PATENT ABSTRACTS OF JAPAN

(11)Publication number:

08-331017

(43) Date of publication of application: 13.12.1996

(51)Int.CI.

H04B 3/06 H03H 21/00 H04L 27/01 H04L 27/38 H04L 27/22

(21)Application number: 07-130163

(71)Applicant: FUKUSHIMA NIPPON DENKI KK

(22)Date of filing:

29.05.1995

(72)Inventor: TAKAHASHI MASANORI

(54) DEMODULATOR

(57)Abstract:

PURPOSE: To realize a quick convergence of a transversal equalizer in a reset state in the demodulator in which the transversal equalizer equalizes a demodulated base band signal. CONSTITUTION: Identification devices 7a.7b compare control signals S9a,S9b outputted from integration devices 6a, 6b with reference voltages Vra, Vrb and provide identification signals S11a, S11b with a level '0' when the control signals S9a, S9b are higher and with a level '1' when the control signals S9a, S9b are smaller to selection circuits 9a,9b. Since the selection circuits 9a, 9b select the identification signals S11a, S11b upon the receipt of a reset signal S12, the control signals S9a, S9b are used for reference voltages Vra, Vrb when the demodulator is operated stably, and amplifiers 3a, 3b set demodulated base band signals S4a, S4b to a normal signal level and a DC offset. Then a transversal equalizer 5 and the demodulator are converged quickly.

LEGAL STATUS

[Date of request for examination]

29.05.1995

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

2806825

[Date of registration]

24.07.1998

[Number of appeal against examiner's

decision of rejection]
[Date of requesting appeal against examiner's decision of rejection]
[Date of extinction of right]

Copyright (C); 1998,2000 Japanese Patent Office

(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平8-331017

(43)公開日 平成8年(1996)12月13日

(51) Int.Cl. ⁶		識別記号	庁内整理番号	\mathbf{F} I			ŧ	支術表示	R箇所
H04B	3/06			H04B	3/06	(C		
H03H	21/00		8842-5 J	H03H	21/00				
H04L	27/01			H04L	27/00	K			
	27/38					(G		
	27/22				27/22	2	Z		
		·		審査	請求 有	請求項の数3	OL	(全 7	' 頁)
(21)出顧番	→	特願平7-130163		(71)出願	人 3900010 短島日	074 太命気株式会社			

(22)出願日

平成7年(1995)5月29日

福島県福島市清水町字一本松1番地の1

(72)発明者 髙橋 政則

福島県福島市清水町字一本松1番地の1

福島日本電気株式会社内

(74)代理人 弁理士 京本 直樹 (外2名)

(54) 【発明の名称】 復調装置

(57)【要約】

【目的】復調ベースバンド信号をトランスバーサル等化 器で等化する復調装置において、トランスバーサル等化 器のリセット時の速かな収束を実現する。

【構成】識別器7a, 7bは、積分器6a, 6bが出力 する制御信号S9a, S9bとリファレンス電圧Vr a, Vrbと比較し、制御信号9a, 9bが大であれば "O", 小であれば"1"の識別信号S11a, S11 bを選択回路9a、9bに供給する。リセット信号S1 2を受けるときには、選択回路9a, 9bは識別信号S 11a, S11aを選択するので、制御信号S9aおよ びS9bがこの復調装置が安定動作時のリファレンス電 圧Vra, Vrbとなり、増幅器3a,3bは復調ベー スバンド信号S4a, S4bを正常値の信号レベルおよ びDCオフセットに設定する。すると、トランスバーサ ル等化器5およびこの復調装置の速かな収束が可能とな る。

