dm25s1

Topic 04: Exploratory Data Analysis

Part 01: EDA Pass1

Dr Bernard Butler

Department of Computing and Mathematics, WIT. (bernard.butler@setu.ie)

Autumn Semester, 2025

Outline

- EDA Process
- Datasets = Tips, Titanic and Algae Blooms

Data Mining (Week 4)

EDA Pass1 — Summary

- 1. Introduction
- 1.1 Example Datasets
- 1.2 Before we start . .

- 2. First Pass Load Dataset and Initial Clear
- 2.1 dtypes
- 2.2 Missing Values

Acknowledgment

A big thanks to Dr Kieran Murphy, who provided many of the slides for today's lecture.

Introduction

Exploratory Data Analysis (EDA)

Aim

To understand and summarise a dataset to ensure that the features which are feed to machine learning algorithms are refined and that the results are valid and can correctly interpreted.

Benefits

- Develop insight about the dataset and understanding of the underlying structure.
- Extract important parameters and relationships that hold between them.
- Test underlying assumptions.
- Identify issues that affect model performance outliers, missing values.

Data Pipeline

- Data preparation is the core of the data mining pipeline (typical estimates >50% of the time/effort).
- EDA is the data processing and wrangling.
- EDA informs the feature extraction, engineering, transformation and selection.

> What questions to ask? >

Dataset global questions: How many features? How many observations? What is the data type of each feature? Any null values? ... Feature specific questions: What is the distribution of each variable? Do there appear to be outliers? What features are related? ... Missing value questions: Are null value a result of the way data was recorded? Can we drop the rows with null values without it significantly affecting your analysis? Can we justify filling in the missing values with the mean or median for that variable? If the data is time-series data, can we fill the missing values with interpolation? Are there so many missing values for a variable that we should drop that variable from the dataset? ... Outlier questions: Why are outliers present? Do the outliers represent real observations (i.e. not errors)? Should we exclude these observations? If not, should we winsorise the values? ... Correlation/Relationships questions: Which variables are most correlated with your target variable? (If applicable) Is there multicollinearity? (Two features that have a correlation > 0.8) How will this affect your model? Do you have variables that represent the same information? Can one be dropped? ...

What questions to ask?

Dataset global questions: How many features? How many observations? What is the data type of each feature? Any null values? ... Feature specific questions: What is the distribution of each variable? Do there appear to be outliers? What features are related? ... Missing value questions: Are null value a result of the way data was recorded? Can we drop the rows with null values without it significantly affecting your analysis? Can we justify filling in the missing values with the mean or median for that variable? If the data is time-series data, can we fill the missing values with interpolation? Are there so many missing values for a variable that we should drop that variable from the dataset? ... Outlier questions: Why are outliers present? Do the outliers represent real observations (i.e. not errors)? Should we exclude these observations? If not, should we winsorise the values? ... Correlations/Relationships questions: Which variables are most correlated with your target variable? (If applicable) Is there multicollinearity? (Two features that have a correlation > 0.8) How will this affect your model? Do you have variables that represent the same information? Can one be dropped? ...

What visualisations to build?

What questions to ask?

Dataset global questions: How many features? How many observations? What is the data type of each feature? Any null values? ... Feature specific questions: What is the distribution of each variable? Do there appear to be outliers? What features are related? ... Missing value questions: Are null value a result of the way data was recorded? Can we drop the rows with null values without it significantly affecting your analysis? Can we justify filling in the missing values with the mean or median for that variable? If the data is time-series data, can we fill the missing values with interpolation? Are there so many missing values for a variable that we should drop that variable from the dataset? ... Outlier questions: Why are outliers present? Do the outliers represent real observations (i.e. not errors)? Should we exclude these observations? If not, should we winsorise the values? ... Correlations/Relationships questions: Which variables are most correlated with your target variable? (If applicable) Is there multicollinearity? (Two features that have a correlation > 0.8) How will this affect your model? Do you have variables that represent the same information? Can one be dropped? ...

What questions to ask?

Dataset global questions: How many features? How many observations? What is the data type of each feature? Any null values? ... Feature specific questions: What is the distribution of each variable? Do there appear to be outliers? What features are related? ... Missing value questions: Are null value a result of the way data was recorded? Can we drop the rows with null values without it significantly affecting your analysis? Can we justify filling in the missing values with the mean or median for that variable? If the data is time-series data, can we fill the missing values with interpolation? Are there so many missing values for a variable that we should drop that variable from the dataset? ... Outlier questions: Why are outliers present? Do the outliers represent real observations (i.e. not errors)? Should we exclude these observations? If not, should we winsorise the values? ... Correlations/Relationships questions: Which variables are most correlated with your target variable? (If applicable) Is there multicollinearity? (Two features that have a correlation > 0.8) How will this affect your model? Do you have variables that represent the same information? Can one be dropped? ...

Have a plan, be selective, understand strengths/weaknesses of metrics/visualisations

PassengerId	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare	Cabin	Embarked	Survived
1	3	Braund, Mr. Owen Harris	male	22.0	1	0	A/5 21171	7.2500	NaN	S	0
2	1	Cumings, Mrs. John Bradley (Florence Briggs Th	female	38.0	1	0	PC 17599	71.2833	C85	C	1
3	3	Heikkinen, Miss. Laina	female	26.0	0	0	STON/O2. 3101282	7.9250	NaN	S	1
4	1	Futrelle, Mrs. Jacques Heath (Lily May Peel)	female	35.0	1	0	113803	53.1000	C123	S	1
5	3	Allen, Mr. William Henry	male	35.0	0	0	373450	8.0500	NaN	S	0
6	3	Moran, Mr. James	male	NaN	0	0	330877	8.4583	NaN	Q	0
7	1	McCarthy, Mr. Timothy J	male	54.0	0	0	17463	51.8625	E46	S	0
8	3	Palsson, Master. Gosta Leonard	male	2.0	3	1	349909	21.0750	NaN	S	0
9	3	Johnson, Mrs. Oscar W (Elisabeth Vilhelmina Berg)	female	27.0	0	2	347742	11.1333	NaN	S	1
10	2	Nasser, Mrs. Nicholas (Adele Achem)	female	14.0	1	0	237736	30.0708	NaN	C	1
11	3	Sandstrom, Miss. Marguerite Rut	female	4.0	1	1	PP 9549	16.7000	G6	S	1

- A labeled dataset consists of m rows \times (n+1) columns / variables.
- Use bold to represent vectors and matrices.

- A labeled dataset consists of m rows \times (n+1) columns / variables.
- Use bold to represent vectors and matrices.
- Use subscripts to indicate particular feature / attribute / column

 \mathbf{X}_{i}

- A labeled dataset consists of m rows \times (n+1) columns / variables.
- Use bold to represent vectors and matrices.
- Use subscripts to indicate particular feature / attribute / column
- Use superscript in parenthesis to indicate particular observation / instance/ case / row

- A labeled dataset consists of m rows \times (n+1) columns / variables.
- Use bold to represent vectors and matrices.
- Use subscripts to indicate particular feature / attribute / column
- Use superscript in parenthesis to indicate particular observation / instance/ case / row
- So $x_i^{(i)}$ (or $x_{i,j}$) is the *i*-th observation in the *j*-th feature

We will use a few datasets today to illustrate the various features:

Tips

Titanic

We will use a few datasets today to illustrate the various features:

• Small dataset of total bills, and tips for different servers with gender, day, time and group size.

