Introducción al estudio de procesos de relajación

1.1 Procesos de Markov

Sea Y una variable estocástica (aquellas que provienen de experimentos, donde no se tiene información dinámica determinista¹) que puede tomar valores y_1, y_2, \dots

$$P_1(y_1, t) \equiv \text{Prob. de tomar } y_1 \text{ en tiempo } t \text{ (1 paso)}$$

$$P_2(y_1,t_1;y_2,t_2) \equiv \text{Prob.}$$
de tomar y_1 en t_1 y y_2 en t_2 (conjunta)

Para N pasos es

$$P_N(y_1, t_1; y_2, t_2; ...; y_N, t_N)$$

 $P_{1/1}(y_1,t_1|y_2,t_2) \equiv {
m Prob.}$ condicional de tomar y_2 en t_2 habiendo tomado y_1 en t_1 (certeza de y_1) Es importante que la

Abreviaremos obviando el tiempo. Además se tiene

$$P(y_1;y_2) \leq P(y_1|y_2)$$

donde el lhs evalúa los caminos que comunican y_1,y_2 del total y el rhs evalúa los c
minos que comunican y_1,y_2 del subconjunto de los que parten de y_1 .

Las P son densidades de probabilidad, cuando el espacio muestral sea continuo.

condicional implica que se sabe algo con certeza.

¹No tengo información para predecir nada.

Además

$$P_2(y_1; y_2) = P_1(y_1)P_{1/1}(y_1|y_2),$$

que es el caso de P(B)P(B/A) = P(A), cumpliéndose lo siguiente

- $\int P_1(y_1)dy_1 = 1$ normalización
- $\int P_{1/1}(y_1|y_2)dy_2 = 1$ normalización
- $\int P_2(y_1; y_2) dy_1 = \int P_1(y_1) P_{1/1}(y_1|y_2) dy_1 = P_1(y_2)$ reducción

La integral de normalización implica sumar todos los caminos de (y_1, t_1) a (y_2, t_2) .

La reducción se puede definir en general para N pasos y N-1. Cuando la densidad de probabilidad es invariante ante una traslación temporal se dice que es estacionaria. En ese caso se da que

$$P_N(y_1,t_1;y_2,t_2;...;y_N,t_N) = P_N(y_1,t_1+\tau;y_2,t_2+\tau;...;y_N,t_N+\tau)$$

Ejemplito numérico

$$\begin{split} P(y_1;y_2) &= P(y_1)P(y_1|y_2) = \frac{4}{4}\frac{1}{2} = \frac{2}{7} \\ P(y_2;y_1) &= P(y_2)P(y_2|y_1) = \frac{3}{7}\frac{2}{3} = \frac{2}{7} \end{split}$$

Notemos que $P(A|B) \neq P(B|A)$ aunque P(A;B) = P(B;A)

Las densidades de muchos pasos: $P(y_1;y_2;y_3)$ son relevantes cuando el sistema tiene "memoria". Se clasifican los procesos en función de la memoria; en el caso de Markov nos preocupamos del último anerior y requeriré la probabilidad de un evento y la probabilidad de transición: estas dos cosas definen los procesos de Markov.

Un proceso es de Markov cuando el estado del sistema depende del paso inmediato anterior únicamente. Se define por

$$P_1(y_1),\quad P_{1/1}(y_1|y_2)\equiv \text{Probabilidad}$$
de transición
$$P_{3/1}(y_1,y_2,y_3|y_4)\underset{\text{Markov}}{\longrightarrow}P_{1/1}(y_3|y_4)$$

luego, conociendo

$$\begin{cases} P_1(y,t) \\ P_{1/1}(y_{n-1},t_{n-1}|y_nt_n) \end{cases}$$

ya conozco todo lo que necesito.

Se puede demostrar una ecuación de Chapman-Kolmogorov

$$P_{1/1}(y_1|y_3) = \int P_{1/1}(y_1|y_2) P_{1/1}(y_2|y_3) dy_2$$

que se interpreta como la suma en todos los caminos. Se tiene el constraint de que la norma debe conservarse en el tiempo.

