Teorija grafova

Marko Gordić — IN 37/2023

Prosti grafovi (što radimo)

- Prosti, neusmereni, bez paralelnih grana i petlji; izolovane čvorove ne razmatramo.
- Incidentni/susedni čvorovi: povezani granom.
- Stepen deg(v) = broj suseda (grana) čvora <math>v.

$$\sum_{v \in V} deg(v) = 2|E|$$

TEOREMA — parnost neparnih

Broj čvorova *neparnog* stepena je **paran**.

Regularan (k-regularan): svi čvorovi stepena k. Kompletan K_n : svaki sa svakim.

Min. stepen $\beta(G)$, maks. $\Delta(G)$.

Bipartitan: $V = V_1 \cup V_2, \ V_1 \cap V_2 = \emptyset$, nema grana unutar V_1 ni V_2 .

Kompletan bipartitan $K_{x,y}$: |E| = xy.

Komplement \overline{G} : tamo gde G nema granu — \overline{G} je ima.

TEOREMA — stepen u komplementu

 $deg_{\overline{G}}(v)=(n-1)-deg_G(v).$ Ako je G kregularan, onda je \overline{G} (n-k-1)-regularan; i obrnuto.

Takođe: $G \cup \overline{G} = K_n$, $\overline{\overline{G}} = G$.

Kontura C_n i put P_n

Kontura C_n : zatvoren ciklus, svi čvorovi stepena 2; u C_n važi |V| = |E| = n.

Put P_n : otvoren niz — krajnji čvorovi stepena 1, ostali 2.

Izomorfizam

Grafovi G i H su izomorfni ako postoji bijekcija $\varphi: V(G) \to V(H)$ tako da je $uv \in E(G) \iff \varphi(u)\varphi(v) \in E(H)$.

Posledice: čuvaju se stepeni, broj komponenti, postojanje kontura/puteva određene dužine, planarnost itd. Način crtanja nije bitan.

Primer: C_5 (kontura)

Primer: P_6 (put)

0--0--0--0

Komponente povezanosti

 $\omega(G)$ — broj komponenti.

Ako $\omega(G) > 1$ graf je **nepovezan**.

Jedan od G i \overline{G} je uvek **povezan**.

Ako je G povezan: $|E| \ge n - 1$.

Most (bridge): uklanjanjem grane e raste $\omega(G)$.

Artikulacioni čvor: uklanjanjem v raste $\omega(G)$.

Stabla i šume

- Stablo T_n : povezano i acikličko; |E| = n 1. Takođe: $maksimalno \ acikličko \ i \ minimalno \ povezano$.
- Svako stablo ima barem 2 viseća čvora. Dijametar: dužina najdužeg puta (broj grana).
- Šuma: acikličan graf; može se posmatrati kao (disjunktna) unija stabala.

Formula: $e = n - \omega(G)$.

- Pokrivajuće stablo (spanning tree): za povezani G podgraf T sa V(T) = V(G) koji je stablo. Svojstva: ima n-1 grana; spaja sve čvorove bez ciklusa; nije jedinstveno (obično više njih); dobijamo ga npr. DFS/BFS-om.
- **Tvrdjenje**: svaki bipartitan graf nema *neparne* konture.

Primer stabla T_6

Ojlerovi grafovi

 ${f Ojlerov}$: postoji zatvorena staza koja prolazi kroz $sve\ grane.$

Polu-ojlerov: postoji (otvorena) staza kroz sve grane.

Uslovi (AKKO)

Ojlerov \iff graf je povezan i **svi** čvorovi su parnog stepena.

Polu-ojlerov \iff graf je povezan i **tačno 2** čvora su neparnog stepena.

Praktični recept:

- Prebroj parne/neparne stepene. Ako su dva neparna
 ⇒ polu-ojlerov:
 kreni iz jednog neparnog, završi u drugom.
- Numeriši grane (nemoj podebljavati). Crtaj u svesci, ne po tekstu zadatka.
- Pazi na *mostove*: dok je grana most, nemoj je koristiti prerano.

Hamiltonovi grafovi

Hamiltonov: kontura kroz *sve čvorove*. Polu-hamiltonov: put kroz sve čvorove.

Dovoljni uslovi

Teorema Oysteina Orea: za svaka dva nesusedna u, v važi $deg(u) + deg(v) \ge n \Rightarrow$ graf je hamiltonov.

Teorema Gabriela A. Diraca: za svaki čvor v važi $deg(v) \ge \frac{n}{2} \Rightarrow$ graf je hamiltonov.

Kako dokazivati da nije hamiltonov

Ako postoji skup $S\subseteq V$ takav da je $\omega(G-S)>|S|$ (za put: >|S|+1),

tada G (resp. nema hamiltonovu konturu/put). Traži takav S.

Recept:)

Jeste hamiltonov: (1) eksplicitno nađi hamiltonovu konturu ili (2) primeni Orea/Diraca. Nije hamiltonov: traži kontradikciju ili skup S sa uslovom iznad.

Primer (C_5): C_5 je hamiltonov. Za dva nesusedna u, v: deg(u) + deg(v) = 4 < 5 (Ore ne ispunjen); ni Dirac (n/2 = 2.5). I dalje hamiltonov.

 C_5 : Hamiltonova kontura, iako uslovi nisu ispunjeni

Planarni grafovi

Planaran = može da se nacrta bez presecanja grana. K_4 planaran; K_5 i $K_{3,3}$ nisu.

Formule

n-e+r=2 (Ojlerova formula) $e \le 3n-6$ (povezan planaran, $n \ge 3$) $e \le 2n-4$ (ako nema trouglova)

Za planarne važi: $2e = \sum_{k \geq 3} k \, N_k$ (zbir dužina oblasti).

 K_4 (planaran)

aran) K_5 (neplanaran)

 $K_{3,3}$ (neplanaran)

Brze taktike

- Egzistencijalni zadaci: ili nacrtaj *primer* sa malo čvorova ili dokaži *nepostojanje* kontradikcijom.
- Ojler/Hamilton: proveri povezanost; zatim stepene (Ojler), pa Oystein Ore / Gabriel A. Dirac. Ako zapne izbacuj čvorove i gledaj ω .
- Pamti osobine tipova (regularan, kompletan, bipartitan, planaran, stablo) da znaš koje formule smeš.
- Obeležavanje staza/turneje: numeriši grane; crtaj u svesci (ne po tekstu).