

Skript Topologie I.

Mitschrift der Vorlesung "Topologie I." von Prof. Dr. Arthur Bartels

Jannes Bantje

15. Dezember 2014

Aktuelle Version verfügbar bei:

☐ **GitHub** (inklusive Sourcecode)
https://github.com/JaMeZ-B/latex-wwu ☑

■ Bittorrent Sync B6WH2DISQ5QVYIRYIEZSF4ZR2IDVKPN3I

Vorwort — Mitarbeit am Skript

Dieses Dokument ist eine Mitschrift aus der Vorlesung "Topologie I., WiSe 2014/2015", gelesen von Prof. Dr. Arthur Bartels. Der Inhalt entspricht weitestgehend dem Tafelanschrieb. Für die Korrektheit des Inhalts übernehme ich keinerlei Garantie! Für Bemerkungen und Korrekturen – und seien es nur Rechtschreibfehler – bin ich sehr dankbar. Korrekturen lassen sich prinzipiell auf drei Wegen einreichen:

- Persönliches Ansprechen in der Uni, Mails an □j.bantje@wwu.de (gerne auch mit annotieren PDFs)
- Direktes Mitarbeiten am Skript: Den Quellcode poste ich auf GitHub (siehe oben), also stehen vielfältige Möglichkeiten der Zusammenarbeit zur Verfügung: Zum Beispiel durch Kommentare am Code über die Website und die Kombination Fork + Pull Request. Wer sich verdient macht oder ein Skript zu einer Vorlesung, die ich nicht besuche, beisteuern will, dem gewähre ich gerne auch Schreibzugriff.

Beachten sollte man dabei, dass dazu ein Account bei github.com om notwendig ist, der allerdings ohne Angabe von persönlichen Daten angelegt werden kann. Wer bei GitHub (bzw. dem zugrunde liegenden Open-Source-Programm "git") – verständlicherweise – Hilfe beim Einstieg braucht, dem helfe ich gerne weiter. Es gibt aber auch zahlreiche empfehlenswerte Tutorials im Internet.¹

• Indirektes Mitarbeiten: T_FX-Dateien per Mail verschicken.

Dies ist nur dann sinnvoll, wenn man einen ganzen Abschnitt ändern möchte (zB. einen alternativen Beweis geben), da ich die Änderungen dann per Hand einbauen muss!

Vorlesungshomepage

https:

//wwwmath.uni-muenster.de/reine/u/topos/lehre/WS2014-2015/Topologie1/Topologie1.html

¹zB. https://try.github.io/levels/1/challenges/1□, ist auf Englisch, aber dafür interaktives LearningByDoing

Inhaltsverzeichnis

1	Kategorien, Funktoren und natürliche Transformationen					
	1.1	Definition: Kategorie	1			
	1.2	Beispiele für Kategorien	1			
	1.3	Bemerkungen zu Kategorien	2			
	1.4	Definition: Funktor	2			
	1.5	Beispiele für Funktoren	2			
	1.6	Definition: Natürliche Transformation	2			
	1.7	Ausblick auf Kategorien und Funktoren in der algebraischer Topologie	3			
2	Kombinatorische Beschreibungen topologischer Räume					
	2.1	Beispiel einer kombinatorischen Beschreibung eines Raumes	4			
	2.2	Definition: Simplizialer Komplex	4			
	2.3	Beispiel für simpliziale Komplexe	4			
	2.4	Definition: Unterkomplex	4			
	2.5	Definition: Simpliziale Abbildung	5			
	2.6	Definition: Geometrische Realisierung	5			
	2.7	Beispiel: Rand des n -Simplizes und der Torus	5			
	2.8	Definition: Polyeder	5			
	2.9	Definition: Euler-Charakteristik	6			
	2.10	Satz über die Euler-Charakteristik	6			
3	Simpl	liziale Homologie	7			
	3.1	Definition: Freier R -Modul mit Basis S	7			
	3.2	Lemma: Universale Eigenschaft von freien Moduln	7			
	3.3	Beispiel für freie und nicht-freie Moduln	7			
	3.4	Definition: <i>n</i> -ter Kettenmodul	8			
	3.5	Definition: Orientierung eines $(n-1)$ -Simplizes als Teilmenge eines n -Simplizes	8			
	3.6	Definition: <i>n</i> -te Randabbildung	8			
	3.7	Proposition: $\partial_{n-1} \circ \partial_n = 0 \ldots \ldots \ldots \ldots \ldots \ldots$	8			
	3.8	Lemma: Ein $(n-2)$ -Simplex ist Seite von genau zwei $(n-1)$ -Simplizes $\ldots \ldots$	9			
	3.9	Notation für das Weglassen eines Knotens	9			
	3.10	Definition: <i>n</i> -ter Homologiemodul	9			
	3.11	Beispiele für Homologiemoduln	9			
	3.12	Definition: R -Kettenkomplex, n -te Homologie eines R -Kettenkomplexes	10			
	3.13	Bemerkungen zu Kettenkomplexen	10			
	3.14	Definition: Simplizialer Kettenkomplex	10			
4	Euler	-Charakteristik von Kettenkomplexen	11			
	4.1	Wiederholung: Torsionsgruppe	11			
	4.2	Lemma: Rang einer endlich erzeugten abelschen Gruppe	11			
	4.3	Definition: Kurze exakte Sequenz	11			
	4.4	Beispiele für kurze exakte Folgen	12			
	4.5	Bemerkung: Spaltung einer kurzen exakten Sequenz	12			
	4.6	Bemerkung: Existenz einer Spaltung, wenn M_2 frei ist $\ldots \ldots \ldots \ldots \ldots$	12			
	4.7	Bemerkung: Der Rang ist additiv	12			
	4.8	Proposition: Der Rang ist für kurze exakte Folgen endl. erz., abelscher Gruppen additiv	12			
	4.9	Definition: Eulercharakteristik von \mathbb{Z} -Kettenkomplexen	14			
	4.10	Satz: Eulercharakteristik eines endlich erzeugten \mathbb{Z} -Kettenkomplexes $\dots \dots \dots$	14			
	4.11	Korollar: Die Eulercharakteristik eines simplizialen Komplexes	14			

5	Singu	Singulare Homologie					
	5.1	Definition: Singuläre Simplizes und n -ter singulärer Kettenmodul	15				
	5.2	Definition: Einschränkung eines singulären Simplizes auf eine Seite	15				
	5.3	Bemerkung zur Inklusion der j -ten Seite	15				
	5.4	Definition: <i>n</i> -te singuläre Randabbildung	15				
	5.5	Proposition: Für die Randabbildungen gilt $\partial_{n-1} \circ \partial_n = 0$	15				
	5.6	Lemma: Hilfslemma für Proposition 5.5	15				
	5.7	Definition: Singuläre Homologie von X	16				
	5.8	Definition: n -Ketten, n -Ränder und n -Zykel und Homologieklasse	16				
	5.9	Beispiel: Die Homologie des Ein-Punkt-Raumes	16				
	5.10	Proposition: Eigenschaften von $H_0(X)$ für $X \neq \emptyset$ und X wegzusammenhängend	17				
	5.11	Bemerkung: Vorgehen, um später zu zeigen: $H_*(K;R) \cong H_*(K ;R)$	17				
6	Funkl	Funktorialität 15					
•	6.1	Definition: R -Kettenabbildung	18				
	6.2	Bemerkung: Induzierte Abbildung einer Kettenabbildung	18				
	6.3	Bemerkung: Homologie definiert einen Funktor	18				
	6.4	Definition: Induzierte Abbildung auf Kettenkomplexen	18				
	6.5	Proposition: Der singuläre Kettenkomplex bildet einen Funktor	19				
	6.6	Korollar: Homologie ist ein Funktor $Top \rightarrow R$ -Mod	19				
	6.7	Bemerkung: Notation und Formel für $H_n(f;R)$	19				
	6.8	Definition: Summe oder Koprodukt von topologischen Räumen	19				
	6.9	Definition: Summe von R-Moduln	20				
	6.10	Satz: Homologie des Koproduktes topologischer Räume	20				
	0.10	oute. Homotogic des noproduntes topologischer haame	20				
7	Homo	otopieinvarianz	21				
•	7.1	Bemerkung: Die induzierte Abbildung eines Homöomorphismus ist ein Isomorphismus	21				
	7.2	Definition: Homotopieäquivalenz und Homotopieinverse	21				
	7.3	Satz: Homotopieinvarianz der Homologie	21				
	7.4	Korollar: Die induzierte Abbildung einer Homotopieäquivalenz ist ein Isomorphismus .	21				
	7.5	Korollar: Homologie eines kontrahierbaren Raumes	21				
	7.6	Definition: Kettenhomotopie	22				
	7.7	Prop.: induzierte Abbildungen von kettenhomotopen Kettenabbildungen sind gleich .	22				
	7.8	Lemma: Reduktion von Satz 7.3 auf Beweis eines Spezialfalles	22				
	7.9	Bemerkung zum Vorgehen beim Beweis von [#]	22				
	7.10	Definition: Affin lineare Abbildungen zur Konstruktion der Kettenhomotopie	23				
	7.11	Lemma: Gleichungen für die Abbildungen aus 7.10	23				
	7.12	Beweis von [##]/Konstruktion der Kettenhomotopie	24				
	7.12	Bemerkung: Konstruktion einer Kettenhomotopie aus einer Homotopie					
	1.13	betherkung. Ronstruktion einer Rettermomotopie aus einer Homotopie	2.				
8	Homo	ologie von Paaren	26				
Ŭ	8.1	Definition: Paar von topologischen Räumen	26				
		·					
	8.2	Definition: Singulärer Kettenkomplex und Homologiemodul von Paaren	26				
	8.3	Definition: Der singuläre Kettenkomplex von Paaren definiert einen Funktor	26				
	8.4	Bemerkung: Topologische Räume als Paar auffassen	26				
	8.5	Frage: Können wir $H_n(X,A;R)$ durch $H_n(X;R)$ und $H_n(A;R)$ ausdrücken?	26				
	8.6	Beispiel: Homologie des Paares $(\Delta^n , \partial \Delta^n)$	26				
	8.7	Definition: Lange exakte Sequenz von R-Moduln	27				
	8.8	Satz: Existenz der Paarsequenz	27				
	8.9	Korollar: Hologiemodul wenn A kontraktibel ist	27				
		<u> </u>					
	8.10	Definition: Kurze exakte Folge von Kettenkomplexen	28				
	8.11	Beispiel einer kurzen exakten Folge von Kettenkomplexen	28				

II Inhaltsverzeichnis

	8.12 8.13 8.14 8.15 8.16	Beweis von Satz 8.8	28 29 30 30 31							
	9.1 9.2 9.3 9.4 9.5 9.6 9.7	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	32 32 33 33 33 34 34							
	10.1 10.2 10.3 10.4 10.5 10.6 10.7 10.8 10.9 10.10	Satz: Invarianz der Dimension	35 35 35 35 36 36 37 37 37 38 39							
	CW-K 11.1 11.2 11.3 11.4 11.5 11.6	Definition: Pushout	40 40 41 41 43 43							
	12.1 12.2 12.3 12.4 12.5 12.6 12.7 12.8 12.9	Definition Lemma Definition Bemerkung Lemma Bemerkung Definition: Natürlicher Isomorphismus Satz Lemma	44 44 44 44 45 46 46 46 47							
Ind	ex		Α							
Abl	Abbildungsverzeichnis									
Todo list										

1 Kategorien, Funktoren und natürliche Transformationen

1.1 Definition

Eine **Kategorie** C besteht aus:

- i) Einer Klasse $\mathrm{Ob}(\mathcal{C})$. Die Elemente von $\mathrm{Ob}(\mathcal{C})$ heißen die **Objekte** von \mathcal{C} .
- ii) Zu je zwei Objekten A,B aus $\mathcal C$ einer Menge $\mathrm{Mor}_{\mathcal C}(A,B)$. Die Elemente von $\mathrm{Mor}_{\mathcal C}(A,B)$ heißen **Morphismen** von $\mathcal C$.
- iii) Zu je drei Objekten A, B, C aus \mathcal{C} einer Abbildung:

$$\operatorname{Mor}_{\mathcal{C}}(B,C) \times \operatorname{Mor}_{\mathcal{C}}(A,B) \to \operatorname{Mor}_{\mathcal{C}}(A,C)$$
, $(f,g) \mapsto f \circ g$

genannt die **Komposition** in C.

Dabei müssen folgende Axiome erfüllt sein:

- (i) Die Komposition ist **assoziativ**: Für Objekte A,B,C,D von $\mathcal C$ und $f\in \mathrm{Mor}_{\mathcal C}(C,D), g\in \mathrm{Mor}_{\mathcal C}(B,C), h\in \mathrm{Mor}_{\mathcal C}(A,B)$ gilt immer $f\circ (g\circ h)=(f\circ g)\circ h$
- (ii) Die Komposition ist **unital**: Für jedes Objekt A von $\mathcal C$ gibt es einen Morphismus $\mathrm{id}_A \in \mathrm{Mor}_{\mathcal C}(A,A)$ so, dass

$$\forall f \in \operatorname{Mor}_{\mathcal{C}}(B, A) : \operatorname{id}_{A} \circ f = f \quad \text{und} \quad \forall f \in \operatorname{Mor}_{\mathcal{C}}(A, B) : f \circ \operatorname{id}_{A} = f$$

1.2 Beispiele

- (1) Die Kategorie der Mengen Mengen: Objekte sind Mengen und Morphismen sind Abbildungen.
- (2) Die Kategorie der Gruppen Gruppen: Objekte sind Gruppen und Morphismen sind Gruppenhomomorphismen.
- (3) Die Kategorie der K-Vektorräume K-VR: Objekte sind K-Vektorräume und die Morphismen sind K-lineare Abbildungen.
- (4) Die Kategorie der R-Moduln R-Moduln und Morphismen sind R-lineare Abbildungen.
- (5) Die Kategorie der C^{∞} -Mannigfaltigkeiten C^{∞} -Man: Objekte sind C^{∞} -Mannigfaltigkeiten und Morphismen sind C^{∞} -Abbildungen.
- (6) Die Kategorie der topologischen Räume Top: Objekte sind topologische Räume und Morphismen sind stetige Abbildungen.
- (7) Die Kategorie der punktierten topologischen Räume Top.: Objekte sind punktiert-topologische Räume und Morphismen sind punktiert-stetige Abbildungen.
- (8) Die Kategorie HTop: Objekte sind topologische Räume und Morphismen sind Homotopieklassen von stetigen Abbildungen.
- (9) Die Kategorie HTop.: Objekte sind punktiert-topologische Räume und Morphismen sind Homotopieklassen von punktiert-stetigen Abbildungen.
- (10) Sei G eine Gruppe. Wir erhalten eine Kategorie C_G mit genau einem Objekt * und $\mathrm{Mor}_{C_G}(*,*) = G$. Die Komposition wird durch die Verknüpfung in der Gruppe festgelegt.
- (11) Ist $\mathcal C$ eine Kategorie, so ist $\mathcal C^{\mathrm{op}}$ eine Kategorie, wobei $\mathrm{Ob}(\mathcal C^{\mathrm{op}}) = \mathrm{Ob}(\mathcal C)$ und $\mathrm{Mor}_{\mathcal C^{\mathrm{op}}}(A,B) := \mathrm{Mor}_{\mathcal C}(B,A)$. Die Komposition ist gegeben durch $f \circ^{\mathrm{op}} g := g \circ f$.

1.3 Bemerkung

- (i) Eine Kategorie heißt **klein**, wenn ihre Objekte eine Menge bilden.
- (ii) Statt $f \in \operatorname{Mor}_{\mathcal{C}}(A, B)$ schreiben wir oft $f : A \to B$ oder $A \xrightarrow{f} B$.

1.4 Definition

Seien $\mathcal C$ und $\mathcal D$ Kategorien: Ein **Funktor** $F:\mathcal C\to\mathcal D$ ordnet jedem Objekt C von $\mathcal C$ ein Objekt F(C) von $\mathcal D$ und ordnet jedem Morphismus $f:C\to C'$ in $\mathcal C$ einen Morphismus $F(f):F(C)\to F(C')$ in $\mathcal D$ zu. Dabei muss gelten:

$$F(f \circ g) = F(f) \circ F(g)$$
 und $F(\mathrm{id}_C) = \mathrm{id}_{F(C)}$

1.5 Beispiele

(1) Es gibt offensichtliche "Vergiss"-Funktoren:

$$K ext{-VR} \longrightarrow \text{Mengen}$$
 $R ext{-Mod} \longrightarrow \text{Mengen}$
 $\text{Top} \longrightarrow \text{Mengen}$
 $\text{Top}_{ullet} \longrightarrow \text{Mengen}$
 $\text{Top}_{ullet} \longrightarrow \text{Top}$

(2) Sei $\mathcal C$ eine Kategorie und C ein Objekt von $\mathcal C$. Der durch C dargestellte Funktor $F_C:\mathcal C\to M$ ENGEN ist definiert durch

$$\begin{array}{ll} F_C(A) = \operatorname{Mor}_{\mathcal{C}}(C,A) & \text{für } A \in \operatorname{Ob}(\mathcal{C}) \\ F_C(f) : \operatorname{Mor}_{\mathcal{C}}(C,A) \to \operatorname{Mor}_{\mathcal{C}}(C,A'), g \mapsto f \circ g & \text{für } f : A \to A' \text{ in } \mathcal{C} \end{array}$$

(3) Die Fundamentalgruppe definiert einen Funktor

$$\pi_1: \mathrm{HTop}_{ullet} \longrightarrow \mathrm{Gruppen}$$

Bemerkung

- Ist $F: \mathcal{C} \to \mathcal{D}$ ein Funktor so schreiben wir oft kürzer und ungenauer $f_* := F(f)$.
- Kleine Kategorien und Funktoren bilden die Kategorie KAT.

1.6 Definition

Seien $F,G:\mathcal{C}\to\mathcal{D}$ zwei Funktoren. Eine **natürliche Transformation** $\tau:F\to G$ ordnet jedem $C\in\mathrm{Ob}(\mathcal{C})$ einen Morphismus $\tau_C:F(C)\to G(C)$ in \mathcal{D} zu, sodass für jedes $f:C\to C'$ in \mathcal{C}

$$F(C) \xrightarrow{F(f)} F(C')$$

$$\downarrow^{\tau_C} \qquad \downarrow^{\tau_{C'}}$$

$$G(C) \xrightarrow{G(f)} G(C')$$

kommutiert.

Bemerkung

Natürliche Transformationen lassen sich komponieren. Für $\tau:F\to G$, $\eta:G\to H$ ist $\eta\circ\tau:F\to H$ gegeben durch

 $F, G, H: \mathcal{C} \to \mathcal{D}$

$$(\eta \circ \tau)_C := \eta_C \circ \tau_C : F(C) \to H(C)$$

Genauer: Für eine feste kleine Kategorie $\mathcal C$ und $\mathcal D$ bilden die Funktoren $\mathcal C \to \mathcal D$ mit den natürlichen Transformationen eine Kategorie $\mathrm{Fun}(\mathcal C,\mathcal D)$.

1.7 Ausblick

In der algebraischen Topologie werden topologische Fragen, wie zum Beispiel, wann \mathbb{R}^n und \mathbb{R}^m homöomorph sind, in algebraische Fragen übersetzt. Eine Möglichkeit für eine solche Übersetzung sind Funktoren von einer Kategorie von topologischen Räumen, z.B. Top, Top, HTop, in eine algebraisch Kategorie, z.B. Gruppen, K-VR, Abel.Gruppen, R-Mod. Ein Beispiel für einen solchen Funktor ist die Fundamentalgruppe π_1 . Ein Nachteil der Fundamentalgruppe ist, dass diese oft schwierig zu berechnen ist. Wir werden in dieser Vorlesung weitere Funktoren und Methoden für ihr Berechnung kennenlernen.

2 Kombinatorische Beschreibungen topologischer Räume

2.1 Beispiel

Graphen sind einerseits topologische Räume und andererseits kombinatorische Objekte:

2.2 Definition

Ein **simplizialer Komplex** $K=(V,\Sigma)$ besteht aus einer Menge V und einer Menge Σ von nichtleeren, endlichen Teilmengen von V, sodass gilt

(i)
$$\{v\} \in \Sigma$$
 für alle $v \in V$

(ii)
$$\sigma \in \Sigma$$
, $\emptyset \neq \tau \subseteq \sigma \Longrightarrow \tau \in \Sigma$.

(Abgeschlossen bzgl. Teilmengenbildung)

Die Elemente von V heißen die **Ecken** oder **Vertices** von K. Die Elemente von Σ heißen die **Simplizes** von K. Enthält $\sigma \in \Sigma$ genau n+1 Elemente, so heißt σ ein \mathbf{n} -**Simplex**. Ist $\tau \subseteq \sigma$ mit σ ein n-Simplex und τ ein n-1-Simplex, so heißt τ eine **Seite** von σ .

Ist V geordnet, so heißt K geordnet. Ist V endlich, so heißt K endlich.

2.3 Beispiel

Ist σ eine endliche Menge, so heißt $\Delta^{\sigma} := (\sigma, \mathcal{P}(\sigma) \setminus \{\emptyset\})$ der σ -Simplex. Für $\sigma = \{0, \dots, n\}$ schreiben wir $\Delta^n := \Delta^{\{0, \dots, n\}}$. Es ist

$$\Delta^0 = \bullet, \qquad \Delta^1 = \red, \qquad \Delta^2 = \red, \qquad \Delta^3 = \red$$

2.4 Definition

Sei $K=(V,\Sigma)$ ein simplizialer Komplex. Ein **Unterkomplex** von K ist ein simplizialer Komplex $K_0=(V_0,\Sigma_0)$ mit $V_0\subseteq V$ und $\Sigma_0\subseteq \Sigma$.

