0.1 Preserved Superconformal Algebra

0.1.1 Even Subalgebra

The even subalgebra of $\mathfrak{psu}(2,2|4)$ is $\mathfrak{b}=\mathfrak{so}(5,1)\oplus\mathfrak{su}(4)$ which we take to be generated by $M^{\mu\nu}, K_{\mu}, P^{\mu}, E$ with $\mu, \nu=1,2,3,4$ and $R_I^J, I,J=1,2,3,4$. The Cartans of $\mathfrak{su}(4)$ are $R_i=R_i^i-R_{i+1}^{i+1}$ with i=1,2,3. We wish to discuss which generators are preserved by the S-folding/discrete gauging procedure. Recall that $SL(2,\mathbb{Z})$ transformations can be defined such that they commute with the generators of \mathfrak{b} [?]. In particular $[s_k,\mathfrak{b}]=0$. Hence s_k acts non-trivially only on the fermionic subalgebra which we will discuss momentarily. Hence the subalgebra of \mathfrak{b} preserved by the S-folding/discrete gauging is simply the centraliser of $r_k=\frac{R_1}{2}+R_2+\frac{3R_3}{2}=\frac{1}{2}\sum_{i=1}^3 R_i^i-\frac{3}{2}R_4^4$ modulo k in \mathfrak{b} . Clearly $[r_k,\mathfrak{so}(5,1)]=0$. On the other hand, using $R_I^J, R_Q^D=\delta_Q^J R_I^D-\delta_I^D R_Q^J$ it can be shown that

$$[r_k, R_I^J] = \begin{cases} 0 & I, J \in \{1, 2, 3\}, \\ 0 & I = J = 4, \\ 2R_I^4 & I \in \{1, 2, 3\}, J = 4, \\ -2R_4^J & I = 4, J \in \{1, 2, 3\}. \end{cases}$$
 (1)

Therefore, the subalgebra of $\mathfrak{su}(4)$ preserved by $r_{k\geqslant 3}$ are given by the R_I^J with I,J=1,2,3 and R_4^4 . These generators span a $\mathfrak{su}(3)\oplus\mathfrak{u}(1)$ algebra. Note however that, since we quotient by $e^{\frac{2\pi i}{k}r_k+s_k}$, when k=1,2 the full $\mathfrak{su}(4)$ is preserved.

0.1.2 Odd Subalgebra

The odd subalgebra of $\mathfrak{psu}(2,2|4)$ is spanned by nilpotent generators (supercharges) which sit in representations of the bosonic subalgebra \mathfrak{b} . Any representation of \mathfrak{b} can be decomposed into representations of a maximal compact subalgebra $\mathfrak{u}(1)_E \oplus \mathfrak{su}(2)_1 \oplus \mathfrak{su}(2)_2 \oplus \mathfrak{su}(4)$. The supercharges are then given by

$$Q_{\alpha}^{I} \in \left(\frac{1}{2}, \mathbf{2}, \mathbf{1}, \mathbf{4}\right), \quad \widetilde{Q}_{\dot{\alpha}I} \in \left(\frac{1}{2}, \mathbf{1}, \mathbf{2}, \overline{\mathbf{4}}\right),$$
 (2)

$$S_I^{\alpha} \in \left(-\frac{1}{2}, \overline{\mathbf{2}}, \mathbf{1}, \overline{\mathbf{4}}\right), \quad \widetilde{S}^{\dot{\alpha}I} \in \left(-\frac{1}{2}, \mathbf{1}, \overline{\mathbf{2}}, \mathbf{4}\right).$$
 (3)

The action on the supercharges is then given by

$$[r_k, \mathcal{Q}_{\alpha}^I] = \begin{cases} \mathcal{Q}_{\alpha}^I & I = 1, 2, 3\\ -3\mathcal{Q}_{\alpha}^4 & I = 4 \end{cases}, \quad [r_k, \widetilde{\mathcal{Q}}_{\dot{\alpha}I}] = \begin{cases} -\widetilde{\mathcal{Q}}_{\dot{\alpha}I} & I = 1, 2, 3\\ 3\widetilde{\mathcal{Q}}_{\dot{\alpha}4} & I = 4 \end{cases}, \tag{4}$$

$$[r_k, \mathcal{S}_I^{\alpha}] = \begin{cases} -\mathcal{S}_{\alpha}^I & I = 1, 2, 3\\ 3\mathcal{S}_{\alpha}^4 & I = 4 \end{cases}, \quad [r_k, \widetilde{\mathcal{S}}^{\dot{\alpha}I}] = \begin{cases} \widetilde{\mathcal{S}}_{\dot{\alpha}I} & I = 1, 2, 3\\ -3\widetilde{\mathcal{S}}_{\dot{\alpha}4} & I = 4 \end{cases}, \tag{5}$$

