Statistics for Computing MA4413

Midterm Examination 2

Type A

- Do not turn over the page until instructed to do so.
- Rough work pages are provided within.
- Useful formulae and statistical tables are provided at the back.
- Enter your answers (using an "X") in the table on the last page.
- There are 15 questions in total: each correct answer = 1% with **no negative marks**.
- For each question, only *one* answer is correct.
- Scientific calculators approved by the University of Limerick can be used.

Questions 1 - 5

Q1 Identify the statement that is *true* (note: only one is true).

- (a) The standard error tends to increase as the sample size increases.
- (b) The population mean varies from sample to sample.
- (c) A 99% confidence interval is wider than a 95% confidence interval.
- (d) We always know the value of the parameter.

On average, flaws arise on a fibre optic cable at a rate of 0.5 per km (kilometer) according to a Poisson distribution.

Q2 What is the probability that there are *less than* 3 flaws in 8 km of this cable?

- (a) 0.1465 (b) 0.2198 (c) 0.4335 (d) 0.2381
- Q3 What is the standard deviation for the number of flaws in 100 km of cable?
- (a) 0.141 (b) 0.020 (c) 7.071 (d) 50

Consider an M/M/1 system where customers arrive at a rate of 1.5/min and the average time spent in the *service node* is 15 seconds.

Q4 What is the utilisation factor?

- (a) 4.00 (b) 0.250 (c) 0.375 (d) 2.667
- Q5 On average, how many customers are in the whole system?
- (a) 0.4 (b) 4.0 (c) 0.6 (d) 1.6

Rough Work

Next page: Questions 6 - 10

Questions 6 - 10

Assume that the time taken to complete this exam has an exponential distribution with parameter $\lambda = 0.025$, i.e., $T \sim \text{Exponential}(\lambda = 0.025)$.

Q6 What is the value of the probability Pr(30 < T < 50)?

- (a) 0.1353 (b) 0.6667 (c) 0.5 (d) 0.1859
- **Q7** A sample of 64 students are selected; let \overline{T} be the *sample mean*, i.e., the mean calculated for this sample of students. What is the value of the probability $\Pr(\overline{T} > 48)$?
 - (a) 0.0548 (b) 0.3012 (c) 0.1446 (d) 0.0047

Patients with a particular disease can be treated using treatment A or B. It was of interest to estimate the *difference* in proportions of patients cured of the disease under the two treatment regimes, i.e., $p_A - p_B$. Hence, a sample of data was collected and the following 99% confidence interval for $p_A - p_B$ was calculated: [0.12, 0.26].

Q8 What can we say based on the above confidence interval? (note: a bigger cured proportion is better)

- (a) Without any doubt, treatment A is better.
- (b) There is no evidence of a difference in treatments.
- (c) The evidence suggests that treatment A is better.
- (d) The evidence suggests that treatment B is better.

A manufacturer wants to compare two designs of CPU in terms of their typical operating temperature (degrees Celsius). Two large samples are selected and the results are as follows:

	Design 1	Design 2
sample size	40	50
mean	38.7 °C	32.1 °C
variance	$3.0 {}^{\circ}\mathrm{C}^{2}$	$8.0~^{\circ}{\rm C}^{2}$

- Q9 What type of data was collected on each CPU?
- (a) numeric continuous (b) mean data (c) numeric discrete (d) categorical
- **Q10** The 88% confidence interval for $\mu_1 \mu_2$ is:
- (a) [5.65, 7.55] (b) [5.85, 7.35] (c) [4.70, 8.50] (d) [6.03, 7.17]

Rough Work

Next page: Questions 11 - 15

Questions 11 - 15

The voting population of Ireland is approximately 3,000,000. It was of interest to gain insight into the voting intentions of the public prior to an upcoming referendum - more specifically, the proportion of voters who intended to vote "Yes" was of interest. Therefore, 985 individuals were contacted of which 670 said they would vote "Yes".

Q11 What is the sample size?

- (a) 985 (b) unknown (c) 3,000,000 (d) 670

Q12 What is the value of the statistic?

- (a) $\hat{p} = 670$ (b) $\bar{x} = 0.68$ (c) $\bar{x} = 670$ (d) $\hat{p} = 0.68$

Let $X \sim \text{Normal}(\mu = 15, \sigma = 2)$.

(Note: answers below are given to two decimal places)

Q13 What is the value of Pr(X > 18.66)?

- (a) 0.83 (b) 0.18 (c) 0.03 (d) 0.97

Q14 What is the value of x such that Pr(X > x) = 0.8?

- (a) 18.37 (b) 13.32 (c) 16.68 (d) 11.63

Consider the following sample of ages of computers in an office block:

Q15 The 95% confidence interval for the mean is:

- (a) [3.350, 8.650] (b) [2.096, 9.904] (c) [-0.136, 12.136] (d) [4.222, 7.778]

Useful Formulae: Page 1

Numerical Summaries:

$$\bullet \quad \bar{x} = \frac{\sum x_i}{n}$$

$$\bullet \quad s^2 = \frac{\sum x_i^2 - n\,\bar{x}^2}{n-1}$$

Probability:

•
$$Pr(A \cup B) = Pr(A) + Pr(B) - Pr(A \cap B)$$

•
$$\Pr(E_1 \cup E_2 \cup \cdots \cup E_k) = \Pr(E_1) + \Pr(E_2) + \cdots + \Pr(E_k)$$
 (if mutually exclusive)

•
$$Pr(A \cap B) = Pr(A) Pr(B \mid A) = Pr(B) Pr(A \mid B)$$

•
$$\Pr(E_1 \cap E_2 \cap \cdots \cap E_k) = \Pr(E_1) \Pr(E_2) \cdots \Pr(E_k)$$
 (if independent)

•
$$\Pr(A \mid B) = \frac{\Pr(A \cap B)}{\Pr(B)} = \frac{\Pr(A) \Pr(B \mid A)}{\Pr(B)}$$

• If E_1, \ldots, E_k are mutually exclusive & exhaustive

$$\Rightarrow \Pr(B) = \Pr(B \cap E_1) + \Pr(B \cap E_2) + \dots + \Pr(B \cap E_k)$$
$$= \Pr(E_1) \Pr(B \mid E_1) + \Pr(E_2) \Pr(B \mid E_2) + \dots + \Pr(E_k) \Pr(B \mid E_k)$$

Distributions:

• $T \sim \text{Exponential}(\lambda)$

• $X \sim \text{Normal}(\mu, \sigma)$

• $\Pr(X = x) = \frac{\lambda^x}{x!} e^{-\lambda}$ • $\Pr(T > t) = e^{-\lambda t}$ • $\Pr(X > x) = \Pr\left(Z > \frac{x - \mu}{\sigma}\right)$ • $x \in \{0, 1, 2, \dots, \infty\}$ • $t \in [0, \infty)$ • $x \in (-\infty, \infty)$ • $E(X) = \lambda$ • $E(T) = \frac{1}{\lambda}$ • $E(X) = \mu$ • $Var(X) = \lambda$ • $Var(X) = \sigma^2$

Useful Formulae: Page 2

Queueing Theory:

•
$$E(N) = \lambda_a E(T)$$

$$\bullet \quad \rho = \frac{\lambda_a}{\lambda_s}$$

•
$$M/M/1$$
 System: $\lambda_a \longrightarrow \prod \lambda_s \longrightarrow \lambda_a$

$$\Rightarrow T \sim \text{Exponential}(\lambda_s - \lambda_a)$$

(where T is the total time in the system)

Normal Distribution:

•
$$\Pr(Z < -z) = \Pr(Z > z)$$

•
$$\Pr(Z > -z) = \Pr(Z < z) = 1 - \Pr(Z > z)$$

•
$$\Pr(X > x) = \Pr\left(Z > \frac{x - \mu}{\sigma}\right)$$

• $(1-\alpha)100\%$ of the Normal (μ,σ) distribution lies in $\mu \pm z_{\alpha/2}$ σ

• If
$$X_1 \sim \text{Normal}(\mu_1, \sigma_1)$$
 and $X_2 \sim \text{Normal}(\mu_2, \sigma_2)$

$$\Rightarrow$$
 Sum: $X_1 + X_2 \sim \text{Normal}\left(\mu_1 + \mu_2, \sqrt{\sigma_1^2 + \sigma_2^2}\right)$

$$\Rightarrow$$
 Difference: $X_1 - X_2 \sim \text{Normal}\left(\mu_1 - \mu_2, \sqrt{\sigma_1^2 + \sigma_2^2}\right)$

• For
$$X_1, \ldots, X_n \sim$$
 any distribution with $\mu = E(X)$ and $\sigma = Sd(X) = \sqrt{Var(X)}$

$$\Rightarrow$$
 Sample mean: $\overline{X} \sim \text{Normal}\left(\mu, \frac{\sigma}{\sqrt{n}}\right)$ if $n > 30$

Useful Formulae: Page 3

Confidence Intervals:

• Large sample: statistic $\pm z_{\alpha/2} \times$ standard error

• Small sample: statistic $\pm t_{\nu,\alpha/2} \times \text{standard error}$

Parameter	Statistic	Standard Error	Samples	D. of. F.
μ	\bar{x}	$\frac{s}{\sqrt{n}}$	large / small	$\nu = n - 1$
p	\hat{p}	$\sqrt{\frac{\hat{p}\left(1-\hat{p}\right)}{n}}$	large	n/a
$\mu_1 - \mu_2$	$\bar{x}_1 - \bar{x}_2$	$\sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}$	large / small	$\nu = \frac{(a+b)^2}{\frac{a^2}{n_1-1} + \frac{b^2}{n_2-1}}$ $a = \frac{s_1^2}{n_1}, \ b = \frac{s_2^2}{n_2}$
		$\sqrt{\frac{s_p^2}{n_1} + \frac{s_p^2}{n_2}}$ where $s_p^2 = \frac{(n_1 - 1) s_1^2 + (n_2 - 1) s_2^2}{n_1 + n_2 - 2}$	small	$\nu = n_1 + n_2 - 2$ assuming $\sigma_1^2 = \sigma_2^2$
$p_1 - p_2$	$\hat{p}_1 - \hat{p}_2$	$\sqrt{\frac{\hat{p}_1 (1 - \hat{p}_1)}{n_1} + \frac{\hat{p}_2 (1 - \hat{p}_2)}{n_2}}$	large	n/a

