Amendments to the Claims:

This listing will replace all prior versions, and listings, of claims in the application:

Listing of Claims:

- 1. (currently amended) An inkjet recording element comprising, above a support, the following layers in order:
- (a) a transparent, non-porous layer comprising at least 15 weight percent of water-soluble polymergelatin, which layer is swellable by water in an amount less than 0.67 of its original weight, wherein the transparent, non-porous layer comprises a crosslinking agent for the gelatin; and
- (b) a fusible, porous image-receiving layer, wherein the fusible, porous image-receiving layer comprises at least two types of hydrophobic polymer particles having different glass transition temperatures, a first type of hydrophobic polymer particles having a Tg higher than 60° C that is substantially monodisperse and a second type of hydrophobic polymer particles having a Tg lower than about 25° C.
 - 2. (canceled)
- 3. (currently amended) The element of claim 1 wherein the transparent, non-porous layer comprises at least 20 weight percent of the water-soluble polymergelatin. and the transparent, non-porous layer is swellable by water in an amount at least 0.35 of its original weight.
 - 4. (canceled)
- 5. (previously presented) The element of claim 1 wherein the first type of hydrophobic polymer particles which is substantially monodisperse has an average particle size of from about 0.2 μ m to about 2 μ m, and has a particle size distribution such that the ratio of the particle size at the 90th percentile of the particle size distribution curve to the particle size at the 10th percentile of the particle size distribution curve is less than about 2.

- 6. (previously presented) The element of claim 1 wherein the first type of hydrophobic polymer particles which is substantially monodisperse has a Tg of from about 60° C to about 140°C.
- 7. (previously presented) The element of claim 1 wherein the second type of hydrophobic polymer particles has a Tg of from about -60° C to about 25°C.
- 8. (previously presented) The element of claim 1 wherein the weight ratio of the first type of hydrophobic polymer particles to the second type of hydrophobic polymer particles is from about 10:1 to about 2.5:1.
- 9. (original) The element of claim 1 wherein the fusible, porous image-receiving layer is coated in an amount of from about 10 g/m² to about 60 g/m².
 - 10. (canceled)
- 11. (original) The element of claim 1 wherein the transparent, non-porous layer further comprises water-dispersible polymer.
 - 12. (canceled)
- 13. (original) The element of claim 1 wherein the transparent, non-porous layer is from 2 μm to 20 μm thick.
 - 14. (canceled)
- 15. (original) The element of claim 11 wherein the water-dispersible polymer has a Tg lower than 25°C.
- 16. (original) The element of claim 11 wherein the water-dispersible polymer has an average particle size of less than 1 μ m.

- 17. (original) The element of claim 11 wherein the water-dispersible polymer is polyurethane.
- 18. (original) The element of claim 1 wherein the support is resincoated paper or a transparent polymer film.
- 19. (original) The element of claim 1 wherein the fusible, porous image-receiving layer is crosslinked.
- 20. (original) The element of claim 1 wherein the fusible, porous image-receiving layer contains an ultraviolet absorbing agent.
- 21. (original) The element of claim 1 wherein pore volume of the fusible, porous image-receiving layer is from about 5 to about 50 ml/m².
- 22. (currently amended) An inkjet recording element comprising, above a support, the following layers in order:
- (a) a transparent, non-porous layer, having a thickness of 2 to 15 μ m, that is swellable by water in an amount 0.3 to less than 0.67 of its original weight and which comprises both a water-soluble polymer and a water-dispersible polymer; and
- (b) a fusible, porous image-receiving layer, having a thickness of 20 to 70 μm, wherein the fusible, porous image-receiving layer is capable of fusing when heated to a temperature of 60 to 160°C and comprises at least two types of hydrophobic polymer particles having different glass transition temperatures, a first type of hydrophobic polymer particles having an average particle size of from about 0.2 μm to about 2 μm and having—a Tg of from 60° to 160°C and a second type of hydrophobic polymer particles having a Tg lower than about 25° C, wherein the weight ratio of the first type of hydrophobic polymer particles to the second type of hydrophobic polymer particles is from about 10:1 to about 2.5:1.
- 23. (original) The element of claim 22 wherein the transparent, non-porous layer further comprises a crosslinking agent for the water-soluble polymer.

- 24. (original) The element of claim 22 wherein the transparent, non-porous layer further comprises a dye fixing agent.
 - 25. (canceled)
 - 26. (withdrawn) An inkjet printing method, comprising the steps of:
 - A) providing an inkjet printer that is responsive to digital data signals;
 - B) loading the printer with the inkjet recording element of Claim 1;
 - C) loading the printer with inkjet inks;
- D) printing on the inkjet recording element using the inkjet inks in response to the digital data signals; and
 - E) fusing the fusible, porous image-receiving layer.
- 27. (withdrawn) The method of claim 26 wherein the inkjet inks comprise pigmented inks that are substantially retained in the fusible, porous image-receiving layer.