Практическая работа №14 Алгоритмы сжатия и кодирования данных

Цели работы

Изучение алгоритма оптимального префиксного кодирования Хаффмана Практическое применение алгоритма Хаффмана для сжатия данных

Постановка задачи

Провести кодирование исходной строки символов «Фамилия Имя Отчество» с использованием алгоритма Хаффмана. Исходная строка символов, таким образом, определяет индивидуальный вариант задания для каждого студента.

Для выполнения работы необходимо выполнить следующие действия:

1. Построить таблицу частот встречаемости символов в исходной строке символов для чего сформировать алфавит исходной строки и посчитать количество вхождений (частот) символов и их вероятности появления, например, для строки пупкин василий кириллович такая таблица будет иметь вид:

Таблица частот

Алфавит	п	y	К	И	Н	« »	В
Кол. вх.	2	1	2	6	1	2	2
Вероятн.	0.08	0.04	0.08	0.24	0.04	0.08	0.08
A - J			-	<u>×</u>		-	
Алфавит	a	С	Л	Й	P	O	ч
Кол. вх.	1	1	3	и 1	1	1	1

(скобки <> обозначают пробел в исходной строке)

2. Отсортировать алфавит в порядке убывания частот появления символов по аналогии как показано ниже

Таблица отсортированных частот

Алфавит	И	Л	П	K	« »	В	y
Кол. вх.	6	3	2	2	2	2	1
Вероятн.	0.24	0.12	0.08	0.08	0.08	0.08	0.04
Алфавит	Н	a	c	й	p	0	ч
Алфавит Кол. вх.	н 1	a 1	c 1	й 1	р 1	0	ч 1

3. Построить дерево кодирования Хаффмана, в данном примере оно имеет вид:

Рис. 1 Дерево кодирования Хаффмана

4. Упорядочить построенное дерево слева-направо (при необходимости). Присвоить ветвям коды. Определить коды символов:

Рис. 2 Упорядоченное дерево кодирования Хаффмана

5. Провести кодирование исходной строки по аналогии с примером:

Рассчитать коэффициенты сжатия относительно кодировки ASCII и относительно равномерного кода.

6. Рассчитать среднюю длину полученного кода и его дисперсию. По результатам выполненной работы сделать выводы и сформировать отчет.

Практическая работа № 15 Стратегии и методы построения алгоритмов

Постановка задачи