Index

★-principle (see also probability and typicality)	Barrett, T. W. xi
174, 174n	barrier 72
A-measurement 110–111 (see also Wigner's	basis 34
friend)	orthonormal 34, 41
difficulty of 112–117	Bayes' Theorem 71-72
A-observable 110 (see also Wigner's fiend and	Baym, G. 64n, 236
A-measurement)	beable (Bell) (see also realism) 222-223
absolute states (and properties) 146, 154-155,	local (see also primitive ontology) 222-224
157	Becker, Adam 14n, 95n, 236
action at a distance 83	belief 106-107
Aharonov, Y. 29n, 139n, 235	and sure-fire dispositions 106-107, 146-150,
Aharonov-Bohm effect (see also	154, 157
total-of-nothing box) 28-29, 29n	determinant on collapse 109
Albert boxes 15-20	indeterminate on linear dynamics 108
Albert, D. Z xi, 15-16, 26n, 27-28, 42n, 110n,	Bell, J. S. (see also Bell's theorem) xi, 14, 27,
115n, 135, 136n, 139n, 153n, 181, 183,	88, 96-98, 100n, 101-103, 138n, 139,
188n, 192n, 214n, 221, 228, 235	160n, 190n, 191-193, 217, 219, 222-226,
Allori, V. xi, 137, 137n, 140, 140n, 225n, 229n,	229, 236
235	attitude toward Bohmian mechanics 96-97,
almost-position as a preferred physical quantity	222
(GRW) 134	Bell-type inequality 101
alpha particles 12	Bell-type theorems 98
Ampere's Law 6-7	Bell's theorem 96-97
amplitude (quantum) 33, 41, 59, 69	Benatti, F. 137n, 236
anti-correlated spins (assumption) 99	bicycles, baseballs, and such 2-3, 11, 127, 136
Avogodro's number 122	black-body radiation 8-9
	Bohm, David (see also Bohmian mechanics) xi,
Bacciagaluppi, G. 92n, 96n, 235	3n, 29n, 96-97, 190-191, 222, 224, 236
background assumptions 162	Bohm-Bell-Vink theory 224-225
bare theory (see also pure wave mechanics) 145	Bohmian field theory (Bell) 223
determinate result property 145-148	alternative approaches to 226n
disjunctive experience 148, 150-151	empirical content of records in 226
empirical adequacy of 154	explanation of experience 225-226
illusion of collapse 146-153	field configuration space 223
illusion of quantum statistics 145-148,	incompatibility with relativity 226
151-153	preferred basis problem 224-226
intersubjective agreement property 149-151	what it means to observe fermion number
predictions compared to standard theory	density 225-226
153	Bohmian mechanics 190–191, 222
randomness property 152	as a many threads theory 186, 219
relative frequency property 152	Bell's attitude toward 96-97, 222
repeatability property 148-149	content of records given by effective wave
solution to determinate result and probability	function 208, 214
problems 153	contextual properties in 195–198
Barrett, J. A. (Jeffrey) 235–236	contextually of spin 196–198
Barrett, J. (Jonathan) 170n, 188n, 239	deterministic dynamics 197
	22.2

