Μαθηματικά Γυμνασίου με Python

Δημήτρης Νικολός 9 Δεκεμβρίου 2020

Κεφάλαιο 1

Τι θα χρησιμοποιήσουμε;

1.1 Η γλώσσα προγραμματισμού Python

Σε αυτές τις σημειώσεις θα χρησιμοποιήσουμε τη γλώσσα προγραμματισμού Python και μάλιστα την έκδοση 3. Υπάρχει και Python 2 αλλά υπάρχουν σχέδια για την αντικατάστασή της από την Python 3. Για να εγκαταστήσεις την Python 3 θα πρέπει να την κατεβάσεις από το επίσημο site της Python www.python.org. Κατεβάστε την πιο πρόσφατη έκδοση που σας προτείνει θα είναι κάτι σαν 3.8.2 ή κάτι

1.2 Ο επεξεργαστής προγραμμάτων Μυ

Μπορείς να γράψεις Python σε οποιοδήποτε πρόγραμμα υποστηρίζει απλό κείμενο, ακόμη και στο Σημειωματάριο, όμως σε αυτές τις σημειώσεις χρησιμοποιούμε τον επεξεργαστή Python, Mu Editor ή πιο απλά Mu που μπορείς να τον κατεβάσεις από τη σελίδα codewith.mu. Μόλις το ανοίξεις θα δεις την εικόνα ??.

Μπορείς να πατήσεις την εκτέλεση (κουμπί Run) και τότε θα δεις ότι το παράθυρο χωρίζεται σε δύο τμήματα (Εικόνα ??). Αν θες να δοκιμάσεις ένα ολόκληρο πρόγραμμα μπορείς να το πληκτρολογήσεις στο βασικό παράθυρο (τώρα γράφει '#Write your code here'). Ενώ αν θες να δοκιμάσεις κάποια εντολή τότε μπορείς να την πληκτρολογήσεις στο κάτω παράθυρο (τώρα γράφει >>>). Το κάτω παράθυρο ονομάζεται REPL, από τα αρχικά των λέξεων Read, Eval, Print, Loop δηλαδή Διάβασε, Εκτέλεσε (την εντολή/έκφραση), Τύπωσε, Επανάλαβε. Το REPL θα διαβάσει την εντολή, θα την εκτελέσει και θα μας δώσει το αποτέλεσμα.

Από εδώ και πέρα όταν βλέπετε στις σημειώσεις τα τρία σύμβολα "μεγαλύτερο από" (>>>) θα πληκτρολογείτε τις αντίστοιχες εντολές στο κάτω

Σχήμα 1.1: Mu: Ενας επεξεργαστής προγραμμάτων Python

παράθυρο (REPL). Τα μεγαλύτερα προγράμματα που δεν θα έχουν αυτό το σύμβολο θα τα πληκτρολογείτε στο πάνω παράθυρο.

Συμβουλή: Αν χρησιμοποιείτε την ηλεκτρονική έκδοση αυτών των σημειώσεων, θυμηθείτε να πληκτρολογείτε τις εντολές και να μην τις κάνετε αντιγραφή επικόλληση.

Στην αρχή θα δοκιμάσεις κάποια πράγματα στο κάτω παράθυρο, όμως μην ανησυχείς σύντομα θα γράφεις τα δικά σου προγράμματα στο πάνω παράθυρο.

1.3 Το βιβλίο μαθηματικών της Α΄ Γυμνασίου

Σε αυτές τις σημειώσεις οι περισσότερες ασκήσεις είναι από το βιβλίο Μαθηματικών της Α΄ Γυμνασίου των Βανδουλάκη, Καλλιγά, Μαρκάκη και Φερεντίνου (Εικόνα??).

Σχήμα 1.2: Το πρόγραμμα Μυ όταν εκτελείτε ένας κώδικας

ΙΝΣΤΙΤΟΥΤΟ ΤΕΧΝΟΛΟΓΙΑΣ ΥΠΟΛΟΓΙΣΤΩΝ ΚΑΙ ΕΚΔΟΣΕΩΝ «ΔΙΟΦΑΝΤΟΣ»

Σχήμα 1.3: Το εξώφυλλο του βιβλίου των Μαθηματικών που θα χρησιμοποιήσουμε

Κεφάλαιο 2

Φυσικοί αριθμοί

2.1 Οι αριθμοί και η Python

Οι φυσικοί αριθμοί είναι οι αριθμοί από 0, 1, 2, 3, 4, 5, 6, ..., 98, 99, 100, ..., 1999, 2000, 2001, ...

Η Python μπορεί να χειριστεί φυσικούς αριθμούς. Δοκιμάστε να γράψετε στο REPL έναν φυσικό αριθμό, θα δείτε ότι η Python θα τον επαναλάβει. Π.χ. δείτε τον αριθμό εκατόν είκοσι τρια (123).

```
>>> 123
123
```

Στην Python όμως θα πρέπει να ακολουθείς κάποιους επιπλέον κανόνες. Για παράδειγμα στους αριθμούς δεν πρέπει να βάζεις τελείες στις χιλιάδες όπως στο χαρτί. Αν το κάνεις στην καλύτερη περίπτωση θα προκύψει κάποιο λάθος, στην χειρότερη ο υπολογιστής θα καταλάβει διαφορετικό αριθμό από αυτόν που εννοείς. Δείτε το παρακάτω παράδειγμα στο REPL.

Σε αυτό το παράδειγμα, η Python δεν καταλαβαίνει καθόλου τον αριθμό 1.000.000 γραμμένο με τελείες ενώ μεταφράζει το 100.000 σε 100.0, που για την Python σημαίνει 100 (εκατό). Γι' αυτόν τον λόγο δεν βάζουμε καθόλου τελείες έτσι αν θέλουμε να γράψουμε το ένα εκατομμύριο θα γράψουμε 1000000.

```
>>> 1000000
1000000
```

2.2 Πρόσθεση, αφαίρεση και πολλαπλασιασμός φυσικών αριθμών

Μια γλώσσα προγραμματισμού μπορεί να εκτελέσει απλές πράξεις πολύ εύκολα. Στο βιβλίο των μαθηματικών σου μπορείς να βρεις πολλές ασκήσεις με πράξεις. Μπορείς να τις λύσεις με την Python.

Ασκηση 2.2.1 (Στο βιβλίο βρίσκεται στη Σελ. 16) Να υπολογιστούν τα γινόμενα:

```
(\alpha) 35 · 10,
```

- (6) $421 \cdot 100$,
- $(y) 5 \cdot 1.000$,
- (δ) 27 · 10.000

Η python μπορεί να κάνει αυτές τις πράξεις ως εξής:

```
>>> 35*10
350
>>> 421*100
42100
>>> 5*1000
5000
>>> 27*10000
```

Ο τελεστής του πολλαπλασιασμού είναι το αστεράκι * (SHIFT+8) στο πληκτρολόγιο. Εναλλακτικά, μπορείτε να το βρείτε στο αριθμητικό πληκτρολόγιο.

Ασκηση 2.2.2 (Στο βιβλίο βρίσκεται στη Σελ. 16) Να εκτελεστούν οι ακόλουθες πράξεις:

```
(\alpha) 89 · 7 + 89 · 3
```

- (6) $23 \cdot 49 + 77 \cdot 49$
- $(\gamma) 76 \cdot 13 76 \cdot 3$
- (δ) 284 · 99

```
>>> 89*7+89*3
890
>>> 23*49+77*49
4900
>>> 76*13-76*3
760
>>> 284*99
28116
```

Στις παραπάνω περιπτώσεις η python εκτελεί πρώτα τους πολλαπλασιασμούς και μετά τις προσθέσεις/αφαιρέσεις δίνοντας έτσι το αποτέλεσμα που αναμένεται. Για παράδειγμα 897 + 893 = 623 + 267 = 890, που είναι το σωστό αποτέλεσμα.

Ασκηση 2.2.3 (Στο βιβλίο βρίσκεται στη Σελ. 18) Υπολογίστε:

```
(a) 157 + 33

(b) 122 + 25 + 78

(c) 785 - 323

(d) 7.321 - 4.595

(e) 60 - (18 - 2)

(s) 52 - 11 - 9

(c) 23 \cdot 10

(n) 97 \cdot 100

(9) 879 \cdot 1.000
```

Σε python τα παραπάνω υπολογίζονται ως εξής:

```
>>> 157+33
190
>>> 122+25+78
225
>>> 785-323
462
>>> 7321-4595
2726
>>> 60-(18-2)
44
>>> 52-11-9
32
>>> 23*10
230
>>> 97*100
9700
>>> 879*1000
879000
```

Οι παρενθέσεις (SHIFT+9 και SHIFT+0) αλλάζουν τη σειρά των πράξεων. Οι πράξεις που είναι μέσα στην παρένθεση εκτελούνται πρώτες. Γι' αυτό το λόγο 60-(18-2)=60-16=44.

Ασκηση 2.2.4 (Στο βιβλίο βρίσκεται στη Σελ. 18) Σε ένα αρτοποιείο έφτιαξαν μία μέρα 120 κιλά άσπρο ψωμί, 135 κιλά χωριάτικο, 25 κιλά σικάλεως και 38 κιλά πολύσπορο. Πουλήθηκαν 107 κιλά άσπρο ψωμί, 112 κιλά χωριάτικο, 19 κιλά σικάλεως και 23 κιλά πολύσπορο. Πόσα κιλά ψωμί έμειναν απούλητα;

Με τις γνώσεις που έχουμε θα πρέπει να μετατρέψουμε το παραπάνω πρόβλημα σε μια αριθμητική παράσταση ώστε η python να μπορεί να την υπολογίσει, στη συγκεκριμένη περίπτωση η σωστή παράσταση είναι

$$(120-107)+(135-112)+(25-19)+(38-23)$$

```
>>> (120-107)+(135-112)+(25-19)+(38-23)
57
```

και η απάντηση είναι 57 κιλά ψωμί.

2.3 Δυνάμεις φυσικών αριθμών

Ο τελεστής της python για τις δυνάμεις είναι ο ** (δυο φορές το αστεράκι). Δηλαδή, αν θέλουμε να υπολογίσουμε το 10^2 θα γράψουμε 10**2, με όμοιο τρόπο μπορούμε να υπολογίσουμε και τις υπόλοιπες δυνάμεις. Δοκίμασε τα παρακάτω στο REPL.

```
>>> 10**2
100
>>> 10**3
1000
>>> 10**4
10000
>>> 10**5
100000
>>> 10**6
1000000
```

Στη προτεραιότητα των πράξεων, οι δυνάμεις έχουν μεγλύτερη προτεραιότητα από τον πολλαπλασιασμό και την πρόσθεση. Οπότε όταν έχουμε και δυνάμεις σε μια παράσταση πρώτα γίνονται οι πράξεις στις παρενθέσεις, μετά οι δυνάμεις και μετά οι πολλαπλασιασμοί και οι προσθέσεις. Την ίδια σειρά ακολουθεί και η python για τον υπολογισμό των πράξεων.

Ασκηση 2.3.1 (Στο βιβλίο βρίσκεται στη Σελ. 21) Να εκτελεστούν οι πράξεις

```
1. (2 \cdot 5)^4 + 4 \cdot (3+2)^2
2. (2+3)^3 - 8 \cdot 3^2
```

Οι αντίστοιχες εκφράσεις είναι (2*5)**4+4*(3+2)**2 και (2+3)**3 - 8*3**2.

```
>>> (2*5)**4+4*(3+2)**2
10100
>>> (2+3)**3 - 8*3**2
53
```

Η 8*3**2 υπολογίζεται ως $8 \cdot (3^2)$, δηλαδή $8 \cdot 9 = 72$, αφού πρώτα γίνεται η δύναμη και μετά οι πολλαπλασιασμοί.

Ασκηση 2.3.2 Κάνε τις πράξεις: (α) $3 \cdot 5^2$,

```
(6) 3 \cdot 5^2 + 2,
```

$$(\gamma) 3 \cdot 5^2 + 2^2$$
,

(
$$\delta$$
) $3 \cdot 5 + 2^2$,

(
$$\epsilon$$
) $3 \cdot (5+2)^2$.

Αυτές οι πράξεις μπορούν να γίνουν στο REPL.

```
>>> 3*5**2
75
>>> 3*5**2 + 2
77
>>> 3*5**2 + 2**2
79
>>> 3*5 +2**2
19
>>> 3*(5 + 2)**2
```

Ασκηση 2.3.3 Κάνε τις πράξεις: (α) $3^2 + 3^3 + 2^3 + 2^4$, (β) $(13-2)^4 + 5 \cdot 3^2$

```
>>> 3**2 +3**3 +2**3 +2**4
60
>>> (13-2)**4 + 5*3**2
14686
```

Ασκηση 2.3.4 Βρες τις τιμές των παραστάσεων:

```
(a) (6+5)^2 kai 6^2+5^2,
```

(6)
$$(3+6)^2$$
 $\times 2^3 + 6^2$.

```
>>> (6+5)**2
121
>>> 6**2+5**2
61
>>> (3+6)**2
81
>>> 3**2+6**2
45
```

2.4 Συγκρίσεις φυσικών αριθμών

Μπορούμε να συγκρίνουμε αριθμούς στην Python χρησιμοποιώντας τους τελεστές == (πληκτρολογούμε δύο φορές το =) για την ισότητα, > για το μεγαλύτερο και < για το μικρότερο. Επίσης μπορούμε να χρησιμοποιήσουμε >= για το μεγαλύτερο ή ίσο και <= για το μικρότερο ή ίσο, τέλος υπάρχει το != για το δεν είναι ίσο. Μπορείς να δοκιμάσεις τα παρακάτω:

```
>>> 123==123
True
>>> 123>123
False
>>> 123>122
True
>>> 123<123
False
>>> 123<124
True
>>> 123<=123
True
>>> 123<=124
True
>>> 123<=122
False
>>> 123>=123
True
>>> 123>=124
False
>>> 123>=122
True
>>> 122 != 123
True
>>> 122 != 122
False
```

Η Python επιστρέφει True (αληθές) όταν μία πρόταση ισχύει και False (ψευδές) όταν δεν ισχύει.

Σκέψου ότι για την Python η σύγκριση είναι και αυτή μια πράξη. Αντί η πράξη αυτή να δίνει σαν αποτέλεσμα έναν αριθμό δίνει σαν αποτέλεσμα το αληθές ή το ψευδές.

Για παράδειγμα:

Ασκηση 2.4.1 Να συγκρίνετε τα 3^2 και 2^3 .

Η σύγκριση αυτή μπορεί να γίνει στο REPL. Δοκίμασε:

```
>>> 3**2 > 2**3
True
```


Σχήμα 2.1: Η εκτέλεση δεν δίνει κάποιο αποτέλεσμα

Αρα το 3^2 είναι μεγαλύτερο από το 2^3 . Θυμήσου ότι το $3^2=9$, ενώ $2^3=8$.

Ασκηση 2.4.2

2.5 Η εντολή print

Ηρθε η ώρα να γράψεις εντολές στο πάνω παράθυρο, δηλαδή να γράψεις το πρώτο σου πρόγραμμα. Με βάση όσα ξέρεις προσπάθησε να γράψεις μια πράξη στο πάνω παράθυρο, για παράδειγμα 32+35. Υστερα πάτησε το κουμπί της εκτέλεσης (Run). Μπορείς να δεις το αποτέλεσμα στην εικόνα $\ref{eq:constraint}$.

Η Python εκτελεί την πράξη 32+35, και υπολογίζει το αποτέλεσμα. Αν δεν το έκανε και υπήρχε κάποιο πρόβλημα θα εμφάνιζε κάποιο μήνυμα λάθους στο REPL. Το υπολογισμένο αποτέλεσμα δεν εμφανίζεται. Για να εμφανιστεί το αποτέλεσμα πρέπει να χρησιμοποιήσεις την εντολή print (εκτύπωσε). Η εντολή print εκτελείται ως εξής:

print(32+35)

Γράφουμε δηλαδή, print ανοίγουμε παρένθεση, γράφουμε αυτό που θέλουμε να εκτυπωθεί και κλείνουμε την παρένθεση. Οταν εκτελέσουμε το πρόγραμμα με την print τότε εμφανίζεται το αποτέλεσμα στο REPL (εικόνα??). Μόλις έγραψες το πρώτο σου πρόγραμμα στην Python. Μάλιστα

Σχήμα 2.2: Η εκτέλεση δίνει το αποτέλεσμα της πράξης

το πρόγραμμά σου κάνει κάτι. Υπολογίζει το αποτέλεσμα της πράξης 32+35. Μπορείς να αποθηκεύσεις το πρόγραμμά σου στον υπολογιστή σου κάνοντας κλικ στο εικονίδιο Save του Mu (εικόνα $\ref{eq:continuous}$).

2.6 Απαρίθμηση

Είδαμε ότι η Python μπορεί να κάνει πολύ γρήγορα, πολύπλοκες πράξεις ακόμη και με δυνάμεις, αλλά δεν είδαμε ακόμη τις απλές ασκήσεις που υπάρχουν στις πρώτες σελίδες του βιβλίου. Οπως για παράδειγμα ποιοι είναι οι τρεις προηγούμενοι αριθμοί του 289 και ποιο οι δύο επόμενοι (Στο βιβλίο βρίσκεται στη Σελ. 13).

Τώρα που μάθαμε να γράφουμε προγράμματα σε Python μπορούμε να αντιμετωπίσουμε αυτό το πρόβλημα με το παρακάτω πρόγραμμα:

```
print(289-3)
print(289-2)
print(289-1)
print(289+1)
print(289+2)
```

που δίνει το αποτέλεσμα

```
286
287
```

2.6. ΑΠΑΡΙΘΜΗΣΗ 15

Σχήμα 2.3: Αποθήκευση με το Μυ

```
288
290
291
```

Πιο σωστό θα ήταν να γράψουμε ποιοι αριθμοί είναι οι προηγούμενοι και ποιοι οι επόμενοι. Σε αυτή την περίπτωση θα γράψουμε τις παρακάτω εντολές.

```
print("Οι προηγούμενοι αριθμοί είναι:")
print(289-3)
print(289-2)
print(289-1)
print("Οι επόμενοι αριθμοί είναι:")
print(289+1)
print(289+2)
```

Για να εμφανίσει η print τις λέξεις που θέλουμε πρέπει να τις βάλουμε μέσα σε εισαγωγικά. Η Python υποστηρίζει είτε μονά εισαγωγικά, είτε διπλά. Αυτά εισάγονται συνήθως με το ίδιο κουμπί του πληκτρολογίου (κοντά στο ENTER), είτε με SHIFT ή χωρίς. Θυμήσου να κλείνεις τα εισαγωγικά με τον ίδιο τρόπο που τα άνοιξες. Στο πρόγραμμα Μυ τα εισαγωγικά αυτά δεν φαίνονται όπως σε άλλα πρόγραμματα σαν 'Εισαγωγικά' ή "Εισαγωγικά" ή «Εισαγωγικά», αλλά φαίνονται κάπως πιο απλά και ίδια στο άνοιγμα και το κλείσιμο 'Εισαγωγικά' ή "Εισαγωγικά".

Αν θέλουμε να αλλάξουμε το 289 και να βάλουμε έναν άλλο αριθμό,π.χ. το 132 θα πρέπει να αντικαταστήσουμε το 289 μέσα σε όλες τις εντολές print με το 132.

```
print("Οι προηγούμενοι αριθμοί είναι:")
print(132-3)
print(132-2)
print(132-1)
print("Οι επόμενοι αριθμοί είναι:")
print(132+1)
print(132+2)
```

Υπάρχει όμως ένας καλύτερος τρόπος, ο τρόπος αυτός είναι να δώσουμε ένα όνομα στον αριθμό μας. Μπορούμε να πούμε ότι το n είναι το όνομα του αριθμού. Αυτό γίνεται με την εντολή n=132. Τότε το πρόγραμμά μας γίνεται:

```
n = 132
print("Οι προηγούμενοι αριθμοί είναι:")
print(n-3)
print(n-2)
print(n-1)
print("Οι επόμενοι αριθμοί είναι:")
print(n+1)
print(n+2)
```

Μετά την εντολή n=132 η Python ξέρει ότι το n είναι ένα όνομα για το 132 και μπορεί να κάνει πράξεις με αυτό. Για παράδειγμα n+1 κάνει τώρα 133.

Αν θέλουμε να κάνουμε τώρα το ίδιο πρόγραμμα αλλά όχι για το 132 αλλά για το 210, χρειάζεται να αλλάξουμε μόνο μία γραμμή και το πρόγραμμά μας να γίνει ως εξής:

```
n = 210
print("Oι προηγούμενοι αριθμοί είναι:")
print(n-3)
print(n-2)
print(n-1)
print("Oι επόμενοι αριθμοί είναι:")
print(n+1)
print(n+2)
```

Στην Python, όταν δίνουμε ένα όνομα σε έναν αριθμό (με τον τελεστή =) τότε δημιουργούμε μια μεταβλητή. Η μεταβλητή έχει ένα όνομα, στην περίπτωσή μας το η, και μια τιμή, στην περίπτωσή μας το 210.

Αν αντί για τους επόμενους δύο αριθμούς θέλαμε τους επόμενους **δέκα** θα γράφαμε ένα πρόγραμμα όπως το παρακάτω:

```
n = 210
```

2.6. ΑΠΑΡΙΘΜΗΣΗ 17

```
print(n)
print(n+1)
print(n+2)
print(n+3)
print(n+4)
print(n+5)
print(n+5)
print(n+6)
print(n+7)
print(n+7)
print(n+8)
print(n+9)
```

Το παραπάνω πρόγραμμα εμφανίζει και τον αριθμό μας η, δηλαδή το 210. Για να μην γράφουμε πολλές εντολές όταν κάνουμε το ίδιο πράγμα χρησιμοποιούμε την εντολή for. Το πρόγραμμά μας με την for μπορεί να γίνει:

```
n = 210
for i in 0,1,2,3,4,5,6,7,8,9,10:
    print(n+i)
```

Οταν γράψεις την for στην Python θα πρέπει να δηλώσεις ποιες εντολές θα εκτελεστούν πολλές φορές. Αυτή η δήλωση γίνεται βάζοντας αυτές τις εντολές λίγο πιο μέσα χρησιμοποιώντας το πλήκτρο κενό ή το πλήκτρο tab. Μια καλή πρακτική είναι να βάζεις τέσσερα κενά. Ετσι, πριν την εντολή print(n+i) βάζεις τέσσερα κενά δηλαδή print(n+i). Το πρόγραμμα αυτό σημαίνει πως για το print(n+i)0 και με αυτή τη σειρά εμφάνισε το print(n+i)1.

```
210
211
212
213
214
215
216
217
218
219
```

Στην Python υπάρχει ένας πιο εύκολος τρόπος να γράψουμε τους αριθμούς από το ο έως το 10. Αυτός ο τρόπος είναι η εντολή range και συγκεκριμένα η range(11). Η range(11) φτιάχνει τους αριθμούς από το ο μέχρι το 10 οι οποίοι είναι σε πλήθος 11. Ετσι το πρόγραμμά μας γίνεται:

```
n = 210
for i in range(11):
    print(n+i)
```

Μπορούμε και να μετρήσουμε τους πρώτους 100 αριθμούς ως εξής:

```
for i in range(100):
    print(i)
```

Σκέψου αν θα δεις τον αριθμό 100 στο αποτέλεσμα του παραπάνω προγράμματος.

Μπορούμε να δούμε αριθμούς εύκολα με την Python αλλά θα χρειαστεί ξεχωριστό πρόγραμμα αν θέλουμε να εμφανίζεται το λεκτικό για κάθε αριθμό.

Ενα τέτοιο πρόγραμμα είναι το παρακάτω:

```
print('μηδέν')
print('ένα')
print('δύο')
print('τρία')
print('τέσσερα')
print('πέντε')
print('έξι')
print('εφτά')
print('οχτώ')
print('εννιά')
print('δέκα')
print('έντεκα')
print('δώδεκα')
print('δεκατρία')
print('δεκατέσσερα')
print('δεκαπέντε')
print('δεκαέξι')
print('δεκαεφτά')
print('δεκαοχτώ')
print('δεκαεννιά')
```

Το παραπάνω πρόγραμμα μπορεί να γίνει πιο μαζεμένο με τη χρήση λίστας. Μια λίστα μπορεί να περιέχει τα λεκτικά για κάθε αριθμό. Η λίστα στην Python σημειώνεται με τις τετράγωνες αγκύλες [και]. Τα στοιχεία της χωρίζονται με κόμμα. Ετσι η λίστα που θέλουμε τώρα είναι η εξής:

```
lektika = ['μηδέν','ένα','δύο','τρία','τέσσερα','πέντε','έξι','εφτά','οχτώ','εννιά','
```

Χρησιμοποιούμε τις τετράγωνες αγκύλες και τον αριθμό του στοιχείου που θέλουμε να προσπελάσουμε σε μια λίστα. Η αρίθμηση της λίστας ξεκινάει από το ο. Ετσι, στη λίστα που βλέπουμε παραπάνω το lektika[ο] θα είναι η λέξη 'μηδέν' (θυμηθείτε τα εισαγωγικά), το lektika[1] θα είναι η λέξη 'ένα' κ.ο.κ.

Αν θέλετε μπορείτε να κάνετε μια μικρή δοκιμή στο REPL.

```
>>>lektika = ['μηδέν','ένα','δύο']
>>>lektika[0]μηδέν
>>>lektika[1]ένα
```

2.6. ΑΠΑΡΙΘΜΗΣΗ 19

```
>>>lektika[2]δύο
```

Με τη χρήση της λίστας μπορούμε να εμφανίσουμε τους αριθμούς με τη σειρά χρησιμοποιώντας την εντολή for.

```
lektika = ['μηδέν','ένα','δύο','τρία','τέσσερα','πέντε','έξι','εφτά',
'οχτώ','εννιά','δέκα','έντεκα','δώδεκα','δεκατρία',
'δεκατέσσερα','δεκαπέντε','δεκαέξι','δεκαεφτά','δεκαοχτώ',
'δεκαεννιά']
for i in range(20):
    print(lektika[i])
```

Ομως παρότι δεν γράφουμε είκοσι φορές την εντολή print πάλι δίνουμε όλα τα ονόματα στο πρόγραμμά μας βάζοντάς τα σε μια λίστα. Μπορούμε να το αποφύγουμε υπολογίζοντας το λεκτικό. Από το δώδεκα και μέτα το λεκτικό ενός αριθμού i είναι το 'δεκα' και μετά το λεκτικό του αριθμού i-10. Για παράδειγμα, το δεκαοχτώ είναι το 'δεκα' ακολουθούμενο από το λεκτικό του αριθμού που προκύπτει αν αφαιρέσουμε 10 από το 18.

Η Python μπορεί να κάνει πράξεις και με τις λέξεις, η πρόσθεση λέξεων σημαίνει να τις βάλεις δίπλα δίπλα με τη σειρά. Δοκίμασε

```
In [1]: 'δεκα' + 'τρία'
Out[1]: 'δεκατρία'
```

Με αυτή την ευκολία το πρόγραμμά μας γίνεται:

```
lektika = ['μηδέν','ένα','δύο','τρία','τέσσερα','πέντε','έξι','εφτά',
'οχτώ','εννιά','δέκα','έντεκα','δώδεκα','δεκατρία',
'δεκατέσσερα','δεκαπέντε','δεκαέξι','δεκαεφτά','δεκαοχτώ',
'δεκαεννιά']
for i in range(20):
    if i<=12:
        print(lektika[i])
    else:
        print('δεκα'+lektika[i-10])</pre>
```

Μάλιστα, το πρόγραμμα υπολογίζει τα λεκτικά από το 13 και μετά και δεν χρειάζεται να τα θυμάται. Μπορούμε να τα διαγράψουμε από τη λίστα.

```
lektika = ['μηδέν','ένα','δύο','τρία','τέσσερα','πέντε','έξι','εφτά',
'οχτώ','εννιά','δέκα','έντεκα','δώδεκα']
for i in range(20):
    if i > 12:
        print('δέκα'+lektika[i-10])
    else:
        print(lektika[i])
```

Τώρα μπορούμε να πάμε μέχρι το 29.

```
lektika = ['μηδέν','ένα','δύο','τρία','τέσσερα','πέντε','έξι','εφτά',
```

```
'οχτώ','εννιά','δέκα','έντεκα','δώδεκα']

for i in range(30):
    if i>20:
        print('είκοσι' + lektika[i-20])
    elif i > 12:
        print('δέκα'+lektika[i-10])
    else:
        print(lektika[i])
```

Το elif είναι συντομογραφία για το else if. Στο σημείο που το έβαλες τώρα σημαίνει αν το i δεν είναι μεγαλύτερο του 20 (else) και είναι μεγαλύτερο από το 12 (if). Αρα το print('δέκα'+lektika[i-10]) γίνεται μόνο αν το i είναι μικρότερο ή ίσο του 20 και μεγαλύτερο από 12. Το αποτέλεσμα φαίνεται παρακάτω:

```
ένα
δύο
τρία
τέσσερα
πέντε
έξι
εφτά
οχτώ
εννιά
δέκα
έντεκα
δώδεκα
δέκατρία
δέκατέσσερα
δέκαπέντε
δέκαέξι
δέκαεφτά
δέκαοχτώ
δέκαεννιά
δέκαδέκα
είκοσιένα
είκοσιδύο
είκοσιτρία
είκοσιτέσσερα
είκοσιπέντε
είκοσιέξι
είκοσιεφτά
είκοσιοχτώ
είκοσιεννιά
```

Οπότε καταλαβαίνουμε ότι το είκοσι χρειάζεται ειδικό χειρισμό. Με τη χρήση της elif μπορούμε να βάλουμε και ειδικό χειρισμό για το 20.

```
lektika = ['μηδέν','ένα','δύο','τρία','τέσσερα','πέντε','έξι','εφτά',
'οχτώ','εννιά','δέκα','έντεκα','δώδεκα']
```

```
for i in range(30):
    if i>20:
        print('είκοσι' + lektika[i-20])
    elif i==20:
        print('είκοσι')
    elif i > 12:
        print('δέκα'+lektika[i-10])
    else:
        print(lektika[i])
```

```
ένα
δύο
τρία
.
.
.
έντεκα
δώδεκα
δέκατρία
.
.
.
δέκαεννιά
είκοσι
είκοσιένα
.
.
```

2.7 Στρογγυλοποίηση

Το βιβλίο των Μαθηματικών της Α' Γυμνασίου αναφέρει πως Για να στρογγυλοποιήσουμε έναν φυσικό αριθμό (Στο βιβλίο βρίσκεται στη Σελ. 12):

- 1. Προσδιορίζουμε την τάξη στην οποία θα γίνει η στρογγυλοποίηση
- 2. Εξετάζουμε το ψηφίο της αμέσως μικρότερης τάξης
- 3. Αν αυτό το ψηφίο είναι μικρότερο του 5 (δηλαδή 0, 1, 2, 3 ή 4) το ψηφίο αυτό και όλα τα ψηφία των υπόλοιπων τάξεων μηδενίζονται.
- 4. Αν είναι μεγαλύτερο ή ίσο του 5 (δηλαδή 5, 6, 7, 8 ή 9) το ψηφίο αυτό και όλα τα ψηφία των υπόλοιπων τάξεων αντικαθίστανται από το ο και το ψηφίο της τάξης στρογγυλοποίησης αυξάνεται κατά 1.

Ας πούμε ότι θέλουμε να στρογγυλοποιήσουμε τον αριθμό 454.018.512 στα εκατομμύρια. Η απάντηση που περιμένουμε είναι 454 εκατομμύρια. Για να τα καταφέρουμε θα χρησιμοποιήσουμε την διαίρεση. Ομως στην Python υπάρχουν δύο διαιρέσεις μία με το σύμβολο/και μία με το σύμβολο //. Ας δούμε τις διαφορές τους στο REPL.

```
>>> x = 454018512
>>> print(x/1000000)
454.018512
>>> print(x//1000000)
454
```

Η «κανονική» διαίρεση, με τη μία κάθετο /, δίνει το αποτέλεσμα της διαίρεσης με τα δεκαδικά ψηφία. Η «ακέραια» διαίρεση δίνει μόνο τον ακέραιο αριθμό. Δεν μπορούμε να πούμε ότι η ακέραια διαίρεση θα μας δώσει την στρογγυλοποίηση γιατί η ακέραια διαίρεση δεν στρογγυλοποιεί τα δεκαδικά ψηφία αλλά τα απορρίπτει εντελώς. Ετσι, ακόμη και αν είχαμε 454918512 κατοίκους η ακέραια διαίρεση θα δώσει 454 αντί για το στρογγυλοποιημένο που είναι 455.

```
>>> x = 454918512
>>> print(x/1000000)
454.918512
>>> print(x//1000000)
454
```

Χρειάζεται επομένως να δούμε το ψηφίο της αμέσως χαμηλότερης τάξης το οποίο είναι το πρώτο δεκαδικό της κανονικής διαίρεσης. Για να το απομονώσουμε αφαιρούμε από το αποτέλεσμα της κανονικής διαίρεσης το ακέραιο μέρος.

```
>>> x = 454018512
>>> x/1000000 - x//1000000
0.01851199999986983
```

Οπότε τώρα έχουμε δύο ενδεχόμενα αν το αποτέλεσμα αυτής της πράξης είναι μικρότερο από 0.5 όπως παραπάνω τότε το αποτέλεσμα που ψάχνουμε είναι το αποτέλεσμα της ακέραιας διαίρεσης. Αλλιώς πρέπει να προσθέσουμε ένα στο αποτέλεσμα της ακέραιας διαίρεσης. Αυτό γίνεται με την εντολή if, που σημαίνει στα αγγλικά αν. Για ευκολία μπορούμε να ονομάσουμε d την διαφορά των δύο διαιρέσεων με την εντολή:

```
d = x/1000000 - x//1000000
```

Επειδή το πρόγραμμα γίνεται μεγαλύτερο τώρα θα το γράψουμε στο πάνω παράθυρο του Μυ.

```
x = 454018512
d = x/1000000 - x//1000000
```

```
if d < 0.5:
    print(x//1000000)
else:
    print(x//1000000 + 1)</pre>
```

Την if την γράφουμε ως εξής:

```
if συνθήκη:
εντολές που εκτελούνται
αν ισχύει η συνθήκη
else:
εντολές που εκτελούνται
αν δεν ισχύει η συνθήκη
```

Θυμήσου να βάζεις την άνω κάτω τελεία μετά τη συνθήκη και μετά τη λέξη else που σημαίνει αλλιώς.

Αν στο ίδιο πρόγραμμα και βάλεις αντί για 454.018.512 τον αριθμό 454.918.512 θα δεις ότι θα εμφανιστεί το σωστό αποτέλεσμα (455).

Αν θέλεις στρογγυλοποίηση στις χιλιάδες τότε το πρόγραμμά σου γίνεται:

```
x = 454018512
d = x/1000 - x//1000
if d < 0.5:
    print(x//1000)
else:
    print(x//1000 + 1)</pre>
```

και το αποτέλεσμα είναι 454019.

