Контрольная работа по курсу «Сети ЭВМ и телекоммуникации

Студент Rodionov Alexander Гр. 320207

Вариант 20

Часть І. Планирование адресного пространства IPv6

Задание 1.1: Представить сокращенную запись адреса сети IPv6, который сформирован следующим образом:

- 1. Префикс глобальной маршрутизации установлен в соответствии с рекомендациями http://tools.ietf.org/html/rfc3849
- 2. Идентификатор подсети установлен в соответствии с номером Вашей учебной группы, который интерпретируется как десятичное число.
- 3. Старшие 5 байтов идентификатора интерфейса установлены кодами ASCII (http://ascii.org.ru/) первых пяти букв Вашего имени (в латинице).
- 4. Остальные позиции адреса установлены нулевыми значениями.

Решение 1.1 (макс. 20 баллов):

Сеть IPv6 | 2001:db8:0:4eef:416c:6578:6100:0/104

Задание 1.2: разбить сеть из п.1.1 на 32 одинаковых по размеру подсетей МАКСИМАЛЬНОЙ ДЛИНЫ и указать префиксы первой и последней подсетей.

Решение 1.2 (макс. 20 баллов):

Префикс $N_{ m C\'{\Gamma}C,}$	2001: db8: 0: 4eef: 416c: 6578: 6100: 0/109
Префикс $N_{\rm C,PePS}$	2001:db8:0:4eef:416c:6578:61f8:0/109

Часть II. Планирование адресного пространства IPv4

X0= целая часть (N*16)/256+10= целая часть (20*16)/256+10=11

 $X1 = {f octatok}$ от деления $(N*16)/256 = {f octatok}$ от деления (20*16)/256 = 64

Дано: Сеть 11.64.0.0/12

Задание 2.1.1: разбить сеть на 4096 подсетей, указать для первых 5 подсетей:

- адрес подсети;
- адрес первого узла;
- адрес последнего узла;
- широковещательный адрес для данной подсети (directed broadcast).

Решение 2.1.1(макс. 15 баллов):

1. Представляем адрес сети и маску подсети в двоичном виде::

	11	64	0	0
Адрес сети	00001011	01000000	00000000	00000000
Маска	11111111	11110000	00000000	00000000
	255	240	0	0

2. Чтобы разбить адрес сети на нужное количество подсетей, необходимо заимствовать 4 бит из 3-го октета и 8 бит из 2-го октета.

3. Итого, получается, что сеть 11.64.0.0/12 мы разбили на 4096 подсети, в каждой из которых по 254 узлов, указываем первые 5 подсетей:

	11	64	0	0
Адрес сети дв.с	00001011	01000000	00000000	00000000
Маска дв.с	11111111	11111111	11111111	00000000
	255	255	255	0

200	200 20
Адрес сети $N_1/$ Префикс N_1	11.64.0.0/24
Адрес первого узла N_1	11.64.0.1
Адрес последнего узла N_1	11.64.0.254
Широковещательный адрес N_1	11.64.0.255
Адрес сети $N_2/$ Префикс N_2	11.64.1.0/24
Адрес первого узла N_2	11.64.1.1
Адрес последнего узла N_2	11.64.1.254
Широковещательный адрес N_2	11.64.1.255
Адрес сети $N_3/$ Префикс N_3	11.64.2.0/24
Адрес первого узла N_3	11.64.2.1
Адрес последнего узла N_3	11.64.2.254
Широковещательный адрес N_3	11.64.2.255
$lacksquare$ Адрес сети $N_4/$ Префикс N_4	11.64.3.0/24
Адрес первого узла N_4	11.64.3.1
Адрес последнего узла N_4	11.64.3.254
Широковещательный адрес N_4	11.64.3.255
Адрес сети $N_5/$ Префикс N_5	11.64.4.0/24
Адрес первого узла N_5	11.64.4.1
Адрес последнего узла N_5	11.64.4.254
Широковещательный адрес N_5	11.64.4.255

Дано: Сеть 11.64.0.0/12

Задание 2.1.2: разбить сеть на 300 подсетей, указать для первой и последней подсетей:

- адрес подсети;
- адрес первого узла;
- адрес последнего узла;
- широковещательный адрес для данной подсети (directed broadcast).

Решение 2.1.2(макс. 15 баллов):

1. Представляем адрес сети и маску подсети в двоичном виде::

2. Чтобы разбить данную сеть на $(300 \leqslant 2^9 = 512)$ подсетей необходимо заимствовать 4 бит из 3-го октета и 5 бит из 2-го октета (получается, что сеть можно разбить на 512 подсетей: $2^9 = 512$; оставшиеся 11 бит идут под узлы: $2^{11} - 2 = 2046$ в каждой подсети).

3. Указываем первую и последнюю подсети:

$oxedsymbol{A}$ дрес сети $N_1/$ Префикс N_1	11.64.0.0/21
Адрес первого узла N_1	11.64.0.1
Адрес последнего узла N_1	11.64.7.254
Широковещательный адрес N_1	11.64.7.255

$oxedsymbol{A}$ дрес сети $N_2/$ Префикс N_2	11.73.88.0/21
Адрес первого узла N_2	11.73.88.1
Адрес последнего узла N_2	11.73.95.254
Широковещательный адрес N_2	11.73.95.255

Задание 2.2.1: разбить сеть на подсети, чтобы в каждой было по 32768 узла (с учетом адресов сети и directed broadcast), указать для ПОСЛЕДНИХ 5 подсетей:

- адрес подсети;
- адрес первого узла;

- адрес последнего узла;
- широковещательный адрес для данной подсети (directed broadcast).

Решение 2.2.1(макс. 15 баллов):

1. Представляем адрес сети и маску подсети в двоичном виде::

	11	64	0	0
Адрес сети	00001011	01000000	00000000	00000000
Маска	11111111	11110000	00000000	00000000
	255	240	0	0

2. Количество узлов в сети зависит от числа бит в узловой части IP-адреса и вычисляется по формуле 2^n-2 , где n - кол-во «узловых» бит. В нашем случае n=15, т.к. $2^{15}-2=32766$. Т.е. нужно выбрать такую маску, которря выделит ровно 15 бит для адресов узлов. Таким образом, исходную сеть мы сможем разбить на $2^5=512$ подсетей по 32766 узла(ов) в каждой.

3. Указываем последние 5 подсетей:

Адрес сети $N_1/$ Префикс N_1	11.77.128.0/17
Адрес первого узла N_1	11.77.128.1
Адрес последнего узла N_1	11.77.255.254
Широковещательный адрес N_1	11.77.255.255
$oxedsymbol{A}$ дрес сети $N_2/$ Префикс N_2	11.78.0.0/17
Адрес первого узла N_2	11.78.0.1
Адрес последнего узла N_2	11.78.127.254
Широковещательный адрес N_2	11.78.127.255
$oxedsymbol{A}$ дрес сети $N_3/$ Префикс N_3	11.78.128.0/17
Адрес первого узла N_3	11.78.128.1
Адрес последнего узла N_3	11.78.255.254
Широковещательный адрес N_3	11.78.255.255

Λ дрес сети $N_4/$ Префикс N_4	11.79.0.0/17
${ m A}$ дрес первого узла N_4	11.79.0.1
${ m A}$ дрес последнего узла N_4	11.79.127.254
Широковещательный адрес N_4	11.79.127.255
Адрес сети $N_5/$ Префикс N_5	11.79.128.0/17
Адрес первого узла N_5	11.79.128.1
Адрес последнего узла N_5	11.79.255.254

Задание 2.2.2: разбить сеть на подсети, чтобы в каждой было не менее 2000 АКТИВНЫХ узлов, указать для первой и последней подсетей:

- адрес подсети;
- адрес первого узла;
- адрес последнего узла;
- широковещательный адрес для данной подсети (directed broadcast).