【特許請求の範囲】

直交多値変調信号からこの同相変調成分 【請求項1】 に対応する第1の復調ベースバンド信号および直交変調 成分に対応する第2の復調ベースバンド信号を復調する 復調器と、第1および第2の制御信号にそれぞれ応答し て前記第1および第2の復調ベースバンド信号の信号レ ベルおよびDCレベルオフセット調整を行う第1および 第2の増幅器と、前記第1および第2の増幅器が出力す る前記第1および第2の復調ベースバンド信号を第1お よび第2のデジタル信号にそれぞれ変換する第1および 10 第2のアナログ・デジタル変換器と、前記第1および第 2のデジタル信号の符号間干渉をそれぞれ等化して第1 および第2の等化デジタル信号を生じリセット信号を受 けると前記等化の動作をリセットするトランスバーサル 等化器と、前記第1および第2の等化デジタル信号に応 答して前記第1および第2の制御信号をそれぞれ生じる 制御信号発生手段とを備える復調装置において、

前記制御信号発生手段が、前記リセット信号を受けない ときには前記第1および第2の等化デジタル信号をそれ ぞれ演算処理したあと積分して前記第1および第2の制 20 御信号を生じ、前記リセット信号を受けるときには予め 定めた第1および第2のリファレンス電圧にそれぞれ対 応する第1および第2の識別信号を積分してそれぞれ前 記第1および第2の制御信号を生じることを特徴とする 復調装置。

前記制御信号発生手段が、前記第1およ 【請求項2】 び第2の等化デジタル信号の予め定めた基準値からのず れにそれぞれ対応する第1および第2の判定信号を生じ る制御信号発生器と、前記第1および第2のリファレン ス電圧と前記第1および第2の制御信号とをそれぞれ比 30 較して前記第1および第2の識別信号をそれぞれ生じる 第1および第2の識別回路と、前記リセット信号を受け ないときには前記第1および第2の判定信号を選択し, 前記リセット信号を受けるときには前記第1および第2 の識別信号を選択して出力する選択回路と、前記選択回 路の出力をそれぞれ積分して前記第1および第2の制御 信号を生じる第1および第2の積分回路とを備えること を特徴とする請求項1記載の復調装置。

前記制御信号発生手段が、前記第1およ 【請求項3】 び第2の等化デジタル信号の予め定めた基準値からのず れにそれぞれ対応する2値論理信号である第1および第 2の判定信号を生じる制御信号発生器と、前記リセット 信号を受けないときには前記第1および第2の判定信号 をそれぞれ選択し前記リセット信号を受けるときには2 値論理信号である前記第1および第2の識別信号を選択 する第1および第2の選択回路と、前記第1および第2 の選択回路の出力をそれぞれ積分して前記第1および第 2の制御信号を生じる第1および第2の積分器と、前記 第1および第2の制御信号と予め定めた第1および第2 のリファレンス電圧とをそれぞれ比較してこれら制御信 50 れる。

号とリファレンス電圧との差を縮小させる極性の2値論 理信号である前記第1および第2の識別信号をそれぞれ 生じる第1および第2の識別器とを備えることを特徴と する請求項1記載の復調装置。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明はデジタル無線方式におけ る直交多値変調信号の復調装置に関し、特に復調器の後 段にトランスバーサル等化器を接続する復調装置に関す る。

[0002]

【従来の技術】近年、LSIの高速化、低価格化が進展 するに伴って、図2のブロック図に示す如き、全デジタ ル化されたベースバンド帯のトランスバーサル等化器5 を用いる復調装置が実現されてきている。

【0003】この復調装置はデジタルマイクロ波無線方 式の受信装置に内蔵される装置であり、2^N (Nは整 数)値の直交多値変調信号S1が信号入力端子21に供 給される。この直交多値変調信号は無線区間を通って上 記受信装置に入力されたマイクロ波信号を中間周波数

(IF) 帯信号に周波数変換した信号である。直交多値 変調信号S1は2分岐され、その一方は掛算器1aで局 発入力端子23aに入力された再生搬送波S2aと掛け 合わされ、もう一方は掛算器 1 b で局発入力端子 2 3 b に入力された再生搬送波S2aと掛け合わされる。な お、再生搬送波23 aと23 bとは、互いに90°の位 相差を持ち、この復調装置の等化デジタル信号S60a およびS60bを用いる公知の再生搬送波再生回路で生 成される。掛算器2aおよび2bの出力は低域通過ろ波 器2aおよび2bにより所定の帯域制限を受けてそれぞ れ復調ベースバンド信号S3aおよびS3bとなる。上 述した諸回路は直交多値変調信号の復調器をなし、復調 ベースバンド信号3aは同相(I相)変調成分の復調信 号、復調ベースバンド信号S3bは直交相(Q相)変調 成分の復調信号である。これら復調ベースバンド信号S 3 a および S 3 b は、直交多値変調信号 S 1 の信号レベ ルに対応した複数レベルを有する。