Bohmian mechanics (Cont.)	Bricmont, J., D. 187n, 236
distribution postulate 191, 194	Brown, H. R. 219n, 236
dynamics (particle) 191	Bub, J. xi, 28, 187n, 236
dynamics (wave) 190	Byrne, P. 143n, 169n, 236
effective wave function 192	
epistemic probabilities 191-192	Callender, C. 192n, 236
EPR in 214-217	Carroll, S. M. 173n, 239
equivariance of probabilities 192	Cartesian dualism 118, 118n
evolution of configuration 203–208	category mistake 27–28
explanation of experience 192–193, 213–214,	causation 75, 80, 86, 121, 138, 148, 220n
218, 230	and total-of-nothing box 98–99
illusion of three-dimensional space and	charge 6-7
objects 218	density 6-7
incompatibility with relativity 214-217, 219	accelerating 7, 12-13
interpretation of states 49-50, 190	Chiribella, G. 187n, 236
empirical adequacy of 230-231	classical history 76
measuring position in 203-208, 213-214	classical intuition 22-25, 27-29
nonlocality of 217	classical mechanics 4-7, 15
position as preferred observable 191-192,	laws of 4-5, 6-7
191n, 218	problems with 8-14
primitive ontology not what explains	clocks 93-94
experience 230	cognitive status of theories 1, 6, 14
probability fluid and current 194, 197	collapse dynamics (rule 4II) 42-43
probability density 194	empirical consequences 120
probability (epistemic) 191-192	history of 47-48
property attribution in 3	incompatibility with relativity 92
randomness in 191, 194, 198–200	quantum randomness 48, 48n
representation of states 190	role in the standard theory 109
role of decoherence in 213	von Neumann's defense of ambiguity 110
role of typicality in 192, 192n	works with standard interpretation of states 92
role of wave function in configuration	
space 191–192	common sense 1–3, 164, 227, 231
spin flavor 194	completeness (assumption) (see also EPR
spin measurement in 192–193	argument) 89-93, 96-97
superluminal signaling in 217	complex conjugate 233
surreal trajectories in 210-213	complex number 233
two-path interference experiments 200-203	composition of properties (tensor product) 39,
violates eigenvalue-eigenstate link 192, 197	41, 51–52
wave function realism 191-192, 191n, 218	composition of systems (tensor product) 39, 77
wave packets 194	composition of states (rule 5) 43, 51-52, 77
Wigner's friend in 217-218	configuration space 87-88
with other preferred observables 224	in field theory 223
Bohm's theory (see Bohmian mechanics)	in Bohmian mechanics 203-208
Bohr model of atom 14	consciousness 121
Bohr, N. 13-14	consistency
Bohr's interpretation of quantum mechanics	as a theoretical virtue for Everett 158-159
95, 95n	of GRW 128-129, 132-133
book in vault 227	of pure wave mechanics 112-113, 144-145,
Born rule 47	154, 158–159, 162
Born, M. 47, 236	of the standard theory (see also measurement
branches 155	
	problem) 112–113, 118–119
probabilities over 173–174	contextual properties (Bohmian
statistics within 174	mechanics) 195–198
typical 143, 163-164	Copenhagen interpretation 95, 95n

correlation (<i>see also</i> record and entanglement) 79, 79n, 80 cost-benefit analysis of theories xi, 29, 166, 183, 187, 228–229 Coulomb's law 6, 11	dispositions and belief 106–107 distribution postulate (Bohmian mechanics) 191, 194 dualism (mind-body) 118, 118n, 120–121 Dürr, D. 190n, 192n, 226n, 236–237
counterintuitive (see also intuition) 14 Cushing, J. T. 3n, 236	dynamical incompleteness 51, 111–112 dynamics Bohmian mechanics 190–191
de Broglie, L. 96 Deckert, D-A. 226n, 236	classical mechanics 4–5, 7 in Everett 143–144
decoherence 75, 76-81	GRW 130
does not explain records 116	Wigner's theory 119
environmental 75, 76–81, 115–116 in Wigner's friend story 113–117	standard collapse theory 42-43
internal 61–63, 75, 80–81	Earman, J. 5n, 224n, 237
decohering histories (see also decohering worlds	Earnshaw, S. 12–13, 237
and many histories) 174n	effective wave function (Bohmian
decohering worlds (theory) 175-176	mechanics) 192
A-measurements in 177-178	Eiffel Tower 132
emergence of classical behavior 178-179	eigenvalue 36, 41
emergent metaphysics 179-180	eigenvalue-eigenstate link (see also standard
emergent worlds in 174-175	interpretation of states) 42, 44, 46-47
explanation of experience 176, 178, 180	and principle of state completeness 50
more than pure wave mechanics 175, 180–181	history of 46–47, 46n relation to collapse dynamics 92
no fact regarding the number of	violation in Bohmian mechanics 192, 197
worlds 178–179	works with dynamical laws 49–50
probability in 175	eigenvector 36, 41
probability problem 180-181	Einstein, A. (see also EPR) 1, 9, 89, 89n, 92n, 96,
role of decoherence in 176	100n, 105, 237
role of level of description in 175-176, 178	electric force 6-7
virtues 181	electromagnetic
Wigner's friend story in 176-178	force 24
delayed-choice experiment 76	radiation 7, 8–9, 12–13
density matrix 42n	electrons 9, 11–20
Descartes, R. 118, 118n, 121, 237 description (<i>see also</i> level of description) 5, 14,	empirical adequacy 133, 227 empirical faithfulness (Everett) 154,
50, 89, 91, 95–96, 101, 112, 133	160–161
determinate properties 27, 33–34, 41, 68, 71,	strong adequacy 228
79, 102	weak adequacy 227
determinate experience 127	what did should be mean 154
determinate record problem 144	empirical (in)coherence 154, 154n
determinate result property 145-148	empirical equivalence 84
determinate states 68, 71, 79, 102	empirically faithful (Everett) (see also empirical
deterministic theory 5, 5n, 7	adequacy) 154, 158-161
Deutsch, D. 158, 180, 237 DeWitt, B. S. 143, 158, 159n, 163–164, 168–173,	weak standard of empirical adequacy 160-161
237	empirical ontology (see also primitive ontology
dimension of vector space 34	and records) 140, 141, 227
Dirac, P. A. M. (see also standard formulation of	and the explanation of experience 141,
quantum mechanics) 30n, 42, 44n, 46-48,	228-230
237	contrast with primitive ontology 141
disentanglement by nonlocal	empiricism (Everett) 158-159
measurement 83-84, 92, 94-95	empty path 23-26, 71-72

