Advanced Models and Methods in Operations Research Project: Vehicle routing

Florian Fontan

2021-2022

For each problem considered, instances and a code skeleton containing an instance parser and a solution checker are provided in the data/ and python/ folders of the project.

The algorithms must be implemented in the provided files between the tags ${\tt TODO}$ START and ${\tt TODO}$ END.

They must be tested on all the provided instances with the command: python3 problem.py-i instance.json -c certificate.json

And each solution file must be validated by the provided checker: python3 problem.py -a checker -i instance.json -c certificate.json

The results must be reproducible.

The delivrable must contain:

- \bullet A short report describing and justifying the proposed algorithms
- The code implementing the algorithms
- The solution files obtained on the provided instances

1 Dynamic Programming

We consider the Elementary shortest path problem with resource constraint and a single slot:

- Input:
 - 1 depot
 - n-1 customers; for each customer $j = 2, \ldots, n$, a visit interval $[s_j, e_j[, s_j \in \mathbf{N}_+, e_j \in \mathbf{N}_+, s_j < e_j]$
 - an $n \times n$ symmetric matrix t specifying the times in \mathbf{R}_+ to travel between each pair of locations

- an $n \times n$ matrix c specifying the costs in **R** to travel between each pair of locations
- Problem: find a sub-tour starting and ending at the depot such that
 - each customer is visited at most once
 - the arrival at a customer j is before s_i
 - the departure from a customer is at e_j (even if the arrival was before s_j)
- Objective: minimize the cost of the sub-tour

Note that the costs might be negative.

Propose and implement an algorithm based on Dynamic Programming for this problem.

2 Heuristic Tree Search

We consider the Elementary shortest path problem with resource constraint and two slots:

- Input:
 - 1 depot
 - -n-1 customers; for each customer $j=2,\ldots,n$, two visit intervals (which might overlap)

$$\begin{split} * \; & [s_j^1, e_j^1[, \, s_j^1 \in \mathbf{N}_+, \, e_j^1 \in \mathbf{N}_+, \, s_j^1 < e_j^2 \\ * \; & [s_j^2, e_j^2[, \, s_j^2 \in \mathbf{N}_+, \, e_j^2 \in \mathbf{N}_+, \, s_j^2 < e_j^2 \end{split}$$

- an $n \times n$ symmetric matrix t specifying the times in \mathbf{R}_+ to travel between each pair of locations
- an $n \times n$ matrix c specifying the costs in \mathbf{R} to travel between each pair of locations
- Problem: find a sub-tour starting and ending at the depot such that

- each customer is visited at most once
- the arrival and the departure from a customer include one of its two visit intervals
- Objective: minimize the cost of the sub-tour

Propose and implement an algorithm based on Heuristic Tree Search with Dynamic Programming for this problem.

3 Column Generation + Dynamic Programming

We consider the Vehicle routing problem with a single slot:

- Input:
 - 1 depot
 - n-1 customers; for each customer $j = 2, \ldots, n$, a visit interval $[s_j, e_j[, s_j \in \mathbf{N}_+, e_j \in \mathbf{N}_+, s_j < e_j]$
 - an $n \times n$ symmetric matrix t specifying the times in \mathbf{R}_+ to travel between each pair of locations
- Problem: find a set of routes starting and ending at the depot such that
 - each customer is visited exactly once
 - the arrival at a customer j is before s_j
 - the departure from a customer is at e_j (even if the arrival was before s_j)
- Objective: minimize the total traveled dis-

Propose an exponential formulation and implement an algorithm based on a Column Generation heuristic for this problem.

4 Column Generation

+ Heuristic Tree Search

We consider the Vehicle routing problem with two slots:

- Input:
 - 1 depot

-n-1 customers; for each customer $j=2,\ldots,n$, two visit intervals (which might overlap)

$$* [s_j^1, e_j^1[, s_j^1 \in \mathbf{N}_+, e_j^1 \in \mathbf{N}_+, s_j^1 < e_j^2]$$

$$* [s_j^2, e_j^2[, s_j^2 \in \mathbf{N}_+, e_j^2 \in \mathbf{N}_+, s_j^2 < e_j^2]$$

- an $n \times n$ symmetric matrix t specifying the times in \mathbf{R}_+ to travel between each pair of locations
- Problem: find a set of routes starting and ending at the depot such that
 - each customer is visited exactly once
 - the arrival and the departure from a customer include one of its two visit intervals
- Objective: minimize the total traveled distance

Propose an exponential formulation and implement an algorithm based on a Column Generation heuristic for this problem.