapping hardware/software	10
3.4 Gestione dati persistenti	11
3.5 Controllo degli accessi e sicurezza	12
3.6 Controllo flusso globale del sistema	Errore. Il segnalibro non è definito. 2
3.7 Condizione limite	14
4. Subsystem services	15
4.1 Model	15
4.2 View	15
4.3 Controller	15
5.Glossario.	

1. Introduzione

1.1 Obiettivi del sistema

La creazione di un programma di corse, per una azienda operante nel settore dei trasporti, è una delle funzionalità principali. Un programma di corse può infatti far la differenza se organizzato in modi diversi, ogni combinazione può infatti diversamente influenzare l'andatura dello svolgimento dell'attività di trasporto. La generazione di un programma che permetta di sfruttare al meglio l'asset aziendale in modo da ottenere le massime prestazioni ed i minimi sprechi è appunto la vision di Transport Efficiency Manager. Questo sistema, nato con questo fine, si realizzerà mediante:

- Una piattaforma web che consentirà alle aziende interessate, di creare un più
 efficiente programma di corse per la loro organizzazione, sia che queste vi
 accedano da pc che da smartphone o qualunque altro dispositivo.
- Un database relazionale, contente le informazioni necessarie al sistema per gestire, manipolare e lavorare su dati persistenti, quelli delle aziende.
- La gestione dell'autenticazione per gli utenti e per il controllo degli accessi
 mediante l'inserimento di credenziali, con particolare attenzione alla sicurezza
 riguardo la protezione dei dati sensibili.

Infine, il sistema sarà strutturato per poter garantire la semplicità d'uso all'utente finale, consentendo una navigazione, presso la piattaforma, agevole ed intuitiva, senza che sia necessaria la consultazione di documentazione specifica.

1.2 Design Goals

La piattaforma TEM si ripropone di realizzare i seguenti Design Goals, rappresentati nella seguente tabella e di cui sono specificate le relative priorità (1= alta priorità, 2= media priorità, 3=bassa priorità), l'identificativo e la categoria di caratterizzazione. Ogni obiettivo presentato riporta l'identificativo del requisito non funzionale da cui è stato originato ed a cui è quindi associato.

Priorità ID Descrizione	Categoria	Origine
-------------------------	-----------	---------

2	DG_1	Tempi di risposta: il sistema	Performance	RNF_P_1
		deve essere in grado di		
		elaborare le richieste		
		dell'utente e fornire output in		
		meno di 3 secondi.		
1	DG_2	Throughput: Il sistema deve	Performance	RNF_P_2:
		consentire e supportare		
		l'utilizzo in contemporanea di		
		almeno 100 utenti diversi.		
2	DG_3	Usabilità : Il sistema deve essere	End User	RNF_U_1
		intuitivamente utilizzabile		
		dall'utente, qualunque sia il		
		suo grado di familiarità con		
		sistemi tecnologici, inoltre, non		
		deve risultare necessaria la		
		consultazione di eventuale		
		documentazione.		
2	DG_4	Usabilità : l'accesso e la	End User	RNF_U_2
		fruibilità del sistema deve		
		essere supportata e assicurata		
		anche su diversi dispositivi, che		
		siano mobile o desktop.		
3	DG_5	Utilità: Il sistema deve	End User	RNF_U_3:
		consentire all'utente di poter		
		fruire delle funzionalità offerte		
		attraverso l'utilizzo di al più 5		
		passaggi.		
1	DG_6	Security: Il sistema deve	Dependability	RNF_A_1:
		assicurare ai propri utenti una		
		gestione sicura dei propri dati		
		e delle informazioni inserite;		
		mediante una modalità di		
		autenticazione che li		
		protegga non		

