安徽大学 2011—2012 学年第二学期

《 高等数学 A(二)、B(二) 》考试试卷(A 卷) (闭卷 时间 120 分钟)

考场登记表序号______

题 号	_	11	11	四	五	总分
得 分						
阅卷人						

一、填空题(每小题2分,共10分)

得 分

- 1. 点(1,1,1)到平面x+2y+3z-6=0的距离为
- 2. 极限 $\lim_{(x,y)\to(0,0)} \frac{2-\sqrt{xy+4}}{xy} =$ ______
- 3. 若函数 $z=2x^2+2y^2+3xy+ax+by+c$ 在点 (-2,3) 处取得极小值 -3,则常数 a 、 b 、 c 、 之积 abc =_____.
- 5. 设 f(x) 是以 2π 为周期的周期函数,它在 $[-\pi,\pi)$ 上的表达式为

$$f(x) = \begin{cases} -1, & -\pi \le x < 0, \\ 2, & 0 \le x < \pi, \end{cases}$$

则 f(x) 的 Fourier 级数在 $x=9\pi$ 处收敛于

二、选择题(每小题 2 分,共 10 分)

得分

- 6. 直线 $\frac{x-2}{3} = \frac{y+2}{1} = \frac{z-3}{-4}$ 和平面 x+y+z=3 的位置关系是().
 - (A) 平行且直线不在平面内;
- (B) 垂直;

(C) 相交且夹角为 $\pi/3$;

- (D) 直线在平面内.

8. 将累次积分 $\int_{1}^{e} dx \int_{0}^{\ln x} f(x,y) dy$ 交换积分次序后为 ().

- (A) $\int_0^1 dy \int_1^e f(x, y) dx$; (B) $\int_0^1 dy \int_{e^y}^e f(x, y) dx$;
- (C) $\int_{0}^{e} dy \int_{e^{y}}^{e} f(x, y) dx$; (D) $\int_{0}^{1} dy \int_{1}^{e^{y}} f(x, y) dx$.

9. 设 S 为球面 $x^2 + y^2 + z^2 = 1$,方向取外侧, S_1 为其上半球面,方向取上侧,则下列式子 正确的是(

- (A) $\iint_{S} z dx dy = 2 \iint_{S_{1}} z dx dy;$ (B) $\iint_{S} z dx dy = 4 \iint_{S_{1}} z dx dy;$ (C) $\iint_{S} z^{2} dx dy = 2 \iint_{S_{1}} z^{2} dx dy;$ (D) $\iint_{S} z dx dy = 0.$

10. 已知正项级数 $\sum_{n=1}^{\infty} u_n$ 收敛,则下列级数必然收敛的是(). (A) $\sum_{n=1}^{\infty} \frac{1}{u_n}$; (B) $\sum_{n=1}^{\infty} \frac{1}{\sqrt{u_n}}$; (C) $\sum_{n=1}^{\infty} (-1)^n u_n$; (D) $\sum_{n=1}^{\infty} n u_n$.

三、计算题(每小题9分,共63分)

11. 设空间曲面 S 的方程为 $z = x^2 + y^2 - 1$,求 S 在点 (2,1,4) 处的切平面与法线方程.

漇 冫 摋 뮅 恕 鬛

紅

14. 已知 L 是第一象限中从点 (0,0) 沿圆周 $x^2 + y^2 = 2x$ 到点 (2,0), 再沿圆周 $x^2 + y^2 = 4$ 到 点(0,2)的曲线段, 计算曲线积分 $I = \int_L y dx + (2x + y) dy$.

15. 计算第一类曲面积分 $\iint\limits_{S}x^{2}dS$, 其中 S 为曲面 $z=x^{2}+y^{2}$ (0 $\leq z \leq 1$).

16. 计算第二类曲面积分 $\iint_S x dy dz + y dz dx + z dx dy$,其中 S 为半球面 $z = \sqrt{1-x^2-y^2}$,方向取上侧.

17. 将 $f(x) = \sin^2 x$ 展开成 x 的幂级数,并求 $\sum_{n=1}^{\infty} (-1)^{n+1} \frac{2^{2n-1}}{(2n)!}$ 的和.

四、应用题(每小题6分,共12分)

得分

18. 设u = xyz, 求其在条件 $\frac{1}{x} + \frac{2}{y} + \frac{3}{z} = \frac{1}{a}$ (x > 0, y > 0, z > 0) 下的极值, 其中 a 为正常数.

19. 已知曲线 $L: x = \cos t$, $y = \sin t$, $(0 \le t \le 2\pi)$ 在点(x, y)处的线密度是 $\rho(x, y) = |y|$, 求 该曲线的质量.

五、证明题(本题5分)

安徽大学 2011—2012 学年第二学期

《高等数学 A (二) B (二)》 (A 卷)

考试试题参考答案及评分标准

- 一、填空题(每小题2分,共10分)

- 1, 0; 2, 1/4; 3, 30; 4, $\{1,1,2\}$; 5, 1/2.

- 二、选择题(每小题2分,共10分)
- 6, D; 7, C; 8, B; 9, A; 10, C.

- 三、计算题(每小题9分,共63分)
- 11. 解:

$$\frac{\partial z}{\partial x}\Big|_{(2,1,4)} = 2x\Big|_{(2,1,4)} = 4$$
,

$$\left. \frac{\partial z}{\partial y} \right|_{(2,1,4)} = 2y \Big|_{(2,1,4)} = 2,$$

(5分)

故S在点(2.1.4)处的切平面方程为

$$4(x-2)+2(y-1)-(z-4)=0$$
,

即
$$4x + 2y - z - 6 = .$$

S 在点(2.1.4)处的法线方程为

$$\frac{x-2}{4} = \frac{y-1}{2} = \frac{z-4}{-1} \,. \tag{9 \(\frac{1}{2}\)}$$

则
$$F_x = -y$$
:, $F_z = e^z - xy$.

当 $F_{s} \neq 0$ 时,有

$$\frac{\partial z}{\partial x} = -\frac{F_x}{F_z} = \frac{yz}{e^z - xy} \, . \tag{5 \(\frac{1}{2} \)}$$

$$\frac{\partial^2 z}{\partial x^2} = \frac{\partial}{\partial x} \left(\frac{\partial z}{\partial x} \right) = \frac{y \frac{\partial z}{\partial x} (e^z - xy) - yz (e^z \frac{\partial z}{\partial x} - y)}{(e^z - xy)^2}$$

$$= \frac{y^2 z - y z (e^z \times \frac{yz}{e^z - xy} - y)}{(e^z - xy)^2}$$

$$= \frac{2y^2 z e^z - 2xy^3 z - y^2 z^2 e^z}{(e^z - xy)^3}.$$
(9 \(\frac{\psi}{2}\))

13. 解:

解法 1: 由对称性

原式=
$$\frac{1}{3}$$
 $\iiint\limits_V (x^2+y^2+z^2) dx dy dz$,

根据球坐标变换

 $x = r\sin\varphi\cos\theta$, $y = r\sin\varphi\sin\theta$, $z = r\cos\varphi$, $0 \le r \le 1$, $0 \le \theta \le 2\pi$, $0 \le \varphi \le \pi$ 得到

原式 =
$$\frac{1}{3} \int_0^{2\pi} d\theta \int_0^{\pi} d\varphi \int_0^1 r^2 g r^2 \sin\varphi dr$$

= $\frac{4}{15} \pi$. (9分)

解法 2: $V = \{(x, y, z) | x^2 + y^2 \le 1 - z^2, -1 \le z \le 1\}$

原式=
$$\int_{-1}^{1} z^2 dz \iint_{D} dx dy,$$
 (5 分)

其中 D_z 为z固定情况下的圆 $x^2 + y^2 \le 1 - z^2$,面积为 $\pi(1 - z^2)$,则

原式 =
$$\pi \int_{-1}^{1} z^2 (1 - z^2) dz$$

= $\frac{4}{15} \pi$. (9分)

14. 解:

解法 1: 设圆 $x^2 + y^2 = 2x$ 在第一象限内从 (0,0) 到 (2,0) 的曲线为 C_1 , $x^2 + y^2 = 4$ 在第一象限内从 (2,0) 到 (0,2) 的曲线为 C_2 , L_1 为直线段 x=0 ($0 \le y \le 2$),且方向向下,记这三条曲线围成的区域为 D ,由格林公式

$$I = \int_{L+L_1} y dx + (2x+y) dy - \int_{L_1} y dx + (2x+y) dy$$

$$= \iint_D (2-1) dx dy - \int_2^0 y dy$$

$$= S_D + 2$$

$$= \frac{1}{4} \times 4\pi - \frac{1}{2} \times \pi + 2$$

$$= \frac{\pi}{2} + 2.$$
(9 \(\frac{\frac{1}{2}}{2}\))

解法 2: 设圆 $x^2 + y^2 = 2x$ 在第一象限内从 (0,0) 到 (2,0) 的曲线为 C_1 , $x^2 + y^2 = 4$ 在第一象限内从 (2,0) 到 (0,2) 的曲线为 C_2 , 故

$$I = \int_{L} y dx + (2x + y) dy = \int_{C_1} y dx + (2x + y) dy + \int_{C_2} y dx + (2x + y) dy$$
 (2 $\%$)

对于 C_1 上的积分,令 $x=1+\cos\theta$, $y=\sin\theta$, θ 从 π 变到 0,则有

$$\int_{C_1} y dx + (2x + y) dy = \int_{\pi}^{0} [\sin \theta \times (-\sin \theta) + (2 + 2\cos \theta + \sin \theta) \cos \theta] d\theta$$

$$= \int_{\pi}^{0} [-\sin^2 \theta + 2\cos \theta + 2\cos^2 \theta + \sin \theta \cos \theta] d\theta$$

$$= \int_{\pi}^{0} [-\frac{1 - \cos 2\theta}{2} + 2\cos \theta + 2 \times \frac{1 + \cos 2\theta}{2} + \frac{1}{2} \sin 2\theta] d\theta$$

$$= \int_{\pi}^{0} \left(\frac{1}{2} + \frac{3}{2} \cos 2\theta + 2\cos \theta + \frac{1}{2} \sin 2\theta\right) d\theta$$

$$= -\frac{\pi}{2}.$$
(5 \(\frac{\partial}{2}\))

对于 C_2 上的积分,令 $x=2\cos\theta$, $y=2\sin\theta$, θ 从0变到 $\frac{\pi}{2}$,则有

$$\int_{C_2} y dx + (2x + y) dy = \int_0^{\frac{\pi}{2}} [2\sin\theta(-2\sin\theta) + (4\cos\theta + 2\sin\theta)2\cos\theta] d\theta$$

$$= \int_0^{\frac{\pi}{2}} [-4\sin^2\theta + 8\cos^2\theta + 2\sin2\theta] d\theta$$

$$= \int_0^{\frac{\pi}{2}} [-4 \times \frac{1 - \cos 2\theta}{2} + 8 \times \frac{1 + \cos 2\theta}{2} + 2\sin 2\theta] d\theta$$

$$= \int_0^{\frac{\pi}{2}} [2 + 10\cos 2\theta + 2\sin 2\theta] d\theta$$

$$= \pi + 2.$$
 (8 $\frac{\pi}{2}$)

故
$$I = \int_{C_1} y dx + (2x + y) dy + \int_{C_2} y dx + (2x + y) dy = -\frac{\pi}{2} + \pi + 2 = \frac{\pi}{2} + 2.$$
 (9 分)

15. 解: 设 S_1 为S在第一卦限中的部分,则由对称性,

原式=4
$$\iint_{S_1} x^2 dS$$

=4 $\iint_D x^2 \sqrt{1+4x^2+4y^2} dxdy$

其中 $D = \{(x, y) \mid x^2 + y^2 \le 1, x \ge 0, y \ge 0\}$ 。

 $\Rightarrow x = r \cos \theta$, $y = r \sin \theta$, $0 \le \theta \le \pi/2$, $0 \le r \le 1$,

則原式 =
$$4\int_0^{\frac{\pi}{2}} \cos^2 \theta d\theta \int_0^1 \sqrt{1 + 4r^2} r^3 dr$$
 (7分)
= $4 \times \frac{\pi}{4} \times \int_0^1 \sqrt{1 + 4r^2} r^3 dr$
= $\pi \int_0^1 \sqrt{1 + 4r^2} r^3 dr$
= $\frac{\pi}{32} \int_0^1 \sqrt{1 + 4r^2} (1 + 4r^2 - 1) d(1 + 4r^2)$