Ασκηση 2.7.1 Για να γίνει το 454.018.512, 450 εκατομμύρια (Στο βιβλίο βρίσκεται στη Σελ. 12) η στρογγυλοποίηση γίνεται στις δεκάδες των εκατομμυρίων. Μπορείς να γράψεις ένα πρόγραμμα που να στρογγυλοποιεί αριθμούς στις δεκάδες των εκατομμυρίων;

2.8 Επανάληψη στις πράξεις

Ασκηση 2.8.1 Συμπλήρωσε τον πίνακα τα τετράγωνα και τους κύβους των αριθμών από το 8 μέχρι το 25 (Στο βιβλίο βρίσκεται στη Σελ. 22).

```
for a in range(8,26):
    print(a**2,end =" ")
print()
print()
for a in range(8,26):
    print(a**3,end=" ")
```

Το αποτέλεσμα αυτού του προγράμματος είναι:

```
64 81 100 121 144 169 196 225 256 289 324 361 400 441 484 529 576 625 512 729 1000 1331 1728 2197 2744 3375 4096 4913 5832 6859 8000 9261 10648 12167 13824 15625
```

Η εντολή print μπορεί να πάρει περισσότερα από ένα ορίσματα, το πρώτο όρισμα είναι αυτό που θα εμφανίσει. Το δεύτερο όρισμα που δώσαμε είναι το end και το ορίσαμε ίσο με το κενό (end=" ") που σημαίνει ότι η print όταν εμφανίσει το πρώτο όρισμα δεν θα αλλάξει γραμμή αλλά θα αφήσει ένα κενό. Η εντολή print() αλλάζει απλά γραμμή.

Ασκηση 2.8.2 Βρες τα τετράγωνα των αριθμών 10,20,30,40,50,60,70,80 και 90 (Στο βιβλίο βρίσκεται στη Σελ. 22) .

Το πρόγραμμα είναι το εξής:

```
for i in range(10,100,10):
    print(i**2,end=',')
```

και το αποτέλεσμα της εκτέλεσης του προγράμματος είναι

```
100,400,900,1600,2500,3600,4900,6400,8100,
```

Ασκηση 2.8.3 Βρες τους κύβους των αριθμών 10,20,30,40,50

```
for i in range(10,60,10):
    print(i**3,end=', ')
```

Το αποτέλεσμα της εκτέλεσης είναι:

```
1000, 8000, 27000, 64000, 125000,
```

2.9 Ανάπτυγμα

Ασκηση 2.9.1 (Στο βιβλίο βρίσκεται στη Σελ. 21) Να γραφεί το ανάπτυγμα του αριθμόύ 7.604 με χρήση των δυνάμεων του 10.

Η απάντηση είναι $7\cdot 10^3+6\cdot 10^2+0\cdot 10^1+4$. Με συμβολισμό της Python η απάντηση που περιμένουμε είναι:

```
7*10**3+6*10**2+0*10+4
```

Ας υποθέσουμε ότι ξέρουμε ότι ο αριθμός είναι τετραψήφιος, πως μπορούμε να βρούμε το ανάπτυγμα του. Ξεκινάμε από το πρώτο ψηφίο. Ποιο είναι το πρώτο ψηφίο; Το πρώτο ψηφίο προκύπτει αν διαιρέσουμε τον αριθμό με το 1000 και κρατήσουμε το ακέραιο μέρος. Δοκίμασε στο REPL:

2.9. ΑΝΑΠΤΥΓΜΑ 25

```
In [1]: 7604//1000
Out[1]:7
```

Βρήκες το πρώτο ψηφίο, πώς μπορείς να βρεις το δεύτερο; Ας διαιρέσουμε με το 100.

```
In [1]:7604//100
Out[1]:76
```

Στην ουσία δεν μπορείς να διαιρέσεις τον αρχικό αριθμό με το 100 αλλά αυτόν που σου μένει αφού αφαιρέσεις το πρώτο ψηφίο που έχεις ήδη βρει δηλαδή το 604.

```
In [2]:604//100
Out[2]:6
```

Ετσι για τα σωστά βήματα είναι:

- 1. Διαιρείς τον αριθμό με το 1000 και κρατάς το ακέραιο μέρος
- 2. Αφαιρείς από τον αριθμό τις χιλιάδες που βρήκες

Ας ονομάσουμε τον αριθμό 7604, n (n=7604), και το πρώτο ψηφίο, στην περίπτωσή μας τις χιλιάδες, prwto.

```
In [1]: n = 7604
In [2]: prwto = n//1000
In [3]: prwto
Out[3]: 7
In [4]: n = n - prwto*1000
In [5]: n
Out[5]: 604
```

Ας δούμε λίγο αυτή την εντολή:

```
n = n - prwto*1000
```

Θυμηθείτε ότι εκείνη τη στιγμή το n έχει την τιμή 7604 και το prwto την τιμή 7. Η παραπάνω εντολή σημαίνει:

- 1. Κάνε τις πράξεις που υπάρχουν δεξιά από το σύμβολο ίσον
- 2. Δώσε σαν τιμή στην μεταβλητή που υπάρχει αριστερά από το σύμβολο ίσον το αποτέλεσμα των πράξεων

Ετσι η Python κάνει πρώτο n-prwto*1000 δηλαδή 7604-7*1000=604 και αυτό το αποτέλεσμα το δίνει σαν τιμή στην μεταβλητή που υπάρχει

αριστερά από το = δηλαδή στη μεταβλητή n. Ετσι το n τώρα είνι 604. Προσοχή! Η τιμή 7604 δεν υπάρχει στην μεταβλητή n. Με αυτόν τον τρόπο το n έχει πάντα τον αριθμό που χρειάζεσαι για να απομονώσεις το επόμενο ψηφίο του αριθμού.

Ετσι ένα συνολικό πρόγραμμα που μπορείς να γράψεις είναι:

```
n = 7604
prwto = n//1000
n = n - prwto*1000
deutero = n//100
n = n - deutero*100
trito = n //10
n = n - trito*10
tetarto = n
print(prwto,end='')
print('*10**3+',end='')
print(deutero,end='')
print(deutero,end='')
print(trito,end='')
print(trito,end='')
print(trito,end='')
print('*10+',end='')
print(tetarto)
```

Οταν το εκτελέσεις δίνει το σωστό αποτέλεσμα:

```
7*10**3+6*10**2+0*10+4
```

Το παραπάνω πρόγραμμα δουλεύει με όλους τους τετραψήφιους αριθμούς, απλά άλλαξε το n σε όποιον αριθμό θέλεις στην αρχή του προγράμματος.

Ομως οι 7 εντολές print δεν είναι ο καλύτερος τρόπος να γράψεις το αποτέλεσμα. Θα ήταν καλύτερα να τυπώσουμε αυτά που πρέπει για κάθε ψηφίο χωριστά ώστε να έχουμε τέσσερις εντολές print ως εξής:

```
n = 7604
prwto = n//1000
n = n - prwto*1000
deutero = n//100
n = n - deutero*100
trito = n //10
n = n - trito*10
tetarto = n
print(prwto + '*10**3+',end='')
print(deutero + '*10**2+',end='')
print(trito + '*10+',end='')
print(tetarto)
```

Εξάλλου όταν έχουμε πρόσθεση με λέξεις η Python τις βάζει δίπλα δίπλα οπότε για το **print**(prwto + '*10**3+',end='') θα περιμέναμε να εμφανιστεί το 7*10**3+. Αν όμως εκτελέσεις το παραπάνω πρόγραμμα θα προκύψει ένα μήνυμα λάθους.

2.9. ΑΝΑΠΤΥΓΜΑ 27

```
Traceback (most recent call last):
    File "a.py", line 9, in <module>
        print(prwto + '*10**3+',end='')
TypeError: unsupported operand type(s) for +: 'int' and 'str'
```

Αν προσέξουμε λίγο θα δούμε ότι το λάθος αφορά την ένατη γραμμή (line 9) και το λάθος είναι TypeError: unsupported operand type(s) for +: 'int' and 'str'. Σε μετάφραση από τα αγγλικά το μήνυμα λάθους γράφει:

ΛάθοςΤύπων: μη υποστηριζόμενοι τύποι για το +: 'int' και 'str' Τι είναι οι τύποι και προκύπτουν λάθη από αυτούς;

Οτιδήποτε χρησιμοποιούμε στην Python έχει τύπο. Μάλιστα μπορούμε να δούμε τον τύπο αυτό με την εντολή type. Ετσι δοκίμασε:

```
In [1]: type(7)
Out[1]:<class 'int'>
In [2]: type('a')
Out[2]:<class 'str'>
In [2]: type('7')
Out[2]:<class 'str'>
```

Βλέπουμε ότι οι αριθμοί έχουν τύπο 'int', θα αγνοήσουμε τη λέξη class προς το παρόν. Ενώ οι λέξεις που έχουν τα εισαγωγικά έχουν τύπο 'str'. Το 'int' προκύπτει από την αγγλική λέξη 'integer' που σημαίνει ακέραιος, και το 'str' προκύπτει από την αγγλική λέξη 'string' που σημαίνει μια σειρά από γράμματα και αριθμούς. Στα ελληνικά το 'string' το μεταφράζουμε ως αλφαριθμητικό.

Το πρόβλημα είναι ότι η Python δεν μπορεί να προσθέσει έναν ακέραιο με ένα αλφαριθμητικό. Γι' αυτό δίνει και το μήνυμα λάθους. Ωστόσο, αυτό το πρόβλημα έχει λύση και είναι η μετατροπή του αριθμού σε αλφαριθμητικό με την εντολή str(). Δοκίμασε:

```
In [1]: type(7)
Out[1]: int
In [2]: str(7)
Out[2]: '7'
In [3]: type('7')
Out[3]: str
```

Το παραπάνω πρόγραμμα γίνεται λοιπόν:

```
n = 7604
prwto = n//1000
n = n - prwto*1000
deutero = n//100
n = n - deutero*100
trito = n //10
```

```
n = n - trito*10
tetarto = n
print(str(prwto) + '*10**3+',end='')
print(str(deutero) + '*10**2+',end='')
print(str(trito) + '*10+',end='')
print(str(tetarto))
```

Που και πάλι δίνει τη σωστή απάντηση.

Καλύτερα είναι να βάλουμε τα στοιχεία prwto, deutero, trito και tetarto σε μια λίστα που θα την ονομάσουμε psifia και θα έχει τέσσερα στοιχεία. Καλό είναι στην αρχή να αρχικοποιούμε τη λίστα με κάποια τιμή ειδικά στην περίπτωση που ξέρουμε πόσο μεγάλη θα είναι όπως τώρα.

```
n = 7604
psifia = [0,0,0,0]
psifia[0] = n//1000
n = n - psifia[0]*1000
psifia[1] = n//100
n = n - psifia[1]*100
psifia[2] = n //10
n = n - psifia[2]*10
psifia[3] = n
print(str(psifia[0]) + '*10**3+',end='')
print(str(psifia[1]) + '*10**2+',end='')
print(str(psifia[2]) + '*10+',end='')
print(str(psifia[3]))
```

Φαίνεται ότι κάνουμε τα ίδια πράγματα τρεις φορές όπως βλέπεις εδώ:

```
psifia[0] = n//1000
n = n - psifia[0]*1000
psifia[1] = n//100
n = n - psifia[1]*100
psifia[2] = n //10
n = n - psifia[2]*10
```

Θα προσπαθήσουμε να τα κάνουμε με for όπου το i θα μετράει 0,1,2 έτσι το psifia[o] θα γίνει psifia[i]. Ομως θα πρέπει να υπολογίσουμε το 1000 το 1000 είναι 10**3 και στην επόμενη επανάληψη είναι 10**2 κ.ο.κ. οπότε είναι 10**(3-i). Αρα οι τρεις παραπάνω εντολές μπορούν να αντικατασταθούν με μία for

```
for i in range(3):
    psifia[i] = n//10**(3-i)
    n = n - psifia[i]* 10**(3-i)
```

Το ίδιο πρέπει να γίνει και με τις τρεις εντολές print:

```
print(str(psifia[0]) + '*10**3+',end='')
print(str(psifia[1]) + '*10**2+',end='')
print(str(psifia[2]) + '*10+',end='')
```

2.9. ΑΝΑΠΤΥΓΜΑ 29

Θα πρέπει να κάνουμε έναν ιδιαίτερο χειρισμό για τις δυνάμεις όπου θα πρέπει να μειώνονται καθώς συνέχίζουν οι επαναλήψεις οπότε αντί για '*10**3΄ χρειαζόμαστε '*10**(3-i)+' όμως το 3-i είναι αριθμός οπότε για να το γράψουμε στην Python θα χρειαστεί να βάλουμε το str() και να γίνει '*10**'+str(3-i)+'+'. Οι παραπάνω τρεις εντολές μπορούν τώρα να γραφούν με μία for ως εξής:

```
for i in range(3):
    print(str(psifia[i]) + '*10**' + str(3-i) + '+',end='')
```

και όλο το πρόγραμμα να γίνει:

```
n = 7604
psifia = [0,0,0,0]
for i in range(3):
    psifia[i] = n//10**(3-i)
    n = n - psifia[i]* 10**(3-i)
psifia[3] = n
for i in range(3):
    print(str(psifia[i]) + '*10**' + str(3-i) + '+',end='')
print(str(psifia[3]))
```

Πώς μπορεί το πρόγραμμα αυτό να δουλεύει για όλους τους ακέραιους ανεξάρτητα από το μέγεθός τους. Αν μετατρέψουμε τον ακέραιο σε αλφαριθμητικό η Python μπορεί να μας πει πόσο μεγάλος είναι με την εντολή len.

```
In [1]: n = 7604
In [2]:len(str(n))
Out[2]: 4
In [3]:n = 7102234
In [4]:len(str(n))
Out[4]: 7
```

Και η αρχικοποίηση του πίνακα μπορεί να γίνει για όσα ψηφία θέλουμε (plithos) με την εντολή [0]*plithos:

```
In [1]: plithos = 7
In [2]: psifia = [0] * plithos
In[2]: psifia
Out[2]: [0, 0, 0, 0, 0, 0]
```

Αν υπολογίσουμε το plithos των ψηφίων με το len(str(n)) θα προκύψει 4, ωστόσο εμείς στο πρόγραμμά μας κάνουμε επαναλήψεις τρεις φορές γιατί χρειαζόμαστε ειδικό χειρισμό στο τελευταίο ψηφίο. Ετσι αντικαθιστούμε το 3 με plithos-1 παντού στο πρόγραμμα.

```
n = 7604
plithos = len(str(n))
psifia = [0]*plithos
for i in range(plithos-1):
    psifia[i] = n//10**(plithos-1-i)
    n = n - psifia[i]* 10**(plithos-1-i)
psifia[plithos-1] = n
for i in range(plithos-1):
    print(str(psifia[i]) + '*10**' + str(plithos-1-i) + '+',end='')
print(str(psifia[plithos-1]))
```

Η Python έχει διάφορους τρόπους να συμπυκνώνει μεγάλα προγράμματα ακόμη και σε μία γραμμή. Ενας τέτοιος τρόπος να γραφτεί το ανάπτυγμα είναι ο εξής, αλλά τέτοιους τρόπους θα τους δούμε σε επόμενα κεφάλαια:

```
>>> n = 7604
>>> '+'.join([x+'*10**'+str(len(str(n))-1-i)
for (i,x) in enumerate(list(str(n)))])
'7*10**3+6*10**2+0*10**1+4*10**0'
```

2.10 Ιστορικό σημείωμα

(Στο βιβλίο βρίσκεται στη Σελ. 17)

Οταν ο δάσκαλος ζήτησε από τους υπόλοιπους μαθητές να υπολογίσουν το άθροισμα $1+2+3+\ldots+98+99+100$, πριν οι υπόλοιποι αρχίσουν τις πράξεις ο μικρόος Γκάους το είχε ήδη υπολογίσει. Ο δάσκαλος ρώτησε έκπληκτος πώς το βρήκε. Τότε εκείνος έγραψε στον πίνακα: Ο Γκάους σκέφτηκε πως το άθροισμα

$$1+2+3+\ldots+99+100$$

είναι ίδιο με το

$$100 + 99 + 98 + \ldots + 2 + 1$$

και αν αθροίσουμε τον πρώτο όρο με τον πρώτο όρο, τον δεύτερο με τον δεύτερο κ.ο.κ. Συνολικά αυτό γίνεται:

$$\underbrace{(1+100)+(2+99)+\dots(99+2)+(100+1)}_{50\varphi o p \acute{e}\varsigma} = (2.1)$$

$$101 \cdot 100$$
 (2.2)

(2.3)

Αρα το άθροισμα $1+2+3+\ldots+99+100$ είναι $\frac{1}{2}101\times100=5050$.

Μπορείς να υπολογίσεις το άθροισμα $1+2+3+\ldots+999+1000$ με τον τρόπο του Γκάους;

Ας δούμε το πρόβλημα από την πλευρά της Python. Ξέρουμε ήδη να εμφανίζουμε τους αριθμούς από το 1 έως το 100 με το παρακάτω πρόγραμμα:

```
for i in range(101):
    print(i)
```

Πώς όμως θα αθροίσουμε τους αριθμούς αυτούς. Θα φτάξουμε μιά νέα μεταβλητή athroisma και σε αυτή θα προσθέτουμε το i κάθε φορά. Το πρόγραμμα γίνεται:

```
athroisma = 0

for i in range(101):
    athroisma = athroisma + i
print(athroisma)
```

Ομως επειδή το άθροισμα είναι χρήσιμο σε πολλές περιπτώσεις η Python έχει έτοιμο το άθροισμα με την εντολή sum. Δοκίμασε:

```
>>> sum([1,2,3])
6
```

Με τον ίδιο τρόπο μπορείς να βρεις το άθροισμα 1+2+3+...+99+100:

```
>>> sum(range(101))
5050
```

Τέλος ο τρόπος του μικρού Γκάους είναι:

```
>>> 101*100/2
5050
```

Με την Python μπορούμε να υπολογίσουμε το άθροισμα από το 1 έως το 1000 και με τους δύο τρόπους:

```
>>> sum(range(1001))
500500
>>> 1000*1001/2
500500.0
```

Στην Python to 500500.0 σημαίνει πως το δεκαδικό μέρος είναι ο οπότε το αποτέλεσμα είναι και πάλι 500500.

2.11 Ευκλείδια διαίρεση

Ασκηση 2.11.1 Για να αποφασίσει ο καθηγητής με ποιο τρόπο θα παρατάξει τους 168 μαθητές για την παρέλαση, πρέπει να διαιρέσει το 168 με τους αριθμούς 3, 4, 5, 6 και 7.

Διαίρεση με το τρία:

```
>>> print(168/3,168%3)
56.0 0
```

Η διαίρεση γίνεται με τον τελεστή /, οπότε 168/3 είναι το πηλίκο της διαίρεσης του 168 με το 3. Στους υπολογιστές δεν χρησιμοποιούμε την άνω κάτω τελεία για διαίρεση αλλά την κάθετο /, που συνήθως βρίσκεται χαμηλά στο πληκτρολόγιο και στο αριθμητικό πληκτρολόγιο.

Το υπόλοιπο δίνεται με τον τελεστή %, οπότε 168%3 είναι το υπόλοιπο της διαίρεσης του 168 με το 3. Στο συγκεκριμένο παράδειγμα παρατηρούμε ότι το 168 διαιρείται ακριβώς με το 3 και δίνει πηλίκο 56, οπότε ο καθηγητής μπορεί να παρατάξει τους 168 μαθητές σε 56 τριάδες.

Παρόμοια, η διαίρεση του αριθμού 168 με τους αριθμούς 4, 6, και 7 δίνει τα πηλίκα: 42, 28 και 24 αντίστοιχα.

```
>>> print(168/4,168%4)
42.0 0
>>> print(168/6,168%6)
28.0 0
>>> print(168/7,168%7)
24.0 0
```

Επομένως, μπορούν να παραταχθούν οι μαθητές σε 42 τετράδες ή 28 εξάδες ή σε 24 επτάδες.

Τέλος, η διαίρεση του 168 με το 5 δίνει πηλίκο 33 και αφήνει υπόλοιπο 3.

```
>>> print(168/5,168%5)
33.6 3
```

Αρα, δεν μπορεί ο καθηγητής να παρατάξει τους μαθητές σε πλήρεις πεντάδες.

Εκτός από τον τελεστή / για την διαίρεση υπάρχει και ο τελεστής // ο οποίος όμως δίνει το ακέραιο μέρος του πηλίκου. Οπότε αν γράψουμε 168//5 το αποτέλεσμα θα είναι ο ακέραιος αριθμός 33, που όμως είναι μόνο το ακέραιο μέρος του πηλίκου.

Χρησιμοποιώντας αυτούς τους τελεστές μπορεί να γραφεί μια συνάρτηση που να εμφανίζει την ευκλείδια διαίρεση μεταξύ δύο αριθμών:

```
def eykleidia(D,d):
    print(str(D)+':' + str(d) + '=' + str(D//d) + '*' + str(d) + '+' + str(D%d))
```

Για παράδειγμα (Ασκηση 1):

```
>>> eykleidia(4002,69)
4002:69=58*69+0
>>> eykleidia(1445,17)
1445:17=85*17+0
>>> eykleidia(925,37)
```

```
925:37=25*37+0
>>> eykleidia(3621,213)
3621:213=17*213+0
>>> eykleidia(35280,2940)
35280:2940=12*2940+0
>>> eykleidia(5082,77)
5082:77=66*77+0
```

Ασκηση 2:

```
>>> eykleidia(65,5)
65:5=13*5+0
>>> eykleidia(30,3)
30:3=10*3+0
>>> eykleidia(46592,52)
46592:52=896*52+0
```

Ασκηση 3:

```
>>> eykleidia(125,3)
125:3=41*3+2
>>> eykleidia(762,19)
762:19=40*19+2
>>> eykleidia(1500,35)
1500:35=42*35+30
>>> eykleidia(300,18)
300:18=16*18+12
```

Ασκηση 2.11.2 Ποια μπορεί να είναι τα υπόλοιπα της διαίρεσης ν:8.

Φυσικά τα υπόλοιπα μπορεί να είναι από ο έως 7.

Ασκηση 2.11.3 Αν ένας αριθμός διαιρεθεί δια 9 δίνει πηλίκο 73 και υπόλοιπο 4. Ποιος είναι ο αριθμός;

```
>>> print(9*73+4)
661
>>> eykleidia(661,73)
661:73=9*73+4
```

Ο αριθμός αυτός είναι $9 \cdot 73 + 4 = 661$.

Ασκηση 2.11.4 Αν σήμερα είναι Τρίτη, τι μέρα θα είναι μετά από 247 ημέρες;

Για να λυθεί αυτό το πρόβλημα θα κατασκευάσουμε έναν πίνακα meres:

```
meres = ['TP','TE','ΠΕ','ΠΑ','ΣΑ','KY','ΔΕ']
```

Σε αυτόν meres[0] = 'TP', meres[1]='TE' κ.λπ. Αυτό το πρόβλημα προσεγγίζεται ως εξής: 1. Μετά από μία(1) ημέρα θα είναι Τετάρτη(meres[1]) 2. Μετά από δυό(2) ημέρες θα είναι Πέμπτη(meres[2]) 3. Μετά από τρεις(3) ημέρες θα είναι Παρασκευή(meres[3]) 4. Μετά από τέσσερις(4) ημέρες θα είναι Σάββατο(meres[4]) 5. Μετά από πέντε(5) ημέρες θα είναι Κυριακή(meres[5]) 6. Μετά από έξι(6) ημέρες θα είναι Δευτέρα(meres[6]) 7. Μετά από επτά(7) ημέρες θα είναι Τρίτη(meres[0] = meres[7 % 7]), αφού το υπόλοιπο της διαίρεσης του 7 με το 7 είναι 0. 8. Μετά από οκτώ(8) ημέρες θα είναι Τετάρτη(meres[1] = meres[8 % 7]), αφού το υπόλοιπο της διαίρεσης του 8 με το 7 είναι 1.

κατά συνέπεια μετά από 247 ημέρες θα είναι Πέμπτη:

```
>>> meres = ['TP','TE','ΠE','ΠA','ΣA','KY','ΔE']
>>> print(meres[247%7])ΠΕ
```

2.12 Χαρακτήρες διαιρετότητας - ΜΚΔ - ΕΚΠ - Ανάλυση αριθμού σε γινόμενο πρώτων παραγόντων

Ασκηση 2.12.1 Το τοπικό γραφείο της UNICEF θα μοιράσει 150 τετράδια, 90 στυλό και 60 γόμες σε πακέτα δώρων, ώστε τα πακέτα να είναι τα ίδια και να περιέχουν και τα τρία είδη.

Ασκηση 2.12.2 1. Μπορεί να γίνουν 10 πακέτα δώρων; Αν ναι, πόσα από κάθε είδος θα έχει κάθε πακέτο;

Ασκηση 2.12.3 2. Πόσα πακέτα δώρων μπορεί να γίνουν με όλα τα διαθέσιμα είδη;

Ασκηση 2.12.4 3. Πόσα πακέτα δώρων μπορεί να γίνουν με τα λιγότερα δυνατά από κάθε είδος;

1. Μπορούν να γίνουν 10 πακέτα δώρων, με 15 τετράδια, 9 στυλό και 6 γόμες.

```
>>> 150%10
0
>>> 90%10
0
>>> 60%10
0
```

2. Ακόμη και δύο πακέτα μπορούν να γίνουν με 75 τετράδια, 45 στυλό και 30 γόμες. 3. Για να έχουμε μέσα τα λιγότερα δυνατά είδη θα έχουμε περισσότερα πακέτα και θα πρέπει και οι τρεις αριθμοί να διαιρούν ακριβώς το πλήθος των πακέτων:

```
>>> for i in range(1,60):
>>> if (150 % i == 0 and 90 % i == 0 and 60 % i == 0):
>>> print(i)
1
2
3
5
6
10
15
30
```

Ετσι η απάντηση είναι 30 πακέτα με 150:30 = 5 τετράδια, 3 στυλό και 2 γόμες το καθένα.

Το μέγιστο πλήθος των πακέτων που διαιρεί και τους τρεις αριθμούς είναι ο μέγιστος κοινός διαιρέτης τους, ή αλλιώς Μ.Κ.Δ., για να βρεθεί ο Μ.Κ.Δ. δύο αριθμών στην Python 3 μπορεί να χρησιμοποιηθεί το παρακάτω πρόγραμμα:

```
>>> from fractions import gcd
>>> print(gcd(150,90))
30
```

Η συνάρτηση gcd υπολογίζει τον Μ.Κ.Δ. δύο αριθμών.

Για τους τρεις αριθμούς, υπάρχει το εξής πρόβλημα αν τους τοποθετήσετε σαν ορίσματα της συνάρτησης gcd

```
>>> print(gcd(150,90,60))
Traceback (most recent call last):
   File "python", line 1, in <module\begin{exercise}\end{exercise}
TypeError: gcd() takes 2 positional arguments but 3 were given</pre>
```

Η φράση *gcd() takes 2 positional arguments but 3 were given* σημαίνει πως δεν μπορούμε να υπολογίσουμε τον Μ.Κ.Δ. βάζοντας όλους τους αριθμούς σαν ορίσματα της συνάρτησης. Ευτυχώς, ο Μ.Κ.Δ. των τριών αριθμών μπορεί να υπολογιστεί ως εξής:

```
>>> mkd150_90 = gcd(150,90)
>>> print(gcd(mkd150_90,60))
30
```

που είναι το ίδιο με τον παρακάτω κώδικα:

```
>>> print(gcd(gcd(150,90),60))
30
```

Ανάλυση σε γινόμενο πρώτων παραγόντων

Το παρακάτω πρόγραμμα αναλύει αριθμούς σε γινόμενο παραγόντων.

```
class ginomenoparagontwn():
 def __init__(self,n):
    self.paragontes = []
    self.dinameis = {}
   if type(n) == int:
      self.arithmos = n
     while n <1:
        for i in range(2,n+1):
          if n%i == 0:
            n = n // i
            self.paragontes.append(i)
      self.paragontes = sorted(self.paragontes)
      for i in self.paragontes:
        if i not in self.dinameis:
          self.dinameis[i] = self.paragontes.count(i)
   elif type(n) == dict:
      self.arithmos = 1
      self.dinameis = n
      for i in n:
        self.arithmos *= i**n[i]
      for i in n:
        self.paragontes.extend([i]*n[i])
      self.paragontes = sorted(self.paragontes)
    if len(self.paragontes) < 1:</pre>
      self.einaiPrwtos = False
    else:
      self.einaiPrwtos = True
 def mkd(self,other):
    if type(other) == int:
      other = ginomenoparagontwn(other)
   dinameismkd = {}
   for i in self.dinameis:
      if i in other.dinameis:
        dinameismkd[i] = min(self.dinameis[i],other.dinameis[i])
    if dinameismkd == {}:
      return(ginomenoparagontwn({1:1}))
      return(ginomenoparagontwn(dinameismkd))
 def ekp(self,other):
   if type(other) == int:
      other = ginomenoparagontwn(other)
   dinameisekp = self.dinameis
    for i in other.dinameis:
```

```
if i in dinameisekp:
    dinameisekp[i] = max(dinameisekp[i],other.dinameis[i])
    else:
        dinameisekp[i] = other.dinameis[i]
    return(ginomenoparagontwn(dinameisekp))

def __repr__(self):
    return(str(self.arithmos) + ':' + '*'.join([str(x) + '^' + str(self.dinameis[x])
        for x in self.dinameis]) + ':' + '*'.join([str(x) for x in self.paragontes]) +
        ('πρώτος,' if self.einaiPrwtos else ""))
```

Ασκηση 2.12.5 Να αναλυθούν οι αριθμοί 2520, 2940, 3780 σε γινόμενο πρώτων παραγόντων.

```
>>> print(ginomenoparagontwn(2520))
2520:2^3*3^2*5^1*7^1:2*2*2*3*3*5*7
>>> print(ginomenoparagontwn(2940))
2940:2^2*3^1*5^1*7^2:2*2*3*5*7*7
>>> print(ginomenoparagontwn(3780))
3780:2^2*3^3*5^1*7^1:2*2*3*3*3*5*7
```

Επομένως, η ανάλυση σε γινόμενο είναι:

$$2520 = 2^{3} \cdot 3^{2} \cdot 5 \cdot 7$$
$$2940 = 2^{2} \cdot 3 \cdot 5 \cdot 7^{2}$$
$$3780 = 2^{2} \cdot 3^{3} \cdot 5 \cdot 7$$

Το ελάχιστο κοινό πολλαπλάσιο (Ε.Κ.Π.) υπολογίζεται ως εξής:

```
>>> ginomenoparagontwn(2520).ekp(2940).ekp(3780)
52920:2^3*3^3*5^1*7^2:2*2*2*3*3*3*5*7*7
```

επομένως Ε.Κ.Π.(2520,2940,3780) = 52920. Ομοίως, ο μέγιστος κοινός διαιρέτης (Μ.Κ.Δ.) υπολογίζεται ως εξής:

```
>>> ginomenoparagontwn(2520).mkd(2940).mkd(3780)
420:2^2*3^1*5^1*7^1:2*2*3*5*7
```

και M.Κ.Δ.(2520,2940,3780) = 420.

Ασκηση 2.12.6 Να βρεθεί αν διαιρούνται οι αριθμοί 12510, 772, 225, 13600 με 2, 3, 4, 5, 8, 9, 10, 25, 100.

Η φιλοσοφία της άσκησης είναι να λυθεί με τα κριτήρια διαιρετότητας ωστόσο, στον υπολογιστή ο υπολογισμός του υπολοίπου είναι εύκολος με τον τελεστή

```
diairetaios = [12510,772,224,13600]
diairetis = [2,3,4,5,8,9,10,25,100]
print(" "*5,end=',')
for d in diairetis:
    print(str(d).rjust(3),end = ',')
print()
for D in diairetaios:
    print(str(D).rjust(5),end=',')
    for d in diairetis:
        if (D%d==0):
            print('Nαι'.rjust(3),end = ',')
        else:
            print('Όχι'.rjust(3),end = ',')
        print()
```

Το αποτέλεσμα είναι:

```
, 2, 3, 4, 5, 8, 9, 10, 25,100,ΝαιΝαιΌχιΝαιΌχιΝαιΝαιΌχιΌχι
12510,,,,,,,,,
ΝαιΌχιΝαιΌχιΌχιΌχιΌχιΌχιΌχι772,,,,,,,,
ΝαιΌχιΝαιΌχιΝαιΌχιΌχιΌχιΌχι224,,,,,,,,,ΝαιΌχιΝαιΝαιΝαιΌχιΝαιΝαιΝαι
13600,,,,,,,,
```

Το άθροισμα των ψηφίων ενός αριθμού μπορεί να υπολογιστεί με την εξής εντολή:

```
sum([int(i) for i in str(num)])
```

Για παράδειγμα

```
>>> num = 123
>>> sum([int(i) for i in str(num)])
6
```

Αυτή η εντολή ανήκει στην κατηγορία του list comprehension. Η εναλλακτική είναι το εξής πρόγραμμα:

```
athroisma = 0
for i in str(num):
    athroisma = athroisma + i
```

Το αποτέλεσμά του είναι:

```
TypeError: unsupported operand type(s) for +: 'int' and 'str'
```

Ο λόγος είναι σε αυτό το i είναι το κάθε ψηφίο αλλά σαν γράμμα της αλφαβήτου του υπολογιστή (αλφαριθμητικό / string). Ετσι το σωστό πρόγραμμα είναι:

```
athroisma = 0
for i in str(num):
    athroisma = athroisma + int(i)
```

που υπολογίζει το άθροισμα των ψηφίων.

Στην python ο τελεστής sum, υπολογίζει το άθροισμα των στοιχείων μιας λίστας όταν αυτή αποτελείται από αριθμούς για παράδειγμα

```
>>> sum([1,2,3])
6
```

Επομένως πρέπει να κατασκευάσουμε μια λίστα στην οποία οι αριθμοί θα είναι τα ψηφία του αρχικού αριθμού num. Η κατασκευή αυτής της λίστας μπορεί να γίνει πάλι με μία for και στη συνέχεια να υπολογιστεί το άθροισμα:

```
lista = []
for i in str(num):
    lista.append(int(i))
sum(lista)
```

Με το list comprehension όμως η δημιουργία της λίστας απλοποιείται, γράφοντας το for μέσα στον πίνακα και γίνεται:

```
lista = [int(i) for i in str(num)]
sum(lista)
```

και τέλος

```
sum([int(i) for i in str(num)])
```

Το άθροισμα των ψηφίων των παραπάνω αριθμών μπορεί να υπολογιστεί με το παρακάτω πρόγραμμα:

```
diairetaios = [12510,772,224,13600]
for num in diairetaios:
    print(num,sum([int(i) for i in str(num)]))
```

και είναι

```
12510 9
772 16
224 8
13600 10
```

Ασκήσεις

Ασκηση 2.12.7 1. Ισχύει ότι: (100 - 30) - 10 = 100 - (30 - 10)

```
>>> (100 - 30) - 10 == 100 - (30 - 10)
False
```

Ασκηση 2.12.8 2. Για να πολλαπλασιάσουμε έναν αριθμό με το 11 τον πολλαπλασιάζουμε με το 10 και προσθέτουμε 1.

Ισχύει

Ασκηση 2.12.9 3. Το γινόμενο $3 \cdot 3 \cdot 3$ γράφεται 3^3 .

>>> 3*3*3 == 3**3 True

Ασκηση 2.12.10 4. Το 2^5 ισούται με 10.

>>> 2**5 == 10 False

Askhon 2.12.11 5. $\alpha + \alpha + \alpha + \alpha = 4 \cdot \alpha$.

Ισχύει

Aσκηση 2.12.12 6. $\alpha \cdot \alpha \cdot \alpha \cdot \alpha \cdot \alpha \cdot \alpha = \alpha^5$.

Δεν ισχύει

Ασκηση 2.12.13 7. $2^3 + 3 = 11$.

>>> 2**3 + 3 == 11 True

Asknon 2.12.14 8. $3 \cdot 10^2 + 2 \cdot 10^1 + 2 \cdot 10^0 = 322$.

>>> 3*10**2 + 2*10**1 + 2*10**0 == 322 True

Ασκηση 2.12.15 9. 20 - 12 : 4 = 2.

