Probabilistic Graphical Models Approximate Inference

*Thanks to Carlos Guestrin, Pedro Domingos and many others for making their slides publically available

Today

- From class, we know that computing the aposteriori belief of a variable in a general BN is NP-hard
- In particular, exact inference for DBNs is intractable even for simple cases
- Solution: approximate inference
 - Loopy Belief Propagation
 - Sampling

Pearl's belief propagation

- We have the evidence E and want to compute all the single node marginals P(V_i|E) for all I using
- Local computation for one node V desired
- Information flows through the links of G
 - flows as messages of two types λ and π
- V splits network into two disjoint parts
 - Strong independence assumptions induced crucial!
- Denote E_V^+ the part of evidence accessible through the parents of V (causal)
 - passed downward in π messages
- Analogously, let E_{V} be the *diagnostic* evidence
 - passed upwards in λ messages

Pearl's Belief Propagation (assuming polytree)

The π (downward) Messages

- What are the π (downward) messages?
- For simplicity, let the nodes be binary. Marginal P(V₁) is easy to compute locally at V₁. What about V₂

The message passes on information.

What information? We can rewrite:

$$P(V_2) = P(V_2|V_1=T)P(V_1=T) + P(V_2|V_1=F)P(V_1=F)$$

Thus, the information that V_2 requires is the CPT of $V_1 = \pi_V(V_1)$

π Messages capture information passed from parents to childred

Evidence easy to incorporate

- Evidence values of observed nodes
 - $V_3 = T$, $V_6 = 3$
- Our belief in what the value of V_i 'should' be changed.
- This belief is propagated
- As if the CPTs became

V ₃ =T	1.0
V ₃ =F	0.0

Р	V ₂ =T	V ₂ =F
V ₆ =1	0.0	0.0
V ₆ =2	0.0	0.0
V ₆ =3	1.0	1.0

In that sense

"
$$P(V_2|V_1) = P(V_2|V_1=T)P(V_1=T)$$

+ $P(V_2|V_1=F)P(V_1=F)$ "

Now, the λ (upward) Messages

- We know what the π (downward) messages are
- What about λ , i.e., the messages going upwards?

Assume $E = \{ V_2 \}$ (otherwise "boring") and compute by Bayes rule:

$$P(V_1 | V_2) = \frac{P(V_1)P(V_2 | V_1)}{P(V_2)} = \alpha P(V_1)P(V_2 | V_1)$$

The information not available at V_1 is $P(V_2|V_1)$, to be passed upwards by a λ -message. Again, this is not exactly the CPT, but the belief based on evidence down the tree, and we have just seen how to compute this.

• To sum up, the messages are $\pi(V)=P(V|E^+)$ and $\lambda(V)=P(E^-|V)$

Combination of evidence

• So, we can send messages locally. More precisely, recall that $E_V = E_V^+ \cup E_V^-$ and let us compute

$$P(V | E) = P(V | E_{V}^{+}, E_{V}^{-}) = \alpha' P(E_{V}^{+}, E_{V}^{-} | V) P(V) =$$

$$\alpha' P(E_{V}^{-} | V) P(E_{V}^{+} | V) P(V) = \alpha P(E_{V}^{-} | V) P(V | E_{V}^{+}) =$$

$$\alpha \lambda(V) \pi(V) = BEL(V)$$

- \bullet α is the normalization constant
 - normalization is not necessary (can do it at the end), but may prevent numerical underflow problems
- In other words, we can maintain an approx. belief locally. In general, it is approx. due to the strong independence assumption we made.

Upward Belief

- Assume X received λ-messages from neighbors
- How to compute $\lambda(x) = p(e^{-1}x)$?
- Let Y₁, ..., Y_c be the children of X
- $\lambda_{XY}(x)$ denotes the λ -message sent from Y to X

$$\lambda(x) = \prod_{j=1}^{c} \lambda_{Y_j X_i}(x)$$

Derivation clear: Assume two children Y, Z of X, then $P(e^-|x) = P(e^-_{\gamma}, e^-_{Z}|x) = P(e^-_{\gamma}|x)^* P(e^-_{Z}|x)$ (siblings independent given parent)

