CytoAutoCluster

Importing Header files

```
In []: import pandas as pd
    import matplotlib.pyplot as plt
    import numpy as np
    import matplotlib.pyplot as plt
    from sklearn.preprocessing import StandardScaler
    from sklearn.decomposition import PCA
    from sklearn.cluster import KMeans
    from sklearn.semi_supervised import LabelPropagation
    from sklearn.metrics import silhouette_score
    from sklearn.manifold import TSNE
In []: from google.colab import drive
    drive.mount('/content/drive')
```

Mounted at /content/drive

Displaying the data

```
In []: import pandas as pd

# Provide the URL of the file
url = '/content/drive/MyDrive/Datasets/Levine_32dim.fcs.csv'

# Load the dataset
df = pd.read_csv(url)

# Check the first few rows of the dataset
print(df.head())
```

```
Time Cell length
   Event
                                   DNA1
                                             DNA2 CD45RA CD133 \
       1 2693.0
0
                       22 4.391057 4.617262 0.162691 -0.029585
1
       2 3736.0
                           35 4.340481 4.816692 0.701349 -0.038280
2
       3 7015.0
                          32 3.838727 4.386369 0.603568 -0.032216
       4 7099.0
                          29 4.255806 4.830048 0.433747 -0.027611
3
                          25 3.976909 4.506433 -0.008809 -0.030297
       5 7700.0
       CD19
                 CD22
                          CD11b ...
                                        CD117
                                                    CD49d
                                                             HLA-DR
                                                                          CD64
0 \ -0.006696 \quad 0.066388 \ -0.009184 \quad \dots \quad 0.053050 \quad 0.853505 \quad 1.664480 \ -0.005376
1 \ -0.016654 \ \ 0.074409 \ \ 0.808031 \ \ \dots \ \ \ 0.089660 \ \ \ 0.197818 \ \ \ 0.491592 \ \ \ 0.144814
2 0.073855 -0.042977 -0.001881 ... 0.046222 2.586670 1.308337 -0.010961
3 -0.017661 -0.044072 0.733698 ... 0.066470 1.338669 0.140523 -0.013449
4 \quad 0.080423 \quad 0.495791 \quad 1.107627 \quad \dots \quad -0.006223 \quad 0.180924 \quad 0.197332 \quad 0.076167
       CD41 Viability file number event number label individual
0 -0.001961
            0.648429
                           3.627711
                                               307
                                                      1.0
                                                                     1
1 0.868014 0.561384
                           3.627711
                                              545
                                                      1.0
                                                                     1
2 -0.010413 0.643337
                                                                     1
                           3.627711
                                              1726
                                                      1.0
3 -0.026039 -0.026523
                           3.627711
                                              1766
                                                      1.0
                                                                     1
4 -0.040488 0.283287
                                                                     1
                           3.627711
                                              2031
                                                      1.0
```

[5 rows x 42 columns]

In []: df

Out[

]:		Event	Time	Cell_length	DNA1	DNA2	CD45RA	CD1 3
	0	1	2693.00	22	4.391057	4.617262	0.162691	-0.02958
	1	2	3736.00	35	4.340481	4.816692	0.701349	-0.03828
	2	3	7015.00	32	3.838727	4.386369	0.603568	-0.03221
	3	4	7099.00	29	4.255806	4.830048	0.433747	-0.02761
	4	5	7700.00	25	3.976909	4.506433	-0.008809	-0.03029
	265622	265623	707951.44	41	6.826629	7.133022	1.474081	-0.01917
	265623	265624	708145.44	45	6.787791	7.154026	0.116755	-0.05621
	265624	265625	708398.44	41	6.889866	7.141219	0.684921	-0.00626
	265625	265626	708585.44	39	6.865218	7.144353	0.288761	-0.01131
	265626	265627	709122.44	41	6.887820	7.127359	0.360753	0.12860

265627 rows \times 42 columns

```
In [ ]: df.columns
```

```
4',
             'CD235ab', 'CD45', 'CD123', 'CD321', 'CD14', 'CD33', 'CD47', 'CD11
       с',
             'CD7', 'CD15', 'CD16', 'CD44', 'CD38', 'CD13', 'CD3', 'CD61', 'CD11
       7',
             'CD49d', 'HLA-DR', 'CD64', 'CD41', 'Viability', 'file number',
             'event number', 'label', 'individual'],
            dtype='object')
In [ ]: df['Viability']
Out[]:
               Viability
            0 0.648429
            1 0.561384
            2 0.643337
            3 -0.026523
            4 0.283287
            ...
                  ...
       265622 0.236957
       265623 -0.003500
       265624 0.107206
       265625 0.620872
       265626 0.310466
       265627 \text{ rows} \times 1 \text{ columns}
      dtype: float64
In [ ]: df.info()
```

<class 'pandas.core.frame.DataFrame'> RangeIndex: 265627 entries, 0 to 265626 Data columns (total 42 columns):

#		Non-Nul	ll Count			
0	Event		non-null	int64		
1	Time	265627		float64		
2	Cell_length	265627		int64		
3	DNA1	265627		float64		
4	DNA2	265627	non-null	float64		
5	CD45RA	265627		float64		
6	CD133	265627	non-null	float64		
7	CD19	265627	non-null	float64		
8	CD22	265627	non-null	float64		
9	CD11b	265627	non-null	float64		
10	CD4	265627	non-null	float64		
11	CD8	265627	non-null	float64		
12	CD34	265627	non-null	float64		
13	Flt3	265627		float64		
14	CD20	265627		float64		
15	CXCR4	265627				
16	CD235ab	265627	non-null	float64		
17	CD45	265627	non-null	float64		
18	CD123	265627	non-null	float64		
19	CD321	265627	non-null	float64		
20	CD14	265627	non-null	float64		
21	CD33	265627	non-null	float64		
22	CD47	265627	non-null	float64		
23	CD11c	265627	non-null	float64		
24	CD7	265627	non-null	float64		
25	CD15	265627	non-null	float64		
26	CD16	265627	non-null	float64		
27	CD44	265627	non-null	float64		
28	CD38	265627	non-null	float64		
29	CD13	265627		float64		
30	CD3	265627		float64		
31	CD61	265627		float64		
32	CD117	265627	non-null	float64		
33	CD49d	265627	non-null	float64		
34	HLA-DR	265627	non-null	float64		
35	CD64	265627	non-null	float64		
36	CD41	265627	non-null	float64		
37	Viability	265627	non-null	float64		
38	file number	265627	non-null	float64		
39	event_number	265627	non-null	int64		
40	label	104184	non-null	float64		
41	individual	265627	non-null	int64		
dtypes: float64(38), int64(4)						

dtypes: float64(38), i
memory usage: 85.1 MB

Out[]:		Event	Time	Cell_length	DNA1	D
	count	265627.000000	265627.000000	265627.000000	265627.000000	265627.00
	mean	132814.000000	272948.345014	34.450572	4.606956	5.19
	std	76680.054314	171220.139430	11.446694	1.312831	1.15
	min	1.000000	1.000000	10.000000	2.786488	2.23
	25%	66407.500000	120196.000000	26.000000	3.700023	4.40
	50%	132814.000000	253276.000000	33.000000	4.022127	4.69
	75 %	199220.500000	424502.500000	41.000000	6.353313	6.76
	max	265627.000000	709122.440000	65.000000	7.001489	7.47

8 rows × 42 columns

Finding the column containg null values

```
In [ ]: null_count = df.isnull().sum()
    print(null_count)
```

```
0
Event
                        0
Time
Cell length
                        0
DNA1
                        0
DNA2
                        0
CD45RA
                        0
CD133
                        0
CD19
                        0
CD22
                        0
                        0
CD11b
CD4
                        0
                        0
CD8
CD34
                        0
                        0
Flt3
CD20
                        0
                        0
CXCR4
CD235ab
                        0
CD45
                        0
                        0
CD123
                        0
CD321
CD14
                        0
CD33
                        0
CD47
                        0
                        0
CD11c
                        0
CD7
                        0
CD15
CD16
                        0
CD44
                        0
CD38
                        0
                        0
CD13
CD3
                        0
                        0
CD61
CD117
                        0
CD49d
                        0
HLA-DR
                        0
CD64
                        0
                        0
CD41
Viability
                        0
file number
                        0
event number
                       0
label
                  161443
individual
                       0
dtype: int64
```

NULL VS NOT NULL

```
In []: df = pd.DataFrame(df)
    null_values = df.isnull().sum()
    non_null_values = df.notnull().sum()
    plot_data = pd.DataFrame({
        'Null Values': null_values,
        'Non-Null Values': non_null_values
})
    plot_data.plot(kind='bar', figsize=(12, 6))
    plt.title('Null and Non-Null Values in Each Column')
```

```
plt.xlabel('Columns')
plt.ylabel('Count')
plt.xticks(rotation=45)
plt.legend(loc='upper right')
plt.show()
```


Droping Unnecessary Column

```
In [ ]: df = df.drop(columns=['Event','Time','individual','file_number','event_numbe
```

Class Label Distribution

```
In [ ]: import pandas as pd
import matplotlib.pyplot as plt

data = pd.read_csv('/content/drive/MyDrive/Datasets/Levine_32dim.fcs.csv')

class_counts = data['label'].value_counts()

class_counts.plot(kind='bar')

plt.title('Class Label Distribution')
plt.ylabel('Count')
plt.xlabel('Class Labels')
plt.xticks(rotation=0)
plt.show()
```

Class Label Distribution

Histogram of each feature

```
In [ ]:
        import pandas as pd
        import matplotlib.pyplot as plt
        data = pd.read csv('/content/drive/MyDrive/Datasets/Levine 32dim.fcs.csv')
        # Select only numerical columns for histogram plotting
        numerical columns = data.select dtypes(include=['float64', 'int64']).columns
        # Set up the figure for subplots
        plt.figure(figsize=(15, 20))
        # Iterate through numerical columns and create a histogram for each
        for i, column in enumerate(numerical columns, 1):
            plt.subplot(len(numerical columns)//3 + 1, 3, i)
            plt.hist(data[column], bins=30, edgecolor='black')
            plt.title(column)
            plt.xlabel('Value')
            plt.ylabel('Frequency')
        plt.tight layout()
        plt.show()
```


Correlation matrix

```
import seaborn as sns
import matplotlib.pyplot as plt
# Compute the correlation matrix
correlation_matrix = df.corr()
# Display the correlation matrix
correlation_matrix.round(2)
```

```
# Set the figure size
plt.figure(figsize=(25, 18))
# Create a heatmap of the correlation matrix
sns.heatmap(correlation_matrix, annot= False , cmap='coolwarm',vmin=-1,vmax=
# Add a title
plt.title('Correlation Matrix Heatmap', fontsize=18)
# Show the plot
plt.show()
```


Setting the threshold

```
In [ ]: corr_features = correlation(df, 0.8)
    len(set(corr_features))
```

```
Out[]: 2
In []: corr_features
Out[]: {'CD41', 'DNA2'}
```

Finding the range of each column

```
In []: # Select only numerical columns
numerical_columns = df.select_dtypes(include=['float64', 'int64']).columns

# Create a DataFrame to store max, min, and range values
summary_df = pd.DataFrame({
    'Max': df[numerical_columns].max(),
    'Min': df[numerical_columns].min(),
    'Range': df[numerical_columns].max() - df[numerical_columns].min()
})

# Display the summary DataFrame
print("Summary of Max, Min, and Range for Each Numerical Column:")
print(summary_df)
```

```
Summary of Max, Min, and Range for Each Numerical Column:
                  Max
                             Min
                                      Range
Cell length 65.000000 10.000000
                                  55.000000
DNA1
             7.001489
                        2.786488
                                   4.215001
DNA2
             7.472308
                        2.236450
                                   5.235858
CD45RA
             6.691197 -0.057305
                                  6.748502
CD133
             5.527494 -0.058081
                                   5.585575
CD19
             4.990085 -0.058089
                                   5.048174
CD22
             5.160477 -0.057342
                                   5.217819
CD11b
             5.260789 -0.058236
                                   5.319025
CD4
             6.581762
                      -0.057751
                                   6.639513
CD8
             4.693694 -0.058003
                                   4.751697
CD34
             5.147996 -0.058008
                                   5.206004
Flt3
             7.117323 -0.057884
                                   7.175207
CD20
             6.051411
                      -0.058132
                                   6.109543
CXCR4
             5.696674
                      -0.057042
                                   5.753717
CD235ab
             6.646699 -0.057612
                                   6.704311
CD45
             7.238076
                       2.040243
                                   5.197833
CD123
             6.640626 -0.058003
                                   6.698630
CD321
             6.867388 -0.053552
                                   6.920940
CD14
             5.006121 -0.057954
                                   5.064075
CD33
             5.612469 -0.058079
                                   5.670548
CD47
             6.402488 -0.055087
                                   6.457575
CD11c
             6.520939 -0.058053
                                   6.578992
CD7
             6.319219
                      -0.058162
                                   6.377381
CD15
             1.534151
                      -0.058077
                                   1.592227
CD16
             5.338305 -0.057780
                                   5.396085
             7.404564
                        0.026061
CD44
                                   7.378503
CD38
             7.293085 -0.057194
                                   7.350279
CD13
             6.981187 -0.057728
                                  7.038915
CD3
             6.748362 -0.058241
                                   6.806603
             7.748498 -0.057642
CD61
                                   7.806139
             5.502125 -0.057668
CD117
                                   5.559793
CD49d
             5.153438 -0.058064
                                   5.211502
HLA-DR
             7.052507
                      -0.057974
                                 7.110481
CD64
             4.517843 -0.058199
                                 4.576042
CD41
             7.718288 -0.058244
                                   7.776532
Viability
             2.433031 -0.057979
                                   2.491010
label
            14.000000
                       1.000000 13.000000
```

Boxplot

```
plt.title(f'Box Plot of {column}', fontsize=10)
    plt.ylabel('Value', fontsize=10)
    plt.xticks(rotation=45, fontsize=8)
# Adjust layout for better spacing
plt.tight_layout()
plt.show()
                          anga 3
                                         anda a
                          white "
```

Skewness

```
from scipy.stats import skew
import pandas as pd
skewness = df.apply(skew)
# Function to categorize skewness
def categorize skewness(value):
   if value > 0.5:
        return 'Right-skewed'
   elif value < -0.5:</pre>
        return 'Left-skewed'
    else:
        return 'Approximately symmetrical'
# Apply the categorization
skewness category = skewness.apply(categorize skewness)
# Display skewness and its categorization
skewness df = pd.DataFrame({'Skewness': skewness, 'Category': skewness categ
print(skewness df)
# Number of numerical columns
num cols = len(df.columns)
# Create a grid of 6 plots per row
cols per row = 6
rows = (num cols + cols per row - 1) // cols per row # Calculate the number
# Create subplots
fig, axes = plt.subplots(rows, cols per row, figsize=(20, rows * 4))
axes = axes.flatten() # Flatten to make it easier to iterate through
# Plot histograms for each numerical column
for i, col in enumerate(df.columns):
    sns.histplot(df[col], bins=10, kde=True, ax=axes[i])
    axes[i].set title(f'Distribution of {col}\n(Skewness: {skewness[col]:.2f
    axes[i].axvline(df[col].mean(), color='red', linestyle='--', label='Mear
    axes[i].axvline(df[col].median(), color='green', linestyle='--', label='
    axes[i].legend()
# Remove any empty subplots
for j in range(i + 1, len(axes)):
    fig.delaxes(axes[j])
# Adjust layout
plt.tight layout()
plt.show()
```

Cell_length DNA1 DNA2 CD45RA CD133 CD19 CD22 CD11b CD4 CD8 CD34 Flt3	Skewness 0.527832 0.845010 0.779167 1.191595 2.141953 1.682609 2.283181 1.679089 1.622044 1.775713 3.492437 7.098151	Category Right-skewed
CD20	2.754699	Right-skewed
CXCR4	0.955342	Right-skewed
CD235ab	2.001479	Right-skewed
CD45	-1.484824	Left-skewed
CD123	3.648890	Right-skewed
CD321	0.247097	Approximately symmetrical
CD14	3.609006	Right-skewed
CD33	2.724977	Right-skewed
CD47	-0.250323	Approximately symmetrical
CD11c	1.733888	Right-skewed
CD7	1.606528	Right-skewed
CD15	1.445147	Right-skewed
CD16	5.733203	Right-skewed
CD44	-0.431589	Approximately symmetrical
CD38	1.141482	Right-skewed
CD13	2.234311	Right-skewed
CD3	0.342239	Approximately symmetrical
CD61	4.894707	Right-skewed
CD117	4.097508	Right-skewed
CD49d	0.856805	Right-skewed
HLA-DR	0.795359	Right-skewed
CD64	1.743733	Right-skewed
CD41	5.366314	Right-skewed
Viability	0.985417	Right-skewed
label	NaN	Approximately symmetrical

Kurtosis

```
In [ ]: import pandas as pd
        import matplotlib.pyplot as plt
        import seaborn as sns
        from scipy.stats import kurtosis
        # Calculate kurtosis for each column
        kurtosis values = df.apply(kurtosis, fisher=False) # Pearson kurtosis (norm
        # Create a DataFrame with kurtosis values
        kurtosis df = pd.DataFrame({'Column': df.columns, 'Kurtosis': kurtosis value
        # Categorize the kurtosis values (Leptokurtic, Mesokurtic, Platykurtic)
        def categorize kurtosis(value):
            if value > 3:
                return 'Leptokurtic (heavy tails)'
            elif value < 3:</pre>
                return 'Platykurtic (light tails)'
            else:
                return 'Mesokurtic (normal tails)'
        kurtosis df['Category'] = kurtosis df['Kurtosis'].apply(categorize kurtosis)
        # Print the kurtosis values and their categories
        print(kurtosis df)
        # Number of numerical columns
        num cols = len(df.columns)
        # Create a grid of 6 plots per row
        cols per row = 6
        rows = (num cols + cols per row - 1) // cols per row # Calculate the number
        # Create subplots
        fig, axes = plt.subplots(rows, cols per row, figsize=(20, rows * 4))
        axes = axes.flatten() # Flatten the axes array to make iteration easier
        # Plot density for each column
        for i, column in enumerate(df.columns):
            sns.kdeplot(df[column].dropna(), color='c', fill=True, bw adjust=0.5, ax
            axes[i].set title(f'Density Plot of {column}\n(Kurtosis: {kurtosis df.lc
            axes[i].set xlabel(column)
            axes[i].set ylabel('Density')
            axes[i].grid(True)
        # Remove any empty subplots
        for j in range(i + 1, len(axes)):
            fig.delaxes(axes[j])
        # Adjust layout
        plt.tight layout()
        plt.show()
```

	C = 1	17at a a i a	Catagoni
Coll longth	Coll longth	Kurtosis 2.834033	Category
Cell_length DNA1	Cell_length DNA1	1.994037	Platykurtic (light tails)
DNA1 DNA2	DNA1 DNA2		Platykurtic (light tails)
		1.975021	Platykurtic (light tails)
CD45RA CD133	CD45RA	4.964272	Leptokurtic (heavy tails)
	CD133	9.190066	Leptokurtic (heavy tails)
CD19	CD19	4.590887	Leptokurtic (heavy tails)
CD22	CD22	7.500223	Leptokurtic (heavy tails)
CD11b	CD11b	4.964495	Leptokurtic (heavy tails)
CD4	CD4	5.844261	Leptokurtic (heavy tails)
CD8	CD8	4.745776	Leptokurtic (heavy tails)
CD34	CD34	16.596416	Leptokurtic (heavy tails)
Flt3	Flt3	85.583534	Leptokurtic (heavy tails)
CD20	CD20	10.435449	Leptokurtic (heavy tails)
CXCR4	CXCR4	3.936307	Leptokurtic (heavy tails)
CD235ab	CD235ab	13.440586	Leptokurtic (heavy tails)
CD45	CD45	5.246770	Leptokurtic (heavy tails)
CD123	CD123	18.361217	Leptokurtic (heavy tails)
CD321	CD321	2.914593	Platykurtic (light tails)
CD14	CD14	23.062535	Leptokurtic (heavy tails)
CD33	CD33	10.967536	Leptokurtic (heavy tails)
CD47	CD47	2.943834	Platykurtic (light tails)
CD11c	CD11c	5.117156	Leptokurtic (heavy tails)
CD7	CD7	4.885115	Leptokurtic (heavy tails)
CD15	CD15	4.504387	Leptokurtic (heavy tails)
CD16	CD16	42.287749	Leptokurtic (heavy tails)
CD44	CD44	2.918792	Platykurtic (light tails)
CD38	CD38	3.521190	Leptokurtic (heavy tails)
CD13	CD13	10.637564	Leptokurtic (heavy tails)
CD3	CD3	1.264612	Platykurtic (light tails)
CD61	CD61	34.878020	Leptokurtic (heavy tails)
CD117	CD117	26.375108	Leptokurtic (heavy tails)
CD49d	CD49d	3.468119	Leptokurtic (heavy tails)
HLA-DR	HLA-DR	2.309924	Platykurtic (light tails)
CD64	CD64	4.910631	Leptokurtic (heavy tails)
CD41	CD41	41.521113	Leptokurtic (heavy tails)
Viability	Viability	3.156935	Leptokurtic (heavy tails)
label	label	NaN	Mesokurtic (normal tails)

Loading and Visualizing the MNIST Dataset

```
In [ ]: import tensorflow as tf
        (train images, train labels), (test images, test labels) = tf.keras.datasets
        train images = train images.astype('float32') / 255.0
        test images = test images.astype('float32') / 255.0
        print(f"Training images shape: {train images.shape}")
        print(f"Training labels shape: {train labels.shape}")
        print(f"Test images shape: {test images.shape}")
        print(f"Test labels shape: {test labels.shape}")
        import matplotlib.pyplot as plt
        plt.imshow(train images[0], cmap='Accent')
       Downloading data from https://storage.googleapis.com/tensorflow/tf-keras-dat
       asets/mnist.npz
       11490434/11490434
                                             - 0s 0us/step
       Training images shape: (60000, 28, 28)
       Training labels shape: (60000,)
```

Out[]: <matplotlib.image.AxesImage at 0x7a9c10029540>

Test images shape: (10000, 28, 28)

Test labels shape: (10000,)

t-SNE Visualization of MNIST Dataset with Subset of Samples

```
In [ ]: import tensorflow as tf
        from sklearn.manifold import TSNE
        import matplotlib.pyplot as plt
        import numpy as np
        (train images, train labels), (test images, test labels) = tf.keras.datasets
        train images = train images.astype('float32') / 255.0
        test images = test images.astype('float32') / 255.0
        n \text{ samples} = 1000
        train images flat = train images[:n samples].reshape(n samples, -1)
        train_labels_subset = train_labels[:n_samples]
        tsne = TSNE(n components=2, random state=42, perplexity=30)
        train images tsne = tsne.fit transform(train images flat)
        # plot the results
        plt.figure(figsize=(10, 8))
        scatter = plt.scatter(train_images_tsne[:, 0], train_images_tsne[:, 1], c=tr
        plt.colorbar(scatter, ticks=range(10))
        plt.title('t-SNE Visualization of MNIST Dataset')
        plt.xlabel('t-SNE Component 1')
        plt.ylabel('t-SNE Component 2')
        plt.show()
```


Standardizing the data

```
In []: import pandas as pd
    from sklearn.preprocessing import StandardScaler
# Initialize the StandardScaler
scaler = StandardScaler()

scaled_data = scaler.fit_transform(df)

scaled_df = pd.DataFrame(scaled_data, columns=df.columns)

# Display the first few rows of the standardized data
print(scaled_df.head())
```

```
Cell length
                    DNA1
\
     -1.087702 -0.164453 -0.505101 -0.862639 -0.677085 -0.601774 -0.434227
0
1
      0.047999 \ -0.202977 \ -0.331737 \ \ 0.021706 \ -0.710621 \ -0.613387 \ -0.423702
    -0.214086 \ -0.585171 \ -0.705816 \ -0.138826 \ -0.687231 \ -0.507832 \ -0.577727
2
3
     -0.476171 -0.267476 -0.320127 -0.417630 -0.669470 -0.614562 -0.579163
     -0.825617 -0.479916 -0.601444 -1.144201 -0.679832 -0.500173 0.129202
      CD11b
                  CD4
                            CD8 ...
                                           CD13
                                                      CD3
                                                               CD61
                                                                        CD117
\
0 \ -0.711371 \ -0.007722 \ -0.044861 \ \dots \ -0.665941 \ -0.968994 \ -0.479732 \ -0.249511
1 0.096608 -0.778973 -0.573653 ... 2.197090 -0.973786 1.262168 -0.132623
2 -0.704150 -0.727475 -0.568752 ... -0.312734 -0.813227 -0.120582 -0.271310
3 0.023115 -0.747355 -0.507239 ... 0.294199 -0.927985 -0.532490 -0.206663
4 0.392818 0.357861 -0.531946 ... 0.438207 -0.894158 -0.242836 -0.438757
      CD49d
               HLA-DR
                           CD64
                                     CD41 Viability
                                                          label
0 0.093316 0.084209 -0.626606 -0.427371
                                             0.132927 -2.895698
1 \ -0.951407 \ -0.608084 \ -0.457614 \ \ 0.982491 \ \ -0.014673 \ -2.895698
2 2.854812 -0.126003 -0.632890 -0.441068 0.124292 -2.895698
3 0.866341 -0.815301 -0.635690 -0.466392 -1.011569 -2.895698
4 -0.978326 -0.781769 -0.534854 -0.489807 -0.486233 -2.895698
[5 rows x 37 columns]
```

CD45RA

CD133

CD19

CD22

DNA2

PCA for 2D

```
In [ ]: import pandas as pd
        import seaborn as sns
        from sklearn.decomposition import PCA
        from sklearn.preprocessing import StandardScaler
        import matplotlib.pyplot as plt
        # Scale the data using StandardScaler
        # Use all columns except the 'label' column
        scaler = StandardScaler()
        scaled data = scaler.fit transform(df.drop(columns=['label']))
        # Apply PCA to reduce dimensions to 2 components
        pca = PCA(n components=2)
        pca results = pca.fit transform(scaled data)
        # Add PCA results back to the original DataFrame
        df['PCA1'] = pca results[:, 0]
        df['PCA2'] = pca_results[:, 1]
        # Create a scatter plot of the PCA results
        plt.figure(figsize=(10, 8))
        scatter = plt.scatter(
            df['PCA1'], df['PCA2'],
            c=df['label'], # Use the label column for coloring
            cmap='viridis', # 'viridis' colormap for smooth gradients
                            # Set transparency for better visualization
            alpha=0.6
        )
```

```
# Add a colorbar to explain the labels
cbar = plt.colorbar(scatter)
cbar.set_label('Labels', fontsize=12)

# Add plot title and axis labels
plt.title('PCA Visualization of Mass Cytometry Data', fontsize=16)
plt.xlabel('PCA Component 1', fontsize=12)
plt.ylabel('PCA Component 2', fontsize=12)

# Add grid for clarity
plt.grid(alpha=0.3)

# Show the final plot
plt.show()
```


PCA for 3D

```
import pandas as pd
import numpy as np # Ensure this is imported for mathematical operations
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D # For 3D plotting
from sklearn.decomposition import PCA
from sklearn.preprocessing import StandardScaler
```

```
# Scale the data using StandardScaler
# Use all columns except 'label' for scaling
scaler = StandardScaler()
scaled data = scaler.fit transform(df.drop(columns=['label']))
# Apply PCA with 4 components
pca = PCA(n components=4)
pca results = pca.fit transform(scaled data)
# Add PCA results back to the DataFrame
df['PCA1'] = pca results[:, 0]
df['PCA2'] = pca results[:, 1]
df['PCA3'] = pca results[:, 2]
df['PCA4'] = pca results[:, 3]
# Print PCA explained variance results
explained variance = pca.explained variance ratio
cumulative variance = explained variance.cumsum()
standard deviation = pca.singular values / np.sqrt(len(df) - 1)
print(f"Standard deviation: {standard deviation}")
print(f"Proportion of Variance: {explained variance}")
print(f"Cumulative Proportion: {cumulative variance}")
# 3D scatter plot of the PCA results (PC1, PC2, PC3)
fig = plt.figure(figsize=(10, 8))
ax = fig.add subplot(111, projection='3d')
# Scatter plot using the 'viridis' colormap
scatter = ax.scatter(
    df['PCA1'], df['PCA2'], df['PCA3'],
   c=df['label'], cmap='viridis', alpha=0.6
)
# Add title and axis labels
ax.set title('PCA Visualization of Mass Cytometry Data (3D: PC1, PC2, PC3)',
ax.set xlabel('PCA Component 1', fontsize=12)
ax.set_ylabel('PCA Component 2', fontsize=12)
ax.set zlabel('PCA Component 3', fontsize=12)
# Add a colorbar with a label
cbar = fig.colorbar(scatter, ax=ax, label='Labels')
# Show the plot
plt.show()
```

Standard deviation: [2.53583711 2.20245521 1.89526477 1.61107568] Proportion of Variance: [0.16922225 0.12765239 0.09452671 0.06830408] Cumulative Proportion: [0.16922225 0.29687464 0.39140135 0.45970543]

T-SNE

In []: pip install openTSNE

Collecting openTSNE

Downloading openTSNE-1.0.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014 x86 64.whl.metadata (7.8 kB)

Requirement already satisfied: numpy>=1.16.6 in /usr/local/lib/python3.10/dist-packages (from openTSNE) (1.26.4)

Requirement already satisfied: scikit-learn>=0.20 in /usr/local/lib/python3. 10/dist-packages (from openTSNE) (1.5.2)

Requirement already satisfied: scipy in /usr/local/lib/python3.10/dist-packa ges (from openTSNE) (1.13.1)

Requirement already satisfied: joblib>=1.2.0 in /usr/local/lib/python3.10/dist-packages (from scikit-learn>=0.20->openTSNE) (1.4.2)

Requirement already satisfied: threadpoolctl>=3.1.0 in /usr/local/lib/python 3.10/dist-packages (from scikit-learn>=0.20->openTSNE) (3.5.0)

Downloading openTSNE-1.0.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x $86_64.\mathrm{whl}$ (3.0 MB)

- 3.0/3.0 MB 22.8 MB/s eta 0:00:00

```
In [ ]: from openTSNE import TSNE
        import matplotlib.pyplot as plt
        # Step 1: Reduce dimensionality with PCA
        from sklearn.decomposition import PCA
        pca = PCA(n components=20)
        pca result = pca.fit transform(scaled data)
        # Step 2: Apply t-SNE using openTSNE (multithreaded)
        # `n_jobs=-1` uses all available CPU cores
        tsne = TSNE(
            n components=2, perplexity=30, n jobs=-1, random state=42, initialization
        tsne results = tsne.fit(pca result)
        # Step 3: Add t-SNE results to the dataframe
        df['TSNE1'] = tsne_results[:, 0]
        df['TSNE2'] = tsne_results[:, 1]
        # Step 4: Plot the t-SNE results
        plt.figure(figsize=(10, 8))
        scatter = plt.scatter(
            df['TSNE1'], df['TSNE2'],
            c=df['label'], cmap='viridis', alpha=0.6
        # Add a colorbar and labels
        cbar = plt.colorbar(scatter, label='Labels')
        plt.title('t-SNE with PCA Preprocessing (Multithreaded)', fontsize=14)
        plt.xlabel('t-SNE Component 1', fontsize=12)
        plt.ylabel('t-SNE Component 2', fontsize=12)
        plt.grid(alpha=0.3)
        # Show the plot
        plt.show()
```


