

⑪ BUNDESREPUBLIK
DEUTSCHLAND

DEUTSCHES
PATENT- UND
MARKENAMT

Offenlegungsschrift

⑫ DE 100 41 541 A 1

⑬ Int. Cl. 7:
C 07 K 16/00

C 07 K 14/435
A 61 K 38/17
C 07 H 21/00
C 12 N 15/63
C 12 N 15/13

⑭ Aktenzeichen: 100 41 541.5
⑮ Anmeldetag: 24. 8. 2000
⑯ Offenlegungstag: 14. 3. 2002

DE 100 41 541 A 1

⑰ Anmelder:

Duchene, Michael, Dr., Wien, AT

⑱ Vertreter:

Weickmann & Weickmann, 81679 München

⑲ Erfinder:

Duchene, Michael, Dr., Wien, AT; Binder, Marina,
Wien, AT; Mahler, Vera, 91054 Erlangen, DE; Hayek,
Brigitte, Wien, AT; Prozell, Sabine, 10407 Berlin, DE;
Schöller, Matthias, 10247 Berlin, DE

Die folgenden Angaben sind den vom Anmelder eingereichten Unterlagen entnommen

⑳ Rekombinante Allergene aus der Motte *Plodia interpunctella*

㉑ Die Erfindung betrifft rekombinante Allergene p40 (Arginin kinase), p33 (Tropomyosin), p84 (Arylphorin) und p27 (eine Oxidoreduktase) aus der Dörrobstmotte *Plodia interpunctella*, deren Fragmente und abgeleitete rekombinante DNA-Moleküle, Vektoren und Wirtszellen, die diese rekombinanten DNA-Moleküle enthalten, sowie diagnostische und therapeutische Anwendungen der beschriebenen Allergene und Fragmente.

DE 100 41 541 A 1

DE 100 41 541 A 1

Beschreibung

[0001] Die vorgestellte Erfindung befaßt sich insbesondere mit dem Problem der allergischen Reaktion auf Invertebratenproteine am Beispiel der Allergie gegen Proteine aus der Dörrobstmotte *Plodia interpunctella*. Sie beschreibt rekombinante Moleküle, die von vier Allergenen dieser Spezies abgeleitet sind und ihre Anwendung für Diagnose und Therapie von Allergien und die Detektion von Allergenen in der Umwelt des Menschen.

Hintergrund der Erfindung

- [0002] Bis zu 20% der Bevölkerung der Industriestaaten leiden unter Typ I allergischen Symptomen (Rhinitis, Konjunktivitis, bronchiale Asthma) (Myamoto et al., 1992). Bei der Typ I Allergie bindet das Allergen an IgE-Antikörper auf der Oberfläche von Mastzellen. Das IgE ist an die hochaffinen Fc_εRI-Rezeptoren gebunden, die durch die zusätzliche Bindung der Allergene quervernetzt werden und damit der Mastzelle signalisieren, biologische Mediatoren wie zum Beispiel Histamin freizusetzen (Segal et al., 1977). In den vergangenen Jahren ist gezeigt worden, daß Allergene meist wasserlösliche Proteine sind, die in vielen Fällen in rekombinanter Form erzeugt werden können (Kraft et al., 1999). Noch vor wenigen Jahren wurde ausschließlich speziesspezifische Allegiediagnostik betrieben, bei der Gesamtextrakte natürlicher Allergenquellen, z. B. von Pollen oder Tierhaarextrakten als Antigen eingesetzt wurden. Diese Extrakte sind biochemisch nicht genau definiert, manchmal fehlen wichtige allergene Komponenten. Deshalb wird in den vergangenen Jahren in zunehmender Weise eine komponentenspezifische Diagnose (CRD, "component resolved diagnosis") mit Hilfe von gut definierten, rekombinanten Allergenen eingeführt (Valenta et al., 1999).
- [0003] Während die Allergene außerhalb des Hauses meist mit Pflanzenpollen assoziiert sind, kommen im Haus mehr Allergene aus Tieren vor, sowohl von Schädlingen als auch von Haustieren. Bei den Schädlingen steht als Allergenquelle die Hausstaubmilbe, ein Spinnentier (Thomas und Smith, 1999) an erster Stelle. Besonders in den USA ist die Küchenschabe, ein flügelloses Insekt, auch als Allergenquelle wichtig (Rosenstreich et al., 1997; von Wijnen et al., 1997). Von beiden sind eine Reihe rekombinanter Allergene bekannt (Arruda et al., 1995; Thomas und Smith, 1999). Eine zusätzliche Allergenquelle im Haus sind Schimmelpilze, von denen in den letzten Jahren ebenfalls mehrere allergene Komponenten charakterisiert und für die Diagnostik eingesetzt wurden (Unger et al., 1999).
- [0004] Diese Erfindung befaßt sich mit einer bisher kaum untersuchten Allergenquelle im häuslichen Bereich, den Motten. Bei den Motten handelt es sich um Insekten, um echte Schmetterlinge (Lepidoptera). Die Hauptvertreter sind *Plodia interpunctella*, die Dörrobstmotte, im englischen Sprachgebrauch "Indian meal moth" und *Tineola bisselliella*, die Kleidermotte, "webbing clothes moth". Die vorliegende Erfindung bezieht sich auf *P. interpunctella*, allerdings sind die verschiedenen Mottenarten nah verwandt und deshalb ist zu erwarten, daß die Allergene der verschiedenen Mottenarten immunologisch kreuzreaktiv sind. Die Dörrobstmotte ist ein Nahrungsmittelparasit, sie wird hauptsächlich in der Küche gefunden und befüllt trockene Nahrungsmittel wie Nüsse, Dörrobst, Schokolade, Hafer, Maismehl, Müesli. Es wird vermutet, daß die Dörrobstmotte aus Südamerika stammt. Sie ist der häufigste Nahrungsmittelschädling in den amerikanischen Haushalten und wurde deshalb im Mai 1999 vom Department of Environmental Health & Safety der Harvard Universität zum "Schädling des Monats" gewählt (http://www.uos.harvard.edu/ehs/hot_topics/pom_meal_moth.html). Auch in den deutschen Haushalten ist die Dörrobstmotte häufig (zum Beispiel: Vorratsschädling Nr. 1: die Dörrobstmotte. Sendung im Westdeutschen Rundfunk am 9. Mai 1997, von Michael Wieger-Wegener). Abgestorbene Motten trocknen aus und landen typischerweise über den Hausstaub im Staubsauger. Dieser stößt große Mengen von winzigen Staubpartikeln aus, die auch Proteine der eingesaugten Insekten und damit potentielle Allergene enthalten.
- [0005] Bisher ist noch von keinem Allergen aus irgendeiner Mottenspezies die Struktur aufgeklärt worden. Außerdem gibt es noch keine Publikation in der gesamten medizinischen Literatur (Medline), die sich mit der Dörrobstmotte im Zusammenhang mit Allergie beschäftigt. Dennoch gibt es eine kleine Zahl von Publikationen, die sich mit Allergien gegen andere Motten beschäftigen. Die Studie von Baldo und Panzani (1988) charakterisiert Extrakte verschiedener Insektenarten, darunter auch der Kleidermotte (*Tineola bisselliella*) mit IgE Immunoblots, enthält jedoch keine Primärstrukturen. Mehrere Publikationen berichten über allergische Reaktionen gegen Motten oder Seidenraupen bei beruflicher Exposition, zum Beispiel mit Seidenraupen (Komase et al. 1997, Suzuki et al., 1995, Wang et al., 1994), verschiedenen Schmetterlingen (Davis and Jenkins 1995), oder Mehlmothen (Storms et al., 1981).
- [0006] Die vorliegende Erfindung stellt vier rekombinante Allergene aus der wichtigsten Nahrungsmittelmotte für verschiedene medizinisch-diagnostische, umweltanalytische und therapeutische Zwecke zur Verfügung.
- [0007] Homologe der vier beschriebenen Allergene sind in verschiedenen Spezies in der Vergangenheit bereits untersucht worden, es handelt sich um Arginininasen, Tropomyosine, Arylphorine und eine Familie von Oxidoreduktasen. Tropomyosine sind als Allergene gut beschrieben (Reese et al., 1999) und auch zum Arylphorin als Allergen bei Schaben (*Periplaneta americana*) gibt es eine Publikation (Wu et al., 1996). In der Literatur sind auch schon einige Redox-Enzyme als Allergen beschrieben, hauptsächlich bei Pilzen und Pflanzen. Das Protein, das zu der gefundenen Oxidoreduktase aus der Motte am nächsten verwandt ist, ist die bakterielle Glukose-1-Dehydrogenase (Nagao et al., 1992), welche selbst nicht als Allergen bekannt ist. Die Arginin kinase ist hingegen noch nicht als Allergen identifiziert worden, auch wenn in einer Publikation über ein Allergen Par f 1 aus der Garnele *Parapenaeus fissurus* Peptidsequenzen veröffentlicht wurden, die Sequenzähnlichkeiten zu Arginininasen anderer Spezies aufweisen (Lin et al., 1993). Diese Ähnlichkeiten wurden jedoch in der Veröffentlichung nicht beschrieben. Die Arginin kinase ist ein Enzym, das in Muskeln von Invertebraten Argininphosphat als Energie-Reservestoff bildet (Wyss et al., 1995). Auch bei Insekten wurde die Arginin kinase in ihrer Primärstruktur aufgeklärt (Kucharski und Maleszka, 1998), allerdings nie als Allergen beschrieben.
- [0008] Die vorliegende Erfindung basiert auf der Erkenntnis, daß die Dörrobstmotte, die in unseren Wohnungen sehr häufig als Nahrungsmittelschädling auftritt, auch eine Allergenquelle darstellen kann. Etwa die Hälfte der untersuchten Patientenserien wiesen IgE gegen Mottenallergene auf. Die Erfindung stellt molekular genau definierte Reagenzien zur Verfügung, die von den beschriebenen Allergen p40 (Arginin kinase), p33 (Tropomyosin), p84 (Arylphorin) und p27 (Oxidoreduktase) abgeleitet sind und einerseits eine exakt definierte und einfache in vitro und in vivo Diagnose und The-

DE 100 41 541 A 1

rapie der Allergie gegen Motten ermöglichen, andererseits den Nachweis von Mottenproteinen in Proben aus Haushalt, Schule oder Betrieb. Die Bezeichnungen der Allergene erfolgen in Anlehnung an ihre Molekulargewichte in kDa. [0009] Das Allergen p40 ist überdies ein neues Panallergen von wirbellosen Tieren, das auch in der Hausstaubmilbe, in der Schabe und in Meeresfrüchten gefunden wird und in diesen Spezies immunologisch verwandt mit p40 aus der Motte ist. So ist es denkbar, daß man sich durch den Kontakt mit Motten oder Milben sensibilisiert und in der Folge eine Nahrungsmittelallergie gegen Meeresfrüchte entwickelt. Für die Untersuchung einer solchen Kreuzsensibilisierung können das rekombinante p40 oder nahe verwandte Moleküle eingesetzt werden.

Beschreibung der Erfindung

[0010] Die Erfindung betrifft eine Nukleinsäure, kodierend für ein allergenes Polypeptid, umfassend

- (a) eine der in SEQ ID No. 1, 3, 5 oder 7 dargestellten Sequenzen oder ein Fragment davon, welches für eine allgemeine Determinante davon kodiert.
 - (b) eine von einer Sequenz gemäß (a) auf Grund einer Degeneration des genetischen Codes abweichende Sequenz,
 - (c) eine Sequenz mit einer Identität > 80% zu einer der Sequenzen unter (a) und/oder (b) oder
 - (d) eine Sequenz, die mit einer der Sequenzen gemäß (a), (b) und/oder (c) unter stringenten Bedingungen hybridisiert,
- sowie eine Nukleinsäure, umfassend einen Bereich, der für ein Polypeptid mit einer in SEQ ID No. 2, 4, 6 oder 8 dargestellten Sequenz kodiert.

[0011] Ein erster Aspekt der Erfindung sind rekombinante DNA-Moleküle, die Nukleotidsequenzen (I) aufweisen, die Polypeptide kodieren, die die Antigenität der Allergene p40, p33, p84 oder p27 besitzen und aus Arthropoden isoliert sind, oder Nukleotidsequenzen (II), die mit solchen Nukleotidsequenzen (I) unter hochstringenten Bedingungen hybridisieren. Die rekombinanten DNA-Moleküle umfassen auch degenerierte Varianten dieser Nukleotidsequenzen.

[0012] Die rekombinanten DNA-Moleküle können auch Nukleotidsequenzen enthalten, die für Polypeptide kodieren, die antigene Kreuzreakтивität und einen hohen Grad von Identität (vorzugsweise > 50%, insbesondere > 60 % oder > 75%) mit den Allergenen p40 p33, p84 und p27 aus Arthropoden besitzen, die in der Abb. 3-6 angegeben sind. Die Bezeichnungen p40, p33, p84 und p27 beziehen sich auf die Molekulargewichte der Polypeptide in kDa.

[0013] Der Ausdruck "Hybridisierung unter hochstringenten Bedingungen" gemäß der vorliegenden Erfindung wird wie bei Sambrook et al. (Molecular Cloning: A Laboratory Manual, Cold Spring Harbor Laboratory Press (1989) 1.101-1.104) verwendet. Bevorzugt liegt eine hochstringente Hybridisierung gemäß der vorliegenden Erfindung vor, wenn nach Waschen für 1 Stunde mit 1 × SSC und 0,1% SDS bei 50°C, bevorzugt bei 55°C, mehr bevorzugt bei 62°C und am meisten bevorzugt bei 68°C, und mehr bevorzugt für 1 Stunde bei 0,2 × SSC und 0,1% SDS bei 50°C, bevorzugt bei 55°C, mehr bevorzugt bei 62°C und am meisten bevorzugt bei 68°C noch ein positives Hybridisierungssignal beobachtet werden kann.

[0014] Der Ausdruck "Identität", wie hierin verwendet, kann durch die Gleichung $I(\%) = [1 - V/X] \times 100$ definiert werden, worin I die Identität in % ausgedrückt bedeutet, X die Gesamtzahl der Nukleobasen einer Nukleotidsequenz für p40, p33, p27 oder p84 ist und V die Anzahl an davon abweichenden Nukleobasen der zu vergleichenden Sequenzen ist.

[0015] Ein zweiter Aspekt der Erfindung sind rekombinante Expressionsvektoren oder rekombinante Klonierungssysteme, die eine Expressionskontrollsequenz aufweisen, die operativ mit einem der oben beschriebenen Moleküle verknüpft ist.

[0016] Ein dritter Aspekt der Erfindung ist eine Wirtszelle, die mit einem rekombinanten Molekül oder einem Vektor nach dem ersten oder zweiten Aspekt der Erfindung transformiert ist.

[0017] Ein vierter Aspekt der Erfindung ist ein rekombinantes oder synthetisches Protein oder Polypeptid, das antigenes Epitope der p40, p33, p84 oder p27 Moleküle besitzt, die in den Aminosäuresequenzen von Abb. 3-6 enthalten sind. Das Protein oder Polypeptid kann dabei mit einem weiteren heterologen Polypeptid wie einer zellulosebindenden Domäne, β-Galaktosidase oder Glutathion-S-Transferase oder irgendeinem anderen Polypeptid fusioniert sein, das in prokaryontischen oder eukaryontischen Zellen exprimiert werden kann. Das Protein oder Polypeptid, das mit p40, p33, p84 oder p27 kreuzaktiv ist, kann dabei mit analytisch nachweisbaren Gruppen oder mit wasserlöslichen oder wasserunlöslichen Phasen konjugiert sein, die für die Durchführung des Nachweises von Antikörpern wie zum Beispiel IgA, IgD, IgE, IgG oder IgM geeignet sind. In den Aspekten der Erfindung, die sich mit in vitro Diagnostik befassen (siehe unten), können die Peptide der Erfindung a) an eine wasserunlösliche Phase durch physikalische Adsorption oder eine kovalente Bindung gekoppelt sein oder b) kovalent an eine analytisch nachweisbare Gruppe (Markierung) gekoppelt sein.

[0018] Die erfundungsgemäßen Polypeptide oder Fragmente davon, welche antigenen Determinanten enthalten, können als Immunogene zur Herstellung von Antikörpern eingesetzt werden. Zur Herstellung von für die allergenen Determinanten spezifischen Antikörpern können Standardprotokolle herangezogen werden. Die Antikörper können dann z. B. zum Nachweis von Allergenen und/oder zur Therapie verwendet werden.

[0019] Die Erfindung umfaßt weiterhin eine pharmazeutische Zusammensetzung, umfassend eine Nukleinsäure, einen Vektor, eine Zelle, ein Polypeptid oder einen Antikörper wie hierin definiert, als Wirkstoff. Die pharmazeutische Zusammensetzung kann pharmazeutisch annehmbare Hilfsstoffe sowie ggf. weitere Wirkstoffe enthalten. Die pharmazeutische Zusammensetzung kann für diagnostische und/oder therapeutische Zwecke verwendet werden, insbesondere für Therapie und/oder Diagnose von allergischen Erkrankungen.