Beispiel

Sei $K = (V, \Sigma)$ ein endlicher simplizialer Komplex. Dann ist K ein Unterkomplex von Δ^V .

2.5 Definition

Eine **simpliziale Abbildung** $f: K_1 = (V_1, \Sigma_1) \to K_2(V_2, \Sigma_2)$ zwischen simplizialen Komplexen ist eine Abbildung $f: V_1 \to V_2$, sodass $f(\sigma_1) \in \Sigma_2$ für alle $\sigma_1 \in \Sigma_1$.

2.6 Definition

Sei σ eine endliche Menge. Sei $\mathbb{R}^\sigma=\prod_{v\in\sigma}\mathbb{R}$ mit der Produkttopologie. Sei nun

$$|\Delta^{\sigma}| := \left\{ x = (x_v)_{v \in \sigma} \in \mathbb{R}^{\sigma} \left| \sum_{v \in \sigma} x_v = 1, x_v \in [0, 1] \ \forall v \in \sigma \right. \right\}$$

Ist $\tau \subseteq \sigma$, so erhalten wir eine Abbildung $\iota_{\tau}^{\sigma}: |\Delta^{\tau}| \to |\Delta^{\sigma}|$ indem wir $(x_v)_{v \in \tau} \in |\Delta^{\tau}|$ durch $x_v = 0$ für $v \in \sigma \setminus \tau$ zu $(x_v)_{v \in \sigma}$ auffüllen. Ist $\eta \subseteq \tau \subseteq \sigma$ so gilt $\iota_{\eta}^{\sigma} = \iota_{\tau}^{\sigma} \circ \iota_{\eta}^{\tau}$. Sei $K = (V, \Sigma)$ ein simplizialer Komplex. Die **geometrische Realisierung** |K| von K ist definiert als

$$|K| := \coprod_{\sigma \in \Sigma} {\{\sigma\} \times |\Delta^{\sigma}|} / \sim$$

wobei \sim die durch $(\tau,x)\sim \left(\sigma,\iota_{\tau}^{\sigma}(x)\right)$ für $\tau\subseteq\sigma$ erzeugte Äquivalenzrelation ist. Versehen mit der Quotiententopologie ist |K| ein topologischer Raum.

2.7 Beispiel

• Sei $\partial\Delta^n:=\left(\{0,\dots,n\},\mathcal{P}\big(\{0,\dots,n\}\big)\setminus\{\emptyset,\{0,\dots,n\}\}\right)=$ " $\Delta^n\setminus\{0,\dots,n\}$ ". $\partial\Delta^n$ heißt der Rand des n-Simplizes. Es gilt

$$\begin{aligned} \left| \partial \Delta^1 \right| &= \bullet \bullet &\cong S^0 \\ \left| \partial \Delta^2 \right| &= \bigwedge \cong S^1 \\ \left| \partial \Delta^3 \right| &= \bigwedge \cong S^2 \end{aligned}$$

Allgemein gilt $|\partial \Delta^n| \cong S^{n-1}$.

•
$$T^2 = S^1 \times S^1 \cong$$

2.8 Definition

Ein topologischer Raum X heißt ein **Polyeder**, falls er homöomorph zur Realisierung eines simplizialen Komplexes ist.

2.9 Definition

Sei $K=(V,\Sigma)$ ein endlicher simplizialer Komplex. Sei $a_n:=\#\{\sigma\in\Sigma\,|\,\sigma \text{ ist ein }n\text{-Simplex von }K\}.$ Dann heißt $\chi(K):=\sum_{n\in\mathbb{N}}(-1)^na_n$ die **Euler-Charakteristik** von K.

Beispiel

$$\chi\Bigl(\bigwedge\Bigr) = 3 - 3 = 0$$

$$\chi\Bigl(\boxed{ }\Bigr) = 4 - 4 = 0$$

$$\chi\bigl([n\text{-Eck}] \bigr) = n - n = 0$$

$$\chi\left(\partial\Delta^{3} = \left(\begin{array}{c} \\ \\ \\ \\ \end{array}\right) = 4 - 6 + 4 = 2$$

$$\chi\left(\begin{array}{c} \\ \\ \\ \end{array}\right) = 8 - 12 + 6 = 2$$

$$\chi\left(\begin{array}{c} \\ \\ \\ \end{array}\right) = 6 - 12 + 8 = 2$$

2.10 Satz

Seinen K und K' endliche simpliziale Komplexe. Gilt $|K| \cong |K'|$, so gilt

$$\chi(K) = \chi(K').$$

Bemerkung

Die Euler-Charakteristik ist also eine topologische Invariante von simplizialen Komplexen. Sie hängt nur von der topologischen Struktur von |K| und nicht von der kombinatorischen Struktur von K ab.

3 Simpliziale Homologie

3.1 Definition

Sei S eine Menge.Sei R ein Ring. Der **freie** R-Modul mit Basis S, R[S], besteht aus allen endlichen Ring mit Eins formalen R-Linearkombinationen

$$\sum_{s \in S} r_s \cdot s \quad , r_s \in R, r_s \neq 0 \text{ für endliche viele } s \in S$$

Die R-Modulstruktur auf R[S] ist definiert durch:

$$r \cdot \left(\sum_{s \in S} r_s \cdot s\right) := \sum_{s \in S} (r \cdot r_s) \cdot s \qquad \left(\sum_{s \in S} r_s \cdot s\right) + \left(\sum_{s \in S} r_s' s\right) := \sum_{s \in S} (r_s + r_s') \cdot s$$

Bemerkung

Mittels $s = \sum_{s' \in S} \delta_{s,s'} \cdot s'$ fassen wir S als Teilmenge von R[S] auf.

3.2 Lemma

Sei S eine Menge, R ein Ring. Es gilt

1) Ist M ein R-Modul und $i:S\to M$ eine Abbildung, so gibt es genau eine R-lineare Abbildung $\varphi: R[S] \to M$, die i fortsetzt.

 $R[S] \xrightarrow{\hat{f}} M$

2) Sei $f:R[S] \to M$ R-linear und $p:N \twoheadrightarrow M$ R-linear und surjektiv. Dann gibt es $\hat{f}: R[S] \to N$ mit $p \circ \hat{f} = f$.

1) Eine solche Abbildung ist gegeben durch $\varphi(\sum_{s \in S} r_s \cdot s) = \sum_{s \in S} r_s \cdot i(s)$. Ist φ' eine zweite, so

$$\hat{\varphi}\left(\sum_{s \in S} r_s \cdot s\right) = \sum_{s \in S} r_s \cdot \hat{\varphi}(s) = \sum_{s \in S} r_s \cdot i(s)$$

2) Wähle für jedes $s \in S$ ein Urbild $j(s) \in N$ für $f(s) \in M$ unter $p: N \twoheadrightarrow M$. Nun wende 1) auf $j:S\to N$ an, um $\hat{f}:R[S]\to N$ mit $\hat{f}(s)=j(s)$ zu erhalten. Nun ist $p\circ\hat{f}(s)=f(s)$ für alle $s \in S$. Mit der Eindeutigkeit aus 1) folgt $p \circ \hat{f} = f$.

3.3 Beispiel

- (i) Sei K ein Körper und V, M, N seien K-Vektorräume, $f: V \to M, p: N \to M$ seien K-linear, psurjektiv. Dann gibt es $\hat{f}:V\to N$ mit $p\circ\hat{f}=f$. Wir können Lemma 3.2 benutzen, da V eine Basis B hat, also $V \cong K[B]$.
- (ii) Sei $R=\mathbb{Z}$, sei $V=\mathbb{Z}/2\mathbb{Z}$ und $M=\mathbb{Z}/2\mathbb{Z}$, sowie $f=\mathrm{id}:V\to M$, $N=\mathbb{Z}$ und $p:\mathbb{Z}n\to\mathbb{Z}/2\mathbb{Z}$ die Projektion mit $p(n) = n + 2\mathbb{Z}$. Dann gibt es keine \mathbb{Z} -lineare Abbildung $\hat{f} : \mathbb{Z}/2\mathbb{Z} \to \mathbb{Z}$ mit $p \circ \hat{f} = f$. Ist $\hat{f}(1+2\mathbb{Z})=n\in\mathbb{Z}$, so folgt

$$2n = 2 \cdot \hat{f}(1 + 2\mathbb{Z}) = \hat{f}(2 \cdot (1 + 2\mathbb{Z})) = \hat{f}(0 + 2\mathbb{Z}) = 0$$

also n=0.

3.4 Definition

Sei $K=(V,\Sigma)$ ein simplizialer Komplex. Sei $\Sigma_n:=\{\sigma\in\Sigma\,|\,\sigma \text{ ist ein }n\text{-Simplex}\}.$ Sei R ein Ring. Der \mathbf{n} -te Kettenmodul von K über R ist definiert als

$$C_n(K;R) := R[\Sigma_n]$$

Ist $R = \mathbb{Z}$, so schreiben wir auch kurz $C_n(K) := C_n(K; \mathbb{Z})$.

3.5 Definition

Sei $K=(V,\Sigma)$ ein geordneter simplizialer Komplex. Sei $\sigma=\{v_0,\ldots,v_n\}$ ein n-Simplex von K. Bezüglich der Ordnung von K sei dabei $v_0< v_1<\ldots< v_n$. Sei τ ein (n-1)-Simplex von K. Definiere

$$\varepsilon_\sigma^\tau \coloneqq \begin{cases} (-1)^i, & \text{falls } \tau = \{v_0, \dots, v_{i-1}, v_{i+1}, \dots, v_n\} \\ 0, & \text{sonst} \end{cases}$$

Bemerkung

 $\varepsilon_{\sigma}^{\tau} \neq 0 \iff \tau \text{ ist eine Seite von } \sigma.$

Beispiel

Für den folgenden geordneten simplizialen Komplex gilt

$$\sum_{0}^{1} \varepsilon_{\{0,1,2\}}^{\{0,1\}} = 1, \quad \varepsilon_{\{0,1,2\}}^{\{0,2\}} = -1, \quad \varepsilon_{\{0,1,2\}}^{\{1,2\}} = 1$$

3.6 Definition

Sei $K=(V,\Sigma)$ ein geordneter simplizialer Komplex. Die \mathbf{n} -te Randabbildung

$$\partial_n: C_n(K;R) \longrightarrow C_{n-1}(K;R)$$

$$= R[\Sigma_n] = R[\Sigma_{n-1}]$$

ist definiert durch

3.7 Proposition

$$\partial_{n-1} \circ \partial_n = 0$$

Damit folgt $\operatorname{Im} \partial_n \subseteq \ker \partial_{n-1}$.

Beweis (mit Lemma 3.8)

Sei σ ein n-Simplex von K. Dann gilt

$$\begin{split} \partial_{n-1} \big(\partial_n (\sigma) \big) &= \partial_{n-1} \left(\sum_{\tau \in \Sigma_{n-1}} \varepsilon_\sigma^\tau \cdot \tau \right) = \sum_{\tau \in \Sigma_{n-1}} \varepsilon_\sigma^\tau \cdot \partial_{n-1} (\tau) = \sum_{\tau \in \Sigma_{n-1}} \varepsilon_\sigma^\tau \left(\sum_{\eta \in \Sigma_{n-2}} \varepsilon_\tau^\eta \cdot \eta \right) \\ &= \sum_{\eta \in \Sigma_{n-2}} \left(\sum_{\tau \in \Sigma_{n-1}, \eta \subseteq \tau \subseteq \sigma} \varepsilon_\tau^\eta \cdot \varepsilon_\sigma^\tau \right) \eta \end{split}$$

8

3.8 Lemma

Sei σ ein n-Simplex. Sei $\eta \subseteq \sigma$ ein (n-2)-Simplex. Dann gibt es genau zwei (n-1)-Simplizes τ, τ' von K, die eine Seite von σ sind und η als Seite enthalten. Es gilt

$$\varepsilon_{\tau}^{\eta} \cdot \varepsilon_{\sigma}^{\tau} = -\varepsilon_{\tau'}^{\eta} \cdot \varepsilon_{\sigma}^{\tau'}$$

Beweis

Sei $\sigma = \{v_0, \ldots, v_n\}$ mit $v_0 < v_1 < \ldots < v_n$. Dann ist $\eta = \{v_0, \ldots, v_n\} \setminus \{v_i, v_j\}$ mit i < j. Dann sind $\tau = \{v_0, \ldots, v_{i-1}, v_{i+1}, \ldots, v_n\}$ und $\tau' = \{v_0, \ldots, v_{j-1}, v_{j+1}, \ldots, v_n\}$ die gesuchten (n-1)-Simplizes und es gilt

$$\varepsilon_{\sigma}^{\tau} = (-1)^{i} , \ \varepsilon_{\sigma}^{\tau'} = (-1)^{j} , \ \varepsilon_{\tau}^{\eta} = (-1)^{j-1} , \ \varepsilon_{\tau'}^{\eta} = (-1)^{i}$$

3.9 Notation

Für $\sigma \in \Sigma_n$, $\sigma = \{v_0, \dots, v_n\}$ mit $v_0 < \dots < v_n$ schreiben wir

$$\delta^j \sigma := \{v_0, \dots, v_{j-1}, v_{j+1}, \dots, v_n\} \in \Sigma_{n-1}$$

Dann ist $\partial_n(\sigma) = \sum_{j=0}^n (-1)^j \cdot \delta^j \sigma$.

3.10 Definition

Sei K ein geordneter simplizialer Komplex. Der \mathbf{n} -te Homologiemodul von K über R ist definiert als

$$H_n(K;R) := \frac{\ker \partial_n : C_n(K;R) \to C_{n-1}(K;R)}{\operatorname{Im} \partial_{n+1} : C_{n+1}(K;R) \to C_n(K;R)}$$

Für n=0 interpretieren wir ∂_0 als die Nullabbildung. Daher gilt

$$H_0(K;R) = \frac{C_0(K;R)}{\text{Im } \partial_1 : C_1(K;R) \to C_0(K;R)}$$

3.11 Beispiele

- (1) Sei $K=\bullet$. Dann ist $C_0(K;R)\cong R$ und $C_i(K;R)=0$ für i>0. Weiter ist $H_0(K;R)=C_0(K;R)\cong R$ und $H_i(K;R)=0$ für i>0.
- (2) Sein nun $K=K_n$ das n-Eck, wobei $n\geqslant 3$. Also

$$\Sigma_0 = \left\{ \tau_1 = \{1\}, \tau_2 = \{2\}, \dots, \tau_n = \{n\} \right\}$$

$$\Sigma_1 = \left\{ \sigma_1 = \{1, 2\}, \dots, \sigma_{n-1} = \{n_1, n\}, \sigma_n = \{n, 1\} \right\}$$

Dann gilt

$$C_0(K;R)=R[\Sigma_0]\cong R^n$$

$$C_1(K;R)=R[\Sigma_1]\cong R^n$$

$$C_i(K;R)=0 \text{ für } i>1, \text{ insbesondere } H_i(K;R)=0 \text{ für } i>1$$

Es ist dann $\partial_2=\partial_3=\ldots=0$. Interessant ist $\partial_1:C_1(K;R)\to C_0(K;R)$, denn es gilt

$$\partial_1(\sigma_i) = egin{cases} au_{i+1} - au_i, & ext{ falls } i = 1, \dots, n-1 \ au_n - au_1, & ext{ falls } i = n \end{cases}$$

3 Simpliziale Homologie $oldsymbol{9}$

Mit
$$\sigma_1' := \sigma_1, \sigma_2' := \sigma_2, \dots, \sigma_{n-1}' := \sigma_{n-1}$$
 und $\sigma_n' := -\sigma_n$ gilt dann

$$\partial_1(\sigma_i') = \tau_{i+1} - \tau_i$$

mit der Konvention $au_{n+1} = au_1$. Also gilt

$$\partial_1 \left(\sum_{i=1}^n r_i \sigma_i' \right) = \sum_{i=1}^n r_i (\tau_{i+1} - \tau_i) = \sum_{i=1}^n (r_{i-1} - r_i) \tau_i$$

Es folgt

$$\ker \partial_1 = \left\{ \sum_{i=1}^n r_i \cdot \sigma_i' \middle| r_1 = r_2 = \dots = r_n \right\} \subseteq C_1(K; R)$$
$$\operatorname{Im} \partial_1 = \left\{ \sum_{i=1}^n s_i \cdot \tau_i \middle| \sum_{i=1}^n s_i = 0 \right\} \subseteq C_0(K; R)$$

Ist $\sum_{i=1}^n s_i = 0$, so folgt für $r_n = 0, r_1 = -s_1, r_2 = -s_1 - s_2, \dots, r_{n-1} = -s_1 - s_2 - \dots - s_{n-1}$

$$\partial_1 \left(\sum_{i=1}^n r_i \sigma_i' \right) = \sum_{i=1}^n s_i \tau_i$$

Es folgt $[K] \in H_1(K;R) = \ker \partial_1 / \operatorname{Im} \partial_2 = \ker \partial_1 \cong R \ni 1$ und

$$[\tau_i] = [p] \in H_0(K; R) = \ker \partial_0 / \operatorname{Im} \partial_1 = R[\Sigma_0] / \{\sum_{i=1}^n s_i \tau_i \mid \sum_{i=1}^n s_i = 0\} \cong R \ni 1$$

(via $\sum_{i=1}^n s_i au_i \longmapsto \sum_{i=1}^n s_i$ und Homomorphiesatz)

3.12 Definition

Sei R ein Ring. Ein $\mathbf R$ -Kettenkomplex (C_*,d_*) ist eine Folge von R-Moduln $(C_n)_{n\in\mathbb N}$ zusammen mit R-linearen Abbildungen $(d_n:C_n\to C_{n-1})_{n\geqslant 1}$, so dass $d_n\circ d_{n+1}=0$. Die d_n heißen die Randabbildungen von (C_*,d_*) , die C_n die Kettenmoduln. Die $\mathbf n$ -te Homologie eines Kettenkomplexes (C_*,d_*) ist definiert als

$$H_n(C_*, d_*) := \frac{\ker d_n : C_n \to C_{n-1}}{\operatorname{Im} d_{n+1} : C_{n+1} \to C_n}$$

3.13 Bemerkung

- (i) Oft werden auch Kettenkomplexe betrachtet, die $\mathbb Z$ statt $\mathbb N$ verwenden.
- (ii) Ein Kettenkomplex (C_*, d_*) heißt endlich erzeugt, wenn alle C_n endlich erzeugte R-Moduln sind und $C_n \neq 0$ nur für endlich viele n ist.

3.14 Definition

Zu einem geordneten simplizialen Komplex K heißt $(C_*(K;R), \partial_*)$ der **simpliziale Kettenkomplex** von K über R.

Bemerkung

Ist K endlich, so ist $(C_*(K;R), \partial_*)$ endlich erzeugt.

10

4 Euler-Charakteristik von Kettenkomplexen

4.1 Wiederholung

Sei A eine abelsche Gruppe. Dann ist

$$TA := \left\{ a \in A \middle| \exists n \geqslant 1 : n \cdot a = \underbrace{a + \ldots + a}_{n \cdot \mathsf{mal}} = 0 \right\}$$

die **Torsionsgruppe** von A. Ist A endlich erzeugt, so ist auch TA endlich erzeugt und es gibt Primzahlpotenzen $p_1^{n_1}, \ldots, p_k^{n_k}$ mit

abelsche Gruppen sind Z-Moduln

$$TA \cong \mathbb{Z}/(p_1^{n_1}) \oplus \ldots \oplus \mathbb{Z}/(p_k^{n_k})$$

Weiter gibt es dann n mit $A \cong \mathbb{Z}^n \oplus TA$. $\operatorname{Rg} A := n$ ist der **Rang** von A.

4.2 Lemma

Sei A eine endlich erzeugte abelsche Gruppe. Dann gilt $\operatorname{Rg} A = \max\{m \mid \exists C \leqslant A, C \cong \mathbb{Z}^m\}$.

Beweis

Da $A\cong \mathbb{Z}^n\oplus TA$ ist, genügt zu zeigen: Ist $\varphi:\mathbb{Z}^m\to \mathbb{Z}^n\oplus TA$ ein injektiver Gruppenhomomorphismus, so ist $m\leqslant n$. Schreibe $\varphi=\varphi_0\oplus \varphi_1$, also $\varphi(a)=\varphi_0(a)+\varphi_1(a)$ mit $\varphi_0:\mathbb{Z}^m\to \mathbb{Z}^n$, $\varphi_1:\mathbb{Z}^m\to TA$.

Behauptung: φ_0 ist injektiv. Zu $v \in \mathbb{Z}^m$ wähle $k \geqslant 1$ mit $k \cdot \varphi_1(v) = 0 \in TA$. Dann ist $\varphi_1(kv) = k\varphi_1(v) = 0$. Ist $v \neq 0$, so ist $k \cdot v \neq 0 \in \mathbb{Z}^m$, also ist $\varphi(kv) \neq 0$ und damit $\varphi_0(kv) \neq 0$. Es folgt $\varphi_0(v) \neq 0$, da sonst $\varphi_0(k \cdot v) = k \cdot \varphi_0(v) = 0$. Damit ist die Behauptung gezeigt.

