Multi-Factor Models Performance Measurement Black–Litterman Model

Wang Wei Mun

Lee Kong Chian School of Business Singapore Management University

October 21, 2018

Pricing Anomalies

- Empirical research on CAPM has uncovered various systematic pricing "anomalies"
- Size effect: "small-cap" stocks (with low market value) tend to outperform "big-cap" stocks (with high market value)
- Value effect: "value" stocks (with high book-to-market ratio) outperform "growth" stocks (with low book-to-market ratio)
- Momentum effect: "winner" stocks (with recent high returns) tend to outperform "loser" stocks (with recent low returns)
- Pricing anomalies persist even after adjusting for differences in expected return due to differences in exposure to market risk

Multi-Factor Linear Pricing Models

- Since APT provides no guidance on nature of systematic risk factors, popular approach is to augment market model with additional risk factors to account for pricing anomalies
- Similar to market model, use returns on factor-mimicking portfolios to represent effect of risk factors
- In principle, factor-mimicking portfolio has sensitivity of one to specific risk factor and sensitivity of zero to other risk factors
- In practice, factor-mimicking portfolios will not be completely insensitive to other risk factors
- Factor-mimicking portfolios are usually zero-investment portfolios, which reduces correlation among risk factors

Fama-French 3-Factor Model - Part 1

 Fama and French (1993) use three-factor model for realised returns, with additional risk factors for size and value effects:

$$R_{i} - R_{f} = \alpha_{i} + \beta_{i} (R_{m} - R_{f}) + \gamma_{i} (R_{s} - R_{b}) + \delta_{i} (R_{h} - R_{l}) + \tilde{\epsilon}_{i}$$

- Risk factor for size effect ("SMB") is return on portfolio that is long on small-cap stocks and short on big-cap stocks
- Risk factor for value effect ("HML") is return on portfolio that is long on value stocks and short on growth stocks

Fama-French 3-Factor Model - Part 2

- Economic intuition is that "size risk" and "value risk" are separate types of systematic risk that cannot be combined with each other or market risk
- If Fama–French three-factor model provides correct description of realised returns, then α_i will not be significantly different from zero for any asset or (passive) portfolio
- Hence risk premium for any asset is given by:

$$E[R_i - R_f] = \beta_i E[R_m - R_f] +$$

$$\gamma_i E[R_s - R_b] + \delta_i E[R_h - R_i]$$

Carhart 4-Factor Model - Part 1

 Carhart (1994) augments Fama–French three-factor model with additional risk factor for momentum effect:

$$R_{i} - R_{f} = \alpha_{i} + \beta_{i} (R_{m} - R_{f}) + \gamma_{i} (R_{s} - R_{b}) + \delta_{i} (R_{h} - R_{l}) + \zeta_{i} (R_{u} - R_{d}) + \epsilon_{i}$$

- Risk factor for momentum effect ("UMD") is return on portfolio that is long on winners and short on losers
- Performs better than Fama-French three-factor model for actively-managed portfolios, since fund managers tend to buy winners and sell losers

Carhart 4-Factor Model - Part 2

- Economic intuition is that "momentum risk" cannot be combined with other types of systematic risk
- If Carhart four-factor model provides correct description of realised returns, then α_i will not be significantly different from zero for any asset or portfolio
- Hence risk premium for any asset is given by:

$$E[R_i - R_f] = \beta_i E[R_m - R_f] + \gamma_i E[R_s - R_b] + \delta_i E[R_h - R_l] + \zeta_i E[R_u - R_d]$$

Sharpe Ratio

• Sharpe ratio is risk premium per unit of standard deviation:

$$SR_i = \frac{E[R_i - R_f]}{\sqrt{\text{Var}[R_i - R_f]}}$$

- Denominator is designed to capture total risk, i.e., both systematic and idiosyncratic risk
- However, denominator ignores higher moments such as skewness and kurtosis, so may not fully reflect risk of investment if return distribution is not normal

Treynor Ratio

• Treynor ratio is risk premium per unit of market risk:

$$TR_i = \frac{E[R_i - R_f]}{\beta_i}$$

- Denominator is designed to capture systematic risk, but cannot easily be extended to account for possibility of multiple sources of systematic risk
- Measures "reward-to-risk" ratio for asset as part of well-diversified portfolio

Jensen's Alpha

 Jensen's alpha is intercept coefficient from market model regression using excess returns:

$$\alpha_i = E[R_i - R_f] - \beta_i E[R_m - R_f]$$

- For passive portfolio, represents pricing error for CAPM
- For actively-managed portfolio, represents "abnormal" or "value added" preemium due to managerial skill
- Can extend to allow for multiple sources of systematic risk by using intercept coefficient from regression using Fama—French three-factor model or Carhart four-factor model

Information Ratio

 Information ratio (or appraisal ratio) is mean deviation from target (or benchmark) return, per unit of tracking error:

$$IR_i = \frac{E[R_i - R_t]}{\sqrt{\text{Var}[R_i - R_t]}}$$

- Same as Sharp ratio when target return is risk-free rate
- Measures ability of fund manager to exceed target return, relative to amount of additional risk exposure

Downside Risk

- Downside risk of investment is risk that realised return on investment will fall below target return
- One measure of downside risk is below-target semi-variance:

$$SV[R_i; R_t] = E\left[\min\left\{R_i - R_t, 0\right\}^2\right]$$

- Can distinguish between asymmetric return distributions with same variance but different skewness
- Intuition is that investors are only concerned with probability and magnitude of underperformance, not overperformance

