Experiments – Gesture Recognition Assignment

Following table summarizes the experiments carried out. The models are represented as sequential layers just like we specify in our python code.

- i. The output layer is not specified in the model column, it is to be considered as 'Dense (5, activation='softmax')'
- ii. The activation function used for any layer that requires it is `relu'.
- iii. The Conv2D and Pooling2D layers are TimeDistributed.

Input shape: (20, 120, 120, 3)

Number of epochs: 30

No.	Model	Result	Decision + Explanation
1	Conv3D(32, kernel = (3,3,3)) MaxPooling3D(pool = (2,2,2)) Conv3D(64, kernel = (3,3,3))	This model is underfitting and is not able to learn the patterns in the data	Let's try to solve the underfitting by changing the model topology to some extent.
	Conv3D(04, kernel = (3,3,3)) MaxPooling3D(pool = (2,2,2)) Conv3D(128, kernel = (3,3,3)) MaxPooling3D(pool = (2,2,2)) Flatten() Dense(128)	loss: 1.0598 categorical_accuracy: 0.5867 val_loss: 1.4216 val_categorical_accuracy: 0.3500	We can try to first apply convolution and pooling on individual images, rather than the entire sequence. This can be done using kernels of the shape – (1, 3, 3)
	optimiser: SGD(learning_rate=0.05) batch_size: 64		
2	Conv3D(32, kernel = (1,3,3)) MaxPooling3D(pool = (1,2,2)) Conv3D(64, kernel = (1,3,3)) MaxPooling3D(pool = (1,2,2)) Conv3D(128, kernel = (1,3,3)) MaxPooling3D(pool = (1,2,2)) Conv3D(32, kernel = (3,3,3)) MaxPooling3D(pool = (2,2,2)) Conv3D(64, kernel = (3,3,3)) MaxPooling3D(pool = (2,2,2)) Flatten()	This model is performing even worse than model 1. The model is performing even worse than a random classifier. loss: 1.5898 categorical_accuracy: 0.2353 val_loss: 1.6013 val_categorical_accuracy: 0.2500	Let's try to invert our approach and first apply convolution and pooling on our sequence and convert the sequence into a single image. Then we can apply pooling on the single image. This can be done by first using kernels of the shape – (3, 1, 1)
	Dense(128) optimiser: SGD(learning_rate=0.05) batch_size: 64		

13 Camiju/33 14	VI = /2 1 1\\	This model is still norfered a suit-	It cooms like the models with
3 Conv3D(32, kerne MaxPooling3D(ke		This model is still performing quite poor, and underfitting the data.	It seems like the models with Conv3D are not able to identify
iviaxr outiligab(ke	(2,1,1)	poor, and undernitting the data.	the patterns in our data.
Conv3D(64, kerne	el = (2.1.1))	loss: 1.2340	the patterns in our data.
MaxPooling3D(ke	• • • •	categorical_accuracy: 0.5415	Therefore, now would be a good
	(-/-/-//	val_loss: 1.4350	time to move to a CNN + RNN
Conv3D(128, kerr	nel = (1,3,3))	val_categorical_accuracy: 0.3600	(GRU) model
MaxPooling3D(ke			
Conv3D(32, kerne			
MaxPooling3D(ke	rnel = (2,2,2))		
Conv3D(64, kerne			
MaxPooling3D(ke	rnei = (1,2,2))		
Conv3D(128, kerr	nol - (1 3 3))		
MaxPooling3D(ke			
I WIGHT COININGSDIKE	(±,∠,∠))		
Flatten()			
Dense(128)			
optimiser: SGD(le	arning_rate=0.05)		
batch_size: 64			
4 Conv2D(32, kerne		This model is performing very poor.	It looks like the model structure
MaxPooling2D(ke	rnel = (2,2))	It is underfitting to a great extent,	is not well suited to learn the
Dropout(0.25)		and worse than a random classifier	patterns in the data. The data is
Conv2D(32, kerne	nl – (3 3))	loss: 1.6100	too complicated for this model which is very simple.
MaxPooling2D(ke	· · · · ·	categorical_accuracy: 0.2021	willen is very simple.
Dropout(0.25)	(2,2]]	val_loss: 1.6019	We can increase the neurons in
2.0000000000		val_categorical_accuracy: 0.1900	the convolution layers and also
Conv2D(32, kerne	el = (3,3))		add another GRU for better
MaxPooling2D(ke			interpretation of the sequences.
Dropout(0.25)			
Flatten()			
GRU(32)			
Dropout(0.25)			
ontimicar: SCD/Ia	 arning_rate=0.05)		
batch_size: 64	armig_rate=0.03)		
54(611_3126.04			
5 Conv2D(32, kerne	el = (3,3))	This model has performed well	Although this model has a good
MaxPooling2D(ke		compared to model 4. It can	accuracy score for train as well as
Dropout(0.25)	- · · · ·	identify the patterns in the data to	validation, we can see that the
		some extent.	model has overfit to some
Conv2D(64, kerne	el = (3,3))	Adding more neurons and an	extent.
1 1		additional GRU layer has worked	
MaxPooling2D(ke Dropout(0.25)	rnei = (2,2))	well.	

