EHB 351 ANALOG HABERLEŞME Ara Sınav 1

1.

- a) Fourier dönüşüm teoremlerinden "zamanda öteleme" teoremini yazınız ve ispatlayınız.
- **b**) $m(t) = \pi \exp(-2\pi |t-5|)$ işaretinin Fourier dönüşümü M(f)'i bulunuz. Genlik ve faz spektrumunu kabaca çiziniz.
- \mathbf{c}) m(t) işaretinin enerji spektral yoğunluk fonksiyonunu bulunuz ve kabaca çiziniz.
- **d**) m(t) işareti merkez frekansı 5 Hz, band genişliği 4 Hz, kazancı 1 olan ideal bir band geçiren süzgeçten (BGS) geçiriliyor. Çıkıştaki y(t) işaretinin enerji spektral yoğunluk fonksiyonunu bulunuz ve kabaca çiziniz.
- e) Girişteki enerjinin yüzde kaçı çıkışa aktarılmıştır?
- **2.** $x_1(t) = 3\operatorname{sinc}(100t)$ işareti aşağıdaki şekilde verilen üstel genlik modülatörüne uygulanmaktadır. Modülatördeki doğrusal olmayan aygıtın giriş-çıkış ilişkisi $v_{out}(t) = a_1 v_{in}(t) + a_2 v_{in}^2(t) + a_3 v_{in}^3(t)$ olarak verilmektedir.

- **a**) $a_1 \neq 0$, $a_2 \neq 0$, $a_3 = 0$ için,
 - i. $v_{out}(t)$ zaman bölgesi ifadesini yazınız ve kabaca frekans spektrumunu çiziniz.
 - ii. Çıkıştaki $x_c(t)$ işaretinin, taşıyıcı frekansı $f_c=1000\,$ Hz olan klasik genlik modülasyonlu (GM) bir işaret olması için osilatörün frekansı $f_0=\omega_0/2\pi$, süzgecin türü, merkez frekansı ve band genişliği ne seçilmelidir?
- iii. $a_1 = 0.8$, $a_2 = 0.1$, $a_3 = 0$ için modülasyon indisini belirleyiniz. $x_c(t)$ 'yi ve $X_c(f)$ 'i kabaca ciziniz.
- $\mathbf{b)} \quad a_1 \neq 0, \ a_2 \neq 0, \ a_3 \neq 0 \ \text{i} \\ \mathbf{c} \\ \text{in} \ \mathbf{a} \\ \text{)} \\ \mathbf{s} \\ \text{i} \\ \mathbf{k} \\ \text{ini} \ \text{tekrarlayiniz} \\ \text{(iii. bendini} } \\ a_1 = 0.8, \ a_2 = 0.1, \ a_3 = 0.01 \ \\ \mathbf{i} \\ \mathbf{c} \\ \text{in} \\ \mathbf{c} \\ \text{ozünüz)}.$
- c) a_1 , a_2 , a_3 'ün alabilecekleri değerlere göre aşağıda verilen tabloyu yeni bir işlem yapmaksızın doldurunuz.

a_1	a_2	a_3	f_c (f_0 cinsinden)	Çıkışta Elde Edilen
				Modülasyon Türü
0	≠ 0	≠ 0		
≠ 0	0	≠ 0		
≠ 0	≠ 0	0		
0	0	≠ 0		
≠ 0	0	0		
0	≠0	0		
≠ 0	≠ 0	≠ 0		

Ek Bilgiler:

•
$$\Pi(t/\tau) \leftrightarrow \tau \operatorname{sinc}(f\tau)$$
, $\operatorname{sinc}(x) = \sin(\pi x)/(\pi x)$

•
$$\operatorname{sinc}(t\tau) \leftrightarrow (1/\tau)\Pi(f/\tau)$$

$$\oint \frac{dx}{(1+x^2)^2} = \frac{1}{2} \left(\frac{x}{(1+x^2)} + arctg(x) \right)$$

$$\bullet \qquad \int_0^\infty \frac{dx}{(1+x^2)^2} = \frac{\pi}{4}$$

$$2\cos(x)\cos(y) = \cos(x+y) + \cos(x-y)$$

•
$$2\sin(x)\sin(y) = \cos(x-y) - \cos(x+y)$$
$$2\sin(x)\cos(y) = \sin(x+y) + \sin(x-y)$$

Uyarılar:

- Cep telefonlarınızı sınav süresince <u>tamamen</u> kapalı tutunuz.
- İlk 45 dk. sınavdan çıkmayınız.
- İsminizi hem cevap kağıdına hem de soru kağıdına yazmayı unutmayınız. Cevap kağıdınız ile birlikte soru kağıdınızı da teslim ediniz.

BAŞARILAR ...