Titanic

We will use a few datasets today to illustrate the various features:

Tips

- Small dataset of total bills, and tips for different servers with gender, day, time and group size.
- Clean, no missing values, some outliers.

\(\) Titanic

We will use a few datasets today to illustrate the various features:

Tips

- Small dataset of total bills, and tips for different servers with gender, day, time and group size.
- Clean, no missing values, some outliers.
- Task: exploratory data analysis

Titanic

We will use a few datasets today to illustrate the various features:

Tips

- Small dataset of total bills, and tips for different servers with gender, day, time and group size.
- Clean, no missing values, some outliers.
- Task: exploratory data analysis

> Titanic

• Classic dataset with passenger information for the Titanic's fatal voyage, and whether they survived.

We will use a few datasets today to illustrate the various features:

Tips

- Small dataset of total bills, and tips for different servers with gender, day, time and group size.
- Clean, no missing values, some outliers.
- Task: exploratory data analysis

> Titanic

- Classic dataset with passenger information for the Titanic's fatal voyage, and whether they survived.
- Has missing values and information rich text fields (Name, ticket number).

We will use a few datasets today to illustrate the various features:

Tips

- Small dataset of total bills, and tips for different servers with gender, day, time and group size.
- Clean, no missing values, some outliers.
- Task: exploratory data analysis

> Titanic

- Classic dataset with passenger information for the Titanic's fatal voyage, and whether they survived.
- Has missing values and information rich text fields (Name, ticket number).
- Task: classification predict whether a passenger survived.

We will use a few datasets today to illustrate the various features:

Tips

- Small dataset of total bills, and tips for different servers with gender, day, time and group size.
- Clean, no missing values, some outliers.
- Task: exploratory data analysis

> Titanic

- Classic dataset with passenger information for the Titanic's fatal voyage, and whether they survived.
- Has missing values and information rich text fields (Name, ticket number).
- Task: classification predict whether a passenger survived.

Algae Blooms

• Water quality study where samples were taken from different rivers over time.

We will use a few datasets today to illustrate the various features:

Tips

- Small dataset of total bills, and tips for different servers with gender, day, time and group size.
- Clean, no missing values, some outliers.
- Task: exploratory data analysis

Titanic

- Classic dataset with passenger information for the Titanic's fatal voyage, and whether they survived.
- Has missing values and information rich text fields (Name, ticket number).
- Task: classification predict whether a passenger survived.

- Water quality study where samples were taken from different rivers over time.
- Recorded levels of (seven) chemical substances and population of (six) algae species and other information on the sample conditions.

We will use a few datasets today to illustrate the various features:

Tips

- Small dataset of total bills, and tips for different servers with gender, day, time and group size.
- Clean, no missing values, some outliers.
- Task: exploratory data analysis

> Titanic

- Classic dataset with passenger information for the Titanic's fatal voyage, and whether they survived.
- Has missing values and information rich text fields (Name, ticket number).
- Task: classification predict whether a passenger survived.

- Water quality study where samples were taken from different rivers over time.
- Recorded levels of (seven) chemical substances and population of (six) algae species and other information on the sample conditions.
- Task: regression predict algae population level (7 separate populations).

	total_bill	tip	sex	smoker	day	time size
0	16.99	1.01	Female	No	Sun	Dinner 2
1	10.34	1.66	Male	No	Sun	Dinner 3
2	21.01	3.50	Male	No	Sun	Dinner 3
3	23.68	3.31	Male	No	Sun	Dinner 2
4	24.59	3.61	Female	No	Sun	Dinner 4
5	25.29	4.71	Male	No	Sun	Dinner 4
6	8.77	2.00	Male	No	Sun	Dinner 2
7	26.88	3.12	Male	No	Sun	Dinner 4
8	15.04	1.96	Male	No	Sun	Dinner 2
9	14.78	3.23	Male	No	Sun	Dinner 2

No target column, so mainly just an exploratory data analysis problem. But questions of interest:

- How do factors sex, smoker, day, time, or size affect tip / percentage tip?
- Does size vary with day, time, smoker?

But some questions don't make sense

 What is the relationship between sex and smoker? — why should they be related?

This is the downside of automatic EDA tools such as pandas-profiling — you will drown in statistics / charts.

Algae Blooms dataset

	Season	Size	Speed	max_pH	min_O2	mean_Cl	mean_NO3	mean_NH4	mean_oPO4	mean_PO4	mean_Chlor	a1	a2	a
0	winter	small	medium	8.00	9.8	60.800	6.238	578.00000	105.00000	170.00000	50.000	0.0	0.0	0.0
1	spring	small	medium	8.35	8.0	57.750	1.288	370.00000	428.75000	558.75000	1.300	1.4	7.6	4.8
2	autumn	small	medium	8.10	11.4	40.020	5.330	346.66699	125.66700	187.05701	15.600	3.3	53.6	1.9
3	spring	small	medium	8.07	4.8	77.364	2.302	98.18200	61.18200	138.70000	1.400	3.1	41.0	18.
4	autumn	small	medium	8.06	9.0	55.350	10.416	233.70000	58.22200	97.58000	10.500	9.2	2.9	7.5
5	winter	small	high	8.25	13.1	65.750	9.248	430.00000	18.25000	56.66700	28.400	15.1	14.6	1.4
6	summer	small	high	8.15	10.3	73.250	1.535	110.00000	61.25000	111.75000	3.200	2.4	1.2	3.2
7	autumn	small	high	8.05	10.6	59.067	4.990	205.66701	44.66700	77.43400	6.900	18.2	1.6	0.0
8	winter	small	medium	8.70	3.4	21.950	0.886	102.75000	36.30000	71.00000	5.544	25.4	5.4	2.5
9	winter	small	high	7.93	9.9	8.000	1.390	5.80000	27.25000	46.60000	0.800	17.0	0.0	0.0
10	spring	small	high	7.70	10.2	8.000	1.527	21.57100	12.75000	20.75000	0.800	16.6	0.0	0.0
11	summer	small	high	7.45	11.7	8.690	1.588	18.42900	10.66700	19.00000	0.600	32.1	0.0	0.0
12	winter	small	high	7.74	9.6	5.000	1.223	27.28600	12.00000	17.00000	41.000	43.5	0.0	2.1
13	summer	small	high	7.72	11.8	6.300	1.470	8.00000	16.00000	15.00000	0.500	31.1	1.0	3.4
14	winter	small	high	7.90	9.6	3.000	1.448	46.20000	13.00000	61.60000	0.300	52.2	5.0	7.8
15	autumn	small	high	7.55	11.5	4.700	1.320	14.75000	4.25000	98.25000	1.100	69.9	0.0	1.7
16	winter	small	high	7.78	12.0	7.000	1.420	34.33300	18.66700	50.00000	1.100	46.2	0.0	0.0
17	spring	small	high	7.61	9.8	7.000	1.443	31.33300	20.00000	57.83300	0.400	31.8	0.0	3.1
18	summer	small	high	7.35	10.4	7.000	1.718	49.00000	41.50000	61.50000	0.800	50.6	0.0	9.9
19	spring	small	medium	7.79	3.2	64.000	2.822	8777.59961	564.59998	771.59998	4.500	0.0	0.0	0.0

