University of Victoria

CENG 241

DIGITAL DESIGN I

Lab 1 - Digital Instrumentation, Basic Digital Components and Circuits

Instructor:

Dr. Amirali Baniasadi

Teaching Assistant:

Grace Hui

Yves Senechal V00213837 Tyler Stephen V00812021 A01 - B03

June 1, 2015

1 Introduction

2 Voltage Regulators

V_{in} (V)	V_{out} (V)	$I_{in} (\mathrm{mA})$	$I_{out} (\mathrm{mA})$	P (mW)	<i>T</i> (°C)
0.0	2×10^{-5}	2×10^{-4}	2×10^{-4}		22.9
1.0	1.5×10^{-5}	2×10^{-4}	2×10^{-4}		22.9
2.0	4.3×10^{-4}	6×10^{-4}	6×10^{-4}		23.3
3.0	1.5913	1.599	1.599		23.0
4.0	2.5057	2.5143	2.5143		23.2
5.0	3.662	3.6758	3.6758		23.4
6.0	4.689	4.7083	4.7083		23.8
7.0	4.992	5.0129	5.0129		24.1
8.0	4.904	4.9252	4.9252		24.8
9.0	4.845	4.8655	4.8655		25.7
10.0	4.815	5.053	5.053		25.8
11.0	4.777	5.050	5.050		26.3
12.0	4.759	5.0217	5.0127		27.2

Table 1: Voltage, current and temperature response of LM7805 5V regulator

The range of voltages where the regulator voltage output is constant What happens when the regulator is short circuited?

3 Signal damping

waveforms of under, over, critically damped waves rise and fall time of critically damped wave

4 LEDs and Inverters

When is the LED lit?

Why use a 7405, not a 7404? (ordinary inverter v. open collector inverter)

5 Push button debouncing

Display the debounced and non-debounced waveforms

Draw a debouncer with NOR gates

6 Conclusion

Figure 1: Waveforms representative of different levels of damping for a square wave

Figure 2: Opposite edges of a critically damped square wave

Figure 3: Controlling an LED with a LS7405 inverter.

Figure 4: Waveforms of non-debounced (top) and debounced (bottom) SPDT presses

Figure 5: An SPDT debouncer constructed from NOR gates. For clarity, VCC and ground for gates are not connected in figure.