Chapter 8

Introduction aux équations différentielles stochastiques

8.1 Equations différentielles Stochastiques au sens d'Itô

L'idée de ce chapitre est de donner un sens à

$$dX_t = b(t, X_t) dt + \sigma(t, X_t) dW_t$$

où le plus généralement possible $b(t,x) = (b_i(t,x))_{1 \le i \le d}$, appelée vecteur de dérive, avec $b_i : \mathbb{R}^+ \times \mathbb{R}^d \to \mathbb{R}$ fonction borélienne et $\sigma(t,x) = (\sigma_{i,j}(t,x))_{\substack{1 \le i \le d \\ 1 \le j \le r}}$, appelée matrice de dispersion, avec $\sigma_{i,j} : \mathbb{R}^+ \times \mathbb{R}^d \to \mathbb{R}$

 \mathbb{R} fonction borélienne, W un $(\mathcal{F}_t)_{t\geq 0}$ -mouvement Brownien de dimension r et X est un processus à trajectoires continues à valeurs dans \mathbb{R}^d qui sera la "solution" de l'équation ci-dessus.

Pour la suite de l'exposé nous prendrons d=r=1. Les résultats développés restent valables modulo leurs adaptations aux dimensions supérieure.

Nous allons commencer par donner un sens aux équations ci dessus et à leur solution. Comme précédemment on se place dans les conditions habituelles.

8.1.1 Solution forte et unicité trajectorielle

Définition 8.1. Solution Forte.

Étant donnés $B = (B_t)_{0 \le t \le T}$ un M.B.S. de filtration naturelle $(\mathcal{F}_t)_{0 \le t \le T}$, b et σ des fonctions mesurables et $x \in \mathbb{R}$. Le triplet $(X, B, (\mathcal{F}_t)_{0 \le t \le T})$ est appellé solution (forte) de l'EDS homogène

$$X_{t} = x + \int_{0}^{t} b(X_{s}) ds + \int_{0}^{t} \sigma(X_{s}) dB_{s};$$
(8.1)

repectivement : de l'EDS non homogène

$$X_{t} = x + \int_{0}^{t} b(s, X_{s}) ds + \int_{0}^{t} \sigma(s, X_{s}) dB_{s}$$
 (8.2)

Si les conditions suivantes sont vérifiées :

- (i) X est $(\mathcal{F}_t)_{0 \leq t \leq T}$ -adaptée;
- (ii) pour tout $t \in [0,T]$ on a \mathbb{P} -p.s. $\int_0^t \left(|b(X_s)| + \sigma^2(X_s) \right) ds < \infty$; respectivement $\int_0^t \left(|b(s,X_s)| + \sigma^2(s,X_s) \right) ds < \infty$;
- (iii) X vérifie (8.1); respectivement (8.2).

Remarques Importantes:

1. Les trajectoires des solutions fortes sont continues P-p.s.

2. Par abus, pour des raisons de facilité d'écriture évidente, on emploi souvent la notation "différentielle"

$$dX_t = b(X_t) dt + \sigma(X_t) dB_t$$
; avec $X_0 = x$ pour (8.1)

et

$$dX_t = b(t, X_t) dt + \sigma(t, X_t) dB_t$$
; avec $X_0 = x$ pour (8.2)

Toutefois il doit bien être clair que ceci est un abus de notation et que le sens rigoureux mathématique est donnée par la représentation intégrale : ne jamais l'oublier.

3. Il n'est pas gênant de prendre une condition initiale aléatoire : i.e. remplacer x par une v.a. Z à condition qu'elle soit indépendante du M.B.S. B. On enrichira alors la filtration de la tribu engendrée par Z.

Définition 8.2. On dit qu'il y a unicité trajectorielle des solutions de (8.1) ou (8.2) si étant donné $(X, B, (\mathcal{F})_{t \in [0,T]})$ et $(X', B, (\mathcal{F})_{t \in [0,T]})$ deux solutions de (8.1) respectivement (8.2) avec $X_0 = X'_0 = x$ pour le même $(\mathcal{F})_{t \in [0,T]}$ -M.B.S. B alors avec \mathbb{P} probabilité 1 on a $X_t = X'_t$ pour tout $t \geq 0$: i.e. X et X' sont indistingables.

Exemple.

Soit $b: \mathbb{R} \to \mathbb{R}$ une fonction mesurable décroissante (au sens large). On considère l'EDS

$$dX_t = b(X_t) dt + dB_t (8.3)$$

Supposons que l'on ait deux solutions fortes $(X, B, (\mathcal{F})_{t \in [0,T]})$ et $(X', B, (\mathcal{F})_{t \in [0,T]})$ de (8.3) avec $X_0 = X'_0 = x$.

Appliquons la formule d'Itô à $f(X_t, X_t') = (X_t - X_t')^2$: on a $f(x, y) = (x - y)^2$ d'où $f_x'(x, y) = 2(x - y)$, $f_{yy}'(x, y) = -2(x - y)$, $f_{xx}''(x, y) = f_{yy}''(x, y) = 2$ et $f_{xy}'' = -2$

$$(X_t - X_t')^2 = 2 \int_0^t (X_s - X_s') \ dX_s - 2 \int_0^t (X_s - X_s') \ dX_s' + \frac{1}{2} \int_0^t 2 \ d\langle X \rangle_s + \frac{1}{2} \int_0^t 2 \ d\langle X' \rangle_s - \int_0^t 2 \ d\langle X, X' \rangle_s$$

Et en observant que $\langle X \rangle_t = \langle X' \rangle_t = \langle X, X' \rangle_t = t$ on obtient \mathbb{P} -p.s.

$$0 \le (X_t - X_t')^2 = 2 \int_0^t (X_s - X_s')(b(X_s) - b(X_s')) \ ds$$

or de part la monotonie de b on a $\forall x, y \in \mathbb{R}, (x-y)(b(x)-b(y)) \leq 0$ on en déduit \mathbb{P} -p.s. que

$$(X_t - X_t')^2 = 0$$

Donc par la continuité des trajectoires des solution fortes X et X' sont indistingables d'où l'unicité trajectorielle.

8.1.2 Théorèmes d'Itô

Dans le cas où $\sigma \equiv 0$ les équations deviennent des équations différentielles ordinaires

$$dX_t = b(t, X_t) dt$$

dont la théorie est bien connue. On sait notamment que une condition habituelle pour l'unicité de solution continue de ces équation est d'imposer que la fonction b soit localement Lipschitzienne et bornée sur les compacts de $\mathbb{R}^+ \times \mathbb{R}$. Cela assure entre autre que pour t>0 suffisament petit les itérés de Picard-Lindelöf

$$X_t^{(0)} = X_0; \ X_t^{(n+1)} = X_0 + \int_0^t b(s, X_s^{(n)}) \ ds \ \text{pour} \ n \in \mathbb{N}$$

convergent vers la solution de l'equation ordinaire ci dessus. En revanche il existe des contres exemples lorsque b ne satisfait pas ce type de conditions.

On ne sera donc pas étonné de les retrouver dans notre contexte.

Théorème 8.3. Unicité trajectorielle (cas homogène)

On suppose que les coefficients de (8.1) sont localement Lipchiziens : i.e. pour tout entier $n \ge 1$ il existe une constante $K_n < \infty$ telle que pour tous $|x| \le n$ et $|y| \le n$

$$|b(x) - b(y)| + |\sigma(x) - \sigma(y)| \le K_n|x - y| \tag{8.4}$$

alors on a unicité trajectorielle des solutions fortes de l'EDS

$$dX_t = b(X_t) dt + \sigma(X_t) dB_t.$$

Preuve. Supposons que X et Y soient deux solutions fortes de l'EDS ci dessus avec $X_0 = Y_0$. Pour tout $n \ge 1$ on définit les temps d'arrêts

$$\tau_n = \inf\{t \ge 0 : |X_t| \ge n\} \text{ et } \widetilde{\tau}_n = \inf\{t \ge 0 : |Y_t| \ge n\}$$

et on pose $S_n=\tau_n\wedge\widetilde{\tau}_n.$ On a \mathbb{P} -p.s. que $\lim_{n\to\infty}S_n=+\infty$ et

$$X_{t \wedge S_n} - Y_{t \wedge S_n} = \int_0^{t \wedge S_n} (b(X_u) - b(Y_u)) \ du + \int_0^{t \wedge S_n} (\sigma(X_u) - \sigma(Y_u)) \ dB_u$$

En utilisant que pour tous a,b on a $(a+b)^2 \le 2(a^2+b^2)$ on obtient

$$(X_{t \wedge S_n} - Y_{t \wedge S_n})^2 = 2 \left[\left(\int_0^{t \wedge S_n} (b(X_u) - b(Y_u)) \ du \right)^2 + \left(\int_0^{t \wedge S_n} (\sigma(X_u) - \sigma(Y_u)) \ dB_u \right)^2 \right]$$

