

School of Mathematics and Statistics MATH2111 - Higher Several Variable Calculus

6. Differentiability

Dr Alan Stoneham a.stoneham@unsw.edu.au

Differentiation on $\mathbb R$

The slope of the chord is

$$\frac{f(a+h)-f(a)}{h}$$

and the slope of the tangent line is

$$f'(a) = \lim_{h \to 0} \frac{f(a+h) - f(a)}{h}$$

As $h \to 0$, the gradient of the chord approaches the gradient of the tangent. We can also write

$$\lim_{x \to a} \frac{f(x) - f(a) - f'(a)(x - a)}{x - a} = 0,$$

but how do we generalise this to functions from $\mathbb{R}^n \to \mathbb{R}^m$?

Linear and Affine Maps

Definition

A function $L: \mathbb{R}^n \to \mathbb{R}^m$ is **linear** if for all $x, y \in \mathbb{R}^n$ and $\lambda \in \mathbb{R}$ we have that

$$L(\lambda \mathbf{x} + \mathbf{y}) = \lambda L(\mathbf{x}) + L(\mathbf{y}).$$

Recall. Any linear map $L: \mathbb{R}^n \to \mathbb{R}^m$ can be represented by an $m \times n$ matrix A_L satisfying $L(\mathbf{x}) = A_L \mathbf{x}$.

We are slightly abusing notation since

$$L(\mathbf{x}) = \left(A_L \mathbf{x}^T\right)^T = \left(\begin{pmatrix} a_{11} & \cdots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{m1} & \cdots & a_{mn} \end{pmatrix} \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}\right)^T = \begin{pmatrix} a_{11}x_1 + \cdots + a_{1n}x_n \\ \vdots \\ a_{1m}x_1 + \cdots + a_{mn}x_n \end{pmatrix}^T$$

In first-year maths, we often think of x as a column vector, but here we are thinking of x as a point in \mathbb{R}^n , or row vector. I'm not going to fuss over the differences in these lectures.

Conventions and Affine Maps

- For $\mathbf{x} \in \mathbb{R}^2$ or $\mathbf{x} \in \mathbb{R}^3$, we write $\mathbf{x} = (x, y)$ or $\mathbf{x} = (x, y, z)$.
- For $\mathbf{x} \in \mathbb{R}^n$ and $n \ge 1$, we write $\mathbf{x} = (x_1, x_2, \dots, x_n)$.
- The standard basis of \mathbb{R}^n is $\{\mathbf{e}_1, \dots, \mathbf{e}_n\}$ where \mathbf{e}_i is 1 in the ith co-ordinate and 0 elsewhere.
- It is also common to write in \mathbb{R}^2 or \mathbb{R}^3 that $\mathbf{i} = \mathbf{e}_1$, $\mathbf{j} = \mathbf{e}_2$ and $\mathbf{k} = \mathbf{e}_3$.
- We'll often write $A\mathbf{x}$ when we really mean $A\mathbf{x}^T$ or $(A\mathbf{x}^T)^T$.

Definition

A function $T: \mathbb{R}^n \to \mathbb{R}^m$ is called **affine** if there is a $\mathbf{y}_0 \in \mathbb{R}^m$ and a linear map $L: \mathbb{R}^n \to \mathbb{R}^m$ such that

$$T(\mathbf{x}) = L(\mathbf{x}) + \mathbf{y}_0 \qquad \forall \mathbf{x} \in \mathbb{R}^n.$$

Equivalently, there is $\mathbf{y}_0 \in \mathbb{R}^m$ and an $m \times n$ matrix A such that $T(\mathbf{x}) = A\mathbf{x} + \mathbf{y}_0$ for all $\mathbf{x} \in \mathbb{R}^n$.

Affine Approximation

Definition

A function $f: \Omega \subseteq \mathbb{R}^n \to \mathbb{R}^m$ has an affine approximation at $\mathbf{x}_0 \in \Omega$ if there exists a linear map $L: \mathbb{R}^n \to \mathbb{R}^m$ such that

$$\mathbf{x} \to \mathbf{R}^m$$
 has an affine approximation at $\mathbf{x}_0 \in \Omega$ if there exists \mathbf{R}^m such that
$$\lim_{\mathbf{x} \to \mathbf{x}_0} \frac{|f(\mathbf{x}) - f(\mathbf{x}_0) - L(\mathbf{x} - \mathbf{x}_0)|}{|\mathbf{x} - \mathbf{x}_0|} = 0.$$

If f has an affine approximation at $\mathbf{x}_0 \in \Omega$, then f is said to be **differentiable at** \mathbf{x}_0 .