1.1.1 Ecuación maestra

Queremos ver la evolución de la $P_1(y_1, t)$

$$\frac{dP_1(y,t)}{dt} = \lim_{\tau \to 0} \frac{P_1(y,t+\tau) - P_1(y,t)}{\tau}$$

Usando que

$$\begin{split} P_1(y_2,t+\tau) &= \int dy_1 P_1(y_1,t) P_{1/1}(y_1,t|y_2,t+\tau) \\ P_1(y_2,t) &= \int dy_1 P_1(y_1,t) P_{1/1}(y_1,t|y_2,t) \\ \frac{dP_1(y,t)}{dt} &= \int dy_1 P_1(y_1,t) \left[\lim_{\tau \to 0} \frac{1}{\tau} (P_{1/1}(y_1,t|y_2,t+\tau) - P_{1/1}(y_1,t|y_2,t)) \right] \\ \text{que se puede escribir de modo que} \end{split}$$

$$\frac{1}{\tau} \left\{ [1 - \tau \int dy W(y_1, y)] \delta(y_1 - y_2) + \tau W(y_1, y_2) - \delta(y_1 - y_2) \right\}$$

y entonces

$$\begin{split} \frac{dP_1(y,t)}{dt} &= \int dy_1 P_1(y_1,t) \left[-\int dy W(y_1,y) \delta(y_1-y_2) + W(y_1,y_2) \right] \\ \frac{dP_1(y,t)}{dt} &= \int dy_1 P_1(y_1,t) W(y_1,y_2) - \int dy_1 P_1(y_1,t) \int dy W(y_1,y) \delta(y_1-y_2) \\ \frac{dP_1(y,t)}{dt} &= \int dy_1 P_1(y_1,t) W(y_1,y_2) - \int dy P_1(y_2,t) W(y_2,y) \\ \frac{dP_1(y,t)}{dt} &= \int dy_1 P_1(y_1,t) W(y_1,y_2) - P_1(y_2,t) \int dy W(y_2,y) \end{split}$$

donde el primer término en el rhs se interpreta como ganancia (lo que entra) y el segundo la pérdida (pues la integral es lo que sale).

$$W(y_1,y_2) \equiv \text{Transiciones} \ y_1 \rightarrow y_2 \ \text{por la unidad de tiempo}$$

Si la densidad de probabilidad es nula puede ser que haya un balance entre lo IN y OUT. Equilibrio no significa necesariamente que no pase nada; puede ser ese balance.

1.1.2 Camino aleatorio y ecuación de difusión

Si ℓ , T son escalas y n_2 , s un número entero de pasos

$$P_1(n_2\ell,s\mathbf{T}) = \sum_{n_1} P_1(n_1\ell,[s-1]\mathbf{T}) P_{1/1}(n_1\ell,[s-1]\mathbf{T}|n_2\ell,s\mathbf{T})$$

Quiero saber cuáles son las chances de estar en $n_2\ell$ al tiempo sT sumando todas las transiciones desde diferentes lugares $n_1\ell$.

Si la probabilidad es uniforme

$$\begin{split} P_{1/1}(n_1\ell,[s-1]\mathrm{T}|n_2\ell,s\mathrm{T}) &= \frac{1}{2}\delta(n_2-[n_1+1]) + \frac{1}{2}\delta(n_2-[n_1-1]) = \frac{1}{2} \begin{cases} \sin n_2 = n_1+1 \\ \sin n_2 = n_1-1 \end{cases} \\ P_1(n_2\ell,s\mathrm{T}) &= \sum_{n_1} P_1(n_1\ell,[s-1]\mathrm{T}) \left\{ \frac{1}{2}\delta(n_2-[n_1+1]) + \frac{1}{2}\delta(n_2-[n_1-1]) \right\} \end{split}$$

y sumando y restando convenientemente,

$$P_1(n_2\ell,s\mathbf{T}) = -\frac{1}{2}P_1([n_2-1]\ell,[s-1]\mathbf{T}) + \frac{1}{2}P_1([n_2+1]\ell,[s-1]\mathbf{T}) + P_1(n_2\ell,[s-1]\mathbf{T}) - P_1(n_2\ell,[s-1]\mathbf{T})$$

$$\begin{split} \frac{P_{1}(n_{2}\ell,s\mathbf{T})-P_{1}(n_{2}\ell,s\mathbf{T})}{\mathbf{T}} = \\ \frac{\ell^{2}}{2\mathbf{T}} \left[\frac{P_{1}([n_{2}-1]\ell,[s-1]\mathbf{T})-2P_{1}(n_{2}\ell,[s-1]\mathbf{T})+P_{1}([n_{2}+1]\ell,[s-1]\mathbf{T})}{\ell^{2}} \right] \end{split}$$

