

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 6: C12Q 1/68, C07H 21/04, C12N 15/09		A1	(11) International Publication Number: WO 96/38590 (43) International Publication Date: 5 December 1996 (05.12.96)
(21) International Application Number: PCT/US96/08197 (22) International Filing Date: 31 May 1996 (31.05.96)		(74) Agents: MILLMAN, Robert, A. et al; Morrison & Foerster LLP., 2000 Pennsylvania Avenue, N.W., Washington, DC 20006-1888 (US).	
(30) Priority Data: 08/458,434 2 June 1995 (02.06.95)		US	(81) Designated States: AL, AM, AT, AU, AZ, BB, BG, BR, BY, CA, CH, CN, CZ, DE, DK, EE, ES, FI, GB, GE, HU, IS, JP, KE, KG, KP, KR, KZ, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, TJ, TM, TR, TT, UA, UG, US, UZ, VN, ARIPO patent (KE, LS, MW, SD, SZ, UG), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, ML, MR, NE, SN, TD, TG).
(60) Parent Application or Grant (63) Related by Continuation US Filed on		Not furnished (CIP) Not furnished	
(71) Applicant (for all designated States except US): OSTEO-SCREEN, INC. [US/US]; Suite 201, 2040 Babcock Road, San Antonio, TX 78229 (US).			
(72) Inventors; and (75) Inventors/Applicants (for US only): HARRIS, Stephen, E. [US/US]; 9209 Pony Express, San Antonio, TX 78225 (US). MUNDY, Gregory, R. [US/US]; 3719 Morgan's Creek, San Antonio, TX 78230 (US). GHOSH-CHOUDHURY, Nandini [IN/US]; 7615 Aspen Park, San Antonio, TX 78249 (US). FENG, Jian, Q. [CN/US]; 10615 Lost Bluff, San Antonio, TX 78240 (US).			
<p style="text-align: center;">Published With international search report. Before the expiration of the time limit for amending the claims and to be republished in the event of the receipt of amendments.</p>			
(54) Title: METHODS AND COMPOSITIONS FOR IDENTIFYING OSTEOGENIC AGENTS			
(57) Abstract Methods and compositions for identifying osteogenic agents are disclosed, wherein a bone morphogenetic protein promoter is utilized in an assay system to modulate the production of an assayable product of a reporter gene.			

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AM	Armenia	GB	United Kingdom	MW	Malawi
AT	Austria	GE	Georgia	MX	Mexico
AU	Australia	GN	Guinea	NE	Niger
BB	Barbados	GR	Greece	NL	Netherlands
BE	Belgium	HU	Hungary	NO	Norway
BF	Burkina Faso	IZ	Ireland	NZ	New Zealand
BG	Bulgaria	IT	Italy	PL	Poland
BJ	Benin	JP	Japan	PT	Portugal
BR	Brazil	KZ	Kenya	RO	Romania
BY	Belarus	KG	Kyrgyzstan	RU	Russian Federation
CA	Canada	KP	Democratic People's Republic of Korea	SD	Sudan
CF	Central African Republic	KR	Republic of Korea	SE	Sweden
CG	Congo	KZ	Kazakhstan	SG	Singapore
CH	Switzerland	LI	Liechtenstein	SI	Slovenia
CI	Côte d'Ivoire	LK	Sri Lanka	SK	Slovakia
CM	Cameroon	LR	Liberia	SN	Senegal
CN	China	LT	Lithuania	SZ	Swaziland
CS	Czechoslovakia	LU	Luxembourg	TD	Chad
CZ	Czech Republic	LV	Latvia	TG	Togo
DE	Germany	MC	Monaco	TJ	Tajikistan
DK	Denmark	MD	Republic of Moldova	TT	Trinidad and Tobago
EE	Estonia	MG	Madagascar	UA	Ukraine
ES	Spain	ML	Mali	UG	Uganda
FI	Finnland	MN	Mongolia	US	United States of America
FR	France	MR	Mauritania	UZ	Uzbekistan
GA	Gabon			VN	Viet Nam

METHODS AND COMPOSITIONS FOR IDENTIFYING OSTEOGENIC AGENTS

Technical Field

The present invention relates to assay techniques for identifying agents which
5 modulate bone growth.

Background of the Invention

Although there is a great deal of information available on the factors which
influence the breakdown and resorption of bone, information on growth factors which
stimulate the formation of growth factors which stimulate the formation of new bone is
10 more limited. Investigators have searched for sources of such activities and have found
that bone tissue itself is a storehouse for factors which have the capacity for stimulating
bone cells. Thus, extracts of bovine tissue obtained from slaughterhouses contain not only
structural proteins which are responsible for maintaining the structural integrity of bone,
but also biologically active bone growth factors which can stimulate bone cells to
15 proliferate. Among these latter factors are transforming growth factor β , the heparin-
binding growth factors (acidic and basic fibroblast growth factor), the insulin-like growth
factors (insulin-like growth factor I and insulin-like growth factor II) and a recently
described family of proteins called bone morphogenetic proteins (BMPs). All of these
growth factors have effects on other types of cells as well as on bone cells.

20 The BMPs are novel factors in the extended transforming growth factor β family.
They were first identified in extracts of demineralized bone (Urist 1965, Wozney *et al.*,
1988). Recombinant BMP-2 and BMP-4 can induce new bone formation when they are
injected locally into the subcutaneous tissues of rats (Wozney 1992, Wozney & Rosen
1993). These factors are expressed by normal osteoblasts as they differentiate, and have
25 been shown to stimulate osteoblast differentiation and bone nodule formation *in vitro* as
well as bone formation *in vivo* (Harris *et al.*, 1994). This latter property suggests potential
usefulness as therapeutic agents in diseases which result in bone loss.

30 The cells which are responsible for forming bone are osteoblasts. As osteoblasts
differentiate from precursors to mature bone-forming cells, they express and secrete a
number of the structural proteins of the bone matrix including Type-1 collagen, osteocalcin,
osteopontin and alkaline phosphates (Stein *et al.*, 1990, Harris *et al.*, 1994). They also

synthesize a number of growth regulatory peptides which are stored in the bone matrix and are presumably responsible for normal bone formation. These growth regulatory peptides include the BMPs (Harris *et al*, 1994). In studies of primary cultures of fetal rat calvarial osteoblasts, BMPs 1, 2, 3, 4, and 6 are expressed by cultured cells prior to the formation of mineralized bone nodules (Harris *et al*, 1994). Expression of the BMPs coincides with expression of alkaline phosphatase, osteocalcin and osteopontin.

Although the BMPs have powerful effects to stimulate bone formation *in vitro* and *in vivo*, there are disadvantages to their use as therapeutic agents to enhance bone healing. Receptors for the bone morphogenetic proteins have been identified in many tissues, and 10 the BMPs themselves are expressed in a large variety of tissues in specific temporal and spatial patterns. This suggests that they may have effects on many tissues other than bone, potentially limiting their usefulness as therapeutic agents when administered systematically. Moreover, since they are peptides, they would have to be administered by injection. These disadvantages are severe limitations to the development of BMPs as therapeutic agents.

15 It is an object of the present invention to overcome the limitations inherent in known osteogenic agents by providing a method to identify potential drugs which would stimulate production of BMPs locally in bone.

Prior Art

Sequence data on small fragments of the 5'-flanking region of the BMP-4 gene have 20 been published (Chen *et al*, 1993; Kurihara *et al*, 1993), but the promoter has not been previously functionally identified or isolated.

Disclosure of the Invention

A cell-based assay technique for identifying and evaluating compounds which stimulate the growth of bone is provided, comprising culturing a host cell line comprising 25 an expression vector comprising a DNA sequence encoding a promoter region of at least one bone morphogenetic protein, operatively linked to a reporter gene encoding an assayable product under conditions which permit expression of said assayable product, contacting the cultured cell line with at least one compound suspected of possessing osteogenic activity, and identifying osteogenic agents by their ability to modulate the expression of the reporter gene and thereby increase the production of the assayable product.

This assay technique specifically identifies osteogenic agents which stimulate bone cells to produce bone growth factors in the bone morphogenetic protein family. These osteogenic agents display the capacity to increase the activity of the promoters of genes of members of the BMP family and other bone growth factors normally produced by e.g. bone cells.

Also provided in accordance with the present invention are isolated DNA sequences encoding a promoter region of at least one bone morphogenetic protein, and a system for identifying osteogenic agents comprising an expression vector comprising such promoter sequences operatively linked to a reporter gene encoding an assayable product, and means for detecting the assayable product produced a response to exposure to an osteogenic compound.

Brief Description of the Drawings

Figure 1A graphically depicts a restriction enzyme map of mouse genomic BMP-4 and a diagram of two transcripts. The mouse BMP-4 gene transcription unit is -7kb and contains 2 coding exons (closed boxes) and 3 non-encoding exons, labeled exons 1A, 1B and 2. This 19kb clone has an -6kb 5'-flanking region and an -7kb 3'-flanking region. The diagram shows approximately 2.4kb of the 5'-flanking region, and a small region of the 3'-flanking region. The lower panel shows two alternative transcripts of BMP-4. Both have the same exons 2, 3 and 4 but a different exon 1. Transcript A has exon 1A and transcript B has exon 1B whose size was estimated according to RT-PCR and primer extension analysis in FRC cells;

Figure 1B depicts the DNA sequence of selected portions of mouse genomic BMP-4 (SEQ. ID NO. 1) and the predicted amino acid sequences of the identified coding exons (SEQ. ID NO. 2). The numbers on the right show the position of the nucleotide sequence and the bold numbers indicate the location of the amino acid sequence of the coding region. Most of the coding sequence is in exon 4. The end of the transcription unit was estimated based on a 1.8kb transcript. Primer 1 in exon 1A was used in RT-PCR analysis with Primer 3 in exon 3. Primer 2 in exon 1B was used in RT-PCR analysis with Primer 3. Primer B1 and B2 were used in primer extension reactions;

Figure 1C portrays the sequence of the BMP-4 exon 1A 5'-flanking region and potential response elements in the mouse BMP-4 1A promoter (SEQ. ID NO. 3). The

sequences of 2688 bp of the mouse BMP-4 gene are shown. Nucleotides are numbered on the left with +1 corresponding to the major transcription start site of the 1A promoter. The response elements of DR-1A Proximal and DR-1A Distal oligonucleotides are indicated. The other potential response DNA elements in the boxes are p53, RB (retinoblastoma), SP-
5 1, AP-1, and AP-2. Primer A, indicated by the line above the DNA sequence at +114 to +96, was used for primer extension analysis of exon 1A-containing transcripts;

Figure 2 depicts the results of a primer extension assay. Total RNAs prepared from FRC cells (on the left frame) and mouse embryo 9.5 days (on the right) were used with primer A or the complement of primer 2. Two major extended fragments, 67 and 115 bp,
10 indicated a lane A were obtained from primer A. Two 1B primers, primer B1 and primer B2, also gave negative results with both FRC and mouse embryo total RNA as template. Transcript B is not detectable with this assay. By RT-PCR, transcript B can be detected and quantified;

Figure 3A is a photographic representation of gel electrophoresis of 1A-3 and 1B-3
15 RT-PCR products of the BMP-4 gene. RT-PCR was performed with two pairs of primers using FRC cell poly A⁺ mRNA as the template. The products were verified by the DNA sequence;

Figure 3B is a schematic diagram of spliced BMP-4 RT-PCR products with 1A and 1B exons in FRC cells. RT-PCR was performed with two pairs of primers using FRC cell
20 poly A⁺ mRNA as the template. The diagram shows where the primers are located in the BMP-4 genomic DNA. RT-PCR product 1A-2-3 which contains exon 1A, exon 2 and the 5' region of exon 3, was produced with primer 1 and primer 3. Primer 2 and primer 3 generated two RT-PCR products with the exon 1B-2-3 pattern. The heterogeneity in size of exon 1B is indicated. The 1A promoter is predominantly utilized in bone cells;

25 Figure 4A provides a map of the BMP-4 1A 5' -flanking-CAT plasmid and promoter activity in FRC cells. The 2.6kb EcoR1 and Xba fragment, 1.3 kb Pst fragment, 0.5kb SphI and Pst fragment, and 0.25kb PCR fragment were inserted into pBLCAT3. The closed box indicates the non-coding exon 1A. The CAT box represents the CAT reporter gene. The values represent percentages of CAT activity expressed by pCAT-2.6
30 set at 100%. The values represent the average of four independent assays;

Figure 4B provides an autoradiogram of CAT assays using FRC cells transfected with BMP-4 1A 5'-flanking-CAT plasmids identified in Figure 4A;

Figure 5 portrays the nucleotid sequence of the mouse BMP-2 gene 5' -flanking region from -2736 to +139 (SEQ. ID NO. 4). The transcription start site is denoted by +1;

5 Figure 6A depicts an autoradiogram showing products of a primer extension assay for determination of the transcription start site of the BMP2 gene, separated on a 8% denaturing urea-polyacrylamide gel, in which Lane 1: Total RNA from fetal rat calvarial osteoblast cells, and Lane 2: Control lane with 10 μ g of yeast tRNA. All RNA samples were primed with a 32 p-labeled oligonucleotide from exon 1 to the mouser BMP2 gene, as indicated in Figure 6B. Lane M: 32 p-labeled MspI digested λ phage DNA, containing DNA fragments spanning from 623 bp to 15 bp (size marker);

10 Figure 6B provides a schematic representation of the primer extension assay. The primer used is a 18mer synthetic oligonucleotide, 5'-CCCGGCAAGTTCAAGAAAG-3' (SEQ. ID NO. 5);

15 Figure 7 provides a diagram of selected BMP-2 promoter - luciferase reporter constructs. BMP-2 5' -flanking sequences are designated by hatched boxes (□) and luciferase cDNA is designated by the filled box (■). Base +114 denotes the 3' end of the BMP-2 gene in all the constructs;

20 Figure 8 displays the luciferase enzyme activity for the BMP-2 gene-LUC constructs (shown in Figure 7) transfected in primary fetal rat calvarial osteoblasts (A), HeLa cells (B) and ROS 17/2.8 osteoblasts (C). The luciferase activity has been normalized to β -galactosidase activity in the cell lysates;

Figure 9A-F depicts the DNA sequence of the mouse BMP-2 promoter and gene (SEQ. ID NO. 6); and

25 Figure 10A-D depicts the DNA sequence of the mouse BMP-4 promoter and gene (SEQ. ID NO. 7).

Figure 11 depicts the resequencing of the BMP-2 5' flanking region.

Detailed Description of the Preferred Embodiments

A cell-based assay technique for identifying and evaluating compounds which stimulate the growth of bone is provided, comprising culturing a host cell line comprising an expression vector comprising a DNA sequence encoding a promoter region of at least one bone morphogenetic protein operatively linked to a reporter gene encoding an assayable product under conditions which permit expression of said assayable product, contacting the cultured cell line with at least one compound suspected of possessing osteogenic activity, and identifying osteogenic agents by their ability to modulate the expression of the reporter gene and thereby increase the production of the assayable product.

The present invention is distinguished from other techniques for identifying bone-active compounds, as it specifically identifies chemical compounds, agents, factors or other substances which stimulate bone cells to produce the bone growth factors in the bone morphogenetic protein (BMP) family (hereinafter "osteogenic agents"). These osteogenic agents are identified by their capacity to increase the activity of the promoters of genes of members of the BMP family and other bone growth factors which are normally produced by bone cells, and other cells including cartilage cells, tumor cells and prostatic cells. When patients are treated with such chemical compounds, the relevant BMP will be produced by bone cells and then be available locally in bone to enhance bone growth or bone healing. Such compounds identified by this assay technique will be used for the treatment of osteoporosis, segmental bone defects, fracture repair, prosthesis fixation or any disease associated with bone loss.

Compounds that inhibit bone morphogenetic protein expression in bone or cartilage may also be useful in clinical situations of excess bone formation which occurs in such diseases as osteoblastic metastases or osteosclerosis of any cause. Such compounds can also be identified in accordance with the present invention.

Also provided in accordance with the present invention are isolated DNA sequences encoding a promoter region of at least one bone morphogenetic protein, and a system for identifying osteogenic agents comprising an expression vector comprising such promoter sequences operatively linked to a reporter gene encoding an assayable product, and means for detecting the assayable product produced in response to exposure to an osteogenic compound.

- The promoters of the genes for BMP-4 and BMP-2 are complex promoters which can be linked to reporter genes, such as e.g. the firefly luciferase gene. When the hybrid genes (for example, bone cell BMP-4 promoter or bone cell BMP-2 promoter and firefly luciferases, chloramphenicol acetyl transferase (CAT) cDNAs, or cDNA's for other reporter genes such as β -galactosidase, green fluorescent protein, human growth hormone, alkaline phosphatase, β -glucuronidase, and the like) are transfected into bone cells, osteogenic agents which activate the BMP-4 or BMP-2 promoters can be identified by their capacity *in vitro* to increase luciferase activity in cell lysates after cell culture with the agent.
- 5 Sequence data on small fragments of the 5'-flanking region of the BMP-4 gene have been published (Chen *et al*, 1993; Kurihara *et al*, 1993), but the promoter has not been previously identified or isolated, and methods for regulating transcription have not been shown. The present invention isolates the promoters for the BMP genes and utilizes these promoters in cultured bone cells so that agents could be identified which specifically
- 10 15 increase BMP-2 or BMP-4 production locally in bone. Since it is known that the BMPs are produced by bone cells, a method for enhancing their production specifically in bone should avoid systemic toxicity. This benefit is obtained by utilizing the unique tissue specific promoters for the BMPs which are provided herein, and then using these gene promoters to identify agents which enhance their activity in bone cells.
- 20 By utilizing the disclosure provided herein, other promoters can be obtained from additional bone morphogenetic proteins such as BMP-3, BMP-5, BMP-6, and BMP-7, to provide comparable benefits to the promoters herein specifically described.
- In addition, the present invention contemplates the use of promoters from additional growth factors in osteoblastic cells. Included are additional bone morphogenetic proteins, 25 as well as fibroblast growth factors (e.g. FGF-1, FGF-2, and FGF-7), transforming growth factors β -1, β -2, and β -3, insulin-like growth factor-1, insulin-like growth factor-2, platelet-derived growth factor, and the like. Such promoters will readily be utilized in the present invention to provide comparable benefits.
- 30 The cells which can be utilized in the present invention include primary cultures of fetal rat calvarial osteoblasts, established bone cell lines available commercially (MC3T3-E1 cells, MG-63 cells, U2OS cells, UMR106 cells, ROS 17/2.8 cells, SaOS2 cells, and the like

as provided in the catalog from the American Type Culture Collection (ATCC), and bone cell lines established from transgenic mice, as well as other cell lines capable of serving as hosts for the present vectors and systems. In addition, a number of tumor cell lines also express BMPs, including the prostate cancer cell lines PC3, LNCAP, and DU145, as well 5 as the human cancer cell line HeLa. Thus, any of a number of cell lines will find use in the present invention and the choice of an appropriate cell line will be a matter of choice for a particular embodiment.

The following examples serve to illustrate certain preferred embodiments and aspects of the present invention and are not to be construed as limiting the scope thereof.

10

EXPERIMENTAL

In the experimental disclosure which follows, the following abbreviations apply: eq (equivalents); M (Molar); mM (millimolar); μ M (micromolar); N (Normal); mol (moles); mmol (millimoles); μ mol (micromoles); nmol (nanomoles); kg (kilograms); gm (grams); mg 15 (milligrams); μ g (micrograms); ng (nanograms); L (liters); ml (milliliters); μ l (microliters); vol (volumes); and °C (degrees Centigrade).

Example 1: DESCRIPTION AND CHARACTERIZATION OF MURINE BMP-4 GENE PROMOTER

20 (a) Library Screening, Cloning and Sequencing of Gene

A mouse genomic lambda fix II spleen library (Stratagene, La Jolla, CA) was screened with a mouse embryo BMP-4 cDNA kindly provided by Dr. B.L.M. Hogan (Vanderbilt University School of Medicine, Nashville, TN). The probe was labeled with [α -³²P]dCTP using a random-primer labeling kit from Boehringer-Mannheim (Indianapolis, IN). Plaque lift filters were hybridized overnight in 6X SSC, 5X Denhardt's, 0.5% SDS containing 200 μ g/ml sonicated salmon sperm DNA, 10 μ g/ml Poly A and 10 μ g/ml t-RNA at 68° C. The filters were washed at 55° C for 20 min, twice in 2X SSC, 0.1% SDS buffer, once in 0.5X SSC, 0.1% SDS. The isolated phage DNA clones were analyzed according to standard procedures (Sambrook *et al.*, 1989).

30 Fragments from positive clones were subcloned into pBluescript vectors (Stratagene, La Jolla, CA) and sequenced in both directions using the Sequenase

dideoxynucleotide chain termination sequencing kit (U.S. Biochemical Corp., Cleveland, OH).

Three clones were isolated from 2×10^6 plaques of mouse spleen 129 genomic library using full length coding region mouse embryo BMP-4 cDNA probe (B. Hogan, Vanderbilt 5 University, Nashville, TN). One 19kb clone contained 5 exons and ~6kb 5'-flanking region and a ~7kb 3'-flanking region, as shown in Figure 1A. The 7kb transcription unit and the 5'-flanking region of the mouse BMP-4 gene were sequenced (Figure 10).

The nucleotide sequence of selected portions of mouse BMP-4 and the deduced amino acid sequence of the coding exons (408 residues; SEQ. ID NO. 2) is shown in Figure 10 1B. Primers used in the RT-PCR experiments described below are indicated in this Figure.

Figure 1C shows the DNA sequence of 2372bp of the 5'-flanking region and the candidate DNA response elements upstream of exon 1A. Primers used in primer extensions are also shown in Figures 1B and 1C.

(b) Primer Extension Mapping of the Transcriptional Start-Site of the Mouse BMP-4
15 Gene

The transcriptional start-sites were mapped by primer extension using the synthetic oligonucleotide primer A 5'-CGGATGCCGAACTCACCTA-3' (SEQ. ID NO. 8), corresponding to the complement of nucleotides +114 to +96 in the exon 1A sequence and the oligonucleotide primer B1 5'-CTACAAACCCGAGAACAG-3' (SEQ. ID NO. 9), 20 corresponding to the complement of nucleotides +30 to +13 of the exon 1B sequence. Total RNA from fetal rat calvarial (FRC) cells and 9.5 day mouse embryo (gift of B. Hogan, Vanderbilt University) was used with both primers. The primer extension assay was carried out using the primer extension kit from Promega (Madison, WI). The annealing reactions were, however, carried out at 60°C in a water bath for 1 hr. The 25 products were then electrophoresed on 8% denaturing-urea polyacrylamide gels and autoradiographed.

One additional oligonucleotide primer B2 5' -CCCGGCACGAAAGGAGAC-3' (SEQ. ID NO. 10), corresponding to the complement of nucleotide sequence +69 to +52 of exon 1B, was also utilized in primer extension reactions with FRC and mouse embryo 30 RNAs.

1. Evidence for utilization of two alternate exon 1 sequences for the BMP-4 gene.

Several BMP-4 cDNAs were sequenced from prostate cancer cell in PC-3 and from primary FRC cells. Four independent FRC cell BMP-4 cDNAs all contained exon 1A. However, the human prostate carcinoma cell line (PC-3) cDNA contained an apparently unique exon 1B sequence spliced to exon 2 (Chem *et al*, 1993). A doubt-stranded oligonucleotide probe (70bp) to exon 1B was synthesized based on the human PC-3 exon 1B sequence. This exon 1B probe was then used to identify the exon 1B region in the mouse genomic BMP-4 clone. The candidate exon 1B is 1696bp downstream from the 3' end of exon 1A.

10 2. Primer extension analysis

Primer extension analysis was performed to map the mouse BMP-4 gene transcription start sites. Primer A, an oligonucleotide from exon 1A, was used and two oligonucleotides from exon 1B. Total RNA was utilized both from mouse embryo and FRC cells. As shown in Figure 2, a major extended fragment from primer A was obtained in both mouse embryo and FRC cell total RNAs, which migrates at 115bp. The extended 5'-end of the 115bp fragment represents the major transcription start site for 1A-containing transcripts. The site of this 5' non-coding exon 1A is 306bp. A major extended fragment from the complement of primer B1 (exon 1B) was not detected using both mouse embryo and FRC cell total RNAs. One other primer from exon 1B also gave negative results, suggesting that in 9.5 day mouse embryo and FRC cells, the exon 1B-containing transcripts were not detectable, which suggests that transcripts containing exon 1B are less abundant in these cells and tissues than transcripts containing exon 1A. All primer extensions were carried out after annealing of primers at high stringency. Lower stringency annealing with 1B primers gave extended products not associated with BMP-4 mRNA.

25 (c) BMP-4 Gene 5' Flanking Region for Exon 1A and 1B Transcripts.

Four FRC BMP-4 cDNA were sequenced and found to contain exon 1A sequences spliced to exon 2. The human U20S BMP-4 cDNA sequence also contains exon 1A (Wozney *et al*, 1988). This suggests the BMP-4 gene sequences upstream or exon 1A are used primarily in bone cells.

30 To test whether the BMP-4 1B promoter is utilized at all in FRC cells, oligonucleotide primers were designed to ascertain whether spliced 1B-2-3 exon products

and 1A-2-3 exon (control) products could be obtained by more sensitive RT-PCR technique using FRC poly (A⁺)-RNA. The 3' primer was in exon 3 (Figure 1B - Primer 3) and the 5' primers were either in exon 1A (primer 1) or exon 1B (primer 2).

The RT-PCR products were cloned and sequenced. A photograph and diagram of
5 the products obtained are presented in Figure 3A and B. Both 1A-2-3 and 1B-2-3
products were obtained. The results indicate FRC osteoblasts produce transcripts with
either 1A exon or a 1B exon, but not both. This suggests that the intron region between
1A and 1B exons could contain regulatory response elements under certain conditions. Of
10 the 1B-2-3 RT-PCR products obtained from FRC osteoblasts, two products were obtained
with different 3' splice sites for the exon 1B. By comparison with the genomic DNA, both
3' ends of the two exon 1Bs have reasonable 5' splice consensus sequences, consistent with
an alternate splicing pattern obtained for the 1B-2-3 RT-PCR products. Most importantly,
no 1A-1B-2-3 RT-PCR splice products of the BMP-4 gene were obtained. Thus, 1B does
not appear to be alternatively spliced 5'-non-encoding exon. By quantitative RT-PCR, it
15 was shown that 1A transcripts are 10 to 15X more abundant in primary bone cells.

