Cálculo Diferencial e Integral I LMAC/MEBIOM/MEFT

 2° Teste (VA) - 8 de Janeiro de 2018 - 18:30 às 20:00

Apresente todos os cálculos que efectuar. Não é necessário simplificar os resultados. As cotações indicadas somam 20 valores.

Problema 1 (4,5 val.) Determine uma primitiva de cada uma das seguintes funções:

(a)
$$\int \frac{\cosh x}{1 + \sinh^2 x} dx = \int \frac{1}{1 + t^2} dt = \arctan t = \arctan(\sinh x)$$

(b)
$$\int (x+1)^2 \ln(x+1) dx = \frac{1}{3}(x+1)^3 \ln(x+1) - \frac{1}{3} \int \frac{(x+1)^3}{x+1} dx =$$

$$\frac{1}{3}(x+1)^3\ln(x+1) - \frac{1}{3}\int (x+1)^2 dx = \frac{1}{3}(x+1)^3\ln(x+1) - \frac{1}{9}(x+1)^3$$

(c)
$$\int \frac{x}{x^2 + 4x + 5} dx = \int \frac{x + 2 - 2}{x^2 + 4x + 5} dx = \int \frac{x + 2}{x^2 + 4x + 5} dx - \int \frac{2}{x^2 + 4x + 5} dx = \int \frac{x + 2 - 2}{x^2 +$$

$$= \frac{1}{2} \int \frac{2x+4}{x^2+4x+5} dx - \int \frac{2}{1+(x+2)^2} dx = \frac{1}{2} \int \frac{1}{t} dt - \int \frac{2}{1+v^2} dv =$$

$$= \frac{1}{2} \ln t - 2 \arctan v = \frac{1}{2} \ln(x^2 + 4x + 5) - 2 \arctan(x + 2)$$

Problema 2 (4 val.) Considere as funções

$$f(x) = \frac{1}{8} \frac{1}{\sqrt{1-x^2}} e g(x) = 1 - x^2$$

Sendo $A = \{(x, y) : |x| < 1, 0 < y < f(x)\}$ e $B = \{(x, y) : |x| < 1, 0 < y < g(x)\}$, calcule a área do conjunto $A \cup B$.

Esboçamos abaixo a região em causa:

As curvas intersectam-se nos pontos $\pm \alpha$ e as rectas verticais $x=\pm 1$ são as assímptotas de f. Para calcular α , tomamos $t=\sqrt{1-x^2}$, donde

$$\frac{1}{8}\frac{1}{\sqrt{1-x^2}} = 1 - x^2 \Longleftrightarrow \frac{1}{8}\frac{1}{t} = t^2 \Longleftrightarrow \frac{1}{8} = t^3 \Longleftrightarrow \frac{1}{2} = t \Longleftrightarrow \frac{1}{4} = 1 - x^2 \Longleftrightarrow x = \frac{\sqrt{3}}{2}$$

A área da região $A \cup B$ é dada por

$$2\int_{0}^{\frac{\sqrt{3}}{2}} (1-x^{2})dx + 2\int_{\frac{\sqrt{3}}{2}}^{1} \frac{1}{8\sqrt{1-x^{2}}} dx = 2\left(x - \frac{x^{3}}{3}\Big|_{0}^{\frac{\sqrt{3}}{2}} + \frac{1}{4}\arcsin x\Big|_{\frac{\sqrt{3}}{2}}^{1} = 2\left(\frac{\sqrt{3}}{2} - \frac{1}{3}\frac{3\sqrt{3}}{8}\right) + \frac{1}{4}\left(\arcsin(1) - \arcsin(\frac{\sqrt{3}}{2})\right) = \frac{3\sqrt{3}}{4} + \frac{\pi}{24}$$

Problema 3 (4,5 val.) Determine se as seguintes séries são absolutamente convergentes, simplesmente convergentes ou divergentes:

(a)
$$\sum_{k=1}^{\infty} (-1)^k \frac{\arcsin(1/k)}{\sqrt{k}}$$
 (b) $\sum_{k=1}^{\infty} (-1)^k \frac{k\pi^k}{3^k + k}$ (c) $\sum_{k=1}^{\infty} (-1)^k \frac{\ln(k)}{k^{5/4}}$

(a) Como

$$\lim_{k \to +\infty} \frac{\frac{\arcsin(1/k)}{\sqrt{k}}}{\frac{1}{k^{3/2}}} = \lim_{k \to +\infty} \frac{\arcsin(1/k)}{1/k} = \lim_{x \to 0} \frac{\arcsin(x)}{x} = 1,$$

concluímos que as séries

$$\sum_{k=1}^{\infty} \frac{\arcsin(1/k)}{\sqrt{k}} e \sum_{k=1}^{\infty} \frac{1}{k^{3/2}} \text{ têm a mesma natureza.}$$

Como a série à direita é convergente (é uma série de Dirichlet $\sum 1/n^s$ com s>1), é claro que a série original $\sum_{k=1}^{\infty} (-1)^k \frac{\arcsin(1/k)}{\sqrt{k}}$ é absolutamente convergente.

- (b) Como $\frac{k\pi^k}{3^k+k} = k\frac{(\pi/3)^k}{1+k/3^k} \to \infty$, concluímos que a série é divergente.
- (c) O seguinte integral impróprio é fácil de calcular:

$$\int_{1}^{\infty} \frac{\ln(x)}{x^{5/4}} dx = -4 \left. \frac{\ln x}{x^{1/4}} \right|_{1}^{\infty} + 4 \int_{1}^{\infty} \frac{1}{x^{5/4}} dx = 16$$

Concluímos do teste do integral que a série original é absolutamente convergente.

Problema 4 (4 val.) Neste grupo, definimos

$$f(x) = \sum_{k=1}^{\infty} (-1)^k \frac{x^{3k}}{2^k k^2}, f_n(x) = \sum_{k=1}^n (-1)^k \frac{x^{3k}}{2^k k^2}.$$

- (a) Determine o domínio de convergência da série, e especifique a parte desse domínio onde a série é absolutamente convergente.
- (b) Diga se f tem um ponto crítico em x = 0 e caso afirmativo classifique-o.
- (c) Qual é o menor valor de n para o qual pode garantir que $|f(1) f_n(1)| < 1/100$? Para esse valor de n, qual é o sinal algébrico de $f(1) - f_n(1)$?
- (d) Exprima a função f' em termos de funções elementares.
- (a) Usamos o teste da razão:

$$\frac{|x|^{3k+3}/2^{k+1}(k+1)^2}{|x|^{3k}/2^kk^2} = \frac{|x|^3}{2} \frac{k^2}{(k+1)^2} \to \frac{|x|^3}{2}$$

A série converge absolutamente quando $\frac{|x|^3}{2} < 1$, i.e., $|x|^3 < 2$ e diverge quando $|x|^3 > 2$. O raio de convergência é portanto $R = \sqrt[3]{2}$. Quando $|x| = \sqrt[3]{2}$, temos

$$\sum_{k=1}^{\infty} \frac{|x|^{3k}}{2^k k^2} = \sum_{k=1}^{\infty} \frac{1}{k^2} < \infty$$

Temos assim que a série original converge absolutamente para $x \in [-\sqrt[3]{2}, \sqrt[3]{2}]$.

(b) Sabemos que

$$f(x) = \sum_{k=1}^{\infty} (-1)^k \frac{x^{3k}}{2^k k^2} = \sum_{n=1}^{\infty} \frac{f^{(n)}(0)}{n!} x^n$$

Temos portanto $f(0) = f^{(1)}(0) = f^{(2)}(0) = 0$ e $f^{(3)}(0) = (3!)\frac{1}{2} = 3 \neq 0$ e segue-se que f tem um ponto crítico em x = 0 que não é um extremo (a primeira derivada que é não-nula é a terceira, que é de ordem ímpar).