We will soon see that if such a linear map L exists, then it is unique, and we call it the **derivative of f at** \mathbf{x}_0 , denoted by $Df(\mathbf{x}_0)$ or $D_{\mathbf{x}_0}f$.

Remark. With the definition above, it should be reasonably clear that f being differentiable at \mathbf{x}_0 implies that f is continuous at \mathbf{x}_0 as well.

Partial Derivatives

Recall that in \mathbb{R}^n , we can notate the co-ordinates by x_1, x_2, \ldots, x_n and the standard basis vectors by $\mathbf{e}_1, \mathbf{e}_2, \dots, \mathbf{e}_n$.

not I the order partial derivative

Definition

Let \mathbf{x}_0 be an interior point of $\Omega \subseteq \mathbb{R}^n$ and $f : \Omega \to \mathbb{R}$. The jth partial derivative of f at \mathbf{x}_0 is defined as at x_0 is defined as

$$\frac{\partial f}{\partial x_j}(\mathbf{x}_0) = \lim_{h \to 0} \frac{f(\mathbf{x}_0 + h\mathbf{e}_j) - f(\mathbf{x}_0)}{h},$$

and $\frac{\partial f}{\partial x_j}$ is the function that takes \mathbf{x}_0 to $\frac{\partial f}{\partial x_j}(\mathbf{x}_0)$. Some other common notations are $\frac{\partial f}{\partial x_j} = \partial_{x_j} f = f_{x_j} = f_j = \partial_j f$.

I don't like the " f_j " notation since it looks like the jth component of f.

Partial Derivatives

Consider $f : \mathbb{R}^2 \to \mathbb{R}$, $f(x,y) = x^2 + \frac{1}{2}y^2$. Then

$$\frac{\partial f}{\partial x} = 2x$$

$$\frac{\partial f}{\partial y} = y$$

Jacobian Matrix

Definition

If all partial derivatives of $f: \Omega \subseteq \mathbb{R}^n \to \mathbb{R}^m$ exist at $\mathbf{x}_0 \in \Omega$, then the **Jacobian of** f

If all partial derivatives of
$$f: \Omega \subseteq \mathbb{R}^n \to \mathbb{R}^m$$
 exist at $\mathbf{x}_0 \in \Omega$, then the X at \mathbf{x}_0 is the $m \times n$ matrix defined by $\left(Jf(\mathbf{x}_0)\right)_{ij} = \frac{\partial f_i}{\partial x_j}(\mathbf{x}_0)$. That is,
$$\mathbf{J}_{\boldsymbol{\xi}}$$

$$\int_{\boldsymbol{\xi}} \frac{\partial f_1}{\partial x_1}(\mathbf{x}_0) \frac{\partial f_1}{\partial x_2}(\mathbf{x}_0) \cdots \frac{\partial f_1}{\partial x_n}(\mathbf{x}_0)$$

$$\frac{\partial f_2}{\partial x_1}(\mathbf{x}_0) \frac{\partial f_2}{\partial x_2}(\mathbf{x}_0) \cdots \frac{\partial f_2}{\partial x_n}(\mathbf{x}_0)$$

$$\vdots \qquad \vdots \qquad \vdots \qquad \vdots$$

$$\frac{\partial f_m}{\partial x_1}(\mathbf{x}_0) \frac{\partial f_m}{\partial x_2}(\mathbf{x}_0) \cdots \frac{\partial f_m}{\partial x_n}(\mathbf{x}_0)$$

which may also be denoted by $J_{\mathbf{x}_0}f$, $Jf(\mathbf{x}_0)$, or $\frac{\partial (f_1,\ldots,f_m)}{\partial (x_1,\ldots,x_m)}$.

