MOTIVATION FOR HAMILTON CHAPTER 1

- Data analysis fundamental: Treat your data with respect to learn something about the underlying data generating process.
 - Data tell a story about the phenomena under investigation.
 - Always handle data and analysis results with a critical attitude and use common sense.
 Link the results back to your original observations.
 - Always ask yourself: Do the data or the generated analysis results make sense?
- **Describing the variability** and distribution of a variable is the **required** first step of any data analysis.
- The *shape* of an univariate distribution can have *substantial impact* on the outcome of statistical procedures.
 - E.g.: *Outliers* or *heavy tails* may detrimentally influence the outcome of model calibrations and parameter estimations.
- Not accounting for the distribution of variables can force a researcher to redo their data analysis at a later state.
- Most methods assume symmetric or preferably normally distributed variables.
- Transformations to symmetry are discussed in Chapter 1. Note, statisticians use many more transformations under particular circumstances.
 - E.g., we will encounter later the logit-transformation.

Central Limit Theorem

• <u>Def. Central Limit Theorem:</u> Let $X_1, X_2, ..., X_n$ be a *random independent* sample of size n drawn from an *arbitrarily distributed* population with expectation μ and standard deviation σ .

Then for large enough sample sizes n, the sampling distribution of the arithmetic mean \bar{X} is [a] asymptotically (i.e., as the sample size $n \to \infty$) normal distributed [b] with

$$\bar{X} \sim N\left(\mu, \frac{\sigma^2}{n}\right).$$

Proof for independent sample observations X_i :

$$Var\left(\frac{1}{n} \cdot \sum_{i=1}^{n} X_{i}\right) = \frac{1}{n^{2}} \cdot \sum_{i=1}^{n} \underbrace{Var(X_{i})}_{=\sigma^{2}} = \frac{1}{n^{2}} \cdot n \cdot \sigma^{2} = \frac{\sigma^{2}}{n}$$

- Implications:
 - o Thus the **standard error** $s_{\bar{X}} = \sigma/\sqrt{n}$ of the mean \bar{X} **shrinks** by $1/\sqrt{n}$ with increasing sample size.
 - Another implication of the central limit theorem is that the sum of a set of small random errors or shocks will lead to normal distributed total error.
 - In contrast, the product of a set of small random errors will lead to a log-normal distributed total error.

• Example: Central limit theorem with the @-script CENTRALLIMIT.R:

Review: The Shape of Distributions

- Distributions can be distinguished with regards the **balance** of their left and right tails:
 - o *Symmetric* distributions. Tails are balanced into either direction from a central value.
 - Negatively skewed distributions (long tail into the negative direction)
 - Positively skewed distributions (long tail into the positive direction). These
 distributions frequently emerge for variables with a binding lower origin (like zero
 income).
 - Extreme skewness may hint at *outliers* that do not match the rest of the observed data.
- The number of meaningful clusters of observations is described by the term modality:
 - Uni-modality refers to just one peak.
 - Bi-modality refers to two outstanding peaks
 - Multimodality refers to more than two outstanding peaks.
- Multimodality may hint at a heterogeneous underlying data generating process in which

Figure 3.9
Shapes of frequency distributions: (a) Normal; (b) Bimodal; (c) Negatively skewed; (d) Positively skewed

the underlying process for observations in the first mode is different for observation in the second mode.

Quantiles and Percentiles

- Technically, quantiles and percentiles are generated from a **sorted list** of the original data points $x_{_{[1]}} \le x_{_{[2]}} \le x_{_{[3]}} \le \cdots \le x_{_{[n-1]}} \le x_{_{[n]}}$ where each observations has an assigned rank $i \in \{1,2,\ldots,n\}$, with i=1 for the smallest observation and i=n for the largest observation.
- For a give data value $x_{[i]}$ the **percentile** approximates the proportion of sample observations less or equal to $x_{[i]}$, that is, their cumulative distribution:

$$p_{[i]} = \frac{i - \frac{1}{2}}{n} \approx \Pr(X \leq x_{[i]}) = \int_0^{x_{[i]}} f(x) \cdot dx.$$

Note that the $\alpha=0.5$ of the percentile equation $p(x_{[i]})=\frac{i-\alpha}{n+(1-\alpha)-\alpha}$ has been chosen here.

