

Focused Tutorial on Quantum Computing

TBD

Korbinian Staudacher Xiao-Ting Michelle To

staudacher@nm.ifi.lmu.de to@nm.ifi.lmu.de

MNM-Team, Ludwig-Maximilians-Universität München

MNM-Team

What is Quantum Computing?

Exploiting quantum mechanical effects for computations

What is Quantum Computing?

- Exploiting quantum mechanical effects for computations
 - Superposition

What is Quantum Computing?

- Exploiting quantum mechanical effects for computations
 - Superposition
 - Interference

What is Quantum Computing?

- Exploiting quantum mechanical effects for computations
 - Superposition
 - Interference
- Optimal hardware yet to be determined

Why do we need Quantum Computing?

Speed up classical computation

- Speed up classical computation
 - Prime factorization

- Speed up classical computation
 - Prime factorization
 - Optimization/ Search algorithms

- Speed up classical computation
 - Prime factorization
 - Optimization/ Search algorithms
 - Simulation of quantum systems

- Speed up classical computation
 - Prime factorization
 - Optimization/ Search algorithms
 - Simulation of quantum systems
- Cryptography

- Speed up classical computation
 - Prime factorization
 - Optimization/ Search algorithms
 - Simulation of quantum systems
- Cryptography
 - Bug-proof communication

- Speed up classical computation
 - Prime factorization
 - Optimization/ Search algorithms
 - Simulation of quantum systems
- Cryptography
 - Bug-proof communication
 - True randomness

Outlook of today's tutorial

- First part: Introduction to mathematics of QC
 - Qubit states
 - State manipulation via unitary matrices
 - Quantum circuits
- Second part (after LRZ site visit): Classication with quantum computing
 - Quantum programming in PennyLane framework
 - Variational quantum circuits
 - Binary classification

Overview

Classical vs. Quantum Computing

	Classical Computing	Quantum Computing
Basic States	Either 0 or 1	Superposition of 0 and 1
Operations	Logic (boolean) gates	Unitary reversible gates
Copying States	Yes	No
Readout	No information loss	Superposition is destroyed; information loss

Qubit States I

■ State: Qubit – 0, 1 or a *superposition* of 0 and 1

Qubit States I

- State: Qubit 0, 1 or a superposition of 0 and 1
- Represented by a two-dimensional *normalized* vector:

$$|\psi\rangle = \begin{pmatrix} \alpha \\ \beta \end{pmatrix} = \alpha \cdot \begin{pmatrix} 1 \\ 0 \end{pmatrix} + \beta \cdot \begin{pmatrix} 0 \\ 1 \end{pmatrix} \qquad \alpha, \beta \in \mathbb{C}$$

where

$$|\alpha|^2 + |\beta|^2 = 1$$

Qubit States II

• Instead of vectors, a qubit state can also be written in the *Dirac Notation*:

$$|0\rangle = \begin{pmatrix} 1 \\ 0 \end{pmatrix} \qquad |1\rangle = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

Qubit States II

• Instead of vectors, a qubit state can also be written in the *Dirac Notation*:

$$|0\rangle = \begin{pmatrix} 1 \\ 0 \end{pmatrix} \qquad |1\rangle = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

Then we can write

$$|\psi\rangle = \alpha |0\rangle + \beta |1\rangle \qquad \alpha, \beta \in \mathbb{C}$$

instead of

$$|\psi\rangle = \begin{pmatrix} \alpha \\ \beta \end{pmatrix} = \alpha \cdot \begin{pmatrix} 1 \\ 0 \end{pmatrix} + \beta \cdot \begin{pmatrix} 0 \\ 1 \end{pmatrix} \qquad \alpha, \beta \in \mathbb{C}$$

Qubit States III

• In some cases, we have to consider qubit states as row vectors:

$$\langle 0| = \begin{pmatrix} 1 & 0 \end{pmatrix}$$
 $\langle 1| = \begin{pmatrix} 0 & 1 \end{pmatrix}$

Qubit States III

• In some cases, we have to consider qubit states as row vectors:

$$\langle 0| = \begin{pmatrix} 1 & 0 \end{pmatrix}$$
 $\langle 1| = \begin{pmatrix} 0 & 1 \end{pmatrix}$

In the Matrix Notation, we write is as

$$\langle \psi | = (\alpha^* \ \beta^*) = \alpha^* \cdot (1 \ 0) + \beta^* \cdot (0 \ 1) \qquad \alpha, \beta \in \mathbb{C}$$

Qubit States III

• In some cases, we have to consider qubit states as row vectors:

$$\langle 0| = \begin{pmatrix} 1 & 0 \end{pmatrix} \qquad \langle 1| = \begin{pmatrix} 0 & 1 \end{pmatrix}$$

In the Matrix Notation, we write is as

$$\langle \psi | = (\alpha^* \ \beta^*) = \alpha^* \cdot (1 \ 0) + \beta^* \cdot (0 \ 1) \qquad \alpha, \beta \in \mathbb{C}$$

In the Dirac Notation, we write it as

$$\langle \psi | = \alpha^* \langle 0 | + \beta^* \langle 1 | \qquad \alpha, \beta \in \mathbb{C}$$

Bloch Sphere

We can interpret a single qubit vector as a point on a three dimensional plane:

$$|\psi
angle = \cos\left(rac{ heta}{2}
ight)|0
angle + \sin\left(rac{ heta}{2}
ight)e^{i\phi}|1
angle$$

Unitary Operations

- Quantum operations represented by quantum gates
- The length of the state vector must remain $|\alpha|^2 + |\beta|^2 = 1$
- \rightarrow Requires unitary matrix operations on the state vector.

$$\begin{pmatrix} u_{00} & u_{10} \\ u_{01} & u_{11} \end{pmatrix} \cdot \begin{pmatrix} \alpha \\ \beta \end{pmatrix} = \begin{pmatrix} u_{00} \cdot \alpha + u_{10} \cdot \beta \\ u_{01} \cdot \alpha + u_{11} \cdot \beta \end{pmatrix}$$

• We can represent operations on qubits in the quantum circuit model:

$$|\psi\rangle$$
 — U — $|\psi'\rangle$

Single Qubit Gates I

Pauli matrices:

$$X = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \qquad X = X$$

Single Qubit Gates I

Pauli matrices:

$$X = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \qquad X = X$$

$$Y = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix} \qquad Y$$

Single Qubit Gates I

Pauli matrices:

$$X = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \quad - X - X - X$$

$$Y = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix} \quad \boxed{Y}$$

$$Z = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \quad Z$$

Arbitrary Rotations

 $R_{?}(\theta)\text{-Gate}$: Rotation by θ around the X/Y/Z axis (?: X, Y, or Z)

$$R_{x}(\theta) = \begin{pmatrix} \cos(\frac{\theta}{2}) & -i\sin(\frac{\theta}{2}) \\ -i\sin(\frac{\theta}{2}) & \cos(\frac{\theta}{2}) \end{pmatrix} - R_{x}(\theta)$$

Arbitrary Rotations

 $R_{?}(\theta)$ -Gate: Rotation by θ around the X/Y/Z axis (?: X, Y, or Z)

$$R_{x}(\theta) = \begin{pmatrix} \cos(\frac{\theta}{2}) & -i\sin(\frac{\theta}{2}) \\ -i\sin(\frac{\theta}{2}) & \cos(\frac{\theta}{2}) \end{pmatrix} - R_{x}(\theta) - R_{$$

$$R_y(\theta) = \begin{pmatrix} \cos(\frac{\theta}{2}) & -\sin(\frac{\theta}{2}) \\ \sin(\frac{\theta}{2}) & \cos(\frac{\theta}{2}) \end{pmatrix} - R_y(\theta)$$

Arbitrary Rotations

 $R_{?}(\theta)$ -Gate: Rotation by θ around the X/Y/Z axis (?: X, Y, or Z)

$$R_{x}(\theta) = \begin{pmatrix} \cos(\frac{\theta}{2}) & -i\sin(\frac{\theta}{2}) \\ -i\sin(\frac{\theta}{2}) & \cos(\frac{\theta}{2}) \end{pmatrix} - R_{x}(\theta) - R_{$$

$$R_y(\theta) = \begin{pmatrix} \cos(\frac{\theta}{2}) & -\sin(\frac{\theta}{2}) \\ \sin(\frac{\theta}{2}) & \cos(\frac{\theta}{2}) \end{pmatrix} - R_y(\theta) - R_y(\theta)$$

$$R_z(\theta) = \begin{pmatrix} e^{-i\frac{\theta}{2}} & 0 \\ 0 & e^{i\frac{\theta}{2}} \end{pmatrix} - R_z(\theta) - R_z(\theta)$$

Measurement I

Given the qubit in the state $|\psi\rangle=\alpha\,|0\rangle+\beta\,|1\rangle$ is measured. Then...

