A1

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 5:

(11) International Publication Number:

WO 94/28568

H01J 7/24, H05B 31/26, D04H 1/58

(43) International Publication Date:

8 December 1994 (08.12.94)

(21) International Application Number:

PCT/US94/06151

(22) International Filing Date:

26 May 1994 (26.05.94)

(30) Priority Data:

08/068,508 28 May 1993 (28.05.93) US 08/068,739 28 May 1993 (28.05.93) US 08/145,349 29 October 1993 (29.10.93) US 08/145,786 29 October 1993 (29.10.93) US

(81) Designated States: AU, CA, JP, KR, RU, European patent (AT, BE, CH, DE, DK, ES, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE).

Published

With international search report.

- (71) Applicant: THE UNIVERSITY OF TENNESSEE [US/US]; Research Corporation, 415 Communications Building, Knoxville, TN 37996-0344 (US).
- (72) Inventors: ROTH, John, Reece; 4301 Hiawatha Drive, Knoxville, TN 37919 (US). TSAI, Peter, Ping-yi; 6007 Bridge Garden, Knoxville, TN 37912 (US). LIU, Chaoyu; 1611 Laurel Avenue, #405, Knoxville, TN 37916 (US). WADSWORTH, Larry, C.; 2024 Bishops Bridge Road, Knoxville, TN 37922 (US). SPENCE, Paul, D.; 410 South 17th Street, #202A, Knoxville, TN 37916 (US). LAROUSSI, Mounir, Apartment 101, 1611 Laurel Lane, Knoxville, TN 37916 (US).
- (74) Agents: WEISER, Gerard, J. et al.; Weiser & Associates, Suite 500, 230 South 15th Street, Philadelphia, PA 19102 (US).

(54) Title: METHOD AND APPARATUS FOR GLOW DISCHARGE PLASMA TREATMENT OF POLYMER MATERIALS AT ATMOSPHERIC PRESSURE

(57) Abstract

A steady-state glow discharge plasma is generated at one atmosphere of pressure within the volume (S) between a pair of insulated metal plate electrodes (14) spaced up to 5 cm apart and if energized with an irms potential of 1-5kV at 1-100kHz (20). Space between the electrodes is occupied by air, nitrous oxide, and a noble gas such as helium, neon, argon, etc., or mixtures thereof. The electrodes are charged by an impedance matching network (31) adjusted to produce the most stable, uniform glow discharge. Also, a method for treating a meltblown polymer web, using the aforementioned plasma device, is included.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AT	Austria	GB	United Kingdom	MIR	Mauritania
AU	Australia	GE	Georgia	MW	Malawi
BB	Barbados	GN	Guinea	NE	Niger
BE	Belgium	GR	Greece	NL	Netherlands
BF	Burkina Faso	BU	Hungary	NO	Norway
BG	Bulgaria	Œ	Ireland	NZ	New Zealand
BJ	Benin	п	Italy	PL	Poland
_	Brazil	JP	Japan	PT	Portugal
BR	Belarus	KE	Kenya	RO	Romania
BY	•	KG	Kyrgystan	RU	Russian Federation
CA	Canada	KP	Democratic People's Republic	SÐ	Sudan
CF	Central African Republic		of Korea	SE	Sweden
CG	Congo	KR	Republic of Korea	St	Slovenia
CH	Switzerland	KZ	Kazakhsian	SK	Slovakia
CI	Côte d'Ivoire	ü	Liechtenstein	SN	Senegal
CM	Cameroon	LK	Sri Lanka	TD	Chad
CN	China	LU	Luxembourg	TG	Togo
cs	Czechoslovakia	LV	Larvia	TJ	Tajikistan
CZ	Czech Republic		Monaco	TT	Trinidad and Tobago
DE	Germany	MC	Republic of Moldova	UA	Ukraine
DK	Denmark	MD		US	United States of America
ES	Spain	MG	Madagascar	UZ	Uzbekistan
FI	Finland	ML	Mali	VN	Viet Nám
FR	France	MN	Mongolia	7.4	
GA	Gabon				

METHOD AND APPARATUS FOR GLOW DISCHARGE PLASMA TREATMENT OF POLYMER MATERIALS AT ATMOSPHERIC PRESSURE

BACKGROUND OF THE INVENTION

The present invention relates to a method and apparatus for modifying the surface properties of organic and inorganic polymer materials such as film and fabric, woven and non-woven.

5

10

15

20

25

30

One of the many utilities for meltblown polymer web is as a wet cell battery plate separator. polymer compound is impervious to the electrolyte. meltblown, non-woven fabric structure is ion permeable if thoroughly wetted the is thereof surface Unfortunately, this latter requirement of electrolyte. wettability is not an inherent characteristic of most polypropylene, polymers such nylon, as commercial polyethylene and poly(ethylene terephthalate).