Jacobian Matrix

Exercise. Find the Jacobian at the points $\mathbf{x}_1 = (1, -1)$ and $\mathbf{x}_2 = (0, \pi)$ for the function $f: \mathbb{R}^2 \to \mathbb{R}^3$ defined by $\mathbf{f}_1 \qquad \mathbf{f}_2 \qquad \mathbf{f}_3$ $f(x,y) = (\sin(x^2 + y), \ x^4 - y^3, \ xe^y + ye^x).$

$$\frac{\partial f_1}{\partial x} = 2x6x(x^2 + f^2)$$

$$\frac{\partial f_2}{\partial x} = 4x^3$$

$$\frac{\partial f_2}{\partial x} = -3f^2$$

$$\frac{\partial f_1}{\partial x} = e^f + fe^x$$

$$\frac{\partial f_1}{\partial y} = xe^f + fe^x$$

$$J_{+}(x) = \begin{pmatrix} 2x\cos(x^{2}+y) & \cos(x^{2}+y) \\ 4x^{3} & -3y^{2} \\ e^{y}+ye^{x} & xe^{y}+e^{x} \end{pmatrix}$$

$$J_{+}(1,-1) = \begin{pmatrix} 2 & 1 \\ 4 & -3 \\ e^{-1}-e & e^{-1}+e \end{pmatrix}$$

$$J_{+}(0,\pi) = \begin{pmatrix} 0 & -1 \\ 0 & -3\pi^{2} \\ e^{x}+\pi & 1 \end{pmatrix}$$

Best Affine Approximation

Theorem

Let $\Omega \subseteq \mathbb{R}^n$, \mathbf{x}_0 be an interior point of Ω and $f : \Omega \to \mathbb{R}^m$ be a function. If f is differentiable at \mathbf{x}_0 , then its derivative at \mathbf{x}_0 is unique, all partial derivatives at \mathbf{x}_0 exist, and $Df(\mathbf{x}_0)$ is represented by the $m \times n$ matrix $J_f(\mathbf{x}_0)$.

Proof later on slide 12. When a function is differentiable, we might use 'derivative' and 'Jacobian' interchangeably.

Definition

Under the above hypotheses, the function $T_{\mathbf{x}_0}f:\mathbb{R}^n\to\mathbb{R}^m$ defined by

$$T_{\mathbf{x}_0}f(\mathbf{x}) = J_f(\mathbf{x}_0)(\mathbf{x} - \mathbf{x}_0) + f(\mathbf{x}_0)$$

is the best affine approximation of f at \mathbf{x}_0 .

The graph of $T_{\mathbf{x}_0}f$ is the **tangent plane of** f **at** \mathbf{x}_0 .

Basically degree 1 Toylor polynomial

Best Affine Approximation

Example. Find the best affine approximation of $f : \mathbb{R}^2 \to \mathbb{R}$, $f(x,y) = x^2 + \frac{1}{2}y^2$, at (1,1). Then

$$\frac{\partial f}{\partial x} = 2x$$
 and $\frac{\partial f}{\partial y} = y$.

The Jacobian of f at (1,1) is

so the best affine approximation is given by

$$T_{(1,1)}f(x,y) = (2 \ 1) {x-1 \choose y-1} + f(1,1)$$
$$= 2(x-1) + (y-1) + \frac{3}{2}.$$

Best Affine Approximation

Exercise. Find the best affine approximations to $f: \mathbb{R}^2 \to \mathbb{R}^3$, defined by

$$f(x,y) = (\sin(x^2 + y), x^4 - y^3, xe^y + ye^x)$$

at the points (1,-1) and $(0,\pi)$.

$$T_{(1,-1)}f(x) = J_{+}(1,-1)(x-(1,-1)) + f(1,-1)$$

$$= \begin{pmatrix} 2 & -1 \\ 4 & -3 \\ e^{1}-e & e^{-1}+e \end{pmatrix} \begin{pmatrix} x+1 \\ n+1 \end{pmatrix} + \begin{pmatrix} 0 \\ 2 \\ e^{1}-e \end{pmatrix}$$

$$T_{(0,n)}f(x) = J_{+}(0,n)(x-(0,n)) + f(0,n)$$

$$= \begin{pmatrix} 0 & -1 \\ 0 & -3\pi^{2} \\ \pi & \pi \end{pmatrix} \begin{pmatrix} x \\ y-\pi \end{pmatrix} + \begin{pmatrix} 0 \\ -\pi^{3} \\ \pi \end{pmatrix}$$

Proof of Jacobian Uniqueness

Suppose that $f: \Omega \subseteq \mathbb{R}^n \to \mathbb{R}^m$ is differentiable at an interior point $\mathbf{x}_0 \in \Omega$ with derivative $Df(\mathbf{x}_0)$ represented by $A = (a_{ij})_{i,j=1}^{m,n}$. As f is differentiable,

$$\lim_{\mathbf{x}\to\mathbf{x}_0}\frac{|f(\mathbf{x})-f(\mathbf{x}_0)-A(\mathbf{x}-\mathbf{x}_0)|}{|\mathbf{x}-\mathbf{x}_0|}=0.$$

