Cвязь c автором: tg @bogachenco

Оглавление

1.1	Определение пространства элементарных исходов, примеры. Понятие собы-	
	тия(нестрогое), следствие события, невозможное и достоверное событие,	
	примеры. Операции над событиями. Сформулировать классическое опре-	
	деление вероятности и доказать его следствия	4
	Определение пространства элементарных исходов, примеры. Понятие собы-	
	тия(нестрогое). Сформулировать геометрическое и статистическое опреде-	
	ления вероятности. Достоинства и недостатки этих определений	6
1.3	Определение пространства элементарных исходов, примеры. Сформулировать	
	определение сигма-алгебры событий. Доказать простейшие свойства сигма-	
	алгебры. Сформулировать аксиоматическое определение вероятности	8
1.4	Определение пространства элементарных исходов, примеры. Сформулировать	
	определение сигма-алгебры событий. Сформулировать аксиоматическое опре-	
	деление вероятности и доказать простейшие свойства вероятности	10
1.5	Сформулировать определение условной вероятности. Доказать, что при фик-	
	сированном событии B условная вероятность $P(A B)$ обладает всеми свой-	
	ствами безусловной вероятности	12
1.6	Сформулировать определение условной вероятности. Доказать теорему (фор-	
	мулу) умножения вероятностей. Привести пример использования этой фор-	
	мулы	13
1.7	Сформулировать определение пары независимых событий. Доказать крите-	
	рий независимости двух событий. Сформулировать определение попарно	
	независимых событий и событий, независимых в совокупности. Обосновать	
	связь этих свойств	14
1.8	Сформулировать определение полной группы событий. Доказать теорему (фор-	
	мулу) полной вероятности и формулу Байеса. Понятия априорной и апосте-	
	риорной вероятностей	15
1.9	Сформулировать определение схемы испытаний Бернулли. Доказать форму-	
	лу для вычисления вероятности реализации ровно k успехов в серии из n	
	испытаний по схеме Бернулли. Доказать следствия этой формулы	16

2.1 Сформулировать определение случайной величины и функции распределения вероятностей случайной величины. Доказать свойства функции распреде-	
ления	17
2.2 Сформулировать определения случайной величины и функции распределения случайной величины. Сформулировать определения дискретной и непрерывной случайной величины. Доказать свойства плотности распределения	
вероятностей непрерывной случайной величины	18
2.3 Сформулировать определение нормальной случайной величины, указать геометрический смысл параметров. Понятие стандартного нормального закона. Доказать формулу для вычисления вероятности попадания нормальной	
случайной величины в интервал	19
2.4 Сформулировать определение случайного вектора и функции распределения вероятностей случайного вектора. Сформулировать свойства функции рас-	
пределения двумерного случайного вектора. Доказать предельные свойства.	20
2.5 Сформулировать определение случайного вектора и функции распределения	
вероятностей случайного вектора. Сформулировать свойства функции рас-	
пределения двумерного случайного вектора. Доказать формулу для вычис-	
ления $P\{a_1 \leq X < b_1, a_2 \leq Y < b_2\}$	21
2.6 Сформулировать определение случайного вектора и функции распределения	
вероятностей случайного вектора. Сформулировать определение непрерыв-	
ного случайного вектора и доказать свойства плотности распределения ве-	
роятностей для двумерного случайного вектора	22
2.7 Сформулировать определение пары независимых случайных величин. Дока-	
зать свойства независимых случайных величин. Понятия попарно независи-	
мых случайных величин и случайных величин, независимых в совокупности.	24
2.8 Понятие условного распределения случайной величины. Сформулировать опре-	
деление условного ряда распределения компоненты двумерного дискретно-	
го случайного вектора. Привести рассуждения, приводящие к такому опре-	
делению. Сформулировать определение условной плотности распределения	
компоненты двумерного непрерывного случайного вектора. Сформулиро-	
вать критерии независимости случайных величин в терминах условных рас-	
пределений	26
2.9 Понятие функции скалярной случайной величины. Доказать теорему о фор-	
муле для вычисления плотности $f_Y(y)$ случайной величины $Y=arphi(X),$	
если X – непрерывная случайная величина, а φ – монотонная непрерывно	
дифференцируемая функция. Записать аналогичную формулу для кусочно-	
монотонной функции $arphi$	27

2.10 Понятие скалярной функции случайного вектора. Обосновать формулу для	
вычисления функции распределения случайной величины Ү, функциональ-	
но зависящей от случайных величин X_1 и X_2 , если (X_1,X_2) – непрерывный	
случайный вектор. Доказать теорему о формуле свёртки	28
2.11 Сформулировать определение математического ожидания для дискретной и	
непрерывной случайных величин. Механический смысл математического	
ожидания. Доказать свойства математического ожидания. Записать фор-	
мулы для вычисления математического ожидания функции случайной ве-	
личины и случайного вектора	29
2.12 Сформулировать определение дисперсии случайной величины. Механический	
смысл дисперсии. Доказать свойства дисперсии. Понятие среднеквадратич-	
ного отклонения случайной величины	30
2.13 Сформулировать определение математического ожидания и дисперсии. За-	
писать законы распределения биномиальной, пуассоновской, равномерной,	
экспоненциальной и нормальной случайной величин. Найти математиче-	
ские ожидания и дисперсии этих случайных величин	31
2.14 Сформулировать определение ковариации и записать формулы для ее вычис-	
ления в случае дискретного и непрерывного случайных векторов. Доказать	
свойства ковариации.	33
2.15 Сформулировать определение ковариации и коэффициента корреляции слу-	
чайных величин. Сформулировать свойства коэффициента корреляции. Сфор-	
мулировать определения независимых и некоррелированных случайных ве-	
личин, указать связь между этими свойствами. Понятия ковариационной и	
корреляционной матриц. Записать свойства ковариационной матрицы	34
2.16 Понятие условного распределения компоненты двумерного случайного векто-	
ра (дискретный и непрерывный случаи). Сформулировать определения зна-	
чений условного математического ожидания и условной дисперсии. Сфор-	
мулировать определения условного математического ожидания и условной	
дисперсии. Записать формулы для вычисления условных математического	
ожидания и дисперсии для компоненты двумерного нормального вектора	35
2.17 Понятие <i>п</i> -мерного нормального распределения. Сформулировать основные	
свойства многомерного нормального распределения	36

1.1 Определение пространства элементарных исходов, примеры. Понятие события (нестрогое), следствие события, невозможное и достоверное событие, примеры. Операции над событиями. Сформулировать классическое определение вероятности и доказать его следствия.

1. Пространство событий. Понятия событий.

Опр. Случайным экспериментом называется эксперимент, результат которого невозможно заранее предсказать.

Опр. Каждый неделимый результат случ. экспер. называют элементарным исходом.

Опр. Мн-во всех элементарных исходов случайной величины Ω называется пространством элементарных исходов.

Прим.

- 1. Бросаем монету. Возможные исходы: 0 или Р. $\Omega = \{0, P\} \ |\Omega| = 2$
- 2. Из колоды в 36 карт последовательно извлекают 2 карты. $\Omega = \{(x_1, x_2): x_1, x_2 \in \{1, \dots, 36\}, x_1 \neq x_2\}, x_i$ номер карты при i-ом извлечении. $|\Omega| = 36 \cdot 35$

В результате случайного эксперимента, проведённого однократно, обязательно реализуется один из элементарных исходов.

Опр. (нестрогое) Событием (случайным событием) в рамках данного случайного эксперимента называется любое подмножество пространства элементарных исходов Ω этого эксперимента.

При этом говорят, что в результате случайного эксперимента (СЭ) наступило событие А, если имел место один из входящих в А элементарных исходов.

Опр. Событие B наз. следствием события A, если из того, что произошло A следует, что произошло B. $B \subseteq A$

Замеч. Любое мн-во Ω содержит два подмн-ва: \varnothing , Ω . Соотв. события называются **невозможными** (\varnothing) и **достоверными** (Ω). Эти события наз. несобственными, остальные – собственными.

Прим. Из урны с 2 белыми и 1 чёрным шарами достают наугад 1 шар:

 $A = \{ ext{Извлеч"енный шар красный}\} = arnothing$

 $B = \{ ext{Извлеч"енный шар ч"ерный или белый}\} = \Omega$

2. Операции над событиями

События являются множествами $\Rightarrow \cup \cap \ ^- \setminus \triangle$

Используется следующая терминология:

- 1. $A \cup B = A + B$ сумма событий
- 2. $A \cap B = A \cdot B$ произведение событий
- 3. $A \setminus B$ разность событий

4. $\overline{A} = \Omega \setminus A$ – дополнение события A

Основные свойства этих операций, известны из курса дискретной математики.

Св-ва операций над событиями

$$1^{\circ} A + B = B + A$$

$$2^{\circ} A \cdot B = B \cdot A$$

$$3^{\circ} (A+B) + C = A + B + C$$

$$4^{\circ} (A \cdot B) \cdot C = A \cdot (B \cdot C)$$

$$5^{\circ} A + A = A$$

$$6^{\circ} A \cdot A = A$$

$$7^{\circ} A \cdot (B+C) = A \cdot B + A \cdot C$$

$$8^{\circ} A + (B \cdot C) = A + B \cdot C$$

$$9^{\circ} \overline{(\overline{A})} = A$$

$$10^{\circ} \ \overline{A+B} = \overline{A} \cdot \overline{B}$$

$$11^{\circ} \overline{A \cdot B} = \overline{A} + \overline{B}$$

$$12^{\circ} \ A \subseteq B \Leftrightarrow AB = A$$

$$13^{\circ} \ A \subseteq B \Leftrightarrow A + B = B$$

$$14^{\circ} \ A \subseteq B \Leftrightarrow \overline{B} \subseteq \overline{A}$$

3. Классическое определение вероятности

Пусть 1) $|\Omega| = N < \infty$

2) По условиям эксперимента нет объективных оснований предпочесть какой-нибудь элементарный исход остальным (элем. исходы равновероятны)

Опр. Вероятностью осуществления события $A\subseteq\Omega$ называют число $P(A)=\frac{N_A}{N}$, где $N_A = |A|$

Свойства вероятности (из класс. определения)

$$1^{\circ} P(A) \ge 0$$

$$2^{\circ} P(\Omega) = 1$$

 3° Если A и B – несовместные события $(AB=\varnothing)$, то P(A+B)=P(A)+P(B)Доказательства

1°
$$P(A) = \frac{N_A}{N}$$
, $N_A \ge 0$, $N > 0 \Rightarrow P(A) \ge 0$
2° $P(\Omega) = \frac{|\Omega|}{N} = \frac{N}{N} = 1$

$$2^{\circ} P(\Omega) = \frac{|\Omega|}{N} = \frac{N}{N} = 1$$

 3° По формуле включений и исключений: |A+B|=|A|+|B|-|AB|=|A|+|B|.То $N_{A+B} = N_A + N_B$ и $P(A+B) = \frac{N_{A+B}}{N} = \frac{N_A + N_B}{N} = P(A) + P(B)$

- 1.2 Определение пространства элементарных исходов, примеры. Понятие события (нестрогое). Сформулировать геометрическое и статистическое определения вероятности. Достоинства и недостатки этих определений.
- 1. Пространство событий. Понятия событий. Нестрогое событие.
- Опр. Случайным экспериментом называется эксперимент, результат которого невозможно заранее предсказать.
- Опр. Каждый неделимый результат случ. экспер. называют элементарным исходом.
- **Опр.** Мн-во всех элементарных исходов случайной величины Ω называется пространством элементарных исходов.

Прим.

- 1. Бросаем монету. Возможные исходы: 0 или Р. $\Omega = \{0, P\} \ |\Omega| = 2$
- 2. Из колоды в 36 карт последовательно извлекают 2 карты. $\Omega = \{(x_1, x_2): x_1, x_2 \in \{1, \dots, 36\}, x_1 \neq x_2\}, x_i$ номер карты при i-ом извлечении. $|\Omega| = 36 \cdot 35$

В результате случайного эксперимента, проведённого однократно, обязательно реализуется один из элементарных исходов.

Опр. (нестрогое) Событием (случайным событием) в рамках данного случайного эксперимента называется любое подмножество пространства элементарных исходов Ω этого эксперимента.

При этом говорят, что в результате случайного эксперимента (СЭ) наступило событие A, если имел место один из входящих в A элементарных исходов.

Опр. Событие B наз. следствием события A, если из того, что произошло A следует, что произошло B. $B\subseteq A$

Замеч. Любое мн-во Ω содержит два подмн-ва: \varnothing , Ω . Соотв. события называются **невозможными** (\varnothing) и **достоверными** (Ω). Эти события наз. несобственными, остальные – собственными.

Прим. Из урны с 2 белыми и 1 чёрным шарами достают наугад 1 шар:

 $A = \{$ Извлечённый шар красный $\} = \varnothing$

 $B=\{ ext{Извлеч"енный шар ч"ерный или белый}\}=\Omega$

2. Геометрическое определение вероятности

Геометрическое определение вероятности обобщает классическое на случай, когда Ω является бесконечным множеством элементарных исходов.