energy 9, 87 kinetic 12 potential 12 energy density 9 Englert, B. G. 210n, 211n, 237 entangled field states 101n entangled properties (see also correlation) 56, 68, 74 entanglement 56 and individuating systems 83–84 and locality 83–84, 95 environmental decoherence 75 epistemic probabilities 42n, 99, 171, 185–187,	field configuration space 223 field theory entangled states in 101n Bohmian 223-6 relativistic quantum mechanics 153n flashes 9-10, 137-141 flash ontology 225, 225n forward-looking probabilities (see also expectations) 162, 167-168, 170-172, 174, 180-185, 217 Fourier transform 129-130 Frauchiger, D. 210n, 237 Freite, O. Jr. 143n, 239
191–192, 197, 224 epistemological interpretations of quantum mechanics 187–189, 228n problems with 188–189	Freitas, F. 143n, 239 Friedman, A. 40n, 93n, 239 Fuchs, C. A. 187n, 237 function space 31, 36, 87
EPR argument 89-91 and Bell's theorem 96-104 and the standard theory 91-92 morals of 102-104 EPR experiment 89-91 in Bohmian mechanics 214-217	galaxy NGC 5457 127 Gauss's law 6-7 Geiger, H. 12, 12n, 237 Gell-Mann, M. 174n, 185n, 238 Gerlach, W. (see also Stern-Gerlach device)
in GRW 128–129 EPR state 90–91 EPR-Bell statistics 88, 97, 101 Esfeld, M. 226n, 236	15, 16n, 238 Ghirardi, G. C. (see also GRW) 121, 134, 236, 238 Gilton, Marian 44n, 46n, 238
Everett, H. III xi, 103, 105–106, 105n–106n, 112, 117, 143–146, 152, 154–161, 162–164, 167–171, 175n, 237 excluded middle (logical law) 1, 3, 22,	God 6 Goldstein, Sheldon 137, 137n, 140, 169n, 190n, 192n, 226n, 236–238 Graham, R. N. 144, 163–164, 163n–164n,
27–9 expectation (probabilistic) 158n, 161, 172, 178n, 188 expectation values in GRW 124, 129, 133	168–173, 237–238 gravitation (force) 5, 24 Greaves, H. 170n, 238 Griffiths, R. 174n, 185n, 238
experience (see also records and supervenience) 1 and sure-fire dispositions 106–107, 145 comparison of explanations in GRWr and GRWf 141	GRW* 122 empirical adequacy of 129, 136 problems with 128–130 law of motion 122 GRW 130–131
determinate 127 recalcitrant 1,8 strong adequacy 228 supervenience 127,133	ad hoc parameters 134 almost-position as privileged observable 134 classical expectation values 124
weak adequacy 227 explanation 221 and role of interpretation 49–50 metaphysics essential to 222 explanation of experience (see also records) 223, 225–227	collapse rate 122 collapse width 130–131 content of experience 136–138 decoherence in 125–127 empirical adequacy 133, 141–142 EPR experiment in 128–129, 134
faithful (see empirically faithful) Fein, Y. 141n, 237 fermion number density 222, 225–226	explanation of decoherence effects 125 explanation of experience 132–133, 136, 140 properties created on measurement 125–126

