Wstęp do zagadnienia Algorytmy iteracyjne i rekurencyjne Przegląd trzech wybranych algorytmów Podsumowanie Quiz

Iteracyjna i rekurencyjna implementacja wybranych algorytmów – porównanie czasów działania Liczby Fibonacciego, Algorytm Quicksort, Wieże Hanoi

Wiktor Kalaga

8 czerwca 2024

## Plan prezentacji

- Wstęp do zagadnienia
- Algorytmy iteracyjne i rekurencyjne
- 3 Przegląd trzech wybranych algorytmów
- Podsumowanie
- Quiz

## Wprowadzenie

## Przypomnienie 1/2

Algorytm jest pewną ściśle określoną procedurą obliczeniową, która dla właściwych danych wejściowych *produkuje* żądane dane wyjściowe, które stanowią wynik działania algorytmu. W związku z tym algorytm to ciąg kroków obliczeniowych przekształcających dane wejściowe w dane wyjściowe.

## Algorytm powinien być:

- deterministyczny,
- skończony,
- poprawny,
- adaptacyjny,
- efektywny.

Wstęp do zagadnienia Algorytmy iteracyjne i rekurencyjne Przegląd trzech wybranych algorytmów Podsumowanie Ouiz

## Przypomnienie 2/2

**Struktura danych** to środek służący do przechowywania i organizowania danych w celu ułatwienia dostępu do nich oraz ich modyfikacji.

# Algorytmy iteracyjne

#### Wyjaśnienie

Algorytm iteracyjny składa się z instrukcji iteracyjnej, dzięki której pewne operacje są wykonywane określoną liczbę razy lub do osiągnięcia pewnego warunku. Zwykle określane są jako pętle.

#### Przypomnienie 1/2

Instrukcje iteracyjne można podzielić ze względu na sposób kontrolowania iteracji:

- warunkowe,
- licznikowe,
- kombinacja powyższych.

## Przypomnienie 2/2

Typy instrukcji iteracyjnych:

- pętla for,
- pętla while,
- pętla do..while.

## Przykład

```
int sumFor = 0:
for (int i = 1; i \le 100; i++)
    sumFor += i:
int sumWhile = 0;
while (j \le 100)
    sumWhile += j;
int sumDoWhile = 0;
int k = 1:
do
    sumDoWhile += k:
    k++;
 while (k <= 100);
```

Rys.: Typy instrukcji iteracyjnych.

## Algorytmy rekurencyjne

#### Wyjaśnienie

Jest to rodzaj algorytmów, stosujących **rekurencję**, co oznacza funkcję lub procedurę której definicja odwołuje się do samej siebie. Podejście rekurencyjne jest charakterystyczne dla algorytmów projektowanych metodą *dziel i zwyciężaj* [s 19]. W programowaniu funkcyjnym zamiast instrukcji iteracyjnych (pętli) stosuje się właśnie rekurencję.

#### Zalety

- treść funkcji zgodna z definicją matematyczną,
- rozkład problemu na mniejsze podproblemy.

#### Wady

- duża złożoność obliczeniowa, przepełnienie stosu,
- brak optymalizacji = słaba wydajność.

## Rekurencja bezpośrednia i pośrednia

Rekurencja bezpośrednia ma miejsce w sytuacji, kiedy w ciele funkcji (lub procedury) dochodzi do wywołania samej siebie. W przypadku **rekurencji pośredniej** dochodzi do łańcucha wywołań, co oznacza wywoływanie funkcji w ciele innej funkcji i na odwrót.

## Przykład

```
ireference
public static int Factorial(int n)
{
    if (n == 0)
        return 1;
    else
        return n * Factorial(n - 1);
}
```

```
| Information | Time |
```

Rys.: Przykładowe implementacje rekurencji bezpośredniej oraz pośredniej.

## Rekurencja ogonowa i nieogonowa

Ogonowa to taki rodzaj rekurencji, której wywołanie następuje na samym końcu działania funkcji, czyli ostatnią operacją tej funkcji jest wywołanie samej siebie lub zwrócenie końcowego wyniku.

Nieogonowa występuje w sytuacji, kiedy po wywołaniu rekurencyjnym mogą występować inne operacje na danych zwróconych przez poprzednie wywołanie tej funkcji.

