my-ebook

Parmeshvar

2025-07-06

Table of contents

1	Introduction	5
2	Introduction	6
3	Bayesian data analysis for cognitive science 3.1 Introduction: What this course is about 3.2 Teaching	7 7 8 8
4	Schedule	9
5	Introduction to Basic Statistics Using GUI-R (RKWard)	11
6	Chapter 1: Welcome and Course Overview	12
7	Chapter 2: Agenda and Orientation	13
8	Chapter 3: Meaning and Nature of Statistics	14
9	Chapter 4: Applications and Uses	15
10	Chapter 5: Limitations and Misuse	16
11	Chapter 6: Paper-Based vs. Software-Based Statistics	17
12	Chapter 7: Introduction to Variables and Spreadsheets	18
13	Chapter 8: R and GUI Interfaces	19
14	Chapter 9: Importing Data and Understanding Data Types	20
15	Chapter 10: Statistical Data Types	21
16	Chapter 11: Data Preparation in RKWard	22
	Chapter 12: Visualizing Data with Plots in RKWard	23

	17.2 2. Pie Char17.3 3. Scatter F17.4 4. Box Plot17.5 5. Density I	Plot			 	 	 	 	 23
18	8 Chapter 13: Sur	nmary							25
19	9 References								26
20	0 Next Steps								27
21	1 Basic Statistics	Using GUI-R (RKWard)						28
22		sential Math for							29
	·	mber Line & C							
		ponential Funct		·					29
	-	ferentiation							
		egration							
23	3 Lecture 06: M	easures of Cen	tral Tenden	cy					30
	23.1 Definitions	3			 	 	 	 	 30
		istics							
	·	by Data Type							
	23.4 Skewness				 	 	 		 30
24	4 Lecture 07: M		•						32
	24.1 Measures				 	 	 	 	 32
	24.2 Theoretica	al Moments			 	 	 	 	 32
25									33
		tering							
		zation (Z-Score)	,						
	25.3 Applicatio	ns			 	 	 	 	 33
26	6 Lecture 09: Int	troduction to F	Probability						34
	26.1 Key Conce	epts			 	 	 	 	 34
	26.2 Basic Rule				 	 	 	 	 34
	26.3 Properties				 	 	 	 	 34
	26.4 Visual Aid	ls			 	 	 	 	 34
27									35
		Trials							35
	27.2 Binomial I	Distribution .			 	 	 	 	 35

28.1	ture 11: Normal Distribution Characteristics
28.2	Equation
28.3	Z-Score
28.4	Empirical Rule
28.5	Applications
29 S ur 29.1	••

1 Introduction

2 Introduction

DR.Harsh Pradhan, Phone: +91-9930034241 , Email: harsh.231284@gmail.com, Institute of Management Studies, Banaras Hindu University, Address: 18-GF, Jaipuria Enclave, Kaushambhi, Ghaziabad, India, 201010

Interest: Goal Orientation Job Performance Consumer Behavior Behavioral Finance Bibiliometric Analysis Options as Derivatives Statistics Indian Knowledge System,

Orcid ID Google Scholar GitHub Researcher ID Personal Website Youtube ID

Doing a PhD with me: README.1st

Academic Profile

3 Bayesian data analysis for cognitive science

3.1 Introduction: What this course is about

This course provides an introduction to Bayesian data analysis using the probabilistic programming language **Stan**.

We will use a front end software package called **brms**.

This course is for:

- Linguistics (MM5, MM6)
- Cognitive Systems
- Cognitive Science

Please see the PULS FAQs to find out how the sign-up system works (in German).

We will be using the software R and RStudio, so make sure you install these on your computer.

Topics to be covered:

- 1. Basic probability theory, random variable theory (including jointly distributed RVs), probability distributions (including bivariate distributions)
- 2. Using Bayes' rule for statistical inference
- 3. An introduction to (generalized) linear models
- 4. An introduction to hierarchical models
- 5. Measurement error models
- 6. Mixture models
- 7. Model selection and hypothesis testing (Bayes factor and k-fold cross-validation)

3.2 Teaching

Science and statistics is/are one unitary thing; you cannot do one without the other. Towards this end, I teach some (in my opinion) critically important classes that provide a solid statistical foundation for doing research in cognitive science. Free online course, four weeks (MOOC), enrollments open: Introduction to Bayesian Data Analysis. Short (four-hour) tutorial on Bayesian statistics, taught at EMLAR 2022: here Introduction to (frequentist) statistics Introduction to Bayesian data analysis for cognitive science BDA cover

3.3 Lecture notes

Download from here.

3.4 Moodle website

All communications with students in Potsdam will be done through this website.

4 Schedule

Week	Lectu	reMain Topic	Sub Topic	Video	PDF Resource
Jan	-	Model	-	-	HW 13
30 +		Selection &			
Feb		Hypothesis			
4		Testing			
Week	1	Descriptive	Central	Link	Week 2.pdf
2		Statistics	Tendency		
	2	Descriptive	Measure of	Link	Week 2.pdf
		Statistics	Variability		
	3	Descriptive	Describing Data	Link	Week 2.pdf
		Statistics			
	4	Probability	-	Link	Week 2.pdf
	5	Distribution	-	Link	Week $2.pdf$
Week	1	Probability	Z Table (Normal	Link	Week 3.pdf
3			Distribution)		
	2	Divergence	Measuring	Link	Week 3.pdf
			Divergence		
	3	Inferential	Sample and	Link	Week 3.pdf
		Statistics	Population		
	4	Model Fit	-	Link	Week 3.pdf
	5	Hypothesis	Hypothesis and	Link	Week 3.pdf
		Testing	Error		•
Week	1	Statistical	Terms of	Link	Week 4.pdf
4		Terms	Statistics		1
	2	Hypothesis	T-Test	Link	Week 4.pdf
	_	Testing			
	3	Hypothesis	T-Test in Detail	Link	Week 4.pdf
		Testing	I Ioot III Bottiii		ween input
	4	ANOVA	ANOVA	Link	Week 4.pdf
Week	1	ANOVA	Example of	Link	Week 5.pdf
5	_	11110 111	ANOVA	211111	Wook o.pur
9	2	ANOVA	Types of	Link	Week 5.pdf
	4	MIOVA	ANOVA	1711117	week o.pui

Week	Lect	ureMain Topic	Sub Topic	${f Video}$	PDF Resource
	3	Correlation	Introduction to Correlation	Link	Week 5.pdf
	4	Regression	Regression	Link	Week $5.pdf$
	5	Regression	Regression	Link	Week $5.pdf$
Week 6	1	Regression	R Script for Regression	Link	Week 6.pdf
	2	Chi-Square	Chi Square	Link	Week $6.pdf$
	3	Chi-Square	Chi Square Test	Link	Week $6.pdf$
	4	Logistic Regression	Logistic Function	Link	Week 6.pdf
	5	Distribution	-	Link	Week $6.pdf$
Week 7	1	Time Series	Intro to Time Series	Link	Week 7.pdf
	2	Probability	Conditional Probability	Link	Week 7.pdf
	3	Additional Concepts	-	Link	Week 7.pdf
	4	Distribution	-	Link	Week $7.pdf$
	5	Poisson Distribution	-	Link	Week 7.pdf
Week 8	1	Libraries & Documentation	Effect Size and Packages	Link	Week 8.pdf
	2	Software Comparison	RStudio vs RKward	Link	Week 8.pdf
	3	Visualization	Flexplot	Link	Week 8.pdf
	4	Programming in R	Functions	Link	Week 8.pdf
	5	R Tools	R Shiny and R Markdown	Link	Week 8.pdf

5 Introduction to Basic Statistics Using GUI-R (RKWard)

6 Chapter 1: Welcome and Course Overview

This course offers an introduction to statistics through the RKWard graphical interface of R. Aimed at learners from diverse backgrounds, the course emphasizes practical application over theory. You don't need a strong background in math or computing—just an eagerness to learn

Pre-Requisites:

- Curiosity
- Basic awareness of numbers
- No fear of statistics or software

"Aapko darne ki zarurat nahi hai... simple understanding aapko statistics ki data ki aage milegi."

7 Chapter 2: Agenda and Orientation

Key Themes:

- Difference between Mathematics and Statistics
- Nature, Meaning, and Role of Statistics
- Uses, Limitations, and Common Fallacies

Aspect	Mathematics	Statistics
Nature	Abstract, theoretical	Applied, data-centric
Focus	Concepts, theorems, proofs	Tools, interpretation, decision-making
Tools	Logical reasoning, algebra	Hypothesis testing, regression, probability
Application	General structures	Real-world problems

8 Chapter 3: Meaning and Nature of Statistics

Definition:

Statistics is the science of collecting, analyzing, interpreting, and presenting data for decision-making.

Core Concepts:

- Population & Sample
- Parameter & Statistic
- Data classification and tabulation

Purpose:

- Describe and explain phenomena
- Interpret and predict outcomes
- Facilitate scientific and social inquiry

9 Chapter 4: Applications and Uses

Main Uses:

- Summarizing observed data
- Drawing representative samples
- Analyzing relationships and trends
- Supporting decision-making in fields like marketing, psychology, education, and public health

Important Concepts:

- Data summarization
- Prediction based on patterns
- Comparison across groups
- Scientific objectivity

10 Chapter 5: Limitations and Misuse

Limitations:

- Cannot analyze qualitative phenomena
- Not designed for individuals
- Results aren't exact
- Misinterpretation leads to incorrect conclusions

Misuse Includes:

- Small or biased samples
- Misleading graphs
- Invalid comparisons

"Statistics is not a substitute for common sense or understanding the context."

Fallacies Stem From:

- Poor data collection
- Mislabeling variables
- Improper classification or selection

11 Chapter 6: Paper-Based vs. Software-Based Statistics

Traditional exams test pen-paper knowledge, but software-based tools like RKWard make analysis:

- Faster
- Collaborative
- Easier to store and access
- Essential for modern data-centric fields like AI and machine learning

Understanding both paper and digital approaches ensures comprehensive learning.

12 Chapter 7: Introduction to Variables and Spreadsheets

Variables:

- Store information (e.g., x = 5)
- Have unique names
- Can be manipulated with commands (e.g., x = x + 2)

Spreadsheets:

- Represent tabular data (rows = observations, columns = variables)
- Familiar formats: Excel, Google Sheets
- Essential in statistical packages

13 Chapter 8: R and GUI Interfaces

Why R?:

- Free and open-source
- Strong community support
- High flexibility
- Powerful graphics and data manipulation capabilities

GUI Tools in R:

- RKWard (used in this course)
- R Commander
- Rattle
- R AnalyticFlow

Basic Terms:

- Console: Type commands & view outputs
- Working Directory: File storage location
- Package: Predefined or custom functions
- Script: Collection of reusable commands
- Workspace: All current variables/functions

14 Chapter 9: Importing Data and Understanding Data Types

Using RKWard:

- Import CSV files using GUI
- Data appears in alphabetical order in workspace
- Each header = variable name

Data Structures:

- Data Frames (most commonly used)
- Matrices
- Vectors
- Lists

Command Line vs GUI:

- Both achieve the same results
- GUI is user-friendly, command line is customizable

mean(my_csv.data\$JP_01) # Calculates the mean of variable JP_01

15 Chapter 10: Statistical Data Types

Statistical Type	Description	R Equivalent
Nominal	Names, labels (e.g., Male/Female)	String
Ordinal	Order/rank (e.g., 1st, 2nd)	Factor
Interval	Ordered + meaningful intervals (e.g., tax slabs)	Numeric
Ratio	Includes absolute zero (e.g., weight)	Numeric

Others in R:

- Logical (TRUE/FALSE)
- Integer, Complex

Remember: Not all numbers mean quantity. Shirt numbers (like #18) are nominal, not mathematical.

16 Chapter 11: Data Preparation in RKWard

- Data must be properly **typed** (e.g., "1" as number vs "1" as label)
- Check alignment: Left = character, Right = number
- Labels help collaborators understand variables
- Example: Gender = 1 (Male), 0 (Female)
- Must distinguish between numeric calculations and categorical identifiers

Best Practices:

- Define each variable with meaning
- Validate data types
- Store and share workspace for reproducibility

17 Chapter 12: Visualizing Data with Plots in RKWard

Data visualization is essential to reveal patterns, trends, and distributions. RKWard offers multiple graphical tools:

17.1 1. Histogram

- Depicts the distribution of a single variable
- Can include frequency, relative frequency, and cumulative frequency
- Best for understanding where most data points lie

17.2 2. Pie Chart

- Represents categorical data as slices of a circle
- Best when visualizing proportions

17.3 3. Scatter Plot

- Plots two variables to examine relationships
- X-axis: Independent variable
- Y-axis: Dependent variable
- Useful in exploring associations or potential causality

17.4 4. Box Plot

- Shows data distribution via quartiles
- Median, interquartile range (IQR), and outliers are clearly indicated
- Useful for comparing multiple variables

17.5 5. Density Plot

- Smoothed version of a histogram
- Better suited for continuous data with decimal variation

Key Tips:

- JP_01 was frequently used as an example variable
- RKWard allows saving and exporting plots easily
- GUI menus guide the user through plot creation

Always choose the plot type that best matches your data and goal: frequency, relationship, or comparison.

18 Chapter 13: Summary

This eBook provided a foundation for understanding and applying statistics using the RKWard GUI tool in R. It covered essential concepts from what statistics is, to importing and handling data, understanding types of variables and their measurement levels, and visualizing data using a variety of plots.

Learners were introduced to:

- Basic statistical principles
- Software versus paper-based understanding
- Variable types and spreadsheet usage
- Command line and GUI-based tools
- Data visualization through histogram, pie, scatter, box, and density plots

The course emphasized **conceptual clarity**, **practical tools**, and the **power of visualization**. It prepares learners to interpret, analyze, and present data meaningfully in academic or real-world contexts.

19 References

- 1. Mohanty, B., & Misra, S. (2020). Statistics for Behavioral and Social Sciences. PHI Learning.
- 2. Pandya, D., et al. (2019). Statistical Analysis in Simple Steps Using R. Wiley.
- 3. Field, A., Miles, J., & Field, Z. (2012). Discovering Statistics Using R. SAGE Publications.
- 4. Harris, J. (2021). Statistics with R: Solving Problems Using Real-World Data. Pearson.
- 5. RKWard Project: https://rkward.kde.org

20 Next Steps

Upcoming lectures will cover:

- Graph creation
- Data visualization tools
- Advanced statistical operations in GUI

21 Basic Statistics Using GUI-R (RKWard)

Lectures 05 to 11: Foundations of Statistical Thinking

22 Lecture 05: Essential Math for Statistics

This lecture lays the foundation of mathematical concepts essential to understanding statistics. Topics include coordinate geometry, linear and exponential functions, and basics of calculus.

22.1 **Key Concepts**

22.1.1 **Number Line & Coordinate Geometry**

- A number line represents a variable's values.
- Cartesian plane: X-axis (independent), Y-axis (dependent).
- Linear equation: Y = mX + C, where:

 - $-m = \frac{Y_2 Y_1}{X_2 X_1}$ (slope) C is the Y-intercept (Y when X = 0)

22.1.2 **Exponential Functions**

- Form: $Y = a^X$ or $Y = e^X$ (where $e \approx 2.718$)
- Models rapid, nonlinear growth.

22.1.3 Differentiation

• Measures instantaneous rate of change:

$$\frac{dY}{dX} = \lim_{h \to 0} \frac{f(X+h) - f(X)}{h}$$

22.1.4 Integration

• Calculates area under the curve:

$$\bar{X} = \int X \cdot f(X) \, dX$$

23 Lecture 06: Measures of Central Tendency

Central tendency summarizes a dataset with a single representative value.

