Ionizující záření a jeho detekce

Přednáška č. 08

OBSAH PŘEDNÁŠKY

lonizující záření	<u>3</u>
Veličiny ionizujícího záření	<u>22</u>
Interakce ionizujícího záření	<u>33</u>
Metody detekce ionizujícího záření	<u>44</u>
Detektory ionizujícího záření	50

Ionizující záření

IONIZUJÍCÍ ZÁŘENÍ

- Ionizující záření je souborné označení pro záření, jehož kvanta mají dostatečně vysokou energii na to, aby přímo či nepřímo odtrhovaly (tj. ionizovaly) podél své dráhy z elektronového obalu atomů elektrony.
- Tímto procesem vzniká z daného atomu kladný iont, zatímco uvolněný elektron reaguje s dalším atomem a dává iont záporný – vzniká iontový pár.
- Iontové záření je tedy přenos energie, který může být buď ve formě hmotných částic, či ve formě vln elektromagnetického záření.

DĚLENÍ IONIZUJÍCÍHO ZÁŘENÍ

- Do ionizujícího záření se tradičně zařazují:
 - rentgenové záření (fotony, X-ray)
 - záření α (proud heliových jader ⁴He)
 - záření β (proud elektronů nebo pozitronů)
 - záření γ (fotony)
 - neutronové záření (proud neutronů)

• Podle náboje:

- **elektroneutrální** fotony (RTG, záření gamma), neutrony, ionizují sekundárně (prostředníkem bývají elektrony)
- polární elektrony, pozitrony, protony, štěpné produkty primární ionizace

• Podle částic:

- elektromagnetické, fotonové rentgenové záření, záření gamma
- **korpuskulární** elektrony, pozitrony, neutrony, produkty štěpení jader.

ALFA

- Alfa částice se označuje symbolem α nebo He²⁺
- Záření alfa je korpuskulární (částicové) záření.
- Jeho částicemi je proud jader helia ₄He.
- Částice α vznikají při α-rozpadu těžkých jader popsaném rovnicí:

$$_{Z}^{A}X \rightarrow _{Z-2}^{A-4}Y + _{2}^{4}He + \Delta E$$

- Vzniklé částice mají jen několik možných hodnot energie
- α-záření má čárové energetické spektrum.
- Alfa částice se pohybují poměrně pomalu a mají malou pronikavost (lze je odstínit listem papíru), ale zato mají silné ionizační účinky na okolí.
- Nebezpečná je především vnitřní kontaminace, tedy vpravení α-zářiče do organismu.
- Má nenulovou klidovou hmotnost, proto se nemůže pohybovat rychlostí světla, ale pouze nižšími rychlostmi.

BETA - ELEKTRON

- Označuje se symbolem β⁻ (elektron)
- Záření beta je korpuskulární (částicové) záření.
- Jeho částicemi je proud elektronů (má náboj 1e!).
- β- lze elektromagneticky ovlivňovat!
- Přeměna beta je druh radioaktivní přeměny, při které neutron v atomovém jádru vyzáří elektron (pozitron) a elektronové antineutrino, přičemž se neutron změní na proton.

β- přeměna za vzniku elektronu a elektronového antineutrina:

$$_{Z}^{A}X \rightarrow_{Z+1}^{A} X' + \beta^{-} + \bar{\nu}_{e}$$

- Protonové číslo nuklidu se tak zvýší o 1 a nukleonové číslo se nezmění.
- Podobně jako β⁻ částice se mohou chovat i urychlené elektrony pocházející z atomových obalů (např. Katodové záření)

7

BETA - POZITRON

- Pozitron (neboli antielektron) je antičástice elektronu.
- Označuje symbolem β⁺ (pozitron).
- β⁺ lze elektromagneticky ovlivňovat!
- Je to složka antihmoty, má kladný elementární elektrický náboj, spin 1/2 a stejnou hmotnost jako elektron.
- Částice β+ vznikají při reakci zvané pozitronová přeměna, kdy dojde k emisi pozitronu a elektronového neutrina.
- Pozitronovou přeměnu lze popsat rovnicí:

$$_{Z}^{A}X \rightarrow_{Z+1}^{A} X' + \beta^{-} + \bar{\nu}_{e}$$

- Vzniklý pozitron velmi rychle anihiluje s elektronem a vznikají dva fotony γ o energii 0,51 MeV.
- Pozitronová přeměna se vyskytuje prakticky jen u umělých nuklidů
- Může vzniknout i interakcí hmoty s fotonem s E>1,022 MeV, při tomto procesu vznikne pár elektron-pozitron.