## Przykład

```
reference
public static int FactorialTailRecurssion(int n, int res)
{
    if (n == 0)
        return res;
    else
        return FactorialTailRecurssion(n - 1, n * res);
}

reference
public static int FactorialNonTailRecurssion(int n)
{
    if (n == 0)
        return 1;
    else
        return n * FactorialNonTailRecurssion(n - 1);
}
```

Rys.: Przykładowe implementacje rekurencji ogonowej oraz nieogonowej.

## Struktury danych a rekurencja

Rekurencja jest naturalnym narzędziem do przeglądania struktur danych takich jak drzewa i grafy. Algorytmy takie jak BST (drzewo przeszukiwań binarnych), DFS (algorytm przeszukiwania w głąb) czy BFS (algorytm przeszukiwania wszerz) często są implementowane rekurencyjnie.

## Liczby Fibonacciego

**Liczby Fibonacciego** to ciąg liczb naturalnych, z których każda kolejna liczba jest określona rekurencyjnie, więc zależy od poprzednich liczb. Pierwsza liczba ciągu określona jako  $F_0$  i wynosi 0.  $F_1=1$ , z kolei następne wartości ciągu dla liczb od  $F_2$  do  $F_n$  jest sumą dwóch poprzednich liczb. Formalny zapis ciągu Fibonacciego jest następujący:

$$F_n = \begin{cases} 0, & \text{dla } n = 0, \\ 1, & \text{dla } n = 1, \\ F_{(n-1)} + F_{(n-2)}, & \text{dla } n > 1. \end{cases}$$

Algorytm wyznaczania *n*-tego wyrazu ciągu Fibonacciego można zaimplementować zarówno **iteracyjnie** jak i **rekurencyjnie**.

- Implementacja rekurencyjna sprowadza się do przepisania definicji matematycznej, ale jest mocno niewydajna.
- Podejście iteracyjne zakłada wykorzystanie pętli a jego złożoność jest liniowa.

## Liczby Fibonacciego - podejście rekurencyjne

```
3 references
static int FibonacciRecursive(int n)
{
   if (n < 3)
       return 1;
   else
       return FibonacciRecursive(n - 1) + FibonacciRecursive(n - 2);
}</pre>
```

Rys.: Implementacja rekurencyjna algorytmu wyznaczania n-tego wyrazu ciągu Fibonacciego

**Z**łożoność obliczeniowa:  $O(2^n)$ 

# Liczby Fibonacciego - podejście iteracyjne

```
Treference
static int FibonacciIterative(int n)
{
    if (n <= 1)
        return n;

    int a = 0, b = 1;
    for (int i = 2; i <= n; i++)
    {
        int temp = a + b;
        a = b;
        b = temp;
    }
    return b;
}</pre>
```

Rys.: Implementacja iteracyjna algorytmu wyznaczania n-tego wyrazu ciągu Fibonacciego

Złożoność obliczeniowa: O(n)

# Optymalizacja rekurencyjna

#### Memoizacja

To technika optymalizacji, polegająca na przechowywaniu wyników już obliczonych wywołań funkcji, aby uniknąć powtarzających się obliczeń.

## Algorytm Quicksort

Sortowanie szybkie (ang. Quicksort) ostało wynalezione przez angielskiego informatyka, profesora Sir Tony'ego Hoare'a w latach 60-tych ubiegłego wieku.



Rys.: Wynalazca Quicksort - sir Charles Antony Richard Hoare

Algorytm sortowania szybkiego jest oparty na technice 'dziel i zwyciężaj', którą można scharakteryzować w trzech punktach:

- Dziel podział głównego problemu na podproblemy.
- 2 Zwyciężaj znalezienie rozwiązania podproblemów.
- Połącz połączenie rozwiązań podproblemów skutkuje rozwiązaniem nadrzędnego problemu.



Bazując na ww. charakterystyce 'dziel i zwyciężaj' Quicksort można zdefiniować następująco:

- Dziel sortowany zbiór jest dzielony\* na dwie podtablice, tak że każdy element lewej podtablicy jest nie większy niż każdy element prawej podtablicy.
- **Zwyciężaj** obie podtablice są sortowane za pomocą rekurencyjnych wywołań algorytmu.
- Połącz połączenie posortowanych podtablic daje posortowany cały zbiór.

