

Deadline 29/9/2024 20:00

Submit on Fenix as pdf

I) Correlation (2 pts)

Compute the correlation (Pearson correlation) and Spearman's rank for two variables x1 and x2

(a) (1 pts)

x1 = (1, 3, 4, 6)

x2 = (-30, -10, 0, 20)

Solution, we assume it. Is a sample

(if you assume it is a population you will get the same results for correlation):

Mean(x1)=7/2, Mean(x2)=-5

Covariance for Sample cov(x1,x2)=130/3

Standard Deviation for sample: s1=Sqrt(13/3), s2=10* Sqrt(13/3)

corr(x1,x2)=cov(x1,x2)/(s1*s2)=1

R1=(1,2,3,4)

R2=(1,2,3,4)

Mean(R1)=5/2, Mean(R2)=5/2

Covariance for Sample cov(R1,R2)=5/3

Standard Deviation for sample: s1=Sqrt(5/3), s2=Sqrt(5/3)

corr(R1,R2)=cov(R1,R2)/(s1*s2)=1

Why are the same? Points are on the line.

(b) (1pts)

 $\mathbf{x}1 = (1, 3, 4, 6)$

x2 = (-3, -0.5, 29, 30)

Mean(R1)=7/2, Mean(R2)=13.87

Covariance for Sample *cov(R1,R2)=32.4167*

Standard Deviation for sample: s1=Sqrt(13/3), s2=18.075

corr(x1,x2)=cov(x1,x2)/(s1*s2)=0.861516

Deadline 29/9/2024 20:00

Submit on Fenix as pdf

Rank is the same as before...

Why are they different? Points are ordered but are not on the line.

II) Decision Trees (5 pts)

<u>F1</u>	<i>F2</i>	F3	F4	Output
С	а	b	\boldsymbol{x}	n
a	а	c	a	t
a	b	b	a	t
c	b	\mathcal{C}	\boldsymbol{x}	m
a	b	b	c	f

(a) (2 pts)

Determine the root of decision tree using the ID3 algorithm with the target "Output". Indicate the calculation.

Solution:

$$p(n)=1/5$$
 $p(t)=2/5$, $p(m)=1/5$, $p(f)=1/5$

$$Log2[x] = Log[x]/Log[2]$$

$$I(table) = -3*1/5*Log2[1/5] - 2/5*Log2[2/5] = 1.92193$$
 bits

$$E(P) = \sum_{i=1}^{n} \frac{|C_i|}{|C|} I(C_i) \qquad gain(P) = I(C) - E(P)$$

F1
$$Ca=(t,t,f)$$
, $Cc=Cx=(n,m)$, $I(Ca)=-2/3*Log2[2/3]-1/3*Log2[1/3]=0.918296$ bit $I(Cc)=I(Cx)=-1/2*Log2[1/2]-1/2*Log2[1/2]=1$ bit $E(F1)=2/5*1+3/5*0.918296=0.950978$ bit $Gain(F1)=Gain(F4)=1.92193-0.950978=0.970952$ bit

$$F2 \ Ca = (n,t) \ Cb = (t,m,f)$$

 $I(Ca) = -1/2 * Log 2[1/2] - 1/2 * Log 2[1/2] = 1 \ bit$
 $I(Cb) = -3 * 1/3 * Log 2[1/3] = 1.58496 \ bit$

Deadline 29/9/2024 20:00

Submit on Fenix as pdf

$$E(F2) = 2/5*1+3/5*1.58496=1.35098$$
 bit $Gain(F2) = 1.92193-1.35098=0.57095$ bit

$$F3 \ Cb = (n,t,f) \ Cc = (t,m)$$

 $I(Cb) = -3*1/3*Log2[1/3] = Log2[3] = 1.58496 \ bit$
 $I(Cc) = -2*1/2Log2[1/2] = Log2[2] = 1 \ bit$
 $E(F3) = 3/5*1.58496 + 2/5*1 = 1.3509 \ bit$
 $Gain(F3) = 1.92193 - 1.3509 = 0.57103 \ bit$

F4
$$Ca=(t,t)$$
 $Cx=(n,m)$ $Cc=(f)$
 $I(Ca)=I(Cc)=0$
 $I(Cx)=-2*1/2Log2[1/2]=Log2[2]=1$ bit
 $E(F4)=2/5*1+2/5*0+1/5*0=0.4$ bit
 $Gain(F4)=1.92193-0.4=1.52193$ bit

We chose **F4** as the root

(b) (2 pts)

Determine the decision tree using the ID3 algorithm with the target "Output". Indicate the calculation and draw your decision tree.

Solution:

The remaining table Cx:

<i>F1</i>	F2	F3	Output
\overline{c}	а	b	n
c	b	c	m

F2 and F3 are equal, they give the same gain. We chose for the tree F2

Deadline 29/9/2024 20:00

(c) (1 pts)
Draw the training confusion matrix for the learnt decision tree.

	TRUE				
		n	t	m	f
	n	1	0	0	0
PREDICTED	t	0	2	0	0
	m	0	0	1	0
	f	0	0	0	1