დავალებები 1-35-ის პასუხები:

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
5	X		X						X									
δ					x	X	X								X			
გ				X								X					X	X
Q								X					X	X				
Ð		X								X	X					X		

	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35
5				X					X					X		X	
δ						X				X		X					
δ					X			X									X
Q	X		X								X		X				
0		X					X								X		

დავალებები 1-35-ის შეფასების სქემა: ყოველი დავალების სწორი პასუხი ფასდება 1 ქულით, ხოლო მცდარი პასუხი - 0 ქულით.

36. (**5 ქულა**) შეუსაბამეთ ციფრებით დანომრილ ფიზიკურ სიდიდეებს ასოებით დანომრილი ერთეულები. პასუხების ფურცელზე ცხრილის სათანადო უჯრებში დასვით ნიშანი \mathbf{X} .

1.	ელექტრული მუდმივა εი	ა. წ/მ²
2.	ელექტროტევადობა	გ. ნ∙მ∙წმ² / ₃ ²
3.	ველის ენერგიის სიმკვრივე	გ. კ²/(ნ·მ)
4.	მაგნიტური ინდუქცია	φ. 3 ² /(5·θ ²)
5.	მაგნიტური ნაკადი	ე. წ.წმ /(კ.მ)
6.	ინდუქციურობა	ვ. ნ.მ.წმ/კ

	1	2	3	4	5	6
ა			X			
δ						X
გ		X				
Q	X					
გ დ ე 3				X		
3					X	

მიღებული ქულა უდრის სწორი სვეტების რიცხვს მინუს ერთი. სწორი სვეტები ისეთია, როგორიც მოყვანილ ცხრილშია. განსხვავებული სვეტები მცდარია.

(მაქს. 5 ქულა)

37. (5 ქულა) სხეული აისროლეს დედამიწის ზედაპირიდან ვერტიკალურად ზევით. ჰაერის წინააღმდეგობა უგულებელყავით. ნულოვანი დონე დედამიწის ზედაპირზეა. შეუსაბამეთ ციფრებით დანომრილ ფიზიკურ სიდიდეებს მათი t დროზე დამოკიდებულების გამომსახველი თვისებრივი გრაფიკები. პასუხების ფურცელზე ცხრილის სათანადო უჯრებში დასვით ნიშანი **X**.

- 1. გავლილი მანძილი
- 2. სიჩქარის მოდული
- 3. გადაადგილების მოდული

- 4. პოტენციალური ენერგია
- 5. კინეტიკური ენერგია
- 6. სრული მექანიკური ენერგია

	1	2	3	4	5	6
ა	X					
δ					X	
გ		X				
<u>გ</u> დ						X
J						
3			X	X		

მიღებული ქულა უდრის სწორი სვეტების რიცხვს მინუს ერთი. სწორი სვეტები ისეთია, როგორიც მოყვანილ ცხრილშია. განსხვავებული სვეტები მცდარია.

(მაქს. 5 ქულა)

- **38.** (5 ქულა) L სიგრმის მაფზე დაკიდებულ მცირე ზომის m მასის ბურთულას მიანიჭეს ჰორიზონტალურად მიმართული v_0 სიჩქარე და ბურთულამ შემოწერა წრეწირი ვერტიკალურ სიბრტყეში. თავისუფალი ვარდნის აჩქარებაა g. განსაზღვრეთ:
- 1) ძაფის დაჭიმულობის ძალა, როდესაც ბურთულა გადის ქვედა წერტილს;
- 2) ბურთულას სიჩქარე ზედა წერტილის გავლისას;
- 3) ძაფის დაჭიმულობის ძალა, როდესაც ბურთულა გადის ზედა წერტილს;
- 4) № სიჩქარის მინიმალური შესაძლო მნიშვნელობა.

ამოხსნა:

1)
$$T_1 - mg = \frac{mv_0^2}{L}$$
 \Rightarrow $T_1 = m\left(g + \frac{v_0^2}{L}\right)$

2)
$$\frac{mv_0^2}{2} = \frac{mv^2}{2} + 2mgL$$
 \Rightarrow $v = \sqrt{v_0^2 - 4gL}$

3)
$$T_2 + mg = \frac{mv^2}{L}$$
, $T_2 + mg = \frac{m(v_0^2 - 4gL)}{L} \implies T_2 = \frac{m(v_0^2 - 5gL)}{L}$

4) მინიმალური სიჩქარის შემთხვევაში $T_2=0 \Rightarrow v_{0min}=\sqrt{5gL}$

შეფასეზის სქემა:

სწორადაა ჩაწერილი ნიუტონის მეორე კანონი აჩქარების გამოსახულების ჩათვლით ქვედა წერტილისათვის - 1 ქულა

სწორადაა ჩაწერილი ენერგიის მუდმივობის კანონი - 1 ქულა

სწორადაა ჩაწერილი ნიუტონის მეორე კანონი აჩქარების გამოსახულების ჩათვლით ზედა წერტილისათვის - 1 ქულა

იცის, რომ მინიმალური სიჩქარის შემთხვევაში ზედა წერტილის გავლისას მაფის დაჭიმულობის ძალა ნულის ტოლია - **1 ქულა**

ნაპოვნია მინიჭებული სიჩქარის მინიმალური მნიშვნელობა - 1 ქულა

39. (**5 ქულა**) ნახატზე გამოსახულ სქემაში დენის წყაროს ემ ძალაა $\mathcal{E} = 36$ ვ, შიგა წინაღობაა r=1 ომი. განსაზღვრეთ:

- 1) გარე წრედის წინაღობა;
- 2) ძაბვა AB უბანზე;
- 3) R₁ წინაღობაში გამოყოფილი სიმძლავრე;
- 4) დენის ძალა R_3 წინაღობაში;
- 5) 1 წუთში დენის წყაროს დახარჯული ენერგია .

ამოხსნა:

$$1) \ R' = R_1/2 = 1 \ \text{mdo}, \quad \frac{1}{R''} = \frac{1}{R_3} + \frac{1}{R_4} \Rightarrow R'' = 4 \ \text{mdo}, \quad R = R' + R'' = 5 \ \text{mdo}$$
 (1 ქულა)

2)
$$I=$$
 & $/(R+r)=$ 6 ა, $U_{AB}=IR'=6$ g (1 ქულა)

$$P_1 = U_{AB}^2 / R_1 = 18$$
 3ල් (1 ქულა)

4)
$$I_3=2I_4$$
 , $I=I_3+I_4$ \Rightarrow $I_3=2I/3=4$ ა (1 ქულა)

5) W=
$$\&$$
It=12960 χ (1 ქულა)

- **40.** (5 ქულა) v მოლი ერთატომიანი იდეალური აირის მდგომარეობა იცვლება კანონით V^2 = αT , სადაც V აირის მოცულობაა, V0 აბსოლუტური ტემპერატურაა, ხოლო V0 მოცემული მუდმივაა. აირის საწყისი მოცულობაა V0, ხოლო საბოლოო V0. იდეალური აირის უნივერსალური მუდმივაა V0. განსაზღვრეთ:
- 1) α კოეფიციენტის ერთეული საერთაშორისო სისტემაში;
- 2) რამდენჯერ შეიცვალა აირის აბსოლუტური ტემპერატურა;
- 3) აირის წნევის მოცულობაზე დამოკიდებულების p(V) კანონი;
- 4) აირის შესრულებული მუშაობა;
- 5) აირის შინაგანი ენერგიის ცვლილება.

ამოხსწა:

- 1) საერთაშორისო სისტემაში α კოეფიციენტის ერთეულია $\frac{\partial^6}{\mathrm{K}}$ (1 ქულა)
- 2) აბსოლუტური ტემპერატურა გაიზარდა 9 ჯერ (1 ქულა)

3) pV =
$$\nu$$
RT, T = V^2/α \Rightarrow p = ν RV/ α (1 ქულა)

4) რადგანაც წნევა მოცულობის პირდაპირპროპორციულია, ამიტომ საშუალო წნევა საწყისი და საბოლოო წნევების საშუალო არითმეტიკულის ტოლია.

$$A=rac{p_1+p_2}{2}\;(V_2-V_1)=rac{2
u R V_0}{lpha}\cdot 2V_0=rac{4
u R V_0^2}{lpha}$$
 (1 గ్రీమాంక)
$$5)\;U=rac{3}{2}
u R T=rac{3}{2}
u V =rac{3
u R V^2}{2lpha},\quad \Delta U=rac{3
u R}{2lpha}\;(9V_0^2-V_0^2)=rac{12
u R V_0^2}{lpha}$$
 (1 గ్రీమాంక)