>>> 20-12/4 == 2 False

Ασκηση 2.12.16 10. $9 \cdot 3 - 2 + 5 = 30$.

>>> 9*3-2+5 == 11 False

Askhor 2.12.17 11. $(3 \cdot 1 - 3) : 3 = 0$.

```
>>> (3*1-3)/3 == 0
True
```

Ασκηση 2.12.18 12. Στη σειρά των πράξεων: $7 + (6 \cdot 5) + 4$, οι παρενθέσεις δεν χρειάζονται.

```
>>> 7+(6*5)+4 == 7+6*5+4
True
```

Ασκηση 2.12.19 13. Η διαφορά δύο περιττών αριθμών είναι πάντα περιττός αριθμός.

Δεν ισχύει

Ασκηση 2.12.20 14. Αν ο αριθμός α είναι πολλαπλάσιο του αριθμού θ , τότε ο α διαιρείται με το θ .

Ισχύει

Ασκηση 2.12.21 15. Το 38 είναι πολλαπλάσιο του 2 και του 3.

```
>>> 38%2
0
>>> 38%3
2
```

Το 38 δεν είναι πολλαπλάσιο του 3

Ασκηση 2.12.22 16. Ο αριθμός 450 διαιρείται με το 3 και το 9.

```
>>> 450%3
0
>>> 450%9
0
```

Αρα, ο αριθμός 450 διαιρείται και με το 3 και με το 9.

Ασκηση 2.12.23 17. Ο 35 και ο 210 έχουν μέγιστο κοινό διαιρέτη τον αριθμό 5.

```
>>> ginomenoparagontwn(35).mkd(210)
35:5^1*7^1:5*7
```

Δεν ισχύει, έχουν το 35.

Ασκηση 2.12.24 18. Το ΕΚΠ των 2 και 24 είναι ο αριθμός 48.

```
ginomenoparagontwn(2).mkd(24)
24:2^3*3^1:2*2*2*3
```

Ασκηση 2.12.25 19. Η διαίρεση 420 : 15 δίνει υπόλοιπο 18.

```
>>> 420 % 15
0
```

Δεν ισχύει

Ασκηση 2.12.26 20. Η σχέση 177 = $5 \cdot 35 + 2$ είναι μια ευκλείδια διαίρεση.

```
>>> 177 == 5 * 35 + 2
True
```

και επίσης, το υπόλοιπο (2) είναι μικρότερο του διαιρέτη 5.

Ασκηση 2.12.27 21. Ο αριθμός $3 \cdot \alpha + 9$ διαιρείται με το 3.

$$\frac{3 \cdot \alpha + 9}{3} = \alpha + 3$$

Οπότε αν ο α είναι ακέραιος τότε το $3\cdot \alpha + 9$ διαρείται με το 3.

Ασκηση 2.12.28 22. Ο αριθμός 300 αναλύεται σε γινόμενο πρώτων παραγόντων ως $3\cdot 10^2$.

```
>>> ginomenoparagontwn(300)
300:2^2*3^1*5^2:2*2*3*5*5
```

Ασκηση 2.12.29 23. Ο αριθμός 224 διαιρείται με το 4 και το 8.

```
>>> 224%4
0
>>> 224%8
0
```

Ισχύει!

Κεφάλαιο 3

Η έννοια του κλάσματος

3.1 Εισαγωγή

Ασκηση 3.1.1 Ενα βράδυ τρεις φίλοι αγοράζουν μια πίτσα και την χωρίζουν σε οκτώ κομμάτια. Ο ένας έφαγε το ένα, ο δεύτερος τα τρία και ο τρίτος δύο κομμάτια από αυτά που περίσσεψαν.

- 1. Μπορείς να βρεις το μέρος της πίτσας που έφαγε ο καθένας;
- 2. Τι μέρος της πίτσας περίσσεψε;

Ο πρώτος έφαγε το $\frac{1}{8}$ ο δεύτερος τα $\frac{3}{8}$ και ο τρίτος τα $\frac{2}{8}$. Επομένως και οι τρεις μαζί έφαγαν 1+3+2=6 κομμάτια, δηλαδή τα $\frac{6}{8}$ της πίτσας. Αρα περίσσεψαν τα υπόλοιπα δύο κομμάτια από τα οκτώ, δηλαδή τα $\frac{2}{8}$ της πίτσας.

Πώς μπορούν να γίνουν πράξεις με κλάσματα στην python; Με τις γνώσεις που ήδη έχουμε εκτελούμε τις παρακάτω εντολές:

```
>>> 1/8
0.125
>>> 3/8
0.375
>>> 2/8
0.25
```

Θυμηθείτε ότι η python χρησιμοποιεί την τελεία για τους δεκαδικούς! Τι μέρος της πίτσας περίσσεψε;

```
>>> 1 - 1/8 - 3/8 - 2/8
0.25
```

Ομως, υπάρχει τρόπος η python να υπολογίζει κλάσματα. Απλά θα πρέπει να εισαχθεί το κατάλληλο module. Στην python υπάρχει διαθέσιμο τέτοιο module και ονομάζεται fractions. Για το δεύτερο ερώτημα λοιπόν μπορούμε να κάνουμε το εξής:

```
>>> import fractions
>>> prwtos = fractions.Fraction(1,8)
>>> deuteros = fractions.Fraction(3,8)
>>> tritos = fractions.Fraction(2,8)
>>> 1 - prwtos - deuteros - tritos
Fraction(1, 4)
```

Ετσι η python υπολογίζει το αποτέλεσμα με τη μορφή κλάσματος και Fraction(1,4) σημαίνει $\frac{1}{4}$.

Παρατηρείτε ότι γράφουμε το όνομα του module στη συνέχεια την τελεία "." και τέλος το Fraction. Με αυτόν τον τρόπο καλούμε κάτι που υπάρχει μέσα στο module. Υπάρχει όμως και ένας πιο εύκολος τρόπος για να εισάγουμε μόνο τις λειτουργίες που θέλουμε από ένα module και να τις καλούμε.

```
>>> from fractions import Fraction
>>> prwtos = Fraction(1,8)
>>> deuteros = Fraction(3,8)
>>> tritos = Fraction(2,8)
>>> 1 - prwtos - deuteros - tritos
Fraction(1, 4)
```

Χρειάζεται προσοχή μόνο αν υπάρχουν περισσότερα από ένα module που πιθανόν να έχουν την ίδια λειτουργία κάτι που δεν ισχύει σε αυτήν την περίπτωση.

Ασκηση 3.1.2 Μια σοκολάτα ζυγίζει 120 gr και έχει 6 ίσα κομμάτια. (α) Ποιο μέρος της σοκολάτας είναι το κάθε κομμάτι; (β) Πόσα κομμάτια πρέπει να κόψουμε για να πάρουμε 40 gr;

Το μέρος της σοκολάτας είναι $\frac{1}{6}$ για να βρούμε πόσα κομμάτια χρεια-ζόμαστε για 40gr θα πρέπει να βρούμε το βάρος του κομματιού που είναι $\frac{1}{6} \cdot 120$. Τέλος, τα κομμάτια που πρέπει να κόψουμε προκύπτουν από τη διαίρεση των 40 γραμμαρίων με το βάρος του κάθε κομματιού.

```
from fractions import Fraction

sok = Fraction(1,6)
print(sok)
baroskommatiou = sok * 120
kommatia = 40 / baroskommatiou
print('Θα κόψω' + str(kommatia) + ' κομμάτια!')
```

το αποτέλεσμα θα είναι το εξής:

```
1/60α
κόψω 2 κομμάτια!
```

3.2. ΑΣΚΗΣΕΙΣ 45

Ασκηση 3.1.3 Το καμπαναριό μιας εκκλησίας έχει ύψος 20 m, ενώ η εκκλησία έχει ύψος τα Εικόνα του ύψους του καμπαναριού. Ποιο είναι το ύψος της εκκλησίας;

```
from fractions import Fraction

>>> kampanario = Fraction(3,5)*20
>>> print(kampanario)
12
```

Αρα το ύψος της εκκλησίας είναι 12m.

Στη συνέχεια η εντολή from fractions import Fraction θα υποννοείται ώστε να μην επαναλαμβάνεται συνεχώς. Αν τυχόν την ξεχάσετε το αποτέλεσμα θα έχει το εξής σφάλμα:

```
NameError: name 'Fraction' is not defined
```

Ασκηση 3.1.4 Μια δεξαμενή πετρελαίου σε μια πολυκατοικία, χωράει 2000 lt. Ο διαχειριστής σε μια μέτρηση βρήκε ότι ήταν γεμάτη κατά τα $\frac{3}{4}$. Πόσα λίτρα πετρέλαιο είχε η δεξαμενή;

```
>>> dexameni = Fraction(3,4)*2000
>>> print(dexameni)
1500
```

Η δεξαμενή έχει 1500 lt.

Ασκηση 3.1.5 Τα $\frac{3}{5}$ του κιλού τυρί κοστίζουν 27 €. Πόσο κοστίζουν τα $\frac{8}{9}$ του κιλού;

```
>>> enaPempto = Fraction(27,3)
>>> tyri = 5*enaPempto
>>> oktwEnata = Fraction(8,9)*tyri
>>> print(oktwEnata)
40
```

Τα $\frac{8}{9}$ του τυριού κοστίζουν 40 ευρώ.

3.2 Ασκήσεις

Ασκηση 3.2.1 Είναι τα κλάσματα $\frac{3}{4}$, $\frac{2}{3}$, $\frac{7}{9}$, $\frac{10}{9}$, $\frac{18}{20}$ όλα μικρότερα της μονάδας:

```
>>> print(Fraction(3,4)<1)
True
>>> print(Fraction(2,3)<1)
True
>>> print(Fraction(7,9)<1)
True
>>> print(Fraction(10,9)<1)
False
>>> print(Fraction(10,9)<1)
False
>>> print(Fraction(18,20)<1)
True</pre>
```

Ασκηση 3.2.2 Τι κλάσμα των μαθητών της τάξης 28 μαθητών είναι οι 4 απόντες;

```
>>> print(Fraction(4,28))
1/7
```

Παρατηρούμε ότι η εντολή Fraction(4,28) κάνει απλοποίηση κλάσματος.

> Αν το $\frac{1}{5}$ ενός κιλού καρύδια είναι 14 καρύδια, το κιλό περιέχει 70 καρύδια;

```
>>> print(14*5 == 70)
```

Ναι.

Ασκηση 3.2.3 Βρες ποιο μέρος του κιλού είναι τα: (α) 100, (β) 250, (γ) 500, (δ) 600 γραμμάρια.

```
>>> print(Fraction(100,1000))
1/10
>>> print(Fraction(250,1000))
1/4
>>> print(Fraction(500,1000))
1/2
>>> print(Fraction(600,1000)).
3/5
```

Ασκηση 3.2.4 Ποιο μέρος: (α) του μήνα, (β) του εξαμήνου, (γ) του έτους είναι οι 15 ημέρες;

```
>>> print(Fraction(15,30))
1/2
>>> print(Fraction(15,180))
1/12
>>> print(Fraction(15,365))
3/73
```

Ασκηση 3.2.5 Ενα κατάστημα κάνει έκπτωση στα είδη του ίση με τα $\frac{2}{5}$ της αρχικής τιμής τους. Ενα φόρεμα κόστιζε 90 \in πριν την έκπτωση. Υπολόγισε πόσα ευρώ έκπτωση έγινε στο φόρεμα και πόσο θα πληρώσουμε για να το αγοράσουμε.

```
>>> ekpt = Fraction(2,5)*90
>>> print("H έκπτωση είναι: " + str(ekpt) + " ευρώ!")Η
  έκπτωση είναι: 36 ευρώ!
>>> plir = 90 - ekpt
>>> print("Θα πληρώσουμε: " + str(plir) + " ευρώ!")Θα
  πληρώσουμε: 54 ευρώ!
```

Ασκηση 3.2.6 Σε μία τάξη τα $\frac{3}{8}$ των μαθητών μαθαίνουν αγγλικά. Να βρεις πόσους μαθητές έχει η τάξη, αν γνωρίζεις ότι αυτοί που μαθαίνουν αγγλικά είναι 12 μαθητές.

```
>>> print(Fraction(8,3)*12)
32
```

Ασκηση 3.2.7 Σε ένα ορθογώνιο παραλληλόγραμμο η μια πλευρά του είναι 33 εκατοστά και η άλλη τα $\frac{3}{11}$ της πρώτης. Να βρεις την περίμετρο του ορθογωνίου.

```
>>> plevra1 = 33
>>> plevra2 = Fraction(3,11)*plevra1
>>> perimetros = 2*(plevra1 + plevra2)
>>> print(perimetros)
84
```

3.3 Ισοδύναμα κλάσματα

Ασκηση 3.3.1 Να εξετάσετε αν τα κλάσματα: α) $\frac{3}{5}$ και $\frac{10}{14}$ β) $\frac{3}{8}$ και $\frac{18}{48}$ είναι ισοδύναμα.

```
print(Fraction(3,5) == Fraction(10,14))
False
print(Fraction(3,8) == Fraction(18,48))
True
```

Ετσι, τα $\frac{3}{5}$ και $\frac{10}{14}$ δεν είναι ισοδύναμα ενώ τα $\frac{3}{8}$ και $\frac{18}{48}$ είναι.

Ασκηση 3.3.2 Να απλοποιηθεί το κλάσμα $\frac{30}{66}$

```
>>> print(Fraction(30,66))
5/11
```

Ασκηση 3.3.3 Να μετατραπούν σε ομώνυμα τα κλάσματα $\frac{3}{5}$, $\frac{2}{3}$ και $\frac{5}{20}$:

Επειδή η Fraction κάνει απλοποίηση σε ανάγωγο κλάσμα δεν μπορούμε να επιλέξουμε παρονομαστή, γι' αυτό θα κατασκευάσετε μια συνάρτηση η οποία θα τυπώνει το κλάσμα επιλέγοντας τον παρονομαστή.

To k.denominator είναι ο παρονομαστής του κλάσματος k. Αφού φτιάξετε τη συνάρτηση tiposemeparonomasti δοκιμάστε:

```
>>> tiposemeparonomasti(Fraction(3,4),12)
9/12
>>> tiposemeparonomasti(Fraction(1,2),20)
10/20
```

Για να κάνουμε ομώνυμα τα κλάσματα βρίσκουμε το Ελάχιστο Κοινό Πολλαπλάσιο (Ε.Κ.Π.) των παρονομαστών. Η συνάρτηση για το Ε.Κ.Π. είναι η παρακάτω, αφού το Ε.Κ.Π. δύο αριθμών προκύπτει από το γινόμενο τους αφού το διαιρέσουμε με τον μέγιστο κοινό διαιρέτη (Μ.Κ.Δ. - G.C.D.). Μάλιστα η βιβλιοθήκη fractions περιέχει τη συνάρτηση gcd που υπολογίζει το Μ.Κ.Δ. οπότε:

```
from fractions import gcd
def ekp(a,b):
  return(a*b/gcd(a,b))
```

Τέλος συνδυάζοντας τα προηγούμενα το συνολικό πρόγραμμα για να κάνουμε ομώνυμα τα κλάσματα $\frac{3}{5}$, $\frac{2}{3}$ και $\frac{5}{20}$ είναι:

```
from fractions import Fraction,gcd
def tiposemeparonomasti(k,p):
    """
```

```
tiposemeparonomasti(k,p)
 Τύπωσε το κλάσμα k με παρονομαστή p
 if p % k.denominator == 0:\#αν το p είναι πολλαπλάσιο
                            #του τρέχοντος παρονομαστή (denominator)
                            #τότε μπορούμε να πολλαπλασιάσουμε
                            #όλο το κλάσμα με έναν συντελεστή
    synt = int(p // k.denominator)
    print(str(k.numerator * synt) + '/' + str(k.denominator * synt))
 else: #αν το p δεν είναι πολλαπλάσιο του τρέχοντος παρονομαστή
       #τότε τυπώνουμε το κλάσμα ως έχει
    print(k)
def ekp(a,b):
 return(a*b/gcd(a,b))
a = Fraction(3,5)
b = Fraction(2,3)
c = Fraction(5,20)
koinos = ekp(a.denominator,ekp(b.denominator,c.denominator))
tiposemeparonomasti(a,koinos)
tiposemeparonomasti(b,koinos)
tiposemeparonomasti(c,koinos)
```

Μπορούμε να εισάγουμε δύο λειτουργίες από την ίδια βιβλιοθήκη χωρίζοντάς τες με κόμμα ",". Θυμηθείτε ότι σε ένα κλάσμα a το a.denominator είναι ο παρονομαστής.

Το αποτέλεσμα του προγράμματος είναι:

```
36/60
40/60
15/60
```

Ασκηση 3.3.4 Να εξετάσετε ποια από τα παρακάτω κλάσματα είναι ισοδύναμα:

```
(\alpha)\frac{2}{3}, \frac{18}{27},
(\beta)\frac{3}{4}, \frac{1}{2},
(\gamma)\frac{7}{8}, \frac{30}{40},
(\delta)\frac{13}{14}, \frac{26}{28}.
```

```
>>> print(Fraction(2,3)==Fraction(18,27))
True
>>> print(Fraction(3,4)==Fraction(1,2))
False
>>> print(Fraction(7,8)==Fraction(30,40))
False
```

```
>>> print(Fraction(13,14)==Fraction(26,28))
True
```

Ασκηση 3.3.5 Να μετατρέψεις καθένα από τα παρακάτω κλάσματα σε ισοδύναμο κλάσμα με παρονομαστή τον αριθμό 100:

- $(\alpha)^{\frac{3}{4}}^{\frac{4}{8}}$ $(\beta)^{\frac{8}{5}}^{\frac{4}{20}}$ $(\gamma)^{\frac{4}{20}}$ $(\delta)^{\frac{5}{2}}$ $(\epsilon)^{\frac{60}{75}}$
- Μπορούμε να χρησιμοποιήσουμε την συνάρτηση tiposemeparonomasti

```
>>> tiposemeparonomasti(Fraction(3,4),100)
75/100
>>> tiposemeparonomasti(Fraction(8,5),100)
160/100
>>> tiposemeparonomasti(Fraction(4,20),100)
20/100
>>> tiposemeparonomasti(Fraction(5,2),100)
250/100
>>> tiposemeparonomasti(Fraction(60,75),100)
80/100
```

Ασκηση 3.3.6 Να μετατρέψεις τα παρακάτω κλάσματα σε ισοδύναμα με παρονομαστή τον αριθμό 3:

```
>>> tiposemeparonomasti(Fraction(10,6),3)
5/3
>>> tiposemeparonomasti(Fraction(50,30),3)
5/3
>>> tiposemeparonomasti(Fraction(18,27),3)
2/3
```

Ασκηση 3.3.7 Να μετατρέψεις το κλάσμα $\frac{2}{3}$ σε ισοδύναμο κλάσμα με παρονομαστή:(α) 6, και (β) 15.

```
>>> tiposemeparonomasti(Fraction(2,3),6)
4/6
>>> tiposemeparonomasti(Fraction(2,3),15)
10/15
```

Ασκηση 3.3.8 Να απλοποιήσεις τα κλάσματα: (α) $\frac{25}{30}$ (β) $\frac{12}{9}$ (γ) $\frac{32}{56}$

```
>>> print(Fraction(25,30))
5/6
>>> print(Fraction(12,9))
4/3
>>> print(Fraction(32,56))
4/7
```

3.4 Πρόσθεση και αφαίρεση κλασμάτων

Ασκηση 3.4.1 Το συνεργείο του Δήμου φύτεψε σε μια μέρα τα $\frac{4}{12}$ μιας πλατείας με λουλούδια. Την επόμενη ήμερα που ο καιρός δεν ήταν καλός φύτεψε μόνο τα $\frac{3}{12}$ της πλατείας. Ποιο τμήμα της πλατείας είχε φυτέψει, συνολικά, στο τέλος της δεύτερης ημέρας;

```
>>> print(Fraction(4,12) + Fraction(3,12)(
7/12
```

Ασκηση 3.4.2 Ενα φορτηγό κάλυψε σε μία ώρα τα 2/5 της διαδρομής Πάτρα - Τρίπολη. Ποιο μέρος της διαδρομής του μένει να καλύψει ακόμη;

```
>>> print(1-Fraction(2,5))
3/5
```

Ασκηση 3.4.3 Μια βρύση γεμίζει, σε 1 ώρα, τα $\frac{2}{5}$ της δεξαμενής. Μια άλλη βρύση γεμίζει το $\frac{1}{3}$ της ίδιας δεξαμενής, επίσης σε 1 ώρα. Αν και οι δύο βρύσες τρέχουν ταυτόχρονα μέσα στη δεξαμενή, τι μέρος της δεξαμενής θα γεμίσουν σε 1 ώρα;

```
>>> print(Fraction(2,5)+Fraction(1,3))
11/15
```

Ασκηση 3.4.4 Να υπολογισθεί το άθροισμα

$$\frac{1}{4} + \frac{2}{4} + 3$$

```
>>> print(Fraction(1,4)+Fraction(2,4) + 3)
15/4
```

Ασκηση 3.4.5 Να υπολογισθεί η διαφορά και το άθροισμα των κλασμάτων $\frac{3}{12}$ και $\frac{7}{20}$.

```
>>> print(Fraction(3,12) + Fraction(7,20))
3/5
>>> print(Fraction(7,20) - Fraction(3,12))
1/10
```

Για να τυπώσουμε ένα κλάσμα ως μεικτό θα εφαρμόσουμε τα εξής βήματα: 1. Βρίσκουμε το ακέραιο μέρος της διαίρεσης του αριθμητή με τον παρονομαστή έστω μ . 2. Αν το μ είναι ο τυπώνουμε το κλάσμα ως έχει (είναι μικρότερο της μονάδας), αλλιώς τυπώνουμε το μ και στη συνέχεια το κλάσμα που προκύπτει αν από το αρχικό κλάσμα αφαίρεσουμε το μ .

```
def tiposemikto(k):
    m = k.numerator // k. denominator
    if m == 0:
        print(k)
    else:
        print(str(m) + " " + str(k-m))
```

Για παράδειγμα

```
>>> tiposemikto(Fraction(15,4))
3 3/4
>>> tiposemikto(Fraction(5,2))
2 1/2
>>> tiposemikto(Fraction(38,12))
```

3.5 Σύγκριση κλασμάτων

Ασκηση 3.5.1 Η Μαρία είπε πως το ροζ χρώμα καταλαμβάνει τα $\frac{9}{48}$, το γαλάζιο τα $\frac{10}{48}$ και το πράσινο τα $\frac{7}{48}$. Ενώ ο Γιάννης είπε ότι το ροζ είναι τα $\frac{3}{16}$, το γαλάζιο τα $\frac{5}{24}$ και το πράσινο το $\frac{1}{8}$ του τετραγώνου. Ποιος έχει δίκιο και ποιος όχι;

```
>>> roz = Fraction(9,48)
>>> print(roz)
3/16
```

Αρα και η Μαρία και ο Γιάννης έχουν δίκο όσον αφορά το ροζ χρώμα.

```
>>> galazio = Fraction(10,48)
>>> print(galazio)
5/24
```

Αρα και η Μαρία και ο Γιάννης έχουν δίκο όσον αφορά το γαλάζιο χρώμα. Τέλος, όσον αφορά το πράσινο προκύπτει ότι:

```
>>> prasino = Fraction(7,48)
>>> print(prasino)
```

```
7/48
>>> Fraction(7,48) == Fraction(1,8)
False
>>> Fraction(7,48) > Fraction(1,8)
True
```

Δηλαδή, το $\frac{7}{48}$ είναι μεγαλύτερο από το $\frac{1}{8}$.

Παραδείγματα

Ασκηση 3.5.2 Να συγκριθούν τα κλάσματα $\frac{7}{10}$ και $\frac{7}{15}$

Ασκηση 3.5.3 Να συγκριθούν τα κλάσματα: $\frac{5}{8}$ και $\frac{4}{9}$.

```
>>> Fraction(5,8) > Fraction(4,9)
True
```

Δεν χρειάζεται να τα μετατρέψουμε σε ομώνυμα, η python λύνει το πρόβλημα της σύγκρισης με τον δικό της τρόπο.

Ασκηση 3.5.4 Σύγκρινε τα κλάσματα (α) $\frac{3}{7}$ και $\frac{5}{7}$, (β) $\frac{3}{5}$ και $\frac{3}{9}$ και (γ) $\frac{4}{5}$ και $\frac{8}{12}$.

```
>>> Fraction(3,7) < Fraction(5,7)
True
>>> Fraction(3,5) > Fraction(3,9)
True
>>> Fraction(4,5) > Fraction(8,12)
True
```

Ασκηση 3.5.5 Βάλε σε σειρά τα κλάσματα $\frac{3}{5}$, $\frac{8}{15}$, $\frac{5}{10}$, $\frac{20}{15}$, $\frac{7}{5}$

```
>>> lista = [Fraction(31,10),Fraction(8,15),Fraction(5,10),
Fraction(20,15),Fraction(7,5)]
>>> print(",".join([str(x) for x in sorted(lista)]))
1/2,8/15,4/3,7/5,31/10
```

3.6 Πολλαπλασιασμός κλασμάτων

Ασκηση 3.6.1 Να βρεθεί το γινόμενο $\frac{3}{7} \cdot \frac{70}{6} \cdot \frac{8}{5}$

```
>>> Fraction(3,7)*Fraction(70,6)*Fraction(8,5)
8
```

Ασκηση 3.6.2 Σε ένα σχολείο με 252 μαθητές τα $\frac{5}{9}$ είναι αγόρια. Πόσα είναι τα αγόρια και πόσα είναι τα κορίτσια;

```
>>> agoria,koritsia = 252*Fraction(5,9),252-252*Fraction(5,9)
>>> print(agoria)
140
>>> print(koritsia)
112
```

Ασκηση 3.6.3 Υπολόγισε τα γινόμενα $3\cdot\frac{3}{4}$, $7\cdot\frac{10}{14}$, $\frac{4}{2}\cdot2$, $\frac{5}{100}\cdot10$

```
>>> x = 3*Fraction(3,4)
>>> print(x)
9/4
>>> x = 7*Fraction(10,14)
>>> print(x)
5
>>> x = Fraction(4,2)*2
>>> print(x)
4
>>> x = Fraction(5,100)*10
>>> print(x)
```

Ασκηση 3.6.4 Βρες τα γινόμενα $\frac{2}{5} \cdot \frac{7}{8}$, $\frac{8}{10} \cdot \frac{100}{5}$, $\frac{4}{9} \cdot \frac{5}{9}$, $\frac{3}{2} \cdot \frac{2}{15}$

```
>>> x = Fraction(2,5)*Fraction(7,8)
>>> print(x)
7/20
>>> x = Fraction(8,10)*Fraction(100,5)
>>> print(x)
16
>>> x = Fraction(4,9)*Fraction(5,9)
>>> print(x)
20/81
>>> x = Fraction(3,2)*Fraction(2,15)
>>> print(x)
```

	$\frac{5}{7}$	$\frac{3}{2}$	1	$\frac{3}{4}$
$\frac{7}{5}$				
$\frac{\frac{7}{5}}{\frac{2}{3}}$				
1				
$\frac{4}{3}$				

	$\frac{5}{7}$	$\frac{\frac{3}{2}}{\frac{21}{10}}$	1	$\frac{3}{4}$
$\frac{7}{5}$	1	$\frac{21}{10}$	$\frac{7}{5}$	$\frac{\frac{21}{20}}{\frac{1}{2}}$
$\frac{\overline{5}}{2}$	$\frac{10}{21}$ $\frac{5}{7}$	1	5 2 3	$\frac{1}{2}$
1		$\frac{3}{2}$	1	$\frac{3}{4}$
$\frac{4}{3}$	$\frac{20}{21}$	2	$\frac{4}{3}$	1

Ασκηση 3.6.5 Συμπλήρωσε τον πίνακα:

Ο πίνακας αυτός μπορεί να εμφανιστεί με το παρακάτω πρόγραμμα:

```
from fractions import Fraction

ori = [Fraction(5,7),Fraction(3,2),1,Fraction(3,4)]
kat = [Fraction(7,5),Fraction(2,3),1,Fraction(4,3)]
print(" "*5+", ",end=" ")
for orizontio in ori:
    print(str(orizontio).rjust(5),end=", ")
print()
print("-"*35)
for katheto in kat:
    print(str(katheto).rjust(5),end=", |")
    for orizontio in ori:
        print(str(orizontio*katheto).rjust(5),end=", ")
    print()
```

και το αποτέλεσμα του προγράμματος είναι:

Ασκηση 3.6.6 Υπολόγισε τα γινόμενα $2\frac{1}{3} \cdot \frac{3}{21}$, $4\frac{1}{5} \cdot 2\frac{1}{2}$, $3\frac{1}{8} \cdot 10$, $1\frac{2}{3} \cdot \frac{3}{2}$

```
x = (2+Fraction(1,3))*Fraction(3,21)
print(x)

x = (4+Fraction(1,5))*(2+Fraction(1,2))
print(x)

x = (3+Fraction(1,8))*10
print(x)

x = (1+Fraction(2,3))*Fraction(3,2)
print(x)
```

και το αποτέλεσμα είναι

```
1/3
21/2
125/4
5/2
```

Ασκηση 3.6.7 Να βρεις τους αντίστροφους των αριθμών $\frac{4}{7}$, 72, $\frac{5}{8}$, $\frac{1}{3}$, $\frac{739}{8}$, 1

```
print(1/Fraction(4,7))
print(1/Fraction(72))
print(1/Fraction(5,8))
print(1/Fraction(1,3))
print(1/Fraction(739,8))
print(1/Fraction(1))
```

και το αποτέλεσμα είναι:

```
7/4
1/72
8/53
8/739
1
```

Ασκηση 3.6.8 Ο Κώστας ήπιε τα $\frac{2}{3}$ από ένα μπουκάλι, που περιείχε αναψυκτικό όγκου $1\frac{1}{2}$ του λίτρου. Πόσα λίτρα αναψυκτικού ήπιε;

```
print(Fraction(2,3)*(1+Fraction(1,2)))
```

που δίνει αποτέλεσμα

1

Ο Κώστας ήπιε 1 λίτρο αναψυκτικού.

Ασκηση 3.6.9 Υπολόγισε τα εξαγόμενα των πράξεων $\frac{6}{5}+\frac{3}{5}\cdot\frac{1}{4}$, $(\frac{6}{5}+\frac{3}{5})\cdot\frac{1}{4}$, $\frac{6}{5}-\frac{3}{5}\cdot\frac{1}{4}$

```
x = Fraction(6,5) + Fraction(3,5)*Fraction(1,4)
print(x)

x = (Fraction(6,5)+Fraction(3,5))*Fraction(1,4)
print(x)

x = (Fraction(6,5)-Fraction(3,5))*Fraction(1,4)
print(x)
```

Το αποτέλεσμα είναι το εξής:

57

```
27/20
9/20
3/20
```

Ασκηση 3.6.10 Ομοια $(\frac{7}{3}+\frac{2}{15})\cdot\frac{3}{8}$, $(\frac{7}{3}+\frac{2}{15})\cdot\frac{3}{8}$, $\frac{7}{3}-\frac{2}{15}\cdot\frac{3}{8}$

```
x = (Fraction(7,3)+Fraction(2,15))*Fraction(3,8)
print(x)

x = (Fraction(7,3)-Fraction(2,15))*Fraction(3,8)
print(x)

x = Fraction(7,3)-Fraction(2,15)*Fraction(3,8)
print(x)
```

και το αποτέλεσμα είναι:

```
37/40
33/40
137/60
```

Κεφάλαιο 4

Δεκαδικοί αριθμοί

4.1 Εισαγωγή

Αν χωρίσουμε τη μονάδα σε 10 ίσα μέρη τότε μπορούμε να πάρουμε κλάσματα της μονάδας όπως $\frac{3}{10}$, $\frac{5}{10}$ κλπ. Τα κλάσματα είναι ομώνυμα συγκρίνονται εύκολα και βοηθάνε στις πράξεις. Γενικότερα, ονομάζουμε δεκαδικό κλάσμα οποιδήποτε κλάσμα έχει παρονομαστή μια δύναμη του 10. Κάθε δεκαδικό κλάσμα γράφεται σαν δεκαδικός αριθμός με τόσα δεκαδικά ψηφία όσα μηδενικά έχει ο παρονομαστής του. Η Python χειρίζεται τους δεκαδικούς αριθμούς όπως και τους υπόλοιπους. Δοκίμασε:

```
>>> 0.3 + 0.5
0.8
>>> type(0.7)
<class 'float'>
```

Βλέπουμε ότι οι δεκαδικοί αριθμοί δεν είναι int, όπως οι ακέραιο αλλά float. Το όνομα float έχει να κάνει με τον τρόπο με τον οποίο ο υπολογιστής αποθηκεύει αποδοτικά αυτούς τους αριθμούς.

Ας συνδυάσουμε τις γνώσεις από τα κλάσματα με τα κλάσματα που μάθαμε στο προηγούμενο κεφάλαιο.

```
>>> from fractions import Fraction
>>> x = Fraction(3,10)
>>> float(x)
0.3
```

Το Fraction(3,10) εννοεί το κλάσμα $\frac{3}{10}$ που είναι ίσο με 0,3. Ομως στην Python το 0,3 θα το γράφουμε με 0.3. Με τη συνάρτηση float μετατρέπουμε το $\frac{3}{10}$ σε δεκαδικό αριθμό.

Ασκηση 4.1.1 (Στο βιβλίο βρίσκεται στη Σελ. 56) Γράψτε τους αριθμούς $\frac{3}{10}$, $\frac{825}{1000}$, $\frac{53}{1000}$, $\frac{1004}{10000}$.

```
>>> float(Fraction(3,10))
0.625
>>> float(Fraction(825,100))
8.25
>>> float(Fraction(53,1000))
0.053
>>> float(Fraction(1004,10000))
0.1004
```

Η Python μπορεί να μετατρέψει τα κλάσματα σε δεκαδικό αριθμό ανεξάρτητα από τον παρονομαστή.

Ασκηση 4.1.2 (Στο βιβλίο βρίσκεται στη Σελ. 59) Γράψε καθένα από τα παρακάτω κλάσματα, ως δεκαδικό αριθμό: (i) με προσέγγιση εκατοστού και (ii) με προσέγγιση χιλιοστού:

- $(\alpha) \frac{7}{16}$ $(\beta) \frac{21}{17}$ $(\gamma) \frac{20}{95}$

```
>>> x = Fraction(7,16)
>>> float(x)
0.4375
>>> round(float(x),2)
>>> round(float(x),3)
0.438
>>> x = Fraction(21,17)
>>> float(x)
1.2352941176470589
>>> round(float(x),2)
1.24
>>> round(float(x),3)
1.235
>>> x = Fraction(20,95)
>>> float(x)
0.21052631578947367
>>> round(float(x),2)
0.21
>>> round(float(x),3)
0.211
```

Η στρογγυλοποίηση των δεκαδικών υλοποιείται στην Python με τη συνάρτηση round. Οπότε μπορείς να στρογγυλοποιήσεις εύκολα δεκαδικούς αριθμούς ως εξής:

Ασκηση 4.1.3 Να στρογγυλοποιήσεις τους παρακάτω δεκαδικούς αριθμούς στο δέκατο, εκατοστό και χιλιοστό:

4.1. ΕΙΣΑΓΩΓΗ 61

```
(α) 9876,008,
(β) 67,8956,
(γ) 0,001,
(δ) 8,239,
(ε) 23,7048.
```

Θυμόμαστε να αλλάζουμε την υποδιαστολή από κόμμα σε τελεία:

```
def roundall(x):
    print(round(x,1))
    print(round(x,2))
    print(round(x,3))

roundall(9876.008)
roundall(67.8956)
roundall(0.001)
roundall(8.239)
roundall(23.7048)
```

Το αποτέλεσμα είναι:

```
67.9
67.896
0.0
0.0
0.001
8.2
8.24
8.239
23.7
23.7
```

Ασκηση 4.1.4 (Στο βιβλίο βρίσκεται στη Σελ. 59) Στον αριθμό $34, \Box\Box\Box$ λείπουν τα τελευταία τρία ψηφία του. Να συμπληρώσεις τον αριθμό με τα ψηφία 9, 5 και 2, έτσι ώστε κάθε ψηφίο να γράφεται μία μόνο φορά. Να γράψεις όλους τους δεκαδικούς που μπορείς να βρεις και να τους διατάξεις σε φθίνουσα σειρά.

