	Mathematica tile
	Section A (a) Mathematica file Section A (a) Defining a Spheroid. Mb PAGE NO.: DATE: 1
	SPHEROID-
	The surface of ellipsoid centred at the origin of a castesian co-ordinate system is given by $\frac{x_1^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1 - \Omega a$
	Consider, $a = b$, the shape of surface describes a spheroid given by equation $\frac{a^2 \times a^2 + y^2 + z^2 - 1}{a^2 + a^2 + c^2} = 1 - (2)a$
	Since, we are interested to study about the non uniformity of a sphere.
=	we put $a = R + E$, $c = R + E$, where $E \leqslant R$. $\frac{x^2 + y^2}{(R + E)^2} + \frac{z^2}{(R - E)^2} = 1 - 3a$
	converting egn 3a in spherical co-ordinates z x = r sin 0 cosq y = r sin 0 sin q — (4) a z = r cos 0
	Putting eq 4a in eq 3a,
	$\frac{r^2 \sin^2 \theta}{(R+\epsilon)^2} + \frac{r^2 (\theta \theta^2 \theta - 1 - \epsilon) \alpha}{(R-\epsilon)^2}$ Teacher's Signature
	loguioi a digitalite

PAGE NO .: DATE: / /

> 8100 (R-E)2+ 820020 (R+E)2 _ 1 - 60 (R-E)2(R+E)2 $\gamma^2 = \frac{(R+E)^2 (R-E)^2}{\sin^2 \Theta (R-E)^2 + \cos^2 \Theta (R+E)^2} \qquad (7)a$

Taking square root both the sides

SHOULD A CONTRACT CONTRACTOR

 $\Upsilon = \pm (R^2 - \epsilon^2)$ J&in20 (R2+62-26R) + COS20 (R2+62+26R)

 $\gamma = \pm (R^2 - \epsilon^2) - 9a$ 1 R2+ 62-2 ER (8in20-C020)

 $\gamma = \pm (R^2 - \epsilon^2)$ JR+6+26R (00(20)

 $\mathcal{T} = \pm R^2 \left(1 - \epsilon^2 / R^2 \right) - \left(1 \right) a$ JR2(1+ 62/R2 +26/R COO(20))

say & = 8, and s << 1 such that s2 >0

r = ± R (1-82) 1(1+2°+28 Con (20))

New taylor expanding the RHS about a liptor first order of a can be given

 $r = f(s) = \pm R(1-8^2)$ 1+82+28COS(20)

PAGE NO.: DATE: / /

Taylor expansion of a function of 8 about 0 is

$$f(s) = f(0) + f'(0) + f''(0) + f''(0)$$

$$f'(8) = -2RS(J1+S^2+2S(0)(20)) - R(2S+2CO(20))$$

 $8=0$ $2J1+S^2+2S(0)(20)$

$$f'(s)|_{s=0} = -R \cos(20)$$

$$r(0) = f(s) = R - Rs cos(20) - (15)a$$

- parametric equation of spheroid.