Тема 2, 2018

9-1 (базовый уровень, время – 5 мин)

Тема: Кодирование растровых изображений.

Что нужно знать:

- для хранения растрового изображения нужно выделить в памяти $I=N\cdot i$ битов, где N- количество пикселей и i- глубина цвета (разрядность кодирования)
- ullet количество пикселей изображения N вычисляется как произведение ширины рисунка на высоту (в пикселях)
- глубина кодирования это количество бит, которые выделяются на хранение цвета одного пикселя
- при глубине кодирования i битов на пиксель код каждого пикселя выбирается из 2^i возможных вариантов, поэтому можно использовать не более 2^i различных цветов
- нужно помнить, что

```
1 Мбайт = 2^{20} байт = 2^{23} бит,
1 Кбайт = 2^{10} байт = 2^{13} бит
```

Пример задания:

P-01. Рисунок размером 512 на 256 пикселей занимает в памяти 64 Кбайт (без учёта сжатия). Найдите максимально возможное количество цветов в палитре изображения.

Решение:

- 1) находим количество пикселей, используя для вычисления степени числа 2: $N = 512 \cdot 256 = 2^9 \cdot 2^8 = 2^{17}$
- 2) объём файла в Кбайтах $64 = 2^6$
- 3) объём файла в битах $2^6 \cdot 2^{13} = 2^{19}$
- 4) глубина кодирования (количество битов, выделяемых на 1 пиксель): 2^{19} : 2^{17} = 2^2 = 4 бита на пиксель
- 5) максимальное возможное количество цветов $2^4 = 16$
- 6) Ответ: 16.

Ещё пример задания:

P-00. Какой минимальный объём памяти (в Кбайт) нужно зарезервировать, чтобы можно было сохранить любое растровое изображение размером 64 на 64 пикселов при условии, что в изображении могут использоваться 256 различных цветов? В ответе запишите только целое число, единицу измерения писать не нужно.

Решение:

- 7) находим количество пикселей, используя для вычисления степени числа 2: $N=64\cdot 64=2^6\cdot 2^6=2^{12}$
- 8) $256 = 2^8$, поэтому для кодирования одного из 256 вариантов цвета нужно выделить в памяти $8 = 2^3$ бит на пиксель
- 9) объём файла в битах $2^{12} \cdot 2^3 = 2^{15}$
- 10) объём файла в Кбайтах 2¹⁵ : 2¹³ = 2² = 4
- 11) Ответ: <mark>4</mark>.

Возможные ловушки и проблемы:

 если умножить количество пикселей не на 8, а на 256, то получим неверный ответ 128 Кбайт

1

Задачи для тренировки¹:

 Какой минимальный объём памяти (в Кбайт) нужно зарезервировать, чтобы можно было сохранить любое растровое изображение размером 128 на 256 пикселов при условии, что в изображении могут использоваться 64 различных цвета? В ответе запишите только целое число, единицу измерения писать не нужно.

Тема 2 2018

- Какой минимальный объём памяти (в Кбайт) нужно зарезервировать, чтобы можно было сохранить любое растровое изображение размером 128 на 128 пикселов при условии, что в изображении могут использоваться 32 различных цвета? В ответе запишите только целое число, единицу измерения писать не нужно.
- 3) Какой минимальный объём памяти (в Кбайт) нужно зарезервировать, чтобы можно было сохранить любое растровое изображение размером 64 на 128 пикселов при условии, что в изображении могут использоваться 128 различных цветов? В ответе запишите только целое число, единицу измерения писать не нужно.
- 4) Какой минимальный объём памяти (в Кбайт) нужно зарезервировать, чтобы можно было сохранить любое растровое изображение размером 64 на 256 пикселов при условии, что в изображении могут использоваться 256 различных цветов? В ответе запишите только целое число, единицу измерения писать не нужно.
- 5) Какой минимальный объём памяти (в Кбайт) нужно зарезервировать, чтобы можно было сохранить любое растровое изображение размером 32 на 1024 пикселов при условии, что в изображении могут использоваться 128 различных цветов? В ответе запишите только целое число, единицу измерения писать не нужно.
- 6) Какой минимальный объём памяти (в Кбайт) нужно зарезервировать, чтобы можно было сохранить любое растровое изображение размером 1024 на 512 пикселов при условии, что в изображении могут использоваться 64 различных цвета? В ответе запишите только целое число, единицу измерения писать не нужно.
- 7) Какой минимальный объём памяти (в Кбайт) нужно зарезервировать, чтобы можно было сохранить любое растровое изображение размером 512 на 256 пикселов при условии, что в изображении могут использоваться 32 различных цвета? В ответе запишите только целое число, единицу измерения писать не нужно.
- 8) Какой минимальный объём памяти (в Кбайт) нужно зарезервировать, чтобы можно было сохранить любое растровое изображение размером 512 на 128 пикселов при условии, что в изображении могут использоваться 16 различных цветов? В ответе запишите только целое число, единицу измерения писать не нужно.
- 9) Какой минимальный объём памяти (в Кбайт) нужно зарезервировать, чтобы можно было сохранить любое растровое изображение размером 256 на 128 пикселов при условии, что в изображении могут использоваться 8 различных цветов? В ответе запишите только целое число, единицу измерения писать не нужно.
- 10) Какой минимальный объём памяти (в Кбайт) нужно зарезервировать, чтобы можно было сохранить любое растровое изображение размером 128 на 128 пикселов при условии, что в изображении могут использоваться 256 различных цветов? В ответе запишите только целое число, единицу измерения писать не нужно.