Πώς μπορεί η Python να βρει όλους τους πιθανούς συνδυασμούς του 9,5,2; Δοκίμασε τη βιβλιοθήκη itertools και συγκεκριμένα τη συνάρτηση permutations.

```
>>> from itertools import permutations
>>> x = permutations([1,2,3])
>>> print(x)
<itertools.permutations object at 0x012BE1B0>
```

```
>>> print(list(x))
[(1, 2, 3), (1, 3, 2), (2, 1, 3), (2, 3, 1), (3, 1, 2), (3, 2, 1)]
```

Ετσι με την permutations μπορείς να βρεις όλες τις αναδιατάξεις των αριθμών. Οπότε τώρα το πρόγραμμα μπορεί να γίνει ως εξής:

```
lista = []
from itertools import permutations
for p in permutations([9,5,2]):
    lista.append(34+p[0]/10+p[1]/100+p[2]/1000)
print(lista)
```

Που δίνει το αποτέλεσμα:

```
[34.952, 34.925000000000004, 34.59200000000006, 34.529,
34.2950000000001, 34.259]
```

Τα ψηφία που εμφανίζονται στο τέλος των αριθμών προκύπτουν από την αναπαράσταση των δεκαδικών στον υπολογιστή που υπόκειται σε κάποιους περιορισμούς. Αν δεν θέλουμε να εμφανίζονται μπορούμε να αλλάξουμε το for σε:

```
for p in permutations([9,5,2]):
    ar = 34+p[0]/10+p[1]/100+p[2]/1000
    lista.append(round(ar,3))
```

Τώρα για να γράψουμε τους αριθμούς με φθίνουσα σειρά θα δοκιμάσουμε τη sorted. Η sorted ταξινομεί τους αριθμούς που δίνονται σε μια λίστα. Δοκίμασε:

```
>>> sorted([4,2,3])
[2, 3, 4]
```

Ετσι το συνολικό πρόγραμμα γίνεται:

```
lista = []
from itertools import permutations
for p in permutations([9,5,2]):
    ar = 34+p[0]/10+p[1]/100+p[2]/1000
    lista.append(round(ar,3))
print(sorted(lista))
```

Που δίνει το αποτέλεσμα:

```
[34.259, 34.295, 34.529, 34.592, 34.925, 34.952]
```

Ομως η άσκηση μας ζητάει να τυπώσουμε τη λίστα με φθίνουσα σειρά. Αυτό μπορεί να γίνει δηλώνοντας στη sorted ότι θέλουμε αντίστροφη σειρά γράφοντας reverse=True. Το τελικό πρόγραμμα είναι το εξής:

```
lista = []
from itertools import permutations
for p in permutations([9,5,2]):
```

4.1. ΕΙΣΑΓΩΓΗ 63

```
ar = 34+p[0]/10+p[1]/100+p[2]/1000
lista.append(round(ar,3))
print(sorted(lista,reverse=True))
```

Μια μικρή τροποποίηση που μπορεί να γίνει για να εμφανιστούν οι αριθμοί σε διαφορετικές γραμμές είναι να τυπώσουμε τη λίστα με μια for.

```
lista = []
from itertools import permutations
for p in permutations([9,5,2]):
    ar = 34+p[0]/10+p[1]/100+p[2]/1000
    lista.append(round(ar,3))

for x in sorted(lista,reverse=True):
    print(x)
```

Ασκηση 4.1.5 (Στο βιβλίο βρίσκεται στη Σελ. 61) Να υπολογίσεις τα αθροίσματα:

```
(α) 48, 18 + 3, 256 + 7, 129
(β) 3, 59 + 7, 13 + 8, 195
```

```
>>> 48.18+3.256+7.129
58.565
>>> 3.59 + 7.13 + 8.195
18.915
```

Ασκηση 4.1.6 (Στο βιβλίο βρίσκεται στη Σελ. 61) Να υπολογίσεις το μήκος της περιμέτρου των οικοπέδων: (Σχήμα —)

```
>>> 26.14 + 80.19 + 29.13+38.13+23.24+57.89+80.19
334.91
>>> 39.93+80.19+57.89+47.73+44.75+48.9+47.19
366.58
```

Ασκηση 4.1.7 (Στο βιβλίο βρίσκεται στη Σελ. 61) Να κάνεις τις διαρέσεις: (α)

```
579: 48
(β) 314: 25
(γ) 520: 5, 14
(δ) 49, 35: 7
```

```
>>> 579/48
12.0625
>>> 314/25
12.56
```

```
>>> 520/5.14
101.16731517509729
>>> 49.35/7
7.05
```

Ασκηση 4.1.8 (Στο βιβλίο βρίσκεται στη Σελ. 61) Να κάνεις τις πράξεις:

```
(\alpha) 520 · 0, 1 + 0, 32 · 100
(\beta) 4, 91 · 0, 01 + 0, 819 · 10
```

```
>>> 520*0.1 + 0.32*100
84.0
>>> 4.91*0.01 + 0.819*10
8.2390999999999
\end
```

Σε αυτή την άσκηση βλέπουμε ότι ο υπολογιστής προσεγγίζει τα αποτελέσματα με τον δικό του τρόπο. Δοκίμασε:

```
>>> x = 520*0.1 + 0.32*100
>>> x
84.0
>>> type(x)
<class 'float'>
>>> y = int(x)
>>> type(y)
<class 'int'>
>>> x == y
True
```

```
>>> 4.91*0.01 + 0.819*10 == 8.2391
False
>>> 8.2391 - 4.91*0.01 + 0.819*10
1.7763568394002505e-15
```

Ο αριθμός 1.7763568394002505e-15 σημαίνει πως η διαφορά είναι περίπου $1.77 \cot 10^{-15}$ που είναι πάρα πολύ μικρή και προκύπτει από τον τρόπο με τον οποίο η Python αποθηκεύει τους αριθμούς.

Ασκηση 4.1.9 (Στο βιβλίο βρίσκεται στη Σελ. 61) Να κάνεις τις πράξεις:

```
(\alpha) 4, 7 : 0, 1 - 45 : 10
(\beta) 0, 98 : 0, 0001 - 6785 : 1000
```

4.1. ΕΙΣΑΓΩΓΗ 65

```
>>> 4.7/0.1 - 45/10
42.5
>>> 0.98/0.0001 - 6785/1000
9793.215
```

Βλέπουμε ότι η Python υπολογίζει σωστά πρώτα τη διαίρεση και μετά την αφαίρεση.

Ασκηση 4.1.10 (Στο βιβλίο βρίσκεται στη Σελ. 61) Η περίμετρος ενός τετραγώνου είναι 20,2. Να υπολογίσεις την πλευρά του.

```
>>> 20.2/4
5.05
```

Ασκηση 4.1.11 (Στο βιβλίο βρίσκεται στη Σελ. 61) Η περίμετρος ενός ισοσκελούς τριγώνου είναι 48,52. Αν η βάση του είναι 10,7, πόσο είναι η κάθε μία από τις ίσες πλευρές του;

Αφαιρούμε πρώτα από το 48,52 το 10,7. Το αποτελέσμα το διαιρούμε με το δυο.

```
>>> 48.52-10.7
37.8200000000001
>>> 37.82/2
18.91
```

Ασκηση 4.1.12 (Στο βιβλίο βρίσκεται στη Σελ. 61) Να υπολογίσεις τις τιμές των αριθμητικών παραστάσεων:

```
(a) 24 \cdot 5 - 2 + 3 \cdot 5
(b) 3 \cdot 11 - 2 + 45, 1 : 2
```

```
>>> 24*5 - 2 +3*5
133
>>> 3*11 - 2 + 54.1/2
58.05
```

Ασκηση 4.1.13 (Στο βιβλίο βρίσκεται στη Σελ. 61) Να υπολογίσεις τις δυνάμεις: (α) $3, 1^2$, (β) $7, 01^2$, (γ) $4, 5^2$, (δ) $0, 5^2$, (ε) $0, 2^2$, (στ) $0, 3^3$

```
>>> 3.1**2
9.61000000000001
>>> 7.01**2
49.1401
>>> 4.5**2
```

(E)

False

-37.71

>>> 41900*0.0001 - 0.0419*1000 == 0

>>> 41900*0.0001 - 0.0419*1000

```
20.25
>>> 0.5**2
0.25
>>> 0.2**2
0.040000000000000001
>>> 0.3*3
0.899999999999999
Πάλι κάνουν την εμφάνισή τους μικρές προσεγγίσεις.
Ασκηση 4.1.14 Τοποθέτησε ένα "x" στην αντίστοιχη θέση (ΣΩΣΤΟ ΛΑΘΟΣ) (α)
2,75+0,05+1,40+16,80=21 (6) 420,510+72,490+45,19+11,81=500 (y)
4-3,852 = 1,148 (\delta) 32,01-4,001 = 28,01 (\epsilon) 41900 \cdot 0,0001-0,0419 \cdot 1000 =
0 (\sigma \tau) 56,89 \cdot 0,01 + 4311 : 10000 = 1 (\zeta) (3,2+7,2\cdot 2+24\cdot 0,1) : 100 = 0,2
   (a)
>>> 2.75 + 0.05 + 1.40 + 16.80 == 21
>>> 2.75 + 0.05 + 1.40 + 16.80
21.0
Αρα Σωστό
   (β)
>>> 420.510 + 72.490 + 45.19 + 11.81 == 500
False
>>> 420.510 + 72.490 + 45.19 + 11.81
550.0
Αρα Λάθος
   (\gamma)
>>> 4 - 3.852 == 1.148
False
>>> 4 - 3.852
0.148000000000000013
Αρα Λάθος
   (δ)
>>> 32.01 - 4.001 == 28.01
False
>>> 32.01 - 4.001
28.00899999999997
Αρα Λάθος
```

Αρα Σωστό.

4.2 Τυποποιημένη μορφή μεγάλων αριθμών

1983.000.000.000.000.000.000.000.000.000

ο αριθμός μας γίνεται:

$$1983 \cdot 10^{27}$$

Η τυποποιημένη μορφή απαιτεί το α να είναι μεγαλύτερο ή ίσο του 1 και μικρότερο του 10. Οπότε το 1983 πρέπει να γίνει 1,983 και ο αριθμός μας να γίνει

$$1.983 \cdot 10^{30}$$

σε τυποποιημένη μορφή μεγάλων αριθμών. Η Python υποστηρίζει την τυποποιημένη μορφή μεγάλων αριθμών με τη χρήση της εντολής format. Δοκίμασε:

Η γενική μορφή είναι να χρησιμοποιείς <'{:.Ne}'.format(x)>όπου Ν είναι το πλήθος των δεκαδικών ψηφίων που θες να εμφανίζονται. Ετσι

```
>>> print('{:.2e}'.format(31400000000000000))
3.14e+18
>>> print('{:.2e}'.format(234000000000000))
2.34e+17
```

Η Python καταλαβαίνει την τυποποιημένη μορφή π.χ.:

```
>>> x = 3.14e+30
>>> print(x)
3.14e+30
>>> print('{:.0f}'.format(x))
31399999999999741556248543232
```

Το ':.of' σημαίνει πως ο αριθμός θα πρέπει να γραφεί σαν δεκαδικός (float) με μηδεν δεκαδικά ψηφία

Ασκηση 4.2.1 (Στο βιβλίο βρίσκεται στη Σελ. 63) Να γράψεις τους παρακάτω αριθμούς στην τυποποιημένη μορφή: (α) 583.000 (β) 4.300.000 (γ) 7.960.000 (δ) 3.420.000.000 (ε) 4.800 (στ) 7.310 (ζ) 281.900 (η) 518.000.000 (θ) 131.000 (ι) 675.000.

```
>>> print('{:.2e}'.format(583000))
5.83e+05
>>> print('{:.1e}'.format(4300000))
4.3e+06
>>> print('{:.2e}'.format(7960000))
7.96e+06
>>> print('{:.2e}'.format(3420000000))
3.42e+09
>>> print('{:.1e}'.format(4800))
4.8e+03
>>> print('{:.2e}'.format(7310))
7.31e+03
>>> print('{:.3e}'.format(281900))
2.819e+05
>>> print('{:.2e}'.format(518000000))
5.18e+08
>>> print('{:.2e}'.format(131000))
1.31e+05
>>> print('{:.2e}'.format(675000))
6.75e+05
```

Ασκηση 4.2.2 (Στο βιβλίο βρίσκεται στη Σελ. 63) Να γράψεις τη δεκαδική μορφή των αριθμών: (α) $3, 1 \cdot 106$ (β) $4, 820 \cdot 105$ (γ) $3, 25 \cdot 104$ (δ) $7, 4 \cdot 103$ (ε) $9, 2 \cdot 102$.

```
>>> print(4.820 * 10**5)
482000.0
>>> print(3.25 * 10**4)
32500.0
>>> print(7.4 * 10**3)
7400.0
>>> print(9.2 * 10**2)
919.9999999999999
```

```
>>> 9.2e2
920.0
```

Ασκηση 4.2.3 Να εκφραστεί το μήκος των 2.754,389 m, σε όλες τις υποδιαιρέσεις του m.

Οι υποδιαιρέσεις του μέτρου (m) είναι τα δεκατόμετρα (dm), τα εκατοστόμετρα (cm) και τα χιλιοστόμετρα (mm). Για να εκφραστεί το μήκος σε κάθε μία από τις υποδιαιρέσεις θα πρέπει να το πολλαπλασιάζουμε με το 10. Δοκίμασε:

```
>>> x = 2754.389
>>> x = 10*x
>>> print(x)
27543.89
>>> x = 10*x
>>> print(x)
275438.9
>>> x = 10*x
>>> print(x)
275438.9
>>> x = 10*x
>>> print(x)
```

Οπότε έχουμε 27543.89 δεκατόμετρα, 275438.9 εκατοστόμετρα και 2754389 χιλιοστόμετρα. Μπορούμε να μετατρέψουμε τα παραπάνω σε πρόγραμμα ως εξής:

```
x = float(input('Μήκος σε μέτρα:'))
for i in range(3):
    x = 10*x
    print(x)
```

Που δίνει το εξής αποτέλεσμα:

```
Μήκος

σε μέτρα:2754.389

27543.89

275438.9

2754389.0
```

Ακόμη καλύτερα θα ήταν να κάνουμε:

```
x = float(input('Μήκος σε μέτρα:'))
monades = ['dm','cm','mm']
for i in range(3):
    x = 10*x
    print(x,monades[i])
```

Αν ξέχασες το float πριν το input θα δεις ότι ο πολλαπλασιασμός μεταξύ ακεραίου και αλφαρηθμιτικού δουλεύει, και αντιγράφει το ίδιο αλφαριθμητικό πολλές φορές, δοκίμασε:

Ασκηση 4.2.4 Η επιφάνεια ενός κύβου έχει εμβαδόν 96 cm 2 . Να βρεθεί ο όγκος του.

Η λύση του βιβλίου είναι:

Επειδή ο κύβος έχει 6 έδρες, η κάθε έδρα του θα έχει εμβαδόν $96 \mathrm{cm}^2: 6 = 16 \mathrm{cm}^2$.

Αλλά είναι $16 \mathrm{cm}^2 = 4 \mathrm{cm} \cdot 4 \mathrm{cm} = (4 \mathrm{cm})^2$, άρα, η ακμή του κύβου είναι 4cm.

Επομένως, ο όγκος του κύβου είναι: $(4\text{cm})^3 = 4\text{cm} \cdot 4\text{cm} \cdot 4\text{cm} = 64\text{cm}^3$ Σε Python η λύση προχωράει ως εξής:

```
>>> epifaneia = 96
>>> epifaneiaPlevras = epifaneia/6
16
```

Εμείς ξέρουμε ότι $4^2=16$ και μπορούμε να το θυμηθούμε. Ο υπολογιστής όμως δεν το ξέρει και πρέπει να έχει μια συνάρτηση για να υπολογίσει τον αριθμό που αν τον υψώσουμε στο τετράγωνο θα κάνει 16. Ευτυχώς, αυτή η συνάρτηση υπάρχει λέγεται sqrt και βρίσκεται στη βιβλιοθήκη math. Οπότε μπορούμε να τη χρησιμοποιήσουμε ως εξής:

```
>>> import math
>>> math.sqrt(16)
4.0
```

και από εκεί μπορούμε να υπολογίσουμε τον όγκο υψώνοντας στην τρίτη. Συνολικά το πρόγραμμά μας γίνεται:

```
import math
epifaneia = 96
epifaneiaPlevras = epifaneia/6
akmi = math.sqrt(epifaneiaPlevras)
ogkos = akmi**3
print(ogkos)
```

που δίνει το αποτέλεσμα:

```
64.0
```

Το ίδιο πρόγραμμα μπορούμε να το χρησιμοποιήσουμε και για να βρούμε τον όγκο ενός κύβου με επιφάνεια 54. Αφού έχουμε 54:6=9 άρα η ακμή του κύβου είναι 3 και ο όγκος του 27. Το παρακάτω πρόγραμμα δίνει το σωστό αποτέλεσμα:

```
import math
epifaneia = 54
epifaneiaPlevras = epifaneia/6
akmi = math.sqrt(epifaneiaPlevras)
ogkos = akmi**3
print(ogkos)
```

Μπορούμε να γράψουμε ένα πρόγραμμα που να του δίνουμε την επιφάνεια ενός κύβου και να μας βρίσκει τον όγκο του το πρόγραμμα αυτό είναι το εξής:

```
import math
epifaneia = int(input('Δώσε επιφάνεια κύβου: '))
epifaneiaPlevras = epifaneia/6
akmi = math.sqrt(epifaneiaPlevras)
ogkos = akmi**3
print('Ο όγκος του κύβου είναι: ', ogkos)
```

Τέλος, μπορούμε να γράψουμε μια συνάρτηση που να υπολογίζει τον όγκο ενός κύβου από την επιφάνειά του:

```
import math
def ogkosapoepifaneia(epifaneia):
    epifaneiaPlevras = epifaneia/6
    akmi = math.sqrt(epifaneiaPlevras)
    ogkos = akmi**3
    return(ogkos)
epifaneia = int(input('Δώσε επιφάνεια κύβου: '))
print('Ο όγκος του κύβου είναι: ', ogkosapoepifaneia(epifaneia))
```

Ασκηση 4.2.5 (Στο βιβλίο βρίσκεται στη Σελ. 66) Μια αμαξοστοιχία διανύει την απόσταση Αθήνας - Πύργου σε 4 ώρες και 57 λεπτά. Αν η αμαξοστοιχία ξεκινά από την Αθήνα στις 9:10 π.μ. το πρωί, ποια ώρα θα φτάσει στον Πύργο;

Πώς μπορούμε στην Python να κάνουμε πράξεις με τις ώρες; Υπάρχουν δύο τρόποι: α) Να τα υπολογίσουμε με όσα γνωρίζουμε: Ετσι αν έχουμε θέλουμε να προσθέσουμε 9h και 10m με 4h και 57m οπότε ξεκινάμε από τα λεπτά και βρίσκουμε τις ώρες μετά. Ενας τρόπος είναι λοιπόν ο εξής:

```
anaxWra = 9
anaxLepta = 10
diarkeiaWra = 4
diarkeiaLepta = 57
athroismaLepta = anaxLepta + diarkeiaLepta
telikaLepta = athroismaLepta % 60
telikiWra = anaxWra + diarkeiaWra + athroismaLepta // 60
if telikiWra > 12:
    print(str(telikiWra) + ':' + str(telikaLepta - 12) + ' μμ..')
else:
    print(str(telikiWra) + ':' + str(telikaLepta) + 'πμ..')
```

Οπως καταλαβαίνεις το θέμα δεν είναι να υπολογίσεις μια φορά το αποτέλεσμα αλλά να φτιάξεις ένα πρόγραμμα που να υπολογίζει το αποτέλεσμα αν ο χρήστης δίνει την ώρα αναχώρησης και τη διάρκεια του ταξιδιού. Αυτό μπορεί να γίνει με την input και τη split.

```
anax = input('Αναχώρηση μορφή( ωωλλ:)>')
diarkeia = input('Διάρκεια μορφή( ωωλλ:)>')
anaxWra = int(anax.split(':')[0])
anaxLepta = int(diarkeia.split(':')[0])
diarkeiaWra = int(diarkeia.split(':')[1])
diarkeiaLepta = int(diarkeia.split(':')[1])
athroismaLepta = anaxLepta + diarkeiaLepta
telikaLepta = athroismaLepta % 60
telikiWra = anaxWra + diarkeiaWra + athroismaLepta // 60
if telikiWra > 12:
    print(str(telikiWra) + ':' + str(telikaLepta -12) + ' μμ..')
else:
    print(str(telikiWra) + ':' + str(telikaLepta) + 'πμ..')
```

Το παραπάνω πρόγραμμα μας δίνει τη σωστή απάντηση σε πολλές περιπτώσεις. Οχι όμως σε όλες. Δείτε:

```
Αναχώρηση
μορφή( ωωλλ:)>19:30Διάρκεια
μορφή( ωωλλ:)>5:40
25:-2 μμ..
```

Θα πρέπει λοιπόν να φτιάξουμε το άθροισμα της ώρας να μην ξεπερνάει το 24.

```
anax = input('Αναχώρηση μορφή( ωωλλ:)>')
diarkeia = input('Διάρκεια μορφή( ωωλλ:)>')
anaxWra = int(anax.split(':')[0])
anaxLepta = int(anax.split(':')[1])
```

```
diarkeiaWra = int(diarkeia.split(':')[0])
diarkeiaLepta = int(diarkeia.split(':')[1])
athroismaLepta = anaxLepta + diarkeiaLepta
telikaLepta = athroismaLepta % 60
telikiWra = (anaxWra + diarkeiaWra + athroismaLepta // 60) % 24
if telikiWra > 12:
    print(str(telikiWra) + ':' + str(telikaLepta -12) + ' μμ..')
else:
    print(str(telikiWra) + ':' + str(telikaLepta) + 'πμ..')
```

Τότε παίρνουμε το σωστό αποτέλεσμα:

```
Αναχώρηση
μορφή( ωωλλ:)>19:30Διάρκεια
μορφή( ωωλλ:)>5:40πμ
1:10..
```

β) Ο δεύτερος τρόπος είναι να χρησιμοποιήσουμε τη βιβλιοθήκη datetime η οποία χρειάζεται κάποιους ειδικούς χειρισμούς.

```
import datetime

anax = input('Aναχώρηση μορφή( ωωλλ:)>')
diarkeia = input('Διάρκεια μορφή( ωωλλ:)>')
anaxWra = int(anax.split(':')[0])
anaxLepta = int(diarkeia.split(':')[1])
diarkeiaWra = int(diarkeia.split(':')[0])
diarkeiaLepta = int(diarkeia.split(':')[1])
t = datetime.time(9,10)
t = datetime.datetime.combine(datetime.date(2020,5,25),t)
d = datetime.timedelta(hours = 4, minutes=57)
print((t+d).strftime('%H:%M'))
```

Μπορούμε να μικρύνουμε λίγο ακόμη το πρόγραμμα ως εξής:

Το αποτέλεσμα του προγράμματος με τα δεδομένα του προβλήματος είναι:

```
Αναχώρηση
μορφή( ωωλλ:)>9:10Διάρκεια
μορφή( ωωλλ:)>4:57
14:07
```

Αν δώσουμε διαφορετικά δεδομένα παίρνουμε σωστές απαντήσεις:

```
Αναχώρηση
μορφή( ωωλλ:)>14:10Διάρκεια
μορφή( ωωλλ:)>5:30
19:40
```

και για τις ειδικές περιπτώσεις:

```
Αναχώρηση
μορφή( ωωλλ:)>19:30Διάρκεια
μορφή( ωωλλ:)>5:40
01:10
```

Ασκηση 4.2.6 (Στο βιβλίο βρίσκεται στη Σελ. 67) Να βρεθεί η περίμετρος του σχήματος: (α) σε μέτρα, (β) σε εκατοστά και (γ) σε χιλιόμετρα.

Λύση (α) Η περίμετρος σε μέτρα είναι ίση με το άθροισμα των μηκών των πλευρών του, δηλαδή:

```
>>> 26.6+23.5+22.17+38.53
111.8
```

Για να το μετατρέψουμε σε εκατοστά θα πολλαπλασιάσουμε με το 100

```
>>> 111.8*100
11180
```

Για να το μετατρέψουμε σε χιλιόμετρα θα διαιρέσουμε με το 1000:

```
>>> 111.8/1000
0,1118
```

Ασκηση 4.2.7 (Στο βιβλίο βρίσκεται στη Σελ. 67) Μια δεξαμενή νερού τρύπησε και χύνονται 2 σταγόνες κάθε δευτερόλεπτο. Αν οι 25 σταγόνες έχουν μάζα 1,5 g, να βρεθεί η μάζα του νερού που χάνεται κάθε ώρα, σε κιλά.

Κάθε δευτερόλεπτο χάνονται 2 σταγόνες νερού επομένως κάθε ώρα χάνονται:

```
>>> 2* 60 * 60
7200
```

Αυτές τις 7200 τις διαιρούμε με το 25 και τις πολλαπλασιάζουμε με τη μάζα των 25 σταγόνων και έχουμε:

```
>>> 7200/25*1.5
432
```

Αυτή η μάζα είναι σε γραμμάρια για να βρούμε σε κιλά διαιρούμε με το 1000.

```
>>> 432/1000
0.432
```

Μπορούμε να γράψουμε και ένα πρόγραμμα για να υπολογίζει τη μάζα του νερού που χάνεται σε μια πιο γενική περίπτωση. Ας πούμε ότι τα δεδομένα μας θα είναι πόσες σταγόνες χάνονται το δευτερόλεπτο και η μάζα της σταγόνας. Να γραφεί ένα πρόγραμμα που όταν δίνεται η μάζα μιας σταγόνας και το πλήθος των σταγόνων που χύνεται κάθε δευτερόλεπτο, να υπολογίζει τη μάζα του νερού που χύνεται κάθε ώρα σε κιλά. Το πρόγραμμα θα είναι το εξής:

```
plithos = int(input('Σταγόνες το δευτερόλεπτο:'))
maza = float(input('Μάζα κάθε σταγόνας:'))
grammaria = plithos*maza*60*60
kila = grammaria / 1000
print('Χάνονται ',kila, ' κιλά.')
```

Ενα παράδειγμα εκτέλεσης του παραπάνω προγράμματος είναι:

```
Σταγόνες
το δευτερόλεπτο:2Μάζα
κάθε σταγόνας:0.05Χάνονται
0.36 κιλά.
```

```
Ασκηση 4.2.8 (Στο βιβλίο βρίσκεται στη Σελ. 67) Να συμπληρώσεις τα κενά: (α) 23 dm = ...... cm, (β) 3,1 m = ..... Km, (γ) 45,83 cm = ...... m, (δ) 67,2 Km = ...... mm, (ε) 95,5 mm = ...... cm.
```

Μπορούμε να φτιάξουμε ένα πρόγραμμα που να λύνει αυτή την άσκηση. Οι μονάδες μέτρησης που μας ενδιαφέρουν είναι:

mm,cm,dm,m,Km

Αν υποθέσουμε ότι ξέρουμε τα χιλιοστά τότε οι υπόλοιπες μονάδες είναι 10mm, 100mm, και 1000000mm. Μπορούμε λοιπόν να φτιάξουμε έναν μετατροπέα από χιλιοστά σε οποιδήποτε άλλη μονάδα:

```
def frommmto(num,mon):
    if mon == 'mm':
        return(num)
    elif mon=='cm':
        return(num/10)
    elif mon=='dm':
        return(num/100)
    elif mon=='m':
        return(num/1000)
    elif mon=='Km':
        return(num/1000000)
    elif mon=='Km':
        return(num/10000000)
```

Αντίστοιχα μπορούμε να φτιάξουμε έναν μετατροπέα από οποιαδήποτε μονάδα σε χιλιοστά:

```
def tommfrom(num,mon):
    if mon == 'mm':
        return(num)
    elif mon=='cm':
        return(num*10)
    elif mon=='dm':
        return(num*100)
    elif mon=='m':
        return(num*1000)
    elif mon=='Km':
        return(num*1000000)
    else:
        return(None)
```

Συνδυάζοντας αυτούς τους δύο μετατροπείς θα έχουμε έναν μετατροπέα από οποιαδήποτε μονάδα σε οποιαδήποτε:

```
changeUnit(num,arx_mon,tel_mon):
    mms = tommfrom(num,arx_mon)
    if mms is not None:
        result = frommmto(mms,tel_mon)
        return(result)
    else:
        return(None)
```

Και ένα πρόγραμμα για δοκιμή είναι:

```
changeUnit(23,'dm','cm')
changeUnit(3.1,'m','Km')
changeUnit(45.83,'cm','m')
changeUnit(67.2,'Km','mm')
changeUnit(95.5,'mm','cm')
```

και το αποτέλεσμα είναι:

```
230.0
0.0031
0.45829999999999
67200000.0
9.55
```

Ασκηση 4.2.9 Ενα ορθογώνιο παραλληλεπίπεδο έχει ακμές μήκους $\alpha = 3,1$ m, $\beta = 4,2$ m και $\gamma = 2,3$ m. Να υπολογίσεις το μήκος των ακμών του σε mm και να το γράψεις σε τυποποιημένη μορφή.

Χρησιμοποιώντας την ίδια συνάρτηση όπως και παραπάνω μπορούμε να γράψουμε:

```
>>> mikos = changeUnit(3.1+4.2+2.3,'m','mm')
>>> mikos
9600.000000000002
>>> '{:.2e}'.format(mikos)
'9.60e+03'
```

Ασκηση 4.2.10 (Ασκηση 3 του βιβλίου, Σελ. 67) Γράψε τα παρακάτω μήκη σε αύξουσα σειρά: 986 m, 0,023 Km, 456 cm, 678 dm.

Μπορούμε να χρησιμοποιήσουμε τη συνάρτηση tommfrom από παραπάνω ώστε να γίνουν πρώτα όλα ίδιες μονάδες για να συγκριθούν.

```
a = [(986,'m'),(0.023,'Km'),(456,'cm'),(678,'dm')]
print(sorted(a,key=lambda x:tommfrom(x[0],x[1])))
```

Η έκφραση lambda x:tommfrom(x[0],x[1]) είναι μια σύντομη μορφή του εξής:

```
def onoma_sinartisis(x):
    return(tommfrom(x[0],x[1]))
```

Το όνομα της συνάρτησης δεν παίζει ρόλο. Αυτό που συμβαίνει είναι ότι η Python ταξινομεί τα αντικείμενα της λίστας με βάση ένα κλειδί, το κλειδί είναι να μετατρέπει το αντικείμενο σε χιλιοστά χρησιμοποιώντας το πρώτο κομμάτι του αντικειμένου σαν αριθμό και το δεύτερο σαν μονάδα.

```
[(456, 'cm'), (0.023, 'Km'), (678, 'dm'), (986, 'm')]
```

Ασκηση 4.2.11 (Ασκηση 4 του βιβλίου, Σελ. 67) Ενα ορθογώνιο παραλληλόγραμμο έχει διαστάσεις πλευρών α =23 cm και β =45 cm. Να βρεις το εμβαδόν του, σε cm² και σε mm².

Μπορούμε να τη λύσουμε στο REPL ως εξής:

```
>>> emvadosecm2 = 23*45
>>> emvadosecm2
1035
>>> emvadosecm2*100
103500
```

Ασκηση 4.2.12 (Ασκηση 5 του βιβλίου, Σελ. 67) Συμπλήρωσε τα κενά: (α) 56 $Km^2 = m^2$, (β) 0,987 στρέμματα= m^2 , (γ) 350 στρέμματα= m^2 .

Στο REPL:

```
>>> 56 * 1000000
56000000
>>> 0.987 * 1000
987
>>> 350 * 1000
350000
```

(α) 56 Km²=56000000m², (β) 0,987 στρέμματα=987m², (γ) 350 στρέμματα=350000m².

Ασκηση 4.2.13 (Ασκηση 6 του βιβλίου, Σελ. 67) Ενα οικόπεδο έχει σχήμα τετραγώνου με πλευρά 210 m. Να υπολογίσεις το εμβαδόν του σε m^2 και σε στρέμματα.

```
>>> emvado = 210*210
>>> emvado
44100
>>> emvado / 1000
44.1
```

Ασκηση 4.2.14 (Ασκηση 7 του βιβλίου, Σελ. 67) Μια αυλή, σχήματος ορθογωνίου παραλληλογράμμου, έχει διαστάσεις 5 m και 7,2 m. Θέλουμε να τη στρώσουμε, με τετράγωνες πλάκες, πλευράς 40 cm.Πόσες πλάκες θα χρειαστούμε;

```
>>> emvadoorth = 5*7.2
>>> emvadoplakas = 0,4*0,4
>>> emvadoorth/emvadoplakas
224.999999999994
```

Δηλαδή περίπου 225 πλάκες.

Ασκηση 4.2.15 (Ασκηση 8 του βιβλίου, Σελ. 67) Ο όγκος ενός στερεού είναι 15 dm^3 29 cm^3 . Να βρεις τον όγκο του στερεού σε cm^3 , m^3 και mm^3 .

```
>>> 15 * 100** 3 + 29 * 10 **3
15029000
>>> 15029000 / 1000
15029
>>> 15029/ 100**3
0.01529
```

Ασκηση 4.2.16 (Ασκηση 9 του βιβλίου, Σελ. 67) Ενας οινοπαραγωγός έχει αποθηκεύσει το κρασί του σε 3 ίσες δεξαμενές, σχήματος ορθογωνίου παραλληλεπιπέδου, με διαστάσεις 3 m, 2 m και 5 m. Αν πουλήσει το κρασί του προς 4 ευρώ το λίτρο, πόσα χρήματα θα εισπράξει;

```
>>> 3 * 3 * 2 *5
90
>>> 90 * 10 **3
90000
>>> 90000 * 4
360000
```

Ασκηση 4.2.17 (Ασκηση 10 του βιβλίου, Σελ. 67) Να υπολογίσεις τον χρόνο, από τις 8h 10min το πρωί, ως τις 5h 20min το απόγευμα.

```
>>> 20 - 10
10
>>> 17 - 8
9
```

Αρα 9h και 10min. Η Python μπορεί να κάνει την πράξη χρησιμοποιώντας το module datetime.

```
>>> import datetime
>>> t1str = '2015-08-12 08:10'
>>> t1 = datetime.datetime.strptime(t1str, '%Y-%m-%d %H:%M')
>>> t2str = '2015-08-12 17:20'
>>> t2 = datetime.datetime.strptime(t2str, '%Y-%m-%d %H:%M')
>>> print(t2-t1)
9:10:00
```

Ασκηση 4.2.18 (Ασκηση 11 του βιβλίου, Σελ. 67) Συμπλήρωσε τα κενά: (α) 4h 52min=.....min=.....s, (β) 3h 12min=.....s, (γ) 5h 20min 30s=.....min=.....s, (δ) 56min 45s=.....min=.....s

Γι' αυτή την άσκηση θα φτιάξουμε ένα πρόγραμμα ώστε να ζητάμε από τον χρήστη ώρες λεπτά και δευτερόλεπτα και να μας μετατρέπει το χρόνο σε λεπτά και σε δευτερόλεπτα.

```
def xronosseld(wres,lepta,deutera):
    xronossedeutera = wres * 60 * 60 + lepta * 60 + deutera
    xronosselepta = xronossedeutera / 60
    print(xronosselepta,' min=',xronossedeutera,' s')

while True:
    wres = int(input('Ωρες:'))
    lepta = int(input('Λεπτα:'))
    deutera = int(input('Δευτερόλεπτα:'))
    xronosseld(wres,lepta,deutera)
```

Οταν εκτελέσουμε το παραπάνω πρόγραμμα θα έχουμε το εξής αποτέλεσμα:

```
Ώρες:4
Λεπτα:52
Δευτερόλεπτα:0
292.0 min= 17520 s
Ώρες:3
Λεπτα:12
Δευτερόλεπτα:0
192.0 min= 11520 s
Ώρες:5
Λεπτα:20
Δευτερόλεπτα:30
320.5 min= 19230 s
0:239Ω
Λεπτα:56
Δευτερόλεπτα:45
56.75 min= 3405 s
Όρες:^C
```

Επειδή έχουμε βάλει **while** True η επανάληψη γίνεται για πάντα. Για να βγούμε από το πρόγραμμα θα πατήσουμε το πλήκτρο Ctrl και το πλήκτρο C (\hat{C}).

