TECHNISCHE UNIVERSITÄT MÜNCHEN PHYSIK DEPARTMENT E18 PROF. DR. S. PAUL

Diplomvorprüfung Experimentalphysik 4

Wintersemester 2004/2005 1. März 2005 13:00 - 14:30 PH HS1

Hinweis: Um ein sehr gutes Ergebnis zu erzielen, müssen nicht alle Aufgaben gelöst werden. Bitte vergessen Sie nicht, jedes Blatt mit Namen und Matrikelnummer zu versehen.

Aufgabe 1 LS-Kopplung im Mehrelektronensystem

- a. Notieren Sie die vollständigen Elektronenkonfigurationen für Kohlenstoff $^{12}_{\ 6}{\rm C}$ und Stickstoff $^{14}_{\ 7}{\rm N}$ im Grundzustand. (1 Punkt)
- b. Welche Spin-Konfigurationen sind für Kohlenstoff ¹²C und Stickstoff ¹⁴N möglich, und wieviele Niveaus gibt jeweils es aufgrund der Feinstrukturaufspaltung? (2 Punkte)
- c. Begründen sie mit Hilfe der Auswahlregeln für elektrische Dipolübergänge, ob folgende Übergänge im Kohlenstoff $^{12}_{6}$ C möglich sind:

$$\begin{array}{cccc} 3^1F_3 & \rightarrow & 2^1D_2 \\ 2^1S_0 & \rightarrow & 2^3P_1 \\ 2^1S_0 & \rightarrow & 2^1D_2 \end{array}$$

(3 Punkte)

- d. Nennen Sie den Grundzustand für Kohlenstoff $^{12}_{6}$ C, und begründen Sie dies anhand der Hundschen Regeln. (3 Punkte)
- e. Wie lautet die Z-Abhängigkeit der LS-Kopplung, und was passiert für schwere Kerne? (1 Punkt)

Aufgabe 2 : Positronium

Analog zum Wasserstoffatom gibt es ein durch die Coulombanziehung gebundenes System aus einem Elektron (e⁻) und einem Positron (e⁺), dem Antiteilchen des Elektrons: Positronium.

- a. Berechnen Sie, ausgehend von den Bohrschen Postulaten, den Bohr-Radius für den Grundzustand des Positroniums. Vergleichen Sie die Größe von Positronium mit der Größe eines Wasserstoffatoms.

 (4 Punkte)
- b. Wie groß ist in diesem Modell die Ionisierungsenergie von Positronium im Vergleich zur Ionisierungsenergie des Wasserstoffatoms? Begründen Sie Ihre Antwort. (2 Punkte)
- c. Betrachten Sie Positronium als ein gebundenes System zweier spinloser punktförmiger Teilchen mit Massen m_1 und m_2 , Ladungen q_1 und q_2 und Ortsvektoren $\vec{r_1}$ und $\vec{r_2}$. Stellen Sie den zugehörigen Hamilton-Operator auf.

 (1 Punkt)

d. Führen Sie Relativ- und Schwerpunktkoordinaten

$$\vec{r} = \vec{r_1} - \vec{r_2}$$
 bzw. $\vec{R} = \frac{m_1 \vec{r_1} + m_2 \vec{r_2}}{m_1 + m_2}$

ein. Wie lautet der Hamilton-Operator in diesen Koordinaten und welchen Ansatz verwenden Sie zur Lösung der entsprechenden zeitunabhängigen Schrödingergleichung? (2 Punkte)

- e. Leiten Sie mit Hilfe dieses Ansatzes die zeitunabhängige Schrödingergleichung für die Relativbewegung ab. (2 Punkte)
- f. Skizzieren Sie in Stichpunkten, wie aus dieser Gleichung die eindimensionale Schrödingergleichung für den Betrag des Abstandes der beiden Teilchen $r = |\vec{r_1} \vec{r_2}|$ hergeleitet werden kann. Aus welchen Anteilen setzt sich das in dieser Gleichung vorkommende effektive Potential zusammen? Skizzieren Sie die r-Abhängigkeit dieser Anteile und des resultierenden effektiven Potentials für l > 0.
- g. Was erwarten Sie bezüglich der relativen Größe der Aufspaltung durch die Spin-Bahnbzw. Spin-Spin-Kopplung (Fein- bzw. Hyperfeinstrukturaufspaltung im H-Atom) im Vergleich zum Wasserstoffatom? In wieviele Niveaus spaltet der Zustand mit $n=0,\,l=0$ auf? Geben Sie die spektroskopische Bezeichung dieser Niveaus an. (3 Punkte)

Aufgabe 3 Streuprozesse und Ununterscheidbarkeit

Abbildung 1: Streuprozess im Schwerpunktsystem

Bei der Rutherford-Streuung werden α -Teilchen an einer Goldfolie gestreut und unter verschiedenen Streuwinkeln θ nachgewiesen. Der Prozess sei hier vereinfacht als elastische Streuung an punktförmigen Goldkernen betrachtet.