Pero esto no es otra cosa que expresiones de las derivadas, de manera que

$$\frac{\delta P(n_2\ell, sT)}{\delta T} = \frac{\ell^2}{2T} \frac{\delta^2 P(n_2\ell, [s-1]T)}{\delta \ell^2}$$

Esta es la ecuación de Fokker-Planck

$$\frac{\partial P(x,t)}{\partial t} = C \frac{\partial^2 P(x,t)}{\partial x^2}$$

una ecuación de onda para la probabilidad (?)

1.2 Cadenas de Markov

Espacio muestral discreto $Y=\{y_1,y_2,y_3,...,y_\ell\}$ de dimensión L y donde medimos el tiempo en pasos. Se tiene una ecuación de evolución dada por

$$P_1(y_j, s+1) = \sum_{i}^{L} P_1(y_i, s) P_{1/1}(y_i, s|y_j, s+1),$$

que es la probabilidad de llegar a un estado específico desde todos los otros posibles y donde la información sobre las transiciones se introduce en la matriz Q tal que

$$Q_{ij} \equiv P_{1/1}(y_i, 0|y_j, 1),$$

que es la matriz estocástica. Se verifica

$$\sum_{i}^{L} Q_{ij} = 1 \ \forall i$$

y entonces las filas son vectores de probabilidad²

$$\underbrace{\overrightarrow{P(1)}}^{1 \times L} = \underbrace{\overrightarrow{P(0)}}^{1 \times L} \underbrace{\widehat{Q}}^{L \times L}$$

 $P_j(1) = P_i(0)Q_{ij}$ Asumimos convención de Einstein

$$\vec{P(s)} = \vec{P(s-1)}Q = \vec{P(s-2)}QQ = \dots = \vec{P(0)}Q^s$$

y decimos que Q es estocástica regular si existe $k:[Q^k]_{ij}>0 \forall i,j.$

Si Q es estocástica regular entonces existe $s:Q^{s+1}=Q^s\equiv T$ y por lo tanto

$$QT = Q^{s+1} = T$$

Si n > s

$$\vec{P(n)} = \vec{P(0)}Q^n = \vec{P(0)}Q^{n-s}Q^s = \vec{P(0)}T$$

$$\begin{array}{cccc} \lambda_{\alpha} & \overbrace{\vec{P}^{\alpha}}^{1 \times L} & \stackrel{1 \times L}{\widehat{P}^{\alpha}} & \stackrel{L \times L}{\widehat{Q}} & \\ \lambda_{\beta} & \overbrace{\vec{P}^{\beta}}^{1 \times L} & \stackrel{1 \times L}{\widehat{P}^{\beta}} & \stackrel{1 \times L}{\widehat{Q}} & \rightarrow & 0 = (Q - \lambda_{\beta} \mathbb{1}) \vec{P}^{\beta} \end{array}$$

La matriz Q tiene probabilidades de transición fijas en el tiempo, de modo que Q es independiente del tiempo.

T es la solución de equilibrio, pues T = QT

²Tenía anotado que si la suma de las filas es 1 entonces la matriz se llama estocástica

y tenemos autovalores a izquierda

$$\lambda_{\alpha}\chi_{i}^{\alpha} = \chi_{1i}^{\alpha}Q_{ij} \qquad \vec{\chi} = (,,,)$$

donde los índices j, 1i refieren a columnas y autovalores a derecha

$$\lambda_{\beta}\psi_{i1}^{\beta} = Q_{ij}\psi_{j1}^{\beta} \qquad \vec{\chi} = \left(\right)$$

donde los índices i1, j1 refieren a filas. Parece que el hecho de que Q sea no simétrica impalica que tiene autovalores a izquierda y derecha.

Y entonces deducimos que

- Autovectores a izquierda $\vec{\chi}$ y a derecha $\vec{\psi}$ son ortogonales.
- Los autovalores son $|\lambda_{\gamma}| \leq 1$.
- $\lambda = 1$ es siempre autovalor.