Ασκηση 4.2.19 (Ασκηση 12 του βιβλίου, Σελ. 67) Να υπολογίσεις: (α) το $\frac{1}{10}$ της ώρας, (β) το $\frac{1}{5}$ της ώρας, (γ) το $\frac{1}{6}$ της ώρας.

```
>>> 1/10*60
6
>>> 1/5*60
12
>>> 1/6*60
10
```

Αρα είναι 6 λεπτά, 12 λεπτά και 10 λεπτά.

Ασκηση 4.2.20 (Ασκηση 13 του βιβλίου, Σελ. 68) Διαθέτουμε σταθμά των 50 g, 500 g και δύο σταθμά του 1 Kg. Πώς θα ζυγίσουμε ένα βάρος (α) 3 Kg και 600g και (β) 2 Kg και 450 g.

Θα προσπαθήσουμε να γράψουμε ένα πρόγραμμα που να λύνει το πρόβλημα. Τα δεδομένα είναι το βάρος σε κιλά και γραμμάρια και μια λίστα με τα σταθμά. Στη συνέχεια μετατρέπουμε το βάρος που δίνεται σε κιλά και γραμμάρια αποκλειστικά σε γραμμάρια. Ξεκινάμε από το μεγαλύτερο από τα σταθμά και βρίσκουμε πόσες φορές χωράει στο βάρος. Συνεχίζουμε την ίδια διαδικασία με το υπόλοιπο του βάρους και τα υπόλοιπα σταθμά.

```
def zygisi(barosKila,barosg,stathmaseg):
   baros = barosKila * 1000 + barosg
   stathmos = 0
```

```
res = [0]*len(stathmaseg)
while baros>=stathmaseg[-1]:
    if baros >= stathmaseg[stathmos]:
        res[stathmos]=baros//stathmaseg[stathmos]
        baros = baros % stathmaseg[stathmos]
        stathmos += 1
    return(res)

print(zygisi(3,600,[1000,500,50]))
print(zygisi(2,450,[1000,500,50]))
```

Το οποίο δίνει το σωστό αποτέλεσμα:

```
[3, 1, 2]
[2, 0, 9]
```

Αυτό το πρόγραμμα έχει ένα μειονέκτημα. Η σωστή του λειτουργία βασίζεται στο να δώσει ο χρήστης τα σταθμά ξεκινώντας από το μεγαλύτερο προς το μικρότερο. Δες τι θα συμβεί αν εκτελέσουμε:

```
print(zygisi(3,600,[1000,50,500]))
print(zygisi(2,450,[50,500,100]))
```

```
[3, 12, 0]
[49, 0, 0]
```

Μπορείς να το αποφύγεις με κάποιες αλλαγές στον κώδικα. Η βασική αλλαγή είναι πως αντί να ελέγχεις το stathmaseg[stathmos] βασιζόμενος ότι αυτό θα είναι το μεγαλύτερο να ελέγχεις με το max(stathmaseg). Θα πρέπει όμως μετά να βάλεις το αποτέλεσμα στη σωστή θέση. Η θέση αυτή είναι stathmaseg.index(max(stathmaseg)). Ομως θα πρέπει να διαγράφουμε κάθε φορά το μεγαλύτερο στοιχείο ώστε η max να μην το ξαναεπιστρέψει. Για αυτό θα χρειαστεί να κάνουμε ένα αντίγραφο της λίστας πάνω στο οποίο δουλεύουμε χωρίς να πειράξουμε το stathmaseg. Συνολικά:

```
def zygisi(barosKila,barosg,stathmaseg):
    baros = barosKila * 1000 + barosg
    stathmos = 0
    res = [0]*len(stathmaseg)
    s = list(stathmaseg)
    while baros>=min(s):
        if baros >= max(s):
            res[stathmaseg.index(max(s))]=baros//max(s)
            baros = baros % max(s)
        s.pop(s.index(max(s)))
    if not s:
        break
    return(res)

print(zygisi(3,600,[1000,50,500]))
```

```
print(zygisi(2,450,[50,500,1000]))
```

Με αυτόν τον τρόπο έχεις το σωστό αποτέλεσμα που είναι:

```
[3, 2, 1]
[9, 0, 2]
```

Ασκηση 4.2.21 (Ασκηση 14 του βιβλίου, Σελ. 68) Πώς θα ζυγίσουμε (α) ένα σώμα μάζας 5 Kg, με σταθμά των 9 Kg, 3 Kg και 1 Kg (β) ένα σώμα μάζας 3 Kg, με σταθμά 10 Kg, 5 Kg και 1 Kg.

```
>>> 9 == 3 + 1 + 5
True
>>> 10 == 3 + 5 + 2*1
True
```

Ετσι μπορούμε να βάλουμε στη μία πλευρά της ζυγαριάς τα 9Kg και στην άλλη όλα τα υπόλοιπα βάρη, μαζί με αυτό που θέλουμε να ζυγίσουμε. Για το δεύτερο μπορούμε να βάλουμε στη μία πλευρά της ζυγαριάς τα 10Kg και στην άλλη όλα τα υπόλοιπα βάρη τότε θα προκύψει 3+5+1, 9 κιλά βάρος οπότε χρειάζεται να βάλουμε ένα ακόμη βάρος του 1Kg. Εναλλακτικά μπορούμε να χρησιμοποιήσουμε την παραπάνω συνάρτηση τη zygisi και θα έχουμε

```
>>> print(zygisi(5,0,[3000,1000]))
[1,2]
>>> print(zygisi(3,0,[1000]))
[3]
```

επειδή η λογική της zygisis είναι να ζυγίζει με σταθμά μικρότερα του ζητούμενου βάρους.

Ασκηση 4.2.22 (Ασκηση 15 του βιβλίου, Σελ. 68) Διαθέτουμε τρία δοχεία που χωράνε 2 lt, 0,5 lt και 0,1 lt. Πώς θα μετρήσουμε ένα υγρό, όγκου (α) 5 lt, (β) 2,8 lt, (γ) 2,4 lt.

Η λογική είναι ίδια με τη ζύγιση πιο πάνω:

```
>>> zygisi(5,0,[2000,500,100])
[2, 2, 0]
>>> zygisi(2,800,[2000,500,100])
[1, 1, 3]
>>> zygisi(2,400,[2000,500,100])
[1, 0, 4]
```

Δουλεύει επειδή δεν έχει σημασία αν μιλάμε για Kg και g ή για lt και ml αφού η σχέση μεταξύ τους είναι η ίδια. Ωστόσο θα ήταν καλύτερα να μετατρέψουμε τη zygisi σε metrisi ως εξής:

```
def metrisi(lt,doxeia):
    lt = lt * 1000
    doxeio = 0
    res = [0]*len(doxeia)
    s = list(doxeia)
    while lt>=min(s):
        if lt >= max(s):
            res[doxeia.index(max(s))]=int(lt//max(s))
            lt = lt % max(s)
        s.pop(s.index(max(s)))
        if not s:
            break
    return(res)
```

και τότε μπορούμε να γράψουμε:

```
>>> metrisi(5,[2000,500,100])
[2, 2, 0]
>>> metrisi(2.8,[2000,500,100])
[1, 1, 3]
>>> metrisi(2.4,[2000,500,100])
[1, 0, 4]
```

Ασκηση 4.2.23 (Ασκηση 16 του βιβλίου, Σελ. 68) Σε μια πολυκατοικία θέλουν να κατασκευάσουν μια δεξαμενή που να χωράει 3 t πετρέλαιο και να έχει μήκος 2,5 m και πλάτος 1 m. Αν γνωρίζεις ότι ο 1 t πετρελαίου έχει όγκο 1200 lt, υπολόγισε το ύψος της δεξαμενής και πόσα lt πετρελαίου αντιστοιχούν σε κάθε cm ύψους;

Εδώ έχουμε το εξής:

$$μήκος · πλάτος · ύψος = 3t$$
 (4.1)

$$25 \cdot 10 \cdot \text{ύψος} = 3 \cdot 1200 \text{lt} \tag{4.2}$$

ύψος
$$=\frac{3600}{25\cdot10}$$
 (4.3)

(4.4)

```
>>> 3600/ (25*10)
14.4
```

Τα 14.4 είναι δεκατόμετρα οπότε η δεξαμενή έχει ύψος 1.44m ή αλλιώς 144cm. Κάθε εκατοστό ύψους έχει όγκο:

```
>>> 3600/144
25
```

Οπότε κάθε εκατοστό ύψους συνεισφέρει 25lt στον όγκο.

Ασκηση 4.2.24 (Ασκηση 17 του βιβλίου, Σελ. 68) Μια δεξαμενή έχει σχήμα ορθογωνίου παραλληλεπιπέδου με ύψος 1,2 m και βάση τετράγωνο πλευράς 80 cm. Μια αντλία αδειάζει από την δεξαμενή 8 lt το λεπτό. Να βρεθεί: (α) σε πόσο χρόνο η στάθμη του νερού θα κατέβει κατά 10 cm, (β) σε πόσο χρόνο θα αδειάσει η δεξαμενή και (γ) πόσο θα κατέβει η στάθμη του νερού σε μισή ώρα

Θα κάνουμε τους υπολογισμούς σε dm. α) Τα 10cm εκατοστά ύψους έχουν όγκο:

```
>>> ogkos10cm = 8 * 8
>>> ogkos10cm
64
>>> 64/8
```

Αρα 8 λεπτά β) Ο συνολικός όγκος είναι:

```
>>> ogkos = 12 * 8 * 8
>>> ogkos
768
>>> ogkos / 8
96.0
```

Η δεξαμενή θα αδειάσει σε 96 λεπτά. γ) Σε μισή ώρα η δεξαμενή θα χάσει

```
>>> 30*8
240
>>> 240 / (8*8)
3.75
```

τα 3,75 είναι δεκατόμετρα δηλαδή θα αδειάσει κατά 37,5 εκατοστά.

Ασκηση 4.2.25 (Ασκηση 18 του βιβλίου, Σελ. 68) Ενας ποδηλάτης διήνυσε μια απόσταση σε χρόνο 1h 15 min, ενώ ένας δεύτερος διήνυσε την ίδια απόσταση σε χρόνο 1h 45min. (α) Ποιο μέρος του χρόνου του δεύτερου είναι ο χρόνος του πρώτου ποδηλάτη; (β) Ποιο μέρος του χρόνου του πρώτου είναι ο χρόνος του δεύτερου ποδηλάτη; Τι παρατηρείς;

```
from fractions import Fraction
def fractionTime(h1,m1,h2,m2):
   t1 = h1*60 + m1
   t2 = h2*60 + m2
   return(Fraction(t1,t2))

print(fractionTime(1,15,1,45))
print(fractionTime(1,45,1,15))
```

και η απάντηση είναι:

```
5/7
7/5
```

85

Παρατηρούμε ότι τα κλάσματα είναι αντίστροφα.

Ασκηση 4.2.26 (Ασκηση 4 του βιβλίου, Σελ. 70) Το εμβαδό του ορθογωνίου είναι $\frac{3}{4}$

```
>>> (2+1/2+1/2)*1/4
0.75
>>> 3/4
0.75
```

Αρα Σωστό

Ασκηση 4.2.27 (Ασκηση 7 του βιβλίου, Σελ. 70) Το κλάσμα:

$$\frac{1\frac{5}{8}}{3}$$

```
>>> (1+5/8)/3
0.54166666666666666
>>> 5/40
0.125
```

Αρα Λάθος

Ασκηση 4.2.28 (Ασκηση 10 του βιβλίου, Σελ. 70)

$$\frac{5}{8} = \frac{625}{1000} = \frac{35}{56} = \frac{1250}{2000} = 0,625$$

```
>>> 5/8
0.625
>>> 625/1000
0.625
>>> 35/56
0.625
>>> 1250/2000
0.625
```

Αρα Σωστό

Ασκηση 4.2.29 (Ασκηση 11 του βιβλίου, Σελ. 70)

$$2 + \frac{1}{10} + \frac{3}{100} + \frac{45}{1000} = 2{,}175$$

```
>>> 2+1/10+3/100+45/1000
2.175
```

Αρα Σωστό

Ασκηση 4.2.30 (Ασκηση 12 του βιβλίου, Σελ. 70) Οι αριθμοί 7, 2 και $\frac{5}{36}$ είναι αντίστροφοι.

>>> 7.2*5/36 1.0

Αρα Σωστό

Ασκηση 4.2.31 (Ασκηση 14 του βιβλίου, Σελ. 70)

$$\frac{149}{231} > \frac{220}{452}$$

>>> 149/231>220/452 True

Ασκηση 4.2.32 (Ασκηση 15 του βιβλίου, Σελ. 70)

$$\frac{1050}{3100} > \frac{2593}{4650}$$

>>> 1050/3100>2593/4650 False

Ασκηση 4.2.33 (Ασκηση 16 του βιβλίου, Σελ. 70)

$$\frac{3,4}{7,3} = 0,4659$$

>>> 3.4/7.3 0.4657534246575342

Αρα Λάθος

Ασκηση 4.2.34 (Ασκηση 17 του βιβλίου, Σελ. 70)

$$\frac{1,028}{1,2} = 0,856666\dots$$

>>> 1.028/1.2 0.85666666666666667

Αρα Σωστό, αν και ο υπολογιστής κάνει προσέγγιση αφού δεν μπορεί να έχει άπειρα ψηφία.

87

Ασκηση 4.2.35 (Ασκηση 18 του βιβλίου, Σελ. 70)

$$\frac{34,5}{5,7} = 5,7$$

>>> 34.5/5.7 6.052631578947368

Αρα Λάθος

Ασκηση 4.2.36 (Ασκηση 19 του βιβλίου, Σελ. 70)

$$\frac{1,25}{1,85} = 0,675675675\dots$$

>>> 1.25/1.85 0.6756756756756757

Ασκηση 4.2.37 (Ασκηση 20 του βιβλίου, Σελ. 70)

$$\frac{0,69}{4,6} = 0,15$$

>>> 0.69/4.16 0.1658653846153846

Ασκηση 4.2.38 (Ασκηση 21 του βιβλίου, Σελ. 70) Αν $\frac{x}{3}=7$ το x είναι ο αριθμός 23

>>> 3*7 21

Κεφάλαιο 5

Εξισώσεις και προβλήματα

Σε αυτό το κεφάλαιο θα χρησιμοποιήσουμε τη βιβλιοθήκη sympy. Υπάρχει ένα περιβάλλον στο οποίο μπορούμε να πληκτρολογούμε εντολές της βιβλιοθήκης ώστε να βλέπουμε τα αποτελέσματα με φιλικό τρόπο στον φυλλομετρήτή μας, συνήθως Chrome, Firefox ή Microsoft Edge. Το περιβάλλον αυτό βρίσκεται στη διεύθυνση https://live.sympy.org/. Μπορούμε να κάνουμε τα ίδια παραδείγματα στον Mu Editor όπως έχουμε συνηθίσει χρησιμοποιώντας την εντολή:

```
from sympy import *
```

όμως τα αποτελέσματα δεν θα εμφανίζονται με φιλικό τρόπο αλλά με τον συμβολισμό της Python.

5.1 Η έννοια της εξίσωσης

Ασκηση 5.1.1 Γράψε συντομότερα τις εκφράσεις:

- (α) x + x + x + x,
- (6) $\alpha + \alpha + \alpha + \beta + \beta$,
- (y) $3 \cdot \alpha + 5 \cdot \alpha$,
- (δ) $18 \cdot x + 7 \cdot x + 4 \cdot x$,
- (ϵ) $15 \cdot \beta 9 \cdot \beta$.

Επειδή τα σύμβολα είναι τα x, a, b θα πρέπει να τα δηλώσουμε στο sympy. Αυτό γίνεται ως εξής:

```
from sympy import *
x,a,b = symbols("x a b")
```

Στη συνέχεια όποτε αναφέρουμε τα x, a, b η Python θα καταλαβαίνει ότι πρόκειται για σύμβολα και θα δρα ανάλογα. Ετσι αν δώσουμε στην Python

>>> x + x + x + x

Θα μας δώσει ως απάντηση

4x

στο live.sympy.org και

4*x

στην απλή Python ή στο Mu Editor. Αρα το

>>> a + a + a + b + b

Θα μας δώσει σαν απάντηση:

3a + 2b

και τα

>>> 3*a + 5*a >>> 18*x + 7*x + 4*x >>> 15*b - 9b

8a

29x

6b

αντίστοιχα.

Ασκηση 5.1.2 Να αντικαταστήσεις το x, με τους αριθμούς 1, 3, 4, 5, 6 και 11, σε κάθε ισότητα της πρώτης στήλης, του παρακάτω πίνακα. Βρες ποιος από αυτούς την επαληθεύει και ποιος όχι.

•	00, 01, 0,000		
	Εξίσωση	Αριθμοί που την επαληθεύουν	Αριθμοί που δεν την επαληθεύουν
	x-4 = 1		
	5 - x = 4		
	2x = 8		
	$\frac{6}{x} = 2$		
	$\frac{x}{2} = 3$		
	x + 7 = 30		

>>> e = x - 4 >>> e.subs(x,1)

-3

>>> e.subs(x,3)

>>> e.subs(x,4)

0

>>> e.subs(x,5)

1

>>> e.subs(x,6)

2

>>> e.subs(x,11)

Οπότε ο αριθμός που την επαληθεύει είναι ο 5 και όλοι οι υπόλοιποι δεν την επαληθεύουν.

```
>>> e = 5 - x
>>> e.subs(x,1)

4
>>> e.subs(x,3)
2
>>> e.subs(x,4)

1
>>> e.subs(x,5)

0
>>> e.subs(x,6)

-1
>>> e.subs(x,11)
```

Οπότε ο αριθμός που την επαληθεύει είναι ο 1 και όλοι οι υπόλοιποι δεν την επαληθεύουν.

```
>>> e = 2*x
>>> e.subs(x,1)
2
>>> e.subs(x,3)
```

6
>>> e.subs(x,4)

8
>>> e.subs(x,5)

10
>>> e.subs(x,6)

12
>>> e.subs(x,11)

Οπότε ο αριθμός που την επαληθεύει είναι ο 4 και όλοι οι υπόλοιποι δεν την επαληθεύουν.

22

	e = 6/x	
>>>	e.subs(x,1)	
		6
		0
	1 (2)	
>>>	e.subs(x,3)	
		2
		2
>>>	e.subs(x,4)	
		3
		$\frac{3}{2}$
		2
>>>	e.subs(x,5)	
		6
		$\frac{6}{5}$
		5
>>>	e.subs(x,6)	
		1
		1
	/ 11\	
>>>	e.subs(x,11)	
		6
		11

Οπότε ο αριθμός 3 επαληθεύει την εξίσωση και όλοι οι υπόλοιποι δεν την επαληθεύουν:

```
>>> e = x/2
>>> e.subs(x,1)
```

6	
>>> e.subs(x,3)	
2	
>>> e.subs(x,4)	
$\frac{3}{2}$	
>>> e.subs(x,5)	
$\frac{6}{5}$	
>>> e.subs(x,6)	
1	
>>> e.subs(x,11)	
$\frac{6}{11}$	
>>> e = x/2 >>> e.subs(x,1)	
$\frac{1}{2}$	
>>> e.subs(x,3)	
$\frac{3}{2}$	
>>> e.subs(x,4)	
2	
>>> e.subs(x,5)	
$\frac{5}{2}$	
>>> e.subs(x,6)	
3	
>>> e.subs(x,11)	

 $\frac{11}{2}$

Ο αριθμός που επαληθεύει την εξίσωση είναι ο 6, οι υπόλοιποι αριθμοί δεν την επαληθεύουν.

```
>>> e = x + 7
>>> e.subs(x,1)

8

>>> e.subs(x,3)

10

>>> e.subs(x,4)

11

>>> e.subs(x,5)

12

>>> e.subs(x,6)

13

>>> e.subs(x,11)
18
```

Κανένας από αυτούς τους αριθμούς δεν επαληθεύει την εξίσωση, οπότε:

κανεναζαπο αυτουζ τουζαρισμούζουν επαπησεύει την εξισωσή, οπότε.			
Εξίσωση	Αριθμοί που την επαληθεύουν	Αριθμοί που δεν την επαληθεύουν	
x - 4 = 1	5	1, 3, 4, 6 και 11	
5 - x = 4	1	3, 4, 5, 6 και 11	
2x = 8	4	1, 3, 5, 6 και 11	
$\frac{6}{x} = 2$	3	1, 4, 5, 6 και 11	
$\frac{x}{2} = 3$	6	1, 3, 4, 5 και 11	
x + 7 = 30		1, 3, 4, 5, 6 και 11	

Ενας καλύτερος τρόπος για να έχουμε το ίδιο αποτέλεσμα είναι να γραφτεί ένα πρόγραμμα που να υπολογίζει τα αποτελέσματα για όλους τους αριθμούς και να συγκρίνει το αποτέλεσμα με το αναμενόμενο. Η enumerate μετράει τη λίστα και δημιουγεί έναν μετρητή με όνομα i που μπορούμε να τον χρησιμοποιήσουμε για να μετρήσουμε τα αναμενόμενα αποτελέσματα:

```
for e in exprs:
    for (i,xi) in enumerate([1,3,4,5,6,11]):
        print(e,xi,e.subs(x,xi),res[i])
        print(e.subs(x,xi)==res[i])
```

Ασκηση 5.1.3 (Στο βιβλίο βρίσκεται στη Σελ. 73) Να λυθούν οι εξισώσεις:

$$x + 5 = 12$$

$$y - 2 = 3$$

$$10 - z = 1$$

$$7 \cdot phi = 14$$

$$w : 5 = 4$$

$$24 : \psi = 6$$

Η βιβλιοθήκη sympy έχει συνάρτηση solve για να λύνει εξισώσεις όταν το δεξί μέρος της εξίσωσης είναι ο οπότε οι εξισώσεις πρέπει να μετατραπούν με το χέρι σε:

$$x + 5 - 12 = 0$$

$$y - 2 - 3 = 0$$

$$10 - z - 1 = 0$$

$$7 \cdot phi - 14 = 0$$

$$w : 5 - 4 = 0$$

$$24 : \psi - 6 = 0$$

```
>>> from sympy import *
>>> x,y,z,f,w,psi = symbols('x y z f w psi')
>>> solve(x+5-12)
[7]
>>> solve(y-2-3)
[5]
>>> solve(10-z -1)
[9]
>>> solve(7* f - 14)
[2]
>>> solve(w/5 - 4)
[20]
>>> solve(24/psi - 6)
[4]
```

Η συνάρτηση solve επιστρέφει μια λίστα με τις τιμές που επαληθεύουν την εξίσωση. Επειδή υπάρχει μόνο μία τιμή που επαληθεύει την εξίσωση για αυτό το λόγο υπάρχει μόνο μία τιμή στην κάθε λίστα.

Ασκηση 5.1.4 (Στο βιβλίο βρίσκεται στη Σελ. 63) Μια δεξαμενή χωρητικότητας $6m^3$ που έχει μήκος 1,5m και πλάτος 2m, έχει ύψος (α) 1,5m ή (β) 3m ή (γ) 2m;

```
>>> solve(2*1.5*x - 6)
[2.0]
```

Ασκηση 5.1.5 (Ασκηση 4 του βιβλίου, Σελ. 74) Γράψε με απλούστερο τρόπο τις μαθηματικές εκφράσεις:

- (α) x + x,
- (6) $\alpha + \alpha + \alpha$,
- (γ) $3 \cdot \alpha + 52 \cdot \alpha$,
- (δ) $2 \cdot \beta + \beta + 3 \cdot \alpha + 2 \cdot \alpha$,
- (ε) $4 \cdot x + 8 \cdot x 3 \cdot x$,
- ($\sigma\tau$) $7 \cdot \omega + 4 \cdot \omega 10 \cdot \omega$

>>> X+X

2x

```
>>> a = symbols('a')
>>> a+a+a
```

3a

>>> 3*a + 52 * a

55a

```
>>> a,b = symbols('a b')
>>> 2*b+b+3*a+2*a
```

5a + 3b

>>> 4*x+8*-x3*x

9x

```
>>> w = symbols('w')
>>> 7*w+4*-w10*w
```

w

Θα λύσουμε την

$$2 + a - x = 0$$

για αυτές τις τιμές:

```
>>> solve(2+a-0)
[-2]
>>> solve(2+a-3)
[1]
>>> solve(2+a-1)
[-1]
```

Από αυτές τις λύσεις συμπεραίνουμε ότι μόνο η 2+a-3 μπορεί να ισχύει για φυσικό αριθμό και άρα μόνο την τιμή 3 μπορεί να πάρει το x.

Ασκηση 5.1.7 (Ασκηση 7 του βιβλίου, Σελ. 74) Να εξετάσεις, αν ο αριθμός 12 είναι η λύση της εξίσωσης: x + 13 = 25

```
>>> e = x + 13
>>> e.subs(e,x,12)
```

25

Ασκηση 5.1.8 (Ασκηση 8 του βιβλίου, Σελ. 74) Τοποθέτησε ένα "Χ" στη θέση εκείνη που ο αριθμός επαληθεύει την αντίστοιχη εξίσωση:

Χρησιμοποιώντας έναν πίνακα για τα αποτελέσματα res γράφουμε:

```
from sympy import *
x,y,w,a,b = symbols('x y w a b')
s = [x,y,w,a,b]
e = [x-2,1+y,18-w,2-a,93-b]
res = [4,4,10,1,86]
for (en,expr) in enumerate(e):
    for i in range(9):
        if expr.subs(s[en],i) == res[en]:
            print('X',end='')
        else:
        print('0',end='')
    print()
```

που δίνει το αποτέλεσμα

```
000000X00
0000X0000
00000000X
0X0000000
0000000X0
```

6 7 8 3 | 4 5 x-2 = 4Χ Χ 1 + y = 4οπότε ο πίνακας διαμορφώνεται ως εξής: $18-\omega = 10$ Χ 2– $\alpha = 1$ Χ Χ

Ασκηση 5.1.9 (Ασκηση 9 του βιβλίου, Σελ. 74) Ποιος αριθμός επαληθεύει κάθε μία από τις παρακάτω εξισώσεις;

- (α) x + 4, 9 = 15, 83
- (6) 40, 4 + x = 93, 19
- (y) 53, 404-x = 4, 19
- (δ) 38-x = 7, 1.

Οπως και προηγουμένως η sympy μπορεί να λύσει την εξίσωση αρκεί το αριστερό μέλος να είναι ο. Οπότε:

```
>>> solve(x+4.9-15.83)
[10.9300000000000]
>>> solve(40.4+x-93.19)
[52.79000000000000]
>>> solve(53.404 - x - 4.19)
[49.21400000000000]
>>> solve(38-x-7.1)
[30.9000000000000]
```

Αρα οι απαντήσεις είναι 10,93, 52,79, 49,214, 30,9.

Ασκηση 5.1.10 (Ασκηση 11 του βιβλίου, Σελ. 74) Ποια είναι η τιμή του χ για να ισχύει;

- (a) $3x = \frac{12}{20}$, (b) $\frac{5}{7} = \frac{15}{x}$, (c) $\frac{35}{40} = \frac{x}{8}$, (d) $\frac{49}{5} = x + \frac{4}{5}$.

Με την ίδια λογική:

```
>>> solve(3/x-12/20)
[9.00000000000000]
>>> solve(5/7-15/x)
[21.00000000000000]
```

```
>>> solve(35/40-x/8)
[7.0000000000000]
>>> solve(49/5-x-4/5)
[9.0000000000000]
```

Αρα οι απαντήσεις είναι 9, 21, 7 και 9.

Ασκηση 5.1.11 (Ασκηση 12 του βιβλίου, Σελ. 74) Λύσε τις εξισώσεις:

```
(\alpha) \ni +3 = 4,
(\beta) x-2 = 8,
(\gamma) t + 4 + 1 = 3 + 19,
```

```
(\delta) 6-x=5.
```

```
from sympy import *
x,n,t = symbols('x n t')
print(solve(n+3-4))
print(solve(x-2-8))
print(solve(t+4+1-3-19))
print(solve(6-x-5))
```

και το αποτέλεσμα είναι:

```
[1]
[10]
[17]
[1]
```

Ασκηση 5.1.12 (Ασκηση 13 του βιβλίου, Σελ. 74) Ποιον αριθμό πρέπει να προσθέσεις στον 4, για να προχύψει ο αντίστροφός του $\frac{5}{21}$;

```
>>> solve(x+4-21/5)
[0.20000000000000]
```

Ασκηση 5.1.13 (Ασκηση 14 του βιβλίου, Σελ. 74) Σε έναν αριθμό προσθέτουμε 5 και παίρνουμε άθροισμα 313. Ποιος είναι ο αριθμός;

```
>>> solve(x+5-313)
[308]
```

Ασκηση 5.1.14 (Ασκηση 15 του βιβλίου, Σελ. 74) Τα τετράγωνα που αποτελούν τους "δομικούς λίθους" με τους οποίους κατασκευά-ζουμε τα παρακάτω σχήματα, έχουν πλευρά ίση με 1 cm. (α) Βρες την περίμετρο του πέμπτου σχήματος και εξήγησε πώς έφτασες στην απάντησή σου. (β) Γράψε ένα τύπο με τη βοήθεια του οποίου θα μπορείς να υπολογίσεις την περίμετρο κάθε σχήματος. (γ) Ποια είναι η σειρά του σχήματος του οποίου η περίμετρος είναι 128 cm;

α) Το πέμπτο σχήμα θα έχει περίμετρο 20cm.

β)

4x

(y)

```
>>> solve(4x-128)
[32]
```

Ασκηση 5.1.15 (Στο βιβλίο βρίσκεται στη Σελ. 75) Ενα κατάστημα για να προσελκύσει πελατεία ανακοινώνει ότι ο πελάτης που θα αγοράσει τρία ίδια πακέτα προσφοράς ενός συγκεκριμένου προϊόντος θα έχει έκπτωση 5D. Αν και τα τρία πακέτα κοστίζουν, με την έκπτωση, συνολικά 85D, ποιά είναι η αρχική αξία του κάθε πακέτου;

```
>>> solve(3x-5-85)
[30]
```

Ασκηση 5.1.16 (Στο βιβλίο βρίσκεται στη Σελ. 75) Να περιγράψεις κάποιο πρόβλημα, που να λύνεται με τη βοήθεια της εξίσωσης: 2x+800=1000.

Είναι δύσκολο να βρούμε με την Python ένα τέτοιο πρόβλημα όμως η λύση του μπορεί να βρεθεί:

```
>>> solve(2x+800-1000)
[100]
```

Ασκηση 5.1.17 (Στο βιβλίο βρίσκεται στη Σελ. 76) Η Χριστίνα ξόδεψε τα μισά της χρήματα για να αγοράσει 2 τετράδια και μαρκαδόρους. Αν είναι γνωστό, ότι κάθε τετράδιο στοιχίζει 1 Q και όλοι οι μαρκαδόροι 3 Q, ποιο είναι το ποσό των χρημάτων που είχε η Χριστίνα πριν από τις αγορές αυτές;

```
>>> solve(x/2-2-3)
[10]
```

Ασκηση 5.1.18 Η δεξαμενή της κοινότητας χωράει 3.000 m^3 νερό. Κάθε μέρα ξοδεύονται 300 m^3 από τα νοικοκυριά και άλλα 200 m^3 από τις βιοτεχνίες. Για τη συντήρηση του δικτύου, σταμάτησε η παροχή νερού προς τη δεξαμενή. Τέσσερις ημέρες μετά την έναρξη των εργασιών αποφασίζεται να ξοδεύονται μόνο 400 m^3 συνολικά κάθε ημέρα. Πόσες ημέρες ακόμη πρέπει να κρατήσουν τα έργα συντήρησης, ώστε να μη μείνουν χωρίς νερό οι κάτοικοι της κοινότητας;

```
>>> solve((300+200)*4+400*x-3000)
[5/2]
```

Δηλαδή 2,5 ημέρες.

Ασκηση 5.1.19 Ενας εργάτης για μια εργασία πέντε ημερών συμφώνησε να πάρει προκαταβολή το μισό της αμοιβής του και το υπόλοιπο αυτής να το πληρωθεί όταν τελειώσει η εργασία. Αν η προκαταβολή ήταν 18ο€, ποιό ήταν το μεροκάματό του;

```
>>> solve(5/2*x - 180)
[72]
```

Ασκηση 5.1.20 (Στο βιβλίο βρίσκεται στη Σελ. 76) Μετά τη συνεδρίαση και τα 10 μέλη του διοικητικού συμβουλίου μιας εταιρείας ανταλλάσσουν μεταξύ τους χειραψίες. Πόσες χειραψίες γίνονται συνολικά;

```
>>> sum(range(10))
45
```

Η εντολή sum υπολογίζει το άθροισμα μιας λίστας. Στη συγκεκριμένη περίπτωση η λίστα είναι η range(10) που είναι οι αριθμοί από το ο μέχρι το 9.

Ασκηση 5.1.21 (Ασκηση 1 του βιβλίου, Σελ. 78) Η διαφορά της ηλικίας της κόρης από τη μητέρα της είναι 25 χρόνια. Αν η κόρη είναι 18 ετών, πόσων ετών είναι η μητέρα;

$$x - 25 = 18$$

```
>>> solve(x-25-18)
[43]
```

Ασκηση 5.1.22 (Ασκηση 2 του βιβλίου, Σελ. 78) Πόσοι μαθητές είναι τα $\frac{7}{10}$ των μαθητών ενός σχολείου, αν τα $\frac{2}{8}$ των μαθητών, αυτού του σχολείου, είναι 60 μαθητές.

$$\frac{2}{8} \cdot x = 60$$

Για τα $\frac{7}{10}$ των μαθητών έχουμε

```
>>> 7/10*240
168.0
```

Ασκηση 5.1.23 (Ασκηση 3 του βιβλίου, Σελ. 78) Να βρεις τρεις διαδοχικούς φυσικούς αριθμούς που έχουν άθροισμα 1533.

Εστω ότι ο πρώτος αριθμός από αυτούς είναι ο x. Τότε:

$$x + (x + 1) + x + 2 = 1533$$

 $3x + 3 = 1533$

```
>>> solve(3*x+3-1533)
[510]
```

Οι αριθμοί είναι 510, 511, 512.

