ELSEVIER

Contents lists available at SciVerse ScienceDirect

Applied Catalysis B: Environmental

journal homepage: www.elsevier.com/locate/apcatb

Ceria added Sb-V₂O₅/TiO₂ catalysts for low temperature NH₃ SCR: Physico-chemical properties and catalytic activity

Kyung Ju Lee^{a,b}, Pullur Anil Kumar^b, Muhammad Salman Maqbool^{b,c}, Komateedi Narayana Rao^b, Kwang Ho Song^a, Heon Phil Ha^{b,*}

- ^a Department of Chemical and Biological Engineering, Korea University, Anam-dong Seongbuk-gu, Seoul, 136-701, Republic of Korea
- ^b Center for Materials Architecturing, Korea Institute of Science and Technology, Cheongryang, Seoul, 130-650, Republic of Korea
- c Department of Clean Energy and Chemical Engineering, University of Science and Technology, Daejon, 305-350, Republic of Korea

ARTICLE INFO

Article history: Received 8 February 2013 Received in revised form 28 May 2013 Accepted 30 May 2013 Available online 7 June 2013

Keywords: Sb-V₂O₅-Ce/TiO₂ Ceria effect XPS TPD Brønsted acid sites

ABSTRACT

A systematic investigation of the effect of ceria loading over Sb-V₂O₅/TiO₂ catalysts was carried out for the selective catalytic reduction (SCR) of NO_x by NH₃. The various ceria loaded Sb-V₂O₅/TiO₂ catalysts were prepared by deposition precipitation and impregnation methods. Addition of 10% ceria to $Sb-V_2O_5/TiO_2$ catalyst significantly enhanced the NO_x conversion at wide temperature range of 220-500 °C. The 10% ceria loaded Sb-V₂O₅/TiO₂ catalyst showed superior N₂ selectivity (>95%) throughout the reaction temperatures. The physicochemical characteristics of the obtained catalysts were thoroughly characterized by BET surface area, X-ray diffractometry (XRD), temperature programmed desorption (TPD) of NO, SO₂ and NH₃, H₂- temperature programmed reduction (TPR), X-ray photoelectron spectroscopy (XPS) and in situ diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS). The XRD results indicated the active components of antimony and vanadia were homogeneously dispersed over CeO₂/TiO₂. It was found that the addition of 10% ceria to Sb-V₂O₅/TiO₂ could enhance the total acidity and redox properties of the catalyst, which lead to show higher NO_x conversions at wide temperature window. In XPS studies, increase in intensity of the chemisorbed mobile oxygen peak was observed for ceria loaded catalysts. In particular, the DRIFT spectra of ceria loaded Sb-V₂O₅/TiO₂ catalysts showed abundant Brønsted acid sites at 1436 and 1673 cm⁻¹ band, which are responsible for high NO_x conversion. Furthermore, the results of NO and SO $_2$ TPD of 10% ceria loaded Sb-V $_2$ O $_5$ /TiO $_2$ catalyst showed enhancement of NO adsorption and SO₂ inhibition properties, which is thought to play a significant role in long term stability of the catalyst during SO₂ on-off study for 38 h at 240 °C.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

Over the past decades, nitrogen oxides (NO, NO₂ and N₂O) from the stationary and mobile sources have been remained as major air pollutants. They provoked a series of environmental issues, such as photochemical smog, acid rain, ozone depletion and greenhouse effects [1,2]. The removal of nitrogen oxides (NO) from stationary sources such as thermal power plants is mostly carried out by selective catalytic reduction (SCR) of NO using ammonia. In this course of study, ammonia-SCR catalysts have been extensively investigated for heavy-duty vehicles and industrial processes for the last 15–20 years [3–6]. Currently locomotive and marine diesel engines emit large amounts of NO containing emissions; these air pollutants are expected to grow due to the anticipated future growth in the use of diesel engines. In case of marine applications,

typically high sulfur containing fuel was used; where limited research was attempted. As huge quantity of SO_2 contained emissions are occurred in these applications, it will not be allowed to use existing catalytic technologies. Environmental Protection Agency (EPA) regulations concerning NO emissions will become more stringent in the coming years. Recently, EPA mandated the Tier 4 regulation, which begins to take effect. Thus, many efforts are endeavored to meet the regulation. However, water vapor is one of the main components of NO containing exhaust and is frequently leads to deactivation of the catalysts. Moreover, there is still residual SO_2 remaining after the de-sulfurizer. Thus, SO_2 resistance needs to be considered. The ultimate goal will be to develop a low temperature active catalyst (LTC) for NH_3 -SCR in the presence of excess H_2O and SO_2 , which is regarded as a challenging task over the world

Most of the LTC have been investigated using V_2O_5 , Fe_2O_3 and MnO_x as active components on metal oxide supports such as TiO_2 , Al_2O_3 and ZrO_2 [7–12]. The major roles of the supports are: (a) providing a huge surface area to separate the active phase and

^{*} Corresponding author. Tel.: +82 29585461; fax: +82 29585599. E-mail addresses: heonphil@kist.re.kr, heonphil@hanmail.net (H.P. Ha).

to prevent the chance of agglomeration; (b) furnishing the sufficiently large space for the catalytic reactions. It is known that the effective strategy to improve the sulfur tolerance was the use of titanium dioxide (TiO_2) as a supporting material [13]. Matsumoto et al. [14] reported that the decomposition temperature of sulfates on a TiO₂ support was lower than that of Al₂O₃ support under reducing conditions. In addition, it is also known that CeO₂ can promotes performance of various catalytic reactions such as CO₂ activation [15], CO oxidation [16] and CO/NO removal [17] owing to its unique abilities to shift electrons easily between reduced and oxidized states $(Ce^{3+} \leftrightarrow Ce^{4+})$ and to accommodate variable levels of bulk and surface oxygen vacancies [18,19]. Therefore, ceria can be expected to enhance the oxidization of NO to NO₂ and thereby increasing the NO reduction activity by ammonia. Thus, it is considered here to verify the effect of ceria on NO reduction over a series of TiO₂ based oxides.

Nowadays, the commercial catalysts used for SCR in industry are mainly based on V₂O₅-WO₃/TiO₂. Although the vanadia-titania based catalysts are highly active and quite resistant to SO₂, there are several drawbacks like: (a) poor N₂ selectivity at high temperatures due to N₂O formation and direct NH₃ oxidation; (b) higher amount of toxic V_2O_5 ; (c) high conversion of SO_2 to SO_3 ; (d) the phase transformation of TiO₂ from anatase to rutile at high temperatures (above 500 °C); and (e) this catalyst is rather active within a narrow temperature window of 300-400 °C [20,21], while this temperature range also helps to avoid pore plugging from the deposition of ammonium sulfate salts such as NH₄HSO₄ and (NH₄)₂SO₄ on the catalyst surface. Many efforts have been tried by the researchers to modify the V₂O₅-WO₃/TiO₂ catalyst system for NH₃ SCR. Therefore, the present investigation was undertaken on the aforesaid background. Taking into consideration to improve the low temperature conversion, antimony-based catalysts are adopted for the title reaction. We have reported highly efficient V₂O₅/TiO₂ catalyst promoted by antimony [22] instead of using expensive WO₃. In the present study, extensive work has been carried out to further enhance catalytic properties of formerly developed catalyst by ceria loaded novel composite catalytic system. The synthesized catalysts were thoroughly characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), temperature programmed desorption (TPD) of NO, SO₂ and NH₃, H₂-TPR (temperature programmed reduction), BET (Brunauer-Emmett-Teller) surface area, transmission electron microscopy (TEM) and in situ diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS).

2. Experimental

2.1. Catalyst preparation

The V_2O_5 -Ce/TiO $_2$ and Sb- V_2O_5 -Ce/TiO $_2$ catalysts were prepared by incipient wetness co-impregnation of vanadium and antimony on prepared CeO_2/TiO_2 support. Required quantity of ammoniummetavanadate (NH $_4$ VO $_3$, Junsei, 99%) was added to the oxalic acid solution and heated to form ammonium oxalate solution. Separately, an aqueous solution of antimony acetate was prepared by using antimony acetate (Sb(CH $_3$ COO) $_3$, Alfa Aesar, 99.99%). Both of these solutions were added to the beaker containing calculated amount of CeO_2/TiO_2 powder; after 30 min of vigorous stirring, the solution was dried in a rotary evaporator at 50 °C. The obtained powder catalyst was dehydrated over night at 120 °C and then calcined at 500 °C in air for 5 h.

