

Efficient genetic K-Means clustering for health care knowledge discovery

A. Alsayat and H. El-Sayed, 2016, IEEE

- How can we improve clustering accuracy in healthcare data?
- Traditional K-Means struggles with selecting the right number of centroids. and may not give the best reults.

Methods

- K-Means Clustering
- Genetic Algorithm
- DBSCAN
- Self Organizing Map (SOM)

"We propose an **efficient K-Means** clustering algorithm which uses the **SOM** method to discover the optimal segments number in the data as a preprocessing step"

K-Means

- unsupervised
- Groups data into k clusters by assigning points to the nearest centroid and updating centroids repeatedly.

DBSCAN

- unsupervised
- Finds clusters robust to outliers.
- Requires parameters: ε
 (neighborhood size) and
 MinPts (minimum points)

Self Organizing Map

- unsupervised
- Artificial Neural Network
- Maps high-dimensional data onto a lower-dimensional grid while preserving topological relationships.

The Data

We used two datasets on liver disease and heart disease.

Liver Disease Dataset			
Attribute Name	Description		
mcv	mean corpuscular volume		
alkphos	alkaline phosphotase		
sgpt	alamine aminotransferase		
sgot	aspartate aminotransferase		
gammagt	gamma-glutamyl transpeptidase		
drinks	alcoholic beverages drunk per day		
selector	class label for liver disease		

- 345 patients
- 7 blood test variables related to liver disease (e.g., alcohol-related)
- Class label: drinks > 2

Heart Disease Dataset						
Attribute Name	Description					
age	age in years					
sex	patient gender					
cp	chest pain type					
trestbps	resting blood pressure					
chol	serum cholestoral					
fbs	fasting blood sugar					
restecg	resting electrocardiographic results					
thalach	maximum heart rate					
exang	exercise induced angina					
oldpeak	ST depression					
slope	he slope of the peak exercise ST segment					
ca	number of major vessels					
thal	exercise test					
num	diagnosis of heart disease					

- 303 patients
- 14 variables related to heart disease diagnosis
- Class label: target = 1

from the Cleveland Clinic Foundation

Preprocessing The Data

Liver Disease Dataset

```
mcv,alkphos,sgpt,sgot,gammagt,drinks,selector
85,92,45,27,31,0.0,1
85,64,59,32,23,0.0,2
86,54,33,16,54,0.0,2
91,78,34,24,36,0.0,2
87,70,12,28,10,0.0,2
98,55,13,17,17,0.0,2
88,62,20,17,9,0.5,1
88,67,21,11,11,0.5,1
92,54,22,20,7,0.5,1
90,60,25,19,5,0.5,1
89,52,13,24,15,0.5,1
82,62,17,17,15,0.5,1
90,64,61,32,13,0.5,1
86,77,25,19,18,0.5,1
```


Heart Disease Dataset

```
age, sex, cp, trestbps, chol, fbs, restecg, thalach, exang, oldpeak,
slope,ca,target,thal_fixed,thal_normal,thal_reversible
63,1,1,145,233,1,2,150,0,2.3,3,0,0,True,False,False
67,1,4,160,286,0,2,108,1,1.5,2,3,1,False,True,False
67,1,4,120,229,0,2,129,1,2.6,2,2,0,False,False,True
37,1,3,130,250,0,0,187,0,3.5,3,0,0,False,True,False
41,0,2,130,204,0,2,172,0,1.4,1,0,0,False,True,False
56,1,2,120,236,0,0,178,0,0.8,1,0,0,False,True,False
62,0,4,140,268,0,2,160,0,3.6,3,2,1,False,True,False
57,0,4,120,354,0,0,163,1,0.6,1,0,0,False,True,False
63,1,4,130,254,0,2,147,0,1.4,2,1,1,False,False,True
53,1,4,140,203,1,2,155,1,3.1,3,0,0,False,False,True
57,1,4,140,192,0,0,148,0,0.4,2,0,0,True,False,False
56,0,2,140,294,0,2,153,0,1.3,2,0,0,False,True,False
56,1,3,130,256,1,2,142,1,0.6,2,1,1,True,False,False
44,1,2,120,263,0,0,173,0,0.0,1,0,0,False,False,True
```

preprocessing required: One-hot encoding and dummy variables

No train/test split needed

Articles results

	Weighted Classification Accuracy (%)		
Dataset	SOM Genetic K-Means	K-Means	DBSCAN
Liver Disease	73.84	69.15	67.66
Heart Disease	69.90	66.27	61.45

Key Findings

SOM-Genetic K-Means achieved higher accuracy, leading to more accurate treatment suggestions.

Our Results

	Weighted Classification Accuracy (%)			
Dataset	SOM Genetic K-Means	K-Means	DBSCAN	
Liver Disease	84.72% (Estimated k=33)	57.4% (k=2)	67.54% (eps=1.1, min_samples=1)	
Heart Disease	64.35% (Estimated k=36)	75% (k=3)	72.52% (eps=5, min_samples=3)	

Key Findings

Unlike the article, SOM Genetic k-means improved clustering for the liver dataset, but not for the heart dataset.

Parameter Optimization

Clustering performance may be improve by tuning key parameters such as learning rate and grid size (SOM), k (K-Means), and eps/min_samples (DBSCAN).

Project Breakdown

- **Dataset Preparation**

- Find and download the datasets.
- Clean data- Use one-hot encoding for categorical features.

Baseline Clustering

- Run K-Means clustering- Choose appropriate k values.
- Run DBSCAN- Tune eps and min_samples.

Advanced Clustering

- Implement Self-Organizing Maps (SOM)- Train SOM on the dataset.
- Apply Genetic K-Means- Use SOM output as input for clustering.

Evaluate performances

- Compare K-Means, DBSCAN and som's results.
- Generate visualizations- using graphs and plots.

Present conclusions

• Summarize findings and write conclusions

Bibliography

THE ARTICLE:

A. Alsayat and H. El-Sayed, "Efficient genetic K-Means clustering for health care knowledge discovery," 2016 IEEE 14th International Conference on Software Engineering Research, Management and Applications (SERA), Towson, MD, USA, 2016, pp. 45-52, doi: 10.1109/SERA.2016.7516127.

https://ieeexplore.ieee.org/document/7516127

DATASET 1: liver disease

community with powerful tools and resources to...

k kaggle.com

04

Reference Article:

Richard Forsyth and Roy Rada. 1986. Machine learning: applications in expert systems and information retrieval. Halsted Press, USA. https://dl.acm.org/doi/abs/10.5555/6736

THANKYOUS