Homework 4

ECE4802

Nam Tran Ngoc

1. Consider the multiplicative group of \mathbb{Z}^*53

a. What are the possible element orders? How many element exit for each order?

$$Z_{53} = \{1,2,3,4,5,...,52\}$$
-> The order of Z_{53} is 52.

We have the element order of Z*53 to be 1,2,4,13,26,52 as they are divisors of 52.

For each element orders we have:

$$\phi(1) = \{1\} -> 1$$
 element

$$\phi(2) = \{1\} -> 1$$
 element

$$\phi(4) = \{1,3\} \rightarrow 2$$
 elements

$$\phi(13) = \{1,2,3,4,...,12\} \rightarrow 12$$
 elements

$$\phi(26) = \{1,3,5,7,9,11,15,17,19,21,13,25\} \rightarrow 12$$
 elements

$$\phi(52) = \{1,3,5,7,9,11,15,17,19,21,13,25,27,29,31,33,35,37,41,43,45,47,49,51\} \rightarrow \textbf{24 elements}$$

b. Determine the order of all elements of \mathbb{Z}^*53

We take 2 to be a generator of Z_{53} , since 2 and 53 are coprime, and 2 is an element of Z_{53} .

We have the following subgroups:

• Subgroup of order 1: $2^{(52/1)} = 1$.

$$0.1^1 = 1$$

• Subgroup of order 2: $2^{(52/2)} = 2^26 = 52$.

• Subgroup of order 4: $2^{(52/4)} = 2^{13} = 30$.

- Subgroup of order 13: $2^{(52/13)} = 2^4 = 16$.
 - o 16^1 = 16
 - o 16^2 = 44
 - o 16^3 = 15
 - o 16^4 = 28
 - 16⁵ = 24
 - o 16^6 = 13
 - 16⁷ = 49
 - o 16^8 = 42
 - o 16^9 = 36
 - o 16^10 = 46
 - o 16^11 = 47
 - o 16^12 = 10
- Subgroup of order 26: $2^{(52/26)} = 2^2 = 4$.
 - 4¹ = 11
 - 4² = 17
 - 4[^]3 = 7
 - 4⁴ = 6
 - 4⁵ = 43
 - 4^6 = 37
 - 4⁷ = 9
 - 4⁸ = 38
 - 4^9 = 25
 - o 4^10 = 29
 - o 4^11 = 40
- Subgroup of order 52: $2^{(52/52)} = 2^1 = 2$.
 - o 2^1 = 8
 - o 2^2 = 32
 - o 2^3 = 22
 - o 2^4 = 35
 - o 2^5 = 34
 - \circ 2^6 = 14

```
^{\circ} 2^7 = 3
```

$$\circ$$
 2^9 = 48

$$\circ$$
 2¹3 = 51

$$\circ$$
 2¹4 = 45

$$^{\circ}$$
 2^{^2}24 = 27

c. What are the generators of \mathbb{Z}^*53 ?

The generators of Z^*53 are $\{8,32,22,35,34,14,3,12,48,33,26,51,45,21,31,18,19,39,50,41,5,20,27\}$

2. Use Baby-step Giant-step Algorithm to compute following discrete logarithm problems:

a. $5 = 3^x \mod 59$

$$q = 58$$

 $t = floor(sqrt(q)) = floor(sqrt(58)) = 7$

Giant step calculation:

$$3^{\circ} t = 3^{\circ} 0 \mod 59 = 1$$

 $3^{\circ} t = 3^{\circ} 7 \mod 59 = 4$
 $3^{\circ} 2t = 3^{\circ} 14 \mod 59 = 16$
 $3^{\circ} 3t = 3^{\circ} 21 \mod 59 = 5$

```
3^4t = 3^28 \mod 59 = 20

3^5t = 3^35 \mod 59 = 21

3^6t = 3^42 \mod 59 = 25

3^7t = 3^49 \mod 59 = 41
```

Sorting this we have the following pairs:

```
{
    1, 0,
    4, 7
    5, 14
    16, 21
    20, 28
    21, 35
    25, 42
    41, 49
}
```

Baby step calculation

5*3^1 mod 59 = 15 5*3^2 mod 59 = 45 5*3^3 mod 59 = 17 5*3^4 mod 59 = 51 5*3^5 mod 59 = 35 5*3^6 mod 59 = 46 5*3^7 mod 59 = 20

So we have (20,7) matches (20,28).

