```
#### BML Simulation Study
#### Put in this file the code to run the BML simulation study for a set of
input parameters.
#### Save some of the output data into an R object and use save() to save it to
disk for reference
#### when you write up your results.
#### The output can e.g. be how many steps the system took until it hit
gridlock or
#### how many steps you observered before concluding that it is in a free
flowing state.
##### Code #####
#### Initialization function.
## Input : size of grid [r and c] and density [p]
## Output : A matrix [m] with entries 0 (no cars) 1 (red cars) or 2 (blue cars)
## that stores the state of the system (i.e. location of red and blue cars)
bml.init <- function(r, c, p){</pre>
 grid.r = r
 grid.c = c
 density = p
 ncars = round(p * grid.r * grid.c, 0)
 grid.size = grid.r * grid.c
 car.sample = c(rep(0, grid.size - ncars), rep(1, ncars/2), rep(2, ncars/2))
 m = matrix(sample(car.sample, grid.size, replace = T), nrow = grid.r)
 return(m)
}
image(t(m)[,nrow(m):1], axes=FALSE, col = c("white", "red", "blue"))
#### Function to move the system one step (east and north)
## Input : a matrix [m] of the same type as the output from bml.init()
## Output : TWO variables, the updated [m] and a logical variable
## [grid.new] which should be TRUE if the system changed, FALSE otherwise.
## NOTE : the function should move the red cars once and the blue cars once,
## you can write extra functions that do just a step north or just a step east.
check.grid.east <- function(m,i,j){</pre>
```

```
if (j == dim(m)[2]-1){
    if(m[i,j] == 1 \& m[i,j+1] == 0){
      m[i,j] = 0
      m[i,j+1] = 1
    else if(m[i,j] == 1 \& m[i,j+1] == 1 \& m[i,1] == 0){
      m[i,j+1] = 0
      m[i,1] = 1
    else if(m[i,j] == 0 & m[i,j+1] == 1 & m[i,1] == 0){
      m[i,j+1] = 0
      m[i,1] = 1
    else if(m[i,j] == 2 \& m[i,j+1] == 1 \& m[i,1] == 0){
      m[i,j+1] = 0
      m[i,1] = 1
    }
  }
 else if(j == dim(m)[2] & m[i,j] == 1 & m[i,1] == 0){
    m[i,1] = 1
 return(m)
}
check.grid.north <- function(m,i,j){</pre>
  if (i == 1 \& m[1,j] == 2 \& m[dim(m)[1],j] == 0){
    m[1,j] = 0
    m[dim(m)[1],j] = 2
 else if ( i == 2 \& m[2,j] == 0 \& m[1,j] == 2 \& m[dim(m)[1],j] == 0){
    m[dim(m)[1],j] = 2
    m[1,j] = 0
 else if ( i == 2 \& m[2,j] == 1 \& m[1,j] == 2 \& m[dim(m)[1],j] == 0){
    m[dim(m)[1],j] = 2
    m[1,j] = 0
 else if ( i == 2 \& m[2,j] == 2 \& m[1,j] == 0){
    m[2,j] = 0
    m[1,j] = 2
 else if ( i == 2 \& m[1,j] == 2 \& m[2,j] == 2 \& m[dim(m)[1], j] == 0){
    m[dim(m)[1],j] = 2
    m[1,j] = 0
 return(m)
bml.step.east <- function(m){</pre>
 max=dim(m)[2]
 for(i in 1:dim(m)[1]){
```

```
j=1
    while(j < dim(m)[2] - 1){
      if(m[i,j] == 1 \& m[i,j+1] == 0){
        m[i,j] = 0
        m[i,j+1] = 1
        j = j+2
      else j = j+1
    }
    m=check.grid.east(m,i,j)
  }
  return(m)
}
bml.step.north <- function(m){</pre>
  j=1
  for(j in 1:dim(m)[2]){
    i=dim(m)[1]
    while(i > 2){
      if(m[i,j] == 2 \& m[i-1,j] == 0){
        m[i,j] = 0
        m[i-1,j] = 2
        i = i-2
      else i = i-1
    m=check.grid.north(m,i,j)
  }
  return(m)
}
bml.step <- function(m){</pre>
  if(length(m) == 1) return(list(m, as.logical('FALSE')))
  else{
    m1 = m
    m = bml.step.east(m)
    m = bml.step.north(m)
    grid.new = any(m1 != m)
    return(list(m,grid.new))
 }
}
```