# Quicksort - podział tablicy

## \* - Tworzenie partycji

Podział w algorytmie szybkiego sortowania polega na przestawianiu elementów tablicy w taki sposób, aby utworzyć dwie podtablice względem wybranego elementu rozdzielającego (pivotu). Elementy mniejsze od pivota trafiają na lewo od niego, a większe na prawo. Przestawianie elementów względem pivota odbywa się poprzez iteracyjne porównywanie i zamianę elementów miejscami.

## Quicksort - procedura

```
QUICKSORT(A, p, r)

if p < r

q = PARTITION(A, p, r)

QUICKSORT(A, p, q - 1)

QUICKSORT(A, q + 1, r)
```

## , gdzie:

- A sortowana tablica,
- p indeks początkowy,
- r indeks końcowy

**Złożoność obliczeniowa:**  $O(n \log n)$ , **pes.**  $O(n^2)$  (np. dla niesymetrycznego zbioru danych)

#### Wieże Hanoi



Wieże Hanoi to łamigłówka wymyślona w 1883 roku przez matematyka francuskiego pochodzenia - Edouarda Lucasa. Łamigłówka ta zbudowana jest z deski, na której znajdują się trzy wieże w równych odstępach. Na pierwszej wieży nasunięte są drewniane krążki o coraz mniejszych średnicach.

## Wieże Hanoi - cel i zasady

Celem jest przesunięcie wszystkich krążków z pierwszej wieży (oznaczonej indeksem 0) na ostatnią (oznaczonej indeksem 2).



- Tylko jeden krążek może być przeniesiony na raz.
- Każdy ruch polega na zdjęciu krążka z wierzchu jednego stosu i umieszczeniu go na wierzchu innego stosu.
- Krążek nie może być umieszczony na mniejszym krążku.

#### Wieże Hanoi cd.

W miarę wzrostu ilości krążków do przeniesienia złożoność obliczeniowa rośnie niezwykle szybko. Zarówno algorytm iteracyjny jak i rekurencyjny posiada **złożoność**  $O(2^n)$ .

### Rekurencyjnie - kroki postępowania

Podobnie jak w innych algorytmach rekurencyjnych - dominuje metoda 'dziel i zwyciężaj'.

- przenieś (rekurencyjnie) n-1 krążków ze słupka 0 na słupek 1 posługując się słupkiem 2,
- przenieś jeden krążek ze słupka 0 na słupek 2,

## Podsumowanie

- Algorytmy iteracyjne pewne operacje są wykonywane określoną liczbę razy lub do osiągnięcia pewnego warunku. Zastosowanie przy użyciu pętli.
- Algorytmy rekurencyjne funkcje lub procedury, których definicje odwołują się do samej siebie. Rodzaje: bezpośrednia i pośrednia, ogonowa i nieogonowa.
- Liczby Fibonacciego to ciąg liczb naturalnych, z których każda kolejna liczba jest określona rekurencyjnie.
- Quicksort algorytm szybkiego sortowania jest oparty na technice 'dziel i zwyciężaj'. Dzielimy w nim tablice na dwie mniejsze podtablice.
- Wieże Hanoi gra polegająca na przeniesieniu krążków z pierwszej wieży na ostatnią z zachowaniem pewnych warunków.

## Quiz - Pytanie 1

#### Co charakteryzuje algorytm iteracyjny?

- Wykonuje operacje w sposób rekurencyjny, bez określonej liczby powtórzeń.
- Wykonuje operacje w określonej liczbie kroków lub do spełnienia pewnego warunku, używając pętli.
- Wykonuje operacje jednorazowo, bez powtórzeń.
- Wykonuje operacje tylko na danych wejściowych bez warunków iteracyjnych.

## Quiz - Odpowiedź 1

#### Co charakteryzuje algorytm iteracyjny?

- Wykonuje operacje w sposób rekurencyjny, bez określonej liczby powtórzeń.
- Wykonuje operacje w określonej liczbie kroków lub do spełnienia pewnego warunku, używając pętli.
- Wykonuje operacje jednorazowo, bez powtórzeń.
- Wykonuje operacje tylko na danych wejściowych bez warunków iteracyjnych.