	Conv2D(128, kernel = (3,3)) MaxPooling2D(kernel = (2,2)) Dropout(0.25) Flatten() GRU(128) Dropout(0.25) GRU(128) Dropout(0.25)	loss: 1.0100 categorical_accuracy: 0.7074 val_loss: 1.1922 val_categorical_accuracy: 0.6100	And although the accuracy scores are not high enough to consider this model as efficient, we can experiment further. Let's try to solve some of the overfitting by trying to Reduce Learning Rate on Plateau of validation loss.
6	Conv2D(32, kernel = (3,3)) MaxPooling2D(kernel = (2,2)) Dropout(0.25) Conv2D(64, kernel = (3,3)) MaxPooling2D(kernel = (2,2)) Dropout(0.25) Conv2D(128, kernel = (3,3)) MaxPooling2D(kernel = (2,2)) Dropout(0.25) Flatten() GRU(128) Dropout(0.25) GRU(128) Dropout(0.25) GRU(128) Dropout(0.25)	With the call back, the model is not performing as well as model 5. loss: 1.6651 categorical_accuracy: 0.5354 val_loss: 1.7998 val_categorical_accuracy: 0.4500	The reduced learning rate is slowing the model learning. Let's try to use a different optimizer, without any callbacks.
7	Conv2D(32, kernel = (3,3)) MaxPooling2D(kernel = (2,2)) Dropout(0.25) Conv2D(64, kernel = (3,3)) MaxPooling2D(kernel = (2,2)) Dropout(0.25) Conv2D(128, kernel = (3,3)) MaxPooling2D(kernel = (2,2)) Dropout(0.25)	The model performance is very poor with Adam optimizer. The model is worse than a random classifier. loss: 1.7870 categorical_accuracy: 0.1916 val_loss: 1.7848 val_categorical_accuracy: 0.2300	Adam optimizer is not suited for our model. It is causing too much underfitting. One option for the next experiment would be to use RMSProp optimizer, but this is like Adam and doesn't seem like a very lucrative option. So rather, let's try to fine tune model 5 by removing the

