放物線 $y=x^2$ がある。原点を通り傾き 1 の直線がこの放物線とふたたび交わる点を P_1 とし,次に P_1 を通り傾き $\frac{1}{2}$ の直線が放物線とふたたび交わる点を P_2 , P_2 を通り傾き $\frac{1}{4}$ の直線が放物線とふたたび交わる点を P_3 とする。このようにして P_1 , P_2 , P_3 , \cdots を定め,一般に P_n を通り傾き 2^{-n} の直線が放物線とふたたび交わる点を P_{n+1} とする。 P_n の座標を (x_n,y_n) とするとき, x_{2n+1} を求めよ。なお,点 P_1 , P_3 , P_5 , \cdots はどのような点に近づくか。