MATH 524 - Lecture 8 (09/14/2023)

Today: * boundary homomorphism

** Cycles, boundaries, homology group

Now that we have defined the chain groups G(K) for each f, we now talk about how to connect/relate the G(K) for various f. In particular, how are G(K) and G(K) related?

Called the "p-boundary"

We défine a homomorphism $\partial_p: C_p(K) \longrightarrow C_{p_1}(K)$ called the boundary operator (or boundary homomorphism).

Intuitively, the boundary of a triangle is made of its three edges. But now we take the orientation also into account.

$$\partial_2 \left(\begin{array}{c} v_2 \\ v_i \end{array} \right) = \begin{array}{c} v_2 \\ v_i \end{array}$$

Def We define the homomorphism $\partial_{p}: C_{p}(K) \longrightarrow C_{p}(K)$ called the boundary operator as follows. If $\sigma = [v_{0}, ..., v_{p}], p > 0$, then

$$\partial_{p}\sigma = \partial_{p}[v_{0},...,v_{p}] = \sum_{i=0}^{p} (-i)^{i} [v_{0},...,\hat{v}_{i},...,v_{p}] \qquad (1)$$

where \hat{V}_i means vertex v_i is deleted from $[v_0,...,v_p]$.

As $G_p(K)$ is trivial for p < 0, ∂_p is the trivial homomorphism for $p \le 0$.

Since ∂_{ρ} is a homomorphism, we naturally extend the definition of boundary from p-simplices to p-chains. If $c = \sum n_i \sigma_i$ is a p-chain, then $\partial_{\rho} c = \partial_{\rho} (\sum n_i \sigma_i) = \sum n_i (\partial_{\rho} \sigma_i)$.

$$\partial_{1} \left[v_{0} v_{1} \right] = v_{1} - v_{0}$$

Notice that $\partial_{i} [v_{i}v_{o}] = v_{o} - v_{i}$;

$$\partial_{l}$$
 $\left(\begin{array}{c} v_{l} \\ v_{o} \end{array} \right)$

$$\partial_{1} \left(\begin{array}{c} v_{0} \\ v_{0} \end{array} \right) = v_{1} - v_{0}$$

$$\text{head } - \text{teil}, \text{ if you}$$

$$\text{think of the oriented}$$

$$\text{edge as an "arrow"}.$$

$$\partial_{l} \left(\begin{array}{c} v_{l} \\ v_{o} \end{array} \right) = V_{l} - V_{o} + V_{2} - V_{l} = V_{2} - V_{o}$$

Notice that the computations are sensitive to the choice of orientations.

2-simplex

$$\frac{1}{2} \left[v_0 v_1 v_2 \right] = (-1)^0 \left[v_1 v_2 \right] + (-1)^1 \left[v_0 v_2 \right] + (-1)^2 \left[v_0 v_1 \right] = \left[v_1 v_2 \right] - \left[v_0 v_2 \right] + \left[v_0 v_1 \right].$$

$$\partial_2 \left(\begin{array}{c} v_2 \\ v_0 \\ e_0 \end{array} \right) = \begin{array}{c} v_2 \\ v_0 \\ e_0 \end{array} \begin{array}{c} v_2 \\ v_0 \end{array} \begin{array}{c} \text{ he 1-boundary is} \\ -e_0 + e_1 - e_2 \end{array}$$

Notice that the orientation induced from the 2-simplex onto its faces (1-simplices) by the boundary operation could be distinct from the individual orientations of the 1-simplices themselves.

$$\frac{3-\text{simplex}}{\partial_3 \left[v_0 v_1 v_2 v_3 \right] = \left[v_1 v_2 v_3 \right] - \left[v_0 v_2 v_3 \right] + \left[v_0 v_1 v_3 \right] - \left[v_0 v_1 v_2 \right]}$$

We observe that $\partial_1(\partial_2[v_0v_1v_2]) = 0$. (both algebraically and geometrically)

$$\partial_{1}\left(\begin{array}{c}v_{2}\\v_{0}\\e_{1}\end{array}\right)=\partial_{1}\left(-e_{0}+e_{1}-e_{2}\right)=-\left(v_{0}-v_{1}\right)+\left(v_{2}-v_{1}\right)-\left(v_{2}-v_{0}\right)=0.$$
A similar observation can be made for the tetrahedron:

$$\frac{\partial_{2}\left[\partial_{3}\left[v_{0}v_{1}v_{2}v_{3}\right]\right]-\partial_{2}\left[v_{1}v_{2}v_{3}\right]-\left[v_{0}v_{2}v_{3}\right]+\left[v_{0}v_{1}v_{3}\right]-\left[v_{0}v_{2}v_{3}\right]}{+\left[v_{1}v_{2}\right]}-\left[v_{1}v_{2}\right]$$
every edge cancels in pairs.

