# Riemannian Manifolds and Geodesics

With an aim to prove Hopf-Rinow Theorem

Soham Bakshi, B.Math 3rd Year June 15, 2021

Under guidance of Prof. Sugata Mondal

# Riemannian Manifolds and Basic

Constructs

## Smooth manifold

Let M be a set. A chart on M is a pair  $(\phi, U)$  where  $U \subset M$  and  $\phi$  is a bijection from U to an open subset  $\phi(U) \subset \mathbb{R}^m$  of some Euclidean space. Two charts  $(\phi_1, U_1)$  and  $(\phi_2, U_2)$  are said to be smoothly compatible iff  $\phi_1(U_1 \cap U_2)$  and  $\phi_2(U_1 \cap U_2)$  are both open in  $\mathbb{R}^m$  and the transition map

$$\phi_{21} = \phi_2 \circ \phi_1^{-1} : \phi_1 (U_1 \cap U_2) \to \phi_2 (U_1 \cap U_2)$$

is a diffeomorphism. A smooth atlas on M is a collection A of charts on M any two of which are smoothly compatible and such that the sets U, as  $(\phi, U)$  ranges over the elements of A, cover M (i.e. for every  $p \in M$  there is a chart  $(\phi, U) \in A$  with  $p \in U$ ). A smooth manifold is a pair consisting of a set M and a maximal smooth atlas A on M.

# **Tangent Space**

Let M be a smooth manifold. A smooth function  $\alpha:(-\varepsilon,\varepsilon)\to M$  is called a (smooth) curve in M. Suppose that  $\alpha(0)=p\in M$ , and let  $\mathcal D$  be the set of functions on M that are smooth at p. The tangent vector to the curve  $\alpha$  at t=0 is a function  $\alpha'(0):\mathcal D\to \mathbf R$  given by

$$\alpha'(0)f = \frac{d(f \circ \alpha)}{dt}\bigg|_{t=0}, \quad f \in \mathcal{D}$$

A tangent vector at p is the tangent vector at t=0 of some curve  $\alpha: (-\varepsilon, \varepsilon) \to M$  with  $\alpha(0) = p$ . The set of all tangent vectors to M at p is the tangent space  $(T_pM)$ .

# **Tangent Space**

Tangent space at a point  $p \in M$  can be intuitively contains all possible directions passing "tangentially" through it.

The tangent space at any point of a n dimensional smooth manifold is a n-dimensional vector space. If a chart  $\varphi = \left(x^1, \dots, x^n\right) : U \to \mathbb{R}^n$  is given with  $p \in U$ , then  $\left\{\left(\frac{\partial}{\partial x^1}\right)_p, \dots, \left(\frac{\partial}{\partial x^n}\right)_p\right\} T_p M$  forms a basis.

# Tangent Bundle

Tangent Bundle of M, denoted as TM is the union of all the tangent spaces.

$$TM = \bigcup_{p \in M} T_p M$$

TM is equipped with a smooth structure with dimension twice of M.

#### **Vector Fields**

A vector field X on a smooth manifold M is a correspondence that associates to each point  $p \in M$  a vector  $X(p) \in T_pM$ . In terms of mappings, X is a mapping of M into the tangent bundle TM. The field is smooth if the mapping  $X : M \to TM$  is smooth.

 $\mathcal{X}(M)$  denotes the set of all vector fields  $X:M\to TM$ .

## Riemannian metric

Let M be a smooth m -manifold. A Riemannian metric on M is a collection of inner products

$$T_pM \times T_pM \to \mathbb{R} : (v, w) \mapsto g_p(v, w)$$

one for every  $p \in M$ , such that the map

$$M \to \mathbb{R} : p \mapsto g_p(X(p), Y(p))$$

is smooth for every pair of vector fields  $X, Y \in Vect(M)$ .