The technique of performing RT-PCR will be described. First-strand cDNA was
synthesized from 1 μ g FRC cell poly (A⁺)-RNA with an 18mer dT primer using
Superscript™ reverse transcriptase (Gibco BRL) in a total volume of 20 μ l. The cDNA
was then used as a template for PCR with two sets of synthesized primers. As shown in
20 Figure 1B, primer 1 (5'-GAAGGCAAGAGCGCGAGG-3') (SEQ. ID No. 11),
corresponding to a 3' region of exon 1A and primer 3 (5'-CCGGTCTCAGGTATCA-3')
(SEQ. ID No. 12), corresponding to a 5' region of exon 3 were used to generate exon 1A-
2-3 spliced PCR product. Primer 2 (5'-CAGGCGGAAAGCTGTT-3') (SEQ. ID NO.
13), corresponding to a 3' region (+2 to +18) of exon 1B, and primer 3 were used to
25 generate exon 1B-2-3 spliced PCR products. GeneAmp PCR kit was used according to the
manufacturer's procedure (Perkin-Elmer/Cetus, Norwalk, CT). Each cycle consisted of a
denaturation step (94°C for 1 min), an annealing step (59°C for 2 min) and an elongation
step (72°C for 1 min). The PCR products were analysed by agarose gel electrophoresis for
size determination. The products were subcloned into pCR II vector using TA cloning kit
30 (InVitrogen, San Diego, CA). The inserts were sequenced in both directions with a
sequencing kit from U.S. Biochemical (Cleveland, OH).

Northern analysis demonstrated that the single 1.8kb BMP-4 transcript detected in FRC cells during bone cell differentiation hybridizes to both a pure 1A exon probe and a 2-4 exons probe. The ratio of the 1A to 2-4 signal is constant through the changing levels of BMP-4 expression during differentiation. Using a 1B exon probe no detectable
5 hybridization to the BMP-4 exon 2-4 1.8kb signal was observed. This again indicates that 1A containing transcripts predominate in bone cells, although 1B transcripts can be detected by the more sensitive PCR method. By quantitative PCR it was shown that 1A transcripts are 10-15X more abundant than 1B in FRC cells.

10 (d) BMP-4 Promoter 1A Plasmid Construction and Transfection, and Detection of Promoter Activity in Osteoblasts.

Three BMP-4 1A promoter/plasmids were constructed by excising fragments from the 5' flanking region of the mouse BMP-4 gene and cloning into pBL3CAT expression vectors (Luckow and Schutz, 1987). The pCAT-2.6 plasmid was the pBLCAT3 vector with a 2.6kb EcoR1 and Xba I fragment (-2372/+258) of the BMP-4 gene. The pCAT-1.3
15 plasmid was similarly generated from a 1.3kb Pst fragment (-1144/+212). The pCAT-0.5 plasmid was made from a 0.5kb SphI and Pst fragment (-260/+212). Both the pCAT-1.3 and the pCAT-0.5 plasmids have 212bp of exon 1A non-coding region. An additional promoter/plasmid was created from a PCR amplified product, corresponding to the 240bp sequence between nucleotides -25 and +212, and referred to as the pCAT-0.24. The
20 amplified fragment was first cloned into pCR II vector using TA cloning kit (InVitrogen, San Diego, CA) and then the fragment was released with Hind III and Xho I, and re ligated into pBL3CAT. Correct orientation of all inserts with respect to the CAT vector was verified by DNA sequencing.

The cells used for transient transfection studies were isolated from 19 day-old fetal
25 rat calvariae by sequential digestion with trypsin and collagenase, as described by Bellows *et al*, (1986) and Harris *et al*, (1994). In brief, the calvarial bone were surgically removed and cleaned by washing in α minimal essential media (α MEM) containing 10% V/V fetal calf serum (FCS) and antibiotics. The bones were minced with scissors and were transferred to 35mm tissue culture dish containing 5ml of sterile bacterial collagenase
30 (0.1%) and trypsin 1 (0.05%). This was then incubated at 37°C for 20 min. The cells released at this time were collected and immediately mixed with an equal volume of FCS to inactivate trypsin. This procedure is repeated 6 times to release cells at 20 min intervals.

Cells released from 3rd, 4th, 5th and 6th digestion (enriched for osteoblasts) were combined and the cells are collected by centrifugation at 40 Xg for 5 min. The cells were then plated in αMEM containing 10% FCS and antibiotics and were grown to confluence (2-3 days). At this stage the cells were plated for transfection in 60mm tissue culture dishes at a cell density of 5×10^3 cells per dish. These primary osteoblast cultures are capable of self-organizing into bone-like structure in prolonged cultures (Bellows *et al*, 1986; Harris *et al*, 1994). HeLa, ROS 17/2.8, and CV-1 cells were purchased from the ATCC.

The isolated FRC cells, enriched for the osteoblast phenotype, were used as recipient cells for transient transfection assays. BMP-4 mRNA is modulated in these cells in a transient fashion during prolonged cultured (Harris *et al*, 1994b). The technique of electroporation was used for DNA transfection (Potter, 1988; van den Hoff *et al*, 1992). After electroporation, the cells were divided into aliquots, replated in 100mm diameter culture dishes and cultured for 48 hours in modified Eagle's minimal essential media (MEM, GIBCO, Grand Island, NY) with 10% fetal calf serum (FCS). The extracts were assayed for CAT actively according to the method described by Gorman (1988) and CAT activity was normalized by β-galactosidase assay according to the method of Rouet *et al* (1992).

After 48 hrs of transfections with various BMP-4-CAT reporter gene plasmid constructs, the cells were harvested and the CAT activity was determined. As indicated in Figure 4A and 4B, pCAT-0.24 plasmid (-25/+212) has little CAT activity. This plasmid contains -25 to +212 of the 5' non-coding exon 1A and was 3-fold lower than the parent pBL3CAT plasmid. The pCAT-0.5 (-260/+212), pCAT-1.3 (-1144/+212), and pCAT-2.6 (-2372/+258) showed progressive increasing CAT activity when transfected into FRC cells. These data are shown in Figure 4B. With pCAT-0.5 (-260/+212) there is a 10-fold increase in CAT activity relative to pCAT-0.24 (-25/+212). pCAT-1.3 (-1144/+212) shows a further 6-fold increase and pCAT-2.6 (-2372/+258) shows further 2-fold change over pCAT-1.3 (-1144/+212). Thus the net increase in CAT activity between the pCAT-0.24 (+257/+212) and the pCAT-2.6 (-2372/+258) in FRC cells is approximately 100-fold.

30

Example 2: DESCRIPTION AND CHARACTERIZATION OF
MURINE BMP-2 GENE PROMOTER
SUBSTITUTE SHEET (RULE 26)

(a) Cloning of Mouse BMP-2 Genomic DNA.

Genomic clones of the mouse BMP-2 gene were isolated in order to determine the transcriptional regulation of the BMP-2 gene in primary osteoblasts. 5×10^6 plaques were screened from a mouse genomic library, B6/CBA, (purchased from Stratagene, San Diego, CA) using BMP-2 cDNA as probe. The BMP-2 cDNA clone was isolated from a cDNA library of PC3 prostate cancer cells (Harris *et al*, 1994). The human BMP-2 probe was a 1.1kb SmaI fragment containing most of the coding region.

The BmP-2 genomic clones were sequenced by dideoxy chain termination method (Sanger *et al*, 1977), using deoxyadenosine 5'-[α [³⁵S]thio] triphosphate and Sequenase (United States Biochemical, Cleveland, OH). All fragments were sequenced at least twice and overlaps were established using the appropriate oligonucleotide primer. Primers were prepared on an Applied Biosystems Model 392 DNA Synthesizer. Approximately 16kb of one of these BMP-2 clones was completely sequenced (Figure 9). Analysis of this sequence showed that the mouse BMP-2 gene contains one encoding and two coding exons (Feng *et al*, 1994). Analysis of the 5' flanking sequence showed that the BMP-2 gene does not contain typical TATA or CAAT boxes. However, a number of putative response elements and transcription factor recognition sequences were identified upstream of exon 1 (Figure 5). The 5'-flanking region is GC rich with several SP-1, AP-1 P53, E-box, homeobox, and AP-2 candidate DNA binding elements.

20 (b) Analysis of Transcription Start Site for BMP-2 Gene.

The transcription start sites for the BMP-2 gene were identified using the primer extension technique. Primer extension was carried out as described (Hall *et al.*, 1993). The primer used was a ³²P-labeled 18 mer oligonucleotide 5'-CCCGGCAATTCAAGAAG-3' (SEQ. ID NO> 5). Total RNA obtained from primary fetal rat calvarial osteoblasts, was used for the primer extension. The results were shown in Figure 6. The major extension product was 68bp and was used to estimate the major transportation start site (+1, Figure 5). These results were confirmed by Rnase protection assays.

(c) Identification of BMP-2 Promoter and Enhancer

Activity Using Luciferase (LUC) Reporter Gene Constructs.

30 The BMP-2-LUC constructs (Figure 7) were designed to contain variable 5' boundaries from BMP-2 5'-flanking sequences spanning the transcription start site (+1).

Each construct contained the 3' boundary at +114 9 in exon 1 (Figure 6). These constructs were individually transfected into primary cultures of fetal rat calvarial osteoblasts, ROS 17/2.8 osteosarcoma cells, HeLa cells, and CV-1 cells by the calcium-phosphate precipitation technique and the promoter activity for each of these constructs was assayed

5 24 hrs following transfection by measuring the luciferase enzyme activity for each individual cell lysate. The LUC (luciferase enzyme assay) technique is described below under (f). Plasmid psv β Gal was co-transfected with each plasmid construct to normalize for the transfection efficiency in each sample. The experiments were repeated at least five times in independent fetal rat calvarial cultures, with each assay done in triplicate. The
10 mean values from a representative experiment are shown in Figure 8.

(d) Isolation of Primary Fetal Rat Calvarial Osteoblasts for Functional Studies of BMP-2 Gene Promoter.

The cells used for transient transfection studies were isolated from 19 day-old fetal rat calvariae by sequential digestion with trypsin and collagenase, as described by Bellow *et*

15 *al.*, (1986) and Harris *et al.*, (1994). In brief, the calvarial bone were surgically removed and cleaned by washing in a minimal essential media (aMEM) containing 10% V/V fetal calf serum (FCS) and antibiotics. The bones were minced with scissors and was transferred to 35 mm tissue culture dish containing 5 ml of sterile bacterial collagenase (0.1%) and trypsin (0.05%). This was then incubated at 37°C for 20 min. The cells released at this
20 time were collected and immediately mixed with an equal volume of FCS to inactivate trypsin. This procedure was repeated 6 times to release cells at 20 min intervals. Cells released from 3rd, 4th, 5th and 6th digestion (enriched for osteoblasts) were combined and the cells were collected by centrifugation at 400 g for 5 min. The cells were then plated in aMEM containing 10% FCS and antibiotics and were grown to confluence (2-3 days). At
25 this stage the cells were plated for transfection in 60 mm tissue culture dishes at a cell density of 5×10^3 cells per dish. These primary osteoblast cultures are capable f mineralized bone in prolonged cultures (Bellows *et al.*, 1986; Harris *et al.*, 1994). HeLa, ROS 17/2.8, and CV-1 cells were purchased from the ATCC.

(e) Transient Transfection Assay.

30 For transient transfection assay, the primary osteoblast cells were plated at the above mentioned cell density 18-24 hrs prior to transfection. The transfection was carried out using a modified calcium-phosphate precipitation method (Graham & van der Eb 1973;

- Frost & Williams 1978). The cells were incubated for 4 hrs. at 37°C with 500µl of a calcium phosphate precipitate of plasmid DNA containing 10µg of reporter plasmid construct and 1µg of pSVβGal (for normalization of transfection efficiency) in 0.15M CaCl₂ and Hepes buffered saline (21mM Hepes, 13.5mM NaCl, 5mM KCl, 0.7mM Na₂HPO₄, 5.5mM dextrose, pH 7.05-7.1). After the 4 hr. incubation period of cells with precipitate, the cells were subjected to a 2 min treatment of 15% glycerol in αMEM, followed by addition of fresh αMEM containing insulin, transferrin and selenium (ITS) (Upstate Biotechnology Lake Placid, NY). The cells were harvested 24 hrs post transfection.
- 10 (f) Luciferase and β-galactosidase Assay.
Cells lysates were prepared and luciferase enzyme assay was carried out using assay protocols and the assay kit from Promega (Madison, WI). Routinely 20µl of cell lysate was mixed with 100µl of luciferase assay reagent (270µM coenzyme A, 470µM luciferin and 530µM ATP) and the luciferase activity was measured for 10 sec in a TURNER TD-20e luminometer. The values were normalized with respect to the β-galactosidase enzyme activity, obtained for each experimental sample
The β-galactosidase enzyme activity was measured in the cell lysate using a 96 well microtiter plate according to Rouet *et al.* (1992). 10-20µl cell lysate was added to 90-80µl β-galactosidase reaction buffer containing 88mM phosphate buffer, PH 7.3, 11mM KCL, 1mM MgCl₂, 55mM β mercaptoethanol, 4.4mM chlorophenol red β-D-galactopyranoside (Boehringer-Mannheim Corp., Indianapolis, IN). The reaction mixture was incubated at 37°C for 30-60 min, depending on transfection efficiency, and the samples were read with an ELISA plate reader at 600nm.
- 20 (g) Plasmid Construction
The luciferase basic plasmid (pGL basic) was the vector used for all constructs (purchased from Promega, Madison, WI). Different lengths of DNA fragments from the BmP-2 5'-flanking region were cloned at the multiple cloning sites of this plasmid, which is upstream of the firefly luciferase cDNA. The BMP-2 DNA fragments were isolated either by using available restriction enzyme sites (constructs -196/+114, -876/+114, -1995/+114, -2483/+114, and -2736/+114) or by polymerase chain reaction using specific oligonucleotide primers (constructs -23/+114, -123/+114 and +29/+114).

The minimal promoter activity for the BMP-2 gene was identified in the shortest construct containing 23bp upstream of the transcription start site (-23/+114). No luciferase activity was noted in the construct and did not include the transcription start site (+29/+114). Two other constructs containing increasing lengths of 5' sequences up to - 5 196bp showed reproducible decreases in promoter activity in fetal rat calvarial osteoblasts and HeLa cells (Figure 8). The -876/+114 construct showed a 5-fold increase in activity in HeLa cells. The -1995/+114, -2483/+114 and -2736/+114 constructs showed decreased promoter activity when compared to the -876/+114 construct only in HeLa cells (Figure 8).

In the primary fetal rat calvarial osteoblasts, the 2.6kb construct (-2483/+114) 10 demonstrated a 2-3-fold increase in luciferase activity over that of the -1995/+114 construct (Figure 8). These results suggest that one or more positive response regions are present between -196 and -1995 and that the DNA sequence between -1995 and -2483bp 15 was other positive regulatory elements that could modulate BMP-2 transcription. The largest 2.9kb construct (-2836/+114) repeatedly demonstrated a 20-50% decrease in promoter activity compared to the -2483/+114 construct, in these primary fetal rat calvarial osteoblasts (Figure 8).

In ROS 17/2.8 osteosarcoma cells, the BMP-2 promoter activity was consistently higher than either the primary fetal rat calvarial osteoblasts or HeLa cells (Figure 8). All of the deletion constructs showed similar promoter activity in ROS 17/2.8 osteosarcoma cells. 20 The transformed state in ROS 17/2.8 cells may be responsible for the marked expression of the BMP-2 gene. ROS 17/2.8 cells represent a well differentiated osteosarcoma and they produce high levels of BMP-2 mRNA. They form tumors in nude mice with bone-like material in the tumor (Majeska *et al*, 1978; Majeska *et al*, 1980).

(h) Specificity of the BMP-2 Promoter.

To analyze the activity of the BMP-2 promoter in cell types not expressing BMP-2 25 mRNA, BMP-2 promoter constructs were transfected into CV-1 cells (monkey kidney cells). The BMP-2 promoter activity was found to be very low for all constructs. This suggests that this region of the BMP-2 promoter is functional only in cells such as primary fetal rat calvarial osteoblasts, HeLa and ROS 17/2.8 that express endogenous BMP-2 30 mRNA (Anderson & Coulter 1968). CV-1 cells do not express BMP-2 mRNA. The

BMP-2 promoter is likely active in other cell types that express BMP-2, such as prostate cells and chondrocytes, although regulation of transcription may be different in these cells.

5

Example 3: USE OF PLASMID CONSTRUCTS CONTAINING BMP PROMOTERS WITH REPORTER GENES TO IDENTIFY OSTEOGENIC AGENTS

- Plasmid constructs containing BMP promoters with reporter genes have been transfected into osteoblastic cells. The cells which have been utilized include primary cultures of fetal rat calvarial osteoblasts, cell lines obtained as gifts or commercially 10 (MC3T3-E12 cells, MG-63 cells, U2OS cells, UMR106 cells, ROS 17/2.8 cells, Sa)S2 cells, and the like as provided in the catalog from the ATCC) and bone and cartilage cell lines established from transgenic mice. The bone cells are transfected transiently or stably with the plasmid constructs, exposed to the chemical compound, agent or factor to be tested for 48 hours, and then luciferase or CAT activity is measured in the cell lysates.
- 15 Regulation of expression of the growth factor is assessed by culturing bone cells in αMEM medium with 10% fetal calf serum and 1% penicillin/streptomycin and 1% glutamine. The cells are placed in microtiter plates at a cell density of 5×10^3 cells /100μl/well. The cells are allowed to adhere and then incubated at 37°C at 5% CO₂ for 24 hours and then the media is removed and replaced with 50μl αMEM and 4% fetal calf 20 serum, 50μl aliquots containing the compound or factor to be tested in 0.1% BSA solution is added to each well. The final volume is 100μl and the final serum concentration is 2% fetal calf serum. Recombinant rat BMP-2 expressed in Chinese hamster ovarian cells is used as a positive control.
- The treated cells are incubated at 37°C at 5% CO₂ for 48 hours. The media is then 25 removed and the cells are rinsed 3 times with phosphate buffered saline (PBS). Excess PBS is removed from the wells and 100μl of cell culture lysing reagent (Promega #E153A) is added to each well. After 10 minutes, 10μl of the cell lysate is added to a 96-well white luminometric plate (Dynatech Labs #07100) containing 100μl luciferase assay buffer with substrate (Promega #E152A). The luciferase activity is read using a Dynatech ML2250 30 automated 96-well luminometer. The data is expressed as either picograms of luciferase activity per well or picograms of luciferase per μg protein.

**Example 4: DEMONSTRATION THAT BONE CELLS
TRANSFECTED WITH BMP PROMOTERS CAN
BE USED TO SCREEN FOR OSTEOGENIC AGENTS**

To demonstrate that the present invention is useful in evaluating potential osteogenic agents, a random array of chemical compounds from a chemical library obtained commercially was screened. It was found that approximately 1 in 100 such compounds screened produces a positive response in the present assay system compared with the positive control, recombinant BMP-2, which is known to enhance BMP-2 transcription. Compounds identified from the random library were subjected to detailed dose-response curves, to demonstrate that they enhance BMP messenger RNA expression, and that they enhance other biological effects *in vitro*, such as expression of structural proteins including osteocalcin, osteopontin and alkaline phosphatase, and enhance bone nodule formation in prolonged primary cultures of calvarial rodent osteoblasts.

Compounds identified in this way can be tested for their capacity to stimulate bone formation *in vitro* in mice. To demonstrate this, the compound can be injected locally into subcutaneous tissue over the calvarium of normal mice and then the bone changes are followed histologically. It has been found that certain compounds identified by the present invention stimulate the formation of new bone in this *in vivo* assay system.

The effects of compounds are tested in ICR Swiss mice, aged 4-6 weeks and weighing 13-26g. The compound at 20mg/kg or vehicle alone (100 μ l of 5% DMSO and phosphate-buffered 0.9% saline) are injected three times daily for 7 days. The injections are given into the subcutaneous tissues overlying the right side of the calvaria of five mice in each treatment group in each experiment.

Mice are killed by either inhalation on day 14, *i.e.* 7 days after the last injection of compound. After fixation in 10% phosphate-buffered formalin, the calvariae are examined. The occipital bone is removed by cutting immediately behind and parallel to the lambdoid suture, and the frontal bone is removed by cutting anterior to the coronal suture using a scalpel blade. The bones are then bisected through the coronal plane and the 3- to 4mm strips of bone are decalcified in 14% EDTA, dehydrated in graded alcohols, and embedded in paraffin. Four 3 μ m thick nonconsecutive step sections are cut from each specimen and stained using hematoxylin and eosin.

Two representative sections from the posterior calvarial strips are used. Histological measurements are carried out using a digitizing tablet and the Osteomeasure

SUBSTITUTE SHEET (RULE 26)

image analysis system (Osteometrics Inc., Atlanta, GA) on the injected and noninjected sides of the calvariae in a standard length of bone between the sagittal suture and the muscle insertion of the lateral border of each bone. Measurements consist of (1) Total bone area (*i.e.*, bone and marrow between inner and outer periosteal surfaces); (2) Area of 5 new woven bone formed on the outer calvarial surface; (3) The extent of osteoblast lined surface on the outer calvarial surface; (4) The area of the outer periosteum; and (5) The length of calvarial surface. From these measurements, the mean width of new bone and periosteum and the percentage of surface lined by osteoblasts on the outer calvarial surface, can be determined.

10 By reference to the above disclosure and examples, it is seen that the present invention provides a new cell-based assay for identifying and evaluating compounds which stimulate the growth of bone. Also provided in accordance with the present invention are promoter regions of bone morphogenetic protein genes, and a system for identifying osteogenic agents utilizing such promoters operatively linked to reporter genes in 15 expression vectors.

The present invention provides the means to specifically identify osteogenic agents which stimulate bone cells to produce bone growth factors in the bone morphogenetic protein family. These osteogenic agents are shown to be useful to increase the activity of the promoters of genes of members of the BMP family and other bone growth factors 20 normally produced by bone cells.

Example 5: RESEQUENCING OF THE BMP-2 5'FLANKING REGION

The BMP-2 5' flanking region described in Example 2 was resequenced. The nucleotide sequence of the 5' flanking region of the mouse BMP-2 gene is provided in 25 Figure 11. The sequence information in Figure 11 corrects sequencing errors that are present in Figures 5 and 9. The nucleotide sequence of Figure 11 replaces bases -2736 to +119 provided in Figure 5 and bases 1 to 2855 provided in Figure 9. The non-nucleotide sequence information provided in Figure 5 is applicable to the corresponding bases in Figure 11 where such bases are present.

All publications and patent applications cited in this specification are herein incorporated by reference as if each individual publication or patent application are [is] specifically and individually indicated to be incorporated by reference.

- Although the foregoing invention has been described in some detail by way of illustration and example for purposes of clarity and understanding, it will be apparent to those of ordinary skill in the art in light of the teaching of this invention that certain changes and modifications may be made thereto without departing from the spirit or scope of the appended claims.
- 5

Anderson, H.C. and P.R. Coulter (1968) *Fed. Proc.* 27, 475.

Bellows, C.G., J.E. Aubin, J.N.M. Heersche and M.E. Antosz (1986) Mineralized bone nodules formed in vitro from enzymatically released rat calvarial cell populations. *Calcif. Tissue Int.* 38, 143-154.

Chen, D., J.Q. Feng, M. Feng, M.A. Harris, G.R. Mundy and S.E. Harris (1993) *Biochim Biophys Acta* 1174, 289-292.

Feng, J.Q., M.A. Harris, N. Ghosh-Choudhury, M. Feng, G.R. Mundy and S.E. Harris (1994) *Biochem. Biophys. Acta* 1218, 221-224.

Frost, E. and J. Williams (1978) *Virology* 91, 39-50.

Gorman, C. (1988) in DNA Cloning, A Practical Approach (Gover, D.M., ed) Vol. II, pp. 157-158, IRL Press, Oxford, England.

Graham, F.L., and A.J. van der Eb (1973) *Virology* 52, 456-467.

Hall, J.A., M.A. Harris, R. Intres, and S.E. Harris (1993) *J Cell Biochem* 51, 116-127.

Harris, S.E., L.F. Bonewald, M.A. Harris, M. Sabatini, S. Dallas, J. Feng, N. Ghosh-Choudhury, J. Wozney and G.R. Mundy (1994) Effects of TGF β on bone nodule formation and expression of bone morphogenetic protein-2, osteocalcin, osteopontin, alkaline phosphatase and Type I collagen mRNA in prolonged cultures of fetal rat calvarial osteoblasts. *J Bone Miner Res* 9, 855-863.

Harris, S.E., M. Sabatini, M.A. Harris, J.Q. Feng, J. Wozney and G.R. Mundy (1994) Expression of bone morphogenetic protein messenger RNA in prolonged cultures of fetal rat calvarial cells. *J Bone Min Res* 9, 389-394.

Harris, S.E., M. Harris, M. Mahy, J. Wozney, J. Feng and G.R. Mundy (1994) Expression of bone morphogenetic proteins by normal rat and human prostate and prostate cancer cells. *the Prostate* 24, 204-211.

Kurihara, T., K. Kitamura, K. Takaoka, H. Nakazato (1993) Murine bone morphogenetic protein-4 gene: existence of multiple promoters and exons for the 5'-untranslated region. *Biochem Biophys Res Commun* 1992, 1049-1056.

Luckow, B. and G. Schutz (1987) *Nucleic Acids Res.* 15, 5490.

Majeska, R.J., S.B. Rodan and G.A. Rodan (1978) Maintenance of parathyroid hormone response in clonal rat osteosarcoma lines. *Exp Cell Res* 111, 465-468.

Majeska, R.J., S.B. Rodan and G.A. Rodan (1980) Parathyroid hormone responsive clonal cell lines from rat osteosarcoma. *Endocrinology* 107, 1494-1503.

Potter, H. (1988) *Anal Biochem* 174, 361-373.

Rouet, P., G. Raguenez and J-P Salier (1992) *Biotechniques* 13, 700-701.

Sambrook, J., E.F. Fritsch and T. Maniatis (1989) in Molecular Cloning: A Laboratory Manual, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY

Sanger, F., S.G. Nicklen and A.R. Coulson (1977) *Proc. Natl. Acad. Sci. USA* 74, 5463-5467.

Stein, G.S., J.B. Lian and T.A. Owen (1990) Relationship of cell growth to the regulation of tissue-specific gene expression during osteoblast differentiation. *FASEB J* 4, 3111-3123.

Urist, M.R. (1965) Bone: Formation by autoinduction. *Science* 150, 893.

van den Hoff, M.J.B., A.F.M. Moorman, and W.H. Lamers (1992) *Nucleic Acids Res.*, 20 2902.

Wozney, J.M., V. Rosen, A.J. Celeste, L.M. Mitsock, M.J. Whitters, R.W. Kriz, R.M. Hewick and E.A. Wange (1988) Novel regulators of bone formation: Molecular clones and activities. *Science* 242, 1528-1534.

Wozney, J.M. (1992) The bone morphogenetic protein family and osteogenesis. *Mol Reprod Dev* 32, 160-167.

Wozney, J.M. and V. Rosen (1993) Bone morphogenetic proteins. In: *Physiology and Pharmacology of Bone* (edited by Mundy GR, Martin TJ). Springer-Verlag, Chapter 20, 725-743.

SEQUENCE LISTING

(1) GENERAL INFORMATION:

(i) APPLICANT: Harris Ph.D., Stephen E.
Mundy M.D., Gregory R.
Gosh-Choudhury Ph.D., Nandini
Feng Ph.D., Jian Q.