Indeed, this result holds in general — $\partial_p \partial_{pH} \sigma = 0$. And we can prove it using the definition of ∂_p .

Before that, let's make sure ∂_p is well-defined. In particular, we need to check that $\partial_p(-\sigma) = -\partial_p(\sigma)$.

We cheek what happens in Sum (1) when we swap V-& VjH.

Consider $\sum_{i=0}^{j} (-i)^{i} [v_{0,...}, \hat{v}_{i,...}, v_{p}]$ and $\sum_{i=0}^{j} (-i)^{i} (-[v_{0,...}, \hat{v}_{i,...}, v_{p}])$. If $i \neq j, j \neq 1$, the corresponding terms do differ by a sign. When i = j, compare terms in

We have (-1) [v,..., vj., vj., vj., vj., vj., vp] in (la), and (-1) It [vo,..., vj., vj., vj., vj., vp] in (16)

These two terms do differ by a sign: (-1)3 and (-1)3th. Argument for i=j+1 is similar. We now prove the general result on taking the boundary of a boundary. Indeed, we will use this result to define homology groups as subgroups of Cp (K). Hence this result is called the fundamental lemma of homology.

Lemma 5.3 [M] $\partial_{p} \cdot \partial_{p} = 0.$ Fundamendal lemma of homology

Proof $\partial_{p-1}\partial_{p}[v_{0},...,v_{p}]$ $= \sum_{i=0}^{1} (-1)^{i} \partial_{p-1} \left[\mathcal{V}_{0,\cdots}, \hat{\mathcal{V}}_{i,\cdots}, \mathcal{V}_{p} \right]$ $= \sum_{j < i} (-1)^{i} (-1)^{j} \left[- \hat{y}_{i}, \dots, \hat{y}_{i}, \dots \right] + \sum_{j > i} (-1)^{i} (-1)^{j-1} \left[- \hat{y}_{i}, \dots \hat{y}_{i}, \dots \right]$ = 0, as the ferms cancel in pairs!

Def The kernel of $\partial_p: G_p(K) \longrightarrow G_p(K)$ is the group of p-cycles, denoted $Z_p(K)$. The image of $\partial_{p+}: G_{p+}(K) \longrightarrow G_p(K)$ is the group of p-boundaries, denoted $B_p(K)$. Since $a_1 \partial_{p+} = 0$ by the above lemma, each boundary of a (p+1)-chain is automatically a p-cycle. Hence, $B_p(K) \subset Z_p(K) \subset G_p(K)$. We now define $H_p(K) = Z_p(K)/B_p(K)$, and call if the p-th homology group of K.

The various erroups and I homomorphisms have the following structure:

C, (Ki) is free abelian, generated by, e.g., {e,e,e,e2}.

> We use vector notation for chains

Any 1-chain in K can be given as $\overline{C} = n_0 \ell_0 + n_1 \ell_1 + n_2 \ell_2$ for $n_1 \in \mathbb{Z}$. When is \overline{C} a cycle?

$$\partial_{1} \overline{c} = n_{0} (v_{1} - v_{0}) + n_{1} (v_{2} - v_{1}) + n_{2} (v_{0} - v_{2})$$

$$= (n_{2} - n_{0}) v_{0} + (n_{0} - n_{1}) v_{1} + (n_{1} - n_{2}) v_{2}.$$

So, $\partial_1 \overline{c} = 0$ iff $n_0 = n_1 = n_2$. Thus \overline{c} is a 1-cycle iff $n_0 = n_1 = n_2$.

We can see that $Z_1(K_1)$ is infinite cycle, generated by $\bar{e}_0+\bar{e}_1+\bar{e}_2$. In other words, we can pick an integer, and that number tells us how many times we go around the cycle. If $n_0=n_1=n_2=-3$, for instance, we go around in the opposite direction (i.e., clockwise) 3 times.

There are no 2-simplices, So $B_i(K_i)$ is frivial. In other words, there are no 1-boundaries. Hence $H_i(K_i) = Z_i(K_i) \simeq \mathbb{Z}$. Also, $\beta_i(K_i) = vk(H_i(K_i)) = 1$.