Par Cauchy-Schwarz on a

$$\left(\int_0^{t \wedge S_n} \left(b(X_u) - b(Y_u) \right) \, du \right)^2 \leq \left(\int_0^{t \wedge S_n} 1 \, du \right) \left(\int_0^{t \wedge S_n} \left(b(X_u) - b(Y_u) \right)^2 \, du \right) \leq t \int_0^{t \wedge S_n} \left(b(X_u) - b(Y_u) \right)^2 \, du$$

et par l'isométrie d'Itô

$$\mathbb{E}\left[\left(\int_0^{t \wedge S_n} (\sigma(X_u) - \sigma(Y_u)) \ dB_u\right)^2\right] = \mathbb{E}\left[\int_0^{t \wedge S_n} (\sigma(X_u) - \sigma(Y_u))^2 \ du\right]$$

d'où

$$\mathbb{E}[(X_{t \wedge S_n} - Y_{t \wedge S_n})^2] \le 2t \mathbb{E}\left[\int_0^{t \wedge S_n} (b(X_u) - b(Y_u))^2 du\right] + 2\mathbb{E}\left[\int_0^{t \wedge S_n} (\sigma(X_u) - \sigma(Y_u))^2 du\right]$$

A présent pour tout $t \in [0, T]$ on a en utilisant (8.4)

$$\mathbb{E}[(X_{t \wedge S_n} - Y_{t \wedge S_n})^2] \le 2(T+1)K_n^2 \int_0^t \mathbb{E}[(X_{u \wedge S_n} - Y_{u \wedge S_n})^2] du$$
 (8.5)

A ce niveau nous allons utiliser un résultat célèbre d'analyse

Lemme 8.4. Lemme de Grönwall.

Si g est une fonction continue vérifiant

$$0 \le g(t) \le \alpha(t) + \beta \int_0^t g(s) \ ds \ pour \ 0 \le t \le T$$
 (8.6)

où $\alpha(t) \geq 0$ pour tout $t \in [0,T]$ et $\beta \geq 0$ alors :

$$0 \le g(t) \le \alpha(t) + \beta \int_0^t \alpha(s)e^{\beta(t-s)} ds \ pour \ 0 \le t \le T$$

En particulier, si $\alpha \equiv 0$ alors g = 0.

 $\bf Preuve.$ Il suffit d'observer que

$$\frac{d}{dt}\left(e^{-\beta t}\int_0^t g(s)\ ds\right) = -\beta e^{-\beta t}\int_0^t g(s)\ ds + e^{-\beta t}g(t) = e^{-\beta t}\left(g(t) - \beta\int_0^t g(s)\ ds\right)$$

donc par l'hypothèse (8.6)

$$\frac{d}{dt}\left(e^{-\beta t}\int_0^t g(s)\ ds\right) \le e^{-\beta t}\alpha(t)$$

qui en intégrant donne

$$e^{-\beta t} \int_0^t g(s) \ ds \leq \int_0^t \alpha(s) e^{-\beta s} \ ds \Longleftrightarrow \int_0^t g(s) \ ds \leq \int_0^t \alpha(s) e^{\beta(t-s)} \ ds$$

et en substituant ce résultat à nouveau dans (8.6) on obtient le résultat.

Donc en appliquant le Lemme de Grönwall à (8.5) avec $g(t) = \mathbb{E}[(X_{t \wedge S_n} - Y_{t \wedge S_n})^2]$, $\alpha \equiv 0$ et $\beta = 2(T+1)K_n^2$ on obtient que les processus arrêtés X^{S_n} et Y^{S_n} sont indistingables. En prenant la limite quand $n \to +\infty$ on obtient que X et Y sont indistingables.

Le cas non homogène ne pose pas de difficulté supplémentaire.