8

GAMA RADIACE

- Záření gama (γ) je vysoce energetické elektromagnetické záření (FOTONY!).
- Vzniká při jaderných reakcích nebo radioaktivní přeměně přechodem jádra z vyššího do nižšího energetického stavu, přičemž se jádro zbavuje své excitační energie.

- Lze ho považovat za záření o energii fotonů nad 10 keV.
- Záření gama má čárové spektrum, to znamená, že daný radionuklid emituje pouze fotony s určitými energiemi, které jsou pro jeho přeměnu charakteristické.
- U prakticky používaných zdrojů záření gama činí jeho energie desítky keV až jednotky MeV.
- K nejčastěji používaným zdrojům gama záření patří kobalt ⁶⁰Co, cesium ¹³⁷Cs a iridium ¹⁹²Ir.
- Záření γ interaguje s prostředím nepřímo, pomocí fotoelektrického jevu,
 Comptonova rozptylu a tvorby elektron-pozitronových párů.

RENTGENOVÉ ZÁŘENÍ

- Rentgenové paprsky jsou elektromagnetické ionizující záření (FOTONY!).
- Jsou to fotony s energií 5–200 keV, která je dostačující k vyražení elektronu z atomového obalu (ionizaci).
- RTG záření vzniká jen elektronovém obalu.
- Vlnové délky nejenergičtější části RTG záření se částečně překrývají s těmi záření gama.
- Zdrojem RTG záření je:
 - Přirozeným zdrojem je záření hvězd (např. Slunce), ale i dalších kosmických zdrojů.
 - Umělým zdrojem RTG záření je například rentgenka.
- Používané zdroje RTG produkují dva typy záření s odlišným rozložením energie ve spektru:
 - Charakteristické záření
 - Brzdné záření

RTG/GAMA ENERGIE

NEUTRONOVÁ RADIACE

- Neutronové záření je druh ionizujícího záření, tvořeného proudem volných neutronů.
- Neutronové záření je korpuskulární (částicové) záření.
- Neutronové záření je často nazýváno nepřímým ionizačním zářením.
- Vzniká při jaderném štěpení nebo fúzi, následně interagují s jádry dalších atomů a vytvářejí tak nové izotopy.
- Neutronové interakce jsou vysoce ionizující.
 - Pružní srážky jádrům předává část své kinetické energie
 - Nepružné srážky z jader se mohou uvolňovat i nabité částice
- Příklad ionizace: Při absorpci neutronu dochází k emisi gama záření, které následně odstraní elektron z atomového obalu, nebo jádro poodražené po interakci s neutronem je ionizováno a způsobuje více tradičních následných ionizací i dalších atomech.
- Neutrony nemají náboj, mají větší pronikavost než α nebo β.

RADIONUKLID

- Radionuklid je nuklid s nestabilním jádrem, tedy s jádrem charakterizovaným přebytečnou energií, která se uvolňuje buď vytvořením nových částic (radioaktivita) nebo do elektronu v atomu.
- Tímto způsobem radionuklid prochází radioaktivním rozpadem a uvolňuje buď subatomární částice nebo záření gama.
- Radionuklidy vznikají v přírodě nebo mohou být vytvořeny uměle.
- Každý radionuklid má svůj typický poločas rozpadu a druh přeměny.

• Využití v medicíně:

- Laboratorní metody založené na detekci záření (např. RIA, tj. Radioimunoanalýza). Dnes již téměř nepoužívá.
- Klíčovou roli hrají radioizotopy v nukleární medicíně, kde se používají k výrobě radiofarmak.
 - Jejich rozložení je pak sledováno speciálními přístroji (např. PET, Gamakamera, ...).

SPEKTRUM RADIONUKLIDU

- Radionuklidy emitují v průběhu rozpadu různé částice s různou energii.
- Jejich emisní spektrum může být čárové nebo kontinuální
- Emisní spektrum jednoznačně určuje typ radioizotopu

Gama spektroskopie

- Gama spektroskopie je kvantitativní metoda studia energetického spektra zdrojů gama záření
- Gama spektrum je pro nuklidy obsažené v objektu charakteristické.

Cobalt-60 1.17 and 1.33 MeV

662 keV

GAMA SPEKTRUM UHLÍKU 12C

ABSORPCE IONIZUJÍCÍHO ZÁŘENÍ

- Absorpce ionizujícího záření je ztráta časti energie záření při průchodu absorbující látkou.
- Způsob ztráty energie závisí na druhu ionizujícího záření a na fyzikálních vlastnostech absorbující látky.

