Теория вероятностей и математическая статистика

доц. Флегель Александр Валерьевич

flegel@cs.vsu.ru

2014

Литература

- Вентцель Е.С., Л.А. Овчаров. Теория вероятностей и её инженерные приложения. М.: Высш. шк., 2007.
- Чистяков В.П. Курс теории вероятностей. СПБ. : Лань, 2003.
- Вентцель Е.С., Л.А. Овчаров. Задачи и упражнения по теории вероятностей. М.: Высш. шк., 2003.
- **§ Гмурман В.Е.** *Теория вероятностей и математическая статистика.* М. : Высш. шк., 2072.

Основные понятия теории вероятностей

Теория вероятностей как математическая наука ставит своей задачей изучение статистических закономерностей, которые наблюдаются в **случайных явлениях** (процессах).

- Случайным явлением называют явление, которое при многократном повторении опыта (эксперимента) приводит к отличным друг от друга результатам (исходам).
- Элементарное событие ω это один из возможных исходов опыта (эксперимента).
- Пространство элементарных событий Ω это множество элементарных событий, если элементарным событиям соответствуют взаимоисключающие исходы.
- Случайное событие (или просто событие) есть любое подмножество множества Ω .

Испытания и события. Примеры.

Пример 1. Выстрел по мишени, разделенной на 4 области. Выстрел – это испытание (или опыт, или эксперимент). Попадание в определенную область мишени – событие.

Пример 2. Цветные шары в урне. Из урны берут наудачу один шар. Извлечение шара — испытание.

Появление шара определенного цвета – событие.

Операции над событиями

Операции над событиями совпадают с операциями над множествами.

• **Сумма событий** *A* и *B* есть событие

$$C = A + B$$
,

состоящее из элементарных событий, принадлежащих или A, или B, т.е. по крайней мере одному из событий.

• A + A = A, $A + \Omega = \Omega$.

Операции над событиями

• Разность событий А и В есть событие

$$C = A \setminus B$$
,

состоящее из элементарных событий, принадлежащих A и не принадлежащих B.

• Разность

$$\Omega \setminus \Omega = \emptyset$$

есть пустое множество, т.е. невозможное событие.

• Событие \overline{A} , *противоположное* событию A, определяется как разность:

$$\overline{A} = \Omega \setminus A$$
.

Операции над событиями

• **Произведение событий** *A* и *B* есть событие

$$C = A \cdot B$$
,

состоящее из элементарных событий, принадлежащих и A, и B, т.е. каждому из этих событий.

• События *A* и *B* называются *несовместными*, если их произведение есть невозможное событие:

$$A \cdot B = \emptyset$$
.

• Под *алгеброй событий* U понимают такой набор (класс) подмножеств из $\Omega \in U$, для которых из условий $A \in U$ и $B \in U$ следует, что $A \cdot B \in U$, $A + B \in U$ и $A \setminus B \in U$.

Индикатор события

• Индикатором события A называют числовую функцию $I_A(\omega)$, заданную на пространстве элементарных событий Ω :

$$I_{\mathcal{A}}(\omega) = \left\{ egin{array}{ll} 1, & \omega \in \mathcal{A} \ 0, & \omega
otin \mathcal{A} \end{array}
ight.$$
 или $\omega \in \overline{\mathcal{A}}$.

• $I_A(\omega) = I_B(\omega)$ только при условии, что события A и B идентичны, т.е. множества A и B состоят из одних и тех же элементарных событий.

Выполняются следующие соотношения:

- 1. $I_{\overline{A}} = 1 I_A$;
- 2. $I_{AB} = I_A I_B$;
- 3. $I_{A+B} = I_A(\omega) + I_B(\omega) I_A(\omega)I_B(\omega);$
- 4. $I_{A \setminus B} = I_{A\overline{B}} = I_A(1 I_B);$
- 5. $I_A I_A = I_\emptyset = 0$;
- 6. $I_{\Omega} = 1$;
- 7. $I_A I_A = I_{AA} = I_A$.

Вероятность

Вероятность события есть численная мера степени объективной возможности этого события.

На основании опыта мы считаем более вероятными те события, которые происходят чаще, менее вероятными – те события, которые происходят реже, мало вероятными – те. которые почти никогда не происходят. Таким образом, понятие вероятности события связано с опытным, практическим понятием частоты события.

