Oblig 5

Oskar Idland

Problem 1

a)

$$I = \int_{-\infty}^{\infty} \frac{x+3}{x^4+1} \, \mathrm{d}x$$

We rewrite this to a complex integral along a semicircle path in the upper half-plane with radius R.

 $\oint_C \frac{z+3}{z^4+1} \, \mathrm{d}z$

This we can evaluate using the residue theorem. We have a fourth degree pole at $z_0 = -1$. The roots are $r_1 = e^{i\pi/4}$, $r_2 = e^{3i\pi/4}$, $r_3 = e^{5i\pi/4}$ and $r_4 = e^{7i\pi/4}$. We only use the roots in the upper half-plane, so we get r_1 and r_2 . Now to find the residues at these poles.

$$\operatorname{Res}(f, r_1) = \lim_{z \to r_1}$$

b)

$$I = \int_0^\infty \frac{\cos x}{x^2 + 1} \, \mathrm{d}x$$

We have a poles at $z = \pm i$. As the function is symmetric we use this to expand the integral to an infinite one.

$$I = \frac{1}{2} \int_{-\infty}^{\infty} \frac{\cos x}{x^2 + 1} \, dx = \frac{1}{2} \oint_C \frac{\cos z}{z^2 + 1} \, dz$$

$$2I=i2\pi\operatorname{Res}(f,i)$$

$$I = i\pi \cosh(1)/2i = \frac{\pi}{2} \cosh(1)$$

c)

$$I = \int_0^{2\pi} \frac{\cos(2\theta)}{\sin(\theta) + 5} d\theta$$

We use that $z=e^{i\theta}$ and $\frac{\mathrm{d}z}{\mathrm{d}\theta}=ie^{i\theta}$, so $\mathrm{d}\theta=\frac{\mathrm{d}z}{iz}$.

$$I = \int_C \frac{\cos(2z)}{\sin(z) + 5} \frac{\mathrm{d}z}{iz}$$

We only have a pole at 0. Again we use the residue theorem.

$$I = i2\pi \operatorname{Res}(f,0) = i2\pi \cos(0)/5 = \frac{2\pi}{5}$$

d)

$$I = \int_{-\infty}^{\infty} \frac{(x-1)\sin(8x-7)}{x^2 - 2x + 5} \, \mathrm{d}x$$

First we find the roots of the denominator to be $r_1 = 1 + 2i$ and $r_2 = 1 - 2i$.

$$I = \frac{1}{1i} \left[\int_{-\infty}^{\infty} \frac{(x-1)e^{i(8x-7)}}{x^2 - 2x + 5} \, \mathrm{d}x - \int_{-\infty}^{\infty} \frac{(x-1)e^{-i(8x-7)}}{x^2 - 2x + 5} \, \mathrm{d}x \right]$$
$$I = \operatorname{Im} \left(\int_{-\infty}^{\infty} \frac{x-1}{x^2 - 2x + 5e^{i(8x-7)}} \, \mathrm{d}x \right)$$

Then rewrite the integral to a complex integral along a semicircle path in the upper halfplane with radius R.

$$I = \operatorname{Im} \left(\oint_C \frac{z - 1}{z^2 - 2z + 5e^{i(8z - 7)}} \, dz \right)$$

I would then use the residue theorem to solve the integral, but I did not get the time.

$$I = \operatorname{Im} \left(\pi Res \left(f(x) \right) \right)$$

Problem 2

a)

Laplace's equation is given by:

$$\nabla^2 f(x) = 0$$

For complex functions, we have:

$$\nabla^2 f(z) = \nabla^2 (u(x,y) + iv(x,y)) = \nabla^2 u(x,y) + i\nabla^2 v(x,y)$$
$$\nabla^2 f(z) = \partial_x^2 u + \partial_y^2 u + i(\partial_x^2 v + \partial_y^2 v) = 0$$

We use the following relations:

$$\frac{\partial u}{\partial x} = \frac{\partial v}{\partial y}$$
 , $\frac{\partial v}{\partial x} = -\frac{\partial u}{\partial y}$

$$\nabla^2 f(z) = \partial_x \partial_y v - \partial_y \partial_x v + i(\partial_x \partial_y u - \partial_y \partial_x u) = 0$$