PC 3242 Part II

Topic	Text Book (Zhen Cui '05)	<u>Lectures</u>
Optical lithography	Chapter 2	1, 2 & 3
Electron Beam Lithography	Chapter 3	4 & 5
Focused Ion Beam Technology Low Energetic Ions (keV) SIMS FIB in Lithography	Chapter 4 Extra material provided Chapter 4	6, 7 & 8
High Energetic Ions (MeV) RBS Light ions in lithography	Extra material provided Extra material provided Extra material provided	8 9 10
Etching	Chapter 7	10,11
Nano Imprint Lithography	Chapter 6	12
3DP Three Dimensional Printing	Extra material provided	13

JA van Kan 2024

Solid state non-moving parts accelerator

MeV lons Primary particle interaction with material

- Microprobes using MeV ion beams are difficult to focus because of the high ion mass
- However, once the beam is focused, it is this same property which prevents beam "blow-up", unlike focused keV electrons in a SFM
- Microprobes are very good at analyzing "thick" layers with high resolution

2 MeV protons: Well defined path + Dose homogeneity

fabricated 3D PBW nanostructure demonstrating rigidity of the focused MeV proton beam

Light / Electron / Proton Lithography

Photoresists can be <u>exposed</u> by: <u>Light (EM Waves)</u>, <u>Electrons</u> and <u>Protons (ions)</u>

The main difference:

- <u>Photons:</u> are absorbed, <u>depositing all their energy</u> at once, resolution limited by wavelength
- Electrons: gradual & full energy deposition + scattering within the photoresist
- MeV Protons: gradual energy deposition (δ -rays) + straight path through the photoresist (X-ray emission has smaller cross section and RBS even smaller)

For both lons and Electrons if we use higher energy the required dose goes up (ie Resist becomes less sensitive); They go too fast less efficient electron excitation

Many transitions are excited by electron and proton beams. The dissociation energy for a C-C bond is 3.6 eV. <u>Secondary electrons</u> generated by primary ionizing radiation (electron/protons) have energies sufficient to <u>dissociate this bond</u>, causing scission.

Exposure

Chamber

MeV Proton Lithography

P-beam writing set-up

CIBA Prototype PBW Exposure Chamber: Sub 100 nm system! New system can reach sub 10 nm spot size!

Electrostatic scan

22.5° mirror with microscope for viewing and light detection

Demagnification 228 x 60

• Exfo-Burleigh inchworm stage 1" travel in X, Y or Z, 20nm closed loop.

1 MHz scanner,

• 2 MHz blanker

Focused Proton beam

Focusing lenses Magnetic scan

Diagnostics

Rutherford back scattering Electron detector Pin Diode Detecting Particles

SSL

SEI

10.0kV

X5,000

WD 7.0mm

Using SRIM you can calculate the side wall angle θ (~ 0.2°) of this Ni grid assume we have spin coated 2 μ m thick resist.

STIM map and line scan of Ni grid

Sub 10 nm resolution in X

STIM image over edge in the new Ni grid 1 MeV protons 23,000 p/s

MeV Proton Lithography Process steps

Magnetic scanning

Electrostatic scanning

Crosslink

Insoluble for

developer

Chain scission Neg. resist Positive resist

Remove

exposed resist

SU-8 mold for plating

Ni structure

Strip SU-8 or PMMA To form a metal stamp

Beam blanking

No Blanking

Proton Beam Writing

In both proton beam writing and electron beam writing, the primary particles produce secondary electrons, and it is the secondary and induced δ -rays electrons that contribute to developing the resist material this is very important in p-beam writing

Any calculations into how small we can fabricate a structure in resist material should therefore also consider the production of secondary electrons

Also in optical lithography the breaking of bonds through photons is in the same energy range: E=hf Take $\lambda = 300 \text{ nm}$, \rightarrow E = 6.6x10⁻¹⁹ J = 4.1 eV

Energy deposition

SRIM (Stopping and Range of Ions in Matter) www.srim.org

δ-ray is another word for secondary electron

Waligorski, M. P. R.; Hamm, R. N.; Katz, R. *Nucl. Tracks Radiat. Meas.* **1986**, *11*, 309.

Comparing P-beam writing and E-beam writing

Red-primary protons: Blue-Primary electrons: Green-secondary electrons

Energy deposition in 2 μm PMMA

P-Beam ↔ E-Beam Writing

100,000 20 keV Electrons

Calculations using the Hansen - Kocbach — Stolterfoht (HKS) model show that the proton induced secondary electrons have low energies and therefore short range (ie minimal proximity effects):

In proton beam writing the energy deposition (and therefore the resist exposure) is contained within a 10nm radius in the first 2 microns of the proton path.

P-beam writing is potentially superior compared to E-beam writing!

A Monte Carlo study of the extent of proximity effects in e-beam and p-beam writing of PMMA CNB Udalagama, AA Bettiol and F Watt, Nucl. Instr. and Meth **B260**, 384-389 (2007).

Characteristics of MeV proton beams

A proton beam penetrates 'deep' into the sample (eg a 2 MeV proton beam will travel around 60µm into PMMA).

- a) A proton beam will maintain a **straight path** (at least until the end of range, when it broadens).
- b) The <u>range of the proton beam depends on its energy</u>, therefore by changing the energy, multi-level structures can be fabricated.
- c) The <u>energy deposition</u> (exposure) as the proton beam passes into the material is <u>almost</u> <u>constant with depth</u> (apart from an increase at the end of range). You can confirm this using SRIM.
- d) The <u>proximity effects</u> (unwanted exposure due to secondary electrons) are <u>minimal</u>.

PBW High aspect ratio nanostructures

PMMA 50 nm wide lines

2003

Three-dimensional nanolithography using proton beam writing J.A. van Kan, A.A. Bettiol, and F. Watt Appl. Phys. Lett., **83** (2003) 1629

2006

Proton Beam Writing of Three-Dimensional Nanostructures in HSQ J.A. van Kan, A.A. Bettiol, and F. Watt Nano Letters Vol 6 (2006) 579-582

High aspect ratio Ni nanowires

Aspect ratio:

Height/width of a structure

Au nano pillars H = 700 nmGaps 35 nm

Summary

- Small lateral straggling: vertical walls
- Virtually no proximity effects: High density
- Different ion energies: multi-layered structures

Multi level 3D structures fabricated in a single layer of SU-8 resist using 0.5 & 2 MeV protons

- 3D nano capability with high aspect ratio structures > 160
- One limitation is the low brightness of the proton source
 - I am now working on developing a high brightness ion source!

No Proximity effects!

<u>Proton beam writing</u>: Great potential for 3D nano fabrication down to the 10 nm and below <u>& Imaging of IC circuits via</u> induced current.

No commercial machine yet:

Singapore has great opportunity with NUS Patent

Etching

Reproduced from Twente university

2D nanobeams/nanostencil

Etching

Etching is the selective removal of deposited films.

- ✓ KOH to etch Si
- ✓ HF dip etch native oxide but not Si

More often: through a mask to leave a patterned film:

