

# Winning Space Race with Data Science

Mr Yuri 20-March-2025



# OUTLINE

- Executive Summary
- Introduction
- Methodology
- Results
- Conclusion

# **Executive Summary**

# Methodology Summary

- Data Collection
- Data Wrangling
- EDA with Visualization
- EDA with SQL
- Building an Interactive Map with Folium
- Building a Dashboard with Plotly Dash
- Predictive Analysis (Classification)

# **Results Summary**

- EDA Results
- Interactive Analytics
- Predictive Analysis

# Introduction

### **Project Background and Context:**

SpaceX advertises Falcon 9 rocket launches on its website, with a cost of 62 million dollars; other providers cost upward of 165 million dollars each. Much of the savings is because unlike other rocket providers, SpaceX's Falcon 9 can reuse the first stage.

### **Problem to Solve:**

If we can determine if the first stage will land, we can determine the cost of a launch. We will train a machine learning model using the previous data of launches of Falcon 9 rocket to predict if the first stage of the SpaceX will land or not.









# Methodology

### **Data Collection**

- SpaceX REST API
- · Web Scraping from Wikipedia

### **Data Wrangling**

- Data cleaning (e.g. replacing missing payload mass with its mean; removing irrelevant columns)
- Create a landing outcome label
- Data transformation (One Hot Encoding for categorical features, Standardization of numerical features)

### Exploratory Data Analysis (EDA) using Visualization and SQL

Interactive Visual Analytics using Folium and Plotly Dash

### Predictive Analysis using Classification Models

 Linear Regression, K Nearest Neighbors, Support Vector Machine, and Decision Tree models have been built and evaluated for the best classifier

# **Data Collection**

# SpaceX REST API

- SpaceX launches is gathered from the SpaceX REST API.
- The url starts with api.spacexdata.com/v4/
- The information gathered include: the rocket used, payload delivered, launch specifications, landing specifications, and landing outcome.

# Web Scraping from Wikipedia

- SpaceX lunches is gathered from Wikipedia:
- https://en.wikipedia.org/wiki/List of Falcon 9 and Falcon Heavy launches
- The launch records are stored in a HTML table



# Data Collection - SpaceX API

#### 1. Make a request to get rocket launch data

```
spacex_url="https://api.spacexdata.com/v4/launches/past"

response = requests.get(spacex_url)

static_json_url='https://cf-courses-data.s3.us.cloud-object-
response.status_code

200
```

#### 4. Create a Pandas data frame

#create a dataframe from launch\_dic
data = pd.DataFrame(launch\_dict)

### 5. Filter Falcon 9 only

```
# Hint data['BoosterVersion']!='Falcon 1'
data_falcon9= data[data ['BoosterVersion']!='Falcon 1']
```

#### 6. Save to CSV

data\_falcon9.to\_csv('dataset\_part\_1.csv', index=False)



#### 2. Normalize to data frame

```
# Decode the response content as a JSON using .json()
json_data=response.json()

# Convert the json response into a dataframe using .json_normalize()
data = pd.json_normalize(json_data)
```

### 3. Create a dictionary

```
launch_dict = {'FlightNumber': list(data['flight_number']),
'Date': list(data['date']),
'BoosterVersion': BoosterVersion,
'PayloadMass':PayloadMass,
'Orbit':Orbit,
'LaunchSite':LaunchSite,
'Outcome':Outcome.
'Flights':Flights,
'GridFins': GridFins,
'Reused': Reused.
'Legs':Legs,
'LandingPad':LandingPad,
'Block':Block,
'ReusedCount':ReusedCount.
'Serial':Serial,
'Longitude': Longitude,
                                                           8
'Latitude': Latitude}
```

