Expectation maximization

Course of Machine Learning Master Degree in Computer Science University of Rome "Tor Vergata"

Giorgio Gambosi

a.a. 2017-2018

Expectation Maximization

Dataset

- 1. Observed dataset \mathbf{X} , including all observed elements $\mathbf{x}_1,\dots,\mathbf{x}_n$
- 2. Complete dataset (\mathbf{X}, \mathbf{Z}) , including the values of all random variables in the model (that is, also latent variables values)

Since ${\bf Z}$ is unknown, the knowledge about latent variables is only probabilistic: it is given by the distribution $p({\bf Z}|{\bf X}, {\boldsymbol \psi})$

Dataset evidence

$$p(\mathbf{X}|\boldsymbol{\psi}) = \prod_{i=1}^{n} p(\mathbf{x}_{i}|\boldsymbol{\psi}) = \prod_{i=1}^{n} \sum_{j=1}^{K} \pi_{j} q(\mathbf{x}_{i}|\theta_{j})$$

$$p(\mathbf{X}, \mathbf{Z}|\boldsymbol{\psi}) = \prod_{i=1}^{n} p(\mathbf{x}_{i}, z_{i}|\boldsymbol{\psi}) = \prod_{i=1}^{n} p(z_{i}|\boldsymbol{\psi}) p(\mathbf{x}_{i}|z_{i}, \boldsymbol{\psi}) =$$

$$= \prod_{i=1}^{n} \prod_{j=1}^{K} (p(z_{ij}|\boldsymbol{\psi}) p(x_{i}|z_{ij}, \boldsymbol{\psi}))^{z_{ij}} = \prod_{i=1}^{n} \prod_{j=1}^{K} \pi_{j}^{z_{ij}} q(x_{i}|\theta^{j})^{z_{ij}}$$

Dataset log-likelihood

$$l(\boldsymbol{\psi}|\mathbf{X}) = \log p(\mathbf{X}|\boldsymbol{\psi}) = \sum_{i=1}^{n} \log \left(\sum_{j=1}^{K} \pi_{j} q(\mathbf{x}_{i}|\theta_{j}) \right)$$
$$l(\boldsymbol{\psi}|\mathbf{X}, \mathbf{Z}) = \log p(\mathbf{X}, \mathbf{Z}|\boldsymbol{\psi}) = \log \prod_{i=1}^{n} \prod_{j=1}^{K} \pi_{j}^{z_{ij}} q(x_{i}|\theta^{j})^{z_{ij}} =$$
$$= \sum_{i=1}^{n} \sum_{j=1}^{K} z_{ij} (\log \pi_{j} + \log q(x_{i}|\theta^{j}))$$

Maximization of the log-likelihood of X

$$\mathop{\rm argmax}_{\pi_i} l(\boldsymbol{\psi}|\mathbf{X}) \qquad \quad \mathsf{e} \qquad \quad \mathop{\rm argmax}_{\theta_i} l(\boldsymbol{\psi}|\mathbf{X})$$

usually hard to derive (solutions not closed-form)

Maximization of the log-likelihood of (X, Z)

$$\underset{\pi_i}{\operatorname{argmax}} \ l(\boldsymbol{\psi}|\mathbf{X}, \mathbf{Z}) \Rightarrow \begin{cases} 0 = \frac{\partial}{\partial \pi_i} \left(l(\boldsymbol{\psi}|\mathbf{X}, \mathbf{Z}) + \lambda (1 - \sum_{j=1}^K \pi_j) \right) \\ 0 = \frac{\partial}{\partial \lambda} \left(l(\boldsymbol{\psi}|\mathbf{X}, \mathbf{Z}) + \lambda (1 - \sum_{j=1}^K \pi_j) \right) \end{cases}$$

hence $\lambda=n$, $\pi_j=rac{1}{n}\sum_{i=1}^n z_{ji}$

$$\underset{\theta_i}{\operatorname{argmax}} l(\boldsymbol{\psi}|\mathbf{X}, \mathbf{Z}) \Rightarrow 0 = \frac{\partial}{\partial \theta_i} l(\boldsymbol{\psi}|\mathbf{X}, \mathbf{Z}) = \sum_{j=1}^n z_{ji} \frac{1}{q(x_j|\theta_i)} \frac{\partial q(x_j|\theta_i)}{\partial \theta_i}$$

In many cases, closed form solutions.

