Artificial Intelligence 1

Prof. Dr. Frank Hopfgartner Dr. Matthias Horbach

Institute for Web Science and Technologies (WeST)
University of Koblenz

Overview

- Introduction
- 2 Classical logics and Prolog
 - Classical logics
 - First-order Logic
 - Prolog
- Search and automatic planning
- 4 Knowledge representation and reasoning
- 5 Agents and multi agent systems
- 6 Summary and conclusion

Symbolic AI vs. subsymbolic AI

- the area of "symbolic Al" is about formalisation of thought/reasoning through symbolic manipulation
 - ► Relationships are modelled through "rules"
 - The motivation behind this is not only "simulation" of intelligent processes but also "explanation" (white box approach)
- Another approach is "subsymbolic Al"
 - Motivation is mainly about simulation/imitation
 - Example: neural networks
 - Approaches are usually black boxes
 - but, in certain domains, quite accurate
- This course will focus solely on symbolic AI
- For subsymbolic AI see the course "Machine learning"
- \rightarrow the foundation for symbolic AI is *logic*

Logic and formal systems

- Logics can be used to model reasoning processes
- ➤ A (logical) statement is an abstract construct that is either TRUE or FALSE
- ► Formal logic is about making statement about statements
- Example:

Anna is a student
All students are humans

- \rightarrow Anna is a human
- Analysis:
 - Given that the statement "Anna is a student" is true
 - Given that the statement "All students are humans" is true
 - then the statement "Anna is a human" is a necessarily true statement

Logics and formal systems: structure

Every logic (=formal system) has the following components:

- 1. Syntax: What are the possible statements?
 - 1.1 Signature: What symbols are allowed? $(S = \{Anna, human, student\})$
 - 1.2 Grammar: how can symbols be combined in order to obtain complex statements? (student \Rightarrow human)
- 2. Semantics: Which are the "true" statements? What is the relationship between true statements?
 - 2.1 Interpretations (or "possible worlds"): assign meaning to symbols of language.
 - 2.2 Models: What are the interpretations in which a statement is true?
 - 2.3 Entailment: when is one statement entailed (follows logically from) another?
- 3. Calculus: How can entailment be implemented?

Overview

- Introduction
- 2 Classical logics and Prolog
 - Classical logics
 - First-order Logic
 - Prolog
- 3 Search and automatic planning
- 4 Knowledge representation and reasoning
- 5 Agents and multi agent systems
- 6 Summary and conclusion

Propositional logic - overview

- Propositional logic is one of the first formal systems for reasoning (Aristoteles, 384–322 BC)
- Propositional logic builds on atomic statements such as
 - A = "Paris is the capital of France"
 - B = "A whale is a fish"
 - C = "For every number $x \in \mathbb{R}$, $x^2 \ge 0$ "
- Atomic statements can be combined with \land (AND), \lor (OR), and \neg (NOT) to obtain more complex statements
- A sentence is either true or false.
- For reasons of simplicity we always assume that our language always contains the following to special atomic statements:
 - ► T: "The true statement" (is always true)
 - ► ⊥: "The wrong statement" (is never true)

Propositional logic - syntax 1/4

Definition

A propositional signature At is a set of atoms (propositions).

Example

$$\begin{aligned} &\mathsf{At}_1 = \{a,b,c,d,e\} \\ &\mathsf{At}_2 = \{\text{``Anna is a student''}, \text{``Anna is a human''}\} \end{aligned}$$

Definition (Syntax 1)

Let At be a propositional signature. The propositional language $\mathcal{L}(\mathsf{At})$ is the minimal set \mathcal{L} with

- 1. At $\subset \mathcal{L}$
- 2. $\top, \bot \in \mathcal{L}$ (tautology and contradiction) and
- 3. for all $\phi, \psi \in \mathcal{L}$
 - 3.1 $\phi \land \psi \in \mathcal{L}$
 - 3.2 $\phi \lor \psi \in \mathcal{L}$
 - 3.3 $\neg \phi \in \mathcal{L}$

Propositional logic - syntax 2/4

Alternative definition of the syntax with grammar:

Definition (Syntax 2)

Let At be a propositional signature. The propositional language $\mathcal{L}(\mathsf{At})$ contains exactly those formula ϕ that can be constructed using the grammar

$$\phi \rightarrow a \mid \top \mid \perp \mid \phi \land \phi \mid \phi \lor \phi \mid \neg \phi$$

with $a \in At$.

