10. 设 (M, \mathcal{P}) 是 n 维 C^{∞} 流形, $\mathcal{P} = \{(U, \varphi)\}$. $T(M) = \bigcup_{\varphi \in \mathcal{A}} T_{\varphi}(M) = \bigcup_{\varphi \in \mathcal{A}} T_{\varphi}(M)$

 $\{X, | X, \in T, (M), p \in M\}$. 设投影

$$\pi_1 * T(M) \rightarrow M, \pi_1(X_p) = p_*$$

如果 (U,φ) , $\{x^i\}$ 是M上的局部坐标系, $U^*=\pi_i^{-i}(U)$ 。命

$$\pi_{2}: U^{*} \to R^{n}, \pi_{2}(X_{p}) = (\alpha^{1}, \cdots, \alpha^{n}) \Big(\bigotimes \mathbb{E} X_{p} = \sum_{i=1}^{n} \alpha^{i} \frac{\partial}{\partial x^{i}} \Big)_{*}$$

$$\varphi^{*}: U^{*} \to R^{2n}, \varphi^{*}(X_{p}) = (\varphi \circ \pi_{1}(X_{p}), \pi_{2}(X_{p})) = (\varphi(p), \pi_{2}(X_{p}))_{*}$$

- (1°) 证明 $\{(U^*, \varphi^*)\}$ 确定了 T(M)上的一个 C^* 微 分构造 φ^* , 我们 称 $(T(M), \varphi^*)$ 为M上的切丛(它是 2n 维的 C^* 流形).
 - (2°) 证明 M上的 C^{∞} 向量场X是 $M \rightarrow T(M)$ 的 C^{∞} 映射。
- (3°) 如果 F, $M_1 \Rightarrow M_2$ 是 C^∞ 映射,则 F_* 是 $T(M_1) \rightarrow T(M_2)$ 的 C^∞ 映射。
- (4°) 如果 $(M, \mathcal{P}) = (R^{n}, \mathcal{P}_{0})$ 是通常的 C^{∞} 流形,证明 $(T(R^{n}), \mathcal{P}_{0}^{*})$ 就是 $R^{n} \times R^{n} = R^{2n}$ 上的通常的 C^{∞} 流形.

(1)
$$(u^*, \varphi^*)$$
, (v^*, ψ^*)
 ψ^* , $(\varphi^*)^{-1}$: $\psi^*(u^* \cap v^*) \rightarrow \psi^*(u^* \cap v^*)$
 $(\chi^1 \dots \chi^n, \alpha^1 \dots \alpha^n) \mapsto (\varphi^{-1}(\chi_1^1 \dots \chi^n), \chi_p)$
 $\mapsto (y^1, \dots, y^n, \sum_{i=1}^n \alpha^i \frac{\partial y^i}{\partial x^i}, \dots, \sum_{i=1}^n \alpha^i \frac{\partial y^n}{\partial x^i})$
 $(y^1 \dots y^n) = \psi_0 \psi^{-1}(\chi_1^1 \dots \chi^n)$
 $\chi_p = (\psi^{-1})_* (\alpha^i \frac{\partial}{\partial x^i})$
 $\psi_* (\chi_p) = (\psi_0 \psi^{-1})_* (\alpha^i \frac{\partial}{\partial x^i})$
 $= \alpha^i \frac{\partial \psi^i}{\partial x^i} \frac{\partial}{\partial y^i}$

- (2) M 的 chart (U, 4), TM 的 chart (V*, Y*), X在U上表示为 エ a' ==;
 Y*oXo (P' : (x), --- x**) トット (x), --- x**, a', ---, a**), smooth
 且 b Xp 的局部生标 (V*, Y*), 3p 的局部生材 (V, Y), Xv C V*,
 极 X: M-> TM 先滑
- (3) $F_{*}X = Y$, $\forall F_{F(P)}$ 俗局部生标 (V^{*}, V^{*}) , $\exists P$ 俗局部生标 (U, φ) , $F(U) \subset V$, 進而 $F_{*}(U^{*}) \subset V^{*}$ 对 $\exists TM_{*}$ 中俗 (V^{*}, V^{*}) , Tm_{*} 中俗 (U^{*}, φ^{*}) , $V^{*} \circ F_{*} \circ (\varphi^{*})^{-1}$: $(A', -A'', A' A'') \mapsto (P, A_{P}) \mapsto (F(P), F_{*}X_{F(P)})$

