$\mathrm{Ti}k\mathbf{Z}$ gyorstalpaló, példák

2022. október 24.

Tartalomjegyzék

1.	${f Ti} {m k}$	Z gyorstalpaló 2	
	1.1.	Alapok	
	1.2.	Sokszögek rajzolása, for ciklusok	
	1.3.	Rácsok, szöveg beillesztése	
	1.4.	Gráfok	
2.	Példák 11		
	2.1.	Sakktábla	
	2.2.	Nyolcszög, lyukkal	
	2.3.	Sok körzőzés	
	2.4.	Óxisz szigete	
	2.5.	Gráf öt csúccsal	
	2.6.	Gráf sok csúccsal	
	2.7.	Simson-egyenes	
	2.8.	Háromszög beírt köre	
	2.9.	Komplex egységgyökök	
	2.10.	KöMaL B.5131	
		KöMaL B.5186	
		Függvények	
		Trigonometrikus függvények	
3.	Impresszum 34		
	_	Linkek	
		Készítők 34	

1. fejezet

TikZ gyorstalpaló

1.1. Alapok

A \usepackage {tikzpicture} kell a library implementálásához A \usepackage {tikzpicture} és \end {tikzpicture} parancsok közé kell helyezni a rajzolandó ábrát. A TikZ úgy működik, mint egy rajztábla. Egyesével kell az objektumokat rárajzolni, esetenként egy ciklusban többet is lehet egyszerre (lásd lejjebb). Minden parancsot ; -vel kell lezárni.

A \begin {tikzpicture} ["paraméterek"] ebben a szögletes zárójelben kell megadni a rajztábla paramétereit. Ilyenek:

- scale = 3 a képet nyújtja, kivéve a betű méretet
- xscale = 4, yscale = 5 ugyanez, csak merőlegesen affin képet ad

A rajzolásra két különböző, de általában mindenre elég parancs a **\draw** és **\filldraw**. A sima rajzolás csak körvonalat rajzol, a másik pedig automatikusan ugyanazzal a színnel kitölti az alakzatot. Mindkettő parancsnak meg kell mondani, hogy:

- Hova: (x, y), (fok:hossz)
- Mit: node, -- (edge), circle, rectangle, arc
- Stílusban: [color, ultra thin, fill] ez lehet üres, ilyenkor a rajztábla stílusát használja

A node-ok kicsit trükkösebbek, róluk a gráfok részben lehet részletesebben olvasni.

```
\begin{tikzpicture}[scale=3]
    %a köröknek a kp.-át és sugarát kell megadni
    draw (0,0) circle (0.4 cm) [color = blue!90];
    \filldraw (1,0) circle (0.4 cm) [color = red!90];
   %a téglalapoknak a balalsó és jobbfelső csúcsait kell
   meqadni
    \draw (2-0.4, -.4) rectangle (2+0.4, .4) [ultra thick,
   fill=black!20];
    %a törött vonalakat csúcsról csúcsra kell megadni
    \frac{3-0.3}{-0.3} -- \frac{3-0.3}{-0.4} -- \frac{3+0.4}{-0.4} --
    (3+0.4, 0.4);
   %ami sokkal menőbb, például egy rácsbejáráshoz az
    íveltvonalak
   \draw[thick,rounded corners=8pt, color=pink!200] (4-0.3,
    -0.3) -- (4-0.3, 0.4)
   -- (4+0.4, -0.4) -- (4+0.4, 0.4);
   %Ha a törött vonalat lezárnád érdemes a --cycle befejezést
    írni a kezdő csúcs
    %megismétlése helyett.
\end{tikzpicture}
```


1.1.1. Illesztés

Az első fejezetben leírtakat érdemes alkalmazni. A \clip parancsot érdemes használni. Nem csak arra jó, hogy kivágjuk a kép egy részét, de beállítja a kép keretét, ha azzal kezdjük. Erre persze lehet használni a \useasboundingbox parancsot amivel megadhatunk például egy téglalappal határolt fix keretét a képnek. Amit ezen kívül rajzoltál nem fogja megjeleníteni.

```
\begin{tikzpicture}[scale=3]
   \draw (0,0) circle (0.4 cm) [color = blue!90];
   %Itt vágunk ami azt okozza, hogy az előző kör nem sérült
   \clip (-0.3, -0.3) rectangle (5, 0.3);
   \filldraw (1,0) circle (0.4 cm) [color = red!90];
   \draw (2-0.4, -.4) rectangle (2+0.4, .4) [ultra thick,
   fill=black!20];
   "Lehet relatív megadni a távolságokat, hogy ne kelljen
   mindent papíron kiszámolni
   %Ha csak sima +-t használsz, akkor a kezdő csúcstól
    viszonyít
    \frac{3-0.3}{-0.3} -- ++(0, 0.7) -- ++(0.7, -0.8) -- ++(0,
   0.8);
    \draw[thick,rounded corners=8pt, color=pink!200]
                                                        (4-0.3,
    -0.3) -- (4-0.3, 0.4) -- (4+0.4, -0.4) -- (4+0.4, 0.4);
\end{tikzpicture}
```


1.1.2. Színek, egyebek

Be lehet állítani vonalvastagságot, színt és még színátmenetes ábrát is egyszerű csinálni.

- Vastagságok: { ultra, very, } + { thin, thick }
- Színek: { red, green, blue, cyan, magenta, yellow, black, gray, darkgray, lightgray, brown, lime, olive, orange, pink, purple, teal, violet, white }
- Vonaltípusok: { dashed, dotted }
- Vonal összekötési lehetőségek (advanced):
 - line cap = {round, rect, butt}
 - rounded corners = 5mm
 - line join = {round, bevel, mitern}

```
\begin{tikzpicture}[scale=3]
     \draw (0,0) circle (0.4) [color = green!70, fill = green!15,
     ultra thick];
     \draw (1,0) circle (0.4) [color = green!70!black, fill =
        green!15, thick, dashed];
     \shade (2,0) circle (0.4) [top color = green];
     \shade (3,0) circle (0.4) [top color = green, bottom color =
        yellow];
     \shade (4,0) circle (0.4) [left color = green, right color =
        yellow];
     \end{tikzpicture}
```


1.2. Sokszögek rajzolása, for ciklusok

Az, hogy lehet for ciklusokat írni, nagyban segít a valamilyen szempontból szimmetrikus ábrák elkészítésében. A for ciklusok hasonlóan más nyelvekhez bevezetnek egy változót, ami végig fut adott értékeken és végrehajtja a megadott parancsokat egyesével (jobb ha nem számít a sorrend). Lehet egymásba ágyazott ciklusokat írni, de lehet párhuzamosan két vagy több változót egyszerre változtatni. Például \foreach \x in {1,2,3,4}{<commands>} Ennél lehet komolyabb dolgokat is csinálni, lásd a példákat.