- a. Der Wirkungsquerschnitt für Streuung unter Rückwärtswinkeln, $\theta \in [\pi/2, \pi]$, betrage $\sigma_{\text{rück}} = 17.1$ barn (1 barn = 10^{-28} m²). Wie groß ist die zugehörige Reaktionsrate, wenn $10.000~\alpha$ -Teilchen pro Sekunde auf eine 1 μ m dünne Goldfolie treffen? Nehmen Sie an, dass Mehrfachstreuung vernachlässigbar ist. Die Dichte von Gold beträgt $19.3~\text{g/cm}^3$ und die Masse eines Goldatoms $3.3 \cdot 10^{-25}$ kg.
- b. Wie hängt der Wirkungsquerschnitt σ , abgesehen von Vorfaktoren, mit der Streuamplitude f zusammen? (1 Punkt)
- c. Wie lautet die Streuwinkel-Abhängigkeit von f speziell bei Rutherford-Streuung? Skizzieren Sie den Verlauf des differentiellen Wirkungsquerschnittes $\frac{d\sigma}{d\Omega}(\theta)$. (2 Punkte)

d. Für die Kollision von α -Teilchen im Schwerpunktsystem (s. Abb. 1) gelte dieselbe Winkelabhängigkeit der Streuamplitude. Berechnen Sie die Winkelabhängigkeit des Wirkungsquerschnitts. Beachten Sie, dass α -Teilchen Bosonen mit S=0 sind. (3 Punkte)

Aufgabe 4 Hyperfeinaufspaltung und anomaler Zeeman-Effekt

Ein Wasserstoffatom befinde sich in einem externen Magnetfeld \vec{B} .

- a. Zeichnen Sie das Energieniveauschema für die Hyperfeinaufspaltung der Energieniveaus $2p_{\frac{3}{2}}$ und $2s_{\frac{1}{2}}$ für verschwindendes externes Feld $|\vec{B}|=0$. Beschriften Sie die Niveaus eindeutig mit den relevanten Quantenzahlen. (3 Punkte)
- b. Zeichnen Sie ein weiteres Energieniveauschema, das die Aufspaltung derselben Energieniveaus für den Fall eines sehr schwachen externen Magnetfelds ($\vec{\mu}_F \cdot \vec{B}$ < Wechselwirkungsenergie der Hyperfeinaufspaltung) zeigt und beschriften Sie die Niveaus eindeutig mit den relevanten Quantenzahlen. (3 Punkte)
- c. Zeichnen Sie sowohl für den Fall $|\vec{B}|=0$ als auch für $|\vec{B}|>0$ alle erlaubten elektrischen Dipolübergänge für die Absorption ein. (2 Punkte)
- d. Was ändert sich im Energieniveauschema, wenn das Magnetfeld so vergrößert wird, dass $\vec{\mu}_F \cdot \vec{B}$ größer ist Wechselwirkungsenergie der Hyperfeinaufspaltung? Nehmen Sie dabei an, daß \vec{B} dabei hinreichend klein bleibt, sodaß die Quantenzahl j des Gesamtdrehimpulses des Elektrons eine gute Quantenzahl ist. (2 Punkte)

Aufgabe 5 Maxwell'sche Geschwindigkeitsverteilung

a. Führen Sie die Maxwell'sche Verteilung für die Teilchenanzahl pro Geschwindigkeitsintervall,

$$n(v,T)dv = 4\pi v^2 \left(\frac{m}{2\pi k_B T}\right)^{3/2} e^{-mv^2/2k_B T} dv$$

in eine Verteilung n(E,T)dE über.

