Factor of a number n It a number that completely divides n.

It is a factor of n.

Then $n^{o}/o x = 0$ 7 1, 2, 4, 8 (luis 1: 24 - 7 1, 2, 3, 4, 6, 8, 12, 24) 1. X 24 3 x 8 6 x 4 12 × 2 2 u x /

10 -7 [1 2 5 10 (Vuiz 2 Oliver a number n, find out the total number of factors. BRUTE FORCE int count =0 for (Int i=1; $i \le n$; i+1) \mathcal{L} .

if $(n\%)^{i} = = 0$) \mathcal{L} . Count tof; Iteration: 1 loop.

$$10^{8} ileration = 1 sec$$

$$1 iteration = 1 sec$$

$$10^{8}$$

$$10^{10} iteration = 1 sec$$

$$\int_{08}^{08} (in^{3} i = 1 ; ixi \le n ; i+1) d.$$

if $(i! = n|i)$

Count = rount +2:

the

$$(ount = rount +1 ;$$

3

24

25

i (ount to rount to rount to to rount

$$n = a$$

$$\alpha \star \alpha = n$$

$$\sqrt{3b} = 6$$

$$\int a^{b} = a^{b/2}$$

$$\sqrt{10^{18}}$$
 = $10^{18/2}$ = 10^{9}

Sum of
$$1^{S+}$$
 n nadural = $\frac{n(n+i)}{2}$

$$1 + 2 + 3 + 4 \dots 100$$

$$\frac{100(101)}{2} = 5050$$

$$\frac{12}{4} = \frac{36}{12}$$

$$a, ax, ax^2, ax^3 --- ax^{n-1}$$

$$S = \frac{\alpha(x^n - i)}{x - i} \Rightarrow x^1 - 1.$$

$$\alpha = 5, \ \gamma = 2, \ n = 6$$

$$\frac{a(8^{n}-1)}{7^{-1}} \Rightarrow \frac{5(2^{b}-1)}{2-1}$$

$$75(64-1)$$
 $5x63-7315$

for (int i = 0 - 100) L. S = S + i + i²; 0,100 = 100 - 0 + 1101 iterations

Oviz 2

How many iterations will be there in this loop?

```
func(){
    for(i -> 1 to N){
        if(i % 2 == 0){
            print(i);
        }
    }
    for(j -> 1 to M){
        if(j % 2 == 0){
            print(j);
        }
    }
}
```


How to compare ?	2 algorithms!
I	\
Sumanth	Amogh
	•
10 Sec	20 sec
' 	20 Sec Writes in C++
	\triangleright
10 sec	8 Sec
in mac	
5 Sec	8 sec
Time is not th	le best metric
to compare 2 de	gos: thms because time by externel factor.
gets affected	by externel factor.
U I	J
No of iteration =	Dest metric to
	Dest metric to Compare algorithms.

Sumanth	Amogh
$ \downarrow $	#
100 log n	0/10
J	<i> </i>
n <u>4</u> 3500	Amogh was better
n < 3500 n > 3500	Amogh was better. Sumonth was better.
Most watched video	=> Somewhere
Most watched video	in billions
	- , .
Ind vs Pak	7 Viewship
Asymptotic	
Analysis	Analysing alumnithm
of states	Para areas labora
Analysis: af Algorithms	Analysing alogo sithm for very large number =
7-17 900, 12 3	
,	

BIG O

1) no of iderations.

2) ignore lower order teams

3) ignore constante

Ex1 no of iderations

no of yn2+2n+10

ignore Constant

 $O(v_{\Sigma})$

 $\frac{1}{\sqrt{1-x^2}}$

Neglect Lower Order teams. Iterations = $n^2 + 100n$. Contai bution of lower order lear. Total iterations Input Size 90% 1000 - 1000 D > 10 200 10000 + 10000 001 = 1Z 0.1% 10 + 107 N > 10 As input Size increases contribution of lower order team decreases

Neglect Consdonta

Algo 1	Algo 2	Whichis
		Detter
		Por large
		inpols.
10 logn	Λ,	Alog 1
100 logn		Algo 1
1000 logn	7	A. Jgo 1

Issues with Bigo
1 St Jssue:
When we say that alog I is better than algo 2 using BigO, we can only make that that claim for large
in put. 2nd Issue.
Algo 1: 2n2 + 4n Algo 2: 3n2
$O(u_5)$
When Big D is same we might have to look at number of identions
to look at number of ideactions to say which is better.