(ii) TITLE OF INVENTION: METHODS AND COMPOSITIONS FOR IDENTIFYING
OSTEOGENIC AGENTS

(iii) NUMBER OF SEQUENCES: 13

(iv) CORRESPONDENCE ADDRESS:

(A) ADDRESSEE: James C. Weseman, Esq.
(B) STREET: 401 B. Street, Suite 1700
(C) CITY: San Diego
(D) STATE: CA
(E) COUNTRY: USA
(F) ZIP: 92101

(v) COMPUTER READABLE FORM:

(A) MEDIUM TYPE: Floppy disk
(B) COMPUTER: IBM PC compatible
(C) OPERATING SYSTEM: PC-DOS/MS-DOS
(D) SOFTWARE: PatentIn Release #1.0, Version #1.25

(vi) CURRENT APPLICATION DATA:

(A) APPLICATION NUMBER: US
(B) FILING DATE:
(C) CLASSIFICATION:

(viii) ATTORNEY/AGENT INFORMATION:

(A) NAME: Weseman, James C.
(B) REGISTRATION NUMBER: 30,507
(C) REFERENCE/DOCKET NUMBER: P00060US0

(ix) TELECOMMUNICATION INFORMATION:

(A) TELEPHONE: (619) 699-3604
(B) TELEFAX: 619-236-1048

(2) INFORMATION FOR SEQ ID NO:1:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 2310 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: single
(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: DNA (genomic)

(ix) FEATURE:

(A) NAME/KEY: CDS
(B) LOCATION: 768..1991

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:1:

GGGAGGAAGG	GAAGAAAGAG	AGGGAGGGAA	AAGAGAAGGA	AGGACTAGAT	GTGAGAGGGT	60
GGTGCTGAGG	GTGGGAAGGC	AAGAGCCGA	GGCCTGGCCC	GGAAGCTAGG	TGAGTTCGGC	120
ATCCGAGCTG	AGAGACCCCA	GCCTAACAGC	CCTGCCTGC	AACCCAGCCT	GAGTATCTGG	180
TCTCCGTCCC	TGATGGGATT	CTCGTCTAAA	CCGTCTTGGA	GCCTGCAGCG	ATCCAGTCTC	240
TGGCCCTCGA	CCAGGTTCAT	TGCCAGCTTC	TAGAGGTCCC	CAGAACGAGC	TGCTGGCGAG	300
CCCGCTTCTG	CAGGAACCAA	TGGTGAGCTC	GAGTGCAGGC	CGAAAGCTGT	TCTCGGGTTT	360
GTAGACGCTT	GGGATCGCGC	TTGGGGTCTC	CTTCGTGCC	GGTAGGAGT	TGTAAGCCT	420
TTGCAACTCT	GAGATCGTAA	AAAAAAATGTG	ATGCGCTCTT	TCTTGGCGA	CGCCTGTTTT	480
GGAATCTGTC	CGGAGTTAGA	AGCTCAGACG	TCCACCCCCC	ACCCCCCGCC	CACCCCTCT	540
GCCTTGAATG	GCACCGCGA	CCGGTTTCTG	AAGGATCTGC	TTGGCTGGAG	CGGACGCTGA	600
GGTTGGCAGA	CACGGTGTGG	ATTTAGGAG	CCATTCCGTA	GTGCCATTG	GAGCGACGCA	660
CTGCCGCAGC	TTCTCTGAGC	CTTCCAGCA	AGTTTGTCA	AGATTGGCTC	CCAAGAACATCA	720
TGGACTGTAA	TTATGCCTTG	TTTCTGTCA	GTGAGTCCAG	AGACACC	ATG ATT CCT	776
				Met	Ile Pro	
				1		
GGT AAC CGA ATG CTG ATG GTC GTT TTA TTA TGC CAA GTC CTG CTA GGA						824
Gly Asn Arg Met Leu Met Val Val Leu Leu Cys Gln Val Leu Leu Gly	5	10	15			
GGC GCG AGC CAT GCT AGT TTG ATA CCT GAG ACC GGG AAG AAA AAA GTC						872
Gly Ala Ser His Ala Ser Leu Ile Pro Glu Thr Gly Lys Lys Lys Val	20	25	30	35		
GCC GAG ATT CAG GGC CAC GCG GGA GGA CGC CGC TCA GGG CAG AGC CAT						920
Ala Glu Ile Gln Gly His Ala Gly Gly Arg Arg Ser Gly Gln Ser His	40	45	50			
GAG CTC CTG CGG GAC TTC GAG GCG ACA CTT CTA CAG ATG TTT GGG CTG						968
Glu Leu Leu Arg Asp Phe Glu Ala Thr Leu Leu Gln Met Phe Gly Leu	55	60	65			
CGC CGC CGT CCG CAG CCT AGC AAG AGC GCC GTC ATT CCG GAT TAC ATG						1016
Arg Arg Arg Pro Gln Pro Ser Lys Ser Ala Val Ile Pro Asp Tyr Met	70	75	80			
AGG GAT CTT TAC CGG CTC CAG TCT GGG GAG GAG GAG GAA GAG CAG						1064
Arg Asp Leu Tyr Arg Leu Gln Ser Gly Glu Glu Glu Glu Gln	85	90	95			

AGC CAG GGA ACC GGG CTT GAG TAC CCG GAG CGT CCC GCC AGC CGA GCC Ser Gln Gly Thr Gly Leu Glu Tyr Pro Glu Arg Pro Ala Ser Arg Ala 100 105 110 115	1112
AAC ACT GTG AGG AGT TTC CAT CAC GAA GAA CAT CTG GAG AAC ATC CCA Asn Thr Val Arg Ser Phe His His Glu Glu His Leu Glu Asn Ile Pro 120 125 130	1160
GGG ACC AGT GAG AGC TCT GCT TTT CGT TTC CTC TTC AAC CTC AGC AGC Gly Thr Ser Glu Ser Ser Ala Phe Arg Phe Leu Phe Asn Leu Ser Ser 135 140 145	1208
ATC CCA GAA AAT GAG GTG ATC TCC TCG GCA GAG CTC CGG CTC TTT CGG Ile Pro Glu Asn Glu Val Ile Ser Ser Ala Glu Leu Arg Leu Phe Arg 150 155 160	1256
GAG CAG GTG GAC CAG GGC CCT GAC TGG GAA CAG GGC TTC CAC CGT ATA Glu Gln Val Asp Gln Gly Pro Asp Trp Glu Gln Gly Phe His Arg Ile 165 170 175	1304
AAC ATT TAT GAG GTT ATG AAG CCC CCA GCA GAA ATG GTT CCT GGA CAC Asn Ile Tyr Glu Val Met Lys Pro Pro Ala Glu Met Val Pro Gly His 180 185 190 195	1352
CTC ATC ACA CGA CTA CTG GAC ACC AGA CTA GTC CAT CAC AAT GTG ACA Leu Ile Thr Arg Leu Leu Asp Thr Arg Leu Val His His Asn Val Thr 200 205 210	1400
CGG TGG GAA ACT TTC GAT GTG AGC CCT GCA GTC CTT CGC TGG ACC CGG Arg Trp Glu Thr Phe Asp Val Ser Pro Ala Val Leu Arg Trp Thr Arg 215 220 225	1448
GAA AAG CAA CCC AAT TAT GGG CTG GCC ATT GAG GTG ACT CAC CTC CAC Glu Lys Gln Pro Asn Tyr Gly Leu Ala Ile Glu Val Thr His Leu His 230 235 240	1496
CAG ACA CGG ACC CAC CAG GGC CAG CAT GTC AGA ATC AGC CGA TCG TTA Gln Thr Arg Thr His Gln Gly Gln His Val Arg Ile Ser Arg Ser Leu 245 250 255	1544
CCT CAA GGG AGT GGA GAT TGG GCC CAA CTC CGC CCC CTC CTG GTC ACT Pro Gln Gly Ser Gly Asp Trp Ala Gln Leu Arg Pro Leu Leu Val Thr 260 265 270 275	1592
TTT GGC CAT GAT GGC CGG GGC CAT ACC TTG ACC CGC AGG AGG GCC AAA Phe Gly His Asp Gly Arg Gly His Thr Leu Thr Arg Arg Arg Ala Lys 280 285 290	1640
CGT AGT CCC AAG CAT CAC CCA CAG CGG TCC AGG AAG AAG AAT ARG AAC Arg Ser Pro Lys His His Pro Gln Arg Ser Arg Lys Lys Asn Lys Asn 295 300 305	1688
TGC CGT CGC CAT TCA CTA TAC GTG GAC TTC AGT GAC GTG GGC TGG AAT Cys Arg Arg His Ser Leu Tyr Val Asp Phe Ser Asp Val Gly Trp Asn 310 315 320	1736

GAT TGG ATT GTG GCC CCA CCC GGC TAC CAG GCC TTC TAC TGC CAT GGG Asp Trp Ile Val Ala Pro Pro Gly Tyr Gln Ala Phe Tyr Cys His Gly 325	330	335	1784
GAC TGT CCC TTT CCA CTG GCT GAT CAC CTC AAC TCA ACC AAC CAT GCC Asp Cys Pro Phe Pro Leu Ala Asp His Leu Asn Ser Thr Asn His Ala 340	345	350	1832
ATT GTG CAG ACC CTA GTC AAC TCT GTT AAT TCT AGT ATC CCT AAG GCC Ile Val Gln Thr Leu Val Asn Ser Val Asn Ser Ser Ile Pro Lys Ala 360	365	370	1880
TGT TGT GTC CCC ACT GAA CTG AGT GCC ATT TCC ATG TTG TAC CTG GAT Cys Cys Val Pro Thr Glu Leu Ser Ala Ile Ser Met Leu Tyr Leu Asp 375	380	385	1928
GAG TAT GAC AAG GTG GTG TTG AAA AAT TAT CAG GAG ATG GTG GTA GAG Glu Tyr Asp Lys Val Val Leu Lys Asn Tyr Gln Glu Met Val Val Glu 390	395	400	1976
GGG TGT GGA TGC CGC TGAGATCAGA CAGTCCGGAG GGCGGACACA CACACACACA Gly Cys Gly Cys Arg 405			2031
CACACACACA CACACACACA CACACACACA CGTTCCCATT CAACCACCTA CACATACAC			2091
ACAAAATGCT TCCCTATAGC TGGACTTTTA TCTTAAAAAA AAAAAAAAGA AAGAAAGAAA			2151
GAAAGAAAGA AAAAAAAATGA AAGACAGAAA AGAAAAAAA AACCTAAAC AACTCACCTT			2211
GACCTTATTT ATGACTTTAC GTGCAAATGT TTTGACCATA TTGATCATAT TTTGACAAAT			2271
ATATTTATAA AACTACATAT TAAAAGAAAAA TAAAATGAG			2310

(2) INFORMATION FOR SEQ ID NO:2:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 408 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: protein

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:2:

Met Ile Pro Gly Asn Arg Met Leu Met Val Val Leu Leu Cys Gln Val
1 5 10 15

Leu Leu Gly Gly Ala Ser His Ala Ser Leu Ile Pro Glu Thr Gly Lys
20 25 30

Lys Lys Val Ala Glu Ile Gln Gly His Ala Gly Gly Arg Arg Ser Gly
35 40 45

Gln Ser His Glu Leu Leu Arg Asp Phe Glu Ala Thr Leu Leu Gln Met
50 55 60

SUBSTITUTE SHEET (RULE 26)

Phe Gly Leu Arg Arg Arg Pro Gln Pro Ser Lys Ser Ala Val Ile Pro
 65 70 75 80
 Asp Tyr Met Arg Asp Leu Tyr Arg Leu Gln Ser Gly Glu Glu Glu Glu
 85 90 95
 Glu Glu Gln Ser Gln Gly Thr Gly Leu Glu Tyr Pro Glu Arg Pro Ala
 100 105 110
 Ser Arg Ala Asn Thr Val Arg Ser Phe His His Glu Glu His Leu Glu
 115 120 125
 Asn Ile Pro Gly Thr Ser Glu Ser Ser Ala Phe Arg Phe Leu Phe Asn
 130 135 140
 Leu Ser Ser Ile Pro Glu Asn Glu Val Ile Ser Ser Ala Glu Leu Arg
 145 150 155 160
 Leu Phe Arg Glu Gln Val Asp Gln Gly Pro Asp Trp Glu Gln Gly Phe
 165 170 175
 His Arg Ile Asn Ile Tyr Glu Val Met Lys Pro Pro Ala Glu Met Val
 180 185 190
 Pro Gly His Leu Ile Thr Arg Leu Leu Asp Thr Arg Leu Val His His
 195 200 205
 Asn Val Thr Arg Trp Glu Thr Phe Asp Val Ser Pro Ala Val Leu Arg
 210 215 220
 Trp Thr Arg Glu Lys Gln Pro Asn Tyr Gly Leu Ala Ile Glu Val Thr
 225 230 235 240
 His Leu His Gln Thr Arg Thr His Gln Gly Gln His Val Arg Ile Ser
 245 250 255
 Arg Ser Leu Pro Gln Gly Ser Gly Asp Trp Ala Gln Leu Arg Pro Leu
 260 265 270
 Leu Val Thr Phe Gly His Asp Gly Arg Gly His Thr Leu Thr Arg Arg
 275 280 285
 Arg Ala Lys Arg Ser Pro Lys His His Pro Gln Arg Ser Arg Lys Lys
 290 295 300
 Asn Lys Asn Cys Arg Arg His Ser Leu Tyr Val Asp Phe Ser Asp Val
 305 310 315 320
 Gly Trp Asn Asp Trp Ile Val Ala Pro Pro Gly Tyr Gln Ala Phe Tyr
 325 330 335
 Cys His Gly Asp Cys Pro Phe Pro Leu Ala Asp His Leu Asn Ser Thr
 340 345 350
 Asn His Ala Ile Val Gln Thr Leu Val Asn Ser Val Asn Ser Ser Ile
 355 360 365

Pro Lys Ala Cys Cys Val Pro Thr Glu Leu Ser Ala Ile Ser Met Leu
 370 375 380
 Tyr Leu Asp Glu Tyr Asp Lys Val Val Leu Lys Asn Tyr Gln Glu Met
 385 390 395 400
 Val Val Glu Gly Cys Gly Cys Arg
 405

(2) INFORMATION FOR SEQ ID NO:3:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 2688 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: DNA (genomic)

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:3:

GAATTCGCTA	GGTAGACCAAG	GCTGGCCAG	AACACCTAGA	GATCATCTGG	CTGCCTCTGT	60
CTCTTGAGTT	CTGGGGCTAA	AGCATGCACC	ACTCTACCTG	GCTAGTTTGT	ATCCATCTAA	120
ATTGGGGAAG	AAAGAAGTAC	AGCTGTCCCC	AGAGATAACA	GCTGGGTTTT	CCCATCAAAC	180
ACCTAGAAAT	CCATTTAGA	TTCTAAATAG	GGTTTGTCAAG	GTAGCTTAAT	TAGAACTTTC	240
AGACTGGGTT	TCACAGACTG	GTTGGGCCAA	AGGTCACTTT	ATIGTCTGGG	TTTCAGCAAA	300
ATGAGACAAT	AGCTGTTATT	CAAACAAACAT	TTGGGTAAGG	AAGAAAAATG	AACAAACACC	360
ACTCTCCCTC	CCCCCGCTCC	GTGCCTCCAA	ATCCATTAAA	GGCAAAGCTG	CACCCCTAAG	420
GACAACGAAT	CGCTGCTGTT	TGTGAGTTTA	AATATTAAGG	AACACATTGT	GTTAATGATT	480
GGAGCAGCAG	TGATTGATGT	AGTGGCATTG	GTGAGCACTG	AATCCGTCT	TCAACCTGCT	540
ATGGGAGCAC	AGAGCCTGAT	GCCCCAGGAG	TAATGTAATA	GAGTAATGTA	ATGTAATGGA	600
GTTTTAATTT	TGTGTTGTG	TTTTAAATAA	TTAATTGTAA	TTTTGGCTGT	GTTAGAAGCT	660
GTGGGTACGT	TTCTCAGTCA	TCTTTCGGT	CTGGTGTAT	TGCCATACCT	TGATTAATCG	720
GAGATTAAAA	GAGAAGGTGT	ACTTAGAAAC	GATTTCAAAT	GAAAGAAGGT	ATGTTTCCAA	780
TGTGACTTCA	CTAAAGTGAC	AGTGACGCAG	GGAATCAATC	GTCTTCTAAT	AGAAAGGGCT	840
CATGGAGACC	TGAGCTGAAT	CTTTCTGTT	TGGATGAGAG	AGGTGGTACC	CATTGGAATG	900
AAAGGACTTA	GTCAGGGGCA	ATACAGTGTG	CTCCAAGGCT	GGGGATGGTC	AGGATGTTGT	960
GCTCAGCCTC	TAACACTCCT	TCCAACCTGA	CATTCCCTCT	CACCCCTTGT	CTCTGGCCAG	1020
TAGAATACAG	GAACTCGTT	CTGTTTTTTT	TTTTTTAAAT	TCTGAAGGTG	TGTAAGTACA	1080

SUBSTITUTE SHEET (RULE 26)

AAGGTCAGAT GAGCGGCCCT AGGTCAAGAC TGCTTTGTGG TGACAAGGGA GTATAACACC	1140
CACCCCAGAA ACCAAGAACC GGAAATTGCT ATCTTCCAGC CCTTTGAGAG CTACCTGAAG	1200
CTCTGGGCTG CTGGCCTCAC CCCTCCCTG CAGCTTCCC TTTAGCAGAG GCTGTGATTT	1260
CCTTCAGCGC TTGGGCAAAT ACTCTTAGCC TGGCTCACCT TCCCCATCCT CGTTTGTAAA	1320
AACAAAGATG AAGCTGATAG TTCCTTCCC GCTCCATCAG AGGCAGGGTG TGAAATTAGC	1380
TCCCTGTTGG GAAGGTTAA AAGCCGGCCA CATTCCACCT CCCAGCTAGC ATGATTACCA	1440
ACTCTTGTCTT CTTACTGTG TTATGAAAGA CTCATTCCCT CATCTCCCTT TCCCTTCTTT	1500
TAAAAAGGGG CCAAAGGGCA CTTTGTCTT TTCTCTACAT GGCTAAAG GCAGTGTGTT	1560
ACCTTCCCTGG AAGGTCCCAA ACAAACAAAC AAACAAACAA AATAACCATC TGGCAGTTAA	1620
GAAGGCTTCA GAGATATAAA TAGGATTTTC TAATTGTCTT ACAAGGCCTA GGCTGTTGC	1680
CTGCCAAGTG CCTGCAAACCT ACCTCTGTGC ACTTGAAATG TTAGACCTGG GGGATCGATG	1740
GAGGGCACCC AGTTTAAGGG GGGTTGGTGC AATTCTCAA TGTCACAAAG AACATCTCA	1800
CAAAAACCTT TTTGGGGGA AAGTCACCTC CTAATAGTTG AAGAGGTATC TCCTTCGGGC	1860
ACACAGCCCT GCTCACAGCC TGTTCAACG TTTGGAATC CTTAACAGT TTACGGAGG	1920
CCACCCCTTA AACCAATCCA ACAGCTCCCT TCTCCATAAC CTGATTTAG AGGTGTTCA	1980
TTATCTCTAA TTACTCGGGG TAAATGGTGA TTACTCAGTG TTTTAATCAT CAGTTGGGC	2040
AGCAGTTATT CTAAACTCAG GGAAGCCCAG ACTCCCAGG GTATTTTGG AAGGTACAGA	2100
GAATAGTTGG TGCACTGCTTT CTAGTACCTC TTGCATGTGG TCCCCAGGTG AGCCCCGGCT	2160
GCTTCCCGAG CTGGAGGCAT CGGTCCCAGC CAAGGTGGCA ACTGAGGGCT GGGGAGCTGT	2220
GCAATCTTCC GGACCCGGCC TTGCCAGGCG AGGCQAGGCC CCGTGGCTGG ATGGGAGGAT	2280
GTGGGCAGGG CTCCCCATCC CAGAAGGGGA GGCAGTTAAG GGAGGAGGGGA AGAAGGGAGG	2340
GGCCGCTGGG GGGAAAGACT GGGGAGGAAG GGAAGAAAGA GAGGGAGGGGA AAAGAGAAGG	2400
AAGGAGTAGA TGTGAGAGGG TGGTGCTGAG GGTGGGAAGG CAAGAGCGCG AGGCCTGGCC	2460
CGGAAGCTAG GTGAGTTCGG CATCCGAGCT GAGAGACCCC AGCCTAACAC GCCTGCGCTG	2520
CAACCCAGCC TGAGTATCTG GTCTCCGTCC CTGATGGGAT TCTCGTCTAA ACCGTCTTGG	2580
AGCCTGCGAG GATCCAGTCT CTGGCCCTCG ACCAGGTTCA TTGCAGCTTT CTAGAGGTCC	2640
CCAGAAGCAG CTGCTGGCGA GCCCGCTTCT GCAGGAACCA ATGGTGAG	2688

(2) INFORMATION FOR SEQ ID NO:4:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 2875 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: DNA (genomic)

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:4:

GAATTCAATT AAGCTGGATT CACTTCTAGG TCCCATGGGT TTACACTCAT TTCCACCACA	60
AGAGGGCAGC CATCTCTAAA AAAACAACAG TCGAGTGCTC TTCAGAGAAA TTGGGCCAAA	120
CTTGAGGAAA GTTCCTGGGA AAGGCTTTT AGCAGCACCT CTCTGGGCTA CAAAAAAGAA	180
GCCAGCAGGC ACCACCAAGG TGGAGTAAC GTCCAGAGGC ATCCATTTA CCTCAGAGAC	240
TTGATTACTA AGGATATCCT AACCGGCCAA ACTCTCTCTT CTGGTGTCC AGAGGCCAA	300
AGCTGCAAGG CATTGTTGAT GTCATCACCA AAGGTTCAT TTTCATCTTT TCTTGGGTT	360
GGTCCAACAG CTGTCAGCTT TCTCTTCCTC ATTAAAGGCA ACTTTCTCAT TAAATCTCA	420
TATAGGTTCG GAGTTCTTG CTTTGTCTCT TCCGCCTCCG CGATGACAGA AGCAATGGTT	480
AACTTCTCAA TTAAACTTGA TAGGGAAGGA AATGGCTTCA GAGGCAGATCA GCCCTTTGA	540
CTTACACACT TACACGTCTG AGTGGAGTGT TTTATTGCCG CCTTGTGGTGG TGTCTCATGA	600
TTCAAGAGTGA CAACCTCTGC AACACGTTT AAAAGGAAT ACAGTAGCTG ATCGCAAATT	660
GCTGGATCTA TCCCTTCCTC TCCCTTAATT TCCCTTGAG ACAGCCTTCC TTCAAAAATA	720
CCTTATTGTA CCTCTACAGC TCTAGAAACA GCCAGGGCCT AATTTCCCTC TGTGGGTTGC	780
TAATCCGATT TAGGTGAACG AACCTAGAGT TATTTAGCT AAAAGACTGA AAAGCTAGCA	840
CACGTGGTA AAAAAATCAT TAAAGCCCCCT GCTTCTGGTC TTTCTCGGTC TTTGCTTTGC	900
AAACTGGAAA GATCTGGTC ACAACGTAAC GTTATCACTC TGGTCTCTA CAGGAATGCT	960
CAGCCCCATAG TTTTGGGGGT CCTGTGGTA GCCAGTGGTG GTACTATAAG GCTCCTGAAT	1020
GTAGGGAGAA ATGGAAAGAT TCAAAAAAGA ATCCTGGCTC AGCAGCTTGG GGACATTTC	1080
AGCTGAGGAA GAAAATGGC TTGGCCACAG CCAGAGCCTT CTGCTGGAGA CCCAGTGGAG	1140
AGAGAGGACC AGGCAGAAAA TTCAAAGGTC TCAAACCGGA ATTGTCTTGT TACCTGACTC	1200
TGGAGTAGGT GGGTGTGGAA GGGAAAGATAA ATATCACAAG TATCGAAGTG ATCGCTTCTA	1260
TAAAGAGAAAT TTCTATTAAC TCTCATTGTC CCTCACATGG ACACACACAC ACACACACAC	1320

ACACACACAC ACACATCACT AGAAGGGATG TCACCTTACA AGTGTGTATC TATGTTAGA	1380
AAACCTGTACC CGTATTTTA TAATTTACAT AAATAAAATAC ATATAAAATA TATGCATCTT	1440
TTTATTAGAT TCATTTATT GAATATAAA GTATGAATAT TTATAAAATG TAATAATGCA	1500
CTCAGATGTG TATCGGCTAT TTCTCGACAT TTTCTCTCA CCATTCAAAA CAGAAGCGTT	1560
TGCTCACATT TTTGCCAAA TGTCTAATAA CTTGTAAGTT CTGTTCTCT TTTTAATGTG	1620
CTCTTACCTA AAAACTTCAA ACTCAAGTTG ATATTGGCCC AATGAGGGAA CTCAGAGGCC	1680
AGTGGACTCT GGATTTGCC TAGTCTCCCG CAGCTGTGGG CGCGGATCCA GGTCCCCGGG	1740
GTCGGCTTCA CACTCATCCG GGACGCGACC CCTTAGCGGC CGCGCGCTCG CCCCCGCCCCG	1800
CTCCACCGCG GCCCCGTACG CGCCGTCCAC ACCCCTGCAC GCCCCTGCCG CCCCCGCCCCG	1860
GGATCCCGGC CGTGCTGCCT CCGAGGGGGA GGTGTTCGCC ACGGCCGGGA GGGAGCCGGC	1920
AGGCGGCGTC TCCTTTAAAA GCGCGAGCG CGCGCCAGCG CGGCTCGTCG CGGCCGGAGT	1980
CCTCGCCCTG CGCGCAGAG CCTTGCTCGC ACTGCGCCCG CGCGCGTCG TTCCCACAGC	2040
CCGCCCCGGGA TTGGCAGCCC CGGACGTAGC CTCCCCAGGC GACACCAGGC ACCGGGACGC	2100
CCTCCCGCG AAAGACGCGA GGGTCACCCG CGGCTTCGAG GGACTGGCAC GACACGGGTT	2160
GGAACCTCCAG ACTGTGCGCG CCTGGCGCTG TGGCCTCGGC TGTCCGGGAG AAGCTAGAGT	2220
CGCGGACCGA CGCTAAGAAC CGGGAGTCCG GAGCACAGTC TTACCCCTAA TGCGGGGCCA	2280
CTCTGACCCA GGAGTGAGCG CCCAAGGCGA TCGGGCGGAA GAGTGAGTGG ACCCCAGGCT	2340
GCCACAAAAG ACACTTGGCC CGAGGGCTCG GAGCGCGAGG TCACCCGGTT TGGCAACCCG	2400
AGACGCGCGG CTGGACTGTC TCGAGAATGA GCCCCAGGAC GCCGGGGCGC CGCAGCCGTG	2460
CGGGCTCTGC TGGCGAGCGC TGATGGGGGT GCGCCAGAGT CAGGCTGAGG GAGTGCAGAG	2520
TGCGGGCCCGC CGGCCACCA AGATCTTCGC TCGGCCCTTG CCCGGACACG GCATCGCCCA	2580
CGATGGCTGC CCCGAGCCAT GGGTCGCGGC CCACGTAACG CAGAACGTCC GTCCTCCGCC	2640
CGGCGAGTCC CGGAGCCAGC CCCGCGCCCC GCCAGCGCTG GTCCCTGAGG CCGACGACAG	2700
CAGCAGCCTT GCCTCAGCCT TCCCTTCCGT CCCGGCCCCG CACTCCTCCC CCTGCTCGAG	2760
GCTGTGTGTC AGCACTTGGC TGGAGACTTC TTGAACCTGC CGGGAGAGTG ACTTGGGCTC	2820
CCCACTTCGC GCCGGTGTCC TCGCCCCGGCG GATCCAGTCT TGCCGCCTCC AGCCC	2875