(4 Punkte)

- b. Berechnen Sie die mittlere Energie $\langle E \rangle$ (Integraltafel im Anhang). (4 Punkte)
- c. Welcher Anteil der Teilchen hat eine Energie, die nicht mehr als $\pm 1\%$ vom Energiemittelwert abweicht? (3 Punkte)

(Hinweis: In diesem Bereich kann n(E,T) als konstant angenommen werden.)

Aufgabe 6 Molekülbindung

Für die Bindung zweier Elektronen an zwei Kerne A und B lautet der Ansatz für die symmetrische Wellenfunktion in Molekülorbital-Näherung

$$\Psi^{\text{symm}}(r_1, r_2) = c \left[\Phi_A(r_1) + \Phi_B(r_1) \right] \cdot \left[\Phi_A(r_2) + \Phi_B(r_2) \right].$$

- a. Zerlegen Sie diese Wellenfunktion in einen Anteil ionischer und einen Anteil kovalenter Bindung. (4 Punkte)
- b. Wie ist die relative Spinstellung der Elektronen in diesem Fall? Welches Prinzip liegt dem zugrunde? (2 Punkte)

Aufgabe 7 Rotationsanregungen

Im Kochsalzmolekül ²³Na³⁵Cl haben die Atome einen Gleichgewichtsabstand von $r_0 = 5.6$ Å.

a. Wie groß ist das Trägheitsmoment I des Moleküls?

(1 Punkt)

b. Wie groß sind die Energien der niedrigsten Rotationszustände?

(2 Punkte)

c. Die lineare Rückstellkraft des harmonischen Potenzials zwischen den Kernen ist gegeben durch die Konstante $c=3.78\cdot 10^3 \frac{kg}{s^2}$. Wie groß sind die Energieabstände zwischen den Schwingungszuständen? (2 Punkte)

Mathematische Formeln

Laplace-Operator in Kugelkoordinaten:

$$\Delta = \frac{\partial^2}{\partial r^2} + \frac{2}{r} \frac{\partial}{\partial r} - \frac{L^2}{r^2 \hbar^2}$$

(Winkelanteil geschrieben mit quantenmechanischem Drehimpulsoperator \vec{L})

Integrale:

$$\int_0^\infty x^{3/2} e^{-x} = \frac{3}{4} \sqrt{\pi}$$

Trigonometrische Funktionen:

$$e^{ix} = \cos x + i \sin x$$
$$\sin (x \pm y) = \sin x \cos y \pm \cos x \sin y$$
$$\cos (x \pm y) = \cos x \cos y \mp \sin x \sin y$$

Physikalische Konstanten

Größe	Symbol, Gleichung	Wert
Vakuumlichtgeschwindigkeit	С	$2.9979 \cdot 10^8 \mathrm{m/s}$
Plancksche Konstante	h	$6.6261 \cdot 10^{-34} \mathrm{Js}$
Red. Plancksche Konstante	$h = h/2\pi$	$1.0546 \cdot 10^{-34} \mathrm{Js}$
Elektr. Elementarladung	e	$1.6022 \cdot 10^{-19} \mathrm{C}$
Boltzmann-Konstante	$k_{ m B}$	$1.3807 \cdot 10^{-23} \mathrm{JK^{-1}}$
Magnetische Feldkonstante	μ_0	$4\pi \cdot 10^{-7} \mathrm{VsA^{-1}m^{-1}}$
Elektrische Feldkonstante	$\varepsilon_0 = 1/\mu_0 c^2$	$8.8542 \cdot 10^{-12} \mathrm{AsV^{-1} m^{-1}}$
Avogadro-Konstante	$N_{ m A} { m oder} L$	$6.0221 \cdot 10^{23} \mathrm{mol}^{-1}$
Stefan-Boltzmann-Konstante	σ	$5.6704 \cdot 10^{-8} \mathrm{J s^{-1} m^{-2} K^{-4}}$
Wiensche Verschiebungskonstante	\boldsymbol{b}	$2.8978 \cdot 10^{-3} \mathrm{Km}$
Elektronruhemasse	$m_{ m e}$	$9.1094 \cdot 10^{-31} \mathrm{kg} = 0.5110 \mathrm{MeV}/c^2$
Neutronruhemasse	$m_{ m u}$	$1.6749 \cdot 10^{-27} \mathrm{kg} = 939.57 \mathrm{MeV}/c^2$
Atomare Masseneinheit	u	$1.6605 \cdot 10^{-27} \mathrm{kg}$

J- 45 mix 8

Dian

ligmi 2