Although meltblown webs of these polymers are currently used as battery plate separators, wettability is achieved chemically by means of surfactants. This process not only generates hazardous industrial waste but produces a product of limited utility life.

Wettability is also a desirable property for tissue and cloth used to wipe or clean the body, for surgical sponges, wound dressings, feminine hygiene products and reusable woven knit fabrics. Similarly, wettability is an important material surface property for printing and laminating.

Some success has been recently achieved by a glow discharge plasma treatment of polymer webs. The term "plasma" usually describes a partially ionized gas composed of ions, electrons and neutral species. This state of matter may be produced by the action of either very high temperatures, or strong direct current (DC) or radio frequency (RF) electric fields. High temperature or "hot"

plasmas are represented by celestial light bodies, nuclear explosions and electric arcs. Glow discharge plasmas are produced by free electrons which are energized by an imposed DC or RF electric field and then collide with These neutral molecule collisions neutral molecules. transfer energy to the molecules and form a variety of active species which may include photons, metastables, free radicals, molecular fragments, individual atoms, These active species are monomers, electrons and ions. chemically active and/or capable of physically modifying the surface and may therefore serve as the basis of new surface properties of chemical compounds and property modifications of existing compounds.

5

10

15

20

25

30

35

Low power plasmas known as dark discharge coronas have been widely used in the surface treatment of thermally sensitive materials such as paper, wool and synthetic polymers such as polyethylene, polypropylene, polyolefin, nylon and poly(ethylene terephthalate). Because of their relatively low energy content, corona discharge plasmas can alter the properties of a material surface without damaging the surface.

Glow discharge plasmas represent another type of useful for plasma density low power relatively non-destructive material surface modification. discharge plasmas can produce useful amounts of visible ultraviolet radiation. Glow discharge plasmas have the additional advantage therefore of producing visible and UV radiation in the simultaneous presence of active species. However, glow discharge plasmas have heretofore been successfully generated typically in low pressure or partial vacuum environments below 10 torr which may necessitate batch processing and the use of expensive vacuum systems. Several polymer species exposed to low pressure glow discharge plasmas respond with enhanced surface wettability characteristics. However, the chemical/physical mechanisms

are not understood and the characteristic is lost upon drying. Rewettability remains elusive.

The generation of low power density plasmas at one atmosphere is not new. Filamentary discharges between parallel plates in air at one atmosphere have been used in Europe to generate ozone in large quantities for the treatment of public water supplies since the late 19th century. Such filamentary discharges, while useful for ozone production, are of limited utility for the surface treatment of materials, since the plasma filaments tend to puncture or treat the surface unevenly.

10

15

25

It is an object of the present invention, therefore, to provide a non-byproduct producing process for enhancing the wettability of meltblown polymer webs and other types of polymeric substrates.

Another object of the invention is to teach a glow discharge plasma process for treating polymer web or film that provides a stable, rewettable product.

Another object of the invention is to provide a method and apparatus for continuously processing a polymer web or film of indefinite length through a glow discharge plasma at atmospheric pressure and standard temperature.

A still further object of the present invention to teach the construction and operating parameters of a glow discharge plasma having operability in an environmental pressure of about one atmosphere or slightly greater.

INVENTION SUMMARY

The present invention provides as a product an improved web, preferably a meltblown polymer web, having a surface enhanced by exposure to a sustained atmospheric, glow discharge plasma. The invention also includes a process specially adapted for the manufacture of said web product, and apparatus specifically designed for carrying out said process.

The above and other objects of the invention to be subsequently explained or made apparent are accomplished with an apparatus based upon a pair of electrically insulated metallic plate electrodes which may or may not have a median plate or screen between them. These plates are mounted in face-to-face parallel or uniformly spaced alignment with means for reciprocatory position adjustment up to about 5 cm of separation. Preferably, the plates are water cooled and covered with a dielectric insulation.

To broaden the range of operating frequency and other parameters over which the desirable uniform (as opposed to filamentary) glow discharge is observed, an impedance matching network is added to the circuit for charging the electrodes. The parameters of such a matching network are adjusted for the most stable, uniform operation of the glow discharge. This condition can occur when the reactive power of the plasma reactor is minimized.

10

15

20

25

30

35

A radio frequency power amplifier connected to both plates delivers at least 180 watts of reactive and plasma power at a working voltage of 1 to at least 5 kV rms and at 1 to 100 kHz.