## Riemannian metric

Let M be a smooth m -manifold. A Riemannian metric on M is a collection of inner products

$$T_pM \times T_pM \to \mathbb{R} : (v, w) \mapsto g_p(v, w)$$

one for every  $p \in M$ , such that the map

$$M \to \mathbb{R} : p \mapsto g_p(X(p), Y(p))$$

is smooth for every pair of vector fields  $X, Y \in Vect(M)$ .

A smooth manifold equipped with a Riemannian metric is called a Riemannian manifold.

#### **Affine Connection**

An affine (or linear) connection  $\nabla$  on a smooth manifold M is a mapping

$$\nabla: \mathcal{X}(M) \times \mathcal{X}(M) \to \mathcal{X}(M)$$

which is denoted by  $(X,Y) \xrightarrow{\nabla} \nabla_X Y$  and which satisfies the following properties:

- 1.  $\nabla_{fX+gY}Z = f\nabla_XZ + g\nabla_YZ$
- 2.  $\nabla_X(Y+Z) = \nabla_XY + \nabla_XZ$
- 3.  $\nabla_X(fY) = f\nabla_XY + X(f)Y$

in which  $X, Y, Z \in \mathcal{X}(M)$  and  $f, g \in \mathcal{D}(M)$ .

## **Affine Connection**

An affine (or linear) connection  $\nabla$  on a smooth manifold M is a mapping

$$\nabla: \mathcal{X}(M) \times \mathcal{X}(M) \to \mathcal{X}(M)$$

which is denoted by  $(X, Y) \xrightarrow{\nabla} \nabla_X Y$  and which satisfies the following properties:

- 1.  $\nabla_{fX+gY}Z = f\nabla_XZ + g\nabla_YZ$
- 2.  $\nabla_X(Y+Z) = \nabla_XY + \nabla_XZ$
- 3.  $\nabla_X(fY) = f\nabla_XY + X(f)Y$

in which  $X, Y, Z \in \mathcal{X}(M)$  and  $f, g \in \mathcal{D}(M)$ .

For any  $V, W \in \mathcal{X}(M)$ ,  $\nabla_W V$  is called the covariant derivative of V along W.

#### Vector Fields on Curves

A vector field along a curve  $\gamma: I \to M$  is a smooth map  $V: I \to TM$  such that  $V(t) \in T_{\gamma(t)}M$  for every  $t \in I$ . We let  $\mathcal{X}(\gamma)$  denote the space of vector fields along  $\gamma$ .

#### **Vector Fields on Curves**

A vector field along a curve  $\gamma: I \to M$  is a smooth map  $V: I \to TM$  such that  $V(t) \in T_{\gamma(t)}M$  for every  $t \in I$ . We let  $\mathcal{X}(\gamma)$  denote the space of vector fields along  $\gamma$ .

Let  $\nabla$  be a affine connection on M. For each curve  $\gamma: I \to M, \nabla$  determines a unique operator

$$D_t: \mathcal{X}(\gamma) \to \mathcal{X}(\gamma)$$

satisfying the following properties:

- 1.  $D_t(aV + bW) = aD_tV + bD_tW$  for  $a, b \in \mathbf{R}$
- 2.  $D_t(fV) = \dot{f}V + fD_tV$  for  $f \in C^{\infty}(I)$
- 3. If  $V(t) = \widetilde{V}_{\gamma(t)}$  then  $D_t V(t) = \nabla_{\dot{\gamma}(t)} \widetilde{V}$

## Levi-Civita Connection

#### Theorem

(Fundamental Lemma of Riemannian Geometry) Let (M,g) be a Riemannian manifold. There exists a unique linear connection  $\nabla$  on M that is compatible with g and symmetric.

A linear connection  $\nabla$  is said to be compatible with g if it satisfies the following product rule for all vector fields X, Y, Z.

$$\nabla_X \langle Y, Z \rangle = \langle \nabla_X Y, Z \rangle + \langle Y, \nabla_X Z \rangle$$

.

## Levi-Civita Connection

#### Theorem

(Fundamental Lemma of Riemannian Geometry) Let (M, g) be a Riemannian manifold. There exists a unique linear connection  $\nabla$  on M that is compatible with g and symmetric.

