Programare logică și funcțională - examen scris -

<u>Notă</u>

- 1. Subjectele se notează astfel: of 1p; A 2p; B 4p; C 3p.
- 2. Problema Prolog (B) vor fi rezolvată în SWI Prolog. Se cere: (1) explicarea codului și a raționamentului; (2) modelul recursiv de rezolvare, pentru fiecare predicat folosit; (3) specificarea fiecărui predicat (semnificația parametrilor, model de flux, tipul predicatului determinist/nedeterminist).
- 3. Problema Lisp (C) va fi rezolvată în Common Lisp. Se cere: (1) explicarea codului și a raționamentului; (2) modelul recursiv de rezolvare, pentru fiecare funcție folosită; (3) specificarea fiecărei funcții (semnificația parametrilor).

```
A. Fie următoarea definiție de funcție în LISP

(DEFUN F(L)

(COND

((ATOM L) -1)

((> (F (CAR L)) 0) (+ (CAR L) (F (CAR L)) (F (CDR L))))

(T (F (CDR L))))
```

Rescrieți această definiție pentru a evita dublul apel recursiv (F (CAR L)), fără a redefini logica clauzelor și fără a folosi o funcție auxiliară. Nu folosiți SET, SETQ, SETF. Justificați răspunsul.

B. Să se scrie un program PROLOG care generează lista submulţimilor cu valori din intervalul [**a**, **b**], având număr par de elemente pare și număr impar de elemente impare. Se vor scrie modelele matematice și modelele de flux pentru predicatele folosite.

Exemplu- pentru $\mathbf{a}=2$ și $\mathbf{b}=4 \Rightarrow [[2,3,4]]$

C. Se consideră o listă neliniară. Să se scrie o funcţie LISP care să aibă ca rezultat lista iniţială din care au fost eliminaţi toţi atomii nenumerici de pe nivelurile pare (nivelul superficial se consideră 1). Se va folosi o funcţie MAP.
<u>Exemplu</u> pentru lista (a (1 (2 b)) (c (d))) rezultă (a (1 (2 b)) ((d)))