The CeO_2/TiO_2 support was synthesized by deposition precipitation method by hydrolysis with ammonium hydroxide (Aldrich, 25%) [23]. In a typical experiment, the required quantities of cerium (III) nitrate ($Ce(NO_3)_3 \cdot 6H_2O$, Alfa Aesar, 99.5%) and commercial

 TiO_2 (DT-51, Millennium Chemicals) powders were mixed together in a beaker containing de-ionized water. To this mixture solution, dilute aqueous ammonia was added as a precipitating agent and the resultant precipitate was filtered off. The obtained cake was oven dried at 120 °C for 12 h and then calcined at 500 °C for 5 h. The mole ratio of Sb/V (2 wt% Sb and 2 wt% V) was maintained same as 1:1 in all the prepared catalysts. The obtained V_2O_5 -Ce/ TiO_2 and Sb- V_2O_5 -Ce/ TiO_2 catalysts were denoted as V_2 Ce/ TiO_2 and SbV V_2 Ce/ TiO_3 (v_2 =0, 5, 10 and 20 wt% of ceria).

2.2. Characterization techniques

The catalysts were analyzed by powder XRD (Bruker) and the spectra were recorded using Ni-filtered Cu K_{α} radiation operated at 40 kV and 20 mA. The BET (Brunauer-Emmett-Teller) surface area was measured from the N₂ adsorption and desorption isotherms at -196°C using the ASAP-2010 (Micromeritics) analyzer. TEM analysis (Transmission electron microscopy) was performed on a JEM 2100F (JEOL Co.) electron microscope equipped with EDS (energy dispersive X-ray spectroscopy) operating at an acceleration voltage of 200 kV and 2 Å point-to-point resolution. Catalysts were supported on a copper grid by dropping ethanol suspensions containing uniformly dispersed powders. NO, SO₂ and NH₃ TPD experiments were carried out using the AutoChem II-2920 (Micromeritics) chemisorptions analyzer. For each experiment, 100 mg of catalyst was placed in a U-shaped quartz cell and preconditioned at 400 °C in 10% O_2/He gas at a flow rate of 50 mL min $^{-1}$ and then purged with He gas. For NH₃, NO and SO₂ TPD, 5% NH₃, 1% NO and 1% SO₂ under He balance were used as adsorption media in 50 mL min⁻¹ flow at 50 °C for 60 min, respectively. Furthermore, the samples were purged with He gas to remove the physically adsorbed gases at the same temperature. Afterwards, the TPD run was conducted from 50 to 900 °C at a heating rate of $10 \, ^{\circ}$ C min⁻¹. Simultaneously, NO-TPD-Mass spectra were analyzed by HPR-20 QIC (Quartz Inert Capillary) (HIDEN analytical) real time gas analyzer (RGA) for multiple species molecular weight up to 300 amu. The quantity of NH₃ (NH₃-TPD) was calculated by measuring the average area of the 5 consecutive 1 cc volume pulse injections (similar areas) of 5% NH₃/He gas. H₂-TPR experiments were carried out by heating the catalysts (each 100 mg) at a linear heating rate of 10 °C min⁻¹ between 50 and 1000 °C with 10% H₂/Ar at a constant flow rate of 50 mL min⁻¹. XPS studies were carried out by using PHI 5800 ESCA system, employing a non-monochromatic Al K_{α} (1486.6 eV) source. The binding energies were referenced to the C 1s line at 284.6 eV from adventitious carbon.

2.3. Activity measurements

The SCR of $NO_x(NO + NO_2)$ over the synthesized catalytic materials was evaluated by using ammonia as a reductant. The conversion of NO_x was determined over a down flow fixed-bed reactor system. The quartz reactor (1 cm o.d. and 50 cm length) was placed vertically in a tubular furnace connected to a temperature controller indicator. To minimize the mass transfer limitations, the catalyst was sieved with 40-50 mesh size and then charged into the quartz reactor using quartz wool. Prior to each experiment, about 0.5 mL catalyst was pre-treated by a mixture of 3% O₂ and N₂ flowing at 500 °C for 1 h. A reaction stream consisting of 800 ppm NO_x , 800 ppm NH_3 , 3 vol% O_2 , 6 vol% H_2O , 800 ppm SO_2 and N_2 balance was fed into the reactor system through mass flow controllers with a total flow rate of 500 mL min⁻¹ and at a space velocity of $60,000 \,h^{-1}$. Water vapor was produced by passing N_2 gas through a heated glass wash bottle containing de-ionized water. Catalytic activity measurements were performed in the temperature range between 180 and 500 °C (carried with and without SO₂ and H₂O). The effluent from the reactor was analyzed by an online NDIR Fuji NO and SO_2 analyzer. NO_2 amount was determined by converting NO_2 into NO with Gas converter series CG-2M analyzer. The ammonia concentration was measured before ([NH₃]_{in}) and after ([NH₃]_{out}) the reaction by the GASTEC (Model GV-100) detector. Varian Micro GC equipped with a TCD (thermal conductivity detector) was used to detect N_2 and N_2O . Poraplot Q and Molecular Sieve 5A columns were used to monitor N_2O and N_2 , respectively. The percentage conversions of NO_x , NH_3 and selectivities of N_2 and N_2O were calculated by using the formulae given below.

$$NO_x conversion = ([NO_x]_{in} - [NO_x]_{out})/[NO_x]_{in} \times 100$$
 (1)

$$NH_3 conversion = ([NH_3]_{in} - [NH_3]_{out})/[NH_3]_{in} \times 100 \tag{2}$$

$$N_2$$
Oselectivity = $2 \times [N_2O]/([NO_x]_{in} + [NH_3]_{in} - [NO_x]_{out} - [NH_3]_{out}) \times 100$ (3)

$$\begin{split} N_2 selectivity &= \{[NO_x]_{in} + [NH_3]_{in} - [NO_x]_{out} - [NH_3]_{out} \\ &- [NO_2]_{out} - 2 \times [N_2O]_{out}\} / \{[NO_x]_{in} + [NH_3]_{in} \\ &- [NO_x]_{out} - [NH_3]_{out}\} \times 100 \end{split} \tag{4}$$

where $[NO_x]_{in}$ and $[NO_x]_{out}$ are the initial (inlet) and final (outlet) concentrations of NO_x .

2.4. In situ DRIFTS experiments

In situ DRIFT spectra were recorded by the JASCO (FT/IR-4200) Fourier transform infrared spectrometer, equipped with an in situ diffuse reflection chamber and a high sensitivity MCT/A detector cooled by liquid nitrogen. DRIFT spectra were recorded by accumulating 50 scans at a resolution of 4 cm⁻¹. Finely powdered catalyst was loaded in a porous alumina crucible and placed in a DRIFTS cell, equipped with KBr windows. Prior to each experiment, 20 mg of catalyst was heated in a high temperature DRIFTS cell at a rate of 10 °C min⁻¹ from room temperature to 400 °C under N₂ gas flow for 30 min, and then cooled to room temperature. For ammonia adsorption at room temperature, 2000 ppm of NH₃ was introduced into the DRIFTS cell for 30 min and then followed by purging with N₂ at 50, 150, 250 and 350 °C temperatures for 30 min. Transient in situ DRIFTS experiments were carried out by NH₃ (800 ppm) adsorption at 200 °C for 30 min, followed by purging with N₂ gas. NO (800 ppm) + 3% O₂ gas was then introduced into the DRIFTS cell at 200 °C, and spectra were recorded as a function of time.