To assist the starting of the plasma, electrical discharge from a standard commercial Tesla coil may be briefly applied to the volume between the R.F. An electric field established between energized plates. the metallic plate electrodes must be strong enough to electrically break down the gas used, and is much lower for helium and argon than for atmospheric air. frequency must be in the right range, discussed below, since if it is too low, the discharge will not initiate, and if it is too high, the plasma forms filamentary Only in a relatively discharges between the plates. limited frequency band will the atmospheric glow discharge plasma reactor form a uniform plasma without filamentary discharges.

field established between electric An plate electrodes must be strong enough metallic electrically break down the gas used, and is much lower for helium and argon than for atmospheric air. frequency must be in the right range, discussed below, since if it is too low, the discharge will not initiate, and if it is too high, the plasma forms filamentary discharges between the plates. Only in a relatively limited frequency band will the atmospheric glow discharge plasma reactor form a uniform plasma without filamentary discharges.

5

10

15

25

30

35

At least in the volume between the plates wherein the plasma is established, a one atmosphere charge of air, helium or argon is established and maintained for processing material such as polymer film and web to produce desired surface characteristics such as wettability and re-wettability.

BRIEF DESCRIPTION OF THE DRAWINGS

Relative to the drawings wherein like reference 20 characters designate like or similar elements throughout the several figures of the drawings:

Figure 1 is a schematic of the present invention component assembly.

Figure 2 is an impedance matching network distinctively suitable for powering the present invention.

Figures 3, 4 and 5 are representative alternative power supply output stage circuits.

Figure 6 schematically represents an alternative embodiment of the invention.

Figure 7 schematically represents the upper chamber of a one atmosphere glow discharge plasma reactor having a median grid plate.

Figure 8 represents a graph of voltage, current and power waveforms for a uniform glow discharge plasma.

Figure 9 represents a graph of voltage, current and power waveforms for a filamentary discharge plasma.

Figure 10 is a log-log graph of total and plasma power density in milliwatts per cubic centimeter, as functions of RMS voltage applied to the electrodes.

Figure 11 is a log-log graph of total and plasma power density in milliwatts per cubic centimeter, as functions of R.F. frequency.

5

30

35

Figure 12 is a graph of amplifier frequency and corresponding breakdown current phase angles respective to a particular operating example of the invention.

10 Figure 13 is a graph of amplifier frequency and corresponding power consumption respective to a particular operating example of the invention.

DESCRIPTION OF THE PREFERRED EMBODIMENT

Referring to the invention schematic illustrated by Figure 1, the electrodes 10 are fabricated of copper 15 plate having a representative square plan dimension of 21.6 cm \times 21.6 cm. Silver soldered to the plates 10 are closed loops 11 of 0.95 cm copper tubing having hose nipples 12 and 13 connected therewith on opposite sides of the closed tubing loop. The edges of the electrode plates should have 20 a radius of curvature comparable to the separation between the electrode plates and median plate to discourage electrical breakdown at the edge of the electrodes. shown are fluid flow conduits connected to the inlet nipples 12 for delivering coolant fluid to the loop 11 and 25 to the outlet nipples 13 for recovering such coolant fluid.

The integral metallic units comprising plates 10 and tubing 11 are covered with a high dielectric insulation material 14 on all sides to discourage electrical arcing from the edges or back side of the electrode plates.

Preferably, some mechanism should be provided for adjusting the distance s between plates 10 up to about 5 cm separation while maintaining relative parallelism. Such a mechanism is represented schematically in Figure 1 by the rod adjusters 15 secured to the upper and lower plates 10.

This arrangement anticipates a positionally fixed median plate 30.

Although parallelism is used in the context of parallel planes, it should be understood that the terms also comprises non-planar surfaces that are substantially equidistant. Also included are the geometry characteristics of a cylinder having an axis parallel to another cylinder or to a plate.

5

20

25

30

35

Energizing the plates 10 is a low impedance, high voltage, R.F. power amplifier 20 having independently variable voltage and frequency capacities over the respective ranges of 1 to at least 5 kV and 1 to 100 kHz. Between the RF power supply 20 and the plates 10 may be an impedance matching network 31, described in greater detail relative to Figure 2.

assembly the plate Surrounding environmental isolation barrier 21 such as a structural enclosure suitable for maintaining a controlled atmosphere in the projected plan volume between the plates Inlet port 22 is provided to receive an appropriate gas such as air, helium or argon, mixtures of helium or argon with oxygen or air or a mixture of argon with helium. In any case, gas pressure within the isolation barrier 21 is substantially ambient thereby obviating or reducing the need for gas tight seals. Normally, it is sufficient to maintain a low flow rate of the modified atmospheric pressure gas through the inlet port 22 that is sufficient to equal the leakage rate. Since the pressure within the isolation barrier 21 is essentially the same as that outside the barrier, no great pressure differential drives the leakage rate. A vent conduit 28 controlled by valve 29 is provided as an air escape channel during initial flushing of the enclosure. Thereafter, the valve 29 may be closed for normal operation.

