Parallel Computing Platforms: Control Structures and Memory Hierarchy

John Mellor-Crummey

Department of Computer Science Rice University

johnmc@rice.edu

Topics for Today

- SIMD and MIMD control structure
- Memory hierarchy and performance

Parallel Computing Platforms

A parallel computing platform must specify

- —concurrency = control structure
- —interaction between concurrent tasks = communication model

Control Structure of Parallel Platforms

Parallelism ranges from instructions to processes

- Processor control structure alternatives
 - work independently
 - operate under the centralized control of a single control unit

MIMD

- Multiple Instruction streams
 - each hardware thread has its own control unit
 - each hardware thread can execute different instructions
- Multiple Data streams
 - each thread can work on its own data

• SIMD

- Single Instruction stream
 - single control unit dispatches the same instruction to processing elements
- Multiple Data streams
 - processing elements work on their own data

Control Structure of Parallel Platforms - II

SIMT

- —Single Instruction stream
 - single control unit dispatches the same instruction to processing element
- —Multiple Threads
- SIMT features that SIMD lacks
 - —single instruction, multiple register sets
 - SIMT processing elements have a separate register set per thread
 - —single instruction, multiple flow paths
 - one can write if statement blocks that contain more than a single operation, some processors will execute the code, others will no-op.

SIMD and MIMD Processors

Interconnection Network PE+ control unit PE+ control unit PE+ control unit

SIMD architecture

MIMD architecture

PE = Processing Element

SIMD Control

- SIMD excels for computations with regular structure
 - —media processing, scientific kernels (e.g., linear algebra, FFT)
- Activity mask
 - —per PE predicated execution: turn off operations on certain PEs
 - each PE tests own conditional and sets own activity mask
 - PE can conditionally perform operation predicated on mask value

Example: 128-bit SIMD Vectors

Data types: anything that fits into 16 bytes, e.g.,

- Instructions operate in parallel on data in this 16 byte register
 - add, multiply etc.
- Data bytes must be contiguous in memory and aligned
- Additional instructions needed for
 - masking data
 - moving data from one part of a register to another

Computing with SIMD Vector Units

- Scalar processing
 - —one operation produces one result
- SIMD vector units
 - —one operation produces multiple results

Executing a Conditional on a SIMD Processor

conditional statement

if (A == 0)then C = Belse C = B/A

initial values

execute "then" branch

execute "else" branch

A 0 B \mathbf{C}

Processor 0

Α 0 B 5

Processor 0

Α B 5 5

Processor 0

Α 4 B ()

Processor 1

Α B $\mathbf{0}$

Processor 1

Α B 2

Processor 1

Α B

 \mathbf{O}

Processor 2

B

 $\mathbf{0}$

Processor 2

B

Processor 2

A $\mathbf{0}$

B

0

Processor 3

Α $\mathbf{0}$

B

Processor 3

A 0

B

Processor 3

SIMD Examples

- Previously: SIMD computers
 - —e.g., Connection Machine CM-1/2, and MasPar MP-1/2
 - CM-1 (1980s): 65,536 1-bit processors
- Today: SIMD units or co-processors (AKA accelerators)
 - —vector units
 - SSE/2/3/4 Streaming SIMD Extensions
 - 8 128-bit vector registers
 - 128 bits as 8-bit chars, 16-bit words, 32/64-bit int and float
 - AVX Advanced Vector Extensions
 - 16 256-bit vector registers in Intel and AMD processors since 2011
 - 256 bits as 8-bit chars, 16-bit words, 32/64-bit int and float
 - 32 512-bit vector registers in Intel Xeon Phi
 - 512 bits as 8-bit chars, 16-bit words, 32/64-bit int and float
 - -co-processors
 - ClearSpeed CSX700 array processor (control PE + array of 96 PEs)
 - nVIDIA PASCAL P100 GPGPU

Intel Knight's Landing (2016)

- > 8 billion transistors
- Self-hosted manycore processor
- Up to 72-cores
 - —4 SMT threads per core
 - —32 512-bit vector registers
- Up to 384GB of DDR4-2400 main memory
 - -115GB/s max mem BW
- Up to 16GB of MCDRAM on-package (3D stacked)
 - -400GB/s max mem BW
- 3.46TF double precision

2nd Generation Xeon Phi

SIMD: ClearSpeed MTAP Co-processor

MTAP processor

Features

- —hardware multi-threading
- —asynchronous, overlapped I/O
- -extensible instruction set

