Università degli Studi di Verona		
DIPARTIMENTO DI INFORMATICA		
Analisi dei Sistemi Informatici		
Riassunto dei principali argomenti		
Autore: Marco Colognese		

Indice

Interpretazione Astratta	2
Accelerazione della convergenza	. 2
Widening	. 2
Narrowing	. 2
Correttezza	. 3
Completezza	. 3
Linguaggio e semantica	. 4
Collecting Semantics	. 4
Control-Flow-Graph (CFG)	. 5
Notazione dei CFG	. 6
Analisi Statica	9
Introduzione	. 9
Analisi sul CFG	. 9
Soluzioni MFP - MOP - IDEAL	. 10
Data Flow Analysis	. 11
Problemi Distributivi	. 11
Riepilogo	. 15
Problemi Non-Distributivi	. 16
Analisi Dinamica	18
Testing	. 18
Debugging	
Program Slicing	

Interpretazione Astratta

Accelerazione della convergenza

Widening

Un widening

$$\nabla: P \times P \to P$$

su un poset $\langle P, \leq_P \rangle$ è una funzione che soddisfa:

- $\forall x, y \in P : x \sqsubseteq (x\nabla y) \land y \sqsubseteq (x\nabla y)$
- per ogni catena ascendente $x_0 \sqsubseteq x_1 \sqsubseteq ... \sqsubseteq x_n$ la catena definita come $y_0 = x_0, ..., y_{n+1} = y_n \nabla x_{n+1}$ non è strettamente crescente.

Dato che in interpretazione astratta è necessario garantire/accelerare la convergenza, viene usato il widening (che si sostituisce al least upper bound), dal momento che anche il calcolo astratto può divergere. Il risultato di un widening è un post-puntofisso di F^{∇} , ovvero una sovra-approssimazione del punto fisso più piccolo di ff p = F.

Ad esempio, il widening su intervalli funziona come segue:

$$[a, b] \nabla [c, d] = [e, f]$$
 tale che

$$e = \begin{cases} -\infty & \text{se } c < a \\ a & \text{altrimenti} \end{cases} \text{ e } f = \begin{cases} +\infty & \text{se } b < d \\ b & \text{altrimenti} \end{cases}$$

Narrowing

Dato che il widening raggiunge un post-fixpoint, piuò capitare che si abbiano eccessive perdite di informazione, in questo caso viene usato il narrowing.

Definizione 0.0.0.1. *Il narrowing è una funzione* $\triangle : P \times P \rightarrow P$ *tale che*:

- $\forall x, y \in \mathcal{P} : y \leq x \implies y \leq x \triangle y \leq x$
- Per ogni catena discendente $x_0 \ge x_1 \ge ...$, la catena discendente $y_0 = x_0, ..., y_{i+1} = y_i \triangle x_{i+1}$ non è strettamente decrescente.

Per gli intervalli il narrowing funziona come segue:

$$[a,b] \triangle [c,d] = [e,f]$$
 tale che

$$e = \begin{cases} c & \text{se } a = -\infty \\ a & \text{altrimenti} \end{cases} \text{ e } f = \begin{cases} d & \text{se } b = +\infty \\ b & \text{altrimenti} \end{cases}$$

Correttezza

Consideriamo $C \xrightarrow[]{\gamma} A$, una funzione concreta $f: C \to C$ e una funzione astratta $f^{\sharp}: A \to A$. Possiamo dire che f^{\sharp} è un'approssimazione corretta di f in A se:

$$\forall c \in C : \alpha(f(c)) \leq_A f^{\sharp}(\alpha(c))$$

oppure, equivalentemente:

$$\forall a \in A : f(\gamma(a)) \leq_C \gamma(f^{\sharp}(a))$$

Nel processo di astrazione è ammessa una perdita di informazioni, ciò non è possibile nel processo di concretizzazione, dunque possiamo dire che se $c \in C$. Possiamo dire che $\alpha(c)$ è l'elemento astratto più preciso che rappresenta c.

Figura 1: Condizione di correttezza: $\alpha(f(c)) \leq_A f^\sharp(\alpha(c))$

Figura 2: Condizione di correttezza: $f(\gamma(a)) \leq_C \gamma(f^{\sharp}(a))$

Completezza

Consideriamo $C \xrightarrow{\gamma} A$, una funzione concreta $f: C \to C$ e una funzione astratta $f^{\sharp}: A \to A$. Possiamo dire che:

- f^{\sharp} è backward-complete per f se: $\forall c \in C: \alpha(f(c)) = f^{\sharp}(\alpha(c));$
- f^{\sharp} è forward-complete per f se: $\forall a \in A : f(\gamma(a)) = \gamma(f^{\sharp}(a))$.

