- 1) Convergence in Probability and Distribution
- 2) Continuous Mapping, Slutsky's Theorem
- 3) Delta method

Asymptotics

So far, everything has been finite-sample, often using special properties of model ?

(e.g. exp. fam.) to do exact calculations.]

For "generic" models, exact calculations may
be intractable or impossible. But we may
be able to approximate our problem with
a simpler problem in which calculations are easy

Typically approximate by Gaussian, by taking limit as # observations -> on But this is only interesting if approx. is good for "reasonable" sample size.

Convergence

Let X1, X2,...∈ Rd sequence of random vectors We care about 2 kinds of convergence:

1) Cvg. in probability $(X_n \approx constant)$ 2) cvg. in distribution $(X_n \approx N_i(0, I_j), usually)$ We say the sequence converges in probability to celled (X, P); f 17(11xn-c11>ε) → 0, ∀ε>0 (could really be any distance on any X) Can converge to a r.v. X too, but we don't need this We say the sequence converges in distribution to random variable X $(X_n \ni X, X_n \stackrel{d}{\to} X)$ if Ef(xn) → Ef(x) for all bdd, c+s f: x→R Thm $X_1, X_2, \in \mathbb{R}$, $F_n(x) = \mathbb{P}(X_1 \leq x)$, $F(x) = \mathbb{P}(X \leq x)$ Then $X_n \Rightarrow X$ iff $F_n(x) \Rightarrow F(x) \forall x : F cts at x$

Also known as weak convergence

 $F_n(x) = 15 = x$ $\longrightarrow 150 = x$? $e^{xcept} \times = 0$ F. F. $\frac{P_{rop}}{X_{n}} = \frac{1}{2} \lim_{n \to \infty} X_{n} \Rightarrow \delta_{n}$ Proof (E) Let fr(x) = max(1, 11x-c1/2) = 18 11x-c11= 83 $P(\|X_n - c\| > \varepsilon) \leq \mathbb{E} f_{\varepsilon}(X_n) \rightarrow 0$ (=) f bdd, cts, note $\mathbb{E} f(X) = f(c)$ ∀ε>0, ∃d(ε)>0 s.t. ||x - c|| ≤ d(ε) ⇒ |f(x) - f(c)| ≤ ε $\mathbb{E} f(x_n) - f(c) \leq \mathbb{E} [f(x_n) - f(c)] \cdot (11 ||x_n - c|| \leq d(c) + 1 ||x_n - c|| + 1 ||x_n - c|$ < \(\epsilon + P(|| \times_n - c|| > d(\epsilon) \cdot \sup |f(x) - f(c)| € 2ε·sup |f| for suff. large n ⋈ with $X_n \sim P_{n,0}$, we say $\delta_n(x_n)$ is <u>consistent</u>

In a sequence of statistical models $S_n = \{P_{n,\Theta} : \Theta \in \Theta\}$ with $X_n \sim P_{n,\Theta}$, we say $S_n(x_n)$ is consistent for $g(\Theta)$ if $J_n(x_n) \stackrel{P_{\Theta}}{\longrightarrow} g(\Theta)$, meaning $P_{\Theta}(\|S_n(x_n) - g(\Theta)\| > \epsilon) \longrightarrow O$ Usually we omit the index n; sequence is implicit.

Limit Theorems

Let X_1, X_2, \dots iid random vectors $\overline{X}_n = \frac{1}{n} \sum_{i=1}^{n} X_i$

Law of large numbers (LLN)

If $\mathbb{E}|X_i| < \infty$, $\mathbb{E}|X_i| = M$, then $\overline{X}_n \stackrel{f}{\to} M$ $(\overline{X}_n \stackrel{q.s}{\to} N)$

Central limit theorem (CLT)

If $EX = n \in \mathbb{R}^d$, $Var(Xn) = \Sigma$ (finite)

Then $J_n(X_n - M) \Rightarrow N(0, \Sigma)$

There are stronger versions of both the LLN & CLT, but this will generally be enough for us 7

Continuous Mapping

Theorem (C+s Mapping)
$$g$$
 c+s; $X_1, X_2, ...$ r.v.s

If $X_n \Rightarrow X$ then $g(X_n) \Rightarrow g(X)$

If $X_n \stackrel{f}{\hookrightarrow} c$ then $g(X_n) \stackrel{p}{\hookrightarrow} g(c)$

Proof f bdd, c+s \Rightarrow fog bdd, c+s

If $X_n \Rightarrow X$ then $\mathbb{E} f(g(X_n)) \rightarrow \mathbb{E} f(g(X))$
 $X_n \stackrel{f}{\hookrightarrow} c$ special case with $X \sim \delta_c \bowtie$

Theorem (Slutsky) Assume
$$X_n \Rightarrow X_n Y_n \stackrel{P}{\Rightarrow} c$$

Then: $X_n + Y_n \Rightarrow X + c$
 $X_n \cdot Y_n \Rightarrow c \times c \times c$
 $X_n / Y_n \Rightarrow x / c$

if $c \neq 0$

Proof Show $(X_n, Y_n) \Rightarrow (X, c)$, apply ets mapping.

