Optimization and Computational Linear Algebra for Data Science Lecture 6: Eigenvalues, eigenvectors and Markov chains

Léo MIOLANE · leo.miolane@gmail.com

June 19, 2019

Warning: This material is not meant to be lecture notes. It only gathers the main concepts and results from the lecture, without any additional explanation, motivation, examples, figures...

1 Eigenvalues and eigenvectors

Definition 1.1

Let $A \in \mathbb{R}^{n \times n}$. A **non-zero** vector $v \in \mathbb{R}^n$ is said to be an eigenvector of A is there exists $\lambda \in \mathbb{R}$ such that

$$Av = \lambda v$$
.

The scalar λ is called the eigenvalue (of A) associated to v. The set

$$E_{\lambda}(A) = \{x \in \mathbb{R}^n \mid Ax = \lambda x\} = \text{Ker}(A - \lambda \text{Id})$$

is called the eigenspace of A associated to λ .

Remark 1.1. Notice that $E_{\lambda}(A)$ is a subspace of \mathbb{R}^n : any (non-zero) linear combination of eigenvectors associated with the eigenvalue λ is also an eigenvector of A associated with λ .

Proposition 1.1

Let $A \in \mathbb{R}^{n \times n}$. Suppose that A has an eigenvalue $\lambda \in \mathbb{R}$ and let $x \in \mathbb{R}^n$ be an eigenvector associated to λ . The following holds:

- For all $\alpha \in \mathbb{R}$, $\alpha\lambda$ is an eigenvalue of the matrix αA and x is an associated eigenvector.
- For all $\alpha \in \mathbb{R}$, $\lambda + \alpha$ is an eigenvalue of the matrix $A + \alpha \operatorname{Id}$ and x is an associated eigenvector.
- For all $k \in \mathbb{N}$, λ^k is an eigenvalue of the matrix A^k and x is an associated eigenvector.
- If A is invertible then $1/\lambda$ is an eigenvalue of the matrix inverse A^{-1} and x is an associated eigenvector.

Definition 1.2

The set of all eigenvalues of A is called the spectrum of A and denoted by Sp(A).

Proposition 1.2

A $n \times n$ matrix A admits at most n eigenvalues: $\#\mathrm{Sp}(A) \leq n$.

2 Diagonalizable matrices

Definition 2.1

A matrix $A \in \mathbb{R}^{n \times n}$ is said to be diagonalizable if there exists a basis (v_1, \ldots, v_n) of \mathbb{R}^n consisting of eigenvectors of A, i.e. such that there exists $\lambda_1, \ldots, \lambda_n \in \mathbb{R}$, $Av_i = \lambda_i v_i$.

Proposition 2.1

A matrix $A \in \mathbb{R}^{n \times n}$ is diagonalizable if and only if there exists an invertible $n \times n$ matrix P and a diagonal matrix $D = (\lambda_1, \dots, \lambda_n)$ such that

$$A = PDP^{-1}$$
.

In this case, the i^{th} column of P is an eigenvector of A associated with the eigenvalue λ_i .

Application to Markov chains

First definitions and properties

A finite Markov chain is a process which moves among the elements of a finite set E in the following manner: when at $x \in E$, the next position is chosen according to a fixed probability distribution $P(x,\cdot)$. More formally:

Definition 3.1

A sequence of random variables (X_0, X_1, \dots) is a Markov chain with state space E and transition matrix P if for all $t \geq 0$,

$$\mathbb{P}(X_{t+1} = y \mid X_0 = x_0, \dots, X_t = x_t) = P(x_t, y)$$

for all x_0, \ldots, x_t such that $\mathbb{P}(X_0 = x_0, \ldots, X_t = x_t) > 0$.

The transition matrix P verifies therefore, for all $x \in E$,

$$\sum_{y \in E} P(x, y) = 1. \tag{1}$$

In order to simplify the notations, we will assume that $E = \{1, 2, ..., n\}$ and write for all $i,j \in E, P_{i,j} = P(j,i)$. Note that we switched here the order of i and j. This is not what is usually done in the literature, but this will allow us to be more coherent. Such matrix is said to be stochastic:

Definition 3.2 (Stochastic matrix)

A matrix $P \in \mathbb{R}^{n \times n}$ is said to be stochastic if:

- (i) $P_{i,j} \ge 0$ for all $1 \le i, j \le n$. (ii) $\sum_{i=1}^{n} P_{i,j} = 1$, for all $1 \le j \le n$.

Let (X_0, X_1, \dots) be a Markov chain on $\{1, \dots, n\}$ with transition matrix P. For $t \geq 0$ we will encode the distribution of X_t in the $1 \times n$ vector

$$x^{(t)} = (x_1^{(t)}, \dots, x_n^{(t)}) = (\mathbb{P}(X_t = 1), \dots, \mathbb{P}(X_t = n)) \in \Delta_n$$

where Δ_n is the "n-simplex"

$$\Delta_n \stackrel{\text{def}}{=} \left\{ x \in \mathbb{R}^n \, \Big| \, \sum_{i=1}^n x_i = 1 \text{ and } x_i \ge 0 \text{ for all } i \right\}.$$

Proposition 3.1

For all
$$t \ge 0$$

 $x^{(t+1)} = Px^{(t)}$ and consequently, $x^{(t)} = P^t x^{(0)}$.