A linear connection  $\nabla$  is said to be compatible with g if it satisfies the following product rule for all vector fields X, Y, Z.

$$\nabla_X \langle Y, Z \rangle = \langle \nabla_X Y, Z \rangle + \langle Y, \nabla_X Z \rangle$$

.

The connection is called Levi-Civita connection.

# Geodesics

#### Definition

Let M be a manifold with a linear connection  $\nabla$ , and let  $\gamma$  be a curve in M.

The acceleration of  $\gamma$  is the vector field  $D_t\dot{\gamma}$  along  $\gamma$ .

A curve  $\gamma$  is called a geodesic with respect to  $\nabla$  if its acceleration is zero:  $D_t \dot{\gamma} \equiv 0$ .

#### Definition

Let M be a manifold with a linear connection  $\nabla$ , and let  $\gamma$  be a curve in M.

The acceleration of  $\gamma$  is the vector field  $D_t\dot{\gamma}$  along  $\gamma$ .

A curve  $\gamma$  is called a geodesic with respect to  $\nabla$  if its acceleration is zero:  $D_t \dot{\gamma} \equiv 0$ .

Example: The geodesics on  $\mathbb{R}^n$  are exactly the straight lines with constant speed parametrizations.

# Existence and Uniqueness

Let M be a manifold with a linear connection. For any  $p \in M$ , any  $V \in T_pM$ , and any  $t_0 \in R$ , there exist an open interval  $I \subset \mathbb{R}$  containing  $t_0$  and a geodesic  $\gamma: I \to M$  satisfying  $\gamma(t_0) = p, \dot{\gamma}(t_0) = V$ . Any two such geodesics agree on their common domain.

(Proved using existence and uniqueness of ODEs)

# Existence and Uniqueness

Let M be a manifold with a linear connection. For any  $p \in M$ , any  $V \in T_pM$ , and any  $t_0 \in R$ , there exist an open interval  $I \subset \mathbb{R}$  containing  $t_0$  and a geodesic  $\gamma: I \to M$  satisfying  $\gamma(t_0) = p, \dot{\gamma}(t_0) = V$ . Any two such geodesics agree on their common domain.

(Proved using existence and uniqueness of ODEs)

This determines a unique maximal geodesic  $\gamma_V$  for each  $V \in TM$ .

# **Exponential Map**

Define a subset  $\mathcal{E}$  of TM, the domain of the exponential map, by  $\mathcal{E} := \{V \in TM : \gamma_V \text{ is defined on an interval containing } [0,1]\},$ 

# **Exponential Map**

Define a subset  $\mathcal{E}$  of TM, the domain of the exponential map, by  $\mathcal{E} := \{V \in TM : \gamma_V \text{ is defined on an interval containing } [0,1]\}$ , Define the exponential map  $exp : \mathcal{E} \to M$  by

$$\exp(V) = \gamma_V(1)$$

# **Exponential Map**

Define a subset  $\mathcal{E}$  of TM, the domain of the exponential map, by  $\mathcal{E} := \{V \in TM : \gamma_V \text{ is defined on an interval containing } [0,1]\}$ , Define the exponential map  $exp : \mathcal{E} \to M$  by

$$\exp(V) = \gamma_V(1)$$

For each  $p \in M$ , the restricted exponential map  $\exp_p$  is the restriction of  $\exp$  to the set  $\mathcal{E}_p := \mathcal{E} \cap T_p M$ .

# Properties

• (Rescaling) For any  $V \in TM$  and  $c, t \in \mathbb{R}$ ,

$$\gamma_{cV}(t) = \gamma_V(ct)$$

whenever both sides are defined.

# **Properties**

• (Rescaling) For any  $V \in TM$  and  $c, t \in \mathbb{R}$ ,

$$\gamma_{cV}(t) = \gamma_{V}(ct)$$

whenever both sides are defined.

• For each  $V \in TM$ , the geodesic  $\gamma_V$  is given by

$$\gamma_V(t) = \exp(tV) = \gamma_{tV}(1)$$

for all t such that either side is defined.

# **Properties**

• (Rescaling) For any  $V \in TM$  and  $c, t \in \mathbb{R}$ ,

$$\gamma_{cV}(t) = \gamma_{V}(ct)$$

whenever both sides are defined.

• For each  $V \in TM$ , the geodesic  $\gamma_V$  is given by

$$\gamma_V(t) = \exp(tV) = \gamma_{tV}(1)$$

for all t such that either side is defined.

• The exponential map is smooth.

# Normal Neighbourhoods

Fix  $p \in M$ , the restricted exponential map  $\exp_p : \mathcal{E}_p \to M$ ,  $\mathcal{E}_p$  open subset of  $T_pM$ .

# Normal Neighbourhoods

Fix  $p \in M$ , the restricted exponential map  $\exp_p : \mathcal{E}_p \to M$ ,  $\mathcal{E}_p$  open subset of  $T_pM$ .

#### **Theorem**

For any  $p \in M$ , there is a neighborhood  $\mathcal V$  of the origin in  $T_pM$  and a neighborhood  $\mathcal U$  of p in M such that  $\exp_p : \mathcal V \to \mathcal U$  is a diffeomorphism.

(This follows from the inverse function theorem, once we show that  $\left(\exp_{p}\right)_{*}$  is invertible at 0.)

# Normal Neighbourhoods

Fix  $p \in M$ , the restricted exponential map  $\exp_p : \mathcal{E}_p \to M$ ,  $\mathcal{E}_p$  open subset of  $T_pM$ .

#### Theorem

For any  $p \in M$ , there is a neighborhood  $\mathcal V$  of the origin in  $T_pM$  and a neighborhood  $\mathcal U$  of p in M such that  $\exp_p : \mathcal V \to \mathcal U$  is a diffeomorphism.

(This follows from the inverse function theorem, once we show that  $(\exp_p)_*$  is invertible at 0.)

Any open neighbourhood  $\mathcal{U}$  of  $p \in M$  which is a diffeomorphic image of a open neighbourhood around  $0 \in T_pM$  is called a normal neighbourhood of p.

#### **Convex Sets**

A set  $S \subset M$  is convex if any two  $p, q \in M$  can be connected by a geodesic.

In other words, S is a normal neighbourhood of all  $p \in S$ .

#### **Convex Sets**

A set  $S \subset M$  is convex if any two  $p, q \in M$  can be connected by a geodesic.

In other words, S is a normal neighbourhood of all  $p \in S$ .

#### Theorem

Every  $p \in M$  is contained in a convex neighbourhood.

# Length and Distance in Riemannian Manifolds

# Curve Length

If  $\gamma:[a,b]\to \mathsf{M}$  is a curve segment, we define the length of  $\gamma$  to be

$$L(\gamma) := \int_a^b |\dot{\gamma}(t)| dt$$

The key feature of the length of a curve is that it is independent of parametrization.

## Riemannian Distance

M is a connected Riemannian manifold.

For any pair of points  $p, q \in M$ , we define the Riemannian distance d(p,q) to be the infimum of the lengths of all curves from p to q.

## Riemannian Distance

M is a connected Riemannian manifold.

For any pair of points  $p, q \in M$ , we define the Riemannian distance d(p,q) to be the infimum of the lengths of all curves from p to q.

To check that this is well defined, we need to verify that any two points can be connected by an admissible curve. (Since a connected manifold is path-connected, they can be connected by a continuous path  $c:[a,b]\to M$ .)

#### Riemannian Distance

M is a connected Riemannian manifold.

For any pair of points  $p, q \in M$ , we define the Riemannian distance d(p, q) to be the infimum of the lengths of all curves from p to q.

To check that this is well defined, we need to verify that any two points can be connected by an admissible curve. (Since a connected manifold is path-connected, they can be connected by a continuous path  $c:[a,b]\to M$ .)