Narrow material flow slits 23 are provided in the isolation barrier 21 to accommodate passage of a material

web W between the plates 10 as drawn from a supply reel 24 onto a rewind reel 25. Drive for the reels 24 and 25 is controlled to provide a predetermined residence time between the plates 10 and within the plasma for any given web element.

5

10

15

20

25

30

35

To broaden the range of operating frequency and other parameters over which the desirable uniform (as opposed to filamentary) glow discharge occurs, an impedance matching network, one embodiment of which is illustrated schematically by Figure 2, is added to the power circuit for charging the electrodes 10. The parameters of this matching network are adjusted for the most stable, uniform operation of the glow discharge. This condition can occur when the reactive power of the plasma reactor is minimized.

Figures 3 through 5 represent alternative power supply options having respective attractions. Figures 3 corresponds to a configuration wherein the bottom electrode terminal T_1 is connected to ground potential and the top terminal T_2 is charged at the full working potential. Figures 4 and 5 are electrical equivalents wherein the T_1 and T_2 voltages are 180° out of phase but at only half the maximum potential. Figure 4 represents a grounded center tap transformer whereas Figure 5 represents a solid state power circuit embodiment.

Shown in Figure 6 are two optional embodiments, the functions of which are to drive a reciprocating gas flow containing active species from the plasma back and forth through the web W. This can be accomplished either by a bellows 35 actuated by a reciprocating shaft 33, or by a piston 36 activated by a reciprocating shaft 32. The change in volume of the upper chamber will give rise to a periodic reversal of the pressure differential across the web W, hence, a periodic reversal of the gas flow. As an alternative embodiment, a passageway from behind the piston can be connected to the lower chamber as shown in the dashed line piping 34.

The Figure 6 embodiment of the invention provides an electrically grounded screen 30 to support the web W as it is drawn between the opposite material flow slits 23. This configuration attenuates an accumulated electrical charge on the web and also structurally supports the traveling fabric web as a pressure differential membrane between an upper, gas inlet chamber and a lower, vent chamber. This swept flow differential assures an internal saturation of the web W by the gas containing active species from the plasma.

10

15

20

25

30

35

Electric fields employed in a one atmosphere, uniform glow discharge plasma reactor are only a few kilovolts per centimeter, values which, if D.C., would usually be too low to electrically break down the background gas. Gases such as helium and air will break down under such low electric fields, however, if the positive ion population is trapped between the two parallel or uniformly spaced electrodes, this greatly increasing their lifetime in the plasma, while at the same time the electrons are free to travel to the insulated electrode plates where they recombine or build up a surface charge. The most desirable uniform one atmosphere glow discharge plasma is therefore created when the applied frequency of the RF electric field is high enough to trap the ions between the median screen and an electrode plate, but not so high that the electrons are also trapped during a half cycle of the R.F. voltage. The electrons may be trapped by bipolar electrostatic forces.

If the RF frequency is so low that both the ions and the electrons can reach the boundaries and recombine, the particle lifetimes will be short and the plasma will either not initiate or form a few coarse filamentary discharges between the plates. If the applied frequency is in a narrow band in which the ions oscillate between the median screen and an electrode plate, they do not have time to reach either boundary during a half period of

oscillation and be carried for long times. If the more mobile electrons are still able to leave the plasma volume and impinge on the boundary surfaces, then the desirable uniform plasma is produced. If the applied RF frequency is still higher so that both electrons and ions are trapped in the discharge, then the discharge forms a filamentary plasma.

10

15

20

25

30

Without limiting our invention to any particular theory, we are disposed to a relationship between the electrode spacing, the RMS electrode voltage, and the applied frequency which results in trapping ions but not electrons between the two plates, and produces the desired uniform one atmosphere glow discharge plasma. On Figure 7 is a schematic of the upper chamber of the one atmosphere glow discharge plasma reactor. The lower boundary of this space is the midplane screen or base, the floating potential of which should remain near ground if the RF power supply output is connected as a push-pull circuit to the two electrodes with a grounded center tap. In the data reported herein, the median screen was grounded through an inductive current choke. In the configuration of Figure 7, a Cartesian coordinate system is applied as shown, with the applied electric field in the x-direction. The maximum amplitude of the electric field between the grounded median screen and the upper electrode is E_{Ω} , and the separation of the screen from the electrodes is the distance d. median screen, with an exposed sample on it, is assumed not to allow ions through the median plane from the upper chamber to the lower, or vice-versa.