Théorème 8.5. Unicité trajectorielle (cas non homogène)

On suppose que les coefficients de (8.2) sont localement Lipchiziens : i.e. pour tout entier $n \ge 1$ il existe une constante $K_n < \infty$ pour tous $t \in \mathbb{R}^+$, $|x| \le n$ et $|y| \le n$

$$|b(t,x) - b(t,y)| + |\sigma(t,x) - \sigma(t,y)| \le K_n|x-y|$$
 (8.7)

alors on a unicité trajectorielle des solutions fortes de l'EDS

$$dX_t = b(t, X_t) dt + \sigma(t, X_t) dB_t$$

Remarque : Malheureusement la condition de localité Lipchitzienne n'est pas suffisante pour assurer l'existence globale d'une solution, et cela même dans le cas déterministe : la solution de

$$f(t) = 1 + \int_0^t f^2(s) \ ds$$

est f(t) = 1/(1-t) et donc explose lorsque $t \nearrow 1$. Il est donc nécessaire de renforcer nos hypothèse pour obtenir mieux.

On va énoncer le théorème suivant dans le cas non homogène. Le cas homogène se traduit directement de ce résultat.

Théorème 8.6. Théorème d'Itô

On suppose que les coefficients b et σ satisfont les hypothèses : $\forall t \in \mathbb{R}^+$ et $x, y \in \mathbb{R}$ il existe K > 0 tel que

$$|b(t,x) - b(t,y)| + |\sigma(t,x) - \sigma(t,y)| \le K|x-y|$$
, condition de Lipchitz; (8.8)

$$|b(t,x)|^2 + |\sigma(t,x)|^2 \le K^2(1+|x|^2)$$
, croissance au plus linéaire; (8.9)

Alors il existe une solution forte, unique trajectoriellement, à (8.2).

Remarque : Dans le cas où on prendrait une condition initiale aléatoire Z, il faudra (en plus de l'indépendance de Z par rapport à B) supposer qu'elle soit de carré intégrable.

Preuve. La preuve, dont on ne donnera que des étapes ici, suit l'idée du cas déterministe en employant la méthodes des itérations de Picard-Lindelöf. Pour tous $t \in \mathbb{R}^+$ et $n \in \mathbb{N}$ on pose

$$X_t^{(0)} = X_0; \ X_t^{(n+1)} = X_0 + \int_0^t b(s, X_s^{(n)}) \ ds + \int_0^t \sigma(s, X_s^{(n)}) \ dW_s$$
 (8.10)

On remarque que les processus $X^{(n)}$ sont à trajectoires continues et $(\mathcal{F}_t)_{t\in\mathbb{R}^+}$ -adaptés. Montrons par récurrence que pour tous $T\in\mathbb{R}^+$ on a

$$\sup_{0 \le t \le T} \mathbb{E}\left[\left(X_t^{(n)}\right)^2\right] < +\infty.$$

pour n=0 c'est vrai par hypothèse sur le choix de X_0 (voir remarque ci-dessus). Supposons donc la propriété vraie jusqu'à $n \ge 0$.

$$\mathbb{E}\left[\left(X_{t}^{(n+1)}\right)^{2}\right] = \mathbb{E}\left[\left(X_{0} + \int_{0}^{t} b(s, X_{s}^{(n)}) \ ds + \int_{0}^{t} \sigma(s, X_{s}^{(n)}) \ dW_{s}\right)^{2}\right]$$

En observant que $(a+b+c)^2 \le 3(a^2+b^2+c^2)$ on a

$$\mathbb{E}\left[\left(X_t^{(n+1)}\right)^2\right] \leq 3\left[\mathbb{E}(X_0^2) + \mathbb{E}\left[\left(\int_0^t b(s, X_s^{(n)}) \ ds\right)^2\right] + \mathbb{E}\left[\left(\int_0^t \sigma(s, X_s^{(n)}) \ dW_s\right)^2\right]\right]$$

Puis en utilisant respectivement Cauchy-Schwarz et l'isométrie d'Itô on a

$$\mathbb{E}\left[\left(X_t^{(n+1)}\right)^2\right] \leq 3\left[\mathbb{E}(X_0^2) + t\mathbb{E}\left[\int_0^t \left(b(s,X_s^{(n)})\right)^2 \ ds\right] + \mathbb{E}\left[\int_0^t \left(\sigma(s,X_s^{(n)})\right)^2 \ ds\right]\right]$$

Et donc pour tous $t \in [0,T]$ par l'hypothèse de croissance au plus linéaire des coefficients

$$\mathbb{E}\left[\left(X_t^{(n+1)}\right)^2\right] \leq 3\mathbb{E}(X_0^2) + 3(T+1)K^2\mathbb{E}\left[\int_0^t \left(1 + (X_s^{(n)})^2\right) \ ds\right]$$

et par Tonnelli-Fubini $\forall t \in [0, T]$

$$\mathbb{E}\left[\left(X_t^{(n+1)}\right)^2\right] \leq 3\mathbb{E}(X_0^2) + 3(T+1)K^2\int_0^t \left(1 + \mathbb{E}\left[(X_s^{(n)})^2\right]\right) \ ds$$

8.2. EXEMPLES 5

Ce qui permet de conclure la récurrence.