	Flatten() GRU(128) Dropout(0.25) GRU(128) Dropout(0.25) optimiser: Adam(learning_rate=0.05) batch_size: 64		dropouts added to the GRU layers.
8	Conv2D(32, kernel = (3,3)) MaxPooling2D(kernel = (2,2)) Dropout(0.25) Conv2D(64, kernel = (3,3)) MaxPooling2D(kernel = (2,2)) Dropout(0.25) Conv2D(128, kernel = (3,3)) MaxPooling2D(kernel = (2,2)) Dropout(0.25) Flatten() GRU(128) GRU(128)	There doesn't seem much improvement over model 5. loss: 0.9334 categorical_accuracy: 0.7179 val_loss: 1.3443 val_categorical_accuracy: 0.5200	The convolutional (CNN) part of the model seems unable to learn the patterns in the data. It would be a good option now to move to transfer learning and replace the CNN part with a pre trained model. We can use the keras model – MobileNet
9	MobileNet(weights='imagenet') GlobalAveragePooling2D() Flatten() GRU(128) Dropout(0.25) GRU(128) Dropout(0.25)	This model took too long to train and does not yield any significant difference over model 5. loss: 0.8334 categorical_accuracy: 0.6172 val_loss: 2.2443 val_categorical_accuracy: 0.2201	MobileNet has a lot of parameters due to which the performance is slow. This is an issue for us as we have limited computing resources. Let's use MobileNetV2 which is significantly lighter and has lesser number of paraments
10	MobileNetV2(weights='imagenet') GlobalAveragePooling2D() Flatten() GRU(128) Dropout(0.25) GRU(128)	The training throws the following error — Resource exhausted: OOM wh en allocating tensor with shape[1920,144,30,30] and type float	The size of the tensors used in MobileNetV2 are too huge to be fit in available memory. Let's reduce the batch size to 32.

	Dropout(0.25)		
	optimiser: SGD(learning_rate=0.05) batch_size: 64		
11	MobileNetV2(weights='imagenet') GlobalAveragePooling2D() Flatten() GRU(128) Dropout(0.25) GRU(128) Dropout(0.25) optimiser: SGD(learning_rate=0.05) batch_size: 32	The model has performed better than any of the models that we trained previously. loss: 0.2204 categorical_accuracy: 1.0000 val_loss: 1.0171 val_categorical_accuracy: 0.7200	Although, as we can see, the model has overfit a lot. The training accuracy is 1 meaning the model has completely learned the training data. Let's reduce the complexity of our model by removing one GRU layer.
12	MobileNetV2(weights='imagenet') Dropout(0.3) GlobalAveragePooling2D() Flatten() GRU(128) Dropout(0.25) optimiser: SGD(learning_rate=0.05) batch_size: 32	The model has less overfitting as compared to model 11. loss: 0.2505 categorical_accuracy: 1.0000 val_loss: 0.8192 val_categorical_accuracy: 0.8300	Reducing the model complexity has helped reduce the overfitting. Let's try to reduce overfitting further by adding a dropout layer for our MobileNetV2.
13	MobileNetV2(weights='imagenet') Dropout(0.3) GlobalAveragePooling2D() Flatten() GRU(128) Dropout(0.25) optimiser: SGD(learning_rate=0.05) batch_size: 32	The model has less overfitting as compared to model 12. loss: 0.2039 categorical_accuracy: 1.0000 val_loss: 0.5373 val_categorical_accuracy: 0.8600	The dropout layer has helped reducing the overfitting by a minute amount. We can still try to reduce overfitting further by Reducing Learning Rate on Plateau.
14	MobileNetV2(weights='imagenet') Dropout(0.3) GlobalAveragePooling2D() Flatten() GRU(128) Dropout(0.25) optimiser: SGD(learning_rate=0.05) batch_size: 32	The validation accuracy has dropped significantly. This is not a good model. loss: 0.4151 categorical_accuracy: 1.0000 val_loss: 0.9864 val_categorical_accuracy: 0.7300	Reduce LR on Plateau is interfering with our model's learning causing it to overfit wildly. Let's try to build upon model 13, and reduce overfitting by introducing a kernel_regularizer='I1' to our output layer.

	callback: LRReduceOnPlateau(factor=0.5)		
15	Final Model: MobileNetV2(weights='imagenet') Dropout(0.3) GlobalAveragePooling2D() Flatten() GRU(128) Dropout(0.25) Dense(activation='softmax', kernel_regularizer='l1')	This model is performing very well. There is some over fitting here as well. loss: 0.2024 categorical_accuracy: 1.0000 val_loss: 0.5048 val_categorical_accuracy: 0.8900	This is the best model that we can squeeze out of our dataset. If we have more data, we can further increase the validation accuracy to match that of the training accuracy.