• Matematickým vyjádřením absorpce γ záření je **Lambertův zákon**.

$$I = I_0 \cdot e^{-\beta \delta}$$

kde I je intenzita světla po průchodu prostředím o tloušťce δ , přičemž I $_0$ představuje intenzitu prošlého světla pro δ =0, tj. při nulové tloušťce vrstvy. Konstanta β je absorpční koeficient.

• β závisí na: hustotě, protonovém čísle a energii ionizujícího záření

OCHRANA PŘED RADIACÍ

- Základní principy ochrany před zářením ALARA
- Ochrana před zářením:
 - Vzdálenost intenzita ionizujícího záření ubývá se čtvercem vzdálenosti, tj. po 10 m je 100x nižší, po 100 m je 10000x nižší, po 1 km je milionkrát nižší atd.
 - Čas čím kratší doba ozáření, tím menší je kumulovaná dávka
 - Stínění použité v závislosti na druhu a energii záření
- Princip ALARA (As Low As Reasonably Achievable)
 - Přístup usilující, aby všechny dávky byly tak nízké, jak je rozumně dosažitelné při uvážení ekonomických a sociálních hledisek

STÍNĚNÍ IONIZUJÍCÍHO ZÁŘENÍ PODLE DRUHŮ A ENERGIE

- Záření alfa tenká vrstva papíru nebo plastu
- Záření beta lehký materiál, např. 5 10 mm plexiskla nebo plastu
- Záření gama materiál s velkou hustotou olovo, popřípadě beton
- Neutrony lehké materiály (polyetylen, voda, beton) často s příměsí materiálu, které velmi dobře absorbují neutrony

RADIACE POZADÍ

- Rozdělení zdrojů ozáření pro průměrného obyvatele světa (Zdroj: UNSCEAR, IAEA)
- Přírodní radiační pozadí občana ČR: 2,5 až 3 mSv/rok

PŘÍRODNÍ ZDROJE RADIACE POZADÍ

- Kosmické záření ze Slunce a z hlubin vesmíru.
 - Některé složky vznikají v atmosféře Země srážkami s primárním kosmickým zářením.
 - Dávka od kosmického záření roste s nadmořskou výškou.
- Rozpadem radia v zemské kůře vzniká radioaktivní plyn radon, který z
 podloží proniká do domů nebo do pitné vody.
 - Radon je zářičem alfa, záření tedy není nebezpečné pro povrch našeho těla.
 - Nebezpečné je vdechování tohoto plynu, neboť dceřiné produkty vzniklé přeměnou radonu se mohou usadit v plicích a způsobit tak ozáření nechráněné plicní tkáně.
- Zemská kůra obsahuje přírodní radioaktivní prvky, nejčastěji uran, thorium, radium.
 - Významným přírodním radioizotopem je izotop draslíku ⁴⁰K. Obsahují ho takřka všechny potraviny i naše vlastní tělo.
 - Přírodní radionuklidy obsahuje i vzduch a voda.

UMĚLÉ ZDROJE RADIACE POZADÍ

 Televizní nebo počítačové obrazovky, svítící ciferníky hodinek a přístrojů, průmyslové zářiče používané v defektoskopii, ke sterilizaci nebo ve výzkumu.

 Z umělých zdrojů záření představují největší podíl lékařské aplikace
 použití záření a radionuklidů

při vyšetření nebo při léčení např. rakoviny.

 Jaderné elektrárny, výrobny paliva, přepracovací závody a úložiště jaderného odpadu přispívají k celkovému průměrnému ozáření asi setinou procenta.

Veličiny ionizujícího záření

VELIČINY POPISUJÍCÍ RADIACI A IONIZUJÍCÍ ZÁŘENÍ

Konstanty

- Poločas přeměny $(T_{\frac{1}{2}})$: Doba, za kterou se přemění polovina celkového počtu atomárních jader ve vzorku.
- Střední doba života (τ): čas setrvání dané entity v nestabilním stavu
- **Přeměnová konstanta (λ)**: Pravděpodobnost jaderné přeměny, která je pro každé radioaktivní jádro charakteristická.

