Section 2.1

Exercise 5

 $\forall x (x \in A \leftrightarrow x \in B) \leftrightarrow A = B$

- a) A = B since A contains all elements of B and vice versa
- b) $((1)) \in A \land ((1)) \in B$ but $(1) \notin A \rightarrow A \neq B$
- c) \emptyset is an empty set, and is not equal to a set containing an empty set.

Exercise 24

- a) No. The power set of a set always include a set of an empty set: $P(\emptyset) = (\emptyset)$ meaning a power set of a set is never empty. $\forall A((\emptyset) \in P(A)) \to P(A) \neq \emptyset$
- b) Yes. $P((a)) = (\emptyset, (a))$
- c) No. $P((\emptyset, a)) = (\emptyset, (a), (\emptyset), (a, \emptyset))$ The set in question is missing a (\emptyset)
- d) Yes. $P((a,b)) = (\emptyset, (a), (b), (a,b))$

Section 2.2

Exercise 18

c) $(A - B) \equiv \forall x \mid x \in A \land x \notin B$

$$(A-B)-C \equiv \forall x \mid x \in (A-B) \land x \notin C$$

$$(A - B) - C \equiv \forall x \mid x \in A \land x \notin B \land x \notin C$$

$$(A - C) \equiv \forall x \mid x \in A \land x \notin C$$

Since all elements of (A - B) - C are in (A - C), $(A - B) - C \subseteq (A - C)$

d) $(A - C) \equiv \forall x \mid x \in A \land x \notin C$

$$(C - B) \equiv \forall x \mid x \in C \land x \notin B$$

$$(A-C) \cap (C-B) \equiv \forall x \mid x \in (A-C) \land x \in (C-B)$$

$$(A - C) \cap (C - B) \equiv \forall x \mid (x \in A \land x \notin C) \land (x \in C \land x \notin B)$$

Rewriting the paranthesis we get

$$(A-C)\cap(C-B)\equiv\forall x\mid x\in A\land\underbrace{(x\notin C\land x\in C)}_{x\in\emptyset}\land x\notin B$$

Clearly,
$$(A-C)\cap (C-B)=\emptyset$$

Exercise 46

Section 2.3

Exercise 12

- a)
- b)

Exercise 38

- a)
- b)

Exercise 42

- a)
- b)

Section 2.4

Exercise 12

- a) c
- b)

Exercise 33

- a) d
- b)

Section 2.5

Exercise 16

a)