2023 NYCU EE VLSI Lab Report

Lab02 1-Bit Full Adder

Student ID: 110511254 Name: 徐煜絨 Date: 2023/10/27

I. Layout result

1. Layout picture with ruler

2. Design concept

Layout 中排列順序: NAND-合併 NAND-合併 XOR-DFF-DFF

(1) Stick Diagram / Circuit Schematic

a. NAND

b. XOR

m > drain, source

(2) Summary of structure (number of transistor / logic gate is used)
三個 NAND(4)、兩個 XOR(6)、兩個 DFF(11),總共使用
4*3+6*6+11*2,共 60 顆電晶體。

II. Simulation result

1. Timing report

Table 1: Post-sim of 1Bit Full Adder (Unit: ps)

Input	SUMtd	SUMtr	SUMtf	Couttd	Couttr	Couttf
000→100	183.2	212.9				
100→010						
010->110	157.6		96.56	118	210.1	
110→001	16	213		92.15		95.06
001 > 101	105.6		98.14	181.5	210.4	
101 > 011						
011→111	152.4	210.9				
111→000	20.12		96.55	89.3		94.95

*Note 1: -- identify no value,

*Note 2: Remember to highlight worst case,

*Note 3: the value indicates A>B>CIN

*Note 4: Measure from A/B/CIN to DSUM/DCOUT

Table 2: Post Simulation Summary

	Spec.	Pre-sim	Post-sim
Worst Rise Time	< 0.3ns	199.7ps	213ps
Worst Fall time	< 0.3ns	82.23ps	98.14ps
Worst Propagation Delay	< 0.3ns	138.4ps	183.2ps
Average Power	< 300uw	45.06uW	56.39uW

(1) Pre-sim (*paste measurement result of hspice, i.e. .mt0)

avg_pw	tdsum_p1	tdsum_p2	tdsum_p3
tdsum_p4	tdsum_p5	tdsum_p6	tdcout_p1
tdcout_p2	tdcout_p3	tdcout_p4	trsum_1
trsum_2	trsum_3	tfsum_1	tfsum_2
tfsum_3	trcout_1	trcout_2	tfcout_1
tfcout_2	temper	alter#	
4.506e-05	1.384e-10	1.115e-10	1.392e-11
7.904e-11	1.077e-10	2.004e-11	9.403e-11
7.218e-11	1.115e-10	7.233e-11	1.997e-10
1.982e-10	1.950e-10	8.216e-11	8.221e-11
8.213e-11	1.984e-10	1.984e-10	8.216e-11
8.223e-11	25.0000	1	- · ·

(2) Post-sim (*paste measurement result of hspice, i.e. .mt0)

avg pw	tdsum p1	tdsum p2	tdsum p3
tdsum p4	tdsum p5	tdsum p6	tdcout p1
tdcout_p2	tdcout_p3	tdcout_p4	trsum_1
trsum_2	trsum_3	tfsum_1	tfsum_2
tfsum_3	trcout_1	trcout_2	tfcout_1
tfcout_2	temper	alter#	
5.639e-05	1.832e-10	1.576e-10	1.600e-11
1.056e-10	1.524e-10	2.012e-11	1.180e-10
9.215e-11	1.815e-10	8.930e-11	2.129e-10
2.130e-10	2.109e-10	9.656e-11	9.814e-11
9.655e-11	2.101e-10	2.104e-10	9.506e-11
9.495e-11	25.0000	1	

2. Output waveform

Input:

由上到下:A, B, CIN, CLK

(1) Pre-sim

由上到下: DCOUT, COUT, DSUM, SUM

(2) Post-sim VSTEM Integration (

III. Verification result

1. DRC

2. LVS

IV. Discussion

1. How to reduce your area of layout? What are advantages and disadvantages of reducing area?

縮小面積的方式包含減少 transistors 的使用、layout 上盡可能共用 drain 和 source、增加 metal 的層數。

一、面積

首先是最重要的盡可能減少 transistors。Lab1 中我的 XOR 是使用 8 顆 transistors,為了減少,我曾經上網搜尋到只用 4 顆 transistors 的方法,然而該架構讓我的 DSUM 和 DCOUT 都有很大的 glitch,甚至已經看不出原先的波型,經過 DFF 後的 SUM 和 COUT 也嚴重變形(如下第一張圖)。在和同學討論後決定改用 6 顆 transistors,相較於 4 顆的設計,應該是多了一組 buffer,雖然還是會有 glitch,但訊號更穩定,在經過 DFF 修飾後也是正確波型(下第二張圖)。