Пусть $A \subseteq \mathbb{R}^n$. Через $\mu(A)$ будем обозначать меру мн-ва A

n=1, то μ – длина

n=2, то μ – площадь

n=3, то μ – объём. и т.д.

- 1) $\Omega \subseteq \mathbb{R}^n$, $\mu(\Omega) < \infty$
- 2) $A \subseteq \Omega$
- 3) Возможность принадлежности некоторого исхода СЭ событию пропорционально мере события и не зависит ни от формы события, ни от его расположения внутри Ω .

Опр. Вероятностью события A наз. число $P(A) = \frac{\mu(A)}{\mu(\Omega)}$

Замеч. 1) Очевидно для геометр. опред. вероятности остаются в силе св-ва 1-3 класс. вероятности 2) Недостаток: не учитывает возможность того, что некоторые области внутри Ω окажутся более предпочтительными, чем другие — в таком случае полученный результат будет неадекватным.

2. Статистическое определение вероятности

Пусть

- 1) случайный эксперимент повторяется n раз
- 2) при этом событие A произошло n_A раз

Опр. Вероятностью события A наз. эмпирический (полученный опытным путём) предел отношения $\frac{n_A}{n}$ при $n \to \infty$

Замеч. 1) Очевидно для статистического. опред. вероятности остаются в силе св-ва 1-3 класс. вероятности

Замеч. Недостатки:

- 1) опыт не может быть повторён бесконечное число раз
- 2) такое определение не даёт достаточной основы для дальнейшего развития матем. теории

1.3 Определение пространства элементарных исходов, примеры. Сформулировать определение сигма-алгебры событий. Доказать простейшие свойства сигма-алгебры. Сформулировать аксиоматическое определение вероятности.

1. Пространство событий. Сигма алгебра

Опр. Случайным экспериментом называется эксперимент, результат которого невозможно заранее предсказать.

Опр. Каждый неделимый результат случ. экспер. называют элементарным исходом.

Опр. Мн-во всех элементарных исходов случайной величины Ω называется пространством элементарных исходов.

Прим.

- 1. Бросаем монету. Возможные исходы: 0 или Р. $\Omega = \{ {\tt 0}, \ {\tt P} \} \ |\Omega| = 2$
- 2. Из колоды в 36 карт последовательно извлекают 2 карты. $\Omega = \{(x_1, x_2): x_1, x_2 \in \{1, \dots, 36\}, x_1 \neq x_2\}, x_i$ номер карты при *i*-ом извлечении. $|\Omega| = 36 \cdot 35$

В результате случайного эксперимента, проведённого однократно, обязательно реализуется один из элементарных исходов.

Опр. (нестрогое) Событием (случайным событием) в рамках данного случайного эксперимента называется любое подмножество пространства элементарных исходов Ω этого эксперимента.

Но у такого определения есть недостатки:

- 1. Данное определение не является логически безупречным в случае бесконечного пространства элементарных исходов.
- 2. С точки зрения здравого смысла, если A и B события, связанные с некоторым СЭ, то если известно, наступили ли эти события в результате СЭ, то должно быть известно, наступили ли A+B, AB и тд. Это означает, что если A и B события, то A+B, AB тоже события, то есть множество событий должно быть замкнуто относительно теоретико-множественных операций.

Пусть 1) Ω – пространство элементарных исходов некоторого СЭ 2) $\beta \neq \varnothing$ – некоторый набор подмножеств в множестве Ω

Опр. β наз. сигма-алгеброй, если

- 1) $A \in \beta \Rightarrow \overline{A} \in \beta$
- 2) $A_1, \ldots, A_n, \ldots \in \beta \Rightarrow A_1 + \ldots + A_n + \ldots \in \beta$

Свойства

$$1^\circ~\Omega\in\beta$$

$$2^\circ \ \varnothing \in \beta$$

$$3^{\circ}$$
 Если A_1,\ldots,A_n,\ldots \in β , то A_1,\ldots,A_n,\ldots \in β

$$4^{\circ}$$
 Если $A, B \in \beta$, то $A \backslash B \in \beta$

Доказательства

1° Т.к. $\beta \neq \varnothing$, то произв. мн-во $A \in \beta$.

В силу 1°
опр-я $\overline{A} \in \beta$.

В силу $2^{\circ}\Omega = A + \overline{A} \in \beta$

$$2^{\circ} \ \Omega \in \beta \Rightarrow \varnothing = \overline{\Omega} \in \beta$$

$$3^{\circ} \quad A_{1}...A_{n}... \in \beta \overset{\text{onp. }}{\Rightarrow} \overline{A_{1}},...,\overline{A_{n}},... \in \beta \overset{\text{onp. }}{\Rightarrow} \overline{A_{1}},+...+,\overline{A_{n}},+... \in \beta \overset{\text{onp. }}{\Rightarrow} \overline{A_{1}},+...+,\overline{A_{n}},+... \in \beta \overset{\text{onp. }}{\Rightarrow} A_{1}\cdot...\cdot A_{n}\cdot... \in B$$

$$4^{\circ} \ A \backslash B = A \cdot \overline{B}$$
$$A \in \beta, \ B \in \beta \Rightarrow A \in \beta, \overline{B} \in \beta \Rightarrow A \cdot \overline{B} \in \beta$$

2. Аксиоматическое определение вероятности

Пусть

- 1) Ω пр-во элемент. исходов
- 2) β нек. сигма-алг. событий

Опр. Вероятностью (вер. мерой) наз. ф-ию $P: \beta \to \mathbb{R}$, которая обладает:

- 1° Аксиома неотрицательности $\forall A \in \beta \ P(A) \geq 0$
- 2° Аксиома нормированности $P(\Omega)=1$
- 3° Аксиома сложения для любой последовательности событий $A_1, ..., A_n \in \beta$, которые попарно несовместны: $P(A_1 + ... + A_n + ..) = P(A_1) + ... + P(A_n) + ...$

1.4 Определение пространства элементарных исходов, примеры. Сформулировать определение сигма-алгебры событий. Сформулировать аксиоматическое определение вероятности и доказать простейшие свойства вероятности

1. Пространство событий. Понятия событий. Сигма алгебра

Опр. Случайным экспериментом называется эксперимент, результат которого невозможно заранее предсказать.

Опр. Каждый неделимый результат случ. экспер. называют элементарным исходом.

Опр. Мн-во всех элементарных исходов случайной величины Ω называется пространством элементарных исходов.

Прим.

- 1. Бросаем монету. Возможные исходы: 0 или Р. $\Omega = \{0, P\} \ |\Omega| = 2$
- 2. Из колоды в 36 карт последовательно извлекают 2 карты. $\Omega = \{(x_1, x_2): x_1, x_2 \in \{1, \dots, 36\}, x_1 \neq x_2\}, x_i$ номер карты при i-ом извлечении. $|\Omega| = 36 \cdot 35$

Пусть 1) Ω – пространство элементарных исходов некоторого СЭ 2) $\beta \neq \emptyset$ – некоторый набор подмножеств в множестве Ω

Опр. β наз. сигма-алгеброй, если

- 1) $A \in \beta \Rightarrow \overline{A} \in \beta$
- 2) $A_1, \ldots, A_n, \ldots \in \beta \Rightarrow A_1 + \ldots + A_n + \ldots \in \beta$

Свойства

- $1^{\circ} \Omega \in \beta$
- $2^{\circ} \varnothing \in \beta$
- 3° Если $A_1,\ldots,A_n,\ldots\in\beta$, то $A_1,\ldots,A_n,\ldots\in\beta$
- 4° Если $A, B \in \beta$, то $A \backslash B \in \beta$

2. Аксиоматическое определение вероятности

Пусть

- 1) Ω пр-во элемент. исходов
- 2) β нек. сигма-алг. событий

Опр. Вероятностью (вер. мерой) наз. ф-ию $P:\beta\to\mathbb{R}$, которая обладает:

- 1° Аксиома неотрицательности $\forall A \in \beta \ P(A) \geq 0$
- 2° Аксиома нормированности $P(\Omega)=1$
- 3° Аксиома сложения для любой последовательности событий $A_1,...,A_n \in \beta$, которые попарно несовместны: $P(A_1+...+A_n+..)=P(A_1)+...+P(A_n)+...$

3. Свойства вероятности

Свойства вероятности

$$1^{\circ} P(\overline{A}) = 1 - P(A)$$

$$2^{\circ} P(\varnothing) = 0$$

$$3^{\circ}$$
 Если $A \subseteq B$, то $P(A) \leq P(B)$

$$4^{\circ} \ \forall A \in B \ 0 \le P(A) \le 1$$

$$5^{\circ} P(A+B) = P(A) + P(B) - P(AB)$$

6° Если
$$A_1, ..., A_n \in B$$
, то $P(A_1 + ... + A_n) =$

$$= \sum_{1 \le i_1 \le n} P(A_{i1}) - \sum_{1 \le i_1 < i_2 \le n} P(A_{i1}A_{i2}) + ... + (-1)^{n+1} P(A_i...A_n) \text{ (th сложения)}$$
Доказательства

1°
$$\Omega = A + \overline{A}, \ A\overline{A} = \emptyset$$

 $P(\Omega) \stackrel{\text{akc}}{=} {}^{2^{\circ}} 1$
 $P(A + \overline{A}) \stackrel{\text{akc}}{=} {}^{3^{\circ}} P(A) + P(\overline{A})$
 $P(A) + P(\overline{A}) = 1 \Rightarrow P(\overline{A}) = 1 - P(A)$

$$2^\circ \varnothing = \overline{\Omega}$$
 по предыдущему св-ву $P(\varnothing) = 1 - P(\Omega) \stackrel{\mathrm{akc}}{=} 2^\circ 1 - 1 = 0$

$$3^\circ~B=A+(B\backslash A)$$
 Т.к. $A(B\backslash A)=\varnothing\overset{\mathrm{akc}}{\Rightarrow}^{3^\circ}P(B)=P(A)+P(B\backslash A)\geq P(A)$

$$4^{\circ}\ P(A) \overset{\text{акс } 1^{\circ}}{\geq} 0$$

Осталось доказать, что $P(A) \leq 1$
 $A \subseteq \Omega \overset{\text{акс } 3^{\circ}}{\Rightarrow} P(A) \leq P(\Omega) = 1$
 5°

a) $A + B = A + (B \setminus A)$ $A(B \setminus A) = \varnothing \stackrel{\text{akc}}{\Rightarrow} P(A + B) = P(A) + P(B \setminus A)$

б)
$$B = (B \backslash A) + AB$$

т.к. $(B \backslash A)(AB) = \emptyset$, то $P(B) = P(B \backslash A) + P(AB) \Rightarrow P(B \backslash A) = P(B) - P(AB)$

B)
$$P(A + B) = P(A) + P(B) - P(AB)$$

 6° является следствием 5° и доказывается анал. формуле включений и исключений

1.5 Сформулировать определение условной вероятности. Доказать, что при фиксированном событии B условная вероятность P(A|B) обладает всеми свойствами безусловной вероятности

Пусть А и В – события, которые связаны с одним случайным экспериментом,

Опр. Пусть P(B) > 0, условной вероятностью события A при условии, что произошло событие B, наз. число $P(A|B) = \frac{P(AB)}{P(B)}$

Зафиксируем событие $B\ (P(B)>0)$ и будем рассматривать усл. вер-ть P(A|B) как ϕ -ию события A

Тh. Условная вер-ть удовлетворяет всем аксиомам безусловной вер-ти:

$$1^{\circ} P(A|B) \geq 0$$

$$2^{\circ} P(\Omega|B) = 1$$

 3° Для любого случайного набора попарно непересек. событ $A_1, ..., A_n$ имеет место $P(A_1 + ... + A_n + ..|B) = P(A_1|B) + ... + P(A_n|B) + ...$ Доказательства

$$1^{\circ} P(A|B) = \frac{P(AB)^{\geq 0}}{P(B)_{> 0}} \geq 0$$

1°
$$P(A|B) = \frac{P(AB)^{\geq 0}}{P(B)_{>0}} \geq 0$$

2° $P(\Omega|B) = \frac{P(\Omega B)}{P(B)} = \frac{P(B)}{P(B)} = 1$

3°
$$P(A_1 + ... + A_n + ...|B) = \frac{P((A_1 + ... + A_n + ...)|B)}{P(B)} = \frac{P(A_1 B + ... + A_n B + ...)}{P(B)} \stackrel{\text{akc.}}{=} 3^{\circ}$$

= $\frac{1}{P(B)}(P(A_1 B) + ... + (P_n B) + ...) = \sum_{i=1}^{\infty} \frac{P(A_i B)}{P(B)} = \sum_{i=1}^{\infty} P(A_i | B)$

Следствие Условная вер-ть обладает всеми св-вами безусловной вер-ти:

1.
$$P(\overline{A}|B) = 1 - P(A|B)$$

$$2. P(\varnothing|B) = 0$$

3. Если
$$A_1 \subseteq A_2$$
, то $P(A_1|B) \le P(A_2|B)$

4.
$$0 \le P(A|B) < 1$$

5.
$$P(A_1 + A_2|B) = P(A_1|B) + P(A_2|B) - P(A_1A_2|B)$$

6.
$$P(A_1 + ... + A_n | B) = \sum_{1 \le i_1 \le n} P(A_{i1} | B) - \sum_{1 \le i_1 < i_2 \le n} P(A_{i1} A_{i2} | B) + ... + (-1)^{n+1} P(A_1 ... A_n | B)$$
 Доказательство

Свойства 1-6 для безусловной вер-ти явл. следствиями аксиом 1°-3°. Т.к. усл. вероятность удовлетворяет этим аксиомам, то для неё будут верны все следствия

1.6 Сформулировать определение условной вероятности. Доказать теорему (формулу) умножения вероятностей. Привести пример использования этой формулы

Опр. Пусть P(B)>0, условной вероятностью события A при условии, что произошло событие B, наз. число $P(A|B)=\frac{P(AB)}{P(B)}$

Th. Пусть события $A_1...A_n$ таковы, что $P(A_1...A_{n-1}) > 0$. Тогда $P(A_1 \cdot A_n) = P(A_1) \cdot P(A_2|A_1) \cdot P(A_3|A_1A_2) \cdot ... \cdot P(A_n|A_1...A_{n-1})$ – формула умножения вероятностей (*) Доказательство:

- 1. $\forall k \in \{1, ..., n-1\}$ $A_1 \cdot ... \cdot A_k \supseteq A_1 \cdot ... \cdot A_{n-1} \Rightarrow P(A_1 \cdot ... \cdot A_k) \ge P(A_1 \cdot ... \cdot A_{n-1}) > 0 \Rightarrow$ все условные вероятности в формуле (*) определены
- 2. $P(\underbrace{A_1 \cdot \ldots \cdot A_{n-1}}_{A} \cdot \underbrace{A_n}_{B}) = P(\underbrace{A_1 \cdot \ldots \cdot A_{n-2}}_{A} \cdot \underbrace{A_{n-1}}_{B}) P(A_n | A_1 \cdot \ldots \cdot A_{n-1}) =$ = $P(A_1 \cdot \ldots \cdot A_{n-2}) P(A_{n-1} | A_1 \cdot \ldots \cdot A_{n-2}) P(A_n | A_1 \ldots A_{n-1}) =$ = $P(A_1) P(A_2 | A_1) \cdot \ldots \cdot P(A_n | A_1 \cdot \ldots \cdot A_{n-1})$

Прим. на 7 карточках написаны буквы слова "ШОКОЛАД". Карточки перемешивают и последовательно вынимают 3 карточки без возвращения. Какая вероятность, что эти три карточки в порядке появления образуют слово КОД

 $A = \{$ карты образуют слово КОД $\}$, P(A)-?

Решение

 $A_1 = \{$ Ha 1 карточке написано K $\}$

 $A_2 = \{ \text{Ha 2 карточке написано O} \}$

 $A_3 = \{$ На 3 карточке написано Д $\}$

Тогда $A = A_1 A_2 A_3$ – по ф-ле условной вер-ти

$$P(A) = P(A_1 A_2 A_3) = \underbrace{P(A_1)}_{\frac{1}{7}} \underbrace{P(A_2 | A_1)}_{\frac{2}{6}} \underbrace{P(A_3 | A_1 A_2)}_{\frac{1}{5}} = \frac{1}{105}$$

1.7 Сформулировать определение пары независимых событий. Доказать критерий независимости двух событий. Сформулировать определение попарно независимых событий и событий, независимых в совокупности. Обосновать связь этих свойств

Пусть A и B – два события, которые связаны с некоторым случайным экспериментом. Опр. События A и B называют независимыми, если P(AB) = P(A)P(B)Th.

- 1. Если P(B) > 0, то A, B независимы $\Leftrightarrow P(A|B) = P(A)$
- 2. Если P(A)>0, то A,B независимы $\Leftrightarrow P(B|A)=P(B)$ Доказательство
- 1. \Rightarrow Пусть P(AB) = P(A)P(B) тогда $P(A|B) = \frac{P(AB)}{P(B)} = \frac{P(A)P(B)}{P(B)} = P(A)$ \Leftarrow Пусть P(A|B) = P(A) тогда $P(A|B) = P(A) = \frac{P(AB)}{P(B)} \Rightarrow P(AB) = P(A)P(B) \Rightarrow A, B$ независимы
- 2. аналогично 1

Опр. События $A_1...A_n$ называются попарно независимыми, если $\forall i \neq j$ события A_i, A_j = независимы, т.е. $P(A_iA_j) = P(A_i)P(A_j), i \neq j$

Опр. События $A_1...A_n$ наз. независимыми в совокупности, если для любого набора индексов $i_1...i_k \in \{1...n\}, k = \overline{1...n}$ справедливо $P(A_{i1} \cdot ... \cdot A_{ik}) = P(A_{i1}) \cdot ... \cdot P(A_{ik})$

Замеч. Если $A_1...A_n$ независимы в совокупности, то они попарно независимы. Обратное неверно.

Прим. Рассмотрим правильный тетраэдр, на одной грани которого написано '1', на другой грани — '2', на третьей грани — '3', а на четвёртой — "1 2 3". Тетраэдр один раз подбрасывают. Пусть событие A_1 — На нижней грани написано '1'. A_2 — На нижней грани написано '2', A_3 — На нижней грани написано '3'.

Доказательство состоит в том, что события A_1, A_2, A_3 попарно независимы, но при этом не являются независимыми в совокупности.

$$P(A_1)=P(A_2)=P(A_3)=rac{1}{2}.$$
 $P(A_1\cdot A_2)=P(A_1)\cdot P(A_2),$ и так для каждой пары. Но $P(A_1\cdot A_2\cdot A_3)=rac{1}{4}
eq P(A_1)\cdot P(A_2)\cdot P(A_3).$

1.8 Сформулировать определение полной группы событий. Доказать теорему (формулу) полной вероятности и формулу Байеса. Понятия априорной и апостериорной вероятностей

Пусть Ω – пространство элементарных исходов, связанных с некоторым случайным экспериментом, а (Ω, β, P) – вероятностное пространство этого случайного эксперимента.

Опр. События $H_1...H_n$ образуют полную группу событий, если

1)
$$P(H_i) > 0$$

2)
$$H_i \cdot H_j = \emptyset, i \neq j$$

3)
$$H_1 + ... + H_n = \Omega$$

Замеч. При этом события $H_i,\ i=\overline{1,n}$ часто наз. гипотезами

Th. Формула полной вер-ти

Пусть

1) $H_1...H_n$ – полная группа событий

2)
$$P(H_i) > 0, i = \overline{1, n}$$

Тогда $P(A) = P(A|H_1)P(H_1) + ... + P(A|H_n)P(H_n)$ – ф-ла полной вер-ти Доказательство

1)
$$A = A\Omega = A(H_1 + ... + H_n) = AH_1 + ... + AH_n$$

Th. Формула Байеса

Пусть

- 1) Выполнены все условия из **th**. о ф-ле полной вер-ти
- 2) P(A) > 0

Тогда
$$P(H_i|A) = \frac{P(A|H_i)P(H_i)}{P(A|H_1)P(H_1)+...+P(A|H_n)P(H_n)}, i = \overline{1,n}$$

Доказательство

$$P(H_i|A) = \frac{P(AH_i)}{P(A)}$$
 ф-ла полной вер-ти, th умнож вер-тей $\frac{P(A|H_i)P(H_i)}{P(A|H_1)P(H_1) + \ldots + P(A|H_n)P(H_n)}$

Вероятности $P(H_i), i = \overline{1,n}$ называются **априорными**, т. к. они известны до опыта Вероятности $P(H_i|A), i = \overline{1,n}$ называются **апостериорными**, т.к. они вычисляются после опыта.

1.9 Сформулировать определение схемы испытаний Бернулли. Доказать формулу для вычисления вероятности реализации ровно k успехов в серии из п испытаний по схеме Бернулли. Доказать следствия этой формулы

Опр. Схемой Бернулли (биномиальной схемой) наз. серию экспериментов указанного вида, которая обладает

- 1. Все испытания независимы, т.е. исход k-го испытания не зависит от остальных
- 2. Вероятность наступления успеха во всех испытаниях неизменна

Th.
$$P_n(k) = C_n^k p^k q^{n-k}, \ k = 0, 1, ..., n$$

Доказательство

- 1. Результат серии из n испытаний будем описывать кортежем $\omega=(x_1,...,x_n)$, где $x_i= \begin{cases} 1, & \text{если в } i \text{ испытании удача} \\ 0, & \text{иначе} \end{cases}$
- 2. $A=\{$ из n испытаний произошло ровно k успехов $\}$ Тогда $A=\{\omega:$ ровно k единиц $\}$. Число исходов в A равно количеству способов поставить в кортеже ω ровно k единиц= числу способов выбрать в ω k позиций для расстановки единиц= C_n^k
- 3. Для каждого $\omega = (x_1...x_n) \in A$ $P(\omega) = P(x_1...x_n) = P(\{\text{в 1 испытании результат } x_1\}) \cdot ... \cdot P(\{\text{в n испыт. рез. } x_n\}) = |\text{ровно k успехов и n неудач}| = p^k q^{n-k}$
- 4. T.K. $|A| = C_n^k$, to $P(A) = C_n^k p^k q^{n-k}$

Следствие 1: Вероятность того, что число успехов в серии из n испытаний по схеме Бернулли не менее k_1 и не более k_2 : $P(k_1 \le k \le k_2) = \sum_{i=k_1}^{k_2} C_n^i p^i q^{n-i}, \ k_1 \le k_2$

Доказательство Пусть $A = \{$ произошло $\geq k_1$ и $\leq k_2$ успехов $\}$

Тогда $A=A_{k_1}+\ldots+A_{k_2}$, где $A_i=\{$ произошло ровно i успехов $\},\ i=\overline{k_1,k_2}$

$$P(A) = P(\sum_{i=k_1}^{k_2} A_i) = |A_i|$$
 несовместны $|=\sum_{i=k_1}^{k_2} C_n^i p^i q^{n-i}|$

Следствие 2: Вероятность того, что в серии из n испытаний по схеме Бернулли произойдёт хотя бы один успех можно посчитать по формуле $P_n(k \ge 1) = 1 - q^n$

Доказательство

$$P_n(k \ge 1) = 1 - P(\{\text{в серии из n испыт. будет 0 успехов}\}) = 1 - \underbrace{P_n(0)}_{C_n^0 p^0 q^{n-0}} = 1 - q^n$$

2.1 Сформулировать определение случайной величины и функции распределения вероятностей случайной величины. Доказать свойства функции распределения

Опр. Случайной величиной называют функцию $X:\Omega\to\mathbb{R}$, такую, что для $\forall x\in\mathbb{R}$ мн-во $\{\omega:X(\omega)< x\}\in\beta$ (т.е. это мн-во является событием)

Опр. Функцией распределения (вероятностей) случ. величины X называется отображение $F: \mathbb{R} \to \mathbb{R}$, определённое условием $F(x) = P\{X < x\}$

Свойства функции распределения

$$1^{\circ} \ 0 \le F(x) \le 1$$

$$2^{\circ}$$
 если $x_1 \leq x_2$, то $F(x_1) \leq F(x_2)$, т.е. $F(x)$ неубывающая ф-ия.

$$3^{\circ} \lim_{x \to -\infty} F(x) = 0, \quad \lim_{x \to +\infty} F(x) = 1$$

$$4^{\circ} P\{x_1 \leq x < x_2\} = F(x_2) - F(x_1)$$

5°
$$\lim_{x\to x_0} F(x) = F(x_0)$$
, т.е. $F(x)$ непрерывна слева в каждой точке $x\in\mathbb{R}$ Доказательства

1°
$$F(x) = P\{X < x\} \Rightarrow 0 \le F(x) \le 1$$

$$2^{\circ} \ \mathbb{A}_1 = \{X < x_1\}, \mathbb{A}_2 = \{X < x_2\}$$

т.к.
$$x_1 \le x_2$$
, то $\mathbb{A}_1 \subseteq \mathbb{A}_2$. По свойству вер-ти $P(A_1) \le P(A_2), \ F(x_1) \le F(x_2)$

$$3^{\circ} \lim_{n \to \infty} = 1.$$

рассмотрим последовательность $x_1, ..., x_n, ...$ такую, что

1)
$$x_1 \le x_2 \le x_3 \le \dots \le x_n \le \dots$$
 2) $x_n \to +\infty$ при $n \to \infty$

рассмотрим последовательность событий $\mathbb{A}_n = \{X < x_n\}, \ n \ge 1$

тогда
$$A_n, \ n=1,2,...$$
 – возраст. т.к. $\mathbb{A}_i\subseteq\mathbb{A}_{i+1}, \ i=1,2,...$

в соотв. с аксиомой непрерывности
$$\lim P\{\mathbb{A}_n\} = P\{\bigcup_{n=1}^{\infty} \mathbb{A}_n\} = P\underbrace{\{X < +\infty\}}_{\text{достов, событие}} = 1$$

T.K.
$$P\{A_n\} = P\{X < x_n\} = F(x_n)$$
, to $\lim_{x \to +\infty} F(x_n) = 1$

т.к. x_n - произвольная последоват., то в соотв. с опред. предела ф-ии по Гейне

$$\lim_{x\to +\infty}F(x)=1.$$
 $\lim_{x\to -\infty}F(x)=0$ доказывается аналогично

$$\{X < x_2\} = \{X < x_1\} + \{x_1 \le X < x_2\}$$
 — события в объединении несовместные
$$\xrightarrow{x < x_2}$$
 объединении несовместные
$$\Rightarrow \underbrace{P\{X < x_2\}}_{F(B)} = \underbrace{P\{X < x_1\}}_{F(A)} + P\{x_1 \le X < x_2\}$$

$$\Rightarrow P\{x_1 \le X < x_2\} = F(x_2) - F(x_1)$$

5° Рассмотрим посл-ть
$$x_1,...,x_n,...$$
 к-я 1) $x_1 \le x_2 \le ... \le x_n \le ... < x_0$ 2) $x_n \to x_0$ тогда $\mathbb{A}_n = \{X < x_n\}$ – неубыв. посл. событий

$$\lim_{n \to \infty} F(x) = \lim_{n \to \infty} P\{A_n\} \stackrel{\text{акс. непрер.}}{=} P\{\bigcup_{n=1}^{\infty} \mathbb{A}_n\} = P\{X < x_0\} = F(x_0)$$

 $n\to\infty$ по опред. предела ф-ии по Гейне: $\lim_{x\to x_0-} F(x) = F(x_0)$

2.2 Сформулировать определения случайной величины и функции распределения случайной величины. Сформулировать определения дискретной и непрерывной случайной величины. Доказать свойства плотности распределения вероятностей непрерывной случайной величины.

