Math 402 Homework 4

Alexandre Lipson

February 5, 2025

Problem 1. Let F be a field. Let $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ be a matrix in M(F).

- a) Prove A invertible $\iff ad bc \neq 0_F$.
- b) Prove A is a zero divisor $\iff ad bc = 0_F$.

Proof of a. The inverse of the 2×2 matrix A is given by

$$A^{-1} = \frac{1}{ad - bc} \begin{pmatrix} d & -b \\ -c & a \end{pmatrix}$$

where $AA^{-1} = I = A^{-1}A$ and I is the identity matrix. This matrix only exists where $ad - bc \neq 0_F$. \Box

Proof of b. (\longleftarrow) Consider $B = \begin{pmatrix} d & -b \\ -c & a \end{pmatrix}$. We have that,

$$AB = \begin{pmatrix} ad - bc & ad - bc \\ ad - bc & ad - bc \end{pmatrix} = BA.$$

But $ad - bc = 0_F \implies AB = BA = O_{M(F)}$, so A is a zero divisor since $B \in M(F)$.

 (\Longrightarrow) If A is a zero divisor, then $\exists B$ such that

$$AB = BA = 0_{M(E)}$$
.

We have already seen a B for which this holds, and all matrix entries of the product are ad-bc, which therefore must be zero.

Problem 2. Let $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ in $M(\mathbb{Z})$. Prove the following:

- a) $ad bc = \pm 1 \implies A$ invertible in $M(\mathbb{Z})$.
- b) $ad bc \neq 0, \pm 1 \implies A$ is neither a unit nor a zero divisor in $M(\mathbb{Z})$.

Proof of a. We will show that, when $ad-bc=\pm 1, \exists A^{-1}\in M(\mathbb{Z})$. We know that the inverse matrix A^{-1} is given by $\frac{1}{ad-bc}\begin{pmatrix} d & -b \\ -c & a \end{pmatrix}$, so $A^{-1}\in M(\mathbb{Z})$ only when $\frac{1}{ad-bc}\in \mathbb{Z}$, which occurs when $ad-bc=\pm 1$ as all integers can be expressed as a rational number with denominator of ± 1 .

Proof of b. We have already show that A is invertible iff $ad - bc = \pm 1$.

So, if $ad - bc \neq \pm 1$, then A is not invertible and therefore cannot be a unit.

If ad - bc = 0, then A is also not invertible as in Problem 1, so A cannot be a unit under those conditions either.

If $ad - bc = \pm 1$, then A is a unit and therefore not a zero divisor.

Suppose, for a contradiction, that A is a zero divisor when $ad - bc \neq 0$. Then, $\exists B \neq 0_{M(\mathbb{Z})}$ such that $AB = 0_{M(\mathbb{Z})}$.

Note that $\forall A, B$ matrices, $\det AB = \det A \det B$.

So, $\det AB = \det 0_{M(\mathbb{Z})} = 0 = \det A \det B$.

But $B \neq 0_{M(\mathbb{Z})} \implies \det B \neq 0 \implies \det A = 0$.

Then, det $A = 0 \implies ad - bc = 0$, contradicting the assumption that $ad - bc \neq 0$.

Thus, A must not have been a zero divisor.

Problem 3. Prove \mathbb{R} is isomorphic to the ring S of 2×2 matrices of the form $\begin{pmatrix} a & 0 \\ 0 & a \end{pmatrix}$, $a \in \mathbb{R}$.

Proof. We will construct an isomorphism $f: \mathbb{R} \to S$. We will show that f is a bijection and a homomorphism.

First, let f be defined by the map

$$a \mapsto \begin{pmatrix} a & 0 \\ 0 & a \end{pmatrix}.$$

Clearly, this is invertible $\left(\begin{pmatrix} a & 0 \\ 0 & a \end{pmatrix} \mapsto a \right)$.

So, f is a bijection. We can also write the map as $a \mapsto aI$, where I is the 2×2 identity matrix.

Now, we will consider the addition and multiplication operations under the image of the map. We have that,

$$f(a + b) = (a + b)I = aI + bI = f(a) + f(b).$$

We also have that,

$$f(ab) = abI = abI^2 = aI bI = f(a)f(b).$$

So, f is a homomorphism.

Since f is bijective and homomorphic, then f is an isomorphism.

Since there exists the isomorphism f between \mathbb{R} and S, then these rings are isomorphic.

Problem 4. Let $\mathbb{Q}(\sqrt{2}) = \{r + s\sqrt{2} \mid r, s \in \mathbb{Q}\}$. Prove $f : \mathbb{Q}(\sqrt{2}) \to \mathbb{Q}(\sqrt{2})$ given by $a + b\sqrt{2} \mapsto a - b\sqrt{2}$ is an isomorphism.