# Data Collection - Scraping (Web Scraping from Wikipedia)

#### 1. Get Response from HTML

```
page = requests.get(static_url)
```

#### 2. Create Beautiful Soup Object

```
content = page.text
BeautifulSoup = BeautifulSoup(content, 'html.parser')
```

#### 3. Find tables

```
html_tables = BeautifulSoup.find_all('table')
```

#### 4. Get column names

```
column_names = []
for i in first_launch_table.find_all('th'):
    if extract_column_from_header(i)!=None:
        if len(extract_column_from_header(i))>0:
              column_names.append(extract_column_from_header(i))
```

#### 5. Create a dictionary

```
launch_dict= dict.fromkeys(column_names)
del launch_dict['Date and time ( )']

launch_dict['Flight No.'] = []
launch_dict['Launch site'] = []
launch_dict['Payload'] = []
launch_dict['Payload mass'] = []
launch_dict['Orbit'] = []
launch_dict['Customer'] = []
launch_dict['Launch outcome'] = []
launch_dict['Version Booster'] = []
launch_dict['Booster landing'] = []
launch_dict['Date'] = []
launch_dict['Time'] = []
```

#### 6. Append data to keys (e.g. below for Date- refer to notebook for more)

```
#Append the date into launch_dict with key `Date`
date = datatimelist[0].strip(',')
launch_dict['Date'].append(date)
```

### 7. Convert dictionary to dataframe

```
df=pd.DataFrame(launch dict)
```

#### 8. Save to CSV

```
df.to_csv('spacex_web_scraped.csv', index=False)
```

# Data Wrangling

Initially some Exploratory Data Analysis (EDA) was performed:

#### 1. Check and calculate null values

```
      df.isnull().sum()/df.shape[0]*16

      FlightNumber
      0.000000

      Date
      0.000000

      BoosterVersion
      0.000000

      PayloadMass
      0.000000
```

#### 2. Calculate the n of launches on each site

```
df['LaunchSite'].value_counts()

CCAFS SLC 40 55

KSC LC 39A 22

VAFB SLC 4E 13

Name: LaunchSite, dtype: int64
```

#### 3. Calculate the n and occurrence of each orbit





#### 4. Calculate the n and occurrence of outcome per orbit type

#### 5. Create a landing outcome label from Outcome column

```
def outcome_to_class(outcome_value):
    if outcome_value in bad_outcomes:
        return 0
    else:
        return 1
landing_class = df['Outcome'].apply(outcome_to_class)
```

#### 6. Calculate success from Class column

```
df["Class"].mean()
0.666666666666666
```

# **EDA with Data Visualization**

To explore data, scatterplots, bar plots, were used to visualize the relationship between pair of features.













# **EDA with SQL**

- Displaying the names of the unique launch sites in the space mission
- Displaying 5 records where launch sites begin with the string 'KSC
- Displaying the total payload mass carried by boosters launched by NASA (CRS)
- Displaying average payload mass carried by booster version F9 v1.1
- Listing the date where the successful landing outcome in drone ship was achieved.
- Listing the names of the boosters which have success in ground pad and have payload mass greater than 4000 but less than 6000
- Listing the total number of successful and failure mission outcomes
- Listing the names of the booster versions which have carried the maximum payload mass
- Listing the records which will display the month names, successful landing outcomes in ground pad booster versions, launch site for the months in year 2017
- Ranking the count of successful landing outcomes between the date 2010 06 04 and 2017 03 20 in descending order.

# Build an Interactive Map with Folium

An interactive map offers a dynamic way to visualize and analyze launch site data, facilitating decision-making and insights into
the spatial relationships of launch activities. For instance, the success rate may depend on the location and proximities of a launch
site, i.e., the initial position of rocket trajectories.

#### We created three maps for:

- Visualization of **each launch site** in an interactive map.
- Visualization of launch sites on the map based on fail or success. This gives us insights into the performance of launch sites.
- Visualization of the geographical context and **proximity** of the launch sites to railway, highway, coastline, etc



# Build a Dashboard with Plotly Dash

Plotly Dash applications allows us to perform interactive visual analytics on SpaceX lunch data in real time.

We developed a dashboard that enables us to:

- Visualize a pie chart depicting success based on the selected launch site.
- Explore the correlation between success and payload by utilizing a Range Slider to choose the payload range, presented through a scatter plot.





