Types and λ -calculus

Problem Sheet 3

* 1. Show that Θ is also a fixed point combinator, i.e for all terms M:

$$\Theta M =_{\beta} M(\Theta M)$$

Solution -

$$\Theta M
\rightarrow_{\beta} (\lambda y. y((\lambda xy. y(xxy))(\lambda xy. y(xxy))y)) M
= (\lambda y. y(\Theta y)) M
\rightarrow_{\beta} M(\Theta M)$$

Hence both ΘM and $M(\Theta M)$ have $M(\Theta M)$ as a common reduct.

** 2. In this question you will give an alternative predecessor combinator which, although longer, is more intuitive to explain.

We define the *Church Pair* of natural numbers m and n, written $\lceil (m, n) \rceil$, as the term $\lambda z. z \lceil m \rceil \lceil n \rceil$.

(a) Define combinators **Fst** and **Snd** with the property that:

$$\mathbf{Fst}^{\lceil}(m, n)^{\rceil} =_{\beta} \lceil m^{\rceil} \quad \text{and} \quad \mathbf{Snd}^{\lceil}(m, n)^{\rceil} =_{\beta} \lceil n^{\rceil}$$

(b) Consider the following Haskell program pred' on natural numbers.

pred'
$$n = \text{fst (foldn } n \text{ incr } (0,0))$$

where

$$incr (n,0) = (n,1)$$

$$incr (n,1) = (n+1,1)$$

$$foldn 0 f x = x$$

$$foldn n f x = f (foldn (n-1) f x)$$

What is the result of computing foldn 3 incr (0,0)?

(c) Implement pred' as a λ -term operating on Church Numerals.

Solution

- (a) Define **Fst** as λp . $p(\lambda xy.x)$ and **Snd** as λp . $p(\lambda xy.y)$.
- (b) (2,1)
- (c) Let **Incr** be the term:

$$\lambda p$$
. IfZero (Snd p) (λz . z (Fst p) $\lceil 1 \rceil$)(λz . z (Succ (Fst p)) $\lceil 1 \rceil$)

Then the required combinator is λn . **Fst** $(n \text{ Incr } \lceil (0,0) \rceil)$.

** 3.

(a) Prove that natural number multiplication is λ -definable by programming a combinator **Mult**.

Hint: multiplication is iterated addition.

(b) Prove that your construction works by showing the following using induction on $n \in \mathbb{N}$ or on $m \in \mathbb{N}$ (which one works will depend on how you defined **Mult**):

$$\forall n \in \mathbb{N}. \ \forall m \in \mathbb{N}. \ \mathbf{Mult} \ \lceil m \rceil \ \lceil n \rceil =_{\beta} \lceil m * n \rceil$$

Hint: you may use the following fact without proving it:

$$\lceil k + 1 \rceil =_{\beta} Add \lceil 1 \rceil \lceil k \rceil$$

Solution -

- (a) Define **Mult** as $\lambda mn. n$ (**Add** m) $\lceil 0 \rceil$. Then we have:
- (b) The proof is by induction on n:
 - In case n=0,

• In case n = k + 1, assume the induction hypothesis:

$$\forall m \in \mathbb{N}$$
. Mult $\lceil m \rceil \lceil k \rceil =_{\beta} \lceil m * k \rceil$

Then we reason equationally:

$$\begin{aligned} \mathbf{Mult} \, \lceil m \rceil \, \lceil k+1 \rceil &=_{\beta} \quad \lceil k+1 \rceil \, (\mathbf{Add} \, \lceil m \rceil) \, \lceil 0 \rceil \\ &=_{\beta} \quad (\mathbf{Add} \, \lceil 1 \rceil \, \lceil k \rceil) \, (\mathbf{Add} \, \lceil m \rceil) \, \lceil 0 \rceil \\ &=_{\beta} \quad (\lambda f \, x. \, \lceil 1 \rceil \, f \, (\lceil k \rceil \, f \, x)) \, (\mathbf{Add} \, \lceil m \rceil) \, \lceil 0 \rceil \\ &=_{\beta} \quad \lceil 1 \rceil \, (\mathbf{Add} \, \lceil m \rceil) \, (\lceil k \rceil \, (\mathbf{Add} \, \lceil m \rceil) \, \lceil 0 \rceil) \\ &=_{\beta} \quad \mathbf{Add} \, \lceil m \rceil \, (\lceil k \rceil \, (\mathbf{Add} \, \lceil m \rceil) \, \lceil 0 \rceil) \\ &=_{\beta} \quad \mathbf{Add} \, \lceil m \rceil \, (\mathbf{Mult} \, \lceil m \rceil \, \lceil k \rceil) \\ &=_{\beta} \quad \mathbf{Add} \, \lceil m \rceil \, \lceil m * k \rceil \\ &=_{\beta} \quad \lceil m+m*k \rceil = \lceil m*(k+1) \rceil \end{aligned}$$

The penultimate line follows from the induction hypothesis.

** 4. Use **Y** to define the recursive triangular number function: using the "recipe", give a combinator **Tri** that satisfies:

$$\operatorname{Tri} \lceil 0 \rceil =_{\beta} \lceil 0 \rceil$$
 and $\operatorname{Tri} \lceil n+1 \rceil =_{\beta} \operatorname{Add} \lceil n+1 \rceil (\operatorname{Tri} \lceil n \rceil)$

Convince yourself that $\mathbf{Tri} \ ^2 =_{\beta} \ ^3 \ ^$ (this is obvious if you believe that your implementation of \mathbf{Tri} really satisfies the given equations).

Solution -

Define **Tri** as **Y** ($\lambda f n$. **IfZero** n n (**Add** n (f (**Pred** n))))

** 5. Prove that if $M =_{\beta} N$ and N is a normal form, then $M \twoheadrightarrow_{\beta} N$.

Therefore, we now know that e.g. **Tri** $\lceil 2 \rceil \rightarrow \beta \rceil$, so these definitions actually *compute* an output given an input.

Solution

Suppose $M =_{\beta} N$ and N is a normal form. It follows from the definition of $=_{\beta}$ that there is some common reduct P such that $M \twoheadrightarrow_{\beta} P \twoheadleftarrow_{\beta} N$. Since N is in normal form, $N \twoheadrightarrow_{\beta} P$ implies P = N. Hence, $M \twoheadrightarrow_{\beta} N$.

** 6. Show that β -normal forms are unique, i.e. show that if a term has two β -normal forms N_1 and N_2 , then they are actually the same term.

Therefore, we now know that e.g. **Tri** $\lceil 2 \rceil \not \rightarrow_{\beta} \lceil 4 \rceil$, so there is at most one output for each input.

Solution

Suppose $M \twoheadrightarrow_{\beta} N_1$ and $M \twoheadrightarrow_{\beta} N_2$ and N_1 , N_2 are both β -normal forms. Then it follows from Confluence that there is some term Q and $N_1 \twoheadrightarrow_{\beta} Q$ and $N_2 \twoheadrightarrow_{\beta} Q$. Since N_1 and N_2 are normal, they cannot make a β -step. Therefore, $Q = N_1$ and $Q = N_2$. Hence, $N_1 = N_2$.

*** 7. Show that there is no term *P* that satisfies $P(MN) =_{\beta} N$.

Solution -

If there were such an P then $\mathbf{K} =_{\beta} P(\mathbf{K}(\mathbf{II})\mathbf{K}) =_{\beta} P(\mathbf{II}) =_{\beta} \mathbf{I}$, but this is impossible since \mathbf{K} and \mathbf{I} are distinct normal forms (and hence cannot have a common reduct).