230701268-fds-labmanual

```
[ ]: #EX.NO :1.a Basic Practice Experiments(1 to
      4)#DATA :
                      30.07.2024
      #NAME: ROHITH
      #ROLL NO: 230701268
[2]:
      import pandas as pd
      import numpy as np
      import seaborn as sns
      import matplotlib.pyplot as plt
      % mathletlib inline
data-pd.read_csv('Iris.csv')
[3]:
      data
[3]:
             Id
                 SepalLengthCm
                                   SepalWidthCm
                                                   PetalLengthCm
                                                                    PetalWidthCm
      0
              1
                                              3.5
                                                               1.4
                                                                               0.2
                             5.1
              2
                             4.9
                                              3.0
                                                                               0.2
      1
                                                               1.4
      2
              3
                             4.7
                                             3.2
                                                               1.3
                                                                               0.2
      3
              4
                             4.6
                                             3.1
                                                               1.5
                                                                               0.2
      4
              5
                             5.0
                                             3.6
                                                               1.4
                                                                               0.2
      145
           146
                             6.7
                                              3.0
                                                               5.2
                                                                               2.3
      146
                                             2.5
                                                               5.0
                                                                               1.9
           147
                             6.3
      147
                             6.5
                                             3.0
                                                               5.2
                                                                               2.0
           148
      148
           149
                             6.2
                                              3.4
                                                               5.4
                                                                               2.3
      149
           150
                             5.9
                                              3.0
                                                               5.1
                                                                               1.8
                    Species
      1
               Iris-setosa
      2
               Iris-setosa
      3
               Iris-setosa
      4
               Iris-setosa
      5
               Iris-setosa
      145 Iris-virginica
```


Iris-virginica

- 147 Iris-virginica
- 148 Iris-virginica
- 149 Iris-virginica

[150 rows x 6 columns]

[4]:

[5]:

data.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 150 entries, 0 to 149 Data
columns (total 6 columns):

#	Column	Non-Null Count	Dtype
1	Id	150 non-null	int64
2	SepalLengthCm	150 non-null	float64
3	SepalWidthCm	150 non-null	float64
4	PetalLengthCm	150 non-null	float64
5	PetalWidthCm	150 non-null	float64
.6	Species	150 non-null	object
dtyp	es: float64(4), int6 .e [.] 7 2+ KB	4(1), object(1) mer	nory

146 usage: 7.2+ KB

[5]:		ld	Senall engthCm	SenalWidthCm	Petall engthCm	PetalWidthCm	
	datato	les <i>priber</i> 0000	150.000000	150.000000	150.000000	150.000000	
	mean	75.500000	5.843333	3.054000	3.758667	1.198667	
	std	43.445368	0.828066	0.433594	1.764420	0.763161	
	min	1.000000	4.300000	2.000000	1.000000	0.100000	
	25%	38.250000	5.100000	2.800000	1.600000	0.300000	
	50%	75.500000	5.800000	3.000000	4.350000	1.300000	
	75%	112.750000	6.400000	3.300000	5.100000	1.800000	
[6]:	nhantsa v	alu 1 250:000 0000 000	Species 7)900000	4 400000	6 900000	2.500000	

[6]: Species

Iris-setosa 50 Iris-versicolor 50 Iris-virginica 50 Name: count, dtype: int64

[7]: sns.countplot(x='Species',data=data,)
plt.show()

[8]:	du	dummies=pd.get_dummies(data.Species)							
[9]:		FinalDataset=pd.concat([pd.get_dummies(data.Species),data.iloc[:,[0,1,2,3]]],axis=1)							
[10]:	Fi	nalDataset.hea	d()						
[10]:		Iris-setosa	Iris-versicolor	Iris-virginica	Id	SepalLengthCm	\		
	0	True	False	False	1	5.1			
	1	True	False	False	2	4.9			
	2	True	False	False	3	4.7			
	3	True	False	False	4	4.6			
	4	True	False	False	5	5.0			
		SepalWidthCm	PetalLengthCm						
	0	3.5	1.4						
	1	3.0	1.4						
	2	3.2	1.3						
	3	3.1	1.5						
	4	3.6	1.4						

[11]: sns_scatterplot(x='SepalLengthCm',y='SepalWidthCm',hue='Species',data=data,)

[11]: <Axes: xlabel='SepalLengthCm', ylabel='SepalWidthCm'>

[12]: sns.scatterplot(x='PetalLengthCm',y='PetalWidthCm',hue='Species',data=data,)

[12] : <Axes: xlabel='PetalLengthCm', ylabel='PetalWidthCm'>

[13]: sns.pairplot(data,hue='Species',height=3);


```
[16]: sns.FacetGrid(data,hue='Species',height=5).map(sns.histplot,'PetalWidthCm').
add_legend();
plt.show();
```


[17]: sns.FacetGrid(data,hue='Species',height=5).map(sns.histplot,'SepalLengthCm').
add_legend();
plt.show();

[18]: sns.FacetGrid(data,hue='Species',height=5).map(sns.histplot,'SepalWidthCm').
add_legend();
plt.show();


```
[21]: array([6.244998
                          , 9.8488578 , 9.38083152, 7.61577311, 5.38516481,
               9.32737905, 5.19615242, 9.38083152, 9.53939201])
[22]:
       array.ndim
[22]: 1
[23]:
       new_array=array_reshape(3,3)
[24]:
       new_array
    [24]: array([[39, 97, 88],
                 [58, 29, 87],
               [27, 88, 91]])
[25]:
      new_array.ndim
[25]: 2
[26]:
       new_array.ravel()
[26]: array([39, 97, 88, 58, 29, 87, 27, 88, 91])
[27]:
       newm=new_array.reshape(3,3)
[28]:
       newm
    [28]: array([[39, 97, 88],
                 [58, 29, 87],
               [27, 88, 91]])
[29]:
      newm[2,1:3]
[29]: array([88, 91])
[30]:
      newm[1:2,1:3]
[30]: array([[29, 87]])
       new_array[0:3,0:0]
[31]: array([], shape=(3, 0), dtype=int32)
[32]:
       new_array[1:3]
[32]: array([[58, 29, 87],
               [27, 88, 91]])
```



```
[]: #EX.NO :2 Outlier
        detection#DATA
        13.08.2024
        #NAME: PRASANNA KUMAR
        MUDOLI NO 000704007
[34]:
       import numpy as np
       import warnings
       warnings_filterwarnings('ignore') array=np_random_randint(1,100,16)
[34]: a
[35]:
       array.mean()
[35]: 45.5625
[36]: np.percentile(array,25)
[36]: 29.25
       np.percentile(array,50)
[37]: 44.0
[38]:
       np.percentile(array,75)
[38]: 55.5
[39]:
       np.percentile(array,100)
[39]: 97.0
[40]: #outliers detection
       def outDetection(array):
    sorted(array)
             Q1,Q3=np.percentile(array,[25,75])
            IQR=Q3-Q1
            Ir=01-(1.5*IQR)
ur=03+(1.5*IQR)
return Ir,ur
       Ir,ur=outDetection(array)Ir,ur
[40]: (-
```


[41]: import seaborn as sns %matplotlib inline sns.displot(array)

[41]: <seaporn.axisgria.racetGria at uxzua/caa3b5u>

[42]: sns.distplot(array)

[42] : <Axes: ylabel='Density'>

[44]: <seaborn.axisgrid.FacetGrid at 0x20d7d02d950>

[]: #EX.NO :3 Missing and inappropriate data#DATA: 20.08.2024 #NAME : PRASANNA KUMAR M#ROLL NO: 230701237 [49]: import numpy as np import pandas as pdimport warnings warnings.filterwarnings('ignore')
df=pd.read_csv("Hotel_Dataset.csv") df [49]: 0 1 20-25 4 Ibis veg 1300 2 30-35 5 LemonTree Non-Veg 2000 1 2 3 25-30 6 RedFox Veg 1322 3 4 -1 1234 20-25 LemonTree Veg 5 3 Vegetarian 4 35+ **Ibis** 989 5 6 35+ 3 Non-Veg **Ibys** 1909 RedFox 6 35+ Vegetarian 1000

7		8	20-25	7	LemonTree	Veg 2999
8		9	25-30	2	Ibis	Non-Veg 3456
9		9	25-30	2	Ibis	Non-Veg 3456
10		10	30-35	5	RedFox	non-Veg -6755
	NoOfPax	Est	timatedSalary	Age_Group.	1	
0	2		40000	20-2	5	
1	3		59000	30-3	5	
2	2		30000	25-3	0	
3	2		120000	20-2	5	
4	2		45000	35	+	
5	2		122220	35	+	
6	-1		21122	35	+	
7	-10		345673	20-2	5	
8	3		-99999	25-3	0	
9	3		-99999	25-3	0	
10	4		87777	30-3	5	

[50]: df.duplicated()

[50]: 0 **False** False 1 2 False 3 False 4 False 5 False 6 **False** 7 **False** 8 False 9 True 10 False

[51]: df.info()

dtype: bool

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 11 entries, 0 to 10
Data columns (total 9 columns):

#	Column	Non-Null Count	Dtype
1	CustomerID	11 non-null	int64
2	Age_Group	11 non-null	object
3	Rating(1-5)	11 non-null	int64
4	Hotel	11 non-null	object
5	FoodPreference	11 non-null	object
6	Bill	11 non-null	int64
7	NoOfPax	11 non-null	int64

Age_Group.1 object 11 non-null dtypes: int64(5), object(4) memory usage: 924.0+ bytes [52]: df.drop_duplicates(inplace=True) df [52]: Aqu_Oroup 20-25 4 1300 0 1 **Ibis** veg 1 2 30-35 5 LemonTree 2000 Non-Veg 2 3 RedFox 25-30 6 Veg 1322 3 4 20-25 LemonTree Veg -1 1234 4 5 35+ 3 Ibis Vegetarian 989 5 6 35 +3 **Ibys** Non-Veg 1909 7 4 RedFox Vegetarian 1000 6 35+ 7 8 7 20-25 LemonTree Veg 2999 8 9 25-30 2 Ibis Non-Veg 3456 5 10 10 30-35 RedFox non-Veg -6755 EstimatedSalary Age_Group.10 40000 20-25 2 NoOfPax 1 3 59000 30-35 2 2 30000 25-30 3 2 120000 20-25 4 2 45000 35+ 5 2 35+ 122220 6 -1 21122 35+ 7 -10 345673 20-25 8 3 -99999 25-30 [53]: len(df) [53]: 10 [54]: index=np_array(list(range(0,len(df)))) df.set_index(index,inplace=True) index [54]: array(נט, ד, ב, א, א, ס, ס, ד, א, אן) [55]: df Hotel FoodPreference NoOfPax [55]: CustomerID Age_Group Rating(1-5) Bill 2 0 20-25 4 Ibis 1300 veg 1 2 30-35 5 3 LemonTree Non-Veg 2000

int64

11 non-null

EstimatedSalary

2	3	25-30	6	RedFox	Veg	1322	2
3	4	20-25	-1	LemonTree	Veg	1234	2
4	5	35+	3	Ibis	Vegetarian	989	2
5	6	35+	3	Ibys	Non-Veg	1909	2
6	7	35+	4	RedFox	Vegetarian	1000	-1
7	8	20-25	7	LemonTree	Veg	2999	-10
8	9	25-30	2	Ibis	Non-Veg	3456	3
9	10	30-35	5	RedFox	non-Veg	-6755	4