incompatibility with relativity 128–129, 134 interpretation of states in 49–50, 132–133,	relation to orthonormal bases 36 Herrmann, D xi hidden variables 48
law of motion 130-131	von Neumann's impossibility proof 96
measurement in 126, 131-132	hidden-variable theory 190
mental records 127	Hilbert space 30, 31, 42, appendix A
metaphysics of particles 134–135	history
microscopic-macroscopic distinction 122,	of classical events 82
124–125	of principle of indifference 172n
non-local disentanglement in 128–129	of quantum mechanics 2–3, 14n, 44n,
preferred basis problem in 127	46n, 47n
relation between dynamics and interpretation	
of states 142	of worlds (see also decohering histories) 171, 184–186, 219
requires change of interpretation of states	homomorphism 158–159
role of position 126	Hubert, M. 210n, 238
spin properties 125–126	Huttegger, S. 48n, 236
supervenience in 127, 133	hyperplane (hypersurface) 139
tails problem 132	hyperplane-dependent states 139, 139n
understood as GRWr 136	hypothetical drama (Everett) (see also nested
vague predicates 132-133	measurement and Wigner's
wave function realism 135	friend) 112-113, 117, 145
Wigner's friend in 122-124	
GRWf 95	idealization 16n
and locality 139	identity operator 38
as a many-maps theory 185–186	illusion 3, 136
compatibility with relativity 137-140	of three-dimensional space and objects in
empirical adequacy 140	Bohmian mechanics 218
explanation of experience 137-138,	of three-dimensional space and objects in
140-141	GRWr 136
field theory 140n	of collapse in the bare theory 145-148,
metaphysics of 137-138, 140	150–153
GRWm 136-137	what it feels like to be in a superposition
content of experience in 137	133, 136
explanation of experience 137	incompleteness
metaphysics 136-137	of dynamics (measurement
GRWr 135	problem) 111–112
emergence of three-dimensional space 136	of physical theory (EPR) 89–91
explanation of experience 136-136, 141	of state description (EPR) 111–112
III:-l- A 172- 220	indeterminate properties (see determinate
Hàjek, A. 172n, 238	properties)
Hagar, A. 188n, 238	indeterministic (theories) 5n, 7, 20
Halley, E. 6	individuation of systems in quantum
Hamiltonian 136n	mechanics 102 inertial frame 93
Hartle, J. B. 151n, 174n, 185n, 238	
Healey, R. 187n, 238	preferred 95
Heisenberg picture of quantum mechanics 42n, 53	information-theoretic interpretations of quantum mechanics 187–189, 228n
Heisenberg uncertainty principle (see also	problems with 188–189
knowledge, noncommuting observables,	inner product 33, 41
and category mistake) 19, 19n, 20, 45-46,	intelligibility 29
46n	interference effects 9-10, 20-23
Hemmo, M. 169n, 188n, 192, 238, 240	destroying 23-26, 80
Hermitian operator 36, 41-42	spin 68
real eigenvalues 36	interpretation of physical theories 49-50, 142

interpretation of quantum states tied to magnetic force 6-7 dynamics 49-50 Manchak, J. B. xi interpretation of states (rule 3) (see also manifest image, and primitive ontology 138, eigenvalue eigenstate link) 42, 44, 46-47 140, 218-219, 229 intersubjective agreement property (bare many-histories (theory) 185n theory) 149-151 many-maps (theory) 185 intuition 1-4 and GRWf 185-186 classical 1, 4-7, 27, 76 and relativity 186 failure of 29, 231 many-minds (theory) (see metaphysical 2, 101, 226, many-threads) 183-184 philosophical 1-4, 29, 101, 103, 226 as a non-splitting many worlds theory 183 physical 1-3, 8, 29, 88 explanation of experience in 184 regarding primitive ontology 229, 229n mental dynamics 183 reliability of 173 many-threads (theory) 184-185 Ismael, J. T. 228n, 238 as a non-splitting many-worlds theory 185 Bohmian mechanics as 185-186 Kent, A. 169n, 170n, 238-239 dynamics 184 Kepler, J. 1 forward-looking probabilities in 171, 185 Klein, O. 149n, 238 synchronic probabilities in 171, Klein-Nishina scattering 139n-140n 185-186 Marsden, E. 12, 12n, 237 knowledge of hidden parameters 48 Massas, G. xi of noncommuting observables 115n matrix multiplication 33, 35 quantum limits of 19, 20, 26-27 Maudlin, T. xi, 42n, 136n, 220n, 239 Maxwell-Faraday equation 6-7 Kochen, S. 224, 224n, 238 Kochen-Specker theorem 224, 224n Maxwell's equations 6-7, 9, 12 two consequences 7 language (see vague predicates) measurement (see also nested Lazarovici, D. 210n, 238 measurement) 41-42, 68-72 Leibniz's principle 102 as primitive in the standard theory 47, 51, leptons 15n 105, 111 level of description 221 decoherence (difference between) 74-76 in decohering worlds 174-181, 187 interference 22 Lewis, P. J. 220n, 239 how to calculate effect 58-61 Lienert, M. 140n, 238 non-locality of 71 light 9 what counts as 69, 70-71 particle nature of 9-11 measurement problem (see also nested speed of 6-7 measurement, Wigner's friend, and wave nature of 9-11 hypothetical drama) xi, 2-3, 51, 105, linear algebra 30 111-113, 117, 220 linear combination 34 and empirical incoherence 154 linear dynamics (rule 4I) 42 Bohmian mechanics as a solution 217-218 compatibility with relativity 153, 153n Everett's strategy (no-collapse) 143-144 inductive argument for 141-142 how to solve 3, 117, 162 how to calculate evolution 57-58 review of alternative solutions 220-222 linear operator 35, 41 why decoherence does not solve 116-117 local beable (see also primitive Wigner's strategy (collapse) 118-121 ontology) 222-224 metaphysical indeterminacy and epistemic local property 94-95 uncertainty 45, 50-51 locality (assumption) 91-93 metaphysical necessity and quantum and setting independence 99-100 mechanics 29 implicit assumptions 100n metaphysics 1-4, 22-23

