PATENT ABSTRACTS OF JAPAN

(11)Publication number:

06-100882

(43)Date of publication of application: 12.04.1994

(51)Int.Cl.

C10M169/04 C09K 5/04 //(C10M169/04 C10M105:32 C10M105:18 C10M139:00 C10M105:48 C10M125:26 C10M107:34 C10N 10:02 C10N 30:06 C10N 40:30 C10N 60:14

(21)Application number: 05-193572

(22)Date of filing:

04.08.1993

(71)Applicant: NIPPON OIL CO LTD

(72)Inventor: SASAKI UMEKICHI

SUNAMI MOTOJI HASEGAWA HIROSHI

(30)Priority

Priority number: 04208933

Priority date: 05.08.1992

Priority country: JP

(54) OIL COMPOSITION FOR REFRIGERATOR USING FLUORINATED ALKANE REFRIGERANT, AND REFRIGERATOR FLUID COMPOSITION CONTAINING THE COMPOSITION

(57)Abstract:

PURPOSE: To obtain a refrigerator oil composition useful as an oil for a refrigerant-compressing refrigerator using a fluorinated alkane refrigerant and excellent in abrasion resistance by incorporating a specified amount of a boron compound as the essential constituent into a base oil composed mainly of an oxygen compound.

CONSTITUTION: A base oil composed mainly of an oxygen compound (e.g. a tetraester of a minute of 2-methylhexanoic acid and 2-ethylhexanoic acid with pentaerythritol) is mixed with an essential constituent comprising a boron compound (e.g. succinimide modified with boric acid) in an amount of 0.005-5.0wt.% based on the whole composition.

(19)日本国特許庁(JP) (12) 公開特許公報(A)

(11)特許出願公開番号

特開平6-100882

(43)公開日 平成6年(1994)4月12日

(51)Int.Cl.⁵

識別記号

庁内整理番号

FΙ

技術表示箇所

C 1 0 M 169/04 C09K 5/04

// (C 1 0 M 169/04

105:32 105:18 9159-4H

審査請求 未請求 請求項の数2(全 9 頁) 最終頁に続く

(21)出願番号

特願平5-193572

平成5年(1993)8月4日

(22)出願日

(31)優先権主張番号 特願平4-208933

(32)優先日

平4(1992)8月5日

(33)優先権主張国

日本(JP)

(71)出願人 000004444

日本石油株式会社

東京都港区西新橋1丁目3番12号

(72)発明者 佐々木 梅吉

神奈川県横浜市中区千鳥町8番地 日本石

油株式会社中央技術研究所内

(72)発明者 角南 元司

神奈川県横浜市中区千鳥町8番地 日本石

油株式会社中央技術研究所内

(72)発明者 長谷川 宏

神奈川県横浜市中区千鳥町8番地 日本石

油株式会社中央技術研究所内

(74)代理人 弁理士 若林 忠

(54)【発明の名称】 フッ化アルカン冷媒用冷凍機油組成物、及び同組成物を含有する冷凍機用流体組成物

(57)【要約】

【目的】 フッ化アルカンを冷媒として用いる冷媒圧縮 型冷凍機用の高い耐摩耗性を与える冷凍機油組成物を提 供する。

【構成】 ポリグリコール、エステル等の含酸素化合物 を主成分とする基油に、必須成分としてホウ素化合物を 組成物全量基準で0.005~5.0重量%含有させ る。

【特許請求の範囲】

【請求項1】 含酸素化合物を主成分とする基油に、必須成分としてホウ素化合物を組成物全量基準で0.005~5.0重量%含有させてなるフッ化アルカン冷媒用冷凍機油組成物。

【請求項2】 フッ化アルカンからなる冷媒100重量 部に対して請求項1に記載の冷凍機油組成物1-500 重量部を配合してなる冷凍機用流体組成物。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は、冷凍機油組成物及び同組成物と冷媒との混合物である冷凍機用流体組成物に関し、更に詳述すればフッ化アルカン系冷媒を使用する圧縮式冷凍機に用いる潤滑性の優れた冷凍機油組成物及び流体組成物に関する。

[0002]

【従来の技術】従来、CFC-12やHCFC-22のような塩素含有冷媒を使用する冷凍機の潤滑油には、鉱油、アルキルベンゼン等の基油、またはそれらの混合物に、正りん酸エステルおよび/または亜りん酸エステル(特開昭54-91502)、トリオレイルフォスフェート(特開昭51-86506)、亜りん酸エステル(特開昭54-139608)、トリクレジルフォスフェートおよび/またはトリフェニルフォスファイト(特開昭55-27372)、正りん酸エステルおよび酸性亜りん酸エステル(特開昭55-92799)、有機モリブデン化合物および酸性りん酸エステル(特開昭59-75995)、チオフォスフェート(特開昭61-293286)等を添加したものが知られている。