The electric field between the electrodes shown on Figure 7 is given by

$$E = (E_0 \sin \omega t, O, O). \tag{1}$$

It is assumed that the one atmosphere glow discharge operates in a magnetic field free plasma. The equation of motion for the ions or electrons between the two plates is

given by a Lorentzian model, in which the electrons and ions collide only with the neutral background gas and, on each collision, give up all the energy they acquired from the RF electric field since the last collision to the neutral gas. The equation of motion for the ions or electrons in the Lorentzian model is given by

$$F = ma = -mv_c v - eE, \tag{2}$$

where the first term on the right hand side is the Lorentzian collision term, according to which the momentum mv is lost with each collision that occurs with a collision frequency v_c . The x component of Eq. 2 is given by

$$m\frac{d^2X}{dt^2} + mv_c \frac{dx}{dt} = eE_0 \sin \omega t, \qquad (3)$$

where the electric field *E* from Eq. 1 has been substituted into the right hand side of Eq. 2. The general solution to Eq. 3 is

$$x=C_1\sin\omega t=C_2\cos\omega t,$$
 (4)

where the constants C_1 and C_2 are given by

$$C_1 = -\frac{eE_O}{m} \frac{1}{(\omega^2 + v_C^2)},$$
 (5)

15 and

10

$$C_2 = -\frac{v_c e E_0}{\omega m} \frac{1}{(\omega^2 + v_c^2)}$$
 (6)

The one atmosphere helium glow discharge is operated at frequencies between $\omega/2\pi=1$ and 30 kHz, where, for helium at one atmosphere,

$$v_{ci} \approx 6.8 \times 10^9 \text{ ion collisions/sec.,}$$
 (7a)

and

$$v_{ce} \approx 1.8 \times 10^{12} electron coll./sec.$$
 (7b)

The collision frequency for ions and electrons given by Eqs. 7a and 7b is much greater than the RF frequency, $V_c >> \omega$. The relation $v_c >> \omega$ for ions and electrons, implies that C_2 is much greater than the constant C_1 , or

$$C_2 \approx \frac{eE_o}{m\omega v_c} \Rightarrow C_1 \tag{8}$$

5 The time dependent position of an ion or an electron in the electric field between the plates is given by substituting Eq. 8 into Eq. 4, to obtain

$$x(t) \approx -\frac{eE_o}{m\omega v_c} \cos \omega t. \tag{9}$$

The RMS displacement of the ion or electron during a half cycle is given by

$$x_{rms} = \frac{2}{\pi} \frac{eE_o}{m\omega v_o} meters. \tag{10}$$

10 If V_o is the driving frequency, in Hertz, then the radian RF frequency is given by

$$\omega = 2\pi V_{O}, \tag{11}$$

and the maximum electric field between the plates can be approximated by the maximum voltage $V_{\rm o}$ appearing between them,

$$E_{o} = \frac{V_{o}}{d} = \frac{\pi V_{rms}}{2 d} . \tag{12}$$

15 If the charge in question moves across the discharge width from the median plane to one of the electrode plates during one full cycle, then we may write

$$x_{\rm rms} \le \frac{d}{2} \,. \tag{13}$$

Equation 13 states that the RMS displacement of the particle has to be less than half the clear spacing in order to have a buildup of charge between the plates. In the geometry shown in Figure 7, the distance d is identified with the distance between the grounded median screen and the energized electrode. Substituting Eqs. 11 to 13 into Eq. 10 yields the relationship

$$\frac{d}{2} \approx \frac{eV_{\rm rms}}{2\pi m v_o v_c d} \,. \tag{14}$$

If we now solve for the critical frequency \mathbf{v}_{o} above which charge buildup should occur in the plasma volume, we have

$$v_o \approx \frac{eV_{rms}}{\pi m v_c d^2} Hz. \tag{15}$$

In Eq. 15, the collision frequency $v_{\rm c}$ is approximately given by Eqs. 7a or 7b for ions or electrons, respectively, at one atmosphere, and the RMS voltage is that which bounds the upper and lower limit of the uniform discharge regime.

15

20

25

The range of parameters over which we have operated a one atmosphere, uniform glow discharge plasma reactor is given in Table 1. The nominal pressure at which this discharge has been operated is one atmosphere. The variation of several torr shown in Table 1 is not intended to represent the day-to-day fluctuations of barometric pressure, but the pressure differential across the midplane screen which is intended to drive active species from the upper plasma through the fabric being exposed. The RMS power shown in Table 1 is the net power delivered to the plasma, less the reactive power which does not appear in the plasma. The total volume of plasma between the two electrode plates is given by

where d is the separation of a plate from the median screen in centimeters.

