IN THE CLAIMS:

Please rewrite the pending claims as follows:

1-28 (Canceled)

- Jule
- 29. (Currently amended) A RF antenna comprising a single conductor arranged in polygonal spiral generally spiraling form, and means for connecting the conductor to an antenna feed at or adjacent one end of the conductor, the other end of the conductor being open-circuited, the polygonal spiral generally spiraling form comprising successive linear sections, each forming an angle with a succeeding or preceding one, the total length of the conductor and the spacing of adjacent co-extending sections being such that the antenna exhibits resonances in a plurality of frequency bands.
- 30. (Previously added) An antenna as in claim 29, wherein the lengths of the sections and the angles between them are such that the antenna is linearly polarized.
- 6/
- 31. (Currently amended) An antenna as in claim 29, wherein opposite sides of the generally spiral spiraling form comprise at least three major sides that are markedly non-parallel with each other.
- 32. (Currently amended) A RF anterina comprising a single conductor arranged in a generally spiral spiraling form, and means for connecting the conductor to an antenna feed at or adjacent one end of the conductor, the other end of the conductor being open-circuited, wherein an envelope of the generally spiral spiraling form comprises three, four, or five major sides that are markedly non-parallel with each other, the total length of the conductor and the spacing of adjacent co-extending sections being such that the antenna exhibits resonances in a plurality of frequency bands.
- 33. (Currently amended) A RF antenna comprising a single conductor arranged in a generally spiral spiraling form, and means for connecting the conductor to an antenna feed at or adjacent one end of the conductor, the other end of the conductor being open-circuited, an envelope of the generally spiral spiraling form comprising three major sides

disposed so as to lie in a triangular relationship, the total length of the conductor and the spacing of adjacent co-extending sections being such that the antenna exhibits resonances in a plurality of frequency bands.

- 34. (Previously added) An antenna as in claim 31, wherein an end of each major side merges with an end of an adjoining major side.
- 35. (Previously added) An antenna as in claim 31, wherein the lengths of and angles between the major sides are such that the antenna is linearly polarized.
- 36. (Currently amended) An antenna as in claim 35, wherein the aspect ratio of an overall envelope of the generally spiral spiraling form is chosen such that the antenna has a required ratio of horizontal and vertical polarization.
 - 37. (Currently amended) An antenna as in claim 32, wherein an overall envelope of the generally spiral spiraling form is substantially in the shape of an equiangular triangle.
 - 38. (Currently amended) An antenna as in claim 32, wherein an overall envelope of the generally spiral spiraling form is substantially in the shape of an isosceles triangle.
 - 39. (Currently amended) An antenna as in claim 38, wherein, when the antenna is disposed generally upright, a top side of the overall envelope of the spiral spiraling form is shorter that the other two sides of the overall envelope.
 - 40. (Currently amended) An antenna as in claim 29, wherein co-extensive parts of the spiral spiraling form extend generally parallel to each other.
 - 41. (Previously added) An antenna as in claim 37, wherein, when the antenna is disposed generally upright, from its one end the conductor is adapted to extend upwardly at an angle, then generally horizontally, then generally downwardly at an angle to a point adjacent its one end, thereby forming a first outer side, a top outer side, and a second outer side, respectively, and then to extend upwardly, horizontally, and downwardly within the outer sides to form a first inner side, a top inner side, and a second inner side, respectively.

- 42. (Previously added) An antenna as in claim 41, wherein the first and top inner sides are each approximately 80% as long as the respective first and top outer sides, and wherein the spacing between the first outer side and first inner side and between the top outer side and the top inner side are each approximately 10% of the length of the first outer side.
- 43. (Previously added) An antenna as in claim 42, wherein the second inner side is approximately one-third the length of the second outer side.
- 44. (Currently amended) An antenna as in claim 29, wherein one end of the conductor is an outer end of the spiral spiraling form.
- 45. (Currently amended) An antenna as in claim 29, and also comprising a stub antenna extending from the one end of the conductor so as to be alongside an outermost portion of the spiral spiraling form, the stub antenna providing a required additional frequency.
- 46. (Previously added) An antenna as in claim 41, and also comprising a stub antenna extending from the one end of the conductor so as to be alongside the first outer side.
- 47. (Previously added) An antenna as in claim 46, wherein the stub antenna is approximately 40% the length of the first outer side.
- 48. (Previously added) An antenna as in claim 47, wherein spacing of the stub antenna from the first outer side is approximately 10% the length of the stub antenna.
- 49. (Previously added) An antenna as in claim 48, wherein the antenna has resonant frequencies at approximately 100 MHz and 220 MHz.
- 50. (Previously added) An antenna as in claim 29, further comprising a ground plane functionally adjacent the conductor.
- 51. (Previously added) An antenna as in claim 29, in combination with a further antenna, the two antennas being arranged as a dipole.

- 52. (Previously added) An antenna as in claim 29, mounted on a substrate for attachment to a window or other surface.
- 53. (Currently amended) A window or vehicle body panel or other vehicle fitment comprising an antenna as in claim 1 29.
 - 54. (Previously added) A window or vehicle body panel or other vehicle fitment as in claim 53, wherein the window or body panel or other vehicle fitment forms a dielectric between the antenna and the ground plane.
 - 55. (Currently amended) A method of manufacturing an antenna, comprising disposing or defining a single conductor in a polygonal spiral spiraling form with a feed connection at or adjacent one end thereof, and selecting the spacing between adjacent coextensive sections of the polygonal spiral spiraling form or an overall length of the conductor such that the antenna has a plurality of required resonance frequencies.
 - 56. (Currently amended) A method as in claim 55, comprising selecting the length of and angles between successive sections of the polygonal spiral spiraling form such that the antenna has a required ratio of horizontal and vertical polarization.