2

¹ Источники заданий:

^{1.} Демонстрационные варианты КИМ ЕГЭ.

^{2.} Тренировочные работы МИОО.

^{3.} Крылов С.С., Ушаков Д.М. ЕГЭ 2015. Информатика. Тематические тестовые задания. — М.: Экзамен, 2015.

Ушаков Д.М. ЕГЭ-2015. Информатика. 20 типовых вариантов экзаменационных работ для подготовки к ЕГЭ.
 — М.: Астрель, 2014.

- 11) Рисунок размером 128 на 256 пикселей занимает в памяти 24 Кбайт (без учёта сжатия). Найдите максимально возможное количество цветов в палитре изображения.
- 12) Рисунок размером 128 на 128 пикселей занимает в памяти 10 Кбайт (без учёта сжатия). Найдите максимально возможное количество цветов в палитре изображения.
- 13) Рисунок размером 64 на 128 пикселей занимает в памяти 7 Кбайт (без учёта сжатия). Найдите максимально возможное количество цветов в палитре изображения.
- 14) Рисунок размером 64 на 256 пикселей занимает в памяти 16 Кбайт (без учёта сжатия). Найдите максимально возможное количество цветов в палитре изображения.
- 15) Рисунок размером 32 на 1024 пикселей занимает в памяти 28 Кбайт (без учёта сжатия). Найдите максимально возможное количество цветов в палитре изображения.
- 16) Рисунок размером 1024 на 512 пикселей занимает в памяти 384 Кбайт (без учёта сжатия). Найдите максимально возможное количество цветов в палитре изображения.
- 17) Рисунок размером 512 на 256 пикселей занимает в памяти 80 Кбайт (без учёта сжатия). Найдите максимально возможное количество цветов в палитре изображения.
- 18) Рисунок размером 512 на 128 пикселей занимает в памяти 32 Кбайт (без учёта сжатия). Найдите максимально возможное количество цветов в палитре изображения.
- 19) Рисунок размером 256 на 128 пикселей занимает в памяти 12 Кбайт (без учёта сжатия). Найдите максимально возможное количество цветов в палитре изображения.
- 20) Рисунок размером 128 на 128 пикселей занимает в памяти 16 Кбайт (без учёта сжатия). Найдите максимально возможное количество цветов в палитре изображения.
- 21) После преобразования растрового 256-цветного графического файла в черно-белый формат (2 цвета) его размер уменьшился на 7 Кбайт. Каков был размер исходного файла в Кбайтах?
- 22) После преобразования растрового 16-цветного графического файла в черно-белый формат (2 цвета) его размер уменьшился на 21 Кбайт. Каков был размер исходного файла в Кбайтах?
- 23) После преобразования растрового 256-цветного графического файла в 16-цветный формат его размер уменьшился на 15 Кбайт. Каков был размер исходного файла в Кбайтах?
- 24) После преобразования растрового 256-цветного графического файла в 4-цветный формат его размер уменьшился на 18 Кбайт. Каков был размер исходного файла в Кбайтах?
- 25) После преобразования растрового графического файла его объем уменьшился в 1,5 раза. Сколько цветов было в палитре первоначально, если после преобразования было получено растровое изображение того же разрешения в 16-цветной палитре?
- 26) После преобразования растрового графического файла его объем уменьшился в 2 раза. Сколько цветов было в палитре первоначально, если после преобразования было получено растровое изображение того же разрешения в 16-цветной палитре?
- 27) (С. Логинова) Цветное изображение было оцифровано и сохранено в виде файла без использования сжатия данных. Размер полученного файла – 54 Мбайт. Затем то же изображение было оцифровано повторно с разрешением в 2 раза больше и глубиной кодирования цвета в 3 раза меньше по сравнению с первоначальными параметрами. Сжатие данных не производилось. Укажите размер файла в Мбайт, полученного при повторной оцифровке.
- 28) (С. Логинова) Цветное изображение было оцифровано и сохранено в виде файла без использования сжатия данных. Размер полученного файла – 42 Мбайт. Затем то же изображение было оцифровано повторно с разрешением в 2 раза меньше и глубиной кодирования цвета увеличили в 4 раза больше по сравнению с первоначальными параметрами. Сжатие данных не производилось. Укажите размер файла в Мбайт, полученного при повторной оцифровке.
- 29) (С. Логинова) Изображение было оцифровано и сохранено в виде растрового файла. Получившейся файл был передан в город А по каналу связи за 30 секунд. Затем то же изображение было оцифровано повторно с разрешением в 3 раза больше и глубиной кодирования цвета в 2 раза меньше, чем в первый раз. Сжатие данных не производилось.

