Capítulo 7 – Corpo Rígido

- 1 Uma haste de massa desprezável e com 1 m de comprimento sustem cinco corpos de massa 1 kg colocados ao longo dela e equidistantes. Calcule o momento de inércia do sistema relativamente a um eixo perpendicular à haste e que passe
 - a) por uma extremidade,
 - b) pela segunda massa,
 - c) pelo centro de massa.
 - d) Verifique o teorema de Steiner.
- **2 -** Calcule o momento de inércia da molécula de CO₂, relativamente a um eixo que passe através do centro de massa da molécula. A molécula é linear e com o átomo de carbono no centro. A distância da ligação C O tem o valor de 1,13 x 10⁻¹⁰ m.
- **3** Calcule o momento de inércia de uma barra homogénea e estreita em relação a um eixo perpendicular à barra, que passe
 - a) por uma extremidade desta;
 - b) pelo seu centro.
- 4 Resolva o exercício 1 para uma haste de massa igual a 3 kg (não desprezável).
- 5 Calcule o momento de inércia de um rectângulo homogéneo em relação a um eixo
 - a) que passe por um dos lados;
 - b) que divida o rectângulo ao meio;
 - c) perpendicular ao plano do rectângulo e que passe pelo seu centro.
- **6** Calcule o momento de inércia de um disco homogéneo em relação a um eixo perpendicular ao disco, que passe pelo seu centro.
- 7 Determine o momento de inércia de um cilindro homogéneo em relação:
 - a) A um eixo de simetria.
 - b) A uma geratriz.
- 8 Calcule o momento de inércia de uma esfera homogénea em relação a um diâmetro.
- **9 -** Uma barra uniforme AB de 4 m tem massa m = 50 kg. Existe um ponto fixo C em torno do qual a barra pode rodar. A barra está apoiada no ponto A. Um homem com massa igual a 75 kg anda ao longo da barra partindo de A. Calcule a distância máxima que o homem pode ir, mantendo o equilíbrio.

- **10 -** Uma barra de massa desprezável, de comprimento L está apoiada num ponto O. Em cada extremidade está suspensa uma massa, $m_A = 10 \text{ kg}$ e $m_B = 16 \text{ kg}$.
 - a) A que distância do ponto A deve estar o apoio O?
 - b) Qual é a reacção no ponto O?

11 - A figura representa uma escada de massa = 40 kg e as forças que nela actuam. O peso da mesma actua no centro CM. As forças de módulo F_1 e $0.3 F_3$ impedem que a escada escorregue e resultam do atrito. As forças de módulo F_2 e F_3 são reacções normais ao chão e à parede vertical, respectivamente. Determine o valor das forças.

12 - Uma escada dupla está apoiada num plano horizontal. As duas escadas estão ligadas por uma corda AB horizontal. A e B estão ligadas no meio das escadas de comprimento *l* e de peso 2 N. Sabendo que a tensão máxima suportada pela corda é 1,1 N, verifique se o equilíbrio é possível (despreze o atrito entre a escada e o chão)?

- 13 Duas crianças, com 25 kg, estão sentadas nas extremidades de uma prancha de 2,6 m de comprimento e de 10 kg de massa. A prancha gira com velocidade de cinco rotações por minuto, em torno de um eixo que passa pelo seu centro. Se cada uma das crianças se sentar 60 cm mais à frente, em direcção ao centro, explique:
 - a) Como se altera a velocidade angular do sistema.
 - b) Como varia a energia cinética do sistema.
- 14 Um homem está em pé, no centro de uma mesa giratória sem atrito, e mantém os braços estendidos horizontalmente, segurando uma massa de 5,0 kg em cada mão. Considere o momento de inércia do homem constante e igual a 5,0 kg m². A mesa é posta em rotação por um agente exterior, com uma velocidade angular de uma rotação em 2,0 s. Determine o valor da velocidade angular após o homem deixar cair os braços ao longo do corpo. A distância original das massas ao eixo de rotação é 90 cm e a final é 15 cm.
- 15 Um homem de massa m_H está sobre um mesa circular de raio R e massa m_m . A Mesa pode rodar verticalmente sem atrito. O homem começa a andar com uma velocidade v_H relativamente ao chão (na direcção tangencial).
 - a) Qual é a velocidade de rotação da mesa?
 - b) Qual é o trabalho por ele realizado para pôr a mesa em movimento?
- **16** Um estudante está sentado numa cadeira que pode rodar sobre si própria e segura na vertical o eixo duma roda de bicicleta. Inicialmente, a cadeira e a roda estão parados. Se o estudante fizer rodar a roda de bicicleta, o que acontece? Porquê?
- 17 Uma massa m_1 com uma velocidade V_{1i} colide com uma barra, de massa m_2 e de comprimento lm, inicialmente em repouso e fica encravada nela. Exprima a velocidade de rotação em função da velocidade inicial de m_1 ($m = m_1 = m_2$).

- 18 Considere a colisão do problema anterior, mas agora o sistema está horizontal sobre numa superfície sem atrito. Devido ao atrito no eixo de rotação da barra, ela é sujeita a um momento τ .
 - a) Calcule a aceleração angular.
 - b) Calcule a distância percorrida pela extremidade da barra antes de parar.
 - c) Calcule o deslocamento do centro de massa.

19 - Um disco, de raio 0,5 m e massa 20 kg, pode rodar livremente em torno de um eixo que passa através do seu centro. A corda que passa na periferia do disco tem aplicada uma força de 9,8 N. Calcule a aceleração e a velocidade angular do disco, após 2 s.