Gruppenhomomorphismen $\varphi_0:\mathbb{Z}^m \to \mathbb{Z}^n$ werden durch $n \times m$ -Matrizen beschrieben: Es gibt $A=(a_{ij})\in\mathbb{Z}^{n\times m}$ mit

$$\varphi_0 \begin{pmatrix} z_1 \\ \vdots \\ z_m \end{pmatrix} = \begin{pmatrix} \sum_{j=1}^m a_{1j} z_j \\ \vdots \\ \sum_{j=1}^m a_{nj} z_j \end{pmatrix}$$

Ist m>n, so hat A, aufgefasst als Matrix über $\mathbb Q$, einen Kern. Es gibt also einen Vektor $w=\begin{pmatrix} a_1/b_1\\ \vdots\\ a_m/b_m \end{pmatrix}$ mit $Aw=0,\,w\neq 0$. Dann ist $(b_1,\ldots,b_m)\cdot w\in \mathbb Z^m$ und

$$\varphi_0((b_1,\ldots,b_m)\cdot w) = A\cdot ((b_1,\ldots,b_m)\cdot w) = (b_1,\ldots,b_m)\cdot A\cdot w = 0$$

Also gilt $m \leqslant n$.

4.3 Definition

Seien M_0, M_1, M_2 R-Moduln und $f_0: M_0 \to M_1, f_1: M_1 \to M_2$ R-lineare Abbildungen. Dann heißt

$$M_0 \stackrel{f_0}{\longleftrightarrow} M_1 \stackrel{f_1}{\longrightarrow} M_2$$
 (\star)

eine kurze exakte Sequenz, wenn gilt:

(i)
$$f_0$$
 ist injektiv,

(ii)
$$\operatorname{Im} f_0 = \ker f_1$$
,

(iii) f_1 ist surjektiv.

Bemerkung

Oft sagt man $M_0 \xrightarrow{f_0} M_1 \xrightarrow{f_1} M_2$ ist exakt in M_1 , wenn ${\rm Im}\, f_0 = \ker f_1$ ist. Dann ist (\star) eine kurze exakte Folge, wenn

$$0 \longrightarrow M_0 \xrightarrow{f_0} M_1 \xrightarrow{f_1} M_2 \longrightarrow 0$$

exakt in M_0, M_1 und M_2 ist.

4.4 Beispiele

1)

$$M_0 \stackrel{i}{\longleftarrow} M_0 \oplus M_1 \stackrel{p}{\longrightarrow} M_1$$

 $v_0 \stackrel{i}{\longmapsto} (v_0, 0) \ (v_0, v_1) \stackrel{p}{\longmapsto} v_1$

ist eine kurze exakte Folge.

2) $\mathbb{Z} \stackrel{\cdot n}{\longleftrightarrow} \mathbb{Z} \longrightarrow \mathbb{Z}/n\mathbb{Z}$ ist eine kurze exakte Folge.

4.5 Bemerkung

Eine **Spaltung** für eine kurze exakte Folge $M_0 \xrightarrow{f_0} M_1 \xrightarrow{f_1} M_2$ ist eine R-lineare Abbildung $s: M_2 \to M_1$ mit $f_1 \circ s = \mathrm{id}_{M_2}$. In diesem Fall erhalten wir einen Isomorphismus $M_0 \oplus M_2 \to M_1$, $(v_0, v_2) \mapsto f_0(v_0) + s(v_2)$.

Injektivität: Sei $(v_0,v_2)\in M_0\oplus M_2$ mit $f_0(v_0)+s(v_2)=0$. Dann gilt

$$0 = f_1(f_0(v_0) + s(v_2)) = v_2 \implies f_0(v_0) = 0 \implies v_0 = 0$$

Surjektivität: Sei $v_1 \in M_1$. Betrachte $v_2 := f_1(v_1)$. Dann ist $v_1 - s(v_2) \in \ker f_1 = \operatorname{Im} f_0$, also gibt es v_0 in M_0 mit $f_0(v_0) = v_1 - s(v_1)$. Damit ist $v_1 = f_0(v_0) + s(v_1)$.

4.6 Bemerkung

- 1) $\mathbb{Z} \stackrel{\cdot n}{\longleftrightarrow} \mathbb{Z} \longrightarrow \mathbb{Z}/n\mathbb{Z}$ spaltet nicht.
- 2) Ist $M_0 \xrightarrow{f_0} M_1 \xrightarrow{f_1} M_2$ eine kurze exakte Folge mit M_2 frei, also $M_2 \cong R[S]$, so spaltet (\star) . Siehe Lemma 3.2. Insbesondere ist $M_1 \cong M_0 \oplus M_2$.

Moduln mit dieser Eigenschaft bezeichnet man als projektiv. Freie Moduln sind also projektiv.

4.7 Bemerkung

Der Rang für alle endlich erzeugten abelschen Gruppen ist additiv:

$$\operatorname{Rg}(A \oplus B) = \operatorname{Rg} A + \operatorname{Rg} B$$
,

da $A \cong \mathbb{Z}^{\operatorname{Rg} A} \oplus TA$, $B \cong \mathbb{Z}^{\operatorname{Rg} B} \oplus TB$, also

$$A \oplus B \cong \mathbb{Z}^{\operatorname{Rg} A + \operatorname{Rg} B} \oplus \underbrace{TA \oplus TB}_{=T(A \oplus B)}$$

4.8 Proposition

Der Rang von endlich erzeugten abelschen Gruppen ist additiv für kurze exakte Folgen: Ist

$$A \stackrel{i}{\longleftrightarrow} B \stackrel{p}{\longrightarrow} C \qquad [\star]$$

eine kurze exakte Folge von endlich erzeugten abelschen Gruppen, so gilt $\operatorname{Rg} B = \operatorname{Rg} A + \operatorname{Rg} C$.

Beweis

Spaltet [\star], so ist $B \cong A \oplus C$ und die Behauptung folgt aus der Bemerkung 4.7.

Wir können annehmen, dass $C = \mathbb{Z}^n \oplus TC$ gilt. Wir erhalten folgendes Diagramm:

$$A \stackrel{i}{\smile} p^{-1}(\mathbb{Z}^n) \stackrel{p}{\longrightarrow} \mathbb{Z}^n$$

$$\parallel \qquad \qquad \downarrow^{i''} \qquad \qquad \downarrow^{i'}$$

$$A \stackrel{i}{\smile} B \stackrel{p}{\longrightarrow} C$$

$$\downarrow^{p''} \qquad \qquad \downarrow^{p'}$$

$$B/p^{-1}(\mathbb{Z}^n) \stackrel{p' \circ p}{\smile} TC$$

Ist $p' \circ p(b) = 0$, so gibt es $v \in \mathbb{Z}^n$ mit i'(v) = p(b). Nun gibt es $v' \in p^{-1}(\mathbb{Z}^n)$ mit p(v') = v. Es folgt

$$p(i''(v')) = p(b)$$

also $i''(v') - b \in \ker p = i(A)$. Da $i(A) \subseteq i'' \left(p^{-1}(\mathbb{Z}^n) \right)$, folgt $b \in i'' \left(p^{-1}(\mathbb{Z}^n) \right)$. In dem Diagramm sind die Spalten und Zeilen exakt. Da \mathbb{Z}^n frei ist, spaltet $A \stackrel{i}{\longleftarrow} p^{-1}(\mathbb{Z}^n) \stackrel{p}{\longrightarrow} \mathbb{Z}^n$ und es gilt

$$\operatorname{Rg} A + \operatorname{Rg} C = \operatorname{Rg} A + n = \operatorname{Rg}(p^{-1}(\mathbb{Z}^n))$$

Es bleibt zu zeigen: $\operatorname{Rg} B = \operatorname{Rg}(p^{-1}(\mathbb{Z}^n))$.

Nebenbei: Ist $A' \subseteq B'$, so gilt $\operatorname{Rg} A' \leqslant \operatorname{Rg} B'$, denn

$$\operatorname{Rg} A' = \max \left\{ n' \, \middle| \, \mathbb{Z}^{n'} \cong C' \leqslant A' \right\} \leqslant \max \left\{ n' \, \middle| \, \mathbb{Z}^{n'} \cong C' \leqslant B' \right\} = \operatorname{Rg} B'.$$

Betrachte die kurze exakte Folge $p^{-1}(\mathbb{Z}^n) \longrightarrow B \longrightarrow {}^B/p^{-1}(\mathbb{Z}^n)$. Wegen ${}^B/p^{-1}(\mathbb{Z}^n) \cong TC$ gibt es ein k mit $k \cdot \left(b + p^{-1}(\mathbb{Z}^n)\right) = 0$ für alle $b \in B$. Also $k \cdot b \in p^{-1}(\mathbb{Z}^n)$. Es folgt $kB \subseteq p^{-1}(\mathbb{Z}^n)$. Ist $B \cong \mathbb{Z}^{\operatorname{Rg} B} + TB$, so ist $kB \cong (k\mathbb{Z})^{\operatorname{Rg} B} + T(kB)$ und $\operatorname{Rg} kB = n = \operatorname{Rg} B$. Mit der Nebenbemerkung folgt $\operatorname{Rg} p^{-1}(\mathbb{Z}^n) = \operatorname{Rg} B$ aus $kB \subseteq p^{-1}(\mathbb{Z}^n) \subseteq B$.

Beweis mit Tensorprodukten (Skizze)

- $\mathbb{Q} \otimes_{\mathbb{Z}} : \mathbb{Z}\text{-Mod} \to \mathbb{Q}\text{-VR}$ ist ein Funktor.
- $\operatorname{Rg} A = \dim_{\mathbb{Q}}(\mathbb{Q} \otimes_{\mathbb{Z}} A)$
 - (a) $\mathbb{Q} \otimes_{\mathbb{Z}} (X \oplus Y) = \mathbb{Q} \otimes_{\mathbb{Z}} X \oplus \mathbb{Q} \otimes_{\mathbb{Z}} Y$
 - (b) $\mathbb{Q} \otimes_{\mathbb{Z}} \mathbb{Z}^n \cong \mathbb{Q}^n$
 - (c) $\mathbb{Q} \otimes_{\mathbb{Z}} T \cong 0$ für T ein Torsionsmodul.
- Ist $A \longrightarrow B \longrightarrow C$ eine kurze exakte Folge, so ist auch

$$\mathbb{Q} \otimes_{\mathbb{Z}} A \longrightarrow \mathbb{Q} \otimes_{\mathbb{Z}} B \longrightarrow \mathbb{Q} \otimes_{\mathbb{Z}} C$$

eine kurze exakte Folge.

• Jede kurze exakte Folge $V_0 \longrightarrow V_1 \longrightarrow V_2$ von \mathbb{Q} -Vektorräumen spaltet und daher gilt $V_1 \cong V_0 \oplus V_2$ und $\dim_{\mathbb{Q}}(V \oplus W) = \dim_{\mathbb{Q}}(V) + \dim_{\mathbb{Q}}(W)$.

4.9 Definition

Sei (C_*, d_*) ein endlich erzeugter \mathbb{Z} -Kettenkomplex.

$$\chi(C_*) := \sum_{i=0}^{\infty} \text{Rg}(C_i) = \sum_{i=0}^{n_0} \text{Rg}(C_i)$$

heißt die **Eulercharakteristik** von (C_*, d_*) . Dabei ist n_0 so gewählt, dass $C_n = 0$ für alle $n > n_0$.

4.10 Satz

Sei (C_*, d_*) ein endlich erzeugter \mathbb{Z} -Kettenkomplex. Dann gilt

$$\chi(C_*) = \sum_{i=1}^{\infty} (-1)^i \operatorname{Rg} H_i(C_*, d_*).$$

Beweis

Sei $B_{n+1}:=\operatorname{Im} d_{n+1}:C_{n+1}\to C_n$ und $Z_n:=\ker d_n:C_n\to C_{n-1}.$ Also $H_n(C_*,d_*)=Z_n/B_{n+1}.$ Als Untermoduln von C_n sind Z_n und B_n endlich erzeugt (LA2). Insbesondere ist auch $H_n(C_*,d_*)$ endlich erzeugt und der Rang somit definiert. Auch B_{n+1} ist Untermodul des endlich erzeugten \mathbb{Z} -Moduls C_n und somit endlich erzeugt. Wir erhalten kurze exakte Folgen:

$$B_{n+1} \longleftrightarrow Z_n \longrightarrow H_n(C_*, d_*)$$

$$Z_n \longleftrightarrow C_n \longrightarrow B_n$$

Folglich gilt $\operatorname{Rg} Z_n = \operatorname{Rg} B_{n+1} + \operatorname{Rg} H_n(C_*, d_*)$ und $\operatorname{Rg} C_n = \operatorname{Rg} Z_n + \operatorname{Rg} B_n$. Also gilt

$$\chi(C_*) = \sum_{i=0}^{\infty} (-1)^i \operatorname{Rg} C_i = \sum_{i=0}^{\infty} (-1)^i \left(\operatorname{Rg} Z_i + \operatorname{Rg} B_i \right)$$

$$= \sum_{i=0}^{\infty} (-1)^i \left(\operatorname{Rg} H_i(C_*, d_*) + \operatorname{Rg} B_{i+1} + \operatorname{Rg} B_i \right)$$

$$= \sum_{i=0}^{\infty} (-1)^i \operatorname{Rg} H_i(C_*, d_*) + \sum_{i=0}^{\infty} (-1)^i \operatorname{Rg} B_{i+1} + \sum_{i=0}^{\infty} (-1)^i \operatorname{Rg} B_i$$

$$= \sum_{i=0}^{\infty} (-1)^i \operatorname{Rg} H_i(C_*, d_*)$$

4.11 Korollar

Sei K ein endlicher, geordneter simplizialer Kettenkomplex. Dann gilt

$$\chi(K) = \sum_{i=1}^{\dim K} (-1)^i \operatorname{Rg} H_i(K; \mathbb{Z})$$

Beweis

Wende den Satz 4.10 auf den simplizialen Kettenkomplex von K an. Da

$$\operatorname{Rg} C_n(K; \mathbb{Z}) = \operatorname{Rg} \mathbb{Z}[\Sigma_n] = \# n\text{-Simplizes in } K$$

ist

$$\chi(K) = \chi(C_*(K; \mathbb{Z}), \partial_*) = \sum_{i=0}^{\infty} (-1)^i \operatorname{Rg} H_i(C_*(K; \mathbb{Z}), \partial_*) = \sum_{i=0}^{\infty} (-1)^i \operatorname{Rg} H_i(K; \mathbb{Z}) \qquad \Box$$

5 Singuläre Homologie

5.1 Definition

Sei X ein topologischer Raum. Sei $S_n(X)$ die Menge aller stetigen Abbildungen $\sigma: |\Delta^n| \to X$. Elemente von $S_n(X)$ heißen **singuläre Simplizes** in X. Sei R ein Ring. Der \mathbf{n} -te (singuläre) Kettenmodul von X über R ist

$$C_n(X;R) := R[S_n(X)]$$

5.2 Definition

Für $\sigma \in S_n(X)$ und $j \in \{0, \dots, n\}$ sei $\delta_j \sigma \in S_{n-1}(X)$ die Einschränkung von σ auf die j-te Seite von $|\Delta^n|$, also $\delta_j(\sigma) = \sigma \circ \iota_{n,j}$, wobei $\iota_{n,j} : |\Delta^{n-1}| \to |\Delta^n|$ die Inklusion der j-ten Seite ist:

$$\iota_{n,j}(x_0,\ldots,x_{n-1}) = (x_0,\ldots,x_{j-1},0,x_j,\ldots,x_{n-1})$$

5.3 Bemerkung

Es gilt $\iota_{n,j}=|i_{n,j}|$ wobei $i_{n,j}:\Delta^{n-1}\to\Delta^n$ gegeben ist durch

vergleiche Blatt 2, Aufgabe 2

$$i_{n,j}(k) = egin{cases} k, & \text{falls } k < j \\ k+1, & \text{falls } k \geqslant j \end{cases}$$

5.4 Definition

Die n-te singuläre Randabbildung $\partial_n:C_n(X;R)\to C_{n-1}(X;R)$ ist definiert durch

$$\partial_n(\sigma) = \sum_{j=0}^n (-1)^j \cdot \delta_j(\sigma).$$

5.5 Proposition

$$\partial_{n-1} \circ \partial_n = 0$$

Beweis (mit Lemma 5.6)

$$\begin{split} \partial_{n-1}\partial_n(\sigma) &= \partial_{n-1}\left(\sum_{j=0}^n (-1)^j \delta_j(\sigma)\right) = \sum_{k=0}^{n-1} \sum_{j=0}^n (-1)^{j+k} \delta_k \delta_j(\sigma) \\ &= \sum_{0\leqslant k < j\leqslant n} (-1)^{k+j} \delta_k \delta_j(\sigma) + \sum_{0\leqslant j\leqslant k\leqslant n-1} (-1)^{k+j} \delta_k \delta_j(\sigma) \\ &\stackrel{\text{Lemma 5.6}}{=} \sum_{0\leqslant k < j\leqslant n} (-1)^{k+j} \delta_k \delta_j(\sigma) + \sum_{0\leqslant j\leqslant k\leqslant n-1} (-1)^{k+j} \delta_j \delta_{k+1}(\sigma) \\ &= \sum_{0\leqslant k < j\leqslant n} (-1)^{k+j} \delta_k \delta_j(\sigma) + \sum_{0\leqslant j < k\leqslant n-1} (-1)^{k-1+j} \delta_j \delta_k(\sigma) \\ &= 0 \end{split}$$

5.6 Lemma

Für $0 \le j \le k \le n-1$ und $\sigma \in S_n(X)$ ist $\delta_k \delta_j(\sigma) = \delta_j \delta_{k+1}(\sigma)$.

Beweis

Es ist

$$\delta_k(\delta_j(\sigma))(x_0, \dots, x_{n-2}) = \delta_j(\sigma)(x_0, \dots, x_{k-1}, 0, x_k, \dots, x_{n-2})$$

= $(x_0, \dots, x_{j-1}, 0, x_j, \dots, x_{k-1}, 0, x_k, \dots, x_{n-2})$

und

$$\delta_{j}\delta_{k+1}(\sigma)(x_{0},\ldots,x_{n-2}) = \delta_{k+1}(\sigma)(x_{0},\ldots,x_{j-1},0,x_{j},\ldots,x_{n-2})$$

$$= (x_{0},\ldots,x_{j-1},0,x_{j},\ldots,x_{k-1},0,x_{k},\ldots,x_{n-2})$$

5.7 Definition

Sei X ein topologischer Raum. Die Homologie des **singulären Kettenkomplex** über R, $(C_*(X;R), \partial_*)$, heißt die **singuläre Homologie von** X mit Koeffizienten in R:

$$H_n(X;R) := H_n(C_*(X;R), \partial_*)$$

Für $R=\mathbb{Z}$ schreiben wir kürzer $C_*(X) \coloneqq C_*(X;\mathbb{Z})$ und $H_n(X) \coloneqq H_n(X;\mathbb{Z})$.

5.8 Definition

- Die Elemente von $C_n(X;R)$ heißen **n-Ketten**.
- Die Elemente von $\operatorname{Im} \partial_{n+1} \subseteq C_n(X;R)$ heißen \mathbf{n} -Ränder.
- Die Elemente von $\ker \partial_n \subseteq C_n(X;R)$ heißen \mathbf{n} -Zykel.

Jeder n-Zykel $\sigma \in C_n(X;R)$ bestimmt eine **Homologieklasse** $[\sigma] := \sigma + \operatorname{Im} \partial_{n+1} \in H_n(X;R)$.

