Studying Interactions Between Environmental Exposures and Genetic Variants: Examples and Lessons Learned

Nathaniel Rothman, MD, MPH, MHS

Occupational and Environmental Epidemiology Branch,

Division of Cancer Epidemiology and Genetics,

NCI, NIH, DHHS

U.S. DEPARTMENT OF HEALTH AND HUMAN SERVICES

Overwhelming evidence that most cancer is caused by environmental exposures

- Geographic variation
- Migration studies
- Secular trends in fixed populations
- Analytic epidemiology
- Experimental models

Incidence of Lung Cancer Among Males

Incidence of Lung cancer: ASR (World)-Male (All ages)

Incidence of Non-Hodgkin Lymphoma Among Men

Incidence of Cervical Cancer

Incidence of Cervix uteri cancer: ASR (World) (All ages)

Incidence of Breast Cancer Among Women

Incidence of Breast cancer: ASR (World) (All ages)

RRs of Breast Cancer in Asian-American Women by Migration History

Excess Bladder Cancer Mortality in Males and Females in New England

Non-Hodgkin Lymphoma Mortality Patterns in the U.S. by Race and Sex, 1950-54 to 1995-1999

- --- White Male
- White Female
- Black Male
- Black Female
- Nonwhite Male
- Nonwhite Female

Why study genetic modification of the fundamental forces that drive most cancer risk in most populations?

- Obtain mechanistic insight
- Clarify dose-response relationships, and more effectively evaluate low levels of risk
- Identify new environmental health hazards
- Develop more effective prevention and treatment strategies

Spanish Bladder Cancer Study

- Hospital-based case-control study (1998-2001).
- 18 hospitals in 5 regions.
- Controls matched on region, age, gender and ethnicity.
- Participation rates: 85% cases and 88% controls.

Data Collection

Data Resources	Response Rate	Specific Areas
CAPI	86%	Demographics Smoking Occupation/Environmental Family history Medical/Drugs
Blood/Buccal Cell	95%	Genetic Susceptibility Functional Assays
Diet Qx.	72%	Fluid intake Food Frequency Food Carcinogens
Urination Diary	60%	Urine pH Urinary freq
Toenails	77%	Arsenic/Selenium
Hair dye Qx.	85%	Hair Dye

NAT2 slow acetylation, tobacco use, and bladder cancer risk

Genotyp	е	Cases	Contro	ls OR	95%CI	p-value
NAT2	Rapid/Intermediate Slow	406 728	493 637	1.0 1.4	(1.2-1.7)	0.0002

Acetylation polymorphism - Isoniazid clearance from plasma

Detoxification of Aromatic Amines by N-Acetylation

(Lower et al., EHP 1979)

Meta-Analysis of Case-Control Studies of *NAT2* Slow Acetylation and Bladder Cancer (Rothman et al., IJE, 2007)

Meta-Analysis of Case-Control Studies of *NAT2* Slow Acetylation and Bladder Cancer (Rothman et al., IJE, 2007)

Detoxification of Aromatic Amines by N-Acetylation

(Lower et al., EHP 1979)

Multiplicative interaction between *NAT2* and cigarette smoking: Spanish study

Meta-Analysis of Case-Only Studies of *NAT2* Slow Acetylation, Tobacco Use, and Bladder Cancer

Detoxification of Aromatic Amines by N-Acetylation

(Lower et al., EHP 1979)

Carcinogenic Aromatic Amines

NAT2 Genotype and Bladder Cancer Risk, By Aromatic Amine exposure

Benzidine-exposed workers:

OR = 0.3, 95% CI: 0.1-1.0

Non-smokers:

OR = 0.9, 95%CI: 0.6-1.3

Smokers:

OR = 1.6, 95%CI: 1.3-1.9

(Hayes et al., Carcinogenesis 1993; Garcia-Closas et al., Lancet 2005; Carreon et al., IJC, 2006; Rothman et al., IJE, 2007)

Role of GSTM1 in Benzo(a)pyrene Metabolism

GSTM1 null genotype and bladder cancer risk in the Spanish study

Genotype	9	Cases	Contro	ols OF	R 95%CI	p-value
GSTM1	+/+	70	107	1.0		
	+/-	352	454	1.2	(0.8-1.7)	0.38
	-/-	716	571	1.9	(1.4-2.7)	0.0002

Meta-Analysis of GSTM1 Null Genotype and Bladder Cancer

Meta-Analysis of *GSTM1* Null Genotype and Bladder Cancer

	Cases	OR 95% CI	P value			
All studies (N=28)	5072	1.5 (1.3-1.6)	$2x10^{-14}$		₩	
Studies of white populations(N=18)	3539	1.4 (1.2-1.6)	$1x10^{-6}$		I♦I	
Europe (N=13)	2841	1.5 (1.2-1.7)	$2x10^{-5}$		 	
USA (N=5)	698	1.3 (1.1-1.5)	0.02		 +	
Studies of Asian populations (N=6)	1073	1.4 (1.2-1.7)	$3x10^{-5}$		H◆H	
			711			, , , , , , , , , , , , , , , , , , ,
			0.1	1	.0	10.0

