

TEST REPORT

FCC PART 15 SUBPART C 15.247

Test report On Behalf of SHEN ZHEN XIN HUA TIAN TECHNOLOGY CO., LTD

For

Dual band wireless adapter Model No.: 9B06, 9B08

FCC ID: 2AKC6XHT-WF9E

Prepared for: SHEN ZHEN XIN HUA TIAN TECHNOLOGY CO., LTD

3Foor, B Buliding, DaHong Industrial Park, GuangMin District, Shenzhen City,

China

Prepared By: Shenzhen HUAK Testing Technology Co., Ltd.

1-2/F, Building 19, Junfeng Industrial Park, Chongqing Road, Heping Community, Fuhai Street, Bao'an District, Shenzhen, Guangdong, China

Date of Test: Jan. 04, 2019 ~ Jan. 10, 2019

Date of Report: Jan. 10, 2019
Report Number: HK1901090060E

Page 2 of 89 Report No.: HK1901090060E

TEST RESULT CERTIFICATION

Applicant's name: SHEN ZHEN XIN HUA TIAN TECHNOLOGY CO., LTD

Address...... 3Foor, B Buliding, DaHong Industrial Park, GuangMin District,

Shenzhen City, China

Manufacture's Name: SHEN ZHEN XIN HUA TIAN TECHNOLOGY CO., LTD

Address...... 3Foor, B Buliding, DaHong Industrial Park, GuangMin District,

Shenzhen City, China

Product description

Trade Mark: N/A

Product name.....: Dual band wireless adapter

Model and/or type reference ..: 9B06, 9B08

Model Difference All the same except for the model name and appearance

Standards 47 CFR FCC Part 15 Subpart C 15.247

This publication may be reproduced in whole or in part for non-commercial purposes as long as the Shenzhen HUAK Testing Technology Co., Ltd. is acknowledged as copyright owner and source of the material. Shenzhen HUAK Testing Technology Co., Ltd. takes no responsibility for and will not assume liability for damages resulting from the reader's interpretation of the reproduced material due to its placement and context.

Date of Test

Date (s) of performance of tests...... Jan. 04, 2019 ~ Jan. 10, 2019

Date of Issue...... Jan. 10, 2019

Test Result..... Pass

Testing Engineer :

(Gary Qian)

Technical Manager

(Eden Hu)

Authorized Signatory

(Jason Zhou)

TABLE OF CONTENTS

1.SUMMARY	5
1.1 TEST STANDARDS	5
1.2 TEST DESCRIPTION	5
1.3 TEST FACILITY	6
1.4 STATEMENT OF THE MEASUREMENT UNCERTAINTY	6
2.GENERAL INFORMATION	7
2.1 ENVIRONMENTAL CONDITIONS	7
2.2 GENERAL DESCRIPTION OF EUT	7
2.3 DESCRIPTION OF TEST MODES AND TEST FREQUENCY	7
2.4 RELATED SUBMITTAL(S) / GRANT (S)	8
2.5 MODIFICATIONS	8
2.6. ACCESSORIES USED	8
2.7. IEEE 802.11N MODULATION SCHEME	
2.8 EQUIPMENT USED	10
3. OUTPUT POWER	11
3.1. MEASUREMENT PROCEDURE	11
3.2. TEST SET-UP (BLOCK DIAGRAM OF CONFIGURATION)	
3.3. LIMITS AND MEASUREMENT RESULT	12
4. 6 DB BANDWIDTH	14
4.1. MEASUREMENT PROCEDURE	14
4.2. TEST SET-UP (BLOCK DIAGRAM OF CONFIGURATION)	14
4.3. LIMITS AND MEASUREMENT RESULTS	15
5. CONDUCTED SPURIOUS EMISSION	23
5.1. MEASUREMENT PROCEDURE	23
5.2. TEST SET-UP (BLOCK DIAGRAM OF CONFIGURATION)	23
5.3. LIMITS AND MEASUREMENT RESULT	23
6. MAXIMUM CONDUCTED OUTPUT POWER SPECTRAL DENSITY	42
6.1 MEASUREMENT PROCEDURE	42
6.2 TEST SET-UP (BLOCK DIAGRAM OF CONFIGURATION)	42
6.3 LIMITS AND MEASUREMENT RESULT	42
7. RADIATED EMISSION	59