Expectation Maximization

Hypothesis #1

The maximization of the log-likelihood of the observed dataset is hard

$$l(\boldsymbol{\psi}|\mathbf{X}) = \log p(\mathbf{X}|\boldsymbol{\psi})$$

Hypothesis #2

The maximization of the log-likelihood of the complete dataset is easy

$$l(\boldsymbol{\psi}|\mathbf{X},\mathbf{Z}) = \log p(\mathbf{X},\mathbf{Z}|\boldsymbol{\psi})$$

Hypothesis #3

The posterior distribution $p(\mathbf{Z}|\mathbf{X}, \boldsymbol{\psi})$ is known

Problem

$$l(\psi|\mathbf{X}, \mathbf{Z}) = \log p(\mathbf{X}, \mathbf{Z}|\psi)$$

cannot be computed, since ${f Z}$ is unknown

Expectation Maximization: E-step

Idea

Assume an estimate $\overline{\psi}$ of ψ is available: then, instead of $p(\mathbf{X}, \mathbf{Z}|\psi)$ we could consider its expected value wrt the distribution $p(\mathbf{Z}|\mathbf{X}, \overline{\psi})$ of \mathbf{Z} conditioned on the observed data and on the estimate $\overline{\psi}$

$$\begin{split} \mathcal{Q}(\boldsymbol{\psi}, \overline{\boldsymbol{\psi}}) &= \mathbb{E}_{p(\mathbf{Z}|\mathbf{X}, \overline{\boldsymbol{\psi}})}[l(\boldsymbol{\psi}|\mathbf{X}, \mathbf{Z})] = \sum_{\mathbf{Z}} l(\boldsymbol{\psi}|\mathbf{X}, \mathbf{Z}) p(\mathbf{Z}|\mathbf{X}, \overline{\boldsymbol{\psi}}) = \\ &= \sum_{\mathbf{Z}} p(\mathbf{Z}|\mathbf{X}, \overline{\boldsymbol{\psi}}) \log p(\mathbf{X}, \mathbf{Z}|\boldsymbol{\psi}) \end{split}$$

Where,

- \cdot $\overline{\psi}$ and ${f X}$ are known
- $\cdot \ \mathcal{Q}(\psi,\overline{\psi})$ is a function of ψ
- $\cdot \ \mathcal{Q}(\psi,\overline{\psi})$ is not dependent from ${f Z}$

Expectation Maximization: E-step

Note

- · For each term, $p(\mathbf{Z}|\mathbf{X},\overline{\psi})$ is known (hypothesis #3)
- For each \mathbf{Z} , $l(\psi|\mathbf{X},\mathbf{Z}) = \log p(\mathbf{X},\mathbf{Z}|\psi)$ can be easily maximized (hypothesis #2)

Hence,

$$Q(\boldsymbol{\psi}, \overline{\boldsymbol{\psi}}) = \sum_{\mathbf{Z}} c_{\mathbf{Z}} \log p(\mathbf{X}, \mathbf{Z} | \boldsymbol{\psi})$$

is a linear combination of functions which can be easily maximized: as a consequence it can be easily maximized too

Log-likelihood approximation

 $\mathcal{Q}(\psi,\overline{\psi})$ is an approximation of $l(\psi|\mathbf{X},\mathbf{Z})$, which is simpler to maximize

Expectation Maximization: M-step

Idea

Since a function $\mathcal{Q}(\psi, \overline{\psi})$ approximating the log-likelihood $\log p(\mathbf{X}, \mathbf{Z}|\psi) = l(\psi|\mathbf{X}, \mathbf{Z})$ of the complete dataset is available, and since it can be easily maximized, an estimate of the maximizing value ψ is derived

$$\hat{\boldsymbol{\psi}} = \underset{\boldsymbol{\psi}}{\operatorname{argmax}} \ \mathcal{Q}(\boldsymbol{\psi}, \overline{\boldsymbol{\psi}})$$

Iteration

The estimate $\hat{\psi}$ is used for the next E-step.

The algorithm starts with an initial parameter estimate ψ_0 and stops when some predefined convergence condition is verified (for example, $\overline{\psi}$ and $\hat{\psi}$ do not differ too much).

Expectation Maximization: overall structure

Structure

The algorithm works as follows

- \cdot Initialize $oldsymbol{\psi}_{\mathsf{Old}} = oldsymbol{\psi}_{\mathsf{0}}$, with $oldsymbol{\psi}_{\mathsf{0}}$ an arbitrary estimate of $oldsymbol{\psi}$
- · while not ``stopping condition''
 - \cdot compute $\mathcal{Q}(oldsymbol{\psi}, oldsymbol{\psi}_{\mathsf{old}})$ (E-step)
 - $\cdot \ \psi_{\mathsf{NEW}} = \operatorname*{argmax}_{\psi} \mathcal{Q}(\psi, \psi_{\mathsf{Old}}) \ (\mathsf{M-step})$
 - \cdot $\psi_{old} = \psi_{new}$

Property

It is possible to show that, at each step, the algorithm increases the log-likelihood of ψ on the observed dataset \mathbf{X} . It is a gradient-based algorithm, which converges toward a (local) maximum of the log-likelihood of wrt \mathbf{X} .

