(# (14 pts.)
(#) (7 pts.) Probar que los signientes grafos no son isomorfos/

() (7 pts.) Encontrar una caminata culeriana en el siguiente grafo.

Ejercicios para alumnos libres (Cada ejercicio mal hecho o no resuelto descuenta 10 pts.)

- (1) Expresar el número 583 en base 3.
- (2) ¿Cuántos números pares de 6 dígitos hay?

1	2	3.	4(a)	4(b)	4(c)	5(a)	5(b)	5(c)	5(d)	6	7(a)	7(b)	14
4	9	5	0	1	2	14	9	9	9	14	7	7(b)	6
						100	1	200	AL WIT				

5 cinco

MATEMÁTICA DISCRETA I Examen Final - 04/07/2019

Apellido y Nombre: ROSARIO OLCESE

Condición (R o L): REGULAR

• Justificar todas las respuestas. No se permite el uso de calculadoras ni celulares.

 Para aprobar deberá tener al menos 50 pts. en el total, 12 pts. en la parte teórica y 28 pts. en la parte práctica.

Parte Teórica (30 pts.)

(10 pts.) Para $n \ge 1$, definir en forma recursiva la productoria de nnúmeros a_1, \ldots, a_n

- (2) (10 pts.) Definir máximo común divisor y probar que mcd(a,b) =mcd(a, -b).

(2) (10 pts.) Sea m un entero positivo y x_1 , x_2 , y_1 , y_2 enteros tales que $x_1 \equiv x_2(m), \ y_1 \equiv y_2(m), \ \text{entonces} \ x_1 + y_1 \equiv x_2 + y_2(m).$

Parte Práctica (70 pts.)

(24 pts.) Sea $n \in \mathbb{N}$ Probar que todo número de la forma $3^{2n+1} + 2^{n+2}$ es divisible por 7.

(N (7 pts.) Demostrar que no existen enteros no nulos m y n tales que: $m^2 = 6n^2$.

(10 pts.) Probar por inducción que si $a_1 = -1$, y para $n \ge 1$. definimos $a_{n+1} = a_n + 2(n+1)$, entonces el termino general de la recurrencia es $a_n = -3 + n(n+1)$.

(3) (16 pts.) Una empresa tiene que elegir 5 cargos directivos director, subdirector, CTO, gerente de marketing y tesorero, entre personas, de las cuales 4 son hombres y 7 son mujeres ¿De cuántas formas puede hacerse la elección si:

(4 pts.) no hay restricciones.

(4) (4 pts.) se eligen los 4 hombres; (4) (4 pts.) se eligen tres mujeres y dos hombres; (4) (4 pts.) se eligen tres mujeres al menos?

(8) (16 pts.) Dada la ecuación de congruencia

$10x \equiv 4(14),$

hallar todas las soluciones en el intervalo [10,35]. Hacerlo con el método usado en la teórica. No usar resultados del práctico.