EEL 4930 Stats – Lecture 24

EEL 4930 Stats – Lecture 24

CENTRAL LIMIT THEOREM

Consider a sum of (independent) random variables:

EEL 4930 Stats - Lecture 24

CENTRAL LIMIT THEOREM

Consider a sum of (independent) random variables:

• If X_i , i = 1, 2, ... is a sequence of independent random variables with the same distribution and finite variance, then the distribution function of

$$\lim_{n\to\infty} \frac{1}{n} \sum_{i=1}^n X_i$$

converges to a common distribution function

• This is the Central Limit Theorem

This is the Central Limit Theorem

We won't cover the proof in this class – take EEE 5544

- This is the Central Limit Theorem

 We won't cover the proof in this class take EEE 5544
- The limiting distribution is that of a Gaussian random variable

- This is the Central Limit Theorem

 We won't cover the proof in this class take EEE 5544
- The limiting distribution is that of a Gaussian random variable
- The density of a Gaussian RV X is

$$f_X(x) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left\{-\frac{(x-\mu)^2}{2\sigma^2}\right\},\,$$

which has two parameters: (mean) μ and (variance) $\sigma^2 > 0$

EEL 4930

DISTRIBUTION FUNCTION

DISTRIBUTION FUNCTION

The CDF of a Gaussian RV is given by

$$F_X(x) = P(X \le x)$$

$$= \int_{-\infty}^x \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left\{-\frac{(t-\mu)^2}{2\sigma^2}\right\} dt,$$

DISTRIBUTION FUNCTION

The CDF of a Gaussian RV is given by

$$F_X(x) = P(X \le x)$$

$$= \int_{-\infty}^{x} \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left\{-\frac{(t-\mu)^2}{2\sigma^2}\right\} dt,$$

which cannot be evaluated in closed form

EEL 4930

• Instead, we tabulate distribution functions for a normalized Gaussian variable with $\mu=0$ and $\sigma^2=1$

• Instead, we tabulate distribution functions for a normalized Gaussian variable with $\mu=0$ and $\sigma^2=1$

This is called the Normal distribution, and its CDF is

$$\Phi(x) = \int_{-\infty}^{x} \frac{1}{\sqrt{2\pi}} \exp\left\{-\frac{t^2}{2}\right\} dt$$

 Mathematicians use the "error function" (erf) to define the CDF of the normal distribution:

$$\Phi(x) = \frac{1}{2} \left[1 + \operatorname{erf}\left(\frac{x}{\sqrt{2}}\right) \right],$$

where

$$\operatorname{erf}(x) = \frac{2}{\sqrt{\pi}} \int_0^x e^{-t^2} dt$$

Engineers more commonly use the complementary distribution function

• Engineers more commonly use the complementary distribution function, or *Q*-function

• Engineers more commonly use the complementary distribution function, or *Q*-function, defined by

$$Q(x) = \int_{x}^{\infty} \frac{1}{\sqrt{2\pi}} \exp\left\{-\frac{t^{2}}{2}\right\} dt$$

• Engineers more commonly use the complementary distribution function, or *Q*-function, defined by

$$Q(x) = \int_{x}^{\infty} \frac{1}{\sqrt{2\pi}} \exp\left\{-\frac{t^{2}}{2}\right\} dt$$

• Note that $Q(x) = 1 - \Phi(x)$

 Engineers more commonly use the complementary distribution function, or Q-function, defined by

$$Q(x) = \int_{x}^{\infty} \frac{1}{\sqrt{2\pi}} \exp\left\{-\frac{t^2}{2}\right\} dt$$

• Note that $Q(x) = 1 - \Phi(x)$

• I will be supplying you with a Q-function table and a list of approximations to Q(x)