In particular, if
$$\mathbf{x} = \mathbf{x}_0 + h\mathbf{e}_j$$
, then as $h \to 0$ we have
$$\lim_{h \to 0} \frac{|f(\mathbf{x}_0 + h\mathbf{e}_j) - f(\mathbf{x}_0) - A(h\mathbf{e}_j)|}{|h\mathbf{e}_j|} = 0.$$

Since Ae_i is the jth column of A, this is equivalent to

$$\begin{pmatrix} a_{1j} \\ a_{2j} \\ \vdots \\ a_{mj} \end{pmatrix} = \begin{pmatrix} \lim_{h \to 0} \frac{f_1(\mathbf{x}_0 + h\mathbf{e}_j) - f_1(\mathbf{x}_0)}{h} \\ \lim_{h \to 0} \frac{f_2(\mathbf{x}_0 + h\mathbf{e}_j) - f_2(\mathbf{x}_0)}{h} \\ \vdots \\ \lim_{h \to 0} \frac{f_m(\mathbf{x}_0 + h\mathbf{e}_j) - f_m(\mathbf{x}_0)}{h} \end{pmatrix} \iff a_{ij} = \frac{\partial f_i}{\partial x_j}(\mathbf{x}_0) \text{ for all } 1 \le i \le m, 1 \le j \le n.$$

Partial Derivatives \Longrightarrow Differentiable? $\left| \frac{\Im(\alpha)}{\alpha} - 1 \right| \leq \alpha^2$

Exercise. Let $f: \mathbb{R}^2 \to \mathbb{R}$ be defined by

$$f(x,y) = \begin{cases} \frac{\sin(x^2 + y^2)}{x^2 + y^2} & \text{if } (x,y) \neq (0,0), \\ 1 & \text{if } (x,y) = (0,0). \end{cases}$$

Is f differentiable at (0,0)?

If f is differentiable, then
$$0 \neq (0,0)$$
 must be represented by $\int_{\Gamma} (0,0) dx$.

$$0 \leq \left| \frac{\partial f}{\partial x} (0,0) \right| = \lim_{h \to 0} \left| \frac{f(0+h,0) - f(0,0)}{h} \right|$$

$$= \lim_{h \to 0} \left| \frac{\sin(h^2)}{h^2 - 1} \right| \leq \lim_{h \to 0} \frac{(h^2)^2}{h}$$

$$= 0$$

f

Partial Derivatives \improx Differentiable?

snilarly
$$\frac{2f}{2y}(0,0) = 0$$
, so $\int_{f}(0,0) = (0,0)$

check differentiability:

$$= \frac{(\sin(\pi^{2}+y^{2})-1)}{\sqrt{\pi^{2}+y^{2}}} = \frac{(\pi^{2}+y^{2})^{2}}{\sqrt{\pi^{2}+y^{2}}} = |\chi|^{\frac{2}{3}}$$

so f is differentiable of co, o).

It is pretty easy to provide an example of $f: \mathbb{R}^2 \to \mathbb{R}$ where the partial derivatives exist but f is not differentiable. In fact, f can be constructed to not even be continuous!

Consider $f: \mathbb{R}^2 \to \mathbb{R}$ defined by

$$f(x,y) = \begin{cases} 1 & \text{if } xy = 0, \\ 0 & \text{otherwise.} \end{cases}$$

Then $\frac{\partial f}{\partial x}(0,0) = \frac{\partial f}{\partial y}(0,0) = 0$ but f is not continuous at (0,0), and hence not differentiable.

Ex. Show that $f: \mathbb{R}^2 \to \mathbb{R}$ defined by $f(x,y) = \sqrt[3]{xy}$ is continuous with partial derivatives at (0,0), but $D_{(0,0)}f$ does not exist.

Continuous Partial Derivatives \Longrightarrow **Differentiable**

Theorem

Suppose $\Omega \subseteq \mathbb{R}^n$ is open and $f: \Omega \to \mathbb{R}^m$. If the partial derivatives $\frac{\partial f_i}{\partial x_j}$ exist and are continuous on Ω for all $i=1,\ldots,m$ and $j=1,\ldots,n$, then f is differentiable on Ω .