Ασκηση 5.1.24 (Ασκηση 4 του βιβλίου, Σελ. 78) Βρες το ψηφίο που λείπει από τον αριθμό 75_3, ώστε αυτός να διαιρείται με το 9.

Λύση 1η Από τα κριτήρια διαιρετότητας ξέρουμε ότι θα πρέπει το άθροισμα των ψηφίων να διαιρείται με το 9 οπότε:

```
7+5+x+3 να είναι πολλαπλάσιο του 9 x+15 πολλαπλάσιο του 9 Τα πολλαπλάσια του 9 είναι 9, 18, 27,... Ας δούμε τις πιθανότητες:
```

```
>>> solve(x+15-9)
[-6]
>>> solve(x+15-18)
[3]
>>> solve(x+15-27)
[12]
```

Από αυτές τις λύσεις μόνο η 3 είναι αποδεκτή (ένα ψηφίο). Οπότε ο αριθμός είναι 7533 για τον οποίο ισχύει ότι το υπόλοιπο της διαίρεσής του με το 9 είναι ο.

```
>>> 7533%9
0
```

Λύση 2η

```
for d in range(10):
    number = 7503 + 10*d
    if number%9 == 0:
        print(d)
```

Το αποτέλεσμα της εκτέλεσης είναι

3

Ασκηση 5.1.25 (Ασκηση 5 του βιβλίου, Σελ. 78) Σε ένα διαγώνισμα, κάθε μαθητής πρέπει να απαντήσει σε 100 ερωτήσεις. Θα πάρει 3 μονάδες, για κάθε σωστή απάντηση και μόνο 1 μονάδα, για κάθε λανθασμένη. Ενας μαθητής πήρε συνολικά 220 μονάδες. Σε πόσες ερωτήσεις απάντησε σωστά

$$3x + (100 - x) = 220$$

```
>>> solve(3*x+(100-x)-220)
[60]
```

Οντως αν απάντησε σε 60 ερωτήσεις σωστά τότε θα έχει απαντήσει 40 λάθος και θα πάρει 60*3+40*1=220.

Ασκηση 5.1.26 (Ασκηση 6 του βιβλίου, Σελ. 78) Η ηλικία ενός πατέρα είναι τετραπλάσια από την ηλικία του γιου του. Οι δύο ηλικίες μαζί συμπληρώνουν μισό αιώνα. Πόσο χρονών είναι ο καθένας;

$$4x + x = 50$$

```
>>> solve(4*x+x-50)
[10]
```

Ασκηση 5.1.27 (Ασκηση 7 του βιβλίου, Σελ. 78) Τρία αδέλφια μοιράζονται, εξίσου, μια κληρονομιά, που είναι ένα χωράφι και ένα διαμέρισμα. Ο πρώτος παίρνει το χωράφι. Ο δεύτερος παίρνει το διαμέρισμα, αλλά δίνει στον πρώτο 600€ και στον τρίτο 15.000€. Ποια ήταν η αξία του χωραφιού και ποια του διαμερίσματος;

Αν x η τιμή του χωραφιού και y η τιμή του διαμερίσματος τότε:

$$x + 600 = (y - 600 - 15000) = 15000$$

Οπότε

```
>>> solve(x+600-15000)
[14400]
>>> solve(y-600-15000-15000)
[30600]
```

Οπότε το χωράφι κοστίζει 14.400€ και το διαμέρισμα 30.600€.

Ασκηση 5.1.28 Σε κάθε μία από τις πράξεις (α) και (β) τα γράμματα αντιστοιχούν σε διαφορετικά μεταξύ τους ψηφία. Αντικατέστησε τα γράμματα Α, Β, Γ και Δ με τα κατάλληλα ψηφία.

$$AB + 47 = 73$$

$$\Gamma\Delta - 8 = \Delta5$$

```
>>> solve(x+47-73)
[26]
```

Το δεύτερο δεν μπορούμε να το υπολογίσουμε ολόκληρο. Είναι:

$$10\Gamma + \Delta - 8 = 10\Delta + 5$$
$$10\Gamma - 9\Delta - 13 = 0$$

Με δοκιμές βλέπουμε ότι αν το Γ είναι 1 τότε δεν μπορεί το Δ να έχει κατάλληλη τιμή. Το ίδιο και με το 2. Με το 3 όμως έχουμε

```
>>> sympy.solve(30-9*d-13)
[17/9]
```

Με το 4 έχουμε σωστή απάντηση:

```
>>> sympy.solve(40-9*d-13)
[3]
```

Ασκηση 5.1.29 Από μία ποσότητα κρασιού, αφαιρούμε 18 lt. Η υπόλοιπη ποσότητα χωράει σε δοχεία των 7 lt. Αν γνωρίζεις ότι η αρχική ποσότητα είναι μικρότερη από 100 lt και μεγαλύτερη από 90 lt, πόσα lt είναι η ποσότητα αυτή; Πόσα δοχεία θα χρησιμοποιήσουμε;

```
for i in range(20):
    if (7*i+18)>90 and (7*i+18)<100:
        print(7*i+18)</pre>
```

Που δίνει την απάντηση 95 οπότε 95-18 = 77 και η αρχική ποσότητα είναι μεγαλύτερη από 90lt και μικρότερη από 100lt.

Ασκηση 5.1.30 Ενας παραγωγός έφτιαξε 100 lt ξύδι και θέλει να το συσκευάσει σε μπουκάλια που χωράνε 0,75 lt. Να βρεις: (α) Πόσα μπουκάλια θα χρειαστεί. (β) Πόσα lt θα του περισσέψουν.

```
>>> 100//0.75
133
>>> 100-133*0.75
0.25
```

Ασκηση 5.1.31 (Ασκηση 11 του βιβλίου, Σελ. 78) Δύο συνεργεία καθαρισμού ακτών καθαρίζουν μία μεγάλη παραλία μήκους $18\frac{1}{2}$ Km. Το πρώτο συνεργείο καθαρίζει $3\frac{1}{2}$ Km και το δεύτερο συνεργείο $2\frac{1}{2}$ Km, κάθε μέρα. Τα δύο συνεργεία εργάζονται, στα δύο άκρα της παραλίας, έως ότου συναντηθούν. Σε πόσες ημέρες θα έχουν ολοκληρώσει τον καθαρισμό της παραλίας;

$$\left(3\frac{1}{2} + 2\frac{1}{2}\right) \cdot x = 18\frac{1}{2}$$
$$6 \cdot x = 18\frac{1}{2}$$

```
>>> solve(6*x-18-1/2)
[3.08333333333]
```

Θα συναντηθούν την 4η ημέρα.

Ασκηση 5.1.32 (Ασκηση 12 του βιβλίου, Σελ. 78) Ενα κατάστημα προσφέρει τους υπολογιστές με έκπτωση 20 ϵ . Ο Γιώργος πήγε με τον πατέρα του και αγόρασε έναν υπολογιστή και ένα κινητό τηλέφωνο αξίας 230 ϵ και πλήρωσαν συνολικά 1.070 ϵ . Ποια ήταν η αρχική αξία του υπολογιστή.

$$x - 20 + 230 = 1070$$

```
>>>solve(x-20+230-1070)
[860]
```

Ασκηση 5.1.33 (Ασκηση 13 του βιβλίου, Σελ. 78) Αυτή τη χρονιά η ηλικία ενός ανθρώπου είναι πολλαπλάσιο του 7 και την επόμενη χρονιά είναι πολλαπλάσιο του 9. Αν γνωρίζουμε ότι δεν είναι αιωνόβιος ποιά είναι η ηλικία του;

```
for i in range(100):
    if i%7==0 and (i+1)%9==0:
        print(i)
```

Που δίνει σαν αποτέλεσμα:

```
35
98
```

Αποδεκτή απάντηση είναι το 35.

Κεφάλαιο 6

Ποσοστά

Στον διπλανό πίνακα φαίνεται το σύνολο των πολιτών που ψήφισαν στα χωριά Α, Β, Γ και Δ και οι ψήφοι που πήραν οι αντίστοιχοι πρόεδροι που εκλέχτηκαν. Βρες, ποιος από τους προέδρους που εκλέχτηκαν, είναι ο πιο δημοφιλής.

Κοινότητα	Ψηφίσαντες	Ο πρόεδρος ψηφίστηκε από
Α	585	354
В	3.460	1.802
Γ	456	312
Δ	1.295	823

```
>>> 354/585
0.6051282051282051
```

Ομως για να το κάνουμε σαν ποσοστό % τότε θα πρέπει να το πολλαπλασιάσουμε με το 100 οπότε:

```
>>> 354/585*100
60.51282051282051
```

Επίσης καλό είναι η στρογγυλοποίηση να γίνει στο δεύτερο δεκαδικό ψηφίο. Οπότε

```
>>> round(354/585*100,2)
60.51
```

Μπορούμε να φτιάξουμε μια μικρή συνάρτηση που να τυπώνει σε ποσοστό έναν αριθμό ως εξής:

```
def pososto(x):
    print(str(round(x*100,2))+'%')
pososto(354/585)
```

Που δίνει το αποτέλεσμα 60.51% Οπότε έχουμε

```
>>> pososto(354/585)
60.51%
>>> pososto(1802/3460)
52.08%
>>> pososto(312/456)
68.42%
>>> pososto(823/1295)
63.55%
```

Ο πιο δημοφιλής είναι ο Γ που έχει 68.42%. Αν θέλουμε όμως η Python να λύσει το πρόβλημα τότε μπορούμε να φτιάξουμε το εξής:

```
class proedros():
    def __init__(self,onoma,psifoi,katoikoi):
        self.onoma = onoma
        self.psifoi = psifoi
        self.katoikoi = katoikoi
    def pososto(self):
        return(round(self.psifoi/self.katoikoi*100,2))

A = proedros('A',354,585)
B = proedros('B',1802,3460)
C = proedros('C',312,456)
D = proedros('C',312,456)
D = proedros('D',823,1295)

M = max([A,B,C,D],key=lambda x:x.pososto());
print(M.onoma)
```

Που δίνει το αποτέλεσμα C δηλαδή Γ.

Ασκηση 6.0.1 Να γραφούν, ως ποσοστά επί τοις εκατό, τα παρακάτω κλάσματα: (α) $\frac{4}{5}$ (β) $\frac{3}{8}$ (γ) $\frac{84}{91}$ με στρογγυλοποίηση στο εκατοστό.

Επειδή η συνάρτηση που έχουμε φτιάξει δεν προσαρμόζει την στρογγυλοποίηση μπορείς να την αλλάξεις ώστε να έχει έξτρα αυτό το δεδομένο. Μάλιστα μπορείς να δηλώσεις στην Python ότι αν δεν γράψεις αυτό το στοιχέιο θα είναι ο.

```
def pososto(x,strog = 2):
    print(str(round(x*100,strog))+'%')

pososto(4/5,strog=0)
pososto(3/8,strog=0)
pososto(84/91,strog=0)
```

Εχουμε το αποτέλεσμα:

```
80.0%
38.0%
92.0%
```

Μπορείς να αλλάξεις τη συνάρτηση ώστε να κάνει το αποτέλεσμα ακέραιο ειδικά αν το strog είναι ο.

```
def pososto(x,strog = 2):
    if strog == 0:
        print(str(int(round(x*100),0))+'%')
    else:
        print(round(int(x*100),strog)+'%')

pososto(4/5,strog=0)
pososto(3/8,strog=0)
pososto(84/91,strog=0)
```

Τότε το αποτέλεσμα θα είναι:

```
80%
37%<--!!!!!!!!!!!
92%
```

Ασκηση 6.0.2 (Στο βιβλίο βρίσκεται στη Σελ. 81) Να γραφούν, ως κλάσματα, τα ακόλουθα ποσοστά: (α) 12%, (β) 73%, (γ) 32,5%.

```
from fractions import Fraction
strx = input('Ποσοστό:')
if strx[-1] == '%':
    strx=strx[:-1]

fx = float(strx)
denom = 100
while int(fx) != fx:
    fx *= 10
    denom *= 10

fx = int(fx)
print(Fraction(fx,denom))
```

```
Ποσοστό
:12
3/25Ποσοστό
:73
73/100Ποσοστό
:32.5
```

Ασκηση 6.0.3 (Στο βιβλίο βρίσκεται στη Σελ. 81) Ποια 9α είναι η τιμή πώλησης ενός πουλόβερ, αξίας 150 ϵ , με επιβάρυνση Φ.Π.Α. 19%;

```
>>> 150 + 150*19/100
178.5
```

Ασκηση 6.0.4 (Ασκηση 1 του βιβλίου, Σελ. 81) Γράψε ως ποσοστά επί τοις εκατό, τα κλάσματα:

```
(\alpha) \frac{1}{5}, (\beta) \frac{3}{2}, (\gamma) \frac{1}{4}, (\delta) \frac{3}{4}, (\epsilon) \frac{3}{5}
```

```
>>> pososto(1/5)
20.0%
>>> pososto(3/2)
150.0%
>>> pososto(1/4)
25.0%
>>> pososto(3/4)
75.0%
>>> pososto(3/5)
60.0%
```

Ασκηση 6.0.5 (Ασκηση 2 του βιβλίου, Σελ. 81) Να μετατρέψεις σε ποσοστά επί τοις εκατό, τους δεκαδικούς αριθμούς: (α) 0,52, (β) 3,41, (γ) 0,19, (δ) 0,03, (ε) 0,07.

```
>>> 0.52*100
52
>>> 3.41*100
341
>>> 0.19*100
19
>>> 0.03*100
3
>>> 0.07*100
7
```

Αρα 52%, 341%, 19%, 3%, 7%.

Ασκηση 6.0.6 (Ασκηση 3 του βιβλίου, Σελ. 81) Να μετατρέψεις σε δεκαδικά κλάσματα τα ποσοστά: (α) 15%, (β)7%, (γ)48%, (δ) 50%. Στη συνέχεια, απλοποίησε τα δεκαδικά κλάσματα, έως ότου φτάσεις σε ανάγωγο κλάσμα.

Θα μετατρέψουμε τον προηγούμενο κώδικα σε συνάρτηση:

```
def posostoseklasma(fx):
    fx = float(fx)
    denom = 100
    while int(fx) != fx:
        fx *= 10
        denom *= 10
    fx = int(fx)
    return(Fraction(fx,denom))
```

```
print(posostoseklasma(15))
print(posostoseklasma(7))
print(posostoseklasma(48))
print(posostoseklasma(50))
```

Και το αποτέλεσμα είναι:

```
3/20
7/100
12/25
1/2
```

Ασκηση 6.0.7 (Ασκηση 4 του βιβλίου, Σελ. 81) Υπολόγισε: (α) το 10% των 3000€, (β) το 45% της 1 ώρας, (γ) το 20% του λίτρου, (δ) το 50% των 500 γραμμαρίων, (ε) το 25% του 1 κιλού.

```
>>> 10/100*3000
300.0
```

Αρα 300€.

```
>>> 45/100*60
27.0
```

Αρα 27 λεπτά.

```
>>> 20/100*1000
200.0
```

Aρα 200ml

```
>>> 50/100*500
250.0
```

Aρα 250g.

```
>>> 25/100*1000
250.0
```

Αρα 250 γραμμάρια.

Ασκηση 6.0.8 (Ασκηση 5 του βιβλίου, Σελ. 81) Βρες τι ποσοστό είναι: (α) τα 50 ϵ για τα 1.000 ϵ , (β) οι 30 ημέρες για το 1 έτος, (γ) τα 50 στρέμματα για τα 2.500 στρέμματα, (δ) οι 3 παλάμες για τα 10 μέτρα.

```
>>> 50/1000 * 100
5
```

Αρα 5%.

```
>>> 30/360 * 100
8.3333333333333
```

Αρα 8.33%.

```
>>> 50/2500 * 100
2.0
```

Αρα 2%.

Παλάμη λέμε το δεκατόμετρο dm οπότε οι 3 παλάμες είναι 3 dm δηλαδή 30cm. Οπότε:

```
>>> 30 / (10*100) * 100
3
```

Αρα 3%.

Ασκηση 6.0.9 (Ασκηση 6 του βιβλίου, Σελ. 81) Ενα μπουκάλι με οινόπνευμα παρέμεινε ανοικτό και εξατμίστηκε το 22% του όγκου του. Το μπουκάλι περιείχε αρχικά 0,610 lt. Πόσα lt οινοπνεύματος εξατμίστηκαν;

```
>>> 22*0.610 / 100
0.134199999999999
```

Οπότε η Python δίνει μια προσέγγιση της σωστής απάντησης που είναι: 0.1342.

Ασκηση 6.0.10 Σε ένα σημείο της γήινης σφαίρας, ο φλοιός έχει πάχος 50 Km, ο μανδύας 2.900 Km και ο πυρήνας 3.450 Km. (α) Να βρεις το μήκος της ακτίνας της Γης σε Km. (β) Να βρεις ποιο ποσοστό της ακτίνας της Γης κατέχει ο φλοιός, ο μανδύας και ο πυρήνας αντίστοιχα.

```
x = [50,2900,3450]
print(sum(x))
for i in x:
    print(100*i/sum(x))
```

Το αποτέλεσμα του προγράμματος είναι:

```
6400
0.78125
45.3125
53.90625
```

Οπότε το μήκος της ακτίνας της γης είναι 6400 Km. Ο φλοιός είναι το 0,78125%, ο μανδύας το 45,3125% και ο πυρήνας το 53,90625%.

Ασκηση 6.0.11 (Στο βιβλίο βρίσκεται στη Σελ. 82) Ενας ηλεκτρολόγος είχε έσοδα 2.856 ϵ το δεύτερο τρίμηνο του έτους. Πόσα χρήματα πρέπει να αποδώσει στο κράτος, αν ο Φ.Π.Α. που παρακρατά από τους πελάτες του είναι 19%.

Η σωστή απάντηση είναι:

```
>>> 2856*19/119
456.0
```

Ασκηση 6.0.12 Στην περίοδο των εκπτώσεων, ένα κατάστημα έκανε έκπτωση 35% στα είδη ρουχισμού και 15% στα παπούτσια. Πόσο 9α πληρώσουμε για ένα πουκάμισο και ένα ζευγάρι παπούτσια που κόστιζαν 58ε και 170 ϵ , αντίστοιχα, πριν τις εκπτώσεις.

```
>>> 170 * 15/100
25.5
>>> 170 - 25.5
144.5
>>> 58*35/100
20.3
>>> 58-20.3
37.7
>>> 37.7 + 144.5
182.2
```

Μπορείς να κάνεις τις πράξεις αυτές σε μία συνάρτηση neatimi:

```
def neatimi(timi,ekpt):
    return(timi-timi*ekpt/100)

neatimi(170,15)
neatimi(58,35)
```

Που δίνει σαν αποτέλεσμα:

```
144.5
37.7
```

Ασκηση 6.0.13 (Στο βιβλίο βρίσκεται στη Σελ. 82) Ποσό 1.000€ κατατέθηκε σε λογαριασμό ταμιευτηρίου, με επιτόκιο 5%. Πόσος είναι ο τόκος που θα αποδώσει το κεφάλαιο αυτό, μετά από 18 μήνες, αν οι τόκοι προστίθενται στο κεφάλαιο κάθε χρόνο;

Στον ένα χρόνο:

```
>>> 1000*5/100
50.0
```

Για τους υπόλοιπους έξι μήνες θα είναι τα μισά οπότε:

```
>>> 50.0/2
25.0
```

Συνολικά είναι:

```
>>> 50.0 + 25.0
75.0
```

Σαν συνάρτηση γίνεται:

```
def tokos(kefalaio,epitokio,mines):
    return(kefalaio*epitokio/ 100*mines/12)
print(tokos(1000,5,18))
```

Που δίνει το ίδιο αποτέλεσμα:

75

Ασκηση 6.0.14 (Ασκηση 1 του βιβλίου, Σελ. 82) Επιχειρηματίας αγόρασε μετοχές μιας εταιρείας, προς 50€ την κάθε μετοχή. Σε ένα μήνα η μετοχή έπεσε κατά 8% και το επόμενο δίμηνο ανέβηκε κατά 5% το μήνα. (α) Ποια ήταν η τιμή της μετοχής στο τέλος του τρίτου μήνα; (β) Η επένδυση του επιχειρηματία ήταν κερδοφόρα ή όχι; (γ) Ποιο είναι το ποσοστό κέρδους ή ζημίας του, επί του αρχικού κεφαλαίου;

```
>>> 50 - 8/100*50
46.0
>>> 46+5/100*46
48.3
>>> 48.3+5/100*48.3
50.7149999999996
```

Η τιμή της μετοχής είναι 50,715. Η επένδυση ήταν κερδοφόρα. Το ποσοστό κέρδους είναι:

```
>>> (50.715 - 50)/50*100
1.4300000000000068
```

Αρα το αποτέλεσμα είναι 1,43%.

Ασκηση 6.0.15 (Ασκηση 2 του βιβλίου, Σελ. 82) Κεφάλαιο 80.000 \in κατατέθηκε, σε λογαριασμό ταμιευτηρίου, με επιτόκιο 4,5% το χρόνο. (α) Ποιος θα είναι ο τόκος στο τέλος του πρώτου έτους; (β) Ποιος θα είναι ο τόκος στο τέλος του δεύτερου έτους, αν ο τόκος του πρώτου έτους κεφαλοποιηθεί;

```
>>> 80000*4.5/100
3600
>>> 80000+3600
83600.0
>>> 83600*4.5/100
3762.0
```

Ασκηση 6.0.16 (Ασκηση 3 του βιβλίου, Σελ. 82) Ενα καινούριο αυτοκίνητο κόστιζε 20.000 \in . Το αγόρασε κάποιος και μετά από 1 χρόνο ήθελε να το πουλήσει, κατά 30% λιγότερο, από όσο το αγόρασε. Ο υποψήφιος αγοραστής έμαθε, ότι το ίδιο ακριβώς μοντέλο, καινούριο, κόστιζε 25.000 \in . (α) Σε ποια τιμή θα αγόραζε το μεταχειρισμένο αυτοκίνητο; (β) Τι ποσοστό της τιμής του καινούριου αυτοκινήτου είναι η τιμή του μεταχειρισμένου; (γ) Αν ένα μαγαζί που πουλάει μεταχειρισμένα αυτοκίνητα δίνει το ίδιο μοντέλο σε τιμή 40% φτηνότερα από την τρέχουσα τιμή του καινούριου, από ποιον συμφέρει να αγοράσει το μεταχειρισμένο αυτοκίνητο ο υποψήφιος αγοραστής;

```
>>> 20000-20000*30/100
14000
```

Το αυτοκίνητο το πουλάει 14.000€.

```
>>> pososto(14000/25000) 56.00%
```

Είναι το 56%.

```
>>> 25000-25000*40/100
15000
```

Αρα το μεταχειρισμένο είνα φτηνότερο.

Ασκηση 6.0.17 (Ασκηση 4 του βιβλίου, Σελ. 82) Σε ένα προϊόν, έγινε η προσφορά που φαίνεται στην πινακίδα. Στη συσκευασία του προϊόντος υπήρχε σημειωμένη η συγκεκριμένη, για το είδος προσφορά, δηλαδή για κάθε 300 κ.εκ., πρόσθεσαν άλλα 100 κ.εκ. (α) Σύμφωνα, με όσα διαβάζεις, θεωρείς ότι αληθεύουν όσα γράφονται στην προσφορά; (β) Σε ποια περίπτωση η εταιρεία θα πρόσφερε, πράγματι, το 50% του προϊόντος ΔΩΡΕΑΝ;

```
>>> pososto(100/300)
33.33%
```

Αρα δεν ισχύει. Το 50% του 300 είναι:

```
>>> 50/100*300
150
```

150K.EK.

Ασκηση 6.0.18 (Ασκηση 5 του βιβλίου, Σελ. 82) Τι κεφάλαιο πρέπει να καταθέσουμε στην τράπεζα, για να πάρουμε στο τέλος ενός έτους 1.000 ϵ , αν το επιτόκιο είναι 2%;

$$x + x * 2\% = 1000$$

1ος τρόπος: Μπορείς να βάλεις την Python να λύσει την εξίσωση:

```
>>> solve(x+x*2/100 - 1000)
[50000/51]
>>> 50000/51
980.3921568627451
```

Δηλαδή αν βάλει 980, 39€ θα έχει:

```
>>> 980.39+980.39*2/100
999.9978
```

2ος τρόπος: Μπορείς να λύσεις την εξίσωση ως εξής:

$$x(1 + \frac{2}{100}) = 1000$$

$$x\frac{102}{100} = 1000$$

$$x = 1000 \cdot \frac{1}{\frac{102}{100}}$$

$$x = 1000 \frac{100}{102}$$

Οπότε και:

```
>>> 1000*100/102
980.3921568627451
```

Αυτή η λειτουργικότητα μπορεί να υλοποιηθεί και με μια συνάρτηση. Αν θέλουμε ένα ποσό μετά από έναν χρόνο με δοσμένο επιτόκιο ποιο ποσό πρέπει να επενδύσουμε;

```
def arxiko(teliko,epitokio):
    return(teliko/(1+epitokio/100))
arxiko(1000,2)
```

Που δίνει αποτέλεσμα:

980.3921568627451

Ασκηση 6.0.19 (Ασκηση 6 του βιβλίου, Σελ. 83) Τα βασικά τέλη διμήνου για λογαριασμό του ΟΤΕ είναι 22€ και η χρέωση για κάθε μονάδα 0,07€. Να βρεις πόσο θα πληρώσει ένας συνδρομητής, αν έχει κάνει 1.500 μονάδες συνδιαλέξεων και επί του συνόλου υπολογίζεται ΦΠΑ 19%.

```
>>> profpa = 22+1500*0.07
>>> fpa = profpa*19/100
>>> synolo = profpa + fpa
>>> synolo
151.1300000000002
```

Αρα 151,13€.

Ασκηση 6.0.20 (Ασκηση 7 του βιβλίου, Σελ. 83) Ενας έμπορος αγόρασε διάφορα εμπορεύματα συνολικής αξίας 30.000€. Πλήρωσε τοις μετρητοίς το 40% και τα υπόλοιπα με συναλλαγματικές, σε 4 μηνιαίες δόσεις με τόκο 1% τον μήνα. Να υπολογίσεις: (α) Το συνολικό ποσό της επιβάρυνσης από τους τόκους που θα πληρώσει. (β) Το ποσοστό της επιβάρυνσης αυτής, επί της αρχικής αξίας των εμπορευμάτων.

```
>>> ypoloipo = 30000*60/100
>>> anamina = ypoloipo/4
>>> plirwnei = anamina + 1/100*anamina
>>> epivarinsi = 4*plirwnei-ypoloipo
>>> epivarinsi
180.0
>>> pososto = epivarinsi/30000*100
>>> pososto
0.6
```

Ασκηση 6.0.21 (Ασκηση 8 του βιβλίου, Σελ. 83) Ενας τεχνικός είχε έσοδα σε ένα τρίμηνο 8.330 ϵ . Πόσο ΦΠΑ (19%) πρέπει να αποδώσει στην εφορία;

```
>>> solve(x + 19*x/100-8330)
7000
```

Οπότε το ΦΠΑ που θα πρέπει να αποδώσει θα είναι:

```
>>> 19/100*7000
1330.0
```

Που μπορεί να βρεθεί και σαν

```
>>> 8330-7000
1330
```

Ασκηση 6.0.22 (Ασκηση 9 του βιβλίου, Σελ. 83) Ενα ψυγείο κοστίζει, τοις μετρητοίς, 1.200 χωρίς το ΦΠΑ 19%. Κάποιος το αγόρασε με 50% προκαταβολή και το υπόλοιπο, σε 6 μηνιαίες δόσεις με τόκο 3% το μήνα. (α) Να υπολογίσεις πόσα χρήματα έδωσε, ως προκαταβολή, αν μαζί με αυτήν κατέβαλε και ολόκληρο το ποσό του ΦΠΑ. (β) Ποιο ήταν το ποσό της κάθε δόσης; (γ) Πόσο του στοίχισε συνολικά το ψυγείο;

```
prokataboli = 50/100*1200+19/100*1200
ypoloipo = (1200+19/100*1200) - prokataboli
dosixwristokous = ypoloipo/6
plirwse = prokataboli
```

```
print('Προκαταβολη:',prokataboli)

for i in range(6):
    dosi = dosixwristokous + 3/100*ypoloipo
    plirwse += dosi
    ypoloipo = ypoloipo - dosixwristokous
    print('Δόση '+str(i)+': '+str(dosi))

print('Συνολικα:',plirwse)
```

Το αποτέλεσμα είναι:

```
Προκαταβολη
: 828.0Δόση
0: 118.0Δόση
1: 115.0Δόση
2: 112.0Δόση
3: 109.0Δόση
4: 106.0Δόση
5: 103.0Συνολικα
: 1491.0
```

Ασκηση 6.0.23 (Ασκηση 10 του βιβλίου, Σελ. 83) Για τη διπλανή διαφήμιση: (α) Πόσο είναι το ΦΠΑ που πρέπει να πληρώσουμε; (β) Πόσο θα στοιχίσει το ραδιοκασετόφωνο, αν το αγοράσουμε με δόσεις; (γ) Αν το τραπεζικό επιτόκιο είναι 10%, ποια επιλογή αγοράς μας συμφέρει, με την προυπόθεση, ότι έχουμε όλο το απαιτούμενο ποσό σε λογαριασμό ταμιευτηρίου;

```
>>> 350*19/100
66.5
```

Με τις δόσεις του καταστήματος θα πληρώσουμε

```
>>> 30*16
480
>>> 480+66.5
546.5
```

Τοις μετρητοίς θα πληρώσουμε

```
>>> 350+66.5
416.5
```

Με 10% επιτόκιο θα πληρώσουμε

```
>>> 416.5+10/100*416.5
458.15
```

Αλλά αυτό θα είναι στο τέλος του χρόνου οπότε μένουν άλλοι 4 μήνες:

```
>>> 458.15+4/12*10/100*458.15
473.42
```

Αρα συμφέρει να πάρουμε την προσφορά της τράπεζας και να πληρώσουμε μετρητοίς στο κατάστημα.

Ασκηση 6.0.24 (Ασκηση 1 του βιβλίου, Σελ. 84) 1. Το 30% του x ισούται με το 90% του $\frac{x}{3}$.

```
>>> from sympy import *
>>> x = symbols('x')
>>> 90/100*x/3
0.3*x
```

Αρα Σωστό

Ασκηση 6.0.25 (Ασκηση 2 του βιβλίου, Σελ. 84) 2. Σε ένα βιβλίο έγινε αύξηση τιμής κατά 5% και δεύτερη αύξηση κατά 10% επί της νέας τιμής. Η συνολική αύξηση ήταν 15,5%.

```
>>> 110/100*105/100
1.1550000000000002
```

Η συνολική αύξηση ήταν 15,5% άρα Σωστό.

Ασκηση 6.0.26 (Ασκηση 3 του βιβλίου, Σελ. 84) 3. Οταν σ' ένα προϊόν αξίας 700 ϵ η έκπτωση είναι 200 ϵ , το ποσοστό έκπτωσης είναι περίπου 28,5%.

```
>>> 200/700
0.2857142857142857
```

Αρα Σωστό

Ασκηση 6.0.27 (Ασκηση 4 του βιβλίου, Σελ. 84) 4. Το 20% του 50 είναι 10.

```
>>> 20/100*50
10
```

Αρα Σωστό

Ασκηση 6.0.28 (Ασκηση 5 του βιβλίου, Σελ. 84) 5. $1 \in \varepsilon$ κπτωση σ' ε να στυλό που κοστίζει $4 \in \alpha$ ντιστοιχεί σε ποσοστό ε κπτωσης 25%.

```
>>> pososto(1/4)
25.0%
```

Ασκηση 6.0.29 (Ασκηση 6 του βιβλίου, Σελ. 84) 6. Ενα είδος μετά από έκπτωση 200 ϵ , κοστίζει 100 ϵ . Στο είδος έγινε έκπτωση 25%.

```
>>> pososto(200/300)
66.66%
```

Λάθος

Ασκηση 6.0.30 (Ασκηση 7 του βιβλίου, Σελ. 84) 7. Ο πληθυσμός μιας κωμόπολης ήταν 3.000 κάτοικοι και αυξήθηκε σε 6.000 κατοίκους. Λέμε ότι ο πληθυσμός αυξήθηκε κατά 100%.

```
>>> pososto(3000/3000)
100,00%
```

Σωστό

Ασκηση 6.0.31 (Ασκηση 8 του βιβλίου, Σελ. 84) 8. Το κόκκινο μέρος του κύκλου είναι το 15%.

```
>>> pososto(1-1/3-1/2)
16.67%
```

Ασκηση 6.0.32 (Ασκηση 9 του βιβλίου, Σελ. 84) 9. Μια τάξη έχει 28 μαθητές και μια μέρα απουσίαζαν οι 4, δηλαδή απουσίαζε το 15% της τάξης.

```
>>> pososto(4/28)
14.29%
```

Λάθος

Ασκηση 6.0.33 (Ασκηση 10 του βιβλίου, Σελ. 84) 10. Το 30% της ώρας είναι 25 λ επτά.

```
>>> 30/100*60
18
```

Λάθος

Ασκηση 6.0.34 (Ασκηση 11 του βιβλίου, Σελ. 84) 11. Μια αύξηση 100 ϵ σε ένα είδος που κόστιζε 400 ϵ είναι μια αύξηση 15%.

```
>>> pososto(100/400)
25%
```

Λάθος

Κεφάλαιο 7

Ανάλογα ποσά - Αντιστρόφως ανάλογα ποσά

Ασκηση 7.0.1 Να σχεδιάσεις ένα ορθοκανονικό σύστημα ημιαξόνων, με μονάδα το 1 cm και να τοποθετήσεις τα σημεία A(2,3), B(3,2), $\Gamma(4,5)$, $\Delta(5,5)$, E(1,4), Z(7,3), H(7,2), $\Theta(6,2)$, I(6,0), K(0,5). Τι παρατηρείς για τα σημεία I και I; Πού βρίσκονται αυτά; Μπορείς να γενικεύσεις τις παρατηρήσεις σου για τα σημεία που έχουν τετμημένη ή τεταγμένη το μηδέν;

Ασκηση 7.0.2 (Ασκηση 2 του βιβλίου, Σελ. 89) Σε ορθοκανονικό σύστημα ημιαξόνων να τοποθετήσεις τα σημεία A(2,1), B(1,2), F(2,3) και A(3,2). Τι σχήμα είναι το $ABF\Delta$; AV τα ευθύγραμμα τμήματα AF και BD τέμνονται στο σημείο BD κίναι οι συντεταγμένες του BD

```
import matplotlib.pyplot as plt
```



```
plt.clf()
points = [(2,1), (1,2), (2,3), (3,2)]
pointName = ['A','B','\'\','\']
x = [p[0] for p in points]
y = [p[1] for p in points]
color=['m','g','r','b']
plt.grid()
plt.scatter(x,y, s=100 ,marker='o', c=color)
for (i,p) in enumerate(points):
    plt.annotate(pointName[i],(p[0],p[1]))

x = [points[0][0],points[2][0]]
y = [points[0][1],points[2][1]]
plt.plot(x,y)
x = [points[3][1],points[3][0]]
y = [points[3][1],points[3][1]]
plt.plot(x,y)
```


plt.show()

Ασκηση 7.0.3 (Ασκηση 3 του βιβλίου, Σελ. 89) Γράψε πέντε διατεταγμένα ζεύγη σημείων, των οποίων η τετμημένη τους είναι ίση με την τεταγμένη τους. Μπορείς να τα τοποθετήσεις, σε ένα ορθοκανονικό σύστημα ημιαξόνων; Τι παρατηρείς;

```
import matplotlib.pyplot as plt

plt.clf()
points = [(1,1), (2,2), (5,5), (10,10), (15,15)]
pointName = ['A','B','\Gamma','E']
x = [p[0] for p in points]
y = [p[1] for p in points]
color=['m','g','r','b']
plt.grid()
plt.scatter(x,y, s=100 ,marker='o', c=color)
```


Πλευρά τετραγώνου	1,5 cm	4 cm	4,5 cm
Περίμετρος τετραγώνου			

```
for (i,p) in enumerate(points):
    plt.annotate(pointName[i],(p[0],p[1]))
plt.show()
```

Ασκηση 7.0.4 (Στο βιβλίο βρίσκεται στη Σελ. 90) Συμπλήρωσε τον παρακάτω πίνακα:

- Εξήγησε πώς προχύπτουν οι αριθμοί της δεύτερης σειράς.
- Βρες για κάθε τετράγωνο το κλάσμα πλευρά προς περίμετρο.
- Ποιο είναι το συμπέρασμα που βγάζεις;

```
>>> 4*1.5
6.0
>>> 4*4
16
>>> 4*4.5
18.0
```

```
Πλευρά τετραγώνου 1,5 cm 4 cm 4,5 cm Θυμηθείτε το ποσοστό σε κλάσμα:
```

```
def posostoseklasma(fx):
    fx = float(fx)
    denom = 100
    while int(fx) != fx:
        fx *= 10
        denom *= 10
    fx = int(fx)
    return(Fraction(fx,denom))
```

Το fx είναι είναι ο αριθμητής ενός κλάσματος με παρονομαστή 100. Εδώ δεν θα υπάρχει ο παρονομαστής 100 οπότε έχουμε denom = 1.

```
def dekadikosseklasma(fx):
    fx = float(fx)
    denom = 1
    while int(fx) != fx:
        fx *= 10
        denom *= 10
    fx = int(fx)
    return(Fraction(fx,denom))

dekadikosseklasma(1.5/6)
dekadikosseklasma(4/16)
dekadikosseklasma(4.5/18)
```

και το αποτέλεσμα είναι:

```
>>> dekadikosseklasma(1.5/6)
Fraction(1, 4)
>>> dekadikosseklasma(4/16)
Fraction(1, 4)
>>> dekadikosseklasma(4.5/18)
Fraction(1, 4)
```

Αρα παντού το κλάσμα είναι $\frac{1}{4}$.

