SEQUENCE LISTING

<110> Wei, Zhong-Min <120> METHOD OF IMPARTING DROUGHT RESISTANCE TO PLANTS <130> 21829/230 <140> <141> <150> 09/597,840 <151> 2000-06-20 <150> 09/013,587 <151> 1998-01-26 <150> 60/036,048 <151> 1997-01-27 <160> 10 <170> PatentIn Ver. 2.1 <210> 1 <211> 338 <212> PRT <213> Erwinia chrysanthemi Met Gln Ile Thr Ile Lys Ala His Ile Gly Gly Asp Leu Gly Val Ser 15 10 Gly Leu Gly Ala Gln Gly Leu Lys Gly Leu Asn Ser Ala Ala Ser Ser 25 20 Leu Gly Ser Ser Val Asp Lys Leu Ser Ser Thr Ile Asp Lys Leu Thr 35 40 Ser Ala Leu Thr Ser Met Met Phe Gly Gly Ala Leu Ala Gln Gly Leu 55 Gly Ala Ser Ser Lys Gly Leu Gly Met Ser Asn Gln Leu Gly Gln Ser

85

Phe Gly Asn Gly Ala Gln Gly Ala Ser Asn Leu Leu Ser Val Pro Lys

75

90

Ser Gly Gly Asp Ala Leu Ser Lys Met Phe Asp Lys Ala Leu Asp Asp 100 105 110

Leu Leu Gly His Asp Thr Val Thr Lys Leu Thr Asn Gln Ser Asn Gln
115 120 125

Leu Ala Asn Ser Met Leu Asn Ala Ser Gln Met Thr Gln Gly Asn Met 130 135 140

Asn Ala Phe Gly Ser Gly Val Asn Asn Ala Leu Ser Ser Ile Leu Gly 145 150 155 160

Asn Gly Leu Gly Gln Ser Met Ser Gly Phe Ser Gln Pro Ser Leu Gly 165 170 175

Ala Gly Gly Leu Gln Gly Leu Ser Gly Ala Gly Ala Phe Asn Gln Leu 180 185 190

Gly Asn Ala Ile Gly Met Gly Val Gly Gln Asn Ala Ala Leu Ser Ala 195 200 205

Leu Ser Asn Val Ser Thr His Val Asp Gly Asn Asn Arg His Phe Val 210 215 220

Asp Lys Glu Asp Arg Gly Met Ala Lys Glu Ile Gly Gln Phe Met Asp 225 230 235 240

Gln Tyr Pro Glu Ile Phe Gly Lys Pro Glu Tyr Gln Lys Asp Gly Trp 245 250 255

Ser Ser Pro Lys Thr Asp Asp Lys Ser Trp Ala Lys Ala Leu Ser Lys 260 265 270

Pro Asp Asp Gly Met Thr Gly Ala Ser Met Asp Lys Phe Arg Gln 275 280 285

Ala Met Gly Met Ile Lys Ser Ala Val Ala Gly Asp Thr Gly Asn Thr 290 295 300

Asn Leu Asn Leu Arg Gly Ala Gly Gly Ala Ser Leu Gly Ile Asp Ala 305 310 315 320

Ala Val Val Gly Asp Lys Ile Ala Asn Met Ser Leu Gly Lys Leu Ala 325 330 335

Asn Ala

<210> 2

```
<211> 2141
<212> DNA
<213> Erwinia chrysanthemi
<400> 2
cgattttacc cgggtgaacg tgctatgacc gacagcatca cggtattcga caccgttacg 60
gcgtttatgg ccgcgatgaa ccggcatcag gcggcgcgct ggtcgccgca atccggcgtc 120
gatctggtat ttcagtttgg ggacaccggg cgtgaactca tgatgcagat tcagccgggg 180
cagcaatate eeggeatgtt gegeaegetg etegetegte gttateagea ggeggeagag 240
tgcgatggct gccatctgtg cctgaacggc agcgatgtat tgatcctctg gtggccgctg 300
ccgtcggatc ccggcagtta tccgcaggtg atcgaacgtt tgtttgaact ggcgggaatg 360
acgttgccgt cgctatccat agcaccgacg gcgcgtccgc agacagggaa cggacgcgcc 420
cgatcattaa gataaaggcg gctttttta ttgcaaaacg gtaacggtga ggaaccgttt 480
caccgtcggc gtcactcagt aacaagtatc catcatgatg cctacatcgg gatcggcgtg 540
ggcatccgtt gcagatactt ttgcgaacac ctgacatgaa tgaggaaacg aaattatgca 600
aattacgatc aaagcgcaca tcggcggtga tttgggcgtc tccggtctgg ggctgggtgc 660
tcagggactg aaaggactga attccgcggc ttcatcgctg ggttccagcg tggataaact 720
gagcagcacc atcgataagt tgacctccgc gctgacttcg atgatgtttg gcggcgcgct 780
ggcgcagggg ctgggcgcca gctcgaaggg gctggggatg agcaatcaac tgggccagtc 840
tttcggcaat ggcgcgcagg gtgcgagcaa cctgctatcc gtaccgaaat ccggcggcga 900
tgcgttgtca aaaatgtttg ataaagcgct ggacgatctg ctgggtcatg acaccgtgac 960
caagctgact aaccagagca accaactggc taattcaatg ctgaacgcca gccagatgac 1020
ccagggtaat atgaatgcgt tcggcagcgg tgtgaacaac gcactgtcgt ccattctcgg 1080
caacggtctc ggccagtcga tgagtggctt ctctcagcct tctctggggg caggcggctt 1140
gcagggcctg agcggcgcg gtgcattcaa ccagttgggt aatgccatcg gcatgggcgt 1200
ggggcagaat gctgcgctga gtgcgttgag taacgtcagc acccacgtag acggtaacaa 1260
ccgccacttt gtagataaag aagatcgcgg catggcgaaa gagatcggcc agtttatgga 1320
tcagtatccg gaaatattcg gtaaaccgga ataccagaaa gatggctgga gttcgccgaa 1380
gacggacgac aaatcctggg ctaaagcgct gagtaaaccg gatgatgacg gtatgaccgg 1440
cgccagcatg gacaaattcc gtcaggcgat gggtatgatc aaaagcgcgg tggcgggtga 1500
taccggcaat accaacctga acctgcgtgg cgcgggcggt gcatcgctgg gtatcgatgc 1560
ggctgtcgtc ggcgataaaa tagccaacat gtcgctgggt aagctggcca acgcctgata 1620
atctgtgctg gcctgataaa gcggaaacga aaaaagagac ggggaagcct gtctcttttc 1680
ttattatgcg gtttatgcgg ttacctggac cggttaatca tcgtcatcga tctggtacaa 1740
acgcacattt tecegtteat tegegtegtt acgegeeaca ategegatgg catetteete 1800
gtcgctcaga ttgcgcggct gatggggaac gccgggtgga atatagagaa actcgccggc 1860
cagatggaga cacgtctgcg ataaatctgt gccgtaacgt gtttctatcc gcccctttag 1920
cagatagatt gcggtttcgt aatcaacatg gtaatgcggt tccgcctgtg cgccggccgg 1980
```

<210> 3

<211> 403

<212> PRT

gttcgtcatc atctttctcc atctgggcga cctgatcggt t

gatcaccaca atattcatag aaagctgtct tgcacctacc gtatcgcggg agataccgac 2040 aaaatagggc agtttttgcg tggtatccgt ggggtgttcc ggcctgacaa tcttgagttg 2100

<213> Erwinia amylovora

)> 3														
Met 1	Ser	Leu	Asn	Thr 5	Ser	Gly	Leu	Gly	Ala 10	Ser	Thr	Met	Gln	Ile 15	Ser
Ile	Gly	Gly	Ala 20	Gly	Gly	Asn	Asn	Gly 25	Leu	Leu	Gly	Thr	Ser 30	Arg	Glr
Asn	Äla	Gly 35	Leu	Gly	Gly	Asn	Ser 40	Ala	Leu	Gly	Leu	Gly 45	Gly	Gly	Asn
Gln	Asn 50	Asp	Thr	Val	Asn	Gln 55	Leu	Ala	Gly	Leu	Leu 60	Thr	Gly	Met	Met
Met 65	Met	Met	Ser	Met	Met 70	Gly	Gly	Gly	Gly	Leu 75	Met	Gly	Gly	Gly	Leu 80
Gly	Gly	Gly	Leu	Gly 85	Asn	Gly	Leu	Gly	Gly 90	Ser	Gly	Gly	Leu	Gly 95	Glu
Gly	Leu	Ser	Asn 100	Ala	Leu	Asn	Asp	Met 105	Leu	Gly	Gly	Ser	Leu 110	Asn	Thr
Leu	Gly	Ser 115	Lys	Gly	Gly	Asn	Asn 120	Thr	Thr	Ser	Thr	Thr 125	Asn	Ser	Pro
Leu	Asp 130	Gln	Ala	Leu	Gly	Ile 135	Asn	Ser	Thr	Ser	Gln 140	Asn	Asp	Asp	Ser
Thr 145	Ser	Gly	Thr	Asp	Ser 150	Thr	Ser	Asp	Ser	Ser 155	Asp	Pro	Met	Gln	Gln 160
Leu	Leu	Lys	Met	Phe 165	Ser	Glu	Ile	Met	Gln 170	Ser	Leu	Phe	Gly	Asp 175	Gly
Gln	Asp	Gly	Thr 180	Gln	Gly	Ser	Ser	Ser 185	Gly	Gly	Lys	Gln	Pro 190	Thr	Glu
Gly	Glu	Gln 195	Asn	Ala	Tyr	Lys	Lys 200	Gly	Val	Thr	Asp	Ala 205	Leu	Ser	Gly
Leu	Met 210	Gly	Asn	Gly	Leu	Ser 215	Gln	Leu	Leu	Gly	Asn 220	Gly	Gly	Leu	Gly

Gly Gly Gln Gly Gly Asn Ala Gly Thr Gly Leu Asp Gly Ser Ser Leu

```
Gly Gly Lys Gly Leu Gln Asn Leu Ser Gly Pro Val Asp Tyr Gln Gln
                                     250
                                                         255
                245
Leu Gly Asn Ala Val Gly Thr Gly Ile Gly Met Lys Ala Gly Ile Gln
                                 265
                                                     270
            260
Ala Leu Asn Asp Ile Gly Thr His Arg His Ser Ser Thr Arg Ser Phe
                            280
        275
Val Asn Lys Gly Asp Arg Ala Met Ala Lys Glu Ile Gly Gln Phe Met
                        295
                                             300
Asp Gln Tyr Pro Glu Val Phe Gly Lys Pro Gln Tyr Gln Lys Gly Pro
                    310
                                         315
Gly Gln Glu Val Lys Thr Asp Asp Lys Ser Trp Ala Lys Ala Leu Ser
                325
                                     330
                                                         335
Lys Pro Asp Asp Asp Gly Met Thr Pro Ala Ser Met Glu Gln Phe Asn
            340
                                 345
                                                     350
Lys Ala Lys Gly Met Ile Lys Arg Pro Met Ala Gly Asp Thr Gly Asn
        355
                            360
Gly Asn Leu Gln Ala Arg Gly Ala Gly Gly Ser Ser Leu Gly Ile Asp
                        375
                                             380
Ala Met Met Ala Gly Asp Ala Ile Asn Asn Met Ala Leu Gly Lys Leu
                    390
                                         395
                                                             400
```

<210> 4

<211> 1288

Gly Ala Ala

<212> DNA

<213> Erwinia amylovora

<400> 4

aagcttcggc atggcacgtt tgaccgttgg gtcggcaggg tacgtttgaa ttattcataa 60 gaggaatacg ttatgagtct gaatacaagt gggctgggag cgtcaacgat gcaaattct 120 atcggcggtg cgggcggaaa taacgggttg ctgggtacca gtcgccagaa tgctgggttg 180 ggtggcaatt ctgcactggg gctgggcgg ggtaatcaaa atgataccgt caatcagctg 240 gctggcttac tcaccggcat gatgatgatg atgagcatga tgggcggtgg tgggctgatg 300 ggcggtggct taggcggtgg cttaggtaat ggcttgggt gctcaggtgg cctgggcgaa 360 ggactgtcga acgcgctgaa cgatatgtta ggcggttcgc tgaacacgct gggctcgaaa 420 ggcggcaaca ataccactc aacaacaaat tccccgctgg accaggcgct gggtattaac 480

tcaacqtccc aaaacqacqa ttccacctcc qqcacaqatt ccacctcaqa ctccaqcqac 540 ccgatgcagc agctgctgaa gatgttcagc gagataatgc aaagcctgtt tggtgatggg 600 caagatggca cccagggcag ttcctctggg ggcaagcagc cgaccgaagg cgagcagaac 660 gcctataaaa aaggagtcac tgatgcgctg tcgggcctga tgggtaatgg tctgagccag 720 ctccttggca acgggggact gggaggtggt cagggcggta atgctggcac gggtcttgac 780 ggttcgtcgc tgggcggcaa agggctgcaa aacctgagcg ggccggtgga ctaccagcag 840 ttaggtaacg ccgtgggtac cggtatcggt atgaaagcgg gcattcaggc gctgaatgat 900 ateggtacge acaggeacag ttcaaccegt tetttegtea ataaaggega tegggegatg 960 gcgaaggaaa tcggtcagtt catggaccag tatcctgagg tgtttggcaa gccgcagtac 1020 caqaaaqqcc cqqqtcaqqa qqtqaaaacc qatqacaaat catqqqcaaa aqcactqaqc 1080 aagccagatg acgacggaat gacaccagcc agtatggagc agttcaacaa agccaagggc 1140 atgatcaaaa ggcccatggc gggtgatacc ggcaacggca acctgcaggc acgcggtgcc 1200 ggtggttctt cgctgggtat tgatgccatg atggccggtg atgccattaa caatatggca 1260 cttggcaagc tgggcgcggc ttaagctt <210> 5 <211> 341