Algae Blooms dataset

	_														
٠,		Season	Size	Speed	max_pH	min_O2	mean_Cl	mean_NO3	mean_NH4	mean_oPO4	mean_PO4	mean_Chlor	a1	a2	a
	0	winter	small	medium	8.00	9.8	60.800	6.238	578.00000	105.00000	170.00000	50.000	0.0	0.0	0.0
	1	spring	small	medium	8.35	8.0	57.750	1.288	370.00000	428.75000	558.75000	1.300	1.4	7.6	4.8
	2	autumn	small	medium	8.10	11.4	40.020	5.330	346.66699	125.66700	187.05701	15.600	3.3	53.6	1.9
	3	spring	small	medium	8.07	4.8	77.364	2.302	98.18200	61.18200	138.70000	1.400	3.1	41.0	18.
	4	autumn	small	medium	8.06	9.0	55.350	10.416	233.70000	58.22200	97.58000	10.500	9.2	2.9	7.5
	5	winter	small	high	8.25	13.1	65.750	9.248	430.00000	18.25000	56.66700	28.400	15.1	14.6	1.4
	6	summer	small	high	8.15	10.3	73.250	1.535	110.00000	61.25000	111.75000	3.200	2.4	1.2	3.2
	7	autumn	small	high	8.05	10.6	59.067	4.990	205.66701	44.66700	77.43400	6.900	18.2	1.6	0.0
	8	winter	small	medium	8.70	3.4	21.950	0.886	102.75000	36.30000	71.00000	5.544	25.4	5.4	2.5
	9	winter	small	high	7.93	9.9	8.000	1.390	5.80000	27.25000	46.60000	0.800	17.0	0.0	0.0
	10	spring	small	high	7.70	10.2	8.000	1.527	21.57100	12.75000	20.75000	0.800	16.6	0.0	0.0
	11	summer	small	high	7.45	11.7	8.690	1.588	18.42900	10.66700	19.00000	0.600	32.1	0.0	0.0
	12	winter	small	high	7.74	9.6	5.000	1.223	27.28600	12.00000	17.00000	41.000	43.5	0.0	2.1
	13	summer	small	high	7.72	11.8	6.300	1.470	8.00000	16.00000	15.00000	0.500	31.1	1.0	3.4
	14	winter	small	high	7.90	9.6	3.000	1.448	46.20000	13.00000	61.60000	0.300	52.2	5.0	7.8
	15	autumn	small	high	7.55	11.5	4.700	1.320	14.75000	4.25000	98.25000	1.100	69.9	0.0	1.7
	16	winter	small	high	7.78	12.0	7.000	1.420	34.33300	18.66700	50.00000	1.100	46.2	0.0	0.0
	17	spring	small	high	7.61	9.8	7.000	1.443	31.33300	20.00000	57.83300	0.400	31.8	0.0	3.1
	18	summer	small	high	7.35	10.4	7.000	1.718	49.00000	41.50000	61.50000	0.800	50.6	0.0	9.9
	19	spring	small	medium	7.79	3.2	64.000	2.822	8777.59961	564.59998	771.59998	4.500	0.0	0.0	0.0

Algae Blooms dataset

	5														
	Seas	on	Size	Speed	max_pH	min_O2	mean_Cl	mean_NO3	mean_NH4	mean_oPO4	mean_PO4	mean_Chlor	a1	a2	a
(winte	r s	small	medium	8.00	9.8	60.800	6.238	578.00000	105.00000	170.00000	50.000	0.0	0.0	0.0
1	sprin	g s	small	medium	8.35	8.0	57.750	1.288	370.00000	428.75000	558.75000	1.300	1.4	7.6	4.8
2	autur	nn s	small	medium	8.10	11.4	40.020	5.330	346.66699	125.66700	187.05701	15.600	3.3	53.6	1.9
3	spring	g s	small	medium	8.07	4.8	77.364	2.302	98.18200	61.18200	138.70000	1.400	3.1	41.0	18.
4	autun	nn s	small	medium	8.06	9.0	55.350	10.416	233.70000	58.22200	97.58000	10.500	9.2	2.9	7.5
5	winte	r s	small	high	8.25	13.1	65.750	9.248	430.00000	18.25000	56.66700	28.400	15.1	14.6	1.4
6	sumn	ier s	small	high	8.15	10.3	73.250	1.535	110.00000	61.25000	111.75000	3.200	2.4	1.2	3.2
7	autun	nn s	small	high	8.05	10.6	59.067	4.990	205.66701	44.66700	77.43400	6.900	18.2	1.6	0.0
8	winte	r s	small	medium	8.70	3.4	21.950	0.886	102.75000	36.30000	71.00000	5.544	25.4	5.4	2.5
ç	winte	,	How	well ca	in we pr	edict the	(7) differ	ent algae po	opulation lev	vels using wa	ater sample	information?	p	0.0	0.0
1	0 sprin	J~	smali	high	7.70	10.2	8.000	1.527	21.57100	12.75000	20.75000	0.800	16.6	0.0	0.0
1	1 summ	ier s	small	high	7.45	11.7	8.690	1.588	18.42900	10.66700	19.00000	0.600	32.1	0.0	0.0
1	2 winte	r s	small	high	7.74	9.6	5.000	1.223	27.28600	12.00000	17.00000	41.000	43.5	0.0	2.1
1	3 summ	ier s	small	high	7.72	11.8	6.300	1.470	8.00000	16.00000	15.00000	0.500	31.1	1.0	3.4
1	4 winte	r s	small	high	7.90	9.6	3.000	1.448	46.20000	13.00000	61.60000	0.300	52.2	5.0	7.8
1	5 autun	nn s	small	high	7.55	11.5	4.700	1.320	14.75000	4.25000	98.25000	1.100	69.9	0.0	1.7
1	6 winte	r s	small	high	7.78	12.0	7.000	1.420	34.33300	18.66700	50.00000	1.100	46.2	0.0	0.0
1	7 sprin	g s	small	high	7.61	9.8	7.000	1.443	31.33300	20.00000	57.83300	0.400	31.8	0.0	3.1
1	8 summ	ier s	small	high	7.35	10.4	7.000	1.718	49.00000	41.50000	61.50000	0.800	50.6	0.0	9.9
1	9 sprin	g s	small	medium	7.79	3.2	64.000	2.822	8777.59961	564.59998	771.59998	4.500	0.0	0.0	0.0

