prior distribution. The prior has an influence by shifting probability mass density towards regions of the parameter space that are preferred *a priori*. In practice, the prior often expresses a preference for models that are simpler or more smooth. Critics of the Bayesian approach identify the prior as a source of subjective human judgment impacting the predictions.

Bayesian methods typically generalize much better when limited training data is available, but typically suffer from high computational cost when the number of training examples is large.

Example: Bayesian Linear Regression Here we consider the Bayesian estimation approach to learning the linear regression parameters. In linear regression, we learn a linear mapping from an input vector $\boldsymbol{x} \in \mathbb{R}^n$ to predict the value of a scalar $y \in \mathbb{R}$. The prediction is parametrized by the vector $\boldsymbol{w} \in \mathbb{R}^n$:

$$\hat{y} = \boldsymbol{w}^{\top} \boldsymbol{x}. \tag{5.69}$$

Given a set of m training samples $(\boldsymbol{X}^{(\text{train})}, \boldsymbol{y}^{(\text{train})})$, we can express the prediction of y over the entire training set as:

$$\hat{\boldsymbol{y}}^{(\text{train})} = \boldsymbol{X}^{(\text{train})} \boldsymbol{w}. \tag{5.70}$$

Expressed as a Gaussian conditional distribution on $\boldsymbol{y}^{(\text{train})}$, we have

$$p(\boldsymbol{y}^{(\text{train})} \mid \boldsymbol{X}^{(\text{train})}, \boldsymbol{w}) = \mathcal{N}(\boldsymbol{y}^{(\text{train})}; \boldsymbol{X}^{(\text{train})} \boldsymbol{w}, \boldsymbol{I})$$

$$\propto \exp\left(-\frac{1}{2}(\boldsymbol{y}^{(\text{train})} - \boldsymbol{X}^{(\text{train})} \boldsymbol{w})^{\top} (\boldsymbol{y}^{(\text{train})} - \boldsymbol{X}^{(\text{train})} \boldsymbol{w})\right),$$
(5.71)

where we follow the standard MSE formulation in assuming that the Gaussian variance on y is one. In what follows, to reduce the notational burden, we refer to $(X^{(\text{train})}, y^{(\text{train})})$ as simply (X, y).

To determine the posterior distribution over the model parameter vector \boldsymbol{w} , we first need to specify a prior distribution. The prior should reflect our naive belief about the value of these parameters. While it is sometimes difficult or unnatural to express our prior beliefs in terms of the parameters of the model, in practice we typically assume a fairly broad distribution expressing a high degree of uncertainty about $\boldsymbol{\theta}$. For real-valued parameters it is common to use a Gaussian as a prior distribution:

$$p(\boldsymbol{w}) = \mathcal{N}(\boldsymbol{w}; \boldsymbol{\mu}_0, \boldsymbol{\Lambda}_0) \propto \exp\left(-\frac{1}{2}(\boldsymbol{w} - \boldsymbol{\mu}_0)^{\top} \boldsymbol{\Lambda}_0^{-1}(\boldsymbol{w} - \boldsymbol{\mu}_0)\right),$$
(5.73)