$$|P (y', \dots, y'') = \psi \circ F \circ \varphi^{-1}(x', \dots, x'')$$

$$|f : TR'' \rightarrow R^{2m}, (x', \dots, x'', y' \dots y'') \mapsto (x', \dots, x'', y' \dots y'')$$

$$|g : R'' \rightarrow TR'', (x', \dots, x'', y' \dots y'') \mapsto (x', \dots, x'', y' \dots y'')$$

$$|f, g |_{R}^{2m}, f \circ g = Id_{TR}^{-1}, g \circ f = Id_{R}^{2m}$$

4. 设 $M \stackrel{\cdot}{=} R^*$ 的 k 维 C^* 正则子流形, $I: M \rightarrow R^*$,

是包含映射、 $\{u^i|i=1,\cdots,k\}$ 为M的局部坐标系, $\{x^i|i=1,\cdots,n\}$ 为 R^n R^n 强常的整体坐标。则由第二章 \$ 4.1(4)得到

$$\begin{pmatrix} I_{\star} \left(\frac{\partial}{\partial u^{\perp}} \right) \\ \vdots \\ I_{\star} \left(\frac{\partial}{\partial u^{\star}} \right) \end{pmatrix} = \begin{pmatrix} \frac{\partial x^{\perp}}{\partial u^{\perp}} \cdots \frac{\partial x^{n}}{\partial u^{\perp}} \\ \cdots \cdots \\ \frac{\partial x^{\perp}}{\partial u^{\lambda}} \cdots \frac{\partial x^{n}}{\partial u^{\lambda}} \end{pmatrix} \begin{pmatrix} \frac{\partial}{\partial x^{\lambda}} \\ \vdots \\ \frac{\partial}{\partial x^{n}} \end{pmatrix}$$

研究具体例子,

- (1°) 画出 R" 中整体 C" 向量场 $\frac{\partial}{\partial x^i}$ 的示意图。
- (2°) 在 R^2 中,取 p点 $(p \neq (0,0))$ 的局部坐标系 (r,θ) (极坐标),顯出局部 C^* 向 量场 $\frac{\partial}{\partial r}$ 和 $\frac{\partial}{\partial \theta}$ 的示意图 (其中 (x^1,x^2) = $(r\cos\theta,r\sin\theta)$)。

说明 $\frac{\partial}{\partial r}$ 和 $\frac{\partial}{\partial \theta}$ 是 R^i — $\{(0,0)\}$ 上的 C^* 向量场的理由。并将它们表示为 $\left\{\frac{\partial}{\partial x^i}, \frac{\partial}{\partial x^i}\right\}$ 的线性组合。

(2)
$$\frac{\partial}{\partial r} = 0000 \frac{\partial}{\partial x^1} + 9m0 \frac{\partial}{\partial x^2}$$

 $\frac{\partial}{\partial \theta} = -r \sin \theta \frac{\partial}{\partial x^1} + r \cos \theta \frac{\partial}{\partial x^2}$

(3°) 在 R^3 中,取 p 点($p \neq (0,0,z)$) 的局部坐标系 (r,θ,z) (柱坐标), 國出局部 C^∞ 向量场 $\frac{\partial}{\partial r}$, $\frac{\partial}{\partial \theta}$ 和 $\frac{\partial}{\partial z}$ 的示意图(其中(x^1,x^2,x^3)=($r\cos\theta$, $r\sin\theta$,z))。

说明这些 C^* 向量场 可 延 拓 到多 大 范 图。 并将它们表示为 $\left\{\frac{\partial}{\partial x^1}, \frac{\partial}{\partial x^2}, \frac{\partial}{\partial x^2}\right\}$ 的线性组合。

(4°) 在 R^3 中,取 p 点($p \pm (0,0,z)$)的局部坐标系(r,θ,φ)(球坐标), 画出局部 C^∞ 向量场 $\frac{\partial}{\partial r}$, $\frac{\partial}{\partial \theta}$ 和 $\frac{\partial}{\partial \varphi}$ 的示意图(其中(x^1,x^2,x^3)=($r\sin\theta\cos\varphi$, $r\sin\theta\sin\varphi$, $r\cos\theta$))。

