Quantum Computing Notes & Simulations by Soham Agrawal

Welcome to my learning repository on Quantum Computing, built around handwritten notes, key concepts, and simple quantum circuit simulations.

This journey began during Techfest at IIT Bombay, where a live lecture on **Quantum Teleportation** sparked my curiosity. Since then, I've been exploring the principles of quantum mechanics and their applications in computation.

Notes Snapshot

1. Entanglement & Basic Quantum Gates

- Matrix forms of X, Y, Z, H (Hadamard), and I (Identity) gates
- Explanation of Quantum Entanglement
- · Hand-calculated derivation of Bell states
- Visual layout of a **Quantum Circuit**

2. Quantum Computing Foundations

- Bloch Sphere visualizations
- State vector transformations
- Superposition & eigenstates
- · Notes on teleportation logic and classical logic gates

Why This Repository?

- To document my self-learning path
- To share concepts visually and clearly
- To gradually pair theory with actual simulation code

Related Post

https\://www.linkedin.com/posts/sohamagrawal0_techfest2024-quantumcomputing-studentlifeactivity-7276244521976233984-alaZ?

utm_source=share&utm_medium=member_desktop&rcm=ACoAAEBFjF0B9mShM-r5L4YDIY7kHizPmrPwYBQ

"Nature isn't classical, dammit, and if you want to make a simulation of nature, you'd better make it quantum mechanical." – Richard Feynman