

Continuous Random Variables

Prof. Uma D

Prof. Suganthi S

Prof. Silviya Nancy J

Department of Computer Science and Engineering

Continuous Random Variables

Prof. Uma D

Prof. Suganthi S

Prof. Silviya Nancy J

Topics to be covered...

- Continuous Random Variable
- Probability Density Function
- Cumulative Distribution Function
- Mean and Variance

Continuous Random variables

- A continuous random variable is one which takes an infinite number of possible values.
- Continuous random variables are usually measurements.

Examples

- height
- weight
- the amount of sugar in an orange
- the time required to run a mile.

Continuous Random variables

PES UNIVERSITY

- A **continuous random variable** *X* takes on all values in an interval of numbers.
- The probability distribution of X is described by a density curve.

Probability Density Function

PES UNIVERSITY ONLINE

- A random variable is continuous if its probabilities are given by areas under a curve.
- The curve is called a **probability density function** (pdf) for the random variable. Sometimes the pdf is called the **probability distribution**.
- The function f(x) is the probability density function of X.
- Let X be a continuous random variable with probability density function f(x). Then

$$\int_{-\infty}^{\infty} f(x) \, dx = 1$$

Computing Probabilities with PDF

• Let X be a continuous random variable with probability density function f(x). Let a and b be any two numbers, with a < b. Then

$$P(a \le X \le b) = P(a \le X < b) = P(a < X \le b) = P(a < X < b) = \int_a^b f(x) \, dx$$

In addition,

$$P(X \le b) = P(X < b) = \int_{-\infty}^{b} f(x) dx$$

$$P(X \ge a) = P(X > a) = \int_{a}^{\infty} f(x) \, dx$$

Example

A hole is drilled in a sheet-metal component, and then a shaft is inserted through the hole. The shaft clearance is equal to the difference between the radius of the hole and the radius of the shaft. Let the random variable *X* denote the clearance, in millimeters. The probability density function of *X* is

$$f(x) = \begin{cases} 1.25(1 - x^4) & 0 < x < 1 \\ 0 & \text{otherwise} \end{cases}$$

Components with clearances larger than 0.8 mm must be scrapped. What proportion of components are scrapped?

FIGURE 2.13 Graph of the probability density function of X, the clearance of a shaft. The area shaded is equal to P(X > 0.8).

Example

Solution:

This area is given by

$$P(X > 0.8) = \int_{0.8}^{\infty} f(x) dx$$
$$= \int_{0.8}^{1} 1.25(1 - x^4) dx$$
$$= 1.25 \left(x - \frac{x^5}{5} \right) \Big|_{0.8}^{1}$$
$$= 0.0819$$

Cumulative Distribution function of a CRV

PES UNIVERSITY

- Let X be a continuous random variable with probability density function f(x).
- The cumulative distribution function of X is the function

$$F(x) = P(X \le x) = \int_{-\infty}^{x} f(t) dt$$

Example

Find the Cumulative distribution function F(x) and plot it for the earlier example.

Solution:

The probability density function of X is given by f(t) = 0 if $t \le 0$, $f(t) = 1.25(1 - t^4)$ if 0 < t < 1, and f(t) = 0 if $t \ge 1$. The cumulative distribution function is given by $F(x) = \int_{-\infty}^{x} f(t) dt$. Since f(t) is defined separately on three different intervals, the computation of the cumulative distribution function involves three separate cases.

If
$$x \leq 0$$
:

$$F(x) = \int_{-\infty}^{x} f(t) dt$$
$$= \int_{-\infty}^{x} 0 dt$$
$$= 0$$

Example

If 0 < x < 1:

$$F(x) = \int_{-\infty}^{x} f(t) dt$$

$$= \int_{-\infty}^{0} f(t) dt + \int_{0}^{x} f(t) dt$$

$$= \int_{-\infty}^{0} 0 dt + \int_{0}^{x} 1.25(1 - t^{4}) dt$$

$$= 0 + 1.25 \left(t - \frac{t^{5}}{5} \right) \Big|_{0}^{x}$$

$$= 1.25 \left(x - \frac{x^{5}}{5} \right)$$

If x > 1:

$$F(x) = \int_{-\infty}^{x} f(t) dt$$

$$= \int_{-\infty}^{0} f(t) dt + \int_{0}^{1} f(t) dt + \int_{1}^{x} f(t) dt$$

$$= \int_{-\infty}^{0} 0 dt + \int_{0}^{1} 1.25(1 - t^{4}) dt + \int_{1}^{x} 0 dt$$

$$= 0 + 1.25 \left(t - \frac{t^{5}}{5} \right) \Big|_{0}^{1} + 0$$

$$= 0 + 1 + 0$$

$$= 1$$

Example

Therefore

A plot of F(x) is presented here.

