CH4.1

Comment: This Chapter discuss the question of whether open sets exist in topology that reparate various subsets of the space from another?

Definition [T2 - space, Hansdorff space (T2 - space), regular space, normal space]:

Definition [T_2 - space, Hansdorff space (T_2 - space), regular space, normal space]:

• X is a T_1 - space iff \forall x, y s.t. $x \neq y$, \exists U, $V \in T \times s$ + $x \in U$, $y \notin U$ and $x \notin V$, $y \in V$.

• X is a T_2 - space if $\forall x,y$ s.t. $x \neq y$, $\exists U, V \in T_X$ s.t. $x \in U$, $y \in V$ and $U \cap V = \emptyset$.

• X is regular iff $\forall x \in X$ and closed $A \subset X$ s.t. $x \notin A$, $\exists U, V$ s.t. $x \in U$ and $A \subset V$, $U \cap V = \emptyset$.

* X is normal iff \forall clased A, B, $\exists U, V \in T_X$ where $A \subset U$, $B \subset V$, $U \cap V = P$. Definition $[T_3 - Space]$: A space is T_3 if the space is both T_1 and regular. Comment: The most important property of T_1 - space is that points are closed.

Theorem 4.1: A topological space (X,T) is T_i iff $\forall x \in X$, $f \times 3$ is a closed set. Proof:

· Suppose y \$ x , 3 V & T. s.t. y & V and x & V. Hence 3 X\1x7 contains an open set U' such that y & U'.

• Since it work for any y. We may construct X\8x3 by a union of open set, which is open. Hence 1x3 is dosed.

. Let fy? and fx? be two singleton, then $X \setminus 1x?$ and $X \setminus fy?$ are the U.V he are looking for.

E.g. \bullet Consider \mathbb{R}^2 with standard topology. Let $p \in \mathbb{R}^2$ be a point not in closed set A,

Inf(d(a,b) | $a \in A$ and $b \in B^3 > 0$. (To prove Rith is regular).

Proof: Since complement of A is an open set. There always exist an Σ -nbhd near P that is disjoint from A.

IR2 has the interesting property that though we can't prove normality in a plausible approach, but it's still normal such as the following example.

 Two closed disjoint subsets A, B of IR2 S.t. infid (a, b) (a fA and b eB) = 0. $A = \{(x,0) | x > 0\}$. Due to the asymptotic behavior and R doesn't include as like $B = \int (x, \frac{1}{x}) |x > 0$ C, therefore the limit might be 0.

· Even for this example, we can find open sets that separate them. Consider the open sets When the open sets $A' = \int (x, y) \in \mathbb{R}^2 \left[y - \frac{1}{2\pi} \right] \quad B' = \int (x, y) \in \mathbb{R}^2 \left[y < \frac{1}{2\pi} \right]$

It's obviously $A \in A'$, $B \in B'$ and $A' \cap B' = \phi$.

 \rightarrow Below is a proof of why \mathbb{R}^2 is normal.

Proof:

• For two disjoint closed sets in \mathbb{R}^2 . Call them A and B.

· Obviously the complement of A is open. Then for every point in B, B is containe

in \mathbb{R}^2 -A. Therefore for every point b $\in \mathbb{B}$, is an interior point of \mathbb{R}^2 -A. • Therefore we know that $\exists \xi > 0$ S.t. $N_{\xi}(p) \subset \mathbb{R}^2 - A$.

Then the union of these open balls, it's an open set that contain B in A. \rightarrow We can similarly find an open set that contains A in B^c. · Now we find a way to shrink" the two union of open sets so that they

don't intersect. . We may find $\forall x \in A$, let $\Gamma_x = \inf \left\{ \frac{d(x \cdot y)}{2} : y \in B \right\} > 0$ let the open

neighbood radius < rx.

] & E UNV, for some xEA, YEB. dix,y) & dix,2) + d(y,2) < 1x+ry & dix,y) D.

Tz space (Hansdorff space) is a Ti space.

Theorem 4.7:

(2) A T3 space (Regular and T1) is a T2 space. (3) A T4 space (Normal and T.) is a 13 space.

Proof: The proof is pretty obvious, we will skip it over here. (Use theorem 4.1)

Theorem 4.8 A topological space X is regular if and only if for each p in X and open

set U containing p, \exists open V s.t. $p \in V$ and $\overline{V} \subset U$. Theorem 4.9 A topological space X is normal if and only if for each closed A in X

and open set U containing A. IV s.t. ACV and VCU.

Proof: The proof are exactly the same format, so we only prove 4.8 over here.

• If X is regular, suppose x and neighborhood of x , U was given. Let B=X-U. then B is a closed set.

· By definition of regular set, 3 V, W & T s.t. X & V and B < W and VNW = Ø.

ightarrow If y ϵ B, the set W is a neighborhood of y disjoint from B, thus $\overline{V} \cap B = \not =$ Thus $\overline{V} \subset U$, as needed.

· For an x f X and x & B, B is closed.

· Take U = X - B , IVET s.t. × EV s.t. V CU. By hypothesis.

 \rightarrow Open sets V and X-V are disjoint open sets containing x and B. X is regular. B.

Theorem 4.10 A topological space X is normal_iff Y A, B that's closed sets A and B S.t. $A \cap B = \emptyset$. $A \subset V$ and $B \subset V$, thus $\overline{V} \cap \overline{V} = \emptyset$.

· Since X is normal, then JU, V'ET s.t. ACU' and BCV. VnV= p.

· Now by theorem 49. 3UET s.t. ACU and UCV'

V & TBCV VCV'

· Since Unv= \$, for every pe U, V is a neighborhood of p disjoint from U, then $\overline{U} \cap V = \phi$. Similarly $\overline{V} \cap U = \phi$.

 \rightarrow Therefore $U \cap \overline{V} = \emptyset$. As needed.

Proof:

If $\overline{U} \cap \overline{V} = \emptyset$, the $U \cap V = \emptyset$, thus X is normal.

Theorem 4.11 (Incredible Shrinking Theorem); A topological space X is normal iff for each pair of open sets U.V s.t. UNV = X, JU', V' s.t. V'CU and V'CV and U'UV' = X. Proof: \Rightarrow : (X is Normal) \rightarrow (X is incredible shrinking) Define A = X - U, B = X - V, obviously both A and B are closed. · Note that UUV = X A N B = X- (X- (A N B)) $= \chi - (UUV) = \phi$ · Thus we found two disjoint closed set in X. · Because X is normal, A, B can be separated by 2 open neighborhood. JW, ZET s.t. ACW, BCZ and WNZ = 0. \rightarrow Define $U' = X \setminus Z , V' = X \setminus W$. And obvious $V' \cap V' = \emptyset$ • For any element $x \in U'$, $x \notin Z$. Since $A \subset Z$, $x \notin A$. $x \in U$. χ ε ν', Thus VCV', VCV'. \rightarrow To Prove U'UV' = X, we can observe that U'VV' = (X-Z)U(X-W) = X-(WNZ)Since we know WNZ = \$\Psi U'UV' = X - \$\Psi = X. · For every open sets U and V with UUV = X, 3U'CU and V'CV with U'UV'=X. Now let A and B 2 disjoint open sets. Define U=X-B V=X-A. Then $A \subset V$ and $B \subset V$, obviously $U \cup V = (X - B) \cup (X - A) = X$. Hence we know that $\exists V \subset V$ and $V \subset V$ s.t. $\cup (V \vee V' = X)$. We observe the following: $\rightarrow U' \subset U = X - B \rightarrow V' \cap B = \emptyset$ $\rightarrow V' \subset V = X - A \rightarrow V' \cap A = \phi$ • As U'UV' = X, $\overline{U'}U\overline{V'} = X$. Since $\overline{U'}$ and $\overline{V'}$ are both closed sets, we know Hence $\overline{U'} \cap \overline{V'}^c = \chi^c = \phi \rightarrow \overline{U'}^c \& \overline{V'}^c$ are both open set. We claim these are the sets that fulfill the requirement. \rightarrow Since $\overline{U}' \subset U$, $\overline{U}'^{c} \supset U^{c}$. $\rightarrow \overline{U}'^{c} \supset A$ and similarly $\overline{V}'^{c} = B$

→ U'cnV' = X' = Ø.

Difference between T., T2. T3 and T4.

Thus disjoint. As needed.

- Finite Complement Topology is To but not Tz.
- ightarrow Given any two distinct points x, y 6 X\\$y\1 is open but not y, and vice versa.
- -> Any two complement open set must have infinite intersection. Honce its not a
- Lower limit topology is T2 but not T3.

→ Given a point and a closed set

- → Given any two point, we can alway find 2 distinct open sets that separate them (for a metric space). (\bullet) (\bullet) R
- Take (-6,0) as an open set $(o, \infty) = \mathbb{R} - (-\infty, o)$ is closed. And take $f \circ 3$ as a point.
- For every open neighbood that contains for must have intersection with $(\omega \circ)$.
- Hbub (Sticky bubble topology) is T3 but not T4. \rightarrow For every closed set, just like in \Re^2 , every point may have a little "wigsle
- room". Thus we fit in an open ball that separates the point from open set.
- → Why Hbub is not normal. · Every subset L must be closed since every point in L is the complement U U DY of a union DY = DE U fy]
 - . Thus the rationals and the irrationals are two closed subsets in X and Y but cannot be separated.

CH4.2

Theorem 4.16: Let X and Y be Hausdorff. Then XxY is Haurdorff. Proof:

- · For 2 distint point in XXY Where both X and Y are T2. Call them (x1, x1). (x2, y2)
 - Namely $\chi_1 \neq \chi_2$ or $\chi_1 \neq \chi_2$.
- * Whofe, assume $\pi_1 \neq \pi_2$. Since X is T_1 , then we may take 2 disjoint open sets

U, V s.t. $\chi_{i} \in U$, $\chi_{i} \in V$. $U \cap V = \phi$.

• Now take $\pi x_1' (U) = U \times Y$ and $\pi x_1' (V) = V \times Y$, which are two subbasic open sets

that distinctively contain (x_1, y_1) and (x_2, y_2) $Y = V \times Y$. In addition $U \times Y \cap V \times Y$ is obviously \emptyset , as needed.

Hence X x Y is also Hausdorff.

Comment: Is this thing true for infinite product topology? Yes!

 $\exists Vi \in \mathsf{Tx}_i \ s.t. \ \forall i \in \mathsf{V}_i$

Now take the inverse projection of $\pi_{X_i}(U_i)$ and $\pi_{X_i}(V_i)$, are the 2

disjoint open sets that respectively contains \$ and \$. Hence Taxa is also

Hausdorff.

In fact, the proof works for either product & box topology.

Theorem 4.17: Let X and Y be regular, then XxY is regular.
Proof:

· Obviously under the case of finite product, product topology is the same as the box topology. Suppose a point in product space. (x, y) s.t. x \(\times \) X and y \(\times \) Y.
· And a closed set in X \(\times \) Y.

Lemma: UxV, VcX, VcY, is closed \> V is closed in X, Vis closed in Y.
Proof:

• If either V or V is not closed. WLOG, assume it's V.

Since it's not closed, it does not contain some of it's limit points, say p.
 Then pick a point in XxY, say (p,y), where y 6 Y.

 \rightarrow Take any neighborhood of the point U'XV', by definition $X'\cap X=\emptyset$ thus we know that (p,y) is a limit point, but it's not in U, it can't be in

Ux V hence Ux V is not closed. \Leftarrow : If both V, V are closed, then $(U \times V)^c$ should be open, we prove it. • We know that $\pi_{X}(U) = U_{X}Y$ $\pi_{Y}(V^c) = X \times V^c$ are two subbasic open sets. $(U \times Y) \cup (X \times V^c) = ((U \times Y)^c \cap (X \times V^c)^c)^c$ = $((U \times Y) \cap (X \times V))^c = (U \times V)^c$. * Hence obviously this set is union of 2 open set, is open. Thus UXV is closed, D. Note that this proof is also true for enfinite product, as any union of open sets is still open by definition. . Thus we know, the set UXVCXXX is closed - U is closed & V is closed. · Since X is regular, if for the set x and U We may find open sets $V_1 \cap V_2 = \phi$ s.t. $\chi \in V_1$ and $V \subset O_2$ $V_1 \cap V_2 = \emptyset$ $Y \in V_1$ → Thus we know that UxV C U2xV2 (x,y) € U1xV1. · XxY is regular if both X and Y are both regular. Remark: However, this theorem is not true for normal space. · A classical counterexample is the set IRLL X IRLL · Below is a brief description that KLL is normal. Proof: · We know that theorem 4.9. X is normal iff Y closed set A in X and open set U containing A, IVETx s.t. ACV and VCU. → If A and B are 2 two disjoint closed set in lowest limit topology

As A.B are closed, their complements are closed.

• In lower limit topology. ∀ x ∈ A, we may find a basic element [x, x → z)

that contains x and dues not intersect B. Some thing for each y ∈ B.

→ Construction of disjoint open set

• For each point $a \in A$, pick an interval $V_a = [a, r_a)$ s.t. $V_{a \cap B} = \emptyset$ • $V_b = [b, r_b)$ s.t. $V_{b \cap A} = \emptyset$

• The set $U = \underset{\alpha \in A}{\cup} U_{\alpha}$ and $V = \underset{b \in B}{\cup} V_{b}$ form disjoint open sets of $A \angle B$.

· However for the set RLL × RLL, where both set has lower limit topology. RLL · Now for any of the negative sloping line, having subspace topology. · By definition it the set UxVis open, then the intersection between UxV has to be open. However, the intersecting line segment is either the form of or . Which are not open in RLL. Hence it inherits the discrete topology, which is not normal.