

Generalized Linear Models

Session 1 – Introduction

Rachel Pearson

January 2020

Today's objectives

This session will introduce you to generalised linear models (GLMs). By the end of the morning you will be able to:

- Define the components of a GLM
- Identify when to use a GLM to model an outcome
- Fit GLMs in Stata for normal, poisson and binomial outcomes
- Interpret output from a GLM in Stata

Bin(n, π) distribution.

Standard Errors:

- measure of the precision with which the sample statistics approximates the true population
- There are different standard error formulae for different statistical measures (means, percentages, ORs)

95% Confidence Intervals:

The interval (sample statistic +/- 1.96 SE) will contain the 'true value' for 95% of random samples

$$y_i = \alpha + \beta_1 x_{1i} + \dots + \beta_n x_{ni} + \varepsilon_i$$

$$bmi_i = \alpha + \beta_1 age_i + \beta_2 sex_i + \varepsilon_i$$

Source	SS	df	MS		er of ob 2011)	s = =	2,014 277.51
Model Residual	7460.15291 27029.9391	2 2,011	3730.0764 13.441043	5 Prob B R-sq		=	0.0000 0.2163 0.2155
Total	34490.092	2,013	17.133677	_	MSE	=	3.6662
bmi	Coef.	Std. Err.	t	P> t	[95%	Conf.	Interval]
age 1.sex _cons	150729 3156341 28.87251	.0064041 .1637774 .3851415	-23.54 -1.93 74.97	0.000 0.054 0.000	1632 6368 28.11	253	1381697 .0055571 29.62783

$$bmi_i = \alpha + \beta_1 age_i + \beta_2 sex_i + \varepsilon_i$$

Holding sex constant, a unit increase in age (i.e. a year) is associated with a 0.15 kg/m^2 decrease in BMI (95% CI: -0.16 to -0.14).

bmi	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
age	150729	.0064041	-23.54	0.000	1632882	1381697
1.sex	3156341	.1637774	-1.93	0.054	6368253	.0055571
_cons	28.87251	.3851415	74.97	0.000	28.11719	29.62783

$$bmi_i = \alpha + \beta_1 age_i + \beta_2 sex_i + \varepsilon_i$$

Holding age constant, there is weak evidence that being female is associated with a 0.32 kg/m^2 lower BMI (95% CI: -0.64 to 0.01).

	bmi	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
_	age	150729	.0064041	-23.54	0.000	1632882	1381697
	1.sex	3156341	.1637774	-1.93	0.054	6368253	.0055571
-	_cons	28.87251	.3851415	74.97	0.000	28.11719	29.62783

$$bmi_i = \alpha + \beta_1 age_i + \beta_2 sex_i + \varepsilon_i$$

Source	SS	df	MS
Model Residual	7460.15291 27029.9391	_	3730.07645 13.4410438
Total	34490.092	2,013	17.1336771

Number of obs	=	2,014
F(2, 2011)	=	277.51
Prob > F	=	0.0000
R-squared	=	0.2163
Adj R-squared	=	0.2155
Root MSE	=	3.6662

Age and Sex explain an estimated 22% of the variability in BMI

Assumptions of linear regression:

- $Y|x \sim N(\alpha + \beta x, \sigma^2)$
- The relationship between Y and the X's is linear
- The residuals (error terms) are normally distributed i.e. $e_i \sim N(0, \sigma^2)$
- The residuals are independent one of another
- The variance of the residuals is constant, independent of x's
- For many health-related outcomes, these assumptions will not be appropriate
- For example, number of days spent in hospital or whether a patient has diabetes or not

Generalized linear models *generalize* linear modelling and allow us to model a wider variety of outcome types.

The **Exponential Family** of distributions

$$ln\{f(y)\} = \frac{y\theta - b(\theta)}{\varphi} - c(y, \varphi)$$

$$ln\{f(y)\} = \frac{y\theta - b(\theta)}{\varphi} - c(y, \varphi)$$

$$f(y) = \sqrt{\frac{1}{2\pi\sigma^2}} \exp\left\{-\frac{1}{2\sigma^2} (y - \mu)^2\right\}$$

$$ln(f(y)) = ln\left(\sqrt{\frac{1}{2\pi\sigma^2}}\exp\left\{-\frac{1}{2\sigma^2}(y-\mu)^2\right\}\right)$$

$$ln\{f(y)\} = \frac{y\theta - b(\theta)}{\varphi} - c(y, \varphi)$$

$$ln(f(y)) = ln\left(\sqrt{\frac{1}{2\pi\sigma^2}}\right) - \frac{1}{2\sigma^2}(y - \mu)^2$$
$$ln(f(y)) = -\frac{1}{2}ln(2\pi\sigma^2) - \frac{1}{2\sigma^2}(y^2 - 2y\mu + \mu^2)$$

$$ln(f(y)) = \frac{y\mu}{\sigma^2} - \frac{\mu^2}{2\sigma^2} - \left(\frac{y^2}{2\sigma^2} + \frac{1}{2}ln(2\pi\sigma^2)\right)$$

$$ln\{f(y)\} = \frac{y\theta - b(\theta)}{\varphi} - c(y, \varphi)$$

Distributions that can be written in this form belong to the exponential distribution of families

$$\theta = \mu, \quad b(\theta) = \frac{\mu^2}{2}, \quad \varphi = \sigma^2,$$

$$c(y, \varphi) = \left(\frac{y^2}{2\sigma^2} + \frac{1}{2}ln(2\pi\sigma^2)\right)$$

$$ln\{f(y)\} = \frac{y\theta - b(\theta)}{\varphi} - c(y, \varphi)$$

The Poisson distribution:

$$f(y) = Pr(Y = y) = \frac{\mu^y e^{-\mu}}{y!}, y = 0,1,2,3 ...$$

$$\ln(f(y)) = y\ln(\mu) - \mu - \ln(y!)$$

$$\theta = \ln(\mu), \quad b(\theta) = \mu, \quad \varphi = 1, \quad c(y, \varphi) = \ln(y!)$$

$$ln\{f(y)\} = \frac{y\theta - b(\theta)}{\varphi} - c(y, \varphi)$$

The Binomial distribution:

$$f(y) = \Pr(Y = y) = {n \choose y} \pi^y (1 - \pi)^{n-y}, y = 0, 1, ..., n$$

$$\ln(f(y)) = y \ln\left(\frac{\pi}{1-\pi}\right) + n \ln(1-\pi) + \ln\left(\binom{n}{y}\right)$$

$$\theta = \ln\left(\frac{\pi}{1-\pi}\right), \quad b(\theta) = -n \ln(1-\pi), \quad \varphi = 1,$$

$$c(y, \varphi) = -ln\left\{\binom{n}{y}\right\}$$

Three GLM components:

Response distribution

The $Y_i's$ i=1,...,n are assumed to be independent and arising from an exponential family. $E(Y_i) = \mu_i$

Linear predictor

$$n_i = \alpha + \beta_1 x_{1i} + \dots + \beta_n x_{ni}$$

Link function

$$g(\mu_i) = n_i$$

Statistical inference – linear regression – GLM theory – GLM examples

Exponential family	Canonical (natural) link	Response variable(s)	examples
Normal (gaussian)	У	Continuous numbers (—∞, ∞)	Heights, weights, blood pressure, other lab values
Poisson	$log(y) = log(\mu)$	Counts (0,1,2,3,4) Rates [0,∞)	Counts, rates (e.g. average inpatient length of stay, number of emergency admissions)
Binomial	$\log it(y) = \log(\frac{\pi}{1-\pi})$	Binary [0,1] – logistic regression	i.e. "case" vs "non-case" (e.g. death, disease, receiving an intervention)

Statistical inference – linear regression – GLM theory – GLM examples

. reg bmi age	i.sex										
Source	SS	df	MS	. glm bmi age	i.sex, fa	amily(ga	ussian)	link(iden	tity)		
Model	7460.15291	_	3/30.0/645	Iteration 0:	log like	elihood	= -5472.	7423			
Residual	27029.9391	2,011	13.4410438								
Total	34490.092	2,013	17.1336771	Generalized li		EIS				obs =	2,014
	l			Optimization	: ML				Residu		2,011
				-						parameter =	13.44104
bmi	Coef.	Std. Err.	t P	Deviance	= 270	029.9391	.4		(1/df)	Deviance =	13.44104
age	150729	.0064041	-23.54 0	Pearson	= 270	029.9391	.4		(1/df)	Pearson =	13.44104
1.sex	3156341	.1637774	-1.93 0	ı.							
_cons	28.87251	.3851415	74.97 0	Variance funct	cion: V(u)) = 1			[Gauss	ian]	
				Link function	: g(u)) = u			[Ident	ity]	
									AIC	=	5.437679
				Log likelihood	= -547	72.74227	7		BIC	=	11730.5
							OIM				
				bmi	Coe	ef. St	d. Err.	z	P> z	[95% Conf.	Interval]
				age	1507	729 .0	064041	-23.54	0.000	1632807	1381772
				1.sex	31563	341 .1	637774	-1.93	0.054	636632	.0053637
				_cons	28.872	251 .3	851415	74.97	0.000	28.11765	29.62738

. glm diabetes age sex, family(binomial) link(logit)

Iteration 0: log likelihood = -3302
Iteration 1: log likelihood = -3297
Iteration 2: log likelihood = -3297
Iteration 3: log likelihood = -3297

Generalized linear models
Optimization : ML

Deviance = 6594.233323 Pearson = 4999.872144

Variance function: V(u) = u*(1-u)Link function : g(u) = ln(u/(1-u))

Log likelihood = -3297.116661

Odds Ratio = $\exp(0.0411039) = 1.042$

95% C.I. 1.023 to 1.061

Holding sex constant, there is evidence that, for a 1 year increase in age, the odds of developing diabetes increases by 4% (95% C.I. of 2 to 6%).