5.9 Beispiel

Ist $X = \{x_0\}$ der Ein-Punkt-Raum, so ist

$$H_* \big(\{x_0\}; R \big) \cong \begin{cases} R, & \text{falls } * = 0 \\ 0, & \text{sonst} \end{cases}$$

Beweis

Es gibt für jedes n genau eine Abbildung, nämlich die konstante, $\sigma_n:|\Delta^n|\to\{x_0\}$ und diese ist stetig. Also $C_n(\{x_0\};R)=R[\sigma_n]$. Für alle j ist $\delta_j\sigma_n=\sigma_{n-1}$. Daher ist

$$\partial_n(\sigma_n) = \begin{cases} 0, & \text{falls } n \text{ ungerade} \\ \sigma_{n-1}, & \text{falls } n \text{ gerade} \end{cases}$$

Der singuläre Kettenkomplex von $\{x_0\}$ hat also folgende Gestalt:

$$C_0(\lbrace x_0 \rbrace; R) \xleftarrow{0} C_1(\lbrace x_0 \rbrace; R) \xleftarrow{\cong} C_2(\lbrace x_0 \rbrace; R) \xleftarrow{0} C_3(\lbrace x_0 \rbrace; R) \xleftarrow{\cong} \cdots$$

$$R \xleftarrow{0} R \xleftarrow{\text{id}} R \xleftarrow{\text{id}} R \xleftarrow{\text{id}} R$$

Es folgt

$$H_n(\lbrace x_0 \rbrace; R) \cong \begin{cases} R, & \text{falls } n = 0 \\ 0, & \text{sonst} \end{cases}$$

5.10 Proposition

- 1) Ist $X \neq \emptyset$, so ist $H_0(X) \neq 0$.
- 2) Ist X wegzusammenhängend, so gilt $H_0(X) \cong \mathbb{Z}$

Beweis

- 1) Sei $\varepsilon:C_0(X)\to\mathbb{Z}$ definiert durch $\varepsilon\Bigl(\sum_{\sigma\in S_0(X)}r_\sigma\cdot\sigma\Bigr):=\sum_\sigma r_\sigma.$ Dann ist $\varepsilon\circ\partial_1:C_1(X)\to\mathbb{Z}$ trivial, denn für $\sigma\in S_1(X)$ ist $\varepsilon\circ\partial_1(\sigma)=\varepsilon(\delta_0\sigma-\delta_1\sigma)=0.$ Daher induziert ε eine Abbildung $\overline{\varepsilon}:H_0(X)\to\mathbb{Z}.$ Da $X\neq\emptyset$ ist, gibt es einen singulären 0-Simplex $\sigma:\left|\Delta^0\right|\to X.$ Für σ gilt $\overline{\varepsilon}([\sigma])=1$ und daher ist $\overline{\varepsilon}$ surjektiv und $H_0(X)\neq0.$
- 2) Wir zeigen: $\overline{\varepsilon}: H_0(X) \to \mathbb{Z}$ ist ein Isomorphismus, falls X wegzusammenhängend ist. Dazu zeigen wir $\ker \varepsilon = \operatorname{Im} \partial_1$. Dazu definieren wir $s: C_0(X) \to C_1(X)$ wie folgt: Sei σ_0 ein fest gewählter singulärer 0-Simplex. Zu $\sigma \in S_0(X)$ gibt es, da X wegzusammenhängend ist, $s(\sigma) \in S_1(X)$ mit $\delta_0 s(\sigma) = \sigma$, $\delta_1 s(\sigma) = \sigma_0$. Es gilt nun

$$\partial_1 \circ s(\sigma) = \sigma - \sigma_0 = (\mathrm{id}_{C_0(X)} - i \circ \varepsilon)(\sigma)$$

wobei $i:\mathbb{Z} \to C_0(X)$, $n\mapsto n\cdot\sigma_0$. Ist nun $v\in\kerarepsilon$, so folgt

$$\partial_1 \circ s(v) = v - i \circ \underbrace{\varepsilon(v)}_{=0} = v$$

also $v \in \operatorname{Im} \partial_1$.

5.11 Bemerkung

Sei $K=(V,\Sigma)$ ein geordneter simplizialer Komplex. Sei $\sigma=\{v_o,\ldots,v_n\}\in \Sigma_n$ ein n-Simplex von K mit $v_0< v_1<\ldots< v_n$. Wir ordnen σ den singulären n-Simplex $f_\sigma:|\Delta^n|\to |\Delta^\sigma|\subseteq |K|$ zu, wobei

$$f_{\sigma}\left(\sum_{i=0}^{n} t_{i} e_{i}\right) = \sum_{i=0}^{n} t_{i} v_{i}.$$

Nun erhalten wir eine Abbildung

$$C_*(K;R) \to C_*(|K|,R) \quad , \qquad \sum_{\sigma \in \Sigma_n} r_\sigma \cdot \sigma \longmapsto \sum_{\sigma \in \Sigma_n} r_\sigma \cdot f_\sigma.$$

Diese Abbildung induziert(!) eine weitere Abbildung $H_*(K;R) \xrightarrow{\cong} H_*(|K|;R)$ von der wir später zeigen werden, dass sie ein Isomorphismus ist.

5 Singuläre Homologie 17

6 Funktorialität

6.1 Definition

RevChap6

Seien (C_*, d_*) und (C'_*, d'_*) zwei R-Kettenkomplexe. Eine \mathbf{R} -Kettenabbildung $f_*: (C_*, d_*) \to (C'_*, d'_*)$ ist eine Folge von R-linearen Abbildungen $f_n: C_n \to C'_n$, sodass

$$d'_n \circ f_n = f_{n-1} \circ d_n$$

für alle $n \geqslant 1$ ist. Also kommutiert folgendes Diagramm

$$C_0 \leftarrow_{d_1} C_1 \leftarrow_{d_2} C_2 \leftarrow_{d_3} C_3 \leftarrow \dots$$

$$\downarrow^{f_0} \qquad \downarrow^{f_1} \qquad \downarrow^{f_2} \qquad \downarrow^{f_3}$$

$$C'_0 \leftarrow_{d'_1} C'_1 \leftarrow_{d'_2} C'_2 \leftarrow_{d'_3} C'_3 \leftarrow \dots$$

6.2 Bemerkung

Ist $f_*:(C_*,d_*)\to (C_*',d_*')$ eine Kettenabbildung, so erhalten wir eine induzierte Abbildung $H_n(f_*):H_n(C_*,d_*)\to H_n(C_*',d_*')$ durch

$$H_n(f_*)([v]) := [f_n(v)]$$

für $v \in \ker d_n$, denn:

- $d'_n(f_n(v)) = f_{n-1}(d_n(v)) = 0$, also $f_n(v) \in \ker d'_n$ für $v \in \ker d_n$.
- Ist [v] = [w], mit $v, w \in \ker d_n$, so gibt es $x \in C_{n+1}$ mit $d_{n+1}(x) = v w$. Dann ist

$$d'_{n+1}(f_{n+1}(x)) = f_n(d_{n+1}(x)) = f_n(v) - f_n(w)$$

also
$$[f_n(v)] = [f_n(w)] \in H_n(C'_*, d'_*).$$

6.3 Bemerkung

- a) R-Kettenkomplexe mit Kettenabbildungen bilden die Kategorie R-Ketten.
- b) Homologie definiert nun einen Funktor: $H_n: R ext{-Ketten} o R ext{-Mod}.$

Es gilt
$$H_n(\mathrm{id}_{(C_*,d_*)})=\mathrm{id}_{H_n(C_*,d_*)}$$
 und $H_n(f\circ g)=H_n(f)\circ H_n(g)$, da

$$H_n(f \circ g)([v]) = [f_n \circ g_n(v)] = [f_n(g_n(v))] = H_n(f)[g_n(v)] = H_n(f)(H_n(g)(v))$$

c) Definiert man die Kategorie der **graduierten** R-Moduln als die Kategorie, deren Objekte Folgen $(V_n)_n$ von \mathbb{R} -Moduln sind und deren Morphismen Folgen von R-linearen Abbildungen $(f_n)_n$ sind, so kann man die H_n , $n \in \mathbb{N}$ zu einem Funktor

$$H_*: R\text{-Ketten} \longrightarrow \operatorname{Gr-}R\text{-Mod}$$
 , $(C_*, d_*) \longmapsto (H_n(C_*, d_*))_n$

zusammensetzen.

6.4 Definition

Sei $f: X \to Y$ stetig. Wir definieren $C_n(f;R): C_n(X;R) \to C_n(Y;R)$ durch

$$C_n(f;R)\left(\sum_{\sigma\in S_n(X)} r_{\sigma}\cdot\sigma\right) := \sum_{\sigma\in S_n(X)} r_{\sigma}\cdot(f\circ\sigma)$$

(Für $\sigma \in S_n(X)$ ist $f \circ \sigma \in S_n(Y)$.)

18

6.5 Proposition

Mit dieser Definition von $C_*(f;R)$ wird der singuläre Kettenkomplex über R zu einem Funktor

$$C_*(-;R): \mathsf{Top} \to R\text{-Ketten}$$

Beweis

(i) $C_*(f;R)$ ist eine R-Kettenabbildung:

$$C_{n-1}(F;R) \circ \partial_n(\sigma) = C_{n-1}(f;R) \left(\sum_{l=0}^n (-1)^l \sigma \circ \iota_{n,l} \right) = \sum_{l=0}^n (-1)^l (f \circ \sigma) \circ \iota_{n,l}$$
$$= \partial_n(f \circ \sigma) = \partial(C_n(f;R)(\sigma))$$

(ii) Zu zeigen: $C_*(f \circ g; R) = C_*(f; R) \circ C_*(g; R)$:

$$C_n(f \circ g; R)(\sigma) = f \circ (g \circ \sigma) = C_n(f; R)(g \circ \sigma) = C_n(f; R)(C_n(g; R)(\sigma))$$

(iii) Zu zeigen: $C_*(\mathrm{id}_X; R) = \mathrm{id}_{C_*(X;R)}$:

$$C_n(\mathrm{id}_X; R)(\sigma) = \mathrm{id}_X \circ \sigma = \sigma$$

6.6 Korollar

Mit $H_n(f;R) := H_n(C_*(f;R))$ wird $H_n(-;R)$ zu einem Funktor: $H_n(-;R) : \text{Top} \to R\text{-Mod}$.

Beweis

 $H_n(-;R)$ ist die Komposition der Funktoren $C_*(-;R): \mathrm{Top} \to R$ -Ketten und $H_*: R$ -Ketten $\to R$ -Mod. \Box

6.7 Bemerkung

- Oft schreiben wir $f_* = H_n(f; R)$.
- Es gilt für $\left[\sum_{\sigma \in S_n(X)} r_{\sigma} \cdot \sigma\right] \in H_n(X;R)$

$$f_*\left(\left[\sum_{\sigma\in S_n(X)} r_\sigma \cdot \sigma\right]\right) = \left[\sum_{\sigma\in S_n(X)} r_\sigma \cdot f \circ \sigma\right] \in H_n(Y; R)$$

6.8 Definition

Seien X_i , $i \in I$ topologische Räume. Mit

$$X := \coprod_{i \in I} X_i$$

bezeichnen wir die **Summe** (oder auch das **Koprodukt**) der X_i . Als Menge ist X die disjunkte Vereinigung der X_i . $U \subseteq X$ ist offen genau dann, wenn $X_i \cap U \subseteq X_i$ offen ist für jedes $i \in I$. Für jedes i_o erhalten wir eine stetige Inklusion $j_{i_0}: X_{i_0} \to \coprod_i X_i$.

Bemerkung

Für jedes i_o mit $X_{i_0} \subseteq \coprod_i X_i$ offen und abgeschlossen.

6 Funktorialität

6.9 Definition

Seien V_i , $i \in I$ R-Moduln. Mit

$$V := \bigoplus_{i \in I} V_i$$

bezeichnen wir die **Summe** (oder auch das **Koprodukt**) der V_i . Elemente von V sind I-Folgen $(v_i)_{i \in I}$ mit $v_i \in V_i$ und $v_i = 0$ für alle bis auf endlich viele i. Die R-Modulstruktur ist erklärt durch:

$$(v_i)_{i \in I} + (w_i)_{i \in I} := (v_i + w_i)_{i \in I}$$
, $r \cdot (v_i)_{i \in I} := (r \cdot v_i)_{i \in I}$

Für jedes $i_0 \in I$ erhalten wir eine R-lineare Abbildung $j_{i_0}: V_{i_0} \to V$ mit

$$(j_{i_0}(v))_i = \begin{cases} v, & \text{falls } i = i_0 \\ 0, & \text{sonst} \end{cases}$$

Bemerkung

Seien V_i , $i \in I$ R-Moduln. Sei W ein weiterer R-Modul. Dann gibt es zu jeder Folge $f_i: V_i \to W$ von R-linearen Abbildungen eine R-lineare Abbildung $\bigoplus_{i \in I} f_i: \bigoplus_{i \in I} V_i \to W$ mit

$$(\bigoplus_{i\in I} f_i)\big((v_i)_{i\in I}\big) = \sum_{i\in I} f_i(v_i)$$

Ist umgekehrt $f:\bigoplus_{i\in I}V_i o W$ eine R-lineare Abbildung, so ist $f_i:=f\circ j_i$ eine Folge von R-linearen Abbildungen mit $f=\bigoplus_{i\in I}f_i$

6.10 Satz

Sei $X = \coprod_{i \in I} X_i$. Dann induzieren die $j_i : X_i \to X$ einen Isomorphismus

$$\bigoplus_{i \in I} H_n(X_i; R) \xrightarrow{\bigoplus_{i \in I} (j_i)_*} H_n(X; R)$$

Beweis

Da die $X_i \subseteq X$ offen und abgeschlossen sind und $|\Delta^n|$ zusammenhängend ist (sogar wegzusammenhängend), gibt es für jedes $\sigma: |\Delta^n| \to X$ ein eindeutiges i mit $\operatorname{Im} \sigma \subseteq X_i$. Es gilt also $S_n(X) = \bigcup S_n(X_i)$. Daher induzieren die j_i einen Isomorphismus

$$\bigoplus_{i \in I} C_n(j_i; R) : \bigoplus_{i \in I} C_n(X_i; R) \xrightarrow{\cong} C_n(X; R)$$

Da diese Isomorphismen mit den Randabbildungen vertauschen, erhalten wir einen Isomorphismus von R-Kettenkomplexen

$$\varphi := \bigoplus_{i \in I} C_*(j_i; R) : \bigoplus C_*(X_i; R) \to C_*(X; R)$$

Da $\bigoplus H_n(C_*(X_i;R),\partial_*)\cong H_n(\bigoplus_i C_*(X_i;R),\partial_*)$ induzieren dann auch die $(j_i)_*$ einen Isomorphismus

$$\bigoplus (j_i)_* : \bigoplus_{i \in I} H_n(X_i; R) \longrightarrow H_n(X; R)$$

20 6 Funktorialität

7 Homotopieinvarianz

7.1 Bemerkung

Sei $f: X \to Y$ eine Homöomorphismus. Dann ist

$$f_*: H_n(X; R) \longrightarrow H_n(Y; R)$$

ein Isomorphismus.

Beweis

Da Homologie ein Funktor ist, gilt

$$f_* \circ (f^{-1})_* = (f \circ f^{-1})_* = (\mathrm{id}_Y)_* = \mathrm{id}_{H_n(Y;R)}$$
 und
$$(f^{-1})_* \circ f_* = (f^{-1} \circ f)_* = (\mathrm{id}_X)_* = \mathrm{id}_{H_n(X;R)}$$

Also ist $(f_*)^{-1} = (f^{-1})_*$. Insbesondere ist f_* ein Isomorphismus.

7.2 Definition

Eine stetige Abbildung $f:X\to Y$ heißt eine **Homotopieäquivalenz**, falls es eine stetige Abbildung $g:Y\to X$ gibt, so dass $g\circ f$ homotop zu id_X ist und $f\circ g$ homotop zu id_Y ist. g heißt dann eine **Homotopieinverse** zu f.

Bemerkung

- (i) f ist genau dann eine Homotopieäquivalenz, wenn [f] in HTop invertierbar ist. In HTop ist dann $[f]^{-1} = [g]$.
- (ii) Die Homotopieinverse ist eindeutig bis auf Homotopie.

7.3 Satz

Seien $f,g:X\to Y$ stetige Abbildungen. Sind f und g homotop, so gilt $H_n(f;R)=H_n(g;R)$ für alle $n\in\mathbb{N}$.

Beweis

Siehe 7.8, sowie 7.13 □

7.4 Korollar

Ist $f: X \to Y$ eine Homotopieäquivalenz, so ist $f_*: H_n(X;R) \to H_n(Y;R)$ ein Isomorphismus.

Beweis

Sei $g: Y \to X$ ein Homotopieinverses zu f. Es folgt

7.5 Korollar

Ist X kontrahierbar, d.h. es gibt eine Homotopie $H: X \times [0,1] \to X$ mit $H_0 = \mathrm{id}_X$ und H_1 konstant, so gilt

7 Homotopieinvarianz 21

Beweis

Sei $\{x_0\}=\operatorname{Im} H_1$. Dann ist die Inklusion $\{x_0\}\to X$ eine Homotopieäquivalenz. Also gilt nach 7.4

$$H_n(X;R) \cong H_n(\lbrace x_0 \rbrace;R) \stackrel{5.9}{=} \begin{cases} R, & \text{falls } n=0 \\ 0, & \text{sonst} \end{cases}$$

Beispiel

$$H_n(\mathbb{R}^k;R)\cong \begin{cases} R, & \text{falls } n=0\\ 0, & \text{sonst} \end{cases} \quad \text{ und } \quad H_n(D^k;R)\cong \begin{cases} R, & \text{falls } n=0\\ 0, & \text{sonst} \end{cases}$$

7.6 Definition

Seien (C_*,d_*) und (C'_*,d'_*) R-Kettenkomplexe. Seien $f_*,g_*:(C_*,d_*)\to (C'_*,d'_*)$ R-Kettenabbildungen. Eine **Kettenhomotopie** von f_* nach g_* ist eine Folge von R-linearen Abbildungen $h_n:C_n\to C'_{n+1}$, $n\in\mathbb{N}$, sodass für alle n gilt:

$$d'_{n+1} \circ h_n + h_{n-1} \circ d_n = f_n - g_n$$

In diesem fall heißen f_* und g_* **kettenhomotop**.

7.7 Proposition

Seien $f_*, g_*: (C_*, d_*) \to (C'_*, d'_*)$ Kettenabbildungen. Sind f_* und g_* kettenhomotop, so gilt für alle n

$$H_n(f_*) = H_n(g_*)$$

Beweis

Sei $x \in H_n(C_*, d_*)$. Also x = [v] mit $v \in \ker d_n : C_n \to C_{n-1}$. Dann gilt, da $v \in \ker d_n$

$$H_n(f_*)(x) = H_n(f_*)([v]) = [f_n(v)] = \left[g_n(v) + \underbrace{d'_{n+1} \circ h_n(v)}_{\in \operatorname{Im} d'_{n+1}} + \underbrace{h_{n-1} \circ d_n(v)}_{=0}\right]$$
$$= [g_n(v)] = H_n(g_*)([v]) = H_n(g_*)(x) \qquad \Box$$

7.8 Lemma

Die Homotopieinvarianz von $H_n(-;R)$ folgt aus folgenden Spezialfall:

Seien
$$i_0, i_1: X \hookrightarrow X \times [0,1]$$
 Inklusionen mit $i_0(x) = (x,0)$, $i_1(x) = (x,1)$. $\Longrightarrow (i_0)_* = (i_1)_*$ [#]

Beweis

Sei $H: X \times [0,1] \to Y$ eine Homotopie zwischen $f,g: X \to Y$, also $f = H \circ i_0$ und $g = H \circ i_1$. Dann folgt mittels Funktorialität

$$f_* = (H \circ i_0)_* = H_* \circ (i_0)_* = H_* \circ (i_1)_* = (H \circ i_1)_* = q_*$$

7.9 Bemerkung

Zum Beweis von [#] werden wir eine explizite Kettenhomotopie h_* zwischen $C_*(i_0;R)$ und $C_*(i_1;R)$ konstruieren. Wir brauchen also $h_n:C_n(X;R)\to C_{n+1}(X\times[0,1];R)$ für alle $n\in\mathbb{N}$ mit

$$\partial_{n+1} \circ h_n + h_{n-1} \circ \partial_n = C_n(i_0; R) - C_n(i_1; R).$$
 [##]

22

"Ansatz"

Für $\sigma: |\Delta^n| \to X$ setze $h_n(\sigma) = \sigma \times \mathrm{id}_{[0,1]}: |\Delta^n| \times [0,1] \to X \times [0,1]$. Dann ist " $h_{n-1}(\partial_n \sigma) = \partial_n \sigma \times \mathrm{id}_{[0,1]}$ " und

$$\partial_{n+1}(h_n\sigma) = \partial_{n+1}(\sigma \times \mathrm{id}_{[0,1]}) = (\sigma \times \mathrm{id})\Big|_{\partial(|\Delta^n| \times [0,1])} = \partial_n\sigma \times \mathrm{id}_{[0,1]} + i_0\sigma + i_1\sigma$$

da $\partial(|\Delta^n| \times [0,1]) = \partial|\Delta^n| \times [0,1] \dot{\cup} |\Delta^n| \times \{0,1\}.$

Um daraus Sinn zu machen, zerlegen wir $|\Delta^n| \times [0,1]$ in eine Vereinigung von (n+1)-Simplizes. $\Delta^n \times [0,1]$ hat die folgende Form für $n \in \{0,1,2\}$:

Abbildung 1: $\Delta^n \times [0,1]$ für n=0,1,2

Die Zerlegung in 3-Simplizes ist für $\Delta^2 \times [0,1]$ gegeben durch

Abbildung 2: Zerlegung von $\Delta^2 \times [0,1]$ in 3-Simplizes

Diese verallgemeinern wir jetzt für beliebiges $n \in \mathbb{N}$:

7.10 Definition

Für $j=0,\ldots,n$ seien $k_{n,j}:|\Delta^{n+1}|\to |\Delta^n|\times [0,1]$ und $\iota_{n,j}:|\Delta^{n-1}|\to |\Delta^n|$ die eindeutigen affin linearen Abbildungn, für die gilt:

 e_1, \dots, e_n sind wieder die Einheitsvektoren von \mathbb{R}^n

$$k_{n,j}(e_0) = (e_0, 0)$$
 $\iota_{n,j}(e_0) = e_0$
 $k_{n,j}(e_1) = (e_1, 0)$... $\iota_{n,j}(e_1) = e_1$... $\iota_{n,j}(e_{j-1}) = e_{j-1}$
 $k_{n,j}(e_{j+1}) = (e_j, 1)$... $\iota_{n,j}(e_{j-1}) = e_{j+1}$... $\iota_{n,j}(e_{n-1}) = e_n$

7.11 Lemma

Es gelten folgende fünf Gleichungen für die Abbildungen $k_{n,j}$ und $\iota_{n,j}$:

(i) Für
$$0 \leqslant l < j \leqslant n$$
 gilt $k_{n,j} \circ \iota_{n+1,l} = \left(\iota_{n,l} \times \mathrm{id}_{[0,1]}\right) \circ k_{n-1,j-1}$

(ii) Für
$$1 \le j+1 < l \le n+1$$
 gilt $k_{n,j} \circ \iota_{n+1,l} = (\iota_{n,l-1} \times \mathrm{id}_{[0,1]}) \circ k_{n-1,j}$

(iii) Für
$$1\leqslant j+1=l\leqslant n$$
 gilt $k_{n,j}\circ\iota_{n+1,l}=k_{n,j+1}\circ\iota_{n+1,l}$

(iv) Für
$$l=0, j=0$$
 ist $k_{n,j}\circ\iota_{n+1,l}=i_1:\Delta^n\to\Delta^n\times[0,1]$

(v) Für
$$l=n, j=n+1$$
 ist $k_{n,j}\circ\iota_{n+1,l}=i_0:\Delta^n\to\Delta^n\times[0,1]$

Beweis

Wir zeigen hier nur exemplarisch die erste Gleichung: Die linke Seite der Gleichung entspricht

und die rechte Seite entspricht

Also folgt insgesamt die Gleichheit. Die anderen Gleichungen folgen genauso.

