What is Trust

Orfeas Stefanos Thyfronitis Litos

University of Edinburgh o.thyfronitis@ed.ac.uk

Abstract. We will try to define all the abstract properties that we would like "Trust" to have.

1 Definitions

Definition 1 (Agent). An agent can be thought of as either a programme/Turing machine/protocol (inanimate) or as a pseudonymous identity corresponding to a human. Let \mathcal{P} be the set of all agents.

Definition 2 (State). Let agent $P \in \mathcal{P}$. If P is inanimate, then P's state at an instance $t \in \mathbb{N}$, is a function $S : \mathcal{P} \times \mathbb{N} \to \mathcal{S}$ that returns the state of the machine. If P is a human, then S(P,t) is a record of the internal condition of the human, as observed by the human.

Definition 3 (Global State). The global state $GS : \mathbb{N} \to \mathcal{S}^{|\mathcal{P}|}$ is the set of the states of all agents $P \in \mathcal{P}$ at a specific instance:

$$GS\left(t\right) = \left(S\left(P_{1},t\right),...,\left(P_{n},t\right)\right) ,$$
 where $\bigcup_{i=1}^{n}\left\{P_{i}\right\} = \mathcal{P} .$

Definition 4 (Trust). Trust is a function $T: \mathcal{P}^2 \times \left(\mathcal{S}^{|\mathcal{P}|}\right)^2 \times \mathbb{N}^2 \to \mathcal{R}^+$.

Let $in = (P_1, P_2, GS_1, GS_2, t_1, t_2) \in \mathcal{P}^2 \times \left(\mathcal{S}^{|\mathcal{P}|}\right)^2 \times \mathbb{N}^2$. Then T(in) is interpreted as the level of commitment P_1 can provide that the actions of P_2 upon a world where $GS(t_1) = GS_1$ will lead to a world where $GS(t_2) = GS_2$.

References