【0003】しかしながら、これらの潤滑油のうち、亜 りん酸エステルを添加したものは、亜りん酸エステル が、冷凍機システム内に残存または進入する水分と反応 してりん酸を生成し、このりん酸がシステム内の金属を 腐食させる欠点があった。

【0004】また、チオフォスフェートを添加した潤滑油は、チオフォスフェートの熱分解生成物によってシステムの銅製配管やハーメチック型コンプレッサのモータ巻線等を腐食させる欠点があった。

【0005】これら従来の技術は、CFC-11、CFC-12、CFC-115、HCFC-22等の塩素含有冷媒とともに用いられることを前提とするものである。即ち、本間らが日本潤滑学会第34期全国大会(予稿集(1989)D・9)で報告しているように、これら塩素含有冷媒を用いる冷凍機においては、システム内に多量に存在する冷媒の分子に化学結合している塩素自体が極圧剤として作用しているため、添加剤の極圧剤としての作用は特に重要ではない。このため、前記問題点があったにしろ、正りん酸エステル、亜りん酸エステル、酸性りん酸エステル、酸性更りん酸エステル等の単独の添加で潤滑性は十分であった。

【0006】ところが、オゾン層破壊の元凶であるとさ れ規制の対象となっているCFCの代替冷媒であるフッ 化アルカン冷媒を用いる圧縮式冷凍機においては事情が 異なる。即ち、分子中に塩素原子を持たないHFC-3 2, HFC-125, HFC-134a, HFC-15 2 a などのフッ化アルカン冷媒は極圧剤的な作用を全く 持たないこと、フッ化アルカン用冷凍機油としては冷媒 との相溶性を考慮してカルボン酸エステル油、ポリグリ コール油、炭酸エステル等の含酸素系合成油などの極性 の強い基油を用いるようになったため、極圧剤が作用し 難くなったこと、最近の自動車用空調システムの圧縮機 は軽量化・省エネルギー化を図るため摺動部分にアルミ ニウム合金(以下単にアルミニウムという)を多用する ようになり、これに伴ない鉄対アルミニウムあるいはア ルミニウム対アルミニウムの摺動部分が存在するように なったが、これらの対する極圧剤はまだ充分検討されて いないこと、等の理由から、従来鉱油系冷凍機油に効果 があったりん酸エステル系添加剤は、フッ化アルカン冷 媒系で用いた場合は十分な耐摩耗性効果を示していな い。

[0007]

【発明が解決しようとする課題】本発明者らは、フッ化アルカンを冷媒とし、エステル系油またはポリアルキレングリコール系油等を冷凍機油として使用する場合の潤滑性について鋭意研究を重ねた結果、冷凍機油にホウ素化合物を含有せしめると、実用に供し得る優れた耐摩耗性を発揮することを見いだし本発明を完成するに至った。

【0008】従って、本発明はフッ化アルカン冷媒を用いるエステル系油、ネオ酸エステル系油、炭酸エステル系油、炭酸エステル系油、ポリアルキレングリコール系油等の含酸素化合物を基油とする冷凍機油の欠点である潤滑性の低さを克服した、フッ化アルカンを冷媒として用いる冷媒圧縮型冷凍機用の耐摩耗性の優れた冷凍機油組成物及び同組成物と冷媒との混合物である冷凍機用流体組成物を提供することを目的とする。

[0009]

【課題を解決するための手段】上記目的を達成するために本発明は、含酸素化合物を主成分とする基油に、必須成分としてホウ素化合物を組成物全量基準で0.005~5.0重量%含有させてフッ化アルカン冷媒用冷凍機油組成物を構成するものである。

【0010】また本発明は、フッ化アルカンからなる冷 媒100重量部に対して前記の冷凍機油組成物1-50 の重量部を配合してなる冷凍機用流体組成物である。

【0011】以下、本発明を詳細に説明する。

【0012】この発明における冷凍機油組成物に用いる 基油は、含酸素化合物を主成分とするものである。含酸 素化合物としては、冷凍機油の基油として使用されてい るものであるならば、そのすべての使用が可能である。 具体的には、エステル、ポリグリコール、ポリフェニル エーテル、シリケート、ポリシロキサン、パーフロロエ ーテルなどが例示されるが、エステルあるいはポリグリ コールが特に好ましく用いられる。

【0013】エステルとしては、二塩基酸エステル、ポリオールエステル、コンプレックスエステル、ポリオール炭酸エステルなどが例示される。

【0014】二酸化エステルとしては、グルタル酸、アジピン酸、ピメリン酸、スベリン酸、アゼライン酸、セバシン酸等の炭素数5~10の二塩基酸と、メタノール、エタノール、プロパノール、ブタノール、ペンタノール、ヘキサノール、ヘプタノール、オクタノール、ノナノール、デカノール、ウンデカノール、ドデカノール、トリデカノール、テトラデカノール、ペンタデカノールなどの直鎖または分枝アルキル基を有する炭素数1~15の一価アルコールとのエステルが好ましく用いられる。具体的には例えば、ジトリデシルグルタレート、ジ2-エチルヘキシルアジペート、ジイソデシルアジペート、ジトリデシルアジペート、ジョーエチルヘキシルセバケートなどが挙げられる。

【0015】ポリオールエステルとしては、ジオールあ るいは水酸基を3~20個有するポリオールと、炭素数 6~20の脂肪酸とのエステルが好ましく用いられる。 ここで、ジオールとしては、具体的には例えば、エチレ ングリコール、1,3-プロパンジオール、プロピレン グリコール、1,4-ブタンジオール、1,2-ブタン ジオール、2-メチル-1, 3-プロパンジオール、 1, 5-ペンタンジオール、ネオペンチルグリコール、 1,6-ヘキサンジオール、2-エチル-2-メチルー 1, 3ープロパンジオール、1, 7ーヘプタンジオー ル、2-メチル-2-プロピル-1,3-プロパンジオ ール、2,2ージエチルー1,3ープロパンジオール、 1,8-オクタンジオール、1,9-ノナンジオール、 1,10-デカンジオール、1,11-ウンデカンジオ ール、1,12ードデカンジオールなどが挙げられる。 ポリオールとしては、具体的には例えば、トリメチロー ルエタン、トリメチロールプロパン、トリメチロールブ タン、ジー(トリメチロールプロパン)、トリー(トリ メチロールプロパン)、ペンタエリスリトール、ジー (ペンタエリスリトール)、トリー(ペンタエリスリト ール)、グリセリン、ポリグリセリン(グリセリンの2 ~20量体)、1、3、5-ペンタントリオール、ソル ビトール、ソルビタン、ソルビトールグリセリン縮合 物、アドニトール、アラビトール、キシリトール、マン ニトールなどの多価アルコール、キシロース、アラビノ ース、リボース、ラムノース、グルコース、フルクトー ス、ガラクトース、マンノース、ソルボース、セロビオ ース、マルトース、イソマルトース、トレハロース、シ ュクロース、ラフィノース、ゲンチアノース、メレジト ースなどの糖類、ならびにこれらの部分エーテル化物、

およびメチルグルコシド(配糖体)などが挙げられる。 脂肪酸としては、具体的には例えば、ヘキサン酸、ヘプ タン酸、オクタン酸、ノナン酸、デカン酸、ウンデカン 酸、ドデカン酸、トリデカン酸、テトラデカン酸、ペン タデカン酸、ヘキサデカン酸、ヘプタデカン酸、オクタ デカン酸、ノナデカン酸、エイコサン酸、オレイン酸な どの直鎖または分枝のもの、あるいはα炭素原子が4級 であるいわゆるネオ酸などが挙げられる。ポリオールエ ステルは、遊離の水酸基を有していてもよい。なお、特 に好ましいものは、ネオペンチルグリコール、トリメチ ロールエタン、トリメチロールプロパン、トリメチロー ルブタン、ジー(トリメチロールプロパン)、トリー (トリメリロールプロパン)、ペンタエリスリトール、 ジー (ペンタエリスリトール)、トリー (ペンタエリス リトール) などのヒンダードアルコールのエステルで、 具体的には例えば、トリメチロールプロパンカプリレー ト、トリメチロールプロパンペラルゴネート、ペンタエ リスリトール2-エチルヘキサノエート、ペンタエリス リトールペラルゴネートなどが挙げられる。

【0016】コンプレックスエステルとは、脂肪酸および二塩基酸と、一価アルコールおよびポリオールとのエステルであって、これらの脂肪酸、二塩基酸、一価アルコール、ポリオールとしては、二塩基酸エステルおよびポリオールエステルのところで例示したものと同様のものが使用できる。

【0017】ポリオール炭酸エステルとしては、炭酸とポリオールとのエステルであって、ここでいうポリオールとしては、ポリオールエステルのところで例示したものと同様のもの、ジオールを単独重合あるいは共重合したポリグリコール、あるいは先に例示したポリオールにポリグリコールを付加したものなどが使用できる。

【0018】ポリグリコールとしては、ポリアルキレン グリコール、そのエーテル化物、およびそれらの変性化 合物等などが好ましく使用される。ポリアルキレングリ コールとしては、ジオールを単独重合あるいは共重合し たものが用いられ、ジオールとしては、ポリオールエス テルのところで例示したものと同様のものが使用でき る。また、ポリアルキレングリコールの水酸基をエーテ ル化したものも使用できる。ポリアルキレングリコール をエーテル化するための導入基の具体例としては、モノ メチルエーテル、モノエチルエーテル、モノプロピルエ ーテル、モノブチルエーテル、モノペンチルエーテル、 モノヘキシルエーテル、モノヘプチルエーテル、モノオ クチルエーテル、モノノニルエーテル、モノデシルエー テル、ジメチルエーテル、ジエチルエーテル、ジプロピ ルエーテル、ジブチルエーテル、ジペンチルエーテル、 ジヘキシルエーテル、ジヘプチルエーテル、ジオクチル エーテル、ジノニルエーテル、ジデシルエーテルなどが 挙げられる。ポリグリコールの変性化合物としては、ポ リオールのポリアルキレングリコール付加物、あるいは そのエーテル化物などが挙げられる。ここでいうポリオールとしては、ポリオールエステルのところで例示したものと同様のものが使用できる。なお、上記ポリアルキレングリコールにおいて、構造の異なったジオールが共重合している場合、オキシアルキレン基の重合形式に特に制限はなく、ランダム共重合していても、ブロック共重合していてもよい。