Q-Function

Definition

$$Q(x) = \frac{1}{\sqrt{2\pi}} \int_{x}^{\infty} e^{-t^2/2} dt$$

Good Approximation (good for programming in calculator)

$$Q(x) \approx \left[\frac{1}{(1-a)x + a\sqrt{x^2 + b}} \right] \frac{1}{\sqrt{2\pi}} e^{-x^2/2},$$

where $a = 1/\pi$, $b = 2\pi$

Simple Upper Bound

$$Q(x) < \frac{1}{2}e^{-x^2/2}$$

Relation to Error Functions

$$Q(x) = \frac{1}{2}\operatorname{erfc}\left(\frac{x}{\sqrt{2}}\right), \quad \operatorname{erfc}(x) = 2Q(x\sqrt{2})$$

Property

$$Q(-x) = 1 - Q(x)$$

X	0.00	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09
0.00	5.0000e-01	4.9601e-01	4.9202e-01	4.8803e-01	4.8405 e - 01	4.8006e-01	4.7608e-01	4.7210e-01	4.6812e-01	4.6414e-01
0.10	4.6017e-01	4.5620 e-01	4.5224 e-01	4.4828e-01	4.4433e-01	4.4038e-01	4.3644e-01	4.3251e-01	4.2858e-01	4.2465 e-01
0.20	4.2074e-01	4.1683e-01	4.1294e-01	4.0905e-01	4.0517e-01	4.0129 e-01	3.9743e-01	3.9358e-01	3.8974 e-01	3.8591 e-01
0.30	3.8209e-01	3.7828e-01	3.7448e-01	3.7070e-01	3.6693 e-01	3.6317e-01	3.5942 e-01	3.5569 e-01	3.5197e-01	3.4827e-01
0.40	3.4458e-01	3.4090e-01	3.3724 e-01	3.3360 e-01	3.2997e-01	3.2636e-01	3.2276e-01	3.1918e-01	3.1561e-01	3.1207e-01
0.50	3.0854e-01	3.0503 e-01	3.0153e-01	2.9806e-01	2.9460 e-01	2.9116e-01	2.8774e-01	2.8434e-01	2.8096e-01	2.7760e-01
0.60	2.7425e-01	2.7093e-01	2.6763e-01	2.6435 e-01	2.6109e-01	2.5785 e-01	2.5463e-01	2.5143e-01	2.4825 e-01	2.4510e-01
0.70	2.4196e-01	2.3885e-01	2.3576e-01	2.3270 e-01	2.2965 e-01	2.2663e-01	2.2363e-01	2.2065e-01	2.1770e-01	2.1476e-01
0.80	2.1186e-01	2.0897e-01	2.0611e-01	2.0327e-01	2.0045e-01	1.9766e-01	1.9489e-01	1.9215 e-01	1.8943e-01	1.8673 e - 01
0.90	1.8406e-01	1.8141e-01	1.7879e-01	1.7619e-01	1.7361e-01	1.7106e-01	1.6853 e-01	1.6602 e-01	1.6354 e-01	1.6109e-01
1.00	1.5866e-01	1.5625 e-01	1.5386e-01	1.5151e-01	1.4917e-01	1.4686e-01	1.4457e-01	1.4231e-01	1.4007e-01	1.3786e-01
1.10	1.3567e-01	1.3350e-01	1.3136e-01	1.2924 e-01	1.2714e-01	1.2507e-01	1.2302 e-01	1.2100e-01	1.1900e-01	1.1702e-01
1.20	1.1507e-01	1.1314e-01	1.1123e-01	1.0935e-01	1.0749e-01	1.0565e-01	1.0383e-01	1.0204 e-01	1.0027e-01	9.8525 e-02
1.30	9.6800e-02	9.5098e-02	9.3418e-02	9.1759e-02	9.0123e-02	8.8508e-02	8.6915 e-02	8.5343e-02	8.3793e-02	8.2264 e-02
1.40	8.0757e-02	7.9270e-02	7.7804e-02	7.6359e-02	7.4934e-02	7.3529e-02	7.2145e-02	7.0781e-02	6.9437e-02	6.8112e-02
1.50	6.6807e-02	6.5522 e-02	6.4255 e-02	6.3008e-02	6.1780 e- 02	6.0571 e-02	5.9380 e- 02	5.8208e-02	5.7053e-02	5.5917e-02
1.60	5.4799e-02	5.3699e-02	5.2616e-02	5.1551e-02	5.0503 e-02	4.9471e-02	4.8457e-02	4.7460 e-02	4.6479e-02	4.5514 e-02
1.70	4.4565e-02	4.3633e-02	4.2716e-02	4.1815e-02	4.0930e-02	4.0059e-02	3.9204 e-02	3.8364 e-02	3.7538e-02	3.6727e-02
1.80	3.5930e-02	3.5148e-02	3.4380e-02	3.3625 e-02	3.2884 e-02	3.2157e-02	3.1443e-02	3.0742e-02	3.0054e-02	2.9379e-02
1.90	2.8717e-02	2.8067e-02	2.7429e-02	2.6803e-02	2.6190e-02	2.5588e-02	2.4998e-02	2.4419e-02	2.3852e-02	2.3295 e-02

