

ICON Database Reference Manual

D. Reinert, F. Prill, H. Frank and G. Zängl

Deutscher Wetterdienst Research and development (FE13)

Preliminary Version: 0.1

Last changes: April 11, 2013

Offenbach am Main, Germany

Contents

1	Ava	vailable output fields in GRIB2-format 1								
	1.1	Deprecated output fields								
	1.2	New output fields								
		Available output fields listed in tabular form								
		1.3.1 Time-constant (external parameter) fields								
		1.3.2 Multi-level fields on native hybrid vertical levels								
		1.3.3 Multi-level fields interpolated to pressure levels								
		1.3.4 Single-level fields								
		1.3.5 Surface fields interpolated to msl								

iv

Chapter 1

Available output fields in GRIB2-format

In GRIB2, a variable is uniquely defined by the following set of metadata:

- Discipline (see GRIB2 code table 4.2)
- ParameterCategory (see GRIB2 code table 4.2)
- ParameterNumber (see GRIB2 code table 4.2)
- typeOfFirstfixedSurface and typeOfSecondFixedSurface (see GRIB2 code table 4.5)
- stepType (instant, accum, avg, max, min, diff, rms, sd, cov, ...)

A documentation of the official WMO GRIB2 code tables can be found here: http://www.wmo.int/pages/prog/www/WMOCodes/WMO306_vI2/LatestVERSION/WMO306_vI2_GRIB2_CodeFlag_en.pdf In the following, typeOfFirstFixedSurface and typeOfSecondFixedSurface will be abbreviated by Lev-Typ 1/2.

1.1 Deprecated output fields

With the launch of ICON, the following former GME output fields will no longer be available:

- **OMEGA** [Pa/s]: Vertical velocity in pressure coordinates $\omega = \frac{dp}{dt}$. Since ICON is a nonhydrostatic model, the vertical velocity **W** [m/s] is provided, instead (see Section 1.2).
- BAS_CON [-]: Level index of convective cloud base. Instead, HBAS_CON [m] should be used.
- TOP_CON [-]: Level index of convective cloud top. Instead, HTOP_CON [m] should be used.
- **T_S** [K]: Temperature at the soil-atmosphere-, or soil-snow-interface. Note that T_S = T_SO(0), thus T_S is redundant.
- W_G1, W_G2 [mm H2O]: Soil water content in upper layer (0 to 10 cm) and middle layer (10 to 100 cm), respectively. If needed, these fields can be derived from W_SO.
- FIS [m² s⁻¹]: Surface Geopotential. Instead, HSURF [m] should be used (see Section 1.2).

1.2 New output fields

New output fields that will become available with the launch of ICON are:

- W [m/s]: vertical velocity in height coordinates $w = \frac{\mathrm{d}z}{\mathrm{d}t}$ (3D field)
- **DEN** $[kg/m^3]$: density of moist air (3D field)
- HSURF [m]: Geometric Height of the earths surface above sea level (2D field)
- HHL [m]: Geometric Height of model half levels above sea level (3D field)

1.3 Available output fields listed in tabular form

1.3.1 Time-constant (external parameter) fields

Table 1.1: Time-constant fields (Date D=000000)

ShortName	Description	Discipline	Category	Number	Lev-Typ 1/2	${ m stepType}$	Unit
HSURF	Geometric height of the earths surface above msl	0	3	6	1/101	inst	m
HHL	Geometric height of model half levels above msl	0	3	6	105/101	inst	m
RLAT	Geographical latitude	0	191	1	1/-	inst	Deg. N
RLON	Geographical longitude	0	191	2	1/-	inst	Deg. E
FR_LAND	Land fraction (possible range $[0,1]$)	2	0	0	1/-	inst	1
ROOTDP	Root depth of vegetation	2	0	32	1/-	inst	m
$\mathrm{EMIS}_{-}\mathrm{RAD}$	Longwave surface emissivity	2	3	199	1/-	inst	1
RSMIN	Minimum stomatal resistance	2	0	16	1/-	inst	${ m s}{ m m}^{-1}$
SSO_STDH	Standard deviation of sub-grid scale orography	0	3	20	1/-	inst	m
SSO_GAMMA	Anisotropy of sub-gridscale orography	0	3	24	1/-	inst	1
SSO_THETA	Angle of sub-gridscale orography	0	3	21	1/-	inst	rad
SSO_SIGMA	Slope of sub-gridscale orography	0	3	22	1/-	inst	1
PLCOV_MX	Plant covering degree in the vegetation phase	2	0	4	1/-	max	1
T_2M_CL	Climatological 2 m temperature (used as lower bc. for soil model)	0	0	0	103/-	inst	K

