Case Study III: A Data Center

Prof. Daniel A. Menascé
Department of Computer Science
George Mason University
www.cs.gmu.edu/faculty/menasce.html

© 2004 D. A. Menascé. All Rights Reserved.

Copyright Notice

 Most of the figures in this set of slides come from the book "Performance by Design: computer capacity planning by example," by Menascé, Almeida, and Dowdy, Prentice Hall, 2004. It is strictly forbidden to copy, post on a Web site, or distribute electronically, in part or entirely, any of the slides in this file.

2

The Data Center

- M functionally equivalent machines
- Staff of N people that repair machines that fail.
- Data center failure diagnostic system:
 - "heartbeat" for failure detection
 - Trouble tickets are automatically generated
 - Failed machine are placed in a queue for a repair person.
- Idle members of the repair staff continuously monitor the repair queue.

3

© 2004 D. A. Menascé. All Rights Reserved.

Questions

- 1. Given the machine failure rate, the number of machines, the size of the repair staff, and the average repair time, what is the probability that j machines are operational?
- 2. Given the machine failure rate, the number of machines, the size of the repair staff, and the average repair time, what is the probability that at least j machines are operational?

4

Questions (cont'd)

- 3. Given the machine failure rate, the number of machines, and the average repair time, how many people are needed to guarantee that at least j machines are operational?
- 4. What is the effect of the size of the repair team on the MTTR and on the percentage of machines that can be expected to be operational?

5

© 2004 D. A. Menascé. All Rights Reserved.

Questions (cont'd)

5. What is the effect of the average time it takes a repair person to fix a machine on the overall MTTR? How does a repair person's skill affect the percentage of operational machines?

6

Markov Chain for the Data Center

State = number of failed machines.

9

© 2004 D. A. Menascé. All Rights Reserved.

System-level Models

- System is seen as a black box.
- Only its input-output characteristics are considered.
- Inputs: arrivals of requests
- Output: throughput.

System-level Example

- A Web server receives 10 requests/sec.
- The maximum number of requests in the server is 3.
- Requests that arrive and find three requests being processed are rejected.

11

© 2004 D. A. Menascé. All Rights Reserved.

System-level Example

 The measured throughput as a function of the number of requests is:

Number of	Throughput	
requests	(req/sec)	
0	0	
1	12	
2	15	
3	16	

12

- Q1: What is the probability that an incoming request is rejected?
- Q2: What is the average number of requests in execution?
- Q3: What is the average throughput of the Web server?
- Q4: What is the average time spent by an HTTP request in the Web server?

© 2004 D. A. Menascé. All Rights Reserved.

13

System-level Example

- Characterize the Web server by its state, i.e., the number k of requests in the Web server.
- Assumptions made:
 - homogeneous workload: all requests are equivalent
 - memoryless: how the system arrived at system k does not matter.
 - operational equilibrium: no. requests at beginning of interval = no. request at the end.

© 2004 D. A. Menascé. All Rights Reserved.

15

System-level Example

- Assume we are able to find the values of:
 - P_k = probability that there are k requests in the Web server.
- Question: can we answer all the questions posed before as a function of the P_k's?

16

- Q1: What is the probability that an incoming request is rejected?
- A:

17

© 2004 D. A. Menascé. All Rights Reserved.

System-level Example: a few questions

- Q1: What is the probability that an incoming request is rejected?
- A: It is the probability that an arriving HTTP request finds 3 requests already being processed. The answer is then P₃.

18

- Q2: What is the average number of requests in execution?
- A: using the definition of average:

19

© 2004 D. A. Menascé. All Rights Reserved.

System-level Example: a few questions

- Q2: What is the average number of requests in execution?
- A: using the definition of average:

$$n_{req} = 0 \times P_0 + 1 \times P_1 + 2 \times P_2 + 3 \times P_3$$

20

- Q3: What is the average throughput of the Web server?
- A: again, using the definition of average:

21

© 2004 D. A. Menascé. All Rights Reserved.

