Fundamentals of Cryptography Homework 3

周书予

2000013060@stu.pku.edu.cn

October 11, 2022

Problem 1

 $\mathsf{Dec}(k,(r,c)) = F_k^{-1}(c) \oplus r.$

Denote $\Pi = (\mathsf{Gen}, \mathsf{Enc}, \mathsf{Dec})$ as the encryption scheme mentioned in the problem, and $\widetilde{\Pi} = (\widetilde{\mathsf{Gen}}, \widetilde{\mathsf{Enc}}, \widetilde{\mathsf{Dec}})$ exactly the same as Π , except that a truly random permutation f is used in place of F_k .

The proof is divided into two parts:

• In the first part we prove that for any PPT adversary \mathcal{A} , there is some negligible function $\varepsilon(n)$ such that

$$\left| \Pr \left[\mathsf{PrivK}^{\mathsf{cpa}}_{\mathcal{A},\Pi}(n) = 1 \right] - \Pr \left[\mathsf{PrivK}^{\mathsf{cpa}}_{\mathcal{A},\tilde{\Pi}}(n) = 1 \right] \right| < \varepsilon(n) \tag{1}$$

• In the second part we show that for any PPT adversary \mathcal{A} ,

$$\Pr\left[\mathsf{PrivK}^{\mathsf{cpa}}_{\mathcal{A},\tilde{\Pi}}(n) = 1\right] \leqslant \frac{1}{2} + \frac{q(n)}{2^n} \tag{2}$$

for some polynomial q(n).

When finished the proof of the two parts mentioned above, one can see that obviously $\Pr\left[\mathsf{PrivK}^{\mathsf{cpa}}_{\mathcal{A},\Pi}(n) = 1\right] \leqslant \frac{1}{2} + \frac{q(n)}{2^n} + \varepsilon(n)$, which means Π is secure under CPA attack.

Proof of eq. (1)

For any PPT adversary \mathcal{A} , a PPT distinguisher \mathcal{D} can be built, which has access to an oracle $\mathcal{O}: \{0,1\}^n \to \{0,1\}^n$ (here it refers to F_k or f) and interacts with \mathcal{A} like this:

- 1. when \mathcal{A} queries the ciphertext for message $m \in \{0,1\}^n$, choose uniformly random $r \in \{0,1\}^n$ and return $(r, \mathcal{O}(r \oplus m))$.
- 2. when \mathcal{A} outputs m_0 and m_1 , choose a random bit $b \in \{0,1\}$ and uniformly random $r \in \{0,1\}^n$, then return $(r, \mathcal{O}(r \oplus m_b))$.
- 3. continue answering \mathcal{A} 's queries until \mathcal{A} outputs a bit b', then output $\mathbb{1}[b=b']$.

It is easy to see that

$$\begin{split} &\Pr\left[\mathsf{PrivK}^{\mathsf{cpa}}_{\mathcal{A},\Pi}(n) = 1\right] = \Pr_{k \leftarrow \{0,1\}^n}\left[\mathcal{D}^{F_k}(1^n) = 1\right] \\ &\Pr\left[\mathsf{PrivK}^{\mathsf{cpa}}_{\mathcal{A},\tilde{\Pi}}(n) = 1\right] = \Pr_{f \leftarrow \mathsf{Perm}_n}\left[\mathcal{D}^f(1^n) = 1\right] \end{split}$$

where Perm_n denotes the collection of all permutations over $\{0,1\}^n$.

Since F is a PRP, by definition we know that

$$\left| \Pr_{k \leftarrow \{0,1\}^n} \left[\mathcal{D}^{F_k}(1^n) = 1 \right] - \Pr_{f \leftarrow \mathsf{Perm}_n} \left[\mathcal{D}^f(1^n) = 1 \right] \right| < \varepsilon(n)$$

for some negligible $\varepsilon(n)$, so eq. (1) is proved as desired.

Proof of eq. (2)

Notice that \mathcal{A} runs in polynomial time, so it can only queries the ciphertext for polynomially many m, say, q(n). Whenever \mathcal{A} queries m it obtains $f(r \oplus m)$ where r is known to \mathcal{A} and chosen uniformly random. That is, each query gives \mathcal{A} a pair (x, f(x)) which is a point value of f, where $x = r \oplus m$ is chosen uniformly random.

When \mathcal{A} outputs m_0, m_1 and receives $(r^*, f(r^* \oplus m_b))$, it checks out all the recordings from the interaction, and if the point value for $r^* \oplus m_0$ or $r^* \oplus m_1$ is found, it can break the encryption scheme with 100% confidence, otherwise it learns nothing about $f(r^* \oplus m_0)$ and $f(r^* \oplus m_1)$, and probability of outputing the correct answer is exactly 1/2.