Remark

In order to structure formulas we also allow the use of parentheses "(" and ")" (which are formally also part of the syntax).

Propositional logic - syntax 3/4

Example

Let
$$\mathsf{At}_1 = \{\mathsf{a}, \mathsf{b}, \mathsf{c}, \mathsf{d}, \mathsf{e}\}.$$
 Then

$$\phi_1 = a \wedge b$$

$$\phi_2 = a \vee b \wedge \neg c$$

$$\phi_3 = \neg \neg a \vee (\neg b \wedge e) \vee \neg \neg (d \vee c)$$

are formulas in $\mathcal{L}(At_1)$.

Propositional logic - syntax 4/4

Remark

The symbols \land , \lor , and \neg are expressive enough to define other common operators:

$$\phi \Rightarrow \psi := \neg \phi \lor \psi$$
$$\phi \Leftrightarrow \psi := (\phi \Rightarrow \psi) \land (\psi \Rightarrow \phi)$$

Another remark

Actually, already \wedge and \neg are sufficient as $\phi \lor \psi = \neg (\neg \phi \land \neg \psi)$.

Propositional logic - semantics 1/9

- Interpretations assign meaning to propositional formulas.
- ► An interpretation describes a *possible* world by assigning a truth value to each atom.

Definition

Let At be a propositional signature. A propositional interpretation I is a function I: At \rightarrow {true, false}.

Let Int_{At} be the set of all propositional interpretations.

Example

Let $At_3 = \{a, b, c\}$. Then I defined through

$$I(a) = \text{true}$$
 $I(b) = \text{false}$ $I(c) = \text{true}$

is a propositional interpretation.

Propositional logic - semantics 2/9

Propositional interpretations can be abbreviated by complete conjunctions:

$$I(a) = \text{true}$$
 $I(b) = \text{false}$ $I(c) = \text{true}$

becomes $a\overline{b}c$ (negation is represented by overlining)

▶ All possible interpretations for $At_3 = \{a, b, c\}$:

Int_{At_3}	а	Ь	c	Abbreviation
I_1	true	true	true	abc
I_2	true	true	false	ab c
I_3	true	false	true	a b c
I_4	true	false	false	a b c̄
<i>I</i> ₅	false	true	true	ābc
I_6	false	true	false	āb c
<i>I</i> ₇	false	false	true	ā b c
<i>I</i> ₈	false	false	false	<u>ā</u> b̄ c

Propositional logic - semantics 3/9

- Interpretations tell which atoms are true statements wrt. this interpretation
- ▶ This is formalised through a satisfaction relation ⊨
- We say an interpretation I satisfies an atom $a \in At$, written $I \models a$, iff I(a) = true.
- ▶ What about arbitrary formulas $\phi \in \mathcal{L}(At)$?

Definition

Let At be a propositional signature, $I \in Int_{At}$ and $\phi, \psi \in \mathcal{L}(At)$. Define recursively

$$I \models \phi$$
 for $\phi = a \in At$ iff. $I(a) = true$
 $I \models \phi \lor \psi$ iff $I \models \phi$ or $I \models \psi$
 $I \models \phi \land \psi$ iff $I \models \phi$ and $I \models \psi$
 $I \models \neg \phi$ iff $I \not\models \phi$

In addition, define $I \models \top$ and $I \not\models \bot$ for every interpretation.

Propositional logic - semantics 4/9

Example

Let *I* be defined through

$$I(a) = true$$

$$I(a) = \text{true}$$
 $I(b) = \text{false}$

$$I(c) = true$$

and consider ϕ defined through

$$\phi = \neg a \lor (\neg b \land c)$$

Is it true that $I \models \phi$?