Applying Binary Mask, Shuffled Output and Corrupted DataFrame on example data

```
print("\n0riginal DataFrame:\n", demo_data)
        print("\nMasked DataFrame:\n", masked demo data)
      Generated Mask (1 represents masked values):
       [[0 \ 1 \ 1]]
        [1 0 0]
       [0 1 1]
       [1 \ 0 \ 1]]
      Original DataFrame:
           A B C
         5 10
                 9
      0
      1 11 40 25
      2 18 15 35
      3 8 30 20
      Masked DataFrame:
                         C
             Α
                   В
      0
          5.0 NaN
                     NaN
      1 NaN 40.0 25.0
      2 18.0 NaN
                     NaN
         NaN 30.0
      3
                      NaN
In [ ]: import pandas as pd
        import numpy as np
        data = {
           'A': [1, 2, 3, 4, 5],
            'B': [10, 20, 30, 40, 50],
            'C': [100, 200, 300, 400, 500],
            'D': [120,300,231,450,200],
            'E': [12,30,31,40,20]
        df = pd.DataFrame(data)
        shuffled_df = df.apply(np.random.permutation)
        print("Original DataFrame:")
        print(df)
        print("\nDataFrame with shuffled column values:")
        print(shuffled df)
```

```
Original DataFrame:
                  C
                      D
                          Ε
             В
      0
        1 10
               100
                    120 12
      1
        2 20 200
                    300 30
      2 3 30 300 231 31
      3 4 40
               400
                    450 40
      4 5 50
               500 200 20
      DataFrame with shuffled column values:
         Α
            В
                C
                      D
                          Ε
      0
        1 30 300
                    300 12
      1 3 20 400
                    450 20
      2 5 50 100
                    231 31
      3 2 10
                500
                    200 40
               200 120 30
      4 4 40
In [ ]: import pandas as pd
       import numpy as np
       data = {
           'A': [1, 2, 3, 4, 5],
           'B': [10, 20, 30, 40, 50],
           'C': [100, 200, 300, 400, 500],
           'D': [1000, 2000, 3000, 4000, 5000],
           'E': [10000, 20000, 30000, 40000, 50000]
       x = pd.DataFrame(data)
       m = pd.DataFrame(np.random.binomial(1, 0.5, x.shape), columns=x.columns)
       x shuffled = x.apply(np.random.permutation)
       x = x * (1 - m) + x shuffled * m
        print("Original DataFrame (x):")
       print(x)
        print("\nBinary Mask (m):")
       print(m)
       print("\nShuffled DataFrame (x shuffled):")
        print(x shuffled)
       print("\nCorrupted DataFrame (x corrupted):")
        print(x_corrupted)
```

```
Original DataFrame (x):
  A B C D
 1 10 100 1000 10000
1 2 20 200 2000 20000
2 3 30 300 3000 30000
3 4 40 400 4000 40000
4 5 50 500 5000 50000
Binary Mask (m):
  A B C D E
0 0 1 0 1 0
2 1 0 0 0 0
3 1 1 1 0 0
4 0 1 0 0 1
Shuffled DataFrame (x shuffled):
  A B C D
                    Ε
0 1 10 100 5000 30000
1 4 30 500 3000 20000
2 2 50 300 2000 10000
3 3 20 200 1000 40000
4 5 40 400 4000 50000
Corrupted DataFrame (x_corrupted):
  A B C D E
0 1 10 100 5000 10000
1 4 30 200 2000 20000
2 2 30 300 3000 30000
3 3 20 200 4000 40000
4 5 40 500 5000 50000
```

Applying Binary Mask, Shuffled Output and Corrupted DataFrame on Original Data

```
In []: # Separate labeled and unlabeled data based on non-NaN and NaN values in the
    df_labeled = df[df['label'].notnull()]
    df_unlabeled = df[df['label'].isnull()]

# Print the shapes of labeled and unlabeled data
    print("Labeled Data Shape:", df_labeled.shape)
    print("Unlabeled Data Shape:", df_unlabeled.shape)
Labeled Data Shape: (104184, 37)
Unlabeled Data Shape: (161443, 37)
```

Split labelled dataset into $x_{test,x_{train}}$ and y_{test} and y_{train} . train = 70% and test = 30%

```
In [ ]: from sklearn.model_selection import train_test_split
# Separate labeled and unlabeled data
```

```
df_labeled = df[df['label'].notnull()] # Labeled data
df_unlabeled = df[df['label'].isnull()] # Unlabeled data

# Separate features and target for labeled data
x_labeled = df_labeled.drop(columns=['label']) # Features
y_labeled = df_labeled['label'] # Target

# Separate features for unlabeled data
x_unlabeled = df_unlabeled.drop(columns=['label']) # Features (no labels)

# Split the labeled data into training and testing sets (e.g., 70% train, 36
x_train, x_test, y_train, y_test = train_test_split(x_labeled, y_labeled, te

print("\nTraining Features (x_train):\n", x_train.head())
print("\nTraining Features (x_test):\n", y_train.head())
print("\nTesting Features (x_test):\n", x_test.head())
print("\nTesting Labels (y_test):\n", y_test.head())
```

```
Training Features (x train):
       Cell length DNA1 DNA2 CD45RA CD133 CD19 \
64113
              25 3.899656 4.594272 0.976652 0.302811 0.154761
              31 6.592998 6.901888 0.431481 -0.052898 -0.037690
82744
24294
             41 3.543583 4.467671 0.377192 0.219081 0.245478
              38 4.305227 4.881685 0.199351 0.100678 -0.025812
7820
             26 4.159271 4.861015 0.831285 0.191518 2.002712
43295
          CD22 CD11b
                             CD4
                                      CD8 ...
                                                  CD38
                                                            CD13 \
64113 -0.011676 3.180236 1.465950 0.086209 ... 1.563844 0.480488
82744 -0.029715 -0.040846 0.914311 0.022305 ... 1.232765 0.100678
24294 0.193328 0.075123 0.936352 -0.044813 ... 0.486930 0.046766
7820 -0.002898 1.437247 -0.013400 -0.001012 ... 1.250272 0.731957
43295 3.387782 0.179219 0.115231 -0.010963 ... 2.883403 0.345273
                   CD61 CD117 CD49d HLA-DR CD64
           CD3
                                                                CD41
64113 0.017010 0.051464 -0.003680 1.260410 0.700093 2.355886 0.125409
82744 5.722406 -0.036430 0.021689 0.034946 -0.055651 -0.023248 -0.054842
24294 \quad 4.061728 \quad 1.003383 \quad 0.406137 \quad 1.928676 \quad -0.046849 \quad 0.229309 \quad 0.937020
7820
      0.245939 \ -0.007282 \ 1.421540 \ 1.443145 \ 2.461705 \ 0.528679 \ 0.072205
43295 0.226596 -0.040754 0.060944 1.294561 3.085858 -0.014128 0.479256
      Viability
64113
     0.840205
82744 -0.009329
24294 1.231347
7820 0.892480
43295 2.269233
[5 rows x 36 columns]
Training Labels (y train):
64113 10.0
         7.0
82744
        7.0
24294
       6.0
7820
43295
         9.0
Name: label, dtype: float64
Testing Features (x test):
       Cell length DNA1 DNA2 CD45RA CD133 CD19 \
60544
             49 3.618797 4.144135 0.198186 0.000282 0.253703
              27 3.660988 4.497041 1.272625 0.129642 3.054480
50673
             23 3.854865 4.663734 1.527763 0.151383 2.361353
50682
              17 3.716473 4.465312 0.375236 -0.037150 -0.035385
1761
              32 6.826030 7.007709 0.223441 -0.048813 -0.018816
98760
         CD22 CD11b
                          CD4 CD8 ...
                                                  CD38
                                                           CD13 \
60544 -0.018972 2.665005 0.079150 -0.002045 ... 2.479135 1.419488
50673 2.493220 0.189975 -0.024412 0.186744 ... 2.212054 -0.020246
50682 2.281009 0.528589 -0.014516 -0.002732 ... 0.787080 -0.010742
      0.127904 0.415204 0.226788 2.802413 ... 0.042091 -0.018271
98760 -0.045954 4.067125 0.004401 -0.012083 ... 1.382377 0.154702
           CD3
                   CD61 CD117 CD49d HLA-DR
                                                       CD64
                                                                CD41
```

```
60544 0.643676 0.307357 0.208639 2.039954 2.847283 2.798986 1.090235
       50673 0.054290 0.084448 0.033192 0.004637 4.488360 0.866820 -0.002174
       50682 0.068448 -0.041903 -0.026017 0.109363 2.328828 -0.008223 -0.018680
       1761 -0.039628 -0.001024 -0.017034 0.023385 0.120367 0.472159 -0.014919
      98760 0.250393 -0.029816 -0.046020 0.140410 0.735830 1.011186 -0.044875
             Viability
       60544 1.005784
       50673 0.917810
      50682 1.091297
       1761 0.620643
      98760 0.149759
      [5 rows x 36 columns]
      Testing Labels (y test):
       60544
                10.0
                9.0
       50673
       50682
                9.0
       1761
                2.0
      98760 10.0
      Name: label, dtype: float64
In []: from sklearn.preprocessing import StandardScaler
        # Initialize the scaler
        scaler = StandardScaler()
        # Fit and transform the unlabeled data
        x unlabeled scaled = scaler.fit transform(x unlabeled)
        # Convert back to a DataFrame if needed (optional, for better readability)
        x unlabeled scaled = pd.DataFrame(x unlabeled scaled, columns=x unlabeled.cd
In [ ]: from sklearn.model selection import train test split
        df labeled = df[df['label'].notnull()] # Labeled data
        df unlabeled = df[df['label'].isnull()] # Unlabeled data
        # Separate features and target for labeled data
        X labeled = df labeled.drop(columns=['label']) # Features
        y labeled = df labeled['label']
                                                       # Target
        # Split the labeled data into training and testing sets (e.g., 70% train, 30^{\circ}
        X train, X test, y train, y test = train test split(X labeled, y labeled, te
        # Print the shapes of the training and testing sets
        print("Shape of Training Features (X train):", X train.shape)
        print("Shape of Training Labels (y_train):", y_train.shape)
        print("Shape of Testing Features (X test):", X test.shape)
       Shape of Training Features (X train): (72928, 36)
       Shape of Training Labels (y train): (72928,)
       Shape of Testing Features (X test): (31256, 36)
```

Logistic Regression Model

```
In [ ]: from sklearn.linear model import LogisticRegression
        from sklearn.metrics import log loss
        def logit(x train, y train, x test):
            """Logistic Regression.
            Args:
                x train: Training features.
                y train: Training labels.
                x_test: Testing features.
            Returns:
                y_test_hat: Predicted probabilities for x_test.
            # Convert labels into proper format
            if len(y_train.shape) > 1:
                y train = donvert matrix to vector(y train)
            # Define and fit the model on the training dataset
            model = LogisticRegression()
            model.fit(x train, y train)
            # Predict probabilities on x test
            y test hat = model.predict proba(x test)
            return y test hat
```

```
In [ ]: y_test_prob = logit(X_train, y_train, X_test)

# Display the probabilities
print("Predicted probabilities for the test set:")
print(y_test_prob)

# Compute log loss
log_loss_value = log_loss(y_test, y_test_prob)

# Display log loss
print("Log loss for the test set:", log_loss_value)
```

```
Predicted probabilities for the test set:
[[1.27832255e-12 2.06977665e-16 3.99046638e-17 ... 7.92486068e-13
  3.66276613e-14 1.83700781e-131
 [3.53829724e-14 5.62561775e-14 9.40919132e-16 ... 1.07032765e-11
  2.42897888e-04 1.52985856e-10]
 [9.66721886e-11 2.33132685e-10 3.73727689e-12 ... 1.13644612e-10
  1.28665515e-06 3.89190497e-11]
 [8.97193682e-08 1.11777043e-05 1.13462283e-08 ... 2.18504192e-08
  2.32788580e-10 2.44061608e-10]
 [4.43450554e-09 3.80180801e-10 2.59394355e-11 ... 1.75572500e-08
  5.96201221e-06 2.02390897e-07]
 [2.07984818e-09 7.62212185e-09 7.21995065e-11 ... 3.49653489e-11
  5.64646108e-08 4.47350113e-12]]
Log loss for the test set: 0.033144266653965554
/usr/local/lib/python3.10/dist-packages/sklearn/linear model/ logistic.py:46
9: ConvergenceWarning: lbfgs failed to converge (status=1):
STOP: TOTAL NO. of ITERATIONS REACHED LIMIT.
Increase the number of iterations (max iter) or scale the data as shown in:
    https://scikit-learn.org/stable/modules/preprocessing.html
Please also refer to the documentation for alternative solver options:
    https://scikit-learn.org/stable/modules/linear model.html#logistic-regre
ssion
  n iter i = check optimize result(
```

XGBoost Model

```
In [ ]: from xqboost import XGBClassifier
        from sklearn.metrics import log loss
        import numpy as np
        def xgboost model(x train, y train, x test):
            """XGBoost Classifier.
            Args:
                x train: Training features.
                y train: Training labels.
                x test: Testing features.
            Returns:
                y_test_prob: Predicted probabilities for x_test.
            # Convert labels to proper format and zero-based index if necessary
            if len(y train.shape) > 1:
                y train = donvert matrix to vector(y train)
            y train = y train.astype(int) - 1 # Convert to integer and zero-based i
            # Define and fit the XGBoost model on the training dataset
            model = XGBClassifier(use label encoder=False, eval metric='logloss')
            model.fit(x train, y train)
            # Predict probabilities on x test
```

```
y test prob = model.predict proba(x test)
     return y test prob
 # Example usage
 # Assuming y test is the true labels for X test
 y test zero based = y test.astype(int) - 1 # Adjust y test for log loss cal
 y test prob = xgboost model(X train, y train, X test)
 # Display the probabilities
 print("Predicted probabilities for the test set:")
 print(y test prob)
 # Compute log loss
 log loss value = log loss(y test zero based, y test prob)
 print("Log loss for the test set:", log loss value)
/usr/local/lib/python3.10/dist-packages/xgboost/core.py:158: UserWarning: [0
6:52:28] WARNING: /workspace/src/learner.cc:740:
Parameters: { "use label encoder" } are not used.
 warnings.warn(smsg, UserWarning)
Predicted probabilities for the test set:
[[5.1860439e-07 5.7017002e-07 3.9342234e-07 ... 8.7231638e-07
  7.8322529e-07 5.8524296e-07]
 [8.1559443e-07 1.7004106e-06 6.5709958e-07 ... 1.0578590e-06
  1.6773043e-05 2.0757868e-06]
 [5.4707510e-07 7.7939086e-07 5.7252436e-07 ... 1.0011939e-06
 4.1819862e-06 9.0937459e-07]
 [7.2769092e-07 3.8095675e-06 7.3217876e-07 ... 6.5145679e-07
 5.3072574e-07 4.8228475e-071
 [2.6380076e-06 2.8987354e-06 2.4175074e-06 ... 4.4621897e-06
 1.0261622e-05 3.1510957e-05]
 [8.4509293e-07 7.6321942e-07 6.7003754e-07 ... 7.0236740e-07
  3.7610098e-06 9.6112626e-07]]
Log loss for the test set: 0.00400363072165128
```

AUTOENCODER

```
In []:
    def binary_mask(p_m, data):
        """Generates a binary mask with probability p_m for corruption."""
        return pd.DataFrame(np.random.binomial(1, p_m, data.shape), columns=data

def x_corruption(mask, data):
        """Applies corruption to the data using the mask."""
        shuffled = data.apply(lambda col: np.random.permutation(col))
        return data * (1 - mask) + shuffled * mask

In []:
    from keras.layers import Input,Dense
    from keras.models import Model
    from keras import models
    import numpy as np
```

```
epochs = parameters['epochs']
          batch size = parameters['batch size']
          ,dimension = x unlabeled scaled.shape
          # model creation
          # defining an encoder
          # auto encoder ---> corrupted input ---> encoder ---> latent space ---> c
          # working on the encoder part and extracting the latent space
          # creating a fully connecting network with the number of neurons in the fo
          # input layer will be of size 37
          input layer = Input(shape=(dimension,))
          #encoder model
          h = Dense(int(dimension),activation='relu')(input layer)
          #output1 ---> mask estimation
          output1 = Dense(int(dimension) , activation='sigmoid', name='mask_estimati
          #output2 ---> feature estimation
          output2 = Dense(int(dimension) , activation='sigmoid', name='feature estim
          model = Model(inputs = input layer, outputs=[output1,output2])
          model.compile(optimizer="rmsprop",loss={'mask estimation': 'binary crosser'
          # Generate corrupted data and mask
          corruption mask = binary mask(p m,x unlabeled scaled)
          x_unlabeled_corrupted = x_corruption(corruption mask, x unlabeled scaled)
          m label = (x unlabeled scaled != x unlabeled corrupted).astype(int) # Cald
          # Fit the model
          model.fit(x unlabeled corrupted,{'mask estimation':m label,'feature estimation'
          name of layer = model.layers[1].name # Assuming the encoder layer is the s
          layer output = model.get layer(name of layer).output
          encoder = models.Model(inputs=model.input , outputs=layer output)
          model.summary()
          return encoder
In [ ]: x unlab = x unlabeled scaled
        p m = 0.3
        alpha= 2.0
        parameters={'batch size':128,
                    'epochs':50,
        encoder_model =self_supervised(x_unlab,p m, alpha, parameters)
```

def self supervised(x unlabeled scaled,p m, alpha, parameters):

extract the batch size and epochs

```
Epoch 1/50
                  4s 2ms/step - feature_estimation_loss: 0.6400
1262/1262 —
- loss: 2.3753 - mask estimation loss: 1.7354
Epoch 2/50
          3s 2ms/step - feature_estimation_loss: 0.6114
1262/1262 —
- loss: 2.0003 - mask_estimation_loss: 1.3889
1262/1262 — 2s 2ms/step - feature estimation loss: 0.6096
- loss: 1.9839 - mask estimation loss: 1.3744
Epoch 4/50
1262/1262 -
           3s 2ms/step - feature estimation loss: 0.6089
- loss: 1.9754 - mask estimation loss: 1.3665
Epoch 5/50
                   4s 2ms/step - feature_estimation_loss: 0.6086
1262/1262 -
- loss: 1.9660 - mask estimation loss: 1.3574
Epoch 6/50
                   2s 2ms/step - feature_estimation_loss: 0.6084
1262/1262 ----
- loss: 1.9680 - mask estimation loss: 1.3596
Epoch 7/50
          2s 2ms/step - feature_estimation_loss: 0.6077
1262/1262 —
- loss: 1.9605 - mask estimation loss: 1.3527
Epoch 8/50
1262/1262 2s 2ms/step - feature_estimation_loss: 0.6078
- loss: 1.9638 - mask estimation loss: 1.3560
Epoch 9/50
1262/1262 — 4s 3ms/step - feature estimation loss: 0.6075
- loss: 1.9646 - mask estimation loss: 1.3571
Epoch 10/50
               4s 2ms/step - feature_estimation_loss: 0.6071
1262/1262 —
- loss: 1.9657 - mask_estimation_loss: 1.3586
Epoch 11/50
                   2s 2ms/step - feature estimation loss: 0.6071
1262/1262 ———
- loss: 1.9580 - mask estimation loss: 1.3509
Epoch 12/50
1262/1262 — 2s 2ms/step - feature_estimation_loss: 0.6066
- loss: 1.9587 - mask estimation loss: 1.3521
Epoch 13/50

1262/1262 — 2s 2ms/step - feature_estimation_loss: 0.6068
- loss: 1.9581 - mask estimation loss: 1.3513
Epoch 14/50
1262/1262 4s 3ms/step - feature estimation loss: 0.6063
- loss: 1.9622 - mask estimation loss: 1.3559
Epoch 15/50
1262/1262 2s 2ms/step - feature estimation loss: 0.6059
- loss: 1.9578 - mask estimation loss: 1.3518
Epoch 16/50
                   2s 2ms/step - feature estimation loss: 0.6059
1262/1262 ——
- loss: 1.9602 - mask estimation loss: 1.3544
Epoch 17/50
                    2s 2ms/step - feature estimation loss: 0.6057
1262/1262 —
- loss: 1.9575 - mask estimation loss: 1.3519
Epoch 18/50

3s 2ms/step - feature_estimation_loss: 0.6054
- loss: 1.9564 - mask estimation loss: 1.3510
Epoch 19/50
                  3s 2ms/step - feature_estimation_loss: 0.6052
1262/1262 ————
```

```
- loss: 1.9581 - mask estimation loss: 1.3530
Epoch 20/50
1262/1262 — 5s 2ms/step - feature estimation loss: 0.6054
- loss: 1.9546 - mask estimation loss: 1.3492
Epoch 21/50
              2s 2ms/step - feature_estimation_loss: 0.6053
1262/1262 —
- loss: 1.9524 - mask_estimation_loss: 1.3471
Epoch 22/50
                   2s 2ms/step - feature_estimation_loss: 0.6051
1262/1262 —
- loss: 1.9545 - mask_estimation loss: 1.3494
Epoch 23/50
                   3s 2ms/step - feature_estimation_loss: 0.6050
1262/1262 —
- loss: 1.9472 - mask estimation loss: 1.3422
Epoch 24/50
1262/1262 4s 3ms/step - feature_estimation_loss: 0.6049
- loss: 1.9530 - mask estimation loss: 1.3480
Epoch 25/50
1262/1262 — 3s 2ms/step - feature estimation loss: 0.6051
- loss: 1.9588 - mask estimation loss: 1.3537
Epoch 26/50
1262/1262 — 2s 2ms/step - feature_estimation_loss: 0.6049
- loss: 1.9526 - mask estimation loss: 1.3477
Epoch 27/50
                   3s 2ms/step - feature_estimation_loss: 0.6048
1262/1262 —
- loss: 1.9547 - mask estimation loss: 1.3499
Epoch 28/50
                   2s 2ms/step - feature estimation loss: 0.6050
1262/1262 ———
- loss: 1.9528 - mask_estimation loss: 1.3478
Epoch 29/50
1262/1262 — 3s 2ms/step - feature_estimation_loss: 0.6043
- loss: 1.9521 - mask estimation loss: 1.3479
Epoch 30/50
1262/1262 — 4s 2ms/step - feature_estimation_loss: 0.6047
- loss: 1.9541 - mask estimation loss: 1.3495
Epoch 31/50
1262/1262 — 2s 2ms/step - feature estimation loss: 0.6045
- loss: 1.9515 - mask estimation loss: 1.3470
Epoch 32/50
              ______2s 2ms/step - feature_estimation_loss: 0.6045
1262/1262 ——
- loss: 1.9507 - mask estimation loss: 1.3462
Epoch 33/50
                   3s 2ms/step - feature_estimation_loss: 0.6043
1262/1262 ———
- loss: 1.9500 - mask estimation loss: 1.3457
Epoch 34/50
                    4s 3ms/step - feature estimation loss: 0.6042
1262/1262 —
- loss: 1.9546 - mask estimation loss: 1.3504
Epoch 35/50

1262/1262 — 3s 2ms/step - feature_estimation_loss: 0.6044
- loss: 1.9507 - mask estimation loss: 1.3463
Epoch 36/50
1262/1262 — 3s 2ms/step - feature estimation loss: 0.6044
- loss: 1.9535 - mask estimation loss: 1.3491
Epoch 37/50
1262/1262 — 3s 2ms/step - feature estimation loss: 0.6047
- loss: 1.9545 - mask estimation loss: 1.3497
Epoch 38/50
```

```
3s 2ms/step - feature estimation loss: 0.6044
- loss: 1.9541 - mask estimation loss: 1.3497
Epoch 39/50
                    4s 3ms/step - feature_estimation_loss: 0.6043
1262/1262 —
- loss: 1.9508 - mask_estimation_loss: 1.3465
Epoch 40/50
                4s 2ms/step - feature_estimation_loss: 0.6042
1262/1262 —
- loss: 1.9552 - mask estimation loss: 1.3510
Epoch 41/50

1262/1262 — 3s 2ms/step - feature_estimation_loss: 0.6043
- loss: 1.9457 - mask estimation loss: 1.3415
Epoch 42/50
1262/1262 2s 2ms/step - feature estimation loss: 0.6040
- loss: 1.9546 - mask estimation loss: 1.3506
Epoch 43/50
                    3s 2ms/step - feature estimation loss: 0.6041
1262/1262 —
- loss: 1.9500 - mask estimation loss: 1.3459
Epoch 44/50
                    4s 3ms/step - feature_estimation_loss: 0.6043
- loss: 1.9537 - mask estimation loss: 1.3494
Epoch 45/50
                        3s 2ms/step - feature estimation loss: 0.6041
1262/1262 ---
- loss: 1.9540 - mask estimation loss: 1.3499
Epoch 46/50
                    2s 2ms/step - feature estimation loss: 0.6040
1262/1262 -
- loss: 1.9502 - mask estimation loss: 1.3462
Epoch 47/50
            3s 2ms/step - feature_estimation_loss: 0.6039
1262/1262 —
- loss: 1.9477 - mask estimation loss: 1.3438
Epoch 48/50
                3s 2ms/step - feature_estimation_loss: 0.6039
1262/1262 —
- loss: 1.9512 - mask estimation loss: 1.3473
Epoch 49/50
                4s 3ms/step - feature_estimation_loss: 0.6038
1262/1262 —
- loss: 1.9483 - mask estimation loss: 1.3445
Epoch 50/50
                     5s 3ms/step - feature_estimation_loss: 0.6038
1262/1262 ----
- loss: 1.9481 - mask estimation loss: 1.3442
```

Model: "functional"

Layer (type)	Output Shape	Param #
<pre>input_layer (InputLayer)</pre>	(None, 36)	0
dense (Dense)	(None, 36)	1,332
mask_estimation (Dense)	(None, 36)	1,332
feature_estimation (Dense)	(None, 36)	1,332

Total params: 7,994 (31.23 KB)
Trainable params: 3,996 (15.61 KB)
Non-trainable params: 0 (0.00 B)
Optimizer params: 3,998 (15.62 KB)

Saving Autoencoder

```
In [ ]: import os

# Define the path where you want to save the model
encoder_path = "content/encoder_model.keras"

# Create the directory if it doesn't exist
os.makedirs(os.path.dirname(encoder_path), exist_ok=True)

# Save the model
encoder_model.save(encoder_path)

print(f"Model saved to {encoder_path}")

Model saved to content/encoder_model.keras

In [ ]: from keras.models import load_model
encoder=load_model(encoder_path)
```

Evaluating Encoded Features with Logistic Regression and XGBoost

```
In [ ]: import numpy as np
        from sklearn.linear model import LogisticRegression
        from sklearn.metrics import log loss
        import xqboost as xqb
        # Adjust y train and y test labels to start from 0 by subtracting the minimu
        y train -= y train.min()
        y test -= y test.min()
        scaler = StandardScaler()
        x train scaled = scaler.fit transform(x train) # Scale training data
        x test scaled = scaler.transform(x test)
        \# Step 1: Define the encoder model and train it on x unlab (assumed to be do
        # For demonstration, use the encoder to transform train and test data
        # Use the encoder to get the encoded data for training and testing
        x train scaled encoded = encoder.predict(x train scaled)
        x test scaled encoded = encoder.predict(x test scaled)
        # Check shapes
        print("Encoded x train shape:", x train scaled encoded.shape)
        print("Encoded x test shape:", x test scaled encoded.shape)
        # Step 2: Logistic Regression
        log reg = LogisticRegression(max iter=1000) # Set max iter to a higher value
        log reg.fit(x train scaled encoded, y train)
```

```
# Predict on the test set using Logistic Regression
 y encoded log reg = log reg.predict proba(x test scaled encoded)
 # Compute log loss for logistic regression predictions
 log reg loss = log loss(y test, y encoded log reg)
 print("Log Loss for Logistic Regression:", log reg loss)
 # Step 3: XGBoost Model
 xqb model = xqb.XGBClassifier(eval metric='logloss', random state=42)
 xgb model.fit(x train scaled encoded, y train)
 # Predict on the test set using XGBoost
 y encoded xgb = xgb model.predict proba(x test scaled encoded)
 # Compute log loss for XGBoost predictions
 xgb loss = log loss(y test, y encoded xgb)
 print("Log Loss for XGBoost:", xgb_loss)
2279/2279 ————
                          --- 3s 1ms/step
977/977 2s 2ms/step
Encoded x train shape: (72928, 36)
Encoded x test shape: (31256, 36)
Log Loss for Logistic Regression: 0.0359260007670638
```

SEMI SUPERVISED

Log Loss for XGBoost: 0.06054763807339786

```
In [20]: import numpy as np
         import tensorflow as tf
         from tensorflow.keras import layers, optimizers, losses
         from tensorflow.keras.utils import to categorical
         from tensorflow.keras.models import load model
         import pandas as pd
         # Define the model
         def model(input dimension, hidden dimension, label dimension, activation=tf.
             inputs = tf.keras.Input(shape=input dimension, name='model input')
             x = layers.Dense(hidden dimension, activation=activation, name='model de
             x = layers.Dense(hidden dimension, activation=activation, name='model deltae')
             y logit = layers.Dense(label dimension, activation=None, name='model loc
             y = layers.Activation('softmax', name='model_output')(y_logit)
             return tf.keras.Model(inputs=inputs, outputs=[y logit, y], name="model")
         # Training function
         def train(feature batch, label batch, unlabeled feature batch, model, beta,
             with tf.GradientTape() as tape:
                 # Labeled data loss
                 y_logit, _ = model(feature_batch, training=True)
                 y_loss = supv_loss_fn(label batch, y logit)
                 # Unlabeled data loss
                 unlabeled y logit, = model(unlabeled feature batch, training=True)
                 , variance = tf.nn.moments(unlabeled y logit, axes=0)
                 unlabeled y loss = tf.reduce mean(variance)
```

```
# Total loss
        total loss = y loss + beta * unlabeled y loss
   # Gradient computation and update
   grads = tape.gradient(total loss, model.trainable weights)
   optimizer.apply gradients(zip(grads, model.trainable weights))
    return total loss
# Semi-supervised function
def semi supervised(x train, y train, x unlabeled, x test, parameters, mask
   # Ensure NumPy arrays
   if isinstance(x train, pd.DataFrame):
        x train = x train.values
   if isinstance(y train, pd.Series):
        y train = y train.values
   if isinstance(x_unlabeled, pd.DataFrame):
        x unlabeled = x unlabeled.values
   if isinstance(x test, pd.DataFrame):
       x test = x test.values
   # Hyperparameters
   hidden dimension = parameters['hidden dim']
   batch size = parameters['batch size']
   epochs = parameters['iterations']
   input dimension = x train.shape[1]
   # Label preprocessing: One-hot encoding for CategoricalCrossentropy
   unique classes = np.unique(y train)
   label dimension = len(unique classes)
   class mapping = {label: idx for idx, label in enumerate(unique classes)}
   y train mapped = np.vectorize(class mapping.get)(y train)
   y train one hot = to categorical(y train mapped, num classes=label dimer
   # Data splitting
   index = np.random.permutation(x train.shape[0])
   train index = index[:int(len(index) * 0.9)]
   valid index = index[int(len(index) * 0.9):]
   splitted train x, splitted train_y = x_train[train_index], y_train_one_h
   splitted valid x, splitted valid y = x train[valid index], y train one h
   # Load pre-trained encoder
   encoder = load model(encoder path)
   x valid encoded = encoder.predict(splitted valid x)
   x_test_encoded = encoder.predict(x test)
   # Initialize the supervised model
    supervised model = model(input dimension=(encoder.output shape[1],),
                             hidden dimension=hidden dimension,
                             label dimension=label dimension)
   optimizer = optimizers.Adam()
   supv loss fn = losses.CategoricalCrossentropy(from logits=True)
   # Training loop
   for epoch in range(epochs):
        batch index = np.random.choice(splitted train x.shape[0], batch size
```

```
batch x, batch y = splitted train x[batch index], splitted train y[t]
        batch x encoded = encoder.predict(batch x)
        batch unlabeled index = np.random.choice(x unlabeled.shape[0], batch
        batch unlabeled x = x unlabeled[batch unlabeled index]
        batch unlabeled x shuffled = []
        for _ in range(K):
            mask = np.random.binomial(1, mask probability, batch unlabeled >
            corrupted data = batch unlabeled x * (1 - mask) + np.random.perm
            corrupted data encoded = encoder.predict(corrupted data)
            batch unlabeled x shuffled.append(corrupted data encoded)
        batch unlabeled x shuffled = np.concatenate(batch unlabeled x shuffl
        total loss = train(batch x encoded, batch y, batch unlabeled x shuff
        y valid logit, = supervised model(x valid encoded, training=False)
        y valid loss = supv loss fn(splitted valid y, y valid logit)
        if epoch % 100 == 0:
            print(f'Epoch: {epoch}/{epochs}, Validation Loss: {y valid loss:
    y test logit, = supervised model(x test encoded, training=False)
    return y test logit, supervised model
# Hyperparameters
mask probability = 0.3
K = 3
beta = 1.0
parameters = {
    'hidden dim': 100,
    'batch size': 128,
    'iterations': 1100
}
# Assuming x train, y train, x unlabeled scaled, x test are defined
encoder path = "content/encoder_model.keras" # Replace with your encoder pa
y test model, model instance = semi supervised(x train, y train, x unlabeled
                                         parameters, mask probability, K, be
```

228/228 —	Os 1ms/step
977/977 —	1s 1ms/step
4/4	
4/4 —	
4/4 —	
4/4 —	0s 4ms/step
Epoch: 0/1100, Validatio	
1/1	Oc Ame /cton
4/4	0s 3ms/step
4/4 ————	0s 4ms/step
4/4 ————	0s 2ms/step
4/4 —	
4/4 ————	0s 2ms/step
4/4 ————	0s 2ms/step
4/4 ————	0s 4ms/step
4/4	0s 4ms/step
4/4 ————	0s 2ms/step
4/4 ————	0s 4ms/step
4/4 ————	0s 3ms/step
4/4 ————	
4/4 —	
4/4 ————	
4/4 ————	0s 3ms/step
4/4	
4/4 ————	0s 4ms/step
4/4 ————	
4/4 ————	
4/4 ————	
4/4 ————	0s 2ms/step
4/4 —	0s 2ms/step
4/4 ————	0s 2ms/step
4/4	
4/4 ————	0s 3ms/step
4/4	
4/4 ————	
4/4 ————	0s 2ms/step
4/4	0s 2ms/step
4/4	0s 2ms/step
4/4 ————	0s 2ms/step
4/4	
4/4 ————	· · · · · ·
4/4 ———————————————————————————————————	
4/4 ———————————————————————————————————	
4/4 ———————————————————————————————————	
4/4 ———————————————————————————————————	' '
4/4 ———————————————————————————————————	
4/4 ———————————————————————————————————	
4/4	
4/4 ———————————————————————————————————	· · · · · ·
4/4 ———————————————————————————————————	
4/4 ———————————————————————————————————	
4/4 ———————————————————————————————————	
1/1	As 2mc/cton
4/4	0s 2ms/step
7/ 7	03 ZIII3/31CP

