Chapter 8. Sequential Circuit Analysis and Timing

Various Types of FFs

Input D	Next state		
0	0		
1	1		

J	K	Next state
0	0	Q
0	1	0
1	0	1
1	1	Q'

Input EN	Next state
0 at rising edge T	Q
1 at rising edge T	Q' 2

Analysis of Clocked Synchronous State Machines

- Begin with circuit
- End with state diagram word description
- 3 step approach

Synchronized Operation With CLK

Step 1: Excitation and Output Equations

Derive Excitation and Output Equations from the schematic

$$J_A = \overline{X}, K_A = X,$$

 $J_B = Q_A \overline{X}, K_B = \overline{Q}_A,$
 $O = \overline{Q}_A Q_B$

Step 2: State/Output Table

C.S.	•	Input	Output	C.S	S.	Input		Exci	itatio	on	C.5	S.	Input]	N.S
QB	QA	A X	O	QE	3 QA	X	ЈВ	KB	JA]	KA	QE	3 Q <i>P</i>	A X	QE	3 QA
0	0	0	0	0	0	0	0	1	1	0	0	0	0	0	1
0	0	1	0	0	0	1	0	1	0	1	0	0	1	0	0
0	1	0	0	0	1	0	1	0	1	0	0	1	0	1	1
0	1	1	0	0	1	1	0	0	0	1	0	1	1	0	0
1	0	0	1	1	0	0	0	1	1	0	1	0	0	0	1
1	0	1	1	1	0	1	0	1	0	1	1	0	1	0	0
1	1	0	0	1	1	0	1	0	1	0	1	1	0	1	1
1	1	1	0	1	1	1	0	0	0	1	1	1	1	1	0

Output Table

Excitation Table

Transition Table

Step 2: State/Output Table

	P.S	•	Input	Output	E	Exci	tatio	n	N.	S.
	QB	QA	X	О	JB	KB	JA	KA	QB	QA
	0	0	0	0	0	1	1	0	0	1
a $\left\langle \right\rangle$	0	0	1	0	0	1	0	1	0	0
h	0	1	0	0	1	0	1	0	1	1
b {	0	1	1	0	0	0	0	1	0	0
	1	0	0	1	0	1	1	0	0	1
c	1	0	1	1	0	1	0	1	0	0
a)	1	1	0	0	1	0	1	0	1	1
d {	1	1	1	0	0	0	0	1	1	0

Step 2: State/Output Table (Cont.)

C.S	s. X	О	N.S.			TV.	
a	0	0	ь	_		X	
					State	0	1
a	1	0	a		a	b,0	a,0
b	0	0	d		b	d,0	a,0
b	1	0	a		O		
					C	b,1	a,1
c	0	1	b		d	d,0	c,0
c	1	1	a			,	,
d	0	0	d				
d	1	0	c				

Step 3: State Diagram

Can you tell what this machine is doing?

Example

Timing

• If this circuit is to work with a larger system, what are the timing requirements? – Timing specification

Metastability

Metastability of a sequential logic

S R	Q	QN
0 0	last Q	last QN
0 1	0	1
10	1	0
11	0	0

Setup & Hold Times of Sequential Components (e.g. D-ff)

14

Maximum CLK frequency

How fast can the circuit work?

Assume inputs are ready at the right time

Maximum CLK frequency

Timing specs for 74LS parts

	Propagation delay	Setup time	Hold time	Max freq.
74LS04 (Inverter)	$t_{pLH} = 15 \text{ ns}$ $t_{pHL} = 15 \text{ ns}$		N/A	
74LS08 (AND)	$t_{pLH} = 15 \text{ ns}$ $t_{pHL} = 20 \text{ ns}$		N/A	
74LS109 (JK f/f)	$t_{pLH} = 25 \text{ ns}$ $t_{pHL} = 40 \text{ ns}$	$t_s = 35$ ns for H data in $t_s = 25$ ns for L data in	$t_h = 5 ns$	25 Mhz

Find the worst case delay path

- Sum up worst case component delay, independent of transition direction H->L, L->H
- $-109 t_p -> 08 t_p -> 109 t_{setup}$: 40 + 20 + 35 = 95 ns
- $-109 t_p -> 04 t_p -> 109 t_{setup}$: 40 + 15 + 35 = 90 ns

• Max
$$f_{clk} = 1/95ns = 10.5 Mhz$$

Setup and Hold time specifications on X

Propagation delay

- X -> O: N/A (Applicable only for Mealy type output)
- CLK -> 0:
 - tpLH = max (tpLH '109 + tpLH '08, tpHL '109 + tpLH '04 + tpLH '08)= max (25 ns + 15 ns, 40 ns + 15 ns + 15 ns) = 70 ns
 - tpHL = max (tpHL '109 + tpHL '08, tpLH '109 + tpHL '04 + tpHL '08)= max (40 ns + 20 ns, 25 ns + 15 ns + 20 ns) = 60 ns

Final timing spec for our circuit

	Propagation delay	Setup time	Hold time	Max freq.
Our circuit	$t_{pLH} = 70 \text{ ns}$ $t_{pHL} = 60 \text{ ns}$	$t_s = 70 \text{ ns}$	$t_h = 5 \text{ ns}$	10.5 Mhz

• This spec will be used for analyzing timing of a larger system containing our circuit as a component.

Quiz

• What is the maximum clock frequency of the following circuit?

Can you tell what this guy is doing?

SYSCNT

Bubble-to-bubble approach

Proper use of bubbles and naming

- Name of a signal: Help understanding the circuit like meaningful variable names in C programs (READY, GO, ENABLE, REQUEST, etc)
- Active High or Active Low (to take advantage of gate implementation, e.g., NOR is faster than OR)
- Use the bubble to represent Active Low signal and its name has "_L" or "-" (e.g., READY_L or READY-)

Examples

MSI Chips (used in our 2's complement machine)

Read: 8.4, 8.5, 6.4

(3rd Edition 8.4, 8.5, 5.4)

• 4-bit, synchronous, parallel load, binary counter

	Inpu	ıts			Current State Next State					Current State				Next State				
CLR_L	LD_L	ENT	ENP	QD	QC	QB	QA		QD*	QC*	QB∗	QA*						
0	х	Х	Х	Х	Х	Х	х		0	0	0	0						
1	0	X	X	Х	X	X	X		D	С	В	Α						
1	1 1	1 (0 x		X	X	X	x	QD	QC	QB	QA						
1	1	1 :	x 0		X	X	X	x	QD	QC	QB	QA						
1	1 1	1	1 1		0	0	0	0	0	0	0	1						
1	1 1	l	1 1		0	0	0	1	0	0	1	0						
1	1 1	1	1 1		0	0	1	0	0	0	1	1						
1	1	l	1 1		0	0	1	1	0	1	0	0						
1	1 1	1	1 1		0	1	0	0	0	1	0	1						
1	1 1	l	1 1		0	1	0	1	0	1	1	0						
1	1 1	1	1 1		0	1	1	0	0	1	1	1						
1	1 1	l	1 1		0	1	1	1	1	0	0	0						
1	1 1	1	1 1		1	0	0	0	1	0	0	1						
1	1 1	1	1 1		1	0	0	1	1	0	1	0						
1	1 1	1	1 1		1	0	1	0	1	0	1	1						
1	1 1	l	1 1		1	0	1	1	1	1	0	0						
1	1	1	1 1		1	1	0	0	1	1	0	1						
1	1	1	1 1		1	1	0	1	1	1	1	0						
1	1 1	l	1 1		1	1	1	0	1	1	1	1						
1		l	1 1		1	1	1	1	0	0	0	0						

8 bit counter using 74LS163?

Cascading using RCO

• 4-bit, parallel in, parallel out, bi-directional shift register

	Inp	uts	Next state						
Function	S1	S0	QA*	QB∗	QC∗	QD∗			
Hold	0	0	QA	QB	QC	QD			
Shift right	0	1	RIN	QA	QB	QC			
Shift left	1	0	QB	QC	QD	LIN			
Load	1	1	Α	В	С	D			

• Dual 2-to-4 Decoder

In	puts					
G_L	В	Α	Y3_L	Y2_L	Y1_L	Y0_L
1	Х	Х	1	1	1	1
0	0	0	1	1	1	0
0	0	1	1	1	0	1
0	1	0	1	0	1	1
0	1	1	0	1	1	1

• 3 Enables, 3-to-8 Decoder

Table 5-7 Truth table for a 74x138 3-to-8 decoder.

Inputs						Outputs							
G1	G2A_L	G2B_L	С	В	Α	Y7_L	Y6_L	Y5_L	Y4_L	Y3_L	Y2_L	Y1_L	Y0_L
0	Х	х	х	Х	Х	1	1	1	1	1	1	1	1
X	1	x	X	X	X	1	1	1	1	1	1	1	1
X	х	1	X	X	X	1	1	1	1	1	1	1	1
1	0	0	0	0	0	1	1	1	1	1	1	1	0
1	0	0	0	0	1	1	1	1	1	1	1	0	1
1	0	0	0	1	0	1	1	1	1	1	0	1	1
1	0	0	0	1	1	1	1	1	1	0	1	1	1
1	0	0	1	0	0	1	1	1	0	1	1	1	1
1	0	0	1	0	1	1	1	0	1	1	1	1	1
1	0	0	1	1	0	1	0	1	1	1	1	1	1
1	0	0	1	1	1	0	1	1	1	1	1	1	1

Applications of Decoder

Address decoder

- In microcomputers, an I/O address is 8 bits so that there are 256 unique device addresses.
- How to make 16 I/O ports of two I/O chips (8 ports of each) to the following I/O mapped addresses?

Applications of Decoder

Cascading

- Cascade small decoders for longer bits decoding
- How to make 5-to-32
 decoder (with 3 enables
 EN1, EN2-, EN3-)
 using 74LS138 and
 74LS139?

Applications of Decoder

Use as a Demultiplexer

- Use in combinational logic design
 - Use a 74LS138 to implement $F = D\overline{E}\overline{F}(AB + \overline{A}\overline{B}\overline{C})$

SYSCNT

Hints

Sequential Two's complement machine

- Analyze a machine that takes the 2's complement of an 8-bit number
 - 8 bits in, START → 8 bits out, DONE
- More realistic example that uses MSI chips
- For PLDs, FPGAs design, we usually use functional blocks (LBB – Logic Building Block) equivalent to the counters, shift registers, decoders, etc

General Architecture and Operation

- Example: 01001010 \rightarrow 10110110 (2's complement of A = 2^{n} -A)
 - $-01001010 \rightarrow 1111111111+1-01001010 = 10110101+1 = 10110110$
 - Write down bits from right until a 1 is encountered. Complements all bits there after

General Operation Flow

- Load 8 bits into 2×74194 (4 bit shift right/left register)
- Do a circular shift on the data, inverting bits as necessary
- Finally, the 2's complement data will appear at the output after 8 shift operations

Parallel Data Out	Invert
$Q_7Q_6Q_5Q_4Q_3Q_2Q_1Q_0$	InvertQ
	0
0 1 0 0 1 0 1 0	0
1 00 1 0 0 1 0 1	0
2 1 0 0 1 0 0 1 0	1
3 1 1 0 0 1 0 0 1	1
4 0 1 1 0 0 1 0 0	1
5 1 0 1 1 0 0 1 0	1
6 1 1 0 1 1 0 0 1	1
7 0 1 1 0 1 1 0 0	1
8 1 0 1 1 0 1 1 0	1

General Architecture and Operation

- 74LS194 (4 bit shift register) is used for loading & shifting 8 bit data
- We use D f/f (with asynchronous clear) to remember from when inverting is necessary
- We use 74LS163 (a synchronous 4-bit counter) to count 8 shifts
- System controller control the overall operation
 - The system controller determines when data should be loaded, shifted or held by controlling S1 and S0
 - The system controller also looks at BITFLG so as to know when to set the INVERT D f/f
 - The system controller also clears 74LS163 at the beginning, increments it each time a bit is shifted, and detects when 8 bits have been shifted.
 - Finally, the system controller asserts DONE signal