Therefore x = 28 - 7 = 21.

b. $9 = 11^x \mod 79$

q = 78t = floor(sqrt(q)) = floor(sqrt(78)) = 8

Giant step calculation:

```
11^ot = 11^o mod 79 = 1

11^1t = 11^8 mod 79 = 44

11^2t = 11^16 mod 79 = 40

11^3t = 11^24 mod 79 = 22

11^4t = 11^32 mod 79 = 20

11^5t = 11^40 mod 79 = 11

11^6t = 11^48 mod 79 = 10

11^7t = 11^56 mod 79 = 45

11^8t = 11^64 mod 79 = 5
```

Sorting this we have the following pairs:

```
{
    1, 0
    5, 64
    10,48
    11, 40
    20, 32
    22, 24
    40, 16
    44, 8
    45, 56
}
```

Baby step calculation

So we have (20,32) matches (20,1).

Therefore x = 32 - 1 = 31.

c. $47 = 3^x \mod 103$

```
q = 102

t = floor(sqrt(q)) = floor(sqrt(78)) = 8
```

Giant step calculation:

```
11^ot = 11^o mod 79 = 1

11^1t = 11^8 mod 79 = 44

11^2t = 11^16 mod 79 = 40

11^3t = 11^24 mod 79 = 22

11^4t = 11^32 mod 79 = 20

11^5t = 11^40 mod 79 = 11

11^6t = 11^48 mod 79 = 10

11^7t = 11^56 mod 79 = 45

11^8t = 11^64 mod 79 = 5
```

Sorting this we have the following pairs:

```
{
    1, 0
    5, 64
    10,48
    11, 40
    20, 32
    22, 24
    40, 16
    44, 8
    45, 56
}
```

Baby step calculation

```
9*11^1 mod 79 = 20
```

So we have (20,32) matches (20,1).

Therefore x = 32 - 1 = 31.

c. $47 = 3^x \mod 103$

```
q = 102

t = floor(sqrt(q)) = floor(sqrt(102)) = 10
```

Giant step calculation:

```
3^ot = 3^o mod 103 = 1

3^1t = 3^10 mod 103 = 30

3^2t = 3^20 mod 103 = 76

3^3t = 3^30 mod 103 = 14

3^4t = 3^40 mod 103 = 8

3^5t = 3^50 mod 103 = 34

3^6t = 3^60 mod 103 = 93

3^7t = 3^70 mod 103 = 9

3^8t = 3^80 mod 103 = 64

3^9t = 3^90 mod 103 = 66

3^10t = 3^100 mod 103 = 23
```

Sorting this we have the following pairs:

```
{
    1, 0
    8, 40
    9, 70
    14, 30
    23, 100
    30, 10
    34, 50
    64, 80
    66, 90
    76, 20
    93, 60
}
```

Baby step calculation

47*3^1 mod 103 = 38

 $47*3^2 \mod 103 = 11$

 $47*3^3 \mod 103 = 33$

47*3^4 mod 103 = 99

47*3^5 mod 103 = 91

47*3^6 mod 103 = 67

47*3^7 mod 103 = 98

47*3^8 mod 103 = 88

 $47*3^9 \mod 103 = 58$

47*3^10 mod 103 = 71

Since we don't have a match, there is no solutions for this

d. $5 = 31^x \mod 141$

q = 140

t = floor(sqrt(q)) = floor(sqrt(140)) = 11

Giant step calculation:

31^ot = 3^o mod 103 = 1

3^1t = 3^11 mod 141 = 51

 $3^2t = 3^2t = 63$

 $3^3t = 3^3 \mod 141 = 111$

3^4t = 3^44 mod 141 = 52

3^5t = 3^55 mod 141 = 75

 $3^6t = 3^66 \mod 141 = 109$

 $3^7t = 3^77 \mod 141 = 95$

 $3^8t = 3^80 \mod 141 = 9$

3^9t = 3^99 mod 141 = 111

3^10t = 3^101 mod 141 = 103

3^11t = 3^121 mod 141 = 10

Sorting this we have the following pairs:

```
{
   1, 0
   9, 88
   10, 121
   51, 11
   52, 44
   63, 22
   75, 55
   95, 77,
   103, 110
   109, 66
   111, 33
   111, 99
}
```

Baby step calculation

```
5*31^1 mod 141 = 14

5*31^2 mod 141 = 11

5*31^3 mod 141 = 59

5*31^4 mod 141 = 137

5*31^5 mod 141 = 17

5*31^6 mod 141 = 104

5*31^7 mod 141 = 122

5*31^8 mod 141 = 116

5*31^9 mod 141 = 71

5*31^10 mod 141 = 14
```

Since we don't have a match, there is no solutions for this

3. D-H Key Exchange: Alice and Bob want to generate a common key. They agreed to use prime number p = 709 and generator α =

2. Alice's private key= 17, Bob's private key= 41. Find the the followings and show every intermediate step:

a. Alice's public key

```
A = g^a \mod p = 2^17 \mod 709 = 616
```

b. Bob's public key

```
B = g^b \mod p = 2^4 \mod 709 = 323
```

c. Common key generated by Alice and Bob.

```
s = 323^17 \mod 709 = 35,
or
s = 616^41 \mod 709 = 350
```

d. Explain how Alice and Bob establish the key.

- Alice and Bob first starts out by calculating their public keys which are known to each others.
- They then generate the common key by taking the other person's public key, bring it to the power of their own private key in the modular space p.
- The result is the common key which is shared between the two.
- 4. ElGamal Encryption: Encrypt and decrypt the following messages using ElGamal Encryption for $\mathbb{Z}*971$ and g=314 (generator r=8 and a=10, q=97) and show every intermediate step:
- a. Private key = 23, random parameter = 21, message = 49.

Key generation

```
h = g^x \mod 971 = 314^2 \mod 971
```

23 = 0b10111

1 314
0 525
1 49
1 418
1 865

$$h = 865$$

Encryption

 $c1 = g^k = 314^21$

c1 = 575

 $c2 = m^* h^k = 49 * 865^21$

 1
 865

 0
 555

 1
 196

 0
 547

 1
 590

c2 = 590 * 49 mod 971 = 751

Therefore c = (575, 751)

Decryption

 $s = c1^x = 575^23$

```
23 = 0b10111

1 575

0 485

1 872

1 862

1 590
```

```
s = 590

M = (s^-1 mod 971) * c2 mod 971

= (590^-1 mod 971) * 751 mod 971

= 525 * 751 mod 971

= 49
```

b. Private key = 23, random parameter = 51, message = 49.

Key generation

 $h = g^x \mod 971 = 314^23 \mod 971$ = 865 (same as part a.)

Encryption

 $c1 = g^k = 314^51$

c1 = 7

 $c2 = m^* h^k = 49 * 865^51$

1 865

1 401

0 586

0 633

1 448

1 957

 $c2 = 957 * 49 \mod 971 = 285$

Therefore $\mathbf{c} = (7, 285)$

Decryption

$$s = c1^x = 7^23$$

23 = 0b10111

1 7

0 49

1 300

1 792

1 957

s = 957

 $M = (s^-1 \mod 971) * c2 \mod 971$

= (957^-1 mod 971) * 285 mod 971

= 208 * 285 mod 971

= 49

(Yay!)

* This homework was brought to you by: tedious hand calculations and hacky Javascript code to verify result.