Solutions tutorial 4, week 9

BUST10134

19/03/2020

Problem 1

Initialization. After setting $Z^* = -\infty$, we form the LP relaxation of this problem by *deleting* the set of constraints that x_j is an integer for j = 1, 2, 3. Applying the simplex method to this LP relaxation yields its optimal solution below.

LP relaxation of whole problem:
$$(x_1, x_2, x_3, x_4) = \left(\frac{5}{4}, \frac{3}{2}, \frac{7}{4}, 0\right)$$
, with $Z = 14\frac{1}{4}$.

Because it has *feasible* solutions and this optimal solution has *noninteger* values for its integer-restricted variables, the whole problem is not fathomed, so the algorithm continues with the first full iteration below.

Iteration 1. In this optimal solution for the LP relaxation, the *first* integer-restricted variable that has a noninteger value is $x_1 = \frac{5}{4}$, so x_1 becomes the branching variable. Branching from the *All* node (*all* feasible solutions) with this branching variable then creates the following two subproblems:

Subproblem 1:

Original problem plus additional constraint

$$x_1 \le 1$$
.

Subproblem 2:

Original problem plus additional constraint

$$x_1 \ge 2$$
.

Deleting the set of integer constraints again and solving the resulting LP relaxations of these two subproblems yield the following results.

Subproblem 1:

Optimal solution for LP relaxation:
$$(x_1, x_2, x_3, x_4) = \left(1, \frac{6}{5}, \frac{9}{5}, 0\right)$$
, with $Z = 14\frac{1}{5}$.
Bound: $Z \le 14\frac{1}{5}$.

Subproblem 2:

LP relaxation: No feasible solutions.

This outcome for subproblem 2 means that it is fathomed by test 2. However, just as for the whole problem, subproblem 1 fails all fathoming tests.

Iteration 2. With only one remaining subproblem, corresponding to the $x_1 \le 1$ node in Fig. 12.11, the next branching is from this node. Examining its LP relaxation's optimal solution given above, we see that this node reveals that the *branching variable* is x_2 , because $x_2 = \frac{6}{5}$ is the first integer-restricted variable that has a noninteger value. Adding one of the constraints $x_2 \le 1$ or $x_2 \ge 2$ then creates the following two new subproblems.

Subproblem 3:

Original problem plus additional constraints

$$x_1 \le 1, \quad x_2 \le 1.$$

Subproblem 4:

Original problem plus additional constraints

$$x_1 \le 1, \quad x_2 \ge 2.$$

Solving their LP relaxations gives the following results.

Subproblem 3:

Optimal solution for LP relaxation:
$$(x_1, x_2, x_3, x_4) = \left(\frac{5}{6}, 1, \frac{11}{6}, 0\right)$$
, with $Z = 14\frac{1}{6}$.
Bound: $Z \le 14\frac{1}{6}$.

Subproblem 4:

Optimal solution for LP relaxation:
$$(x_1, x_2, x_3, x_4) = \left(\frac{5}{6}, 2, \frac{11}{6}, 0\right)$$
, with $Z = 12\frac{1}{6}$.
Bound: $Z \le 12\frac{1}{6}$.

Because both solutions exist (feasible solutions) and have noninteger values for integer-restricted variables, neither subproblem is fathomed. (Test 1 still is not operational, since $Z^* = -\infty$ until the first incumbent is found.)

Iteration 3. With two remaining subproblems (3 and 4) that were created simultaneously, the one with the larger bound (subproblem 3, with $14\frac{1}{6} > 12\frac{1}{6}$) is selected for the next branching. Because $x_1 = \frac{5}{6}$ has a noninteger value in the optimal solution for this subproblem's LP relaxation, x_1 becomes the branching variable. (Note that x_1 now is a *recurring* branching variable, since it also was chosen at iteration 1.) This leads to the following new subproblems.

Subproblem 5:

Original problem plus additional constraints

$$x_1 \le 1$$

$$x_2 \le 1$$

$$x_1 \le 0$$
 (so $x_1 = 0$).

Subproblem 6:

Original problem plus additional constraints

$$x_1 \le 1$$

$$x_2 \le 1$$

$$x_1 \ge 1$$
 (so $x_1 = 1$).

The results from solving their LP relaxations are given below.

Subproblem 5:

Optimal solution for LP relaxation:
$$(x_1, x_2, x_3, x_4) = \left(0, 0, 2, \frac{1}{2}\right)$$
, with $Z = 13\frac{1}{2}$.

Bound:
$$Z \le 13\frac{1}{2}$$
.

Subproblem 6:

LP relaxation: No feasible solutions.

Subproblem 6 is immediately fathomed by test 2. However, note that subproblem 5 also can be fathomed. Test 3 passes because the optimal solution for its LP relaxation has integer values ($x_1 = 0$, $x_2 = 0$, $x_3 = 2$) for all three integer-restricted variables. (It does not matter that $x_4 = \frac{1}{2}$, since x_4 is not integer-restricted.) This *feasible* solution for the original problem becomes our first incumbent:

Incumbent =
$$\left(0, 0, 2, \frac{1}{2}\right)$$
 with $Z^* = 13\frac{1}{2}$.

Using this Z^* to reapply fathoming test 1 to the only other subproblem (subproblem 4) is successful, because its bound $12\frac{1}{6} \le Z^*$.

This iteration has succeeded in fathoming subproblems in all three possible ways. Furthermore, there now are no remaining subproblems, so the current incumbent is optimal.

Optimal solution =
$$\left(0, 0, 2, \frac{1}{2}\right)$$
 with $Z = 13\frac{1}{2}$.

Problem 2

Problem 3

The optimal solution to the original problem is: $(X_1, X_2) = (1, 2)$ with z = 8