7.1. MEASUREMENT PROCEDURE	59
7.2. TEST SETUP	60
7.3. LIMITS AND MEASUREMENT RESULT	61
7.4. TEST RESULT	61
8. BAND EDGE EMISSION	67
8.1. MEASUREMENT PROCEDURE	67
8.2. TEST SET-UP	67
8.3. TEST RESULT	68
9. FCC LINE CONDUCTED EMISSION TEST	84
9.1. LIMITS OF LINE CONDUCTED EMISSION TEST	84
9.2. BLOCK DIAGRAM OF LINE CONDUCTED EMISSION TEST	84
9.3. PRELIMINARY PROCEDURE OF LINE CONDUCTED EMISSION TEST	85
9.4. FINAL PROCEDURE OF LINE CONDUCTED EMISSION TEST	85
9.5. TEST RESULT OF LINE CONDUCTED EMISSION TEST	86
ADDENDIY A: BUOTOGDADUS OF TEST SETUD	0.0

Page 5 of 89 Report No.: HK1901090060E

1.SUMMARY

1.1 TEST STANDARDS

The tests were performed according to following standards:

FCC Rules Part 15.247: Frequency Hopping, Direct Spread Spectrum and Hybrid Systems that are in operation within the bands of 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz

ANSI C63.10:2013: American National Standard for Testing Unlicensed Wireless Devices

KDB558074 D01 15.247 Meas Guidance v05: Guidance for compliance measurements on Digital transmission system, frequency hopping spread spectrum system, and hybrid system devices operating under section 15.247 of the FCC rules.

1.2 TEST DESCRIPTION

FCC RULES	DESCRIPTION OF TEST	RESULT
§15.247	Output Power	Compliant
§15.247	6 dB Bandwidth	Compliant
§15.247	Conducted Spurious Emission	Compliant
§15.247	Maximum Conducted Output Power SPECTRAL Density	Compliant
§15.209	Radiated Emission	Compliant
§15.247	Band Edges	Compliant
§15.207	Line Conduction Emission	Compliant

Page 6 of 89 Report No.: HK1901090060E

1.3TEST FACILITY

1.3.1 Address of the test laboratory

Shenzhen HUAK Testing Technology Co., Ltd.

Add.:1F, B2 Building, Junfeng Zhongcheng Zhizao Innovation Park, Heping Community, Fuhai Street, Bao'an District, Shenzhen, China

There is one 3m semi-anechoic chamber and two line conducted labs for final test. The Test Sites meet the requirements in documents ANSI C63.4 and CISPR 32/EN 55032 requirements.

1.3.2 Laboratory accreditation

The test facility is recognized, certified, or accredited by the following organizations:

IC Registration No.: 21210

The 3m alternate test site of Shenzhen HUAK Testing Technology Co., Ltd. EMC Laboratory has been registered by Certification and Engineer Bureau of Industry Canada for the performance of with Registration No.: 21210 on May 24, 2016.

FCC Registration No.: CN1229

Test Firm Registration Number: 616276

1.4 STATEMENT OF THE MEASUREMENT UNCERTAINTY

The data and results referenced in this document are true and accurate. The reader is cautioned that there may be errors within the calibration limits of the equipment and facilities. The measurement uncertainty was calculated for all measurements listed in this test report acc. to CISPR 16 - 4 "Specification for radio disturbance and immunity measuring apparatus and methods – Part 4: Uncertainty in EMC Measurements" and is documented in the Shenzhen HUAK Testing Technology Co., Ltd. quality system acc. to DIN EN ISO/IEC 17025. Furthermore, component and process variability of devices similar to that tested may result in additional deviation. The manufacturer has the sole responsibility of continued compliance of the device.

Hereafter the best measurement capability for HUAK laboratory is reported:

Test	Measurement Uncertainty	Notes
Transmitter power conducted	±0.57 dB	(1)
Transmitter power Radiated	±2.20 dB	(1)
Conducted spurious emission 9KHz-40 GHz	±2.20 dB	(1)
Occupied Bandwidth	±0.01ppm	(1)
Radiated Emission 30~1000MHz	±4.10dB	(1)
Radiated Emission Above 1GHz	±4.32dB	(1)
Conducted Disturbance0.15~30MHz	±3.20dB	(1)

⁽¹⁾ This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

Page 7 of 89 Report No.: HK1901090060E

2.GENERAL INFORMATION

2.1 ENVIRONMENTAL CONDITIONS

During the measurement the environmental conditions were within the listed ranges:

Normal Temperature:	25°C
Relative Humidity:	55 %
Air Pressure:	101 kPa

2.2 GENERAL DESCRIPTION OF EUT

Product Name	Dual band wireless adapter
Model/Type reference	9B06
Power supply	DC5V
NA shalatina	802.11 b/g/n20/n40
Modulation	DSSS(DBPSK/DQPSK/CCK);OFDM(BPSK/QPSK/16-QAM/64-QAM)
Operation Frequency	2.412 GHz~2.462GHz
Channel number	11
Antenna Designation	Two Internal antennas and two external antennas (Use of reverse SMA connector)
Number of transmit chain	4(802.11b/g used antenna 0, 802.11n20/n40 used four antennas)
Directional gain	All transmit signals are completely uncorrelated with each other
Antenna gain	Internal antenna: 5dBi; External antenna: 5dBi
Handres Alamaian	
Hardware Version	A

Note: For more details, refer to the user's manual of the EUT.

2.3 DESCRIPTION OF TEST MODES AND TEST FREQUENCY

Frequency Band	Channel Number	Frequency	
	1	2412 MHZ	
	2	2417 MHZ	
	3	2422 MHZ	
	4	2427 MHZ	
	5	2432 MHZ	
2400~2483.5MHZ	6	2437 MHZ	
	7	2442 MHZ	
	8	2447 MHZ	
	9	2452 MHZ	
	10	2457 MHZ	
	11	2462 MHZ	

Note: For 20MHZ bandwidth system use Channel 1 to Channel 11, For 40MHZ bandwidth system use Channel 3 to Channel 9

Page 8 of 89 Report No.: HK1901090060E

NO.	TEST MODE DESCRIPTION
1	Low channel TX
2	Middle channel TX
3	High channel TX
4	Normal operating

Note:

Transmit by 802.11b with Date rate (1/2/5.5/11)

Transmit by 802.11g with Date rate (6/9/12/18/24/36/48/54)

Transmit by 802.11n (20MHz) with Date rate (6.5/13/19.5/26/39/52/58.5/65)

Transmit by 802.11n (40MHz) with Date rate (13.5/27/40.5/54/81/108/121.5/135)

Note:

- 1. The EUT has been set to operate continuously on the lowest, middle and highest operation frequency Individually, and the eut is operating at its maximum duty cycle>or equal 98%
- 2. All modes under which configure applicable have been tested and the worst mode test data recording in the test report, if no other mode data.
- 3. For Radiated Emission, 3axis were chosen for testing for each applicable mode.

2.4 RELATED SUBMITTAL(S) / GRANT (S)

This submittal(s) (test report) is intended to comply with Section 15.247 of the FCC Part 15, Subpart C Rules.

2.5 MODIFICATIONS

No modifications were implemented to meet testing criteria.

2.6. ACCESSORIES USED

Item	Equipment	Model No.	Specification	Remark
1	Dell PC	Ins 14-7460-D1525S	N/A	Provided by test lab
2	PC adapter	YH-195-462	DC19.5V/4.62A	Provided by test lab

Page 9 of 89 Report No.: HK1901090060E

2.7. IEEE 802.11N MODULATION SCHEME

MCS Index	Nss	Modulation	R	NBPSC	NCBPS		NDBPS			ata Mbps) nsGl
					20MHz	40MHz	20MHz	40MHz	20MHz	40MHz
0	1	BPSK	1/2	1	52	108	26	54	6.5	13.5
1	1	QPSK	1/2	2	104	216	52	108	13.0	27.0
2	1	QPSK	3/4	2	104	216	78	162	19.5	40.5
3	1	16-QAM	1/2	4	208	432	104	216	26.0	54.0
4	1	16-QAM	3/4	4	208	432	156	324	39.0	81.0
5	1	64-QAM	2/3	6	312	648	208	432	52.0	108.0
6	1	64-QAM	3/4	6	312	648	234	489	58.5	121.5
7	1	64-QAM	5/6	6	312	648	260	540	65.0	135.0

Symbol	Explanation	
NSS	Number of spatial streams	
R	Code rate	
NBPSC	Number of coded bits per single carrier	
NCBPS	Number of coded bits per symbol	
NDBPS	Number of data bits per symbol	
GI	Guard interval	

