i.e.,

MATH 1AA3 - Winter 2022

Dr.	Sabrina	Streipert
Offic	ce Hours	: virtual

streipes@mcmaster.ca by appointment

1	T 1 1 •	\mathbf{D} .
	Integration	$\mathbf{H} \mathbf{\Delta} \mathbf{U} \mathbf{I} \mathbf{\Delta} \mathbf{U} \mathbf{U}$
_	Integration	TICATEM

1 1	Rasic	Definitions	and the	Fundamental	Theorem
1.1	Dasic	Deminions	and the	rungamenta	г т пеоген

The indefinite integral of f(x) is denoted by ______.

We call F(x) an **anti-derivative** of f(x) if ______.

Q: Is the anti-derivative of a function f(x) unique?

The **definite integral** of a continuous function f(x) for $x \in [a, b]$ is denoted by _____ and defined by the so-called _____,

Fundamental Theorem of Calculus:

$$\int_a^b f(x) \, \mathrm{d}x =$$

1.2 Evaluation of Integrals

1.2.1 Some basic indefinite integrals

$$\int x^n \, \mathrm{d}x =$$

$$\int \frac{1}{x} \, \mathrm{d}x =$$

$$\int e^x \, \mathrm{d}x =$$

$$\int \sin(x) \, \mathrm{d}x =$$

$$\int \cos(x) \, \mathrm{d}x =$$

$$\int \sec^2(x) \, \mathrm{d}x =$$

$$\int \frac{1}{x^2 + 1} \, \mathrm{d}x =$$

1.2.2 Some techniques of integration

A. _____

Example: $\int x^2 e^{x^3} dx$

$$\implies$$
 If $\int f(x) dx = F(x) + C$, then $\int f(kx) dx =$

B. ____

Example: $\int xe^{2x} dx$

C. ____

Example: $\int \frac{1}{x^2-x} dx$

D.

Example: $\int \cos^2(x) dx$

M1AA3 - C01

- 2 Improper Integrals (Ch. 7.8)
- 2.1 Improper Integrals Type I
- 2.1.1 Case A

Let f(x) be a function defined on $[a, \infty)$ and assume that for all $t \ge a$, $\int_a^t f(x) dx$ exists.

Define
$$\int_{a}^{\infty} f(x) dx =$$

Terminology:

We say that $\int_a^\infty f(x) dx$ is **convergent** if _______, else we say that $\int_a^\infty f(x) dx$ is ______.

Example:

1.)
$$\int_{1}^{t} \frac{1}{x^2} dx =$$

$$\int_1^t \frac{1}{x} \, \mathrm{d}x =$$

General Rule:

$$\int_1^\infty \frac{1}{x^p} \, \mathrm{d}x =$$

$$Example \qquad \int_0^\infty \cos(x) \, \mathrm{d}x =$$

Example
$$\int_0^\infty x e^{-x} \, \mathrm{d}x =$$