Complexity of Pivot Algorithms

Qi Wang, Sean Kelley

December 16, 2020

Overview

- Early Algorithm Complexities
- 2 Pivot Rules
- Complexity Analysis
 - Worst Case Klee Minty Cube
 - Kitahara and Mizuno Analysis

Analysis of Simplex

- Find our pivot column, $j \in I_N$ (O(n) operations)
- Find our pivot row, $i \in I_B$ (O(m) operations)
- Update our constraints by calculating $A_B^{-1}A$ (O(m^2n) operations[†])
- Update objective row by calculating $c_B^T A_B^{-1} A c^T$ (O(mn) operations[†])
- $\binom{n}{m}$ possible bases $\implies O(\binom{n}{m}m^2n)$ complexity. † assumes m << n

Analysis of Revised Simplex

- Find our pivot column, $j \in I_N$ (O(n) operations)
- Update our constraints by calculating $A_B^{-1}A_j$ $(O(m^2)\text{operations}^{\dagger})$
- Find our pivot row, $i \in I_B$ (O(m) operations)
- Update objective row by calculating $c_B^T A_B^{-1} A c^T (O(mn) \text{operations}^{\dagger})$
- $\binom{n}{m}$ possible bases $\implies O(\binom{n}{m}mn)$ complexity. Can we pick better pivots? \dagger assumes m << n

Other Pivot Rules

- Best improvement rule: choose entering $j := \arg\max_{j \in N} (c_B^T A_B^{-1} A_j c_j) \times t_j$ where $t_j = \min_{i \in \{B: (A_B^{-1} A_j)_i > 0\}} \frac{x_i}{(A_B^{-1} A_j)_i}$
- Steepest edge rule: choose entering $j:=\arg\max_{j\in N} \frac{c_B^j\,A_B^{-1}A_j-c_j}{\|A_B^{-1}A_j\|}$
- Last-in-first-out rule (LIFO): choose the most recently moved variable.
- Most-often-selected-variable (MOSV): choose the variable that has been selected the largest amount of times before.

Bland's, LIFO, MOSV are all S-monotone index selection rules, which is finite with simplex method and criss-cross.

◆□▶◆□▶◆壹▶◆壹▶ 壹 少Qで

Worst Case - Klee Minty Cube

Klee-Minty Cube LO problem

$$\max \sum_{j=1}^{n} 2^{n-j} x_{j}$$
s.t. $2 \sum_{j=1}^{i-1} 2^{i-j} x_{j} + x_{i} \le 5^{i}, \quad i = 1, \dots, n$

$$x_{j} \ge 0, \quad j = 1, \dots, n$$

Primal simplex with Dantzig's rule may visit all vertices before finally finding the optimal solution $(2^n - 1)$ iterations.

◆ロト ◆個ト ◆差ト ◆差ト 差 めなべ

6/18

Worst Case - Klee Minty Cube

Klee-Minty Cube LO problem (n = 2 and n = 3)

$$\begin{array}{ll} \max & 2x_1 + x_2 \\ \text{s.t.} & x_1 \leq 5 \\ & 4x_1 + x_2 \leq 25 \\ & x_1 \geq 0, \ x_2 \geq 0. \end{array}$$

max
$$4x_1 + 2x_2 + x_3$$

s.t. $x_1 \le 5$
 $4x_1 + x_2 \le 25$
 $8x_1 + 4x_2 + x_3 \le 125$
 $x_1 > 0, x_2 > 0, x_3 > 0.$

Solving 2-d Klee Minty Cube using Simplex method with Dantzig's rule

		rhs	x_1	<i>x</i> ₂	s_1	<i>s</i> ₂	
	Z	0	2	1	0	0	at vetex (0,0), x_1 enter, s_1 leave
5	§1	5	1*	0	1	0	
	52	25	4	1	0	1	
	Z	-10	0	1	-2	0	at vetex (5,0), x_2 enter, s_2 leave
λ	1	5	1	0	1	0	
	52	5	0	1*	-4	1	
	Z	-15	0	0	2	-1	at vetex $(5,5)$, s_1 enter, x_1 leave
λ	γ 1	5	1	0	1*	0	
_>	6 2	5	0	1	-4	1	
	Z	-25	-2	0	0	-1	at vetex (0,25), optimal
5	§1	5	1	0	1	0	
_>	6 2	25	4	1	0	1	

Kitahara and Mizuno Analysis[kitahara2013bound]

Notations:

- BFS: a basic feasible solution for primal standard LO problem.
- δ and γ : the minimum and the maximum values of all the positive elements of all BFSs. That is, for any BFS $\hat{x} \in \mathbb{R}^n$, if $\hat{x}_j \neq 0, \ j \in \{1, \cdots, n\}$ where j represents the jth entry of \hat{x} , we have

$$\delta \le \hat{x}_j \le \gamma$$

Theorem 1

When applying simplex method with the Dantzig's rule or the best improvement rule for LO having optimal solutions, we encounter at most

$$n\lceil m\frac{\gamma}{\delta}\log(m\frac{\gamma}{\delta})\rceil$$

different basic feasible solutions.