Sabemos que

$$P(m,s) = \sum_{n} P(n,0)Q_{nm}^{s},$$

y con s = 1

$$P(m,1) = \sum_{n} P(n,0)Q_{nm}$$

y esto es

$$\chi_m = \sum_n \chi_n Q_{nm} \qquad (\lambda = \text{1autovalor de } \vec{\chi} \text{ estacionario})$$

Para el autovector a derecha

$$\lambda_{\beta}\psi_{\ell 1}^{\beta} = \sum_{i} Q_{\ell i}\psi_{i1}^{\beta}$$

Si
$$\vec{\psi}^{\beta} = (1, 1, ..., 1)^t \to$$

$$\lambda_{\beta}\psi_{\ell}^{\beta} = \lambda_{\beta} = \sum_{i} Q_{\ell i}\psi_{i}^{\beta} = \sum_{i} Q_{\ell i} = 1$$

y $\lambda_{\beta}=1$ autovalor de

$$\vec{\psi}^{\beta} = \begin{pmatrix} 1 \\ 1 \\ \dots \\ 1 \end{pmatrix}$$

En algún momento tuvimos que decir que esto es sumar sobre todos los caminos de llegar al punto final.

Siempre hay solución estacionaria P = PQ.

1.2.1 Solución general a través de descomposición espectral

$$\begin{split} \lambda_{\alpha}\chi_{i}^{\alpha} &= \sum_{j} \chi_{j}^{\alpha} Q_{ij} \\ \lambda_{\alpha}\psi_{\ell}^{\alpha}\chi_{i}^{\alpha} &= \sum_{j} \psi_{\ell}^{\alpha}\chi_{j}^{\alpha} Q_{ij} \\ \sum_{\alpha} \lambda_{\alpha}\psi_{\ell}^{\alpha}\chi_{i}^{\alpha} &= \sum_{j} \sum_{\alpha} \psi_{\ell}^{\alpha}\chi_{j}^{\alpha} Q_{ij} = \sum_{j} \delta_{\ell j} Q_{ji} = Q_{\ell i} \end{split}$$

y entonces

$$Q_{\ell i} = \sum_{\alpha} \lambda_{\alpha} \psi_{\ell}^{\alpha} \chi_{i}^{\alpha}$$

es una descomposición espectral, análoga a la de mecánica cuántica $\mathbbm{1}=\sum_i|i\rangle\,\langle i|.$ Esto sería la clausura, que sume uno. Y la completitud ortogonalidad sería $\chi_i\psi_j=\delta_{ij}.$ De esta forma

$$Q_{\ell i}^s = \sum_{\alpha} \lambda_{\alpha}^s \psi_{\ell}^{\alpha} \chi_i^{\alpha}$$

por ortogonalidad de $(\vec{\chi}, \vec{\psi})$.

$$Q_{\ell i}^s = \lambda_1^s \psi_\ell^1 \chi_i^1 + \sum_{\alpha=2} \lambda_\alpha^s \psi_\ell^\alpha \chi_i^\alpha$$

Y si $s\to\infty$ entonces $\lambda_1=1$ y $\psi^1=(1,1,...,1)^t$, mientras que λ_α^s tiende a cero puesto que $|\lambda_i|\le 1$, de modo que

$$\lim_{s \to \infty} Q_{\ell i}^s = \widehat{\psi_{\ell}^1} \widehat{\chi_{\ell}^1} = \begin{bmatrix} \begin{pmatrix} 1\\1\\...\\1 \end{pmatrix} (\chi_1^1 \chi_2^1 ... \chi_L^1) \\ \vdots \\ \ell_i \end{bmatrix} = \chi_i^1$$

Todas las filas son iguales.

$$\lim_{s \to \infty} Q_{\ell i}^s = T_{\ell i} = \chi_i^1 \quad \forall \ell$$

entonces

$$T = \begin{pmatrix} \begin{bmatrix} \chi^1 & \vdots \\ \chi^1 & \vdots \end{bmatrix} \\ \vdots \\ \chi^1 & \vdots \end{bmatrix}$$