Proof. We see that f is invertible because we can simply flip the sign of the $\sqrt{2}$ part. So, f is a bijection.

Let $x = a + b\sqrt{2}$ and $y = c + d\sqrt{2}$.

We will show that f is a homomorphism.

For addition,

$$f(x+y) = f((a+c) + (b+d)\sqrt{2}) = (a+c) - (b+d)\sqrt{2} = (a-b\sqrt{2}) + (c-d\sqrt{2}) = f(x) + f(y).$$

For multiplication,

$$f(xy) = f((ac + 2bd) + (ad + bc)\sqrt{2}) = ac - ad\sqrt{2} - bc\sqrt{2} + 2bd = (a - b\sqrt{2})(c - d\sqrt{2}) = f(x)f(y).$$

So, f is a homomorphism.

Since f is a bijection and a homomorphism, then f is an isomorphism.

Problem 5. Prove that if $f: \mathbb{Z} \to \mathbb{Z}$ is an isomorphism, then f is the identity map.

Proof. Since f is an isomorphism, then f is bijective and homomorphic.

Since f is homomorphic, then we have that

$$f(a+b) = f(a) + f(b)$$
$$f(ab) = f(a)f(b).$$

So,

$$f(a) = f(a+0) = f(a) + f(0)$$

= $f(a+0+\cdots+0) = f(a) + nf(0)$.

But
$$f(a) = f(a) + nf(0) \forall n \implies f(0) = 0$$
.

Similarly,

$$f(1) = f(1 \cdot 1) = f(1)f(1) = \dots = nf(1).$$

So,
$$f(1) = nf(1) \forall n \implies f(1) = 1$$

Then, by the associativity of addition,

$$f(1+1) = f(1) + f(1) = 2f(1)$$

$$f(1+1+1) = f(1) + f(1) + f(1) = 3f(1)$$

$$\vdots$$

$$f(n) = nf(1).$$

But,
$$f(n) = nf(1) \ \forall n \implies f(n) = n$$
.

Thus, f must be the identity map.

Problem 6. Find the polynomials q(x), r(x) such that f(x) = g(x)q(x) + r(x) and r(x) = 0 or $\deg r(x) < \deg g(x)$.

a)
$$f(x) = 3x^4 - 2x^3 + 6x^2 - x + 2$$
, $g(x) = x^2 + x + 1$ in $\mathbb{Q}[x]$.
$$x^2 + x + 1) \underbrace{ 3x^4 - 2x^3 + 6x^2 - x + 2}_{-3x^4 - 3x^3 - 3x^2} \underbrace{ -5x^3 + 3x^2 - x}_{-5x^3 + 5x^2 + 5x} \underbrace{ -5x^3 + 5x^2 + 5x}_{-8x^2 - 8x - 8} \underbrace{ -4x - 6}_{-4x - 6}$$

$$\frac{-8x^2-8x-8}{-4x-6}$$

Thus, $f(x) = (x^2 + x + 1)(3x^2 - 5x + 8) + (-4x - 6)$ in $\mathbb{Q}[x]$.

b)
$$f(x) = x^4 - 7x + 1$$
, $g(x) = 2x^2 + 1$ in $\mathbb{Q}[x]$.

$$\begin{array}{r}
\frac{1}{2}x^2 - \frac{1}{4} \\
2x^2 + 1) \overline{x^4 - 7x + 1} \\
\underline{-x^4 - \frac{1}{2}x^2} \\
-\frac{1}{2}x^2 - 7x + 1 \\
\underline{-\frac{1}{2}x^2 + \frac{1}{4}} \\
-7x + \frac{5}{4}
\end{array}$$

Thus, $f(x) = (2x^2 + 1)(\frac{1}{2}x^2 - \frac{1}{4}) + (-7x + \frac{5}{4})$ in $\mathbb{Q}[x]$.

c)
$$f(x) = 2x^4 + x^2 - x + 1$$
, $g(x) = 2x - 1$ in $\mathbb{Z}_5[x]$.

$$\begin{array}{r} x^3 - 2x^2 + 2x - 2 \\
2x - 1) \overline{2x^4 + x^2 - x + 1} \\
\underline{-2x^4 + x^3} \\
x^3 + x^2 - x + 1 \\
\underline{4x^3 - 2x^2} \\
4x^2 - x + 1 \\
\underline{-4x^2 + 2x} \\
x + 1 \\
\underline{4x - 2} \\
4
\end{array}$$

Thus, $f(x) = (2x-1)(x^3-2x^2+2x-2)+4$ in $\mathbb{Z}_5[x]$.

