

Information Storage and Management I

Dr. Alejandro Arbelaez

Relational Algebra

- Basic operations:
 - **Selection** (σ) Selects a subset of rows from relation.
 - **Projection** (π) Deletes unwanted columns from relation.
 - *Cross-product* (X) Allows us to combine two relations.
 - Set-difference () Tuples in reln. 1, but not in reln. 2.
 - *Union* (\cup) Tuples in reln. 1 and in reln. 2.
 - Renaming (ρ) (for named perspective)
- Additional operations:
 - Intersection, *join*, division, renaming: Not essential, but (very!) useful.
- Since each operation returns a relation, operations can be composed!

Joins

• Condition Join: $R \bowtie_{C} S = \sigma_{C} (R \times S)$

(sid)	sname	rating	age	(sid)	bid	day
22	dustin	7	45.0	58	103	11/12/96
31	lubber	8	55.5	58	103	11/12/96

$$S1 \bowtie_{S1.sid < R1.sid} R1$$

- Result schema same as that of cross-product.
- Fewer tuples than cross-product, might be able to compute more efficiently
- Sometimes called a *theta-join*.

	(sid)	sname	rating	age	(sid)	bid	day
X [22	dustin	7	45.0	22	101	10/10/96
ì	22	dustin	7	45.0	58	103	11/12/96
X[31	lubber	8	55.5	22	101	10/10/96
	31	lubber	8	55.5	58	103	11/12/96
X	58	rusty	10	35.0	22	101	10/10/96
X	58	rustv	10	35.0	58	103	11/12/96
		<i>J</i>					, ,

Joins

• **Equi-Join**: A special case of condition join where the condition *c* contains only **equalities** and ^.

sid	sname	rating	age	bid	day
22	dustin	7	45.0	101	10/10/96
58	rusty	10	35.0	103	11/12/96

- *Result schema* similar to cross-product, but only one copy of fields for which equality is specified.
- Natural Join: Equijoin on all common fields.

Lab Solution Construct the Natural Join of the following two tables

A1	A2
1	Red
2	Blue
3	Black

A1	B2	В3
1	BMW	1972
2	Honda	1968
4	Ferrari	1978

A1	A2	B2	В3
1	Red	BMW	1972
2	Blue	Honda	1968

Lab Solution

Translate the following join expression in SQL to relational Algebra (show parse tree of the expression)

SELECT TableA.A1, TableA.A2, TableA.A3, TableB.B2 **FROM** TableA, TableB **WHERE** TableA.A2 > TableB.B1 AND TableB.B2 = TableA.A2

 $\pi_{A1,A2,A3}(TableA\bowtie_{A2>B1\land B2=A2}TableB)$

Lab Solution

Consider the following relational DB employee(person_name, street, city) works(person_name, company_name, salary) company(company_name, city) manager(person_name, manager_name)

A. Find the names of all employees in this database who work for "First Bank Corporation"

$$\pi_{person_name}(\sigma_{company_name="FirstBankCorporation"}(works))$$

B. Find the names and cities of residence of all employees who work for First Bank Corporation

```
\pi_{person\_name,city}(employee \bowtie \sigma_{company\_name="FirstBankCorporation"}(works))
```

C. Find the names of all employees who live in the same city and on the same street as do their managers

```
\rho(emp2, employee) \rho(temp1, (manager \times employee \times emp2)) \rho(temp2, \sigma_{manager.person\_name = employee.person\_name \wedge manager.manager\_name = emp2.person\_name}(temp1)) \rho(temp3, \sigma_{employee.stree = emp2.stree \wedge employee.city = emp2.city}(temp2))
```

Solution 1:

$$\pi_{sname}((\sigma_{bid=103} \text{Reserves}) \bowtie Sailors)$$

Solution 3:

$$\pi_{sname}(\sigma_{bid=103}(\text{Reserves} \bowtie Sailors))$$

Which one to choose? and why?

Query Tree Plan

Query Tree Plan

$$\pi_{sname}(\sigma_{bid=103}(\text{Reserves} \bowtie Sailors))$$

 $\pi_{sname}(\sigma_{bid=103}(\text{Reserves}\bowtie Sailors)))$

OBSERVATION: try to perform selections and projections early!

$$\pi_{sname}((\sigma_{bid=103}^{\text{Reserves}}) \bowtie Sailors) \qquad \pi_{sname}(\sigma_{bid=103}^{\text{Reserves}} \bowtie Sailors))$$

$$\pi_{sname}((\sigma_{color=red}, Boats) \bowtie Reserves \bowtie Sailors)$$

Sid	Sname	Rating	Age
22	Dustin	7	45.0
29	Brutus	1	33.0
31	Lubber	8	55.5
32	Andy	8	25.5
58	Rusty	10	35.0
64	Horatio	7	35.0
71	Zorba	10	16.0
74	Horatio	9	35.0
85	Art	3	25.5
95	Bob	3	63.5

