$SL_2(\mathbb{R})/SO_2(\mathbb{R})$ IS HOMEOMORPHIC TO \mathbb{H}

MTH418: Presentation

Manvendra Somvanshi

Updated on: February 23, 2024

1 Defining the Map

Definition 1. We define the action of $SL_2(\mathbb{R})$ on \mathbb{H} as

$$A(z) = \frac{az+b}{cz+d}$$

where,

$$A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}.$$

Proposition 2. $SL_2(\mathbb{R})$ acts transitively on \mathbb{H} .

Proof. Let $z_0 = x_0 + iy_0 \in \mathbb{H}$. Then the map T_{z_0}

$$T_{z_0}(z) = y_0 z + x_0$$

maps i to z_0 . Clearly T_{z_0} corresponds to the following matrix in $SL_2(\mathbb{R})$

$$\begin{pmatrix} 1 & x_0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} \sqrt{y_0} & 0 \\ 0 & \frac{1}{y_0} \end{pmatrix}.$$

Given any $z, w \in \mathbb{H}$ the matrix correponding to $T_z \circ T_w^{-1}$ maps w to z.

Proposition 3. The stabilizer of *i* under this action is $SO_2(\mathbb{R})$.

Proof. Let $A \in SL_2(R)$ correspond to the map A(z) = (az + b)/(cz + d). Then,

$$A(i) = i \iff i(a-d) = -(b+c) \iff a = d \& b = -c \iff A \in SO_2(\mathbb{R})$$

Thus $\operatorname{Stab}(i) = SO_2(\mathbb{R})$.

Definition 4. Let $f: SL_2(\mathbb{R}) \to \mathbb{H}$ be defined as f(A) = A(i).

Proposition 5. f is a continuous map.

Proof. Let A_n be a sequence $SL_2(\mathbb{R})$ which converges to A. If

$$f(A_n) = \frac{a_n i + b_n}{c_n i + d_n}$$

then $a_n \to a, b_n \to b, c_n \to c$, and $d_n \to d$ (using the induced metric on $SL_2(R)$ from \mathbb{R}^4), where A(z) = (az + b)/(cz + d). Taking limits we get $\lim f(A_n) = f(A)$.

Proposition 6. Let \sim be an equivalence relation on $SL_2(\mathbb{R})$ given by $A \sim B \iff f(A) = f(B)$. Then $A\tilde{B}$ if and only if $B^{-1}A \in SO_2(\mathbb{R})$.

Proof. Let $A, B \in SL_2(\mathbb{R})$. Then,

$$A \sim B \iff A(i) = B(i) \iff B^{-1}A(i) = i \iff B^{-1}A \in SO_2(\mathbb{R}).$$

The above theorem shows that $SL_2(\mathbb{R})/SO_2(\mathbb{R}) = SL_2(\mathbb{R})/\sim$. Thus as quotient space $SL_2(\mathbb{R})/SO_2(\mathbb{R}) \simeq SL_2(\mathbb{R})/\sim$. From the previous proposition f is constant on the fibres of p. Thus we have the following diagram

where the map \tilde{f} is induced by universal property of quotient maps, and is given by $\tilde{f}(A \cdot SO_2(\mathbb{R})) = A(i)$. Clearly this map is bijective: surjectivity follows from the transitive nature of the action, and injectivity follows from the previous proposition. The map \tilde{f} is our candidate for the desired homeomorphism. If we can show that \tilde{f} is also an open map we would be done.

2 Some results about Topological groups

Lemma 7. Let G be a locally compact, connected, Hausdorff topological group. Let V be an open neighborhood of $e \in G$. Then V generates G.

Proof. Let $H = \langle V \rangle$ be the subgroup generated by V. Then H is open since for any $g \in H$ the set $gV \subset H$ is open. Similarly given any $g \in H^c$ the open set $gV \subset H^c$ becasue if not, then there is some $v \in V$ such that gv = h for some $h \in H$ hence $g = hv^{-1} \in H$, a contradiction! Since G is connected and H is a non-empty clopen subset of G it follows that H = G.

Proposition 8. Let G be as in Lemma 7. Let S be any subset of G such that $e \in S^{\circ}$. Then there exists a countable subset $E = \{g_i\}$ of G such that $\bigcup_i g_i S = G$.

Proof. Let $V \subset S^{\circ}$ such that \overline{V} is compact and $e \in V$. For any $g \in G$, the element is contained in $W = V^{n_1} \cdots V^{n_k}$. The closure of W is contained in a compact set, and thus is compact. The collection $\{wV \mid w \in W\}$ is an open cover of W. By compactness, there is some finite subcover, say $\{w_iV \mid w_1, \cdots, w_n \in W\}$. Let $E' = w_{i=1}^n$. Since there are only countably many such W's and for each W there is a finite set E', the union of all such E' is a countable set. This union is our desired set E.

Note that the previous proposition works for any set S with non-empty interior since if $g \in S^{\circ}$ then $g^{-1}S$ contains e. Since $SL_2(\mathbb{R})$ is a connected Lie group it satisfies all conditions of Proposition 8. Thus given any set S with non-empty interior there exists a sequence A_i such that $\bigcup_i A_i S = SL_2(\mathbb{R})$. This can be projected to $SL_2(\mathbb{R})/SO_2(\mathbb{R})$. Given some set \overline{S} with non-empty interior, $p^{-1}(\overline{S})$ also has a non-empty interior. Let the image of the countable set $\{A_i\}$ be $\{\overline{A_i}\}$. Then

$$\bigcup_{i=1}^{\infty} p(A_i p^{-1}(\bar{S})) = p(SL_2(\mathbb{R})) = SL_2(\mathbb{R})/SO_2(\mathbb{R})$$

$$\bigcup_{i=1}^{\infty} p(A_i) p(p^{-1}(\bar{S})) = SL_2(\mathbb{R})/SO_2(\mathbb{R})$$

$$\bigcup_{i=1}^{\infty} \bar{A}_i \bar{S} = SL_2(\mathbb{R})/SO_2(\mathbb{R})$$

We formulate this as the following proposition.

Proposition 9. Let S be any subset of $\bar{G} = SL_2(\mathbb{R})/SO_2(\mathbb{R})$ such that $S^{\circ} \neq \emptyset$. Then there exists a countable subset $E = \{\bar{A}_i\}$ of \bar{G} such that $\bigcup_i \bar{A}_i S = \bar{G}$.

3 \tilde{f} is an open map

Before proving the final result, I'll state the Baire Category theorem for metric spaces.

Theorem 10 (Baire Category Theorem). Let X be a metric space. Then any countable union of closed sets of X with empty interior also has empty interior.

Proposition 11. \tilde{f} is an open map.

Proof. Let \bar{G} be $SL_2(\mathbb{R})/SO_2(\mathbb{R})$.

Step 1. Fix $\bar{A} \in \bar{G}$. Let K be a compact neighborhood of \bar{A} with non-empty interior, then $\tilde{f}(K)^{\circ} \neq \emptyset$. Suppose not, then there is some compact neighborhood K with $K^{\circ} \neq \emptyset$ but $\tilde{f}(K)^{\circ} = \emptyset$. By Proposition 9 there exists \bar{A}_i such that $\bigcup_i \bar{A}_i K^{\circ} = \bar{G}$. Applying \tilde{f} to this,

$$\bigcup_{i} \tilde{f}(\bar{A}_{i}K^{\circ}) = \mathbb{H}$$

Since $\tilde{f}(\bar{A}_iK^{\circ})$ has empty interior, this contradicts Baire Category theorem (since \mathbb{H} is a metric space).

Step 2. If $T \in SL_2(\mathbb{R})$ and $\bar{A} \in \bar{G}$ then $\tilde{f}(T\bar{A}) = T\tilde{f}(\bar{A})$ and similarly for \tilde{f}^{-1} . This also implies that $\tilde{f}(T \cdot S) = T\tilde{f}(S)$ for any subset S.

Step 3. Let $\mathcal{B} = \{\tilde{f}^{-1}(\tilde{f}(K)^{\circ}) \mid \forall \text{ compact } K \text{ s.t. } K^{\circ} \neq \emptyset \}$. We claim that these are a basis for the topology of \bar{G} . Let $\bar{A} \in \bar{G}$. Then there exists some compact neighborhood K of \bar{A} such that K° is non-empty (by local compactness). Thus $U = \tilde{f}^{-1}(\tilde{f}(K)^{\circ}) \subset K^{\circ}$ is an open set. In case $\bar{A} \notin U$ then we can simply translate it by left actions so that

 $\bar{A} \in T \cdot U = \tilde{f}^{-1}(\tilde{f}(T \cdot K)^{\circ})$ for some $T \in SL_2(\mathbb{R})$. Suppose that U and U' in \mathcal{B} are neighborhoods of \bar{A} then

$$U\cap U'=\tilde{f}^{-1}(\tilde{f}(K)^{\circ}\cap \tilde{f}(K')^{\circ})=\tilde{f}^{-1}(\tilde{f}(K\cap K')^{\circ})\in \mathcal{B}.$$

Hence \mathcal{B} is a basis of *some* topology. To show that it generates the quotient topology we will prove that inside every neighborhood V of \bar{A} there is a element of \mathcal{B} . Since \bar{G} is locally compact, it follows that there is some open neighborhood W of \bar{A} such that $\bar{W} \subset V$ is compact. It follows that:

$$\begin{split} \bar{W} \subset V \\ \tilde{f}(\bar{W})^{\circ} \subset F(V) \\ \tilde{f}^{-1}(\tilde{f}(\bar{W})^{\circ}) \subset V. \end{split}$$

Due to continuity we know that $U = \tilde{f}^{-1}(\tilde{f}(\bar{W})^{\circ}) \subset W^{\circ} \subset \bar{W}$. In case $\bar{A} \notin U$ then we can translate it by some T so that $\bar{A} \in T \cdot U$. If $T \cdot U$ does not completely lie inside V then we just consider $W' = \bigcup_T T^{-1}(T \cdot U \cap W) \subset U$, where the union is over all T such that TU is a neighborhood of \bar{A} . Repeating the previous calculation we get an open set $U' = \tilde{f}^{-1}(\tilde{f}(\bar{W}')^{\circ}) \subset W'$ which when translated by T such that $\bar{A} \in T \cdot U$ is a subset of V. Since $\bar{A} \in T \cdot U \in \mathcal{B}$ it follows that \mathcal{B} is a basis for the quotient topology.

Step 4. Since $\tilde{f}(U)$ for all $U \in \mathcal{B}$ is open by construction, it follows that \tilde{f} is an open map.