Zadání I. seminární práce z předmětu

Počítačové zpracování signálu (KI/PZS)

Výpočet tepové frekvence y EKG signálu Detekce anomálií v signálech

ZS 2024/25 Aliya Askarkyzy Osobní Číslo: F22304

1. Výpočet tepové frekvence z EKG signálu

Zadání: Ve zdrojové databázi najdete celkem 18 měření EKG signálu pro různé věkové skupiny. Signál obsahuje různé anomálie a nemusí být vždy centralizován podle vodorovné osy. EKG signál obsahuje dominantní peaky, které se nazývají R vrcholy. Vzdálenost těchto vrcholů určuje dobu mezi jednotlivými tepy. Počet tepů za minutu je tedy počet R vrcholů v signálu o délce jedné minuty. Navrhněte algoritmus, který bude automaticky detekovat počet R vrcholů v EKG signálech a prezentujte tepovou frekvenci při jednotlivých jízdách/měřeních. Vás algoritmus následně otestujte na databázi MIT-BIH https://physionet.org/content/nsrdb/1.0.0/ a prezentujte jeho úspěšnost vzhledem k anotovaným datům z databáze.

Obrázek 1: Jedna perioda EKG signálu s dominantním R vrcholem.

Vstupní data: https://physionet.org/content/butqdb/1.0.0/

Testovací databáze: https://physionet.org/content/nsrdb/1.0.0/

Grafické výstupy: Graf zobrazující tepovou frekvenci v závislosti na měření. Grafické schéma

1. Načítání dat

Než začneme se zpracováním signálu, musíme ho načíst. K tomu slouží knihovna wfdb, která umožňuje práci s EKG z různých databází. Funkce load_ecg() otevře soubor, přečte jeho obsah a extrahuje signál z prvního kanálu (pokud jich je více). Zároveň získáme frekvenci vzorkování (fs), což je důležité, protože různé databáze mohou mít různou frekvenci vzorkování, což ovlivňuje další kroky zpracování.

2. Filtrace signálu

Surový EKG signál často obsahuje rušení, například šum ze sítě, pohyby pacienta nebo vysokofrekvenční interference. Abychom odstranili nežádoucí frekvence, aplikujeme pásmovou filtrace. Používáme **Butterworthův filtr**, který nechává pouze frekvence odpovídající srdeční aktivitě (obvykle 0.5–30 Hz). Tento filtr se aplikuje metodou **dopředného a zpětného filtrování (filtfilt)**, což minimalizuje časové posunutí signálu.

3. Detekce R-vln

R-vlny představují nejvýraznější vrcholy v EKG signálu. Objevují se při každém srdečním stahu, a proto jsou klíčové pro výpočet srdeční frekvence. K jejich nalezení používáme funkci find_peaks() z knihovny scipy.signal. Abychom zajistili, že detekujeme správné R-vlny, nastavujeme **dynamický práh** – na základě **98. percentilu** amplitudy signálu ignorujeme menší špičky a zaměřujeme se jen na ty nejvýraznější. Kromě toho definujeme minimální vzdálenost mezi vrcholy, aby odpovídala fyziologickému srdečnímu rytmu (např. pokud je fs = 250 Hz, pak minimální vzdálenost mezi R-vlnami je 125 vzorků, což odpovídá 0.5 sekundy).

4. Výpočet BPM

Jakmile máme detekované R-vlny, můžeme spočítat tepovou frekvenci (BPM). Nejprve spočítáme **RR intervaly**, což jsou rozdíly mezi časovými okamžiky jednotlivých R-vln. Poté použijeme vzorec:

$$BPM = 60/RR interval(s)$$

To nám dává řadu hodnot BPM odpovídajících jednotlivým srdečním stahům. Pro získání **průměrného BPM** jednoduše vypočítáme aritmetický průměr těchto hodnot.

5. Vizualizace signálu

Po zpracování signálu potřebujeme ověřit správnost detekce. Proto vykreslíme graf:

- Na ose X máme čas (s).
- Na ose Y máme amplitudu signálu (mikrovolty).
- Modrá křivka reprezentuje filtrovaný EKG signál.
- Červené body označují detekované R-vlny.
- Nad grafem zobrazíme vypočítané BPM.

6. Výběr 30sekundového segmentu

Pro podrobnější analýzu je užitečné zaměřit se na kratší časový úsek signálu. Proto vybíráme **30sekundový segment**, který omezíme na konkrétní interval (např. od 30. do 40. sekundy). Tento segment analyzujeme stejným způsobem – detekujeme R-vlny, spočítáme BPM a vytvoříme graf pouze pro tuto část signálu.

7. Zpracování více souborů

Posledním krokem je automatická analýza **více souborů najednou**. V kódu máme seznam cest k několika souborům EKG. Každý soubor zpracujeme pomocí funkce process_ecg(), která provede všechny kroky: načtení dat, filtraci, detekci R-vln, výpočet BPM a vizualizaci výsledků. To nám umožňuje rychle analyzovat **velké množství dat** bez nutnosti manuálního spouštění jednotlivých souborů.

file 100001 ECG

file mit_bih/16265

file 100002_ECG

Detekce anomálií v signálech

Zadání: Ve zdrojové databázi najdete celkem 18 měření EKG obsahující úplné (3 signály) nebo částečné anotace událostí (P,T vlny a QRS komplex). Záznamy EKg obsahují i části, které jsou porušeny vlivem anomálií (vnější rušení, manipulace s pacientem apod.). Navrhněte způsob, jak detekovat tyto úseky a prezentujte statistiku výskytu úseků v měřeních.