General definition

Probabilistic model:

- observed variables X
- · latent variables Z
- parameters θ

Joint distribution $p(\mathbf{X}, \mathbf{Z}|\boldsymbol{\theta})$ not observable.

Observable distribution $p(\mathbf{X}|\mathbf{\Theta})$.

Objective: maximizing the likelihood of the observable distribution

$$p(\mathbf{X}|\boldsymbol{\theta}) = \sum_{\mathbf{Z}} p(\mathbf{X}, \mathbf{Z}|\boldsymbol{\theta})$$

Hypotheses

- maximizing $p(\mathbf{X}|\boldsymbol{\theta})$ is hard
- maximizing $p(\mathbf{X},\mathbf{Z}|\boldsymbol{\theta})$ is much simpler

Decomposition

Let $q(\mathbf{Z})$ be any probability distribution on \mathbf{Z} , then

$$\log p(\mathbf{X}|\boldsymbol{\theta}) = \mathcal{L}(q(\mathbf{Z}), \boldsymbol{\theta}) + KL(q(\mathbf{Z})||p(\mathbf{Z}|\mathbf{X}, \boldsymbol{\theta}))$$

where

$$\mathcal{L}(q(\mathbf{Z}), \boldsymbol{\theta}) = \sum_{\mathbf{Z}} q(\mathbf{Z}) \log \frac{p(\mathbf{X}, \mathbf{Z}|\boldsymbol{\theta})}{q(\mathbf{Z})}$$
$$KL(q(\mathbf{Z})||p(\mathbf{Z}|\mathbf{X}, \boldsymbol{\theta})) = -\sum_{\mathbf{Z}} q(\mathbf{Z}) \log \frac{p(\mathbf{Z}|\mathbf{X}, \boldsymbol{\theta})}{q(\mathbf{Z})}$$

 $\mathcal{L}(q(\mathbf{Z}), \boldsymbol{\theta})$ and $KL(q(\mathbf{Z})||p(\mathbf{Z}|\mathbf{X}, \boldsymbol{\theta}))$ are functionals of $q(\mathbf{Z})$ and functions of $\boldsymbol{\theta}$

Kullback-Leibler divergence

 $KL(q(\mathbf{Z})||p(\mathbf{Z}|\mathbf{X}, \boldsymbol{\theta}))$ is the Kullback-Leibler divergence between $q(\mathbf{Z})$ and the posterior distribution $p(\mathbf{Z}|\mathbf{X}, \boldsymbol{\theta})$.

By definition, $KL(q||p) \ge 0$, with KL(q||p) = 0 iff $q(\mathbf{Z}) = p(\mathbf{Z}|\mathbf{X}, \boldsymbol{\theta})$

Lower bound

$$KL(q(\mathbf{Z})||p(\mathbf{Z}|\mathbf{X}, \boldsymbol{\theta})) \geq 0$$
 implies that $\mathcal{L}(q(\mathbf{Z}), \boldsymbol{\theta}) \leq \log p(\mathbf{X}|\boldsymbol{\theta})$
Hence, $\mathcal{L}(q(\mathbf{Z}), \boldsymbol{\theta})$ is a lower bound of $\log p(\mathbf{X}|\boldsymbol{\theta})$

Let us find the probability distribution $q(\mathbf{Z})$ which results into the best (maximum) lower bound of $\log p(\mathbf{X}|\boldsymbol{\theta})$

E-step

Let $\overline{\theta}$ be the current estimate of θ . Then, as noticed above,

$$\log p(\mathbf{X}|\overline{\boldsymbol{\theta}}) = \sum_{\mathbf{Z}} q(\mathbf{Z}) \log \frac{p(\mathbf{X}, \mathbf{Z}|\overline{\boldsymbol{\theta}})}{q(\mathbf{Z})} - \sum_{\mathbf{Z}} q(\mathbf{Z}) \log \frac{p(\mathbf{Z}|\mathbf{X}, \overline{\boldsymbol{\theta}})}{q(\mathbf{Z})}$$

In order to maximize the lower bound $\mathcal{L}(q(\mathbf{Z}), \overline{\boldsymbol{\theta}})$ wrt $q(\mathbf{Z})$, observe that, since $\log p(\mathbf{X}|\overline{\boldsymbol{\theta}})$ is independent from \mathbf{Z} , the maximum of $\mathcal{L}(q(\mathbf{Z}), \overline{\boldsymbol{\theta}})$ corresponds to the case $q(\mathbf{Z}) = p(\mathbf{Z}|\mathbf{X}, \overline{\boldsymbol{\theta}})$.