I due tipi di completezza rappresentano una situazione in cui non si verifica nessuna perdita di precisione durante l'astrazione. In particolare:

- La **B**-completezza considera l'astrazione sull'output delle operazioni e non si accumula nessuna perdita di precisione astraendo in *p* gli argomenti di *f*;
- La F-completezza considera l'astrazione sull'input delle operazioni e non si accumula nessuna perdita di precisione approssimando il risultato della funzione f calcolata in p.

Figura 4: Condizione di F-completezza

Linguaggio e semantica

Introduciamo in questa sezione il linguaggio che verrà usato nel resto della dispensa e la sua semantica.

Statement	Codice
Variabili	X
Espressioni aritmetiche	e
Assegnamenti	$x \leftarrow e$
Lettura da memoria	$x \leftarrow M[e]$
Scrittura in memoria	$M[e]_1 \leftarrow e_2$
Condizionali	if (e) S_1 else S_2
Salto non condizionale	goto L

La memoria M è vista come un array arbitrariamente grande dove i valori possono essere inseriti e letti.

- $x \in M[e]$ sono contenitori di valori;
- il contenuto di M[e] non è visibile fino alla valutazione di e;
- x è solamente il nome tramite cui accedere al contenitore associato.

Collecting Semantics

È l'insieme dei comportamenti osservabili nella semantica operazionale. La *Collecting Semantics* è il punto di partenza per ogni tipo di analisi (non ne esiste una universale).

La *trace semantics* di un programma accumula informazioni temporali riguardo l'esecuzione: una traccia tiene conto dell'ordine in cui i *program states* sono raggiunti durante l'esecuzione. Le tracce analizzate possono essere dei seguenti tipi:

- L'insieme di tutti i discendenti dello stato iniziale.
- L'insieme di tutti i discendenti dello stato iniziale che può raggiungere uno stato finale.
- Lo stato di tutte le tracce finite dallo stato iniziale.
- L'insieme di tutte le tracce infinite e finite dallo stato iniziale ecc.

Però non sempre siamo interessati alle informazioni temporali ma solamente agli invarianti presenti ad ogni *program point*. Questi invarianti possono essere astratti dalle informazioni temporali attraverso la *collecting semantics*.

Più formalmente, un invariante del programma P al punto di programma l è una qualsiasi proprietà $I \in P$ (store) che è presente ogni talvolta che l viene raggiunto.

La collecting semantics di P è semplicemente l'associazione tra i vari program point e le corrispondenti invarianti ben precise.

Lo stato di input non è noto al momento della compilazione, quindi vengono collezionati tutti gli stati raggiungibili da tutti i possibili ingressi del programma.

Si tratta di una collezione di stati che possono apparire su alcune tracce nei diversi program point. Trattandosi di un'astrazione, non è più possibile risalire alle tracce di esecuzione del programma conoscendo solamente i vari *program states*.

Figura 5: Esiste la traccia rossa? Trace semantics: NO; collecting semantics: NON LO SO.

Control-Flow-Graph (CFG)

E costituito da:

- nodi: corrispondono ai program points;
- archi: passi di computazione etichettati con la corrispondente azione; sono della forma K=(u,lab,v), dove u è il nodo sorgente, v è il nodo di destinazione e lab è l'etichetta.

Test	NonZero(e) or $Zero(e)$
Assegnamenti	$x \leftarrow e$
Lettura da memoria	$x \leftarrow M[e]$
Scrittura in memoria	$M[e]_1 \leftarrow e_2$
Statement vuoto	;

Ogni passo di computazione della semantica operazionale trasforma gli stati del programma:

$$(\rho, \mu)$$
 dove $\rho: Var \to int \ e \ \mu: \mathbb{N} \to int$

- La funzione ρ mappa le variabili del programma al loro valore attuale;
- la funzione μ mappa ogni cella dell'array al suo contenuto nelle celle di memoria.

Una computazione è un percorso che và da un nodo di partenza u e termina in un nodo v. Il percorso è un insieme di archi del CFG. La trasformazione dello stato è data dalla composizione degli effetti degli archi.

$$\llbracket \pi \rrbracket = \llbracket k_n \rrbracket \circ \dots \circ \llbracket k_1 \rrbracket$$

Il **Control Flow Graph** è generato dalla sintassi del programma ed è utile per capire la struttura del codice.

Viene utilizzato per effettuare debugging, testing ed individuare dead code.

