Постановка задачи Метод Эйлера и улучшенный метод Эйлера Метод Рунге-Кутты четвертого порядка Правило Рунге (двойного пересчета) практической оцени Методы Адамса Задание

Численное решение задачи Коши для обыкновенного дифференциального уравнения первого порядка

САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ Математико-механический факультет

2020

Содержание I

- Постановка задачи
- 2 Метод Эйлера и улучшенный метод Эйлера
 - Метод Эйлера
 - Улучшенный метод Эйлера
- 🗿 Метод Рунге-Кутты четвертого порядка
- Правило Рунге (двойного пересчета) практической оценки погрешности. Экстраполяция по Ричардсону
- Методы Адамса
 - Экстраполяционный метод Адамса
 - Интерполяционный метод Адамса
- 📵 Задание

Постановка задачи І

Рассмотрим задачу Коши для обыкновеннго дифференциального уравнения

$$y' = f(x, y), \ y(x_0) = y_0.$$
 (1)

Будем считать, что эта задача имеет единственное решение на промежутке $[x_0, b]$. Запишем (1) в интегральном виде

$$y(x) = y_0 + \int_{-\infty}^{x} f(t, y(t))dt.$$
 (2)

Постановка задачи II

Методы численного решения этого уравнения заключаются в приближенном вычислении значений гипотетического решения y(x) в точках $x_1, x_2, \ldots, x_N \in [x_0, b]$. Для простоты мы далее будем считать точки (узлы) x_1, \dots, x_N равноотстоящими, т. е. $x_k = x_0 + kh$, где $h = (b - x_0)/N$. Во всех рассмотренных методах решения задачи (1) значения в узлах будут строиться последовательно, т. е. будем считать, что значения $y_1 \approx y(x_1), \dots, y_m \approx y(x_m)$ уже известны, построим $y_{m+1} \approx y(x_{m+1})$.

Метод Эйлера и улучшенный метод Эйлера

Наиболее простой способ получить численное решение уравнения (2) — вычислить интеграл в правой части при помощи какой-либо квадратурной формулы.

При этом для вычисления y_{m+1} можно использовать только значение $y_m.$

Отметим, что такие методы решения дифференциального уравнения дают такую же погрешность, как и соответствующие квадратурные формулы.

Метод Эйлера I

Применим формулу левых прямоугольников

$$y_{m+1} = y_m + \int_{x_m}^{x_m+h} f(t, y(t))dt = y_m + hf(x_m, y_m) + O(h^2),$$

т. е. расчетная формула метода Эйлера

$$y_{m+1} = y_m + h f(x_m, y_m), m = 0, 1, \dots, N-1$$
 (3)

на одном шаге имеет погрешность $O(h^2)$ (в предположении, что все используемые данные точны).

Метод Эйлера II

На промежутке $[x_0,b]$ погрешность метода не лучше, чем O(h), но фактически погрешность может быть существенно хуже из-за нелинейного возрастания ошибки при интегрировании.

Улучшенный метод Эйлера I

Применим для вычисления интеграла в правой части (2) формулу средних прямоугольников.

Для этого введем дополнительную точку посередине между x_m и x_{m+1} .

Обозначим её $x_{m+\frac{1}{2}} = x_m + \frac{h}{2}$.

В ней вычислим значение решения уравнения по обычному методу Эйлера, т. е. при помощи формулы левых прямоугольников

$$y_{m+\frac{1}{2}} = y_m + \frac{h}{2} f(x_m, y_m).$$

Улучшенный метод Эйлера II

Теперь значение в точке x_{m+1} вычислим по формуле средних прямоугольников

$$y_{m+1} = y_m + \int_{x_m}^{x_m + h} f(t, y(t)) dt \approx y_m + h f\left(x_{m + \frac{1}{2}}, y_{m + \frac{1}{2}}\right) =$$

$$= y_m + h f\left(x_m + \frac{h}{2}, y_m + \frac{h}{2} f\left(x_m, y_m\right)\right). \tag{4}$$

Обычный метод Эйлера можно уточнить и другим способом.

Улучшенный метод Эйлера III

Предположим, что значение y_{m+1} вычислено по формуле левых прямоугольников, т. е. как в формуле (3), далее вычислим соответствующий интеграл по формуле трапеций.

