Проблемно-ориентированный программный комплекс для решения задач моделирования на основе нелинейных многомерных уравнений в частных производных

Студент: Коробков Сергей Сергеевич

Руководитель: Градов Владимир Михайлович

2. Постановка задачи

- Круговая расчётная область
- Поддержка моделирования широкого спектра физических процессов

3. Актуальность темы

- Обширная область применения
 - Моделирование теплозащиты
 - Газоразрядные лампы
 - Электростатика
- Необходимость моделирования
 - Высокая цена эксперимента
 - Натурный эксперимент не даёт нужной информации
 - Объект эксперимента ещё не существует
- Задача осложнена цилиндрической геометрией области

4. Цель и задачи

- Цель создание ПМО для моделирования различных физических процессов, описываемых дифференциальными уравнениями, в том числе в частных производных
- Задачи
 - Выбор решаемых типов уравнений
 - Разработка и/или адаптация способов их решения для полярных координат
 - Разработка алгоритма решения конфигурируемой пользователем модели и соответствующих структур данных
 - Проектирование структуры ПО
 - Реализация спроектированного ПО и разработанных алгоритмов
 - Реализация с помощью разработанного ПО тестовых задач

5. Существующие решения

- Matlab, Wolfram Mathematica, ANSYS
 - Избыточность пакетов
 - Необходимость ручной доработки алгоритмов решения нелинейных уравнений
 - Трудность гибкой настройки процесса решения систем разнородных уравнений
 - Высокая цена

6. Решение систем разнородных уравнений

- Настраиваемый специалистом порядок решения уравнений
- Уравнения иерархически сгруппированы в вычислительные блоки

7. Решаемые виды уравнений

- Соотношения x = f(...)
 - Зависимости параметров, в т ч таблично заданные
- Алгебраические уравнения f(x) = 0
- Обыкновенные ДУ $\frac{\partial U}{\partial t} = L(U,t)U + C(U,t)$
 - Уравнения разрядных контуров
- Эллиптические ДУ в ЧП $-\operatorname{div}(B\nabla U) + C\nabla U + DU = E$
 - Стационарная теплопроводность, перенос излучения
- Параболические ДУ в ЧП $A\frac{\partial U}{\partial t}$ $\operatorname{div}(B\nabla U) + C\nabla U + DU = E$
 - Нестационарный теплоперенос, диффузия
- Реализованные пользователем дополнительные виды уравнений

8. Входные данные

- Виды входных данных
 - Числа
 - Поля
 - Многомерные таблицы
 - Обычные таблицы
 - Потоковые таблицы

- Оптимизированный рекурсивный алгоритм
- Замыкания С#
- Независимая настройка интерполяторов по каждой независимой переменной соотношения

9. Решение параболических и эллиптических уравнений

• Исходное уравнение

$$A\frac{\partial U}{\partial t} - div(B\nabla U) + C\nabla U + DU = E$$

- Методы решения объединены
- Исследованы различные способы разрешения нулевой сингулярности
- Построена консервативная неявная конечно-разностная схема

10. Решение параболических и эллиптических уравнений

• Построенная разностная схема

$$\alpha = \frac{\hat{A}_{n,m}}{\tau}, \qquad \beta_r^{\pm} = \frac{r_{n\pm\frac{1}{2}}}{r_n h^2} \hat{B}_{n\pm\frac{1}{2},m}, \qquad \beta_{\varphi}^{\pm} = \frac{1}{r_n^2 \theta^2} \hat{B}_{n,m\pm\frac{1}{2}}, \qquad \gamma_r = \frac{\hat{C}_{n,m}}{2h}, \qquad \gamma_{\varphi} = \frac{\hat{C}_{n,m}}{2r_n \theta}$$

$$- \left[\beta_r^- + \gamma_r \right] \hat{U}_{n-1,m} - \left[\beta_{\varphi}^- + \gamma_{\varphi} \right] \hat{U}_{n,m-1} +$$

$$+ \left[\alpha + \hat{D}_{n,m} + \beta_r^+ + \beta_r^- + \beta_{\varphi}^+ + \beta_{\varphi}^- \right] \hat{U}_{n,m} -$$

$$- \left[\beta_{\varphi}^+ - \gamma_{\varphi} \right] \hat{U}_{n,m+1} - \left[\beta_r^+ - \gamma_r \right] \hat{U}_{n+1,m} = \left[\hat{E}_{n,m} + \alpha U_{n,m} \right]$$

