Matemáticas

ÁLGEBRA LINEAL

Hoja 4: Cocientes, primer teorema de isomoría y aplicaciones.

1. Sea F el subespacio de $E = \mathbb{R}^4$ definido por

$$F = \left\{ (x, y, z, t) \in \mathbb{R}^4 : \begin{array}{l} x + y = 0 \\ z + t = 0 \end{array} \right\}.$$

Se pide:

- (i) Encuentra una base de F, complétala para obtener una de E y utiliza esta última para calcular una base de E/F.
- (ii) Encuentra las cordenadas de los vectores

$$[(2, -2, 0, 0)]$$
 y $[(3, 4, 0, 0)] \in E/F$

respecto de la base de E/F encontrada en el apartado anterior.

2. Sea $E = \mathbb{M}_{2\times 3}(\mathbb{R})$ y F el subespacio vectorial definido por

$$F = \left\{ \begin{pmatrix} a & b & c \\ a' & b' & c' \end{pmatrix} : \begin{array}{c} a+b=0 \\ a'+b'=0 \\ c+c'=0 \end{array} \right\}.$$

Encuentra una base de E/F y las coordenadas del vector [v], con $v = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}$, respecto a dicha base.

3. Sea

$$f: V_1 = \mathbb{M}_{2\times 3}(\mathbb{R}) \to V_2 = \{\text{polinomios de grado} \le 2\}$$

la aplicación lineal definida por

$$f\left(\begin{array}{ccc} a & b & c \\ a' & b' & c' \end{array}\right) = (a+b) + (c+c')x + (a'+b')x^2.$$

- (i) Demuestra que su núcleo es el subespacio ${\cal F}$ del ejercicio anterior.
- (ii) Demuestra que la expresión

$$\overline{f}([v]) = f(v)$$

define un isomorfismo entre $\mathcal{M}_{2\times 3}/F$ y $\mathbb{P}^2_{\mathbb{R}}[x]$. (Primer teorema de isomorfía).

(iii) Decide si esta misma expresión define una función cuando F es el subespacio generado por los vectores

$$v_1 = \begin{pmatrix} 1 & -1 & 0 \\ 0 & 0 & 0 \end{pmatrix}, v_2 = \begin{pmatrix} 0 & 0 & 0 \\ 1 & -1 & 0 \end{pmatrix} \text{ y } v_3 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

(iv) Sean V_1 y V_2 dos espacios vectoriales arbitrarios definidos sobre el mismo cuerpo k y sea $f:V_1 \to V_2$ un homomorfismo. Demuestra que f induce una aplicación $\overline{f}:V_1/F \to V_2$ (que además es un homomorfismo) si y sólo si $F \subset \operatorname{Ker}(f)$.

- 4. Sea V un espacio vectorial de dimensión finita y sea G un subespacio vectorial de V.
 - (i) Demuestra que la aplicación canónica $\pi:V\to V/G$ definida por $\pi(v)=[v]$ es un epimorfismo. Calcula su núcleo y aplica el primer teorema de isomorfía.
 - (ii) Demuestra que existen bases de V y de V/G respecto a las cuales la matriz de π es de la forma

$$\left(\begin{array}{cccc} 0 & \cdots & 0 \mid 1 & \cdots & 0 \\ \vdots & \vdots & \vdots \mid \vdots & \vdots & \vdots \\ 0 & \cdots & 0 \mid 0 & \cdots & 1 \end{array}\right) = \left(\begin{array}{ccc} 0 & \mid & I \end{array}\right)$$

- 5. Sea la aplicación $f: \mathbb{R}[x] \longrightarrow \mathbb{C}$ definida por f(p(x)) = p(i).
 - (i) Demuestra que f es un homomorfismo suprayectivo entre espacios vectoriales sobre el cuerpo \mathbb{R} .
 - (ii) Demuestra que $\operatorname{Ker}(f) = \{(x^2+1)p(x) \mid p(x) \in \mathbb{R}[x]\}$. (Sugerencia: habrá que dividir por x^2+1).
 - (iii) Concluye que se tiene un isomorfismo

$$\mathbb{R}[x]/\mathrm{Ker}(f) \xrightarrow{\sim} \mathbb{C}$$

(iv) Da bases de los espacios vectoriales reales $\mathbb{R}[x]/\mathrm{Ker}(f)$ y \mathbb{C} respectivamente.