	EstimatedSalary	Age_Group.1
0	40000	20-25
1	59000	30-35
2	30000	25-30
3	120000	20-25
4	45000	35+
5	122220	35+
6	21122	35+
7	345673	20-25
8	-99999	25-30
9	87777	30-35

[56]: df.drop(['Age_Group.1'],axis=1,inplace=True) df

[56]:		CustomerID	Age_Group	Rating(1-5)	Hotel	FoodPreference	Bill	NoOfPax	\
	0	1	20-25	4	lbis	veg	1300	2	
	1	2	30-35	5	LemonTree	Non-Veg	2000	3	
	2	3	25-30	6	RedFox	Veg	1322	2	
	3	4	20-25	-1	LemonTree	Veg	1234	2	
	4	5	35+	3	Ibis	Vegetarian	989	2	
	5	6	35+	3	Ibys	Non-Veg	1909	2	
	6	7	35+	4	RedFox	Vegetarian	1000	-1	
	7	8	20-25	7	LemonTree	Veg	2999	-10	
	8	9	25-30	2	Ibis	Non-Veg	3456	3	
	9	10	30-35	5	RedFox	non-Veg	-6755	4	


```
[57]:
       df.CustomerID.loc[df.CustomerID<0]=np.nandf.Bill.loc[df.Bill<0]=np.nan
       df. Estimated Salary.loc [df. Estimated Salary < 0] = np. nan \ df
[57]:
                         AGC_OLOUP
       0
                                                                                     1300.0
                    1.0
                              20-25
                                                  4
                                                            Ibis
       1
                    2.0
                              30-35
                                                  5
                                                      LemonTree
                                                                          Non-Veg
                                                                                     2000.0
       2
                                                  6
                    3.0
                              25-30
                                                         RedFox
                                                                                     1322.0
                                                                               Veg
       3
                    4.0
                                                 -1
                              20-25
                                                      LemonTree
                                                                               Veg
                                                                                     1234.0
                                                  3
       4
                    5.0
                                35+
                                                                       Vegetarian
                                                                                      989.0
                                                            Ibis
       5
                                                  3
                                                                          Non-Veg
                    6.0
                                35+
                                                            Ibys
                                                                                     1909.0
       6
                    7.0
                                35+
                                                  4
                                                         RedFox
                                                                       Vegetarian
                                                                                     1000.0
                                                  7
       7
                    8.0
                              20-25
                                                      LemonTree
                                                                                     2999.0
                                                                               Veg
                                                  2
                                                                                     3456.0
       8
                    9.0
                              25-30
                                                            Ibis
                                                                          Non-Veg
       9
                                                  5
                   10.0
                              30-35
                                                         RedFox
                                                                          non-Veg
                                                                                        NaN
                      EstimatedSalary
           NoOfPax
       0
                  2
                                40000.0
                  3
       1
                                59000.0
       2
                  2
                                30000.0
                  2
       3
                              120000.0
       4
                  2
                                45000.0
       5
                  2
                              122220.0
        6
                 -1
                                21122.0
        7
                -10
                              345673.0
       8
                  3
                                    NaN
       9
                  4
                                87777.0
[58]:
       df["NoOfPax"].loc[(df["NoOfPax"]<1) | (df["NoOfPax"]>20)]=np.nan df
[58]:
           CustomerID Age_Group
                                       Rating(1-5)
                                                           Hotel
                                                                   FoodPreference
                                                                                        Bill
       0
                    1.0
                              20-25
                                                            Ibis
                                                                                     1300.0
                                                                               veg
                                                  5
       1
                    2.0
                              30-35
                                                      LemonTree
                                                                          Non-Veg
                                                                                      2000.0
       2
                    3.0
                              25-30
                                                  6
                                                         RedFox
                                                                               Veg
                                                                                      1322.0
       3
                    4.0
                              20-25
                                                 -1
                                                      LemonTree
                                                                               Veg
                                                                                     1234.0
       4
                                                  3
                                                                                      989.0
                    5.0
                                35+
                                                            Ibis
                                                                       Vegetarian
       5
                                                  3
                    6.0
                                35+
                                                                          Non-Veg
                                                            Ibys
                                                                                     1909.0
                    7.0
                                                  4
                                                         RedFox
       6
                                35+
                                                                       Vegetarian
                                                                                      1000.0
       7
                    8.0
                              20-25
                                                  7
                                                      LemonTree
                                                                               Veg
                                                                                      2999.0
       8
                                                  2
                    9.0
                              25-30
                                                            Ibis
                                                                          Non-Veg
                                                                                      3456.0
       9
                  10.0
                              30-35
                                                  5
                                                         RedFox
                                                                          non-Veg
                                                                                        NaN
           NoOfPax EstimatedSalary
       0
                2.0
                                40000.0
       1
                3.0
                                59000.0
```



```
3
                                             2.0
                                                                                     120000.0
                     4
                                             2.0
                                                                                         45000.0
                     5
                                             2.0
                                                                                     122220.0
                     6
                                             NaN
                                                                                         21122.0
                     7
                                             NaN
                                                                                     345673.0
                     8
                                             3.0
                                                                                                      NaN
                     9
                                             4.0
                                                                                         87777.0
[59]:
                     df.Age_Group.unique()
[59]: array(['20-25', '30-35', '25-30', '35+'], dtype=object)
[60]:
                     df.Hotel.unique()
[60]: array(['Ibis', 'LemonTree', 'RedFox', 'Ibys'], dtype=object)[61]:
[61]: <box>
<br/>
bound method Series.unique of 0</br>
                                                                                                                                                                       veg
                    1
                                               Non-Veg
                     2
                                                             Veg
                     3
                                                             Veg
                     4
                                      Vegetarian
                     5
                                               Non-Veg
                     6
                                      Vegetarian
                     7
                                                             Veg
                     8
                                               Non-Veg
                                               non-Veg
                     Name: FoodPreference, dtype: object>
[62]:
                     df.FoodPreference.replace(['Vegetarian','veg'],'Veg',inplace=True) df.FoodPreference.replace(['non-Veg'],'Non-Veg',inplace=True)
                    \label{lem:df_EstimatedSalary_fillna} $$ df_Balary_fillna(round(df_StimatedSalary_mean()),inplace=True) $$ df_NoOfPax_fillna(round(df_NoOfPax_median()),inplace=True) $$ df_Balary_fillna(round(df_Rating(1-5)')_median()), inplace=True) $$ df_Balary_fillna(round(df_Balary_fillna(round(df_Balary_fillna(round(df_Balary_fillna(fillna(fillna(fillna(fillna(fillna(fillna(fillna(fillna(fillna(fillna(fillna(fillna(fillna(fillna(fillna(fillna(fillna(fillna(fillna(fillna(fillna(fillna(fillna(fillna(fillna(fillna(fillna(fillna(fillna(fillna(fillna(fillna(fillna(fillna(fillna(fillna(fillna(fillna(fillna(fillna(fillna(fillna(fillna(fillna(fillna(fillna(fillna(fillna(fillna(fillna(fillna(fillna(fillna(fillna(fillna(fillna(fillna(fillna(fillna(fillna(fillna(fillna(fillna(fillna(fillna(fillna(fillna(fillna(fillna(fillna(fillna(fillna(fillna(fillna(fillna(fillna(fillna(fillna(fillna(fillna(fillna(fillna(fillna(fillna(fillna(fillna(fillna(fillna(fillna(fillna(fillna(fillna(fillna(fillna(fillna(fillna(fillna(fillna(fillna(fillna(fillna(fillna(fillna(fillna(fillna(fillna(fillna(fillna(fillna(fillna(fillna(fillna(fillna(fillna(fillna(fillna(fillna(fillna(fillna(fillna(fillna(fillna(fillna(fillna(fillna(fillna(fillna(fillna(fillna(fillna(fillna(fillna(fillna(fillna(fillna(fillna(fillna(fillna(fillna(fillna(fillna(fillna(fillna(fillna(fillna(fillna(fillna(fillna(fillna(fillna(fillna(fillna(fillna(fillna(fillna(fillna(fillna(fillna(fillna(fillna(fillna(fillna(fillna(fil)))))))))))))))))))))
[63]:
                     df
[63]:
                                                                                                                                                                        Ibis
                     0
                                                        1.0
                                                                                    20-25
                                                                                                                                            4
                                                                                                                                                                                                                             Veg
                                                                                                                                                                                                                                               1300.0
                                                                                                                                            5
                     1
                                                        2.0
                                                                                    30-35
                                                                                                                                                       LemonTree
                                                                                                                                                                                                                Non-Veg
                                                                                                                                                                                                                                               2000.0
                     2
                                                        3.0
                                                                                    25-30
                                                                                                                                            6
                                                                                                                                                                RedFox
                                                                                                                                                                                                                            Veg
                                                                                                                                                                                                                                               1322.0
                                                        4.0
                                                                                    20-25
                                                                                                                                          -1
                                                                                                                                                       LemonTree
                     3
                                                                                                                                                                                                                             Veg
                                                                                                                                                                                                                                               1234.0
                     4
                                                        5.0
                                                                                          35+
                                                                                                                                            3
                                                                                                                                                                                                                                                  989.0
                                                                                                                                                                        Ibis
                                                                                                                                                                                                                            Veg
```

2

2.0

30000.0


```
5
                   6.0
                               35+
                                                3
                                                          Ibis
                                                                       Non-Veg
                                                                                  1909.0
       6
                   7.0
                               35+
                                                4
                                                       RedFox
                                                                                  1000.0
                                                                            Veg
                                                7
       7
                   8.0
                            20-25
                                                    LemonTree
                                                                            Veg
                                                                                  2999.0
       8
                   9.0
                            25-30
                                                2
                                                          Ibis
                                                                       Non-Veg
                                                                                  3456.0
       9
                                                5
                  10.0
                            30-35
                                                       RedFox
                                                                       Non-Veg
                                                                                  1801.0
          NoOfPax
                     EstimatedSalary
       0
               2.0
                              40000.0
               3.0
       1
                              59000.0
       2
               2.0
                              30000.0
       3
               2.0
                             120000.0
       4
               2.0
                              45000.0
       5
               2.0
                             122220.0
       6
               2.0
                              21122.0
       7
               2.0
                             345673.0
       8
               3.0
                              96755.0
       9
               4.0
                              87777.0
 []:
       #EX.NO :4 Data
       Preprocessing#DATA
       27.08.2024
       #NAME : PRASANNA KUMAR
[65]:
       import numpy as np
       import pandas as
       pdimport warnings
       warnings.filterwarnings('ignore')
df-pd.read_csv("pre_process_datasample.csv") df
[65]:
       0
            France
                     44.0
                            72000.0
                                             No
                     27.0
       1
             Spain
                            48000.0
                                            Yes
       2
          Germany
                     30.0
                             54000.0
                                             No
       3
             Spain
                     38.0
                            61000.0
                                             No
       4
                     40.0
                                            Yes
          Germany
                                NaN
       5
                             58000.0
            France
                     35.0
                                            Yes
       6
             Spain
                      NaN
                             52000.0
                                             No
                     48.0
       7
            France
                            79000.0
                                            Yes
       8
          Germany
                     50.0
                            83000.0
                                             No
       9
            France
                     37.0
                            67000.0
                                            Yes
[66]:
       df.info()
```