Titanic dataset

13 14

0

Tit	anic Gala	isei											
	PassengerId	Survived	Pclass	Na	me	Sex	Age	SibSp	Parch	Ticket	Fare	Cabin	Embarked
0	.1	0	3	Braund, Mr. Owen Harr	ris m	nale	22.0	1	0	A/5 21171	7.2500	NaN	S
1	2	1	1	Cumings, Mrs. John Bradley (Florence Brigg Th	gs fe	emale	38.0	1	0	PC 17599	71.2833	C85	С
2	3	1	3	Heikkinen, Miss. Laina	fe	emale	26.0	0	0	STON/O2. 3101282	7.9250	NaN	S
3	4	1	1	Futrelle, Mrs. Jacques Heath (Lily May Peel)	fe	emale	35.0	1	0	113803	53.1000	C123	S
4	5	0	3	Allen, Mr. William Henr	ry m	nale	35.0	0	0	373450	8.0500	NaN	S
5	6	0	3	Moran, Mr. James	m	nale	NaN	0	0	330877	8.4583	NaN	Q
6	7	0	1	McCarthy, Mr. Timothy	J m	nale	54.0	0	0	17463	51.8625	E46	S
7	8	0	3	Palsson, Master. Gosta Leonard	m	nale	2.0	3	1	349909	21.0750	NaN	S
8	9	1	3	Johnson, Mrs. Oscar W (Elisabeth Vilhelmina Berg)		emale	27.0	0	2	347742	11.1333	NaN	S
9	10	1	2	Nasser, Mrs. Nicholas (Adele Achem)	fe	emale	14.0	1	0	237736	30.0708	NaN	С
10	11	1	3	Sandstrom, Miss. Marguerite Rut	fe	emale	4.0	1	1	PP 9549	16.7000	G6	S
11	12	1	1	Bonnell, Miss. Elizabeth	h fe	emale	58.0	0	0	113783	26.5500	C103	S
12	13	0	3	Saundercock, Mr. Willia Henry	am m	nale	20.0	0	0	A/5. 2151	8.0500	NaN	S

male 39 0 1

5

347082

31 2750 NaN S

13 of 31

Andersson, Mr. Anders

Titanic dataset

13 14

11(lanic ua											
	Passenge	rId Sur	vived Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare	Cabin	Embarked
0	1	0	3	Braund, Mr. Owen Harris	male	22.0	1	0	A/5 21171	7.2500	NaN	S
1	2	1	1	Cumings, Mrs. John Bradley (Florence Briggs Th	female	38.0	1	0	PC 17599	71.2833	C85	С
2	3	1	3	Heikkinen, Miss. Laina	female	26.0	0	0	STON/O2. 3101282	7.9250	NaN	S
3	_	1	1	Futrelle, Mrs. Jacques Heath (Lily May Peel)	female	35.0	1	0	113803	53.1000	C123	S
4	5	0	3	Allen, Mr. William Henry	male	35.0	0	0	373450	8.0500	NaN	S
4 5 6	6	0	3	Moran, Mr. James	male	NaN	0	0	330877	8.4583	NaN	Q
6	7	0	1	McCarthy, Mr. Timothy J	male	54.0	0	0	17463	51.8625	E46	S
7	8	0	3	Palsson, Master. Gosta Leonard	male	2.0	3	1	349909	21.0750	NaN	S
8	9	1	3	Johnson, Mrs. Oscar W (Elisabeth Vilhelmina Berg)	female	27.0	0	2	347742	11.1333	NaN	S
9	10	1	2	Nasser, Mrs. Nicholas (Adele Achem)	female	14.0	1	0	237736	30.0708	NaN	С
10	11	1	3	Sandstrom, Miss. Marguerite Rut	female	4.0	1	1	PP 9549	16.7000	G6	S
11	12	1	1	Bonnell, Miss. Elizabeth	female	58.0	0	0	113783	26.5500	C103	S
12	13	0	3	Saundercock, Mr. William Henry	male	20.0	0	0	A/5. 2151	8.0500	NaN	S

male 39 0 1

5

347082

31 2750 NaN

13 of 31

Andersson, Mr. Anders

Titanic dataset

11	tallic uc											
	Passenge	rld Sur	vived Pclass	Nan	ie Sez	Age	SibSp	Parch	Ticket	Fare	Cabin	Embarked
0	_1	0	3	Braund, Mr. Owen Harris	s male	22.0	1	0	A/5 21171	7.2500	NaN	S
1	2	1	1	Cumings, Mrs. John Bradley (Florence Briggs Th	female	38.0	1	0	PC 17599	71.2833	C85	С
2	3	1	3	Heikkinen, Miss. Laina	female	26.0	0	0	STON/O2. 3101282	7.9250	NaN	S
3	4	1	1	Futrelle, Mrs. Jacques Heath (Lily May Peel)	female	35.0	1	0	113803	53.1000	C123	S
4	5	0	3	Allen, Mr. William Henry	male	35.0	0	0	373450	8.0500	NaN	S
5	6	0	3	Moran, Mr. James	male	NaN	0	0	330877	8.4583	NaN	Q
6	7	0	1	McCarthy, Mr. Timothy J	male	54.0	0	0	17463	51.8625	E46	S
7	8	0	3	Palsson, Master. Gosta Leonard	male	2.0	3	1	349909	21.0750	NaN	S
8	9	1	3	Johnson, Mrs. Oscar W (Elisabeth Vilhelmina Berg)	female	27.0	0	2	347742	11.1333	NaN	S
9	10	1	2	Nasser, Mrs. Nicholas (Adele Achem)	female	14.0	1	0	237736	30.0708	NaN	С
10	11	1	3	Sandstrom, Miss. Marguerite Rut	female	4.0	1	1	PP 9549	16.7000	G6	S
11	12	~~	low well can	we predict a passenger's	curvival	using	inform	nation a	t time of den	arture?	03	S
12	13	بصر	3	Henry	male		O TOTAL		A/5. 2151		NaN	S
13	- B 14	0	3	Andersson, Mr. Anders	male	39.0	1	5	347082	31.2750	NaN	S 13

Before we start ... Loading libraries

We start by loading in the core data science modules...

import numpy as np import pandas as pd import matplotlib.pyplot as plt

Before we start ... Loading libraries

We start by loading in the core data science modules...

```
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
```

matplotlib is an excellent visualisation library but some plots needs additional configuration. seaborn sits above matplotlib and has a collection of visualisations optimised for statistical analysis. . . .

```
import seaborn as sns
```

Before we start ... Loading libraries

We start by loading in the core data science modules...

```
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
```

matplotlib is an excellent visualisation library but some plots needs additional configuration. seaborn sits above matplotlib and has a collection of visualisations optimised for statistical analysis. . . .

```
import seaborn as sns
```

Next, we import some statistical modules ...

import scipy.stats as stats
import statsmodels.api as sm
import pingouin as pg

scipy.stats has a large number of distributions, parametric and nonparametric statistical tests, and descriptive statistics.
statsmodels is more focused on estimating statistical models.
pingouin overlaps with bits of scipy.stats and statsmodels but generating statistical models.

ates more details and nicer visualisations.

Before we start ... Loading libraries

We start by loading in the core data science modules...

```
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
```

matplotlib is an excellent visualisation library but some plots needs additional configuration. seaborn sits above matplotlib and has a collection of visualisations optimised for statistical analysis. . . .

```
import seaborn as sns
```

Next, we import some statistical modules ...

```
import scipy.stats as stats
import statsmodels.api as sm
import pingouin as pg
```

scipy.stats has a large number of distributions, parametric and nonparametric statistical tests, and descriptive statistics.
statsmodels is more focused on estimating statistical models.

statsmodels is more focused on estimating statistical models.

pingouin overlaps with bits of scipy.stats and statsmodels but gener-

ates more details and nicer visualisations.

```
Finally we set options . . .
```

plt.style.use("seaborn-v0_8-darkgrid")

Before we start ... auto EDA using ydata-profiling

Before we start ... auto EDA using ydata-profiling

Well, almost zero code....

```
import pandas as pd
import dtale

# Read the Tips data into a dataframe, check it looks OK
df = pd.read_csv('tips.csv')
df.head()

# Run dtale to visualize the structure of the dataframe
dtale.show(df)
```


First Pass — Load Dataset and Initial Clean

- Load dataset
- Check variables names
- Verify variable types
- Identify (and possibly address) missing values

