CPSC 202 PSET 7

CPSC 202 student

11/1/17 5pm

A.7.1 Divisibility

Show that $\forall n \in \mathbb{N} : 12 | (n(n+1)(n+2)(n+3))$

- a. If $\forall n \in \mathbb{N} : 12 | (n(n+1)(n+2)(n+3))$ then we can say $\forall n \in \mathbb{Z}_{12} : n(n+1)(n+2)(n+3) = 0 \pmod{12}$
- b. 12 is divisible by 3 and 4.

Because 3 and 4 are relatively prime, by the Chinese Remainder Theorem: $n(n+1)(n+2)(n+3) = 0 \pmod{12} \iff n(n+1)(n+2)(n+3) = 0 \pmod{3}$ and $n(n+1)(n+2)(n+3) = 0 \pmod{4}$.

- c. In \mathbb{Z}_3 , n = 0, n = 1, n = 2
 - $n = 0 : 0(0+1)(0+2)(0+3) = 0 \pmod{3}$
 - n = 1 : 1(1+1)(1+2)(1+3) = 1(2)(3)(4) and in \mathbb{Z}_3 , $1(2)(0)(1) = 0 \pmod{3}$
 - n = 2 : 2(2+1)(2+2)(2+3) = 2(3)(4)(5) and in \mathbb{Z}_3 , $2(0)(1)(2) = 0 \pmod{3}$
- d. In \mathbb{Z}_4 , n = 0, n = 1, n = 2, n = 3
 - $n = 0 : 0(0+1)(0+2)(0+3) = 0 \pmod{3}$
 - n = 1 : 1(1+1)(1+2)(1+3) = 1(2)(3)(4) and in $\mathbb{Z}_3, 1(2)(3)(0) = 0 \pmod{4}$
 - n = 2: 2(2+1)(2+2)(2+3) = 2(3)(4)(5) and in $\mathbb{Z}_3, 2(3)(0)(1) = 0 \pmod{4}$
 - n = 3: 3(3+1)(3+2)(3+3) = 3(4)(5)(6) and in $\mathbb{Z}_3, 3(0)(1)(2) = 0 \pmod{4}$

A.7.2 Squares

Let p be prime. Show that if $x^2 = y^2 \pmod{p}$ then either $x = y \pmod{p}$ or $x = -y \pmod{p}$

- a. Subtract y^2 from both sides: $x^2 y^2 = 0 \pmod{p}$
- b. In mod p, $p|x^2 y^2$ and after factoring, p|(x-y)(x+y) since p is prime.
- c. In the case that $p|x-y, x-y=0 \pmod{p}$, and $x=y \pmod{p}$
- d. In the case that p|x+y, $x+y=0 \pmod{p}$, and $x=-y \pmod{p}$
- e. Therefore, the statement is true.

A.7.3 A Series of Unfortunate Exponents

If x_0 and k are both odd, then $x_{2b^2} = x_0$

a. $x_{i+1} = x_i^k$ is equivalent to

$$x_n = \begin{cases} x_0, n = 0 \\ x_{n-1}^k, n > 0 \end{cases}$$

- b. A general equation for x_n : $x_n = x_{n-1}^k = x_0^{k^n}$ Proof that $x_n = x_0^{k^n}$ by induction on n.
 - Base case: n=0: $x_n=x_0$ and $x_0^{k^n}=x_0^{k^0}=x_0$. Therefore, $x_n=x_0^{k^n}$ when
 - Induction step: $x_n = x_0^{k^n} \to x_{n+1} = x_0^{k^{n+1}}$

$$-x_0^{k^{n+1}} = x_0^{k \cdot k^n} = (x_0^{k^n})^k$$

$$-x_{n+1} = x_n^k \text{ since } n > 0.$$

- For
$$x_n^k = (x_0^{k^n})^k$$
, take the k root: $x_n = x_0^{k^n}$

- c. $n = 2^{b-2} : x_{2^{b-2}} = x_0^{k^{2^{b-2}}} = x_0 \pmod{2^b}$ if x_0 and k are odd.
- d. Euler's theorem: $x^{\phi(m)} \pmod{m} = 1$ if gcd(x, m) = 1
- e. Want: $x_0^{k^{2^{b-2}}} = C^{\phi(2^b)} x_0 = C^{2^{b-1}} x_0 = x_0 \pmod{2^b}$

f.
$$x^{k^{b-2}} = C^{\phi(2b)}x_0 = x_0 \pmod{2^b}$$

$$\phi(2^b) = (2-1)(2^{b-1}) = 2^{b-1}$$

$$\phi(2^{b-1}) = 2^{b-2}$$

$$k^{2^{b-2}} \bmod (2^{b-2}) = 1$$

$$k^{2^{b-2}} = q2^{b-1} + 1$$

g.
$$x_0 = x_0^{q \cdot 2^{b-1} + 1} = x_0 \cdot x_0^{q \cdot 2^{b-1}} = x_0 \cdot (x_0^q)^{2^{b-1}} \pmod{2^b}$$

= $x_0 (x_0^q)^{\phi(2^b)} \pmod{2^b}$

$$= x_0(x_0) \pmod{2}$$
$$= x_0(1) - x_0 \pmod{2^b}$$

$$= x_0(1) = x_0 \pmod{2^b}$$