Mathematical Foundations of Computer Science

CS 499, Shanghai Jiaotong University, Dominik Scheder

Group Name: NOIDEA

1 Broken Chessboard and Jumping With Coins

1.1 Tiling a Damaged Checkerboard

Exercise	1.1.	Re-write	the	proof	in	your	own	way,	using	simple	English
sentences.											
Proof. Yo	ur pro	oof									
Exercise	1.2.	Another e	exer	cise							
Proof. Yo	ur pro	oof									

2 Exclusion-Inclusion

2.1 Sets

Exercise 2.1.

1. Proof. As is shown in the Venn diagram below, |A| + |B| add the common part $|A \cap B|$ twice. So it should be subtracted once if we want to count $|A \cup B|$.

Figure 1: Venn Diagram

- 2. Solution. $|A \cup B \cup C| = |A| + |B| + |C| |A \cap B| |A \cap C| |B \cap C| + |A \cap B \cap C|$
- 3. Solution. $|A \cup B \cup C \cup D| = |A| + |B| + |C| + |D| |A \cap B| |A \cap C| |A \cap D| |B \cap C| |B \cap D| |C \cap D| + |A \cap B \cap C| + |A \cap B \cap D| + |A \cap C \cap D| + |B \cap C \cap D| |A \cap B \cap C \cap D|$

Exercise 2.2.

Solution.
$$|A_1 \cup \ldots \cup A_n| = \sum_{i=1}^n |A_i| - \sum_{i,j:1 \le i < j \le n} |A_i \cap A_j| + \sum_{i,j,k:1 \le i < j < k \le n} |A_i \cap A_j \cap A_k| - \ldots + (-1)^{n-1} |A_1 \cap \ldots \cap A_n|$$

Exercise 2.3.

1. proof using induction on n

First, let $A_{n,k} = \sum_{1 \leq i_1 < i_2 < ... \leq n} |A_{i_1} \cap A_{i_2} \dots \cap A_{i_k}|$, which denotes the sum of all the possible k-wise intersections in $\{A_1, A_2, ..., A_n\}$.

Then the Inclusion-exclusion principle which we want to prove is as follows:

$$|A_1 \cup \ldots \cup A_n| = \sum_{k=1}^n (-1)^{k+1} A_{n,k}$$

The theorem holds for n = 1, obviously.

The theorem holds for n = 2, as is showed in the 2.1.1

For the induction step, we want to show if it holds for n-1, then it holds for n.

$$|A_{1} \cup \ldots \cup A_{n}| = |A_{1} \cup \ldots \cup A_{n-1}| + |A_{n}| - |(A_{1} \cup \ldots \cup A_{n-1}) \cap A_{n}|$$

$$= \sum_{k=1}^{n-1} (-1)^{k+1} A_{n-1,k} + |A_{n}| - |(A_{1} \cup \ldots \cup A_{n-1}) \cap A_{n}|$$

$$= \sum_{k=1}^{n-1} (-1)^{k+1} A_{n-1,k} + |A_{n}| - |(\bigcup_{i=1}^{i=n-1} (A_{i} \cap A_{n})|$$

$$(1)$$

Let $B_i = (A_i \cap A_n)$.

Similarly, let $B_{n-1,k} = \sum_{1 \leq i_1 < i_2 < \dots \leq n-1} |B_{i_1} \cap B_{i_2} \dots \cap B_{i_k}|$, which denotes the sum of all the possible k-wise intersections in $\{B_1, B_2, \dots, B_n-1\}$.

(1) now becomes

$$\sum_{k=1}^{n-1} (-1)^{k+1} A_{n-1,k} + |A_n| - \left| \left(\bigcup_{i=1}^{i=n-1} B_i \right| \right|$$
 (2)

Similarly, it holds:

$$|B_1 \cup \ldots \cup B_{n-1}| = \sum_{k=1}^{n-1} (-1)^{k+1} B_{n-1,k}$$
 (3)

(2) now becomes

$$\sum_{k=1}^{n-1} (-1)^{k+1} A_{n-1,k} + |A_n| + \sum_{k=1}^{n-1} (-1)^k B_{n-1,k}$$
 (4)

In addition,

$$|A_n| = (-1)^{1+1} |A_n| (5)$$

Thus.

$$|A_n| + \sum_{k=1}^{n-1} (-1)^k B_{n-1,k} = \sum_{k=1}^n (-1)^{k+1} A_{n,k} - \sum_{k=1}^{n-1} (-1)^{k+1} A_{n-1,k}$$
 (6)

Then equation(4) finally becomes: $\sum_{k=1}^{n} (-1)^{k+1} A_{n,k}$

2. proof not using induction on n

First, let $A = |A_1 \cup \ldots \cup A_{n-1}|$.

