CLAIMS

1.	A method for repairing a turbine component, the method comprising the steps of:
	cold gas-dynamic spraying powder material to buildup degraded areas on the turbine component; and
	post-spray processing the turbine component to consolidate applied material and restore metallurgical integrity to the repaired turbine component.
2.	The method of claim 1 wherein turbine component comprises a turbine blade.
3.	The method of claim 2 wherein the turbine blade comprises a tip, and wherein the cold gas-dynamic spraying is performed on the tip.
4.	The method of claim 2 wherein the turbine blade comprises a leading edge, and wherein the cold gas-dynamic spraying is performed on the leading edge.
5.	The method of claim 2 wherein the turbine blade comprises a platform, and wherein the cold gas-dynamic spraying is performed on the platform.

- 6. The method of claim 2 wherein the turbine blade comprises a z-notch shroud, and wherein the cold gas-dynamic spraying is performed on the z-notch shroud.
- 7. The method of claim 1 wherein the step of post-spray processing the turbine component to consolidate applied material and restore metallurgical integrity to the repaired turbine component comprises performing a vacuum sintering on the turbine component after the step of cold gas-dynamic spraying particles.
- 8. The method of claim 7 wherein the step of performing a vacuum sintering comprises sintering in a vacuum for between 2 and 4 hours at temperatures of between 2050 degrees F and 2300 degrees F.
- 9. The method of claim 1 wherein the step of post-spray processing the turbine component to consolidate applied material and restore metallurgical integrity to the repaired turbine component comprises performing a hot isostatic pressing on the turbine component after the step of cold gas-dynamic spraying particles.

- 10. The method of claim 9 wherein the step of performing a hot isostatic pressing on the turbine component comprises pressing for between 2 and 4 hours at temperatures of between 2100 and 23000 degrees F and at pressures of between 10 and 30 ksi.
- 11. The method of claim 9 further comprising the step of performing a rapid cooling of between 45 and 60 degrees F per minute to a desired temperature level after the hot isostatic pressing.
- 12. The method of claim 1 wherein the step of post-spray processing the turbine component to consolidate applied material and restore metallurgical integrity to the repaired turbine component comprises a heat treatment of between 2 to 4 hours at temperatures of between 2000 and 2200 degrees F followed by a second heat treatment of between 16 to 24 hours at temperatures of between 1300 and 1800 degrees F.
- 13. A method for repairing a high pressure turbine component, the method comprising the steps of:

cold gas-dynamic spraying powder material to repair degradation in at least a portion of the high pressure turbine component;

vacuum sintering the high pressure turbine component;

18.

	performing a hot isostatic pressing on the high pressure turbine component; and
	heat treating the high pressure turbine component.
14.	The method of claim 13 wherein the high pressure turbine component comprises a turbine blade.
	The method of claim 14 wherein the turbine blade comprises a tip, and wherein the cold gas-dynamic spraying is performed on the tip.
	The method of claim 14 wherein the turbine blade comprises a leading edge, and wherein the cold gas-dynamic spraying is performed on the leading edge.
	The method of claim 14 wherein the turbine blade comprises a platform, and wherein the cold gas-dynamic spraying is performed on the platform.
	The method of claim 14 wherein the turbine blade comprises a z-notch shroud and wherein the particles are sprayed on the z-notch shroud.

- 19. The method of claim 13 wherein the step of performing a vacuum sintering comprises sintering in a vacuum for between 2 and 4 hours at temperatures of between 2050 degrees F and 2300 degrees F.
- 20. The method of claim 13 wherein the step of performing a hot isostatic pressing on the turbine component comprises pressing for between 2 and 4 hours at temperatures of between 2100 and 23000 degrees F and at pressures of between 10 and 30 ksi.
- 21. The method of claim 13 further comprising the step of performing a rapid cooling of between 45 and 60 degrees F per minute to a desired temperature level after the hot isostatic pressing.
- 22. The method of claim 13 wherein the step heat treating the high pressure turbine component comprises a heat treatment of between 2 to 4 hours at temperatures of between 2000 and 2200 degrees F followed by a second heat treatment of between 16 to 24 hours at temperatures of between 1300 and 1800 degrees F.

23. A method for repairing degradation on a turbine blade, the method comprising the steps of:

providing repair powder material;

mixing the repair powder material into a flow of gas, the gas at a temperature below a melt temperature of the repair powder material;

accelerating the repair powder material mixed into the flow of gas; and

directing the accelerated repair powder material to a target surface on the turbine blade, wherein the repair powder material deforms on the target surface to repair degradation on the turbine blade;

vacuum sintering the turbine blade for between 2 and 4 hours at temperatures of between 2050 degrees F and 2300 degrees F;

performing a hot isostatic pressing on the turbine blade for between 2 and 4 hours at temperatures of between 2100 and 23000 degrees F and at pressures of between 10 and 30 ksi; and

heat treating the turbine blade between 2 to 4 hours at temperatures of between 2000 and 2200 degrees F followed by a second heat treatment of between 16 to 24 hours at temperatures of between 1300 and 1800 degrees F.