<212> PRT

<213> Pseudomonas syringae

<400> 5

Met Gln Ser Leu Ser Leu Asn Ser Ser Ser Leu Gln Thr Pro Ala Met 5 10

Ala Leu Val Leu Val Arg Pro Glu Ala Glu Thr Thr Gly Ser Thr Ser 20 25 30

Ser Lys Ala Leu Gln Glu Val Val Lys Leu Ala Glu Glu Leu Met 35 40 45

Arg Asn Gly Gln Leu Asp Asp Ser Ser Pro Leu Gly Lys Leu Leu Ala 50 55 60

Lys Ser Met Ala Ala Asp Gly Lys Ala Gly Gly Ile Glu Asp Val

Ile Ala Ala Leu Asp Lys Leu Ile His Glu Lys Leu Gly Asp Asn Phe 85 90

Gly Ala Ser Ala Asp Ser Ala Ser Gly Thr Gly Gln Gln Asp Leu Met 100 105 110

Thr Gln Val Leu Asn Gly Leu Ala Lys Ser Met Leu Asp Asp Leu Leu 115 120 125

Thr Lys Gln Asp Gly Gly Thr Ser Phe Ser Glu Asp Asp Met Pro Met 130 135 140

Leu Asn Lys Ile Ala Gln Phe Met Asp Asp Asn Pro Ala Gln Phe Pro 145 150 155 160

Lys Pro Asp Ser Gly Ser Trp Val Asn Glu Leu Lys Glu Asp Asn Phe 165 170 175

Leu Asp Gly Asp Glu Thr Ala Ala Phe Arg Ser Ala Leu Asp Ile Ile 180 185 190

Gly Gln Gln Leu Gly Asn Gln Gln Ser Asp Ala Gly Ser Leu Ala Gly
195 200 205

Thr Gly Gly Gly Leu Gly Thr Pro Ser Ser Phe Ser Asn Asn Ser Ser 210 215 220

Val Met Gly Asp Pro Leu Ile Asp Ala Asn Thr Gly Pro Gly Asp Ser 225 230 235 240

Gly Asn Thr Arg Gly Glu Ala Gly Gln Leu Ile Gly Glu Leu Ile Asp 245 250 255

Arg Gly Leu Gln Ser Val Leu Ala Gly Gly Gly Leu Gly Thr Pro Val 260 265 270

Asn Thr Pro Gln Thr Gly Thr Ser Ala Asn Gly Gly Gln Ser Ala Gln 275 280 285

Asp Leu Asp Gln Leu Leu Gly Gly Leu Leu Leu Lys Gly Leu Glu Ala 290 295 300

Thr Leu Lys Asp Ala Gly Gln Thr Gly Thr Asp Val Gln Ser Ser Ala 305 310 315 320

Ala Gln Ile Ala Thr Leu Leu Val Ser Thr Leu Leu Gln Gly Thr Arg 325 330 335

Asn Gln Ala Ala Ala 340

<210> 6

<211> 1026

<212> DNA

<213> Pseudomonas syringae

<400> 6

atgcagagtc tcagtcttaa cagcagetcg etgcaaaccc eggcaatgge eettgteetg 60

```
qtacqtcctq aaqccqaqac qactqqcaqt acqtcqaqca aqqcqcttca qqaagttqtc 120
qtqaagctqq ccgaggaact gatgcgcaat ggtcaactcg acgacagctc gccattggga 180
aaactgttgg ccaagtcgat ggccgcagat ggcaaggcgg gcggcggtat tgaggatgtc 240
ategetgege tggacaaget gateeatgaa aageteggtg acaacttegg egegtetgeg 300
qacaqcqcct cqqqtaccqq acaqcaqqac ctqatqactc aqqtqctcaa tqqcctgqcc 360
aagtcgatgc tcgatgatct tctgaccaag caggatggcg ggacaagctt ctccgaagac 420
qatatgccga tgctgaacaa gatcgcgcag ttcatggatg acaatcccgc acagtttccc 480
aageeggaet egggeteetg ggtgaaegaa eteaaggaag acaaetteet tgatggegae 540
qaaacggctg cgttccgttc ggcactcgac atcattggcc agcaactggg taatcagcag 600
aqtqacqctq qcaqtctqqc aqqqacqqqt qqaqqtctqq qcactccqaq caqtttttcc 660
aacaactcgt ccgtgatggg tgatccgctg atcgacgcca ataccggtcc cggtgacagc 720
ggcaataccc gtggtgaagc ggggcaactg atcggcgagc ttatcgaccg tggcctgcaa 780
teggtattgg ceggtggtgg actgggcaca ceegtaaaca ceeegcagae eggtaegteg 840
gcgaatggcg gacagtccgc tcaggatctt gatcagttgc tgggcggctt gctgctcaag 900
ggcctggagg caacgctcaa ggatgccggg caaacaggca ccgacgtgca gtcgagcgct 960
gegeaaateg ceaeettget ggteagtaeg etgetgeaag geaeeegeaa teaggetgea 1020
gcctga
                                                                  1026
```

<210> 7

<211> 344

<212> PRT

<213> Pseudomonas solanacearum

<400> 7

Met Ser Val Gly Asn Ile Gln Ser Pro Ser Asn Leu Pro Gly Leu Gln
1 5 10 15

Asn Leu Asn Leu Asn Thr Asn Thr Asn Ser Gln Gln Ser Gly Gln Ser 20 25 30

Val Gln Asp Leu Ile Lys Gln Val Glu Lys Asp Ile Leu Asn Ile Ile 35 40 45

Ala Ala Leu Val Gln Lys Ala Ala Gln Ser Ala Gly Gly Asn Thr Gly 50 55 60

Asn Thr Gly Asn Ala Pro Ala Lys Asp Gly Asn Ala Asn Ala Gly Ala 65 70 75 80

Asn Asp Pro Ser Lys Asn Asp Pro Ser Lys Ser Gln Ala Pro Gln Ser 85 90 95

Ala Asn Lys Thr Gly Asn Val Asp Asp Ala Asn Asn Gln Asp Pro Met
100 105 110

Gln Ala Leu Met Gln Leu Leu Glu Asp Leu Val Lys Leu Leu Lys Ala 115 120 125 Ala Leu His Met Gln Gln Pro Gly Gly Asn Asp Lys Gly Asn Gly Val 130 135 140