Luego T tiene como filas al autovector que cumple

$$\vec{\chi} = \vec{\chi} Q$$
 El punto fijo de Q

Por otro lado

$$\lim_{s\to\infty}Q_{\ell i}^s=\lim_{s\to\infty}P_{1/1}(\ell,0|i,s)=P_1(i,0)$$

La probabilidad de un estado i final, una vez dentro del régimen estacionario, no depende del estado ℓ desde el cual partimos. Tenía anotado algo como que haciendo el límite $s \to \infty$ se puede escribir

$$P(n,s) = \sum_{m=1}^{N} P(m,0) \psi_1(n) = \psi_1(n)$$

y el $\psi_1(n)$ no depende desde donde partí (luego de muchos pasos) y entonces el autovector que podemos interpretar como probabilidad es el $\psi_1(n)$ porque está asociado a que es una tendencia asintótica.

La solución de equilibrio claramente es

$$\vec{P} = \vec{P}Q$$

pues si $\vec{P}(s+1) = \vec{P}(s)Q$ y obtenemos

$$\vec{P}(s+1) = \vec{P}(s) = \vec{P}(s)Q$$

entonces resulta que

$$\vec{P}(s) = \vec{P}(s)Q$$

es lo que hay que buscar. La moraleja es que \vec{P} de equilibrio es el punto fijo de Q.

EJEMPLO 2.1 Problema 4

Se elige una bocha, y se cambia de urna. Las bochas se eligen completamente al azar; no sé de qué tarro las voy a tomar. La idea es que evolucionamos de $n' \to n$, entonces

$$T_{nn'} = \frac{n}{N} \delta_{n+1,n'} + \left[1 - \frac{n'}{N}\right] \delta_{n-1,n'}$$

que interpreta al primer término como el vaciamiento de ${\bf A}$ y al segundo como el llenado de ${\bf A}$.

Definiendo $y \equiv N_A$ queremos ver las psobiels transiciones

Los siguientes problemas aparecían en la página 14 de la carpeta, tal vez correspondan a algún capítulo inicial más que aquí.

No me precoupan las diferentes combinaciones de cada estado. No pienso en variaciones microscópicas.

$$T_{10} = 1$$
 $T_{01} = \frac{1}{N}$ $T_{21} = \frac{N-1}{N}$ $T_{12} = \frac{2}{N}$

Entonces.

$$\begin{split} P(n,s+1) &= \sum_{m=0}^{N} P(m,0)Q_{mn}^{s} = \sum_{m=0}^{N} P(m,s)Q_{mn} \\ P(n,s+1) &= \sum_{m=0}^{N} P(m,s) \left(\frac{m}{N}\delta_{n,m-1} + \left[1 - \frac{m}{N}\right]\delta_{n,m+1}\right) \\ P(n,s+1) &= \frac{n+1}{N} P(n+1,s) + \left[1 - \frac{n-1}{N}\right] P(n-1,s) \end{split}$$

para $1 \le n \le n-1$. Como P(0,s+1) = 1/NP(1,s) y P(N,s+1) = 1/NP(N-1,s) si tomamos esta podemos ver que satisface la ecuación última. A tiempos muy grandes esperaríamos $P(n) = (m/n)1/2^N$ y se puede ver reemplazando y viendo que se plancha la evolución temporal.

EJEMPLO 2.2 Problema 6

Una bola de cada una y se intercambian

La matriz de transición sería algo como

$$\begin{pmatrix} 0 & 1 & 0 \\ 1/8 & 1/2 & 3/8 \\ 0 & 1/2 & 1/2 \end{pmatrix}$$

y los autovalores $\lambda_i = 1, 1/4, -1/4$ para i = 1, 2, 3. Los autovalores a derecha

$$\psi_1 = (1, 1, 1)$$
 $\psi_1 = (2, -1/2, 1)$ $\psi_1 = (1, -1/4, 1/6)$

y los autovalores a izquierda

$$\chi_1 = (1/15, 8/15, 6/15) \qquad \chi_2 = (-1/2, -1, -3/2) \qquad \chi_3 = (7/6, -4/6, -7/6)$$

Se tienen además

$$P^{(3)} = P(0)Q^3$$

donde Q^3 será

$$Q^3 = \sum_{i=1}^3 \, \lambda_i^3 \psi_i \chi_i$$

sujeta a las condiciones iniciales

$$P(0) = \begin{cases} (1,0,0) \\ (0,0,1) \\ (0,1,0) \end{cases}.$$

El sistema está en equilibrio cuando olvidó el punto desde el cual partió.