... the probability of measuring $|0\rangle$ is $|\alpha|^2$

... the probability of measuring $|1\rangle$ is $|\beta|^2$

Probability of measuring $|0\rangle$ for state $|\psi\rangle = H|0\rangle = \frac{1}{\sqrt{2}}|0\rangle + \frac{1}{\sqrt{2}}|1\rangle$:

$$P(|0\rangle) = \left|\frac{1}{\sqrt{2}}\right|^2 = \frac{1}{2}$$

Measurement II

- We cannot read the state of a qubit, we can only measure the qubit
- With a measurement on a qubit, its state collapses to one of the basis states
- The original quantum state cannot be restored anymore
- ightarrow We have to measure multiple times to approximate the original quantum state

Multi-Qubit States

Quantum Registers

• Multiple qubits can be combined to a *quantum register* by calculating their tensorproduct:

$$\begin{pmatrix} \alpha_{n-1} \\ \beta_{n-1} \end{pmatrix} \otimes \begin{pmatrix} \alpha_{n-2} \\ \beta_{n-2} \end{pmatrix} \otimes \cdots \otimes \begin{pmatrix} \alpha_0 \\ \beta_0 \end{pmatrix}$$

Multi-Qubit States

Quantum Registers

 Multiple qubits can be combined to a *quantum register* by calculating their tensorproduct:

$$\begin{pmatrix} \alpha_{n-1} \\ \beta_{n-1} \end{pmatrix} \otimes \begin{pmatrix} \alpha_{n-2} \\ \beta_{n-2} \end{pmatrix} \otimes \cdots \otimes \begin{pmatrix} \alpha_0 \\ \beta_0 \end{pmatrix}$$

• Quantum operations on quantum registers are represented by the tensorproduct of the corresponding matrices (dimension: $2^n \times 2^n$)

Multi-Qubit States

Two Qubit Register

$$|\psi
angle = \mathit{a}_{00}\,|00
angle + \mathit{a}_{01}\,|01
angle + \mathit{a}_{10}\,|10
angle + \mathit{a}_{11}\,|11
angle$$

$$|00
angle = egin{pmatrix} 1 \ 0 \ 0 \ 0 \end{pmatrix}, \ |01
angle = egin{pmatrix} 0 \ 1 \ 0 \ 0 \end{pmatrix}, \ |10
angle = egin{pmatrix} 0 \ 0 \ 1 \ 0 \end{pmatrix}, \ |11
angle = egin{pmatrix} 0 \ 0 \ 0 \ 1 \end{pmatrix}$$

Multi-Qubit Operations

Multi-Qubit Gates

We can also apply gates on multiple qubits:

$$|x_1x_0\rangle$$
 $\left\{ \begin{vmatrix} |x_1\rangle - - - |x_1'\rangle \\ |x_0\rangle - - |x_0'\rangle \end{vmatrix} |x_1'x_0'\rangle$

Multi-Qubit Gates

We can also apply gates on multiple qubits:

$$|x_1x_0\rangle \left\{ \begin{vmatrix} |x_1\rangle - - - |x_1'\rangle \\ |x_0\rangle - - - |x_0'\rangle \end{vmatrix} |x_1'x_0'\rangle \right\}$$

For instance, we can combine the existing single qubit gates using the tensor product:

$$X \otimes X =$$

Controlled Qubit Operations

lacktriangle An operation on a qubit may depend on the state of another qubit ightarrow Any single-qubit gate can have a "controlled version"

$$CU = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & u_{00} & u_{10} \\ 0 & 0 & u_{01} & u_{11} \end{pmatrix} \qquad \boxed{U}$$

Controlled Qubit Operations

- An operation on a qubit may depend on the state of another qubit → Any single-qubit gate can have a "controlled version"
- Most common: CX/CNOT and CCX/CCNOT/Toffoli Gate

$$CX = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{pmatrix} \qquad CCX = \begin{pmatrix} & & & 0 & 0 \\ & \mathbb{I}_6 & & \vdots & \vdots \\ & & & 0 & 0 \\ 0 & \cdots & 0 & 0 & 1 \\ 0 & \cdots & 0 & 1 & 0 \end{pmatrix}$$