(c) É claro que

$$f(1) = \sum_{k=1}^{\infty} (-1)^k \frac{1}{2^k k^2}, f_n(1) = \sum_{k=1}^n (-1)^k \frac{1}{2^k k^2} \in \frac{1}{2^k k^2} \searrow 0.$$

Notamos que

Para
$$k = 3$$
, $\frac{1}{2^3 3^2} = \frac{1}{8 \cdot 9} = \frac{1}{72} > \frac{1}{100}$ e para $k = 4$, $\frac{1}{2^4 4^2} = \frac{1}{16 \cdot 16} = \frac{1}{256} < \frac{1}{100}$

Como a série em causa é alternada, concluímos que

$$|f(1) - f_n(1)| < 1/100 \text{ para } n \ge 3 \text{ e } f_3(1) < f(1) < f_4(1) = f_3(1) + \frac{1}{256}$$

Em particular,

$$0 < f(1) - f_3(1) < \frac{1}{256} < \frac{1}{100}$$

(d) Observamos que

$$f'(x) = \sum_{k=1}^{\infty} (-1)^k \frac{3kx^{3k-1}}{2^k k^2} = \frac{3}{x} \sum_{k=1}^{\infty} (-1)^k \frac{x^{3k}}{2^k k} = \frac{3}{x} \sum_{k=1}^{\infty} \frac{(-1)^k}{k} \left(\frac{x^2}{3}\right)^k = \frac{3}{x} \ln(1 + \frac{x^2}{3})$$

Problema 5 (3 val.) Demonstre as seguintes afirmações, onde $f: \mathbb{R} \to \mathbb{R}$ é uma função.

- (a) Se f é integrável em [0, 1/2] e em [1/2, 1], então f é integrável em [0, 1].
- (b) Se f é integrável em [0,t] para qualquer 0 < t < 1 e limitada em [0,1], então f é integrável em [0,1].
- (c) Se $f(x) = \sum_{n=1}^{\infty} \frac{(-1)^n}{2^n} \frac{n^2}{1 + e^{nx}}$ então f é integrável em [0, 1].
- (d) Se $f(x) = (-1)^{n-1}$ quando $\frac{1}{3^n} < x \le \frac{1}{3^{n-1}}$, com $n \in \mathbb{N}$, então f é integrável em [0,1] e $\int_0^1 f(x)dx = 1/2$.
- (a) Dado $\epsilon>0$, existem partições \mathcal{P}_1 e \mathcal{P}_2 , respectivamente de [0,1/2] e de [1/2,1], tais que

$$\overline{S}(f, \mathcal{P}_1) - \underline{S}(f, \mathcal{P}_1) < \epsilon/2 \in \overline{S}(f, \mathcal{P}_2) - \underline{S}(f, \mathcal{P}_2) < \epsilon/2$$

Supondo sem perda de generalidade que as duas partições incluem o intervalo (só com um ponto) $\{1/2\}$, é claro que $\mathcal{P} = \mathcal{P}_1 \cup \mathcal{P}_2$ é uma partição de [0,1] e

$$\overline{S}(f,\mathcal{P}) = \overline{S}(f,\mathcal{P}_1) + \overline{S}(f,\mathcal{P}_2), \ \underline{S}(f,\mathcal{P}) = \underline{S}(f,\mathcal{P}_1) + \underline{S}(f,\mathcal{P}_2)$$

Concluímos que

$$\overline{S}(f,\mathcal{P}) - \underline{S}(f,\mathcal{P}) = \overline{S}(f,\mathcal{P}_1) - \underline{S}(f,\mathcal{P}_1) + \overline{S}(f,\mathcal{P}_2) - \underline{S}(f,\mathcal{P}_2) < \epsilon$$

Segue-se que a função é integrável em [0,1].