X	0.00	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09
2.00	2.2750e-02	2.2216e-02	2.1692e-02	2.1178e-02	2.0675e-02	2.0182e-02	1.9699e-02	1.9226e-02	1.8763e-02	1.8309e-02
2.10	1.7864e-02	1.7429e-02	1.7003e-02	1.6586 e- 02	1.6177e-02	1.5778e-02	1.5386e-02	1.5003 e-02	1.4629 e - 02	1.4262 e-02
2.20	1.3903e-02	1.3553 e-02	1.3209 e-02	1.2874 e - 02	1.2545 e-02	1.2224 e - 02	1.1911e-02	1.1604 e-02	1.1304 e-02	1.1011e-02
2.30	1.0724e-02	1.0444e-02	1.0170e-02	9.9031e-03	9.6419 e - 03	9.3867e-03	9.1375 e-03	8.8940 e-03	8.6563 e-03	8.4242 e-03
2.40	8.1975e-03	7.9763e-03	7.7603e-03	7.5494e-03	7.3436e-03	7.1428e-03	6.9469 e-03	6.7557e-03	6.5691 e- 03	6.3872 e-03
2.50	6.2097e-03	6.0366e-03	5.8677e-03	5.7031e-03	5.5426e-03	5.3861e-03	5.2336e-03	5.0849 e-03	4.9400 e-03	4.7988e-03
2.60	4.6612e-03	4.5271e-03	4.3965e-03	4.2692 e-03	4.1453e-03	4.0246 e - 03	3.9070 e-03	3.7926e-03	3.6811e-03	3.5726 e- 03
2.70	3.4670e-03	3.3642e-03	3.2641e-03	3.1667e-03	3.0720 e-03	2.9798e-03	2.8901e-03	2.8028e-03	2.7179e-03	2.6354e-03
2.80	2.5551e-03	2.4771e-03	2.4012e-03	2.3274e-03	2.2557e-03	2.1860e-03	2.1182e-03	2.0524e-03	1.9884e-03	1.9262 e-03
2.90	1.8658e-03	1.8071e-03	1.7502e-03	1.6948e-03	1.6411e-03	1.5889 e-03	1.5382e-03	1.4890 e-03	1.4412e-03	1.3949e-03
3.00	1.3499e-03	1.3062e-03	1.2639e-03	1.2228e-03	1.1829e-03	1.1442e-03	1.1067e-03	1.0703e-03	1.0350 e-03	1.0008e-03
3.10	9.6760e-04	9.3544e-04	9.0426e-04	8.7403 e-04	8.4474e-04	8.1635 e-04	7.8885e-04	7.6219e-04	7.3638e-04	7.1136e-04
3.20	6.8714e-04	6.6367 e-04	6.4095 e-04	6.1895 e- 04	5.9765 e-04	5.7703e-04	5.5706 e- 04	5.3774e-04	5.1904e-04	5.0094e-04
3.30	4.8342e-04	4.6648e-04	4.5009e-04	4.3423e-04	4.1889e-04	4.0406e-04	3.8971e-04	3.7584 e-04	3.6243 e-04	3.4946 e-04
3.40	3.3693e-04	3.2481e-04	3.1311e-04	3.0179e-04	2.9086e-04	2.8029e-04	2.7009e-04	2.6023e-04	2.5071e-04	2.4151e-04
3.50	2.3263e-04	2.2405 e-04	2.1577e-04	2.0778e-04	2.0006e-04	1.9262 e-04	1.8543e-04	1.7849e-04	1.7180e-04	1.6534 e - 04
3.60	1.5911e-04	1.5310e-04	1.4730e-04	1.4171e-04	1.3632e-04	1.3112e-04	1.2611e-04	1.2128e-04	1.1662e-04	1.1213e-04
3.70	1.0780e-04	1.0363e-04	9.9611e-05	9.5740 e - 05	9.2010 e-05	8.8417e-05	8.4957e-05	8.1624 e-05	7.8414e-05	7.5324 e - 05
3.80	7.2348e-05	6.9483 e-05	6.6726 e- 05	6.4072 e-05	6.1517e-05	5.9059 e-05	5.6694 e - 05	5.4418e-05	5.2228e-05	5.0122 e-05
3.90	4.8096e-05	4.6148e-05	4.4274 e - 05	4.2473e-05	4.0741e-05	3.9076e-05	3.7475 e-05	3.5936 e- 05	3.4458e-05	3.3037e-05
