Discrete Mathematics and Logic Graph Theory Lecture 6

Andrey Frolov Professor

Innopolis University

What did we know in the last week?

- 1. Planar graphs
- 2. Euler's formula v e + f = 2
- 3. K_5 and $K_{3,3}$ are not planar
- 4. Kuratowski's Theorem
- 5. Colouring

Transportation networks

Definition

- A N = (V, E, c, s, t) is called a transportation **network**, if
- 1) (V, E) is a directed graph,
- 2) $c: E \to \mathbb{R}^+ \cup \{+\infty\}$ is the capacity function,
- 3) s and t are two distinguished vertices, s is called the **source**, t is called the **sink**.

Transportation networks

Transportation networks

What about undirected graphs?

Flows

Definition

A **flow** in a network N=(V,E,c,s,t) is a function $f:E\to\mathbb{R}^+$ such that

1)
$$0 \le f(e) \le c(e)$$
 for all $e \in E$,

2)
$$\sum_{w \in V} f(v, w) = \sum_{w' \in V} f(w', v)$$

Flows

Flows

Maximum flows

Problem

For given network, to find a flow with the maximum possible value.

The **value** of a flow
$$f$$
 is $\sum_{w \in V} f(\overline{s, w})$.

The naive wrong algorithm!

- 1) f(u, v) = 0 for any $u, v \in V$,
- 2) While there is a path p from s to t such that c(u,v)-f(u,v)>0 for all $(u,v)\in p$:
- a) find $c_f(p) = min\{c(u, v) f(u, v) > 0 \mid (u, v) \in p\}$,
- b) for any $(u, v) \in p$, put $f(u, v) := f(u, v) + c_f(p)$.

Step 1

Step 2

Step 2

Step 3

Step 3

What is the next step?

5 is not maximum!!

The answer

6 is maximum!!

Definition

For a network (V, E, c, s, t), a **cut** is a set $C \subseteq E$ such that there are sets S and T with

$$C = \{ \overrightarrow{(u,v)} \in E \mid u \in S \& v \in T \},$$

$$S \cup T = V, S \cap T = \emptyset$$

$$s \in S, t \in T$$

The capacity of a cut C is the sum of c(e) for $e \in C$.

The Ford-Fulkerson theorem

Max-flow min-cut theorem

The maximum value of a flow equals to the minimum capacity over all cuts.

The Ford-Fulkerson theorem

The Ford-Fulkerson algorithm

- 1) f(u, v) = 0 for any $u, v \in V$,
- 2) While there is a path p from s to t ignoring the direction of the edges such that c(u, v) f(u, v) > 0 for all $(u, v) \in p$:

a) find
$$c_f(p) = min\{c(u, v) - f(u, v) > 0 \mid (u, v) \in p\},\$$

b) put
$$f(u, v) := f(u, v) + c_f(p)$$
, if $\overrightarrow{(u, v)} \in p$,

c) put
$$f(u, v) := f(u, v) - c_f(p)$$
, if $\overrightarrow{(v, u)} \in p$,

Step 1

Step 2

Step 3

Step 4-a

Step 4-b

Step 4-c

Step 4-d

Step 4-e

Step 4-f

Step 4-g

Step 4-g

What we knew today?

- 1. Transportation network
- 2. Flows
- 3. Cuts
- 4. Max-flow min-cut theorem
- 5. The Ford-Fulkerson algorithm

Thank you for your attention!