_	Sid	Bid	Day	
	22	101	10/10/98	
	22	102	10/10/98	
	22	103	10/8/98	E
	22	104	10/7/98	1
	31	102	11/10/98	1
	31	103	11/6/98	1
	31	104	11/12/98	1
	64	101	9/5/98	4
	64	102	9/8/98	
	74	103	9/8/98	

Bid	Bname	Color
101	Interlake	Blue
102	Interlake	Red
103	Clipper	Green
104	Marine	Red
An Ir	nstance B1 o	of Boats

Information about boat color only available in Boats; so need an extra join:

Bid	Bname	Color
101	Interlake	Blue
102	Interlake	Red
103	Clipper	Green
104	Marine	Red

An Instance B1 of Boats

Information about boat color only available in Boats; so need an extra join:

Bid	Bname	Color
101	Interlake	Blue
102	Interlake	Red
103	Clipper	Green
104	Marine	Red

An Instance B1 of Boats

Information about boat color only available in Boats; so need an extra join:

$$(\sigma_{color=red}, Boats) \bowtie Reserves$$

Sid	Bid	Day
22	101	10/10/98
22	102	10/10/98
22	103	10/8/98
22	104	10/7/98
31	102	11/10/98
31	103	11/6/98
31	104	11/12/98
64	101	9/5/98
64	102	9/8/98
74	103	9/8/98

Bid	Bname	Color
101	Interlake	Blue
102	Interlake	Red
103	Clipper	Green
104	Marine	Red
An Instance B1 of Boats		

$$((\sigma_{color=red}, Boats) \bowtie Reserves \bowtie Sailors)$$

Sid	Sname	Rating	Age
22	Dustin	7	45.0
29	Brutus	1	33.0
31	Lubber	8	55.5
32	Andy	8	25.5
58	Rusty	10	35.0
64	Horatio	7	35.0
71	Zorba	10	16.0
74	Horatio	9	35.0
85	Art	3	25.5
95	Bob	3	63.5

Sid	Bid	Day	
22	101	10/10/98	
22	102	10/10/98	
22	103	10/8/98	E
22	104	10/7/98	1
31	102	11/10/98	1
31	103	11/6/98	1
31	104	11/12/98	1
64	101	9/5/98	-
64	102	9/8/98	
74	103	9/8/98	

	Bid	Bname	Color
	101	Interlake	Blue
	102	Interlake	Red
	103	Clipper	Green
	104	Marine	Red
Ĭ .	An Instance B1 of Boats		

$$\pi_{sname}((\sigma_{color=red}, Boats) \bowtie Reserves \bowtie Sailors)$$

Sid	Sname	Rating	Age
22	Dustin	7	45.0
29	Brutus	1	33.0
31	Lubber	8	55.5
32	Andy	8	25.5
58	Rusty	10	35.0
64	Horatio	7	35.0
71	Zorba	10	16.0
74	Horatio	9	35.0
85	Art	3	25.5
95	Bob	3	63.5

_	Sid	Bid	Day	
	22	101	10/10/98	
	22	102	10/10/98	
	22	103	10/8/98	E
	22	104	10/7/98	1
	31	102	11/10/98	1
	31	103	11/6/98	1
	31	104	11/12/98	1
	64	101	9/5/98	4
	64	102	9/8/98	
	74	103	9/8/98	

Bid	Bname	Color
101	Interlake	Blue
102	Interlake	Red
103	Clipper	Green
104	Marine	Red
An Ir	nstance B1 o	of Boats

Information about boat color only available in Boats; so need an extra join:

$$\pi_{sname}((\sigma_{color=red}, Boats) \bowtie Reserves \bowtie Sailors)$$

Alternative solution:

$$\pi_{sname}(\pi_{sid}((\pi_{bid}\sigma_{color='red'},Boats)\bowtie Res)\bowtie Sailors)$$

Bid	Bname	Color
101	Interlake	Blue
102	Interlake	Red
103	Clipper	Green
104	Marine	Red

An Instance B1 of Boats

Bid	Bname	Color
101	Interlake	Blue
102	Interlake	Red
103	Clipper	Green
104	Marine	Red
An Instance B1 of Boats		

Sid	Bid	Day
22	101	10/10/98
22	102	10/10/98
22	103	10/8/98
22	104	10/7/98
31	102	11/10/98
31	103	11/6/98
31	104	11/12/98
64	101	9/5/98
64	102	9/8/98
74	103	9/8/98

 $\pi_{sname}(\pi_{sid}(\pi_{bid}\sigma_{color=red'},Boats)\bowtie Res)\bowtie Sailors)$

Bid	Bname	Color
101	Interlake	Blue
102	Interlake	Red
103	Clipper	Green
104	Marine	Red