•
$$F = \frac{\text{larger variance}}{\text{smaller variance}} = \frac{s_{\text{larger}}^2}{s_{\text{smaller}}^2}$$

 $\nu_1 = \mathrm{top} \ \mathrm{sample} \ \mathrm{size} - 1$

 $\nu_2 = \text{bottom sample size} - 1$

Table 2 Cumulative Poisson Probabilities

The table gives the probability that r or more random events are contained in an interval when the average number of such events per interval is m, i.e.

$$\sum_{x=r}^{\infty} e^{-m} \frac{m^x}{x!}$$

Where there is no entry for a particular pair of values of r and m, this indicates that the appropriate probability is less than 0.000 05. Similarly, except for the case r = 0 when the entry is exact, a tabulated value of 1.0000 represents a probability greater than 0.999 95.

m =	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	1.0
	1 0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
r=0	1.0000	.1813	.2592	.3297	.3935	.4512	.5034	5507	.5934	.6321
1	.0952	.0175	.0369	.0616	.0902	.1219	.1558	.1912	.2275	.2642
2	0047	.0011	.0036	.0079	.0144	.0231	.0341	.0474	.0629	.0803
3 4	0002	.0001	.0003	.0008	.0018	.0034	.0058	.0091	.0135	0190
				.0001	.0002	.0004	.0008	.0014	.0023	.003
5				.0001	.000		.0001	.0002	.0003	.000
6 7						٠				.000
<i>m</i> =	1.1	1.2	1.3	1.4	1.5	1.6	1.7	1.8	1.9	2.0
.,			1 0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.000
r = 0	1.0000	1.0000	1.0000	.7534	.7769	.7981	.8173	.8347	.8504	.864
1	.6671	.6988	.7275	.4082	.4422	.4751	.5068	.5372	.5663	.594
2	.3010	3374	.3732		.1912	.2166	.2428	.2694	.2963	.323
3	.0996	.1205	.1429	.1665 .0537	.0656	.0788	.0932	.1087	.1253	.142
4	.0257	.0338	.0431					.0364	.0441	.052
5	.0054	.0077	.0107	.0143	.0186	.0237	.0296 .0080	.0104	0132	.016
6	.0010	.0015	.0022	.0032	.0045	.0060	.0019	.0026	.0034	.004
7	.0001	.0003	.0004	.0006	.0009	.0013	.0019	.0026	.0008	.001
8			.0001	.0001	.0002	.0003	.0004	.0001	.0002	.000
9							.0001	.0001	.0002	.000
m =	2.1	2.2	2.3	2.4	2.5	2.6	2.7	2.8	2.9	3.0
r = 0	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.000
1	.8775	.8892	.8997	.9093	.9179	.9257	.9328	.9392	.9450	.950
2	.6204	.6454	.6691	.6916	.7127	.7326	.7513	.7689	.7854	.800
3	.3504	.3773	.4040	.4303	.4562	.4816	.5064	.5305	.5540	.576
4	.1614	.1806	.2007	.2213	.2424	.2640	2859	.3081	3304	.352
5	.0621	.0725	.0838	.0959	.1088	.1226	.1371	.1523	.1682	.18
6	.0204	.0249	.0300	.0357	.0420	.0490	.0567	.0651	.0742	.08
7	.0059	.0075	.0094	.0116	.0142	.0172	.0206	.0244	.0287	.03
8	.0015	.0020	.0026	.0033	.0042	.0053	.0066	.0081	.0099	.01
9	.0003	.0005	.0006	.0009	.0011	.0015	.0019	.0024	.0031	.00
10	.0001	.0001	.0001	.0002	.0003	.0004	.0005	.0007	.0009	.00
11	.0001	.0001	.5001	. –	.0001	.0001	.0001	.0002	.0002	.00
12									.0001	.00

Table 2 Cumulative Poisson Probabilities – continued

m =	3.1	3.2	3.3	3.4	3.5	3.6	3.7	3.8	3.9	4.0
· = 0	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
	.9550	.9592	.9631	.9666	.9698	.9727	.9753	.9776	.9798	.9817
1		.8288	.8414	.8532	.8641	.8743	.8838	.8926	.9008	.9084
2	.8153		.6406	.6603	.6792	.6973	.7146	.7311	.7469	.7619
3 4	.5988 .3752	.6201 .3975	.4197	.4416	.4634	.4848	.5058	.5265	.5468	.5665
			.2374	.2558	.2746	.2936	.3128	.3322	.3516	.3712
5	.2018	.2194	.1171	.1295	.1424	.1559	.1699	1844	.1994	.2149
6	.0943	.1054		.0579	.0653	.0733	.0818	.0909	.1005	.1107
7	.0388	.0446	.0510			.0308	.0352	.0401	.0454	.0511
8	.0142	.0168	.0198	.0231	.0267	.0308	.0332	.0160	.0185	.0214
9	.0047	.0057	.0069	.0083	.0099					
10	.0014	.0018	.0022	.0027	.0033	.0040	.0048	.0058	.0069 -	.0081
11	.0004	.0005	.0006	.0008	.0010	.0013	.0016	.0019	.0023	.0028
12	.0001	.0001	.0002	.0002	.0003	.0004	.0005	.0006	.0007	.0009
13	1000.	.0002		.0001	.0001	.0001	.0001	.0002	.0002	.0003
13									.0001	.0001
n =	4.1	4.2	4.3	4.4	4.5	4.6	4.7	4.8	4.9	5.0
/ L	1.1						1 0000	1.0000	1 0000	1.0000
=0	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	
ĺ	.9834	.9850	.9864	.9877	.9889	.9899	.9909	.9918	.9926	.9933
2	.9155	.9220	.9281	.9337	.9389	.9437-	.9482	.9523	.9561	.9596
3	.7762	.7898	.8026	.8149	.8264	.8374	.8477	.8575	.8667	.8753
3 4	.5858	.6046	.6228	.6406	.6577	.6743	.6903	.7058	.7207	.7350
		.4102	.4296	.4488	.4679	.4868	.5054	.5237	.5418	.5595
5	.3907		.2633	.2801	.2971	.3142	.3316	.3490	.3665	.3840
6	.2307	.2469		.1564	.1689	.1820	.1954	.2092	.2233	.2378
7	.1214	.1325	.1442		.0866	.0951	.1040	.1133	.1231	.1334
8	.0573	.0639	.0710	.0786		.0451	.0503	.0558	.0618	.0681
9	.0245	.0279	.0317	.0358	.0403					
10	.0095	.0111	.0129	.0149	.0171	.0195	.0222	.0251	.0283	.0318
11	.0034	.0041	.0048	.0057	.0067	.0078	.0090	.0104	.0120	.0137
	.0011	.0014	.0017	.0020	.0024	.0029	.0034	.0040	.0047	.0055
12		.0004	.0005	.0007	.0008	.0010	.0012	.0014	.0017	.0020
13 14	.0003 .0001	.0004	.0003	.0007	.0003	.0003	.0004	.0005	.0006	.000
	.0001			.0001	.0001	.0001	.0001	.0001	.0002	.0002
15 16				.0001	.0001	.0001	.0001		.0001	.000
m =	5.2	5.4	5.6	5.8	6.0	6.2	6.4	6.6	6.8	7.0
	1 0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.000
· = ()	1.0000	1.0000		.9970	.9975	.9980	.9983	.9986	.9989	.999
1	.9945	.9955	.9963		.9826	.9854	.9877	.9897	.9913	.992
2	.9658	.9711	.9756	.9794	.9380	.9464	.9537	.9600	.9656	.970
3	.8912	.9052 .7867	.9176 .8094	.9285 .8300	.9380 .8488	.8658	.8811	.8948	.9072	.918
4	.7619				.7149	.7408	.7649	.7873	.8080	.827
5	.5939	.6267	.6579	.6873		.5859	.6163	.6453	.6730	.699
6	.4191	.4539	.4881	.5217	.5543		.4577	.4892	.5201	.550
7	.2676	.2983	.3297	.3616	.3937	.4258		.4892	.3715	.401
8	.1551	.1783	.2030	.2290	.2560	.2840 .1741	.3127 .1967	.3419	.2452	.270
9	.0819	.0974	.1143	.1328	.1528					
10	.0397	.0488	.0591	.0708	.0839	.0984	.1142	.1314 .0726	.1498 .0849	.169 .098
11	.0177	.0225	.0282	.0349	.0426	.0514	.0614		.0448	.053
12	.0073	.0096	.0125	.0160	.0201	.0250	.0307	.0373		.027
13	.0028	.0038	.0051	.0068	.0088	.0113	.0143	.0179 .0080	.0221	.012
14	.0010	.0014	.0020	.0027	.0036					.00.
15	.0003	.0005	.0007	.0010	.0014	.0019	.0026	.0034	.0044	:00. :00.
16	.0001	.0002	.0002	.0004	.0005	.0007	.0010	.0014		.002
		.0001	.0001	.0001	.0002	.0003	.0004	.0005	.0007	.00.
						0001	$\alpha \alpha \alpha 1$	IMMAL	1 11 11 1 4	1 11 11
17 18					.0001	.0001	.0001	.0002	.0003	000.