EJEMPLO 2.3 Problema 7

La picture ilustra el problema

que lleva a la matriz

$$Q = \begin{pmatrix} 1/3 & 2/3 & 0\\ 4/9 & 1/9 & 4/9\\ 26/27 & 0 & 1/27 \end{pmatrix}$$

y los lugares que quedan nulos son de cosas que no están vinculadas.

Equilibrio significa que si llegarremos aun tiempo donde las probabilidades no dependen de cuál fue el punto inicial. A ojo vemos que en un paso no se pueden conectar todos los estados; pero en dos pasos sí se pueden conectar. Entonces existe $\lambda=1$ tal que

$$\psi_1 = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$$
 $\chi_1 = (52/109, 39/109, 18/109)$

y es asintóticamente

$$\begin{split} P(n) &= (\,52/109, 39/109, 18/109\,) \\ &P(n_0, 0) = (0, 1, 0) \\ \\ P(n, s = 2) &= \sum_{n=-1}^{3} P(n_0, 0) Q_{n_0 n}^2 \end{split}$$

Si las bacterias mueren tengo que agregar un estado "0" absorbente: una vez que caigo no puedo salir y entonces el estado asintótico será el de la muerte total (es nula la cantidad de bacterias).

EJEMPLO 2.4 Problema 8

Metemos el tiempo en lugar de la cantidad de pasos, entonces convertimos

$$P(n,s) \longrightarrow P(n,t)$$

lo que dará origen a la ecuación maestras, donde P(n,t) es claramente la probabilidad de estar en un estado n a tiempo t. Tendremos

$$\frac{\partial P(n,t)}{\partial t} = \sum_{m=1}^{N} P(n,t) \omega_{mn}(t) - P(n,t) \omega_{nm}(t) maestra_{p} rob_{8} \eqno(2.1)$$

donde le primer término son las ganancias (probabilidad de estados que llegan a n) y el segundo las pérdidas (probabilidad de estados que se van de n).

La ω_{mn} tendrá una forma que se modelará desde el sistema mismo. La función generatriz F (que nos darán los distintos momentos de la distribución) permite la resolución más sencilla de estos problemas.

$$F(z,t) = \sum_n P(n,t) z^n \qquad \qquad F(1,t) = 1$$

Desde

$$\left. \frac{\partial F}{\partial z} \right|_{z=1} = \left\langle n \right\rangle_t$$

obtengo los momentos por derivación.

Entonces se puede poner la caminata aleatoria simétrica

como

$$\dot{p}_n = p_{n+1} + p_{n-1} - 2p_n, \quad -\infty < n < \infty$$

y se puede escribir la (??) como una ecuación para Γ

$$\dot{p}_n = \frac{1}{2}p_{n+1} + \frac{1}{2}p_{n-1} - p_n, \qquad -\infty < n < \infty$$

con el tiempo reescalado. Ahora necesito una ecuación para F,

$$\sum_{n=-\infty}^{\infty}\,z^n\frac{\partial P_n}{\partial t}=\sum_{n=-\infty}^{\infty}\,z^np_{n+1}+z^np_{n-1}-2z^np_n$$

luego

$$\frac{\partial F(z,t)}{\partial t} = \sum_{n'} \frac{z^{n'}}{z} \, p_{n'} + z^{n'} \, p_{n'} - 2 \, z^{n'} \, p_{n'}$$

de lo cual finalmente resulta

$$\frac{\partial F(z,t)}{\partial t} = \left[\sum_n z^n p_n \right] \left(\frac{1}{z} + z - 2 \right) = F \frac{(z-1)^2}{z}$$

donde el factor del final no depende del tiempo t. Entonces

$$F(z,t) = F(z,0) e^{\frac{(z-1)^2}{z}t}$$

y conF(1,t)=1=F(z,0)se tiene $F(z,t)=\,\mathrm{e}^{\frac{(z-1)^2}{z}t}.$

Con esto salen los momentos derivando simplemente. Asimismo podemos identificar direcctaam
nte a mano $\,$

$$F(z,t) = \sum_n \, P(n,t) z^n$$

donde los P serán las probabilidades entregadas sin sacrificio al poner la exponencial en términos de la serie.