Function $P_S(x)$ defined as if set S includes element x, then $P_S(x) = 1$, else $P_S(x) = 0$.

- (1) If $P_A(x) = 1$, there must exist an i that $P_{A_i}(x) = 1$. In this way: $(P_A(x) P_{A_1}(x))(P_A(x) P_{A_2}(x)) \dots (P_A(x) P_{A_n}(x)) = 0$
- (2) According to the properities of set, $P_{A_i}(x)P_{A_j}(x) = P_{A_i \cap A_j}(x)$.
- (3) Let $P_{n,k}$ denotes $P_{A_{i_1} \cap A_{i_2} \dots \cap A_{i_k}} (1 \le i_1 < i_2 < \dots \le n)$. Then decompose the first equation, we can have:

$$P_A(x) = \sum_{k=1}^n P_{n,k}$$

which can be demonstrated as:

$$|A_1 \cup \ldots \cup A_n| = \sum_{k=1}^n (-1)^{k+1} A_{n,k}$$

3 Feasible Intersection Patterns

3.1

Exercise 3.1.

Find sets A_1, A_2, A_3, A_4 such that all pairwise intersections have size 3 and all three-wise intersections have size 1.

Formally, $1.|A_i \cap A_j| = 3 foralli, j \in {[4] \choose 2}, \ 2.|A_i \cap A_j \cap A_k| = 1 \text{ for all } \{i, j, k\} \in {[4] \choose 3}.$

 $A_1 = \{1, 2, 3, 5, 6, 9\};$

 $A_2 = \{1, 2, 3, 4, 7, 8\};$

 $A_3 = \{1, 5, 7, 8, 9, 10\};$

 $A_4 = \{2, 4, 5, 6, 8, 10\};$

Exercise 3.2.

In the spirit of the previous questions, let us call a sequence $(a_1, a_2, ..., a_n) \in \mathbb{N}_0$ feasible if there are sets $A_1, ..., A_n$ such that all k-wise intersections have size a_k . That is, $|Ai| = a_1$ for all i, $|A_i \cap A_j| = a_2$ for all $i \neq j$ and so on. The previous exercise would thus state that (5, 3, 1, 0) is not feasible, but (6, 3, 1, 0) is, as one solution of Exercise 3.1 shows.

 \square

Assume that there exist such sets A,B,C,D to which (5, 3, 1, 0) is feasible.

|A| = |B| = |C| = |D| = 5;

Since $|A \cap B| = 3, |A \cap B \cap C| = 1,$

A and B have 3 same elements. A, B and C have 1. There are 2 elements in $A \cap B$ that are not in C;

Since $|A \cap c| = 3$, there are 2 elements in A and C but not in B.

There are 2 elements in B and C but not in A.

So, now we have 1 elements in A, B, C, 2 in A,C but not B, 2 in B,C but not A.

Then, set D has the same requirement with C.

Similarly, We have 1 elements in A, B, D, 2 in A,D but not B, 2 in B,D but not A.

A has only 5 elements. So dose B.

Then there is a contradiction. D will have at least 5 same elements with C.

$$|C \cap D| = 5 \neq 3.$$

Exercise 3.3.

Suppose I give you a sequence $(a_1, ..., a_n)$. Find a way to determine whether such a sequence is feasible or not.

$$\square$$

Definition:

Given $A_1, A_2, A_3, ..., A_n$,

define

$$A_{\{I\}} = \bigcap_{i \in I} A_i.$$

In other words,

$$A_{\{i,j,k,\ldots\}} = A_i \cap A_j \cap A_k \cap \ldots$$

$$B_{\{I\}} = \bigcap_{i \in I} A_i \cap \bigcap_{j \notin I} \bar{A}_j.$$

In other words,

$$B_{\{I\}}$$
 is the number of elements in $\bigcap_{i\in I}A_i$ but not in $\bigcap_{j\notin I}A_j.$
$$b_{|I|}=|B_{\{I\}}|.$$

Because every set B_i is not divided by existing boundaries, we can put any number of elements in set B_i .

Thus, $(b_1, b_2, ..., b_n)$ is feasible for all situations as long as b_i are nonnegative integers.

Obviously, $(a_1, a_2, ..., a_n)$ has something to do with $(b_1, b_2, ..., b_n)$. We have

$$A_{\{I\}} = \bigcup_{J \ge I} B_{\{J\}};$$
Thus, $a_{|I|} = \sum_{J \ge I} b_{|J|} = \sum_{j=i}^{j=n} \binom{n-i}{j-i} b_{|J|}$
Then, $b_i = \sum_{k=0}^{n-i} (-1)^k \binom{n-i}{k} a_i + k$

For $(a_1, a_2, ..., a_n)$, replace the a_i into the formula.

If all the results are nonnegative integers. The sequence is feasible.