Ασκηση 7.0.5 (Στο βιβλίο βρίσκεται στη Σελ. 90) Χρησιμοποιούμε τη φωτογραφική μηχανή για να απεικονίσουμε εικόνες αντικειμένων. Οι εικόνες αυτές δείχνουν τα πραγματικά αντικείμενα σε σμίκρυνση. Στη φωτογραφία το ύψος

ενός παιδιού είναι 2 cm ενώ γνωρίζουμε ότι το πραγματικό του ύψος είναι 1,65 m = 165 cm. Πόση θα είναι τότε η σμίκρυνσή του στη φωτογραφία;

```
>>> 2/165
0.0121212121212121
```

Ασκηση 7.0.6 (Στο βιβλίο βρίσκεται στη Σελ. 91) Μετρούμε μια απόσταση, σε χάρτη, με κλίμακα 1:10.000.000 και τη βρίσκουμε ίση με 2,4 cm. Ποια είναι η πραγματική απόσταση των δύο σημείων;

```
>>> x = 2.4*10000000
>>> x
24000000
>>> x = x/100
>>> x
2400000
>>> x
2400000
>>> x
2400000
>>> x = x/10000
>>> x
2400000
```

240Km

Ασκηση 7.0.7 (Ασκηση 3 του βιβλίου, Σελ. 92) Σε μια φωτογραφία το ύψος ενός ανθρώπου είναι 4 cm, ενώ το πραγματικό το ύψος είναι 1,76 m. Πόσο έχει σμικρυνθεί η εικόνα του ανθρώπου στη φωτογραφία;

```
def pososto(x):
    print(str(round(x*100,2))+'%')
```

Αν θυμηθούμε τη συνάρτηση pososto τότε

```
>>> pososto(4/176)
2.27%
```

Ασκηση 7.0.8 (Ασκηση 4 του βιβλίου, Σελ. 92) Ενας προβολέας διαφανειών προβάλλει το κείμενο μιας διαφάνειας στον απέναντι τοίχο. Αν ένα "Α" έχει ύψος 7 mm στη διαφάνεια και 4,2 cm στον τοίχο, ποια είναι η μεγέθυνση που δίνει ο προβολέας

```
>>> pososto(4.2/0.7)
600%
```

Ασκηση 7.0.9 (Ασκηση 5 του βιβλίου, Σελ. 92) Η σύνθεση μιας μπλούζας είναι 80% βαμβάκι και το υπόλοιπο πολυεστέρας. Αν η μπλούζα ζυγίζει 820 gr, πόσα γραμμάρια ζυγίζουν τα νήματα του πολυεστέρα που περιέχει;

Κλίμακα	1:5	3:8	1:30		1:100
Μήκος σε σχέδιο	4cm		12cm	2cm	3,5cm
Πραγματικό ύψος		24m		10m	

Κλίμακα	1:5	3:8	1:30	1:500	1:100
Μήκος σε σχέδιο	4cm	9cm	12cm	2cm	3,5cm
Πραγματικό ύψος	20cm	24m	360cm	10m	350cm

```
        X
        2
        4

        П
        8
        16
```

```
>>> 820*20/100
164.0
```

Ασκηση 7.0.10 (Ασκηση 6 του βιβλίου, Σελ. 92) Να συμπληρωθεί ο πίνακας

```
>>> from fractions import Fraction
>>> 5*4
20
>>> 3/8*24
9.0
>>> 12*30
360
>>> Fraction(2,1000)
Fraction(1, 500)
>>> 3.5*100
350
```

Αρα ο πίνακας γίνεται:

Ασκηση 7.0.11 (Ασκηση 7 του βιβλίου, Σελ. 92) Οι διαστάσεις ενός ορθογωνίου παραλληλογράμμου είναι x+2 και x.

- (α) Να γράψεις τη σχέση που συνδέει την περίμετρο Π του ορθογωνίου με το x.
 - (β) Να συμπληρώσεις τον πίνακα:

a)

```
>>> from sympy import *
>>> x = symbols('x')
>>> p = x+x+2+x+x+2
>>> p
4*x + 4
```

β)

Х	1	2	3	4
П	8	12	16	20

```
>>> solve(p-8)
[1]
>>> p.subs(x,2)
12
>>> solve(p-16)
[3]
>>> p.subs(x,4)
20
```

και ο πίνακας γίνεται:

Ασκηση 7.0.12 (Ασκηση 8 του βιβλίου, Σελ. 92) Αν οι διαστάσεις ενός δωματίου, σε ένα σχέδιο με κλίμακα 1:250, είναι 3x5, οι πραγματικές διαστάσεις του δωματίου θ α είναι θ 0.

```
>>> 3*250
750
>>> 5*250
1250
```

Οπότε το δωμάτιο είναι 7,5m x 12,5m αν οι διαστάσεις ήταν σε cm.

Ασκηση 7.0.13 (Ασκηση 9 του βιβλίου, Σελ. 92) Αν ανακατέψουμε 2 κιλά κόκκινο χρώμα και 3 κιλά κίτρινο χρώμα, φτιάχνουμε μια συγκεκριμένη απόχρωση του πορτοκαλί. Αν ανακατέψεις 5 κιλά κόκκινο χρώμα και 6 κιλά κίτρινο, θα πάρεις την ίδια απόχρωση; Δικαιολόγησε την απάντησή σου.

```
>>> 3/2 == 6/5
False
```

Οχι δεν είναι η ίδια απόχρωση.

Ασκηση 7.0.14 (Ασκηση 2 του βιβλίου, Σελ. 93) Οταν ο Κώστας έκλεισε τα δώδεκα χρόνια είχε το ένα τρίτο της ηλικίας της μητέρας του. Οταν θα γίνει είκοσι χρόνων, ο λόγος των δύο ηλικιών τους θα παραμείνει ο ίδιος;

```
>>> ilikiaMiteras = 3*12
>>> ilikiaMiteras
36
>>> xronia = 20-12
>>> xronia
8
>>> neailikiaMiteras = ilikiaMiteras + xronia
>>> neailikiaMiteras = 44
```

Х	0	1	0,3		
у				$\frac{5}{3}$	3

Х	0	1	0,3	2,5	4,5
у	0	0,6666	0,2	5 3	3

```
>>> 44/20 == 36/12
False
```

Αρα όχι.

Ασκηση 7.0.15 Να συμπληρωθεί ο πίνακας, αν γνωρίζουμε ότι τα ποσά x και \mathbb{Z} είναι ανάλογα, με συντελεστή αναλογίας $\alpha=\frac{2}{3}$.

$$y = \frac{2}{3}x$$

```
>>> from sympy import *
>>> (x,y) = symbols('x y')
>>> e = 2/3*x
>>> e.subs(x,0)
0
>>> e.subs(x,1)
0.666666666666667
>>> e.subs(x,0.3)
0.200000000000000
>>> solve(e-5/3)
[2.50000000000000]
>>> solve(e-3)
[4.500000000000000]
```

Και ο πίνακας γίνεται:

Ασκηση 7.0.16 (Ασκηση 2 του βιβλίου, Σελ. 92) Σε ένα διάλυμα ζάχαρης η περιεκτικότητα σε ζάχαρη είναι 23%. Πόσα γραμμάρια ζάχαρης υπάρχουν σε 300 gr διαλύματος;

```
>>> 300*23/100
69.0
```

Ασκηση 7.0.17 (Ασκηση 3 του βιβλίου, Σελ. 97) Ενα πλοίο έχει σταθερή ταχύτητα και καλύπτει απόσταση 80 Km σε 2 ώρες. Σε πόσο χρόνο θα καλύψει απόσταση 2.000 Km;

$$\frac{2}{80} = \frac{x}{2000}$$

Х	3	5	7	
у	8	10	12	

Х	3	4	6	11
у	0,9	1,2	1,8	3,3

x	5	0	1			3,7	0,61	
у	10,05			2	0,125			0,55
hline				-				

```
>>> from sympy import *
>>> x = symbols('x')
>>> solve(2/80-x/2000)
[50.0000000000000]
```

Η απάντηση είναι 50 ώρες.

Ασκηση 7.0.18 Εξέτασε αν τα ποσά που δίνονται στους παρακάτω πίνακες είναι ανάλογα: (α) (β)

```
>>> 8/3==10/5==12/7
False
>>> 0.9/3==1.2/4==1.8/6==3.3/11
True
```

Ασκηση 7.0.19 (Ασκηση 4 του βιβλίου, Σελ. 98) Στον πίνακα που ακολουθεί, τα ποσά x και y είναι ανάλογα. Υπολόγισε τον συντελεστή αναλογίας τους και συμπλήρωσε τον πίνακα.

Η αναλογία είναι

```
>>> 10.05/5
2.010000000000002
```

Ομως αυτό είναι 2,01 Οπότε:

```
>>> 0*2.01
0.0
>>> 1*2.01
2.01
>>> 2/2.01
0.9950248756218907
>>> 0.125/2.01
0.06218905472636817
>>> 3.7*2.01
7.43699999999999999
>>> 0.61*2.01
```

131

								0,273632
у	10,05	0	2.01	2	0,125	7,437	1.226	0,55
hline			•					

Βάρος	58	71	56	68
Υψος	1,60	1,65	1,62	1,72

Τιμή	6€	2,8€	5,2€	3,2€	3,6€	4,8€	2,4€	1,6€	4,4€	2€
Κιλά										

1.2260999999999997

>>> 0.55/2.01

0.27363184079601993

και προσεγγιστικά ο πίνακας γίνεται:

7.1 Ανάλογα ποσά

Ασκηση 7.1.1 Σε μια παρέα κάποιος υποστήριζε ότι το βάρος του ανθρώπου είναι ανάλογο του ύψους του. Μετρήθηκαν, λοιπόν, όλοι και έβαλαν στον παρακάτω πίνακα τα αποτελέσματα σε Κ.

- Μπορείς να επιβεβαιώσεις ή να απορρίψεις τον ισχυρισμό αυτό;
- Πώς δικαιολογείς το συμπέρασμά σου;

Οπότε ο ισχυρισμός απορρίπτεται.

Ασκηση 7.1.2 Ο μανάβης πουλάει τα καρπούζια προς 0,4 Q το κιλό. Μέσα σε μια ημέρα πούλησε 11 καρπούζια που ζύγιζαν 100 κιλά συνολικά. Ο μανάβης έγραφε, σ' ένα χαρτί, τα λεφτά που εισέπραττε κάθε φορά. Ξέχασε, όμως, μία φορά να το σημειώσει.

Μπορείς να τον βοηθήσεις συμπληρώνοντας τα κενά του παρακάτω πίνακα:

 Δικαιολόγησε τα αποτελέσματα των πράξεων που έκανες και προσπάθησε να διατυπώσεις έναν γενικό κανόνα.

Τα χρήματα που πήρε συνολικά θα είναι 0,4*100=40ε. Οπότε μπορούμε να αθροίσουμε τα χρήματα και να βρούμε τα κιλά που πωλήθηκαν από τα χρήματα.

Τιμή	6€	2,8€	5,2€	3,2€	4€	3,6€	4,8€	2,4€	1,6€	4,4€	2€
Κιλά	15	7	13	8	10	9	12	6	4	1	5

```
>>> 6+2.8+5.2+3.2+3.6+4.8+2.4+1.6+4.4+2
36.0
>>> 36/0.4
90.0
>>> 100-90
10
>>> 10*0.4
```

Για να συμπληρώσουμε ολόκληρο τον πίνακα μπορούμε να βρούμε τα κιλά από τα χρήματα διαιρώντας με το 0,4.

```
>>> 6/0.4
15.0
>>> 2.8/0.4
6.99999999999999
>>> 5.2/0.4
13.0
>>> 3.6/0.4
9.0
>>> 4.8/0.4
11.99999999999998
>>> 2.4/0.4
5.99999999999999
>>> 1.6/0.4
4.0
>>> 4.4/0.4
11.0
>>> 2/0.4
5.0
>>>
```

Αν λάβουμε υπόψη τις στρογγυλοποιήσεις ο πίνακας γίνεται:

Ασκηση 7.1.3 (Στο βιβλίο βρίσκεται στη Σελ. 99) Η σχέση, μεταξύ δύο ανάλογων ποσών x και με συντελεστή αναλογίας $\alpha = 3$, δίνεται από τον τύπο:

$$y = 3 \cdot x$$

.

- Συμπλήρωσε τα κενά του πίνακα και με άλλες τιμές των αναλόγων ποσών x και.
- Βρες τα σημεία του επιπέδου που αναπαριστούν τα παραπάνω ζεύγη τιμών.

```
    X
    0
    1
    2
    3

    Y
    0
    2
    1
    1.5
```

Πίνακας 7.1: Πίνακας Α

```
    X
    0
    1
    2
    3

    y
    1
    1.5
    2
    2.5
```

Πίνακας 7.2: Πίνακας Β

- Προσπάθησε να διαπιστώσεις, εάν τα σημεία ανήκουν σε μία ημιευθεία ή όχι.
- Η ημιευθεία αυτή περνάει από το σημείο Ο(ο,ο) δηλαδή την αρχή των ημιαξόνων;

```
import matplotlib.pyplot as plt
from random import randint
from math import floor
plt.clf()
points = []
for i in range(10):
    x = 0+randint(0,10)*0.5
    y = 3*x
    points.append((x,y))

x = [p[0] for p in points]
y = [p[1] for p in points]
color=['m','g','r','b']
plt.grid()
plt.scatter(x,y, s=100 ,marker='o', c=color)
```

Οπότε τα σημεία ανήκουν σε ημιευθεία η οποία περνάει από την αρχή των αξόνων.

Ασκηση 7.1.4 (Στο βιβλίο βρίσκεται στη Σελ. 100) Δίνονται οι πίνακες Α, Β, Γ και Δ.

(α) Να γίνει η γραφική απεικόνιση των ζευγών (x,y) των πινάκων στο επίπεδο και (β) να διαπιστωθεί σε ποια περίπτωση αυτά παριστάνουν ποσά ανάλογα.

```
import matplotlib.pyplot as plt
```


Πίνακας 7.3: Πίνακας Γ

Πίνακας 7.4: Πίνακας Δ

```
plt.clf()
pointsA = [(0,0),(1,2),(2,1),(3,1.5)]
pointsB = [(0,1),(1,1.5),(2,2),(3,2.5)]
pointsC = [(0,0),(1,1),(2,2),(3,3)]
pointsD = [(0,0),(1,0.5),(2,1),(3,1.5)]
x = [p[0] for p in pointsA]
y = [p[1] for p in pointsA]
plt.grid()
plt.plot(x,y, marker='o', c='r')
x = [p[0] for p in pointsB]
y = [p[1] for p in pointsB]
plt.grid()
plt.plot(x,y, marker='o', c='g')
x = [p[0] for p in pointsC]
y = [p[1] for p in pointsC]
plt.grid()
plt.plot(x,y,marker='o', c='b')
x = [p[0]  for p in pointsD]
y = [p[1] for p in pointsD]
plt.grid()
plt.plot(x,y, marker='o', c='m')
plt.show()
```

Μια πιο σύντομη έκδοση του προγράμματος που δίνει το ίδιο αποτέλεσμα είναι:

Х	1	2		
у	1.5	3		

Ασκηση 7.1.5 (Ασκηση 1 του βιβλίου, Σελ. 101) Δύο ποσά x και είναι ανάλογα, με συντελεστή αναλογίας α = 1,5.

- (α) Δημιούργησε έναν πίνακα τιμών των δύο ποσών, ο οποίος να περιέχει τουλάχιστον δύο ζεύγη τιμών.
 - (β) Βρες τα σημεία που αναπαριστούν τα ζεύγη τιμών του πίνακά σου.
- (γ) Σχεδίασε τη γραφική παράσταση της σχέσης αναλογίας των ποσών χ και , σε ένα ορθοκανονικό σύστημα ημιαξόνων.

```
import matplotlib.pyplot as plt
plt.clf()
points = [(1,1.5),(2,3)]
```



```
x = [p[0] for p in points]
y = [p[1] for p in points]
plt.grid()
plt.plot(x,y, marker='o', c='r')
plt.show()
```

Καλύτερα όμως είναι να βάλουμε και το σημείο (0,0) ως εξής:

```
import matplotlib.pyplot as plt

plt.clf()
points = [(0,0),(1,1.5),(2,3)]

x = [p[0] for p in points]
y = [p[1] for p in points]

plt.grid()
```


Ασκηση 7.1.6 (Ασκηση 2 του βιβλίου, Σελ. 101) Σε κατάλληλο ορθογώνιο σύστημα ημιαξόνων να σχεδιάσεις τις γραφικές παραστάσεις για κάθε μία από τις ακόλουθες σχέσεις αναλογίας:

- (a) $y = \left(\frac{1}{2}\right) \cdot x$, (b) $y = 3 \cdot x$,
- (y) $y = 5, 5 \cdot x$
- (δ) $y = 10 \cdot x$,
- (ϵ) $y = 0,01 \cdot x$.

Μπορούμε να τις σχεδιάσουμε και όλες μαζί με διαφορετικά χρώματα. Εχουν ένα κοινό σημείο ενώ μπορούμε να υπολογίσουμε εύκολα ένα δεύτερο, π.χ. για x = 10.


```
import matplotlib.pyplot as plt
from sympy import *
x = symbols('x')

analogies = [1/2*x,3*x,5.5*x,10*x,0.01*x]
colors = ['r','g','b','c','m']
for (i,s) in enumerate(analogies):
    x = symbols('x')
    points = [(0,0),(10,s.subs(x,10))]
    x = [p[0] for p in points]
    y = [p[1] for p in points]
    plt.grid()
    plt.plot(x,y, marker='o', c=colors[i])
```

Ομως τα συστήματα δεν είναι κατάλληλα για όλες τις γραφικές παραστάσεις ειδικά η τελευταία φαίνεται να είναι σταθερή στο ο. Αν τη σχεδιά-

σουμε μόνη της η matplotlib θα υπολογίσει ένα κατάλληλο σύστημα αξόνων, δες στον άξονα y.

```
import matplotlib.pyplot as plt
from sympy import *

points = [(0,0),(10,0.01*10]
x = [p[0] for p in points]
y = [p[1] for p in points]
plt.grid()
plt.plot(x,y, marker='o', c='m')

plt.show()
```

Ασκηση 7.1.7 Αντιστοίχισε κάθε πίνακα με ένα από τους προτεινόμενους τύπους:

```
Х
           4
                7
                     12
(A)
                           (1) y = 2x + 3
       у
          10
                     30
               17,5
       Х
           5
               7,5
                     9
(B)
                                  y = 3x
                           (2)
       y
           11
               16
                    19
            2
                3
                   10
(T)
                           (3) y = 12 : x
            7
               9
                   23
        y
            2
                    6
         Х
                4
(\Delta)
                           (4)
                                y = 2, 5x
         У
            6
                    2
                3
          2
              5
                    0,5
(E)
                           (5) y = 2x + 2
                   0,25
             2,5
       У
          1
           0,2
                6
                     10
       Χ
(Z)
                           (6) y = 2x + 1
               14
                     22
       y
           2,4
       Х
           1
              1,2
                    2,5
(H)
                           (7) y = 4x - 1
       y
           3
              3,6
                    7,5
           0,8
       Х
                    1,5
                                 y = 0,5x
(\Theta)
                           (8)
           2,2
                     5
       y
                3
```

```
from sympy import *
x = symbols('x')
pointsList = [[(4,10),(7,17.5),(12,30)],
              [(5,11),(7.5,16),(9,19)],
              [(2,7),(3,9),(10,23)],
              [(2,6),(4,3),(6,2)],
              [(2,1),(5,2.5),(0.5,0.25)],
              [(0.2,2.4),(6,14),(10,22)],
              [(1,3),(1.2,3.6),(2.5,7.5)],
              [(0.8,2.2),(1,3),(1.5,5)]]
typoi = [2*x+3,3*x,12/x,2.5*x,2*x+2,2*x+1,4*x-1,0.5*x]
onomataPinaka = ['A','B','Γ','Δ','E','Z','H','Θ']
for (arithmosPinaka, points) in enumerate(pointsList):
    for (arithmosTipou, t) in enumerate(typoi):
        for p in points:
            x = symbols('x')
            if abs((p[1] - t.subs(x,p[0]))) > 1e-8:
                break
        else:
            print(onomataPinaka[arithmosPinaka],'-',arithmosTipou+1)
```

Που δίνει το αποτέλεσμα:

```
A
- 4B
- 6Γ
```

```
- 1Δ
- 3E
- 8Z
- 5H
- 20
- 7
```

Χρησιμοποιούμε abs((p[1] - t.subs(x,p[0]))) > 1e-8 αντί για το πιο απλό p[1]!=t.subs(x,p[0]) γιατί στην δεύτερη περίπτωση θα έχουμε σφάλματα απο στρογγυλοποιήσεις.

Ασκηση 7.1.8 (Ασκηση 4 του βιβλίου, Σελ. 101) Ενας καταστηματάρχης αθλητικών ειδών διαθέτει 12.000 ϵ για να αγοράσει φόρμες γυμναστικής, μαγιό και αθλητικά παπούτσια. Κάθε φόρμα κοστίζει 40 ϵ , κάθε μαγιό 20 ϵ και κάθε ζευγάρι παπούτσια 50 ϵ .

- (α) Να βρεις τις σχέσεις αναλογίας "χρήματα-κομμάτια από κάθε είδος" και να τις παραστήσεις γραφικά στο ίδιο σύστημα ορθογωνίων αξόνων.
- (β) Ο καταστηματάρχης αποφάσισε να διαθέσει το ίδιο ποσό, για κάθε είδος. Βρες πόσα κομμάτια από κάθε είδος θα αγοράσει με τα χρήματα που διαθέτει, χρησιμοποιώντας μόνο τη γραφική παράσταση των σχέσεων που δημιούργησες στο πρώτο ερώτημα της άσκησης.

$$y = x/40$$
$$y = x/20$$
$$y = x/50$$

Αν δώσει ο ευρώ τότε το y είναι ο σε όλες τις γραφικές παραστάσεις. Αν δώσει 200 ευρώ τότε θα πάρει 5 φόρμες (200/40=5), 10 μαγιό (200/40=10), και 4 ζευγάρια αθλητικά παπούτσια (200/50=40). Οπότε μπορούμε να σχεδιάσουμε τις ευθείες με τα σημεία: (0,0) και (200,5), (200,10), (200,50) αντίστοιχα.

Ασκηση 7.1.9 (Στο βιβλίο βρίσκεται στη Σελ. 103) Για να φτιάξουμε γλυκό βύσσινο πρέπει να καθαρίσουμε τα βύσσινα από τα κουκούτσια. Αν καθαρίσουμε 2,5 Kg βύσσινο, παίρνουμε 2 Kg καθαρό βύσσινο. Αν καθαρίσουμε 5 Kg βύσσινο, τι ποσότητα καθαρού βύσσινου θα πάρουμε;

Για αυτή την άσκηση και όλες τις αντίστοιχες μπορούμε να προγραμματίσουμε μια συνάρτηση:

```
def analoga(gnwsto1,gnwsto2,analogo1):
    #analogo2/analogo1 = gnwsto2/gnwsto1
    analogo2 = gnwsto2/gnwsto1*analogo1
    return(analogo2)

print(analoga(2,5,2,5))
```

Που δίνει το σωστό αποτέλεσμα

4.0

Ασκηση 7.1.10 (Στο βιβλίο βρίσκεται στη Σελ. 104) Ενας μεσίτης αγοράζει ένα σπίτι 360.000 \in και σκοπεύει να το πουλήσει με κέρδος 28%. Σε έναν πελάτη έκανε έκπτωση 15%, επί της τιμής πώλησης.

- (α) Πόσο πουλήθηκε το σπίτι στον πελάτη αυτόν;
- (β) Ποιο είναι το ποσοστό κέρδους του μεσίτη, για το σπίτι αυτό;

Αρα λόγω της έκπτωσης το τελικό κέρδος του μεσίτη ήταν 8.8%.

Ασκηση 7.1.11 (Ασκηση 1 του βιβλίου, Σελ. 105) Ενας πάσσαλος ύψους 1,2 m ρίχνει σκιά 3 m. Την ίδια στιγμή ένα δέντρο ρίχνει σκιά 14 m. Αν γνωρίζουμε ότι τα ποσά ύψος - σκιά είναι ανάλογα, να βρεθεί το ύψος του δέντρου.

```
>>> analoga(3,1.2,14)
5.6
```

Ασκηση 7.1.12 (Στο βιβλίο βρίσκεται στη Σελ. 2) [105] Το βάρος στο φεγγάρι και το βάρος στη γη είναι ποσά ανάλογα. Ενας αστροναύτης ζύγιζει στο φεγγάρι 12,9 Kg και στη γη 78 Kg. Πόσο θα ζυγίζει στο φεγγάρι ένα παιδί, που στη γη έχει βάρος 52 Kg;

```
>>> analoga(78,12.9,52)
8.6
```

Ασκηση 7.1.13 (Ασκηση 3 του βιβλίου, Σελ. 105) Από 100 Kg σταφύλια βγαίνουν 80 Kg μούστος. Ενας αμπελουργός θέλει να γεμίσει με μούστο 6 βαρέλια, των 350 Kg το καθένα. Πόσα K σταφύλια, της ίδιας ποιότητας, πρέπει να πατήσει;

```
>>> analoga(80,100,6*350)
2625.0
```

Ασκηση 7.1.14 (Ασκηση 4 του βιβλίου, Σελ. 105) Δύο εργάτες δούλεψαν σε μια οικοδομή και πήραν μαζί 270 ϵ . Ο πρώτος δούλεψε 4 ημέρες και ο δεύτερος 5 ημέρες. Πόσα χρήματα αντιστοιχούν στον καθένα.

```
>>> analoga(9,270,4)
120.0
>>> analoga(9,270,5)
150.0
```

Kαι όντως 120 + 150 = 270.

Ασκηση 7.1.15 (Ασκηση 5 του βιβλίου, Σελ. 105) Το θαλασσινό νερό περιέχει αλάτι σε ποσοστό 3%. Πόσα κιλά θαλασσινό νερό πρέπει να εξατμιστούν για να πάρουμε 60Kg αλάτι;

```
>>> analoga(3,100,60)
2000.000000000002
```

Αρα 2 τόνοι θαλασσινό νερό.

Ασκηση 7.1.16 (Ασκηση 6 του βιβλίου, Σελ. 105) Ενας γεωργός είχε ένα χωράφι 7 στρέμματα και πήρε και το γειτονικό χωράφι εμβαδού 8 στρεμμάτων, για να φυτέψει καλαμπόκι. Η συμφωνία με το γείτονά του ήταν να του δώσει το 15 της παραγωγής του χωραφιού του. Η συνολική παραγωγή ήταν 14 τόνοι καλαμπόκι. Πόσους τόνους θα πάρει ο γεωργός και πόσους ο γείτονάς του;

```
>>> xwrafi8 = analoga(7+8,14000,8)
>>> analoga(100,15,xwrafi8)
1120.0
```

Ασκηση 7.1.17 (Ασκηση 7 του βιβλίου, Σελ. 105) Αν ψήσουμε 2,5 Κ ωμό κρέας θα μείνει 1,9 Κ ψημένο κρέας. (α) Πόσο είναι το ποσοστό απώλειας που έχουμε; (β) Πόσο κρέας πρέπει να ψήσουμε για να έχουμε 2,3 Κ ψημένο κρέας;

```
>>> analoga(2.5,2.5-1.9,100)
24.000000000000004
>>> analoga(1.9,2.5,2.3)
3.026315789473684
```

Αρα 3Kg ωμό κρέας.

Ασκηση 7.1.18 (Ασκηση 8 του βιβλίου, Σελ. 105) Η μηνιαία κάρτα απεριορίστων διαδρομών στοιχίζει 12 Q και η τιμή της θα αυξηθεί, κατά 75. Το εισιτήριο στο αστικό λεωφορείο είναι 0,7 Q και θα αυξηθεί, κατά 50. Ενας εργαζόμενος παίρνει λεωφορείο, για να πάει και να γυρίσει από τη δουλειά του κάθε ημέρα, για είκοσι φορές το μήνα. Τον συμφέρει η χρήση της κάρτας ή όχι;

	ΣΥΝΟΛΟ	Με ο παιδιά	Με 1 παιδί	Με 2 παιδιά	Με 3 παιδιά	Με 4 παιδ
Οικογένειες	200	10	40	80	50	15
Ποσοστά	100%					

Το κόστος της κάρτας θα είναι:

```
>>> analoga(100,175,12)
21.0
```

Το κόστος του εισιτηρίου θα είναι:

```
>>> analoga(100,150,0.7)
1.0499999999998
```

1.05€ και το κόστος των 20 εισιτηρίων θα είναι:

```
>>> 20*1.05
21.0
```

Αρα ίδιο κόστος με αυτό της κάρτας.

Ασκηση 7.1.19 (Ασκηση 9 του βιβλίου, Σελ. 105) Ενα κεφάλαιο δίνει τόκο 1.000 Q το χρόνο, με επιτόκιο 10. Αν το επιτόκιο μειωθεί κατά 20, πόσο τοις εκατό πρέπει ν' αυξήσουμε το κεφάλαιό μας για να έχουμε τον ίδιο τόκο, παρά τη μείωση του επιτοκίου;

Το αρχικό κεφάλαιο είναι:

```
>>> analoga(10,100,1000)
10000.0
```

Το νέο επιτόκιο είναι:

```
>>> analoga(100,80,10)
8.0
```

Οπότε το νέο κεφάλαιο θα πρέπει να είναι:

```
>>> analoga(8,100,1000)
12500.0
```

και το ποσοστό αύξησης του κεφαλαίο θα είναι:

```
>>> analoga(10000,2500,100)
25.0
```

Ασκηση 7.1.20 (Ασκηση 10 του βιβλίου, Σελ. 105) Συμπλήρωσε τον παρακάτω πίνακα και σχεδίασε διάγραμμα που αντιστοιχεί στα δεδομένα του προβλήματος.

	ΣΥΝΟΛΟ	Με ο παιδιά	Με 1 παιδί	Με 2 παιδιά	Με 3 παιδιά	Με 4 παιδιά	Πά
Οικογένειες	200	10	40	80	50	15	
Ποσοστά	100%	5	20	40	25	7.5	

Ταχύτητα σε Km/h					
Χρόνος σε ώρες					l

```
>>> analoga(200,10,100)
5.0
>>> analoga(200,40,100)
20.0
>>> analoga(200,80,100)
40.0
>>> analoga(200,50,100)
25.0
>>> analoga(200,15,100)
7.5
>>> analoga(200,5,100)
2.5
```

και ο πίνακας γίνεται: Μια επαλήθευση δίνει:

```
>>> 5 + 20 +40 +25 +7.5 + 2.5
100.0
```

7.2 Αντιστρόφως ανάλογα ποσά

Ασκηση 7.2.1 (Στο βιβλίο βρίσκεται στη Σελ. 106) Ξεκινούν ταυτόχρονα από μια πόλη: (α) ένα αυτοκίνητο που τρέχει με ταχύτητα 120 kmh

- (β) ένα αεροπλάνο με 600 Kmh
- (γ) μία μοτοσικλέτα με 75 Kmh
- (δ) ένα λεωφορείο που τρέχει με 80 Kmh
- (ε) ένα ελικόπτερο με 300 Kmh
- (στ) ένα ταξί με 100 Kmh
- (ζ) μία βέσπα με 60 Kmh και
- (η) ένα πούλμαν με 90 Kmh

Το τέλος της διαδρομής είναι μια άλλη πόλη, που απέχει 600 Km.

- Βρες σε πόσες ώρες, θα φθάσει το καθένα στον προορισμό του και συμπλήρωσε τον παρακάτω πίνακα:
- Ποια σχέση συνδέει τα μεγέθη της ταχύτητας και του χρόνου;

Ταχύτητα σε Km/h	120	600	75	80	300	100	60	90
Χρόνος σε ώρες	5	1	8	7.5	2	6	10	6,66

Τοποθέτησε τα ζεύγη των τιμών που βρήκες, σε ένα σύστημα ημιαξόνων και ένωσε τα σημεία, που ορίζουν τα ζεύγη αυτά, με μία γραμμή. Τι παρατηρείς;

```
>>> 600/120
5.0
>>> 600/600
1.0
>>> 600/75
8.0
>>> 600/80
7.5
>>> 600/300
2.0
>>> 600/100
6.0
>>> 600/60
10.0
>>> 600/90
6.66666666666667
```

Οπότε ο πίνακας γίνεται:

Τα ποσά είναι αντιστρόφως ανάλογα.

```
import matplotlib.pyplot as plt

plt.clf()
points = [(120,5), (600,1), (75,8), (80,7.5), (300,2), (100,6), (60,10), (90,6.66)]
x = [p[0] for p in points]
y = [p[1] for p in points]
color=['m','g','r','b','c']
plt.grid()
plt.scatter(x,y, s=100 ,marker='o', c=color)

plt.show()
```

Ασκηση 7.2.2 (Στο βιβλίο βρίσκεται στη Σελ. 106) Ενα συνεργείο που αποτελείται από 8 εργάτες χρειάζεται 30 ημέρες για να ολοκληρώσει ένα οικοδομικό έργο.