Итак, пусть

$$\tilde{y}_{m+1} = y_m + hf(x_m, y_m).$$

Тогда

$$y_{m+1} = y_m + \int_{x_m}^{x_m + h} f(t, y(t)) dt \approx y_m + \frac{h}{2} \left(f(x_m, y_m) + f(x_{m+1}, \tilde{y}_{m+1}) \right).$$
 (5)

Улучшенный метод Эйлера IV

В заключение отметим, что оба предложенных изменения метода Эйлера дают погрешность не лучше, чем $O(h^2)$, но фактически погрешность может быть существенно хуже из-за нелинейного возрастания ошибки при интегрировании, так же как и в п. 1.

Метод Рунге-Кутты четвертого порядка I

Расчетные формулы метода

$$y_{m+1} = y_m + \frac{1}{6}(k_1 + 2k_2 + 2k_3 + k_4), \tag{6}$$

$$k_{1} = h f(x_{m}, y_{m}),$$

$$k_{2} = h f\left(x_{m} + \frac{h}{2}, y_{m} + \frac{k_{1}}{2}\right),$$

$$k_{3} = h f\left(x_{m} + \frac{h}{2}, y_{m} + \frac{k_{2}}{2}\right),$$

$$k_{4} = h f\left(x_{m} + h, y_{m} + k_{3}\right), m = 0, 1, \dots, N - 1.$$

$$(7)$$

Оказывается, если $y_m = y(x_m)$ (равенство точное), то $y_{m+1} - y(x_{m+1}) = O(h^5)$.

Метод Рунге-Кутты четвертого порядка II

На всей интегральной кривой метод дает погрешность не лучше, чем $O(h^4)$ по причинам, указанным в п. 1. Если уравнение имеет вид y'=f(x), то $k_2=k_3$ и видно, что расчетная формула метода Рунге-Кутты получается в результате применения формулы Симпсона, иначе — обобщенной формулы Симпсона.

Постановка задачи
Метод Эйлера и улучшенный метод Эйлера
Метод Рунге-Кутты четвертого порядка
Правило Рунге (двойного пересчета) практической оценк
Методы Адамса
Задание

Замечание 1

Все рассмотренные выше методы одношаговые, т. е. для получения решения в следующей точке используется решение лишь в одной предыдущей точке. В одношаговых методах шаг может быть переменным.

Правило Рунге практической оценки погрешности I

Предположим, что метод вычисления значений решения задачи (1) фиксирован и имеет порядок точности s. Это означает, что $y(x_i)-y_i=O(h^s),\ i=1,\,2,\ldots,N.$ Здесь используются принятые ранее обозначения. Вычислим значение в точке x_m с шагом h и h/2. Полученные значения обозначим через $y_m^{(h)}$ и $y_m^{(h/2)}$ соответственно.

Тогда главный член погрешности находится по формуле

$$R_m^{(h)} = \frac{y_m^{(h/2)} - y_m^{(h)}}{2^s - 1}.$$

Правило Рунге практической оценки погрешности II

Для достаточно малых h можно утверждать, что, если $|R_m^{(h)}|<arepsilon$, то $|y(x_m)-y_m^{(h/2)}|<arepsilon$.

Экстраполяция по Ричардсону заключается в уточнении значения в точке x_m по формуле

$$\hat{y}_m = y_m^{(h/2)} + R_m^{(h)}. (8)$$

Заметим, что в результате уточнения по формуле (8) строится метод с более высоким порядком погрешности, чем исходный.

Методы Адамса I

Ранее мы отмечали, что узлы $x_1, ..., x_N$ мы считаем равноотстоящими для удобства. И во всех рассмотренных выше методах это действительно не более чем удобство, поскольку все эти методы являлись одношаговыми, т. е. значение y_{m+1} строилось исключительно по y_m . В частности, все рассмотренные методы допускают переменный шаг аргумента $(x_{m+1} - x_m = h_m)$. Теперь мы зафиксируем шаг $h = (b - x_0)/N$ и все узлы $x_i = x_0 + ih, i = 0, 1, \dots, N$ будем считать равноотстоящими. При построении y_{m+1} будут использоваться значения решения в k+1 предыдущих узлах y_{m-k}, \dots, y_m .

