Por lo tanto, $y = \frac{11}{5} - \left(\frac{7}{5}\right)z$ y $x = \frac{13}{5} - \left(\frac{1}{5}\right)z$. Por último, con z = t se obtiene una representación paramétrica de la recta de intersección: $x = \frac{13}{5} - \frac{1}{5}t$. $y = \frac{11}{5} - \frac{7}{5}t$ y z = t.

A partir del teorema 4.4.2, inciso vi), se puede derivar un hecho interesante: si \mathbf{w} está en el plano de \mathbf{u} y \mathbf{v} , entonces \mathbf{w} es perpendicular a $\mathbf{u} \times \mathbf{v}$, lo que significa que $\mathbf{w} \cdot (\mathbf{u} \times \mathbf{v}) = 0$. Inversamente, si $(\mathbf{u} \times \mathbf{v}) \cdot \mathbf{w} = 0$, entonces \mathbf{w} es perpendicular a $(\mathbf{u} \times \mathbf{v})$, de manera que \mathbf{w} se encuentra en el plano determinado por \mathbf{u} y \mathbf{v} . De lo anterior se concluye que

Tres vectores **u**, **v** y **w** son coplanares si y sólo si su producto triple escalar es cero.

RESUMEN 4.5

• Sean $P = (x_1, y_1, z_1)$ y $Q = (x_2, y_2, z_2)$ dos puntos sobre una recta L en \mathbb{R}^3 . Sea $\mathbf{v} = (x_2 - x_1)\mathbf{i} + (y_2 - y_1)\mathbf{j} + (z_2 - z_1)\mathbf{k}$ y sea $a = x_2 - x_1$, $b = y_2 - y_1$ y $c = z_2 - z_1$.

Ecuación vectorial de una recta: $\overrightarrow{0R} = \overrightarrow{0P} + tv$.

Ecuaciones paramétricas de una recta:

$$x = x_1 + at$$
$$y = y_1 + bt$$

$$z = z_1 + ct$$

Ecuaciones simétricas de una recta: $\frac{x-x_1}{a} = \frac{y-y_1}{b} = \frac{z-z_1}{c}$, si a, b y c son diferentes de cero.

- Sea P un punto en \mathbb{R}^3 y sea \mathbf{n} un vector dado diferentes de cero; entonces el conjunto de todos los puntos Q para los que $\overrightarrow{PQ} \cdot \mathbf{n} = 0$ constituye un plano en \mathbb{R}^3 . El vector \mathbf{n} se llama vector normal al plano.
- Si $\mathbf{n} = a\mathbf{i} + b\mathbf{j} + c\mathbf{k}$ y $P = (x_0, y_0, z_0)$, entonces la ecuación del plano se puede escribir

$$ax + by + cz = d$$

donde

$$d = ax_0 + by_0 + cz_0 = \overrightarrow{0P} \cdot \mathbf{n}$$

- El plano xy tiene la ecuación z = 0; el plano xz tiene la ecuación y = 0; el plano yz tiene la ecuación x = 0.
- Dos planos son paralelos si sus vectores normales son paralelos. Si los dos planos no son paralelos, entonces se intersecan en una línea recta.

AUTOEVALUACIÓN 4.5

I) La recta que pasa por los puntos (1, 2, 4) y (5, 10, 15) satisface la ecuación

a)
$$(x, y, z) = (1, 2, 4) + t(4, 8, 11)$$

b)
$$\frac{x-1}{4} = \frac{y-2}{8} = \frac{z-1}{11}$$