

Professor:

Dr. Adrià Rovira Garcia

Students:

Juan Garrido Moreno Yi Qiang Ji Zhang Alexis Leon Delgado Iván Sermanoukian Molina Santiago Villarroya Calavia

TABLE OF CONTENTS

Mission Design

Launch considerations

02 Orbital Mechanics

65 Spacecraft definition

Space Environment

MISSION DESIGN

1 Mission Design

5 ways to find a planet

Source:

Brennan, Pat et al. (2020). EXOPLANET EXPLORATION Planets Beyond Our Solar System. NASA

1 Mission Design

Source:

Brennan, Pat et al. (2020). EXOPLANET EXPLORATION Planets Beyond Our Solar System. NASA

1.1 Mission objectives

1. Determine with high precision the bulk properties of exoplanets in a wide range of systems and inferring the presence or absence of a significant atmospheric envelope

- 2. Analyse exoplanets in the size range of super-Earths and mini-Neptunes located in the habitable zone of solar-like stars
- 3. Study the atmospheric composition, i. e. to study the physical and chemical properties of a large and diverse sample of uncovered exoplanets and, through those, understand how planets form and evolve in this galaxy and whether they can harbour carbon based life or not

ORBITAL MECHANICS

2.1 Lagrange points

Sun-Earth Lagrange points

Gravitational equipotential surfaces of Sun-Earth system and Lagrange points in a rotating system coordinates. Source: Own.

Why L2 ?

Stable environment

Absence of eclipses

Thermal stability

Low radiation

- Non-inertial reference frame
- Restricted three-body problem

Three body problem rotating reference frame. Source: Own.

2.2 Orbital transfer

Orbital transfers candidates

Orbit transfer type	Advantages	Disadvantages
Hohmann	High efficiency (low ΔV)	High elapsed time Circular rendezvous phasing required to L2
High energy Lambert transfer	Low elapsed time Direct injection to L2 rendezvous	High ΔV budget required Higher accel. (rough environment)

Sun-Earth system's L2 Hohmann transfer

Earth-L2 Hohmann transfer. Source: Own.

Transfer performance

• Elapsed time: t = 184.0 days (6.1 months)

Budget: $\Delta V = 147.8 \, m/s$

Propellant mass:

 $\frac{\Delta m_p}{m_0} = 0.0444$ $\Delta m_p = 426.6 \text{ kg}$

Optimization >>> Less fuel load
High energy transfer

2.3 Halo orbit around L2

- Oscillating 3D Orbit
- Out-of-plane motion (avoids eclipses)

Visual representation of a Halo Orbit

Source:

Figure 2.9. Bernelli, Franco et al. (2020). Assessment of Mission Design Including Utilization of Libration Points and Weak Stability Boundaries. Politecnico di Milano Figure 5. Miers, Tom. (1996). System design of a mission to detect Earth-sized planets in the inner orbits of solar-like stars. Journal of Geophysical Research. Video animation. Lamid. https://www.youtube.com/watch?v=lyyQqaF4tNY&ab_channel=lamid

SPACE ENVIRONMENT

3. Space environment

- Halo orbits lead to interference with:
 - Solar wind
 - Magnetotail
 - Magnetosheath
- Consequences:
 - Spacecraft charging
 - Surface ablation
 - Deviation due to solar pressure
 - lonizing doses
 - Single Event Effects: solar flares

- Suggested protections:
 - 5-10 mm Pyrex glass sheet

Camera multi-layer insulation (MLI)

- Metoroid background is sporadic. ⇒ Conditioned only by meteor streams (e.g. Perseids and Leonids).
- Strong ionizing radiation background can be only avoided by selecting a low solar activity period for the mission.

Source: Figure 4.6 & 4.8. Evans, S.W. (2003). Natural environment near the Sun/Earth-Moon L2 libration point. Marshall Space Flight Center.

Figure 4.3. Conny, A. et al (2017). PLATO definition study report. ESA-SCI(2017).1

Figure 4.6. Vanderspek, Roland et al. (2018). Tess Instrument Handbook.

Ambrosi, R.M. et al. (2005). The effect of the prompt particle environment at L2 on optical CCDs for astronomy and astrophysics. Planetary and Space Science. Volume 53. Issues 14–15. Pages 1449-1465, ISSN 0032-0633

CONSIDERATIONS

4.1 Launcher selection

Selection criteria

Criteria		Soyuz 2-1b Fregat	Ariane 5	Ariane 6-62
	Weight capability to L2 (kg)	2165	6600	3500
Performance	Insertion accuracy $(\pm 3\sigma)$	a: ±12km a: ±7.5km e: ±1.20·10 ⁻³ e: ±1.05·10 ⁻³		
Availability	Attempts per day	>2 (33min launch window)	>2 (45min la	unch window)
Availability	Launch site	Kourou, French Guiana		
Payload ada	pter compatibility	ASAP-S (<400kg as minisatellite piggyback)	Dual launch	MLS (<400kg as piggyback)
Costs	Specific cost (k\$/kg)	27.8*	23.4	
	Launch cost (M\$)	37.5	165.0	
Reli	ability (%)	98.40	94.85	

^{*} Lower cost only if the piggyback option is considered in comparison with an Ariane 5 dual launch payload configuration

Selected launcher

Soyuz 2-1b Fregat

Source: ESA. (2017a). <u>PLATO Denition Study Report (tech. rep.)</u>. ESA. Space, A. (2019a). Technical overview Soyuz. Ariane Group.

ESA. (2017b). ARIEL Denition Study Report (tech. rep.).

ESA. Space, A. (2019b). Technical overview Ariane 6. Ariane Group.