essential to quantum explanations 220-222

of causation 98-99

246 INDEX

Loewer, B. 181, 183, 221, 228, 235

logic (see also excluded middle) 1-2, 8, 29

of quantities and properties 45-46, 50-51,	Petersen, A. 14, 239
71, 89-91, 94-96, 101-102	Petrat, S. 140n
no canonical 220-222	phase (of quantum state) 84
methodological commitments 29	Philosophiæ Naturalis Principia Mathematica
and background assumptions 162	(Newton) 4-6, 239
philosophical methodology 2-3, 29	philosophical methodology 2-3, 29
microscopic-macroscopic distinction	philosophical morals of quantum mechanics
(GRW) 122, 124-125	(see also metaphysics) xi, 1-2, 29,
mind-body dualism 118, 118n, 120-121	102-104, 231-232
mixture (statistical) 42n, 60-61, 70-71 75,	photoelectric effect 9, 89n
108-109	photons 9-11, 15n
momentum and position 129-130	physical properties 43-44, 52-53, 63-65
	physical reality 89-90
naturalized metaphysics 2-3	physical record 79-80
nested measurement (see also measurement	physical state 31, 41
problem, Wigner's friend, and hypothetical	physical theories and their cognitive
drama) 106n, 110-113, 117, 217-218	status 220-221
explanatory demand (Everett) 112-113, 117,	Planck, M. 9, 9n, 239
144–145	Planck's constant 9
neutral K mesons 64	plum-pudding model of matter
neutrons 12	(Thomson) 11-13
Newton, I. 1, 4-7, 239	Podolsky, B. (see also EPR) 89, 96, 237
Nishina, Y. 139n, 238	position 3-4
Nobel prize 9, 89, 89n	as a preferred observable 127-128, 225
nonlocality 23-26, 83, 88, 95, 97, 100	relation to momentum 129-130
in Bohmian mechanics 217	problem with precise eigenstates 128-129,
noncommuting observables 45, 45n	133
knowledge of 115n	positions of things as a primitive ontology 225
nonlinear dynamics (see collapse dynamics)	pragmatic interpretations of quantum
norm squared 41	mechanics 187-189, 228n
Norsen, T. 226n	problems with 188-189
	pragmatism (see also cost-benefit analysis of
observable (see also properties) 41	theories) 29, 225, 232
noncommuting 45, 45n	predictive algorithm 228n
observer	preferred basis (problem) 127, 160, 160n, 163,
situated 228, 228n	166-7, 174, 183, 185, 218, 221, 224
observers as idealized recording systems 144,	primitive ontology (see also empirical ontology
152, 159	and records) 140-141, 227, 229
Oldofredi, A. 226n, 236	and intuition 229
ontology, empirical and primitive 141	manifest image 229
operationalism (Everett) (see also empirical	not required for empirical adequacy 228,
faithfulness) 160	228n
operator 35-36	not what explains experience in Bohmian
differential 36	mechanics 230
Hermitian 36, 41-42	principle of indifference 170
linear 35, 41	in derivations of quantum
unitary 38, 41-42	probability 173-174
orthonormal basis 34, 41	in splitting worlds 170, 172
Osnaghi, S. 143n, 239	not a principle of reason 173, 173n
	partition problem 172-173
Pais, A. 9n, 47n, 89n, 95n, 239	process 1 (von Neumann) (see also collapse
PBR theorem 188n	dynamics and rule 4II) 47
Peña, A. xii	process 2 (von Neumann) (see also linear
pessimistic induction 3	dynamics and rule 4I) 47
	· · · · · · · · · · · · · · · · · · ·

