1999 NSW INDEPENDENT TRIAL EXAMS

MATHEMATICS

3 UNIT TRIA 1999

SUGGESTED ANSWERS

1a. Possibilities are

. Let p= prob of supporting A = 3/10 q = prob of supporting other = 1/0 n = no. of A supporters Then $P(X=r) = {}^{7}C_{r} \left(\frac{3}{10}\right)^{r} \left(\frac{1}{10}\right)^{7-r}$

 $B(\frac{1}{3}, -2)$

$$x = \frac{kx_{1} + lx_{1}}{k + l}$$

$$y = \frac{ky_{1} + ly_{1}}{k + l}$$

$$-1 = \frac{3 \times x_{1} + l \times 3}{-3 + l}$$

$$-4 = \frac{-3 \times y_{1} + l \times 2}{-3 + l}$$

$$2 = -3x_{1} + 3$$

$$8 = -3y_{2} + 2$$

$$x_{2} = \frac{1}{3}$$

$$y_{2} = -2$$

d.
$$u = \cos x$$
 $du = -\sin x \cdot dx$

If $x = \frac{\pi}{2}$, $u = 0$

If $x = \frac{\pi}{3}$, $u = \frac{\pi}{2}$
 $\therefore I = \int_{-1}^{0} -u^{3} du$
 $= \left[\frac{u^{4}}{4} \right]_{0}^{-5}$
 $= \frac{5}{4} - 0 = \frac{1}{64}$

2. $\int_{-1}^{\frac{\pi}{4}} \cos^{3} 1x \cdot dx$

$$e. \int_{0}^{\frac{\pi}{4}} (\cos^{2} \frac{1}{4}x \cdot dx)$$

$$= \frac{1}{2} \int_{0}^{\frac{\pi}{4}} |+ \cos x \cdot dx|$$

$$= \frac{1}{2} \left[x + \sin x \right]_{0}^{\frac{\pi}{4}}$$

$$= \frac{1}{2} \left(\frac{\pi}{4} + \frac{1}{\sqrt{2}} \right)$$

LORETO KIRRIBILLI 85 CARABELLA ST (6) KIRRIBILLI 2061

MATHS 3U ANSWERS - 1999

La.
$$\frac{1}{x+1} \gg 1-x$$

Critical points at
$$x=-1$$
 and $\frac{1}{x+1} = 1-x$

Test
$$x=-2$$
 False
Test $x=-1 \Rightarrow 2 \Rightarrow 1 \pm 1$. True
 $x=1 \Rightarrow \frac{1}{2} \Rightarrow 0 = 1$. True

Solution: x>-1

b.
$$\int_{0}^{2/5} \frac{dx}{\sqrt{16-25x^{2}}}$$

$$= \int_{0}^{2/5} \frac{dx}{\sqrt{16-25x^{2}}}$$

$$= \frac{1}{5} \left[\frac{3m}{4/5} \right]_{0}^{2/5}$$

$$= \frac{1}{5} \left[\frac{3m}{4/5} \right]_{0}^{2/5}$$

$$= \frac{1}{5} \left[\frac{3m}{4} \right]_{0}^{2/5}$$

$$= \frac{1}{5} \left[\frac{3m}{6} \right]_{0}^{2/5}$$

$$= \frac{1}{5} \left[\frac{3m}{6} \right]_{0}^{2/5}$$

(ii)
$$Mpa = p+q = k$$
, a constart

Then, for the point M,

$$X = a(p+q)$$
 $= a \cdot 2k$
 $A = 2ak$

Since a and k are constant,

the locus of M is a line parallel

to the y-axis

d.
$$\angle U = \angle V$$
 (gwen)

 $\angle UZX = \angle VZY$ (vertically opposite)

Now $\angle ZXW = \angle UZX + \angle U$ (exteror angle of trangle)

and $\angle ZYW = \angle VZY + \angle V$ (dotto)

 $\angle ZXW = \angle ZYW$ (equal to sum of lequal angles)

In $\triangle XZW + \triangle YZW$,

 ZW is common

 $\therefore \Delta XZW \equiv \Delta YZW (AAS)$ and XW = YW MATHS 3U ANSWERS - 1999

3.(a)
$$2 - \frac{3}{x+2} = \frac{2(x+2) - 3}{x+2}$$

$$= \frac{2x + 1}{x+2}$$

$$= \int_{0}^{1} \frac{2x+1}{x+1} dx$$

$$= \int_{0}^{1} 2 - \frac{3}{x+1} dx$$

$$= \left[2x - 3\ln(x+1)\right]_{0}^{1}$$

$$= \left(2 - 3\ln 3\right) - \left(0 - 3\ln 2\right)$$

$$= 2 + 3\ln(\frac{2}{3})$$

b) Let
$$\cos x - \sqrt{3} \sin x = A \cos (x + \theta)$$

= $A \cos x \cos \theta - A \sin x \sin \theta$

hen
$$A\cos\theta = 1$$

 $A\sin\theta = \sqrt{3}$

and
$$A = 2$$

$$(2\cos\left(x+\frac{\pi}{3}\right)+1=0$$

$$\cos\left(x+\frac{\pi}{3}\right)=-\frac{1}{2}$$

$$\chi + \overline{1} = \dots + \frac{4\pi}{3}, \frac{5\pi}{3}, \dots$$

$$f(i)$$
 = $f(x) = x ln x - 1$
 $f(i) = 1 ln 1 - 1 < 0$
 $f(x) = 2 ln x - 1 > 0$

