Techniques of Artificial Intelligence Exercises – WEKA

Dipankar Sengupta
Dipankar.Sengupta@vub.ac.be

Roxana Rădulescu Roxana.Radulescu@vub.ac.be

April 25, 2016

30. Locally weighted learning and WEKA

Use the "circles.csv" dataset for this exercise.

- Investigate whether the locally weighted learning algorithm does manage to classify the data correctly.
- Investigate the different test options which are provided by WEKA. Can you show an important difference in performance depending on the method used for evaluating your hypothesis?
- Do the results depend on the number of neighbours used? How and Why?
- Identify the different available weighting schemes. Do the results depend on the weighting scheme which is used? Why is that?

31. Neural networks and WEKA

Use the circles.csv dataset also for this exercise. Investigate the influence of the number of hidden layers on the performance of the classifier. Motivate your findings.

32. Experimenter (Algorithms comparison with 10 fold cross validation)

Use "splice.arff" dataset.

• Make a comparative performance analysis of the given dataset using ID3 and Naïve Bayes learner with Zero-R as the base classifier learner. Describe and motivate the observed trend in the performance.

33. Experimenter (with processed dataset)

- Open the "splice.arff" dataset in "Explorer" and apply the correct filter on the data (preprocess tab, choose an unsupervised attribute filter). Save the dataset as "splice_new.arff"
- Redo the comparative performance analysis using ID3 and Naïve Bayes learner with Zero-R as the base classifier learner. Describe and motivate the observed trend in the performance compared to exercise 32.

34. Experimenter (Evaluation of datasets on algorithm)

Use the datasets "splice.arff", "blood_fat_corrupted.arff", "schizo.arff".

- Open the datasets in the experimenter. Use the algorithm ID3 with 10-fold cross validation technique. What do you observe? In case of any execution error report the same and motivate the reason for the same.
- Repeat the experiment using Naïve Bayes learner. Describe and motivate the observed trend in the performance