3. Results and discussion

3.1. Activity studies

The effect of ceria over SbV/TiO $_2$ catalysts for NO $_x$ reduction by NH $_3$ was evaluated in terms of NO $_x$ conversion. The NO $_x$ conversion of SbV $_x$ Ce/TiO $_2$ catalysts in the absence of H $_2$ O and SO $_2$ were shown in Fig. 1. It has been observed that the ceria loading over SbV/TiO $_2$ sample influenced the NO $_x$ reduction activity. The addition of ceria noticeably expanded the active temperature window for SCR reaction and also improved the NO $_x$ conversion. This improvement in NO $_x$ conversion was observed with the addition of ceria until 10 wt% and then decreased slightly, it could be due to the monolayer coverage of vanadia on 10 wt% ceria added catalyst (Fig. 1). It is well reported in the literature that vanadia loading in monolayer and sub monolayer surface coverage, are far more active than crystalline vanadia nanoparticles and the structure of VO $_x$ strongly influenced by the reducible oxides (e.g., ceria) [24]. Among all the

Fig. 1. NO_x conversion of SbV/TiO₂ and ceria loaded SbV/TiO₂ samples calcined at 500 °C: Without H₂O and SO₂. (Reaction conditions: $[NO_x] = [NH_3] = 800$ ppm, $[O_2] = 3$ vol%, N₂ balance, GHSV = $60,000 \, h^{-1}$).

catalysts tested, SbV10Ce/TiO₂ catalyst exhibited the best performance with nearly higher than 90% of NO_x conversion over a wide range of temperatures from 220 to 450 °C. Above 450 °C, the catalytic activity of all the samples was decreased due to the direct oxidation of ammonia [25]. For the purpose of industrial applications, it is very important to investigate the effect of H₂O and SO₂ on SCR activities, which generally exists in exhaust and flue gas. In this regard, the effect of H₂O and SO₂ were examined and the results are given in Fig. 2. With the addition of H₂O and SO₂ into the reaction gas, the activity of SbVxCe/TiO₂ catalyst was slightly decreased, particularly at low temperatures. In the presence of H₂O and SO₂, the NO_x conversion over SbV20Ce/TiO₂ decreased to 68% from 79% whereas SbV10Ce/TiO₂ showed slight decrease to 90% from 92% at 220 °C. These results reveal that SbV10Ce/TiO2 catalyst exhibits higher resistance against H₂O and SO₂ than SbV20Ce/TiO₂ catalyst. At the same time, the NO_x conversion was maintained higher than 85% in the temperature range of 220–500 °C. These results indicate that the addition of ceria enhanced the ability to resist SO₂ and H₂O and promoted the NO_x conversion at low and high temperature regions as well.

The NO_x conversion activity comparison between SbV/TiO₂, SbV10Ce/TiO₂ and V10Ce/TiO₂ catalysts are shown in Fig. 3 without

Fig. 2. NO_x conversion of SbV/TiO_2 and ceria loaded SbV/TiO_2 samples calcined at 500 °C: With H_2O and SO_2 . (Reaction conditions: $[NO_x] = [NH_3] = 800$ ppm, $[O_2] = 3$ vol%, $H_2O = 6$ vol%, $SO_2 = 800$ ppm, N_2 balance, GHSV = 60,000 h⁻¹).

 $\rm H_2O$ and $\rm SO_2$. Fig. 3 indicates that low and high temperature SCR activities were greatly enhanced with the addition of ceria. The SbV/TiO₂ catalyst with 10% ceria loading (SbV10Ce/TiO₂) showed the highest $\rm NO_x$ conversions over a wide range of temperatures and best catalytic activity as compared to those of SbV/TiO₂ and V10Ce/TiO₂ catalysts. It can be clearly seen from the Fig. 3 that the $\rm NO_x$ conversion over SbV/TiO₂ catalyst was noticeably decreased at above 400 °C due to direct oxidation of ammonia at high temperatures. However, the $\rm NO_x$ conversion was retained higher than 85% over SbV10Ce/TiO₂ and V10Ce/TiO₂ catalysts until 450 °C temperatures. This seems that the addition of ceria retarded the direct oxidation of ammonia at high temperature region.

The effect of H_2O and SO_2 on various catalysts at a space velocity of $60,000\,h^{-1}$ is displayed in Fig. 4. NO_x and NH_3 conversions of SbV/TiO $_2$, SbV10Ce/TiO $_2$ and V10Ce/TiO $_2$ catalysts are shown in Fig. 4(A) and (B) as a function of temperature. At the operating temperatures below 250 °C, it is observed that the addition of 6 vol% H_2O and 800 ppm SO_2 into the reaction stream reduced the catalytic activity, while above 350 °C higher NO_x conversions were noticed [26]. These results suggest that water vapor and SO_2 had inhibition effect at lower temperatures. When the temperature is high, the catalysts show strong resistance to H_2O and SO_2 [27]. It has been observed from the Fig. 4, the SbV/TiO $_2$ catalyst showed

Fig. 3. NO $_x$ conversion vs Temperature on SbV/TiO $_2$, SbV10Ce/TiO $_2$ and V10Ce/TiO $_2$ samples calcined at 500 °C: Without H $_2$ O and SO $_2$. (Reaction conditions: [NO $_x$] = [NH $_3$] = 800 ppm, [O $_2$] = 3 vol%, N $_2$ balance, GHSV = 60,000 h $^{-1}$).

Fig. 4. Activity of SbV/TiO₂, SbV10Ce/TiO₂ and V10Ce/TiO₂ samples calcined at 500° C under H₂O and SO₂ (A) NO_x conversion (B) NH₃ conversion (C) N₂ selectivity and (D) N₂O selectivity. (Reaction conditions: [NO_x] = [NH₃] = 800 ppm, [O₂] = 3 vol%, H₂O = 6 vol%, SO₂ = 800 ppm, N₂ balance, GHSV = 60,000 h⁻¹).

Fig. 5. NO_x conversion as a function of GHSV for SbV10Ce/TiO₂ catalyst. (Reaction Conditions: $[NO_x] = [NH_3] = 800$ ppm, $[O_2] = 3$ vol%, $[NO_x] = 6$ vol%, $[NO_x] = 800$ ppm, $[NO_x] = 800$ ppm

lower NO_x conversions than the other two catalysts. However, the SbV10Ce/TiO₂ catalyst showed superior catalytic activity higher than 87% of NO_x conversion in a wide temperature window from 220 to 500 °C. Once again the results revealed the addition of ceria could enhance the SO₂ and H₂O resistance and reduced the direct oxidation of NH₃. As shown in Fig. 4 (B), the NH₃ slip was decreased significantly when 10% ceria was added to SbV/TiO2 and achieved high NH₃ conversions than SbV/TiO₂ and V10Ce/TiO₂ catalysts. Therefore, the addition of ceria increased the activation of ammonia at low temperatures which lead to higher NO_x conversions for SbV10Ce/TiO₂ catalysts even at low temperatures. The selectivities of N₂ and N₂O over SbV/TiO₂, SbV10Ce/TiO₂ and V10Ce/TiO₂ catalysts are shown in Fig. 4(C) and (D), respectively. We have found that the formation of N₂O started and accordingly the formation of N₂ was decreased above 300 °C. The N₂O formation over SbV/TiO₂ catalyst increases at temperatures more than 350 °C and reaches a maximum of 11% at 500 °C. N₂O is a major greenhouse gas and air pollutant and the impact of N2O on warming the atmosphere is over 300 times stronger than that of CO₂ (per unit weight) [28]. On the contrary, the decrease of N₂O formation was observed with the addition of ceria to SbV/TiO₂ catalyst and showed an excellent N2 selectivity over SbV10Ce/TiO2 compared to SbV/TiO2 and V10Ce/TiO₂ catalysts. It is worth noting that the SbV10Ce/TiO₂ catalyst show high N₂ selectivity more than 95% until the temperature as high as 500 °C. Among all the three catalysts, SbV10Ce/TiO₂ has the best NO_x conversion and high N₂ selectivity in a wide temperature range of 220 to 500 °C. The addition of ceria improved the dispersion of antimony and vanadia over TiO₂ surface of the catalyst, which leads to excellent structural characteristics that is beneficial for the NO_x reduction with ammonia [29,30].

Gas hourly space velocity (GHSV) is a very important factor to be considered in designing of the catalyst. Therefore, the influence of GHSV on the NO_x conversions over SbV10Ce/TiO $_2$ catalyst has been investigated and is shown in Fig. 5. These activities are investigated at different space velocities from 5000 to $120,000\,h^{-1}$. It can be observed that the NO_x conversion efficiency decreases rapidly with increasing space velocity, especially at low temperatures. However, the difference in NO_x conversions becomes narrower at higher temperatures. It can be noticed from the results that complete NO_x conversion was achieved at lowest temperatures around $200\,^{\circ}\text{C}$ at a space velocity of $5000\,h^{-1}$ and simultaneously widened the active temperature window. Although, the active temperature window at higher space velocities is slightly narrower than at the lower space

Fig. 6. XRD profiles of SbV/TiO₂, SbV10Ce/TiO₂ and V10Ce/TiO₂ fresh (F) and used (U) samples.

velocities, the high temperature NO_x conversion was maintained to be higher than 80% (>400 °C).

3.2. Catalytic characterization

Fig. 6 showed the X-ray diffractograms of various catalysts calcined at 500 °C. The XRD pattern of all the samples demonstrates standard TiO₂ anatase peaks [PDF-ICDD 86-1157]. In addition, the ceria promoted samples showed cubic ceria peaks at $2\theta = 28.5^{\circ}$, 33.07°, 56.3° [PDF-ICDD 81-0792] [23]. The ceria based catalysts showed broader peaks compared to SbV/TiO₂ catalyst, which could be assigned to the small crystallites nature of the formed solids. No peaks due to solid solution between TiO₂ and CeO₂ were detected. Because of nominal addition of 2 wt% V and 2 wt% Sb, the peaks pertaining to these metal oxides were also not detected. Chiang et al. [31] have found that Sb/V mole ratio of 1, the characterization results of their work by XRD revealed that no crystalline V₂O₅ phase is present. Similarly, Sb/V ratio was maintained as 1 in our SbV/TiO₂ and SbV10Ce/TiO₂ catalysts. Therefore, the XRD results showed no peaks pertaining to vanadia and antimony due to well dispersion of these species on the surface of the support. In order to know the thermal stability of the materials at reaction conditions, the XRD patterns for used catalysts were analyzed. The used catalysts showed similar XRD patterns as like fresh catalysts, which may suggest the existence of small crystallites in used catalysts signifying the good thermal stability of the catalysts. In general, at high temperatures, pure TiO₂ may undergoes a phase transformation from anatase to rutile which usually begins above 500 °C [32,33]. Further, no such transformation or extra lines were noticed in the results. However, in case of V10Ce/TiO2 catalyst XRD pattern, the broad peak at $2\theta = 21^{\circ}$ was observed, which is assigned to the formation of VOSO₄ [PDF-ICDD 30-1431]. This could be formed due to the sulfation of vanadia by SO₂ gas under the reaction conditions. In our previous report on Sb promoted V₂O₅/TiO₂ [22], the quantum chemical calculation results revealed that the bonding strength between Sb and O, O (vanadia) and H of ammonium bisulfate becomes weak which led to an easy desorption of ammonium bisulfate. The XPS results of used catalyst also confirmed the less amount of formation of ammonium bisulfates on Sb promoted V₂O₅/TiO₂ compared to that on commercial catalyst. Hence, the presence of antimony caused the less formation of VOSO₄ on used catalysts of SbV/TiO₂ and SbV10Ce/TiO₂, which might be very small

Table 1BET-SA H₂-TPR and NH₃-TPD results of the catalysts.

Catalyst	BET-SA (m ² /g)	$\frac{H_2\text{-TPR}}{T_{\max}(^\circ\text{C})}$ $H_2\text{-uptake}(\mu\text{mol}/\text{m}^2)$		NH ₃ -TPD	
				Total acidity (mmol/m²)	
SbV/TiO ₂	71	464	1.18	0.57	
V10Ce/TiO ₂	69	483	1.13	0.69	
SbV10Ce/TiO ₂	73	488	1.76	0.78	

 T_{max} : Maximum peak temperature.

amount to the detection levels of XRD. Table 1 shows the results of BET surface area of the freshly prepared catalysts calcined at $500\,^{\circ}$ C. As seen from Table 1, the addition of ceria has some enhancement of surface area. However, all the synthesized catalysts showed moderate specific surface area around $70\,\mathrm{m}^2\mathrm{g}^{-1}$.

The NO-TPD patterns of the SbV10Ce/TiO₂, V10Ce/TiO₂ and SbV/TiO₂ catalysts calcined at $500\,^{\circ}\text{C}$ are showed in Fig. 7(A). Each catalyst pattern mainly consisted of three peaks. The first peak observed at low temperatures below $400\,^{\circ}\text{C}$ is consisted of two peaks appeared at $160\,^{\circ}\text{C}$ with a shoulder peak at above $250\,^{\circ}\text{C}$. The second small is centered between 450 to $600\,^{\circ}\text{C}$ and the third one is much more intensive than the other two peaks and was appeared at temperature higher than $600\,^{\circ}\text{C}$. While, the third peak on Sb/TiO₂ catalyst was shifted to low temperatures ($<600\,^{\circ}\text{C}$). As seen from Fig. 7(A), the intensity of the peak observed below $400\,^{\circ}\text{C}$ is very high for SbV10Ce/TiO₂ catalyst followed by V10Ce/TiO₂ and

SbV/TiO₂. In order to identify the nature of these surface desorbed species the mass spectra (NO-TPD-MS) were recorded for the three catalysts. Fig. 7(B) and (C) depicts the mass spectra of NO and O_2 . Apart from desorption of nitric oxide and oxygen also emission of N₂, N₂O, NO₂ and H₂O was detected. Fig. 7(B) displayed the patterns obtained for SbV10Ce/TiO₂, V10Ce/TiO₂ and SbV/TiO₂ catalysts of NO mass signals. The NO desorption of SbV/TiO₂ catalyst showed single reduction peak at 270 °C and a small reduction at very high temperatures around 685 °C. However, the adsorption of NO increased with the addition of ceria to V/TiO₂, and attributed three peaks, first one is observed at 150 °C, second one at 250 °C, third one at 320 °C and very small peak at high temperatures at around 730 °C. Furthermore, the addition of ceria to SbV/TiO₂, the NO adsorption was drastically increased and showed desorption peak from 80 to 420 °C, followed by a small desorption peak at high temperatures around 730 °C. The NO peak observed at low

 $\textbf{Fig. 7.} \ \ NO-TPD-MS \ patterns \ of \ SbV/TiO_2, \ SbV10Ce/TiO_2 \ and \ V10Ce/TiO_2 \ samples \ (A) \ NO-TPD, \ (B) \ NO-Mass \ spectra \ and \ (C) \ O_2-Mass \ spectra.$

Fig. 8. SO₂-TPD patterns of SbV/TiO₂, SbV10Ce/TiO₂ and V10Ce/TiO₂ samples.

temperatures below 150 °C are attributed to weakly adsorbed NO species, the peak observed at 150-250 °C are attributed to medium and above 250-420°C peak attributed to strongly adsorbed NO species. A small peak observed on all the three catalysts at the temperatures higher than 600 °C temperatures was attributed to the strongly chemisorbed NO species. Among all the catalysts, the addition of ceria to SbV/TiO₂ increased the adsorption properties of NO and as well as increased the desorption temperatures from low to high temperatures, which may led to show higher NO_x conversions at wide temperatures. However, the mass signal corresponding to N₂, N₂O was not detected, except very small intensity and broad peak of NO₂ (supporting information) was observed over SbV10Ce/TiO₂ catalyst between 100 and 400 °C. This could be beneficial for the fast SCR [6] at low temperature over SbV10Ce/TiO₂ catalyst. In particular, the formation small crystallites of vanadia, antimony oxides and their fine dispersion on surface of CeO₂-TiO₂ improved the catalytic activity at wide temperatures. Fig. 7 (C) represents the mass spectra of O2 of the three catalysts. All the three catalysts showed two peaks at the temperatures above 400 °C. These spectra clearly confirmed that the peaks observed at high temperatures in NO-TPD are corresponded to O2. This may attributed to the chemisorbed oxygen, which was adsorbed during the pretreatment of the samples at 400 °C in 10% O₂/He and some bulk oxygen released by the CeO₂ or TiO₂.

In order to understand the SO $_2$ adsorption behavior over the synthesized catalysts, SO $_2$ TPD measurements were conducted. Fig. 8 presents the SO $_2$ TPD patterns of SbV10Ce/TiO $_2$, V10Ce/TiO $_2$ and SbV/TiO $_2$ catalysts calcined at 500 °C. There is clear synergism between the NO TPD and SO $_2$ TPD. The SbV10Ce/TiO $_2$ catalyst showed lowest SO $_2$ adsorption properties. Furthermore, the SbV/TiO $_2$ catalyst showed a low temperature shift signal at around 600 °C, which reveals the inhibition behavior of the Sb with respect to SO $_2$ adsorption. The addition of ceria to SbV/TiO $_2$ catalyst further enhanced the NO adsorption and inhibited the SO $_2$ adsorption properties. Therefore, the high NO $_2$ conversion for SbV10Ce/TiO $_2$ could be attributed to the NO adsorption and SO $_2$ inhibition properties.

The NH₃-TPD patterns of the synthesized catalysts are depicted in Fig. 9. All the three (SbV/TiO₂, SbV10Ce/TiO₂ and V10Ce/TiO₂) catalysts displayed two broad NH₃ desorption peaks at $120-240\,^{\circ}\text{C}$ and $250-450\,^{\circ}\text{C}$ temperatures, respectively. The ammonia desorbed at low temperatures was ascribed to weak acidic sites, which correspond to physisorbed ammonia and partially ionic

Fig. 9. NH₃-TPD patterns of SbV/TiO₂, SbV10Ce/TiO₂ and V10Ce/TiO₂ samples.

 NH_4^+ bound to Brønsted acid sites [34]. The high temperature desorbed ammonia was ascribed to desorption of coordinated NH₃ bound Lewis acid sites [35]. Indeed, the ammonia adsorption ability of the catalyst is generally considered as one of the most important criteria for the screening of catalytic systems for the NH₃-SCR [36]. As we notice from Fig. 9, the ceria promoted catalysts showed predominantly more desorbed ammonia at low as well as high temperatures. It seems that cerium species create new acidic sites suggest a progressive increase of the surface acidity owing to the addition of ceria. This is exceptionally beneficial for the enhancement of the NO_x reduction activity with ammonia. The total acidity of the catalysts was calculated in mmol/m² of ammonia adsorbed on the catalysts and represented in Table 1. The drastic improvement in the total acidity was observed for SbV10Ce/TiO₂ catalyst compared to those of SbV/TiO₂ and V10Ce/TiO₂ catalysts. Thus, the improvement in ammonia adsorption over ceria doped catalysts is believed to be significantly beneficial to the NO_x reduction by ammonia at wide range of temperatures.

To investigate the presence of reducible species in the prepared catalysts, the H_2 -TPR experiment was carried out. Fig. 10 illustrates the H_2 -TPR patterns for SbV/TiO₂, SbV10Ce/TiO₂ and V10Ce/TiO₂ catalysts. All the three catalysts showed major reduction peak between 300 to $600\,^{\circ}$ C, which could be assigned to the

Fig. 10. H₂-TPR patterns of SbV/TiO₂, SbV10Ce/TiO₂ and V10Ce/TiO₂ samples.

reduction of surface antimony, vanadia and ceria species. These surface reduction peaks were attributed to the reductions from Sb⁵⁺ to Sb³⁺, V^{5+} to \hat{V}^{3+} and Ce^{4+} to Ce^{3+} [37]. The values of peak maximum temperatures (T_{max}) along with their respective H₂-uptakes are represented in Table 1. The SbV/TiO₂ catalyst exhibited the maximum reduction peak at low temperatures around 464 °C, while the ceria added V/TiO₂ catalyst increased the maximum reduction peak temperature to 483 °C. This peak showed a small shoulder peak at low temperatures around 392 °C, which may be corresponded to the reduction of surface dispersed ceria species [12]. In case of ceria added SbV/TiO₂ catalyst, the reduction peak started from low temperatures and then the H₂ consumption was significantly enhanced by reaching the maximum peak at the temperature around 488 °C along with a small shoulder peak at 600 °C. This could be attributed due to the interaction between surface antimony, vanadia and ceria species. However, the amount of H₂ consumption for V10Ce/TiO₂ catalyst was less than that of SbV/TiO₂ and SbV10Ce/TiO₂. According to this result it may be suggested that the surface reduction of antimony oxides provides more lattice oxygen which is also well supported by XPS results in the later discussion. The synergistic effect of antimony, vanadia and ceria on TiO2 could induce thermal stability of the SbV10Ce/TiO₂ catalyst and thus, increases high temperature NO_x reduction activity (>350 °C). The total number of reducible species also increases for SbV10Ce/TiO2 catalyst and shows highest H₂ consumption than SbV/TiO₂ and V10Ce/TiO₂ catalysts. In ceria added SbV10Ce/TiO2 and V10Ce/TiO2 catalysts a small reduction peak appeared at above 900°C temperatures, which could be attributed to the reduction of bulk ceria. From the above results, it can be concluded that the high acidity and high reducibility of SbV10Ce/TiO₂ catalyst played an important role in increasing NO_x conversion efficiency in a wide temperature widow.

Surface atomic concentrations of Ce, Sb, V, O and Ti from XPS are summarized in Table 2. The photoelectron spectra of Ce 3d, V 2p, O 1s and Ti 2p are displayed in Fig. 11. Table 1 shows that the atomic ratio of V/Ti over the surface of SbV10Ce/TiO2 and V10Ce/TiO2 are 0.07 and 0.10. They are relatively higher than that of SbV/TiO₂ catalyst (0.05). This result ascertained well dispersion of vanadia over the surface of TiO₂ support with the addition of ceria. Fig. 11(A) displays two main characteristic peaks observed at 901.0 and 883.0 eV binding energy, which corresponding to Ce $(3d_{3/2})$ and Ce $(3d_{5/2})$, respectively. These two $(3d_{3/2}$ and $3d_{5/2})$ broad peaks attributed to the mixed valance cerium oxidation (Ce⁴⁺ and Ce³⁺ species) states over the surface of V10Ce/TiO₂ and SbV10Ce/TiO₂ catalysts [38]. The XPS spectra of Ce 3d peaks are denoted as v, v'' and u, u''assigned to Ce⁴⁺ species while v', u' are assigned to Ce³⁺ species [39]. The binding energy of v' peak belonging to Ce³⁺ for V10Ce/TiO₂ and SbV10Ce/TiO₂ catalysts appeared at 885.6 and 885.8 eV. These Ce³⁺ species could create a charge imbalance vacancies and unsaturated chemical bonds on the catalyst surface, which could lead to the increase of chemisorbed oxygen on the surface of the catalysts.

Fig. 11(B) shows XPS spectra of V 2p of the three catalysts SbV/TiO₂, V10Ce/TiO₂ and SbV10Ce/TiO₂. The center of the peak binding energy of V 2p_{3/2} of the three catalysts exists at 516.8 eV.

According to the handbook of the elements and native oxides for XPS [40], the reported V $2p_{3/2}$ peak binding energies for the oxidation state of V⁵⁺ is in the range from 517.4 to 516.4 eV and the oxidation state of V⁴⁺ lies in the range of 515.7 to 515.4 eV. It is observed that the SbV/TiO₂ catalyst shows the V⁵⁺ peak binding energy at 516.5 eV, whereas the ceria loaded SbV10Ce/TiO₂ and V10Ce/TiO₂ catalysts showed the slightly shift in binding energies toward high at 516.7 and 516.9 eV. The existence of V $2p_{3/2}$ peak between 518.4–515.0 eV on the surface of SbV10Ce/TiO₂ catalyst indicates the coexistence of V⁵⁺ and V⁴⁺ species [41,42]. This would favor the catalytic reaction of NH₃-SCR over SbV10Ce/TiO₂ catalyst and eventually leads to higher NO_x conversions at wide range of temperatures.

The XPS spectra of O 1s peak (Fig. 11(C)) could be fitted into two peaks. The peak appeared at lower binding energy (530.3–529.2 eV) could be assigned to the lattice oxygen (O_B) and additional peak appeared at higher binding energy (532.5-531.5 eV) is corresponded to the surface chemisorbed oxygen (O_{α}) [43]. The surface chemisorbed oxygen (O_{α}) has been reported to be the most active oxygen in the oxidation reactions due to its higher mobility than the lattice oxygen (O_{β}) [10,44]. It can be clearly observed from Table 1 that the addition of ceria increased the percentage of O_{α} over the surface of SbV10Ce/TiO2 and V10Ce/TiO2 compared to that of SbV/TiO₂ catalyst. On the other hand, the peak intensity of OB is very high in SbV10Ce/TiO2 and SbV/TiO2 catalysts than V10Ce/TiO₂, which is very clear from the Fig. 11(C). This could be due to the presence of antimony. Therefore, the above results indicate that the addition of ceria promoted the formation of fairly higher amount of surface chemisorbed mobile oxygen (O_{α}) and lattice oxygen (O_{β}) species. Consequently, higher NO_x conversion in SbV10Ce/TiO₂ catalyst over wide temperature range was observed.