If you have taken MATH2621, this theorem is similar to the theorem stating that the Cauchy-Riemann equations holding along with continuous partial derivatives implies complex differentiability.

Proof. (Included for completion sake, but very difficult!)

Suppose $\varepsilon > 0$ and $\mathbf{a} = (a_1, \dots, a_n) \in \Omega$. Since Ω is open, there is an r > 0 such that $d_1(\mathbf{x}, \mathbf{a}) < r$ implies $\mathbf{x} \in \Omega$. For each $1 \le i \le m$ and $1 \le j \le n$, since $\frac{\partial f_i}{\partial x_j}$ is continuous, we can find $0 < \delta_{i,j} < r$ such that

$$\left| \frac{\partial f_i}{\partial x_j}(\mathbf{x}) - \frac{\partial f_i}{\partial x_j}(\mathbf{a}) \right| < \frac{\varepsilon}{m} \tag{*}$$

whenever
$$d_1(\mathbf{x}, \mathbf{a}) = \sum_{j=1}^n |x_j - a_j| < \delta_{i,j}$$
. Let $\delta = \min_{i,j} \delta_{i,j}$.

d: diamond in 17

¹Recall that the d_1 metric is equivalent to the Euclidean metric.

Continuous Partial Derivatives \Longrightarrow **Differentiable**

Teloscoping

Suppose that $\mathbf{x} = (x_1, \dots, x_n) \in \Omega$ satisfies $d_1(\mathbf{x}, \mathbf{a}) < \delta$. Let $\mathbf{a}_0 = \mathbf{a}$ and

$$\mathbf{a}_j = \mathbf{a} + \sum_{k=1}^j (x_k - a_k) \mathbf{e}_k \text{ for } 1 \le j \le n \text{ so that } f_i(\mathbf{x}) - f_i(\mathbf{a}) = \sum_{j=1}^n (f_i(\mathbf{a}_j) - f_i(\mathbf{a}_{j-1}))$$

for all $1 \le i \le m$. Since the partial derivatives exist everywhere, the Mean Value Theorem yields $c_{i,j}$ between 0 and $x_j - a_j$ such that

$$\frac{f_i(\mathbf{a}_j) - f_i(\mathbf{a}_{j-1})}{x_j - a_j} = \frac{\partial f_i}{\partial x_j} (\mathbf{a}_{j-1} + c_{i,j} \mathbf{e}_j).$$

Then, noting that $\mathbf{a} = \mathbf{a}_0$ and $\mathbf{x} = \mathbf{a}_n$,

$$\frac{d_{1}(f(\mathbf{x}) - f(\mathbf{a}), J_{f}(\mathbf{a})(\mathbf{x} - \mathbf{a}))}{d_{1}(\mathbf{x}, \mathbf{a})} = \frac{\sum_{i=1}^{m} \left| f_{i}(\mathbf{x}) - f_{i}(\mathbf{a}) - \sum_{j=1}^{n} \frac{\partial f_{i}}{\partial x_{j}}(\mathbf{a})(x_{j} - a_{j}) \right|}{\sum_{j=1}^{n} \left| x_{j} - a_{j} \right|}$$

$$= \frac{\sum_{i=1}^{m} \left| \sum_{j=1}^{n} \left(f_{i}(\mathbf{a}_{j}) - f_{i}(\mathbf{a}_{j-1}) - \frac{\partial f_{i}}{\partial x_{j}}(\mathbf{a})(x_{j} - a_{j}) \right) \right|}{\sum_{j=1}^{n} \left| x_{j} - a_{j} \right|}$$

$$= \frac{\sum_{i=1}^{m} \left| \sum_{j=1}^{n} \left(\frac{\partial f_{i}}{\partial x_{j}}(\mathbf{a}_{j-1} + c_{i,j}\mathbf{e}_{j}) - \frac{\partial f_{i}}{\partial x_{j}}(\mathbf{a}) \right)(x_{j} - a_{j}) \right|}{\sum_{j=1}^{n} \left| x_{j} - a_{j} \right|}.$$