(2) INFORMATION FOR SEQ ID NO:5:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 18 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: cDNA

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:5:

CCCGGCAAGT TCAAGAAAG

18

(2) INFORMATION FOR SEQ ID NO:6:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 15144 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: DNA (genomic)

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:6:

GAATTCAATT AAGCTGGATT CACTTCTAGG TCCCCATGCGT TTACACTCAT TTCCACCACA	60
AGAGGGCAGC CATCTCTAAA AAAACAACAG TCGAGTGCTC TTCAGAGAAA TTGGGCCAAA	120
CTTGAGGAAA GTTCTCTGGGA AAGGCTTTT AGCAGCACCT CTCTGGGCTA CAAAAAAAGAA	180
GCCAGCAGGC ACCACCAAAGG TGGAGTAACG GTCCAGAGGC ATCCATTTA CCTCAGAGAC	240
TTGATTACTA AGGATATCCT AAACGGCCAA ACTCTCTCTT CTGGTGTTC AGAGGCCAA	300
AGCTGCAAGG CATTGTTGAT GTCATCACCA AAGGTTTCAT TTTCATCTTT TCTTGGGGTT	360
GGTCCAACAG CTGTCAGCTT TCTCTTCCTC ATTAAAGGCA ACTTTCTCAT TTAAATCTCA	420
TATAGGTTCG GAGTTTCTTG CTTTGCTCCT TCCGCCTCCG CGATGACAGA AGCAATGGTT	480
AACTTCTCAA TTAAACTTGA TAGGGAAGGA AATGGCTCA GAGGCGATCA GCCCTTTGGA	540
CTTACACACT TACACGCTTG AGTGGAGTGT TTTATTGCCG CCTTGTGGG TGTCTCATGA	600
TTCAAGAGTGA CAACTTCTGC AACACGTTT AAAAAGGAAT ACAGTAGCTG ATCGCAAATT	660
GCTGGATCTA TCCCTTCCTC TCCTTTAATT TCCCTTGAG ACAGCCTTCC TTCAAAAATA	720
CCTTATTTGA CCTCTACAGC TCTAGAAACA GCCAGGGCCT AATTTCCTC TGTGGGTGCG	780
TAATCCGATT TAGGTGAACG AACCTAGAGT TATTTAGCT AAAAGACTGA AAAGCTAGCA	840

CACGTGGGTA	AAAAAATCAT	AAAGCCCT	GCTTCTGGTC	TTTCTGGTC	TTTGCTTG	900
AAACTGGAAA	GATCTGGTTC	ACAACGTAAC	GTTATCACTC	TGGTCTTCTA	CAGGAATGCT	960
CAGCCCATAG	TTTTGGGGT	CCTGTGGGTA	GCCAGTGGTG	GTACTATAAG	GCTCCTGAAT	1020
GTAGGGAGAA	ATGGAAGAT	TCAAAAAAGA	ATCCTGGCTC	AGCAGCTTGG	GGACATTTC	1080
AGCTGAGGAA	AAAAACTGGC	TTGCCACAG	CCAGAGCCTT	CTGCTGGAGA	CCCAGTGGAG	1140
AGAGAGGACC	AGGCAGAAAA	TTCAAAGGTC	TCAAACCGGA	ATTGTCTTGT	TACCTGACTC	1200
TGGAGTAGGT	GGGTGTGGAA	GGGAAGATAA	ATATCACAAAG	TATCGAAGTG	ATCGCTTCTA	1260
TAAAGAGAAAT	TTCTATTAAC	TCTCATTGTC	CCTCACATGG	ACACACACAC	ACACACACAC	1320
ACACACACAC	ACACATCACT	AGAAGGGATG	TCACTTTACA	AGTGTGTATC	TATGTTCAGA	1380
AACCTGTACC	CGTATTTTA	TAATTTACAT	AAATAAATAC	ATATAAAATA	TATGCATCTT	1440
TTTATTAGAT	TCATTTATTT	GAATATAAAT	GTATGAATAT	TTATAAAATG	TAATAATGCA	1500
CTCAGATGTG	TATCGGCTAT	TTCTCGACAT	TTTCTTCTA	CCATTCAAAA	CAGAACCGTT	1560
TGCTCACATT	TTTGCCAAA	TGTCTAATAA	CTTGTAAAGTT	CTGTTCTTCT	TTTTAATGTG	1620
CTCTTACCTA	AAAACCTCAA	ACTCAAGTTG	ATATTGGCCC	AATGAGGGAA	CTCAGAGGCC	1680
AGTGGACTCT	GGATTTGCC	TAGTCTCCCG	CAGCTGTGGG	CGCGGATCCA	GGTCCCAGGG	1740
GTCGGCTTCA	CACTCATCCG	GGACGCGACC	CCTTAGCGGC	CGCGCGCTCG	CCCCGCCCCG	1800
CTCCACCGCG	GCCCCGTACG	CGCCGTCCAC	ACCCCTGCGC	GCCCCGTCCCG	CCCCGCCCCGG	1860
GGATCCCGGC	CGTGTGCGCT	CCGAGGGGGAA	GGTGTTCGCC	ACGGCCGGGA	GGGAGCCGGC	1920
AGGCGCGCGTC	TCCCTTAAAA	GCCGCGAGCG	CGCGCCAGCG	CGCGCGTCGTC	GCCGCCGGAG	1980
TCCTCGCCCT	GCCGCGCAGA	GCCCTGCTCG	CACTGCGCCC	GCCGCGTGCG	CTTCCCACAG	2040
CCCGCCCCGGG	ATTGGCAGCC	CCGGACGTAG	CCTCCCCAGG	CGACACCAGG	CACCGGAGCC	2100
CCTCCCGGGCG	AAAGACGCGA	GGGTCACCCCG	CGGCTTCGAG	GGACTGGCAC	GACACGGGTT	2160
GGAACTCCAG	ACTGTGCGCG	CCTGGCGCTG	TGGCCTCGGC	TGTCCGGAG	AAGCTAGAGT	2220
CGCGGACCGA	CGCTAAGAAC	CGGGAGTCG	GAGCACAGTC	TTACCCCTCAA	TGCGGGGCCA	2280
CTCTGACCCA	GGAGTGAGCG	CCCAAGCGA	TGGGGCGGAA	GAGTGAGTGG	ACCCCAAGGCT	2340
GCCACAAAAG	ACACTTGGCC	CGAGGGCTCG	GAGCGCGAGG	TCACCCGGTT	TGCGAACCCG	2400
AGACGCGCGG	CTGGACTGTC	TCGAGAAATGA	GCCCCAGGAC	GCCGGGGCGC	CGCAGCCGTG	2460
CGGGCTCTGC	TGGCGAGCGC	TGATGGGGGT	CGGCCAGAGT	CAGGCTGAGG	GAGTGCAGAG	2520
TGGGGCCCGC	CCGCCACCCA	AGATCTTCGC	TGCGCCCTTG	CCCGGACACG	GCATCGCCCA	2580

CGATGGCTGC CCCGAGCCAT GGGTGGCGGC CCACGTAACG CAGAACGTCC GTCCCTCCGCC	2640
CGGCGAGTCC CGGAGCCAGC CCCGGGCCCC GCCAGCGCTG GTCCCTGAGG CCGACGACAG	2700
CAGCAGCCTT GCCTCAGCCT TCCCTTCGGT CCCGGCCCCG CACTCCTCCC CCTGCTCGAG	2760
GCTGTGTGTC AGCACTTGGC TGGAGACTTC TTGAACCTGC CGGGAGAGTG ACTTGGGCTC	2820
CCCACTTCGC GCCGGTGTCC TCGCCGGCG GATCCAGTCT TGCCGCCTCC AGCCCGATCA	2880
CCTCTCTTCC TCAGCCCCGT GGCCCACCCC AAGACACAGT TCCCTACAGG GAGAACACCC	2940
GGAGAAGGAG GAGGAGGGCGA AGAAAAGCAA CAGAAGCCCA GTTGCTGCTC CAGGTCCCTC	3000
GGACAGAGCT TTTTCCATGT GGAGACTCTC TCAATGGACG TGCCCCCTAG TGCTTCTTAG	3060
ACGGACTGCG GTCTCCTAAA GGTAGAGGAC ACGGGGCCGG GACCCGGGGT TGGCTGGCGG	3120
GTGACACCGC TTCCCGCCCA ACGCAGGGCG CCTGGGAGGA CTGGTGGAGT GGAGTGGACG	3180
TAAACATAACC CTCACCCGGT GCACGTGCAG CGGATCCCTA GAGGGGTTAG GCATTCCAAA	3240
CCCCAGATCC CTCTGCCTTG CCCACTGGCC TCCTTCCCTCC AGCCGGTTCC TCCTCCCCAA	3300
GTTTCGATA CATTATAAGG GCTGTTTGG GCTTTCAAAA AAAAAATGC AGAAATCCAT	3360
TTAAGAGTAT GGCCAGTAGA TTTTACTAGT TCATTGCTGA CCAGTAAGTA CTCCAAGCCT	3420
TAGAGATCCT TGGCTATCCT TAAGAAGTAG GTCCATTAG GAAGATACTA AAAGTTGGGG	3480
TTCTCCATGT GTGTTTACTG ACTATGCGAA TGTGTCTAG CTTACACGTG CATTCTAAA	3540
CACTATCTAT TTAGTTAATT GCAGGAAGGT GCATGGATTT CTTGACTGCA CAGGAGTCTT	3600
GGGGAAGGGG GAACAGGGTT GCCTGTGGGT CAACCTTAAA TAGTTAGGGC GAGGCCACAA	3660
CTTGCAAGTG GCGTCATTAG CAGTAATCTT GAGTTAGCG CTTACTGAAT CTACAAGTTT	3720
GATATGCTCA ACTACCAGGA AATTGTATAC AGCGCCTCTA AGGAAGTCAC TTGTGCATTT	3780
GTGCTGTTA ATATGCACAT GAGGCTGCAC TGTATAAGTT TGTCAGGGAT GCAGTGTCCG	3840
ACCAACCTAT GGCTTCCCAG CTTCTGACA CCCGCATTCC CAGCTAGTGT CACAAGAAA	3900
GGGTACAGAC GGTCAAGCTC TTTTTAATTG GGAGTTAAGA CCAAGCCCCA AGTAAGAAGT	3960
CCGGCTGGGA CTTGGGGGTC CTCCATCGGC CAGCGAGCTC TATGGGAGCC GAGGCGCGGG	4020
GGCGGCGGAG GACTGGGCGG GGAACGTGGG TGACTCACGT CGGCCCTGTC CGCAGGTGGA	4080
CCATGGTGGC CGGGACCCGC TGTCTCTAG TGTGTCTGCT TCCCCAGGTC CTCCCTGGCG	4140
GCGCGGCCGG CCTCATTCCA GAGCTGGGCC GCAAGAAGTT CGCCGCGGCC TCCAGCCGAC	4200
CCTTGTCCCG GCCTTCGGAA GACGTCTCA GCGAATTGAG GTTGAGGCTG CTCAGCATGT	4260
TTGGCCTGAA GCAGAGACCC ACCCCCCAGCA AGGACGTGCGT GGTGCCCCCCC TATATGCTAG	4320

ATCTGTACCG CAGGCACTCA GGCCAGCCAG GAGCGCCCAG CCCAGACCAC CGGCTGGAGA	4380
GGGCAGCCAG CGCGCACAAC ACCGTGCGCA CGTTCCATCA CGAAGGTGAG CGGGCGGCAG	4440
GTGGCGGGC GGGGACGGCG GGCGGGCGGA GACTAGGCGG GCAGCCCGGG CCTCCACTAG	4500
CACAGTAGAA GGCCCTTCGG CTTCTGTACG GTCCCCCTTG TGCCCCAGC CAGGGATTCC	4560
CCGCTTGTGA GTCTCACCC TTTCCTGGCA AGTAGCCAA AGACAGGCTC CTCCCCCTAG	4620
AACTGGAGGG AAATCGAGTG ATGGGGAAAGA GGGTGAGAGA CTGACTAGCC CCTAGTCAGC	4680
ACAGCATGCG AGATTTCCAC AGAAGGTAGA GAGTTGGAGC TCCTTAAATC TGCTTGGAAAG	4740
CTCAGATCTG TGACTTGTGT TCACGCTGTA GTTTTAAGCT AGGCAGAGCA AGGGCAGAAT	4800
GTTCGGAGAT AGTATTAGCA AATCAAATCC AGGGCCTCAA AGCATTCAA TTTACTGTTC	4860
ATCTGGGCCT AGTTTGAAAG ATTTCTGAAT CCCTATCTAA TCCCCGTGGG AGATCAATTTC	4920
CACAATTCTG CATATTGTTT CCACAATGAC CTTCGATTCT TTGCTTAAAT CTAAATCTC	4980
CAAGTGGAGA CAGCGCAGC CTTCAGATAA AAGCCTTCT CCCACTGCCT GCTACCTTC	5040
TAGGCAAGGC AATGGGTTT TTAAACAAAT ATATGAATAT GATTTCCAA GATAGAATAA	5100
TGTTGTTTAT TTCAGCTGAA ATTCCTGGA TTAGAAAAGC TGTAGAGGCC TATTGAAGTC	5160
TCTTGCACCG ATGTTCTGAA AGCAGTTAGT AAAAAATCAT GACCTAGCTC AATTCTGTGT	5220
GTGCCACTTT CAATGTGCTT TTGACTTAAT GTATTCTCCA TAGAACATCA GTTCCCTCAA	5280
GTTCTAGAAG AATTCAAGATT TAAAGTTTG CTTTGCCTTG CTGAGGGGAT AATTTTTAAG	5340
TAGAAATCTA GGCTCTGAAA TGATAGCCCA ACCCCATCTC CAGTAAGGGG TGACTGACTC	5400
AAACCTTGAG AAGTCTGGGT GATAATAGGA AAAGTCCACA AGCAGGTCAC AGAGCGCGAG	5460
ATGGATCTGT CTTGAGGCAG CCAATGGTTA TGAAGGGCAC TGGAAATCCA TCTCTTCAA	5520
ACTGGTGTCT AGGGCTTCT GGGAGCAAAG CTTAGACCAC ATTCTGCTCC TCAAGGTTTG	5580
CCTACTGAAA GCAGGGAGAT TCTGGGTGTT CACCCCATC CTTCACCCCC AGGTGATTCT	5640
GGGCTTAGCT AATCTCTCCT GGTTAATATT CATTGGAAAG TTTTTATAGA TCAAAACAAA	5700
CAAACCTACT ATCCAGCACA GGTGTTTTC CCACTGCCTC TGGAGATATA GCAAGAAAAC	5760
CATATATTCA TGTATTCTT TATTAGTCTT TTCTAACGTG AAAATTATTC CTGACCTATA	5820
AAAAATGAAG GAGGTATTTT ATCTTAACTA AGCTAAAAGA ATCGCTTAAG TCAATTGAAA	5880
CTCAAAAATC CAATTGAATG AAAGGTTCGT CAATAAAAAT CTACATTCTT CTTACTCTTC	5940
CTTGGAAAT AGCTTGATAA AAACACAGAC AAAACAAAGT CTGTGTGCTT ATTTGAAAAC	6000
TTAGTGAGCT TCAGTTCATA AGCAAAAAAT GTAGTTAAA AGTGATTTT CTGTGTAAA	6060

ACGTGATAGA AGTTATTGAC TIGTTAAAA TAAACTTGCA CTAACCTTAT ACCTTGGTGC	6120
AATTAGATGT AATGTTTACT GTAAATTCA GGAAAACCAT TTTTTTTTT TGGTCATGAT	6180
CAGGTACACA TGGCATTTGG GAAGACTTTT CACATTGTTG AGTAACCTAG AGTTTGTGTT	6240
TTTGTGTT TGTTTTAAG CATTCTTGTG CCAGTAGAAA AACCTTAATA AGCCATGTGT	6300
TACTTGGTAG ACTTCTTCCT AAGTCTAGA AAGTGGCTTA ATGCCACGAT GAGACAAAAC	6360
ATACCATAGT AGTCTTTCAA CCAGTGGCAG AGTCTTCCAG ACAAAATCTC CTGTTGAACA	6420
TTAAGACCAT GGATTTTAT CCAGGAGAGC CCAGGCTTGT CTGAATCACCC ACCCTCCAAC	6480
CCCACCTCCAA GGTCACCGAA GGCCTCCCCA ACTGGCTGCC ATTGAGAAC TGTTGAAAT	6540
TGATTGACTC CATTGGCCCT ACAGAGACTT CTCCCTTAGT GGAGATCAT ATACTGAAGG	6600
ATCCAAGCTT GCTCTCTGA CTATGAAGAG CACAGTCTT CTTTTCTTT ATGGAATAAA	6660
CAAACATAGT GGCCCTGTGA CTAAAGTTT CAAAGAGGGA GAGATCCTGT TAGCAGAAGT	6720
GCAACTGCC AGAAACTAGC CACAGGCTAG GATATTCCAA AGTACAACTC TAAAGTATGG	6780
TCCATCCTAA ATTCTAGCAT GGGGTTGAAT ACCGGCATCC AGGAATACCTT CTCTCTACCT	6840
CTGGCTATTG CAGTGAGATT ACGAAGACCC TGGGGGGAAA AACAGTTGCT TAGTTTACAG	6900
ATGTTCTTG CCACAGATGT TCTCAGTATC TCTTGTGTT CAGAGGATCC TTTCAATCCC	6960
TCTTGACATT TCCAATCTGC TTTTGTCTC TCTACATGTG CCTTGTGGCA TTTCGCTTGG	7020
TCTTAGAGA ATCCCTTCT GGAGCTGCAG GTTCCCTTGT AGGATCTGTG TTCAGGAGAA	7080
CAGGGACCTT GGCAAGGTTAG TGACAACCTAC CAAACCCCTGC TTTCCCTCCC TGCCACTTCC	7140
TTTGTGCT TAATAATTAA ACCTTAACTC TCTGTGTCTA AACCTTTCT TCTTCTCTT	7200
TGTCATTTAC TTATTTATT TGTCACTGTAC TTTATCCTGT AGAAAATCAC AGTGTGGCCC	7260
AAAGCCCCCTT GAATCTTGTGTT GCAGCGGTGA GATGCAGCTG CTGATCTGGA ATAGCCTTAG	7320
GCTGTGTGTT TGATCACAAT GCTTCTGTC CAAAAGTGTG CAAATCCTCC AAGCTTAATG	7380
ATAACTTTTG AAATGAAACT CACCCCTACTT TAGGGCAAAAC AAGTAGCCAC AGAGAGCAGG	7440
ATCTAAACAA GGTCTGGTGT CCCATTGGC TGTGTCCCTT CAATTTCTG TTCATTTAGC	7500
TCTGTCTGCA TCTAAAGGGT GCTGGCAAT AAGTTTGAT CTTCAGGGCA AAACCTCAATC	7560
TTCAGTTACC ATGGTATCAG GTACCAATTCTAGTGTGTT GTGCTATGGC TTAGGATTTG	7620
ATTTCTCTCC TACATTAGGT AATATCTTTC AATGGCTAGA ACTTGGGCAT TGCACTACAC	7680
TCAAGTTAAC AGTTCTGTGA CCTAAGGAAG TCACATAACC TCTCTGAATT CTCTACTGTT	7740
TCATTACCAA AATGGAGAAA ATCATGGCTC TTTCTTAATG TCGGAATTCA TAGAAAGGTG	7800

ATGACACCAAG ATTTGGCAGA AGGAAGGAAA GGAAGGAAGG AAGAAAGAAA GAAAGAAAGA	7860
AAGAAAGAAA GAAAGAAAGA AAGAAAGAAA GGAAGGAAGG GAGAGAGAGA GAAGGGAGG	7920
GAAAGGGAAA GGGAAAGGAA AGAAAAGAAA GGAAGGAAGA AAAGGAAGGA AGGAAGGAAA	7980
GAAGGAAGGA AGGAAAAGAA AGAGAAGAAA GCATTAGCA TATGAACCAA TGTTCCTGG	8040
TGACTTTTA TATCATATCC TTGTTCTAGG AAGTGGCCCT AGCCATATCT TTTGGGTTAT	8100
TTTGAGGTAG AGGATAATCA ACATAGTGTAA GAACATTAAA TCTGGGTTTT GTTCTAGAA	8160
GAGGCTAGAA TGGCATGGCT GTCCCACITG CTCCCTCTTC AGGCAGTATG GCAGCCACCA	8220
TTCTCTCTGT AAGATCTAGG AGGCTGACAC TCAGGTTGGA GACAGGTCAAG AATCCTGAAA	8280
TCACTTAGCA AGITCAGCTG ATTCAACAAG GGATATTTAC AGAGAATTAA CAGCTATTCC	8340
AGCTTCCAAA AAGTGTACAT TACCTACTCT GTATTTTCAG AACCCCAGGT TTGCTGTGAT	8400
AAATTGGTAG AAGCCTTTTC CTGTAATTAA CTTTATTTAA AAGATATTTT CATTTCAC	8460
CCTCAAGAAG AGGTTGAAAC TTGTCCCTTG AAGTGAAGA GGTGTTGTGT GTCCTGACCC	8520
TGAGGAAGTT GGCTTGTGAGGTTCTG TAAATTCTG AATTCTCTGT ATAATTCAA	8580
TGAATAGTCA TGTTGATAC CTTGGTATAA AGGATGGGAT AAGATCTTCA AAGGCTTAGG	8640
CTGATGGAAA CGCTGCTGAA AGACTAGAGA TTGCTCTTC CTTTGGCATC TGTCTGGGT	8700
AGTAATATTG TTCTCTGTGA AGGCCACTT ATTCTGTCTT GAAAATTCTT CTTACCTCCA	8760
GAGTGATAGG CCACAGGGAG TACTGTTCT ATGTTGCAG TTGAAAGATG ACAATTTCAT	8820
ATGGTCCAAA CTTGGCTTTA TTTCTGGTG AGATATTATT CTGTTACTTC AATGACCTGT	8880
CTCCATTATT TATCTTGAGG CTCACCTCTT CCCTTTGTT GACTGTTGTG CAATTGTGG	8940
AAGGCCCTGG GTAGTCAGCC TTTATACTCT GTCTGTACAG GAAATAAGT GCATGTCACC	9000
ATGCCAAAGT CAGGAGATGC CGGTGTGATT AGGGTCCACG GGATTTGCT ACTGTTTTA	9060
TTTCTATCGA TGAATTGCCT TAGGCAGAAA CATTAAGGGA CACCAGAATG GTGATGAAAG	9120
GCTTTTATA ACAGAAGCTA AATGCAGTCC TTCATACTTC ATGGAATGCC CCTGTCCTAA	9180
AGTACCATTA ACCGATAGTG GAGTCAGAAC ATAAATGGCT CCCAAAGGT ATCACCAAGA	9240
ACTTTGGCA AACAGATGCA AGAGGATTAT GAAGAATCGC AGCTTGGTCT GGTAATCTTC	9300
CTGTTGCAAA GAGAAGAGCT TTAGAAGACC CCCCTTGAGT CCCTGGCTGG CTTAACATAG	9360
CATGAACCTT CATGTGTTGG CCAACATTAA GGCTTTCT ATAAAAGTCT CCTCCTTCAT	9420
CAGTATACGC TCGAGTATGA AAAGCATCCT TTTAACCTT GACTCTGTGT GGTCCAGAAA	9480
CAGCAGCAGC CCTTGCTTAA GAGCTTAATG GAGATGCAGG AGTGCAGGCC TCTTCCCCAGA	9540

CCGGCTGATG TGCAGGTCAA AGTCTAAGCA CTGCTGGATC AACACAGAAAG TTATTCCGAA	9600
TGAGGATGAG ATGGATAACGA GAGAACAGGA AGTAGGAAGG GATTCTTTA TCGTGAATTG	9660
CTACAGCAGC CTAATGTCAC CCCATACCCCT TCTGAAGAAC TATGTCCCTG TGGATGCCCT	9720
TGTCTCTAGA GTTCTGAGCA AAATGGTAGG GTGTGCTTG CAAAATGTCA TCATTGATGT	9780
TGAATTCAA AGTCTTTAAT TAAGGGGCTG AAATCTGTAT ATTGAGATTG GTAATCATC	9840
TAAATTGTAG AGTAATGTTT GCACAGGCTG CTTAAGGGAT TGACATTAAA GCTCGTTTC	9900
TTAGTTAAGA AATACAGTCA TTTCCTCAAC TCCTCAGTCA TTAGCTCTCT ACTAAGTACA	9960
GTGCTGACTT TTTTAAAATT AAAGTCTGTG AATTCCAAAG AAGTGTTCAT CTTATTCCTC	10020
CATTATTATA GCTACCTAGA AGCTATGTTC ATATATTGGA TTAAAAACGT AGCAATTACA	10080
AAGTTAATGT GGCCATATAG AAAAGGGAAA AGAAACTCCG CTTTCACTTT AATATATATA	10140
TGTGTGTGTG TATATCATAT ATATACATGT TGTGTGTGTAT TATATATATA TATATATATA	10200
TATATATATA TATATATATA TATATATATA TGTTGTGTTA AGCAGTAAAC TCAGGCCATG	10260
GACAGAGGGG CAGACATTGT ATCTCTAGGC CTGACATTTC TAATTTCTGG TTGCAGGTTT	10320
TTATGTAGTT TAACTAAAC CATGCACTGA AGTTTTAAAT GCTCGTAAGG AATTAAGTTA	10380
CCATTGGCTC TCTTACCAA TGCGTTCTT TTTTCTCTCC ACCCTGATCA AACTAGAAGC	10440
CGTGGAGGAA CTTCCAGAGA TGAGTGGAA AACGGCCCG CGCTTCTTCT TCAATTAAAG	10500
TTCTGTCCCC AGTGACGAGT TTCTCACATC TGCAAGACTC CAGATCTTCC GGGAACAGAT	10560
ACAGGAAGCT TTGGGAAACA GTAGTTCCA GCACCGAATT AATATTATG AAATTATATAA	10620
GCCTGCAGCA GCCAACTTGA AATTTCTGT GACCAGACTA TTGGACACCA GGTTAGTGAA	10680
TCAGAACACA AGTCAGTGGG AGAGCTTCGA CGTCACCCCA GCTGTGATGC GGTGGACCAC	10740
ACAGGGACAC ACCAACCATG GGTGGGT GGAAGTGGCC CATTAGAGG AGAACCCAGG	10800
TGTCTCCAAG AGACATGTGA GGATTAGCAG GTCTTGACAC CAAGATGAAC ACAGCTGGTC	10860
ACAGATAAGG CCATTGCTAG TGACTTTGG ACATGATGGA AAAGGACATC CGCTCCACAA	10920
ACGAGAAAAG CGTCAAGCCA AACACAAACA GCGGAAGCGC CTCAAGTCCA GCTGCAAGAG	10980
ACACCCCTTG TATGTGGACT TCAGTGTGTT GGGGTGGAAT GACTGGATCG TGGCACCTCC	11040
GGGCTATCAT GCCTTTACT GCCATGGGA GTGTCTTTT CCCCTTGCTG ACCACCTGAA	11100
CTCCACTAAC CATGCCATAG TGCAAGACTCT GGTGAACCTCT GTGAATTCCA AAATCCCTAA	11160
GGCATGCTGT GTCCCCACAG AGCTCAGCGC AATCTCCATG TTGTACCTAG ATGAAAATGA	11220
AAAGGTTGTG CTAAAAAATT ATCAGGACAT GGTTGTGGAG GGCTGCGGGT GTCGTTAGCA	11280

