OSPF – Open Shortest Path First

- Fundamentos
- Áreas
- Comunicação entre routers OSPF
- Vizinhos, Adjacências e Designated Routers
- Bases de dados de LSAs: Sincronização e Flooding
- Rotas intra-área
- Rotas inter-área
- Rotas inter-AS
- Exemplos: rotas intra-área
- Exemplos: rotas inter-área

Estrutura de dados da área (1)

- Contém toda a informação utilizada para correr o algoritmo básico de encaminhamento do OSPF.
 - Cada área é composta por uma ou mais sub-redes em que cada router mantém a sua própria link-state database.
- Numa área, as link-state database existentes nos vários routers, são todas iguais entre si.
- Uma sub-rede pertence apenas a uma área.
- Uma interface dum router liga apenas a uma única área.
- Cada adjacência de um router é efectuada dentro de uma única área.
- O backbone OSPF (área 0) é uma área especial responsável por disseminar informação de encaminhamento entre as várias áreas.

Estrutura de dados da área (2)

- Area ID
- Lista da gama de endereços da área
 - Esta lista é constituida por pares [endereço, máscara] e por uma indicação de estado Advertise ou DoNotAdvertise
- Interfaces associadas ao router (associated router interfaces)
 - Interfaces do router que ligam à área. Uma interface pertence <u>a uma e apenas a uma área</u>. No caso do backbone a área inclui os virtual links. Um virtual link é identificado pelo router ID do ponto onde termina e o seu custo é o custo do caminho mais curto (intra-area) através da área de trânsito atravessada entre os dois routers.
- Lista de router-LSA
- Lista de network-LSA
- Lista de summary-LSA

Estrutura de dados da área (3)

Shortest-path tree

 Árvore dos caminhos mais curtos com o próprio router como raíz. Calculada a partir da colecção de router-LSA e network-LSA pelo algoritmo de Dijkstra.

TransitCapability

True se puder ser atravessada por virtual links

ExternalRoutingCapability

Se é possível propagar os AS-external-LSA para/através da área

StubDefaultCost

 Se a área foi configurada como uma área de stub e o router for um ABR então este parâmetro indica o custo do summary-LSA por omissão que o router deve anunciar nessa área.

Stub Areas

- É uma área que se encontra no ramo final da árvore da rede do AS
- Tem como principal caracteristica n\u00e3o receber LSA externos
- Tem como vantagem a redução da base de dados de LSA
- Características
 - ABR não injecta LSA External (Type 5) na área
 - ABR injecta (automaticamente) uma rota por omissão na área como sendo LSA Type 3
 - Não pode conter nenhum ASBR
 - Não pode ser atravessada por Virtual Links

Totally Stubby Areas

- Trata-se de uma área que não recebe AS-External-LSA (tipo 5)
- Trata-se de uma área que não recebe Summary-LSA (tipo 3 e 4)
- Características
 - ABR não injecta AS-external-LSA (Type 5) na área
 - ABR não injecta ASBR Summary-LSA (Type 4) na área
 - ABR não injecta Summary-LSA (Type 3) na área
 - ABR injecta (automaticamente) uma rota por omissão na área
 - Não pode conter ASBRs
 - Não pode ser atravessada por Virtual Links
 - Também chamadas "Stub no-Summaries Areas"

Not So Stuby Areas (NSSA)

- É uma área que pode receber AS-External-LSA tipo 7 mas não do tipo 5
- Serve para discriminar entre rotas externas que devem ser anunciadas e outras que são igualmente externas mas não devem ser anunciádas
- Características
 - AS-external-LSA de outras áreas não são propagados para a área
 - É automaticamente propagada uma rota por omissão para a área (LSA Type 3)
 - Pode conter ASBR
 - Propaga AS-external-LSA com rotas dos seus ASBR para as outras áreas
 - Não pode ser atravessada por Virtual Links

NSSA ABR

- Liga uma NSSA X ao Backbone (Área 0)
- Fluxo de LSA: NSSA X » Backbone
 - Gera LSA tipo 3 com informação dos LSA tipo 1 e 2 locais
 - Gera LSA tipo 4 por cada LSA tipo 7 dum ASBR local
 - Converte LSA tipo 7 em LSA tipo 5
- Fluxo de LSA: Backbone » NSSA X
 - Filtra LSA tipo 4 e 5
 - Gera LSA tipo 3 com a rota por omissão (0.0.0.0/0) para representar a informação externa gerada pelos ASBR (LSA tipo 4 e 5)
 - Gera LSA tipo 3 com informação dos LSA tipo 1 e 2 locais
 - Podem ser filtrados configurando "no-summaries"
 - Propaga os LSA tipo 3 gerados por ABR de outras áreas
 - Podem ser filtrados configurando "no-summaries"

