NEWTON'S LAW OF GRAVITATION

$$F = \frac{Gm_1m_2}{m^2}$$

 ${\it G}$ - Universal gravitational constant Value of ${\it G}$

 $6.67 \times 10^{-11} \text{ Nm}^2 \text{Kg}^{-2}$ (SI or MKS) $6.67 \times 10^{-8} \text{ dyne cm}^2 \text{g}^{-2}$ (CGS)

Dimensional formula [G]

M-1L3T-2

IMPORTANT POINTS ABOUT GRAVITATIONAL FORCE

- 1. Gravitational force
- * Always attractive in nature
- * Independent of the nature of medium between masses
- * Independent of presence or absence of other bodies
- 2. Are central forces, acts along the centre of gravity of two bodies.
- 3. Conservative force
- 4. Force between any two masses Gravitational force

Force between earth and any other body - Force of gravity

VECTOR FORM

Similarly

 \overrightarrow{F}_{12} force on 1 due to 2

$$\vec{F}_{21} = \frac{G m_1 m_2}{r_{12}^2} (\hat{r}_{12}) \text{ or } \frac{G m_1 m_2}{r_{12}^3} \vec{r}_{12}$$

Clearly

Newtons third law $\vec{F}_{21} = -\vec{F}_{12}$

Gravitational force is a two body interaction. Force between two particles does not depend on the presence or absence of other particles. The principle of superposition is valid here. "Force on a particle due to a no. of particles is the resultant of forces due to individual particles."

THREE MASSES(EQUAL) REVOLVING UNDER MUTUAL GRAVITATIONAL FORCE

FOUR EQUAL MASSES UNDER MUTUAL GRAVITATIONAL FORCE

GRAVITY

Acceleration due to gravity

On the surface of earth $g = \frac{GM_e}{R_e^2}$ M - mass of earth

R - Radius of earth [Put $GM_e = g R_e^2$ to solve problems easily]

g IN TERMS OF DENSITY OF EARTH

 $g=4\pi G \rho R_a g \propto \rho R_e$

"If density is mentioned use the above equation"

VARIATION IN THE VALUE OF ACCELERATION DUE TO GRAVITY

• Variation due to height 'h'

Note the point

If h<<<<R, then decrease in the value of g with height

Absolute decrease $= \Delta g = g - g' = \frac{2hg}{R}$

Fractional decrease = $\frac{\Delta g}{g} = \frac{g - g'}{g} = \frac{2h}{R}$ Percentage decrease = $\frac{\Delta g}{a} = \frac{g - g'}{a} \times 100 = \frac{2h \times 100}{R}$

• Variation due to depth 'd'

Absolute decrease = $\frac{\Delta g}{g}$ = g - g' = $\frac{dg}{R}$

Fractional decrease = $\frac{\Delta g}{g} = \frac{g - g'}{g} = \frac{d}{R}$

Percentage decrease = $\frac{\Delta g}{g} \times 100 = \frac{d}{R} \times 100$

Very imp graph

The graphical representation of change in the value of g' with height and depth

for $r \le R$, $g^1 = \frac{gr}{R}$ for $r \le R$, $g^1 = \frac{gR^2}{r^2}$

GRAVITATION

• Variation of g due to rotation of earth

Latitude Angle which the line
joining the point to
the centre of earth
makes with the
equatorial plane

$$g^{l} = g - \omega^{2} R \cos^{2} \lambda$$

Note \Rightarrow value of $\omega^2 R = 0.034$

For poles $\lambda = 90^{\circ}$ $g^{l} = 9$

There is no effect of rotational motion of the earth on the value of g at poles.

For equator $\lambda = 0^{\circ}$ $g^{I} = g - \omega^{2} R$

The effect of rotational motion of the earth on the value of ${\bf g}$ at the equator is maximum.

When a body of mass m is moved from equator to the poles, weight increases by an amount

$$m (g_p - g_s) = m \omega^2 R$$

ORBITAL VELOCITY

Orbit at a height 'h' from the surface

If orbit is closer to earth's surface(neglect 'h') $V_o = \sqrt{\frac{GM}{R}} = \sqrt{gR}$

(called minimum orbit, velocity-first cosmic velocity)

Note - for easy calculations

 $gR = 8 \text{ km/s or } \frac{GM}{R} = 8 \text{ km/s} = 8 \text{ m/s} = 8 \text{ m/s}$ or $\frac{GM}{R} = 64 \times 10^6$

KE, PE OR TE FOR AN ORBITING SATELLITE

Relation KE, U & TE U = 2 x T.E

K.E = - T.E

WORK DONE IN MOVING OBJECT FROM ONE ORBIT TO ANOTHER

CONCEPT - WORK DONE BY
EXTERNAL AGENT = CHANGE IN
MECHANICAL ENERGY

$$W = E_2 - E_1 = \frac{GMm}{2} \left[\frac{1}{r_1} - \frac{1}{r_2} \right]$$

WORK DONE IN MOVING OBJECT FROM SURFACE OF EARTH TO HEIGHT h ABOVE SURFACE

Work done to move object

to a height h = R

Work done to move object to a height h = R/2 $W = \frac{mgR}{3}$

WORK DONE IN MOVING OBJECT FROM SURFACE TO CIRCULAR ORBIT

 $W = E_{f} - E_{i}$ $W = E_{total} - U_{i} \qquad W = \frac{-GMm}{2(R+h)} + \frac{GMn}{R}$