Table 2 Cumulative Poisson Probabilities – continued

Гable 2 	arman and a second	7.4	7.6	7.8	8.0	8.2	8.4	8.6	8.8	9.0
$m = \frac{1}{r = 0}$ $\frac{1}{2}$ $\frac{3}{4}$	7.2 1.0000 .9993 .9939 .9745 .9281	1.0000 .9994 .9949 .9781 .9368	1.0000 .9995 .9957 .9812 .9446		1.0000 .9997 .9970 .9862 .9576	1.0000 .9997 .9975 .9882 .9630	1.0000 .9998 .9979 .9900 .9677	1.0000 .9998 .9982 .9914 .9719	.9998 .9985 .9927 .9756	1.0000 .9999 .9988 .9938 .9788
4 5 6 7 8	.8445 .7241 .5796 .4311 .2973	.8605 .7474 .6080 .4607 .3243	.8751 .7693 .6354 .4900 .3518	.8883 .7897 .6616 .5188 .3796	.9004 .8088 .6866 .5470 .4075	.9113 .8264 .7104 .5746 .4353	.9211 .8427 .7330 .6013 .4631	.9299 .8578 .7543 .6272 .4906	.9379 .8716 .7744 .6522 .5177	.9450 .8843 .7932 .6761 .5443
9 10 11 12 13	.1904 .1133 .0629 .0327	.2123 .1293 .0735 .0391 .0195	.2351 .1465 .0852 .0464 .0238	.2589 .1648 .0980 .0546 .0286	.2834 .1841 .1119 .0638 .0342	.3085 .2045 .1269 .0739 .0405	.3341 .2257 .1429 .0850 .0476	.3600 .2478 .1600 .0971 .0555	.3863 .2706 .1780 .1102 .0642	.4126 .2940 .1970 .1242 .0739
14 15 16 17 18 19 20	.0159 .0073 .0031 .0013 .0005 .0002	.0092 .0041 .0017 .0007 .0003	.0114 .0052 .0022 .0009 .0004	.0141 .0066 .0029 .0012 .0005	.0173 .0082 .0037 .0016 .0006	.0209 .0102 .0047 .0021 .0009 .0003	.0251 .0125 .0059 .0027 .0011 .0005 .0002	.0299 .0152 .0074 .0034 .0015	.0353 .0184 .0091 .0043 .0019 .0008 .0003	.0415 .0220 .0111 .0053 .0024 .0011 .0004
21 22 23					10.0	11.0	.0001	.0001	14.0	15.0
<i>m</i> =	9.2	9.4	9.6	9.8	10.0	11.0			1.0000	1.0000
r = 0 1 2 3	1.0000 .9999 .9990 .9947	1.0000 .9999 .9991 .9955 .9840	1.0000 .9999 .9993 .9962 .9862	1.0000 .9999 .9994 .9967 .9880	1.0000 1.0000 .9995 .9972 .9897	1.0000 1.0000 .9998 .9988 .9951	1.0000 1.0000 .9999 .9995 .9977	1.0000 1.0000 1.0000 .9998 .9990	1.0000 1.0000 1.0000 .9999 .9995	1.0000 1.0000 1.0000 .9998
4 5 6 7 8 9	.9816 .9514 .8959 .8108 .6990 .5704	.9571 .9065 .8273 .7208 .5958	.9622 .9162 .8426 .7416	.9667 .9250 .8567 .7612 .6442	.9707 .9329 .8699 .7798 .6672	.9849 .9625 .9214 .8568 .7680	.9924 .9797 .9542 .9105 .8450	.9963 .9893 .9741 .9460 .9002	.9982 .9945 .9858 .9684 .9379	.9991 .9972 .9924 .9820 .9626
10 11 12 13 14	.4389 .3180 .2168 .1393 .0844	.4651 .3424 .2374 .1552	.4911 .3671 .2588 .1721 .1081	.5168 .3920 .2807 .1899	.5421 .4170 .3032 .2084 .1355	.6595 .5401 .4207 .3113 .2187			.8906 .8243 .7400 .6415 .5356	.9301 .8815 .8152 .7324 .6368
15 16 17 18 19	.0483 .0262 .0135 .0066	.0559 .0309 .0162 .0081	.0643 .0362 .0194 .0098 .0048	.0735 .0421 .0230 .0119 .0059	.0835 .0487 .0270 .0143 .0072	.1460 .0926 .0559 .0322 .0177	.1556 .1013 .0630 .0374	.2364 .1645 .1095 .0698	.3306 .2441 .1728 .1174	.4319 .3359 .2511 .1805
20 21 22 23	.0014 .0006 .0002 .0001	.0017	.0010	.0028 .0012 .0005 .0002 .0001	.0016 .0007 .0003	.0047 .0023 .0010	7 .0116 3 .0063 0 .0030	6 .0250 1 .0141 0 .0076 5 .0040	.0479 .0288 .0167 .0093	.0830 .0531 .0327 .0195
24 25 26 27 28						.000.		3 .0010 1 .0005	.0026 .0013 .0006 .0007	6 .0062 3 .0033 6 .0017 3 .0009
29 30 31 32									.000	

Table 3 Areas in Upper Tail of the Normal Distribution

The function tabulated is $1 - \Phi(z)$ where $\Phi(z)$ is the cumulative distribution function of a standardised Normal variable, z.