OSPF – Open Shortest Path First

- Fundamentos
- Áreas
- Comunicação entre routers OSPF
- Vizinhos, Adjacências e Designated Routers
- Bases de dados de LSAs: Sincronização e Flooding
- Rotas intra-área
- Rotas inter-área
- Rotas inter-AS
- Exemplos: rotas intra-área
- Exemplos: rotas inter-área

Comunicação entre routers OSPF

- As mensagens OSPF são enviadas em datagramas IP
 - Utilizam no datagrama IP o código de protocolo 89
 - Sem especificar nenhum Type of Service TOS = 0
 - Preference = Internetwork Control (se possível)
- As mensagens OSPF s\u00e3o enviadas directamente de um router para outro(s) no mesmo segmento (sub-rede)
- Retransmissões de pacotes Link State Update são sempre enviadas directamente para o vizinho
 - Em redes multiple access as retransmissões são enviadas para o endereço IP do vizinho

Em OSPF utiliza-se *multicast* sempre que possível:

224.0.0.5 AllSPFRouters (All Shortest Path First Routers), e **224.0.0.6** AllDRouters (AllDesignated Routers)

Comunicação entre routers OSPF

- Nas redes com suporte de multicast o modo de transmissão preferencial é o multicast. Nestas redes os pacotes Hello são enviados para o endereço multicast AllSPFRouters, tal como fazem o DR e o BDR quando enviam Link State Updates e e Link State Acknowledgment.
 - Todos os outros *routers* enviam os seus *Link State Updates* e *Link State Acknowledgments* para o endereço *AllDRRouters*.
- Noutros tipos de redes <u>incluíndo virtual links</u> a maioria das mensagens OSPF são enviadas por unicast, sendo o endereço IP destino o dos seus routers adjacentes
- Em ligações ponto-a-ponto o endereço destino é sempre AllSPFRouters

Mensagens OSPF - Header

- **Type**: (1) Hello; (2) Database Description; (3) Link Status Request; (4) Link Status Update; (5) Link Status Acknowledgement
- Router ID: Identidade do *router* de origem da mensagem
- Area ID: Área de origem da mensagem
- **Checksum**: Complemento para 1 de todo o pacote, excluíndo o campo *AuthenticationType*
- AuType e Authentication Data: Autype indica o tipo de autenticação em uso. O campo de autenticação de 64 bits é para uso do processo de autenticação.

Version	Туре	Packet Length		
Router ID				
Area ID				
Checksum		Authentication Type		
Authentication Data				
Authentication Data				

Autenticação das mensagens OSPF

- Os pacotes OSPF podem utilizar autenticação.
- Interfaces distintas, ligadas a redes distintas, podem utilizar autenticações distintas
- Troca de informação autenticada entre routers de modo a evitar ataques
- Tipos de autenticação
 - None Sem autenticação
 - Simple Chave em claro
 - MD5 Hash da chave
- Podem existir esquemas de autenticação diferentes consoante a área

- Se o endereço destino do pacote IP for AllDRouters este só deve ser aceite se o estado do router for DR ou BDR
- A mensagem deve ser autenticada
- Se a mensagem for do tipo Hello deve ser processada pelo protocolo Hello
- Todos as outras mensagens são trocadas apenas entre routers adjacentes
- Isto implica que deve ser proveniente de um dos vizinhos activos. Se não for é descartada
- Em redes com *broadcast*, ponto-a-multiponto e NBMA quem envia é indicado no endereço IP de origem do datagrama
- Em redes ponto-a-ponto ou ligações virtuais a origem é indicada pelo campo Router ID do header da mensagem OSPF

Quando é recebida mensagem ela é marcada identificação com a da foi interface onde por recebida. Para routers que possuam *links* virtuais pode óbvio de onde não ser proveio a mensagem. Por exemplo, considere-se que R11 recebe uma mensagem pela sua interface com N8, ele pode querer associar a mensagem com a área 2 ou com a ligação virtual com R10.

Para o que se segue assume-se que a mensagem não é associada à ligação virtual.