Časově závislé veličiny

- Celková aktivita (A) Aktivita zářiče vyjadřuje počet radioaktivních přeměn za jednu sekundu.
- Počet částic (N) celkový počet atomů radionuklidu ve vzorku
- Specifická aktivita látky (S_A) aktivita vztažená na jednotku hmoty nebo objemu této látky, ve které je radionuklid v podstatě rovnoměrně rozptýlen

POLOČAS PŘEMĚNY, PŘEMĚNOVÁ KONSTANTA

- Poločas přeměny $T_{\frac{1}{2}}$ charakterizuje rychlost radioaktivní přeměny jádra a charakterizuje příslušný izotop.
- Jedná se o dobu, ve které dojde k přeměně poloviny atomů daného radioaktivního nuklidu.
- Jde konstantu, kterou lze s velmi dobrou spolehlivostí pokládat za konstantní navzdory běžným fyzikálním vlivům jako je tlak, teplota nebo chemické okolí příslušného izotopu.
- **Přeměnová konstanta** λ charakterizuje předpokládanou rychlost přeměny radionuklidu.

$$t_{1/2} = \frac{ln2}{\lambda}$$

 $kde: T_{1/2}$ je poločas přeměny; λ je rozpadová konstanta

Prvek	Poločas přeměny
Thorium ²²³ Th	0,9 s
Radon ²²² Ra	3,8 days
Carbon ¹⁴ C	5730 years
Uranium ²³⁸ U	4,468·10 ⁹ years

AKTIVITA

- Aktivita radioaktivní látky (A) je počet radioaktivních přeměn v této látce vztažený na jednotku času.
- Vyjadřuje rychlost transformace radioaktivní látky

$$A = \left| \frac{\Delta N}{\Delta t} \right| = \lambda N$$

kde: **A** celková aktivita; **N** je celkový počet atomů ve vzorku; **t** je čas; λ je rozpadová konstanta

[Bq] - Bequerel

• Aktivita 1Bq znamená, že ve vzorku dojde k 1 rozpadu za 1 sekundu

[Ci] - Curie

- Objekt má aktivitu A=1 Ci, když dojde každou sekundu k tolika rozpadům, jako v 1g radioizotopu Radium (Ra).
- Je to cca 3,7.10¹⁰ Bq, tj. 37 000 000 000 rozpadů za sekundu

ZÁKON RADIOAKTIVNÍHO ROZPADU

• Popisuje kvantitativně rozpad ve velkém souboru radioaktivních prvků.

$$N_t = N_0 \cdot e^{-\lambda \cdot t}$$

kde: N_t je počet atomů v daném vzorku v čase t, N_0 je počet atomů v čase t=0, λ je rozpadová konstanta, t definovaný čas.

• Zákon radioaktivního rozpadu lze vyjádřit i změnou aktivity radioizotopu

$$A_t = A_0 \cdot e^{-\lambda t}$$

kde: A_t je aktivita daného vzorku v čase t; N_0 je aktivita vzorku v čase t=0; λ je rozpadová konstanta, t definovaný čas

DÁVKA (EXPOZICE), ABSORBOVANÁ DÁVKA, PŘÍKON

• Expozice (dávka) je dozimetrická veličina vyjadřující, kolik ionizujícího záření prošlo určitým bodem prostoru.

Absorbovaná dávka D [Gy] (Gray)

- Absorbovaná dávka (dávka ionizujícího záření) je fyzikální veličina, která udává energii dodanou jednotkovému množství hmoty průchodem příslušného záření.
- Jednotkou absorbované dávky záření je nebo [J.kg⁻¹]
- Dávka 1 Gy je energie 1 J absorbovaná v kilogramu látky.
- Jelikož převážná část absorbované energie se v konečném důsledku mění na teplo, charakterizuje nám absorbovaná dávka i množství předané tepelné energie - zahřátí ozařovaného materiálu

Dávkový příkon D' [Gy.s-1]

 je dávka obdržená v daném místě ozařovanou látkou za jednotku času, tedy poměr přírůstku dávky DD za časový interval Dt

JAK "VELKÁ" JE DÁVKA 1 GY?

Jak velká je dávka 1Gy?

Energie 1 J ohřeje 1 ml vody o 0,25°C

Podle definice SI jednotek 1 J = 1kg.m².s⁻²

Také je znáno, že elektron 1e⁻ váží 10⁻²⁷ Kg Je tedy potřeba hodně elektronů k ohřevu

Dále také víme, že $1 \text{ eV} = 1,602.10^{-19} \text{ J, případně } 1 \text{J} = 6,24 \cdot 10^{18} \text{ eV}$

Předpokládejme, že jeden elektron má průměrnou energii 106 eV

Takže pro ohřev 1ml vody o 0,25°C potřebujeme:

6,24·10¹⁸ / 106 = **6.24·10**¹² elektronů!

EKVIVALENTNÍ DÁVKA

Ekvivalentní dávka H [Sv] (Sievert)

- Biofyzikální veličina, která popisuje biologický účinek ionizujícího záření.
- Závisí na absorbované dávce a typu záření.
- Vyjadřuje velikost dávky záření gama, která by vyvolala stejné poškození organismu, jako absorbované záření daného množství a typu.

 Dávkový ekvivalent se z absorbované dávky spočítá vynásobením údaje faktorem kvality záření Q a udává se v sievertech.

$$H = D \cdot Q$$

Q = 1 pro X-Ray, β , γ

Q = 5 pro **rychlé protony** (5-20 pro rychlé neutrony)

 $Q = 20 \text{ pro } \alpha$

RADIAČNÍ LIMITY

- Obecné limity se vztahují na celkové ozáření ze všech radiačních činností kromě profesního (včetně přípravy na výkon povolání), lékařského a havarijního ozáření
- Obecné limity se vztahují na průměrné vypočtené ozáření v kritické skupině obyvatel.
- Princip ALARA vede k udržování dávek na nejnižší možné úrovni
- Často i pracovníci se zářením splňují obecné limity.

	Limity		
	Obecné - obyvatelstvo	Radiační pracovníci	Učni a studenti
Efektivní dávka za rok (mSv)	1	50 (20)	6
Efektivní dávka za 5 za sebou následujících let (mSv)	5	100	-
Ekvivalentní dávka v oční čočce za rok (mSv)	15	150	50
Průměrná ekvivalentní dávka v 1 cm² kůže za rok (mSv)	50	500	150
Ekvivalentní dávka na ruce od prstů až po předloktí a na nohy od chodidel až po kotníky za rok (mSv)	-	500	150

POROVNÁNÍ DÁVEK A LIMITŮ

Spaní vedle další osoby	0,00005 mSv
Sníst jeden banán	0,0001 mSv
Používaní CRT monitoru po dobu 1 rok	0,001 mSv
Průměrná denní dávka od pozadí	0,01 mSv
Let z New Yorku do Los Angeles	0,04 mSv
Průměrná dávka obdržena obyvateli v okolí JE Three Mile Island v době nehody	0,07 mSv
Roční dávka od přírodního draslíku v organismu	0,17 mSv
Limit pro obyvatelstvo	1 mSv
Roční dávka od přírodního pozadí	2,4 mSv
Dávka obdržena za 1 den v místě 50 km SZ od JE Fukušima 16. března 2011	3,6 mSv
Rentgen hrudníku	5,8 mSv
Dávka za 1 hodinu strávenou v Černobylské JE v roce 2010	6 mSv
Maximální povolená roční dávka pro pracovníky se zářením	50 mSv
Limit pro pracovníky se zářením v havarijních situacích při ochraně majetku	100 mSv
Nejnižší roční dávka spojená s nárůstem rizika rakoviny	100 mSv
Limit pro pracovníky se zářením v havarijních situacích při záchraně života	250 mSv
Jednorázová dávka způsobující nemoc z ozáření	400 mSv
Vážné jednorázové ozáření, může způsobovat smrt	2000 mSv
Velmi vážné jednorázové ozáření, při včasném lékařském zásahu nemusí znamenat smrt	4000 mSv
Velmi vážné jednorázové ozáření, které vede i při včasné léčbě ke smrti	8000 mSv

RADIOAKTIVITA NĚKTERÝCH MATERIÁLŮ

1 dospělý člověk (100 Bq/kg)	7000 Bq
1 kg kávy	1000 Bq
1 kg superfosfátového hnojiva	5000 Bq
Vzduch v průměrném domě (100 m²) v Austrálii (radon)	3000 Bq
Vzduch v průměrném domě (100 m²) v Evropě (radon)	až 30 000 Bq
1 domácí požární detektor kouře (obsahuje americium)	30 000 Bq
Radioisotopový zářič pro lékařskou diagnostiku (příklad)	70 millionů Bq
Radioisotopový zářič pro lékařskou terapii (příklad)	100 000 000 millionů Bq (100 TBq)
1 kg vitrifikovaných vysokoaktivních odpadů po 50 letech	10 000 000 millionů Bq (10 TBq)
1 luminiscenční světelné znamení "Exit" (obsahuje tritium)	1 000 000 millionů Bq (1 TBq)
1 kg uranu	25 millionů Bq
1 kg uranové rudy (naleziště Kanada, 15 %)	25 millionů Bq
1 kg uranové rudy (naleziště Austrálie, 0.3 %)	500 000 Bq
1 kg nízkoaktivních jaderných odpadů (příklad)	1 millionů Bq
1 kg uhelného popílku	2000 Bq
1 kg granitu (žuly)	1000 Bq

