How to create superposition of quantum states?

Vadym Shvydkyi Supervised by doc. Mgr. Mário Ziman, PhD.

Comenius University in Bratislava

May 8, 2024

Qubit

 The superposition of states of classical bits is used to perform computations in quantum informatics

$$|\psi\rangle = \alpha |0\rangle + \beta |1\rangle = \begin{pmatrix} \alpha \\ \beta \end{pmatrix}$$

Examples of systems that can be used as a qubit: spin ½; photon polarization; two-level atom.

- If we have a system of two qubits and the first one is described by the space \mathcal{H}_A and the second one is described by the space \mathcal{H}_B then the whole system is described by the space $\mathcal{H}_A \otimes \mathcal{H}_B$
- A qubit $|\psi\rangle_{AB} \in \mathcal{H}_A \otimes \mathcal{H}_B$ that describes a system of two qubits $|\psi_a\rangle_A \in \mathcal{H}_A$ and $|\psi_b\rangle_B \in \mathcal{H}_B$ can be describe in such way $|\psi\rangle_{AB} = |\psi_a\rangle_A \otimes |\psi_b\rangle_B = |\psi_a\psi_b\rangle$

Density matrix

■ Set of states $\{|\psi_i\rangle\}$ and set of probabilities $\{p_i\}$ is introduced a density matrix

$$\rho = \sum p_i |\psi_i\rangle \langle \psi_i|$$

- The density matrix for a particular state $|\psi\rangle$ looks as follows $\rho_{\psi}=|\psi\rangle\,\langle\psi|$
- Density matrix ρ for the state of n several systems $\{\rho_i\}$ is equal $\rho = \rho_1 \otimes \rho_2 \otimes ... \otimes \rho_n$

Quantum Gates

Quantum gates are used to implement quantum algorithms

Figure: Deutsch's algorithm

lacksquare The quantum gate operator is a unitary operator: $H^\dagger H = \mathbb{I}$

Quantum gates

$$\begin{array}{c} \blacksquare \ X,Y,Z \\ X \ |\psi\rangle = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} \alpha \\ \beta \end{pmatrix} \\ Y \ |\psi\rangle = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix} \begin{pmatrix} \alpha \\ \beta \end{pmatrix} \\ Z \ |\psi\rangle = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \begin{pmatrix} \alpha \\ \beta \end{pmatrix} \\ \end{array}$$

■ H - Hadamard operator:

$$H|0\rangle = \frac{|0\rangle + |1\rangle}{\sqrt{2}} H|1\rangle = \frac{|0\rangle - |1\rangle}{\sqrt{2}}$$

Quantum gates

■ Control Not Gate: $|\psi\rangle \rightarrow (|0\rangle \langle 0| \otimes \mathbb{I} + |1\rangle \langle 1| \otimes X) |\psi\rangle$ $|00\rangle \rightarrow |00\rangle$ $|01\rangle \rightarrow |01\rangle$ $|10\rangle \rightarrow |11\rangle$ $|11\rangle \rightarrow |10\rangle$

$$|\psi_1\rangle$$
 $\psi_2\rangle$

Figure: CNOT

Universal Hadamard Gate

■ Creation of superposition from the general state:

$$|\psi
angle
ightarrowrac{|\psi
angle+|\psi^{\perp}
angle}{\sqrt{2}}=|\Psi
angle$$
, in general $reve{H}|\psi
angle_{a}|Q
angle_{b...}=rac{|\psi
angle+|\psi^{\perp}
angle}{\sqrt{2}}_{a}|Q_{\psi}
angle_{...}$

$$\ket{\psi} - oxed{reve{H}} - oxed{\ket{\psi}+\ket{\psi^\perp}}{\sqrt{2}} \ \ket{Q_\psi}$$

Figure: U-Hadamard

Universal Hadamard Gate

Nonlinearity of the U-Hadamard operator

$$\begin{split} \hat{G}|\psi\rangle_{a}|Q\rangle_{b} &= \hat{G}(\alpha|0\rangle_{a} + \beta|1\rangle_{a})|Q\rangle_{b} = \\ \alpha \hat{G}|0\rangle_{a}|Q\rangle_{b} + \beta \hat{G}|1\rangle_{a}|Q\rangle_{b} &= \alpha \hat{G}|1\rangle_{a}|Q_{0}\rangle_{b} + \beta \hat{G}|0\rangle_{a}|Q_{1}\rangle_{b} \end{split}$$

This operator is not linear, which means it is not unitary and cannot be realized as a quantum gate

Bures Fidelity

If we cannot create an exact state σ , we can create a state ρ as close to the required state as possible to implement the algorithm.

