

基础信息论

赫夫曼编码

华中科技大学电信学院

学习目标

- ■编制赫夫曼码
- ■评价赫夫曼码性能

赫夫曼编码

设有离散无记忆信源, $\begin{bmatrix} X \\ P(X) \end{bmatrix} = \begin{cases} x_1, & x_2, & \dots, & x_i, & \dots, & x_n \\ p(x_1), & p(x_2), & \dots, & p(x_i), & \dots, & p(x_n) \end{cases}$

二元码的编码步骤如下:

(1) 将信源符号按概率从大到小依次排列。设排序后的消息分别记为

$$x_1, x_2, \ldots, x_n$$

(2) 给两个概率最小的信源符号 $p(x_{n-1})$ 和 $p(x_n)$ 各分配一个码符号 "0" 和 "1",将这两个信源符号合并成一个新符号,并用 $p(x_{n-1}) + p(x_n)$ 作 为新符号的概率,结果得到一个只包含 n-1 个信源符号的新信源。将该 信源称为第一次缩减信源,用 S_1 表示。

- (3) 将缩减信源 S_1 的符号仍按概率从大到小的顺序排列,重复步骤2,得到只含 (n-2) 个符号的缩减信源 S_2 。
- (4) 重复上述步骤,直至缩减信源只剩两个符号为止。此时所剩两个符号的概率之和必为1。然后从最后一级缩减信源开始,依编码路径向前返回,就得到各信源符号所对应的码字。

例 对
$$\begin{cases} x_1' & x_2' & x_3' & x_4' & x_5' & x_6' & x_7' & x_8 \\ 0.18 & 0.07 & 0.04 & 0.4 & 0.06 & 0.1 & 0.1 & 0.05 \end{cases}$$
编二元赫夫曼码

(1) 排序
$$\begin{cases} x_1 & x_2 & x_3 & x_4 & x_5 & x_6 & x_7 & x_8 \\ 0.4 & 0.18 & 0.1 & 0.1 & 0.07 & 0.06 & 0.05 & 0.04 \end{cases}$$

(2) 第一次缩减信源 (3) 第二,三,…次缩减信源 (4) 最后一级

S_0	概率	S_1	S_2	S_3	S_4	S_5	S_6	S_7	码字
_x ₁ _	0.4						0.6 r	$\sum_{0} = 1$	1
1	0.1				0.23	0.37	0	1	001
$-x_2$	0.18		0.13	0.19	0	1			011
x_3	0.1				1				
$-x_4$	0.1	-0.09- [<u>0</u>					0000
x_5	0.07	0.07	0						0100
$-x_6$	0.06		1						0101
-X 7	0.05	0							00010
$-x_8$	0.04	1							00011

检验是否为即时码?

计算编码效率:

$$\eta = \frac{H(X)}{\frac{\bar{L} \cdot \log m}{N}} = \frac{-0.4 \log 0.4 - 0.18 \log 0.18 - \dots - 0.04 \log 0.0.04}{(0.4 \times 1 + 0.18 \times 3 + \dots + 0.04 \times 5) \cdot \frac{\log 2}{1}}$$
$$= \frac{2.55}{2.61} = 97.7\%$$

从计算结果可看出,编码效率较高。

问题: 赫夫曼方法所编的码字是否唯一?

答案:不唯一。

- 1. 每次分配码字,0和1都是任意的。
- 2. 当新符号的概率与已有符号相等时,这些符号谁在前,谁在后,也会导致编码结果不同;而且所得编码方案性能也有差异。

例 对
$$\begin{cases} x_1' & x_2' & x_3' & x_4' & x_5' \\ 0.2 & 0.1 & 0.4 & 0.1 & 0.2 \end{cases}$$
 编二元赫夫曼码。

解: (1) 排序
$$\begin{cases} x_1, & x_2, & x_3, & x_4, & x_5 \\ 0.4 & 0.2 & 0.2 & 0.1 & 0.1 \end{cases}$$

(2) 第一次缩减信源 (3) 第二,三,…次缩减信源 (4) 最后一级

方案一:

每次符号概率 相等时,新码 字都排在最后 面。

$$\bar{L} = 0.4 \times 1 + 0.2 \times 2 + 0.2 \times 3 + 2 \times 0.1 \times 4 = 2.2$$
 码元/符号

方案二:

每次符号概率 相等时,新码 字都排在最上 面。

$$\bar{L} = 0.4 \times 2 + 2 \times 0.2 \times 2 + 2 \times 0.1 \times 3 = 2.2$$
 码元/符号

