Qiskit을 이용한 기초 양자회로 작성 및 실행

Qcenter – IonQ workshop Junki Kim, Ph.D. SAINT SKKU

Junki Kim. Ph.D. (김준기) Assistant Professor @ SAINT, SKKU junki.kim.q@skku.edu Office: 83-205

https://sites.google.com/view/queti

오늘의 강의 내용

- 양자 회로의 기초
- Qiskit 안내
- Qiskit 핵심 라이브러리
 - QuantumCircuit
 - Backend & Job
 - Visualization

시작하기 전에

• 오늘의 튜토리얼을 위한 노트북은 여기서 받으실 수 있습니다. https://github.com/JKQuantum/QCenter_lecture

- 쥬피터 노트북 또는 구글 코랩으로 실행하시면 됩니다.
 - 파이썬 3.6 환경 권장

큐비트

Bit (Classical Computing)

0

1

Qubit (Quantum Computing)

0

• 양자컴퓨팅/양자정보의 기초 정보 단위

• 비트는 0 또는 1 (Boolean)

• 큐비트는 0과 1의 중첩상태를 허용 $|\psi\rangle = \alpha|0\rangle + \beta|1\rangle, |\alpha|^2 + |\beta|^2 = 1$ (2-dimensional complex ray)

양자게이트

Operator	Gate(s)		Matrix
Pauli-X (X)	$-\mathbf{x}$		$\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$
Pauli-Y (Y)	$- \boxed{\mathbf{Y}} -$		$\begin{bmatrix} 0 & -i \\ i & 0 \end{bmatrix}$
Pauli-Z (Z)	$- \boxed{\mathbf{z}} -$		$\begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$
Hadamard (H)	$-\boxed{\mathbf{H}}-$		$\frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix}$
Phase (S, P)	$-\mathbf{S}$		$\begin{bmatrix} 1 & 0 \\ 0 & i \end{bmatrix}$
$\pi/8~(\mathrm{T})$	$- \boxed{\mathbf{T}} -$		$\begin{bmatrix} 1 & 0 \\ 0 & e^{i\pi/4} \end{bmatrix}$
Controlled Not (CNOT, CX)	<u> </u>		$\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{bmatrix}$
Controlled Z (CZ)	- z -	_	$\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & -1 \end{bmatrix}$
SWAP		*	$\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$
Toffoli (CCNOT, CCX, TOFF)	<u> </u>		$\begin{bmatrix} 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0$

• 큐비트에 가해지는 양자역학적 게이트

- 특징
 - Unitary Operation $U^{\dagger}U = UU^{\dagger} = I$
 - Linear $U(|\psi\rangle + |\phi\rangle) = U|\psi\rangle + U|\phi\rangle$
 - Matrix 형태로 기술 가능 $U_{ij} = \langle i|U|j \rangle$

측정

• 큐비트를 측정하면 0 또는 1의 결과를 얻을 수 있음 (양자상태는 붕괴)

• $|\psi\rangle=\alpha|0\rangle+\beta|1\rangle$ 큐비트를 측정했을 때 각 결과에 대한 확률은 $P_0=|\alpha|^2, P_1=|\beta|^2$

• 일반적으로 여러 번의 측정을 통해 확률적인 분포를 얻게 됨

양자회로

• 양자알고리즘을 하드웨어 구현하기 위한 계산적 모델

• 각 라인은 큐비트를 나타냄

• 게이트는 블록 형태로 나타남

• 측정은 양자상태를 붕괴시키고 0 또는 1의 결과를 저장함

Nice sidekick: Quirk

Handy toolbox for quantum circuit

https://algassert.com/quirk

Qiskit

• IBM이 만든 오픈소스 양자컴퓨팅 SDK

• 양자회로 제작, 백엔드를 활용한 양자컴퓨팅 수행, 노이즈 분석 등 양자컴퓨팅 개발에 유용한 다양한 툴이 개발되어 있음.

https://qiskit.org/

튜토리얼

• 오늘의 튜토리얼을 위한 노트북은 여기서 받으실 수 있습니다. https://github.com/JKQuantum/QCenter_lecture

- 쥬피터 노트북 또는 구글 코랩으로 실행하시면 됩니다.
 - 파이썬 3.6 환경 권장