Density-Based Spatial Clustering of Applications with Noise

Comprehensive Notes with Equations, Diagrams, and

Implementation

Introdu	ction to DBSCAN		
Core C	oncepts and Definitio	ns	
The DE	SCAN Algorithm		
Mather	natical Formulation		
Parame	eters and Their Effect	S	
Implen	nentation and Code E	xamples	
Time a	nd Space Complexity		
Δdvant	ages and Disadvanta	aes	

1 of 9

Real-world Applications

Variants and Extensions

Introduction to DBSCAN

DBSCAN (Density-Based Spatial Clustering of Applications with Noise) is a powerful density-based clustering algorithm introduced by Martin Ester, Hans-Peter Kriegel, Jörg Sander, and Xiaowei Xu in 1996. Unlike centroid-based algorithms like K-means, DBSCAN can discover clusters of arbitrary shapes and automatically determine the number of clusters.

Key Features of DBSCAN:

- Density-Based: Groups points that are closely packed
- Noise Handling: Identifies and handles outliers effectively
- Arbitrary Shapes: Can find clusters of any shape
- Automatic: No need to specify the number of clusters
- Robust: Relatively insensitive to parameter choices

Visual Comparison: K-means vs DBSCAN

03/09/25, 9:39 pm

Q Core Concepts and Definitions

Point Classifications

Core Point

Has at least MinPts neighbors within ϵ distance

Border Point

Within ϵ distance of a core point but has fewer than MinPts neighbors

3 of 9

Noise Point

Neither a core point nor a border point (outlier)

Key Definitions

ε (Epsilon)

The maximum distance between two points for them to be considered neighbors

MinPts

The minimum number of points required to form a dense region (including the point itself)

ε-Neighborhood

 $N_{_}\epsilon(p) = \{q \in D \mid dist(p,q) \leq \epsilon\}$

Density Reachable

Point q is density reachable from p if there exists a chain of core points from p to q

Visual Representation of Core Concepts

III Diagram

```
DBSCAN Point Classification Example (\epsilon = 2, MinPts = 4) A \bullet — \bullet B \bullet F (Noise) | \ / | | \bullet | | / \ | C \bullet — \bullet D | | \bullet E Legend: \bullet A, B, C, D = Core Points (\geq4 neighbors within \epsilon=2) \bullet E = Border Point (<4 neighbors but within \epsilon of core point) \bullet F = Noise Point (isolated, <4 neighbors and not within \epsilon of core) Cluster Formation: - Cluster 1: {A, B, C, D, E} (all density-connected) - Noise: {F}
```

Mathematical Formulation

Distance Metrics

DBSCAN can work with various distance metrics. The most common is Euclidean distance:

Euclidean Distance: $d(p,q) = \sqrt{(\Sigma_i(p_i - q_i)^2)}$

Manhattan Distance: $d(p,q) = \Sigma_i |p_i - q_i|$

Minkowski Distance: $d(p,q) = (\Sigma_i|p_i - q_i|^p) \land (1/p)$

Core Mathematical Definitions

 $\epsilon\text{-Neighborhood: } N_{e}(p) = \{q \in D \mid dist(p,q) \leq \epsilon\}$

Core Point Condition: $|N_e(p)| \ge MinPts$

Directly Density-Reachable: $q \in N_e(p) \land |N_e(p)| \ge MinPts$

Density-Connected: ∃o ∈ D : p ρ * o Λ q ρ * o

Where ρ^* denotes density-reachability relation.

Cluster Definition

Y

A cluster C in DBSCAN is defined as a maximal set of densityconnected points:

 $C = \{p \in D \mid \exists q \in C : p \text{ is density-reachable from } q\}$

The DBSCAN Algorithm

DBSCAN Pseudocode

PSEUDOCODE

Algorithm DBSCAN(D, ε, MinPts) Input: Dataset D, radius ε, minimum points MinPts Output: Set of clusters C 1. Initialize: C = 0 (cluster counter), Mark all points as UNVISITED 2. For each point p in D: a) If p is VISITED, continue to next point b) Mark p as VISITED c) NeighborPts = regionQuery(p, ε) d) If |NeighborPts| < MinPts: - Mark p as NOISE e) Else: - C = C + 1 (increment cluster counter) - expandCluster(p, NeighborPts, C, ε, MinPts) Function expandCluster(p, NeighborPts, C, ε, MinPts) 1. Add p to cluster C 2. For each point p' in NeighborPts: a)

```
If p' is UNVISITED: - Mark p' as VISITED - NeighborPts' = regionQuery(p', \epsilon) - If |NeighborPts'| \geq MinPts: * NeighborPts = NeighborPts U NeighborPts' b) If p' is not member of any cluster: - Add p' to cluster C Function regionQuery(p, \epsilon) 1. Return all points q where dist(p,q) \leq \epsilon
```

Step-by-Step Algorithm Execution

```
1
| Initialization
```

Mark all points as unvisited and initialize cluster counter to 0

Point Selection

Select an unvisited point and mark it as visited

Neighborhood Query

Find all points within ε distance (ε -neighborhood)

Core Point Check

8 of 9 03/09/25, 9:39 pm

9 of 9 03/09/25, 9:39 pm