	Numer indeksu:	$Grupa^1$:					
		8–10 s. 5	8-10 s.103	8–10 s.104			
Wersja: $oldsymbol{A}$		8–10 s.105	8–10 s.140	12–14 zaaw			
		12–14 LPA	14-16 s.105	14-16 s.139			
Logika dla informatyków Kolokwium nr 3, 16 stycznia 2015 czas pisania: 30+60 minut							
•). Rozważmy zbiór trzyelementow narysować) wszystkie podziały zbi ii.						

Zadanie 2 (2 punkty). Wpisz w puste pola poniższej tabelki moce odpowiednich zbiorów.

$\bigcup_{n=1}^{\infty} \mathbb{Q} \times \{n\}$	$\mathcal{P}(\mathbb{N}{\times}\{0,1,2\})$	$\{0,1\}^{\mathbb{Q}}$	$\mathbb{R}^{\{0,1\}}$	$(\{1\} \times \{2,3\})^{\{4,5\}}$	$(\mathbb{Q}\setminus\mathbb{N})$	$\mathbb{Q}^{\mathbb{N}}$	$\mathcal{P}(\mathbb{Q}\cap[0,1))$

Zadanie 3 (2 punkty). Rozważmy funkcje

 $f: A^C \times B^C \to (A \times B)^C,$ $g_1: C \to A,$ $g_2: C \to B,$ $h: A \times B \to C$

oraz elementy $a \in A$, $b \in B$ i $c \in C$. W tym zadaniu uznamy wyrażenie za poprawne jeśli dla każdej użytej w nim funkcji jej argument należy do dziedziny tej funkcji. Np. wyrażenie f(a) nie jest poprawne, bo $a \notin (A^C \times B^C)$. Wpisz słowo "TAK" w prostokąty obok tych spośród podanych niżej wyrażeń, które są poprawne. W pozostałe prostokąty wpisz słowo "NIE".

$(f(g_1,g_2))(c)$	$f(g_1(c),g_2(c))$	
$\langle h(a), h(b) angle$	$g_1(h(a,b))$	
$(re(\omega), re(\sigma))$	$g_1(n(\omega, \sigma))$	

¹Proszę zakreślić dzień tygodnia, godzinę i numer sali, w której odbywają się ćwiczenia.

Zadanie 4 (2 punkty). Na zbiorze $\mathbb{N} \times \mathbb{N}$ definiujemy relację równoważności \approx
--

$$\langle m, n \rangle \approx \langle m', n' \rangle \stackrel{\text{df}}{\iff} \min(m, n) = \min(m', n').$$

W prostokąty poniżej wpisz odpowiednio moc klasy abstrakcji $[\langle 42,17\rangle]_{\approx}$ oraz taką formułę φ , że $[\langle 42,17\rangle]_{\approx}=\{\langle m,n\rangle\in\mathbb{N}\times\mathbb{N}\mid\varphi\}$. W formule φ nie wolno użyć symbolu \approx .

$$|[\langle 42,17 \rangle]_{pprox}| =$$
 $\varphi =$

Zadanie 5 (2 punkty). Rozważmy funkcję $f: \mathbb{N} \times \{0,1\} \to \mathbb{N}$ daną wzorem f(n,i) = 2n + i. Jeśli f ma funkcję odwrotną, to w prostokąt poniżej wpisz funkcję odwrotną f. W przeciwnym przypadku wpisz uzasadnienie, dlaczego funkcja odwrotna nie istnieje.

Wersja:	Λ
wersja:	\mathbf{A}

Numer	indeksu:	

Grupa ⁺ :		
8–10 s. 5	8–10 s.103	8–10 s.104
8 10 s. 105	8–10 s.140	12–14 zaaw
12–14 LPA	14-16 s. 105	14-16 s. 139

Zadanie 6 (5 punktów). W tym zadaniu div : $\mathbb{N} \times \mathbb{N} \to \mathbb{N}$ oznacza (pisaną infiksowo) operację dzielenia całkowitego w zbiorze liczb naturalnych, np. 5 div 2=2. Na zbiorze liczb naturalnych \mathbb{N} wprowadzamy relację równoważności \simeq wzorem

$$m \simeq n \iff m \text{ div } 2 = n \text{ div } 2$$

a następnie definiujemy funkcję f i relację \preceq działające na klasach abstrakcji relacji \simeq wzorami

$$f([x]_{\simeq}) = [x+2]_{\simeq} \tag{1}$$

$$[x_1]_{\simeq} \preceq [x_2]_{\simeq} \quad \stackrel{\text{df}}{\Longleftrightarrow} \quad x_1 \le x_2$$
 (2)

Które z tych dwóch definicji (mamy tu na myśli definicje (1) i (2)) są poprawne? Uzasadnij odpowiedź.

Zadanie 7 (5 punktów). Na zbiorze $\mathcal{P}(\mathbb{N})$ wszystkich podzbiorów zbioru liczb naturalnych wprowadzamy relację binarną R wzorem

$$R(X,Y) \iff \forall n{\in}\mathbb{N} \; \exists m{>}n \; m \in X \Leftrightarrow m \in Y.$$

Czy R jest relacją równoważności? Uzasadnij odpowiedź.

Zadanie 8 (5 punktów). Na zbiorze $\mathbb{N}^{\mathbb{N}}$ wszystkich funkcji z \mathbb{N} w \mathbb{N} wprowadzamy relację binarną R wzorem

$$R(f,g) \iff \forall n > 2015 \ f(n) = g(n).$$

Łatwo zauważyć, że R jest relacją równoważności; w rozwiązaniu tego zadania nie trzeba tego dowodzić. Udowodnij, że wszystkie klasy abstrakcji relacji R są równoliczne.

¹Proszę zakreślić dzień tygodnia, godzinę i numer sali, w której odbywają się ćwiczenia.

		Numer indeks			Grupa ¹ :				
		Tumer macks	·u.		8–10	s. 5 8	8-10 s.103	8–10 s	.104
Wersja:	3				8–10 s	.105 8	8-10 s.140	12–14 z	aaw
					12–14	LPA 14	-16 s. 105	14–16 s	.139
		Ι	Logika	dla informaty	ków				
		Kolok	zwine	nr 3 16 stye	min 2015				
				nr 3, 16 stycz ania: 30+60 m					
wpisz (jeśli w	volisz, moż	cy). Rozważmy esz je narysować ma parzystą lic	é) wszy	stkie podziały					
Zadanie 2 ((2 punkty	y). Wpisz w pu	ste pol	a poniższej tab	elki moce	odpowie	ednich zbio	rów.	
$\bigcup_{n=1}^{\infty} \mathbb{N}^n$	N{0,1,2}	$\mathcal{P}(\mathbb{N}\setminus\{0,1\})$	R{0}	$\{0,1,2\}^{\{3,4\}}$	$(\mathbb{Q}\setminus\mathbb{N})$	$\mathbb{Q}^{\mathbb{N}\cup\{\pi\}}$	$\mathcal{P}(\{a,b\}$	$\times \{c\}$	
n=1									
Zadanie 3 ((2 punkty	y). Rozważmy i	funkcje						
		$f : A^C \times B^C$	$\rightarrow C^{(A)}$	$A \times B$)	$g_1 : C$	$\rightarrow A$			
$g_2: C \to B,$ $g_1: C \to A,$ $g_1: A \times B \to C$									
oraz elementy $a \in A$, $b \in B$ i $c \in C$. W tym zadaniu uznamy wyrażenie za poprawne jeśli dla każdej użytej w nim funkcji jej argument należy do dziedziny tej funkcji. Np. wyrażenie $f(a)$ nie jest poprawne, bo $a \notin (A^C \times B^C)$. Wpisz słowo "TAK" w prostokąty obok tych spośród podanych niżej wyrażeń, które są poprawne. W pozostałe prostokąty wpisz słowo "NIE".									
f(h(a,b))			h	$\Big(g_1(h(a,b))\Big)$	$)),g_{2}(h(a))$	$(a,b))\Big)$		

 $⁽f(g_1,g_2))(a,b)$ (f(h))(c)

¹Proszę zakreślić dzień tygodnia, godzinę i numer sali, w której odbywają się ćwiczenia.

Zadanie 4	(2)	punkty).	Na zbiorze	\mathbb{N} ×	$\langle \mathbb{N} \rangle$	definiujemy	relacie	równoważności	\approx wzore	em
-----------	-----	----------	------------	----------------	------------------------------	-------------	---------	---------------	-----------------	----

$$\langle m, n \rangle \approx \langle m', n' \rangle \stackrel{\text{df}}{\iff} \max(m, n) = \max(m', n').$$

W prostokąty poniżej wpisz odpowiednio moc klasy abstrakcji $[\langle 42,17\rangle]_{\approx}$ oraz taką formułę φ , że $[\langle 42,17\rangle]_{\approx}=\{\langle m,n\rangle\in\mathbb{N}\times\mathbb{N}\mid\varphi\}$. W formule φ nie wolno użyć symbolu \approx .

$$|[\langle 42,17
angle]_{pprox}|=$$
 $arphi=$

Zadanie 5 (2 punkty). Rozważmy funkcję $f: \mathbb{Z} \to \mathbb{N} \times \{0,1\}$, gdzie \mathbb{Z} oznacza zbiór liczb całkowitych, daną wzorem $f(k) = \left\{ \begin{array}{cc} \langle k-1,0 \rangle & \mathrm{dla} & k>0 \\ \langle -k,1 \rangle & \mathrm{dla} & k\leq 0 \end{array} \right.$. Jeśli f ma funkcję odwrotną, to w prostokąt poniżej wpisz funkcję odwrotną f. W przeciwnym przypadku wpisz uzasadnienie, dlaczego funkcja odwrotna nie istnieje.

		Numer indeksu:	_	$Grupa^1$:		
				8–10 s. 5	8–10 s.103	8-10 s. 104
Wersja:	$ \mathbf{B} $			8–10 s.105	8–10 s.140	12–14 zaaw
				12–14 LPA	14-16 s. 105	14-16 s. 139
			_			

Zadanie 6 (5 punktów). W tym zadaniu div : $\mathbb{N} \times \mathbb{N} \to \mathbb{N}$ oznacza (pisaną infiksowo) operację dzielenia całkowitego w zbiorze liczb naturalnych, np. 5 div 2=2. Na zbiorze liczb naturalnych \mathbb{N} wprowadzamy relację równoważności \simeq wzorem

$$m \simeq n \iff m \text{ div } 2 = n \text{ div } 2$$

a następnie definiujemy funkcje f i \oplus działające na klasach abstrakcji relacji \simeq wzorami

$$f([x]_{\cong}) = [x \operatorname{div} 2]_{\cong} \tag{1}$$

$$[x_1]_{\simeq} \oplus [x_2]_{\simeq} = [x_1 + x_2]_{\simeq} \tag{2}$$

Które z tych dwóch definicji (mamy tu na myśli definicje (1) i (2)) są poprawne? Uzasadnij odpowiedź.

Zadanie 7 (5 punktów). Na zbiorze $\mathbb{N}^{\mathbb{N}}$ wszystkich funkcji z \mathbb{N} w \mathbb{N} wprowadzamy relację binarną R wzorem

$$R(f,g) \iff \forall n \in \mathbb{N} \ \exists m > n \ f(m) = g(m).$$

Czy R jest relacją równoważności? Uzasadnij odpowiedź.

Zadanie 8 (5 punktów). Na zbiorze $\mathcal{P}(\mathbb{N})$ wszystkich podzbiorów zbioru liczb naturalnych wprowadzamy relację binarną R wzorem

$$R(X,Y) \iff \forall n > 2014 \ n \in X \Leftrightarrow n \in Y.$$

Łatwo zauważyć, że R jest relacją równoważności; w rozwiązaniu tego zadania nie trzeba tego dowodzić. Udowodnij, że wszystkie klasy abstrakcji relacji R są równoliczne.

¹Proszę zakreślić dzień tygodnia, godzinę i numer sali, w której odbywają się ćwiczenia.