Eddig nem volt róla szó, de a hagyományos koordinátázás helyett lehet polár-koordinátákat is használni. (90:1cm) – 90 fok, 1 cm messze

A képet lehet transzformálni erre pár példa: xshift, yshift, rotate

```
\begin{tikzpicture}[scale = 2, ultra thick]
  \foreach \n in {3, ..., 8} {
        \draw (\n-3,0) \foreach \d in {1, ..., \n}{
        #MAGIC DANGER
        +(\d*360/\n:0.3cm) -- +(\d*360/\n + 360/\n:0.3cm)
        };
        #Az, hogy ilyet lehet csinálni szerintem egyszerre
        undorító és hasznos
```

```
%Ez kell ahhoz, hogy a szín mögé lehessen írni
    változót (nem igazán lehet képletet)
    \pgfmathsetmacro\i{\n*15-30}
    \filldraw [xshift = \n-3, color = green!\i] (\n-3,-1)
    circle (0.3cm);
}
\end{tikzpicture}
```


1.3. Rácsok, szöveg beillesztése

A \draw grid parancsot lehet négyzetrács készítésre használni a \foreach helyett. Meg kell adni a lépésközt és egy téglalapot ami határolja.

Szöveget beilleszteni úgy kell, hogy egy Node-ot töltünk fel szöveggel. Paraméterként meg lehet adni, hogy az adott pozícióhoz képest, hol helyezkedjen el a csúcs és így a szöveg, ezt az anchor=<direction> paraméterrel lehet megadni. A fill=white paraméter megadásával az is elérhető, hogy a szöveg/szám alatt megszakadjanak a vonalak, így egy sokkal esztétikusabb végeredményt kapunk.

Itt különösen kiemelném a **\clip** parancs fontosságát. Ha egy ábrát szeretnék nagyban és kicsiben is használni elég megismételni a kódot és megadunk egy keretet, ahol kíváncsiak vagyunk az ábra részleteire.

```
\draw (0,0) [fill = white, anchor = north east] node
        {\large $0$};
        %y-tengely
        \foreach \label in \{1, 2, 3, 4\}
        \pgfmathsetmacro\pos{\label/2}
        \draw [ultra thick](-1pt,\pos) -- (1pt, \pos) node [fill
       = white, left, xshift = -7pt] {$\label$};
       \foreach \label in \{-1, -2, -3, -4\}
        \pgfmathsetmacro\pos{\label/2}
        \draw [ultra thick](-1pt,\pos) -- (1pt, \pos) node [fill
       = white, left, xshift = -7pt] {$\label$};
        %x-tengely
        foreach \ label in \{1, 2, 3, 4\}
        \pgfmathsetmacro\pos{\label/2}
        \draw [ultra thick](\pos, 1pt) -- (\pos, -1pt) node
        [fill = white, below, yshift = -2pt] {\frac{1}{2}};
        foreach \ label in \{-1, -2, -3, -4\}
        \pgfmathsetmacro\pos{\label/2}
        \draw [ultra thick](\pos, 1pt) -- (\pos, -1pt) node
        [fill = white, below, yshift = -2pt, xshift = -3pt]
        {$\label$};
        %ábra
        \draw (1, 0.5) node [color=red, anchor = south west]
        \draw (0.5, 1.5) node [color=blue, anchor = south west]
       {$B$};
        \draw (0.5,1.5) node [color=blue, circle, fill=blue,
        scale =0.7] {};
        \draw [->, green, dashed, ultra thick, opacity=0.5] (1,
        0.5) -- (0.5, 1.5);
        \draw (1, 0.5) node [color=red, circle, fill=red, scale
        =0.7] {};
        \draw[xshift=2.1cm, yshift=1cm] node[right,text]
        width=5cm]
        {Az ábrán látható {\color{red} $A$} pontból megy a
        {\color{blue} $B$} pontba egy {\color{green} vektor}.};
\end{tikzpicture}
```


1.4. Gráfok

Lehet gráfokat úgy definiálni, hogy a csúcsokat megadjuk és utána az élek már a meglévő objektumainkat (csúcsok) kössék össze. Ez azért hasznos, mert rugalmasabb lesz az ábra. Ha esetleg változtatnánk a gráfon egy új csúcs behozásával nem kell az egész ábrát koordinátánként átírni. Elég csak a csúcsokat áthelyezni, a többit a $\text{Ti}k\mathbf{Z}$ megcsinálja nekünk. Ami még különösen hasznos, hogy tudunk a programban a csúcsoknak nevet adni és utána ezt a nevet használni referenciaként, hogy egy sokkal átláthatóbb kódot kapjunk végeredményül. Ez nem összekeverendő a csúcshoz tartozó szöveggel.

Amit szintén itt mutatnék be az a dinamikus stílus kezelés. Lehet ugyanis általunk előre definiált stílusokat megadni, hogy utána csak elég legyen annyit írni, hogy [fontos] vagy [seged]. Ezzel is azt érjük el, hogy olvashatóbb és egységesen változtathatóbb lesz a kód és így az ábránk.

A csúcsok és élek szövegezésére is sok lehetőséget ad a TikZ. A label=<direction>:<text> paraméter, akár többszöri használatával tudunk mindenféle szöveggel/névvel ellátni az ábránkat.

Lehet az éleket hajlítani, kígyósítani és egyéb stilisztikai trükköket alkalmazni. Erre azt ajánlom, hogy a dokumentációt érdemes olvasgatni. A következő részben írok a görbe vonalakról, ott érdemes erről olvasni.

```
\usetikzlibrary{positioning,backgrounds}
\begin{tikzpicture}[auto, node distance = 1cm and 2cm]
        \tikzstyle{StartEnd}=[rectangle,draw=blue!50,
        fill=blue!20,thick, inner sep=0pt,minimum size=6mm]
        \tikzstyle{alayer}=[circle,draw=red!80,fill=red!20,thick,
        inner sep=Opt,minimum size=6mm]
        \tikzstyle{blayer}=[circle,draw=red!80,fill=red!40,thick,
        inner sep=Opt,minimum size=6mm]
        \tikzstyle{se-edge}=[->,very thick, color=blue!30]
        \tikzstyle{in-edge}=[->,very thick, color=red!30]
        %Nodes
        \node[StartEnd] (Start) [label =
        135:\color{blue}\Large$S$] {};
        \node[alayer] (a3) [right = of Start, label=above:$a3$]
        \node[alayer] (a2) [above = of a3, label=above:$a2$] {};
        \node[alayer] (a1) [above = of a2, label=above:$a1$] {};
        \node[alayer] (a4) [below = of a3, label=above:$a4$] {};
        \node[alayer] (a5) [below = of a4, label=above:$a5$] {};
        \node[blayer] (b3) [right = of a3, label=above:$b3$] {};
        \node[blayer] (b2) [above = of b3, label=above:$b2$] {};
        \node[blayer] (b1) [above = of b2, label=above:$b1$] {};
        \node[blayer] (b4) [below = of b3, label=above:$b4$] {};
        \node[blayer] (b5) [below = of b4, label=above:$b5$] {};
        \node[StartEnd] (End)[right = of
        b3,label=45:\color{blue}\Large$C$] {};
        %Edges
        \draw[se-edge] (Start) to [out=45, in=180] (a1);
        \draw[se-edge] (Start) to [out=22.5, in=180] (a2);
        \draw[se-edge] (Start) to [out=0, in=180] (a3);
        \draw[se-edge] (Start) to [out=360-22.5, in=180] (a4);
        \draw[se-edge] (Start) to [out=360-45, in=180] (a5);
```

```
\draw[se-edge] (b1) to [out=0, in=180-45] (End);
        \draw[se-edge] (b2) to [out=0, in=180-22.5] (End);
        \draw[se-edge] (b3) to [out=0, in=180] (End);
        \draw[se-edge] (b4) to [out=0, in=180+22.5] (End);
        \draw[se-edge] (b5) to [out=0, in=180+45] (End);
        \draw[in-edge] (a1) to (b2);
        \draw[in-edge] (a2) to (b1);
        \draw[in-edge] (a2) to (b5);
        \draw[in-edge] (a3) to (b5);
        \draw[in-edge] (a4) to (b1);
        \draw[in-edge] (a5) to (b3);
        \draw[in-edge] (a5) to (b5);
        %Layers
        \begin{pgfonlayer}{background}
                \filldraw [fill=black!20, draw=black] (a5.south
                -| a5.west) rectangle (a1.north -| a1.east);
                \filldraw [fill=black!20, draw=black] (b5.south
                -| b5.west) rectangle (b1.north -| b1.east);
        \end{pgfonlayer}
\end{tikzpicture}
```