HOJA 4: ESPACIO COCIENTE E ISOMORFÍA

i) Base de F, complétala para obtener una de E y Calcular base de E,

Base de
$$F = \{(1, -1, 0, 0), (0, 0, 1, -1)\}$$

Base de
$$E = \{V_1, V_2, (1,0,0,0), (0,0,1,0)\}$$

$$[(2,-2,0,0)] = [0] \sim coordenadas (0,0)$$

$$(3,4,0,0) = \lambda_1 \vee_1 + \lambda_2 \vee_2 + \lambda_3 \vee_3 + \lambda_4 \vee_4 = 7$$

$$= \sum \left[(3,4,0,0) \right] = \lambda_1 \left[V_2 \right] + \lambda_2 \left[V_2 \right] + \lambda_3 \left[V_3 \right] + \lambda_4 \left[V_4 \right] = \lambda_3 \left[V_3 \right] + \lambda_4 \left[V_4 \right]$$

$$\begin{pmatrix} V_4 & V_2 & V_3 & V_4 \begin{vmatrix} 3 \\ 0 \\ 0 \end{pmatrix} \sim \sum_{\alpha} \sim \sum_{\alpha} \begin{pmatrix} * & * & * & * \\ 0 & 0 & a & b & \alpha \\ 0 & 0 & 0 & c & \beta \end{pmatrix} \qquad \lambda_4 = \frac{\beta}{c} \\ \lambda_3 = \frac{1}{\alpha} \left[\alpha - b \lambda_3 \right]$$

 $\pi: E \longrightarrow E/F$ es sobreyectiva $\{[v_1], [v_2], [v_3], [v_4]\}$

f:V -> W Curiero resolver &(v) = W es la incógnita Dado VI, ciqué vectores v tienen la misma imagen? f(v₁) = f(v) ~> f(v₁-v) = 0 ~> v₁-v ∈ Kerf The state of the s Tiene sentido cocientar por Kerf: [4.] V e.v. dimensión finita y G subespacio de V.

i) $\pi: V \longrightarrow V_G$, $\pi(v) = [v]$ es epimorfismo (lineal y sobreyectiva). Calcular KerTT y aplica 1er teorema de isomorfia π lineal: $\pi(xv + \beta w) = [\alpha v + \beta w] = \chi[v] + \beta[w] = \chi\pi(v) + \beta\pi(w)$ IT sobreyectiva: $W \in V_G$, enforces W = [V], $V \in V$. $\Rightarrow W = TI(V)$

Ker∏: VE Ker∏ ⇒ TT(V) = [V]=0 ⇒ V ∈ G. Ker TT = G

Continuación 4

ii) Demuertra que existen bases de V y 1/6 respecto de las cuales la matriz de TT es de la forma

$$\begin{pmatrix} 0 & \cdots & 0 \\ 0 & \cdots & 0 \\ 0 & \cdots & 1 \end{pmatrix} = \begin{pmatrix} 0 & | & \mathbf{I} \end{pmatrix}$$

La proyección (semana pasada)

{Vs, Vz, ..., Vich base de G.

Ampliamos a: $B = \{V_{2_1}V_{2_1}, \dots, V_{K_r}, V_{K+2_r}, \dots, V_n\}$ base de V. $B' = \{[V_{K+1}], [V_{K+2}], \dots, [V_n]\}$ base de V/G.

$$M_{BB'}(\pi) = \begin{pmatrix} 0 & 0 & 1 & -1 & 0 \\ 0 & 1 & 1 & 1 \\ 0 & 1 &$$

$$\Pi(V_4) = [V_4] = 0$$

$$\pi(V_n) = [V_n] \neq 0$$

|5.| firex $\rightarrow 4$, f(p(x)) = p(i)i) Demuestra que f es un homomorfismo suprayectivo (lineal y suprayect.) entre espacios vectoriales sobre 1R. • lineal $f(\alpha p(x) + \beta q(x)) = \alpha p(i) + \beta q(i) = \alpha f(p(x)) + \beta f(q(x))$ sobreyectiva $f(a+bx) = a+bi \in C$ a, be R (sugerencia: habrá que dividio ii) Demuestra Kerf= {(x2+1) p(x): p(x) & IR[x] } por x^2+1) 2 $f((x^2+1)p(x)) = (i^2+1)p(i) = 0$ <u>C</u>| Si f(p) = p(i) = 0, p ∈ R[x] $(x^2+4)=(x-i)(x+i)$ divide a $p(x) \Rightarrow p(x)=(x^2+4)q(x)$, $q \in \mathbb{R}[x]$ (iii) Concluye que se tiene un isomorfismo 1Rtx7 (Kerf 1er teorema isomorfia REXT + C f sobreyectiva + es isomorfismo y C respectivamente. iv) Bases de los espacios reales (RTx7/Kerf $p \in \mathbb{R}[x]$, $p(x) = (x^2 + 1) q(x) + Y(x)$ [p] = [r] = [a + bx] gradr < 1 R[x], generado por [1], [x] [1] y [x] son independientes => Base de RCx7/kerf = 1[4], [x] Base de C = 11, il f(cis) "f(cis)

$$\frac{1}{f}: \frac{M_{2x3}}{f} \longrightarrow \frac{R^2 [x]}{R^2 [x]}$$

$$\frac{f(a \ b \ c)}{f(a' \ b' \ c')} = (a+b) + (c+c')x + (a'+b')x^2$$

$$\frac{1}{f([v_1])} = \frac{1}{f([v_1])} = 0$$

$$\overline{f}(V_2) = f(V_2) = 0$$

$$\bar{f}([V_3]) = f(V_3) = 1 \implies MAL DEFINIDA!$$

Todos los elementos del espacio por el que divides tienen que ir al 0. Si $V \in F \implies f(V) = f(V) = 0$.