Tips — Load

```
df = pd.read_csv("data/tips.csv")
print(df.shape)
df.head(10) (244, 7)
```

	total_bill	tip	sex	smoker	day	time size
0	16.99	1.01	Female	No	Sun	Dinner 2
1	10.34	1.66	Male	No	Sun	Dinner 3
2	21.01	3.50	Male	No	Sun	Dinner 3
3	23.68	3.31	Male	No	Sun	Dinner 2
4	24.59	3.61	Female	No	Sun	Dinner 4
5	25.29	4.71	Male	No	Sun	Dinner 4
6	8.77	2.00	Male	No	Sun	Dinner 2
7	26.88	3.12	Male	No	Sun	Dinner 4
8	15.04	1.96	Male	No	Sun	Dinner 2
9	14.78	3.23	Male	No	Sun	Dinner 2

df.info()

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 244 entries, 0 to 243
Data columns (total 7 columns):
    Column
               Non-Null Count Dtype
    total bill 244 non-null
                             float64
    tip
               244 non-null
                             float64
               244 non-null
                             object
    sex
    smoker
               244 non-null
                             object
               244 non-null
                             object
    dav
    time
               244 non-null
                             object
    size
               244 non-null
                             int64
dtypes: float64(2), int64(1), object(4)
memory usage: 13.5+ KB
```

Tips — Load

```
df = pd.read_csv("data/tips.csv")
print(df.shape)
df.head(10) (244, 7)
```

	total_bill	tip	sex	smoker	day	time	size
0	16.99	1.01	Female	No	Sun	Dinner	2
1	10.34	1.66	Male	No	Sun	Dinner	3
2	21.01	3.50	Male	No	Sun	Dinner	3
3	23.68	3.31	Male	No	Sun	Dinner	2
4	24.59	3.61	Female	No	Sun	Dinner	4
5	25.29	4.71	Male	No	Sun	Dinner	4
6	8.77	2.00	Male	No	Sun	Dinner	2
7	26.88	3.12	Male	No	Sun	Dinner	4
8	15.04	1.96	Male	No	Sun	Dinner	2
9	14.78	3.23	Male	No	Sun	Dinner	2

df.info()

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 244 entries, 0 to 243
Data columns (total 7 columns):
    Column
               Non-Null Count Dtvpe
    total bill 244 non-null
                             float64
    tip
               244 non-null
                             float64
              244 non-null
                             object
    sex
    smoker
               244 non-null
                             object
                             object
    dav
               244 non-null
    time
               244 non-null
                             object
    size
               244 non-null
                             int64
dtypes: float64(2), int64(1), object(4)
memory usage: 13.5+ KB
```

Issue: categorical data treated as object (string).

Tips — Fix Data Types

```
df.sex.unique()
array(['Female', 'Male'], dtype=object)

df.sex = pd.Categorical(df.sex)
df.sex.unique()

['Female', 'Male']
Categories (2, object): ['Female', 'Male']
```

Tips — Fix Data Types

```
df.sex.unique()
array(['Female', 'Male'], dtype=object)

df.sex = pd.Categorical(df.sex)
df.sex.unique()

['Female', 'Male']
Categories (2, object): ['Female', 'Male']
```

```
df.smoker = pd.Categorical(df.smoker)
df.smoker.unique()

['No', 'Yes']
Categories (2, object): ['No', 'Yes']
```

array(['No', 'Yes'], dtype=object)

df.smoker.unique()

Tips — Fix Data Types

```
df.sex.unique()
                                                      df.smoker.unique()
array(['Female', 'Male'], dtype=object)
                                                      array(['No', 'Yes'], dtype=object)
df.sex = pd.Categorical(df.sex)
                                                      df.smoker = pd.Categorical(df.smoker)
df.sex.unique()
                                                      df.smoker.unique()
['Female'. 'Male']
                                                      'No'. 'Yes'
Categories (2, object): ['Female', 'Male']
                                                      Categories (2. object): ['No', 'Yes']
df.dav.unique()
array(['Sun', 'Sat', 'Thur', 'Fri'], dtype=object)
df.day = pd.Categorical(df.day, categories=['Thur', 'Fri', 'Sun', 'Sat'], ordered=True)
df.day.unique()
['Sun', 'Sat', 'Thur', 'Fri']
Categories (4, object): ['Thur' < 'Fri' < 'Sun' < 'Sat']</pre>
```

Tips — fix datatypes

```
df.time = pd.Categorical(df.time, categories=['Lunch', 'Dinner'], ordered=True)
df.time.unique()
```

```
['Dinner', 'Lunch']
Categories (2, object): ['Lunch' < 'Dinner']</pre>
```

Tips — fix datatypes

Categories (2, object): ['Lunch' < 'Dinner']</pre>

```
df.time = pd.Categorical(df.time, categories=['Lunch', 'Dinner'], ordered=True)
df.time.unique()

['Dinner', 'Lunch']
```

df.info()

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 244 entries. 0 to 243
Data columns (total 7 columns):
    Column
              Non-Null Count Dtvpe
    total bill 244 non-null float64
             244 non-null float64
    tip
             244 non-null
    sex
                           category
    smoker
             244 non-null
                           category
4
    dav
             244 non-null
                           category
    time
             244 non-null
                           category
    size
              244 non-null
                           int64
dtypes: category(4), float64(2), int64(1)
memory usage: 7.4 KB
```

Tips — fix datatypes

```
df.time = pd.Categorical(df.time, categories=['Lunch', 'Dinner'], ordered=True)
df.time.unique()
```

```
['Dinner', 'Lunch']
Categories (2, object): ['Lunch' < 'Dinner']</pre>
```

df.info()

Converting to category will:

- Simplify visualisation (order can be preserved).
- Reduce memory usage (not that big a deal for us).
- Speed up I/O (depending on file format).
- ⇒ Convert to category is a bigger deal for features where the levels have an order.

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 244 entries. 0 to 243
Data columns (total 7 columns):
    Column
              Non-Null Count Dtype
    total hill 244 non-null float64
                            float64
    tip
              244 non-null
              244 non-null
    sex
                            category
    smoker
              244 non-null
                            category
    dav
              244 non-null
                            category
    time
              244 non-null
                            category
    size
              244 non-null
                            int64
dtypes: category(4), float64(2), int64(1)
memory usage: 7.4 KB
```

- Dataset is split into two parts:
 - train.csv 891 rows with Survived column, used in EDA and model training.
 - test.csv 418 rows without the Survived column, used in competition scoring.

