SEARCH METHODS IN A

AUTOMATED PROBLEM SOLVING

COMPLEX PROBLEMS & SOLUTIONS

Chess Playing

Robot Assembly

COMPLEX PROBLEMS & SOLUTIONS

Symbolic Integration

AUTOMATED PROBLEM SOLVING BY SEARCH

- Generalized Techniques for Solving Large Classes of Complex Problems
- Problem Statement is the Input and solution is the Output, sometimes even the problem specific algorithm or method could be the Output
- Problem Formulation by Al Search Methods consists of the following key concepts
 - Configuration or State
 - Constraints or Definitions of Valid Configurations
 - Rules for Change of State and their Outcomes
 - Initial or Start Configurations
 - Goal Satisfying Configurations
 - An Implicit State or Configuration Space
 - Valid Solutions from Start to Goal in the State Space
 - General Algorithms which SEARCH for Solutions in this State Space

ISSUES

 Size of the Implicit Space, Capturing Domain Knowledge, Intelligent Algorithms that work in reasonable time and Memory, Handling Incompleteness and Uncertainty

TOWER OF HANOL

- Configuration or State
- Constraints or Definitions of Valid Configurations
- Rules for Change of State and their Outcomes
- Initial or Start Configurations
- Goal Satisfying Configurations
- An Implicit State or Configuration Space
- Valid Solutions from Start to Goal in the State Space
- General Algorithms which SEARCH for Solutions in this State Space

TWO JUG PROBLEM

- There is a large bucket Bfull of water and Two (02) jugs, J1 of volume 3 litre and J2 of volume 5 litre. You are allowed to fill up any empty jug from the bucket, pour all water back to the bucket from a jug or pour from one jug to another. The goal is to have jug J1 with exactly one (01) litre of water
- State Definition: <J1, J2>
- Rules:
 - Fill (J1): <J1, J2> to <3,J2>
 - Fill (J2): <J1, J2> to <J1, 5>
 - Empty (J1), Empty (J2): Similarly defined
 - Pour (J1, J2): <J1, J2> to <X,Y>, where
 - X = 0 and Y = J1 + J2 if $J1+J2 \le 5$.
 - Y = 5 and X = (J1 + J2) 5, if J1 + J2 > 5
 - Pour (J2, J2): Similarly defined
- Start: <0,0>, Goal: <1,0>
- Part of State Space Shown on the right (Not all Links shown here)

TWO JUG PROBLEM

There is a large bucket Bfull of water and Two (02) jugs, J1 of volume 3 litre and J2 of volume 5 litre. You are allowed to fill up any empty jug from the bucket, pour all water back to the bucket from a jug or pour from one jug to another. The goal is to have jug J1 with exactly one (01) litre of water

State Definition: <J1, J2>

- Rules:
 - Fill (J1): <J1, J2> to <3,J2>
 - Fill (J2): <J1, J2> to <J1, 5>
 - Empty (J1), Empty (J2): Similarly defined
 - Pour (J1, J2): <J1, J2> to <X,Y>, where
 - X = 0 and Y = J1 + J2 if $J1+J2 \le 5$.
 - Y = 5 and X = (J1 + J2) 5, if J1 + J2 > 5
 - Pour (J2, J2): Similarly defined
- Start: <0,0>, Goal: <1,0>
- Part of State Space Shown on the right (Not all Links shown here)

PART OF STATE SPACE

STATE SPACES

Game

3 DISK, 3 PEG TOWER of HANOI STATE SPACE

STATE SPACES

AND / OR STATE SPACES

CONSISTENT LABELLING BY CONSTRAINT SATISFACTION

Scene Analysis

CONSISTENT LABELLING BY CONSTRAINT SATISFACTION

- States
 - Full / Perfect Information and Partial Information States
- State Transformation Rules
 - Deterministic Outcomes
 - Non-Deterministic / Probabilistic Outcomes
- State Spaces As Generalized Games
 - Single Player: OR Graphs
 - Multi-Player: And / Or, Adversarial, Probabilistic Graphs
- Solutions
 - Paths
 - Sub-graphs
 - Expected Outcomes
- Costs
- Sizes
- Domain Knowledge
- Algorithms for Heuristic Search

- States
 - Full / Perfect Information and Partial Information States
- State Transformation Rules
 - Deterministic Outcomes
 - Non-Deterministic / Probabilistic Outcomes
- State Spaces As Generalized Games
 - Single Player: OR Graphs
 - Multi-Player: And / Or, Adversarial, Probabilistic Graphs
- Solutions
 - Paths
 - Sub-graphs
 - Expected Outcomes
- Costs
- Sizes
- Domain Knowledge
- Algorithms for Heuristic Search

- States
 - Full / Perfect Information and Partial Information States
- State Transformation Rules
 - Deterministic Outcomes
 - Non-Deterministic / Probabilistic Outcomes
- State Spaces As Generalized Games
 - Single Player: OR Graphs
 - Multi-Player: And / Or, Adversarial, Probabilistic Graphs
- Solutions
 - Paths
 - Sub-graphs
 - Expected Outcomes
- Costs
- Sizes
- Domain Knowledge
- Algorithms for Heuristic Search

- States
 - Full / Perfect Information and Partial Information States
- State Transformation Rules
 - Deterministic Outcomes
 - Non-Deterministic / Probabilistic Outcomes
- State Spaces As Generalized Games
 - Single Player: OR Graphs
 - Multi-Player: And / Or, Adversarial, Probabilistic Graphs
- Solutions
 - Paths
 - Sub-graphs
 - Expected Outcomes
- Costs
- Sizes
- Domain Knowledge
- Algorithms for Heuristic Search

Thank you