20 - Calcule a aceleração angular do sistema ilustrado na figura, para um corpo cuja massa é de 1 kg. Os dados do disco são os mesmos do problema anterior. O eixo dos ZZ' é fixo e é um eixo principal.

21 - Calcule a aceleração angular de um iô-iô, sabendo que o disco tem as mesmas características do disco do problema anterior. Determine também a aceleração do seu centro de massa.

22 - Um taco atinge horizontalmente uma bola de bilhar num ponto uma distância d acima do centro da bola. Determine d tal que a bola rola sem escorregar.

23 - Uma roda, em rotação, está submetida a um momento de força de 10 Nm, por causa do atrito com o eixo de rotação. A roda tem um raio de 0,6 m, massa de 100 kg e a sua velocidade angular é de 175 rad.s⁻¹. Quanto tempo demora a parar?

- **24 -** O raio e a massa de uma moeda são 1 cm e 5 g, respectivamente. A moeda rola num plano inclinado com uma velocidade de seis rotações por segundo. Determine:
 - a) A energia cinética de rotação.
 - b) A energia cinética de translação.
 - c) A energia cinética total.
- **25 -** Uma esfera, um cilindro e um anel, com o mesmo raio e a mesma massa, rolam num plano inclinado, a partir da altura h. Determine, para cada caso, a velocidade de chegada à base do plano.

- **26** Considere dois cilindros A e B, com a mesma altura e raio. Ambos são constituídos por dois materiais diferentes, de massas volúmicas ρ_1 e ρ_2 .
 - a) Determine a relação entre R_1 , R_2 e R, quando as massas dos cilindros são iguais, $M_A = M_B$.

- b) Calcule os momentos de inércia, I_A e I_B, respectivamente, quando M_A = M_B.
- c) Determine a relação entre R_1 , R_2 e R, de modo que I_A - I_B seja máxima. Se $\rho_1 < \rho_2$, qual dos cilindros apresenta maior momento de inércia?
- d) Considere um cilindro que, a partir do repouso, rola num plano inclinado, sem escorregar. Sendo α a inclinação do plano, o deslocamento é dado por

$$\Delta S = \frac{M g t^2 sen\alpha}{2 \left(M + \frac{1}{R^2}\right)}.$$

Mostre, usando as relações obtidas em a) e em c), que a diferença $(S_A - S_B)$ entre os deslocamentos percorridos pelos cilindros, num mesmo intervalo de tempo, é tanto maior quanto maior for a diferença entre ρ_1 e ρ_2 .

Soluções

1 - a) 1,875 kg.m
2
; b) 0,9375 kg.m 2 ; c) 0,625 kg.m 2 . **2** - 6,79 x 10 $^{-46}$ kg.m 2

2 - 6,79 x
$$10^{-46}$$
 kg.m²

3 - a)
$$\frac{1}{3}ML^2$$
; b) $\frac{1}{12}ML^2$.

5 - a)
$$\frac{1}{3}Ma^2$$
; b) $\frac{1}{12}Ma^2$; c) $\frac{1}{12}M(a^2+b^2)$.

6 -
$$\frac{1}{2}MR^2$$
.

7 - a)
$$\frac{1}{2}MR^2$$
; b) $\frac{3}{2}MR^2$.

8 -
$$\frac{2}{5}MR^2$$
.

9 -
$$x = 2.83$$
 m.

11 -
$$F_1$$
 = 96 N; F_2 = 36 N; F_3 = 96 N.

15 - a)
$$\omega_m = -\frac{2m_H}{m_m} \frac{v_H}{R}$$
; b) $W_H = \Delta E_C = \frac{1}{2} m_H v_H^2 + \frac{1}{4} m R^2 \omega_m^2$.

16 - A cadeira roda no sentido contrário ao da roda da bicicleta, devido à conservação do momento angular.

$$17 - \omega = \frac{3}{4l}v.$$

18 - a)
$$\alpha = \frac{3\tau}{4ml^2}$$
; b) $\Delta S = \frac{3mlv^2}{8\tau}$; c) $\Delta S_{CM} = \frac{3}{4}\Delta S$.
19 - 1,96 rad.s⁻²; 3,92 rad.s⁻¹.
20 - 1,8 rad.s⁻².

22 -
$$d = \frac{2}{5}R$$
.

24 - a)
$$1.78 \times 10^{-4}$$
 J; b) 3.55×10^{-4} J; c) 5.33×10^{-4} .

25 -
$$\sqrt{10/7}\sqrt{gh}$$
; $\sqrt{4/3}\sqrt{gh}$; \sqrt{gh} .

26 - a)
$$R^2 = R_1^2 + R_2^2$$
;

$$b)\;I_{a}\!\!=\!\!\frac{1}{2}\pi\rho_{1}hR_{1}^{4}+\!\frac{1}{2}\pi\rho_{2}hR_{2}^{4}+\pi\rho_{2}hR_{1}^{2}R_{2}^{2};\;I_{b}\!\!=\!\!\frac{1}{2}\pi\rho_{1}hR_{1}^{4}+\!\frac{1}{2}\pi\rho_{2}hR_{2}^{4}+\pi\rho_{1}hR_{1}^{2}R_{2}^{2};$$

c)
$$\rho_1 < \rho_2 \Rightarrow I_a > I_b$$
.