Step-1

Given that x = (1,1,1,1,1) and x = (0.1,0.7,0.3,0.4,0.5)

We have to compute $\|x\|$, $\|x\|_1$ and $\|x\|_{\infty}$ for the given vectors.

Step-2

The ℓ^1 norm is defined by $\|x\|_1 = |x_1| + |x_2| + ... + |x_n|$ and the ℓ^∞ norm is defined by $\|x\|_\infty = \max\{|x_i|: 1 \le i \le n, x = (x_1, x_2, ..., x_n)\}$

Also, we know that the hilbert norm is $||x|| = \sqrt{x_1^2 + x_2^2 + ... + x_n^2}$

Step-3

Now we have x = (1, 1, 1, 1, 1)

Then

$$||x||_1 = 1 + 1 + 1 + 1 + 1$$

And

$$||x||_{\infty} = \max\{1, 1, 1, 1, 1\}$$

= 1

And

$$||x|| = \sqrt{1^2 + 1^2 + \dots + 1^2}$$
$$= \sqrt{5}$$

Hence for x = (1,1,1,1,1), we get $||x|| = \sqrt{5}$, $||x||_1 = 5$ and $||x||_{\infty} = 1$

Step-4

Now we have x = (0.1, 0.7, 0.3, 0.4, 0.5)

Then

$$||x||_1 = 0.1 + 0.7 + 0.3 + 0.4 + 0.5$$

= 2

And

$$||x||_{\infty} = \max\{0.1, 0.7, 0.3, 0.4, 0.5\}$$

= 0.7

Step-5

And

$$||x|| = \sqrt{0.1^2 + 0.7^2 + 0.3^2 + 0.4^2 + 0.5^2}$$
$$= \sqrt{0.01 + 0.49 + 0.09 + 0.16 + 0.25}$$
$$= \sqrt{1}$$
$$= 1$$

Hence for x = (0.1, 0.7, 0.3, 0.4, 0.5), we get ||x|| = 1, $||x||_1 = 2$ and $||x||_{\infty} = 0.7$