Example 2

This is the same example 2 in [M], but with different choices of orientations.

| K2 | France | K2 | is a square.

A general 1-chain in k_2 is $\bar{c} = \sum_{i=0}^{T} n_i \bar{e}_i$. Then $\partial_i \bar{c} = \sum_{i=0}^{T} n_i \partial_i (\bar{e}_i)$. When is \bar{c} as 1-cycle?

We need $n_0 = n_3$ (at v_1), and $n_1 = n_4$ (at v_2).

Similarly, $n_2 = -(n_0 + n_1)$ at v_0 , and $n_2 = -(n_3 + n_4)$ at v_3 .

Hence we can choose n_0, n_1 arbitrarily, and the orther n_1 's are fixed. So $Z_1(K_2)$ is -free abelian with rank 2. One basis is $\xi = \overline{\ell_0} + \overline{\ell_2} - \overline{\ell_2}$, $\overline{\ell_1} + \overline{\ell_4} - \overline{\ell_2} = 0$.

Indeed, any other cycle in K, can be written as a sum of \$\frac{1}{2}\$ and \$\frac{1}{2}\$. For instance, let \$\frac{1}{2}\$ be the 1-cycle lote3-l4-l1

Indeed, Z can be written as Z-Zz $= (\bar{e}_0 + \bar{e}_3 - \bar{e}_2) - (\bar{e}_1 + \bar{e}_4 - \bar{e}_2).$ that the e2 portions from \bar{z}_1 and \bar{z}_2 cancel.

Now let's characterize $B_i(K_2)$. Notice that both 1-cycles \overline{z}_i and \overline{z}_2 are also 1-boundaries. Indeed, we have

 $\partial_2 \bar{f}_0 = \bar{e}_0 + \bar{e}_3 - \bar{e}_2 = \bar{z}_1$ and $\partial_2 \bar{f}_1 = \bar{e}_2 - \bar{e}_4 - \bar{e}_1 = -\bar{z}_2$.

So $B_1(K_2) = Z_1(K_2)$. Hence $H_1(K_2) = Z_1(K_2)/B_1(K_2) = 0$. (i.e., the first homology group is trivial; there are no 1-cycles that are not 1-boundaries).

Likewise, $H_2(K_2) = 0$. The general 2-chain is $\bar{d} = m_0 \bar{f}_0 + m_1 \bar{f}_1$. And $\partial_2 \bar{d} = 0$ iff $m_0 = m_1 = 0$. There are no 2-cycles. And $H_p(K_2) = 0$ for p = 3 trivially.

We now present some definitions we will use subsequently.

Def A chain & is carried by a subcomplex L if $\overline{c}(\sigma) = 0$ $+ \sigma \notin L$. Two p-chains $\overline{c}_1, \overline{c}_2$ are homologous $\overline{c}_1, \overline{c}_2 = \partial_{p+1} \overline{d}$ for some (p+1)-chain \overline{d} . In particular, $\overline{c}_1 = \partial_{p+1} \overline{d}$, then \overline{c}_1 is homologous to zero, or we say that \overline{c} bounds, i.e., \overline{c} is \widetilde{a} boundary. Swe write $\overline{c}_1 \sim \overline{c}_2$

Here, the 2 0-chains v_0 and v_1 are homologous, since $v_1 - v_0 = \partial_1 e_0$.

Consider two 1-chains \bar{c}_1 , \bar{c}_2 representing two 1D curves starting and ending at the same pair of vertices as shown.

Then \overline{C}_1 and \overline{C}_2 are homologous here, as $\overline{C}_1 - \overline{C}_2 = \partial_2 \overline{d}_1$, where \overline{d}_1 is the 2-chain representing the 2D patch in between $\overline{C}_1 + \overline{C}_2$

Notice that \overline{C} , and \overline{C}_2 need not be just simple open curves. Here, \overline{C} , and \overline{C}_2 both represent Y-shaped 1D curves. Again, $\overline{C}_1 - \overline{C}_2$ is the boundary of the 2D patch in between the two Y-shaped curves.

Consider two 2-chains d, and do, one representing a disc, and another representing the upper hemispherical surface that has the same boundary as the disc.

d, and de are homologous, as d,-d2 represents the boundary of the 3D solid hemisphere bounded by the two surfaces.