1 a solutiai exists between x=10+ x=2 (assuming f(x) is continuous)

$$|u| f'(z) = x \cdot \frac{1}{x} + \ln x = \ln x + 1$$
By Newton's method,
$$x_1 = x - \frac{f(x)}{f'(x)}$$

$$= x - \frac{x \ln x - 1}{\ln x + 1}$$
If $x = 2$, $x_1 = 2 - \frac{2 \ln 2 - 1}{\ln 2 + 1}$

$$= +1.77184832$$

$$= 1.8$$

(d) (i) Total no. of possible teams
=
$${}^{7}C_{2} \times {}^{5}C_{2} = 210$$

Teams with a particular woman
= ${}^{6}C_{1} \times {}^{5}C_{2} = 60$
· . Probability of a particular woman
= $\frac{60}{210} = \frac{2}{7}$

(ii) Captain is openified, so the number of possible teams is $4c_1 \times 7c_2 = 84$ No. of teams with his brother is $7c_2 = 21$.'. Probability of captain and brother = $21 = \frac{1}{84}$

or with the captain as openified, the probability that his brother's chosen from the cemaining four men is I MATHS BU ANSWERS - 1999

 $(x-3)^2 + (y+k)^2 = k^2 - 3k + 9$

If the centre (3, -k) is on the line x-3y=0, then $3-3x-k=0 \Rightarrow k=-1$ -'- $(x-3)^2+(y-1)^2=13$

If C_2 touches the x-axis, the radius is k $\therefore \sqrt{k^2-3k+9} = k$

 $k^2 - 3k + 9 = k^2$ $\Rightarrow k = 3$

 $(x-3)^2 + (y+3)^2 = 9$

b)(1) of (1 v2) = 2x3+2x

1. 1v2 = 1x4+x2+C

f v=2, x=1

と もv2= txy+x*+ !

 $V^{2} = \chi^{4} + 2\chi^{2} + 1$ $V^{2} = (\chi^{2} + 1)^{2}$

) so $V = \pm (x^2 + 1)$ but V = 2 (70) when x = 1... $V = + (x^2 + 1)$ $\frac{dt}{dx} = \frac{1}{x^2+1}$ so $t = \int_{-\infty}^{\infty} x + C$

New X= 13 when t=0

·. C = - +a-1 \(\frac{1}{\sqrt{3}} = - \frac{\pi}{6}

so t = tan 1 x - a

(c) (et S(n): $5^{2n}-1=6I$, where

I to an integer.

S(1): Ltts = $5^2 - 1 = 24 = 6 \times 4$ _'. S(1) to true

Assume S(k): 52k-1=6I (I, wheger)

Consider S(KH):

LHJ = $5^{2k+2} - 1$ = $5^{2k} \cdot 5^2 - 1$ = $25(5^{2k} - 1) - 1 + 25$ = $25 \cdot 6I + 24$ by 5(k)= 6[25I + 4]

Now I to integer, - 25I+4 to integer. Hence, of S(k) to tome, S(k+1) to true But S(1) to true, so S(2) to true, and then S(3) to true and so on for all integer values of n.

MATHS 34 ANSWERS - 1999

(e) (i)
$$\frac{A}{X}$$
 $\frac{A}{X}$ $\frac{A}{Y}$ $\frac{A}{Y}$ $\frac{A}{X}$ $\frac{A}{X$

$$\frac{dn}{d\theta} = -500 \cos^2\theta$$

$$(\vec{u}) \frac{d\theta}{dt} = \frac{d\theta}{dx} \times \frac{dx}{dt}$$

$$= \frac{1}{-500 \cos^2 \theta} \times 20$$

$$= -\frac{1}{25} \sin^2 \theta$$

ii) At 9:01,
$$t=60$$
, $\chi=1200$
Then PD=1300 (Pythagoras' Theorem)
so sin $\Theta = \frac{500}{1300} = \frac{5}{13}$

$$\frac{d\theta}{dt} = -\frac{1}{25} \times \left(\frac{5}{13}\right)^{25}$$

$$= -\frac{1}{169} \text{ degrees/sec.}$$

(i)
$$\dot{x} = 0$$
 $\dot{y} = -10$
 $\dot{x} = e_1$ $\dot{y} = -10t + c_2$

Itially
$$\dot{x} = 50 \cos x$$
 . $\dot{x} = 50 \cos x$ Now when $y = 0$, $-5t^2 + 30 = 0$ and $\dot{y} = 50 \sin x$. $\dot{y} = -10t + 50 \sin x$. . . $\dot{t}^2 = 6$

$$\chi = 50t \mod + C_3$$
 $y = -5t^2 + 50t \mod + C_4$ At $t = \sqrt{6}$, $\chi = 55\sqrt{6}$
Unice $\chi = 0$ when $t = 0$, and $y = 0$ when $t = 0$ $2 + 135 \text{ m}$
 $\chi = 50t \mod 2 + 4 + 50t \mod 2 +$

The tand = 500 when
$$x=150$$
, $150=50t$ corect $x=3=t$ corect $x=500$ cot $x=500$ when $y=0$, $0=-5t^2+50t$ sund $x=-5t(t-10s)$ $y=-5t(t-10s)$ $y=-5t(t-10s)$

(ii)
$$\ddot{x} = 0$$
 $\ddot{y} = -10$
 $\dot{x} = C_1$ $\dot{y} = -10t + C_2$
Initially, $\dot{x} = 55\cos \alpha$, $\dot{y} = 55\sin \alpha$
 $\dot{x} = 55\cos \alpha$ $\dot{y} = -10t + 55\sin \alpha$
 $\dot{x} = 55$ $\dot{y} = -10t$ succes $\dot{y} = -10t$

Then
$$x = 55t + C_3$$
 $y = -5t^2 + C_4$
When $t = 0$, $x = 0$ and $y = 30$
 $\Rightarrow C_3 = 0$ $C_4 = 30$
 $-1 \cdot x = 55t$ $y = -5t^2 + 30$

Now when
$$y=0$$
, $-5t^2+30=0$
 $(1, t^2=6)$
 $4 t = \sqrt{6}$

MATHS 34 ANSWERS - 1999

$$\chi = 2 \text{ sunt} - 3 \text{ cost}$$

$$\chi = 2 \text{ cost} + 3 \text{ sunt}$$

$$\dot{\chi} = -2 \text{ sunt} + 3 \text{ cost}$$

$$= -(2 \text{ sunt} + 3 \text{ cost})$$

$$= -\chi$$

. motion is surple harmonic.

Amplitude =
$$\sqrt{2^2 + 3^2}$$

= $\sqrt{13}$ cm

$$\dot{x} = 2\cos t + 3 \operatorname{sunt}$$
 $\dot{x} = -2 \operatorname{sunt} + 3 \operatorname{cost}$
 $\dot{x} = -2 \operatorname{sunt} + 3 \operatorname{cost}$
 $\dot{x} = 0$
 $\dot{x} = -2 \operatorname{sunt} + 3 \operatorname{cost}$
 $\dot{x} = 0$
 $\dot{x} =$

(i) $T = T_0 + Ae^{kt}$ $\frac{dT}{dt} = k \cdot Ae^{kt}$ $\frac{dt}{dt} = k \cdot (T - T_0)$

(i) When
$$t=0$$
, $T=95$, $T_0=-10$
 $\Rightarrow A = 105$
when $t=5$, $T=65$
 $\therefore 65 = -10 + 1052$

MATHS 34 ANSWERS - 1999

$$7(a) (3x - \frac{1}{x^2})^6 = \sum_{r=0}^{1} {\binom{6}{r}} {\binom{3x}{5^{b-r}}} {\binom{-1}{x^3}}^r$$

Typical term,
$$T_r$$
, b

$$T_r = {}^{b}C_r 3^{6-r} \cdot \chi^{6-r} \cdot (-1)^r \cdot (\chi^{-2})^r$$

$$= {}^{b}C_r 3^{6-r} \cdot (-1)^r \chi^{6-3r}$$

Constant term when
$$6-3r=0$$

 $r=2$
Then $T_2 = 6C_2 3^4 (-1)^2$
= 1215

$$x^{4} + x^{2} - 1 = 0$$

$$x^{2} = -1 \pm \sqrt{1 - 4x|x - 1}$$

$$= -1 \pm \sqrt{5}$$

$$-1 \cdot \chi^2 = -\frac{1-\sqrt{5}}{2}$$
 or $-\frac{1+\sqrt{5}}{2}$

$$x = 0.618033988$$

 $x = \pm 0.786151377$
 $= \pm 0.79$

$$\int (u\bar{u}) \det + au^{-1}x = x$$

-' $x = \tan \alpha$

At P,
$$\cos^{-1} x = \tan^{-1} x = \alpha$$

- at P $\cos^{-1} x = \alpha + x = \cos \alpha$

But $\cos \alpha = \frac{1}{\sqrt{1+x^{2}}}$ (from diagram)

- $x = \frac{1}{\sqrt{1+x^{2}}}$

Squaring,
$$x^2 = \frac{1}{1+x^2}$$

+ $x^4 + x^2 = 1$
 $x^4 + x^2 - 1 = 0$
--- $x = 0.79$ (from (i))
and $y = \tan^{-1} 0.79 = 0.6686$
Ao $P(0.79, 0.67)$

(w)
$$t = \int_0^{0.67} \tan y \, dy + \int_0^{72} \cos y \, dy$$

$$= \left[-\ln \left| \cos y \right| \right]_0^{6.67} + \left[\sin y \right]_0^{72}$$

$$= -\ln \left| \cos 0.67 \right| + \sin \frac{\pi}{2} - \sin 0.67$$

$$= 0.62 (to 2-decumal places)$$