Mnist 은글씨인식

2021.08.17.장혜선

CONTENTS

Mnist 손글씨 인식

Chapter

1 7 H

MNIST Dataset

• 이미지 출력

```
import matplotlib.pyplot as plt
plt.imshow(X_train[0], cmap='Greys')
plt.show()
```

• 밝기 정도에 따라 등급매기기

```
for x in X_train[0]:
    for i in x:
        sys.stdout.write('%d\taut' % i)
        sys.stdout.write('\taun')
```

어떻게 인식할까?

Chapter

位落铁子链

신경망

학습셋/테스트셋

60,000 10,000

신경망

데이터 처리(차원)

• reshape(총 샘플 수, 1차원 속성의 수)

신경망

데이터 처리(원-핫 인코딩)

```
Y_train = np_utils.to_categorical(Y_class_train, 10)
Y_test = np_utils.to_categorical(Y_class_test, 10)

[0. 0. 0. 0. 0. 1. 0. 0. 0. 0.]
```

신경망

신경망 구조

• 오차가 좋아질 때마다 모델 업데이트

• 10번 안에 오차가 좋아지지 않을 시 중단
early_stopping_callback = EarlyStopping(monitor='val_loss',patience=10)

• 학습 세부 설정

```
history = model.fit(X_train, Y_train, validation_data=(X_test, Y_test),
epochs=30, batch_size=200, verbose=0,
callbacks=[early_stopping_callback, checkpointer])
```

● 테스트 정확도 : 0.9831

Chapter

社等三位 位落铁

컨볼루션 신경망

• 이미지 인식 분야에서 좋은 성능을 보임 입력된 이미지에서 다시 한 번 특징 추출을 위해 마스크 도입

1	0	1	0
O	1	1	0
0	0	1	1
0	0	1	0

(1X1)+(0x0)+(0x0)+(1X1) = 2 $1X1 \quad 0X0 \quad 1$ $0X0 \quad 1X1 \quad 1$

0

컨볼루션 신경망

• 이미지 인식 분야에서 좋은 성능을 보임 입력된 이미지에서 다시 한 번 특징 추출을 위해 마스크 도입

1	O	1	0
0	1	1	0
0	0	1	1
0	O	1	0

X1	XO
XO	X1

2	1	1
0	2	2
0	1	1

풀링(pooling)

• 결과가 크고 복잡하면 다시 한 번 축소를 거침 서브 샘플링이라고도 불림

< 맥스 풀링 >

구현(건볼루션 신경망)

● 컨볼루션 -> 풀링 -> 드롭아웃 -> Flatten

```
model = Sequential()
model.add(Conv2D(32, kernel_size=(3, 3), input_shape=(28, 28, 1), activation='relu'))
model.add(Conv2D(64, (3, 3), activation='relu'))
```

Conv2D

- 1. 마스크 적용 개수 (32,
- 2. 마스크 크기 kernel_size=(3, 3),
- 3. 입력값(행, 열, 색상 또는 흑백) input_shape=(28, 28, 1)
- 4. 활성화 함수 activation='relu'))

구현(맥스 풀링)

● 컨볼루션 -> 풀링 -> 드롭아웃 -> Flatten

model.add(MaxPooling2D(pool_size=2))

CNN

드롭아웃 & Flatten

● 컨볼루션 -> 풀링 -> 드롭아웃 -> Flatten

model.add(Dropout(0.25))
model.add(Flatten())

Test Accuracy: 0.9921

감사합니다.