【0019】本発明の組成物に使用するポリグリコールの分子量は特に限定されるものではないが、圧縮機の密封性をより向上させる点から数平均分子量が200~4000ものが好ましく、数平均分子量が300~300のものがより好ましい。

【0020】これらの各種基油は、1種のみの使用も可能であり、2種以上の混合使用も可能である。なお、本発明に係わる含酸素化合物の好ましい動粘度は、100 ℃において $2\sim150$ c S t 、好ましくは $4\sim100$ c S t である。

【0021】本発明の組成物において、基油としては、 上記含酸素化合物を単独で用いてもよい。さらに、必要 に応じてCFC-12、HCFC-22等の塩素含有冷 媒用冷凍機油に使用されている鉱油や合成油等を混合使 用しても差し支えない。鉱油としては、例えば、原油を 常圧蒸留および減圧蒸留して得られた潤滑油留分を、溶 剤脱れき、溶剤抽出、水素化分解、溶剤脱ろう、接触脱 ろう、水素化精製、硫酸洗浄、白土処理等の精製処理を 適宜組み合わせて精製したパラフィン系、ナフテン系な どの基油が使用できる。また、合成油としては、例え ば、ポリα-オレフィン(ポリブテン、1-オクテンオ リゴマー、1-デセンオリゴマーなど)、アルキルベン ゼン、アルキルナフタレン、またはこれらの2種以上の 混合物などを使用することができる。この場合、上記含 酸素化合物は、基油全量に対し、50重量%以上、好ま しくは70重量%以上含まれていることが望ましい。ま た、この場合基油の好ましい動粘度の範囲は、100℃ において2. 0~150cStである。

【0022】本発明の組成物は、上記の基油に、ホウ素化合物が組成物全量基準で0.005~5.0重量%、好ましくは0.01~2.0重量%含有されていることが必要である。含有量が上記の範囲に達しない場合には、耐摩耗性の付与が劣る。含有量が上記の範囲を越える場合にはその含有量に比例して効果を生じない。

【0023】上記基油にホウ素化合物を含有させる方法は単に混合するだけもよいが、基油への溶解性を高める目的で本発明に係るホウ素化合物を溶媒にあらかじめ溶解または分散させ、この溶液あるいは分散液を混合することにより含有させることもできる。この溶剤としては、1価アルコール、グリコール、セロソルブ類などが使用できる。具体的には例えば、メチルアルコール、エチルアルコール、プロピルアルコール、イソプロピルアルコール、nーブチルアルコール、イソブチルアルコール、nーブチルアルコール、イソブチルアルコー

ル、sーブチルアルコール、tーブチルアルコール、ペ ンチルアルコール、ヘキシルアルコール、ヘプチルアル コール、オクチルアルコール、ノニルアルコール、デシ ルアルコール、エチレングリコール、ジエチレングリコ ール、トリエチレングリコール、プロピレングリコー ル、ジプロピレングリコール、トリプロピレングリコー ル、グリセリン、エチレングリコールモノメチルエーテ ル、エチレングリコールジメチルエーテル、エチレング リコールモノエチルエーテル、エチレングリコールジエ チルエーテル、エチレングリコールモノプロピルエーテ ル、エチレングリコールジプロピルエーテル、エチレン グリコールモノブチルエーテル、エチレングリコールジ ブチルエーテル、ジエチレングリコールモノメチルエー テル、ジエチレングリコールジメチルエーテル、ジエチ レングリコールモノエチルエーテル、ジエチレングリコ ールジエチルエーテル、ジエチレングリコールモノプロ ピルエーテル、ジエチレングリコールジプロピルエーテ ル、ジエチレングリコールモノブチルエーテル、ジエチ レングリコールジブチルエーテル、トリエチレングリコ ールモノメチルエーテル、トリエチレングリコールジメ チルエーテル、トリエチレングリコールモノエチルエー テル、トリエチレングリコールジエチルエーテル、トリ エチレングリコールモノプロピルエーテル、トリエチレ ングリコールジプロピルエーテル、トリエチレングリコ ールモノブチルエーテル、トリエチレングリコールジブ チルエーテル、プロピレングリコールモノメチルエーテ ル、プロピレングリコールジメチルエーテル、プロピレ ングリコールモノエチルエーテル、プロピレングリコー ルジエチルエーテル、プロピレングリコールモノプロピ ルエーテル、プロピレングリコールジプロピルエーテ ル、プロピレングリコールモノブチルエーテル、プロピ レングリコールジブチルエーテル、ジプロピレングリコ ールモノメチルエーテル、ジプロピレングリコールジメ チルエーテル、ジプロピレングリコールモノエチルエー テル、ジプロピレングリコールジエチルエーテル、ジプ ロピレングリコールモノプロピルエーテル、ジプロピレ ングリコールジプロピルエーテル、ジプロピレングリコ ールモノブチルエーテル、ジプロピレングリコールジブ チルエーテル、トリプロピレングリコールモノメチルエ ーテル、トリプロピレングリコールジメチルエーテル、 トリプロピレングリコールモノエチルエーテル、トリプ ロピレングリコールジエチルエーテル、トリプロピレン グリコールモノプロピルエーテル、トリプロピレングリ コールジプロピルエーテル、トリプロピレングリコール モノブチルエーテル、トリプロピレングリコールジブチ ルエーテルなどが挙げられる。