<class 'pandas.core.frame.DataFrame'>


```
RangeIndex: 10 entries, 0 to 9
      Data columns (total 4 columns):
            Column
                         Non-Null Count
                                             Dtype
        1
            Country
                          10 non-null
                                             object
        2
                         9 non-null
            Age
                                             float64
                                             float64
            Salary
                         9 non-null
            Purchased
                         10 non-null
                                             object
      dtypes: float64(2), object(2)
      memory usage: 452.0+ bytes
[67]:
       df.Country.mode()
[67]:
       Name: Country, dtype: object
[68]:
       df.Country.mode()[0]
[68]: 'France'
[69]:
       type(df.Country.mode())
[69]: pandas.core.series.Series
       df.Country.fillna(df.Country.mode()[0],inplace=True) df.Age.fillna(df.Age.median(),inplace=True)
[70]:
       df.Salary.fillna(round(df.Salary.mean()),inplace=True) df
[70]:
       0
            France
                      44.0
                             72000.0
                                              No
                      27.0
       1
              Spain
                             48000.0
                                             Yes
       2
           Germany
                      30.0
                             54000.0
                                              No
       3
              Spain
                      38.0
                             61000.0
                                              No
       4
                      40.0
                                             Yes
           Germany
                             63778.0
       5
            France
                      35.0
                             58000.0
                                             Yes
       6
              Spain
                      38.0
                             52000.0
                                              No
       7
                      48.0
                             79000.0
                                             Yes
            France
       8
                      50.0
                             83000.0
                                              No
           Germany
       9
            France
                      37.0
                             67000.0
                                             Yes
[71]:
       pd.get_dummies(df.Country)
[71]:
           France
                    Germany
                               Spain
                       False
       1
             True
                               False
       2
            False
                       False
                                True
       3
            False
                        True False
```



```
False
                    False
                             True
      5
           False
                     True False
      6
            True
                    False
                           False
      7
           False
                    False
                             True
      8
            True
                    False False
           False
                     True False
[72]:
      updated_dataset=pd.concat([pd.get_dummies(df.Country),df.iloc[:
        _,[1,2,3]]],axis=1)
[73]:
      df.info()
      <class 'pandas.core.frame.DataFrame'>
      Rangelndex: 10 entries, 0 to 9
      Data columns (total 4 columns):
           Column
                       Non-Null Count
                                         Dtype
       1
           Country
                       10 non-null
                                         object
       2
                                        float64
           Age
                       10 non-null
       3
           Salary
                                         float64
                       10 non-null
           Purchased 10 non-null
                                         object
      dtypes: float64(2), object(2)
[74]:
      memory usage: 452.0+ bytes
 []:
      #EX.NO:5 EDA-Quantitative and Qualitative
       plots#DATA: 27.08.2024
       #NAME : PRASANNA KUMAR
       M#ROLL NO : 230701237
       #DEPARTMENT : B.E COMPUTER SCIENCE AND ENGINEERING - D
[76]:
      import numpy as np
      import pandas as
      pdimport warnings
      warnings_filterwarnings('ignore')
      df-pd_read_csv("pre_process_datasample.csv") df
[76]:
      0
           France
                    44.0
                          72000.0
                                          No
       1
                    27.0
                                         Yes
            Spain
                          48000.0
      2
         Germany
                    30.0
                          54000.0
                                          No
       3
                    38.0
            Spain
                          61000.0
                                          No
                    40.0
                                         Yes
         Germany
                              NaN
```



```
5
            France
                      35.0
                             58000.0
                                             Yes
       6
             Spain
                      NaN
                             52000.0
                                              No
       7
            France
                      48.0
                            79000.0
                                             Yes
       8
           Germany
                      50.0
                            83000.0
                                              No
       9
            France
                      37.0
                            67000.0
                                             Yes
[77]:
       df.info()
      <class 'pandas.core.frame.DataFrame'>
      RangeIndex: 10 entries, 0 to 9
      Data columns (total 4 columns):
                         Non-Null Count
            Column
                                             Dtype
       1
            Country
                         10 non-null
                                             object
       2
            Age
                         9 non-null
                                             float64
       3
                                             float64
            Salary
                         9 non-null
            Purchased 10 non-null
                                             object
      dtypes: float64(2), object(2)
[78]:
      memory usage: 452.0+ bytes
[78] : df.Country.mode()
       Name: Country, dtype: object
[79]:
       df.Country.mode()[0]
[79]: 'France'
[80]:
       type(df.Country.mode())
[80] : pandas.core.series.Series
       df.Country.fillna(df.Country.mode()[0],inplace=True) df.Age.fillna(df.Age.median(),inplace=True)
[81]:
       df.Salary.fillna(round(df.Salary.mean()),inplace=True) df
[81]:
       0
                      44.0
                             72000.0
            France
                                              No
                      27.0
       1
             Spain
                             48000.0
                                             Yes
       2
           Germany
                      30.0
                             54000.0
                                              No
       3
             Spain
                      38.0
                             61000.0
                                              No
       4
                      40.0
                                             Yes
           Germany
                             63778.0
       5
            France
                      35.0
                             58000.0
                                             Yes
       6
                      38.0
                             52000.0
                                              No
             Spain
       7
                      48.0
                             79000.0
                                             Yes
            France
```



```
No
       8
          Germany
                    50.0
                           83000.0
       9
           France
                    37.0
                           67000.0
                                           Yes
[82]:
       pd.get_dummies(df.Country)
[82]:
          France
                   Germany
                              Spain
                      False
       0
            True
                              False
       1
           False
                      False
                               True
       2
           False
                       True
                              False
       3
           False
                      False
                               True
           False
                      True
       4
                              False
       5
            True
                      False
                              False
       6
           False
                      False
                               True
       7
            True
                      False
                              False
       8
           False
                       True
                              False
       9
            True
                      False
                              False
[83]:
       updated_dataset=pd.concat([pd.get_dummies(df.Country),df.iloc[:
         _,[1,2,3]]],axis=1)
       updated_dataset
[83]:
          France
                   Germany
                              Spain
                                       Age
                                              Salary Purchased
             True
                      False
                              False
                                      44.0
                                             72000.0
                                                              No
                      False
       1
           False
                               True
                                      27.0
                                             48000.0
                                                            Yes
       2
           False
                       True
                              False
                                      30.0
                                             54000.0
                                                             No
       3
           False
                      False
                               True
                                      38.0
                                             61000.0
                                                             No
       4
           False
                       True
                              False
                                      40.0
                                             63778.0
                                                            Yes
       5
            True
                      False
                              False
                                                            Yes
                                      35.0
                                             58000.0
                      False
       6
           False
                               True
                                      38.0
                                             52000.0
                                                             No
       7
                      False
            True
                              False
                                      48.0
                                             79000.0
                                                            Yes
       8
            False
                       True
                              False
                                                             No
                                      50.0
                                             83000.0
       9
            True
                      False
                              False
                                      37.0
                                             67000.0
                                                            Yes
[84]:
       df.info()
      <class 'pandas.core.frame.DataFrame'>
      RangeIndex: 10 entries, 0 to 9
```

Data columns (total 4 columns):

#	Column	Non-Null Count	Dtype
1	Country	10 non-null	object
2	Age	10 non-null	float64
3	Salary	10 non-null	float64
4	Purchased	10 non-null	object
dtype	es: float64(2)), object(2)	•
mem	ory usage: 45	2.0+ bytes	


```
[85]:
      updated_dataset
[85]:
                                            Salary Purchased
          France
                   Germany
                             Spain
                                     Age
            True
                     False
                             False
                                     44.0
      0
                                           72000.0
                                                            No
           False
                                     27.0
      1
                     False
                              True
                                           48000.0
                                                           Yes
           False
                                     30.0
      2
                      True
                             False
                                           54000.0
                                                            No
      3
           False
                     False
                              True
                                     38.0
                                           61000.0
                                                            No
      4
           False
                      True
                             False
                                     40.0
                                           63778.0
                                                          Yes
      5
            True
                     False
                             False
                                     35.0
                                           58000.0
                                                          Yes
      6
           False
                     False
                              True
                                     38.0
                                           52000.0
                                                            No
      7
                     False
                                                          Yes
            True
                             False
                                     48.0
                                           79000.0
      8
           False
                      True
                             False
                                     50.0
                                           83000.0
                                                            No
      9
            True
                     False
                             False
                                     37.0
                                           67000.0
                                                          Yes
 []:
       #EX.NO:5 EDA-Quantitative and Qualitative
       plots#DATA: 03.09.2024
       #NAME : PRASANNA KUMAR
       M#ROLL NO: 230701237
[87]:
      import seaborn as sns
       import pandas as pd
       import numpy as np
       import matplotlib.pyplot as plt
       0/ mathlatlih inlina
[88]:
      tips=sns_load_dataset('tips')
      tips.head()
          total_bill
                                 sex smoker
[88] :
                        tip
                                              day
                                                      time
                                                            size
                                                                2
      0
                16.99
                       1.01
                             Female
                                          No
                                              Sun
                                                    Dinner
      1
                10.34
                       1.66
                                Male
                                          No
                                              Sun
                                                    Dinner
                                                                3
       2
                21.01
                       3.50
                                                                 3
                                Male
                                          No
                                              Sun
                                                    Dinner
       3
                23.68
                       3.31
                                Male
                                          No
                                              Sun
                                                    Dinner
                                                                2
                                                                4
      4 sns.displot(tips.total_bill,kde=True)
                                              Sun
                                                    Dinner
[89]:
```

[89] : <seaborn.axisgrid.FacetGrid at 0x20d7dc69390>

[90]: sns.displot(tips.total_bill,kde=False)

[90] : <seaborn.axisgrid.FacetGrid at 0x20d7dc22790>

[91]: sns.jointplot(x=tips.tip,y=tips.total_bill)

[91] : <seaborn.axisgrid.JointGrid at 0x20d7dc2f2d0>

[92]: sns.jointplot(x-tips.tip,y-tips.total_bill,kind="reg")

