ŠESTÉ CVIČENÍ

1. Je dán vektor [1, -3, 7], vypočítejte jeho normu pro obvyklý skalární součin. $sqrt{(1,-3,7)*(1,-3,7)}$

Výsledky: $\sqrt{59}$.

2. Určete úhel mezi vektory $\overline{u} = [1,0,1], \overline{v} = [0,1,1]$ vzhledem k obvyklému skalárnímu součinu. cos $\alfa = \frac{u*v}{|u|*|v|}$ Výsledky:60°.

- 3. Určete odchylku přímek p, q, kde $p: x = 1 + t, y = 1 + t, z = 1; t \in \mathbb{R}$ a $q: x = 2s, y = 3 + 9s, z = -1 + 6s; s \in \mathbb{R}$. stejné jako minulý Výsledky: 45°.
- 4. Určete parametr $c\in\mathbb{R}$ tak, aby vektory $\overline{a}=[-2,3,c],\overline{b}=[5,c,-8]$ byly na sebe kolmé. kolmé pokud: u*v = 0Výsledky: c = -2.
- 5. Najděte všechny vektory z $V_3(\mathbb{R})$, které jsou kolmé na vektor $\overline{u}=(2,1,-3)$ * (a,b,c) = 0 [2,1,-3]. Tvoří tyto vektory vektorový podprostor prostoru $V_3(\mathbb{R})$? Pokud ano, uveď te příklad báze tohoto prostoru. báze je, že do výsledku dosadím whatever za Výsledky: vektory: $\left\{\left[\frac{3t-s}{2},s,t\right];t\in\mathbb{R}\right\}$ tvoří rovinu, její báze je např. $\left(\left[\frac{3}{2},0,1\right],\left[-\frac{1}{2},1,0\right]\right)$. uoSauiii w parametry
- 6. V prostoru $W = \langle \{\overline{a}, \overline{b}\} \rangle, \overline{a} = [-1, 1, 1], \overline{b} = [1, 1, 1]$ najděte ortogonální průmět vektoru $\overline{v} = [1, 3, 2]$.

ax+by+xz+d=0; za členy dosadit ten vektor u $rac{t}{2}$

ze zadání, vypočítat t

dopočítat d

7. Na přímce $p: x = 5 + 2t, y = -4 - t, z = 3 + t, t \in \mathbb{R}$, najděte bod, Poté za x, y, z dosadit ty člený je nejblíže k bodu B=[3,1,0].

Nakonec dosadit za t do

- 8. Vzhledem k obyyklému skalárnímu součinu vypočítejte obsah rovnoběžníka, který je dán vektory [2, 1], [1, 2]. determinant |2,1;1,2|
- 9. Vypočítejte obsah trojúhelníka ABC, kde $A_{V} = AB[1, -2, 0], B = [2, -1, 0], C = [2, 0, 2].$ u = AC S = \frac{\left{frac{\left{u} \times v|}{2}}} Výsledky: $\frac{3}{2}$.
- 10. Vzhledem k obvyklému skalárnímu součinu vypočítejte objem rovnoběžnostěnu, který je dán vektory [2, 1, 1], [1, 2, 1], [3, 2, 1]. dáme do matice a vypočítáme D Výsledky:2.
- 11. Nechť $\overline{u} = [u_1, u_2], \overline{v} = [v_1, v_2]$. Zjistěte, jestli následující operace jsou skalárním součinem:

$$\text{musime zkusit pro všechna pravidla:}\\ (a) \ \overline{u} \cdot \overline{v} = 2u_1v_1 + 5u_2v_2,\\ u^*v = v^*u\\ u^*(v+w) = u^*v + u^*w\\ k^*(u^*v) = (k^*u)^*v\\ 1 \ u^*u >= 0$$

- (b) $\overline{u} \cdot \overline{v} = u_1 v_1 u_1 v_2 u_2 v_1 + 4u_2 v_2$,
- (c) $\overline{u} \cdot \overline{v} = u_1 v_1 2u_1 v_2 2u_2 v_1 + 3u_2 v_2$.

Výsledky: a) je sk. součin, b) je sk. součin, c) není sk. součin.

- 12. Najděte všechny vektory z $V_2(\mathbb{R})$, které jsou kolmé na vektor [1, 2] vzhledem ke skalárnímu součinu definovanému v předchozím vynásobím příkladu, části (b). (1,2)*(a,b) = 0Výsledky: $\{t \cdot [7, 1]; t \in \mathbb{R}\}.$ dle pravidel
- 13. Na dána následovně: prostoru \mathbb{R}_3 je operace $f([x_1, x_2, x_3], [y_1, y_2, y_3]) = 3x_1y_1 + x_2y_2 + 2x_3y_3$. Dokažte, že se jedná o skalární součin. Potom vypočítejte normy a odchylku vektorů $\overline{x} = [1, 2, 3], \ \overline{y} = [1, 1, 0].$ stejné jako cvičení předtím Výsledky: $\|\overline{x}\|_f = 5$, $\|\overline{y}\|_f = 2$, 60° . $\operatorname{sqrt}\{(1,2,3)*(1,2,3)\}$ ale dle toho pravidla odchylka to stejné, násobit dle pravidla
- 14. * Dokažte, že pro libovolné vektory z V_n platí:

$$\left| \|\overline{a}\| - \|\overline{b}\| \right| \le \|\overline{a} - \overline{b}\|.$$

- 15. Pomocí Gram-Schmidtova ortogonalizačního procesu najděte ortonormální bázi prostoru $V\subseteq$ \mathbb{R}^4 generovaného vektory [2, -1, 0, 1], [-4, 3, 4, -1], [4, 0, -13, -2].Vypocitat vsechny tyto rovnice e2 = a * e1 + u2 e3 = a * e1 + a * e2 + u3 vysledky: \frac{e1}{|e1|} $\text{V\'{y}sledky:} \left(\frac{1}{\sqrt{6}} \cdot [2,-1,0,1], \frac{1}{3\sqrt{2}} \cdot [0,1,4,1], \frac{1}{\sqrt{21}} \cdot [2,4,-1,0] \right).$
- 16. Pomocí Gram-Schmidtova ortogonalizačního procesu najděte $\subseteq \mathbb{R}^4$ ortonormální bázi prostoru Vgenerovaného vektory [1,0,1,0],[2,-1,0,1],[0,1,2,-1].

Jestliže výsledek vyšel nějak "divně", čím je to způsobeno? Jaká je dimenze V? Kolik vektorů bude tvořit jeho bázi?

Výsledky:
$$\left(\frac{1}{\sqrt{2}} \cdot [1, 0, 1, 0], \frac{1}{2} \cdot [1, -1, -1, 1]\right)$$
.

17. Jakýmkoli způsobem (nemusí to být Gram-Schmidtův ortogonalizační proces) najděte ortogonální bázi \mathbb{R}^3 , která obsahuje vektor [1, 2, -1]. Kolik takových bází existuje?

Výsledky: např.: ([1,2,-1],[1,0,1],[-1,1,1]) je to jedno z nekonečně mnoha řešení.

u=(1,2,-1) v=(a,b,c)první udělat skalární součin u * (a,b,c) = 0 spočítám parametry a tím vektor hodnoty vektoru v potom k tomu vektorový součin vektorů

lu x vl determinant a máme výsledek