Interakce ionizujícího záření

INTERAKCE IONIZUJÍCÍHO ZÁŘENÍ

- Při průchodu ionizujícího záření hmotou dochází k interakci mezi částicemi nebo fotony záření a strukturami okolních atomů, tedy jádrem a elektronovým obalem.
- Samotný průběh interakce závisí na charakteru záření, jeho kinetické energii a složení látky ve které interakce probíhá.
- Ionizující záření lze rozdělit do tří skupin:
 - Elektromagnetické (fotonové) záření RTG a γ záření;
 - Nabité částice p, α, β;
 - Nenabité částice neutrony.

GAMA INTERAKCE

Photoelectric effect

E < 50keV

Compton's scattering

E = 100 keV - 10 MeV

GAMA INTERAKCE

NEUTRONOVÁ INTERAKCE

Elastic scattering

NEUTRONOVÁ INTERAKCE

Inelastic scattering

$$n^{0} + {}^{N}A_{z} \rightarrow {}^{N}A_{z}^{*} + n^{0'}$$

$${}^{N}A_{z}^{*} \rightarrow {}^{N}A_{z} + \gamma$$

NEUTRONOVÁ INTERAKCE

Neutron capture and neutron activation

Metody detekce ionizujícího záření

DRUHY RADIAČNÍCH METOD

- Pro aplikace ionizujícího záření se využívají:
 - uzavřené zářiče rentgenové a radioisotopové (někdy i urychlovače částic)
 - otevřené zářiče radioaktivní kapaliny, plyny či aerosoly.
- Veškeré aplikace ionizujícího záření lze rozdělit na dvě základní skupiny:

Radiační měřící, analytické a detekční metody

- Absorpční transmisní měření
- Rozptylové a fluorescenční měření
- Emisní radiační měření
- Měření radioaktivních vzorků

Radioaktivní záření a technologické metody

- Zde je využívána především energie předaná látce při ozařování, ionizace látek a následné fyzikální, chemické a biologické účinky ionizujícího záření v ozařovaném objektu.
- V medicíně: radioterapie.

ABSORPČNÍ TRANSMISNÍ MĚŘENÍ

- Založena na měření absorpce záření v látkách, nejčastěji pronikavého elektromagnetického záření RTG a gama
- Vyšetřovaný objekt leží mezi zdrojem záření a detektorem je prozařován, přičemž detektor měří zeslabení záření nebo změnu jeho spektra při průchodu analyzovaným objektem.
- V medicíně: rentgenová diagnostika

ROZPTYLOVÉ A FLUORESCENČNÍ MĚŘENÍ

- Zdroj záření a detektor ve stejném "poloprostoru" vzhledem k měřenému vzorku.
- Primárním zdrojem záření ozařujeme analyzovaný předmět a detektorem měříme sekundární záření vznikající ve vzorku příslušnými fyzikálními mechanismy - Comptonovým rozptylem či vznikem charakteristického Xzáření v důsledku fotoefektu.

EMISNÍ RADIAČNÍ MĚŘENÍ

- Zdrojem záření je samotný vyšetřovaný objekt, který je radioaktivní
- Radioaktivita je do vyšetřovaného objektu buď:
 - Zavedena (aplikována) ve formě radioindikátoru (stopovací metody, nukleární medicína - scintigrafie).
 - Je uvnitř objektu indukována ozařováním vhodným zářením, které vyvolává v jádrech vzorku jaderné reakce, při nichž se původně neaktivní jádra mění v radioaktivní (tak je tomu u aktivační analýzy, především neutronové).

MĚŘENÍ RADIOAKTIVNÍCH VZORKŮ

- Vzorky jsou odebrány z ozářených materiálů nebo látek s aplikovanou radioaktivitou.
- Patří sem stopovací metody v biologii a medicíně (nukleární medicíně) či neutronová aktivační analýza.

