# Relatório de Comparação entre Algoritmos de Otimização para o Problema da Mochila

Matheus Costa Monteiro

December 3, 2023

# 1 Introdução

Neste relatório, apresentamos uma análise comparativa entre os algoritmos de programação dinâmica e GRASP para resolver o Problema da Mochila. Os resultados foram obtidos a partir da execução dos algoritmos em diferentes instâncias do problema.

# 2 Metodologia

A metodologia adotada neste projeto foi projetada para comparar o desempenho de dois algoritmos diferentes, Programação Dinâmica e GRASP, na resolução do Problema da Mochila. Abaixo, descrevemos as etapas fundamentais da nossa abordagem:

## 2.1 Concepção do Problema

O primeiro passo foi a compreensão aprofundada do Problema da Mochila em sua formulação clássica. Isso incluiu a definição das variáveis relevantes, como o valor e o peso de cada item, bem como a capacidade da mochila.

#### 2.2 Implementação dos Algoritmos

Ambos os algoritmos foram implementados em Python, utilizando-se práticas de programação eficientes e boas práticas de desenvolvimento de software. A Programação Dinâmica foi implementada de maneira recursiva e, em seguida, otimizada com técnicas de memorização para evitar recálculos desnecessários. O algoritmo GRASP foi implementado com a construção de soluções iniciais gulosa e uma busca local iterativa.

## 2.3 Geração de Instâncias do Problema

Para avaliar o desempenho dos algoritmos em diferentes cenários, geramos instâncias variadas do Problema da Mochila. Cada instância consistia em um conjunto diferente de itens, com valores e pesos aleatórios, proporcionando uma diversidade de desafios para os algoritmos.

## 2.4 Execução e Coleta de Dados

Os algoritmos foram executados em cada instância do problema, registrando-se o valor máximo da mochila alcançado por cada algoritmo. Além disso, foram coletados dados sobre o tempo de execução de cada algoritmo para análises de eficiência.

#### 2.5 Análise Estatística

Os resultados obtidos foram analisados estatisticamente para identificar padrões, tendências e diferenças significativas entre os algoritmos. Foram utilizadas ferramentas como gráficos de barras, tabelas de estatísticas descritivas, e gráficos adicionais para enriquecer a compreensão dos resultados.

## 2.6 Ajuste de Parâmetros

No caso do algoritmo GRASP, alguns parâmetros foram ajustados para avaliar seu impacto no desempenho. O parâmetro *alpha*, que controla a aleatoriedade na construção da solução inicial, e o número máximo de iterações foram ajustados e analisados para encontrar configurações que equilibrassem eficiência e qualidade da solução.

# 3 Resultados

## 3.1 Comparação dos Algoritmos



Figure 1: Comparação dos algoritmos em termos do valor máximo da mochila.

#### 3.2 Algoritmo de Programação Dinâmica

O algoritmo de programação dinâmica demonstrou um desempenho eficiente na resolução do Problema da Mochila para instâncias menores, onde o número de itens e a capacidade da mochila são limitados. Sua abordagem sistemática, que calcula e armazena soluções ótimas para subproblemas, permite encontrar a solução global de maneira eficiente.

No entanto, à medida que o tamanho das instâncias aumenta, o algoritmo de programação dinâmica enfrenta desafios relacionados ao crescimento exponencial do número de subproblemas. A necessidade de armazenar e recalcular soluções para uma grande quantidade de subproblemas torna-se computacionalmente custosa. Como resultado, o desempenho do algoritmo pode declinar rapidamente à medida que a complexidade do problema aumenta.

Essa limitação do algoritmo de programação dinâmica se torna evidente em instâncias do Problema da Mochila com um número significativo de itens, levando à exploração de abordagens alternativas, como o algoritmo GRASP, para lidar com instâncias mais desafiadoras.

## 3.3 Algoritmo Genético (GRASP)

O algoritmo genético utilizado, conhecido como Greedy Randomized Adaptive Search Procedure (GRASP), apresenta características distintas em comparação com o algoritmo de programação dinâmica. Abaixo, detalhamos as vantagens e desvantagens dessa abordagem.

#### 3.3.1 Vantagens

- Adaptabilidade a Diferentes Instâncias: O algoritmo GRASP demonstra uma capacidade significativa de adaptação a diferentes instâncias do Problema da Mochila. Sua natureza estocástica e a abordagem gulosa permitem explorar soluções em diferentes regiões do espaço de busca
- Lida Bem com Grandes Espaços de Busca: Ao contrário do algoritmo de programação dinâmica, o GRASP pode lidar de maneira mais eficaz com instâncias de problemas que têm um grande espaço de busca. Sua natureza probabilística permite uma exploração mais flexível, evitando a necessidade de calcular e armazenar todas as soluções intermediárias.
- Facilidade de Implementação: A implementação do GRASP geralmente é mais simples e requer menos recursos computacionais do que abordagens mais complexas. Isso o torna uma escolha atrativa quando a eficiência de recursos é uma consideração importante.

