Realistic Projectiles

Vincent Edwards, Julia Corrales, and Rachel Gossard May 25, 2025

Realistic Projectiles 2

Contents

1.	Quadratic Drag Equation	3
2.	Runge-Kutta Four (RK4) Method	3
3.	Interdependence of Horizontal and Vertical Motion	3
4.	Trajectory Shapes	3
5.	Firing Range	3
	5.a. As a Function of Firing Angle	
	5.b. As a Function of Initial Speed	3
6.	Extension	3

Realistic Projectiles 3

1. Quadratic Drag Equation

In introductory physics, projectiles are typically modeled as experiencing negligible air drag. For this project, projectiles were modeled as experiencing *quadratic drag*.

$$\frac{d^2\vec{r}}{dt^2} = \vec{g} - kv^2\hat{v}$$

The terms in this equation are as follows:

$$\vec{r} = \begin{pmatrix} x \\ y \end{pmatrix}$$
 (position)
$$\vec{v} = \frac{d\vec{r}}{dt}$$
 (velocity)
$$\vec{g} = \begin{pmatrix} 0 \\ -g \end{pmatrix}$$
 (gravitation acceleration)
$$k = \text{"constant"}$$
 (drag constant)

The y axis points straight up, and the x axis points horizontally along the plane of motion of the projectile. This keeps the motion in 2 dimensions. Projectiles were started on the ground at (x, y) = (0, 0).

To focus on scale-independent features of the motion, units of distance and time were used such that g=1 and k=1. This makes the terminal speed $v_{\infty}=1$.

2. Runge-Kutta Four (RK4) Method

3. Interdependence of Horizontal and Vertical Motion

4. Trajectory Shapes

- 5. Firing Range
- 5.a. As a Function of Firing Angle
- 5.b. As a Function of Initial Speed
- 6. Extension