Price Discrimination and Mortgage Choice

Jamie Coen¹ Anil Kashyap² May Rostom³

¹Imperial College London

²Chicago Booth and NBER

³Bank of England

SFS Cavalcade - May 2024

Views are solely those of the authors and so cannot be taken to represent those of the Bank of England or any of its committees.

1

What we find

- People face a daunting number of mortgages to choose from.
- On average, people don't pick particularly well, but cost implications small.
- **3** Some customers (7%) leave a lot of money on the table.
 - High LTV & LTI customers → Young, first-time-buyers.
 - Dispersed menus → Expensive choices.
- Evidence consistent with price discrimination to profit from poor decisions or lack of alternatives. We rule out cost and risk.

UK market structure

- Most mortgages: fixed rate period of 2, 3, or 5 years.
- Long period of floating rate.
- People roll over their mortgage multiple times.
- 5 components: initial period, initial rate, upfront fee, reset rate, maximum LTV.
- Customers face multi-product menus at multiple banks.

Evaluating choices

- Find all mortgages on offer at given LTV for given loan amount and initial payment period.
 - Both within the chosen bank, and across all 6 banks.
- **2** Compute NPV of payment over first 7 years.
- 3 Rank NPVs.
- **4** Define baseline mortgage: 15th percentile of choice set.

NPV calculations Example Within vs. Across Banks

Alternative Ranking

Results hold for two other ranking methods:

- Immediate refinancing: Assume refinancing at the end of the promotion period
 - Eliminates relevance of the reset rate
- 2 Dominance: Find mortgages that dominate in at least one dimension
 - Rules out private information

How well do people pick?

	Choice set size	Pctile chosen
25 th pctile	46	27
Median	73	47
75 th pctile	101	70

Expensive choice: costs $\geq 2.5\%$ of monthly net income.

Choice proliferation

Time Series of Expensive choices

Where do expensive choices come from?

Two aspects to an expensive choice:

- 1 Quality of your choice: given your menu, did you pick well?
 - *choice* = percentile rank of choice you made.
- **Quality of choice set:** how many bad choices were on offer?
 - bad tail = % of expensive mortgages on offer.

Menu variation

Menu prevents the median person from picking expensive option, but sometimes the menu is filled with bad choices. Within bank

Menu Quality and Expensive Choices

Menu quality is the key driver in making expensive choices.

Who gets a bad menu?

Note: High LTV=LTV> 85%. High LTI=LTI> 4

Banks offer worse menus to high LTV & LTI customers. Within Banks

What do LTV and LTI load on?

	Dependent variable:			
	High LTV MFX	High LTI MFX	High LTV & LTI MFX	
Young	0.071*** (0.001)	0.023*** (0.001)	0.016*** (0.001)	
Old	-0.095*** (0.002)	-0.079*** (0.001)	$-0.035^{***} \ (0.001)$	
First-time buyer	0.234*** (0.001)	0.037*** (0.001)	0.042*** (0.001)	
Poor	$^{-0.076^{***}}_{(0.001)}$	0.065*** (0.001)	$^{-0.003^{***}}_{(0.001)}$	
Rich	0.032*** (0.001)	$-0.067^{***} \ (0.001)$	$^{-0.014^{***}}_{(0.001)}$	
Bank dummies Product dummies Pseudo R-squared Mean dependent variable Observations	Yes Yes 0.12 0.32 894,901	Yes Yes 0.05 0.2 894,901	Yes Yes 0.05 0.05 894,901	

Note:

*p<0.1; **p<0.05; ***p<0.01

Young people & first-time buyers choose high LTV and high LTI mortgages.

Who chooses poorly?

	Dependent variable:		
	Expensive choice acros MFX MFX		
Young	0.018*** (0.001)	0.005*** (0.0004)	
Old	$^{-0.031^{***}}_{(0.001)}$	$^{-0.006^{***}}_{(0.001)}$	
First-time buyer	0.005*** (0.001)	$^{-0.005^{***}}_{(0.0004)}$	
Poor	0.003*** (0.001)	0.001** (0.0004)	
Rich	$^{-0.006^{***}}_{(0.001)}$	-0.006*** (0.0004)	
Bad tail		0.303*** (0.001)	
Bank dummies Product dummies Pseudo R-squared Mean dependent variable Observations	No Yes 0.09 0.067 883,459	No Yes 0.56 0.067 883,459	
Note:	*p<0.1; **p<	(0.05; ***p<0.	

- Young people and FTB are more likely to pick expensively.
 - \rightarrow These effects are driven by quality of the menu.

Risk?

Risk?

- Default extremely rare.
- 2 Default patterns do not follow menu pattern.
- Risk may cause average price to vary by leverage, but not price dispersion.

Risk?

- Default extremely rare.
- 2 Default patterns do not follow menu pattern.
- Risk may cause average price to vary by leverage, but not price dispersion.

Approval standards?

Risk?