- Para a mensagem ser aceite ao nível IP deve:
 - O checksum IP deve estar correcto
 - O endereço IP deve ser o da interface que está a receber ou um dos endereços multicast AllSPFRouters ou AllDRouters
 - O protocolo especificado no pacote IP deve ser OSPF
 - Os pacotes gerados localmente não devem ser passados ao OSPF.

- A seguir o header OSPF deve ser verificado:
 - A versão deve ser 2
 - O campo Area ID deve:
 - Ser igual ao Area ID da interface que recebe. Em redes que não ponto-a-ponto, após aplicar a máscara deve ser verificado se o endereço de rede é igual. Neste caso a mensagem atravessou um simples troço de rede.
 - Indicar o backbone. Neste caso foi enviado através duma ligação virtual. O router que recebe deve ser um ABR e o endereço de origem da mensagem deve ser o da outra ponta da ligação virtual.

Timers

- São necessários dois tipos de *timers*:
 - single shot timers disparam uma vez e provocam que um evento do protocolo seja processado
 - interval timers disparam a intervalos regulares. São utilizados para enviar pacotes a intervalos regulares
 - Exemplo: Envio de pacotes Hello
- A granularidade dos timers é de um segundo
- No envio de pacotes deve-se evitar a sincronização entre routers para evitar sobrecargas pontuais da rede. Para evitar este problema cada router introduz pequenos atrasos aleatórios.

OSPF – Open Shortest Path First

- Fundamentos
- Áreas
- Comunicação entre routers OSPF
- Vizinhos, Adjacências e Designated Routers
- Bases de dados de LSAs: Sincronização e Flooding
- Rotas intra-área
- Rotas inter-área
- Rotas inter-AS
- Exemplos: rotas intra-área
- Exemplos: rotas inter-área

Comunicação entre routers vizinhos

- As mensagens de Hello são responsáveis por estabelecer e manter as relações entre vizinhos garantindo que existe comunicação bidireccional.
- As mensagens de Hello contêm, entre outros, os seguintes campos:
 - Prioridade do router que envia
 - Intervalo entre mensagens de Hello
 - O RouterDeadInterval intervalo máximo entre mensagens de Hello
 - Máscara da rede por onde é enviado (pode ser 0.0.0.0 em redes ponto-a-ponto não numeradas ou em ligações virtuais)
 - O campo de opções define as capacidades adicionais do router. O bit E indica se a área é capaz de processar os AS-external-LSA, ou seja, não é uma área stub.
- Em redes *broadcast* e ponto-a-ponto: *multicast* ALLSPFRouters
- Em ligações virtuais: *unicast* endereço da outra ponta da ligação
- Em rede ponto-a-multiponto: unicast mensagens Hello independentes em cada ligação

Protocolo Hello (ligações ponto-a-ponto)

Objectivo

 Responsável por estabelecer e manter as relações entre vizinhos garantindo que existe comunicação bidireccional.

Funcionamento

- O router envia mensagens Hello (periódicas) para a rede
 - Usa Multicast IP (224.0.0.5) AllSPFRouters
 - Indica na mensagem enviada os endereços dos vizinhos que já conhece.
- Recebe mensagens Hello dos routers vizinhos
 - Se o seu endereço vier listado na mensagem recebida, existe comunicação bidireccional com o *router* em causa. Isto é, está estabelecida uma relação de vizinhança.

Protocolo Hello (redes BMA)

Objectivo

- Estabelecer e manter as relações entre vizinhos garantindo que existe comunicação bidireccional.
- Eleger o Designated Router (DR) e o Backup DR de cada segmento
- O DR determina quais os routers que se devem tornar adjacentes
- Funcionar como "keepalive"

Funcionamento

- Router envia mensagens Hello (periódicas) para a rede
 - Usa multicast IP AllSPFRouters e multicast MAC
 - Indica na mensagem que envia os endereços dos vizinhos que já conhece
 - Indica a sua perspectiva sobre quem é o DR e o BDR
- Recebe mensagens Hello dos routers vizinhos
 - Se o seu endereço vier indicado na mensagem recebida, existe comunicação bidireccional com o *router* que enviou a mensagem pelo que está estabelecida a relação de vizinhança.
 - O router que tiver maior prioridade ou o maior router ID, se as prioridades forem iguais, será o DR.

