A MGRPO-TD3 Strategy for Optimizing Multi-Area HPT Networks

Mohammad Jadidbonab, *Graduate Student Member, IEEE*, Hussein Abdeltawab, *Senior Member, IEEE*, and Yasser Abdel-Rady I. Mohamed, *Fellow, IEEE*

This supplementary document compiles the key modelling assumptions, component efficiencies, cost coefficients, and baseline travel-time coefficient inputs, used to parameterize the technical analyses reported in the paper.

1) PEM Electrolyzer Parameters

Table I lists the electrochemical and cost coefficients that define the PEM electrolyzer model adopted in this study [1].

TABLE I
ELECTROCHEMICAL AND COST PARAMETERS OF THE PEM ELECTROLYZER

\mathfrak{I}_1	\mathfrak{I}_2	\mathfrak{I}_3	\mathfrak{I}_4	\mathfrak{I}_{5}	\mathfrak{I}_6	\mathfrak{I}_{7}
99.5%	-9.5788 (m^2/A)	-0.0555 $(m^2/A \times ^{\circ}C)$	0	1502.7083 (m^4/A)	-70.8005 $(m^4/A \times ^{\circ}C)$	0
		F	z_{mk}	μ^{PEM}		
		96485.34	0.002016	36		
		(C/mol)	(kg/mol)	(\$/kg) per year		

2) Compressor, Hydrogen Tank, and Electrical Storage Parameters

Table II consolidates the thermodynamic constants and operating-cost coefficients used to model the hydrogen compressor, hydrogen tank, and on-site electrical storage systems, as sourced from [2]-[4].

TABLE II
THERMODYNAMIC AND OPERATIONAL PARAMETERS FOR COMPRESSOR,
HYDROGEN TANK, AND ELECTRICAL STORAGE UNITS

R^{gc}	$\frac{\textbf{Compressor}}{\mu^{comp}}$	ih			
R^{gc}	ucomp	ih			
	μ	$arrho^{ih}$	$arrho^{ie}$		
4.124 J/(kg·K)	1 (\$/kg) per year	14.31 (kJ/kg.K)	0.8		
SoC_{max}^{T}	SoC_{min}^{T}	η_{ch}^{T}	η_{dc}^{T}		
0.9	0.05	0.9	0.9		
Ele	ectrical storage				
SoC_{max}^{ES}	$\eta_{\it ch}^{\it ES}$	η_{dc}^{ES}	μ^{ES}		
0.9	0.95	0.95	0.0005 (\$/kWh)		
	$J/(kg \cdot K)$ SoC_{max}^{T} 0.9 $Electric SoC_{max}^{ES}$	4.124 1 $J/(kg \cdot K) \qquad (\$/kg) \text{ per year}$ $Hydrogen tank$ $SoC_{max}^{T} \qquad SoC_{min}^{T}$ $0.9 \qquad 0.05$ $Electrical storage$ $SoC_{max}^{ES} \qquad \eta_{ch}^{ES}$	4.124 1 14.31 $J/(kg \cdot K)$ (\$/kg) per year (kJ/kg.K) Hydrogen tank SoC_{max}^{T} SoC_{min}^{T} η_{ch}^{T} 0.9 0.05 0.9 Electrical storage SoC_{max}^{ES} η_{ch}^{ES} η_{dc}^{ES}		

3) Hydrogen-Pricing Equation Coefficients

Table III summarizes the key coefficients appearing in the dynamic hydrogen-pricing formulation with values taken from [5], [6].

TABLE III
COEFFICIENTS USED IN THE HYDROGEN-PRICING MODEL

ω_t^{ren}	\mathcal{C}^{ren}_t	δ^{SP}	$\eta_t^{\scriptscriptstyle PEM}$
0.6	0.03	1	45
0.6	(\$/kWh)	(\$/kg)	(kWh/kg)

4) Penalty Coefficients

TABLE IV
PENALTY COFFFICIENTS

FENALLY COEFFICIENTS				
ни	\mathcal{C}^{tr}	$q_{\alpha,\varsigma} \& c^{HP}$		
μ^{HU}		(Soft constraints penalty		
		coefficient)		
130	40	100-1000		
(\$/kg)	(\$/h)	(\$ per unit)		

5) Non-Congested Travel Time Coefficients

Table V presents the non-congested travel time coefficients for streets, used as baseline inputs in the OD-equilibrium model for the Calgary network. The inter-area coefficients are 62.5 between Areas #1 & #2, 83.7 between Areas #1 & #3, and 106.7 between Areas #2 & #3.

 $\label{thm:congested} TABLE\ V$ Assumed Non-Congested Travel Time Coefficients for Streets and Inter-Area Routes

References:

- [1] F. Scheepers, M. Stähler, A. Stähler, E. Rauls, M. Müller, M. Carmo, and W. Lehnert, "Temperature optimization for improving polymer electrolyte membrane-water electrolysis system efficiency," *Applied Energy*, vol. 283, Art. no. 116270, 2021.
- [2] S. Shafiee, H. Zareipour, and A. M. Knight, "Considering thermodynamic characteristics of a CAES facility in self-scheduling in energy and reserve markets," *IEEE Trans. Smart Grid*, vol. 9, no. 4, pp. 3476–3485, Jul. 2018.
- [3] M.-R. Tahan, "Recent advances in hydrogen compressors for use in large-scale renewable energy integration," *Int. J. Hydrogen Energy*, vol. 47, no. 83, pp. 35275–35292, Sep. 2022.
 [4] M. Jadidbonab, H. Abdeltawab, and Y.A.R.I. Mohamed, "A Hybrid Traffic Flow Forecasting and Risk-Averse Decision Strategy for Hydrogen-Based
- [4] M. Jadidbonab, H. Abdeltawab, and Y.A.R.I. Mohamed, "A Hybrid Traffic Flow Forecasting and Risk-Averse Decision Strategy for Hydrogen-Based Integrated Traffic and Power Networks," *IEEE Syst. J.*, pp. 1-13, July 2024.
- [5] H. E. Dillon, C. A. Antonopoulos, A. E. Solana, and B. J. Russo, Renewable Energy Requirements for Future Building Codes: Options for Compliance, Tech. Rep. PNNL-20727, Pacific Northwest National Laboratory, Richland, WA, USA, Sep. 2011.
- [6] Technical Targets for Proton Exchange Membrane Electrolysis [Online]. Accessed: Oct. 20, 2024. Available: U.S. Department of Energy.