Field Programmable Gate Array Course Embedded Systems (SEm) FPGA

Silvan Zahno / François Corthay

Degree program Systems Engineering Specialization Infotronics – Embedded Systems

Current content of the topic in the course

FPGA Introduction

- ASIC vs FPGA
- FPGA
 - Packaging
 - Architecture
 - I/O Elements
 - Slice Elements
 - Logic Elements
 - Networks
- Design flow
 - Implementation
 - Generation
 - Synthesis
 - Place & Route
 - Programming

ASIC vs FPGA Differences

ASIC – Application Specific Integrated Circuit

FPGA – Field Programmable Gate Array

ASIC vs FPGA Differences

- ASIC Application Specific Integrated Circuit
 - From the behavior description to the physical layout
 - Designs must be sent to a semiconductor factory for costly and time-consuming production

- FPGA Field Programmable Gate Array
 - A physical layout ends with a bitstream that is used to configure a device.
 - Purchased on the market and reconfigured by the designers themselves.

ASIC vs FPGA Advantages

π School of Engineering

- ASIC Application Specific Integrated Circuit
 - High efficiency
 - Low power consumption
 - Low cost with high volume

- FPGA Field Programmable Gate Array
 - Commercial standard product
 - Low development costs
 - Short time to market
 - Reconfigurability

ASIC vs FPGA Advantages

π School of Engineering

ASIC – Application Specific Integrated Circuit

FPGA – Field Programmable Gate Array

FPGA Introduction

- ASIC vs FPGA
- FPGA
 - Packaging
 - Architecture
 - I/O Elements
 - Slice Elements
 - Logic Elements
 - Networks
- Design flow
 - Implementation
 - Generation
 - Synthesis
 - Place & Route
 - Programming

Architecture

Architecture

Page 11

FPGAI/O Elements

I/O Elements

Slice Elements

Programmable interconnect

Programmable logic blocks

The Design Warrior's Guide to FPGAs Devices, Tools, and Flows. ISBN 0750676043 Copyright © 2004 Mentor Graphics Corp. (www.mentor.com)

School of Engineering

FPGA

Slice Elements

FPGA Page 15

Devices, Tools, and Flows. ISBN 0750676043

Copyright © 2004 Mentor Graphics Corp. (www.mentor.com)

Slice Elements

The Design Warrior's Guide to FPGAs Devices, Tools, and Flows. ISBN 0750676043 Copyright © 2004 Mentor Graphics Corp. (www.mentor.com)

π School of Engineering

FPGASlice Elements

The Design Warrior's Guide to FPGAs Devices, Tools, and Flows. ISBN 0750676043 Copyright © 2004 Mentor Graphics Corp. (www.mentor.com)

Slice Elements

π School of Engineering

FPGA

Logic Elements

FPGA Logic Elements

FPGANetworks

FPGA Introduction

- ASIC vs FPGA
- FPGA
 - Packaging
 - Architecture
 - I/O Elements
 - Slice Elements
 - Logic Elements
 - Networks
- Design flow
 - Implementation
 - Generation
 - Synthesis
 - Place & Route
 - Programming

School of Engineering

Design Flow

Implementation

π School of Engineering

Design Flow

Generation VHDL

Design FlowGeneration UCF

```
# Clock and reset
NET
       "clock"
                     LOC = "A10";
       "reset n" LOC = "A15"
                                   | PULLUP;
NET
       "testMode"
                     LOC = "T10";
NET
# Buttons
#
NET
       "restart_n" LOC = "E8";
       "start n" LOC = "G9";
NET
       "stop n"
                     LOC = "F9";
NET
# LEDs n
#
NET
       "LED1"
                     LOC = "B16";
       "LED2"
                      LOC = "A16";
NET
NET
       "LEDs n<1>"
                      LOC = "E7";
       "LEDs n<2>"
                      LOC = "B14";
NET
NET
       "LEDs n<3>"
                      LOC = "B13";
NET
       "LEDs n<4>"
                      LOC = "B11";
NET
       "LEDs n<5>"
                      LOC = "A8";
NET
       "LEDs n<6>"
                      LOC = "C7";
       "LEDs n<7>"
                      LOC = "A14";
NET
NET
       "LEDs n<8>"
                      LOC = "A11";
# Motor
#
NET
       "motorOn1"
                      LOC = "B4";
       "motorOn2"
                     LOC = "B3";
NET
       "coil1 n"
                     LOC = "G6";
NET
NET
       "coil2 n"
                     LOC = "C5";
       "coil3 n"
                     LOC = "C4";
NET
NET
       "coil4 n"
                      LOC = "C3";
NET
       "sensor_n" LOC = "A4";
# Globals
NET "*" IOSTANDARD = LVCMOS33;
```