2. fejezet

Példák

```
A példákban használt csomagok:
\usetikzlibrary {arrows, arrows.meta, backgrounds}
\usetikzlibrary {calc, intersections, patterns}
\usetikzlibrary {shapes, shapes.geometric, through}
```

2.1. Sakktábla

Szükséges csomag: \usepackage {skak}

```
\begin{tikzpicture}[scale=0.8]
   \foreach \i in \{1,3,5,7\}
   \foreach \j in \{1,3,5,7\} {
       \fill[line width=0.pt, fill=gray,opacity=0.7]
       (\i,\j) -- (\i+1,\j) -- (\i+1,\j+1) -- (\i,\j+1) --
       cycle;
       \fill[line width=0.pt, fill=gray,opacity=0.7]
       (\j,\i) --
       (\j-1,\i) -- (\j-1,\i-1) -- (\j,\i-1) -- cycle;
   }
   \frac{0}{0}
   \begin{Large}
       \draw (0.5,0.5) node {\bf{\symrook}};
       \draw (1.5,1.5) node {\bf{\symrook}};
       \draw (2.5,2.5) node {\bf{\symrook}};
       \draw (3.5,3.5) node {\bf{\symrook}};
       \draw (4.5,7.5) node {\bf{\symbishop}};
```

```
\draw (5.5,7.5) node {\bf{\symbishop}};
     \draw (6.5,4.5) node {\bf{\symbishop}};
     \draw (7.5,6.5) node {\bf{\symbishop}};
     \end{Large}
\end{tikzpicture}
```


