Universitatea Babeș-Bolyai, Facultatea de Matematică și Informatică Consultații la Matematică pentru pregătirea concursului de admitere 2020

11 ianuarie 2020

Asist. drd. Tudor Micu

Polinoame

Introducere

Vom privi polinoamele într-o variabilă din două puncte de vedere:

1. (Intuitiv) Un polinom este o expresie care conține simbolul X și elemente dintr-un inel R (de exemplu \mathbb{Z} , \mathbb{Z}_n , orice corp), legate între ele prin operații de adunare și înmulțire:

$$P \in R[X], \ P = a_0 + a_1 X + \ldots + a_n X^n$$

Înzestrăm mulțimea R[X] cu o adunare și o înmulțire, definite astfel încât să respecte regulile aritmetice uzuale:

$$P = a_0 + a_1 X + \dots + a_n X^n$$

$$Q = b_0 + b_1 X + \dots + b_n X^n + \dots + b_m X^m$$

$$P + Q := (a_0 + b_0) + (a_1 + b_1) X + \dots + (a_n + b_n) X^n + b_{n+1} X^{n+1} + \dots + b_m X^m$$

$$PQ := (a_0 b_0) + (a_0 b_1 + a_1 b_0) X + (a_0 b_2 + a_1 b_1 + a_2 b_0) X^2 + \dots + (a_n b_m) X^{m+n}$$

- 2. (Riguros) Un polinom este un şir finit de elemente dintr-un inel R.
 - f şir de elemente din R:

$$f: \mathbb{N} \to R \iff (f(0), f(1), \dots, f(n), \dots)$$

- f şir finit $\iff \exists n \text{ astfel încât } \forall k > n : f(k) = 0$
- $(f+g)(i) := f(i) + g(i), \forall i \in \mathbb{N};$

•
$$(fg)(i) := \sum_{j=0}^{i} f(j) \cdot g(i-j);$$

•
$$(0,1,0,0,\ldots) =: X$$

Se poate arăta prin inducție că

$$X^n = (0, 0, \dots, 0, 1, 0, \dots),$$

unde 1 se află pe poziția n + 1.

Legătura dintre cele două puncte de vedere este următoarea:

$$f: \mathbb{N} \to R \iff P = f(0) + f(1) \cdot X + f(2) \cdot X^2 + \dots + f(n) \cdot X^n$$

$$(0, 1, 0, \dots) \iff P = X$$

$$(a, 0, 0, \dots) \iff P = a$$

Gradul unui polinom

Definiție. Fie R un inel, $f = a_0 + a_1X + ... + a_nX^n \in R[X]$, iar $a_n \neq 0$. Definim gradul polinomului f prin grad(f) := n.

- dacă $f = a \neq 0$, atunci grad(f) = 0;
- dacă f = 0, atunci grad $(f) = -\infty$;
- $\operatorname{grad}(f+g) \leq \max(\operatorname{grad}(f),\operatorname{grad}(g));$

$$- (1 + 2X + X^{2}) + (2 + X^{3}) = 3 + 2X + X^{2} + X^{3}$$
$$- (1 + X^{2}) + (X - X^{2}) = 1 + X$$

• $\operatorname{grad}(fg) \leq \operatorname{grad}(f) + \operatorname{grad}(g)$.

- dacă R este inel integru (ex. corp) atunci

$$grad(fg) = grad(f) + grad(g)$$

- în
$$\mathbb{R}$$
 (sau \mathbb{Z}): $(2+3X+6X^3)(1+X^2)=6X^5+9X^3+2X^2+3X+2$;

- în
$$\mathbb{Z}_4$$
: $(\hat{2}X^2 + \hat{3}X)(\hat{2}X^7 + \hat{1}) = \hat{2}X^8 + \hat{2}X^2 + \hat{3}X$.

Polinoame și funcții polinomiale

În ceea ce urmează vom evidenția diferențele dintre noțiunile de **polinom** și de **funcție polinomială**. Considerăm inelele R și S cu $R \subseteq S$ și polinomul $f \in R[X]$, $f = a_0 + a_1X + \ldots + a_nX^n$.

Definiție. Pentru fiecare $\alpha \in S$ definim valoarea lui f în α :

$$f(\alpha) := a_0 + a_1 \alpha + \ldots + a_n \alpha^n$$

Funcția definită prin

$$\widetilde{f}: S \to S$$
 $x \mapsto f(x)$

se numește funcția polinomială pe S asociată polinomului f.

