

ML Project Assignment

Guide: Dr. Patrick Healy

CS6502 - Applied Big Data and Visualization

10th May 2020

Submitted by

Jamiu Olashile Salimon 19063679

Table of Contents

Task 1: Select the First 1000 Rows	3
Link to Query on Big Query	3
Actual Query	3
Task 2: Principal Component Analysis (PCA)	4
Summary	4
Exploratory Data Analysis	4
Stats	6
Data Preparation Handle Missing Values Encode Categorical Features Scale Numerical Features	9 9
PCA	
Task 3: Model Creation	14
Link to Query on Big Query	14
Actual Query	14
Task 4: Model Evaluation	16
Link to Query on Big Query	16
Actual Query	16
Task 5: Model Prediction	18
Link to Query on Big Query	18
Actual Query	18
Task 6: Screenshot of Model Evaluation Report	20
Result from Model Creation Query	20
Result from Model Evaluation Query	

Task 1: Select the First 1000 Rows

Link to Query on Big Query

https://console.cloud.google.com/bigquery?sq=844523097149:ea0c2dd8f55241f68da15b1 3ac544ef7

```
select
 extract(dayofweek from trip start timestamp) as
trip start time day of week,
 extract(hour from trip start timestamp) as trip start time hour,
 extract(dayofweek from trip end timestamp) as
trip end time day of week,
 extract(hour from trip end timestamp) as trip end time hour,
 trip seconds,
 trip miles,
 pickup census tract,
 dropoff census tract,
 pickup community area,
 dropoff community area,
 fare,
 tips,
 tolls,
 extras,
 trip total,
 payment type,
 company,
 pickup latitude,
 pickup_longitude,
 pickup_location,
 dropoff latitude,
 dropoff longitude,
 dropoff location
    `bigquery-public-data.chicago taxi_trips.taxi_trips`
 trip start timestamp
asc limit
  1000;
```

Task 2: Principal Component Analysis (PCA)

Summary

Exploratory Data Analysis (EDA) was first carried out on the dataset for the sole purpose of understanding and summarizing it. Secondly, the dataset was **prepared** for modelling. Finally, **Principal Component Analysis (PCA)** was carried out on the prepared dataset.

The work done is described in detail in the next three headings.

You can also find the Jupyter notebook of work done named: "ml-project-pca.ipynb". It located in the same folder as this document.

You can also find and execute a copy of the notebook on Google Colab via the link below: https://colab.research.google.com/drive/1VL68e7kdgjMI9VSomWICAkw0Fy7wnKu0?usp=sharing

Exploratory Data Analysis

Check for Missing/Null Values

Rows with missing values include; trip_seconds: 6, pickup_census_tract: 352, dropoff_census_tract: 408, pickup_community_area: 73, dropoff_community_area: 145, company: 635, pickup_latitude: 73, pickup_longitude: 73, pickup_location: 73, dropoff_latitude: 146, dropoff_longitude: 146 and dropoff_location: 146.

- - C> <class 'pandas.core.frame.DataFrame'>
 RangeIndex: 1000 entries, 0 to 999
 Data columns (total 23 columns):

0 trip_start_time_day_of_week 1000 non-null int6	54
·	4
1 trip_start_time_hour 1000 non-null int6	. 1
2 trip_end_time_day_of_week 1000 non-null int6	4
3 trip_end_time_hour 1000 non-null int6	4
4 trip_seconds 994 non-null floa	t64
5 trip_miles 1000 non-null floa	ıt64
6 pickup_census_tract 648 non-null floa	ıt64
7 dropoff_census_tract 592 non-null float	ıt64
8 pickup_community_area 927 non-null floa	ıt64
9 dropoff_community_area 854 non-null floa	ıt64
10 fare 1000 non-null floa	ıt64
11 tips 1000 non-null floa	ıt64
12 tolls 1000 non-null floa	ıt64
13 extras 1000 non-null floa	ıt64
14 trip_total 1000 non-null floa	ıt64
15 payment_type 1000 non-null objection	ect
16 company 365 non-null obje	:ct
17 pickup_latitude 927 non-null floa	ıt64
18 pickup_longitude 927 non-null floa	ıt64
19 pickup_location 927 non-null objection	ect
20 dropoff_latitude 854 non-null floa	ıt64
21 dropoff_longitude 854 non-null floa	ıt64
22 dropoff_location 854 non-null objection	:ct

dtypes: float64(15), int64(4), object(4)

memory usage: 179.8+ KB

Stats

- payment_type, company, pickup_location, and dropoff_location are categorical features.
- Noted distribution are as follows;
 - Normal distribution: trip_start_time_day_of_week, trip_end_time_day_of_week, pickup_census_tract
 - Left skewed: trip_end_time_day_of_week, trip_end_time_hour, extras, pickup_latitude, dropoff_latitude
 - Right skewed: trip_seconds, trip_miles, dropoff_census_tract, pickup_community_area, fare, tips, tolls, trip_total, pickup_longitude, and dropoff_longitude

[62] # displaying data stats for numerical features chicago_taxi_dataset.describe()

÷	trip_start_time_day_of_week	trip_start_time_hour	trip_end_time_day_of_week	trip_end_time_hour	trip_seconds	trip_miles	pickup_census_tract	dropoff_census_tract	pickup_community_area
count	1000.0	1000.0	1000.0	1000.000000	994.000000	1000.000000	6.480000e+02	5.920000e+02	927.000000
mean	3.0	0.0	3.0	0.007000	569.577465	2.706130	1.703122e+10	1.703123e+10	14.450917
std	0.0	0.0	0.0	0.094657	499.971422	6.511342	2.662770e+05	2.660685e+05	13.379230
min	3.0	0.0	3.0	0.000000	0.000000	0.000000	1.703103e+10	1.703103e+10	1.000000
25%	3.0	0.0	3.0	0.000000	300.000000	0.000000	1.703107e+10	1.703107e+10	7.000000
50%	3.0	0.0	3.0	0.000000	480.000000	1.140000	1.703108e+10	1.703108e+10	8.000000
75%	3.0	0.0	3.0	0.000000	720.000000	3.000000	1.703128e+10	1.703132e+10	24.000000
max	3.0	0.0	3.0	2.000000	6600.000000	90.000000	1.703198e+10	1.703184e+10	77.000000

[63] # calc variance for each numerical variable chicago_taxi_dataset.var()

pickup_community_area 1.790038e dropoff_community_area 2.455722e fare 8.090699e tips 5.035703e tolls 2.500000e extras 1.510010e trip_total 8.185993e pickup_latitude 9.588334e pickup_longitude 1.013319e dropoff_latitude 1.247908e dropoff_longitude 8.895545e dtype: float64	+02 +04 +00 +00 +01 +04 -04 -03
---	--

Numerical Features

• Check for distribution: I used boxplot and bar chart to visualize the distribution of the numerical features. The visualization shows that trip_seconds contains a lot of outliers was validated and that the extreme values are to the right.

 Check for correlation: I used heatmap to visualize the correlation matrix of the numerical features. I noticed that; tolls, trip_total, and fare strongly correlate with one another.

```
[70] #heatmap of correlation matrix
    sns.heatmap(chicago_taxi_dataset.corr());
    # chicago_taxi_dataset.corr()
```


Categorical Features

Check for distribution: I used a simple frequency table for visualize the distribution of values for payment_type.

```
[71] # function to compose frequency table for categorical variables
    def frequency_table(arr=[]):
      for value in arr:
        print(chicago_taxi_dataset[value].value_counts(normalize=True))
        print('\n')
[73] cat_lables = ['payment_type']
    frequency_table(cat_lables)
                  0.823
 Cash
    Credit Card 0.166
    No Charge 0.008
                 0.002
    Unknown
    Dispute
                  0.001
    Name: payment_type, dtype: float64
```

Data Preparation

Handle Missing Values

The columns with missing/zero values of more than 30% of the columns were removed otherwise the missing values were replaced with the mean for that column. Columns with complex datatype were also removed.

Encode Categorical Features

Categorical features were encoded using the one-hot encoding because the PCA algorithm require only numerical data.

chicago taxi dataset = imput missing val(chicago taxi dataset, columns=columns)

Scale Numerical Features

- Features without outliers were scaled using the Standard Scaler API.
- Log transformation was applied to features with outliers and then Robust Scaler API was
 used for scaling. Log transformation was applied to normalize the distribution because
 ML algorithms work better with dataset that are normally distributed and Robust Scaler
 works best on features with outliers.

PCA

Goal: The goal of PCA is to find the directions (components) that maximize the variance in the dataset.

The target and independent variables were separated into "y" and "X" respectively. PCA was then carried out on the independent variables using the Scikit-Learn PCA API.

Below are two screenshots showing the implementation of PCA and the visualization of the distribution of the components with respect to their effect on the variance of the dataset;

```
# Represent dependent variable with y and independent variables with X
y = chicago_taxi_dataset['fare']
X = chicago_taxi_dataset.drop('fare', axis=1)

[] X

y

[] # a copy of list of column names
column_names = list(X.columns.values)
```

PCA

```
[ ] # Initialize PCA without n component given and fit with X
     pca = PCA(iterated_power=7)
     pca.fit(X)
 PCA(copy=True, iterated_power=7, n_components=None, random_state=None,
          svd_solver='auto', tol=0.0, whiten=False)
[ ] # number of features
     pca.n_components_
[→ 21
[ ] # output the amount of variance explained by each of the selected components
     pca.explained_variance_
 □→ array([2.09826118e+02, 3.49921178e+00, 2.58779966e+00, 2.19364166e+00,
             1.79383840e+00, 1.16414048e+00, 8.23178990e-01, 7.57263084e-01, 6.64654713e-01, 4.79522003e-01, 4.38568375e-01, 2.11717701e-01, 1.54993478e-01, 1.22248448e-02, 2.67677792e-03, 1.17221202e-03,
              2.02361914e-04, 6.79706538e-32, 1.65071029e-32, 1.61272429e-33,
              0.00000000e+00])
[ ] # output the percentage of variance explained by each of the selected components. It should sum up approximately 1.
     pca.explained_variance_ratio_
 □ array([9.34175924e-01, 1.55789919e-02, 1.15212546e-02, 9.76640681e-03,
              7.98642542e-03, 5.18292009e-03, 3.66491074e-03, 3.37144369e-03,
              2.95913796e-03, 2.13490062e-03, 1.95256921e-03, 9.42597520e-04,
              5.9053160e-04, 2.1393002e-05, 1.392392e-05, 5.21885795e-06, 9.00944218e-07, 3.02615084e-34, 7.34919861e-35, 7.18007946e-36,
              0.00000000e+00])
```

```
[ ] explained_variance_ratio = pca.explained_variance_ratio_
len(explained_variance_ratio)
```

[→ 21

```
# Plot explained variane ratio with a bar chart
pyplot.xticks(range(len(explained_variance_ratio)), column_names)
pyplot.xlabel('Names of predictors')
pyplot.ylabel('Effect on variance of dataset')
pyplot.title('Histogram for the explained variance ratio')
pyplot.xticks(rotation=90)
pyplot.
pyplot.bar(range(len(explained_variance_ratio)), explained_variance_ratio)
pyplot.show()
```


Features to be used for predictive analysis on Big Query based on their effect on the variance of the dataset include:

- trip_start_time_day_of_week: 93.4%
- trip start time hour: 1.55%
- trip end time day of week: 1.15%
- trip end time hour: 0.97%
- trip seconds: 0.79%
- trip miles: 0.51%
- pickup community area: 0.36%
- dropoff_community_area: 0.34%
- tips: 0.29%
- tolls: 0.21%
- extras: 0.19%

Additional feature(s);

• trip_total: It strongly correlates with the target variable even though it only has 0.09% effect on the variance of the dataset.

All in all, the features selected have a total of 99.85% effect on the variance of the dataset.

Task 3: Model Creation

Link to Query on Big Query

https://console.cloud.google.com/bigquery?sq=844523097149:34197bfe890141e79f79b56b41ca472f

```
create or replace model
  `fluted-alloy-266504.chicago_taxi_trips.reg_model_v6`
options
 model type='LINEAR REG',
  labels=['fare']
  -- standard sql
  select
   trip start time day of week,
   trip start time hour,
    trip_end_time_day_of_week,
    trip_end_time_hour,
    trip seconds,
    trip miles,
    fare,
    pickup community area,
    dropoff community area,
   tips,
   tolls,
    extras,
    trip total
  from
    (
    select
      row number() over (order by trip start timestamp),
      trip start timestamp,
      extract(dayofweek from trip start timestamp) as
trip start time day of week,
      extract(hour from trip start timestamp) as
trip start time hour,
      extract(dayofweek from trip end timestamp) as
trip end time day of week,
      extract(hour from trip_end_timestamp) as trip_end_time_hour,
      trip_seconds,
      trip miles,
      fare,
      pickup community area,
      dropoff community area,
      tips,
      tolls,
      extras,
      trip total
    from
```

```
`bigquery-public-data.chicago_taxi_trips.taxi_trips`)
where
  fare > 0 and
  trip_miles > 0 and
  trip_seconds > 0 and
  trip_start_time_day_of_week is not null and
  trip_start_time_hour is not null and
  pickup_community_area is not null and
  dropoff_community_area is not null and
  trip_start_timestamp
  between timestamp
  '2013-05-11 04:45:00'
  and
  '2017-05-11 04:45:00' -- 2013-2017: 4 years
```

Task 4: Model Evaluation

Link to Query on Big Query

https://console.cloud.google.com/bigquery?sq=844523097149:5c2fd086996348239e5cd0463abc430e

```
select
 mean squared error, r2 score, explained variance,
   when r2 score > .9 and explained variance > .9 then 'good'
   when r2 score > .8 and explained variance > .8 then 'fair'
   when r2 score > .7 and explained variance > .7 then 'decent'
   when r2 score > .6 and explained variance > .6 then 'not great'
  else 'poor' end as model quality based on r2 score and variance
 ml.evaluate(model `fluted-alloy-
266504.chicago taxi trips.reg model v6`, (
  -- standard sql
  select
   trip start time day of week,
   trip start time hour,
   trip end time day of week,
   trip end time hour,
   trip seconds,
   trip miles,
   fare,
   pickup community area,
   dropoff community area,
   tips,
   tolls,
   extras,
   trip total
  from
    (
      row number() over (order by trip_start_timestamp),
      trip start timestamp,
      extract(dayofweek from trip start timestamp) as
trip start time day of week,
      extract(hour from trip start timestamp) as
trip start time hour,
      extract(dayofweek from trip end timestamp) as
trip end time day of week,
      extract (hour from trip end timestamp) as trip end time hour,
      trip seconds,
      trip miles,
      fare,
      pickup community area,
      dropoff community area,
      tips,
      tolls,
```

```
extras,
      trip_total
    from
      `bigquery-public-data.chicago taxi trips.taxi trips`
    )
  where
   fare > 0 and
   trip miles > 0 and
   trip seconds > 0 and
   trip_start_time_day_of_week is not null and
    trip start time hour is not null and
    pickup_community_area is not null and
    dropoff community area is not null and
    trip start timestamp
     between timestamp
      '2017-05-11 04:46:00'
      and
      '2019-05-11 04:45:00' -- 2017-2019: 2 years
));
```

Task 5: Model Prediction

Link to Query on Big Query

https://console.cloud.google.com/bigquery?sq=844523097149:33325368fe4e43ebb5482e5 12b3b4502

```
select *
  ml.predict(model `fluted-alloy-
266504.chicago taxi trips.reg model v6`, (
  -- standard sql
  select
    trip start time day of week,
    trip start time hour,
    trip end time day of week,
   trip end time hour,
    trip seconds,
    trip miles,
    fare,
    pickup community area,
    dropoff community area,
    tips,
   tolls,
    extras,
   trip total
  from
    select
      row number() over (order by trip start timestamp),
      trip start timestamp,
      extract(dayofweek from trip start timestamp) as
trip_start_time_day_of_week,
      extract(hour from trip start timestamp) as
trip start time hour,
      extract(dayofweek from trip end timestamp) as
trip end time day of week,
      extract(hour from trip end timestamp) as trip end time hour,
      trip seconds,
      trip miles,
      fare,
      pickup community area,
      dropoff_community_area,
      tips,
      tolls,
      extras,
      trip total
      `bigquery-public-data.chicago taxi trips.taxi trips`
    )
  where
    fare > 0 and
```

```
trip_miles > 0 and
trip_seconds > 0 and
trip_start_time_day_of_week is not null and
trip_start_time_hour is not null and
pickup_community_area is not null and
dropoff_community_area is not null and
trip_start_timestamp
between timestamp
'2019-05-11 04:46:00'
and
'2020-05-11 04:45:00' -- 2019-2020: A year
));
```

Task 6: Screenshot of Model Evaluation Report

Result from Model Creation Query

reg_model_v6					
Details Trai	ning	Evaluation	Schema		
Mean absolute	error	0.0397			
Mean squared	error	0.0100			
Mean squared	log erro	0.0001			
Median absolu	ıte error	0.0125			
R squared		0.99	99		

Result from Model Evaluation Query

Job i	nformation	Results	JSON	Execution details			
Row	mean_square	ed_error	r2_score	•	explained_variance	model_quality_based_on_r2_score_and_variance	
1	1.08155846	10554083	0.99868	35884292433	0.9986972258002985	good	