probability (quantum)		quantum metaphysics 1-3
as chances 42-43,		quantum statistics 47, 49, 58-61, 109
epistemic 42n, 46,		within a branch (Everett) 174
	ee also expectations) 162,	qubits 65
	2, 174, 180–185, 217	Quine, W. V. 1, 8, 239
how to calculate 48	3-49	
over branches 173-	-174, 175n	randomness property (bare theory) 152
prior 71-72		randomness (quantum) 8-19, 20, 23, 42-43,
problem with episte	emic interpretation 22-23	48n, 109
posterior 71-72		how to understand 48n
quantum 34, 41, 43	;	in Bohmian mechanics 191, 194, 198-200
synchronic 168, 17	0-171, 180-81, 184	source of 60-61
within a branch 17	5n	ray (in Hilbert space) 45
probability current in	Bohmian mechanics 194,	realism (see also reality, wave function realism,
197		and Bell's theorem) 96-97, 145, 223, 224
probability density 87	,	reality (assumption) (see also EPR
in Bohmian mechai	nics 194	argument) 89, 96-97, 103
probability problem (f	or no-collapse	records (quantum) 25-26, 81-84, 106-107,
theories) 144	1	220-222
properties (physical)	2-3, 22-23	as an explanation of experience 127, 133,
	4, 27, 33-34, 41, 68, 71,	136, 138, 226-228, 230-231
79, 102		brain and mental 106-107, 127, 138, 144,
geometric attribution	on 2, 35	181-183
local 94-95	•	determinate on collapse 109
	46, 50-51, 71, 89-90,	detectable with an A-measurement 113
94–96,		explanatory aim of quantum mechanics 231
101-102		50, 162–163
	2-3, 28, 32, 35, 101-102	failure of classical inference 81–82
protons 12	-,,,,	in bare theory 150-151, 152-153
Ptolemy (C.) 1		in Bohmian mechanics 193, 203–214
pure state 42n, 60-61		in decohering worlds 174–177, 180
and statistical mixtu	res 42n 60-61	in GRW 132–134
70-71, 75	121,00 01,	in Everett (see also records in pure wave
pure wave mechanics	(theory) (see also bare	mechanics and in relative-state
theory) 143	() (formulation) 144
	f quantum mechanics 162	in GRW* 124, 127
deduction of experi		in GRWr 136
determinate record		in GRWf 138–139
probabilistic predic		in many-threads and many-maps 185–186,
probability problem		188
relative-state formu		in pure wave mechanics 153
Wigner's friend stor		in relative-state formulation 154–158
Pusey, M. F. 188n, 239		in single-mind and many-minds
Putnam, H. 105, 239	,	181–183
1 utilalii, 11. 105, 259		in splitting-worlds 163–164, 166–168
quanta 9		in Wigner's theory 120
quantum computation	. 65	inferring history from 81–82
quantum jump (see als		ink on paper 225
dynamics) 42-43		not explained by decoherence 116
quantum measuremen		not records at all 82
measurement pro		preferred basis problem 218n
	see also standard theory)	probabilities of 168
accuracy of 2		production on measurement 81, 109
alternative formulat	nons of 2	relative 144, 156-161, 162-163