Basic Block. Sequenza massima di statements consecutivi con un singolo entry point, un singolo exit point e nessun branch interno.

I *basic block* si identificano facilmente poiché iniziano con un *leader* che può essere dei seguenti tipi:

- l'entry point del programma (il primo statement);
- ogni statement che è target di branch (condizionali o non condizionali) che contengono dei GoTo

• ogni statement che segue un branch (condizionale o non condizionale) o un return.

Dopo aver diviso il codice in *basic block* (individuati tramite i *leader* di ciascun blocco), essi verranno collegati dagli archi, in corrispondenza di:

- GoTo non condizionali;
- branch condizionali / archi multipli;
- flusso di programma (il controllo passa ad un altro blocco se non ci sono branch alla fine).

Se non c'è un unico entry-node n_0 ed un unico exit-node n_f , si aggiungono dummy nodes e gli archi necessari (nessun arco entrante in n_0 e nessun arco uscende da n_f).

Notazione dei CFG

```
Dato un CFG = \langle N, E \rangle:
```

- Se c'è un arco $n_i n_i \in E$:
 - n_i è predecessore di N_i ;
 - n_j è un successore di n_i .
- Per ogni nodo $n \in N$:
 - textitPred(n): è l'insieme dei predecessori di n;
 - textitSucc(n): è l'insieme dei successori di n;
 - un branch node è un nodo che ha più di un successore;
 - un join node è un nodo che ha più di un predecessore;

Depth First Traversal. Il CFG è un grafo diretto e con radice (entry-node). Deve essere attraversato partendo dalla radice ed esplorando in profondità il più possibile ciascun ramo prima di fare backtracking.

E' possibile costruire uno **spanning tree** per il grafo che contenga tutti i nodi, tale che:

- ci sia un percorso dalla radice ad ogni nodo che sia raggiungibile nel grafo originale;
- non devono esserci cicli.

I nodi vengono numerati nell'ordine in cui verranno visitati.

Classificazione degli archi. Dato un arco $x \to y$ in un CFG, esso sarà:

- un arco avanzante: se x è predecessore di y nell'albero;
 - tree edge: se è parte dello spanning tree;
 - forward edge: se non è parte dello spanning tree e x è predecessore di y nell'albero.
- un arco all'indietro: se y è un predecessore di x nell'albero;
- un cross edge: se non è parte dello spanning tree e nessun nodo è predecessore dell'altro.

Extended Basic Block. Insieme massimo di nodi che non contiene nessun nodo di join (oltre all'entry node). Ha un solo ingresso e più uscite.

Natural Loop. Un Loop è un insieme di nodi strettamente connessi. Ha un unico ingresso (l'unico modo per visitarlo). Deve contenere un unico arco all'indietro per ripercorrere il loop.

Un loop che non contiene altri loops è un inner loop.

Per trovare un loop all'interno di un grafo è sufficiente cercare gli archi all'indietro $(n \to d)$. Per costruire un loop si aggiunge d, si aggiunge n (se $n \ne d$), si considera ogni nodo $m \ne d$ all'interno del loop (inserendo tutti i predecessori di m).

(2)	L
5 6	F
8 0	L

Back edge	Natural loop
10→7	{7,10,8}
7→4	{4,7,5,6
	10,8}
4→3	(2.4.5.5.4.2.0)
8→3	{3,4,7,5,6,10,8}
9→1	{1,9,8,7,5,6,
	10,4,3,2}

Why neither {3,4} nor {4,5,6,7} is a natural loop?

Figura 6: Natural loops example

Dominance. Un nodo d domina un nodo n se ogni percorso dall'entry node del grafo fino a n passa attraverso d (d dom n).

- Dom(n): l'insieme dei dominatori del nodo n;
- ogni nodo domina se stesso: $n \in Dom(n)$;
- il nodo d domina strettamente n se $d \in Dom(n)$ e $d \neq n$;
- Dominance-based loop recognition: la entry di un loop domina tutti i nodi interni al loop.

Ogni nodo n ha un unico dominatore immediato m che è l'ultimo dominatore di n su ogni percorso dall'entry node a n (m idom n), $m \neq n$.

Block	Dom	IDom
1	{1}	_
2	{1,2}	1
3	{1,3}	1
4	{1,3,4}	3
5	{1,3,4,5}	4
6	{1,3,4,6}	4
7	{1,3,4,7}	4
8	{1,3,4,7,8}	7
9	{1,3,4,7,8,9}	8
10	{1,3,4,7,8,10}	8

Figura 7: Dominator example

Analisi Statica

Introduzione

L'obiettivo dell'analisi statica è quello di dire, osservando le proprietà semantica di un programma, se una certa proprietà vale o meno. Esistono diverse tipologie di analisi statica:

- Control flow Analysis;
- Data flow Analysis (distributive e non-distributive);

Analisi sul CFG

Viene generato un CFG per ogni procedura. Le analisi che vengono eseguite sono localizzate a 3 livelli:

- 1. **Locali al blocco**: sono eseguite all'interno di uno stesso *basic block*;
- 2. Intra-procedurali: considerano il flusso di informazioni nel singolo CFG;
- 3. **Inter-procedurali**: considerano il flusso di informazioni tra le procedure (con archi che rappresentano le chiamate di funzione).

L'analisi di *data-flow* dice come l'informazione viene manipolata in un blocco. L'informazione è caratterizzata dalla soluzione dell'equazione di punto fisso definita per ogni blocco. In alcuni casi questa equazione è ottenuta in 3 passaggi:

- definendo l'informazione entrante in un blocco, che è l'unione dell'informazione di uscita del blocco precedente;
- definendo l'informazione in uscita dal blocco che è l'informazione in ingresso, modificata dalle operazioni eseguite nel blocco;
- queste definizioni vengono poi combinate nell'equazione del punto fisso.

Le analisi di data-flow seguono il seguente schema:

$$Forward \\ FAin(n) = \begin{cases} \iota \bigoplus_{m \in Pred(n)} FAout(m) & n = n_0 \\ m \in Pred(n) \end{cases} FAout(m) & \tau(FAin(m) = \tau(FAin(m))) \\ \tau(FAin(m) = gen(m) \cup (FAout(m) \setminus kill(m)) \\ \# Backward \\ BAout(n) = \begin{cases} \iota \bigoplus_{m \in Succ(n)} BAin(m) & n = n_f \\ m \in Succ(n) \end{cases} BAin(m) & \tau(BAout(m) = gen(m) \cup (BAin(m) \setminus kill(m)) \\ \# Possible analyses \longrightarrow \bigoplus = \bigcup \\ \# Definite analyses \longrightarrow \bigoplus = \bigcap \end{cases}$$

Soluzioni MFP - MOP - IDEAL

Per le equazioni di data-flow analysis esistono 3 tipi di soluzioni:

- *MFP* (*maximum fixed point*): è la soluzione che combina i valori dell'analisi quando il CFG ha dei nodi in cui convergono due o più percorsi; questa soluzione approssima la *MOP*.
- - loop con guardia sempre vera;
 - un programma che contiene N if statement avrà 2^N percorsi di esecuzione;
- *IDEAL*: è la soluzione migliore ma non è computabile. A differenza della *MOP*, prende in considerazione solamente i percorsi che verrano attraversati sicuramente da almeno qualche esecuzione. Calcola il valore alla fine di ogni possibile percorso di esecuzione e calcola poi il *meet* di questi valori.
 - ogni soluzione più grande di *IDEAL* è scorretta;
 - ogni soluzione più piccola di IDEAL è conservativa (safe);

Se la funzione di trasferimento di ogni arco è *distributiva* $(f(x \cup y) = f(x) \cup f(y))$ (e ogni program point è raggiungibile dall'entry point), allora la soluzione delle equazioni di *data-flow* è la stessa per MOP e MFP (MOP = MFP). Dunque per le funzioni di trasferimento distributive, è possibile calcolare la soluzione MOP attraverso l'algoritmo iterativo del punto fisso.

I **problemi** *distributivi* sono i cosiddetti problemi "*semplici*", come ad esempio: *live variables, available expressions, reaching definitions* e *very busy expressions* (tutte proprietà che ci dicono *COME* un programma viene eseguito).

I **problemi** *non-distributivi* sono quelli che ci dicono *COSA* calcola un programma (ad esempio che l'output è costante, valori positivi, intervalli etc.). Un esempio di problema non distributivo è la *constant propagation analysis*.

```
if(<some codition>) {
   A = 2;
   B = 3;
}
else {
   A = 3;
   B = 2;
}
C=A+B;
```

Se consideriamo la constant propagation, in questo programma il valore ciC sarà sempre 5, indipendentemente dal valore della guardia dello statement if.

Con una soluzione MFP, C non verrà mai considerata una costante, al contrario, con una soluzione MOP otterremo come informazione che la variabile C è una costante.

Data Flow Analysis

Insieme di tecniche che raccolgono informazione su come i dati fluiscono durante l'esecuzione.

