Лекция 5. Логические переменные в двузначной логике

Определение 1. Логической переменной в двузначной логике называется переменная величина x, принимающая значения из некоторого двухэлементного множества.

Пример 1. Логические переменные могут принимать значения из следующих двухэлементных множеств:

- 1) $E_2 = \{0, 1\};$
- 2) $E^* = \{\text{истина}, \text{ложь}\}$ (при доказательстве теорем);
- 3) $E^{**} = \{$ да, нет $\}$ (в так называемых экспертных системах, используемых для автоматического анализа информации с целью решения проблем);
 - 4) $E^{***} = \begin{cases} \text{наличие потенциала в } +5 \text{ вольт в определенной точке схемы,} \\ \text{отсутствие потенциала в } +5 \text{ вольт в той же точке} \end{cases}$ (в электронике).

Упражнение 1 (д/з). Привести другие примеры логических переменных, принимающих значения из некоторых двухэлементных множеств.

Замечание 1. В дальнейшем, кроме специально оговоренных случаев, будем рассматривать логические переменные, принимающие значения из множества $E_2 = \{0, 1\}$.

Пусть n – натуральное число. Далее будем рассматривать n логических переменных x_1, x_2, \ldots, x_n , причем x_i принимает значения из $E_2 = \{0, 1\}$ $(i = 1, \ldots, n)$.

Определение 2. Наборами значений n логических переменных называются упорядоченные наборы вида (a_1, a_2, \ldots, a_n) , где $a_i \in \{0,1\}$ $(i=1,\ldots,n)$. Каждый набор значений (a_1, a_2, \ldots, a_n) называется также двоичным вектором.

Пример 2. Составить всевозможные наборы значений логических переменных и найти их количество при следующих значениях n:

- а) n=1: для 1 логической переменной x_1 имеется $N_1=2$ различных набора значений, каждый из которых состоит из 1 значения: (0) и (1).
- б) n=2: для 2 логических переменных x_1 и x_2 имеется $N_2=4$ различных набора значений, каждый из которых состоит из 2 значений: (0,0),(0,1),(1,0),(1,1).
 - B) n = 3:

Упражнение 2 (д/з). n = 3. $N_3 - ?$

Утверждение. Количество всех возможных наборов значений n логических переменных равно $N_n = 2^n$.

Доказательство (методом математической индукции).

- 1. Очевидно, что для одной переменной (n=1) имеется $N_1=2^1=2$ различных набора значений: (0) и (1) (см. пример 2a).
- 2. Предположим, что для n=k переменных имеется 2^k возможных наборов значений: $N_k=2^k$.
- 3. Докажем, что $N_{k+1}=2^{k+1}$. Для этого добавим к набору k переменных (x_1,x_2,\ldots,x_k) (k+1)—ю переменную x_{k+1} . Тогда каждому набору значений k переменных $(a_1^*,a_2^*,\ldots,a_k^*)$ будут соответствовать 2 набора значений k+1 переменной: $(a_1^*,a_2^*,\ldots,a_k^*,0)$ и $(a_1^*,a_2^*,\ldots,a_k^*,1)$. Следовательно, количество наборов значений k+1 переменной равно $N_{k+1}=2\cdot N_k=2\cdot 2^k=2^{k+1}$, ч.т.д.

Множества наборов значений логических переменных часто для определенности выстраивают в некотором порядке, что обозначается

$$(c_1,\ldots,c_n)\prec\cdots\prec(a_1,\ldots,a_n)\prec(b_1,\ldots,b_n)\prec\cdots\prec(d_1,\ldots,d_n).$$

Знак ≺ читается как "предшествует".

В частности, нередко используется так называемый лексикографический порядок.

Определение 3. Лексикографическим переходом между наборами значений логических переменных (a_1, \ldots, a_n) и (b_1, \ldots, b_n) называется переход, при котором выполняется одно из следующих соотношений:

$$\begin{bmatrix} a_1 < b_1, & (1) \\ \exists m : 1 \le m \le n - 1, \begin{cases} a_1 = b_1, \\ \dots \\ a_m = b_m, \\ a_{m+1} < b_{m+1}. \end{cases}$$
 (2)

Определение 3'. Лексикографическим порядком наборов значений логических переменных называется порядок, при котором переход между любыми двумя наборами (a_1, \ldots, a_n) и (b_1, \ldots, b_n) такими, что $(a_1, \ldots, a_n) \prec (b_1, \ldots, b_n)$, является лексикографическим.

Определение 3". *Нелексикографическим порядком* наборов значений логических переменных называется порядок, при котором существуют такие наборы (a_1^*, \ldots, a_n^*) и (b_1^*, \ldots, b_n^*) , что $(a_1^*, \ldots, a_n^*) \prec (b_1^*, \ldots, b_n^*)$, для которых не выполняется ни одно из соотношений (1) и (2).

Пример 3.

а) n = 1: (0) \prec (1) – лексикографический порядок в силу определений 3 и 3' (выполняется соотношение (1)), (1) \prec (0) – нелексикографический порядок в силу определения 3" (не выполняется ни одно из соотношений (1) и (2)).

б) n = 2:

 1° . $(0,0) \prec (0,1) \prec (1,0) \prec (1,1)$ – лексикографический порядок: $(a_1,a_2) = (0,0) \prec (0,1) = (b_1,b_2)$, так как в этих наборах $a_1 = 0$; $b_1 = 0$ и $a_2 = 0 < 1 = b_2$ (выполняется соотношение (2)), и аналогично $(0,1) \prec (1,0)$ (выполняется (1)), $(1,0) \prec (1,1)$ (выполняется (2)).

 2° . $(0,0) \prec (0,1) \prec (1,1) \prec (1,0)$ – нелексикографический порядок: $(a_1,a_2)=(1,1) \prec (1,0)=(b_1,b_2)$, хотя $a_1=1,\ b_1=1$ (не выполняется (1)) и $a_2=1>0=b_2$ (не выполняется (2)).

Упражнение 3 (д/з). Привести другие примеры нелексикографического порядка наборов значений 2 логических переменных.

B) n = 3:

Упражнение 4 (д/з). Привести примеры лексикографического и нелексикографического порядка наборов значений 3 логических переменных.

Замечание 3. Отметим, что лексикографический порядок совпадает с порядком возрастания наборов (a_1, \ldots, a_n) , рассматриваемых как числа, записанные в двоичной системе счисления, например: $(0,0) \sim 0 \cdot 2^1 + 0 \cdot 2^0 = 0 < 1 = 0 \cdot 2^1 + 1 \cdot 2^0 \sim (0,1)$.

Упражнение 5 (д/з). Проиллюстрировать с помощью записи в двоичной системе счисления соотношения $(0,1) \prec (1,0), (1,0) \prec (1,1).$