I have set bml.sim function to have the max iteration step at 20,000.

```
number of steps taken.
## Here the number of steps will be either 20,000 meaning that the grid has a
## some number of steps taken until the grid got gridlocked.
bml.sim <- function(r, c, p){</pre>
                          #this is where we set the max number of iterations
  steps=20000
  s=2
  m.initial = bml.init(r,c,p)
  x = bml.step(m.initial)
  m=x[[1]]
  check.gridlock=x[[2]]
  while(check.gridlock & s < steps){</pre>
    x=bml.step(m)
    m=x[[1]]
    check.gridlock=x[[2]]
    s=s+1
                                  #output has initial grid, end grid and
  return(list(m.initial,m,s))
number of iterations reached
}
## This function help us observe the behaviour of the 'n' different sample
## of the same size ('r' x 'c') and same density 'p'. It helps us examine the
## structure of the grids that get gridlocked and those that aren't.
## I used this function to examine and plot initial and end grids for the free-
flow and
## gridlocked one.
bml.sim2 <- function(r,c,p,n){</pre>
                                 #this function generates 'n' different
samples of the same grid size and density
  x=c()
  while (n > 0){
    x = c(x, bml.sim(r,c,p))
    n=n-1
 }
 return(list(x))
                         #this test function returns an initial, an end grid,
as well as the number of iterations for each grid for number of 'n' samples
}
## This functions serves us to observe the behaviour of different grid sizes
and different denisities.
## It generates 'n' sample grids of the same size and denisity and it returns
the number
## of iterations needed for each one of them.
bml.sim3 <- function(r,c,p,n){</pre>
 number.of.iterations = c()
  while (n > 0){
```

This function returns the list with the 'initial grid', 'end grid' and

```
n=n-1
  }
  return(number.of.iterations)
}
######################### Analyzing the observations
## Running my function bml.sim2(5,5,0.8,50) and observing the results, I am
finding that
## even it is very unlickely that the grids with denisity 80% are grid-lock-
free, these
## do occur. One matrix is
##
         [,1] [,2] [,3] [,4] [,5]
## [1,]
          1
                1
                     2
                          2
## [2,]
           2
                1
                     2
                          0
                               2
## [3,]
           0
                0
                     2
                          2
                               2
## [4,]
           1
                1
                     1
                          2
                               0
## [5,]
           1
                1
                     1
                          2
                               0
initial.grid.lock.free =
\mathtt{matrix}(\mathtt{c}(1,2,0,1,1,1,1,0,1,1,2,2,2,1,1,2,0,2,2,2,1,2,2,0,0), \mathtt{nrow=5})
## or image given by:
image(t(initial.grid.lock.free)[,nrow(initial.grid.lock.free):1], axes=FALSE,
col = c("white", "red", "blue"))
## Which even it went through 20,000 iterations, is still grid-lock-free. This
bahaviour, even unlikely
## does occur when one of the columns (for blue cars) or rows (for red cars)
gets isolated
## by surrounding columns or rows which are gridlocked. This is very unlickely
to happen,
## and for the sample size 50, this chance we get this sample on the first draw
is around 4%
## as seen using my function bml.sim3 which gives us the number of iterations
taken for 'n' sampples
## of the same size and density:
\# bml.sim3(5,5,0.8,50)
                                  7
                                                    7
                8
                            5
                                        6
                                                          8
                                                                 4
                                                                            10
# [1]
          6
8
      8
                 10
# [17]
          14
                 5
                             5
                                  10 20000
                                              10
                                                    10
                                                          14
                                                                 7
                                                                             17
                      14
                                                                       11
13
       6
                  15
# [33]
           7
                15
                       7
                             6
                                  10
                                        7
                                              14
                                                     3
                                                          18 20000
                                                                              5
12
             7
                   5
# [49]
          11
                 8
```

number.of.iterations = c(number.of.iterations, bml.sim(r,c,p)[[3]])

```
## Note: Those two sample with 20,000 iterations are grid-lock-free.
## This matrix from above, at the 20,000th step looks like this:
##
        [,1] [,2] [,3] [,4] [,5]
## [1,]
          1
               1
                   2
## [2,]
                        0
          2
               1
                   2
                             2
## [3,]
          0
               0
                   2
                        2
                             2
## [4,]
               1
                   1
                        2
                             0
          1
## [5,]
end.grid.lock.free =
matrix(c(1,2,0,1,1,1,1,1,0,1,1,2,2,2,1,1,2,0,2,2,2,1,2,2,0,0),nrow=5)
## With the image:
image(t(end.grid.lock.free)[,nrow(end.grid.lock.free):1], axes=FALSE, col =
c("white", "red", "blue"))
## Much easiser to find and take as an example of 5x5 with p=0.8 are the grids
that get gridlocked.
## From the above results from bml.sim3(5,5,0.8,50) it is clear that without
outliers (20,000) this matrix
## gets gridlocked after 8.542 steps on average.
## To ilustrate this here is the initial grid of the grid-lock matrix:
##
        [,1] [,2] [,3] [,4] [,5]
## [1,]
               1
                   1
                        1
## [2,]
                        1
                             2
          0
               1
                   1
## [3,]
          2
               1
                   2
                        2
                             2
## [4,]
               2
                        2
                             2
          2
                   1
               0
                        2
## [5,]
          0
                   1
                             0
## This matrix got grid-locked after 10 steps.
## In its grid-lock it looked like this:
## [,1] [,2] [,3] [,4] [,5]
                             1
## [1,]
          1
               1
                   1
                        2
## [2,]
          2
               1
                   2
                        1
                             1
## [3,]
          2
               2
                   1
                        2
                             2
## [4,]
                   0
          0
                        1
                             2
## [5,]
                   1
                        2
## Or graphically:
initial.grid.lock =
nrow=5)
image(t(initial.grid.lock)[,nrow(initial.grid.lock):1], axes=FALSE, col =
c("white", "red", "blue"))
image(t(end.grid.lock)[,nrow(end.grid.lock):1], axes=FALSE, col = c("white",
"red", "blue"))
```