Wouldn't normally be true that $X_n \Rightarrow X, Y_n \Rightarrow Y$ implies $(X_n, Y_n) \Rightarrow (X, Y)$ without specifying joint dist.

Theorem (Delta Method)

If ,
$$\int_{\Lambda} (X_n - M) \Rightarrow N(0, \sigma^2)$$

• $f(x)$ differentiable at $x = M$

Then $\int_{\Lambda} (f(X_n) - f(M)) \Rightarrow N(0, f(M)^2 \sigma^2)$

Informal statement:

$$X_n \approx N(M, \sigma_A^2) \Rightarrow f(X) \approx N(f(M), f(M) \sigma_M^2)$$

Froof $f(X_n) = f(M) + f(N)(X_n - M) + o(X_n - M)$
 $\int_{\Lambda} (f(X_n) - f(M)) = f(M) \cdot \int_{\Lambda} (X_n - M) + \int_{\Lambda} o(X_n - M)$
 $\int_{\Lambda} (f(X_n) - f(M)) = f(M) \cdot \int_{\Lambda} (f(M) - M) + \int_{\Lambda} o(X_n - M)$
 $\int_{\Lambda} (f(X_n) - f(M)) = \int_{\Lambda} (f(M) - M) + \int_{\Lambda} o(X_n - M)$

Then $\int_{\Lambda} (f(X_n) - f(M)) \approx \int_{\Lambda} f(M) \cdot \int_{\Lambda} (f(M) - M)$
 $\int_{\Lambda} (f(X_n) - f(M)) \approx \int_{\Lambda} f(M) \cdot \int_{\Lambda} (f(M) - M)$
 $\int_{\Lambda} f(M) = \int_{\Lambda} f(M) \cdot \int_{\Lambda} f(M) \cdot \int_{\Lambda} f(M) = \int_{\Lambda} f(M) = \int_{\Lambda} f(M) \cdot \int_{\Lambda} f(M) = \int_{\Lambda} f(M) \cdot$

= $N(0, \nabla f(n)' \Sigma \nabla f(n))$ if k=1

Delta Method

Scaling factor doesn't need to be Ja, but need $X_n - n \stackrel{P}{\longrightarrow} 0$

Ex
$$X_{1},...,X_{n}$$
 ind (M,σ^{2})
 $Y_{1},...,Y_{n}$ ind (D,σ^{2})
 $Y_{1},...,Y_{n}$ ind (D,σ^{2}) X, Y indep.

For large n , what is the distribution of $(\overline{X}+\overline{Y})^{2}$?

1) $\overline{X} = M$, $\overline{Y} = M$ as $n \to \infty$
 $\Rightarrow (\overline{X}+\overline{Y})^{2} = M(0,\sigma^{2})$ In $(\overline{Y}-U) \Rightarrow M(0,\tau^{2})$

Let $f(x,y) = (x+y)^{2}$
 $\frac{\partial f}{\partial x}(x,y) = \frac{\partial f}{\partial y}(x,y) = 2(x+y)$
 $f(\overline{X},\overline{Y}) \approx N(f(M,U), \nabla f(\sigma^{2},v) \nabla f(n))$
 $= N((M+U)^{2}, H(M+U)^{2}(\sigma^{2}+\tau^{2})/n)$

More accurate:

 $J_{n}((\overline{X}+\overline{Y})^{2}-(M+U)^{2}) \Rightarrow N(0, H(M+U)^{2}(\sigma^{2}+\tau^{2}))$

3) What if $(M+U)^{2} = 0$? Conclusion still holds:

 $J_{n}((\overline{X}+\overline{Y})^{2}) = 0$

Note $J_{n}(X+J_{n}) = 0$

Note $J_{n}(X+J_{n}) = 0$

Note $J_{n}(X+J_{n}) = 0$
 $J_{n}(X+J_{n}) = 0$

(cts mapping)

why not delta method?

In general, can do higher-order Taylor expansions for delta method if derivatives = 0:

$$f(X_n) \approx f(n) + \hat{f}(n)(X_n-n) + \frac{\hat{f}(n)}{2}(X_n-n)^2 + \cdots$$

$$O_{\rho}(n^{-1/2}) = O_{\rho}(n^{-1})$$

If
$$f(n) = 0$$
, use second-order term:

$$n (f(x_n) - f(n)) \approx \frac{f(n)}{2} (s_n(x_n - n))^2$$

$$\approx \frac{f(n)\sigma^2}{2} \chi_1^2$$