The SWAP Operation

■ The SWAP operation "swaps" the states of two qubits:

$$\mathsf{SWAP} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \quad \begin{vmatrix} a \rangle & \xrightarrow{} & |b \rangle \\ |b \rangle & \xrightarrow{} & |a \rangle$$

The SWAP Operation

■ The SWAP operation "swaps" the states of two qubits:

SWAP =
$$\begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \quad \begin{vmatrix} a \rangle & \xrightarrow{} & |b \rangle \\ |b \rangle & \xrightarrow{} & |a \rangle$$

It can be implemented with three CNOT gates:

$$\begin{vmatrix} a \rangle & \bullet & b \end{vmatrix}$$

Entanglement I

By applying a controlled gate (e.g., CNOT) on qubits in superposition we can create entanglement: e.g., $|q_1q_0\rangle=|00\rangle$:

$$|\psi_0\rangle$$
 $|\psi_1\rangle$ $|\psi_2\rangle$ $|q_1\rangle$ $|q_0\rangle$

$$|\psi_2
angle=rac{1}{\sqrt{2}}egin{pmatrix}1\0\0\1\end{pmatrix}=rac{1}{\sqrt{2}}(|00
angle+|11
angle)$$

 \Rightarrow We either measure both qubits in $|0\rangle$ or in $|1\rangle$.

Entanglement II

Definition

Qubits are *entangled* with each other iff the qubit state cannot be represented as a tensor product of single qubit states.

e.g.,
$$\frac{1}{\sqrt{2}}\begin{pmatrix}1\\0\\0\\1\end{pmatrix}=\frac{1}{\sqrt{2}}(\ket{00}+\ket{11})$$

No-Cloning Theorem

- Entanglement is **not** equivalent to cloning a qubit state
- It is not possible to clone or copy an arbitrary qubit state
- With entanglement, it is possible to teleport an arbitrary state from one qubit to another

Teleportation

Observables

• Hermitian operators that describe quantum-physical characteristics of a system

Observables

- Hermitian operators that describe quantum-physical characteristics of a system
- With an observable O, the expectation value of a measurement on qubit $|\psi\rangle$ can be determined:

$$\langle \psi | O | \psi \rangle$$

Observables

- Hermitian operators that describe quantum-physical characteristics of a system
- With an observable O, the expectation value of a measurement on qubit $|\psi\rangle$ can be determined:

$$\langle \psi | O | \psi \rangle$$

 The expectation value is calculated with respect to the eigenvalues of the observable, not the measurement bases

Pauli-Z Matrix as Observable

• Z matrix:
$$Z = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$

- The expectation value can be calculated with $\langle \psi | \, Z \, | \psi \rangle$
- Examples:

1.
$$\langle 0 | Z | 0 \rangle =$$

2.
$$\langle 1 | Z | 1 \rangle =$$

3.
$$\frac{1}{\sqrt{2}}(\langle 0|+\langle 1|)\cdot Z\cdot \frac{1}{\sqrt{2}}(|0\rangle+|1\rangle)=$$

• Current quantum computers are still very noisy

- Current quantum computers are still very noisy
- Error correction and mitigation methods are necessary

- Current quantum computers are still very noisy
- Error correction and mitigation methods are necessary
- There are not that many qubits at the moment (IBM: around 400 qubits)

- Current quantum computers are still very noisy
- Error correction and mitigation methods are necessary
- There are not that many qubits at the moment (IBM: around 400 qubits)
- Quantum algorithms like Grover's or Shor's algorithm assume ideal quantum computers with error corrected qubits

- Current quantum computers are still very noisy
- Error correction and mitigation methods are necessary
- There are not that many qubits at the moment (IBM: around 400 qubits)
- Quantum algorithms like Grover's or Shor's algorithm assume ideal quantum computers with error corrected qubits
- Near-term goal: design quantum circuits/algorithms that...