4/4 ————	0s	3ms/step
4/4 ————	0s	2ms/step
4/4 ————	0s	3ms/step
4/4 ————	0s	3ms/step
4/4 —	0s	3ms/step
4/4 —	0s	3ms/step
4/4 —	0s	3ms/step
4/4	0s	3ms/step
4/4 —	0s	4ms/step
4/4 —	0s	3ms/step
4/4		•
4/4 —————	0s	3ms/step
4/4 —————	0s	3ms/step
4/4 ————	0s	3ms/step
	0s	3ms/step
4/4 ————	0s	2ms/step
4/4 ————	0s	3ms/step
4/4 —	0s	3ms/step
4/4 ————	0s	3ms/step
4/4 ————	0s	3ms/step
4/4 —	0s	3ms/step
4/4	0s	2ms/step
4/4	0s	3ms/step
4/4	0s	3ms/step
4/4 —	0s	3ms/step
4/4	0s	4ms/step
4/4	0s	3ms/step
4/4	0s	3ms/step
4/4		3ms/step
•	0s	•
4/4 —	0s	
4/4 —		/ -
4/4 —	0s	
4/4 ————	0s	•
4/4	0s	
4/4	0s	
4/4	0s	3ms/step
•		3ms/step
4/4 ————	0s	3ms/step
4/4 —————	0s	3ms/step
4/4 —————	0s	3ms/step
	0s	3ms/step
4/4 ————	0s	3ms/step
	0s	3ms/step
4/4	0s	3ms/step
4/4	0s	6ms/step
4/4 ————	0s	5ms/step
4/4 ————	0s	3ms/step
4/4 ————	0s	3ms/step
	0s	3ms/step
4/4	0s	4ms/step
4/4 ————	0s	3ms/step

	_	
4/4 ————	0s	3ms/step
4/4 ————	0s	3ms/step
4/4 ————	0s	3ms/step
4/4 ————	0s	2ms/step
4/4 —	0s	3ms/step
4/4	0s	3ms/step
4/4 ————	0s	2ms/step
4/4 ————	0s	3ms/step
4/4 ————	0s	3ms/step
4/4 —	0s	3ms/step
4/4 —	0s	4ms/step
4/4 —	0s	4ms/step
4/4	0s	5ms/step
4/4	0s	6ms/step
4/4	0s	
4/4		2ms/step
4/4 ———————	0s	4ms/step
	0s	4ms/step
4/4 ————	0s	3ms/step
4/4 ————	0s	2ms/step
4/4	0s	2ms/step
4/4 —————	0s	3ms/step
	0s	2ms/step
4/4	0s	3ms/step
4/4 ————	0s	4ms/step
4/4 ————	0s	3ms/step
4/4 —	0s	5ms/step
4/4	0s	5ms/step
4/4 ————	0s	4ms/step
4/4 ————	0s	4ms/step
4/4 ————	0s	3ms/step
4/4 ————		4ms/step
4/4 ————		•
4/4 ————	0s	4ms/step
4/4 ————	0s	
4/4 ———	0s	2ms/step
4/4 ————	0s	3ms/step
4/4 —	0s	2ms/step
4/4	0s	2ms/step
4/4 ————	0s	3ms/step
4/4 ————	0 s	3ms/step
4/4 ————	0 s	3ms/step
4/4 ————	0s	3ms/step
4/4	0s	3ms/step
4/4 ————	0s	3ms/step
4/4 ————	0s	4ms/step

	_	
4/4 ————	0s	3ms/step
4/4 ————	0s	3ms/step
4/4 ————	0s	4ms/step
4/4 ————	0s	3ms/step
4/4 —	0s	3ms/step
4/4 ————	0s	3ms/step
4/4 ————	0s	3ms/step
4/4 —	0s	2ms/step
4/4 —	0s	4ms/step
4/4 —	0s	2ms/step
4/4 —	0s	2ms/step
4/4	0s	3ms/step
4/4	0s	3ms/step
4/4 ————	0s	3ms/step
4/4 —	0s	3ms/step
4/4 ————	0s	3ms/step
4/4 ————	0s	2ms/step
4/4	0s	3ms/step
4/4	0s	•
4/4		3ms/step
4/4 ———————————————————————————————————	0s	3ms/step
4/4 ——————	0s	3ms/step
	0s	3ms/step
4/4 ————	0s	3ms/step
4/4 ——————	0s	3ms/step
4/4 ——————	0s	2ms/step
4/4 ——————	0s	3ms/step
4/4 ————	0s	3ms/step
	0s	3ms/step
4/4 —————	0s	3ms/step
	0s	2ms/step
4/4 ————	0s	3ms/step
4/4 —	0s	3ms/step
4/4	0s	, ,
4/4 —		, ,
4/4 —		•
4/4	0s	/ -
4/4 —————	0s	, ,
		, · · · · · · · · · · · · · ·
4/4 ————		/ -
4/4 ————		/
4/4 ————		/ -
4/4 —		, ,
4/4 ————	0s	, ,
4/4 ————	0s	3ms/step
4/4	0s	2ms/step
4/4	0s	3ms/step
4/4 ————	0s	/ -
4/4 ————	0s	/ -
4/4 ————	0s	, ,
4/4 ————	0s	- / -
4/4	0s	, ,
4/4	0s	2ms/step
4/4	0s	2ms/step
4/4	0s	2ms/step
4/4 ————	0s	- , 1-
4/4 ————	0s	2ms/step

	_	
4/4 ———	0s	3ms/step
4/4 ————	0s	3ms/step
4/4 ————	0s	3ms/step
4/4 ————	0s	3ms/step
4/4 —	0s	2ms/step
4/4	0s	2ms/step
4/4 ————	0s	3ms/step
4/4 ————	0s	3ms/step
4/4 ————	0s	2ms/step
4/4 ————	0s	3ms/step
4/4 ————	0s	3ms/step
4/4 —	0s	3ms/step
4/4 —	0s	3ms/step
4/4 ————	0s	2ms/step
4/4 —	0s	3ms/step
4/4 —	0s	3ms/step
4/4 —	0s	3ms/step
4/4 ————	0s	3ms/step
4/4 ————	0s	4ms/step
4/4	0s	3ms/step
4/4	0s	•
4/4 ————	0s	5ms/step
		4ms/step
4/4 ————	0s	2ms/step
•	0s	5ms/step
4/4	0s	4ms/step
4/4 ————	0s	2ms/step
4/4	0s	5ms/step
4/4	0s	2ms/step
4/4 —————	0s	5ms/step
	0s	2ms/step
4/4 ————	0s	3ms/step
4/4 ————	0s	3ms/step
4/4 ————	0s	3ms/step
4/4 ————		, ,
4/4 ————	0s	4ms/step
4/4 ————	0s	3ms/step
4/4 ————	0s	4ms/step
4/4	0s	3ms/step
4/4 —	0 s	3ms/step
4/4 ————	0s	4ms/step
4/4 ————	0s	5ms/step
4/4 ————	0s	2ms/step
4/4 ————	0s	4ms/step
4/4 ————	0s	2ms/step
4/4 —	0s	3ms/step
4/4 ————	0s	5ms/step
4/4 ————	0s	2ms/step
4/4 —	0s	•
4/4 —	0s	
4/4 —	0s	
4/4 —	0s	•
4/4 ————	0s	3ms/step
4/4	0s	2ms/step
4/4 ————	0s	3ms/step
4/4	0s	
4/4 ————		
	U 3	21113/3 CCh

4/4 ————	0s	4ms/step
4/4 —	0s	3ms/step
4/4	0s	•
		2ms/step
4/4 ————	0s	3ms/step
4/4 ————	0s	3ms/step
4/4	0s	3ms/step
1/1	0s	3ms/step
4/4 ————		•
4/4	0s	3ms/step
4/4 ————	0s	2ms/step
4/4 ————	0s	2ms/step
4/4 ————	0s	4ms/step
4/4 —	0s	3ms/step
4/4 —		•
	0s	3ms/step
4/4 —	0s	3ms/step
4/4 ————	0s	3ms/step
4/4 ————	0s	2ms/step
4/4 —	0s	2ms/step
4/4 —	0s	
		3ms/step
4/4 ————	0s	3ms/step
4/4 ————	0s	2ms/step
4/4 ————	0s	3ms/step
4/4 ————	0s	4ms/step
1/1	0s	3ms/step
4/4 ————	0s	•
4/4		3ms/step
4/4	0s	3ms/step
4/4 ————	0s	3ms/step
4/4 ————	0s	3ms/step
4/4 ————	0s	3ms/step
4/4 —	0s	3ms/step
4/4	0s	3ms/step
4/4 —	0s	3ms/step
		•
•/ •	0s	2ms/step
4/4 ————	0s	4ms/step
4/4 ————	0s	3ms/step
4/4 ————	0s	3ms/step
4/4 ————	0s	2ms/step
4/4 ————	0s	
4/4 —	0s	3ms/step
4/4 —	0s	•
4/4 —————		3ms/step
	0s	2ms/step
4/4 ————	0s	3ms/step
4/4 ————	0s	3ms/step
4/4 ————	0s	2ms/step
4/4 ————	0s	3ms/step
4/4 —	0s	2ms/step
4/4	0s	2ms/step
4/4		
4/4 ——————	0s	3ms/step
	0s	3ms/step
4/4 ————	0s	3ms/step
4/4 ————	0s	3ms/step
4/4	0s	3ms/step
4/4	0s	3ms/step
4/4		•
4/4 —————	0s	2ms/step
	0s	3ms/step
4/4	0s	4ms/step
4/4	0s	4ms/step
		-

		_
4/4 ————	0s	3ms/step
4/4 —	0s	3ms/step
4/4	0 s	5ms/step
4/4 ————	0 s	4ms/step
4/4 —	0s	3ms/step
4/4 ————	0s	3ms/step
4/4 ————	0s	3ms/step
4/4 ————	0s	3ms/step
4/4 —	0s	3ms/step
4/4 —	0s	4ms/step
4/4 —	0s	4ms/step
4/4 —	0s	3ms/step
4/4	0s	3ms/step
4/4	0s	3ms/step
4/4 —	0s	5ms/step
4/4 —	0s	3ms/step
4/4	0s	3ms/step
4/4	0s	5ms/step
4/4 ————	0s	3ms/step
4/4 ————		•
4/4 ————	0s	4ms/step
4/4 ————	0s	3ms/step
4/4 ————	0s	5ms/step
	0s	4ms/step
4/4	0s	4ms/step
4/4	0s	4ms/step
4/4 ————	0s	3ms/step
	0s	3ms/step
4/4 ————	0s	4ms/step
4/4 ————	0s	9ms/step
4/4 ————	0s	6ms/step
4/4 ————		2ms/step
4/4 ————	0s	3ms/step
4/4 ————	0 s	3ms/step
4/4 ————	0 s	3ms/step
4/4 ———	0s	5ms/step
4/4 ————	0s	4ms/step
4/4 ————	0 s	4ms/step
4/4 ————	0s	5ms/step
4/4 ————	0s	6ms/step
4/4 ————	0s	4ms/step
4/4 —	0s	3ms/step
4/4 ————	0s	5ms/step
4/4 ———	0s	3ms/step
4/4 ————	0s	3ms/step
4/4 —	0s	3ms/step
4/4 —	0s	4ms/step
4/4	0s	4ms/step
4/4	0s	4ms/step
4/4 —	0s	3ms/step
4/4	0s	3ms/step
4/4 —	0s	4ms/step
4/4 ————	0s	3ms/step
4/4	0s	•
7/ 7	U 3	21113/3 CCh

4/4 ————	0s	3ms/step
4/4 —		2ms/step
4/4 —	0s	3ms/step
4/4 ————	0s	4ms/step
4/4 —		2ms/step
4/4	0s	•
4/4		
4/4		
4/4		
4/4 ———————————————————————————————————		, i
		/
4/4 —————	0s	
4/4		4ms/step
4/4 ————		2ms/step
4/4 —	0s	2ms/step
Epoch: 100/1100, Validat		
4/4 —————	0s	2ms/step
4/4 ————	0s	3ms/step
4/4 —	0s	3ms/step
4/4 ————		3ms/step
4/4 ————	0s	3ms/step
4/4 ————		2ms/step
4/4 —		•
4/4 —	0s	2ms/step
4/4 —		· ·
4/4 —		•
4/4 —	0s	•
4/4 ————	0s	
4/4 —	0s	•
4/4 —	0s	•
4/4 —	0s	•
4/4 —	0s	
4/4 —		•
4/4 —	0s	•
4/4 —		3ms/step
4/4 ————	0s	3ms/step
4/4 ————		2ms/step
4/4 ————		3ms/step
4/4 ————	0s	3ms/step
4/4 —	0s	3ms/step
4/4 ————	0s	2ms/step
4/4 —————	0s	3ms/step
4/4 ————		2ms/step
4/4 ————		4ms/step
4/4 ————		3ms/step
4/4 ————		3ms/step
4/4 —	0s	2ms/step
4/4		4ms/step
4/4 ————		3ms/step
4/4 ————		3ms/step
4/4 ————		2ms/step
4/4 ————	0s	2ms/step

	_	
4/4 ————	0s	3ms/step
4/4 ————	0s	3ms/step
4/4 ————	0s	2ms/step
4/4 ————	0s	3ms/step
4/4 —	0s	5ms/step
4/4	0 s	2ms/step
4/4 ————	0s	2ms/step
4/4 ————	0s	3ms/step
4/4 ————	0s	3ms/step
4/4 ————	0s	3ms/step
4/4 ————	0s	4ms/step
4/4 ————	0s	3ms/step
4/4 —	0s	6ms/step
4/4	0s	3ms/step
4/4 ————	0s	3ms/step
4/4 ————	0s	3ms/step
4/4 ————	0s	3ms/step
4/4	0s	3ms/step
4/4	0s	3ms/step
4/4 —	0s	2ms/step
4/4	0s	2ms/step
4/4 ————	0s	3ms/step
4/4 ———	0s	2ms/step
4/4 —	0s	2ms/step
4/4 —	0s	4ms/step
4/4	0s	4ms/step
4/4 —	0s	3ms/step
4/4	0s	4ms/step
4/4	0s	6ms/step
4/4 —	0s	3ms/step
4/4 —	0s	6ms/step
4/4	0s	4ms/step
4/4 —	0s	5ms/step
4/4 —		4ms/step
4/4 —		•
4/4 —	0s	4ms/step
4/4	0s	6ms/step
4/4	0s	6ms/step
4/4 —	0s	6ms/step
4/4 —	0s	
4/4 —	0s	3ms/step
4/4 —	0s	5ms/step
4/4 —	0s	6ms/step
4/4 —	0s	5ms/step
4/4 —	0s	4ms/step
4/4	0s	3ms/step
4/4 ———	0s	3ms/step
4/4 —	0s	8ms/step
4/4 —	0s	3ms/step
4/4	0s	3ms/step
4/4 ————	0s	4ms/step
4/4 —	0s	3ms/step
4/4	0s	3ms/step
4/4 —	0s	3ms/step
4/4	0s	3ms/step
4/4	0s	•
., .	03	3113/3 CCP

4/4 ———	0s	3ms/step
4/4 ————	0s	3ms/step
4/4 —————	0s	2ms/step
4/4	0s	2ms/step
4/4	0s	2ms/step
4/4 ————		
	0s	2ms/step
4/4 —	0s	3ms/step
4/4 ————	0s	2ms/step
4/4 ————	0s	2ms/step
4/4 —	0s	3ms/step
4/4	0s	3ms/step
4/4		•
	0s	4ms/step
4/4	0s	3ms/step
4/4 —	0s	3ms/step
4/4 —	0s	3ms/step
4/4	0s	3ms/step
4/4 —	0s	3ms/step
4/4 —	0s	2ms/step
4/4		•
	0s	3ms/step
4/4 ————	0s	3ms/step
4/4 ————	0s	3ms/step
4/4 —	0s	4ms/step
4/4 —	0s	3ms/step
4/4	0s	3ms/step
4/4	0s	4ms/step
4/4	0s	
4/4 —————		3ms/step
	0s	3ms/step
4/4 ————	0s	2ms/step
4/4 —	0s	3ms/step
4/4 ————	0s	4ms/step
4/4 —	0s	3ms/step
4/4	0s	3ms/step
4/4 —	0s	3ms/step
4/4	0s	•
-, -		3ms/step
4/4 ————		
4/4 ————	0s	3ms/step
4/4 ————	0s	3ms/step
4/4 —	0s	2ms/step
4/4 —————	0s	3ms/step
4/4	0s	3ms/step
4/4	0s	3ms/step
4/4	0s	•
-, -		3ms/step
1, 1	0s	2ms/step
4/4 ————	0s	2ms/step
4/4 ————	0s	2ms/step
4/4 —	0s	2ms/step
4/4 ————	0s	2ms/step
4/4	0s	3ms/step
4/4	0s	3ms/step
4/4 ————	0s	3ms/step
•	0s	4ms/step
4/4 ————	0s	4ms/step
4/4 ————	0s	3ms/step
4/4 —	0s	3ms/step
4/4 —	0s	3ms/step
4/4	0s	3ms/step
., .	53	33/ 3 ccp

4/4 ————	0s	2ms/step
4/4 ————	0s	3ms/step
4/4 —	0s	2ms/step
4/4 —	0s	3ms/step
4/4	0s	3ms/step
4/4 —	0s	2ms/step
4/4 —	0s	3ms/step
4/4 —————		•
4/4 ——————	0s	3ms/step
4/4 —————	0s	3ms/step
4/4 —————	0s	4ms/step
	0s	3ms/step
4/4 ————	0s	3ms/step
4/4 ————	0s	4ms/step
4/4 ————	0s	3ms/step
4/4 ————	0s	3ms/step
4/4 —	0s	4ms/step
4/4 —	0s	3ms/step
4/4 ————	0s	3ms/step
4/4 —	0s	3ms/step
4/4	0s	3ms/step
4/4 ————	0s	3ms/step
4/4 ————	0s	3ms/step
4/4 —————	0s	5ms/step
4/4 —	0s	3ms/step
4/4 —	0s	5ms/step
4/4 —	0s	7ms/step
4/4 —	0s	4ms/step
4/4 —	0s	4ms/step
4/4 —	0s	4ms/step
4/4 —	0s	5ms/step
4/4 —	0s	6ms/step
4/4 —	0s	•
4/4 —	0s	
4/4 —	0s	•
4/4 —	0s	6ms/step
4/4 —	0s	6ms/step
4/4 —	0s	•
4/4 —	0s	4ms/step
4/4 —		3ms/step
4/4 —	0s	3ms/step
4/4	0s	2ms/step
4/4	0s	3ms/step
4/4 —	0s	3ms/step
4/4 —	0s	5ms/step
4/4	0s	6ms/step
4/4	0s	3ms/step
4/4 —	0s	3ms/step
4/4 —	0s	3ms/step
4/4 —	0s	3ms/step
4/4	0s	3ms/step
4/4 —	0s	3ms/step
4/4 —	0s	3ms/step
4/4	0s	•
-, -		, 5 cop

	_	
4/4 ————	0s	2ms/step
4/4 ————	0s	2ms/step
4/4 ————	0s	2ms/step
4/4 ————	0s	3ms/step
4/4 —	0 s	3ms/step
4/4	0 s	3ms/step
4/4 ————	0 s	3ms/step
4/4 ————	0 s	4ms/step
4/4 ————	0s	3ms/step
4/4 ————	0s	4ms/step
4/4 ————	0s	3ms/step
4/4 ————	0s	3ms/step
4/4 —	0s	3ms/step
4/4	0s	3ms/step
4/4 ————	0s	2ms/step
4/4 ————	0s	4ms/step
4/4 ————	0s	3ms/step
4/4	0s	2ms/step
4/4 —	0s	3ms/step
4/4 —	0s	2ms/step
4/4 —	0s	3ms/step
4/4 ————	0s	2ms/step
4/4 ———	0s	3ms/step
4/4 —	0s	3ms/step
4/4 —	0s	6ms/step
4/4	0s	2ms/step
4/4 —	0s	3ms/step
4/4	0s	2ms/step
4/4	0s	2ms/step
4/4	0s	3ms/step
4/4 —	0s	2ms/step
4/4	0s	3ms/step
4/4 —	0s	4ms/step
4/4 —		5ms/step
4/4 —		•
4/4 —	0s	
4/4	0s	/ -
4/4 —	0s	
4/4 —	0s	•
4/4 —	0s	
4/4 —	0s	3ms/step
4/4 —	0s	6ms/step
4/4 —	0s	3ms/step
4/4 —	0s	3ms/step
4/4	0s	3ms/step
4/4	0s	3ms/step
4/4 ———	0s	2ms/step
4/4 —	0s	3ms/step
4/4	0s	4ms/step
4/4 —	0s	2ms/step
4/4	0s	4ms/step
4/4 —	0s	6ms/step
4/4	0s	4ms/step
4/4	0s	3ms/step
4/4 —	0s	4ms/step
4/4	0s	•
-, -		с, с сор

4/4 ————	0s	3ms/step
4/4 ————	0s	4ms/step
4/4 ————	0s	2ms/step
4/4 ————	0s	3ms/step
4/4 —	0s	3ms/step
4/4 —	0s	3ms/step
4/4 —	0s	3ms/step
4/4	0s	3ms/step
4/4 —	0s	3ms/step
4/4 —	0s	2ms/step
4/4	0s	4ms/step
4/4 —————	0s	
4/4 —————		4ms/step
4/4 —————	0s	3ms/step
	0s	3ms/step
4/4 ———	0s	3ms/step
4/4 ————	0s	3ms/step
4/4 —	0s	3ms/step
4/4 —	0s	2ms/step
4/4	0s	3ms/step
4/4	0s	3ms/step
4/4 ————	0s	5ms/step
4/4 ————	0s	5ms/step
4/4 ————	0s	6ms/step
4/4 ————	0s	2ms/step
4/4 —	0s	3ms/step
4/4 —	0s	3ms/step
4/4	0s	6ms/step
4/4 ————	0s	5ms/step
4/4 ————	0s	4ms/step
4/4 ————		2ms/step
4/4 ————	0s	5ms/step
	0s	3ms/step
4/4 ————	0s	2ms/step
4/4 ———	0s	2ms/step
4/4	0s	4ms/step
4/4 ————	0s	2ms/step
4/4 ————	0s	6ms/step
4/4 ————	0s	3ms/step
4/4 ————	0s	4ms/step
4/4 —	0s	5ms/step
4/4 ———	0s	2ms/step
4/4 —	0s	2ms/step
4/4	0s	6ms/step
4/4 ————	0s	3ms/step
4/4 ————	0s	4ms/step
4/4 ————	0s	4ms/step
4/4 ————	0s	3ms/step
4/4 —	0s	3ms/step
4/4 ———	0s	3ms/step
4/4 —	0s	4ms/step
4/4	0s	3ms/step
4/4 —	0s	3ms/step
4/4 —	0s	3ms/step
		-

		_
4/4 ————	0s	3ms/step
4/4 ————	0s	3ms/step
4/4 ————	0s	3ms/step
4/4 —————	0s	3ms/step
4/4 —	0s	3ms/step
4/4 —	0s	3ms/step
1/1	0s	3ms/step
4/4	0s	3ms/step
4/4 ————	0s	4ms/step
4/4	0s	•
4/4 —————		6ms/step
	0s	3ms/step
4/4	0s	3ms/step
4/4	0s	3ms/step
4/4	0s	3ms/step
4/4 —	0s	3ms/step
4/4	0s	4ms/step
4/4 ————	0s	4ms/step
4/4 ————	0s	3ms/step
4/4 —	0s	3ms/step
4/4 —	0s	3ms/step
4/4 —	0s	3ms/step
4/4	0s	4ms/step
4/4	0s	3ms/step
4/4	0s	•
		3ms/step
4/4 ————	0s	3ms/step
	0s	3ms/step
4/4	0s	2ms/step
4/4	0s	2ms/step
4/4 ————	0s	2ms/step
4/4	0s	4ms/step
4/4 —	0s	2ms/step
4/4	0s	3ms/step
4/4 ————	0s	2ms/step
4/4 ————	0s	3ms/step
4/4 ————		•
4/4 ————	0s	3ms/step
4/4 ————	0s	3ms/step
4/4 —	0s	2ms/step
4/4 —	0s	3ms/step
4/4 ————	0s	3ms/step
4/4 —	0s	3ms/step
4/4 ————	0s	2ms/step
4/4 ————	0s	2ms/step
4/4 ————	0s	2ms/step
4/4 —————	0s	3ms/step
4/4 ————	0s	3ms/step
4/4 —	0s	3ms/step
4/4	0s	2ms/step
4/4 ————	0s	3ms/step
4/4	0s	2ms/step
4/4 —	0s	2ms/step
4/4 —	0s	3ms/step
4/4 —	0s	2ms/step
4/4	0s	2ms/step
4/4	0s	3ms/step
4/4	0s	3ms/step
7/ 7	U 3	21113/3 CCh

4/4 ————	0s	2ms/step
4/4 —	0s	4ms/step
4/4 —		2ms/step
4/4 —		3ms/step
4/4		•
4/4		3ms/step
4/4 —		2ms/step
4/4		3ms/step
4/4 ———————————————————————————————————		3ms/step
4/4 ———————————————————————————————————		
4/4 ———————————————————————————————————	05	3ms/step
4/4 —————		3ms/step
•		3ms/step
4/4 ————		3ms/step
		3ms/step
4/4		3ms/step
4/4		3ms/step
4/4 —		3ms/step
4/4		3ms/step
4/4 ————		3ms/step
4/4 ————		3ms/step
4/4 ————		•
4/4 —		3ms/step
4/4 ————		3ms/step
4/4 —	0s	2ms/step
Epoch: 200/1100, Validat		Loss: 0.1962
4/4 ————	0s	3ms/step
4/4	0s	2ms/step
4/4 —	0s	2ms/step
4/4 —	0s	3ms/step
4/4 —	0s	4ms/step
4/4 —		3ms/step
4/4 —		3ms/step
4/4 —	05	•
4/4 —	0s	•
4/4 —	0s	2ms/step
4/4 —	0s	3ms/step
4/4 —	0s	•
4/4 —		
4/4		3ms/step
4/4		2ms/step
4/4	05	3ms/step
4/4 —		3ms/step
4/4		3ms/step
4/4		4ms/step
4/4		3ms/step
4/4		2ms/step
4/4 —		4ms/step
4/4		2ms/step
4/4		•
4/4 ———————————————————————————————————	0S 0S	2ms/step
4/4 ———————————————————————————————————		4ms/step
4/4 —————	05	3ms/step
4/4 —————		4ms/step
4/4 ————		3ms/step
4/4 ————		8ms/step
4/4 ————		6ms/step
4/4	0s	4ms/step

4/4 ————	0s	4ms/step
4/4 ————	0s	3ms/step
4/4 ————	0s	3ms/step
4/4 ————	0s	3ms/step
4/4 —	0s	3ms/step
4/4	0s	3ms/step
4/4 ————	0s	3ms/step
4/4 —	0s	3ms/step
4/4 ————	0s	2ms/step
4/4 ————	0s	2ms/step
4/4 ————	0s	3ms/step
4/4 —	0s	3ms/step
4/4 —	0s	2ms/step
4/4 —	0s	2ms/step
4/4 —	0s	3ms/step
4/4	0s	3ms/step
4/4	0s	3ms/step
4/4 —	0s	3ms/step
4/4 —	0s	2ms/step
4/4	0s	3ms/step
1/1	0s	2ms/step
4/4	0s	3ms/step
4/4 ————	0s	2ms/step
4/4	0s	
4/4 —————	0s	2ms/step
4/4 —————		2ms/step
4/4 —————	0s	3ms/step
4/4 —————	0s	3ms/step
4/4 —————	0s	3ms/step
4/4 ————	0s	3ms/step
4/4 ————	0s	3ms/step
•	0s	2ms/step
4/4	0s	2ms/step
4/4	0s	3ms/step
4/4		2ms/step
4/4 ———	0s	
4/4	0s	/ -
4/4 ————	0s	, ,
4/4	0s	/ -
4/4 ————	0s	, ,
4/4 ————	0s	2ms/step
4/4 ————	0s	2ms/step
4/4 ————	0s	4ms/step
4/4 ————	0 s	3ms/step
4/4 —	0s	2ms/step
4/4 ————	0 s	3ms/step
4/4	0 s	3ms/step
4/4 —	0s	2ms/step
4/4 —	0s	3ms/step
4/4 ————	0s	3ms/step
4/4 ————	0s	3ms/step
4/4 —	0s	3ms/step
4/4 —	0s	2ms/step
4/4	0s	3ms/step
4/4	0s	3ms/step
4/4 —	0s	4ms/step
4/4	0s	4ms/step
., .	53	лэ, э сер

4/4 ————	0s	2ms/step
4/4 ————	0s	3ms/step
4/4 —	0s	2ms/step
4/4 ————	0s	2ms/step
4/4 —	0s	3ms/step
4/4 —	0s	3ms/step
4/4 —	0s	2ms/step
4/4	0s	2ms/step
4/4 —	0s	3ms/step
4/4 —	0s	2ms/step
4/4	0s	2ms/step
4/4 —————	0s	
4/4 ——————		2ms/step
4/4 —————	0s	3ms/step
	0s	3ms/step
4/4 —	0s	2ms/step
4/4 ————	0s	3ms/step
4/4 ————	0s	3ms/step
4/4 ————	0s	2ms/step
4/4 ————	0s	3ms/step
4/4 —	0s	2ms/step
4/4 —	0s	2ms/step
4/4 ————	0s	2ms/step
4/4 ————	0s	3ms/step
4/4 ————	0s	2ms/step
4/4 ————	0s	3ms/step
4/4 ————	0s	3ms/step
4/4 ————	0s	2ms/step
4/4 —	0s	2ms/step
4/4 —	0s	4ms/step
4/4	0s	2ms/step
4/4 —	0s	2ms/step
4/4 —	0s	7ms/step
4/4 ————	0s	8ms/step
4/4 ————	0s	3ms/step
	0s	3ms/step
4/4 ————	0s	3ms/step
4/4 ————	0s	4ms/step
4/4	0s	3ms/step
4/4 ————	0s	3ms/step
4/4 ————	0s	6ms/step
4/4 ————	0s	4ms/step
4/4 ————	0s	4ms/step
4/4 —	0s	3ms/step
4/4 ————	0s	2ms/step
4/4 —	0s	4ms/step
4/4	0s	4ms/step
4/4 ————	0s	5ms/step
4/4 ————	0s	6ms/step
4/4 ————	0s	3ms/step
4/4 ————	0s	3ms/step
4/4 —	0s	3ms/step
4/4 ————	0s	3ms/step
4/4 —	0s	3ms/step
4/4	0s	2ms/step
4/4 —	0s	2ms/step
4/4 —	0s	2ms/step
		-

	_	
4/4 ————	0s	2ms/step
4/4 ————	0s	4ms/step
4/4 ————	0s	4ms/step
4/4 ————	0s	3ms/step
4/4 ———	0s	3ms/step
4/4	0s	2ms/step
4/4 ————	0s	3ms/step
4/4 ————	0s	2ms/step
4/4 ————	0s	2ms/step
4/4 —	0s	2ms/step
4/4 —	0s	2ms/step
4/4 —	0s	2ms/step
4/4	0s	3ms/step
4/4	0s	3ms/step
4/4 —	0s	2ms/step
4/4 ————	0s	2ms/step
4/4	0s	2ms/step
4/4	0s	3ms/step
4/4	0s	•
4/4	0s	4ms/step
4/4 ———————		3ms/step
4/4 ————	0s	3ms/step
4/4 ————	0s	3ms/step
4/4	0s	3ms/step
4/4 —————	0s	3ms/step
4/4 ————	0s	3ms/step
4/4 —————	0s	3ms/step
4/4 —————	0s	3ms/step
4/4 —————	0s	2ms/step
4/4 —————	0s	2ms/step
	0s	3ms/step
4/4 ———	0s	3ms/step
4/4	0s	3ms/step
4/4 ————	0s	2ms/step
4/4 ————		6ms/step
4/4 ———		
4/4 ————	0s	/ -
4/4 ————	0s	
	0s	•
4/4 ————	0s	, ,
4/4 ————	0s	- / -
4/4 ————	0s	4ms/step
4/4	0s	5ms/step
4/4 ————	0s	3ms/step
4/4 ————	0s	3ms/step
4/4 ————	0s	3ms/step
	0s	3ms/step
4/4 ————	0s	4ms/step
4/4 ————	0s	3ms/step
4/4 ————	0s	3ms/step
4/4 ————	0s	4ms/step
4/4	0s	3ms/step
4/4 ————	0s	3ms/step
4/4	0s	3ms/step
4/4	0s	3ms/step
4/4 ————	0s	
4/4 ————	0s	3ms/step