- Πόσες ημέρες θα χρειαστεί το συνεργείο, που αποτελείται από 2, 4, 6,
 10, 12, 24 ή 48 εργάτες για να τελειώσει το ίδιο έργο;
- Μπορείς να συμπληρώσεις τον παρακάτω πίνακα;

Σχήμα 7.1: Χρόνος ως προς την ταχύτητα

Εργάτες συνεργείου	2	4	6	8	10	12	24	48
Ημέρες εργασίας				30				

Εργάτες συνεργείου	2	4	6	8	10	12	24	48
Ημέρες εργασίας	120	60	40	30	24	20	10	5

- Τι παρατηρείς για το γινόμενο "εργάτες" · "ημέρες";
- Τοποθέτησε τα ζεύγη των τιμών του πίνακα, σε ένα σύστημα ημιαξόνων και ένωσε τα σημεία, που ορίζουν τα ζεύγη αυτά, με μία γραμμή. Τι παρατηρείς;

```
>>> 8/2*30
120.0
>>> 8/4*30
60.0
>>> 8/6*30
40.0
>>> 8/8*30
30.0
>>> 8/10*30
24.0
>>> 8/12*30
20.0
>>> 8/24*30
10.0
>>> 8/48*30
5.0
>>>
```

Ο πίνακας γίνεται:

Το γινόμενο είναι πάντα 240.

```
import matplotlib.pyplot as plt
plt.clf()
points = [(1,120),(4,60),(6,40),(8,30),(10,24),(12,20),(24,10),(48,5)]
```


Х	1	2	3	4	6	12	18	20	22	24	30	32	34	36
у														

```
x = [p[0] for p in points]
y = [p[1] for p in points]
color=['m','g','r','b','c']
plt.grid()
plt.scatter(x,y, s=100 ,marker='o', c=color)
plt.show()
```

Ασκηση 7.2.3 (Στο βιβλίο βρίσκεται στη Σελ. 107)

Ενα ορθογώνιο παραλληλόγραμμο έχει διαστάσεις x και y. Αν γνωρίζεις ότι το εμβαδόν του ορθογωνίου είναι 144 m2, μπορείς να βρεις δεκατέσσερις ακέραιες τιμές των διαστάσεών του και να συμπληρώσεις τον παρακάτω πίνακα;

													34	
У	144	72	48	36	24	12	8	7.2	6.55	6	4.8	4.5	4,235	4

- Ποια σχέση συνδέει τις διαστάσεις του ορθογωνίου με το εμβαδόν του;
- Τοποθέτησε τα ζεύγη των τιμών του πίνακα, σε ένα σύστημα ημιαξόνων και ένωσε τα σημεία, που ορίζουν τα ζεύγη αυτά, με μία γραμμή. Τι παρατηρείς;
- Ποιο ορθογώνιο, απ' αυτά που βρήκες, έχει τη μικρότερη περίμετρο;

```
>>> 144/1
144.0
>>> 144/2
72.0
>>> 144/3
48.0
>>> 144/4
36.0
>>> 144/6
24.0
>>> 144/12
12.0
>>> 144/18
8.0
>>> 144/20
7.2
>>> 144/22
6.545454545454546
>>> 144/24
6.0
>>> 144/30
4.8
>>> 144/32
4.5
>>> 144/34
4.235294117647059
>>> 144/36
4.0
```

```
import matplotlib.pyplot as plt

plt.clf()
x = [1,2,3,4,6,12,18,20,22,24,30,32,34,36]
y = [144/p for p in x]
plt.grid()
plt.scatter(x,y, s=100 ,marker='.', c='m')
```



```
plt.show()
```

Για την περίμετρο μπορούμε να κάνουμε μια γραφική παράσταση για τα σημεία που έχουμε:

```
import matplotlib.pyplot as plt

plt.clf()
x = [1,2,3,4,6,12,18,20,22,24,30,32,34,36]
y = [144/p for p in x]
perimetros = [2*p+2*144/p for p in x]
plt.grid()
plt.scatter(x,y, s=100 ,marker='.', c='m')
plt.scatter(x,perimetros,s=100,marker='.',c='r')
plt.show()
```

Βλέπουμε ότι η μικρότερη περίμετρος προκύπτει όταν το x είναι 12.

Για την ακρίβεια μπορούμε να δούμε τη γραφική παράσταση για πολλά σημεία ως εξής:

```
import matplotlib.pyplot as plt
from numpy import arange

plt.clf()
x = arange(1,20,0.5)
y = [144/p for p in x]
perimetros = [2*p+2*144/p for p in x]
plt.grid()
plt.scatter(x,y, s=100 ,marker='.', c='m')
plt.scatter(x,perimetros,s=100,marker='.',c='r')
plt.show()
```

Ασκηση 7.2.4 (Στο βιβλίο βρίσκεται στη Σελ. 108) Ενας ελαιοπαραγωγός χρησιμοποιεί δοχεία των 20 lt, 15 lt, 10 lt και 5 lt, για να συσκευάσει το λάδι που παράγει. Η παραγωγή του είναι 3.600 lt. Θέλει να συσκευάσει την ίδια ποσότητα

λαδιού σε κάθε μία από τις τέσσερις διαφορετικές συσκευασίες. (α) Πόσα δοχεία χρειάζεται από κάθε είδος; (β) Πόσο θα κοστίσει η συσκευασία της παραγωγής του αν στοιχίζει 0,4 ϵ το δοχείο των 20 lt, 0,3 ϵ το δοχείο των 15 lt, 0,2 ϵ το δοχείο των 10 lt και 0,1 ϵ το δοχείο των 5 lt;

```
posotita = 3600/4
x = [20,15,10,5]
y = []
for doxeio in x:
    plithos = posotita / doxeio
    y.append(plithos)

kostos = [0.4,0.3,0.2,0.1]
synolikoKostos = 0
for (i,p) in enumerate(y):
    synolikoKostos += kostos[i]*p

print(plithos)
```

Х	1	2	3	4
у	2	1	$\frac{2}{3}$	$\frac{1}{2}$

Х	0,25	0,4	0,5
у	10	6,25	5

х	$\frac{1}{100}$	$\frac{2}{58}$	$\frac{7}{10}$	4
у	100	29	$\frac{10}{7}$	$\frac{1}{4}$

print(kostos)

που δίνει αποτέλεσμα

```
[45.0, 60.0, 90.0, 180.0]
72.0
```

Δηλαδή 45 δοχεία των 20lt, 60 δοχεία των 15lt, 90 δοχεία των 10lt και 180 δοχεία των 5lt. Το συνολικό κόστος για τα δοχεία έιναι 72 ϵ .

Ασκηση 7.2.5 (Στο βιβλίο βρίσκεται στη Σελ. 109) Εξέτασε τους παρακάτω πίνακες:

- α)
- **B**)
- γ)
- δ)

(Ασκηση 3 του βιβλίου, Σελ. 109) Θα φτιάξουμε μια συνάρτηση που να παίρνει σαν εισόδους δύο πίνακες με τιμές x και y και θα δίνει σαν αποτέλεσμα αν αυτές οι τιμές είναι αντιστρόφως ανάλογες ή όχι. Θα βασιστεί στο ότι αν τα ποσά είναι αντιστρόφως ανάλογα το γινόμενό τους είναι πάντα το ίδιο.

```
def antistrofosanaloga(x,y):
    if len(x) != len(y):
        print('Τα δεδομένα δεν έχουν το ίδιο μέγεθος')
        return(None)
    ginomeno = x[0]*y[0]
    for i in range(len(x)):
        if x[i]*y[i]!=ginomeno:
            return(False)
    return(True)
```

х	3	6	9
у	9	5	3

Х	0,2	0,5	0,7	1			2,3	3		10	12
у				3,5	2,5	1,75			0,875		

Х	0,2	0,5	0,7	1	1,4	2	2,3	3	4	10	12
у	17,5	7	5	3,5	2,5	1,75	1,52	1,167	0,875	0,35	0,29

```
print(antistrofosanaloga([1,2,3,4],[2,1,2/3,1/2]))
print(antistrofosanaloga([0.25,0.4,0.5],[10,6.25,5]))
print(antistrofosanaloga([1/100,2/58,7/10,4],[100,29,10/7,1/4]))
print(antistrofosanaloga([3,6,9],[9,5,3]))
```

που δίνει αποτέλεσμα

```
True
True
True
False
```

Αρα οι πίνακες α,β,γ έχουν ποσά αντιστρόφως ανάλογα ενώ ο πίνακας δ όχι.

Ασκηση 7.2.6 (Ασκηση 4 του βιβλίου, Σελ. 109) Τα ποσά x και είναι αντιστρόφως ανάλογα. (α) Συμπλήρωσε τον πίνακα:

(β) Βρες τα σημεία που παριστάνουν κάθε ζευγάρι τιμών (x,), σε κατάλληλο σύστημα ορθογωνίων ημιαξόνων και σχεδίασε την υπερβολή.

```
>>> 3.5/0.2
17.5
>>> 3.5/0.5
7.0
>>> 3.5/0.7
5.0
>>> 3.5/2.5
1.4
>>> 3.5/1.75
>>> 3.5/2.3
1.5217391304347827
>>> 3.5/3
1.166666666666666
>>> 3.5/0.875
4.0
>>> 3.5/10
0.35
>>> 3.5/12
0.2916666666666667
```

Για να σχεδιάσουμε φτιάχνουμε το πρόγραμμα:


```
import matplotlib.pyplot as plt

plt.clf()
x=[0.2,0.5,0.7,1,1.4,2,2.3,3,4,10,12]
y=[17.5,7,5,3.5,2.5,1.75,1.52,1.167,0.875,0.35,0.29]
plt.grid()
plt.scatter(x,y, s=100 ,marker='.', c='m')
plt.show()
```

που δίνει το αποτέλεσμα

Ασκηση 7.2.7 (Ασκηση 5 του βιβλίου, Σελ. 109) Για την αναδάσωση μιας πλαγιάς, εργάστηκαν 20 εργάτες για 10 ημέρες. Πόσοι εργάτες, ίδιας απόδοσης, χρειάζονται για να αναδασώσουν την έκταση αυτή, σε 8 ημέρες;

Το γινόμενο εργάτες · ημέρες θα είναι σταθερό οπότε

$$x \cdot 8 = 20 \cdot 10$$

$$x = \frac{20 \cdot 10}{8}$$
$$x = 25$$

```
>>> 20*10/8
25.0
```

Ασκηση 7.2.8 (Ασκηση 6 του βιβλίου, Σελ. 109) Σε ένα αγρόκτημα, τοποθέτησαν ντομάτες σε 50 καφάσια, των 12 Kg το καθένα. Πόσα καφάσια των 20 kg θα χρειαζόντουσαν για να τοποθετήσουν τις ντομάτες. Αν κάθε καφάσι των 12 kg στοιχίζει 0,28€ και κάθε καφάσι των 20Kg 0,46€, ποια συσκευασία τους συμφέρει, ώστε να ελαχιστοποιηθεί το κόστος συσκευασίας του προϊόντος τους;

```
>>> ntomates = 50*12
>>> kafasia20 = ntomates/20
>>> kafasia20
30.0
>>> kostos12 = 50*0.28
>>> kostos12
14.000000000000002
>>> kostos20 = kafasia20*0.46
>>> kostos20
13.8
```

Ασκηση 7.2.9 (Ασκηση 8 του βιβλίου, Σελ. 109) Το πετρέλαιο που υπάρχει στη δεξαμενή μιας πολυκατοικίας, επαρκεί για 30 ημέρες, όταν καταναλώνονται 80 lt την ημέρα. Οταν το κρύο δυναμώνει, η ημερήσια κατανάλωση αυξάνεται, κατά 20%. Για πόσες ημέρες θα φτάσει το πετρέλαιο;

```
>>> neakatan = 80+80*20/100
>>> neakatan
96.0
>>> meres = 80*30/neakatan
>>> meres
25.0
```

Ασκηση 7.2.10 (Ασκηση 6 του βιβλίου, Σελ. 112) Συμπλήρωσε τον διπλανό πίνακα ανάλογων ποσών

```
>>> 1 = 15/4

>>> 2*1

7.5

>>> 30/1

8.0

>>> 12*1

45.0

>>> 16*1

60.0
```

Ασκηση 7.2.11 (Ασκηση 8 του βιβλίου, Σελ. 112) Συμπλήρωσε τον πίνακα των αντιστρόφως ανάλογων ποσών.

```
>>> gin = 2*8
>>> gin/16
1.0
>>> gin/32
0.5
>>> gin/4
4.0
>>> gin/8
2.0
```

Κεφάλαιο 8

Θετικοί και αρνητικοί αριθμοί

8.1 Θετικοί και Αρνητικοί Αριθμοί (Ρητοί αριθμοί) - Η ευθεία των ρητών - Τετμημένη σημείου

Ασκηση 8.1.1 (Ασκηση 4 του βιβλίου, Σελ. 117) Στα ζεύγη αριθμών που ακολουθούν να βρεις ποιοι αριθμοί είναι ομόσημοι και ποιοι είναι ετερόσημοι: (α) 3 και +3, (β) 2 και 5, (γ) -2 και -4, (δ) 7 και +9, (ε) -2 και 1,(στ) 17 και -20, (ζ) -9 και -3,2, (η) -10,5 και 11, (θ) -3 και -100, (ι) +6,7 και +12,3

Αργότερα θα μάθεις έναν εύκολο τρόπο για να ελέγξεις αν δύο αριθμοί είναι ομόσημοι οι ετερόσημοι, με όσα έχεις δει μέχρι τώρα μπορείς να το κάνεις ως εξής:

```
while (True):
    a = float(input('α> '))
    b = float(input('β> '))

if a > 0:
    if b > 0:
        print("Ομόσημοι")
    else:
        print("Ετερόσημοι")

else:
    if b < 0:
    print("Ομόσημοι")
    else:
    print("Ετερόσημοι")</pre>
```

και το αποτέλεσμα θα είναι:

```
α
>3β
>+3Ομόσημοια
```

```
>2B
>50μόσημοια
>-2B
>-40μόσημοια
>7β
>+90μόσημοια
>-2β
>1Ετερόσημοια
>17B
>-20Ετερόσημοια
> -9B
> -3.20μόσημοια
> -10.5\beta
> 11Ετερόσημοια
> -3β
> -1000μόσημοια
> 6.7B
> 12.30μόσημοι
```

Ασκηση 8.1.2 (Ασκηση 6 του βιβλίου, Σελ. 117) Βρες τη λέξη που σχηματίζεται από τα γράμματα με τετμημένες –6, 10, 9, –9, 5, –5, ο στο παρακάτω σχήμα. Στη συνέχεια γράψε μ' αυτό τον τρόπο ένα όνομα που σου αρέσει. Εικόνα

Οι αντιστοιχίσεις μπορούν να αποθηκευτούν σε ένα λεξικό και να βρούμε τη λέξη ως εξής:

```
antistoixiseis = {-11:'\pu',
-10:'\phi',
-9:'\tau',
-8:'\P',
-7:'\tau',
-6:'\mu',
-5:'\K',
-4:'\tau',
-1:'\B',
0:'\tau',
1:'\A',
```

```
2:'Γ',
3:'E',
4:'H',
5:'I',
6:'Λ',
7:'N',
8:'Π',
9:'Σ',
10:'Y',
11:'X',
12:'Ω'}
tetmimenes = [-6,10,9,-9,5,-5,0]
for i in tetmimenes:
    print(antistoixiseis[i])
```

Το αποτέλεσμα θα είναι:

```
ΜΥΣ
```

Αν αλλάξουμε την εντολή print ως εξής:

```
print(antistoixiseis[i],end='')
```

Θα προκύψει:

TIKO

```
ΜΥΣΤΙΚΟ
```

Με το end=" δίνουμε την οδηγία στην Python να μην αλλάζει γραμμή μετά από κάθε print. Η κωδικοποίηση γίνεται με το ίδιο λεξικό αλλά ως εξής:

```
lexi = 'MHNYMA'
for l in lexi:
    print(list(antistoixiseis.keys())[
        list(antistoixiseis.values()).index(l)],
        end=',')
```

Ο λόγος για τον οποίο είναι τόσο πολύπλοκη η κωδικοποίηση είναι ότι το λεξικό δεν μπορεί να υποστηρίξει και τις δύο κατευθύνσεις πρόσβασης. Ενας εναλλακτικός τρόπος αναπαράστασης των ίδιων δεδομένων θα ήταν ο εξής:

```
grammata = ['Ψ','Φ','T','P','Ξ','M','K','Θ','Z','Δ','B','O','A','Γ','E','H','I','Λ','N','Π','
arithmoi = [-11,-10,-9,-8,-7,-6,-5,-4,-3,-2,-1,0,1,2,3,4,5,6,7,8,9,10,11,12]

tetmimenes = [-6,10,9,-9,5,-5,0]
for i in tetmimenes:
    print(grammata[arithmoi.index(i)],end='')
print()
```

```
lexi = 'MHNYMA'
for l in lexi:
    print(arithmoi[grammata.index(l)],end=',')
```

που δίνει το σωστό αποτέλεσμα:

```
MYΣΙΚΟ
T
-6,4,7,10,-6,1,
```

Ασκηση 8.1.3 (Ασκηση 7 του βιβλίου, Σελ. 117) Τα σημεία Α και Β έχουν τετμημένες α και θ , αντίστοιχα. Να θ ρε θ εί η τετμημένη του μέσου θ του τμήματος AB όταν: (θ) θ 0 = +5 και θ 0 = +8, (θ 0) θ 0 = -4 και θ 0 = -13.

```
>>> (5+8)/2
6.5
>>> (-4+(-13))/2
-8.5
```

8.2 Απόλυτη τιμή

Να συμπληρώσεις τον πίνακα που ακολουθεί:

Αριθμός	-2,73	+7,66	-1,05	С
Απόσταση του σημείου που αντιστοιχεί από την αρχή του άξονα	,,,,,	- ,	, -	

Γνωρίζουμε ότι η απόσταση από την αρχή του άξονα είναι η απόλυτη τιμή. Η python μπορεί να υπολογίσει την απόλυτη τιμή με την ειδική εντολή abs, τα τρία πρώτα γράμματα της λέξης absolute. Οπότε έχουμε:

```
>>> abs(-2.73)
2.74
>>> abs(+7.66)
7.66
>>> abs(-1.05)
1.05
>>> abs(0)
0
>>> abs(+8.07)
8.07
>>> abs(-8)
```

8.2. ΑΠΟΛΥΤΗ TIMH 165

Ασκηση 8.2.1 (Ασκηση 3 του βιβλίου, Σελ. 121) ΣΩΣΤΟ ή ΛΑΘΟΣ (α) Ισχύει η ανισότητα: -5, 7 < 5, 7.

- (β) Ισχύει η ανισότητα: -7, 6 > -6, 7.
- (γ) Στην ανισότητα 2, 3 < x < 4, 7 ο x μπορεί να πάρει z ακέραιες τιμές.
- (δ) Υπάρχουν 5 ακριβώς ακέραιοι που αληθεύουν τη σχέση: $-2 \le x \le 2$.
- (ε) Δύο ακέραιοι με αντίθετο πρόσημο είναι αντίθετοι.

(a)

```
>>> -5.7 < 5.7
True
```

Σωστό (β)

```
>>> -7.6 > -6.7
False
```

Λάθος (γ)

```
for i in range(10):
    if i > 2.3 and i < 4.7:
        print(i)</pre>
```

το αποτέλεσμα είναι:

```
3
4
```

Ο χ μπορεί να πάρει 2 ακέραιες τιμές άρα ΣΩΣΤΟ. (δ)

```
for i in range(-3,3):
   if i >= -2 and i <= 2:
      print(i)</pre>
```

το αποτέλεσμα είναι:

```
-2
-1
0
1
2
```

Υπάρχουν 5 ακριβώς ακέραιοι που αληθεύουν τη σχέση άρα ΣΩΣΤΟ (ε) Λάθος γιατί υπάρχει η εξαίρεση του μηδενός.

Ασκηση 8.2.2 (Ασκηση 4 του βιβλίου, Σελ. 121) Βρες την απόλυτη τιμή των ρητών: (α) +7,25, (β) -2.5, (γ) +16, (δ) -20.05, (ε) -58.

```
>>> abs(+7.25)
7.25
>>> abs(-2.5)
2.5
```

```
>>> abs(+16)
16
>>> abs(-20.05)
20.05
>>> abs(-58)
58
```

Ασκηση 8.2.3 (Ασκηση 5 του βιβλίου, Σελ. 121) Βρες τους αριθμούς που έχουν ως απόλυτη τιμή: (α) 100, (β) 21,7, (γ) 0, (δ) 7,03, (ε) 5,2.

```
def fromabs(x):
    if x == 0:
        return(0)
    else:
        return((x, -x))

>>> fromabs(100)
(100, -100)
>>> fromabs(21.7)
(21.7, -21.7)
>>> fromabs(0)
0
>>> fromabs(7.03)
(7.03, -7.03)
>>> fromabs(5.2)
```

Ασκηση 8.2.4 (Ασκηση 6 του βιβλίου, Σελ. 121) Συμπλήρωσε τον πίνακα:

Αριθμός	1			-19				
Αντίθετος					-8	12		
Απόλυτη τιμή		2	2				7	7

Μπορούμε να χρησιμοποιήσουμε την abs και την fromabs για να βρούμε κάποια στοιχεία του πίνακα ο οποίος διαρμορφώνεται ως εξής:

Αριθμός	1	2	-2	-19	8	-12	7	-7
Αντίθετος	-1	-2	2	19	-8	12	-7	7
Απόλυτη τιμή	1	-	2	19	8	12	7	7

Ασκηση 8.2.5 (Ασκηση 7 του βιβλίου, Σελ. 121) Τοποθέτησε στον άξονα x'x τα σημεία με τετμημένες:–9, –5, 5, +8, –3, –7, 25, +1, +12, +3, +9. Ποια από αυτά είναι συμμετρικά ως προς την αρχή του άξονα;

```
import matplotlib.pyplot as plt

plt.clf()
points = [(-9,0), (-5.5,0), (8,0), (-3,0), (-7.25,0), (+1,0), (+12,0), (+3,0), (+9,0)]
pointName = ['A','B','\G','E','\Z','H','\O','\I']

x = [p[0] for p in points]
y = [p[1] for p in points]
plt.grid()
plt.scatter(x,y, s=100 ,marker='o')
for (i,p) in enumerate(points):
    plt.annotate(pointName[i],(p[0],p[1]))

plt.show()
```

Που δίνει το αποτέλεσμα: Για να δούμε ποια είναι συμμετρικά θα πρέπει

να δούμε ποια ζευγάρια έχουν τις ίδιες απόλυτες τιμές:

```
l = [-9, -5.5, 8, -3, -7.25, +1, +12, +3, +9]
for i in l:
```

```
apTimi = abs(i)
for j in l:
    if apTimi == abs(j) and i != j:
        print(i,j)
```

Που δίνει το αποτέλεσμα:

```
-9 9
-3 3
3 -3
9 -9
```

Ασκηση 8.2.6 (Ασκηση 8 του βιβλίου, Σελ. 121) Σχεδίασε τον άξονα x'Ox, με κατάλληλη μονάδα για να παραστήσεις τα σημεία με τετμημένες τους αριθμούς: -20, 5, +15, -39, 75, -68, 25, +70, +52, 25, +43, -69.

```
import matplotlib.pyplot as plt

plt.clf()
points = [(-20.5,0), (+15,0), (-39.75,0), (-68.25,0), (+70,0), (+52.25,0), (+43,0), (-68.25,0), (+70,0), (+52.25,0), (+43,0), (-68.25,0), (+70,0), (+52.25,0), (+43,0), (-68.25,0), (+70,0), (+52.25,0), (+43,0), (-68.25,0), (+70,0), (+52.25,0), (+43,0), (-68.25,0), (+70,0), (+52.25,0), (+43,0), (-68.25,0), (+70,0), (+52.25,0), (+43,0), (-68.25,0), (+70,0), (+52.25,0), (+43,0), (-68.25,0), (+70,0), (+52.25,0), (+43,0), (-68.25,0), (+70,0), (+52.25,0), (+43,0), (-68.25,0), (+70,0), (+52.25,0), (+43,0), (-68.25,0), (+70,0), (-68.25,0), (+70,0), (+52.25,0), (+43,0), (-68.25,0), (+70,0), (-68.25,0), (+70,0), (+52.25,0), (+43,0), (-68.25,0), (-68.25,0), (+70,0), (-68.25,0), (-68.25,0), (-68.25,0), (-68.25,0), (-68.25,0), (-68.25,0), (-68.25,0), (-68.25,0), (-68.25,0), (-68.25,0), (-68.25,0), (-68.25,0), (-68.25,0), (-68.25,0), (-68.25,0), (-68.25,0), (-68.25,0), (-68.25,0), (-68.25,0), (-68.25,0), (-68.25,0), (-68.25,0), (-68.25,0), (-68.25,0), (-68.25,0), (-68.25,0), (-68.25,0), (-68.25,0), (-68.25,0), (-68.25,0), (-68.25,0), (-68.25,0), (-68.25,0), (-68.25,0), (-68.25,0), (-68.25,0), (-68.25,0), (-68.25,0), (-68.25,0), (-68.25,0), (-68.25,0), (-68.25,0), (-68.25,0), (-68.25,0), (-68.25,0), (-68.25,0), (-68.25,0), (-68.25,0), (-68.25,0), (-68.25,0), (-68.25,0), (-68.25,0), (-68.25,0), (-68.25,0), (-68.25,0), (-68.25,0), (-68.25,0), (-68.25,0), (-68.25,0), (-68.25,0), (-68.25,0), (-68.25,0), (-68.25,0), (-68.25,0), (-68.25,0), (-68.25,0), (-68.25,0), (-68.25,0), (-68.25,0), (-68.25,0), (-68.25,0), (-68.25,0), (-68.25,0), (-68.25,0), (-68.25,0), (-68.25,0), (-68.25,0), (-68.25,0), (-68.25,0), (-68.25,0), (-68.25,0), (-68.25,0), (-68.25,0), (-68.25,0), (-68.25,0), (-68.25,0), (-68.25,0), (-68.25,0), (-68.25,0), (-68.25,0), (-68.25,0), (-68.25,0), (-68.25,0), (-68.25,0), (-68.25,0), (-68.25,0), (-68.25,0), (-68.25,0), (-68.25,0), (-68.25,0), (-68.25,0), (-68.25,0), (-68.25,0), (-68.25,0), (-68.25,0), (-68.25,0), (-68.25,0), (-68.25,0), (-68.25,0), (-68.25,0), (-68.25,0), (-6
```

Που δίνει το αποτέλεσμα: Ετσι βλέπουμε ότι η python επέλεξε μια μονάδα να αντιστοιχεί στο 20 (1:20) και σε αυτή τη κλίμακα είναι αδύνατο να διακρίνουμε τους αριθμούς -69 και -68, 25.

Ασκηση 8.2.7 Να συγκρίνεις τους αριθμούς: (α) +41 και +38, (β) 9 και 11, (γ) -3 και -2, (δ) -9 και -16, (ε) 7 και -8, (στ) ο και -3, (ζ) ο και +4.

```
>>> 41 > 38

True
>>> 9 < 11

True
>>> -3 < -2

True
>>> -9 > -16

True
>>> 7 > -8

True
>>> 0 > -3
```



```
True
>>> 4 > 0
True
```

Ασκηση 8.2.8 (Ασκηση 10 του βιβλίου, Σελ. 121) Να συγκρίνεις τους αριθμούς: (α) 11, -11 και |11|, (β) -3, +3 και |3|. Τι συμπεραίνεις;

```
>>> 11 == abs(11)
True
>>> -11 < abs(11)
True
>>> -3 < abs(3)
True
>>> 3 == abs(3)
True
```

Ασκηση 8.2.9 (Ασκηση 11 του βιβλίου, Σελ. 121) Να γράψεις τους αριθμούς: -2, +7, +15, -3, 0, -4, +5, -8 και -10 σε αύξουσα σειρά.

```
>>> print(sorted([-2, +7, +15, -3, 0, -4, +5, -8, -10]))
[-10, -8, -4, -3, -2, 0, 5, 7, 15]
```

Ασκηση 8.2.10 (Ασκηση 12 του βιβλίου, Σελ. 121) Να συμπληρώσεις με το κατάλληλο σύμβολο: <, > $\dot{\eta}$ = τα κενά, ώστε να προκύψουν αληθείς σχέσεις: (α) $-3 \dots -8$, (β) $-4 \dots 10$, (γ) $0 \dots -1$, (δ) $+3 \dots 0$, (ε) $-5 \dots -|-5|$, (στ) $-5 \dots -(+5)$, (ζ) $|+7| \dots |-7|$, (η) $-(-8) \dots -8$, (9) $+3 \dots -(+4)$, (ι) $0 \dots -|-4|$.

```
>>> -3 > -8
True
>>> -4 < 10
True
>>> 0 > -1
True
>>> 3 > 0
True
>>> -5 == -abs(-5)
True
>>> -5 == -(+5)
True
\Rightarrow\Rightarrow abs(+7) == abs(-7)
>>> -(-8) > -8
True
>>> 3 > -(+4)
True
\rightarrow \rightarrow 0 \rightarrow -abs(-4)
True
```

Ασκηση 8.2.11 Το x παριστάνει έναν ακέραιο αριθμό. Για ποιες τιμές του x θα ισχύουν οι σχέσεις: (α) -13 < x < -8, (β) -4 > x > -5, (γ) -2 < x < 5.

```
>>> for i in range(-14,-7):
    if i > -13 and i < -8:
        print(i)
-12
-11
-10
-9
>>> for i in range(-6,0):
    if i < -4 and i > -5:
        print(i)
```

```
>>> for i in range(-3,6):
    if i>-2 and i<5:
        print(i)
-1
0
1
2
3
4</pre>
```

8.3 Πρόσθεση ρητών αριθμών

Ασκηση 8.3.1 (Ασκηση 1 του βιβλίου, Σελ. 123) Σε μια πόλη παρατηρήθηκαν οι παρακάτω αυξομειώσεις της θερμοκρασίας: Αρχικές θερμοκρασίες Αυξομειώσεις θερμοκρασίας

- (α) Βράδυ +1°C την επόμενη μέρα αυξήθηκε κατά 4°C
- (β) Μεσημέρι –1°C το βράδυ μειώθηκε κατά 2°C
- (γ) Βράδυ −2°C την επόμενη μέρα αυξήθηκε κατά 5°C
- (δ) Μεσημέρι +5°C το βράδυ μειώθηκε κατά 7°C
- (ε) Μεσημέρι –3°C το βράδυ μειώθηκε κατά 3°C

```
>>> 1 + 4
5
>>> -1 + (-2)
-3
>>> -2 + 5
3
>>> 5 + (-7)
-2
>>> +3 + (-3)
0
```

Ασκηση 8.3.2 (Ασκηση 2 του βιβλίου, Σελ. 124) Να υπολογιστούν τα παρακάτω αθροίσματα: (α) (+5,6)+(+8,7)+(-3,2)+(-6,9)+(+3,2)+(-7,4) και (β) (-1,8)+(+4,8)+(+9,7)+(-4,8)+(-3,4)+(+1,5).

```
>>> (+5.6) + (+8.7) + (-3.2) + (-6.9) + (+3.2) + (-7.4)
-2.6645352591003757e-15
```

Στην ουσία το αποτέλεσμα είναι ο, αυτός ο αριθμός είναι πολύ μικρός.

```
>>> (-1.8) + (+4.8) + (+9.7) + (-4.8) + (-3.4) + (+1.5)
6.0
```

```
Ασκηση 8.3.3 (Ασκηση 2 του βιβλίου, Σελ. 125) Υπολόγισε τα αθροίσματα: (α)
(+4,05) + (+6,15),
   (6)(+5,03)+(+4,07),
   (\gamma) (+2,7) + (+97,3),
   (\delta) (+2,6) + (+11,4),
   (\varepsilon) (+7,25) + (+8,75),
   (\sigma\tau)(-3,5)+(-2,5),
   (\zeta)(-1,3)+(-5,2),
   (\eta)(-7,15)+(-4,85),
   (9)(-5,25)+(-9,75),
   (\iota)(-13,7) + (-6,3).
>>> (+4.05) + (+6.15)
10.2
>>> (+5.03) + (+4.07)
9.1000000000000001
>>> (+2.7) + (+97.3)
100.0
>>> (+2.6) + (+11.4)
14.0
>>> (+7.25) + (+8.75)
16.0
>>> (-3.5) + (-2.5)
-6.0
>>> (-1.3) + (-5.2)
-6.5
>>> (-7.15) + (-4.85)
-12.0
>>> (-5.25) + (-9.75)
-15.0
>>> (-13.7) + (-6.3)
-20.0
>>>
Ασκηση 8.3.4 Υπολόγισε τα αθροίσματα: (α) (+4,05) + (-6,15),
   (6) (+5,03) + (-4,07),
   (\gamma) (-2,7) + (+97,3),
   (\delta)(-2,6)+(+11,4),
   (\varepsilon) (+7, 25) + (-8, 75),
   (\sigma\tau)(+3,5)+(-2,5),
   (\zeta)(-1,3)+(+5,2),
   (\eta) (+7, 15) + (-4, 85),
```

(9) (-5, 25) + (+9, 75), (1) (+13, 7) + (-6, 3).

```
>>> (+4.05) + (-6.15)
-2.100000000000000005
>>> (+5.03) + (-4.07)
0.96
>>> (-2.7) + (+97.3)
94.6
>>> (-2.6) + (+11.4)
8.8
>>> (+7.25) + (-8.75)
-1.5
>>> (+3.5) + (-2.5)
1.0
>>> (-1.3) + (+5.2)
3.90000000000000004
>>> (+7.15) + (-4.85)
2.30000000000000007
>>> (-5.25) + (+9.75)
4.5
>>> (+13.7) + (-6.3)
7.399999999999995
```

Ασκηση 8.3.5 (Ασκηση 4 του βιβλίου, Σελ. 125)

+	+4	-8	-11	+17
-5				
+9				
-4				
-21				

```
>>> for i in [+4,-8,-11,+17]:
   for j in [-5,+9,-4,-21]:
        print(i,'+',j,'=',i+j)
4 + -5 = -1
4 + 9 = 13
4 + -4 = 0
4 + -21 = -17
-8 + -5 = -13
-8 + 9 = 1
-8 + -4 = -12
-8 + -21 = -29
-11 + -5 = -16
-11 + 9 = -2
-11 + -4 = -15
-11 + -21 = -32
17 + -5 = 12
```

και ο πίνακας γίνεται:

+	+4	-8	-11	+17
-5	-1	-13	-16	12
+9	13	1	-2	26
-4	0	-12	-15	13
-21	-17	-29	-32	-4

Ασκηση 8.3.6 (Ασκηση 5 του βιβλίου, Σελ. 125) Τοποθέτησε στα κενά τα κατάλληλα πρόσημα, ώστε να προκύψουν αληθείς ισότητες:

(
$$\alpha$$
) (...6) + (-8) = -2,
(β) (+5) + (...5) = 0,
(γ) (+7) + (...9) = +16,
(δ) (...9) + (...8) = -17,

 $(\varepsilon)(...6) + (...5) = +11.$

Ασκηση 8.3.7 (Ασκηση 6 του βιβλίου, Σελ. 125) Εξέτασε αν είναι μαγικά τα τετράγωνα: (Μαγικά τετράγωνα είναι αυτά στα οποία η πρόσθεση των αριθμών κάθε στήλης ή γραμμής, καθώς και των διαγωνίων τους, δίνουν το ίδιο ακριβώς άθροισμα).

-1	+4	-3
-2	0	+2
+3	-4	+1

+1,1	+2,4	-2,5
-0,1	+3,5	-2,4
0	-4,9	+5,9