The Blindingly Simple Protocol Language

Amit K. Chopra

Lancaster University

Information Protocols (Singh, 2011)

An information-based protocol language

- Declarative
 - Bag of protocols (message specification is atomic protocol)
- Specifies a decentralized information object
- Specifies information causality
 - The messages an agent can send depends upon what it knows
 - Local state approach
- Asynchronous communication
- Requires no ordering guarantees from infrastructure

Traditional Specifications: Procedural

Low-level, over-specified protocols, easily wrong

- Traditional approaches
 - ► Emphasize arbitrary ordering and occurrence constraints
 - ▶ Then work hard to deal with those constraints
- Our philosophy: The Zen of Distributed Computing
 - ▶ Necessary ordering constraints fall out from *causality*
 - Necessary occurrence constraints fall out from integrity
 - Unnecessary constraints: simply ignore such

Properties of Participants

- Autonomy
- Myopia
 - All choices must be local
 - Correctness must not rely on future interactions
- ▶ Heterogeneity: local \neq internal
 - Local state (projection of global state, which is stored nowhere)
 - Public or observable
 - Typically, must be revealed for correctness
 - Internal state
 - Private
 - Must never be revealed: to avoid false coupling
- Shared nothing representation of local state
 - Enact via messaging

BSPL, the Blindingly Simple Protocol Language

Main ideas

- Only two syntactic notions
 - ▶ Declare a message schema: as an atomic protocol
 - ▶ Declare a composite protocol: as a bag of references to protocols
- Parameters are central
 - Provide a basis for expressing meaning in terms of bindings in protocol instances
 - Yield unambiguous specification of compositions through public parameters
 - Capture progression of a role's knowledge
 - Capture the completeness of a protocol enactment
 - ► Capture uniqueness of enactments through keys

Key Parameters in BSPL

Marked as [□]key[¬]

- All the key parameters together form the key
- Each protocol must define at least one key parameter
- Each message or protocol reference must have at least one key parameter in common with the protocol in whose declaration it occurs
- ► The key of a protocol provides a basis for the uniqueness of its enactments

Parameter Adornments in BSPL

Capture the essential causal structure of a protocol (for simplicity, assume all parameters are strings)

- ▶ 「in¬: Information that must be provided to instantiate a protocol
 - Bindings must exist locally in order to proceed
 - Bindings must be produced through some other protocol
- ► 「out¬: Information that is generated by the protocol instances
 - ▶ Bindings can be fed into other protocols through their ¬in¬ parameters, thereby accomplishing composition
 - ► A standalone protocol must adorn all its public parameters ¬out¬
- ▶ 「nil¬: Information that is absent from the protocol instance
 - Bindings must not exist

Global state (virtual): Aggregation of the local states

```
Initiate { role B, S parameter out ID key, out item B \mapsto S \colon \ \mathsf{rfq} \, [\mathsf{out} \, \, \mathsf{ID} \, \, \mathsf{key} \, , \, \, \mathsf{out} \, \, \mathsf{item} \, ] }
```

Global state (virtual): Aggregation of the local states

```
\label{eq:local_continuous_section} \begin{split} & \text{Initiate } \{ \\ & \text{role B, S} \\ & \text{parameter out ID key, out item} \\ & \text{B} \mapsto \text{S: rfq[out ID key, out item]} \\ \} \end{split}
```


S:rfq ID item

Global state (virtual): Aggregation of the local states

```
Initiate { role B, S parameter out ID key, out item B \mapsto S \colon \mbox{ rfq} \mbox{ [out ID key, out item]} \}
```

		ID	item
		1	fig
В	:rfq		1
D	item		
	fig		

5:rfq			
ID	item		

Initiate (virtual)

Global state (virtual): Aggregation of the local states

```
Initiate { role B, S parameter out ID key, out item B \mapsto S \colon \mbox{ rfq} \mbox{ [out ID key, out item]} \}
```

			ID	item
			1 5	fig jam
В	:rfq			
ID	item			
1 5	fig jam	•		

S:rfq			
ID item			

Initiate (virtual)

Global state (virtual): Aggregation of the local states

```
\label{eq:continuous} \begin{array}{l} \mbox{Initiate } \{ \\ \mbox{role B, S} \\ \mbox{parameter out ID key, out item} \\ \mbox{B} \mapsto \mbox{S: rfq[out ID key, out item]} \\ \} \end{array}
```