SIMD core

- —poly controller
- —poly execution unit
 - array of 192 PEs
 - 64- and 32-bit floating point
 - 250 MHz (key to low power)
 - 96 GFLOP, <15 Watts

(CSX700 released June 2008 company delisted in 2009)

NVIDIA PASCAL P100 (2016)

- 56 Streaming Multiprocessors (SMs)
- Each SM
 - —64 CUDA cores (single precision)
 - fully pipelined FP and INT units
 - IEEE 754-2008; fused multiply add
 - —two warp schedulers
 - 32-thread groups (warp)
 - 2 warps issue and execute concurrently
 - 2 inst/warp/cycle
 - —32 DP FP units
 - —16 LS units
 - —16 SFU
- 5.3 TFLOPs DP 300W

Tesla Products	Tesla K40	Tesla M40	Tesla P100
GPU	GK110 (Kepler)	GM200 (Maxwell)	GP100 (Pascal)
SMs	15	24	56
TPCs	15	24	28
FP32 CUDA Cores / SM	192	128	64
FP32 CUDA Cores / GPU	2880	3072	3584
P64 CUDA Cores / SM	64	4	32
P64 CUDA Cores / GPU	960	96	1792
Base Clock	745 MHz	948 MHz	1328 MHz
GPU Boost Clock	810/875 MHz	1114 MHz	1480 MHz
Peak FP32 GFLOPs1	5040	6840	10600
Peak FP64 GFLOPs1	1680	210	5300
exture Units	240	192	224
Memory Interface	384-bit GDDR5	384-bit GDDR5	4096-bit HBM2
Memory Size	Up to 12 GB	Up to 24 GB	16 GB
L2 Cache Size	1536 KB	3072 KB	4096 KB
Register File Size / SM	256 KB	256 KB	256 KB
Register File Size / GPU	3840 KB	6144 KB	14336 KB
TDP	235 Watts	250 Watts	300 Watts
ransistors	7.1 billion	8 billion	15.3 billion
GPU Die Size	551 mm²	601 mm²	610 mm²
Manufacturing Process	28-nm	28-nm	16-nm FinFET

NVIDIA PASCAL P100 (2016)

•	Each	S
---	------	---

—64 C

– f

– II

—two \

_ 3

_ :

- 2

—32 D

—16 L

—16 S

• 5.3 TFL 300W

	Tesla Products	Tesla K40	Tesla M40	Tesla P100		
	GPU	GK110 (Kepler)	GM200 (Maxwell)	GP100 (Pascal)		
,	SMs	15	24	56		
	TPCs	15	24	28		
′	FP32 CUDA Cores / SM	192	128	64		
	FP32 CUDA Cores / GPU	2880	3072	3584		
ı	FP64 CUDA Cores / SM	64	4	32		
į	FP64 CUDA Cores / GPU	960	96	1792		
	Base Clock	745 MHz	948 MHz	1328 MHz		
١	GPU Boost Clock	810/875 MHz	1114 MHz	1480 MHz		
	Peak FP32 GFLOPs1	5040	6840	10600		
	Peak FP64 GFLOPs1	1680	210	5300		
	Texture Units	240	192	224		
	Memory Interface	384-bit GDDR5	384-bit GDDR5	4096-bit HBM2		
	Memory Size	Up to 12 GB	Up to 24 GB	16 GB		
	L2 Cache Size	1536 KB	3072 KB	4096 KB		
	Register File Size / SM	256 KB	256 KB	256 KB		
	Register File Size / GPU	3840 KB	6144 KB	14336 KB		
	TDP	235 Watts	250 Watts	300 Watts		
	Transistors	7.1 billion	8 billion	15.3 billion		
	GPU Die Size	551 mm²	601 mm²	610 mm ²		
	Manufacturing Process	28-nm	28-nm	16-nm FinFET		
	¹ The GFLOPS in this chart are based on GPU Boost Clocks.					

