Effect of Device Imperfection on Reference Frame Independent Quantum Key Distribution

Kyongchun Lim, Byung-Seok Choi, Ju Hee Baek, Minchul Kim, Joong-Seon Choe, Kap-Joong Kim, Young-Ho Ko, Chun Ju Youn

Electronics and Telecommunications Research Institute (ETRI), Daejeon, 34129, KOREA

Free-Space Quantum Key Distribution (QKD)

- > A promising solution for secure communication between two remote parties through free space
 - ◆ No requirement of physical connection between two remote parties

Y_₄ basis

Quantum Bit Error Rate (QBER)

◆ Applicable to moving terminals with the characteristics such as moving position, outside operation, and limited internal space

Reference Frame Independent (RFI) Quantum Key Distribution

- Problem in conventional BB84 protocol
 - **♦ Reference frame mismatch due to moving terminals**
 - ◆ Increasing QBER and lowering secret key rate
 - Real time polarization compensation

Secret Keys

- > Reference frame independent quantum key distribution
 - **♦** Variant of six-state protocol
 - Unnecessary real time polarization compensation
 - **♦** Secret keys from circular polarization states
 - Information leakage from the combination of the linear polarizations

 $n_{ij,00} + n_{ij,01} + n_{ij,10} + n_{ij,11}$ $n_{ii,kl}$ refers to the number of detections when Alice transmits kstate in *i* basis and Bob detects *l* state in *j* basis $C = C_{Z_A Z_B}^2 + C_{Z_A X_B}^2 + C_{X_A Z_B}^2 + C_{X_A X_B}^2$

 $C_{ij} = \frac{n_{ij,00} - n_{ij,01} - n_{ij,10} + n_{ij,11}}{2}$

$$= C_{Z_A(\cos\theta Z_A + \sin\theta X_A)}^2 + C_{Z_A(\cos\theta X_A - \sin\theta Z_A)}^2$$

$$+ C_{X_A(\cos\theta Z_A + \sin\theta X_A)}^2 + C_{X_A(\cos\theta X_A - \sin\theta Z_A)}^2$$

$$- QBER = \frac{1 - C_{Y_A Y_B}}{2}$$

Circular Polarization

component

Effect of Device Imperfection on Reference Frame Independent Quantum Key Distribution

Polarization beam splitter

Wave plate +

Polarization beam splitter

Y_B basis C 2

Verification with Experimental Results

- > 1550-nm free-space QKD system
 - ◆ 100 MHz repetition rate
 - ◆ Fully controlled by FPGA
 - ◆ InGaAs SPDs with 10% DE, 1 ns gate width, 0 dead time

Experimental $C_{Z_A Z_B(\theta)} - C_{X_A X_B(\theta)}$ — Theoretical $C_{Z_A Z_B(\theta)} - C_{X_A X_B(\theta)}$ \triangle Experimental $C_{Z_AX_B(\theta)} + C_{X_AZ_B(\theta)}$ — Theoretical $C_{Z_AX_B(\theta)} + C_{X_AZ_B(\theta)}$ 0.05 -0.05 $\pi/2$ $3/2\pi$ Reference Frame Rotation Angle (θ) Non-zero correlation difference

Value Averaged of 50 contracts of 50 due to asymmetric correlations

 $3/2\pi$ Reference Frame Rotation Angle (θ) Asymmetric correlations causing

Experimental *C*

 \square Experimental R

 \triangle Experimental $Q_{Y_AY_B}$

— Theoretical C

— Experimental *R*

- Theoretical $Q_{Y_AY_B}$

fluctuation of the security parameter and the corresponding secret key rate R

Conclusion

- > RFI QKD protocol
 - ✓ Independent performance to the varying reference frame
- Device imperfections in RFI QKD
 - ✓ Asymmetric correlations due to imperfect devices consisting of RFI QKD
- √ Reference frame dependent performance

- > Experimental Result
 - ✓ Asymmetric correlation → Fluctuating security parameter → Fluctuating secret key rate

[Reference for more detail]

K. Lim, Optics Express, 29(12)