Schrödinger picture 41, 42n, 53 role of empirical and primitive ontology in explaining 140-141, 223, 224n, 226-228, Schrödinger's cat 105, 105n 230-231 Scully, M. O. 210n, 237 relative frequency property (bare theory) 152 Sebens, C. T. 173n, 239 relative observer (see also typical) 144, 157-159, self-location probabilities 170-171, 175n, 162 180-181, 186, 221 relative properties 155-156 synchronic 170, 180 relative records 144, 156-161, 162-163 forward-looking 171, 181 relative state 143, 154-155 separability (see also entanglement) 53n relative-state formulation (theory) 143, 154 separable space 233 absolute states 154-155 setting-independence (assumption) 97, an extension of pure wave mechanics 159 99-100 bare theory suggestive properties in 156-158 Shenker, O. 169n, 192n, 238 branches 155 Shor, P. W. 65, 239 comparison with bare theory 156-157 silver atoms 15 empirical faithfulness 154, 158-161 simultaneity 93-94 single-mind (theory) 181 explanation of experience 154-158 explanation of quantum statistics in 157-158 as a hidden variable theory 183 forward-looking probabilities 181-182 logical consistency of 154, 158-159 mental dynamics in 181 no forward-looking probabilities 160-161 no preferred-basis problem 160 no physically preferred basis 183 probabilities 158-159 problems with 183 relative records 156-157 role of bare theory suggestive properties relative states 154-156 status of theory for Everett 158-161 transcendental strategy for deriving typical relative observers 157-159 dynamics 182, 182n Wigner's friend story in 181, 183 relativity 93-95 compatibility with linear dynamics 153, 153n situated observer 228, 228n compatibility with quantum mechanics 3, Solvay congress 96 91-92, 93-95, 96, 121, 129, 134, 184, space 14 216-217, 219, 222, 225-226 separable 233 how to get compatibility with 103-104 spacetime 93 special relativity (see also relativity) 91-95 principle of 94 Renner, R. 210n, 237 Specker, E. P. 224, 224n, 238 repeatability property (bare theory) 148-149 Spekkens, R. 187n, 236 repeatability of measurement outcomes 17 spin properties (x, y, and z) 15 representation of observables (rule 2) 42-44 relation between x-spin and z-spin 19, 45 representation of states (rule 1) 42-43 spin flavor in Bohmian mechanics 194 Rimini, A. (see also GRW) 121, 134, 238 spin space 39-40 Rosen. N. (see also EPR) 89, 96, 237 spin-1 particles 15n Rudolph, T. 188n, 239 spin-1/2 particles 15n rule 1 (standard theory) 42-43 splitting-worlds (theory) 164 rule 2 (standard theory) 42-44 as a multi-collapse theory 166 rule 3 (standard theory) 42 auxiliary assumptions 168-171 rule 4I (standard theory) 42 branches as worlds 163 rule 4II (standard theory) 42-43, 105 counting measure in 169 rule 5 (standard theory) 43 DeWitt and Graham's version of the Rutherford, E. 12 theory 168-169, 169n Everett's view of 169 Saunders, S. 158n, 170n, 174, 239 explanation of experience 163, 166 scalar multiplication 32, 41 fails to solve measurement problem 166 Schrödinger, E 42n, 47n, 53, 105, 105n preferred basis problem 163, 166-168 Schrödinger dynamics (see linear probabilities and probability problem 167, dynamics) 47n

relation between typicality and probability 169-174 relative frequency and randomness properties 167-168 self-location probabilities 170-171 transtemporal identity of worlds 166 typical branches and worlds 163-164, Wigner's friend in 164-165 stability of matter problem 11-13, 86-87 standard theory 42-53 (see also measurement problem, standard interpretation of states, linear dynamics, and collapse dynamics) standard interpretation of states (see also eigenvalue-eigenstate link) 2, 19n, 42, 44, 46-47 history of 46-47, 46n requires collapse on measurement 81 state attribution (see also pure state and mixture) 1-2 constraints on (see entanglement) 56-57 pure state 60 state completeness (principle) 48, 50-51, 89, incompleteness 111-112 states (quantum) 41-42 decomposition 41 state vector 41-42 factorizable 68, 74, 79 how to calculate on measurement 69-72, 79n entangled (nonfactorizable) 56-59, 61, 63, 67-68, 71-74, 78-81, 83-84, 92, 94-95, 102, 108, 116 statistical mixture (see pure state and mixture) statistics (see quantum statistics) Stern, O. (see also Stern-Gerlach device) 15, 16n, 238 Stern-Gerlach device (see also Albert box) 15, 16n, 20, 45, 98, 192-194 strict conditionalization (principle) 71 strong adequacy (see also empirical adequacy) 227, 228n, 230-232 of Bohmian mechanics 230 strong force 24 Struyve W 226n 237 superluminal signaling 138n in Bohmian mechanics 214-217 in Bohmian field theory 226n superposition 2, 27-29, 32, 41, 68