【0024】 冷媒を使用する際において、本発明に係るホウ素化合物の冷媒への混合量は任意であるが、例えば溶媒とホウ素化合物の合計量に対し0.1~50重量%、好ましくは1~10重量%の量で混合することがで

きる。

【0025】本発明で使用されるホウ素化合物としては、例えば二塩基酸イミド、アミノアミド、ベンジルアミン、ポリアルケニルアミン等の含窒素化合物、または高級アルコールエステル化合物等をホウ酸変性した化合物;ホウ酸エステル;ホウ酸のアルカリ金属塩、アルカリ土類金属塩またはアンモニウム塩;およびアルカリ(土類)金属ホウ酸塩を含有した油溶性塩、およびこれらの混合物などが挙げられる。

【0026】二塩基酸イミドとしては、こはく酸イミド、またはその誘導体が好ましく用いられる。具体的には分子量300~3000のポリブテン等のポリオレフィンを無水マレイン酸と反応させた後、テトラエチレンペンタミンなどのポリアミンを用いてイミド化したもの、あるいは得られたイミドにフタル酸、トリメリット酸、ピロメリット酸などの芳香族ポリカルボン酸を作用させて、残りのアミノ基を一部アミド化したものなどが挙げられる。ポリアミンを用いてイミド化したものは、ポリアミンの一端に無水マレイン酸が付加した、いわゆるモノタイプ、およびポリアミンの両端に無水マレイン酸が付加した、いわゆるビスタイプのものがる。

【0027】アミノアミドとしては、ポリアルキレンポリアミンを脂肪酸で一部アミド化したものなどが挙げられる。

【0028】ベンジルアミンとしては、分子量300~3000のプロピレンオリゴマー、ポリブテン等のポリオレフィンをフェノールと反応させてアルキルフェノールとした後、これにホルムアルデヒドとポリアミンとを反応させる、いわゆるマンニッヒ反応により製造されたものなどが使用される。

【0029】ポリアルケニルアミンとしては、分子量300~3000のポリプテン等のポリオレフィンを塩素化し、これにアンモニア、ポリアミン等を反応させたものなどが挙げられる。

【0030】また、高級アルコールエステル化合物とし ては、 $C_8 \sim C_{20}$ の高級アルコールの $C_8 \sim C_{20}$ の高級 脂肪酸エステルなどが挙げられる。ここでいうC。~C goの高級アルコールとしては、具体的には例えば、オク チルアルコール、ノニルアルコール、デシルアルコー ル、ウンデシルアルコール、ドデシルアルコール、トリ デシルアルコール、テトラデシルアルコール、ペンタデ シルアルコール、ヘキサデシルアルコール、ヘプタデシ ルアルコール、オクタデシルアルコール、ノナデシルア ルコール、エイコシルアルコーエルなどが挙げられ、一 方、 $C_8 \sim C_2$ の高級脂肪酸としては、具体的には例え ば、オクタン酸、ノナン酸、デカン酸、ウンデカン酸、 ドデカン酸、トリデカン酸、テトラデカン酸、ペンタデ カン酸、ヘキサデカン酸、ヘプタデカン酸、オクタデカ ン酸、ノナデカン酸、エイコサン酸などが挙げられる。 【0031】本発明に用いるホウ素化合物としては、前

記二塩基酸イミド、アミノアミド、ベンジルアミン、ポリアルケニルアミン等の含窒素化合物、あるいは高級アルコールエステル等に、ホウ酸、ホウ酸塩、ホウ酸エステル等の化合物を反応(ホウ酸変性)させて得られたものが使用できる。