An Instance B1 of Boats

Sid	Bid	Day
22	101	10/10/98
22	102	10/10/98
22	103	10/8/98
22	104	10/7/98
31	102	11/10/98
31	103	11/6/98
31	104	11/12/98
64	101	9/5/98
64	102	9/8/98
74	103	9/8/98

Sid	Sname	Rating	Age
22	Dustin	7	45.0
29	Brutus	1	33.0
31	Lubber	8	55.5
32	Andy	8	25.5
58	Rusty	10	35.0
64	Horatio	7	35.0
71	Zorba	10	16.0
74	Horatio	9	35.0
85	Art	3	25.5
95	Bob	3	63.5

Information about boat color only available in Boats; so need an extra join:

$$\pi_{sname}((\sigma_{color=red}, Boats) \bowtie Reserves \bowtie Sailors)$$

A more efficient solution:

$$\pi_{sname}(\pi_{sid}((\pi_{bid}\sigma_{color='red'},Boats)\bowtie Res)\bowtie Sailors)$$

A query optimizer can find this given the first solution!

Find sailors who've reserved a red or a green boat

Can identify all red or green boats, then find sailors who've reserved one of these boats:

$$\rho$$
 (Tempboats, ($\sigma_{color=red' \lor color=green'}$ Boats))

 π_{sname} (Temphoats \bowtie Reserves \bowtie Sailors)

Can also define Tempboats using union! (How?)

What happens if \vee is replaced by \wedge in this query?

Find sailors who've reserved a red and a green boat

Previous approach won't work! Must identify sailors who've reserved red boats, sailors who've reserved green boats, then find the intersection (note that *sid* is a key for Sailors):

Find sailors who've reserved a red and a green boat

Previous approach won't work! Must identify sailors who've reserved red boats, sailors who've reserved green boats, then find the intersection (note that *sid* is a key for Sailors):

$$\rho \; (\textit{Tempred}, \pi_{\textit{sid}} ((\sigma_{\textit{color} = '\textit{red}'} \; \textit{Boats}) \bowtie \; \text{Reserves}))$$

$$\rho \; (\textit{Tempgreen}, \pi_{\textit{sid}} ((\sigma_{\textit{color} = '\textit{green}'} \; \textit{Boats}) \bowtie \; \text{Reserves}))$$

$$\pi_{\textit{sname}} ((\textit{Tempred} \cap \; \textit{Tempgreen}) \bowtie \; \textit{Sailors})$$

Equivalence to Relational Algebra

• The basic form of an SQL query is as follows:

Steps of the Query Processor

Steps in Query Evaluation

- Step 0: Admission control
 - User connects to the db with username, password
 - User sends query in text format
- Step 1: Query parsing
 - Parses query into an internal format
 - Performs various checks using catalog
 - Correctness, authorization, integrity constraints
- Step 2: Query rewrite
 - View rewriting, flattening, etc.

Rewritten Version of Our Query

Original query:

SELECT sname
FROM NearbySupp
WHERE sno IN (SELECT sno
FROM Supplies
WHERE pno = 2)

SELECT S.sname FROM Supplier S, Supplies U WHERE S.scity='Seattle' AND S.sstate='WA' AND S.sno = U.sno AND U.pno = 2;

• Rewritten query:

Continue with Query Evaluation

- Step 3: Query optimization
 - Find an efficient query plan for executing the query

- A query plan is
 - Logical query plan: an extended relational algebra tree
 - Physical query plan: with additional annotations at each node
 - Access method to use for each relation
 - Implementation to use for each relational operator

Extended Algebra Operators

- Union \cup , intersection \cap , difference -
- Selection s
- Projection π
- Join ⋈
- Duplicate elimination d
- Grouping and aggregation g
- Sorting t
- Rename ρ

Query Block

- Most optimizers operate on individual query blocks
- A query block is an SQL query with no nesting
 - Exactly one
 - SELECT clause
 - FROM clause
 - At most one
 - WHERE clause
 - GROUP BY clause
 - HAVING clause

Typical Plan for Block

SELECT-PROJECT-JOIN Query

Typical Plan For Block

Physical Query Plan

Supplier(sno,sname,scity,sstate)
Part(pno,pname,psize,pcolor)
Supply(sno,pno,price)

Final Step in Query Processing

- Step 4: Query execution
 - How to synchronize operators?
 - How to pass data between operators?
- What techniques are possible?
 - One thread per query
 - Iterator interface
 - Pipelined execution
 - Intermediate result materialization

- An SQL block can be thought of as an algebra expression containing:
 - A cross-product of all relations in the FROM clause
 - Selections in the WHERE clause
 - Projections in the SELECT clause
- Remaining operators can be carried out on the result of such SQL block

OBSERVATION: try to perform selections and projections early!