5

10

15

The power densities shown in Table 1 are far below those of electrical arcs or plasma torches, but also are several orders of magnitude higher than the power densities associated with some other forms of plasma treatment such as corona discharges. The power densities of the one atmosphere glow discharge plasma are generally low enough not to damage exposed fabrics, but are also enough higher than coronal plasmas used for surface treatment that they should provide far more active species The plasma parameters, such as electron than the latter. kinetic temperature and number density are speculative at this early stage in the development of our invention. A few results from probing the plasma midplane with a floating Langmuir probe indicates that the plasma, without grounding the midplane screen, will float to positive potentials of several hundred volts. kinetic temperatures are very likely close to that of the room temperature atoms with which they frequently collide 20 at these high pressures; the electrons apparently remain and energetic enough to excite the neutral background atoms, hence making this a glow discharge. existence of excited states which emit visible photons that the electron population has a 25 temperature of at least an electron volt. The diagnostic difficulties of measuring plasma parameters at this high pressure are very severe, since ordinary Langmuir probing technique cannot be applied due to the short mean free paths of the electrons compared to a Debye distance. 30 Electron number densities, however, may be measured by microwave interferometric techniques.

TABLE 1

OPERATING CHARACTERISTICS OF THE ONE ATMOSPHERE GLOW DISCHARGE PLASMA REACTOR

5 working gas = He, He + 1-7% 0_2 , Ar, Ar + He, Ar + 1-7% 0_2 , and atmospheric air

frequency = 1 kHz to 100 kHz

voltage = $1.5 - 9.5 \text{ kV}_{rms}$ plate to plate

electrode gap d = 0.8 - 3.2 cm

10 pressure = 760 +15, -5 torr

RMS power = 10 watts to 150 watts

power density = $4 - 120 \text{ mW/cm}^3$

plasma volume = 0.7 - 3.1 liters

On Figures 8 and 9 are shown two waveforms of 15 voltage and current taken in helium at the same electrode separation and gas flow conditions, but at two different Figure 8 was taken in the uniform glow frequencies. discharge regime at a frequency of 2.0 kHz, and Figure 9 taken in the filamentary discharge regime at a 20 frequency above the uniform plasma operating band at 8.0 The high output impedance of our RF power supply results in a voltage waveform (trace B) that is very close to sinusoidal. The reactive current waveform (trace C) is interrupted by a breakdown of the plasma twice each cycle, 25 once when the voltage is positive, and once when the Trace A shows the reactive current voltage is negative. waveform at the same voltage and operating conditions, but There was no perceptibl in air, rather than helium. plasma present in air under these conditions, and the power 30 is completely reactive. This purely reactive current of trace A was subtracted from the total plasma current in trace C, to yield trace D. The instantaneous power deposited in the plasma (trace E) is found by multiplying the excess plasma current above the reactive current (trace 35

D) by the voltage at that point (trace B). The average power is found by integrating over the duration of the pulses shown, and dividing by this duration. It is in this manner that the power and power density into the plasma were calculated for these highly nonsinusoidal current waveforms. Figures 8 for the uniform discharge and 9 for the filamentary discharge show characteristically different power waveforms in trace E; this is a method of distinguishing the uniform from the filamentary discharge.

The plasma power is of interest because it is proportional to the production rate of active species in the plasma; the reactive power is significant because it determines the required power handling rating of the plasma power supply and associated equipment. The total power is the sum of plasma and reactive power. On Figure 10 is shown a log-log plot of the plasma and total power density in milliwatts per cubic centimeter, as functions of the RMS voltage applied to the parallel plates. The active plasma volume in Figure 10 was 1.63 liters, with a separation between the median screen and each plate of d = 1.75centimeters in a plasma of helium gas. On Figure 11 is a similar presentation of the power density plotted on log-log coordinates as a function of the frequency. approximate bound of the uniform plasma discharge regime is shown by the arrow. These data were taken in helium gas for the same plasma volume and electrode separation as Figure 10.

EXAMPLE 1

10

15

20

25

30

35

In a first operational example of the invention, the Figure 1 described physical apparatus sustained a glow discharge plasma in one atmosphere of helium at standard temperature with a separation distance s of 3.0 cm between plates 10. The plates were energized with a 4.4 kV rms working potential. Holding these parameters constant, R.F. frequency was increased as an independent variable. As the dependent variable, Figure 12 charts the corresponding

breakdown current phase angle as determined relative to the voltage waveform node. Similarly, Figure 13 charts the total power, including reactive and plasma input power required to sustain the plasma at the respective R.F. frequencies.