【0004】復調ベースバンド信号3aおよび3bは、 増幅器3aおよび3bによって増幅される。ここで、増 幅器3aおよび3bは制御信号S90a(S90ag, S90ad) およびS90b (S90bg, S90g d) によってそれぞれ利得およびDCレベルのオフセッ ト(以下、DCオフセット)調整を受ける一種のAGC 増幅器である。制御信号S90の第2サフィックスgが 利得制御用,dがDCオフセット用を示している。増幅 器3aおよび3bからそれぞれ出力される復調ベースバ ンド信号S40aおよび40bは、アナログ・デジタル 変換器(A/D)4 a および4 b によりそれぞれ標本・ 量子化され、デジタル信号S50aおよびS50bとさ

【0005】デジタル信号S50aおよびS50bは全 デジタル処理形のトランスバーサルフィルタ等化器5に 供給される。トランスバーサル等化器5は、上記無線区 間のフェージング等により生じる、デジタル信号S50 aおよびS50bの符号間干渉をそれぞれ除去して等化 デジタル信号S60aおよびS60bを生じる。これら 等化デジタル信号S60aおよびS60bは、端子25 a, 25 bにそれぞれ出力され、フレーム同期処理およ び符号判定処理が行われる。等化デジタル信号S60a およびS60bは、分岐されて制御信号発生器10にも 供給される。なお、トランスバーサル等化器5は、トラ ンスバーサルフィルタの各タップ係数を制御することに よって入力されるデジタル信号S50aおよびS50b の符号間干渉を等化する回路であり、例えば"ディジタ ルマイクロ波通信, P. 240~242, 桑原守二監 修, 企画センター発行"に述べられている。

【0006】図3の制御信号発生器10の動作例を示す 図を参照して制御信号発生器10の動作を説明する。こ の動作例は直交多値変調信号S1が、N=2, つまり復 調ベースバンド信号S4aおよびS4bが2値の場合を 示している。制御信号発生器10に供給される等化デジ タル信号S60aおよびS60aは、復調ベースバンド 信号S4 a およびS4 b の信号レベルが"1"の場合に はMSBが"1"であり、信号レベルが"0"の場合に はMSBが"0"である。そして、等化デジタル信号S 60aおよびS60aの第2ビット(復調ベースバンド 信号S40aおよびS40bの信号レベルがN値である 場合は第Nビット)およびMSBビットが、復調ベース バンド信号S40a(および等化デジタル信号60a) および復調ベースバンド信号S40b(および等化デジ タル信号60b) の信号レベルおよびDCオフセットが 適切であるかどうかの判定ビットとされる。

【0007】まず、等化デジタル信号S60aおよび6 0 bのレベル制御(増幅器3 a および3 b の利得制御) について説明すると、等化デジタル信号S60aおよび 60 b の適切なレベル範囲(アイ開口部)は、高レベル が"1,1"と"1,0"の間であり、低レベルが "0,0"と"0,1"の間である。そこで、制御信号 発生器10は、等化デジタル信号S60aおよび60b が"1,0"または"0,1"であれば等化デジタル信 号S60aおよび60bの信号レベルが低いと判定し、 増幅器3aおよび3bの利得を増加させるために"1" の判定信号S70agおよびS70bgを出力する。ま た、等化デジタル信号S60aおよび60bが"1, 1"または"0,0"であれば、制御信号発生器10 は、等化デジタル信号S60aおよび60bの信号レベ ルが高いと判定し、増幅器3aおよび3bの利得を低下 させるために"0"の判定信号S70agおよびS70 bgを出力する。