183-184, 219

in GRW 127

250 INDEX

splitting-worlds (theory) (Cont.)

of mental states on dispositions to report 109 of mental states on physical states 108, 108n, 227-228 surreal trajectories in Bohmian mechanics 210-213 Susskind, L. 40n, 93n, 239 Süssmann, G. 210n tails problem in GRW 132-133 tensor product 38-39, 41 physical interpretation 78-79 theory selection (pragmatic) (see also pragmatism) xi, 29, 166, 183, 187, 228-229, 232 theory (cognitive status) 6, 180, 231-232 Thomson, J. J. 11-13 time (see also relativity) 7, 14 time-dependent wave equation (see linear dynamics) 47n total of nothing box (Albert) (see also Aharonov-Bohm effect) 15-16, 84-86, 98-99 truth 1-2, 132, 231, 232 probable approximate 1, 231 Tumulka, R. 137-138, 137n, 140n, 185-186, 226n, 236-238, 240 Turing machine 65 two-path experiment (basic) 27, 66-68 with barrier 72-76 two-slit experiment 9-11, 86 typical 143-144 branches (see also branches) 143-144, 163-164 relative observer (see also relative observer) 144, 157-159, 162 typicality 143-144, 159 is not probability 160-161 measure (Everett) 159-161, 162, 168-169, 174 probabilities and expectations 168, 171-172 in Bohmian mechanics 186n, 192, 192n of branches 143, 163-164 uncertainty relation 18-19 unitary dynamics (see linear dynamics) unitary operator 38, 42 universe, clockwork 5, 7 supervenience (see also records) 108n, 133, 136, vague predicates 132-133 vague properties and experience 133, 136 in Bohmian mechanics 213-214 Vaidman L. 170n 240 Valentini, A. 92n, 96n, 235

in GRWr 136

value-definiteness (assumption) 98–99 van Fraassen, Bas 172, 240 vector 30 addition 32, 41 bra 31, 33 ket 30–31, 33 state 41 Vink, J. C. 224, 226n, 240 von Neumann, J. (see also standard formulation	in splitting-worlds theory 164–165 in pure wave mechanics 144–145 measurement problem 105, 111, 117 origin of 105n–106n Wigner's theory 118–119 ad hoc account of experience 127 ambiguity of 120 collapse in 120 mind-body dualism in 118, 118n, 120–121
of quantum mechanics) 42, 42n, 44n, 46–48, 51, 53, 96, 105n, 110, 110n, 233, 240 von Neumann-Dirac theory (see standard theory)	incompatibility with relativity 121 role of consciousness/mind 120-121 measurement problem 118-121 Wilson, M. 4n, 240
theory)	worlds (see also branches, splitting-worlds,
Wallace, D. xi, 158n, 170n, 173n, 174–175, 176n, 179n, 180, 219n, 236, 239–240	decohering worlds, and many-threads) 163
Walther, H. 210n, 237	causal closure 110n
wave function (<i>see also</i> state vector) 47n, 87–88 as a field in configuration space 135 wave function realism 135, 136n	emergent 174–175 Everett's attitude toward 156n
Wave Mechanics Without Probability 143	x-spin 15-16, 34-35, 53
wave packets in Bohmian mechanics 194	basis 36
wave-particle duality 9–11	operator 37, 44–45
weak adequacy (see also empirical adequacy) 227-228, 230, 232	x-spin box (Albert) 15–16, 53 action on state of electron 53–57
of Bohmian mechanics 230	should not count as a measuring
weak force 24	device 54–55
Weber, T. (see also GRW) 121, 134, 238	
Wheeler, J. A. 143, 163n, 240	y-spin 39
Wigner, E. (see also Wigner's friend) xi, 98n, 105–106, 105n–106n, 118–121, 118n, 127, 148, 240	basis 39-40 operator 39-40
Wigner's friend (see also hypothetical drama and measurement problem) 105–111 and decoherence in 113–117	z-spin 15-16, 35 basis 37 operator 37-38, 45
in Bohmian mechanics 217–218	z-spin box (Albert) 15–16
in decohering worlds 176-178	Zabell, S. 172n, 240
in GRW 122-124	Zanghì, N. 137, 137n, 140, 191n, 192n, 226n,
in single-mind theory 181, 183	235–237