Risks

C8

exceed warming of 4°C (>50%)

Dynamic interactions between climate-related hazards, exposure and vulnerability of the affected human society, species, or ecosystems result in risks arising from climate change. AR6 assesses key risks across sectors and regions as well as providing an updated assessment of the Reasons for Concern (RFCs) – five globally aggregated categories of risk that evaluate risk accrual with increasing global surface temperature. Risks can also arise from climate change mitigation or adaptation responses when the response does not achieve its intended objective, or when it results in adverse effects for other societal objectives. {WGII SPM A, WGII Figure SPM.3, WGII Box TS.1, WGII Figure TS.4; SR1.5 Figure SPM.2; SRCCL Figure SPM.2; SROCC Errata Figure SPM.3} (3.1.2, Cross-Section Box.2, Figure 1; Figure 3.3)

[START CROSS-SECTION BOX.2, FIGURE 1 HERE]

Scenarios and warming levels structure our understanding across the cause-effect chain from emissions to climate change and risks

a) AR6 integrated assessment framework on future climate, impacts and mitigation

^{*} The terminology SSPx-y is used, where 'SSPx' refers to the Shared Socio-economic Pathway or 'SSP' describing the socio-economic trends underlying the scenario, and 'y' refers to the approximate level of radiative forcing (in watts per square metre, or W m⁻²) resulting from the scenario in the year 2100.

RCP 8.5

Very high (SSP5-8.5

Subject to Copyedit p.31

** The AR5 scenarios (RCPy), which partly inform the AR6 WGI and WGII assessments, are indexed to a similar set of approximate 2100 radiative forcing levels (in Wm⁻²). The SSP scenarios cover a broader range of GHG and air pollutant futures than the RCPs. They are similar but not identical, with differences in concentration trajectories for different GHGs. The overall radiative forcing tends to be higher for the SSPs compared to the RCPs with the same label (*medium confidence*). {WGI TS.1.3.1}

*** Limited overshoot refers to exceeding 1.5°C global warming by up to about 0.1°C, high overshoot by 0.1°C-0.3°C, in both cases for up to several decades.

Cross-Section Box.2, Figure 1: Schematic of the AR6 framework for assessing future greenhouse gas emissions, climate change, risks, impacts and mitigation. Panel (a) The integrated framework encompasses socio-economic development and policy, emissions pathways and global surface temperature responses to the five scenarios considered by WGI (SSP1-1.9, SSP1-2.6, SSP2-4.5, SSP3-7.0, and SSP5-8.5) and eight global mean temperature change categorisations (C1–C8) assessed by WGIII, and the WGII risk assessment. The dashed arrow indicates that the influence from impacts/risks to socio-economic changes is not yet considered in the scenarios assessed in the AR6. Emissions include GHGs, aerosols, and ozone precursors. CO₂ emissions are shown as an example on the left. The assessed global surface temperature changes across the 21st century relative to 1850–1900 for the five GHG emissions scenarios are shown as an example in the centre. *Very likely* ranges are shown for SSP1-2.6 and SSP3-7.0. Projected temperature outcomes at 2100 relative to 1850–1900 are shown for C1 to C8 categories with median (line) and the combined *very likely* range across scenarios (bar). On the right, future risks due to increasing warming are represented by an example 'burning ember' figure (see 3.1.2 for the definition of RFC1). Panel (b) Description and relationship of scenarios considered across AR6 Working Group reports. Panel (c) Illustration of risk arising from the interaction of hazard (driven by changes in climatic impact-drivers) with vulnerability, exposure and response to climate change. {WGI TS1.4, Figure 4.11; WGII Figure 1.5, WGII Figure 14.8; WGIII Table SPM.2, Figure 3.11}

[END CROSS-SECTION BOX.2 FIGURE 1 HERE]

[END CROSS-SECTION BOX.2 HERE]

Subject to Copyedit p.32

Section 3: Long-Term Climate and Development Futures

3.1 Long-Term Climate Change, Impacts and Related Risks

Future warming will be driven by future emissions and will affect all major climate system components, with every region experiencing multiple and co-occurring changes. Many climate-related risks are assessed to be higher than in previous assessments, and projected long-term impacts are up to multiple times higher than currently observed. Multiple climatic and non-climatic risks will interact, resulting in compounding and cascading risks across sectors and regions. Sea level rise, as well as other irreversible changes, will continue for thousands of years, at rates depending on future emissions. (high confidence)

