Formulario di Fisica

Formule fondamentali

Vettori 1

Funzioni goniometriche $\cos \theta = \frac{c_{adj}}{i}$ $\sin \theta = \frac{c_{opp}}{i}$ $\tan \theta = \frac{c_{opp}}{c_{adj}}$

$$\sin \theta = \frac{c_{opp}}{i}$$

$$\tan\theta = \frac{c_{opp}}{c_{adi}}$$

Scomposizione di un vettore $a_x = a\cos\theta$ $a_y = a\sin\theta$

$$a_v = a \sin \theta$$

Forma cartesiana di un vettore $\ \vec{a}=a_{x}\hat{i}+a_{y}\hat{j}$

Modulo di un vettore, note le componenti (Pitagora) $a=\sqrt{(a_{\scriptscriptstyle X})^2+(a_{\scriptscriptstyle Y})^2}$

Direzione di un vettore $\theta = \arctan\left(\frac{a_y}{a_y}\right)$

Somma tra vettori, forma cartesiana $\vec{a} + \vec{b} = (a_x + b_x)\hat{i} + (a_y + b_y)\hat{j}$

Differenza tra vettori, forma cartesiana $\ \vec{a}-\vec{b}=(a_{\scriptscriptstyle X}-b_{\scriptscriptstyle X})\hat{i}+(a_{\scriptscriptstyle Y}-b_{\scriptscriptstyle Y})\hat{j}$

Prodotto di uno scalare per un vettore, forma cartesiana $k\vec{a}=(ka_{x})\hat{i}+(ka_{y})\hat{j}$

Prodotto scalare, forma polare $\vec{a} \cdot \vec{b} = ab \cos \theta$

Prodotto vettoriale, forma polare $|\vec{a} \times \vec{b}| = ab \sin \theta$, direzione perpendicolare al piano formato da \vec{a} e \vec{b}

2 **Misura**

Costanti fisiche fondamentali

Nome	Simbolo e valore
velocità della luce nel vuoto	$c=3,00\times10^{8}\mathrm{m/s}$
costante dielettrica del vuoto	$arepsilon_0=8$, $85 imes10^{-12}$ C $^2/$ N \cdot m 2
costante di Coulomb	$k_0 = 8,99 imes 10^9 extstyle N \cdot m^2/C^2$
permeabilità magnetica del vuoto	$\mu_0=4\pi imes 10^{-7}$ N/A 2
carica elementare	$e=$ 1, 60 $ imes$ 10 $^{-19}$ C
costante di Planck	$h = 6,63 \times 10^{-34} J \cdot s$

1

Meccanica 3

3.1 Definizioni fondamentali

Densità di un corpo $d = \frac{m}{V}$ $\left[\frac{kg}{m^3}\right]$

Velocità media
$$\overline{v} = \frac{\Delta s}{\Delta t}$$
 $\left[\frac{m}{s}\right]$

Velocità istantanea
$$v(t) = \lim_{\Delta t \to 0} \frac{\Delta s}{\Delta t} = \frac{ds}{dt} = s'(t)$$

Conversione tra
$$m/s$$
 e km/h $\frac{km}{h} \xrightarrow{:3,6} \frac{m}{s}$ $\frac{m}{s} \xrightarrow{:3,6} \frac{km}{h}$

Accelerazione media
$$\bar{a} = \frac{\Delta v}{\Delta t}$$
 $\left[\frac{m}{s^2}\right]$

Accelerazione istantanea
$$a(t) = \lim_{\Delta t \to 0} \frac{\Delta v}{\Delta t} = \frac{dv}{dt} = v'(t) = s''(t)$$

3.2 Cinematica

Leggi del moto rettilineo uniforme
$$s(t) = vt + s_0$$
 $v(t) = s'(t) = v$

Leggi del moto accelerato
$$s(t)=\frac{1}{2}at^2+v_0t+s_0$$
 $v(t)=s'(t)=at+v_0$

Frequenza del moto circolare
$$f = \frac{1}{T}$$
 $[s^{-1}] = [Hz]$

Velocità angolare (pulsazione) del moto circolare
$$\omega = \frac{\Delta \alpha}{\Delta t} = \frac{2\pi}{T} = 2\pi f$$
 $\left[\frac{rad}{s}\right]$