- Current quantum computers are still very noisy
- Error correction and mitigation methods are necessary
- There are not that many qubits at the moment (IBM: around 400 qubits)
- Quantum algorithms like Grover's or Shor's algorithm assume ideal quantum computers with error corrected qubits
- Near-term goal: design quantum circuits/algorithms that...
 - ... can adapt to noise

- Current quantum computers are still very noisy
- Error correction and mitigation methods are necessary
- There are not that many qubits at the moment (IBM: around 400 qubits)
- Quantum algorithms like Grover's or Shor's algorithm assume ideal quantum computers with error corrected qubits
- Near-term goal: design quantum circuits/algorithms that...
 - ... can adapt to noise
 - ... do not use many qubits and/or gates

- Current quantum computers are still very noisy
- Error correction and mitigation methods are necessary
- There are not that many qubits at the moment (IBM: around 400 qubits)
- Quantum algorithms like Grover's or Shor's algorithm assume ideal quantum computers with error corrected qubits
- Near-term goal: design quantum circuits/algorithms that...
 - ... can adapt to noise
 - ... do not use many qubits and/or gates
- Near-term quantum algorithms: Variational Quantum Algorithms (VQAs)

Swap Test I

Means to measure the distance d of two quantum states $|\phi\rangle$ and $|\psi\rangle$ $d=|\langle\psi|\phi\rangle|^2$ (angle² between $|\psi\rangle$ and $|\phi\rangle$)

Swap Test II

- At the end of the circuit the probability of measuring $|0\rangle$ is the following

$$P(\text{``Measure }|0\rangle\,\text{''}) = \frac{1}{2} + \frac{1}{2}|\langle\psi|\phi\rangle|^2$$

Swap Test II

 \bullet At the end of the circuit the probability of measuring $|0\rangle$ is the following

$$P(\text{"Measure } |0\rangle \text{"}) = \frac{1}{2} + \frac{1}{2} |\langle \psi | \phi \rangle|^2$$

- If $|\psi\rangle$ and $|\phi\rangle$ are orthogonal ($|\langle\psi|\phi\rangle|^2=0$), then $P(\text{``Measure }|0\rangle\text{''})=\frac{1}{2}$
- If $|\psi\rangle$ and $|\phi\rangle$ are equal ($|\langle\psi|\phi\rangle|^2=1$), then $P(\text{``Measure }|0\rangle\text{''})=1$

Swap Test II

- At the end of the circuit the probability of measuring $|0\rangle$ is the following

$$P(\text{"Measure } |0\rangle \text{"}) = \frac{1}{2} + \frac{1}{2} |\langle \psi | \phi \rangle|^2$$

- If $|\psi\rangle$ and $|\phi\rangle$ are orthogonal ($|\langle\psi|\phi\rangle|^2=0$), then $P(\text{``Measure }|0\rangle\text{''})=\frac{1}{2}$
- If $|\psi\rangle$ and $|\phi\rangle$ are equal ($|\langle\psi|\phi\rangle|^2=1$), then $P(\text{``Measure }|0\rangle\text{''})=1$
- Then $d = |\langle \psi | \phi \rangle|^2 = 2P(\text{``Measure } |0\rangle \text{''}) 1$

Swap Test II

- At the end of the circuit the probability of measuring $|0\rangle$ is the following

$$P(\text{"Measure } |0\rangle \text{"}) = \frac{1}{2} + \frac{1}{2} |\langle \psi | \phi \rangle|^2$$

- If $|\psi\rangle$ and $|\phi\rangle$ are orthogonal ($|\langle\psi|\phi\rangle|^2=0$), then $P(\text{``Measure }|0\rangle\text{''})=\frac{1}{2}$
- If $|\psi\rangle$ and $|\phi\rangle$ are equal ($|\langle\psi|\phi\rangle|^2=1$), then $P(\text{``Measure }|0\rangle\text{''})=1$
- Then $d = |\langle \psi | \phi \rangle|^2 = 2P(\text{``Measure } |0\rangle \text{''}) 1$
- With multiple repetitions of the SWAP test, the distance d can be approximated with any precision

Overview

C: Classical, Q: Quantum

Overview

Overview - Classical Machine Learning

data generating system

C: Classical, Q: Quantum

1. Input

- Training data X_{train}
- Initial parameter vector θ

Overview - Classical Machine Learning

data generating system

C: Classical, Q: Quantum

- 1. Input
 - Training data X_{train}
 - Initial parameter vector θ
- 2. Model: $f(X_{train}, \theta) = \hat{y}$

