Y13R 用户手册

无需命令自动工作, 简单到无可救药了

目录

Y13R 用	户手	≒册	1
一、	2	外观尺寸	3
二、	ì	引脚说明	4
三、	3	技术参数	4
四、	-	上位机软件介绍	5
	1.	打开串口	5
	2.	基本设置	5
	3.	读卡机	5
	4.	读写器	5
	5.	钱包	5
五、	ł	串口通信	6
六、	j	通信帧格式	6
	6.	命令帧格式概述	6
	7.	命令头说明	6
	8.	校验说明	6
七、	1	命令状态	7
	1.	命令分类	
	2.	命令表	7
	3.	命令详细介绍	8
	4.	状态列表	8
八、	-	工作模式	9
	1.	读卡号	9
	2.	空闲模式	9
	3.	读块数据	9
	4.	扣款返回余额	9
	5.	充值返回余额	9
九、]	联网	9
	1.	地址	9
	2.	组网	9

一、 外观尺寸

图 1.外观

图 2.尺寸

二、 引脚说明

引脚号	引脚名称	引脚说明
1	SCL	IIC 时钟
2	SDA	IIC 数据
3	RXD	UART 接收
4	TXD	UART 发送
5	BE-	蜂鸣器负极
6	BE+	蜂鸣器正极
7	В	485 的 B 端
8	A	485 的 A 端
9	232R	232 的接收
10	232T	232 的发送
11	GND	地
12	VDD	电源

表 1.引脚说明

三、 技术参数

工作频率: 13.56MHz

输出接口: TTL(UART)、RS232、RS485、IIC

工作电压: DC5V

工作电流: 19mA-25mA

待机电流: 1mA 读卡距离: <60mm 模块大小: 5 X 3(CM) 卡片类型: M1(S50) 温 度: -20℃~85℃

四、 上位机软件介绍

图 3.软件介绍

如果软件打开错误见不到以上界面请先安装资料包里面的"dotnetfx.exe"。

软件会自动列出已经接入电脑的串口号,如果没有列出请检查串口驱动有无装好,如果没装好碰巧转换芯片又是 PL2303,资料包内有"PL2303 支持 WIN8.exe"。

1. 打开串口

软件自动列出串口号,只要从中选取一个就自动打开了,右侧显示"串口已打开"字样。

2. 基本设置

设置模块的地址时使用的是广播地址(0)。设置工作模式时需要操作值和块号两个参数。装载密码时可选密码模式。

3. 读卡机

一键读取卡号。

4. 读写器

写入 16 字节的十六进制数据。并且可以直接存取中文。

5. 钱包

先办卡再充值或扣款。

五、 串口通信

本协议支持 0~FF 的全数据的传送,移植到其它通讯中可支持全双工通信模式,且带有自同步功能,无需超时。串口默认波特率 9600, 1 位起始位, 1 位停止位, 8 位数据位, 无奇偶校验。

六、 通信帧格式

6. 命令帧格式概述

命令头	命令长度	地址	命令字	数据	校验
(1 byte)	(1 byte)	(1 byte)	(1 byte)	(n byte)	(1 byte)
7F	2~7E	0~FF	XX		CRC

- a. 命 令 头——固定 0x7F (数据中若有 0x7F 则发送双个 0x7F, 详见 2)
- b. 命令长度——命令长度包括: 命令长度(1 byte)+命令字(1 byte)+数据(n byte), 长度不超过 0x7E, 不小于 2
- c. 地 址——可给模块设置地址同样适用于 IIC 的器件地址,发命令时只有地址 匹配的模块会响应,地址 0 为广播地址。
- d. 命 令 字——详见四: 命令表
- e. 数 据——n 字节数据。
- f. 校 验——校验内容包括: 命令长度(1 byte)、命令字(1 byte)、数据(n byte)。

7. 命令头说明

命令头固定为 0x7F,数据或命令中若含有 0x7F,则用(0x7F、0x7F)代替,此代替行为只传输时,所以在计算长度或校验时只按原数据计算,即一个 0x7F。如原命令: 7F 0A 03 10 7F 37 50 7F 35 01 4A

实际传输数据为: 7F 0A 03 10 7F 7F 37 50 7F 7F 35 01 4A

除去命令头实际传输数据共 12 字节, 但命令长度则为 0A 即 10 字节, 校验同理。

8. 校验说明

校验为所有校验内容的异或值,校验函数如下:

```
byte checkSum(byte[] data, int offset, int length)
{
   byte temp = 0;
   for (int i = offset; i < length + offset; i++)
   {
      temp ^= data[i];
   }
   return temp;
}</pre>
```

七、命令状态

1. 命令分类

- a. 只使用卡号:每张卡片有唯一 ID 号,直接读取。此类使用命令:【0x10】。
- b. 卡片当存储器:可以加密读和写(不加密时密码默认为全 FF)。执行此类命令前需先装载密码,若没装载默认密码则是全 FF。此类使用命令:【0x11】【0x12】。
- c. 卡片当钱包使用:可以将卡片的某一块执行【办卡】定义为钱包并加密之后可以【充值】和【扣款】,而又可以通过【恢复卡】将卡片密码恢复为默认。执行此类命令前需先装载密码,若没装载默认密码则是全 FF。此类使用命令:【0x13】、【0x14】、【0x15】、【0x16】。
- d. 设置模块参数:【装载密码】、【设置波特率】、【设置地址】、【设置工作模式】。

2. 命令表

以下命令码为主机发往模块时使用,模块返回主机时命令码<或 0x80>,如: 主机发往模块读卡号(0x10),模块回应的读卡号则是(0x90)。

· · · · · · · · · · · · · · · · · · ·				
命令码(回应码)	含义	模块接收时数据(字节数)	模块应答时数据(字节数)	
0x10(0x90)	读卡号	无	状态(1)、卡类型(2)	
			卡号 (4)	
0x11(0x91)	读块数据	块地址(1)	状态(1)、卡类型(2)	
			卡号(4)、数据(16)	
0x12(0x92)	写块数据	块地址(1)	状态(1)、卡类型(2)	
		数据(16)	卡号 (4)	
0x13(0x93)	办卡	块地址(1)	状态(1)、卡类型(2)	
		初始值 (4)	卡号 (4)	
0X14(0x94)	恢复卡	块地址(1)	状态(1)、卡类型(2)	
			卡号 (4)	
0X15(0x95)	充值	块地址(1)	状态(1)、卡类型(2)	
		金额 (4)	卡号(4)、余额(4)	
0x16(0x96)	扣款	块地址(1)	状态(1)、卡类型(2)	
		金额 (4)	卡号(4)、余额(4)	
0x2A(0xAA)	保留	无	无	
0x2B(0xAB)	装载密码	密钥 A (6)	状态 (1)	
		密钥 B (6)		
		加密模式(1)		
		固定校验值(5)【0x03 0x08		
		0x05 0x02 0x07]		
0x2C(0xAC)	设置波特率	波特率(4)	状态 (1)	
		固定校验值(3)		
		【0x98 0x24 0x31】		
0x2D(0xAD)	设置地址	地址 (1)	状态 (1)	

		固定校验值(3) 【0x37 0x21 0x56】	
0x2E(0xAE)	设置工作模 式	模式 (1) 模式+0A (1) 块号 (1) 数值 (4) 固定校验值 (3) 【0x23 0x12 0x54】	状态 (1)

(*) 括号内为字节数

各数据顺序按以上排列顺序

3. 命令详细介绍

- e. 读卡号: 直接读出卡号啦
- f. 读块数据:参数只需要块号,所需要的密钥通过【装载密码】命令装载在模块内,使用密钥 A。
- g. 写块数据:参数只需要块号,所需要的密钥通过【装载密码】命令装载在模块内,加密模式为优灵模式时使用密钥 B,默认模式时使用密钥 A。
- h. 办卡:新卡密钥为全 FF,此命令会将模块内密钥写入卡片,已经办过卡的需要使用【恢复卡】恢复回全 FF。
- i. 恢复卡: 已经办过卡的卡片,使用恢复卡可以将密钥恢复为全 FF。
- j. 充值:参数只需要块号,所需要的密钥通过【装载密码】命令装载在模块内, 加密模式为优灵模式时使用密钥 B,默认模式时使用密钥 A。
- k. 扣款:参数只需要块号,所需要的密钥通过【装载密码】命令装载在模块内, 使用密钥 A。
- I. 装载密码: 预先把要使用的密码装载进模块,加密模式为默认模式时所有操作只使用密钥 A,使用优灵模式时【写块数据】、【充值】、【恢复卡】使用密钥 B,其它命令使用密钥 A。加密模式有默认模式(0x00)和优灵模式(0x55)。
- m. 设置波特率:可设置为 2400、4800、9600、14400、19200、28800、38400、57600、115200,波特率设置成功即时生效,必须更改软件上的波特率才能继续通信。
- n. 设置地址:地址可为 0~255,为 0 时是广播地址,此地址同样是 IIC 通信的设备地址。
- o. 设置工作模式:工作模式有读卡号(0x00)、空闲模式(0x01)、读块数据(0x02)、 自动扣款(0x03)、自动充值(0x04)。

4. 状态列表

状态字	含义	描述
0x00	正确	
0xFF	无卡	
0xFE	错误	
0xFD	保留	
0xFC	扣款时余额不足	
0xFB	校验错误	

八、 工作模式

可配置为五种工作模式,无论哪种工作模式都可以使用命令工作。

1. 读卡号

模块自动工作,只要卡片靠近读到卡号就从串口主动发出【读卡号】命令。

2. 空闲模式

模块为空闲待机,在没有接收到命令时电流小于 1ma。

3. 读块数据

模块自动工作,只要卡片靠近读到块数据就从串口主动发出【读块数据】命令。 此工作模式需先装载密钥 A,在设定工作模式时设定块号。

4. 扣款返回余额

模块自动工作,只要卡片靠近扣款成功就从串口主动发出【扣款】命令。此工作模式需先装载密钥 A,在设定工作模式时设定块号与数值。

5. 充值返回余额

模块自动工作,只要卡片靠近充值成功就从串口主动发出【充值】命令。此工作模式需先装载密钥 B,在设定工作模式时设定块号与数值。

九、 联网

1. 地址

模块可以设置地址 0~255,设置地址时只能一个模块连接在网络上。模块的地址设置为 0 时是广播地址。

2. 组网

通过 485 和 IIC 实现组网,一个识别主站,多个识别从站,一共可以有 254 个识别从站。