Protocolo Hello (redes NBMA)

Objectivo

- Responsável por estabelecer e manter as relações entre vizinhos garantindo que existe comunicação bidireccional
- Eleger o Designated Router (DR) e o Backup DR (BDR) da rede
- O DR determina quais os routers que se devem tornar adjacentes

Funcionamento

- Router que quer ser DR envia mensagens Hello para uma lista de routers seus vizinhos que podem vir a ser DR
 - Indica a sua perspectiva sobre quem é o DR e o BDR
- Recebe mensagens Hello de outros routers que podem ser DR
 - Se outro router tiver maior prioridade ou prioridade igual e router ID maior passa a ser DR
- O DR envia e recebe de todos os outros routers mensagens Hello
 - Indica os endereços dos vizinhos que já conhece

Mensagem Hello

Version	Type = 1	Packet Length			
Router ID					
Area ID					
Checksum		Authentication Type			
Authentication Data					
Authentication Data					
Network Mask					
Hello Interval		Options	Router Prio.		
Router Dead Interval					
Designated Router ID					
Backup Designated Router ID					
Neighbout					

Mensagem Hello

Formato do campo *Options*:

- E-bit descreve a forma como os AS-external-LSA são enviados
- MC-bit descreve a forma como os pacotes IP multicast são enviados [RFC 1584]
- N/P-bit descreve como são tratados os Type-7 LSA (NSSA) [RFC 1587]
- EA-bit descreve a disponibilidade do router para receber e enviar ASexternal-LSA
- DC-bit descreve a forma como o router trata o pedido de circuitos [RFC 1793]

Routers vizinhos e adjacentes

- N routers na mesma rede (broadcast ou non-broadcast)
 - N(N-1) LSA serão necessários para transmitir informação sobre a mesma rede.

 A forma de minimizar a sobrecarga na rede devido aos LSA é eleger um DR entre os *routers* vizinhos, definindo as adjacências apenas entre estes e o DR e o BDR e não entre todos os vizinhos

Adjacências

- As adjacências são estabelecidas com algum subconjunto dos routers vizinhos
- Routers ligados a redes ponto-a-ponto, redes ponto-a-multiponto e ligações virtuais tornam-se sempre adjacentes
- Em redes BMA e NBMA todos os routers se tornam adjacentes do DR e BDR.
- Uma adjacência deve ser estabelecida com um vizinho sempre que:
 - O tipo da rede for ponto-a-ponto, ponto-a-multiponto ou uma ligação virtual
 - O router for DR ou BDR
 - O router vizinho for DR ou BDR

Adjacências

- Routers adjacentes, para além da troca das mensagens de Hello, participam na troca da base de dados ("mapa") da área (sincronização da link state database).
- Para minimizarem o tráfego elegem um designated router (DR) e um backup designated router (BDR) por cada segmento multi-acesso da área.
- O DR funciona como relay da informação para os seus routers adjacentes.

Tipos de redes

Ponto-a-ponto (point-to-point)

- Ex.: Ligação série
- Não tem DR ou BDR

BMA (Broadcast Multiple Access)

- Ex.: Ethernet, Token Ring, FDDI
- Utiliza multicast e são eleitos DR e BDR
 - 224.0.0.5 AllSPFRouters
 - 224.0.0.6 AllDRouters

• NBMA (Non-Broadcast Multiple Access)

- Ex.: FR, ATM, X.25
- São definidos DR e BDR

Ponto-a-multiponto (point-to-multipoint)

- NBMA tratada como mútiplos ponto-a-ponto
- Não tem eleição de DR e BDR

Designated Router

 Em redes NBMA e Broadcast Multi-Access (BMA) são escolhidos um Designated Router (DR) e um Backup Designated Router (BDR)

- A escolha do BDR e do DR é efectuada pelo protocolo Hello
 - A prioridade e o ID do router são usados na eleição
 - Router priority igual a 0 significa que o router não pode ser DR nem BDR

Funções do DR e do BDR

- DR e BDR: Criam uma adjacência com cada router do respectivo segmento
 - Sincronizam as bases de dados de link state com todos os routers adjacentes
- DR: Gera os network LSA em nome dos routers da rede
 - Usando como ID o endereço IP do DR na rede
 - Envia uma lista de todos os routers do segmento

Redes Broadcast

Algoritmo de eleição do Designated Router (DR)

- A primeira vez que o router corre o algoritmo, o DR e o BDR são inicializados a 0.0.0.0 nas mensagens de Hello, isto indica a não existência de DR ou BDR.
- A lista de vizinhos do router X que se encontram num estado igual ou superior a 2-way é
 examinado. São excluidos todos os routers não elegiveis para DR (exemplo: prioridade = 0).
- Tendo em consideração a lista resultante, onde se inclui o router X, os próximos passos são os seguintes:
 - 1. É anotado quem são os actuais BDR e DR.
 - 2. Calcula-se o novo BDR de entre os que declaram não serem DR. Se houver *routers* a declararem-se BDR (nas mensagens de Hello) o que tiver maior prioridade versus Router ID será eleito BDR. Se não houver nenhum a declarar-se BDR a eleição será efectuada entre todos os elegiveis que não se tenham declarado DR. Será eleito o que possuir maior Prioridade versus Router ID.

