Coupling a single electron on superfluid helium to a superconducting resonator

Gerwin Koolstra 1, Ge Yang & David I. Schuster 1*

1 The James Franck Institute and Department of Physics, University of Chicago, Chicago, IL 60637, USA.

electron-on-helium quantum bit

Schematic view of SEs on a helium film and major image charges

Small electron-phonon coupling → low dissipation

Monarkha, Y. & Kono, K. Two-Dimensional Coulomb Liquids and Solids (Springer-Verlag, Berlin, 2004).

Electron crystallites floating on superfluid helium François Peeters

Some ground state configurations

Detection of electrons

Unloading & loading of the dot

Single electron properties

Electron-photon coupling

$$g/2\pi = \mathbf{d} \cdot \mathbf{E} = \frac{1}{2} e E_y f_0 \sqrt{\frac{Z}{m_e \omega_e}}$$

$$E_y \approx 2 \times 10^5 \text{ V/m}$$
 $Z = 90 \Omega$

$$f_0 = \omega_0 / 2\pi = 6.45$$
 GHz

Contributions to single electron linewidth

$$\gamma = \frac{\gamma_1}{2} + \gamma_{\varphi}$$

transverse decay γ_1 dephasing rate γ_{φ}

Type	Mechanism	Magnitude
	Voltage noise from the gates	0.5 MHz
Dephasing	Helium vibrations in the dot	$110~\mathrm{MHz}$
Dephasing	Reservoir electrons on the resonator	$20~\mathrm{MHz}$
Transverse	Microwave leakage through gates	$< 1 \mathrm{\ MHz}$

Single electron resonator spectroscopy

coupling strength:

$$g/2\pi = 4.8 \pm 0.3 \text{ MHz}$$

total electron linewidth:

$$\gamma/2\pi = 77 \pm 19 \text{ MHz}$$

Orbital frequencies of small electron clusters

Cavity transmission

$$\frac{A}{A_0} = \left| \frac{\sqrt{\kappa_1 \kappa_2}}{i(\kappa_1 + \kappa_2 + \kappa_{\text{int}})/2 - \chi(\omega_0)} \right|$$

susceptibility
$$\chi(\omega_0) = \frac{g^2}{(\omega_0 - \omega_{\rm e}) + i\gamma}$$

strongest-coupled orbital frequency