Samlefil for alle data til prøveeksamen

Filen 1A.txt

Perioden P er 288.7 millioner år

Filen 1B/Oppgave1B_Figur_A.png

Figure 1: Figur fra filen 1B/Oppgave1B_Figur_A.png

$Filen~1B/Oppgave1B_Figur_B.png$

Figure 2: Figur fra filen 1B/Oppgave1B_Figur_B.png

$Filen~1B/Oppgave1B_Figur_C.png$

Figure 3: Figur fra filen 1B/Oppgave1B_Figur_C.png

$Filen~1B/Oppgave1B_Figur_D.png$

Figure 4: Figur fra filen 1B/Oppgave1B_Figur_D.png

Filen 1B/Oppgave1B_Figur_E.png

Figur E 657.95 657.92 Bølgelengde (nm) 657.90 657.88 657.85 657.82 657.80 10 0 20 30 40 50 Periode (år)

Figure 5: Figur fra filen 1B/Oppgave1B_Figur_E.png

Filen 1D.txt

Stjerna A: Tilsynelatende visuell størrelseklasse m
-V = 5.62, tilsynelatende blå størrelseklass $m_B = 7.90$

Stjerna B: Tilsynelatende visuell størrelseklasse m
_V = 11.86, tilsynelatende blå størrelseklass $m_B = 14.14$

Stjerna C: Tilsynelatende visuell størrelseklasse m $_{\text{-}}\mathrm{V}=11.86,$ tilsynelatende

blå størrelseklass m_B = 13.14

Stjerna D: Tilsynelatende visuell størrelseklasse m
_V = 5.62, tilsynelatende blå størrelseklass $m_B = 6.90$

Filen 1E.txt

For stjerne 1 sin bane om massesenteret er elliptisiteten e=0.81 og store halvakse a=81.34 AU.

For stjerne 2 sin bane om massesenteret er elliptisiteten e=0.81 og store halvakse a=50.39 AU.

Filen 1F.txt

Ved bølgelengden 691.44 nm finner du størst fluks

$Filen~1G/Oppgave1G_Figur_A.png$

Figure 6: Figur fra filen 1G/Oppgave1G_Figur_A.png

$Filen~1G/Oppgave1G_Figur_B.png$

Figure 7: Figur fra filen 1G/Oppgave1G_Figur_B.png

$Filen \ 1G/Oppgave1G_Figur_C.png$

Figure 8: Figur fra filen 1G/Oppgave1G_Figur_C.png

$Filen~1G/Oppgave1G_Figur_D.png$

Figure 9: Figur fra filen 1G/Oppgave1G_Figur_D.png

Filen 1G/Oppgave1G_Figur_E.png

Figur E 3.40 Tilsynelatende størrelsklasse m_{V} 3.20 3.00 2.80 2.60 2.40 2.20 ò i ż 5 6 2 Observasjonstid (dager)

Figure 10: Figur fra filen 1G/Oppgave1G_Figur_E.png

Filen 1I.txt

Gass-sky A har masse på 17.20 solmasser, temperatur på 37.50 Kelvin og tetthet 6.62e-21 kg per kubikkmeter

Gass-sky B har masse på 3.00 solmasser, temperatur på 38.90 Kelvin og tetthet 8.86e-21 kg per kubikkmeter

Gass-sky C har masse på 7.00 solmasser, temperatur på 36.80 Kelvin og

tetthet 2.64e-21 kg per kubikkmeter

Gass-sky D har masse på 14.80 solmasser, temperatur på 10.40 Kelvin og tetthet 1.06e-20 kg per kubikkmeter

Gass-sky E har masse på 18.40 solmasser, temperatur på 85.80 Kelvin og tetthet 3.50e-21 kg per kubikkmeter

Filen 1J.txt

STJERNE A) stjerna har en degenerert heliumkjerne

STJERNE B) stjernas energi kommer hovedsaklig fra hydrogenfusjon i skall

STJERNE C) stjernas energi kommer fra Planck-stråling alene

STJERNE D) stjernas energi kommer fra vibrerende molekyler og ikke fra fusjon

STJERNE E) stjernas energi kommer hovedsaklig fra heliumfusjon i sentrum

Filen 1L.txt

Stjerne A har spektralklasse A6 og visuell tilsynelatende størrelseklasse m_V = 9.36

Stjerne B har spektralklasse M1 og visuell tilsynelatende størrelseklasse m_V = 7.67

Stjerne C har spektralklasse F8 og visuell tilsynelatende størrelseklasse m_V = 8.73

Stjerne D har spektralklasse M7 og visuell tilsynelatende størrelseklasse m_V

= 2.17

Stjerne E har spektralklasse K4 og visuell tilsynelatende størrelseklasse m_V = 7.03

Filen 1P.txt

Alle partiklene har hastighetskomponent kun langs synsretningen som er enten $100~\rm m/s$ mot deg eller fra deg (like mange i hver retning)

$Filen~2A/Oppgave 2A_Figur 1.png$

Figure 11: Figur fra filen 2A/Oppgave2A_Figur1.png

$Filen~2A/Oppgave 2A_Figur 2.png$

Figure 12: Figur fra filen 2A/Oppgave2A_Figur2.png

$Filen\ 2B/Oppgave 2B_Figur\ 4.png$

Figure 13: Figur fra filen 2B/Oppgave2B_Figur 4.png

4.png

Filen 2B/Oppgave2B_Figur3.png

Figur 3 10 9 8 y-posisjon (buesekunder) 7 6 5 3 2 1 i ż 5 ġ ż 10 x-posisjon (buesekunder)

Figure 14: Figur fra filen 2B/Oppgave2B_Figur3.png

Filen 2C.txt

Avstand til solen er 0.8770000000000000177636 AU.

Tangensiell hastighet er 39454.631846645257610362 m/s.

Filen 2D.txt

Kometens avstand fra jorda i punkt 1 er r1=2.616 AU.

Kometens avstand fra jorda i punkt 2 er r2=9.725 AU.

Kometens tilsynelatende størrelseklasse i punkt 1 er m1=16.434.

Filen 3A.txt

Romskipets hastighet langs x-aksen er 0.9676 ganger lyshastigheten.

Tiden mellom utsendelse av strålene er 0.00065 sekunder målt i bakkesystemet.

Filen 3B.txt

Avstanden mellom de to romskipene ved første utsendelse er D=220.0 km.

Romskip2 sin hastighet langs x-aksen er 0.9912 ganger lyshastigheten.

Filen 3E.txt

Bølgelengden målt i romskipet som sender ut er 727.80 nm.

Filen 4A.txt

Stjernas masse er 3.93 solmasser.

Stjernas radius er 0.66 solradier.

Filen 4C.png

Figur 4C 1.6500 1.5000 1.3500 Sannsynlighetstetthet i 10⁻⁴ % 1.2000 1.0500 0.9000 0.7500 0.6000 0.4500 0.3000 0.1500 0.0000 -750 -500 -250 500 -1000 250 750 1000 Hastighet i x-retning (km/s)

Figure 15: Figur fra filen 4C.png

Filen 4D.txt

Kun hvis du ikke fikk til forrige oppgave, skal du bruke denne temperaturen her: 25.00 millioner K

Filen 4G.txt

Massen til det sorte hullet er 2.92 solmasser.

r-koordinaten til det innerste romskipet er r $=9.12~\mathrm{km}.$

r-koordinaten til det innerste romskipet er r = 16.32 km.