实验说明文档——基础核心分类/聚类算法编码实现

杨瑞灵 2252941

1. 实验要求

- 理解 K-Means 及 HAC 算法聚类原理。
- 使用 Python 实现 K-Means 聚类算法。
- 使用 Python 实现 HAC 聚类算法。
- 基于两种算法提取图像特征序列进行图像分割。
- 对分割结果使用给定的 Groundtruth 图像进行评估。

2.实现过程

- 本次实验选用 k-means 和层次聚类算法进行图像分割
- 由于只是简单的聚类方法,没有加入监督学习等,所以一些背景和整体相近的图片必然没法进行非常好的识别。即使用了不同的优化方法,IOU测出来仍然在在 0.7-0.9 之间
- 图片和序号对应如下

序号	名称			
1.png	black_kitten			
2.png	black_kitten_star			
3.png	black-white-kittens2			
4.png	cat_bed			
5.png	cat_grumpy			
6.png	cat_mouse			

序号	名称		
7.png	cat-jumping-running-grass		
8.png	cutest-cat-ever-snoopy-sleeping		
9.png	grey-american-shorthair		
10.png	grey-cat-grass		
11.png	kitten9		
12.png	kitten16		
13.png	stripey-kitty		
14.png	the-black-white-kittens		
15.png	tortoiseshell_shell_cat		
16.png	young-calico-cat		

2.1 k-means

• 手动写了 kmeans 算法的实现(在 kmeans.py)用的是 random 初始化方法,不过效果还不错和 sklearn 的 KMeans 算出来差不多的 IOU

2.1.1 RGB VS HSV

- 只选用颜色作为特征,不同的颜色空间测出来的结果不同
- 这张图片的 RGB 为 0.645 HSV 为 0.961,可以看出来 HSV 测出来的图片 内部噪点减少了很多

• 总的来说 HSV 空间下图片分割的结果好于 RGB 空间下的结果,但也不是所有的图片 HSV 都优于 RGB

	k-means RGB	k-means HSV
1	0.798	0.998
2	0.947	0.999
3	0.568	0.503
4	0.568	0.764
5	0.78	0.974
6	0.922	0.517
7	0.935	0.922
8	0.938	0.955
9	0.686	0.855
10	0.645	0.961
11	0.721	0.852
12	0.603	0.935
13	0.693	0.902
14	0.779	0.63
15	0.587	0.593
16	0.665	0.698
平均值	0.74	0.816

2.1.2 高斯滤波

- 高斯滤波使得图片更平滑,去掉噪点,对于结果有一定提升作用,最明显的是第四张图片
- 不加滤波 IOU 为 0.586
- 加了滤波 IOU 为 0.995

• 平均 IOU 提升了 10%

	k-means (RGB)	k-means(RGB+高斯滤波)
1	0.798	0.807
2	0.947	1
3	0.568	0.571
4	0.568	0.99
5	0.78	0.921
6	0.922	0.932
7	0.935	0.971
8	0.938	0.851
9	0.686	0.889
10	0.645	0.977
11	0.721	0.717
12	0.603	0.937
13	0.693	0.936
14	0.779	0.632
15		
16	0.665	0.661
平均值	0.75	0.85

2.1.2 SLIC 超像素 + k-means

- SLIC 超像素图片分割不仅把图片分割成了较少的块,而且很好的保留了物体的边界,先进行 SLIC,然后在剩余块状的基础上进行 k-means 可能会有更好的效果
- 特征选择: 使用**RGB 颜色空间,块的位置,以及高通滤波后的 01 像素**作为特征,归一化后,权重赋值[1,1,1,0.3,0.3,1]。
- 权重选择:这个权重是我进行多次试验后得来的。我发现如果块的位置信息 赋值太高会使得整个图片两边分,这可能是因为物体在图片中心,虽然位置 信息使得分块在一起,但是也使得背景块难以赛选出来作为整体
- 最后结果其实并没有很大进步,依然在百分之八十附近,相比于直接 k-means 没有特别大改善

	k-means (RGB)	k-means (HSV)	k-means (slic+RGB)	k-means (slic+HSV)
1	0.798	0.998	0.998	0.998
2	0.947	0.999	0.955	0.955
3	0.568	0.503	0.577	0.596
4	0.568	0.764	0.99	0.689
5	0.78	0.974	0.765	0.817
6	0.922	0.517	0.972	0.973
7	0.935	0.922	0.962	0.97
8	0.938	0.955	0.928	0.928
9	0.686	0.855	0.791	0.873
10	0.645	0.961	0.557	0.806
11	0.721	0.852	0.732	0.782
12	0.603	0.935	0.95	0.793
13	0.693	0.902	0.693	0.561
14	0.779	0.63	0.764	0.764
15	0.587	0.593		
16	0.665	0.698	0.657	0.671
平均值	0.74	0.82	0.82	0.81