Velocità tangenziale
$$v = \omega r$$

$$\left[\frac{m}{s}\right]$$

Accelerazione centripeta
$$a_c = \omega^2 r$$
 $\left[\frac{m}{s^2}\right]$

Forza centripeta
$$F_c = ma_c$$
 [N

Legge del moto armonico
$$s(t) = A\cos(\omega t)$$

3.3 Dinamica ed energia

Secondo principio della dinamica (legge fondamentale della dinamica) $\vec{F} = m\vec{a}$ [N]

Condizione di equilibrio per corpi puntiformi $\; \sum \vec{F} = 0 \;$

Forza peso
$$\vec{P}=m\vec{g}$$

Attrito statico
$$F_{A max} = \mu F_{premente}$$

Forza di richiamo di una molla (legge di Hooke) $\vec{F}=k\Delta\vec{x}$

Definizione di lavoro
$$L = \vec{F} \cdot \vec{s} = Fs \cos \theta$$
 [J]

Il lavoro è una variazione di energia $L = \Delta U$

Potenza media
$$\overline{P} = \frac{\Delta U}{\Delta t} = \frac{L}{\Delta t}$$
 [W]

Energia cinetica di traslazione
$$K = \frac{1}{2}mv^2$$
 [J]

Energia potenziale gravitazionale
$$U_g = mgh$$
 [J]

Quantità di moto $\vec{p} = m\vec{v}$ $\left[kg \cdot \frac{m}{s}\right]$

Legge di gravitazione universale $F = G \frac{m_1 m_2}{r^2}$

Accelerazione di gravità sulla superficie della Terra g=9, $81\frac{m}{s^2}$

Pressione $p = \frac{F}{S}$ [Pa]

4 Termodinamica

Conversione Celsius-kelvin $T_K = T_{^{\circ}C} + 273$ $T_{^{\circ}C} = T_K - 273$

Legge fondamentale della calorimetria $Q = cm\Delta T$

Primo principio della termodinamica $\ \Delta U = Q - L$

5 Onde

Frequenza $f = \frac{1}{T}$ $[s^{-1}] = [Hz]$

Pulsazione dell'onda $\ \omega = \frac{2\pi}{T} = 2\pi f \qquad \qquad \left[\frac{rad}{s}\right]$

Velocità di propagazione dell'onda $v=rac{\lambda}{T}=\lambda f$ $\left[rac{m}{s}
ight]$

Legge oraria delle onde in un punto fissato $y=a\cos\left(rac{2\pi}{T}t+arphi_0
ight)=a\cos\left(\omega t+arphi_0
ight)$

Indice di rifrazione di un mezzo materiale $n = \frac{c}{v}$

Legge della rifrazione (legge di Snell) $\frac{\sin \hat{i}}{\sin \hat{r}} = \frac{n_2}{n_1}$

Riflessione totale, angolo limite $\sin \hat{i}_{lim} = \frac{n_2}{n_1}$ $\hat{i}_{lim} = \arcsin \left(\frac{n_2}{n_1}\right)$

6 Fenomeni elettrici e magnetici

 $\textbf{Legge di Coulomb} \ \ F = k_0 \frac{q_1 q_2}{r^2}$

Costante elettrica del vuoto $k_0=8,99\times 10^9\,\frac{\textit{N}\cdot\textit{m}^2}{\textit{C}^2}$

Costante dielettrica del vuoto $\varepsilon_0=8$, $85\times 10^{-12}\,\frac{C^2}{N\cdot m^2}$ $k_0=\frac{1}{4\pi\varepsilon_0}$

Definizione di campo elettrico $\ \vec{E} = rac{\vec{F}}{q_P} \qquad \left[rac{N}{C}
ight]$

Campo elettrico generato da una carica puntiforme $E(r) = k_0 \frac{Q}{r^2}$

Forza subita da una carica in un campo elettrico $\vec{F} = q\vec{E}$ [N]