Опр. Случайной величиной называют функцию $X:\Omega\to\mathbb{R}$, такую, что для $\forall x\in\mathbb{R}$ мн-во $\{\omega:X(\omega)< x\}\in\beta$ (т.е. это мн-во является событием)

Опр. Функцией распределения (вероятностей) случ. величины X называется отображение $F: \mathbb{R} \to \mathbb{R}$, определённое условием $F(x) = P\{X < x\}$

Опр. Сл. вел. X называется дискретной, если мн-во её значений конечно или счётно

Опр. Сл. вел. X называется непрерывной, если существует ф-ия f(x) такая что, ф-ия распред. случ. вел. X м. б. представлена в виде $F(x) = \int\limits_{-\infty}^x f(t)dt$

Свойства ф-ии плотности распределения

$$1^{\circ} f(x) \geq 0, x \in \mathbb{R}$$

$$2^{\circ} P\{x_1 \le X \le x_2\} = \int_{x_1}^{x_2} f(x) dx$$

$$3^{\circ} \int_{-\infty}^{+\infty} f(x) dx = 1$$

- 4° Если x_0 точка непрер. f(x), то при малых Δx $P\{x_0 \leq X \leq x_0 + \Delta x\} \approx f(x_0) \Delta x$
- 5° Если X непрер. сл. вел., то для любого наперёд заданного x_0 $P(X=x_0)=0$ Доказательства
- $1^{\circ}~f(x)=F'(x),$ т.к. F(x) неуб. ф-ия, то $F'(x)\geq 0 \Rightarrow f(x)\geq 0$
- 2° По свойству функции распределения $P\{x_1 \leq X \leq x_2\} = F(x_2) F(x_1) = |$ т.к. F(x) первообразная для $f(x)| \stackrel{\text{ф-ла Ньютона-Лейбница}}{=} \int_{x_1}^{x_2} f(x) dx$

$$3^{\circ} \int_{-\infty}^{+\infty} f(x)dx \stackrel{\text{CB-BO } 2^{\circ}}{=} F(+\infty) - F(-\infty) = 1 - 0 = 1$$

$$4^{\circ} P\{x_0 \leq X \leq x_0 + \Delta x\} = F(x_2) = F(x_1) \stackrel{\text{th Лагранжа (f непрер.)}}{=} f(\xi) \Delta x$$
, где $\xi \in (x_0, x + \Delta x)$

Т.к. Δx «мала», а f непрерывна, то $f(\xi) \approx f(x_0)$

$$P\{x_0 \le X \le x_0 + \Delta x\} \approx f(x_0)\Delta x$$

$$5^{\circ} P\{X = x_0\} = \lim_{\Delta x \to 0} P\{x_0 \le X \le x_0 + \Delta x\} = \lim_{\Delta x \to 0} f(\xi) \Delta x \stackrel{\text{f Hemp.} \Rightarrow \text{ orp.}}{=} 0$$

2.3 Сформулировать определение нормальной случайной величины, указать геометрический смысл параметров. Понятие стандартного нормального закона. Доказать формулу для вычисления вероятности попадания нормальной случайной величины в интервал.

Нормальная случайная величина $X \sim N(m, \sigma^2)$

Опр. Непрерывная сл. вел. X имеет нормальное распред. (распред. Гаусса) с параметрами m и $\sigma^2(\sigma>0)$, если её плотность распред. имеет вид $f(x)=\frac{1}{\sqrt{2\pi}\sigma}e^{-\frac{(x-m)^2}{2\sigma^2}}, \ x\in\mathbb{R}$

Замеч. Параметр m характеризует положение центра симметрии графика f(x). Параметр σ отвечает за степень разброса значений случайной величины относительно среднего значения. Чем больше σ тем больше разброс $(\sigma_1 > \sigma_2)$

Если $m=0,\ \sigma=1,$ то нормальная сл. вел. называется $X\sim N(0,1)$ называется **стандартной** нормальной величиной, $f_{0,1}(x)=\frac{1}{\sqrt{2\pi}}e^{\frac{-x^2}{2}}, x\in\mathbb{R}$

Замеч. Если нормальная сл. вел. не является стандартной:

$$P\{a \leq x < b\} = \frac{1}{\sqrt{2\pi}\sigma} \int_{a}^{b} e^{-\frac{(x-m)^2}{2\sigma^2}} dx = \begin{vmatrix} t = \frac{x-m}{\sigma} \\ dt = \frac{1}{\sigma} dx \\ x = a \Rightarrow t = \frac{a-m}{\sigma} \\ x = b \Rightarrow t = \frac{b-m}{\sigma} \end{vmatrix} = \frac{\sigma}{\sqrt{2\pi}\sigma} \int_{\frac{a-m}{\sigma}}^{\frac{b-m}{\sigma}} e^{-\frac{t^2}{2}} dt = \begin{vmatrix} \text{вероятность того, что} \\ \text{станд. норм. случ. величина} \\ \text{попала в } \left[\frac{a-m}{\sigma}, \frac{b-m}{\sigma} \right) \end{vmatrix} = \Phi\left(\frac{b-m}{\sigma}\right) - \Phi\left(\frac{a-m}{\sigma}\right)$$

2.4 Сформулировать определение случайного вектора и функции распределения вероятностей случайного вектора. Сформулировать свойства функции распределения двумерного случайного вектора. Доказать предельные свойства.

Пусть (Ω, β, P) – вероятностное пространство $x_1(\omega),...,x_n(\omega)$ - сл. вел. заданные на этом пространстве

Опр. *п*-мерным случ. вектором наз. кортеж $\overrightarrow{x} = (x_1(\omega), ..., x_n(\omega))$

Опр. Ф-ей распределения n-мерного случ. вектора $(x_1,...,x_n)$ наз. отображение

 $F: \mathbb{R}^n \to \mathbb{R}$, которое определено усл-м $F(x_1,...,x_n) = P\{X_1 < x_1,...,X_n < x_n\}$

Свойства двумерной функции распределения $(F(x,y) = P\{X < x, Y < y\})$

- $1^{\circ} \ 0 < F(x,y) < 1$
- 2° при фикс. x ф-ия F(x,y) явл. неубыв. от y. при фикс. y явл. неуб. от x $F(x_2, y) \ge F(x_1, y)$, при $x_2 > x_1$ $F(x, y_2) \ge F(x, y_1)$, при $y_2 > y_1$
- $\lim_{\substack{x,y\to-\infty\\ lim\\ x,y\to+\infty}} F(x,y) = 0$
- 5° $\lim_{y \to +\infty} F(x,y) = F_X(x), \lim_{x \to +\infty} F(x,y) = F_Y(y)$
- 6° $P\{a_1 \le x < b_1, \ a_2 \le y < b_2\} = F(b_1, b_2) F(a_1, b_2) F(b_1, a_2) + F(a_1, a_2)$
- 7° При фикс. y, F(x, y), как ф-ия x явл. непрерыв. слева во всех точках При фикс. x, F(x, y), как ф-ия y явл. непрерыв. слева во всех точках Доказательства
- $1^{\circ} F(x,y) = P\{X < x, Y < y\} \Rightarrow 0 < F(x,y) < 1$
- 2° не нужно доказывать. НО:

- власов может спросить: $\lim_{x \to const, y \to -\infty} F(x,y) = ?$, что такое фиксация слева? $\lim_{x \to const, y \to -\infty} F(x,y) = P\{const < x\} \cdot \underbrace{\{Y < -\infty\}}_{\text{невозможн. событие}} = 0$ 3° Рассмотрим событие $\{X < x\} \cdot \underbrace{\{Y < -\infty\}}_{\text{невозможн. событие}} \Rightarrow \{X < x\} \cdot \{Y < -\infty\}$ невозможно $\Rightarrow F(x,-\infty) = P\{X < x,Y < -\infty\} = 0$. для y аналогично
- 4° Рассмотрим событие $\{X<+\infty\}\cdot\{Y< y\}$ оба события достоверны $\{X<+\infty\}\cdot\{Y< y\}$ достоверно $\Rightarrow F(+\infty, y) = \{X < +\infty\} \cdot \{Y < y\} = 1$. для y аналогично
- 5° Событие $\{y < +\infty\} \stackrel{\text{явл. достоверным}}{\Rightarrow} \{X < x\} \cdot \{Y < +\infty\} = \{X < x\}$ Тогда $F(x, +\infty) = P\{X < x, \} = F_X(x)$. для y аналогично
- 6° не нужно
- не нужно, но можно доказать аналогично одномерному случаю

2.5 Сформулировать определение случайного вектора и функции распределения вероятностей случайного вектора. Сформулировать свойства функции распределения двумерного случайного вектора. Доказать формулу для вычисления $P\{a_1 \le X < b_1, a_2 \le Y < b_2\}$.

Пусть (Ω, β, P) – вероятностное пространство $x_1(\omega),...,x_n(\omega)$ - сл. вел. заданные на этом пространстве

Опр. *п*-мерным случ. вектором наз. кортеж $\overrightarrow{x} = (x_1(\omega), ..., x_n(\omega))$

Опр. Ф-ей распределения n-мерного случ. вектора $(x_1,...,x_n)$ наз. отображение

$$F: \mathbb{R}^n \to \mathbb{R}$$
, которое определено усл-м $F(x_1,...,x_n) = P\{X_1 < x_1,...,X_n < x_n\}$

Свойства двумерной функции распределения $(F(x,y) = P\{X < x, Y < y\})$

$$1^{\circ} \ 0 \le F(x,y) \le 1$$

 2° при фикс. x ф-ия F(x,y) явл. неубыв. от y. при фикс. y явл. неуб. от x $F(x_2, y) \ge F(x_1, y)$, при $x_2 > x_1$

$$F(x, y_2) \ge F(x, y_1)$$
, при $y_2 > y_1$

$$3^{\circ} \lim_{x,y \to -\infty} F(x,y) = 0$$

$$4^{\circ} \lim_{x,y \to +\infty} F(x,y) = 1$$

5°
$$\lim_{y \to +\infty} F(x,y) = F_X(x)$$
, $\lim_{x \to +\infty} F(x,y) = F_Y(y)$

5°
$$\lim_{y \to +\infty} F(x,y) = F_X(x)$$
, $\lim_{x \to +\infty} F(x,y) = F_Y(y)$
6° $P\{a_1 \le x < b_1, \ a_2 \le y < b_2\} = F(b_1,b_2) - F(a_1,b_2) - F(b_1,a_2) + F(a_1,a_2)$

 7° При фикс. y, F(x, y), как ф-ия x явл. непрерыв. слева во всех точках При фикс. x, F(x, y), как ф-ия y явл. непрерыв. слева во всех точках Доказательство (6°)

Найдём вер-ть попадания усл. вер. в точку $\{X < x, a_2 \le Y < b_2\}$

По теореме сложения (события объединения несовместны):

$$\underbrace{P\{X < x, Y < b_2\}}_{F(x,b_2)} = \underbrace{P\{X < x, a_2 \le Y < b_2\}}_{F(x,b_2) - F(x,a_2)} + \underbrace{P\{X < x, Y < a_2\}}_{F(x,a_2)}$$

По формуле сложения (события объединения несовместны):

$$\underbrace{P\{X < b_1, a_2 \leq Y < b_2\}}_{F(b_1, b_2) - F(b_1, a_2)} = P\{a_1 \leq X < b_1, a_2 \leq Y < b_2\} + \underbrace{P\{X < a_1, a_2 \leq Y < b_2\}}_{F(a_1, b_2) - F(a_1, a_2)}$$
 Тогда $P\{a_1 \leq X < b_1, a_2 \leq Y < b_2\} = F(b_1, b_2) - F(b_1, a_2) - F(a_1, b_2) + F(a_1, a_2)$

2.6 Сформулировать определение случайного вектора и функции распределения вероятностей случайного вектора. Сформулировать определение непрерывного случайного вектора и доказать свойства плотности распределения вероятностей для двумерного случайного вектора.

Пусть (Ω, β, P) – вероятностное пространство

 $x_1(\omega),...,x_n(\omega)$ - сл. вел. заданные на этом пространстве

Опр. n-мерным случ. вектором наз. кортеж $\overrightarrow{x} = (x_1(\omega), ..., x_n(\omega))$

Опр. Ф-ей распределения n-мерного случ. вектора $(x_1,...,x_n)$ наз. отображение

 $F:\mathbb{R}^n \to \mathbb{R}$, которое определено усл-м $F(x_1,...,x_n)=P\{X_1 < x_1,...,X_n < x_n\}$

Опр. Сл. вектор $(x_1,...,x_n)$ наз. непрерывным, если существует ф-ия $f(x_1,...,x_n)$ такая что $F(x_1,...,x_n)=\int\limits_{-\infty}^{x_1}dt_1\int\limits_{-\infty}^{x_2}dt_2...\int\limits_{-\infty}^{x_n}f(t_1,...,t_n)dt_n$ Опр. 1) $f(x_1,...,x_n)$ наз. (совместной) плотностью распред. вер-ей сл. в-ра $(x_1,...,x_n)$

- 2) предполагается, что указанный несобств. интеграл сходится для всех $(x_1,...,x_n) \in \mathbb{R}^n$ Свойства двумерных непрерывных случайных векторов
- $1^{\circ} f(x,y) \geq 0$
- $2^{\circ} P\{a_1 \le x < b_1, a_2 \le y < b_2\} = \int_{a_1}^{b_1} dx \int_{a_2}^{b_2} f(x, y) dy$
- $3^{\circ} \iint_{\mathbb{R}^2} f(x,y) dx dy = 1$
- $R^{\frac{33}{R^2}}$ 4° $P\{a_1 \leq x < a_1 + \Delta x, a_2 \leq y < a_2 + \Delta y\} \approx f(a_1, a_2) \Delta x \Delta y$, где (a_1, a_2) т. непр. ф-ии f(x,y)
- 5° Для любого наперёд заданного значения (x°,y°) $P\{(x,y)=(x^{\circ},y^{\circ})\}=0$
- $6^{\circ} P\{(x,y) \in D\} = \iint\limits_D f(x,y) dx dy$
- 7° $\int_{-\infty}^{+\infty} f(x,y)dy = f_X(x)$ $\int_{-\infty}^{+\infty} f(x,y)dx = f_Y(y)$ Доказательства
- $1^{\circ}~f(x,y)=F'(x,y)$, т.к. F(x,y) неуб. ф-ия, то $F'(x,y)\geq 0 \Rightarrow f(x,y)\geq 0$
- -..- ниже представлено (2-5) для одномерной, надо переделать по наналогии
- 2° По свойству функции распределения $P\{x_1 \leq X \leq x_2\} = F(x_2) F(x_1) = |$ т.к. F(x)– первообразная для $f(x)|\stackrel{\text{ф-ла Ньютона-Лейбница}}{=} \int\limits_{x_1}^{x_2} f(x) dx$
- $3^{\circ} \int_{-\infty}^{+\infty} f(x) dx \stackrel{\text{cb-во}}{=} 2^{\circ} F(+\infty) F(-\infty) = 1 0 = 1$ $4^{\circ} P\{x_0 \le X \le x_0 + \Delta x\} = F(x_2) = F(x_1) \stackrel{\text{th Лагранжа (f непрер.)}}{=} f(\xi) \Delta x$, где $\xi \in (x_0, x + \Delta x)$

Т.к. Δx «мала», а f непрерывна, то $f(\xi) \approx f(x_0)$

$$P\{x_0 \le X \le x_0 + \Delta x\} \approx f(x_0)\Delta x$$

5°
$$P\{X = x_0\} = \lim_{\Delta x \to 0} P\{x_0 \le X \le x_0 + \Delta x\} = \lim_{\Delta x \to 0} f(\xi) \Delta x$$
 f hence $=$ orp. 0

6° Является обобщением 2° (без док-ва)
7°
$$F_X(x) = F(x, +\infty)$$
 $\stackrel{\text{непр. сл. в-ра.}}{=} \int_{-\infty}^{+\infty} dt_1 \int_{-\infty}^{+\infty} f(t_1, t_2) dt_2$ продиф. обе части по $x: F_X'(x) = \frac{dF_X(x)}{dx} = f_X(x) =$

- $= |\mathbf{x}$ точка непр. $f_X \Rightarrow$ по th о произвольной интеграла с верхним пределом| =
- $=\int\limits_{-\infty}^{+\infty}f(x,t_2)dt_2$ для f_Y аналогично

2.7 Сформулировать определение пары независимых случайных величин. Доказать свойства независимых случайных величин. Понятия попарно независимых случайных величин, независимых в совокупности.

Опр. Случайные величины X и Y называются независимыми, если $F(x,y) = F_X(x)F_Y(y)$, где F – совместная функция распределения, F_X, F_Y – маргинальные функции распределения случайных величин X и Y

Свойства независимых случайных величин

- $1^\circ\,$ Сл. вел. X и Y независимы $\Leftrightarrow \forall \forall x,y \in \mathbb{R}$ события $\{X < x\}$ и $\{Y < y\}$ независимы
- 2° Сл. вел. X и Y независимы $\Leftrightarrow \forall \forall x_1, x_2 \in \mathbb{R} \ \forall \forall y_1, y_2 \in \mathbb{R}$ события $\{x_1 < X < x_2\}$ и $\{y_1 < Y < y_2\}$ независимы
- 3° Сл. вел. X и Y независимы $\Leftrightarrow \forall \forall M_1, M_2$ события $\{X \in M_1\}$ и $\{Y \in M_2\}$ независимы где M_1, M_2 промежутки или объединения промежутков в $\mathbb R$
- 4° Если X,Y дискр. сл. вел., то X,Y нез. $\Leftrightarrow P\{(X,Y)=(x_i,y_j)\}=$ $=P\{X=x_i\}P\{Y=y_j\}$ для всех i,j
- 5° Если X,Y непрер. сл. вел., то X,Y нез. $\Leftrightarrow f(x,y)=f_X(x)f_Y(y)$, где f совместная плотность распред., f_X,f_Y маргинальные плотности распред. Доказательства
- 1° Следует из определения
- 2° Необходимость (\Rightarrow)

Пусть
$$X, Y$$
 нез. $\Rightarrow F(x, y) = F_X(x)F_Y(y)$

По св-ву двумерной функции распределения:

$$\begin{split} &P\{x_1 \leq X < x_2, y_1 \leq Y < y_2\} = F(x_1, y_1) + F(x_2, y_2) - F(x_1, y_2) - F(x_2, y_1) = \\ &= F_X(x_1) F_Y(y_1) + F_X(x_2) F_Y(y_2) - F_X(x_1) F_Y(y_2) - F_X(x_2) F_Y(y_1) = \\ &= [F_X(x_2) - F_X(x_1)] [F_Y(y_1) - F_Y(y_2)] \overset{\text{св. одном. } \Phi\text{-ии распр.}}{=} P\{x_1 \leq X < x_2\} P\{y_1 \leq Y < y_2\} \end{split}$$

Достаточность (⇐)

Пусть
$$\forall \forall x_1, x_2, y_1, y_2 \in \mathbb{R}$$
 события $\{x_1 \leq X < x_2\}$ и $\{y_1 \leq Y < y_2\}$ независимы $F(x,y) = P\{X < x, Y < y\} = P\{-\infty \leq X < x, -\infty \leq Y < y\} = P\{-\infty \leq X < x\}P\{-\infty \leq Y < y\} = P\{X < x\}P\{Y < y\} = F_X(x)F_Y(y)$

- $3^{\circ}\,$ является обобщением свойства 1° и $2^{\circ}\,$ (без док-ва)
- 4° Достаточность (\Leftarrow)

Была доказана выше, в рассуждениях перед определением независимых сл. вел.

Hеобходимость (⇒)

Рассмотрим дискретный сл. вектор X, Y, у которого конечное мн-во значений:

$$X \in \{x_1,...,x_m\}, Y \in \{y_1,...,y_n\}$$
 X,Y нез., если $P\{(X,Y)=(x_i,y_j)\}=P\{X=x_i\}P\{Y=y_j\}$
 $F(x,y)=P\{X< x,Y< y\}=P\{X\in \{x_1,...,x_k\}, Y\in \{y_1,...,y_l\}\}=$
 $=P\{(X,Y)\in \{(x_i,y_j):\ i=\overline{1,k},j=\overline{1,l}\}\}=\sum\limits_{i=1}^k\sum\limits_{j=1}^l P\{(X,Y)=(x_i,y_j)=$
 $=\sum\limits_{i=1}^k\sum\limits_{j=1}^l P\{X=x_i\}P\{Y=y_j\}=(\sum\limits_{i=1}^k P\{X=x_i\})(\sum\limits_{i=1}^k P\{Y=y_j\})=$
 $=P\{X\in \{x_1,...,x_k\}\}P\{Y\in \{y_1,...,y_l\}\}=F_X(x)F_Y(y)$

 5° Необходимость (⇒)

Пусть
$$X,Y$$
 - независимые, тогда $F(x,y) = F_X(x)F_Y(y)$ $f(x,y) = \frac{\delta^2 F(x,y)}{\delta x \delta y} = \frac{\delta^2}{\delta x \delta y} [F_X(x)F_Y(y)] = [\frac{\delta}{\delta x}F_X(x)][\frac{\delta}{\delta y}F_Y(y)] = f_X(x)F_Y(y)$ Достаточность (\Leftarrow)
Пусть $f(x,y) = f_X(x)F_Y(y)$. Тогда: $F(x,y) = \int\limits_{-\infty}^x dt \int\limits_{-\infty}^y f(t,v)dv = \int\limits_{-\infty}^x dt \int\limits_{-\infty}^y f_X(t)f_Y(v)dv = \int\limits_{-\infty}^x f_X(t)dt \int\limits_{-\infty}^y f_Y(v)dv = F_X(x)F_Y(y)$

Опр. Сл. величины $X_1,...,X_n$ заданные на одном вероятностном пространстве наз.:

- Попарно независимыми, если X_i и X_j независимы при $i \neq j$
- Независимыми в совокупности, если $F(x_1,...,x_n)=F_{X_1}(x_1)\cdot...\cdot F_{X_n}(x_n)$, где

F – совместная функция распределения случайного вектора $(X_1,...,X_n)$

 $F_{X_i}(x_i)$ – маргинальная ф-ия распределения компонент

Замеч.

- 1) Если $X_1,...,X_n$ независимы в совокупности, то они нез. попарно. Обратное неверно.
- 2) Обобщения свойств 4° и 5° будут справедливы для любого числа n случайных величин, независимых в совокупности. К примеру, обобщение свойства 5°:

$$X_1,...,X_n$$
 – нез. в совокупности $\Leftrightarrow f(x_1,...,x_n)=f_{X_1}(x_1)\cdot...\cdot f_{X_n}(x_n)$

2.8 Понятие условного распределения случайной величины. Сформулировать определение условного ряда распределения компоненты двумерного дискретного случайного вектора. Привести рассуждения, приводящие к такому определению. Сформулировать определение условной плотности распределения компоненты двумерного непрерывного случайного вектора. Сформулировать критерии независимости случайных величин в терминах условных распределений.

Опр. Условное распределение – это распределение случайной величины при условии, что другая случайная величина приняла определённое значение.

Случай дискретного случайного вектора

Пусть

- 1) (X,Y) дискретный случайный вектор
- 2) $X \in \{x_1,...,x_m\}$ $Y \in \{y_1,...,y_n\}$ $x_1(\omega),...,x_n(\omega)$ сл. вел. заданные на этом пространстве
- 3) Обозначим $p_{ij}=P\{(X,Y)=(x_i,y_j)\},\;i=\overline{1,m},\;j=\overline{1,n}$ Тогда если $Y=y_j,\;$ то $P\{X=x_i|Y=y_j\}=\frac{P\{X=x_i,Y=y_j\}}{P\{Y=y_j\}}=\frac{p_{ij}}{P_{Yj}}=\frac{p_{ij}}{\sum\limits_{j=1}^{m}p_{ij}}$

Опр. Для дискретного двумерного сл. вектора (X,Y) условной вероятностью того, что сл. вел. X приняла значение x_i при условии, что сл. вел. Y_j приняла значение y_j , наз. число $\pi_{ij} = \frac{p_{ij}}{P_{V_i}}$

Опр. Условной плотностью распределения сл. вел. X при условии, что сл. вел. Y приняла значение y называется $f_X(x|Y=y)=\frac{f(x,y)}{f_Y(y)}$

Th. Критерий независимости сл. вел. в терминах условных распределений Пусть (X,Y) - случ. вектор. Тогда:

 $1^{\circ} X, Y$ независимы \Leftrightarrow

$$\begin{bmatrix} F_X(x|Y=y) = F_X(x) \ \forall y, \ \text{для которых определена } F_X(x|Y=y) \ \end{bmatrix}$$
 или $F_Y(y|X=x) = F_Y(y) \ \forall x, \ \text{для которых определена } F_Y(y|X=x)$

 2° Если (X,Y) – непрерывный случайный вектор, то X,Y – независимы \Leftrightarrow

$$f_X(x|Y=y)=f_X(x)\; \forall y,\;$$
для которых определена $f_X(x|Y=y)$ или

 $\int f_Y(y|X=x) = f_Y(y) \ \forall x, \$ для которых определена $f_Y(y|X=x)$

3° Если (X,Y) – дискретный случайный вектор, то X,Y – независимы \Leftrightarrow $\begin{bmatrix} P(X=x_i|Y=y_j) = P(X=x_i) \ \forall y_j \\ \text{или} \\ P(Y=y_j|X=x_i) = P(Y=y_j) \ \forall x_i \end{bmatrix}$

2.9 Понятие функции скалярной случайной величины. Доказать теорему о формуле для вычисления плотности $f_Y(y)$ случайной величины $Y=\varphi(X)$, если X — непрерывная случайная величина, а φ — монотонная непрерывно дифференцируемая функция. Записать аналогичную формулу для кусочномонотонной функции φ

Скалярная функция скалярного аргумента:

Пусть X – некоторая сл. вел., $\varphi: \mathbb{R} \to \mathbb{R}$ – некоторая известная ф-и.

Тогда $\varphi(X) = Y$ – некоторая сл. вел

Тh. Пусть

- 1. X непрерывная случайная величина
- 2. $f_X(x)$ плотность распределения сл. вел.
- 3. $\varphi: \mathbb{R} \to \mathbb{R}$ монотонная ф-ия, которая непрер. дифф.
- 4. ψ ф-ия, обратная к φ
- 5. $Y = \varphi(X)$ Тогда
- 1. Y также является непрерывной сл. вел.
- 2. $f_Y(y) = f_X(\psi(y))|\psi'(y)|$

Доказательство

По опр. функции распределения $F_Y(y) = P\{Y < y\} = P\{\varphi(X) < y\}$ Т.к. φ монотонная, то существует обратная к ней ф-ия $\varphi^{-1} = \psi$

Монотоннно ↑, $F_Y(y) = P\{X < \psi(y)\} = F_X(\psi(y))$ монотоннно ↓, $F_Y(y) = P\{X > \psi(y)\} = 1 - P\{X \le \psi(y)\} \stackrel{\text{X-непрер.}}{=}$ $= 1 - P\{X < \psi(y)\} = 1 - F_X(\psi(y))$ монотоннно ↑, $\frac{d}{dy}[F_X(\psi(y))] = F_X'(\psi(y)) \cdot \psi'(y)$

монотонние
$$\downarrow$$
, $\frac{d}{dy}[1-F_X(\psi(y))] = -F_X'(\psi(y)) \cdot \psi'(y) = f_X(\psi(y)) \cdot |\psi'(y)|$

\mathbf{Th} . Пусть

- 1. X непрерывная случайная величина
- 2. $\varphi:\mathbb{R}\to\mathbb{R}$ кусочно монотонная ф-ия, имеющая n интервалов
- 3. φ диффиринцируема
- 4. Для данного $y \in \mathbb{R}, x_1 = x_1(y), ..., x_k = x_k(y)$ $(k \leq n)$ все решения уравнения $y = \varphi(x)$, принадл. инт. $I_1, ..., I_k$. Тогда: $f_Y(y) = \sum_{i=1}^k f_X(\psi_i(y)) \cdot |\psi_i'(y)|$, где $\psi_i(y)$ ф-ия, обратная к $\varphi(x)$ на интервале $I_j, j = \overline{1,k}$

2.10 Понятие скалярной функции случайного вектора. Обосновать формулу для вычисления функции распределения случайной величины Y, функционально зависящей от случайных величин X_1 и X_2 , если (X_1, X_2) — непрерывный случайный вектор. Доказать теорему о формуле свёртки.

Th. Пусть

- 1) (X_1,X_2) двумерный случайный вектор
- 2) $\varphi: \mathbb{R}^2 \to \mathbb{R}$ ф-ия двух переменных

Тогда $Y = \varphi(X_1, X_2)$ – сл. вел. (скалярная)

- 1) Случай **дискр. случ. вектора**: Пусть (X_1, X_2) дискретный случ. вектор. В таком случае Y дискр. случ. вел.
- 2) Случай **непрерывного случайного вектора**: Если (X_1, X_2) непр. случ. вектор, то ф-ию распределения случ. вел. $Y = \varphi(X_1, X_2)$ можно найти по формуле:

Нужна картинка что такое D(y)

$$F_Y(y) = \iint\limits_{D(y)} f(x_1,x_2) dx_1 dx_2$$
, где f – совм. плотн. распред. сл. вел. X_1 и X_2 , $D(y) = \{(x_1,x_2): \varphi(x_1,x_2) < y\}$

Доказательство

Нужна картинка что такое D(y)

$$F_Y(y) = P\{Y < y\} = |\text{событие } \{Y < y\}$$
 эквавалентно событию $\{(X_1, X_2) \in D(y)\}| =$ свойство непрерывного случайного вектора $= \iint\limits_{D(y)} f(x_1, x_2) dx_1 dx_2$

Th. Формула свёртки. Пусть

- 1. X_1, X_2 независимые сл. вел.
- 2. (X_1, X_2) непрерывный случ. вектор
- 3. $Y = X_1 + X_2$

Тогда

$$f_Y(y) = \int_{-\infty}^{+\infty} f_{X_2}(y - x_1) f_{X_1}(x_1) dx_1$$

Доказательство

1.
$$F_Y(y) = P\{Y < y\} = P\{X_1 + X_2 < y\} = P\{(X_1, X_2) \in D(y)\} =$$

$$\iint_{D(y)} f(x_1, x_2) dx_1 dx_2 = |X_1, X_2 \text{ независимые} \Rightarrow f(x_1, x_2) = f_{X_1}(x_1) f_{X_2}(x_2)| =$$

$$= \int_{-\infty}^{+\infty} dx_1 \int_{-\infty}^{y-x_1} f_{X_1}(x_1) f_{X_2}(x_2) dx_2 = \int_{-\infty}^{+\infty} f_{X_1}(x_1) [F_{X_2}(x_2)|_{-\infty}^{y-x_1}] dx_1 =$$

$$= |F_{X_2}(-\infty)| = 0| = \int_{-\infty}^{+\infty} f_{X_1}(x_1) F_{X_2}(y - x_1) dx_1$$
2. $f_Y(y) = \frac{d}{dy} F_Y(y) = \int_{-\infty}^{+\infty} f_{X_1}(x_1) f_{X_2}(y - x_1) dx_1$

2.11 Сформулировать определение математического ожидания для дискретной и непрерывной случайных величин. Механический смысл математического ожидания. Доказать свойства математического ожидания. Записать формулы для вычисления математического ожидания функции случайной величины и случайного вектора.

Опр. Мат. ожиданием (средним значением) дискр. сл. вел. X наз. число $M[X] = \sum_{i \in I} x_i p_i$

Опр. Математическим ожиданием непр. сл. вел. X наз. число $M[X] = \int\limits_{-\infty}^{+\infty} x f(x) dx$

Механический смысл мат. ожидания: дискр. сл. вел. X можно интерпретировать как систему точек $x_1, x_2, ...$ на прямой, масса точки x_i равна p_i .

Т.к. $\sum p_i = 1$, то MX характеризует положение центра тяжести вероятностной массы.

Свойства математического ожидания

1° Если
$$P\{X=x_0\}=1$$
 (т.е. если X фактически не явл. случ.), то $MX=x_0$ X X_0 Y_0

- $2^{\circ} M[aX + b] = a \cdot MX + b$ $3^{\circ} X[X_1 + X_2] = MX_1 + MX_2$
- 4° Если X_1 и X_2 независимы, то $M[X_1X_2]=MX_1\cdot MX_2$ Доказательства
- 1° По определению: $MX = \sum_{i=1}^{n} p_i x_i = 1 \cdot x_0 = x_0$
- 2° док. для непрерывной сл. вел.: $M[aX+b]=|\varphi(x)=ax+b|=\int\limits_{\mathbb{R}}(ax+b)f(x)dx=$

$$= a \int_{\mathbb{R}} x f(x) dx + b \int_{\mathbb{R}} f(x) dx = aM[X] + \int_{MX} f(x) dx$$

 $= a \int_{\mathbb{R}} x f(x) dx + b \int_{\mathbb{R}} f(x) dx = a M[X] + b$ $= a \int_{MX} x f(x) dx + b \int_{\mathbb{R}} f(x) dx = a M[X] + b$ 3° док. для дискретной сл. вел.: $M[X_1 + X_2] = |\varphi(x_1, x_2) = x_1 + x_2| = \sum_i \sum_j (x_{1,i} + x_{2,j}) p_{ij} =$ $= \sum_i \sum_j x_{1,i} p_{ij} + \sum_i \sum_j x_{2,j} p_{ij} = \sum_i x_{1,i} \sum_j p_{ij} + \sum_j x_{2,j} \sum_{i \neq j} p_{ij} = MX_1 + MX_2$ $= \sum_i \sum_j x_{1,i} p_{ij} + \sum_i \sum_j x_{2,j} p_{ij} = \sum_i x_{1,i} \sum_j p_{ij} + \sum_j x_{2,j} \sum_{i \neq j} p_{ij} = MX_1 + MX_2$

$$= \sum_{i} \sum_{j} x_{1,i} p_{ij} + \sum_{i} \sum_{j} x_{2,j} p_{ij} = \sum_{i} x_{1,i} \sum_{j} p_{ij} + \sum_{j} x_{2,j} \sum_{i} p_{ij} = MX_1 + MX_2$$

$$P\{X_1 = X_{1,i}\}$$

 4° док. для непрерывной сл. вел.:

$$M[X_1X_2] = |\varphi(x_1, x_2) = x_1x_2| = \iint_{D_2} x_1x_2f(x_1, x_2)dx_1dx_2 =$$

$$M[X_1X_2] = |\varphi(x_1, x_2) = x_1x_2| = \iint_{R^2} x_1x_2f(x_1, x_2)dx_1dx_2 =$$

$$= \int_{-\infty}^{+\infty} dx_1 \int_{-\infty}^{+\infty} x_1x_2f_{X_1}(x_1)f_{X_2}(x_2)dx_2 = \int_{-\infty}^{+\infty} x_1f_{X_1}(x_1)dx_1 \int_{-\infty}^{+\infty} x_2f_{X_2}(x_2)dx_2 = MX_1 \cdot MX_2$$

Замеч. 1. Пусть X – сл. вел., $\varphi:\mathbb{R}\to\mathbb{R}$ – нек. ф-ия. $Y=\varphi(X)$.

$$MY=M[\varphi(x)]=\sum_{i\in I}\varphi(x_i)p_i$$
 (дискретная) $MY=M[\varphi(x)]=\int\limits_{-\infty}^{+\infty}\varphi(x)f(x)dx$ (непрерыв.)

Замеч. 2. Если $\overrightarrow{X} = (X_1, X_2)$ – сл. вектор., $\varphi : \mathbb{R}^2 \to \mathbb{R}, Y = \varphi(X_1, X_2)$, то

$$MY = \sum_{i,j} \varphi(x_{1i},x_{2j})p_{ij}$$
, где $p_{ij} = P\{X_1,X_2\} = (x_{1i},x_{2j})$ если \overrightarrow{X} дискретный сл. вектор

$$MY = \iint\limits_{R^2} \varphi(x_1,x_2) f(x_1,x_2) dx_1 dx_2$$
 если \overrightarrow{X} – непрерывный сл. вектор

2.12 Сформулировать определение дисперсии случайной величины. Механический смысл дисперсии. Доказать свойства дисперсии. Понятие среднеквадратичного отклонения случайной величины.

Пусть
$$X$$
 – сл. вел., m – MX

Опр. Дисперсией случайной величины X называют число $DX = M[(X-m)^2]$

Замеч. 1. Дискр:
$$DX = |DX = M[(X-m)^2], \varphi(x) = (x-m)^2| = \sum_i (x_i-m)^2 p_i$$

Замеч. 2. Непрерывная: $DX = \int\limits_{-\infty}^{+\infty} (x-m)^2 f(x) dx$, где f – ф-ия плотности сл. вел. X

Механический смысл: Дисперсия сл. вел. характеризует разброс значений этой сл. вел. относительно мат. ожидания. Чем больше дисперсия, тем больше разброс. С точки зрения механики дисперсия — момент инерции вероятностной массы отн. мат. ожидания Свойства дисперсии:

$$1^{\circ} DX \geq 0$$

$$2^{\circ}$$
 Если $P\{X=x_0\}=1$, то $DX=0$

$$3^{\circ} D[aX + b] = a^2 DX$$

$$4^{\circ} DX = M[X^{2}] - (MX)^{2}$$
 Доказательства

$$1^{\circ} DX = MY$$
, где $Y = (X - m)^2 \ge 0 \Rightarrow MY \ge 0$

$$2^{\circ} DX = |MX = x_0| = |\sum_{i} (x_i - m)^2 p_i| = (x_0 - x_0)^2 \cdot 1 = 0$$
 $X \mid x_0 \mid P \mid 1$

 3° Обозначим m=MX

$$D[aX + b] = M[((aX + b) - M(aX + b))^{2}] = M[(aX + b - aM[X] - b)^{2}] =$$

$$= M[a^{2}(X - MX)^{2}] = a^{2}M[(X - m)^{2}] = a^{2}DX$$

 4° Обозначим m=MX

$$\begin{split} DX &= M[(X-m)^2] = M[X^2 - 2XM + m^2] = M[X^2] - 2mM[X] + M[m^2] = \\ &= M[X^2] - m^2 = M[X^2] - (MX)^2 \end{split}$$

 5° Обозначим $m_1 = MX_1, m_2 = MX_2$

$$D[X_1 + X_2] = M[((x_1 + x_2) - M(X_1 + X_2))^2] = M[((x_1 - m_1) + (x_2 - m_2))^2] =$$

$$= M[(X_1 - m_1)^2 + (X_2 - m_2)^2 + 2(X_1 - m_1)(X_2 - m_2)] =$$

$$= M[(X_1 - m_1)^2] + M[(X_2 - m_2)^2] + 2M[(X_1 - m_1)(X_2 - m_2)] = DX_1 + DX_2$$

$$A = M[X_1X_2 - m_1X_2 - m_2\tilde{X}_1 + m_1m_2] = M[X_1X_2] - m_1MX_2 - m_2NX_1 + m_1m_2 =$$

= $|x_1, x_2 - \text{независ.} \Rightarrow M(X_1, X_2) = m_1m_2| = m_1m_2 - m_1m_2 - m_1m_2 + m_1m_2 = 0$

Замеч. DX имеет размерность, равную квадрату размерности случайной величины X. Это не всегда удобно, особенно при решении практических задач. Поэтому рассматривают такую числовую характеристику, как среднеквадратичное отклонение (СКО).

Опр. Среднеквадратичным отклонением (СКО) сл. вел. X наз. число $\sigma_X = \sqrt{DX}$

2.13 Сформулировать определение математического ожидания и дисперсии. Записать законы распределения биномиальной, пуассоновской, равномерной, экспоненциальной и нормальной случайной величин. Найти математические ожидания и дисперсии этих случайных величин.

Опр. Мат. ожиданием (средним значением) дискр. сл. вел. X наз. число $M[X] = \sum_{i \in I} x_i p_i$

Опр. Математическим ожиданием непр. сл. вел. X наз. число $M[X] = \int_{-\infty}^{+\infty} x f(x) dx$

Пусть X – сл. вел., m – MX

Опр. Дисперсией случайной величины X называют число $DX = M[(X-m)^2]$

Биномиальная сл. вел. $X \sim B(n,p) \; P\{X=k\} = C_n^k p^k q^{n-k}, k = \overline{0,n}$

X – число успехов в n испытаний по сх. Бернулли. Поэтому рассм. сл. вел. $X_i, i=\overline{1,n}$

$$X$$
 – число успехов в n испытаний по сх. Бернулли. Поэтому рассм. сл. вел. $X_i, i = X_i = \begin{cases} 1, \text{ если в } i\text{-ом испытании успех} \\ 0, \text{ иначе} \end{cases}$, тогда $X = \sum_{i=1}^n X_i, \quad MX = \sum_{i=1}^n MX_i = np$

$$DX = D(\sum_{i=1}^{n} X_i) =$$
 исп. по сх. Бернулли нез. \Rightarrow $= \sum_{i=1}^{n} DX_i = npq$

Пуассоновская сл. вел. $X \sim \Pi(\lambda)$ $P\{X = k\} = \frac{\lambda^k}{k!}e^{-\lambda}, k = 0, 1, 2, ...$

$$MX = \sum_{k} X_k P_k = \sum_{k=1}^{\infty} k \cdot \frac{\lambda^k}{k!} e^{-\lambda} = e^{-\lambda} \sum_{k=1}^{\infty} k \frac{\lambda^k}{(k-1)!} = \begin{vmatrix} k! & \lambda & \lambda \\ k - 1 = t \\ k = 1 \Rightarrow t = 0 \end{vmatrix} = \lambda e^{-\lambda} \sum_{\substack{t=0 \text{ Makijopeha}}}^{\infty} \frac{\lambda^t}{t!} = \frac{\lambda^t}{k!} = \frac{\lambda^t}$$

$$=\lambda e^{-\lambda} \cdot e^{\lambda} = \lambda$$
 $DX = M[X^2] - (MX)^2$

$$M[X^2] = \sum_{k=1}^{\infty} k^2 \frac{\lambda^k}{k!} e^{-\lambda} = e^{-\lambda} \sum_{k=1}^{\infty} k \frac{\lambda^k}{(k-1)!} = |k-1| = t| = e^{-\lambda} \sum_{t=0}^{\infty} (t+1) \frac{\lambda^{t+1}}{t!} = \lambda e^{-\lambda} \sum_{t=0}^{\infty} (t+1) \frac{\lambda^t}{t!} = \lambda e^{-\lambda} \sum_{t=0}^{\infty} (t+1)$$

$$=\lambda e^{-\lambda}[\underbrace{\sum_{t=0}^{\infty}t\frac{\lambda^{t}}{t!}}_{(MX)e^{\lambda}}+\underbrace{\sum_{t=0}^{\infty}\frac{\lambda^{t}}{t!}}_{e^{\lambda}}]=\lambda e^{-\lambda}e^{\lambda}[\lambda+1]=\lambda^{2}+\lambda$$

$$DX = \lambda^2 + \lambda - \lambda^2 = \lambda$$

Геометрическое распределение сл. вел. X

$$P\{X=k\}=pq^k, k=0,1,2,\dots\ p+q=1,\ P,q\in(0,1)$$

$$MX = \sum_{k=1}^{\infty} kpq^k = pq \sum_{k=1}^{\infty} kq^{k-1} = \frac{pq}{(1-q)^2} = \frac{pq}{p^2} = \frac{q}{p}$$

$$DX = \frac{q}{p^2}$$

Равномерное распределение
$$X \sim R(a,b)$$
 $f(x) = \begin{cases} \frac{1}{b-a}, & x \in (a,b) \\ 0, & \text{иначе} \end{cases}$ $MX = \int\limits_{-\infty}^{+\infty} x f(x) dx = \int\limits_{a}^{b} \frac{x}{b-a} dx = \int \frac{1}{b-1} \frac{1}{2} x^2 |_{a}^{b} = \frac{b^2 - a^2}{2(b-a)} = \frac{(b-a)(b+a)}{2(b-a)} = \frac{a+b}{2}$ $DX = M[(X - MX)^2] = \int\limits_{-\infty}^{+\infty} (x - \frac{a+b}{2})^2 f(x) dx = \frac{1}{b-a} \int\limits_{a}^{b} (x - \frac{a+b}{2})^2 dx = \frac{1}{b-a} \frac{1}{3} (x - \frac{a+b}{2})^3 |_{x=a}^{x=b} = \frac{1}{3(b-a)} [(\frac{b-a}{2})^3 - (\frac{a}{2} - \frac{b}{2})^3] = \frac{2(b-a)^3}{24(b-a)} = \frac{(b-a)^2}{12}$ Экспоненциальное распределение $X \sim \exp(\lambda)$ $f(x) = \begin{cases} \lambda e^{-\lambda x}, & x > 0 \\ 0, & x < 0 \end{cases}$ $MX = \int\limits_{-\infty}^{+\infty} x f(x) dx = \lambda \int\limits_{0}^{+\infty} x e^{-\lambda x} dx = -\int\limits_{0}^{+\infty} x de^{-\lambda x} = -x e^{-\lambda x} |_{0}^{+\infty} + \int\limits_{0}^{+\infty} e^{-\lambda x} dx = \frac{1}{a} \int\limits_{0}^{+\infty} x^2 f(x) dx = \lambda \int\limits_{0}^{+\infty} x^2 e^{-\lambda x} dx = -x e^{-\lambda x} |_{0}^{+\infty} + 2 \int\limits_{0}^{+\infty} x e^{-\lambda x} dx = \frac{2}{\lambda^2}$ $DX = \frac{1}{\lambda^2} = \int\limits_{-\infty}^{+\infty} x^2 f(x) dx = \lambda \int\limits_{0}^{+\infty} x^2 e^{-\lambda x} = -\int\limits_{0}^{+\infty} x^2 de^{-\lambda x} = -x^2 e^{-\lambda x} |_{0}^{+\infty} + 2 \int\limits_{0}^{+\infty} x e^{-\lambda x} dx = \frac{2}{\lambda^2}$ $DX = \frac{1}{\lambda^2} = \frac{1}{\lambda^2}$ Hopmaльная сл. вел. $X \sim N(m, \sigma^2)$ $f(x) = \frac{1}{\sqrt{2\pi\sigma}} e^{-\frac{(x-m)^2}{2\sigma^2}}$ $dx = \left| y = \frac{x-m}{\sigma} \right| dx = \sigma dy = \frac{1}{\sqrt{2\pi}} \int\limits_{-\infty}^{+\infty} (\sigma y + m) e^{-\frac{y^2}{2}} dy = \frac{1}{\sqrt{2\pi}} \int\limits_{-\infty}^{+\infty} (x - m)^2 e^{-\frac{(x-m)^2}{2\sigma^2}} dx = \left| y = \frac{x-m}{\sigma} \right| = \frac{1}{\sqrt{2\pi}} \int\limits_{-\infty}^{+\infty} (\sigma y + m - m) e^{-\frac{y^2}{2}} dy = \dots = \sigma^2$ $DX = \frac{1}{\sqrt{2\pi}} \int\limits_{-\infty}^{+\infty} (x - m)^2 e^{-\frac{(x-m)^2}{2\sigma^2}} dx = \left| y = \frac{x-m}{\sigma} \right| = \frac{1}{\sqrt{2\pi}} \int\limits_{-\infty}^{+\infty} (\sigma y + m - m) e^{-\frac{y^2}{2}} dy = \dots = \sigma^2$

2.14 Сформулировать определение ковариации и записать формулы для ее вычисления в случае дискретного и непрерывного случайных векторов. Доказать свойства ковариации.

Ковариация является характеристикой случайного вектора.

