Xiangjun Tan

Education ____

Peking University (PKU)

Beijing

Summer School, Introduction to Quantum Information Technology, GPA:88 Jun. 2022 - Aug. 2022

University of New South Wales (UNSW)

Bachelor of Quantum Engineering/Physics double degree, Graduated with Distinction, Top10% Sep. 2021 - Feb. 2024

University of New South Wales (UNSW)

Bachelor of Physics(Honours) Feb. 2024 - Dec. 2024

Expected graduate within 3 years to finish a 5-year full degree by overloading the coursework.

Awards and Honors

May 2024 – May
2025

Feb. 2023-2024

Award: "IBM Quantum Researcher Program, awarded \$105,000 AUD"

Washington

UNSW
Science Talented Student"

Science
Sydney

Dec. 2022-2023

Scholarship: "SQA undergraduate Student Research Scholarship"

Quantum
Academy

Feb. 2023 Award: UNSW Dean's list UNSW Engineering

Research Projects

Physics Beyond the Standard Model Enhanced Through Quantum Information

UNSW, Sydney

Sydney

Sydney

Honours Project Supervisor: Prof. Susan Coppersmith, collaboration with Prof. Baha Balantekin

Jan. 2024 - Current

- Developed an effective model to boost the calculation of Dark Matter (WIMP) -Nuclei Scattering through quantum simulation, supported by IBM Quantum.
- Innovatively mapped Nuclear Shell Quasi-Spin Pairing Model onto Quantum Circuits, enhancing the accuracy of quantum simulations related to nuclear physics.
- The energy difference between the ground state and quantum estimated energy was quantified as a function of quantum gate fidelity and the number of variational parameters based on the model and quantum devices.
- Submitted the works to the 2024 Physics Research Poster Presentation Event in Sydney, hosted by the Australian Institute of Physics

Quantum Simulation of Phonon Scattering & Topological Phonon Surface States

Institute of Theoretical Physics,

CAS, Beijing

Research Assistant Supervisor: A/Prof. Tiantian Zhang

Dec. 2023 -

- · Pioneered the mapping of the Four Phonon Scattering Hamiltonian to quantum circuits and evaluated by Variational Quantum Eigensolver.
- Constructed an Effective Ansatz for Bosonic Vibrational Systems, facilitating more accurate simulations of phononic behaviours, which will
 contribute to the thermal conductivity of the materials
- Applied the Tight-binding model for graphene, analysis of the surface states and the topological property on a supercell with open boundary condition.
- Explored how will the topological defects and dilution effect the topological phonon surface states

Quantum Hall Effect in 2D Systems

UNSW, Sydney

Taste of Research Supervisor: Prof. Alex Hamilton

Sep. 2023 - Dec. 2023

• Measured the Quantum Hall Effect at ultra-low temperatures (below 2 Kelvin) and high magnetic fields (up to 9 Tesla), contributing to the understanding of quantum electronic properties in 2D materials.

Research on Quantum Computation for Neutrino Oscillation and Many-body Problems

UNSW, Sydney

Talented Student Program Supervisor: Prof. Susan Coppersmith

Mar. 2023 - Jan.2024

- Delved into the fundamentals of Many-body Physics and Quantum Field Theory (QFT), establishing a quantum simulation circuit for Collective Neutrino Oscillation under two flavours.
- Encoded an efficient algorithm for collective neutrino oscillation simulations on the IBMQ Platform for up to 16 Qubits.
- Implemented advanced error mitigation strategies to minimize computational errors and optimize quantum gate operations, demonstrating the potential for reducing resource overhead in quantum simulations.
- Presented findings at QPQIS-2023 Conference in Beijing, showcasing the project's contribution to the field of quantum simulation for high energy physics.

Modeling and Simulation of Silicon Qubit Devices

Sydney Quantum Academy, Sydney

SQA Undergraduate Research Supervisor: Dr. Chris Escott

Jan. 2023 - Mar. 2023

- Created a model to describe the physical defect, especially for the dilution in the materials.
- Devised a customized Ising Model for simulation using Matlab, facilitating the exploration of qubit interactions and quantum state behaviours.

Research on Neutrino Oscillation in Different Mediums

UNSW, Sydney

Physics Research Project Supervisor: Dr. Michael Schmidt

Aug. 2022 - Jan. 2023

- Investigated the time evolution of the Effective Hamiltonian in vacuum and matter, advancing the theoretical framework for neutrino oscillation in astrophysical contexts.
- · Derived novel expressions for evolution in dark matter environments, offering insights into how neutrinos interact with unseen cosmic matter.
- · Developed an interactive model for neutrino oscillation using Python, enhancing educational tools and theoretical predictions in particle physics.

Activities ₋

UNSW Hero Program-Innovation Pro

UNSW Sydney

Team Leader

May. 2023 - August. 2023

- Directed a team in the development and presentation of a pitch for innovative quantum computation technology, highlighting potential impacts on various industries.
- Conducted comprehensive research to underpin the pitch, ensuring the presentation was grounded in the latest quantum computing advancements and market needs
- Developed and delivered a compelling presentation to stakeholders, effectively communicating complex quantum computing concepts to a non-specialist audience.
- Facilitated collaboration between team members with diverse expertise, fostering a creative and productive environment for idea generation and problem-solving.
- Successfully engaged with industry experts and potential investors during the pitch, garnering positive feedback and establishing valuable connections for future collaborations.

UNSW Research Seminar Association

UNSW Sydney

President / Founder

Apr. 2023 - Present

- Founded and currently presides over the Research Seminar Association (RSA), a university-certified society that significantly enhances the academic and professional network within UNSW, including thousands of members.
- Successfully organize weekly seminars featuring researchers and students to discuss cutting-edge topics, promoting interdisciplinary learning and collaboration.
- Spearheaded collaborations with international companies to provide job-sharing opportunities, contributing to members' career development by directly addressing employment challenges in the research sector.
- Led initiatives that resulted in a measurable increase in membership and engagement, establishing RSA as a pivotal platform for academic and professional exchange at UNSW.

Quantum Computation Training Program (4th Edition)

University of Science and

Technology of China

Research Student

June. 2023 - Sep.2023

- Participated in an intensive training program on Quantum Computation, gaining hands-on experience with quantum algorithms and computational models.
- Collaborated on a project that simulated quantum systems, which enhanced understanding of quantum mechanics and computational techniques.
- · Acquired advanced skills in quantum programming languages and tools, preparing for impactful research contributions in quantum computing.

Technical Skills

Programming

Matlab, C, Python

Professional Softwares

Matlab, Ltspice, Mathematica

Drawing & Typesetting

Photoshop, Office, LATEX

Languages

Chinese(Native), English