The probability that the point value for $r^* \oplus m_0$ or $r^* \oplus m_1$ can be found equals to the probability of finding out two specific items among 2^n during q(n) times of random choosing, which by union bound is not greater than $2q(n)/2^n$. Thus,

$$\Pr\left[\mathsf{PrivK}^{\mathsf{cpa}}_{\mathcal{A},\tilde{\Pi}}(n) = 1\right] \leqslant \frac{2q(n)}{2^n} \cdot 1 + \left(1 - \frac{2q(n)}{2^n}\right) \cdot \frac{1}{2} = \frac{1}{2} + \frac{q(n)}{2^n}$$

Problem 2

Part A: F' is a PRF

First we show that for any PPT distinguisher \mathcal{D} ,

$$\left| \Pr_{k \leftarrow \{0,1\}^n} \left[\mathcal{D}^{g \circ F_k}(1^n) \right] - \Pr_{f \leftarrow \mathsf{Func}_n} \left[\mathcal{D}^{g \circ f}(1^n) \right] \right| < \mathsf{negl}(n) \tag{3}$$

(here $f_1 \circ f_2$ denotes the composition of function f_1 and f_2 .)

This can be done by constructing another distinguisher \mathcal{D}' , which always queries the same message m as \mathcal{D} does except that the oracle used here is F_k or f instead of $g \circ F_k$ or $g \circ f$, and outputs the same as \mathcal{D} does.

It is easy to see that

$$\Pr_{k \leftarrow \{0,1\}^n} \left[\mathcal{D}^{g \circ F_k}(1^n) \right] = \Pr_{k \leftarrow \{0,1\}^n} \left[\mathcal{D}'^{F_k}(1^n) \right]$$
$$\Pr_{f \leftarrow \mathsf{Func}_n} \left[\mathcal{D}^{g \circ f}(1^n) \right] = \Pr_{f \leftarrow \mathsf{Func}_n} \left[\mathcal{D}'^f(1^n) \right]$$

Since F is a PRF, from its definition it is clear to see that eq. (3) can be proved. Then we can show that for any PPT distinguisher \mathcal{D} ,

$$\left| \Pr_{f \leftarrow \mathsf{Func}_n} \left[\mathcal{D}^{g \circ f}(1^n) \right] - \Pr_{h \leftarrow \mathsf{Func}_{n,2n}} \left[\mathcal{D}^h(1^n) \right] \right| < \mathsf{negl}(n) \tag{4}$$

(here $\mathsf{Func}_{n,2n}$ is defined as $\{h: \{0,1\}^n \to \{0,1\}^{2n}\}.$)

This can be done by using hybird argument: assume \mathcal{D} interacts with oracle for p(n) rounds and, WLOG, we assume \mathcal{D} never queries for the same x for encryption (that is obviously suboptimal). Based on \mathcal{D} , distinguisher \mathcal{D}' can be built, which on input $r \in \{0,1\}^{2n}$ works as follows:

- randomly sample t from $\{1, 2, \dots, p(n)\}$, and randomly fix some $f \leftarrow \mathsf{Func}_n$ and $h \leftarrow \mathsf{Func}_{n,2n}$. (f and h do not need to be fully stored.)
- interact with \mathcal{D} . Whenever queried with x in round i, return $\begin{cases} g(f(x)), & i < t \\ r, & i = t \\ h(x), & i > t \end{cases}$
- output the same as \mathcal{D} does.

From this construction we know that

$$\begin{aligned} \Pr_{s \leftarrow \{0,1\}^n} \left[\mathcal{D}'(g(s)) = 1 \right] - \Pr_{r \leftarrow \{0,1\}^{2n}} \left[\mathcal{D}'(r) = 1 \right] \\ &= \frac{1}{p(n)} \left(\Pr_{f \leftarrow \mathsf{Func}_n} \left[\mathcal{D}^{g \circ f}(1^n) \right] - \Pr_{h \leftarrow \mathsf{Func}_{n,2n}} \left[\mathcal{D}^h(1^n) \right] \right) \end{aligned}$$

Since g is a PRG, both sides of the equation are negligible, and eq. (4) is proved as desired. From eq. (3) and eq. (4) one can draw that

$$\left| \Pr_{k \leftarrow \{0,1\}^n} \left[\mathcal{D}^{g \circ F_k}(1^n) \right] - \Pr_{h \leftarrow \mathsf{Func}_{n,2n}} \left[\mathcal{D}^h(1^n) \right] \right| < \mathsf{negl}(n) \tag{5}$$

which suggests that $F'_k = g \circ F_k$ is a PRF.