Page 10 of 89 Report No.: HK1901090060E

2.8 EQUIPMENT USED

Item	Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Interval
1.	L.I.S.N. Artificial Mains Network	R&S	ENV216	HKE-002	Dec. 27, 2018	1 Year
2.	Receiver	R&S	ESCI 7	HKE-010	Dec. 27, 2018	1 Year
3.	RF automatic control unit	Tonscend	JS0806-2	HKE-060	Dec. 27, 2018	1 Year
4.	Horn Antenna	Schewarzbeck	BBHA 9170	HKE-090	Dec. 27, 2018	1 Year
5.	Spectrum analyzer	Agilent	N9020A	HKE-048	Dec. 27, 2018	1 Year
6.	Preamplifier	Schwarzbeck	BBV 9743	HKE-006	Dec. 27, 2018	1 Year
7.	EMI Test Receiver	Rohde & Schwarz	ESCI 7	HKE-010	Dec. 27, 2018	1 Year
8.	Bilog Broadband Antenna	Schwarzbeck	VULB9163	HKE-012	Dec. 27, 2018	1 Year
9.	Loop Antenna	Schwarzbeck	FMZB 1519 B	HKE-014	Dec. 27, 2018	1 Year
10.	Horn Antenna	Schewarzbeck	9120D	HKE-013	Dec. 27, 2018	1 Year
11.	Pre-amplifier	EMCI	EMC051845 SE	HKE-015	Dec. 27, 2018	1 Year
12.	Pre-amplifier	Agilent	83051A	HKE-016	Dec. 27, 2018	1 Year
13.	EMI Test Software EZ-EMC	Tonscend	JS1120-B Version	HKE-083	Dec. 27, 2018	N/A
14.	Power Sensor	Agilent	E9300A	HKE-086	Dec. 27, 2018	1 Year
15.	Spectrum analyzer	Agilent	N9020A	HKE-048	Dec. 27, 2018	1 Year
16.	Signal generator	Agilent	N5182A	HKE-029	Dec. 27, 2018	1 Year
17.	Signal Generator	Agilent	83630A	HKE-028	Dec. 27, 2018	1 Year
18.	Shielded room	Shiel Hong	4*3*3	HKE-039	Dec. 27, 2018	3 Year

The calibration interval was one year

Page 11 of 89 Report No.: HK1901090060E

3. OUTPUT POWER

3.1. MEASUREMENT PROCEDURE

For average power test:

- 1. Connect EUT RF output port to power sensor through an RF attenuator.
- 2. Connect the power sensor to the PC.
- 3. Set the EUT Work on the top, the middle and the bottom operation frequency individually.
- 4. Record the maximum power from the software.

Note: The EUT was tested according to ANSI C63.10 (2013) for compliance to FCC 47CFR 15.247 requirements.

3.2. TEST SET-UP (BLOCK DIAGRAM OF CONFIGURATION) AVERAGE POWER SETUP

Page 12 of 89 Report No.: HK1901090060E

3.3. LIMITS AND MEASUREMENT RESULT

TEST ITEM	OUTPUT POWER
TEST MODE	802.11b with data rate 1

Frequency (GHz)	Average Power (dBm)	Applicable Limits (dBm)	Pass or Fail
2.412	9.27	30	Pass
2.437	9.53	30	Pass
2.462	9.43	30	Pass

TEST ITEM	OUTPUT POWER
TEST MODE	802.11g with data rate 6

Frequency (GHz)	Average Power (dBm)	Applicable Limits (dBm)	Pass or Fail
2.412	8.42	30	Pass
2.437	8.51	30	Pass
2.462	8.64	30	Pass

TEST ITEM	OUTPUT POWER
TEST MODE	802.11n 20 with data rate 6.5

Frequency (GHz)	Average Power Chain 0 (dBm)	Average Power Chain 1 (dBm)	Average Power Chain 2 (dBm)	Average Power Chain 3 (dBm)	Average Power Total (dBm)	Applicable Limits (dBm)	Pass or Fail
2.412	3.45	2.99	3.43	3.44	9.35	30	Pass
2.437	3.51	3.42	3.44	3.03	9.37	30	Pass
2.462	3.29	3.17	3.03	3.00	9.14	30	Pass

Page 13 of 89 Report No.: HK1901090060E

TEST ITEM	OUTPUT POWER
TEST MODE	802.11n 40 with data rate 13.5

Frequency (GHz)	Average Power Chain 0 (dBm)	Average Power Chain 1 (dBm)	Average Power Chain 2 (dBm)	Average Power Chain 3 (dBm)	Average Power Total (dBm)	Applicable Limits (dBm)	Pass or Fail
2.422	1.49	1.05	1.43	1.23	7.32	30	Pass
2.437	2.13	1.67	1.82	1.85	7.89	30	Pass
2.452	1.57	1.09	1.10	1.08	7.24	30	Pass

Page 14 of 89 Report No.: HK1901090060E

4. 6 DB BANDWIDTH

4.1. MEASUREMENT PROCEDURE

- 1. Connect EUT RF output port to the Spectrum Analyzer through an RF attenuator
- 2. Set the EUT Work on the top, the middle and the bottom operation frequency individually.
- 3. Set SPA Centre Frequency = Operation Frequency, RBW= 100 KHz, VBW ≥ 3×RBW.
- 4. Set SPA Trace 1 Max hold, then View.

Note: The EUT was tested according to ANSI C63.10 (2013) for compliance to FCC 47CFR 15.247 requirements.

4.2. TEST SET-UP (BLOCK DIAGRAM OF CONFIGURATION)

Page 15 of 89 Report No.: HK1901090060E

4.3. LIMITS AND MEASUREMENT RESULTS

TEST ITEM	6DB BANDWIDTH
TEST MODE	802.11b with data rate 11

LIMITS AND MEASUREMENT RESULT				
Applicable Limits				
Applicable Limits	Test Da	Criteria		
	Low Channel	10.07	PASS	
>500KHZ	Middle Channel	10.09	PASS	
	High Channel	10.07	PASS	

TEST ITEM	6DB BANDWIDTH
TEST MODE	802.11g with data rate 54

LIMITS AND MEASUREMENT RESULT				
A P I I . I ! !	Applicable Limits			
Applicable Limits	Test Data (MHz)		Criteria	
>500KHZ	Low Channel	15.35	PASS	
	Middle Channel	15.36	PASS	
	High Channel	15.44	PASS	

TEST ITEM	6DB BANDWIDTH
TEST MODE	802.11n 20 with data rate 65

LIMITS AND MEASUREMENT RESULT					
Applicable Limits	Applicable Limits				
	Test Data (MHz)		Criteria		
>500KHZ	Low Channel	15.18	PASS		
	Middle Channel	15.17	PASS		
	High Channel	15.16	PASS		

Page 16 of 89 Report No.: HK1901090060E

TEST ITEM	6DB BANDWIDTH
TEST MODE	802.11n 40 with data rate 135

LIMITS AND MEASUREMENT RESULT					
Applicable Limits	Applicable Limits				
	Test Data (MHz)		Criteria		
>500KHZ	Low Channel	35.09	PASS		
	Middle Channel	35.05	PASS		
	High Channel	35.05	PASS		

802.11b TEST RESULT

Report No.: HK1901090060E

TEST PLOT OF BANDWIDTH FOR MIDDLE CHANNEL

TEST PLOT OF BANDWIDTH FOR HIGH CHANNEL

802.11g TEST RESULTTEST PLOT OF BANDWIDTH FOR LOW CHANNEL

TEST PLOT OF BANDWIDTH FOR MIDDLE CHANNEL

Report No.: HK1901090060E

TEST PLOT OF BANDWIDTH FOR HIGH CHANNEL

802.11n (20) TEST RESULTTEST PLOT OF BANDWIDTH FOR LOW CHANNEL

Report No.: HK1901090060E

TEST PLOT OF BANDWIDTH FOR MIDDLE CHANNEL

TEST PLOT OF BANDWIDTH FOR HIGH CHANNEL

802.11n (40) TEST RESULT
TEST PLOT OF BANDWIDTH FOR LOW CHANNEL

TEST PLOT OF BANDWIDTH FOR MIDDLE CHANNEL

Report No.: HK1901090060E

TEST PLOT OF BANDWIDTH FOR HIGH CHANNEL

Page 23 of 89 Report No.: HK1901090060E

5. CONDUCTED SPURIOUS EMISSION

5.1. MEASUREMENT PROCEDURE

- 1. Connect EUT RF output port to the Spectrum Analyzer through an RF attenuator
- 2, Set the EUT Work on the top, the middle and the bottom operation frequency individually.
- 3. Set SPA Trace 1 Max hold, then View.

Note: The EUT was tested according to ANSI C63.10 (2013) for compliance to FCC 47CFR 15.247 requirements. Owing to satisfy the requirements of the number of measurement points, we set the RBW=1MHz, VBW>RBW, scan up through 10th harmonic, and consider the tested results as the worst case, if the tested results conform to the requirement, we can deem that the real tested results(set the RBW=100KHz, VBW>RBW) are conform to the requirement.

5.2. TEST SET-UP (BLOCK DIAGRAM OF CONFIGURATION)

The same as described in section 4.2.

5.3. LIMITS AND MEASUREMENT RESULT

LIMITS AND MEASUREMENT RESULT					
Amplicable Limite	Measurement Result				
Applicable Limits	Test Data	Criteria			
In any 100 KHz Bandwidth Outside the	At least -30dBc than the limit				
frequency band in which the spread spectrum	Specified on the BOTTOM	PASS			
intentional radiator is operating, the radio frequency	Channel				
power that is produce by the intentional radiator					
shall be at least 30 dB below that in 100KHz					
bandwidth within the band that contains the highest					
level of the desired power.	At least -30dBc than the limit	DACC			
In addition, radiation emissions which fall in the	Specified on the TOP Channel	PASS			
restricted bands, as defined in §15.205(a), must also					
comply with the radiated emission limits specified					
in§15.209(a))					

TEST PLOT OF OUT OF BAND EMISSIONS WITH THE WORST CASE OF 802.11b FOR MODULATION IN LOW CHANNEL

TEST PLOT OF OUT OF BAND EMISSIONS THE WORST CASE OF 802.11b FOR MODULATION IN MIDDLE CHANNEL

TEST PLOT OF OUT OF BAND EMISSIONS THE WORST CASE OF 802.11b FOR MODULATION IN HIGH CHANNEL

RF | 50 Ω AC |

Marker 1 24.422057235241 GHz
PNO: Fast PRO: Fast FGain:Low Peak Search Avg Type: Log-Pwr Avg|Hold: 6/100 Next Peak Mkr1 24.422 1 GHz -48.219 dBm Ref 10.00 dBm **Next Pk Right** Next Pk Left Marker Delta Mkr→CF Mkr→RefLvl More 1 of 2 Start 2.48 GHz #Res BW 100 kHz Stop 25.00 GHz Sweep 2.152 s (30000 pts) **#VBW** 300 kHz

TEST PLOT OF OUT OF BAND EMISSIONS WITH THE WORST CASE OF 802.11g FOR MODULATION IN LOW CHANNEL

TEST PLOT OF OUT OF BAND EMISSIONS THE WORST CASE OF 802.11g FOR MODULATION IN MIDDLE CHANNEL

TEST PLOT OF OUT OF BAND EMISSIONS THE WORST CASE OF 802.11g FOR MODULATION IN HIGH CHANNEL

TEST PLOT OF OUT OF BAND EMISSIONS WITH THE WORST CASE OF 802.11n20 FOR MODULATION IN LOW CHANNEL

TEST PLOT OF OUT OF BAND EMISSIONS THE WORST CASE OF 802.11n20 FOR MODULATION IN MIDDLE CHANNEL

TEST PLOT OF OUT OF BAND EMISSIONS THE WORST CASE OF 802.11n20 FOR MODULATION IN HIGH CHANNEL

TEST PLOT OF OUT OF BAND EMISSIONS WITH THE WORST CASE OF 802.11n40 FOR MODULATION IN LOW CHANNEL

TEST PLOT OF OUT OF BAND EMISSIONS THE WORST CASE OF 802.11n40 FOR MODULATION IN MIDDLE CHANNEL

RF | 50 Ω AL | Marker 1 24.977482749425 GHz | PNO: Fast | FGain:Low Peak Search Avg Type: Log-Pwr Avg|Hold: 12/100 Trig: Free Run #Atten: 30 dB Next Peak Mkr1 24.977 5 GHz -47.596 dBm Ref 10.00 dBm **Next Pk Right** Next Pk Left L1 -33.66 dE Marker Delta Mkr→CF Mkr→RefLvl More 1 of 2 Start 2.48 GHz #Res BW 100 kHz Stop 25.00 GHz Sweep 2.152 s (30000 pts) #VBW 300 kHz

TEST PLOT OF OUT OF BAND EMISSIONS THE WORST CASE OF 802.11n40 FOR MODULATION IN HIGH CHANNEL

Note: Four transmit chains had been tested, the chain 0 was the worst case and record in the test report.