- Dataset is split into two parts:
 - train.csv 891 rows with Survived column, used in EDA and model training.
 - test.csv 418 rows without the Survived column, used in competition scoring.

df = pd.read_csv("data/train.csv")
print(df.shape)
df.head(25)

	PassengerId	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare	Cabin	Embarked
0	1	0	3	Braund, Mr. Owen Harris	male	22.0	1	0	A/5 21171	7.2500	NaN	S
1	2	1	1	Cumings, Mrs. John Bradley (Florence Briggs Th	female	38.0	1	0	PC 17599	71.2833	C85	С
2	3	1	3	Heikkinen, Miss. Laina	female	26.0	0	0	STON/O2. 3101282	7.9250	NaN	S
3	4	1	1	Futrelle, Mrs. Jacques Heath (Lily May Peel)	female	35.0	1	0	113803	53.1000	C123	S
4	5	0	3	Allen, Mr. William Henry	male	35.0	0	0	373450	8.0500	NaN	S
5	6	0	3	Moran, Mr. James	male	NaN	0	0	330877	8.4583	NaN	Q
6	7	0	1	McCarthy, Mr. Timothy J	male	54.0	0	0	17463	51.8625	E46	S
7	8	0	3	Palsson, Master. Gosta Leonard	male	2.0	3	1	349909	21.0750	NaN	S
8	9	1	3	Johnson, Mrs. Oscar W (Elisabeth Vilhelmina Berg)	female	27.0	0	2	347742	11.1333	NaN	s
9	10	1	2	Nasser, Mrs. Nicholas (Adele Achem)	female	14.0	1	0	237736	30.0708	NaN	C
10	11	1	3	Sandstrom, Miss. Marguerite Rut	female	4.0	1	1	PP 9549	16.7000	G6	S
11	12	1	1	Bonnell, Miss. Elizabeth	female	58.0	0	0	113783	26.5500	C103	S
12	13	0	3	Saundercock, Mr. William Henry	male	20.0	0	0	A/5. 2151	8.0500	NaN	S
13	14	0	3	Andersson, Mr. Anders Johan	male	39.0	1	5	347082	31.2750	NaN	S
14	15	0	3	Vestrom, Miss. Hulda Amanda Adolfina	female	14.0	0	0	350406	7.8542	NaN	S
15	16	1	2	Hewlett, Mrs. (Mary D Kingcome)	female	55.0	0	0	248706	16.0000	NaN	S
16	17	0	3	Rice, Master. Eugene	male	2.0	4	1	382652	29.1250	NaN	Q
17	18	1	2	Williams, Mr. Charles Eugene	male	NaN	0	0	244373	13.0000	NaN	S
18	19	0	3	Vander Planke, Mrs. Julius (Emelia Maria Vande	female	31.0	1	0	345763	18.0000	NaN	S
10	20	1	2	Massalmani Mes Estima	famala	MAD	0	0	2640	7.2250	NI NI	C

- Dataset is split into two parts:
 - train.csv 891 rows with Survived column, used in EDA and model training.
 - test.csv 418 rows without the Survived column, used in competition scoring.

- Dataset is split into two parts:
 - train.csv 891 rows with Survived column, used in EDA and model training.
 - test.csv 418 rows without the Survived column, used in competition scoring.

$Algae_Blooms - load$

Pandas function pd.read_table, is a more general function than read_csv.

```
df = pd.read_table('src/Analysis.txt')
print(df.shape)
df.head()
(199, 1)
```

- **0** spring small medium 8.35000 ...
- 1 autumn small medium 8.10000 1...
- 2 spring small medium 8.07000 ...
- 3 autumn small medium 8.06000 ...
- **4** winter small high 8.25000 13....

Pandas function pd.read_table, is a more general function than read_csv.

```
df = pd.read_table('src/Analysis.txt')
print(df.shape)
df.head()

(199, 1)
```

winter small medium 8.00000 9.80000 60.80000 6.23800 578.00000 105.00000 170.00000 50.00000 0.00000 0.00000 0.00000 34.20000 8.30000 0.00000

- **0** spring small medium 8.35000 ...
- 1 autumn small medium 8.10000 1...
- 2 spring small medium 8.07000 ...
- 3 autumn small medium 8.06000 ...
- **4** winter small high 8.25000 13....

Two problems, first row was treated as column headers, and we need to specify the character(s) used to separate columns


```
df = pd.read_table('src/Analysis.txt', sep=r'\s+', header=None)
print(df.shape)
                                                                                               (200, 18)
df.head()
      0
                           3
                                            5
                                                    6
                                                                       8
                                                                                        10 11
                                                                                               12
                                                                                                    13 14 15 16
        small medium 8.00000 9.80000
                                    60.80000 6.23800
                                                     578.00000 105.00000 170.00000 50.00000 0.0 0.0
        small medium 8.35000 8.00000
                                    57.75000 1.28800
                                                     370.00000 428.75000 558.75000 1.30000
2 autumn small medium 8.10000 11.40000 40.02000 5.33000
                                                     346.66699 125.66700 187.05701 15.60000 3.3 53.6 1.9 0.0 0.0
        small medium 8.07000 4.80000 77.36400 2.30200
                                                     98.18200 61.18200
                                                                        138.70000 1.40000
                                                                                           3.1 41.0 18.9 0.0 1.4 0.0
```

4 autumn small medium 8.06000 9.00000 55.35000 10.41600 233.70000 58.22200 97.58000 10.50000 9.2 2.9 7.5 0.0 7.5 4.1

```
df = pd.read_table('src/Analysis.txt', sep=r'\s+', header=None)
print(df.shape)
df.head()
(200, 18)
```

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15
 16

 0
 winter
 small medium 8.00000 9.80000
 60.80000 6.23800
 578.00000 105.00000
 170.00000 50.00000
 0.0
 0.0
 0.0
 34.2
 8.2

 1
 spring
 small medium 8.00000 11.40000
 40.02000 5.33000
 346.66699 125.66700
 187.05701 15.60000
 3.3
 5.6
 1.9
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0

- Now, notice that the number of data rows changed from 199 to 200 since the first row is now counted as a data row. And now we are using default columns names.
- The "\s+" matches one or more spaces. This is an example of a regex.

314101890014 00

4 autumn small medium 8.06000 9.00000 55.35000 10.41600 233.70000 58.22200 97.58000 10.50000 9.2 2.9 7.5 0.0 7.5 4.1

98.18200 61.18200 138.70000 1.40000

- Now, notice that the number of data rows changed from 199 to 200 since the first row is now counted as a data row. And now we are using default columns names.
- The "\s+" matches one or more spaces. This is an example of a regex.

small medium 8.07000 4.80000 77.36400 2.30200

• We need to name the columns.

