Introduction to Computing Systems Homework 2

PB18111697 王章瀚

November 3, 2019

1

a

b

Since there are 5 states in all, $\frac{3 \text{ state variables}(\text{I mean a variables with 3 bits})}{1 \text{ mean a variables with 3 bits}}$ will be needed.

 $\mathbf{2}$

The addressability is 16 byte and it has 2^7 memory locations, so the computer has $\underline{16byte \times 2^7 = 2048}$ bytes of memory.

3

a "A[1:0] should be 01", pat attention to the circuit.

A[1:0]=10, WE = 1

b

It needs $\lceil log_2(800) \rceil = 10$ address lines. And the addressability maintains.

C

$$2^{10} - \lceil log_2(800) \rceil = \underline{224}$$

4

a

The address space of this memory is $\underline{2}$ bits, which is $\underline{2}^2 = \underline{4}$ locations.

 \mathbf{b}

The addressability of this memory is $\underline{16}$ bits.

 \mathbf{c}

It's
$$4 \times 16 \ bits = 8 \ bytes$$

 \mathbf{d}

WE	A[1:0]	Di[15:0]	D[15:0]	Read/Write
0	01	xFADE	<u>x4567</u>	Read
1	10	xDEAD	$\underline{\text{xDEAD}}$	Write
0	<u>00</u>	xBEEF	x0123	Read
1	11	$\underline{\text{xFEED}}$	xFEED	Write

5

And the states diagram is as below.

6 PAY ATTENTION TO THIS

Using "-" to represent the state haven't been changed.

	PC	IR	MAR	MDR	R0	R1	R2
Fetch	x3004	x62BE	x3003	x62BE	x3000	x3000	x3002
Decode	-	-	-	-	-	-	-
Evaluate Address	-	-	-	-	-	-	-
Fetch Operands	-	-	x3000	x62BF	-	-	-
Execute	-	-	-	-	-	-	-
Store Result	_	-	1	-	ı	x62BF	-

7

a

 $\lceil log_2(1151) \rceil = \underline{11 \ bits}.$

```
\mathbf{b}
```

$$\lceil log_2(40) \rceil = \underline{6 \ bits}.$$

 \mathbf{c}

$$32 - 11 - 6 \times 3 = 3$$
 bits.

8

0101	000	$000 \ 1$	00000	; AND $R0$,	R0,	#0
1001	010	001 1	11111	;NOT $R2$,	R1	
0001	010	010 1	00001	; ADD $R2$,	R2,	#1
0001	010	$010 \ 0$	00 011	; ADD $R2$,	R2,	R3
0000	101	00000	0001	;BRnp		
0001	000	$000 \ 1$	00001	; ADD $R0$,	R0,	#1
1111	0000	0 0010	0101	;HALT		

9

if R2 < R1, R4 = 0, otherwise, R4 = 1.