CAGCAAGAAT	AAATAAATAA	ATATATATAT	TTTAGAAACA	AAAAAACCC	TACTCCCCCT	11340
GCCTCCCCCC	CAAAAAACC	AGCTGACACT	TTAATATTTC	CAATGAAGAC	TTTATTATG	11400
GAATGGAATG	AAAAAACAC	AGCTATTTG	AAAATATAIT	TATATCGTAC	GAAAAGAAGT	11460
TGGGAAACA	AATATTTAA	TCAGAGAATT	ATTCCCTAAA	GATTTAAAAT	GTATTTAGTT	11520
GTACATTTA	TATGGGTCA	ACTCCAGCAC	ATGAAGTATA	AGGTCAAGT	TATTTGTAT	11580
TTATTTACTA	TAATAACCAC	TTTTAGGGA	AAAAGATAG	TTAATTGTAT	TTATATGTAA	11640
TCAGAAGAAA	TATCGGGTTT	GTATATAAT	TTTCCAAAAA	AGGAAATTG	TAGTTTGTTT	11700
TTCAGTTGTG	TGTATTTAAG	ATGCAAAGTC	TACATGGAAG	GTGCTGAGCA	AAGTGTGTC	11760
ACCACTTGCT	GTCTGTTCT	TGCAGCACTA	CTGTTAAAGT	TCACAAGTTC	AAGTCCAAAA	11820
AAAAAAAAAA	AGGATAATCT	ACTTTGCTGA	CTTCAAGAT	TATATTCTTC	AATTCTCAGG	11880
AATGTTGCAG	AGTGGTTGTC	CAATCCGTGA	GAACTTCAT	TCTTATTAGG	GGGATATTG	11940
GATAAGAAC	AGACATTACT	GATCTGATAG	AAAACGTCTC	GCCACCCCTCC	CTGCAGCAAG	12000
AACAAAGCAG	GACCAGTGGG	AATAATTACC	AAAACGTGA	CTATGTCAGG	AAAGTGAGTG	12060
AATGGCTCTT	GTTCTTCTT	AAGCCTATAA	TCCTTCCAGG	GGGCTGATCT	GGCCAAAGTA	12120
CTAAATAAAA	TATAATATTT	CTTCTTTATT	AACATTGTAG	TCATATATGT	GTACAATTGA	12180
TTATCTTGTG	GGCCCTCATA	AAGAAGCAGA	AATTGGCTTG	TATTTGTGT	TTACCCCTATC	12240
ACCAATCTCT	CTATTCTCCA	AAGCACCAA	TTTCTACAT	TTGCCTGACA	CGCAGCAAAA	12300
TTGAGCATAT	GTTCTGCCC	TGCACCCGT	CTCTGACCTG	TCAGCTTGCT	TTTCTTCCA	12360
GGATATGTGT	TTGAACATAT	TTCTCCAAAT	GTAAACCCA	TTTCAGATAA	TAATATCAA	12420
AATTCTGGCA	TTTCATCCC	TATAAAAACC	CTAAACCCCG	TGAGAGCAA	TGGTTTGTGT	12480
GTGTTTGCAG	TGTCTACCTG	TGTTTGCATT	TTCAATTCTT	GGGTGAATGA	TGACAAGGTT	12540
GGGGTGGGGA	CATGACTTAA	ATGGTTGGAG	AATTCTAAGC	AAACCCCAAGT	TGGACCAAAG	12600
GACTTACCAA	TGAGTTAGTA	GTTCATCAA	GGGGCGGGGG	GGAGTGAGAG	AAAGCCAATG	12660
CCTAAATCAA	AGCAAAGTTT	GCAGAACCCA	AGGTAAAGTT	CCAGAGATGA	TATATCATAAC	12720
AACAGAGGCC	ATAGTGTAAA	AAAATTAAAG	AATGTCGTAT	CAGCGTCTCA	GCACATCTAC	12780
CAATTGGCCA	GATGCTAAA	CAGAGTGAAG	TCAGATGAGG	TTCTGGAAAG	TGAGTCCTCT	12840
ATGATGGCAG	AGCTTTGGTG	CTCAGGGTGG	AAGCAAAACC	TAGGGAGGG	GGGCTTTGTG	12900
GCTGTTGCA	GATTGGGAA	TCCAGTGCTA	GTTCCTGGCA	GGGTTTCAGG	TCAGTTCCG	12960
GAGTGTGTGT	CCTGTAGCCC	TCCGTCATGG	TTGAAGCCCA	GGTCTCACCT	CCTCTCCTGA	13020

CCCGTGCCCTT AGAACTGACT TGGAAGCGG TGTGCTTACA GCAAGACAGA CTGTTATAAT	13080
TAAATTCTTC CCAAGGACCT CGGTGCAATG ACCCCAAGCA CACTTACCTT CGGAAACCTT	13140
AAGGTTCTGA AGATCTTGTGTT TAAATGACT ACCCTGGTTA GCTTTGATG TGTTCCCTAT	13200
CCCTTTAGTT GTGCACAGG TAGAAACGAT TAGACCCAAC TATGGGTAGC CTTGTCCTCC	13260
TGGTCCCTCA GTCATTCTCT AATGTCCTT GCTTGCCATG GGCACGTAA CAAACTGCAA	13320
TCTTAACATC TTATAAAATG AATGAACCAC ATATTTACAT CTCCAAGTCC TCCAGATGGG	13380
AGTGCATCA TTCCATAAGG ATCCCACCTT CTGGCAGGTC TATCCAGTAC ATATTTATG	13440
CTTCATTGGT CTTGATTITC TTGGCTAAAAA TTACTTGTAG CACAGCAGGC CCCATGTGAC	13500
ATATAGGTAT ATACATACAT GTATGTGCAT ATAGTGTGTA CATGTTCTAA TTTATACATA	13560
GCTATGTGAA GATTATGTTA CATATGTAGA TGGTCGCACT TCTGATTTC ATTAGGTT	13620
AGAGAGAGAC GTCACAGTAA ATGGAGCTAT GTCATTGGTA TATCCCCGAG TGGTTCAGGT	13680
GTTCTCTCTA TTTTTTAAG ATGGAGAACCA CTCATCTGTA CTATCGAAAAA CTGAGCCAAA	13740
TCACTTAGCA AATTTCTAGT CACTGCCCTG CTGTTAAGAT ACTGATTAC TGGGTGCTGA	13800
CATGCTGAGC CCTGCCTACT TTTGCATGAA GGACAAGGAA GAGAGCTTGC AGTTAAGAAT	13860
GGTATATGTG GGGCTAGGGG GCGCGTATA GACTGGCATA TATGTGAAGG AAGGTCACAA	13920
ACAGCCTGCA CTAATTTCCC TTTCTGGTT TTATGTCCTG GCAGGGAAA GGACAGGTAG	13980
GGTGGGGTTG AGGGGGAGGG CACACACATC TACTGGATA AATTGCATCT CCTCTTTCT	14040
TCACCCCGCC ACCATATCTT AAAGCCTTAT GACATCCTCT AGGGCAGAAT TTTCTCACCA	14100
GCTCCCGCC CTACCAACTT CAAAGTGAAC TTCTAACTAA CTTGAGGGC CAAAGTTCTA	14160
AATAAAACTT GTTAGAGTTT AGCGGGCACC TCAGTCATCA GGAATGCCTC CAGGAAAGCA	14220
AAAAGCTTGA TGTGTGTACA GCCACGTGGT GGAGTCCTGC CACCTATGA TTCTGTCCC	14280
AGTGGTCGTG TGGGGCCTGA GATCCTGAAT TTCTAAATGAG CTCCAGTAC GCCCTGACTC	14340
ACTGTGCCAG AGGACTGCAG TTTGAGTAGC AAGGTTGTGT GACTGTCCTC GATCATGGCT	14400
ACAGAAGCTG GCTCAAGTAC AGCCCTTCGT GTGTAAAAGC CATGTGTAAA TGAGAAGAAA	14460
CAGAAGGCAA AGCTGCGTTG CATGGCATCT GAATCAGTGC CCTGCAGTTT TGTTTTTGT	14520
TTTTTTTTT TCAAAGACAT TCTTTTCCC AACAAAGATGA GTGGCAATCT TATGTTCTAG	14580
CCACTCTTAG ACATGAAAAC ACTGGGTGTC TTATCTTGTAA AATCTGCTC TGCTTGCTTG	14640
CTTGGGCACG CTGCAGTCAG TTTAGTCAAA TGCCTGTCAAG TACATCTATA TGTATGAGGG	14700
AGCAGGTGCA AGTCCTTACA AATGACTTT AAAAAGCTTG AACACTTAAG TCAGTGTGCT	14760

GAGCTGCTCC TGTGTGATGT TAGGCCAAGC ACCTGAGTTA AAGGGATCTC	14820
GAGGGTAGAT GTCGTATGGT TGAAGCATTT GTTTATACTA AAATGATGCT TGACTTTTT	14880
TCTAAGTTAT AAGACAGTAC ACTGTATAAG TTCAATTGAAC CTAGAGGGTG GCATAGGACT	14940
CCAATCTGG TATGGGAGGT TTGTTCTAAT GGAAGTTCGA ATCTTTTG CAGTTGGCTT	15000
GGAAATAAAAGT GCTTATGTGA ATGGGCTTAA GCTAGGGAAA AAAATGGTT TCCCTCTGCA	15060
AAGAGGGTCA GCACAGAAAT AACTTCCTGG CTTTGCCTGC ATGAATGCCA CTTGTTAGCA	15120
GATGCCCTGT GGGGATCCGA ATT	15144

(2) INFORMATION FOR SEQ ID NO:7:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 9299 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: DNA (genomic)

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:7:

GAATTCGCTA GGTAGACCAG GCTGGCCCAG AACACCTAGA GATCATCTGG CTGCCTCTGT	60
CTCTTGAGTT CTGGGGCTAA AGCATGCACC ACTCTACCTG GCTAGTTTGT ATCCATCTAA	120
ATTGGGAAG AAAGAAGTAC AGCTGTCCCC AGAGATAACA GCTGGGTTTT CCCATCAAAC	180
ACCTAGAAAT CCATTTAGA TTCTAAATAG GGTTTGTCAAG GTAGCTTAAT TAGAACTTTC	240
AGACTGGGTT TCACAGACTG GTTGGCCAA AGGTCACTTT ATTGTCTGGG TTTCAGCAAA	300
ATGAGACAAT AGCTGTTATT CAAACAAACAT TTGGGTAAGG AAGAAAAATG AACAAACACC	360
ACTCTCCCTC CCCCCGCTCC GTGCCCTCAA ATCCATTAAA GGCAAAGCTG CACCCCTAAG	420
GACAACGAAT CGCTGCTGTT TGTGAGTTA AATATTAAGG AACACATTGT GTTAATGATT	480
GGAGCAGCAG TGATTGATGT AGTGGCATTG GTGAGCACTG AATCCGTCT TCAACCTGCT	540
ATGGGAGCAC AGAGCCTGAT GCCCCAGGAG TAATGTAATA GAGTAATGTA ATGTAATGGA	600
GTTTTAATTG TGTGTTGTTG TTTTAAATAA TTAATTGTA A TTTGGCTGT GTTAAAGCT	660
GTGGGTACGT TTCTCAGTCA TCTTTTCGGT CTGGTGTAT TGCCATACCT TGATTAATCG	720
GAGATTAAGA GAGAAGGTGT ACTTAGAAC GATTCAAT GAAAGAAGGT ATGTITCCAA	780
TGTGACTTCA CTAAAGTGAC AGTGACGCAG GGAATCAATC GTCTTCTAAT AGAAAGGGCT	840
CATGGAGACC TGAGCTGAAT CTTTCTGTTG TGGATGAGAG AGGTGGTACC CATTGGAATG	900

SUBSTITUTE SHEET (RULE 26).

AAAGGACTTA GTCAGGGCA ATACAGTGTG CTCCAAGGCT GGGGATGGTC AGGATGTTGT	960
GCTCAGCCTC TAACACTCCT TCCAACCTGA CATTCCCTCT CACCCTTGTG CTCTGGCCAG	1020
TAGAATAACAG GAACTCGTTC CTGTTTTTTT TTTTTAAAT TCTGAAGGTG TGTAAGTACA	1080
AAGGTCAGAT GAGCGGCCCT AGGTCAAGAC TGCTTGTGG TGACAAGGGA GTATAACACC	1140
CACCCCCAGAA ACCAAGAACC GGAAATTGCT ATCTTCCAGC CCTTTGAGAG CTACCTGAAG	1200
CTCTGGGCTG CTGGCCTCAC CCCTTCCCTG CAGCTTCCC TTTAGCAGAG GCTGTGATTT	1260
CCTTCAGCGC TTGGGCAAAT ACTCTTAGCC TGGCTCACCT TCCCCATCCT CGTTTGATAA	1320
AACAAAGATG AAGCTGATAG TTCCCTCCCA GCTCCATCAG AGGCAGGGTG TGAAATTAGC	1380
TCCTGTTGG GAAGGTTAA AAGCGGCCA CATTCCACCT CCCAGCTAGC ATGATTACCA	1440
ACTCTTGTTC CTTACTGTTG TTATGAAAGA CTCAATTCCCT CATCTCCCTT TCCCTTCTT	1500
TAAAAAAGGGG CCAAAGGGCA CTTTGTTTTT TTCTCTACAT GGCTAAAAG GCACTGTGTT	1560
ACCTTCCTGG AAGGTCCCAA ACAAAACAAAC AAACAAACAA AATAACCATC TGGCAGTTAA	1620
GAAGGCTTCA GAGATATAAA TAGGATTTTC TAATTGTCTT ACAAGGCCTA GGCTGTTTGC	1680
CTGCCAAGTG CCTGCAAACCT ACCTCTGTGC ACTTGAAATG TTAGACCTGG GGGATCGATG	1740
GAGGGCACCC AGTTTAAGGG GGGTTGGTGC AATTCTCAA TGTCCACAAG AAACATCTCA	1800
CAAAAACTTT TTTGGGGGGA AAGTCACCTC CTAATAGTTG AAGAGGTATC TCCTCGGGC	1860
ACACAGCCCT GCTCACAGCC TGTTCAACG TTTGGGAATC CTTAACAGT TTACGGAAGG	1920
CCACCCCTTA AACCAATCCA ACAGCTCCCT TCTCCATAAC CTGATTTAG AGGTGTTCA	1980
TTATCTCTAA TTACTCGGGG TAAATGGTGA TTACTCAGTG TTTAACAT CAGTTGGGC	2040
AGCAGTTATT CTAAACTCAG GGAAGCCCAG ACTCCCATGG GTATTTTGG AAGGTACAGA	2100
GACTAGTTGG TGCACTGTTT CTAGTACCTC TTGCATGTGG TCCCCAGGTG AGCCCCGGCT	2160
GCTTCCCGAG CTGGAGGCAT CGGTCCCAGC CAAGGTGGCA ACTGAGGGCT GGGGAGCTGT	2220
GCAATCTTCC GGACCCGGCC TTGCCAGGCG AGGCGAGGCC CCGTGGCTGG ATGGGAGGAT	2280
GTGGGCGGGG CTCCCCATCC CAGAAGGGGA GGCAGTTAAG GGAGGAGGGGA AGAAGGGAGG	2340
GGCCGCTGGG GGGAAAGACT GGGGAGGAAG GGAAGAAAGA GAGGGAGGGAA AAAGAGAAGG	2400
AAGGAGTAGA TGTGAGAGGG TGGTGCTGAG GGTGGGAAGG CAAGAGCGCG AGGCCTGGCC	2460
CGGAAGCTAG GTGAGTTCGG CATCCGAGCT GAGAGACCCC AGCCTAACAC GCCTGCGCTG	2520
CAACCCAGCC TGAGTATCTG GTCTCCGTCC CTGATGGGAT TCTCGTCTAA ACCGTCTTGG	2580
AGCCTGCAGC GATCCAGTCT CTGGCCTCG ACCAGGTCA TTGCAGCTTT CTAGAGGTCC	2640

CCAGAAGCAG CTGCTGGCGA GCCCGCTTCT GCAGGAACCA ATGGTGAGCA GGGCAACCTG	2700
GAGAGGGGCG CTATTCTGAG GATTCGAGGT GCACCCGTAG TAGAAGCTGG GGATGGGGCT	2760
CAGGCTGTAA CCGAGGCCAA AGTTGGCCTA TTCCCTCCCTC CTTCTCCAAC AGTGTGGAG	2820
GTGGGATGAT GGAGGCTAAA AGGCACCTCC ATATATGTTA CTGCGTCTAT CAACCTACTT	2880
TAGGGAGGTG CGGGCCAGGA GAGGCCGGAA GGAGAGAAGG CCTTGGAAAGA GAGGTCAATTG	2940
GGAAGAACTG TGGGGTTTGG TGGGTTTGCT TCCACTTAGA CTATAAGAGT GGGAGAGGAG	3000
GGAGTCAACT CTAAGTTCA ACACCAGTGG GGGACTGAGG ACTGCTTCAT TAGGAGAGAG	3060
AACCTAGCCA GAGCTAGCTT TGCAAAAGAG GCTGTAGTCC TGCTTGCTC TAAAGCGCGA	3120
CCCCGGATAG AGAGGCTTCC TTGAGCCGGG TGTCACTAA TCTTGTCCCC AACGGCACCCC	3180
CTCCCAGCCC CTGAGAGCTA GCGAAGTGTAA GGTACACAAC TCGCTCCCAT CTCCAGGAGC	3240
TATTTTCTTA GACATGGCA CCCATGATTG TGCTTCTGG TACTCTCCCC TCCCTGGGAA	3300
AGGGGTGTAA GGTTCCGACG GAACCGTGGC CAGGATGCCG AAAGGCTACC TGTGCGGGTC	3360
TTCTGCCATG CTGTGTCTGT GCGGACATGC CAGCAGGGCT AATGAGGAGC TTGCGATACT	3420
CCAAAGGGTT CGGGAATTGC GGGGTCTTAA CACGCAGTGG AGTTGGGCCCTTACTCA	3480
GAAGGTTTCC GCCACGGCTT TGGITGATAG TTTTTTACTATCTGGTTT ATGAACGTGAA	3540
GGTTTTGTGA GATGTTGAAT CACTAGCAGG GTCACTATTG GCAAACCGAG GCTACTATTAA	3600
AATTTTGGTT TTAGAAGAAG ATTCTGGGA GAAAGTGAAG GGTAACTGCC TCCAGGAGCT	3660
GTATCAACCC CATTAAGAAA AAAAAAAATA CCAGGAGATG AAAATTACT TTGATCTGTA	3720
TTTTTTAATT AAAAAAAATC AGGGAAAGAAA GGAGTGATTA GAAAGGGATC CTGAGCGTCG	3780
GCGGTTCCAC GGTGCCCTCG CTCCGCGTGC GCCAGTCGCT AGCATATCGC CATCTCTTTC	3840
CCCCTTAAAA GCAAATAAAC AAATCAACAA TAAGCCCTTT GCCCTTCCA GCGCTTCCCC	3900
AGTTATTCCC AGCGGCGACG CGTGTGGGG AATAGAGAAA TCGTCTCAGA AAGCTGCGCT	3960
GATGGTGGTG AGAGCGGACT GTCGCTCAGG GGCGCCCGCG GTCTCTGCAC CCAGGGCAGC	4020
AGTGTGGGAT GGCGCTGGGC AGCCACCGCC GCCAGGAAGG ACGTGACTCT CCATCTTITA	4080
CACTCTTTC TCAAAGGTTT CCCGAAAGTG CCCCCCGCCT CGAAAATGG GGCGGTGCG	4140
GGGGGGGGGA GAGGTTAGGT TGAAAACCAG CTGGACACGT CGAGTTCTTA AGTGAGGCAA	4200
AGAGGCGGGG TGGAGCGGGC TCTGGAGCGG GGGAGTCCTG GGACTCGGTC CTGGATGGA	4260
CCCCGTGCAA AGACCTGTTG GAACAAGAGT TGCGCTTCCG AGGTTAGAAC AGGCCAGGCA	4320
TCTTAGGATA GTCAGGTAC CCCCCCCCCC AACCCCCACCC GAGTTGTGTT GGTGAATTTC	4380

TTGGAGGAAT CTTAGCCGCG ATTCTGTAGC TGGTGCAAAA GGAGGAAAGG GGTGGGGAA	4440
GGAAAGTGGCT GTGCAGGGGT GGCGGTGGGG GTGGAGGTGG TTTAAAAAGT AAGCCAAGCC	4500
AGAGGGAGAG GTCGAATGCA GGCGAAAGC TGTTCCTCGGG TTTGTAGACG CTGGGATCG	4560
CGCTTGGGGT CTCCCTTCGT GCCGGTAGG AGTTGTAAAG CCTTTGCAAC TCTGAGATCG	4620
TAAAAAAAAT GTGATGCCGT CTTTCTTTGG CGACGCCGTGT TTTGGAATCT GTCCGGAGTT	4680
AGAACGTCAG ACGTCCACCC CCCACCCCCC GCCCACCCCC TCTGCCTTGA ATGGCACCGC	4740
CGACCGGTTT CTGAAGGATC TGCTTGGCTG GAGCGGACGC TGAGGTTGGC AGACACGGTG	4800
TGGGGACTCT GGCGGGGCTA CTAGACAGTA CTTCAGAAGC CGCTCCTTCT AACTTTCCA	4860
CACCGCTCAA ACCCCGACAC CCCCCGGCG GACTGAGTTG GCGACGGGT CAGAGTCTTC	4920
TGGCTGAAAG TTAGATCCGC TAGGGGTGG CTGCCTGTG CTAGAACAT TATTTGGCCT	4980
CTCGGAGACC CGTGTGGAGG AAGTGTGGA GTGTGGAGT GTGTTGGGT GTGTGTGTGT	5040
GTGTGTGTGT GTGTGTGTGT GTGTGTGTGT GTGCCGCCTC CCTTGGAGGG TCCCTATGCG	5100
CTTTCCTTTT CATGGAACGC TGTGTGAGG CTTTGGTAAA CTGTCCTTTC GGTTCCCTCTC	5160
TCGGCTGCAC TTAAGCTTTG TCGGCCTGT AAAGAGACGC GTCTCAAGT GCACCCCTGAT	5220
CCTCAGGCTT CAGATAACCC GTCCCCAAC CTGGCCAGAT GCATTGCACT GCGCGCCGCA	5280
GGTAGAGACG TGCCCCACGT CCCCTGCGTG CAGCGACTAC GACCGAGAGC CGCGCCAGTG	5340
TGGTGTCCCG CCGAGAGITC CTCAGAGCAG GCGGGGACAA CTCCCAGACG GCTGGGGCTC	5400
CAGCTGCGGG CGCGGAGGTT GGCCTCGCTC GCAGGGGCTG GACCCAGCCG GGGTGGGAGG	5460
ATGGAGGAGG GGCAGGGGGGG CTCTTCGGTG ACTGGGGCGG GGCCTCTGGG TCCACGTGAC	5520
TCCTAGGGGC TGGAAAGAAAA ACAGAGCCTG TCTGCTCCAG AGTCTCATTA TATCAAATAT	5580
CATTTAGGA GCCATTCCGT AGTGCCTTTC GGAGCGACGC ACTGCCGCAG CTTCTCTGAG	5640
CCTTCCAGC AAGTTGTTC AAGATTGGCT CCCAAGAAC ATGGACTGTT ATTATGCCTT	5700
GTTTCTGTC AGTGAGTAGA CACCTCTTCTT TCCCCTCTT GGGATTCAC TCTGCTCTCC	5760
CATCCCTGAC CACTGTCTGT CCCTCCCGTC GGACTTCCAT TTCAGTGCC CGCGCCCTAC	5820
TCTCAGGCAG CGCTATGGTT CTCTTCTGG TCCCTGCAAG GCCAGACACT CGAAATGTAC	5880
GGGCTCTTT TAAAGCGCTC CCACTGTTT CTCTGATCCG CTGCCTGCA AGAAAGAGGG	5940
AGCGCGAGGG ACCAAATAGA TGAAAGGTCC TCAGGTTGGG GCTGTCCTT GAAGGGCTAA	6000
CCACTCCCTT ACCAGTCCCG ATATATCCAC TAGCCTGGGA AGGCCAGTTT CTTGCCTCAT	6060
AAAAAAAAAA AAAAACA AAAACAAACA GTCGTTGGG AACAAAGACTC TTTAGTGAGC	6120