Решение 2.2.2(макс. 15 баллов):

1. Представляем адрес сети и маску подсети в двоичном виде::

	11	64	0	0
Адрес сети	00001011	01000000	00000000	00000000
Маска	11111111	11110000	00000000	00000000
	255	240	0	0

2. Количество узлов в сети зависит от числа бит в узловой части IP-адреса и вычисляется по формуле 2^n-2 , где n - кол-во «узловых» бит. В нашем случае n=11, т.к. $2^{11}-2=2046 \geqslant 2000$.

	11	64	U	U
Адрес сети дв.с	00001011	01000000	00000000	00000000
Маска дв.с	11111111	11111111	11111000	00000000
	255	255	248	0

3. Указываем первую и последнюю подсети

$oxedsymbol{A}$ дрес сети $N_1/$ Префикс N_1	11.64.0.0/21
Адрес первого узла N_1	11.64.0.1
Адрес последнего узла N_1	11.64.7.254
Широковещательный адрес N_1	11.64.7.255

$oxed{f A}$ дрес сети $N_2/$ Префикс N_2	11.79.248.0/21
Адрес первого узла N_2	11.79.248.1
Адрес последнего узла N_2	11.79.255.254
Широковещательный адрес N_2	11.79.255.255

Задание 2.2.3: разбить сеть на подсети, чтобы в каждой было не менее 1000 АКТИВНЫХ узлов, указать для ПОСЛЕДНИХ 5 подсетей:

- адрес подсети;
- адрес первого узла;
- адрес последнего узла;
- широковещательный адрес для данной подсети (directed broadcast).

Решение 2.2.3 (макс. 15 баллов):

1. Представляем адрес сети и маску подсети в двоичном виде::

	11	64	0	0
Адрес сети	00001011	01000000	00000000	00000000
Маска	11111111	11110000	00000000	00000000
	255	240	0	0

2. Количество узлов в сети зависит от числа бит в узловой части IP-адреса и вычисляется по формуле 2^n-2 , где n- кол-во «узловых» бит. В нашем случае n=10, т.к. $2^{10}-2=1022$.

	11	64	0	0
Адрес сети дв.с	00001011	01000000	00000000	00000000
Маска дв.с	11111111	11111111	11111100	00000000
	255	255	252	0

3. Указываем последние 5 подсетей:

$oxedsymbol{A}$ дрес сети $N_1/$ Префикс N_1	11.79.236.0/22
${ m A}$ дрес первого узла N_1	11.79.236.1
${ m A}$ дрес последнего узла N_1	11.79.239.254
Широковещательный адрес N_1	11.79.239.255
$oxedsymbol{\Lambda}$ дрес сети $N_2/$ Префикс N_2	11.79.240.0/22
"	′ ′
Λ дрес первого узла N_2	11.79.240.1
Адрес первого узла N_2 Адрес последнего узла N_2	,

$oxedsymbol{\mathrm{A}}$ дрес сети $N_3/$ Префикс N_3	11.79.244.0/22
Адрес первого узла N_3	11.79.244.1
Адрес последнего узла N_3	11.79.247.254
Широковещательный адрес N_3	11.79.247.255
$oxedsymbol{\Lambda}$ Адрес сети $N_4/$ Префикс N_4	11.79.248.0/22
Адрес первого узла N_4	11.79.248.1
Адрес последнего узла N_4	11.79.251.254
Широковещательный адрес N_4	11.79.251.255
$oxedsymbol{A}$ дрес сети $N_5/$ Префикс N_5	11.79.252.0/22
Адрес первого узла N_5	11.79.252.1
Адрес последнего узла N_5	11.79.255.254
Широковещательный адрес N_5	11.79.255.255