Commenteremo la soluzione dei seguenti esercizi:

Esercizio 1. (Es. 5 del tutorato del 23/11/2023) Si fissi una matrice $A \in \mathbb{R}^{n,n}$. Dimostrare che la matrice tAA ha solamente autovalori non negativi. [Suggerimento: utilizzare il Teorema spettrale.]

Esercizio 2. (Es. 8 del tutorato del 17/11/2023) Dimostrare che un endomorfismo $f: V \to V$ di uno spazio vettoriale reale V tale che $f^2 = f$, dove $f^2 = f \circ f$ ha come possibili autovalori solo i numeri 0 e 1.

Svolgere il seguente esercizio, la cui soluzione verrà commentata in aula:

Esercizio 3. Esercizio 1 della prova scritta del 20/06/2022: vedere pagina successiva per il testo dell'esercizio.

GEOMETRIA E ALGEBRA LINEARE 1

Prova scritta del 20/06/2022

Proff. L. Mari e T. Pacini

ESERCIZIO 1 (16 pt.)

Sia V lo spazio vettoriale delle matrici 2x2, munito del prodotto scalare standard $M \cdot N := tr(M^t N)$. Sia $f: V \to V$ l'applicazione lineare

$$f\left(\begin{array}{cc}a&b\\c&d\end{array}\right):=\left(\begin{array}{cc}b&d\\0&a\end{array}\right).$$

- (i) (3 pt) Trovare tutti gli autovalori ed autovettori di f.
- (ii) (3 pt) Costruire una base ortonormale di V contenente almeno un autovettore di ogni autospazio.
- (iii) (3 pt) Trovare un esempio di sottospazio $W \neq \{0\}$ di V tale che la restrizione $f_{|W}: W \to W$ sia diagonalizzabile.

Determinare il piu' grande sottospazio avente questa proprieta'.

(iv) (4 pt) Sia $W \leq V$ il sottospazio delle matrici antisimmetriche. Determinare il sottospazio immagine f(W) e la sua controimmagine $f^{-1}(f(W))$.

Sia $Z := \{M \in V : tr(M + M^t) = 0\}$. Individuare $f^{-1}(Z)$. Determinare $f^{-1}(Im(f))$.

(v) (3 pt) Si ricordi che un sottospazio $W \leq V$ si dice invariante se $f(W) \leq W$. Trovare sottospazi invarianti di dimensione 1,2,3.