[92] : <seaborn.axisgrid.JointGrid at 0x20d7ed32450>

[93]: sns.jointplot(x-tips.tip,y-tips.total_bill,kind="hex")

[93] : <seaborn.axisgrid.JointGrid at 0x20d7ed7d350>

[94]: sns.pairplot(tips)

[94] : <seaborn.axisgrid.PairGrid at 0x20d7f1c9cd0>

[95]: tips.time.value_counts()

[95] : time

Dinner 176 Lunch 68

Name: count, dtype: int64

[96]: sns.pairplot(tips,hue='time')

[96] : <seaborn.axisgrid.PairGrid at 0x20d7cc27990>

[97]: sns.heatmap(tips.corr(numeric_only=True),annot=True)

[97] : <Axes: >

[98]: sns.boxplot(tips.total_bill)

[98] : <Axes: ylabel='total_bill'>

[99]: sns.boxplot(tips.tip)

[99] : <Axes: ylabel='tip'>

[100]: sns.countplot(tips.day)

[100] : <Axes: xlabel='count', ylabel='day'>

[101]: sns.countplot(tips.sex)

[101] : <Axes: xlabel='count', ylabel='sex'>

[102]: tips.sex.value_counts().plot(kind='pie')

[102] : <Axes: ylabel='count'>

[103]: [tips.sex.value_counts().plot(kind='bar')

[103] : <Axes: xlabel='sex'>

[104]: sns.countplot(tips[tips.time=='Dinner']['day'])

[104] : <Axes: xlabel='count', ylabel='day'>


```
for _ in range(num_samples):
                    sample = np.random.choice(population, size-size, replace-False)
                    sample_means[size].append(np.mean(sample))
[110]:
           plt.figure(figsize=(12, 8))
[110]: <Figure size 1200x800 with 0 Axes>
          <Figure size 1200x800 with 0 Axes>
[111]: for i, size in enumerate(sample_sizes):
    plt.subplot(len(sample_sizes), 1, i+1)
    plt.hist(sample_means[size], bins=30, alpha=0.7, label=f'Sample Size {size}')
    plt.axvline(np.mean(population), color='red', linestyle= 'dashed',___
              Linewidth=1.5,
           label= 'Population Mean')
           plt.title(f'Sampling Distribution(Sample Size {size})')
plt.xlabel('Sample mean')
plt.ylabel('Frequency')
plt.legend()
plt.tight_layout()
plt.show()
           plt.show()
                                                                                                         Sample Size 30
                   Frequen
                       50
                                                                                                         Population Mean
                                           46
                                                           48
                                                                           50
                                                                                          52
                                                                                                          54
                                                                                                                          56
                                                                     Sample mean
                                                 Sampling Distribution(Sample Size 50)
                   Frequency
                                                                                                         Sample Size 50
                       50
                                                                                                         Population Mean
                               46
                                                     48
                                                                          50
                                                                                                52
                                                                                                                     54
                                                                     Sample mean
                                                Sampling Distribution(Sample Size 100)
                     100
                  Frequency
                                                                                                        Sample Size 100
                                                                                                        Population Mean
                                      47
                                                              49
                                                  48
                                                                          50
                                                                                     51
                                                                                                 52
                                                                                                             53
                                                                                                                         54
                                                                     Sample mean
```



```
[]: #EX.NO :7 Z-Test
         #DATA: 10.09.2024
         #NAME : PRASANNA KUMAR
         M#ROLL NO: 230701237
[113]:
        import numpy as np
         import scipy.stats as stats
[114]:
        sample_data = np.array([152, 148, 151, 149, 147, 153, 150, 148, 152,
         149,151, 150, 149, 152, 151, 148, 150, 152, 149, 150,148, 153, 151,
        150, 149, 152, 148, 151, 150, 153])
[115]:
        population mean = 150
         sample_mean = np.mean(sample_data) sample_std =
        np.std(sample_data, ddof=1)
[116]:
        n = len(sample_data)
        z_statistic = (sample_mean - population_mean) / (sample_std / np.sqrt(n))p_value = 2 *
(1 - stats.norm.cdf(np.abs(z_statistic)))
[117]:
         # Assuming sample_mean, z_statistic, and p_value have already been
         calculated:
         \begin{array}{lll} print(f"Sample & Mean: & \{sample\_mprint(f"Z-Statistic: & \{z\_statistic: & \{z\_statistic: & \{p\_value:.4f\} \\ \end{array} ) 
                                     {sample_mean:.2f}\n")
                                      {z_statistic:.4f}\n")
         # Significance level
        alpha = 0.05
         # Decision based on p-value
         if p_value < alpha:</pre>
              print("Reject the null hypothesis: The average weight is significantly,
           adifferent from 150 grams.")
        else:
              print("Fail to reject the null hypothesis: There is no significant_
          adifference in average weight from 150 grams.")
        P-Value: 0.5218
```

Fail to reject the null hypothesis: There is no significant difference inaverage weight from 150 grams.


```
[]: #EX.NO :8 T-Test
       #DATA: 08.10.2024
       #NAME : PRASANNA KUMAR
       M#ROLL NO: 230701237
[119]:
       import numpy as np
       import scipy.stats as
       statsnp.random.seed(42)
       sample_size = 25
       sample_data = np.random.normal(loc=102, scale=15, size=sample_size)
[120]:
       population_mean = 100
       sample_mean = np.mean(sample_data) sample_std =
       np.std(sample_data, ddof=1)
[121]:
       n = len(sample_data)
       t_statistic, p_value = stats.ttest_1samp(sample_data,population_mean)
[122]:
       # Assuming sample_mean, t_statistic, and p_value have already been
       calculated:
       # Significance level
       alpha = 0.05
       # Decision based on p-value
       if p_value < alpha:</pre>
           print("Reject the null hypothesis: The average IQ score is significantly,
        adifferent from 100.")
       else:
           print("Fail to reject the null hypothesis: There is no significant_
         adifference in average IQ score from 100.")
      P-Value: 0.8760
      Fail to reject the null hypothesis: There is no significant difference inaverage IQ
      score from 100.
 []:
       #EX.NO:9 Annova
       TEST#DATA:
```



```
#DEPARTMENT : B.E COMPUTER SCIENCE AND ENGINEERING - D
[124]:
          import numpy as np
          import scipy.stats as stats
          from statsmodels.stats.multicomp import pairwise_tukeyhsd
          np.random.seed(42)
          n nlants = 25
          growth_A = np.random.normal(loc=10, scale=2, size=n_plants) growth_B = np.random.normal(loc=12, scale=3, size=n_plants) growth_C = np.random.normal(loc=15, scale=2.5, size=n_plants)
[125]:
[126]:
          all_data = np.concatenate([growth_A, growth_B, growth_C])
[127]:
         treatment_labels = ['A'] * n_plants + ['B'] * n_plants + ['C'] * n_plants f_statistic, p_value
          = stats.f_oneway(growth_A, growth_B, growth_C)
          mean_B = np.mean(growth_B)
[128]:
         mean_G = np.mean(growth_G)
mean_C = np.mean(growth_C)
print(f"Treatment A Mean Growth: {mean_A:.4f}")
print(f"Treatment B Mean Growth: {mean_B:.4f}")
print(f"Treatment C Mean Growth: {mean_C:.4f}")
print(f"F-Statistic: {f_statistic:.4f}") print(f"P-Value:
          {p_value:.4f}")
          alpha = 0.05
          if p_value < alpha:</pre>
                print("Reject the null hypothesis: There is a significant difference in_
            amean growth rates among the three treatments.")
          else:
                print("Fail to reject the null hypothesis: There is no significant_
            adifference in mean growth rates among the three treatments.")
          if p_value < alpha:</pre>
               tukey_results = pairwise_tukeyhsd(all_data, treatment_labels, alpha=0.05)
                print("\nTukey's HSD Post-hoc Test:")
                print(tukey_results)
         Treatment A Mean Growth: 9.6730
```