方案一

方案二

$$\begin{cases} X \\ P \\ \Theta \end{cases} = \begin{cases} x_1, & x_2, & x_3, & x_4, & x_5 \\ 0.4 & 0.2 & 0.2 & 0.1 & 0.1 \\ 1 & 01 & 000 & 0010 & 0011 \end{cases} \qquad \begin{cases} X \\ P \\ \Theta \end{cases} = \begin{cases} x_1, & x_2, & x_3, & x_4, & x_5 \\ 0.4 & 0.2 & 0.2 & 0.1 & 0.1 \\ 000 & 10 & 11 & 010 & 011 \end{cases}$$

从直观上看,方案二的各码字之间,码字长度更均匀。

$$\sigma_1^2 = [(1-2.2)^2 \cdot 0.4 + (2-2.2)^2 \cdot 0.2 + \dots + (4-2.2)^2 \cdot 0.1] = 1.36$$

$$\sigma_2^2 = [(2-2.2)^2 \cdot 0.4 + (2-2.2)^2 \cdot 0.2 + \dots + (3-2.2)^2 \cdot 0.1] = 0.16$$

由此得出结论:

在赫夫曼编码过程中,对缩减信源符号按概率由大到小的顺序重新排列时 ,应使合并后的新符号尽可能排在靠上的位置,这样可使合并后的新符号重复 编码次数减少,码字间长度更加均匀。

练习: 设有信源 $\begin{cases} x_1, & x_2, & x_3, & x_4, & x_5, & x_6, & x_7 \\ 0.2 & 0.19 & 0.18 & 0.17 & 0.15 & 0.1 & 0.01 \end{cases}$

(1) 编二进制赫夫曼码 (2) 计算平均码长及编码效率

	S_0	概率	S_1	S_2	S_3	S_4	S_5	S_6	码字
(1)	x_1	0.2		0.26	0.35	0.39	0.61	$\sum = 1$ 0 1	10
	$\frac{x_2}{x_2}$	0.19 0.18			0	1			000
	$-x_3$ $-x_4$	0.17		0	1				001
	$-x_5$	0.15	0.11 Γ	1					010
	$-x_6$	0.1	0						0110
	$-x_7$	0.01	1						0111

(2)计算平均码长及编码效率

$$\bar{L} = 0.2 \times 3 + 0.19 \times 2 + ... + 0.01 \times 4 = 2.72$$
 比特/符号

$$\eta = \frac{H(X)}{\frac{\bar{L} \cdot \log m}{N}} = \frac{2.609}{\frac{2.72 \cdot \log 2}{1}} \approx 95.9\%$$

多元赫夫曼编码

多(m)元码的编码步骤:

- (1) 按概率从大到小排序。
- (2) 挑出概率最小的m个信源符号,分别赋予码符号 $0,1,\ldots,m-1$,并将概率的和赋予合并后的新符号,得到 S_1 。

- (3) 按相同步骤计算 S_2, S_3, \ldots 。
- (4) 直到最后一级,倒序读出码字。

多元码的编码过程与二元码基本类似,但可能会遇到如下问题:

		S_0	S_1	S_2	•••	最后一级
二元码	一般情况 信源符号数	n	<i>n</i> -1	<i>n</i> -2	•••	2
	举例	8	7	6	•••	2

		S_0	S_1	S_2	•••	最后一级
m元码	一般情况 信源符号数	n	<i>n</i> -(m-1)	<i>n</i> -2(m-2	1)	≤ <i>m</i>
	举例(m=3)	8	6	4	•••	2

可能出现最后一级信源,信源符号数不足 m 个的情况。

S_0	概率	S_1	S_2	S_3	S_4	码字
x_1	0.4			0.6	$\begin{array}{c c} \Sigma = 1 \\ \hline 0 \\ \hline 1 \end{array}$	1
<u>x</u> 2	0.18	0.15 _□	0.27	0 1 2		01
*3	0.1	0.10	0	4		000
<u>X</u> ₄	0.1		1			001
<u>x</u> ₅	0.07		2			002
X ₆	0.06	0				020
<i>x</i> ₇	0.05	1				021
<i>x</i> ₈	0.04	2				022

在码树图中,某些分枝从第一级就被砍掉,从而造成<mark>平均码长</mark>偏长的情况。

解决办法: 从最后一级缩减信源 倒着排, 保证最后一级有*m*个符 号。

要求最后一级缩减信源保证有*m*个符号,则有:

倒数第二级 — 倒数第三级 …… 第一级

$$m + (m - 1)$$

$$m+2\cdot(m-1)$$

$$m + (m-1)$$
 $m+2\cdot(m-1)$ $m+k\cdot(m-1) \geq n$

为保证每次缩减均为 m个变 1个,第一级符号所缺的个数:

$$[m+k\cdot(m-1)]-n$$

【保留+欠缺=m】

其中: $k \ge (n-m)/(m-1)$ **

例: n = 8, m = 3 , 求: 第一级信源符号所需保留个数。

S_0	概率	S_1	S_2	S_3	S_4	码字
x_1	0.4			0.38	$\begin{array}{c c} \Sigma = 1 \\ \hline 0 \\ \hline 1 \end{array}$	0
$-x_2$	0.18		0.22	0	2	10
<i>x</i> ₃	0.1			1		11
X ₄	0.1	0.00-	0	2		12
<i>x</i> ₅	0.07	0.09	0 1			21
<u>x</u> 6	0.06		2			22
*7	0.05	0				200
<i>x</i> ₈	0.04	1				201

方案1:

$$\bar{L}_1 = 0.4 \times 1 + 0.18 \times 2 + (0.1 + 0.1 + 0.07 + 0.06 + 0.05 + 0.04) \times 3$$

方案2:

$$\bar{L}_2 = 0.4 \times 1 + (0.18 + 0.1 + 0.1 + 0.07 + 0.06) \times 2 + (0.05 + 0.04) \times 3$$

计算方案2的编码效率:

$$\eta = \frac{H(X)}{\frac{\overline{L} \cdot \log m}{N}} = \frac{-0.4 \log 0.4 - 0.18 \log 0.18 - \dots - 0.04 \log 0.04}{1.69 \cdot \frac{\log 3}{1}} = \frac{2.55}{1.69 \cdot \frac{\log 3}{1}} = 95.2\%$$

(1) 编三进制赫夫曼码 (2) 计算平均码长及编码效率

解: (1) 关键是求第一级信源应保留的符号个数

S_0	概率	S_1	S_2	S_3	S ₄	S_5	码字
			0.24	0.33	0.43	$ \begin{array}{c} \Sigma = 1 \\ 0 \\ \hline 1 \end{array} $	00
x_1	0.16		0.24		0	2	
\boldsymbol{x}_{2}	0.14				1		01
*3	0.13				2		02
x_4	0.12	0.11		0			10
\boldsymbol{x}_{5}	0.1	V.11		$\frac{1}{2}$			12
x ₅ x ₆	0.09		0				20
\boldsymbol{x}_{7}	0.08		1				21
<i>x</i> ₈	0.07		2				22
*9	0.06	0					110
<i>x</i> ₁₀	0.05						111

(2) 计算平均码长 及编码效率

$$\bar{L} = (0.16 + 0.14 + 0.13 + 0.12 + 0.1 + 0.09 + 0.08 + 0.07)$$

× 2
+(0.06 + 0.05) × 3

= 2.11 码元/符号

$$H(X) = -0.16 \log 0.16 - \dots -0.05 \log 0.05$$

= 3.23 比特/符号

$$\eta = \frac{H(X)}{\overline{L} \cdot \log m} \approx 96.6\%$$

定理: 赫夫曼码是紧致码。

说明:这里只证明二元赫夫曼码是紧致码,其结论可推广到多元赫夫曼码。

思路: 采用类似数学归纳法的证明方法。

证明最后一级缩减 假设 S_j 级缩减信 证明 S_{j-1} 级缩减信 证明 S_{j-1} 级缩减信源是紧致码 源是紧致码 信源是紧致码

证明:

对于二元码,最后一级缩减信源只有2个信源符号,因此一定是紧致码。

假设 S_i 级缩减信源对应的编码 C_j 是紧致码,因此有:

在所有可能的唯一可译码编码方案中, \bar{K}_i 的长度最短。

对于 S_{j-1} 级缩减信源,一定有 k+1 条消息,而且其中某两个消息的概率的和一定为 S_j 级某消息的概率。

 C_i 是紧致码,则缩减前信源的编码

 C_{i-1} 也是紧致码

谢谢!

黑晚军

华中科技大学 电子信息与通信学院

Email: heixj@hust.edu.cn

网址: http://eic.hust.edu.cn/aprofessor/heixiaojun