Propositional logic - semantics 5/9

$$I(a) = \text{true} \qquad I(b) = \text{false} \qquad I(c) = \text{true}$$
Is it true that $I \models \phi$?
$$I \models \phi$$

$$\text{iff} \quad I \models \neg a \lor (\neg b \land c)$$

$$\text{iff} \quad I \models \neg a \text{ or } I \models \neg b \land c$$

$$\text{iff} \quad I \not\models a \text{ or } I \models \neg b \land c$$

$$\text{iff} \quad \text{not } I(a) = \text{true or } I \models \neg b \land c$$

$$\text{iff} \quad I(a) = \text{false or } I \models \neg b \land c$$

$$\text{iff} \quad FALSE \text{ or } I \models \neg b \land c$$

$$\text{iff} \quad FALSE \text{ or } I \models \neg b \text{ and } I \models c$$

$$\text{iff} \quad FALSE \text{ or } I \not\models b \text{ and } I \models c$$

$$\text{iff} \quad FALSE \text{ or } not I(b) = \text{true and } I \models c$$

Propositional logic - semantics 6/9

$$I(a) = \text{true}$$
 $I(b) = \text{false}$ $I(c) = \text{true}$

```
iff FALSE or not I(b) = \text{true} and I \models c
iff FALSE or I(b) = \text{false} and I \models c
iff FALSE or TRUE and I \models c
iff FALSE or TRUE and I(c) = \text{true}
iff FALSE or TRUE and TRUE
iff TRUE
```

Therefore $I \models \phi$.

Propositional logic - semantics 7/9

An interpretation I with $I \models \phi$ is also called *model* of ϕ .

Definition

Let At be a propositional signature and $\phi \in \mathcal{L}(\mathsf{At})$. The set of models $\mathsf{Mod}(\phi)$ of ϕ is defined through

$$\mathsf{Mod}(\phi) = \{I \in \mathsf{Int}_{\mathsf{At}} \mid I \models \phi\}$$

Example

Let
$$At_3 = \{a, b, c\}.$$

$$\mathsf{Mod}(a) = \{abc, ab\overline{c}, a\overline{b}c, a\overline{b}\overline{c}\}$$
$$\mathsf{Mod}(a \land b) = \{abc, ab\overline{c}\}$$
$$\mathsf{Mod}(\neg c) = \{ab\overline{c}, a\overline{b}\overline{c}, \overline{a}b\overline{c}, \overline{a}\overline{b}\overline{c}\}$$
$$\mathsf{Mod}(a \lor \neg b) = \{abc, ab\overline{c}, a\overline{b}c, a\overline{b}\overline{c}, \overline{a}\overline{b}c, \overline{a}\overline{b}c, \overline{a}\overline{b}\overline{c}\}$$

Propositional logic - semantics 8/9

Proposition

Let At be a propositional signature and $\phi, \psi \in \mathcal{L}(\mathsf{At})$. Then

- 1. $\mathsf{Mod}(\phi \lor \psi) = \mathsf{Mod}(\phi) \cup \mathsf{Mod}(\psi)$
- 2. $\mathsf{Mod}(\phi \wedge \psi) = \mathsf{Mod}(\phi) \cap \mathsf{Mod}(\psi)$
- 3. $\mathsf{Mod}(\neg \phi) = \mathsf{Int}_{\mathsf{At}} \setminus \mathsf{Mod}(\phi)$

Proof.

1.:

$$\begin{aligned} \mathsf{Mod}(\phi \lor \psi) &= \{I \in \mathsf{Int}_{\mathsf{At}} \mid I \models \phi \lor \psi\} \\ &= \{I \in \mathsf{Int}_{\mathsf{At}} \mid I \models \phi \text{ or } I \models \psi\} \\ &= \{I \in \mathsf{Int}_{\mathsf{At}} \mid I \models \phi\} \cup \{I \in \mathsf{Int}_{\mathsf{At}} \mid I \models \psi\} \\ &= \mathsf{Mod}(\phi) \cup \mathsf{Mod}(\psi) \end{aligned}$$

Analogous for 2. and 3.