1.3.2 Multi-level fields on native hybrid vertical levels

Table 1.2: Hybrid multi-level forecast (VV > 0) and initialised analysis (VV = 0) products

${\bf ShortName}$		Discipline	Category	Number	$\mathrm{Lev\text{-}Typ}\ 1/2^1$	$\operatorname{stepType}$	Unit
U	Zonal wind	0	2	2	105/105	inst	${ m ms^{-1}}$
V	Meridional wind	0	2	3	105/105	inst	$\rm ms^{-1}$
W	Vertical wind	0	2	9	105 / -	inst	$\rm ms^{-1}$
${ m T}$	Temperature	0	0	0	105/105	inst	K
DEN	Density of moist air	0	3	10	105/105	inst	${\rm kgm^{-3}}$
QV	Specific humidity	0	1	0	105/105	inst	$\rm kgkg^{-1}$
QC	Cloud mixing ratio ²	0	1	22	105/105	inst	${\rm kgkg^{-1}}$
QI	Cloud ice mixing ratio ²	0	1	82	105/105	inst	${\rm kgkg^{-1}}$
QR	Rain mixing ratio ²	0	1	24	105/105	inst	${\rm kgkg^{-1}}$
QS	Snow mixing ratio ²	0	1	25	105/105	inst	${\rm kgkg^{-1}}$
CLC	Cloud cover	0	6	22	105/105	inst	%
O3	Ozone mixing ratio ³	0	14	1	105/105	inst	$\rm kgkg^{-1}$

1.3.3 Multi-level fields interpolated to pressure levels

The following pressure levels are available: 1000, 950, 925, 900, 850, 700, 500, 400, 300, 250, 200, 150, 100, 50, 10, hPa.

¹Levekl type 105 (Hybrid level) will be replaced by 150 (Generalized vertical height coordinate), once the GRIB_API s able to cope with it

² for the time being, erroneously encoded as mixing ratios instead of specific quantities

 $^{^3}$ not clear yet, whether ozone will be provided as output field

Table 1.3: Multi-level forecast (VV>0) and initialised analysis (VV=0) products interpolated to pressure levels

${\bf ShortName}$	Description	Discipline	Category	Number	$\mathrm{Lev}\text{-}\mathrm{Typ}\ 1/2$	${\rm stepType}$	Unit
FI	Geopotential	0	3	4	100/-	inst	$\mathrm{m}^2\mathrm{s}^{-2}$
U	Zonal wind	0	2	2	100/-	inst	$\rm ms^{-1}$
V	Meridional wind	0	2	3	100/-	inst	$\rm ms^{-1}$
W	Vertical wind	0	2	9	100/-	inst	$\rm ms^{-1}$
T	Temperature	0	0	0	100/-	inst	K
RELHUM	Relative humidity (with respect to water)	0	1	1	100/-	inst	%