Overview - Classical Machine Learning

data generating system

C: Classical, Q: Quantum

- 1. Input
 - Training data X_{train}
 - Initial parameter vector heta
- 2. Model: $f(X_{\text{train}}, \theta) = \hat{y}$
- 3. Prediction: Score with cost function $C(\hat{y}, y)$

Overview - Classical Machine Learning

data generating system

C: Classical, Q: Quantum

- 1. Input
 - Training data X_{train}
 - Initial parameter vector heta
- 2. Model: $f(X_{\text{train}}, \theta) = \hat{y}$
- 3. Prediction: Score with cost function $C(\hat{y}, y)$
- 4. Update $\boldsymbol{\theta}$ based on gradient-based techniques

Overview - Classical Machine Learning

data generating system

C: Classical, Q: Quantum

- 1. Input
 - Training data X_{train}
 - Initial parameter vector heta
- 2. Model: $f(X_{\text{train}}, \theta) = \hat{y}$
- 3. Prediction: Score with cost function $C(\hat{y}, y)$
- 4. Update θ based on gradient-based techniques
- 5. Repeat starting from step 2

Overview - Classical Machine Learning

data generating system

C: Classical, Q: Quantum

- 1. Input
 - Training data X_{train}
 - Initial parameter vector heta
- 2. Model: $f(X_{\text{train}}, \theta) = \hat{y}$
- 3. Prediction: Score with cost function $C(\hat{y}, y)$
- 4. Update θ based on gradient-based techniques
- 5. Repeat starting from step 2

Classical Machine Learning → **Quantum Machine Learning**

- The calculation of the model (step 2) can also be done on a quantum computer
- For this, a variational quantum approach is used

$$|\psi\rangle$$
 — $U(\theta)$ — \angle

Quantum Machine Learning

Variational Quantum Algorithms

• "Standard" quantum circuit:

Variational quantum circuit:

- Operations in a variational quantum circuit are parameterized
- The optimal parameter value(s) depend(s) on the specific application
- ightarrow Goal: optimize the parameter value(s) for the application

Variational Quantum Classification

Steps

Input: Training data (already labelled data samples)

Task: Predict the labels for new data

- 1. Encode the classical data into a quantum state
- 2. Encode the model into a parameterized quantum circuit
- 3. Measure the circuit to determine the labels
- 4. Use (classical) optimization techniques to update the parameters of the quantum circuit

Variational Quantum Classification

Quantum Circuit

Basis Encoding

Encode data in computational basis states.

- Encode data in computational basis states.
- E.g. encode the number N = 3 in 2-qubit state:

- Encode data in computational basis states.
- E.g. encode the number N = 3 in 2-qubit state:
 - \bullet Possible basis states for 2 qubits: $\left|00\right\rangle,\left|01\right\rangle,\left|10\right\rangle,\left|11\right\rangle.$

- Encode data in computational basis states.
- E.g. encode the number N = 3 in 2-qubit state:
 - Possible basis states for 2 qubits: $|00\rangle$, $|01\rangle$, $|10\rangle$, $|11\rangle$.
 - $\qquad \qquad \textbf{Encode 3 as } |\psi\rangle = |11\rangle.$

- Encode data in computational basis states.
- E.g. encode the number N = 3 in 2-qubit state:
 - Possible basis states for 2 qubits: $|00\rangle$, $|01\rangle$, $|10\rangle$, $|11\rangle$.
 - Encode 3 as $|\psi\rangle=|11\rangle$.
- Similar to classical computing.

Amplitude Encoding

• Encode data in 2ⁿ amplitudes of n-qubit state

Amplitude Encoding

- Encode data in 2ⁿ amplitudes of n-qubit state
- \blacksquare E.g. encode feature vector (1.2,0.6,-2,1.5) into 2-qubit state

Amplitude Encoding

- Encode data in 2ⁿ amplitudes of n-qubit state
- E.g. encode feature vector (1.2, 0.6, -2, 1.5) into 2-qubit state
 - Normalization to valid state vector: \sim (0.423, 0.211, -0.705, 0.529)

Amplitude Encoding

- Encode data in 2ⁿ amplitudes of n-qubit state
- E.g. encode feature vector (1.2, 0.6, -2, 1.5) into 2-qubit state
 - Normalization to valid state vector: $\sim (0.423, 0.211, -0.705, 0.529)$
 - Encode feature vector as $|\psi\rangle=0.423\,|00\rangle+0.211\,|01\rangle-0.705\,|10\rangle+0.529\,|11\rangle$

Angle Encoding

• Encode data in X, Y, Z rotation angles of n-qubits.