Part B: F' may not be a PRF

Let g be a PRG which drops its first bit of input. It is easy to see that such PRG exists. Then for any $x \in \{0,1\}^{n-1}$, $F'_k(0||x) = F_k(g(0||x)) = F_k(g(1||x)) = F'_k(1||x)$, which suggests that F'_k is not that "random" and can be easily distinguished from a truly random function.

Problem 3

Part A: F' may not be a strong PRP

3-round Feistel is a PRP but not a strong one.

Part B: F' is a PRF

For any distinguisher \mathcal{D}' which tries to distinguish F' from truly random functions, another distinguisher \mathcal{D} can be built, which

- simulates \mathcal{D}' , when \mathcal{D}' queries x, use its oracle and get $\mathcal{O}(x)$, and then return $x \oplus \mathcal{O}(x)$ to \mathcal{D}' .
- outputs whatever \mathcal{D}' outputs.

It is easy to see that

$$\Pr_{k \leftarrow \{0,1\}^n} \left[\mathcal{D}^{F_k}(1^n) \right] = \Pr_{k \leftarrow \{0,1\}^n} \left[\mathcal{D}'^{F'_k}(1^n) \right]$$
$$\Pr_{f \leftarrow \mathsf{Func}_n} \left[\mathcal{D}^f(1^n) \right] = \Pr_{f \leftarrow \mathsf{Func}_n} \left[\mathcal{D}'^{x \oplus f}(1^n) \right]$$

Thus F' is a PRF.

Part C: F' is a PRP

First we can show that for any PPT distinguisher \mathcal{D} ,

$$\left|\operatorname{Pr}_{k_1 \parallel k_2 \leftarrow g(\$)} \left[\mathcal{D}^{F_{k_2} \circ F_{k_1}}(1^n) = 1 \right] - \operatorname{Pr}_{k_1, k_2 \leftarrow \$} \left[\mathcal{D}^{F_{k_2} \circ F_{k_1}}(1^n) = 1 \right] \right| < \mathsf{negl}(n)$$

This is because g is a PRG and no PPT distinguisher can distinguish g(\$) from $\$\|\$$ with non-negligible advantage.

Then we can show that for any PPT distinguisher \mathcal{D} ,

$$\left|\operatorname{Pr}_{k_1,k_2 \leftarrow \$} \left[\mathcal{D}^{F_{k_2} \circ F_{k_1}}(1^n) = 1 \right] - \operatorname{Pr}_{f_1,f_2 \leftarrow \operatorname{Perm}_n} \left[\mathcal{D}^{f_2 \circ f_1}(1^n) = 1 \right] \right| < \operatorname{negl}(n)$$

This is because F itself is a PRP.

Together it has proved that $F'_k = F_{k_2} \circ F_{k_1}$ is a PRP.

Part D: F' is a PRP

First we show that for any PPT distinguisher \mathcal{D} ,

$$\left|\operatorname{Pr}_{k \leftarrow \{0,1\}^n}\left[\mathcal{D}^{F_k \circ F_k}(1^n) = 1\right] - \operatorname{Pr}_{f \leftarrow \mathsf{Perm}_n}\left[\mathcal{D}^{f \circ f}(1^n) = 1\right]\right| < \mathsf{negl}(n)$$

This is because for any PPT distinguisher \mathcal{D} which tries to distinguish $F_k \circ F_k$ from $f \circ f$, another distinguisher \mathcal{D}' can be built, which queries the same as \mathcal{D} does, uses its oracle twice to get $\mathcal{O}(\mathcal{O}(x))$, returns the result to \mathcal{D} and finally outputs the same bit as \mathcal{D} . Thus

$$\begin{aligned} \Pr_{k \leftarrow \{0,1\}^n} \left[\mathcal{D}^{F_k \circ F_k}(1^n) \right] &= \Pr_{k \leftarrow \{0,1\}^n} \left[\mathcal{D}'^{F_k}(1^n) \right] \\ \Pr_{f \leftarrow \mathsf{Perm}_n} \left[\mathcal{D}^{f \circ f}(1^n) \right] &= \Pr_{f \leftarrow \mathsf{Perm}_n} \left[\mathcal{D}'^f(1^n) \right] \end{aligned}$$

since F_k is a PRP, \mathcal{D} can not have non-negligible advantage.