Initiate (virtual)		
ID	item	
1 5	fig jam	

B:rfq	
item	
fig jam	
3	

S:rfq		
ID	item	
5	jam	

Global state (virtual): Aggregation of the local states

```
\label{eq:local_state} \begin{array}{l} \mbox{Initiate } \{ \\ \mbox{role B, S} \\ \mbox{parameter out ID key, out item} \\ \mbox{B} \mapsto \mbox{S: rfq} \left[ \mbox{out ID key, out item} \right] \\ \} \end{array}
```

Initiate (virtual)		
ID	item	
1 5	fig jam	

ID	item
1	fig
5	jam
$\times 1$	apple

B:rfa

5:rfq		
ID	item	
5	jam	

Global state (virtual): Aggregation of the local states

```
\label{eq:local_state} \begin{array}{l} \mbox{Initiate } \{ \\ \mbox{role B, S} \\ \mbox{parameter out ID key, out item} \\ \mbox{B} \mapsto \mbox{S: rfq} \left[ \mbox{out ID key, out item} \right] \\ \} \end{array}
```

Initiate	(virtual)
ID	item
1 5 8	fig jam fig

D.rrq		
ID	item	
1 5 8	fig jam fig	

B:rfa

	5:rrq	
ID	item	
5	jam	

The Foregoing Interaction as possible UML Interaction Diagrams (Assuming all messages land)


```
Offer { role B, S parameter out ID key, out item, out price B \mapsto S \colon \ \mathsf{rfq} \, [\mathsf{out} \, \mathsf{ID}, \, \mathsf{out} \, \mathsf{item}] \\ S \mapsto B \colon \, \mathsf{quote} \, [\mathsf{in} \, \mathsf{ID}, \, \mathsf{in} \, \mathsf{item}, \, \mathsf{out} \, \mathsf{price}] \\ \}
```

```
Offer { role B, S parameter out ID key, out item, out price B \mapsto S \colon \mathsf{rfq} \big[ \mathsf{out} \ \mathsf{ID}, \ \mathsf{out} \ \mathsf{item} \big] \\ S \mapsto B \colon \ \mathsf{quote} \big[ \mathsf{in} \ \mathsf{ID}, \ \mathsf{in} \ \mathsf{item}, \ \mathsf{out} \ \mathsf{price} \big] \\ \}
```

	Offer (virtual)		
ID	item	price	
1	fig		

	B:rrq	
	ID	item
Ī	1	fig

B:quote		
ID	item	price

5:rfq	
ID	item
1	fig

S:quote		
ID	item	price

```
Offer {
role B, S
parameter out ID key, out item, out price
B \mapsto S: rfq [out ID, out item]
S \mapsto B: quote[in ID, in item, out price]
```

		ID	item
		1	fig
B:rfq	B:quote		. 1
ID item	ID item i	price	

_	S:rfq	
	ID	item
	1	fig

price

10

	S:quote		
	ID	item	price
Ī	1	fig	10

fig

1

Offer (virtual)

```
Offer { role B, S parameter out ID key, out item, out price B \mapsto S \colon \mathsf{rfq} \big[ \mathsf{out} \ \mathsf{ID}, \ \mathsf{out} \ \mathsf{item} \big] \\ S \mapsto B \colon \ \mathsf{quote} \big[ \mathsf{in} \ \mathsf{ID}, \ \mathsf{in} \ \mathsf{item}, \ \mathsf{out} \ \mathsf{price} \big] \\ \}
```

Offer (virtual)		
ID	item	price
1	fig	10

	B:rfq	
Ī	ID	item
Ī	1	fig

B:quote		
ID	item	price
1	fig	10

	S:rfq					
	ID	item				
	fig					

S:quote							
ID	item	price					
1	fig	10					

```
Offer { role B, S parameter out ID key, out item, out price B \mapsto S \colon \mathsf{rfq} \big[ \mathsf{out} \ \mathsf{ID}, \ \mathsf{out} \ \mathsf{item} \big] \\ S \mapsto B \colon \ \mathsf{quote} \big[ \mathsf{in} \ \mathsf{ID}, \ \mathsf{in} \ \mathsf{item}, \ \mathsf{out} \ \mathsf{price} \big] \\ \}
```

