

POLITECNICO DI MILANO DIPARTIMENTO DI MECCANICA

20158 MILANO - Via La Masa, 34

ESERCIZIO 1

Data la spira di figura di dimensioni h=15 cm, d=5 cm che ruota intorno al proprio asse aa con velocità angolare $\omega=300$ rad/s, in un campo di induzione magnetica costante pari a B=3 T ortogonale e uscente dal piano del foglio, determinare l'indicazione del voltmetro V nell'ipotesi in cui la spira si trovi nell'istante t=0 s nella posizione $\theta=\pi/3$ (con le convenzioni indicate in figura). Trovare il valore a t = 0.5 s.

{Per calcolare la f.e.m. e' necessario trovare il flusso concatenato in funzione del tempo e derivarlo. Il flusso concatenato si trova come $\psi = \int B(t)x \overline{n}dS$ dove n e' il versore perpendicolare alla superficie della spira S. Di conseguenza si trova $\Psi = B(t) *S*cos(\theta(t) + \pi/3)$, e derivando rispetto al tempo si trova la f.e.m. $e = -d\Psi/dt = d*h*\omega*sin(\omega t) + \pi/3$), dove $\omega = 300$ rad/s, di conseguenza $e = 6,75*sin(300*t++\pi/3)$ e il suo verso è dato dalla regola del cavatappi ed è in senso antiorario. La tensione misurata dal voltmetro e' pari a v(t) = -e(t). Alternativamente si può considerare il contributo di forza elettromotrice dato dai due tratti di lunghezze d della spira rotante calcolandoli con la regola della mano destra. La velocità è data da $u=\omega*h/2$, la componente dell'induzione B diretta perpendicolarmente alla direzione della velocità è pari a $B*sin(\theta(t) + \pi/3)$. Di conseguenza si ha $e=2*(\omega*h/2*B*sin(\theta(t) + \pi/3)*d)$, dove il "2" tiene conto dei due contributi sui due tratti di spira lunghi d. Il verso si ottiene applicando la regola della mano destra e si ha quindi v(t) = -e. Per t=0s si ha V=-1,675 V}

ESERCIZIO 2


```
X_1 = 30 \Omega

E1 =E2 = E3 = 220 V

N=100

\delta=2 mm

Afe=300 cm<sup>2</sup>
```

Sia data la rete trifase di Figura con alimentazione simmetrica diretta a 50 Hz. Si determini il valore dell'induttanza L. Si determini il valore della batteria di condensatori da inserire nella sezione A in modo che il coso del carico sia pari a 0.9 nei due casi di collegamento a stella e a triangolo.

{Per il calcolo dell'induttanza L si procede per ispezione. La rete magnetica è costituita da un generatore di fimm in serie a una riluttanza θ (θ = δ / μ o*Afe= $5,305*10^4$ H- 1) il tutto in parallelo a θ e ad un'altra θ . Di conseguenza L= N^2 / θ eq dove θ eq= $3/2*\theta$ e L = 0.126 H. Per il calcolo della potenza attiva e reattiva è necessario calcolare la tensione tra i due centri stella Voo=(E1/Z+E2/R+E3/R)/2)/(1/Z+1/R+1/R/2)=-64,82+j13,74 V, dove Z=R+jX1. Le correnti sui tre carichi longitudinali sono date da I1=(E1-Voo)/Z=4,518-j4,976 A, (E2-Voo)/R=-1,506-j6,809°, (E3-Voo)/R/2/-3,01+j11,785A. Di conseguenza la potenza attiva P è pari a P= $R*|I1|^2+R*|I2|^2+R/2*|I3|^2=5,034$ kW e la potenza reattiva Q è pari a Q= $X1*|I1|^2+(|E1-E2|^2)XL=5,033$ kvar dove XL= $2\pi f$. La capacità dei condensatori collegati a stella e' pari a Cst=(Q- $Ptan(\phi_rif))/(3*2*\pi*f*E^2)=56,89\mu F$ e di quelli collegati a triangolo e' pari a Ctr=Cst/3=18,96 μF .

Domande di teoria

- 1. Giunto elettromagnetico. Ipotesi di studio e coppia trasmessa
- 2. Il trasformatore monofase: circuito equivalente completo e ridotto, prove per determinare i parametri.