Then we are going to show that for any PPT distinguisher \mathcal{D} ,

$$\left| \Pr_{f \leftarrow \mathsf{Perm}_n} \left[\mathcal{D}^{f \circ f}(1^n) = 1 \right] - \Pr_{f \leftarrow \mathsf{Perm}_n} \left[\mathcal{D}^f(1^n) = 1 \right] \right| < \mathsf{negl}(n)$$

WLOG we assume that \mathcal{D} does not query the same x more than once. If all $x^{(i)}$, $\mathcal{O}(x^{(i)})$ are distinct, we can assert that no distinguisher can figure out the correct answer with probability more than 1/2, and the thing only fails with negligible probability, so the inequality above holds for any PPT distinguisher.

Combining these two statements we can show that $F'_k = F_k \circ F_k$ is a PRP.

Problem 4

Part A:
$$F(k, x \oplus c) = F(k, x) \oplus c$$

A distinguisher \mathcal{D} simply queries the encryption for 0^n and 1^n and checks whether $\mathcal{O}(0^n) \oplus \mathcal{O}(1^n) = 1^n$, then outputs 1 if the equation holds and 0 otherwise.

It is easy to see that

$$\begin{aligned} & \Pr_{k \leftarrow \{0,1\}^n} \left[\mathcal{D}^{F_k}(1^n) = 1 \right] = 1 \\ & \Pr_{f \leftarrow \mathsf{Func}_n} \left[\mathcal{D}^f(1^n) = 1 \right] = 1/2^n \end{aligned}$$

so \mathcal{D} breaks F_k as PRF.

Part B:
$$F(k \oplus c, x) = F(k, x) \oplus c$$

A distinguisher \mathcal{D} can be built, which

- calculates $F(0^n, 0^n)$.
- queries the encryption for 0^n , say, $\mathcal{O}(0^n)$.
- learns the "key" $k' = F(0^n, 0^n) \oplus \mathcal{O}(0^n)$.
- checks the "key" is correct or not, that is, randomly choose $x \in \{0, 1\}^n$ and checks whether $F(k', x) = \mathcal{O}(x)$, then outputs 1 is key is correct and 0 otherwise.

It is easy to see that

$$\Pr_{k \leftarrow \{0,1\}^n} \left[\mathcal{D}^{F_k}(1^n) = 1 \right] = 1$$
$$\Pr_{f \leftarrow \mathsf{Func}_n} \left[\mathcal{D}^f(1^n) = 1 \right] = 1/2^n$$

so \mathcal{D} breaks F_k as PRF.

Part C:
$$F(k_1 \oplus k_2, x) = F(k_1, x) \oplus F(k_2, x)$$

Let $\varepsilon_i = 0^{i-1}10^{n-i}$ be the *i*-th "unit vector". For any $k, x \in \{0, 1\}^n$, if k has 1 on bit i_1, i_2, \dots, i_l , then we have $F(k, x) = \bigoplus_{j=1}^l F(\varepsilon_{i_j}, x)$.

A distinguisher \mathcal{D} first calculates $\alpha_i = F(\varepsilon_i, 0^n)$ and then checks whether the linear span $\{\alpha_i\}_{i=1}^n$ equals to the whole linear space $\{0,1\}^n$.

• If the answer is yes, then for any $y \in \{0,1\}^n$ there exists exactly one set $S \subseteq \{1, \dots, n\}$ such that $y = \bigoplus_{i \in S} \alpha_i$. This means that the distinguisher \mathcal{D} can learn the key by finding the set S such that $\mathcal{O}(0^n) = \bigoplus_{i \in S} \alpha_i$ can let key be $k = \bigoplus_{i \in S} \varepsilon_i$.

After learning the key, \mathcal{D} takes a single test just like the one in **Part B** does, and then outputs the testing result.

In this case we can show that

$$\Pr_{k \leftarrow \{0,1\}^n} \left[\mathcal{D}^{F_k}(1^n) = 1 \right] = 1$$

$$\Pr_{f \leftarrow \mathsf{Func}_n} \left[\mathcal{D}^f(1^n) = 1 \right] = 1/2^n$$

so \mathcal{D} breaks F_k as PRF.

• If the answer is no, then for at least half of $y \in \{0,1\}^n$, it can not be represented as the linear combination of α_i . Then \mathcal{D} simply checks whether $\mathcal{O}(0^n)$ can be represented and outures the result.

