Introduction to General Relativity - HW 1 - 401208729

Hossein Mohammadi

Q1. Wave equations:

mostly - plus

$$\mathfrak{I}^{h} = \frac{\mathfrak{I}^{h}}{\mathfrak{I}} = (\begin{array}{c} \mathbb{C} \\ \mathbb{I} \\ \mathbb{I} \end{array})$$

under Galilean transformations (Along & WOG

since we can always votates our axes.)

Since we can always volumes
$$x' = x - vt$$

We do a trainsformation

 $y' = y', z' = z \longrightarrow by x \longrightarrow x'(x_1t)$
 $t' = t$

by chain rule

$$\frac{2}{2x} = \frac{1}{2x'} + \frac{1}{2x} + \frac{1}{2x'}$$

$$x' = x - Vt \xrightarrow{t=t'} x = x' + Vt'$$

and
$$\frac{\partial}{\partial t} = \frac{\partial}{\partial t'} \frac{\partial t'}{\partial t} + \frac{\partial}{\partial x'} \frac{\partial x'}{\partial t}$$

$$= \frac{\partial}{\partial t}, -v \frac{\partial}{\partial x},$$

Substituting into 1,

$$-\frac{1}{C^{2}}\frac{\partial}{\partial t}\left(\frac{\partial}{\partial t}\right) + \frac{1}{2}\frac{\partial}{\partial x}\left(\frac{\partial}{\partial x}\right)$$

$$= -\frac{1}{c^2} \left(\frac{3}{3t'} - \sqrt{\frac{3}{3x'}} \right) \left(\frac{3}{3t'} - \sqrt{\frac{3}{3x'}} \right)$$

$$+ \sum_{i=1}^{3} \frac{\partial x_{i}}{\partial x_{i}} \left(\frac{\partial x_{i}}{\partial x_{i}} \right) =$$

$$-\frac{1}{2}\left\{\frac{\partial^2}{\partial (t')^2} - 2V\frac{\partial}{\partial t'}\frac{\partial}{\partial x'} + V^2\frac{\partial^2}{\partial x'}\right\}$$

Laplacian in new Coordinates

Here, the find four is (for field +) $\frac{\partial^2}{\partial x'^2} \left(1 - \frac{\sqrt{2}}{\sqrt{2}} \right) + \frac{\partial^2 \psi}{\partial y'^2} + \frac{\partial^2 \psi}{\partial z'^2}$ The yellow ponts are excessive, here wave eq. isn't invaviat under Galiker transformations.

Notice the ACB order ... Lines parallel to x' axis have earl -time. Now Consider another frame; <u></u> ct Notice the CBA order. Thereby, for such events (space like), we can find such orderings. Note: in O'frame, it may look that CtcLo is unacceptable, but with switable shift

sastisfy such ordering.	
1, , , , , , , , , , , , , , , , , , ,	
I just Iraw this since my tablets	
portrait mode allows me.	

Q3. a) Ar Ar Lo ArBY = 0 Since Ay is time like, by a suitable Lontz Transformation we can newrite it in the form Ar = (tx, 0,0,0). (This is from rudimentories of Specia relativity.) In this frame inner-product becomes: Arb" = - txtb + 0. (x0) / 23) To make ArB'= 0 => tB=0 hence BY is space like in this frame, and in all frames du to invavain of inne product Br Br.

	BUT, we can't conclude only vector, prepedic-
	ular to space like deefor, is time like,
	as an example:
	$\alpha' = (0, 1, 0, 0)$
	B/= (0)0,110)
	Both of which are space like and purposedul.
	b) two light like rectors are parallel
	They are preparatically to each other
f	parallel => prependicula (1)
	Ar = KBr, then ArB' = KBrB' -
	since B is light like hence BrBP=0-
	A' is prependicula to B.
	11 = 1
	ArBr = o and ArAr = Br Br = o

Go to a frame when, Ar = (1,1,0,0) (in C=1 units), hence ArB = (-tB+XB)=0 hence Br = (+tg, tb, yg, ZB) in +his frame. Recall that BrB = 0 - + B+ + B+ 12+ Z=0 Hence $y_B^2 + Z_B^2 = 0 \implies y_B = Z_B = 0$ Therby Br = (+tb, tb, 0,0) and since Ar = (11/10 10) So take $K = \frac{1}{+0} \implies A_{Y} = KB_{Y}$ c) Notice that by definition, Pu for an observ O is Pr=mer where Ur is dxy, its 4- velocity. From S.R we know that Ur = y(C, U) hence Uru1 = - 52 (C2-u2) =

$$-\frac{1}{1-u_{c}^{2}}\left(c^{2}-u^{2}\right) = -\frac{c^{2}}{c^{2}}\left(c^{2}u^{2}\right)$$

$$= -c^{2}$$

$$= -c^{2}$$

$$= mc^{2}$$
Actually its the velativistic energy
associated with a massive - porticle 8

Under X' - > > X' (Conformal transf.) Q4. Maxwell eq. are invariant. VXB = I TE (J=0 in vace-) $\frac{JX_L}{3} = \frac{JX_L}{3} = \frac{JX_L}{3} = \frac{JX_L}{3}$ Substitute into all the proxuell's equertions:

