Centre de maintenance de bus

Procédure ArrivéeBus

- 1. Insérer dans l'échéancier un événement $Arriv\acute{e}eBus$ à l'instant $DateSimu + \mathcal{E}(1/2)$
- 2. Incrémenter le nombre de bus $(NbBus \leftarrow NbBus + 1)$
- 3. Insérer dans l'échéancier un événement $Arriv\acute{e}FileC$ à l'instant DateSimu

Procédure ArrivéeFileC

- 1. Incrémenter le nombre de bus dans la File C $(Q_C \longleftarrow Q_C + 1)$
- 2. Si le centre de contrôle est libre (i.e. $B_C = 0$) alors
- 3. Insérer dans l'échéancier un événement Accès Contrôle à l'instant Date Simu
- 4. Fin Si

Procédure Accès Contrôle

- 1. Décrémenter le nombre de bus dans la File C $(Q_C \longleftarrow Q_C 1)$
- 2. Changer le statut centre de contrôle en "occupé" $(B_C \leftarrow 1)$
- 3. Insérer dans l'échéancier un événement $D\acute{e}partContr\^{o}le$ à l'instant $DateSimu + \mathcal{U}([1/4, 13/12])$

Procédure DépartContrôle

- 1. Changer le statut du centre de contrôle en "libre" $(B_C \leftarrow 0)$
- 2. Si la File C est non vide (i.e. $Q_C > 0$)alors
- 3. Insérer dans l'échéancier un événement de Accès Contrôle à l'instant Date Simu
- 4. Fin Si
- 5. Si random <30% alors (// Il y a une probabilité de 30% que le bus subisse une réparation)
- 6. Insérer dans l'échéancier un événement ArrivéeFileR à l'instant DateSimu
- 7. Fin Si

Procédure ArrivéeFileR

- 1. Incrémenter le nombre de bus dans la File R $(Q_R \longleftarrow Q_R + 1)$
- 2. Incrémenter le nombre de bus réparés $(NbBusRep \leftarrow NbBusRep + 1)$
- 3. Si le centre de réparation a de la place (i.e. $B_R < 2$) alors
- 4. Insérer dans l'échéancier un événement $Accès R\'{e}paration$ à l'instant Date Simu
- 5. Fin Si

Procédure Accès Réparation

- 1. Décrémenter le nombre de bus dans la File R $(Q_R \longleftarrow Q_R 1)$
- 2. Réquisitionner un poste dans le centre de réparation $(B_R \longleftarrow B_R + 1)$
- 3. Insérer dans l'échéancier un événement $D\'{e}partR\'{e}paration$ à l'instant $DateSimu + \mathcal{U}([2.1,4.5])$

Procédure DépartRéparation

- 1. Libérer un poste du centre de réparation $(B_R \longleftarrow B_R 1)$
- 2. Si la File R est non vide (i.e. $Q_R > 0$)alors
- 3. Insérer dans l'échéancier un événement AccèsR'eparation à l'instant DateSimu
- 4. Fin Si

Procédure Début Simulation

- 1. NbBus $\leftarrow 0$; NbBusRep $\leftarrow 0$
- 2. $AireQ_C \leftarrow 0$; $AireQ_R \leftarrow 0$; $AireB_R \leftarrow 0$
- 3. $Q_C \leftarrow 0$; $Q_R \leftarrow 0$; $B_C \leftarrow 0$; $B_R \leftarrow 0$

- 4. Insérer dans l'échéancier un événement $Arriv\acute{e}eBus$ à l'instant $DateSimu + \mathcal{E}(1/2)$
- 5. Insérer dans l'échéancier un événement Fin à l'instant 160

Procédure Fin Simulation

- 1. Vider l'échéancier
- $2. \ \textit{Temps d'attente moyen avant contrôle} \longleftarrow AireQ_C/NbBus$
- 3. Temps d'attente moyen avant réparation $\longleftarrow AireQ_R/NbBusRep$
- 4. Taux d'utilisation du centre de réparation \leftarrow Aire $B_R/(2 \times 160)$

Procédure Mise-à-JourDesAires(D1,D2)

- 1. $AireQ_C \leftarrow AireQ_C + (D2-D1) \cdot Q_C$
- $2. \ AireQ_R \longleftarrow AireQ_R + (D2\text{-}D1) \cdot Q_R$
- 3. $AireB_R \leftarrow AireB_R + (D2-D1) \cdot B_R$

Procédure Simulateur

- 1. $DateSimu \leftarrow 00h00$
- 2. Insérer dans l'échéancier un événement $D\acute{e}but$ à l'instant DateSimu
- 3. Tant que l'échéancier n'est pas vide Faire
- 4. Extraire le premier couple (Evt, Date) de l'échéancier
- 5. Mise-à-Jour DesAires
($DateSimu\ ,\ Date)$
- 6. $DateSimu \leftarrow Date$
- 7. Exécuter l'événement *Evt*
- 8. Fin Tant que