CSE350: Programming Assignment 2

Ananya Lohani (2019018), Mihir Chaturvedi (2019061)

INDRAPRASTHA INSTITUTE of INFORMATION TECHNOLOGY **DELHI**

Advanced Encryption Standard

- AES, or Advanced Encryption Standard, is a symmetric encryption algorithm that uses a block cipher to encrypt data in fixed-size blocks of 128 bits.
- The 128-bit key size is one of the three possible key sizes in AES, and it determines the number of rounds used in the encryption process.
- For 128-bit AES, the encryption process uses 10 rounds of operations, each consisting of four steps - SubBytes, ShiftRows, MixColumns, and AddRoundKey.

AES Specifications for our Implementation

• Number of rounds: 10

Key size: 128 bits or 16 bytes

• Plaintext size: 128 bits or 16 bytes

Mode: CBC (Cipher Block Chaining)

Documentation: Attributes in the AES class

Constants

- KEY_SIZE: the size of the key in bytes (16)
- N_ROUNDS: the number of rounds (10)
- SB0X: the S-box used for SubBytes in encryption
- INV_SBOX: the inverse S-box used for SubBytes in decryption
- RC: the round constants used for round key generation

Variables

- master_key: the master key used for encryption and decryption
- round_keys: the round keys generated from the master key
- o gf: the Galois field (2**8) used for multiplication in MixColumns

Documentation: Methods in the AES class

Helper functions

- left_rotate(word) -> bytes: Rotates a word (a 4-byte sequence) to the left by one byte.
- bytes_to_blocks(data) -> list: Converts a byte string into a list of n-byte blocks.
- blocks_to_bytes(blocks) -> bytes: Converts a list of blocks into a byte string.
- o xor(a, b) -> bytes: Performs the XOR operation between two byte strings of the same length.
- o pad_msg(msg) -> bytes: Pads a message to a length that is a multiple of 128 bits.
- unpad_msg(msg) -> bytes: Removes the padding from a message.

Key Generation

get_round_keys(key) -> list: Generates a list of 11 round keys from the master key.

Documentation: Methods in the AES class

• Encryption/decryption:

- o add_round_key(state, round_key) -> list: Performs the AddRoundKey step of the encryption & decryption process.
- sub_bytes(state, inv=False) -> list: Performs the SubBytes step of the encryption & decryption process.
- o shift_rows(state, inv=False) -> list:Performs the ShiftRows step of the encryption & decryption process.
- mix_columns(state, inv=False) -> list: Performs the MixColumns step of the encryption & decryption process.
- o encrypt(state, iv) -> bytes: Encrypts a message using the AES algorithm in CBC mode.
- decrypt(state, iv) -> bytes: Decrypts an encrypted message using the AES algorithm in CBC mode.

Sample Inputs & Outputs

Plaintext: Hello, world!

I/O Pair #1

Inputs:

Outputs:

Plaintext: Hello, world!

Ciphertext: $b'\x03\xec\xeb.\x8c\x95\x99\x12\xf8\xd2\x14\xf9\xf1\xbb\x86J'$

Decrypted Ciphertext: Hello, world!

m			n .
Rrock	1.	Encryption	Round

a1	a2	a3
0xb1	0xde	0xf0
0xbf	0x1e	0x5d
0x26	0x2c	0xdc
0xbc	0x62	0x9
	0xb1 0xbf 0x26	0xb1 0xde 0xbf 0x1e 0x26 0x2c

Block 1, Encryption Round 9

a0	a1	a2	a3					
0x9	0x13	0x27	0xd5					
0xde	0x60	0xe0	0xa9					
0x7e	0x2d	0x55	0x36					
0xf1	0x52	0x5d	0xf1					

Block 1, Decryption Round 1

a0	a1	a2	a3
0x9	0x13	0x27	0xd5
0xde	0x60	0xe0	0xa9
0x7e	0x2d	0x55	0x36
0xf1	0x52	0x5d	0xf1

Block 1, Decryption Round 9

a0	a1	a2	a3
0x68	0xb1	0xde	0xf0
0x1	0xbf	0x1e	0x5d
0xba	0x26	0x2c	0xdc
0xaf	0xbc	0x62	0x9

I/O Pair #2

Inputs:

Key:															
0x7e	Охса	0x58	0x88	0x41	0xe2	0xbf	0x67	0x44	0xbd	0xec	0xb3	0x83	0x17	0xe5	0xe3
IV:						,			,			,			
0x4e	0x68	0x83	0x64	0xdf	0x24	0ха7	0x97	0x2e	θxcd	0x11	0хс0	0х5с	0x4c	0x92	θxb

Outputs:

Plaintext: Hello, world!

Ciphertext: $b'Z\xf1S\xf3T\xb0 \x8f\x16\x87\x10\%B!\x938'$

Decrypted Ciphertext: Hello, world!

Block 1, Encryption Round 1

a0	a1	a2	a3
0x16	0x57	0x5c	0xc2
0xcb	0xd8	0x2	0x88
0x4b	0x53	0x6d	0x81
0x74	0x9f	0xe0	0xbf

Block 1, Encryption Round 9

a0	a1	a2	a3				
0x7b	0xb1	0xa0	0xcf				
0x76	0xc0	0x99	0xfa				
0x37	0xaa	0x61	0x8a				
0x5d	0xbd	0xe2	0x7a				

Block 1, Decryption Round 1

a0	a1	a2	a3
0x7b	0xb1	0xa0	0xcf
0x76	0xc0	0x99	0xfa
0x37	0xaa	0x61	0x8a
0x5d	0xbd	0xe2	0x7a

Block 1, Decryption Round 9

a0	a1	a2	a3
0x16	0x57	0x5c	0xc2
0xcb	0xd8	0x2	0x88
0x4b	0x53	0x6d	0x81
0x74	0x9f	0xe0	0xbf