2、检测技术与检测元件

典型的检测系统

敏感元件 转换元件 显示装置

2.1 检测技术器的一般原理

利用光的散射、透射、折射和反射,通常用光强表示被测量大小,用光电元件接收光信号。

也称机械法,用敏感元件把被测量转换成机械位移、变形等。

根据被测介质的热物理量的差异和热平衡原理。

检测技术器的一般原理

用敏感元件把被测量转换成电压、电阻、电容等电学量。

利用超声波的传播及在界面处的反射。

利用被测介质磁性参数的差异及元件在磁场中表现出的特性。

放射线穿过介质时部分能量会被吸收,吸收程度与物质层厚度、物质密度有关。

检测技术器的一般原理

与检测有关的自然规律

守恒定律

质量守恒 能量守恒 动量守恒 电量守恒 参数的转换

场的定律

动力场运动定律 电磁场感应定律 光的干涉 在场的作用下的表现

物质定律

关于物质本身内在性质的定律、法则和规律

统计法则

用统计把微观与宏观联系起来的物理法则

敏感元件选择

适用范围

同一方法可以测量 不同的参数 同一参数可以用 不同的方法测量 测量范围

输出特性

价格、安全性、易复制性、易安装

静/动态误差

2.2 机械式检测元件

定义

将被测量转换为机械量信号输出具有结构简单、使用安全可靠、抗干扰能力强等特点。

知识要点

一、弹性式检测元件

在外力作用下,物体的形状和尺寸会发生变化,若 去掉外力,物体能恢复原来的形状和尺寸,这种变 形就称为弹性变形。

弹性特性

□ 弹性元件输入量与输出量之间的关系

产生单位变形所需要的外加作用力。

刚度

$$k = \frac{dF}{dx}$$

灵敏度

单位输入量所引起的输出量。

$$S = \frac{dx}{dF}$$

希望*k*和*S*为 常数

弹性效应

#弹性效应

弹性滞后

弹性后效

应力松弛

4 热弹性效应

微塑性变形使虎克定律不满足

加载、卸载中应力 σ 和应变 ε 曲线不重合最大相对滞后百分数 $r = \frac{\Delta \varepsilon_{\max}}{\varepsilon_{\max}} \times 100\%$

 σ 不变时, ε 随时间延续缓慢变化

弹性后效值
$$N_{15} = \frac{\varepsilon_{15} - \varepsilon_0}{\varepsilon_0}$$

 ε 不变时, σ 随时间延续逐渐降低

应力松弛率
$$r_{\sigma} = \frac{\sigma_0 - \sigma_t}{\sigma_0} \times 100\%$$

弹性模量温度系数

$$\beta_E = \frac{E - E_0}{E_0(t - t_0)}$$

谐振频率温度系数

$$\beta_f = \frac{f - f_0}{f_0(t - t_0)}$$

线膨胀系数

应力保持

15min后

的应变

$$\beta_l = \frac{l - l_0}{l_0(t - t_0)}$$

固有频率

- 弹性元件本身具有质量,具有弹性和弹性后效,它们共同决定了弹性元件的固有频率。
- □ 弹性元件的动态特性,即输出对动态变化输入量的响应 与它的固有频率是密切相关的。固有频率越高,则弹性 元件响应越快。

弹性元件的材料

- ▶ 良好的机械性能及机械加工、热处理性能
- ▶ 良好的弹性特性
 稳定的输入输出关系、很小的滞弹性效应
- ▶ 良好的温度特性
 弹性模量的温度系数小且稳定
- ▶ 良好的化学性能
 较强的抗氧化性和抗腐蚀性

① 适用范围

● 参数测量范围

● 输出特性

① 价格、易复制性、安全性

马氏体弥散硬化不锈钢、Ni基弥散化恒弹性合金、Nb恒弹性合金、铍青铜、石英晶体、半导体硅材料、陶瓷材料

常见的弹性式检测元件

(1) 弹簧管

结构原理图

$$d = p \left(\frac{1-\mu^2}{E}\right) \frac{R^3}{bh} \left(1 - \frac{b^2}{a^2}\right) \frac{\alpha}{\beta + x^2} \sqrt{(\gamma - \sin \gamma)^2 + (1 - \cos \gamma)^2}$$

(2)薄壁圆筒

$$\sigma_x = \frac{r_0}{2h} p$$
 $\varepsilon_x = \frac{r_0}{2Eh} (1 - 2\mu) p$

$$\sigma_\tau = \frac{r_0}{h} p$$
 $\varepsilon_\tau = \frac{r_0}{2Eh} (2 - \mu) p$

(3)波纹管

$$d = pA \left(\frac{1 - \mu^2}{Eh_0}\right) \frac{n}{A_0 - \alpha A_1 + \alpha^2 A_2 + B_0 \frac{h_0^2}{R_B^2}}$$

(4) 膜片、膜盒

(b)

(a) 矩形水平安装膜盒压力表结构示意图

图 9 膜盒压力表结构示意图

二、振动式检测元件

被测量(如力、压力、密度等)的变化转换为谐振元件的固有频率的变化

振弦式

振筒式

(1)振弦式

- 1—支承;
- 2—钢弦;
- 3—永久磁铁
 - (用途?);
- 4——膜片

$$f_0 = \frac{1}{2l} \sqrt{\frac{\sigma}{\rho}} = \frac{1}{2l} \sqrt{\frac{T}{\rho'}}$$

差动式振弦传感器

差动式振弦传感器原理

振弦式压力传感器

振弦式传感器用于车辆动态称重

应用独特的振弦传感技术解决了汽车动态称重难题,实现了车辆可靠分离和轮轴组准确识别,为计重按超限率收费提供了圆满的解决方案。

力变换式振弦称重 传感器,准确度达 到0.1%FS~0.5%FS, 可满足动态称重要 求。优点:

(2)振筒式

- 1一永磁棒;
- 2---拾振线圈;
- 3—振筒;
- 4—外壳;
- 5-激励线圈;
- 6—磁芯;
- 7—支柱;
- 8—基座;
- 9—引线

$$f_0 = \frac{1}{2\pi R} \sqrt{\frac{E\Delta}{\rho (1 - \mu^2)}}$$

$$f = f_0 \sqrt{1 + \alpha p}$$

机械式检测元件应用

- □ 机械式检测元件能将难以直接测量的物理量 (如压力
 - 、流量、温度等)转换成便于测量的长度、角度、频率等参量,应用非常广泛。
- > 压力表
- > 车辆动态称重