3.1.1 Long-term Climate Change

The uncertainty range on assessed future changes in global surface temperature is narrower than in the AR5. For the first time in an IPCC assessment cycle, multi-model projections of global surface temperature, ocean warming and sea level are constrained using observations and the assessed climate sensitivity. The *likely* range of equilibrium climate sensitivity has been narrowed to 2.5°C–4.0°C (with a best estimate of 3.0°C) based on multiple lines of evidence⁵⁵, including improved understanding of cloud feedbacks. For related emissions scenarios, this leads to narrower uncertainty ranges for long-term projected global temperature change than in AR5. {WGI A.4, WGI Box SPM.1, WGI TS.3.2, WGI 4.3}

Future warming depends on future greenhouse gas (GHG) emissions, with cumulative net CO₂ dominating. The assessed best estimates and *very likely* ranges of warming for 2081–2100 with respect to 1850–1900 vary from 1.4°C [1.0-1.8°C] in the very low GHG emissions scenario (SSP1-1.9) to 2.7°C [2.1°C–3.5°C] in the intermediate GHG emissions scenario (SSP2-4.5) and 4.4°C [3.3°C–5.7°C] in the very high GHG emissions scenario (SSP5-8.5)⁵⁶. {WGI SPM B.1.1, WGI Table SPM.1, WGI Figure SPM.4} (Cross-Section Box.2, Figure 1)

Modelled pathways consistent with the continuation of policies implemented by the end of 2020 lead to global warming of 3.2 [2.2-3.5]°C (5–95% range) by 2100 (medium confidence) (see also Section 2.3.1). Pathways of >4°C (≥50%) by 2100 would imply a reversal of current technology and/or mitigation policy trends (medium confidence). However, such warming could occur in emissions pathways consistent with policies implemented by the end of 2020 if climate sensitivity or carbon cycle feedbacks are higher than the best estimate (high confidence). {WGIII SPM C.1.3}

Global warming will continue to increase in the near term in nearly all considered scenarios and modelled pathways. Deep, rapid and sustained GHG emissions reductions, reaching net zero CO₂ emissions and including strong emissions reductions of other GHGs, in particular CH₄, are necessary to limit warming to 1.5°C (>50%) or less than 2°C (>67%) by the end of century (high confidence). The best estimate of reaching 1.5°C of global warming lies in the first half of the 2030s in most of the considered scenarios and modelled pathways⁵⁷. In the very low GHG emissions scenario (SSP1-1.9), CO₂ emissions reach net zero around 2050 and the best-estimate end-of-century warming is 1.4°C, after a temporary overshoot (see Section 3.3.4) of no more than 0.1°C above 1.5°C global warming. Global warming of 2°C will be exceeded during the 21st century unless deep reductions in CO₂ and other GHG emissions occur in the coming decades.

Subject to Copyedit p.33

.

⁵⁵ Understanding of climate processes, the instrumental record, paleoclimates and model-based emergent constraints (see Annex I: Glossary). {WGI SPM footnote 21}

 $^{^{56}}$ The best estimates [and *very likely* ranges] for the different scenarios are: 1.4°C [1.0°C–1.8°C] (SSP1-1.9); 1.8°C [1.3°C–2.4°C] (SSP1-2.6); 2.7°C [2.1°C–3.5°C] (SSP2-4.5); 3.6°C [2.8°C–4.6°C] (SSP3-7.0); and 4.4°C [3.3°C–5.7°C] (SSP5-8.5). {WGI Table SPM.1} (CSB.2)

⁵⁷ In the near term (2021–2040), the 1.5°C global warming level is *very likely* to be exceeded under the very high GHG emissions scenario (SSP5-8.5), *likely* to be exceeded under the intermediate and high GHG emissions scenarios (SSP2-4.5, SSP3-7.0), *more likely than not* to be exceeded under the low GHG emissions scenario (SSP1-2.6) and *more likely than not* to be reached under the very low GHG emissions scenario (SSP1-1.9). In all scenarios considered by WGI except the very high emissions scenario, the midpoint of the first 20-year running average period during which the assessed global warming reaches 1.5°C lies in the first half of the 2030s. In the very high GHG emissions scenario, this mid-point is in the late 2020s. Median five-year interval at which a 1.5°C global warming level is reached (50% probability) in categories of modelled pathways considered in WGIII is 2030-2035. {WGI SPM B.1.3, WGI Cross-Section Box TS.1, WGIII Table 3.2} (Cross-Section Box.2)

