Problem #1 Let X be a topological space. Show that a continuous map $f: S^1 \to X$ is homotopic to a constant map if and only if it extends to a map $D^2 \to X$.

Solution: Coordinatize $D^2 = \{ \mathbf{x} \in \mathbb{R}^2 \mid ||\mathbf{x}|| \le 1 \}$ and $S^1 = \{ \mathbf{x} \in \mathbb{R}^2 \mid ||\mathbf{x}|| = 1 \}$ so that we can do vector arithmetic.

(\Leftarrow) Suppose $f: S^1 \to X$ extends to a map $\tilde{f}: D^2 \to X$. Then the homotopy $F: S^1 \times I \to X$ defined by $F(\mathbf{x}, t) = \tilde{f}(t\mathbf{x})$ has $F(\mathbf{x}, 0) = 0$ (a constant map) and $F(\mathbf{x}, 1) = f(\mathbf{x})$.

(\Longrightarrow) Suppose that f is nullhomotopic, specifically that $F: S^1 \times I \to X$ is a homotopy between f and a constant map, say with $F(\mathbf{x}, 0) = c$ and $F(\mathbf{x}, 1) = f(\mathbf{x})$. We can then define $g: D^2 \to X$ by

$$g(\mathbf{x}) = \begin{cases} F(\mathbf{x}/||\mathbf{x}||, ||\mathbf{x}||) & \text{if } ||\mathbf{x}|| > 0, \\ F(\text{anything}, 0) & \text{if } \mathbf{x} = 0. \end{cases}$$

Equivalently, if **x** has polar coordinates (r, θ) , then

$$g(r,\theta) = F(\theta,r) = F_r(\theta).$$

The function g is well-defined and continuous on D^2 , and $g(\mathbf{x}) = f(\mathbf{x})$ for $\mathbf{x} \in S^1$.

Alternate proof of (\Leftarrow): The space D^2 is contractible, i.e., homotopy-equivalent to a one-point space. That is, there are functions $h:D^2\to \{\bullet\}$ and $g:\{\bullet\}\to D^2$ such that $g\circ h\simeq \mathbbm{1}_{D^2}$. Therefore

$$F \circ g \circ h \simeq F \circ \mathbb{1}_{D^2} = F$$

and $F \circ g \circ h$ is a constant map.

Alternate proof of (\Longrightarrow) : Suppose that we have a homotopy $f_t: S^1 \to X$ with f_0 a constant map (say $f_0(s) = c$ for all $s \in S^1$) and $f_1 = f$. Certainly f_0 can be extended to the constant map $\overline{f_0}(d) = c$ for all $d \in D^2$, and since S^1 can be made into a CW-subcomplex of D^2 , f_t extends to a homotopy $\overline{f_t}: D^2 \to X$ by the Homotopy Extension Property [HEP], and in particular $\overline{f_1}$ extends $f_1 = f$. (This is correct, but is using a sledgehammer to kill a fly, since it is nontrivial to prove the HEP for CW-pairs.)

Problem #2 Let X be a path-connected space. Show that $\pi_1(X)$ is abelian if and only if all basepoint-change homomorphisms β_h depend only on the endpoints of the path h.

Solution: Recall that if h is a path from x_0 to x_1 , then there is an isomorphism $\beta_h : \pi_1(X, x_1) \to \pi_1(X, x_0)$ given by $\beta_h[f] = [h \cdot f \cdot \bar{h}].$

 (\Longrightarrow) : Suppose $\pi_1(X)$ is abelian. Let h, k be two paths from x_0 to x_1 ; we want to show that $\beta_h[f] = \beta_k[f]$, which is equivalent to showing that $\beta_h[f]\beta_k[\bar{f}] = 0$. Indeed,

$$\begin{split} \beta_h[f]\beta_k[\bar{f}] &= [h\cdot f\cdot (\bar{h}\cdot k)\cdot \bar{f}\cdot \bar{k}] \\ &= [h\cdot (\bar{h}\cdot k)\cdot f\cdot \bar{f}\cdot \bar{k}] \end{split}$$

(since f and $\bar{h} \cdot k$ are both loops at x_0 , hence represent elements of the abelian group $\pi_1(X, x_0)$)

$$= [(h \cdot \bar{h}) \cdot k \cdot (f \cdot \bar{f}) \cdot \bar{k}]$$
$$= [k \cdot \bar{k}] = 1.$$

(\Leftarrow): Let $[f], [g] \in \pi_1(X, x_0)$. By hypothesis, the basepoint-change homomorphisms $\beta_f, \beta_g : \pi_1(X, x_0) \to \pi_1(X, x_0)$ are equal. Therefore

$$\beta_f[f] = [f \cdot f \cdot \bar{f}] = [f] = \beta_g[f] = [g \cdot f \cdot \bar{g}] = [g][f][g]^{-1}$$

and multiplying the underlined terms on the right by [g] gives [f][g] = [g][f], so $\pi_1(X, x_0)$ is abelian.