- Вероятность функция события: P(A)
- Вероятность Р(достоверного события)= 1
- Вероятность Р(невозможного события)= 0
- $0 \le P(A) \le 1$

Классическое определение вероятности

Пусть результаты опыта обладают симметрией возможных исходов, тогда множество случаев представляет собой исчерпывающий набор (полную группу) его равновозможных и исключающих друг друга исходов. Про такой опыт говорят, что он сводится к схеме случаев.

Случай называется **благоприятным** событию A, если появление этого случая влечет за собой появление этого события.

• Если опыт сводится к схеме случаев, то вероятность события *A* в данном опыте можно вычислить как долю благоприятных случаев в общем их числе:

$$P(A) = \frac{m_A}{n}$$

где m_A – число случаев, благоприятных событию A; n – общее число случаев.

Пример 1. Набирая номер телефона, абонент забыл одну цифру и набрал ее наудачу. Найти вероятность того, что набрана нужная цифра.

Решение.

Событие A — набрана нужная цифра.

Абонент мог набрать любую из 10 цифр \Rightarrow общее число возможных элементарных исходов n=10. Эти исходы несовместны, равновозможны и образуют полную группу.

Благоприятствует событию A лишь один исход. Искомая вероятность:

$$P(A) = 1/10.$$

Пример 2. Указать ошибку "решения" задачи: "Брошены две игральные кости. Найти вероятность того, что сумма выпавших очков равна 4 (событие A)".

Решение.

Всего возможны 2 исхода испытания: сумма выпавших очков равна 4, сумма выпавших очков не равна 4. Событию A благоприятствует один исход: общее число исходов равно двум. Следовательно, искомая вероятность

$$P(A) = 1/2.$$

Пример 2. Указать ошибку "решения" задачи: "Брошены две игральные кости. Найти вероятность того, что сумма выпавших очков равна 4 (событие A)".

Решение.

Всего возможны 2 исхода испытания: сумма выпавших очков равна 4, сумма выпавших очков не равна 4. Событию A благоприятствует один исход: общее число исходов равно двум. Следовательно, искомая вероятность

$$P(A) = 1/2.$$

Ошибка этого решения состоит в том, что рассматриваемые исходы не являются *равновозможными*.

Пример 2. Указать ошибку "решения" задачи: "Брошены две игральные кости. Найти вероятность того, что сумма выпавших очков равна 4 (событие A)".

Правильное решение.

Общее число равновозможных исходов испытания равно n=6*6=36. Среди этих исходов благоприятствуют событию A только $m_A=3$ исхода:

Следовательно, искомая вероятность

$$P(A) = 3/36 = 1/12.$$

Относительная частота. Устойчивость относительной частоты

Относительной частотой события называют отношение числа испытаний, в которых событие появилось, к общему числу фактически произведенных испытаний.

 Takum образом, относительная частота события A определяется формулой

$$W(A) = m/n$$
,

где m — число появлений события, n — общее число испытаний.

• Определение вероятности не требует, чтобы испытания производились в действительности; определение же относительной частоты предполагает, что испытания были произведены фактически. Другими словами, вероятность вычисляют до опыта, а относительную частоту - после опыта.

Относительная частота. Устойчивость относительной частоты

- Свойство устойчивости относительной частоты W(A) состоит в том, что в различных опытах W(A) изменяется мало (тем меньше, чем больше произведено испытаний п), колеблясь около некоторого постоянного числа.
- Это постоянное число есть вероятность появления события P(A).
- Таким образом, если опытным путем установлена W(A), то полученное число можно принять за приближенное значение вероятности: $P(A) \approx W(A)$ при $n \to \infty$.

Пример. Опыты бросания монеты, в которых подсчитывали число появления "герба".

Число бросаний	Число появлений "герба"	Относительная частота
4040	2048	0,5069
12000	6019	0,5016
24000	12012	0,5005

Ограниченность классического определения вероятности. Статистическая вероятность

- Классическое определение вероятности предполагает, что число элементарных исходов испытания конечно. На практике же весьма часто встречаются испытания, число возможных исходов которых бесконечно.
- Часто невозможно представить результат испытания в виде совокупности элементарных событий. Еще труднее указать основания, позволяющие считать элементарные события равновозможными.
- Статистическое определение вероятности: в качестве статистической вероятности события принимают относительную частоту или число, близкое к ней.
- ullet Для существования статистической вероятности события A требуется:
 - возможность, хотя бы принципиально, производить неограниченное число испытаний, в каждом из которых событие A наступает или не наступает;
 - устойчивость относительных частот появления A в различных сериях достаточно большого числа испытаний.

Геометрические вероятности

• **Геометрические вероятности** – вероятности попадания точки в область (отрезок, часть плоскости и т. д.).

Пусть отрезок $A'B'=\ell$ составляет часть отрезка AB=L. На отрезок L наудачу поставлена точка. Это означает выполнение следующих предположений:

- \times поставленная точка может оказаться в любой точке отрезка L,
- imes вероятность попадания точки на отрезок ℓ пропорциональна длине этого отрезка и не зависит от его расположения относительно отрезка L.

В этих предположениях вероятность попадания точки на отрезок ℓ определяется равенством

$$P = \ell/L$$
.

A A' B' B'

Геометрические вероятности. Общее определение

• Если обозначить меру (длину, площадь, объем) области через mes, то вероятность попадания точки, брошенной наудачу в область g — часть области G, равна

$$P = \frac{\operatorname{mes} g}{\operatorname{mes} G}.$$

Замечание:

В случае классического определения вероятность достоверного (невозможного) события равна единице (нулю): справедливы и обратные утверждения (например, если вероятность события равна нулю, то событие невозможно).

В случае геометрического определения вероятности обратные утверждения не имеют места. Например, вероятность попадания брошенной точки в одну определенную точку области *G* равна нулю, однако это событие может произойти, и, следовательно, не является невозможным.

Аксиомы теории вероятностей

Вероятность – функция случайного события. \Rightarrow Область определения?

 Ω — произвольное пространство элементарных событий, U — некоторая система случайных событий.

Определение: Система событий U называется алгеброй событий, если

- $\Omega \in U$.
- $oldsymbol{2}$ Из того, что $A\in U$ и $B\in U$, следует, что

$$A \cdot B \in U$$
, $A + B \in U$, $A \setminus B \in U$.

- Из 1 и 2 следует, что $\emptyset = \Omega \setminus \Omega \in U$.
- Наименьшей системой подмножеств, являющейся алгеброй, является система $U = \{\emptyset, \Omega\}$.

Примеры алгебры событий

Если Ω – конечное множество, то система всех подмножеств будет также конечным множеством.

Пример 1. Подбрасывание игральной кости.

$$\Omega = \{1, 2, ..., 6\}$$

U состоит из подмножеств Ω :

$$\emptyset, \{1\}, \{2\}, ..., \{6\}; \\ \{1,2\}, \{1,3\}, ..., \{5,6\}; \{1,2,3\}, ...; \\ \{1,2,3,4,5,6\} = \Omega.$$

Пример 2. Пусть $\Omega = \{(u, v) : 0 < u < 1, 0 < v < 1\}$ – единичный квадрат в плоскости. Объединение, пересечение и разность квадрируемых фигурявляется квадрируемой фигурой.

σ -алгебра

Определение: Алгебра событий U называется σ -алгеброй или борелевской алгеброй, если из того, что $A_n \in U, n = 1, 2, ...$, следует

$$\bigcup_{n=1}^{\infty} A_n \in U, \quad \bigcap_{n=1}^{\infty} A_n \in U.$$

• В дальнейшем мы будем рассматривать модели случайных явлений, в которых можно ограничиться алгеброй событий и не переходить к σ -алгебре.

Пусть каждому событию ставится в соответствие некоторое число, называемое *вероятностью события*.

igoplus Bероятностью называется числовая функция P(A), заданная на множестве событий, образующих σ -алгебру \mathcal{F} , если выполняются следующие аксиомы.

Аксиома 1

Вероятность любого события А неотрицательна:

$$0 \le P(A). \tag{1}$$

Аксиома 2

Вероятность достоверного события равна единице:

$$P(\Omega) = 1. (2)$$

Аксиома 3 (сложения вероятностей)

Если $A_1,A_2,\ldots,A_n,\ldots$ — несовместные события, то

$$P\left(\sum_{i=1}^{\infty} A_i\right) = \sum_{i=1}^{\infty} P(A_i).$$
 (3)

Ныне принятое аксиоматическое определение вероятности было введено в 1933 г. А.Н. Колмогоровым.

Аксиомы теории вероятностей позволяют вычислять вероятности любых событий (подмножеств пространства Ω) с помощью вероятностей элементарных событий. Вопрос о том, как определить вероятности элементарных событий, при этом не рассматривается. На практике они определяются либо из соображений, связанных с симметрией опыта (например, для симметричной игральной кости естественно считать одинаково вероятным выпадение каждой из граней), либо же на основе опытных данных (частот).

 \Diamond Заметим, что вероятность события A, определённая аксиомами 1—3, задается не на пространстве Ω , а на некоторой σ -алгебре событий, определённой на Ω . Можно показать, что существуют множества $A \subset \Omega$, для которых нельзя определить вероятность, которая удовлетворяла бы аксиомам 1—3. Поэтому в дальнейшем мы будем рассматривать только те множества $A \subset \Omega$, для которых мы можем определить вероятность.

lacktriangle Тройка $R=\langle\Omega,\mathcal{F},P
angle$, где Ω — пространство элементарных исходов, $\mathcal{F}-\sigma$ -алгебра его подмножеств, а P — вероятностная мера на \mathcal{F} , называется вероятностным пространством.

Итак, вероятность есть функция $P \colon \mathcal{F} \to R$, удовлетворяющая условиям аксиом 1–3, или, как говорят, нормированная (вероятностная) мера, заданная на множестве \mathcal{F} . \Diamond Можно показать, что аксиома 3 эквивалентна двум следующим аксиомам.

Аксиома 4

Если A и B несовместны, то P(A + B) = P(A) + P(B).

Аксиома 5

Если
$$A_1\supset A_2\supset A_3\supset\cdots\supset A_n\supset\ldots$$
 и $A=\bigcap_{i=1}^\infty A_i$ или $A_1\subset A_2\subset A_3\subset\cdots\subset A_n\subset\ldots$ и $A=\sum_{i=1}^\infty A_i$, то $P(A)=\lim_{n\to\infty}P(A_n).$

Рассмотрим основные свойства вероятности.

Свойство 1

Вероятность невозможного события равна нулю:

$$P(\emptyset) = 0. (4)$$

Действительно, $\Omega=\Omega+\emptyset$, а события Ω и \emptyset несовместны: $\Omega\emptyset=\emptyset$. Тогда, согласно третьей аксиоме теории вероятностей,

$$P(\Omega) = P(\Omega + \emptyset) = P(\Omega) + P(\emptyset).$$

Отсюда следует, что $P(\emptyset)=0$, так как, согласно аксиоме 2, $P(\Omega)=1$.

Для любого события A вероятность противоположного события \overline{A} выражается равенством

$$P(\overline{A}) = 1 - P(A). \tag{5}$$

Действительно, $\Omega=A+\overline{A}$, а события A и \overline{A} несовместны: $A\overline{A}=\emptyset$. Следовательно,

$$P(\Omega) = P(A + \overline{A}) = P(A) + P(\overline{A})$$

или

$$1 = P(A) + P(\overline{A}).$$

Если событие A влечёт за собой событие B, т.е. $A \subset B$, то вероятность события C, где C — разность событий B и A, определяется соотношением

$$P(C) = P(B \setminus A) = P(B) - P(A).$$

Действительно, если $A \subset B$, то событие B можно представить в виде суммы несовместных событий $B = A + (B \setminus A)$. Тогда

$$P(B) = P(A) + P(B \setminus A),$$

откуда следует, что (см. рис. 1)

$$P(B \setminus A) = P(B) - P(A)$$
.

Рис. 1:

Если событие A влечёт за собой событие B, т.е. $A \subset B$, то вероятность события A не может быть больше вероятности события B, т.е. $P(A) \leq P(B)$.

Действительно, в силу предыдущего свойства, если $A \subset B$, то $P(A) = P(B) - P(B \setminus A)$. Но, согласно аксиоме 1,

$$P(B \setminus A) \geq 0$$
,

откуда следует, что (см. рис. 1)

$$P(A) \leq P(B)$$
.

Вероятность любого события заключена между нулем и единицей:

$$0 \leq P(A) \leq 1,$$

Справедливость этого утверждения непосредственно следует из аксиом 1 и 2 и свойства 4.

