SEQUENCE LISTING

<110> MOUGIN, Bruno

LAAYOUN, Ali

<120> \method for amplifying at least one specific nucleotide sequence, and primers used

<130> 107 \$76

<140> US 09/\(\frac{1}{1}\)01,243

<141> 2000-12-28

<150> PCT/FR99/01/247

<151> 1999-05-27

<150> FR 98/06866

<151> 1998-05-27

<160> 29

<170> PatentIn version 3.1

<210> 1

<211> 23

<212> DNA

<213> artificial sequence

<220>

<223> Blocking primer

<400> 1

atccttcgtg tccccacagc acg

23

<210> 2 <211> 19 <212> DNA <213> artificial sequence <220> <223> Blocking primer <400> 2 tcgccgctgc actgtgaag <210> 3 <211> 24 <212> DNA <213> artificial sequence <220> <223> Blocking primer <220> <221> particular characteristic <222> (24)..(24) <223> modification by the C6-NH2 group <400> 3 cccccagca cgtttcttgg agct <210> 4 <211> 24 <212> DNA <213> artificial sequence <220>

19 24 <223> Blocking primer

<220>	
<221>	particular characteristic
<222>	(1)(1)
<223>	modification by the acridine group
<220>	
<221>	particular characteristic
<222>	(24)(24)
<223>	modification by H
<400>	4 agca cgtttcttgg agct
CCCCCC.	agea egittetigg aget
<210>	5
<211>	26
<212>	DNA
<213>	artificial sequence
<220>	
<223>	Blocking primer
<220>	
<221>	particular characteristic
<222>	(24)(24)
<223>	G means inosine (i)
<220>	
<221>	particular characteristic
<222>	(26)(26)

<222>	(26)(26)
<223>	modification by the C6-NH2 group
<400>	5 Jeac gtttettgga geagge
cccaca	dae geereergga geagge

<210> 6 <211> 21 <212> DNA <213> artificial sequence <220> <223> Blocking primer <400> 6 cccagcacgt ttcttggagc t <210> 7 <211> 24 <212> DNA <213> artificial sequence <220> <223> Blocking primer <400> 7 cccccagca cgtttcttgg agct <210> 8 <211> 24 <212> DNA <213> artificial sequence <220> <223> Blocking primer

<221> particular characteristic

<223> G means inosine (i)

21 24

.

<220>

<222> (23)..(23)

<400> 8 24 cccccagca cgtttcttgg aggt <210> 9 <211> 24 <212> DNA <213> artificial sequence <220> <223> Blocking primer <220> <221> particular characteristic <222> (22)..(22) <223> G means inosine (i) <220> <221> particular characteristic <222> (23)..(23) <223> G means inosine (i) <400> 9 24 catttcctca atgggacgga ggga <210> 10 <211> 26 <212> DNA <213> artificial sequence <220> <223> Blocking primer <220>

<221>	particular characteristic
<222>	(24)(24)
<223>	G means inosine (i)
<400>	10 gcac gtttcttgga gcaggc
000000	godo geeecegga godgge
<210>	11
<211>	26
<212>	DNA
<213>	artificial sequence
<220>	
<223>	Blocking primer
<220>	
<221>	particular characteristic
<222>	(24)(24)
<223>	G means inosine (i)
<400>	11
cccaca	gcac gtttcttgga gcaggc
<210>	12
<211>	19
<212>	DNA
<213>	artificial sequence
<220>	·
<223>	Blocking primer
<400>	12

<223> Blocking primer

<400> 12
cacgtttctt gcagcagga 19

<210> 13

```
<211> 22
<212> DNA
<213> artificial sequence
<220>
<223> Blocking primer
<400> 13
                                                                     22
cagcacgttt cttgcagcag ga
<210> 14
<211> 19
<212> DNA
<213> artificial sequence
<220>
<223> Blocking primer
<220>
<221> particular characteristic
<222> (3)..(3)
<223> G means inosine (i)
<400> 14
caggtttctt gcagcagga
                                                                    19
<210> 15
<211> 22
<212> DNA
<213> artificial sequence
<220>
<223> Blocking primer
```

<220>

```
<221> particular characteristic
<222> (6)..(6)
<223> G means inosine (i)
<400> 15
cagcaggttt cttgcagcag ga
                                                                     22
<210> 16
<211> 26
<212> DNA
<213> artificial sequence
<220>
<223> Blocking primer
<220>
<221> particular characteristic
<222> (10)..(10)
<223> G means inosine (i)
<400> 16
ccccagcag gtttcttgca gcagga
                                                                     26
<210> 17
<211> 26
<212> DNA
<213> artificial sequence
<220>
<223> Blocking primer
<220>
<221> particular characteristic
<222> (10)..(10)
<223> G means inosine (i)
```

ž.

<400> cccaca	17 gcag gtttcttgca gcagga	26
<210>	18	
<211>	26	
<212>	DNA	
<213>	artificial sequence	
<220>		
<223>	Blocking primer	
<220>		
<221>	particular characteristic	
<222>	(10)(10)	
<223>	G means inosine (i)	
<220>		
<221>	particular characteristic	
<222>	(25)(25)	
<223>	G means inosine (i)	
<400> cccaca	18 gcag gtttcttgca gcagga	26
<210>	19	
<211>	26	
<212>	DNA	
<213>	artificial sequence	
<220>		
<223>	Blocking primer	
<220>		

<22	1>	particular characteristic	
<22	2>	(10)(10)	
<22	3>	G means inosine (i)	
<22	0>		
<22	1>	particular characteristic	
<22	2>	(25)(25)	
<22	3>	G means inosine (i)	
<40			26
CCC	cca	gcag gtttcttgca gcagga	20
<21	0>	20	
<21	1>	33	
<21	2>	DNA	
<21	3>	human	
<40		20 gccg agtactggaa cagccagaag gac	33
000	gac		33
<21	0>	21	
<21	1>	33	
<21	2>	DNA	
<21	3>	human	
<400		21 gccg agtcctggaa cagccagaag gac	33
	,	goog ngoooggan cageonging gar	
<210)>	22	
<21	1>	33	
<212	2>	DNA	
<213	3>	human	
<400)>	22	

cctgwy	gccg agtmctggaa	cagccagaag	gac			33
<210>	23					
<211>	33					
<212>	DNA					
<213>	human					
<400>	23	at agat at to	at a			33
ggacwr	egge teakgaeett	greggeere	CLG			33
<210>	24					
<211>	33					
<212>	DNA					
<213>	human					
						٠
<400>	24	ataaatatta	ata			33
ggacta	egge teatgaeett	glegglelle	ccg			33
<210>	25					
<211>	57					
<212>	DNA					
<213>	human					
<400>	25 atct ataaccaaga	agagaacata	cacttcaaca	acascataga	ggagtac	57
agagge	acce acaaccaaga	ggagaacgeg	cyceecyaca	gegaegeggg	ggageae	3,
<210>	26					
<211>	57					
<212>	DNA					
<213>	human					
<400>	26 atct ataaccaaga	ggagtacgcg	cactacaaca	ataacetaaa	ggagtac	57
agacaca	Leet ataaccaaya	ggagtacgcg	cyctacaaca	gegacetygg	ggagtat	57
<210>	27					

57
57
57
57
3,
57
37
57