- 1 Default extremely rare.
- 2 Default patterns do not follow menu pattern.
- Risk may cause average price to vary by leverage, but not price dispersion.

Approval standards?

Within lenders (and conditional on loan size and house values) approvals don't vary across products.

Risk?

- Default extremely rare.
- 2 Default patterns do not follow menu pattern.
- Risk may cause average price to vary by leverage, but not price dispersion.

Approval standards?

Within lenders (and conditional on loan size and house values) approvals don't vary across products.

Refinancing?

Risk?

- 1 Default extremely rare.
- 2 Default patterns do not follow menu pattern.
- Risk may cause average price to vary by leverage, but not price dispersion.

Approval standards?

Within lenders (and conditional on loan size and house values) approvals don't vary across products.

Refinancing?

Results same if customers refinance once initial period ends.

Risk?

- Default extremely rare.
- 2 Default patterns do not follow menu pattern.
- Risk may cause average price to vary by leverage, but not price dispersion.

Approval standards?

Within lenders (and conditional on loan size and house values) approvals don't vary across products.

Refinancing?

Results same if customers refinance once initial period ends.

Preferences?

Risk?

- Default extremely rare.
- 2 Default patterns do not follow menu pattern.
- Risk may cause average price to vary by leverage, but not price dispersion.

Approval standards?

Within lenders (and conditional on loan size and house values) approvals don't vary across products.

Refinancing?

Results same if customers refinance once initial period ends.

Preferences?

Dominated choices rule this out.

Menu-based Price Discrimination

Suppose there are two types of customers:

- Sophisticated customers: go to all banks and pick the cheapest product available.
- Randomizers: walk into a random bank and pick a random option on the menu.

Menu design trade-off:

- Cheap options to entice sophisticated customers.
- **2** Expensive offers to profit from the randomizers.

Offer menu with price dispersion that is increasing in the fraction of randomizers.

Menzio and Trachter (2018) set out a model in this spirit.

Menu-based Price Discrimination

Young, and first-time-buyers:

- Constrained can't afford a bigger mortgage; may not qualify at other lenders.
- Less likely to pick well (Lusardi & Mitchell, 2011; Agarwal et al, 2009).
- ightarrow these customers prone to picking expensive mortgages.

Implications

- 1 Fiduciary duty.
- 2 Financial literacy.
- 3 Flagging cheaper alternatives.
- 4 Limiting product proliferation.

Conclusions

- 1 People face a large number of choices.
- Most don't pick well, but cost implications low.
- Some customers face menu with large price dispersion → young people, first-time-buyers.
- 4 Consistent with banks using menu to price discriminate.

Literature

Product choice and shopping

Bhutta et al. (2021); Woodward & Hall (2012); Foà et al. (2019); Célérier & Vallée (2017); Agarwal et al (2016); Andersen et al (2020); Fisher et al. (2021); Keys et al. (2016); Allen et al. (2019); Allen & Li (2021).

UK mortgage market

Liu (2019); Iscenko (2020); Benetton (2020); Benetton, Gavazza & Surico (2022); Robles-Garcia (2020); Mysliwski & Rostom (2022).

Price dispersion

Huge literature, recently Menzio & Trachter (2018); Kaplan & Menzio (2015); Kaplan et al (2017).

Our contribution

Novel mechanism: dial up price dispersion to price discriminate.

Summary Statistics

	Mean	Std. dev.	25 th pctile	Median	75 th pctile
Demographics					
Young (%)	36	48	0	0	100
Old (%)	11	31	0	0	0
First-time buyer (%)	40	49	0	0	100
Net income (£000s)	42	26	28	37	50
Loan characteristics					
Loan value (£000s)	157	90	100	136	190
House price (£000s)	201	119	125	172	242
Loan-to-value (%)	79	8	74	80	85
Loan-to-income ratio	3.2	0.9	2.6	3.2	3.8
Prices					
Fee (£000s)	0.66	0.57	0.10	0.76	1.00
Initial rate (%)	4.0	1.0	3.2	3.9	4.7
Reset rate (%)	4.1	0.4	4.0	4.0	4.2

The choice set

Mortgages on offer via Moneyfacts for a given $\ensuremath{\mathsf{LTV}}$

Data

Product Sales Database

- Data on universe of mortgages for 6 top UK banks
- 2009 2014
- Limited borrower characteristics; loan contract details

Moneyfacts

- Mortgage comparison site/booklet
- Shows all mortgages on offer each month
- Compare what they picked with what they could have picked
- \rightarrow Allows us to compare the chosen mortgage with alternatives. (Back)

Choice set example

- Customer borrows £150k; Deposit of £35 $k \to LTV = 77\%$.
- Choice set is all mortgage products where:
 - 1 Max loan-to-value is 80%.
 - **2** Max loan size is greater than £150k.
 - + the customer's chosen mortgage if not in this set.
- In principle, customers qualify for all mortgages with higher max LTV, but these would represent expensive choices and relatively few customers (8%) do this.
- We restrict the choice set to focus on the menus banks target at particular customer groups, and run a number of robustness checks.