4.00	3.1671e-05	3.0359 e-05	2.9099e-05	2.7888e-05	2.6726e-05	2.5609 e-05	2.4536e-05	2.3507e-05	2.2518e-05	2.1569e-05
4.10	2.0658e-05	1.9783e-05	1.8944e-05	1.8138e-05	1.7365 e-05	1.6624 e - 05	1.5912 e-05	1.5230 e-05	1.4575 e - 05	1.3948e-05
4.20	1.3346e-05	1.2769 e-05	1.2215 e-05	1.1685 e-05	1.1176e-05	1.0689 e-05	1.0221e-05	9.7736e-06	9.3447e-06	8.9337e-06
4.30	8.5399e-06	8.1627e-06	7.8015e-06	7.4555e-06	7.1241e-06	6.8069 e-06	6.5031 e-06	6.2123 e-06	5.9340 e-06	5.6675 e - 06
4.40	5.4125e-06	5.1685 e-06	4.9350e-06	4.7117e-06	4.4979e-06	4.2935 e-06	4.0980e-06	3.9110e-06	3.7322e-06	3.5612e-06
4.50	3.3977e-06	3.2414e-06	3.0920 e-06	2.9492e-06	2.8127e-06	2.6823e-06	2.5577e-06	2.4386e-06	2.3249e-06	2.2162e-06
4.60	2.1125e-06	2.0133e-06	1.9187e-06	1.8283e-06	1.7420 e-06	1.6597e-06	1.5810 e-06	1.5060 e-06	1.4344e-06	1.3660 e06
4.70	1.3008e-06	1.2386e-06	1.1792e-06	1.1226e-06	1.0686e-06	1.0171e-06	9.6796e-07	9.2113e-07	8.7648e-07	8.3391e-07
4.80	7.9333e-07	7.5465 e-07	7.1779e-07	6.8267 e-07	6.4920 e-07	6.1731e-07	5.8693 e-07	5.5799e-07	5.3043e-07	5.0418e-07
4.90	4.7918e-07	4.5538e-07	4.3272 e-07	4.1115e-07	3.9061e-07	3.7107e-07	3.5247 e - 07	3.3476e-07	3.1792e-07	3.0190e-07
5.00	2.8665e-07	2.7215e-07	2.5836e-07	2.4524e-07	2.3277e-07	2.2091e-07	2.0963e-07	1.9891e-07	1.8872e-07	1.7903e-07
5.10	1.6983e-07	1.6108e-07	1.5277e-07	1.4487e-07	1.3737e-07	1.3024 e-07	1.2347e-07	1.1705 e-07	1.1094 e-07	1.0515 e-07
5.20	9.9644e-08	9.4420 e - 08	8.9462 e-08	8.4755 e-08	8.0288e-08	7.6050 e-08	7.2028e-08	6.8212 e-08	6.4592 e-08	6.1158e-08
5.30	5.7901e-08	5.4813e-08	5.1884e-08	4.9106e-08	4.6473e-08	4.3977e-08	4.1611e-08	3.9368e-08	3.7243e-08	3.5229 e - 08
5.40	3.3320e-08	3.1512e-08	2.9800e-08	2.8177e-08	2.6640 e - 08	2.5185e-08	2.3807e-08	2.2502 e-08	2.1266e-08	2.0097e-08
5.50	1.8990e-08	1.7942e-08	1.6950 e - 08	1.6012e-08	1.5124 e-08	1.4283e-08	1.3489e-08	1.2737e-08	1.2026e-08	1.1353e-08
5.60	1.0718e-08	1.0116e-08	9.5479e-09	9.0105e-09	8.5025 e-09	8.0224 e-09	7.5686e-09	7.1399e-09	6.7347e-09	6.3520 e-09
5.70	5.9904e-09	5.6488e-09	5.3262 e-09	5.0215 e-09	4.7338e-09	4.4622 e-09	4.2057e-09	3.9636e-09	3.7350e-09	3.5193 e-09
5.80	3.3157e-09	3.1236e-09	2.9424e-09	2.7714e-09	2.6100e-09	2.4579 e-09	2.3143e-09	2.1790e-09	2.0513e-09	1.9310e-09
5.90	1.8175e-09	1.7105e-09	1.6097e-09	1.5147e-09	1.4251e-09	1.3407e-09	1.2612e-09	1.1863e-09	1.1157e-09	1.0492e-09

The Q-function can also be defined as

$$Q(x) = \frac{1}{\pi} \int_0^{\pi/2} \exp\left\{-\frac{x^2}{\sin^2 \phi}\right\} d\phi.$$

The Q-function can also be defined as

$$Q(x) = \frac{1}{\pi} \int_0^{\pi/2} \exp\left\{-\frac{x^2}{\sin^2 \phi}\right\} d\phi.$$

(This is a fairly recent result that is in very few textbooks. This form has a finite range of integration that is often easier to work with.)

EEL 4930

ullet The CDF for a Gaussian RV with mean μ and variance σ^2 is

ullet The CDF for a Gaussian RV with mean μ and variance σ^2 is

$$F_X(x) = \Phi\left(\frac{x-\mu}{\sigma}\right)$$

ullet The CDF for a Gaussian RV with mean μ and variance σ^2 is

$$F_X(x) = \Phi\left(\frac{x-\mu}{\sigma}\right)$$
$$= 1 - Q\left(\frac{x-\mu}{\sigma}\right)$$

• The CDF for a Gaussian RV with mean μ and variance σ^2 is

$$F_X(x) = \Phi\left(\frac{x-\mu}{\sigma}\right)$$
$$= 1 - Q\left(\frac{x-\mu}{\sigma}\right)$$

Note that the denominator above is σ , not σ^2 . Many students use the wrong value when solving problems!

$$P(a < X \le b)$$

$$P(a < X \le b) = P(X > a) - P(X > b)$$

$$P(a < X \le b) = P(X > a) - P(X > b)$$

$$= Q\left(\frac{a - \mu}{\sigma}\right) + Q\left(\frac{b - \mu}{\sigma}\right)$$

$$P(a < X \le b) = P(X > a) - P(X > b)$$

$$= Q\left(\frac{a - \mu}{\sigma}\right) - Q\left(\frac{b - \mu}{\sigma}\right)$$

