Задание 11-1. «Кардиограмма» тепловой машины.

В данном задании рассматривается тепловая машина. Помимо традиционных вопросов, в нем рассматриваются временные характеристики данной машины.

Рабочим телом двигателя является одноатомный идеальный газ, который находится в цилиндрическом сосуде под поршнем. В начальном состоянии параметры этого газа известны и равны: объем - V_0 , давление - P_0 , температура - T_0 . При решении задач используются относительные единицы — отношения объема, давления и температуры к соответствующим величинам в начальном состоянии:

$$v = \frac{V}{V_0}, \quad p = \frac{P}{P_0}, \quad \tau = \frac{T}{T_0}.$$
 (1)

Цикл тепловой машины состоит из 5 этапов, длительность каждого из них равна t_0 . Эту величину можно использовать в качестве единицы времени.

Величины P_0, V_0, T_0, t_0 заданы в единицах системы СИ.

В Листах ответов приведены графики зависимостей объема и температуры газа от времени. Для упрощения вашей работы значения параметров в некоторые моменты времени приведены в Таблице 1. На каждом этапе поршень движется с постоянным ускорением (которое может изменяться при переходе от одного этапа к другому).

Часть 1. Динамика цикла.

1.1 Используя данные Таблицы 1, рассчитайте значения давления $p = \frac{P}{P_0}$, в моменты времени, указанные в этой таблице.

Приведите формулу, по которой проводится расчет давления, численные результаты расчетов занесите в последний столбец Таблицы 1.

Так как поршень движется в цилиндрическом сосуде, то его координата пропорциональна объему газа под поршнем.

1.2 Для каждого этапа цикла запишите закон движения поршня (зависимость объема $v = \frac{V}{V_0}$ от времени) - v(t) и зависимости давления от времени p(t) .

Приведите формулы, по которым вы провели расчеты. Окончательные выражения с численными коэффициентами приведите в Таблице 2 листа ответов.

- 1.3 На бланке в листе ответов постройте график зависимости давления газа $p = \frac{P}{P_0}$ от времени.
- 1.4 Найдите максимальную м
гновенную мощность двигателя w_{\max} , укажите момент времен
и t^* , в который достигается эта мощность. Ответы приведите в единицах системы СИ.

Часть 2. Термодинамика цикла.

- 2.1 На бланке в листе ответов постройте диаграмму цикла в координатах (p, v).
- 2.2~Для каждого этапа цикла рассчитайте: изменение внутренней энергии газа ΔU , совершенную газом работу A, количество полученной теплоты Q. Указанные величины можно выразить в относительных единицах.

Приведите формулы для расчетов указанных величин, результаты расчетов для каждого этапа приведите в Таблице 3.

- 2.3 Рассчитайте КПД цикла.
- 2.4 Найдите среднюю за цикл мощность, развиваемую данной тепловой машиной. Ответ приведите в единицах системы СИ.

Задание 11-1. «Кардиограмма» тепловой машины. Листы ответов.

Графики зависимостей объема и температуры от времени.

Таблица 1. Значения объема и температуры.

<u>t</u>	$\frac{V}{V}$	$\frac{T}{T}$	$\frac{P}{P}$
t_0	V_0	T_0	P_0
0,00	1,00	1,00	
0,50	1,00	1,50	
1,00	1,00	2,00	
1,50	1,25	2,81	
2,00	2,00	6,00	
2,50	2,75	8,25	
3,00	3,00	9,00	
3,50	2,75	7,56	
4,00	2,00	4,00	
4,50	1,25	1,56	
5,00	1,00	1,00	

Часть 1. Динамика цикла.

1.1. Формула для расчета давления

$$p = \frac{P}{P_0} =$$

Результаты расчетов занесите в Таблицу 1.

1.2

Таблица 2. Функции зависимостей объема и давления от времени.

Интервал времени		v(t)	p(t)	
Начало этапа $\frac{t}{t_0}$	Конец этапа $\frac{t}{t_0}$	V(t)	<i>P(t)</i>	
0	1			
1	2			
2	3			
3	4			
4	5			

1.3 График зависимости давления от времени.

1.4 Максимальная мгновенная мощность равна

$$w_{\rm max} =$$

в момент времени

$$t^* =$$

Часть 2. Термодинамика цикла.

2.1 Диаграмма процесса координатах (p, v).

2.2 Термодинамические характеристики этапов цикла.

Таблица 3. Термодинамические характеристики.

Интервал времени		Характеристики этапов		
Начало этапа $\frac{t}{t_0}$	Конец этапа $\frac{t}{t_0}$	Изменение энергии ΔU	Совершенная работа <i>А</i>	Полученная Q
0	1			
1	2			
2	3			
3	4			
4	5			

2.3 КПД цикла		
$\eta =$		
•		

2.4 Средняя мощность за цикл		
$\langle w \rangle =$		