#NAME : PRASANNA KUMAR M#ROLL NO : 230701237


```
Treatment B Mean Growth: 11.1377
       Treatment C Mean Growth: 15.2652 F-Statistic: 36.1214
       P-Value: 0.0000
       Reject the null hypothesis: There is a significant difference in mean growth rates
       among the three treatments.
       Tukey's HSD Post-hoc Test:
       Multiple Comparison of Means - Tukey HSD, FWER=0.05
       _____
       group1 group2 meandiff p-adj
                                         lower
                                                upper reject
                         1.4647 0.0877 -0.1683 3.0977
            Α
                                                          False
            Α
                    C
                         5.5923
                                   0.0 3.9593 7.2252
                                                           True
  []: #EX.NO :10 Feature
        Scaling#DATA
        22.10.2024
        #NAME : PRASANNA KUMAR
        M#ROLL NO: 230701237
[130]:
       import numpy as np
        import pandas as
       pdimport warnings
       warnings_filterwarnings('ignore')
df-pd_read_csv('pre_process_datasample.csv')
[131]:
       df.head()
[131]:
                             Salary Purchased
           Country
                      Age
        0
           France
                     44.0
                            72000.0
                                            No
        1
             Spain
                     27.0
                            48000.0
                                           Yes
        2
                     30.0
                            54000.0
          Germany
                                            No
        3
                            61000.0
             Spain
                     38.0
                                            No
                     40.0
        4 Germany
                               NaN
                                           Yes
[132]:
       df.Country.fillna(df.Country.mode()[0],inplace=True)
       features=df.iloc[:,:-1].values
       features
[132]: array([['France', 44.0, 72000.0],
               ['Spain', 27.0, 48000.0],
               ['Germany', 30.0, 54000.0],
               ['Spain', 38.0, 61000.0],
```



```
['Germany', 40.0, nan],
                  ['France', 35.0, 58000.0],
                  ['Spain', nan, 52000.0],
                  ['France', 48.0, 79000.0],
                  ['Germany', 50.0, 83000.0],
                  ['Erapas' 27 0 67000 0]] dtupa-abject)
[133]:
         label=df.iloc[:,-1].values
[134]:
         from sklearn.impute import SimpleImputer
         age=SimpleImputer(strategy="mean",missing_values=np.nan)
Salary=SimpleImputer(strategy="mean",missing_values=np.nan)
age.fit(features[:,[1]])
[134]: Unimplemmputery
[135]:
         Salary.fit(features[:,[2]])
[135] : SimpleImputer()
[136]:
         SimpleImputer()
[136] : SimpleImputer()
[137]:
         features[:,[1]]=age.transform(features[:,[1]])
         features[:,[2]]=Salary_transform(features[:,[2]])
         features
[137]: array([['France', 44.0, 72000.0],
                  ['Spain', 27.0, 48000.0],
                  ['Germany', 30.0, 54000.0],
                  ['Spain', 38.0, 61000.0],
                  ['Germany', 40.0, 63777.777777778],
                  ['France', 35.0, 58000.0],
                  ['Spain', 38.77777777778, 52000.0],
                  ['France', 48.0, 79000.0],
                  ['Germany', 50.0, 83000.0],
                  ['France', 37.0, 67000.0]], dtype=object)
[138]:
         from sklearn.preprocessing import
OneHotEncoderoh =
         OneHotEncoder(sparse_output=False)
Country=oh.fit_transform(features[:,[0]]) Country
     [130]. array([[1., 0., 0.],
                     [0., 0., 1.],
                     [0., 1., 0.],
```



```
[0., 0., 1.],
                [0., 1., 0.],
                [1., 0., 0.],
                [0., 0., 1.],
                [1., 0., 0.],
                [0., 1., 0.],
[139]:
        final_set=np.concatenate((Country,features[:,[1,2]]),axis=1)
        final_set
  [139]: array([[1.0, 0.0, 0.0, 44.0, 72000.0],
                  [0.0, 0.0, 1.0, 27.0, 48000.0],
                  [0.0, 1.0, 0.0, 30.0, 54000.0],
                  [0.0, 0.0, 1.0, 38.0, 61000.0],
                  [0.0, 1.0, 0.0, 40.0, 63777.777777778],
                  [1.0, 0.0, 0.0, 35.0, 58000.0],
                  [0.0, 0.0, 1.0, 38.777777777778, 52000.0],
                  [1.0, 0.0, 0.0, 48.0, 79000.0],
                  [0.0, 1.0, 0.0, 50.0, 83000.0],
                  [1.0, 0.0, 0.0, 37.0, 67000.0]], dtype=object)
[140]:
        from sklearn.preprocessing import StandardScaler
        sc=StandardScaler()
        sc.fit(final_set)
        feat_standard_scaler=sc.transform(final_set)
[141]:
        feat_standard_scaler
[141]: array([[ 1.22474487e+00, -6.54653671e-01, -6.54653671e-01,
                   7.58874362e-01,
                                       7.49473254e-01],
                [-8.16496581e-01, -6.54653671e-01,
                                                           1.52752523e+00,
                 -1.71150388e+00, -1.43817841e+00],
                [-8.16496581e-01,
                                       1.52752523e+00, -6.54653671e-01,
                 -1.27555478e+00, -8.91265492e-01],
                [-8.16496581e-01, -6.54653671e-01,
                                                           1.52752523e+00.
                 -1.13023841e-01, -2.53200424e-01],
                                       1.52752523e+00, -6.54653671e-01,
                 [-8.16496581e-01,
                   1.77608893e-01,
                                       6.63219199e-16],
                [ 1.22474487e+00, -6.54653671e-01, -6.54653671e-01,
                  -5.48972942e-01, -5.26656882e-01],
                [-8.16496581e-01, -6.54653671e-01, 0.00000000e+00, -1.07356980e+00],
                                                           1.52752523e+00,
                 1.22474487e+00, -6.54653671e-01, -6.54653671e-01,
                                       1.38753832e+00],
1.52752523e+00,-6.54653671e-01,
                   1.34013983e+00.
                [-8.16496581e-01,
                   1.63077256e+00,
                                       1.75214693e+00],
```



```
[ 1.22474487e+00, -6.54653671e-01, -6.54653671e-01,
                 -2.58340208e-01,
                                       2.93712492e-01]])
[142]:
        from sklearn.preprocessing import MinMaxScaler
mms-MinMaxScaler(feature_range=(0,1))
        mms.fit(final_set)
        feat_minmax_scaler=mms.transform(final_set)
        feat_minmax_scaler
[142]:
                              , 0.
                                            , 1.
                 [0.
                                                             0.
                                                                         , 0.
                 [0.
                              , 1.
                                            , 0.
                                                              0.13043478, 0.17142857],
                 [0.
                                            , 1.
                              , 0.
                                                              0.47826087, 0.37142857],
                 [0.
                              , 1.
                                             , 0.
                                                              0.56521739, 0.45079365],
                 [1.
                              , 0.
                                            , 0.
                                                              0.34782609, 0.28571429],
                 [0.
                              , 0.
                                            , 1.
                                                              0.51207729, 0.11428571],
                 [1.
                              . 0.
                                            . 0.
                                                              0.91304348, 0.88571429],
                 [0.
                              , 1.
                                            , 0.
                                                                         , 1.
                 [1.
                              , 0.
                                            , 0.
                                                              0.43478261, 0.54285714]])
  []: #EX.NO :11 Linear Regression
         #DATA : 29.10.2024
        #NAME : PRASANNA KUMAR
        M#ROLL NO: 230701237
[144]:
        import numpy as np
        import pandas as pd
        df = pd_read_csv('Salary_data.csv') df
[144]:
              - COLOEXPONDINO
                                  oulul,
                            1.1
                                   39343
        1
                            1.3
                                   46205
        2
                            1.5
                                   37731
        3
                            2.0
                                   43525
        4
                            2.2
                                   39891
        5
                            2.9
                                   56642
                            3.0
                                   60150
        6
        7
                            3.2
                                   54445
        8
                            3.2
                                   64445
        9
                            3.7
                                   57189
        10
                            3.9
                                   63218
        11
                            4.0
                                   55794
        12
                            4.0
                                   56957
        13
                            4.1
                                   57081
```



```
14
                   4.5
                          61111
15
                   4.9
                          67938
16
                   5.1
                          66029
17
                   5.3
                          83088
18
                   5.9
                          81363
19
                          93940
                   6.0
20
                   6.8
                          91738
21
                   7.1
                          98273
22
                   7.9
                         101302
23
                   8.2
                         113812
24
                   8.7
                         109431
25
                   9.0
                         105582
26
                   9.5
                         116969
27
                   9.6
                         112635
28
                  10.3
                         122391
29
                  10.5
                         121872
```

[145]: df.info()

<class 'pandas.core.frame.DataFrame'> RangeIndex: 30 entries, 0 to 29 Data columns (total 2 columns):

#	Column	Non-Null Count	Dtype
1	YearsExperience	30 non-null	float64
2	Salary		int64

dtypes: float64(1), int64(1) [146]: memory usage: 612.0 bytes

df_dropna(inplace=True);

[146]:


```
14
                   4.5
                          61111
15
                   4.9
                          67938
                          66029
16
                   5.1
17
                   5.3
                          83088
                   5.9
18
                          81363
19
                   6.0
                          93940
20
                   6.8
                          91738
                         98273
21
                   7.1
22
                   7.9
                         101302
23
                   8.2
                        113812
24
                   8.7
                        109431
25
                   9.0
                        105582
26
                   9.5
                        116969
27
                   9.6
                        112635
28
                  10.3
                        122391
29
                  10.5
                        121872
```

[147]: df.info()

<class 'pandas.core.frame.DataFrame'> RangeIndex: 30 entries, 0 to 29 Data columns (total 2 columns):

#	Column	Non-Null Count	Dtype
	 У	20	£1 = = ± € 4
	YearsExperience	30 non-null	float64
2	Salary	30 non-null	int64

dtypes: float64(1), int64(1) memory usage: 612.0 bytes

df.describe() #descripte statical [148]: report# find out IYER FOR BELOW META

$I \cap \Delta I \cap \Delta$		
Count	30.000000	30.000000
mean	5.313333	76003.000000
std	2.837888	27414.429785
min	1.100000	37731.000000
25%	3.200000	56720.750000
50%	4.700000	65237.000000
75%	7.700000	100544.750000
max	10.500000	122391.000000

[149]: features = df.iloc[:,[0]].values # : - > all row , 0 -> first column

#iloc index based selection loc location based sentence

label = df.iloc[:,[1]].values


```
features
   [149]: array([[ 1.1],
                 [ 1.3],
                  [ 1.5],
                  [2.],
                  [ 2.2],
                  [2.9],
                  [ 3. ],
                  [3.2],
                  [ 3.2],
                  [3.7],
                  [ 3.9],
                  [4.],
                  [ 4. ],
                  [4.1],
                  [ 4.5],
                  [ 4.9],
                  [5.1],
                  [ 5.3],
                  [5.9],
                  [ 6. ],
                  [6.8],
                  [7.1],
                  [7.9],
                  [8.2],
                  [8.7],
                  [9.],
                  [ 9.5],
                  [ 9.6],
                 [10.3],
                [10.5]])
[150]:
        label
 [150]: array([[
                   39343],
                   46205],
                   37731],
                   43525],
                   39891],
```


[56642], [60150], [54445], [64445], [57189], [63218],

```
55794],
                 56957],
                 57081],
                 61111],
                 67938],
                 66029].
                 83088],
                 81363],
               [ 93940],
                 91738],
               [ 98273],
              [101302],
               [113812],
               [109431],
               [105582],
               [116969],
              [112635],
              [122391],
[151]: from sklearn.model_selection import train_test_split
       x_train,x_test,y_train,y_test = train_test_split(features,label,test_size=0.
         2,random_state=23)
        # x independent input train 80 % test
       20 %""
       y is depenent ouput
       0.2 allocate test for 20 % automatically train for
       80 %""
[151]:
       %\n'
[152]:
       from sklearn.linear_model import LinearRegression
       model = LinearRegression() model.fit(x_train,y_train)
        sk - size kit
       linear means using linear
       regressionfit means add data
[152]:
       model.score(x_train,y_train)
       accuracy
        calculating96 %
```



```
...
[153]: '\naccuracy calculating\n96 %\n'
[154]:
[154]: \naccuracy calculating\n91 %\n'
[155]:
        model.coef_
[155]: array([[9281.30847068]])
[156]:
        model.intercept_
[156]: array([27166.73682891])
[157]:
        import pickle
        pickle.dump(model,open('SalaryPred.model','wb')) ""
        pickle momory obj to file
[157]: '\
[159]:
        yr_of_exp = float(input("Enter years of expreience: "))
yr_of_exp_NP = np.array([[yr_of_exp]])
        salary = model.predict(yr_of_exp_NP)
        print("Estimated salary for {} years of expreience is {} . ".
          aformat(yr_of_exp,salary))
       Estimated salary for 24.0 years of expreience is [[249918.14012525]] .
 [160]:
        print(f" Estimated salary for {yr_of_exp} years of expreience is {salary} . ")
        Estimated calary for 24.0 years of expressioned is [[240019.14012525]]
   []: #EX.NO :12
                      Logistic
        Regression#DATA: 05.11.2024
```


#NAME : PRASANNA KUMAR M#ROLL NO : 230701237

#DEPARTMENT : B.E COMPUTER SCIENCE AND ENGINEERING - D

[162]: import numpy as np import pandas as pdimport warnings warnings.filterwarnings('ignore') df-pd.read_csv('Social_Network_Ads.csv.csv') df [162]:

0	15624510	Male	19	19000	0
1	15810944	Male	35	20000	0
2	15668575	Female	26	43000	0
3	15603246	Female	27	57000	0
4	15804002	Male	19	76000	0
	•••				
395	15691863	Female	46	41000	1
396	15706071	Male	51	23000	1
397	15654296	Female	50	20000	1
398	15755018	Male	36	33000	0
399	15594041	Female	49	36000	1

