CS5319 Advanced Discrete Structure

Homework 3

Due: November 22, 2021 (11:59pm)

Exam 2: December 07, 2021

1. A permutation of $\{1, 2, ..., n\}$ is a *derangement* if integer k is not at the kth position for every k. Let D_n denote the number of derangements among the n! permutations. So, $D_1 = 0$ and $D_2 = 1$.

Example: Suppose that n=3. We see that (2,3,1) and (3,1,2) are the only two derangements. So, we have $D_3=2$.

- (a) Show that $D_n = (n-1)(D_{n-1} + D_{n-2})$ for any n > 2.
- (b) Hence, or otherwise, show that $D_n = n D_{n-1} + (-1)^n$.
- 2. Solve the following recurrence relations:
 - (a) $a_r 6a_{r-1} + 8a_{r-2} = 2^r$, where $a_0 = 2$ and $a_1 = 10$.
 - (b) $a_r 5a_{r-1} + 3a_{r-2} + 9a_{r-3} = 0$, where $a_0 = 7$, $a_1 = 16$, and $a_2 = 65$.
- 3. Solve the following recurrence relations:
 - (a) $a_r^2 2a_{r-1}^2 = 1$, $a_0 = 2$ (*Hint:* Let $b_r = a_r^2$.)
 - (b) $a_r^2 2a_{r-1} = 0$, $a_0 = 4$ (*Hint:* Define an appropriate b_n as in part (a).)
- 4. For each of the following recurrence relations, find the generating function where a_r is the coefficient of x^r :
 - (a) $a_r 5a_{r-1} + 6a_{r-2} = 0$, $a_0 = 6$ and $a_1 = 30$.
 - (b) $a_r 2a_{r-1} 3a_{r-2} = 4^r + 6$, $a_0 = 20$ and $a_1 = 60$.
- 5. Based on the definition from the lectures about pattern occurrences, answer the following questions.
 - (a) Let b_n denote the number of n-bit binary strings in which the pattern 01001 occurs at the nth bit. Find the generating function for (b_0, b_1, b_2, \ldots) .
 - (b) Let c_n denote the number of n-bit binary strings in which the pattern 01001 first occurs at the nth bit. Find the generating function for (c_0, c_1, c_2, \ldots) .