Continuous Partial Derivatives \Longrightarrow **Differentiable**

Since

$$d_1(\mathbf{a}_{j-1} + c_{i,j}\mathbf{e}_j, \mathbf{a}) = \sum_{k=1}^{j-1} |x_k - a_k| + |c_{i,j}| \le \sum_{k=1}^n |x_k - a_k| = d_1(\mathbf{x}, \mathbf{a}) < \delta,$$

then applying (*) yields

$$\left| \frac{\partial f_i}{\partial x_j} (\mathbf{a}_{j-1} + c_{i,j} \mathbf{e}_j) - \frac{\partial f_i}{\partial x_j} (\mathbf{a}) \right| < \frac{\varepsilon}{m}.$$

Hence whenever $d_1(\mathbf{x}, \mathbf{a}) < \delta$,

$$\frac{d_1(f(\mathbf{x}) - f(\mathbf{a}), J_f(\mathbf{a})(\mathbf{x} - \mathbf{a}))}{d_1(\mathbf{x}, \mathbf{a})} < \frac{m\left(\frac{\varepsilon}{m}\right) \sum_{j=1}^n |x_j - a_j|}{\sum_{j=1}^n |x_j - a_j|} = \varepsilon.$$

Thus

$$\lim_{\mathbf{x}\to\mathbf{a}}\frac{d_1(f(\mathbf{x})-f(\mathbf{a}),J_f(\mathbf{a})(\mathbf{x}-\mathbf{a}))}{d_1(\mathbf{x},\mathbf{a})}=0,$$

and so f is differentiable at a.

Differentiation of Curves

Let's return to Earth with an example. Consider the curve $\mathbf{c}:[0,2]\to\mathbb{R}^2$ defined by $\mathbf{c}(t)=(t,t^2)$.

We see that c is differentiable at $t_0 = 1$ with derivative

$$J_{\mathbf{c}}(t_0) = \begin{pmatrix} 1 \\ 2 \end{pmatrix}$$

since the partial derivatives $\frac{\partial \mathbf{c}_1}{\partial t} = 1$ and $\frac{\partial \mathbf{c}_2}{\partial t} = 2t$ are continuous.

We see that $J_{\mathbf{c}}(1) = \begin{pmatrix} 1 \\ 2 \end{pmatrix}$ is tangent to the curve at the point $\mathbf{c}(1) = (1,1)$. If we interpret $\mathbf{c}(1)$ as the position of a particle at time t=1, then $\mathbf{c}'(1)$ can be interpreted as the particle's velocity at time t=1, and its speed is $\sqrt{5}$, the length of $\mathbf{c}'(1)$.

Differentiation of Curves

Combining the definition of differentiability and the fact that the limit of a vector-valued function exists if and only if the limit of all the components exist gives us the following.

Proposition

A function $f: \Omega \subseteq \mathbb{R}^n \to \mathbb{R}^m$ is differentiable at \mathbf{x}_0 if and only if all of its components f_1, f_2, \ldots, f_m are differentiable at \mathbf{x}_0 .

So for a path $\mathbf{c}: I \to \mathbb{R}^m$ with components $c_i: I \to \mathbb{R}$, $1 \le i \le m$, \mathbf{c} is differentiable at $t_0 \in I$ if and only if c_i is differentiable at t_0 for all $1 \le i \le m$. This means that $c_i'(t_0)$ exists for all $1 \le i \le m$ and **the derivative of c** at t_0 is

$$J_{\mathbf{c}}(t_0) = \mathbf{c}'(t_0) = \frac{d\mathbf{c}}{dt}(t_0) = \begin{pmatrix} c_1'(t_0) \\ c_2'(t_0) \\ \vdots \\ c_m'(t_0) \end{pmatrix}.$$

Geometric Interpretation of $\mathbf{c}'(t)$

For $\mathbf{c}: I \to \mathbb{R}^m$, consider the following:

$$\mathbf{c}'(t) = (\mathbf{c}_1'(t), \dots, \mathbf{c}_m'(t))^T$$

$$= \left(\lim_{h \to 0} \frac{c_1(t+h) - c(t)}{h}, \dots, \lim_{h \to 0} \frac{c_m(t+h) - c(t)}{h}\right)^T$$

$$= \lim_{h \to 0} \left(\frac{c_1(t+h) - c(t)}{h}, \dots, \frac{c_m(t+h) - c(t)}{h}\right)^T$$

$$= \lim_{h \to 0} \frac{1}{h} (\mathbf{c}(t+h) - \mathbf{c}(t)).$$

h < 1

Geometric Interpretation of c'(t)

As $h \to 0$, $\frac{1}{h}(\mathbf{c}(t+h) - \mathbf{c}(t))$ approaches a vector which is parallel to a tangent line to \mathbf{c} at $\mathbf{c}(t)$.