On the other hand, s_k acts on the supercharges by [?, ?, ?]

$$[s_k, \mathcal{Q}^I_{\alpha}] = -\mathcal{Q}^I_{\alpha}, \quad [s_k, \widetilde{\mathcal{Q}}_{\dot{\alpha}I}] = \widetilde{\mathcal{Q}}_{\dot{\alpha}I},$$
 (6)

$$[s_k, \mathcal{S}_I^{\alpha}] = \mathcal{S}_I^{\alpha}, \quad [r_k, \widetilde{\mathcal{S}}^{\dot{\alpha}I}] = -\widetilde{\mathcal{S}}_{\dot{\alpha}I}.$$
 (7)

Therefore, for $k \geq 3$, quotienting by $e^{\frac{2\pi i}{k}(r_k+s_k)} \in \mathbb{Z}_k$ preserves 12 Poincaré supercharges and 12 conformal supercharges giving rise to $\mathcal{N}=3$ superconformal symmetry in four dimensions. All in all, for $k \geq 3$, a full $\mathfrak{su}(2,2|3) \subset \mathfrak{psu}(2,2|4)$ superconformal algebra is preserved.

0.2 Indices of $\mathfrak{su}(2,2|2)$ Multiplets

Long multiplets $\mathcal{A}_{R,r,(j_1,j_2)}^E$ are generic, unitary, modules of the $\mathfrak{su}(2,2|2)$ superconformal algebra. The multiplets are labelled by the values of the highest weight state (superconformal primary) (E,R,r,j_1,j_2) under the maximal bosonic subalgebra (??). When the some of representation labels take on certain values the superconformal primary is annihilated by (linear combinations of) some of the supercharges \mathcal{Q}_{α}^{I} , $\widetilde{\mathcal{Q}}_{\alpha I}$ and the multiplet is said to be shortened. The superconformal index (??) counts short multiplets modulo those that can recombine into long multiplets. The recombination rules are given by [?]

$$\mathcal{A}_{R,r,(j_1,j_2)}^{2R+r+2j_1+2} \cong \mathcal{C}_{R,r,(j_1,j_2)} \oplus \mathcal{C}_{R+\frac{1}{2},r+\frac{1}{2},(j_1-\frac{1}{2},j_2)}, \tag{8}$$

$$\mathcal{A}_{R,r,(j_1,j_2)}^{2R-r+2j_2+2} \cong \overline{\mathcal{C}}_{R,r,(j_1,j_2)} \oplus \overline{\mathcal{C}}_{R+\frac{1}{2},r-\frac{1}{2},(j_1,j_2-\frac{1}{2})}, \tag{9}$$

$$\mathcal{A}_{R,j_{1}-j_{2},(j_{1},j_{2})}^{2R+j_{1}+j_{2}+2} \cong \hat{\mathcal{C}}_{R,(j_{1},j_{2})} \oplus \hat{\mathcal{C}}_{R+\frac{1}{2},(j_{1}-\frac{1}{2},j_{2})} \oplus \hat{\mathcal{C}}_{R+\frac{1}{2},(j_{1},j_{2}-\frac{1}{2})} \oplus \hat{\mathcal{C}}_{R+\frac{1}{2},(j_{1},j_{2}-\frac{1}{2})}$$

$$\oplus \hat{\mathcal{C}}_{R+1,(j_{1}-\frac{1}{2},j_{2}-\frac{1}{2})}.$$

$$(10)$$

By formally allowing the j_1, j_2 to take on the value $-\frac{1}{2}$ we can write

$$C_{R,r,(-\frac{1}{2},j_2)} \cong \mathcal{B}_{R+\frac{1}{2},r+\frac{1}{2},(0,j_2)}, \quad \overline{C}_{R,r,(j_1,-\frac{1}{2})} \cong \overline{\mathcal{B}}_{R+\frac{1}{2},r-\frac{1}{2},(j_1,0)},$$
 (11)