Problemi Distributivi

Available Expressions

L'espressione e è available se è valutata e assegnata ad una variabile prima di v (uso della variabile). Tra la valutazione e v non vengono ridefinite le variabili dell'espressione e x (x:=e).

Proprietà: Forward & Definite

Punto fisso:

$$AvailIn(n) = \begin{cases} \emptyset & \text{se } n = n_0 \\ \bigcap_{m \in pred(n)} AvailOut(m) & \text{altrimenti} \end{cases}$$

$$AvailOut(n) = Gen(n) \cup (AvailIn(n) \setminus Kill(n))$$

$$AvailIn(n) = \bigcap_{m \in pred(n)} Gen(m) \cup (AvailIn(m) \setminus Kill(m))$$

Semantica:

Dominio astratto = Ass = {assegnamenti $x \leftarrow e \mid x \notin Var(e)$ } $A \subseteq Ass$

$$\label{eq:linear_equation} \begin{split} & [\![;]\!]^\sharp A = A \\ & [\![NonZero(e)]\!]^\sharp A = [\![Zero(e)]\!]^\sharp A = A \\ & [\![x \leftarrow e]\!]^\sharp A = \begin{cases} (A \backslash Occ(x)) \cup \{x \leftarrow e\} & \text{se } x \notin Var(e) \\ A \backslash Occ(x) & \text{altrimenti} \end{cases} \\ & [\![x \leftarrow M[e]]\!]^\sharp A = A \backslash Occ(x) \\ & [\![M[e_1]\!] \leftarrow e_2]\!]^\sharp A = A \end{split}$$

 $Occ(x) = \{Assegnamenti che coinvolgono x a destra o a sinistra\}$

 $Gen(n) = \{$ espressioni valutate nel blocco n e nessun operando di e è definito nuovamente tra l'ultima valutazione di e in n e la fine di $n\}$

 $Kill(n) = \{$ espressioni uccise da una nuova definizione di $n\}$

Very Busy Expressions

Un assegnamento è busy su un cammino π se $\pi=\pi_1\ k\ \pi_2$ con:

- k è un assegnamento $x \leftarrow e$;
- π_1 non contiene usi di x;
- π_2 non contiene modifiche di $\{x\} \cup Var(e)$.

Un assegnamento è very busy se è busy su ogni percorso da v a exit.

Dice come e quali espressioni anticipare.

Un assegnamento è ucciso in un blocco n se una delle sue variabili è modificata o se e viene usata. Un assegnamento è generato in un blocco n se si trova nel blocco e l'espressione non contiene la variabile che si sta assegnando.

Proprietà: Backward & Definite

Punto fisso:

$$VB_{exit}(p) = \begin{cases} \emptyset & \text{se } p = v_{exit} \\ \bigcap_{q \in succ(p)} VB_{entry}(q) & \text{altrimenti} \end{cases}$$

$$VB_{entry}(p) = Gen(p) \cup (VB_{exit}(p) \backslash Kill(p))$$

$$VB_{exit}(p) = \bigcap_{q \in succ(p)} Gen(q) \cup (VB_{exit}(q) \backslash Kill(q))$$

Semantica:

$$B = 2^{Ass} = \mathcal{P}(Ass)$$

$$[[;]]^{\sharp}B = B$$

$$[[NonZero(e)]]^{\sharp}B = [[Zero(e)]]^{\sharp}B = B \setminus Ass(e)$$

$$[[x \leftarrow e]]^{\sharp}B = \begin{cases} B \setminus (Occ(x) \cup Ass(e)) \cup \{x \leftarrow e\} & \text{se } x \notin Var(e) \\ B \setminus (Occ(x) \cup Ass(e)) & \text{altrimenti} \end{cases}$$

$$[[x \leftarrow M[e]]]^{\sharp}B = B \setminus (Occ(x) \cup Ass(e))$$

$$[[M[e_1] \leftarrow e_2]]^{\sharp}B = B \setminus (Ass(e_1) \cup Ass(e_2))$$

 $Use(n) = \{$ occorrenza di una variabile sul lato destro di uno statement $\}$

Liveness

x è *live* all'uscita del blocco b se verrà usata successivamente. x non è *live* o (*dead*) se viene ridefinita prima di un successivo uso.

 $x \in live$ in un cammino $\pi (v \to exit)$ se:

- π non contiene Def(x) e,
- esiste almeno un uso di x in π che segue la Def(x);

x è live se si trova tra una definizione ed un uso.

Dice se a e b possono essere memorizzate nella stessa locazione, cioè se a e b non sono mai live insieme, allora posso sostituire a con b.