器6aおよび6bでそれぞれ積分されて、上述の制御信 号S90agおよびS90bgとなる。積分された結果 の制御信号S90agおよびS90bgの値が大きけれ ば増幅器3aおよび3bは利得が増大するように制御さ れ、逆に制御信号S90agおよびS90bgの値が小 さければ増幅器3 a および3 b は利得が低下するように 制御されて、復調ベースバンド信号S40aおよび40 bは最適な信号レベルとなる。

【0009】次に、等化デジタル信号S60aおよび6 ObのDCオフセット制御(増幅器3aおよび3bのD Cオフセット制御)について説明すると、等化デジタル 信号S60aおよび60bの適正なDCオフセットは、 これら信号の中間点である"1,0"と"0,1"の間 である。そこで、制御信号発生器10は、等化デジタル 信号S60aおよび60bが"1,1"または"1, 0"であれば等化デジタル信号S60aおよび60bの DCオフセットが正側にずれていると判定し、増幅器3 a および3bのDCオフセットを負側に移動させるため に "1" の判定信号S70 a d およびS70 b d を出力 する。また、等化デジタル信号S60aおよび60bが "0, 1"または"0, 0"であれば、制御信号発生器 10は、等化デジタル信号S60aおよび60bの信号 レベルが負側にずれていると判定し、増幅器3aおよび 3 bのDCオフセットを正側に移動させるために"O" の判定信号S70adおよびS70bdを出力する。

【0010】判定信号S70adおよびS70bdは、 積分器6aおよび6bでそれぞれ積分されて、上述の制 御信号S90adおよびS90bdとなる。積分された 結果の制御信号S90adおよびS90bdの値が大き ければ増幅器3aおよび3bはDCオフセットが負側に 移動するように制御され、逆に制御信号S90adおよ びS90bdの値が小さければ増幅器3aおよび3bは DCオフセットが正側に移動するように制御されて、復 調ベースバンド信号S40aおよび40bは最適なDC オフセットに配置される。

【0011】上述の復調器の後段にトランスバーサル等 化器5を接続する復調装置では、フェージング等により デジタル信号S50aおよびS50bの符号間干渉が増 加することにより、等化器5が十分に機能しないで等化 デジタル信号S60aおよびS60bに多量の誤りが発 生すると、信号S60aおよびS60bを基に生成され る制御信号S90aおよびS90bも増幅器3aおよび 3 bの利得およびDCオフセットを適切に制御せず、こ の復調装置の復調動作が発散してしまうときがある。

【0012】発散した復調装置においては、トランスバ ーサル等化器5の各タップも最適な制御を行えず発散し ている。この発散したトランスバーサル等化器5を通過 して符号誤りが重畳された等化デジタル信号S60aお よびS60bを基に制御信号S90aおよびS90bが 【0008】判定信号S70aおよびS70bは、積分 50 作られるため、復調装置は制御が誤り収束は困難とな

20

る。よって復調装置が発散している場合にはトランスバ ーサル等化器5をリセットする必要があるが、一方、リ セットしたままではデジタル信号S50aおよびS50 bの符号間干渉を等化しないため、フェージングが浅く なるまで復調装置は収束しない。

【0013】上述の問題を解消するものとして特公平1 -29324号公報(発明の名称:自動等化器のリセッ ト装置)に開示された技術がある。このトランスバーサ ル形の自動等化器においては、自動等化器(図2ではト ランスバーサル等化器 5) が発散している時には間欠パ 10 ルスで(図2ではリセット信号端子22から供給される リセット信号S12) この自動等化器を断続制御し、タ ップ係数が収束したときに、復調装置を収束させること で、フェージングが深い状態での収束を可能にしてい る。なお、上記自動等化器の発散は出力信号(図2では 等化デジタル信号S60aおよび60b)のフレーム非 同期あるいは誤り率の増大をを公知の技術で検出するこ とで検出でき、このフレーム非同期検出あるいは誤り率 増大検出をトリガとして上記間欠パルス(リセット信号 S12)が作成される。

[0014]

【発明が解決しようとする課題】上述の特公平1-29 324号公報の技術を適用する従来の復調装置は、この 復調装置発散時にトランスバーサル等化器5をリセット する時間が、トランスバーサル等化器5の各タップをリ セットし、入力されたデジタル信号S50aおよびS5 0 b が等化なしに出力されるのに必要な時間より非常に 長く設定される必要があった。これは、復調装置が収束 せず、トランスバーサル等化器5が動作からリセットに 切り替わる時には、トランスバーサル等化器5の各タッ プも収束せず発散状態にあるため、等化デジタル信号S 60aおよびS60bには多くの誤りが発生しており、 これを基に作られる制御信号S90aおよびS90bも 乱調となっているため、増幅器3 a および3 b の利得, **DCオフセットの誤った制御が行われ、復調ベースバン** ド信号S40aおよびS40bの信号レベルおよびDC オフセットが正常値に対して偏りをもってしまうからで ある。

【0015】トランスバーサル等化器5をリセットにす る時間は、制御信号S90aおよびS90bの正常値か らの偏りを戻すのに必要な時間である。但し、トランス バーサル等化器5をリセットにしている間もフェージン グによる符号間干渉により、等化デジタル信号S60 a, S60bおよび制御信号S90a, S90bに誤り が発生しているため、制御信号S90aおよびS90b の偏りは最短時間で戻っている訳ではない。即ち、従来 の復調装置のリセット時間がトランスバーサル等化器5 をリセットする時間より非常に長く必要だったのは、制 御信号S90aおよびS90bが誤差成分を含み、正常 値に戻るのに長い時間がかかるためであった。

【0016】よって、本発明の目的は、トランスバーサ ル等化器のリセット時において、従来例と同様にトラン スバーサル等化器を断続的にリセットさせることに加 え、上記制御信号もリセットしてこの制御信号の偏りを 速かに正常値に戻すことで、トランスバーサル等化器の リセット時間を短縮し、復調装置の再収束に要する時間 を短縮することを目的とする。

[0017]

【課題を解決するための手段】本発明による復調装置 は、直交多値変調信号からこの同相変調成分に対応する 第1の復調ベースバンド信号および直交変調成分に対応 する第2の復調ベースバンド信号を復調する復調器と、 第1および第2の制御信号にそれぞれ応答して前記第1 および第2の復調ベースバンド信号の信号レベルおよび DCレベルオフセット調整を行う第1および第2の増幅 器と、前記第1および第2の増幅器が出力する前記第1 および第2の復調ベースバンド信号を第1および第2の デジタル信号にそれぞれ変換する第1および第2のアナ ログ・デジタル変換器と、前記第1および第2のデジタ ル信号の符号間干渉をそれぞれ等化して第1および第2 の等化デジタル信号を生じリセット信号を受けると前記 等化の動作をリセットするトランスバーサル等化器と、 前記第1および第2の等化デジタル信号に応答して前記 第1および第2の制御信号をそれぞれ生じる制御信号発 生手段とを備える復調装置において、前記制御信号発生 手段が、前記リセット信号を受けないときには前記第1 および第2の等化デジタル信号をそれぞれ演算処理した あと積分して前記第1および第2の制御信号を生じ、前 記リセット信号を受けるときには予め定めた第1および 第2のリファレンス電圧にそれぞれ対応する第1および 第2の識別信号を積分してそれぞれ前記第1および第2 の制御信号を生じる。

【0018】前記復調装置の一つは、前記制御信号発生 手段が、前記第1および第2の等化デジタル信号の予め 定めた基準値からのずれにそれぞれ対応する第1および 第2の判定信号を生じる制御信号発生器と、前記第1お よび第2のリファレンス電圧と前記第1および第2の制 御信号とをそれぞれ比較して前記第1および第2の識別 信号をそれぞれ生じる第1および第2の識別回路と、前 記リセット信号を受けないときには前記第1および第2 の判定信号を選択し、前記リセット信号を受けるときに は前記第1および第2の識別信号を選択して出力する選 択回路と、前記選択回路の出力をそれぞれ積分して前記 第1および第2の制御信号を生じる第1および第2の積 分回路とを備える構成をとることができる。

