	B.Tech. CS&IT Semester - VIII										
Sr.	Subject	Code	Hours Credits					Tot al			
No.		Code	CL	S	Т	P	CL	S	Т	P	Cre dits
8.1	Final Project & Dissertation	BTCS08CCA1	0	2	0	12	0	2	0	6	8
8.2	Advanced Database Management System	BTCS08CCA2	1	1	1	4	1	1	1	2	5
8.3	Advanced Cloud Computing	BTCS08CCA3	1	1	1	4	1	1	1	2	5
		TOTAL	2	4	2	20	2	4	2	10	18

Advanced Database Management System

This course is aimed at imparting candidates for the Advance Database Management System and aims at building the following key competencies amongst the Students

Program Name	Degree	in B.Tec	th. (CSIT	·)					
Course Name	Advanc System		ase Ma	nagemen	t Course	Code			
Version No	1.0				Versio Update				
Pre-requisite	• Intro	Introductory knowledge of Database Systems.							
Course Outcome	• To the	e design	and imp I advand	olement [ced DBM:	Distributed	rminology i Databases es to const	5.		effective
Total Credits / L:T:P:S	4/1	:1:1:1							
Teaching & Examination Scheme	Teaching Scheme Examination Scheme								
	L 15	P 15	T 15	S 15	CAT 50	CAP 40	TEE 50	TEP 40	SA 20

The Course Encompasses

Sr. No	Module/Units	Key Learning Outcomes	Instructional Objectives
1	Data Base Analysis and Design Techniques Theory Duration (hh.mm): 03.00 Practical Duration (hh.mm): 08.00	 The Students should be able to: LO1: Understand basic database design methodology and ER diagram LO2: Understand and learn the concept of Functional Dependency, closure and keys LO3: Understand Normal Forms and decomposition of tables 	Students will get the basic knowledge of table, functional dependency, keys and various normal forms and they will decompose a table in various normal forms

2	Advanced Transaction Processing and Concurrency Control Theory Duration (hh.mm): 03.00 Practical Duration (hh.mm): 10.00	 The Students should be able to: LO1: Understand the transaction concept in DBMS LO2:Understand serializability concept and concurrency control LO3: Understand concurrency control technique, Timestamping and locking mechanism. 	Students get to know the concept of transaction, serializability and concurrency control mechanism
3	Query Processing & Optimization Theory Duration (hh.mm): 03.00 Practical Duration (hh.mm): 14.00	 The Students should be able to: LO1: Understand the basics of Relational Algebra LO2:Understand Operations like join select and project LO3: Understand Query Optimization process and Estimating cost. 	Students get to know the concept of Relational Algebra, Query optimization and cost estimation
4	Theory Duration (hh.mm): 03.00 Practical Duration (hh.mm): 16.00	 The Students should be able to: LO1: Understand the concept of File organization. LO2: Students learn basic concept of indexing and hashing. LO3: Students learn the comparison of indexing and hashing 	Students would be able to understand the basic concept of indexing and hashing.
5	Distributed Databases Theory Duration (hh.mm): 03.00 Practical Duration (hh.mm): 12.00	 The Students should be able to: LO1: Understand the concept of centralize and distributed DBMS LO2: Students learn basic technique of distributed database design. LO3: Students learn query processing in distributed database 	Students get to know the concept of distributed DBMS and its design.

Module/Unit wise Syllabus Details

Sr.	Module/Units	Detailed Topic wise Syllabus	References
No			

1	Data Base Analysis and Design Techniques Theory Duration (hh.mm): 06.00	Review of basic Database Concepts, Database Design Methodologies. ER Modeling, Functional Dependencies Implication, Closures, its correctness, Normalization Theory, 1st,2nd,3rd Normal Form and BCNF, Decomposition.	Chapter 1, 2, T1 N/A
2	Advanced Transaction Processing and Concurrency Control Theory Duration (hh.mm): 06.00	Transaction Concepts, Concurrency Control: Introduction to Transaction Processing, Transaction Properties, Transaction recoverability and serializability, Introduction to Concurrency Control, Concurrency control Techniques, Two-phase locking, Timestamping Methods, Graph based Protocol.	Chapter 6 T1 QP: SSC/Q3001 NOS: SSC/N2101
3	Query Processing & Optimization Theory Duration (hh.mm): 06.00	Introduction, Translating SQL queries, Relational Algebra, Operations — Sorting, Selection, Join and Project etc. Aggregate and Outer Joins, Query Evaluation, Transformation of relational expressions in Query optimization, Heuristics for Query optimization, estimating cost in query optimization.	
4	Data Storage and Querying Theory Duration (hh.mm): 06.00	File organization, Organization of records, Indexing and Hashing – Basic concepts, B+tree index files, Static and dynamic hashing, comparison of indexing and hashing.	0.0

5	Distributed	Concepts, Centralized DBMS and Chapter 12 T1
	Databases	Distributed DBMS, Techniques for N/A
		Distributed database design – Data
		fragmentation, replication, and allocation
	Theory Duration	techniques; Types of Distributed Systems,
	(hh.mm): 06.00	Query processing in Distributed
		Databases, Concurrency control &
		Recovery in Distributed Databases.

Text Books/Reference Books

Sr. No	Title of the Book	Author	Edition / volume	Text (T)
1.	Advanced database	RiniChkrabarti and		
	management system	ShibhadraDasgupta,		
2.	Distributed Databases	Ozsu and Valduriez		
		,Pearson Education.		
3	Fundamentals of	RamezElmasri,		
		ShamkantNavathe,		
	Database Systems	Pearson Education		
4	Database System	Abraham Silberschatz,		
	Concepts	Henry F. Korth, S.		
		Sudarshan, Tata		
		McGraw-Hill.		
5	Fundamentals of	R. Elmasri and S.	2010	
	Database Systems	Navathe, 6th Ed.		
		Pearson Education		
6	Database Management Systems	R. Ramkrishnan and J. Gehrke, 3rd Edition, McGraw Hill Education,	2014	

Internal Theory Assessment -

- Unit Tests 15 Marks each, 3 number, Best 2
- Assignments 10 Marks each, 2 number

Internal Practical Assessment -

- Journal Completion 10 Marks
- Completion of Experiment / Activities 10 Marks each, 5 number, Best three

Term end Practical -

- Viva Voce on internal practical submission 10 Marks
- Performance in practical experiment / Activity 20 Marks
- Presentation in viva/experiment 10 Marks

Skill Assessment -

- Completion of Skill Journal 5 Marks
- Completion of Activities / Projects during Skill Sessions 10 Marks
- Viva-voce 5 Marks

Weightage of Units for Examination

Unit	% weightage
1. Data Base Analysis and Design Techniques	20%
2. Advanced Transaction Processing and Concurrency Control	20%
3. Query Processing & Optimization	20%
4. Data Storage and Querying	20%
5. Distributed Databases	20%

Evaluation System

Description	Allotted marks
Internal Theory	50
Internal Practical	40
Term end Theory	50
Term end Practical	40
Skill Assessment	20
TOTAL	200

Weekly Practical

Date	Module/Unit	Description of Experiments	Session
Week 1	Data Base Analysis and Design Techniques	 Creating Tables and adding integrity constrains. Creating relations between tables using entity integrity and referential Integrity 	1
Week 2	Data Base Analysis and Design Techniques	 Apply Join operations to fetch records from multiple tables Firing queries and Using Joins, nested queries and correlated queries to extract the required data 	2
Week 3	Data Base Analysis and Design Techniques	 Design Normalize (1NF, 2NF) database and implementation Design Normalize (3NF, BCNF) database and implementation 	3
Week 4	Advanced Transaction Processing and Concurrency Control	Transaction Handling in SQL	4
Week 5	Advanced Transaction Processing and Concurrency Control	Using Transaction Recovery in SQL	5
Week 6	Advanced Transaction Processing and Concurrency Control	Transaction Recovery in Oracle	6
Week 7	Query Processing & Optimization	Operations- Join, selection, sorting etc. implementation in Oracle	7
Week 8	Query Processing & Optimization	Aggregate and Outer Join in SQL	8
Week 9	Query Processing & Optimization	Query Optimization and cost estimation	9

Week 10	Data Storage and Querying	Indexing and Hashing implementation	10
Week 11	Data Storage and Querying	B+ Tree indexing implementation	11
Week 12	Data Storage and Querying	Static and Dynamic Hashing Implementation	12
Week 13	Distributed Databases	 To understand database design- Fragmentation, Replication and Allocation 	13
Week 14	Distributed Databases	Query Processing	14
Week 15	Distributed Databases	Concurrency control and recovery Analysis	15

Advanced Cloud Computing

Program Name	B.Tech. in Computer Science & Information Technology		
Course Name	Advanced Cloud Computing	Course Code	BTCS08CCA3
Version No	1.0	Version Update date	06/01/2021
Pre-requisite	Cloud InfrastructureProgramming Skills		
Course	On completion of this co	urse, the Students sh	nould be able to
Outcome	To provide an overview of To understand the security To understand the concepts	features, user managen	. •

Sr. No	Module/Units	Detailed Topic wise Syllabus (In bullet points)	Total Hours (L+T+S+P)
140			(LTITSTE)
1	Cloud Computing Overview	Cloud Computing Overview Origins of Cloud computing — Cloud components - Essential characteristics — On- demand selfservice, Broad network access, Location independent resource pooling ,Rapid elasticity , Measured service, Comparing cloud providers with traditional IT service providers, Roots of cloud computing.	6+3+3+3
2	Cloud Insights	Architectural influences – High-performance computing, Utility and Enterprise grid computing, Cloud scenarios – Benefits: scalability ,simplicity ,vendors ,security, Limitations – Sensitive information - Application development- security level of third party - security benefits, Regularity issues: Government policies.	6+3+3+3
3		Layers in cloud architecture, Software as a Service (SaaS), features of SaaS and benefits, Platform as a Service (PaaS), features of PaaS and benefits, Infrastructure as a Service (IaaS), features of IaaS and benefits, Service providers, challenges and risks in cloud adoption. Cloud deployment model: Public clouds – Private clouds – Community clouds - Hybrid clouds - Advantages of Cloud computing.	6+3+3+3

4	and GreenCloud	Introduction to Simulator, understanding CloudSim simulator, CloudSim Architecture(User code, CloudSim, GridSim, SimJava) Understanding Working platform for CloudSim, Introduction to GreenCloud	6+3+3+3
5	Simulator	Basics of VMWare, advantages of VMware virtualization, using Vmware workstation, creating virtual machines-understanding virtual machines, create a new virtual machine on local host, cloning virtual machines, virtualize a physical machine, starting and stopping a virtual machine	6+3+3+3

Learning Resources

Sr. No.	Module/Unit	Text Books
1		Cloud computing a practical approach - Anthony T.Velte , Toby J. Velte Robert
		Elsenpeter, TATA McGraw- Hill , New Delhi – 2010
2	UNIT 3, UNIT 4	Cloud Computing: Web-Based Applications That Change the Way You Work
		and Collaborate Online - Michael Miller - Que 2008
3	UNIT 5	Cloud Computing (Principles and Paradigms), Edited by Rajkumar Buyya,
		James Broberg, Andrzej Goscinski, John Wiley & Sons, Inc. 2011

Evaluation System

Description	Allotted marks	
Internal Theory	50	
Internal Practical	40	
Term end Theory	50	
Term end Practical	40	
Skill Assessment	20	
TOTAL	200	

<u>Internal Theory Assessment –</u>

- Unit Tests 15 Marks each, 3 number, Best 2
- Assignm

ents - 10 Marks

each, 2 number

<u>Internal</u>

<u>Practical</u>

<u>Assessment –</u>

- Journal Completion 10 Marks
- Completion of Experiment / Activities 10

Marks each, 5 number, Best three Term end Practical –

- Viva Voce on internal practical submission 10 Marks
- Performance in practical experiment / Activity 20 Marks
- Presentatio

n in

viva/experiment -

10 Marks Skill

Assessment -

- Completion of Skill Journal 5 Marks
- Completion of Activities / Projects during Skill Sessions 10 Marks
- Viva-voce 5 Marks

Weightage of Units for Examination

Unit	% weightage
Unit-1	20
Unit-2	20
Unit-3	20
Unit-4	20
Unit-5	20

Practical Plan

Session	Modul	Description of Experiments	Week
Number	e/Unit		Number
1	1	To study cloud architecture and cloud computing model	Week 1

2	2	Installation and Configuration of virtualization using KVM	Week 2
3	2	To study and implementation of Infrastructure as a Service	Week 3
4	3	To study and implementation of Storage as a Service	Week 4
5	4	To Study Cloud security management	Week 5

Skill Plan

Session Number	Modul e/Unit	Description of Experiments	Week Number
1	1	Secure Text Transfer Based on Cloud Computing .	Week 1
2	2	Platform as a service on cloud application deployment	Week 2
3	2	Towards Differential Query Services in Cost-Efficient Clouds	Week 3