	_	
4/4 ———	0s	3ms/step
4/4 ————	0s	3ms/step
4/4 ————	0s	3ms/step
4/4 ————	0s	2ms/step
4/4 ————	0s	2ms/step
4/4	0s	2ms/step
4/4 ————	0s	3ms/step
4/4 ————	0s	3ms/step
4/4 ————	0s	2ms/step
4/4 ————	0s	3ms/step
4/4 —	0s	3ms/step
4/4 —	0s	3ms/step
4/4 —	0s	3ms/step
4/4 ————	0s	3ms/step
4/4 ————	0s	3ms/step
4/4 ————	0s	3ms/step
4/4		•
4/4	0s	3ms/step
4/4 —————	0s	3ms/step
	0s	4ms/step
4/4	0s	3ms/step
4/4	0s	2ms/step
4/4	0s	3ms/step
4/4 ————	0s	2ms/step
4/4 ————	0s	3ms/step
4/4 ————	0s	3ms/step
4/4 ————	0 s	3ms/step
4/4 ————	0s	2ms/step
4/4 —	0s	3ms/step
4/4 —	0s	3ms/step
4/4	0s	3ms/step
4/4 ————	0s	5ms/step
4/4 ————	0s	4ms/step
4/4 ————	0s	2ms/step
4/4 ————	0s	3ms/step
4/4 ————	0s	4ms/step
4/4 ————	0s	2ms/step
4/4 —	0s	•
4/4 —	0s	
4/4 —	0s	4ms/step
4/4 —	0s	2ms/step
4/4 —	0s	3ms/step
4/4	0s	4ms/step
4/4 ————	0s	2ms/step
4/4 ————	0s	4ms/step
4/4 —	0s	4ms/step
4/4 —	0s	
4/4	0s	, ,
4/4 ————	0s	, ,
4/4	0s	4ms/step
4/4 ———————————————————————————————————	0s	
4/4 —————	0S 0S	6ms/step
4/4 —————		2ms/step
4/4 —————	0s	, ,
4/4	0s	5ms/step

4/4 ————	0s	3ms/step
4/4 ————	0s	3ms/step
4/4 —	0s	3ms/step
4/4 ————	0s	2ms/step
4/4 —	0s	3ms/step
4/4 —	0s	3ms/step
4/4 —	0s	4ms/step
4/4	0s	3ms/step
4/4 —	0s	4ms/step
4/4 —	0s	4ms/step
4/4	0s	4ms/step
4/4 —————	0s	•
4/4 —————		2ms/step
4/4 —————	0s	3ms/step
	0s	3ms/step
4/4 ———	0s	3ms/step
4/4 ————	0s	3ms/step
4/4 ————	0s	3ms/step
4/4 ————	0s	2ms/step
4/4 ————	0s	4ms/step
4/4 —	0s	3ms/step
4/4 —	0s	3ms/step
4/4	0s	3ms/step
4/4 ————	0s	4ms/step
4/4 ————	0s	3ms/step
4/4 —	0s	3ms/step
4/4 —	0s	2ms/step
4/4	0s	3ms/step
4/4 ————	0s	3ms/step
4/4 —	0s	3ms/step
4/4 ————		3ms/step
4/4 ————	0s	4ms/step
	0s	3ms/step
4/4 ————	0s	3ms/step
4/4 ———	0s	3ms/step
4/4	0s	3ms/step
4/4 ————	0s	2ms/step
4/4 ————	0s	2ms/step
4/4 ————	0s	3ms/step
4/4 ————	0s	3ms/step
4/4 —	0s	2ms/step
4/4 ———	0s	2ms/step
4/4 —	0s	4ms/step
4/4	0s	2ms/step
4/4 ————	0s	2ms/step
4/4 ————	0s	2ms/step
4/4 ————	0s	3ms/step
4/4 ————	0s	6ms/step
4/4 —	0s	3ms/step
4/4 ————	0s	2ms/step
4/4 —	0s	3ms/step
4/4	0s	3ms/step
4/4 —	0s	3ms/step
4/4 —	0s	2ms/step
		-

	_	
4/4 ————	0s	2ms/step
4/4 ————	0s	3ms/step
4/4	0s	4ms/step
4/4 ————	0s	3ms/step
4/4 ————	0s	3ms/step
4/4 ————	0s	2ms/step
4/4 ————	0s	2ms/step
4/4 —————	0s	3ms/step
4/4 —	0s	2ms/step
4/4 —	0s	2ms/step
4/4 ————	0s	3ms/step
4/4 —	0s	3ms/step
4/4 —	0s	2ms/step
4/4 ————	0s	2ms/step
4/4 ————	0s	3ms/step
4/4	0s	•
4/4	0S 0S	4ms/step
4/4 ———————————————————————————————————		4ms/step
4/4 —————	0s	3ms/step
	0s	3ms/step
4/4 ————	0s	3ms/step
4/4 —	0s	4ms/step
4/4 ————	0s	3ms/step
4/4 ————	0s	3ms/step
4/4 ————	0s	3ms/step
4/4 —	0s	4ms/step
4/4 ————	0s	3ms/step
4/4	0s	5ms/step
4/4 —————	0s	3ms/step
4/4 ————	0s	3ms/step
4/4 ————	0s	3ms/step
4/4 ————	0s	3ms/step
4/4 —	0s	3ms/step
4/4 ————	0s	3ms/step
4/4 ————	0s	3ms/step
4/4 ————	0s	2ms/step
4/4 ————	0s	2ms/step
4/4 —————	0s	4ms/step
4/4 —	0s	5ms/step
4/4 —	0s	
4/4 —	0s	5ms/step
4/4 —	0s	3ms/step
4/4	0s	2ms/step
4/4 ————	0s	5ms/step
4/4 ————	0s	4ms/step
4/4 —	0s	4ms/step
4/4	0s	
4/4	0s	
4/4 ———————————————————————————————————		
4/4 ——————	0s	, ,
4/4 ————	0s	2ms/step
4/4 ————	0s	2ms/step
	0s	2ms/step
4/4	0s	/ -
4/4 ———	0s	5ms/step

	_	
4/4 ————	ΘS	4ms/step
4/4		5ms/step
4/4 ————	0s	3ms/step
4/4 ————	0s	6ms/step
4/4 ————	0s	2ms/step
4/4 ————	0s	3ms/step
4/4 —	0s	•
4/4 —		•
4/4	Ωs	
4/4 ————	0s	,
4/4		3ms/step
4/4		2ms/step
4/4		5ms/step
4/4		•
4/4		, p
4/4 ———————————————————————————————————		, I
4/4 ———————————————————————————————————		J, J. J. J.
4/4 ———————————————————————————————————		, p
		2ms/step
4/4		3ms/step
4/4		•
4/4		
4/4		, p
4/4		•
4/4		,
4/4 ———————————————————————————————————	0s	J, J. J. J.
		3ms/step
4/4	0s	J, J. J. J.
4/4 ————		J, J. J. J.
4/4 ————		3ms/step
4/4 ————		J, J. J. J.
4/4 ————		6ms/step
4/4 ————		4ms/step
4/4 —	0s	3ms/step
Epoch: 300/1100, Validat	ion	Loss: 0.1598
4/4 ————		3ms/step
4/4 ————		2ms/step
4/4 ————		2ms/step
4/4 —		2ms/step
4/4 —		2ms/step
4/4 ————	0s	3ms/step
4/4 ————	0s	2ms/step
4/4 —		3ms/step
4/4 —————	0s	3ms/step
4/4 ————	0s	3ms/step
4/4 ————	0s	4ms/step
4/4 ————	0s	3ms/step
4/4 —	0s	•
4/4 —	0s	
4/4	As	-,
4/4 ————	0s	
4/4 —		4ms/step
		•
4/4 —————	0s	3ms/step
•		
4/4	0s	3ms/step
4/4 ———————————————————————————————————	0s 0s	3ms/step 3ms/step
4/4 ———————————————————————————————————	0s 0s 0s	3ms/step 3ms/step 3ms/step

	_	
4/4 ———	0s	4ms/step
4/4 ————	0s	3ms/step
4/4 ————	0s	3ms/step
4/4 ————	0s	3ms/step
4/4 —	0s	3ms/step
4/4	0s	3ms/step
4/4 ————	0s	4ms/step
4/4 ————	0s	3ms/step
4/4 —	0s	3ms/step
4/4 —	0s	4ms/step
4/4 ————	0s	3ms/step
4/4 —	0s	3ms/step
4/4	0s	3ms/step
4/4 —	0s	3ms/step
4/4 ————	0s	3ms/step
4/4 ————	0s	3ms/step
4/4	0s	
4/4		2ms/step
4/4 —————	0s	2ms/step
	0s	3ms/step
4/4 ————	0s	3ms/step
•	0s	3ms/step
4/4	0s	3ms/step
4/4	0s	2ms/step
4/4 ————	0s	3ms/step
4/4 ————	0s	2ms/step
4/4 ————	0s	2ms/step
4/4 ————	0s	3ms/step
4/4 ————	0s	3ms/step
4/4 ————	0 s	3ms/step
4/4 ————	0 s	3ms/step
4/4	0s	3ms/step
4/4 ————	0s	3ms/step
4/4 ————	0s	5ms/step
4/4 ————	0s	3ms/step
4/4 ————	0s	3ms/step
4/4 ————	0s	2ms/step
4/4 —	0s	6ms/step
4/4 —	0s	4ms/step
4/4 ————	0s	3ms/step
4/4 —	0s	3ms/step
4/4	0s	6ms/step
4/4 —	0s	5ms/step
4/4 —	0s	•
4/4 ————	0s	3ms/step
4/4	0s	5ms/step
4/4 ——————	0s	
4/4 —————	0s	2ms/step
4/4 —————		4ms/step
4/4 —————	0s	
4/4	0s	3ms/step

	_	
4/4 —	0s	4ms/step
4/4 —	0s	2ms/step
4/4	0s	3ms/step
4/4	0s	2ms/step
4/4	0s	3ms/step
4/4	0s	3ms/step
4/4 ————	0s	3ms/step
4/4 ————	0s	3ms/step
4/4 ————	0s	6ms/step
4/4 ————	0s	5ms/step
4/4 ————	0s	3ms/step
4/4 ————	0s	3ms/step
4/4 —	0s	2ms/step
4/4	0s	5ms/step
4/4 ————	0s	2ms/step
4/4 ————	0s	3ms/step
4/4 ————	0s	2ms/step
4/4	0s	4ms/step
4/4 ————	0s	3ms/step
4/4 ————	0s	2ms/step
4/4 ————	0s	3ms/step
4/4 ————	0s	2ms/step
4/4 ————	0s	4ms/step
4/4 —	0s	3ms/step
4/4 —	0s	2ms/step
4/4	0s	3ms/step
4/4 —	0s	3ms/step
4/4 ————	0s	3ms/step
4/4 ————	0s	4ms/step
4/4 ————	0s	3ms/step
4/4 ————	0s	4ms/step
4/4 ————	0s	3ms/step
4/4 ————	0s	5ms/step
4/4		3ms/step
4/4 ————	0s	3ms/step
4/4	0s	2ms/step
4/4 ————	0s	3ms/step
4/4 ————	0s	2ms/step
4/4 ————	0s	2ms/step
4/4 ————	0s	/ -
4/4 ————	0s	3ms/step
4/4 ————	0s	2ms/step
4/4 ————	0s	3ms/step
4/4	0s	3ms/step
4/4 ————	0s	3ms/step
4/4 ————	0s	3ms/step

	_	
4/4 ————	0s	2ms/step
4/4 ————	0s	2ms/step
4/4 ————	0s	2ms/step
4/4 ————	0s	3ms/step
4/4 —	0s	2ms/step
4/4	0s	2ms/step
4/4 ————	0s	2ms/step
4/4 ————	0s	2ms/step
4/4 ————	0s	3ms/step
4/4 ————	0s	3ms/step
4/4 —	0s	4ms/step
4/4 —	0s	2ms/step
4/4 —	0s	2ms/step
4/4 ————	0s	3ms/step
4/4 —	0s	4ms/step
4/4 —	0s	3ms/step
4/4 ————	0s	2ms/step
4/4	0s	•
4/4		3ms/step
4/4 —————	0s	3ms/step
4/4 —————	0s	2ms/step
4/4 ————	0s	3ms/step
	0s	3ms/step
4/4 ————	0s	2ms/step
4/4 ————	0s	2ms/step
4/4 ————	0s	3ms/step
4/4 ————	0s	3ms/step
4/4 ————	0s	3ms/step
4/4 —	0 s	2ms/step
4/4 —	0s	3ms/step
4/4	0s	3ms/step
4/4 ————	0s	2ms/step
4/4 ————	0s	2ms/step
4/4 ————	0s	2ms/step
4/4 ————	0s	3ms/step
4/4 ————	0s	2ms/step
4/4 ————	0s	3ms/step
4/4 —	0s	•
4/4 —	0s	
4/4 —	0s	
4/4 —	0s	, ,
4/4 —	0s	3ms/step
4/4	0s	3ms/step
4/4 ————	0s	8ms/step
4/4 ————	0s	•
4/4 —	0s	3ms/step
4/4 ————	0s	
4/4 ————	0s	
4/4	0s	4ms/step
4/4 ——————	0s	•
4/4 ——————	0s	4ms/step
4/4 —————	0S 0S	3ms/step
4/4 —————		4ms/step
4/4 —————	0s	8ms/step
4/4	0s	4ms/step

4/4 ————	0s	5ms/step
4/4	0s	3ms/step
4/4	0s	6ms/step
4/4 ————	0s	5ms/step
4/4 —————	0s	3ms/step
	0s	4ms/step
4/4 ————	0s	3ms/step
4/4 ————	0s	3ms/step
4/4 ————	0s	3ms/step
4/4 ————	0s	5ms/step
4/4 ————	0s	5ms/step
4/4 ————	0s	6ms/step
4/4 —————	0s	5ms/step
	0s	4ms/step
4/4 ————	0s	4ms/step
4/4 ————	0s	3ms/step
4/4 ————	0s	3ms/step
4/4 ————	0s	4ms/step
4/4 ————	0s	3ms/step
4/4	0s	5ms/step
4/4 —————	0s	3ms/step
	0s	3ms/step
4/4 ————	0s	4ms/step
4/4 ————	0s	3ms/step
4/4 ————	0s	4ms/step
4/4 ————	0s	3ms/step
4/4 —————	0s	5ms/step
4/4 —————	0s 0s	3ms/step
4/4 —————	0s	3ms/step 3ms/step
4/4	0s	3ms/step
4/4	0s	3ms/step
4/4	0s	4ms/step
4/4 ————		4ms/step
4/4 —		•
4/4	0s	
4/4	0s	•
4/4	0s	
4/4 —	0s	
4/4 ————	0s	4ms/step
4/4 ————	0s	4ms/step
4/4 ————	0s	3ms/step
4/4 ————	0s	2ms/step
4/4 ————	0s	3ms/step
4/4 ————	0s	3ms/step
4/4 ———	0s	3ms/step
4/4 ————	0s	5ms/step
4/4 ————	0s	3ms/step
4/4 ————	0s	, ,
4/4 ————	0s	2ms/step
4/4 ————	0s	3ms/step
4/4 ————	0s	2ms/step
4/4 ————	0s	2ms/step
•	0s	2ms/step
4/4 ————	0s	
4/4	0s	2ms/step

4/4 ————	0s	3ms/step
4/4 ————	0s	3ms/step
4/4 —	0s	3ms/step
4/4 —	0s	4ms/step
4/4 —	0s	2ms/step
4/4 —	0s	2ms/step
4/4 —	0s	2ms/step
4/4	0s	7ms/step
4/4 —	0s	3ms/step
4/4 —	0s	3ms/step
4/4	0s	3ms/step
4/4 —————	0s	
4/4 —————		3ms/step
4/4 —————	0s	3ms/step
	0s	3ms/step
4/4 ———	0s	3ms/step
4/4 ————	0s	3ms/step
4/4 ————	0s	3ms/step
4/4 ————	0s	6ms/step
4/4 ————	0s	4ms/step
4/4 —	0s	3ms/step
4/4 —	0s	3ms/step
4/4	0s	3ms/step
4/4 ————	0s	3ms/step
4/4 ————	0s	3ms/step
4/4 ————	0 s	2ms/step
4/4 ————	0 s	4ms/step
4/4 ————	0s	3ms/step
4/4 —	0s	2ms/step
4/4 —	0s	4ms/step
4/4	0s	3ms/step
4/4 —	0s	3ms/step
4/4 ————	0s	3ms/step
4/4 ————	0s	3ms/step
4/4 ————	0 s	3ms/step
	0s	3ms/step
4/4 ————	0s	3ms/step
4/4 ———	0s	2ms/step
4/4	0s	3ms/step
4/4 ————	0s	2ms/step
4/4 —	0s	2ms/step
4/4 ————	0s	3ms/step
4/4 —	0s	2ms/step
4/4	0s	6ms/step
4/4 —	0s	2ms/step
4/4 —	0s	3ms/step
4/4 —	0s	2ms/step
4/4 ————	0s	2ms/step
4/4 —	0s	4ms/step
4/4 ————	0s	3ms/step
4/4	0s	3ms/step
4/4 —	0s	3ms/step
4/4 —	0s	6ms/step
4/4 —	0s	•
	_	1,

4/4 ————	0s	7ms/step
4/4 ————	0s	4ms/step
4/4 —————	0s	4ms/step
4/4 —	0s	5ms/step
4/4 ————	0s	•
4/4		4ms/step
4/4 ————	0s	4ms/step
4/4 —	0s	4ms/step
4/4	0s	3ms/step
4/4 ————	0s	4ms/step
4/4 —	0s	3ms/step
4/4 ————	0s	6ms/step
4/4		•
	0s	4ms/step
4/4 ————	0s	3ms/step
4/4 ————	0s	3ms/step
4/4 —	0s	2ms/step
4/4 ————	0s	2ms/step
4/4 —	0s	3ms/step
4/4 —	0s	3ms/step
4/4		•
	0s	4ms/step
4/4 ————	0s	3ms/step
4/4 ————	0s	3ms/step
4/4 —	0s	3ms/step
4/4 —	0s	5ms/step
4/4 ————	0s	3ms/step
4/4 —	0s	4ms/step
4/4		•
	0s	3ms/step
4/4 ————	0s	3ms/step
4/4 ————	0s	3ms/step
4/4 —	0s	3ms/step
4/4 —	0s	3ms/step
4/4 —	0s	3ms/step
4/4 ————	0s	4ms/step
4/4 ————	0s	3ms/step
4/4		•
•	0s	2ms/step
4/4 ————	0s	3ms/step
4/4 ————	0s	3ms/step
4/4 ————	0s	3ms/step
4/4 —	0s	3ms/step
4/4 —————	0s	3ms/step
4/4 ————	0s	4ms/step
4/4 ————	0s	4ms/step
4/4		•
•	0s	5ms/step
4/4 ————	0s	3ms/step
4/4 ————	0s	4ms/step
4/4 ————	0s	3ms/step
4/4 ————	0s	5ms/step
4/4 —	0s	3ms/step
4/4 ————	0s	4ms/step
4/4 ————	0s	4ms/step
		•
4/4	0s	3ms/step
4/4 ————	0s	3ms/step
4/4 ————	0s	4ms/step
4/4 ————	0s	3ms/step
4/4 —	0s	5ms/step
4/4	0s	6ms/step
4/4 ————	0s	5ms/step
7/ 7	U3	21113/3 CEb

4/4 0s 4ms/step 4/4 0s 3ms/step 4/4 0s 3ms/step 4/4 0s 4ms/step 4/4 0s 4ms/step 4/4 0s 6ms/step 4/4 0s 4ms/step 4/4 0s 5ms/step 4/4 0s 5ms/step 4/4 0s 5ms/step 4/4 0s 5ms/step 4/4 0s 3ms/step 4/4 0s 3ms/step 4/4 0s 3ms/step 4/4 0	A / A	0-	7ma/atan
4/4 0s 2ms/step 4/4 0s 4ms/step 4/4 0s 6ms/step 4/4 0s 6ms/step 4/4 0s 7ms/step 4/4 0s 6ms/step 4/4 0s 4ms/step 4/4 0s 5ms/step 4/4 0s 4ms/step 4/4 0s 5ms/step 4/4 0s 4ms/step 4/4 0s 5ms/step 4/4 0s 4ms/step 4/4 0s 4ms/step 4/4 0s 3ms/step 4/4 0	4/4	05	/iiis/step
4/4 0s 4ms/step 4/4 0s 6ms/step 4/4 0s 7ms/step 4/4 0s 3ms/step 4/4 0s 6ms/step 4/4 0s 4ms/step 4/4 0s 4ms/step 4/4 0s 4ms/step 4/4 0s 4ms/step 4/4 0s 5ms/step 4/4 0s 4ms/step 4/4 0s 3ms/step 4/4 0	4/4	05	4ms/step
4/4 0s 6ms/step 4/4 0s 7ms/step 4/4 0s 3ms/step 4/4 0s 6ms/step 4/4 0s 4ms/step 4/4 0s 4ms/step 4/4 0s 5ms/step 4/4 0s 4ms/step 4/4 0s 3ms/step 4/4 0s 5ms/step 4/4 0s 5ms/step 4/4 0s 3ms/step	4/4 ———	US	3ms/step
4/4 0s 6ms/step 4/4 0s 3ms/step 4/4 0s 6ms/step 4/4 0s 5ms/step 4/4 0s 4ms/step 4/4 0s 5ms/step 4/4 0s 5ms/step 4/4 0s 5ms/step 4/4 0s 4ms/step 4/4 0s 4ms/step 4/4 0s 5ms/step 4/4 0s 4ms/step 4/4 0s 3ms/step 4/4 0s 5ms/step			
4/4 0s 3ms/step 4/4 0s 6ms/step 4/4 0s 5ms/step 4/4 0s 4ms/step 4/4 0s 3ms/step 4/4 0s 4ms/step 4/4 0s 3ms/step 4/4 0s 5ms/step			•
4/4 0s 3ms/step 4/4 0s 6ms/step 4/4 0s 6ms/step 4/4 0s 6ms/step 4/4 0s 6ms/step 4/4 0s 5ms/step 4/4 0s 5ms/step 4/4 0s 4ms/step 4/4 0s 3ms/step 4/4 0s 3ms/step 4/4 0s 3ms/step 4/4 0s 5ms/step 4/4 0s 4ms/step 4/4 0s 4ms/step 4/4 0s 4ms/step 4/4 0s 3ms/step 4/4 0s 5ms/step 4/4 0s 5ms/step	•		· · ·
4/4 0s 6ms/step 4/4 0s 5ms/step 4/4 0s 4ms/step 4/4 0s 4ms/step 4/4 0s 5ms/step 4/4 0s 5ms/step 4/4 0s 5ms/step 4/4 0s 4ms/step 4/4 0s 4ms/step 4/4 0s 5ms/step 4/4 0s 4ms/step 4/4 0s 4ms/step 4/4 0s 4ms/step 4/4 0s 3ms/step 4/4 0s 5ms/step			•
4/4 0s 6ms/step 4/4 0s 6ms/step 4/4 0s 6ms/step 4/4 0s 6ms/step 4/4 0s 5ms/step 4/4 0s 4ms/step 4/4 0s 4ms/step 4/4 0s 5ms/step 4/4 0s 5ms/step 4/4 0s 5ms/step 4/4 0s 4ms/step 4/4 0s 4ms/step 4/4 0s 4ms/step 4/4 0s 5ms/step 4/4 0s 4ms/step 4/4 0s 4ms/step 4/4 0s 3ms/step 4/4 0s 5ms/step	•		,
4/4 0s 6ms/step 4/4 0s 6ms/step 4/4 0s 6ms/step 4/4 0s 5ms/step 4/4 0s 4ms/step 4/4 0s 3ms/step 4/4 0s 5ms/step 4/4 0s 5ms/step 4/4 0s 4ms/step 4/4 0s 4ms/step 4/4 0s 5ms/step 4/4 0s 5ms/step 4/4 0s 3ms/step 4/4 0s 5ms/step	•		,
4/4 0s 4ms/step 4/4 0s 5ms/step 4/4 0s 4ms/step 4/4 0s 4ms/step 4/4 0s 3ms/step 4/4 0s 5ms/step 4/4 0s 5ms/step 4/4 0s 4ms/step 4/4 0s 4ms/step 4/4 0s 3ms/step 4/4			
4/4 0s 6ms/step 4/4 0s 5ms/step 4/4 0s 4ms/step 4/4 0s 3ms/step 4/4 0s 5ms/step 4/4 0s 5ms/step 4/4 0s 4ms/step 4/4 0s 2ms/step 4/4 0s 5ms/step 4/4 0s 5ms/step 4/4 0s 5ms/step 4/4 0s 3ms/step 4/4 0s 5ms/step 4/4 0s 5ms/step 4/4 0s 5ms/step 4/4 0s 5ms/step 4/4 0s 3ms/step 4/4 0s 3ms/step 4/4 0s 3ms/step 4/4 0s 3ms/step 4/4 0s 5ms/step 4/4 0s 5ms/step 4/4 0s 5ms/step 4/4 0s 5ms/step	4/4 —————	0s	6ms/step
4/4 0s 5ms/step 4/4 0s 4ms/step 4/4 0s 3ms/step 4/4 0s 5ms/step 4/4 0s 5ms/step 4/4 0s 4ms/step 4/4 0s 4ms/step 4/4 0s 5ms/step 4/4 0s 3ms/step 4/4 0s 5ms/step 4/4			
4/4 0s 4ms/step 4/4 0s 3ms/step 4/4 0s 5ms/step 4/4 0s 4ms/step 4/4 0s 4ms/step 4/4 0s 4ms/step 4/4 0s 5ms/step 4/4 0s 3ms/step 4/4 0s 5ms/step 4/4 0s 5ms/step 4/4	4/4 ————	0s	6ms/step
4/4 0s 3ms/step 4/4 0s 5ms/step 4/4 0s 4ms/step 4/4 0s 4ms/step 4/4 0s 4ms/step 4/4 0s 5ms/step 4/4 0s 3ms/step 4/4 0s 5ms/step 4/4 0s 5ms/step 4/4 0s 5ms/step 4/4			
4/4 0s 3ms/step 4/4 0s 4ms/step 4/4 0s 4ms/step 4/4 0s 4ms/step 4/4 0s 5ms/step 4/4 0s 3ms/step 4/4 0s 5ms/step 4/4 0s 5ms/step 4/4 0s 5ms/step 4/4 0s 5ms/step 4/4	4/4 ————	0s	4ms/step
4/4 0s 5ms/step 4/4 0s 4ms/step 4/4 0s 4ms/step 4/4 0s 5ms/step 4/4 0s 3ms/step 4/4 0s 5ms/step 4/4 0s 5ms/step 4/4 0s 5ms/step 4/4 0s 5ms/step 4/4 0s 3ms/step 4/4 0s 3ms/step 4/4 0s 3ms/step 4/4 0s 5ms/step 4/4	4/4 —	0s	4ms/step
4/4 0s 5ms/step 4/4 0s 2ms/step 4/4 0s 4ms/step 4/4 0s 5ms/step 4/4 0s 3ms/step 4/4 0s 5ms/step 4/4 0s 5ms/step 4/4 0s 5ms/step 4/4 0s 5ms/step 4/4 0s 3ms/step 4/4 0s 3ms/step 4/4 0s 3ms/step 4/4 0s 3ms/step 4/4 0s 5ms/step 4/4			
4/4 0s 4ms/step 4/4 0s 4ms/step 4/4 0s 5ms/step 4/4 0s 3ms/step 4/4 0s 5ms/step 4/4	4/4 —————	0s	
4/4 0s 2ms/step 4/4 0s 4ms/step 4/4 0s 5ms/step 4/4 0s 3ms/step 4/4 0s 5ms/step 4/4	4/4 —	0s	•
4/4	4/4 —	0s	
4/4 0s 5ms/step 4/4 0s 3ms/step 4/4 0s 5ms/step 4/4 0s 5ms/step 4/4 0s 3ms/step 4/4 0s 5ms/step 4/4 0s 5ms/step 4/4 0s 5ms/step 4/4 0s 5ms/step 4/4 0s 3ms/step 4/4 0s 5ms/step 4/4 0s 5ms/step 4/4 0s 5ms/step 4/4 0s 5ms/step 4/4	4/4 —	0s	
4/4 0s 4ms/step 4/4 0s 3ms/step 4/4 0s 5ms/step 4/4 0s 5ms/step 4/4 0s 5ms/step 4/4 0s 3ms/step 4/4 0s 5ms/step 4/4			•
4/4 0s 3ms/step 4/4 0s 5ms/step 4/4 0s 5ms/step 4/4 0s 3ms/step 4/4 0s 5ms/step 4/4	•		· '
4/4 0s 4ms/step 4/4 0s 3ms/step 4/4 0s 3ms/step 4/4 0s 3ms/step 4/4 0s 5ms/step 4/4 0s 2ms/step 4/4 0s 3ms/step 4/4 0s 5ms/step 4/4	•		
4/4 0s 3ms/step 4/4 0s 3ms/step 4/4 0s 3ms/step 4/4 0s 5ms/step 4/4 0s 5ms/step 4/4 0s 5ms/step 4/4 0s 3ms/step 4/4 0s 5ms/step 4/4 0s 5ms/step 4/4 0s 5ms/step 4/4 0s 5ms/step 4/4 0s 3ms/step 4/4 0s 5ms/step 4/4			
4/4 0s 3ms/step 4/4 0s 3ms/step 4/4 0s 5ms/step 4/4 0s 2ms/step 4/4 0s 3ms/step 4/4 0s 5ms/step 4/4			
4/4 0s 3ms/step 4/4 0s 5ms/step 4/4 0s 2ms/step 4/4 0s 5ms/step 4/4 0s 3ms/step 4/4 0s 3ms/step 4/4 0s 3ms/step 4/4 0s 2ms/step 4/4 0s 5ms/step 4/4 0s 4ms/step 4/4 0s 5ms/step 4/4			•
4/4 0s 3ms/step 4/4 0s 5ms/step 4/4 0s 4ms/step 4/4 0s 5ms/step 4/4 0s 3ms/step 4/4 0s 3ms/step 4/4 0s 2ms/step 4/4 0s 3ms/step 4/4 0s 5ms/step 4/4 0s 4ms/step 4/4 0s 5ms/step 4/4	4/4	05	•
4/4 0s 5ms/step 4/4 0s 4ms/step 4/4 0s 5ms/step 4/4 0s 3ms/step 4/4 0s 3ms/step 4/4 0s 2ms/step 4/4 0s 3ms/step 4/4 0s 5ms/step 4/4 0s 3ms/step 4/4 0s 5ms/step 4/4			•
4/4 0s 2ms/step 4/4 0s 4ms/step 4/4 0s 5ms/step 4/4 0s 3ms/step 4/4 0s 2ms/step 4/4 0s 3ms/step 4/4 0s 5ms/step 4/4 0s 3ms/step 4/4 0s 3ms/step 4/4 0s 3ms/step 4/4 0s 3ms/step 4/4	4/4	03 0s	•
4/4 0s 4ms/step 4/4 0s 5ms/step 4/4 0s 3ms/step 4/4 0s 2ms/step 4/4 0s 3ms/step 4/4 0s 5ms/step 4/4 0s 5ms/step 4/4 0s 5ms/step 4/4 0s 5ms/step 4/4 0s 3ms/step 4/4 0s 3ms/step 4/4 0s 5ms/step 4/4 0s 3ms/step 4/4	•		•
4/4 0s 5ms/step 4/4 0s 3ms/step 4/4 0s 2ms/step 4/4 0s 2ms/step 4/4 0s 3ms/step 4/4 0s 5ms/step 4/4 0s 5ms/step 4/4 0s 5ms/step 4/4 0s 5ms/step 4/4 0s 3ms/step 4/4 0s 5ms/step 4/4 0s 5ms/step 4/4 0s 5ms/step 4/4 0s 4ms/step 4/4 0s 5ms/step 4/4 0s 5ms/step 4/4 0s 3ms/step 4/4	•		
4/4 0s 3ms/step 4/4 0s 2ms/step 4/4 0s 2ms/step 4/4 0s 3ms/step 4/4 0s 5ms/step 4/4 0s 5ms/step 4/4 0s 5ms/step 4/4 0s 5ms/step 4/4 0s 2ms/step 4/4 0s 5ms/step 4/4 0s 3ms/step 4/4	•		· '
4/4 0s 3ms/step 4/4 0s 2ms/step 4/4 0s 3ms/step 4/4 0s 5ms/step 4/4 0s 5ms/step 4/4 0s 5ms/step 4/4 0s 5ms/step Epoch: 400/1100 Validation Loss: 0.1150 4/4 0s 3ms/step 4/4 0s 6ms/step 4/4 0s 5ms/step 4/4 0s 5ms/step 4/4 0s 4ms/step 4/4 0s 5ms/step 4/4 0s 3ms/step			
4/4 0s 2ms/step 4/4 0s 3ms/step 4/4 0s 5ms/step 4/4 0s 2ms/step 4/4 0s 6ms/step 4/4 0s 5ms/step 4/4 0s 4ms/step 4/4 0s 4ms/step 4/4 0s 5ms/step 4/4 0s 3ms/step			,
4/4 0s 2ms/step 4/4 0s 3ms/step 4/4 0s 5ms/step 4/4 0s 5ms/step 4/4 0s 5ms/step Epoch: 400/1100, Validation Loss: 0.1150 4/4 0s 2ms/step 4/4 0s 3ms/step 4/4 0s 6ms/step 4/4 0s 5ms/step 4/4 0s 4ms/step 4/4 0s 5ms/step 4/4 0s 5ms/step 4/4 0s 3ms/step			
4/4 0s 3ms/step 4/4 0s 5ms/step 4/4 0s 5ms/step 4/4 0s 5ms/step 4/4 0s 5ms/step Epoch: 400/1100, Validation Loss: 0.1150 4/4 0s 3ms/step 4/4 0s 6ms/step 4/4 0s 5ms/step 4/4 0s 3ms/step			
4/4 0s 5ms/step 4/4 0s 5ms/step 4/4 0s 5ms/step 4/4 0s 5ms/step Epoch: 400/1100, Validation Loss: 0.1150 4/4 0s 4/4 0s 3ms/step 4/4 0s 6ms/step 4/4 0s 5ms/step 4/4 0s 3ms/step	4/4	05	2ms/step
4/4 0s 5ms/step 4/4 0s 5ms/step Epoch: 400/1100, Validation Loss: 0.1150 4/4 0s 2ms/step 4/4 0s 3ms/step 4/4 0s 5ms/step 4/4 0s 5ms/step 4/4 0s 4ms/step 4/4 0s 5ms/step 4/4 0s 5ms/step 4/4 0s 5ms/step 4/4 0s 3ms/step			
4/4 0s 5ms/step 4/4 0s 5ms/step Epoch: 400/1100, Validation Loss: 0.1150 4/4 0s 2ms/step 4/4 0s 3ms/step 4/4 0s 6ms/step 4/4 0s 5ms/step 4/4 0s 4ms/step 4/4 0s 5ms/step 4/4 0s 5ms/step 4/4 0s 3ms/step	4/4	05	Sms/step
4/4 0s 5ms/step Epoch: 400/1100, Validation Loss: 0.1150 4/4 0s 2ms/step 4/4 0s 3ms/step 4/4 0s 6ms/step 4/4 0s 5ms/step 4/4 0s 4ms/step 4/4 0s 4ms/step 4/4 0s 5ms/step 4/4 0s 3ms/step	4/4	05	Sms/step
Epoch: 400/1100, Validation Loss: 0.1150 4/4	4/4	05	Sms/step
4/4 0s 2ms/step 4/4 0s 3ms/step 4/4 0s 6ms/step 4/4 0s 5ms/step 4/4 0s 4ms/step 4/4 0s 4ms/step 4/4 0s 5ms/step 4/4 0s 3ms/step			
4/4 0s 3ms/step 4/4 0s 6ms/step 4/4 0s 5ms/step 4/4 0s 4ms/step 4/4 0s 4ms/step 4/4 0s 5ms/step 4/4 0s 3ms/step			
4/4 0s 6ms/step 4/4 0s 5ms/step 4/4 0s 4ms/step 4/4 0s 4ms/step 4/4 0s 4ms/step 4/4 0s 5ms/step 4/4 0s 3ms/step	4/4	05	2ms/step
4/4 0s 5ms/step 4/4 0s 4ms/step 4/4 0s 4ms/step 4/4 0s 4ms/step 4/4 0s 5ms/step 4/4 0s 3ms/step	4/4	05	Sms/step
4/4 0s 4ms/step 4/4 0s 4ms/step 4/4 0s 4ms/step 4/4 0s 5ms/step 4/4 0s 3ms/step			
4/4 0s 4ms/step 4/4 0s 4ms/step 4/4 0s 5ms/step 4/4 0s 3ms/step 4/4 0s 2ms/step 4/4 0s 3ms/step 4/4 0s 3ms/step 4/4 0s 3ms/step			•
4/4 0s 4ms/step 4/4 0s 5ms/step 4/4 0s 3ms/step 4/4 0s 2ms/step 4/4 0s 3ms/step 4/4 0s 3ms/step 4/4 0s 3ms/step	•		
4/4 0s 5ms/step 4/4 0s 3ms/step 4/4 0s 2ms/step 4/4 0s 3ms/step 4/4 0s 3ms/step 4/4 0s 3ms/step			
4/4 0s 3ms/step 4/4 0s 2ms/step 4/4 0s 3ms/step 4/4 0s 3ms/step 4/4 0s 3ms/step			- / I-
4/4 0s 2ms/step 4/4 0s 3ms/step 4/4 0s 3ms/step	4/4	US	
4/4 — 0s 3ms/step 4/4 — 0s 3ms/step			
4/4 — 0s 3ms/step	4/4	0s	2ms/step
4/4 — 0s 3ms/step 4/4 — 0s 3ms/step			
4/4 — 0s 3ms/step	4/4	0s	3ms/step
	4/4 ————	0s	3ms/step