[400 rows x 5 columns]

[163]: df.tail(20)

[163]:		User ID
	380	15683758
		4-4-044

	· ,				
	User ID	Gender	Age	EstimatedSalary	Purchased
380	15683758	Male	42	64000	0
381	15670615	Male	48	33000	1
382	15715622	Female	44	139000	1
383	15707634	Male	49	28000	1
384	15806901	Female	57	33000	1
385	15775335	Male	56	60000	1
386	15724150	Female	49	39000	1
387	15627220	Male	39	71000	0
388	15672330	Male	47	34000	1
389	15668521	Female	48	35000	1
390	15807837	Male	48	33000	1
391	15592570	Male	47	23000	1
392	15748589	Female	45	45000	1
393	15635893	Male	60	42000	1
394	15757632	Female	39	59000	0
395	15691863	Female	46	41000	1
396	15706071	Male	51	23000	1
397	15654296	Female	50	20000	1


```
398
              15755018
                             Male
                                     36
                                                      33000
                                                                        0
        399
                                     49
                                                      36000
                                                                        1
              15594041
                          Female
[164]:
        df.head(25)
[164]:
                                                             Purchased
               User ID
                         Gender
                                   Age
                                          EstimatedSalary
                                    19
         0
              15624510
                           Male
                                                     19000
                                                                       0
                                    35
                                                                       0
         1
              15810944
                           Male
                                                     20000
         2
                                                                       0
              15668575
                         Female
                                    26
                                                     43000
         3
                                                                       0
              15603246
                         Female
                                    27
                                                     57000
         4
              15804002
                           Male
                                    19
                                                     76000
                                                                       0
         5
              15728773
                                    27
                                                                       0
                           Male
                                                     58000
         6
                                                                       0
              15598044
                         Female
                                    27
                                                     84000
         7
                         Female
                                    32
                                                                       1
              15694829
                                                    150000
         8
                                    25
                                                                       0
              15600575
                           Male
                                                     33000
         9
              15727311
                         Female
                                    35
                                                     65000
                                                                       0
              15570769
                                                                       0
         10
                         Female
                                    26
                                                     80000
                                                                       0
         11
              15606274
                         Female
                                    26
                                                     52000
                                                                       0
         12
              15746139
                           Male
                                    20
                                                     86000
         13
              15704987
                           Male
                                    32
                                                     18000
                                                                       0
         14
              15628972
                           Male
                                    18
                                                     82000
                                                                       0
                                                     80000
                                                                       0
         15
              15697686
                           Male
                                    29
              15733883
                                    47
                                                                       1
         16
                           Male
                                                     25000
                                                                       1
         17
              15617482
                           Male
                                    45
                                                     26000
         18
                                                                       1
              15704583
                           Male
                                    46
                                                     28000
         19
                                    48
                                                                       1
              15621083
                         Female
                                                     29000
         20
              15649487
                           Male
                                    45
                                                     22000
                                                                       1
         21
              15736760
                         Female
                                    47
                                                     49000
                                                                       1
         22
              15714658
                           Male
                                    48
                                                     41000
                                                                       1
         23
                                                                       1
              15599081
                         Female
                                    45
                                                     22000
         24
              15705113
                                                                       1
                           Male
                                    46
                                                     23000
[165]:
        features = df.iloc[:,[2,3]].valueslabel
        = df.iloc[:,4].values features
[165]:
         array([[
                        19,
                             ושטטען,
                             20000],
                 L
                       35,
                 26,
                             43000],
                 27,
                             57000],
                       19,
                             76000],
                       27,
                             58000],
                       27,
                             84000],
                       32,
                            150000],
                 [
                       25,
                             33000],
                 [
                       35,
                             65000],
                 I
                       26,
                             80000],
```



```
26,
[
            52000],
      20,
            86000],
      32,
            18000],
      18,
            82000],
      29,
            80000],
      47,
            25000],
      45,
            26000],
      46,
            28000],
      48,
            29000],
      45,
            22000],
      47,
            49000],
      48,
            41000],
      45,
            22000],
      46,
            23000],
      47,
            20000],
      49,
            28000],
      47,
            30000],
      29,
            43000],
      31,
            18000],
      31,
            74000],
      27, 137000],
      21,
            16000],
      28,
            44000],
      27,
            90000],
      35,
            27000],
      33,
            28000],
      30,
            49000],
      26,
            72000],
      27,
            31000],
      27,
            17000],
      33,
            51000],
      35,
           108000],
      30,
            15000],
      28,
            84000],
      23,
            20000],
      25,
            79000],
      27,
            54000],
      30, 135000],
      31,
            89000],
      24,
            32000],
      18,
            44000],
      29,
            83000],
      35,
            23000],
      27,
            58000],
24,
            55000],
23,
            48000],
[
      28,
            79000],
```



```
22,
[
            18000],
      32,
           117000],
      27,
            20000],
      25,
            87000],
      23,
            66000],
      32,
           120000],
      59,
            83000],
      24,
            58000],
      24,
            19000],
      23,
            82000],
      22,
            63000],
            68000],
      31,
      25,
            80000],
      24,
            27000],
      20,
            23000],
      33, 113000],
      32,
            18000],
      34, 112000],
      18,
            52000],
      22,
            27000],
      28,
            87000],
      26,
            17000],
      30,
            80000],
      39,
            42000],
      20,
            49000],
      35,
            88000],
      30,
            62000],
      31, 118000],
      24,
            55000],
      28,
            85000],
      26,
            81000],
      35,
            50000],
      22,
            81000],
      30,
           116000],
            15000],
      26,
      29,
            28000],
      29,
            83000],
      35,
            44000],
      35,
            25000],
      28,
           123000],
      35,
            73000],
      28,
            37000],
      27,
            88000],
      28,
            59000],
32,
            86000],
33, 149000],
[
      19,
            21000],
```



```
[
      21,
            72000],
      26,
            35000],
      27,
            89000],
      26,
            86000],
      38,
            80000],
      39,
            71000],
      37,
            71000],
      38,
            61000],
      37,
            55000],
      42,
            80000],
      40,
            57000],
            75000],
      35,
      36,
            52000],
      40,
            59000],
      41,
            59000],
      36,
            75000],
      37,
            72000],
      40,
            75000],
      35,
            53000],
      41,
            51000],
      39,
            61000],
      42,
            65000],
      26,
            32000],
      30,
            17000],
      26,
            84000],
      31,
            58000],
      33,
            31000],
      30,
            87000],
      21,
            68000],
      28,
            55000],
      23,
            63000],
      20,
            82000],
      30,
           107000],
      28,
            59000],
      19,
            25000],
      19,
            85000],
      18,
            68000],
      35,
            59000],
      30,
            89000],
      34,
            25000],
      24,
            89000],
      27,
            96000],
      41,
            30000],
      29,
            61000],
      20,
            74000],
26,
            15000],
            45000],
      41,
```



```
[
      31,
            76000],
      36,
            50000],
      40,
            47000],
      31,
            15000],
      46,
            59000],
      29,
            75000],
      26,
            30000],
      32, 135000],
      32,
           100000],
      25,
            90000],
      37,
            33000],
            38000],
      35,
      33,
            69000],
      18,
            86000],
      22,
            55000],
      35,
            71000],
      29,
           148000],
      29,
            47000],
      21,
            88000],
      34, 115000],
      26, 118000],
      34,
            43000],
      34,
            72000],
      23,
            28000],
      35,
            47000],
            22000],
      25,
      24,
            23000],
      31,
            34000],
      26,
            16000],
            71000],
      31,
      32,
           117000],
      33,
            43000],
      33,
            60000],
      31,
            66000],
      20,
            82000],
      33,
            41000],
      35,
            72000],
      28,
            32000],
      24,
            84000],
      19,
            26000],
      29,
            43000],
      19,
            70000],
      28,
            89000],
      34,
            43000],
30,
            79000],
20,
            36000],
[
            80000],
      26,
```



```
[
      35,
            22000],
      35,
            39000],
      49,
            74000],
      39, 134000],
      41,
            71000],
      58, 101000],
      47.
            47000],
      55, 130000],
      52, 114000],
      40, 142000],
      46,
            22000],
      48,
            96000],
      52,
          150000],
      59,
            42000],
            58000],
      35,
      47.
            43000],
      60, 108000],
      49,
            65000],
      40,
            78000],
      46,
            96000],
      59, 143000],
      41,
            80000],
      35,
            91000],
      37, 144000],
      60, 102000],
      35,
            60000],
      37,
            53000],
      36, 126000],
      56, 133000],
      40,
            72000],
      42.
            80000],
      35, 147000],
      39,
            42000],
      40, 107000],
      49,
            86000],
      38, 112000],
      46,
            79000],
      40,
            57000],
      37,
            80000],
      46,
            82000],
      53, 143000],
      42, 149000],
      38,
            59000],
      50,
            88000],
56, 104000],
41,
            72000],
[
      51, 146000],
```



```
[
      35,
            50000],
      57, 122000],
      41,
            52000],
      35,
            97000],
      44,
            39000],
            52000],
      37,
      48, 134000],
      37, 146000],
      50,
            44000],
      52,
            90000],
      41,
            72000],
      40,
            57000],
      58,
            95000],
      45, 131000],
      35,
            77000],
      36, 144000],
      55, 125000],
      35,
            72000],
      48,
            90000],
      42, 108000],
      40,
            75000],
      37,
            74000],
      47, 144000],
      40,
            61000],
      43, 133000],
      59,
            76000],
      60,
            42000],
      39, 106000],
      57,
            26000],
      57,
            74000],
      38,
            71000],
      49,
            88000],
      52,
            38000],
      50,
            36000],
      59,
            88000],
      35,
            61000],
      37,
            70000],
      52,
            21000],
      48,
          141000],
      37,
            93000],
      37,
            62000],
      48,
           138000],
      41,
            79000],
      37,
            78000],
[
      39, 134000],
49,
            89000],
[
            39000],
      55,
```



```
[
      37,
            77000],
      35,
            57000],
36,
            63000],
      42,
            73000],
      43, 112000],
      45,
            79000],
      46, 117000],
      58,
            38000],
      48,
            74000],
      37, 137000],
      37,
            79000],
      40,
            60000],
      42,
            54000],
      51, 134000],
      47, 113000],
      36, 125000],
      38,
            50000],
      42,
            70000],
      39,
            96000],
      38,
            50000],
      49, 141000],
      39,
            79000],
      39,
            75000],
      54,
           104000],
      35,
            55000],
      45,
            32000],
      36,
            60000],
      52, 138000],
      53,
            82000],
      41,
            52000],
      48,
            30000],
      48, 131000],
      41,
            60000],
      41,
            72000],
      42,
            75000],
      36, 118000],
      47, 107000],
      38,
            51000],
      48, 119000],
      42.
            65000],
      40,
            65000],
      57,
            60000],
      36,
            54000],
      58,
           144000],
35,
            79000],
38,
            55000],
[
      39, 122000],
```



```
[
      53, 104000],
      35,
            75000],
      38,
            65000],
      47,
            51000],
      47, 105000],
      41,
            63000],
      53,
            72000],
      54,
           108000],
      39,
            77000],
      38,
            61000],
      38,
           113000],
      37,
            75000],
      42,
            90000],
      37,
            57000],
            99000],
      36,
      60,
            34000],
      54,
            70000],
      41,
            72000],
      40,
            71000],
      42,
            54000],
      43,
           129000],
      53,
            34000],
      47,
            50000],
      42,
            79000],
      42,
           104000],
      59,
            29000],
      58,
            47000],
      46,
            88000],
      38,
            71000],
      54,
            26000],
      60,
            46000],
      60,
            83000],
      39,
            73000],
      59,
           130000],
      37,
            80000],
      46,
            32000],
      46,
            74000],
      42,
            53000],
      41,
            87000],
      58,
            23000],
      42,
            64000],
      48,
            33000],
      44.
           139000],
      49,
            28000],
57,
            33000],
56,
            60000],
      49,
            39000],
```



```
71000],
              39.
              47,
                    34000],
              48,
                    35000],
              48,
                    33000],
              47.
                    230001.
              45,
                   45000],
              60,
                   42000].
              39,
                    59000],
              46,
                   41000],
              51,
                   23000],
              50,
                    20000],
                    33000],
              36,
              49,
                    36000]], dtype=int64)
label
 array([0, 0, 0,
                                                     0, 0, 0,
                   0, 0, 0,
                             0, 1, 0, 0, 0, 0, 0,
                                                               1,
                                                                   1, 1,
                                                                         1,
                                                                             1, 1,
                                                     0, 0, 0,
                      1,
                         1,
                             0, 0, 0,
                                       1,
                                          0, 0, 0,
                                                               0,
                                                                   0, 0,
         1, 1, 1,
                                                                             0, 0,
         0, 0, 0,
                   0, 1, 0,
                             0, 0, 0,
                                       0,
                                           0, 0, 0,
                                                     0, 0, 0,
                                                               0,
                                                                   0, 0,
                                                                         1,
         0, 0, 0,
                   0, 0,
                         0,
                             0, 0, 0,
                                       1,
                                          0, 0, 0,
                                                     0, 0, 0,
                                                               0,
                                                                   0, 0,
         0, 0, 0,
                   0, 0, 0,
                             0, 0, 0,
                                       1,
                                          0, 0, 0,
                                                     0, 0, 1,
                                                               0,
                                                                   0, 0,
                                                                         0,
                                                                             0, 0,
                                                     0, 0, 0,
         0, 0, 0,
                   0, 0, 0,
                             0, 0, 0,
                                       0, 0, 0, 0,
                                                               0,
                                                                   0, 0,
                                                                         0,
         0, 0, 0,
                   0, 0, 1,
                             0, 0, 0,
                                      0,
                                           0, 0, 0,
                                                     0, 1, 0,
                                                               0,
                                                                   0, 0,
                                                                         0,
                                                                             0, 0,
         0, 0, 0,
                   0, 0, 1,
                             1, 0, 0,
                                       0,
                                           0, 0, 0,
                                                     0, 1,
                                                                   0, 0,
         0, 0, 0,
                   0, 0, 0,
                             1, 0, 0, 0,
                                           0, 0, 0,
                                                     0, 0, 0,
                                                               0,
                                                                   0, 0,
         0, 0, 0,
                   0, 1, 0,
                             1, 0, 1,
                                       0,
                                           1.
                                                     1, 0, 0,
                                             0, 1,
                                       1,
         0, 1, 1,
                   1, 0, 0,
                             1, 1, 0,
                                           1,
                                              0,
                                                 1,
                                                     1, 0,
                                                                   0, 0,
         1, 1, 0,
                   1, 0, 1,
                             0, 1, 0,
                                       0,
                                           1.
                                              1, 0,
                                                     1, 0, 0,
                                                                1,
                                                                   1, 0,
                                                                          1,
                                                                             1, 0,
         1, 1, 0,
                   0, 1, 0,
                             0, 1,
                                   1,
                                       1,
                                           1,
                                              1,
                                                 0,
                                                     1, 1,
                                                           1,
                                                               1,
                                                                   0, 1,
                                                                             0, 1,
         0, 1, 0,
                   1, 1, 1,
                             1, 0, 0,
                                       0,
                                           1,
                                              1,
                                                 0,
                                                     1, 1,
                                                           1,
                                                                   1, 0,
                                                               1,
         1, 0, 0,
                   1, 0, 1,
                             0, 1,
                                   1,
                                       0,
                                                     1, 0, 1,
                                           1,
                                             0, 1,
                                                                   0, 0,
         0, 1, 0,
                  0, 1, 0,
                             1, 0, 0,
                                       1,
                                           1, 0, 0,
                                                     1, 1, 0,
                                                               1,
                                                                   1, 0,
                                                                             1, 0,
         1, 0, 1,
                  1, 1, 0,
                             1, 0, 1, 1, 1, 0, 1,
                                                     1, 1, 1,
                                                               0,
                                                                   1, 1,
         0, 1, 0, 0, 1, 1, 0, 1, 1, 1, 1, 1, 1,
                                                     0, 1, 1,
                                                               1, 1, 1,
        1, 1, 0, 1], dtype=int64)
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LogisticRegression
# Assuming `features` and `label` are already defined
for i in range(1, 401):
     x_train, x_test, y_train, y_test = train_test_split(features, label,_
  test_size=0.2,
                     random_state=i)
     model = LogisticRegression()
     model.fit(x_train, y_train)
```