In this case we can show that

$$\Pr_{k \leftarrow \{0,1\}^n} \left[\mathcal{D}^{F_k}(1^n) = 1 \right] = 1$$
$$\Pr_{f \leftarrow \mathsf{Func}_n} \left[\mathcal{D}^f(1^n) = 1 \right] \leqslant 1/2$$

so \mathcal{D} also breaks F_k as PRF.

(All linear algebra calculation can be done in polynomial time via algorithms like Gauss-Jordan Elimination, so \mathcal{D} is indeed a PPT distinguisher.)

Problem 5

Assume there is a length-doubling PRG $G: \{0,1\}^n \to \{0,1\}^{2n}$, and we use the notation $G_0(s)$ and $G_1(s)$ to describe the former and latter half of G(s) respectively, that is

$$G(s) = G_0(s) \|G_1(s)$$

• F is constructed as

$$F(k,x) = G_{x_1}G_{x_2}\cdots G_{x_n}(k)$$

(this means the composition of n $G_{0/1}$ functions, the notation \circ is omitted for simplicity.) it is easy to see that F runs in polynomial time.

• The puncture function is constructed as

$$\mathsf{puncture}(k,x) = \left\{ \left(\overline{x_i} \| x_{i+1\cdots n}, G_{\overline{x_i}} G_{x_{i+1}} \cdots G_{x_n}(k) \right) \, \middle| \, i = 1, 2, \cdots, n \right\}$$

• The eval function $\operatorname{eval}(k_{-x}, x')$ first finds one satisfying that str is a suffix of x' among all $(\operatorname{str}, \operatorname{key})$ pairs in k_{-x} (we assert that there exsits and only exsits one such pair since $x' \neq x$), and than calculates $\operatorname{eval}(k_{-x}, x') = G_{x'_1} G_{x'_2} \cdots G_{x'_{n-|\operatorname{str}|}}(\operatorname{key})$.

It is not hard to see that $eval(k_{-x}, x') = F_k(x')$ for all $x' \neq x$.

We need to further prove that

• F is a PRF. By hybird argument, consider

$$F_{h_i}(x) = G_{x_1} G_{x_2} \cdots G_{x_i} (h_i(x_{i+1} \cdots x_n))$$

where $h_i: \{0,1\}^{n-i} \to \{0,1\}^n$ is a truly random function. Clearly F_{h_0} is actually a truly random function over $\{0,1\}^n$, and F_{h_n} is equivalent to F.

Since G is a PRG, no PPT distinguisher can distinguish F_{h_i} from $F_{h_{i+1}}$ with non-negligible advantage, so F_{h_0} can not be distinguished from F_{h_n} with non-negligible advantage, which means that F is a PRF.

- F is puncturable. Here hybird argument is used again, considering such parameterized security game:
 - With parameter i, the distinguisher \mathcal{D} chooses x, the challenger samples random k, u, computes k_{-x} , and sends $\begin{cases} (k_{-x}, G_{x_1} \cdots G_{x_i}(u)), & i < n \\ (k_{-x}, G_{x_1} \cdots G_{x_n}(k)), & i = n \end{cases}$ to the distinguisher.

Obviously the two cases in the problem are equivalent to game i = n and i = 0 respectively. Since G is a PRG, no PPT distinguisher can distinguish security games with adjacent parameter i, so the two cases are also indistinguishable, with non-negligible advantage.

Problem 6

Part A

The distinguisher \mathcal{D} can implement the following steps to break 3-round Feistel:

- Query $Dec(0^n, 0^n) \to (a, b)$.
- Query $\operatorname{Enc}(0^n, b) \to (c, d)$.
- Query $Dec(c, a \oplus d) \rightarrow (e, f)$.
- Output 1 is $f = c \oplus b$ and 0 otherwise.

Here's why it works: under 3-round Feistel encryption scheme, the first query reveals

$$a = F_{k_3}(0^n) \oplus F_{k_1}(b)$$
$$b = F_{k_2}(F_{k_3}(0^n))$$

and the second query

$$c = b \oplus F_{k_2}(F_{k_1}(b))$$

$$d = F_{k_1}(b) \oplus F_{k_3}(c)$$

and so

$$a \oplus d = F_{k_3}(0^n) \oplus F_{k_3}(c)$$

In the final query, the distinguisher knows that

$$f = c \oplus F_{k_2}(F_{k_3}(0^n)) = c \oplus b$$

.

So distinguisher \mathcal{D} outputs 1 with probability 1 under 3-round Feistel, but with probability $1/2^n$ under truly random permutations, which means that 3-round Feistel is not a strong PRP.

Part B

这咋做啊