	_	
4/4 ———	0s	3ms/step
4/4 ————	0s	3ms/step
4/4 ————	0s	3ms/step
4/4 ————	0s	3ms/step
4/4 —	0s	2ms/step
4/4	0s	3ms/step
4/4 ————	0s	3ms/step
4/4 ————	0s	5ms/step
4/4 ————	0s	5ms/step
4/4 ————	0s	3ms/step
4/4 ————	0s	3ms/step
4/4 —	0s	3ms/step
4/4 —	0s	3ms/step
4/4 ————	0s	3ms/step
4/4 —	0s	3ms/step
4/4	0s	7ms/step
4/4 —	0s	3ms/step
4/4 ————	0s	3ms/step
4/4 ————	0s	3ms/step
4/4	0s	2ms/step
4/4	0s	•
4/4 ————	0s	3ms/step
		3ms/step
4/4 ————	0s	4ms/step
•	0s	3ms/step
4/4	0s	3ms/step
4/4 ————	0s	2ms/step
4/4	0s	3ms/step
4/4	0s	3ms/step
4/4 —————	0s	3ms/step
	0s	3ms/step
4/4 ————		, ,
4/4 ————		
4/4 ————	0s	4ms/step
4/4 ————	0s	4ms/step
4/4	0s	4ms/step
4/4 —	0s	4ms/step
4/4 ————		4ms/step
4/4 ————		3ms/step
4/4 ————	0s	3ms/step
4/4 ————	0s	5ms/step
4/4 ————	0s	3ms/step
4/4 —	0s	2ms/step
4/4 ————	0s	3ms/step
4/4 ————	0s	3ms/step
4/4 —	0s	•
4/4 —	0s	
4/4 ————	0s	
4/4 —	0s	4ms/step
4/4 ————	0s	3ms/step
4/4	0s	3ms/step
4/4 ————	0s	3ms/step
4/4	0s	•
4/4 ————		•
	U 3	21113/3 CCh

	_	
4/4 ————	0s	4ms/step
4/4 ————	0s	3ms/step
4/4 ————	0s	3ms/step
4/4 ————	0s	4ms/step
4/4 ———	0s	4ms/step
4/4	0s	3ms/step
4/4 ————	0s	3ms/step
4/4 ————	0s	5ms/step
4/4 ————	0s	3ms/step
4/4 ————	0s	3ms/step
4/4 ————	0s	3ms/step
4/4 —	0s	4ms/step
4/4 —	0s	6ms/step
4/4 —	0s	4ms/step
4/4 —	0s	6ms/step
4/4 —	0s	4ms/step
4/4	0s	2ms/step
4/4	0s	3ms/step
4/4 —	0s	2ms/step
4/4	0s	2ms/step
1/1	0s	5ms/step
4/4	0s	2ms/step
4/4	0s	3ms/step
4/4	0s	
4/4 —————	0s	7ms/step
4/4		3ms/step
4/4 —————	0s	4ms/step
4/4 ————	0s	5ms/step
4/4 —————	0s	3ms/step
4/4 ————	0s	2ms/step
4/4	0s	7ms/step
4/4	0s	3ms/step
4/4	0s	5ms/step
4/4 ———	0s	3ms/step
4/4		6ms/step
4/4 ———		
4/4 ————		4ms/step
4/4 ————	0s	, ,
	0s	· · · · · · · · · · · · · · · · · · ·
4/4 ————	0s	/ -
4/4 ————	0s	3ms/step
4/4 ————	0s	3ms/step
4/4 ————	0s	4ms/step
4/4 ————	0s	3ms/step
4/4 ————	0s	3ms/step
4/4 —	0s	3ms/step
4/4	0s	3ms/step
4/4 ————	0 s	3ms/step
4/4 ————	0s	4ms/step
4/4 ————	0s	3ms/step
4/4 ————	0s	3ms/step
4/4 ————	0s	3ms/step
4/4 —	0s	2ms/step
4/4	0s	3ms/step
4/4	0s	3ms/step
4/4 —	0s	3ms/step
4/4 —		•
-, -	J J	, э сор

4/4 ————	0s	3ms/step
4/4 ————	0s	2ms/step
4/4 ————	0s	3ms/step
4/4 —	0s	3ms/step
4/4	0s	2ms/step
4/4 —	0s	4ms/step
4/4	0s	4ms/step
4/4		
4/4 ———————————————————————————————————	0s	3ms/step
	0s	3ms/step
4/4	0s	2ms/step
4/4	0s	4ms/step
4/4 ————	0s	3ms/step
4/4	0s	3ms/step
4/4	0s	3ms/step
4/4 ————	0s	3ms/step
4/4 ————	0s	3ms/step
4/4 ————	0s	3ms/step
4/4 —	0s	2ms/step
4/4	0s	3ms/step
4/4 —	0s	3ms/step
4/4 —	0s	2ms/step
4/4 —————	0s	
		2ms/step
4/4	0s	2ms/step
4/4	0s	2ms/step
4/4 ————	0s	2ms/step
4/4 ————	0s	3ms/step
4/4 ————	0s	3ms/step
4/4 —	0s	4ms/step
4/4 ————	0s	4ms/step
4/4 —	0s	4ms/step
4/4 —		4ms/step
•	0s	
4/4 —	0s	•
4/4 —		4ms/step
4/4 —	0s	
4/4 —————		
4/4 ———————————————————————————————————	0s	, ,
4/4 —————	0s	J
	0s	4ms/step
4/4		3ms/step
4/4 ————	0s	3ms/step
4/4 —	0s	3ms/step
4/4 —	0s	3ms/step
4/4	0s	3ms/step
4/4 —	0s	5ms/step
4/4 ————	0s	3ms/step
4/4 ————	0s	4ms/step
4/4 —	0s	4ms/step
4/4	0s	3ms/step
4/4 —	0s	3ms/step
4/4	0s	4ms/step
4/4 —	0s	2ms/step
4/4 ————	0s	3ms/step
4/4 —————	0s	
7/7	US	5ms/step

	_	
4/4 ————	0s	2ms/step
4/4 ————	0s	3ms/step
4/4 ————	0s	3ms/step
4/4 ————	0s	3ms/step
4/4 —	0 s	3ms/step
4/4 ————	0s	3ms/step
4/4 ————	0s	3ms/step
4/4 —	0s	2ms/step
4/4 ————	0s	4ms/step
4/4 ————	0s	5ms/step
4/4 ————	0s	6ms/step
4/4 —	0s	3ms/step
4/4 —	0s	3ms/step
4/4 —	0s	7ms/step
4/4 —	0s	3ms/step
4/4	0s	3ms/step
4/4	0s	5ms/step
4/4 —	0s	4ms/step
4/4 —	0s	4ms/step
4/4	0s	4ms/step
1/1	0s	8ms/step
4/4	0s	6ms/step
4/4 ————	0s	5ms/step
4/4	0s	
4/4 —————	0s	6ms/step
4/4 —————		3ms/step
4/4 —————	0s	4ms/step
4/4 ————	0s	5ms/step
4/4 ————	0s	4ms/step
4/4 ————	0s	4ms/step
	0s	5ms/step
4/4	0s	6ms/step
4/4	0s	7ms/step
4/4	0s	3ms/step
4/4		5ms/step
4/4 ————	0s	
4/4 ————	0s	- / -
4/4 ————	0s	, ,
4/4	0s	, · · · · · · · · · · · · · ·
4/4 ————	0s	, ,
4/4 ————	0s	3ms/step
4/4 ————	0s	4ms/step
4/4 ————	0s	4ms/step
4/4 ————	0s	3ms/step
4/4 ————	0s	3ms/step
4/4 ————	0s	4ms/step
4/4	0s	3ms/step
4/4 ————	0 s	3ms/step
4/4 ————	0s	3ms/step
4/4 ————	0s	3ms/step
4/4 —	0s	3ms/step
4/4 ————	0s	3ms/step
4/4 —	0s	3ms/step
4/4	0s	3ms/step
4/4	0s	3ms/step
4/4 —	0s	3ms/step
4/4	0s	•
., .	03	3113/3 CCP

	_	
4/4 ————	0s	2ms/step
4/4 ————	0s	3ms/step
4/4 ————	0s	3ms/step
4/4 ————	0s	4ms/step
4/4 ————	0s	3ms/step
4/4	0 s	3ms/step
4/4 ————	0s	4ms/step
4/4 —	0s	3ms/step
4/4	0s	5ms/step
4/4 ————	0s	7ms/step
4/4 ————	0s	4ms/step
4/4 ————	0s	3ms/step
4/4 —	0s	4ms/step
4/4 —	0s	4ms/step
4/4 —	0s	3ms/step
4/4	0s	5ms/step
4/4 ————	0s	3ms/step
4/4 ———	0s	4ms/step
4/4 —	0s	6ms/step
4/4 —	0s	4ms/step
4/4 —	0s	5ms/step
4/4 —	0s	4ms/step
4/4 —	0s	3ms/step
4/4	0s	3ms/step
4/4 —	0s	4ms/step
4/4 —	0s	5ms/step
4/4	0s	4ms/step
4/4 —	0s	4ms/step
4/4 —		4ms/step
4/4		•
4/4	0s	
4/4	0s	/ -
4/4 —	0s	
4/4 —	0s	•
4/4 —	0s	
4/4 —	0s	•
4/4 —	0s	3ms/step
4/4 —	0s	4ms/step
4/4 —	0s	2ms/step
4/4	0s	3ms/step
4/4 —	0s	3ms/step
4/4 —	0s	2ms/step
4/4	0s	3ms/step
4/4	0s	3ms/step
4/4	0s	3ms/step
4/4 —	0s	9ms/step
4/4	0s	4ms/step
4/4	0s	6ms/step
4/4	0s	5ms/step
4/4	0s	4ms/step
4/4	0s	•
7/7	U 3	21113/3 CCh

		_
4/4 ————	0s	3ms/step
4/4 ————	0s	2ms/step
4/4 ————	0s	5ms/step
4/4 ————	0s	3ms/step
4/4 —	0s	5ms/step
4/4	0 s	2ms/step
4/4 ————	0 s	5ms/step
4/4 —	0s	7ms/step
4/4 ————	0s	4ms/step
4/4 ————	0s	2ms/step
4/4 ————	0s	4ms/step
4/4 —	0s	5ms/step
4/4 —	0s	4ms/step
4/4 —	0s	5ms/step
4/4 —	0s	5ms/step
4/4	0s	4ms/step
4/4	0s	4ms/step
4/4 —	0s	2ms/step
4/4	0s	3ms/step
4/4	0s	2ms/step
4/4	0s	•
4/4 ————	0s	4ms/step
4/4 ————		3ms/step
4/4 ————	0s	4ms/step
4/4 ————	0s	5ms/step
4/4 ————	0s	3ms/step
	0s	2ms/step
4/4	0s	4ms/step
4/4	0s	3ms/step
4/4 ————	0s	3ms/step
	0s	4ms/step
4/4 ————	0s	6ms/step
4/4 ————	0s	3ms/step
4/4 ————	0s	4ms/step
4/4 ————		4ms/step
	0s	4ms/step
4/4 ————	0 s	3ms/step
4/4 ————	0 s	4ms/step
4/4 ———	0s	3ms/step
4/4 ————	0s	4ms/step
4/4 ————	0s	4ms/step
4/4 ————	0s	3ms/step
4/4 ————	0s	3ms/step
4/4 ————	0s	3ms/step
4/4 —	0s	3ms/step
4/4 ————	0s	5ms/step
4/4 —	0s	3ms/step
4/4 ————	0s	4ms/step
4/4 —	0s	3ms/step
4/4 —	0s	2ms/step
4/4	0s	2ms/step
4/4 —	0s	3ms/step
4/4 —	0s	3ms/step
4/4	0s	3ms/step
4/4	0s	2ms/step
4/4	0s	3ms/step
4/4	0s	•
7/7	US	ama/areh

4/4	06	3mc/cton
4/4		•
4/4 ———————————————————————————————————		, ₁ -
4/4 ———————————————————————————————————	05	, ,
•		
4/4 ————		•
4/4 ————		· ·
4/4 ————		· ·
4/4 —		
4/4 ————	0s	5ms/step
4/4 ————	0s	3ms/step
4/4 —————	0s	3ms/step
4/4 —	0s	5ms/step
4/4 —		3ms/step
4/4 —	0s	
4/4		- / -
4/4		
4/4		
4/4		, ,
4/4 —————		
4/4 ————		- , I-
•		5ms/step
4/4		•
4/4		· '
4/4 ————		
4/4 ————		
4/4 ————		5ms/step
4/4 ————		4ms/step
4/4 ————	0s	6ms/step
4/4		2ms/step
4/4 ————	0s	4ms/step
4/4 ————		2ms/step
4/4 ————		
4/4 ————		
4/4 ————		
4/4 ————		2ms/step
4/4 —		2ms/step
4/4 ————		
4/4 —	0s	3ms/step
4/4 ————		
4/4 ————	0s	3ms/step
4/4 ————	0s	3ms/step
4/4 ————		
4/4 ————	0s	3ms/step
4/4 ————	0s	4ms/sten
4/4	0s	3ms/step
4/4 —	0s	6ms/step
4/4 —		
4/4 —	0s	
4/4 —	0s	
4/4 —		
4/4 —		
4/4	0s	
Epoch: 500/1100, Validat:		, p
4/4		5ms/step
4/4 —	05	3ms/sten
4/4 —		
4/4 —	05	4ms/sten
., .	93	

4/4 ———	0s	3ms/step
4/4 ————	0s	2ms/step
4/4 ————	0s	3ms/step
4/4 ————	0s	5ms/step
4/4 —	0s	4ms/step
4/4	0s	4ms/step
4/4 ————	0 s	3ms/step
4/4 ————	0s	4ms/step
4/4 ————	0s	3ms/step
4/4 ————	0s	3ms/step
4/4 ————	0s	3ms/step
4/4 —	0s	5ms/step
4/4 —	0s	4ms/step
4/4 ————	0s	7ms/step
4/4 —	0s	6ms/step
4/4 ————	0s	3ms/step
4/4 ————	0s	3ms/step
4/4 ————	0s	3ms/step
4/4	0s	•
4/4		4ms/step
4/4 —————	0s	3ms/step
4/4 —————	0s	3ms/step
	0s	3ms/step
4/4 ————	0s	3ms/step
4/4 —	0s	3ms/step
4/4 ————	0s	2ms/step
4/4 ————	0s	3ms/step
4/4	0s	3ms/step
4/4 ————	0 s	3ms/step
4/4 ————	0s	3ms/step
4/4 ————	0 s	3ms/step
4/4 ————	0 s	3ms/step
4/4 ————	0 s	3ms/step
4/4 ————	0s	2ms/step
4/4 —	0s	
4/4 —	0s	
4/4 —	0s	, ,
4/4 —	0s	3ms/step
4/4	0s	3ms/step
4/4 ————	0s	3ms/step
4/4 ————	0s	4ms/step
4/4 ————	0s	4ms/step
4/4	0s	4ms/step
4/4 —————	0s	4ms/step
4/4 ——————		
4/4 —————	0s	, ,
4/4 ————	0s	5ms/step
4/4 ————	0s	3ms/step
	0s	5ms/step
4/4	0s	- /
4/4 ————	0s	3ms/step

4/4 ————	0 s	3ms/step
4/4 —	0s	2ms/step
4/4	0s	•
		3ms/step
4/4 ————	0s	3ms/step
4/4 ————	0s	3ms/step
4/4 —	0s	4ms/step
4/4 —	0s	3ms/step
4/4 ————	0s	2ms/step
4/4		•
4/4	0s	2ms/step
4/4 ————	0s	3ms/step
4/4 —	0s	2ms/step
4/4		•
4/4 ——————	0s	3ms/step
	0s	3ms/step
4/4 ————	0s	3ms/step
4/4 ————	0s	4ms/step
4/4 —	0s	3ms/step
4/4 —	0s	3ms/step
4/4		•
	0s	3ms/step
4/4	0s	3ms/step
4/4 —	0s	3ms/step
4/4	0s	3ms/step
4/4 ————	0s	6ms/step
4/4 —	0s	4ms/step
4/4 —	0s	•
4/4 ———————————————————————————————————		3ms/step
4/4 ————	0s	3ms/step
4/4 —	0s	3ms/step
4/4 ————	0s	2ms/step
4/4 —	0s	3ms/step
4/4	0s	3ms/step
4/4 —	0s	3ms/step
4/4 ————	0s	•
•		3ms/step
-, -	0s	3ms/step
4/4 ————	0s	2ms/step
4/4 ————	0s	3ms/step
4/4 —	0s	3ms/step
4/4 —	0s	2ms/step
4/4 —	0s	2ms/step
4/4 —	0s	
		3ms/step
4/4	0s	4ms/step
4/4 ————	0s	2ms/step
4/4 ————	0s	2ms/step
4/4 ————	0s	3ms/step
4/4 —	0s	3ms/step
4/4 —	0s	2ms/step
4/4		
	0s	3ms/step
4/4 ————	0s	3ms/step
4/4 ————	0s	4ms/step
4/4 ————	0s	5ms/step
4/4 —	0s	4ms/step
4/4 —	0s	4ms/step
4/4	0s	•
4/4 ———————————————————————————————————		3ms/step
•	0s	4ms/step
4/4 ————	0s	8ms/step

4/4 ———	0s	4ms/step
4/4 ————	0s	4ms/step
4/4 ————	0s	3ms/step
4/4 —	0s	7ms/step
4/4 —	0s	5ms/step
4/4	0s	4ms/step
4/4	0s	
4/4 ————		5ms/step
4/4	0s	4ms/step
4/4	0s	3ms/step
4/4	0s	2ms/step
4/4 ————	0s	2ms/step
4/4 ————	0s	4ms/step
4/4 ————	0s	3ms/step
4/4 —	0s	2ms/step
4/4 —	0s	4ms/step
4/4	0s	3ms/step
4/4 ————	0s	4ms/step
4/4 —	0s	3ms/step
4/4 —	0s	6ms/step
4/4	0s	3ms/step
4/4	0s	•
4/4 —————		3ms/step
4/4 —————	0s	2ms/step
4/4 ————	0s	4ms/step
	0s	3ms/step
4/4	0s	4ms/step
4/4 ————	0s	5ms/step
4/4 —	0s	4ms/step
4/4 —	0s	4ms/step
4/4	0s	6ms/step
4/4 ————	0s	3ms/step
4/4 —	0s	3ms/step
4/4	0s	3ms/step
4/4 —	0s	6ms/step
4/4 —	0s	3ms/step
4/4		5ms/step
4/4 —	0s	3ms/step
4/4	0s	3ms/step
4/4	0s	5ms/step
•, •		
4/4 ————	0s	3ms/step
	0s	4ms/step
4/4	0s	4ms/step
4/4 ———	0s	3ms/step
4/4 ————	0s	3ms/step
4/4 ————	0s	4ms/step
4/4 ————	0s	4ms/step
4/4 —	0s	3ms/step
4/4 ————	0s	3ms/step
4/4 ———	0s	3ms/step
4/4 —	0s	3ms/step
4/4 —————	0s	2ms/step
4/4	0s	3ms/step
4/4 —	0s	3ms/step
4/4	0s	2ms/step
4/4	0s	3ms/step
4/4	0s	3ms/step
4/4 —————	0s	
+/+	บร	5ms/step

4/4 ————	0s	4ms/step
4/4 ————	0s	4ms/step
4/4 ————		•
•	0s	4ms/step
4/4 ————	0s	4ms/step
4/4 ————	0s	3ms/step
4/4 —	0s	3ms/step
4/4 ————		
-	0s	5ms/step
•/ •	0s	5ms/step
4/4 ————	0s	5ms/step
4/4 —	0s	3ms/step
•		
4/4 ————	0s	4ms/step
4/4 ————	0s	3ms/step
4/4 ————	0s	3ms/step
4/4 —	0s	4ms/step
4/4 ————		•
4/4 —————	0s	3ms/step
The state of the s	0s	6ms/step
4/4 ————	0s	4ms/step
4/4 —	0s	6ms/step
•		
4/4 ————	0s	3ms/step
4/4 ————	0s	3ms/step
4/4 —————	0s	3ms/step
4/4	0s	3ms/step
4/4 ————		
4/4 ————	0s	4ms/step
4/4	0s	3ms/step
4/4 ————	0s	3ms/step
4/4	0s	3ms/step
•		•
4/4 ————	0s	4ms/step
4/4 ————	0s	3ms/step
4/4 ————	0s	3ms/step
4/4 —	0s	3ms/step
4/4 ————	0s	•
-	-	4ms/step
4/4 ————	0s	3ms/step
4/4 ————	0s	3ms/step
4/4 ————	0s	2ms/step
4/4		4ms/step
-, -		
4/4 ————		/ -
4/4 ————		2ms/step
4/4 —————	0s	3ms/step
4/4 —		3ms/step
4/4 ————	03	
The state of the s		3ms/step
4/4 ————		4ms/step
4/4 ————	0s	2ms/step
4/4 ————	0s	6ms/step
4/4 —		•
		3ms/step
4/4 ————	0s	3ms/step
4/4 ————		2ms/step
4/4 —————	0s	3ms/step
4/4	00	6ms/step
4/4 ————		6ms/step
-, -	0s	10ms/step
4/4 ————	0s	2ms/step
4/4 —		5ms/step
4/4 ————		•
	0s	3ms/step
4/4 ————		6ms/step
4/4 ————	0s	3ms/step
4/4 ————	0s	3ms/step
•, •	0.5	5.11.57 5 CCP

	_	
4/4 ———	0s	7ms/step
4/4	0s	5ms/step
4/4 ————	0s	6ms/step
4/4	0s	4ms/step
4/4 ———————————————————————————————————	0s	8ms/step
	0s	7ms/step
4/4	0s	5ms/step
4/4	0s	3ms/step
4/4	0s	3ms/step
4/4	0s	4ms/step
4/4	0s	5ms/step
4/4	0s	4ms/step
4/4 ———————————————————————————————————	0s	9ms/step
4/4 ————	0s	4ms/step
4/4	0s	3ms/step
4/4 ————	0s	3ms/step
4/4 ————	0s	2ms/step
4/4 ————	0s	2ms/step
4/4 ————	0s	3ms/step
4/4	0s	4ms/step
4/4	0s	3ms/step
4/4	0s	3ms/step
4/4 ————	0s	3ms/step
4/4 ————	0s	4ms/step
4/4 ————	0s	4ms/step
4/4	0s	3ms/step
4/4	0s	4ms/step
4/4	0s	3ms/step
4/4 ———————————————————————————————————	0s	4ms/step
	0s	4ms/step
4/4 ————	0s	4ms/step
4/4 ————	0s	4ms/step
4/4 ——————	0s	3ms/step
4/4 ————	0s	4ms/step
4/4	0s 0s	•
4/4 ———————————————————————————————————	0s	,1-
4/4 —————		<pre>3ms/step 3ms/step</pre>
4/4		3ms/step
4/4	0s	•
4/4 ————		- / -
4/4 ————		/ -
4/4	0s	3ms/step
4/4 ————	0s	2ms/step
4/4	0s	2ms/step
4/4 ————	0s	2ms/step
4/4 —	0s	2ms/step
4/4 —	0s	4ms/step
4/4 —	0s	•
4/4 —	0s	
4/4 —	0s	•
4/4 —	0s	3ms/step
4/4	0s	3ms/step
4/4 ————	0s	3ms/step
4/4 —	0s	3ms/step
4/4 —		•
	_	1-

4/4 ———	0s	3ms/step
4/4 ————	0s	2ms/step
4/4 ————	0s	3ms/step
4/4	0s	2ms/step
4/4	0s	
4/4		2ms/step
	0s	2ms/step
4/4 —	0s	3ms/step
4/4 ————	0s	3ms/step
4/4 ————	0s	3ms/step
4/4 —	0s	4ms/step
4/4 —	0s	3ms/step
4/4		•
	0s	3ms/step
4/4	0s	3ms/step
4/4 —	0s	3ms/step
4/4 —	0s	3ms/step
4/4	0s	3ms/step
4/4 —	0s	3ms/step
4/4 —	0s	4ms/step
4/4		
	0s	4ms/step
4/4 ————	0s	4ms/step
4/4 ————	0s	3ms/step
4/4 ————	0s	3ms/step
4/4 —	0s	3ms/step
4/4	0s	4ms/step
4/4 —	0s	3ms/step
4/4	0s	•
4/4 —————		2ms/step
	0s	2ms/step
4/4 ————	0s	3ms/step
4/4 —	0s	4ms/step
4/4 ————	0s	3ms/step
4/4 —	0s	4ms/step
4/4	0s	2ms/step
4/4 —	0s	5ms/step
4/4	0s	•
-, -		3ms/step
4/4 ————		
4/4 ————	0s	4ms/step
4/4 ————	0s	3ms/step
4/4 —	0s	2ms/step
4/4 —————	0s	3ms/step
4/4	0s	3ms/step
4/4	0s	4ms/step
4/4	0s	•
•/ •		2ms/step
7/ 7	0s	4ms/step
4/4 ————	0s	2ms/step
4/4 —	0s	5ms/step
4/4 ————	0s	6ms/step
4/4 ————	0s	7ms/step
4/4 —	0s	5ms/step
4/4	0s	3ms/step
4/4	0s	
4/4 ——————		2ms/step
•	0s	2ms/step
4/4 ————	0s	3ms/step
4/4 ————	0s	3ms/step
4/4 —	0s	3ms/step
4/4 —	0s	3ms/step
4/4	0s	6ms/step
., .	93	33/ 3 ccp

4/4 —	0s	7ms/step
4/4	0s	5ms/step
4/4	0s	6ms/step
4/4	0s	6ms/step
4/4 ————	0s	2ms/step
4/4 ————	0s	3ms/step
4/4	0s	3ms/step
4/4 ———	0s	4ms/step
4/4 ————	0s	4ms/step
4/4 ————	0s	3ms/step
4/4 ———	0s	4ms/step
4/4 ————	0s	3ms/step
4/4 ————	0s	3ms/step
4/4 ————	0s	4ms/step
4/4 ————	0s	3ms/step
4/4 ————	0s	2ms/step
4/4 ————	0s	3ms/step
4/4 ————	0s	2ms/step
4/4 ————	0s	3ms/step
4/4	0s	3ms/step
4/4	0s	3ms/step
4/4	0s	3ms/step
4/4 ————	0s	4ms/step
4/4 ————	0s	3ms/step
4/4 ————	0s	3ms/step
4/4 ————	0s	4ms/step
4/4 ————	0s 0s	5ms/step
4/4	0s	3ms/step
4/4	0s	3ms/step 4ms/step
4/4	0s	4ms/step
4/4 ————	0s	5ms/step
4/4 ————	0s	
4/4	0s	
4/4	0s	2ms/step
4/4	0s	3ms/step
4/4 —	0s	3ms/step
4/4 —	0s	3ms/step
4/4	0s	3ms/step
4/4 —	0s	5ms/step
4/4 —	0s	3ms/step
4/4 ————	0s	4ms/step
4/4 ————	0s	4ms/step
4/4	0s	3ms/step
4/4 ————	0s	3ms/step
4/4 ————	0s	4ms/step

