

Após a construção da topologia, é necessário a configuração dos roteadores.

1º Configurar endereço das interfaces

A configuração das interfaces dos roteadores foi realizada com base nos comandos da imagem abaixo:

```
RZ#Config t
Enter configuration commands, one per line. End with CNTL/Z.

R2(config)#int lo0

R2(config-if)#ip addr
PDE 4 17:53:97.071: %LINEPROTO-5-UPDOWN: Line protocol on Interface Loopback0, changed state to up

R2(config-if)#ip addr 2.2.2.2 255.255.255

R2(config-if)#no shut

R2(config-if)#ip addr 10.0.2.2 255.255.255.0

R2(config-if)#ip addr 10.0.2.2 255.255.255.0

R2(config-if)#exit

R2(config-if)#exit

R2(config-if)#exit

R2(config-if)#ip addr 10.0.2.2 255.255.255.0

*Dec 4 17:54:44.623: %LINK-3-UPDOWN: Interface FastEthernet0/0, changed state to up
*Dec 4 17:54:45.623: %LINEPROTO-5-UPDOWN: Line protocol on Interface FastEthernet0/0, changed state to up
R2(config-if)#ip addr 192.168.5.2 255.255.0

R2(config-if)#ip addr 192.168.4.2 255.255.255.0

R2(config-if)#ip addr 192.168.4.2 255.255.255.0
```

2º Ativando OSPF nas interfaces

No enunciado da questão é especificado que o núcleo MPLS esta contido na parte vermelha, onde o tipo de IGP é OSPF, como não é apresentado uma área, irei considerar aqui **ÁREA 3**.

 \acute{E} ativado o protocolo OSPF nas interfaces lógicas e físicas contidas dentro da área vermelha e nas áreas 1 e 2 . Os comando utilizados seguem exemplo da imagem abaixo

```
R2#config t
Enter configuration commands, one per line. End with CNTL/Z.
R2(config)#int lo0
R2(config-if)#ip ospf 3 area 3
R2(config-if)#exit
R2(config-if)#exit
R2(config)#int f0/0
R2(config-if)#ip ospf 3 area 3
R2(config-if)#no shut
R2(config-if)#no shut
R2(config-if)#no shut
R2(config-if)#no shut
R2(config-if)#exit
```

Após as ativação do OSPF, podemos verificar que é possível pingar via interface loopback, entre todos os roteadores que estão na Área 3.

```
R4#sh ip route

Codes: C - connected, S - static, R - RIP, M - mobile, B - BGP

D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area

N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2

E1 - OSPF external type 1, E2 - OSPF external type 2

i - IS-IS, su - IS-IS summary, L1 - IS-IS level-1, L2 - IS-IS level-2

ia - IS-IS inter area, * - candidate default, U - per-user static route

o - ODR, P - periodic downloaded static route

Gateway of last resort is not set

1.0.0.0/32 is subnetted, 1 subnets

1.1.1.1 [110/3] via 10.0.3.3, 00:10:40, FastEthernet0/0

2.0.0.0/32 is subnetted, 1 subnets

0 2.2.2.2 [110/3] via 10.0.3.3, 00:10:40, FastEthernet0/0

3.0.0.0/32 is subnetted, 1 subnets

0 3.3.3.3 [110/2] via 10.0.3.3, 00:10:40, FastEthernet0/0

4.0.0.0/32 is subnetted, 1 subnets

0 4.4.4.4 is directly connected, Loopback0

10.0.0.0/24 is subnetted, 3 subnets

0 10.0.3.0 is directly connected, FastEthernet0/0

10.0.3.0 is directly connected, FastEthernet0/0

10.0.1.0 [110/2] via 10.0.3.3, 00:10:40, FastEthernet0/0

10.0.1.0 [110/2] via 10.0.3.3, 00:10:40, FastEthernet0/0

10.1.0 [110/2] via 10.0.3.3, 00:10:40, FastEthernet0/0

10.1.0 [110/2] via 10.0.3.3, 00:10:40, FastEthernet0/0

10.1.0 [110/2] via 10.0.3.3, 00:10:40, FastEthernet0/0
```

