

## Tree Density Approximators

## 1 Why

Can we approximate a density by a tree density similar to how we approximated a distribution with by a tree distribution.

## 2 Definition

We will use the differential relative entropy as a criterion of approximation. Given a density of  $\mathbb{R}^n$  and a tree, we want to find the optimal approximator among densities which factor according to a tree. We call such a density an approximator of the given density for the tree We call such a density an approximator of the given density for the given tree.

## 3 Result

**Proposition 1.** Let  $g: \mathbb{R}^n \to \mathbb{R}$  be a density and T be a tree on  $\{1, \ldots, n\}$ . The density  $f_T^*: \mathbb{R}^d \to \mathbb{R}$  defined by

$$f_T^* = g_1 \prod_{i \neq 1} g_{i|pa_i}$$

minimizes the differential relative entropy with q among all densities on  $\mathbb{R}^n$  which factor according to T (pa<sub>i</sub> is the parent of i in T, i = 2, ..., n).

*Proof.* Let  $f: \mathbb{R}^d \to \mathbb{R}$  be a density factoring according to T. First, express

$$f = f_1 \prod_{i=1} f_{i|\mathrm{pa}_i}$$

Second, recall that d(g, f) = h(g, f) - h(g). Since h(g) does not depend on f, f is a minimizer of d(g, f) if and only if f is a minimizer of h(g, f).

Third, express

$$h(g, f) = -\int_{\mathbf{R}^d} g \log f$$

$$= -\int_{\mathbf{R}^d} g(x) \left( \log f_i(x_i) + \sum_{i \neq 1} \log f_i \mid \operatorname{pa}_i(x_i, x_{\operatorname{pa}_i}) \right) dx$$

$$= h(g_1, f_1) + \sum_{i \neq 1} \left( \int_{\mathbf{R}} g_{\operatorname{pa}_i}(\xi) h(g_{i|\operatorname{pa}_i}(\cdot, \xi), f_{i|\operatorname{pa}_i}(\cdot, \xi)) d\xi \right)$$

which separates across  $f_1$  an  $f_{i|pa_i}(\cdot,\xi)$  for  $i=1,\ldots,n$  and  $\xi\in \mathbb{R}$ . In particular, since  $g_{pai}\geq 0$ , we can minimize the integrand pointwise.

Fourth, recall  $h(\cdot, \cdot) \geq 0$  and is zero on repeated pairs. So  $f_1 = g_1$  and  $f_{i|pa_i} = g_{i|pa_i}$  are solutions.