Fully Convolutional Networks for Semantic Segmentation

NNFL Project

Akarsh Chaturvedi : 2016B5A80582P

Aman Garg : 2016B4A70584P

Harshavardhana Shrirup: 2016B3A70501P

Semantic Segmentation

An example of semantic segmentation, where the goal is to predict class labels for each pixel in the image.

Image Source: http://pages.cs.wisc.edu/~jiaxu/projects/weak-label-seg/

The Typical Way

Loss is calculated for each pixel independently.

Issue

How to create a dense prediction?

Related works:

- Patchwise training
- Small model -> small receptive field
- Post-processing (eg. superpixel projection, random field regularization, filtering....)
- Saturating tanh nonlinearities
- Restricted receptive field
- Input shifting and output interlacing
- Multi-scale pyramid processing

ldea

Semantics and Location

Global information resolves what while local information resolves where.

- Global information → What (Semantics)
- Local information → Where (location)

- User train entire image, instead of patch.
- Let Receptive field overlap significantly to improve efficiency.
- Transfer learning from classification net to fully convolutional network.
- For pixel-wise prediction, connect coarse outputs to pixels.

Fully Convolutional Network

Convert classification net to Fully Convolutional Network

The encoder produces a *coarse* feature map which is then refined by the decoder module.

Dense Prediction

Strategy for upsampling:

- Shift-and-Stitch
- Deconvolution
- Bilinear

Deconvolution

Image Source: https://cdn-images-1.medium.com/max/600/1*BMngs93_rm2_BpJFH2mS0Q.gif

VGG-16 Architecture

https://www.researchgate.net/figure/llustration-of-the-network-architecture-of-VGG-19-model-conv-means-convolution-FC-means_fig2_325137356

FCN Architecture

Image FCN-8 FCN-16 FCN-32

Image FCN-8 FCN-16 FCN-32

Results

	FCN-32s		FCN-16s		FCN-8s	
	Paper	Ours	Paper	Ours	Paper	Ours
Pixel acc.	89.1	79.2	90.0	77.1	90.3	77.3
Mean acc.	73.3	48.6	75.7	46.0	75.9	45.5
Mean IU	59.4	40.6	62.4	38.2	62.7	37.3
F.w. IU	81.4	70.8	83.0	67.6	83.2	67.1

We have made use of:

- We have used pre-trained weights of VGG-16 to train FCNs using
 Adam-optimizer.
- Pascal VOC 2012 dataset has been used.
- Upsampling via Deconvolution.