universität freiburg

Assignment 05

Classification and Regression Trees

Assignment 05 Solution

- 1. Theory
- 2. Hands-On

Task 1.1: Advantages and Disadvantages of Decision Trees

Advantages

- Can easily handle categorical variables.
- Interpretable models.
- Can handle unimportant features.

Disadvantages

- Deterministic models.
- Prone to overfitting to the training data (need to restrict growth).
- Unstable: Minor changes in data can lead to dastically different trees ("high variance estimator").

Task 1.2: Hyperparameters

Examples:

- Minimum number of samples per split (decision node).
- Minimum number of samples per leaf.
- Total number of nodes.
- Split criterion.
- Leaf model.
- Maximum depth of tree.

Task 1.3: Overfitting

Decision trees can overfit in various ways:

- Too many decision nodes: At some point we just fit to noise/outliers using uninformative criterions.
- Unbalanced tree: Focus on very specific features with (generally) few samples in each decision.
- Only few instances/datapoints per node: Decision trees work well if we can bypass noise/outliers by averaging inside leaves.

Task 2.1: Optimal Split

Ball Color	Ball Width	Sport
Yellow	6	Tennis
Yellow	6	Tennis
White	22	Football
Brown	22	Football
Brown	22	Basketball

N = 5, $V = \{Tennis, Football, Basketball\}$, K = |V| = 3

What is the initial split that gives the highest information gain?

• Information Gain:

$$I(C) = N \cdot H(V) - N^{(L)} \cdot H(V^{(L)}) - N^{(R)} \cdot H(V^{(R)})$$

• **Entropy:** Compute H(V) and $H(V^L)$, $H(V^R)$ for each potential split

$$H(V) = -\sum_{k=1}^{K} p(v_k) \log_2 p(v_k)$$

Possible Splits:

color∈{yellow} vs. color∈{white,brown}
color∈{white} vs. color∈{yellow,brown}
color∈{brown} vs. color∈{yellow,white}

ball-width < 7 vs. ball-width ≥ 7 (or any w. between 7 and 22)

Task 2.1: Optimal Split

Ball Color	Ball Width	Sport
Yellow	6	Tennis
Yellow	6	Tennis
White	22	Football
Brown	22	Football
Brown	22	Basketball

N = 5, $V = \{Tennis, Football, Basketball\}$, K = |V| = 3

What is the initial split that gives the highest information gain?

Step 1: Compute Initial Entropy

$$H(V) = -\sum_{k=1}^{K} p(v_k) \log_2 p(v_k)$$

$$= -(\frac{2}{5} \cdot \log_2 \frac{2}{5} + \frac{2}{5} \cdot \log_2 \frac{2}{5} + \frac{1}{5} \cdot \log_2 \frac{1}{5})$$

$$\approx 1.5204$$

Task 2.1: Optimal Split

Ball Color	Ball Width	Sport
Yellow	6	Tennis
Yellow	6	Tennis
White	22	Football
Brown	22	Football
Brown	22	Basketball

N = 5, $V = \{Tennis, Football, Basketball\}$, K = |V| = 3

What is the initial split that gives the highest information gain?

Step 2: Split at Color = Yellow

$$H(V^{L}) = -(\frac{2}{2} \cdot \log_{2} \frac{2}{2} + \frac{0}{2} \cdot \log_{2} \frac{0}{2} + \frac{0}{2} \cdot \log_{2} \frac{0}{2})$$

$$= 0$$

$$H(V^{R}) = -(\frac{0}{3} \cdot \log_{2} \frac{0}{3} + \frac{2}{3} \cdot \log_{2} \frac{2}{3} + \frac{1}{3} \cdot \log_{2} \frac{1}{3})$$

$$\approx 0.92$$

$$I(\text{Color} = \text{Yellow}) = N \cdot H(V) - N^{(L)} \cdot H(V^{(L)}) - N^{(R)} \cdot H(V^{(R)})$$

$$\approx 5 \cdot 1.5204 - 2 \cdot 0 - 3 \cdot 0.92$$

$$= 4.842$$

Task 2.1: Optimal Split

Ball Color	Ball Width	Sport
Yellow	6	Tennis
Yellow	6	Tennis
White	22	Football
Brown	22	Football
Brown	22	Basketball

N = 5, $V = \{Tennis, Football, Basketball\}$, K = |V| = 3

What is the initial split that gives the highest information gain?