$$\hat{\mathcal{C}}_{R,(-\frac{1}{2},j_2)} \cong \mathcal{D}_{R+\frac{1}{2},(0,j_2)}, \quad \hat{\mathcal{C}}_{R,(j_1,-\frac{1}{2})} \cong \overline{\mathcal{D}}_{R+\frac{1}{2},(j_1,0)}, \tag{12}$$

$$\hat{\mathcal{C}}_{R,(-\frac{1}{2},-\frac{1}{2})} \cong \mathcal{D}_{R+\frac{1}{2},(0,-\frac{1}{2})} \cong \overline{\mathcal{D}}_{R+\frac{1}{2},(-\frac{1}{2},0)} \cong \hat{\mathcal{B}}_{R+1}, \tag{13}$$

for $R \ge 0$. Equations (8)-(13) constitute the most general recombination rules for any unitary $\mathcal{N}=2$ SCFT. We have that

$$\mathcal{I}_{\mathcal{E}_{r,(0,j_2)}} = t^{2r} (pq)^r \frac{1 - t(pq)^{-1} \chi_1(y) + t^2(pq)^{-2}}{(-1)^{2j_2} (1 - t^3 y)(1 - t^3 y^{-1})} \chi_{2j_2}(y) \quad r \geqslant 2,$$
(14)

$$\mathcal{I}_{\mathcal{D}_{0,(0,j_2)}} = \frac{pqt^2\chi_{2j_2}(y) - t^3\chi_{2j_2+1}(y) - t^5pq\chi_{2j_2-1}(y) + t^6\chi_{2j_2}(y)}{(-1)^{2j_2}(1 - t^3y)(1 - t^3y^{-1})}, \qquad (15)$$

Shortening Conditions				Multiplet
\mathcal{B}_1	$Q_{1\alpha} R,r\rangle^{h.w.}=0$	$j_1 = 0$	E = 2R + r	$\mathcal{B}_{R,r(0,j_2)}$
$\overline{\mathcal{B}}_2$	$\widetilde{\mathcal{Q}}_{2\dot{\alpha}} R,r\rangle^{h.w}=0$	$j_2 = 0$	E = 2R - r	$\overline{\mathcal{B}}_{R,r(j_1,0)}$
\mathcal{E}	$\mathcal{B}_1 \cap \mathcal{B}_2$	R = 0	E = r	$\mathcal{E}_{r(0,j_2)}$
$\overline{\mathcal{E}}$	$\overline{\mathcal{B}}_1 \cap \overline{\mathcal{B}}_2$	R = 0	E = -r	$\overline{\mathcal{E}}_{r(j_1,0)}$
$\hat{\mathcal{B}}$	$\mathcal{B}_1 \cap \overline{\mathcal{B}}_2$	$r = 0, j_1, j_2 = 0$	E = 2R	$\hat{\mathcal{B}}_R$
C_1	$\epsilon^{\alpha\beta} \mathcal{Q}_{1\beta} R, r \rangle_{\alpha}^{h.w.} = 0$		$E = 2 + 2j_1 + 2R + r$	$\mathcal{C}_{R,r(j_1,j_2)}$
	$(Q_1)^2 R, r\rangle^{h.w.} = 0 \text{ for } j_1 = 0$		E = 2 + 2R + r	$\mathcal{C}_{R,r(0,j_2)}$
$\overline{\mathcal{C}}_2$	$\epsilon^{\dot{\alpha}\dot{eta}}\widetilde{\mathcal{Q}}_{2\dot{eta}} R,r\rangle_{\dot{lpha}}^{h.w.}=0$		$E = 2 + 2j_2 + 2R - r$	$\overline{\mathcal{C}}_{R,r(j_1,j_2)}$
	$(\widetilde{\mathcal{Q}}_2)^2 R,r\rangle^{h.w.} = 0 \text{ for } j_2 = 0$		E = 2 + 2R - r	$\overline{\mathcal{C}}_{R,r(j_1,0)}$
	$\mathcal{C}_1 \cap \mathcal{C}_2$	R = 0	$E = 2 + 2j_1 + r$	$\mathcal{C}_{0,r(j_1,j_2)}$
	$\overline{\mathcal{C}}_1 \cap \overline{\mathcal{C}}_2$	R = 0	$E = 2 + 2j_2 - r$	$\overline{\mathcal{C}}_{0,r(j_1,j_2)}$
$\hat{\mathcal{C}}$	$\mathcal{C}_1 \cap \overline{\mathcal{C}}_2$	$r = j_2 - j_1$	$E = 2 + 2R + j_1 + j_2$	$\hat{\mathcal{C}}_{R(j_1,j_2)}$
	$\mathcal{C}_1 \cap \mathcal{C}_2 \cap \overline{\mathcal{C}}_1 \cap \overline{\mathcal{C}}_2$	$R = 0, r = j_2 - j_1$	$E = 2 + j_1 + j_2$	$\hat{\mathcal{C}}_{0(j_1,j_2)}$
\mathcal{D}	$\mathcal{B}_1 \cap \overline{\mathcal{C}}_2$	$r = j_2 + 1$	$E = 1 + 2R + j_2$	$\mathcal{D}_{R(0,j_2)}$
$\overline{\mathcal{D}}$	$\overline{\mathcal{B}}_2 \cap \mathcal{C}_1$	$-r = j_1 + 1$	$E = 1 + 2R + j_1$	$\overline{\mathcal{D}}_{R(j_1,0)}$
	$\mathcal{E} \cap \overline{\mathcal{C}}_2$	$r = j_2 + 1, R = 0$	$E = r = 1 + j_2$	$D_{0,(0,j_2)}$
	$\overline{\mathcal{E}} \cap \mathcal{C}_1$	$-r = j_1 + 1, R = 0$	$E = -r = 1 + j_1$	$\overline{\mathcal{D}}_{0,(j_1,0)}$

Table 1: Shortening conditions and short multiplets $\mathfrak{su}(2,2|2).$

$$\mathcal{I}_{\overline{D}_{0,(j_1,0)}} = \frac{t^{4j_1+4}}{(pq)^{j_1+1}} \frac{1 - (pq)t^2}{(-1)^{2j_1+1}(1-t^3y)(1-t^3y^{-1})},$$
(16)

$$\mathcal{I}_{\mathcal{C}_{R,r(j_1,j_2)}} = \frac{t^{4+4R+6j_1+2r}}{(pq)^{R+1-r}} \frac{\left(1-t^2pq\right)\left(t^2pq-t^3\chi_1(y)+\frac{t^4}{pq}\right)}{\left(-1\right)^{2j_1+2j_2+1}\left(1-t^3y\right)\left(1-t^3y^{-1}\right)} \chi_{2j_2}(y), \qquad (17)$$

$$\mathcal{I}_{\hat{C}_{R(j_1,j_2)}} = \frac{t^{6+4R+4j_1+2j_2}}{(pq)^{R+j_1-j_2}} \frac{\left(1-t^2pq\right)\left(\frac{t}{pq}\chi_{2j_2+1}(y)-\chi_{2j_2}(y)\right)}{(-1)^{2j_1+2j_2}(1-t^3y)(1-t^3y^{-1})},\tag{18}$$

$$\mathcal{I}_{\overline{\mathcal{E}}_{r,(j_1,0)}} = \mathcal{I}_{\mathcal{E}_{0,(0,0)}} = \mathcal{I}_{\overline{\mathcal{C}}_{R,r(j_1,j_2)}} = \mathcal{I}_{\mathcal{A}_{R,r(j_1,j_2)}^E} = 0.$$
 (19)

These may be obtained from [?] by conjugation (exchanging $r \to -r$, $j_1 \leftrightarrow j_2$) and setting $\tau = t^2(pq)^{-1/2}$, $\sigma = ty(pq)^{1/2}$, $\rho = ty^{-1}(pq)^{1/2}$. By applying (??)-(??) in combination with (11)-(19) one can compute the contribution to the index of the $\mathfrak{su}(2,2|3)$ multiplets of $\hat{\mathcal{B}}_{[R_1,R_2]}$.

0.3 Reduction to Three Dimensions.

Let us define $\mathfrak{q}=e^{-\beta}$ where β is the radii of the \mathbb{S}^1 factor. Following [?, ?, ?] let us write

$$t = \mathfrak{q}^{1/3}, \quad y = \mathfrak{q}^{\eta}, \quad p = \mathfrak{q}^{\rho}, \quad q = \mathfrak{q}^{\gamma}.$$
 (20)