【0019】前記復調装置の別の一つは、前記制御信号 発生手段が、前記第1および第2の等化デジタル信号の 予め定めた基準値からのずれにそれぞれ対応する2値論 理信号である第1および第2の判定信号を生じる制御信 50 号発生器と、前記リセット信号を受けないときには前記

(S8bg, S8bd)として出力する。積分用信号S8aおよびS8bは、積分器6aおよび6bによりそれぞれ積分されて、制御信号S9aおよびS9bを生じ

第1および第2の判定信号をそれぞれ選択し前記リセット信号を受けるときには2値論理信号である前記第1および第2の識別信号を選択する第1および第2の選択回路と、前記第1および第2の選択回路の出力をそれぞれ積分して前記第1および第2の制御信号を生じる第1および第2の積分器と、前記第1および第2の制御信号と予め定めた第1および第2のリファレンス電圧とをそれぞれ比較してこれら制御信号とリファレンス電圧との差を縮小させる極性の2値論理信号である前記第1および第2の識別信号をそれぞれ生じる第1および第2の識別 10 器とを備える構成をとることができる。

【0025】リセット信号S12を受けないときには、選択回路9aおよび9bは、制御信号発生器10が出力する判定信号S7aおよびS7b,つまり図2の復調装置における判定信号S70aおよびS70bを選択し、積分器6aおよび6aに入力する積分用信号S8aおよびS8aとする。リセット信号S12を受けないときの制御信号S9aおよびS9bはそれぞれ図2における制御信号S90aおよびS90bと同じであり、このときの実施例の復調装置は従来技術による復調装置と同じ動作をする。

[0020]

【0026】さて、制御信号S9aおよびS9bは、識別器7aおよび7bにもそれぞれ供給されている。識別器7aは予め定めたリファレンス電圧VragおよびVradをリファレンス電圧端子24agおよび24adからそれぞれ供給され、識別器7bは予め定めたリファレンス電圧Vrbdをリファレンス電圧Vrbdをリファレンス電圧Vrbdをリファレンス電圧Vrbdをリファレンス電圧VragおよびVrbdは、この復調装置が標準信号レベルの直交多値変調信号S1を受けて安定的に動作している時の制御信号S9agおよびS9bgの電圧(利得制御電圧)にそれぞれ設定する。また、リファレンス電圧VradおよびVrbdは、この復調装置が標準信号レベルの直交多値変調信号S1を受けて安定的に動作している時の制御信号S9adおよびS9bdの電圧(DCオフセット制御電圧)に

【実施例】次に本発明について図面を参照して説明す *

それぞれ設定する。
【0027】識別器7aおよび7bは、制御信号9aおよび9bとリファレンス電圧VraおよびVraの電圧の大小をそれぞれ比較し、制御信号9aおよび9bが大であれば"0",小であれば"1"の2値のデジタル値である識別信号S11a(S11agおよびS11ad)および識別信号S11b(S11bgおよびS11bd)をそれぞれ出力する。

【0021】図1は本発明の一実施例のブロック図である。

【0028】いま、リセット信号S12がトランスバーサル等化器5とともに選択回路9aおよび9bに供給されると、選択回路9aおよび9bは識別信号S11aおよびS11bをそれぞれ選択して積分用信号S8aおよびS8bとして出力する。識別信号S11aおよびVrad)およびVrb(VragおよびVrad)およびVrb(VrbgおよびVrbd)との差を縮める方向の極性であるので、制御信号S9aおよびS9bはリファレンス電圧VraおよびVrbにそれぞれ一致するように制御される。なお、リファレンス電圧VraおよびVrbを増幅器3aおよび3bに直接的でなく積分器6aおよび6bを通して供給するのは、リセット信号S12の供給開始および停止時において、判定信

