Diodes

Lecture 18 December 11th, 2018

Jae W. Lee (<u>jaewlee@snu.ac.kr</u>)
Computer Science and Engineering
Seoul National University

Slide credits: Prof. Anant Agarwal at MIT

Outline

Textbook: 16.1, 16.2, 16.3, 16.4.1, 16.5.3

- Diode Characteristics
- Analysis of Diode Circuits
- Additional Example: Limiter

First, let's look at the diode

$$i_D = I_S \left(e^{\frac{v_D}{V_T}} - 1 \right)$$

$$I_S = 10^{-12} A$$

$$V_{\scriptscriptstyle T} = 0.025V$$

Can use this exponential model with analysis methods learned earlier:

- Analytical
- Graphical
- · Incremental

Outline

Textbook: 16.1, 16.2, 16.3, 16.5.3

- **■** Diode Characteristics
- Analysis of Diode Circuits
- Additional Example: Limiter

Another analysis method: piecewise-linear analysis

Ideal diode model

Another analysis method: piecewise-linear analysis

V-code: ???

"Practical" diode model ideal with offset

Another analysis method: piecewise-linear analysis

V-code: ???

Piecewise-linear analysis method

- Replace nonlinear characteristic with linear segments.
- Perform linear analysis within each segment.

Power Conversion Circuits (PCC)

DC-to-DC UP converter

Power efficiency of converter important, so use lots of devices:

MOSFET switches, clock circuits, inductors, capacitors, op amps, diodes

Example

V-code: ???

(We will build up towards an AC-to-DC converter)

 V_I is a sine wave

Example

V-code: ???

Equivalent circuit

"Short segment":

"Open segment":

$$v_I \ge 0.6$$

$$v_I < 0.6$$

Example

Now consider — a half-wave rectifier

A half-wave rectifier

V-code: ???

Outline

Textbook: 16.1, 16.2, 16.3, 16.5.3

- Diode Characteristics
- Analysis of Diode Circuits
- Additional Example: Limiter

V-code: ???

What are possible diode states?

Recall: piecewise-linear analysis

- . Draw a subcircuit for each possible state (ON or OFF) of the diodes. For one diode there are two subcircuits. For n diodes there are 2^n such states, and hence 2^n subcircuits.
- 2. Analyze each resulting linear circuit to find an expression for the desired output variable. Because in each subcircuit the diode is either a short or an open circuit, the subcircuits are linear. Hence linear analysis methods can be used.
- 3. Establish the range of validity of each of the expressions in (2); then assemble the appropriate segments to form the complete output waveform.

V-code: ???

16

Case 1: When both diodes are OFF

Subcircuit 1

Output (V_{o1})

V-code: ???

Case 2: D1 is ON, D2 is OFF

Subcircuit 2

Output (V_{o2})

V-code: ???

Case 3: D1 is OFF, D2 is ON

Subcircuit 3

Output (V_{o3})

V-code: ???

Case 4: Both D1 and D2 are OFF

Subcircuit 4

Can this case happen??

Thank you!

It was great to teach you this semester and I wish best of luck for your future endeavors!