Angle Encoding

- Encode data in *X*, *Y*, *Z* rotation angles of n-qubits.
- \bullet Data needs to be normalized in interval $[0,2\pi]$

Angle Encoding

- Encode data in *X*, *Y*, *Z* rotation angles of n-qubits.
- Data needs to be normalized in interval $[0, 2\pi]$
- E.g., encode feature vector (1.2, 0.6, -2, 1.5) into the X rotations of 4-qubit state:

Angle Encoding

- Encode data in X, Y, Z rotation angles of n-qubits.
- Data needs to be normalized in interval $[0, 2\pi]$
- E.g., encode feature vector (1.2, 0.6, -2, 1.5) into the X rotations of 4-qubit state:

■ Parameterized model containing (repeated) layers of rotation and entanglement gates (e.g. $R_y + CNOT$)

- Parameterized model containing (repeated) layers of rotation and entanglement gates (e.g. $R_y + CNOT$)
- Map data to higher-dimensional feature space

- Parameterized model containing (repeated) layers of rotation and entanglement gates (e.g. $R_y + CNOT$)
- Map data to higher-dimensional feature space
- Common layer structures:

- Parameterized model containing (repeated) layers of rotation and entanglement gates (e.g. $R_y + CNOT$)
- Map data to higher-dimensional feature space
- Common layer structures:

Classification

• Repeated measurements yield expectation value of **Pauli Z operator** in [-1,1].

Classification

- lacktriangledown Repeated measurements yield expectation value of **Pauli Z operator** in [-1,1].
- Extract labels from **expectation value**.

Classification

- lacktriangledown Repeated measurements yield expectation value of **Pauli Z operator** in [-1,1].
- Extract labels from expectation value.
- E.g., for binary classification we could take the sign function as classification function.

Summary: Variational Quantum Classification

Optimal data encoding and variational model is still an open question.

Summary: Variational Quantum Classification

- Optimal data encoding and variational model is still an open question.
- Variational quantum classifiers are kernel methods with measurement as linear classifier.

Summary: Variational Quantum Classification

- Optimal data encoding and variational model is still an open question.
- Variational quantum classifiers are kernel methods with measurement as linear classifier.
- Quantum advantage may be mainly in more diverse data encoding.

 Scientists and big companies, like IBM, Intel, and Google, are already working on quantum computing and building quantum computers

- Scientists and big companies, like IBM, Intel, and Google, are already working on quantum computing and building quantum computers
- Quantum projects in Munich: Munich Quantum Valley, MuniQC Atoms/SC

- Scientists and big companies, like IBM, Intel, and Google, are already working on quantum computing and building quantum computers
- Quantum projects in Munich: Munich Quantum Valley, MuniQC Atoms/SC
- Quantum computer with the most qubits (2023): IBM Osprey (433 qubits)

- Scientists and big companies, like IBM, Intel, and Google, are already working on quantum computing and building quantum computers
- Quantum projects in Munich: Munich Quantum Valley, MuniQC Atoms/SC
- Quantum computer with the most qubits (2023): IBM Osprey (433 qubits)
- Other approaches: measurement-based quantum computing (MBQC), quantum annealing

- Scientists and big companies, like IBM, Intel, and Google, are already working on quantum computing and building quantum computers
- Quantum projects in Munich: Munich Quantum Valley, MuniQC Atoms/SC
- Quantum computer with the most qubits (2023): IBM Osprey (433 qubits)
- Other approaches: measurement-based quantum computing (MBQC), quantum annealing
- Other variational algorithms: quantum approximate optimization algorithm (QAOA), variational quantum eigensolver (VQE), quantum random walks (QRW)

- Scientists and big companies, like IBM, Intel, and Google, are already working on quantum computing and building quantum computers
- Quantum projects in Munich: Munich Quantum Valley, MuniQC Atoms/SC
- Quantum computer with the most qubits (2023): IBM Osprey (433 qubits)
- Other approaches: measurement-based quantum computing (MBQC), quantum annealing
- Other variational algorithms: quantum approximate optimization algorithm (QAOA), variational quantum eigensolver (VQE), quantum random walks (QRW)
- Other algorithms: Grover's algorithm, Shor's algorithm

References I