4/4 ————	0-	4
4/4 —————		
4/4 —————		
4/4 —————	05	/ms/step
Epoch: 600/1100, Validat:		•
4/4		
4/4	03	4ms/step
4/4 ————	05	Ams/step
4/4 ————		
4/4		
4/4 —	0s	3ms/step
4/4 —	0s	3ms/step
4/4	Ωs	Ams/sten
4/4 ————	0s	3ms/step
4/4 —		
4/4 —		
4/4 ————	0s	4ms/step
4/4 ————		
4/4 ————	0s	4ms/step
4/4 ————	0s	4ms/step
4/4 —	0s	3ms/step
4/4		
4/4 ————	0s	3ms/step
4/4 ————		
4/4 ————		
4/4 ————		
4/4		
4/4		
4/4 ———————————————————————————————————	0s	2ms/step
4/4		•
4/4 ————		
4/4 —————		
4/4 —————		
4/4	05 0c	21113/3 tep
4/4	05	2ms/step
4/4 ————	05	3ms/sten
4/4 —		
4/4 —		
4/4 —		
4/4 —	0s	
4/4 ————		
4/4 ————	0s	2ms/step
4/4 ————	0s	3ms/step
4/4	0s	5ms/step
4/4 ————	0s	4ms/step
4/4 ————		
4/4 ————		
4/4 ————		
4/4	0s	5ms/step
4/4 ————	0s	
4/4 ———————————————————————————————————	0s	6ms/step
4/4 —————		
4/4	ซร	oms/step

4/4 ————	0s	4ms/step
4/4 ————	0s	3ms/step
4/4 ————	0s	3ms/step
4/4 —	0s	2ms/step
4/4	0s	5ms/step
4/4 —	0s	3ms/step
4/4	0s	3ms/step
4/4	0s	
4/4 ———————————————————————————————————		3ms/step
	0s	4ms/step
4/4	0s	3ms/step
4/4	0s	4ms/step
4/4 ———	0s	3ms/step
4/4	0s	3ms/step
4/4	0s	3ms/step
4/4 ————	0s	3ms/step
4/4 ————	0s	2ms/step
4/4 ————	0s	4ms/step
4/4 —	0s	3ms/step
4/4	0s	3ms/step
4/4 —	0s	4ms/step
4/4	0s	3ms/step
4/4 —————	0s	•
		2ms/step
4/4	0s	3ms/step
4/4	0s	2ms/step
4/4 ————	0s	2ms/step
4/4 ————	0s	3ms/step
4/4 ————	0s	3ms/step
4/4 —	0s	3ms/step
4/4 —	0s	3ms/step
4/4 —	0s	4ms/step
4/4 —	0s	3ms/step
4/4 ————	0s	4ms/step
4/4 —	0s	3ms/step
4/4 —		3ms/step
•	0s	
4/4 —	0s	
4/4 —		/ -
4/4 —	0s	
4/4 —————		
4/4 ———————————————————————————————————	0s	, ,
4/4 —————	0s	4ms/step
	0s	3ms/step
4/4		6ms/step
4/4 ————	0s	3ms/step
4/4 ————	0s	4ms/step
4/4 —	0s	3ms/step
4/4	0s	4ms/step
4/4 ————	0s	3ms/step
4/4 ————	0s	4ms/step
4/4 ————	0s	3ms/step
4/4 —	0s	2ms/step
4/4	0s	3ms/step
4/4 —	0s	3ms/step
4/4	0s	3ms/step
4/4 —	0s	3ms/step
4/4 ————	0s	
4/4 —————	0s	
7/7	US	3ms/step

		_
4/4 —	0s	3ms/step
4/4 ————	0s	4ms/step
4/4 ————	0s	5ms/step
4/4 ————	0s	4ms/step
4/4 —	0s	4ms/step
4/4 ————	0s	4ms/step
4/4 ————	0s	3ms/step
4/4 —	0s	3ms/step
4/4 ————	0s	2ms/step
4/4 ————	0s	3ms/step
4/4 ————	0s	2ms/step
4/4 —	0s	2ms/step
4/4 —	0s	3ms/step
4/4 —	0s	3ms/step
4/4 —	0s	2ms/step
4/4	0s	3ms/step
4/4	0s	5ms/step
4/4 —	0s	5ms/step
4/4 —	0s	7ms/step
4/4	0s	4ms/step
1/1	0s	3ms/step
4/4	0s	4ms/step
4/4 ————	0s	2ms/step
4/4	0s	
4/4 —————	0s	2ms/step
4/4 —————		4ms/step
4/4 —————	0s	3ms/step
4/4 ————	0s	3ms/step
4/4 ————	0s	5ms/step
4/4 ————	0s	4ms/step
	0s	2ms/step
4/4	0s	7ms/step
4/4	0s	3ms/step
4/4	0s	4ms/step
4/4		3ms/step
4/4 ————	0s	, ,
4/4	0s	4ms/step
4/4 ————	0s	, ,
4/4	0s	3ms/step
4/4 ————	0s	, ,
4/4 ————	0s	2ms/step
4/4 —	0s	5ms/step
4/4 ————	0s	2ms/step
4/4 ————	0s	3ms/step
4/4 ————	0s	3ms/step
4/4 ————	0 s	3ms/step
4/4	0 s	6ms/step
4/4 ————	0s	4ms/step
4/4 ————	0s	4ms/step
4/4 ————	0s	5ms/step
4/4 ————	0s	3ms/step
4/4 ————	0s	2ms/step
4/4 —	0s	3ms/step
4/4	0s	3ms/step
4/4	0s	3ms/step
4/4	0s	2ms/step
4/4	0s	•
., .	53	J3/ 3 CCP

4/4 ————	0s	2ms/step
4/4 ————	0s	3ms/step
4/4 ————	0s	3ms/step
4/4 —	0s	3ms/step
4/4	0s	3ms/step
4/4 —	0s	2ms/step
4/4 —	0s	2ms/step
4/4	0s	2ms/step
4/4 —————	0s	
4/4 ——————		3ms/step
4/4 —————	0s	2ms/step
	0s	3ms/step
4/4 ————	0s	2ms/step
4/4 ————	0s	3ms/step
4/4 ————	0s	4ms/step
4/4 ————	0s	3ms/step
4/4 ————	0s	3ms/step
4/4 —	0s	2ms/step
4/4 —	0s	2ms/step
4/4 ————	0s	2ms/step
4/4 ————	0s	2ms/step
4/4 ————	0s	3ms/step
4/4 ————	0s	2ms/step
4/4 ————	0s	2ms/step
4/4 —	0s	3ms/step
4/4 —	0s	3ms/step
4/4 —	0s	3ms/step
4/4	0s	3ms/step
4/4 —	0s	3ms/step
4/4 ————	0s	3ms/step
4/4 ————	0s	3ms/step
4/4 ————	0s	3ms/step
	0s	2ms/step
4/4 ————	0s	3ms/step
4/4 ————	0s	2ms/step
4/4	0s	3ms/step
4/4 ————	0s	4ms/step
4/4 ————	0s	4ms/step
4/4 ————	0s	3ms/step
4/4 ————	0s	4ms/step
4/4 —	0s	4ms/step
4/4 ————	0s	3ms/step
4/4 —	0s	4ms/step
4/4	0s	3ms/step
4/4 ————	0s	3ms/step
4/4 ————	0s	3ms/step
4/4 ————	0s	2ms/step
4/4 ————	0s	3ms/step
4/4 —	0s	3ms/step
4/4 ————	0s	5ms/step
4/4 —	0s	3ms/step
4/4	0s	3ms/step
4/4 —	0s	3ms/step
4/4 —	0s	3ms/step

4/4 ————	0s	2ms/step
4/4 ————	0s	4ms/step
4/4 —	0s	3ms/step
4/4	0s	3ms/step
4/4 —	0s	2ms/step
4/4 —	0s	2ms/step
4/4	0s	3ms/step
4/4 ————	0s	
4/4 —————		2ms/step
4/4 —————	0s	3ms/step
	0s	3ms/step
4/4 —	0s	4ms/step
4/4 ————	0s	3ms/step
4/4 ————	0s	4ms/step
4/4 —	0s	4ms/step
4/4 ————	0s	6ms/step
4/4 —	0s	4ms/step
4/4 —	0s	5ms/step
4/4 ———	0s	5ms/step
4/4 ————	0s	6ms/step
4/4 ————	0s	5ms/step
4/4 ————	0s	2ms/step
4/4 ————	0s	5ms/step
4/4 ————	0s	3ms/step
4/4 ————	0s	4ms/step
4/4 —	0s	3ms/step
4/4 ———	0s	3ms/step
4/4 —	0s	7ms/step
4/4 ————	0s	4ms/step
4/4 ————	0s	6ms/step
4/4 ————	0s	4ms/step
	0s	5ms/step
4/4 ————		6ms/step
4/4 ————	0s	3ms/step
4/4 ———	0s	5ms/step
4/4 —	0s	3ms/step
4/4 ————	0s	4ms/step
4/4 ————	0s	2ms/step
4/4 —	0s	3ms/step
4/4 —	0s	4ms/step
4/4 ————	0s	3ms/step
4/4 —	0s	5ms/step
4/4 —	0s	5ms/step
4/4 ————	0s	8ms/step
4/4 ————	0s	4ms/step
4/4 —	0s	4ms/step
4/4	0s	4ms/step
4/4 —	0s	6ms/step
4/4 —	0s	3ms/step
4/4	0s	3ms/step
4/4 —	0s	4ms/step
4/4 —	0s	4ms/step
4/4	0s	•
•		-,

4/4 ————	0s	3ms/step
4/4 ————	0s	3ms/step
4/4 —	0s	5ms/step
4/4 —	0s	3ms/step
4/4 —	0s	4ms/step
4/4 —	0s	3ms/step
4/4 —	0s	4ms/step
4/4	0s	3ms/step
4/4	0s	3ms/step
4/4 —	0s	3ms/step
4/4	0s	3ms/step
4/4 ————	0s	
4/4 —————		3ms/step
4/4 —————	0s	4ms/step
	0s	5ms/step
4/4 —	0s	4ms/step
4/4 ————	0s	4ms/step
4/4 ————	0s	5ms/step
4/4 ————	0s	4ms/step
4/4 ————	0s	3ms/step
4/4 —	0s	5ms/step
4/4 —	0s	4ms/step
4/4 ———	0s	6ms/step
4/4 ————	0s	3ms/step
4/4 ————	0s	3ms/step
4/4 ————	0s	4ms/step
4/4 ————	0s	4ms/step
4/4 —	0s	3ms/step
4/4 —	0s	3ms/step
4/4 —	0s	3ms/step
4/4	0s	3ms/step
4/4 ————	0s	3ms/step
4/4 —	0s	3ms/step
4/4 ————	0s	3ms/step
4/4 ————	0s	2ms/step
	0s	3ms/step
4/4 ————	0s	4ms/step
4/4 ———	0s	2ms/step
4/4		2ms/step
4/4 ————	0s	3ms/step
4/4 ————	0s	3ms/step
4/4 ————	0s	3ms/step
4/4 ————	0s	4ms/step
4/4 —	0s	3ms/step
4/4 ———	0s	3ms/step
4/4 —	0s	2ms/step
4/4	0s	3ms/step
4/4 ————	0s	3ms/step
4/4 ————	0s	3ms/step
4/4 ————	0s	3ms/step
4/4 —	0s	3ms/step
4/4 —	0s	3ms/step
4/4 ———	0s	3ms/step
4/4 —	0s	3ms/step
4/4	0s	3ms/step
4/4 —	0s	3ms/step
4/4 —	0s	3ms/step
		-

4/4 ————	0s	3ms/step
4/4 ————	0s	2ms/step
4/4 ————	0s	3ms/step
4/4 —	0s	2ms/step
4/4	0s	4ms/step
4/4 —	0s	3ms/step
4/4	0s	6ms/step
4/4 —————		•
4/4 ——————	0s	8ms/step
4/4 —————	0s	8ms/step
4/4 —————	0s	7ms/step
	0s	6ms/step
4/4 ————	0s	5ms/step
4/4 ————	0s	4ms/step
4/4 ————	0s	7ms/step
4/4 ————	0s	8ms/step
4/4 —	0s	2ms/step
4/4 —	0s	4ms/step
4/4 —	0s	4ms/step
4/4 —	0s	4ms/step
4/4 —	0s	3ms/step
4/4 ————	0s	5ms/step
4/4 ————	0s	6ms/step
4/4 —————	0s	7ms/step
4/4 —	0s	4ms/step
4/4 —	0s	6ms/step
4/4 —	0s	2ms/step
4/4 —	0s	4ms/step
4/4 —	0s	3ms/step
4/4 —	0s	5ms/step
4/4 —	0s	3ms/step
4/4 —	0s	3ms/step
4/4 —	0s	•
4/4 —	0s	•
4/4 —	0s	
4/4 —	0s	, ,
4/4 —	0s	
4/4 —	0s	
4/4 —	0s	
4/4 —	0s	3ms/step
4/4 —	0s	3ms/step
4/4	0s	3ms/step
4/4	0s	3ms/step
4/4 —	0s	2ms/step
4/4	0s	2ms/step
4/4 —	0s	2ms/step
4/4 —	0s	3ms/step
4/4 —	0s	3ms/step
4/4	0s	3ms/step
4/4	0s	3ms/step
4/4	0s	3ms/step
4/4 —	0s	3ms/step
4/4 ———	0s	3ms/step
4/4	0s	•
., .	03	21113/3 ευρ

4/4 ————	0s	3ms/step
4/4		
4/4 ————	0s	3ms/step
4/4 ————	0s	3ms/step
4/4 —		
4/4 —		
4/4 ————		
4/4	05	2ms/step
4/4	05	Siiis/step
4/4 ———————————————————————————————————	US	2ms/step
4/4 ————	0s	3ms/step
4/4 ————	0s	3ms/step
4/4 ————	0s	4ms/step
4/4 ————	0s	3ms/step
Epoch: 700/1100, Validat:	ion	Loss: 0.0797
4/4 —————	0s	4ms/step
4/4 —————	0s	4ms/step
4/4	As	4ms/sten
4/4 ————	As	3ms/step
4/4		
4/4		
4/4 —		
4/4 ————		
4/4 ————	0s	3ms/step
4/4 ————	0s	5ms/step
4/4 ————	0s	4ms/step
4/4	0s	5ms/step
4/4 ————		
4/4 —	0s	4ms/step
4/4 —		
4/4 ————		
4/4 ————		
4/4 ——————	05	Jiis/step
4/4	05	4ms/step
4/4 —————	05	4ms/step
4/4 ————	0s	4ms/step
4/4 ————	0s	3ms/step
4/4 ————		
4/4 ————		
4/4 ————		
4/4 ————	0s	3ms/step
4/4	Ac	3ms/sten
4/4 ————	05	4ms/sten
4/4 —		
4/4 ————		
4/4		
4/4 —————		
4/4	05	3ms/step
4/4	0s	3ms/step
4/4 ————	0s	3ms/step
4/4		
4/4 ————	0s	3ms/step
4/4 ————		
4/4 ————	0s	3ms/step
4/4 —		
4/4 —		
4/4 ————	05	7ms/step
- , -		

4/4 ————	0s	6ms/step
4/4 ————	0s	6ms/step
4/4 ————	0s	6ms/step
4/4 ————	0s	5ms/step
4/4 —	0s	5ms/step
4/4 —	0s	3ms/step
4/4 —	0s	6ms/step
4/4	0s	4ms/step
4/4	0s	3ms/step
4/4 —	0s	6ms/step
4/4	0s	3ms/step
4/4 —————	0s	
4/4 ——————		6ms/step
4/4 —————	0s	4ms/step
	0s	3ms/step
4/4 —	0s	3ms/step
4/4 ————	0s	4ms/step
4/4 ————	0s	4ms/step
4/4 ————	0s	3ms/step
4/4 ————	0s	5ms/step
4/4 ————	0s	8ms/step
4/4 —	0s	4ms/step
4/4 ———	0s	6ms/step
4/4	0s	5ms/step
4/4 ————	0s	5ms/step
4/4 ————	0s	4ms/step
4/4 ————	0s	5ms/step
4/4 ————	0s	3ms/step
4/4 —	0s	3ms/step
4/4 —	0s	3ms/step
4/4	0s	3ms/step
4/4 ————	0s	2ms/step
4/4 ————	0s	3ms/step
4/4 ————		3ms/step
4/4 ————	0s	3ms/step
4/4 ————	0s	4ms/step
4/4 ————	0s	4ms/step
4/4 ————	0s	3ms/step
4/4	0s	2ms/step
4/4 ————	0s	3ms/step
4/4 ————	0s	3ms/step
4/4 ————	0s	4ms/step
4/4 ————	0s	3ms/step
4/4 —	0s	3ms/step
4/4 ————	0s	5ms/step
4/4 —	0s	4ms/step
4/4	0s	4ms/step
4/4 ————	0s	3ms/step
4/4 ————	0s	3ms/step
4/4 ————	0s	4ms/step
4/4 —	0s	3ms/step
4/4 —	0s	3ms/step
4/4 ————	0s	3ms/step
4/4 —	0s	3ms/step
4/4	0s	4ms/step
4/4 —	0s	4ms/step
4/4 —	0s	3ms/step
		-

	_	
4/4 ———	0s	3ms/step
4/4 ————	0s	5ms/step
4/4 ————	0s	3ms/step
4/4 ————	0s	3ms/step
4/4 ————	0s	4ms/step
4/4	0s	4ms/step
4/4 ————	0s	4ms/step
4/4 ————	0s	2ms/step
4/4 ————	0s	4ms/step
4/4 ————	0s	3ms/step
4/4 ————	0s	2ms/step
4/4 —	0s	3ms/step
4/4 —	0s	4ms/step
4/4 ————	0s	2ms/step
4/4 —	0s	5ms/step
4/4	0s	3ms/step
4/4 —	0s	3ms/step
4/4 ————	0s	3ms/step
4/4 ————	0s	3ms/step
4/4	0s	•
4/4		3ms/step
4/4 ————	0s 0s	3ms/step
		3ms/step
4/4 ————	0s	4ms/step
•	0s	3ms/step
4/4	0s	3ms/step
4/4	0s	3ms/step
4/4	0s	4ms/step
4/4	0s	3ms/step
4/4	0s	3ms/step
4/4	0s	3ms/step
4/4 ————		4ms/step
4/4 ————	0s	3ms/step
4/4 ————	0 s	3ms/step
4/4 ————	0 s	4ms/step
4/4	0s	3ms/step
4/4 ————	0s	4ms/step
4/4 —	0s	4ms/step
4/4 —	0s	4ms/step
4/4 —	0s	3ms/step
4/4 ————	0s	3ms/step
4/4 —	0s	5ms/step
4/4 —	0s	3ms/step
4/4 —	0s	
4/4 ————	0s	4ms/step
4/4	0s	
4/4 ————————	0s	, ,
4/4 —————		5ms/step
4/4 ——————	0s	4ms/step
	0s	5ms/step
4/4 ————	0s	
4/4	0s	2ms/step

4/4 ———	0s	5ms/step
4/4 ————	0s	3ms/step
4/4 ————	0s	3ms/step
4/4	0s	9ms/step
4/4	0s	3ms/step
4/4		
	0s	3ms/step
4/4	0s	3ms/step
4/4 ————	0s	4ms/step
4/4 ————	0s	6ms/step
4/4 —	0s	3ms/step
4/4 —	0s	3ms/step
4/4		•
	0s	4ms/step
4/4	0s	5ms/step
4/4 —	0s	4ms/step
4/4 —	0s	4ms/step
4/4	0s	4ms/step
4/4 —	0s	2ms/step
4/4 —	0s	3ms/step
4/4		
	0s	3ms/step
4/4 ————	0s	2ms/step
4/4 ————	0s	3ms/step
4/4 ————	0s	4ms/step
4/4 —	0s	3ms/step
4/4	0s	2ms/step
4/4 —	0s	3ms/step
4/4	0s	•
4/4 —————		3ms/step
	0s	3ms/step
4/4 ————	0s	3ms/step
4/4 —	0s	3ms/step
4/4 ————	0s	3ms/step
4/4 —	0s	3ms/step
4/4	0s	2ms/step
4/4 —	0s	2ms/step
4/4	0s	•
-, -		3ms/step
4/4 ————		
4/4 ————	0s	3ms/step
4/4 ————	0s	3ms/step
4/4 —	0s	3ms/step
4/4 —	0s	3ms/step
4/4	0s	3ms/step
4/4	0s	3ms/step
4/4	0s	•
•/ •		4ms/step
',' '	0s	3ms/step
4/4 ————	0s	3ms/step
4/4 —	0s	3ms/step
4/4 ————	0s	3ms/step
4/4 ————	0s	3ms/step
4/4	0s	3ms/step
4/4	0s	3ms/step
4/4	0s	
4/4 ——————		3ms/step
•	0s	4ms/step
4/4 ————	0s	2ms/step
4/4 —	0s	2ms/step
4/4 ————	0s	3ms/step
4/4 —	0s	3ms/step
4/4	0s	2ms/step
., .	93	5/ 5 ccp

	_	
4/4 ————	0s	3ms/step
4/4 ————	0s	4ms/step
4/4 ————	0s	3ms/step
4/4 ————	0s	3ms/step
4/4 ———	0 s	4ms/step
4/4	0s	4ms/step
4/4 ————	0s	4ms/step
4/4 ————	0s	4ms/step
4/4 ————	0s	3ms/step
4/4 —	0s	3ms/step
4/4 —	0s	4ms/step
4/4 —	0s	2ms/step
4/4	0s	3ms/step
4/4	0s	2ms/step
4/4	0s	
4/4		3ms/step
4/4 ——————	0s	3ms/step
	0s	3ms/step
4/4 ————	0s	3ms/step
4/4 ————	0s	3ms/step
4/4	0s	2ms/step
4/4 —————	0s	3ms/step
	0s	3ms/step
4/4	0s	2ms/step
4/4 ————	0s	3ms/step
4/4 ————	0s	3ms/step
4/4 ————	0s	2ms/step
4/4 ————	0s	3ms/step
4/4 ————	0s	3ms/step
4/4 —	0s	3ms/step
4/4	0s	3ms/step
4/4 ————	0s	4ms/step
4/4 ————	0s	5ms/step
4/4 ————	0s	4ms/step
4/4 ————		4ms/step
4/4 ————		•
4/4 ————	0s	4ms/step
4/4 ————	0s	3ms/step
4/4 ———	0s	3ms/step
4/4 ————	0s	4ms/step
4/4 ————	0s	4ms/step
4/4 ————	0s	4ms/step
4/4 ————	0s	7ms/step
4/4 ————	0s	4ms/step
4/4 ————	0s	3ms/step
4/4 —	0s	5ms/step
4/4 ————	0s	3ms/step
4/4 ————	0s	3ms/step
4/4 ————	0s	3ms/step
4/4 ————	0 s	3ms/step
4/4 ————	0 s	4ms/step
4/4 ————	0s	3ms/step
4/4 ————	0s	5ms/step
4/4 —	0s	4ms/step
4/4 ————	0s	2ms/step
4/4 ————	0s	3ms/step
4/4 ————	0s	5ms/step

	_	
4/4 —	0s	4ms/step
4/4 —	0s	2ms/step
4/4	0s	4ms/step
4/4	0s	3ms/step
4/4	0s	6ms/step
4/4	0s	4ms/step
4/4 ————	0s	4ms/step
4/4 ————	0s	8ms/step
4/4 ————	0s	4ms/step
4/4 ————	0s	3ms/step
4/4 ————	0s	2ms/step
4/4 ————	0s	4ms/step
4/4 —	0s	5ms/step
4/4	0s	5ms/step
4/4 ————	0s	5ms/step
4/4 ————	0s	6ms/step
4/4 ————	0s	3ms/step
4/4 ————	0s	3ms/step
4/4 ————	0s	4ms/step
4/4 ————	0s	5ms/step
4/4 ————	0s	3ms/step
4/4	0s	4ms/step
4/4 ————	0s	3ms/step
4/4 ————	0s	2ms/step
4/4 ————	0s	3ms/step
4/4 —	0s	4ms/step
4/4	0s	3ms/step
4/4 —	0s	3ms/step
4/4 ————	0s	3ms/step
4/4 ————	0s	3ms/step
4/4 ————		, ,
4/4 ————	0s	
4/4 ————	0s	/ -
4/4 ————	0s	, ,
4/4	0s	, · · · · · · · · · · · · · ·
4/4 ————		- / -
4/4 ————		/ -
4/4 ————		, ,
4/4 ————		, ,
4/4 ————	0s	3ms/step
4/4 ————	0s	4ms/step
4/4 —————	0s	3ms/step
	0s	3ms/step
4/4 ————	0s	/ -
4/4 ————	0s	/
4/4 —	0s	, ,
4/4	0s	- / -
4/4	0s	, ,
4/4	0s	3ms/step
4/4	0s	3ms/step
4/4	0s	2ms/step
4/4 ————	0s	
4/4 ————	0s	3ms/step

4/4 ————	0s	3ms/step
4/4 ————	0s	5ms/step
4/4 —	0s	3ms/step
4/4 ————	0s	3ms/step
4/4 —	0s	3ms/step
4/4 —	0s	2ms/step
4/4 —	0s	2ms/step
4/4	0s	3ms/step
4/4 —	0s	4ms/step
4/4	0s	3ms/step
4/4 —————		•
4/4 —————	0s	3ms/step
4/4 ————	0s	2ms/step
4/4 ————	0s	3ms/step
	0s	3ms/step
4/4 ————	0s	4ms/step
4/4 ————	0s	3ms/step
4/4 —	0s	4ms/step
4/4 ————	0s	3ms/step
4/4 ————	0s	2ms/step
4/4 ————	0s	2ms/step
4/4 —	0s	3ms/step
4/4 —	0s	3ms/step
4/4 —	0s	3ms/step
4/4 ————	0s	3ms/step
4/4 ————	0s	3ms/step
4/4	0s	3ms/step
4/4	0s	4ms/step
4/4	0s	2ms/step
4/4 —	0s	2ms/step
4/4 —	0s	3ms/step
4/4 —	0s	3ms/step
4/4	0s	3ms/step
4/4	0s	2ms/step
4/4 —	0s	2ms/step
4/4 —	0s	•
4/4 —	0s	
4/4	0s	•
4/4 —	0s	•
4/4 —	0s	6ms/step
4/4 —	0s	4ms/step
4/4 —	0s	6ms/step
4/4 —	0s	3ms/step
4/4 —	0s	6ms/step
4/4	0s	4ms/step
4/4	0s	2ms/step
4/4 —	0s	3ms/step
4/4 —	0s	2ms/step
4/4 —	0s	5ms/step
4/4 —	0s	3ms/step
4/4 —	0s	6ms/step
4/4	0s	3ms/step
4/4	0s	5ms/step
4/4	0s	3ms/step
4/4	0s	4ms/step
4/4 ————	0s	4ms/step
4/4	0s	•
7/ 1	U 3	21113/3 CCh

4/4 ————	0s	3ms/step
4/4 ————	0s	2ms/step
4/4 —		
4/4	As	/ms/step
4/4 ————		•
4/4		4ms/step
•		3ms/step
4/4 ————		5ms/step
4/4 ————		3ms/step
4/4 —	0s	5ms/step
4/4		4ms/step
4/4 ————	0s	3ms/step
4/4 —		3ms/step
4/4		2ms/step
4/4 ————		2ms/step
4/4		•
		2ms/step
4/4		•
4/4 ———————————————————————————————————		2ms/step
4/4		2ms/step
4/4 ————	0s	2ms/step
4/4 ————		2ms/step
4/4 ————	0s	3ms/step
4/4		3ms/step
Epoch: 800/1100, Validat		•
4/4		
4/4 ————		3ms/step
4/4		•
		3ms/step
4/4		3ms/step
4/4 ————		3ms/step
4/4 ————		3ms/step
4/4 —		3ms/step
4/4 ————		3ms/step
4/4 ————		3ms/step
4/4 ————	0s	4ms/step
4/4 —	0s	3ms/step
4/4 —		3ms/step
4/4 —		•
4/4 —		4ms/step
4/4 ————		3ms/step
4/4		•
4/4		3ms/step
4/4 ———————————————————————————————————		3ms/step
4/4 ———————————————————————————————————		2ms/step
•		3ms/step
4/4 ————		3ms/step
4/4 —		3ms/step
4/4 ————	0s	3ms/step
4/4 ————	0s	2ms/step
4/4 ————	0s	3ms/step
4/4 —		3ms/step
4/4	As	5ms/step
4/4 ————		3ms/step
4/4 ———————————————————————————————————		
4/4	_	3ms/step
•		3ms/step
4/4		3ms/step
4/4 ————		3ms/step
4/4 ————		3ms/step
4/4 ————	0s	3ms/step

4/4 ————	0s	2ms/step
4/4 —————	0s	2ms/step
4/4 ————	0s	2ms/step
4/4 —	0s	2ms/step
4/4 —	0s	3ms/step
4/4 —	0s	3ms/step
4/4	0s	
•		5ms/step
•/ •	0s	4ms/step
4/4 ————	0s	3ms/step
4/4	0s	5ms/step
4/4 —————	0s	3ms/step
4/4 ————	0s	5ms/step
4/4 —————	0s	3ms/step
4/4 ————	0 s	3ms/step
4/4 —	0s	3ms/step
4/4 ————	0s	3ms/step
4/4 —	0s	3ms/step
4/4 —	0s	4ms/step
4/4 —	0s	3ms/step
4/4	0s	3ms/step
4/4	0s	•
4/4 —————		5ms/step
4/4 —————	0s	5ms/step
•	0s	6ms/step
•/ •	0s	4ms/step
4/4 ————	0s	3ms/step
4/4 ————	0s	4ms/step
4/4 —————	0 s	5ms/step
4/4 ————	0s	3ms/step
4/4 —————	0s	3ms/step
4/4 —	0s	5ms/step
4/4 —	0s	3ms/step
4/4	0s	3ms/step
4/4 —	0s	4ms/step
4/4	0s	7ms/step
4/4		4ms/step
4/4	0s	•
4/4 —————		7ms/step
4/4 —————	0s	4ms/step
4/4 —————		6ms/step
•	0s	4ms/step
•, •	0s	8ms/step
4/4 ————	0s	8ms/step
4/4 ————	0s	10ms/step
4/4 ————	0s	7ms/step
4/4 —————	0 s	4ms/step
4/4 ————	0 s	8ms/step
4/4 —————	0s	3ms/step
4/4 —————	0s	4ms/step
4/4	0s	4ms/step
4/4 —	0s	3ms/step
4/4 —	0s	2ms/step
4/4	0s	4ms/step
4/4	0s	5ms/step
4/4	0s	
7/ 7	_	4ms/step
4/4 ————	0s	6ms/step
•	0s	3ms/step
4/4 —	0s	5ms/step

	_	
4/4 ———	0s	3ms/step
4/4 ————	0s	6ms/step
4/4 ————	0s	3ms/step
4/4 ————	0s	6ms/step
4/4 —	0s	3ms/step
4/4	0 s	5ms/step
4/4 ————	0s	4ms/step
4/4 ————	0s	4ms/step
4/4 ————	0s	3ms/step
4/4 ————	0s	2ms/step
4/4 ————	0s	2ms/step
4/4 ————	0s	3ms/step
4/4 —	0s	3ms/step
4/4	0s	2ms/step
4/4 ————	0s	3ms/step
4/4 ————	0s	3ms/step
4/4 ————	0s	3ms/step
4/4 —	0s	3ms/step
4/4 —	0s	2ms/step
4/4 —	0s	4ms/step
4/4 —	0s	3ms/step
4/4 ————	0s	3ms/step
4/4 ———	0s	2ms/step
4/4 —	0s	3ms/step
4/4 —	0s	3ms/step
4/4	0s	5ms/step
4/4 —	0s	3ms/step
4/4 —	0s	3ms/step
4/4	0s	3ms/step
4/4	0s	3ms/step
4/4 —	0s	3ms/step
4/4	0s	3ms/step
4/4 —	0s	
4/4 —		, ,
4/4 —		, ,
4/4 —	0s	
4/4	0s	•
4/4	0s	, ,
4/4 —	0s	, ,
4/4 —	0s	
4/4 —	0s	
4/4 —	0s	3ms/step
4/4 —	0s	3ms/step
4/4 —	0s	3ms/step
4/4	0s	3ms/step
4/4	0s	3ms/step
4/4 ———	0s	2ms/step
4/4 —	0s	3ms/step
4/4 —	0s	
4/4	0s	, ,
4/4 —	0s	3ms/step
4/4 —	0s	3ms/step
4/4	0s	3ms/step
4/4 —	0s	3ms/step
4/4	0s	
4/4	0s	
., .	03	3113/3 CCP