Season	Size	Speed	max_pH	min_O2	mean_Cl	mean_NO3	mean_NH4	mean_oPO4	mean_PO4	mean_Chlor	a1 a2	2 a3
0 winter	small	medium	8.00000	9.80000	60.80000	6.23800	578.00000	105.00000	170.00000	50.00000	0.0 0.0	0.0
1 spring	small	medium	8.35000	8.00000	57.75000	1.28800	370.00000	428.75000	558.75000	1.30000	1.4 7.6	4.8
2 autumn	small	medium	8.10000	11.40000	40.02000	5.33000	346.66699	125.66700	187.05701	15.60000	3.3 53.6	6 1.9
3 spring	small	medium	8.07000	4.80000	77.36400	2.30200	98.18200	61.18200	138.70000	1.40000	3.1 41.0	0 18.9
4 autumn	small	medium	8.06000	9.00000	55.35000	10.41600	233.70000	58.22200	97.58000	10.50000	9.2 2.9	7.5

```
names = ('Season', 'Size', 'Speed', 'max_pH', 'min_02', 'mean_Cl', 'mean_N03', 'mean_NH4', 'mean_oP04',
         'mean_PO4', 'mean_Chlor', 'a1', 'a2', 'a3', 'a4', 'a5', 'a6', 'a7')
df = pd.read_table('src/Analysis.txt', sep=r'\s+', names=names)
print(df.shape)
                                                                                        (200.18)
df.head()
 Season Size Speed max pH min O2 mean Cl mean NO3 mean NH4 mean oPO4 mean PO4 mean Chlor a1 a2 a3
0 winter
        small medium 8 00000 9 80000
                                  60 80000 6 23800
                                                    578 00000
                                                             105 00000
                                                                         170 00000 50 00000
                                                                                             0.0 0.0 0.0
       small medium 8.35000 8.00000 57.75000 1.28800
                                                    370 00000 428 75000
                                                                         558 75000 1 30000
                                                                                             1476 48
                                                     <class 'pandas.core.frame.DataFrame'>
2 autumn small medium 8.10000 11.40000 40.02000 5.33000
                                                     RangeIndex: 200 entries. 0 to 199
3 spring small medium 8.07000 4.80000 77.36400 2.30200
                                                     Data columns (total 18 columns):
4 autumn small medium 8.06000 9.00000
                                  55.35000 10.41600
                                                                     Non-Null Count Dtvpe
                                                          Column
                                                                                     object
                                                          Season
                                                                     200 non-null
                                                          Size
                                                                      200 non-null
                                                                                     object
                                                                                     object
                                                          Speed
                                                                     200 non-null
                                                                                     object
                                                         max_pH
                                                                     200 non-null
                                                         min O2
                                                                     200 non-null
                                                                                     object
                                                                                     object
                                                         mean Cl
                                                                     200 non-null
                                                                                     object
                                                         mean NO3
                                                                      200 non-null
                                                          mean NH4
                                                                      200 non-null
                                                                                     object
                                                          mean oPO4
                                                                     200 non-null
                                                                                     object
                                                                                                     26 of 31
```

Algae_Blooms — load (3rd attempt)

```
names = ('Season', 'Size', 'Speed', 'max_pH', 'min_02', 'mean_C1', 'mean_N03', 'mean_NH4', 'mean_oP04'.
         'mean_PO4', 'mean_Chlor', 'a1', 'a2', 'a3', 'a4', 'a5', 'a6', 'a7')
df = pd.read_table('src/Analysis.txt', sep=r'\s+', names=names)
print(df.shape)
                                                                                       (200.18)
df.head()
```

Season Size Speed max pH min O2 mean Cl mean NO3 mean NH4 mean oPO4 mean PO4 mean Chlor a1 a2 a3 0 winter small medium 8 00000 9 80000 60 80000 6 23800 578 00000 105 00000 170 00000 50 00000 000000

370 00000 428 75000

1 spring small medium 8.35000 8.00000 57.75000 1.28800 2 autumn small medium 8.10000 11.40000 40.02000 5.33000

3 spring small medium 8.07000 4.80000 77.36400 2.30200

4 autumn small medium 8.06000 9.00000 55.35000 10.41600

Dataframe looks a bit better, but why are numeric columns converted as **object**? Reading instructions.txt we see that missing values are indicated by XXXXXXX.

Data columns (total 18 columns): Non-Null Count Dtvpe Column object Season 200 non-null Size 200 non-null object 200 non-null object Speed object max_pH 200 non-null min O2 200 non-null object object mean Cl 200 non-null 200 non-null object mean NO3 mean NH4 200 non-null object mean oPO4 200 non-null object

<class 'pandas.core.frame.DataFrame'>

RangeIndex: 200 entries. 0 to 199

558 75000 1 30000

26 of 31

1476 48

Algae_Blooms — load (4th attempt)

											_
Season	Size Speed max_	pH min_O	2 mean_	Cl mean_l	NO3 mean_NH4	mean_oPO	4 mean_PO4	mean_Chlor	ra1 a2	2 a3	í
0 winter	small medium 8.00	9.8	60.800	6.238	578.00000	105.000	170.00000	50.0	0.0 0.0	0.0	0
1 spring	small medium 8.35	8.0	57.750	1.288	370.00000	428.750	558.75000	1.3	1.4 7.6	4.8	1
2 autumn	small medium 8.10	11.4	40.020	5.330	346.66699	125.667	187.05701	15.6	3.3 53.6	5 1.9	0
3 spring	small medium 8.07	4.8	77.364	2.302	98.18200	61.182	138.70000	1.4	3.1 41.0) 18.9	O
4 autumn	small medium 8.06	9.0	55.350	10.416	233.70000	58.222	97.58000	10.5	9.2 2.9	7.5	0

Algae_Blooms — load (4th attempt)

```
V
```

```
names = ('Season','Size','Speed','max_pH','min_02','mean_Cl', 'mean_N03', 'mean_NH4', 'mean_oP04',
         'mean PO4', 'mean_Chlor', 'a1', 'a2', 'a3', 'a4', 'a5', 'a6', 'a7')
df = pd.read_table('src/Analysis.txt', sep='\s+', names=names, na_values='XXXXXXX')
print(df.shape)
                                                                                        (200.18)
df.head()
 Season Size Speed max pH min O2 mean Cl mean NO3 mean NH4 mean oPO4 mean PO4 mean Chlor a1 a2 a3 a
0 winter small medium 8.00
                           9.8
                                  60.800
                                          6.238
                                                   578.00000
                                                             105.000
                                                                        170.00000 50.0
                                                                                            0.0 0.0 0.0 0
```

1 spring small medium 8.3	8.0	57.750	1.288	370 00000 428 750 558 75000 13 14 7 6 4 8 1								
2 autumn small medium 8.1	0 11.4	40.020	5.330	<class 'pandas.core.frame.dataframe'=""></class>								
3 spring small medium 8.0	7 4.8	77.364	2.302	RangeIndex: 200 entries, 0 to 199 Data columns (total 18 columns):								
4 autumn small medium 8.0	9.0	55.350	10.416	# Column Non-Null Count Dtype								
				0 Season 200 non-null object								
				1 Size 200 non-null object								
				2 Speed 200 non-null object								
				3 max_pH 199 non-null float64								
				4 min_02 198 non-null float64								
				5 mean_Cl 190 non-null float64								
				6 mean_NO3 198 non-null float64								
				7 mean_NH4 198 non-null float64								
				8 mean oPO4 198 non-null float64 27 of 3								

27 of 31

0.0 0.0 0.0 0

Season	Size Speed	max_pH	min_6	O2 mean_C	l mean_N	IO3 mean_NH4 mean_oPO4 mean_PO4 mean_Chlor a
0 winter	small medium	8.00	9.8	60.800	6.238	578.00000 105.000 170.00000 50.0 0.0
1 spring	small medium	8.35	8.0	57.750	1.288	370 00000 428 750 558 75000 1 3 1 4
2 autumn	small medium	8.10	11.4	40.020	5.330	<pre><class 'pandas.core.frame.dataframe'=""></class></pre>
3 spring	small medium	8.07	4.8	77.364	2.302	RangeIndex: 200 entries, 0 to 199 Data columns (total 18 columns):
4 autumn	small medium	8.06	9.0	55.350	10.416	# Column Non-Null Count Dtype

Now some variables have missing values

Also we should convert Season, Size and Speed to category and ensure the levels are ordered.

t Dtype object Season 200 non-null Size 200 non-null object Speed 200 non-null object 199 non-null float64 max_pH min_O2 198 non-null float64 190 non-null mean Cl float64 mean NO3 198 non-null float64 mean NH4 198 non-null float64 mean oPO4 108 non_null float64

