

Introduction
Light
clor perception
Color mixing
Color spaces

Digital Image Processing (DIP)

ImProc website:

https://my.eurecom.fr/jcms/p0_2027226/en/improc

Introduction to Colorimetry

Nov. 13, 2018

We can confirm <u>#TheDress</u> is blue and black! We should know! http://bit.ly/larLYRe

{christian.rey, jld, angela.dangelo}@eurecom.fr

Light
Color perception
Color mixing
Color spaces
Image formats

The Internet lost its collective mind Thursday over the $\underline{\text{color of a dress}}$ originally posted by a $\underline{\text{Tumblr}}$ user.

ORIGINAL

(Blue and Gold)

(Shire and Gold)

(White and Gold)

(White and Gold)

(White and Gold)

(White and Gold)

DARKER
(Blue and Black)
-30% brightness, +40%
contrast

<u>swiked</u>: guys please help me - is this dress white and gold (about 72%), or blue and black? Me and my friends can't agree and ...

{christian.rey, jld, angela.dangelo}@eurecom.fr

Color naming

Light clor perception Color mixing

Image formats

Conclusion

- **Color Naming:** attaching labels to color. Perceptual categories are constructed through language
- Name the following colors:

 11 culture colors (Berlin & Kay, 1969): black, white, red, green, yellow, blue, brown, purple, pink, orange, gray

{christian.rey, jld, angela.dangelo}@eurecom.fr

13

Additive color mixing

Light perception Primary colors: red, green, and blue

Secondary colors: yellow, cyan, magenta

Starting with a black background and adding lights to create color (other colors can be created by varying the intensities of red, blue, and green).

Used in television, cameras, computer graphics, etc.

Grassman's laws:

- Law 1: Any color ${\it C}$ can be matched by a linear combination of three other colors (e.g. primary colors)

$$C = r_{c}(\mathbf{R}) + g_{c}(\mathbf{G}) + b_{c}(\mathbf{B})$$

- Law 2: A mixture of two colors (C_1 and C_2) can be matched by linearly adding theirs components

$$C_3 = C_1 + C_2 = [r_1 + r_2](\mathbf{R}) + [g_1 + g_2](\mathbf{G}) + [b_1 + b_2](\mathbf{B})$$

- Law 3: Proportionality

$$k.C = k.r_{c}(\mathbf{R}) + k.g_{c}(\mathbf{G}) + k.b_{c}(\mathbf{B})$$

{christian.rey, jld, angela.dangelo}@eurecom.fr

XYZ RGB

Introduction
Light
Color perception
Color mixing
Color spaces
Image formats

$$\begin{pmatrix} R \\ G \\ B \end{pmatrix} = \begin{pmatrix} 3.24 & -1.54 & -0.50 \\ -0.97 & 1.88 & 0.04 \\ 0.06 & -0.20 & 1.06 \end{pmatrix} \begin{pmatrix} X \\ Y \\ Z \end{pmatrix}$$
$$\begin{pmatrix} X \\ Y \\ Z \end{pmatrix} = \begin{pmatrix} 0.41 & 0.36 & 0.18 \\ 0.21 & 0.72 & 0.07 \\ 0.02 & 0.12 & 0.95 \end{pmatrix} \begin{pmatrix} R \\ G \\ B \end{pmatrix}$$

Many points in XYZ do not correspond to visible colors.

XYZ is more standardized

XYZ can reproduce all colors with positive values

XYZ is not realizable physically

{christian.rey, jld, angela.dangelo}@eurecom.fr

27

Light

Color spaces

Color Matching

Some colors cannot be produced using only positively weighted primaries Solution: add light on the other side!

$$C = r_{c}(\mathbf{R}) + g_{c}(\mathbf{G}) + b_{c}(\mathbf{B})$$

 $\{christian.rey, jld, angela.dangelo\} @eurecom.fr$

YIQ color model

Introduction
Light
Color perception
Color mixing
Color spaces

Used by US commercial color TV broadcasting (used by NTSC standard).

Y: encodes luminance

I, Q: encode color (chromaticity)

For black and white TV, only the Y channel is used (we do not need to broadcast separate signals for $\mbox{B/W}\mbox{ TV)}.$

People are more sensitive to the illuminance difference, so we can use more bits (bandwidth) to encode Y and less bits to encode I and Q.

$$\begin{pmatrix} Y \\ I \\ Q \end{pmatrix} = \begin{pmatrix} 0.299 & 0.587 & 0.114 \\ 0.596 & -0.273 & -0.322 \\ 0.212 & -0.522 & 0.315 \end{pmatrix} \begin{pmatrix} R \\ G \\ B \end{pmatrix}$$

 $\{christian.rey, jld, angela.dangelo\} @eurecom.fr$

41

YCrCb color model (or **YUV**)

Introduction
Light
Color perception
Color mixing
Golor spaces
Image formats

Initially, for PAL analog video, it is now also used in CCIR 601 standard for digital video.

$$Y = 0.299R + 0.587G + 0.114B$$

 $Cr = R - Y$
 $Cb = B - Y$

Scaled and filtered versions of the B-Y and R-Y color difference signals are used to modulate the PAL subcarrier in the U and V axes respectively.

$$U = 0.492 (B - Y)$$

 $V = 0.877 (R - Y)$

$$\begin{pmatrix} Y \\ U \\ V \end{pmatrix} = \begin{pmatrix} 0.299 & 0.587 & 0.114 \\ -0.169 & -0.331 & 0.500 \\ 0.500 & -0.419 & -0.081 \end{pmatrix} \begin{pmatrix} R \\ G \\ B \end{pmatrix}$$

 $\{christian.rey, jld, angela.dangelo\} @eurecom.fr$

Light
Color perception
Color mixing
Color spaces
Image formats

Color FAQ - Frequently Asked Questions Color

Applets of interest

The Chromaticity Diagram and Gamut Applet

The Color Spaces Conversion Applet

The Color Matching Game Applet

Main page: Color spaces: http://www.cs.rit.edu/~ncs/color/

Color blindness:

you can test your color vision on-line.

How does the world look to someone who is color deficient.

(Why are you colorblind)

http://vischeck.com/runVischeck.php3 (simulateur)

{christian.rey, jld, angela.dangelo}@eurecom.fr