NPV calculation details

$$NPV = fee + \sum_{t=1}^{T_F} \frac{IP}{(1+i)^t} + \sum_{t=T_F+1}^{84} \frac{RP}{(1+i)^t}$$

where

- T_F is the fixation period;
- IP is the monthly payment in the initial period;
- RP is the monthly payment after the initial period; and
- the monthly discount rate *i* is computed using the 7yr LIBOR.

where T_F is the fixation period, IP is the monthly payment in the initial period, RP is the monthly payment after the initial period, and the monthly discount rate i is computed using the 7yr LIBOR.

Which comparison set: within or across?

They address different questions, and have different pros and cons.

Within

- Pros: Covers choices that were definitely available, and is informative about how banks price discriminate.
- Cons: Many people use brokers and/or comparison shop, so actual choice set is likely bigger.

Across

- Pros: Likely closer to the options people had and past work suggests even modest shopping leads to savings.
- Cons: Not sure if any particular person shopped or, if they did, what they saw. Indirectly related to price discrimination.

Ranking Pros and Cons

- Baseline: Supposes people care about the average total monthly payment, not the components – assumes intermediate (7year) horizon.
- Immediate refinancing: Assumes unrealistic aggressive refinancing but eliminate reset rate relevance.
- Strong dominance: Assumes people care about cost components and eliminates any private information, but can ignore very costly choices.

How well do people pick?

	Within		Across		
	Choice set size	Pctile chosen	Choice set size	Pctile chosen	
25 th pctile	11	33	46	27	
Median	16	53	73	47	
75 th pctile	23	75	101	70	

Cost savings within bank

Cost savings across banks

Choice Proliferation

Banks usually offer:

- Multiple max loan amounts (e.g. £250,000; £500,000; £1,000,000)
- Several initial fees (e.g. None; £99; £199; £499; £999; £1499)
- Several initial rates (lower rates for lower fees)
- Typically one reset rate

Menu variation

Menu prevents the median person from picking expensive option, but sometimes the menu is filled with bad choices.

Menu Quality and Expensive Choices

 Plot probability of making expensive choice in a given month against mean size of bad tails in menu offerings.

Who gets bad menus?

 $\label{eq:within banks} \textit{Note:} \ \mbox{High LTV=LTV}{>}\ 85\%. \ \mbox{High LTI=LTI}{>}\ 4$

- Banks offer worse menus to high LTVs & LTI customers.
- Young & FTBs (highly leveraged mortgages) face worse menus

Who chooses poorly?

	Dependent variable:			
	Expensive c MFX	hoice within MFX	Expensive c	hoice across MFX
Young	0.005*** (0.0004)	0.001*** (0.0002)	0.018*** (0.001)	0.005*** (0.0004)
Old	$^{-0.008^{***}}_{(0.0004)}$	$-0.0003 \\ (0.0003)$	$^{-0.031^{***}}_{(0.001)}$	$^{-0.006^{***}}_{(0.001)}$
First-time buyer	0.006*** (0.0004)	-0.0003 (0.0002)	0.005*** (0.001)	$-0.005^{***} \ (0.0004)$
Poor	0.0005 (0.0004)	0.001*** (0.0002)	0.003*** (0.001)	0.001** (0.0004)
Rich	$-0.0001 \\ (0.0003)$	$^{-0.001^{***}}_{(0.0002)}$	$^{-0.006^{***}}_{(0.001)}$	$^{-0.006^{***}}_{(0.0004)}$
Bad tail		0.117*** (0.001)		0.303*** (0.001)
Bank dummies Product dummies Pseudo R-squared Mean dependent variable Observations	Yes Yes 0.3 0.023 894,901	Yes Yes 0.69 0.023 894,901	No Yes 0.09 0.067 883,459	No Yes 0.56 0.067 883,459

Dominated choices

- \bullet Compare mortgage to one that dominates in $\geq\!\!1$ dimension
- \bullet If savings ${\ge}2.5\% \to \text{Strongly dominated}$

	Dependent variable: Strongly dominated across MFX MFX		
Young	0.043*** (0.001)	0.015*** (0.0001)	
Old	$^{-0.075^{***}}_{(0.001)}$	-0.036*** (0.001)	
First-time buyer	0.003*** (0.001)	-0.030*** (0.001)	
Poor	0.034*** (0.001)	0.010** (0.001)	
Rich	-0.043*** (0.001)	-0.029*** (0.001)	
Strongly dominated tail		0.870*** (0.001)	
Bank dummies Product dummies Pseudo R-squared Mean dependent variable Observations	No No Yes Yes 0.04 0.16 0.277 0.277 883,459 883,459		
Note:	*p<0.1; **p<0.05; ***p<0.01		

Back