Algorithm Analysis

CSI 3344

Name: Maiqi Hou

1. void add edges()

Description

This function is add edge between two vertices. Creating a directed graph.

Data Structure

I use the adjacency list idea to create a directed graph. Thus, for this function, I use the linked list to add edges.

Algorithm

```
void D_graph::add_edges(int mem1, int mem2) {
   adj_list[mem1].push_back(mem2);
}
```

Analysis

Input N	Mem1 and mem2
Basic Operation	adj_list[mem1].push_back(mem2);
Summation or Recurrence Relation	1

```
Worst Case Analysis
```

$$T(n) = O(1)$$

Best Case Analysis

$$T(n) = \Omega(1)$$

2. void explore()

Description

This function is find all vertices reachable from a particular vertex

Data Structure

In this function, I uses the list.

Algorithm

- 1. Check if the vertex has been visited.
- 2. Search all edges.

Analysis

Input N	Vertices(n)
Basic	list <int>::iterator neigbor;</int>
Operation	<pre>if (visited[n] == true)</pre>
	return;
	<pre>visited[n] = true;</pre>
	<pre>for (neigbor = adj_list[n].begin(); neigbor != adj_list[n].end(); neigbor++)</pre>
	<pre>if (!visited[*neigbor])</pre>
	explore(*neigbor, sta, visited, count, t);
Summation	E
or	$\sum 1 = E$
Recurrence	i=1
Relation	Where E = number of vertex edges(E)

Worst Case Analysis

$$T = O(E)$$

Best Case Analysis

 $T = \Omega(E)$

3. void dfs();

Description

This function's main purpose is to search all vertices of a directed graph.

After the graph reverse, also DFS again.

Data Structure

Using the bool array to check vertex.

Algorithm

- 1.Set all vertices of the graph that have not been visited.
- 2. Check if all vertices are visited. if a vertex does not visit, then exploring it.

Analysis

Input N	Number of vertices		
Basic Operation	for (int i = 0; i < vertex + 1; i++)		
	<pre>visited[i] = false;</pre>		
	for (int i = 1; i < vertex + 1; i++)		
	<pre>if (visited[i] != true)</pre>		
	Explore(i);		
Summation or Recurrence Relation	$\sum_{i=1}^{V} 1 = \mathit{V}$ Where v is number of vertices		

Worst Case Analysis

T = O(V+E), where V = number of vertices and E is number of edges because the running time of exploring function is O(E)

Best Case Analysis

 $T = \Omega(V)$, where V = number of vertices

4. rGraph()

Description

Reverse original graph direction

Data Structure

In this function, I use list to search and reverse original graph.

Algorithm

Vertex from 1 to V;

If V < number of vertices return

Else reverse all edges connect this vertex.

Increase one for V and call graph() again.

Analysis

Input N	Number of vertices(v)
---------	-----------------------

```
Basic Operation

if (v <= vertex)

list<int>::iterator it;

for (it = adj_list[v].begin(); it != adj_list[v].end(); it++) {

rG. add_edges(*it, v);

v++;

rGraph(rG, v);

Summation or

Recurrence
Relation

T = T(n+1) + O(n)

Where V is number of vertices and E is number of edges
```

Worst Case Analysis

T = O(V+E), where V is number of vertices and E is number of edges

Best Case Analysis

 $T = \Omega(V)$

5. kosaraju()

Description

Computing strong components

Data Structure

Algorithm

DFS the directed graph

Revserse directed graph

DFS again reverse directed graph

Computing strong components

Analysis

Input N			
Basic Operation	int D_graph::kosaraju() {		
	int val = 1;	//1	
	stack <int> path;</int>	//1	
	dfs(val, path);	//0 (V+E)	
	D_graph reverse(vertex);	//1	

Worst Case Analysis

T = O(V+E), because dfs function, rGraph function running time is O(v+E)

Best Case Analysis

 $T = \Omega(V)$, because dfs function and rGraph function running time is $\Omega(V)$