24-12-2019 (M)

K. J. Somaiya College of Engineering, Mumbai-77 (Autonomous College Affiliated to University of Mumbai)

End Semester Exam

Max. Marks: 100

Nov-Dec 2019

Duration: 3 Hrs.

Class: F.Y.BTech

7-Dec 2013 Dur

Semester: II Branch: ALL

Name of the Course: Applied Mathematics-II
Course Code: 2UHC111

Question No.			Max. Marks
Q.1	. A	Attempt the following:	
	(a)	Examine in detail the correctness of sentence: $\int_0^\infty \sqrt[4]{x} e^{-\sqrt{x}} dx = \sqrt{\pi}.$	03
	(b)	Using Beta Function Evaluate: $\int_0^{1/2} x^3 (1 - 4x^2)^{1/2} dx$.	03
	В	Attempt any ONE of the following:	
	(a) _.	Evaluate: $\int_0^{\pi/2} \sin^5\theta \cos^4\theta \ d\theta$. Hence deduce that $\int_0^{\pi} \theta \sin^5\theta \cos^4\theta \ d\theta = \frac{8\pi}{315}.$	07
	(b)	Using DUIS Show that $\int_0^\infty \frac{\log(1+ax^2)}{x^2} dx = \pi \sqrt{a} \qquad (a > 0).$ Hence, evaluate $\int_0^\infty \frac{\log(1+x^2)}{x^2} dx$	
	A	Attempt any ONE of the following:	
Q.2	(a)	Find length of cardioide $r = a(1 - cos\theta)$ lying outside the circle $r = acos\theta$.	07
	(b)	Find the length of curve $x = asin2t(1 + cos2t)$, $y = acos2t(1 - cos2t)$ measured from origin to $t = \pi/2$.	
	A	Attempt the following:	
Q.3		Evaluate: $\int_{0}^{1} \int_{y^{2}}^{1} \int_{0}^{1-x} x dz dx dy$.	05
	В	Attempt any FOUR of the following:	
	(a)	Change order of integration and evaluate: $\int_0^5 \left[\int_{2-x}^{2+x} dy \right] dx$.	20
	(b)	Change to polar coordinate and evaluate $\iint y^2 dx dy$ over the area outside $x^2 + y^2 - ax = 0$ and inside $x^2 + y^2 - 2ax = 0$.	- 28

		The same and the s	
	(c)	Find the mass of a plate in the form of one loop of leminscate $r^2 = a^2 cos 2\theta$ if density varies as the square of the distance from pole.	4
	(d)	Find by double integration the Area between parabola	(%) (30) (1) (30) (4) (30)
	(e)	Evaluate the integral $\iiint xyz^2 dv$ over the region bounded by planes $x = 0, x = 1, y = -1, y = 2, z = 0 \& z = 3.$	
	(f)	Calculate $\iint r^3 dr d\theta$ over the area included between the circles $r = 2\sin\theta$ and $r = 4\sin\theta$.	
Q.4	A	Attempt the following:	
		Solve $\frac{dy}{dx} + \frac{x \sin x + \cos x}{x \cos x} y = \frac{1}{x \cos x}$	05
	B	Attempt any FOUR of the following:	
	(a)	Solve: $\sin 2x \frac{dy}{dx} = y + \tan x$.	
	(b)	Solve: $(5 + 2x)^2 \frac{d^2y}{dx} - 6(5 + 2x) \frac{dy}{dx} + 8y = 6x$.	28
	(c)	Solve: $(D^2 - 4D + 3)y = 2xe^{3x} + 3e^x \cos 2x$.	
	(d)	Solve: $(x^4 + y^4)dx - xy^3dy = 0$.	
	(e)	Solve: $(D^2 - 4D + 4)y = x^2 + e^x + \cos 2x$.	
Q:5		Attempt any TWO of the following:	
	(a)	If $y^{1/m} + y^{-1/m} = 2x$, prove that $(x^2 - 1)y_{n+2} + (2n + 1)xy_{n+1} + (n^2 - m^2)y_n = 0.$	
	(b)	If $y = \frac{x}{x^2 + a^2}$, Prove that $y_n = (-1)^n n! a^{-n-1} sin^{n+1} \theta cos(n+1) \theta$ where $\theta = tan^{-1} \left(\frac{a}{x}\right)$.	14
	(c)	Expand $(1+x)^{1/x}$ in powers of x, upto the term x^2 .	

who will be a second

24-12-19(M)

K. J. Somaiya College of Engineering, Mumbai-77 (Autonomous College Affiliated to University of Mumbai) End Semester Exam Nov- Dec 2019

Max. Marks: 100 Class: F.Y.BTech

Name of the Course: Applied Mathematics-II Course Code: USHC201 (KJSCE2014)

Duration: 3 Hrs Semester: II Branch: ALL

Instructions:

(1) All Questions are Compulsory

(2) Figures to right indicate full marks. Each sub-question has equal marks.

