Homework IV (2021)

1. An engineer is interested in the effects of cutting speed (A), tool geometry (B), and cutting angle on the life (in hours) of a machine tool. Two levels of each factor are chosen, and three replicates of a 2³ factorial design are run. The results are as follows:

			Treatment	Replicate		
A	В	\mathbf{C}	Combination	I	II	III
-	-	-	(1)	21	31	25
+	-	-	\mathbf{a}	33	43	29
-	+	-	b	34	34	50
+	+	-	ab	56	47	46
-	-	+	$^{\mathrm{c}}$	43	45	38
+	-	+	ac	41	37	36
-	+	+	bc	61	50	54
+	+	+	abc	40	41	47

- (a) Estimate the factor effects. Which effects appear to be large?
- (b) Use the analysis of variance to confirm your conclusions for part (a).
- (c) Write down a regression model for predicting tool life (in hours) based on the results of this experiment.
- (d) Analyze the residuals. Are there any obvious problems?
- (e) Based on the analysis of main effects and interaction plots, what levels of A, B, and C would you recommend using?
- 2. Consider the data from the first replicate of Problem 1. Suppose that these observations could not all be run using the same bar stock. Set up a design to run these observations in two blocks of four observations each with ABC confounded. Analyze the data.

Block 1	Block 2
(1)	a
ab	b
ac	\mathbf{c}
bc	abc

3. Repeat the analysis of Problem 1 assuming that ABC was confounded with blocks in each replicate.