CS 4501: Optimization - Assignment 2

Your name and email

1 Equivalence between norms

Let $\|\cdot\|_a$ and $\|\cdot\|_b$ be two norms defined in \mathbb{R}^N . We say $\|\cdot\|_a$ is equivalent to $\|\cdot\|_b$ if there exist some constants $C_1, C_2 \in (0, \infty)$ such that for any $x \in \mathbb{R}^N$, the following holds:

$$C_1 ||x||_a \le ||x||_b \le C_2 ||x||_a.$$

If $\|\cdot\|_a$ is equivalent to $\|\cdot\|_b$, we write $\|\cdot\|_a \sim \|\cdot\|_b$.

(a, 2pt) Prove that $\|\cdot\|_2$ is equivalent to $\|\cdot\|_{\infty}$.

Proof. Write your proof here

(b, 3pt) Prove that for any norm $\|\cdot\|$, there exists a constant $C_1 \in (0,\infty)$ such that

$$\forall x \in \mathbb{R}^N, \ \|x\| \le C_1 \|x\|_1.$$

Hint: Express x using a set of bases.

Proof. Write your proof here

(c, 3pt) Prove that for any norm $\|\cdot\|$, there exists a constant $C_2\in(0,\infty)$ such that

$$\forall x \in \mathbb{R}^N, \ \|x\| \ge C_2 \|x\|_1.$$

Hint: You can use the following two facts:

- ||x|| is continous in x,
- the set $B \doteq \{x | ||x||_1 = 1\}$ is complete.

Proof. Write your proof here

 $\text{(d, 2pt) Prove that if } \left\| \cdot \right\|_a \sim \left\| \cdot \right\|_b \text{ and } \left\| \cdot \right\|_b \sim \left\| \cdot \right\|_c \text{, then } \left\| \cdot \right\|_a \sim \left\| \cdot \right\|_c \text{.}$

Proof. Write your proof here

Now it is easy to see that any two norms in \mathbb{R}^N are equivalent.

2 Submultiplicity of Induced Norms

(a, 3pt) Let $A \in \mathbb{R}^{N \times N}$ and $\ \cdot\ $ denote both a vector norm and the correspondend induced matrix norm. Prove that $\ Ax\ \leq \ A\ \ x\ $ holds for any $x \in \mathbb{R}^N$.	ing
Proof. Write your proof here	
(b, 2pt) Let $A, B \in \mathbb{R}^{N \times N}$ and $\ \cdot\ $ be an induced norm. Prove that $\ AB\ \leq \ A\ \ B\ $	
Proof Write your proof here	