Qi Wang, Sean Kelley Short title December 16, 2020 9/18

Kitahara and Mizuno Analysis

Corollary 2

If the primal problem is nondegenerate, the simplex method finds an optimal solution in at most $n\lceil m_{\overline{\delta}}^{\gamma} \log(m_{\overline{\delta}}^{\gamma}) \rceil$ iterations.

In practice, the ratio of $\frac{\gamma}{\delta}$ is not easy to get prior to solving the problem. However, for some specific LP, $\frac{\gamma}{\delta}$ can be bounded by LP coefficients.

Definition 3

A matrix A is totally unimodular if every square submatrix has determinant 0, -1 or 1. In particular, this implies that all entries are 0, -1 or 1.

E.g., the node-arc incidence matrix of a directed graph is a totally unimodular matrix.

$$A = \begin{pmatrix} -1 & -1 & 0 & 0 & 0 & +1 \\ +1 & 0 & -1 & -1 & 0 & 0 \\ 0 & +1 & +1 & 0 & -1 & 0 \\ 0 & 0 & 0 & +1 & +1 & -1 \end{pmatrix}$$

Qi Wang, Sean Kelley

Kitahara and Mizuno Analysis

With totally unimodular A and integral b, all the elements of any BFS are integers, so

$$\delta \geq 1$$
.

For a BFS $x=(x_B,x_N)$, $x_N=0$ and $x_B=A_B^{-1}b\geq 0$, and A_B^{-1} are all 0,-1,1. Thus for any $j\in B$, we have $x_j\leq \|b\|_1$, so

$$\gamma \leq \|b\|_1$$
.

Thus $\frac{\gamma}{\delta} \leq \frac{\|b\|_1}{1}$.

Corollary 4

Assume that the constraint matrix A of an LO is totally unimodular and vector b is integral. When we apply the simplex method with the Dantzig's rule or the best improvement rule for LO, we encounter at most $n\lceil m\lVert b\rVert_1 \log(m\lVert b\rVert_1)\rceil$ different basic feasible solutions. Moreover if the LO is nondegenerate, this is the most iterations to find optimal solution.

Lattice Polytope: a polytope whose vertices are integral.

Del Pia and Michini proved the following bounds on vertices visited when solving an LP over a lattice polytope.

- simplex algorithm: $O(nk||c||_{\infty})$
- scaling algorithm: $O(nk \log ||c||_{\infty})$
- preprocessing algorithm: $O(n^4k \log nk)$
- face-fixing algorithm: $O(n^2k \log nk\alpha)$

Simplex Algorithm: $x^* = simplex(P, c, x^0)$

- simplex algorithm: $O(nk||c||_{\infty})$
- scaling algorithm: $O(nk \log ||c||_{\infty})$
- preprocessing algorithm: $O(n^4k \log nk)$
- face-fixing algorithm: $O(n^2k \log nk\alpha)$

Scaling Algorithm: $x^{n+1} = simplex(P, c^n, x^n)$

$$c = (1, 2, 3, 4, 5, 6, 7)$$

$$c^{0} = (1, 1, 1, 1, 1, 1, 1)$$

$$c^{1} = (1, 1, 1, 1, 2, 2, 2)$$

$$c^{2} = (1, 1, 2, 2, 3, 3, 4)$$

$$c^3 = (1, 2, 3, 4, 5, 6, 7)$$

Below is a benefit of scaling.

- simplex algorithm: $O(nk||c||_{\infty})$
- scaling algorithm: $O(nk \log ||c||_{\infty})$
- preprocessing algorithm: $O(n^4 k \log nk)$
- face-fixing algorithm: $O(n^2k \log nk\alpha)$

Preprocessing and Face-Fixing Algorithms: Perturb c to get the most advantage

out of the Scaling Algorithm.

Conclusion

- For k = 1, Kitahara is still exponential, but Del Pia and Michini are polynomial.
- This result has its caveats.
- A truly polynomial pivot algorithm is yet to be discovered.

References