Definition

For a path $c: I \to \mathbb{R}^m$ and $t_0 \in I$, if $c'(t_0)$ exists and is not 0, then $c'(t_0)$ is called the **tangent vector of** c at t_0 , or the **velocity of** c at t_0 , which can be denoted by $v(t_0)$.

We can also define the **speed** of \mathbf{c} at t_0 as $|\mathbf{v}(t_0)| = \sqrt{\mathbf{v}(t_0) \cdot \mathbf{v}(t_0)}$ and the **acceleration** of \mathbf{c} at t_0 as $\mathbf{a}(t_0) = \mathbf{v}'(t_0) = \mathbf{c}''(t_0)$.

Higher order derivatives are known as 'jerk', 'snap', 'crackle', and 'pop'.

Differentiation Rules for Paths $\mathbf{c}: I \to \mathbb{R}^m$

Theorem

Suppose that $\lambda \in \mathbb{R}$ and $\mathbf{c}_1, \mathbf{c}_2 : I \to \mathbb{R}^m$ and $f : I \to \mathbb{R}$ are all differentiable. Then for all $t \in I$, we have that

- $(\mathbf{c}_1 + \mathbf{c}_2)'(t) = \mathbf{c}_1(t) + \mathbf{c}_2(t);$
- $(\lambda \mathbf{c}_1)'(t) = \lambda \mathbf{c}_1'(t);$
- $\frac{d}{dt}(f(t)\mathbf{c}_1(t)) = f'(t)\mathbf{c}_1(t) + f(t)\mathbf{c}_1'(t);$
- $\frac{d}{dt}(\mathbf{c}_1 \cdot \mathbf{c}_2)(t) = \mathbf{c}_1'(t) \cdot \mathbf{c}_2(t) + \mathbf{c}_1(t) \cdot \mathbf{c}_2'(t);$
- if m = 3, then $\frac{d}{dt}(\mathbf{c}_1(t) \times \mathbf{c}_2(t)) = \mathbf{c}'_1(t) \times \mathbf{c}_2(t) + \mathbf{c}_1(t) \times \mathbf{c}'_2(t)$.

If instead $f:I'\to I$ is differentiable, then $\mathbf{c}_1\circ f:I'\to\mathbb{R}^m$ is differentiable with

$$\frac{d}{dt}\mathbf{c}(f(t)) = f'(t)\mathbf{c}_1'(f(t)).$$

The Chain Rule

Theorem (The Chain Rule)

Let $\Omega \subseteq \mathbb{R}^n$, $\Omega' \subseteq \mathbb{R}^m$ and $\mathbf{x}_0 \in \operatorname{Int}(\Omega)$. Suppose that $f : \Omega \to \mathbb{R}^m$ and $g : \Omega' \to \mathbb{R}^k$ with $f(\Omega) \subseteq \Omega'$. If f is differentiable at \mathbf{x}_0 and g is differentiable at $f(\mathbf{x}_0)$, then $g \circ f$ is differentiable at $f(\mathbf{x}_0)$ and

$$D(f \circ g)(\mathbf{x}_0) = Dg(f(\mathbf{x}_0)) Df(\mathbf{x}_0).$$

Exercise. Define $f : \mathbb{R}^2 \to \mathbb{R}$ by $f(x,y) = x^2y$. How does f(x,y) change as $|(x,y)| = \sqrt{x^2 + y^2}$ change?

Let
$$p: \mathbb{R}^2 \setminus \{0\} \longrightarrow \mathbb{R}^2$$
 be the polar map
 $p(r, \theta) = (ros \theta), rsin \theta)$ should be thinkey
 $J_p(r, \theta) = (ss \theta) - rsin \theta$ of $f_0 g$

The Chain Rule

Ex. cont. How does $f(x,y) = x^2y$ change as $|(x,y)| = \sqrt{x^2 + y^2}$ change?

The Jacobian of f is

$$J_f(x,y) = (2xy x^2)$$
 $X = roso$
 $J_f(x,y) = (2xy x^2)$
 $J_f(x,y) = roso$

Applying the chain rule

 $J_{fop}(r,0) = J_f(p(r,0))J_p(r,0)$
 $J_f(x,y) = (2r^2 ssosio r^2 ss)$