- 1. background information
 - $med(T_i t_0 | T_i \ge t_0, x_{1i}) = exp(\beta_{t_0}^{(0)} + \beta_{t_0}^{(1)} x_{1i})$
 - Use Weibull distribution with survivial function $S(t) = exp\{-(\rho t)^{\kappa}\}\$
 - Under $H_0: \beta_{t_0}^{(1)} = 0$, Qth quantile residual time

$$\theta_{t_0} = exp(\beta_{t_0}^{(0)}) = S^{-1}\{(1-Q)S(t_0)\} - t_0$$

= $(1/\rho_0)\{log(1/1-Q) + (\rho_0 t_0)^{\kappa}\}^{1/\kappa} - t_0, t_0 \ge 0$

• Under $H_1: \beta_{t_0}^{(1)} \neq 0$ Qth quantile residual time

$$\theta_{t_0} = \exp(\beta_{t_0}^{(0)} + \beta_{t_0}^{(1)} x_{1i}) = S^{-1} \{ (1 - Q)S(t_0) \} - t_0$$

= $(1/\rho_0) \{ \log(1/1 - Q) + (\rho_0 t_0)^{\kappa} \}^{1/\kappa} - t_0, t_0 \ge 0$

- Assume covariate $X \sim Bernoulli(.5)$, $exp(\beta_{t_0}^{(0)}) = 5$, $exp(\beta_{t_0}^{(0)} + \beta_{t_0}^{(1)}) = 25$, $\kappa = 5$
- Assume $t_0 = 0$, find $\rho_0 = \{log(1/1 Q)\}^{1/\kappa}/exp(\beta_0^{(0)})$ and $\rho_1 = \{log(1/1 Q)\}^{1/\kappa}/exp(\beta_0^{(0)} + \beta_0^{(1)})$ using background previous assumption.
- Find true parameter $\beta_{t_0}^{(0)}$, and $\beta_{t_0}^{(1)}$ for each $t_0 = 0, 1, 2, 3$ When $\beta_{t_0}^{(1)} = 0$, $\beta_0^{(0)} = 1.61$, $\beta_1^{(0)} = 1.41$, $\beta_2^{(0)} = 1.22$ and $\beta_3^{(0)} = 1.04$. When $\beta_{t_0}^{(1)} \neq 0$, $\beta_{t_0}^{(0)}$ is same, and $\beta_0^{(1)} = 1.61$, $\beta_1^{(1)} = 1.77$, $\beta_2^{(1)} = 1.92$ and $\beta_3^{(1)} = 2.06$.
- 2. Data generation under $H_0: \beta_{t_0}^{(1)} = 0$ with censoring rate C
 - (1) Generate $T_i = (1/\rho_0)\{-log(1-u_i)\}^{1/\kappa}$, where u_i is from a uniform random variable between 0 and 1.
 - (2) C_i is generated from Unif(0,c) where constant c is for a certain censoring proportion.

1

- (3) If $T_i > C_i$, $\delta_i = 0$, otherwise $\delta_i = 1$.
- (4) Covariate X_i is generated from Bernoulli(0.5).

- 3. Data generation under $H_1: \beta_{t_0}^{(1)} = \neq$ with censoring rate C
 - (1) Covariate X_i is generated from Bernoulli(0.5)
 - (2) If $X_i = 1$, generate $T_i = (1/\rho_1)\{-log(1-u_i)\}^{1/\kappa}$, where u_i is from a uniform random variable between 0 and 1. Unless, generate $T_i = (1/\rho_0)\{-log(1-u_i)\}^{1/\kappa}$, where u_i is from a uniform random variable between 0 and 1.
 - (3) C_i is generated from Unif(0,c) where constant c is for a certain censoring proportion.
 - (4) If $T_i > C_i, \delta_i = 0$, otherwise $\delta_i = 1$