Exemple. $f = X^2 + 1 \in \mathbb{R}[X], R = \mathbb{R}$

• $S = \mathbb{C}$:

$$\widetilde{f}: \mathbb{C} \to \mathbb{C}$$

$$x \mapsto x^2 + 1$$

$$i \mapsto 0$$

$$1 \mapsto 2$$

• $S = \mathbb{R}$:

$$\widetilde{f}: \mathbb{R} \to \mathbb{R}$$

$$x \mapsto x^2 + 1$$

$$1 \mapsto 2$$

• $S = \mathcal{M}_2(\mathbb{R})$:

$$\widetilde{f}: \mathcal{M}_{2}(\mathbb{R}) \to \mathcal{M}_{2}(\mathbb{R})$$

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} \mapsto \begin{pmatrix} a & b \\ c & d \end{pmatrix}^{2} + I_{2} = \begin{pmatrix} a^{2} + bc + 1 & ab + bd \\ ac + cd & bc + d^{2} + 1 \end{pmatrix}$$

$$\begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix} \mapsto \begin{pmatrix} 2 & 1 \\ 1 & 0 \end{pmatrix}$$

• f poate fi, de exemplu, interpretat gi ca un polinom peste \mathbb{Z}_4 , $f = X^2 + \hat{1}$.

Atunci pentru $S = \mathbb{Z}_4$ avem:

$$\widetilde{f}: \mathbb{Z}_4 \to \mathbb{Z}_4$$

$$\widehat{0} \mapsto \widehat{1}$$

$$\widehat{1} \mapsto \widehat{2}$$

$$\widehat{2} \mapsto \widehat{1}$$

$$\widehat{3} \mapsto \widehat{2}$$

Observație. Două polinoame distincte pot defini aceeași funcție polinomială pe un inel. Fie $f = X^3 - X$ și $g = X^9 - X$, polinoame cu coeficienți în \mathbb{Z}_3 . Atunci funcțiile polinomiale

asociate acestora sunt:

$$\widetilde{f}: \mathbb{Z}_3 \to \mathbb{Z}_3$$
$$\widehat{0} \mapsto \widehat{0}$$
$$\widehat{1} \mapsto \widehat{0}$$
$$\widehat{2} \mapsto \widehat{0}$$

$$\widetilde{g}: \mathbb{Z}_3 \to \mathbb{Z}_3$$
$$\widehat{0} \mapsto \widehat{0}$$
$$\widehat{1} \mapsto \widehat{0}$$
$$\widehat{2} \mapsto \widehat{0}$$

Teorema împărțirii cu rest pentru numere întregi și polinoame peste un corp

\mathbb{Z}	K[X]
$\forall a,b \in \mathbb{Z}$	$\forall f,g \in K[X]$
cu $b \neq 0$	cu $g \neq 0$
$\exists ! q, r \in \mathbb{Z}$	$\exists !q,r \in K[X]$
a.î. $a = b \cdot q + r$	a.î. $f = g \cdot q + r$
şi $0 \le r < b $	$\operatorname{grad}(r) < \operatorname{grad}(g)$

Probleme propuse

1. Fie $f \in \mathbb{C}[X]$, $f = \alpha^2 - 16 + (\alpha + 4\beta)X + (\beta^2 - 1)X^2$.

Pentru ce valori ale parametrilor $\alpha, \beta \in \mathbb{C}$ polinomul f este polinomul nul?

2. Fie $f \in \mathbb{Z}_3[X], f = a + bX + cX^2$.

Să se determine polinomul f, știind că \widetilde{f} este egală cu funcția polinomială atașată polinomului $g \in \mathbb{Z}_3[X], g = \hat{2}X^2 - X + \hat{2}.$

- 3. Să se determine polinoamele $f\in\mathbb{R}[X]$ de gradul 3, știind că f împărțit la X^2+2X dă restul $r_1=X+2$ și împărțit la X^2-X dă restul $r_2=7X+2$.
- 4. Să se determine $m \in \mathbb{R}$ astfel încât restul împărțirii lui $f = X^4 (m^2 1)X 8i$ la (X + i) să fie un număr real.