2015 2 תרגיל מספר 4, אינפי

.1 מתכנס. $\int_1^\infty \frac{\sin x}{x}$ מתכנס.

 $a_n=\int_{\pi n}^{\pi(n+1)} rac{\sin x}{x}$ הדרכה: הגדירו $\sum_{n=1}^{\infty} a_n$ הוכיחו שהטור $F(x)=\int_1^x rac{\sin t}{t}$ הגדירו הראו ש $F(x)=\sum_{n=1}^{\lfloor \frac{x}{\pi} \rfloor} a_n=0$ והראו ש

בונוס 10 נקודות: הראו כי האינטגרל אינו מתכנס בהחלט. רמז: בדקו הראו כי האינטגרל אינו מתכנס בהחלט. $|sinx| \geq \frac{1}{2}$

2. בדקו את התכנסות האיטנגרלים הבאים:

(ス) $\int_0^\infty \frac{e^{-\sqrt{x}}}{\sqrt{x}} dx$

(ロ) $\int_0^1 \frac{\sin(\sqrt{x})\sqrt{\sin x}}{\tan x^{\frac{3}{2}}} dx$

3. בדקו את התכנסות הטורים הבאים:

(ス) $\sum_{n=0}^{\infty} \left(1 - \cos \frac{1}{n} \right)$

(ロ) $\sum_{n=0}^{\infty} \int_{0}^{\frac{1}{n}} \frac{\ln(1+t^3)}{t} dt$

- ם טוב הקירוב אלכם מדוע נימוק דרוש נימוק של $\sum_{n=1}^{\infty} (-1)^n \frac{1}{\sqrt{n}}$ בדיוק את סכום הטור .4
 - 5. הוכיחו או הפריכו:

 - אם $\sum_{n=1}^\infty a_n b_n$ מתכנסים אז גם $\sum_{n=1}^\infty a_n b_n$ מתכנס. $\sum_{n=1}^\infty a_n b_n$ אם אם $\sum_{n=1}^\infty a_n b_n$ ו־ $\sum_{n=1}^\infty a_n b_n$ מתכנס. מתכנס בהחלט אז גם $\sum_{n=1}^\infty a_n b_n$ מתכנס.
 - $\lim_{x o \infty} f(x) = 0$ אם אז הממשי, אז רציפה על כל הציר רציפה $\int_1^\infty f(x)$ מתכנס ו־
 - . חסומה f(x) אז הממשי, אז כל כל רציפה $\int_1^\infty f(x)$ מתכנס ה $\int_1^\infty f(x)$
 - . מתכנס אז $\int_1^\infty \frac{f(x)}{x}$ מתכנס אז $\int_1^\infty f(x)$