Engineering examples: Noise sample in an electrical device

$$P(a < X \le b) = P(X > a) - P(X > b)$$

$$= Q\left(\frac{a - \mu}{\sigma}\right) - Q\left(\frac{b - \mu}{\sigma}\right)$$

 Engineering examples: Noise sample in an electrical device, complex Gaussian models combined amplitude and phase of wireless signal received in multipath environment

$$P(a < X \le b) = P(X > a) - P(X > b)$$

$$= Q\left(\frac{a - \mu}{\sigma}\right) - Q\left(\frac{b - \mu}{\sigma}\right)$$

 Engineering examples: Noise sample in an electrical device, complex Gaussian models combined amplitude and phase of wireless signal received in multipath environment, sum of accumulated errors

More on Computing Gaussian Tail Probs

 Any Gaussian probabilities can be decomposed in terms of Gaussian tail probabilities

More on Computing Gaussian Tail Probs

- Any Gaussian probabilities can be decomposed in terms of Gaussian tail probabilities
- There are 2 cases of the tail probabilities

EEL 4930

• Case 1: $P(X \ge a)$, where $a > \mu$

• Case 2: $P(X \le b)$, where $b < \mu$

EX Grading on a curve Professor's class requests that he "grade on a curve".

Α

professor's class requests that he "grade on a curve". The professor sees that the class grades can be modeled using a Gaussian distribution with parameters μ and σ^2 .

/ FX Grading on a curve

professor's class requests that he "grade on a curve". The professor sees that the class grades can be modeled using a Gaussian distribution with parameters μ and σ^2 .

Let X represent a randomly chosen student's grade.

(a) What is the probability that the student's grade is P(X7W) = Q(W-K)= 91

above μ ?

124-15

The professor decides to use the following grading strategy:

• If the grades are within σ of the mean(μ), assign a B

- If the grades are within σ of the mean(μ), assign a B
- ullet If the grades are more than σ above the mean, assign an A

- If the grades are within σ of the mean(μ), assign a B
- ullet If the grades are more than σ above the mean, assign an A
- If the grades are more than σ below the mean, but less than 2σ below the mean, assign C

- If the grades are within σ of the mean(μ), assign a B
- ullet If the grades are more than σ above the mean, assign an A
- If the grades are more than σ below the mean, but less than 2σ below the mean, assign C
- If the grades are more than 2σ below the mean, but less than 3σ below the mean, assign D

The professor decides to use the following grading strategy:

- If the grades are within σ of the mean(μ), assign a B
- ullet If the grades are more than σ above the mean, assign an A
- If the grades are more than σ below the mean, but less than 2σ below the mean, assign C
- If the grades are more than 2σ below the mean, but less than 3σ below the mean, assign D
- If the grades are more than 3σ below the mean, assign E

Determing the probability that a randomly chosen student gets each grade

Determing the probability that a randomly chosen

student gets each grade

-1-0(急)-の(急)=1-5の(り

EEL 4930

$$P(c) = Q(\frac{d3}{6}) - Q(\frac{d4}{6})$$

$$= Q(\frac{6}{6}) - Q(\frac{26}{6})$$

$$= Q(1) - O(2)$$
EEL 4930

L24-18

E:
$$b(X = m-32) = d(\frac{2}{30}) = d(3)$$

= $d(5) - d(3)$
 $h-39$ $h-50$ m
 $\int_{50}^{20} - d(3)$

EEL 4930

(c) Suppose the threshold to get an A is $k\sigma$ above the mean, what value of k is needed for 40% of the class

to get an A?

$$P(X7, u+k\sigma) = 0.4$$

$$Q(\frac{d}{\sigma}) = Q(\frac{k\sigma}{\sigma}) = 0.4$$

$$Q(k) = 0.4$$

$$k = Q^{-1}(0.4)$$

$$L24$$

EEL 4930