2019 Statistics Graduate Bootcamp University of California, Irvine

TA: Derenik Haghverdian Department of Statistics

Updated - September 16, 2019

Consider a random sample $x_1, x_2, \dots, x_n \stackrel{iid}{\sim} Unif(0, \theta)$.

- 1. Find the method of moments estimator of θ , call it $\hat{\theta}_{MoM}$.
- 2. Show that $\hat{\theta}_{MoM}$ is unbiased.
- 3. What is the asymptotic distribution of the $\hat{\theta}_{MoM}$?
- 4. Find the likelihood function $\mathcal{L}(\theta|\mathbf{x})$.
- 5. Find the maximum likelihood estimator of θ , call it $\hat{\theta}_{MLE}$.
- 6. Use R to generate a random sample x_1, x_2, \dots, x_{20} from Unif(0, 10). Use set seed (1234) before you generate your random sample. Plot the likelihood function. Calculate the $\hat{\theta}_{MLE}$ for this sample. Indicate this value on the plot along with the true value $\theta = 10$.
- 7. Generate B=1000 samples each of size n=20 from a Unif(0,1) distribution. Plot the empirical sampling distribution of $\hat{\theta}_{MoM}$.
- 8. The MLE $\hat{\theta}_{MLE}$ is biased. Write an R simulation to approximate the bias of $\hat{\theta}_{MLE}$ for a sample of size n=20. Use B=1000 samples.
- 9. Use the simulation to estimate the variance of $\hat{\theta}_{MoM}$ and the variance of $\hat{\theta}_{MLE}$.
- 10. The Mean-squared Error (MSE) of an estimator $\tilde{\theta}$ of parameter θ is defined as

$$MSE_{\theta}(\tilde{\theta}) = Bias_{\theta}^{2}(\tilde{\theta}) + Var_{\theta}(\tilde{\theta}).$$

Approximate $MSE_{\theta=1}(\hat{\theta}_{MoM})$ and $MSE_{\theta=1}(\hat{\theta}_{MLE})$ using your R simulation.