SET

A well defined collection of objects is called a set.

The objects are called the elements or members of the set.

Sets are denoted by capital letters A, B, C ..., X, Y, Z.

SET

The elements of a set are represented by lower case letters a, b, c, ..., x, y, z.

If an object x is a member of a set A we write $x \in A$, which reads "x belongs to A" or "x is in A" or "x is an element of A"

Otherwise we write $x \notin A$, which reads "x does not belong to A" or "x is not in A" or "x is not an element of A".

TABULAR FORM

Listing all the elements of a set, separated by commas and enclosed within braces or curly brackets{}

EXAMPLES

$$A = \{1, 2, 3, 4, 5\}$$

$$B = \{2, 4, 6, 8, ..., 50\}$$

$$C = \{1, 3, 5, 7, 9, ...\}$$

DESCRIPTIVE FORM

Stating in words the elements of a set.

EXAMPLES

A = set of first five Natural Numbers.

B = set of positive even integers less or equal to fifty

C = set of positive odd integers.

SET BUILDER FORM

Writing in symbolic form the common characteristics shared by all the elements of the set.

EXAMPLES

$$A = \{x \in N \mid x \le 5\}$$
 N=Natural Number

$$B = \{y \in E \mid 0 < y \le 50\}$$
 E=Even Number

$$C = \{x \in O \mid x > 0\}$$
 O=Odd Number

SETS OF NUMBERS

1. Set of Natural Numbers

$$N = \{1, 2, 3, \dots\}$$

2. Set of Whole Numbers

$$W = \{0, 1, 2, 3, \dots\}$$

3. Set of Integers

$$Z = \{..., -3, -2, -1, 0, +1, +2, +3, ...\}$$

= $\{0, \pm 1, \pm 2, \pm 3, ...\}$

SETS OF NUMBERS

4. Set of Even Integers $E = \{0, \pm 2, \pm 4, \pm 6, ...\}$

5. Set of Odd Integers $O = \{\pm 1, \pm 3, \pm 5, ...\}$

- 6. Set of Prime Numbers
 P = {2, 3, 5, 7, 11, 13, 17, 19, ...}
- 7. Set of Rational Numbers $Q = \{x \mid x = p/q : p, q \in Z, q \neq 0\}$

SUBSET

If A and B are two sets, A is called a subset of B, written $A \subseteq B$, if, and only if, every element of A is also an element of B.

Symbolically:

 $A \subseteq B \leftrightarrow \text{if } x \in A \text{ then } x \in B$

SUBSET

REMARKS:

- 1. When $A \subseteq B$, then B is called a superset of A.
- 2. When $A \not\subseteq B$, then there exist at least one $x \in A$ such that $x \notin B$.
- 3. Every set is a subset of itself.

EXAMPLE

$$A = \{1, 3, 5\}$$
 $B = \{1, 2, 3, 4, 5\}$
 $C = \{1, 2, 3, 4\}$ $D = \{3, 1, 5\}$

Then

$$A \subseteq B$$
 $A = \{1, , 3, , 5\}$

$$A \subseteq D \qquad D = \{3,1,5\}$$

PROPER SUBSET

Let A and B be sets. A is a proper subset of B, if, and only if, every element of A is in B but there is at least one element of B that is not in A.

Symbolically:

 $A \subset B$

EQUAL SETS

Two sets A and B are equal if, and only if, every element of A is in B and every element of B is in A and is denoted A = B.

Symbolically:

 $A = B \text{ iff } A \subseteq B \text{ and } B \subseteq A$

EQUAL SETS

EXAMPLE

NULL SET

A set which contains no element is called a null set, or an empty set or a void set.

Symbolically:

It is denoted by the Greek letter \emptyset (phi) or $\{ \}$.

NULL SET

EXAMPLE

$$A = \{x \mid x \text{ is a person taller than 10 feet}\}\$$

 $A = \emptyset$

$$B = \{x \mid x^2 = 4, x \text{ is odd}\}\$$

$$B = \emptyset$$

EXERCISE

(a)
$$x \in \{x\}$$
 TRUE

(b)
$$\{x\} \subseteq \{x\}$$
 TRUE

(c)
$$\{x\} \in \{x\}$$
 FALSE

(d)
$$\{x\} \in \{\{x\}\}\$$
 TRUE

(e)
$$\emptyset \subseteq \{x\}$$
 TRUE

(f)
$$\emptyset \in \{x\}$$
 FALSE

UNIVERSAL SET

The set of all elements under consideration is called the Universal Set.

The Universal Set is usually denoted by U.

VENN DIAGRAM

A Venn diagram is a graphical representation of sets by regions in the plane.

FINITE AND INFINITE SETS

A set S is said to be finite if it contains exactly m distinct elements where m denotes some non negative integer.

In such case we write

$$|S| = m \text{ or } n(S) = m$$

A set is said to be infinite if it is not finite.

FINITE AND INFINITE SETS

EXAMPLES

- 1. The set S of letters of English alphabets is finite and |S| = 26
- 2. The null set \emptyset has no elements, is finite and $|\emptyset| = 0$
- 3. The set of positive integers {1, 2, 3,...} is infinite.

EXERCISE

1. $A = \{month in the year\}$ FINITE

2. $B = \{even integers\}$ INFINITE

3. C = {positive integers less than 1}
FINITE

MEMBERSHIP TABLE

A table displaying the membership of elements in sets. To indicate that an element is in a set, a 1 is used; to indicate that an element is not in a set, a 0 is used.

Α	Ac
1	0
0	1