原式 =
$$\frac{\pi}{32} \int_{1}^{5} \sqrt{t} (t-1) dt$$

= $\frac{\pi}{32} g \left(\frac{20}{3} \sqrt{5} + \frac{4}{15} \right)$
= $\left(\frac{5}{24} \sqrt{5} + \frac{1}{120} \right) \pi$. (9 分)

16.解法 1: 添加辅助曲面 $S_1 = \{(x, y, z) | z = 0, x^2 + y^2 \le 1\}$,取下侧,则在由 S 和 S_1 所围成的空间闭区域V 上应用 Gauss 公式有

$$\iint_{S+S_1} x dy dz + y dz dx + z dx dy = \iiint_V \left(\frac{\partial x}{\partial x} + \frac{\partial y}{\partial y} + \frac{\partial z}{\partial z} \right) dv$$

$$= 3 \iiint_V dv$$

$$= 3 \times \frac{2\pi}{3} = 2\pi,$$
(5 $\cancel{\pi}$)

故原式= $2\pi - \iint_{S_1} x dy dz + y dz dx + z dx dy$

$$=2\pi - 0 = 2\pi. \tag{9 \%}$$

解法 2: 将 S 投影到 xOy 平面上,得到投影区域:

$$D_{yy} = \{(x, y) | x^2 + y^2 \le 1\},$$

而

$$\frac{\partial z}{\partial x} = \frac{-x}{\sqrt{1 - x^2 - y^2}}, \quad \frac{\partial z}{\partial y} = \frac{-y}{\sqrt{1 - x^2 - y^2}}$$

$$\text{Red} = \iint_{D_{xy}} \left(\frac{x^2}{\sqrt{1 - x^2 - y^2}} + \frac{y^2}{\sqrt{1 - x^2 - y^2}} + \sqrt{1 - x^2 - y^2} \right) dxdy$$

$$= \iint_{D_{xy}} \frac{1}{\sqrt{1 - x^2 - y^2}} dxdy.$$

 $\Rightarrow x = r \cos \theta$, $y = r \sin \theta$, $0 \le \theta \le 2\pi$, $0 \le r \le 1$

原式 =
$$\int_0^{2\pi} d\theta \int_0^1 \frac{1}{\sqrt{1-r^2}} r dr = 2\pi$$
(9 分)

解法 3: 将第二类曲面积分转化为第一类曲面积分再计算。将 S 投影到 xOy 平面上,得到投影区域:

$$D_{xy} = \{(x,y) | x^2 + y^2 \le 1\},$$

$$\frac{\partial z}{\partial x} = \frac{-x}{\sqrt{1 - x^2 - y^2}}, \quad \frac{\partial z}{\partial y} = \frac{-y}{\sqrt{1 - x^2 - y^2}}.$$

$$1 + z_x^2 + z_y^2 = \frac{1}{1 - x^2 - y^2},$$

$$\cos \alpha = -\frac{x}{\sqrt{1 - x^2 - y^2}} = x, \quad \cos \beta = -\frac{y}{\sqrt{1 - x^2 - y^2}} = y,$$

$$\cos \gamma = \frac{1}{\sqrt{1 - x^2 - y^2}} = \sqrt{1 - x^2 - y^2},$$

$$(4 \%)$$

$$\Re \vec{x} = \iint_{\Sigma} (x \cos \alpha + y \cos \beta + z \cos \gamma) dS$$

$$= \iint_{S} (x^{2} + y^{2} + (1 - x^{2} - y^{2}))dS$$

$$= \iint_{S} dS$$

$$= \iint_{D_{xy}} \sqrt{1 + \frac{x^{2}}{1 - x^{2} - y^{2}} + \frac{y^{2}}{1 - x^{2} - y^{2}}} dxdy$$

$$= \iint_{D_{xy}} \frac{1}{\sqrt{1 - x^{2} - y^{2}}} dxdy.$$

 $\Rightarrow x = r \cos \theta$, $y = r \sin \theta$, $0 \le \theta \le 2\pi$, $0 \le r \le 1$

