Contribution submission to the conference Berlin 2018

Quasi-ballistic transport through surface states of Ge(001)-c(4x2) demonstrated by two-probe STM measurements and multi-terminal fist-principles simulations — •Pedro Brandimarte¹, Marek Kolmer², Hiroyo Kawai³, Thomas Frederiksen^{1,4}, Aran García-Lekue^{1,4}, Nicolas Lorente⁵, Mads Engelund⁵, Rafal Zuzak², Szymon Godlewski², Christian Joachim⁶, Marek Szymonski², and Daniel Sánchez-Portal^{1,5} — ¹DIPC, Spain — ²NANOSAM-UNIWERSYTET JAGIELLO, Poland — ³IMRE, Singapore — ⁴IKERBASQUE, Spain — ⁵CFM CSIC-UPV/EHU, Spain — ⁶CNRS, France

Dangling-bond (DB) dimer wires on both Si and Ge(001):H substrates were predicted to be robust against electron doping and capable of sustaining ballistic transport [1]. The ability to fabricate high-quality DB-dimer wires on Ge(001):H was demonstrated and their transport properties were measured in atomic level using a two-probe scanning tunneling microscope (STM) setup [2].

We present a joint theoretical and experimental study of the electronic transport through DB-dimer wires on bare Ge(001) surfaces. First-principles calculations (DFT+NEGF [3]) of a four-terminal setup were carried out to simulate the two-tip experiment. Our results confirm the capability of the DB-dimer wires to sustain quasi-ballistic transport, and opens the possibility to their use as interconnects for atomic-scale devices fabricated on these surfaces.

[1] M.Engelund *et al.* JPCC **120**, 20303 (2016). [2] M.Kolmer *et al.* JPCM **29**, 444004 (2017). [3] N.Papior *et al.* CPC **212**, 8 (2017).

Part: C

Type: Vortrag; Talk

Topic: Metallic nanowires on semiconductor

surfaces

Email: brandimarte@gmail.com