MA999 Fundamentals of Mathematical Modelling

Second (and higher) order systems

We shall consider equations of the form

$$\dot{x} = f(x), \quad x \in \mathbb{R}^2, \quad (x \in \mathbb{R}^n)$$

Linear systems in \mathbb{R}^2

$$\dot{x}_1 = ax_1 + bx_2$$

$$\dot{x}_2 = cx_1 + dx_2$$

Introducing the vector $x = (x_1, x_2)^T$ we have

$$\dot{x} = Ax, \qquad A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$$

Try a solution of the form

$$x = e^{\lambda t}v$$

This leads to the linear homogeneous equation

$$Av = \lambda v$$
.

v is an eigenvector of A with corresponding eigenvalue λ . For the system above to have a non-trivial solution we require that

$$\det(A - \lambda I) = 0$$

which is called the *characteristic equation*. Here I is the 2×2 identity matrix. Substituting the components of A into the characteristic equation gives

$$\lambda^2 - (a+d)\lambda + (ad - bc) = 0$$

or

$$\lambda^2 - \operatorname{Tr} A \lambda + \det A = 0$$

so that

$$\lambda_{\pm} = rac{1}{2} \left[\operatorname{Tr} A \pm \sqrt{(\operatorname{Tr} A)^2 - 4 \det A}
ight]$$

The general solution for x(t):

$$x(t) = c_1 e^{\lambda_1 t} v_1 + c_2 e^{\lambda_2 t} v_2.$$

If $\lambda_{1,2}$ are complex ($\lambda_{1,2}=\alpha\pm i\omega$), the fixed point is either a *centre* or a *spiral*. Since x(t) involves linear combinations of $e^{\alpha\pm i\omega}$, x(t) is a combination of terms involving $e^{\alpha t}\cos(\omega t)$ and $e^{\alpha t}\sin(\omega t)$ (by Euler's formula $e^{i\omega t}=\cos(\omega t)+i\sin(\omega t)$).

- If $\alpha < 0 \Rightarrow$ stable focus (or stable spiral)
- If $\alpha > 0 \Rightarrow$ unstable focus (or unstable spiral)
- If $\alpha = 0 \Rightarrow$ a centre (periodic solution with period $T = 2\pi/\omega$), marginally stable.

Classification of fixed points

We classify the different types of behaviour according to the values of $\operatorname{Tr} A$ and $\det A$.

- λ_{\pm} are real if $(\operatorname{Tr} A)^2 > 4 \det A$.
- Real eigenvalues have the same sign if $\det A>0$ and are positive if $\operatorname{Tr} A>0$ (negative if $\operatorname{Tr} A<0$) stable and unstable nodes.
- Real eigenvalues have opposite signs if $\det A < 0$ saddle node.
- Eigenvalues are complex if $(\operatorname{Tr} A)^2 < 4 \det A$ **focus**.

Solving linear systems

- ullet Real eigenvalue $\lambda \qquad \Rightarrow \qquad C \mathrm{e}^{\lambda t}$
- ullet Real eigenvalue λ of multiplicity r \Rightarrow $C_1 \mathrm{e}^{\lambda t} + C_2 t \mathrm{e}^{\lambda t} + \cdots + C_r t^{r-1} \mathrm{e}^{\lambda t}$
- Pair of complex eigenvalues $\lambda = \rho \pm i\omega$ \Rightarrow $\mathrm{e}^{\rho t} (B\cos\omega t + C\sin\omega t)$
- Pair of complex eigenvalues $\lambda = \rho \pm i\omega$, each with multiplicity $r \Rightarrow e^{\rho t}(B_1 \cos \omega t + C_1 \sin \omega t + B_2 t \cos \omega t + C_2 t \sin \omega t + \cdots + B_r t^{r-1} \cos \omega t + C_r t^{r-1} \sin \omega t)$

Nonlinear systems in \mathbb{R}^2 (in \mathbb{R}^n)

We shall consider equations of the form

$$\dot{x}_1 = f_1(x_1, x_2),$$

 $\dot{x}_2 = f_2(x_1, x_2).$

This system can be wirtten in vector notation

$$\dot{\mathbf{x}} = \mathbf{f}(\mathbf{x}),$$

where $\mathbf{x}(x_1, x_2)$, $\mathbf{f}(\mathbf{x}) = (f_1(\mathbf{x}), f_2(\mathbf{x}))$. \mathbf{x} represents a point in the phase plane, and $\dot{\mathbf{x}}$ is the velocity vector at that point.

Existence and uniqueness theorem (in \mathbb{R}^n): Suppose $\dot{x}=f(x)$ and $f:\mathbb{R}^n\to\mathbb{R}^n$ is continuously differentiable (i.e. $\partial f_i/\partial x_j$, $i,\ j=1,...,n$ exist and are continuous for all x). Then there exits $t_1>0$ and $t_2>0$ such that the solution with $x(t_0)=x_0$ exists and is unique for all $t\in(t_0-t_1,t_0+t_2)$.

Phase-space and flows. Refer to local solution through x_0 as a solution curve or trajectory. Suppose that $\dot{x}=f(x), \ x\in\mathbb{R}^n, \ f:\mathbb{R}^n\to\mathbb{R}^n$. We define a flow $\phi(x,t)$ such that $\phi(x,t)$ is the solution of the ODE at time t with initial value x_0 at t=0. The solution x(t) with $x(0)=x_0$ is now written as $\phi(x_0,t)$

$$\frac{d\phi(x,t)}{dt} = f(\phi(x,t)), \qquad \phi(x,0) = x_0$$

By varying initial condition x_0 we generate a family of trajectories called the *flow* generated by Φ .

Note that uniqueness imples that trajectories cannot cross.

An **equilibrium** or fixed point satisfies $\Phi(x,t) = x$ for all t. Thus f(x) = 0. An important feature of nonlinearities is that there can exist more than one (isolated) fixed point.

3