Flusso del campo elettrico $\Phi_S(E) = \vec{E} \cdot \vec{S} = ES \cos \theta$ $\left[\frac{N \cdot m^2}{C}\right]$

Teorema di Gauss per il campo elettrico $\Phi_S(E) = rac{Q_{tot}}{arepsilon_0}$

Energia potenziale elettrica di un sistema di due cariche $U=k_0 \frac{q_1 q_2}{r}$

Potenziale elettrico $V_A = \frac{U_A}{a_B}$ [V]

Energia acquistata/perduta da una carica sottoposta a tensione $\Delta U = q \cdot \Delta V$

Differenza di potenziale (tensione) tra i punti ${\it A}$ e ${\it B}$ $\Delta V_{AB} = - \vec{E} \cdot \vec{s}$

Potenziale elettrico generato da una carica Q a distanza r $V(r) = k_0 \frac{Q}{r}$

Circuitazione del campo elettrico $\Gamma_{\mathscr{L}}(E) = \sum_i \vec{E}_i \cdot \Delta \vec{\ell}_i = \sum_i E_i \Delta \ell_i \cos \theta_i$

Capacità di un condensatore $C = \frac{Q}{\Delta V}$ [F]

Capacità totale per condensatori in parallelo $C_{tot} = C_1 + C_2 + \ldots + C_n$

Capacità totale per condensatori in serie $\frac{1}{C_{tot}} = \frac{1}{C_1} + \frac{1}{C_2} + \ldots + \frac{1}{C_n}$

Intensità media di corrente $i = \frac{\Delta q}{\Delta t}$ [A]

Intensità istantanea di corrente $i(t) = \lim_{\Delta t \to 0} \frac{\Delta q}{\Delta t} = \frac{dq}{dt} = q'(t)$

Prima legge di Ohm $i = \frac{\Delta V}{R}$

Resistenza totale per resistori in parallelo $\frac{1}{R_{tot}} = \frac{1}{R_1} + \frac{1}{R_2} + \ldots + \frac{1}{R_n}$

Resistenza totale per resistori in serie $R_{tot} = R_1 + R_2 + \ldots + R_n$

Potenza dissipata da una resistenza $P = i\Delta V = i^2 R$ [W]

Energia dissipata per effetto Joule $L = \Delta U = P\Delta t$ [J]

Elettronvolt $1 \, eV = 1$, $60 \times 10^{-19} \, J$

Legge di Ampère $F = \frac{\mu_0}{2\pi} \cdot \frac{i_1 i_2}{d} \cdot L$

Permeabilità magnetica del vuoto $~\mu_0 = 4\pi imes 10^{-7} \, rac{\it N}{\it A^2}$

Forza subita da un filo in un campo magnetico $\, ec{\it F} = i ec{\ell} imes ec{\it B} \,$

Legge di Biot-Savart $B = \mu_0 \frac{i}{2\pi r}$ [T]

Forza di Lorentz $\vec{F} = q\vec{v} \times \vec{B}$

Flusso del campo magnetico $\Phi_S(B) = \vec{B} \cdot \vec{S} = BS \cos \theta$ [Wb]

Teorema di Gauss per il campo magnetico $\Phi_S(B) = 0$

Circuitazione del campo magnetico $\Gamma_{\mathscr{L}}(B) = \sum_i \vec{B}_i \cdot \Delta \vec{\ell}_i = \sum_i B_i \Delta \ell_i \cos \theta_i$

Teorema di Ampère $\Gamma_{\mathscr{L}}(B) = \mu_0 \sum i_{concatenate}$

Legge di Faraday-Neumann-Lenz, fem indotta media $f_{em\,ind} = -rac{\Delta \Phi(B)}{\Delta t}$

Fem indotta istantanea $f_{em}(t) = \lim_{\Delta t \to 0} -\frac{\Delta \Phi(B)}{\Delta t} = -\frac{d\Phi(B)}{dt} = -\Phi'(t)$