				UNISA.II
		permettendo accessi non autorizzati.		
2	DG_7	Modificabilità: Il sistema deve poter essere modificabile e se necessario, corretto da parte di altri sviluppatori.	Maintenance	RNF_S_1 RNF_S_3
2	DG_8	Estensibilità: Il sistema prodotto deve permettere l'estensione o l'aggiunta di funzionalità.	Maintenance	RNF_S_2
1	DG_9	Robustness: Il sistema deve resistere a scenari di inconsistenza dei dati e delle informazioni, attraverso il filtraggio dell'input inserito dall'utente.	Dependability	RNF_A_3 RNF_A_2
1	DG_10	Fault tolerance: Il sistema deve essere in grado di gestire nella maniera migliore eventuali situazioni di criticità, come problemi dovuti alla rete o tecnici (sovraccarico del database).	Dependability	
2	DG_11	Costi di sviluppo: La creazione della piattaforma richiederà costi ridotti sia in termini di risorse umane, sia in termini economici.	Cost	
2	DG_12	Costi di aggiornamento o manutenzione: I costi di aggiornamento e/o	Cost	

manutenzione saranno stabiliti	
nel momento in cui saranno	
necessari interventi del genere.	

1.3 Priorità dei Design goal

Per il sistema sviluppato i criteri di dependability sono prioritari, a seguire sono ritenuti importati i criteri di performance, cost, maintenance e i criteri end user.

1.4 Trade-offs

Funzionalità vs. Usabilità

Il sistema mira ad essere intuitivo da utilizzare, user-friendly, qualunque sia il grado di familiarità con tecnologie del genere dell'utente, consentendo una navigazione agevole ed il facile utilizzo di tutte le funzionalità offerte anche senza dover consultare la documentazione.

Tempo di rilascio vs Funzionalità

Il raggiungimento della realizzazione della completezza e totalità delle funzionalità offerte dal sistema prevale su eventuali tempistiche stringenti, si dà priorità quindi alla consegna di un prodotto funzionante e che rispetti quanto previsto nella fase di progettazione.

Prestazioni vs Costi

La garanzia del rispetto del budget prefissato per la realizzazione del sistema prevale sull'integrazione di prestazioni superflue o non particolarmente necessarie, assicurando al cliente di rientrare nei costi senza dover scendere, allo stesso tempo, a compromessi troppo rigidi.

Costi vs Affidabilità

I dati gestiti dal sistema sono sensibili, pertanto la garanzia del loro sicuro trattamento e del rigoroso controllo di input e consistenza, rappresenta la parte del sistema per cui, anche nell'eventualità di tagli dovuti ad una possibile ristrettezza di budget, non si risparmierà e su cui non si cercheranno soluzioni più convenienti a discapito dell'affidabilità.

1.5 Definizioni, acronimi e abbreviazioni

TEM: Transport Efficiency Manager

DG: Design goal

RF: Requisito funzionale

RNF: Requisito non funzionale

UC: Use Case

GS: Gestione server

1.6 Riferimenti

- Documentazione reperita tramite ricerche online.
- Materiale relativo al corso di Ingegneria del Software: System Design, System Designparte2.
- Requisiti funzionali: Sezione 3.2 del RAD.
- Requisiti non funzionali: Sezione 3.3 del RAD.

1.7 Overview

Il secondo punto del documento presenta il sistema corrente.

Il terzo punto presenta l'architettura del sistema proposto, la decomposizione in sottosistemi, il mapping hardware/software, i dati persistenti, il controllo degli accessi e sicurezza, il controllo del flusso globale del sistema e le condizioni limite.

Al quarto punto verranno presentati i servizi dei sottosistemi.

