Software System Design and Implementation

https://powcoder.com

Add Wei Curtis Millar Powcoder

https://powcoder.com

• Classical logic is the logic that most people know about.

https://powcoder.com

- Classical logic is the logic that most people know about.
- Intuitionistic legic does not contain the axion of excluded middle $p \vee \neg p$ or equivalently $p \vee p$.

- Classical logic is the logic that most people know about.
- Intuitionistic legic does not contain the axion of excluded middle $p \vee \neg p$ or equivalently $p \vee p$.
- In classical logic more can be proven but less can be expressed.

- Classical logic is the logic that most people know about.
- Intuitionistic legic does not contain the axion of excluded middle $p \vee \neg p$ or equivalently $p \mapsto p$.
- In classical logic more can be proven but less can be expressed.
- Intuitionistic proof of an existence statement gives a witness for the statement. Add Vechat powcoder

- Consider the statement $\exists x, y. (x \in \mathbb{I}) \land (y \in \mathbb{I}) \land (x^y \in \mathbb{Q})$.

https://powcoder.com

- Consider the statement $\exists x, y. (x \in \mathbb{I}) \land (y \in \mathbb{I}) \land (x^y \in \mathbb{Q})$.
- Proof:

https://powcoder.com

- Consider the statement $\exists x, y. (x \in \mathbb{I}) \land (y \in \mathbb{I}) \land (x^y \in \mathbb{Q})$.
- Proof:
 - Consiante Designation Consider Com

- Consider the statement $\exists x, y.(x \in \mathbb{I}) \land (y \in \mathbb{I}) \land (x^y \in \mathbb{Q})$.
- Proof: Consident to Ser / 2 p. owcoder.com

 - o Other Add We Chat powcoder

- Let $\mathbb O$ be the set of rational numbers and $\mathbb I$ be the set of irrational numbers.
- Consider the statement $\exists x, y.(x \in \mathbb{I}) \land (y \in \mathbb{I}) \land (x^y \in \mathbb{Q})$.
- Proof:
 - Considert Deser 1/2 powcoder.com
 - - Pick $x = \sqrt{2}$ and $v = \sqrt{2}$
 - TA del We Chat powcoder

- ullet Let ${\mathbb Q}$ be the set of rational numbers and ${\mathbb I}$ be the set of irrational numbers.
- Consider the statement $\exists x, y. (x \in \mathbb{I}) \land (y \in \mathbb{I}) \land (x^y \in \mathbb{Q})$.
- Proof:
 - Considertions: 1/2 powcoder.com
 - - Pick $x = \sqrt{2}$ and $y = \sqrt{2}$
 - otherwise in 12 We Chat powcoder
 - Pick $x = \sqrt{2}^{\sqrt{2}}$ and $y = \sqrt{2}$
 - Then $x^y = (\sqrt{2}^{\sqrt{2}})^{\sqrt{2}} = \sqrt{2}^2 = 2 \text{ so } x^y \in \mathbb{Q}$

Recall: The Curry-Howard Isomorphism

This correspondence goes by many names, but is usually attributed to Haskell Curry and William Floward ment Project Exam Help

	Logic	Programming	
1.44	Propositions	Types	
nttp	S://postions S://pof WC Proof Simplification	O Charles O	m
1	Proof Simplification	Evaluation	

Recall: The Curry-Howard Isomorphism

This correspondence goes by many names, but is usually attributed to Haskell Curry and William Howard ment Project Exam Help

	Logic	Programming	
1 44	Propositions	₁ Types	
http	S://®®WC	O Charles O	m
	S://postions Proof Simplification	Evaluation	

It turns out, no matter what logic you want to define, there is always a corresponding λ -calculus, and Λ cevers.

Constructive Logic
Classical Logic
Modal Logic
Linear Logic
Separation Logic

Continuations
Monads
Linear Types, Session Types
Region Types

on proofs!