Gly Gly Ala Asn Gly Ala Lys Gly Ala Gly Gly Gln Gly Gly Leu Ala 145 150 155 160

Glu Ala Leu Gln Glu Ile Glu Gln Ile Leu Ala Gln Leu Gly Gly Gly 165 170 175

Gly Ala Gly Ala Gly Gly Ala Gly Gly Val Gly Gly Ala Gly Gly 180 185 190

Ala Asp Gly Gly Ser Gly Ala Gly Gly Ala Gly Gly Ala Asn Gly Ala 195 200 205

Asp Gly Gly Asn Gly Val Asn Gly Asn Gln Ala Asn Gly Pro Gln Asn 210 215 220

Ala Gly Asp Val Asn Gly Ala Asn Gly Ala Asp Asp Gly Ser Glu Asp 225 230 235

Gln Gly Gly Leu Thr Gly Val Leu Gln Lys Leu Met Lys Ile Leu Asn 245

Ala Leu Val Gln Met Met Gln Gln Gly Gly Leu Gly Gly Gly Asn Gln 260 265 270

Ala Gln Gly Gly Ser Lys Gly Ala Gly Asn Ala Ser Pro Ala Ser Gly 275 280 285

Ala Asn Pro Gly Ala Asn Gln Pro Gly Ser Ala Asp Asp Gln Ser Ser 290 295 300

Gly Gln Asn Asn Leu Gln Ser Gln Ile Met Asp Val Val Lys Glu Val 305 310 315

Val Gln Ile Leu Gln Gln Met Leu Ala Ala Gln Asn Gly Gly Ser Gln 325 330 335

Gln Ser Thr Ser Thr Gln Pro Met 340

<210> 8

<211> 1035

<212> DNA

<213> Pseudomonas solanacearum

```
<400> 8
atgtcagtcg gaaacatcca gagcccgtcg aacctcccgg gtctgcagaa cctgaacctc 60
aacaccaaca ccaacagcca gcaatcgggc cagtccgtgc aagacctgat caagcaggtc 120
qaqaaqqaca tootcaacat categeagee etegtgeaga aggeegeaca gteggeggge 180
qqcaacaccq qtaacaccqq caacqcqccq qcqaaqqacq qcaatqccaa cqcqgqcqcc 240
aacgacccga gcaagaacga cccgagcaag agccaggete cgcagtegge caacaagace 300
qqcaacqtcq acqacqccaa caaccaqqat ccqatqcaaq cqctqatqca gctqctqqaa 360
gacctggtga agctgctgaa ggcggccctg cacatgcagc agcccggcgg caatgacaag 420
ggcaacggeg tgggeggtgc caacggegcc aagggtgceg geggecaggg eggectggcc 480
gaagegetge aggagatega geagateete geeeageteg geggeggegg tgetggegee 540
ggcggcgcgg gtggcggtgt cggcggtgct ggtggcgcgg atggcggctc cggtgcgggt 600
ggcgcaggcg gtgcgaacgg cgccgacggc ggcaatggcg tgaacggcaa ccaggcgaac 660
ggcccgcaga acgcaggcga tgtcaacggt gccaacggcg cggatgacgg cagcgaagac 720
cagggeggec teaceggegt getgeaaaag etgatgaaga teetgaaege getggtgeag 780
atgatqcaqc aaggcgqcct cggcggcggc aaccaggcgc agggcggctc gaagggtgcc 840
ggcaacgcct cgccggcttc cggcgcgaac ccgggcgcga accagcccgg ttcggcggat 900
gatcaatcgt ccggccagaa caatctgcaa tcccagatca tggatgtggt gaaggaggtc 960
gtccagatcc tgcagcagat gctggcggcg cagaacggcg gcagccagca gtccacctcg 1020
acgcagccga tgtaa
                                                                  1035
<210> 9
<211> 26
<212> PRT
<213> Xanthomonas campestris pv. glycines
<400> 9
Thr Leu Ile Glu Leu Met Ile Val Val Ala Ile Ile Ala Ile Leu Ala
                                                         15
 1
                  5
                                     10
Ala Ile Ala Leu Pro Ala Tyr Gln Asp Tyr
                                 25
            20
<210> 10
<211> 20
<212> PRT
<213> Xanthomonas campestris pv. pelargonii
<400> 10
Ser Ser Gln Gln Ser Pro Ser Ala Gly Ser Glu Gln Gln Leu Asp Gln
                                                         15
 1
                                     10
Leu Leu Ala Met
```