Course title: Computer Graphics Lab

Course code: CSE-304

3rd Year 1st Semester Examination 2022

Date of Submission: 28 May 2023

Submitted to-

Dr. Mohammad Shorif Uddin

Professor

Dr. Morium Akter

Associate Professor

Department of Computer Science and Engineering

Jahangirnagar University

SI	Class Roll	Exam Roll	Name
01	408	202220	Sudipta Singha

Code scan conversion of point:

```
from matplotlib import pyplot as plt

x=int(input("Enter x coordinate"))

y=int(input("Enter y coordinate"))

X_cor=[]

Y_cor=[]

X_cor.append(x)

Y_cor.append(y)

plt.plot(X_cor,Y_cor,marker="o",markersize=10,markerfacecolor="blue")

plt.show()
```

Screenshot:

```
↑ - □ ×
                                       Terminal - suprio@suprio: ~/python
 File Edit View Terminal Tabs Help
  File "/home/suprio/.local/lib/python3.9/site-packages/matplotlib/backends/qt_compat.py", line 245,
 in _maybe_allow_interrupt
    old_sigint_handler(*handler_args)
KeyboardInterrupt
suprio@suprio:~/python
$ vim point.py
suprio@suprio:~/python
$ python3 point.py
Enter x coordinate5
Enter y coordinate6
Traceback (most recent call last):
  File "/home/suprio/python/point.py", line 8, in <module>
plot(X_cor,Y_cor,marker="o",markersize=1,markerfacecolor="blue")
TypeError: 'module' object is not callable
suprio@suprio:~/python
$ vim point.py
suprio@suprio:~/python
$ python3 point.py
Enter x coordinate5
Enter y coordinate7
suprio@suprio:~/python
$ vim point.py
suprio@suprio:~/python
$ python3 point.py
Enter x coordinate5
Enter y coordinate8
```


Code DDA:

```
from matplotlib import pyplot as plt
def DDA(x0,y0,x1,y1):
  dx=x1-x0
  dy=y1-y0
  steps=max(dx,dy)
  xinc=dx/steps
  yinc=dy/steps
  x=float(x0)
  y=float(y0)
  x_cor=[]
  y_cor=[]
  for i in range(steps):
    x_cor.append(x)
    y_cor.append(y)
    x=x+xinc
    y=y+yinc
  plt.plot(x_cor,y_cor,marker="o",markersize=1,markerfacecolor="green")
  plt.show()
x0=int(input("Enter first x_coordinate"))
y0=int(input("Enter first y_coordinate"))
x1=int(input("Enter second x_coordinate"))
y1=int(input("Enter second y_coordinate"))
DDA(x0,y0,x1,y1)
```

Screenshot:

Brasenhem algorithm:

```
from matplotlib import pyplot as plt

def Pixelplot(x0,y0,x1,y1,dx,dy,choose):

P=2 * dy -dx

x_cor=[]

y_cor=[]

for i in range(0,dx+1):

x_cor.append(x0)

y_cor.append(y0)

if(x0<x1):

x0=x0+1

else:

x0=x0-1
```

```
if(P<0):
       if(choose==0):
          P=P+2*dy
       else:
          P=P+2*dy
    else:
       if(y0<y1):
         y0=y0+1
       else:
          y0=y0-1
       P=P+2*dy-2*dx
  plt.plot(x_cor,y_cor,marker="o",markersize=1,markerfacecolor="red")
  plt.show()
x0=int(input("Enter first x coordinate"))
y0=int(input("Enter first y coordinate"))
x1=int(input("Enter second x coordinate"))
y1=int(input("Enter second y coordinate"))
dx=abs(x1-x0)
dy=abs(y1-y0)
if(dx>dy):
  Pixelplot(x0,y0,x1,y1,dx,dy,0)
else:
  Pixelplot(y0,x0,y1,x1,dy,dx,1)
```

Screenshot:

