IN4MATX 285: Interactive Technology Studio

Practice: Databases and Storage

Today's goals

By the end of today, you should be able to...

- Describe how databases and storage support interactive interface design
- Differentiate relational from non-relational databases
- Explain the advantages of each style of database

So we refresh our webpage...

Refreshing

- Often, we lose all the details we entered
 - By default, HTML loses everything when you refresh the page
- Sometimes, key details are remembered
- How is this done? Storage

- Your browser can hold a (small) amount of information about you and your activities on a website
 - Things you search for or type into a text box
 - Some form of login credentials (more on this another week)
 - Types of content you often to engage with
- When you later return to a website, it can tailor the content based on what was stored

- Example: what you were previously searching for
 - Helps you resume your task more quickly

- This storage can be either client side or server-side
 - Client: only visible in your browser
 - Server: shared with the website developers
- Cookies: Server-side storage
 - Often used to track web activity as part of targeting content (ads, recommendations)
- Client-side storage is limited to ~10MB, cookies are 4KB

- What if you want to store more information about a user?
 - Larger files: profile picture, user-generated images/videos
 - Longitudinal history of messages/emails
- You're typically looking at server-side storage, such as in a database

Storage and regulation

- Subject to GDPR, CCPA (California), and other privacy regulations
- Consent is needed for cookie storage, as these are typically needed for ads/analytics
- Not needed for client storage, as that data remains private

Cookie compliance

To comply with the regulations governing cookies under the GDPR and the ePrivacy Directive you must:

- Receive users' consent before you use any cookies except strictly necessary cookies.
- Provide accurate and specific information about the data each cookie tracks and its purpose in plain language before consent is received.
- Document and store consent received from users.
- Allow users to access your service even if they refuse to allow the use of certain cookies
- Make it as easy for users to withdraw their consent as it was for them to give their consent in the first place.

What is a database? If we can store data on devices, why do we need databases?

- Some sort of organized collection of data, plus tools for retrieving data
- Typically server-side
 - Accessible across devices
 - Technically you can have a database in your browser/client, but it's typically not as useful to do so

- Provide reliability
 - You can get your data back if your phone dies or you get a new phone
- Provide cross-device support
 - Allow you to see and modify the same data across a phone and a desktop, for example

- Are more than files stored in the cloud
 - Can be "queried" efficiently to get subsets of data
- Two main approaches to making databases
 - Relational databases: MySQL, Postgres
 - Non-relational databases: MongoDB, Firebase, IndexedDB
- Transaction: any add/delete/update/etc. made to a database

Relational databases

- Everything is organized into tables
- Tables contain columns with predefined names and data types
- Tables "relate" to one another by having overlapping or similar columns
 - Minimizes redundancy and keeps order
- Every data entry is a row of a table

Relational databases

Relational

Pers_ID	First_Name	Last_Name	Cit	У
1	Dexter	Lanasa	Vanco	uver
2	Ava	Crim	Denv	ver
3	Michael	Plumer	New Yor	k City
4	Olivia	Conlin	Dall	as
5	Sophia	Hassett	Atlar	nta
6	Mason	Mora	San Fran	ncisco
	Phone_Number		Person_ID	
hone Nu		-		
75	111-111-1111	Mobile	1	
76	222-222-2222	Home	2	
77	333-333-3333	Mobile	3	
78	444-444-4444	Home	1	
79	555-555-5555	Home	4	
80	666-666-6666	Mobile	5	
81	777-777-7777	Office	1	
	888-888-8888	Mobile	4	
82	000 000 0000			
82 83	999-999-9999	Mobile	5	

Relational databases

```
CREATE TABLE IF NOT EXISTS tasks (
   task_id INT AUTO_INCREMENT,
   title VARCHAR(255) NOT NULL,
   start_date DATE,
   due_date DATE,
   status TINYINT NOT NULL,
   priority TINYINT NOT NULL,
   description TEXT,
   PRIMARY KEY (task_id)
) ENGINE=INNODB;
```

Non-relational databases

- Everything is organized into objects
- There are no restrictions on how objects are structured
- Every data entry is an object, or "document"
 - Documents may be structured differently from one another

Non-relational databases

MongoDB Document

```
first_name: 'Dexter',
last_name: 'Lanas'
city: 'Vancouver'
location: [45.123,47.232],
phones: [
    { phone_number: '111-111-1111',
        type: mobile,
        person_id: 1, ... },
    { phone_number: '444-444-4444',
        type: home,
        person_id: 1, ... },
    { phone_number: '777-777-7777',
        type: office,
        person_id: 1, ... },
]
```

Non-relational databases

- There is no well-defined enforced structure
- That said, flatter structures are generally better

Advantages of relational databases

- Relational databases support better querying
 - Provide languages for querying, such as Structured Query Language (SQL)
 - Those languages can be used to ask for specific tables or even join data across tables
 - "Give me the first name of every user whose phone number starts with 949"

Advantages of relational databases

- Relational databases are more organized
 - Because field types are defined, data reliably follows that structure
- Relational databases are more reliable
 - Structure is enforced when new data is added
 - Transactions are atomic, so it's easy to "get" the current state of the database

Advantages of non-relational databases

- Non-relational databases support more flexibility
 - Structure imposes restrictions
 - Adding a new field (column) can mess up a relational database
- Non-relational databases are faster for simple operations
 - It's much easier to "watch all the files" than to query and index many rows across multiple tables

Relational vs. Non-relational

- Relational databases tend to be used in Enterprise, large-scale applications
 - It's important that data conforms to standards
 - It's important to robustly query large amounts of data
- Non-relational databases tend to be used in smaller applications
 - Data flexibility is valuable
 - Data is small enough to reliably retrieve and parse
- That said, plenty of large apps use non-relational databases and vice versa

Reflecting on databases

- Developers, especially for backend, think a lot about database structure and optimization
 - Relational versus non-relational
 - How to organize tables for efficiency and interpretability
- But, use cases and frontend functionality should inform this structure

Today's goals

By the end of today, you should be able to...

- Describe how databases and storage support interactive interface design
- Differentiate relational from non-relational databases
- Explain the advantages of each style of database

IN4MATX 285: Interactive Technology Studio

Practice: Databases and Storage