Offer (virtual)								
ID item price								
1 fig 10								

_	D:riq					
	ID	item				
-	1	fig				

	B:quote						
ID	item	price					
1	fig	10					

s:riq						
ID item						
1	fig					

	5:quote	
ID	item	price
1 ×4	fig fig	10 10

```
Decide Offer { role B, S parameter out ID key, out item, out price, out decision  B \mapsto S \colon \ \mathsf{rfq} \ [\mathsf{out} \ \mathsf{ID}, \ \mathsf{out} \ \mathsf{item} \ ] \\ S \mapsto B \colon \ \mathsf{quote} \ [\mathsf{in} \ \mathsf{ID}, \ \mathsf{in} \ \mathsf{item}, \ \mathsf{out} \ \mathsf{price} \ ] \\ B \mapsto S \colon \ \mathsf{accept} \ [\mathsf{in} \ \mathsf{ID}, \ \mathsf{in} \ \mathsf{item}, \ \mathsf{in} \ \mathsf{price}, \ \mathsf{out} \ \mathsf{decision} \ ] \\ B \mapsto S \colon \ \mathsf{reject} \ [\mathsf{in} \ \mathsf{ID}, \ \mathsf{in} \ \mathsf{item}, \ \mathsf{in} \ \mathsf{price}, \ \mathsf{out} \ \mathsf{decision} \ ] \\ \}
```

```
Decide Offer { role B, S parameter out ID key, out item, out price, out decision B \mapsto S \colon \mathsf{rfq} \, [\mathsf{out} \, \mathsf{ID}, \, \mathsf{out} \, \mathsf{item}] \\ S \mapsto B \colon \, \mathsf{quote} \, [\mathsf{in} \, \mathsf{ID}, \, \mathsf{in} \, \mathsf{item}, \, \mathsf{out} \, \mathsf{price}] \\ B \mapsto S \colon \, \mathsf{accept} \, [\mathsf{in} \, \mathsf{ID}, \, \mathsf{in} \, \mathsf{item}, \, \mathsf{in} \, \mathsf{price}, \, \mathsf{out} \, \mathsf{decision}] \\ B \mapsto S \colon \, \mathsf{reject} \, [\mathsf{in} \, \mathsf{ID}, \, \mathsf{in} \, \mathsf{item}, \, \mathsf{in} \, \mathsf{price}, \, \mathsf{out} \, \mathsf{decision}] \\ \}
```

	Decide Offer (virtual)							
ID	item	decision						
1	fig	10						

B:rfq		B:quote			B:accept				
ID	item		ID	item	price	ID	item	price	decision
1	fie		1	fire	10				

B:reject								
ID	item	price	decision					

```
Decide Offer { role B, S parameter out ID key, out item, out price, out decision B \mapsto S\colon \ \mathsf{rfq} \ [\mathsf{out} \ \mathsf{ID}, \ \mathsf{out} \ \mathsf{item}] \\ S \mapsto B\colon \ \mathsf{quote} \ [\mathsf{in} \ \mathsf{ID}, \ \mathsf{in} \ \mathsf{item}, \ \mathsf{out} \ \mathsf{price}] \\ B \mapsto S\colon \ \mathsf{accept} \ [\mathsf{in} \ \mathsf{ID}, \ \mathsf{in} \ \mathsf{item}, \ \mathsf{in} \ \mathsf{price}, \ \mathsf{out} \ \mathsf{decision}] \\ B \mapsto S\colon \ \mathsf{reject} \ [\mathsf{in} \ \mathsf{ID}, \ \mathsf{in} \ \mathsf{item}, \ \mathsf{in} \ \mathsf{price}, \ \mathsf{out} \ \mathsf{decision}] \\ \}
```

Decide Offer (virtual)								
ID	item	price	decision					
1	fig	10	nice					

B:rfq		B:quote			B:accept				
ID	item		ID	item	price	ID	item	price	decision
1	fin	•	1	fin	10	1	fin	10	nice

