CALORIMETRÍA

TP LABORATORIO - FÍSICA II

OBJETIVOS:

- 1. Hallar la capacidad calorífica del calorímetro (o equivalente en agua).
- 2. Determinar el calor específico de un sólido.

Todas las respuestas a las consignas se presentarán en un **reporte** y se entregará uno por grupo por campus en formato PDF.

MATERIALES UTILIZADOS:

- Calorímetro (recipiente aislante).
- Calentador eléctrico de inmersión.
- Vasos de precipitado "pyrex".
- Termómetro digital.
- Termo para agua caliente.
- Cuerpos de aluminio y de bronce.

INTRODUCCIÓN TEÓRICA

Cuando dos cuerpos A y B a distintas temperaturas T_A y T_B respectivamente se ponen en contacto térmico en un sistema aislado, luego de un cierto tiempo alcanzan el equilibrio térmico a una temperatura T_{eq} . En este caso, decimos que una cantidad de calor ΔQ se transfiere desde el sistema de mayor temperatura al sistema de menor temperatura y que dicha cantidad de calor transferida será proporcional al cambio de temperatura ΔT , es decir:

$$\Delta Q = C \, \Delta T, \tag{1}$$

donde la constante de proporcionalidad C se denomina "capacidad calorífica" del sistema. En particular, si $T_A > T_B$:

- El cuerpo A cede calor: $\Delta Q_A = C_A (T_{eq} T_A)$, entonces $\Delta Q_A < 0$
- El cuerpo B recibe calor: $\Delta Q_B = C_B (T_{eq} T_B)$, entonces $\Delta Q_B > 0$
- $\bullet \quad \Delta Q_A + \ \Delta Q_B = 0$

La temperatura de equilibrio T_{eq} , se obtiene mediante la media ponderada

$$T_{eq} = \frac{C_A T_A + C_B T_B}{C_A + C_B}$$
. (2)

La capacidad calorífica por unidad de masa se denomina "calor específico" c, siendo

$$C = mc. (3)$$

El calor específico es la cantidad de calor que hay que suministrar a un gramo de una sustancia para que eleve en un grado centígrado su temperatura.

Finalmente, la fórmula para la transferencia de calor entre los cuerpos A y B se expresa en términos de la masa m, del calor específico c y del cambio de temperatura ΔT :

$$\Delta Q = mc (T_f - T_i), \qquad (4)$$

donde T_f es la temperatura final y T_i es la temperatura inicial.

1. DETERMINACIÓN DE LA CAPACIDAD CALORÍFICA DEL CALORÍMETRO

Procedimiento:

- 1. Medir la temperatura ambiente T_0 .
- 2. Colocar en el calorímetro una masa de agua m_1 a una cierta temperatura, (menor que la temperatura ambiente T_0 en unos 10 °C).
- 3. Cerrar el calorímetro y medir la temperatura T_1 del agua dentro del calorímetro, luego de un tiempo, al establecerse el equilibrio térmico.
- 4. Agregar una cierta masa m_2 a una temperatura T_2 (unos 20 °C mayor que T_0).
- 5. Cerrar nuevamente el calorímetro y agitar suavemente hasta que se alcance una temperatura de equilibrio $T_{\it ea}$.
- 6. **Reportar** en un cuadro los valores registrados de m_1 , m_2 , T_1 , T_2 y T_{eq} (Tabla 1).

$m_1^{}(g)$	<i>T</i> ₁ (°C)	$m_2^{}(g)$	<i>T</i> ₂ (°C)	T _{eq} (°C)

Tabla 1: Mediciones registradas para la determinación de la capacidad calorífica del calorímetro

7. Cuando los tres cuerpos llegan al equilibrio térmico se tiene:

$$\Delta Q_1 + \Delta Q_{calorimetro} + \Delta Q_2 = 0, \tag{5}$$

y teniendo en cuenta que la temperatura inicial de m_1 y la del calorímetro es es la misma (T_1) , por medio de la ecuación 4 llegamos a la relación:

$$(m_1 + \pi) c_{aqua} (T_{eq} - T_1) + m_2 c_{aqua} (T_{eq} - T_2) = 0,$$
 (6)

donde π es el equivalente en agua del calorímetro, por lo que despejando tenemos que:

$$\pi = \frac{m_2(t_2 - t_{eq})}{t_{eq} - t_1} - m_1. \tag{7}$$

Por medio de esta expresión calcular y **reportar** el valor de π (en las unidades apropiadas), explicando además su significado físico.

2. DETERMINACIÓN DEL CALOR ESPECÍFICO DE UN SÓLIDO.

Procedimiento:

- 1. Colocar en el calorímetro una masa m_A de agua cuya temperatura indicaremos con T_A (aproximadamente igual a la temperatura ambiente).
- 2. En un recipiente aparte sumergir totalmente en agua uno de los cuerpos, de masa m_{c} , cuyo calor específico c_{c} se quiere determinar.
- 3. Calentar el agua de dicho recipiente con un hervidor de inmersión. Se debe esperar algunos minutos con el agua en ebullición para asegurarse que todo el sólido tiene temperatura uniforme.
- 4. Medir la temperatura del agua en ebullición, que será la misma temperatura $T_{\mathcal{C}}$ que tendrá el cuerpo.
- 5. Retirar al cuerpo del agua, colocarlo <u>rápidamente</u> dentro del calorímetro y cerrarlo. La cantidad de agua dentro del mismo debe <u>cubrir totalmente</u> al sólido.
- 6. Mover suavemente el agitador, hasta alcanzar la temperatura de equilibrio T_{eq} .
- 7. Repetir el procedimiento para el segundo cuerpo a estudiar.
- 8. **Reportar** en un cuadro los valores registrados de m_A , T_A , m_C , T_C y T_{eq} para los dos cuerpos estudiados (Tabla 2).

	$m_{A}^{}(g)$	<i>T</i> _A (°C)	$m_{\mathcal{C}}^{}(g)$	T_c (°C)	T _{eq} (°C)
cuerpo 1					
cuerpo 2					

Tabla 2: Mediciones registradas para la determinación del calor específico de dos sólidos desconocidos.

9. Es posible demostrar (hacerlo) que al llegar al equilibrio térmico se tiene que:

$$(m_A + \pi) c_a (T_{eq} - T_A) + m_C c_C (T_{eq} - T_C) = 0,$$
 (8)

relación de la cual puede despejarse c_C utilizando el valor de π hallado en la parte 1 de este trabajo. **Reportar** la expresión final para el cálculo de c_C y el valor resultante de los calores específicos para cada cuerpo, con las unidades apropiadas.

10. Finalmente, a partir de los valores calculados para cada cuerpo de $c_{\mathcal{C}}$, comparar con el valor tabulado en la bibliografía (ver links) y **reportar** las diferencias o similitudes con lo calculado. ¿Fué posible identificar exactamente ambos materiales?.

TABLAS DE CALORES ESPECÍFICOS PARA DISTINTAS SUSTANCIAS

- https://www.educamix.com/educacion/3 eso materiales/prof/bloque ii/tablas d te tf intern et.pdf
- https://www.fisicanet.com.ar/fisica/termodinamica/tb01-calor-especifico-y-latente.php