We can rewrite the Elliptic Gamma functions as

$$\Gamma\left(\mathfrak{q}^{\alpha};\mathfrak{q}^{1+\eta},\mathfrak{q}^{1-\eta}\right) = \prod_{n=0}^{\infty} \frac{\left[-\alpha + 2 + n(1+\eta) + m(1-\eta)\right]_{\mathfrak{q}}}{\left[\alpha + n(1+\eta) + m(1-\eta)\right]_{\mathfrak{q}}} \tag{21}$$

where $[n]_{\mathfrak{q}} = (1-\mathfrak{q}^n)/(1-\mathfrak{q})$ is the q-number. The q-number satisfies $\lim_{\mathfrak{q}\to 1} [n]_{\mathfrak{q}} = n$. The $\beta\to 0$ limit corresponds to $\mathfrak{q}\to 1$. Therefore

$$\lim_{\mathfrak{q} \to 1} \Gamma\left(\mathfrak{q}^{\alpha}; \mathfrak{q}^{1+\eta}, \mathfrak{q}^{1-\eta}\right) = \prod_{n,m=0}^{\infty} \frac{-\alpha + 2 + n(1+\eta) + m(1-\eta)}{\alpha + n(1+\eta) + m(1-\eta)}.$$
 (22)

We define $\eta = (1 - b^2)/(1 + b^2)$. We then have

$$\lim_{\mathfrak{q} \to 1} \Gamma\left(\mathfrak{q}^{\alpha}; \mathfrak{q}^{1+\eta}, \mathfrak{q}^{1-\eta}\right) = s_b\left(\frac{\mathrm{i}Q}{2}(1-\alpha)\right). \tag{23}$$

where $Q = b + b^{-1}$ and $s_b(x)$ is the double sine function. Let us now discuss the limit applied to the index $(\ref{eq:condition})$. We may rewrite $(\ref{eq:condition})$ as

$$\mathcal{I}_{\mathbb{Z}_{k}}^{\mathfrak{u}(1)}(t, y, p, q) = \frac{1}{k} \sum_{l=0}^{k-1} \left\{ \Gamma\left(\mathfrak{q}^{2/3 + \rho + \gamma - \frac{2\pi i l}{k\beta}}; \mathfrak{q}^{1+\eta}, \mathfrak{q}^{1-\eta}\right) \right. \\
\times \Gamma\left(\mathfrak{q}^{2/3 + \gamma - \rho - \frac{2\pi i l}{k\beta}}; \mathfrak{q}^{1+\eta}, \mathfrak{q}^{1-\eta}\right) \Gamma\left(\mathfrak{q}^{2/3 - 2\gamma + \frac{2\pi i l}{k\beta}}; \mathfrak{q}^{1+\eta}, \mathfrak{q}^{1-\eta}\right) \\
\times \prod_{n,m=0}^{\infty} \frac{\left[-\frac{2\pi i l}{k\beta} + (n+1)(1+\eta) + m(1-\eta)\right]_{\mathfrak{q}}}{\left[-\frac{2\pi i l}{k\beta} + n(1+\eta) + m(1-\eta) + 2\right]_{\mathfrak{q}}} \right\} \\
\times \prod_{n,m=0}^{\infty} \frac{\left[-\frac{2\pi i l}{k\beta} + n(1+\eta) + (m+1)(1-\eta)\right]_{\mathfrak{q}}}{\left[\frac{2\pi i l}{k\beta} + n(1+\eta) + m(1-\eta) + 2\right]_{\mathfrak{q}}} \right\}.$$
(24)

It is useful to consider splitting the sum over l = 0, 1, ..., k-1 in order to isolate the l = 0 term as follows