Algoritmo de eleição do Designated Router (DR) (cont.)

- 3. O novo DR será então eleito então da seguinte forma: De entre os *routers* que se declararam DR é eleito o que tiver maior prioridade versus *router* ID. Se não houver nenhum que se tenha declarado DR o novo DR será igual ao BDR eleito.
- 4. Se o *router* X passar a ser agora o novo DR ou BDR ou deixar de ser o BDR ou DR repetir os passos 2 e 3 e prosseguir para 5. Por exemplo, se o *router* X for agora o DR quando o passo 2 for repetido ele não entrará para a eleição do BDR. Entre outras coisas evita-se assim que um *router* seja BDR e DR em simultâneo.
- 5. Como resultado deste algoritmo o próprio *router* pode ser agora DR ou BDR. A interface do *router* deve ser actualizada no estado DR. Se o router for BDR o estado deve ser actualizado como BDR. Se não for nenhum deles deve passar ao estado DROther.
- 6. Se a rede for NBMA e se o *router* tiver acabado de se tornar BDR ou DR deve começar a enviar mensagens Hello aos vizinhos que não forem elegiveis para se tornarem DR (prioridade igual a 0).
- 7. Se com os cálculos acima a identidade do DR ou BDR se alterarem o conjunto de adjacências associadas com a interface terão de ser modificadas.

Eleição do Designated Router (DR)

 No segmento comum a RTA e RTB, como RTA e RTB têm a mesma prioridade e RTB tem um router ID maior, este último será o DR desse segmento.

 No segmento comum a RTB e RTC este último será o DR dado ter maior prioridade (P=2).

 Existirão tantos DR quantos os segmentos com dois ou mais routers.

OSPF – Open Shortest Path First

- Fundamentos
- Áreas
- Comunicação entre routers OSPF
- Vizinhos, Adjacências e Designated Routers
- Bases de dados de LSA: Sincronização e Flooding
- Rotas intra-área
- Rotas inter-área
- Rotas inter-AS
- Exemplos: rotas intra-área
- Exemplos: rotas inter-área

Tipos de LSA (link type)

- Type 1 Router LSA: O router descreve as redes a que está ligado e respectivos custos (interfaces)
- Type 2 Network LSA: O DR descreve quais routers ligados a uma dada rede BMA ou NBMA
- Type 3 Summary LSA: São enviados pelos ABR para descrever as redes de uma área
- Type 4 AS Summary LSA: O ABR descreve a localização dos ASBR existentes nas área vizinhas
- Type 5 AS External LSA: O ASBR descreve o sumário de destinos exteriores para os quais é Gateway

Sincronização da BD de LSA

- Estados por onde passam dois routers para sincronização das suas BD de link states
 - ExStart Envio de mensagens Database Description (DD) vazias para estabelecer a ligação (sincronizar o nº sequência) e escolha do Master
 - Exchange Envio de mensagens Database Description (DD) indicando os LSA existentes na BD do router
 - Comparação entre as indicações recebidas e os LSA da BD local
 - Loading Pedido dos LSA que necessitam de actualização através de Link State Requests
 - Loading Actualização da BD com os LSA recebidos nos Link State Updates
 - Full BD sincronizadas

Sincronização da BD de LSA: Hello

 Descoberta dos vizinhos; Escolha do Designated Router e criação de adjacências;

Sincronização da BD de LSA: ExStart e Exchange

- Router direito torna-se Master porque possui um router ID maior. O router esquerdo torna- se Slave
- Os vizinhos trocam e confirmam pacotes de descrição da base de dados (DD).
- A verificação é efectuada através do número de sequência dos pacotes DD

Mensagem Database Description (DD)

• Esta mensagem transporta <u>apenas a descrição da base de dados, e não o seu conteúdo,</u> de maneira a permitir que *routers* adjacentes possam comparar as suas bases de dados.