Induttanza $L = \frac{\Phi(B)}{i}$ [H]

Autoinduzione $f_{em\,auto} = -rac{\Delta \Phi(B)}{\Delta t} = -Lrac{\Delta i}{\Delta t}$

Forza elettromotrice in corrente alternata $f_{em}(t) = f_{em0} \cdot \sin(\omega t)$

Corrente in regime alternato $i(t) = i_0 \cdot \sin(\omega t)$

Valori efficaci in corrente alternata $i_{efficace} = \frac{i_0}{\sqrt{2}}$ $f_{em\,efficace} = \frac{f_{em\,0}}{\sqrt{2}}$

Potenza media prodotta in corrente alternata $\overline{P} = f_{em\,eff} \cdot i_{eff}$

Trasformatori $\frac{f_{em \, eff2}}{f_{em \, eff1}} = \frac{n_2}{n_1}$ $\overline{P}_1 = f_{em \, eff1} \cdot i_{eff1} = f_{em \, eff2} \cdot i_{eff2} = \overline{P}_2$

Circuitazione del campo elettrico indotto (FNL) $\Gamma_{\mathscr{L}}(E) = -\frac{\Delta \Phi_{S}(B)}{\Delta t}$

Corrente di spostamento $i_s = \varepsilon_0 \frac{\Delta \Phi_S(E)}{\Delta t}$ [A]

Equazioni nel caso statico $\Phi_S(E) = \frac{Q}{\varepsilon_0}; \quad \Phi_S(B) = 0; \quad \Gamma_{\mathscr{L}}(E) = 0; \quad \Gamma_{\mathscr{L}}(B) = \mu_0 \sum_i i_{conc}$

Equazioni generali $\Phi_S(E) = \frac{Q}{\varepsilon_0}$; $\Phi_S(B) = 0$; $\Gamma_{\mathscr{L}}(E) = -\frac{\Delta\Phi_S(B)}{\Delta t}$; $\Gamma_{\mathscr{L}}(B) = \mu_0 \left(i + i_s\right)$.

Velocità di un'onda elettromagnetica nel vuoto $~c=rac{1}{\sqrt{arepsilon_0\cdot\mu_0}}\simeq$ 3, 0 imes $10^8~m/s$

Frequenza e lunghezza d'onda $\lambda = cf$

Ampiezze di E e di B E = cB

7 Fisica moderna

Coefficiente di dilatazione (fattore di Lorentz) $\gamma = \frac{1}{\sqrt{1-\beta^2}}$ con $\beta = \frac{v}{c}$

Dilatazione dei tempi $\Delta t' = \gamma \Delta t$

Contrazione delle lunghezze parallele al moto $\Delta x' = v \Delta t' = \frac{\Delta x}{\gamma}$

Composizione relativistica delle velocità $u'=\dfrac{u-v}{1-\dfrac{uv}{c^2}}$

Effetto Doppler relativistico $\ f'=f\sqrt{rac{1\pmoldsymbol{eta}}{1\mpoldsymbol{eta}}}$

Equivalenza massa-energia $\Delta m = \frac{\Delta E}{c^2}$

Energia di quiete $E = m_0 c^2$

Massa relativistica $m = \gamma m_0$

Energia totale di una particella relativistica (relazione di Einstein) $E=\gamma m_0c^2=mc^2$

Energia cinetica relativistica $K_r = (\gamma - 1)m_0c^2$

Quantità di moto relativistica $\ \vec{p_r} = m \vec{v} = \gamma m_0 \vec{v}$

Quantità di moto della luce $p = \frac{E}{c}$

Costante di Planck $h = 6,63 \times 10^{-34} \, J \cdot s$

Energia di un fotone E = hf

Relazione di De Broglie $\lambda = \frac{h}{p}$

Costante di Planck ridotta $\,\hbar = rac{h}{2\pi} \simeq 10^{-34}\, J \cdot s\,$

Principio di indeterminazione di Heisenberg $\Delta x \Delta p \simeq \hbar$ $\Delta t \Delta E \simeq \hbar$