Detektory ionizujícího záření

DRUHY DETEKTORŮ IONIZUJÍCÍHO ZÁŘENÍ

- Podle časového průběhu detekce rozeznáváme dvě základní skupiny detektorů:
 - Kontinuální "on-line" detektory
 - Kumulativní (integrální) detektory
- Podle principu detekce rozeznáváme tři skupiny detektorů:
 - Fotografické, založené na fotochemických účincích záření
 - Materiálové, využívající dlouhodobější změny vlastností látek
 - Elektronické, část absorbované energie ionizačního záření převádí na elektrické proudy či impulsy (ať již přímým nebo zprostředkovaným způsobem), které se zesilují a vyhodnocují v elektronických aparaturách

OBRÁZEK: RNDr. Vojtěch Ullman

DRUHY DETEKTORŮ IONIZUJÍCÍHO ZÁŘENÍ

- Podle komplexnosti měřené informace můžeme měřící přístroje ionizujícího záření rozdělit na 4 skupiny:
 - Detektory záření
 - Spektrometry ionizujícího záření
 - Zobrazovací detektory
 - Dráhové detektory částic
- Druhy senzorové citlivosti:
 - Radiačně citlivé senzory
 - Energeticky citlivé spektrometry
 - Polohově citlivé dráhové detektory

Základní fyzikální vlastnosti detektorů:

- Citlivost a účinnost detektoru
- Časové rozlišení detektoru (jeho mrtvá doba)
- Energetická rozlišovací schopnost spektrometru
- Prostorová (či úhlová) rozlišovací schopnost zobrazovacích detektorů

IONIZAČNÍ KOMORA

- Nejjednodušší elektronický detektor ionizujícího záření.
- Přímočaře využívá v názvu obsaženou základní vlastnost tohoto záření ionizační účinky na látku.
- Je tvořena dvěma kovovými destičkami (či dráty) elektrodami anodou a katodou, umístěnými v plynném prostředí a připojenými v elektrickém obvodu na napětí řádově stovky voltů.

OBRÁZEK: RNDr. Vojtěch Ullman

IONIZAČNÍ KOMORA

- Za normálních okolností (bez přítomnosti záření) systémem neprochází žádný proud - plyn mezi elektrodami je nevodivý, el. obvod není uzavřen.
- Vnikne-li do prostoru mezi elektrodami ionizující záření, vyráží z původně neutrálních atomů plynu elektrony a mění je na kladné ionty.
- Záporné elektrony putují v elektrickém poli okamžitě ke kladné anodě, kladné ionty se dají do pohybu k záporné katodě - obvodem začne protékat slabý elektrický proud způsobený iontovou vodivostí ionizovaného plynu mezi elektrodami.
- Proud, měřený mikroampérmetrem, je přímo úměrný intenzitě ionizujícího záření; dá se ocejchovat v jednotkách intenzity záření či dávkového příkonu (Gy/s).
- Elektrický proud protékající ionizační komorou je obecně velmi slabý (cca 10⁻¹⁶ až 10⁻⁹ A) ionizační komora má nízkou citlivost (nízkou detekční účinnost), takže se nehodí pro detekci slabého toku záření.
- Její výhodou je však lineární závislost proudu i v oblasti vysokých intenzit ionizujícího záření.

IONIZAČNÍ KOMORA

- Ionizační komory proto mají velmi dobrou linearitu odezvy na intenzitu detekovaného ionizujícího záření ve velmi širokém rozsahu.
- Využívá se proto např. pro měření rozložení intenzity (dávkového příkonu) ve svazcích záření v radioterapii.
- Nejčastější použití ionizační komory je v dozimetrii pro měření dávky ionizujícího záření.

GEIGER-MÜLLERŮV DETEKTOR

- Geiger-Müllerův (G.-M.) detektor je ionizační komora.
- Napětí na elektrodách bývá cca 600-1000V
- Variabilita detekčních možností:
 - Detektor může být naplněn různými plyny
 - Na vstupu komory lze umístit stínící filtry selektivní měření

GEIGER-MÜLLERŮV DETEKTOR - VZNIK IMPULSU

- Ionizující záření proniká okénkem do trubice, při srážce s atomy plynu dochází k ionizaci plynu, uvolněné elektrony jsou urychlovány k anodě, kladné ionty ke katodě.
- Po nárazu těchto primárních urychlených elektronů do dalších atomů náplně se vyrážejí z dosud neionizovaných atomů sekundární elektrony, které mohou po urychlení vyrážet další elektrony.
- Tento proces se nazývá lavinový efekt.
- Zároveň se vznikem volných nosičů náboje obou znamének dochází i k
 jejich zániku vzájemnou
 rekombinací elektronů a kationtů.
- Pro vznik výboje je pak podstatné to, že vznik volných nosičů náboje ionizací převáží jejich zánik rekombinací.