2.2. Nyolcszög, lyukkal

```
\newcommand*\st{1.414142135}
\begin{tikzpicture}[scale=2, line cap=round]
                                      \fill[gray, pattern = horizontal lines]
                                                                            (-1,-1)--(0,-\st)--(1,-
                                                                           1) - -(\st, 0) - -(1, 1) - -(0, \st) - -(-
                                                                           1,1)--(-\st,0)--cycle;
                                      \fill[white]
                                                                            (-1,-1)--(0,-2+\st)--(1,-
                                                                           1) - (2-st, 0) - (1, 1) - (0, 2-st) - (-1, 1) - (-1, 1) - (-1, 1) - (-1, 1) - (-1, 1) - (-1, 1) - (-1, 1) - (-1, 1) - (-1, 1) - (-1, 1) - (-1, 1) - (-1, 1) - (-1, 1) - (-1, 1) - (-1, 1) - (-1, 1) - (-1, 1) - (-1, 1) - (-1, 1) - (-1, 1) - (-1, 1) - (-1, 1) - (-1, 1) - (-1, 1) - (-1, 1) - (-1, 1) - (-1, 1) - (-1, 1) - (-1, 1) - (-1, 1) - (-1, 1) - (-1, 1) - (-1, 1) - (-1, 1) - (-1, 1) - (-1, 1) - (-1, 1) - (-1, 1) - (-1, 1) - (-1, 1) - (-1, 1) - (-1, 1) - (-1, 1) - (-1, 1) - (-1, 1) - (-1, 1) - (-1, 1) - (-1, 1) - (-1, 1) - (-1, 1) - (-1, 1) - (-1, 1) - (-1, 1) - (-1, 1) - (-1, 1) - (-1, 1) - (-1, 1) - (-1, 1) - (-1, 1) - (-1, 1) - (-1, 1) - (-1, 1) - (-1, 1) - (-1, 1) - (-1, 1) - (-1, 1) - (-1, 1) - (-1, 1) - (-1, 1) - (-1, 1) - (-1, 1) - (-1, 1) - (-1, 1) - (-1, 1) - (-1, 1) - (-1, 1) - (-1, 1) - (-1, 1) - (-1, 1) - (-1, 1) - (-1, 1) - (-1, 1) - (-1, 1) - (-1, 1) - (-1, 1) - (-1, 1) - (-1, 1) - (-1, 1) - (-1, 1) - (-1, 1) - (-1, 1) - (-1, 1) - (-1, 1) - (-1, 1) - (-1, 1) - (-1, 1) - (-1, 1) - (-1, 1) - (-1, 1) - (-1, 1) - (-1, 1) - (-1, 1) - (-1, 1) - (-1, 1) - (-1, 1) - (-1, 1) - (-1, 1) - (-1, 1) - (-1, 1) - (-1, 1) - (-1, 1) - (-1, 1) - (-1, 1) - (-1, 1) - (-1, 1) - (-1, 1) - (-1, 1) - (-1, 1) - (-1, 1) - (-1, 1) - (-1, 1) - (-1, 1) - (-1, 1) - (-1, 1) - (-1, 1) - (-1, 1) - (-1, 1) - (-1, 1) - (-1, 1) - (-1, 1) - (-1, 1) - (-1, 1) - (-1, 1) - (-1, 1) - (-1, 1) - (-1, 1) - (-1, 1) - (-1, 1) - (-1, 1) - (-1, 1) - (-1, 1) - (-1, 1) - (-1, 1) - (-1, 1) - (-1, 1) - (-1, 1) - (-1, 1) - (-1, 1) - (-1, 1) - (-1, 1) - (-1, 1) - (-1, 1) - (-1, 1) - (-1, 1) - (-1, 1) - (-1, 1) - (-1, 1) - (-1, 1) - (-1, 1) - (-1, 1) - (-1, 1) - (-1, 1) - (-1, 1) - (-1, 1) - (-1, 1) - (-1, 1) - (-1, 1) - (-1, 1) - (-1, 1) - (-1, 1) - (-1, 1) - (-1, 1) - (-1, 1) - (-1, 1) - (-1, 1) - (-1, 1) - (-1, 1) - (-1, 1) - (-1, 1) - (-1, 1) - (-1, 1) - (-1, 1) - (-1, 1) - (-1, 1) - (-1, 1) - (-1, 1) - (-1, 1) - (-1, 1) - (-1, 1) - (-1, 1) - (-1, 1) - (-1, 1) - (-1, 1) - (-1, 1) - (-1, 1) - (-1, 1) - (-1, 1) - (-1, 1) - (-1, 1) - (-1, 1) - (-1, 1
                                                                           2+\st,0)--cycle;
                                      \fill[gray, pattern = vertical lines]
                                                                            (-1,-1)--(0,-2+\st)--(1,-
                                                                           1) - (2-st, 0) - (1, 1) - (0, 2-st) - (-1, 1) - (-1, 1) - (-1, 1) - (-1, 1) - (-1, 1) - (-1, 1) - (-1, 1) - (-1, 1) - (-1, 1) - (-1, 1) - (-1, 1) - (-1, 1) - (-1, 1) - (-1, 1) - (-1, 1) - (-1, 1) - (-1, 1) - (-1, 1) - (-1, 1) - (-1, 1) - (-1, 1) - (-1, 1) - (-1, 1) - (-1, 1) - (-1, 1) - (-1, 1) - (-1, 1) - (-1, 1) - (-1, 1) - (-1, 1) - (-1, 1) - (-1, 1) - (-1, 1) - (-1, 1) - (-1, 1) - (-1, 1) - (-1, 1) - (-1, 1) - (-1, 1) - (-1, 1) - (-1, 1) - (-1, 1) - (-1, 1) - (-1, 1) - (-1, 1) - (-1, 1) - (-1, 1) - (-1, 1) - (-1, 1) - (-1, 1) - (-1, 1) - (-1, 1) - (-1, 1) - (-1, 1) - (-1, 1) - (-1, 1) - (-1, 1) - (-1, 1) - (-1, 1) - (-1, 1) - (-1, 1) - (-1, 1) - (-1, 1) - (-1, 1) - (-1, 1) - (-1, 1) - (-1, 1) - (-1, 1) - (-1, 1) - (-1, 1) - (-1, 1) - (-1, 1) - (-1, 1) - (-1, 1) - (-1, 1) - (-1, 1) - (-1, 1) - (-1, 1) - (-1, 1) - (-1, 1) - (-1, 1) - (-1, 1) - (-1, 1) - (-1, 1) - (-1, 1) - (-1, 1) - (-1, 1) - (-1, 1) - (-1, 1) - (-1, 1) - (-1, 1) - (-1, 1) - (-1, 1) - (-1, 1) - (-1, 1) - (-1, 1) - (-1, 1) - (-1, 1) - (-1, 1) - (-1, 1) - (-1, 1) - (-1, 1) - (-1, 1) - (-1, 1) - (-1, 1) - (-1, 1) - (-1, 1) - (-1, 1) - (-1, 1) - (-1, 1) - (-1, 1) - (-1, 1) - (-1, 1) - (-1, 1) - (-1, 1) - (-1, 1) - (-1, 1) - (-1, 1) - (-1, 1) - (-1, 1) - (-1, 1) - (-1, 1) - (-1, 1) - (-1, 1) - (-1, 1) - (-1, 1) - (-1, 1) - (-1, 1) - (-1, 1) - (-1, 1) - (-1, 1) - (-1, 1) - (-1, 1) - (-1, 1) - (-1, 1) - (-1, 1) - (-1, 1) - (-1, 1) - (-1, 1) - (-1, 1) - (-1, 1) - (-1, 1) - (-1, 1) - (-1, 1) - (-1, 1) - (-1, 1) - (-1, 1) - (-1, 1) - (-1, 1) - (-1, 1) - (-1, 1) - (-1, 1) - (-1, 1) - (-1, 1) - (-1, 1) - (-1, 1) - (-1, 1) - (-1, 1) - (-1, 1) - (-1, 1) - (-1, 1) - (-1, 1) - (-1, 1) - (-1, 1) - (-1, 1) - (-1, 1) - (-1, 1) - (-1, 1) - (-1, 1) - (-1, 1) - (-1, 1) - (-1, 1) - (-1, 1) - (-1, 1) - (-1, 1) - (-1, 1) - (-1, 1) - (-1, 1) - (-1, 1) - (-1, 1) - (-1, 1) - (-1, 1) - (-1, 1) - (-1, 1) - (-1, 1) - (-1, 1) - (-1, 1) - (-1, 1) - (-1, 1) - (-1, 1) - (-1, 1) - (-1, 1) - (-1, 1) - (-1, 1) - (-1, 1) - (-1, 1) - (-1, 1) - (-1, 1) - (-1, 1) - (-1, 1) - (-1, 1
                                                                           2+\st,0)--cycle;
                                      \fill[white]
                                                                            (0,2-\st)--(2-\st,0)--(0,\st-2)--(\st-2,0)--\cycle;
```

```
\draw[line width=2] (-1,-1)--(0,-\st)--(1,-
1)--(\st,0)--(1,1)--(0,\st)--(-1,1)--(-\st,0)--cycle;
\draw[line width=2] (-1,-1)--(0,-2+\st)--(1,-
1)--(2-\st,0)--(1,1)--(0,2-\st)--(-1,1)--(-
2+\st,0)--cycle;
\draw[line width=1.5, dashed]
(0,2-\st)--(2-\st,0)--(0,\st-2)--(\st-2,0)--cycle;

\draw[line width=1.5, dashed] (0,2-\st) -- (0,\st);
\draw[line width=1.5, dashed] (2-\st,0) -- (\st,0);
\draw[line width=1.5, dashed] (0,-2+\st) -- (0,-\st);
\draw[line width=1.5, dashed] (-2+\st,0) -- (-\st,0);
\end{tikzpicture}
```