₹ School of Engineering

Design FlowStarting Xilinx ISE

π School of Engineering

Design Flow

Xilinx ISE

Page 27

Hes·so WALAIS WALLIS

Design FlowXilinx ISE Report

ElN_chrono Project Status (11/01/2019 - 11:01:06)					
Project File:	eln_chrono.xise	Parser Errors:	No Errors		
Module Name:	ElN_chrono	Implementation State:	Programming File Generated		
Target Device:	xc3s500e-5fg320	• Errors:	No Errors		
Product Version:	ISE 14.7	• Warnings:	126 Warnings (126 new)		
Design Goal:	Balanced	Routing Results:	All Signals Completely Routed		
Design Strategy:	Xilinx Default (unlocked)	• Timing Constraints:	All Constraints Met		
Environment:	System Settings	• Final Timing Score:	0 (Timing Report)		

Device Utilization Summary					
Logic Utilization	Used	Available	Utilization	Note(s)	
Number of Slice Flip Flops	178	9,312	1%		
Number of 4 input LUTs	688	9,312	7%		
Number of occupied Slices	421	4,656	9%		
Number of Slices containing only related logic	421	421	100%		
Number of Slices containing unrelated logic	0	421	0%		
Total Number of 4 input LUTs	784	9,312	8%		
Number used as logic	501				
Number used as a route-thru	96				
Number used as 16x1 RAMs	185				
Number used for 32x1 RAMs	2				
Number of bonded <u>IOBs</u>	29	232	12%		
Number of BUFGMUXs	1	24	4%		
Average Fanout of Non-Clock Nets	4.10				

Performance Summary				
Final Timing Score:	0 (Setup: 0, Hold: 0)	Pinout Data:	Pinout Report	
Routing Results:	All Signals Completely Routed	Clock Data:	Clock Report	
Timing Constraints:	All Constraints Met			

Detailed Reports					
Report Name	Status	Generated	Errors	Warnings	Infos
Synthesis Report	Current	Fri Nov 1 11:00:10 2019	0	62 Warnings (62 new)	204 Infos (204 new)
Translation Report	Current	Fri Nov 1 11:00:14 2019	0	0	0
Map Report	Current	Fri Nov 1 11:00:25 2019	0	60 Warnings (60 new)	4 Infos (4 new)
Place and Route Report	Current	Fri Nov 1 11:00:54 2019	0	3 Warnings (3 new)	2 Infos (2 new)
Power Report					
Post-PAR Static Timing Report	Current	Fri Nov 1 11:00:57 2019	0	0	6 Infos (6 new)
Bitgen Report	Current	Fri Nov 1 11:01:04 2019	0	1 Warning (1 new)	0

Secondary Reports				
Report Name	Status	Generated		
WebTalk Report	Current	Fri Nov 1 11:01:04 2019		
WebTalk Log File	Current	Fri Nov 1 11:01:06 2019		

Design FlowReport Synthesis

*			====== Summary				*
========							
	utput File Name						
	nd Black Box Usage		_	9			
		-					
# BELS		:	889				
# BUF		:	1				
# GND		:	1				
# INV		:	17				
# LUT1		:	95				
# LUT2		:	47				
# LUT2_	D	:	1				
# LUT2_	L	:	3				
# LUT3			199				
# LUT3_	D	:	6				
# LUT3_	L		3				
# LUT4		:	193				
# LUT4_	D		16				
# LUT4_			15				
# MUXC			52				
# MUXF	5		141				
# MUXF			51				
# MUXF	7		7				
# VCC			1				
# XORC			40				
# FlipFlops,	/Latches		178				
# FDC			48				
# FDCE			71				
# FDE			44				
# FDP			4				
# FDPE			11				
# RAMS			187				
# RAM10			187				
# Clock Buf			1				
# BUFGI			1				
# IO Buffers	5		27				
# IBUF			6				
# OBUF		:	21				
Device util	ization summary:						
Selected De	vice : 3s500efg320	9-5					
Number of S	Slices:			out of			
Number of S	Slice Flip Flops:		178	out of	9312	1%	
	1 input LUTs:		969	out of	9312	10%	
	used as logic:		595				
	used as RAMs:		374				
Number of .			29				
	oonded IOBs:			out of			
Number of 0	GCLKs:		1	out of	24	4%	

