Name, group no:	

1. Consider the process

$$y_t = t^2 + u_t + 4u_{t-1} + 2u_{t-2},$$

where (u_t) is a white noise with $Var(u_t) = \sigma^2$.

- (a) [1] Find the expected value $\mathbb{E}(y_t)$.
- (b) [7] Find the autocorrelation function $\rho_k = \mathbb{C}\mathrm{orr}(y_t, y_{t-k})$.
- (c) [2] Is the process (y_t) stationary?

Name, group no:	

2. Consider the process

$$y_t = t^2 + u_t + 4u_{t-1} + 2u_{t-2},$$

where u_t are normal independent random variables with $Var(u_t) = 4$.

You know that $u_{10} = 110$ and $u_9 = 90$.

- (a) [5] Find the 95% predictive interval for y_{11} .
- (b) [5] Find the 95% predictive interval for $y_{1000000}$.

Name, group no:	

- 3. The stationary process (y_t) with expected value 100 has autocorrelation function with $\rho_1=0.5, \, \rho_2=0.1$ and $\rho_k=0$ for $k\geq 3$.
 - (a) [6] Find the first two values of the partial autocorrelation function, ϕ_{11} and ϕ_{22} .
 - (b) [4] Provide a possible equation for this process. Your equation may include y_t , its lags and a white noise process (u_t) .

Name, group no:	

- 4. Consider the difference equation $y_t 0.7y_{t-1} + 0.1y_{t-2} = u_t 0.5u_{t-1}$, where u_t are independent and normal $\mathcal{N}(0;1)$.
 - (a) [3] How many stationary and non-stationary solutions does the equation have?
 - (b) [7] Write a more simple difference equation with the same set of stationary solutions.

Name, group no:	

5. [10] The semi-annual (y_t) is modelled by ETS(AAA) process:

$$\begin{cases} u_t \sim \mathcal{N}(0;9) \\ b_t = b_{t-1} + 0.2u_t \\ s_t = s_{t-2} + 0.1u_t \\ \ell_t = \ell_{t-1} + b_{t-1} + 0.3u_t \\ y_t = \ell_{t-1} + b_{t-1} + s_{t-2} + u_t \end{cases}$$

You know that $s_{100}=3$, $s_{99}=-2$, $\ell_{100}=100$, $b_{100}=1$.

Find 95% predictive interval for y_{102} .

Name, group no:	

6. [10] The semi-annual (y_t) is modelled by ETS(AAA) process:

$$\begin{cases} u_t \sim \mathcal{N}(0;9) \\ b_t = b_{t-1} + 0.2u_t \\ s_t = s_{t-2} + 0.1u_t \\ \ell_t = \ell_{t-1} + b_{t-1} + 0.3u_t \\ y_t = \ell_{t-1} + b_{t-1} + s_{t-2} + u_t \end{cases}$$

You know that $s_{100}=3$, $s_{99}=-2$, $\ell_{100}=100$, $b_{100}=1$.

Decompose $y_{101}=105$ into trend component, seasonal component and residual.