2.3. Sok körzőzés

```
\begin{tikzpicture}[scale=0.8]
    \foreach \i in {0,...,12} {
        \draw (\i+0,0) circle (1);
        \draw (\i+0.5,-0.866) arc (0:120:1);
        \draw (\i+1.5,-0.866) arc (0:240:1);
        \draw (\i+-1,-0) arc (60:-60:1);
        \draw (\i+0,-1.732) arc (0:120:1);
        \draw (\i+-1.5,-0.866) arc (-120:120:1);
        \draw (\i+-1,-0) arc (-60:60:1);
        \draw (\i+-1.5,0.866) arc (-120:0:1);
        \draw (\i+-1.5,0.866) arc (120:360:1);
        \draw (\i+0,1.732) arc (120:360:1);
```

```
\frac{1+0.5,0.866}{arc} arc (0:-120:1);
        \draw (\i+0.5,0.866) arc (-60:-180:1);
        \draw (\i+0.5,0.866) arc (120:240:1);
        \draw (\i+0.5,0.866) arc (180:300:1);
        \frac{1}{100} (\i+0.5,-0.866) arc (180:60:1);
        \frac{1}{100} (\i+-1,-1.732) arc (180:60:1);
        \draw (\i+1.5,0.866) arc (120:240:1);
        draw (i+0.5, 0.866) arc (0:60:1);
        \draw (\i+0.5, 0.866) arc (240:180:1);
        \draw (\i+0.5, 0.866) arc (240:300:1);
        \draw (\i+0.5, 0.866) arc (120:60:1);
        \draw (\i+0.5, 0.866) arc (180:120:1);
        \draw (\i+0.5, 0.866) arc (300:360:1);
        \frac{1+-1}{-0} arc (0:60:1);
        draw (i+-1,-0) arc (240:180:1);
        \frac{1}{100} draw (\i+-1,-0) arc (60:120:1);
        \frac{1}{1} draw (\i+-1,-0) arc (300:240:1);
        \frac{1}{100} draw (\i+-1,-0) arc (120:180:1);
        \frac{(i+-1,-0)}{arc} arc (360:300:1);
        \draw (\i+0.5, -0.866) arc (180:240:1);
        \frac{1}{0.5}, -0.866) arc (60:0:1);
        \draw (\i+0.5, -0.866) arc (120:60:1);
        \frac{1+0.5}{-0.866} arc (240:300:1);
        \frac{1}{1000} (\i+0.5, -0.866) arc (120:180:1);
        \frac{1}{100} (\i+0.5, -0.866) arc (360:300:1);
\end{tikzpicture}
```


2.4. Óxisz szigete

```
\begin{tikzpicture}[scale = 0.7]
```

```
\draw plot [smooth cycle, tension = 0.5] coordinates
\{(0,0)(5,-2)
        (10,0) (12,5) (10,10) (5,12) (0,10) (-1,5);
\draw plot [smooth, tension = 1] coordinates {(0,10)
(1,8) (0,4) (1,2) (0,0); %K12
\draw plot [smooth, tension = 1] coordinates {(1,8)
(2,8) (2,5) (0,4); %K13
\draw plot [smooth, tension = 1] coordinates {(2,8)
(3,9) (6,10) (5,12)}; %K3
\draw plot [smooth, tension = 1] coordinates {(6,10)
(8,10) (7,8) (9,7) (10,10); %K4
\draw plot [smooth, tension = 1] coordinates \{(3,9)\}
(4,7) (7,8); %K2
\draw plot [smooth, tension = 1] coordinates \{(4,7)
(3,5) (2,5); %K14
\draw plot [smooth, tension = 1] coordinates {(9,7)
(8,4) (5,1) (3,5); %K1
\draw plot [smooth, tension = 1] coordinates \{(5,1)
(5,0) (1,2); %K11
\draw plot [smooth, tension = 1] coordinates {(5,0)
(6,-1) (5,-2); %K10
\draw plot [smooth, tension = 1] coordinates \{(6,-1)\}
(8,0) (9,2) (10,4) (8,4); %K9
\draw plot [smooth, tension = 1] coordinates {(10,0)
(10,1) (8,0)}; %K8
\draw plot [smooth, tension = 1] coordinates {(10,4)
(10,7) (11,5) (12,5)}; K5
\draw plot [smooth, tension = 1] coordinates {(11,5)
(11,3) (9,2)}; %K6 és K7
\draw (0,8) \text{ node } {\$A\$};
\frac{3,10.5}{node {$B$}};
draw (1.3,6.3) node {$C$};
\draw (2.8,6.6) node {$D$};
\frac{5,8.5}{\text{node } \{E\}};
\frac{8.5,9}{\text{node } \{\$F\$\}};
\frac{5.5,5}{node {$G$}};
\frac{10.5,8}{node {$H$}};
\draw (10.5, 4.5) node \{\$I\$\};
\frac{2,3.5}{node {\$J\$}};
```

```
\draw (3,-0.5) node {$K$};
\draw (7.5,1) node {$L$};
\draw (10.5,1.7) node {$M$};
\draw (9,0) node {$N$};
\end{tikzpicture}
```


2.5. Gráf öt csúccsal

```
\draw(B) .. controls (-5,1) .. (D);
\end{tikzpicture}
```


2.6. Gráf sok csúccsal

```
\begin{tikzpicture}[scale=.48,minimum size=5mm,inner
sep=0pt]
    \foreach \name/\color/\theta in
        {A/red/18,B/orange/90,C/blue!80/162,D/yellow/234,E/orange/306}
      \node[circle,draw,fill=\color] (\name) at (\theta:3)
      {};
    \node[circle,draw,fill=green] (0) at (0,0) {};
    \node[above right] at (0) {$v$};
    \node[right,xshift=8pt] at (A) {$v_3$};
   \node[right,xshift=8pt] at (B) {$v_2$};
    \node[left,,xshift=-8pt] at (C) {$v 1$};
    \node[left,,xshift=-8pt] at (D) {$v 5$};
    \node[right,xshift=8pt] at (E) {$v 4$};
    \foreach \name in {A,B,C,D,E}
      \draw (0) -- (\name);
    \node[circle,draw,fill=red] (X1) at (126:5) {};
    \node[circle,draw,fill=blue!80] (X2) at (90:7) {};
    \node[circle,draw,fill=red] (X3) at (36:10) {};
    \node[circle,draw,fill=blue!80] (X4) at (18:12) {};
    \node[circle,draw,fill=red] (X5) at (0:10) {};
    \node[circle,draw,fill=blue!80] (X6) at (-18:8) {};
    \draw[thick,double distance=2pt] (C) -- (X1);
```

```
\draw[thick,double distance=2pt] (X1) -- (X2);
\draw[thick,double distance=2pt] (X2) -- (X3);
\draw[thick,double distance=2pt] (X3) -- (X4);
\draw[thick,double distance=2pt] (X4) -- (X5);
\draw[thick,double distance=2pt] (X5) -- (X6);
\draw[thick,double distance=2pt] (X6) -- (A);
\draw[thick,double distance=2pt] (A) -- (O) -- (C);
\node[circle,draw,fill=green]
                               (Y1) at (80:5) {};
\node[circle,draw,fill=orange]
                                 (Y2)
                                       at (50:7) {};
\node[circle,draw,fill=green]
                               (Y3A) at (20:8) {};
\node[circle,draw,fill=green]
                               (Y3B) at (30:5) {};
\node[circle,draw,fill=orange]
                                 (Y4A) at (10:6) {};
\node[circle,draw,fill=yellow]
                                 (Y4B) at (10:8) {};
\node[circle,draw,fill=orange]
                                 (Y4C) at (15:10) {};
\node[circle,draw,fill=green]
                                (Y5) at (-35:7) {};
\node[circle,draw,fill=yellow]
                                (Y6A) at (-20:12) {};
                                (Y6B) at (-20:4) {};
\node[circle,draw,fill=orange]
\draw[thick,dashed,double distance=2pt] (B) -- (0) --
(E);
\draw[thick,dashed,double distance=2pt] (B) -- (Y1);
\draw[thick,dashed,double distance=2pt] (Y1) -- (Y2);
\draw[thick,dashed,double distance=2pt] (Y2) -- (Y3A);
\draw[thick,dashed,double distance=2pt] (Y2) -- (Y3B);
\draw[thick,dashed,double distance=2pt] (Y3A) -- (Y4A);
\draw[thick,dashed,double distance=2pt] (Y3A) -- (Y4B);
\draw[thick,dashed,double distance=2pt] (Y3A) -- (Y4C);
\draw[thick,dashed,double distance=2pt] (E) -- (Y5);
\draw[thick,dashed,double distance=2pt] (Y5) -- (Y6B);
\draw (Y5) -- (Y6A);
\draw (A) -- (Y1);
\draw (X2) -- (Y1);
\draw (X1) -- (Y1);
\draw (D) -- (E);
\draw (D) -- (C);
\node[right,xshift=8pt] at (X3) {$v_6$};
\node[right,xshift=8pt] at (X4) {$v_7$};
```

