Problem E. 质因数分解5

Time limit 1000 ms **Mem limit** 524288 kB

Oleg's favorite subjects are History and Math, and his favorite branch of mathematics is division.

To improve his division skills, Oleg came up with t pairs of integers p_i and q_i and for each pair decided to find the **greatest** integer x_i , such that:

- p_i is divisible by x_i ;
- x_i is not divisible by q_i .

Oleg is really good at division and managed to find all the answers quickly, how about you?

Input

The first line contains an integer t ($1 \le t \le 50$) — the number of pairs.

Each of the following t lines contains two integers p_i and q_i ($1 \le p_i \le 10^{18}$; $2 \le q_i \le 10^9$) — the i-th pair of integers.

Output

Print t integers: the i-th integer is the largest x_i such that p_i is divisible by x_i , but x_i is not divisible by q_i .

One can show that there is always at least one value of x_i satisfying the divisibility conditions for the given constraints.

Examples

Input	Output
3	10
10 4	4
12 6	179
10 4 12 6 179 822	

Note

For the first pair, where $p_1=10$ and $q_1=4$, the answer is $x_1=10$, since it is the greatest divisor of 10 and 10 is not divisible by 4.

For the second pair, where $p_2=12$ and $q_2=6$, note that

- 12 is not a valid x_2 , since 12 is divisible by $q_2=6$;
- 6 is not valid x_2 as well: 6 is also divisible by $q_2=6$.

The next available divisor of $p_2=12$ is 4, which is the answer, since 4 is not divisible by 6.