- A *quantile* is the *potentially fictious* data value of a distribution, which is associated with a particular percentile value.
- Important quantiles are:
 - 0.25 quantile also called Q_1 quartile (25 % of the observations are smaller or equal to this quantile value)
 - 0.50 quantile also called the median (50 % of the observations are smaller or larger than the given quantile value)

- 0.75 quantile also called Q_3 quartile (75 % of the observations are smaller or equal to this quantile value and 25 % of the observations are larger than this value)
- A measure of spread is the inter-quartile range: $IQR = Q_3 Q_1$

Box-Plots

- Construction of the box-plot
 - Draw a **box** from Q_1 to Q_3 . Mark the **median Q_2** in the center of the box with a line.
 - Definition of *adjacent values* $x_{low}^{adj} = \min(x_{[i]} \in (Q_1, Q_1 1.5 \cdot IQR) \text{ plus } x_{[i]} \text{ in dataset})$ and $x_{high}^{adj} = \max(x_{[i]} \in (Q_3, Q_3 + 1.5 \cdot IQR) \text{ plus } x_{[i]} \text{ in dataset}).$

The term $x \in (a,b)$ means, all x-values in the interval between a and b.

Draw the "fences" so they just include the smallest and largest data values x_{low}^{adj} and x_{high}^{adj} , respectively.

• Outliers are in the interval $\begin{bmatrix} 1.5 \cdot IQR, 3.0 \cdot IQR \end{bmatrix}$ starting from Q_1 below or Q_3 above, respectively.

Severe outliers are beyond that range $(> 3.0 \cdot IQR)$

- Use of box-plots:
 - Easy visual description of the distribution of a variable and potential outliers
 - Comparison of distributions for several variables side-by-side.

QUANTILE-NORMAL PLOT

- Calculate the theoretical quantiles of a normally distributed random variable $Y_{[i]}$ (assuming the mean μ and the variance σ^2 were estimated from the sample data) based on the given sample percentiles $p_{[i]}$ of the observed variable $x_{[i]}$.
- **Quantile-Normal Plot**: Plot the theoretical normal distribution quantiles $Y_{[i]}$ on the abscissa (X-axis) against their matching empirical distribution of $x_{[i]}$ on the ordinate (Y-axis).

Interpretation:

- Diagonal with slope 1 => equal distributions.
- Not a straight-line => different shapes.

PROPERTIES OF ARITHMETIC MEAN

• Implications of the **zero-sum** property $\sum_{i=1}^{n} (Y_i - \overline{Y}) = 0$: Assuming the mean is known, then

Figure 1.9 Quantile-normal plot of household water use (positively skewed).

Figure 1.10 Quantile-normal plots reflect distribution shape.

n-1 observation can vary freely, whereas we can predict the last observation with certainty.

$$\sum_{i=1}^{n} (Y_i - \overline{Y}) = 0$$

$$\Rightarrow \sum_{i=1}^{n} Y_i = n \cdot \overline{Y}$$

$$\Rightarrow Y_n = n \cdot \overline{Y} - \sum_{i=1}^{n-1} Y_i$$

That implies that we loose one degree of freedom.

- Implication of the *least squares property* $\min_{\theta} \sum_{i=1}^{n} (Y_i \theta)^2 \Rightarrow \theta = \overline{Y}$.
 - Large deviations have a strong impact on the estimated mean, variance etc. because the large deviations are squared
 - \Rightarrow Thus, large deviations pull the mean into their direction.
 - ⇒ Standard deviations are drastically inflated.
- Lacking any other information, the arithmetic mean will become best *predictor* for the variable under investigation.
- The deviations from the mean are the *unexplained* part or the *residuals* of the observations, i.e., $y_i = \bar{y} + \varepsilon_i$.

• Definition of total sum of squares: $TSS = \sum_{i=1}^{n} (Y_i - \overline{Y})^2$ or $TSS = \sum_{i=1}^{n} Y_i^2 - n \cdot \overline{Y}^2$.

• Why is the population variance estimated with (n-1) in the denominator, that is, by $s^2 = TSS/(n-1)$:

Explanation 1: If we calculate the mean from the sample then there are only n-1 "degrees of freedom" left because of the **zero sum property** of the mean.

Explanation 2: The mean is calculated by minimizing the *TSS*.

Thus the sample mean always fits the observed sample data better than any **unobserved but true** population expectation μ .

For the true expectation μ , the TSS would be slightly larger. That is why the sample TSS needs to be inflated by dividing it by a slight smaller value than n, that is, n-1.

• Standard deviation measures the variation in original units rather than in squared units.