Fig. 11(D) displays the XPS spectra of Ti 2p of the three catalysts. The peaks corresponding to Ti $2p_{1/2}$ and $2p_{3/2}$ for SbV/TiO₂ catalyst are observed at binding energies 464.6 and 458.8 eV, respectively. This indicates that Ti exists in Ti⁴⁺ oxidation state [43] and they are observed at slightly smaller binding energies than that of pure TiO_2 (the binding energies of $Ti 2p_{1/2}$ and $2p_{3/2}$ peaks are observed at 464.7 and 458.9 eV, respectively). This might be due to the fact that stronger affinity of electron cloud by Ti⁴⁺. Addition of ceria leads to an enhancement in the electron affinity of Ti and causes lower binding energies for V10Ce/TiO₂ (Ti $2p_{1/2}$ and $2p_{3/2}$ – 464.3 and 458.5 eV) and SbV10Ce/TiO₂ (Ti $2p_{1/2}$ and $2p_{3/2}$ – 464.2 and 458.4 eV) catalysts. These results reveal that ceria has strong interaction with the surface of the TiO2 and influence the catalytic activity of the catalyst. It is also observed that the shift in binding energy of the Ti 2p spectra toward lower binding energy follows the sequence: SbV/TiO₂ > V10Ce/TiO₂ > SbV10Ce/TiO₂. This low binding energy shift of Ti 2p (SbV10Ce/TiO2) peak is mainly due to interaction of antimony, vanadia and ceria on the surface of well defined TiO₂.

The TEM images and EDS spectra of fresh and used SbV10Ce/ TiO_2 catalysts are depicted in Fig. 12(A) and (B). The morphology of these oxides seems to be configured by a stack of spherical particles. Both

Table 2XPS results of various samples calcined at 500 °C.

S. No.	Catalyst	Surface atomic concentration (%)								
		Ti	V	Sb	Ce	0			V/Ti	Ce/Ti
						^a O _T	bOα	bOβ		
1	SbV/TiO ₂	20.99	1.06	1.07	-	76.87	8.3	91.7	0.05	-
2 3	SbV10Ce/TiO ₂ V10Ce/TiO ₂	17.45 20.83	1.19 2.14	1.06 -	1.29 0.94	79.01 76.01	13.5 39.5	86.5 60.5	0.07 0.10	0.06 0.04

^a Atomic concentration of the total oxygen.

 $[^]b$ Percentage of peak area of O_{α} and O_{β} .

 $\textbf{Fig. 11.} \ \ XPS \ spectra of (A) \ Ce \ 3d \ of \ SbV10Ce/TiO_2 \ and \ V10Ce/TiO_2, (B) \ V \ 2p \ of \ SbV/TiO_2, SbV10Ce/TiO_2 \ and \ V10Ce/TiO_2, (C) \ O \ 1s \ of (i) \ SbV/TiO_2, (ii) \ SbV10Ce/TiO_2 \ and (iii) \ V10Ce/TiO_2, and (D) \ Ti \ 2p \ of \ SbV/TiO_2, SbV10Ce/TiO_2 \ and V10Ce/TiO_2.$

fresh and used catalysts reveal a homogeneous distribution of crystallites all over the catalyst surface. Many randomly oriented groups of nano-crystallites are observed. The mean crystallite size of the fresh and used catalysts is $\sim\!25$ nm, indicating no sintering effect at

higher temperatures under the reaction conditions. The EDS spectra of the fresh and used catalysts showed the elemental concentration of all the components. It was observed that the used catalysts had small amount of sulfur content. This could be due to the small

Fig. 12. TEM-EDS images of SbV10Ce/TiO₂ fresh (A) and used (B) samples.

amounts of sulfates formed in the used catalysts, which could not be able to detectable by XRD.

3.3. DRIFTS study

3.3.1. Ammonia adsorption

The NH₃ desorbed at low temperatures during NH₃-TPD was considered to exist on Brønsted acid sites and that desorbed at high temperature was considered to exist on Lewis acid sites. However, NH3-TPD cannot differentiate the Brønsted acid sites and Lewis acid sites i.e., the weak acid sites may contain few Lewis acid sites and the strong acid sites may contain Brønsted acid sites. Therefore, it was necessary to investigate the Brønsted and Lewis acid sites through DRIFT spectroscopy. The catalysts were subjected to DRIFTS analysis with ammonia adsorption at room temperature and the resultant desorption spectra are shown in Fig. 13 at different temperatures (50, 150, 250 and 350 °C). Fig. 13(A) represents the DRIFT spectra of NH₃ adsorption on SbV10Ce/TiO₂ catalyst at 50, 150, 250 and 350 °C temperatures. The vibration of N-H deformation band of adsorbed ammonia molecule was observed in the range of 1100–1700 cm⁻¹. It is an important fingerprint region to differentiate the Lewis and Brønsted acid sites [45-47]. The bands observed at 1257 and 1603 cm⁻¹ can be assigned to asymmetric and symmetric bending vibrations of the N-H bonds in NH₃ coordinately linked to Lewis acid sites [46], while the bands at 1436 and 1673 cm⁻¹ could be assigned to asymmetric and symmetric bending vibrations of NH₄⁺ bound to Brønsted acid sites [46,47]. It is noteworthy that the NH₃ adsorbed on Brønsted acid sites was much higher than that of Lewis acid sites.

Fig. 13(B) indicates the DRIFT spectra of NH₃ adsorption on V10Ce/TiO₂ catalyst, which is similar to that of SbV10Ce/TiO₂ catalyst except that the bands at 1436 and 1603 cm⁻¹ were slightly shifted to 1440 and 1601 cm⁻¹, respectively. However, the bands of Brønsted and Lewis acid sites were almost disappeared above 150 °C over V10Ce/TiO₂, while the SbV10Ce/TiO₂ catalyst shows decrease in intensity of Brønsted and Lewis acid sites until 250 °C temperature. This confirms that SbV10Ce/TiO₂ catalyst possesses abundant Brønsted and Lewis acid sites than V10Ce/TiO₂ catalyst. The catalyst without ceria (SbV/TiO₂) shows the less Brønsted acid

sites and more Lewis acid sites compared to SbV10Ce/TiO2 and V10Ce/TiO₂ catalysts (Fig. 13(C)). These Lewis acid and Brønsted acid sites are observed at 1240, 1600 cm⁻¹ bands and 1463, 1673 cm⁻¹ bands, respectively on SbV/TiO₂ catalyst. However, the peaks corresponding to Brønsted acid and Lewis acid sites were disappeared above 150°C temperatures on SbV/TiO₂ catalyst. According to the literature and our experimental results, the presence of abundant Brønsted acid sites on SbV10Ce/TiO2 catalyst should be responsible for the increase of the SCR activities at wide range of temperatures [48]. It was interesting to note that a weak peak at 1562 cm⁻¹ appeared in DRIFT spectra for SbV10Ce/TiO₂ and V10Ce/TiO₂ catalysts. This peak is attributed to the -NH₃⁺ group [49], which indicating that the -NH₃⁺ might have formed from the decomposition of NH₄⁺ adsorbed on the Brønsted acid sites. Especially, a group of peaks at $1330-1380 \, \text{cm}^{-1}$ were observed on SbV/TiO₂ catalyst, which could be assigned to the intermediates of ammonia oxidation species and their intensities increases drastically on SbV/TiO₂ catalyst above 250 °C. This indicates that the direct oxidation of ammonia is provoked at higher temperatures over SbV/TiO₂, which leads to lower NO_x conversions for SbV/TiO₂ catalyst than ceria loaded catalysts above 350 °C temperatures.

