Электроотрицательность, степень окисления и валентность химических элементов

Электроотрицательность (ЭО)

Электроотрицательность это свойство атома, количественная характеристика способности атома в молекуле смещать к себе общие электронные пары, то есть способность атомов оттягивать к себе электроны других атомов.

Самая высокая степень электроотрицательности у галогенов и сильных окислителей (р-элементов, F, O, N, Cl), а низкая — у активных металлов (s-элементов I группы).

РЯД ЭЛЕКТРООТРИЦАТЕЛЬНОСТИ ХИМИЧЕСКИХ ЭЛЕМЕНТОВ ПО ПОЛИНГУ

Cs	K	В	Bal	Na	Sr	Li	Ca	Mg	Mn	Ве	AI	Zn	Cr	Fe	Co	Si	Cu	Ni	Ag	Sn	Hg	В	As	P	н	С	Se	s	1	Br	N	CI	0	F
0,79	0,8	2 0,	,89	0,93	0,95	0,98	1,00	1,31	1,55	1,57	1,61	1,65	1,66	1,83	1,88	1,90	1,90	1,91	1,93	1,96	2,00	2,04	2,18	2,19	2,20	2,55	2,55	2,58	2,66	2,96	3,04	3,16	3,44	3,98

Числовые значения ЭО элементов имеют приблизительные значения: это безразмерная величина. Чем выше ЭО элемента, тем ярче проявляются его неметаллические свойства.

В Периодической системе элементов ЭО в периоде растет с увеличением номера элемента (слева направо), а в главных подгруппах — уменьшается (сверху вниз).

В периодах по мере увеличения зарядов ядер атомов число электронов на внешнем слое увеличивается, радиус атомов уменьшается, поэтому легкость отдачи электронов уменьшается, ЭО возрастает, следовательно, усиливаются неметаллические свойства.

Степень окисления

Степень окисления это условная величина для записи процессов окисления, восстановления и окислительно-восстановительных реакций. Она указывает на состояние окисления отдельного атома молекулы и представляет собой лишь удобный метод учёта переноса электронов: она не является истинным зарядом атома в молекуле.

Степень окисления это условный заряд атома в соединении в предположении, что все связи в этом соединении ионные (т.е. все связывающие электронные пары полностью смещены к атому более электроотрицательного элемента).

Другими словами, степень окисления - это число, которое показывает, сколько электронов отдал (заряд «+») или принял (заряд «-») атом при образовании химической связи с другим атомом.

В отличие от валентности, степень окисления имеет знак - она может быть отрицательной, нулевой или положительной.

Пример: образование ионной и ковалентной полярной связи:

- 1) NaCl хлорид натрия и 2) HCl хлороводород.
- 1) Связь ионная: атом натрия передал свой внешний электрон атому хлора и превратился при этом в ион с зарядом +1, а атом хлора принял электрон и превратился в ион с зарядом -1. $Na^0 + Cl^0 = Na^{+1}Cl^{-1}$

$$Na + Cl \rightarrow Na^{\dagger} Cl \longrightarrow NaCl$$

2) В молекуле HCl связь образуется за счет спаривания неспаренных внешних электронов и образования общей электронной пары атомов водорода и хлора.

$$H \cdot + \cdot Cl: \rightarrow H:Cl:$$

Правильнее представлять образование ковалентной связи в молекуле хлороводорода как перекрывание одноэлектронного s-облака атома водорода одноэлектронным p-облаком атома хлора:

При химическом взаимодействии общая электронная пара смещена в сторону более электроотрицательного атома хлора. Электрон не полностью перейдет от атома водорода к атому хлора, а частично, обусловливая тем самым частичный заряд атомов

$$H \cdot + \cdot \stackrel{\cdot}{\text{Cl}} : \longrightarrow \stackrel{+ \delta}{\text{H} \cdot \cdot \overset{\cdot}{\text{Cl}}} :$$

Если же представить, что и в молекуле HCl, как и в NaCl, электрон полностью перешел от атома водорода к атому хлора, то они получили бы заряды +1 и –1

При определении этого понятия условно предполагают, что в ковалентных полярных соединениях связующие электроны полностью перешли к более электроотрицательному атому, а потому соединения состоят только из положительно и отрицательно заряженных атомов.

Определение степени окисления

- 1) Степени окисления атомов в простых веществах равны нулю
- 2) Алгебраическая сумма степеней окисления всех атомов, входящих в состав молекулы, всегда равна нулю, а в сложном ионе эта сумма равна заряду иона.
- 3) Постоянную степень окисления имеют атомы: щелочных металлов (+1), щелочноземельных металлов (+2), водород (+1) (кроме гидридов NaH, CaH2 и др., где степень окисления водорода -1) кислорода (-2) (кроме F₂-1O+2 и пероксидов, содержащих группу –O-O-, в которой степень окисления кислорода -1).
- 4) Высшая степень окисления элемента, как правило, совпадает с номером группы, в которой находится данный элемент (фосфор находится в V группе, высшая с. о. фосфора равна +5). Важные исключения: F, O.

Валентность

Валентность характеризует способность атомов данного химического элемента к образованию химических связей, определяет число химических связей, которыми атом связан с другими атомами в молекуле.

Валентность атома химического элемента определяется, в первую очередь, числом неспаренных электронов, принимающих участие в образовании химической связи.

Определение валентности

Элементы с постоянной валентностью

- 1) Щелочные металлы (Li, Na, K, Rb, Cs, Fr) 1
- 2) Металлы II группы, главной подгруппы (Be, Mg, Ca, Sr, Ba, Ra) 2
- 3) Алюминий (AI) 3
- 4) Кислород (O) 2
- 5) Фтор (F) 1

Высшая валентность элемента в большинстве случаев совпадает с номером группы, в которой находится данный элемент.

Марганец находится в VII группе, высшая валентность Mn равна семи. Кремний в IV группе, его высшая валентность равна четырем.

Высшая валентность не всегда является единственно возможной. Например, высшая валентность хлора равна семи, но известны соединения, в которых этот элемент проявляет валентности VI, V, IV, III, II, I.

