GOBIERNO CONSTITUCIONAL DEL ESTADO LIBRE Y SOBERANO DE OAXACA INSTITUTO ESTATAL DE EDUCACIÓN PÚBLICA DE OAXACA COORDINACIÓN GENERAL DE PLANEACIÓN EDUCATIVA COORDINACIÓN GENERAL DE EDUCACIÓN MEDIA SUPERIOR Y SUPERIOR

PROGRAMA DE ESTUDIO

OMBRE DE LA ASIGNATURA		
Metodologías de diseño		
CICLO	CLAVE DE LA ASIGNATURA	TOTAL DE HORAS
Segundo Semestre	210202	85

OBJETIVO(S) GENERAL(ES) DE LA ASIGNATURA

Este curso tiene por objetivo introducir al alumno en el campo del diseño y construcción de sistemas electrónicos utilizando un modelo de proceso innovador basado en el enfoque de la Mejora al Proceso Software. Los alumnos aprenderán un modelo basado en tres capas: la capa de nivel más alto tiene relación con los procesos para la gestión del proyecto, la capa de en medio el conjunto de procesos para el desarrollo del proyecto, y la capa final son los procesos de provisión del proyecto.

TEMAS Y SUBTEMAS

- 1. La industria de la electrónica y del software en México.
 - 1.1 Desarrollo de una industria competitiva
 - 1.2 Oportunidades en el mercado
 - 1.3 Las Estrategias de la competencia
 - 1.4 El contexto actual de la industria
 - 1.5 Gestionando el conocimiento en el trabajo
 - 1.6 La situación actual en México
 - 1.7 El Futuro de la Industria
- 2. La formalidad del proceso software en el diseño de sistemas empotrados.
 - 2.1 Definición de proceso
 - Procesos maduros vs. Procesos inmaduros
 - 2.3 Soluciones tradicionales e implicaciones en la industria software
 - 2.4 Modelos del proceso
 - 2.5 Revisión de estándares para gestionar el proceso software en proyectos empotrados
 - 2.6 Estándares vs. Prácticas efectivas

3. Características de la Mejora al Proceso Software (SPI).

- 3.1 Calidad frente a cantidad: un enfoque sistemático
- 3.2 Surgimiento de la SPI
- 3.3 Beneficios y consecuencias de la mejora al proceso software
- 3.4 Pequeños entornos, pequeños equipos, y pequeñas empresas
- 3.5 Características de los sistemas empotrados
- 3.6 La Calidad como factor de éxito en los sistemas empotrados

4. Productos empotrados basados en el enfoque SPI.

- 4.1 Métricas y evaluación en la SPI
- 4.2 SPICE y BOOTSTRAP
- 4.3 El Paradigma GQM aplicado a los sistemas empotrados
- 4.4 Sistemas empotrados y productos electromecánicos
- 4.5 Componentes principales de los sistemas empotrados
- 4.6 Características de calidad de los productos
- 4.7 Relaciones proceso-producto

5. Especificación SPI para Sistemas Empotrados

- 5.1 Definición de un ciclo de vida para un sistema empotrado
 - Fase del concepto del sistema empotrado 5.1.1
 - 5.1.2 Fase de definición del sistema empotrado
 - Fase de diseño del sistema empotrado 5.1.3 5.1.3.1 Modelado del sistema empotrado
 - 5.1.4 Fase de testing
 - 5.1.5 Fase de liberación
 - 5.1.6 Fase de mantenimiento

6. Capa para la Gestión de los Proyectos

- 6.1 Inicio y planificación
- 6.2 Supervisión de riesgos
- 6.3 Cierre

7. Capa para la Gestión de los Procesos

- 7.1 Desarrollo de los requisitos
- Solución técnica
- 7.3 Diseño del sistema
- 7.4 Implementación y diseño de testing
- 7.5 Testing
- 7.6 Mejorando el rendimiento del sistema
- 7.7 Testing Beta y Aceptación

8. Capa para la Provisión de los Productos

- 8.1 Configuración8.2 Aseguramiento de la calidad
- 8.3 Subcontratación
- 8.4 Formación
- 8.5 Servicio y Mantenimiento

ACTIVIDADES DE APRENDIZAJE

Revisión bibliográfica del tema en libros y artículos científicos por los alumnos y discusión de los diferentes temas en seminarios.

CRITERIOS Y PROCEDIMIENO DE EVALUACIÓN Y ACREDITACIÓN

Evaluaciones parciales y una evaluación final, practicas y lecturas, todo esto tendrá una equivalencia del 100% en la calificación final.

BIBLIOGRAFÍA

Libros Básicos:

- Embedded Systems: A Contemporary Design Tool. James K. Peckol. Wiley; 1 edition (October 22, 2007). ISBN-10: 0471721808. ISBN-13: 978-0471721802.
- Embedded Systems Architecture: A Comprehensive Guide for Engineers and Programmers (Embedded Technology). Tammy Noergaard. Newnes (February 24, 2005). ISBN-10: 0750677929. ISBN-13: 978-0750677929.
- Real Time UML Workshop for Embedded Systems (Embedded Technology). Bruce Powel Douglass. Newnes (October 4, 2006). ISBN-10: 0750679069. ISBN-13: 978-0750679060.
- Embedded Systems (World Class Designs). Jack Ganssle. Newnes (November 29, 2007). ISBN-10: 0750686251. ISBN-13: 978-0750686259.

Libros de Consulta:

- The Art of Designing Embedded Systems, Second Edition. Jack Ganssle. Newnes; 2 edition (May 16, 2008). ISBN-10: 0750686448. ISBN-13: 978-0750686440.
- Model-Based Design for Embedded Systems, Gabriela Nicolescu, Pieter J. CRC Press, 2009.
- Embedded System Design: Modeling, Synthesis and Verification, Daniel D. Gajski, Samar Abdi,

COORDINACIÓN GENERAL DE EDUCACIÓN MEDIA SUPERIOR Y SUPERIOR Springer. 2009.

PERFIL PROFESIONAL DEL DOCENTE

Maestría o Doctorado en Electrónica o Computación.

