Popularity of Social Media Videos

Megan Jasek, Charles Kekeh, Alejandro Rojas, Andrea Soto

Context

- Growth in online video consumption and creation
- Major social media networks are giving increasing relevance to video content
- Content and eyeballs are migrating to video
- Opportunity to develop tools that track, report and predict performance of online videos

Value Proposition

What video content to publish?

When to publish?

Where to publish?

Scope

- Identify what videos are popular across three social media platforms:
 Twitter, Facebook, and Youtube.
- Ingest video metadata from the three sources and analyze the content to build a prediction model.

Live Demo of Prototype

Architecture

Data Ingestion Processes

• Topic Focused

Search/Filter API's using 74 terms related to entertainment, sports, music, and cooking

Ingest

Continuous for Twitter and Facebook. Scheduled every 24 hours for Youtube.

Dataset Overview

★ ~1,7 million videos

★ 18 GB raw size

★ 20 GB storage size

Twitter	691,250 videos 5.7 GB raw size 6.8 GB storage size
Facebook	985,000 videos 11.3 GB raw size 12.9 GB storage size
Youtube	11,802 videos 0.8 GB raw size 0.9 GB storage size

Data Analysis - Spark

- Prediction predicted video popularity using logistic regression
 - Data from all 3 sources: Twitter, YouTube, Facebook
 - Features: video_length_sec, popularity_count, other_count, growth_rate, sentiment, source
 - Model: weights=[-155.6, 16.1, 13.3, -0.48, -0.43, -7.37], intercept=0.0
- Spark MLLib with python
 - LabeledPoint data type
 - LogisticRegressionWithSGD, LogisticRegressionModel
- Create Model
 - Process: 1) load data from JSON, 2) filter data, 3) create features, 4) split data, 5) create/save model, 6) evaluate model
 - Sentiment Analysis: vaderSentiment python library
- Predict from Model
 - Process: 1) use pymongo to load data from MongoDB, 2) make predictions using stored model, 3) write predictions to MongoDB

```
sc = SparkContext(appName="SparkCreateModel")
# LOAD data
twitter data = load data from file(sc, "file:///root/mongoData/twitter.json")
youtube data = load data from file(sc, "file:///root/mongoData/youtube.json")
facebook data = load data from file(sc, file:///root/mongoData/facebook.json")
# CREATE MLLib LabeledPoints (LP = LabeledPoint(DependentVar, [FeaturesList]))
twitter LP = twitter data.map(create labeled points twitter)
youtube LP = youtube data.map(create labeled points youtube)
facebook LP = facebook data.map(create labeled points facebook)
# SPLIT DATA into training (80%) and test(20%) sets
train twitter, test twitter = twitter LP.randomSplit([0.8, 0.2], seed=0)
train youtube, test youtube = youtube LP.randomSplit([0.8, 0.2], seed=0)
train facebook, test facebook = facebook LP.randomSplit([0.8, 0.2], seed=0)
# COMBINE all 3 datasets with the RDD.union command
train LP = train twitter.union(train facebook).union(train youtube)
test LP = test twitter.union(test facebook).union(test youtube)
# BUILD MODEL - logistic regression
model log = LogisticRegressionWithSGD.train(train LP)
if store == True:
    model log.save(sc, file path)
# EVALUATE MODEL on test data
preds test log = test LP.map(lambda p: (p.label, model log.predict(p.features)))
```

User Interface

Two scenarios implemented:

Current most popular videos across ingestion sources and popularity history

Most popular videos predictions across ingestion sources and popularity history

- Python Web app using Flask and Bokeh
- Data is retrieved on access from documents in MongoDB

Path Forward

Tracking tool:

- Publishers compare content performance across social media platforms
- Advertisers evaluate publishers performance to determine communication strategies

Image Classification tool:

- Analyze images to identify same video posted on multiple networks by multiple users
- Classify videos according to its images

- Predictive tool:

- Identify windows for publishing different type of videos on each network
- Predict virality of videos
- Propose video guidelines to improve video virality

The End

Questions?