En posant $C = \max(3, 3(T+1)K^2, 3T(T+1)K^2)$ de l'inégalité précédente on tire que $\forall t \in [0, T]$

$$\mathbb{E}\left[\left(X_t^{(n+1)}\right)^2\right] \leq C(1+\mathbb{E}(X_0^2)) + C\int_0^t \mathbb{E}\left[(X_s^{(n)})^2\right] \ ds$$

Par itération on obtient

$$\mathbb{E}\left[\left(X_t^{(n+1)}\right)^2\right] \le C(1 + \mathbb{E}(X_0^2)) \left[1 + Ct + \frac{(Ct)^2}{2!} + \dots + \frac{(Ct)^{n+1}}{n+1}\right]$$

D'où $\forall n \in \mathbb{N} \text{ et } \forall t \in [0, T]$

$$\mathbb{E}\left[\left(X_t^{(n)}\right)^2\right] \le C(1 + \mathbb{E}(X_0^2))e^{Ct} \tag{8.11}$$

Le reste de la démonstration consiste à montrer que les processus $X^{(n)}$ convergent (dans L^2) vers une solution X de (8.2). Nous ne complèterons pas cette partie ici.

De par les théorèmes précédent la solution trouvée est nécessairement unique au sens trajectoriel.

8.1.3 Propriétés des solutions

En utilisant (8.11) et le fait que les processus $X^{(n)}$ convergent dans L^2 vers X la solution de (8.2) on obtient par Fatou que $\forall T > 0$ et $\forall t \in [0, T]$ il existe C = C(T, K) tel que

$$\mathbb{E}\left[\left(X_{t}\right)^{2}\right] = \mathbb{E}\left[\liminf_{n \to +\infty}\left(X_{t}^{(n)}\right)^{2}\right] \leq \liminf_{n \to +\infty}\mathbb{E}\left[\left(X_{t}^{(n)}\right)^{2}\right] \leq C(1 + \mathbb{E}(X_{0}^{2}))e^{Ct}$$

En travaillant un peu plus on peut montrer (nous ne le ferons pas ici) encore mieux sur les propriétés des solutions fortes d'EDS :

Proposition 8.7. Sous les hypothèses d'existence et d'unicités la solution X de (8.2) vérifie : pour tout T > 0 et $\forall t \in [0,T]$, pour tout $m \in \mathbb{N}$ il existe des constantes $C_1 > 0, C_2 > 0, C_3$ ne dépendant que de T, K et m telles que

(i)
$$\mathbb{E}\left[|X_t|^{2m}\right] \le C_1 \left(1 + \mathbb{E}(X_0^{2m})\right) e^{C_1 t} \quad \forall 0 \le t \le T;$$

(ii)
$$\mathbb{E}\left[|X_t - X_s|^{2m}\right] \le C_2 \left(1 + \mathbb{E}(X_0^{2m})\right) (t - s)^m \quad \forall 0 \le s \le t \le T;$$

(iii)
$$\mathbb{E}\left[\max_{0 \le s \le T} |X_s|^{2m}\right] \le C_3 \left(1 + \mathbb{E}(X_0^{2m})\right) e^{C_3 T}$$
.

Remarque : la proposition (ii) nous donne des information sur la continuité de la solution. L'item (i) donne un contrôle sur les moments pairs et (iii) sur le maximum de la trajectoire entre o et T.

8.2 Exemples

On considère B un $(\mathcal{F}_t)_{t\in\mathbb{R}^+}$ -M.B.S. dans les conditions habituelles.

8.2.1 Mouvement Brownien Géométrique

C'est le modèle qu'on utilise en finance pour représenter le prix d'un actif risqué.

L'EDS du Mouvement Brownien Géométrique est donnée par

$$dS_t = \mu S_t dt + \sigma S_t dB_t$$
.

avec $S_0 = s_0$ où $\mu \in \mathbb{R}$, $\sigma \in \mathbb{R}^{*,+}$. On a $b(x) = \mu x$ et $\sigma(x) = \sigma x$ qui sont bien Lischitziennes et satisfont les condition du théorème d'Itô.