Much larger system analysis

- Analysis of the structure
 - More than a few f/fs in circuit not practical to treat as a single state machine
 - Try directly applying the 3-step approach
 - How many f/fs?
 - Shift reg 8, Counter 4, INVERT −1, System Controller –2
 - $15 \text{ f/fs} => 2^{15} \text{ states}$
- Then, 3 step analysis only on system controller

Synchronous System Structure

• Generally 2 Parts: Data Unit & Control Unit

- Data unit: process data (store, route, combine)
- Control unit: starting and stopping actions, test conditions, decide what to do next
- Only control unit designed as state machine

Data unit

Control unit (State Machine) 42

Decomposing State Machines

- The control unit may be further partitioned
 - Main machine system controller
 - Sub machines counter, INVERT D f/f

Data unit

Control unit (State Machine) 44

Do a 3 step analysis only on system controller

Data unit

Control unit (State Machine) 46

Step 1: Excitation and Output Eqs.

Inputs?

- External inputs (4): CLK, START, BITFLAG, C7 (ignore POC for simplification)
- P.S. (2): Q1, Q2

Outputs?

- External outputs (7): CLR CNTR, RST INVRT, S0, S1, ENCNTR, SET INVRT, DONE
- N.S. (2): = Excitations D1, D2

$$D_2 = Y_1 + Y_3 + Q_2 \overline{C}_7 = Q_1 + Q_2 \overline{C}_7$$

$$D_1 = Y_1 + \overline{Q}_2 START = \overline{Q}_2 Q_1 + \overline{Q}_2 START$$

$$ENCNTR = Y_3 + Y_2 = Q_2$$

$$S_1 = Y_1 = \overline{Q}_2 Q_1$$

$$S_0 = Y_3 + Y_2 + Y_1 = Q_2 + Q_1$$

$$DONE = Y_0 = \overline{Q}_2 \overline{Q}_1$$

$$CLR _CNTR = \overline{Q}_2 \overline{Q}_1$$

$$RST _INVRT = \overline{Q}_2 \overline{Q}_1$$

Why falling edge of CLK?

Can we remove CLK from SI equation? \rightarrow No

1. avoid glitch on SI when transit to Y2

2. hold time on RIN (not likely the problem)

$$SET_INVRT = \overline{CLK} \cdot Y \cdot BITFLAG = \overline{CLK} \cdot Q_2 \overline{Q_1} \cdot BITFLAG$$

Step 2: State/Output Table

How many rows and columns?

	P.S.	Inputs	Outputs	N.S.
	Q2 Q1	START BFLAG C7	EC CC S1 S0 RI SI DONE	Q2(=D2) Q1(=D1)
32 rows				49
				1

Step 2: State/Output Table

Y0

Y1

Y3

Y2

• Variable entered table

P.S.	Outputs	N.S.
Q2 Q1	EC CC S1 S0 RI SI DONE	Q2 Q1

$$D_2 = Y_1 + Y_3 + Q_2 \overline{C}_7 = Q_1 + Q_2 \overline{C}_7$$

$$D_1 = Y_1 + \overline{Q}_2 START = \overline{Q}_2 Q_1 + \overline{Q}_2 START$$

$$ENCNTR = Y_3 + Y_2 = Q_2$$

$$S_1 = Y_1 = \overline{Q}_2 Q_1$$

$$S_0 = Y_3 + Y_2 + Y_1 = Q_2 + Q_1$$

$$DONE = Y_0 = \overline{Q}_2 \overline{Q}_1$$

$$CLR _CNTR = \overline{Q}_2 \overline{Q}_1$$

$$RST _INVRT = \overline{Q}_2 \overline{Q}_1$$

$$SET_INVRT = \overline{CLK} \cdot Y \cdot BITFLAG = \overline{CLK} \cdot Q_2 \overline{Q_1} \cdot BITFLAG$$

Step 2: State/Output Table

• Variable entered table

	P.S.			C	Outp	uts				N	ſ.S.
	Q2	Q1	EC	CC	S1	S0	RI	SI	DONE	Q2	2 Q1
Y0	0	0	0	1	0	0	1	0	1	0	ST
Y1	0	1	0	0	1	1	0	0	0	1	1
Y3	1	1	1	0	0	1	0	0	0	1	0
Y2	1	0	1	0	0	1	0	↑	0	$\overline{\mathbf{C}}$	7 0
							\overline{CLK}	$\overline{S} \cdot BI$	TFLG		

Step 3: State Diagram

Quiz: Why we need Y3? Can we merge it with Y2?