# Predictive Analysis (Classification)

Four classification models including Linear Regression, K Nearest Neighbors, Decision Tree models, and Support Vector Machine, were built and compared.





# Results

- The first successful ground pad landing took place on December 22, 2015.
- The success rates for SpaceX launches increased over time (2013-2020).
- The location of launch appears to be a significant contributing factor to the success of missions
- KSC LC-39A has the most successful launches compared to other sites.
- Low weighted payloads perform better than the heavier payloads.
- ES-L1, GEO, HEO, and SSO orbits achieved the highest success rate.
- For heavy payloads, the rates of success are higher for VLO and ISS orbits.
- Decision Tree model is the best in terms of prediction accuracy for this dataset.

For additional information, refer to slides 18 through 45.



# Flight Number vs. Launch Site



- Most launches took off from CCAFS SLC 40 launch site
- The initial launches were mostly carried out from the CCAFS SLC 40 launch site
- The majority of recent launches from CCAFS SLC 40 resulted in success
- The success rates for all launch sites improved over time.

# Payload vs. Launch Site



- VAFB SLC 4E launch site conducts launches with lower payloads (zero launches for >10000 kg)
- CCAFS SLC 40 hosts a higher number of launches involving both higher and lower payloads.
- Most payloads weighing over 9000 kg have achieved successful outcomes.

# Success Rate vs. Orbit Type



ES-L1, GEO, HEO, and SSO orbits achieved the highest success rate at 100%, followed by VLEO with a success rate >80%, and LEO with a success rate >70%.

# Flight Number vs. Orbit Type



- In the recent years, there has been a transition towards launching missions into Very Low Earth Orbits (VLEO) with a significantly high rate of success.
- While the GTO orbit experiences a low success rate, there appears to be no discernible relationship between flight number and the rate of success in this orbit.

# Payload Mass vs. Orbit Type



- For heavy payloads, the rates of success are higher for VLO and ISS orbits.
- In the case of GTO, there seems no apparent relationship between payload and the rate of success.

# Launch Success Yearly Trend



- The rate of success has seen a notable rise since 2013 and continued to rise until 2020, possibly attributed to technological advancements.
- The first three years (2010-2013) seem to have been a phase focused on fine-tuning and technological enhancement.

### All Sites Names

Here are the names of four launch sites in the space mission:

Launch\_Site
CCAFS LC-40
VAFB SLC-4E
KSC LC-39A
CCAFS SLC-40

The associated SQL code:

%sql SELECT DISTINCT Launch\_Site FROM SPACEXTABLE;

### Launch Site Names Begin with 'CCA'

• Five records where launch sites begin with the 'CCA' are listed below:

| Date         | Time (UTC) | Booster_Version | Launch_Site                            | Payload                              | PAYLOAD_MASSKG | Orbit     | Customer        | Mission_Outco | me Landing_Outcome  |
|--------------|------------|-----------------|----------------------------------------|--------------------------------------|----------------|-----------|-----------------|---------------|---------------------|
| 2010-04-06   | 18:45:00   | F9 v1.0 B0003   | CCAFS LC-40 Dragon Spacecraft Qualific | cation Unit                          | 0              | LEO       | SpaceX          | Success       | Failure (parachute) |
| 2010-08-12   | 15:43:00   | F9 v1.0 B0004   | CCAFS LC-40 Dragon demo flight C1, two | o CubeSats, barrel of Brouere cheese | 0              | LEO (ISS) | NASA (COTS) NRO | Success       | Failure (parachute) |
| 2012-05-22 ( | 07:44:00   | F9 v1.0 B0005   | CCAFS LC-40 Dragon demo flight C2      |                                      | 525            | LEO (ISS) | NASA (COTS)     | Success       | No attempt          |
| 2012-08-10   | 00:35:00   | F9 v1.0 B0006   | CCAFS LC-40 SpaceX CRS-1               |                                      | 500            | LEO (ISS  | NASA (CRS)      | Success       | No attempt          |
| 2013-01-03   | 15:10:00   | F9 v1.0 B0007   | CCAFS LC-40 SpaceX CRS-2               |                                      | 677            | LEO (ISS) | NASA (CRS)      | Success       | No attempt          |

```
%sql SELECT * FROM SPACEXTABLE WHERE Launch_Site LIKE 'CCA%' LIMIT 5;
```