• Полученная матрица решается методом матричной прогонки

11. Структура ПО

- Различные утилиты, позволяющие:
 - Формировать начальные данные
 - Проводить моделирование описанного процесса
 - Осуществлять визуализацию результата
- Отдельная библиотека математических подпрограмм

12. Структура ПО

13. Вычислительные блоки

- Блоки, соответствующие решаемым видам уравнений
 - Обыкновенные уравнения
 - Обыкновенные ДУ
 - Параболические ДУ
 - Эллиптические ДУ
- Дополнительные блоки
 - Соотношения
 - Итерационные процессы
 - Определённые пользователем процессы

14. Деревья выражений

- Разбираются нисходящим рекурсивным парсером
- Хранятся в виде деревьев
 - Узлы-константы
 - Узлы-переменные

- Узлы-вызовы функций
- Вычисляются в контексте вычисления
- Контекст вычислений хранит текущие значения переменных и индексаторы сеток и полей

15. Пример специфического блока

- Расчёт задачи переноса излучения в интегральной постановке средствами CUDA
- Математическая оптимизация поставленной задачи
- Высокопараллельный алгоритм решения
- Оптимизированная схема хранения шаблона интегрирования

16. Написание ПО

- Использование объектно-ориентированного подхода
- С# облегчает отладку алгоритмов и ускоряет разработку
- Критичные к скорости выполнения участки реализованы на С

Название	Версия	Назначение
MS Visual Studio	14.0.25123.00	Среда разработки ПО
2015 Enterprise	U2	
TortoiseHG	2.10	Контроль версий (в сочетании с ресурсом
		bitbucket.org)
TexStudio	2.11.0	Подготовка документации)
yED	3.14.1	Создание схем
TikzEdt	0.2.3.0	Создание иллюстраций
gnuplot	4.6 p4	Визуализация результатов экспериментов
Notepad++	6.5.1	Текстовый редактор

17. Пользовательский интерфейс

- Имеют графический интерфейс утилиты для:
 - Редактирования начальных данных
 - Визуализации результатов
 - Поддерживает ч/б вывод
 - Запуска моделирования

18. Проверка на тестовых задачах

• Расчёт симметричной эллиптической задачи

$$\frac{1}{r}\frac{\partial}{\partial r}(ra\frac{\partial T}{\partial r}) + f = 0$$

 Расчёт параболической задачи при отсутствии потоков

19. Моделирование реального устройства

Модель газоразрядной лампы

Уравнения разрядного контура, теплоперенос, перенос излучения, закон сохранения массы

20. Моделирование реального устройства

21. Заключение

Основные результаты работы:

- 1. Выбраны классы уравнений, решаемые комплексом, и сформулированы алгоритмы их решения.
- 2. Разработан метод и алгоритм расчёта в достаточной степени произвольной модели.
- 3. Построены однородные консервативные разностные схемы для уравнений решаемых видов, обеспечивающие необходимую точность вычислений.
- 4. Разработана структура ПО и структуры хранения данных.
- 5. Выполнена программная реализация, разработан пользовательский интерфейс.
- 6. Разработан алгоритм расчёта переноса излучения в интегральной постановке, и его включением в расчёт показана расширяемость комплекса дополнительными видами уравнений.
- 7. Проведена апробация и показана применимость разработанного ПО в научных исследованиях.

22. Дальнейшие исследования

Возможные направления:

- Увеличение числа видов решаемых уравнений
- Проведение расчётов в геометрически сложных расчётных областей
- Поддержка расчётов на кластерных системах