ATTTTCAACG CAGCGACCAC AATGAAATAA ATCACAAAGT CACTGGGGCA GCCCCTTGAC	6180
TCCCTTTCCC AGTCACTGGA CCTTGCTGCC CGGTCCAAGC CCTGCCGGCA CAGCTCTGTT	6240
CTCCCCCTCCT CCTGTTCTTA ACCAGCTGGA ATTTGTGGAA ATTGGGCTGG AGGGCGGAGG	6300
AAGGGCGGGG GTGGGGGGGT GGAGAAGGTG GGGGGGGGGG AGGCTGAAGG TCCGAAGTGA	6360
AGAGCGATGG CATTTTAATT CTCCCTCCGC CTCCCCCCTT TACCTCCTCA ATGTTAACTG	6420
TTTATCCTTG AAGAACCCAC GCTGAGATCA TGGCTCAGAT AGCCGTTGGG ACAGGATGGA	6480
GGCTATCTTA TTTGGGGTTA TTTGAGTGTAA ACAAGTTAG ACCAAGTAAT TACAGGGCGA	6540
TTCTTACTTT CGGGCCGTGC ATGGCTGCAG CTGGTGTGTG TGTGTGTAGG GTGTGAGGGA	6600
GAAAACACAA ACTTGATCTT TCGGACCTGT TTTACATCTT GACCGTCGGT TGCTACCCCT	6660
ATATGCATAT GCAGAGACAT CTCTATTCT CGCTATTGAT CGGTGTTIAT TTATTCTTTA	6720
ACCTTCCACC CCAACCCCT CCCCAGAGAC ACCATGATTC CTGGTAACCG AATGCTGATG	6780
GTCGTTTAT TATGCCAAGT CCTGCTAGGA GGCGCGAGCC ATGCTAGTTT GATACTGAG	6840
ACCGGGAAGA AAAAAGTCGC CGAGATTCAAG GGCCACGCCG GAGGACGCCG CTCAGGGCAG	6900
AGCCATGAGC TCCTGCGGGA CTTCGAGGCG ACACTTCTAC AGATGTTGG GCTGCGCCGC	6960
CGTCCGCAGC CTAGCAAGAG CGCCGTCATT CCGGATTACA TGAGGGATCT TTACCGGCTC	7020
CAGTCTGGGG AGGAGGAGGA GGAAGAGCAG AGCCAGGGAA CCGGGCTTGA GTACCCGGAG	7080
CGTCCCGCCA GCGGAGCCAA CACTGTGAGG AGTTTCCATC ACAGAAGGTCA GTITCTGCTC	7140
TTAGTCCTGG CGGTGTAGGG TGGGGTAGAG CACCGGGCA GAGGGTGGGG GGTGGGCAGC	7200
TGGCAGGGCA AGCTGAAGGG GTTGTGGAAG CCCCCGGGAA AGAAGAGTTC ATGTTACATC	7260
AAAGCTCCGA GTCTGGAGA CTGTGGAACA GGGCCTCTTA CCTTCAACTT TCCAGAGCTG	7320
CCTCTGAGGG TACTTCTGG AGACCAAGTA GTGGTGGTGA TGGGGAGGG GGTTACTTIG	7380
GGAGAAGCGG ACTGACACCA CTCAGACTTC TGCTACCTCC CAGTGGGTGT TCTTTAGCTA	7440
TACCAAAGTC AGGGATTCTG CCCGTTTGT TCCAAAGCAC CTACTGAATT TAATATTACA	7500
TCTGTGTGTT TGTCAGGTTT ATCAATAGGG GCCTTGTAAT ACGATCTGAA TGTTCTAG	7560
CGGATGTTTC TTTTCCAAAG TAAATCTGAG TTATTAATCC TCCAGCATCA TTACTGTGTT	7620
GGAATTATTATT TTCCCTCTG TAACATGATC AACAAAGCGT GCTCTGTGTT TCTAGGATCG	7680
CTGGGGAAAT GTTGGTAAC ATACTAAAA GTGGAGAGGG AGAGAGGGTG GCCCCTCTTT	7740
TTCTTTACAA CCACTTGAA AGAAAACGT ACACAAAGCC AAGAGGGGC TTTAAAAGGG	7800
GAGTCCAAGG GTGGTGGAGT AAAAGAGTTG ACACATGGAA ATTATTAGGC ATATAAAAGGA	7860

GGTTGGGAGA TACTTCTGT CTTGGTGT TGACAAATGT GAGCTAAGTT TTGCTGGTTT 7920
 GCTAGCTGCT CCACAACTCT GCTCCCTCAA ATTAAAAGGC ACAGTAATTT CCTCCCCCTTA 7980
 GGTTTCTACT ATATAAGCAG AATTCAACCA ATTCTGCTAT TTTTGTTTT TGTTTCTTGT 8040
 TTTTGTTTTG TTTGGTTTTT TTTTTTTTTT TTTTTTTTT GTCTCAGAAA AGCTCATGGG 8100
 CCTTTTCTTT TCCCCCTTCAC ACTGTGCCA GAACATCTGG AGAACATCCC AGGGACCAGT 8160
 GAGAGCTCTG CTTTCGTTT CCTCTTCAAC CTCAGCAGCA TCCCAGAAAA TGAGGTGATC 8220
 TCCTCGGCAG AGCTCCGGCT CTTTCGGGAG CAGGTGGACC AGGGCCCTGA CTGGGAACAG 8280
 GGCTTCCACC GTATAAACAT TTATGAGGTT ATGAAGCCCC CAGCAGAAAT GGTTCTGGA 8340
 CACCTCATCA CACGACTACT GGACACCCAGA CTAGTCCATC ACAATGTGAC ACGGTGGAA 8400
 ACTTTCGATG TGAGCCCTGC AGTCCTTCGC TGGACCCGGG AAAAGCAACC CAATTATGGG 8460
 CTGGCCATTG AGGTGACTCA CCTCCACCAAG ACACGGACCC ACCAGGGCCA GCATGTCAGA 8520
 ATCAGCCGAT CGTTACCTCA AGGGAGTGGA GATTGGGCC AACTCCGCC CTCCTGGTC 8580
 ACTTTTGGCC ATGATGCCG GGGCCATACC TTGACCCGCA GGAGGGCCAA ACGTAGTCCC 8640
 AAGCATCACC CACAGCGGTC CAGGAAGAAG AATAAGAACT GCCGTCGCCA TTCACTATAC 8700
 GTGGACTTCA GTGACGTGGG CTGGAATGAT TGGATTGTGG CCCCACCCGG CTACCAGGCC 8760
 TTCTACTGCC ATGGGGACTG TCCCTTCCA CTGGCTGATC ACCTCAACTC AACCAACCAT 8820
 GCCATIGTGC AGACCCTAGT CAACTCTGTT AATTCTAGTA TCCCTAAGGC CTGTTGTGTC 8880
 CCCACTGAAC TGAGTGCCAT TTCCATGITG TACCTGGATG AGTATGACAA GGTGGTGTG 8940
 AAAAATTATC AGGAGATGGT GGTAGAGGGG TGTGGATGCC GCTGAGATCA GACAGTCCGG 9000
 AGGGCGGACA CACACACACA CACACACACA CACACACACA CACGTTCCCA 9060
 TTCAACCACC TACACATACC ACACAAACTG CTTCCCTATA GCTGGACTTT TATCTTAAAAA 9120
 AAAAAAAAAA GAAAGAAAGA AAGAAAGAAA GAAAAAAAAT GAAAGACAGA AAAGAAAAAA 9180
 AAAACCTAA ACAACTCACC TTGACCTTAT TTATGACTTT ACGTGCAAAT GTTTGACCA 9240
 TATTGATCAT ATTTGACAA ATATATTTAT AACTACATAT TAAAAGAAAA TAAAATGAG 9299

(2) INFORMATION FOR SEQ ID NO:8:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 19 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: cDNA

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:8:

CGGATGCCGA ACTCACCTA

19

(2) INFORMATION FOR SEQ ID NO:9:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 18 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: cDNA

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:9:

CTACAAACCC GAGAACAG

18

(2) INFORMATION FOR SEQ ID NO:10:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 18 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: cDNA

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:10:

CCCGGCACGA AAGGAGAC

18

(2) INFORMATION FOR SEQ ID NO:11:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 18 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: cDNA

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:11:

GAAGGCAAGA GCGCGAGG

18

Claims

1. A system for identifying osteogenic agents comprising a recombinant host cell modified to contain an expression sequence comprising a promoter derived from a gene encoding a bone morphogenic protein operatively linked to a reporter gene encoding an assayable product.
2. The system of claim 1 wherein said bone morphogenic protein is selected from the group consisting of the BMP-2 and BMP-4 proteins.
3. The system of claim 1 or 2 wherein said reporter gene comprises a gene encoding the production of an assayable product selected from the group consisting of firefly luciferase, chloramphenicol acetyl transferase, β -galactosidase, green fluorescent protein, human growth hormone, alkaline phosphatase and β -glucuronidase.
4. The system of claim 3 wherein said reporter gene comprises a gene encoding the production of firefly luciferase.
5. A method for identifying an osteogenic compound comprising the steps of:
culturing the cells of any of claim 1-4 under conditions which permit expression of said assayable product from said reporter gene;
contacting said cells with at least one candidate compound suspected of possessing osteogenic activity;
measuring the amount of assayable product produced in the presence of said candidate compound and comparing said amount to the amount of assayable product produced in the absence of said candidate compound; and
identifying, as an osteogenic compound, a candidate compound that enhances the amount of said assayable product when present.

(2) INFORMATION FOR SEQ ID NO:12:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 17 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: cDNA

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:12:

CCCGGTCTCA GGTATCA

17

(2) INFORMATION FOR SEQ ID NO:13:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 17 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: cDNA

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:13:

CAGGCCGAAA GCTGTTC

17

6. An isolated nucleic acid molecule comprising a nucleotide sequence encoding the promoter region of a gene encoding bone morphogenetic protein selected from the group consisting of the BMP-2 and BMP-4 proteins.
7. The nucleic acid molecule of claim 6 which corresponds to a nucleotide sequence selected from the group consisting of positions -2372 to +316 of the BMP-4 gene depicted in Figure 1C (SEQ ID NO:3), a portion thereof which encodes a biologically active promoter, the BMP-2 sequence depicted in Figure 11, and a portion thereof which encodes a biologically active promoter.
8. A recombinant expression vector comprising the nucleotide sequence of claim 6 or 7.
9. The recombinant expression vector of claim 8 wherein said nucleotide sequence is operatively linked to a reporter gene encoding an assayable product.
10. The recombinant expression vector of claim 9 wherein said reporter gene comprises a gene encoding the production of an assayable product selected from the group consisting of firefly luciferase, chloramphenicol acetyl transferase, β -galactosidase, green fluorescent protein, human growth hormone, alkaline phosphatase or β -glucuronidase.

FIGURE 1A

FIGURE 1B

3/21

FIGURE 1G

4/21

Size Standard 10 ug: 10 ug: 10 ug: 10 ug:

FRC Cell Mouse Embryo
RNA RNA

FIGURE 2

FIGURE 3B

A.

		% CHANGE
EcoR1	pCAT-2.6	Xba
		CAT
Pst	pCAT-1.3	Pst
		CAT
Sph1	pCAT-0.5	Pst
		CAT
Pst	pCAT-0.24	CAT
		CAT
	pBL3CAT	CAT
		CAT

B.

FIGURE 4

-2736
 GAAATCATTAAACTGGATTCACTTCAAGCTCCATGCTTTACACTCTTTTCCCCACAGGGGACCTTCCTAATTTAACACAG -2647
 TCGAGTGTCTTCTAGAGAAATTGGGGCAAACTTGAGGAAAGCTCTGGAAAGGCTTTTACGAGCCTTCTGGCTTACAAAAAGAGC -2553
 CAAACGGCAACCAAGGGGAACTAACTTCCAGGGCTTACCTCAGAGACTCTTACCTCAGAGACTCTTACCTCAGAGACTCTTACCTCAGAGC -2484 Eeo RV
 -2463
 TCTCTCTGGCTTCTAGAGGCTTAAACTTCAAGGGCTTCTGATCTACCTCAGAGACTCTTACCTCAGAGACTCTTACCTCAGAGACTCTTACCTCAGAGC -2375
E-box 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000

Candidate Homeo Box Binding Sites

Homeobox 10 and 12 are identical at 8/8 sites, in an inverted orientation.

Homeobox 3, 4, 5, 9 should bind MSX1 and/or MSX2 with relatively high affinity.

FIGURE 5

8/21

FIGURE 6A

FIGURE 6B

9/21

FIGURE 7

FIGURE 8

1 GAATTCACTTT AAGCTGGATT CACTTCTAGG TCCCATGCCT TTACACTCAT
 51 TTCCACCACA AGAGGGCAGC CATCTCTAAA AAAACAAACAG TCGAGTGCTC
 101 TTCAGAGAAA TTGGGCCAAA CTGAGGAA GTTCCTGGGA AAGGCTTTTT
 151 AGCAGCACCT CTCTGGCTA CAAAAAAGAA GCCAGCAGGC ACCACCAAGG
 201 TGGAGTAACT GTCCAGAGGC ATCCATTTA CCTCAGAGAC TTGATTACTA
 251 AGGATATCCT AAACGGCCAA ACTCTCTCTT CTGGTGTTC AGAGGCCAA
 301 AGCTGCAAGG CATTGTTGAT GTCATCACCA AAGGTTTCAT TTTCATCTTT
 351 TCTTGGGGTT GGTCCAACAG CTGTCAGCTT TCTCTTCCTC ATTAAAGGCA
 401 ACTTTCTCAT TTAAATCTCA TATAGGTTCG GAGTTTCTTG CTTTGCTCCT
 451 TCCGCTCTCG CGATGACAGA AGCAATGGTT AACTTCTCAA TTAAACCTGA
 501 TAGGGAAAGGA AATGGCTCA GAGGCGATCA GCCCTTTGA CTTACACACT
 551 TACACGTCTG AGTGGAGTGT TTATTGCCG CCTTGTGTTGG TGTCTCATGA
 601 TTCAGAGTGA CAACCTCTGC AACACGTTTT AAAAAGGAAT ACAGTAGCTG
 651 ATCGCAAATT GCTGGATCTA TCCCTTCCTC TCCTTTAATT TCCCTGTAG
 701 ACAGCCTTCC TTCAAAAATA CCTTATTGTA CCTCTACAGC TCTAGAAACA
 751 GCCAGGGCCT AATTTCCTC TGTTGGTTGC TAATCCGATT TAGGTGAACG
 801 AACCTAGAGT TATTTTAGCT AAAAGACTGA AAAGCTAGCA CACGTGGTA
 851 AAAAATCAT TAAAGCCCT GCTTCTGGTC TTTCTCGGTC TTTGCTTTGC
 901 AAACCTGGAAA GATCTGGTTC ACAACGTAAC GTTATCACTC TGCTCTCTA
 951 CAGGAATGCT CAGCCCCATAG TTTTGGGGGT CCTGTGGGTAA CCCAGTGGTG
 1001 GTACTATAAG GCTCCTGAAT GTAGGGAGAA ATGGAAAGAT TCAAAAGA
 1051 ATCCCTGGCTC AGCAGCTTGG GGACATTTC AGCTGAGGAA GAAAACCTGGC
 1101 TTGGCCACAG CCAGAGCCTT CTGCTGGAGA CCCAGTGGAG AGAGAGGAGC
 1151 AGGCAGAAAA TTCAAAGGTC TCAAACCGGA ATTGTCTTGT TACCTGACTC
 1201 TGGAGTAGGT GGGTGTGGAA GGGAAAGATAA ATATCACAAG TATCGAAGTG
 1251 ATCGCTTCTA TAAAGAGAAT TTCTATTAAAC TCTCATTGTC CCTCACATGG
 1301 ACACACACAC ACACACACAC ACACACACAC ACACATCACT AGAAGGGATG
 1351 TCACTTTACA AGTGTGTATC TATGTTCAGA AACCTGTACC CGTATTTTA
 1401 TAATTACAT AAATAAATAC ATATAAAATA TATGCATCTT TTTATTAGAT
 1451 TCATTTATTG GAATATAAAT GTATGAATAT TTATAAAATG TAATAATGCA
 1501 CTCAGATGTG TATCGGTAT TTCTCGACAT TTCTCTCTA CCATTCAAAA
 1551 CAGAACGTT TGCTCACATT TTGCCCCAAA TGTCTAATAA CCTGTAAGTT
 1601 CTGTTCTCTT TTAAATGTG CTCTTACCTA AAAACTTCAA ACTCAAGTTG
 1651 ATATTGGCCC AATGAGGGAA CTCAGAGGCC AGTGGACTCT GGATTGCCC
 1701 TAGTCTCCCG CAGCTGTGGG CGCGGATCCA GGTCCCCGGGG GTGGCTTCA
 1751 CACTCATCCG GGACCGCGACC CCTTAGCGGC CGCGCGCTCG CCCCCGCCCCG
 1801 CTCCACCGCG GCCCCGTACG CGCCGTCCAC ACCCCTGCGC GCCCCGTCCCG
 1851 CCCGCCCGGG GGATCCCCGC CGTGTGCCT CCGAGGGGGAA GGTGTTGCC
 1901 ACGGCCGGGA GGGAGCCGGC AGGCGCGTC TCCCTTAAAAA GCGCGAGCG
 1951 CGCGCCAGCG CGCGCTCGTC GCGCGGGAG TCCCTGCCCT GCGCGCGAGA
 2001 GCGCTGCTCG CACTGCCGCC GCGCGGTGCG CCTCCCCACAG CCCGCCCCGGG
 2051 ATTGGCAGCC CGGGACGTAG CCTCCCCAGG CGACACCAGG CACCGGAGCC
 2101 CCTCCCGGCG AAAGACCGCA GGGTCACCCG CGGCTTCGAG GGAACGGCAC
 2151 GACACGGGTT GGAACCTCCAG ACTGTGCGCG CCTGGCGCTG TGGCTCTGGC
 2201 TGTCCGGGAG AAGCTAGAGT CGCGGACCGA CGCTAAGAAC CGGGAGTCCG
 2251 GAGCACAGTC TTACCCCTCAA TGCAGGGGCA CTCTGACCCA GGAGTGAGCG
 2301 CCCAAGGCAGA TCGGGCGGAA GAGTGAGTGG ACCCCCAGGCT GCCACAAAAG
 2351 ACACCTGGCC CGAGGGCTCG GAGCGCGAGG TCAACCCGGTT TGGCAACCCG
 2401 AGACCGCGGG CTGGACTGTC TCGAGAAATGA GCCCCAGGAC GCGGGGGCGC
 2451 CGCAGCCGTG CGGGCTCTGC TGGCGAGCGC TGATGGGGGT CGGCCAGAGT
 2501 CAGGCTGAGG GAGTGAGAG TCGGGCCCGC CGGCCACCCA AGATCTCGC
 2551 TGCGCCCTTG CCCGGACACG GCATCGCCCA CGATGGCTGC CCCGAGCCAT
 2601 GGGTCCGGGC CCACGTAACG CAGAACGTCC GTCTCCGCC CGGGAGTCC
 2651 CGGAGCCAGC CCCGGCCCCC GCGAGCGCTG GTCCCTGAGG CGAACGGACAG
 2701 CAGCAGCCTT GCCTCAGGCCCT TCCCTTCCGT CCCGGCCCCC CACTCCTCCC
 2751 CCTGCTCGAG GCTGTGTGTC AGCAGCTTGGC TGGAGACTTC TTGAACTTGC

FIGURE 9A

2801 CGGGAGAGTG ACTTGGGCTC CCCACTTCGC GCCGGTGTCC TCGCCCCGGC
 2851 GATCCAGTCT TGCCGCCTCC AGCCCAGTC CCTCTCTTCC TCAGCCCCCT
 2901 GCCCCACCCC AAGACACAGT TCCTACAGG GAGAACACCC GGAGAAGGAG
 2951 GAGGAGGCAGA AGAAAAGCAA CAGAAGCCCC GTTGCTGCTC CAGGTCCCTC
 3001 GGACAGAGCT TTTTCCATGT GGAGACTCTC TCAATGGACG TGCCCCCTAG
 3051 TGCTCTTAG ACGGACTGGG GTCTCCTAAA GGTAGAGGGAC ACAGGGCCGG
 3101 GACCCGGGGT TGGCTGGCGG GTGACACCCG TTCCCGCCCA ACGCAGGGCG
 3151 CCTGGGAGGA CTGGTGGAGT GGAGTGGACG TAAACATACC CTCACCCGGT
 3201 GCACGGCAG CCGATCCCTA GAGGGGTTAG GCATTCCAAA CCCCAGATCC
 3251 CTCTGCCTTG CCCACTGGCC TCCTTCCTCC AGCCGGTTCC TCCTCCCCAA
 3301 GTTTCGATA CATTATAAGG GCTGTTTGG GCTTCAAAA AAAAAXTGC
 3351 AGAAATCCAT TTAAGAGTAT GGCCAGTAGA TTTTACTAGT TCATTGCTGA
 3401 CCAGTAAGTA CTCCAAGCCT TAGAGATCTC TGGCTATCCT TAAGAAGTAG
 3451 GTCCATTTAG GAAGATACTA AAAGTTGGGG TTCTCCATGT GTGTTACTG
 3501 ACTATGCGAA TGTGTACATAG CTTACACAGTG CATTCAAAA CACTATCTAT
 3551 TTAGTTAATT GCAGGAAGGT GCATGGATT CTTGACTGCA CAGGAGTCTT
 3601 GGGGAAGGGG GAACAGGGTT GCCTGTGGGT CAACCTTAAA TAGTTAGGGC
 3651 GAGGCCACAA CTTGCAAGTG GCGTCATTAG CAGTAATCTT GAGTTAGCG
 3701 CTTACTGAAT CTACAAGTT GATATGCTCA ACTACCAAGGA AATTGTATAC
 3751 AGCGCCTCTA AGGAAGTCAC TTGTCATTT GTGTCATTT ATATGCACAT
 3801 GAGGCTGCAC TGTATAAGTT TGTCAAGGGAT GCAGTGTCCG ACCAACCTAT
 3851 GGCTTCCCAG CTTCTGACA CCCGCATTCC CAGCTAGTGT CACAAGAAAA
 3901 GGGTACAGAC GGTCAAGCTC TTTTTAATTG GGAGTTAAGA CCAAGCCCCA
 3951 AGTAAGAAGT CCGGCTGGGA CTTGGGGGTC CTCCATCGGC CAGCGAGCTC
 4001 TATGGGAGCC GAGGCGCGGG GGCGGCGGGAG GACTGGGCGG GGAACGTGGG
 4051 TGACTCACGT CGGCCCCGTGTC CGCAGGTGCA CCATGGTGGC CGGGACCCGC
 4101 TGTCTTCTAG TGTGCTGCT TCCCCAGGTG CTCTCTGGCG GCGCGGGCGG
 4151 CCTCATTCCA GAGCTGGGCC GCAAGAAGTT CGCCGCGGC TCCAGCCGAC
 4201 CCTTGTCCCCG GCCTTCGGAA GACGTCTCTA GCGAATTGTA GTTGAGGCTG
 4251 CTCAGCATGT TTGGCTGAA GCAGAGACCC ACCCCCAGCA AGGACGTCGT
 4301 GGTCCCCCCC TATATGCTAG ATCTGTACCG CAGGCACCTCA GGCCAGCCAG
 4351 GAGCGCCCGC CCCAGACAC CGGCTGGAGA GGGCAGCCAG CGCGCCAAAC
 4401 ACCGTGCGCA CGTTCCATCA CGAAGGTGAG CGGGCGGGCG GTGGGGGGGC
 4451 GGGGACGGCG GGCAGGGCGGA GACTAGGCGG GCAGCCCCGG CCTCCAACTAG
 4501 CACAGTAGAA GGCTTTCGG CTTCTGTACG GTCCCCCTCTG TGGCCCCAGC
 4551 CAGGGATTCC CCGCTTGTGA GTCTCACCCT TTCTCTGGCA AGTAGCCAAA
 4601 AGACAGGCTC CTCCCCCTAG AACTGGAGGG AAATCGAGTG ATGGGAAGA
 4651 GGGTGAGAGA CTGACTAGCC CCTAGTCAGC ACAGCATGCG AGATTCCAC
 4701 AGAAGGTAGA GAGTTGGAGC TCCTTAATC TGCTTGGAG CTCAGATCTG
 4751 TGACTTGTGT TCACGCTGTA GTTTAAGCT AGGCAGAGCA AGGGCAGAAT
 4801 GTTCGGAGAT AGTATTAGCA AATCAAATCC AGGGCCTCAA AGCATTCAA
 4851 TTACTGTTC ATCTGGCCT AGTTGAAAG ATTTCTGAAT CCCTATCTAA
 4901 TCCCCGTGGG AGATCAAATC CACAATTCTGT CATATTGTTT CCACAATGAC
 4951 CTTCGATTCT TTGCTTAAAT CTTAAATCTC CAAGTGGAGA CAGCGCAACG
 5001 CTTCAGATAA AAGCCTTCT CCCACTGCC GCTACCTTCC TAGGCAAGGC
 5051 AATGGGGTTT TTAAACAAAT ATATGAATAT GATTCTCCAA GATAGAATAA
 5101 TGTGTTTAT TTCAGCTGAA ATTCTGGGAA TTAGAAAGGC TGTAGAGGCC
 5151 TATTGAAGTC TCTTGCACCG ATGTTCTGAA AGCAGTTAGT AAAAATCAT
 5201 GACCTAGCTC AATTCTGTGT GTGCCACTTC CAATGTGCTT TTGACTTAAT
 5251 GTATTCTCCA TAGAACATCA GTTCTTCAAL GTTCTAGAAG AATTCAAGATT
 5301 TAAAGTTTIG CTTTGCCTTG CTGAGGGGAT AAATTTAAG TAGAAATCTA
 5351 GGCTCTGAAA TGATAGCCCA ACCCCATCTC CAGTAAGGGAG TGACTGACTC
 5401 AACCTTGAG AAGTCTGGGT GATAATAGGA AAAGTCCACA AGCAGGTAC
 5451 AGAGCGCGAG ATGGATCTGT CTGAGGGCAG CCAATGGTTA TGAAGGGCAC
 5501 TGGAAATCCA TCTCTTCAA ACTGGTGTCT AGGGCTTCT GGGAGCAGAG
 5551 CTTAGACCAC ATTCTGCTCT TCAAGGTTTG CCTACTGAAA GCAGGGAGAT

FIGURE 9B

5601 TCTGGGTGTT CACCCCCATC CTTCACCCCC AGGTGATTCT GGGCTTAGCT
 5651 AATCTCTCCT GGTTAATATT CATTGGAAG TTTTATAGA TCAAAACAAA
 5701 CAAACCTACT ATCCAGCACA GGTGTTTC CCACTGCCTC TGGAGATATA
 5751 GCAAGAAAAC CATATATTCA TGATTTCTT TATTAGTCTT TTCTAACGTG
 5801 AAAATTATTC CTGACCTATA AAAATGAAG GAGGTATTT ATCTTAACTA
 5851 AGCTAAAAGA ATCGCTTAAG TCAATTGAAA CTCAAAATC CAATTGAATG
 5901 AAAGGTTCGT CAATAAAAAT CTACATTTT CTACTCTTC CTTTGGAAAT
 5951 AGCTTGATAA AAACACAGAC AAAACAAAGT CTGTTGCTT ATTTGAAAAC
 6001 TTAGTGAGCT TCAGTTCAT AAGCAAAAT GTAGTTAAA AGTGTATTT
 6051 CTCTGTAAA ACGTGATAGA AGTTATTGAC TTGTTAAA TAAACTTGCA
 6101 CTAACTTTAT ACCTTGGTGC AATTAGATGT AATGTTTACT GTAAATTTCA
 6151 GGAAAACCAT TTTTTTTTT TGGTCATGAT CAGGTACACA TGGCATTG
 6201 GAAGACTTTT CACATTGTTG AGTAACCTAG AGTTGTTTG TTTGTTGTT
 6251 TGTTTTAAG CATTCTTGTG CCACTAGAAA AACCTTAATA AGCCATGTGT
 6301 TACTTGGTAG ACTTCTTCCT AAGTTCTAGA AAGTGGCTA ATGCCACGAT
 6351 GAGACAAAAC ATACCATACT AGTCTTCCTA CCAGTGGCAG AGTCTTCCAG
 6401 ACAAAATCTC CTGTTGAACA TTAAGACCAT GGATTTTAT CCAGGAGAGC
 6451 CCAGGCTTTG CTGAATCACC ACCCTCCAAC CCCACTCCAA GGTACCCGAA
 6501 GGCCTCCCCA ACTGGCTGCC ATTGAGAAAC TGTTGAAAT TGATGACTC
 6551 CATTGGCCCT ACAGAGACTT CTCCCTTAGT GGCAGATCAT ATACTGAAGG
 6601 ATCCAAGCTT GCTCTTCTGA CTATGAAAGAG CACAGTCTT CTTTTCTTT
 6651 ATGGAATAAA CAAACTATGT GGCCCTGTGA CTAAAGTTT CAAAGAGGGA
 6701 GAGATCCTGT TAGCAGAAGT GCAACTGCC AGAAACTAGC CACAGGCTAG
 6751 GATATTCCAA AGTACAACTC TAAAGTATGG TCCATCCTAA ATTCTAGCAT
 6801 GGGTTGAAT ACCGGCATCC AGGAATACCT CTCTCTACCT CTGGCTATTG
 6851 CAGTGAGATT ACGAAGACCC TGGGGGAAA AACAGTTGCT TAGTTACAG
 6901 ATGTTCTTGT CCACAGATGT TCTCAGTATC TCTTGTGTT CAGAGGATCC
 6951 TTCAATCCC TCTTGACATT TCCAATCTGC TTTTGTCCCTC TCTACATGTG
 7001 CCTTGTGGCA TTTGCTTGG TCTTTAGAGA ATCCCTTTCT GGAGCTGCAG
 7051 GTTCCCTTGT AGGATCTGTG TTCAGGAGAA CAGGGACCTT GGCAGGTTAG
 7101 TGACAACTA CAAACCCCTGC TTTCCCTCCC TGCCACTTCC TTTGTTGCCT
 7151 TAAAAATTAA ACCTTAACTC TCTGTGCTA AACCTTTCT TCTTCCTCTT
 7201 TGTCAATTAC TTTATTTATT TGTCACTGTAC TTTATCCTGT AGAAAATCAC
 7251 AGTGTGGCCC AAAGCCCTT GAATCTGTT GCAGCGGTGA GATGCAGCTG
 7301 CTGATCTGGA ATAGCCTAG GCTGTGTT TGATCACAAAT GCTTCTGTC
 7351 CAAAAGTGTG CAAATCCTCC AAGCTTAATG ATAACCTTTG AAATGAAACT
 7401 CACCCCTACTT TAGGGAAAC AAGTAGCCAC AGAGAGCAGG ATCTAAACAA
 7451 GGTCTGGTGT CCCATTGGC TGTGCTCCCT CAATTTCTG TTCATTAGC
 7501 TCTGTCTGCA TCTAAAGGTC GCTGGCAAT AAGTTTGAT CTTCAAGGGCA
 7551 AAACTCAATC TTCACTTACG ATGGTATCAG GTACCAATTC CTAGTGAATT
 7601 GTGCTATGGC TTAGGATTG ATTTCTCTCC TACATTAGGT AATATCTTTC
 7651 AATGGCTAGA ACTTGGCAT TGCAGTACAC TCAAGTTAAC AGTCTGTGA
 7701 CCTAAGGAAG TCACATAACC TCTCTGAATT CTCTACTGTT TCATTCACAA
 7751 AATGGAGAAA ATCATGGCTC TTTCTTAATG TGCAGATTCA TAGAAAGGTG
 7801 ATGACACCAAG ATTTGGCAGA AGGAAGGAAA GGAAGGAAGG AAGAAAGAAA
 7851 GAAAGAAAGA AAGAAAGAAA GAAAGAAAGA AAGAAAGAAA GGAAGGAAGG
 7901 GAGAGAGAGA GAAGGGAAGG GAAAGGAAA GGGAAAGGAA AGAAAAGAAA
 7951 GGAAGGAAGA AAAGGAAGGA AGGAAGGAAA GAAGGAAGGA AGGAAAAGAA
 8001 AGAGAAGAAA GCATTCAGCA TATGAACTAA TGTTCTTGG TGACTTTTA
 8051 TATCATATTC TTGTTCTAGG AAGTGGCCCT AGCCATATCT TTTGGTTAT
 8101 TTGAGGTAG AGGATAATCA ACATAGTGTG AAACATTAAGA TCTGGTTT
 8151 GTTCTAGAA GAGGCTAGAA TGGCATGGCT GTCCCACCTG CTCCCTTTTC
 8201 AGGCAGTATG GCAGCCACCA TTCTCTCTGT AAGATCTAGG AGGCTGACAC
 8251 TCAGGTTGGA GACAGGTCAAG AATCCTGAAA TCACTTAGCA AGTTCAGCTG
 8301 ATTCAACAAAG GGATATTTAC AGAGAATTAA CAGCTATTCC AGCTTCCAAA
 8351 AAGTGTACAT TACCTACTCT GTATTTCTAG AACCCCCAGGT TTGCTGTGAT

FIGURE 9C

3401 AATTTGGTAG AAGCCTTTTC CTGTAATTAA CTTTATTTAA AAGATAAATT
 3451 CATTTCAC CCTCAGAAG AGTTGAAC TTGTCCCTTG AAGTACAAGA
 3501 GGTGTTGTGT GTCCCTGACCC TGAGGAAGTT GGCCCTGTTG AGGTCTCTG
 3551 TAAATTCTTG AATTCTCTGT ATAATTCTCAA TGAATAGTCA TGTTTGATAC
 3601 CTTGGTATAA AGGATGGGAT AAGATCTTTC AAGGCTTAGG CTGATGGAAA
 3651 CGCTGCTGAA AGACTAGAGA TTGCTCTTC CTTGGCATC TGTCTGGGT
 3701 AGTAATATTG TTCTCTGTGA AGGCCAATT ATTCTGTCTT GAAAATTCTT
 3751 CTTACCTCCA GAGTGATAGG CCACAGGGAG TACTGTTCT ATGTTTGAG
 3801 TTGAAAGATG ACAATTTCAT ATGGCTCAA CTTGGCTTTA TTTCTTGGTG
 3851 AGATATTATT CTGTTACTTC AATGACCTGT CTCCATTATT TATCTTGAGG
 3901 CTCACCTCTT CCCTTTGTT GACTGTTGTG CAATTGTGG AAGGCCCTGG
 3951 GTAGTCAGCC TTTATACTCT GTCTGTACAG GAAATAAAAGT GCATGTCACC
 4001 ATGCCAAAGT CAGGAGATGC CGGTGTGATT AGGGTCCACG GGATTGGCT
 4051 ACTGTTTTTA TTTCTATCGA TGAATTGCT TAGGCAGAAA CATTAGGGAA
 4101 CACCAAGATG GTGATGAAAG GCTTTTATA ACAGAAGCTA AATGCACTCC
 4151 TTCAACTTC ATGGAATGCC CCTGTCCTAA AGTACCTTA ACCGATAGTG
 4201 GAGTCAGAAC ATAAATGGCT CCCCAAAGGT ATCACCAAGA ACTTTGGCA
 4251 AACAGATGCA AGAGGATTAT GAAGAATCGC AGCTTGGTCT GGTAATCTTC
 4301 CTGTTGAAA GAGAAGAGCT TTAGAAGACC CCCCTTGAGT CCCTGGCTGG
 4351 CTTAACATAG CATGAACCCCT CATGTTGG CCAACATTAA GGCTTTTCT
 4401 ATAAAAGTCT CCTCCTTCAT CAGTATACGC TCGAGTATGA AAAGCATCCT
 4451 TTTAAACCTT GACTCTGTGT GGTCCAGAAA CAGCAGCATC CCTGCTTAA
 4501 GAGCTTAATG GAGATGCAGG AGTGCAGGGC TCTTCCCAGA CCGGCTGATG
 4551 TGCAGGTCAA AGTCTAAGCA CTGCTGGATC AACACAGAAG TTATTCCGAA
 4601 TGAGGATGAG ATGGATAACGA GAGAACAGGA AGTAGGAAGG GATTCTTTA
 4651 TCGTGAATTG CTACAGCAGC CTAATGTAC CCCATACCCCT TCTGAAGAAC
 4701 TATGTCCTG TGGATGCCCT TGTCTCTAGA GTTCTGAGCA AAATGGTAGG
 4751 GTGTGCTTTG CAAAATGTCA TCATTGATGT TGAATTCTAA AGTCTTTAAT
 4801 TAAGGGGCTG AAATCTGTAT ATTGAGATTT GTAAATCATC TAAATTGTAG
 4851 AGTAATGTT GCACAGGCTG CTTAAGGGAT TGACATTAAA GCTCGTTTC
 4901 TTAGTTAAGA AATACAGTCA TTTCCTCAAC TCCTCAGTC TTAGCTCTCT
 4951 ACTAAGTACA GTGCTGACTT TTTTAAAATT AAAGTCTGTG AATTCCAAAG
 5001 AAGTGTTCAT CTATTCTC CATTATTATA GCTACCTAGA AGCTATGTT
 5051 ATATATTGGA TTAAAAACGT AGCAATTACA AAGTTAATGT GGCCATATAG
 5101 AAAAGGAAA AGAAACTCCG CTTTCACTIT AATATATATA TGTGTGTG
 5151 TATATCATAT ATATACATGT TGTGTGTG TATATATATA TATATATATA
 5201 TATATATATA TATATATATA TATATATATA TGTGTGTG AGCAGTAAAC
 5251 TCAGGCCATG GACAGAGGG CAGACATTGT ATCTCTAGGC CTGACATT
 5301 TAATTCTGG TTGCAGGTT TTATGTTAAT TAACTTAAAC CATGCACTGA
 5351 AGTTTAAAT GCTCGTAAGG AATTAAGTTA CCATTGGCTC TCTTACAAA
 5401 TGCGTTCTT TTTCTCTCC ACCCTGATCA AACTAGAAGC CGTGGAGGAA
 5451 CTTCCAGAGA TGAGTGGAA AACGGCCCGG CGCTTCTCT TCAATTAAAG
 5501 TTCTGCCCC AGTGACGAGT TTCTCACATC TGCAGAACTC CAGATCTCC
 5551 GGGAACAGAT ACAGGAAGCT TTGGGAACCA GTAGTTCCA GCACCGAATT
 5601 AATATTATG AAATTATAAA GCCTGCAGCA GCCAACTTGA AATTCTGT
 5651 GACCAGACTA TTGGACACCA GTTGTAGGAA TCAGAACACA AGTCAGTGGG
 5701 AGAGCTTCGA CGTCACCCCA GCTGTGATGC GGTGGACCAC ACAGGGACAC
 5751 ACCAACCATG GGTGGTGGT GGAAGTGGCC CATTTAGAGG AGAACCCAGG
 5801 TGTCTCCAAG AGACATGTGA GGATTAGCAG GTCTTGCAC CAAGATGAAC
 5851 ACAGCTGGTC ACAGATAAGG CCATTGCTAG TGACCTTTGG ACATGATGGA
 5901 AAAGGACATC CGCTCCACAA ACGAGAAAAG CGTCAAGCCA AACACAAACA
 5951 GCGGAAGCGC CTCAAGTCCA GCTGCAAGAG ACACCCCTTG TATGTGGACT
 6001 TCAGTGATGT GGGGTGGAAT GACTGGATCG TGGCACCTCC GGGCTATCAT
 6051 GCCTTTACT GCCATGGGA GTGTCCTTT CCCCTGCTG ACCACCTGAA
 6101 CTCCACTAAC CATGCCATAG TGCAAGACTCT GGTGAACCTCT GTGAATTCCA
 6151 AAATCCCTAA GGCAATGCTGT GTCCCCACAG AGCTCAGCSC AATCTCCATC

FIGURE 9D

11201 TTGTACCTAG ATGAAAATGA AAAGGTTGTG CTAAAAAATT ATCAGGACAT
 11251 GGTGTGGAG GGCTGCGGGT GTCGTTAGCA CAGCAAGAAAT AATAAATTA
 11301 ATATATATAT TTTAGAAACA GAAAAAACCC TACTCCCCCT GCCTCCCCC
 11351 CAAAAAAACC AGCTGACACT TTAATATTTTC CAATGAAGAC TTTATTTATG
 11401 GAATGGAATG AAAAAACAC AGCTATTTG AAAATATATT TATATCGTAC
 11451 GAAAAGAAGT TGGGAAAACA AATATTTAA TCAGAGAAATT ATTCCCTTAAA
 11501 GATTTAAAAT GTATTAGTT GTACATTAA TATGGGTTCA ACTCCAGCAC
 11551 ATGAAGTATA AGGTCAAGGT TATTTTGAT TTATTTACTA TAATAACCAC
 11601 TTTTAGGGA AAAAGATAG TTAATTGTAT TTATATGTAA TCAGAAGAAA
 11651 TATCGGGTTT GTATATAAAT TTTCCAAAAA AGGAAATTG TAGTTGTTT
 11701 TTCAGTTGTG TGATTTAAG ATGCAAAGTC TACATGGAAG GTGCTGAGCA
 11751 AAGTGTGTC ACCACTTGCT GTCTGTTCT TGCAAGCACTA CTGTTAAAGT
 11801 TCACAAAGTTC AAGTCAAAAA AAAAAAAA AGGATAATCT ACTTTGCTGA
 11851 CTTCAAGAT TATATTCTTC AATTCTCAGG AATGTTGCAG AGTGGTTGTC
 11901 CAATCCGTGA GAACTTCAT TCTTATTAGG GGGATATTG GATAAGAAC
 11951 AGACATTACT GATCTGATAG AAAACGTCTC GCCACCCCTCC CTGCAGCAAG
 12001 AACAAAGCAG GACCAGTGGG AATAATTACC AAAACTGTGA CTATGTCAGG
 12051 AAAGTGAGTG AATGGCTCTT GTTCTTCTT AAGCCTATAA TCCTTCCAGG
 12101 GGGCTGATCT GCCAAAGTA CTAAATAAA TATAATATT TTCTCTTATT
 12151 AACATTGTAQ TCATATATGT GTACAATTGA TTATCTTGTG GGCCCTCATA
 12201 AAGAACGAGA AATTGGCTTG TATTTTGTGT TTACCCCTATC AGCAATCTCT
 12251 CTATTCTCCA AAGCACCCAA TTTTCTACAT TTGCTTGACA CGCAGCAAAA
 12301 TTGAGCATAT GTTCTTGCC TGCAACCTGT CTCTGACCTG TCAGCTTGT
 12351 TTTCTTCCA GGATATGTGT TTGAACATAT TTCTCCAAT GTAAACCCA
 12401 TTTCAGATAA TAAATATCAA AATTCTGGCA TTTTCATCCC TATAAAACC
 12451 CTAAACCCCG TGAGAGCAA TGGTTGTTT GTGTTTGAG TGCTACCTG
 12501 TGTTGCAATT TTCATTCTT GGGTGAATGA TGACAAGGTT GGGGTGGGA
 12551 CATGACTAA ATGGTTGGAG AATTCTAAGC AAACCCCAGT TGGACCAAAG
 12601 GACTTACCAA TGAGTTAGTA GTTTTCATAA GGGGGCGGGG GGAGTGAGAG
 12651 AAAGCCAATG CCTAAATCAA AGCAAAGTT GCAGAACCCA AGGTAAAGTT
 12701 CCAGAGATGA TATATCATAAC AACAGAGGCC ATAGTGTAAA AAAATTAAAG
 12751 AATGTCIGAT CAGCGTCTCA GCACATCTAC CAATTGGCCA GATGCTCAA
 12801 CAGAGTGAAG TCAGATGAGG TTCTGGAAAG TGAGTCTCT ATGATGGCAG
 12851 AGCTTTGGTG CTCAGGTTGG AAGCAAACCC TAGGGAGGGA GGGCTTGTG
 12901 GCTGTTGCA GATTGGGAA TCCAGTGCA GTTCTGGCA GGGTTTCAGG
 12951 TCAGTTCCG GAGTGTGTGT CCTGTAGCCC TCCGTCATGG TTGAAGCCCA
 13001 GGTCTCACCT CCTCTCTGA CCCGTGCCCT AGAACTGACT TGGAAAGCGG
 13051 TGTGCTTACA GCAAGACAGA CTGTTATAAT TAAATTCTTC CCAAGGACCT
 13101 CCGTCAATG ACCCCAAGCA CACTTACCTT CGGAAACCTT AAGGTTCTGA
 13151 AGATCTGTGTT TAAATGACT ACCCTGGTTA GCTTTGATG TGTTCTTAT
 13201 CCCTTAGTT GTTGCACAGG TAGAAACGAT TAGACCCAACT TATGGGTAGC
 13251 CTTGTCCTCC TGGTCTTCA GTCATTCTCTT AATGTCCTT GCTTGGCATG
 13301 GGCAGTGTAA CAAACTGCAA TCTTAACATC TTATAAAATG AATGAACCAC
 13351 ATATTIACAT CTCCAAGTCC TCCAGATGGG AGTGCAGTC TTCCATAAGG
 13401 ATCCCCACCTT CTGGCAGGTC TATCCAGTAC ATATTTATG CTTCAATTGGT
 13451 CTTGATTTTC TTGGCTAAAA TTACTTGTAG CACAGCAGGC CCCATGTGAC
 13501 ATATAGGTAT ATACATACAT GTATGTCAT ATAGTGTGTA CATGTTCTAA
 13551 TTTATACATA GCTATGTGAA GATTATGTTA CATATGTAGA TGGTCGCACT
 13601 TCTGATTTCC ATTAGGTTC AGAGAGAGAC GTCACAGTAA ATGGAGCTAT
 13651 GTCATTGGTA TATCCCCGAG TGGTTCAGGT GTTCTCTCTA TTTTTTAAG
 13701 ATGGAGAACAA CTCATCTGTA CTATCGAAA CTGAGCCAA TCACCTAGCA
 13751 AATTCTGAGT CACTGCCTTG CTGTTAAGAT ACTGATTCA C TGGGTGCTGA
 13801 CATGCTGAGC CCTGCCTACT TTTGCATGAA GGACAAAGGAA GAGAGCTTGC
 13851 AGTTAAGAAE GGTATAATGTG GGGCTAGGGG GCGGGGTATA GACTGGCATA
 13901 TATGTGAAGG AAGGTCACTA ACAGCCTGCA CTAATTCCC TTTCTGGTT
 13951 TTATGCTTGTG GCAGGGGAAA GGACAGGTAG GGTGGGGTTG AGGGGGAGGG

FIGURE 9E

14001 CACACACATC TACTTGGATA AATTGCATCT CCTCTTCCT TCACCCGCC
14051 ACCATATCTT AAAGCCTTAT GACATCCTCT AGGGCAGAAT TTTCTCACCA
14101 GCTCCCCGCC CTACCAACTT CAAAGTGAAC TTCTAACTAA CTTGAGGGC
14151 CAAAGTTCTA AATAAAACTT GTTAGAGTTT AGCGGGCACC TCAGTCATCA
14201 GGAATGCCTC CAGGAAAGCA AAAAGCTTGA TGTGTGTACA GCCACGTGGT
14251 GGAGTCCTGC CACCCATGA TTCTGTCCC AGTGGTCGTG TGGGGCCTGA
14301 GATCCTGAAT TTCTAATGAG CTCCCAGTAC GCCCTGACTC ACTGTGCCAG
14351 AGGACTGCAG TTTGAGTAGC AAGGTTGTGT GACTGTCTTC GATCATGGCT
14401 ACAGAACGCTG GCTCAAGTAC AGCCCTTCGT GTGTAAAAGC CATGTGTAAA
14451 TGAGAAGAAA CAGAAGGCAA AGCTGCCTTG CATGGCATCT GAATCAGTGC
14501 CCTGCAGTTT TGTTTTTTGT TTTTTTTTTT TCAAAGACAT TCTTTTCCC
14551 AACAAAGATGA GTGGCAATCT TATGTTCTAG CCACCTCTAG ACATGAAAAC
14601 ACTGGGTGTC TTATCTTGTAA ATATCTGCTC TGCTTGCTTG CTTGGCACG
14651 CTGCAGTCAG TTTAGTCAAA TGCGTGTCAAG TACATCTATA TGTATGAGGG
14701 AGCAGGTGCA AGTCCCTAGA AATGTACTTT AAAAAACTTG AACACTTAAG
14751 TCAGTGTGCT GAGCTGCTCC TGTGTGATGT TAGGCCAAGC ACCTGAGTTA
14801 AAGGGATCTC TTTGAAGGCA GAGGGTAGAT GTCGTATGGT TGAAGCATT
14851 GTTTATACTA AAATGATGCT TGACTTTTT TCTAAGTTAT AAGACAGTAC
14901 ACTGTATAAG TTCATTGAAC CTAGAGGGTG GCATAGGACT CCAAATCTGG
14951 TATGGGAGGT TTGTTCTAAT GGAAGTTCGA ATCTTTTTG CAGTTGGCTT
15001 GGAATAAAAGT GCTTATGTGA ATGGGCTTAA GCTAGGGAAA AAAATGGGTT
15051 TCCCTCTGCA AAGAGGGTCA GCACAGAAAT AACTTCCTGG CTTTGCTTGC
15101 ATGAATGCCA CTTGTTAGCA GATGCCCTGT GGGGATCCGA ATTCA

1 GAATTCGCTA GGTAGACCAG CCTGGCCCAG AACACCTAGA GATCATCTGG
 51 CTGCCTCTGT CTCTTGAGTT CTGGGGCTAA AGCATGCACC ACTCTACCTG
 101 GCTAGTTGT ATCCATCTAA ATTGGGGAAG AAAGAAGTAC AGCTGTCCCC
 151 AGAGATAACA GCTGGGTTT CCCATCAAAC ACCTAGAAAT CCATTCTAGA
 201 TTCTAAATAG GGTTTGTCAAG GTAGCTTAAT TAGAACCTTC AGACTGGGTT
 251 TCACAGACTG GTTGGGCCAA AGGTCACTTT ATTCTCTGGG TTTCAGCAA
 301 ATGAGACAAT AGCTGTTATT CAAACAAACAT TTGGGTAAGG AAGAAAAATG
 351 AACAAACACC ACTCTCCCTC CCCCCGCTCC GTGCCTCCAA ATCCATTAAA
 401 GGCAAAGCTG CACCCCTAAAG GACAACGAAT CGCTGCTGTG TGTGAGTTA
 451 ATATTTAAGG AACACATTGT GTTAATGATT GGAGCAGCAG TGATTGATGT
 501 AGTGGCATTG GTGAGCACTG AATCCGTCTC TCAACCTGCT ATGGGAGCAC
 551 AGAGCCTGAT GCCCCAGGAG TAATGTAATA GAGTAATGTA ATGTAATGGA
 601 GTTTTAATTG TGTGTTGTTG TTTTAATAA TTAATTGTA TTTTGGCTGT
 651 GTTAGAAGCT GTGGGTACGT TTCTCAGTC TCTTTTCGGT CTGGTGTAT
 701 TGCCATACCT TGATTAATCG GAGATTAAAA GAGAAGGTGT ACTTAGAAC
 751 GATTCAAAT GAAAGAAGGT ATGTTTCCAA TGTGACTTC ACAAAGTGAC
 801 AGTGACCCAG GGAATCAATC GTCTTCTAAAT AGAAAGGGCT CATGGAGACC
 851 TGAGCTGAAT CTTCTGTTC TGGATGAGAG AGGTGGTACC CATTGGAATG
 901 AAAGGACTTA GTCAGGGCA ATACAGTGTG CTCCAAGGGCT GGGGATGGTC
 951 AGGATGTTGT GCTCAGCCTC TAACACTCCT TCCAACCTGA CATTCTTCT
 1001 CACCCTTTGT CTCTGGCCAG TAGAATACAG GAACTCGTTC CTGTTTTTT
 1051 TTTTTAAAT TCTGAAGGTG TGTAAAGTACA AAGGTCAAGAT GAGGGCCCT
 1101 AGGTCAAGAC TGCTTGTGG TGACAAGGGG GTATAAACACC CACCCCAAGAA
 1151 ACCAAGAACCG GGAAATTGCT ATCTTCCAGC CCTTTGAGAG CTACCTGAAG
 1201 CTCTGGGCTG CTGGCCTCAC CCCTTCCCTG CAGCTTCCC TTTAGCAGAG
 1251 GCTGTGATTG CCTTCAGCGC TTGGGCAAAAT ACTCTTAGCC TGGCTCACCT
 1301 TCCCCATCCT CGTTTGTAAA AACAAAGATG AAGCTGATAG TTCCCTCCCA
 1351 GCTCCATCAG AGGCAGGGTG TGAAATTAGC TCCTGTTGG GAAGGTTAA
 1401 AAGCCGGCCA CATTCCACCT CCCAGCTAGC ATGATTACCA ACTCTTGT
 1451 CTTACTGTTG TTATGAAAGA CTCAATTCTT CATCTCCCTT TCCCTTCTT
 1501 TAAAAAGGGG CCAAAGGGCA AAGGTCCCAA ACAAAACAAAC AAACAAACAA
 1551 GCACGTGTT ACCTTCCTGG AAGGTCCCAA ACAAAACAAAC AAACAAACAA
 1601 AATAACCATC TGGCAGTTAA GAAGGCTTCA GAGATATAAA TAGGATTTC
 1651 TAATTGTCIT ACAAGGCCA GGCTGTTGC CTGCCAAGTG CCTGCAAAC
 1701 ACCTCTGTGC ACTTGAAATG TTAGACCTGG GGGATCGATG GAGGGCACCC
 1751 AGTTTAAGGG GGGTTGGTGC AATTCTAAA TGTCCACAAG AAACATCTCA
 1801 CAAAAACTTT TTTGGGGGAA AAGTCACCTC CTAATAGTGT AAGAGGTATC
 1851 TCCCTCGGGC ACACAGCCCT GCTCACAGCC TGTTCAACG TTGGGAATC
 1901 CTTAACAGT TTACGGAGG CCACCCCTTA ACCAATCCA ACAGCTCCCT
 1951 TCTCCATAAC CTGATTTAG AAGGTCTTCA TTATCTCTAA TTACTCGGGG
 2001 TAAATGGTGA TTACTCAGTG TTTTAATCAT CAGTTGGGC AGCAGTTATT
 2051 CTAAACTCAG GGAAGCCCAG ACTCCCATGG GTATTTTGG AAGGTACAGA
 2101 GACTAGTTGG TGCACTGCTT CTAGTACCTC TTGCATGTGG TCCCCAGGTG
 2151 AGCCCCGGCT GCTTCCCGAG CTGGAGGCAT CGGTCCCAGC CAAGGTGGCA
 2201 ACTGAGGGCT GGGGAGCTGT GCAATCTTCC GGACCCGGCC TTGCCAGGGC
 2251 AGGCCAGGCC CCGTGGCTGG ATGGGAGGAT GTGGCGGGGG CTCCCCATCC
 2301 CAGAAGGGGA GGCAGATTAAG GGAGGAGGGG AGAAGGGAGG GGCGCTGGG
 2351 GGGAAAGACT GGGGAGGAAG GGAAGAAAGA GAGGGAGGGG AAAGAGAAGG
 2401 AAGGAGTAGA TGTGAGAGGG TGGTGTGAG GGTGGGAAGG CAAGAGCGCG
 2451 AGGCCCTGGC CCGAAGCTAG GTGAGTICGG CATCCGAGCT GAGAGACCCC
 2501 AGCTTAAGAC GCCTCGCCTG CAACCCAGCC TGAGTATCTG GTCTCCGTCC
 2551 CTGATGGGAT TCTCGTCTAA ACCGTCTTGG AGCCTGCAGC GATCCAGTCT
 2601 CTGGCCCTCG ACCAGGTTCA TTGCAGCTT CTAGAGGTCC CCAGAAGCAG
 2651 CTGCTGGCGA GCCCCCTCT GCAGGAACCA ATGGTGAGCA GGGCAACCTG
 2701 GAGAGGGGGCG CTATTCTGAG GATTCGAGGT GCACCCGTAG TAGAAGCTGG
 2751 GGATGGGCT CAGGCTGTAA CCGAGGCAAAGTGGCCTA TTCCCTCCTTC

