Algebra - Lista 12

Na wykładzie nie zdążyłem podać, ale czasami muszą z tego Państwo skorzystać:

Lemat 1. Niech G działa na zbiorze C i $c \in C$. Wtedy $|O_c| \cdot |G_c| = |G|$.

Wniosek 2. Niech G działa na zbiorze C i $c \in C$. Wtedy wielkość orbity O_c dzieli rząd grupy |G|.

Zadanie 1 Niech grupa G działa na zbiorze C i $c \in C$. Pokaż, że stabilizator G_c tego elementu jest podgrupą G.

Zadanie 2 Znajdź grupę obrotów sześcianu.

Wskazówka: Oblicz rzad grupy używając Lematu 1, każdy obrót ma naturalna interpretacje.

Zadanie 3 Rozpatrzmy romb, który nie jest kwadratem. Podaj grupę symetrii tej figury. Dla każdego wierzchołka podaj orbitę oraz stabilizator.

Zadanie 4 W grupie S_{10} rozpatrzmy grupy generowane przez

Dla każdego elementu ze zbioru $\{1, 2, ..., 10\}$ wyznacz jego orbitę oraz stabilizator dla naturalnego działania działania tych podgrup na zbiorze $\{1, 2, ..., 10\}$.

Zadanie 5 Wyznacz rzędy grup obrotów brył platońskich: czworościanu foremnego, ośmiościanu, dwunastościanu foremnego, dwudziestościanu foremnego.

 $Wskaz \acute{o}wka$:Lemat 1.

Zadanie 6 [Grupa dihedralna] Rozpatrzmy grupę obrotów i odbić n-kąta foremnego (nazywamy ją grupą dihedralną D_n). Ile ma ona elementów? Pokaż, że nie ma innych przekształceń zachowujących ten wielokąt (tj. przekształceń z wierzchołków w wierzchołki, które zachowują sąsiedztwo wierzchołków).

Wskazówka: Lemat 1

Zadanie 7 Niech grupa G działa na zbiorze X i $|G| = 3^k$, a |X| nie jest podzielne przez 3. Pokaż, że w X istnieje taki element, który jest punktem stałym wszystkich przekształceń z G, (tzn. jego stabilizator to G).

Wskazówka: Lemat 1

Zadanie 8 Pokaż, że centrum S_n (tj. zbiór $\{a: ag=ga \text{ dla każdego } g\in S_n\}$) dla $n\geq 3$ jest trywialne, tzn. jest równe $\{e\}$.

Wskazówka: Wystarczy popatrzeć na g będące odpowiednią transpozycją.

Zadanie 9 Pokaż, że jeśli H jest grupą, to zbiór elementów

$$gHg^{-1} = \{ghg^{-1} : h \in H\}$$

też jest podgrupą (podgrupa sprzężona do H). Pokaż też, że $|H| = |gHg^{-1}|$.

Zadanie 10 Załóżmy, że w G jest dokładnie jeden element x (różny od e) rzędu 2, tj. $x^2 = e$. Udowodnij, że jest on w centrum grupy, tj. gx = xg dla każdego g.

 $Wskaz \acute{o}wka$: Ile jest podgrup dwuelementowych w G? Popatrz też na zadanie 9.