In such a case $KL(q(\mathbf{Z})||p(\mathbf{Z}|\mathbf{X},\overline{\boldsymbol{\theta}}))=0$ and

$$\log p(\mathbf{X}|\overline{\boldsymbol{\theta}}) = \mathcal{L}(p(\mathbf{Z}|\mathbf{X}, \overline{\boldsymbol{\theta}}), \overline{\boldsymbol{\theta}}) = \sum_{\mathbf{Z}} p(\mathbf{Z}|\mathbf{X}, \overline{\boldsymbol{\theta}}) \log \frac{p(\mathbf{X}, \mathbf{Z}|\boldsymbol{\theta})}{p(\mathbf{Z}|\mathbf{X}, \overline{\boldsymbol{\theta}})}$$
$$= \sum_{\mathbf{Z}} p(\mathbf{Z}|\mathbf{X}, \overline{\boldsymbol{\theta}}) \log p(\mathbf{X}, \mathbf{Z}|\overline{\boldsymbol{\theta}}) - \sum_{\mathbf{Z}} p(\mathbf{Z}|\mathbf{X}, \overline{\boldsymbol{\theta}}) \log p(\mathbf{Z}|\mathbf{X}, \overline{\boldsymbol{\theta}})$$

· The first term

$$\sum_{\mathbf{Z}} p(\mathbf{Z}|\mathbf{X}, \overline{\boldsymbol{\theta}}) \log p(\mathbf{X}, \mathbf{Z}|\overline{\boldsymbol{\theta}})$$

is the expected log-likelihood of $p(\mathbf{X}, \mathbf{Z}|\overline{\boldsymbol{\theta}})$ wrt $p(\mathbf{Z}|\mathbf{X}, \overline{\boldsymbol{\theta}})$, the posterior distribution deriving from the current estimation $\overline{\boldsymbol{\theta}}$ of parameters

· The second term

$$-\sum_{\mathbf{Z}} p(\mathbf{Z}|\mathbf{X}, \overline{\boldsymbol{\theta}}) \log p(\mathbf{Z}|\mathbf{X}, \overline{\boldsymbol{\theta}})$$

is the entropy of such distribution $p(\mathbf{Z}|\mathbf{X},\overline{\boldsymbol{\theta}})$

M-step

Let $q(\mathbf{Z}) = p(\mathbf{Z}|\mathbf{X}, \overline{\boldsymbol{\theta}})$: then, if we consider the same decomposition of the log-likelihood $\log p(\mathbf{X}|\boldsymbol{\theta})$, with $q(\mathbf{Z}) = p(\mathbf{Z}|\mathbf{X}, \overline{\boldsymbol{\theta}})$, we have

$$\log p(\mathbf{X}|\boldsymbol{\theta}) = \mathcal{L}(p(\mathbf{Z}|\mathbf{X},\overline{\boldsymbol{\theta}}),\boldsymbol{\theta}) + KL(p(\mathbf{Z}|\mathbf{X},\overline{\boldsymbol{\theta}})||p(\mathbf{Z}|\mathbf{X},\boldsymbol{\theta}))$$

Let us consider the maximization wrt heta of the lower bound

$$\mathcal{L}(p(\mathbf{Z}|\mathbf{X}, \overline{\boldsymbol{\theta}}), \boldsymbol{\theta}) = \sum_{\mathbf{Z}} p(\mathbf{Z}|\mathbf{X}, \overline{\boldsymbol{\theta}}) \log \frac{p(\mathbf{X}, \mathbf{Z}|\boldsymbol{\theta})}{p(\mathbf{Z}|\mathbf{X}, \overline{\boldsymbol{\theta}})}$$
$$= \sum_{\mathbf{Z}} p(\mathbf{Z}|\mathbf{X}, \overline{\boldsymbol{\theta}}) \log p(\mathbf{X}, \mathbf{Z}|\boldsymbol{\theta}) - \sum_{\mathbf{Z}} p(\mathbf{Z}|\mathbf{X}, \overline{\boldsymbol{\theta}}) \log p(\mathbf{Z}|\mathbf{X}, \overline{\boldsymbol{\theta}})$$