【0032】なおホウ酸変性の際に用いるホウ酸としては、具体的には例えば、オルトホウ酸、メタホウ酸およびテトラホウ酸などが挙げられる。

【0033】ホウ酸変性の際に用いるホウ酸塩として は、具体的には例えば、ホウ酸のアルカリ金属塩、アル カリ土類金属塩またはアンモニウム塩などが挙げられ、 より具体的には、例えばメタホウ酸リチウム、四ホウ酸 リチウム、五ホウ酸リチウム、過ホウ酸リチウムなどの ホウ酸リチウム:メタホウ酸ナトリウム、二ホウ酸ナト リウム、四ホウ酸ナトリウム、五ホウ酸ナトリウム、六 ホウ酸ナトリウム、八ホウ酸ナトリウムなどのホウ酸ナ トリウム:メタホウ酸カリウム、四ホウ酸カリウム、五 ホウ酸カリウム、六ホウ酸カリウム、八ホウ酸カリウム などのホウ酸カリウム;メタホウ酸カルシウム、ニホウ 酸カルシウム、四ホウ酸三カルシウム、四ホウ酸五カル シウム、六ホウ酸カルシウムなどのホウ酸カルシウム; メタホウ酸マグネシウム、ニホウ酸マグネシウム、四ホ ウ酸三マグネシウム、四ホウ酸五マグネシウム、六ホウ 酸マグネシウムなどのホウ酸マグネシウム:およびメタ ホウ酸アンモニウム、四ホウ酸アンモニウム、五ホウ酸 アンモニウム、八ホウ酸アンモニウムなどのホウ酸アン モニウムなどが好ましく用いられる。

【0034】ホウ酸変性の際に用いるホウ酸エステルとしては、ホウ酸と好ましくは炭素数1~6のアルキルアルコールとのエステルが挙げられ、より具体的には例えば、ホウ酸モノメチル、ホウ酸ジメチル、ホウ酸トリメチル、ホウ酸モノエチル、ホウ酸ジエチル、ホウ酸トリプロピル、ホウ酸・リプロピル、ホウ酸・リプロピル、ホウ酸・リプロピル、ホウ酸・リブチルなどが好ましく用いられる。

【0035】また、本発明でいうホウ素化合物であるホウ酸エステルとしては、例えばC₈~C₂₀の高級モノアルコール又は高級多価アルコールのホウ酸エステルが使用できる。より具体的には例えば、オクチルアルコール、ノニルアルコール、デシルアルコール、ウンデシルアルコール、ドデシルアルコール、トリデシルアルコール、テトラデシルアルコール、ペプタデシルアルコール、スクタデシルアルコール、ノナデシルアルコール、エイコシルアルコーエルなど高級モノアルコール、又はオクタンジオール、ノナンジオール、デカンジオール、ウンデカンジオール、ドデカンジオール、トリデカンジオール、スクタデカンジオール、スクタデカンジオール、オクタデカンジオール、ノナデカンジオール、エイコサン

ジオール、オクタントリオール、ノナントリオール、デカントリオール、ウンデカントリオール、ドデカントリオール、ドデカントリオール、ペンタデカントリオール、ペキサデカントリオール、ペプタデカントリオール、オクタデカントリオール、ノナデカントリオール、エイコサントリオールなどの高級多価アルコールのホウ酸モノエステル、ホウ酸ジエステル、ホウ酸トリエステル、およびこれらの混合物などが挙げられる。

【0036】また本発明でいうホウ素化合物であるホウ 酸のアルカリ金属塩、アルカリ土類金属塩またはアンモ ニウム塩としては、具体的には例えば、メタホウ酸リチ ウム、四ホウ酸リチウム、五ホウ酸リチウム、過ホウ酸 リチウムなどのホウ酸リチウム;メタホウ酸ナトリウ ム、二ホウ酸ナトリウム、四ホウ酸ナトリウム、五ホウ 酸ナトリウム、六ホウ酸ナトリウム、八ホウ酸ナトリウ ムなどのホウ酸ナトリウム;メタホウ酸カリウム、四ホ ウ酸カリウム、五ホウ酸カリウム、六ホウ酸カリウム、 八ホウ酸カリウムなどのホウ酸カリウム;メタホウ酸カ ルシウム、ニホウ酸カルシウム、四ホウ酸三カルシウ ム、四ホウ酸玉カルシウム、六ホウ酸カルシウムなどの ホウ酸カルシウム;メタホウ酸マグネシウム、二ホウ酸 マグネシウム、四ホウ酸三マグネシウム、四ホウ酸五マ グネシウム、六ホウ酸マグネシウムなどのホウ酸マグネ シウム;およびメタホウ酸アンモニウム、四ホウ酸アン モニウム、五ホウ酸アンモニウム、八ホウ酸アンモニウ ムなどのホウ酸アンモニウム;およびこれらの混合物な どが挙げられる。なおこれらの化合物は結晶水を有する ものであっても、また有していないものであっても、い ずれも使用可能である。また本発明のホウ素化合物とし てこれらホウ酸のアルカリ金属塩、アルカリ土類金属塩 またはアンモニウム塩を用いる場合には、特に、上述し たように、基油への溶解性を高める目的で冷媒にあらか じめ溶解または分散させた形で使用するのが好ましい。

