

Análisis Avanzado - Medida 1

Primer cuatrimestre de 2021

Daniel Carando - Victoria Paternostro

Dto. de Matemática - FCEN - UBA

OBJETIVO: INTEGRAR MAS FUNCTIONES QUE CON
LA INTEGRAL DE RIEMANN

Obtener RESULTADOS RE CONVERGENCIA:

$$\int_{\mathbb{R}^{n}} - \gamma \int_{\mathbb{R}^{n}} \int_{\mathbb{R}^{n}} \mathbb{R}^{n} \wedge \mathbb{R}^{n} = \mathbb{R}^{n} \wedge \mathbb{R}^{n} \times \mathbb{R}^{n} = \mathbb{R}^{n} \wedge \mathbb{R}^{n} \times \mathbb{R}^{n} \times \mathbb{R}^{n} = \mathbb{R}^{n} \times \mathbb{R}^{n} \times \mathbb{R}^{n} \times \mathbb{R}^{n} \times \mathbb{R}^{n} = \mathbb{R}^{n} \times \mathbb{R}^$$

Análisis Avanzado D. Carando - V. Paternostro

$$g(x) = \begin{cases} 2 & \text{if } x \in \{0, 1/2, 3/4\}. \\ 5 & \text{if } x \in \{0, 1/2, 3/4\}. \end{cases}$$

$$\Rightarrow \begin{cases} g(x) \, dx = \begin{cases} 5 & \text{od} \\ 5 & \text{od} \end{cases}$$

