Ри NР

- 1. Опишите одноленточную и двухленточную машины Тьюринга, разрешающие язык, состоящий из палиндромов (слов, читающихся одинаково слева направо и справа налево) в алфавите $\{0,1\}$. Оцените время работы предложенных машин.
- 2. Покажите, что класс NP замкнут относительно пересечения и относительно операции *, т.е. если $L_1 \in \text{NP}$ и $L_2 \in \text{NP}$, то $L_1 \cap L_2 \in \text{NP}$ и $L_1^* \in \text{NP}$.
- 3. Докажите, что следующая задача входит в класс Р:

Дано: Две перестановки p и q множества $\{1, 2, \ldots, k\}$ и натуральное число t в двоичной кодировке.

Вопрос: Верно ли, что $p = q^t$ (где q^t — это композиция t перестановок q)?

- 4. Пусть существует алгоритм A(G, k) с полиномиальным временем работы, позволяющий определить, есть ли в графе G клика размера k. Покажите, что в этом случае существует алгоритм B(G) с полиномиальным временем работы, находящий клику максимального размера в графе G (именно саму клику, а не только ее размер).
- 5. Пусть существует алгоритм C(G,k) с полиномиальным временем работы, позволяющий определить, можно ли раскрасить вершины графа G в k цветов так, что никакие две смежные вершины не окажутся окрашенными в один цвет. Покажите, что в этом случае существует алгоритм D(G,k) с полиномиальным временем работы, предъявляющий раскраску графа G в k цветов, удовлетворяющую указанному выше условию, если это в принципе возможно, и сообщающий о том, что это невозможно в противном случае.