EXAMPLE 2

5

10

15

25

30

In a second operational example of the invention, the Figure 1 described physical apparatus is used to sustain a glow discharge plasma in one atmosphere of helium at standard temperature with a separation distance s of 1.0 cm between plates 10. In this example, the R.F. frequency was held constant at 30 kHz while plate potential was manipulated as the independent variable and current breakdown phase angle, 0, (Table 2) and total power, P, (Table 3) measured as dependent variables.

				<u>Tab</u>	<u>le 2</u>		
	V(kV)	1	1.5	2	2.5	3	3.5
	Θ(deg)	28	40	61	46	65	76.5
				<u>Tab</u>]	<u>le 3</u>		
20	V(kV)	1	1.5	2	2.5	3	3.5
	P(W)	7	13	22	57	50	44.9

EXAMPLE 3

A third operational example of the invention included a one atmosphere environment of helium between a 1 cm separation distance s between plate electrodes 10 charged at 1.5 kV rms potential. The R.F. frequency was manipulated as the independent variable. As a measured dependent variable, Table 4 reports the corresponding phase angle Θ of breakdown current. The measured dependent variable of Table 5 reports the corresponding total power consumption data.

					<u>Tab</u>	<u>le 4</u>					
	f(kHz)	10	20	30	40	50	60	70	80	90	100
	Θ(deg)	43	32	43	52	54	61	60	56	45	22.5
					<u>Tab</u>	<u>le 5</u>					
5	f(kHz)	10	20	30	40	50	60	70	80	90	100
	P(W)	5	8	11	19	35	43	47	57	89	124

EXAMPLE 4

10

15

20

25

30

The largest volume helium plasma of 3.1 liters was achieved with the above described apparatus at a 3.2 cm plate separation having a 5 kV rms potential at an R.F. frequency of 4 kHz.

Meltblown webs formed from nylon, poly(ethylene terephthalate), polypropylene and polyethylene have been processed by exposure to the glow discharge plasma described herein to produce desired material characteristics, increased wettability and re-wettability.

Wettability of a material is objectively measured by either or both of two tests including (a) the angle of a water bead supported on the material surface and (b) the time required to wick along a predetermined material length.

By such tests, it was determined that polypropylene, nylon, polyester and polyethylene film experienced a significant wettability and re-wettability improvement after a 2.5 minute plasma exposure as evidenced by a greatly reduced bead angle.

A poly(ethylene terephthalate) web, after 2.5 minutes of glow discharge plasma exposure to a 5kV, 4kHz across a 4.5 cm plate separation, experienced a 0° surface bead angle and a 37.37 second wicking rate determined by the INDA standard absorption test. Prior to plasma exposure, the web had a large surface bead angle and no wicking capacity.

Similarly, after only 60 seconds of exposure to the same plasma, a nylon web, having a high surface bead angle and no wicking capacity enjoyed a 0° surface bead angle and a 16.61 second wicking rate (INDA standard test) upon wetting and re-wetting.

5

10

15

20

In another test set, two different meltblown webs poly(ethylene terephthalate) and polypropylene (PET and PP), were treated by the one atmosphere glow discharge plasma with helium or helium plus active gases as the working gas for a treating time period of from one-half minute to two minutes. The power supply voltage was from 1,000 $\rm V_{rms}$ to 4,000 $\rm V_{rms}$ and the frequency was from 1 kHz to 100 kHz. The webs had a fiber size of 2 to 2.5 microns, a pore size of 20-25 microns, and a porosity of 90%. Table 6 lists some initial results from these treatments.

Wettability was justified by contact angle, wickability, and wetout of the liquid through web thickness and on the web surface. Wickability was measured according to INDA standard (1st 10.1-92), in which time was measured for the liquid (double D's water) to rise 2.4 cm high. Physical fiber surface change was analyzed by photomicrographs taken using the ETEC Auto Scan electron microscope for a magnification of 2,000x to 4,000x.

TABLE 6

25	1	reating Con	ditions		<u>u</u>	ettability		
	Sample	Time(s)	gases	<u>kV</u> rms	<u>Contact</u> Angle	Wicking Rate(s)	Thickness Surface Wettability	
	Wettability	<u>′</u>						
30	PP 0.35 oz PP 0.35 oz	60 60	He, 0 ₂ He, 0 ₂	3.5 3.0	reduced unchanged	not sig. no	90% good 75%	
	increased	90	He	2.3	0	31.74	good good	

Although expansive data is not presently available, it is to be noted that a uniform glow discharge plasma has been sustained by the Figure 1 apparatus with a one atmosphere ambient air environment and an 8 kV/cm electric field.