EJEMPLO 2.5 Ejemplo ilustrativo de la práctica

Consideramos una población de bacterias con las siguientes características

Prob. de morir en
$$(t, t + dt)$$
 $\omega_{nn-1}(t)\Delta t = d_n(t)\Delta t$

Prob. de nacer en
$$(t, t+dt)$$
 $\omega_{nn+1}(t)\Delta t = b_n(t)\Delta t$

Prob. de que no ocurra nada en (t,t+dt) $(1-[b_n(t)+d_n(t)])\Delta t$

Además, consideraremos Δt tan chico que no ocurren dos eventos simultáneos. Una sola transición. La ecuación maestra implica ganancia y pérdida.

$$\frac{\partial P(n,t)}{\partial t} = b_{n-1}(t)P(n-1,t) + d_{n+1}(t)P(n+1,t) - (b_n(t) + d_n(t))P(n,t)$$

Suponemos procesos lineales de nacimiento y muerte, que no dependen del tiempo.

$$b_n(t) = \beta n \qquad d_n(t) = \gamma n$$

donde β , γ son probabilidades por unidad de bacterias.

$$\frac{\partial P(n,t)}{\partial t} = \beta(n-1)P(n-1,t) + \gamma(n+1)P(n+1,t) - (\beta n + \gamma n)P(n,t)$$

Si la ecuación anterior da $P(n=-1)\neq 0$ estamos ante un absurdo físico que deberá interpretarse. En general debo poner un vínculo para respetar la física

$$F(z,t) = \sum_{n=-\infty}^{\infty} z^n P(n,t)$$

que es que sumo desde menos infinito pero en realidad no aporta porque la ecuación está acotada naturalmente; n=0. No tengo manera de poblar estados con n<0. de la cual amasando podemos llegar a

$$\frac{\partial F(z,t)}{\partial t} = (z-1)(\beta z - \gamma) \frac{\partial F(z,t)}{\partial z}$$

la cual a su vez puede resolverse por un método de las características.

$$\frac{\partial F(z,t)}{\partial t} + g(z)\frac{\partial F(z,t)}{\partial z} + h(z)F(z,t) = 0$$

Con este tipo de ecuación podemos pensar en

$$F(z,t) = e^{-\int_{-\infty}^{t} h(z)/g(z)dz} \phi(z,t),$$

con lo cual llegamos a

$$\frac{\partial \phi(z,t)}{\partial t} + g(z) \frac{\partial \phi(z,t)}{\partial z} = 0 \qquad dt = \frac{dz}{g(z)}$$

y genero las curfvas de niveles constantes de ϕ de modo que ϕ será constante si me muevo en dz, dt = dz/g(z). Entonces como se tiene

$$\int^z \frac{d(z')}{q(t)} - t = c_1$$

esto nos conduce a

$$\phi(z,t) = phi e^{\frac{dz}{g(z)-t}}$$

У

$$F(z,t) = \operatorname{e}^{\int^t h(t)/g(z)} \phi(\operatorname{e}^{\int^z dz/g(z) - t}).$$

Volviendo al problema original, tendremos

$$F(z,t) = \left(rac{eta(z-1)\,\mathrm{e}^{(eta-\gamma)t}}{eta z - \gamma}
ight)^m$$

Mediante condiciones iniciales puedo decir algo de F. Si a t=0 hay m bacterias entonces $P(m,0)=\delta_{nm}$

$$F\left(\frac{\beta(z-1)}{\beta z-\gamma}\right)=z^m\quad\rightarrow\quad F(\mu)=\left(\frac{\gamma\mu-\beta}{\beta(\mu-\beta)}\right)^m$$

donde hemos redefinido $\mu \equiv \beta z - \gamma,$ y finalmente

$$F(z,t) = \left(\frac{\gamma(z-1)\operatorname{e}^{(\beta-\gamma)t} - \beta z + \gamma}{\beta(z-1)\operatorname{e}^{(\beta-\gamma)t} - \beta z + \gamma}\right)^m$$

de manera que

$$\langle n(t) \rangle = \left. \frac{\partial F}{\partial z} \right|_{z=1} = m \, \mathrm{e}^{(\beta - \gamma)t}.$$