*Note*: The topology induced by *d* metric is same as the given manifold topology. (Comparing riemmanian distance with euclidean distance in local coordinates)

# **Minimizing Curves**

A curve  $\gamma$  connecting  $p, q \in M$  is called minimizing if  $L(\gamma) = d(p, q)$ .

# **Minimizing Curves**

A curve  $\gamma$  connecting  $p, q \in M$  is called minimizing if  $L(\gamma) = d(p, q)$ .

#### Theorem

Every minimizing curve is a geodesic when given a unit speed parametrization.

# **Minimizing Curves**

A curve  $\gamma$  connecting  $p, q \in M$  is called minimizing if  $L(\gamma) = d(p, q)$ .

#### Theorem

Every minimizing curve is a geodesic when given a unit speed parametrization.

#### Theorem

Every Riemannian geodesic is locally minimizing.

Completeness and Hopf Rinow

# **Geodesically Complete**

M is said to be geodesically complete iff for all  $p \in M$ ,  $\exp_p$  is defined for every  $v \in T_pM$ , i.e. all geodesics  $\gamma(t)$  starting at p are defined for all  $t \in \mathbb{R}$ .

Examples:  $\mathbb{R}^n$ ,  $\mathbb{S}^n$ , any compact manifold (why?).

Non-Example:  $\mathbb{R}^2 \setminus \{(0,0)\}$ 

# Hopf-Rinow

#### Theorem

Let M be a connected Riemannian manifold and  $p \in M$ . Then the following conditions are equivalent:

- 1. M is geodesically complete.
- 2.  $\exp_p$  is defined for every  $v \in T_pM$ .
- 3. Closed and bounded subsets of M are compact.
- 4. M is complete as a metric space.

# Hopf-Rinow

#### Theorem

Let M be a connected Riemannian manifold and  $p \in M$ . Then the following conditions are equivalent:

- 1. M is geodesically complete.
- 2.  $\exp_p$  is defined for every  $v \in T_pM$ .
- 3. Closed and bounded subsets of M are compact.
- 4. M is complete as a metric space.

Furthermore, these conditions also imply (but are not equivalent to): Any two points of *M* can be joined by a geodesic.

## Lemma

 $\exp_p$  is defined for every  $V \in T_pM$  implies existence of minimizing geodesics from p to any  $q \in M$ 

## Lemma

 $\exp_p$  is defined for every  $V \in T_pM$  implies existence of minimizing geodesics from p to any  $q \in M$ 

Let d(p,q) = r and let  $B_{\delta}(p)$  be the normal ball at p and  $S = S_{\delta}(p)$  is its boundary. Since d(q,x) is continuous it attains a minimum on S which we will denote by  $x_0$ .

## Lemma

 $\exp_p$  is defined for every  $V \in T_pM$  implies existence of minimizing geodesics from p to any  $q \in M$ 

Let d(p,q) = r and let  $B_{\delta}(p)$  be the normal ball at p and  $S = S_{\delta}(p)$  is its boundary. Since d(q,x) is continuous it attains a minimum on S which we will denote by  $x_0$ .

We find a unit vector  $v \in T_pM$  such that  $x_0 = \exp_p(\delta v)$ . Now we define  $\gamma(t) = \exp_p(tv)$ .

We aim to show that  $\gamma(r) = q$ . We consider

$$A = \{s \in [0, r] | d(\gamma(s), q) = r - s\} \subset [0, r]$$

and show it's clopen in [0, r] and thus A = [0, r].



Figure 1: Hopf-Rinow

From,  $0 \in A$  and the continuity of the distance function, A is non empty and closed.

From,  $0 \in A$  and the continuity of the distance function, A is non empty and closed.

Thus we only need to check if A is open. Let  $s_0 < r$  be in A and let  $\delta'$  be sufficiently small. We want to show that  $s_0 + \delta' \in A$ .

From,  $0 \in A$  and the continuity of the distance function, A is non empty and closed.

Thus we only need to check if A is open. Let  $s_0 < r$  be in A and let  $\delta'$  be sufficiently small. We want to show that  $s_0 + \delta' \in A$ .

