Learning to Prompt for Open-Vocabulary Object Detection with Vision-Language Model

CVPR 2022

报告人:徐静远

1	作者介绍	
2	研究背景	
3	研究方法	
4	实验效果	
5	总结	

1	作者介绍	
2	研究背景	
3	研究方法	
4	实验效果	
5	总结	

Yu Du¹ Fangyun Wei^{2†} Zihe Zhang¹ Miaojing Shi^{3†} Yue Gao² Guoqi Li¹

¹Tsinghua University ²Microsoft Research Asia ³King's College London

{duyu20, zh-zhang17}@mails.tsinghua.edu.cn liguoqi@mail.tsinghua.edu.cn {fawe, yuegao}@microsoft.com miaojing.shi@kcl.ac.uk

Fangyun Wei Microsoft Research Asia 在 microsoft.com 的电子邮件经过验证 Computer Vision Deep Learning Machine Learning

	民关	¥	
--	----	---	--

标题	引用次数	年份
GCNet: Non-local networks meet squeeze-excitation networks and beyond Y Cao, J Xu, S Lin, F Wei, H Hu CVF International Conference on Computer Vision Workshop (ICCVW), 1971-1980	1090	2019
End-to-End Semi-Supervised Object Detection with Soft Teacher M Xu, Z Zhang, H Hu, J Wang, E Wei, X Bai, Z Liu ICCV 2021	142	2021
Point-set anchors for object detection, instance segmentation and pose estimation F Wei, X Sun, H Li, J Wang, S Lin ECCV 2020	75	2020
Aligning Pretraining for Detection via Object-Level Contrastive Learning F Wei, Y Gao, Z Wu, H Hu, S Lin NeurlPS 2021 (Spotlight)	42	2021
RelationNet++: Bridging Visual Representations for Object Detection via Transformer Decc C Chi, F Wei, H Hu NeurlPS 2020 (Spotlight)	oder 41	2020

引用次数

引用	1739	1736
h 指数	16	16
i10 指数	20	20
		000
		980
		735
		490
		245
	2019 2020	2021 2022 0
开放获取的出版	烫物数量	查看全部
1 篇文章		5 篇文章
无法查看的文章		可查看的文章

根据资助方的强制性开放获取政策

2017 年至今

1	作者介绍	
2	研究背景	
3	研究方法	
4	实验效果	
5	总结	
	心片口	

研究背景一: 目标检测

- □常用的数据集范式
 - > 以COCO数据集为例 [1]

(a) Image classification

(b) Object localization

图1: COCO数据集对应的目标检测任务

图2: COCO数据集包含的80类

- □常用目标检测方法
 - > 以Faster-rcnn 为例 [2]

图3: Faster-rcnn方法示意图

^{[1].} Lin et al. Microsoft COCO: Common Objects in Context. ECCV2014

^{[2].} Ren et al. Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks. NIPS2015

- □ 可用于开放类的视觉语言模型
 - > 以CLIP 为例[1]

图1: CLIP模型的训练方式,4亿训练对

图2: CLIP模型的推理方式,可用于开放类

研究背景三: 开放类目标检测

- □ 全监督场景下,如何检测更多类别?
 - > 增加新类的标注和数据
- □ 缺点:
 - > 类别标签固定
 - > 增加收集数据,成本高昂

图2: 新类检测需要重新收集数据示意

本研究baseline

□ 直观方法 ViLD

- > 将新类和已知类名称交给文本编码器获得嵌入
- > 将候选框内的图像交给视觉编码器获得嵌入
- > 计算文本和图像嵌入的距离进行识别

本研究baseline

□ ViLD架构

图1: ViLD方法整体框架,上半部分是训练阶段,下半部分是推理阶段,黄色预训练模型表示是固定的。

CoOp方案

图1: CoOp的效果图

1	作者介绍

- 研究背景
- 研究方法
- 实验效果
- 总结

研究方法

研究方法

1			1	Έ	者	1		妇	J
			ı				1	_	-

- 研究背景
- 研究方法
- 实验效果
- 总结

□ LVIS v1 [1]