(b) Supomos aqui que $|f(x)| \leq M$ para qualquer $x \in [0,1]$. Sendo \mathcal{P}_1 a partição do intervalo [t,1] formada por $\mathcal{P}_1 = \{[t,t],[t,1]\}$, é claro que

$$\overline{S}(f, \mathcal{P}_1) - \underline{S}(f, \mathcal{P}_1) \le 2M(1-t)$$

Dado $\epsilon > 0$, fixamos t tal que $2M(1-t) < \epsilon/2$. Como f é integrável em [0,t], existe uma partição \mathcal{P}_2 do intervalo [0,t] tal que

$$\overline{S}(f, \mathcal{P}_2) - \underline{S}(f, \mathcal{P}_2) < \epsilon/2$$

Mais uma vez supondo que o intervalo [t,t] faz parte de cP_2 , notamos que $\mathcal{P} = \mathcal{P}_1 \cup \mathcal{P}_2$ é uma partição de [0,1] e

$$\overline{S}(f,\mathcal{P}) - \underline{S}(f,\mathcal{P}) = \overline{S}(f,\mathcal{P}_1) - \underline{S}(f,\mathcal{P}_1) + \overline{S}(f,\mathcal{P}_2) - \underline{S}(f,\mathcal{P}_2) < \epsilon$$

donde se segue que a função é integrável em [0, 1].

(c) Como $1 + e^{nx} \ge 1$ para qualquer $x \in \mathbb{R}$, temos

$$f(x) = \sum_{n=1}^{\infty} \frac{(-1)^n}{2^n} \frac{n^2}{1 + e^{nx}}, \text{ onde } \left| \frac{(-1)^n}{2^n} \frac{n^2}{1 + e^{nx}} \right| \le \frac{n^2}{2^n}$$

A série numérica de termo geral $n^2/2^n$ é claramente convergente (por exemplo, pelo critério da razão), e segue-se do teste-M de Weierstrass que a série de funções (cada uma das quais é contínua) converge uniformemente em \mathbb{R} . A função limite é portanto contínua e portanto integrável no intervalo [0,1].

(d) Considere-se a partição \mathcal{P}_n de [0,1] formada pelos intervalos da forma

$$\left[\frac{1}{3^k}, \frac{1}{3^{k-1}}\right], 1 \le k \le n$$
, aos quais adicionamos $\left[0, \frac{1}{3^n}\right]$

É fácil verificar que

$$\overline{S}(f, \mathcal{P}_n) = \sum_{k=1}^{n} (-1)^{k-1} \left(\frac{1}{3^{k-1}} - \frac{1}{3^k} \right) + \frac{1}{3^n} = \sum_{k=1}^{n} (-1)^{k-1} \frac{2}{3^k} + \frac{1}{3^n}$$

Temos analogamente

$$\underline{S}(f, \mathcal{P}_n) = \sum_{k=1}^{n} (-1)^{k-1} \left(\frac{1}{3^{k-1}} - \frac{1}{3^k} \right) - \frac{1}{3^n} = \sum_{k=1}^{n} (-1)^{k-1} \frac{2}{3^k} - \frac{1}{3^n}$$

Notamos que a função f é integrável em [0,1], porque

$$\overline{S}(f, \mathcal{P}_n) - \underline{S}(f, \mathcal{P}_n) = \frac{2}{3^n} \to 0$$

Por esta razão,

 $\overline{S}(f,\mathcal{P}_n), \underline{S}(f,\mathcal{P}_n) \to \int_0^1 f(x) dx$, donde somando a série geométrica em causa,

$$\int_0^1 f(x)dx = \lim_{n \to \infty} \overline{S}(f, \mathcal{P}_n) = \sum_{k=1}^{\infty} (-1)^{k-1} \frac{2}{3^k} = \frac{2/3}{1 + 1/3} = \frac{1}{2}$$