- **41.** (**5 ქულა**) F ფოკუსური მანძილის მქონე შემკრები ლინზის პარალელური ღერო თანაბრად მოძრაობს ლინზისაკენ. საწყის მომენტში ღერო ლინზიდან 4F მანძილზეა, ხოლო t დროის შემდეგ გადის ორმაგ ფოკუსში. განსაზღვრეთ:
- 1) მანძილი ლინზიდან გამოსახულებამდე საწყის მომენტში;
- 2) ლინზის გადიდება საწყის მომენტში;
- 3) ლინზის გადიდება საწყისი მომენტიდან 3t/4 დროის შემდეგ;
- 4) საწყის მომენტში ღეროს გამოსახულების ლინზიდან დაშორების მყისი სიჩქარე.ამოხსნა:
- 1) საწყის მომენტში ღერო ლინზიდან d=4F მანძილზეა. ლინზის ფორმულის თანახმად $\frac{1}{F} = \frac{1}{d} + \frac{1}{f},$ სადაც f საძიებელი მანძილია ლინზიდან გამოსახულებამდე.

აქედან $f = \frac{4F}{3}$. (1 ქულა)

- 2) ლინზის გადიდება საწყის მომენტში $\Gamma = \frac{f}{d} = \frac{1}{3}$. (1 ქულა)
- 3) ღეროს მოძრაობის სიჩქარეა $V=\frac{2F}{t}$. ამიტომ მოძრაობის დაწყებიდან 3t/4 დროის განმავლობაში ღერო გაივლის 3F/2 მანძილს და აღმოჩნდება ლინზიდან $d_1=5F/2$ ით დაშორებულ წერტილში. ლინზის ფორმულა ჩაიწერება როგორც $\frac{1}{F}=\frac{1}{d_1}+\frac{1}{f_1}$. აქედან $f_1=5F/3$ და გადიდება $\Gamma_1=\frac{f_1}{d_1}=2/3$. (1 ქულა)
- 4) პირველი პუნქტის ლინზის ფორმულის $\, {
 m t}$ თი გაწარმოებით მივიღებთ $\, 0 = \, \frac{{
 m d}}{{
 m d}^2} \frac{{
 m f}}{{
 m f}^2} \, .$ აქ $\, U = \dot {
 m f} \,$ ღეროს გამოსახულების ლინზიდან დაშორების საძიებელი სიჩქარეა, ხოლო $\, \dot d \,$ ლინზიდან ღეროს დაშორების სიჩქარე. შევნიშნოთ, რომ ღერო ლინზას უახლოვდება, ამიტომ $\, \dot d = \, {
 m V} \,$ და $\, U = \dot f = \, \frac{{
 m f}^2}{{
 m d}^2} \, \dot {
 m d} \, = \Gamma^2 \, {
 m V} = \frac{2 {
 m F}}{9 {
 m t}} \, .$

მყისი სიჩქარის საპოვნელად სწორი მიდგომა (1 ქულა) ამოხსნის ნაპოვნი მეთოდის უშეცდომოდ გამოყენება (1 ქულა)

42. (2 ქულა) თავდაპირველად უძრავ სხეულზე მოქმედებს ერთი მიმართულების ძალა, რომლის მოდული დროზე დამოკიდებულია კანონით: F=At, სადაც A მოცემული დადებითი ნიშნის მუდმივაა. განსაზღვრეთ, რა დროში შეიცვლება სხეულის იმპულსი po-დან 9po-მდე.

ამოხსნა:

ნიუტონის მეორე კანონის თანახმად
$$At=rac{dp}{dt}$$
, საიდანაც $dp=Atdt$ და $p=\int_0^t Atdt$ (1 ქულა)

$$p = At^2 \bigg/ 2 \implies t = \sqrt{\frac{2p}{A}} \quad \implies \quad \Delta t = \sqrt{\frac{18p_0}{A}} - \sqrt{\frac{2p_0}{A}} = 2\sqrt{\frac{2p_0}{A}}$$

(1 ქულა)

43. (3 ქულა) დაამტკიცეთ, რომ $\frac{d^2x}{dt^2} + \omega^2x = 0$ დიფერენციალური განტოლების ამონახსენია x=Asin ω t+Bcos ω t, სადაც A და B ნებისმიერი მუდმივებია. რისი ტოლია A და B, თუ t=0 საწყის მომენტში გვაქვს: x= x_0 და $\frac{dx}{dt} = 0$.

ამოხსნა:

ვაჩვენოთ, რომ x= $Asin\omega t$ + $Bcos\omega t$ აკმაყოფილებს მოცემულ დიფერენციალურ განტოლებას:

$$\frac{dx}{dt} = A\omega\cos\omega t - B\omega\sin\omega t$$

$$\frac{d^2x}{dt^2} = -A\omega^2\sin\omega t - B\omega^2\cos\omega t = -\omega^2 x$$

(1 ქულა)

საწყისი პირობები გვაძლევს: