AArch64 Instructions Index by Encoding

External Registers

GICV_BPR, Virtual Machine Binary Point Register

The GICV BPR characteristics are:

Purpose

Defines the point at which the priority value fields split into two parts, the group priority field and the subpriority field. The group priority field determines Group 0 interrupt preemption.

This register corresponds to **GICC_BPR** in the physical CPU interface.

Note

<u>GICH_LR<n></u>.Group determines whether a virtual interrupt is Group 0 or Group 1.

Configuration

This register is present only when FEAT_GICv3_LEGACY is implemented and EL2 is implemented. Otherwise, direct accesses to GICV_BPR are res0.

This register is available when the GIC implementation supports interrupt virtualization.

When <u>GICV_CTLR</u>.CBPR == 1, this register determines interrupt preemption for both Group 0 and Group 1 interrupts.

Attributes

GICV BPR is a 32-bit register.

Field descriptions

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RESO

Binary_Point

Bits [31:3]

Reserved, res0.

Binary_Point, bits [2:0]

Controls how the 8-bit interrupt priority field is split into a group priority field, that determines interrupt preemption, and a subpriority field.

For information about how this field determines the interrupt priority bits assigned to the group priority field, see 'ICC_BPR0_EL1 Binary Point for Group 1 interrupts when CBPR == 1, or for Group 0 interrupts' in ARM® Generic Interrupt Controller Architecture Specification, GIC architecture version 3.0 and version 4.0 (ARM IHI 0069).

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally unknown value.

The Binary Point field of this register is aliased to **GICH VMCR**.VBPR0.

Accessing GICV_BPR

This register is used only when System register access is not enabled. When System register access is enabled:

- For AArch32 implementations, ICC_BPR0 provides equivalent functionality.
- For AArch64 implementations, ICC_BPR0_EL1 provides equivalent functionality.

GICV_BPR can be accessed through the memory-mapped interfaces:

Component	Offset	Instance
GIC Virtual CPU interface	0x0008	GICV_BPR

This interface is accessible as follows:

- When GICD CTLR.DS == 0, accesses to this register are **RW**.
- When an access is Secure, accesses to this register are **RW**.
- When an access is Non-secure, accesses to this register are **RW**.

AArch32	AArch64	AArch32	AArch64	Index by	External
<u>Registers</u>	<u>Registers</u>	<u>Instructions</u>	<u>Instructions</u>	Encoding	<u>Registers</u>

Copyright © 2010-2023 Arm Limited or it	s affiliates. All rights reserved. This document is Non-Confidential.