1. Introducción

Redes neuronales

Paradigmas de aprendizaje automático

"El aprendizaje no se reduce a supervisado y no supervisado"

- Aprendizaje supervisado.
- Aprendizaje no supervisado.
- Aprendizaje semi-supervisado.
- Aprendizaje auto-supervisado (self-supervised learning).
- Aprendizaje por refuerzo (reinforcement learning).
- Aprendizaje "basado en la física" (physics-based -informed- learning).*

Supervisado

Consideremos

$$D = \{(x_1, y_1), \dots, (x_n, y_n)\} \subseteq \mathcal{X} \times \mathcal{Y},$$
$$(x_i, y_i) \sim \mathcal{P} \quad \forall i \in \{1, \dots, n\} \text{ (i.i.d)}$$

- x_i representa a los rasgos del muestra i.
- y_i es la etiqueta o valor asociado al muestra i.

Objetivo: Encontrar una hipótesis $h \in \mathcal{H}, \ h : \mathcal{X} \to \mathcal{Y}$ tal que $h(x_i) \approx y_i$.

• \mathcal{H} representa el espacio de hipótesis posibles.

No supervisado

Consideremos

$$X = \{x_1, \dots, x_n\} \subseteq \mathcal{X},$$

$$x_i \sim \mathcal{P} \quad \forall i \in \{1, \dots, n\} \text{ (i.i.d)}$$

• x_i representa a los rasgos del muestra i.

• No hay etiqueta o valor asociado x_i .

Objetivo: Encontrar una estructura de interesante de \boldsymbol{X} .

https://towardsdatascience.com/gaussian-mixture-models-explained-6986aaf5a95

Semi-supervisado

Dividamos X en X_{ℓ} y X_{u} donde:

$$X_{\ell} = \{x_1, \dots, x_{\ell}\}$$
 $X_{u} = \{x_{\ell+1}, \dots, x_{n=u+\ell}\}$

- A cada $x_i \in X_\ell$ se le asigna y_i .
- La idea es combinar métodos supervisados y no supervisados.

Objetivo: Encontrar una estructura de interesante de X_u guiados por los datos etiquetados $X_{\mathcal{L}}$.

Auto-supervisado

Genera sus propias etiquetas

Aprendizaje por refuerzo

Objetivo: Mapear situaciones en acciones que permitan maximizar la recompensa a lo largo del tiempo. El diseño de este mapeo esta basado en la explotación y exploración.

Aprendizaje por refuerzo

https://gym.openai.com

Physics-based learning

Es la integración entre métodos de ML, modelación matemática y simulación de fenómenos físicos. La idea es incorporar principios físicos en el proceso de entrenamiento.

Problema directo (forward problem)

Problema inverso (inverse problem)

Learning to Simulate Complex Physics with Graph Networks

Redes neuronales artificiales

unidireccionales (feedforward)

Antecedentes

Inspiración en redes neuronales biológicas

Antecedentes

Perceptrón - F. Rosenblatt (1958)

Sean $\mathbf{x} = [x_0, x_1, \cdots, x_n]^t$, $\mathbf{w} = [\omega_0, \omega_1, \cdots, \omega_n]^t \in \mathbf{R}^{n+1}$. A cada $\mathbf{x}^{(r)}$ le corresponde $y^{(r)} \in \{-1, 1\}$.

Perceptrón - F. Rosenblatt (1958)

Si n=2, se observa una región de decisión representada por la recta

$$x_2 = -\frac{\omega_1}{\omega_2} x_1 + \frac{\theta}{\omega_2}$$

Discriminador lineal

Regla de Aprendizaje:

$$\omega_j^{(t+1)} = \omega_j^{(t)} + \Delta \omega_j$$

$$\Delta \omega_j = \eta \left(y^{(r)} - \hat{y}^{(r)} \right) x_j^{(r)} \quad \eta \in (0,1)$$

Convergencia garantizada si los datos son linealmente separables

Antecedentes

Adaline: ADAptive LInear NEuron - B. Widrow, T. Hoff (1960)

Función objetivo:
$$J(\mathbf{w}) = \frac{1}{2} \sum_{r=1}^{N} (y^{(r)} - \hat{y}^{(r)})^2$$

$$\mathbf{w}^{(t+1)} = \mathbf{w}^{(t)} - \eta \nabla J \left(\mathbf{w}^{(t)}\right)$$

$$\frac{\partial J}{\partial w_j} = \sum_{r=1}^{N} \left(y^{(r)} - \hat{y}^r\right) x_j^{(r)}$$

Perceptrón multi-capa

Lectura

- A. http://www.d2l.ai/chapter_preliminaries/index.html (Capítulo 2)
- B. https://pytorch.org/assets/deep-learning/Deep-Learning-with-PyTorch.pdf (Capítulo 3)

