Q1: - (q(2-1)) - q(f(1)) = 0	
So use L'Hôpital's rule	7 /
Derivative of numerator: $[f(g(x-x)) - g(f(x^2))]$	1 (1 + (x²))
$= (2-x)'g'(2-x) \cdot f'(g(2-x)) - (x^2)'f(x^2)$ $= -g'(2-x) \cdot f'(g(2-x)) - 2x \cdot f'(x^2)g'f(x^2)$	(y) (x²) (x
X=1:	
=g'(n)+(g(n))-2f'(n)g'(f(n))	
= -9'(1)f(-2) - 2f(1)g(1) = -1 3-2(-3) = -3+6=3	
Desirative of denuminator: (x-1)'=1	
$\frac{1 \text{ im } ()}{x-1} = \frac{1 \text{ im } ()'}{x-1} = \frac{3}{1} = \frac{7}{1}$	
X-11 X-1 X-1 X-1 X-1	

16. Find
$$\lim_{x\to 0} \frac{x}{|x|^2 - x} = \lim_{x\to 0^-} \frac{x}{|x|} = \lim_{x\to 0^+} \frac{x}{|x|} = \lim_{x\to 0$$

$$\frac{1}{100} = \frac{1}{00^{2}+3x} + x = \frac{10x^{2}+3x}{100^{2}+3x} + x = \frac{10x^{2}+3x}{100^{2}+3x}$$

Q3:
$$f(x) = x | n(x)$$
 find global min/max
 $f(x) = 0$

$$f'(x) = | n(x) + x \cdot \frac{1}{x} = | n(x) + 1 = 0$$
 $x = e^{-1} = \frac{1}{e}$
 $x = e^{-1} = \frac{1}{e}$

Thus global min/max

 $x = e^{-1} = \frac{1}{e}$
 $x = e^{-1} = \frac{1}{e}$

65:

5a. False.

Because Comparison Test:

When an 7, bn. an condiverges when bn diverges.

Sb: False.

O check. if bn converges -> Yes

O check if an sbn -> NO. an = enth (enth) (enth) = enth

an 7, bn

5 C. True.

Check of lim ann

5d. False. not sufficient

6.
$$\sum_{n=1}^{\infty} n(\frac{3}{x})^n : x \neq 0$$
Rabio test: $\lim_{n \to \infty}$

Radio test:
$$\lim_{N\to\infty} \left| \frac{(N+1)\cdot \left(\frac{\lambda}{X}\right)^{N+1}}{N\left(\frac{\lambda}{X}\right)^{n}} \right| = \lim_{N\to\infty} \left| \frac{N+1}{N} \cdot \frac{\lambda}{X} \right|$$

$$= \lim_{N\to\infty} \left| \frac{1+\frac{1}{N}}{1} \cdot \frac{\lambda}{X} \right|$$

It converges if $\left|\frac{2}{x}\right| < 1$: x > 2 one or, x < -2.

diverges if $|\frac{2}{x}| > |$: when: 0 < x < 2, or -2 < x < 0

When x=2: $\sum_{n=1}^{\infty} n \cdot 1^n = \sum_{n=1}^{\infty} n \rightarrow \text{diverges}$

X=->. \(\frac{5}{5}\) n(-1)^n = Alternating -> diverges

Series test

7. Find solution
$$y = y(x)$$
.

 $y' + y = x$
 $y(x) = 3$
 $y' + y(x) = 3$
 $y' + y' + y' + y(x) = 3$
 $y' + y' + y(x) = 3$
 $y' + y' + y(x) = 3$
 $y' + y' + y(x) = 4$
 $y' + y' + y' + y(x) =$

9. Find double integral over a triangle T with vertices (0,0).(1,0).(1,1)

$$\int_{0}^{\infty} \int_{0}^{\infty} e^{2x+y} dx dy$$

$$= \int_{0}^{\infty} \left(\frac{1}{2} - e^{2x+y} \Big|_{0}^{1} \right) dy$$

$$=\frac{1}{2}(e^{2}-e^{2}-e^{1}+e^{0})$$

$$=\frac{e^{3}-e^{2}-e+1}{2}$$

Should rely on x

[in] e 2244 dx dy