# Quiz - Pytanie 2

Jakie podejście jest często używane w algorytmach projektowanych metodą dziel i zwyciężaj oraz w programowaniu funkcyjnym zamiast instrukcji iteracyjnych?

- Algorytmy genetyczne
- Programowanie dynamiczne
- Rekurencja
- Algorytmy zachłanne

# Quiz - Odpowiedź 2

Jakie podejście jest często używane w algorytmach projektowanych metodą dziel i zwyciężaj oraz w programowaniu funkcyjnym zamiast instrukcji iteracyjnych?

- Algorytmy genetyczne
- Programowanie dynamiczne
- Rekurencja
- Algorytmy zachłanne

## Quiz - Pytanie 3

Jaka jest złożoność obliczeniowa algorytmu iteracyjnego pozwalającego na wyznaczenie *n*-tego wyrazu ciągu Fibonacciego ?

- $\bigcirc$  liniowa O(n)
- $oldsymbol{B}$  logarytmiczna O(logn)
- $\bigcirc$  kwadratowa  $O(n^2)$
- liniowo logarytmiczna O(n logn)

## Quiz - Odpowiedź 3

Jaka jest złożoność obliczeniowa algorytmu iteracyjnego pozwalającego na wyznaczenie *n*-tego wyrazu ciągu Fibonacciego ?

- $\bigcirc$  liniowa O(n)
- logarytmiczna O(logn)
- kwadratowa O(n²)
- $\bigcirc$  liniowo logarytmiczna  $O(n \log n)$

## Quiz - Pytanie 4

# Na czym polega etap podziału w algorytmie szybkiego sortowania ?

- Na znalezieniu najmniejszego elementu w nieposortowanej części tablicy i zamianie go z pierwszym elementem tej części.
- Na podzieleniu tablicy na dwie równe części i sortowaniu każdej części osobno.
- Na rekursywnym łączeniu mniejszych posortowanych fragmentów w jeden większy posortowany fragment.
- Na zamianie miejscami elementów, tak aby wszystkie elementy mniejsze od wybranego elementu (pivot) znalazły się po jego lewej stronie, a większe po prawej stronie.

## Quiz - Odpowiedź 4

# Na czym polega etap podziału w algorytmie szybkiego sortowania ?

- Na znalezieniu najmniejszego elementu w nieposortowanej części tablicy i zamianie go z pierwszym elementem tej części.
- Na podzieleniu tablicy na dwie równe części i sortowaniu każdej części osobno.
- Na rekursywnym łączeniu mniejszych posortowanych fragmentów w jeden większy posortowany fragment.
- Na zamianie miejscami elementów, tak aby wszystkie elementy mniejsze od wybranego elementu (pivot) znalazły się po jego lewej stronie, a większe po prawej stronie.

## Quiz - Pytanie 5

Zakładając, że podczas rozwiązywania zagadki Wież Hanoi przenoszenie krążka zajmuje 1s, to po jakim czasie zagadka zostanie rozwiązana, kiedy do dyspozycji mamy 10 krążków?

- W następnym stuleciu.
- Po 10 sekundach.
- Po około 17 minutach.
- Po 2047 sekundach.

## Quiz - Odpowiedź 5

Zakładając, że podczas rozwiązywania zagadki Wież Hanoi przenoszenie krążka zajmuje 1s, to po jakim czasie zagadka zostanie rozwiązana, kiedy do dyspozycji mamy 10 krążków?

- W następnym stuleciu.
- Po 10 sekundach.
- Po około 17 minutach.
- Po 2047 sekundach.

## Bibliografia

- Wykłady z przedmiotu Koncepcje Języków Programowania,
- Wprowadzenie do algorytmów, PWN,
- Codenga: Co to jest rekurencja?,
- Korepetycje z informatyki: Ciąg Fibonacciego,
- Memoizacja, czyli optymalizacja na szybko,
- YouTube: Algorytmy Quicksort Sortowanie szybkie,
- Algorytmy Sortujące Sortowanie szybkie,
- Wieże Hanoi