[166]:

[166]:

[167]:

[168]:


```
train_score = model.score(x_train, y_train)test_score =
    model.score(x_test, y_test)
    if test_score > train_score:
         print(f"Test Score: {test_score:.4f} | Train Score: {train_score:.4f} |__
  Random State: (i)")
Test Score: 0.9000 | Train Score: 0.8406 | Random State: 4
Test Score: 0.8625 | Train Score: 0.8500 | Random State: 5
Test Score: 0.8625 | Train Score: 0.8594 | Random State: 6
Test Score: 0.8875
                     Train
                           Score: 0.8375
                                            Random State: 7
Test Score: 0.8625 | Train Score: 0.8375 | Random State: 9
Test Score: 0.9000 | Train Score: 0.8406
                                         I Random State: 10
Test Score: 0.8625 | Train Score: 0.8562 | Random State: 14
Test Score: 0.8500 |
                           Score: 0.8438 |
                     Train
                                            Random State: 15
Test Score: 0.8625 | Train Score: 0.8562 | Random State: 16
Test Score: 0.8750 I Train
                           Score: 0.8344 | Random State: 18
                           Score: 0.8438
                                            Random State: 19
Test Score: 0.8500 |
                     Train
Test Score: 0.8750 I
                     Train
                           Score: 0.8438 I
                                            Random State: 20
Test Score: 0.8625
                   I Train
                           Score: 0.8344 |
                                            Random State: 21
Test Score: 0.8750 | Train Score: 0.8406 | Random State: 22
Test Score: 0.8750 I Train
                           Score: 0.8406 I
                                            Random State: 24
Test Score: 0.8500 | Train Score: 0.8344 | Random State: 26
Test Score: 0.8500 | Train
                           Score: 0.8406 | Random State: 27
                     Train Score: 0.8344 | Random State: 30
Test Score: 0.8625 |
                           Score: 0.8562 |
Test Score: 0.8625 |
                     Train
                                            Random State: 31
Test Score: 0.8750 | Train Score: 0.8531 |
                                            Random State: 32
Test Score: 0.8625 | Train Score: 0.8438
                                         I Random State: 33
```

Test Score: 0.8750

Test Score: 0.8875 |

Test Score: 0.8750

Test Score: 0.8500

Test Score: 0.9250

Test Score: 0.9125 | Train

Train

Train

Train Test Score: 0.9000 | Train Score: 0.8438 |

Train

| Train

Test Score: 0.8750 | Train Score: 0.8375

Score: 0.8313 |

Score: 0.8375 I

Score: 0.8313

Score: 0.8438

Score: 0.8375 |

Test Score: 0.8625 | Train Score: 0.8531 | Random State: 36 Test Score: 0.8875 | Train Score: 0.8406 | Random State: 38