4.2 Launch dynamics

First and second stages ascent dynamics study

- · Constant pitch angle considered:
 - First stage = 90°
 - Second stage = 45°
- No pitch maneuver considered, therefore 3r stage don't give realistic results
- Considerable drag effects during first stage ascent

4.3 Launch environment

Accelerations

Maximum steady-state acceleration		
Longitudinal [g]	Lateral [g]	
First stage cut-off engine	Max. dynamic pressure	
4.1	0.4	

SC Limit Load Factors - Design Limit loads - Factors - Oseign Limit loads - Oseign Limit

Vibrations

Low frequency sinusoidal vibrations			
Direction	Frequency Maximum band [Hz] amplitude		
Longitudinal	10-30	0.8	
Lateral	5-20	0.4	

Acoustic Environment

Highest Flight limit level [dB]

137.5

Source: Figure 3.2.1 a "Soyuz Users' Mannual" issue2 Revision1 (May 2018)
Figure 3.2.5 a "Soyuz Users' Mannual" issue2 Revision1 (May 2018)
Figure 4.3.3.3 a "Soyuz Auiliary Passengers Users' Mannual" issue1 Revision0 (June 2017)

4.4 Payload protection

Fairing

- ST Fairing
- Two-half-shell carbon-fiber reinforced plastic (CFRP)
- Approximated total thickness of 25 mm
- Payload usable volumen definition

Safety factors

SC tests	Safety Factors	Tests duration
Static Accelerations	1.25	N/A
Sinusoidal Vibrations	1.25	0.5 oct/min
Random Vibrations	2.25	240 s
Acoustics	+3 dB	120 s

4.5 Payload emplacement

Piggyback

- Shared Soyuz launcher with any other primary mission going to L2
- ASAP-S Mini-satellite piggyback
- Considerable lower launch costs

Launch Vehicle Adapter

- ASAP-S system allowing multiple launch configurations
- Specialized adapted ring
- Total mass: 425 kg
- Total heigh: 1841 mm

Source: Figure 1.2.2; 1.6.2a; 2.3.2.3 b "Soyuz Auxiliary Passengers Users' Mannual" issue1 Revision0 (June 2017)

4.6 Propulsion

Launcher's propulsion system

		- ASCENT TO LEO -	<u> </u>	TO L2
Criteria	Soyuz 2-1b Fregat			
Stage	1st	2nd	3rd	Fregat upper stage
Propellants (kg)	27 900kg LOX 11 260kg Kerosene	63 800kg LOX 26 300kg Kerosene	17 800kg LOX 7 600kg Kerosene	6638kg N ₂ O ₄ /UDMH
Engine	RD-107A	RD-108A	RD-0124	S5.92
Isp (s)	262 SL (319 vac.)	255 SL (319 vac.)	359 vac.	332 vac.
Attitude control				Pitch, yaw, roll: 50N hydrazine thrusters

Fregat upper stage

Justification

ALL STAGES

Liquid bi-propellant	
Orbit insertion	
Orbit maintenance and maneuvering	
Attitude control	

FREGAT UPPER STAGE

Storable propellant	Fuel budg	et (kg)	
Interplanetary stage	Injection	426.6	
Liquid at room T	Attitude control & residual	29.9	
	Margin	64.0	F
No tank venting needed	Total	520.5 —	Fregat's maximum fuel load (6638kg)

65 SPACECRAFT DEFINITION

5.1 Payload

Camera

4-camera configuration

Optics overview		
Number of cameras	4	
Wavelength range	400 – 1000 nm	
Camera focal plane layout	4 e2v CCD 270 4510 px. ² 18 μm	
Camera field of view	625°	
Exposure time	~10 s	

Optics electronics

- FPM: Focal plane module
 - FPA: Focal Plane Assembly
 - FEE: Front End Electronics
- DPS: Data Processing Subsystem
 - DPU: Data Processing Unit
 - ICU: Instrument Control Unit
- SVM: Service Module
 - AOCS: Attitude and Orientation Control Subsystem
 - PCU: Power Control Unit

Source:

Figure 2 & 4. Ricker, G. et al. (2014). *The Transiting Exoplanet Survey Satellite*. Journal of Astronomical Telescopes, Instruments, and Systems.

Figure 4.6. Conny, A. et al (2017). PLATO definition study report. ESA-SCI(2017).1

Endicott, J. et al. (2012). Charged-Coupled Devices for the ESA PLATO M-class Mission. SPIE Astronomical Telescopes and Instrumentation.

5.2 Service module

Thermal subsystem

- CCD heat extracted through copper straps.
- Lens hood serves as a heat sink and radiator.

Copper strap

Power subsystem

- Estimated consumption of 250 W (based on CHEOPS and TESS).
- Azur Space quadruple junction GaAs solar cells $\eta \approx 32 \%$.
- Cell surface=30 cm². Around 300 cells required.
- Auxiliary 40 Ah lithium battery.

Attitude and orientation subsystem

- Honeywell reaction wheels for precise attitude control.
- 3 sets are implemented (1 for redundancy).

VACCO Cold Gas Thruster Triad

- 3 thrusters along x, y, z.
- Thrust: 8.9 N (2.0 lbf).
- Operating pressure: 1.8 MPa (260 psi).

5.3. Mission operation & communication subsystem

- Ka-band: High rate downlink for satellites
- S-band: Command uplink, low rate telemetry downlink

- Deep Space Network (DSN)
- ESA Integrated Services Network
- European Space Operations Center (ESOC)
- Science and Operations Center (S&OC)

Source:

NASA (2020) 020c). <u>James Webb Space Telescope (JWST) Project Overview</u>. An overview of the JWST European Space Agency (2020). <u>Satellite frequency bands</u>. Journal of Astronomical Telescopes, Instruments, and Systems.