$$= \begin{cases} 1 & \text{od} \\ 5 & \text{od} \end{cases}$$

$$= \begin{cases} 2 & \text{od} \\ 6 & \text{od} \end{cases}$$

$$= \begin{cases} 2 & \text{od} \\ 6 & \text{od} \end{cases}$$

$$= \begin{cases} 2 & \text{od} \\ 6 & \text{od} \end{cases}$$

$$= \begin{cases} 2 & \text{od} \\ 6 & \text{od} \end{cases}$$

$$= \begin{cases} 2 & \text{od} \\ 6 & \text{od} \end{cases}$$

$$= \begin{cases} 2 & \text{od} \\ 6 & \text{od} \end{cases}$$

$$= \begin{cases} 2 & \text{od} \\ 6 & \text{od} \end{cases}$$

$$= \begin{cases} 2 & \text{od} \\ 6 & \text{od} \end{cases}$$

$$= \begin{cases} 2 & \text{od} \\ 6 & \text{od} \end{cases}$$

$$= \begin{cases} 2 & \text{od} \\ 6 & \text{od} \end{cases}$$

$$= \begin{cases} 2 & \text{od} \\ 6 & \text{od} \end{cases}$$

$$= \begin{cases} 2 & \text{od} \\ 6 & \text{od} \end{cases}$$

$$= \begin{cases} 2 & \text{od} \\ 6 & \text{od} \end{cases}$$

$$= \begin{cases} 2 & \text{od} \\ 6 & \text{od} \end{cases}$$

$$= \begin{cases} 2 & \text{od} \\ 6 & \text{od} \end{cases}$$

$$= \begin{cases} 2 & \text{od} \\ 6 & \text{od} \end{cases}$$

$$= \begin{cases} 2 & \text{od} \\ 6 & \text{od} \end{cases}$$

$$= \begin{cases} 2 & \text{od} \\ 6 & \text{od} \end{cases}$$

$$= \begin{cases} 2 & \text{od} \\ 6 & \text{od} \end{cases}$$

$$= \begin{cases} 2 & \text{od} \\ 6 & \text{od} \end{cases}$$

$$= \begin{cases} 2 & \text{od} \\ 6 & \text{od} \end{cases}$$

$$= \begin{cases} 2 & \text{od} \\ 6 & \text{od} \end{cases}$$

$$= \begin{cases} 2 & \text{od} \\ 6 & \text{od} \end{cases}$$

$$= \begin{cases} 2 & \text{od} \\ 6 & \text{od} \end{cases}$$

$$= \begin{cases} 2 & \text{od} \\ 6 & \text{od} \end{cases}$$

$$= \begin{cases} 2 & \text{od} \\ 6 & \text{od} \end{cases}$$

$$= \begin{cases} 2 & \text{od} \\ 6 & \text{od} \end{cases}$$

$$= \begin{cases} 2 & \text{od} \\ 6 & \text{od} \end{cases}$$

$$= \begin{cases} 2 & \text{od} \\ 6 & \text{od} \end{cases}$$

$$= \begin{cases} 2 & \text{od} \\ 6 & \text{od} \end{cases}$$

$$= \begin{cases} 2 & \text{od} \\ 6 & \text{od} \end{cases}$$

$$= \begin{cases} 2 & \text{od} \\ 6 & \text{od} \end{cases}$$

$$= \begin{cases} 2 & \text{od} \\ 6 & \text{od} \end{cases}$$

$$= \begin{cases} 2 & \text{od} \\ 6 & \text{od} \end{cases}$$

$$= \begin{cases} 2 & \text{od} \\ 6 & \text{od} \end{cases}$$

$$= \begin{cases} 2 & \text{od} \\ 6 & \text{od} \end{cases}$$

$$= \begin{cases} 2 & \text{od} \\ 6 & \text{od} \end{cases}$$

$$= \begin{cases} 2 & \text{od} \\ 6 & \text{od} \end{cases}$$

$$= \begin{cases} 2 & \text{od} \\ 6 & \text{od} \end{cases}$$

$$= \begin{cases} 2 & \text{od} \\ 6 & \text{od} \end{cases}$$

$$= \begin{cases} 2 & \text{od} \\ 6 & \text{od} \end{cases}$$

$$= \begin{cases} 2 & \text{od} \\ 6 & \text{od} \end{cases}$$

$$= \begin{cases} 2 & \text{od} \\ 6 & \text{od} \end{cases}$$

$$= \begin{cases} 2 & \text{od} \\ 6 & \text{od} \end{cases}$$

$$= \begin{cases} 2 & \text{od} \\ 6 & \text{od} \end{cases}$$

$$= \begin{cases} 2 & \text{od} \\ 6 & \text{od} \end{cases}$$

$$= \begin{cases} 2 & \text{od} \\ 6 & \text{od} \end{cases}$$

$$= \begin{cases} 2 & \text{od} \\ 6 & \text{od} \end{cases}$$

$$= \begin{cases} 2 & \text{od} \\ 6 & \text{od} \end{cases}$$

$$= \begin{cases} 2 & \text{od} \\ 6 & \text{od} \end{cases}$$

$$= \begin{cases} 2 & \text{od} \\ 6 & \text{od} \end{cases}$$

$$= \begin{cases} 2 & \text{od} \\ 6 & \text{od} \end{cases}$$

$$= \begin{cases} 2 & \text{od} \\ 6 & \text{od} \end{cases}$$

$$= \begin{cases} 2 & \text{od} \\ 6 & \text{od} \end{cases}$$

$$= \begin{cases} 2 & \text{od} \\ 6 & \text{od} \end{cases}$$

$$= \begin{cases} 2 & \text{od} \\ 6 & \text{od} \end{cases}$$

$$= \begin{cases} 2 & \text{od} \\ 6 & \text{od} \end{cases}$$

$$= \begin{cases} 2 & \text{od} \\ 6 & \text{od} \end{cases}$$

$$= \begin{cases} 2 & \text{od} \\ 6 & \text{od} \end{cases}$$

$$= \begin{cases} 2 & \text{od} \\ 6 & \text{od} \end{cases}$$

$$= \begin{cases} 2 & \text{od} \\ 6 & \text{od} \end{cases}$$

$$=$$

D. Carando - V. Paternostro

Para 0 < c < 1, sea $f : [0,1] \rightarrow \mathbb{R}$ dada por

$$f(x) = \begin{cases} 2, & \text{si } 0 \le x \le c \\ 5, & \text{si } c < x \le 1. \end{cases}$$

$$\begin{cases}
f = 2 (c-0) + 5 (1-c) = 2 \log ((0,c)) + 5 \log ((c,1)) \\
= 2 M((0,c)) + 5 M((c,1))
\end{cases}$$

$$= 2 M((0,c)) + 5 M((c,1))$$

Escribamos el intervalo [0,1] como una unión disjunta de dos conjuntos:

 $[0,1] = A \cup B$, $con A \cap B = \emptyset$.