FIGURE 10A

2801 CTTCTCCAAC AGTGTGGAG GTGGGATGAT GGAGGCTAAA AGGCACCTCC
 2851 ATATATGTTA CTGCGTCTAT CAACCTACTT TAGGGAGGTG CGGGCCAGGA
 2901 GAGCCGGAA GGAGAGAAGG CCTTGGAGA GAGGTCAATTG GGAAGAACTG
 2951 TGGGGTTTGG TGGGTTGCT TCCACTTAGA CTATAAGAGT GGGAGAGGAG
 3001 GGAGTCAACT CTAAGTTCA ACACCAGTGG GGGACTGAGG ACTGCTTCAT
 3051 TAGGAGAGAG AACCTAGCCA GAGCTAGCTT TGCAAAAGAG GCTGTAGTCC
 3101 TGCTTGCTC TAAAGGGCA CCCGGGATAG AGAGGCTTC TTGAGCGGGG
 3151 TGTCAACCTAA TCTTGTCCCC AACGCACCCC CTCCCAGGCC CTGAGAGCTA
 3201 GCGAACTGTA GGTACACAAC TCGCTCCCAT CTCCAGGAGC TATTTCTTA
 3251 GACATGGGCA CCCATGATTG TGCCCTCTGG TACTCTCCCC TCCCTGGAA
 3301 AGGGGTGTAA GTTCCGACG GAACCGTGGC CAGGATGCCG AAAGGCTACC
 3351 TGTGCGGGTC TTCTGCCATG CTGTGTCGTG CGGGACATGC CAGCAGGGCT
 3401 AATGAGGAGC TTGCGATACT CCAAAGGGTT CGGAAATTGC GGGGTCTTA
 3451 CACCGAGTGG AGTTGGGCC CTTTTACTCA GAAGGTTTCC GCCACGGCTT
 3501 TGGTTGATAG TTTTTTAGT ATCCCTGGTT ATGAACTGAA GGTTTGTGA
 3551 GATGTTGAAT CACTAGCAGG GTCATATTG GCAAACCGAG GCTACTATTA
 3601 AATTTGGTT TTAGAAGAAC ATTCTGGGA GAAAGTGAAG GTAACTGCC
 3651 TCCAGGAGCT GTATCAACCC CATTAAGAAA AAAAAAAATA CCAGGAGATG
 3701 AAAATTACT TTGATCTGTA TTTTTTAATT AAAAAAAATC AGGGAAAGAAA
 3751 GGAGTGATTA GAAAGGGATC CTGAGCGTCG CGGGTTCCAC GGTGCCCTCG
 3801 CTCCGCGTGC GCCAGTCGCT AGCATATCGC CATCTCTTC CCCCTTAAAA
 3851 GCAAATAAAC AAATCAACAA TAAGCCCTT GCCCTTCCA GCGCTTCCC
 3901 AGTATTCCTC AGCGGGCAGC CGTGTGGGG AATAGAGAAA TCGTCTCAGA
 3951 AAGCTGCGCT GATGGTGGTG AGAGCGGACT GTCGCTCAGG GGCGCCGCG
 4001 GTCTCTGCAC CCAGGGCAGC AGTGTGGGAT GGCCTGGGC AGCCACCGCC
 4051 GCCAGGAAGG ACGTCACTCT CCATCCTTA CACTCTTTTCA TCAAAGGTTT
 4101 CCCGAAAGTG CCCCCCGCCT CGAAAATCTGG GGCCTGGCG GGGGGGGGA
 4151 GAGGTAGGT TGAAAACCAG CTGGACACGT CGAGTTCTA AGTGAGGCAA
 4201 AGAGGCGGGG TGGAGCGGGC TCTGGAGCGG GGGAGTCTG GGACTCGGTC
 4251 CTCCGATGGA CCCCCGTGCAA AGACCTGTT GAACAAGAGT TCGCCTTCCG
 4301 AGGTTAGAAC AGGCCAGGCA TCTTAGGATA GTCAAGTCAC CCCCCCCCCC
 4351 AACCCCCACCC GAGTTGTGTT GGTGAATTTC TTGGAGGAAT CTTAGCCGCG
 4401 ATTCTGTAGC TGGTGCAAAA GGAGGAAAGG GGTGGGGGAA GGAAGTGGCT
 4451 GTGGGGGGGT GGCCTGGGG GTGGAGGTGG TTAAAAAAGT AAGCCAAGCC
 4501 AGAGGGAGAG GTCGAGTGCA GGCGAAAGC TGTCTCGGG TTTGTAGACG
 4551 CTGGGGATCG CGCTTGGGT CTCTTTCGT GCCGGTAGG AGTTGTAAAG
 4601 CCTTGCAAC TCTGAGATCG TAAAAAAAT GTGATGCGCT CTTCTTTGG
 4651 CGACGCCCTGT TTTGGAATCT GTCCGGAGTT AGAAGCTCAG ACGTCCACCC
 4701 CCCACCCCCC GCCCACCCCC TCTGCCTGA ATGGCACCGC CGACCGGTTT
 4751 CTGAAGGATC TGCTTGGCTG GAGCGGACGC TGAGGTGGC AGACACGGTG
 4801 TGGGGACTCT GGCCTGGGCTA CTAGACAGTA CTTCAGAACG CGCTCCCTCT
 4851 AACTTCCCA CACCGCTCAA ACCCGACAC CCCCCTGGCG GACTGAGTTG
 4901 GCGACGGGGT CAGAGTCCTC TGGCTGAAAG TTAGATCCGC TAGGGGTGG
 4951 CTGCCTGTCT CTAGAACGAT TATTTGCCT CTGGAGACG CGTGTGGAGG
 5001 AAGTGTGGA GTGTGCGAGT GTGTTGCGT GTGTGTGT GTGTGTGT
 5051 GTGTGTGTGT GTGTGTGTGT GTGCCGCCGC CCTTGGAGGG TCCCTATGCG
 5101 CTTCTTTT CATGGAACGC TGTCGTGAGG CTTTGGTAAA CTGCTTTTC
 5151 GGTCTCTCTC TCGGTGCACT TAAAGCTTTG TCGCGCTGT AAAGAGACGC
 5201 GTCTCAAGT GCACCCCTGAT CCTCAGGCTT CAGATAACCC GTCCCCGAAC
 5251 CTGGCCAGAT GCATTGCACT GCGCGCCGCA GGTAGAGACG TGCCCCACGT
 5301 CCCCTGCGTG CAGCGACTAC GACCGAGAGC CGCGCCAGTG TGGTGTCCCC
 5351 CCGAGAGTTC CTCAAGAGCAGC CGGGGGACAA CTCCCAGACG GCTGGGGCTC
 5401 CAGCTGCGGG CGCGGAGGTT GGCCTCGCTC GCAGGGGCTG GACCCAGCCG
 5451 GGGTGGGAGG ATGGAGGAGG GGGGGGGGG CTCTTGGTG AGTGGGGCGG
 5501 GGCTCTGGG TCCACGTGAC TCCTAGGGGC TCGAAGAAAA ACAGAGCCTG
 5551 TCTGCTCCAG AGTCTCAATTAT TATCAAATAT CATTAGGA GCCATTCCGT

5601 AGTGCCATTG GGAGCGACGC ACTGCCGAG CTTCTCTGAG CCTTTCCAGC
 5651 AAGTTTGTTC AAGATTGGCT CCCAAGAAC ATGGACTGTT ATTATGCCTT
 5701 GTTITCTGTC AGTGAGTAGA CACCTCTCT TTCCCTTCTT GGGATTTCAC
 5751 TCTGCTCTCC CATCCCTGAC CACTGTCTGT CCCTCCCGTC GGACTTCAT
 5801 TTCAGTGCCTC CGCGCCCTAC TCTCAGGCAG CGCTATGGTT CTCTTCTGG
 5851 TCCCTGCAAG GCCAGACACT CGAAAATGAC GGGCTCCCTT TAAAGCGCTC
 5901 CCACTGTTTT CTCTGATCCG CTGCGTTGCA AGAAAGAGGG AGCGCGAGGG
 5951 ACCAAATAGA TGAAAGGTCC TCAGGTTGGG GCTGTCCCTT GAAGGGCTAA
 6001 CCACTCCCTT ACCAGTCCCC ATATATCCAC TAGCCTGGGA AGGCCAGTTC
 6051 CTTGCCTCAT AAAAAAAA AAAAAAACAA AAAACAAACA GTGTTTGGG
 6101 AACAAAGACTC TTTAGTGAGC ATTTTCAACG CAGCGACCAC AATGAAATAA
 6151 ATCACAAAGT CACTGGGGCA GCCCCTGAC TCCTTTTCCC AGTCACTGGA
 6201 CCTTGCTGCC CGGTCCAAGC CCTGCCGGCA CAGCTCTGTT CTCCCTCCT
 6251 CCTGTTCTTA ACCAGCTGGA AGTTGTGGAA ATTGGGCTGG AGGGCGGAGG
 6301 AAGGGCGGGG GTGGGGGGGT GGAGAAGGTG GGGGGGGGGG AGGCTGAAGG
 6351 TCCGAAGTGA AGAGCGATGG CATTAAATT CTCCCTCCNC CTCCCCCCTT
 6401 TACCTCCTCA ATGTTAACTG TTTATCCTG AAGAAGCCAC GCTGAGATCA
 6451 TGGCTCAGAT AGCCGGTGGG ACAGGATGGA GGCTATCTTA TTGGGGTTA
 6501 TTGAGTGTAA ACAAGTTAG ACCAAGTAAT TACAGGGCGA TTCTTACTTT
 6551 CGGGCCGTGC ATGGCTGCAG CTGGTGTGTG TGTGTGTAGG GTGTGAGGG
 6601 GAAAACACAA ACTTGATCTT TCGGACCTGT TTTACATCTT GACCGTCGGT
 6651 TGCTACCCCT ATATGCATAT GCAGAGACAT CTCTATTCT CGCTATTGAT
 6701 CGGTGTTTAT TTATTCTTA ACCTTCCACC CCAACCCCCCT CCCCAGAGAC
 6751 ACCATGATTC CTGGTAACCG AATGCTGATG GTCGTTTAT TATGCCAAGT
 6801 CCTGCTAGGA GGCGCGAGCC ATGCTAGTT GATACCTGAG ACCGGGAAGA
 6851 AAAAGTCGC CGAGATTCAAG GGCCACCGGG GAGGACGCGG CTCAGGGCAG
 6901 AGCCATGAGC TCCCTGGGA CTTCGAGGGC ACACCTCTAC AGATTTGG
 6951 GCTCGGCCGC CGTCCGCAGC CTAGCAAGAG CGCCGTCAATT CGGGATTACA
 7001 TGAGGGATCT TTACCGGCTC CAGTCTGGGG AGGAGGAGGA GGAAGAGCAG
 7051 AGCCAGGGAA CGGGGCTTGA GTACCCGGAG CGTCCCGCCA GCGGAGCCAA
 7101 CACTGTGAGG AGTTTCCATC ACGAAGGTCA GTTTCTGTC TTAGTCTGG
 7151 CGGTGTTAGGG TGGGGTAGAG CRCCGGGCA GAGGGTGGGG GGTGGGCAGC
 7201 TGGCAGGGCA AGCTGAAGGG GTTGTGGAAAG CCCCCGGGGG AGAAGAGTTC
 7251 ATGTTACATC AAAGCTCCGA GTCCCTGGAGA CTGTGGAACA GGGCTCTTA
 7301 CCTTCAACTT TCCAGAGCTG CCTCTGAGGG TACTTTCTGG AGACCAAGTA
 7351 GTGGTGGTGA TGGGGGAGGG GTTACTTTG GGAGAAGCGG ACTGACACCA
 7401 CTCAGACTTC TGCTACCTCC CAGTGGGTGT TCTTTAGCTA TACCAAAGTC
 7451 AGGGATTCTG CCCGTTTGT TCCAAAGCAC CTACTGAATT TAATATTACA
 7501 TCTGTGTGTT TGTCAAGTTT ATCAATAGGG GCCTTGTAAT ACGATCTGAA
 7551 TGTTCTCTAG CGGATGTTTC TTTTCCAAAG TAAATCTGAG TTATTAATCC
 7601 TCCAGCATCA TTACTGTGTT GGAATTATT TCCCTCTG TAACATGATC
 7651 AACAAAGCGT GCTCTGTGTT TCTAGGATCG CTGGGGAAAT GTTTGGTAAC
 7701 ATACTCAAA GTGGAGAGGG AGAGAGGGTG GCCCCCTTTT TTCTTACAA
 7751 CCACCTGTAA AGAAAAGCTG ACACAAAGCC AAGAGGGGGC TTAAAAGGG
 7801 GAGTCCAAGG GTGGTGGAGT AAAAGAGGTG ACACATGGAA ATTATTAGGC
 7851 ATATAAAGGA GTTGGGGAGA TACTTTCTGT CTGGTGTGTT TGACAAATGT
 7901 GAGCTAAGT TIGCTGGTTT GCTAGCTGCT CCACAACTCT GCTCTTCAA
 7951 ATAAAAAGGC ACAGTAATTC CCTCCCCITA GGTTTCTACT ATATAAGCAG
 8001 AATTCACCA ATTCCTGCTAT TTTTGTGTTT TGTTCTCTG TTTGTTTGT
 8051 TTTGGTTTTT TTTTTTTTT TTTTTTTTT GTCTCAGAAA AGCTCATGGG
 8101 CCTTTCTT TCCCCCTTCA ACTGTGCCIA GACATCTGG AGAACATCCC
 8151 AGGGACCAGT GAGAGCTCTG CTTTCTGTTT CCTCTTCAAC CTCAGCAGCA
 8201 TCCCAGAAAA TGAGGTGATC TCCCTGGCAG AGCTCCGGCT CTTCGGGGAG
 8251 CAGGTGGACC AGGGCCCTGA CTGGGAACAG GGCTTCCACC GTATAAACAT
 8301 TTATGAGGTGTT ATGAAGCCCC CAGCAGAAAT GTTCTCTGGA CACCTCATCA
 8351 CACGACTACT GGACACCAGA CTAGTCCATC ACAATGTGAC ACGGTGGGAA

FIGURE 10C

8401 ACTTTCGATG TGAGCCCTGC AGTCCTTCGC TGGACCCGGG AAAAGCAACC
8451 CAATTATGGG CTGCCATTG AGGTGACTCA CCTCCACCAG ACACGGACCC
8501 ACCAGGGCCA GCATGTCAGA ATCAGCCGAT CGTTACCTCA AGGGAGTGGA
8551 GATTGGGCCA AACTCCGCC CCTCCCTGGTC ACTTTTGCC ATGATGGCCG
8601 GGGCCATACC TTGACCCGCA GGAGGGCAA ACGTAGTCCC AAGCATCAC
8651 CACAGCGGTC CAGGAAGAAG AATAAGAACT GCCGTGCCA TTCACTATA
8701 GTGGACTTCA GTGACGTGGG CTGGAATGAT TGGATTGTGG CCCCAACCCGG
8751 CTACCAGGCC TTCTACTGCC ATGGGGACTG TCCCTTTCCA CTGGCTGATC
8801 ACCTCAACTC ACCAACCAT GCCATTGTGC AGACCCTAGT CAACTCTGTT
8851 AATTCTAGTA TCCCTAAGGC CTGTTGTGTC CCCACTGAAC TGAGTGCCAT
8901 TTCCATGTTG TACCTGGATG AGTATGACAA GGTGGTGTG AAAAATTATC
8951 AGGAGATGGT GGTAGAGGGG TGTGGATGCC GCTGAGATCA GACAGTCCGG
9001 AGGGCGGACA CACACACACA CACACACACA CACACACACA CACACACACA
9051 CACGTTCCCA TTCAACCACC TACACATACC ACACAAACTG CTTCCTATA
9101 GCTGGACTTT TATCTTAAAAA AAAAAAAA GAAAGAAAGA AAGAAAGAAA
9151 GAAAAAAAAT GAAAGACAGA AAAGAAAAAA AAAACCTAA ACAACTCAC
9201 TTGACCTTAT TTATGACTTT ACGTGCAAAT GTTTGACCA TATTGATCAT
9251 ATTTTGACAA ATATATTTAT AACTACATAT TAAAAGAAAA TAAAATGAG

bmp2p

GAATTCACTTAAACT .ATTCACCTCTAGGTCCCATGCGTTACACI .AT
 TTCCACCACAAGAGGGCAGCCATCTCTAAAAAAAACAACAGTCGAGTGCTC
 TTCAGAGAAATTGGGCCAAACTTGAGGAAGTTCTGGGAAAGGTTTT
 AGCAGCACCTCTCTGGCTAACAAAAGAAGGCCAGGCAGGACCAAGG
 TGGAGTAACGTCCAGAGGCATCTTACCTCAGAGACTTGATTACTA
 AGGATATCTAAACGGCAAACCTCTCTCTGGTGTCCAGAGGGCCAA
 AGCTGCAAGGCATTGTTGATGTATCACCAAAAGGTTCAATTTCATCTT
 TCTTGGGGTTGGTCCAACAGCTGTCACTTCTCTTCTCATTAAGGCA
 ACTTTCTCATTTAAATCTCATATAGGTTGGAGTTCTGCTTGTCT
 TCCGCCTCCCGATGACAGAACATGGTAACCTCTCAATTAAACTTGA
 TAGGGAAAGGAAATGGCTTCAGAGGCATCAGCCCTTGTGACTTACACACT
 TACACGCTCTGAGTGGAGTTTATTGCCGCTTGTGGTGTCTCATGA
 TTCAGAGTGACAACCTCTGCAACACGTTAAAAGGAATACAGTAGCTG
 ATCGCAAATTGCTGGATCTATCCCTCTCCTTAATTCCCTTGT
 ACAGCCTCCCTCAAAAATACCTTATTGACCTCTACAGCTCTAGAAAACA
 GCCAGGGCTAATTCCCTCTGTGGGTTGCTAATCGATTAGGTGAACG
 AACCTAGAGTTATTAGCTCCCGACTGAAAAGCTAGCACACGTGGGTA
 AAAAATCATTAAGCCCTGCTTCTGGTCTTCTGGTCTTGTCTTGC
 AAACGGAAAGATCTGGTACAACGTAACGTTATTCACTCTGGTCTTCT
 ACAGGAATGCTCAGCCCATAGTTGGGGCTGTGGTAGCCAGTGGT
 GGTACTATGAAGGCTCCTGAATGTAGGGAGAAATGAAAGATTCAAAA
 AGAATCCTGGCTCAGCAGCTTGGGACATTCCAGCTGAGGAAGAAAAC
 TGGCTTGGCCACAGCCAGAGCCTACTGCTGGAGACCCAGTGGAGAGAGA
 GGACCAAGCAGAAAATTCAAAGGTCTCAAACCGGAATTGTTGTTACCT
 GACTCTGGAGTAGGTGGGTGGAGATAAATATCACAAGTATCG
 AAGTGTATCGCTTCTATAAAGAGAAATTCTATTAACTCTCATGTC
 ACATGGACACACACACACACACACACACACACATCACTAGAA
 GGGATGTCACATTACAAGTGTATCTATGTCAGAAACCTGTACCCGT
 ATTTCATTAATTACATAAATAATACATATAAAATATGATCTTATAAAATGTA
 TAATGCACTCAGATGTATCGCTATTCTCGACATTCTCTCACCA
 TTCAAAACAGAAGCGTTGCTCACATTGCAAATGCTAATAACTT
 GTAAGTTCTGTTCTTCTTAAATGTGCTTACCTAAAACCTCAAACCT
 CAAGTTGAATATTGCCCAATGAGGGAACTCAGAGGCCAGTGGACTCTGG
 ATTGCCCCCTAGTCTCCCGCAGCTGTGGCGCGATCCAGGTCCGGGGT
 CGGCTTCAACTCATCCGGACCGCGACCCCTTAGGGCCCGCGCGCTCGCC
 CCGCCCCGCTCCACCGCGGGCCCGTAGGGCGCGCGTCCACACCCCT
 CGCGCCGCTCCCGCCCGCCGGGATCCCGGCGOGCTGCGCTCGAG
 GGGGAGGTGTTGGCCACGGCCGGAGGGAGCGGCAGGCGGTCTCCT
 TAAAGCCGCGAGCGCGCGACGGCGCTCCCGTGTGGCGCCGGAG
 TCCTCGCCCTGCGCGCGAGAGCCCTGCTCGCACTGCGCCCGCGCTG
 CGCTTCCACAGCCGCCCCGGATTGGCAGCCCCGGACGTAGCTCCCCA
 GGCGACACCAGGACCGGACGCCCTCCCGCGAAAGACCGAGGGTCACC
 CGCGGCTTCGAGGGACTGGCACGACACGGTTGGAACCTCAGACTGTGCG
 CGCCTGGCGCTGTGGCTCGGTGTCGGGAGAAGCTAGAGTGGCGGACC
 GACGCTAAGAACCGGGAGTCGGAGCACAGTCTTACCTCAATGCGGGGC
 CACTCTGACCCAGGAGTGAGGCGCAAGGCGAGCGGGCGGAAGAGTGAGT
 GGACCCCAGGCTGCACAAAAGACACTTGGCCCGAGGGCTGGAGCGCGA
 GGTCAACCCGGTTTGCAACCCGAGACCGCGGGCTGGACTGTCTGAGAAT
 GAGCCCCAGGACGCGGGCGCGAGCCGTGCGGGCTCTGCTGGCGAGC
 GCTGATGGGGGTGCGCCAGAGTCAGGCTGAGGGATGAGAGTGGCGGGCC
 GCGCCACCCAGATCTCGCTGCGCCCTTGCCCGACCGCATCGCCC
 ACGATGGCTGCCCCGAGCCATGGGTOGCGGGCCAGCTAACGAGAACGTC
 CGTCCCTCGCCCGGCGAGTCGGAGGCCAGCCCCCGCGCCAGCGT
 GGTCCCTGAGGCCAGACAGCAGCAGCGCTTGCGCTCAGCCTCCCTCCC
 GTCCCGGGCCCGCACTCTCCCCCTGCTGAGGCTGTGTGTCAGCACTTG
 GCTGGAGACTCTGAACCTGGCGGGAGAGTGACTTGGCTCCCCACTTC
 GCGCCGGTGTCTCGCCCGGGATCC

Figure 11

INTERNATIONAL SEARCH REPORT

International application No.

PCT/US96/08197

A. CLASSIFICATION OF SUBJECT MATTER

IPC(6) :C12Q 1/68; C07H 21/04; C12N 15/09
 US CL :435/6, 172.3, 320.1; 536/23.1, 24.1

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

U.S. : 435/6, 172.3, 320.1; 536/23.1, 24.1

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

APS, MEDLINE, EMBASE, BIOSIS, CAPLUS, SCISEARCH, WPIDS
 search terms: bone morphogenic, osteogen?, DNA, nucleic, gene#, BMP-2A, BMP-2B, BMP-2, BMP-4, Feng J, Harris S

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
A	US 5,166,058 A (WANG et al.) 24 November 1992, columns 1-2.	1-4, 6-10
Y	WO 92/13091 A1 (ONCOGENE SCIENCE, INC.) 06 August 1991, pages 27-31.	1-4, 6-10
X	GHOSH-CHOUDHURY et al. Expression of the BMP 2 gene during bone cell differentiation. Critical Reviews in Eukaryotic Gene Expression. 1994, Vol. 4, No. 2 & 3, pages 345-355, especially pages 349-353.	1-4, 6-10
X	KURIHARA et al. Murine bone morphogenic protein 4 gene: Existence of multiple promoters and exons for the 5'-untranslated region. Biochem. Biophys. Res. Commun. 14 May 1993, Vol. 192, No. 3, pages 1049-1056, especially page 1053.	6, 7 -----
Y		1-4, 8-10

Further documents are listed in the continuation of Box C. See patent family annex.

* Special categories of cited documents:	
"A"	document defining the general state of the art which is not considered to be part of particular relevance
"E"	earlier document published on or after the international filing date
"L"	document which may throw doubt on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
"O"	document referring to an oral disclosure, use, exhibition or other means
"P"	document published prior to the international filing date but later than the priority date claimed
"T"	later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
"X"	document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
"Y"	document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art
"Z"	document member of the same patent family

Date of the actual completion of the international search	Date of mailing of the international search report
09 SEPTEMBER 1996	11 OCT 1996
Name and mailing address of the ISA/US Commissioner of Patents and Trademarks Box PCT Washington, D.C. 20231	Authorized officer <i>SCOTT D. PRIEBE</i> Telephone No. (703) 308-0196
Facsimile No. (703) 305-3230	

INTERNATIONAL SEARCH REPORT

Int'l. application No.
PCT/US96/08197

C (Continuation). DOCUMENTS CONSIDERED TO BE RELEVANT		
Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X	FENG et al. Structure and sequence of mouse bone morphogenic protein-2 gene (BMP-2): Comparison of the structures and promoter regions of BMP-2 and BMP-4 genes. Biochim. Biophys. Acta. 21 June 1994, Vol. 1218, pages 221-224.	6, 7
Y		1-4, 8-10
X	HARRIS et al. Development of osteoblast cell lines from transgenic mice containing bone morphogenic protein 2 (BMP2) promoter-T-antigen constructs: Analysis of BMP 2 retinoic acid and 1,25 (OH) ₂ vitamin D response regions in the BMP 2 promoter in the context of chromatin structure. J. Cell. Biochem. February 1994, Supplement O (18B), page 392.	1-4, 6-10
X		1-3, 6-10
Y	HARRIS et al. Retinoid regulation of bone morphogenic protein 4 (BMP 4 or DVR 4): Analysis of the mouse BMP 4 gene promoter by transfection into primary cultures of fetal rat calvariae (FC) osteoblasts. J. Cell. Biochem. 1993, Supplement O (17 Part D), page 159.	4

INTERNATIONAL SEARCH REPORT

International application No.

PCT/US96/08197

Box I Observations where certain claims were found unsearchable (Continuation of item 1 of first sheet)

This international report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:

1. Claims Nos.: because they relate to subject matter not required to be searched by this Authority, namely:

2. Claims Nos.: because they relate to parts of the international application that do not comply with the prescribed requirements to such an extent that no meaningful international search can be carried out, specifically:

3. Claims Nos.: 5 because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).

Box II Observations where unity of invention is lacking (Continuation of item 2 of first sheet)

This International Searching Authority found multiple inventions in this international application, as follows:

1. As all required additional search fees were timely paid by the applicant, this international search report covers all searchable claims.
2. As all searchable claims could be searched without effort justifying an additional fee, this Authority did not invite payment of any additional fee.
3. As only some of the required additional search fees were timely paid by the applicant, this international search report covers only those claims for which fees were paid, specifically claims Nos.:

4. No required additional search fees were timely paid by the applicant. Consequently, this international search report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.:

Remark on Protest

- The additional search fees were accompanied by the applicant's protest.
 No protest accompanied the payment of additional search fees.