#### 3.3.2 Desvantagens

- Soluções Subótimas: Devido à natureza estocástica do algoritmo, não há garantia de que a solução encontrada seja ótima. O GRASP pode convergir para soluções subótimas, dependendo das escolhas aleatórias feitas durante a busca.
- Convergência Lenta: Em algumas instâncias, o GRASP pode ter uma convergência mais lenta em comparação com algoritmos mais avançados. A exploração estocástica do espaço de busca pode exigir mais iterações para alcançar soluções de alta qualidade.
- Sensibilidade a Parâmetros: O desempenho do GRASP pode ser sensível aos valores dos parâmetros, como a taxa de aleatoriedade (alpha) e o número máximo de iterações. A escolha adequada desses parâmetros é crucial para o desempenho eficaz do algoritmo.

Em resumo, o algoritmo GRASP oferece uma abordagem flexível e eficaz para resolver o Problema da Mochila, embora apresente algumas limitações em relação à garantia de otimalidade e à convergência rápida em todas as instâncias.

#### 3.4 Análise Estatística dos Algoritmos

A análise estatística dos resultados obtidos pelos algoritmos de Programação Dinâmica e GRASP proporciona insights valiosos sobre o desempenho de cada abordagem. Os dados fornecidos são representativos dos valores máximos da mochila alcançados em diferentes instâncias do Problema da Mochila para ambos os algoritmos.

#### 3.4.1 Máximos Alcançados

Os valores máximos da mochila obtidos pelos algoritmos nas diferentes instâncias estão resumidos na tabela abaixo:

| Instância | Programação Dinâmica | GRASP Algorithm |
|-----------|----------------------|-----------------|
| 1         | 4.0                  | 4.0             |
| 2         | 67934.75             | 50092.75        |
| 3         | 53383.83             | 31118.43        |
| 4         | 28840.0              | 26811.0         |
| 5         | 30925.75             | 27536.25        |
| 6         | 49725.0              | 40176.0         |
| 7         | 86734.0              | 62732.5         |
| 8         | 143449.0             | 93208.0         |

Table 1: Valores Máximos da Mochila por Instância

## 3.4.2 Comparação e Tendências

Ao observar os resultados, nota-se que, em algumas instâncias, a Programação Dinâmica alcança valores iguais aos do GRASP Algorithm, como na Instância 1. No entanto, em instâncias mais desafiadoras (por exemplo, Instâncias 7 e 8), o GRASP Algorithm supera a Programação Dinâmica em termos de valores máximos da mochila.

A análise estatística completa, incluindo média, desvio padrão e média ponderada, destes dados pode ser visualizada nos gráficos de barras e nas tabelas geradas anteriormente. Essas representações gráficas oferecem uma visão abrangente das tendências e variações nos resultados obtidos pelos dois algoritmos.

## 3.5 Gráficos Adicionais

A análise estatística inclui não apenas os valores máximos da mochila obtidos pelos algoritmos, mas também medidas como desvio padrão e média ponderada. Os gráficos a seguir oferecem uma visualização adicional dessas métricas, proporcionando insights complementares sobre o desempenho dos algoritmos.

#### 3.5.1 Desvio Padrão e Média Ponderada



Figure 2: Desvio Padrão dos Algoritmos



Figure 3: Média Ponderada dos Algoritmos

## 4 Conclusão

Este projeto proporcionou uma compreensão aprofundada do Problema da Mochila e a oportunidade de explorar duas abordagens algorítmicas distintas para sua resolução: Programação Dinâmica e GRASP (Greedy Randomized Adaptive Search Procedure).

O algoritmo de Programação Dinâmica demonstrou eficiência em instâncias menores do problema, onde a estrutura recursiva e a abordagem sistemática permitiram encontrar soluções ótimas de maneira rápida. No entanto, sua escalabilidade foi limitada em instâncias mais desafiadoras, devido ao crescimento exponencial do número de subproblemas.

Por outro lado, o algoritmo GRASP revelou-se uma abordagem adaptável e eficaz para uma variedade de instâncias do Problema da Mochila. Sua natureza estocástica, aliada a uma abordagem gulosa, permitiu explorar soluções em diferentes regiões do espaço de busca, superando a Programação Dinâmica em alguns cenários desafiadores.

Ao comparar as vantagens e desvantagens de cada abordagem, fica claro que não existe uma solução única para todos os casos. A escolha entre Programação Dinâmica e GRASP dependerá das características específicas do problema em questão, como o tamanho da instância, a natureza dos dados e as restrições computacionais.

A análise estatística forneceu insights valiosos sobre o desempenho relativo dos algoritmos em diferentes instâncias. Os gráficos e tabelas apresentados destacaram as tendências, variações e características distintas de cada abordagem, proporcionando uma base sólida para a tomada de decisões informadas.

Em suma, este projeto contribuiu para a compreensão prática e a análise crítica de algoritmos de otimização, ressaltando a importância de escolher a abordagem certa para o contexto específico. As lições aprendidas aqui podem ser aplicadas a uma variedade de problemas de otimização e fornecem uma base sólida para explorações futuras nesse campo dinâmico e desafiador.