Log Odds Ratio

<u> </u>	diabetes	Coef.	OIM Std. Err.	z	P> z	[95% Conf.	Interval]
	age	.0411039	.0093775	4.38	0.000	.0227245	.0594834
	sex	0154755	.0592913	-0.26	0.794	1316844	.1007334
	_cons	-2.356755	.6561699	-3.59	0.000	-3.642824	-1.070686

. glm diabetes age sex, family(binomial) link(logit)

Iteration 0: log likelihood = -3302
Iteration 1: log likelihood = -3297
Iteration 2: log likelihood = -3297
Iteration 3: log likelihood = -3297

Generalized linear models
Optimization : ML

Deviance = 6594.233323 Pearson = 4999.872144

Variance function: V(u) = u*(1-u)Link function : g(u) = ln(u/(1-u))

Log likelihood = -3297.116661

Odds Ratio = $\exp(-0.0154755) = 0.985$

95% C.I. 0.877 to 1.106

Holding age constant, being female is associated with a 1% decrease in the odds of developing diabetes (95% C.I. of -12% to +11%).

Log Odds Ratio

		OIM				
 diabetes	Coef.	Std. Err.	z	P> z	[95% Conf.	Interval]
age	0411039	.0093775	4.38	0.000	.0227245	.0594834
sex	0154755	.0592913	-0.26	0.794	1316844	.1007334
_cons	-2.356755	.6561699	-3.59	0.000	-3.642824	-1.070686

Statistical inference – linear regression – GLM theory – GLM examples


```
. glm ae atd age i.sex, family(poisson) link(log)
```

= -8499.5734

```
Iteration 0:
               log\ likelihood = -8522.4235
Iteration 1:
               log likelihood
Iteration 2:
               log likelihood
Iteration 3:
               log likelihood
Generalized linear models
Optimization
                 : ML
                    6127.4037
Deviance
                   5375.7933
Pearson
Variance function: V(u) = u
Link function
                 : g(u) = \ln(t)
```

Log likelihood

Risk Ratio =
$$exp(0.0101182) = 1.01$$

95% C.I. 1.00 to 1.02

Holding sex constant, there is evidence that, for a 1 year increase in age, the risk of A&E attendances increases by 1% (95% C.I. of 0 to 2%).

Log Risk Ratio

ae atd	Coef.	OIM Std. Err.	z	P> z	[95% Conf.	Interval]
age	.0101182	.0032787	3.09	0.002	.003692	.0165444
1.sex	.0095216	.0207984	0.46	0.647	0312425	.0502857
_cons	0742624	.2300892	-0.32	0.747	525229	.3767041

Statistical inference – linear regression – GLM theory – GLM examples


```
. glm ae atd age i.sex, family(poisson) link(log)
Iteration 0:
               log\ likelihood = -8522.4235
Iteration 1:
               log likelihood = -8499.5987
Iteration 2:
               log likelihood
Iteration 3:
               log likelihood
Generalized linear models
Optimization
                 : ML
Deviance
                   6127.4037
                   5375.7933
Pearson
```

: g(u) = ln(

= -8499.5734

Variance function: V(u) = u

Link function

Log likelihood

Risk Ratio = $\exp(0.0095216) = 1.01$

95% C.I. 0.97 to 1.05

Holding age constant, being female is associated with a 1% increase in risk of A&E attendances (95% C.I. of -3% to +5%).

Log Risk Ratio

ae_atd	Coef.	OIM Std. Err.	z	P> z	[95% Conf.	Interval]
age	0101182	.0032787	3.09	0.002	.003692	.0165444
1.sex	.0095216	.0207984	0.46	0.647	0312425	.0502857
_cons	0742624	.2300892	-0.32	0.747	525229	.3767041

Summary

- We have recapped some of the key definitions underpinning statistical inference
- We have recapped linear regression modelling
- We have learnt about the exponential family of distributions and its properties
- We have learnt about GLMS and its three key components
- We have learnt how to use GLMs to model binary and count outcomes
- We have learnt how to interpret parameter estimates in GLMs

References

- Nelder, J., & Wedderburn, R. (1972). Generalized Linear Models. *Journal of the Royal Statistical Society. Series A (General)*, 135(3), 370-384. doi:10.2307/2344614
- Dobson AJ. *An Introduction to Generalized Linear Models*. Chapman & Hall/CRC: Boca Raton, FL, 1990.

Generalized Linear Models

Fitting GLMs in Stata:

glm <response variable> <explanatory variables to form linear predictor>, family (<name of distribution>) link(<link function>).