由此可見六顆 transistors 的設計是比較好的(多了穩定訊號的功能)。

除了 XOR,我在 DFF 上也做了和 Lab1 不同的設計。Lab1 的 DFF 中 transistors 的數量是 22 顆,但這次只用 11 顆就達到 DFF 的功能,如此不只在 layout 時有機會更快速完成,也能有效減少 Diffusion 和 gate 等,並縮小面積。

二、共用 drain 和 source

這個部分在 VLSI 導論上有學習到,減少 diffusion 使用也能讓橫向長度縮小。為了能共用 drain 和 source,我對單獨和合併的 XOR, NAND 和 DFF 做些微更改,以下表示各種更改狀況:

1. 兩顆 NAND 合併:

下圖是一張正常的 NAND

我們可以發現,若為了共用 drain 和 source,便可以把他們的 VDD 以及 GND 合在一起,變成如下圖:

可惜的是 NAND 是奇怪數顆,所以只有其中兩顆的 VDD, GND 共用,僅縮小一部份。

2. 兩顆 XOR 合併:

XOR 的合併方法和 NAND 相似,但我設計的 XOR 在最右側會

有突出,若想翻轉並合併兩個 XOR,就必須移動其繞線和佈局。

此圖節錄自 XOR 的 layout,可以發現紅色圈圈處有突出,所以在 layout 中我必須錯開兩者的位子才能讓兩顆 XOR 除了共用 VDD, GND 外,也可以更靠近彼此。

3. DFF 中調整 transistors 的位置

如果按照網路提供的 DFF 電路接線,會有上圖的結果。然而經過討論後發現 DFF 的兩側都是 VDD, GND,因此我把紅色框框處拉到另外一側,這樣可以成功共用 drain 和 source。

4. DFF的CLK共用

在實作過程中我發現 CLK 會走在 Metal1 上,且上面 Metal2 載有另外一個訊號,所以我把其中一個 DFF 翻轉,期望能夠用 Metal1 就連通兩個 DFF 的 CLK。因為 CLK 的旁邊只有一條 poly,並不會影響到 Metal1 的佈局,所以我直接延伸 Metal1,達成上述共通 CLK 的目標。

三、增加 metal 層數

這個方法因為這次 lab 限制使用三層 metal,所以沒有去進一步做 比較。但上網查詢資料後發現這也會影響面積。因為同意層 metal 間 需要有一定距離,或是 metal 本身要有一定寬度,否則會造成短路或 斷路、無法承受負載等問題產生。透過增加 metal 層數,可以進一步增加設計上的彈性,設計者使用不同層的 metal 傳遞訊號,使其能到達正確的 contact 或傳達到其他 metal 上。

四、縮小面積的優點

縮小的優點主要在於因應現今科技進展,期望用更小的空間作出更複雜的運算,藉由縮小面積,可以增加穿戴式裝置或是手機等用品的功能和效率。

五、縮小面積的缺點

缺點是不好設計佈局,且因為零件距離近,容易導致散熱不良或有寄 生電容產生。

2. Why you need Avoid-Latch-Up contact and how it works?

Latch-up 的產生來自於 pmos 與 nmos 產生的寄生 BJT。如果 nwell 的阻值(Rw)以及 p-sub 的阻值(Rs)過大,容易使 pnp 和 npn 導通。電流直接從 VDD 流向 GND,而不是如設計者所期望的 cmos。若在 nwell 和 p-sub 多打幾個 contact,可以減少 Rw 和 Rs 的阻值,進而降低 latch-up 發生的機率

3. What causes the difference between pre-sim and post-sim?

Pre-sim 只考慮理想狀態下的計算結果,但 pro-sim 會實際佈局各種元件,而 layout 的好壞會影響到如第一題所述的寄生電容問題,進一步攸關到 delay time。

4. Summary (optional)