7.12 Beweis von [##]

Sei $h_n:C_n(X;R)\to C_{n+1}(X\times [0,1];R)$ definiert durch

$$h_n(\sigma) := \sum_{j=0}^n (-1)^j \cdot (\sigma \times \mathrm{id}) \circ k_{n,j}$$

24 7 Homotopieinvarianz

 h_* ist die gesuchte Kettenhomotopie, da für $n \in \mathbb{N}$ unter Anwendung der Gleichungen aus 7.12 gilt:

$$\begin{split} \partial_{n+1} \big(h_n(\sigma) \big) &= \partial_{n+1} \left(\sum_{j=0}^n (-1)^j \cdot (\sigma \times \mathrm{id}) \circ k_{n,j} \right) \\ &= \sum_{l=0}^{n+1} \sum_{j=0}^n (-1)^{j+l} \cdot (\sigma \times \mathrm{id}) \circ k_{n,j} \circ \iota_{n+1,l} \qquad \qquad \text{(nach Definition 5.2)} \\ &= \sum_{0 \leqslant l < j \leqslant n} (-1)^{j+l} \big((\sigma \circ \iota_{n,l}) \times \mathrm{id} \big) \circ k_{n-1,j-1} + \sum_{1 \leqslant j+1 < l \leqslant n+1} (-1)^{j+l} \big((\sigma \circ \iota_{n,l-1}) \times \mathrm{id} \big) \circ k_{n-1,j} \\ &+ \sum_{1 \leqslant j+1 = l \leqslant n} (-1)^{j+l} (\sigma \times \mathrm{id}) \circ k_{n,j+1} \circ \iota_{n+1,l} + \sum_{1 \leqslant j=l \leqslant n} (-1)^{j+l} (\sigma \times \mathrm{id}) \circ k_{n,j} \circ \iota_{n+1,l} \\ &+ \sum_{0 = l = j} (-1)^{j+l} (\sigma \times \mathrm{id}) \circ i_1 + \sum_{n+1 = j+1 = l} (-1)^{j+l} (\sigma \times \mathrm{id}) \circ i_0 \\ &= \sum_{0 \leqslant l \leqslant j \leqslant n-1} (-1)^{j+l+1} \big((\sigma \circ \iota_{n,l}) \times \mathrm{id} \big) \circ k_{n-1,j} + \sum_{1 \leqslant j=l \leqslant n} (-1)^{j+l+1} \big((\sigma \circ \iota_{n,l}) \times \mathrm{id} \big) \circ k_{n,j} \circ \iota_{n+1,l} \\ &+ \sum_{0 \leqslant l \leqslant j \leqslant n-1} (-1)^{j+l} (\sigma \times \mathrm{id}) \circ i_1 + \sum_{n+1 = j+1 = l} (-1)^{j+l} (\sigma \times \mathrm{id}) \circ i_0 \\ &= -\sum_{0 \leqslant l \leqslant n} (-1)^{j+l} \big((\sigma \circ \iota_{n,l}) \times \mathrm{id} \big) \circ k_{n-1,j} + (\sigma \times \mathrm{id}) \circ i_1 - (\sigma \times \mathrm{id}) \circ i_0 \\ &= -\sum_{0 \leqslant l \leqslant n-1} (-1)^j \sum_{l=0} (-1)^l \big((\sigma \circ \iota_{n,l}) \times \mathrm{id} \big) \circ k_{n-1,j} + \underbrace{(\sigma \times \mathrm{id}) \circ i_1 - (\sigma \times \mathrm{id}) \circ i_0}_{=i_1 \circ \sigma} \\ &= -h_{n-1} (\partial_n \sigma) + C_n (i_1; R) (\sigma) - C_n (i_0; R) (\sigma) \end{split}$$

7.13 Bemerkung

Ist $H: X \times [0,1] \to Y$ eine Homotopie zwischen f und g, so erhalten wir eine Kettenhomotopie k zwischen $C_*(f;R)$ und $C_*(g;R)$ durch

$$k_n(\sigma) := C_{n+1}(H; R) \circ h_n = \sum_{j=0}^n (-1)^j H \circ (\sigma \times \mathrm{id}) \circ k_{n,j}$$

7 Homotopieinvarianz 25

8 Homologie von Paaren

8.1 Definition

Sei A ein Teilraum von X, dann heißt (X,A) ein **Paar von topologischen Räumen**. Eine Abbildung von Paaren $f:(X,A)\to (Y,B)$ ist eine stetige Abbildung $f:X\to Y$ mit $f(A)\subseteq B$. Manchmal schreiben wir $(f,f|_A):(X,A)\to (Y,B)$.

Die Kategorie von Paaren von topologischen Räumen bezeichnen wir mit Top².

8.2 Definition

Sei (X,A) ein Paar. Dann definieren wir den **singulären Kettenkomplex** von (X,A) über R durch

$$C_n(X, A; R) := {}^{C_n(X;R)}/{}^{C_n(A;R)}$$
$$\partial_n(\sigma + C_n(A; R)) := \partial_n\sigma + C_{n-1}(A; R)$$

Dies ist wohldefiniert, da $\partial_n(C_n(A;R)) \subseteq C_{n-1}(A;R)$. Weiter heißt

$$H_n(X, A; R) := H_n(C_*(X, A; R), \partial_*)$$

der \mathbf{n} -te singuläre Homologiemodul von (X,A) mit Koeffizienten in R.

8.3 Bemerkung

Der singuläre Kettenkomplex von Paaren definiert einen Funktor: $Top^2 \to R$ -Ketten. Durch Komposition mit Homologie (als Funktor R-Ketten $\to R$ -Mod) erhalten wir einen Funktor

$$H_n(-,-;R): \operatorname{Top}^2 \longrightarrow R\operatorname{-Mod}$$

8.4 Bemerkung

Via $X \mapsto (X, \emptyset)$ können wir jeden Raum auch als Paar auffassen. Es gilt $H_n(X, \emptyset; R) = H_n(X; R)$.

8.5 Frage

Können wir $H_n(X, A; R)$ durch $H_n(X; R)$ und $H_n(A; R)$ ausdrücken?

Ansatz 1:

$$H_n(X, A; R) \cong H_n(X; R)/H_n(A; R)$$

 \blacktriangle Problem: $H_n(A;R)$ ist kein Untermodul von $H_n(X;R)$

Ansatz 2: Ist $H_n(X;R) \to H_n(X,A;R)$ surjektiv?

Sei
$$x \in H_n(X,A;R)$$
. Dann gibt es $\sigma + C_n(A;R) \in C_n(X,A;R)$ mit $\partial_n \left(\sigma + C_n(A;R)\right) = 0$ und $x = [\sigma]$. Es ist $\sigma \in C_n(X;R)$, aber wir wissen nur $\partial_n \sigma \in C_{n-1}(A;R)$, nicht $\partial_n (\sigma) = 0$.

8.6 Beispiel

In $C_n(|\Delta^n|, |\partial\Delta^n|; R)$ gilt für $\sigma := \mathrm{id} : |\Delta^n| \to |\Delta^n|$, dass $\partial_n([\sigma]) = 0$ ist, da $\partial_n\sigma \in C_{n-1}(|\partial\Delta^n|; R)$. Wir werden später sehen, dass $[\sigma]$ den Homologiemodul

$$H_n(|\Delta^n|, |\partial \Delta^n|; R) \cong R$$

erzeugt.

8.7 Definition

Eine Folge von R-linearen Abbildungen zwischen R-Moduln M_i

$$\cdots \longrightarrow M_n \xrightarrow{f_n} M_{n-1} \xrightarrow{f_{n-1}} M_{n-2} \longrightarrow \cdots \longrightarrow M_1 \longrightarrow M_0$$

heißt lange exakte Folge, wenn sie exakt an jeder Stelle M_i ist, d.h. für alle i gilt $\operatorname{Im} f_i = \ker f_{i-1}$.

8.8 Satz

Es gibt eine natürliche Transformation ∂_n von $(X,A)\mapsto H_n(X,A;R)$ nach $(X,A)\mapsto H_{n-1}(A;R)$, sodass für jedes Paar (X,A)

$$\cdots \xrightarrow{\partial_{n+1}} H_n(A;R) \xrightarrow{i_*} H_n(X;R) \xrightarrow{j_*} H_n(X,A;R) \xrightarrow{\partial_n} H_{n-1}(A;R) \longrightarrow \cdots$$

$$[*]$$

$$\cdots \xrightarrow{\partial_1} H_0(A;R) \longrightarrow H_0(X;R) \longrightarrow H_0(X,A;R) \longrightarrow 0$$

eine lange exakte Folge ist. Dabei sind $i:A\hookrightarrow X$ und $j:(X,\emptyset)\hookrightarrow (X,A)$ die Inklusionen. Das bedeutet:

Für jedes Paar (X,A) haben wir eine R-lineare Abbildung $\partial_n: H_n(X,A;R) \to H_{n-1}(A;R)$, sodass für jede Abbildung $(f,f|_A): (X,A) \to (Y,B)$ von Paaren folgendes Diagramm kommutiert

$$H_n(X,A;R) \xrightarrow{\partial_n} H_{n-1}(A;R)$$

$$\downarrow (f,f|_A)_* \qquad \qquad \downarrow (f|_A)_*$$

$$H_n(Y,B;R) \xrightarrow{\partial_n} H_{n-1}(B;R)$$

Beweis

siehe 8.13.

8.9 Korollar

- (1) Ist die Inklusion $i: A \to X$ eine Homotopieäquivalenz, so ist $H_n(X,A;R) = 0$ für alle n.
- (2) Sei A kontraktibel. Dann gilt für alle $n \ge 1$. $H_n(X;R) \cong H_n(X,A;R)$

Beweis

(1) Betrachte den folgenden Ausschnitt aus der langen exakten Folge:

$$H_n(A;R) \xrightarrow{i_*} H_n(X;R) \xrightarrow{j_*} H_n(X,A;R) \xrightarrow{\partial_n} H_{n-1}(A;R) \xrightarrow{i_*} H_n(X;R)$$

Nach 7.4 ist $i_*: H_n(A;R) \to H_n(X;R)$ ein Isomorphismus. Wegen der Exaktheit gilt $\ker j_* = \operatorname{Im} i_* = H_n(X;R)$, also folgt $j_* = 0$. Da $\operatorname{Im} \partial_n = \ker i_* = 0$, folgt $\partial_n = 0$. Nun ist

$$H_n(X, A; R) = \ker \partial_n = \operatorname{Im} j_* = 0$$

(2) Übung!

8 Homologie von Paaren 27

8.10 Definition

Seien

$$(C_*, d_*) \xrightarrow{i_*} (C'_*, d'_*) \xrightarrow{p_*} (C''_*, d''_*)$$
 [#]

R-Kettenabbildungen. Ist für jedes n die Folge $C_n \xrightarrow{i_n} C'_n \xrightarrow{p_n} C''_n$ kurz exakt, so heißt [#] eine kurze exakte Folge von Kettenkomplexen.

8.11 Beispiel

Für jedes Paar (X, A) ist

$$(C_*(A;R),\partial_*) \xrightarrow{i_*} (C_*(X;R),\partial_*) \xrightarrow{j_*} (C_*(X,A;R),\partial_*)$$

eine kurze exakte Folge von R-Kettenkomplexen.

8.12 Schlangenlemma

Sei

$$(C_*, d_*) \xrightarrow{i_*} (C'_*, d'_*) \xrightarrow{p_*} (C''_*, d''_*)$$

eine kurze exakte Folge von R-Kettenkomplexen.

a) Für jedes n gibt es eine eindeutige wohldefinierte R-lineare Abbildung $\partial_n: H_n(C_*'',d_*'') \to H_{n-1}(C_*,d_*)$ mit: Für $v' \in C_n'$ mit $d_n'' \circ p_n(v') = 0$ ist

$$\partial_n \underbrace{\left[p_n(v') \right]}_{\in H_n(C''_*, d''_*)} = [v] \in H_{n-1}(C_*, d_*)$$

wobei $v \in C_{n-1}$ bestimmt ist durch $i_{n-1}(v) = d'_n(v')$.

b)

$$\cdots \xrightarrow{\partial_{n+1}} H_n(C_*, d_*) \xrightarrow{i_*} H_n(C'_*, d'_*) \xrightarrow{p_*} H_n(C''_*, d''_*) \xrightarrow{\partial_n}$$

$$\downarrow H_{n-1}(C_*, d_*) \xrightarrow{i_*} H_{n-1}(C'_*, d'_*) \xrightarrow{p_*} \cdots \xrightarrow{\partial_1}$$

$$\downarrow H_0(C_*, d_*) \xrightarrow{i_*} H_0(C''_*, d'_*) \xrightarrow{p_*} H_0(C''_*, d''_*) \xrightarrow{0} 0$$

RevChap8

ist eine lange exakte Folge.

Beweis

$$C_{n+1} \xrightarrow{i_{n+1}} C'_{n+1} \xrightarrow{p_{n+1}} C''_{n+1}$$

$$\downarrow^{d_{n+1}} \qquad \downarrow^{d'_{n+1}} \qquad \downarrow^{d''_{n+1}}$$

$$C_{n} \xrightarrow{i_{n}} C'_{n} \xrightarrow{p_{n}} C''_{n}$$

$$\downarrow^{d_{n}} \qquad \downarrow^{d'_{n}} \qquad \downarrow^{d''_{n}}$$

$$C_{n-1} \xrightarrow{i_{n-1}} C'_{n-1} \xrightarrow{p_{n-1}} C''_{n-1}$$

$$\downarrow^{d_{n-1}} \qquad \downarrow^{d'_{n-1}} \qquad \downarrow^{d''_{n-1}}$$

$$C_{n-2} \xrightarrow{i_{n-2}} C'_{n-2} \xrightarrow{p_{n-2}} C''_{n-2}$$

Sei $x'' \in H_n(C_*'', d_*'')$, also x'' = [v''] mit $v'' \in \ker d_n''$. Da p_n surjektiv ist, existiert $v' \in C_n'$ mit $p_n(v') = v''$. Es gilt

$$p_{n-1}d'_n(v') = d''_n p_n(v') = d''_n(v'') = 0$$

 $\Rightarrow v' \in \ker p_{n-1}$. Weiter gilt $\ker p_{n-1} = \operatorname{Im} i_{n-1}$, also $\exists v \in C_{n-1} : i_{n-1}(v) = d'_n(v')$. Dann gilt

$$i_{n-2}(d_{n-1}(v)) = d'_{n-1}(i_{n-1}(v)) = d'_{n-1}(d'_n(v')) = 0$$

Da i_{n-2} injektiv ist, folgt somit $d_{n-1}(v)=0$. Setze $\partial_n(x''):=[v]$. Zu zeigen: $[v]\in H_{n-1}(C_*,d_*)$ ist unabhängig von der Wahl von v'' und v'. Seien $w''\in\ker d_n'',\ w'\in C_n',\ w\in C_{n-1}$ mit x''=[w''], $p_n(w')=w''$ und $i_{n-1}(w)=d_n'(w')$.

[v'']=[w''], also folgt $\exists a''\in C''_{n+1}: d''_{n+1}(a'')=v''-w''$. p_{n+1} ist surjektiv, also existiert $a'\in C'_{n+1}$ mit $p_{n+1}(a')=a''$. Es gilt

$$p_n(v'-w'-d'_{n+1}(a')) = v''-w''-\underbrace{d_{n+1}(p_{n+1}(a'))}_{v''-w''} = 0$$

Mit $\ker p_n = \operatorname{Im} i_n$ folgt: $\exists a \in C_n$ mit $i_n(a) = v' - w' - d_{n+1}(a')$. Es bleibt zu zeigen: $d_n(-a) = v - w$.

$$i_{n-1}(-d_n(a) - (v - w)) = -i_{n-1}(d_n(a)) - i_{n-1}(v - w)$$

$$= -d'_n(i_n(a)) - (d'_n(v') - d'_n(w'))$$

$$= -d'_n(d'_{n+1}(a') - (v' - w')) - (d'_n(v') - d'_n(w'))$$

$$= -d'_nd'_{n+1}(a') + d'_n(v' - w') - (d'_n(v' - w')) = 0$$

da i_{n-1} injektiv ist, folgt $-d_n(a) - (v - w) = 0$, also $d_n(-a) = (v - w)$.

$$\underline{\text{Im}(i_n)_* = \ker(p_n)_*}$$
: " \subseteq ": $(p_n)_* \circ (i_n)_* = (p_n - i_n)_* = (0)_* = 0$

" \supseteq ": Sei $x' \in \ker(p_n)_*$. Sei x' = [v'] mit $v' \in C'_n$, $d'_n(v') = 0$. Da $[p_n(v')] = (p_n)_*[x'] = 0$ gibt es $a'' \in C''_n$ mit $d''_{n+1}(a'') = p_n(v')$. Da p_{n+2} surjektiv ist, existiert $a' \in C'_{n+1}$ mit $p_{n+1}(a') = a''$. Dann gilt

$$p_n(v' - d'_{n+1}(a')) = p_n(v') - p_n d'_{n+1}(a') = p_n(v') - \underbrace{d''_{n+1}(\underbrace{p_{n+1}(a')}_{p_n(v')})}_{=a''} = 0$$

Da $\ker p_n = \operatorname{Im} i_n$ gibt es $a \in C_n$ mit $i_n(a) = v' - d'_{n+1}(a')$. Nun ist

$$i_{n-1}(d_n(a)) = d'_n(i_n(a)) = d'_n(v' - d_{n+1}(a')) = d'_n(v') = 0$$

Da i_{n-1} injektiv ist, folgt $d_n(a)=0$. Insbesondere $[a]\in H_n((C_*,d_*))$. Nun ist

$$(i_n)_*[a] = [i_n(a)] = [v' - d'_{n+1}(a')] = [v'] = x'$$

Also $x' \in \operatorname{Im}(i_n)_*$.

$$\underline{\operatorname{Im} \partial_{n+1} = \ker(i_n)_*:} \ "\subseteq": \ i_n(d_{n+1}(x'')) = 0 \ \checkmark$$

"
$$\supseteq$$
": Sei $x \in \ker(i_n)_*$. Sei $v \in C_n$, $d_n(v) = 0$, $[v] = x \rightarrow x = d_n[v'']$.

8.13 Beweis von Satz 8.8

Für jedes Paar (X, A) ist die Folge der singulären Kettenkomplexe

$$\left(C_*(A;R),\partial_*^A\right) \overset{C_*(i;R)}{\longrightarrow} \left(C_*(X;R),\partial_*^X\right) \overset{C_*(j;R)}{\longrightarrow} \left(C_*(X,A;R),\partial_*^{(X,A)}\right)$$

kurz exakt. Das Schlangenlemma 8.12 produziert $\partial_n: H_n(X,A;R) \to H_{n-1}(A;R)$ und die lange exakte Sequenz [*]. Es bleibt zu zeigen, dass die Randabbildungen aus dem Schlangenlemma wie behauptet eine natürliche Transformation definieren: Sei $(f,F|_A):(X,A)\to (Y,B)$ eine Abbildung von Paaren. Zu zeigen ist, dass

$$H_n(X, A; R) \xrightarrow{\partial_n} H_{n-1}(A; R)$$

$$\downarrow^{(f, f|_A)_*} \qquad \downarrow^{(f|_A)_*}$$

$$H_n(Y, B; R) \xrightarrow{\partial_n} H_{n-1}(B; R)$$

kommutiert. Sei $x'' \in H_n(X,A;R)$. Sei $v' \in C_n(X;R)$ mit $\partial_n^X(v') \in C_n(A;R)$ und $[v' + C_n(A;R)] = x''$. Dann ist $\partial_n(x'') = [\partial_n^X(v')] \in H_n(A;R)$. Dann ist

$$(f, f|_A)_*(x'') = (f, f|_A)_*[v' + C_n(A; R)] = [f(v') + C_n(B; R)] \in H_n(Y, B; R)$$

Es ist
$$\partial_n^Y \big(f_*(v')\big) = (f|_A)_*\Big(\underbrace{\partial_n^X(v')}_{\in C_n(A;R)}\Big) \in C_n(B;R)$$
. Also

$$\partial_n \left((f, f|_A)_*(x'') \right) = \left[\partial_n^Y \left(f_*(v') \right) \right] = \left[f_* \circ \partial_n^X (v') \right] = f_* \partial_n(X'')$$

8.14 Bemerkung

Für eine Abbildung $(f,f|_A):(X,A) \to (Y,B)$ erhalten wir ein kommutierendes Diagramm:

8.15 Fünfer-Lemma

Seien die Zeilen in folgendem kommutativen Diagramm von R-Moduln exakt.

$$A_{4} \xrightarrow{\alpha_{4}} A_{3} \xrightarrow{\alpha_{3}} A_{2} \xrightarrow{\alpha_{2}} A_{1} \xrightarrow{\alpha_{1}} A_{0}$$

$$f_{4} \downarrow \cong \qquad f_{3} \downarrow \cong \qquad f_{2} \downarrow \qquad f_{1} \downarrow \cong \qquad f_{0} \downarrow \cong$$

$$B_{4} \xrightarrow{\beta_{4}} B_{3} \xrightarrow{\beta_{3}} B_{2} \xrightarrow{\beta_{2}} B_{1} \xrightarrow{\beta_{1}} B_{0}$$

Sind f_4, f_3, f_1 und f_0 Isomorphismen, so ist auch f_2 ein Isomorphismus.

Beweis

Injektivität: Sei $a_2 \in A_2$ und $f_2(a_2) = 0$. $f_1\big(\alpha_2(a_2)\big) = \beta_2\big(f_2(a_2)\big) = \beta_2(0) = 0$. Da f_1 ein Isomorphismus ist, folgt $\alpha_2(a_2) = 0$. $a_2 \in \ker \alpha_2 = \operatorname{Im} \alpha_3$, also existiert $a_2 \in A_3$ mit $\alpha_3(a_3) = a_2$. Es gilt

$$\beta_3(f_3(a_3)) = f_2(\alpha_3(a_3)) = f_2(a_2) = 0$$

30

Also $f_3(a_3) \in \ker \beta_3 = \operatorname{Im} \beta_4$. Da f_4 Isomorphismus ist, gibt es $a_4 \in A_4$ mit $\beta_4(f_4(a_4)) = f_3(a_3)$. Nun gilt

$$f_3(\alpha_4(a_4) - a_3) = f_3(\alpha_4(a_4)) - f_3(a_3) = \beta_4(f_4(a_4)) - f_3(a_3) = f_3(a_3) - f_3(a_3) = 0$$

Da f_3 ein Isomorphismus ist, folgt nun $\alpha_4(a_4)=a_3$. Nun ist

$$a_2 = \alpha_3(\alpha_3) = \alpha_3(\alpha_4(a_4)) = \underbrace{\alpha_3 \circ \alpha_4}_{=0}(a_4) = 0$$

Surjektivität: Sei $b_2 \in B_2$. Fall 1: $\beta_2(b_2) = 0$. Da $\operatorname{Im} \beta_3 = \ker \beta_2$ und f_3 Isomorphismus, folgt $\exists a_3 \in A_3$ mit $\beta_3 \big(f_3(a_3) \big) = b_2$. Also ist $b_2 = \beta_3 \big(f_3(a_3) \big) = f_2 \big(\alpha_3(a_3) \big) \in \operatorname{Im} f_2$.

Ist b_2 beliebig, so genügt es zu zeigen: $\exists a_2 \in A_2 \text{ mit } \beta_2 \big(b_2 - f_2(a_2)\big) = 0$. f_1 ist ein Isomorphismus, also $\exists a_1 \in A_1 \text{ mit } f_1(a_1) = \beta_2(b_2)$. Dann folgt

$$f_0(\alpha_1(a_1)) = \beta_1(f_1(a_1)) = \beta_1(\beta_2(b_2)) = \underbrace{\beta_1 \circ \beta_2}_{=0}(b_2) = 0$$

Da f_0 ein Isomorphismus ist, folgt $\alpha_1(a_1)=0$. Da $\ker \alpha_1=\operatorname{Im}\alpha_2$, folgt $\alpha_2(a_2)=a_1$. Es gilt nun

$$\beta_2(b_2 - f_2(a_2)) = \beta_2(b_2) - \beta_2(f_2(a_2)) = \beta_2(b_2) - f_1(\alpha_2(a_2))$$
$$= \beta_2(b_2) - f_1(a_1) = \beta_2(b_2) - \beta_2(b_2) = 0 \qquad \Box$$

8.16 Lemma ("2 von 3")

Sei $f:(X,A)\to (Y,B)$ eine Abbildung von Paaren. Seien von den drei Abbildungen

(i)
$$(f|_A)_*: H_n(A;R) \to H_n(B;R)$$

(ii)
$$f_*: H_n(X;R) \to H_n(Y;R)$$

(iii)
$$(f, f|_A)_* : H_n(X, A; R) \to H_n(Y, B; R)$$

zwei für jeweils alle n Isomorphismen. Dann ist auch die dritte für alle n ein Isomorphismus.

Beweis

Da die Randabbildung in der Paarfolge eine natürliche Transformation ist, erhalten wir ein kommutatives Leiterdiagramm:

"R" aus Platzgründen weggelassen

$$H_{n+1}(A) \longrightarrow H_{n+1}(X) \longrightarrow H_{n+1}(X,A) \xrightarrow{\partial_{n+1}} H_n(A) \longrightarrow H_n(X) \longrightarrow H_n(X,A) \xrightarrow{\partial_n} H_{n-1}(A)$$

$$\downarrow (f|_A)_* \qquad \downarrow f_* \qquad \qquad \downarrow (f,f|_A)_* \qquad \downarrow (f|_A)_* \qquad \downarrow (f|_A)_* \qquad \downarrow (f,f|_A)_* \qquad \downarrow (f|_A)_*$$

$$H_{n+1}(B) \longrightarrow H_{n+1}(Y) \longrightarrow H_{n+1}(Y,B) \xrightarrow{\partial_{n+1}} H_n(B) \longrightarrow H_n(Y) \longrightarrow H_n(Y,B) \xrightarrow{\partial_n} H_{n-1}(B)$$

Da die Zeilen lang exakt sind, folgt die Behauptung aus dem Fünfer-Lemma.

8 Homologie von Paaren 31

9 Ausschneidung und die Mayer-Vietoris Folge

9.1 Satz

Sei (X,A) ein Paar und $L\subseteq A$, sodass der Abschluss \overline{L} von im Inneren \mathring{A} von A liegt. Dann induziert die Inklusion $(X\setminus L,A\setminus L)\xrightarrow{j} (X,A)$ einen Isomorphismus $j_*:H_n(X\setminus L,A\setminus L;R)\to H_n(X,A;R)$.

RevChap9

9.2 Satz (Mayer-Vietoris Folge)

Seien $A,B\subseteq X$ offen und $X=A\cup B$. Seien $i_A:A\hookrightarrow X$, $i_B:B\hookrightarrow X$, $j_A:A\cap B\hookrightarrow A$ und $j_B:A\cap B\hookrightarrow B$ die Inklusionen. Dann gibt es eine Randabbildung $\partial_n=\partial_n^{_{X=A\cup B}}:H_n(X;R)\to H_{n-1}(A\cap B;R)$, sodass

"R" aus Platzgründen weggelassen

$$\cdots \xrightarrow{\partial_{n+1}} H_n(A \cap B) \xrightarrow{\binom{(j_A)_*}{(j_B)_*}} \bigoplus_{H_n(B)}^{H_n(A)} \xrightarrow{(i_A)_* - (i_B)_*} H_n(X) \xrightarrow{\partial_n} H_{n-1}(A \cap B) \xrightarrow{} \cdots$$

eine lange exakte Folge ist. Die Randabbildung ist dabei eine natürlicher Transformation: Sei $A', B' \subseteq X'$ offen mit $X' = A' \cup B'$. ist $f: X \to X'$ mit $f(A) \subseteq A'$ und $f(B) \subseteq B'$, so kommutiert

$$H_n(X;R) \xrightarrow{\partial_n^{X=A\cup B}} H_{n-1}(A\cap B;R)$$

$$\downarrow^{f_*} \qquad \qquad \downarrow^{(f|_{A\cap B})_*}$$

$$H_n(X';R) \xrightarrow{\partial_n^{X'=A'\cup B'}} H_n(A'\cap B';R)$$

Beweis

Sei $L:=X\setminus B$. Dann ist L abgeschlossen und $L\subseteq A=\mathring{A}$. Wir erhalten daher einen Ausschneideisomorphismus

$$H_n(B, A \cap B; R) = H_n(X \setminus L, A \setminus L; R) \xrightarrow{\cong} H_n(X, A; R)$$

"R" aus Platzgründen weggelassen Betrachte das folgende kommutative Leiterdiagramm:

$$\cdots \longrightarrow H_{n+1}(B, A \cap B) \xrightarrow{\partial_{n+1}^{B,A \cap B}} H_n(A \cap B) \xrightarrow{(j_B)_*} H_n(B) \xrightarrow{(l_B)_*} H_n(B, A \cap B) \xrightarrow{\partial_n^{B,A \cap B}} H_{n-1}(A \cap B) \longrightarrow \cdots$$

$$\cong \downarrow (i_B, j_A)_* \qquad \downarrow (j_A)_* \qquad \downarrow (i_B)_* \qquad \cong \downarrow (i_B, j_A)_* \qquad \downarrow (j_A)_*$$

$$\cdots \longrightarrow H_{n+1}(X, A) \xrightarrow{\partial_{n+1}^{X,A}} H_n(A) \xrightarrow{(i_A)_*} H_n(X) \xrightarrow{(l_X)_*} H_n(X, A) \xrightarrow{\partial_n^{X,A}} H_{n-1}(A) \longrightarrow \cdots$$

dabei sind $l_B:(B,\emptyset)\to (B,A\cap B)$ und $l_X:(X,\emptyset)\to (X,A)$ die Inklusionen von Paaren. Definiere nun $\partial_n:H_n(X;R)\to H_{n-1}(A\cap B;R)$ durch

$$\partial_n := \partial_n^{B,A\cap B} \circ (i_B, i_A)_*^{-1} \circ (l_X)_*$$

Die Natürlichkeit von $\partial_n^{B,A\cap B}$ impliziert die Natürlichkeit von ∂_n .

• Zu zeigen:
$$\operatorname{Im}\binom{(j_A)_*}{(j_B)_*} = \ker((i_A)_* - (i_B)_*)$$
:

"
$$\supseteq$$
": Sei $(a,b)\in\ker((i_A)_*-(i_B)_*)$. Also $(i_A)_*(a)=(i_B)_*(b)$. Es ist

$$(i_B, j_A)_* ((l_B)_*(b)) = (l_X)_* \circ (j_B)_*(b) = \underbrace{(l_X)_* \circ (i_A)_*}_{=0} (a) = 0$$

 $(i_B,j_A)_*$ ist ein Isomorphismus, also $(l_B)_*(b)=0$. $\ker(l_B)_*=\operatorname{Im}(j_B)_*$. Damit folgt $\exists x\in H_n(A\cap B;R):(j_B)_*(x)=b$. Dann gilt

$$(i_A)_*(a-(j_A)-*(x))=(i_A)_*(a)-i_B((j_B)_*(x))=(i_A)_*(a)-(i_B)_*(b)=0$$

Mit $\ker(i_A)_* = \operatorname{Im} \partial_n^{X,A}$ und $(i_B, j_A)_*$ ist Isomorphismus, folgt $\exists y \in H_{n+1}(B, A \cap B; R)$ mit

$$\partial_n^{X,A} \circ (i_B, j_A)_*(y) = a - (j_A)_*(x)$$

Es folgt für $z := x + \partial_n^{B,A \cap B}(y)$.

$$(j_B)_*(z) = (j_B)_*(x) = b$$

$$(j_A)_*(z) = (j_A)_*(x) + (j_A)_*(\partial^{B,A\cap B}(y))_n = (j_A)_*(x) + \partial^{X,A}_n \circ (i_B, j_A)_*(y) = (j_A)_*(x) + a - (j_A)_*(x) = a$$

" \subseteq ": Sei $x \in H_n(A \cap B; R)$. Dann gilt

$$((i_A)_* - (i_B)_*) \begin{pmatrix} (j_A)_* \\ (j_B)_* \end{pmatrix} (x) = (i_A)_* \circ (j_A)_* (x) - (i_B)_* \circ (j_B)_* (x) = (i_A \circ j_A)_* (x) - (i_B \circ j_B)_* (x) = 0$$

da $i_A \circ j_A = i_B \circ j_B$.

• Wir zeigen nun $\operatorname{Im}(i_A)_* - (i_B)_* = \ker \partial_n$:

"
$$\supseteq$$
": Sei $v \in \ker \partial_n$.

Rest hinzufü-

"
$$\subseteq$$
": Sei $\left(egin{array}{c} a \\ b \end{array}
ight) \in \bigoplus_{H_n(B)}^{H_n(A)}$. Dann gilt

$$\partial_n((i_A)_* - (i_B)_*)({}^a_b) = \partial_n((i_A)_*(a) - (i_B)_*(b)) = 0$$

• Noch zu zeigen: $\operatorname{Im} \partial_n = \ker \left(\begin{smallmatrix} (j_A)_* \\ (j_B)_* \end{smallmatrix} \right)$. Übung!

9.3 Bemerkung

Für die Mayer-Vietoris-Folge müssen A und B nicht notwendig offen sein. Es genügt, dass die Inklusion $(B,A\cap B)\hookrightarrow (X,A)$ einen Isomorphismus $H_*(B,A\cap B;R)\to H_*(X,A;R)$ induziert.

9.4 Satz

$$H_k(S^n;R)\cong \begin{cases} R\oplus R, & \text{falls } k=n=0\\ R, & \text{falls } k=0, n\neq 0\\ R, & \text{falls } k=n\neq 0\\ 0, & \text{sonst} \end{cases}$$

9.5 Definition

Sei X ein nichtleerer topologischer Raum. Sei $p:X\to \{\mathrm{pt}\}$ die Projektion auf den Ein-Punkt-Raum. die **reduzierte singuläre Homologie** von X ist definiert durch

$$\tilde{H}_k(X;R) := \ker \Big(p_* : H_k(X;R) \to H_k(\{\text{pt}\};R) \Big)$$

Bemerkung

- Es gilt $\tilde{H}_k(X;R)=H_k(X;R)$ für k>0 und $H_0(X;R)=R\oplus \tilde{H}_0(X;R)$
- Es ist nicht schwer die Eigenschaften von singulärer Homologie auf die reduzierte singuläre Homologie zu übertragen. Insbesondere ist \tilde{H}_* homotopieinvariant und es gibt eine Mayer-Vietoris-Folge.
- Es ist $\tilde{H}_k(\{\text{pt}\}) = 0$.

9.6 Bemerkung

In reduzierter singulärer Homologie wird [#] zu

9.7 Beweis von [##]

Induktion nach n:

Induktionsanfang: n = 0: Es gilt

$$H_k(S^0;R) \stackrel{\varphi}{\cong} H_k\big(\{\mathrm{pt}\};R\big) \oplus H_k\big(\{\mathrm{pt}\};R\big) = \begin{cases} R \oplus R, & \text{falls } k = 0 \\ 0, & \text{sonst} \end{cases}$$

Sei $i_-:\{\mathrm{pt}\}\hookrightarrow S^0$, $i_+:\{\mathrm{pt}\}\hookrightarrow S^0$. Im $i_{pm}=\{\pm 1\}$. Der Isomorphismus φ ist gegeben durch $\varphi=(i_-)_*+(i_+)_*$. Für $(a,b)\in H_k(\{-1\};R)\oplus H_k(\{+1\};R)$ gilt dann

$$p_*(i_-(a), i_+(b)) = (p \circ i_-)_*(a) + (p \circ i_+)(b) = \mathrm{id}_*(a) + \mathrm{id}_*(b) = a + b$$

Also $\ker p_* = \{(a, -a) \mid a \in H_k(\{pt\}; R)\}$. Also

$$ilde{H}_k(S^0) = egin{cases} 0, & \text{falls } k
eq 0 \\ R, & \text{falls } k = 0 \end{cases}$$

Induktionsschritt: $n-1\mapsto n$: Sei $D_n^+=S^n\setminus\{(-1,0,\dots,0)\}$ und $D_n^-=S^n\setminus\{1,0,\dots,0\}$. Dann gilt $S^n=D_n^+\cup D_n^-$ und $D_n^+,D_n^-\subseteq S^n$ offen und $D_n^+\simeq\{\mathrm{pt}\}$ und $D_n^-\simeq\{\mathrm{pt}\}$ Weiter gilt

$$D_n^+ \cap D_n^- = \{x = (x_0, \dots, x_n) \in S^n \mid x_0 \notin \{\pm 1\}\} \simeq S^{n-1} = \{x = (0, x_1, \dots, x_n) \in S^n\}.$$

Betrachte nun die Mayer-Vietoris-Folge zu $S^n = D_n^+ \cup D_n^-$:

"R" aus Platzgründen weggelassen

$$\tilde{H}_{k}(D_{n}^{+}) \oplus \tilde{H}_{k}(D_{n}^{-}) \longrightarrow \tilde{H}_{k}(S^{n}) \xrightarrow{\partial_{k}} \tilde{H}_{k-1}(D_{n}^{+} \cup D_{n}^{-}) \longrightarrow \tilde{H}_{k-1}(D_{n}^{+}) \oplus \tilde{H}_{k-1}(D_{n}^{-})$$

$$\cong \downarrow (\iota_{*})$$

$$\tilde{H}_{k-1}(S^{n-1})$$

$$\text{Es folgt } \tilde{H}_k(S^n;R) \cong \tilde{H}_{k-1}(S^{n-1};R) \stackrel{\text{I.A.}}{=} \begin{cases} R, & \text{falls } k=1 \\ 0, & \text{sonst} \end{cases} \qquad \square$$

10 Anwendungen

10.1 Satz (Invarianz der Dimension)

Sind \mathbb{R}^n und \mathbb{R}^m homöomorph, so gilt n=m.

RevChap10

Beweis

Sei $h:\mathbb{R}^n \to \mathbb{R}^m$ ein Homöomorphismus. Sei $x_0 \in \mathbb{R}^n$ beliebig. Dann erhalten wir auch einen Homöomorphismus $k:=h\big|_{\mathbb{R}^n\setminus\{x_0\}}:\mathbb{R}^n\setminus\{x_0\}\to\mathbb{R}^m\setminus\{h(x_0)\}$. Nun ist $\mathbb{R}^n\setminus\{x_0\}$ homotopieäquivalent zu S^{n-1} und $\mathbb{R}^m\setminus\{h(x_0)\}$ ist homotopieäquivalent zu S^{m-1} . Da k ein Homöomorphismus ist, ist k_* ein Isomorphismus. Wir erhalten

$$H_*(S^{n-1}) \cong H_*(\mathbb{R}^n \setminus \{x_0\}) \cong H_*(\mathbb{R}^m \setminus \{h(x_0)\}) \cong H_*(S^{m-1})$$

Es ist aber $H_*(S^{n-1}) \cong H_*(S^{m-1})$ genau dann, wenn n = m.

10.2 Fixpunktsatz von Brouwer

Jede stetige Abbildung $f:D^n\to D^n$ besitzt einen Fixpunkt.

Beweis

Durch Widerspruch: Angenommen es gibt $f:D^n\to D^n$ ohne Fixpunkt. Aus dem letzten Semester wissen wir, dass es dann eine stetige Abbildung $F:D^n\to S^{n-1}$ gibt mit $F|_{S^{n-1}}=\mathrm{id}_{S^{n-1}}$. In Homologie erhalten wir folgendes kommutatives Diagramm

 $\mathbb{E}: n \geq 2$

$$0 = H_{n-1}(D^n) \xrightarrow{(F)_*} H_{n-1}(S^{n-1}) \cong \mathbb{Z}$$

$$\downarrow i_* \qquad \qquad \downarrow (\operatorname{id}_{S^{n-1}})_* = \operatorname{id}_{H_{n-1}(S^{n-1})}$$

$$H_{n-1}(S^{n-1})$$

wobei $i:S^{n-1}\hookrightarrow D^n$ die Inklusion ist. Da $F\circ i=\mathrm{id}_{S^{n-1}}$ ist, gilt $F_*\circ i_*=\mathrm{id}_{H_{n-1}(S^{n-1})}$. otin Inklusion ist.

Abbildungsgrad

10.3 Definition

Sei $f:S^n\to S^n$ eine stetige Abbildung. Da $\tilde{H}_n(S^n)\cong Z$ ist, gibt es eine ganze Zahl d(f), so dass $f_*(x)=d(f)\cdot x$ für alle $x\in \tilde{H}_n(S^n)$. Diese Zahl heißt der **Abbildungsgrad** von f.

10.4 Proposition

- a) $d(id_{S^n}) = 1$.
- b) Sind f und g homotop, so gilt d(f) = d(g).
- c) $d(f \circ g) = d(f) \cdot d(g)$.

Beweis

- a) $(id_{S^n})_*(x) = id(x) = x$.
- b) Sind f und g homotop, so gilt $f_* = g_*$.
- c) Für alle $x \in \tilde{H}_n(S^n)$ gilt: $d(f \circ g) \cdot x = (f \circ g)_*(x) = f_* \circ g_*(x) = d(f) \cdot d(g) \cdot x$. Da $\tilde{H}_n(S^n) \cong \mathbb{Z}$ folgt $d(f \circ g) = d(f) \cdot d(g)$.

10 Anwendungen 35

10.5 Beispiel

Sei $i \in \{0, \dots, n\}$ und $R_i : S^n \to S^n$ die Spiegelung $R_i(x_0, \dots, x_n) = (x_0, \dots, -x_i, \dots, x_n)$. Dann ist $d(R_i) = -1$.