3.3.2. Reaction between nitrogen oxides and ammonia pre-adsorbed species

The DRIFTS experimental results of NH₃ adsorption followed by Nitric oxides reaction with Lewis and Brønsted acid sites on surface of the SbV10Ce/TiO₂ and SbV/TiO₂ catalysts were displayed in Fig. 14(A) and (B). The catalysts were pre-adsorbed with 800 ppm ammonia for 30 min at 200 °C, followed by N₂ purging. 800 ppm NO+3 vol% O₂ was then introduced into the DRIFTS cell at 200 °C, and the spectra were recorded as a function of time. As we noted already, the bands assigned to NH₃ species coordinately linked to Lewis acid sites and NH₄+ bound to Brønsted acid sites were observed at 1591 cm⁻¹ and 1433 cm⁻¹ on SbV10Ce/TiO₂ catalyst upon treatment with NH₃. The bands attributed to Lewis and Brønsted acid sites were quickly vanished over SbV10Ce/TiO₂ (Fig. 14(A)) after the introduction of NO+O₂. At the same time, several new bands were observed at 1613, 1588 and 1558 cm⁻¹, which corresponded to the intermediate species of NO_x. The band

Fig. 13. DRIFTS spectra of (A) SbV10Ce/TiO₂ (B) V10Ce/TiO₂ and (C) SbV/TiO₂ exposed to 2000 ppm NH₃ for 30 min at room temperature and then purged by N₂ at 50, 150, 250 and 350 °C.

at 1613 cm⁻¹ may be attributed to the NO₂ species [50]. The bands at 1588 and $1558\,\mathrm{cm^{-1}}$ were attributed to the nitrite and nitrate $(NO_2^- \text{ and } NO_3^-)$ species [51]. In case of SbV/TiO₂ catalyst, the spectrum obtained after the adsorption of ammonia was relatively similar, except that the intensity of the band assigned to Brønsted acid sites was less than that of SbV10Ce/TiO2 catalyst. Also, the bands attributed to Lewis and Brønsted acid sites were slightly shifted to 1597 and 1463 cm⁻¹ (Fig. 14(B)). The formation of intermediate NO_x species was observed over SbV/TiO₂ catalyst, after the introduction of NO+O₂ on NH₃ presorbed catalyst surface at 1603 and 1568 cm⁻¹. These bands were attributed to the nitrite and nitrate species. But, the formation of NO2 species was not observed on SbV/TiO₂ catalyst. This means that the addition of ceria to SbV/TiO₂ catalyst promoted the formation of NO₂ at low temperatures (200 °C) and it is beneficial for the fast SCR. Koebel et al. investigated the low temperature fast SCR behavior on V₂O₅/TiO₂ based catalysts [52,53], which is well supported with our in situ DRIFTS results. The negative peak at 2030 cm⁻¹ was due to the overtone of V=O on SbV10Ce/TiO₂ and SbV/TiO₂ catalysts. These negative peaks indicate that V=O groups on the catalyst surface are consumed upon ammonia absorption [54]. The adsorbed ammonia

reacted with NO as a function of time and then decreased the intensity of the negative peak of V=O in both the catalysts.

3.4. SO_2 on-off study

The exhaust gas usually contains both H₂O and SO₂, which are likely to poison the catalysts and then decreases the NO_x conversion. Therefore, H₂O and SO₂ tolerance of SbV/TiO₂, SbV10Ce/TiO₂ and V10Ce/TiO₂ catalysts, and their long-term durability studies with SO₂ on-off cycles were performed under isothermal conditions at 240 °C. As illustrated in Fig. 15, when 6 vol% H₂O and 800 ppm SO₂ are simultaneously added to the gas reaction mixture, the NO_x removal efficiency declined at different rates for the three catalytic systems. A gradual decrease in every 5 h during SO₂ on-off cycle for the following 38 h of continuous run was observed. Among all the catalysts, SbV10Ce/TiO₂ catalyst underwent small decrease in NO_x conversion from 98% to 91%. However, the NO_x conversion of V10Ce/TiO2 and SbV/TiO2 catalysts was decreased significantly from 91% to 75% and 93% to 60%, respectively. These results express a clear difference in deactivation behavior of the catalysts due to poisoning effect of H₂O and SO₂. In the presence

Fig. 14. DRIFTS spectra of (A) SbV10Ce/TiO₂ and (B) SbV/TiO₂ catalysts exposed to 800 ppm NH₃ for 30 min at 200 °C, followed by N₂ purging and then exposed to 800 ppm NO + 3 vol% O₂ as a function of time.

of SO₂ and H₂O, SO₂ can be oxidized to SO₃ by O₂ and these SO_x ($SO_2 + SO_3$) compounds eventually forms ammonium sulfate ((NH₄)₂SO₄) or ammonium bisulfate (NH₄HSO₄) by reacting with slipped NH₃ and H₂O [27,55]. It could be possible that the formation of ammonium sulfate ((NH₄)₂SO₄) or ammonium bisulfate (NH₄HSO₄) species over SbV/TiO₂ and V10Ce/TiO₂ catalysts occur faster than over SbV10Ce/TiO₂. This might result in blocking of the catalytic pores and occupying the catalytic active sites. Conversely, the SbV10Ce/TiO2 catalyst showed higher resistance to SO₂ and water during 38 h of continuous study. During the course of the reaction over SbV10Ce/TiO2 catalyst, the small amount of formed ammonium sulfates are removed by water in the absence of SO₂ (SO₂ off cycle) and then showed gradual increment in the NO_x conversion efficiency. On the other hand, the amounts of ammonium sulfates formed over SbV/TiO2 and V10Ce/TiO2 catalysts are more, which are not removed completely by water in the absence of SO₂, leading to continuous deactivation of those catalysts. The results of SO₂-TPD for SbV10Ce/TiO₂ catalyst are in good agreement with these results, where less SO₂ adsorption gave

Fig. 15. SO₂ on–off studies on SbV10Ce/TiO₂, V10Ce/TiO₂ and SbV/TiO₂ samples: With SO₂ and H₂O at 240 °C. (Reaction Conditions: $[NO_x] = [NH_3] = 800$ ppm, $[O_2] = 3$ vol%, H₂O = 6 vol%, SO₂ = 800 ppm, N₂ balance, GHSV = 60,000 h⁻¹).

a hint to its strong resistance toward SO_2 and lower probability of ultimate salts formation. Consequently, $SbV10Ce/TiO_2$ catalyst increases resistance against SO_2 and H_2O during SO_2 on–off long term stability under isothermal conditions at $240\,^{\circ}C$ temperature for $38\,h$.

4. Conclusions

The various ceria loaded Sb- V_2O_5 /TiO $_2$ catalysts were developed for the reduction of NO_x with NH_3 , especially in the temperature region between $180\text{-}500\,^{\circ}\text{C}$. The addition of 10% ceria to Sb- V_2O_5 /TiO $_2$ catalyst showed excellent NO_x conversion with higher than 87% in a wide temperature window of $220\text{-}500\,^{\circ}\text{C}$. This catalyst exhibits superior N_2 selectivity than $Sb-V_2O_5$ /TiO $_2$ and V_2O_5 -10Ce/TiO $_2$ catalyst also exhibits strong resistance to 6% H_2O and 800 ppm SO_2 at low temperatures around $220\,^{\circ}\text{C}$ and possesses high NO_x conversion (90%) and N_2 selectivity (100%).

The NH₃-TPD and NO-TPD results for Sb-V₂O₅-10Ce/TiO₂ catalyst show high acidity and high NO adsorption ability, which could be responsible for the high NO_x conversions at wide range of temperatures. H₂-TPR reveals a strong interaction between antimony, vanadia and ceria, which resulted in increased H₂ uptakes and high temperature reduction peak. The XRD results for the fresh and used catalysts of 10% ceria loaded Sb-V₂O₅/TiO₂ showed no change in their spectra and was well supported by TEM images, which demonstrates the high compositional stability and mechanical strength of the prepared catalysts even in the presence of excess H₂O and SO₂. Furthermore, results of XPS revealed the presence of Ce⁴⁺/Ce³⁺ species could increase chemisorbed oxygen over ceria added catalysts.

The DRIFT spectra of Sb-V $_2$ O $_5$ -10Ce/TiO $_2$ catalyst showed Brønsted acid sites at 1436 and 1673 cm $^{-1}$ band until 250 °C temperature, which suggested the presence of abundant Brønsted acid sites on Sb-V $_2$ O $_5$ -10Ce/TiO $_2$ compared to Sb-V $_2$ O $_5$ /TiO $_2$ and V $_2$ O $_5$ -10Ce/TiO $_2$ catalysts. This contributed to the high NH $_3$ -SCR activity for Sb-V $_2$ O $_5$ -10Ce/TiO $_2$ catalyst at wide temperature window. SO $_2$ -TPD and NO-TPD results revealed that Sb-V $_2$ O $_5$ -10Ce/TiO $_2$ catalyst significantly enhanced the NO adsorption and SO $_2$ inhibition properties which guided to high activity and selectivity at wide temperatures and exhibits high H $_2$ O and SO $_2$ tolerance during 38 h under isothermal conditions at 240 °C.