Downward Belief

- Assume X received π -messages from neighbors
- How to compute $\pi(x) = p(x|e^+)$?
- Let U_1, \ldots, U_p be the parents of X
- $\pi_{XY}(x)$ denotes the π -message sent from Y to X
- Summation over the CPT

$$\pi(x) = \sum_{u_1, \dots, u_p} P(x \mid u_1, \dots, u_p) \prod_{j=1}^p \pi_{U_j X_i}(u_j)$$

Derivation: We have to sum over each state of X, now given its parents. That is, we condition on all U_i and note that each pair (parent U_i , evidence e^+_i) is independent of the other pairs (U_i, e^+_i)

• We need to compute $\pi_{XY}(x)$

$$\pi_{XY_J}(x) = \alpha \pi_X(x) \prod_{k \neq j} \lambda_{Y_k X}(x)$$

Derivation

```
= P(x \mid e^+_{XYi})
```

$$= P(x \mid e - e_{XYi}) =$$

- = [Bel(x) when evidence e_{Xvi} is surpressed]
- = Bel(x) setting $\lambda_{XY_i}(x) = 1$
- = formula above

Messages to pass

Derivation hint

- $\lambda_{YjX} = P(e_{XYj}^-|X)$ = $P(e_{VYj}^+, e_{Yj}^-|X)$
- then condition on YJ and V,
- And use independences
 - Y_i seperates e⁺_{VYi} from e⁻_{Yi}
 - V seperates e⁺_{VYi} from X

Symbolically, group other (≠X) parents of Yj into single complex
 V = V₁, ..., V_q and distinguish link X->Yj vs. V-> Yj

$$\lambda_{Y_jX}(x) = \sum_{y_j} \lambda_{Y_j}(y_j) \sum_{v_1, \dots, v_q} p(y | v_1, \dots, v_q) \prod_{k=1}^q \pi_{V_kY_j}(v_k)$$

Summary of the messages

• So, we need to compute $\pi_{XY}(x)$

$$\pi_{XY_J}(x) = \alpha \pi_X(x) \prod_{k \neq j} \lambda_{Y_k X}(x)$$

Evidential support from parents

Evidential support from children

- Similarly, λ_{XY}(x)
- Group all parents of Y into V = V₁, ..., V_q

Evidential support from parents

$$\lambda_{Y_{j}X}(v_{j}) = \sum_{x} \lambda_{Y_{j}}(x) \sum_{v_{k}:k\neq j} p(x \mid v_{1},...,v_{n}) \prod_{k\neq j} \pi_{V_{k}Y_{j}}(v_{k})$$

Evidential support from children

The Pearl Belief Propagation Algorithm

- We can summarize the algorithm now:
 - Initialization step
 - For all V_i=e_i in E:
 - $\lambda(x_i) = 1$ wherever $x_i = e_i$; 0 otherwise
 - $\pi(x_i) = 1$ wherever $x_i = e_i$; 0 otherwise
 - For nodes without parents
 - $\pi(x_i) = p(x_i)$ prior probabilities
 - For nodes without children
 - $\lambda(x_i) = 1$ uniformly (normalize at end)

The Pearl Belief Propagation Algorithm

- Iterate until no change occurs
 - (For each node X) if X has received all the π messages from its parents, calculate $\pi(x)$
 - (For each node X) if X has received all the λ messages from its children, calculate $\lambda(x)$
 - (For each node X) if $\pi(x)$ has been calculated and X received all the λ -messages from all its children (except Y), calculate $\pi_{XY}(x)$ and send it to Y.
 - (For each node X) if λ(x) has been calculated and X received all the π-messages from all parents (except U), calculate λ_{XU}(x) and send it to U.
- Compute BEL(X) = $\lambda(x)\pi(x)$ and normalize

Complexity

- On a polytree, the BP algorithm converges in time proportional to diameter of network – at most linear
- Work done in a node is proportional to the size of CPT
- Hence BP is linear in number of network parameters

Most Graphs are not Polytrees

- Cutset conditioning
 - Instantiate a node in cycle, absorb the value in child's CPT.
 - Do it with all possible values and run belief propagation.
 - Sum over obtained conditionals
 - Hard to do
 - Need to compute P(c)
 - Exponential explosion minimal cutset desirable (also NP-complete)
- Clustering algorithm
- Approximate inference
 - Loopy BP, Sampling Approaches

