Работа 2.5.1

Измерение коэффициента поверхностного натяжения жидкости

Гаврилин Илья Дмитриевич Б01-101

24 апреля 2022 г.

1 Аннотация

В работе определили зависимость коэффициента поверхностного натяжения воды от температуры $\sigma(T)$, с учетом известного коэффициента для спирта. Определили полную поверхностную энергию и теплоту, необходимую для изотермического образования единицы поверхности жидкости при различной температуре. Оценили погрешности полученных величин.

2 Теоретические сведения

Наличие поверхностного слоя приводит к различию давлений по разные стороны от искривленной границы раздела двух сред. Для сферического пузырька с воздухом внутри жидкости избыточное давление даётся формулой Лапласа:

$$\Delta P = P_{in} - P_{out} = \frac{2\sigma}{r} \tag{1}$$

где σ - коэффициент поверхностного натяжения, P_{in} и P_{out} - давление внутри пузырька и снаружи, r - радиус кривизны поверхности раздела двух фаз. Эта формула лежит в основе предлагаемого метода определения коэффициента поверхностного натяжения жидкости. Измеряется давление ΔP , необходимое для выталкивания в жидкость пузырька воздуха.

Рис. 1: Схема экспериментальной установки

3 Ход работы

Проверим установку на герметичность путем наблюдения установления давления на манометре при перекрытии крана с каплями. Выставим частоту падения капель не чаще одной в 5 секунд.

3.1 Замер диаметра иглы

Замерим диаметр иглы двумя способами: напрямую с помощью микроскопа и при помощи известного значения коэффициента поверхностного натяжения для спирта.

N замера	1	2	3	4	5
Р, усл. ед. <i>^a</i>	44	45	43	46	45
$R_{\text{иглы}}$, мм	0.527	0.516	0.540	0.504	0.516

Таблица 1: Замер радиуса с помощью известного коэффициента поверхностного натяжения спирта.

Рис. 2: Измерение диаметра иглы микроскопом

Для измерения с помощью спирта по формуле (1) получаем:

 $\overline{R}=0.520$ мм, $\overline{D}=1.04$ мм, $\delta_{\text{случ}}{}^1(R)=0.012$ мм. Однако, мы еще не учли приборную погрешность манометра, которая оказывается достаточно большой, и тогда полная погрешность равна: $\delta_{\Sigma}(D)=0.07$ мм.

Для измерения диаметра с помощью микроскопа получаем (проведем несколько замеров немного двигая иглу, чтобы убедиться в правильности замера): $\overline{D}=1.15~\mathrm{mm}, \delta(D)=0.05~\mathrm{mm}.$

Итого, выбирая метод с наименьшей погрешностью: $D_{\text{иглы}} = 1.15 \pm 0.05 \text{ мм}$.

3.2 Измерение добавочного давления при погружении иглы

Замерим избыточное давление, образуемое при погружении иглы на глубину Δh : с помощью сравнения ΔP погруженной и лишь касающейся воды иглы и с помощью прямого измерения Δh линейкой. С помощью линейки: $\Delta h = 1.25 \pm 0.05$ см, $\Delta P = \rho q \Delta h = 122.4 \pm 4.8$ Па.

Напрямую измеряя разность давлений на поверхности и на глубине:

 $\Delta P_1 = 243.2 \text{ } \Pi \text{a}, \Delta P_2 = 366.8 \text{ } \Pi \text{a}, \Delta P = 123.6 \pm 0.8 \text{ } \Pi \text{a}.$

Итого, выбирая метод с наименьшей погрешностью: $\Delta P = 123.6 \pm 0.8~\mathrm{Ha}$.

3.3 Проведение основных измерений, получение зависимости $\sigma(T)$

Зафиксируем иглу при максимальном погружении, для которого был получен параметр $\Delta P_{\text{из6}}$, будем менять температуру с интервалом 5 градусов цельсия и фиксировать значения для построения графика $\sigma(T)$

 $[^]a$ Здесь и далее усл. ед. означают прямые показания на манометре при том что 1 усл. ед. $\approx 1.96~\Pi a$

 $^{^1}$ Символ σ задействован в качестве коэффициента поверхностного натяжения, поэтому погрешность обозначаем δ

T, K	ΔP , усл. ед.	ΔP , Πa	$\sigma * 10^{-3} \frac{H}{M}$
293.2	187	243.20	69.9
298.2	181	231.44	66.5
303.1	180	229.48	66.0
308	179	227.51	65.4
313	179	227.51	65.4
318	178	225.55	64.8
323	177	223.59	64.3
328	175	219.67	63.2
333	174	217.71	62.6

Таблица 2: Зависимость коэффициента поверхностного натяжения воды от температуры

При подсчете ΔP учитывается избыточное давление $\Delta P_{\text{изб}}$, чтобы зразу получить давление, нужное для формулы (1). Оценим погрешность определения σ : для каждого значения σ получили схожие погрешности (ввиду падения относительной погрешности определения давления). $\delta(\sigma) \approx 0.4 \frac{\text{H}}{\text{M}}$ Построим график $\sigma(T)$ и по угловому коэффициенту наклона найдем $\frac{d\sigma}{dT}$. Точка, соответствующая температуре 293.2 К, плохо ложится на прямую аппроксимирующую точки, поэтому при аппроксимации она не учитывалась.

Рис. 3: Зависимость коэффициента поверхностного натяжения от температуры

Из аппроксимации получили $\frac{d\sigma}{dT}=-(0.109\pm0.010)*10^{-3}~\frac{\rm H}{\rm mK}$. Из полученных данных построим: 1)график теплоты образования единицы поверхности жидкости от температуры $q=-T\frac{d\sigma}{dT}$ (рис. 4); 2)поверхностной энергии U единицы площади F от температуры $\frac{U}{F}=(\sigma-T\frac{d\sigma}{dT})$ (рис. 5).

Рис. 4: Теплота образования единицы поверхности от температуры

Рис. 5: Поверхностная энергия единицы площади от температуры

4 Вывод

В работе замерили значения коэффициента поверхностного натяжения воды от температуры, изучили зависимость $\sigma(T)$, она оказалась линейной, с угловым коэффициентом: $\frac{d\sigma}{dT} = -(0.109 \pm 0.010) * 10^{-3} \frac{H}{MK}$.

Сравнили полученные значения поверхностного натяжения с табличными, отклонение не превысило 10%.

T, K	293.2	303.1	313	323	333
$\sigma_{\text{эксп}} * 10^{-3} \frac{H}{\text{M}}$					
$\sigma_{\rm табл} * 10^{-3} \frac{\ddot{H}}{M}$	72.75	71.18	69.56	67.91	66.18
ϵ , %	3.9	7.3	6.0	5.3	5.4

Таблица 3: Отклонение значений коэффициента поверхностного натяжения воды от табличных.

Также, построили графики теплоты образования единицы поверхности и поверхностной энергии единицы площади. Выяснили, что рост теплоты образования единицы поверхности схож с линейным, однако, о какой-либо зависимости поверхностной энергии от температуры говорить сложно.