Flag Initialize bit = 1 nas primeira mensager

• Flag More bit = 0 na última mensagem

- Flag Master/Slave bit Indica quem começa e controla a sincronização dos LSA
- Ambos começam como Master e fica o que tiver o maior identificador
- DD Sequence Number Numera as mensagens DD enviadas por um router

4						
	Version	Type = 2	Packet	Length		
Router ID						
Ī	Area ID					
I	Chec	ksum	Authentication Type			
Authentication Data						
Authentication Data						
	Interface MTU		Options	Flags		
	DD Sequence Number					
LSA Header						

Sincronização da BD de LSA: Loading e Full

 Os pacotes de Link State Request são enviados para os vizinhos de forma a completar a informação na base de dados.

Mensagem Link State Request

Esta mensagem permite pedir a troca de LSA entre routers adjacentes.

Version	Type = 3	Packet	Longth	
Version	1 ype = 3	Packet	Length	
Router ID				
Area ID				
Checksum		Authentication Type		
Authentication Data				
Authentication Data				
Interface MTU		Options	Flags	
DD Sequence Number				
LSType Link-State ID Advertising Router				

Mensagem Link State Update

• Esta mensagem permite a troca de LSA entre *routers* adjacentes. Transporta um ou mais Link State Advertisement (LSA).

Version	Type = 4	Packet Length			
	Router ID				
Area ID					
Checksum		Authentication Type			
Authentication Data					
Authentication Data					
Number of LSAs					
LSA Header					

Mensagem Link Status Acknowledgement

Transporta acknowledges de um ou mais Link State Advertisement (LSA).

 Os LSA têm acknowledge individuais embora possam coexistir vários acknowledges num mesmo pacote de LSack.

Version	Type = 5	Packet Length			
	Router ID				
	Area ID				
Chec	ksum	Authentication Type			
	Authentication Data				
	Authentication Data				
LSA Header					

Estrutura dos LSA - Header

LS age	Options	LS Type	
Link-State ID			
Advertising Router ID			
LS Sequence Number			
LS Checksum		Length	

- **LS Age** Tempo em segundos desde que o LSA foi gerado (actualizado nas BD)
- **Options** T (suporta TOS)[obsoleta], E (external routing), P (NSSA ext.)
- LS Type Router [1], Network [2], Summary [3 e 4], External [5], NSSA Ext. [7]
- Link State ID Identificador do LSA (<u>a interpretação deste campo varia conforma o link type</u>)
- Advertising Router Identificador do *router* que gerou o LSA
- LS Sequence Number Versão do LSA, para detectar LSA antigos ou duplicados (-2³¹+ 1 a 2³¹ 1)
- LS checksum Checksum de todo o header, exceptuando o Link Age
- Length Tamanho da mensagem em bytes

Interpretação do campo "link state ID" dos LSA

- Parte do domínio de routing que é descrito pelo LSA. Dependendo do LS type do LSA o "Link State ID" deve ser interpretado da seguinte forma:
 - LS type = 1: Router ID do router de origem.
 - LS type = 2: Endereço IP da interface do DR da rede (segmento).
 - LS type = 3: Endereço IP da rede de destino.
 - LS type = 4: Router ID do ASBR descrito.
 - LS type = 5: Endereço IP da rede de destino.

Actualização da BD de LSA: Flooding

- Consiste em propagar os LSA por todas as adjacências de modo fiável
 - Envio de mensagens Link State Update
 - Campos Sequence Number
 - Mecanismo de timeout e retransmissão
 - Receptor actualiza a link state database e confirma a recepção através do envio de mensagens Link State Acknowledge
 - Campos Sequence Number e de Link Age
- As actualizações de LSA são enviadas apenas quando há uma alteração ou a cada 30 minutos
- Muito rápido e muito fiável, mas gasta largura de banda
- Os LSA são transportados em mensagens Link State Update.

Flooding em redes ponto-a-ponto

Flooding em redes broadcast

Segurança das actualizações dos "mapas"

- O procedimento de flooding inclui as confirmações (acknowledgments) hopby-hop
- As mensagens de descrição da base de dados são transmitidads de uma forma segura
- Cada registo (LSA) é protegido com um timer e é removido da base de dados se uma mensagem a refrescá-lo não aparecer no devido tempo
- Todos os registos são protegidos por um checksum
- As mensagens podem ser autenticadas, por exemplo através de passwords.