Let S= Sina. How large is the error if we approximate the sum s by the partral Sum & 5,00? The \$ is possitive, continuous, and decreasing for n > 1. $S_n = \frac{1}{x^2} dx = -x \int_n^\infty dx = \frac{1}{n}$ $\frac{1}{101} \le 5 - \frac{5}{100} \le \frac{1}{100}$. The error is approximately 1/100. If we want the error to be less than ,005, how many terms do we add up? Comparison Test

Let Ean's be a sequence with non negative terms,

 $S_{n} = \underbrace{S}_{a_{i}}^{n} = \underbrace{S}_{a_{i}}^{n-1} + a_{n} = \underbrace{S}_{n-1} + a_{n}$ I = I

1. SIESZESZIII (monotonic increasing)

so Esn's converges, and thus Ea; converges,

iff £5n3 is bounded.

4

Let San and Ebn be two series such that

O Ean Ebn for all n.

Then Sbn converges => San converges

San diverges => Elbn diverges

<u> </u>	7		
Examp	les		
	$\frac{8}{5} = \frac{3}{100}$ $\frac{3}{100} = \frac{3}{100}$	b) \$\frac{\infty}{n=1} n^2/(n^3+1)	
<i>د</i> ٢	$\sum_{n=1}^{\infty} n(n)/n $	$\frac{1}{n=1} \sqrt{n^{s+n+1}}$	

Limit Comportion Test
If Sand Slon are series with positive terms,
and lim an = c where c is finite;
the either both series converge, or both
senes diverge.
\mathcal{E}
Example S III

and the second of the second o