Image Super-Resolution Using Deep Convolutional Networks

Visual Computing Lab
YoungHoon Kwon

Order

- Terms
- Object
- Formulation
- Result
- Experiments
- Future works

Terms

Image Super-Resolution Using Deep Convolutional Networks

- Resolution
- Low-resolution
- High-resolution
- Super-resolution
- Convolutional Networks

Convolution

Object

Patch extraction and representation

Patch extraction and representation

Non-linear mapping

Non-linear mapping

Reconstruction

Result

Experiments - two problems

Trade-Off Performance & Speed

적당한 f1, f2, f3, n1, n2 파라미터 값 설정

The deeper, The better?

많은 레이어를 사용할 수록 결과가 좋은가?

Future works

- Training Data 분석 수식을 어떻게 이용할 것인가
- Channel 확장
- Machine Learning 이해
 - -- 대학원 수업, Sung Kim, cs231n 복습
- Tensorflow 테스트 및 구현
 - -- Sung Kim, 텐서플로 첫걸음