Equation assignment sequence for variable C_p

no	var	equ	quations	token
99	9	-	$S_{I,p}$:: port variable	
98	4	_	$F^{sink}_{N,I}$:: port variable	
97	198	_	K^{o}_{K} :: port variable	
96	197	_	E^{a}_{K} :: port variable	
95	122	_	k^B :: port variable	
94	121	_	N^A :: port variable	
93	26	_	$N_{S,K}$:: port variable	
92	19	_	$A_{N,p,q}$:: port variable	
91	27	_	$I_{N,A}$:: port variable	
90	10	_	$S_{I,q}$:: port variable	
89	3	_	$F^{source}_{N,I} :: port variable$	
88	2	_	$F_{N,A}$:: port variable	
87	25	_	r_{zN} :: port variable	
86	24	_	r_{yN} :: port variable	
85	23	_	r_{xN} :: port variable	
84	1	_	t:: port variable	
83	109	_	S_N :: port variable	
82	108	_	U_N :: port variable	

no	var	equ	quations	token
81	101	-	# :: port variable	
80	132	_	λ_S :: port variable	
79	164	171	$x := F^{source}_{N,I} * x_{N,S}$	
78	166	170	$_T := F^{source}{}_{N,I} \overset{N}{\star} T_N$	
77	165	168	$x := (F^{sink}_{N,I} \cdot _x_{I,S}) \overset{I}{\star} S_{I,p}$	
76	167	164	$T := (F^{sink}_{N,I} \cdot _T_I) \stackrel{I}{\star} S_{I,p}$	
75	168	162	$f := x_{N,S,p}((N_{S,K}))$	
74	139	161	$n^t := \mathbf{reduceSum}(n_{N,S}, S)$	
73	143	160	$\rho := (V_N)^{-1} \cdot m_N$	
72	199	156	$K := K^{o}_{K} \cdot \exp\left((-E^{a}_{K}) \cdot (R \cdot T_{N,p})^{-1}\right)$	
71	169	154	$\xi := \prod_S f_{N,S,K,p}$	
70	120	153	$v_z := \frac{\partial r_{zN}}{\partial t}$	
69	119	152	$v_y := rac{\partial r_{yN}}{\partial t}$	
68	161	151	$\mu^o := \mathbf{Instantiate}(\mu_{N,S}, \#)$	
67	140	149	$x := (n^t_N)^{-1} \cdot n_{N,S}$	
66	123	146	$R := N^A \cdot k^B$	
65	118	145	$v_x := \frac{\partial r_{xN}}{\partial t}$	
64	189	143	$\rho := I_{N,A} \overset{N}{\star} \rho_N$	
63	183	142	$k_x^c := I_{N,A} * \left(\left(\lambda_S * (\mu_{N,S})^{-1} \right) \cdot (V_N)^{-1} \cdot \frac{\partial U_N}{\partial p_N} \cdot v_{xN} \right)$	
62	157	141	$d := \mathbf{sign}\left(F_{N,A} \overset{N}{\star} p_N\right)$	

no	var	equ	quations	token
61	104	140	$0.5 := \mathbf{Instantiate}(\#, \#)$	
60	200	135	$\tilde{n} := A_{N,p,q} \overset{p}{\star} \left(N_{S,K} \overset{K}{\star} \left(K_{N,K,p} \cdot \xi_{N,K,p} \right) \right)$	
59	188	134	$k_z^q := I_{N,A} \stackrel{N}{\star} \left((V_N)^{-1} \cdot C_{pN} \cdot v_{zN} \right)$	
58	187	133	$k_y^q := I_{N,A} \stackrel{N}{\star} \left((V_N)^{-1} \cdot C_{pN} \cdot v_{yN} \right)$	
57	186	132	$k_x^q := I_{N,A} \stackrel{N}{\star} \left((V_N)^{-1} \cdot C_{pN} \cdot v_{xN} \right)$	
56	192	131	$\hat{k}_z^{d,Fick} := I_{N,A} \star \left(v_{zN} \cdot \frac{\partial U_N}{\partial \mu_{N,S}} \cdot (n_{N,S})^{-1} \right)$	
55	182	129	$k_z^d := I_{N,A} * \left((\mu_{N,S})^{-1} \cdot \left(v_{zN} \cdot \left((V_N)^{-1} \cdot \frac{\partial U_N}{\partial \mu_{N,S}} \right) \right) \right)$	
54	148	128	$A_{xy} := r_{xN} \cdot r_{yN}$	
53	181	127	$k_y^d := I_{N,A} * \left((\mu_{N,S})^{-1} \cdot \left(v_{yN} \cdot \left((V_N)^{-1} \cdot \frac{\partial U_N}{\partial \mu_{N,S}} \right) \right) \right)$	
52	191	125	$\hat{k}_y^{d,Fick} := I_{N,A} \star \left(v_{yN} \cdot \frac{\partial U_N}{\partial \mu_{N,S}} \cdot (n_{N,S})^{-1} \right)$	
51	149	124	$A_{xz} := r_{xN} \cdot r_{zN}$	
50	180	123	$k_x^d := I_{N,A} * \left((\mu_{N,S})^{-1} \cdot \left(v_{xN} \cdot \left((V_N)^{-1} \cdot \frac{\partial U_N}{\partial \mu_{N,S}} \right) \right) \right)$	
49	114	122	$\mu := \frac{\partial U_N}{\partial n_{N,S}}$	
48	114	118	$\mu := \mu^{o}_{N,S} + R \cdot T_{N} \cdot \ln \left(x_{N,S} \right)$	
47	190	115	$\hat{k}_x^{d,Fick} := I_{N,A} * \left(v_{xN} \cdot \frac{\partial U_N}{\partial \mu_{N,S}} \cdot (n_{N,S})^{-1} \right)$	
46	150	114	$A_{yz} := r_{yN} \cdot r_{zN}$	
45	138	113	$c := (V_N)^{-1} \cdot n_{N,S}$	
44	159	110	$\hat{V} := (\rho_A)^{-1} \cdot k_{xA}^c \cdot A_{yzN} \cdot F_{N,A} \stackrel{N}{\star} p_N$	
43	158	107	$c := (0.5 \cdot (F_{N,A} - d_A \cdot F_{N,A})) \stackrel{N}{\star} c_{N,S}$	
42	201	104	$np := \mathbf{reduceSum}\left(\left(\left(F^{source}_{N,I} \stackrel{N}{\star} \tilde{n}_{N,S,q}\right) . S_{I,q}\right), q\right)$	

no	var	equ	quations	token
41	211	103	$\hat{w} := \mathbf{Instantiate}(\hat{q}_{xA}, \#)$	
40	153	101	$\hat{q}_z := k_{zA}^q \cdot A_{xyN} \cdot F_{N,A} \stackrel{N}{\star} T_N$	
39	152	99	$\hat{q}_y := k_{yA}^q \cdot A_{xzN} \cdot F_{N,A} \overset{N}{\star} T_N$	
38	151	97	$\hat{q}_x := k_{xA}^q \cdot A_{yzN} \cdot F_{N,A} \stackrel{N}{\star} T_N$	
37	156	95	$\hat{n}_z^d := \hat{k}_z^{d,Fick}{}_{A,S} \cdot (A_{xyN} \cdot F_{N,A}) \stackrel{N}{\star} c_{N,S}$	
36	156	92	$\hat{n}_z^d := k_{zA,S}^d \cdot (A_{xyN} \cdot F_{N,A}) \stackrel{N}{\star} \mu_{N,S}$	
35	155	90	$\hat{n}_y^d := k_{yA,S}^d \cdot (A_{yzN} \cdot F_{N,A}) \stackrel{N}{\star} \mu_{N,S}$	
34	155	87	$\hat{n}_y^d := \hat{k}_y^{d,Fick}{}_{A,S} \cdot A_{xzN} \cdot F_{N,A} \overset{N}{\star} c_{N,S}$	
33	154	84	$\hat{n}_x^d := k_{xA,S}^d \cdot (A_{yzN} \cdot F_{N,A}) \stackrel{N}{\star} \mu_{N,S}$	
32	154	80	$\hat{n}_x^d := \hat{k}_x^{d,Fick}{}_{A,S} \cdot A_{yzN} \cdot F_{N,A} \overset{N}{\star} c_{N,S}$	
31	160	77	$\hat{n}_x^c := \hat{V}_A \cdot c_{A,S}$	
30	136	76	$h := H_N \cdot (n_{N,S})^{-1}$	
29	202	73	$\tilde{n} := F^{source}{}_{N,I} \overset{I}{\star} _np_{I,S}$	
28	195	72	$\dot{n}_x^d := F_{N,A} \stackrel{A}{\star} \hat{n}_{xA,S}^d$	
27	194	71	$\dot{n}_x^c := F_{N,A} \stackrel{A}{\star} \hat{n}_{xA,S}^c$	
26	214	69	$\dot{w} := F_{N,A} \stackrel{A}{\star} \hat{w}_A$	
25	210	67	$\dot{q}_z := F_{N,A} \overset{A}{\star} \hat{q}_{zA}$	
24	209	65	$\dot{q}_y := F_{N,A} \overset{A}{\star} \hat{q}_{yA}$	
23	208	63	$\dot{q}_x := F_{N,A} \overset{A}{\star} \hat{q}_{xA}$	
22	207	61	$\dot{H}_z^d := F_{N,A} \stackrel{A}{\star} \left(\hat{n}_{zA,S}^d \stackrel{S}{\star} h_{N,S} \right)$	