Sortino Ratio

 Sortino ratio is mean deviation from target (or benchmark) return, per unit of below-target semi-deviation:

$$StR_i = \frac{E[R_i - R_t]}{\sqrt{SV[R_i; R_t]}}$$

- Will produce rankings similar to information ratio when return distribution is close to symmetric, and mean asset return is close to mean target return
- May deviate from rankings produced by information ratio when return distribution is highly skewed, or when mean asset return deviates substantially from mean target return

Issues with Efficient Frontier

- Biggest econometric issue with mean-variance-efficient frontier is difficulty of estimating mean return
- Standard error of sample mean is σ/\sqrt{n} , where σ is standard deviation of return and n is number of observations
- Returns are volatile and data is limited, so estimate of mean return tends to have large standard error
- Related issue is instability of efficient frontier: small change in vector of mean returns can induce large change in composition of frontier portfolios
- Fischer Black and Robert Litterman developed model in 1990 to overcome issues with efficient frontier

Excess Returns - Part 1

• Excess returns for tradable assets follow normal distribution:

$$ilde{\mathsf{R}} \sim \mathcal{N}(ilde{oldsymbol{\mu}}, oldsymbol{\Sigma})$$

Vector of (unknown) risk premiums is also random variable:

$$ilde{\mu}=\pi+ ilde{\epsilon}$$

• Here $\tilde{\epsilon}$ is error term with (independent) normal distribution:

$$ilde{\epsilon} \sim \mathit{N}(\mathbf{0}, \mathbf{\Sigma}_{\mu})$$

Excess Returns - Part 2

• For simplicity, assume that Σ_{μ} is proportional of Σ :

$$\mathbf{\Sigma}_{\mu} = \tau \mathbf{\Sigma}$$

- In practice, often set $\tau=1/n$, where n is number of data points used to estimate Σ
- Hence distribution of excess returns around π :

$$ilde{\mathbf{R}} \sim extstyle \mathcal{N} \Big(oldsymbol{\pi}, (1+ au) \, oldsymbol{\Sigma} \Big)$$

Implied Risk Premiums

 Use observed weights of individual assets in market portfolio to determine implied risk premiums:

$$\pi = \lambda \Sigma \mathbf{w}_m$$

- Here λ is coefficient of relative risk aversion (based on initial wealth), for investor with constant absolute risk aversion
- Calibrate λ using market risk premium or Sharpe ratio:

$$\lambda = \frac{\mathbf{w}_m' \mathbf{\pi}}{\mathbf{w}_m' \mathbf{\Sigma} \mathbf{w}_m} = \frac{R_m - R_f}{\sigma_m^2} = \frac{S_m}{\sigma_m}$$

Investor Views

- Black-Litterman model also incorporates investor's "views" on (absolute or relative) expected returns of risky assets
- Suppose that investor has $k \ge 1$ views on expected returns
- Let ${\bf P}$ be $k \times n$ vector of asset weights corresponding to investor's views, and let ${\bf Q}$ be $k \times 1$ vector of expected returns corresponding to investor's views
- Also let Ω be $k \times k$ covariance matrix of error terms derived from confidence of investor's views
- ullet For simplicity, require that investor's views be uncorrelated with one another, so that Ω is diagonal

Example: Investor Views

- Suppose that investible universe consists of three risky assets (or asset classes, or mutual funds)
- Investor expects first risky asset to earn return of 5% per year
- Investor expects that second risky asset to outperform third risky asset by 100 basis points (i.e., 1%) per year

• Then
$$\mathbf{P}=\left[\begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & -1 \end{array}\right]$$
 and $\mathbf{Q}=\left[\begin{array}{cc} 0.05 \\ 0.01 \end{array}\right]$

 Notice that first row of P corresponds to absolute view (where weights sum to one), while second row of P corresponds to relative view (where weights sum to zero)

Bayes' Theorem

 Bayes' theorem is used to update probability of given hypothesis H when new evidence E is observed:

$$Pr(H|E) = \frac{Pr(E|H)}{Pr(E)}Pr(H)$$

- Pr(H) is **prior distribution**, or probability that H is true before any new evidence is observed
- Pr(E|H) is conditional probability of observing E, assuming that H is true, while Pr(E) is unconditional probability of observing E, which is independent of H
- Pr(H|E) is **posterior distribution**, or probability that H is true given that we have observed E

Posterior Distribution of Asset Returns

- Black-Litterman model uses Bayes' theorem to update prior distribution of excess returns using investor's views
- Conditional on investor's views, excess returns have (posterior) normal distribution of $N(\hat{\pi}, \mathbf{M})$, where:

$$\hat{oldsymbol{\pi}} = oldsymbol{\pi} + au oldsymbol{\Sigma} oldsymbol{\mathsf{P}}' \left(au oldsymbol{\mathsf{P}} oldsymbol{\Sigma} oldsymbol{\mathsf{P}}' + oldsymbol{\Omega}
ight)^{-1} \left(oldsymbol{\mathsf{Q}} - oldsymbol{\mathsf{P}} oldsymbol{\mathsf{\Pi}}
ight),$$
 $oldsymbol{\mathsf{M}} = \left(rac{1}{ au} oldsymbol{\Sigma}^{-1} + oldsymbol{\mathsf{P}}' oldsymbol{\Omega}^{-1} oldsymbol{\mathsf{P}}
ight)^{-1}$