REVIEW: SKEWNESS

- Why does the distribution of the water consumption in the Concord dataset deviate from the normal distribution?
 - Reason: Fixed lower bound (negative water consumption impossible).
- **Skewness** and bounded/truncated distributions: For skewed distributions the notion of the center of the distribution (mean) becomes ambiguous and the **median** may be a better representation of the central tendency in the data.
- The **skewness** is defined by $skew(X) \equiv \frac{\sum_{i=1}^{n} (x_i \overline{x})^3}{n \cdot s_X^3}$
- The normal distribution has a skewness of 0.

BOX-COX TRANSFORMATION

- This lecture focuses on the more general **Box-Cox** transformation (note 11 on page 28 in Hamilton) rather than the slightly simpler **power** transformation, which is discussed in Hamilton. For both transformations, the general interpretation of the parameter λ does not change.
- Causes for *extreme observations*: [a] skewed distributions, [b] measurement or recoding errors, [c] extreme but feasible events (perhaps not belonging to the population under investigation).
- The *power*-transformation presented in book and the *Box-Cox* transformation only work for *variables whose observations are all larger than zero*.
- The Box-Cox transformation is a generalization of the power transformation: $Y = \frac{X^{\lambda} 1}{\lambda}$ and for $\lambda = 0$ we get $y = \ln(x)$.
- $\lambda > 1$ reduce negative skewness, whereas $\lambda < 1$ reduce positive skewness. Remember: Positive skewness is very common for variables with a natural bound of zero.
- If power $\lambda < 0$ then all values are multiplied by a negative number to preserve the natural order of observations.

This explains the value λ in the denominator of the Box-Cox transformation

FOX Fig 4.1

X	X^{-1}	$\frac{X^{-1}}{-1}$
1 2	1 1/2	-1 -1/2
3	1/3 1/4	-1/3 -1/4

Figure 4.1. The family of power transformations X' of X. The curve labeled p is the transformation $X^{(p)}$, that is, $(X^p - 1)/p$; $X^{(0)}$ is $\log_p X$.

- Note: s function car::powerTransform() is performing several statistical tests whether a variable either needs to be transformed or whether a *log*-transformation is sufficient by using the likelihood ratio test (LR) principle:
 - The first LR tests the null hypotheses H_0 : $\lambda^{optimal} = 0$. If we cannot reject the null hypothesis then we should tentatively work with a log-transformation to achieve normality/symmetry.
 - The second LR tests the null hypotheses H_0 : $\lambda^{optimal} = 1$. If we cannot reject the null hypothesis then we should tentatively work with an untransformed variable because it is approximately symmetric.
 - \circ The Wald confidence interval provides the 95% probability range within which the true population transformation parameter λ lies.

HANDLING TRANSFORMATIONS WITH NEGATIVE DATA VALUES

- After inspection of the variable's distribution one can overcome the problem of zero or negative data values by
 - o adding a constant such as $min(X) + \varepsilon$, where ε is a small positive number, or say, 5% quantile to the variable to make it solidly positive.
 - \circ However, if ε is too small, which leads to positive but close to zero values, outliers may be introduced.
 - \circ On the other hand, choosing ε too large, may make the transformation to normality ineffective.
- See the ?car::bcPower() and Fox & Weissberg pp 161-162 for the bcnPower transformation family.
- A more informed way avoiding some of the problems by just adding a constant is to first transform the data by:

$$z(X,\gamma) = \frac{\left(X + \sqrt{X^2 + \gamma^2}\right)}{2} \text{ with}$$

- The transformation $z(X, \gamma)$ is monotonic (i.e., if $x_1 < x_2$.then $z(x_1, \gamma) < z(x_2, \gamma)$)
- o For large positive X relative to γ ($X \gg \gamma$) the transformation is approximately linear with $z(X, \gamma) \approx X$.
- o If $\gamma = 0$ then $z(X, \gamma) = X$ for X > 0 and $z(X, \gamma) = 0$ for $X \le 0$.
- Subsequently, once the γ -parameter is determined a standard Box-Cox transformation is applied to $z(X, \gamma)$.

LOESS SMOOTHER OF Y~X RELATIONSHIPS

- Many of

 's scatterplot functions not only show a linear regression fit through the data cloud but also show a locally smoothed loess-curve:
 - In essence, a sliding window moves over the value range of the variable X.
 - In each window a local regression line is estimated.
 - These local window regression lines are "splined" together into the smooth loess curve over the whole value range of X

FIGURE 9.17
MA-plot with curve obtained with loess.

Illustration of how loess estimates a curve. Showing 12 steps of the process.