System-level Example: a few questions

- Q3: What is the average throughput of the Web server?
- A: again, using the definition of average:

$$X = 0 \times P_0 + 12 \times P_1 + 15 \times P_2 + 16 \times P_3$$
throughput value at each state

22

- Q4: What is the average time spent by an HTTP request in the Web server?
- A: It will be a function of the average number of requests, n_{req}, and the average throughput X. More on this later...

23

© 2004 D. A. Menascé. All Rights Reserved.

System-level Example: computing the P_k's

 use the flow in = flow out principle: the flow into a set of states is equal to the flow out of this set of states in equilibrium.

24

System-level Example: computing the P_k's

flow in = flow out

$$12 \times P_1 = 10 \times P_0$$

System-level Example: computing the P_k's

flow in = flow out

$$15 \times P_2 = 10 \times P_1$$

© 2004 D. A. Menascé. All Rights Reserved.

© 2004 D. A. Menascé. All Rights Reserved.

26

25

System-level Example: computing the P_k's

flow in = flow out

$$16 \times P_3 = 10 \times P_2$$

© 2004 D. A. Menascé. All Rights Reserved.

27

28

System-level Example: computing the P_k's

Putting it all together:

12 x P₁ = 10 x P₀
$$\Rightarrow$$
 P₁ = 10/12 P₀
15 x P₂ = 10 x P₁ \Rightarrow P₂ = 10/15 P₁
= $\frac{10x10}{15x12}$ P₀
16 x P₃ = 10 x P₂ \Rightarrow P₃ = 10/16 P₂
= $\frac{10x10x10}{16x15x12}$ P₀

System-level Example: computing the P_k's

• Putting it all together:

$$P_1 = 10/12 P_0$$
; $P_2 = 10x10 P_0$; and 15x12

$$P_3 = \frac{10x10x10}{16x15x12} P_0$$

 But, the Web server has to be in one of the four states at any time. So,

$$P_0 + P_1 + P_2 + P_3 = 1.$$

© 2004 D. A. Menascé. All Rights Reserved.

System-level Example: computing the P_k's

 Solving for P₀ and then for the other P_k's we get:

k	Pk	
0	0.365	
1	0.305	
2	0.203	
3	0.127	

30

System-level Example: answering the questions

- Q1: What is the probability that an incoming request is rejected?
- A: It is the probability that an arriving HTTP request finds 3 requests already being processed. The answer is then

$$P_3 = 0.127 = 12.7\%$$
.

© 2004 D. A. Menascé. All Rights Reserved.

31

System-level Example: answering the questions

- Q2: What is the average number of requests in execution?
- A: using the definition of average:

$$n_{req} = 0 \times 0.365 + 1 \times 0.305 +$$
 $2 \times 0.203 + 3 \times 0.127$
 $= 1.091 \text{ requests}$

© 2004 D. A. Menascé, All Rights Reserved

32

System-level Example: answering the questions

- Q3: What is the average throughput of the Web server?
- A: again, using the definition of average:

$$X = 0 \times 0.365 + 12 \times 0.305 +$$

 $15 \times 0.203 + 16 \times 0.127$
 $= 8.731 \text{ requests/sec.}$

© 2004 D. A. Menascé. All Rights Reserved.

33

System-level Example: answering the questions

- Q4: What is the average time spent by an HTTP request in the Web server?
- A: It is a function of the average number of requests, n_{req}, and the average throughput X. We need Little's Law to answer this question.

34

System-level Example: answering the questions

- Q4: What is the average time spent by an HTTP request in the Web server?
- A: From Little's Law,

$$R = n_{reg} / X = 1.091 / 8.731 = 0.125 sec.$$

35

© 2004 D. A. Menascé. All Rights Reserved.

Generalized System-level Models

Generalized System-level Models can be solved using the **flow in = flow out** principle!