Using my bml.sim3(r,c,p,n) function which gives the vector of the numbers of itereted steps for each of ## 'n' samples, I have found that p=0.55 is an interesting density, ## as the percentage of the grid-lock matrixes is solidly high at 74%. This is shown from 50 5x5 ## sample grids with denisity p=0.55: # > bml.sim3(5,5,0.55,50)23 20000 20000 20000 20000 20000 20000 20000 20000 # [1] 20000 20000 24 20000 20000 20000 20000 # [17] 20000 20000 24 20000 20000 20000 11 15 20000 20000 20000 13 20000 20000 17 17 # [33] 20000 20000 20000 20000 20000 20000 19 20000 9 23 44 20000 20000 20000 20000 8 # [49] 20000 20000 ## Another density I was observing the behaviour is p=0.32 for the same grid 5x5 and using my bml.sim3 ## function it seems that the grids are lock-free and that the traffic doesn't get jammed: # > bml.sim3(5,5,0.32,50)# [1] 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 # [17] 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 # [33] 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 # [49] 20000 20000 ## Testing with density p=0.35 and using bml.sim3 function with 10 samples we get: # > bml.sim3(5,5,0.35,10)# [1] 20000 20000 20000 20000 20000 20000 20000 20000 20000 ## Exploring the lower densities p=0.3 and p=0.25, it is clear the the traffic will flow ## undistrurbed and therefore grid never gets locked: # > bml.sim3(5,5,0.3,50)# [1] 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 # [17] 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 # [33] 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000

```
\# > bml.sim3(5,5,0.25,50)
# [1] 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000
20000 20000 20000 20000
# [17] 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000
20000 20000 20000 20000
# [33] 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000
20000 20000 20000 20000
# [49] 20000 20000
## Now examining the bahaviour of the bigger grid (60x60) with the same
densities: p=0.55, p=0.35,
## p=0.32, and p=0.28 we get these results using the bml.sim3 function for 5
samples:
#### for p=0.55 and 10 samples we have the average of
\# > bml.sim3(25,25,0.55,10)
# [1] 64 117 67 60 79 52 43 81 65 90
#### for p=0.35 and 10 samples we have the results as:
\# > bml.sim3(25,25,0.35,10)
# [1] 513 20000 1092 20000 2439 239 436 335 2517 159
#### for p=0.32 and 10 samples, we have the results:
\# > bml.sim3(25,25,0.32,10)
# [1] 4946 20000 1596 20000 20000 1348 20000 3821 20000 20000
#### for p=0.3 and p=0.25 and 10 samples, average timestem needed for the
gridlock to occur is 20000
\# > bml.sim3(25,25,0.3,10)
# [1] 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000
\# > bml.sim3(25,25,0.25,10)
# [1] 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000
```

[49] 20000 20000

Now that we have obtained the denisities for two different sized grids, we
can make an conclusion
on how does the behaviour of the BML depends on the grid size and the

density.

Both 5x5 and 25x25 grids have similar behaviour when the densities are bellow p=0.32.

In this spectrum both grids show very high likelihood that the BML will

avoid #### grid lock which shows the results above. #### When comparing two grids on the p=0.32 density, it seems that the bigger grid size (25x25) #### tends to create more frequent traffic jams than the smaller one (5x5). Nevertheless #### bigger grid size still tends to have a high likelihood of non-gridlocking behaviour or #### a very high number of iterations. #### Comparing the densities above p=0.32, in this case p=0.35, and p=0.55, it seems again #### that the smaller grid sizes (5x5) tend to create less jams than the bigger ones (25x25). #### It is interesting though that for p=0.55 and 5x5 grid, even thou that in many cases in our #### sample of size 50 we had grid-lock-free system, we also recorded couple of gridlocks #### at a very low number of iterations. This is quite lokely due to the randomness of the #### car locatin on the small grid. This is an analogy when we were experementing with the #### same grid on the higher density (p=0.8) and still recorded a couple (4% in our sample) #### of systems which are grid-lock-free. #### In addition, this bar plot of comparison between 5x5 and 25x25 in terms of different #### densities summarizes the behaviour of the densities and sizes of grids.

comparison.of.two.grids <matrix(c(20000,20000,20000,14804,20000,13171,4773,71.8),ncol=4,byrow=TRUE)
colnames(comparison.of.two.grids) <- c("p=0.3","p=0.32","p=0.35", "p=0.55")
rownames(comparison.of.two.grids) <- c("5x5","25x25")
plot.comparison <- as.table(comparison.of.two.grids)</pre>

barplot(pet.puta.pet5, beside=T, ylab="Number of Iterations", xlab="Densities",
legend.text= c("5x5", "25x25"), main="Comparison of 5x5 and 25x25 BML systems")