Esercizio 1. Let $\varphi(z) \in L(A)$ be a consistent formula. Let $p(z) \subseteq L(A)$ be a consistent type. Prove that, if $a \in \operatorname{acl}(A, b)$ for every $b \models p(z)$, then $a \in \operatorname{acl}(A)$.

Esercizio 2. Let $a \in \mathcal{U} \setminus \operatorname{acl} \emptyset$. Prove that \mathcal{U} is isomorphic to some $\mathcal{V} \leq \mathcal{U}$ such that $a \notin \mathcal{V}$.

Esercizio 3. Let C be a finite set. Prove that if $C \cap M \neq \emptyset$ for every model M containing A, then $C \cap \operatorname{acl}(A) \neq \emptyset$.

Esercizio 4. Prove that for every $A \subseteq N$ there is an M such that $acl A = M \cap N$.