Аксиоматическое определение вероятности

Числовая функция P, определённая на классе событий U, называется вероятностью, если выполняются следующие условия (аксиомы):

- \bigcirc U есть алгебра событий.
- 2 Условие неотрицательности вероятности:

$$P(A) \geq 0 \quad \forall \quad A \in U.$$

Условие нормировки:

$$P(\Omega) = 1$$
.

lacktriangle Условие аддитивности. Если $A\cdot B=\emptyset$, т.е. события A и B несовместны, то

$$P(A+B) = P(A) + P(B).$$

⑤ Условие непрерывности. Для любой убывающей последовательности событий $A_1 \supset A_2 \supset ... \supset A_n \supset ...$ из алгебры событий U такой, что

$$\bigcap_{n=1}^{\infty} A_n = \emptyset,$$

справедливо равенство

$$\lim_{n\to\infty}P(A_n)=0.$$

Вероятностное пространство

Тройку (Ω, U, P) , в которой U является σ -алгеброй и P удовлетворяет аксиомам 2-5, называют **вероятностным пространством.**

Пример Подбрасывание игральной кости. $\Omega = \{1, 2, 3, 4, 5, 6\}.$

U состоит из всех подмножеств Ω .

Произвольное случайное событие $A \in U$: $A = \{\omega_{i_1}, \omega_{i_2}, ..., \omega_{i_k}\}$, где индексы $\{i_1, i_2, ..., i_k\} \in \{1, ..., 6\}$ все различны; k – число элементов в A.

Событие $B = \{2, 4, 6\}$ — выпало четное сисло очков

$$(k = 3, i_1 = 2, i_2 = 4, i_3 = 6).$$

Для пустого множества \emptyset : k=0.

Определим на множестве U функцию P(A):

$$P(A) = k/6$$

где k — число элементов в A.

Проверить, что для P(A) аксиомы 2-4 выполняются!

Аксиоматическое определение вероятности

Пример с игральной костью (продолжение)

Пусть задано 6 произвольных чисел $p_i\geqslant 0,\ i=1,...,6,$ удовлетворяющих условию

$$p_1 + p_2 + \dots + p_6 = 1.$$

Определим на U функцию P(A), поставив событию $A = \{\omega_{i_1}, \omega_{i_2}, ..., \omega_{i_k}\}$ в соответствие число

$$P(A) = p_{i_1} + p_{i_2} + ... + p_{i_k}$$

При различных наборах $p_1, p_2, ..., p_6$ будем получать разные функции P(A), удовлетворяющие аксиомам.

• Вероятность не определяется однозначно системой аксиом!

Задача выбора из двух моделей (или двух гипотез) является одной из задач математической статистики.

Свойство 6

Вероятность суммы любых двух событий равна сумме вероятностей этих событий минус вероятность их совместного появления:

$$P(A+B) = P(A) + P(B) - P(AB)$$

Действительно, событие A+B можно представить как сумму несовместных событий:

$$A+B=B+(A\setminus (AB)).$$

Тогда

$$P(A+B)=P(B)+P(A\setminus (AB)).$$

$$AB \subset A \Rightarrow P(A \setminus (AB)) = P(A) - P(AB).$$

B частности, если события A и B несовместны, то P(AB)=P(arnothing)=0 и

$$P(A+B)=P(A)+P(B).$$

Свойство 7

Вероятность суммы событий не превосходит сумму вероятностей этих событий:

$$P(A+B) \leqslant P(A) + P(B)$$

Справедливость свойства 6 следует из теоремы сложения:

$$P(A+B) = P(A) + P(B) - P(AB)$$

и аксиомы 1: $P(AB) \geqslant 0$.

 Теорема сложения вероятностей (Свойство 6) может быть обобщена на любое количество событий.

Свойство 8 (общее правило сложения вероятностей)

Вероятность суммы n событий $A_1, A_2, ..., A_n$ может быть вычислена по формуле:

$$P\left(\sum_{i=1}^{n} A_{i}\right) = \sum_{i=1}^{n} P(A_{i}) - \sum_{1 \leq i < j}^{n} P(A_{i}A_{j}) + \sum_{1 \leq i < j < k}^{n} P(A_{i}A_{j}A_{k})$$

$$- \sum_{1 \leq i < j < k < l}^{n} P(A_{i}A_{j}A_{k}A_{l}) + \dots + (-1)^{n-1} P(A_{1}A_{2} \cdots A_{n}).$$

Доказательство Свойства 8:

Соотношение доказывается методом математической индукции.

Оно справедливо для n=2: $P(A_1+A_2)=P(A_1)+P(A_2)-P(A_1A_2)$.