Problem #3 (#3a) Explicitly describe all the connected covering spaces of \mathbb{S}^1 and their associated covering maps. Your description should include a criterion for when one covering space \tilde{X} covers another covering space \tilde{X}' .

(#3b) What algebraic objects correspond bijectively to the connected covering spaces of $\mathbb{S}^1 \times \mathbb{S}^1$? (A single-sentence answer suffices — you don't need to explain.)

(#3c) What algebraic objects correspond bijectively to the *finite-sheeted* connected covering spaces of $\mathbb{S}^1 \times \mathbb{S}^1$? (Again, a single-sentence answer suffices.)

Solution: (a) For each integer n, there is a unique n-sheeted covering space $\tilde{X}_n \cong \mathbb{S}^1$, with covering map $p_n: \mathbb{S}^1 \to \mathbb{S}^1$ given by $p(z) = z^n$ (where \mathbb{S}^1 is regarded as the unit circle in \mathbb{C}). For $n, m \in \mathbb{Z}$, the space X_n covers \tilde{X}_m if and only if m divides n; in this case the covering map $\tilde{X}_n \to \tilde{X}_m$ is given by $z \mapsto z^{n/m}$. In addition, there is the universal covering space $\tilde{X}_\infty = \mathbb{R}$, with covering map $p_\infty : \mathbb{R} \to \mathbb{S}^1$ given by $p_\infty(t) = e^{2\pi i t}$. The covering maps $\mathbb{R} \to \tilde{X}_n$ is $t \mapsto e^{2\pi i t/n}$.

- (b) We know that $\pi_1(\mathbb{S}^1 \times \mathbb{S}^1) = \pi_1(\mathbb{S}^1) \times \pi_1(\mathbb{S}^1) = \mathbb{Z} \times \mathbb{Z}$. Therefore, the connected covering spaces of $\mathbb{S}^1 \times \mathbb{S}^1$ correspond to the subgroups of $\mathbb{Z} \times \mathbb{Z}$ (or equivalently the spans of 2×2 matrices over \mathbb{Z}).
- (c) If $p:(\tilde{X},\tilde{x})\to(X,x)$ is a covering space, then the number of sheets of the cover is the index $[\pi_1(X,x):p_*\pi_1(\tilde{X},\tilde{x})]$. So the answer is finite-index subgroups of \mathbb{Z}^2 i.e., the spans of full-rank 2×2 matrices over \mathbb{Z} .

Problem #4 Consider the commutative diagram

$$0 \longrightarrow A \xrightarrow{f} B \xrightarrow{g} C \longrightarrow 0$$

$$\alpha \downarrow \qquad \beta \downarrow \qquad \gamma \downarrow \qquad \qquad \downarrow$$

$$0 \longrightarrow A' \xrightarrow{f'} B' \xrightarrow{g'} C' \longrightarrow 0$$

in which both rows are exact. Show that if α and γ are isomorphisms, then so is β . (In fact this is a special case of the Snake Lemma — but don't use the Snake Lemma in your proof; recreate the diagram chase.)

Solution: First, we show that β is injective. Suppose that $x \in \ker \beta$. Then:

$$\gamma gx = g'\beta x = 0$$
 (commutativity of second square)

 $\therefore gx \in \ker \gamma$

$$gx = 0$$
 (because γ is an isomorphism)

 $\therefore x \in \ker g = \operatorname{im} f$

$$\therefore x = fy \text{ for some } y \in A$$

$$\therefore f'\alpha y = \beta f y = \beta x = 0$$
 (first square; remember $x \in \ker \beta$)

 $\therefore \alpha y \in \ker f'$

$$\therefore \alpha y = 0$$
 (because f' is injective)

$$y = 0$$
 (because α is an isomorphism)

$$\therefore x = fy = 0.$$

Second, we show that β is surjective. Let $y \in B'$, $z = g'y \in C'$, and $w \in C$ such that $\gamma w = z$ (since γ is an isomorphism). Let $x \in B$ such that gx = w (since g is surjective). Then:

$$g'\beta x = \gamma gx = \gamma w = z = g'y$$

$$\therefore \beta x - y \in \ker q' = \operatorname{im} f'$$

$$\therefore \beta x - y = f'v = f'\alpha u$$
 for some $v \in A'$, $u \in A$ (because α is an isomorphism)

$$\therefore \beta f u = f' \alpha u = \beta x - y$$
 (commutativity of first square)

$$\therefore y = \beta x - \beta f u = \beta (x - f u)$$

$$\therefore y \in \text{im } \beta.$$

Problem #5 Using only the definition of singular homology, prove that the (unreduced) singular homology groups of a one-point space X are $H_0(X) = \mathbb{Z}$ and $H_n(X) = 0$ for n > 0.