【0037】また本発明でいうホウ素化合物であるアル カリ(土類)金属ホウ酸塩を含有した油溶性塩として は、具体的には例えば、中性のアルカリ(土類)金属ス ルフォネート、アルカリ(土類)金属サリシレート、ア ルカリ(土類)金属フェネート、アルカリ(土類)金属 カルボキシレートなど油溶性有機酸中性アルカリ(土 類) 金属塩をアルカリ (土類) 金属塩基の存在下でホウ 酸、ホウ酸塩またはホウ酸エステルと反応させて得られ るアルカリ(土類)金属ホウ酸塩含有油溶性塩や、過塩 基性のアルカリ(土類)金属スルフォネート、アルカリ (土類) 金属サリシレート、アルカリ (土類) 金属フェ ネート、アルカリ(土類)金属カルボキシレートなどの 油溶性有機酸塩基性アルカリ(土類)金属塩とホウ酸、 ホウ酸塩またはホウ酸エステルとを反応させて得られる アルカリ(土類)金属ホウ酸塩含有油溶性塩などが挙げ られる。

【0038】なお、ここでいうアルカリ金属としては、 具体的には、リチウム、ナトリウム、カリウムなどが挙 げられ、一方、アルカリ土類金属としては、具体的に は、マグネシウム、カルシウム、バリウムなどが挙げら れる。またアルカリ(土類)金属塩基としては、これら アルカリ(土類)金属の水酸化物や酸化物などが挙げら れる。さらにホウ酸、ホウ酸塩またはホウ酸エステルと しては、上述した含窒素化合物、あるいは高級アルコー ルエステル等のホウ酸変性の際に用いるホウ酸、ホウ酸 塩またはホウ酸エステルと同様の化合物が使用できる。

【0039】本発明の組成物には冷凍機油としての性能をさらに向上させる目的で、酸性物質やラジカル等の活性物質の捕捉剤としてのフェニルグリシジルエーテル、ブチルフェニルグリシジルエーテル、ノニルフェニルグリシジルエーテルおよびエポキシ化植物油などのエポキシ化合物;フェノール系、アミン系の酸化防止剤;正りん酸エステル、亜りん酸エステル、酸性りん酸エステル、酸性亜りん酸エステル、これらの塩化物、あるいはこれらのアミン塩等の極圧剤;高級アルコール類、高級脂肪酸類、脂肪酸エステル類等の油性向上剤;ベンゾトリアゾールなどの金属不活性化剤などを単独、または数種類組み合わせて配合させることも可能である。

【0040】本発明の冷凍機油組成物を使用する冷媒としては、具体的には、ジフルオロメタン(HFC-32)、ペンタフルオロエタン(HFC-125)、1,1,2,2-デトラフルオロエタン(HFC-134)、1,1,1,2-デトラフルオロエタン(HFC-134a)、1,1,2-ドリフルオロエタン(HFC-143)、1,1-ドリフルオロエタン(HFC-143)、1,1-ドリフルオロエタン(HFC-143a)、1,1-ジフルオロエタン(HFC-152a)あるいはこれらの2種以上の混合物等のフッ化アルカン冷媒が挙げられる。

【0041】本発明の冷凍機油組成物が冷凍機において使用される場合には、通常、上記の冷媒との混合物である流体組成物の形で使用される。冷媒と冷凍機油組成物との混合割合は任意であるが、通常、冷媒100重量部に対して本発明の冷凍機油組成物が1~500重量部、好ましくは2~400重量部の割合で配合された状態で使用されるのが望ましい。

【0042】本発明の冷凍機油組成物は、冷蔵庫、冷凍庫、自動販売機、ショーケース、ルームエアコン、カーエアコン、除湿機、化学プラントなどの冷媒圧縮式冷凍機を用いている機器に広く利用される。

[0043]

【実施例】以下、実施例と比較例により、本発明の内容 を更に具体的に説明するが、本発明はこれに何等限定さ れるものではない。

【0044】(実施例1~22および比較例1~8)本 実施例および比較例に用いたホウ素化合物および基油を 以下に示す。

化合物A……ホウ酸変性コハク酸イミド

化合物 B …… C18 アルコールの混合ホウ酸エステ

ル (C_{16} : $C_{18} = 50:50$ モル%)

化合物 C……ホウ酸トリベンジル

化合物D……四ホウ酸カリウム(K₂ B₄ O₇ ・ 4 H₂ , O)

[プロピレングリコールの5重量%溶液として使用]