Since

$$\sum_{\mathbf{Z}} p(\mathbf{Z}|\mathbf{X}, \overline{\boldsymbol{\theta}}) \log p(\mathbf{Z}|\mathbf{X}, \overline{\boldsymbol{\theta}})$$

is independent from θ , this is equivalent to maximize

$$\mathcal{Q}(\boldsymbol{\theta}, \overline{\boldsymbol{\theta}}) = \sum_{\mathbf{Z}} p(\mathbf{Z}|\mathbf{X}, \overline{\boldsymbol{\theta}}) \log p(\mathbf{X}, \mathbf{Z}|\boldsymbol{\theta})$$

M-step

Let

$$\hat{\boldsymbol{\theta}} = \operatorname*{argmax}_{\boldsymbol{\theta}} \mathcal{Q}(\boldsymbol{\theta}, \overline{\boldsymbol{\theta}}) = \operatorname*{argmax}_{\boldsymbol{\theta}} \mathcal{L}(p(\mathbf{Z}|\mathbf{X}, \overline{\boldsymbol{\theta}}), \boldsymbol{\theta})$$

then, by assumption, for any $oldsymbol{ heta}$

$$\mathcal{L}(p(\mathbf{Z}|\mathbf{X}, \overline{\boldsymbol{\theta}}), \hat{\boldsymbol{\theta}}) \ge \mathcal{L}(p(\mathbf{Z}|\mathbf{X}, \overline{\boldsymbol{\theta}}), \boldsymbol{\theta})$$

and, in particular,

$$\mathcal{L}(p(\mathbf{Z}|\mathbf{X}, \overline{\boldsymbol{\theta}}), \hat{\boldsymbol{\theta}}) \geq \mathcal{L}(p(\mathbf{Z}|\mathbf{X}, \overline{\boldsymbol{\theta}}), \overline{\boldsymbol{\theta}}) = \log p(\mathbf{X}|\overline{\boldsymbol{\theta}})$$

M-step

By definition, we have

$$\log p(\mathbf{X}|\hat{\boldsymbol{\theta}}) = \mathcal{L}(p(\mathbf{Z}|\mathbf{X}, \overline{\boldsymbol{\theta}}), \hat{\boldsymbol{\theta}}) + KL(p(\mathbf{Z}|\mathbf{X}, \overline{\boldsymbol{\theta}})||p(\mathbf{Z}|\mathbf{X}, \hat{\boldsymbol{\theta}}))$$

Since in general $p(\mathbf{Z}|\mathbf{X}, \overline{\boldsymbol{\theta}}) \neq p(\mathbf{Z}|\mathbf{X}, \hat{\boldsymbol{\theta}})$, we have $KL(p(\mathbf{Z}|\mathbf{X}, \overline{\boldsymbol{\theta}})||p(\mathbf{Z}|\mathbf{X}, \hat{\boldsymbol{\theta}})) > 0$ and, as a consequence

$$\log p(\mathbf{X}|\hat{\boldsymbol{\theta}}) > \mathcal{L}(p(\mathbf{Z}|\mathbf{X}, \overline{\boldsymbol{\theta}}), \hat{\boldsymbol{\theta}})$$

Conclusions

After an E-step and an M-step, the estimated log-likelihood becomes larger.

In particular, it increases from

$$\log p(\mathbf{X}|\overline{\boldsymbol{\theta}}) = \mathcal{L}(p(\mathbf{Z}|\mathbf{X}, \overline{\boldsymbol{\theta}}), \overline{\boldsymbol{\theta}}) = \sum_{\mathbf{Z}} p(\mathbf{Z}|\mathbf{X}, \overline{\boldsymbol{\theta}}) \log \frac{p(\mathbf{X}, \mathbf{Z}|\boldsymbol{\theta})}{p(\mathbf{Z}|\mathbf{X}, \overline{\boldsymbol{\theta}})}$$

to

$$\begin{split} \log p(\mathbf{X}|\hat{\boldsymbol{\theta}}) &= \mathcal{L}(p(\mathbf{Z}|\mathbf{X}, \hat{\boldsymbol{\theta}}), \hat{\boldsymbol{\theta}}) + KL(p(\mathbf{Z}|\mathbf{X}, \overline{\boldsymbol{\theta}})||p(\mathbf{Z}|\mathbf{X}, \boldsymbol{\theta})) \\ &\geq \mathcal{L}(p(\mathbf{Z}|\mathbf{X}, \hat{\boldsymbol{\theta}}), \hat{\boldsymbol{\theta}}) \\ &\geq \mathcal{L}(p(\mathbf{Z}|\mathbf{X}, \hat{\boldsymbol{\theta}}), \overline{\boldsymbol{\theta}}) = \log p(\mathbf{X}|\overline{\boldsymbol{\theta}}) \end{split}$$