- Полученный файл был передан в город Б, пропускная способность канала связи с городом Б в 1.5 раза выше, чем канала связи с городом А. Сколько секунд длилась передача файла в город Б?
- 30) (С. Логинова) Изображение было оцифровано и сохранено в виде растрового файла. Получившейся файл был передан в город А по каналу связи за 72 секунды. Затем то же изображение было оцифровано повторно с разрешением в 2 раза больше и глубиной кодирования цвета в 3 раза меньше, чем в первый раз. Сжатие данных не производилось. Полученный файл был передан в город Б, пропускная способность канала связи с городом Б в 3 раза выше, чем канала связи с городом А. Сколько секунд длилась передача файла в город Б?
- 31) (С. Логинова) Изображение было оцифровано и записано в виде файла без использования сжатия данных. Получившейся файл был передан в город А по каналу связи за 90 секунд. Затем то же изображение было оцифровано повторно с разрешением в 2 раза больше и глубиной кодирования цвета в 1,5 раза меньше, чем в первый раз. Сжатие данных не производилось. Полученный файл был передан в город Б за 10 секунд. Во сколько раз скорость пропускная способность канала в город Б больше пропускной способности канала в город А?
- 32) (С. Логинова) Изображение было оцифровано и записано в виде файла без использования сжатия данных. Получившейся файл был передан в город А по каналу связи за 75 секунд. Затем то же изображение было оцифровано повторно с разрешением в 2 раза больше и глубиной кодирования цвета в 4 раза больше, чем в первый раз. Сжатие данных не производилось. Полученный файл был передан в город Б за 60 секунд. Во сколько раз скорость пропускная способность канала в город Б больше пропускной способности канала в город А?
- 33) Камера делает фотоснимки размером 1024×768 пикселей. На хранение одного кадра отводится 900 Кбайт. Найдите максимально возможное количество цветов в палитре изображения.
- 34) Камера делает фотоснимки размером 1600×1200 пикселей. На хранение одного кадра отводится 3800 Кбайт. Определите максимальную глубину цвета (в битах на пиксель), которую можно использовать при фотосъёмке.
- 35) Камера делает фотоснимки размером 1280×960 пикселей. На хранение одного кадра отводится 160 Кбайт. Найдите максимально возможное количество цветов в палитре изображения.
- 36) Камера делает фотоснимки размером 3200×1800 пикселей. На хранение одного кадра отводится 3 Мбайт. Найдите максимально возможное количество цветов в палитре изображения.
- 37) Камера делает фотоснимки размером 640×480 пикселей. На хранение одного кадра отводится 250 Кбайт. Найдите максимально возможное количество цветов в палитре изображения.
- 38) Камера делает фотоснимки размером 1600×1200 пикселей. На хранение одного кадра отводится 1 Мбайт. Найдите максимально возможное количество цветов в палитре изображения.