36

Generalized System-level Models

$$p_k = \prod_{i=0}^{k-1} \frac{\boldsymbol{I}_i}{\boldsymbol{m}_{i+1}}$$

$$p_0 = \left[\sum_{k=0}^{\infty} \prod_{i=0}^{k-1} \frac{\boldsymbol{I}_i}{\boldsymbol{m}_{i+1}}\right]^{-1}$$

© 2004 D. A. Menascé. All Rights Reserved.

Solving the Markov Model for the Failure-Recovery Case

$$\mathbf{I}_{k} = (M - k)\mathbf{I}$$

$$\mathbf{m}_{k} = \begin{cases} k\mathbf{m} & k = 1, ..., N \\ N\mathbf{m} & k = (N + 1), ..., M \end{cases}$$

$$p_{k} = \begin{cases} p_{0} \left(\frac{\mathbf{I}}{\mathbf{m}}\right)^{k} \binom{M}{k} & k = 1, ..., N \\ p_{0} \left(\frac{\mathbf{I}}{\mathbf{m}}\right)^{k} \binom{M}{k} \frac{N^{N-k}k!}{N!} & N < k \le M \end{cases}$$

38

37

Solving the Markov Model for the Failure-Recovery Case

Average aggregate machine failure rate:

$$\overline{X}_{f} = \sum_{k=0}^{M-1} \mathbf{I}_{k} \times p_{k} = \sum_{k=0}^{M-1} (M-k) \mathbf{I} \times p_{k}$$

MTTR (from the Interactive Response Time Law):

$$MTTR = M / \overline{X}_f - MTTF = M / \overline{X}_f - 1 / \mathbf{1}$$

39

© 2004 D. A. Menascé. All Rights Reserved.

Solving the Markov Model for the Failure-Recovery Case

Average number of failed machines (Little's Law):

$$N_f = \overline{X}_f \times MTTR = M - \overline{X}_f \times MTTF = M - \overline{X}_f / I$$

Average number of operational machines:

$$N_o = M - N_f = \overline{X}_f \times MTTF = \overline{X}_f / \mathbf{1}$$

40

Effect of Number of Repair People

				% Machines
N	N0	Nf	MTTR (min)	in Operation
1	25.00	95.0	1900.0	20.8%
2	50.00	70.0	700.0	41.7%
3	75.00	45.0	300.0	62.5%
4	99.20	20.8	104.8	82.7%
5	111.49	8.5	38.1	92.9%
6	114.27	5.7	25.1	95.2%
7	115.02	5.0	21.7	95.8%
8	115.26	4.7	20.6	96.0%
9	115.34	4.7	20.2	96.1%
10	115.37	4.6	20.1	96.1%
120	115.38	4.6	20.0	96.2%

Number of machines: 120; Failure Rate: 0.002 machines/min;

Repair rate: 0.05 machines/minute

© 2004 D. A. Menascé. All Rights Reserved.

43

Effect of Repair Rate

Average					
time to					%
repair a	Repair				Machines
machine	Rate (mu)				in
(minutes)	(1/min)	N0	Nf	MTTR	Operation
10	0.100	117.6	2.4	10.4	98.0%
12	0.083	117.0	3.0	12.9	97.5%
15	0.067	115.8	4.2	18.1	96.5%
18	0.056	113.8	6.2	27.2	94.8%
20	0.050	111.5	8.5	38.1	92.9%
25	0.040	99.1	20.9	105.5	82.6%

Number of machines: 120; Failure Rate: 0.002 machines/min; Number of repair people: 5

44

Cost Analysis

- Cp: annual personnel cost per person in the repair staff.
- Cm: annual machine cost (per machine)
- Ca: total annual cost
 Ca = (N x Cp) + (M x Cm)
- Ra: annual revenue
 Ra = β(No Mmin)
- Mmin: minimum no. of machines that need to be in operation for the data center to avoid paying a penalty.
- P: annual profit
 P = Ra Ca = β(No Mmin) [(NxCp+MxCm)]

45