B:reject						
ID	item	price	decision			

```
Decide Offer { role B, S parameter out ID key, out item, out price, out decision B \mapsto S\colon \ \mathsf{rfq} \ [\mathsf{out} \ \mathsf{ID}, \ \mathsf{out} \ \mathsf{item}] \\ S \mapsto B\colon \ \mathsf{quote} \ [\mathsf{in} \ \mathsf{ID}, \ \mathsf{in} \ \mathsf{item}, \ \mathsf{out} \ \mathsf{price}] \\ B \mapsto S\colon \ \mathsf{accept} \ [\mathsf{in} \ \mathsf{ID}, \ \mathsf{in} \ \mathsf{item}, \ \mathsf{in} \ \mathsf{price}, \ \mathsf{out} \ \mathsf{decision}] \\ B \mapsto S\colon \ \mathsf{reject} \ [\mathsf{in} \ \mathsf{ID}, \ \mathsf{in} \ \mathsf{item}, \ \mathsf{in} \ \mathsf{price}, \ \mathsf{out} \ \mathsf{decision}] \\ \}
```

Decide Offer (virtual)						
ID	item	price	decision			
1	fig	10	nice			

E	3:rfq	_	B:quote			B:accept					
ID	item		ID	item	price	-	ID	item	price	decision	IE
1	fiσ	_	1	fig	10	•	1	fiσ	10	nice	

B:reject						
ID	item	price	decision			
×1	fig	10	nice			

The Purchase Protocol

```
Purchase {
role B, S, Shipper
parameter out ID key, out item, out price, out outcome
private address, resp
B \mapsto S: rfq [out ID, out item]
S \mapsto B: quote[in ID, in item, out price]
B \mapsto S: accept[in ID, in item, in price, out address, out resp]
B \mapsto S: reject[in ID, in item, in price, out outcome, out resp]
S \mapsto Shipper: ship[in ID, in item, in address]
 Shipper \mapsto B: deliver[in ID, in item, in address, out outcome]
```

- reject conflicts with accept on resp (a private parameter)
- reject or deliver must occur for completion (to bind outcome)

Knowledge and Viability

When is a message viable? What effect does it have on a role's local knowledge?

- Knowledge increases monotonically at each role
- ► An 「out¬ parameter **creates** and transmits knowledge
- ▶ An 「in¬ parameter transmits knowledge
- Repetitions through multiple paths are harmless and superfluous

Possible Enactments as Sets of Local Histories

Each participant's local history: set of messages sent and received

Polymorphism

Same message schema, but different adornments

```
Flexible — Offer { role B, S parameter in ID key, out item, out price, out qID  B \mapsto S \colon \ \mathsf{rfq} \ [\mathsf{in} \ \mathsf{ID}, \ \mathsf{out} \ \mathsf{item}, \ \mathsf{nil} \ \mathsf{price}] \\ B \mapsto S \colon \ \mathsf{rfq} \ [\mathsf{in} \ \mathsf{ID}, \ \mathsf{out} \ \mathsf{item}, \ \mathsf{out} \ \mathsf{price}] \\ S \mapsto B \colon \ \mathsf{quote} \ [\mathsf{in} \ \mathsf{ID}, \ \mathsf{in} \ \mathsf{item}, \ \mathsf{out} \ \mathsf{price}, \ \mathsf{out} \ \mathsf{qID}] \\ S \mapsto B \colon \ \mathsf{quote} \ [\mathsf{in} \ \mathsf{ID}, \ \mathsf{in} \ \mathsf{item}, \ \mathsf{in} \ \mathsf{price}, \ \mathsf{out} \ \mathsf{qID}] \\ \}
```

▶ B has priority on generating price, but if it chooses not to (by sending rfq without price), then S can generate it

Remark on Control versus Information Flow

- Control flow
 - ▶ Natural within a single computational thread
 - Exemplified by conditional branching
 - Presumes master-slave relationship across threads
 - Impossible between mutually autonomous parties because neither controls the other
 - May sound appropriate, but only because of long habit
- Information flow
 - Natural across computational threads
 - Explicitly tied to causality

Information Centrism

Characterize each interaction purely in terms of information

- Explicit causality
 - Flow of information coincides with flow of causality
 - No hidden coordination
- Keys
 - Uniqueness
 - Basis for completion
- Integrity
 - Parameter has at most one value in any enactment
- Immutability
 - Durability
 - Robustness: insensitivity to
 - Reordering by infrastructure
 - Retransmission: one delivery is all it needs