How to evaluate a query plan (as opposed to evaluating an operator)?

Query Evaluation Plans

- A query evaluation plan (or simply a plan) consists of an extended relational algebra tree (or simply a tree)
- A plan tree consists of annotations at each node indicating:
 - The access methods to use for each relation
 - The implementation method to use for each operator
- Consider the following SQL query Q:

FROM Reserves R, Sailors S
WHERE R.sid=S.sid AND
R.bid=100 AND S.rating>5

What is the corresponding RA of **Q**?

Pushing Selections

SELECT S.sname **FROM** Reserves R, Sailors S **WHERE** R.sid=S.sid **AND** R.bid=100 **AND** S.rating>5

Pushing Selections

- How can we reduce the cost of a join?
 - By reducing the sizes of the input relations!

SELECT S.sname **FROM** Reserves R, Sailors S **WHERE** R.sid=S.sid **AND** R.bid=100 **AND** S.rating>5

Pushing Selections

SELECT S.sname
FROM Reserves R, Sailors S
WHERE R.sid=S.sid AND
R.bid=100 AND S.rating>5

- How can we reduce the cost of a join?
 - By reducing the sizes of the input relations!

Relational Algebra Equivalences

- A relational query optimizer uses relational algebra equivalences to identify many equivalent expressions for a given query
- Two relational algebra expressions over the same set of input relations are said to be equivalent if they produce the same result on all relations' instances
- Relational algebra equivalences allow us to:
 - Push selections and projections ahead of joins
 - Combine selections and cross-products into joins
 - Choose different join orders

country(name, <u>code</u>, capital) city(<u>name</u>, <u>country</u>, population) borders(<u>country1</u>, country2, length)

Find the name of all countries that border Switzerland

Country

name	code	capital
Russia	1	Moscow
France	2	Paris
Spain	3	Madrid
Switzerland	4	Zurich
Italy	5	Rome
Germany	6	Berlin
	••	

borders

country1	country2
2	6
2	4
2	3
5	4
6	4

country(name, <u>code</u>, capital) city(<u>name</u>, <u>country</u>, population) borders(<u>country1</u>, country2, length)

Find the name of all countries that border Switzerland

Country

name	code	capital	
Russia	1	Moscow	
France	2	Paris	
Spain	3	Madrid	
Switzerland	4	Zurich	
Italy	5	Rome	
Germany	6	Berlin	
•••	••	•••	

borders

country1	country2	
2	6	
2	4	
2	3	
5	4	
6	4	
•••	••	

country(name, <u>code</u>, capital) city(<u>name</u>, <u>country</u>, population) borders(<u>country1</u>, country2, length)

Find the name of all countries that border Switzerland

Country

name	code	capital	
Russia	1	Moscow	
France	2	Paris	
Spain	3	Madrid	
Switzerland	4	Zurich	
Italy	5	Rome	
Germany	6	Berlin	

country(name, <u>code</u>, capital) city(<u>name</u>, <u>country</u>, population) borders(<u>country1</u>, country2, length)

Find the name of all countries that border Switzerland

	- q	
country1	country2	code
2	6	4
2	4	4
2	3	4
5	4	4
6	4	4

temp1

$$\rho(s, \pi_{code}(\sigma_{name='Switzerland'}(country)))$$

$$\rho(b, borders)$$

$$\rho(temp1, \sigma_{b.country2=s.code}(b \times s))$$

country(name, <u>code</u>, capital) city(<u>name</u>, <u>country</u>, population) borders(<u>country1</u>, country2, length)

Solution 1

on 1
$$\rho(s, \pi_{code}(\sigma_{name='Switzerland'}(country)))$$

$$\rho(b, borders)$$

$$\rho(temp1, \sigma_{b.country2=s.code}(b \times s))$$

$$\pi_{name}(\sigma_{temp1.country1=country.code}(\pi_{country1}(temp1) \times country))$$

• Solution 2

```
\rho(c', country)
\rho(c'', country)
\rho(b, border)
\rho(temp1, (\sigma_{c'.code=b.country1 \land c''.code=b.country1 \land c''.name='Switzerland'(c' \times c'' \times b))}
\pi_{c''.name}(temp1)
```

country(name, <u>code</u>, capital) city(<u>name</u>, <u>country</u>, population) borders(<u>country1</u>, country2, length)

Find the name of all countries that border Switzerland

CO	ountry1	name	capital	
2		France	Paris	$\rho(s, \pi_{code}(\sigma_{name='Switzerland'}(country)))$
5		Italy	Rome	
6		Germany	Berlin	$ ho(b,bord\epsilon$
•••				$\rho(temp1, \sigma_{b.country2=s.code}(b \times$

 $\pi_{name}(\sigma_{temp1.country1=country.code}(\pi_{country1}(temp1) \times country))$