# **Total Payload Mass**

The total payload carried by boosters from NASA (CRS) is 45596 (kg)

```
%sql SELECT SUM(PAYLOAD_MASS__KG_) AS Total_payload_mass FROM SPACEXTABLE WHERE Customer = 'NASA (CRS)';
```

# Average Payload Mass by F9 v1.1

 The average payload mass carried by booster version F9 v1.1 is 2928.4 (kg)

```
%sql SELECT AVG(PAYLOAD_MASS__KG_) AS Average_Payload_Mass FROM SPACEXTABLE WHERE Booster_Version = 'F9 v1.1';
```

# First Successful Ground Landing Date

The first successful ground pad landing took place on December 22, 2015.

```
%sql SELECT MIN(DATE) AS First_successful_landing_gound FROM SPACEXTABLE WHERE Landing_Outcome = 'Success (ground pad)';
```

# Successful Drone Ship Landing with Payload between 4000 and 6000

 The boosters that have successfully landed on drone ships and carried payloads with a mass exceeding 4000 but below 6000 are as follows: Booster\_Version

F9 FT B1022

F9 FT B1026

F9 FT B1021.2

F9 FT B1031.2

```
%%sql SELECT Booster_Version
FROM SPACEXTABLE
WHERE Landing_Outcome = 'Success (drone ship)' AND PAYLOAD_MASS__KG_>4000 AND PAYLOAD_MASS__KG_<6000;</pre>
```

### Total Number of Successful and Failure Mission Outcomes

• The total number of 100 mission outcomes, including both successful and unsuccessful results is presented in the following breakdown:

| Mission_Outcome                  | Total_count |
|----------------------------------|-------------|
| Failure (in flight)              | 1           |
| Success                          | 98          |
| Success                          | 1           |
| Success (payload status unclear) | 1           |

```
%%sql SELECT Mission_Outcome, COUNT(*) AS Total_count
FROM SPACEXTABLE
GROUP BY Mission_Outcome;
```

# **Boosters Carried Maximum Payload**

 The boosters which have carried the maximum payload mass include:

The associate SQL code:

```
%%sql SELECT Booster_Version
FROM SPACEXTABLE
WHERE PAYLOAD_MASS__KG_ = (
    SELECT MAX(PAYLOAD_MASS__KG_)
    FROM SPACEXTABLE
);
```

#### Booster\_Version

F9 B5 B1048.4

F9 B5 B1049.4

F9 B5 B1051.3

F9 B5 B1056.4

F9 B5 B1048.5

F9 B5 B1051.4

F9 B5 B1049.5

F9 B5 B1060.2

F9 B5 B1058.3

F9 B5 B1051.6

F9 B5 B1060.3

F9 B5 B1049.7

### 2015 Launch Records

• The unsuccessful landing outcomes on drone ships, along with their corresponding booster versions and launch site names, during the year 2015, are provided below:

```
Month Failure_Landing_Outcome Booster_Version Launch_SiteOctober Failure (drone ship)F9 v1.1 B1012CCAFS LC-40April Failure (drone ship)F9 v1.1 B1015CCAFS LC-40
```

```
Wool SELECT
CASE
        WHEN Date like "%-01-%" THEN "January"
        MONETO Date like "%-02-%" THEN "February
        WHEN Date like '%-83-%' THEN 'March'
        WHEN Date like "%-84-%" THEN "April
        WHEN Date like "X-05-X" THEN 'May'
       WHEN Date like "X-86-%" THEN "June"
       WHEN Date like 'X-07-X' THEN 'July'
       WHEN Date like "%-08-%" THEN 'August'
        WHEN Date like '%-89-%' THEN 'September
        WHEN Date like '5-18-5' THEN 'October'
        WHEN Date like "%-11-%" THEN 'November'
        WHEN Date like 'X-12-X' THEN 'December
   END AS Month,
   Landing Outcome AS Failure_Landing_Outcome,
   Booster Version,
   Launch_Site
FROM SPACEXTABLE
WHERE Date like'N2815%' AND Landing_Outcome LIKE 'Failure (drone ship)';
```