> 866个基类(frequent & common), 337个新类(rare)

□ COCO [2]

> 48个基类, 17个新类, 移除不包含在WordNet的15类

(b) Object localization

^{[1].} Gupta et al. Lvis: A dataset for large vocabulary instance segmentation. CVPR2019

^{[2].} Lin et al. Microsoft COCO: Common Objects in Context. ECCV2014

□LVIS数据集

Mathad	Enoch	Detection					Instance segmentation			
Method	Epoch	AP_r	AP_c	AP_f	AP	AP_r	AP_c	AP_f	AP	
Supervised (base)	20	0.0	26.1	34.0	24.7	0.0	24.7	29.8	22.4	
Supervised (base+novel)	20	15.5	25.5	33.6	27.0	16.4	24.6	30.6	25.5	
ViLD (base) [7]	460	16.7	26.5	34.2	27.8	16.6	24.6	30.3	25.5	
ViLD* (base) [7]	20	17.4	27.5	31.9	27.5	16.8	25.6	28.5	25.2	
DetPro (base)	20	20.8	27.8	32.4	28.4	19.8	25.6	28.9	25.9	

□ VOC, COCO, Object365 数据集

Method	Pasca	l VOC			CO	CO					Objec	ts365		
Method	AP_{50}	AP_{75}	AP	AP_{50}	AP_{75}	AP_s	AP_m	AP_l	AP	AP_{50}	AP_{75}	AP_s	AP_m	AP_l
Supervised	78.5	49.0	46.5	67.6	50.9	27.1	67.6	77.7	25.6	38.6	28.0	16.0	28.1	36.7
ViLD* [7] DetPro	1	57.9 57.9	1						1					

Table 2. We evaluate the LVIS-trained model on Pascal VOC test set, COCO validation set and Object365 validation set.

Ablation Study

Background proposals	AP_r	AP_c	AP_f	AP
10%	19.1	25.4	28.2	25.4
30%	18.3	25.6	28.4	25.4
50%	17.8	25.6	28.4	25.4
100%	17.6	25.1	28.2 28.4 28.4 28.2	25.0

Table 4. Ablation on number of background proposals involved in DetPro training.

GT	FG	BG	AP_r	AP_c	AP_f	AP
\checkmark			15.3	25.4	27.9	24.6
\checkmark	\checkmark		16.9	25.1	27.7	24.7
\checkmark		\checkmark	17.7	25.3	28.2	25.1
\checkmark	\checkmark	\checkmark	15.3 16.9 17.7 19.1	25.4	28.2	25.4

Table 5. Ablation study on the involvement of different training data. 'GT': ground-truth; 'FG': foreground; 'BG': background.

Ablation Study

Length	AP_r	AP_c	AP_f	AP
4			28.2	
8	19.1	25.6	28.3	25.2
16	17.7	25.6	28.3	25.3

Table 7. Ablation study on context lengths.

Position	AP_r	AP_c	AP_f	AP
Front	16.4	24.5	28.3	24.6
Middle	18.0	25.1	28.3	25.1
End	19.1	25.4	28.2	25.4

Table 8. Ablation study of inserting class token into different positions of prompt representation.

图1: 在LVIS, COCO, Object365数据集上的可视化实验。

4	1			4	7	F	占	1	47	7
						1 -		/	-	_

- 研究背景
- 研究方法
- 实验效果
- 总结

总结

□总结

- ▶ 本文对于prompt learning出发,针对两个细节改进:
 - ▶ 基于ViLT方法处理背景类使用统一表征的问题
 - ▶ 基于ViLT方法处理前景框过于粗糙的问题
- ▶ 提升RPN对开放词汇目标的效果会是一个可能的改进方向

Table 1: Training with only base categories achieves comparable average recall (AR) for novel categories on LVIS. We compare RPN trained with base only vs. base+novel categories and report the bounding box AR.

Supervision	$AR_{r}@100$	$AR_r@300$	AR _r @1000
base	39.3	48.3	55.6
base + novel	41.1	50.9	57.0