Методы Адамса II

Предположим, что известны приближенные значения y(x) в точках $x_0, x_1, \ldots, x_m,$ $y_i \approx y(x_i), \ i=0,1,\ldots,m, \ k\leqslant m < N$ (они могут быть найдены одним из рассмотренных выше методов), в дальнейшем $m\geqslant k.$

Экстраполяционный метод Адамса І

Начинаем, как обычно, с формулы (2)

$$y_{m+1} = y_m + \int_{x_m}^{x_m+h} f(x, y(x)) dx.$$

Подынтегральную функцию f(x,y(x)) заменим на интерполяционный многочлен, построенный по узлам x_{m-k},\ldots,x_m .

Поскольку приближённое решение y_{m+1} находится в точке, лежащей вне промежутка, на котором лежат все узлы

Экстраполяционный метод Адамса II

интерполирования, метод и получил название экстраполяционного.

В зависимости от формы многочлена, получатся разные формулы метода.

Сначала предположим, что функцию f(x,y(x)) заменили на многочлен в форме Ньютона для конца таблицы. Напомним, что значения y_{m-k},\dots,y_m мы считаем

известными.

Положим $q_j = h f(x_j, y_j)$. Многочлен имеет вид

$$P_k(x_m + th) = q_m + t\Delta q_{m-1} + \dots + \frac{t(t+1)\cdots(t+k-1)}{k!}\Delta^k q_{m-k},$$
 (9)

Экстраполяционный метод Адамса III

где конечные разности вычисляются по правилу

$$\Delta^{j} q_{s} = \Delta^{j-1} q_{s+1} - \Delta^{j-1} q_{s}. \tag{10}$$

Тогда

$$\int_{x_m}^{x_m+h} f(x,y(x)) dx \approx \int_0^1 \sum_{j=0}^k \frac{t(t+1)\cdots(t+j-1)}{j!} \Delta^j q_{m-j} dt.$$
 (11)

Для упрощения формулы удобно ввести обозначение

$$a_j = \frac{1}{j!} \int_0^1 t(t+1) \cdots (t+j-1) \, dt. \tag{12}$$

Экстраполяционный метод Адамса IV

Тогда получаем расчетную формулу

$$y_{m+1} = y_m + \sum_{j=0}^k a_j \, \Delta^j q_{m-j}. \tag{13}$$

Формулу (13) можно применять, начиная с m=k для $m=k,\,k+1,\ldots,N-1.$

Если решение y(x) — многочлен степени не выше k+1, то экстраполяционный метод Адамса дает точное значение решения (в предположении, что все вычисления осуществляются точно).

Экстраполяционный метод Адамса V

На шаге погрешность метода $O(h^{k+2})$, на всем промежутке — не лучше $O(h^{k+1})$ (см. п. 1). При k=4 получаем формулу

$$y_{m+1} = y_m + q_m + \frac{1}{2}\Delta q_{m-1} + \frac{5}{12}\Delta^2 q_{m-2} + \frac{3}{8}\Delta^3 q_{m-3} + \frac{251}{720}\Delta^4 q_{m-4}.$$
(14)

Для вычислений рекомендуется использовать таблицу, фрагмент которой представлен таблицей 1.

Экстраполяционный метод Адамса VI

Таблица 1

x	y	q	Δq	$\Delta^2 q$	$\Delta^3 q$	$\Delta^4 q$
x_0	y_0	q_0				
			Δq_0			
x_1	y_1	q_1		$\Delta^2 q_0$		
			Δq_1		$\Delta^3 q_0$	
x_2	y_2	q_2		$\Delta^2 q_1$		$\Delta^4 q_0$
			Δq_2		$\Delta^3 q_1$	
x_3	y_3	q_3		$\Delta^2 q_2$		$\Delta^4 q_1$
			Δq_3		$\Delta^3 q_2$	
x_4	y_4	q_4		$\Delta^2 q_3$		
			Δq_4			
x_5	y_5	q_5				
x_6	y_6					

Экстраполяционный метод Адамса VII

Начало таблицы — часть таблицы, значения в ячейках которой должны быть известны для применения экстраполяционного метода Адамса. Значения решения в точках начала таблицы следует вычислять соответствующим по порядку методом.

Преимущества метода Адамса по сравнению с методом Рунге-Кутты

- экономичность;
- наглядный контроль по последним конечным разностям можно судить о точности результата.

Экстраполяционный метод Адамса VIII

Недостатком метода Адамса по сравнению с методом Рунге-Кутты является его многошаговость, то есть то, что решение в следующей точке зависит от решения в нескольких предыдущих точках, и они должны быть равноотстоящими.

Используя интерполяционный многочлен в форме Лагранжа или заменяя конечные разности в (14) выражениями через значения функции, можно получить безразностную формулу экстраполяционного метода Адамса

Экстраполяционный метод Адамса IX

$$y_{m+1} \approx y_m + \sum_{j=0}^k b_{kj} \, q_{m-j},$$
 (15)

$$b_{kj} = \frac{(-1)^j}{j!(k-j)!} \int_0^1 \frac{t(t+1)\cdots(t+k)}{t+j} dt, \quad j = 0, 1, 2, \dots, k.$$

(16)

Числа b_{kj} не зависят от m и от h, но зависят от порядка метода.

Экстраполяционный метод Адамса Х

Расчетные формулы безразностного экстраполяционного метода Адамса различных порядков приведены ниже в таблице 2.

Заметим, что алгоритм вычисления решения по безразностной формуле реализуется проще, чем по разностной формуле, но наглядный контроль здесь отсутствует.

Экстраполяционный метод Адамса XI

Таблица 2

	k	Экстраполяционный метод Адамса ¹
	0	$y_{m+1} = y_m + q_m$
	1	$y_{m+1} = y_m + \frac{1}{2}(3q_m - q_{m-1})$
	2	$y_{m+1} = y_m + \frac{1}{12}(23q_m - 16q_{m-1} + 5q_{m-2})$
	3	$y_{m+1} = y_m + \frac{1}{24} (55 q_m - 59 q_{m-1} + 37 q_{m-2} - 9 q_{m-3})$
	4	$y_{m+1} = y_m + \frac{1}{720} (1901 q_m - 2774 q_{m-1} + 2616 q_{m-2} - 1274 q_{m-3} + 251 q_{m-4})$
- 1		

Интерполяционный метод Адамса I

Пусть $h=(b-x_0)/N$ и $x_i=x_0+ih,\ i=0,\ 1,\dots,N.$ Предположим, что известны приближенные значения y(x) в точках $x_0,\ x_1,\ \dots,\ x_m,\ y(x_i)\approx$ у $_i,\ i=0,\ 1,\dots,m,\ k\leqslant m< N.$ Обозначим $q_i=hf(x_i,\ y_i).$ Заменяя приближенно функцию f(x,y(x)) в выражении

$$y_{m+1} = y_m + \int_{x_m}^{x_{m+1}} f(x, y(x)) dx$$

интерполяционным многочленом k-ой степени в форме Ньютона для конца таблицы по узлам

Интерполяционный метод Адамса II

 $x_{m+1}, \, x_m, \dots, x_{m+1-k}$ и интегрируя, получим расчетную формулу метода

$$y_{m+1} = y_m + \sum_{j=0}^k a_j^* \, \Delta^j q_{m+1-j}, \tag{17}$$

где

$$a_j^* = \frac{1}{j!} \int_{-1}^{0} t(t+1) \cdots (t+j-1) dt.$$
 (18)

Интерполяционный метод Адамса III

Как видно, в правой части формулы (17) присутствует $q_{m+1}=hf(x_{m+1},y_{m+1})$, т. е. формула (17) является уравнением относительно y_{m+1} .

Интерполяционный метод Адамса является неявным методом.

Уравнение (17) рекомендуется решать методом итераций.

В качестве нулевого приближения можно взять y_{m+1} , найденное экстраполяционным методом, обозначим его $y_{m+1}^{(0)}$.

Вычислим

$$q_{m+1}^{(0)} = hf(x_{m+1}, y_{m+1}^{(0)}), \ \Delta q_m^{(0)} = q_{m+1}^{(0)} - q_m^{(0)}, \ \Delta^2 q_{m-1}^{(0)}, \dots, \Delta^k q_{m+1-k}^{(0)}.$$

Интерполяционный метод Адамса IV

Используя эти значения, вычисляем, $y_{m+1}^{(1)}$ по расчетной формуле (17).

Сравниваем $|y_{m+1}^{(1)} - y_{m+1}^{(0)}| < \varepsilon$, где ε — заданная точность².

Если условие не выполняется, то делаем перерасчет до тех пор, пока не будет выполнено условие.

Формулу (17) можно применять для

$$m=k,\,k+1,\ldots,N-1.$$

Если решение y(x) — многочлен степени не выше k+1, то интерполяционный метод Адамса дает точное значение решения.

На шаге погрешность метода $O(h^{k+2})$, на всем промежутке — не лучше $O(h^{k+1})$ (см. п. 1).

Интерполяционный метод Адамса V

При k=4 получаем формулу

$$y_{m+1} = y_m + q_{m+1} - \frac{1}{2} \Delta q_m - \frac{1}{12} \Delta^2 q_{m-1} - \frac{1}{24} \Delta^3 q_{m-2} - \frac{19}{720} \Delta^4 q_{m-3}.$$
(19)

Используя интерполяционный многочлен в форме Лагранжа, или заменяя конечные разности в (19) выражениями через значения функции, можно получить

Интерполяционный метод Адамса VI

безразностную формулу интерполяционного метода Адамса

$$y_{m+1} = y_m + \sum_{j=-1}^{k-1} b_{kj}^* q_{m-j},$$
 (20)

$$b_{kj}^* = \frac{(-1)^{j+1}}{(j+1)!(k-1-j)!} \int_0^1 \frac{(t-1)t(t+1)...(t+k-1)}{t+j} dt, \quad j = -1, 0, 1, 2, \dots, k-1.$$
(21)

Числа b_{kj}^{st} не зависят от m и от h. Приведем расчетные формулы безразностного интерполяционного метода Адамса при k=0,1,2,3,4 в таблице 3.

Интерполяционный метод Адамса VII

Таблица 3

k	Интерполяционный метод Адамса
0	$y_{m+1} = y_m + q_{m+1}$
1	$y_{m+1} = y_m + \frac{1}{2}(q_{m+1} + q_m)$
2	$y_{m+1} = y_m + \frac{1}{12} (5 q_{m+1} + 8 q_m - q_{m-1})$
3	$y_{m+1} = y_m + \frac{1}{24} (9 q_{m+1} + 19 q_m - 5 q_{m-1} + q_{m-2})$
4	$y_{m+1} = y_m + \frac{1}{720} (251 q_{m+1} + 646 q_m - 264 q_{m-1} + 106 q_{m-2} - 19 q_{m-3})$

 $^{^2}$ Заметим, что все решения в предыдущих точках должны быть вычислены с этой точностью.

Вариант задания І

Указания

- После знака "—" приведены обозначения для полученного решения.
- ② Протестировать полученные результаты на уравнениях вида $y' = P_{s-1}(x)$, где $P_{s-1}(x)$ полином степени s-1, s порядок метода.

Пусть дана задача Коши

$$y' = \cos(1.75 x + y) + 1.25 (x - y), \ y(0) = 0.$$

Требуется

- Получить таблицу значений решения задачи с шагом h=0.1 на [0,1], используя функции математического пакета y-math.
- f lacktriangle Методом Эйлера получить таблицу решения на [0,0.5]
 - а) с шагом $h y^h$;
 - b) с шагом $h/2 y^{h/2}$;
 - c) уточнить решение по Ричардсону y_rev .
- ullet Напечатать таблицу значений $y_math,\ y^h,\ y^{h/2},y_rev,y_rev-y_math$ в точках с шагом h.
 - Результаты оформить в виде таблицы 4.

Таблица 4

x	y_math	y^h	$y^{h/2}$	y_rev	$y_rev - y_math$
0					
0.1					
0.5					

- Построить графики заданных таблично функций в одних осях координат.
- **5** Вычислить решение методом Рунге-Кутты 4-ого порядка с точностью ε =0.00001 на $[0,1]-y_RK$.

- Вычислить решение экстраполяционным методом Адамса 5-ого порядка с шагом из метода Рунге-Кутты на промежутке $[5h,1]-y_Ad_ex$. Начало таблицы строить, например, методом Рунге-Кутты.
- Вычислить решение интерполяционным методом
 Адамса 5-ого порядка с шагом h на промежутке [5h, 1] y Ad in.
- Напечатать таблицу значений решения y_math и погрешностей $y_math y_RK, y_math y_Ad_ex, y_math y_Ad_in$. Результаты оформить в виде таблицы 5.

Постановка задачи Метод Эйлера и улучшенный метод Эйлера Метод Рунге-Кутты четвертого порядка Правило Рунге (двойного пересчета) практической оценк Методы Адамса Задание

Таблица 5

\boldsymbol{x}	y_math	$y_math - y_RK$	$y_math - y_Ad_ex$	$y_math - y_Ad_in$
0.5				
0.6				
1				