Bures Fidelity

$$F = Tr(\sqrt{\sqrt{
ho}\sigma\sqrt{
ho}}) \in (0, 1)$$
 or for pure state $\sigma = |\Psi\rangle \langle \Psi| \Rightarrow F = \langle \Psi| \, \rho \, |\Psi\rangle$

Universal Cloner and Universal NOT Gates

- $|\psi\rangle \to \frac{|\psi\rangle + |\psi^{\perp}\rangle}{\sqrt{2}}$
- Universal Cloner $|\psi\phi\rangle \rightarrow |\psi\psi\rangle = U_c |\psi\phi\rangle$

Nonlinearity of U-Cloner

$$|\psi\phi\rangle = \alpha |0\phi\rangle + \beta |1\phi\rangle \rightarrow \alpha |00\rangle + \beta |11\rangle \neq |\psi\psi\rangle$$

■ Universal NOT Gate $\alpha |0\rangle + \beta |1\rangle = |\psi\rangle \rightarrow |\psi^{\perp}\rangle = \beta^* |0\rangle - \alpha^* |1\rangle$

Nonlinearity of U-NOT

$$|\psi\rangle = \alpha |0\rangle + \beta |1\rangle = \alpha |1\rangle + \beta |0\rangle \neq |\psi^{\perp}\rangle$$

U-Cloner and U-NOT Machine

$$|\psi\rangle_a |\Xi_{00}\rangle_{bc} = |\psi\rangle \left(\frac{1}{\sqrt{2}}(|00\rangle + |11\rangle)\right) \rightarrow |\psi\rangle_a |\Xi\rangle_{bc}$$

$$|\psi\rangle_{a} |\Xi_{0+}\rangle_{bc} = |\psi\rangle \left(\frac{1}{\sqrt{2}}(|00\rangle + |01\rangle)\right) \rightarrow |\psi\rangle_{b} |\Xi\rangle_{ac}$$

$$|\Xi\rangle_{bc} = c_0 |\Xi_{00}\rangle_{bc} + c_1 |\Xi_{0x}\rangle_{bc}$$

U-Cloner and U-NOT Machine

- $\begin{array}{l} \bullet \ \, \rho_1^{out} = \left(c_0^2 + c_0 \, c_1\right) |\psi\rangle \, \langle\psi| + \frac{1}{2} \, c_1^2 \mathbb{I} \\ \rho_2^{out} = \left(c_0^1 + c_0 \, c_1\right) |\psi\rangle \, \langle\psi| + \frac{1}{2} \, c_0^2 \mathbb{I} \\ \rho_3^{out} = c_0 \, c_1 \, |\psi^*\rangle \, \langle\psi^*| + \frac{1}{2} (1 c_0 \, c_1) \mathbb{I} \end{array}$
- $c_0 = c_1 = \frac{1}{\sqrt{3}} \Rightarrow \rho_1^{out} = \rho_2^{out} = \frac{5}{6} |\psi\rangle \langle\psi| + \frac{1}{6} |\psi^{\perp}\rangle \langle\psi^{\perp}|$ $F_{|\psi\rangle} = \frac{5}{6}$
- $(iY)\rho_3^{out}(iY)^{\dagger} = \frac{1}{3} |\psi\rangle \langle \psi| + \frac{2}{3} |\psi^{\perp}\rangle \langle \psi^{\perp}|$ $F_{|\psi^{\perp}\rangle} = \frac{2}{3}$

Idea of U-Hadamard

$$\rho_2^{out}{}_a \otimes (iY) \rho_3^{out} (iY)_b^\dagger \otimes \check{\rho}_{cd} \rightarrow \rho_b^{goal} \tilde{\rho}_{acd}$$

Idea of U-Hadamard

By varying the constants C_i , $i = \{1, 2, 3, 4\}$, the maximum value of F can be obtained

$$\begin{split} & \check{\rho} = C_1 \left| 00 \right\rangle \left\langle 00 \right| + C_2 \left| 01 \right\rangle \left\langle 00 \right| + C_3 \left| 00 \right\rangle \left\langle 01 \right| + C_4 \left| 11 \right\rangle \left\langle 11 \right| \\ & \rho^{goal} = A \left| \psi \right\rangle \left\langle \psi \right| + B \left| \psi \right\rangle \left\langle \psi^{\perp} \right| + C \left| \psi^{\perp} \right\rangle \left\langle \psi \right| + D \left| \psi^{\perp} \right\rangle \left\langle \psi^{\perp} \right| \\ & F = \frac{\left\langle \psi \right| + \left\langle \psi^{\perp} \right|}{\sqrt{2}} \rho^{goal} \frac{\left| \psi \right\rangle + \left| \psi^{\perp} \right\rangle}{\sqrt{2}} = \frac{1}{2} (1 + C + D) \ \textit{To be continued...} \end{split}$$