* Tir	ning Report	*	
		========	
NOTE: THESE TIMING NUMBERS ARE ONL' FOR ACCURATE TIMING INFORMAT. GENERATED AFTER PLACE-and-ROL	ION PLEASE REFER TO THE T	RACE REPORT	
Clock Information:			
Clock Signal	Clock buffer(FF name)		
clock	BUFGP	365 -++	
Asynchronous Control Signals Infor	mation: 		+
Control Signal	Buffer(FF name)		1
resetSynch(I7/out11_INV_0:0) reset(I1/out11_INV_0:0)	NONE(I0/I_lcdCtl/I_ser,		 +
Timing Summary:			
Speed Grade: -5			
Minimum period: 10.079ns (Maxim Minimum input arrival time befo Maximum output required time af Maximum combinational path dela	re clock: 5.798ns ter clock: 10.466ns		

π School of Engineering

Design Flow

Report Place & Route

Design Information Command Line : map -intstyle ise -p xc3s500e-fq320-5 -cm area -ir off -pr off -c 100 -o ELN chrono map.ncd ELN chrono.ngd ELN chrono.pcf Target Device : xc3s500e Target Package : fg320 Target Speed : -5 Mapper Version : spartan3e -- \$Revision: 1.55 \$ Mapped Date : Fri Nov 01 11:00:17 2019 Design Summary *Number of errors:* Number of warnings: 60 Logic Utilization: Number of Slice Flip Flops: 178 out of 9,312 Number of 4 input LUTs: 688 out of 9,312 Logic Distribution: Number of occupied Slices: 421 out of 4,656 Number of Slices containing only related logic: 421 out of 421 100% Number of Slices containing unrelated logic: 0 out of 421 0% *See NOTES below for an explanation of the effects of unrelated logic. Total Number of 4 input LUTs: 784 out of 9,312 Number used as logic: Number used as a route-thru: 96 Number used as 16x1 RAMs: 185 Number used for 32x1 RAMs: (Two LUTs used per 32x1 RAM) The Slice Logic Distribution report is not meaningful if the design is over-mapped for a non-slice resource or if Placement fails. Number of bonded IOBs: 232 12% 29 out of Number of BUFGMUXs: 1 out of 24 4% Average Fanout of Non-Clock Nets: 4.10 Peak Memory Usage: 300 MB Total REAL time to MAP completion: 8 secs Total CPU time to MAP completion: 2 secs

Number of External IOBs	29 out of 232	12
Number of External Input IOBs	8	
Number of External Input IBUFs Number of LOCed External Input IBUF	8 8 out of 8	100%
Number of External Output IOBs	21	
Number of External Output IOBs Number of LOCed External Output IOB	21 21 out of 21	100%
Number of External Bidir IOBs	0	
	1 out of 24 4% 421 out of 4656 9% 111 out of 2328 4%	

Overall effort level (-ol): High Placer effort level (-pl): High Placer cost table entry (-t): 1 Router effort level (-rl): High

Design Summary Report:

π School of Engineering

Design Flow

Programming

Design Flow

Programming

π School of Engineering

- We now know everything about:
 - ASIC's
 - FPGA's
 - Implementation

- [War17] (Englisch) FPGA Designer Warrior
 http://blog.aku.edu.tr/ismailkoyuncu/files/2017/04/01_ebook.pdf
- [Int19] (Englisch) Intel FPGA Website https://www.intel.com/content/www/us/en/products/programmable.html
- [Xil19] (Englisch) Xilinx FPGA Website https://www.xilinx.com/
- [Act19] (Englisch) Actel FPGA Website https://www.microsemi.com/product-directory/1636-fpga-soc