2. Architettura del sistema corrente

La piattaforma TEM nasce per offrire una soluzione alternativa e più efficiente, al metodo di organizzazione delle corse utilizzato al momento dalle aziende nel campo dei servizi di trasporto. Attualmente per la creazione di un programma di corse le variabili di scelta prese in considerazione non si rifanno a precisi criteri; l'organizzazione dei diversi mezzi o conducenti non è strutturata quindi tenendo conto di possibili fermate più affollate di altre o di giornate con più traffico durante determinati viaggi o tratte, ma tutto è combinato "casualmente". Se infatti un mezzo non permette a tutti gli utenti di effettuare la tratta, a causa di mancanza di posti disponibili, questi sono costretti a dover aspettare la corsa successiva, o a trovare altre alternative, per arrivare addirittura a non avere la possibilità di usufruire del tutto del servizio di trasporto. Scenari come questi sono familiari a pendolari, ma soprattutto agli studenti, prevalentemente utenti abbonati, che non possono fruire di un servizio per cui hanno già pagato e che quindi gli dovrebbe essere assicurato.

Il normale svolgimento di una corsa, in scenari che presentano situazioni di disagio come la sopra nominata indisponibilità di posti a sedere, per la mole di utenti alle fermate, prevede quindi che il controllore permetta ai passeggeri di salire fino a completare la capienza del bus e lasci i restanti utenti alla fermata, che impieghi del tempo a quella stessa fermata per gestire il sovraffollamento e che quindi tardi l'ora di arrivo a destinazione per quella corsa. Solo il passare del tempo, lo svolgimento di corse ed i conseguenti feedback degli autisti, che ormai hanno acquisito abitudinarietà svolgendo le stesse tratte settimanalmente, portano ad una modifica dell'organizzazione di una determinata corsa, processo che può richiedere mesi.

3. Architettura del sistema proposto

3.1 Panoramica

Il sistema che proponiamo è una piattaforma web che permetta:

- 1. L'autenticazione dell'azienda e di un admin preposto alla gestione della piattaforma.
- 2. La possibilità di due diversi tipi di generazione del programma di corse; uno manuale ed uno automatico sulla base di previsioni in base a dati empirici.
- 3. L'opportunità, da parte dell'azienda, di poter inserire e consultare le risorse disponibili.
- 4. La possibilità di poter consultare e modificare comodamente il programma di corse in ogni momento sulla piattaforma.

Nei punti successivi saranno trattate nel dettaglio le restanti varie fasi del System design.

3.2 Decomposizione in sottosistemi

La decomposizione prevista per questo sistema è formata da tre layer che si occupano di gestire aspetti e funzionalità differenti. Nello specifico, l'architettura utilizzata segue lo stile Model/View/Controller, che distingue tre tipi di sottosistemi:

- Sottosistema View: gestisce l'interfaccia grafica e gli eventi generati dall'utente, mostrandogli, se necessario, gli oggetti del dominio
- Sottosistema Model: gestisce i dati e i metodi per accedervi
- Sottosistema Controller: gestisce la sequenza di interazioni con l'utente e della logica del sistema.

Questa architettura è stata scelta perché, nonostante non sia minimo il coupling tra il sottosistema Model che mantiene la conoscenza del dominio e gli altri due, ogni sottosistema ha delle responsabilità ben definite; questo rende più agevole la manutenibilità in quanto, trovandoci di fronte ad un sistema interattivo che utilizza view multiple per ogni modello, si avrà necessità di modificare le interfacce utente più spesso rispetto ai dati del dominio.

3.2.1 Decomposizione in sottosistemi

3.3 Mapping hardware/software

TEM consiste in un'applicazione web-based installabile su qualsiasi server capace di eseguire Java e MySQL.

L'app interagisce con un database relazionale, MySQL. Dato il basso numero di dati gestiti e di utenti che utilizzeranno il sito, si è scelto di installare tutte le componenti sulla stessa macchina, seguendo un'architettura client-server.

Il sistema che verrà realizzato si basa su un'architettura Web-based:

- Protocollo richiesto: HTTP
- Memorizzazione dei dati: MySQL
- WebServer: Apache Tomcat
- Tecnologie utilizzate: Javascript, CSS3, HTML5
- Framework necessari: Spring Boot MVC

Il sistema sarà accessibile attraverso browser web (lato Client) installati sui dispositivi degli utenti.