Step 2: Split at Color = White

$$\begin{split} H(V^{L}) &= -(\frac{0}{1} \cdot \log_{2} \frac{0}{1} + \frac{1}{1} \cdot \log_{2} \frac{1}{1} + \frac{0}{1} \cdot \log_{2} \frac{0}{1}) \\ &= 0 \\ H(V^{R}) &= -(\frac{2}{4} \cdot \log_{2} \frac{2}{4} + \frac{1}{4} \cdot \log_{2} \frac{1}{4} + \frac{1}{4} \cdot \log_{2} \frac{1}{4}) \\ &= 1.5 \\ I(\text{Color} = \text{White}) &= N \cdot H(V) - N^{(L)} \cdot H(V^{(L)}) - N^{(R)} \cdot H(V^{(R)}) \\ &\approx 5 \cdot 1.5204 - 1 \cdot 0 - 4 \cdot 1.5 \\ &= 1.602 \end{split}$$

Task 2.1: Optimal Split

Ball Color	Ball Width	Sport
Yellow	6	Tennis
Yellow	6	Tennis
White	22	Football
Brown	22	Football
Brown	22	Basketball

N = 5, $V = \{Tennis, Football, Basketball\}$, K = |V| = 3

What is the initial split that gives the highest information gain?

Step 2: Split at Color = Brown

$$H(V^{L}) = -(\frac{0}{2} \cdot \log_{2} \frac{0}{2} + \frac{1}{2} \cdot \log_{2} \frac{1}{2} + \frac{1}{2} \cdot \log_{2} \frac{1}{2})$$

$$= 1$$

$$H(V^{R}) = -(\frac{2}{3} \cdot \log_{2} \frac{2}{3} + \frac{1}{3} \cdot \log_{2} \frac{1}{3} + \frac{0}{3} \cdot \log_{2} \frac{0}{3})$$

$$\approx 0.92$$

$$I(\text{Color} = \text{Brown}) = N \cdot H(V) - N^{(L)} \cdot H(V^{(L)}) - N^{(R)} \cdot H(V^{(R)})$$

$$\approx 5 \cdot 1.5204 - 2 \cdot 1 - 3 \cdot 0.92$$

$$= 2.842$$

Task 2.1: Optimal Split

Ball Color	Ball Width	Sport
Yellow	6	Tennis
Yellow	6	Tennis
White	22	Football
Brown	22	Football
Brown	22	Basketball

N = 5, $V = \{Tennis, Football, Basketball\}$, K = |V| = 3

What is the initial split that gives the highest information gain?

Step 2: Split at Width < (anywhere between 6 and 22)

Same as Color = Yellow!

Task 2.1: Optimal Split

Ball Color	Ball Width	Sport
Yellow	6	Tennis
Yellow	6	Tennis
White	22	Football
Brown	22	Football
Brown	22	Basketball

N = 5, $V = \{Tennis, Football, Basketball\}$, K = |V| = 3

What is the initial split that gives the highest information gain?

• Step 3: Decide

$$I(\text{Color}=\text{Yellow}) = 4.842$$

 $I(\text{Color}=\text{White}) = 1.602$
 $I(\text{Color}=\text{Brown}) = 2.842$
 $I(\text{Width} < 7) = 4.842$

→ Two options: Color = Yellow or Width < 7 (or any width between 7 and 22)

Task 2.1: Final Tree

Ball Color	Ball Width	Sport
Yellow	6	Tennis
Yellow	6	Tennis
White	22	Football
Brown	22	Football
Brown	22	Basketball

N = 5, $V = \{Tennis, Football, Basketball\}$, K = |V| = 3

How does the final tree look like?

(left path means "yes")

Task 2.2: Splits and Depth

What are the splits and depth of the given decision tree?

- The depth of the tree is 2.
- It is structured as follows (left path means "yes"):

Task 2.2: Metric

Design a metric for assessing the quality of the prediction:

• Idea: Measure overlap between correctly classified regions.

I.e.: Compute overlap between

$$R_1 \cup R_4$$
 and A_1 (C_1, C_3)
 $R_2 \cup R_3$ and A_2 (C_2)

(then sum up and normalize by whole area)

• In this case: Overlap is 0.5. Best would be 1, worst 0.

Task 2.3: Best initial Split

Which x₁ value leads to the best (initial) split?

Idea: Similar to before, measure overlap
 (Now between incorrectly classified regions because that is easier)

$$A = \frac{1}{2}x^2 + \frac{1}{2}(1-x)^2$$

• Minimize incorrectly classified area (green):

$$x^* = \operatorname{argmin}_x(A)$$

• **Result:** Set $\frac{dA}{dx} = 0$ and obtain $x^* = \frac{1}{2}$

Task 2.4: Best secondary Split

Decision Stump

Which x₂ value leads to the best second split?

Idea: Same as in Task 2.3.

• **Even easier:** Just consider top-left/bottom-right squares independently

$$-$$
 [0.0, 0.5] x [0.5, 1.0] (top left)

$$-$$
 [0.5, 1.0] x [0.0, 0.5] (bottom right)

- Perform exactly the same optimization as in Task 2.3

• **Result:**
$$x_{2,L}^* = \frac{3}{4}$$
 (left) or $x_{2,R}^* = \frac{1}{4}$ (right)