Beweis

Sei $f:S^n \to S^n$ der Homöomorphismus, der die 0-te und die i-te Koordinate vertauscht: $f(x_0,\dots,x_n)=(x_i,\dots,x_0,\dots,x_m)$. Dann ist $R_i=f\circ R_0\circ f$. Da f ein Homöomorphismus ist, ist f_* ein Isomorphismus und daher d(f) invertierbar, also $d(f)\in\{\pm 1\}$ mit $d(R_i)=d(f)\cdot d(R_0)\cdot d(f)$ folgt $d(R_0)=d(R_i)$. Es genügt also R_0 zu betrachten.

Wir zeigen $d(R_0) = -1$ durch Induktion nach n.

Induktionsanfang: Sei $i_-:\{\mathrm{pt}\}\to S^0$ mit $\mathrm{Im}\,i_-=\{-1\}$ und $i_+:\{\mathrm{pt}\}\to S^0$ mit $\mathrm{Im}\,i_+=\{+1\}$. Dann ist

$$H_0(S^0) = \{(i_-)_*(a) + (i_+)_*(b) \mid a, b \in H_0(\{\text{pt}\})\} \quad \text{und}$$
$$\tilde{H}_=(S^0) = \{(i_-)_*(a) - (i_+)_*(a) \mid a \in H_0(\{\text{pt}\})\}$$

Nun ist

$$(R_0)_*((i_-)_*(a) - (i_+)_*(a)) = (R_0)_*(i_-)_*(a) - (R_0)_*(i_+)_*(a) = (R_0 \circ i_-)_*(a) - (R_0 \circ i_+)_*(a)$$

$$= (i_+)_*(a) - (i_-)_*(a)$$

$$= -((i_-)_*(a) + (i_+)_*(a))$$

Also folgt $d(R_0) = -1$.

Induktionsschritt: Sei

$$D_{+}^{n} = \{(x_{0}, \dots, x_{n}) \in S^{n} \mid x_{n} \neq -1\}$$

$$D_{-}^{n} = \{(x_{0}, \dots, x_{m}) \in S^{n} \mid x_{n} \neq +1\}$$

Wir wissen schon, dass die Randabbildung aus der dazugehörigen Mayer-Vietoris-Folge $\tilde{H}_n(S^1) \xrightarrow{\partial_n} \tilde{H}_{n-1}(D^n_+ \cap D^n_-)$ ein Isomorphismus ist. Da die Randabbildung natürlich ist, erhalten wir ein kommutatives Diagramm

$$\tilde{H}_{n}(S^{n}) \xrightarrow{\partial_{n}} \tilde{H}_{n}(D_{-}^{n} \cap D_{+}^{n}) \xleftarrow{\cong} \tilde{H}_{n-1}(S^{n-1})$$

$$\downarrow^{(R_{0})_{*}} \qquad \qquad \downarrow^{(R_{0}|_{(D_{-}^{n} \cap D_{+}^{n})})_{*}}$$

$$\tilde{H}_{n}(S^{n}) \xrightarrow{\cong} \tilde{H}_{n+1}(D_{-}^{n} \cap D_{+}^{n}) \qquad H_{n-1}(S^{n-1})$$

dabei ist $i:S^{n-1}\to D^n_-\cap D^n_+$ die Homotopieäquivalenz $i(x_0,\dots,x_{n-1})=(x_0,\dots,x_{n-1},0).$ Nach Induktionsannahme ist $\left(R_0\big|_{S^{n-1}}\right)_*(y)=-y$ für alle $y\in \tilde{H}_{n-1}(S^{n-1}).$ Für $x\in \tilde{H}_n(S^n)$ folgt

$$(R_0)_+(x) = (\partial_n)^{-1} \circ (i_*) \circ (R_0|_{S^{n-1}})_* ((i_*^{-1} \circ \partial_n) \cdot (x))$$

= $(\partial_n)^{-1} \circ (i_*) (-i_*^{-1} (\partial_n(x)))$
= $-\partial_n^{-1} \circ (i_*) \circ (i_*)^{-1} \circ \partial_n(x) = -x$

Also
$$d(R_0) = -1$$
.

10.6 Beispiel

Der Grad der Punktspiegelung $R: S^n \to S^n \ x \mapsto -x \ \text{ist} \ (-1)^{n+1}$.

fertig stellen

Beweis

$$d(R) = d(R_0 \circ R_1 \circ \ldots \circ R_n) = d(R_0) \cdot \ldots \cdot d(R_n) = (-1)^{n+1}.$$

10.7 Erinnerung

Sei M eine C^{∞} -Mannigfaltigkeit. Ein **Vektorfeld** auf M ist eine stetige Abbildung $v:M\to TM$ mit $v(x)\in T_xM$ für alle $x\in M$. Für $M=S^n$ entspricht ein Vektorfeld genau einer stetigen Abbildung $v:S^n\to \mathbb{R}^{n+1}$ mit $\langle v(x)\,|\, x\rangle=0$ für alle $x\in S^n$.

10.8 Satz

Es gibt genau dann ein Vektorfeld ohne Nullstellen auf S^n , wenn n ungerade ist.

Beweis

Ist n ungerade, so ist $S^n\subseteq\mathbb{R}^{n+1}=\mathbb{C}^k$ mit $k=\frac{n+1}{2}$. Punkte in S^n sind dann genau k-Tupel $z=(z_1,\ldots,z_k)$ mit $|z_1|^2+\ldots+|z_k|^2=1$. Ein Vektorfeld entspricht dann einer stetigen Abbildung $v:S^n\to\mathbb{C}^k$, so dass für das kanonische komplexe Skalarprodukt $\langle\cdot\,|\cdot\rangle_{\mathbb{C}}$ auf \mathbb{C}^k gilt

$$\langle z \, | \, v(z) \rangle_{\mathbb{C}} \in i\mathbb{R}$$

Definiere nun $v:S^n \to \mathbb{C}^k$ durch v(z):=iz. Dann $iz \neq 0$ für alle $z \in S^n$ und $\langle z\,|\,iz\rangle = -i\|z\|_2 \in i\mathbb{R}$. Sei umgekehrt $v:S^n \to \mathbb{R}^{n+1}$ ein Vektorfeld ohne Nullstellen. Zu zeigen: d(Punktspiegelung R)=1 (Da $d(R)=(-1)^{n+1}$ folgt dann die Behauptung). Zeige dazu: R ist homotop zu id. Seien $H,K:S^n \times [0,1] \to S^n$ definiert durch

$$H(x,t) := \frac{tx + (1-t)v(x)}{\|tx + (1-t)v(x)\|} \qquad \text{bzw.} \qquad K(x,t) := \frac{-tx + (1-t)v(x)}{\|-tx + (1-t)v(x)\|}$$

Da $\langle v(x) | x \rangle = 0$ folgt für alle x und $v(x) \neq 0$ ist, folgt

$$||tx + (1 - t)v(x)||^2 = ||tx||^2 + ||(1 - t)v(x)||^2 \neq 0$$
$$||-tx + (1 - t)v(x)||^2 = ||-tx||^2 + ||(1 - t)v(x)||^2 \neq 0$$

Also sind H und K wohldefiniert. H ist Homotopie zwischen id und $x\mapsto \frac{v(x)}{\|v(x)\|}$ und K ist Homotopie zwischen $-\mathrm{id}$ und $x\mapsto \frac{v(x)}{\|v(x)\|}$.

10.9 Satz (Jordanscher Kurvensatz)

Sei $f\colon S^1\to\mathbb{R}^2$ eine stetige, injektive Abbildung. Dann hat $\mathbb{R}^2\setminus f(S^1)$ genau zwei Wegzusammenhangskomponenten. Eine davon ist beschränkt, die andere nicht.

10 Anwendungen 37

Beweis (mit 10.10)

Wir können f auch als injektive Abbildung $f\colon S^1\to\mathbb{R}^2\subseteq S^2=\mathbb{R}^1\cup\{\infty\}$ auffassen. Nun ist $\tilde{H}_0\big(S^2\setminus f(S^1)\big)=\mathbb{Z}$. Also $H_0\big(S^2\setminus f(S^1)\big)=\mathbb{Z}\oplus\mathbb{Z}$. Daher besteht $S^2\setminus f(S^1)$ aus zwei Wegzusammenhangskomponenten U_1 und U_2 . Sei $\mathbb{E}\infty\in U_2$. Dann sind U_1 und $U_2\setminus\{\infty\}$ die Wegzusammenhangskomponenten von $\mathbb{R}^2\setminus f(S^1)$. U_1 ist beschränkt und U_2 ist unbeschränkt. \square Warum ist $U_2\setminus\{\infty\}$ noch wegzusammenhängend?

Antwort

Seien $x,y\in U_2$, dann gibt es eine Umgebung V von $\infty\in S^2$ mit $V\setminus\{\infty\}\equiv D^2\setminus\{0\}$, $x,y\not\in V$ und $f(S^1)\cap V=\emptyset$

10.10 Satz

- a) Sei $f \colon D^k \to S^n$ eine stetige, injektive Abbildung mit $0 \leqslant k < n$. Dann gilt $\tilde{H}_i \big(S^n \setminus f(D^k) \big) = 0$ für alle i.
- b) Sei $f \colon S^k \to S^n$ eine stetige, injektive Abbildung mit $0 \leqslant k < n$. Dann gilt

$$\tilde{H}_i \big(S^n \setminus f(S^k) \big) = \begin{cases} \mathbb{Z}, & \text{falls } i = n-k-1 \\ 0, & \text{sonst} \end{cases}$$

Beweis (mit 10.11)

a) Durch Induktion nach k. Für k=0 ist $S^n\setminus f(D^0)$ homöomorph zu \mathbb{R}^n und die Behauptung folgt. Induktionsschritt $k\mapsto k+1$: Da D^{k+1} und $[0,1]^{k+1}$ homöomorph sind, können wir D^{k+1} durch $[0,1]^{k+1}$ ersetzen. Sei $x\in \tilde{H}_i(S^n\setminus f\big([0,1]^{k+1}\big))$. Es ist

$$S^{n} \setminus f(\{1/2\} \times [0,1]^{k}) = S^{n} \setminus f([0,1/2] \times [0,1]^{k}) \cup S^{n} \setminus f([1/2,1] \times [0,1]^{k})$$

eine Vereinigung von offenen Mengen. Weiter ist

$$\left(S^{n} \setminus f([0, 1/2] \times [0, 1]^{k})\right) \cap \left(S^{n} \setminus f([1/2, 1] \times [0, 1]^{k})\right) = S^{n} \setminus f([0, 1]^{k+1})$$

Nun benutzten wir die zugehörige Mayer-Vietoris-Folge:

schöner machen

Angenommen $x \neq 0$. Dann ist das Bild von x in $\tilde{H}_i \left(S^n \setminus f \left([0,1/2] \times [0,1]^k \right) \right)$ ungleich Null oder in $\tilde{H}_i \left(S^n \setminus f \left([1/2,1] \times [0,1]^k \right) \right)$ ungleich Null. Indem wir dieses Argument iterieren erhalten wir eine Folge von Intervallen

$$[0,1]\supseteq I_1\supseteq I_2\supseteq\ldots \ \mathrm{mit}\ \bigcap_n I_n=\{t\}$$

und das Bild von $x \in \tilde{H}_i\big(S^n \setminus f\big([0,1]^{k+1}\big)\big)$ unter der von der Inklusion $i_a \colon S^n \setminus f\big([0,1]^{k+1}\big) \to S^n \setminus f\big(I_a \times [0,1]^k\big)$ induzierten Abbildung $(i_a)_* \colon \tilde{H}_i\big(S^n \setminus f\big([0,1]^{k+1}\big)\big) \to \tilde{H}_i\big(S^n \setminus f\big(I_a \times [0,1]^k\big)\big)$ ungleich Null ist. Nun ist aber

$$\bigcup_{a} (S^n \setminus f(I_a \times [0,1]^k)) = S^n \setminus f(\{t\} \times [0,1]^k)$$

und wieder nach Induktionsannahme das Bild von x in $\tilde{H}_i\big(S^n\setminus f\big(\{t\}\times[0,1]^k\big)\big)=0$ Null. Nach Proposition 10.11(2) muss x aber schon in einer $\tilde{H}_i\big(S^n\setminus f\big(I_a\times[0,1]^k\big)\big)$ trivial sein. \not

b) Durch Induktion nach k. Für k=0 ist $S^n\setminus f(S^0)\cong \mathbb{R}^n\setminus \{0\}$. Da $\mathbb{R}^n\setminus \{0\}\simeq S^{n-1}$ folgt für k=0 die Behauptung.

Induktionsschritt $k-1 \mapsto k$: Seien $D_+^k := \{(x_0, \dots, x_k) \, | \, x_k \geqslant 0\}$ und $D_-^k := \{(x_0, \dots, x_k) \, | \, x_k \leqslant 0\}$. Dann ist $D_+^k \cap D_-^k = \{(x_0, \dots, x_k) \, | \, x_k = 0\} \cong S^{k-1}$. Wieder ist

$$S^{n} \setminus f(D_{+}^{k} \cap D_{-}^{k}) (S^{n} \setminus f(D_{+}^{k})) \cup (S^{n} \setminus f(D_{-}^{k}))$$

eine offene Vereinigung mit $\left(S^n\setminus f(D^k_+)\right)\cap (S^n\setminus f(D^k_-))=S^n\setminus f(S^k)$. Wegen a) ist die Randabbildung in der zugehörigen Mayer-Vietoris-Folge

$$\tilde{H}_i(S^n \setminus f(D_+^k \cap D_-^k)) \xrightarrow{\partial_i \cong} \tilde{H}_{i-1}(S^n \setminus f(S^k))$$

ein Isomorphismus. Die Behauptung folgt per Induktion.

10.11 Proposition

Seien $U_1 \subseteq U_2 \subseteq \ldots \subseteq X$ offen mit $X = \bigcup_{i=1}^{\infty} U_i$. Seien $i_{a,b} \colon U_a \hookrightarrow U_b$ für a < b und $i_a \colon U_a \hookrightarrow X$ die Inklusionen.

- (1) Für jedes $x \in H_k(X; R)$ gibt es a > 0 und $x_a \in H_k(U_a; R)$ mit $(i_a)_*(x_a) = x$.
- (2) Ist $x_a \in H_k(U_a; R)$ mit $(i_a)_*(x) = 0$, so gibt es b > a mit $(i_{a,b})_*(x_a) = 0$.

Bemerkung

Diese Proposition gilt genauso für reduzierte Homologie.

Beweis

Sei $\sigma\colon |\Delta^n|\to X$ ein singulärer Simplex in X. Dann ist $\sigma^{-1}(U_a)$, $a\in\mathbb{N}$ eine offene Überdeckung von $|\Delta^n|$. Da $|\Delta^n|$ kompakt ist, gibt es a mit $|\Delta^n|\subseteq\sigma^{-1}(U_a)$, also $\sigma(|\Delta^n|)\subseteq U_a$. Da Elemente von $C_n(X;R)$ endliche R-Linearkombinationen von singulären Simplizes sind, folgt

$$C_n(X;R) = \bigcup_a C_n(U_a;R).$$

Damit ergeben sich leicht (1) und (2).

10 Anwendungen 39

11 CW-Komplexe

11.1 Definition

RevChap11

Ein kommutatives Diagramm von topologischen Räumen der Form

$$A \xrightarrow{f} X$$

$$\downarrow^{g} \qquad \downarrow_{\overline{g}}$$

$$Y \xrightarrow{\overline{f}} Z$$
[#]

heißt ein **Pushout**, falls es folgende universelle Eigenschaft hat:

$$\forall \hat{f} \colon X \to \hat{Z}$$
, $\hat{g} \colon Y \to \hat{Z}$ mit $\hat{f} \circ f = \hat{g} \circ g$ gilt:

$$\exists ! \varphi \colon Z \to \hat{Z} \text{ mit } \hat{f} = \varphi \circ \overline{g}, \hat{g} = \varphi \circ \overline{f}.$$

Wir sagen dann auch: [#] ist der Pushout von $A \xrightarrow{f} X \\ g \downarrow \\ Y$

Bemerkung

Jedes Diagramm $A \xrightarrow{f} X \atop g_{\downarrow}$ lässt sich zu einem Pushout vervollständigen: Betrachte dazu den Raum Y

 $X \cup_A Y := {}^X \coprod {}^Y/f(a) \sim g(a) \forall a \in A \text{ mit der Quotiententopologie. Sind } \overline{f}: Y \to X \cup_A Y \text{ und } \overline{g}: X \to X \cup_A Y \text{ die von den Inklusionen } X \hookrightarrow X \coprod Y \text{ und } Y \hookrightarrow X \coprod Y \text{ induzierten Abbildungen. So ist}$

$$\begin{array}{ccc}
A & \xrightarrow{f} & X \\
g \downarrow & & \downarrow \overline{g} \\
Y & \xrightarrow{\overline{f}} & X \cup_{A} Y
\end{array}$$

Existenz und Eindeutigkeit aus der universellen Eigenschaft können benutzt werden um zu zeigen, dass der Pushout eindeutig bis auf kanonischen Homöomorphismus ist.

11.2 Definition

Ein $\operatorname{CW-Komplex}$ ist ein topologischer Raum X zusammen mit einer Filtrierung der Unterräume von X

$$\emptyset = X^{(-1)} \subseteq X^{(0)} \subseteq X^{(1)} \subseteq X^{(2)} \subseteq \ldots \subseteq X^{(n)} \subseteq X^{(n+1)} \subseteq \ldots \subseteq X$$

sodass die folgenden zwei Eigenschaften erfüllt sind:

(i) **Zellstruktur**: Zu jedem $n \in N$ gibt einen Pushout von topologischen Räumen

40

wobei $j_i : S^{n-1} \hookrightarrow D^n$ und $k_n : X^{(n-1)} \to X^{(n)}$ die Inklusionen sind.

(ii) **Schwache Topologie**: Es ist $X=\bigcup_{n\in\mathbb{N}}X^{(n)}$ und $U\subseteq X$ ist genau dann offen, wenn $U\cap X^{(n)}\subseteq X^{(n)}$ für alle n offen ist.

Eine Abbildung $f\colon X\to Y$ zwischen CW-Komplexen heißt **zellulär**, falls $f\big(X^{(n)}\big)\to Y^{(n)}$ für alle $n\in\mathbb{N}$.

11.3 Bemerkung

- (i) Die Abbildungen $q_i^{(n)}$ und $Q_i^{(n)}$ sind nicht Teil der Struktur eines CW-Komplex. Nur die Existenz von $q_i^{(n)}$ und $Q_i^{(n)}$ wird gefordert sie ist nicht notwendig eindeutig. Hat man $q_i^{(n)}$ und $Q_i^{(n)}$ gewählt, so heißen $q_i^{(n)}$ die **anklebende Abbildung** der i-ten n-Zelle und $Q_i^{(n)}$ die **charakteristische Abbildung** der i-ten n-Zelle.
- (ii) Sei $\mathring{D}^n = D^n \setminus S^{n-1}$ das Innere von D^n . Die Abbildungen $Q_i^{(n)}$ schränken sich zu einem Homöomorphismus $\coprod_{i \in I^{(n)}} \mathring{D}^n \to X^{(n)} \setminus X^{(n-1)}$ ein. Insbesondere lässt ich $I^{(n)}$ mit der Menge der Wegzusammenhangskomponenten von $X^{(n)} \setminus X^{(n-1)}$ identifizieren. Die Wegzusammenhangskomponenten heißen die **offenen Zellen** von X. Damit ist jeder CW-Komplex die disjunkte Vereinigung seiner offenen Zellen.

 \blacktriangle Achtung: Jede offene n-Zelle ist offen in $X^{(n)}$, aber nicht notwendig in X.

- (iii) Der Abschluss einer offenen Zelle $Q_i^{(n)}(\mathring{D}^n)$ ist $Q_i^{(n)}(D^n)$ und insbesondere kompakt. Die $Q_i^{(n)}(D^n)$ heißen die **abgeschlossenen Zellen** und sind als Abschluss von offenen Zellen unabhängig von der Wahl der $q_i^{(n)}, Q_i^{(n)}$.
 - f A Achtung: Abgeschlossene Zellen sind Bilder von D^n unter stetigen Abbildungen, aber nicht notwendig homöomorph zu D^n .
- (iv) Ein CW-Komplex X heißt **endlich**, wenn er nur aus endlich vielen Zellen besteht, also wenn $I=\bigcup_{n\in\mathbb{N}}I^{(n)}$ endlich ist. Insbesondere gibt es dann ein n mit $X=X^{(n)}$.

Die Dimension von X ist die maximale Dimension von Zellen von X: $\dim X = N$, falls $X^{(N)} = X$, $X^{(N-1)} \subseteq X$. Gibt es kein solches N so $\dim X = \infty$.

11.4 Beispiele

(i) S^n mit

$$(S^n)^{(k)} = \begin{cases} \emptyset, & \text{falls } k = -1 \\ \{(1, 0, \dots, 0)\}, & \text{falls } k = 0, \dots n - 1 \\ S^n, & \text{falls } k \geqslant n \end{cases}$$

ist ein CW-Komplex via $S^n \cong D^n/S^{n-1}$

$$S^{n-1} \longrightarrow (S^n)^{(n-1)} = \{(1, 0, \dots, 0)\}$$

$$\downarrow \qquad \qquad \downarrow$$

$$D^n \longrightarrow S^n$$

- (ii) S^n mit $(S^n)^{(k)} = \{(x_0, \dots, x_k, 0, \dots, 0) \in S^n\}$ ist ebenfalls eine CW-Struktur auf S^n .
- (iii) Sei $K=(V,\Sigma)$ ein simplizialer Komplex. Es ist $|\Delta^n|\cong D^n$ und $|\partial\Delta^n|\cong S^{n-1}$. Sei $\Sigma^{(n)}:=\Sigma_0\cup\Sigma_1\cup\ldots\cup\Sigma_n$. Dann wir |K| durch $|K|^{(n)}:=\left|\left(V,\Sigma^{(n)}\right)\right|$ für $n\geqslant 0$ zu einem CW-Komplex. Ist $f\colon K\to L$ eine simpliziale Abbildung, so ist $|f|\colon |K|\to |L|$ eine zelluläre Abbildung.

11 CW-Komplexe 41

(iv) Der n-dimensionale reelle projektive Raum $\mathbb{R}P^n$ kann definiert werden durch

$$\mathbb{R}P^n := \mathbb{R}^{n+1} \setminus \{0\}/x \sim \lambda x = S^n/x \sim -x$$

Punkte in $\mathbb{R}P^n$ sind Äquivalenzklassen von (n+1)-Tupeln reeller Zahlen und werden als die sogenannten homogenen Koordinaten $[x_0:\ldots:x_n]$ geschrieben. Es ist

$$\mathbb{R}P^{n} = \left\{ [x_{0}: \dots : x_{n}] \mid (x_{0}, \dots, x_{n}) \in S^{n} \right\} = \left\{ [x_{0}: \dots : x_{n}] \mid (x_{0}, \dots, x_{n}) \in S^{n}, x_{n} \geqslant 0 \right\}$$

Wir erhalten einen Homöomorphismus $f^{(n)} \colon D^n/x \sim -x, x \in S^{n-1} \to \mathbb{R}P^n$ mit

$$f(x_1, ..., x_n) = \left[x_1 : ... : x_n : \sqrt{1 - \sum_{i=1}^n x_i^2} \right]$$

Ist $Q^{(n)}:D^n \to \mathbb{R}P^n$ die Komposition von $f^{(n)}$ mit der Projektion $D^n \to D^n/x \sim -x, x \in S^{n-1}$ und $q^{(n)}:S^{n-1} \to \mathbb{R}P^{n-1}$ die Projektion, so erhalten wir einen Pushout

$$S^{n-1} \xrightarrow{q^{(n)}} \mathbb{R}P^{n-1}$$

$$\downarrow \qquad \qquad \downarrow$$

$$D^n \xrightarrow{Q^{(n)}} \mathbb{R}P^n$$

Induktiv erhalten wir einen CW-Struktur auf $\mathbb{R}P^n$ mit genau einer k-Zelle für $k=0,\ldots,n$ und

$$(\mathbb{R}P^n)^{(k)} \cong \mathbb{R}P^k$$

(v) Der n-dimensionale komplexe projektive Raum $\mathbb{C}P^n$ kann definiert werden durch

$$\mathbb{C}P^n := \mathbb{C}^{n+1} \setminus \{0\}/z \sim \lambda z = S^{2n+1}/z \sim \lambda z, \lambda \in S^1$$

Punkte in $\mathbb{C}P^n$ sind Äquivalenzklassen von (n+1)-Tupeln komplexer Zahlen und werden als die sogenannten homogenen Koordinaten $[x_0:\ldots:x_n]$ geschrieben. Es ist

$$\mathbb{C}P^{n} = \left\{ [z_{0}: \ldots: z_{n}] \mid (z_{0}, \ldots, z_{n}) \in S^{2n+1} \right\} = \left\{ [z_{0}: \ldots: z_{n}] \mid (z_{0}, \ldots, z_{n}) \in S^{2n+1}, z_{n} \geqslant 0 \right\}$$

Wir erhalten einen Homöomorphismus $f^{(n)} \colon D^{2n+1}/z \sim \lambda z, \lambda \in S^{2n} \to \mathbb{C}P^n$ mit

$$f(z_1, \dots, z_n) = \left[z_1 : \dots : z_n : \sqrt{1 - \sum_{i=1}^n |z_i|^2}\right]$$

Ist $Q^{(2n)}:D^{2n}\to \mathbb{C}P^n$ die Komposition von $f^{(n)}$ mit der Projektion $D^{2n} \twoheadrightarrow D^{2n}/z\sim \lambda z, z\in S^{2n}$ und $q^{(n)}:S^{2n+1}\to \mathbb{C}P^{n-1}$ die Projektion, so erhalten wir einen Pushout

$$S^{2n-1} \xrightarrow{q^{(n)}} \mathbb{C}P^{n-1}$$

$$\downarrow \qquad \qquad \downarrow$$

$$D^{2n} \xrightarrow{Q^{(n)}} \mathbb{C}P^{n}$$

Induktiv erhalten wir einen $\mathrm{CW} ext{-}$ Struktur auf $\mathbb{C}P^n$ mit genau einer $k ext{-}$ Zelle für $k=0,2,\dots,2n$ und

$$(\mathbb{C}P^n)^{(k)} \cong \mathbb{C}P^{\left\lfloor \frac{k}{2} \right\rfloor}$$

42 11 CW-Komplexe

11.5 Lemma

Sei X ein CW -Komplex und $K\subseteq X$. Dann ist K genau dann kompakt, wenn K abgeschlossen ist und K nur endlich viele offene Zellen von X schneidet.

Beweis

Zunächst: Ist $S\subseteq X$ ein Unterraum der jede offene Zelle höchstens in einem Punkt schneidet, so ist S diskret. Für $S_0\subseteq S$ ist $S_0\cap (X^{(n)}\setminus X^{(n-1)})$ abgeschlossen in $X^{(n)}$, da S_0 jede offene n-Zelle von X höchstens in einem Punkt schneidet. Daher ist $S_0\cap X^{(n)}\subseteq X^{(n)}$ abgeschlossen für alle n. Damit ist auch $S_0\subseteq X$ abgeschlossen und S diskret.

Sei nun $K\subseteq X$ kompakt. Dann ist K sicher abgeschlossen. Sei $S\subseteq K$ ein Teilraum der aus jeder offenen Zelle von X, die K schneidet, genau einen Punkt enthält. Wegen der Vorüberlegung ist S diskret. Da $S\subseteq K$ abgeschlossen und K kompakt ist, ist S auch kompakt. Damit ist S endlich und K schneidet nur endlich viele offene Zellen.

Ist nun umgekehrt K abgeschlossen und schneidet nur endlich viele offene Zellen, so ist K enthalten in einer endlichen Vereinigung von abgeschlossen Zellen von X. Da diese abgeschlossen Zellen kompakt sind, ist auch diese Vereinigung kompakt, K ist also eine abgeschlossener Teilraum eines kompakten Teilraums und damit selbst kompakt.

11.6 Korollar

Ein CW-Komplex ist genau dann kompakt, wenn er endlich ist.

11 CW-Komplexe 43

12 Zelluläre Homologie

12.1 Definition

Sei X ein CW-Komplex. Dann heißt

$$C_n^{\text{cell}}(X; R) := H_n(X^{(n)}, X^{(n-1)}; R)$$

der n-te zelluläre Kettenmodul von X mit Koeffizienten in R. Die n-te Randabbildung $\partial_n^{\rm cell}:C_n^{\rm cell}(X;R)\to C_{n-1}^{\rm cell}(X;R)$ wird durch die Komposition

$$H_n(X^{(n)}, X^{(n-1)}; R) \xrightarrow{\partial_n^{(X^{(n)}, X^{(n-1)})}} H_{n-1}(X^{(n-1)}; R)$$

$$\downarrow (j^{(n-1)})_*$$

$$H_{n-1}(X^{(n-1)}, X^{(n-2)}; R)$$

definiert. Dabei ist $\partial_n^{(X^{(n)},X^{(n-1)})}$ die Randabbildung aus der Paarfolge für $\left(X^{(n)},X^{(n-1)}\right)$ und $j^{(n-1)}$ die Inklusion $\left(X^{(n-1)},\emptyset\right)\hookrightarrow \left(X^{(n-1)},X^{(n-2)}\right)$.

12.2 Lemma

$$\partial_{n-1}^{\text{cell}} \circ \partial_n^{\text{cell}} = 0$$

Beweis

$$H_{n-2}(X^{(n-2)}) \xrightarrow{(j^{(n-2)})^*} H_{n-2}(X^{(n-2)}, X^{(n-2)})$$

Also
$$\partial_{n-1}^{\mathrm{cell}}\circ\partial_{n}^{\mathrm{cell}}=0$$
, da schon $\partial_{n-2}\circ j_{*}^{(n-1)}=0$.

12.3 Definition

 $\left(C_*^{\operatorname{cell}}(X;R),\partial_*^{\operatorname{cell}}\right)$ heißt der **zelluläre Kettenkomplex** von X über R. Seine Homologie $H_*^{\operatorname{cell}}(X;R)$ heißt die **zelluläre Homologie** von X.

12.4 Bemerkung

Der zelluläre Kettenkomplex und die zelluläre Homologie sind Funktoren auf der Kategorie der CW -Komplexe und zellulären Abbildungen.

12.5 Lemma

Sei X ein $\operatorname{CW-Komplex}$. Wähle $q_i^{(n)}$ und $Q_i^{(n)}$ für die Zellstruktur auf X.

44

a)

$$\left(\coprod_{i\in I^{(n)}}Q_i^{(n)},\coprod_{i\in I^{(n)}}q_i^{(n)}\right)_*:\left(\coprod_iD^n,\coprod_iS^{n-1};R\right)\longrightarrow \left(X^{(n)},X^{(n-1)};R\right)$$

induziert einen Isomorphismus in H_* .

b)
$$H_k\biggl(\coprod_i D^n,\coprod_i S^{n-1};R\biggr)=\begin{cases}R[I^{(n)}],&\text{ falls }k=n\\0,&\text{ sonst}\end{cases}$$

Beweis

a) Sei $D^n_0=D^n\setminus\{0\}$, $\frac12D^n=\left\{\frac{x}{2}\,\middle|\,x\in D^n\right\}$ und $\frac12D^n_0=\frac12D^n\setminus\{0\}$. Wir definieren

$$X^{(n-1)}_{++} := X^{(n)} \setminus \bigcup_{i \in I^{(n)}} Q^{(n)}_i(\{0\}) \quad \text{und} \quad X^{(n-1)}_{+} := X^{(n)} \setminus \bigcup_{i \in I^{(n)}} Q^{(n)}_i \left(\frac{1}{2}D^n\right)$$

Dann sind $X^{(n-1)}\hookrightarrow X^{(n-1)}_+\hookrightarrow X^{(n-1)}_+$ Homotopieäquivalenzen. Betrachte:

(1),(2),(5) sind Homotopieäquivalenzen und induzieren Isomorphismen in Homologie. (3) ist ein Homöomorphismus und induziert einen Isomorphismus in Homologie. (4) erfüllt die Vorraussetzungen für den Ausschneideisomorphismus und induziert daher auch einen Isomorphismus in Homologie. Damit folgt a).

b) Es gilt

$$\begin{split} H_k\bigg(\coprod_i D^n, \coprod_i S^{n-1}; R\bigg) & \stackrel{\cong}{\longleftarrow} \bigoplus_i H_k(D^n, S^{n-1}; R) \stackrel{\cong}{\longrightarrow} \bigoplus_i \tilde{H}_{k-1}(S^{n-1}; R) \\ & \cong \bigoplus_i \begin{cases} R, & \text{falls } k = n \\ 0, & \text{sonst} \end{cases} \\ & \cong \begin{cases} R[I^{(n)}], & \text{falls } k = n \\ 0, & \text{sonst} \end{cases} \quad \Box \end{split}$$

12.6 Bemerkung

Die Randabbildung $\partial_n^{\mathrm{cell}}$ wird unter diesen Isomorphismen zu einer $I^{(n-1)} imes I^{(n)}$ -Matrix. Für $j \in I^{(n-1)}$

12 Zelluläre Homologie 45

und $k \in I^{(n)}$ ist der (j,k)-Eintrag dieser Matrix genau der Abbildungsgrad einer Selbstabbildung der (n-1)-Sphäre. Diese $\left(Q_i^{(n-1)},q_i^{(n-1)}\right)$ induzieren einen Homöomorphismus $\coprod_i D^{n-1}/\coprod_i S^{n-2} \stackrel{\cong}{\longleftarrow}$

 $X^{(n)}/X^{(n-1)}$. Durch Komposition mit der Projektion auf die j-te Zelle: $\coprod_i D^{n-1}/\coprod_i S^{n-2} \xrightarrow{p_j^{(n-1)}} D^{n-1}/S^{n-2} \cong S^{n-1}$. Der (j,k)-te Eintrag ist nun der Abbildungsgrad von

$$S^{n-1} \xrightarrow{q_k^{(n-2)}} X^{(n-1)} \xrightarrow{} X^{(n-1)} / X^{(n-2)} \xrightarrow{\cong} \coprod_i D^{n-1} / \coprod_i S^{n-2} \xrightarrow{p_j^{(n-1)}} S^{n-1}$$

12.7 Definition

Eine natürliche Transformation τ zwischen Funktoren $F,G\colon\mathcal{C}\to\mathcal{D}$ heißt ein **natürlicher Isomorphismus**, wenn $\tau_C\colon F(C)\to G(C)$ für alle Objekte C von \mathcal{C} ein Isomorphismus in \mathcal{D} ist.

12.8 Satz

Für CW-Komplexe gibt es einen natürlichen Isomorphismus $\tau_X \colon H^{\operatorname{cell}}_*(X;R) \xrightarrow{\cong} H_*(X;R).$

Beweis (mit Lemma 12.9)

Betrachte folgendes Diagramm

"R" aus Platzgründen weggelassen

$$H_{n+1}\Big(X^{(n+1)},X^{(n)}\Big) \xrightarrow{\partial_{n+1}^{\mathrm{cell}}} H_n\Big(X^{(n)},X^{(n-1)}\Big) \xrightarrow{\partial_n^{\mathrm{cell}}} H_{n-1}\Big(X^{(n-1)},X^{(n-2)}\Big)$$

Diagramm vervollständigen Es folgt, dass $j_*^{(n)}$ ein Isomorphismus ist, $H_n(X^{(n)};R) \xrightarrow{\cong} \ker \partial_n^{\operatorname{cell}}$ und $\operatorname{Im} \partial_{n+1}^{X^{(n+1)},X^{(n)}} \xrightarrow{\cong} \operatorname{Im} \partial_{n+1}^{\operatorname{cell}}$. Weiter erhalten wir einen Isomorphismus

$$H_n(X;R) \cong H_n(X^{(n+1)};R) \leftarrow_{\simeq} H_n(X^{(n)};R)/\operatorname{Im} \partial_{n+1}^{X^{(n+1)},X^{(n)}}$$

Damit folgt die Behauptung.

12.9 Lemma

Sei X ein $\operatorname{CW-Komplex}$.

- a) Für k > n ist $H_k(X^{(n)}; R) = 0$.
- b) Für k < n induziert die Inklusion $l_n : X^{(n)} \hookrightarrow X$. einen Isomorphismus $(l_n)_* : H_k(X^{(n)}; R) \to H_k(X; R)$.

Beweis

a) Ist k > n, so erhalten wir aus der Paarfolge einen Isomorphismus

$$H_{k+1}(X^{(n)}, X^{(n-1)}; R) \to H_k(X^{(n-1)}; R) \xrightarrow{\cong} H_k(X^{(n)}; R) \to H_k(X^{(n)}, X^{(n-1)}; R)$$

Da $H_k(X^{(0)};R)=0$ für k>0 folgt a) nun durch endliche Induktion für $n=0,1,\ldots,k-1$.

b) Ist n > k, so erhalten wir

$$H_{k+1}(X^{(n+1)}, X^{(n)}; R) \to H_k(X^{(n)}; R) \xrightarrow{\cong} H_k(X^{(n+1)}; R) \to H_k(X^{(n+1)}, X^{(n)}; R)$$

Für $m\geqslant n>k$ induziert die Inklusion $X^{(n)}\hookrightarrow X^{(m)}$ daher einen Isomorphismus $H_k(X^{(n)};R)\to H_k(X^{(m)};R)$. Ist $\dim X$ endlich, so folgt die Behauptung.

Für den allgemeinen Fall beobachten wir zunächst, dass es zu jeder stetigen Abbildung $\sigma\colon \left|\Delta^j\right| \to X$ ein n gibt mit $\operatorname{Im} \sigma\subseteq X^{(n)}$, da $\operatorname{Im} \sigma\subseteq X$ kompakt ist und daher nur endlich viele offene Zellen von X trifft (11.5).

$$\Longrightarrow C_*(X;R) = \bigcup_n C_*(X^{(n)};R)$$

Damit folgt

- (1) $\forall x \in H_k(X; R) : \exists n : x \in \text{Im}(H_k(X^{(n)}; R) \to H_k(X; R))$
- (2) $\forall x \in H_k(X^{(n)}; R)$ sodass das Bild von x in $H_k(X; R)$ trivial ist, so $\exists n \geqslant n$, sodass das Bild von x in $H_k(X^{(m)}; R)$ trivial ist.

Da für $m \geqslant n > k$ $H_k(X^{(n)};R) \to H_k(X^{(m)};R)$ ein Isomorphismus ist, ergibt sich damit die Behauptung.

12.10 Korollar

Die Eulercharakteristik eines endlichen simplizialen Komplexes ist eine topologische Invariante.

Beweis

Sei a_n die Anzahl der n-Simplizes von K. Dann gibt es eine CW-Struktur auf |K|, die für jedes n genau a_n Zellen hat.

$$\chi(K) = \sum_{i=0}^{\infty} (-1)^i a_i = \sum_{i=0}^{\infty} (-1)^i \operatorname{Rg} C_i^{\operatorname{cell}} \left(|K| \right) \overset{\mathsf{Kapitel 4}}{=} \sum_{i=0}^{\infty} (-1)^i \operatorname{Rg} H_i^{\operatorname{cell}} \left(|K| \right) = \sum_{i=0}^{\infty} (-1)^i \operatorname{Rg} H_i \left(|K_i| \right)$$

Da die $H_i(|K|)$ eine topologische Invariante sind, ist auch $\chi(K)$ eine topologische Invariante.

12 Zelluläre Homologie 47

singulär, 15

Index

Die Seitenzahlen sind mit Hyperlinks zu den ent*n*-ter Homologiemodul sprechenden Seiten versehen, also anklickbar 🖒 simplizial, 9 singulär, von Paaren, 26 n-ter Kettenmodul Abbildungsgrad, 35 abgeschlossene Zelle, 41 simplizial, 8 anklebende Abbildung, 41 singulär, 15 n-ter zelluläre Kettenmodul, 44 assoziativ, 1 n-Zykel, 16 charakteristische Abbildung, 41 natürliche Transformation, 2 CW-Komplex, 40 Objekte, 1 endlicher, 41 offene Zelle, 41 Ecken, 4 Paar von topologischen Räumen, 26 Euler-Charakteristik, 6 Polyeder, 5 von Z-Kettenkomplexen, 14 projektiver Modul, 12 freier Modul, 7 Pushout, 40 Funktor, 2 R-Kettenabbildung, 18 dargestellter, 2 R-Kettenkomplex, 10 geometrische Realisierung, 5 Rand des *n*-Simplizes, 5 graduierten, 18 Randabbildungen, 10 Graphen, 4 Rang einer abelschen Gruppe, 11 reduzierte singuläre Homologie, 33 Homologieklasse, 16 Schwache Topologie, 41 Homotopieinverse, 21 Homotopieäquivalenz, 21 Seite, 4 Simplizes, 4 Kategorie, 1 simpliziale Abbildung, 5 klein, 2 simplizialer Kettenkomplex, 10 kettenhomotop, 22 simplizialer Komplex, 4 Kettenhomotopie, 22 singuläre Homologie von X, 16 Kettenmoduln, 10 singuläre Simplizes, 15 Komposition, 1 singulärer Kettenkomplex, 16 kontrahierbar, 21 von Paaren, 26 Koprodukt, 19, 20 Spaltung, 12 kurze exakte Folge von Kettenkomplexen, 28 Summe, 19, 20 kurze exakte Sequenz, 11 Torsionsgruppe, 11 lange exakte Folge, 27 unital, 1 Morphismen, 1 Unterkomplex, 4 n-Ketten, 16 Vektorfeld, 37 n-Ränder, 16 Vertices, 4 n-Simplex, 4 Zellstruktur, 40 n-te Homologie, 10 zellulär, 41 n-te Randabbildung zelluläre Homologie, 44 simplizial, 8 zelluläre Kettenkomplex, 44

Α Index

Abbildungsverzeichnis

$1 \ \Delta^n \times [0,1] \ fur \ n = 0,1,2$	23
2 Zerlegung von $\Delta^2 imes [0,1]$ in 3-Simplizes	23
Todo's und andere Baustellen	
RevChap6	18
RevChap8	28
Figure: langes Diagramm	30
RevChap9	32
Rest hinzufügen	33
RevChap10	35
fertig stellen	36
Figure: S^2 mit Vektorfeld	37
schöner machen	38
RevChap11	40
Figure: Diagramm mit 3 Zeilen	45
Diagramm vervollständigen	46

B Abbildungsverzeichnis