### Rank Landing Outcomes Between 2010-06-04 and 2017-03-20

- The tally of landing results (including Failure on drone ships or Success on ground pads) occurring between June 4, 2010, and March 20, 2017, is presented in a descending order:
- As shown, the highest count among the landing outcomes is attributed to "No attempt", totaling 10. This is followed by "Success (ground pad) ", "Success (drone ship) ", and "Failure (drone ship) " each occurring 5 times, while "Controlled (ocean)" is observed 3 times.

```
%%sql SELECT Landing_Outcome, COUNT(*) AS Outcome_Count
FROM SPACEXTABLE
WHERE Date BETWEEN '2010-06-04' AND '2017-03-20'
GROUP BY Landing_Outcome
ORDER BY Outcome_Count DESC;
```

```
Landing_OutcomeOutcome_CountNo attempt10Success (ground pad)5Success (drone ship)5Failure (drone ship)5Controlled (ocean)3Uncontrolled (ocean)2Precluded (drone ship)1Failure (parachute)1
```



### Folium Map Screenshot 1 - Launch Site Locations



### Folium Map Screenshot 2 - Success/Failed Launches for Launch Sites



- Upon zooming in, we can see the success (green) and failure (red) marks for each site.
- Out of 13 launches, KSC LC-39A has achieved the highest success rate with 10 successful missions (10/13=76.9%)

# Folium Map Screenshot 3 - Proximity of Launch Sites to Other Areas





### Dashboard Screen Shot 1 - Total Success Launches By All Sites



- The location of launch appears to be a significant contributing factor to the success of missions.
- KSC LC-39A has the most successful launches compared to other sites.

### Dashboard Screen Shot 2 - Launch Site With Highest Launch Success Ratio



- Using the dropdown menu on the dashboard allows for viewing single site launches.
- At KSC LC-39A, 76.9% of the launches resulted in success, while 23.1% experienced failure.

### Dashboard Screen Shot 3 - Payload vs. Launch Outcome





- With the Range Slider, we can observe the outcomes of both successful and failed launches for each booster version, along with the corresponding payload they carried.
- Success rates are higher for lighter payloads compared to heavier ones.



### Classification Accuracy:



Decision Tree model achieved the highest accuracy at 88 %, while the SVM performs the best in terms of Area Under the Curve at 0.96 (not shown).

### **Confusion Matrix:**



- All four models can distinguish between the different classes.
- However, the major problem for LR, SVM, and KNN is False Positives (n=3)
- Decision Tree has the least False Positive (n=1)

|                 | PREDICTIVE VALUES |                 |  |
|-----------------|-------------------|-----------------|--|
|                 | 0<br>(Negative)   | 1<br>(Positive) |  |
| 0<br>(Negative) | TN                | FP              |  |
| 1<br>(Positive) | FN:               | TP              |  |

### Conclusions:

- The success rates for SpaceX launches increased over time (2013-2020).
- KSC LC-39A has the most successful launches compared to other sites.
- Low weighted payloads perform better than the heavier payloads.
- ES-L1, GEO, HEO, and SSO orbits achieved the highest success rate.
- For heavy payloads, the rates of success are higher for VLO and ISS orbits.
- Decision Tree models are the best in terms of prediction accuracy for this dataset.
- Through the utilization of available data and comprehensive analysis, rocket companies can
  pinpoint the most effective techniques for diminishing launch expenses. This approach averts the
  risk of losing clients and ensures they remain competitive in the market.