Thus $1 - \Phi(z) = \frac{1}{\sqrt{2\pi}} \int_{z}^{\infty} e^{-z^2/2}$ is the probability that a standardised Normal variate selected at random will be greater than a

value of $z \left(= \frac{x - \mu}{\sigma} \right)$

$\frac{x-\mu}{\sigma}$.00	.01	.02	.03	.04	.05	.06	.07	.08	.09
0.0 0.1 0.2 0.3 0.4	.5000 .4602 .4207 .3821	.4960 .4562 .4168 .3783 .3409	.4920 .4522 .4129 .3745 .3372	.4880 .4483 .4090 .3707 .3336	.4840 .4443 .4052 .3669 .3300	.4801 .4404 .4013 .3632- .3264	.4761 .4364 .3974 .3594 .3228	.4721 .4325 .3936 .3557 .3192	.4681 .4286 .3897 .3520 .3156	.4641 .4247 .3859 .3483 .3121
0.5	.3085	.3050	.3015	.2981	.2946	.2912	.2877	.2843	.2810	.2776
0.6	.2743	.2709	.2676	.2643	.2611	.2578	.2546	.2514	.2483	.2451
0.7	.2420	.2389	.2358	.2327	.2296	.2266	.2236	.2206	.2177	.2148
0.8	.2119	.2090	.2061	.2033	.2005	.1977	.1949	.1922	.1894	.1867
0.9	.1841	.1814	.1788	.1762	.1736	.1711	.1685	.1660	.1635	.1611
1.0 1.1 1.2 1.3 1.4	1587 1357 1151 0968 0808	.1562 .1335 .1131 .0951 .0793	.1539 .1314 .1112 .0934 .0778	.1515 .1292 .1093 .0918	.1492 .1271 .1075 .0901 .0749	.1469 .1251 .1056 .0885 .0735	.1446 .1230 .1038 .0869 .0721	.1423 .1210 .1020 .0853 .0708	.1401 .1190 .1003 .0838 .0694	.1379 .1170 .0985 .0823 .0681
1.5	.0668	.0655	.0643	.0630	.0618	.0606	.0594	.0582	.0571	.0559
1.6	.0548	.0537	.0526	.0516	.0505	.0495	.0485	.0475	.0465	.0455
1.7	.0446	.0436	.0427	.0418	.0409	.0401	.0392	.0384	.0375	.0367
1.8	.0359	.0351	.0344	.0336	.0329	.0322	.0314	.0307	.0301	.0294
1.9	.0287	.0281	.0274	.0268	.0262	.0256	.0250	.0244	.0239	.0233
2.0	.02275	.02222	.02169	.02118	.02068	.02018	.01970	.01923	.01876	.01831
2.1	.01786	.01743	.01700	.01659	.01618	.01578	.01539	.01500	.01463	.01426
2.2	.01390	.01355	.01321	.01287	.01255	.01222	.01191	.01160	.01130	.01101
2.3	.01072	.01044	.01017	.00990	.00964	.00939	.00914	.00889	.00866	.00842
2.4	.00820	.00798	.00776	.00755	.00734	.00714	.00695	.00676	.00657	.00639
2.5	.00621	.00604	.00587	.00570	.00554	.00539	.00523	.00508	.00494	.00480
2.6	.00466	.00453	.00440	.00427	.00415	.00402	.00391	.00379	.00368	.00357
2.7	.00347	.00336	.00326	.00317	.00307	.00298	.00289	.00280	.00272	.00264
2.8	.00256	.00248	.00240	.00233	.00226	.00219	.00212	.00205	.00199	.00193
2.9	.00187	.00181	.00175	.00169	.00164	.00159	.00154	.00149	.00144	.00139
3.0 3.1 3.2 3.3 3.4	.00135 .00097 .00069 .00048 .00034	.00131 .00094 .00066 .00047 .00032	.00126 .00090 .00064 .00045 .00031	.00122 .00087 .00062 .00043	.00118 .00084 .00060 .00042 .00029	.00114 .00082 .00058 .00040 .00028	.00111 .00079 .00056 .00039 .00027	.00107 .00076 .00054 .00038 .00026	.00104 .00074 .00052 .00036 .00025	.00100 .00071 .00050 .00035 .00024
3.5	.00023	.00022	.00022	.00021	.00020	.00019	.00019	.00018	.00017	.00017
3.6	.00016	.00015	.00015	.00014	.00014	.00013	.00013	.00012	.00012	.00011
3.7	.000108	.000104	.000100	.000096	.000092	.000088	.000085	.000082	.000078	.000075
3.8	.000072	.000069	.000067	.000064	.000062	.000059	.000057	.000054	.000052	.000050
3.9	.000048	.000046	.000044	.000042	.000041	.000039	.000037	.000036	.000034	.000033
4.0	.000032					-				

Table 7 Percentage Points of the t Distribution

The table gives the value of $t_{\alpha,\nu}$ – the $100\,\alpha$ percentage point of the t distribution for ν degrees of freedom.