\end{tikzpicture}

2.7. Simson-egyenes

```
\begin{tikzpicture}[line cap=round,line
join=round,>=triangle
        45, x=0.7cm, y=0.7cm
    \clip(-7, -5.5) rectangle (9,5.5);
    \fill[color=brown,fill=brown,fill opacity=0.1] (-3,-4)
    -- (3,-4) --
    (-2,4.58) -- cycle;
    \draw(0,0) circle (3.5cm);
    \draw [color=brown] (-3,-4)-- (3,-4);
    \draw [color=brown] (3,-4)-- (-2,4.58);
    \draw [color=brown] (-2,4.58)-- (-3,-4);
    \draw [line width=0.4pt,domain=-7.44:9.29]
    plot(\x, \{(-24-0*\x)/6\});
    \draw [line width=0.4pt,domain=-7.44:9.29]
    plot(\x,\{(-5.75--8.58*\x)/-5\});
    \draw [line width=0.4pt,domain=-7.44:9.29]
    plot(\x,{(-21.74-8.58*\x)/-1});
    \draw [line width=1.2pt,dash pattern=on 3pt off 6pt]
    (4.66,1.8) -- (0.9,-0.39);
```

```
\draw [line width=1.2pt,dash pattern=on 3pt off 6pt]
    (-2.23, 2.61) - (4.66, 1.8);
    \draw [line width=1.2pt,dash pattern=on 3pt off 6pt]
    (4.66,1.8)--(4.66,-4);
    \draw [line width=1.6pt,color=red,domain=-7.44:9.29]
   plot(\x, \{(-1.47--3*\x)/-3.13\});
    \begin{small}
        \fill (0,0) circle (1.5pt);
        \fill (-3,-4) circle (1.5pt);
        \frac{-3.5,-4.5}{node {$A$}};
        \fill (3,-4) circle (1.5pt);
        draw (2.8, -4.5) node {$B$};
        \fill (-2,4.58) circle (1.5pt);
        draw (-1.4, 4.4) node {$C$};
        \fill (4.66, 1.8) circle (1.5pt);
        \draw (4.86,2.12) node {$P$};
        \fill (0.9, -0.39) circle (1.5pt);
        draw (0.6,-0.7) node {T_A$};
        \fill (-2.23, 2.61) circle (1.5pt);
        \frac{-2.7,2.3}{\text{node } \{\$T B\$\}};
        \fill (4.66,-4) circle (1.5pt);
        draw (4.5,-4.5) node {T_C$};
    \end{small}
\end{tikzpicture}
```


2.8. Háromszög beírt köre

```
\newcommand*{\vertexcolor}[2] {\fill[shift only,#2] (#1)
circle (1.5pt)}
\newcommand*{\vertex}[1] {\fill[shift only] (#1) circle
(1.5pt)
\begin{tikzpicture}[scale=1.8]
   % Draw base and path two lines at known angles
   \draw (0,0) coordinate (a) node[xshift=-6pt] {$A$} --
   (0:6) coordinate (b) node[xshift=6pt] {$B$};
   \mathbf{name\ path=ac} (a) -- +(50:4);
   \mathbf{b} - +(150:5);
   % Get their intersection and draw lines between
   vertices
   \path[name intersections={of=ac and bc,by=c}];
   \node[above] at (c) {$C$};
   \draw (a) -- (c) -- (b) -- (a);
   % Label angles with tick marks
   draw (a) ++(0:4mm) arc (0:50:4mm);
   \draw (a) ++(10:3.5mm) -- +(10:1mm);
   draw (a) ++(15:3.5mm) -- +(15:1mm);
   draw (a) ++(35:3.5mm) -- +(35:1mm);
```

```
draw (a) ++(40:3.5mm) -- +(45:1mm);
\frac{draw}{draw} (b) ++(150:5mm) arc (150:180:5mm);
\draw (b) ++(157.5:4.5mm) -- +(157.5:1mm);
draw (b) ++(172.5:4.5mm) -- +(172.5:1mm);
\draw (c) ++(230:3mm) arc (230:330:3mm);
\draw (c) ++(250:2.4mm) -- +(250:.9mm);
draw(c) ++ (255:2.4mm) -- + (255:.9mm);
\draw (c) ++(260:2.4mm) -- +(260:.9mm);
draw(c) ++(300:2.4mm) -- +(300:.9mm);
\draw (c) ++(305:2.4mm) -- +(305:.9mm);
draw(c) ++(310:2.4mm) -- +(310:.9mm);
% Path bisectors of two lines
\mathbf{name\ path=bia} (a) -- +(25:3.5);
\path[name path=bib] (b) -- +(165:5);
% Intersection of angle bisectors
\path [name intersections={of=bia and bib,by=center}];
% Draw angle bisectors to center
\draw (a) -- (center);
\draw (c) -- (center);
\draw (b) -- (center);
% Draw radii
\draw (center) -- node[left] {\$r$} (\$(a)!(center)!(b)\$)
node[below,yshift=-2pt] {$C'$} coordinate (ap);
\draw (center) -- node[left,yshift=-4pt] {\$r\$}
($(a)!(center)!(c)$) node[above left] {$B'$} coordinate
(bp);
\draw (center) -- node[right] {\$r$} (\$(b)!(center)!(c)\$)
node[above right] {$A'$} coordinate (cp);
% Draw dots
\vertex{center};
\node[above,xshift=3pt,yshift=7pt] at (center) {$0$};
% Draw right angle squares
draw (ap) -- ++(90:4pt) -- ++(0:4pt) -- ++(-90:4pt);
\draw (bp) -- ++(-40:4pt) -- ++(-130:4pt) --
++(-220:4pt);
draw(cp) -- ++(-30:4pt) -- ++(-120:4pt) --
++(-210:4pt);
% Labels of line segments (names of points are
weird...)
\hat{a} -- node[below, yshift=-2pt] { u$} (ap);
```

```
\path (b) -- node[above, yshift=2pt] {\$v\$} (cp);
   \phi (b) -- node[below, xshift=-2pt] {$v$} (ap);
   \path (c) -- node[above,xshift=-2pt] {$w$} (bp);
   \path (c) -- node[above,xshift=2pt] {$w$} (cp);
   % Labels of sides
   \draw[<->] ($(a)+(0,-10pt)$) -- node[fill=white] {$c$}
              (\$(b)+(0,-10pt)\$);
   \draw[<->] ($(a)+(-10pt,8pt)$) -- node[fill=white] {$b$}
              (\$(c)+(-10pt,8pt)\$);
   \draw[<->] ($(b)+(6pt,10pt)$) -- node[fill=white] {$a$}
              (\$(c)+(6pt,10pt)\$);
   % Inscribed circle
   \node[very thick,dotted,draw,circle through=(ap)] at
   (center) {};
\end{tikzpicture}
```


