Foundations of Machine Learning Al2000 and Al5000

FoML-05 Maximum A Posteriori Fully Bayesian treatment

> <u>Dr. Konda Reddy Mopuri</u> Department of AI, IIT Hyderabad July-Nov 2025

So far in FoML

- What is ML and the learning paradigms
- Probability refresher
- Maximum Likelihood Principle

Given - Dataset of N independent observations D

Given - Dataset of N independent observations D

ML estimate - w that maximizes the data likelihood

$$\mathbf{w}_{ML} = \underset{w}{\text{arg wex}} P(D|w)$$

• Given - Dataset of N independent observations D = $\left\{ \begin{array}{c} u_1 & u_2 \end{array} \right\}$

• MAP estimate - choose most probable w given data

Given - Dataset of N independent observations D

MAP estimate - choose most probable w given data

$$\mathbf{w}_{MAP} = \frac{\mathbf{w}_{max}}{\mathbf{w}} \qquad P(\mathbf{w}_{D})$$

• Given data D $D = \{(x_1, t_1), (x_2, t_2), \dots (x_N, t_N)\} = \{\mathbf{x}, \mathbf{t}\}$

Given data D

$$D = \{(x_1, t_1), (x_2, t_2), \dots (x_N, t_N)\} = \{\mathbf{x}, \mathbf{t}\}$$

Model

$$p(t|x,\mathbf{w},\beta) = \mathcal{N}(t|y(x,\mathbf{w}),\beta^{-1}) = \sqrt{\frac{\beta}{2}} e^{-\frac{\beta}{2}(t-y|x,\omega)}$$

Given data D

$$D = \{(x_1, t_1), (x_2, t_2), \dots (x_N, t_N)\} = \{\mathbf{x}, \mathbf{t}\}$$

ullet Model $p(t|x,\mathbf{w},eta) = \mathcal{N}(t|y(x,\mathbf{w}),eta^{-1})$

$$\mathbf{w}_{MAP} = \underset{\mathbf{w}}{\operatorname{arg\,max}} p(\mathbf{w}|\mathbf{x}, \mathbf{t}, \beta)$$

Given data D

$$D = \{(x_1, t_1), (x_2, t_2), \dots (x_N, t_N)\} = \{\mathbf{x}, \mathbf{t}\}$$

Model

$$p(t|x, \mathbf{w}, \beta) = \mathcal{N}(t|y(x, \mathbf{w}), \beta^{-1})$$

$$\mathbf{w}_{MAP} = \underset{\mathbf{w}}{\operatorname{arg\,max}} p(\mathbf{w}|\mathbf{x}, \mathbf{t}, \beta)$$

Given a prior $\mathcal{P}(\omega \bowtie)$ the posterior distribution becomes

$$p(\mathbf{w}|\mathbf{x},\mathbf{t},\beta,\alpha) = \frac{P(\mathsf{t}|\mathbf{w},\mathsf{x},\beta) P(\mathbf{w}|\mathbf{x})}{P(\mathsf{t}|\mathbf{x},\beta,\alpha)}$$

P(HX,N,B) P(W/A)

MAP estimate - for convenience apply log

$$\mathbf{w}_{MAP} = \underset{\omega}{\operatorname{argmax}} \left[\log P(\frac{t}{x}, \omega, \beta) + \log P(\omega|\alpha) - \log P(\frac{t}{x}, \beta, \alpha) \right]$$
in dependent \mathfrak{g}^{ω}

 $i = \{1, 2...m\}$

ullet Assuming Gaussian Prior and independence on parameters $\mathbf{w} \in \mathbb{R}^{\mathbf{M}}$

$$p(\mathbf{w}|\alpha) = \prod_{i=1}^{M} \mathcal{N}(\mathbf{w}_{i}|\mathbf{0}, \alpha^{-1}) = \prod_{i=1}^{M} \underbrace{\frac{d}{2\pi}}_{i=1} e^{-\frac{d}{2}} \underbrace{\omega_{i}^{2}}_{i=1} = \underbrace{\frac{d}{2\pi}}_{i=1} \underbrace{\frac{d}{2\pi}}_{i=1}$$

भारतीय प्रौद्योगिकी संस्थान हैदराबाद

Indian Institute of Technology Hyderabad

 $\mathbf{w_{MAP}} = \arg\min - \log \mathbf{p}(\mathbf{w}|\mathbf{x}, \mathbf{t}, \beta, \alpha) = \arg\min - \log \mathbf{p}(\mathbf{t}|\mathbf{x}, \mathbf{w}, \beta) - \log \mathbf{p}(\mathbf{w}|\alpha)$ = organin - log P(Hx,w,B) - log ((Z) M2 - ZWTW) argmin $-\log P[t|x,w,B] - \frac{M}{2} \log \frac{\pi}{2\pi} + \frac{\pi}{2} w^{T}w$ $\lim_{i=1}^{R} \frac{-B}{2\pi} \left[t_{i} - y(x_{i},w) \right] \qquad \lim_{i=1}^{R} \lim_{i=1}^{R} \frac{W^{T}w}{2\pi} \right]$ arg min $\left(\frac{B}{2} \right) = \frac{1}{2\pi} \left[\frac{1}{2\pi} - \frac{1}{2\pi} \left(\frac{1}{2\pi} \right) \right] + \frac{1}{2\pi} w^{T}w$ $\lim_{i=1}^{R} \frac{W^{T}w}{2\pi} = \frac{1}{2\pi} \left[\frac{1}{2\pi} - \frac{1}{2\pi} \left(\frac{1}{2\pi} \right) \right] + \frac{1}{2\pi} w^{T}w$ భారతీయ సాంకేతిక విజ్జాన సంస్థ హైదరాబాద్

Data-driven Intelligence
& Learning Lab

Predictive distribution

$$P(t'|x',\beta) = \mathcal{N}(t'|y(w_{MAD}x_i),\beta)$$

point estimate t = y(Wmap, x')

Bayesian Prediction

So far

- Our estimates for w have been point estimates
 - ML and MAP

So far

- Our estimates for w have been point estimates
 - o ML and MAP
 - o Regarded as frequentist because they discard 'uncertainty' about the w

 An approach that relies on consistent application of sum and product rules of probability at all levels of modeling

• Given a prior belief $p(\mathbf{w}|\alpha)$ over w, and data D

- Given a prior belief $p(\mathbf{w}|\alpha)$ over w, and data D
- We are interested in the posterior

$$p(\mathbf{w}|\mathbf{D}) = \frac{P(\mathcal{D}/w) P(w)}{P(\mathcal{D})}$$

The predictive distribution becomes

$$p(x'|D) = \int P(x',w|D) dw = \int P(x'|D) dw$$

• Curve fitting example

- Curve fitting example
- Given training data (x, t)

- Curve fitting example
- Given training data (x, t) and a test sample x

- Curve fitting example
- Given training data (x, t) and a test sample x
- Goal predict the value of t

- Curve fitting example
- Given training data (x, t) and a test sample x
- Goal predict the value of t

M(H/N/F)

We wish to evaluate the predictive distribution

$$p(t|x, \mathbf{x}, \mathbf{t})$$

W~ N(0, 1)

$$p(t|x,\mathbf{x},\mathbf{t}) = \int p(t|x,\mathbf{w})p(\mathbf{w}|\mathbf{x},\mathbf{t}) d\mathbf{w}.$$

$$= \int P(t,\mathbf{w}/\mathbf{x},\mathbf{x},t) d\mathbf{w}$$

$$= \int P(t/\mathbf{x},\mathbf{x},t) d\mathbf{w}$$

$$= \int P(t/\mathbf{x},\mathbf{w}) P(-\mathbf{w}/\mathbf{x},\mathbf{x},t) d\mathbf{w}$$

$$= \int P(t/\mathbf{x},\mathbf{w}) P(-\mathbf{w}/\mathbf{x},\mathbf{x},t) d\mathbf{w}$$

భారతీయ సాంకేతిక విజ్ఞాన సంస్థ హైదరాబాద్ भारतीय प्रौद्योगिकी संस्थान हैदराबाद Indian Institute of Technology Hyderabad Data-driven Intelligence & Learning Lab

- Advantages
 - Inclusion of the prior knowledge
 - o Represents uncertainty in t' due to the target noise and uncertainty over w

- Advantages
 - Inclusion of the prior knowledge
 - Represents uncertainty in t' due to the target noise and uncertainty over w
- Disadvantages
 - Posterior is hard to compute analytically
 - Prior is often a mathematical convenience

Rough work

Next Linear Models - Regression