1. Načtení a vizualizace signálu

Nejprve se signál **načte ze souboru** pomocí knihovny wfdb, která umožňuje pracovat s databázemi EKG. Po načtení se signál **vizualizuje**, aby bylo možné získat představu o jeho kvalitě a průběhu. Graf ukazuje **neupravený signál**, což umožňuje identifikovat možné rušení nebo nesrovnalosti v datech.

2. Filtrace signálu

Surový EKG signál obsahuje mnoho **rušivých složek**, například síťový šum (50 Hz), pohyby pacienta nebo nízkofrekvenční zkreslení způsobené dýcháním. Pro odstranění těchto nežádoucích složek se používá **Butterworthův pásmový filtr**, který ponechá pouze relevantní frekvence (obvykle v rozmezí **0,5–50 Hz**). Tento filtr se aplikuje metodou **dopředného a zpětného filtrování (filtfilt)**, což zajišťuje, že signál není časově posunutý. Po filtraci se vykreslí nový graf, kde lze vidět **původní signál (modře) a filtrovaný signál (červeně)**, což umožňuje posoudit účinnost filtrace.

3. Detekce anomálií pomocí změn amplitudy

Anomálie v EKG mohou být způsobeny **náhlými změnami v amplitudě**, například v důsledku interference nebo patologických změn srdeční aktivity. Pro jejich detekci se **vypočítá derivace signálu (np.diff())**, což ukazuje, jak se signál mění v čase.

Následně se stanoví **práh pro detekci anomálií**, který odpovídá **třem směrodatným odchylkám** od průměru. Vzorky, kde je změna amplitudy **výrazně větší než tento práh**, jsou považovány za anomální. Výsledek se vizualizuje, kde jsou anomální body označeny **červenými tečkami na grafu**.

4. Analýza variability srdeční frekvence (HRV)

Dalším způsobem detekce anomálií je sledování **změn srdečního rytmu (HRV – Heart Rate Variability)**. Nejprve se detekují **R-píky**, což jsou nejvýraznější vrcholy v EKG signálu, odpovídající srdečním kontrakcím. Z těchto bodů se vypočítají **RR intervaly**, tedy časové rozdíly mezi dvěma po sobě jdoucími R-vlnami. Následně se sledují **náhlé změny v RR intervalech** – pokud je rozdíl mezi sousedními intervaly **větší než dvojnásobek směrodatné odchylky**, jedná se o potenciální anomálii. Tyto anomálie mohou naznačovat **srdeční arytmie nebo jiné poruchy rytmu**. Na výsledném grafu jsou **náhlé skoky v srdeční frekvenci označeny červeně**, což usnadňuje identifikaci problematických míst.

Total Points Anomalous Points Percentage Anomalies

87087000 2212 0.00254

5. Detekce R-, P- a T-vln

Aby bylo možné provést hlubší analýzu srdeční aktivity, je nutné kromě R-vln identifikovat i P-vlny (odpovídající depolarizaci síní) a T-vlny (odpovídající repolarizaci komor). Nejprve se aplikuje klouzavý průměr, který vyhladí signál a odstraní náhodný šum. Poté se znovu detekují R-píky, které slouží jako referenční body pro hledání P- a T-vln.

P-vlny se nacházejí **před každým R-píkem**, proto se hledají v určitém **časovém okně před R-vlnou**. Vyhledává se **lokální maximum**, které odpovídá P-vlně, a zároveň se aplikuje filtr, který zajišťuje, že detekované vrcholy skutečně odpovídají fyziologickým hodnotám.

T-vlny se nacházejí **za R-píkem**, a proto se hledají v **časovém okně po R-vlně**. Podobně jako u P-vln se analyzuje okolí a hledá se **lokální maximum**, které odpovídá repolarizaci komor. Tímto způsobem lze identifikovat **kompletní morfologii srdečního cyklu**.

6. Vizualizace detekovaných vln

Výsledky detekce jednotlivých vln se zobrazují ve třech oddělených grafech:

- První graf ukazuje pouze R-píky, což umožňuje kontrolu přesnosti jejich detekce.
- Druhý graf zobrazuje P-vlny, které jsou označeny oranžovou barvou.
- Třetí graf ukazuje T-vlny, které jsou označeny zeleně.

Tyto grafy pomáhají identifikovat **možné abnormality v morfologii srdečního cyklu**, například změny v amplitudě P- nebo T-vln, což může signalizovat **poruchy vedení vzruchu nebo ischemii**.

7. Detekce anomálií v P- a T-vlnách

Pokud mají P- nebo T-vlny **neobvyklou amplitudu nebo tvar**, může se jednat o patologii. Proto se spočítají **průměrné hodnoty a směrodatné odchylky amplitudy těchto vln**. Jakmile je detekován **výrazný odklon od normálu (více než 2× směrodatná odchylka)**, vlna je označena jako **anomální**. Výsledky jsou vizualizovány v grafu, kde jsou anomální P-vlny označeny **světle modře** a anomální T-vlny **růžově**.

8. Statistika detekovaných anomálií

Kromě vizuální kontroly se vypočítává **statistika detekovaných anomálií**. Počet anomálních bodů je vyjádřen jako **procento z celkového počtu vzorků**, což umožňuje kvantifikovat závažnost abnormalit. Navíc se generuje tabulka s celkovým počtem detekovaných **P- a T-vln** a počtem anomálních vln, což pomáhá při diagnostické interpretaci.

Total P-waves	Anomalous P-waves	Total T-waves	Anomalous T-waves
0 196681	3752	196681	189914