Short Vectors: The Good and Bad

```
for (t = 0; t < T; ++t) {
                                                     for (t = 0; t < T; ++t) {
        for (i = 0; i < N; ++i)
                                                       for (i = 0; i < N; ++i)
          for (j = 1; j < N+1; ++j)
                                                         for (j = 0; j < N; ++j)
            C[i][j] = A[i][j] + A[i][j-1];
                                                           C[i][j] = A[i][j] + B[i][j];
S1:
                                              S3:
        for (i = 0; i < N; ++i)
                                                       for (i = 0; i < N; ++i)
          for (j = 1; j < N+1; ++j)
                                                         for (j = 0; j < N; ++j)
            A[i][j] = C[i][j] + C[i][j-1];
                                                           A[i][j] = B[i][j] + C[i][j];
S2:
                                              S4:
               AMD Phenom
                             1.2 GFlop/s
                                                           AMD Phenom
                                                                        1.9 GFlop/s
                                              Performance: Core2
                                                                        6.0 GFlop/s
  Performance: Core2
                             3.5 GFlop/s
                                                                        6.7 GFlop/s
                             4.1 GFlop/s
                                                           Core i7
               Core i7
              (a) Stencil code
                                                      (b) Non-Stencil code
```

The stencil code (a) has much lower performance than the non-stencil code (b) despite accessing 50% fewer data elements

The Subtlety of Using Short Vectors

Consider the following:

Stream alignment conflict between b[i][j+1] and c[i][j]

Dimension-lifted Transformation (DLT)

- (a)
- (b) 2D view of same array
- Transposed 2D array brings non-interacting (c) elements into contiguous vectors
- **New 1D layout after transformation** (d)

Core2Quad

MIMD Processors

Execute different programs on different processors

- Platforms include current generation systems
 - shared memory
 - multicore laptop
 - workstation with multiple quad core processors
 - Legacy:

```
SGI UV 3000 (up to 256 sockets, each with 8 cores)
Cray X1 (up to 8K processors)
```

- distributed memory
 - clusters (e.g., biou.rice.edu, davinci.rice.edu)
 - Cray XC, IBM Blue Gene
- SPMD programming paradigm
 - —Single Program, Multiple Data streams
 - same program on different PEs, behavior conditional on thread id

SIMD vs. MIMD

SIMD platforms

- —special purpose: not well-suited for all applications
- —custom designed with long design cycles
- —less hardware: single control unit
- —need less memory: only 1 copy of program
- —today
 - SIMD common only for vector units
 - SIMT common for GPUs, e.g., nVIDIA PASCAL

MIMD platforms

- —suitable for broad range of applications
- —inexpensive: off-the-shelf components + short design cycle
- —need more memory: program and OS on each processor

Data Movement and Communication

- Latency: How long does a single operation take?
 - measured in microseconds
- Bandwidth: What data rate can be sustained?
 - measured in Mbytes or GBytes per second
- These terms can be applied to
 - memory access
 - messaging

A Memory Hierarchy (Itanium 2)

Memory Bandwidth

- Limited by both
 - —the bandwidth of the memory bus
 - —the bandwidth of the memory modules
- Can be improved by increasing the size of memory blocks
- Memory system takes L time units to deliver B units of data
 - —L is the latency of the system
 - —B is the block size

Reusing Data in the Memory Hierarchy

- Spatial reuse: using more than one word in a multi-word line
 - —using multiple words in a cache line
- Temporal reuse: using a word repeatedly
 - —accessing the same word in a cache line more than once
- Applies at every level of the memory hierarchy
 - —e.g. TLВ
 - spatial reuse: access multiple cache lines in a page
 - temporal reuse: access data on the same page repeatedly

Experimental Study of Memory (membench)

Microbenchmark for memory system performance


```
for array A of length L from 4KB to 8MB by 2x
for stride s from 4 Bytes (1 word) to L/2 by 2x
time the following loop
(repeat many times and average)
for i from 0 to L by s
load A[i] from memory (4 Bytes)
```

Membench: What to Expect

Consider the average cost per load

- —plot one line for each array length, time vs. stride
- —unit stride is best: if cache line holds 4 words, only ¼ miss
- —if array is smaller than a cache, all accesses will hit after first run
 - time for first run is negligible with enough repetitions
- —upper right figure assumes only one level of cache
- —performance profile is more complicated on modern systems

Memory Hierarchy on a Sun Ultra-2i

See www.cs.berkeley.edu/~yelick/arvindk/t3d-isca95.ps for details

Memory Hierarchy on a Pentium III

Memory Bandwidth in Practice

What matters for application performance is "balance" between sustainable memory bandwidth and peak double-precision floating-point performance.

