INTERFACE COM O MUNDO ANALÓGICO

Grandeza Digital – grandeza que assume um número finito de valores entre um intervalo. O número possível de valores é uma função da quantidade de bits disponíveis para a representação.

Grandeza Analógica – Pode assumir qualquer valor dentro de um intervalo contínuo. O número de valores é uma função da precisão disponível para a leitura.

Grandezas físicas por sua natureza são analógicas. Extemperatura, pressão, intensidade luminosa, sinais de áudio, posição, velocidade, etc.

Computadores só processam informações digitais.

Interfaceamento de Grandezas Físicas em um Sistema Digital

CONVERSÃO DIGITAL PARA ANALÓGICA

Conversor D\A é um dispositivo que converte um valor binário para um valor de tensão ou corrente proporcional.

SAÍDA ANALÓGICA= K * ENTRADA DIGITAL

Exercícios:

- 1. Considere um DAC de 5 bits que para uma entrada 10100(2) fornece uma corrente de 10mA. Pergunta-se qual a corrente de saída se Din é 11101(2)?
- 2. Qual o maior valor de tensão de saída de um DAC de 8 bits que apresenta Vout igual a 1V para um DIN igual a 32H?

CONSIDERAÇÕES SOBRE "SAÍDA ANALÓGICA" E ENTRADAS PONDERADAS:

- Tecnicamente a saída não é analógica uma vez que não possui variação contínua (pseudo-analógica).
- Quanto mais bits de saída, mais precisa esta ficará.
- Cada entrada binária contribui para a saída um valor proporcional ao peso binário do código de entrada. (I2=>P4, I1=>P2 e I0=>P1)

Exercícios:

Em um DAC de 5 bits o bit l2 contribui com 1,2V. Qual Vout para um Din igual a 11111(2)?

RESOLUÇÃO DE UM CONVERSOR DIGITAL-ANALÓGICO

É a menor modificação que pode ocorrer na saída analógica decorrente de uma alteração na entrada digital.

K = Resolução (Tensão ou corrente do degrau) Nº de degraus = 2^N-1

Exercício:

Qual a resolução de um conversor D/A de 8 bits em que Vout é 3V para um Din de 64H?

RESOLUÇÃO PORCENTUAL

Resolução representada como porcentagem do valor máximo possível para saída ou valor de fim de escala (%).

Ex: Qual a resolução porcentual de um DAC de 3 bits com K=1?

Res. Porcentual = <u>Tamanho do Degrau</u> x 100% = <u>1</u> x 100 = 14,2% valor de F.S.

Exercícios:

Um DAC de 10 bits tem tamanho de degrau de 10mV. Qual a sua Resolução (%)?

Considerações:

Se FS = K x (
$$2^{N}$$
-1) e R(%) = K x 100 FS

então,

$$R(\%) = \frac{1}{2^{N}-1} \times 100$$

Resumindo: Quanto mais bits o conversor tiver melhor a resolução, menor o degrau e mais valores de tensão podem ser gerados, para um mesmo FS. (O fabricante especifica a resolução como nº de bits)

Exercício: Considere que um computador que, através de um DAC e uma interface de controle regula a velocidade de um motor DC. Sabendo-se que o FS do DAC é de 2mA e que o motor com este range de excitação na interface de controle pode girar de 0 a 1000rpm, qual deve ser a resolução do DAC, em número de bits e percentual, para que o ajuste na velocidade seja feito de 2 em 2 rpm?

CONVERSOR DAC - RESISTORES PONDERADOS

$$V_{out} = -\frac{Rf}{R} \left(S2 + \frac{S1}{2} + \frac{S0}{4} \right) * V_{ref}$$

CONVERSOR DAC

Considerações:

- Se S2, S1 e S0 forem iguais a "1", a chave se conecta a Vref caso contrário se conecta a GND.
- Não podemos conectar diretamente saídas TTL aos resistores devido a margem de variação das tensões de saída em níveis "1" e "0".

Soluções:

- ✓ Usar um buffer CMOS (CD4010) ou uma chave CMOS (CD4016 ou 74HC4016).
- ✓ Características de saída de circuitos CMOS:
 - Para VDD=5V => VOL<0,05V e VOH >4,95V
- ✓ Chaves analógicas CMOS:
 - Controle: desativado => Z=10 Gohms, ativado => Z=200ohms
- ✓ Amplificador operacional com alimentação não simétrica: CA3140

Exercício:

Faça a tabela de valores de saída para o DAC de 3 bits do tipo resistores ponderados especificado: Rf=1K, R=1K, Vref=15V e V=±10V. Qual a conclusão?

PRECISÃO DOS DAC

Representa quanto o valor de tensão de saída chegará perto dos valores calculados (ideais).

Fatores que influenciam:

Tolerância dos resistores.

Variação da Vref.

Estabilidade do A.O.

PRECISÃO DOS DAC

Modos mais comuns de especificação pelos fabricantes:

Erro de F.S. -> Desvio máximo da saída do conversor em relação a seu valor ideal, expresso como porcentagem do valor de F.S.

Erro de Linearidade -> É o desvio máximo admitido para o tamanho ideal dos degraus do conversor.

Exercício:

- 1. Se a precisão de um DAC de 4 bits é ±0,01% FS, sendo o FS de 9,375V, pergunta-se: quais os possíveis valores da saída para um Din igual a 0001(2)?
- 2. Um DAC de 8 bits tem FS de 2mA e EL de ±0,5% FS. Quais os valores possíveis para um Din igual a 80H?

Tempo de Estabilização

É o tempo gasto pela saída do DAC para ir da situação inicial até o valor final da escala. Especifica a velocidade de operação de um DAC.

Considera-se estável o sinal com oscilação de ± 1/2 do tamanho do degrau. Na prática: 50ns a 10µs, geralmente saída em corrente é melhor em razão da ausência do AO.

Tensão de Compensação

Tensão aplicada para corrigir o erro de offset, que é a tensão apresentada (diferente de zero) na saída do DAC para uma entrada binária nula aplicada. Normalmente compensada por ajuste externo.

Monotonicidade

É monotônico o DAC se a saída cresce sempre que a entrada binária é incrementada.

CONVERSOR DAC DO TIPO ESCADA R-2R

CONVERSOR DAC DO TIPO ESCADA R-2R

Logo:

$$V_{out} = \frac{Vref}{3} \left(b2 + \frac{b1}{2} + \frac{b0}{4} \right)$$

Com AO:

$$V_{out} = ?$$