Task_2

K-means_clustering

Import the libaries

```
In [8]:

1 import numpy as np
2 import pandas as pd
3 import matplotlib.pyplot as plt
```

Import the dataset

```
In [9]: 1 df=pd.read_csv(r"C:\Users\VAISHNAVI\Downloads\iris.csv")
In [10]: 1 df.head()
```

Out[10]:

	Id	SepailengthCm	SepalWidthCm	PetalLengthCm	PetalWidthCm	Species
0	1	5.1	3.5	1.4	0.2	Iris-setosa
1	2	4.9	3.0	1.4	0.2	Iris-setosa
2	3	4.7	3.2	1.3	0.2	Iris-setosa
3	4	4.6	3.1	1.5	0.2	Iris-setosa
4	5	5.0	3.6	1.4	0.2	Iris-setosa

```
In [11]: 1 df1=df.iloc[:,1:6]
```

In [12]: 1 df1.head()

Out[12]:

	SepalLengthCm	SepalWidthCm	PetalLengthCm	PetalWidthCm	Species
0	5.1	3.5	1.4	0.2	Iris-setosa
1	4.9	3.0	1.4	0.2	Iris-setosa
2	4.7	3.2	1.3	0.2	Iris-setosa
3	4.6	3.1	1.5	0.2	Iris-setosa
4	5.0	3.6	1.4	0.2	Iris-setosa

```
In [13]: 1 X=df1.iloc[:,0:4].values
```

Elbow method

```
In [14]:
              from sklearn.cluster import KMeans
           2
              wcss=[]
              for i in range(1,11):
           3
                  kmeans=KMeans(n_clusters=i,init='k-means++',random_state=42)
           4
           5
                  kmeans.fit(X)
           6
                  wcss.append(kmeans.inertia_)
              plt.plot(range(1,11),wcss)
           7
              plt.title("the eblow method")
             plt.xlabel("no of clusters")
           9
          10 plt.ylabel("wcss")
          11 plt.show()
```

C:\Users\VAISHNAVI\Anaconda3\lib\site-packages\sklearn\cluster_kmeans.py:881: UserWarning: KMeans is known to have a memory leak on Windows with MKL, when th ere are less chunks than available threads. You can avoid it by setting the environment variable OMP_NUM_THREADS=1.

warnings.warn(

Kmeans_clustering

Visualise the result


```
In [ ]: 1
```