MA32009 Lecture slides

Philip Murray

Lecture 1

A general model

$$\frac{dN}{dt} = f(N)N = H(N),$$

Numerical solution

Dimensions and nondimensionalisation

As an example, consider the linear ODE

$$\frac{dN}{dt} = rN.$$

Steady-state analysis

Lecture 10

- Recap
- ► Techniques for single first order ODE (ctd)
- Example model 1: Logistic growth
- Example model 2: Spruce budworm

Graphical solution

Bifurcation diagrams

Example model 1: the logistic growth equation

$$\frac{dN}{dt} = rN(t)\left(1 - \frac{N(t)}{K}\right).$$

Numerical solution

Figure 1: Numerical solution of the logistic growth model

Graphical analysis

Example model 2: the spruce budworm model

$$\frac{dN}{dt} = r_B N \left(1 - \frac{N}{K_B} \right) - \frac{BN^2}{A^2 + N^2},\tag{1}$$

Nondimensionalisation

$$\frac{dn}{d\tau} = rn\left(1 - \frac{n}{q}\right) - \frac{n^2}{1 + n^2} = H(n),$$

Plotting the RHS

Figure 2: RHS of spr. budworm model

Numerical solution

Steady state analysis

$$rn^*(1 - \frac{n^*}{q}) - \frac{n^{*2}}{1 + n^{*2}} = 0.$$

Linear stability analysis