The values of t are obtained by solution of the equation:

$$\alpha = \Gamma[\frac{1}{2}(\nu+1)][\Gamma(\frac{1}{2}\nu)]^{-1} (\nu\pi)^{-1/2} \int_{t}^{\infty} (1+x^{2}/\nu)^{-(\nu+1)/2} dx$$

Note: The tabulation is for one tail only, that is, for positive values of t.

For |t| the column headings for α should be doubled.

t.	α
0 $t_{\alpha,\nu}$	

		•				U	α,ν
α=	0.10	0.05	0.025	0.01	0.005	0.001	0.0005
v=1	3.078	6.314	12.706	31.821	63,657	318.31	636.62
$\frac{\sqrt{-1}}{2}$	1.886	2.920	4.303	6.965	9.925	22.326	31.598
3	1.638	2.353	3.182	4.541	5.841	10.213	12.924
. 4	1.533	2.132	2.776	3.747	4.604	7.173	8.610
5	1.476	2.015	2.571	3.365	4.032	5.893	6.869
6	1.440	1.943	2.447	3.143	3.707	5.208	5.959
7	1.415	1.895	2.365	2.998	3.499	4.785	5.408
8	1.397	1.860	2.306	2.896	3.355	4.501	5.041
9	1.383	1.833	2.262	2.821	3.250	4.297	4.781
10	1.372	1.812	2.228	2.764	3.169	4.144	4.587
11	1.363	1.796	2.201	2.718	3.106	4.025	4.437
12	1.356	1.782	2.179	2.681	3.055	3.930	4.318
13	1.350	1.771	2.160	2.650	3.012	3.852	4.221
14	1.345	1.761	2.145	2.624	2.977	3.787	4.140
15	1.341	1.753	2.131	2.602	2.947	3.733	4.073
16	1.337	1.746	2.120	2.583	2.921	3.686	4.015
17	1.333	1.740	2.110	2.567	2.898	3.646	3.965
18	1.330	1.734	2.101	2.552	2.878	3.610	3.922
19	1.328	1.729	2.093	2.539	2.861	3.579	3.883
20	1.325	1.725	2.086	2.528	2.845	3.552	3.850
21	1.323	1.721	2.080	2.518	2.831	3.527	3.819
22	1.321	1.717	2.074	2.508	2.819	3.505	3.792
23	1.319	1.714	2.069	2.500	2.807	3.485	3.767
24	1.318	1.711	2.064	2.492	2.797	3.467	3.745
25	1.316	1.708	2.060	2.485	2.787	3.450	3.725
26	1.315	1.706	2.056	2.479	2.779	3.435	3.707
27	1.314	1.703	2.052	2.473	2.771	3.421	3.690
28	1.313	1.701	2.048	2.467	2.763	3.408	3.674
29	1.311	1.699	2.045	2.462	2.756	3.396	3.659
30	1.310	1.697	2.042	2.457	2.750	3.385	3.646
40	1.303	1.684	2.021	2.423	2.704	3.307	3.551
60	1.296	1.671	2.000	2.390	2.660	3.232	3.460
120	1.289	1.658	1.980	2.358	2.617	3.160	3.373
∞	1.282	1.645	1.960	2.326	2.576	3.090	3.291

This table is taken from Table III of Fisher & Yates: Statistical Tables for Biological, Agricultural and Medical Research, reprinted by permission of Addison Wesley Longman Ltd. Also from Table 12 of Biometrika Tables for Statisticians, Volume 1 by permission of Oxford University Press and the Biometrika Trustees.

Table 9 Percentage Points of the F Distribution

The table gives the values of $F_{\alpha;\nu_1,\nu_2}$ the 100α percentage point of the F distribution having ν_1 degrees of freedom in the numerator and v_2 degrees of freedom in the denominator. For each pair of values of v_1 and v_2 , $F_{\alpha;v_1,v_2}$ is tabulated for $\alpha = 0.05$,

 $0.025,\,0.01,\,0.001,\,$ the 0.025 values being bracketed.

The lower percentage points of the distribution may be obtained from the relation:

 $F_{1-\alpha;\nu_1,\nu_2} = {}^{1} / F_{\alpha;\nu_2,\nu_1}$

	$= {}^{1} / F_{\alpha; \nu_{2}}$ $F_{.95,12,8} = {}^{1} / {}_{2}$		$\frac{1}{2.85} = 0.3$	<u>51</u>						F_{i}	$\alpha; v_1, v_2$	
$\frac{111}{\nu_1}$	1	2	3	4	5	6	7	8	10	12	24	. ∞
2							226.2	220.0	241.0	243.9	249.0	254.3
1	161.4	199.5	215.7	224.6	230.2		236.8	238.9	241.9 (969)			(1018)
•	(648)	(800)	(864)	(900)	,	,	(948)	,	• •	(, ,)	6235	6366
	4052	5000	5403	5625	5764		5928		6056	6107*	6235*	6366*
	4053*	5000*	5405*	5625*	5764*	5859*	5929*	5981*	6056*			
2	18.5	19.0	19.2	19.2	19.3	19.3	19.4	19.4	19.4	19.4	19.5	19.5 (39.5
2	(38.5)	(39.0)	(39.2)	(39.2)	(39.3)	(39.3)	(39.4)	(39.4)	(39.4)	(39.4)	(39.5)	99.5
	98.5	99.0	99.2	99.2.	99.3	99.3	99.4	99.4	99.4	99.4	99.5	999.5
	998.5	999.0	999.2	999.2	999.3	999.3	999.4	999.4	999.4	999.4	999.5	
				9.12	9.01	8.94	8.89	8.85	8.79	8.74	8.64	8.5
3	10.13	9.55	9.28	(15.1)	(14.9)	(14.7)	(14.6)	(14.5)	(14.4)	(14.3)	` '	(13.9
	(17.4)	(16.0)	(15.4)	28.7	28.2	27.9	27.7	27.5	27.2	27.1	26.6	26.1
	34.1	30.8	29.5	137.1	134.6	132.8	131.5	130.6	129.2	128.3	125.9	123.5
	167.0	148.5	141.1				6.09	6.04	5.96	5.91	5.77	5.6
4	7.71	6.94	6.59	6.39	6.26	6.16 (9.20)	(9.07)	(8.98)	(8.84)	(8.75)	(8.51)	(8.2
	(12.22)	(10.65)	(9.98)	(9.60)	(9.36)	(9.20) 15.2	15.0	14.8	14.5	14.4	13.9	13.5
	21.2	18.0	16.7	16.0	15.5	50.53	49.66	49.00	48.05	47.41	45.77	44.0
	74.14	61.25	56.18	53.44	51.71						4.53	4.
5	6.61	5.79	5.41	5.19	5.05	4.95	4.88	4.82	4.74	4.68	(6.28)	(6.
3	(10.01)	(8.43)	(7.76)	(7.39)	(7.15)	(6.98)	(6.85)	(6.76)	(6.62)	(6.52)	9.47	9.
	16.26	13.27	12.06	11.39	10.97	10.67	10.46	10.29	10.05	9.89	25.14	23.
	47.18	37.12	33.20	31.09	29.75	28.83	28.16	27.65	26.92	26.42		
			4.76	4.53	4.39	4.28	4.21	4.15	4.06	4.00	3.84	3.
, 6	5.99	5.14	(6.60)	(6.23)	(5.99)	(5.82)	(5.70)	(5.60)	(5.46)	(5.37)	(5.12)	(4.
	(8.81)	(7.26)	9.78	9.15	8.75	8.47	8.26	8.10	7.87	7.72	7.31	6.
	13.74 35.51	10.92 27.00	23.70	21.92	20.80	20.03	19.46	19.03	18.41	17.99	16.90	15.
				4.12	3.97	3.87	3.79	3.73	3.64	3.57	3.41	3
7	5.59	4.74	4.35	(5.52)	(5.29)	(5.12)	(4.99)	(4.90)	(4.76)	(4.67)	(4.42)	(4
	(8.07	(6.54)	(5.89)	7.85	7.46	7.19	6.99	6.84	6.62	6.47	6.07	5
	12.25	9.55	8.45 18.77	17.20	16.21	15.52	15.02	14.63	14.08	13.71	12.73	11
	29.25	21.69					3.50	3.44	3.35	3.28	3.12	2
8	5.32	4.46	4.07	3.84	3.69	3.58	(4.53)				(3.95)	(3
	(7.57)			(5.05)		(4.65) 6.37	6.18	6.03	5.81	5.67	5.28	4
	11.26	8.65	7.59	7.01	6.63 13.48	12.86	12.40	12.05	11.54	11.19	10.30	9
	25.42	18.49	15.83	14.39					3.14	3.07	2.90	2
9	5.12	4.26	3.86	3.63	3.48	3.37	3.29	3.23 (4.10)				
,	(7.21)		(5.08)) (4.10) 5.47	5.26	5.11	4.73	2
	10.56	8.02	6.99	6.42	6.06	5.80	5.61	10.37	9.87	9.57	8.72	-
	22.86	16.39	13.90	12.56	11.71	11.13	10.69					,
10	4.96	4.10	3.71	3.48	3.33	3.22	3.14				2.74	
10	(6.94										(3.37) 4.33) (-
	10.04	, ,		5.99		5.39						
	21.04		12.55	11.28		9.93	9.52	9.20	8.74			
_				3.36	3.20	3.09	3.01	2.95				. ,
11												
	(6.72		,		,							
	9.65 19.69								7.92	7.63	6.85	
								2.85	2.75	2.69	2.51	
12												
	(6.55					/	,	,	,		3.78	3
	9.33											5
	18.64	1 12.97	7 10.80	9.63	, 0.02	. 0.50						

^{*} Entries marked thus must be multiplied by 100

Answer Sheet

Name:			
ID Number:			

Enter your answers with an "X' in the table below.

Do not enter the "X" until you have made your final decision to avoid scribbling out.

	A	В	С	D
Q1				
Q2				
Q3				
Q4				
Q5				
			l	
Q6				
Q7				
Q8				
Q9				
Q10				
			1	
Q11				
Q12				
Q13				
Q14				
Q15				