GEIGER-MÜLLERŮV DETEKTOR

Detekční účinnost G.-M. detektorů:

- Pro těžší nabité částice (např. pro záření alfa) a pro elektrony je detekční účinnost blízká 100% (pokud projdou do komory)
- Pro fotonové záření X a zvláště gama je detekční účinnost vlastní plynové náplně velmi nízká vzhledem k jeho malé absorpci v plynu

Mrtvá doba detektorů

- Počítač nemůže detekovat dvě částice přicházející bezprostředně po sobě.
- Po ionizaci jednou částicí je detektor krátkou dobu necitlivý tato doba se nazývá mrtvá doba.
- Délka mrtvé doby patří mezi důležité charakteristiky GM trubic.
- V průběhu mrtvé doby dochází k průletu částic, tím vznikají chyby v měření.
- Chyby se odstraňují korekčním výpočtem.

GEIGER-MÜLLERŮV DETEKTOR

SCINTILACE

- Scintilace je jev, při kterém vznikají slabé světelné záblesky (pulsy světla) v některých látkách při dopadu ionizujícího záření (krátce po průchodu ionizované částice).
- Je způsoben přenosem energie (excitací a ionizací a návratem do základního energetického stavu) dopadajícího záření na emisi scintilačních fotonů.
- Látky vykazující tuto vlastnost se nazývají scintilátory.
- Tyto světelné záblesky se pak elektronicky registrují pomocí fotonásobičů.
- Procesu scintilace se s výhodou využívá při detekci ionizovaných částic.

SCINTILAČNÍ DETEKTOR

- Zařízení pro detekci ionizujícího záření založené na principu excitace elektronu do vyššího energetického stavu zářením, přičemž návrat elektronu do základního stavu se projeví jako světelný záblesk.
- Látky vykazující tuto vlastnost se nazývají scintilátory.
- Pro účely detekce záření γ se však nejčastěji používá jodid sodný aktivovaný thaliem NaI(TI), ve formě monokrystalu.
- Detekce probíhá ve dvou krocích:
 - Ionizující záření je převedeno na viditelné světlo (nebo také na ultrafialové záření) ve scintilátoru, scintilačním krystalu.
 - Viditelné záření se registruje, a vytváří elektronický signál

SCINTILAČNÍ DETEKTOR - FOTONÁSOBIČ

- Fotony při dopadu na fotokatodu interagují s elektrony materiálu fotokatody.
- Dochází k fotoelektrickému jevu k vyražení elektronů nad povrch katody.
- Elektrony jsou pak postupně urychlovány elektrickým napětím mezi jednotlivými elektrodami (tzv. dynodami).
- Dopad urychlených elektronů na dynodu vyvolává emisi většího počtu elektronů (tzv. sekundární emise), jejímž výsledkem je znásobení počtu elektronů, které jsou urychlovány směrem k další dynodě.
- Po sérii zesílení proud elektronů dopadá na anodu.
- Celkové zesílení může v některých případech dosáhnout až 10⁸, což umožňuje pomocí fotonásobiče detekovat i jednotlivé fotony.
- Časové rozlišení dosažitelné pomocí fotonásobiče se pohybuje v řádu nanosekund.

SCINTILAČNÍ DETEKTOR

• Zjednodušené schéma scintilačního detektoru

DOZIMETR

- Dozimetr je zařízení k měření dávek ionizujícího záření.
- Přístroj je používán v lékařství a vojenství k měření hodnoty ozáření (kumulativní dávky ozáření).
- Dozimetr funguje na principu změn látky v něm obsažené.

Druhy osobních dozimetrů:

Filmové dozimetry

- Jedná se o obdobu rentgenového filmu, který je velice citlivý na působení záření.
- Hustota zčernání filmu je úměrná míře expozice

Termoluminiscenční dozimetry

- Jsou založeny na citlivosti některých látek na ionizující záření, např. krystal LiF.
- Po vystavení účinkům záření dochází k deexcitaci elektronů doprovázenou emisí viditelného světla.
- Fotonásobič měří intenzitu emitovaného světla, která je úměrná dávce záření absorbovaného krystalem.

DOZIMETR

OBRÁZEK: RNDr. Vojtěch Ullman

Konec

(prozatím...)