Example

	Shift register	State	Counter	Invert	
START	XXXXXX	Y0	-	-	
	XXXXXX	Y1	0	0	
	11001010	Y3	0	0	
	01100101	Y2	1	0	
	10110010	Y2	2	0->1	
	11011001	Y2	3	1	
	01101100	Y2	4	1	
	10110110	Y2	5	1	
	11011011	Y2	6	1	
	011011011	Y2	7	1	
	00110110	Y0	8	$1 \longrightarrow DON$	E
	00110110	Y0	0	0	3

Sample Timing Diagram

Timing Analysis

• Timing specs. for the parts we have used

Chip	tpLH(ns)	tpHL(ns)
LS00(2NAND), LS04(INV), LS10(3NAND), LS27(3NOR)	15	15
LS86(2XOR)	30	22
LS139 A,B -> Y LS139 G -> Y	29 24	38 32

LS74 (Dff)	tpLH	tpHL	ts	th
CLR, CLK, PR->Q	25	40		
D			20	5
fmax = 25 Mhz				

LS163 (Counter)	tpLH	tpHL	ts	th
CLK->Q	24	27		
CLK->RCO	35	35	20	5
ENT->RCO	14	14		
CLR->Q		28		
A,B,C,D,ENP,ENT, LD			20	0
fmax = 25 Mhz				

LS194 (Sft Register)	tpLH	tpHL	ts	th
CLR->Q		35		
CLK->Q	26	30		
S1, S0			30	
L,R,A,B,C,D			20	
All				0
fmax = 25 Mhz				

Maximum CLK frequency

• We must satisfy setup time for all f/f inputs (we will consider only D2, S0, RIN as examples)

	Path1: $\underline{CLK} \rightarrow \underline{Q2(LS74)} + \underline{B} \rightarrow \underline{Y3(LS139)} + \underline{Y3} \rightarrow \underline{D2(LS10)} + \underline{D2}_{setup}$ = $40+38+15+20=113$ ns
D2 setup	Path2: $\underline{CLK} \rightarrow \underline{Q2(LS74)} + \underline{LS00} + \underline{LS10} + D2_{setup}$ = $40+15+15+20=90$ ns
	Path3: <u>CLK → CNTR_Q(LS163)</u> + <u>CNTR_Q → C7(LS10)</u> + <u>LS00</u> + <u>LS10</u> + D2_setup = 27+15+15+20=92ns
S0 setup	Path1: $\underline{CLK} \rightarrow \underline{Q2}, \underline{Q1}(\underline{LS74}) + \underline{A}, \underline{B} \rightarrow \underline{Y}(\underline{LS139}) + \underline{Y} \rightarrow \underline{S0}(\underline{LS10}) + \underline{S0}_{\underline{setup}}$ = $40 + 38 + 15 + 30 = 123 \text{ns}$
RIN (=SRI: Shift Right Input)	Path1: $\underline{CLK} \rightarrow \underline{Q0(LS194)} + \underline{LS86} + RIN_setup$ = 30+30+20=80ns
of Left 'x194' setup	Path2: <u>CLK(falling edge)</u> \rightarrow <u>SI (LS27,LS04)</u> + <u>SI \rightarrow INVQ(LS74)</u> + <u>LS86</u> + RIN_setup = 15+15+25(40?)+30+20=105(120?)ns \rightarrow ½ tclk > 105(120?)ns \rightarrow 210(240?)ns

Max clk frequency = 1/210ns = 4.8Mhz

If we use the pure maximum value approach,

Max clk frequency = 1/240ns = 4.2Mhz

Setup and Hold time specifications on START

• t_s for START $_{START}$

START setup = 30 ns + 20 ns = 50 ns

