Compito Esperimentazioni Fisica I

27 Marzo 2002

1. Determinare il numero di cifre significative dei risultati delle seguenti misure della grandezza fisica a (Δ a indica l'incertezza di misura):

a 34.542

 $5.762 \cdot 10^3$

 $7.3282 \cdot 10^{-4}$

 $0.666614 \cdot 10^4$

 $\Delta a = 4. \cdot 10^{-2}$

13.

 $2. \cdot 10^{-6}$

 $2. \cdot 10^3$

2. Determinare il valore della quantità di calore ΔQ (in Joule) assorbita da un corpo nero di superficie S, mediante la relazione:

$$\Delta Q = \sigma S(T_0^4 - T^4) \Delta t$$

con $\sigma=2.8\cdot 10^{-5}\frac{erg}{cm^2sK^4},\,S=$ superficie di una sfera di raggio 0.5 m, $\Delta t{=}1.0$ s , $T_0=17^{\circ}{\rm C},\,T=9.5^{\circ}{\rm C}.$

3. Due grandezze fisiche y e x sono fra loro legate da una relazione lineare y = A + Bx. I risultati di alcune misure sono i seguenti:

 $x(\mu m^{-2})$ 8.106 7.307 6.231 6.1385.353 4.993y(adim)4.791 4.781 4.7694.768 4.759 4.756 $\Delta y(\text{adim})$ 0.0020.0020.0040.0030.0030.002

Determinare graficamente A e B, dando anche una stima della loro incertezza.

4. Calcolare i valori delle seguenti funzioni, nei punti indicati, con una approssimazione relativa di 10^{-2} :

 $\begin{array}{lll} \mathrm{sen}(\mathbf{x}) & \mathrm{in} \ \mathbf{x} = 1^{\circ} \ ; & \frac{1}{10 + 3x} & \mathrm{in} \ \mathbf{x} = -5. \cdot 10^{-2} \\ \frac{1}{(1 - x)^3} & \mathrm{in} \ \mathbf{x} = -1. \cdot 10^{-3} \ ; & e^{(1 + x)} & \mathrm{in} \ \mathbf{x} = 0.04 \end{array}$

 1.449 ± 0.003 ;

5. Determinare la miglior stima sia del "valore vero" sia dell'incertezza di misura dalla seguente serie di misure:

26.16; 26.18; 26.17; 26.17; 26.18; 26.15; 26.20; 26.16; 26.14; 26.19; 26.17

- 6. Determinare, con approssimazione del 10% e del 1%, i valori delle seguenti operazioni: $\sqrt{17}$; $\frac{29}{9}$; $\frac{11}{13}$; $9^{2.5}$; $(\frac{16}{256})^{\frac{1}{2}}$.
- 7. Determinare il risultato finale ottenibile dalle 5 misure riportate, dove le incertezze corrispondono agli scarti massimi delle misure:

 1.44 ± 0.02 ; 1.453 ± 0.009 ;

 1.447 ± 0.003

8. Utilizzando la relazione

 1.484 ± 0.011 ;

$$P = \frac{k}{c^5} \cdot \left(\frac{d^3I}{dt^3}\right)^2$$

dove P è la potenza trasportata da un'onda gravitazionale, c la velocità della luce e $(\frac{d^3I}{dt^3})$ la derivata terza del momento di inerzia di un corpo rispetto al tempo, determinare le dimensioni fisiche della grandezza k, le sue unità di misura nel S.I. e nel C.G.S. ed il fattore di conversione tra di esse.