2.2 HAC

AgglomerativeClustering 由于初始化的时候是多少像素点就多少类别,然后一个一个合并,所以无论是我自己写的(在 HAC.py)还是 sklearn 带的 AgglomerativeClustering 类都没法在短时间类完成图片分割。我还是先 SLIC 超像素处理到 100 个点左右,再进行层次聚类,效果没什么突出的地方,比 k-means 慢且准确率要低

HAC(slic+RGB)	HAC(slic+HSV)
0.998	0.998
0.999	0.999
0.577	0.6
0.583	0.675
0.78	0.971
0.538	0.544
0.962	0.958
0.834	0.842
0.891	0.873
0.986	0.806
0.732	0.782
0.942	0.795
0.727	0.67
0.782	0.76
0.646	0.548
0.80	0.79

2.3 分水岭

- 我们发现第三张图因为背景色和白猫相近,所以 IOU 结果都在 0.6 一下。所以显然颜色无法对这张图片进行分割,我们考虑找边界,用 canny 算子或者梯度筛选去寻找边界,再对内部进行填充,都能够获得比较不错的效果。
- IOU:0.976

- 第四张图片的红色垫子之前一般都是会和猫一起抠出来,这里用梯度去筛选一下,能够比较好的筛掉垫子留下猫
- IOU:0.996

• 平均 IOU=0.837

 可以把分水岭的结果放进 k-means 里面做聚类,实验发现虽然有些图片结果 变好但是平均 IOU 没什么变化.可能是因为分水岭对于背景变化较大的图片 效果不太好,只针对背景单一,主体明显的图

3.结果展示

• 高斯滤波和用 HSV 对结果影响较大,其他方法中,分水岭针对背景干净变化小的图片

	k-means (RGB)	k-means (HSV)	k-means(RGB+高斯滤波)	k-means (slic+RGB)	k-means (slic+HSV)	HAC(slic+RGB)	HAC(slic+HSV)	分水岭
1	0.798	0.998	0.807	0.998	0.998	0.998	0.998	
2	0.947	0.999	1	0.955	0.955	0.999	0.999	
3	0.568	0.503	0.571	0.577	0.596	0.577	0.6	0.97
4	0.568	0.764	0.99	0.99	0.689	0.583	0.675	0.99
5	0.78	0.974	0.921	0.765	0.817	0.78	0.971	
6	0.922	0.517	0.932	0.972	0.973	0.538	0.544	
7	0.935	0.922	0.971	0.962	0.97	0.962	0.958	
8	0.938	0.955	0.851	0.928	0.928	0.834	0.842	
9	0.686	0.855	0.889	0.791	0.873	0.891	0.873	
10	0.645	0.961	0.977	0.557	0.806	0.986	0.806	
11	0.721	0.852	0.717	0.732	0.782	0.732	0.782	
12	0.603	0.935	0.937	0.95	0.793	0.942	0.795	
13	0.693	0.902	0.936	0.693	0.561	0.727	0.67	
14	0.779	0.63	0.632	0.764	0.764	0.782	0.76	
15	0.587	0.593						
16	0.665	0.698	0.661	0.657	0.671	0.646	0.548	
平均值	0.74	0.82	0.85	0.82	0.81	0.80	0.79	

4.体会

- 因为是无监督学习算法,只是传统的提取特征进行分类,所以对于像第二张 一样黑白分明的图片效果较好。对于像第3,4张图片,背景和猫的颜色相 近,或者猫和物体颜色相近的,那么很难不把猫和物体或者背景分到一块去
- 再比如第7张图片,背景草地和猫都有明显高通滤波变化,分类的时候猫和下半部分草地会分在一块,除非获得了猫的大概位置和颜色信息用它来赛选,否则只用 k-means 或者层次聚类很难得到像答案一样较为准确的结果
- 对比传统方法和深度学习模型:
 - 光线和环境对传统方法影响比较明显。之前写传统识别的时候就发现, 虽然在背景较黑的情况下识别效果较好,但是一但后面有别的光线干扰 识别就会出错。这种情况下,神经网络等深度学习方法可能更适合,因 为它们能够更好地处理复杂的环境和光照变化,从而提高了识别的准确 性。

- 。 传统识别方法通常需要手动设计和提取特征。而深度学习模型可以通过 端到端的学习过程自动学习特征表示,从而更好地适应不同的数据和任 务。
- 特征选择:只用 RGB 肯定没法进行很好的分割。加上位置信息之后,其实效果也没有提升太多,高通滤波可以选出轮廓信息,但是没有办法将猫的内部也筛选出来。最有效果的还是改变颜色空间,HSV 比 RGB 增加了 7%的准确度。其次是高斯滤波可以平滑图片,减小噪点
- 分水岭对于背景干净变化小的图片效果好,比如 3\4 张图片,达到了 90%的准确度