Test Score: 0.8750 | Train Score: 0.8469 | Random State: 46

Test Score: 0.8750 | Train Score: 0.8438 | Random State: 58

Test Score: 0.8875 | Train Score: 0.8344 | Random State: 65

Score: 0.8313 | Random State: 47

Random State: 35

I Random State: 39

Random State: 42

Random State: 51

Random State: 54

Random State: 57

Random State: 61

Test	Score:	0.9000	Train	Score:	0.8313	I	Random	State:	72
Test	Score:	0.8875	Train	Score:	0.8375	I	Random	State:	75
Test	Score:	0.9250	Train	Score:	0.8250	Ī	Random	State:	76
Test	Score:	0.8625	Train	Score:	0.8406	Ī	Random	State:	77
Test	Score:	0.8625	Train	Score:	0.8594	Ī	Random	State:	81
Test	Score:	0.8750	Train	Score:	0.8375	Ī	Random	State:	82
Test	Score:	0.8875	Train	Score:	0.8375	Ĺ	Random	State:	83
Test	Score:	0.8625	Train	Score:	0.8531	Ĺ	Random	State:	84
Test	Score:	0.8625	Train	Score:	0.8406	Ĺ	Random	State:	85
Test	Score:	0.8625	Train	Score:	0.8406	i	Random		87
Test	Score:	0.8750	Train	Score:	0.8469	Ĺ	Random		88
Test	Score:	0.9125	Train	Score:	0.8375	i	Random	State:	90
Test	Score:	0.8625	Train	Score:	0.8500	i	Random	State:	95
Test	Score:	0.8750	Train	Score:	0.8500	i	Random		99
Test	Score:	0.8500	Train	Score:	0.8406	i	Random		101
Test	Score:	0.8500	Train	Score:	0.8406	i	Random		102
Test	Score:	0.9000	Train	Score:	0.8250	i	Random		106
Test	Score:	0.8625	Train	Score:	0.8406	i	Random		107
Test	Score:	0.8500	Train	Score:	0.8344	i	Random		109
Test	Score:	0.8500	Train	Score:	0.8406	i	Random	State:	111
Test	Score:	0.9125	Train	Score:	0.8406	i	Random	State:	112
Test	Score:	0.8625	Train	Score:	0.8500	i	Random		115
Test	Score:	0.8625	Train	Score:	0.8406	i	Random		116
Test	Score:	0.8750	Train	Score:	0.8344	i	Random		119
Test	Score:	0.9125	Train	Score:	0.8281	i	Random		120
Test	Score:	0.8625	Train	Score:	0.8594	i	Random		125
Test	Score:	0.8500	Train	Score:	0.8469	i	Random		128
Test	Score:	0.8750	Train	Score:	0.8500	i	Random	State:	130
Test	Score:	0.9000	Train	Score:	0.8438	i	Random	State:	133
Test	Score:	0.9250	Train	Score:	0.8344	i	Random	State:	134
Test	Score:	0.8625	Train	Score:	0.8500	Ĺ	Random		135
Test	Score:	0.8750	Train	Score:	0.8313	Ĺ	Random		138
Test	Score:	0.8625	Train	Score:	0.8500	Ĺ	Random	State:	141
Test	Score:	0.8500	Train	Score:	0.8469	Ĺ	Random	State:	143
Test	Score:	0.8500	Train	Score:	0.8469	Ī	Random	State:	146
Test	Score:	0.8500	Train	Score:	0.8438	Ī	Random	State:	147
Test	Score:	0.8625	Train	Score:	0.8500	Ī	Random	State:	148
Test	Score:	0.8750	Train	Score:	0.8375	Ī	Random	State:	150
Test	Score:	0.8875	Train	Score:	0.8313	Ī	Random	State:	151
Test	Score:	0.9250	Train	Score:	0.8438	Ī	Random	State:	152
Test	Score:	0.8500	Train	Score:	0.8406	Ī	Random	State:	153
Test	Score:	0.9000	Train	Score:	0.8438	Ī	Random	State:	154
Test	Score:	0.9000	Train	Score:	0.8406	Ī	Random	State:	155
Test	Score:		Train	Score:	0.8469	I	Random	State:	156
Test	Score:	0.8875	Train	Score:	0.8344	I	Random	State:	158
Test	Score:	0.8750	Train	Score:	0.8281	I	Random	State:	159
Test	Score:	0.9000	Train	Score:	0.8313	I	Random	State:	161
Test	Score:	0.8500	Train	Score:	0.8375	Ī	Random	State:	163

Edit with WPS Office

Test	Score:	0.8750	Train	Score:	0.8313	Ī	Random	State:	164
Test	Score:	0.8625	Train	Score:	0.8500	I	Random	State:	169
Test	Score:	0.8750	Train	Score:	0.8406	Ī	Random	State:	171
Test	Score:	0.8500	Train	Score:	0.8406	Ī	Random	State:	172
Test	Score:	0.9000	Train	Score:	0.8250	Ī	Random	State:	180
Test	Score:	0.8500	Train	Score:	0.8344	Ī	Random	State:	184
Test	Score:	0.9250	Train	Score:	0.8219	ĺ	Random		186
Test	Score:	0.9000	Train	Score:	0.8313	ĺ	Random	State:	193
Test	Score:	0.8625	Train	Score:	0.8500	İ	Random	State:	195
Test	Score:	0.8625	Train	Score:	0.8406	i	Random	State:	196
Test	Score:	0.8625	Train	Score:	0.8375	i	Random		197
Test	Score:	0.8750	Train	Score:	0.8406	i	Random	State:	198
Test	Score:	0.8875	Train	Score:	0.8375	i	Random	State:	199
Test	Score:	0.8875	Train	Score:	0.8438	i	Random	State:	200
Test	Score:	0.8625	Train	Score:	0.8375	i	Random		202
Test	Score:	0.8625	Train	Score:	0.8406	i	Random	State:	203
Test	Score:	0.8875	Train	Score:	0.8313	i	Random		206
Test	Score:	0.8625	Train	Score:	0.8344	i	Random		211
Test	Score:	0.8500	Train	Score:	0.8438	i	Random		212
Test	Score:	0.8625	Train	Score:	0.8344	i	Random	State:	214
Test	Score:	0.8750	Train	Score:	0.8313	i	Random	State:	217
Test	Score:	0.9625	Train	Score:	0.8187	i	Random	State:	220
Test	Score:	0.8750	Train	Score:	0.8438	i	Random		221
Test	Score:	0.8500	Train	Score:	0.8406	i	Random	State:	222
Test	Score:	0.9000	Train	Score:	0.8438	i	Random	State:	223
Test	Score:	0.8625	Train	Score:	0.8531	i	Random		227
Test	Score:	0.8625	Train	Score:	0.8344	i	Random		228
Test	Score:	0.9000	Train	Score:	0.8406	i	Random	State:	229
Test	Score:	0.8500	Train	Score:	0.8438	i	Random	State:	232
Test	Score:	0.8750	Train	Score:	0.8469	i	Random	State:	233
Test	Score:	0.9125	Train	Score:	0.8406	i	Random		234
Test	Score:	0.8625	Train	Score:	0.8406	i		State:	235
Test	Score:	0.8500	Train	Score:	0.8469	i	Random		236
Test			Train	Score:	0.8469	i		State:	
	Score:	0.8500	Train	Score:	0.8438	i		State:	
	Score:		Train	Score:		i		State:	
	Score:	0.8875	Train	Score:		i	Random	State:	243
	Score:	0.8750	Train	Score:		i		State:	
Test	Score:		Train	Score:		İ	Random	State:	245
Test	Score:		Train	Score:		İ	Random	State:	246
	Score:	0.8625	Train	Score:	0.8594	İ	Random	State:	247
Test	Score:	0.8875	Train	Score:		i	Random	State:	248
	Score:		Train	Score:		i		State:	
	Score:		Train	Score:		į		State:	
	Score:	0.8875	Train	Score:		ĺ		State:	
	Score:		Train	Score:		i		State:	
	Score:		Train	Score:		i	Random		
	Score:		Train	Score:	0.8562	i	Random		
	 •					•			

Edit with WPS Office

Test	Score:	0.8625	Train	Score:	0.8406	Random	State:	266
Test	Score:	0.8625	Train	Score:	0.8375	Random	State:	268
Test	Score:	0.8750	Train	Score:	0.8406	Random	State:	275
Test	Score:	0.8625	Train	Score:	0.8500	Random	State:	276
Test	Score:	0.9250	Train	Score:	0.8375	Random	State:	277
Test	Score:	0.8750	Train	Score:	0.8469	Random	State:	282
Test	Score:	0.8500	Train	Score:	0.8469	Random	State:	283
Test	Score:	0.8500	Train	Score:	0.8438	Random	State:	285
Test	Score:	0.9125	Train	Score:	0.8344	Random	State:	286
Test	Score:	0.8500	Train	Score:	0.8406	Random	State:	290
Test	Score:	0.8500	Train	Score:	0.8406	Random	State:	291
Test	Score:	0.8500	Train	Score:	0.8469	Random	State:	292
Test	Score:	0.8625	Train	Score:	0.8375	Random	State:	294
Test	Score:	0.8875	Train	Score:	0.8281	Random	State:	297
Test	Score:	0.8625	Train	Score:	0.8344	I Random	State:	300
Test	Score:	0.8625	Train	Score:	0.8500	I Random	State:	301
Test	Score:	0.8875	Train	Score:	0.8500	I Random	State:	302
Test	Score:	0.8750	Train	Score:	0.8469	Random	State:	303
Test	Score:	0.8625	Train	Score:	0.8344	Random	State:	305
Test	Score:	0.9125	Train	Score:	0.8375	Random	State:	306
Test	Score:	0.8750	Train	Score:	0.8469	Random	State:	308
Test	Score:	0.9000	Train	Score:	0.8438	Random	State:	311
Test	Score:	0.8625	Train	Score:	0.8344	I Random	State:	313
Test	Score:	0.9125	Train	Score:	0.8344	I Random	State:	314
Test	Score:	0.8750	Train	Score:	0.8375	I Random	State:	315
Test	Score:	0.9000	Train	Score:	0.8469	Random	State:	317
Test	Score:	0.9125	Train	Score:	0.8219	I Random	State:	319
Test	Score:	0.8625	Train	Score:	0.8500	I Random	State:	321
Test	Score:	0.9125	Train	Score:	0.8281	I Random	State:	322
Test	Score:	0.8500	Train	Score:	0.8469	I Random	State:	328
Test	Score:	0.8500	Train	Score:	0.8375	I Random	State:	332
Test	Score:	0.8875	Train	Score:	0.8531	I Random	State:	336
Test	Score:	0.8500	Train	Score:	0.8375	I Random		337
	Score:		Train	Score:	0.8406	•	State:	
	Score:			Score:		=	State:	
	Score:	0.8875	Train	Score:		-	State:	
	Score:	0.040=	Train	Score:		-	State:	
	Score:		Train	Score:		-	State:	
	Score:			Score:		=	State:	
	Score:	0.8025	Train Train	Score:		=	State:	
	Score:	0.040=	Train	Score:		-	State:	
			•	Score:		•	State:	
	Score:		Train	Score:		-	State:	
	Score:		Train			•		
	Score:	0.8625	Train	Score:	0.8531	-	State:	
	Score:		Train	Score:		-	State:	
	Score:		Train	Score:		=	State:	
	Score:		Train	Score:		=	State:	
rest	Score:	0.9250	Train	Score:	0.8344	ı kandom	State:	3/6


```
        Test
        Score:
        0.9125 | Train
        Score:
        0.8281 | Random
        State:
        377

        Test
        Score:
        0.8875 | Train
        Score:
        0.8500 | Random
        State:
        378

        Test
        Score:
        0.8875 | Train
        Score:
        0.8500 | Random
        State:
        389

        Test
        Score:
        0.8625 | Train
        Score:
        0.8594 | Random
        State:
        386

        Test
        Score:
        0.8500 | Train
        Score:
        0.8375 | Random
        State:
        387

        Test
        Score:
        0.8750 | Train
        Score:
        0.8281 | Random
        State:
        388

        Test
        Score:
        0.8500 | Train
        Score:
        0.8438 | Random
        State:
        394

        Test
        Score:
        0.8625 | Train
        Score:
        0.8438 | Random
        State:
        395

        Test
        Score:
        0.8625 | Train
        Score:
        0.8438 | Random
        State:
        397

        Test
        Score:
        0.8625 | Train
        Score:
        0.8438 | Random
        State:
        400
```

[168]: '\n\n\n'

[169]: x_train,x_test,y_train,y_test=train_test_split(features,label,test_size=0.

_2,random_state=209)

finalModel=LogisticRegression() finalModel.fit(x_train,y_train)

[169]: Lugionorregiocolority

[170]: print(finalModel.score(x_train,y_train)) print(finalModel.score(x_train,y_train))

0.85

0.85 [171]:

from sklearn.metrics import classification_report
print(classification_report(label,finalModel.predict(features)))

	precision	recaii	TI-score	support
0	0.86	0.91	0.89	257
1	0.83	0.73	0.77	143
accuracy			0.85	400
macro avg	0.84	0.82	0.83	400
weighted avg	0.85	0.85	0.85	400

