Redes Neuronales Convolucionales

Capa convolucional

Una capa convolucional no es más que muchos filtros convolucionales de tamaño **K*K*C** (**K** se debe definir y **C** = canales de la imagen).

Capa convolucional en MNIST

Veamos cómo sería aplicar una simple capa convolucional en el dataset MNIST.

Accuracy alimentando a la red Feed-Forward con la imagen cruda.

```
Train
Accuracy: 0.93 soporte: 60000

Test
Accuracy: 0.93 soporte: 10000
```

```
Accuracy al agregar una capa
               convolucional de 64 filtros.
               Train
                 Accuracy: 1.00
                                 soporte: 60000
               Test
                 Accuracy: 0.98
                                 soporte: 10000
model = Sequential()
model.add(Conv2D( 64, kernel size=3,
                activation='relu',
                input shape= INPUT SHAPE))
model.add(Flatten())
model.add(Dense(n clases, activation= 'softmax'))
```

Capa convolucional

Capa Convolucional sobre CIFAR10

```
model = Sequential()
model.add(Conv2D( 64, kernel_size=3,activation='relu',input_shape= INPUT_SHAPE))

model.add(Flatten())
model.add(Dense(32, activation= 'relu'))
model.add(Dense(n_clases, activation= 'softmax'))

¿Por qué la imagen resultante tiene 30x30?
```

Layer (type) Output Shape Param #

conv2d_1 (Conv2D) (None, 30, 30, 64) 1792

flatten_1 (Flatten) (None, 57600) 0

dense_1 (Dense) (None, 32) 1843232

dense_2 (Dense) (None, 10) 330

Total params: 1,845,354 Trainable params: 1,845,354

Non-trainable params: 0

¿Por la capa convolucional tiene 1792 parámetros (pesos)?

Notar que el vector de entrada a la Feed-Forward es de 30x30x64= 57600.

Esto hace que haya casi 2 millones de parámetros! solo para 32 neuronas ocultas.

Capas Pooling

Las capas Pooling ayudan a reducir la dimensionalidad espacial del feature map. Básicamente son convoluciones con un stride igual al tamaño del kernel y donde se calcula alguna función sobre todos los píxeles. Lo más usual es el máximo, el mínimo o el promedio. No solo reducen la dimensionalidad, sino que generalmente ayudan en la clasificación.

Capas Pooling

Generalmente se grafican los Feature maps, no los kernels. Ya que esto se da como entrada a la próxima capa.

Capa Convolucional + Pooling - CIFAR10

Layer (type)	Output	Shape	Param #
conv2d_1 (Conv2D)	(None,	30, 30, 64)	1792
max_pooling2d_1 (MaxPooling2	(None,	15, 15, 64)	0
flatten_1 (Flatten)	(None,	14400)	0
dense_1 (Dense)	(None,	32)	460832
dense_2 (Dense)	(None,	10)	330
Total params: 462,954 Trainable params: 462,954 Non-trainable params: 0			

Agregando la capa Pooling la cantidad de parámetros se redujo a un cuarto

Capa Convolucional + Pooling - CIFAR10

```
model = Sequential()
model.add(Conv2D( 64,
                            kernel_size=3,activation='relu',input_shape= INPUT_SHAPE))
model.add(MaxPooling2D(pool_size=(2, 2)))
                                                                                       Confusion matrix
model.add(Flatten())
                                                                          660
                                                                                                   13
                                                                                                        18
                                                                                                           121
                                                                                                                25
                                                                  airplane
model.add(Dense(32, activation= 'relu'))
model.add(Dense(n_clases, activation= 'softmax'))
                                                                                       24
                                                                                                    10
                                                                automobile
                                                                                  479
                                                                                       88
                                                                                          131
                                                                                               62
                                                                                                        55
                                                                                                            18
                                                                                                                 6
                                                                     bird
                                                                          18
                                                                                          105
                                                                                              143
                                                                                                   102
                                                                                                            15
                                                                      cat
                                                                                   73
                                                                                       55
                                                                                          651
                                                                                               37
                                                                                                            18
                                                                     deer
    Train
                                                                          15
                                                                                   60
                                                                                      224
                                                                                          75
                                                                                                   37
                                                                                                        70
                                                                                                            16
                                soporte: 50000
                                                                                                                 5
        Accuracy: 0.78
                                                                     doa
                                                                                       67
                                                                                               20
                                                                                                   797
                                                                     frog
    Test
                                                                                               51
                                                                                           82
                                                                                                   12
                                                                                                       753
                                                                                                                 4
                                                                    horse
        Accuracy: 0.65
                                soporte: 10000
                                                                                                           815
                                                                                                                16
                                                                                                8
                                                                                                    10
                                                                     ship
                                                                              165
                                                                                                                601
                                                                    truck
```

Filtros convolucionales sobre CIFAR10

Capas convolucionales

A medida que las capas se apilan, los filtros convolucionales se aplican sobre los feature maps de las capas anteriores.

Capas convolucionales

A medida que las capas se apilan, los filtros convolucionales se aplican sobre los feature maps de las capas anteriores.

Kernel sizes

Lo más usual es tener tamaños de kernel de 3x3, 5x5 y 1x1.

Red Convolucional estándar

Generalmente se suelen utilizar varias capas convolucionales seguidas de capas pooling.

Red Convolucional estándar

Modelo más "profundo" para clasificar CIFAR10

```
#create model
model = Sequential()
#add model layers
model.add(Conv2D(64, kernel size=3, activation='relu',
                 input shape= INPUT SHAPE, padding = 'same'))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Conv2D(64, kernel size=3, activation='relu',
                 input shape= INPUT SHAPE, padding = 'same'))
model.add(MaxPooling2D(pool size=(2, 2)))
model.add(Flatten())
model.add(Dense(128,input_dim=d_in, activation= 'relu'))
model.add(Dense(n clases, activation= 'softmax))
```

Salida primer capa convolucional

Layer (type)

dense 3 (Dense)

Output Shape

(None, 128)

524416

1290

dense 4 (Dense) (None, 10) Total params: 564,426

Trainable params: 564,426

Non-trainable params: 0

soporte: 10000

Después de Max Pooling 2x2 Feature Map= 64x16x16

Después de segunda capa convolucional.

Feature Map= 64x16x16

Visualización de Redes Convolucionales

https://projects.trinadh.com/conv-neural-net/

Resumen

- Las Capas convolucionales 2D tienen filtros (kernels) que se entrenan para detectar diferentes características.
- Cada filtro genera un Feature Map de NxNx1. Donde N dependerá del tamaño original de la imagen, del filtro, el padding y el stride que usemos.
- Todos los Feature Maps de los distintos filtros de una capa convolucional se apilan, generando una nueva "imagen" (Activation Map) de NxNxF, siendo F la cantidad de filtros.
- Las capas Pooling permiten reducir la dimensionalidad del problema, haciendo no solo más rápido el entrenamiento sino más eficaz al momento de generalizar.
- El modo más ordenado de realizar una arquitectura ConvNet es intercalar capas Convolucionales con capas Pooling hasta llegar a las capas Dense (Feed-Forward) que discriminarán las características aprendidas por las capas anteriores.