Sa solution est donnée par

$$S_t = s_0 \exp\left[\left(\mu - \frac{1}{2}\sigma^2\right)t + \sigma B_t\right]$$

qui est donc de loi Log-Normale : $\ln(S_t)$ est de loi $\mathcal{N}(\ln(s_0) + (\mu - \sigma^2/2)t, \sigma^2)$.

Sa moyenne est $\mathbb{E}(S_t) = s_0 e^{\mu t}$: le paramètre μ est appelée **tendance** (ou **rendement**) de S. Le paramètre σ est appelé **volatilité** de S.

Une propriété remarquable de ce processus est que $\forall t > s > 0$ on a

$$S_t = S_s \exp\left[\left(\mu - \frac{1}{2}\sigma^2\right)(t-s) + \sigma(B_t - B_s)\right]$$

et donc que S_t/S_s est indépendant de \mathcal{F}_s .

On remarque ainsi que si on note à s>0 fixé $\forall t,\ \overline{S}_t:=S_{s+t}/S_s$ le processus \overline{S} suit également la dynamique du mouvement brownien géométrique avec $\overline{S}_0 = 1$ et est indépendant de \mathcal{F}_s . On remarquera également qu'on a

 $\mathbb{E}[S_t|\mathcal{F}_s] = S_s \mathbb{E}[\overline{S}_{t-s}] = S_s \mathbb{E}\left[\frac{S_{t-s}}{s_0}\right]$

qui s'interprète comme la propriété de Markov multiplicative pour S.

Processus d'Ornstein-Uhlenbeck 8.2.2

C'est un cas particulier d'un modèle de taux utilisé en finance.

L'EDS d'Ornstein-Uhlenbeck est

$$\begin{array}{ll} dR_t &= -\alpha R_t \ dt + \sigma \ dB_t \\ R_0 &= r_0 \in \mathbb{R} \end{array}$$

où $\alpha > 0$ et $\sigma > 0$. On a $b(x) = -\alpha x$ et $\sigma(x) = \sigma$ qui vérifient bien les hypothèses du théorème d'Itô. On a donc bien une seule solution forte. Qui est donnée (cf. TD) par

$$R_t = e^{-\alpha t} \left(r_0 + \sigma \int_0^t e^{\alpha s} dB_s \right).$$

C'est un processus gaussien (cf. TD) de moyenne $\mathbb{E}(R_t) = r_0 e^{-\alpha t}$ et fonction de covariance pour $0 \le s < t$

$$Cov(R_s, R_t) = e^{-\alpha(t-s)} \frac{\sigma^2(1 - e^{-2\alpha s})}{2\alpha}$$

On observe que $\lim_{t\to+\infty} \mathbb{E}(R_t) = 0$ (phénomène de "retour à la moyenne") et

$$\lim_{t \to +\infty} \operatorname{Var}(R_t) = \lim_{t \to +\infty} \frac{\sigma^2 (1 - e^{-2\alpha t})}{2\alpha} = \frac{\sigma^2}{2\alpha}$$

On remarquera que R peut prendre des valeurs négatives.

8.2.3 EDS du Signal

Un exemple non directement en lien avec la finance, mais qui illustre une équation dont les coefficients satisfont aux hypothèses du théorème d'Itô.

$$dX_t = \sin(X_t) dt + \cos(X_t) dW_t$$

avec $X_0 = x_0 \in \mathbb{R}$ à une unique solution forte. Cependant on ne sait pas résoudre formellement cette équation. D'où l'intérêt des méthodes numériques!

Modèle de Cox-Ingersoll-Ross (CIR) 8.2.4

Il s'agit ici d'un autre modèle de taux.

Sa dynamique est donnée par

$$dR_t = a(b - cR_t) dt + \sigma \sqrt{R_t} dW_t$$

avec $R_0 = r_0 \in \mathbb{R}^{*+}$ et a, b, c et σ des constantes strictement positives.

Attention : $\sigma\sqrt{x}$ n'est pas Lipchitzienne au voisinage de 0 toutefois il existe une unique solution à trajectoires continues. Mais on n'a pas de formule fermée pour la représenter. En revanche on peut calculer son espérance, sa variance et sa loi.

Il faut observer que $R_t \ge 0$ pour tout t: en effet si R_t touche 0 alors le terme de volatilité s'annule, il ne reste plus que la partie déterministe dont la tendance (qui est > 0) ramène le processus vers des valeurs > 0.