Escribamos el intervalo [0,1] como una unión disjunta de dos conjuntos:

$$[\mathsf{O},\mathsf{1}] = \mathsf{A} \cup \mathsf{B} \quad \text{, con } \mathsf{A} \cap \mathsf{B} = \emptyset.$$

Sea $f: [0,1] \rightarrow \mathbb{R}$ dada por

$$f(x) = \begin{cases} 2, & \text{si } x \in A \\ 5, & \text{si } x \in B. \end{cases}$$

Análisis Avanzado

Tomemos
$$A = [0,1] \cap \mathbb{Q}$$
 y $B = [0,1] \setminus \mathbb{Q} = [0,1] \cap \mathbb{I}$.

Tomemos $A = [0,1] \cap \mathbb{Q}$ $y \quad B = [0,1] \setminus \mathbb{Q} = [0,1] \cap \mathbb{I}$. Sea $f:[0,1]\to\mathbb{R}$ dada por

$$f(x) = \begin{cases} 2, & \text{si } x \in \mathbb{Q}, \text{ o } \leq x \leq 1\\ 5, & \text{si } x \notin \mathbb{Q}, \text{ o } \leq x \leq 1. \end{cases}$$

$$\begin{cases}
F = 2 M (6 n Foil) + 5 M (Foil) & 0
\end{cases}$$
DEBERÍA SER

NO SON INTERVALOS

Queremos definir una noción de medida para conjuntos que no sean necesariamente intervalos y que cumpla algunas propiedades *razonables*.

Análisis Avanz

D. Carando - V. Paternostro

Todavía no tenemos una medida definida, pero podemos <u>calcular longitudes</u> de intervalos:

Análisis Avanzado D. Carando - V. Paternostro DM-FCEN-UBA

Todavía no tenemos una medida definida, pero podemos calcular longitudes de intervalos:

Si
$$U = (a, b)$$
, $a < b$, su longitud es
$$long(U) = \begin{cases} b - a, & \text{si } a, b \text{ son finitos} \\ +\infty, & \text{si alguno es infinito.} \end{cases}$$

Todavía no tenemos una medida definida, pero podemos calcular longitudes de intervalos:

Si
$$U = (a, b)$$
, $a < b$, su longitud es

$$long(U) = egin{cases} b-a, & ext{si } a, b ext{ son finitos} \ +\infty, & ext{si alguno es infinito}. \end{cases}$$

Definición

Decimos que $A \subset \mathbb{R}$ es un conjunto nulo si para todo $\varepsilon > 0$ existen contables intervalos abiertos $(U_n)_{n \in I}$ tales que

$$A \subset \bigcup_{n \in J} U_n \quad y \quad \sum_{n \in J} long(U_n) < \varepsilon.$$

$$A = \{x_1, x_2, ..., x_N\}$$
. Pado $\varepsilon > 0$,
$$A \subset \bigcup (x_1 - \underline{\varepsilon}, x_1 + \underline{\varepsilon}) \quad \mu(0)$$

 \mathbb{Z} long $\left(V_{j}\right) = N \frac{\varepsilon}{2N} = \frac{\varepsilon}{2} \subset \varepsilon$.

$$\rightarrow A \subset \bigcup_{j=1}^{\infty} \left(\gamma_{j} - \frac{\varepsilon}{4N} , \gamma_{j} + \frac{\varepsilon}{4N} \right) \qquad \mu(0; j) = \frac{\varepsilon}{2N}$$

$$A = \left\{ \begin{array}{c} \chi_{1}, \chi_{2}, ..., \chi_{N} \end{array} \right\}.$$

$$A \subset \bigcup_{j=1}^{N} \left(\chi_{j} - \frac{\varepsilon}{4N}, \chi_{j} + \frac{\varepsilon}{2N} \right)$$

Ejemplo

- 1. Todo conjunto finito es nulo.
- 2. Todo conjunto numerable es nulo.

E PENCICO

Eiemplo

- 1. Todo conjunto finito es nulo.
- 2. Todo conjunto numerable es nulo.
 - 3. Unión numerable de conjuntos nulos es nulo.

Sea X un conjunto y A una familia de subconjuntos de X (o sea, $A \subset \mathcal{P}(X)$).

Sea X un conjunto y \mathcal{A} una familia de subconjuntos de X (o sea, $\mathcal{A} \subset \mathcal{P}(X)$). Decimos que $\underline{\mathcal{A}}$ es una $\underline{\sigma}$ -álgebra si $X \in \mathcal{A}$ y es cerrada por complementos (respecto a X) y uniones numerables.

Sea X un conjunto y A una familia de subconjuntos de X (o sea, $A \subset \mathcal{P}(X)$).