d)
$$f(x) = 4x^4 + 2x^3 + 6x^2 + 4x + 5$$
, $g(x) = 3x^2 + 2$ in $\mathbb{Z}_7[x]$.

$$\begin{array}{r}
 -x^2 + 3x - 2 \\
3x^2 + 2) \overline{4x^4 + 2x^3 + 6x^2 + 4x + 5} \\
 \underline{3x^4 + 2x^2} \\
 2x^3 + x^2 + 4x + 5 \\
 \underline{-9x^3 - 6x} \\
 x^2 + 3x + 5 \\
 \underline{6x^2 + 4} \\
 3x + 2
\end{array}$$

Thus,
$$f(x) = (3x^2 + 2)(-x^2 + 3x - 2) + (3x + 2)$$
 in $\mathbb{Z}_7[x]$.

Problem 7. Prove that is F is a field, then F[x] is not a field.

Proof. Consider $x \in F[x]$.

The identity in F[x] is the polynomial 1.

Note that, $\forall p(x) \in F[x], \deg p(x) \ge 0$ (except when $p(x) = 0 \implies \deg p(x) = -\infty$).

Then, $x \cdot f(x) = 1$ has the solution $f(x) = x^{-1}$, but deg f(x) = -1 < 0, which means that $f(x) \notin F[x]$.

So, an element $x \in F[x]$ does not have an inverse in F[x].

Thus, F[x] is not a field.

Problem 8. Let $\varphi: R[x] \to R$ be the function that maps each polynomial in R[x] onto its constant term in R. Prove φ is a surjective homomorphism of rings.

Proof. First, we will show that φ is surjective.

 $\forall r \in R, r \in R[x]$ as well. So, the entire codomain is covered by the map φ from just the constant polynomials already in R[x].

There are infinitely many polynomials with a given constant term r, but we have that all such $r \in R$ are covered as they belong in R[x] as well.

Next, we will show that φ is a homomorphism.

Let
$$f(x) = r + a_1x + \cdots + a_nx^n$$
 and $g(x) = s + b_1x + \cdots + b_mx^m$.

Then, for addition,

$$\varphi(f(x) + g(x)) = \varphi(r + s + a_1x + b_1x + \dots + b_mx^m + \dots + a_nx^n)$$

$$= r + s$$

$$= \varphi(r + a_1x + \dots + a_nx^n) + \varphi(s + b_1x + \dots + b_mx^m)$$

$$= \varphi(f(x)) + \varphi(g(x)).$$

For multiplication,

$$\varphi(f(x)g(x)) = \varphi(a_n b_m x^{n+m} + \dots + a_1 b_1 x^2 + a_1 s x + b_1 r x + r s)$$

$$= r s$$

$$= \varphi(r + a_1 x + \dots + a_n x^n) \varphi(s + b_1 x + \dots + b_m x^m)$$

$$= \varphi(f(x)) \varphi(g(x)).$$

So, f is a homomorphism.

Thus, f is a surjective homomorphism.

Problem 9. Let $\varphi : \mathbb{Z}[x] \to \mathbb{Z}_n[x]$ be the function that maps polynomials $a_0 + a_1x + \cdots + a_kx^k$ in $\mathbb{Z}[x]$ onto polynomials $[a_0] + [a_1]x + \cdots + [a_k]x^k$ where [a] denotes the congruence class of a in \mathbb{Z}_n . Prove φ is a surjective homomorphism of rings.

Proof. First, we will show that φ is surjective.

Consider $f(x) \in \mathbb{Z}_n[x]$. Then, the canonical representation of every such polynomial also belongs in $\mathbb{Z}[x]$.

So, all elements in the codomain are mapped to by φ by at least $f(x) \in \mathbb{Z}[x]$.

Thus, φ is surjective.

Next, we will show that φ is a homomorphism.

Let
$$f(x) = a_0 + a_1 x + \cdots + a_n x^n$$
 and $g(x) = b_0 + b_1 x + \cdots + b_m x^m$. WLOG assume $m < n$.

Note that [a + b] = [a] + [b] and [ab] = [a][b].