Acknowledgements

This work was financially supported by 'Future Core Technology' program from KIST and a grant from the Fundamental R&D Program for the core technology of materials, funded by the Ministry of Knowledge Economy of the Republic of Korea.

Appendix A. Supplementary data

Supplementary data associated with this article can be found, in the online version, at http://dx.doi.org/10.1016/ j.apcatb.2013.05.071.

References

- [1] H. Bosch, F. Janssen, Catal. Today 2 (1988) 369-379.
- [2] K.C. Taylor, Catal. Rev. Sci. Eng. 35 (1993) 457–481.
- [3] G. Madia, M. Elsener, M. Koebel, F. Raimondi, A. Wokaun, Appl. Catal. B 39 (2002) 181-190
- [4] C. Ciardelli, I. Nova, E. Tronconi, D. Chatterjee, B. Bandl-Konrad, M. Weibel, B. Krutzsch, Appl. Catal. B 70 (2007) 80-90.
- [5] M. Koebel, M. Elsener, M. Kleemann, Catal. Today 59 (2000) 335–345.
- [6] I. Nova, C. Ciardelli, E. Tronconi, D. Chatterjee, B. Bandl-Konrad, Catal. Today 114 (2006) 3-12
- [7] Y.J. Kim, H.J. Kwon, I-S. Nam, J.W. Choung, J.K. Kil, H-J. Kim, M-S. Cha, G.K. Yeo, Catal. Today 151 (2010) 244-250.
- [8] F. Kapteijn, L. Singoredjo, M. Vandriel, A. Andreini, J.A. Moulijn, G. Ramis, G. Busca, J. Catal. 150 (1994) 105-116.
- [9] P.G. Smirniotis, D.A. Peña, B.S. Uphade, Angew. Chem. Int. Ed. 40 (2001) 2479-2482.
- [10] G. Carja, Y. Kameshima, K. Okada, C.D. Madhusoodana, Appl. Catal. B 73 (2007) 60-64.
- [11] S. Roy, B. Viswanath, M.S. Hegde, G. Madras, J. Phys. Chem. C 112 (2008) 6002-6012.
- L. Chen, J. Li, M. Ge, J. Phys. Chem. C 113 (2009) 21177-21184.
- [13] H. Suzuki, M. Riemi, T. Naoki, Toyota Tech. Rev. 46 (1996) 68-81.
- [14] S. Matsumoto, Y. Ikeda, H. Suzuki, M. Ogai, N. Miyoshi, Appl. Catal. B 25 (2000) 115-124.
- [15] A. Trovarelli, G. Dolcetti, C. de Leitenburg, J. Kaspar, P. Finetti, A. Santoni, J. Chem. Soc., Faraday Trans. 88 (1992) 1311-1319.
- [16] C. Serre, F. Garin, G. Belot, G. Marie, J. Catal. 141 (1993) 9-20.
- M.F.M. Zwinkels, S.G. Jaras, P.G. Menon, T.A. Griffin, Catal. Rev. Sci. Eng. 35 (1993) 319-358.
- [18] B. Murugan, A.V. Ramaswamy, J. Am. Chem. Soc. 129 (2007) 3062-3063.

- [19] C.T. Campbell, C.H.F. Peden, Science 309 (2005) 713-714.
- [20] G. Busca, L. Lietti, G. Ramis, F. Berti, Appl. Catal. B 18 (1998) 1-36.
- [21] R.Q. Long, R.T. Yang, R. Chang, Chem. Commun. 5 (2002) 452-453.
- [22] H.H. Phil, M.P. Reddy, P.A. Kumar, L.K. Ju, J.S. Hyo, Appl. Catal. B 78 (2008) 301-308
- [23] K.N. Rao, B.M. Reddy, S-E. Park, Appl. Catal. B 100 (2010) 472-480.
- [24] T. Kim, I.E. Wachs, J. Catal. 255 (2008) 197–205.
- [25] L. Lietti, I. Nova, G. Ramis, L.Dall'Acqua, G. Busca, E. Giamello, P. Forzatti, F. Bregani, J. Catal. 187 (1999) 419-435.
- [26] L. Chen, J. Li, M. Ge, R. Zhu, Catal. Today 153 (2010) 77-83.
- [27] J. Huang, Z. Tong, Y. Huang, J. Zhang, Appl. Catal. B 78 (2008) 309-314.
- [28] S. Solomon, D. Qin, M. Manning, Z. Chen, M. Marquis, K.B. Averyt, M. Tignor, H.L. Miller, Climate Change 2007: The Physical Science Basis, Cambridge, UK and New York, NY, 2007.
- [29] F.D. Liu, H. He, J. Phys. Chem. C 114 (2010) 16929-16936.
- [30] F.D. Liu, H. He, Y. Ding, C.B. Zhang, Appl. Catal. B 93 (2009) 194–204.
- [31] H-B. Chiang, M-D. Lee, Appl. Catal. A 154 (1997) 55-74.
- [32] H. Zou, Y.S. Lin, Appl. Catal. A 265 (2004) 35–42.
- [33] P. Afanasiev, Catal. Commun. 9 (2008) 734-739.
- [34] S. Roy, M.S. Hedge, G. Madras, Appl. Energy 86 (2009) 2283–2297.
- [35] L. Chmielarz, R. Dziembaj, T. Grzybek, J. Klinik, T. Lojewski, D. Olszewska, A. Wegrzyn, Catal. Lett. 70 (2000) 51-56.
- [36] E-Y. Choi, I-S. Nam, Y.G. Kim, J. Catal. 161 (1996) 597-604.
- [37] S. Besselmann, C. Freitag, O. Hinrichsen, M. Muhler, Phys. Chem. Chem. Phys. 3 (2001) 4633-4638.
- [38] B.M. Reddy, A. Khan, Y. Yamada, T. Kobayashi, S. Loridant, J.C. Volta, J. Phys. Chem. B 106 (2002) 10964-10972.
- [39] H. He, H.X. Dai, C.T. Au, Catal. Today 90 (2004) 245-254.
- [40] B. Vincent Crist, Handbook of the Elements and Native oxides, XPS, International, Inc, Mountain View, CA, 1999.
- [41] M. Machida, D. Kurogi, T. Kijima, Chem. Mater. 12 (2000) 3165-3170.
- S. Yang, W. Zhu, Z. Jiang, Z. Chen, J. Wang, Appl. Surf. Sci. 252 (2006) 8499-8505
- [43] B. Guan, H. Lin, L. Zhu, Z. Huang, J. Phys. Chem. C 115 (2011) 12850–12863.
 [44] M. Kang, E.D. Park, J.M. Kim, J.E. Yie, Appl. Catal. A 327 (2007) 261–269.
- [45] N. Naito, N. Katada, M. Niwa, J. Phys. Chem. B 103 (1999) 7206-7213.
- [46] A. Gutierrez-Alejandre, J. Ramirez, G. Busca, Langmuir 14 (1998) 630-639. [47] M.A. Larrubia, G. Ramis, G. Busca, Appl. Catal. B 27 (2000) L145-L151.
- [48] M.D. Amiridis, R.V. Duevel, I.E. Wachs, Appl. Catal. B 20 (1999) 111–122.
- [49] I.M.G. Amores, V.S. Escribano, G. Ramis, G. Busca, Appl. Catal. B 13 (1997) 45–58.
- [50] G. Qi, R.T. Yang, J. Phys. Chem. B 108 (2004) 15738-15747.
- [51] H.E. Curry-Hyde, H. Musch, A. Baiker, M. Schraml-Marth, A. Wokaun, J. Catal. 133 (1992) 397–414.
- [52] M. Koebel, M. Elsener, G. Madia, Ind. Eng. Chem. Res. 40 (2001) 52-59.
- [53] M. Koebel, G. Madia, F. Raimondi, A. Wokaun, J. Catal. 209 (2002) 159-165.
- [54] M.A.L. Vargas, M. Casanova, A. Trovarelli, G. Busca, Appl. Catal. B 75 (2007) 303-311
- [55] Z. Zhu, Z. Liu, S. Liu, H. Niu, Appl. Catal. B 30 (2001) 267-276.