Case-Only Meta-Analysis of *GSTM1* Null Genotype, Smoking, and Bladder Cancer Risk

Heckbert 1992 USA 29	—
Daly 1993 UK 51	—
Aktas 2001 Turkey 103	
Srivastava 2004 India 106	
Moore 2004 Argentina 106	
Chern 1994 UK 109	
Törüner 2001 Turkey 111	
Peluso 2000 Italy 148	\dashv
Hung 2004 Italy 201	
Lee 2002 Korea 203	
Bell (whites) 1993 USA 213	
Kang 1999 Korea 218	
Okkels 1996 Denmark 253	
Tsukino 2004 Japan 325	
Karangas 2005 USA 354	
Brockmöller 1996 Germany 374	
García-Closas Current Spain 1139	
Interaction parameters	
Cases OR 95% CI P value	
All studies (N=17) 4043 1.0 (0.9-1.2) 0.86	
Studies of white populations(N=10) 2871 $1.0 (0.8-1.2) >0.99$	
Europe (N=7) 2275 $1.0 (0.7-1.3) 0.94$	
USA (N=3) 596 1.1 (0.7-1.8) 0.62	
Studies of Asian populations (N=2) 421 $1.0 (0.7-1.5) > 0.99$	
0.1 1.0	··· · 10.0

Case-Only Meta-Analysis of *GSTM1* Null Genotype, Smoking, and Bladder Cancer Risk

Exposure assessment implications & wish list

1) Improved biomonitoring of tobacco constituents, data on intraindividual variation, repeat samples

2) Broad "omic" approach to explore potential exogenous and endogenous factors that might interact with GSTM1

Fundamental metric of measurement error – the Intraclass Correlation Coefficient (ICC)

True between subject variation

True between subject variation + all unwanted sources of variation (e.g., intraindividual and analytic variance)

Impact of the ICC on the Observed Odds Ratio (OR) Given True OR for Disease of 1.5, 2.0, 2.5, 3.0 and 3.5.

Exposure and genotype misclassification

Sensitivity: probability of correctly identifying exposed/susceptible subjects.

Specificity: probability of correctly identifying unexposed/non-susceptible subjects.

Effect of exposure and genotype misclassification on sample size to detect an interaction*

Exposure accuracy Sensitivity	Gene accuracy Sensitivity	No. of cases for 80% power
100%	100%	718
80%	100%	1,600
100%	95%	900
80%	95%	2,044

Interaction model: OR_G = 2.0; OR_E = 2.0; OR_{GE} = 8.0
 P(E)=50%; P(G)=50%
 Genotype and exposure assessment specificity = 100%.

Effect of exposure assessment sensitivity on sample size: P(E)=50%, P(G)=50%

Where is "Big Science" and exposure assessment?

Genes, Environment, and Health Initiative: Exposure Biology Program

Exposure assessment

New technology – features

- Real-time monitoring
- Wearable (miniature/nanotechnolo)
- Cell phone technology/GPS enabled locate exposure in time/space
- Multiple exposures

Tools for diet and physical activity

 Dietary assessment using cell phones & digital imaging

 Physical activity -- cell phones with accelerometers
 GPS

Sensors for chemical exposures

- Wearable nanosensor array for real-time monitoring of diesel and gasoline exhaust
- Enzyme-based wearable environmental sensor badge for personal exposure assessment—pesticides, ozone, volatile organic compounds (VOC), heavy metals

Stress

 Wireless skin patch sensors to detect and transmit addiction and psychostress data (measures alcohol, skin temp and conductance, respiration and subject location (via GPS)

 A portable salivary biosensor of psychosocial stress

Biomonitoring

Bringing new nanotechnology to bear

Streamlining sample preparation via "Lab on a chip"

Adduct-omics

Future research needs and opportunities

- 1) High quality, well-designed studies with appropriate control groups, and state-of-the-art genomic analysis
- 2) Continuing need to develop and validate new exposure assessment tools and methods, and incorporate into new and ongoing epidemiological studies
- 3) Tremendous scientific opportunities

Acknowledgments – Spanish Bladder Cancer Study

Debra Silverman

Montse Garcia-Closas

Ken Cantor

Mustafa Dosemeci

Nilanjan Chatterjee

Jonine Figueroa

Core Genotyping

<u>Facility</u>

Stephen Chanock

Robert Welch

Meredith Yeager

Manolis Kogevinas

Núria Malats

Francisco X Real

Gemma Castaño Vinyals

Christina Villanueva

Francisco Fernandez

Other Study Centers in Spain

Alfredo Carrato (Alicante)

Reina García-Closas (Tenerife)

Consol Serra (Vallès/Bages)

Adonina Tardón (Asturias)