- $x \in Use(n) \Rightarrow x \text{ LiveIn in } n$
- $x \in LiveOut$ in $n \in x \notin VarKill(n) \Rightarrow x LiveIn$ in n;
- $x \in LiveIn$ in almeno un $Succ(n) \Rightarrow x \ LiveOut(n)$;

Falsi positivi:

- x è accessibile attraverso altri nomi \Rightarrow Liveness fallisce;
- analizzi anche cammini non possibili;
- inizializzazione in altre procedure (perché questa analisi è intra-procedurale);

Proprietà: Backward & Possible

Punto fisso:

$$LiveOut(n) = \begin{cases} \emptyset & \text{se } n = exit \\ \bigcup_{m \in Succ(n)} LiveIn(m) & \text{altrimenti} \end{cases}$$

$$LiveIn(n) = Use(n) \cup (LiveOut(n) \backslash VarKill(n))$$

$$LiveOut(n) = \bigcup_{m \in Succ(n)} Use(m) \cup (LiveOut(m) \backslash VarKill(m))$$

Semantica:

Dominio astratto =
$$\mathcal{P}(Var)$$

 $L \subseteq Var$

$$\begin{aligned} & [\![;]\!]^\sharp L = L \\ & [\![NonZero(e)]\!]^\sharp L = [\![Zero(e)]\!]^\sharp L = L \cup Var(e) \\ & [\![x \leftarrow e]\!]^\sharp L = Var(e) \cup (L \setminus \{x\}) \\ & [\![x \leftarrow M[e]]\!]^\sharp L = Var(e) \cup (L \setminus \{x\}) \\ & [\![M[e_1] \leftarrow e_2]\!]^\sharp L = L \cup Var(e_1) \cup Var(e_2) \end{aligned}$$

 $LiveIn(n) = \{ \text{sono le variabili } live \text{ in } n \text{ che sono } live \text{ su almeno un arco entrante} \}$ $LiveOut(n) = \{ \text{sono le variabili } live \text{ in } n \text{ che sono } live \text{ su almeno un arco uscente} \}$ VarKill(n) = Def(n), cioè le definizioni presenti in n

<u>True Liveness</u>: un true use è un uso in un assegnamento ad una variabile *live*. Se assegno x ad una variabile non-live, allora anche x non è live.

Copy Propagation

L'analisi ad ogni program point tiene traccia delle copie di x. Se ho un assegnamento $T \leftarrow x+1$ e poi $y \leftarrow T$, allora quest'ultimo è inutile.

Proprietà: Forward & Definite

Punto fisso:

$$Copie_{entry}(n) = \bigcap_{m \in Pred(n)} Copie_{exit}(m)$$

$$Copie_{exit}(n) = \bigcap_{m \in Pred(n)} Gen(m) \cup (Copie_{exit}(m) \setminus Kill(m))$$

Semantica:

Dominio astratto = \mathcal{V}_x = $\{V \subseteq Var \mid x \in V\}$ perché x è copia di se stesso.

$$V \subseteq Var$$

Entry $V_0 = \{x\}$ perché x è copia di se stesso e cerco le altre sue copie.

$$\label{eq:continuous_equation} \begin{split} & [\![;]\!]^\sharp V = V \\ & [\![NonZero(e)]\!]^\sharp V = [\![Zero(e)]\!]^\sharp V = V \\ & [\![x \leftarrow e]\!]^\sharp V = [\![x \leftarrow M[e]]\!]^\sharp V = \{x\} \\ & [\![z \leftarrow y]\!]^\sharp V = \begin{cases} V \cup \{z\} & \text{se } y \in V (\mathbf{y} \, \grave{\mathbf{e}} \, \operatorname{copia} \, \operatorname{di} \, \mathbf{x}) \\ V \backslash \{z\} & \text{altrimenti} \end{cases} \\ & [\![y \leftarrow e]\!]^\sharp V = V \backslash \{y\} \\ & [\![M[e_1] \leftarrow e_2]\!]^\sharp V = V \end{split}$$

$$Gen(n) = \{(x == y) \mid n \text{ contiene } x \leftarrow y\}$$

$$Kill(n) = \{(x == y) \mid x \text{ è ridefinita in } n\}$$

Reaching Definition

Dato un program point p vogliamo identificare le definizioni di variabili che raggiungono p. Viene usata in *code motion*: se uso un assegnamento in tutto il ciclo senza modificarlo, allora lo sposto all'entrata del ciclo.