 $\mathbf{Onp.}$ Ковариацией случайных величин X и Y называется число

$$cov(X,Y) = M[(X - m_X)(Y - m_Y)],$$
 где $m_X = MX, \ m_Y = MY$

Замеч. 1. если дискретный сл. вектор:
$$cov(X,Y) = \sum_{i,j} (x_i - m_X)(y_j - m_Y)p_{ij}$$

Замеч. 1. если дискретный сл. вектор: $cov(X,Y) = \sum_{i,j} (x_i - m_X)(y_j - m_Y) p_{ij}$ **Замеч.** 2. если непрерывный сл. вектор: $cov(X,Y) = \iint_{\mathbb{R}^2} (x - m_X)(y - m_Y) f(x,y) dx dy$

Свойства ковариации

$$1^{\circ} D(X+Y) = DX + DY + 2cov(X,Y)$$

$$2^{\circ} cov(X, X) = DX$$

$$3^{\circ}$$
 Если X,Y – независимые, то $cov(X,Y)=0$

$$4^{\circ} cov(a_1X + a_2, b_1Y + b_2) = a_1b_1cov(X, Y)$$

$$5^{\circ} |cov(X,Y)| \leq \sqrt{DX \cdot DY}$$
, причём $|cov(X,Y)| = \sqrt{DX \cdot DY} \Leftrightarrow \exists \exists a,b \in \mathbb{R}, Y = aX + b$

$$6^{\circ} \ cov(X,Y) = M[XY] - MX \cdot MY$$

Доказательства

1°
$$D(X + Y) = M[((X + Y) - M(X + Y))^2] = M[((X - m_X) + (Y - m_Y))^2] = M[(X - m_X)^2] + M[(Y - m_Y)^2] + 2\underbrace{M[(X - m_X)(Y - m_Y)]}_{cov(X,Y)} = DX + DY + 2cov(X,Y)$$

$$2^{\circ} cov(X, X) = M[(X - m_X)(X - m_X)] = M[(X - m_X)^2] = DX$$

$$2^{\circ} cov(X,X) = M[(X - m_X)(X - m_X)] = M[(x - m_X)^2] = DX$$

$$3^{\circ} cov(X,Y) = M[(X - m_X)(Y - m_Y)] = \begin{vmatrix} x, y - \text{Hes.} \Rightarrow \\ m_X, m_Y - \text{Hes.} \end{vmatrix} = M[X - m_X] \cdot M[Y - m_Y] = 0$$

4°
$$M[a_1X + a_2] = a_1m_X + a_2$$
, $M[b_1Y + b_2] = b_1m_Y + b_2$
 $cov(a_1X + a_2, b_1Y + b_2) = M[(a_1X + a_2 - a_1m_X - a_2)(b_1Y + b_2 - b_1m - Y - b_2)] =$
 $= M[a_1(X - m_X)b_1(Y - m_Y)] = a_1b_1M[(X - m_X)(Y - m_Y)] = a_1b_1cov(X, Y)$

5° Выберем произвольное число $t \in \mathbb{R}$. Рассмотрим сл. вел. Z(t) = tX - Y. Тогда: $D[Z(t)] = D[tX - Y] \stackrel{1^{\circ}}{=} D[tX] + DY - 2tcov(X, Y) = t^2DX - 2tcov(X, Y) + DY \ge 0$ Кв. 3хчлен отн. t, ветви параболы \uparrow т.к. DX>0. или нет корней или $1\Rightarrow D\leq 0$ $D = 4cov^{2}(X,Y) - 4DX \cdot DY \le 0, \quad |cov(X,Y)| \le \sqrt{DX \cdot DY}$

Необходимость (\Rightarrow) Если $|cov(X,Y)| = \sqrt{DX \cdot DY} \Rightarrow D = 0 \Rightarrow D[Z(t)]$ имеет 1 корень. обозначим $t=a \Rightarrow D[Z(a)]=0 \Rightarrow Z(a)=aX-Y$ – принимает единств. знач. с вер-ю 1, обозн. как $-b \Rightarrow Z(a) = aX - Y = -b \Rightarrow Y = aX + b$

Достаточность (\Leftarrow)

Если
$$Y = aX + b \Rightarrow Z(a) = -b \Rightarrow D[Z(a)] = 0 \Rightarrow D = 0 \Rightarrow |cov(X, Y)| = \sqrt{DX \cdot DY}$$

6°
$$cov(X,Y) = M[(X - m_X)(Y - m_Y)] = M[XY - m_XX - m_XY + m_Xm_Y] =$$

= $M[XY] - m_YMX - m_XMY + m_Xm_Y = M[XY] - m_Xm_Y$

2.15 Сформулировать определение ковариации и коэффициента корреляции случайных величин. Сформулировать свойства коэффициента корреляции. Сформулировать определения независимых и некоррелированных случайных величин, указать связь между этими свойствами. Понятия ковариационной и корреляционной матриц. Записать свойства ковариационной матрицы.

Опр. Ковариацией случайных величин X и Y называется число $cov(X,Y) = M[(X - m_X)(Y - m_Y)],$ где $m_X = MX, \ m_Y = MY$

Свойства ковариации

$$1^{\circ}\ D(X+Y) = DX + DY + 2cov(X,Y)$$

$$2^{\circ} cov(X, X) = DX$$

$$3^{\circ}\;\;$$
 Если X,Y – независимые, то $cov(X,Y)=0$

$$4^{\circ} cov(a_1X + a_2, b_1Y + b_2) = a_1b_1cov(X, Y)$$

$$5^{\circ} |cov(X,Y)| \leq \sqrt{DX \cdot DY}$$
, причём $|cov(X,Y)| = \sqrt{DX \cdot DY} \Leftrightarrow \exists \exists a,b \in \mathbb{R}, Y = aX + b$

$$6^{\circ} cov(X,Y) = M[XY] - MX \cdot MY$$

Опр. Коэфф-ом корреляции сл. вел. X и Y наз. число $\rho(X,Y)=\frac{cov(X,Y)}{\sqrt{DX\cdot DV}}, DX\cdot DY>0$ Свойства корреляции

$$1^{\circ}$$
 $ho(X,X)=1$ 2° Если X,Y нез., то $ho(X,Y)=0$

$$3^{\circ} \ \rho(a_1X+b_1,a_2Y+b_2) \pm \rho(X,Y) \ +$$
 если $a_1a_2>0$ и $-$ если $a_1a_2<0$

$$4^{\circ} cov(a_1X + a_2, b_1Y + b_2) = a_1b_1cov(X, Y)$$

$$|\rho(X,Y)| \leq 1$$
, причём $\rho(X,Y) = \begin{cases} 1, & \text{когда } Y = aX+b, \ a>0 \\ -1, & \text{когда } Y = aX+b, \ a<0 \end{cases}$

Опр. Сл. вел. X и Y наз. **независимыми**, если $F(x,y)=F_X(x)F_Y(y)$, где F – совместная ф-ия распред. в-ра (X,Y), F_X , F_{Y^-} маргинальные ф-ии распред. X и Y

Опр. Сл. вел. X и Y наз. **некоррелированными**, если cov(X,Y)=0

Замеч. X, Y – независимы $\stackrel{3^{\circ}}{\Rightarrow}$ некоррелированы. Обратное неверно

Пусть $\overrightarrow{X} = (X_1, ..., X_n) - n$ -мерный сл. вектор

Опр. Ковариационной матрицей в-ра \overrightarrow{X} наз. матрица $\sum_{\overrightarrow{X}} = (\sigma_{ij})_{i,j=\overline{1,n}}, \ \sigma_{ij} = cov(X_i,X_j)$ Свойства ковариационной матрицы

$$1^{\circ} \ \sigma_{ii} = DX_i$$

$$2^{\circ} \sum_{\overrightarrow{X}} = \sum_{\overrightarrow{X}}^{T}$$

$$2^{\circ}$$
 $\sum_{\overrightarrow{X}} = \sum_{\overrightarrow{X}}^T$ 3° Пусть $\overrightarrow{Y} = (Y_1, ..., Y_m), \overrightarrow{X} = (X_1, ..., X_n), B \in M_{n,m}(\mathbb{R})$, т.е. \overrightarrow{Y} линейная ф-ия от \overrightarrow{X} Тогда $\sum_{\overrightarrow{Y}} = B^T \sum_{\overrightarrow{X}} B$

$$4^\circ$$
 Матрица $\sum_{\overrightarrow{X}}$ явл. неотриц. определённой, т.е. $orall$ $\overrightarrow{b} \in \mathbb{R}^\omega$ $\overrightarrow{b}^T \sum_{\overrightarrow{X}} \overrightarrow{b} \geq 0$

4° Матрица $\sum_{\overrightarrow{X}}$ явл. неотриц. определённой, т.е. $\forall \overrightarrow{b} \in \mathbb{R}^{\omega} \overrightarrow{b}^T \sum_{\overrightarrow{X}} \overrightarrow{b} \geq 0$ 5° Если все компоненты в-ра \overrightarrow{X} попарно независимы, то $\sum_{\overrightarrow{X}}$ – диагональная матрица

Опр. Корреляционной матрицей в-ра
$$\overrightarrow{X}$$
 наз. матрица $P=(\rho_{ij})_{i,j=\overline{1,n}},\ \rho_{ij}=\rho(X_i,X_j)$

2.16 Понятие условного распределения компоненты двумерного случайного вектора (дискретный и непрерывный случаи). Сформулировать определения значений условного математического ожидания и условной дисперсии. Сформулировать определения условного математического ожидания и условной дисперсии. Записать формулы для вычисления условных математического ожидания и дисперсии для компоненты двумерного нормального вектора.

Пусть
$$(X,Y)$$
 – дискр. сл. век-р, $\pi_{ij}=P\{X=x_i|Y=y_j\}=rac{P_{ij}}{P_{Yi}}$

Опр. Значением условного мат. ожидания сл. вел. X при условии, что сл. вел. X приняла значение y_j , наз. число $M[X|Y=y_j]=\sum\limits_i X_i\pi_{ij}$

Если
$$(X,Y)$$
 – непр. сл. век-р, то $f_X(x|Y=y) = \frac{f(x,y)}{f_Y(y)}$

Опр. Значением условного мат. ожидания сл. вел. X при условии Y=y, наз. число $M[X|Y=y]=\int\limits_{-\infty}^{+\infty}xf_X(x|Y=y)dx$

Пусть (X,Y) – произвольный сл. век-р

Опр. Условным мат. ожиданием сл. вел. X относительно сл. вел. Y наз. ф-ия g(Y)=M[X|Y] такая, что

- 1) Область определения g совпадает с мн-вом возможных значений сл. вел. Y
- 2) Для каждого возможного значения y сл. вел. Y g(y) = M[X|Y=y]

Замеч. Условное мат. ожидание явл. ф-ией сл. вел. Y, т. е. оно само является сл. вел.

Замеч. Усл. мат. ожидание сл. вел. Y относительно сл. вел. X определяется аналогично **Опр.** Условной дисперсией сл. вел. X отн. сл. вел. Y наз. сл. вел.

$$D[X|Y] = M[(X - M[X|Y])^2]$$

Замеч. 1. Если (X,Y) – дискр. сл. век-р, то $D[X|Y=y_j]=\sum (x_i-M[X|Y=y_j])^2\pi_{ij}$

2. Если
$$(X,Y)$$
 – непр. сл. век-р, то $D[X|Y=y_j]=\int\limits_{-\infty}^{+\infty}(x-M[X|Y=y])^2f_X(X|Y=y)dx$

Пусть
$$\overrightarrow{x} = (x_1, x_2)$$
 – двумерный сл. вектор с $\overrightarrow{m} = (m_1, m_2)$ и $\sum = \begin{bmatrix} \sigma_1^2 & \rho \sigma_1 \sigma_2 \\ \rho \sigma_1 \sigma_2 & \sigma_2^2 \end{bmatrix}$

Тогда 1) условное распределение X при Y=y будет нормальным

2)
$$M[X|Y = y] = m_1 + \rho \frac{\sigma_1}{\sigma_2}(y - m_2)$$

$$D[X|Y = y] = \sigma_1^2(1 - \rho^2)$$

2.17 Понятие n-мерного нормального распределения. Сформулировать основные свойства многомерного нормального распределения.

Опр. Сл. век-р $(X_1, ..., X_n)$ имеет нормальное распределение, если его ф-ия плотности распределения имеет вид:

$$f(x_1,...,x_n)=rac{1}{(\sqrt{2\pi})^n\sqrt{\det\Sigma}}e^{-rac{1}{2}Q(\overrightarrow{x}-\overrightarrow{m})},$$
 где $ightarrow=(x_1,...,x_n)$ $\overrightarrow{m}=(m_1,...,m_n)$ $Q(\overrightarrow{lpha})=\overrightarrow{lpha}\cdot\overset{\sim}{\sum}\overrightarrow{lpha}^T$ квадр форма от n перем., $\overset{\sim}{\sum}=\overset{\sim}{\sum}^{-1}$ $\overrightarrow{lpha}=(lpha_1,...,lpha_n)$ \sum – положительно опред. матрица порядка n

Свойства многомерного нормального распределения

- 1° Если $(x_1,...,x_n)$ норм. сл. век-р, то существует его компонента $x_i \sim N(m_i,\sigma_i^2)$ тоже норм. сл. вел.
- 2° Пусть $\overrightarrow{x} \sim N(\overrightarrow{m}, \Sigma)$ Тогда, если Σ диагональная, то сл. вел. $x_1, ..., x_n$ независимы
- 3° Пусть $\overrightarrow{x} \sim N(\overrightarrow{m}, \sum)$ n-мерный сл. век-р Тогда $\overrightarrow{x}' = (x_1, ..., x_{n-1})$ норм. сл. век-р с $\overrightarrow{m}' = (m_1, ..., m_{n-1})$ и ковариационной матрицей \sum' , которая получена из \sum отбрасыванием последней строчки и столбца
- 4° Пусть $\overrightarrow{x} \sim N(\overrightarrow{m}, \Sigma), \quad \overrightarrow{Y} = \lambda_1 x_1 + \dots + \lambda_n x_n + \lambda_0$ Тогда \overrightarrow{Y} – норм. сл. вел
- 5° Пусть $\overrightarrow{x} = (x_1, x_2)$ двумерный сл. век-р с $\overrightarrow{m} = (m_1, m_2)$ и $\sum = \begin{bmatrix} \sigma_1^2 & \rho \sigma_1 \sigma_2 \\ \rho \sigma_1 \sigma_2 & \sigma_2^2 \end{bmatrix}$ Тогда 1. Условное распределение X при условии Y = y будет нормальным 2. $M[X|Y = y] = m_1 + \rho \frac{\sigma_1}{\sigma_2} (y m_2)$ $D[X|Y = y] = \sigma_1^2 (1 \rho^2)$