Systems at TACC

- —Ranger (4-socket quad-core AMD "Barcelona")
 - bandwidth = 7.5 GB/s (2.19 GW/s, 8-Byte Words) per node
 - peak FP rate = 2.3 GHz * 4 FP Ops/Hz/core * 4 cores/socket * 4 sockets = 147.2 GFLOPS/node
 - ratio = 67 FLOPS/Word
- —Lonestar (2-socket 6-core Intel "Westmere")
 - bandwidth = 41 GB/s (5.125 GW/s) per node
 - peak FP rate = 3.33 GHz * 4 Ops/Hz/core * 6 cores/socket * 2 sockets = 160 GFLOPS/node
 - ratio = 31 FLOPS/Word
- —Stampede (2-socket 8-core Intel "Sandy Bridge" processors)
 - bandwidth = 78 GB/s (9.75 GW/s) per node
 - peak FP rate = 2.7 GHz * 8 FP Ops/Hz * 8 cores/socket * 2 sockets = 345.6 GFLOPS per node
 - ratio = 35 FLOPS/Word

Understanding Performance Limitations

Williams, Waterman, Patterson; CACM April 2009

Memory System Performance: Summary

- Exploiting spatial and temporal locality is critical for
 - —amortizing memory latency
 - —increasing effective memory bandwidth
- Ratio # operations / # memory accesses
 - —good indicator of anticipated tolerance to memory bandwidth
- Memory layout and computation organization significantly affect spatial and temporal locality

Multithreading for Latency Hiding

- A thread is a single stream of control in the flow of a program.
- We illustrate threads with a dense matrix vector multiply

```
for (i = 0; i < n; i++)
    c[i] = dot_product(get_row(a, i), b);</pre>
```

Each dot-product is independent of others

```
—thus, can execute concurrently
```

Can rewrite the above code segment using threads

```
for (i = 0; i < n; i++)
c[i] = create_thread(dot_product,get_row(a, i), b);</pre>
```

Multithreading for Latency Hiding (contd)

- Consider how the code executes
 - —first thread accesses a pair of vector elements and waits for them
 - —second thread can access two other vector elements in the next cycle

—...

- After L units of time
 - —(L is the latency of the memory system)
 - —first thread gets its data from memory and performs its madd
- Next cycle
 - —data items for the next function instance arrive
- ...
- Every clock cycle, we can perform a computation

Multithreading for Latency Hiding (contd)

- Previous example makes two hardware assumptions
 - —memory system can service multiple outstanding requests
 - —processor is capable of switching threads at every cycle
- Also requires program to have explicit threaded concurrency
- Machines such as the Sun T2000 (Niagara-2) and the Cray Threadstorm rely on multithreaded processors
 - —can switch the context of execution in every cycle
 - —are able to hide latency effectively
- Sun T2000, 64-bit SPARC v9 processor @1200MHz
 - —organization: 8 cores, 4 strands per core, 8KB Data cache and 16KB Instruction cache per core, L2 cache: unified 12-way 3MB, RAM: 32GB
- Cray Threadstorm: 128 threads

Prefetching for Latency Hiding

- Misses on loads cause programs to stall; why not load data before it is needed?
 - —by the time it is actually needed, it will be there!
- Drawback: need space to store early loads
 - —may overwrite other necessary data in cache
 - —if early loads are overwritten, we are little worse than before!
- Prefetching support
 - —software only, e.g. Itanium2
 - —hardware and software, modern Intel, AMD, ...
- Hardware prefetching requires
 - —predictable access pattern
 - —limited number of independent streams

Tradeoffs in Multithreading and Prefetching

Multithreaded systems

- —bandwidth requirements
 - may increase very significantly because of reduced cache/ thread
- —can become bandwidth bound instead of latency bound

Multithreading and prefetching

- —only address latency
- -may often exacerbate bandwidth needs
- —have significantly larger data footprint; need hardware for that

References

- Adapted from slides "Parallel Programming Platforms" by Ananth Grama accompanying course textbook
- Vivek Sarkar (Rice), COMP 422 slides from Spring 2008
- Jack Dongarra (U. Tenn.), CS 594 slides from Spring 2008, http://www.cs.utk.edu/%7Edongarra/WEB-PAGES/ cs594-2008.htm
- Kathy Yelick (UC Berkeley), CS 267 slides from Spring 2007, http://www.eecs.berkeley.edu/~yelick/cs267_sp07/lectures
- Tom Henretty, Kevin Stock, Louis-Noël Pouchet, Franz Franchetti, J. Ramanujam and P. Sadayappan. Data Layout Transformation for Stencil Computations on Short-Vector SIMD Architectures. In ETAPS Intl. Conf. on Compiler Construction (CC'2011), Springer Verlag, Saarbrucken, Germany, March 2011.