Take  $B_{\delta'}(\gamma(s_0))$  be the normal ball with boundary S'. Let  $x'_0$  be the minimum of d(x,q) on S'. By definition of the metric we have

$$r - s_0 = d(\gamma(s_0), q) = \delta' + \min_{x \in S'} d(x, q) = \delta' + d(x'_0, q)$$
  
 $\implies d(x'_0, q) = r - s_0 - \delta'.$ 

From,  $0 \in A$  and the continuity of the distance function, A is non empty and closed.

Thus we only need to check if A is open. Let  $s_0 < r$  be in A and let  $\delta'$  be sufficiently small. We want to show that  $s_0 + \delta' \in A$ .

Take  $B_{\delta'}(\gamma(s_0))$  be the normal ball with boundary S'. Let  $x'_0$  be the minimum of d(x,q) on S'. By definition of the metric we have

$$r - s_0 = d(\gamma(s_0), q) = \delta' + \min_{x \in S'} d(x, q) = \delta' + d(x'_0, q)$$
  
 $\implies d(x'_0, q) = r - s_0 - \delta'.$ 

Left to show  $\gamma(s_0 + \delta') = x'_0$ .

Using traingle inequality,

$$d(p, x'_0) \ge d(p, q) - d(q, x'_0) = r - (r - s_0 - \delta') = s_0 + \delta'$$

The broken curve from p to  $x_0'$  via  $\gamma(s_0)$  has length  $s_0 + \delta'$  and hence needs to be a geodesic. So, it turns out to be

$$\gamma(s_0 + \delta') = x'_0 \implies d(x'_0, q) = r - s_0 - \delta' \implies s_0 + \delta' \in A$$

$$(1) \implies (2) \implies (3)$$

- (1)  $\implies$  (2) is by definition.
- $(2) \implies (3)$

For a closed and bounded set  $A \subset M$  we always find a metric ball  $B_{\varepsilon}(p)$  containing A.

$$(1) \implies (2) \implies (3)$$

- (1)  $\implies$  (2) is by definition.
- $(2) \implies (3)$

For a closed and bounded set  $A \subset M$  we always find a metric ball  $B_{\varepsilon}(p)$  containing A.

Now, there is a ball  $B_r(0) \subset T_pM$  such that  $B_{\varepsilon}(p) \subset \exp_p\left(\overline{B_r(0)}\right)$ .

$$(1) \implies (2) \implies (3)$$

- (1)  $\implies$  (2) is by definition.
- $(2) \implies (3)$

For a closed and bounded set  $A \subset M$  we always find a metric ball  $B_{\varepsilon}(p)$  containing A.

Now, there is a ball  $B_r(0) \subset T_pM$  such that  $B_{\varepsilon}(p) \subset \exp_p\left(\overline{B_r(0)}\right)$ .

 $\exp_p$  is continuous, the image on the right is compact and hence A as a closed subset of a compact set is compact itself.

$$(3) \implies (4)$$

Let  $(x_n)$  be a Cauchy sequence in M. The set  $\{x_n\}$  is bounded, so its closure is closed and bounded (so compact).

 $(3) \implies (4)$ 

Let  $(x_n)$  be a Cauchy sequence in M. The set  $\{x_n\}$  is bounded, so its closure is closed and bounded (so compact).

Therefore  $(x_n)$  has a convergent subsequence and since  $(x_n)$  is Cauchy, it must converge to the limit of the subsequence.

$$(4) \implies (1)$$

Suppose M is complete as a metric space and there is some geodesic  $\gamma$  which cannot be continued for all time.

Let  $t_0 = \sup\{t : \gamma(t) \text{ is defined }\}$ . Then as  $t \to t_0, \gamma(t)$  is a Cauchy sequence and so  $\gamma(t_0)$  can be defined. (We use  $|\gamma(s) - \gamma(t)| \le |s - t|$ )

We start at  $\gamma(t_0)$  with initial velocity  $\gamma'(t_0)$  and this shows we can continue the geodesic past  $t_0$ , a contradiction.

Thank You!