原式=
$$\int_0^{2\pi} d\theta \int_0^1 \frac{1}{\sqrt{1-r^2}} r dr = 2\pi$$
. (9分)

17. 解法 1:

$$f(x) = \frac{1}{2} - \frac{1}{2}\cos 2x$$
$$= \frac{1}{2} - \frac{1}{2} \sum_{n=0}^{\infty} (-1)^n \frac{1}{(2n)!} (2x)^{2n}$$

解法 2:

$$f'(x) = \sin 2x$$

$$= \sum_{n=1}^{\infty} (-1)^{n+1} \frac{1}{(2n-1)!} (2x)^{2n-1},$$

$$f(x) = \int_{0}^{x} \sum_{n=1}^{\infty} (-1)^{n+1} \frac{1}{(2n-1)!} (2x)^{2n-1} dx$$

$$= \sum_{n=1}^{\infty} (-1)^{n+1} \frac{2^{2n-1}}{(2n-1)!} \int_{0}^{x} x^{2n-1} dx$$

$$= \sum_{n=1}^{\infty} (-1)^{n+1} \frac{2^{2n-1}}{(2n)!} x^{2n}, \quad x \in (-\infty, +\infty).$$
(6 $\%$)

$$\sum_{n=1}^{\infty} (-1)^{n+1} \frac{2^{2n-1}}{(2n)!} = f(1) = \sin^2 1. \tag{9 \(\frac{1}{2}\)}$$

四.应用题(每小题6分,共12分)

18. 解:构造拉格朗日函数

$$L(x, y, z, \lambda) = xyz + \lambda \left(\frac{1}{x} + \frac{2}{y} + \frac{3}{z} - \frac{1}{a}\right)$$
 (2 $\%$)

$$\frac{\partial L}{\partial x} = yz - \frac{\lambda}{x^2} = 0$$

$$\frac{\partial L}{\partial y} = xz - \frac{2\lambda}{y^2} = 0$$

$$\frac{\partial L}{\partial z} = xy - \frac{3\lambda}{z^2} = 0$$

$$\frac{\partial L}{\partial \lambda} = \frac{1}{x} + \frac{2}{y} + \frac{3}{z} - \frac{1}{a} = 0$$

$$\frac{\partial L}{\partial \lambda} = \frac{1}{x} + \frac{2}{y} + \frac{3}{z} - \frac{1}{a} = 0$$

$$\frac{\partial L}{\partial z} = \frac{1}{x} + \frac{2}{y} + \frac{3}{z} = \frac{1}{a}$$

$$\begin{cases} yz = \frac{\lambda}{x^2} \\ xz = \frac{2\lambda}{y^2} \\ xy = \frac{3\lambda}{z^2} \\ \frac{1}{x} + \frac{2}{y} + \frac{3}{z} = \frac{1}{a} \end{cases}$$

得到 x = 3a, y = 6a, z = 9a

极值为
$$u = 3a \times 6a \times 9a = 162a^3$$
. (6分)

19. A:
$$ds = \sqrt{(-\sin t)^2 + (\cos t)^2} dt = dt$$

则曲线的质量为

$$\int_{L} \rho(x, y) ds = \int_{L} |y| ds$$

$$= \int_{0}^{2\pi} |\sin t| dt$$
(4 $\%$)

$$= \int_0^{\pi} \sin t dt + \left(-\int_{\pi}^{2\pi} \sin t dt\right)$$

$$= 4. \tag{6 \(\frac{1}{2}\)}$$

五.证明题(共5分)

20.证明: 因为 $u_n > 0$ (n = 1, 2, L) 且单调递减,故必有极限 $\lim_{n \to \infty} u_n = u$,且 $u \ge 0$ 。

因为
$$u_n \ge u > 0$$
,所以
$$\left(\frac{1}{u_n + 1}\right)^n \le \left(\frac{1}{u + 1}\right)^n,$$

而
$$\sum_{n=1}^{\infty} \left(\frac{1}{u+1}\right)^n$$
 收敛,故由比较判别法知 $\sum_{n=1}^{\infty} \left(\frac{1}{u_n+1}\right)^n$ 收敛。 (5分)