Propositional logic - semantics 9/9

Proposition

It holds

- 1. $Mod(\top) = Int_{At}$
- 2. $\mathsf{Mod}(\bot) = \emptyset$

Proof.

$$\begin{aligned} \mathsf{Mod}(\top) &= \{I \in \mathsf{Int}_{\mathsf{At}} \mid I \models \top\} \\ &= \{I \in \mathsf{Int}_{\mathsf{At}}\} \\ &= \mathsf{Int}_{\mathsf{At}} \\ \mathsf{Mod}(\bot) &= \{I \in \mathsf{Int}_{\mathsf{At}} \mid I \models \bot\} \\ &= \emptyset \end{aligned}$$

Propositional logic - semantics and inference 1/3

- Interpretations and models only define meaning (semantics) of formulas.
- We are mainly interested in *inference*, i. e., when does a formula ψ follow logically from another formula ϕ ?

Definition

Let At be a propositional signature and $\phi, \psi \in \mathcal{L}(\mathsf{At})$. We say that ψ follows logically from ϕ (or ϕ entails ψ), written $\phi \vdash \psi$, iff

$$\mathsf{Mod}(\phi)\subseteq \mathsf{Mod}(\psi)$$

Propositional logic - semantics and inference 2/3

Example

Let $At_3 = \{a, b, c\}$. Is it true that $a \land \neg b \vdash a$?

- ▶ We already know that $\mathsf{Mod}(\phi \wedge \psi) = \mathsf{Mod}(\phi) \cap \mathsf{Mod}(\psi)$, so $\mathsf{Mod}(a \wedge \neg b) = \mathsf{Mod}(a) \cap \mathsf{Mod}(\neg b)$
- ▶ Hence $Mod(a \land \neg b) \subseteq Mod(a)$ and therefore $a \land \neg b \vdash a$

Example

Let $At_3 = \{a, b, c\}$. It is true that $a \lor b \vdash a$?

▶ No, because there is a model of $a \lor b$ that is not a model of a:

$$\overline{a}bc \models a \lor b$$

 $\overline{a}bc \not\models a$

▶ Hence $Mod(a \lor b) \not\subseteq Mod(a)$

Propositional logic - semantics and inference 3/3

Proposition

Let At be a propositional signature and $\phi, \psi \in \mathcal{L}(\mathsf{At})$. Then $\phi \vdash \psi$ iff

For all
$$I \in Int_{At}$$
, if $I \models \phi$ then $I \models \psi$

Proof.

Let $\phi \vdash \psi$. Then $\mathsf{Mod}(\phi) \subseteq \mathsf{Mod}(\psi)$. This is equivalent to: for all $I \in \mathsf{Int}_{\mathsf{At}}$, if $I \models \phi$ then $I \models \psi$.

Propositional logic - equivalence 1/2

Definition

Let At be a propositional signature and $\phi, \psi \in \mathcal{L}(\mathsf{At})$. We say that ϕ and ψ are *equivalent*, written $\phi \equiv \psi$, iff

$$\phi \vdash \psi$$
 and $\psi \vdash \phi$

Remark

 $\phi \equiv \psi$ iff

- $\blacktriangleright \phi \vdash \psi$ and $\psi \vdash \phi$ iff
- $ightharpoonup \operatorname{\mathsf{Mod}}(\phi) = \operatorname{\mathsf{Mod}}(\psi)$ iff
- ▶ For all $I \in Int_{At}$, $I \models \phi \leftrightarrow I \models \psi$ iff
- \blacktriangleright T $\vdash \phi \Leftrightarrow \psi$

Propositional logic - equivalence 2/2

Let $At_3 = \{a, b, c\}$. Then

$$eg \neg a \equiv a$$
 $eg (a \land b) \equiv \neg a \lor \neg b$
 $eg a \land \neg a \equiv \bot$
 $eg a \lor \neg a \equiv \top$

Propositional logic - inference

Proposition

Let At be a propositional signature and $\phi, \psi \in \mathcal{L}(\mathsf{At})$. Then

$$\phi \vdash \psi$$
 iff $\phi \land \neg \psi \vdash \bot$

Proof.