L'app (lato Server) si suddivide in due componenti principali:

- 1. **Webapp**, che rappresenta il core dell'applicazione, a cui saranno allocati i sottosistemi della decomposizione precedente, cioè Model, View, Controller;
- 2. **Database**, che gestisce la persistenza dei dati.

Il sistema dev'essere installato su una macchina in grado di supportare Apache Tomcat, in modo da garantire il funzionamento e l'operabilità della Webapp, e MySQL per garantire l'operabilità del database con cui l'app si interfaccia.

Le dipendenze sono gestite tramite il gestore pacchetti Maven.

3.4 Gestione dati persistenti

Per la gestione dei dati persistenti, TEM si affida ad un DBMS, gestito tramite MySQL. La struttura interna del database segue il seguente schema:

3.5 Controllo degli accessi e sicurezza

Il controllo degli accessi è garantito tramite l'utilizzo di username (in questo caso l'username è l'email dell'azienda) e password, che verranno richieste per ogni singolo accesso.

In una fase di sviluppo iniziale, non sarà prevista una crittografia dei dati all'interno del database, pertanto le password saranno salvate in chiaro.

La matrice di accesso che segue modella i diritti di accesso su una classe. In particolare, è stata usata una matrice di tipo Capability, in cui, ad ogni tupla (classe, operazione) si associano uno o più attori che possono effettuare quella specifica operazione su quella specifica classe.

	Risorse	Account	DatiCorsa	ProgrammaCorse
Inserimento	Azienda	Admin	Azienda	
Creazione				Azienda
Modifica	Azienda	Admin	Azienda	Azienda
Consultazione	Azienda, Admin	Admin	Azienda, Admin	Azienda, Admin
Cancellazione	Azienda	Admin	Azienda	Azienda
Registrazione		Ospite		

3.6 Controllo flusso globale del sistema

Il controllo di flusso globale adottato è di tipo thread-driven, in quanto Apache Tomcat è in grado di gestire in maniera concorrente l'interazione tra la webapp e più clients. Più specificamente, ogni richiesta da parte di un utente genera un thread dedicato, attraverso il quale essa sarà gestita.

3.7 Condizione limite

3.7.1 Start-up sistema

	-			
Ic	lentificativo	START-UP	Data	30/11/2020
	UC_G\$1		Vers.	0.00.001
			Autore	Team F ³ (NC08)
	Descrizione	Lo UC fornisce definisc	e la funzionalità d	di avvio del sistema
		·	gestore del serve	
	Attore		re/admin del serv	
	Principale	E interesso	ito ad avviare il si	stema.
	Attori		NA	
	secondari			
Ent	ry Condition	Il gestore ha accesso	alla macchina si sistema.	u cui è installato il
	kit condition On success	L'avvio del sistema	è stato effettuato	o con successo.
E>	kit condition On failure	II sistemo	a non è stato avv	iato.
	evanza/User		Elevata	
Priority			Licvara	
Frequenza			1 uso/anno	
stimata			1 030/01110	
Extension point			NA	
Generalization			NA	
	of			
		Flusso di Eventi Principo	ale/Main Scena	rio
1	Gestore del	Ad	ccende il server	
	server:			
2	Gestore del	Lancia il servizio del D		ntainer tramite gli
	server: appositi comandi.			
3	3 Sistema: Comunica al gestore che lo start-up è avvenuto con successo		ė avvenuto con	
Sc	cenario/Fluss	o di eventi di ERRORE: 1	non è possibile d	avviare il sistema
3.	.1 Sistema		el server un messo tivo dell'insuccess	
3.	.2 Sistemo	Termir	na con un insucce	esso.