Solution: There is only one singular *n*-simplex for each *n*, namely the constant map $k_n: \Delta^n \to X$. Therefore $C_n(X) = \mathbb{Z}\langle k_n \rangle \cong \mathbb{Z}$ for all *n*. The boundary map $\partial_n: C_n(X) \to C_{n-1}(X)$ is given by

$$\partial_n(k_n) = \sum_{i=0}^n (-1)^i k_{n-1} = \begin{cases} k_{n-1} & \text{if } n \text{ is even,} \\ 0 & \text{if } n \text{ is odd.} \end{cases}$$

Therefore the singular chain complex of X is

$$\cdots \xrightarrow{\cong} \mathbb{Z} \xrightarrow{0} \mathbb{Z} \xrightarrow{\cong} \mathbb{Z} \xrightarrow{0} \cdots \xrightarrow{\cong} C_1(X) = \mathbb{Z} \xrightarrow{0} C_0(X) = \mathbb{Z} \to 0$$

and the homology groups are

$$H_n(X) = \begin{cases} 0/0 = 0 & \text{if } n > 0 \text{ is even,} \\ \mathbb{Z}/\mathbb{Z} = 0 & \text{if } n \text{ is odd,} \\ \mathbb{Z}/0 = \mathbb{Z} & \text{if } n = 0. \end{cases}$$

Problem #6 What are the homology groups of the space X shown below?

Solution: The space is homotopy-equivalent to $\mathbb{S}^1 \wedge (\mathbb{S}^2)^{\wedge 4}$ by the following sequence of deformation retractions and "unretractions":

$$\bigcup_{X} \longrightarrow \bigcup_{Y} \longrightarrow \bigcup_{Z} \longrightarrow \bigcup_{W}$$

Therefore, $ilde{H}_2(X)\cong \mathbb{Z}^4,\, ilde{H}_1(X)\cong \mathbb{Z},\, ilde{H}_0(X)=0.$

Problem #7 Use cellular homology to calculate the homology groups of the twodimensional cell complex X obtained by gluing together two copies of $\mathbb{R}P^2$ as shown below.

Solution: Let E_n denote the set of n-cells in X. Note that there are two 2-cells L, R and two vertices (call them p, q as shown). The cellular chain complex of X is

hown). The centual chain complex of
$$X$$
 is
$$0 \to \mathbb{Z}E_2 = \mathbb{Z}^2 \xrightarrow{\partial_2} \frac{\partial_2}{L - R} \to \mathbb{Z}E_1 = \mathbb{Z}^3 \xrightarrow{a - b - c} \mathbb{Z}E_0 = \mathbb{Z}^2 \to 0.$$

$$\begin{array}{c} a \\ b \\ c \\ 0 \\ 2 \end{array} \begin{array}{c} 2 \\ 0 \\ 0 \end{array} \begin{array}{c} p \\ 1 \\ -1 \\ 1 \end{array} \begin{array}{c} 1 \\ -1 \end{array} \begin{array}{c} 1 \\ -1 \end{array}$$

We therefore have

$$H_2(X) = \ker \partial_2 = 0$$

(since the matrix of ∂_2 has linearly independent columns),

$$H_1(X) = \ker \partial_1 / \operatorname{im} \partial_2$$

= $\mathbb{Z} \langle (1, 1, 0), (-1, 0, 1) \rangle / \mathbb{Z} \langle (2, 2, 0), (-2, 0, 2) \rangle$
 $\cong \mathbb{Z}_2 \oplus \mathbb{Z}_2,$

$$H_0(X) = \operatorname{coker} \partial_1 = \mathbb{Z}^2 / \mathbb{Z} \langle (1, -1) \rangle \cong \mathbb{Z}.$$

Problem #8 Use Problem #7 and a Mayer-Vietoris sequence to calculate $H_2(Y)$, where Y is the two-dimensional complex shown below (obtained from two copies of X by more gluing).

Solution: Let X and X' denote the two copies of X being glued together (so X consists of the two top squares and X' of the two bottom squares). Note that $X \cap X' \cong \mathbb{S}^1$ (the 2-cycle with edges b, c). The reduced Mayer-Vietoris sequence

$$0 \rightarrow H_2(X \cap X') \rightarrow H_2(X) \oplus H_2(X') \rightarrow H_2(Y) \rightarrow H_1(X \cap X') \rightarrow H_1(X) \oplus H_1(X') \rightarrow H_1(Y) \rightarrow 0$$

simplifies to

$$0 \to H_2(Y) \xrightarrow{f} \mathbb{Z} \to \mathbb{Z}_2^4 \to H_1(Y) \to 0.$$

The map f can't be zero, since there is no injection from \mathbb{Z} into the finite group \mathbb{Z}_2^4 . Therefore f identifies $H_2(Y)$ with a nonzero subgroup of \mathbb{Z} , which means that $H_2(Y) \cong \mathbb{Z}$.