Assumption: $\phi \vdash \psi$

$$\iff \operatorname{\mathsf{Mod}}(\phi)\subseteq\operatorname{\mathsf{Mod}}(\psi)\\ \iff \operatorname{\mathsf{Mod}}(\phi)\cap(\operatorname{\mathsf{Int}}_{\mathsf{At}}\setminus\operatorname{\mathsf{Mod}}(\psi))=\emptyset\\ \iff \operatorname{\mathsf{Mod}}(\phi)\cap\operatorname{\mathsf{Mod}}(\neg\psi)=\emptyset\\ \iff \operatorname{\mathsf{Mod}}(\phi\wedge\neg\psi)=\emptyset\\ \iff \operatorname{\mathsf{Mod}}(\phi\wedge\neg\psi)\subseteq\operatorname{\mathsf{Mod}}(\bot)\\ \iff \phi\wedge\neg\psi\vdash\bot$$

26 / 88

Propositional logic - monotony

Propositional logic is *monotonous* in the sense that inferences are maintained when information is added.

Proposition

Let At be a propositional signature and $\alpha, \beta, \phi \in \mathcal{L}(\mathsf{At})$. Then

If
$$\alpha \vdash \phi$$
 then $\alpha \land \beta \vdash \phi$

Proof.

If $\alpha \vdash \phi$ then $\mathsf{Mod}(\alpha) \subseteq \mathsf{Mod}(\phi)$. It also holds $\mathsf{Mod}(\alpha \land \beta) \subseteq \mathsf{Mod}(\alpha)$. Together we get $\mathsf{Mod}(\alpha \land \beta) \subseteq \mathsf{Mod}(\phi)$ and $\alpha \land \beta \vdash \phi$.

Propositional logic - trivialisation

- Propositional logic is explosive in the sense that inconsistency allows entailment of everything
- ► This phenomenon is also called *ex falso quodlibet* (lat. from falsehood, anything follows)

Proposition

Let At be a propositional signature and $\phi, \psi \in \mathcal{L}(\mathsf{At})$. Then

If
$$\phi \equiv \perp$$
 then $\phi \vdash \psi$

Proof.

If $\phi \equiv \perp$ then $\mathsf{Mod}(\phi) = \emptyset$ and therefore $\mathsf{Mod}(\phi) \subseteq \mathsf{Mod}(\psi)$ for every $\psi \in \mathcal{L}(\mathsf{At})$.

Example

$$a \wedge \neg a \vdash b$$

Propositional logic - further concepts

Let At be a propositional signature and $\phi \in \mathcal{L}(At)$.

- lacktriangledown ϕ is satisfiable (consistent) if there is $I \in \mathsf{Int}_{\mathsf{At}}$ with $I \models \phi$
- lacktriangledown ϕ is *unsatisfiable* (inconsistent) if there is no $I \in \mathsf{Int}_{\mathsf{At}}$ with $I \models \phi$
- lacktriangledown ϕ is valid (tautological), if for all $I \in Int_{At}$ we have $I \models \phi$

Propositional logic - conjunctive normal form

- ▶ A *literal* is either an atom $a \in At$ or a negated atom $\neg a$
- ▶ A *clause* is a disjunction $\phi_1 \lor \ldots \lor \phi_n$ with literals ϕ_1, \ldots, ϕ_n
- A formula ϕ is in *conjunctive normal form* (CNF) if $\phi = \psi_1 \wedge \ldots \wedge \psi_m$ and every ψ_i is a clause

Proposition

Every formula $\phi \in \mathcal{L}(\mathsf{At})$ can be rewritten in CNF, i. e., there is a formula ϕ' in CNF with $\phi \equiv \phi'$.

Without proof

Propositional logic - SAT

► The decision problem

Given ϕ in CNF, decide whether there is some $I \in Int_{At}$ with $I \models \phi$

is called the *satisfiability problem* (SAT) and *the* pivotal decision problem in theoretical computer science

- ► SAT is NP-complete: Solutions can be efficiently checked but not, as far as we know, efficiently found. Furthermore, every NP problem can be efficiently reduced to SAT.
- ▶ SAT solver can be used for reasoning; given a query " $\phi \vdash \psi$?"
 - 1. Transform $\phi \wedge \neg \psi$ into CNF
 - 2. Is $\phi \land \neg \psi$ not satisfiable then $\phi \vdash \psi$
- Implementations/systems:
 - ► SAT competition: http://satcompetition.org
 - ► SAT solver MapleSAT (high performant prover): https://sites.google.com/a/gsd.uwaterloo.ca/maplesat/
 - Tweety: http://tweetyproject.org