Предположим теперь, что оно справедливо для суммы n-1 событий и докажем его справедливость для суммы n событий.

Для суммы n-1 событий $A_2, A_3, ..., A_n$ имеем

$$P\left(\sum_{i=2}^{n} A_{i}\right) = \sum_{i=2}^{n} P(A_{i}) - \sum_{2 \leq i < j}^{n} P(A_{i}A_{j}) + \sum_{2 \leq i < j < k}^{n} P(A_{i}A_{j}A_{k}) - \dots$$

Для суммы n-1 событий $A_1A_2,\ A_1A_3,\ ...,\ A_1A_n$ по той же формуле имеем

$$P\left(\sum_{i=2}^{n} A_{1}A_{i}\right) = \sum_{i=2}^{n} P(A_{1}A_{i}) - \sum_{2 \leq i < j}^{n} P(A_{1}A_{i}A_{j}) + \sum_{2 \leq i < j < k}^{n} P(A_{1}A_{i}A_{j}A_{k}) - \dots$$

Доказательство Свойства 8 (продолжение):

Тогда, представив сумму n событий в виде двух событий: A_1 и $\sum_{i=2}^n A_i$, получим

$$P\left(\sum_{i=1}^{n} A_{i}\right) = P\left(A_{1} + \sum_{i=2}^{n} A_{i}\right) = P(A_{1}) + P\left(\sum_{i=2}^{n} A_{i}\right) - P\left(A_{1} \sum_{i=2}^{n} A_{i}\right)$$

$$= P(A_{1}) + \sum_{i=2}^{n} P(A_{i}) - \sum_{2 \leq i < j}^{n} P(A_{i}A_{j}) + \sum_{2 \leq i < j < k}^{n} P(A_{i}A_{j}A_{k}) - \dots$$

$$- \left[\sum_{i=2}^{n} P(A_{1}A_{i}) - \sum_{2 \leq i < j}^{n} P(A_{1}A_{i}A_{j}) + \sum_{2 \leq i < j < k}^{n} P(A_{1}A_{i}A_{j}A_{k}) - \dots\right]$$

$$= \sum_{i=1}^{n} P(A_{i}) - \sum_{1 \leq i < j}^{n} P(A_{i}A_{j}) + \sum_{1 \leq i < j < k}^{n} P(A_{i}A_{j}A_{k}) - \dots +$$

$$+ (-1)^{n-1} P(A_{1}A_{2} \cdots A_{n}). \quad \Box$$

В частности, для трёх событий A, B, C:

$$P(A + B + C) = P(A) + P(B) + P(C) - P(AB) - P(AC) - P(BC) + P(ABC).$$

Примеры вероятностных пространств

- Классическая схема
- Дискретное вероятностное пространство
- Геометрические вероятности
- Абсолютно непрерывные вероятностные пространства

- $\Omega = \{\omega_1, \omega_2, \dots, \omega_n\}$
- ullet Алгебра событий U состоит из всех подмножеств A множества Ω

$$A = \{\omega_{i_1}, \omega_{i_2}, \dots, \omega_{i_k}\}, \qquad 1 \leqslant i_1 < i_2 < \dots < i_k \leqslant n, \qquad k = 0, 1, \dots, n$$

 $P(A) = \frac{k}{n}.$

Вероятностью события A называется отношение числа исходов, благоприятствующих событию A, к общему числу исходов.

События, состоящие из одного элементарного события, равновероятны:

$$P(\omega_1) = \ldots = P(\omega_n) = \frac{1}{n}.$$

В упражнениях часто приводится только описание опыта или явления и не дается математическая формулировка. Предполагается, что решение должно состоять из двух частей:

- 1) выбор подходящей модели для описания опыта и математическая формулировка задачи;
- 2) решение математической задачи.

Пример 1. Из урны, содержащей M белых и N-M черных шаров, наудачу извлекается сразу n шаров. Какова вероятность того, что среди выбранных n шаров окажется ровно m белых?

Решение.

- Элементарные исходы опыта равновероятны.
- Элементарные события любые подмножества по n элементов, выбранные из множества N шаров. Число таких подмножеств $= C_N^n$.
- Каждый набор шаров, входящий в интересующее событие A_m состоит из двух частей:
 - т белых шаров
 - 2) n-m чёрных шаров
- ullet Число элементарных событий в A_m равно $C_M^m C_{N-M}^{n-m}$

$$P(A_m) = P_n(m, N, M) = \frac{C_M^m C_{N-M}^{n-m}}{C_N^m}, \quad m = 0, 1, \dots$$

 $P_n(0,N,M), P_n(1,N,M), \ldots$ – гипергеометрическое распределение.

