	Date.————————————————————————————————————
-	Assign ment -1
	The grant by 13 terror
al	went do you understand by Asymptotic
_	notations with enamples
Ans	It is a mathematical notation that describes
	me behaviour garfunction as its input
	six approaches infinity. It is used to analyze
	ne time ara space comprenity of agricums
3 433	(w) and and the last to describe the and
010	Diskuent types of Asymptotic notations are
(1)	Big on(0) - It is used to describe the upper
	bound of the Kurning time or space
	Compressity of an algo. It's worst case senerio
d t	gago.
D. Lei	1(m) = 0 (g(n))
1 16.	
deri	Ty f(n) = cg (n) In > no, some constant (c>0)
(2)	Big omega (D). It is used to describe the
	lower bound of the running time
	or space complexity of an algorithm. It is
	the best case seneils.
	$f(n) = \mathcal{N}(g(n))$ $f(n) = \mathcal{N}(g(n))$
	Tff. fm > cg(m)
	y n≥no, bone constant (c>0)

Date. Page No. Thera (0): It is used to describe the tight bourd of the running time or space Compromity of an algo. Its the case Senoio. Senerio. f(n) = O(g(n)) f(n) = O(g(n)) $f(n) \leq f(n) \leq C_2 g(n)$ $f(n) \leq f(n) \leq f(n)$ $f(n) \leq f(n)$ f(n(N) smal on (6): used to describe the surprupper bound of running time space Complexity of an aboritim. It is a more stulet version of Big - o notation. , small amaga (w) - describe the strict burn space comploring of an abjorithm. It is a more strict version of Big-oraga notation f(n)>ccg(n)) H fens c (gens) A who poor concern A

Page No. —— what should be the Time Complexity for (i'i ton) i=1,2,4,8, __ (3) h K tomb here it is a GP an = arn-1 n=1.2K-1 lug2 (2n) = log2 (2 b) log_2(2h) = Klog_2(2) K=log (2) + log 2(n) K= IT log 2 (m) :. O (log_2(n)) Th) = {3T(n-1) if n>0, otherwise}
using forward subs. A T(m) = 3T(n-1) T(0)=1 T(1) = 3T(1-1) = 3T(0) = 3 = 3T(2) = 3T(2-1) = 3T(1) = 3.3 = 32T (3) = 37 (3-1) = 31(2) = 3.3.3 = 33 \Rightarrow \bigcirc (3 $^{\circ}$)

Date._ Page No. _ T(n) = 27 (n-1)-1 y (n>0) omerine here a=2 C= log2 (2) =1 T(n) = ((n logn) Time complexity hti=1, 5=1; While (sc=n) 6-sti; Print ("#"); () - () S= 1+2+3+ == n 01 = (AT 600) m = (KII) X (1-M) 18 MONT (1-2) 12 (8) 7

	Page No.	
	K=(-2+ JITH+n)/2	
	(2, - 1, 1)/2	
	:. (O(Jn)	
	turin sai en in	
	for Griper press	
06	Time complexity of	
	Void function (intn)	
	€ int i, count =0;	
	for (int; =1; i + i <=n; i+7)	
	Countti	0.5
	3 (ty = x , m + 1 = 2)	
As	Sel 1=1, 22, 32, 42 KE	
	Kth tim= K*K	
	k to tem z=n	
	K+K C=n Marate S.	
	K ² =n	
Same	inside the fitte post week is	
	=) O(n)	
) 0(1)	
	Company ty of middle look.	-
	Chillian of the	
	A Sulley Col	
	(copert)	
	3 or manufacture.	
	- Josephine de	

Page No. _ time complority of void function (inth) of intij, K, count=0; for (i= 1/2; i <= n; i+1) for (K=1; K= K+2) County; of the incount to Son Inner most loop KEI ton , K= K+2 1,2,4, 8, 16 - 1 < ten Kth tum = 2K-1. 21 = 2 k - must as K=1+logen it means for each value of j this logs hung Companity of middle 100%. j=1 to n; j=j*2; 112, 4, 8,16, --- K = ((1+1692 m) for each value og i,

Date.

	Da	ite.
	Pa	ge No
*	Outramost 100p -	1 :
	20-1	
	mg172+112+2; ktum	2
	km trum = n + K	2
	2	1
	n=nz+k	R
	ntmes.	Marin September
	K=3 (E-M) residence	4 10
	movements Dank to the C	~ ~
	total complexity = 1/21 (17 10921)) + (17/0g2n)
	= (O(n(log2n)2)	
	Line reference	
	2-18-a=1	
Que	B T-C O=N-38-A	
	function (int n)	
	Y 1/(n==1)	
(11-01)	a " years were some and	70
	for (i=1 ton)	
	for(j=1ton)	
	J- CJ - (1) 10 11 1.	
	< print(""");	
	3	
	3 function(n-3);	
AS		

Date. -Page No .. 3 ntimes ntimes for functions (n-3) n,n-3,n-6,n-9, --n, n-3, n-2x3, 4-3x3, -kthtum = n(-K-1) x3=n-3 K-3 1= n-3 k-3 n-3K-4=0 inner most loop will entina = n# Complenity = O(n3)

	Date.————————————————————————————————————
	rage No.
09	Time C.
	voia finition Cints
	~
	for (i= 1 ton)
	fa(j=1; j <= n; j=j71)
	pring ("+");
	23
	- Child Keepel II
型	Out log will return n times (i)
	for i=1 jwill return notimes
	i= 2; j will return n/2 times
	i'=n; julu serun mpn times
	innerloop = (n + 2 + 3 + n - 1 + 2) thes
	n (+ + 2 + 1 + 1 h)
	Tnologn
	Corponity O(n. Logn).
Queio	
	Whationship b/w these fine?
	Assume that K>= 1 and C>1 ay constants
	Fra volle ye and no top which sclosion
	holous
As	m#= O(m) m
	n= O(c") or napproaches infinity
	nk is bounded above by on,

Date, Page No. bubble selection insertion merge ouice Randomized Quick heap soult · Court sout Will better Moneralli bustile fulizo; i2n-1; 146) fur (j>0, j'en-i-1, i+1) () (AGJ SAG+1)) Swap (D []), A (Jry)