2.9. Komplex egységgyökök

2.9.1. Harmadik egységgyökök

```
\draw[->] (-1.3,0) -- (1.4,0) node[above] {$Re$};
\draw[->] (0,-1.3) -- (0,1.5) node[right] {$Im$};
\draw[help lines] (0,0) circle (1);

\node[dot] (0) at (0,0) {};
\foreach \i in {1,...,\n} {
      \node[dot,label={\i*360/\n-
      (\i=\n)*45:$\varepsilon_{\n}^{\i}}]
      (w\i)
          at (\i*360/\n:1) {};
      \draw[->] (0) -- (w\i);
}

\draw[->] (0:.3) arc (0:360/\n:.3);
\node at (360/\n/2:.5) {$120^\circ$};
\end{tikzpicture}
```


2.9.2. Hetedik egységgyökök

```
\def\n{7}
\begin{tikzpicture}[scale=1.8,
dot/.style={draw,fill,circle,inner sep=1pt}]

\draw[->] (-1.3,0) -- (1.4,0) node[above] {$Re$};
\draw[->] (0,-1.3) -- (0,1.5) node[right] {$Im$};
\draw[help lines] (0,0) circle (1);

\node[dot] (0) at (0,0) {};
\foreach \i in {1,...,\n} {
```


2.10. KöMaL B.5131.

```
\begin{tikzpicture} [yscale=1.732,scale=0.7]
\draw[dashed] (-5,0) -- (3.2,0);
\draw[dashed] (2.2,2.2) -- (-2.5,-2.5);
\draw[dashed] (-2.2,2.2) -- (2.5,-2.5);
\draw (-2,0)--(2,0); \draw (-1,1)--(1,1);
\draw (-1,-1)--(1,1); \draw (1,-1)--(2,0);
\draw (1,-1)--(-1,1); \draw (-1,-1)--(-2,0);
\draw (1,-1)--(-1,1); \draw (-1,-1)--(-2,0);
\fill[opacity=0.2]
(-5,-1)--(5,-1)--(5,1)--(-5,1)--cycle;
\fill[opacity=0.2]
(-1,3)--(-5,3)--(0.5,-2.5)--(4.5,-2.5)--cycle;
\fill[opacity=0.2]
(1,3)--(5,3)--(-0.5,-2.5)--(-4.5,-2.5)--cycle;
```

```
\filldraw[red, fill opacity=0.4]
(-1,-1)--(1,-1)--(2,0)--(1,1)--(-1,1)--(-2,0)--cycle;
\draw[line width=2] (-3,-1)--(3,-1)--(0,2)--cycle;
\draw (0,2) node [above] {$A_1$};
\draw (-3,-1) node [below left] {$A_2$};
\draw (3,-1) node [below right] {$A_3$};
\draw (4,0) node {$|x_1| < \frac{m}{3}};
\draw (2.5,2.5) node {$|x_3| < \frac{m}{3}};
\draw (-2.5,2.5) node {$|x_2| < \frac{m}{3}};
\end{tikzpicture}
```


2.11. KöMaL B.5186.

```
\begin{tikzpicture}
  \foreach \y in {2,...,10}
  \foreach \x in {1,...,10} {
      \draw (\x,\y) node {$\x$};
}

\foreach \y in {1,...,9}
  \draw (-1, 11-\y) node {$\y$.~kör};
```

```
\foreach \y in \{2, \ldots, 10\} {
                                \draw[red, line width=2] (\y-0.2, \y-0.2) -- (\y+0.2, \y+0.2, \y-0.2) -- (\y+0.2, \y+0.2, \y+0.2) -- (\y+0.2, \y+0.2, \y+0.2, \y+0.2, \y+0.2) -- (\y+0.2
                                y+0.2;
                                \draw[red, line width=2] (\y-0.2, \y+0.2) -- (\y+0.2, \y+0.2)
                               y-0.2;
               }
               \foreach \y in \{2,3,4,5\}
                \foreach \x in \{2, ..., \y\} {
                                \frac{blue, line width=1.5}{(2*x-2,2*y)} circle
                                (0.3);
                                \frac{\text{line width=1.5}}{(2*x-3,2*y-1)} circle
                                (0.3);
                                \frac{\text{line width=2,-}}{(2*x-2.3,2*y-0.3)}
                                (2*\x-2.7,2*\y-0.7);
                                \frac{\text{blue,line width=2,->}}{(2*\x-1.7,2*\y-0.3)}
                                (2*\x-1.3,2*\y-0.7);
                                \frac{\text{draw[blue,line width=2,->]}}{2*\sqrt{x-2.7,2*\sqrt{y-1.3}}}
                                (2*\x-2.3,2*\y-1.7);
               }
               \foreach \y in \{3,4,5\}
               \foreach \x in \{3, ..., \y\}
                                \frac{\text{line width=2,->}}{(2*\x-3.3,2*\y-1.3)--}
                                (2*\x-3.7,2*\y-1.7);
\end{tikzpicture}
```


