Théorie des Langages - Feuille nº 3

AUTOMATES FINIS: OPÉRATIONS

Exercice 1 - Soit $\Sigma = \{a, b\}$. Construire le complémentaire des automates suivants :

— Automate M_1

— Automate M_2

— Automate M_3

Exercice 2 - Soit $\Sigma = \{a, b\}$. Soient $L_{M_1} = \{w \in \Sigma^* | |w|_a = 2n, n \in \mathbb{N}\}$ et $L_{M_2} = \{w \in \Sigma^* | |w|_b = 2n + 1, n \in \mathbb{N}\}$

- 1. Caractérisez en français les langages L_{M_1} et L_{M_2}
- 2. Construire les automates qui reconnaissent respectivement L_{M_1} et L_{M_2}
- 3. Construire l'automate qui reconnaît $L_{M_1} + L_{M_2}$
- 4. Construire l'automate qui reconnaît $L_{M_1} \cap L_{M_2}$

Exercice 3 - Soit $\Sigma = \{a, b\}$. Soient les deux automates M_1 et M_2 . Construire le l'automate qui reconnaît le langage $L(M_1).L(M_2)$.

— Automate M_1

— Automate M_2

Exercice 4 - Soit $\Sigma = \{a, b\}$. Soient les deux automates M_1 et M_2 suivant

— Automate M_1

— Automate M_2

- 1. Construire l'automate **déterministe** qui reconnaît le langage $\mathcal{L}(M_1) + \mathcal{L}(M_2)$
- 2. Construire l'automate **déterministe** qui reconnaît le langage $\mathcal{L}(M_1).\mathcal{L}(M_2)$

Exercice 5 - Minimiser les automates suivants en utilisant l'algorithme de Moore.

1. Automate M_1

2. Automate M_2