Proof. Let $i \in \{1, ..., n\}$.

$$x_i^{(t+1)} = \mathbb{P}(X_{t+1} = i) = \sum_{j=1}^n \mathbb{P}(X_{t+1} = i | X_t = j) \mathbb{P}(X_t = j) = \sum_{i=1}^n P_{i,j} x_j^{(t)} = (x^{(t)} P)_i.$$

Corollary 3.1

Let P be a stochastic matrix. Then

- For all x ∈ Δ_n, Px ∈ Δ_n.
 For all t ≥ 1, P^t is stochastic.

Invariant measures and the Perron-Frobenius Theorem

We will be interested in the distribution of X_t for t large, that is the limit of $x^{(t)} = x^{(0)}P^t$. As we will see, under suitable conditions on the matrix A, this

A vector $\mu \in \Delta_n$ is an invariant measure for the transition matrix P if $\mu = P\mu$, i.e.

for all
$$j \in \{1, ..., n\}$$
, $\mu_i = \sum_{j=1}^n P_{i,j} \mu_j$.

Remark 3.1. An invariant measure is an eigenvector of P with associated eigenvalue 1.

Theorem 3.1 (Perron-Frobenius, stochastic case)

Let P be a stochastic matrix such that there exists $k \geq 1$ such that all the entries of P^k are strictly positive. Then the following holds:

- (i) 1 is an eigenvalue of P and there exists an eigenvector $\mu \in \Delta_n$ associated to 1.
- (ii) The eigenvectors associated to 1 are unique up to scalar multiple (i.e. Ker(P-Id)) $\mathrm{Span}(\mu)$).
- (iii) For all $x \in \Delta_n$, $P^t x \xrightarrow[t \to \infty]{} \mu$.

Theorem 3.1 is proved in the next section.

Corollary 3.2

Let P be a stochastic matrix such that there exists $k \geq 1$ such that all the entries of P^k are strictly positive. Then there exists a unique invariant measure μ and for all initial condition $x^{(0)} \in \Delta_n$

$$x^{(t)} \xrightarrow[t \to \infty]{} \mu.$$

3.3 Proof of Theorem 3.1

We first prove the theorem in the case k = 1, when $P_{i,j} > 0$ for all i, j.

Lemma 3.1

The mapping

$$\varphi: \Delta_n \to \Delta_n$$

$$x \mapsto Px$$

is contracting for the ℓ_1 -norm: there exists $c \in (0,1)$ such that for all $x,y \in \Delta_n$:

$$||Px - Py||_1 \le c||x - y||_1.$$

Proof. First notice that φ is well-defined by Corollary 3.1. Let us write $\alpha \stackrel{\text{def}}{=} \min_{i,j} P_{i,j} \in (0,1)$. Let $x,y \in \Delta_n$. We will show that $\|Px - Py\|_1 \leq (1-\alpha)\|x - y\|_1$, i.e. $\|Pz\|_1 \leq \alpha \|z\|_1$ where z = x - y. Compute

$$||Pz||_1 = \sum_{i=1}^n |(Pz)_i| = \sum_{i=1}^n |\sum_{j=1}^n P_{i,j}z_j|.$$

Since $\sum_{j} z_{j} = 0$ we have $\sum_{j} (P_{i,j} - \alpha/n) z_{j} = \sum_{j} P_{i,j} z_{j}$. Hence

$$||Pz||_1 = \sum_{i=1}^n \left| \sum_{j=1}^n (P_{i,j} - \alpha/n) z_j \right| \le \sum_{i=1}^n \sum_{j=1}^n (P_{i,j} - \alpha/n) |z_j| = \sum_{j=1}^n (1 - \alpha) |z_j| = (1 - \alpha) ||z||_1.$$

Using Lemma 3.1, Banach fixed point Theorem tells us that φ admits a unique fixed point μ on Δ_n (i.e. a unique $\mu \in \Delta_n$ such that $P\mu = \mu$) and that for all $x \in \Delta_n$, $P^t x \xrightarrow[t \to \infty]{} \mu$. This proves Theorem 3.1 in the case k = 1.

In the case k > 1 we simply apply the result for k = 1 to P^k .

This gives that there exists a unique $\mu \in \Delta_n$ such that $P^k \mu = \mu$. Multiplying by P on both sides leads to $P^k(P\mu) = P\mu$. Since $P\mu \in \Delta_n$ we obtain that $P\mu = \mu$ by uniqueness of μ . This proves (i). To prove (ii) we consider $x \in \mathbb{R}^n$ such that Px = x. By iteration we get $P^k x = x$ which implies (using the result on P^k) that $x \in (\mu)$. To prove (iii) we fix $\ell \in \{0, \dots, k-1\}$. Let $x \in \Delta_n$. By applying the point (iii) to P^k , we have

$$P^{kt}P^{\ell}x \xrightarrow[t\to\infty]{} \mu.$$

Since this holds for all $\ell \leq k-1$ we obtain that $P^T x \xrightarrow[T \to \infty]{} \mu$ using the Euclidean division of T by k.

4 Example: Google's PageRank algorithm