no	var	equ	quations	token
21	206	59	$\dot{H}_y^d := F_{N,A} \stackrel{A}{\star} \left(\hat{n}_{yA,S}^d \stackrel{S}{\star} h_{N,S} \right)$	
20	205	57	$\dot{H}_x^d := F_{N,A} \stackrel{A}{\star} \left(\hat{n}_{xA,S}^d \stackrel{S}{\star} h_{N,S} \right)$	
19	204	53	$\dot{H}_x^c := F_{N,A} \stackrel{A}{\star} \left(\hat{n}_{xA,S}^c \stackrel{S}{\star} h_{N,S} \right)$	
18	203	52	$n^o := \mathbf{Instantiate}(n_{N,S}, \#)$	
17	196	48	$\dot{n} := \dot{n}_{xN,S}^c + \dot{n}_{xN,S}^d + V_N \cdot \tilde{n}_{N,S}$	
16	216	47	$H^o := \mathbf{Instantiate}(H_N, \#)$	
15	215	38	$\dot{H} := \dot{H}_{xN}^c + \dot{H}_{xN}^d + \dot{H}_{yN}^d + \dot{H}_{zN}^d + \dot{q}_{xN} + \dot{q}_{yN} + \dot{q}_{zN} + \dot{w}_N$	
14	106	37	$t^e := \mathbf{Instantiate}(t, \#)$	
13	105	36	$t^o := \mathbf{Instantiate}(t, \#)$	
12	112	35	$p := \frac{\partial U_N}{\partial V_N}$	
11	110	31	$V := r_{xN} \cdot r_{yN} \cdot r_{zN}$	
10	222	30	$T^{ref} := \mathbf{Instantiate}(T_N, \#)$	
9	111	27	$n := \int_{t^o}^{t^e} \dot{n}_{N,S} \ dt + n^o_{N,S}$	
8	115	21	$H := \int_{t^o}^{t^e} \dot{H}_N \ dt + H^o_N$	
7	115	18	$H := U_N - p_N \cdot V_N$	
6	113	16	$T := H_N \cdot (C_{pN})^{-1} + T^{ref}{}_N$	
5	113	13	$T := \frac{\partial U_N}{\partial S_N}$	
4	141	11	$c_p := \mathbf{Instantiate}(c_{pN}, \#)$	
3	141	10	$c_p := C_{pN} \cdot (m_N)^{-1}$	
2	137	7	$m := \lambda_S \overset{S}{\star} n_{N,S}$	

no	var	equ	quations	token
1	124	4	$C_p := \frac{\partial H_N}{\partial T_N}$	
0	124	1	$igcap_p := m_N . c_{pN}$	