${\bf 1.3.4}\quad {\bf Single-level\ fields}$

Table 1.4: Single-level forecast (VV>0) and initialised analysis (VV=0) products

ShortName	Description	Discipline	Category	Number	m Lev-Typ~1/2	${\rm stepType}$	Unit
PS	Surface pressure (not reduced)	0	3	1	1/-	inst	Pa
$T_{-}SNOW$	Temperature of the snow surface	0	0	18	1/-	inst	K
$T_{-}G$	Ground temperature (temperature at sfc-atm interface)	0	0	0	1/-	inst	K
$\mathrm{QV}_{-}\!\mathrm{S}$	Surface specific humidity	0	1	0	1/-	inst	$\rm kgkg^{-1}$
W_SNOW	Snow depth water equivalent	0	1	60	1/-	inst	${\rm kgm^{-2}}$
$W_{-}I$	Plant canopy surface water	2	0	13	1/-	inst	${\rm kgm^{-2}}$
TCM	Turbulent transfer coefficient for momentum (surface)	0	2	29	1/-	inst	1
TCH	Turbulent transfer coefficient for heat and moisture (surface)	0	0	19	1/-	inst	1
ASOB_S	Net short-wave radiation flux at surface (average since model start)	0	4	9	1/-	avg	${ m Wm^{-2}}$

Continued on next page

Table 1.4: continued

ATHB_S	Net long-wave radiation flux at surface (average since model start)	0	5	5	1/-	avg	${ m Wm^{-2}}$
ASOB_T	Net short-wave radiation flux at TOA (average since model start)	0	4	9	8/-	avg	${ m Wm^{-2}}$
$\mathrm{ATHB}_{-}\mathrm{T}$	Net long-wave radiation flux at TOA (average since model start)	0	5	5	8/-	avg	${ m Wm^{-2}}$
ALB_RAD	Surface albedo for visible range, diffuse	0	19	1	1/-	inst	%
RAIN_GSP	Large scale rain (accumulated since model start)	0	1	77	1/-	accu	${\rm kg}{\rm m}^{-2}$
$SNOW_GSP$	Large snowfall water equivalent (accumulated since model start)	0	1	56	1/-	accu	${\rm kg}{\rm m}^{-2}$
RAIN_CON	Convective rain (accumulated since model start)	0	1	76	1/-	accu	${\rm kg}{\rm m}^{-2}$
SNOW_CON	Convective snowfall water equivalent (accumulated since model start)	0	1	55	1/-	accu	${\rm kg}{\rm m}^{-2}$
TOT_PREC	Total precipitation (accumulated since model start)	0	1	52	1/-	accu	${\rm kgm^{-2}}$
RUNOFF_S	Surface water runoff (accumulated since model start) ³	2	0	5	106/-	accu	${\rm kg}{\rm m}^{-2}$
RUNOFF_G	Soil water runoff (accumulated since model start) 3	2	0	5	106/-	accu	${\rm kg}{\rm m}^{-2}$
$U_{-}10M$	Zonal wind at 10m above ground	0	2	2	103/-	inst	${ m ms^{-1}}$
$V_{-}10M$	Meridional wind at 10m above ground	0	2	3	103/-	inst	${ m ms^{-1}}$
$T_{-}2M$	Temperature at 2m above ground	0	0	0	103/-	inst	K
$\mathrm{TD}_{-2}\mathrm{M}$	Dew point temperature at 2m above ground	0	0	6	103/-	inst	K
VMAX_10M	Maximum wind at 10 m above ground	0	2	22	103/-	max	${ m ms^{-1}}$
Z0	Surface roughness (above land and water)	2	0	1	1/-	inst	m
CLCT	Total cloud cover	0	6	1	1/-	inst	%
CLCH	High level clouds ³	0	6	22	100/100	inst	%
CLCM	Mid level clouds ³	0	6	22	100/100	inst	%
CLCL	Low level clouds ³	0	6	22	100/1	inst	%