Question No.			Max Mark
Q.1	A	Evaluate $\int_0^\infty e^{-x^4} dx$	04
•	В	Solve any THREE of the following:	100
	(i)	Prove that $\int_0^1 \frac{\tan^{-1} ax}{x(1+x^2)} dx = \frac{\pi}{2} \log(1+C_0), \text{using rule of DUIS}$	
	(ii)	Prove that $\int_0^\infty x e^{-x^8} dx$. $\int_0^\infty x^2 e^{-x^4} dx = \frac{\pi}{16\sqrt{2}}$	
	(iii)	Prove that: $\int_{-\pi/6}^{\pi/3} (\sqrt{3} \sin\theta + \cos\theta)^{1/4} d\theta = 2^{-3/4} B(\frac{1}{2}, \frac{5}{8}).$	18
	(iv)	Prove that: $\int_{3}^{7} \sqrt[4]{(x-3)(7-x)} dx = \frac{2(1/4)^{2}}{3\sqrt{\pi}}.$	
	(v)	Using DUIS Show that $\int_0^\infty \frac{\log(1+ax^2)}{x^2} dx = \pi \sqrt{a} \qquad (a > 0).$ Hence, evaluate $\int_0^\infty \frac{\log(1+x^2)}{x^2} dx$	
Q.2	A	Solve: $(D^2 + 3D + 2)y = 0$	04
	В	Solve any FOUR of the following:	
	(i)	Solve: $(D^2 - 5D + 6)y = e^x + \sin 2x$.	
	(ii)	Solve: $(D^2 + 2)y = x^2 e^{3x}$.	
	(iii)	Solve: $x \frac{dy}{dx} + y = x^3 y^6$	24
	(iv)	Use method of variation of parameters, Solve $(D^2 - 6D + 9)y = \frac{e^{3x}}{x^2}$.	
	(v)	Solve $y(x + y)dx - x(y - x)dy = 0$	·
	(vi)	Solve: $(x^2D^2 + 3xD + 1)y = x^2logx$.	

Q.3	A	Using Euler's method, find the approximate value of y at $x=1$ in five steps i.e. $h = 0.2$ when $\frac{dy}{dx} = x^2 + y^2$ and $y = 2$ when $x = 0$	04
	В	Solve any TWO of the following:	- Marin
	(i)	In a circuit containing inductance L, resistance R, and voltage E, the current i is given by $L\frac{di}{dt} + Ri = E$. Find the current i at time t if at $t = 0$, $i = 0$ and L , R , E are constants.	
	(ii)	Using Taylor's series method, solve $\frac{dy}{dx} = x + y$ with $x_0 = 1$, $y_0 = 0$. Find y when = 1.2. Compare the result with exact solution.	12
	(iii)	Apply Runga-Kutta of fourth order to find y at $x = 0.2$. Given $\frac{dy}{dx} + y + xy^2 = 0$, $y(0) = 1$, $h = 0.1$.	
Q.4		Solve any ONE of the following:	
	(i)	Find the total length of the curve $y = (x/2)^{2/3}$ from $x = 0$ to $x = 2$	06
	(ii)	Find the length of one arc of the cycloid $x = a(\theta + \sin \theta)$, $y = a(1 - \cos \theta)$	
Q.5	A	Evaluate the integral $\int_0^1 \int_0^{x^2} e^{\frac{y}{x}} dy dx$	04
	В	Solve any FOUR of the following:	
	(i)	Evaluate $\int_0^{\pi/2} \int_0^{a\cos\theta} r \sqrt{a^2 - r^2} dr d\theta$	
	(ii)	Evaluate: $\int_{0}^{1} \int_{y^{2}}^{1} \int_{0}^{1-x} x dz dx dy$.	
	(iii)	Find by double integration the area bounded by the lines $y = a + x$, $y = a - x$ and $x = a$, $(a > 0)$	24
	(iv)	Find the area outside the circle $r = a$ and inside the cardioids $r = a(1 + cos\theta)$	
	(v)	Change order of integration and evaluate: $\int_0^5 \left[\int_{2-x}^{2+x} dy \right] dx$.	