Mean for Continuous Random Variable

- Let X be a continuous random variable with probability density function.
- The mean of X is given by,

$$\mu_X = \int_{-\infty}^{\infty} x f(x) \, dx$$

• The mean of X is sometimes called the expectation, or expected value, of X and may also be denoted by E(X) or by μ .

Variance for Continuous Random Variable

• Let *X* be a continuous random variable with probability density function, then

The variance of X is given by

$$\sigma_X^2 = \int_{-\infty}^{\infty} (x - \mu_X)^2 f(x) \, dx$$

An alternate formula for the variance is given by

$$\sigma_X^2 = \int_{-\infty}^{\infty} x^2 f(x) \, dx - \mu_X^2$$

Example

For the earlier example, find mean and variance for the random variable.

Solution:

We compute the mean by using

$$\mu_X = \int_{-\infty}^{\infty} x f(x) dx$$

$$= \int_0^1 x [1.25(1 - x^4)] dx$$

$$= 1.25 \left(\frac{x^2}{2} - \frac{x^6}{6} \right) \Big|_0^1$$

$$= 0.4167$$

Example

Solution:

We compute the variance by using

$$\sigma_X^2 = \int_{-\infty}^{\infty} x^2 f(x) dx - \mu_X^2$$

$$= \int_0^1 x^2 [1.25(1 - x^4)] dx - (0.4167)^2$$

$$= 1.25 \left(\frac{x^3}{3} - \frac{x^7}{7}\right) \Big|_0^1 - (0.4167)^2$$

$$= 0.0645$$

Problems

PES UNIVERSITY ONLINE

Problem 1

Suppose for a random variable X:

$$f(x) = cx^3$$
 for $2 \le x \le 4$ and 0 otherwise.

- a) What value of c makes this a legitimate probability distribution?
- b) What is P(X > 3).
- c) Find $P(X \le 2.7)$.
- d) What is the median of this distribution?
- e) Find mean and variance of this distribution.
- f) What is the cumulative distribution function?

Continuous Random Variables

Solution:

a) What value of c makes this a legitimate probability distribution?

Continuous Random Variables

Solution:

b) What is P(X > 3).

Continuous Random Variables

PES UNIVERSIT

Solution:

c) Find $P(X \le 2.7)$.

Continuous Random Variables

Solution:

d) What is the median of this distribution?

Continuous Random Variables

PES UNIVERSITY ONLINE

Solution:

e) Find mean and variance of this distribution.

Continuous Random Variables

PES UNIVERSITY ONLINE

Solution:

e) Find mean and variance of this distribution.

Continuous Random Variables

PES UNIVERSITY ONLINE

Solution:

f) What is the cumulative distribution function?

Random Variables

Problem 1 - Solution

a)
$$c = 1/60$$

b)
$$P(X > 3) = 0.729$$

c)
$$P(X \le 2.7) = 0.155$$

d) Median =
$$3.415$$

e) Mean =
$$248/75 = 3.3$$

Variance = $11.2 - sq(3.3) = 0.31$

f) CDF =
$$(x^4 - 2^4)/240$$

Problem

Do It Yourself!!!

Let X be a random variable with PDF given by

$$f(x)=\{x/250 \qquad 20 \le x \le 30$$

$$0 \qquad \text{otherwise}$$

- 1) Find P(X≥25).
- 2) Find E(X) and Var(X).
- 3) Find CDF.
- 4) Find median.
- 5) Find 60th percentile.

THANK YOU

Prof. Uma D

Prof. Suganthi S

Prof. Silviya Nancy J

Department of Computer Science and Engineering