Decimos que A es una σ -álgebra si $X \in A$ y es cerrada por complementos (respecto a X) y uniones numerables.

Ejemplo

1.
$$\mathcal{A} = \{\emptyset, X\}$$

Sea X un conjunto y \mathcal{A} una familia de subconjuntos de X (o sea, $\mathcal{A} \subset \mathcal{P}(X)$).

Decimos que \mathcal{A} es una σ -álgebra si $X \in \mathcal{A}$ y es cerrada por complementos (respecto a X) y uniones numerables.

Ejemplo

- 1. $A = {\emptyset, X}$
- 2. Fijado $B \subset X$, $A = \{\emptyset, B, X \setminus B, X\}$

Sea X un conjunto y \mathcal{A} una familia de subconjuntos de X (o sea, $\mathcal{A} \subset \mathcal{P}(X)$).

Decimos que A es una σ -álgebra si $X \in A$ y es cerrada por complementos (respecto a X) v uniones numerables.

Ejemplo

- 1. $A = \{\emptyset, X\}$ 2. Fijado $B \subset X$, $A = \{\emptyset, B, X \setminus B, X\}$
- 3. $A = \{A \subset \mathbb{R} : A \text{ finito o } \mathbb{R} \setminus A \text{ finito} \} \text{ NO es } \sigma\text{-\'algebra}$

Sea X un conjunto y $\mathcal A$ una familia de subconjuntos de X (o sea, $\mathcal A\subset \mathcal P(X)$). Decimos que $\mathcal A$ es una σ -álgebra si $X\in \mathcal A$ y es cerrada por complementos (respecto a X) y uniones numerables.

Ejemplo

- 1. $A = \{\emptyset, X\}$
- 2. Fijado $B \subset X$, $A = \{\emptyset, B, X \setminus B, X\}$
- 3. $A = \{A \subset \mathbb{R} : A \text{ finito o } \mathbb{R} \setminus A \text{ finito} \}$ NO es σ -álgebra
- 4. $A = \{A \subset \mathbb{R} : A \text{ contable o } \mathbb{R} \setminus A \text{ contable} \}$

SÍ (ETERC.)

La σ -álgebra \mathcal{M} generada por los intervalos abiertos y los conjuntos nulos de \mathbb{R} es la σ -álgebra de \mathfrak{A} conjuntos medibles Lebesgue.

M: A C P(R)

for contione a los

int al. y a los

mulos.

Mes une
$$\sigma$$
- álg.

EN M es an los inter et, los mulos y lo que obten gamos muendo, intersecando, torrando complementos repetides NEOS. [1,4] = (1,4) U {1} U {4} CM = IR ((-10,1) U (4,+10)) CM.

La σ -álgebra \mathcal{M} generada por los intervalos abiertos y los conjuntos nulos de \mathbb{R} es la σ -álgebra de de conjuntos medibles Lebesgue.

Teorema (existencia de la medida de Lebesgue)

Existe una única función μ de $\overline{\mathcal{M}}$ en $[\mathbf{0},+\infty]$ tal que

• Si A = (a, b), entonces $\mu(\overline{A}) = b - a$.

Teorema (existencia de la medida de Lebesgue)

Existe una única función μ de $\overline{\mathcal{M}}$ en $[\mathbf{0},+\infty]$ tal que

- Si A = (a, b), entonces $\mu(A) = b a$.
- Si $A_n \in \mathcal{M}$ para todo $n \in \mathbb{N}$, entonces

$$\mu\big(\bigcup_{n\in\mathbb{N}}A_n\big)\leq \sum_{n\in\mathbb{N}}\mu(A_n).$$

Teorema (existencia de la medida de Lebesgue)

Existe una única función μ de $\mathcal M$ en $[\mathbf 0,+\infty]$ tal que

- Si A = (a, b), entonces $\mu(A) = b a$.
- Si $A_n \in \mathcal{M}$ para todo $n \in \mathbb{N}$, entonces

$$\mu\big(\bigcup_{n\in\mathbb{N}}A_n\big)\leq \sum_{n\in\mathbb{N}}\mu(A_n).$$

Si los A_n son disjuntos dos a dos, entonces

$$\mu(\bigcup_{n\in\mathbb{N}}A_n)=\sum_{n\in\mathbb{N}}\mu(A_n).\qquad \mathbb{T}-\text{ addivided}$$

Teorema (existencia de la medida de Lebesgue) 🔑 🔱 🌬 🍪 🍪 🖽 🙈

Existe una única función μ de $\mathcal M$ en $[\mathbf 0,+\infty]$ tal que

- Si A = (a, b), entonces $\mu(A) = b a$.
- Si $A_n \in \mathcal{M}$ para todo $n \in \mathbb{N}$, entonces

$$\mu\big(\bigcup_{n\in\mathbb{N}}\mathsf{A}_n\big)\leq\sum_{n\in\mathbb{N}}\mu(\mathsf{A}_n).$$

Si los A_n son disjuntos dos a dos, entonces

$$\mu\big(\bigcup_{n\in\mathbb{N}}\mathsf{A}_n\big)=\sum_{n\in\mathbb{N}}\mu(\mathsf{A}_n).$$

• Si $A \in \mathcal{M}$, entonces

lo al. so meditos REGULAR 1210

$$\mu(A) = \inf \{ \mu(U) \colon U \supset A, \ U \text{ abierto} \}.$$

Observación

La medida del vacío es cero:

$$\int \mu(\emptyset) = \mathsf{o}.$$

$$A_{n} = \{0,1\} \quad A_{m} = \emptyset \quad \forall m \ge 2.$$

$$(0,1) = 0 \quad A_{m} \quad A_{m} \cap A_{m} = \emptyset$$

$$= 0 \quad M((0,1)) = 0 \quad M(A_{m}) - M(0,1) + \sum_{m=2}^{\infty} M(\emptyset)$$

$$= 0 \quad M((0,1)) = 0 \quad M(\emptyset) = 0$$

$$= 0 \quad M((0,1)) = 0 \quad M((0,1)) + \sum_{m=2}^{\infty} M(\emptyset) = 0$$

$$= 0 \quad M((0,1)) = 0 \quad M((0,1)) = 0$$

Observación

La medida del vacío es cero:

$$\mu(\emptyset) = \mathsf{o}.$$

Observación

Si $A, B \in \mathcal{M}$, entonces $\mu(A \cup B) \leq \mu(A) + \mu(B)$.

$$A_{1} = A_{1} \quad A_{2} = B \quad A_{m} = p \quad \forall n \ge 3.$$

$$\mu(A \cup B) = \mu(\bigcup A_{n}) \le \prod \mu(A_{m}) = \mu(A_{m}) + \mu(B_{m}) = \mu(A_{m}) + \mu(B_{m})$$

Observación

La medida del vacío es cero: $\mu(\emptyset) = 0.$

Observación

Si $A, B \in \mathcal{M}$, entonces $\mu(A \cup B) \leq \mu(A) + \mu(B)$.

Si $A \cap B = \emptyset$, entonces $\mu(A \cup B) = \mu(A) + \mu(B)$.

MIGMA CUENTA

(donde deni

Definimos por un lado los <u>conjuntos nulos</u> y, ahora que tenemos la medida de Lebesgue, podemos considerar los conjuntos <u>que miden o</u>. ¿Son los mismos conjuntos?

Definimos por un lado los conjuntos nulos y, ahora que tenemos la medida de Lebesgue, podemos considerar los conjuntos que miden o. ¿Son los mismos conjuntos? ;Sí!

D. Carando - V. Paternostro

Definimos por un lado los conjuntos nulos y, ahora que tenemos la medida de Lebesgue, podemos considerar los conjuntos que miden o. ¿Son los mismos conjuntos? ¡Sí!

Proposición

Todo abierto de \mathbb{R} es unión contable de intervalos abiertos.

$$V \subseteq IR$$
 about . Dad $X \in V$ $\exists E > 0 / (x - E, x + 4) \in V$
See In E moreor intervano ABIERTO / $X \in I_X \subset V$ $\bigcup_{x \in I_X \subset V} \bigcup_{x \in I_X$

x, jev x e In c V, , je I, c V = $I_{\chi} \cap I_{\eta} = \emptyset$ of [Fx O In + p In = Fg V = U Iz = NO PUEDE SER In UI, & interst = U Ix; X & I, UI, CV V= U I TACHAMOS In; inter at no vario - jej LOG REPUTIONS $I_{n_j} \cap I_{x_k} = \phi \cap i - j$ J& CONTABLE ET PR. CARD WALLDAD DM-FCFN-UBA