This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

WHAT IS CLAIMED IS:

1. A power IC for an automobile engine control unit incorporating at least one semiconductor device comprising an N-channel insulated-gate field-effect transistor on an SOI (Silicon On Insulator) substrate having an N-type device-forming region, the N-channel insulated-gate field-effect transistor including high concentration N-type and P-type layers both in contact with a source electrode, a gate insulating film/gate electrode in contact with the high concentration N-type layer, a high concentration N-type layer in contact with a drain electrode disposed in a lateral direction via a field oxide film contacting the gate electrode, and a p-type semiconductor layer (p-body layer) contacting the gate oxide film and the high concentration N-type and P-type layers both in contact with the source electrode,

wherein, when a distance from an end of the field oxide film contacting the high concentration N-type layer in contact with the drain electrode to ends of the gate electrode and the gate oxide film both in contact with the high concentration N-type layer contacting the source electrode is defined as a source-drain distance, the N-channel insulated-gate field-effect transistor further comprises:

an N-type layer having a concentration higher than a concentration of an N-type layer in contact with the p-body layer, formed in a region covering at most 95% of the source-drain distance between the p-body layer and the drain electrode in the silicon substrate over an interface of a buried oxide film, the silicon substrate being in contact with both the field oxide film and the high concentration N-type layer contacting the drain electrode.

A semiconductor device for an automobile engine control unit, wherein:
a rated breakdown voltage of the semiconductor device is higher than 40 volts;

the semiconductor device is provided with an N-channel insulated-gate field-effect transistor on an N-type SOI (Silicon On Insulator), the N-channel insulated-gate field-effect transistor including high concentration N-type and P-type layers both in contact with a source electrode, a gate insulating film/gate electrode in contact with the high concentration N-type layer, a high concentration N-type layer in contact with a drain electrode disposed in a lateral direction via a field oxide film contacting the gate electrode, and a P-type semiconductor layer (p-body layer) contacting the gate oxide film and the high concentration N-type and P-type layers both in contact with the source electrode; and

between the p-body layer and the drain electrode over an interface of a buried oxide film in the silicon substrate being in contact with both the field oxide film and the high concentration N-type layer contacting the drain electrode of the N-channel insulated-gate field-effect transistor, an N-type layer having a concentration higher than a concentration of the N-type layer in contact with the p-body layer exists in a region covering at most 95% of a source-drain distance that is a distance from an end of the field oxide film contacting the high concentration N-type layer in contact with the drain electrode to ends of the gate electrode and the gate oxide film both in contact with the high concentration N-type layer contacting the source electrode.

A semiconductor device for an automobile engine control unit, wherein:
a rated breakdown voltage of the semiconductor device is higher than 40 volts;

the semiconductor device is provided with an NPN bipolar transistor on an N-type SOI substrate, the NPN bipolar transistor including a collector electrode, an emitter electrode and a base electrode both disposed via a field oxide film, a high concentration N-type layer in contact with the collector electrode, a high concentration N-type layer in contact with the emitter electrode, a high concentration P-type layer in contact with the base electrode, and a P-type base region in contact with the high concentration N-type layer contacting the emitter electrode and the high concentration P-type layer contacting the base electrode; and

between the P-type base region and the collector electrode over an interface of a buried oxide film in the silicon substrate being in contact with both the field oxide film and the high concentration N-type layer contacting the collector electrode of the NPN bipolar transistor, an N-type layer having a concentration higher than a concentration of the N-type layer in contact with the P-type base region exists in a region covering at most 95% of a collector-base distance that is a distance from an end of the field oxide film contacting the high concentration N-type layer in contact with the collector electrode to an end of the field oxide film in contact with the P-type base region.

A semiconductor device for an automobile engine control unit, wherein:
a rated breakdown voltage of the semiconductor device is higher than 40 volts;

the semiconductor device is provided with a P-channel insulated-gate field-effect transistor on an N-type SOI substrate, the P-channel insulated-gate field-effect transistor including high concentration N-type and P-type layers both in contact with a source electrode, a gate insulating film/gate electrode in contact with the high concentration P-type layer, a high concentration P-type layer in contact with a drain electrode disposed in a lateral direction via a field oxide film contacting the gate electrode, an N-type semiconductor layer (n-body layer) contacting the gate oxide film and the high concentration N-type and P-type layers both in contact with the source electrode, and a P-type layer contacting the gate oxide film and extending under the field oxide film toward the drain electrode to be contact with the drain electrode; and

an N-type layer wholly in contact with a buried oxide film, immediately under the n-body layer has a concentration from 3×10^{16} /cm³ to 1×10^{22} /cm³.

A semiconductor device for an automobile engine control unit, wherein:
a rated breakdown voltage of the semiconductor device is higher than 40 volts;

the semiconductor device is provided with a PNP bipolar transistor on an N-type SOI substrate, the PNP bipolar transistor including a 2-type layer formed in the device-forming region without contacting a buried oxide film, a collector electrode, an emitter electrode and a base electrode both disposed via a field oxide film, a high concentration P-type layer in contact with the collector electrode, a high concentration P-type layer in contact with the emitter electrode, a high concentration N-type layer in contact with the base electrode, and an N-type base region

contacting the high concentration P-type layer in contact with the base electrode and the high concentration N-type layer in contact with the base electrode; and

an N-type layer wholly in contact with the buried oxide film, immediately under the N-type base region has a concentration from $3 \times 10^{16} / \text{cm}^3$ to $1 \times 10^{22} / \text{cm}^3$.