Electromagnétisme Question 45

Champ magnétique dans une bobine

On s'intéresse à une bobine infinie d'axe $O\overrightarrow{z}$ parcourue par un courant orthoradial I dans chacune de ses spires et possédant une densité de spires n. On admet que le champ magnétique à l'extérieur de la bobine $\overrightarrow{B}_{\rm ext}$ est nul:

$$\overrightarrow{B_{\mathrm{ext}}} = \overrightarrow{0}$$

On se place en coordonnées cylindriques $\overrightarrow{u_r}, \overrightarrow{u_\theta}, \overrightarrow{z}$. Les plans z =cste sont plans de symétrie de la distribution de courant donc $\overrightarrow{B_{\mathrm{int}}}$ leur est orthogonal. Donc $\overrightarrow{B_{\mathrm{int}}} = B_{\mathrm{int}} \overrightarrow{z}$.

La distribution de courant est invariante par translation selon z et par rotation selon θ donc $B_{\text{int}} = B_{\text{int}}(r)$. Enfin, en appliquant le théorème de Stokes sur un carré de côté a:

On a $aB_{\rm int}(r) = \mu_0 nIa$ en tenant compte du fait que $\overrightarrow{B}_{\rm ext} = \overrightarrow{0}$. Donc

$$\overrightarrow{B_{\rm int}} = \mu_0 n I \overrightarrow{z}$$