SDD-System Design Document

3.7.2 Shutdown del sistema

Identificativo	SHUTDOWN	Data	30/11/2020
UC_GS2		Vers.	0.00.001
		Autore	Team F ³ (NC08)
Descrizione	Lo UC fornisce definisc		
	sistema per il gestore del server.		
Attore		re/admin del serv	
Principale	E' interesso	ato a terminare il s	istema.
Attori		NA	
secondari			
Entry Condition	Il gestore ha accesso	o alla macchina su sistema.	u cui è installato il
Exit condition	Il sistema è	terminato corretto	amente.
On success			
Exit condition	II sistema	non è stato termi	nato.
On failure			
Rilevanza/User	Elevata		
Priority			
Frequenza	1 uso/anno		
stimata	NI A		
Extension point	NA		
Generalization		NA	
of Flusso di Eventi Principale/Main Scenario			
1 Gestore del server:	Termina il servizio del v	web container ch esto è stato avvia	
2 Sistema:	Comunica al gestore		
		successo.	
3 Gestore del server:	Termina il servizio del DBMS tramite l'apposito comando.		
4 Sistema:	Comunica al gestore che il servizio è stato terminato correttamente		
Scenario/Flusso	di eventi di ERRORE: n	on è possibile te	rminare il servizio
3.1 Sistema	: Mostra al gestore d		
	mo	tivo dell'insuccess	50.

4. Subsystem services

4.1 Model

Sottosistema	Risorse Service
Descrizione Sottosistema	Sottosistema che gestisce le operazioni relative alle risorse dell'azienda.
Sottosistema	DatiCorsa Service
Descrizione Sottosistema	Sottosistema che gestisce le operazioni relative ai dati relativi alle corse effettuare.
Sottosistema	ProgrammaCorse Service
Sottosistema Descrizione Sottosistema	ProgrammaCorse Service Sottosistema che gestisce le operazioni relative alla generazione del programma di corse.
	Sottosistema che gestisce le operazioni relative alla generazione del
	Sottosistema che gestisce le operazioni relative alla generazione del

4.2 View

Sottosistema	GUI
Descrizione Sottosistema	Sottosistema che gestisce l'interfaccia
	grafica di tutti i servizi.

4.3 Controller

Sottosistema	Risorse Component
Descrizione Sottosistema	Sottosistema che gestisce la logica delle operazioni relative ai servizi di inserimento dei dati relativi alle risorse dell'azienda.
A 11	
Sottosistema	DatiCorsa Component
Descrizione Sottosistema	Sottosistema che gestisce la logica delle operazioni relative ai servizi di inserimento dei dati delle corse effettuate.
Sottosistema	ProgrammaCorse Component
Descrizione Sottosistema	Sottosistema che gestisce la logica delle operazioni relative ai servizi di creazione del programma di corse.
Collectore	Account Commonant
Sottosistema	Account Component

Descrizione Sottosistema

Sottosistema che gestisce la logica delle operazioni relative al servizio di autenticazione e gestione dell'account personale.

5. Glossario

Java: linguaggio di programmazione ad alto livello orientato agli oggetti

Applicazione web: programma accessibile tramite browser web ed in grado di elaborare richieste e risposte

Throughput: misura della capacità del sistema di condurre task contemporanei

Server: macchina connessa alla rete dotata di un ambiente di esecuzione

Application Server: sistema software per la gestione delle richieste/risposte provenienti dai client

Tomcat: server web open source sviluppato dalla Apache Software Foundation

DBMS: sistema software per la gestione dei dati persistenti su database.

MySQL: relational database management system composto da un client a riga di comando e un server.

Mvc: Model-view-controller, pattern architetturale per lo sviluppo di sistemi software.

CSS3: terza versione di CSS; è un linguaggio di programmazione web utilizzato per descrivere l'aspetto e la formattazione di un sito web al browser lato client.

HTML5: linguaggio di markup per la strutturazione delle pagine web.

HTTP: protocollo a livello applicativo usato come principale sistema per la trasmissione d'informazioni sul web.

Spring: framework open source per lo sviluppo di applicazioni su piattaforma Java.