4/4 ————	0s	4ms/step
4/4 ————	0s	3ms/step
4/4 ————	0s	3ms/step
4/4	0s	4ms/step
4/4	0s	3ms/step
4/4 —	0s	2ms/step
4/4	0s	2ms/step
4/4	0s	
4/4 —————		2ms/step
4/4 ————	0s	2ms/step
	0s	3ms/step
4/4	0s	3ms/step
4/4 ———	0s	3ms/step
4/4 —	0s	2ms/step
4/4	0s	2ms/step
4/4 ————	0s	3ms/step
4/4 ————	0s	3ms/step
4/4 ————	0s	3ms/step
4/4 —	0s	4ms/step
4/4	0s	3ms/step
4/4 —	0s	4ms/step
4/4 —	0s	4ms/step
4/4	0s	
		3ms/step
4/4 ————	0s	4ms/step
	0s	3ms/step
4/4	0s	3ms/step
4/4 ————	0s	4ms/step
4/4 ————	0s	3ms/step
4/4 —	0s	3ms/step
4/4 —	0s	3ms/step
4/4	0s	6ms/step
4/4 ————	0s	5ms/step
4/4 —	0s	3ms/step
4/4 ————		4ms/step
4/4 ————	0s	4ms/step
4/4 ————	0s	5ms/step
4/4	0s	
4/4	0s	
4/4 —	0s	
4/4 —	0s	
4/4 —	0s	6ms/step
4/4	0s	5ms/step
4/4		
4/4	0s	4ms/step
4/4 —————		4ms/step
4/4 —————	0s	4ms/step
4/4 —————	0s	3ms/step
	0s	4ms/step
4/4	0s	3ms/step
4/4 ————	0s	4ms/step
4/4 ————	0s	5ms/step
4/4 ————	0s	3ms/step
4/4 ————	0s	2ms/step
4/4 ————	0s	5ms/step
4/4 —	0s	3ms/step
4/4 —	0s	5ms/step
4/4 —	0s	3ms/step
4/4	0s	•
, -		, с сор

4/4 ————	0s	2ms/step
4/4 ————	0s	3ms/step
4/4 ————	0s	2ms/step
4/4 ————	0s	3ms/step
4/4 —	0s	2ms/step
4/4	0s	3ms/step
4/4 ————	0s	3ms/step
4/4 ————	0s	2ms/step
4/4 ————	0s	4ms/step
4/4 ————	0s	2ms/step
4/4 —————	0s	4ms/step
4/4 —	0s	3ms/step
4/4 —	0s	2ms/step
4/4 ————	0s	2ms/step
4/4 —	0s	5ms/step
4/4 —	0s	3ms/step
4/4 ————	0s	3ms/step
4/4 ————	0s	3ms/step
4/4	0s	•
4/4		3ms/step
4/4 ———————————————————————————————————	0s	3ms/step
4/4 ———————————————————————————————————	0s	3ms/step
	0s	4ms/step
4/4 ————	0s	3ms/step
4/4 —	0s	3ms/step
4/4 ————	0s	4ms/step
4/4 ————	0s	2ms/step
4/4 ————	0s	2ms/step
4/4 ————	0s	4ms/step
4/4 ————	0s	5ms/step
4/4	0s	3ms/step
4/4 —————	0s	2ms/step
4/4 ————	0s	3ms/step
4/4 ————	0s	2ms/step
4/4 ————	0s	2ms/step
4/4 —	0s	2ms/step
4/4 ————	0s	3ms/step
4/4 ————	0s	4ms/step
4/4 ————	0s	2ms/step
4/4 ————	0s	3ms/step
4/4 —————	0s	3ms/step
4/4 —	0s	
4/4 —	0s	
4/4 —	0s	, ,
4/4	0s	3ms/step
4/4	0s	4ms/step
4/4 ————	0s	3ms/step
4/4 —	0s	3ms/step
4/4 —	0s	
4/4 ————	0s	
4/4	0s	
4/4 ———————————————————————————————————		•
4/4 —————	0s	, ,
4/4 ————	0s	3ms/step
4/4 ————	0s	3ms/step
	0s	3ms/step
4/4	0s	/
4/4 ———	0s	3ms/step

4/4 ————	0s	3ms/step
4/4 ————	0s	3ms/step
4/4 ————	0s	5ms/step
4/4 —	0s	3ms/step
4/4	0s	3ms/step
4/4 —	0s	4ms/step
4/4	0s	6ms/step
4/4	0s	
4/4 ———————————————————————————————————		4ms/step
4/4 ———————————————————————————————————	0s	5ms/step
	0s	3ms/step
4/4	0s	3ms/step
4/4	0s	3ms/step
4/4	0s	4ms/step
4/4	0s	3ms/step
4/4 ————	0s	3ms/step
4/4 ————	0s	2ms/step
4/4 —	0s	2ms/step
4/4 —	0s	3ms/step
4/4	0s	5ms/step
4/4 —	0s	4ms/step
4/4	0s	5ms/step
4/4	0s	•
		6ms/step
4/4	0s	4ms/step
4/4	0s	5ms/step
4/4 ————	0s	4ms/step
4/4 ————	0s	5ms/step
4/4 —	0s	7ms/step
4/4 —	0s	6ms/step
4/4 —	0s	4ms/step
4/4 ———	0s	6ms/step
4/4 ————	0s	3ms/step
4/4 —	0s	4ms/step
4/4 —	0s	5ms/step
4/4 —		3ms/step
•	0s	•
4/4 —	_	4ms/step
4/4 —		
4/4 —	0s	, ,
4/4		, · · · · · · · · · · · · · ·
4/4 ———————————————————————————————————	0s	4ms/step
•	0s	- / -
4/4	0s	4ms/step
4/4		4ms/step
4/4	0s	3ms/step
4/4 —	0s	4ms/step
4/4 —	0s	6ms/step
4/4	0s	5ms/step
4/4 —	0s	4ms/step
4/4 —	0s	3ms/step
4/4 ————	0s	3ms/step
4/4 —	0s	7ms/step
4/4	0s	3ms/step
4/4 —	0s	3ms/step
4/4	0s	6ms/step
4/4 —	0s	3ms/step
4/4	0s	2ms/step
4/4	0s	
+/+	ซร	3ms/step

		_
4/4 ————	0s	2ms/step
4/4 —	0s	3ms/step
4/4 ————	0s	3ms/step
4/4 —	0s	3ms/step
4/4	0s	2ms/step
4/4 —	0s	3ms/step
4/4	0s	3ms/step
4/4 —	0s	3ms/step
4/4 —	0s	3ms/step
4/4	0s	3ms/step
4/4 —	0s	4ms/step
4/4	0s	4ms/step
4/4	0s	3ms/step
4/4	0s	3ms/step
4/4 ——————	0s	•
4/4 ——————	0s	3ms/step 3ms/step
4/4 ———————————————————————————————————	0s	3ms/step
4/4 ———————————————————————————————————	0s	
4/4 ———————————————————————————————————	0s	4ms/step
4/4 ———————————————————————————————————	0s	3ms/step
4/4 ———————————————————————————————————	0s	3ms/step
4/4 ———————————————————————————————————	0s	3ms/step
4/4 ——————	0s	5ms/step
4/4 ———————————————————————————————————	0s	7ms/step
		4ms/step
4/4 ————	0s	3ms/step
4/4 ———————————————————————————————————	0s	5ms/step
4/4 —————		, ,
•		5ms/step
4/4 ————		4ms/step
4/4 —————	0s	, p
4/4 ———————————————————————————————————	0s	, ,
		, · · · · · · · · · · · · · ·
4/4 ————	0s	, · · · · · · · · · · · · · ·
4/4 ——————	0s	6ms/step
4/4 ————	0s	5ms/step
•		5ms/step
4/4 ————	0s	3ms/step
4/4 —————	0s	3ms/step
4/4 ———————————————————————————————————	0s	2ms/step
4/4 ———————————————————————————————————	0s	3ms/step
4/4 ——————	0s	4ms/step
4/4 ——————	0s	3ms/step
4/4 —————	0s	5ms/step
4/4 —————	0s	3ms/step
4/4 —————	0s	3ms/step
4/4 —————	0s	3ms/step
4/4 ———————————————————————————————————	0s	4ms/step
	0s	7ms/step
4/4 ————	0s	4ms/step
4/4	0s	4ms/step

4/4 ———————————————————————————————————	0s	4ms/step
4/4		3ms/step
4/4 —————	0s	5ms/step
4/4 ————	0s	4ms/step
4/4 ————	0s	5ms/step
4/4	0s	•
4/4		•
4/4		4ms/step
4/4		5ms/step
4/4	0s	•
4/4 ———————————————————————————————————	~ ~	6ms/step
4/4	05	······ , · · · ·
4/4 ———————————————————————————————————		
4/4 —		, p
		4ms/step
4/4 ———————————————————————————————————		, p
		6ms/step
4/4 ———————————————————————————————————		J J J J J J
		2ms/step
4/4 —	0s	
4/4 ———————————————————————————————————		······ , · · · ·
4/4 —		, -
4/4 —		2ms/step
4/4 —		5ms/step
4/4 —		4ms/step
4/4	0s	3ms/step
4/4	0s	3ms/step
4/4 —	0s	3ms/step
4/4 ———————————————————————————————————	0s	4ms/step
		41113/3 CCP
4/4 —	0s	
4/4 ———————————————————————————————————	0s	
4/4 —	0s 0s	5ms/step 6ms/step
4/4 ———————————————————————————————————	0s 0s 0s	5ms/step 6ms/step 3ms/step
4/4 — 4/4 — Epoch: 900/1100, Validat	0s 0s 0s ion	5ms/step 6ms/step 3ms/step
4/4 4/4 4/4 Epoch: 900/1100, Validat	0s 0s 0s ion 0s	5ms/step 6ms/step 3ms/step Loss: 0.0838
4/4 — 4/4 — Epoch: 900/1100, Validat 4/4 —	0s 0s 0s ion 0s 0s	5ms/step 6ms/step 3ms/step Loss: 0.0838 3ms/step
4/4 — 4/4 — Epoch: 900/1100, Validat 4/4 — 4/4 — 4/4	0s 0s 0s ion 0s 0s	5ms/step 6ms/step 3ms/step Loss: 0.0838 3ms/step 3ms/step 3ms/step
4/4 — 4/4 — Epoch: 900/1100, Validat 4/4 —	0s 0s 0s ion 0s 0s 0s	5ms/step 6ms/step 3ms/step Loss: 0.0838 3ms/step 3ms/step 3ms/step 3ms/step
4/4 — 4/4 — Epoch: 900/1100, Validat 4/4 —	0s 0s 0s ion 0s 0s 0s 0s	5ms/step 6ms/step 3ms/step Loss: 0.0838 3ms/step 3ms/step 3ms/step
4/4 — 4/4 — Epoch: 900/1100, Validat 4/4 —	0s 0s 0s ion 0s 0s 0s 0s 0s	5ms/step 6ms/step 3ms/step Loss: 0.0838 3ms/step 3ms/step 3ms/step 3ms/step 4ms/step 3ms/step 3ms/step
4/4 — 4/4 — Epoch: 900/1100, Validat 4/4 —	0s 0s 0s ion 0s 0s 0s 0s 0s	5ms/step 6ms/step 3ms/step Loss: 0.0838 3ms/step 3ms/step 3ms/step 3ms/step 4ms/step
4/4 — 4/4 — Epoch: 900/1100, Validat 4/4 —	0s 0s 0s ion 0s 0s 0s 0s 0s 0s	5ms/step 6ms/step 3ms/step Loss: 0.0838 3ms/step 3ms/step 3ms/step 3ms/step 4ms/step 3ms/step 3ms/step 3ms/step 3ms/step 3ms/step
4/4 — 4/4 — Epoch: 900/1100, Validat 4/4 —	0s 0s 0s ion 0s 0s 0s 0s 0s 0s	5ms/step 6ms/step 3ms/step Loss: 0.0838 3ms/step 3ms/step 3ms/step 3ms/step 4ms/step 3ms/step 3ms/step 3ms/step 3ms/step 3ms/step 3ms/step 3ms/step
4/4 — 4/4 — Epoch: 900/1100, Validat 4/4 —	0s 0s 0s 0s 0s 0s 0s 0s 0s 0s 0s 0s	5ms/step 6ms/step 3ms/step Loss: 0.0838 3ms/step 3ms/step 3ms/step 4ms/step 3ms/step 3ms/step 3ms/step 3ms/step 3ms/step 3ms/step 3ms/step
4/4 — 4/4 — Epoch: 900/1100, Validat 4/4 —	0s 0s 0s ion 0s 0s 0s 0s 0s 0s 0s 0s 0s	5ms/step 6ms/step 3ms/step Loss: 0.0838 3ms/step 3ms/step 3ms/step 3ms/step 4ms/step 3ms/step
4/4 — 4/4 —	0s 0s 0s ion 0s 0s 0s 0s 0s 0s 0s 0s 0s	5ms/step 6ms/step 3ms/step Loss: 0.0838 3ms/step 4ms/step 3ms/step
4/4 — 4/4 —	0s 0s 0s ion 0s 0s 0s 0s 0s 0s 0s 0s 0s 0s 0s	5ms/step 6ms/step 3ms/step Loss: 0.0838 3ms/step 3ms/step 3ms/step 3ms/step 4ms/step 3ms/step 3ms/step 3ms/step 3ms/step 3ms/step 3ms/step 3ms/step 3ms/step 2ms/step 2ms/step
4/4 — 4/4 —	0s 0s 0s 10n 0s 0s 0s 0s 0s 0s 0s 0s 0s 0s 0s 0s 0s	5ms/step 6ms/step 3ms/step Loss: 0.0838 3ms/step 3ms/step 3ms/step 3ms/step 4ms/step 3ms/step 3ms/step 3ms/step 3ms/step 3ms/step 3ms/step 3ms/step 2ms/step 2ms/step 2ms/step
4/4 — 4/4 —	0s 0s 0s 10n 0s 0s 0s 0s 0s 0s 0s 0s 0s 0s 0s 0s 0s	5ms/step 6ms/step 3ms/step Loss: 0.0838 3ms/step 3ms/step 3ms/step 3ms/step 4ms/step 3ms/step 3ms/step 3ms/step 3ms/step 3ms/step 3ms/step 3ms/step 2ms/step 4ms/step 2ms/step 4ms/step 4ms/step 4ms/step 4ms/step
4/4 — 4/4 —	0s 0s 0s 10n 0s 0s 0s 0s 0s 0s 0s 0s 0s 0s 0s 0s 0s	5ms/step 6ms/step 3ms/step Loss: 0.0838 3ms/step 2ms/step 2ms/step 2ms/step 3ms/step 3ms/step
4/4 4/4 Epoch: 900/1100, Validat 4/4 4/4 4/4 4/4 4/4 4/4 4/4 4/4 4/4 4/	0s 0s 0s 10n 0s 0s 0s 0s 0s 0s 0s 0s 0s 0s 0s 0s 0s	5ms/step 6ms/step 3ms/step Loss: 0.0838 3ms/step
4/4 4/4 Epoch: 900/1100, Validat 4/4 4/4 4/4 4/4 4/4 4/4 4/4 4/4 4/4 4/	0s 0s 0s 0s 0s 0s 0s 0s 0s 0s 0s 0s 0s 0	5ms/step 6ms/step 3ms/step Loss: 0.0838 3ms/step 3ms/step 3ms/step 3ms/step 4ms/step 3ms/step 3ms/step 3ms/step 3ms/step 3ms/step 3ms/step 2ms/step 2ms/step 2ms/step 2ms/step 3ms/step 3ms/step 3ms/step 3ms/step 3ms/step 3ms/step
4/4	0s 0s 0s 10n 0s 0s 0s 0s 0s 0s 0s 0s 0s 0s 0s 0s 0s	5ms/step 6ms/step 3ms/step Loss: 0.0838 3ms/step 2ms/step 2ms/step 3ms/step 3ms/step 3ms/step 3ms/step 3ms/step 3ms/step
4/4 — 4/4 —	0s 0s 0s 10n 0s 0s 0s 0s 0s 0s 0s 0s 0s 0s 0s 0s 0s	5ms/step 6ms/step 3ms/step Loss: 0.0838 3ms/step 2ms/step 2ms/step 3ms/step 3ms/step 3ms/step 3ms/step 3ms/step 3ms/step 3ms/step 3ms/step 3ms/step
4/4	0s 0s 0s 0s 0s 0s 0s 0s 0s 0s 0s 0s 0s 0	5ms/step 6ms/step 3ms/step Loss: 0.0838 3ms/step 4ms/step 2ms/step 2ms/step 2ms/step 3ms/step
4/4 4/4 Epoch: 900/1100, Validat 4/4 4/4 4/4 4/4 4/4 4/4 4/4 4/4 4/4 4/	0s 0s 0s 0s 0s 0s 0s 0s 0s 0s 0s 0s 0s 0	5ms/step 6ms/step 3ms/step Loss: 0.0838 3ms/step 2ms/step 2ms/step 2ms/step 3ms/step
4/4 4/4 Epoch: 900/1100, Validat 4/4 4/4 4/4 4/4 4/4 4/4 4/4 4/4 4/4 4/	0s	5ms/step 6ms/step 3ms/step Loss: 0.0838 3ms/step 4ms/step 2ms/step 2ms/step 2ms/step 3ms/step

4/4 ————	0s	2ms/step
4/4 ————	0s	3ms/step
4/4 —	0s	3ms/step
4/4 —	0s	3ms/step
4/4 —	0s	4ms/step
4/4 —	0s	3ms/step
4/4 —	0s	3ms/step
4/4	0s	3ms/step
4/4 —	0s	3ms/step
4/4	0s	3ms/step
4/4 —————		•
4/4 —————	0s	3ms/step
4/4 ————	0s	3ms/step
4/4 ————	0s	3ms/step
	0s	3ms/step
4/4 ————	0s	4ms/step
4/4 ————	0s	3ms/step
4/4 —	0s	4ms/step
4/4 ————	0s	4ms/step
4/4 ————	0s	4ms/step
4/4 ————	0s	4ms/step
4/4 —	0s	4ms/step
4/4 —	0s	4ms/step
4/4 —	0s	6ms/step
4/4	0s	3ms/step
4/4	0s	5ms/step
4/4 —	0s	3ms/step
4/4 —	0s	3ms/step
4/4 —	0s	3ms/step
4/4	0s	3ms/step
4/4 —	0s	3ms/step
4/4 —	0s	2ms/step
4/4 —	0s	4ms/step
4/4 —	0s	3ms/step
4/4 —	0s	3ms/step
4/4 —	0s	•
4/4	0s	
4/4	0s	
4/4 —	0s	2ms/step
4/4 —	0s	
4/4	0s	
4/4	0s	3ms/step
4/4 —	0s	3ms/step
4/4 —	0s	4ms/step
4/4 —	0s	3ms/step
4/4	0s	6ms/step
4/4 —	0s	5ms/step
4/4 —	0s	4ms/step
4/4	0s	6ms/step
4/4	0s	3ms/step
4/4 —	0s	4ms/step
4/4 —	0s	3ms/step
4/4 —	0s	5ms/step
4/4	0s	2ms/step
4/4 —	0s	3ms/step
4/4 ———	0s	2ms/step
4/4	0s	•
., .	03	3113/3 CCP

	_	
4/4 ————	0s	4ms/step
4/4 ————	0s	3ms/step
4/4 ————	0s	2ms/step
4/4 ————	0s	4ms/step
4/4 —	0s	5ms/step
4/4	0s	4ms/step
4/4 ————	0s	3ms/step
4/4 ————	0s	4ms/step
4/4 ————	0s	3ms/step
4/4 ————	0s	3ms/step
4/4 ————	0s	5ms/step
4/4 —	0s	5ms/step
4/4 —	0s	4ms/step
4/4 ————	0s	3ms/step
4/4 ————	0s	4ms/step
4/4 —	0s	3ms/step
4/4 —	0s	4ms/step
4/4 —	0s	5ms/step
4/4 —	0s	3ms/step
4/4 —	0s	3ms/step
4/4	0s	5ms/step
4/4 ————	0s	3ms/step
4/4 ————	0s	2ms/step
4/4	0s	3ms/step
4/4 —	0s	3ms/step
4/4 —	0s	3ms/step
4/4 —	0s	2ms/step
4/4 —	0s	3ms/step
4/4	0s	3ms/step
4/4 ————	0s	4ms/step
4/4 —	0s	3ms/step
4/4 ————	0s	3ms/step
4/4 —	0s	3ms/step
4/4 —		
4/4 ————		
4/4 ————	0s	
4/4 ————	0s	•
4/4 ————		2ms/step
4/4 ————		•
4/4 ————		, · · · · · · · · · · · · · · ·
4/4 ————		•
4/4 ————		4ms/step
4/4 —	0s	3ms/step
4/4 —	0s	3ms/step
4/4	0s	3ms/step
4/4 ————	0s	3ms/step
4/4 ————	0s	•
4/4 —	0s	3ms/step
4/4 —	0s	
4/4 —	0s	
4/4 —	0s	
4/4 —	0s	4ms/step
4/4	0s	3ms/step
4/4 ————	0s	3ms/step
4/4 —	0s	•
4/4 —		•
-, -	33	ээ, э сер

		2
4/4 ————	0s	3ms/step
4/4 ————	0s	3ms/step
4/4 ————	0s	2ms/step
4/4 ————	0s	3ms/step
4/4 —	0s	5ms/step
4/4	0s	3ms/step
4/4 ————	0s	3ms/step
4/4 ————	0s	3ms/step
4/4 ————	0s	2ms/step
4/4 —————	0s	2ms/step
4/4 —	0s	3ms/step
4/4 —	0s	2ms/step
4/4	0s	3ms/step
4/4 ————	0s	3ms/step
4/4 —	0s	3ms/step
4/4 ————	0s	2ms/step
4/4 ————	0s	3ms/step
4/4	0s	•
4/4 ———————————————————————————————————		3ms/step
4/4	0s	3ms/step
4/4 ——————	0s	3ms/step
4/4 ————	0s	3ms/step
	0s	3ms/step
4/4 ————	0s	3ms/step
4/4	0s	2ms/step
4/4	0s	3ms/step
4/4	0s	4ms/step
4/4	0s	3ms/step
4/4	0s	2ms/step
4/4	0s	3ms/step
4/4	0s	3ms/step
4/4 ————	0s	3ms/step
4/4 ————	0s	3ms/step
4/4 ————	0s	, ,
4/4 ————		, ,
4/4 ————		
4/4 ————	0s	2ms/step
4/4 ————	0s	, ,
4/4	0s	3ms/step
4/4 ————	0s	3ms/step
4/4 ————		3ms/step
4/4 ————		3ms/step
4/4 ————	0s	4ms/step
4/4 ————	0s	5ms/step
4/4 ————	0s	4ms/step
4/4 —	0s	6ms/step
4/4	0s	4ms/step
4/4 ————	0s	4ms/step
4/4 ————	0s	5ms/step
4/4 ————	0s	4ms/step
4/4 ————	0s	4ms/step
4/4 ————	0s	4ms/step
4/4 ————	0s	3ms/step
4/4 ————	0s	3ms/step
4/4	0s	3ms/step
4/4 ————	0s	2ms/step
4/4 ————	0s	•
		•

	_	
4/4 ————	0s	3ms/step
4/4 ————	0s	5ms/step
4/4 ————	0s	5ms/step
4/4 ————	0s	3ms/step
4/4 —	0s	4ms/step
4/4	0s	5ms/step
4/4 ————	0s	2ms/step
4/4 ————	0s	4ms/step
4/4 ————	0s	2ms/step
4/4 ————	0s	3ms/step
4/4 ————	0s	6ms/step
4/4 ————	0s	4ms/step
4/4 —	0s	2ms/step
4/4	0s	3ms/step
4/4 ————	0s	4ms/step
4/4 ————	0s	5ms/step
4/4 ————	0s	4ms/step
4/4 —	0s	4ms/step
4/4	0s	3ms/step
4/4	0s	5ms/step
4/4	0s	5ms/step
4/4 ————	0s	3ms/step
4/4 ———	0s	5ms/step
4/4 —	0s	5ms/step
4/4 —	0s	4ms/step
4/4 —	0s	3ms/step
4/4 —	0s	3ms/step
4/4 —	0s	4ms/step
4/4	0s	3ms/step
4/4 —		3ms/step
4/4 —		•
4/4 —	0s	
4/4	0s	/ -
4/4 —	0s	
4/4 —	0s	
4/4 —	0s	
4/4 —	0s	4ms/step
4/4 —	0s	3ms/step
4/4	0s	4ms/step
4/4 —	0s	3ms/step
4/4	0s	3ms/step
4/4 —	0s	3ms/step
4/4 ———	0s	4ms/step
4/4 —	0s	6ms/step
4/4 —	0s	3ms/step
4/4 —	0s	3ms/step
4/4	0s	2ms/step
4/4	0s	3ms/step
4/4	0s	3ms/step
4/4 —	0s	3ms/step
4/4	0s	2ms/step
4/4	0s	•
., .	03	3113/3 CCP

4/4 ————	0s	3ms/step
4/4 ————	0s	3ms/step
4/4 ————	0s	4ms/step
4/4	0s	3ms/step
4/4	0s	4ms/step
4/4 —	0s	4ms/step
4/4	0s	4ms/step
4/4	0s	
4/4 —————		4ms/step
	0s	3ms/step
4/4	0s	3ms/step
4/4	0s	3ms/step
4/4 ————	0s	4ms/step
4/4 —	0s	3ms/step
4/4	0s	3ms/step
4/4 ————	0s	4ms/step
4/4 ————	0s	3ms/step
4/4 —————	0s	3ms/step
4/4 —	0s	3ms/step
4/4	0s	4ms/step
4/4	0s	3ms/step
4/4 —	0s	4ms/step
4/4	0s	•
		3ms/step
4/4 ————	0s	3ms/step
	0s	4ms/step
4/4	0s	4ms/step
4/4 ————	0s	5ms/step
4/4 ————	0s	4ms/step
4/4 —	0s	4ms/step
4/4 —	0s	4ms/step
4/4	0s	3ms/step
4/4 ————	0s	3ms/step
4/4 ————	0s	4ms/step
4/4 ————	0s	4ms/step
4/4	0s	4ms/step
4/4 —	0s	
4/4	0s	8ms/step
4/4	As	4ms/step
4/4 —	0s	4ms/step
4/4 ————	0s	4ms/step
4/4 —————	0s	
4/4 —————		/
	0s	3ms/step
•, •	0s	5ms/step
., .	0s	5ms/step
4/4	0s	3ms/step
4/4 ————	0s	5ms/step
4/4 ———	0s	5ms/step
4/4 —	0s	3ms/step
4/4 ————	0s	5ms/step
4/4 —	0s	7ms/step
4/4 ————	0s	5ms/step
4/4 ————	0s	7ms/step
4/4 —	0s	4ms/step
4/4	0s	3ms/step
4/4 —	0s	4ms/step
4/4 ———	0s	4ms/step
4/4	0s	•
7/ 1	U 3	21113/3 CCh

4/4 ————	0s	4ms/step
4/4 ————	0s	3ms/step
4/4 ————	0s	3ms/step
4/4 —	0s	4ms/step
4/4	0s	4ms/step
4/4 —	0s	3ms/step
4/4	0s	3ms/step
4/4	0s	
4/4 ——————		3ms/step
4/4 —————	0s	3ms/step
	0s	3ms/step
4/4	0s	3ms/step
4/4 ———	0s	2ms/step
4/4 —	0s	2ms/step
4/4	0s	3ms/step
4/4 ————	0s	2ms/step
4/4 ————	0s	2ms/step
4/4 —————	0s	3ms/step
4/4 —	0s	3ms/step
4/4	0s	3ms/step
4/4 —	0s	3ms/step
4/4	0s	3ms/step
4/4 ————	0s	•
		2ms/step
4/4	0s	4ms/step
4/4	0s	3ms/step
4/4 ————	0s	3ms/step
4/4 ————	0s	4ms/step
4/4 ————	0s	2ms/step
4/4 —	0s	3ms/step
4/4 —————	0s	3ms/step
4/4 —	0s	3ms/step
4/4 —		3ms/step
•	0s	•
4/4 —	_	6ms/step
4/4 —		4ms/step
4/4 —	0s	
4/4 ————		
4/4 ——————	0s	, ,
•	0s	- /
4/4	0s	3ms/step
4/4		3ms/step
4/4 ————	0s	3ms/step
4/4 ————	0s	3ms/step
4/4 —	0s	5ms/step
4/4	0s	2ms/step
4/4 —	0s	3ms/step
4/4 ————	0s	4ms/step
4/4 ————	0s	3ms/step
4/4 —	0s	3ms/step
4/4	0s	3ms/step
4/4 —	0s	3ms/step
4/4	0s	3ms/step
4/4 —	0s	3ms/step
4/4 ————	0s	
4/4 —————	0s	
7/7	US	3ms/step

4/4	0- 4mg/ston
4/4	05 41115/5 tep
4/4	US 3ms/step
4/4 ————	0s 3ms/step
4/4	
4/4 ————	0s 3ms/step
4/4 ————	0s 4ms/step
4/4 —	
4/4 —	
4/4	· '
	· '
4/4 ————	
4/4 ————	0s 3ms/step
4/4	
4/4 ————	0s 2ms/step
4/4 ————	0s 2ms/step
4/4 ————	0s 2ms/step
4/4 —	
4/4	
4/4	05 3ms/step
4/4	os sins/step
4/4	0s 3ms/step
4/4 ————	
4/4 ————	0s 2ms/step
4/4 —	0s 3ms/step
4/4 ————	0s 5ms/step
4/4 —	
4/4 —	
4/4 —	
4/4	
4/4 ————————	
4/4 ————	
4/4 ————	,
4/4 —	
4/4 —	
4/4 ————	0s 3ms/step
4/4 —	0s 4ms/step
	0s 4ms/step
4/4	
4/4	05 /ms/step
4/4	05 41115/5tep
4/4 ————	•
•	· ·
Epoch: 1000/1100, Valida	
4/4 ————	0s 3ms/step
4/4 —	0s 3ms/step
4/4	0s 5ms/step
4/4 —	
4/4	As 6ms/step
4/4	
4/4 ————	
4/4	⊎s 4ms/step
4/4 ————	
4/4 —	0s 4ms/step
4/4	
4/4 ————	
4/4	0s 3ms/step
4/4	As 4ms/sten
4/4	Os ama/aceh
7/4	na amatareh

	_	
4/4 —	0s	2ms/step
4/4 ————	0s	3ms/step
4/4 ————	0s	3ms/step
4/4 ————	0s	3ms/step
4/4 —	0 s	3ms/step
4/4	0 s	3ms/step
4/4 ————	0 s	3ms/step
4/4 —	0s	3ms/step
4/4 ————	0s	4ms/step
4/4 ————	0s	3ms/step
4/4 ————	0s	2ms/step
4/4 —	0s	2ms/step
4/4 —	0s	4ms/step
4/4 —	0s	2ms/step
4/4 —	0s	4ms/step
4/4	0s	3ms/step
4/4	0s	4ms/step
4/4 —	0s	2ms/step
4/4 —	0s	3ms/step
4/4	0s	4ms/step
4/4	0s	3ms/step
4/4 ————	0s	3ms/step
4/4 ————		•
4/4 ————	0s	4ms/step
4/4 ————	0s	3ms/step
	0s	4ms/step
4/4 ————	0s	3ms/step
4/4	0s	6ms/step
4/4	0s	4ms/step
4/4 ————	0s	8ms/step
	0s	6ms/step
4/4 ————	0s	9ms/step
4/4 ————	0s	4ms/step
4/4 ————	0s	4ms/step
4/4 ————		5ms/step
4/4 ————	0s	8ms/step
4/4 ————	0 s	4ms/step
4/4 ————	0 s	6ms/step
4/4 ———	0s	4ms/step
4/4 ————	0s	6ms/step
4/4 ————	0 s	5ms/step
4/4 ————	0s	4ms/step
4/4 ————	0s	2ms/step
4/4 ————	0s	3ms/step
4/4 —	0s	4ms/step
4/4 ————	0s	3ms/step
4/4 —	0s	3ms/step
4/4 ————	0s	2ms/step
4/4 —	0s	3ms/step
4/4 —	0s	2ms/step
4/4	0s	3ms/step
4/4 —	0s	3ms/step
4/4	0s	2ms/step
4/4	0s	2ms/step
4/4	0s	4ms/step
4/4	0s	4ms/step
4/4	0s	•
7/7	US	ama/areh

	_	
4/4 ———	0s	3ms/step
4/4 ————	0s	5ms/step
4/4 ————	0s	3ms/step
4/4 ————	0s	3ms/step
4/4 —	0s	6ms/step
4/4	0s	3ms/step
4/4 ————	0s	5ms/step
4/4 ————	0s	3ms/step
4/4 ————	0s	7ms/step
4/4 ————	0s	4ms/step
4/4 ————	0s	7ms/step
4/4 —	0s	4ms/step
4/4 —	0s	4ms/step
4/4 ————	0s	3ms/step
4/4 —	0s	3ms/step
4/4 —	0s	3ms/step
4/4 —	0s	5ms/step
4/4 ————	0s	4ms/step
4/4 ————	0s	4ms/step
4/4	0s	4ms/step
4/4	0s	•
4/4 ————	0s	4ms/step
		6ms/step
4/4 ————	0s	3ms/step
•	0s	3ms/step
4/4 ————	0s	3ms/step
4/4	0s	5ms/step
4/4	0s	4ms/step
4/4	0s	5ms/step
4/4	0s	4ms/step
4/4	0s	5ms/step
4/4 ————	0s	3ms/step
4/4 ————	0s	3ms/step
4/4 ————	0s	4ms/step
4/4 ————	0s	3ms/step
4/4 ————	0s	3ms/step
4/4 ————	0 s	4ms/step
4/4 ————	0 s	3ms/step
4/4	0s	3ms/step
4/4 ————	0s	4ms/step
4/4 ————	0s	3ms/step
4/4 —	0s	3ms/step
4/4 —	0s	3ms/step
4/4 ————	0s	3ms/step
4/4 —	0s	•
4/4	0s	2ms/step
4/4	0s	
4/4 ————	0s	
4/4 ————	0s	
4/4	0s	3ms/step
4/4 ——————	0s	
4/4 —————	0S 0S	3ms/step
4/4 —————		5ms/step
4/4 —————	0s	- /
4/4	0s	3ms/step

4/4 ————	0s	4ms/step
4/4 ————	0s	6ms/step
4/4 ————	0s	4ms/step
4/4 —————	0s	3ms/step
4/4 —	0s	3ms/step
4/4 —	0s	4ms/step
1/1	0s	3ms/step
4/4	0s	3ms/step
4/4 ————	0s	4ms/step
4/4	0s	•
4/4 —————		3ms/step
4/4 ————	0s	4ms/step
	0s	4ms/step
4/4	0s	2ms/step
4/4 —	0s	3ms/step
4/4	0s	3ms/step
4/4	0s	3ms/step
4/4 ————	0s	3ms/step
4/4 ————	0s	3ms/step
4/4 ————	0s	3ms/step
4/4 —	0s	4ms/step
4/4 —	0s	4ms/step
4/4	0s	4ms/step
1/1	0s	3ms/step
4/4	0s	3ms/step
4/4	0s	3ms/step
4/4	0s	4ms/step
4/4	0s	4ms/step
4/4	0s	3ms/step
4/4	0s	4ms/step
4/4	0s	6ms/step
4/4 ————	0s	•
4/4 ————	0s	3ms/step
4/4 ————		3ms/step
4/4 ————	0s	3ms/step
•	0s	2ms/step
4/4 ————		2ms/step
•	0s	3ms/step
•/ •	0s	3ms/step
4/4 ———————————————————————————————————	0s	3ms/step
4/4 ————	0s	2ms/step
	0s	2ms/step
4/4 ————	0s	3ms/step
4/4 ————	0s	6ms/step
4/4 ————	0s	8ms/step
4/4 ————	0s	6ms/step
4/4 ————	0s	3ms/step
4/4 ————	0s	3ms/step
4/4 ————	0s	7ms/step
4/4	0s	4ms/step
4/4 ————	0s	6ms/step
4/4 ————	0s	3ms/step
4/4 ————	0s	4ms/step
4/4 ————	0s	4ms/step
4/4 ————	0s	6ms/step
4/4 ————	0s	5ms/step
4/4 ————	0s	4ms/step
4/4	0s	5ms/step

4/4 ————	0s	3ms/step
4/4 ————	0s	6ms/step
4/4 —	0s	6ms/step
4/4 ————	0s	3ms/step
4/4 —	0s	5ms/step
4/4 —	0s	4ms/step
4/4 —	0s	2ms/step
4/4	0s	5ms/step
4/4 —	0s	3ms/step
4/4	0s	4ms/step
4/4 —————		•
4/4 ——————	0s	3ms/step
4/4 —————	0s	4ms/step
4/4 —————	0s	6ms/step
	0s	6ms/step
4/4 ————	0s	4ms/step
4/4 ————	0s	4ms/step
4/4 —	0s	3ms/step
4/4 ————	0s	5ms/step
4/4 ————	0s	6ms/step
4/4 ————	0s	4ms/step
4/4 —	0s	4ms/step
4/4 —	0s	3ms/step
4/4 —	0s	4ms/step
4/4 —	0s	2ms/step
4/4 —	0s	3ms/step
4/4	0s	3ms/step
4/4 —	0s	4ms/step
4/4	0s	3ms/step
4/4 —	0s	3ms/step
4/4 —	0s	4ms/step
4/4 —	0s	5ms/step
4/4 —	0s	4ms/step
4/4 —	0s	•
4/4 —	0s	
4/4 —	0s	3ms/step
4/4 ————	0s	•
4/4 —	0s	
4/4 —	0s	4ms/step
4/4 —	0s	3ms/step
4/4 —	0s	3ms/step
4/4 —	0s	3ms/step
4/4	0s	3ms/step
4/4 —	0s	3ms/step
4/4 —	0s	2ms/step
4/4	0s	3ms/step
4/4	0s	3ms/step
4/4 —	0s	7ms/step
4/4 —	0s	4ms/step
4/4 —	0s	4ms/step
4/4	0s	4ms/step
4/4 —	0s	4ms/step
4/4 —	0s	4ms/step
4/4	0s	4ms/step
-, -	33	, э сор

	_	
4/4 ————	0s	4ms/step
4/4 ————	0s	3ms/step
4/4 —	0s	3ms/step
4/4 ————	0s	3ms/step
4/4 —	0s	2ms/step
4/4	0s	3ms/step
4/4 ———	0s	4ms/step
4/4 —	0s	5ms/step
4/4 ————	0s	3ms/step
4/4	0s	2ms/step
4/4		•
4/4 ———————————————————————————————————	0s	3ms/step
4/4 ——————	0s	3ms/step
4/4 —————	0s	2ms/step
	0s	4ms/step
4/4 ————	0s	4ms/step
4/4 ————	0s	4ms/step
4/4 ————	0s	3ms/step
4/4 ————	0s	3ms/step
4/4 —	0s	3ms/step
4/4 —	0s	3ms/step
1/1	0s	4ms/step
4/4	0s	3ms/step
4/4	0s	3ms/step
4/4	0s	•
4/4 —————		3ms/step
4/4 ———————	0s	4ms/step
	0s	3ms/step
4/4	0s	3ms/step
4/4	0s	4ms/step
4/4	0s	2ms/step
4/4	0s	3ms/step
4/4	0s	3ms/step
4/4 ————	0s	4ms/step
4/4 ————	0s	3ms/step
4/4 ————	0s	4ms/step
4/4 ————	0s	4ms/step
4/4 ————	0s	6ms/step
4/4 —	0s	3ms/step
4/4	0s	4ms/step
4/4 ———	0s	4ms/step
4/4 —	0s	7ms/step
4/4	0s	6ms/step
4/4	0s	5ms/step
4/4	0s	•
4/4 ———————		5ms/step
4/4 ———————	0s	5ms/step
4/4 ———————	0s	7ms/step
	0s	8ms/step
4/4 ————	0s	4ms/step
4/4 ————	0s	4ms/step
4/4 ————	0s	5ms/step
4/4 ————	0s	5ms/step
4/4 ————	0s	4ms/step
4/4 ————	0s	5ms/step
4/4 —	0s	4ms/step
4/4	0s	6ms/step
4/4	0s	6ms/step
4/4	0s	4ms/step
7/7	U 3	-till 2 / 2 rch

4/4 ————	0s	5ms/step
4/4 —	0s	6ms/step
4/4 ————	0s	2ms/step
4/4 —	0s	4ms/step
4/4	0s	2ms/step
4/4 —	0s	4ms/step
4/4	0s	4ms/step
4/4	0s	
4/4 ———————————————————————————————————		6ms/step
4/4 ———————————————————————————————————	0s	3ms/step
	0s	4ms/step
4/4	0s	4ms/step
4/4	0s	3ms/step
4/4	0s	3ms/step
4/4	0s	3ms/step
4/4 —————	0s	4ms/step
4/4 —	0s	4ms/step
4/4 —	0s	4ms/step
4/4 —		3ms/step
4/4	0s	5ms/step
4/4 —	0s	3ms/step
4/4 —	0s	3ms/step
4/4	0s	•
4/4		3ms/step
4/4	0s	3ms/step
4/4	0s	4ms/step
4/4 ————	0s	3ms/step
4/4 ————	0s	3ms/step
4/4 —	0s	3ms/step
4/4 —	0s	2ms/step
4/4 —	0s	4ms/step
4/4 —	0s	4ms/step
4/4 —	0s	3ms/step
4/4 —	0s	3ms/step
4/4 —	0s	4ms/step
4/4 —		3ms/step
•	0s	•
4/4 —	0s	•
4/4 —		4ms/step
4/4 —	0s	
4/4		
4/4 ———————————————————————————————————		, ,
4/4 ———————————————————————————————————	0s	4ms/step
		4ms/step
4/4		3ms/step
4/4 ————	0s	4ms/step
4/4 —	0s	5ms/step
4/4	0s	4ms/step
4/4	0s	3ms/step
4/4 —	0s	3ms/step
4/4 —	0s	3ms/step
4/4 —	0s	4ms/step
4/4		4ms/step
4/4	0s	3ms/step
4/4 —	0s	3ms/step
4/4	As	3ms/step
4/4	0s	3ms/step
4/4 ———————————————————————————————————	0S	
4/4		3ms/step
4/4	0s	3ms/step

```
4/4 -
                         0s 3ms/step
4/4 -
                         - 0s 4ms/step
4/4 -
                          0s 4ms/step
4/4 -
                          0s 2ms/step
4/4 -
                          0s 2ms/step
4/4 -
                          0s 3ms/step
4/4 -
                          0s 3ms/step
4/4 -
                          0s 2ms/step
4/4 -
                          0s 3ms/step
4/4 -
                         0s 3ms/step
4/4 -
                         - 0s 3ms/step
                         • 0s 3ms/step
4/4 -
                         0s 3ms/step
4/4 -
                         0s 3ms/step
4/4 -
                         0s 3ms/step
4/4 -
                         0s 4ms/step
4/4 -
                         - 0s 3ms/step
4/4 -
                         • 0s 3ms/step
4/4 -
                          0s 3ms/step
4/4 -
                         0s 3ms/step
4/4 -
                         - 0s 6ms/step
4/4 -
                         0s 3ms/step
4/4 —
                         0s 3ms/step
                         - 0s 3ms/step
4/4 -
4/4 -
                         • 0s 2ms/step
4/4 -
                         0s 3ms/step
4/4 -
                         - 0s 4ms/step
4/4 -
                          0s 3ms/step
4/4 -
                         0s 2ms/step
                         - 0s 4ms/step
4/4 -
4/4 -

    0s 7ms/step

4/4 -
                         - 0s 4ms/step
4/4 -
                          0s 7ms/step
4/4 -
                         • 0s 5ms/step
4/4 -
                         0s 5ms/step
                         - 0s 3ms/step
4/4 -
                         0s 5ms/step
4/4 -
                         0s 2ms/step
4/4 -
                         - 0s 4ms/step
4/4 -
                         - 0s 5ms/step
                         0s 5ms/step
                        - 0s 4ms/step
4/4 —
4/4 -
                         - 0s 4ms/step
4/4 -
                        — 0s 4ms/step
4/4 -
                        — 0s 4ms/step
```

Performace Metrics

```
In [21]: from sklearn.metrics import accuracy_score, roc_auc_score
    from sklearn.preprocessing import label_binarize
    import numpy as np

def perf_metric(metric, y_test, y_test_hat):
    """
    Evaluate the performance of a classification model using accuracy or AUF
```

```
Parameters:
             - metric (str): 'acc' for accuracy or 'auc' for AUROC.
             - y test (np.array): Ground truth labels, integer encoded, shape: (n sam
             - y test hat (np.array): Predicted probabilities, shape: (n samples, n d
             Returns:
             - float: Calculated performance metric.
             # Validate input
             if metric not in ['acc', 'auc']:
                 raise ValueError("Unsupported metric. Use 'acc' for accuracy or 'aud
             # Accuracy metric
             if metric == 'acc':
                 # Convert predicted probabilities to class labels
                 y pred = np.argmax(y test hat, axis=1)
                 return accuracy score(y test, y pred)
             # AUROC metric
             elif metric == 'auc':
                 n classes = y_test_hat.shape[1]
                 if n classes == 2: # Binary classification
                     # Use probabilities of the positive class
                     y pred prob = y test hat[:, 1]
                     return roc auc score(y test, y pred prob)
                 elif n classes > 2: # Multiclass classification
                     # Use one-vs-rest approach
                     y test bin = label binarize(y test, classes=np.unique(y test))
                     return roc_auc_score(y_test_bin, y_test_hat, average='macro', mu
                 else:
                     raise ValueError("AUROC is not defined for single-class tasks.")
In [22]: # Evaluate Accuracy
         accuracy = perf metric('acc', y test, y test model)
         print(f"Accuracy: {accuracy:.4f}")
         # Evaluate AUROC
         auroc = perf_metric('auc', y_test, y_test_model)
         print(f"AUROC: {auroc:.4f}")
        Accuracy: 0.9705
        AUROC: 0.9955
```

Predictions

```
In [24]: def generate_unlabeled_predictions(x_unlab, encoder, predictor):
    """
    Generate predictions for unlabeled data using an encoder and predictor.

Parameters:
    - x_unlab: Unlabeled feature data.
    - encoder: Pretrained encoder model to encode features.
    - predictor: Trained classification model.
```

```
Returns:
             - y_unlab_pred: Predicted labels for unlabeled data.
             # Encode unlabeled data
             x unlab encoded = encoder.predict(x unlab)
             # Predict with the classifier
             _, y_unlab_hat = predictor(x_unlab_encoded, training=False)
             # Convert probabilities to predicted class labels
             y unlab pred = np.argmax(y unlab hat, axis=1)
             return y unlab pred
         # Generate predictions for the unlabeled data
         y unlab pred = generate unlabeled predictions(x unlabeled scaled, encoder, \pi
         print(f"Predicted Labels for Unlabeled Data:\n{y unlab pred}")
        5046/5046 -
                                      - 20s 4ms/step
        Predicted Labels for Unlabeled Data:
        [9 9 9 ... 7 9 9]
         TSNE after semi-superivised
In [23]: pip install openTSNE
        Collecting openTSNE
          Downloading openTSNE-1.0.2-cp310-cp310-manylinux 2 17 x86 64.manylinux2014
        x86 64.whl.metadata (7.8 kB)
        Requirement already satisfied: numpy>=1.16.6 in /usr/local/lib/python3.10/di
        st-packages (from openTSNE) (1.26.4)
        Requirement already satisfied: scikit-learn>=0.20 in /usr/local/lib/python3.
        10/dist-packages (from openTSNE) (1.5.2)
        Requirement already satisfied: scipy in /usr/local/lib/python3.10/dist-packa
        ges (from openTSNE) (1.13.1)
        Requirement already satisfied: joblib>=1.2.0 in /usr/local/lib/python3.10/di
        st-packages (from scikit-learn>=0.20->openTSNE) (1.4.2)
        Requirement already satisfied: threadpoolctl>=3.1.0 in /usr/local/lib/python
        3.10/dist-packages (from scikit-learn>=0.20->openTSNE) (3.5.0)
        Downloading openTSNE-1.0.2-cp310-cp310-manylinux 2 17 x86 64.manylinux2014 x
        86 64.whl (3.0 MB)
                                                 - 3.0/3.0 MB 22.1 MB/s eta 0:00:00
        Installing collected packages: openTSNE
        Successfully installed openTSNE-1.0.2
In [26]: from matplotlib.colors import ListedColormap
         import matplotlib.pyplot as plt
         from openTSNE import TSNE
         import numpy as np
         from matplotlib import cm
         def plot tsne custom color(features, labels, title="t-SNE Visualization"):
             Generate t-SNE visualization using OpenTSNE with a custom color scheme.
```

Parameters:

```
- features: The feature matrix (e.g., encoded or raw features).
   - labels: Labels corresponding to the features (should be integers or ca
    - title: Title of the plot.
   # Perform t-SNE with OpenTSNE
   tsne = TSNE(n_components=2, perplexity=30, n_iter=1000, random state=42)
   tsne result = tsne.fit(features)
   # Use a continuous colormap such as 'viridis' to match the color scheme
   cmap = plt.cm.viridis
   # Plot the results
   plt.figure(figsize=(8, 6))
   scatter = plt.scatter(tsne result[:, 0], tsne result[:, 1], c=labels, cm
   plt.title(title)
   plt.xlabel('Dimension 1')
   plt.ylabel('Dimension 2')
   cbar = plt.colorbar(scatter, ticks=np.unique(labels))
   cbar.set label('Labels')
   cbar.ax.set yticklabels([str(label) for label in np.unique(labels)])
   plt.show()
# Features (scaled unlabeled data) and predicted labels
scaled features = np.vstack([x train scaled encoded, x unlabeled scaled]) #
combined labels = np.hstack([y train, y unlab pred]) # Combine true and pre
# Call the t-SNE plotting function
plot tsne custom color(scaled features, combined labels, title="t-SNE Visual
```


Intial TSNE for Comparison

In [28]: !pip install gradio

```
Collecting gradio
  Downloading gradio-5.6.0-py3-none-any.whl.metadata (16 kB)
Collecting aiofiles<24.0,>=22.0 (from gradio)
  Downloading aiofiles-23.2.1-py3-none-any.whl.metadata (9.7 kB)
Requirement already satisfied: anyio<5.0,>=3.0 in /usr/local/lib/python3.10/
dist-packages (from gradio) (3.7.1)
Collecting fastapi<1.0,>=0.115.2 (from gradio)
  Downloading fastapi-0.115.5-py3-none-any.whl.metadata (27 kB)
Collecting ffmpy (from gradio)
  Downloading ffmpy-0.4.0-py3-none-any.whl.metadata (2.9 kB)
Collecting gradio-client==1.4.3 (from gradio)
  Downloading gradio client-1.4.3-py3-none-any.whl.metadata (7.1 kB)
Requirement already satisfied: httpx>=0.24.1 in /usr/local/lib/python3.10/di
st-packages (from gradio) (0.27.2)
Requirement already satisfied: huggingface-hub>=0.25.1 in /usr/local/lib/pyt
hon3.10/dist-packages (from gradio) (0.26.2)
Requirement already satisfied: jinja2<4.0 in /usr/local/lib/python3.10/dist-
packages (from gradio) (3.1.4)
Collecting markupsafe~=2.0 (from gradio)
  Downloading MarkupSafe-2.1.5-cp310-cp310-manylinux_2_17_x86_64.manylinux20
14 x86 64.whl.metadata (3.0 kB)
Requirement already satisfied: numpy<3.0,>=1.0 in /usr/local/lib/python3.10/
dist-packages (from gradio) (1.26.4)
Requirement already satisfied: orjson~=3.0 in /usr/local/lib/python3.10/dist
-packages (from gradio) (3.10.11)
Requirement already satisfied: packaging in /usr/local/lib/python3.10/dist-p
ackages (from gradio) (24.2)
Requirement already satisfied: pandas<3.0,>=1.0 in /usr/local/lib/python3.1
O/dist-packages (from gradio) (2.2.2)
Requirement already satisfied: pillow<12.0,>=8.0 in /usr/local/lib/python3.1
0/dist-packages (from gradio) (11.0.0)
Requirement already satisfied: pydantic>=2.0 in /usr/local/lib/python3.10/di
st-packages (from gradio) (2.9.2)
Collecting pydub (from gradio)
  Downloading pydub-0.25.1-py2.py3-none-any.whl.metadata (1.4 kB)
Collecting python-multipart==0.0.12 (from gradio)
  Downloading python multipart-0.0.12-py3-none-any.whl.metadata (1.9 kB)
Requirement already satisfied: pyyaml<7.0,>=5.0 in /usr/local/lib/python3.1
O/dist-packages (from gradio) (6.0.2)
Collecting ruff>=0.2.2 (from gradio)
  Downloading ruff-0.8.0-py3-none-manylinux 2 17 x86 64.manylinux2014 x86 6
4.whl.metadata (25 kB)
Collecting safehttpx<1.0,>=0.1.1 (from gradio)
  Downloading safehttpx-0.1.1-py3-none-any.whl.metadata (4.1 kB)
Collecting semantic-version~=2.0 (from gradio)
  Downloading semantic version-2.10.0-py2.py3-none-any.whl.metadata (9.7 kB)
Collecting starlette<1.0,>=0.40.0 (from gradio)
  Downloading starlette-0.41.3-py3-none-any.whl.metadata (6.0 kB)
Collecting tomlkit==0.12.0 (from gradio)
  Downloading tomlkit-0.12.0-py3-none-any.whl.metadata (2.7 kB)
Requirement already satisfied: typer<1.0,>=0.12 in /usr/local/lib/python3.1
0/dist-packages (from gradio) (0.13.0)
Requirement already satisfied: typing-extensions~=4.0 in /usr/local/lib/pyth
on3.10/dist-packages (from gradio) (4.12.2)
Collecting uvicorn>=0.14.0 (from gradio)
  Downloading uvicorn-0.32.1-py3-none-any.whl.metadata (6.6 kB)
```

```
Requirement already satisfied: fsspec in /usr/local/lib/python3.10/dist-pack
ages (from gradio-client==1.4.3->gradio) (2024.10.0)
Collecting websockets<13.0,>=10.0 (from gradio-client==1.4.3->gradio)
  Downloading websockets-12.0-cp310-cp310-manylinux 2 5 x86 64.manylinux1 x8
6 64.manylinux 2 17 x86 64.manylinux2014 x86 64.whl.metadata (6.6 kB)
Requirement already satisfied: idna>=2.8 in /usr/local/lib/python3.10/dist-p
ackages (from anyio<5.0,>=3.0->gradio) (3.10)
Requirement already satisfied: sniffio>=1.1 in /usr/local/lib/python3.10/dis
t-packages (from anyio<5.0,>=3.0->gradio) (1.3.1)
Requirement already satisfied: exceptiongroup in /usr/local/lib/python3.10/d
ist-packages (from anyio<5.0,>=3.0->gradio) (1.2.2)
Requirement already satisfied: certifi in /usr/local/lib/python3.10/dist-pac
kages (from httpx>=0.24.1->gradio) (2024.8.30)
Requirement already satisfied: httpcore==1.* in /usr/local/lib/python3.10/di
st-packages (from httpx>=0.24.1->gradio) (1.0.7)
Requirement already satisfied: h11<0.15,>=0.13 in /usr/local/lib/python3.10/
dist-packages (from httpcore==1.*->httpx>=0.24.1->gradio) (0.14.0)
Requirement already satisfied: filelock in /usr/local/lib/python3.10/dist-pa
ckages (from huggingface-hub>=0.25.1->gradio) (3.16.1)
Requirement already satisfied: requests in /usr/local/lib/python3.10/dist-pa
ckages (from huggingface-hub>=0.25.1->gradio) (2.32.3)
Requirement already satisfied: tqdm>=4.42.1 in /usr/local/lib/python3.10/dis
t-packages (from huggingface-hub>=0.25.1->gradio) (4.66.6)
Requirement already satisfied: python-dateutil>=2.8.2 in /usr/local/lib/pyth
on3.10/dist-packages (from pandas<3.0,>=1.0->gradio) (2.8.2)
Requirement already satisfied: pytz>=2020.1 in /usr/local/lib/python3.10/dis
t-packages (from pandas<3.0,>=1.0->gradio) (2024.2)
Requirement already satisfied: tzdata>=2022.7 in /usr/local/lib/python3.10/d
ist-packages (from pandas<3.0,>=1.0->gradio) (2024.2)
Requirement already satisfied: annotated-types>=0.6.0 in /usr/local/lib/pyth
on3.10/dist-packages (from pydantic>=2.0->gradio) (0.7.0)
Requirement already satisfied: pydantic-core==2.23.4 in /usr/local/lib/pytho
n3.10/dist-packages (from pydantic>=2.0->gradio) (2.23.4)
Requirement already satisfied: click>=8.0.0 in /usr/local/lib/python3.10/dis
t-packages (from typer<1.0,>=0.12->gradio) (8.1.7)
Requirement already satisfied: shellingham>=1.3.0 in /usr/local/lib/python3.
10/dist-packages (from typer<1.0,>=0.12->gradio) (1.5.4)
Requirement already satisfied: rich>=10.11.0 in /usr/local/lib/python3.10/di
st-packages (from typer<1.0,>=0.12->gradio) (13.9.4)
Requirement already satisfied: six>=1.5 in /usr/local/lib/python3.10/dist-pa
ckages (from python-dateutil>=2.8.2->pandas<3.0,>=1.0->gradio) (1.16.0)
Requirement already satisfied: markdown-it-py>=2.2.0 in /usr/local/lib/pytho
n3.10/dist-packages (from rich>=10.11.0->typer<1.0,>=0.12->gradio) (3.0.0)
Requirement already satisfied: pygments<3.0.0,>=2.13.0 in /usr/local/lib/pyt
hon3.10/dist-packages (from rich>=10.11.0->typer<1.0,>=0.12->gradio) (2.18.
0)
Requirement already satisfied: charset-normalizer<4,>=2 in /usr/local/lib/py
thon3.10/dist-packages (from requests->huggingface-hub>=0.25.1->gradio) (3.
4.0)
Requirement already satisfied: urllib3<3,>=1.21.1 in /usr/local/lib/python3.
10/dist-packages (from requests->huggingface-hub>=0.25.1->gradio) (2.2.3)
Requirement already satisfied: mdurl~=0.1 in /usr/local/lib/python3.10/dist-
packages (from markdown-it-py>=2.2.0->rich>=10.11.0->typer<1.0,>=0.12->gradi
o) (0.1.2)
```

Downloading gradio-5.6.0-py3-none-any.whl (57.1 MB)

```
Downloading gradio client-1.4.3-py3-none-any.whl (320 kB)
                                           320.1/320.1 kB 17.6 MB/s eta 0:0
       0:00
       Downloading python multipart-0.0.12-py3-none-any.whl (23 kB)
       Downloading tomlkit-0.12.0-py3-none-any.whl (37 kB)
       Downloading aiofiles-23.2.1-py3-none-any.whl (15 kB)
       Downloading fastapi-0.115.5-py3-none-any.whl (94 kB)
                                            94.9/94.9 kB 6.1 MB/s eta 0:00:0
       0
       Downloading MarkupSafe-2.1.5-cp310-cp310-manylinux 2 17 x86 64.manylinux2014
       x86 64.whl (25 kB)
       Downloading ruff-0.8.0-py3-none-manylinux 2 17 x86 64.manylinux2014 x86 64.w
       hl (11.1 MB)
                                             ----- 11.1/11.1 MB 97.2 MB/s eta 0:00:
       \Theta
       Downloading safehttpx-0.1.1-py3-none-any.whl (8.4 kB)
       Downloading semantic version-2.10.0-py2.py3-none-any.whl (15 kB)
       Downloading starlette-0.41.3-py3-none-any.whl (73 kB)
                                               --- 73.2/73.2 kB 3.8 MB/s eta 0:00:0
       Downloading uvicorn-0.32.1-py3-none-any.whl (63 kB)
                                           63.8/63.8 kB 4.1 MB/s eta 0:00:0
       Downloading ffmpy-0.4.0-py3-none-any.whl (5.8 kB)
       Downloading pydub-0.25.1-py2.py3-none-any.whl (32 kB)
       Downloading websockets-12.0-cp310-cp310-manylinux_2_5_x86_64.manylinux1_x86_
       64.manylinux 2 17 x86 64.manylinux2014 x86 64.whl (130 kB)
                                             ----- 130.2/130.2 kB 8.3 MB/s eta 0:0
       0:00
       Installing collected packages: pydub, websockets, uvicorn, tomlkit, semantic
       -version, ruff, python-multipart, markupsafe, ffmpy, aiofiles, starlette, sa
       fehttpx, gradio-client, fastapi, gradio
         Attempting uninstall: markupsafe
           Found existing installation: MarkupSafe 3.0.2
           Uninstalling MarkupSafe-3.0.2:
             Successfully uninstalled MarkupSafe-3.0.2
       Successfully installed aiofiles-23.2.1 fastapi-0.115.5 ffmpy-0.4.0 gradio-5.
       6.0 gradio-client-1.4.3 markupsafe-2.1.5 pydub-0.25.1 python-multipart-0.0.1
       2 ruff-0.8.0 safehttpx-0.1.1 semantic-version-2.10.0 starlette-0.41.3 tomlki
       t-0.12.0 uvicorn-0.32.1 websockets-12.0
In [ ]: import gradio as gr
        import pandas as pd
        import numpy as np
        from openTSNE import TSNE
        import matplotlib.pyplot as plt
        from matplotlib import colormaps
        from tensorflow.keras.models import load model
        # Function to generate predictions for unlabeled data
        def generate predictions for unlabeled(x unlab, encoder, predictor):
            """Encode data and generate predictions for unlabeled samples."""
            encoded data = encoder.predict(x unlab) # Encode data using the encoder
            predictions = predictor(encoded data, training=False) # Get the predict
            predicted classes = np.argmax(predictions, axis=1) # Get predicted clas
```

```
return predicted classes
# Function for t-SNE visualization
def create tsne visualization(features, labels, title="t-SNE Visualization")
    """Perform t-SNE dimensionality reduction and visualize with distinct cl
   tsne = TSNE(n components=2, perplexity=30, n iter=1000, random state=42)
   tsne result = tsne.fit(features)
   unique labels = np.unique(labels)
   label to index = {label: idx for idx, label in enumerate(unique labels)}
   color indices = np.array([label to index[label] for label in labels])
   cmap = colormaps.get cmap('tab10') # Get the colormap
   fig, ax = plt.subplots(figsize=(8, 6))
   scatter = ax.scatter(
       tsne result[:, 0],
       tsne result[:, 1],
        c=color indices,
        cmap=cmap,
        s=5,
       alpha=0.7
    )
   ax.set title(title)
   ax.set xlabel('t-SNE Dimension 1')
   ax.set ylabel('t-SNE Dimension 2')
   # Add legend for cluster labels
   legend handles = [
        plt.Line2D([], [], marker='o', color=cmap(idx / len(unique labels)),
        for idx in range(len(unique labels))
   ax.legend(legend handles, unique labels, title="Clusters", loc="best", t
    return fig
# Function to process and visualize predictions and t-SNE
def process and visualize data(start row, end row):
   Process a subset of the x unlabeled dataset, predict labels, and generat
   global x_unlabeled # Ensure x_unlabeled is loaded
   # Parse input row indices
   start row = int(start row)
   end row = int(end row)
   # Select subset of data
   x subset = x unlabeled[start row:end row]
   # Load pre-trained encoder and predictor
   encoder = load model(encoder path)
   trained model = encoder
   predictor = trained model # Assume predictor is preloaded
   # Predict labels for the subset
```

```
predicted labels = generate predictions for unlabeled(x subset, encoder,
   # Create t-SNE visualization
   tsne figure = create tsne visualization(x subset, predicted labels, titl
   # Return visualization and predictions
    return tsne figure, pd.DataFrame({"Predicted Labels": predicted_labels})
# Set up Gradio interface
inputs = [
   gr.Number(label="Start Row", value=3, precision=0), # Starting row input
   gr.Number(label="End Row", value=109, precision=0) # Ending row input
1
outputs = [
   gr.Plot(label="t-SNE Visualization"),
                                                      # t-SNE plot
   gr.Dataframe(label="Predicted Labels (Top 10)") # Dataframe for pred
1
gr.Interface(
   fn=process and visualize data,
   inputs=inputs,
   outputs=outputs,
   title="Self-Supervised Learning Visualization",
   description="Generate predictions and visualize data with t-SNE."
).launch(debug=True)
```

Running Gradio in a Colab notebook requires sharing enabled. Automatically s etting `share=True` (you can turn this off by setting `share=False` in `laun ch()` explicitly).

Colab notebook detected. This cell will run indefinitely so that you can see errors and logs. To turn off, set debug=False in launch().

* Running on public URL: https://36750f0cel196f02fb.gradio.live

This share link expires in 72 hours. For free permanent hosting and GPU upgr ades, run `gradio deploy` from the terminal in the working directory to depl oy to Hugging Face Spaces (https://huggingface.co/spaces)

Self-Supervised Learning Visualization

Generate predictions and visualize data with t-SNE.

3		
End Row		
109		
Clear		Submit
	<u>//</u>	

This notebook was converted with convert.ploomber.io