$$\mathcal{I}_{\mathbb{Z}_{k}}^{\mathrm{u}(1)}(t,y,p,q) = \frac{1}{k} \sum_{l=1}^{k-1} \left\{ \Gamma\left(\mathfrak{q}^{2/3+\gamma-\rho-\frac{2\pi\mathrm{i}l}{k\beta}};\mathfrak{q}^{1+\eta},\mathfrak{q}^{1-\eta}\right) \times \frac{\Gamma\left(\mathfrak{q}^{2/3-2\gamma+\frac{2\pi\mathrm{i}l}{k\beta}};\mathfrak{q}^{1+\eta},\mathfrak{q}^{1-\eta}\right) \Gamma\left(\mathfrak{q}^{2/3+\rho+\gamma-\frac{2\pi\mathrm{i}l}{k\beta}};\mathfrak{q}^{1+\eta},\mathfrak{q}^{1-\eta}\right)}{\prod_{n=0}^{\infty} \left[-\frac{2\pi\mathrm{i}l}{k\beta} + n(1-\eta) \right]_{\mathfrak{q}} \left[-\frac{2\pi\mathrm{i}l}{k\beta} + n(1+\eta) \right]_{\mathfrak{q}}} \right] \\
= \prod_{n,m=0}^{\infty} \frac{\left[-\frac{2\pi\mathrm{i}l}{k\beta} + n(1+\eta) + m(1-\eta) \right]_{\mathfrak{q}}}{\left[-\frac{2\pi\mathrm{i}l}{k\beta} + n(1+\eta) + m(1-\eta) + 2 \right]_{\mathfrak{q}}} \\
= \prod_{n,m=0}^{\infty} \frac{\left[-\frac{2\pi\mathrm{i}l}{k\beta} + n(1+\eta) + m(1-\eta) \right]_{\mathfrak{q}}}{\left[\frac{2\pi\mathrm{i}l}{k\beta} + n(1+\eta) + m(1-\eta) + 2 \right]_{\mathfrak{q}}} \\
+ \frac{1}{k} \frac{\Gamma\left(\mathfrak{q}^{2/3+\gamma-\rho};\mathfrak{q}^{1+\eta},\mathfrak{q}^{1-\eta}\right) \Gamma\left(\mathfrak{q}^{2/3-2\gamma};\mathfrak{q}^{1+\eta},\mathfrak{q}^{1-\eta}\right)}{\left[n(1+\eta) \right]_{\mathfrak{q}}} . \tag{25}$$

Due the form of the denominator in the second line it is clear that in the $\mathfrak{q} \to 1$ limit the factors with $l \neq 0$ vanish. Moreover, when $l \neq 0$ no regularisation is required. On the other hand the product from l = 0 requires regularisation. The usual prescription is simply to drop the overall infinite contribution [?], rendering the limit finite. This regularisation is of course independent of k. Moreover, following the presciprition of [?], we identify

$$\eta = \frac{1 - b^2}{1 + b^2}, \quad \gamma = \frac{1}{12} + \frac{\sigma}{iQ}, \quad \rho = \frac{1}{4} - \frac{\sigma}{iQ}.$$
(26)

Applying (23) we therefore have that

$$\lim_{q \to 1} \mathcal{I}_{\mathbb{Z}_k}^{\mathfrak{u}(1)}(t, y, p, q) = \frac{1}{k} s_b \left(\frac{iQ}{4} + \sigma \right) s_b \left(\frac{iQ}{4} - \sigma \right) . \tag{27}$$

0.4 Vanishing of \mathbb{Z}_n Anomalies

One possible obstruction to the ideas that we have discussed in this paper is the potential that the $\mathbb{Z}_n \subset SL(2,\mathbb{Z})$ has 't Hooft-anomaly. Since the symmetry is only emergent at strong coupling checking the \mathbb{Z}_n -anomalies is a non-trivial. In [?] Vafa and Witten studied the S-duality conjecture in topologically twisted $\mathcal{N}=4$ SYM with gauge group G with $Lie(G)=\mathfrak{g}$ simply laced on a four-manifold \mathcal{M} . The partition function for the topologically twisted theory is given by [?]

$$Z_G(\tau) = |Z(G)|^{b_1(\mathcal{M})-1} \sum_{v \in H^2(\mathcal{M}, \pi_1(G))} Z_v(\tau), \qquad (28)$$

with Z(G) the center of G and

$$Z_v(\tau) = e^{-2\pi i \tau s} \sum_{K \in \mathbb{Z} - \frac{1}{2} \langle v, v \rangle} \chi\left(\mathbf{M}_{K,v}\right) e^{2\pi i \tau K}, \quad \hat{Z}_v(\tau) := \eta(\tau)^{-w} Z_v(\tau), \tag{29}$$

where $v = w_2(P) \in H^2(\mathcal{M}, \pi_1(G))$ is the second Stiefel-Whitney class of the G-bundle P over $\mathcal{M}, \langle \cdot, \cdot \rangle$ the intersection form on $H^2(\mathcal{M}, \pi_1(G))$ and $\mathbf{M}_{K,v}$ is the moduli space of rank K anti-self-dual instantons on \mathcal{M} . Additionally [?, ?, ?, ?]

$$s = (\operatorname{rank} \mathfrak{g} + 1)\chi(\mathcal{M})/4, \quad w = -\chi(\mathcal{M}). \tag{30}$$