[0020] Der fünfte Aspekt der Erfindung ist eine in vitro Methode der Diagnose von Allergie gegen Arthropodenproteine, die die humoralen Antikörper bestimmt, die gegen die Arthropodenproteine gerichtet sind. Die umfaßten Allergien sind meistens gegen Insekten gerichtet. Die relevanten Antikörper sind meistens von der IgE Klasse, aber auch IgG-Antikörper können wichtige Information über die Allergie liefern. Im Normalfall umfaßt diese Methode den Kontakt einer Körperflüssigkeit aus einem Patienten mit einem Polypeptid der Erfindung. Die Mengenverhältnisse und Bedingungen

DE 100 41 541 A 1

- werden so gewählt, daß sich Immunkomplexe zwischen dem Polypeptid und Antikörpern in der Probe in einer Menge ausbilden, die eine Funktion der Menge der Antikörper in der Probe ist. Der Immunkomplex wird dann mit einer der an sich bekannten Methoden gemessen. Etwas spezifischer ausgedrückt, eine bevorzugte Methode des fünften Aspekts der Erfahrung besteht darin, eine Probe einer Körperflüssigkeit, die zum Beispiel IgE-Antikörper enthält, mit einem Polypeptid der Erfahrung und einem Anti-IgE-Antikörper in Kontakt zu bringen, so daß sich ein IgE-Polypeptid-Anti-IgE-Immunkomplex bildet. Im Normalfall ist entweder das Polypeptid oder der Anti-IgE-Antikörper an eine feste Phase gekoppelt, die entweder unlöslich ist, oder im Testpuffer gelöst werden kann, so daß der Immunkomplex von dem Testpuffer getrennt werden kann. Der Detektionsschritt kann in diesen Varianten unter Verwendung einer analytisch nachweisbaren Gruppe (Markierung) ausgeführt werden, die entweder kovalent an den IgE-Antikörper gekoppelt ist (in diesem Fall ist das Polypeptid an die Festphase gekoppelt) oder an das Polypeptid (in diesem Fall ist der Anti-IgE-Antikörper an die Festphase gekoppelt). Wenn IgG-Antikörper bestimmt werden sollen, dann wird der Anti-IgE-Antikörper durch einen Anti-IgG-Antikörper ersetzt.
- [0021] Ein sechster Aspekt der Erfahrung ist eine Methode, die, vorzugsweise in vitro, eine zelluläre Reaktion, insbesondere eine Immunreaktion, auf das Polypeptid der Erfahrung mißt und ein rekombinantes oder synthetisches Polypeptid wie im vierten Aspekt beschrieben verwendet, um die zelluläre Reaktion, insbesondere die Immunreaktion, zu stimulieren. Als zelluläre Reaktionen können die Histaminfreisetzung aus basophilen Granulozyten oder die Proliferation von T-Lymphozyten, gemessen durch Aufnahme von ^{3}H -Thymidin gemessen werden, ebenso die Stimulation von eosinophilen Granulozyten, gemessen durch die Freisetzung von Mediatoren, wie zum Beispiel dem eosinophilen kationischen Protein. Die Proben, die in den oben beschriebenen Methoden verwendet werden, sind meistens aus Blut gewonnen, wie zum Beispiel beparimierte Vollblut, Serum oder Plasma.
- [0022] Ein siebenter Aspekt der Erfahrung betrifft nur das p40 Allergen und besteht darin, durch Messung der Enzymaktivität des p40 Allergens und seiner Homologen, der Arginin kinaseaktivität (EC 2.7.3.3), das Vorhandensein von Arthropodenallergenen in Proben aus der Umwelt des Menschen zu messen, beispielsweise in Staubproben aus Haushalt oder Betrieben. Die Arginin kinase katalysiert die reversible Umwandlung von L-Arginin und Adenosintriphosphat (ATP) in N-Phospho-L-Arginin und Adenosindiphosphat (ADP). Für die Messung der Arginin kinaseaktivität sind in der Literatur Standardmethoden beschrieben, die zum Beispiel das entstehende Produkt ADP indirekt messen (Anisika et al., 1975).
- [0023] Der achte Aspekt der Erfahrung besteht darin, mit Hilfe eines Immunoassays das Vorhandensein der p40, p33, p84 oder p27 Allergene oder deren Homologen in Proben aus der Umwelt des Menschen zu messen, beispielsweise in Staubproben aus Haushalt oder Betrieben. Der Immunoassay besteht darin, daß man einen monoklonalen Antikörper aus der Maus, der nach Standardmethoden gegen eines der Polypeptide der Erfahrung gewonnen wird, oder ein Antiserum aus einem Wirbeltier, wie zum Beispiel, Kaninchen, Ziege, Schaf, Huhn, das gegen eines der Polypeptide der Erfahrung gerichtet ist, mit der Umweltprobe in Kontakt bringt, die auf die p40, p33, p84 oder p27 Allergene oder deren Homologen getestet werden soll. Dabei ist der erste Antikörper oder das Antiserum typischerweise kovalent oder nichtkovalent an eine feste Phase gekoppelt, die Umweltprobe wird in wässriger Lösung oder in einem polaren Lösungsmittel gelöst angeboten. Nach einem Waschschritt wird das gebundene p40, p33, p84 oder p27 Allergen oder seine Homologen mit einem zweiten, markierten monoklonalen Antikörper oder einem Antiserum detektiert.
- [0024] Bei diesem Verfahren kann insbesondere ein p40-Homolog aus einer beliebigen Spezies, besonders bevorzugt aus Motte oder Milbe, am meiste bevorzugt aus Hausstaubmilbe, ein p33-Homolog aus einer Schmetterlingsart, insbesondere Motte, ein p84 Homolog aus einer wirbellosen Spezies, insbesondere einer Schmetterlingsart oder/für ein p27-Homolog aus einer beliebigen Spezies, insbesondere von einer Arthropodenart bestimmt werden.
- [0025] Der neunte Aspekt der Erfahrung besteht darin, aus dem synthetischen oder rekombinanten Polypeptid der Erfahrung ein Arzneimittel herzustellen, das zur Hyposensibilisierung (Immunotherapie) von Patienten mit Allergie gegen p40, p33, p84 oder p27 oder deren Homologen eingesetzt werden kann.
- [0026] Der zehnte Aspekt der Erfahrung besteht darin, solche Fragmente oder Teileptide oder Multimere des Polypeptids der Erfahrung herzustellen, die zwar ein oder mehrere Epitope, insbesondere IgE, IgG oder/und IgA-Epitope, der p40, p33, p84 oder p27 Allergene oder deren Homologen enthalten, aber nicht oder nur in einem stark eingeschränkten Maß zu einer anaphylaktischen Reaktion führen können. Multimere eines Allergens wirken oftmals weniger anaphylaktisch als Monomere. IgG und IgA-Epitope können eine geringere anaphylaktische Wirkung als IgE-Epitope aufweisen. Diese Derivate der Polypeptide der Erfahrung können zu einem Arzneimittel entwickelt werden, das entweder zur passiven Therapie des Effektororgans eingesetzt werden (Nase, Conjunctiva, Lunge), um einer Freisetzung von Mediatoren bei einer späteren Allergenexposition vorzubeugen, oder ebenfalls zu einer aktiven Immuntherapie im Sinne einer Hyposensibilisierung.
- [0027] Ein weiterer Aspekt der Erfahrung betrifft ein diagnostisches Mittel zum Nachweis einer Allergie bei einem Patienten, wobei dieses Mittel ein Polypeptid oder einen Antikörper wie oben beschrieben, enthält.
- [0028] Mit den Erkenntnissen der vorliegenden Erfahrung ist es möglich, eine speziespezifische Allergiediagnostik unter Verwendung einer Motte, insbesondere der Dörrobstmotte zu betreiben. Hierzu können die Dörrobstmotte, Extrakte davon, wie etwa Gesamtextrakte oder einzelne Bestandteile, insbesondere in Form von Teilextrakten zur Bestimmung einer allergischen Reaktion, beispielsweise als Antigen eingesetzt werden.
- [0029] Daneben ist es auch möglich, eine komponentenspezifische Allergiediagnostik durchzuführen, in dem Proben auf die einzelnen, oben beschriebenen Allergene untersucht werden. In diesem Zusammenhang ist die Diagnose einer Arginin kinase, insbesondere aus einer Motte oder aus einer Milbe, beispielsweise der Hausstaubmilbe, von besonders großem Interesse. Aber auch die anderen identifizierten Allergene sowie deren Homologen aus Arthropoden können für eine komponentenspezifische Allergiediagnostik herangezogen werden.
- [0030] Auf Grund der hierin präsentierten Ergebnisse kann eine Arginin kinase zur Herstellung eines Arzneimittels oder/und eines diagnostischen Mittels zur Behandlung von allergischen Erkrankungen oder/und zur Bestimmung von Allergenen verwendet werden. Bevorzugt wird hierzu eine Arginin kinase aus einem Arthropoden, insbesondere aus Motte oder aus Milbe, z. B. Hausstaubmilbe eingesetzt bzw. ein Test auf das Vorhandensein einer solchen Arginin kinase

DE 100 41 541 A 1

durchgeführt. Bei der Argininkinase handelt es sich bevorzugt um p40 oder eine Argininkinase, die zu p40 eine Identität von > 20%, insbesondere > 50%, bevorzugt > 70% und am meisten bevorzugt > 80%, aufweist und bevorzugt mit p40 konzentriert.

[0031] Grundsätzlich eröffnet sich somit eine breite Verwendung der erfundungsgemäß gefundenen Allergen und der dafür kodierenden Nukleinsäuren auf medizinisch-diagnostischem, umweltanalytischem und therapeutischem Gebiet.

[0032] Die Erfindung wird durch die folgenden Beispiele und die beigefügten Figuren weiter erläutert. Die Figuren zeigen:

[0033] Fig. 1: Immunoblotstreifchen mit Gesamtextract aus Larven der Dörrobstmotte, untersucht auf IgE in den Seren von 90 Patienten mit allergischen Beschwerden in Innenräumen (H1–H90, jeweils oberer Teil). Im jeweils unteren Teil wurden Immunoblotstreifchen mit rekombinantem p40 Allergen mit Hexahistidintag mit denselben Seren geprüft. Die Positionen von Molgewichtsmarkern sind auf der linken Seite in kDa angegeben. K ist die Pufferkontrolle ohne Zugabe von Serum.

[0034] Fig. 2: Immunoblotstreifchen mit Gesamtextract aus Larven der Dörrobstmotte (jeweils oberer Teil), untersucht auf IgE in den Seren von Patienten mit allergischen Beschwerden in Innenräumen plus atopischer Dermatitis (AH1–AH12), von Patienten mit Pollenallergie ohne angegebene Beschwerden im Haus (P1–P20) und von Normalpersonen (N1–N10). Im jeweils unteren Teil wurden Immunoblotstreifchen mit rekombinantem p40 Allergen mit Hexahistidintag mit denselben Seren untersucht. Die Positionen von Molgewichtsmarkern sind auf der linken Seite in kDa angegeben. K ist die Pufferkontrolle ohne die Zugabe von Serum.

[0035] Fig. 3: cDNA (SEQ ID No. 1) und davon abgeleitete Proteinsequenz (SEQ ID No. 2) des Allergens p40 aus *Plodia interpunctella*

[0036] Fig. 4: cDNA (SEQ ID No. 3) und davon abgeleitete Proteinsequenz (SEQ ID No. 4) des Allergens p33 aus *Plodia interpunctella*

[0037] Fig. 5: cDNA (SEQ ID No. 5) und davon abgeleitete Proteinsequenz (SEQ ID No. 6) des Allergens p84 aus *Plodia interpunctella*

[0038] Fig. 6: cDNA (SEQ ID No. 7) und davon abgeleitete Proteinsequenz (SEQ ID No. 8) des Allergens p27 aus *Plodia interpunctella*

[0039] Fig. 7: IgE-Immunoblot. Streifen mit rekombinantem p40 Fusionsprotein mit einer Zellulose-bindenden Domäne wurden mit einer Auswahl der oben beschriebenen Seren getestet. Auf der rechten Seite sind die Molgewichtsmarker angegeben

[0040] Fig. 8: Soforttypreaktionen beim Hauttest mit dem rekombinanten p40 Allergen mit Hexahistidintag.

a: Pricktest bei dem mottenallergischen Patienten AH11. Keine Hautreaktivität auf Konzentrationen Nr. 10 und 9. Quaddeln und Rötung bei den Konzentrationen Nr. 8 (3.12 ng/µl) bis Nr. 5 (25 ng/µl). Die höheren Konzentrationen wurden nicht mehr getestet. ++ Positivkontrolle (Histamindihydrochlorid), - Negativkontrolle (0,9% NaCl). Die Quaddeln sind mit einem Stift markiert.

b: Reibetest am kontralateralen Unterarm desselben Patienten, starke Quaddelbildung und Hautrötung in den Konzentrationen Nr. 2 (200 ng/µl) und Nr. 3 (100 ng/µl).

c: Vergrößerung des Bereichs von Fig. 8a bevor die Quaddeln angezeichnet wurden. Die urtikarielle Reaktion mit der Bildung von Pseudopodien (Nr. 6) ist gut zu erkennen.

d: Vergrößerung von Fig. 8b: Quaddelbildung im Reibetest bei der Konzentration Nr. 2 nach 20 min.

[0041] Fig. 9: Spätphasenreaktionen nach 24 h bei der Hauttestung mit dem rekombinanten p40 Allergen mit Hexahistidintag.

a: Reibetest: ekzematöse Reaktion in den Konzentrationen Nr. 6 (12.5 ng/µl) bis Nr. 2 (200 ng/µl). Nr. 1 wurde nicht durchgeführt.

b: Reibetest: keine ekzematöse Reaktionen in den Konzentrationen Nr. 10 bis Nr. 7.

c: Vergrößerung von Fig. 9a: Ekzematöse Reaktion bei Konzentration Nr. 4.

d: Pricktest: Infiltrierte Papeln innerhalb der markierten Grenzen der vorangegangenen Soforttyp-Reaktion.

[0042] Fig. 10: Immunoblot-Inhibitionsexperiment. Drei mit rekombinantem p40 Allergen aus der Dörrobstmotte positive Seren wurden verwendet, um mit und ohne Präinkubation mit rekombinantem p40 allergenhaltige Extrakte aus verschiedenen Spezies (Dörrobstmotte, Küchenschabe, Haussaubermilbe, Hummer, Garnele, Miesmuschel und Kabeljau) zu testen. Die Molgewichtswerte sind auf der linken Seite der Immunoblots angegeben, von oben nach unten 66, 46, 30 und 21 kDa.

SEQ ID No. 1 zeigt die cDNA des Allergens p40 aus *Plodia interpunctella*,
SEQ ID No. 2 zeigt die davon abgeleitete Proteinsequenz,

SEQ ID No. 3 zeigt die cDNA des Allergens p33 aus *Plodia interpunctella*,

SEQ ID No. 4 zeigt die davon abgeleitete Proteinsequenz,

SEQ ID No. 5 zeigt die cDNA des Allergens p84 aus *Plodia interpunctella*,

SEQ ID No. 6 zeigt die davon abgeleitete Proteinsequenz,

SEQ ID No. 7 zeigt die cDNA des Allergens p27 aus *Plodia interpunctella*, und

SEQ ID No. 8 zeigt die davon abgeleitete Proteinsequenz.

DE 100 41 541 A 1

Beispiele

Beispiel 1

- 5 Test von verschiedenen Gruppen von Allergikern und Normalpersonen auf IgE-Antikörper gegen Mottenantigene aus Larven der Dörrobstmotte *P. inter punctella*

[0043] Da im klinischen Bereich eine mögliche Allergie gegen Motten bislang kaum Beachtung gefunden hat, konnte bei der Auswahl der Patienten keine Gruppe definiert werden, die klinische Beschwerden nach Kontakt mit Mottenallergenen als Symptom angab. Deshalb stellten wir für unsere Arbeit die folgenden Gruppen zusammen, die auf IgE-Antikörper gegen Mottenproteine getestet wurden:

1. Patienten mit Typ I allergischen Beschwerden (Rhinitis, Conjunctivitis, allergisches Asthma bronchiale) in Innenräumen (n = 90, Patienten H1–H90),
15 2. Patienten mit atopischer Dermatitis und Typ I allergischen Beschwerden (Rhinitis, Conjunctivitis, allergisches Asthma bronchiale) in Innenräumen (n = 12, Patienten AH1–AH12),
3. Patienten mit nachgewiesener Pollenallergie ohne Typ I allergische Beschwerden (Rhinitis, Conjunctivitis, allergisches Asthma bronchiale) in Innenräumen (n = 20, Patienten P1–P20),
4. Probanden ohne atopische Dermatitis und ohne nachgewiesene Typ I Allergien (n = 10, Probanden N1–N10).
20

IgE-Reaktivität von natürlichen Mottenextrakten

[0044] Präparationen von zwei verschiedenen Mottenspezies wurden verwendet, um mottenspezifische IgE-Antikörper in Patientenserien zu detektieren. Die eine Präparation ist ein kommerziell erhältliches Homogenat von Faltern der Mehlmotte *Ephestia kuhniella* (Allergon, Pharmacia Upjohn, Uppsala, Schweden). Die andere Präparation wurde aus Mottenlarven (Wanderstadium, kurz vor der Verpuppung) von der Dörrobstmotte *Plodia inter punctella* hergestellt. Die Insektenproben (5 Larven) wurden in 0,2 ml PBS homogenisiert, im Verhältnis von 1 : 1 mit Laemmli-Auftragsspuffer versetzt und auf einem 12,5% SDS-Polyacrylamidgel aufgetrennt (Fling und Gregerson, 1986). Es wurde ein präparatives Gel verwendet, auf das etwa 20 µg Gesamtprotein pro cm aufgetragen wurden. Als Marker diente ein Rainbow-Marker (Amersham Pharmacia). Das Gel wurde nach der Elektrophorese auf Nitrozellulose (Schleicher & Schuell, Dassel, Deutschland) geblottet (Towbin et al., 1979) und in 0,5 cm Streifen geschnitten.

[0045] Der Test der Patientenserien auf IgE gegen Motten wurde analog zu der von Jarolim et al. (1989) beschrieben Methode durchgeführt. Die Streifen wurden 2 × 5 min und 1 × 30 min in Puffer G (42 mM Na₂HPO₄, 6,4 mM NaH₂PO₄, 0,5% (v/v) Tween 20, 0,5% (w/v) Rinderserumalbumin, 0,05% (w/v) NaN₃, pH 7,5) bei Raumtemperatur abgesättigt, dann in 1 ml Volumen in 1 : 10 (wenn nicht anders beschrieben) mit Puffer G verdünnten Patientenserien über Nacht bei 4°C gekippt. Die Streifen wurden 2 × 5 min und 1 × 30 min bei Raumtemperatur in Puffer G gewaschen, dann über Nacht mit einer 1 : 10 Verdünnung eines ¹²⁵I-markierten Anti-Human-IgE Antikörpers (Amersham Pharmacia) bei Raumtemperatur gekippt, wie oben gewaschen, getrocknet und aufgeklebt. Gebundenes mottenspezifisches IgE wurde so mit dem radioaktiv markierten Anti-IgE-Antikörper detektiert und die positiven Signale wurden mittels Autoradiographie auf einem Röntgenfilm (Kodak) sichtbar gemacht.

[0046] Die Fig. 1 zeigt in ihrem oberen Teil die Resultate dieses Experiments für die Gruppe der "Indoor"-Allergiker (Patienten mit allergischen Beschwerden in Innenräumen), Figur. 2 zeigt im oberen Teil die Ergebnisse für die anderen drei Gruppen. Die Ergebnisse sind auch weiter unten in Tabelle 1 dargestellt.

45 Tabelle 1

[0047] Zusammenfassung der IgE-Immunoblotresultate gegen verschiedene Allergenextrakte und gegen das rekombinante p40 Allergen mit Hexahistidintag aus der Dörrobstmotte. + + +, sehr starke Reaktion; + + starke Reaktion mit mindestens zwei starken positiven Banden; + schwache positive Reaktion mit mindestens einer sichtbaren Bande; – keine definierte positive Bande beobachtet.

55

60

65

DE 100 41 541 A 1

Patient	Dörrobst- motten- larven	Mehl- motten- falter	Rek. p40 Allergen (His ₆)	Haus- staub- milbe	Küchen- schabe	
H1	+	+				5
H2	-	-				
H3	-	-				
H4	-	-				
H5	++	+	-	++	+	10
H6	-	-				
H7	++	++	-	-	-	
H8	-	-				
H9	+	+	-	-	-	
H10	-	-				15
H11	-	-				
H12	-	-				
H13	++	++	-	-	++	
H14	-	-				20
H15	-	-				
H16	-	-		+	-	
H17	+	-				
H18	-	-				25
H19	-	-				
H20	+++	+++	+++	++	+++	
H21	+	+	-	++	-	
H22	+	+	-	+	-	
H23	-	-	-			30
H24	-	-	-			
H25	-	-	-			
H26	-	-	-			
H27	-	-	-			35
H28	++	++	-	++	++	
H29	-	+	-	+	-	
H30	-	-	-	-	-	
H31	-	+	-	-	-	
H32	++	++	+++	-	+	40
H33	+	+	-	-	-	
H34	-	-	-	-	-	
H35	+	+	-	-	+	
H36	-	-	-	-		45
H37	-	-	-			
H38	+	-	-	-	-	
H39	++	+	++	+	-	
H40	+	+	-	-	+	50
H41	+	-	-	-	-	
H42	+	-	-	-	-	
H43	-	-	-			
H44	-	-	-			
H45	+	-	-	+++	-	55
H46	+	+	-	+	-	
						60
						65

DE 100 41 541 A 1

Patient	Dörrobst- motten- larven	Mehl- motten- falter	Rek. p40 Allergen (His ₆)	Haus- staub- milbe	Küchen- schabe
5 H47	-	-	-	-	-
10 H48	+	-	-	-	-
H49	-	+	-	-	-
15 H50	-	-	-	-	-
H51	-	-	-	-	-
H52	-	-	-	-	-
H53	++	++	-	+	++
20 H54	+	-	-	-	-
H55	-	+	-	-	-
H56	-	-	+	-	-
H57	++	+	-	-	-
25 H58	++	-	+	++	-
H59	-	-	-	-	-
H60	-	-	-	-	-
H61	+	-	-	-	-
30 H62	+	-	-	-	-
H63	+	-	-	-	-
H64	+	-	-	-	-
H65	-	-	-	-	-
35 H66	-	+	-	-	-
H67	-	-	-	-	-
H68	-	-	-	-	-
H69	+	+	-	-	-
40 H70	++	++	-	-	++
H71	-	-	-	-	-
H72	+	-	+	+	-
45 H73	++	+	-	-	-
H74	-	+	-	-	-
H75	-	-	-	-	-
H76	+++	++	-	-	++
50 H77	-	-	-	-	-
H78	++	++	+	-	+
H79	+	++	-	-	++
55 H80	+	+	-	-	-
H81	+++	+++	+	-	+++
H82	+	++	-	-	+
H83	-	-	-	-	-
60 H84	+	-	-	+	-
H85	-	-	-	-	-
H86	++	+	+	-	+
H87	-	-	-	+	-
65 H88	-	-	-	-	-
H89	+++	+	+++	+	+
H90	-	-	-	+++	-

DE 100 41 541 A 1

Patient	Dörrobst- motten- larven	Mehl- motten- falter	Rek. p40 Allergen (His ₆)	Haus- staub- milbe	Küchen- schabe	
AH1	-	-	-	-	-	5
AH2	+	-	-	+	-	
AH3	+	-	-	-	-	
AH4	+	-	-	-	-	10
AH5	+	+	-	-	-	
AH6	+	-	-	-	-	
AH7	-	-	-	-	-	
AH8	++	++	+	+++	++	15
AH9	+	+	-	-	-	
AH10	+++	+++	+	+++	++	
AH11	+++	+++	+++	+++	+++	
AH12	++	+++	-	+++	+	20
P1	+	-	-	-	-	
P2	-	-	-	-	-	
P3	-	-	-	-	-	
P4	+++	+++	+++	+	+++	25
P5	+	+	-	++	+	
P6	-	-	-	-	-	
P7	+	-	-	-	+	
P8	-	-	-	-	-	30
P9	+++	+++	-	+	++	
P10	-	-	-	-	-	
P11	-	-	-	-	-	35
P12	+	-	-	-	+	
P13	-	-	-	-	-	
P14	-	-	-	-	-	
P15	+	-	-	-	-	40
P16	+	-	-	-	-	
P17	-	-	-	-	-	
P18	-	-	-	-	-	
P19	+	++	-	+	+	45
P20	+	++	-	+	+	
N1	-	-	-	-	-	
N2	-	-	-	-	-	
N3	-	-	-	-	-	50
N4	-	-	-	-	-	
N5	-	-	-	-	-	
N6	-	-	-	-	-	
N7	-	-	-	-	-	55
N8	-	-	-	-	-	
N9	-	-	-	-	-	
N10	-	-	-	-	-	60

[0048] Insgesamt wurden bei den "Indoor"-Allergikern (n = 90) beim IgE-Immunoblot mit dem Dörrobstmottenlarven-Gesamtextrakt 4 sehr stark positive, 13 stark positive und 25 schwach positive Reaktionen beobachtet, bei den Atopikern mit allergischen Beschwerden in Innerräumen (n = 12) 2 sehr stark positive, 2 stark positive und 6 schwach positive. Bei den Pollenallergikern ohne angegebene allergische Beschwerden in Innerräumen (n = 20) gab es 2 sehr stark positive und 8 schwach positive Reaktionen. Insgesamt wurde bei 51% der Patienten eine positive Reaktion auf Mottenlarvenproteine beobachtet. Keine der nichtallergischen Kontrollpersonen zeigte eine Reaktion im Immunoblot.

DE 100 41 541 A 1

Test auf IgE-Antikörper gegen Proteine der Mehlmotte (*E. kuehniella*) im Falterstadium

- 5 [0049] Das gleiche Patientenkollektiv wie oben wurde auf Streifchen mit einem kommerziell erhältlichen Extrakt aus der Mehlmotte untersucht, wobei die Ergebnisse auch in der Tabelle 1 dargestellt sind. Insgesamt zeigten 36% der Allergiker eine positive Reaktion auf Mottenfalter.

Test auf IgE-Antikörper gegen Proteine der Haustaubmilbe (*Dermatophagoides pteronyssinus*) und der Küchenschabe (*Blattella germanica*)

- 10 [0050] Ausgewählte Patienten und Normalpersonen aus dem Kollektiv wurden auf Streifchen mit kommerziell erhältlichen Extrakten aus der Haustaubmilbe und der Küchenschabe getestet. Die Ergebnisse sind wieder in Tabelle 1 dargestellt. Die Küchenschabe ist ein flügelloses Insekt und näher mit der Dörrrostmilbe verwandt als die Haustaubmilbe, die zu den Spinnentieren zählt. Alle drei zählen zu den Gliederfüßern (Arthropoden). Trotz der phylogenetischen Verwandtschaft der drei Spezies ist die IgE-Reaktivität der Patienten oft stark unterschiedlich. So reagiert zum Beispiel Patient H81 sehr stark auf Motte und Küchenschabe, aber nicht auf die Haustaubmilbe. Patient H90 reagiert nur sehr stark mit der Milbe, aber nicht mit Schabe oder Motte. Patienten H7, H9, H33, H80, AH5 und AH9 reagieren auf Mottenlarven und Falter, aber nicht auf Schabe oder Milbe.

Beispiel 2

- 20 Isolierung und molekulare Charakterisierung eines cDNA Klons, der für das *P. interpunctella* Allergen p40 kodiert

Konstruktion einer cDNA-Bank von *Plodia interpunctella*

- 25 [0051] Die Insekten (*Plodia interpunctella*) wurden in Haferflocken angezüchtet (S. Prozell, M. Schöller, Institut für Vorratschutz, Biologische Bundesanstalt, Berlin). 180 Larven im späten Wanderstadium, kurz vor der Verpuppung (2,4 g) wurden zur Präparation von RNA eingesetzt. Die Larven wurden in 30 ml Trizol Reagens (Life Technologies, Frederick, MD, USA) homogenisiert, und aus der wäßrigen Phase wurde nach dem Protokoll des Herstellers die RNA gewonnen. Aus 5 µg der erhaltenen Gesamt-RNA wurden mit Hilfe des PolyATtract Systems (Promega, Madison, WI, USA) polyA⁺ RNA gewonnen. Die mRNA wurde in cDNA überschrieben und diese mit Hilfe des Uni-ZAP Systems (Stratagene, La Jolla, CA, USA) auf gerichtete Weise in λ ZAP Phagen eingebaut. Die primäre Bank enthielt 3×10^6 cDNA Klone und wurde nach Standardmethoden amplifiziert.

IgE-Immunoscreening und Analyse der immunopositiven Klone

- 35 [0052] Zum Screening einer cDNA-Bank von *Plodia interpunctella* wurden Seren der Patienten AH11 (Screen 1), H20 (Screen 2) und AH10 und AH12 (Screen 3) verwendet. 360000 (Screen 1) oder 200000 (Screen 2, 3) Phagen der λ ZAP cDNA Bank wurden auf einem Rasen von *Escherichia coli* XL1-Blue (Stratagene) Zellen in einer Dichte von 15000 Phagen pro Petrischale mit 140 mm Durchmesser ausplattiert. Die Synthese von rekombinanten Proteinen wurde durch Auflegen von Nitrozellulosefiltern (Schleicher & Schüll, Dassel, Deutschland) induziert, die mit einer 10 mM IPTG (Isopropylthio-β-D-Galaktosid) Lösung getränkt waren (Huynh et al., 1985). 31 (Screen 1, Patient AH11) bzw. 11 (Screen 2, Patient H20) und 6 (Screen 3, Patienten AH10 und AH12) immunopositive Klone wurden jeweils mit Hilfe von Patientenserien und von ¹²⁵I-markierten, gegen humanes IgE gerichteten Antikörpern (Pharmacia & Upjohn, Uppsala, Schweden) nach etablierten Methoden (Breiteneder et al., 1989; Valenta et al., 1991; Vrtala et al., 1993) isoliert.

45 DNA-Sequenzanalyse der immunopositiven Klone

- [0053] Aus den positiven Phagen wurden durch "in vivo excision" (Short et al., 1988) mit Hilfe von Helperphagen (Stratagene, La Jolla, CA) die entsprechenden cDNA Plasmide gewonnen und nach Standardmethoden isoliert. Die DNA wurde mit Hilfe von Thermosequenase (Amersham Pharmacia, Uppsala, Schweden) und IRD800-markierten Primern (MWG Biotech, Ebersberg) auf einem LI-COR Sequenzer (LI-COR, Lincoln, NE) analysiert. Die Basensequenzen wurden in Aminosäuresequenzen übersetzt und mit Hilfe des FastA-Programms (Pearson und Lipman, 1988) mit der SwissProt Datenbank verglichen. Alle Klone wurden mit Hilfe des GAP Programms aus dem UWGCG Programm Paket (Program Manual for the Wisconsin Package, Version 8, August 1994, Genetics Computer Group, 575 Science Drive, Madison, Wisconsin, USA 53711) miteinander verglichen. Auf diese Weise und mit Hilfe des Vergleichs zu den homologen Proteinen wurden Klone identifiziert, die einen kompletten Leserahmen aufwiesen.

- [0054] Beim Screening von 360000 Phagen der λ ZAP cDNA Bank mit dem Serum AH11 wurden 31 immunopositive Klone erhalten. Die in vivo exzidierten Plasmide wurden zunächst mit EcoRI und Xhol gespalten und auf einem Agarosegel wurden die Schmittmuster analysiert. Alle analysierbaren Klone enthielten dieselbe cDNA. Der längste verfügbare Klon wurde sequenziert (Fig. 3) und der offene Leserahmen, der ein Polypeptid von vorhergesagten 40 kDa (p40) darstellte, wurde mit den Datenbanken verglichen. Es zeigte sich, daß das gefundene Polypeptid (Fig. 3) über die gesamte Länge mit Arginin-Kinasen verschiedener Spezies homolog war. Arginin-Kinasen können die terminale Phosphatgruppe von ATP auf Arginin übertragen und so einen Energiereservestoff bilden. Bislang sind Arginin-Kinasen nicht als Allergene identifiziert worden (siehe auch Einleitung). Die dem p40 Allergen am nächsten verwandte Arginin-Kinase aus der Honigbiene (Kucharski und Maleszka, 1998) weist 85% Aminosäure-Sequenzidentität mit p40 auf.

DE 100 41 541 A 1

Beispiel 3

Isolierung und molekulare Charakterisierung eines cDNA Klons, der für das *P. inter punctella* Allergen p33 kodiert

[0055] 200000 Phagen der λ ZAP cDNA Bank wurden wie oben beschrieben mit dem Serum H20 gescreent, dabei wurden 11 immunopositive Klone erhalten. Die in vivo exzidierten Plasmide wurden wie oben analysiert und sequenziert. 10 der 11 Klone kodierten für das gleiche Protein. Drei der Klone hatten die volle Länge, und zwei von ihnen hatten die identische Sequenz, die in Fig. 4 dargestellt ist. Der offene Leserahmen stellt ein Allergen von 33 kDa dar (p33), das mit Tropomyosinen verschiedener Spezies eng verwandt ist. Tropomyosine sind als kreuzreagierende Allergene besonders auch aus dem Bereich der Nahrungsmittelallergie bekannt (Reese et al., 1999).

5

10

Beispiel 4

Isolierung und molekulare Charakterisierung eines cDNA Klons, der für das *P. inter punctella* Allergen p84 kodiert

15

[0056] 200000 Phagen der λ ZAP cDNA Bank wurden wie oben beschrieben mit den Seren AH10 und AH12 gescreent, dabei wurden 6 immunopositive Klone erhalten. Die in vivo exzidierten Plasmide wurden wie oben analysiert und sequenziert. Nur einer der Klone (Sequenz Fig. 5) kodierte für ein Protein in voller Länge, es handelte sich um ein homologes zu Arylphorinen. Arylphorine gelten als Speicherproteine von Insekten und enthalten einen hohen Anteil an Tyrosin. Ein Arylphorin der Schabe (*Periplaneta americana*) ist bereits in einer Publikation (Wu et al., 1996) als Allergen beschrieben.

20

Beispiel 5

Isolierung und molekulare Charakterisierung eines cDNA Klons, der für das *P. inter punctella* Allergen p27 kodiert

25

[0057] 200000 Phagen der λ ZAP cDNA Bank wurden wie oben beschrieben mit dem Serum H20 gescreent (Screen 2), ebenso wie mit den Seren AH 10 und AH12 (Screen 3). Die in vivo exzidierten Plasmide wurden wie oben analysiert und sequenziert. Einer der Klone von Screen 2 und drei der Klone von Screen 3 kodierten für das gleiche Protein. Ein Sequenzvergleich der durch Übersetzung erhaltenen Aminosäuresequenz ergab eine signifikante Ähnlichkeit mit einer Glukose 1-Dehydrogenase aus *Bacillus megaterium* (36 % Sequenzidentität, Nagao et al., 1992). Es gab auch eine kleinere aber noch signifikante Ähnlichkeit mit dem Alt a 2 Allergen aus dem Pilz *Alternaria alternata* (26% Sequenzidentität, De Vouge et al., 1998), einer Aldehyddehydrogenase, und dem Bet v 5 Allergen aus der Birke (20% Sequenzidentität, Karimloo et al., 1999), einer Isoflavonreduktase. Bei dem p27 Allergen handelt es sich also um ein Redoxenzym. Die Sequenz ist in Fig. 6 dargestellt.

30

35

Beispiel 6

Expression des p40 Allergens mit einem Hexahistidintag und als Fusionsprotein in *E. coli*

40

[0058] Die p40 cDNA wurde auf zwei verschiedene Weisen in pET-Expressionsvektoren einkloniert so daß das p40 Allergen einmal nur mit einem Hexahistidintag und einmal als Fusionsprotein mit einer Zellulosebindenden Domäne erzeugt wurde. Das erste Konstrukt wurde unter nativen Bedingungen gereinigt. Das zweite Konstrukt wurde über eine Zellulosesäule gereinigt. Sowohl das Fusionsprotein mit einer zellulosebindenden Domäne als auch das Nichtfusionsprotein mit Hexahistidintag besaßen Arginin kinaseaktivität.

45

Konstruktion eines Expressionsvektors zur Expression des p40 Allergens mit einem Hexahistidin- "Tag"

[0059] Die komplette cDNA wurde in zwei Stufen in die EcoRI und XbaI Schnittstellen des Plasmids pET23(+) (Novagen, Madison, Wisconsin, USA) einkloniert. Die Ribosomenbindungsstelle wurde mit Hilfe der Oligonukleotidabhängigen Mutagenese nach Kunkel et al., (1987) in den Expressionsvektor eingebaut. Dazu wurde das Mutageneseeoligonukleotid 5'-GGT AGC GGC GTC CAC CAT GGT ATA TCT CCT TCT AGA GGG AAA CCG-3' verwendet. Der entstandene Vektor pETAK1 wurde durch DNA-Sequenzanalyse überprüft. In dem Vektor wurde dann am carboxyterminalen Ende der Sequenz durch eine zweite Mutagenese mit dem Oligonukleotid 5'-ATC TCA GTG GTG GTG GTG GTG CAG GGA TTT CTC GAT TTT GAT-3' ein Hexahistidintag für die Reinigung über eine Nickelaffinitätsäule (Qiagen, Hilden, Deutschland) in das Expressionsplasmid eingebracht, und es entstand der Vektor pETHisAK1, der durch Sequenzierung überprüft wurde.

50

55

Expression und Reinigung des p40 Allergens als Nichtfusionsprotein mit einem Hexahistidin- "Tag"

60

[0060] Der Vektor pETHisAK1 wurde in *Escherichia coli* BL21 (DE3) transformiert und die transformierten Zellen in einer 400 ml Kultur bei 37°C geschüttelt bis zu einer optischen Dichte (600 nm) von 0,8. Die Synthese des rekombinanten Proteins wurde durch Zugabe von 0,4 mM (Endkonzentration) von IPTG (Isopropyl- β -D-Galaktosid) induziert, und die Kultur wurde noch 3 h bei 37°C weitergeschüttelt. Die Zellen wurden durch Zentrifugation geerntet, dann wurden die Zellen 10 min in Lysepuffer (100 mM KCl, 50 mM Mes, 4% (v/v) Triton X-100, 8 mM DTT, 8 mM EDTA, 25 μ g/ml Polymyxin B Sulfat (Sigma, St. Louis, MO, USA), pH 7,5) behandelt (Schupp et al., 1995). Zelldetritus wurde 30 min bei 2000 \times g und 4°C abzentrifugiert. Das Protein wurde mit Hilfe von zentrifugierbaren Kleinsäulen unter nativen Bedingungen durch Nickelchelat-Affinitätschromatographie gereinigt wie vom Hersteller (Qiagen) beschrieben.

65

DE 100 41 541 A 1

Konstruktion eines Expressionsklons zur Expression des p40 Allergens als Fusionsprotein

- [0061] Die komplette cDNA, die für das p40 Allergen kodiert, wurde in den Expressionsvektor pET36b (Novagen) nach Standardmethoden (Sambrook et al., 1989) unter Verwendung der EcoRI und XbaI Restriktionsstellen umkloniert.
5 Dies geschah in zwei Stufen, da die cDNA eine interne XbaI-Stelle aufwies. Der noch fehlende Übergang zwischen der Sequenz, die für die Zellulose bindende Domäne kodierte und der Sequenz, die für die Arginin kinase kodierte, wurde mit Hilfe der Oligonukleotid-abhängigen Mutagenese nach Kunkel et al., (1987) in den Expressionsvektor eingebaut.
[0062] Dazu wurde das Mutageneseoligonukleotid 5'-GGT AGC GGC GTC CAC CAT GGT ATA TCT CCT TCT AGA GGG AAA CCG-3' verwendet. Der entstandene Vektor pCBDAK1 wurde durch DNA-Sequenzanalyse überprüft.

10 Expression eines Fusionsproteins aus einer Zellulose-bindenden Domäne und dem p40 Allergen

[0063] Der Vektor pCBDAK1 wurde in Escherichia coli BL21 (DE3) transformiert und die transformierten Zellen in einer 400 ml Kultur bei 37°C geschüttelt bis zu einer optischen Dichte (600 nm) von 0,8. Die Synthese des rekombinanten Proteins wurde durch Zugabe von 0,4 mM (Endkonzentration) von IPTG (Isopropyl- β -D-Galaktosid) induziert, und die Kultur wurde noch 3 h bei 37°C weitergeschüttelt. Die Zellen wurden durch Zentrifugation gereinigt, dann wurden die Zellen 10 min in Lysepuffer (100 mM KCl, 50 mM Mes, 4% (v/v) Triton X-100, 8 mM DTT, 8 mM EDTA, 25 µg/ml Polymyxin B Sulfat (Sigma, St. Louis, MO, USA), pH 7,5) behandelt (Schupp et al., 1995). Zelldestritus wurde 30 min bei 2000 × g und 4°C abzentrifugiert. Das Fusionsprotein wurde durch Zellulose-Affinitätschromatographie gereinigt wie 20 vom Hersteller (Novagen) beschrieben.

Test des rekombinanten p40 Allergens mit Hexahistidintag und des Fusionsproteins aus einer Zellulose-bindenden Domäne und dem p40 Allergen auf IgE-Reaktivität

- 25 [0064] Das gereinigte p40 Allergen mit einem Hexahistidintag wurde wie oben beschrieben in einer Konzentration von 10 µg pro cm auf einem präparativen 12,5% SDS-Polyacrylamidgel elektrophoretisiert, auf Nitrozellulose geblottet und mit jenen Patientenserien getestet, die in den oben beschriebenen Experimenten mit dem Extrakt von P. interpunctella Larven getestet worden waren.
[0065] Das gereinigte rekombinante Fusionsprotein wurde wie oben beschrieben in einer Konzentration von 5 µg pro 30 cm auf einem präparativen 12,5% SDS-Polyacrylamidgel elektrophoretisiert, auf Nitrozellulose geblottet und mit jenen Patientenserien getestet, die in den oben beschriebenen Experimenten mit dem Extrakt von P. interpunctella Larven positive Signale ergeben hatten.

35 Test der oben beschriebenen Patienten und Normalpersonen auf IgE-Antikörper gegen das rekombinante p40 Allergen mit Hexahistidintag

- [0066] Alle Seren der oben beschriebenen Patienten und Normalpersonen wurden auf gleiche Weise wie oben beschrieben auf IgE-Antikörper gegen das gereinigte p40 Allergen mit Hexahistidintag getestet (Fig. 1, 2, Tabelle 1). Bei diesem Versuch zeigte sich eine Reaktivität nur im Molekulargewichtsbereich bei 40 kDa, deshalb ist ein schmälerer 40 Ausschnitt der Immunoblots unter den Blots mit Larvenproteinen dargestellt. Insgesamt waren 10 von 90 "Indoor"-Allergikern positiv, 3 von 12 Atopikern mit "Indoor"-Allergie und einer von 20 Pollenallergikern ohne angegebene allergischen Beschwerden in Innenräumen. Das bedeutet, dass 11% der Patienten H1–H90 und 23% der Patienten AH1–AH12 IgE gegen Larven der Dörrobstmotte hatten.
45 Test von Patienten und Normalpersonen auf IgE-Antikörper gegen das rekombinante p40 Fusionsprotein mit Zellulose-bindender Domäne

- [0067] Eine Auswahl der oben beschriebenen Seren wurde auf IgE gegen das rekombinante p40 Fusionsprotein getestet (Beispiele in Fig. 7). Auch das rekombinante p40 Fusionsprotein war geeignet, IgE-Antikörper gegen das natürliche 50 p40 Antigen nachzuweisen.

Beispiel 7

Hauttests

- 55 [0068] Das gereinigte rekombinante p40 Allergen mit Hexahistidintag wurde in steriler 0,9% NaCl-Lösung auf 10 verschiedene Konzentrationen eingestellt: Nr. 1 enthielt 400 ng/µl, die weiteren Proben enthielten absteigende Konzentrationen von 200 ng/µl (Nr. 2), 100 ng/µl (Nr. 3), 50 ng/µl (Nr. 4), 25 ng/µl (Nr. 5), 12,5 ng/µl (Nr. 6), 6,25 ng/µl (Nr. 7), 3,13 ng/µl (Nr. 8), 1,56 ng/µl (Nr. 9) und 0,78 ng/µl (Nr. 10). Vor dem intrakutanen Hauttest wurde am kontralateralen 60 Arm ein Reibetest mit je 30 µl der Konzentrationen Nr. 10 bis Nr. 2 durchgeführt und nach 5, 10 und 20 min sowie 24 h abgelesen. Die Negativkontrolle war 0,9% NaCl, als Positivkontrolle wurde Histaminhydrochlorid in einer Konzentration von 1 mg/ml verwendet. Basierend auf den Ergebnissen des Reibetests wurde dann der Pricktest in den Konzentrationen Nr. 10 bis Nr. 5 durchgeführt und jeweils nach 20 min und 24 h abgelesen.
[0069] Der mottenallergische Patient AH11 wurde gegen das rekombinante p40 Allergen mit Hexahistidintag zuerst 65 im Reibetest und dann im Pricktest untersucht. Im Reibetest (Fig. 8b) riefen die Konzentrationen Nr. 10 bis Nr. 6 keine Sofortreaktionen hervor, die Konzentration Nr. 5 induzierte einen leichten Juckreiz im Probegebiet, Nr. 4 rief nach 5–10 Minuten winzige Quaddeln hervor. Nr. 3 und Nr. 2 riefen multiple Quaddeln (Durchmesser 4–5 mm) hervor. Diese hatten nach 15–20 min die maximale Ausprägung (Fig. 8d) und bildeten sich alle nach 45 min zurück.

DE 100 41 541 A 1

[0070] Nach dem Reibetest wurde der Pricktest mit den gleichen Verdünnungen (Nr. 10 bis Nr. 5) in aufsteigenden Konzentrationen durchgeführt (Fig. 8a). Auf die Konzentrationen Nr. 10 und Nr. 9 wurde keine unmittelbare Hautreaktion beobachtet. Quaddeln und Hautrötung traten in den Konzentrationen Nr. 8 (3,12 ng/µl) bis Nr. 5 (25 ng/µl) auf. Der Durchmesser der Quaddeln war zwischen 7 mm (Konzentration Nr. 8) und 15 mm (Konzentration Nr. 6) (Fig. 8c). Aufgrund der Stärke der Reaktionen von den Konzentrationen Nr. 8 bis Nr. 5 wurden Konzentrationen Nr. 4 bis Nr. 1 nicht getestet. Die Quaddeln wurden zur Dokumentation bei ihrer maximalen Ausprägung nach 20 min mit einem Stift markiert und bildeten sich nach 45 min spontan zurück.

[0071] Bei der Ablesung nach 24 h wurden innerhalb der markierten Grenzen der vorangegangenen Soforttyp-Reaktionen akzematoides Papeln als Späphasenreaktion des Pricktests beobachtet (Fig. 9d). Der kontralaterale Arm, an dem der Reibetest durchgeführt worden war, zeigte eine ausgeprägte ekzematöse Reaktion im Gebiet der Konzentrationen Nr. 6 bis Nr. 4 (Fig. 9a, c), während bei den niedrigeren Konzentrationen Nr. 10 bis Nr. 7 keine ekzematöse Reaktion beobachtet wurde (Fig. 9b).

Beispiel 8

Immunoblot-Inhibition und Nachweis der Kreuzreaktivität des p40 Allergens mit Allergenen verschiedener Spezies

[0072] Aus der Literatur ist bekannt, daß eine enzymatische Argininkinaseaktivität praktisch in allen untersuchten Invertebraten vorkommt. Um zu überprüfen, welche immunologische Ähnlichkeiten zwischen dem p40 Allergen der Dörr Obstmotte und den Homologen in anderen Spezies bestehen, wurde ein Immunoblot-Inhibitionsexperiment durchgeführt. Allergenextrakte aus der Milbe (*Dermatophagoides pteronyssinus*), Küchenschabe (*Blattella germanica*), Garnele (*Penaeus japonicus*), Hummer (*Homarus gammarus*), Miesmuschel (*Mytilus edulis*), und Kabeljau (*Gadus morhua*) als einzige Vertebrate wurden entweder eingekauft (Milbe und Schabe) oder aus frisch eingekauftem, ungekochten Muskelfleisch präpariert.

[0073] Die Gesamtallergene von der Milbe und der Küchenschabe stammten von Pharmacia/Allergon. Die verschiedenen Meeresfrüchte wurden in frischem, ungekochten Zustand auf dem Naschmarkt in Wien erworben. Es wurde so gut wie möglich nur Muskelfleisch verarbeitet. Die verschiedenen Proben (1–5 g) wurden in flüssigem Stickstoff eingefroren, in der Reibschale zerrieben, mit 3 ml pro g Probe in eiskaltem bidest. H₂O mit 5 mM PMSF (Phenylmethansulfonylfuorid) 1 h bei 4°C gerührt. Ein Volumen Auftragspuffer (Fling und Gregerson, 1986) wurde zugesetzt und die Proben wurden 10 min bei 95°C denaturiert, unlösliche Bestandteile wurden 10 min bei 14500 Upm und 4°C abzentrifugiert, und die Proteinkonzentration der Extrakte wurde auf einem Coomassie-gefärbten SDS-Polyacrylamidgel abgeschätzt. Wie oben wurden préparative Gele mit 200 µg Protein pro cm gefahren, auf Nitrozellulose geblotet und in Streifen geschnitten.

[0074] Das Serum des Patienten AH11 und von den Patienten H89 und H32 wurde in der Konzentration 1 : 10 mit Puffer G (42 mM Na₂HPO₄, 6,4 mM NaH₂PO₄, 0,5% (v/v) Tween 20, 0,5% (w/v) Rinderserumalbumin, 0,05% (w/v) NaN₃, pH 7,5) verdünnt. Je 1 ml der Proben wurde entweder mit 10 µg des rekombinanten p40 Allergens mit Hexahistidintag in Puffer G, oder nur in Puffer G über Nacht bei 4°C präinkubiert, und dann wurde je mit einem Streifen Nitrozellulose mit gebloteten Extrakten die IgE-Reaktivität bestimmt. Das gebundene IgE wurde wie üblich mit jodmarkierten Antihuman-IgE Antikörpern detektiert.

[0075] Bei allen untersuchten Invertebratespezies reagierten die Seren mit einer Bande im Bereich von 40 kDa, die durch Präinkubation mit dem rekombinanten p40 Allergen aus der Dörr Obstmotte entweder ausgelöscht (Dörr Obstmotte, Hausstaubmilbe) oder abgeschwächt (Küchenschabe, Garnele, Hummer, Miesmuschel) wurde (Fig. 10). Im Extrakt aus Kabeljau gab es zwar eine Reihe von allergenen Proteinen, aber keines von ihnen wurde durch Präinkubation mit dem p40 Allergen aus der Motte teilweise oder vollständig inhibiert.

LITERATUR

- Anisike E O, Moreland B H, Watts D C (1975) Evolutionary variation between a monomer and a dimer arginine kinase. Biochem. J. 145: 535–543.
Arruda L K, Vailes L D, Benjamin D C, Chapman M D (1995) Molecular cloning of German cockroach (*Blattella germanica*) allergens. Int. Arch. Allergy Immunol. 107: 295–297.
Baldo B A, Panzani R C (1988) Detection of IgE antibodies to a wide range of insect species in subjects with suspected inhalant allergies to insects. Int. Arch. Allergy Appl. Immunol. 85: 278–287.
Breiteneder H, Pettenburger K, Bito A, Valenta R, Kraft D, Rumpold H, Scheiner O, Breitenbach M (1989) The gene coding for the major birch pollen allergen Bet v 1, is highly homologous to a pea disease resistance response gene. EMBO J. 8: 1935–1938.
Davis F M, Jenkins J N (1995) Management of scales and other insect debris: occupational health hazard in a lepidopterous rearing facility. J. Econ. Entomol. 88: 185–191.
De Vouge M W, Thaker A J; Zhang L, Muradia G, Rode H, Vijay H M (1998) Molecular cloning of IgE-binding fragments of *Alternaria alternata* allergens. Int. Arch. Allergy Immunol. 116: 261–268.
Fling S P, Gregerson D S (1986) Peptide and protein molecular weight determination by electrophoresis using a high-molarity tri buffer system without urea. Anal. Biochem. 155: 83–8.
Huynh T V et al., In: cDNA cloning, Oxford, IRL Press, 1 (1985) 49–78.
Jarolim E, Rumpold H, Endler A T, Ebner H, Breitenbach M, Scheiner O, Kraft D (1989) IgE and IgG antibodies of patients with allergy to birch pollen as tools to define the allergen profile of *Betula verrucosa*. Allergy 44: 385–395.
Karamloo P, Schmitz N, Scheurer S, Foetisch K, Hoffmann A, Haustein D, Vieths S (1999) Molecular cloning and characterization of a birch pollen minor allergen, Bet v 5, belonging to a family of isoflavone reductaserelated proteins. J. Allergy Clin. Immunol. 104: 991–999.

DE 100 41 541 A 1

- Komase Y, Sakata M, Azuma T, Tanaka A, Nakagawa T (1997) IgE antibodies against midge and moth found in Japanese asthmatic subjects and comparison of allergenicity between these insects. *Allergy* 52: 75–81.
- Kraft D, Ferreira F, Vrtala S, Breiteneder H, Ebner C, Valenta R, Susani M, Breitenbach M, Scheiner O (1999) The importance of recombinant allergens for diagnosis and therapy of IgE-mediated allergies. *Int. Arch. Allergy Immunol.* 118: 171–176.
- Kucharski R, Maleczka R (1998) Arginine kinase is highly expressed in the compound eye of the honey bee, *Apis mellifera*. *Gene* 211: 343–349.
- Kunkel T A, Roberts J D, Zakour R A (1987) Rapid and efficient site-specific mutagenesis without phenotypic selection. *Methods Enzymol.* 154: 367–382.
- Lin R-Y, Shen H-D, Han S-H (1993) Identification and characterization of a 30 kd major allergen from Parapenaeus fiscus-surus. *J. Allergy Clin. Immunol.* 92: 837–845.
- Miyamoto T, In: *Advances in Allergology and Clinical Immunology*, Eds Godard P et al., The Parthenon Publishing Group-Camforth, U. K. and New Jersey, USA, (1992) 343–347.
- Nagao T, Mitamura T, Wang X H, Negoro S, Yomo T, Urabe I, Okada H (1992) Cloning, nucleotide sequences, and enzymatic properties of glucose dehydrogenase isozymes from *Bacillus megaterium* IAM1030. *J. Bacteriol.* 174: 5013–5020.
- Pearson W R, Lipman D J (1988) Improved tools for biological sequence comparison. *Proc. Natl. Acad. Sci. USA* 85: 2444–2448.
- Reese G, Ayuso R, Lehrer S B (1999) Tropomyosin: an invertebrate panallergen. *Int. Arch. Allergy Immunol.* 119: 247–258.
- Rosenstreich D L, Eggleston P, Kattan M, Baker D, Slavin R G, Gergen P, Mitchell H, McNiff Mortimer K, Lynn H, Ownby D, Malveaux F (1997) The role of cockroach allergy and exposure to cockroach allergen in causing morbidity among inner-city children with asthma. *N. Engl. J. Med.* 336: 1356–1363.
- Schupp J M, Travis SE, Price L B, Shand R F, Keim P (1995) Rapid bacterial permeabilization reagent useful for enzyme assays. *Biotechniques* 19: 18–20.
- Segal D M, Taurog J D, Metzger H (1977) Dimeric immunoglobulin E serves as a unit signal for mast cell degranulation. *Proc. Natl. Acad. Sci. USA* 74: 2993–2997.
- Short J M, Fernandez J M, Sorge J A, Huse W D (1988) Lambda ZAP: a bacteriophage lambda expression vector with in vivo excision properties. *Nucleic Acids Res.* 16: 7583–7600.
- Storms W W, Berry C, Withee W (1981) Miller moth asthma. *Clin. Allergy* 11: 55–59.
- Suzuki M, Itoh H, Sugiyama K, Takagi I, Nishimura J, Kato K, Mamiya S, Baba S, Ohya Y et al. (1995) Causative allergens of allergic rhinitis in Japan with special reference to silkworm moth allergen. *Allergy* 50: 23–27.
- Thomas W R, Smith W (1999) Towards defining the full spectrum of important house dust mite allergens. *Clin. Exp. Allergy* 29: 1583–1587.
- Towbin H, Staehelin T, Gordon J (1979) Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. *Proc. Natl. Acad. Sci. USA* 76: 4350–4354.
- Unger A, Stoger P, Simon Nobbe B, Susani M, Cramer R, Ebner C, Hintner H, Breitenbach M (1999) Clinical testing of recombinant allergens of the mold *Alternaria alternata*. *Int. Arch. Allergy Immunol.* 118: 220–221.
- Valenta R, Duchêne M, Pettenburger K, Sillaber C, Valent P, Bettelheim P, Breitenbach M, Rumpold H, Kraft D, Scheiner O (1991) Identification of profilin as a novel pollen allergen; IgE autoreactivity in sensitized individuals. *Science* 253: 557–560.
- Valenta R, Lidholm J, Niederberger V, Hayek B, Kraft D, Gronlund H (1999) The recombinant-allergen-based concept of component-resolved diagnostics and immunotherapy (CRD and CRIT). *Clin. Exp. Allergy* 29 (1999) 896–904.
- Van Wijnen J H, Verhoeff A P, Mulder Folkerts D K, Brachel H J, Schou C (1997) Cockroach allergen in house dust. *Allergy* 52: 460–464.
- Vrtala S, Sperr W R, Reimitzer I, von Ree R, Laffer S, Muller W D, Valent P, Lechner K, Rumpold H, Kraft D, et al. (1993) cDNA cloning of a major allergen from timothy grass (*Phleum pratense*) pollen; characterization of the recombinant Phl pV allergen. *J. Immunol.* 151: 4773–4781.
- Wang X, Zheng S, Zhang H (1994) A study of occupational asthma and specific IgE in sericulture workers. *Chung Kuo I Hsueh Ko Hsueh Yuan Hsueh Pao.* 16: 323–327
- Wu C H, Lee M F, Liao S C, Luo S F (1996) Sequencing analysis of cDNA clones encoding the American cockroach Cr-PI allergens. Homology with insect hemolymph proteins. *J. Biol. Chem.* 271: 17937–17943.
- Wyss M, Maughan D, Wallmann T (1995) Re-evaluation of the structure and physiological function of guanidino kinases in fruitfly (*Drosophila*), sea urchin (*Psammechinus miliaris*) and man. *Biochem. J.* 309: 255–261.

55

60

65

DE 100 41 541 A 1

SEQUENZPROTOKOLL

<110> Duchene, Michael

<120> Rekombinante Allergene aus der Motte Plodia
interpunctella

5

<130> 22034pdemd

10

<140>

<141>

<160> 8

15

<170> PatentIn Ver. 2.1

20

<210> 1

<211> 1294

<212> DNA

<213> Plodia interpunctella

25

<220>

<221> CDS

<222> (25)..(1089)

30

<400> 1

tcaagtgtca gaaaagcagc agca atg gtg gac gcc gct acc ctt gag aaa	51	35
Met Val Asp Ala Ala Thr Leu Glu Lys		
1	5	

ttg gag gct ggc ttc agc aag ctt gcc tcc gac tca aag tcg ctg	99	40
Leu Glu Ala Gly Phe Ser Lys Leu Ala Ala Ser Asp Ser Lys Ser Leu		
10	15	20

ctg aag aaa tac ctc acc agg gag gta ttt gat gct ctc aag aac aag	147	45
Leu Lys Lys Tyr Leu Thr Arg Glu Val Phe Asp Ala Leu Lys Asn Lys		
30	35	40

aag acc tca ttt ggt tca act ctc ctg gat tct atc cag tca ggt gtt	195	50
Lys Thr Ser Phe Gly Ser Thr Leu Leu Asp Ser Ile Gln Ser Gly Val		
45	50	55

gag aac tta cat tcg ggt gtt gga att tat gcc cca gat gct gag gca	243	55
Glu Asn Leu His Ser Gly Val Gly Ile Tyr Ala Pro Asp Ala Glu Ala		
60	65	70

tat gta gta ttt gca gac ttg ttc gac ccc atc att gaa gat tac cac	291	60
Tyr Val Val Phe Ala Asp Leu Phe Asp Pro Ile Ile Glu Asp Tyr His		

65

DE 100 41 541 A 1

aat ggc ttc aag aaa acc gac aag cac cct ccc aag aac tgg gga gat Asn Gly Phe Lys Lys Thr Asp Lys His Pro Pro Lys Asn Trp Gly Asp 90 95 100 105	339
5	
gtt gag acc ctc ggg aac ttg gat cct gct ggt gaa ttt gtt gtc tcc Val Glu Thr Leu Gly Asn Leu Asp Pro Ala Gly Glu Phe Val Val Ser 10 110 115 120	387
10	
acc cgt gtc cgc tgc ggt cgc tcc atg gaa ggc tac cca ttc aac ccc Thr Arg Val Arg Cys Gly Arg Ser Met Glu Gly Tyr Pro Phe Asn Pro 15 125 130 135	435
15	
tgc tta aca gag gcc caa tac aag gaa atg gaa gag aaa gtc tcc tcc Cys Leu Thr Glu Ala Gln Tyr Lys Glu Met Glu Glu Lys Val Ser Ser 20 140 145 150	483
20	
aca ctc tcc ggc ctc gag ggt gaa ctg aaa ggc acc ttt ttc cca ctc Thr Leu Ser Gly Leu Glu Gly Glu Leu Lys Gly Thr Phe Phe Pro Leu 25 155 160 165	531
25	
aca ggc atg tcc aag gag act caa caa cag ttg att gat gac cac ttc Thr Gly Met Ser Lys Glu Thr Gln Gln Leu Ile Asp Asp His Phe 30 170 175 180 185	579
30	
35	
ctg ttc aag gag ggt gat cgc ttc ctc cag gcc gct aac gct tgc cgc Leu Phe Lys Glu Gly Asp Arg Phe Leu Gln Ala Ala Asn Ala Cys Arg 190 195 200	627
35	
40	
ttc tgg ccc tcc ggt cgt ggc atc tac cac aat gag aac aag act ttc Phe Trp Pro Ser Gly Arg Gly Ile Tyr His Asn Glu Asn Lys Thr Phe 205 210 215	675
40	
45	
ctg gta tgg tgc aat gag gag gac cac ctc cgt ctg atc tcc atg caa Leu Val Trp Cys Asn Glu Glu Asp His Leu Arg Leu Ile Ser Met Gln 220 225 230	723
45	
50	
atg ggc ggc gac ctg aag cag gtg tac aag agg ctg gtg agg gga gtg Met Gly Gly Asp Leu Lys Gln Val Tyr Lys Arg Leu Val Arg Gly Val 235 240 245	771
50	
55	
aac gac atc gcg aag agg atc cca ttc tcg cac aac gag cgg ctg ggc Asn Asp Ile Ala Lys Arg Ile Pro Phe Ser His Asn Glu Arg Leu Gly 250 255 260 265	819
55	
60	
ttc ctg act ttc tgc ccc acc aac ctg ggc aca acg gtg cgc gca tcg Phe Leu Thr Phe Cys Pro Thr Asn Leu Gly Thr Thr Val Arg Ala Ser	867
60	
65	

DE 100 41 541 A 1

270	275	280	
gtg cac atc aag ctg ccc aag ctg gcg gcc gac aag gcc aag ctg gag Val His Ile Lys Leu Pro Lys Leu Ala Ala Asp Lys Ala Lys Leu Glu	285	290	915 5
295			
gag gtg gcc agc aag tac cac ctg cag gtg cgc ggc acc cgc ggc gag Glu Val Ala Ser Lys Tyr His Leu Gln Val Arg Gly Thr Arg Gly Glu	300	305	963 10
310			
cac acg gag gcc gag ggc ggc gtc tac gac atc tcc aac aag agg cgc His Thr Glu Ala Glu Gly Val Tyr Asp Ile Ser Asn Lys Arg Arg	315	320	1011 15
325			
atg gga ctc acc gag tac gaa gcc gtc aag gag atg tac gac ggc atc Met Gly Leu Thr Glu Tyr Glu Ala Val Lys Glu Met Tyr Asp Gly Ile	330	335	1059 20
340	345		
gct gaa ctg atc aaa atc gag aaa tcc ctg taagatgtt aacgatctcg Ala Glu Leu Ile Lys Ile Glu Lys Ser Leu	350	355	1109 25
cgctatcagt atttttgtta ttatttatcg tttcacata agtattggat gtgaaggggc 1169			
gagggcgaca ctatcgatcg gccttgagcg gggccgggca cgccggcgcc ccactatact 1229			35
gtttcgtaaa agtattgtct ataaggaaat ggaaaataaa gacagcttagc gttaagacaa 1289			
aaaaaa			1294 40
<210> 2			45
<211> 355			
<212> PRT			
<213> <i>Plodia interpunctella</i>			
			50
<400> 2			
Met Val Asp Ala Ala Thr Leu Glu Lys Leu Glu Ala Gly Phe Ser Lys	1	5	10 15
Leu Ala Ala Ser Asp Ser Lys Ser Leu Leu Lys Lys Tyr Leu Thr Arg	20	25	30
Glu Val Phe Asp Ala Leu Lys Asn Lys Lys Thr Ser Phe Gly Ser Thr	35	40	45 60
Leu Leu Asp Ser Ile Gln Ser Gly Val Glu Asn Leu His Ser Gly Val	50	55	60 65

DE 100 41 541 A 1

Gly Ile Tyr Ala Pro Asp Ala Glu Ala Tyr Val Val Phe Ala Asp Leu
65 70 75 80

5 Phe Asp Pro Ile Ile Glu Asp Tyr His Asn Gly Phe Lys Lys Thr Asp
85 90 95

10 Lys His Pro Pro Lys Asn Trp Gly Asp Val Glu Thr Leu Gly Asn Leu
100 105 110

15 Asp Pro Ala Gly Glu Phe Val Val Ser Thr Arg Val Arg Cys Gly Arg
115 120 125

20 Ser Met Glu Gly Tyr Pro Phe Asn Pro Cys Leu Thr Glu Ala Gln Tyr
130 135 140

25 Lys Glu Met Glu Glu Lys Val Ser Ser Thr Leu Ser Gly Leu Glu Gly
145 150 155 160

30 Glu Leu Lys Gly Thr Phe Phe Pro Leu Thr Gly Met Ser Lys Glu Thr
165 170 175

35 Gln Gln Gln Leu Ile Asp Asp His Phe Leu Phe Lys Glu Gly Asp Arg
180 185 190

40 Phe Leu Gln Ala Ala Asn Ala Cys Arg Phe Trp Pro Ser Gly Arg Gly
195 200 205

45 Ile Tyr His Asn Glu Asn Lys Thr Phe Leu Val Trp Cys Asn Glu Glu
210 215 220

50 Asp His Leu Arg Leu Ile Ser Met Gln Met Gly Gly Asp Leu Lys Gln
225 230 235 240

55 Val Tyr Lys Arg Leu Val Arg Gly Val Asn Asp Ile Ala Lys Arg Ile
245 250 255

60 Pro Phe Ser His Asn Glu Arg Leu Gly Phe Leu Thr Phe Cys Pro Thr
260 265 270

65 Asn Leu Gly Thr Thr Val Arg Ala Ser Val His Ile Lys Leu Pro Lys
275 280 285

70 Leu Ala Ala Asp Lys Ala Lys Leu Glu Glu Val Ala Ser Lys Tyr His
290 295 300

75 Leu Gln Val Arg Gly Thr Arg Gly Glu His Thr Glu Ala Glu Gly Gly
305 310 315 320

DE 100 41 541 A 1

Val Tyr Asp Ile Ser Asn Lys Arg Arg Met Gly Leu Thr Glu Tyr Glu			
325	330	335	
Ala Val Lys Glu Met Tyr Asp Gly Ile Ala Glu Leu Ile Lys Ile Glu			5
340	345	350	
Lys Ser Leu			10
355			
15			
<210> 3			
<211> 1092			
<212> DNA			20
<213> <i>Plodia interpunctella</i>			
25			
<220>			
<221> CDS			
<222> (31)..(885)			
30			
<400> 3			
acaggacagt agacacacaa agccaccacc atg gac gcg atc aag aag aag atg	54		
Met Asp Ala Ile Lys Lys Lys Met			
1	5		
cag gcg atg aag ctg gag aag gac aac gct ttg gac cgc gct gcc atg	102		35
Gln Ala Met Lys Leu Glu Lys Asp Asn Ala Leu Asp Arg Ala Ala Met			
10	15	20	
tgc gag cag cag gcc aag gac gcc aac ctc cgt gct gag aag gcc gag	150		40
Cys Glu Gln Gln Ala Lys Asp Ala Asn Leu Arg Ala Glu Lys Ala Glu			
25	30	35	40
45			
gag gag gcc aga caa ttg cag aag aag atc cag acg att gag aac gat	198		
Glu Glu Ala Arg Gln Leu Gln Lys Lys Ile Gln Thr Ile Glu Asn Asp			
45	50	55	
50			
ctg gac cag acg cag gag gcg ctc atg cag gtc aac gcc aag ctg gaa	246		
Leu Asp Gln Thr Gln Glu Ala Leu Met Gln Val Asn Ala Lys Leu Glu			
60	65	70	
55			
gag aaa gag aaa gct ctt cag aac gct gag tcc gaa gtc gct gcc ctc	294		
Glu Lys Glu Lys Ala Leu Gln Asn Ala Glu Ser Glu Val Ala Ala Leu			
75	80	85	
60			
aac cga cgt atc caa ctg ctg gaa gag gac ctc gag agg tcc gag gag	342		
Asn Arg Arg Ile Gln Leu Leu Glu Glu Asp Leu Glu Arg Ser Glu Glu			
65			

DE 100 41 541 A 1

	90	95	100	
5	cgc ctc gcc acc gcc aca gcc aaa ctg tcc gaa gcc agc cag gct gcc			390
	Arg	Leu	Ala	Thr Ala Thr Ala Lys Leu Ser Glu Ala Ser Gln Ala Ala
105	110	115	120	
10	gat gag tcg gaa cgt gcc cgc aag gtg ctc gag aac agg tca ttg gct			438
	Asp	Glu	Ser	Glu Arg Ala Arg Lys Val Leu Glu Asn Arg Ser Leu Ala
	125	130	135	
15	gat gaa gag cgt atg gac gct ttg gag aac cag ctg aag gaa gcc agg			486
	Asp	Glu	Glu	Arg Met Asp Ala Leu Glu Asn Gln Leu Lys Glu Ala Arg
	140	145	150	
20	ttc ctt gct gag gaa gcc gac aag aaa tac gat gag gtt gct cgt aag			534
	Phe	Leu	Ala	Glu Glu Ala Asp Lys Lys Tyr Asp Glu Val Ala Arg Lys
25	155	160	165	
	ctg gcc atg gtt gag gct gac ctg gag cgc gcg gag gag cgt gcc gaa			582
	Leu	Ala	Met	Val Glu Ala Asp Leu Glu Arg Ala Glu Glu Arg Ala Glu
30	170	175	180	
	tcc ggc gaa tcc aaa atc gtc gag ctt gag gaa gaa ctg cgc gtg gtt			630
	Ser	Gly	Glu	Ser Lys Ile Val Glu Leu Glu Glu Leu Arg Val Val
35	185	190	195	200
	ggc aac aac ttg aaa tcc ctg gaa gtc tcc gag gag aag gcc aac caa			678
40	Gly	Asn	Asn	Leu Lys Ser Leu Glu Val Ser Glu Glu Lys Ala Asn Gln
	205	210	215	
	cgt gag gag gag tac aaa aat cag atc aaa acc ctc acc acc cgc cta			726
45	Arg	Glu	Glu	Tyr Lys Asn Gln Ile Lys Thr Leu Thr Thr Arg Leu
	220	225	230	
	aag gag gct gag gcc cgc gct gag ttc gcc gag cgt tcc gtg cag aaa			774
50	Lys	Glu	Ala	Arg Ala Glu Phe Ala Glu Arg Ser Val Gln Lys
	235	240	245	
	ctg caa aag gag gtc gac agg ctt gaa gac gaa ctg gtg gct gag aag			822
55	Leu	Gln	Lys	Glu Val Asp Arg Leu Glu Asp Glu Leu Val Ala Glu Lys
	250	255	260	
60	gag aaa tac aaa gat att ggt gac gac ctg gac acc ccc ttc gtc gag			870
	Glu	Lys	Tyr Lys Asp Ile Gly Asp Asp Leu Asp Thr Pro Phe Val Glu	
265	270	275	280	
65	ctc atc ctc aag gaa taaaactcctc acgttgtca cctgggcctg tccccatgcgg			925
	Leu	Ile	Leu	Lys Glu

DE 100 41 541 A 1

285

ggcagaccca cgggtcattc caagacgcgg ctcttccgcc agcgattcaa catctgtaca	985	5
gatgttatat tcattttata ctcatttaaa atatttaat ctatagttt atggcggtat	1045	
ttatttcga gtaatataat aaataattt ttacttattt aaaaaaaa	1092	10
<210> 4		
<211> 285		15
<212> PRT		
<213> <i>Plodia interpunctella</i>		
<400> 4		20
Met Asp Ala Ile Lys Lys Met Gln Ala Met Lys Leu Glu Lys Asp		
1	5	10
		15
Asn Ala Leu Asp Arg Ala Ala Met Cys Glu Gln Gln Ala Lys Asp Ala		25
20	25	30
Asn Leu Arg Ala Glu Lys Ala Glu Glu Ala Arg Gln Leu Gln Lys		30
35	40	45
Lys Ile Gln Thr Ile Glu Asn Asp Leu Asp Gln Thr Gln Glu Ala Leu		35
50	55	60
Met Gln Val Asn Ala Lys Leu Glu Glu Lys Glu Lys Ala Leu Gln Asn		
65	70	75
		80
Ala Glu Ser Glu Val Ala Ala Leu Asn Arg Arg Ile Gln Leu Leu Glu		
85	90	95
Glu Asp Leu Glu Arg Ser Glu Glu Arg Leu Ala Thr Ala Thr Ala Lys		45
100	105	110
Leu Ser Glu Ala Ser Gln Ala Ala Asp Glu Ser Glu Arg Ala Arg Lys		50
115	120	125
Val Leu Glu Asn Arg Ser Leu Ala Asp Glu Glu Arg Met Asp Ala Leu		
130	135	140
Glu Asn Gln Leu Lys Glu Ala Arg Phe Leu Ala Glu Glu Ala Asp Lys		
145	150	155
		160
Lys Tyr Asp Glu Val Ala Arg Lys Leu Ala Met Val Glu Ala Asp Leu		
165	170	175

DE 100 41 541 A 1

Glu Arg Ala Glu Glu Arg Ala Glu Ser Gly Ser Lys Ile Val Glu
180 185 190

5 Leu Glu Glu Glu Leu Arg Val Val Gly Asn Asn Leu Lys Ser Leu Glu
195 200 205

10 Val Ser Glu Glu Lys Ala Asn Gln Arg Glu Glu Glu Tyr Lys Asn Gln
210 215 220

15 Ile Lys Thr Leu Thr Thr Arg Leu Lys Glu Ala Glu Ala Arg Ala Glu
225 230 235 240

20 Phe Ala Glu Arg Ser Val Gln Lys Leu Gln Lys Glu Val Asp Arg Leu
245 250 255

25 Glu Asp Glu Leu Val Ala Glu Lys Glu Lys Tyr Lys Asp Ile Gly Asp
260 265 270

30 Asp Leu Asp Thr Pro Phe Val Glu Leu Ile Leu Lys Glu
275 280 285

35 <210> 5
<211> 2230
<212> DNA
<213> *Plodia interpunctella*

40 <220>
<221> CDS
<222> (13)..(2127)

45 <400> 5
ggtgtgggtgga cg atg aag act gtc ctg atc tta gct ggc ctc gtg gcc ctg 51
Met Lys Thr Val Leu Ile Leu Ala Gly Leu Val Ala Leu
50 1 5 10

55 gcc gcg ggc aac acc ttc ccg gta ttc aga tat gac cac gtc gaa act 99
Ala Ala Gly Asn Thr Phe Pro Val Phe Arg Tyr Asp His Val Glu Thr
55 15 20 25

60 aga aaa ttg gaa gga gac ctt tta cag tac cag tcg aaa ttt ctg tct 147
Arg Lys Leu Glu Gly Asp Leu Leu Gln Tyr Gln Ser Lys Phe Leu Ser
60 30 35 40 45

65 ctt ctt gag aat gtg aga cag att gac tac gaa gcg gag tac tac aaa 195
Leu Leu Glu Asn Val Arg Gln Ile Asp Tyr Glu Ala Glu Tyr Tyr Lys
65 50 55 60

DE 100 41 541 A 1

gtt ggc aag ggt tac gac atc gta gcc agc ata gag aac tat tct gac	243	
Val Gly Lys Gly Tyr Asp Ile Val Ala Ser Ile Glu Asn Tyr Ser Asp		
65	70	75
		5
caa gat gca gtc agg gcg ttt gct ggt ctt cga gaa att ggt ttc atg	291	
Gln Asp Ala Val Arg Ala Phe Ala Gly Leu Arg Glu Ile Gly Phe Met		
80	85	90
		10
ccc aaa gct tac aca ttc tcc att ttc tac gac agg cag aga gaa gaa	339	
Pro Lys Ala Tyr Thr Phe Ser Ile Phe Tyr Asp Arg Gln Arg Glu Glu		
95	100	105
		15
gct aag att att tat gac ttg ttc tac agc gct aaa gat ttg gac act	387	
Ala Lys Ile Ile Tyr Asp Leu Phe Tyr Ser Ala Lys Asp Leu Asp Thr		
110	115	120
		20
125		
tac tac aag act gta gcc tac ggc cga atc tat ttc aac gag tat cag	435	
Phe Tyr Lys Thr Val Ala Tyr Gly Arg Ile Tyr Phe Asn Glu Tyr Gln		
130	135	140
		25
ttc atg tat gct ttc tat gct gcg att att cag cgc tct gat acc aca	483	
Phe Met Tyr Ala Phe Tyr Ala Ala Ile Ile Gln Arg Ser Asp Thr Thr		
145	150	155
		30
160	165	170
gga atc gtc tta cca gct cca tat gaa ctg tat cct gaa tat ttc ttg	531	
Gly Ile Val Leu Pro Ala Pro Tyr Glu Leu Tyr Pro Glu Tyr Phe Leu		
		35
175	180	185
aac atg tat acg atc caa aga atg tac cga aca cag atg caa agt ggt	579	
Asn Met Tyr Thr Ile Gln Arg Met Tyr Arg Thr Gln Met Gln Ser Gly		
		40
190	195	200
		45
ata ttc aat gag gaa gtt gct agt aac tat ggt atc tgg aag atg gat	627	
Ile Phe Asn Glu Glu Val Ala Ser Asn Tyr Gly Ile Trp Lys Met Asp		
210	215	220
		50
aat aac tac tat tat tac tac aac tac tct aat ccc ttg acg tac aga	675	
Asn Asn Tyr Tyr Tyr Tyr Asn Tyr Ser Asn Pro Leu Thr Tyr Arg		
225	230	235
		55
tct tac tat tac tac ttc cac aat ctt atg cct ttc tgg ggc aaa ggc	723	
Ser Tyr Tyr Tyr Tyr Phe His Asn Leu Met Pro Phe Trp Gly Lys Gly		
240	245	250
		60
		65

DE 100 41 541 A 1

gag gac ttt att ggt atc ttc aag gaa cgc cgt gga gaa ttc tac tac		819
Glu Asp Phe Ile Gly Ile Phe Lys Glu Arg Arg Gly Glu Phe Tyr Tyr		
255	260	265
 5		
tac ttc tat cag caa ctc ttg tct cgt tac tac ctt gag cgt ttg agt		867
Tyr Phe Tyr Gln Gln Leu Leu Ser Arg Tyr Tyr Leu Glu Arg Leu Ser		
10 270	275	280
285		
 15		
aat ggc ttg gga gaa att cca gat ttc tct tgg tac caa cct ctg agg		915
Asn Gly Leu Gly Glu Ile Pro Asp Phe Ser Trp Tyr Gln Pro Leu Arg		
290	295	300
 20		
agt ggt tac tat cca gct ata tat acg agc tca gcc tat ccg ttt gct		963
Ser Gly Tyr Tyr Pro Ala Ile Tyr Thr Ser Ser Ala Tyr Pro Phe Ala		
305	310	315
 25		
caa cgt ccc aac tat tat tac atg gga act gaa gaa aat gtt gac tac		1011
Gln Arg Pro Asn Tyr Tyr Met Gly Thr Glu Glu Asn Val Asp Tyr		
320	325	330
 30		
atc caa ttc ctt gat gct cag gaa aag agc ttt gtg caa ttt ctg cag		1059
Ile Gln Phe Leu Asp Ala Gln Glu Lys Ser Phe Val Gln Phe Leu Gln		
335	340	345
 35		
att ggc cag ttt aag gca ttt aaa caa gat gta gac ttc cgc aac tcc		1107
Ile Gly Gln Phe Lys Ala Phe Lys Gln Asp Val Asp Phe Arg Asn Ser		
350	355	360
365		
 40		
aag tca ata aac ttt gtt ggc aac ttt tgg caa gga aac ccg gac ctg		1155
Lys Ser Ile Asn Phe Val Gly Asn Phe Trp Gln Gly Asn Pro Asp Leu		
370	375	380
 45		
tac gat aag tac gga agg gaa gta aac tat gac gac tcc tac gaa atc		1203
Tyr Asp Lys Tyr Gly Arg Glu Val Asn Tyr Asp Asp Ser Tyr Glu Ile		
385	390	395
 50		
atc gct cgc cgc gtg ctt ggt gct gct cct ccg acc tcc gac aat tac		1251
Ile Ala Arg Arg Val Leu Gly Ala Ala Pro Pro Thr Ser Asp Asn Tyr		
400	405	410
 55		
gaa ttc gtg ccg tct gct ctg gac ttc tac cag act tca ctt cgt gat		1299
Glu Phe Val Pro Ser Ala Leu Asp Phe Tyr Gln Thr Ser Leu Arg Asp		
415	420	425
 60		
ccc gcc ttc tac atg ctc tat aac aag atc atg agc tac att gta cag		1347
Pro Ala Phe Tyr Met Leu Tyr Asn Lys Ile Met Ser Tyr Ile Val Gln		
430	435	440
445		
 65		

DE 100 41 541 A 1

tac aag gaa tgg ttg gag ccc tat gat caa gag gta ctt cac tac tcc Tyr Lys Glu Trp Leu Glu Pro Tyr Asp Gln Glu Val Leu His Tyr Ser	450	455	460	1395
				5
ggt gtc aag atc aat gac gtc agt gtt ggt aac ttg act acc ttc ttc Gly Val Lys Ile Asn Asp Val Ser Val Gly Asn Leu Thr Thr Phe Phe	465	470	475	1443
				10
gag tac tat gac ttc aac gcc acc aat gca gtt ttc tta agt gac caa Glu Tyr Tyr Asp Phe Asn Ala Thr Asn Ala Val Phe Leu Ser Asp Gln	480	485	490	1491
				15
gag att caa caa caa tat tct tca ttc atc gta cgt caa ccg cgt ttg Glu Ile Gln Gln Tyr Ser Ser Phe Ile Val Arg Gln Pro Arg Leu	495	500	505	1539
				20
aac cac gaa cct ttc tcc gtg acc atc gat gtt aag tct gac gtt gag Asn His Glu Pro Phe Ser Val Thr Ile Asp Val Lys Ser Asp Val Glu	510	515	520	1587
				25
gcg gaa gcg tac ttc aag atc ttt gtt ggt cct aaa tat gat gga gaa Ala Glu Ala Tyr Phe Lys Ile Phe Val Gly Pro Lys Tyr Asp Gly Glu	530	535	540	1635
				30
ggt cgc cct ctt agc ttg gaa gat aac tgg atg aac ttc gtg gaa ttg Gly Arg Pro Leu Ser Leu Glu Asp Asn Trp Met Asn Phe Val Glu Leu	545	550	555	1683
				35
gac tgg ttc acc cac aaa ttg acg tca gga cag aac aag gtt gag cgc Asp Trp Phe Thr His Lys Leu Thr Ser Gly Gln Asn Lys Val Glu Arg	560	565	570	1731
				40
aaa tct gag gaa ttc ttc ttc ttt aaa gag gac tcc gtc tca atg tct Lys Ser Glu Glu Phe Phe Phe Lys Glu Asp Ser Val Ser Met Ser	575	580	585	1779
				45
aag atc tat gaa ctc ctg aaa cag ggc cag gta cct gaa agc atg tcc Lys Ile Tyr Glu Leu Leu Lys Gln Gly Gln Val Pro Glu Ser Met Ser	590	595	600	1827
				50
gaa gac tac gac tct atg cca agc aga ctg atg ttg ccc aga ggc act Glu Asp Tyr Asp Ser Met Pro Ser Arg Leu Met Leu Pro Arg Gly Thr	610	615	620	1875
				55
ccg ggt ggt ttc cct gta cag ttc gtc ttc gtg tac cca tac caa Pro Gly Gly Phe Pro Val Gln Phe Phe Val Phe Val Tyr Pro Tyr Gln	625	630	635	1923
				60
				65

DE 100 41 541 A 1

gct ctc agc aaa gac cta gag gct atg aag aat atc atc ctt gac aac Ala Leu Ser Lys Asp Leu Glu Ala Met Lys Asn Ile Ile Leu Asp Asn	640	645	650	1971
aaa cct ttg ggc tat cca ttt gac cgt cct gtc gag tac ccg tat ctc Lys Pro Leu Gly Tyr Pro Phe Asp Arg Pro Val Glu Tyr Pro Tyr Leu	10 655	660	665	2019
ttc tta caa cct aat atg tac ttt gaa gac gtc aat atc tac cac aga Phe Leu Gln Pro Asn Met Tyr Phe Glu Asp Val Asn Ile Tyr His Arg	15 670	675	680	2067
ggc cct caa tac ccc tgg tgg agt aat ggc caa ttc cgt ctg aat gaa Gly Pro Gln Tyr Pro Trp Trp Ser Asn Gly Gln Phe Arg Leu Asn Glu	20 690	695	700	2115
gta cct aga caa taaaggagag agaaaagagtt cttgaaccaa aacatttaaa Val Pro Arg Gln	25	705		2167
gctagtagaa cactatagtc acaataaaaat aaaaattttt atagtaaaaa aaaaaaaaaa	30			2227
aaa				2230
<210> 6	35			
<211> 705				
<212> PRT				
<213> <i>Plodia interpunctella</i>	40			
<400> 6				
Met Lys Thr Val Leu Ile Leu Ala Gly Leu Val Ala Leu Ala Ala Gly	45 1	5	10	15
Asn Thr Phe Pro Val Phe Arg Tyr Asp His Val Glu Thr Arg Lys Leu	50 20	25	30	
Glu Gly Asp Leu Leu Gln Tyr Gln Ser Lys Phe Leu Ser Leu Leu Glu	55 35	40	45	
Asn Val Arg Gln Ile Asp Tyr Glu Ala Glu Tyr Tyr Lys Val Gly Lys	60 50	55	60	
Gly Tyr Asp Ile Val Ala Ser Ile Glu Asn Tyr Ser Asp Gln Asp Ala	65 65	70	75	80
Val Arg Ala Phe Ala Gly Leu Arg Glu Ile Gly Phe Met Pro Lys Ala	65			

DE 100 41 541 A 1

85	90	95	
Tyr Thr Phe Ser Ile Phe Tyr Asp Arg Gln Arg Glu Glu Ala Lys Ile			
100	105	110	5
Ile Tyr Asp Leu Phe Tyr Ser Ala Lys Asp Leu Asp Thr Phe Tyr Lys			
115	120	125	10
Thr Val Ala Tyr Gly Arg Ile Tyr Phe Asn Glu Tyr Gln Phe Met Tyr			
130	135	140	
Ala Phe Tyr Ala Ala Ile Ile Gln Arg Ser Asp Thr Thr Gly Ile Val			15
145	150	155	160
Leu Pro Ala Pro Tyr Glu Leu Tyr Pro Glu Tyr Phe Leu Asn Met Tyr			20
165	170	175	
Thr Ile Gln Arg Met Tyr Arg Thr Gln Met Gln Ser Gly Ile Phe Asn			25
180	185	190	
Glu Glu Val Ala Ser Asn Tyr Gly Ile Trp Lys Met Asp Asn Asn Tyr			
195	200	205	30
Tyr Tyr Tyr Tyr Asn Tyr Ser Asn Pro Leu Thr Tyr Arg Asn Gln Glu			
210	215	220	
Tyr Arg Leu Ser Tyr Leu Thr Glu Asp Ile Gly Trp Asn Ser Tyr Tyr			35
225	230	235	240
Tyr Tyr Phe His Asn Leu Met Pro Phe Trp Gly Lys Gly Glu Asp Phe			40
245	250	255	
Ile Gly Ile Phe Lys Glu Arg Arg Gly Glu Phe Tyr Tyr Phe Tyr			45
260	265	270	
Gln Gln Leu Leu Ser Arg Tyr Tyr Leu Glu Arg Leu Ser Asn Gly Leu			
275	280	285	50
Gly Glu Ile Pro Asp Phe Ser Trp Tyr Gln Pro Leu Arg Ser Gly Tyr			
290	295	300	55
Tyr Pro Ala Ile Tyr Thr Ser Ser Ala Tyr Pro Phe Ala Gln Arg Pro			
305	310	315	320
Asn Tyr Tyr Tyr Met Gly Thr Glu Glu Asn Val Asp Tyr Ile Gln Phe			60
325	330	335	
Leu Asp Ala Gln Glu Lys Ser Phe Val Gln Phe Leu Gln Ile Gly Gln			65

DE 100 41 541 A 1

340

345

350

5 Phe Lys Ala Phe Lys Gln Asp Val Asp Phe Arg Asn Ser Lys Ser Ile
 355 360 365
 10 Asn Phe Val Gly Asn Phe Trp Gln Gly Asn Pro Asp Leu Tyr Asp Lys
 370 375 380
 15 Tyr Gly Arg Glu Val Asn Tyr Asp Asp Ser Tyr Glu Ile Ile Ala Arg
 385 390 395 400
 20 Arg Val Leu Gly Ala Ala Pro Pro Thr Ser Asp Asn Tyr Glu Phe Val
 405 410 415
 25 Pro Ser Ala Leu Asp Phe Tyr Gln Thr Ser Leu Arg Asp Pro Ala Phe
 420 425 430
 30 Tyr Met Leu Tyr Asn Lys Ile Met Ser Tyr Ile Val Gln Tyr Lys Glu
 435 440 445
 35 Trp Leu Glu Pro Tyr Asp Gln Glu Val Leu His Tyr Ser Gly Val Lys
 450 455 460
 40 Ile Asn Asp Val Ser Val Gly Asn Leu Thr Thr Phe Phe Glu Tyr Tyr
 465 470 475 480
 45 Asp Phe Asn Ala Thr Asn Ala Val Phe Leu Ser Asp Gln Glu Ile Gln
 485 490 495
 50 Gln Gln Tyr Ser Ser Phe Ile Val Arg Gln Pro Arg Leu Asn His Glu
 500 505 510
 55 Pro Phe Ser Val Thr Ile Asp Val Lys Ser Asp Val Glu Ala Glu Ala
 515 520 525
 60 Tyr Phe Lys Ile Phe Val Gly Pro Lys Tyr Asp Gly Glu Gly Arg Pro
 530 535 540
 65 Leu Ser Leu Glu Asp Asn Trp Met Asn Phe Val Glu Leu Asp Trp Phe
 545 550 555 560
 70 Thr His Lys Leu Thr Ser Gly Gln Asn Lys Val Glu Arg Lys Ser Glu
 565 570 575
 75 Glu Phe Phe Phe Lys Glu Asp Ser Val Ser Met Ser Lys Ile Tyr
 580 585 590
 80 Glu Leu Leu Lys Gln Gly Gln Val Pro Glu Ser Met Ser Glu Asp Tyr

DE 100 41 541 A 1

595	600	605	
Asp Ser Met Pro Ser Arg Leu Met Leu Pro Arg Gly Thr Pro Gly Gly			
610	615	620	5
Phe Pro Val Gln Phe Phe Val Phe Val Tyr Pro Tyr Gln Ala Leu Ser			
625	630	635	640
Lys Asp Leu Glu Ala Met Lys Asn Ile Ile Leu Asp Asn Lys Pro Leu			
645	650	655	65
Gly Tyr Pro Phe Asp Arg Pro Val Glu Tyr Pro Tyr Leu Phe Leu Gln			
660	665	670	15
Pro Asn Met Tyr Phe Glu Asp Val Asn Ile Tyr His Arg Gly Pro Gln			
675	680	685	20
Tyr Pro Trp Trp Ser Asn Gly Gln Phe Arg Leu Asn Glu Val Pro Arg			
690	695	700	25
Gln			
705			30
<210> 7			
<211> 1076			
<212> DNA			
<213> Plodia interpunctella			
<220>			
<221> CDS			
<222> (73)..(834)			
<400> 7			
taactgttat tgctcagtga taatagatata gttattatata tgtcaagaag ctgatacgtt 60			
tgcaaaaatca tc atg aat ttc gcc ggt aaa gtt gta att gta acc ggt gct lll			
Met Asn Phe Ala Gly Lys Val Val Ile Val Thr Gly Ala			
1	5	10	55
agc tcc ggt att gga gca gct aca gct gtg ttc cta tcg aaa cta ggc 159			
Ser Ser Gly Ile Gly Ala Ala Thr Ala Val Phe Leu Ser Lys Leu Gly			
15	20	25	60
gct aag ctt tct ctg acg gga cgt aac gtc gag aat ctt aag aaa gtt 207			
Ala Lys Leu Ser Leu Thr Gly Arg Asn Val Glu Asn Leu Lys Lys Val			
30	35	40	65

DE 100 41 541 A 1

agt cag gat tgc gaa aaa tcc acc cag aca cac tac atc gcc gcc gac Ser Gln Asp Cys Glu Lys Ser Thr Gln Thr His Tyr Ile Ala Ala Asp	50	55	255
			60
s			
tta acc aaa gaa aaa gat att qaa aat atc gtt aaa agc acc att gat Leu Thr Lys Glu Lys Asp Ile Glu Asn Ile Val Lys Ser Thr Ile Asp	10	65	303
			70
			75
aaa tac ggc caa ctt gac gtc ctg gtc aat aat gct ggc att ctt gag Lys Tyr Gly Gln Leu Asp Val Leu Val Asn Asn Ala Gly Ile Leu Glu	15	80	351
			85
			90
act ggt tcc atc gaa aac aca tcg tta gcc cag tac gac agg tta atg Thr Gly Ser Ile Glu Asn Thr Ser Leu Ala Gln Tyr Asp Arg Leu Met	20	95	399
			100
			105
aat aca aat gtg cgc tca att tat tac tta acc atg ctg gca gtc cca Asn Thr Asn Val Arg Ser Ile Tyr Tyr Leu Thr Met Leu Ala Val Pro	25	110	447
			115
			120
			125
cac ctt ctc aaa acc aaa ggt aac att gtg aat gta tct aat gtc aat His Leu Leu Lys Thr Lys Gly Asn Ile Val Asn Val Ser Ser Val Asn	30	130	495
			135
			140
ggg atc agg tct ttc cct ggt gta ctg gct tac aat gtt tcg aag tca Gly Ile Arg Ser Phe Pro Gly Val Leu Ala Tyr Asn Val Ser Lys Ser	35	145	543
			150
			155
gct gta gat cag ttt aca aca ttt gtt gca ctt gaa ttg gcc ccg aaa Ala Val Asp Gln Phe Thr Arg Cys Val Ala Leu Glu Leu Ala Pro Lys	40	160	591
			165
			170
ggg gta cga gtt aat ttt gtt gta aat cca gga gtc att ttg aca gaa ctg Gly Val Arg Val Asn Cys Val Asn Pro Gly Val Ile Leu Thr Glu Leu	45	175	639
			180
			185
cag aag cgt ggg ggt ttg aac gac cag cag tat gca gca ttt ctg gag Gln Lys Arg Gly Gly Leu Asn Asp Gln Gln Tyr Ala Ala Phe Leu Glu	50	190	687
			195
			200
			205
aga acc aag gag aca cat gcc ttg ggc cgg ccg gga aaa ccg gag gag Arg Thr Lys Glu Thr His Ala Leu Gly Arg Pro Gly Lys Pro Glu Glu	55	210	735
			215
			220
gtt gca gct act att gct ttc ttg gcc agt gaa tta gca agc aat atc Val Ala Ala Thr Ile Ala Phe Leu Ala Ser Glu Leu Ala Ser Asn Ile	60	225	783
			230
			235
65			

DE 100 41 541 A 1

act gga gcc agt gtg cct gta gac ggt ggt cgc cat gcc atg tgt cca	831			
Thr Gly Ala Ser Val Pro Val Asp Gly Gly Arg His Ala Met Cys Pro				
240	245	250	5	
cga taatttttt aataaaaatac atgttaattt tttttttact atttacaatt	884			
Arg				
tttcaatcca agcattttac aatgatcaaa gtgtctaaaa ccttttgaat attgtacaat	944	10		
aaaattttta tatattatag attaagtaaa aacgttcata tacctataat ttgtgtcata	1004			
tggatgtcca tgtgttcata tattttgtta taaccttggtt attttaaaat aaaaacaaaat	1064	15		
aataaaaaaaaa aa	1076			
		20		
<210> 8				
<211> 254			25	
<212> PRT				
<213> <u>Plodia interpunctella</u>				
<400> 8			30	
Met Asn Phe Ala Gly Lys Val Val Ile Val Thr Gly Ala Ser Ser Gly				
1	5	10	15	
Ile Gly Ala Ala Thr Ala Val Phe Leu Ser Lys Leu Gly Ala Lys Leu			35	
20	25	30		
Ser Leu Thr Gly Arg Asn Val Glu Asn Leu Lys Lys Val Ser Gln Asp			40	
35	40	45		
Cys Glu Lys Ser Thr Gln Thr His Tyr Ile Ala Ala Asp Leu Thr Lys			45	
50	55	60		
Glu Lys Asp Ile Glu Asn Ile Val Lys Ser Thr Ile Asp Lys Tyr Gly				
65	70	75	80	50
Gln Leu Asp Val Leu Val Asn Asn Ala Gly Ile Leu Glu Thr Gly Ser				
85	90	95		
Ile Glu Asn Thr Ser Leu Ala Gln Tyr Asp Arg Leu Met Asn Thr Asn			55	
100	105	110		
Val Arg Ser Ile Tyr Tyr Leu Thr Met Leu Ala Val Pro His Leu Leu			60	
115	120	125		
Lys Thr Lys Gly Asn Ile Val Asn Val Ser Ser Val Asn Gly Ile Arg			65	

130	135	140
5 Ser Phe Pro Gly Val Leu Ala Tyr Asn Val Ser Lys Ser Ala Val Asp		
145	150	155
10 Gln Phe Thr Arg Cys Val Ala Leu Glu Leu Ala Pro Lys Gly Val Arg		
	165	170
15 Val Asn Cys Val Asn Pro Gly Val Ile Leu Thr Glu Leu Gln Lys Arg		
	180	185
20 Gly Gly Leu Asn Asp Gln Gln Tyr Ala Ala Phe Leu Glu Arg Thr Lys		
	195	200
		205
25 Glu Thr His Ala Leu Gly Arg Pro Gly Lys Pro Glu Glu Val Ala Ala		
	210	215
		220
30 Ser Val Pro Val Asp Gly Gly Arg His Ala Met Cys Pro Arg		
	245	250

Patentansprüche

- 35 1. Nukleinsäure, kodierend für ein allergenes Polypeptid, umfassend
 (a) eine der in SEQ ID No. 1, 3, 5 oder 7 dargestellten Sequenzen oder ein Fragment davon, welches für eine allergene Determinante davon kodiert,
 (b) eine von einer Sequenz gemäß (a) auf Grund der Degeneration des genetischen Codes abweichende Sequenz,
 (c) eine Sequenz mit einer Identität > 80% zu einer der Sequenzen von (a) oder/und (b) oder
 (d) eine Sequenz, die mit einer der Sequenzen gemäß (a), (b) oder/und (c) unter stringenten Bedingungen hybridisiert.
- 40 2. Nukleinsäure, umfassend einen Bereich, der für ein Polypeptid mit einer SEQ ID No. 2, 4, 6 oder 8 dargestellten Sequenz kodiert.
- 45 3. Rekombinantes DNA-Molekül, das (a) eine Nukleotidsequenz, die für ein Polypeptid kodiert, das die Antigenizität der Allergene p40 mit der Aminosäuresequenz in der SEQ ID No. 2, p33 mit der Aminosäuresequenz in der SEQ ID No. 4, p84 mit der Aminosäuresequenz in der SEQ ID No. 6 oder p27 mit der Aminosäuresequenz in der SEQ ID No. 8 besitzt und aus Arthropoden abgeleitet ist, oder (b) eine Nukleotidsequenz, die mit einer Nukleotidsequenz (a) unter stringenten Bedingungen hybridisiert, aufweist.
- 50 4. Rekombinantes DNA-Molekül nach einem der Ansprüche 1–3, das eine Nukleotidsequenz umfasst, die für ein Polypeptid kodiert, das eine antigene Kreuzreakтивität und eine Identität > 50% mit dem p40 Allergen, dem p33 Allergen, dem p84 Allergen oder dem p27 Allergen oder ihren Homologen aus anderen Arthropoden besitzt.
- 55 5. Vektor, umfassend eine Nukleinsäure nach einem der Ansprüche 1–4 in operativer Verknüpfung mit einer Expressionskontrollsequenz.
- 60 6. Rekombinanter DNA-Expressionsvektor oder ein Klonierungssystem, die eine Expressionskontrollsequenz besitzen, die operativ mit einem rekombinanten Molekül wie in Anspruch 3 oder 4 beschrieben, verknüpft ist.
- 65 7. Rekombinanter Expressionsvektor, der eine Expressionskontrollsequenz besitzt, die funktionell mit einer Nukleotidsequenz verknüpft ist, die unter stringenten Bedingungen mit einer Nukleotidsequenz hybridisiert, wie sie in SEQ ID Nos. 1, 3, 5 oder 7 angegeben ist.
8. Zelle, transformiert mit einer Nukleinsäure nach einem der Ansprüche 1–4 oder einem Vektor nach einem der Ansprüche 5–7.
9. Allergenes Polypeptid, kodiert durch eine der Nukleinsäuren nach einem der Ansprüche 1–4.
10. Polypeptid nach Anspruch 9 mit einer in SEQ ID No. 2, 4, 6, oder 8 dargestellten Aminosäuresequenz oder allergene Fragmente davon.
11. Polypeptid, das mit einem Polypeptid nach Anspruch 9 oder 10, insbesondere mit einem Polypeptid der SEQ ID No. 2, 4, 6 oder 8 immunologisch kreuzaktiv ist.
12. Polypeptid nach einem der Ansprüche 9–11, dadurch gekennzeichnet, dass es mit einem heterologen Peptid

DE 100 41 541 A 1

oder Polypeptid fusioniert ist.

13. Ein Polypeptid nach Anspruch 12, dadurch gekennzeichnet, dass das heterologe Peptid oder Polypeptid eine zellulosebindende Domäne, β -Galaktosidase oder Glutathion S-Transferase ist.

14. Verwendung eines Polypeptids nach Anspruch 9-13 oder von Fragmenten eines solchen Polypeptids als Immunogen zur Herstellung von Antikörpern.

15. Antikörper gegen ein Polypeptid nach einem der Ansprüche 9-13.

16. Pharmazeutische Zusammensetzung, umfassend:

- (a) eine Nukleinsäure nach einem der Ansprüche 1-4,
- (b) einen rekombinanten Vektor nach einem der Ansprüche 5-7,
- (c) eine Zelle nach Anspruch 8,
- (d) ein Polypeptid nach einem der Ansprüche 9-13 oder/und
- (e) einen Antikörper nach Anspruch 15.

17. Verwendung einer Zusammensetzung nach Anspruch 16 zur Herstellung eines diagnostischen und/oder therapeutischen Mittels.

18. Verwendung nach Anspruch 17 für die Therapie oder/und Diagnose von allergischen Erkrankungen.

19. Verfahren zur Diagnose, bevorzugt *in vitro*, einer Allergie gegen Arthropodenproteine, wobei man eine Probe einer Körperflüssigkeit aus dem Patienten, in der Antikörper gegen das Arthropodenprotein vermutet werden, mit einem Polypeptid nach Anspruch 6-13 unter Bedingungen in Kontakt bringt, die die Bildung eines Komplexes zwischen dem Antikörper und dem Polypeptid ermöglichen, wonach der Komplex gemessen wird und zu der Menge des Antikörpers in der Probe in Beziehung gesetzt wird, wobei ein erhöhter Spiegel als Zeichen einer Allergie gegen das Arthropodenprotein gewertet wird, die das Polypeptid enthält.

20. Verfahren zur Messung, vorzugsweise *in vitro*, einer zellulären Immunreaktion, wobei ein rekombinantes oder synthetisches Protein oder Polypeptid nach einem der Ansprüche 9-13 zur Stimulation der zellulären Immunreaktion verwendet wird.

21. Verfahren zur Bestimmung von Arthropodenallergenen in Proben aus der Umwelt des Menschen, dadurch gekennzeichnet, dass man die Arginin kinaseaktivität (EC 2.7.3.3) in den Proben bestimmt.

22. Verfahren zur Bestimmung von Arthropodenallergenen in Proben aus der Umwelt des Menschen, dadurch gekennzeichnet, dass man das Vorhandensein einer Nukleinsäure nach Anspruch 1-4 oder eines allgemeinen Polypeptids nach Anspruch 9-13 bestimmt.

23. Verfahren zur Bestimmung von Arthropodenallergenen in Proben aus der Umwelt des Menschen, dadurch gekennzeichnet, dass man das Vorhandensein der Allergene p40, p33, p84 oder p27 oder ihrer Homologen bestimmt.

24. Verfahren nach Anspruch 22, dadurch gekennzeichnet, dass man das Vorhandensein eines p40 Homologen aus Milbe oder Motte bestimmt.

25. Verfahren zur Herstellung eines Arzneimittels, das ein synthetisches oder rekombinantes Polypeptid nach Anspruch 9-13 enthält und zur Hypo sensibilisierung (Immuntherapie) von Patienten mit Allergie gegen p40, p33, p84 oder p27 oder ihrer Homologen eingesetzt werden kann.

26. Verfahren zur Herstellung eines Arzneimittels für die passive oder aktive Immuntherapie, das solche Fragmente oder Teilpeptide des Polypeptids der Erfindung enthält, die zwar ein Epitop oder mehrere Epitope, insbesondere IgE, IgG oder IgA-Epitope, des p40, des p33, des p84, oder des p27 Allergens oder ihrer Homologen umfassen, aber nicht oder nur in einem stark eingeschränkten Maß zu einer anaphylaktischen Reaktion führen können.

27. Verwendung einer Arginin kinase zur Herstellung eines Arzneimittels oder/und eines diagnostischen Mittels zur Behandlung von allergischen Erkrankungen oder/und zur Bestimmung von Allergenen.

28. Verwendung nach Anspruch 27, dadurch gekennzeichnet, dass eine Arginin kinase aus einer Motte oder aus einer Milbe verwendet oder bestimmt wird.

29. Verfahren zum Nachweis einer Allergie, bei dem die Dörrrobstnote, Extrakte davon oder einzelne Bestandteile davon zur Bestimmung der Allergie eingesetzt werden.

30. Allergen, dadurch gekennzeichnet, dass es sich um eine Arginin kinase handelt.

31. Allergen nach Anspruch 30, dadurch gekennzeichnet, dass es sich um eine Arginin kinase aus einer Motte oder einer Milbe handelt.

Hierzu 11 Seite(n) Zeichnungen

50

55

60

65

H1 - H45

kDa

97 →

66 →

46 →

30 →

21 →

46 →

30 →

H46 - H90**K**

kDa

97 →

66 →

46 →

30 →

21 →

46 →

30 →

Fig. 1

Fig. 2

Fig. 3

```

1 TCAAGTGTCAAGAAAAGCAGCAGCA
25 ATGGTGGACGCCGCTACCCCTTGAGAAATTGGAGGCTGGCTTCAGCAAGCTTGCCGCCTCC
 1 M V D A A T L E K L B A G F S K L A A S
85 GACTCAAAGTCGCTGCTGAAGAAATACCTCACCAAGGGAGGTATTGATGCTCTCAAGAAC
21 D S K S L L K K Y L T R E V F D A L K N
145 AAGAAGACCTCATTTGGTCAACTCTCCTGGATTCTATCCAGTCAGGTGTTGAGAACTTA
41 K K T S F G S T L L D S I Q S G V E N L
205 CATTGGGTGTTGGAATTATGCCCAAGATGCTGAGGCATATGTAGTATTGAGACTTG
61 H S G V G I Y A P D A E A Y V V V F A D L
265 TTGACCCCCATCATGAAAGATTACCACAATGGCTCAAGAAAACCGACAAGCACCCCTCCC
81 F D P I I E D Y H N G F K K T D K H P P
325 AAGAACTGGGAGATGTTGAGACCCCTGGGAACCTGGATCCTGCTGGTGAATTGTTGTC
101 K N W G D V E T L G N L D P A G E F V V
385 TCCACCCGTGTCGCTGCGCTCCATGAAAGGCTACCCATTCAACCCCTGCTTAACA
121 S T R V R C G R S M E G Y P F N P C L T
445 GAGGCCAAATAAAGGAAATGGAAGAGAAAGTCTCCTCCACACTCTCCGGCTCGAGGGT
141 E A Q Y K E M E E K V S S T L S G L E G
505 GAACTGAAAGGCACCTTTTCCCACCTCACAGGCATGCTCAAGGAGACTCAACAACAGTTG
161 E L K G T F F P L T G M S K E T Q Q Q L
565 ATTGATGACCACTTCTGTCAAGGAGGGTGAATGGCTTCCAGGCCGCTAACGCTTG
181 I D D H F L F K E G D R F L Q A A N A C
625 CGCTTCTGGCCCTCCGGTCGTGGCATCTACCACAATGAGAACAGACTTCTGGTATGG
201 R F W P S G R G I Y H N E N K T F L V W
685 TGCAATGAGGAGGACCACCTCCGTCTGATCTCCATGCAAATGGCGGGCAGCTGAAGCAG
221 C N E E D H L R L I S M Q M G G D L K Q
745 GTGTACAAGAGGCTGGTGAGGGAGTGAACGACATCGCGAAGAGGATCCCATTCTCGCAC
241 V Y K R L V R G V N D I A K R I P F S H
805 AACGAGCGGCTGGCTTCTGACTTTCTGCCCCACCAACCTGGGCACAACGGTGCACCA
261 N E R L G F L T F C P T N L G T T V R A
865 TCGGTGCACATCAAGCTGCCAAGCTGGCGCCGACAAGGCCAACGCTGGAGGAGGTGGCC
281 S V H I K L P K L A A D K A K L E E V A
925 AGCAAGTACCAACCTGCAGGTGCGCGGACCCCGGGCAGCACACGGAGGCCAGGGCGC
301 S K Y H L Q V R G T R G E H T E A E G G
985 GTCTACGACATCTCCAACAAGAGGCGCATGGACTCACCGAGTACGAAGCCGTCAAGGAG
321 V Y D I S N K R R M G L T E Y E A V K E
1045 ATGTACGACGGCATCGCTGAACGTGATCAAATCGAGAAATCCCTGTAAGATGTTAACGA
341 M Y D G I A E L I K I E K S L *
1105 TCTCGCGCTATCAGTATTTGTATTATTCAGTACATAAGTATTGATGTGAA
1165 GGGCGAGGGCGACACTAGTCAGCGGCCTTGAGCGGGCGGGCACGGGGGGCCACT
1225 ATACTGTTCGTAAAGTATTGCTATAAGGAAATGAAAATAAGACAGCTAGCGTTAA
1285 GACAAAAAAA

```

Fig. 4

```

1 ACAGGACAGTAGACACACAAGCCACCACCATGGACCGATCAAGAAGAAGATGCAGGCG
 1 M D A I K K K M Q A

61 ATGAAGCTGGAGAAGGACAACGCTTGGACCGCGCTGCCATGTGCGAGCAGCAGGCCAAG
11 M K L E K D N A L D R A A M C E Q Q A K

121 GACGCCAACCTCCGTGCTGAGAAGGCCGAGGAGGAGGCCAGACAATTGCAGAAGAAGATC
31 D A N L R A E K A E E E A R Q L Q K K I

181 CAGACGATTGAGAACGATCTGGACCAGCACGAGGGCGCTATGCAGGTCAACGCCAAG
51 Q T I E N D L D Q T Q E A L M Q V N A K

241 CTGGAAGAGAAAGAGAAAGCTCTTCAGAACGCTGAGTCCGAAGTCGCTGCCCTAACCGA
71 L E E K E K A L Q N A E S E V A A L N R

301 CGTATCCAACCTGCTGGAAAGAGGACCTCGAGAGGTCCGAGGAGGCCACCGCCACA
91 R I Q L L E E D L B R S E E R L A T A T

361 GCCAAACTGTCGAAGCCAGCCAGGCTGCCGATGAGTCGGAACGTGCCCGAACGGTCTC
111 A K L S E A S Q A A D E S E R A R K V L

421 GAGAACAGGTCAATTGGCTGATGAAGAGCGTATGGACGCTTGGAGAACCGAGCTGAAGGAA
131 E N R S L A D E E B R M D A L E N Q L K E

481 GCCAGGTTCTTGCTGAGGAAGCCGACAAGAAATACGATGAGGTCTGCTGTAAGCTGGCC
151 A R F L A E E A D K K Y D E V A R K L A

541 ATGGTTGAGGCTGACCTGGAGCGCGAGGAGCGTGGCGAATCCGGCAATCCAAAATC
171 M V E A D L B R A E E R A E S G E S K I

601 GTCGAGCTTGAGGAAGAAACTGCGCGTGGTGGCAACAACCTGAAATCCCTGGAAAGTCTCC
191 V E L B E B L R V V G N N L K S L E V S

661 GAGGAGAAGGCCAACCAACGTGAGGAGGAGTACAAAAATCAGATCAAACCCCTCACCAAC
211 E B K A N Q R E E E Y K N Q I K T L T T

721 CGCCTAAAGGAGGCTGAGGCCCGCGCTGAGTCGCCAGCGTCCGTGCAGAAACTGCAA
231 R L K E A E A R A E F A E R S V Q K L Q

781 AAGGAGGTGACAGGCTTGAAGACGAACCTGGCTGAGAAGGAGAAATACAAAGATATT
251 K E V D R L R D E L V A E K E K Y K D I

841 GGTGACGACCTGGACACCCCCCTCGTCGAGCTCATCCTCAAGGAATAACTCCTCACGTT
271 G D D L D T P P V E L I L K E *

901 GGTACACCTGGGCTGTCCCAGCGGGCAGACCCACGGGTCAATTCAAGACGGCTCTT
961 CGGCCAGCGATTCAACATCTGTACAGATGTTATATTCAATTACTCAATTAAAATATT

1021 TAAATCTATAGTTTATGGCGGTATTTATTTGAGTAATATAATAATAATTATTACT

1081 TATTTAAAAAA

```

Fig. 5

```

1 GGTGGGTGGACGATGAAGACTGTCTGATCTTAGCTGGCCTCGTGGCCCTGGCCGGGC
1 M K T V L I L A G L V A L A A G

61 AACACCTTCCCGTATTAGATATGACCACGTCGAAACTAGAAAATTGGAAGGAGACCTT
17 N T F P V F R Y D H V E T R K L E G D L

121 TTACAGTACCACTCGAAATTCTGTCTTCTTGAGAATGTGAGACAGATTTGACTACGAA
37 L Q Y Q S K F L S L L E N V R Q I D Y E

181 CGGGAGTACTACAAAGTTGGCAAGGGTACGACATCGTAGCCAGCATAGAGAACTATTCT
57 A E Y Y K V G K G Y D I V A S I R N Y S

241 GACCAAGATGCAGTCAGGGCGTTTGCTGGCTTCTGAGAAATTGGTTCATGCCCAAAGCT
77 D Q D A V R A F A G L R E I G F M P K A

301 TACACATTCTCCATTCTACGACAGGGAGAGAGAAGCTAACAGATTATTATGACTTG
97 Y T F S I F Y D R Q R E E A K I I Y D L

361 TTCTACAGCGCTAAAGATTGGACACTTCTACAAGACTGTAGCCTACGGCCGAATCTAT
117 F Y S A K D L D T F Y K T V A Y G R I Y

421 TTCAACGGAGTATCAGTTCATGTATGCTTCTATGCTGCGATTATTCAAGCTGATACC
137 F N E Y Q F M Y A F Y A A I I Q R S D T

481 ACAGGAATCGCTTACCACTCCATATGAACGTATCTGAATATTCTTGAACTATGTAT
157 T G I V L P A P Y E L Y P E Y F L N M Y

541 ACGATCCARAGAATGTACCGAACACAGATGCAAAGTGGTATATTCAATGAGGAAGTTGCT
177 T I Q R M Y R T Q M Q S G I F N E E V A

601 AGTAACATGGTATCTGGAAAGATGGATAATAACTACTATTACTACAACTACTCTAAT
197 S N Y G I W K M D N N Y Y Y Y Y N Y S N

661 CCCTGACGTACAGAAATCAGGAGTACAGATTGTCTTATGACAGAACATAGGCTGG
217 P L T Y R N Q E Y R L S Y L T E D I G W

721 AACTCTTACTATTACTACTTCCACAATCTTATGCTTCTGGGCAAAGGCAGGGACTTT
237 N S Y Y Y Y F H N L M P F W G K G E D F

781 ATTGGTATCTTCAAGGAACGCCGTGGAGAAATTCTACTACTCTATCAGCAACTCTG
257 I G I F K E R R G E F Y Y Y F Y Q Q L L

841 TCTCGTTACTACCTTGAGCGTTGAGTAATGGCTGGGAGAAATTCCAGATTCTCTGG
277 S R Y Y L E R L S N G L G E I P D F S W

901 TACCAACCTCTGAGGAGTGGTTACTATCCAGCTATATATACGAGCTCAGCCTATCCGTT
297 H Q P L R S G Y Y F A I Y T S S A Y P F

961 GCTCAACGTCCCACACTATTATCATGGAACTGAAGAAAATGTTGACTACATCCAATTG
317 A Q R P N Y Y Y M G T E K N V D Y I Q F

1021 CTTGATGCTCAGGAAAAGAGCTTGTGCAATTCTGCAGATTGGCAGTTAAGGCATTG
337 L D A Q E K S F V Q F L Q I G Q F K A F

1081 AAACAAGATGTAGACTTCCGCAACTCCAAGTCATAAAACTTTGTTGGCAACTTTGGCAA
357 K Q D V D F R N S K S I N F V G N F W Q

1141 GGAAACCCGGACCTGTACGATAAGTACGGAAGGGAAAGTAAACTATGACGACTCCACGAA
377 G N P D L Y D K Y G R E V N Y D D S Y E

1201 ATCATCGCTCGCCCGTGTGGTGCTGCTCCCTCCGACCTCCGACAATTACGAATTCTG
397 I I A R R V L G A A P P T S D N Y E F V

1261 CCGTCTGCTCTGGACTTCTACACAGACTTCAGCTTGTGATCCCGCTTCTACATGCTCTAT
417 P S A L D F Y Q T S L R D P A F Y M L Y

```

1321 AACAAAGATCATGAGCTACATTGTACAGTACAAGGAATGGTTGGAGCCCTATGATCAAGAG
 437 N K I M S Y I V Q Y K E W L E P Y D Q E

 1381 GTACTTCACTACTCCGGTGTCAAGATCAATGACGTCACTGGTAACCTGACTACCTTC
 457 V L H Y S G V K I N D V S V G N L T T F

 1441 TTGAGTACTATGACTTCAACGCCACCAATGCAGTTTCTTAAGTGACCAAGAGATTCAA
 477 F E Y Y D F N A T N A V F L S D Q E I I Q

 1501 CAACAATATTCTTCATTCACTGTACGTCAACCGCCTTGACCACGAACCTTCTCCGTG
 497 Q Q Y S S F I V R Q P R L N H E P F S V

 1561 ACCATCGATGTTAAGTCTGACGTTAGGCAGGCGAACCGTACTTCAGATCTTGTTGGTCT
 517 T I D V K S D V E A E A Y F K I F V G P

 1621 AAATATGATGGAGAAGGTCGCCCTTAGCTTGGAAAGATAACTGGATGAACCTCGTGGAA
 537 K Y D G E G R P L S L E D N W M N F V E

 1681 TTGGACTGGTTCACCCACAAATTGACGTCAAGGACAGAACAGGTTGAGCGCAAATCTGAG
 557 L D W P T H K L T S G Q N K V E R K S E

 1741 GAATTCTCTCTTTAAAGAGGACTCCGTCTCAATGTCTAAGATCTATGAACACTCCTGAAA
 577 E F F F F K E D S V S M S K I Y E L L K

 1801 CAGGGCCAGGTACCTGAAAGCATGTCCGAAGACTACGACTCTATGCCAAGCAGACTGATG
 597 Q G Q V P E S M S E D Y D S M P S R L M

 1861 TTGCCAGAGGCACTCCGGTGGTTCCCTGTACAGTTCTCGTCTCGTGTACCCATAC
 617 L P R G T P G G F P V Q F F V F V Y P Y

 1921 CAAGCTCTCAGCAAAGACCTAGAGGCTATGAAGAATATCATCCTTGACAACAAACCTTG
 637 Q A L S K D L E A M K N I I L D N K P L

 1981 GGCTATCCATTGACCGTCTGTGAGTACCGTATCTCTTACAAACCTAATATGTAC
 657 G Y P F D R P V E Y D Y L F L Q P N M Y

 2041 TTGAGACGTCAATATCTACCAAGAGGGCCCTCAATACCCCTGGTGGAGTAATGGCCAA
 677 F S D V N I Y H R G P Q Y P W W S N G Q

 2101 TTCCGTCTGAATGAAGTACCTAGACAATAAGGAGAGAGAAAGAGTTCTGAACCAAAAC
 697 F R L N E V P R Q *

 2161 ATTTAAAGCTAGTAGAACACTATAGTCACAATAAAATAAAATTTTATAGTAAAAAAA

 2221 AAAAAAAA

Fig. 6

```

1 TAACTGTTATTGCTCAGTGATAATAGATTAAGTTATTATATTGTCAAGAAGCTGATAACGTT
61 TGCAAAATCATCATGAATTTCGCCGGTAAAGTTGTAATTGTAACCGGTGCTAGCTCCGGT
M N F A G K V V I V T G A S S G
121 ATTGGAGCAGCTACAGCTGTGTTCTATCGAAACTAGGCCTAAGCTTCTCTGACGGGA
17 I G A A T A V F L S K L G A K L S L T G
181 CGAACGTCGAGAATCTTAAGAAAAGTTAGTCAGGATTGCGAAAAATCCACCCAGACACAC
37 R N V E N L K K V S Q D C E K S T Q T H
241 TACATGCCGCCACTTAACCAAAGAAAAAGATATTGAAAATATGTTAAAGCACCATT
57 Y I A A D L T K E K D I S N I V K S T I
301 GATAAAATACGCCAACCTGACGCTCTGGCAATAATGCTGGCATTCCTGAGACTGGTCC
77 D K Y G Q L D V L V N N A G I L E T G S
361 ATCGAAAACACATCGTTAGCCCAGTACGACAGGTTAATGAATAACAAATGTGCCCTCAATT
97 I E N T S L A Q Y D R L M N T N V R S I
421 TATTACCTAACCATGCTGGCAGTCCCACACCTTCTCAAAACCAAAGGTAACATTGTGAAT
117 Y Y L T M L A V P H L L K T K G N I V N
481 GTATCTAGTGTCAATGGGATCAGGTCTTCCCTGGTGTACTGGCTTACAATGTTTCAAG
137 V S S V N G I R S F P G V L A Y N V S K
541 TCAGCTGTAGATCAGTTACAAGATGTGTTGCACTTGAAATTGGCCCCGAAAGGGGTACGA
157 S A V D Q F T R C V A L E L A P K G V R
601 GTTAATTGTTGAAATCCAGGAGTCATTGACAGAACTGCAGAAGCGTGGGGGTTGAAAC
177 V N C V N P G V I L T E L Q K R G G L N
661 GACCAGCAGTATGCAGCATTCTGGAGAGAACCAAGGAGACACATGCCCTGGGCCCG
197 D Q Q Y A A F L E R T K B T H A L G R P
721 GGAAAACCGGAGGGAGGTTGAGCTACTATTGCTTCTGGCCAGTGAATTAGCAAGCAAT
217 G K P E E V A A T I A F L A S E L A S N
781 ATCACTGGAGCCAGTGTGCTGTAGACGGTGGTCGCCATGCCATGTGTCCACGATAATT
237 I T G A S V P V D G G R H A M C P R *
841 TTTTAATAAAATACATGTTAATTTTTTTACTATTACAATTTCAATCCAGCATT
901 TTACAATGATCAAAGTGTCTAAACCTTTGAATATTGTACAATAAAATTTATATATT
961 ATAGATTAAGTAAAACGTTCATATACCTATAATTGTGTCAATGGATGTCCATGTGTT
1021 CATATAATTGTTATAACCTTGTATTAAAATAAAACAAATAAAAAAAAAAA

```


Fig. 7

Fig. 8

Fig. 9

Nummer:
Int. Cl. 7:
Offenlegungstag:

DE 100 41 541 A1
C 07 K 16/00
14. März 2002

Fig. 10