Revvew:

Maryon band MINIO

Maryon band MINIO

$$\begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ y_{Mr} \end{pmatrix} = H \begin{pmatrix} \pi_1 \\ \pi_2 \\ \vdots \\ \pi_{Mt} \end{pmatrix} + \begin{pmatrix} \pi_1 \\ \pi_2 \\ \vdots \\ \pi_{Mr} \end{pmatrix}$$

Monday / LL $= Mr$

$$\vec{y} = H\vec{x} + \vec{n}$$
MYXMH

$$R_n = E L \vec{n} \vec{n}^{\dagger} = \sigma^2 1$$

transmit power of the i-th antenna.

30 + \(\text{Total transmit power } \text{E[\(\text{Xi} \) = \(\text{E[\(\text{Xi} \) } \)]} \]

Total transmit power $\text{E[\(\text{Xi} \) } \text{E[\(\text{Xi} \) } \] = \(\text{Vi} \) \(\text{Rx} = \(\text{E[\(\text{X} \) } \text{H} \) = \(\text{Vi} \) \(\text{Rx} \) = \(\text{P} \)$

SUSTech

DILINIO Channol Capacity with CS17 & CS1R.

$$\vec{Y} = \vec{H} \vec{X} + \vec{n}$$
 $\vec{Y} = \vec{H} \vec{X} + \vec{n}$
 $\vec{Y} = \vec{H} \vec{X} + \vec{N} \vec{X}$

