				ı	E_15013.0 – aa 15/16
Nome e Cognome:				□LUN □MAR Data:	
equivalente) mogiunzione BE poscheda) realizza R_p . Dove non s 1. Come prim	ontato in configurente scegliere se uto per la scorsa es specificato altrime la operazione, da vi per farlo al megl	Transistor BJT è realizzare un amplific razione a emettitore comparare il circuito (partitore operienza, oppure la versionti, si consiglia di sceglier compiere prima di monta io). Inoltre misurate V_0 (a R_C [] 2.2 kohm nominale	nune e opportunamente con potenziometro con in ne semplificata presenta e $R_C = 1$ kohm nominale re il circuito, misurate	o un transistor npn polarizzato. Per la n serie R_P , schema no ta in figura, in cui si le resistenze R_C (tutt	polarizzazione della on riportato in questa usa la sola resistenza
regime a opportuna opportunan schema del da ottener mantenervi e di interdi riportando righe, nel valore di potenzion	enza il transistor ttivo. Dunque amente R_P , or nente il potenzion le precedente espere tale condizion "distanti" dai regizione. Misurate V i valori in tabella caso vogliate espere R_P , o di repetato). Determina corrente continua	dimensionate vvero regolate vvero regolate netro (se usate lo rienza), in modo ne, cercando di mi di saturazione V_{BE} , I_B , V_{CE} , I_C (la tabella ha più olorare più di un egolazione del nate inoltre il	basetta transistor R R 560 ohm	R_C	to CH2 osc.
R_P (nominale)	V _{BE} []	<i>I_B</i> []	V _{CE} []	I_C []	$\beta_F = I_C/I_B$

3. Se il grafico delle curve caratteristiche di uscita è disponibile (spero di sì, possibilmente per lo stesso componente da voi impiegato, altrimenti sono disponibili delle curve "standard"), tracciate grossolanamente le rette di carico corrispondenti ai valori nominali di R_C (tutti e due) e, altrettanto grossolanamente, individuate i punti di lavoro del transistor. Confrontateli con quanto misurato e commentate nel riquadro sulla congruenza (riportate anche l'espressione della retta di carico).

Commenti:	Espressione della retta di carico

4. Aggiungete al circuito i componenti necessari all'invio di un <u>piccolo</u> segnale alternato v_{in} all'ingresso, secondo lo schema riportato a pagina seguente (si consiglia di selezionare f ~ kHz, o qualche kHz). L'insieme partitore/condensatore di disaccoppiamento è preassemblato in un telaietto: fate attenzione a collegare le boccole! L'ampiezza della forma d'onda (sinusoidale) prodotta dal generatore va aggiustata in modo da avere v_{in} "sufficientemente" piccolo. Potete usare il solito filtro passa-basso montato su TEE-BNC per ridurre il rumore ad alta frequenza nella lettura di v_{in}. Page 1 of 2

5. Per un certo valore di I_B (corrispondente al funzionamento in regime attivo), misurate le ampiezze, o ampiezze picco-picco, v_{in} e v_{out} e determinate il guadagno in tensione A_v per piccoli segnali oscillanti. L'operazione deve essere compiuta per le due scelte di R_C e usando ampiezze v_{in} sufficientemente piccole da evitare che siano apprezzabili (a occhio!) distorsioni nella forma

	Valore prescelto	$I_B =$	[]
$R_{C} \\ \text{(nominale)}$	v _{in}	v _{out}	$A_{v} = v_{out} / v_{in}$	$oldsymbol{v}_{in,MAX}$ [
1 kohm				
2.2 kohm				

d'onda in uscita. Stimate pure (grossolanamente) la massima ampiezza $v_{in,MAX}$ per cui le distorsioni sono non apprezzabili verifica (può essere utile, solo per questa stima, impiegare un'onda triangolare, che permette di apprezzare meglio le deformazioni). Scrivete nel riquadro la relazione che conduce al valore atteso $A_{v,att}$ e commentate sulla congruenza tra misure e aspettative (o stime). Per la stima delle aspettative, potete porre $\beta_f = \beta_F$, oppure eseguire una "misura" di β_f .

Commenti:	Espressione di $A_{v,att}$

6. Aggiungete una resistenza R_E in serie tra emettitore e linea di terra: sceglietene il valore opportunamente (si consiglia comunque $R_E < 68$ kohm) e misuratela. Ripetete le misure del punto precedente. Scrivete nel riquadro la (nuova) espressione per $A_{v,att}$ e commentate ancora sulla congruenza, aggiungendo, se possibile, ulteriori osservazioni sulle modifiche dovute a R_E .

Valore preso	celto: R_E =	[$]$; $I_B =$	[]
$R_{C} \\ \text{(nominale)}$	[]	$egin{array}{c} v_{out} \ [&] \end{array}$	$A_{v} = v_{out} / v_{in}$	$egin{array}{c} oldsymbol{v}_{\emph{in},MAX} \ oldsymbol{\left[} \end{array}$	
1 kohm					
2.2 kohm					

Commenti:	Nuova espressione di $A_{v,att}$
	Page 2 of 2