说明这些C"向量场可延拓到多大范围。并将它们表示为 $\left\{ rac{\partial}{\partial x^1}, rac{\partial}{\partial x^2}, rac{\partial}{\partial x^3}
ight\}$ 的线性组合。

- (5°)证明(1°)一(4°)中各坐标系都是正交坐标系(即坐标向量彼此正交)。
- (6°) 设单位图 $M = S^1 = \{(x^1, x^1) | (x^1)^1 + (x^1)^1 = 1\}$, $\{\theta\} \to S^1$ 的局部 坐标系,这里 $(x^1, x^1) = (\cos \theta, \sin \theta)$.

将 $I_*(\frac{\partial}{\partial \theta})$ 表示为 $\left\{\frac{\partial}{\partial x^1}, \frac{\partial}{\partial x^2}\right\}$ 的线性组合,证明 $I_*(\frac{\partial}{\partial \theta})$ 与 $\cos\theta \frac{\partial}{\partial x^1}$ + $\sin\theta \frac{\partial}{\partial x^2}$ 正交。说明 $\frac{\partial}{\partial \theta}$ 是 S^1 上的整体的 C^* 基向量场。 國出 $I_*(\frac{\partial}{\partial \theta})$ 的示意图。

(7°) 设图柱面 $M = \{(x^1, x^2, x^2) | (x^1)^2 + (x^2)^2 = 1\}, \{\theta, z\}$ 为 **M**的**局都** 坐标系,这里 $(x^1, x^2, x^2) = (\cos \theta, \sin \theta, z)$.

(3)
$$\frac{\partial}{\partial r} = \cos \theta \frac{\partial}{\partial x^1} + \sin \theta \frac{\partial}{\partial x^2}$$

$$\frac{\partial}{\partial \theta} = -r \sin \theta \frac{\partial}{\partial x^1} + r \cos \theta \frac{\partial}{\partial x^2}$$

$$\frac{\partial}{\partial x} = \frac{\partial}{\partial x^3}$$

$$\frac{\partial}{\partial x} = \frac{\partial}{\partial x^3}$$

JEMAN R3 \ [(0,0, x3) | x3 EIR]

(8°) 设单位 球面 $M=S^2=\{(x^1,x^2,x^3)|(x^1)^2+(x^2)^2+(x^3)^2=1\}$, $\{\theta,\varphi\}$ 为 S^2 的局部坐标系,这里 $(x^1,x^2,x^3)=(\sin\theta\cos\varphi,\sin\theta\sin\varphi,\cos\theta)$ 。 将 $I_*(\frac{\partial}{\partial\theta})$ 和 $I_*(\frac{\partial}{\partial\varphi})$ 表示为 $\left\{\frac{\partial}{\partial x^1},\frac{\partial}{\partial x^2},\frac{\partial}{\partial x^2}\right\}$ 的线性组合,证明 $I_*(\frac{\partial}{\partial\theta})$, $I_*(\frac{\partial}{\partial\varphi})$ 与 $\sin\theta\cos\varphi\frac{\partial}{\partial x^1}+\sin\theta\sin\varphi\frac{\partial}{\partial x^2}+\cos\theta\frac{\partial}{\partial x^3}$ 彼此 正交,说明 C^* 向量场 $\frac{\partial}{\partial\theta}$ 和 $\frac{\partial}{\partial\varphi}$ 可延拓到多大范围。 $\left\{\frac{\partial}{\partial\theta},\frac{\partial}{\partial\varphi}\right\}$ 是 S^2 上的整体的 C^* 基向量场吗? 圖出 $I_*(\frac{\partial}{\partial\theta})$ 和 $I_*(\frac{\partial}{\partial\varphi})$ 的示意图。

(b) $I_{*}\left(\frac{\partial}{\partial\theta}\right) = -\sin\theta \frac{\partial}{\partial x_{1}} + \cos\theta \frac{\partial}{\partial x_{2}}$ 正交配數 θ_{0} , $\frac{\partial}{\partial\theta}\Big|_{\theta_{0}} \neq 0$, 故是其何是杨