【0022】この復調装置は、図2の復調装置に加え、選択回路9aおよび9bと、識別器7aおよび7bとを備える。図2を参照して説明した構成要素は、図2の復調装置におけると同じ動作をするので、動作説明等はこの実施例の説明に必要な程度に留める。なお、同じ構成要素で処理されても、取り扱う信号の内容がいくらか異なることがあるが、この場合には信号の符号を変えて説明する。

【0023】図1において、増幅器3aおよび3bは、制御信号S9a(S9ag,S9ad)およびS9b(S9bg,S9bd)にそれぞれ制御されて多値信号レベルの復調ベースバンド信号S3aおよびS3bの信号レベルおよびDCオフセット調整を行い、復調ベースバンド信号S4aおよびS4bを出力する。復調ベースバンド信号S4aおよびS4bは、アナログ・デジタル変換器(A/D)によりデジタル信号S5aおよびS5bに変換されたあと、トランスバーサル等化器5により符号間干渉を等化されて等化デジタル信号S6aおよびS6bから、図2および図3を参照して影明した判定信号S7a(S7ag,S7ad)およびS7b(S7bg,S7bd)を生じる。

【0024】判定信号7aは選択回路9aの入力端Aに供給され、判定信号7bは選択回路9bの入力端Aに供給される。選択回路9aおよび9Bの各各は、入力端Aおよび入力端Bとリセット信号S12を受けるリセット端子Sとを有し、リセット信号S12を受けないときには入力端子Aに供給される判定信号7aおよび7bをそれぞれ選択し、リセット信号S12を受けるときには入力端子Bに供給される識別信号S11a(S11ag,S11ad)および11b(S11bg,S11bd)をそれぞれ選択して、選択された信号を出力端子Yに積分用信号S8a(S8ag,S8ad)およびS8b

号S7a, S7bとリファレンス電圧Vra, Vrbに 対応する識別信号S11a, S11bとの切替によって も、制御信号S9aおよびS9bに急激な変化を生じさ せることなく、この復調装置を常に安定動作させるため である。

【0029】上述のとおり、本実施例の復調装置は、リ セット信号S12を受けると、増幅器9aおよび9bの 利得とDCオフセットとを制御する制御信号S9aおよ び9bを予め設定しておいたリファレンス電圧Vraお よびVrbへと速かにセットできることがわかる。この 10 1 a, 1 b 結果、この復調装置は、リセット信号S12の発動時 に、制御信号S9aおよびS9bの偏りを速かに正常値 に戻すことで、トランスバーサル等化器5のリセット発 動時間を短縮することができ、トランスバーサル等化器 5の速かな収束を実現できるという効果がある。

[0030]

【発明の効果】以上説明したように本発明の復調装置 は、デジタル信号化された復調ベースバンド信号の符号 間干渉を等化するトランスバーサル等化器が発散してこ の等化器がリセット信号を受けた際に、増幅器が出力す 20 る上記復調ベースバンド信号の信号レベルおよびDCオ フセット調整の制御を行う制御信号をリファレンス電圧 に設定するので、上記トランスバーサル等化器のリセッ

ト発動時間を短縮することが可能となり、上記トランス バーサル等化器およびこの復調装置の速かな収束を実現 できるという効果を有する。

【図面の簡単な説明】

【図1】本発明による一実施例のブロック図である。

【図2】従来技術による復調装置のブロック図である。

【図3】復調装置に用いた制御信号発生器10の動作例 を示す図である。

【符号の説明】

掛算器

2a, 2b 低域通過ろ波器

3a, 3b 増幅器

アナログ・デジタル変換器(A/D) 4a, 4b

トランスバーサル等化器

6a, 6b 積分器

7a, 7b 識別器

9a, 9b 選択回路

10 制御信号発生器

2 1 信号入力端子

2 2 リセット信号入力端子

23a,23b 局発入力端子

24a, 24b リファレンス電圧端子

【図1】

【図2】

【図3】

	信号等	信号S6(S60)		信号S7(S70)		
	MSB	第2bit	(g)	(d)]	
	1	1	0	1	Marine ne	
710	1	0	1	0	道正DC	
アイの 関口部	0	1	1	1	Ţ <u></u>	
	0	0	0	0]	