Пример 2. Ребёнок, играя десятью кубиками, на которых написаны буквы М, М, Т, Т, А, А, А, К, И, Е, сложил слово "МАТЕМАТИКА". Можно ли считать, что ребенок грамотный?

Решение.

- Математическая формулировка: если ребёнок неграмотный, то предполагаем, что расположение кубиков "МАТЕМАТИКА" не более привлекательно по сравнению с остальными. Оценим вероятность события A, состоящего в расположении кубиков "МАТЕМАТИКА".
- Пространство элементарных событий все возможные перестановки 10 кубиков. Число таких перестановок 10!.
- Число элементарных событий, входящих в А:
 - 1) 3 кубика А можно расположить 3!=6 способами
 - 2) кубики Т располагаются 2 способами (аналогично кубики М)
- Число элементарных событий в A равно $2 \cdot 2 \cdot 6 = 24$

$$P(A) = \frac{24}{101} = \frac{1}{15120}.$$
 \Rightarrow Событие невозможное?

Дискретное вероятностное пространство

- $\Omega = \{\omega_1, \omega_2, \dots, \omega_n, \dots\}$ счётное множество.
- ullet σ -алгебра событий U набор всех подмножеств множества Ω
- p_n (n = 1, 2, ...) последовательность неотрицательных чисел:

$$\sum_{n=1}^{\infty} p_n = 1.$$

• $\forall A \in U$: $P(A) = \sum_{\{n,\omega_n \in A\}} p_n$.

Дискретное вероятностное пространство

n-мерным дискретным вероятностным пространством назовём тройку (Ω, U, P) , в которой

- $\Omega = \{u_1, \dots, u_n\}$ n-мерное дискретное пространство элементарных событий,
- U система всех подмножеств множества Ω ,
- ullet для любого $A \in \Omega$

$$P(A) = \sum_{(u_1(I_1),...,u_n(I_n))\in A} p_{u_1(I_1),...,u_n(I_n)},$$

$$p_{u_1(l_1),...,u_n(l_n)} \geqslant 0, \qquad \sum_{l_1,...,l_n=1}^{\infty} p_{u_1(l_1),...,u_n(l_n)} = 1.$$

Геометрические вероятности

Актуально для опытов с бесконечным числом "равновероятных" исходов.

$$P(A) = \frac{\operatorname{mes} A}{\operatorname{mes} \Omega}.$$

Задача Бюффона. Плоскость расчерчена параллельными прямыми, расстояние между которыми равно 2a. На плоскость брошена игла длины 2l (l < a). Найти вероятность того, что игла пересечет какую-нибудь прямую.

Решение.

$$\Omega = \{(\varphi, u): \ 0 \leqslant \varphi \leqslant \pi, \ 0 \leqslant u \leqslant a\}$$

Пересечение иглы с прямой:

$$A = \{(\varphi, u) : u \leqslant I \sin \varphi\}$$

$$S(A) = \int_0^{\pi} l \sin \varphi d\varphi = 2l, \quad S(\Omega) = a\pi,$$

$$P(A) = S(A)/S(\Omega) = \frac{2I}{a\pi}.$$

Абсолютно непрерывные вероятностные пространства

Пусть $\Omega=\{u_1,\ldots,u_n\}$ — n-мерное действительное евклидово пространство, $\pi(u_1,\ldots,u_n)$ — неотрицательная функция, интегрируемая по Риману на любой квадрируемой области из Ω .

Будем предполагать, что существует несобственный интеграл

$$\int \cdots \int_{\Omega} \pi(u_1,\ldots,u_n)du_1\cdots du_n=1.$$

U — алгебра, порожденная квадрируемыми областями в Ω .

$$\forall A \in U: P(A) = \int_{A} \cdots \int_{A} \pi(u_1, \ldots, u_n) du_1 \cdots du_n.$$

• Схема геометрических вероятностей является абсолютно непрерывным вероятностным пространством. Например, для n=2:

$$\pi(u_1, u_2) = \begin{cases} 1/S(G), & (u_1, u_2) \in G \\ 0, & (u_1, u_2) \notin G \end{cases}$$