Under modular transformations (??) the partition function transforms as

$$\hat{Z}_v(\tau+1) = e^{-\pi i(2s+w/12+\langle v,v\rangle)} \hat{Z}_v(\tau), \qquad (31)$$

$$\hat{Z}_v\left(\frac{-1}{\tau}\right) = \pm \frac{1}{|Z(G)|^{b_2(\mathcal{M})/2}} \sum_{u \in H^2(\mathcal{M}, Z(G))} e^{2\pi i \langle v, u \rangle} \hat{Z}_u(\tau).$$
 (32)

Let $\mathcal{M} = \mathbb{S}^1 \times \mathbb{S}^3$. Its Poincaré polynomial is given by $P_{\mathbb{S}^1 \times \mathbb{S}^3}(x) = 1 + x + x^3 + x^4$ and therefore $b_2(\mathbb{S}^1 \times \mathbb{S}^3) = \chi(\mathbb{S}^1 \times \mathbb{S}^3) = 0$. By Poincaré duality $H^2(\mathbb{S}^1 \times \mathbb{S}^3) \cong H_2(\mathbb{S}^1 \times \mathbb{S}^3) = \{1\}$ in particular this fixes v = 0. Therefore, on $\mathcal{M} = \mathbb{S}^1 \times \mathbb{S}^3$, the partition function (28) satisfies

$$Z_G(\tau + 1) = Z_G\left(\frac{-1}{\tau}\right) = Z_G(\tau) = Z_{L_G}(\tau).$$
 (33)

Since the partition function (28) is fully $SL(2,\mathbb{Z})$ invariant, following the arguments of [?], we can conclude that on $\mathbb{S}^1 \times \mathbb{S}^3$ the $\mathbb{Z}_n \subset SL(2,\mathbb{Z})$ symmetries at τ fixed as in (??) of (twisted) $\mathcal{N} = 4$ SYM have vanishing 't Hooft anomaly. Therefore we expect that they can be consistently gauged.

0.5 S-Fold $\stackrel{?}{=}$ Discrete Gauging

In a few cases some of the theories that can be obtained from \mathbb{Z}_n discrete gauging of $\mathcal{N}=4$ SYM are equivalent to some of the theories $S_{k,\ell,p'}^N$. However, as we will now show, in most cases this is a possibility only when the parent S-fold theory $S_{k,\ell}^N$ has enhanced $\mathcal{N}=4$ supersymmetry. The strategy is simply to compute the possibilities which allow for $(\ref{eq:condition})$ to be equal to $(\ref{eq:condition})$. A more refined strategy, via the comparison of the $\frac{1}{8}$ -BPS partition functions has been employed in $[\ref{eq:condition}]$.

In the following we limit the discussion to only the connected part of the gauge group of the parent theories.

 $\mathfrak{g} = \mathfrak{u}(N)$ Equating (??) with (??) we have

$$N^2 = kN^2 + (2\ell - k - 1)N. (34)$$

This has solution only for $k = \ell = 1$ with N arbitrary $(S_{1,1}^N)$ and $N = \ell = 1$ with k arbitrary $(S_{k,1}^1)$. However, in both cases, the S-fold parent theory has an operator of dimension 1 and therefore supersymmetry is automatically enhanced to $\mathcal{N} = 4$ [?, ?]. Therefore, performing a $\mathbb{Z}_{p'}$ gauging to the S-fold parent is automatically equivalent to making a $\mathbb{Z}_n = \mathbb{Z}_{p'}$ discrete gauging to $\mathcal{N} = 4$ SYM with gauge algebra $\mathfrak{u}(1)$ since they are the same theory! In both cases, after the discrete gauging, we have the theory $S_{k,1,p'}^1$.

 $\mathfrak{g} = \mathfrak{su}(N+1) = A_N$ Equating (??) with (??) we have

$$N^{2} + 2N = kN^{2} + (2\ell - k - 1)N.$$
(35)

The only solutions are N=1 $\ell=2$ with k arbitrary, N=2 k=3 $\ell=1$ and N=3 k=2 $\ell=1$. The parent S-fold theory $S_{k,2}^1$ does not exist as an S-fold for $k\neq 2$ [?]. $S_{3,1}^2$ and $S_{2,1}^3$ do but they automatically enhance to $\mathcal{N}=4$ supersymmetry and are conjectured to be equivalent to the $\mathfrak{g}=\mathfrak{su}(3)$ and $\mathfrak{g}=\mathfrak{so}(6)$ $\mathcal{N}=4$ theories with gauge coupling $\tau=e^{\pi i/3}$ and $\tau=a$ any [?].

