Pravděpodobnost a statistika - zkoušková písemka 24.6.2013

Jméno a příjmení	1	2	3	4	celkem	známka

Úloha 1. Hokejisté jistého týmu vyšlou během utkání (hraného pouze na tři třetiny, tj. bez prodloužení) na branku průměrně 30 střel, přičemž průměrně každá desátá střela skončí gólem (všechny střely i góly přicházejí vzájemně zcela nezávisle na sobě). Určete pravděpodobnost, že

- a) během prvních dvou třetin padnou maximálně 3 góly za strany tohoto týmu,
- b) během poslední třetiny vyšlou hokejisté tohoto týmu na branku minimálně 15 střel, přičemž žádná z nich neskončí gólem,
- c) na první gól tohoto týmu budou diváci čekat alespoň 30 hracích minut (pozn.: jedna třetina má 20 hracích minut),
- d) z prvních deseti střel tohoto týmu padnou maximálně 2 góly,
- e) nejpozději pátá střela tohoto týmu v utkání skončí gólem.

Úloha 2. Sdružené pravděpodobnosti náhodných veličin X a Y jsou dány následující tabulkou:

	X = -1	X = 0	X = 1
Y = -1	1/12	1/4	1/12
Y = 0	1/12	0	1/12
Y=1	1/12	1/4	1/12

- a) Určete marginální rozdělení X a Y.
- b) Určete pravděpodobnost P(X > 0|Y < 0).
- c) Spočtěte kovarianci cov(X, Y).
- d) Jaká je souvislost kovariance vypočtené v příkladu c) s nezávislostí X a Y?
- e) Určete sdružené rozdělení (tj. tabulku sdružených pravděpodobností) náhodného vektoru (U,V), v němž náhodné veličiny U, resp. V, mají stejná marginální rozdělení jako X, resp. Y, ale přitom jsou U a V nezávislé.

Úloha 3. Chovatel sledoval hmotnost svých měsíc starých králíků. Vzorek naměřených hodnot (v dkg) je uveden v následující tabulce:

- a) Nakreslete histogram a boxplot těchto dat.
- b) Odhadněte z histogramu, jaké rozdělení má hmotnost králíka.
- c) Odhadněte střední hodnotu a rozptyl tohoto rozdělení z dat. $(\sum x_i = 2950, \sum (x_i \bar{x})^2 = 797.33)$
- d) Jaká je souvislost mezi vypočtenými hodnotami z otázky c) a teoretickou střední hodnotou, resp. rozptylem, náhodné veličiny udávající hmotnost náhodně vybraného králíka?
- e) Statisticky otestujte, zda je možné říct, že střední hmotnost králíka je 2kg.

Úloha 4. Volejbalista absolvoval za sezónu 50 zápasů, přičemž střídavě hrával ve světlém a tmavém triku. Statistika vítězných a prohraných zápasů je následující:

	světlé triko	tmavé triko
vyhrané zápasy	20	10
prohrané zápasy	5	15

- a) Určete marginální rozdělení náhodného vektoru (X,Y), kde pro náhodně vybraný zápas X popisuje odstín barvy trika, v němž volejbalista hrál (X=0) pro světlé triko a X=1 pro tmavé triko), a Y popisuje výsledek daného zápasu (Y=0) pro prohrané zápasy a Y=1 pro vyhrané zápasy).
- b) Statisticky otestujte na hladině 5%, zda je výsledek zápasu (ne)závislý na odstínu trika.
- c) Statisticky otestujte na hladině 1%, zda počet vyhraných a prohraných zápasů byl přibližně stejný.
- d) Jsou počty vyhraných a prohraných zápasů nezávislé? Odpověď řádně zdůvodněte.
- e) Definujte **obecně** nezávislost diskrétních náhodných veličin X a Y.