Translating

Assignment Project Exam Help We can translate logical connectives to types and back:

Constructors and Eliminators for Sums

Assignment Project Exam Help

https://epoweoder.com

 $\frac{\Gamma \vdash e :: A}{\Gamma \vdash () :: ()} \stackrel{\Gamma \vdash e :: A}{\leftarrow \Gamma \vdash \text{Left } e :: \text{Either } A B} S_L \qquad \frac{\Gamma \vdash e :: B}{\Gamma \vdash \text{Right } e :: \text{Either } A B} S_R$ $\frac{1}{\Gamma \vdash \text{Right } e :: \text{Either } A B} S_R$

Type Correctness

Assignment Project Exam Help

 $\frac{\Gamma \vdash e :: A}{\Gamma \vdash () :: ()} \stackrel{\Gamma \vdash e :: A}{\leftarrow \Gamma \vdash \text{Left } e :: \text{Either } A B} S_L \qquad \frac{\Gamma \vdash e :: B}{\Gamma \vdash \text{Right } e :: \text{Either } A B} S_R$ $\frac{\Gamma \vdash e :: A}{\Gamma \vdash \text{Right } e :: \text{Either } A B} S_R$

Type Correctness

Assignment Project Exam Help

 $\frac{\Gamma \vdash e :: A}{\Gamma \vdash () :: ()} \stackrel{\Gamma \vdash e :: A}{\leftarrow \Gamma \vdash \text{Left } e :: \text{Either } A B} S_L \qquad \frac{\Gamma \vdash e :: B}{\Gamma \vdash \text{Right } e :: \text{Either } A B} S_R$ $\frac{1}{\Gamma \vdash \text{Right } e :: \text{Either } A B} S_R$

Examples

```
prop_or_false :: a -> (Either a Void)
PropArsfsignment Project Exam Help
prop_or_true :: a -> (Either a ())
prop_or_true a = Right ()
https://powcoder.com
prop_and_true a = (a, ())
prop_double_Addo WeChatipowcoder
prop_double_neg_intro a f = f a
prop_triple_neg_elim ::
  (((a-> Void) -> Void) -> Void) -> a -> Void
prop_triple_neg_elim f a = f (\g -> g a)
```

• Assignment Project Exam Help

https://powcoder.com

- Assignment Project Exam Help
- 2 There is a quiz for this week, but no exercise.

https://powcoder.com

- Assignment Project Exam Help
- 2 There is a quiz for this week, but no exercise.
- Next week's lectures consist of an extension on dependent type systems and a revision lecture by wednesday we will be a revision lecture by wednesday to be a revision on dependent type systems and a revision lecture by wednesday to be a revision of the revision

- Assignment Project Exam Help
- 2 There is a quiz for this week, but no exercise.
- Next week's lectures consist of an extension on dependent type systems and a revision lecture by Svednessow WCOder.com
- There will be a survey on Plazza for revision topics, comment on the poll with specific questions
- If you enjoyed the course and want to do more in this direction, ask us for thesis topics, taste of research projects, and consider attending COMP \$161 and COMP \$161.

- Assignment Project Exam Help
- 2 There is a quiz for this week, but no exercise.
- Next week's lectures consist of an extension on dependent type systems and a revision lecture by Svednessow WCOder.com
- There will be a survey on Plazza for revision topics, comment on the poll with specific questions
- If you enjoyed the course and want to dormore in this direction, ask us for thesis topics, taste of research projects, and consider attending COMP 3161 and COMP 4161.
- Fill in the myExperience reports, it is important for us to receive your feedback.

Assignment Project Exam Help

 Consultations will be made on request. Ask on piazza or email cs3141@cse.unsw.edu.au.

https://powcoder.com

Assignment Project Exam Help

- Consultations will be made on request. Ask on piazza or email cs3141@cse.unsw.edu.au.
- If there is he to the property of the proper

Assignment Project Exam Help

- Consultations will be made on request. Ask on piazza or email cs3141@cse.unsw.edu.au.
- If there is here is here is here is here is here.
- Will be in the Thursday lecture slot, 9am to 11am on Blackboard Collaborate.

Assignment Project Exam Help

- Consultations will be made on request. Ask on piazza or email cs3141@cse.unsw.edu.au.
- If there is here is here is here is here is here.
- Will be in the Thursday lecture slot, 9am to 11am on Blackboard Collaborate.
- Make sure to join the dwyle or Homea Be pady to the regreen with REPL (ghci or stack repl) and editor set up.