13BUTADIENE

10^{1} – SA/invBrent($\sqrt[4]{p}$) –

1BUTENE

1BUTYNE

1PENTENE

22DIMETHYLBUTANE

23DIMETHYLBUTANE

3METHYLPENTANE

ACETONE

ACETYLENE

AMMONIA

ARGON

BENZENE

BUTANE

C2BUTENE

C4F10

 10^{-17} 10^{-18} 10^{-10} $\overline{10^{-2}}$ 0.1 10^{-14} 10^{-6} 0.2 0.3 0.4 0.5 0.6 0.7 $\Theta \equiv (T_{\text{crit, num}} - T)/T_{\text{crit, num}}$

C5F12

C6F14

CHLORINE

CHLOROBENZENE

CYCLOBUTENE

CYCLOHEX

CYCLOPEN

CYCLOPRO

D₂O

DEA 10^{1} SA/invBrent($\sqrt[4]{p}$) SA/Brent 10^{-1} REFPROP $T_{\rm orig}|$ / K 10^{-3} 10^{-5} 10^{-7}

DECANE

DMC

DME

EBENZENE

EGLYCOL

ETHANE

ETHANOL

ETHYLENEOXIDE

ETHYLENE

FLUORINE

HCL

HELIUM

HEPTANE

HEXANE

HYDROGEN

IBUTENE

 10^{1} SA/invBrent($\sqrt[4]{p}$)

IHEXANE

IOCTANE

IPENTANE

ISOBUTAN

KRYPTON

MDM

METHANE

METHANOL

$\begin{array}{c|c} 10^{1} & & & \\ \hline & SA/invBrent(\sqrt[4]{p}) \\ \hline & SA/Brent \\ & REFPROP \end{array}$

MLINOLEA

MLINOLEN

MOLEATE

MPALMITA 10¹ - SA/invBrent(∜√p) + -

MSTEARAT

MXYLENE

 10^{-17}

 10^{-11}

 10^{-7}

 10^{-9}

 10^{-5}

 10^{-3}

 $10^{-1} \ 0.10 \ 0.15 \ 0.20 \ 0.25 \ 0.30 \ 0.35 \ 0.40 \ 0.45$

NEON

NEOPENTN

NITROGEN

NONANE

OCTANE

ORTHOHYD 10¹ SA/invBrent(\(\frac{1}{\pi_D}\))

OXYGEN

OXYLENE

PENTANE

PROPADIENE

PROPANE 10¹ SA/invBrent(\(\frac{1}{D}\))

PROPYLENEOXIDE

PROPYNE

PXYLENE

R1123

R1224YDZ

R1233ZDE

R1234ZEE

R1243ZF

 $\Theta \equiv (T_{\text{crit, num}} - T)/T_{\text{crit, num}}$

 10^1 – SA/invBrent($\sqrt[4]{p}$)

R125

R134A 10^{1} SA/invBrent($\sqrt[4]{p}$) SA/Brent 10^{-1} REFPROP $-T_{\rm orig}|/K$ 10^{-3} 10⁻⁵ 10^{-7} 10^{-9} 10^{-11}

R141B 10^{1} $SA/invBrent(\sqrt[4]{p})$ SA/Brent 10^{-1} REFPROP $-T_{\rm orig}|$ / K 10^{-3} 10^{-5} 10^{-7} $|T_{
m roundtrip}|$ 10^{-9} 10^{-11} 10^{-13} 10^{-15} 10^{-17} 10^{-18} 10^{-10} $\overline{10^{-2}}$ 0.1 10^{-14} 10^{-6} 0.2 0.3 0.4 0.5 0.6 0.7 $\Theta \equiv (T_{\text{crit, num}} - T)/T_{\text{crit, num}}$

R142B

R143A 10^{1} SA/invBrent($\sqrt[4]{p}$) SA/Brent 10^{-1} REFPROP $-T_{\rm orig}|/K$ 10^{-3} 10^{-5} 10^{-7} 10^{-9}

R152A

 $\Theta \equiv (T_{\text{crit, num}} - T)/T_{\text{crit, num}}$

R236EA

R236FA

 10^1 – SA/invBrent($\sqrt[7]{p}$) –

R365MFC

RC318

RE143A

RE245CB2

RE245FA2

RE347MCC 10^{1} $SA/invBrent(\sqrt[4]{p})$ SA/Brent 10^{-1} REFPROP $-T_{\rm orig}|/K$ 10^{-3} 10⁻⁵ 10^{-7}

SO₂

T2BUTENE

TOLUENE 10¹ SA/invBrent(\(\frac{1}{10}\))

VINYLCHLORIDE

WATER 10^{1} SA/invBrent($\sqrt[4]{p}$) SA/Brent 10^{-1} REFPROP $T_{\rm orig}|$ / K 10^{-3} 10^{-5}

XENON

