

What is claimed is:

1. A fender formed from a rubber composition, wherein said rubber composition has a rate of change of compressibility R_{-30}/R_{23} of not more than 1.3 (where R_{-30} denotes a maximum reaction force at -30°C as determined by compressive test and R_{23} denotes a maximum reaction force at 23°C as determined by compressive test) and/or a rate of change of compressibility R_{60}/R_{23} of more than 0.90 (where R_{23} denotes the maximum reaction force at 23°C and R_{60} denotes a maximum reaction force at 60°C).

2. The fender according to claim 1, wherein said rubber composition has the rate of change of compressibility R_{-30}/R_{23} of not more than 1.3 (where R_{-30} denotes the maximum reaction force at -30°C as determined by compressive test and R_{23} denotes the maximum reaction force at 23°C as determined by compressive test), thus imparting the fender with a sufficient compressive energy absorptivity for functioning as a shock absorber in a low-temperature range.

3. The fender according to claim 2, wherein said rubber composition has:

(i) a rate of change of rigidity modulus $G_{-30}/G_{23} < 1.38$ and $\tan\delta < 0.07$ as determined by dynamic shearing test (where

G_{-30} and G_{23} denote dynamic moduli of rigidity at -30°C and at 23°C , respectively, as measured under the conditions of a frequency at 0.3Hz and a displacement of 2.5mm); and

- 5 (ii) a rate of change of elasticity modulus $E^*_{-30}/E^*_{23} < 2.3$ and $\tan\delta < 0.10$ as determined by dynamic tensile test (where E^*_{-30} and E^*_{23} denote dynamic moduli of elasticity in tension at -30°C and at 23°C , respectively, as measured under the conditions of a frequency at 10Hz and a
10 displacement of $50\mu\text{m}$).

4. The fender according to claim 1, wherein said rubber composition has the rate of change of compressibility R_{60}/R_{23} of more than 0.90 (where R_{23} denotes the maximum reaction force at 23°C and R_{60} denotes the maximum reaction force at 60°C), thus imparting the fender with a sufficient compressive energy absorptivity for functioning as a shock absorber in a high-temperature range.

- 20 5. The fender according to claim 4, wherein said rubber composition has:

(i) a rate of change of rigidity modulus $G_{60}/G_{23} > 0.9$ and $\tan\delta < 0.11$ as determined by dynamic shearing test (where G_{60} and G_{23} denote dynamic moduli of rigidity at 60°C and
25 at 23°C , respectively, as measured under the conditions

of a frequency at 0.3Hz and a displacement of 2.5mm);
and

(ii) a rate of change of elasticity modulus $E^*_{60}/E^*_{23} > 0.7$ and $\tan\delta < 0.14$ as determined by dynamic tensile test (where
5 E^*_{60} and E^*_{23} denote dynamic moduli of elasticity in tension
at 60°C and at 23°C, respectively, as measured under the
conditions of a frequency at 10Hz and a displacement of
50μm).

DRAFT ATTACHED - DRAFT ATTACHED

10 6. The fender according to claim 1, wherein said rubber
composition contains 20 to 80 parts by weight of carbon
black and 0 to 20 parts by weight of softener based on
100 parts by weight of base rubber material.

15 7. A method for producing a fender from a rubber
composition as a base material, wherein the rubber
composition is prepared as an elastic base material and
has a rate of change of compressibility R_{-30}/R_{23} of not
more than 1.3 (where R_{-30} denotes a maximum reaction force
20 at -30°C as determined by compressive test and R_{23} denotes
a maximum reaction force at 23°C as determined by
compressive test) and a rate of change of compressibility
 R_{60}/R_{23} of more than 0.90 (where R_{23} denotes the maximum
reaction force at 23°C and R_{60} denotes a maximum reaction
25 force at 60°C).