Proprietà: Forward & Possible

Punto fisso (non c'è la semantica):

$$RD_{entry}(n) = \begin{cases} i = \{(x, ?) \mid x \in Var\} & \text{se } n = entry \\ \bigcup_{m \in Pred(n)} RD_{exit}(m) & \text{altrimenti} \end{cases}$$

$$RD_{exit}(n) = Gen(n) \cup (RD_{entry}(n) \setminus Kill(n))$$

 $\begin{aligned} &\{(x,p)\mid x\in Vars, p \text{ punto di programma}\}\\ &\textit{Inizializzazione}\text{: }i=\{(x,?)\mid x\in Vars, \text{ variabile non inizializzata})\ \}\\ &\textit{Gen}(n)=\{\text{definizioni }(x,l) \text{ dentro }n \text{ e disponibili alla fine di }n\ \}\\ &\textit{Kill}(n)=\{(x,p)\mid x \text{ è ridefinita in }n\} \end{aligned}$

Riepilogo

	Possible (\bigcup)	Definite (\bigcap)
Forward	Reaching Definition	Available Expr, Copy Propagation
Backward	Liveness	Very Busy Expr

Available Expressions:

$$AvailIn(n) = \begin{cases} \emptyset & \text{se } n = n_0 \\ \bigcap_{m \in pred(n)} AvailOut(m) & \text{altrimenti} \end{cases}$$

$$AvailOut(n) = Gen(n) \cup (AvailIn(n) \setminus Kill(n))$$

Very Busy:

$$VB_{exit}(p) = \begin{cases} \emptyset & \text{se } p = v_{exit} \\ \bigcap_{q \in succ(p)} VB_{entry}(q) & \text{altrimenti} \end{cases}$$

$$VB_{entry}(p) = Gen(p) \cup (VB_{exit}(p) \setminus Kill(p))$$

Liveness:

$$LiveOut(n) = \begin{cases} \emptyset & \text{se } n = exit \\ \bigcup_{m \in Succ(n)} LiveIn(m) & \text{altrimenti} \end{cases}$$

$$LiveIn(n) = Use(n) \cup (LiveOut(n) \setminus VarKill(n))$$

Reaching Definition:

$$RD_{entry}(n) = \begin{cases} i = \{(x,?) \mid x \in Var\} & \text{se } n = entry \\ \bigcup_{m \in Pred(n)} RD_{exit}(m) & \text{altrimenti} \end{cases}$$

$$RD_{exit}(n) = Gen(n) \cup (RD_{entry}(n) \setminus Kill(n))$$

Problemi Non-Distributivi

Costanti

Ogni singoletto non è confrontabile con gli altri. Se una costante assume due valori va in \top . È un reticolo completo poiché contiene \emptyset ed è ACC perché è finito in altezza.

$$\alpha(\{0,1\}) = \top$$

$$\alpha(\{5\}) = 5$$
Abstract states: Var \rightarrow Const

Dominio concreto: $\mathbb{V} \to \mathbb{Z}$ Dominio astratto: $\mathbb{V} \to \mathcal{P}(\mathbb{Z})$

Semantica astratta delle espressioni:

$$op = operatore$$

$$a \ op \ b = \begin{cases} a \ op \ b & \text{se a e b sono costanti} \\ \top & \text{se } a = \top \lor \ b = \top \end{cases}$$

$$\llbracket c \rrbracket^\sharp D = c$$

$$\llbracket op \ e \rrbracket^\sharp D = op^\sharp \llbracket e \rrbracket^\sharp D$$

$$\llbracket e_1 \ op \ e_2 \rrbracket^\sharp D = \llbracket e_1 \rrbracket^\sharp D \ op^\sharp \ \llbracket e_2 \rrbracket^\sharp D$$

$$\llbracket x \rrbracket^\sharp D = D(x)$$

Semantica astratta dei comandi:

 $D={
m memoria}$

Segni

Dominio rappresentato da un semipiano (un insieme di punti), quindi non va subito a ⊤.

Intervalli

Il dominio degli Intervalli non è *ACC*, dunque non garantisce la terminazione: per questo viene introdotto il *widening*.

$$[a,b] \text{ dove } a \leq x \leq b \text{ (convessi)}$$

$$\mathbb{I} = \{[l,u] \mid l \in \mathbb{Z} \cup \{-\infty\}, \, u \in \mathbb{Z} \cup \{+\infty\}, \, l \leq u\}$$

Semantica astratta delle espressioni:

•
$$[l_1, u_1] + {\sharp} [l_2, u_2] = [l_1 + l_2, u_1 + U_2]$$

•
$$-^{\sharp}[l,u] = [-u,-l]$$

•
$$[l_1, u_1] *^{\sharp} [l_2, u_2] = [a, b]$$
 dove:

$$-a = min(l_1 * l_2, l_1 * u_2, l_2 * u_1, l_2 * u_2)$$

$$-b = max(l_1 * l_2, l_1 * u_2, l_2 * u_1, l_2 * u_2)$$

$$\bullet \ [l_1,u_1] =^\sharp [l_2,u_2] = \begin{cases} [1,1] & \text{se } l_1 = l_2 = u_1 = u_2(costanti) \\ [0,0] & \text{se } u_1 < l_2 \lor \ u_2 < l_1 \\ [0,1] & \text{altrimenti (intervalli uguali che approssimano valori diversi)} \end{cases}$$

•
$$[l_1, u_1] <^{\sharp} [l_2, u_2] = \begin{cases} [1, 1] & \text{se } u_1 < l_2 \\ [0, 0] & \text{se } u_2 \le l_1 \\ [0, 1] & \text{altrimenti} \end{cases}$$

Semantica astratta dei comandi:

$$D: \mathbb{V} \to \mathbb{I}$$

Analisi Dinamica

L'analisi dinamica di un programma si basa sulla sua esecuzione e viene utilizzati in vari ambiti: testing, debugging, emulation/virtualization, profiling/tracing, monitoring, dynamic slicing.

Nelle sezioni seguenti ne analizziamo alcuni nel dettaglio.

Testing

Si tratta principalmente dell'esecuzione di un programma basata su un campione di dati (molto piccolo) passato come input.

L'**obiettivo** è la ricerca di bug/errori/difetti del software, senza correggerli. Questa operazione viene svolta nella fase di testing da professionisti con un'esperienza nella ricerca e identificazione dei bug.

Durante la fase di testing si devono ricercare:

- mistake: un'azione umana che ha prodotto un risultato scorretto;
- fault: un passaggio scorretto (una definizione di variabile...) all'interno del programma;
- failure: la mancata abilità da parte del sistema di svolgere le funzioni richieste;
- errori: la differenza tra il valore atteso e il valore effettivamente calcolato/osservato;
- **specifiche**: un documento che specifica, in modo completo e preciso, le richieste e le caratteristiche del sistema e/o dei componenti e spesso delle procedure per verificare quali delle disposizioni sono state soddisfatte.

Debugging

L'**obiettivo** è l'identificazione, l'isolamento e la risoluzione dei problemi/bug. Questa operazione si può svolgere durante la fase di sviluppo del software oppure in una fase apposita in cui vengono sistemati i bug riportati dopo i test.

Program Slicing

Si tratta di una tecnica di decomposizione che trasforma un programma originale, cancellandone alcune istruzioni che non hanno alcun effetto sulle *variabili di interesse* nei *punti di interesse*.

Lo *slice* è il programma trasformato secondo il *criterio di slicing* che descrive i parametri di interesse: *V* (insieme delle variabili di interesse) e *n* (punti di interesse del programma).

Ci sono diversi motivi per i quali effettuare il *program slicing*: *program debugging*, *testing* (lo slicing riduce i costi del *regresssion testing* dopo una trasformazione del codice), *parallelizzazione*,

compresione di una programma (effettuare lo slicing aiuta a comprendere come viene eseguito un programma e quali variabili verranno modificate nei vari percorsi) e mantenimento del software (per modificare il codice senza side effects indesiderati in giro per il programma).

Esistono diversi tipi di program slicing:

- *Static slicing*: l'equivalenza tra programma originale e slice deve, implicitamente, essere valida per ogni possibile input;
- *Conditioned slicing*: preserva il significato del programma originale per un insieme di input che soddisfa una particolare condizione ϕ ;
- *Dynamic slicing*: considera una particolare computazione, e dunque un particolare input, in modo da preservare il significato del programma unicamente per quell'input.

Esistono, inoltre, diverse forme di program slicing:

- *Korel & Laski* (*KL*): è una forma di slicing molto forte in cui il programma e lo slice devono seguire *paths* identici. Il programma e lo slice hanno la stessa semantica operazionale. Il *path* seguito dallo slice deve essere un *subpath* dell'esecuzione originale.
- Iteration Count (IC): richiede che lo slice e il programma si pareggino solo ad una certa iterazione k di un program point n (cioè quando lo statement al program point n viene eseguito per la k-esima volta), e non per tutte le iterazioni dello stesso program point.
- *KL-IC*(combinazione dei precedenti): richiede che il programma e lo slice seguano *paths* identici e siano uguali solamente ad una particolare iterazione di un certo program point.