Then, for addition,

$$\varphi(f(x) + g(x)) = \varphi((a_0 + b_0) + (a_1 + b_1)x + \dots + (a_m + b_m)x^m + a_{m+1}x^{m+1} + \dots + a_nx^n)$$

$$= [a_0 + b_0] + [a_1 + b_1]x + \dots + [a_m + b_m]x^m + [a_{m+1}]x^{m+1} + \dots + [a_n]x^n$$

$$= [a_0] + [a_1]x + \dots + [a_n]x^n + [b_0] + [b_1]x + \dots + [b_m]x^m$$

$$= \varphi(f(x)) + \varphi(g(x)).$$

For multiplication,

$$\varphi(f(x)g(x)) = \varphi(a_0b_0 + a_0b_1x + a_1b_0x + \dots + a_nb_mx^{n+m})$$

$$= []$$

Problem 10. Use the Euclidean Algorithm to find the gcd (monic) of the given polynomials.

i) $x^5 + x^4 + 2x^3 - x^2 - x - 2$ and $x^4 + 2x^3 + 5x^2 + 4x + 4$ in $\mathbb{Q}[x]$. We will preform successive polynomial long divisions, performing division with of the resulting divisor by the resulting remainder, ignoring the quotient.

$$\begin{array}{r}
x - 1 \\
x^4 + 2x^3 + 5x^2 + 4x + 4) \overline{\smash{\big)}\ x^5 + x^4 + 2x^3 - x^2 - x - 2} \\
\underline{-x^5 - 2x^4 - 5x^3 - 4x^2 - 4x} \\
-x^4 - 3x^3 - 5x^2 - 5x - 2 \\
\underline{-x^4 + 2x^3 + 5x^2 + 4x + 4} \\
-x^3 - x + 2
\end{array}$$

Now, we will compute for $x^4 + 2x^3 + 5x^2 + 4x + 1$ and $-x^3 - x + 2$.

$$\begin{array}{r}
-x-2 \\
-x^3-x+2) \overline{\smash{\big)}\, \begin{array}{r} x^4+2x^3+5x^2+4x+1 \\
-x^4 -x^2+2x \\
\hline 2x^3+4x^2+6x+1 \\
-2x^3 -2x+4 \\
\hline 4x^2+4x+5 \end{array}}$$

Next, for $-x^3 - x + 2$ and $4x^2 + 4x + 5$.

$$4x^{2} + 4x + 5) \frac{-\frac{1}{4}x + \frac{1}{4}}{-x^{3} - x + 2}$$

$$x^{3} + x^{2} + \frac{5}{4}x$$

$$x^{2} + \frac{1}{4}x + 2$$

$$-x^{2} - x - \frac{5}{4}$$

$$-\frac{3}{4}x + \frac{3}{4}$$

Finally, for $4x^2 + 4x + 5$ and $-\frac{3}{4}x + \frac{3}{4}$.

$$\begin{array}{r}
-\frac{16}{3}x - \frac{32}{3} \\
-\frac{3}{4}x + \frac{3}{4}) \\
-\frac{4x^2}{4} + 4x + 5 \\
-4x^2 + 4x \\
8x + 5 \\
-8x + 8 \\
13
\end{array}$$

So, we see x - 1 is the gcd of $x^5 + x^4 + 2x^3 - x^2 - x - 2$ and $x^4 + 2x^3 + 5x^2 + 4x + 4$ in $\mathbb{Q}[x]$.

ii) $4x^4 + 2x^3 + 6x^2 + 4x + 5$ and $3x^3 + 5x^2 + 6x$ in $\mathbb{Z}_7[x]$.

$$3x^{3} + 5x^{2} + 6x) \overline{4x^{4} + 2x^{3} + 6x^{2} + 4x + 5}
\underline{3x^{4} + 5x^{3} + 6x^{2}}
\underline{5x^{2} + 4x + 5}$$

$$\begin{array}{r}
-5x \\
5x^2 + 4x + 5) \overline{3x^3 + 5x^2 + 6x} \\
\underline{4x^3 + 6x^2 + 4x} \\
4x^2 + 3x
\end{array}$$

$$\begin{array}{r}
 -4 \\
 4x^2 + 3x) \overline{)5x^2 + 4x + 5} \\
 \underline{2x^2 + 5x} \\
 2x + 5
\end{array}$$

$$\begin{array}{r}
2x \\
2x + 5) \overline{4x^2 + 3x} \\
\underline{-4x^2 - 3x} \\
0
\end{array}$$

Thus, (2x+5)4 = x+3 in $\mathbb{Z}_7[x]$ is the gcd.

iii) $x^4 + x + 1$ and $x^2 + x + 1$ in $\mathbb{Z}_2[x]$.

$$\begin{array}{r}
x^2 + x \\
x^2 + x + 1 \overline{\smash) x^4 + x + 1} \\
\underline{-x^4 - x^3 - x^2} \\
x^3 + x^2 + x + 1 \\
\underline{-x^3 - x^2 - x}
\end{array}$$

So, $x^2 + x + 1$ is the gcd of $x^4 + x + 1$ and $x^2 + x + 1$ in $\mathbb{Z}_2[x]$.