The three categorical variables have levels with a natural order \Rightarrow convert to category and specify order:

```
df.Season = pd.Categorical(df.Season, categories=['spring', 'summer', 'autumn', 'winter'], ordered=Tr
print(df.Season.unique())
```

```
['winter', 'spring', 'autumn', 'summer']
Categories (4, object): ['spring' < 'summer' < 'autumn' < 'winter']</pre>
```

The three categorical variables have levels with a natural order ⇒ convert to category and specify order:

```
df.Season = pd.Categorical(df.Season, categories=['spring', 'summer', 'autumn', 'winter'], ordered=Tr
print(df.Season.unique())
```

```
['winter', 'spring', 'autumn', 'summer']
Categories (4, object): ['spring' < 'summer' < 'autumn' < 'winter']</pre>
```

```
df.Size = pd.Categorical(df.Size, categories=['small', 'medium', 'large'], ordered=True)
print(df.Size.unique())
```

```
['small', 'medium', 'large']
Categories (3, object): ['small' < 'medium' < 'large']</pre>
```

The three categorical variables have levels with a natural order ⇒ convert to category and specify order:

```
df.Season = pd.Categorical(df.Season, categories=['spring', 'summer', 'autumn', 'winter'], ordered=Tr
print(df.Season.unique())
```

```
['winter', 'spring', 'autumn', 'summer']
Categories (4, object): ['spring' < 'summer' < 'autumn' < 'winter']</pre>
```

```
df.Size = pd.Categorical(df.Size, categories=['small', 'medium', 'large'], ordered=True)
print(df.Size.unique())
```

```
['small', 'medium', 'large']
Categories (3, object): ['small' < 'medium' < 'large']</pre>
```

```
df.Speed = pd.Categorical(df.Speed, categories=['low', 'medium', 'high'], ordered=True)
print(df.Speed.unique())
```

```
['medium', 'high', 'low']
Categories (3, object): ['low' < 'medium' < 'high']</pre>
```

Which columns have missing values?

Which rows have missing values? How many NAs per row?

Rows / Cols to drop?

Which columns have missing values?

df.isna().sum()

 Season
 0

 Size
 0

 Speed
 0

 max_pH
 1

 min_02
 2

 mean_C1
 10

 mean_N03
 2

 mean_NH4
 2

 mean_OP04
 2

 mean_P04
 2

 mean_Chlor
 12

 a1
 0

 a2
 0

a3 a4 a5 a6 a7

dtvpe: int64

Which rows have missing values?
How many NAs per row?

Rows / Cols to drop?

Which columns have missing values?

df.isna().sum()

Season Size Speed max_pH min_O2 mean Cl 10 mean NO3 mean_NH4 mean oPO4 mean PO4 mean_Chlor a1 a2 a3 a4 a5 a6 a7 dtvpe: int64

Which rows have missing values?
How many NAs per row?

df.isna().sum(axis=1).value_counts()

0 184 1 7 2 7 6 2

Name: count, dtype: int64

Rows / Cols to drop?

Which columns have missing values?

df.isna().sum()

Season Size Speed max_pH min_O2 mean Cl 10 mean NO3 mean_NH4 mean oPO4 mean PO4 mean Chlor a 1 a2 a3 a4 a5 a6 a7 dtvpe: int64

- Two columns (features) account for 22 NAs, but cannot just drop them as will lose a lot of information
- Two rows (observations) account for 12 NAs ⇒ remove.
- Removing other rows with a NA will result in a los of 14 rows (7% of the data), instead will impute later.

Which rows have missing values?
How many NAs per row?

df.isna().sum(axis=1).value_counts()

0 184 1 7 2 7 6 2

Name: count, dtype: int64

Which columns have missing values?

df.isna().sum()

Season Size Speed max_pH min_O2 $mean_C1$ 10 mean NO3 mean NH4 mean oPO4 mean PO4 mean Chlor a 1 a2 a3 a4 a 5 a6

а7

dtvpe: int64

- Two columns (features) account for 22 NAs, but cannot just drop them as will lose a lot of information.
- Two rows (observations) account for 12 NAs \Rightarrow remove.
- Removing other rows with a NA will result in a los of 14 rows (7% of the data), instead will impute later.

Which rows have missing values? How many NAs per row?

df.isna().sum(axis=1).value_counts()

184 0

Name: count, dtype: int64

Rows / Cols to drop?

df.loc[df.isna().sum(axis=1)==6]

Season Size Speed max pH min O2 mean Cl mean NO3 mean NH4 mean oPO4 mean PO4 mean Chlor

61 summer small medium 6.4 NaN NaN NaN NaN NaN 14.0 NaN 198 winter large medium 8.0 7.6 NaN NaN NaN NaN NaN NaN

df = df.loc[df.isna().sum(axis=1)<6].copv()</pre> print(df.shape) (198, 18)

After Loading and Initial Clean — Where are we?

Tips

- ✓ Loaded data, corrected dtypes (categorical with order levels)
- Sanitised column names not needed, but note column name size shadows pandas dataframe function size \Rightarrow so use df["size"] instead of df.size.
- ✓ No missing values

After Loading and Initial Clean — Where are we?

Tips

- ✓ Loaded data, corrected dtypes (categorical with order levels)
- Sanitised column names not needed, but note column name size shadows pandas dataframe function size \Rightarrow so use df["size"] instead of df. size.
- ✓ No missing values

>Titanic >

- ✓ Loaded data no conversion of dtypes needed (but if you don't plots/crosstab order won't agree)
- Sanitised column names not needed.
- Missing values in Age (177/891=20%), Cabin (687/891=77%), and Embarked (2/891=0.2%).
 - A feature with 77% missing values should be considered for deletion, but what if the presence of a missing value actually tells us something? \Rightarrow convert to a boolean feature.

Tips

- ✓ Loaded data, corrected dtypes (categorical with order levels)
- Sanitised column names not needed, but note column name size shadows pandas dataframe function size \Rightarrow so use df["size"] instead of df.size.
- ✓ No missing values

>Titanic >

- ✓ Loaded data no conversion of dtypes needed (but if you don't plots/crosstab order won't agree)
- Sanitised column names not needed.
- Missing values in Age (177/891=20%), Cabin (687/891=77%), and Embarked (2/891=0.2%).
 - A feature with 77% missing values should be considered for deletion, but what if the presence of a missing value actually tells us something? \Rightarrow convert to a boolean feature.

Algae Blooms

- ✓ Loaded data, corrected dtypes (categorical with ordered levels)
- Sanitised column names.
- Missing values
 - Removed two rows with 6 NA each, accounted for 12/33=36% of the missing values.
 - Remaining, 21 NAs are concentrated in mean_CL (8) and mean_Chlor (10). EDA will suggest options.

After Loading and Initial Clean — Where are we?

Next we might

- Save result of initial clean:
 - To either a CSV (if we don't mind losing dtype metadata)

```
df.to_csv('data/Analysis.csv', index=False)
```

• To (say) pickle format (to keep dtype metadata)

```
df.to_pickle('data/Analysis.pkl')
```

Later can read dataframe back in using

```
df = pd.read_pickle('data/Analysis.pkl')
print(df.shape)
df.head(1)
```

• If the dataset is large (>100K rows), save a (reproducible) sample of the dataset for later EDA to speed up calculations (especially visualisations).

```
df.sample(frac=.25, random_state=42).to_pickle('data/Analysis_sample.pkl')
```