23.1 Definitions

- Mean: Arithmetic average; sensitive to outliers.
- Median: Middle value; robust to outliers.
- Mode: Most frequent value; best for categorical data.

23.2 Characteristics

- Simple, uses all values (mean).
- Median is stable against extreme values.
- Mode is useful for nominal data.

23.3 Suitability by Data Type

Measure	Data Type
Mean	Interval/Ratio
Median	Ordinal
Mode	Nominal

23.4 Skewness

Positive skew: Mean > MedianNegative skew: Mean < Median

24 Lecture 07: Measures of Variability

Describes the spread of data.

24.1 Measures

• Range: Max - Min

• Interquartile Range (IQR): $Q_3 - Q_1$

• Variance: Avg. of squared deviations

• Standard Deviation (SD): $\sqrt{\text{Variance}}$

• Coefficient of Variation (CV): $\frac{SD}{Mean}$

24.2 Theoretical Moments

Moment	Interpretation
1st	Mean
2nd	Variance
3rd	Skewness
$4 ext{th}$	Kurtosis

Lecture 08: Mean-Centered & 25 Standardized Data

Transformation techniques for advanced analysis.

25.1 **Mean-Centering**

- Subtract mean from each data point.
- New mean becomes zero.

25.2 Standardization (Z-Score)

- Formula: $Z = \frac{X-\mu}{\sigma}$ Mean = 0, SD = 1
- Unitless; allows comparison across distributions.

25.3 **Applications**

- Normalize different scales
- Preprocessing in statistics and ML

26 Lecture 09: Introduction to Probability

Foundation of inferential statistics.

26.1 Key Concepts

- Experiment: Controlled process
- Event: Subset of outcomes
- Sample Space (S): All possible outcomes

26.2 Basic Rule

• $P(A) = \frac{\text{Favorable outcomes}}{\text{Total outcomes}}$

26.3 Properties

- $0 \le P(A) \le 1$
- P(S) = 1
- $P(A^c) = 1 P(A)$
- If $A \subseteq B$, then $P(A) \le P(B)$

26.4 Visual Aids

- Venn diagrams
- Frequency Probability distribution linkage

27 Lecture 10: Distributions & Binomial Distribution

Probability distributions describe variable behavior.

27.1 Bernoulli Trials

• Success (p) or failure (1 – p)

27.2 Binomial Distribution

 \bullet n independent trials

•

$$P(X=r) = \binom{n}{r} p^r (1-p)^{n-r}$$

27.3 Properties

- Mean: np
- Variance: np(1-p)

27.4 Tools

- Galton board
- Pascal's triangle

28 Lecture 11: Normal Distribution

Crucial distribution in statistics.

28.1 Characteristics

- Bell-shaped, symmetric about μ
- Area under curve = 1
- Emerges with large samples

28.2 Equation

$$f(x) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$

28.3 **Z-Score**

•
$$Z = \frac{X-\mu}{\sigma}$$

28.4 Empirical Rule

Range	Coverage
$\begin{array}{c} \pm 1 \text{ SD} \\ \pm 2 \text{ SD} \\ \pm 3 \text{ SD} \end{array}$	68% 95% 99.7%

28.5 Applications

• Heights, test scores, measurement errors

29 Summary

This section builds statistical fundamentals.

29.1 Topics Recap

- Math: Derivatives, integrals, exponential functions
- Descriptive Stats: Central tendency, variability
- Transformation: Z-scores, mean-centering
- Probability: Events, rules, visual tools
- Distributions: From discrete (binomial) to continuous (normal)

30 References

- 1. Galton, F. (1889). Natural Inheritance.
- 2. Montgomery, D.C., & Runger, G.C. (2014). Applied Statistics and Probability for Engineers
- 3. Casella, G., & Berger, R.L. (2002). Statistical Inference.
- 4. Lecture transcripts by Dr. Harsh Pradhan, IMS-BHU (Week 2, Lectures 05–11)
- 5. Course materials and RKWard demonstrations

31 summary

This is summary file . 10 june .