Lecture 16: First Fundamental Theorem of Calculus

Fundamental Theorem of Calculus (FTC 1)

If
$$f(x)$$
 is continuous and $F'(x) = f(x)$, then
$$\int_a^b f(x) dx = F(b) - F(a)$$

Notation:
$$F(x)\Big|_a^b = F(x)\Big|_{x=a}^{x=b} = F(b) - F(a)$$

Example 1.
$$F(x) = \frac{x^3}{3}$$
, $F'(x) = x^2$; $\int_a^b x^2 dx = \frac{x^3}{3} \Big|_a^b = \frac{b^3}{3} - \frac{a^3}{3}$

Example 2. Area under one hump of $\sin x$ (See Figure 1.)

$$\int_0^{\pi} \sin x \, dx = -\cos x \Big|_0^{\pi} = -\cos \pi - (-\cos 0) = -(-1) - (-1) = 2$$

Figure 1: Graph of $f(x) = \sin x$ for $0 \le x \le \pi$.

Example 3.
$$\int_0^1 x^5 dx = \left. \frac{x^6}{6} \right|_0^1 = \frac{1}{6} - 0 = \frac{1}{6}$$

Intuitive Interpretation of FTC:

x(t) is a position; $v(t) = x'(t) = \frac{dx}{dt}$ is the speed or rate of change of x. $\int_a^b v(t)dt = x(b) - x(a) \qquad \text{(FTC 1)}$

$$\int_{a}^{b} v(t)dt = x(b) - x(a) \qquad \text{(FTC 1)}$$

R.H.S. is how far x(t) went from time t = a to time t = b (difference between two odometer readings). L.H.S. represents speedometer readings.

$$\sum_{i=1}^{n} v(t_i) \Delta t$$
 approximates the sum of distances traveled over times Δt

The approximation above is accurate if v(t) is close to $v(t_i)$ on the i^{th} interval. The interpretation of x(t) as an odometer reading is no longer valid if v changes sign. Imagine a round trip so that x(b) - x(a) = 0. Then the positive and negative velocities v(t) cancel each other, whereas an odometer would measure the total distance not the net distance traveled.

Example 4.
$$\int_0^{2\pi} \sin x \, dx = -\cos x \Big|_0^{2\pi} = -\cos 2\pi - (-\cos 0) = 0.$$
 The integral represents the sum of areas under the curve, above the *x*-axis minus the areas below

the x-axis. (See Figure 2.)

Figure 2: Graph of $f(x) = \sin x$ for $0 \le x \le 2\pi$.

Integrals have an important additive property (See Figure 3.)

$$\int_{a}^{b} f(x)dx + \int_{b}^{c} f(x)dx = \int_{a}^{c} f(x)dx$$

Figure 3: Illustration of the additive property of integrals

New Definition:

$$\int_{b}^{a} f(x)dx = -\int_{a}^{b} f(x)dx$$

This definition is used so that the fundamental theorem is valid no matter if a < b or b < a. It also makes it so that the additive property works for a, b, c in <u>any</u> order, not just the one pictured in Figure 3.

Estimation:

If
$$f(x) \le g(x)$$
, then $\int_a^b f(x)dx \le \int_a^b g(x)dx$ (only if $a < b$)

Example 5. Estimation of e^x

Since $1 \le e^x$ for $x \ge 0$,

$$\int_0^1 1 dx \le \int_0^1 e^x dx$$
$$\int_0^1 e^x dx = e^x \Big|_0^1 = e^1 - e^0 = e - 1$$

Thus $1 \le e - 1$, or $e \ge 2$.

Example 6. We showed earlier that $1 + x \le e^x$. It follows that

$$\int_0^1 (1+x)dx \le \int_0^1 e^x dx = e - 1$$

$$\int_0^1 (1+x)dx = \left(x + \frac{x^2}{2}\right)\Big|_0^1 = \frac{3}{2}$$

Hence, $\frac{3}{2} \le e - 1$, or, $e \ge \frac{5}{2}$.

Change of Variable:

If f(x) = g(u(x)), then we write du = u'(x)dx and

$$\int g(u)du = \int g(u(x))u'(x)dx = \int f(x)u'(x)dx \qquad \text{(indefinite integrals)}$$

For definite integrals:

$$\int_{x_1}^{x_2} f(x)u'(x)dx = \int_{u_1}^{u_2} g(u)du \quad \text{where } u_1 = u(x_1), \ u_2 = u(x_2)$$

Example 7. $\int_{1}^{2} (x^3 + 2)^4 x^2 dx$

Let
$$u = x^3 + 2$$
. Then $du = 3x^2 dx \implies x^2 dx = \frac{du}{3}$;

$$x_1 = 1, x_2 = 2 \implies u_1 = 1^3 + 2 = 3, u_2 = 2^3 + 2 = 10, \text{ and}$$

$$\int_{1}^{2} (x^{3} + 2)^{4} x^{2} dx = \int_{3}^{10} u^{4} \frac{du}{3} = \frac{u^{5}}{15} \Big|_{3}^{10} = \frac{10^{5} - 3^{5}}{15}$$