 $\mathfrak{g} = \mathfrak{so}(2N) = D_N$ Equating (??) with (??) gives

$$2N^{2} - N = kN^{2} + (2\ell - k - 1)N.$$
(36)

Again we have solution for $N = \ell = 1$, k arbitrary as well as for k = 2, $\ell = 1$ with N arbitrary. The first case is the same as for $\mathfrak{g} = \mathfrak{u}(1)$. For k = 2 we always have enhancement to $\mathcal{N} = 4$, in our language these theories are $S_{2,1}^N$.

 $\mathfrak{g} = \mathfrak{so}(2N+1) = B_N$ Equating (??) with (??)

$$2N^{2} + N = kN^{2} + (2\ell - k - 1)N.$$
(37)

Which has solution only for $k = \ell = 2$ with N arbitrary, N = 1 $\ell = 2$ with k arbitrary, k = 4 $\ell = 1$ N = 2 and k = 3 $\ell = 1$ N = 3. In the first three cases $S_{2,2}^N$, $S_{k,2}^1$ and $S_{4,1}^2$ always have enhancement to $\mathcal{N} = 4$ [?]. They have the correct spectrum of Coulomb branch operators to be equivalent to the $\mathfrak{g} = B_N$ or C_N , B_1 and $B_2 \cong C_2$ $\mathcal{N} = 4$ theories respectively. In the final case we find that the S-fold $S_{3,1}^3$ has the same central charges as the $\mathcal{N} = 4 \mathfrak{so}(7)$ theory. Clearly they are not the same theory, however due to the matching of central charges we cannot rule out the possibility that the discrete gauging $S_{3,1,p'}^3$ may yield the same theory as a $\mathbb{Z}_n = \mathbb{Z}_{p'}$ gauging of $\mathcal{N} = 4 \mathfrak{so}(7)$ theory. Our analysis (??) would seem to imply that this is infact not the case however, since the $S_{3,1}^3$ theory has a discrete \mathbb{Z}_3 global symmetry while the $\mathfrak{so}(7)$ theory can only have $\mathbb{Z}_2, \mathbb{Z}_4, \mathbb{Z}_8$ discrete symmetry groups.

 $\mathfrak{g} = \mathfrak{sp}(N) = C_N$ Since the degree of the Casimir invariants for $\mathfrak{sp}(N)$ are the same as for $\mathfrak{so}(2N+1)$ the discussion is the same as above.

$$\mathfrak{g} = E_6$$

$$78 = 36k + 6(2\ell - k - 1). \tag{38}$$

There is solution for $k=\ell=2$, the corresponding $S_{2,2}^6$ has a dimension 2 Coulomb branch operator and therefore $\mathcal{N}=4$ enhancement this S-fold is the standard $\mathfrak{g}=B_6$ or C_6 perturbative orientifold.

$$\mathfrak{g} = E_7$$

$$133 = 49k + 7(2\ell - k - 1), \tag{39}$$

There is solution only for $k=3, \ell=1$. There is no $\mathcal{N}=4$ enhancement of the corresponding $S_{3,1}^7$ theory.

$$\mathfrak{g} = E_8$$

$$248 = 64k + 8(2\ell - k - 1), \tag{40}$$

There is solution only for k = 4, $\ell = 2$. There is no $\mathcal{N} = 4$ enhancement however $S_{4,2}^8$ does not exist as an S-fold [?].

$$\mathfrak{g} = F_4$$

$$52 = 16k + 4(2\ell - k - 1), \tag{41}$$

There is solution only for $k=4, \ell=1$. There is no $\mathcal{N}=4$ enhancement.

$$\mathfrak{g} = G_2$$

$$14 = 4k + 2(2\ell - k - 1), \tag{42}$$

There is solution only for k=6 $\ell=1$ and k=4, $\ell=2$. In the first case $S_{6,1}^2$ exists as an S-fold but there is $\mathcal{N}=4$ enhancement and it is believed to be equal to the G_2 $\mathcal{N}=4$ SYM theory with fixed gauge coupling. In the second case the S-folds of type $S_{4,2}^2$ do not fall into the classification of [?] and are believed to not exist as S-folds.