Relatório 4 - Inteligência Computacional

Jhúlia Graziella de Souza Rodrigues

¹Bacharelado em Ciência da Computação Universidade Federal do Uberlândia (UFU) Uberlândia (MG)

jhuliagraziella@gmail.com

1. Introdução

O objetivo do trabalho é aplicar um algoritmo de inteligência coletiva baseado em colônia de formigas para encontrar a solução do problema clássico conhecido como problema do caixeiro viajante (PCV).

2. Problema do Caixeiro Viajante

O problema do caixeiro viajante é definido por: dado um número finito de cidades e o custo de viagem entre cada par de cidades, deve-se encontrar o caminho de menor custo que passa por todas as cidades e retorna até a cidade inicial. Ele pode ser definido formalmente da seguinte maneira:

Seja G=(V,A) um grafo, onde V é um conjunto de N vértices e A é um conjunto de arestas. Seja C a matriz de distâncias associada com A. O PCV consiste em determinar o menor ciclo hamiltoniano, ou seja, o menor ciclo que passa por todos os vértices exatamente uma vez. Um caso específico deste problema é quando a matriz C é simétrica e é o caso apresentado neste trabalho.

Ele é um problema NP-Difícil, uma das possíveis soluções "corretas" tem complexidade $O(N \cdot 2^N)$, que não pode ser aplicada quando o número de cidades é grande. Pela grande aplicabilidade do problema e pela dificuldade de se encontrar a resposta exata para grandes valores de N, soluções alternativas, mesmo que aproximadas, são buscadas.

3. Algoritmo de Colônia de Formigas (ACO)

O algoritmo de colônia de formigas é um algoritmo de inteligência coletiva baseado no comportamento de formigas. A idieia é fazer o algoritmo se guiar de modo semelhante às formigas numa colônia: ao passar por um caminho, cada formiga deixa uma quantidade de feromônio naquele local, que atrai mais formigas para aquele mesmo caminho.

A probabilidade de um caminho ser escolhido é proporcional à quantidade de formigas que escolheram esse caminho no passado. Para que haja diversidade e seja possível esquecer escolhas ruins do passado, também é considerada uma taxa de evaporação do feromônio deixado.

No PCV, cada caminho é representado por uma aresta e aprobabilidade de uma aresta ser escolhida depende do comprimento da aresta e da quantidade de formigas que passaram por ali anteriormente, ou seja, da quantidade de feromônio presente na aresta. Como é permitido visitar cada vértice apenas uma vez, os vértices já visitados possuem probabilidade zero de serem revisitados.

A quantidade de feromônio das arestas presentes no melhor caminho até então é atualizada de acordo com a quantidade de formigas que passaram nestas arestas.

Os parâmetros utilizados no algoritmo foram:

- Taxa de importância da trilha de feromônio: $\alpha = 2$;
- Taxa de importância da visibilidade da aresta: $\beta = 5$;
- Taxa de evaporação do feromônio: $\rho = 0.5$;
- Quantidade de feromônio inicial em cada aresta: $\tau = 1$;
- Quantidade base de feromônio deixada por cada formiga: Q = 1.

A quantidade máxima de iterações do algoritmo é de 100 iterações e é considerado que o algoritmo convergiu se as últimas 50 iterações não melhorarem a resposta.

4. Resultados

O algoritmo foi aplicado em quatro instâncias do PCV. Cada instância é definida pela quantidade de vértices N do problema em conjunto com a matriz de distâncias entre os vértices.

A entrada pode possuir a matriz de distâncias ou as coordenadas de cada um dos N vértices, no segundo caso a distância entre cada par de cidades é calculada pela distância euclidiana entre as coordenadas de cada cidade.

A tabela 4 apresenta os resultados gerais obtidos em cada instância e a diferença relativa entre a resposta obtida e o comprimento do melhor caminho conhecido.

Instância	Melhor ACO	Melhor Conhecido	Erro Absoluto
1	2011.0000	2011.0000	+0.0000
2	7394.0383		
3	27610.2936	27603.0000	+7.2936
4	6659.4315	6656.0000	+3.6656

Tabela 1. Resultados gerais

4.1. Instância 1

A primeira instância é representada por um mapa Portugal/Espanha, definido por N=6 cidades e pela matriz de distâncias entre cada par de cidades mostrado na tabela 4.1.

	Aveiro	Évora	Faro	Bajadoz	Córdoba	Madrid
Aveiro	0	353	582	372	641	559
Évora	353	0	231	99	426	502
Faro	582	231	0	331	326	750
Badajoz	372	99	331	0	269	403
Córdoba	641	426	326	269	0	424
Madrid	559	502	750	403	424	0

Tabela 2. Matriz de distâncias da instância 1

A figura 1 é uma representação deste mapa com um dos possíveis melhores caminhos destacado.

O melhor resultado conhecido para este problema é de 2011. Os resultados obtidos pelo ACO após um conjunto de 50 execuções foram:

- Comprimento do melhor caminho: 2011;
- Comprimento do pior caminho: 2011;
- Comprimento médio dos caminhos: 2011.

Figura 1. Representação do mapa da instância 1

Uma possível sequência de cidades que representa o menor ciclo hamiltoniano é Aveiro, Bajadoz, Évora, Faro, Córdoba, Madrid e de volta até Aveiro, com custos 372 + 99 + 231 + 326 + 424 + 559 = 2011.

4.2. Instância 2

A segunda instância é um mapa hipotético de 15 cidades, numeradas de 0 a 15, com as coordenadas apresentadas na tabela 4.2.

	C_0	C_1	C_2	C_3	C_4	C_5	C_6	C_7	C_8	C_9	C_{10}	C_{11}	C_{12}	C_{13}	C_{14}
x	200	300	300	1000	600	1700	1400	1200	200	1200	500	1000	1900	400	1600
$y \mid$	300	700	1700	1900	1400	1600	800	500	1000	1100	900	900	1000	500	200

Tabela 3. Coordenadas (x,y) da instância 2

Os resultados obtidos pelo ACO após um conjunto de 50 execuções foram:

- Comprimento do melhor caminho: 7394.0383;
- Comprimento do pior caminho: 7463.2823;
- Comprimento médio dos caminhos: 7446.5916.

Uma possível sequência de cidades que representa o menor ciclo hamiltoniano encontrado encontrado pelo ACO é: 0, 13, 10, 11, 9, 6, 7, 14, 12, 5, 3, 2, 4, 8, 1 e de volta a 0.

4.3. Instância 3

A terceira instância é um mapa real com 29 cidades, numeradas de 0 a 28, com as coordenadas apresentadas na tabela 4.3.

A figura 2 representa os pontos descritos representados no plano.

O melhor resultado conhecido para este problema é de 27603. Os resultados obtidos pelo ACO após um conjunto de 50 execuções foram:

- Comprimento do melhor caminho: 27610.2936;
- Comprimento do pior caminho: 29818.4153;
- Comprimento médio dos caminhos: 28222.7692.

Cidade	x	y
0	20833.3333	17100.0000
1	20900.0000	17066.6667
2	21300.0000	13016.6667
3	21600.0000	14150.0000
4	21600.0000	14966.6667
5	21600.0000	16500.0000
6	22183.3333	13133.3333
7	22583.3333	14300.0000
8	22683.3333	12716.6667
9	23616.6667	15866.6667
10	23700.0000	15933.3333
11	23883.3333	14533.3333
12	24166.6667	13250.0000
13	25149.1667	12365.8333
14	26133.3333	14500.0000

Cidade	x	y
15	26150.0000	10550.0000
16	26283.3333	12766.6667
17	26433.3333	13433.3333
18	26550.0000	13850.0000
19	26733.3333	11683.3333
20	27026.1111	13051.9444
21	27096.1111	13415.8333
22	27153.6111	13203.3333
23	27166.6667	9833.3333
24	27233.3333	10450.0000
25	27233.3333	11783.3333
26	27266.6667	10383.3333
27	27433.3333	12400.0000
28	27462.5000	12992.2222

Tabela 4. Coordenadas (x,y) da instância 3

Figura 2. Representação dos pontos da instância 3 no plano

Uma possível sequência de cidades que representa o menor ciclo hamiltoniano encontrado encontrado pelo ACO é: 0, 1, 5, 10, 9, 11, 14, 18, 17, 16, 20, 21, 22, 28, 27, 25, 19, 24, 26, 23, 15, 13, 12, 8, 6, 2, 3, 7, 4 e de volta a 0.

4.4. Instância 4

A quarta instância é um mapa real com 38 cidades, numeradas de 0 a 37, com as coordenadas apresentadas na tabela 4.4.

Cidade	x	y
0	11003.6111	42102.5000
1	11108.6111	42373.8889
2	11133.3333	42885.8333
3	11155.8333	42712.5000
4	11183.3333	42933.3333
5	11297.5000	42853.3333
6	11310.2778	42929.4444
7	11416.6667	42983.3333
8	11423.8889	43000.2778
9	11438.3333	42057.2222
10	11461.1111	43252.7778
11	11485.5556	43187.2222
12	11503.0556	42855.2778
13	11511.3889	42106.3889
14	11522.2222	42841.9444
15	11569.4444	43136.6667
16	11583.3333	43150.0000
17	11595.0000	43148.0556
18	11600.0000	43150.0000

Cidade	x	y
19	11690.5556	42686.6667
20	11715.8333	41836.1111
21	11751.1111	42814.4444
22	11770.2778	42651.9444
23	11785.2778	42884.4444
24	11822.7778	42673.6111
25	11846.9444	42660.5556
26	11963.0556	43290.5556
27	11973.0556	43026.1111
28	12058.3333	42195.5556
29	12149.4444	42477.5000
30	12286.9444	43355.5556
31	12300.0000	42433.3333
32	12355.8333	43156.3889
33	12363.3333	43189.1667
34	12372.7778	42711.3889
35	12386.6667	43334.7222
36	12421.6667	42895.5556
37	12645.0000	42973.3333

Tabela 5. Coordenadas (x,y) da instância 4 $\,$

A figura 3 representa os pontos descritos representados no plano.

Figura 3. Representação dos pontos da instância 4 no plano

O melhor resultado conhecido para este problema é de 6656. Os resultados obtidos pelo ACO após um conjunto de 50 execuções foram:

- Comprimento do melhor caminho: 6659.4315;
- Comprimento do pior caminho: 6827.6920;
- Comprimento médio dos caminhos: 6679.8460.

Uma possível sequência de cidades que representa o menor ciclo hamiltoniano encontrado encontrado pelo ACO é: 0, 9, 13, 20, 28, 29, 31, 34, 36, 37, 32, 33, 35, 30, 26, 27, 23, 21, 24, 25, 22, 19, 14, 12, 15, 16, 17, 18, 10, 11, 8, 7, 6, 5, 4, 2, 3, 1 e de volta a 0.

5. Conclusão

Os resultados obtidos não são sempre exatos, mas a aproximação da resposta PCV por meio do ACO produz resultados que podem ser úteis em problemas que exigem uma computação rápida da resposta: por exemplo, quando o custo de pagar mais caro pela diferença entre a aproximação e o melhor resultado existente é menor do que o custo de esperar o cálculo da resposta exata.