TCP……トリクレジルホスフェート

TOP……トリオクチルホスフェート

OAL……オレイルアルコール

STA……ステアリン酸

MOE……オレイン酸メチルエステル

エステル油…ペンタエリスリトールと2ーメチルヘキサン酸および2ーエチルヘキサン酸の混合テトラエステル(2ーメチルヘキサン酸75モル%+2ーエチルヘキサン酸25モル%)

PAG……ポリオキシプロピレングリコールモノメチルエーテル、平均分子量1,300

変性 PAG…ポリオキシプロピレングリコール, α, ω ージエチルカーボネート (平均分子量2,000) 各実施例および比較例の組成物の組成を表1に示した。 これらの組成物について、以下に示す摩耗試験を行い、 その結果も表1に併記した。

【0045】 (摩耗試験) 高圧容器内に各組成物および 冷媒圧力が10kgf/cm² になるようにHFC-134a冷媒を採取し、その容器内で円盤ーベーンの組み合わせによる摩擦試験を行った。ベーンは上側に3枚1組にして放射状に取付け、回転を与えた。円盤は下部に固定し、荷重はこの円盤の下部より油圧によって与えた。

【0046】試験片は、アルミニウム (AC8A) または鉄 (SUJ2) を用いた。

【0047】試験温度は80℃、1時間、回転数3,0 00rpmで行い、試験後のベーンの摩耗量(mg)で 評価した。

[0048]

【表1】

実施例/ 比較例	基油	添加剤 wt.%	摩耗試験による ペーン摩耗量域		
ALEXIVI			(1)	(2)	
実施例1	エステル油	化合物A 0.05	11	6. 2	
実施例 2	エステル油	化合物A 0.05, TCP 1.0	2.8	3. 2	
実施例3	エステル油	化合物A 5.0	10	1.4	
実施例4	エステル油	化合物A 0.5	11	2.0	
実施例 5	エステル袖	化合物B 0.5	12	3.5	
実施例6	エステル油	化合物C 0.5	9	2.5	
実施例7	エステル油	化合物D 0.01(有効濃度として)	18	3. 2	
実施例8	PAG	化合物A 0.5	18	2. 2	
実施例 9	PAG	化合物B 0.5	17	3.8	
実施例10	PAG	化合物C 0.5	19	2.7	
実施例11	PAG	化合物A 0.5, TCP 1.0	1.7	2.1	
実施例12	PAG	化合物A 0.5, TOP 1.0	2.0	2, 0	
実施例13	PAG	化合物A 0.5, STA 3.0	4.2	2.1	
実施例14	PAG	化合物A 0.5, MOE 3.0	5.1	1.8	
実施例15	PAG	化合物D 0.01(有効濃度として)	19	4.2	
実施例16	変性PAG	化合物A 0.05	17	4.6	
実施例17	変性PAG	化合物A 0.5	15	2. 2	
実施例18	変性PAG	化合物A 5.0	15	1.8	
実施例19	変性PAG	化合物B 0.1	15	3.0	
実施例20	変性PAG	化合物C 0.1	17	2.8	
実施例21	変性PAG	化合物C 0.1, TCP 1.0	2.2	2. 7	
実施例22	変性PAG	化合物D 0.01(有効濃度として)	18	2. 5	
比較例1	エステル油		18	21	
比較例2	エステル油	TCP 1.0	11	25	
比較例3	PAG		20	25	
比較例4	PAG	TCP 1.0	13	28	
比較例 5	PAG	OAL 3.0	15	20	
比較例6	PAG	MOE 3.0	18	24	
比較例7	変性PAG		18	19	
比較例8	変性PAG	TCP 1.0	10	22	

(1) ベーン(鉄 SUJ2) 対円盤(アルミニウム AC8A)

(2) ベーン (アルミニウム AC8A) 対円盤 (アルミニウム AC8A)

比較例2、4、8に示すように、TCPを用いると、鉄の摩耗は減少するが、アルミニウムの場合はむしろ摩耗量が増加する傾向を示す。ところが、実施例に示すように本発明に係るホウ素化合物AないしDを用いると、アルミニウムの摩耗量は極めて少なく、またTCPと併用してもアルミニウムの摩耗量が増加することなく鉄の摩耗量が減少する。

【0049】また従来からエンジン油等の油性剤あるいは摩擦調整剤として用いられているOAL、MOE等は、比較例5および6に示すようにフッ化アルカン冷媒と混合状態で使用する含酸素系基油の圧縮式冷凍機油においては添加効果がないが、本発明に係るホウ素化合物を用いると摩耗防止効果を示すことが明らかである。

[0050]

【発明の効果】以上述べたように、本発明の組成物は、 フッ化アルカンの存在下においても摩耗量が少ない優れ た冷凍機油組成物である。 フロントページの続き

.

(51) Int. Cl.	5	識別記号		庁内整理番号	FΙ		技術表示箇所
C 1 0 M	139:00		Α	9159-4H			
	105:48						
	125:26						
	107:34)						
C 1 0 N	10:02						
	30:06						
	40:30						
	60:14						