 $Continued\ on\ next\ page$

Table 1.4: continued

TQV	Total column integrated water vapour	0	1	64	1/-	inst	${\rm kgm^{-2}}$
TQC	Total column integrated cloud water	0	1	69	1/-	inst	${\rm kgm^{-2}}$
TQI	Total column integrated cloud ice	0	1	70	1/-	inst	${\rm kgm^{-2}}$
TQR	Total column integrated $rain^3$	0	1	45	1/-	inst	${\rm kgm^{-2}}$
TQS	Total column integrated snow ³	0	1	46	1/-	inst	${\rm kgm^{-2}}$
HBAS_CON	Height of convective cloud base above msl	0	6	26	2/101	inst	m
HTOP_CON	Height of convective cloud top above msl	0	6	27	3/101	inst	m
HZEROCL	Height of 0 degree Celsius isotherm above msl	0	3	6	4/101	inst	m
$ASHFL_S$	Sensible heat net flux at surface (average since model start)	0	0	11	1/-	avg	${ m Wm^{-2}}$
$ALHFL_S$	Latent heat net flux at surface (average since model start)	0	0	10	1/-	avg	${ m Wm^{-2}}$
FR_ICE	Sea ice cover (possible range: $[0,1]$)	10	2	0	1/-	inst	1
T_ICE	Sea ice temperature (at ice-atm interface)	10	2	8	1/-	inst	K
HJCE	Sea ice thickness (Max: 3 m)	10	2	1	1/-	inst	m
FRESHSNW	Fresh snow factor (weighting function for albedo indicating freshness of snow)	0	1	203	1/-	inst	1
RHO_SNOW	Snow density	0	1	61	1/-	inst	${\rm kgm^{-3}}$
H_SNOW	Snow depth	0	1	11	1/-	inst	m

Table 1.5: Multi-level forecast (VV>0) and initialised analysis (VV=0) products of the soil model

ShortName	Description	Discipline	Category	Number	m Lev-Typ~1/2	$\operatorname{stepType}$	Unit	_
$T_{-}SO$	Soil temperature	2	3	18	106/-	inst	K	

Continued on next page

³Output fields not yet available, but planned.

	Table 1.0. Son model. Vertical distribution of levels and layers									
level no.	${f depth} \ [{f cm}]$	layer no.	upper/lower bounds [cm]							
0	0.0									
1	0.5	1	0.0 - 1.0							
2	2.0	2	1.0 - 3.0							
3	6.0	3	3.0 - 9.0							
4	18.0	4	9.0 - 27.0							
5	54.0	5	27.0 - 81.0							
6	162.0	6	81.0 - 243.0							
7	486.0	7	243.0 - 729.0							
8	1458.0	8	729.0 - 2187.0							

Table 1.6: Soil model: vertical distribution of levels and layers

Table 1.5: Multi-level forecast (VV>0) and initialised analysis (VV=0) products of the soil model

${\bf ShortName}$	Description	Discipline	Category	Number	$\mathrm{Lev}\text{-}\mathrm{Typ}\ 1/2$	$\operatorname{stepType}$	Unit
W_SO	Soil moisture integrated over individual soil layers (ice + liquid)	2	3	20	106/106	inst	${\rm kgm^{-2}}$
W_SO_ICE	Soil ice content integrated over individual soil layers	2	3	22	106/106	inst	${\rm kgm^{-2}}$

Soil temperature is defined at the soil depths given in Table 1.6 (column 2). Levels 1 to 8 define the full levels of the soil model. A zero gradient condition is assumed between levels 0 and 1, meaning that temperatures at the surface-atmosphere interface are set equal to the temperature at the first full level depth. $(0.5\,\mathrm{cm})$. Temperatures are prognosed for levels 1 to 7. At the lowermost level $(1458\,\mathrm{cm})$ the temperature is fixed to the climatological average $2\,\mathrm{m}$ -temperature.

Soil moisture W_SO is prognosed for layers 1 to 6. In the two lowermost layers W_SO is time constant.

1.3.5 Surface fields interpolated to msl

Table 1.7: Forecast (VV > 0) and initialised analysis (VV = 0) products interpolated to msl

${\bf ShortName}$	Description	Discipline	Category	Number	m Lev-Typ~1/2	m step Type	Unit
PMSL	Surface pressure reduced to msl	0	3	1	101/-	inst	Pa