2º Configurando MPLS

Agora precisamos de ativar o MPLS nas interfaces do núcleo. Para isso basta acessar o OSPF do roteador e executar o comando *mpls lpd autoconfig*. O processo deve ser feito em todos os roteadores da MPLS

```
R3#config t
Enter configuration commands, one per line. End with CNTL/Z.
R3(config)#router ospf 3
R3(config-router)#mpls ldp aut
R3(config-router)#mpls ldp autoconfig
R3(config-router)#
*Dec 4 19:26:07.287: %LDP-5-NBRCHG: LDP Neighbor 1.1.1.1:0 (1) is UP
R3(config-router)#end
R3#
```

Pode-se visualizar então que as interfaces do roteador esta utilizando MPLS através do comando *sh mpls interfaces*

3º Ativando BGP

Agora é necessário realizar a configuração dos roteadores de bordas, ativando o BGP.

```
RI# config t
Enter configuration commands, one per line. End with CNTL/Z.
R1(config)#router bgp 100
R1(config)#router)#nei
R1(config-router)#neighbor 2.2.2.2 remot
R1(config-router)#neighbor 2.2.2.2 remote-as 100
R1(config-router)#neighbor 4.4.4.4 remote-as 100
R1(config-router)#neighbor 2.2.2.2 upda
R1(config-router)#neighbor 2.2.2.2 update-source lop
R1(config-router)#neighbor 2.2.2.2 update-source lo
R1(config-router)#neighbor 2.2.2.2 update-source loopback 0
R1(config-router)#neighbor 4.4.4.4 UPDA
R1(config-router)#neighbor 4.4.4.4 UPDA
R1(config-router)#neighbor 4.4.4.4 UPDAte-source Loopback 0
R1(config-router)#neighbor 4.4.4.4 UPDAte-source Loopback 0
R1(config-router)#no auto
R1(config-router)#no auto
R1(config-router)#no auto-summary
R1(config-router)#address-family vpn4 uni
R1(config-router)#neighbor 2.2.2.2 activate
R1(config-router-af)#neighbor 4.4.4.4 activate
```

Podemos visualizar se a conexão foi realizada corretamente

```
R1#sh bgp vpnv4 unicast all summary
BGP router identifier 1.1.1.1, local AS number 100
BGP table version is 1, main routing table version 1

Neighbor V AS MsgRcvd MsgSent TblVer InQ OutQ Up/Down State/PfxRcd
2.2.2.2 4 100 12 12 1 0 000:04:51 0
4.4.4.4 4 100 7 9 1 0 00:01:35 0

R1#
```

4º Configurando VRFs

Para configurar as VRFs, primeiro deve-se criar a vrf e depois indicar a interface que conterá a

VRF, conforme a imagem

```
VRF, conforme a imagem

R4(config)#ip vrf c1

R4(config-vrf)#rd 4:4

R4(config-vrf)#route

R4(config-vrf)#route

R4(config-vrf)#route-target both 4:4

R4(config-vrf)#ip vrf for

R4(config-vrf)#ip vrf for

R4(config-if)#ip vrf forwarding c1

% Interface FastEthernet0/1 IP address 192.168.3.4 removed due to enabling VRF c1

R4(config-if)#int f0/1

R4(config-if)#ip add

R4(config-if)#ip address 192.168.3.1 255.255.255.0

R4(config-if)#ip ospf 1 area 1

R4(config-if)#no

*Dec 4 22:16:50.030: %OSPF-5-ADJCHG: Process 1, Nbr 7.7.7.7 on FastEthernet0/1 from LOADING to FULL, Loading Done

R4(config-if)#no shut

R4(config-if)#exi
```

Podemos visualizar agora a configuração presente na interface f0/1 do router R4, observa-se que o VRF esta ativo.

```
R4(config)#do sh run int f0/1
Building configuration...
Current configuration : 136 bytes
ip vrf forwarding cl
ip address 192.168.3.1 255.255.255.0
ip ospf 1 area 1
duplex auto
```

Agora deve-se redisitribuir os VRF para que consiga pingar outra a VRF.

```
Agora deve-se redistribuir os VRF para que consiga pingar de tentra contiguiación commanda, une per interese una vita R1(config)#router bgp 100
R1(config-router)#add
R1(config-router)#address-family ivp4 un
R1(config-router)#address-family ivp4 un
R1(config-router)#address-family ivp4 unic
R1(config-router)#address-family ivp4 unic
R1(config-router)#address-family ivp4 unicast vrf c1
R1(config-router)#address-family ivp4 unicast vrf c1
R1(config-router-af)#red
R1(config-router-af)#redistribute ospf 1
R1(config-router)#address-family ivp4 unicast vrf c2
R1(config-router-af)#redistribute ospf 2
R1(config-router-af)#redistribute ospf 2
R1(config-router-af)#redistribute ospf 2
                                            4 23:37:40.807: %SYS-5-CONFIG_I: Configured from console by console
```

Deve-se fazer o mesmo processo só que usando o OSPF

```
R2(config-router)#redistribute bgp 100 subnets R2(config-router)#red R2(config-router)#redistribute bgp 100 subnets R2(config-router)#redistribute bgp 100 subnets R2(config-router)#exit R2(config-router)#exit R2(config-router)#redistribute bgp 100 subnets R2(config-router)#redistribute bgp 100 subnets R2(config-router)#redistribute bgp 100 subnets R2(config-router)#exit R2(config-router)#exit R2(config)#
```

É possível visualizar que o router 6 já consegue visualizar a rede do router r5

```
ow ip route
C - connected, S - static, R - RIP, M - mobile, B - BGP
D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area
NI - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2
EI - OSPF external type 1, E2 - OSPF external type 2
i - IS-IS, su - IS-IS summary, LI - IS-IS level-1, L2 - IS-IS level-2
ia - IS-IS inter area, " - candidate default, U - per-user static route
o - OOR, P - periodic downloaded static route
5.0.0.0/32 is subnetted, 1 subnets
5.5.5.5 [110/3] via 192.168.5.2, 00:02:25, FastEthernet0/0
6.0.0.0/32 is subnetted, 1 subnets
6.6.6.6 is directly connected, Loopback0
7.0.0.0/32 is subnetted, 1 subnets
7.7.7.7 [110/3] via 192.168.5.2, 00:02:25, FastEthernet0/0
192.168.5.0/24 is directly connected, FastEthernet0/0
192.168.1.0/42 [110/2] via 192.168.5.2, 00:02:25, FastEthernet0/0
192.168.3.0/24 [110/2] via 192.168.5.2, 00:02:25, FastEthernet0/0
```

Entretando, ao contrário não é valido, por isso é necessário realizar as configurações anteriores em ambos os lados.

Observe o router 5 antes da configuração em ambos os lados

```
RS#sh ip route

Codes: C - connected, S - static, R - RIP, M - mobile, B - BGP

D - EIGRP, EX - EIGRP external, 0 - OSPF, IA - OSPF inter area

N1 - OSPF MSSA external type 1, N2 - OSPF MSSA external type 2

E1 - OSPF external type 1, N2 - OSPF external type 2

i - IS-IS, su - IS-IS summary, L1 - IS-IS level-1, L2 - IS-IS level-2

ia - IS-IS inter area, * - candidate default, U - per-user static route

0 - OOR, P - periodic downloaded static route

Gateway of last resort is not set

5.0.0.0/32 is subnetted, 1 subnets

C - S.5.5.5 is directly connected, Loopback0

C 192.168.1.0/24 is directly connected, FastEthernet0/0

Após configuração

NSBNI ip route

Codes: C - connected, S - static, R - RIP, N - mobile, B - BGP

O - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area

N1 - OSPF NSSA external type 1, N2 - OSPF MSSA external type 2

E1 - OSPF external type 1, N2 - OSPF external type 2

i - IS-IS, su - IS-IS summary, L1 - IS-IS level-1, L2 - IS-IS level-2

ia - IS-IS inter area, * - candidate default, U - per-user static route

O - OOR, P - periodic downloaded static route

Gateway of last resort is not set

S.0.0.0/32 is subnetted, 1 subnets

C - S.5.5.5 is directly connected, Loopback0

6.0.0.0/32 is subnetted, I subnets

O IA 0.0.0/32 is subnetted, I subnets

O IA 0.0.0/32 is subnetted, I subnets

O IA 192.168.1.0/24 is directly connected, FastEthernet0/0

O IA 192.168.1.0/24 is directly connected, FastEthernet0/0

O IA 192.168.1.0/24 is directly connected, FastEthernet0/0

O IA 192.168.1.0/24 is directly connected, FastEthernet0/0
```