Deep, rapid and sustained reductions in GHG emissions would lead to improvements in air quality within a few years, to reductions in trends of global surface temperature discernible after around 20 years, and over longer time periods for many other climate impact-drivers⁵⁸ (*high confidence*). Targeted reductions of air pollutant emissions lead to more rapid improvements in air quality compared to reductions in GHG emissions only, but in the long term, further improvements are projected in scenarios that combine efforts to reduce air pollutants as well as GHG emissions (*high confidence*)⁵⁹. {WGI SPM B.1, WGI SPM B.1.3, WGI SPM D.1, WGI SPM D.2, WGII Figure SPM.4, WGI Table SPM.1, WGI Cross-Section Box TS.1; WGIII SPM C.3, WGIII Table SPM.2, WGIII Figure SPM.5, WGIII Box SPM.1 Figure 1, WGIII Table 3.2} (Table 3.1, Cross-Section Box 2, Figure 1)

Changes in short-lived climate forcers (SLCF) resulting from the five considered scenarios lead to an additional net global warming in the near and long term (high confidence). Simultaneous stringent climate change mitigation and air pollution control policies limit this additional warming and lead to strong benefits for air quality (high confidence). In high and very high GHG emissions scenarios (SSP3-7.0 and SSP5-8.5), combined changes in SLCF emissions, such as CH₄, aerosol and ozone precursors, lead to a net global warming by 2100 of likely 0.4°C–0.9°C relative to 2019. This is due to projected increases in atmospheric concentration of CH₄, tropospheric ozone, hydrofluorocarbons and, when strong air pollution control is considered, reductions of cooling aerosols. In low and very low GHG emissions scenarios (SSP1-1.9 and SSP1-2.6), air pollution control policies, reductions in CH₄ and other ozone precursors lead to a net cooling, whereas reductions in anthropogenic cooling aerosols lead to a net warming (high confidence). Altogether, this causes a likely net warming of 0.0°C–0.3°C due to SLCF changes in 2100 relative to 2019 and strong reductions in global surface ozone and particulate matter (high confidence). {WGI SPM D.1.7, WGI Box TS.7} (CSB.2)

Continued GHG emissions will further affect all major climate system components, and many changes will be irreversible on centennial to millennial time scales. Many changes in the climate system become larger in direct relation to increasing global warming. With every additional increment of global warming, changes in extremes continue to become larger. Additional warming will lead to more frequent and intense marine heatwaves and is projected to further amplify permafrost thawing and loss of seasonal snow cover, glaciers, land ice and Arctic sea ice (high confidence). Continued global warming is projected to further intensify the global water cycle, including its variability, global monsoon precipitation⁶⁰, and very wet and very dry weather and climate events and seasons (high confidence). The portion of global land experiencing detectable changes in seasonal mean precipitation is projected to increase (medium confidence) with more variable precipitation and surface water flows over most land regions within seasons (high confidence) and from year to year (medium confidence). Many changes due to past and future GHG emissions are irreversible⁶¹ on centennial to millennial time scales, especially in the ocean, ice sheets and global sea level (see 3.1.3). Ocean acidification (virtually certain), ocean deoxygenation (high confidence) and global mean sea level (virtually certain) will continue to increase in the 21st century, at rates dependent on future emissions. {WGI SPM B.2, WGI SPM B.2.2, WGI SPM B.2.3, WGI SPM B.2.5, WGI SPM B.3, WGI SPM B.3.1, WGI SPM B.3.2, WGI SPM B.4, WGI SPM B.5, WGI SPM B.5.1, WGI SPM B.5.3, WGI Figure SPM.8} (Figure 3.1)

With further global warming, every region is projected to increasingly experience concurrent and multiple changes in climatic impact-drivers. Increases in hot and decreases in cold climatic impact-drivers, such as temperature extremes, are projected in all regions (high confidence). At 1.5°C global warming, heavy precipitation and flooding events are projected to intensify and become more frequent in most regions in Africa, Asia (high confidence), North America (medium to high confidence) and Europe (medium confidence). At 2°C or above, these changes expand to more regions and/or become more significant (high confidence), and more frequent and/or severe agricultural and ecological droughts are projected in Europe, Africa, Australasia and North, Central and South America (medium to high confidence). Other projected regional changes include intensification of tropical cyclones and/or extratropical storms (medium confidence), and increases in aridity and fire weather⁶² (medium to high confidence). Compound heatwaves and droughts

Subject to Copyedit p.34

⁵⁸ See Cross-Section Box.2.

⁵⁹ Based on additional scenarios.

⁶⁰ Particularly over South and South East Asia, East Asia and West Africa apart from the far west Sahel {WGI SPM B.3.3}

⁶¹ See Annex I: Glossary.

⁶² See Annex I: Glossary.