Loopy Belief Propagation

- If BP is used on graphs with loops, messages may circulate indefinitely
- Empirically, a good approximation is still achievable
 - Stop after fixed # of iterations
 - Stop when no significant change in beliefs
 - If solution is not oscillatory but converges, it usually is a good approximation
- Example: Turbo Codes, Lifted Inference

Sampling

- Input: Bayesian network with set of nodes X
- Sample = a tuple with assigned values $s=(X_1=x_1,X_2=x_2,...,X_k=x_k)$
- Tuple may include all variables (except evidence) or a subset
- Sampling schemas dictate how to generate samples
- Ideally, samples are distributed according to P(X|E)

Sampling Fundamentals

Given a set of variables $X = \{X_1, X_2, ..., X_n\}$ that represent a joint probability distribution $\pi(X)$ and some function g(X), we can compute the expected value of g(X) as follows:

$$E_{\pi}g = \int g(x)\pi(X)dx$$

Sampling From $\pi(X)$

A sample **S**^t is an instantiation:

$$S^{t} = \{x_{1}^{t}, x_{2}^{t}, \dots, x_{n}^{t}\}$$

Given independent, identically distributed samples (iid) S^1 , S^2 , ... S^T from $\pi(X)$, it follows from **Strong Law of Large Numbers**:

$$\frac{1}{g} = \frac{1}{T} \sum_{t=1}^{T} g(S^t)$$

Sampling Basics

- Given random variable X over D(X)={0, 1}
- Given P(X) = {0.3, 0.7}
- Generate k samples: 0,1,1,1,0,1,1,0,1
- Approximate P'(X):

$$P'(X=0) = \frac{\#samples(X=0)}{\#samples} = \frac{4}{10} = 0.4$$

$$P'(X=1) = \frac{\#samples(X=1)}{\#samples} = \frac{6}{10} = 0.6$$

$$P'(X) == \{0.4, 0.6\}$$

How to draw a sample?

- Given random variable X, D(X)={0, 1}
- Given $P(X) = \{0.3, 0.7\}$
- Sample $X \leftarrow P(X)$
 - draw random number r ∈ [0, 1]
 - If (r < 0.3) then set X=0</p>
 - Else set X=1
- Can generalize for any domain size

Sampling in BN

- Same Idea: generate a set of samples T
- Estimate P(X_i|E) from samples
- Challenge: X is a vector and P(X) is a huge distribution represented by BN
- Need to know:
 - How to generate a new sample ?
 - How many samples T do we need ?
 - How to estimate P(E=e) and P(X_i|e) ?

Sampling Algorithms

- Forward Sampling
- Gibbs Sampling (MCMC)
 - Blocking
 - Rao-Blackwellised
- Likelihood Weighting
- Importance Sampling
- Sequential Monte-Carlo (Particle Filtering) in Dynamic Bayesian Networks

Forward Sampling - No Evidence (Henrion 1988)

Input: Bayesian network

$$X = \{X_1, ..., X_N\}, N- \# nodes, T - \# samples$$

Output: T samples

Process nodes in topological order—first process the ancestors of a node, then the node itself:

- 1. For t = 0 to T
- 2. For i = 0 to N
- 3. $X_i \leftarrow \text{sample } x_i^t \text{ from } P(x_i \mid pa_i)$

Sampling a Value

What does it mean to sample x_i^t from $P(X_i \mid pa_i)$?

- Assume D(X_i)={0,1}
- Assume $P(X_i \mid pa_i) = (0.3, 0.7)$

Draw a random number r from [0,1]
If r falls in [0,0.3], set X_i = 0
If r falls in [0.3,1], set X_i=1

Forward sampling (example)

No Evidence

// generate sample k

- 1. Sample x_1 from $P(x_1)$
- 2. Sample x_2 from $P(x_2 | x_1)$
- 3. Sample x_3 from $P(x_3 | x_1)$
- 4. Sample x_4 from $P(x_4 | x_{2}, x_3)$

Forward Sampling-Answering Queries

Task:

Given **T** samples $\{S^1, S^2, ..., S^n\}$, estimate $P(X_i = x_i)$:

$$\overline{P}(X_i = x_i) = \frac{\#samples(X_i = x_i)}{T}$$

Basically, count the proportion of samples where $X_i = X_i$

Forward Sampling w/ Evidence

Input: Bayesian network

$$X = \{X_1, ..., X_N\}, N- #nodes$$

E – evidence, T - # samples

Output: T samples consistent with E

- 1. For t=1 to T
- 2. For i=1 to N
- 3. $X_i \leftarrow \text{sample } x_i^t \text{ from } P(x_i \mid pa_i)$
- 4. If X_i in E and $X_i \neq x_i$, reject sample:
- 5. i = 1 and go to step 2

Forward sampling (example)

Evidence: $X_3 = 0$

// generate sample k

- 1. Sample x_1 from $P(x_1)$
- 2. Sample x_2 from $P(x_2 | x_1)$
- 3. Sample x_3 from $P(x_3 | x_1)$
- 4. If $x_3 \neq 0$, reject sample and start from 1, otherwise
- 5. Sample x_4 from $P(x_4 | x_{2}, x_3)$

Forward Sampling: Illustration

Let Y be a subset of evidence nodes s.t. Y=u

Sample with

- \bigcirc not Y = u
- \mathbf{O} Y = u, X = w

Approximation for
$$P^{X}(X = w \mid Y = u)$$
:

Forward Sampling:Performance

Advantages:

- $P(x_i | pa(x_i))$ is readily available
- Samples are independent!

Drawbacks:

- If evidence E is rare (P(e) is low), then we will reject most of the samples!
- Since P(y) in estimate of T is unknown, must estimate P(y) from samples themselves!
- If P(e) is small, T will become very big!

Problem: Evidence

- Forward Sampling
 - High Rejection Rate
- Fix evidence values
 - Gibbs sampling (MCMC)
 - Likelihood Weighting
 - Importance Sampling

Gibbs Sampling

- Markov Chain Monte Carlo method
 (Gelfand and Smith, 1990, Smith and Roberts, 1993, Tierney, 1994)
- Samples are dependent, form Markov Chain
- Sample from P'(X|e) which converges to P(X|e)
- Guaranteed to converge when all P > 0
- Methods to improve convergence:
 - Blocking
 - Rao-Blackwellised

Gibbs Sampling (Pearl, 1988)

A sample t∈[1,2,...], is an instantiation of all variables in the network:

$$x^{t} = \{X_{1} = x_{1}^{t}, X_{2} = x_{2}^{t}, ..., X_{N} = x_{N}^{t}\}$$

- Sampling process
 - Fix values of observed variables e
 - Instantiate node values in sample x⁰ at random
 - Generate samples $x^1, x^2, ..., x^T$ from P(x|e)
 - As before, compute posteriors from samples

Ordered Gibbs Sampler

Generate sample x^{t+1} from x^t:

Process
All
Variables
In Some
Order

$$X_1 = x_1^{t+1} \leftarrow P(x_1 \mid x_2^t, x_3^t, ..., x_N^t, e)$$

$$Y_1 = x_1^{t+1} \leftarrow P(x_1 \mid x_2^t, x_3^t, ..., x_N^t, e)$$

$$X_2 = x_2^{t+1} \leftarrow P(x_2 \mid x_1^{t+1}, x_3^t, ..., x_N^t, e)$$

• • •

$$X_N = x_N^{t+1} \leftarrow P(x_N \mid x_1^{t+1}, x_2^{t+1}, ..., x_{N-1}^{t+1}, e)$$

In short, for i=1 to N:

$$X_i = x_i^{t+1} \leftarrow$$
sampled from $P(x_i \mid x^t \setminus x_i, e)$

Gibbs Sampling (cont'd)

(Pearl, 1988)

Important:
$$P(x_i | x^t \setminus x_i) = P(x_i | markov^t \setminus x_i)$$
:

$$P(x_i \mid x^t \setminus x_i) \propto P(x_i \mid pa_i) \prod_{X_j \in ch_i} P(x_j \mid pa_j)$$

Markov blanket:

$$M(X_i) = pa_i \cup ch_i \cup (\bigcup_{X_j \in ch_j} pa_j)$$

Given Markov blanket

(parents, children, and their parents),

 X_i is independent of all other nodes

Ordered Gibbs Sampling Algorithm

Input: X, E

Output: T samples {x^t}

- Fix evidence E
- Generate samples from P(X | E)
- 1. For t = 1 to T (compute samples)
- 2. For i = 1 to N (loop through variables)
- 3. $X_i \leftarrow \text{sample } x_i^t \text{ from } P(X_i \mid markov^t \setminus X_i)$

Answering Queries

- **Query**: $P(x_i | e) = ?$
- **Method 1**: count #of samples where X_i=x_i:

$$\overline{P}(X_i = x_i) = \frac{\#samples(X_i = x_i)}{T}$$

Method 2: average probability (mixture estimator):

estimator):
$$\overline{P}(X_i = x_i) = \frac{1}{T} \sum_{t=1}^{n} P(X_i = x_i \mid markov^t \setminus X_i)$$

$$X = \{X_1, X_2, ..., X_9\}$$

 $E = \{X_9\}$

$$X_1 = x_1^0$$
 $X_6 = x_6^0$
 $X_2 = x_2^0$ $X_7 = x_7^0$
 $X_3 = x_3^0$ $X_8 = x_8^0$
 $X_4 = x_4^0$
 $X_5 = x_5^0$

$$X_1 \leftarrow P(X_1 | X_2,...,X_8,X_9)$$

 $E = \{X_9\}$

$$X_2 \leftarrow P(X_2 \mid X_1,...,X_8,X_9)$$

 $E = \{X_9\}$

Gibbs Sampling: Illustration

The process of Gibbs sampling can be understood as a *random* walk in the space of all instantiations with Y = u:

Reachable in one step: instantiations that differ from current one by value assignment to at most one variable (assume randomized choice of variable X_k).

Gibbs Sampling: Burn-In

- We want to sample from P(X | E)
- But...starting point is random
- Solution: throw away first K samples
- Known As "Burn-In"
- What is K? Hard to tell. Use intuition.
- Alternatives: sample first samples from approximate P(x|e) (for example, run Loopy Belief Propagation first)

Gibbs Sampling: Convergence

• Converge to stationary distribution π^* :

$$\pi^* = \pi^* P$$

where P is a transition kernel

$$p_{ij} = P(X^i \rightarrow X^j)$$

- Guaranteed to converge iff chain is :
 - irreducible
 - aperiodic
 - ergodic ($\forall i,j p_{ij} > 0$)

Background: Irreducible

- A Markov chain (or its probability transition matrix) is said to be *irreducible* if it is possible to reach every state from every other state (not necessarily in one step).
- In other words, ∀i,j ∃k: P^(k)_{ij} > 0 where k is the number of steps taken to get to state j from state i.

Background: Aperiodic

- Define d(i) = g.c.d.{n > 0 | it is possible to go from i to i in n steps}
- Here, g.c.d. means the greatest common divisor of the integers in the set.
- If d(i)=1 for ∀i, then chain is aperiodic, i.e., returns to state i can occur at irregular times

Background: Ergodicity

 A recurrent state is a state to which the chain returns with probability 1:

$$\sum_{n} P^{(n)}_{ij} = \infty$$

Recurrent, aperiodic states are ergodic.

Note: an extra condition for ergodicity is that expected recurrence time is finite. This holds for recurrent states in a finite state chain.

Background: Gibbs Sampling and Ergodicity

 Convergence to the correct distribution is guaranteed only if network is ergodic: transition from any state Sⁱ to any state S^j has non-zero probability:

$$p_{ij} > 0$$

Intuition: if $\exists i,j$ such that $p_{ij} = 0$, then we will not be able to explore full sampling space!

Gibbs Convergence

- Gibbs convergence is generally guaranteed as long as all probabilities are positive!
- Intuition for ergodicity requirement: if nodes X and Y are correlated s.t. X=0 ↔Y=0, then:
 - once we sample and assign X=0, then we are forced to assign Y=0;
 - once we sample and assign Y=0, then we are forced to assign X=0;
- → we will never be able to change their values again!
- Another problem: it can take a very long time to converge!

Gibbs Sampling: Performance

- +Advantage: guaranteed to converge to P(X|E)
- -Disadvantage: convergence may be slow

Problems:

- Samples are dependent!
- Statistical variance is too big in high-dimensional problems

Gibbs: Speeding Convergence

Objectives:

- 1. Reduce dependence between samples (autocorrelation)
 - Skip samples
 - Randomize Variable Sampling Order
- 2. Reduce variance
 - Blocking Gibbs Sampling
 - Rao-Blackwellisation

Skipping Samples

Pick only every k-th sample (Gayer, 1992)

Can reduce dependence between samples!

Increases variance! Waists samples!

Randomized Variable Order

Random Scan Gibbs Sampler

Pick each next variable X_i for update at random with probability p_i , Σ_i $p_i = 1$.

(In the simplest case, p_i are distributed uniformly)

In some instances, reduces variance

(MacEachern, Peruggia, 1999 "Subsampling the Gibbs Sampler: Variance Reduction")

Blocking

- Sample several variables together, as a block
- Example: Given three variables X,Y,Z, with domains of size 2, group Y and Z together to form a variable W={Y,Z} with domain size 4. Then, given sample (x^t,y^t,z^t), compute next sample:

$$X^{t+1} \leftarrow P(y^t, z^t) = P(w^t)$$

 $(y^{t+1}, z^{t+1}) = W^{t+1} \leftarrow P(x^{t+1})$

- + Can improve convergence greatly when two variables are strongly correlated!
- Domain of the block variable grows exponentially with the #variables in a block!

Rao-Blackwellisation

- Do not sample all variables!
- Sample a subset!
- Example: Given three variables X,Y,Z, sample only X and Y, sum out Z. Given sample (x^t,y^t), compute next sample:

$$X^{t+1} \leftarrow P(y^t)$$
$$y^{t+1} \leftarrow P(x^{t+1})$$

Rao-Blackwell Theorem

Rao Blackwell Theorem: Let a DBN have two groups of variables, **R** and **L**. Then, for the joint distribution $\pi(\mathbf{R}, \mathbf{L})$, the following result applies

$$\operatorname{Var}_{\pi}\left[\mathbb{E}_{\pi}\left\{f(\mathbf{R})|\mathbf{L}\right\}\right] \leq \operatorname{Var}_{\pi}\left[f(\mathbf{R})\right]$$

for a function of interest f, e.g. the mean or covariance (Casella & Robert, 1996, Liu et. al. 1995).

Bottom line: reducing number of variables in a sample reduce variance!

Gibbs: Multiple Chains

- Generate M chains of size K
- Each chain produces independent estimate P_m:

$$P_{m} = P(x_{i} \mid e) = \frac{1}{K} \sum_{t=1}^{K} P(x_{i} \mid x^{t} \setminus x_{i})$$

Estimate $P(x_i|e)$ as average of $P_m(x_i|e)$:

$$\overline{P} = \frac{1}{M} \sum_{i=1}^{M} P_m$$

Treat P_m as independent random variables.

(Fung and Chang, 1990; Shachter and Peot, 1990)

"Clamping" evidence

- + forward sampling
- + weighing samples by evidence likelihood

Works well for likely evidence!

Sample in topological order over X!

 $x_i \leftarrow P(X_i|pa_i)$ $P(X_i|pa_i)$ is a look-up in CPT!


```
For sample \# k = 1 to T
   For each each X_i in topological order o = (X_1, ..., X_n):
     W_k = 1
    if X_i \notin E
        X_i \leftarrow \text{ sample } x_i \text{ from } P(x_i \mid pa_i)
     else
        assign X_i = e_i
        w_k = w_k \bullet P(e_i \mid pa_i)
```


Estimate Posterior Marginals:

$$\hat{P}(x_i \mid e) = \frac{\hat{P}(x_i, e)}{\hat{P}(e)} = \frac{\sum_{t=1}^{T} w^{(t)} \delta(x_i, x^{(t)})}{\sum_{t=1}^{T} w^{(t)}}$$

$$w^{(t)} = \frac{P(x^{(t)})}{Q(x^{(t)})} = \prod_{j} P(e_j \mid pa_j^{(t)}) \text{ since } Q(e_j \mid pa_j) = 1$$

- Converges to exact posterior marginals
- Generates Samples Fast
- Sampling distribution is close to prior (especially if E ⊂ Leaf Nodes)
- Increasing sampling variance
- ⇒Convergence may be slow
- \Rightarrow Many samples with $P(x^{(t)})=0$ rejected