UAV task offloading + Ilm

☑ 一、研究定位与核心创新(第1周)

主题建议:

"LLM-enhanced task offloading in UAV-assisted edge computing"

关键词:UAV, task offloading, LLM, reinforcement learning, edge computing

核心创新点(参考):

- 利用LLM进行**区域划分**(region decomposition),提升任务卸载的语义理解与决策 精度;
- 引入**图卷积网络(GCN)+ 自注意力机制**,建模UAV间协作关系;
- 构建去中心化多智能体系统(Dec-POMDP),解决局部观测与全局状态不一致问题;
- 提升任务完成率与收敛速度,优于QMIX、QTRAN等baseline。

☑ 二、文献调研(第1-2周)

- 1. Zhu, F.; Huang, F.; Yu, Y.; Liu, G.; Huang, T. (2025). *Task Offloading with LLM-Enhanced Multi-Agent Reinforcement Learning in UAV-Assisted Edge Computing*. **Sensors**, 25(1), 175.
 - 提供了LLM+QTRAN+GCN的完整框架;
 - 实验对比了QMIX、QTRAN、K-means QTRAN等方法。
- 2. Computation offloading optimization for UAV-assisted mobile edge computing (传统offloading)
- 3. Large Language Model-Based Task Offloading and Resource Allocation for Digital Twin Edge Computing Networks
- Accuracy-Aware MLLM Task Offloading and Resource Allocation in UAV-Assisted Satellite Edge Computing

UAV task offloading + Ilm

较多其他,pdf上传github

扩展文献建议:

- 搜索关键词:
 - "UAV task offloading reinforcement learning"
 - "LLM for edge computing"
 - "multi-agent system UAV trajectory optimization"

☑ 三、方法设计(第3-4周)

建议方法框架(可直接复现并改进):

模块	技术	说明
区域划分	LLM(如LLaMA、ChatGLM)	输入任务描述与环境信息,输出区域划 分策略
多智能体学习	QTRAN + GCN + Self-Attention	建模UAV间协作与任务分配
状态空间	任务位置、UAV位置、计算负载、信 道状态	
动作空间	卸载决策(本地/边缘/云端)+ 轨迹 调整	
奖励函数	任务完成率、时延、能耗、负载均衡	

可改进点(用于创新):

- 使用语义通信压缩任务描述;
- 使用LoRA微调LLM提升效率。

☑ 四、数据集与仿真平台(第4-5周)

推荐数据集:

名称	来源	说明
UAE (UAV-assisted Edge)	自建(参考)	使用Python + SUMO + MATLAB生成
MEC-Radar	IEEE DataPort	含任务卸载轨迹、时延、能耗数据

仿真工具:

UAV task offloading + Ilm

- Python + PyTorch + PettingZoo(多智能体环境)
- AirSim (微软开源UAV仿真)
- OMNeT++/NS-3 (网络层仿真,可选)

开源:

https://zhuanlan.zhihu.com/p/592723925

https://github.com/Siddhesh-Shukla/UAV-assisted-MEC

https://github.com/JiaJun-Zhao/Computation-Offloading-Optimization-for-UAV-assisted-Mobile-Edge-Computing-/tree/main/Local_only

https://github.com/airmobisim

https://ieee-dataport.org/documents/mobility-aware-mec-metro-offloading-dataset

https://github.com/MobiEdgeSim

☑ 五、Benchmark对比方法(第6周)

方法	类型	来源
QTRAN	多智能体强化学习	原文
QMIX	值分解方法	原文
K-means QTRAN	区域划分基线	原文
DDPG / MADDPG	连续控制	可复现
Random / Greedy	启发式方法	用于对比

✓ 六、实验与写作(第6-9周)

实验指标:

- 任务完成率(Success Rate)
- 平均时延(Average Delay)
- 能耗 (Energy Consumption)

UAV task offloading + IIm 3

- 收敛速度(Convergence Speed)
- 奖励曲线(Average Reward)

✓ 七、推荐SCI三区期刊(快速审稿)

期刊名称	出版社	审稿周期	特点
Sensors	MDPI	1-2个月	开源,已发表类似文 章,易中
Electronics	MDPI	1.5个月	接收边缘计算+AI方向
Applied Sciences	MDPI	1.5个月	接收UAV+AI方向
Journal of Supercomputing	Springer	2-3个月	稍严格,但可冲
Future Generation Computer Systems	Elsevier	2-3个月	偏系统,适合有仿真数 据

☑ 首选推荐:Sensors(已发表类似文章,审稿快,开源,易获取审稿人意见)

☑ 八、时间计划表(3-4个月)

周次	任务
第1周	研究定位与核心创新
第1-2周	文献调研
第3-4周	方法设计
第4-5周	数据集与仿真平台
第7周	Benchmark对比方法
第5-9周	实验与写作
第10-12周	修改+投稿

本周课前需完成:

- 1. 前两篇文献,或者自己的文献调研
- 2. 浏览列出的开源代码/数据集

UAV task offloading + Ilm