2.12. Függvények

```
\newcommand*{\vertexcolor}[2] {\fill[shift only,#2] (#1)
circle (1.5pt)}
\newcommand*{\vertex}[1] {\fill[shift only] (#1) circle
(1.5pt)
\begin{tikzpicture}[scale=1]
    \draw[very thin, step=10mm] (-4,-4) grid (4,4);
    \draw[thick] (-4,0) -- (4,0);
    \frac{\text{draw[thick]}}{0,-4} -- (0,4);
    \foreach \x in \{-3, \ldots, 4\}
      \node at (\x-.2,-.2) {\x};
    \foreach \y in \{-3, \ldots, -1\}
      \node at (+.2, y-.3) \{ y \};
    \foreach \y in \{1, \ldots, 4\}
      \node at (+.2, y-.3) \{ y \};
    \draw[very thick,domain=.936:3.306,samples=200] plot
    (\x, \{
    (
      (6*\x-\x*\x)+
```

```
sqrt(
   (\x*\x-6*\x)^2 -
   4*\x*6
  )
)/
(2*\x)
});
\draw[very thick,domain=.936:3.306,samples=100] plot
(\x, \{
(
  (6*\x-\x*\x)-
  sqrt(
   (\x*\x-6*\x)^2 -
  4*\x*6
 )
)/
(2*\x)
});
\draw[very thick,domain=-2.5:-.25,samples=100] plot
(\x, \{
  (6*\x-\x*\x)+
  sqrt(
   (\x*\x-6*\x)^2 -
   4*\x*6
  )
)/
(2*\x)
});
\coordinate (A) at (2,3);
\coordinate (B) at (1,2);
\coordinate (C) at (-1.5,-0.5);
\coordinate (D) at (3,2);
\coordinate (E) at (1.5,1.2);
\draw[very thick,dashed,red] ($(C)!-.4!(A)$) --
(\$(C)!1.2!(A)\$);
```

```
\draw[very thick,dashed,blue] ($(C)!-.4!(D)$) --
    ($(C)!1.2!(D)$);
    \node[right,xshift=9pt,yshift=-5pt] at (A)
    \{\$A=(2,3)\$\};
    \node[above left,xshift=-4pt] at (B)
    \{\$B=(1,2)\$\};
    \node[right,xshift=23pt,yshift=-4] at (C)
    \{SC=(-1.5,-0.5)\};
    \node[right,xshift=8pt,yshift=-6pt] at (D)
    \{$D=(3,2)$\};
    \node[below,xshift=15pt,yshift=-12pt] at (E)
    \{\$E=(1.5,1.2)\$\};
    \vertexcolor{A}{red};
    \vertexcolor{B}{red};
    \vertexcolor{C}{purple};
    \vertexcolor{D}{blue};
    \vertexcolor{E}{blue!50!red};
\end{tikzpicture}
```


2.13. Trigonometrikus függvények

```
\definecolor{dgreen}{rgb}{0,0.4,0}
\begin{tikzpicture}[line cap=round,line
join=round,>=triangle
        45, x=1.0cm, y=1.0cm
    \draw [color=gray,dash pattern=on 2pt off 2pt,
        xstep=1.5707963267948966cm, ystep=1.0cm]
        (-3.89, -2.97) grid (9.33, 2.94);
    \frac{-3.89,0}{-7.00} - (9.33,0);
    \frac{\sinh[\sinh(-3.14,0)]}{\cosh[\sinh(-3.14,0)]}
    (0pt,-2pt)
    node[below] {\footnotesize $-\pi$};
    \frac{\sinh[\sinh(-1.57,0)]}{\cosh[\sinh(-1.57,0)]}
    (0pt,-2pt)
    node[below] {\scriptsize $-\pi/2$};
    \draw[shift={(1.57,0)},color=black] (0pt,2pt) --
    (Opt,-2pt) node[below]
    {\footnotesize $\frac{\pi}{2}$};
    \draw[shift={(pi,0)},color=black] (0pt,2pt) --
    (Opt,-2pt) node[below]
    {\footnotesize $\pi$};
    \draw[shift={(4.71,0)},color=black] (0pt,2pt) --
    (Opt,-2pt) node[below]
    {\footnotesize $\frac32 \pi$};
    \draw[shift={(6.28,0)},color=black] (0pt,2pt) --
    (Opt,-2pt) node[below]
    {\footnotesize $2\pi$};
    \frac{\text{draw}[\text{shift}=\{(7.85,0)\},\text{color}=\text{black}] (0\text{pt},2\text{pt})}{--}
    (Opt,-2pt) node[below]
    {\footnotesize $\frac52 \pi$};
    \frac{-}{color=black} (0,-2.97) -- (0,2.94);
    \foreach \y in \{-2,-1,1,2\}
        \draw[shift={(0,\y)},color=black] (2pt,0pt) --
        (-2pt,0pt) node[left] {\footnotesize $\y$};
    \draw[color=black] (Opt,-10pt) node[right]
    {\footnotesize $0$};
    \clip(-3.89, -2.97) rectangle (9.33, 2.94);
```

```
\draw[line width=1.5pt,dash pattern=on 2pt off
       2pt,color=blue,
           smooth,samples=100,domain=-
           3.8859126567579696:9.331288233648893]
       plot(\x,{sin(((\x))*180/pi)});
       \draw[line width=1.5pt,dash pattern=on 1pt off 2pt on
       5pt off
           4pt, color=red,
           smooth,samples=100,domain=-
           3.8859126567579696:9.331288233648893]
       plot(\x, \{cos((\x))*180/pi)\});
       \draw[line width=1.2pt, color=dgreen,
           smooth, samples=100, domain=-1.56-pi:1.56-pi] plot
       (\x,{\sin((\x))*180/pi)/\cos((\x))*180/pi)});
       \draw[line width=1.2pt, color=dgreen,
           smooth, samples=100, domain=-1.56:1.56] plot
        (\x, {\sin((\x))*180/pi)/\cos((\x))*180/pi)});
       \draw[line width=1.2pt, color=dgreen,
           smooth,samples=100,domain=-1.56+pi:1.56+pi] plot
        (\x,{\sin(((\x))*180/pi)/\cos(((\x))*180/pi)});
       \draw[line width=1.2pt, color=dgreen,
           smooth,samples=100,domain=-1.56+pi+pi:1.56+pi+pi]
           plot
        (\x,{\sin(((\x))*180/pi)/\cos(((\x))*180/pi)});
       \draw[line width=1.2pt, color=dgreen,
           smooth, samples=100, domain=-
           1.56+pi+pi+pi:1.56+pi+pi+pi]
           plot
        (\x, {\sin((\x))*180/pi)/\cos((\x))*180/pi)});
       \begin{scriptsize}
       \end{scriptsize}
   \end{tikzpicture}
11
\cos x  \hspace{2 cm} \color{dgreen}{h(x) = \mathrm{tg}x} $
```


3. fejezet

Impresszum

3.1. Linkek

Honlap

PDF verzió

Github mappa

TikZ package (CTAN)

TikZ dokumentáció (tikz.dev)

Mathematical Surprises (ábrák)

3.2. Készítők

TikZ gyorstalpaló: Bertalan Dávid

Példák: Hujter Bálint, Juhász Péter

Honlap: Alexy Marcell, Szűcs Gábor

Szívesen fogadunk javaslatokat, további példákat, ezeket megírhatjátok az alapitvany [K] agondolkodasorome [P] hu címre, de küldhettek pull requestet is.