CLAIMS

1. A glow discharge plasma generation apparatus comprising a pair of electrically insulated electrodes energized by radio frequency (RF) amplifier means for energizing said electrodes with an impedance matching network having a potential of 1 to at least 5 kV rms at 1 to 100 kHz, said electrodes being aligned and secured in equidistant opposition with means to charge a volumetric space between said electrodes with a glow discharge plasma sustaining gas at a pressure of about 1 atmosphere,

10

15

20

25

wherein said apparatus comprises means to create and maintain a uniform 1 atmosphere glow discharge plasma by providing an applied frequency of the RF electric field which is high enough to trap the positive ions of the plasma between the electrodes, but not so high that the electrons of the plasma are also trapped during a half cycle of the RF voltage.

- 2. The apparatus of claim 1 wherein said means to charge said volumetric space between said plates comprises a gas barrier envelope surrounding said plates and the volumetric space therebetween.
- 3. The apparatus of claim 1 or 2 comprising gas supply means to maintain about one atmosphere of pressure within said envelope by a substantially steady supply flow of said gas.
- 4. The apparatus of any one of claims 1 to 3 wherein said gas is helium, argon, air or a mixture of any two thereof.
- The apparatus of any one of claims 1 to 4
 wherein said plates are fluid cooled.
 - 6. The apparatus of claim 5 wherein fluid flow conduits are bonded to said plates to extract heat from said plates.
- 7. A method of generating a glow discharge 35 plasma within a volumetric space between two electrodes

energized by radio frequency (RF) amplifier means having an impedance matching network, said method comprising the steps of operating said amplifier means to energize said electrodes with a potential of 1 to at least 5 kV rms at 1 to 100 kHz frequency and charging the volumetric space between said electrodes with a glow discharge plasma sustaining gas at approximately 1 atmosphere of pressure,

wherein a uniform 1 atmosphere glow discharge plasma is created and maintained by using an applied frequency of the RF electric field which is high enough to trap the positive ions of the plasma between the electrodes, but not so high that the electrons of the plasma are also trapped during a half cycle of the RF voltage.

10

25

35

- 8. The method of claim 7 wherein said electrodes are enclosed by an environmental gas barrier internally charged by a substantially continuous flow of said gas.
 - 9. The method of claims 7 or 8 wherein said gas is helium, argon, air or a mixture of any two thereof.
- 20 10. The method of any one of claims 7 to 9 wherein said electrodes are positioned at a separation distance therebetween of 5 cm or less.
 - 11. The method of claim 10 wherein at least one of said electrodes is positionally adjustable relative to the other.
 - 12. The method of any one of claims 7 to 11 wherein said amplifier frequency is variable over the range of 1 to $100 \, \text{kHz}$.
- 13. The method of any one of claims 7 to 12 30 wherein said amplifier potential is variable over the range of 1 to at least 5 kV rms.
 - 14. A method for improving the surface characteristics of a web, the method comprising charging a glow discharge plasma sustaining gas to the volumetric space between a pair of spaced electrodes, generating a sustained, uniform glow discharge plasma having active

species between said electrodes, said electrodes being energized by radio frequency amplifier means over the range of about 1 to at least 5 kV rms at frequencies of about 1 to 100 KHz, and positioning said web between said electrodes and within said plasma for a predetermined period of time and pressure differentially driving said active species through said web.

5

30

- 15. The method of claim 14 wherein said gas is a noble gas.
- 16. The method of claim 14 wherein said gas is helium, argon, air or a mixture of any two thereof.
 - 17. The method of any one of claims 14 to 16 wherein said web is a meltblown polymer web.
- 18. The method of any one of claims 14 to 17 wherein said frequencies are about 1 to 30 kHz.
 - 19. The method of any one of claims 14 to 18 wherein said web is of indefinite length drawn between said electrodes at a substantially continuous rate to provide a predetermined elapsed residence time within said plasma.
- 20. A meltblown polymer web having a surface of enhanced wettability and re-wettability produced by a predetermined period of exposure to a sustained, atmospheric pressure, glow discharge plasma generated by radio frequency amplifier means operated at about 1 to at least 5 kV rms potential at about 1 to 100 kHz frequency.
 - 21. The meltblown polymer web of claim 20 wherein said plasma is sustained by a noble gas.
 - 22. The meltblown polymer web of claim 20 wherein said gas is helium, argon, air or a mixture of any two thereof.
 - 23. The meltblown polymer web of any one of claims 20 to 22 formed from polypropylene.
 - 24. The meltblown polymer web of any one of claims 20 to 23 where said frequency is about 1 to 30 kHz.

SUBSTITUTE SHEET (RULE 26)

SUBSTITUTE SHEET (RULE 26)

SUBSTITUTE SHEET (RULE 26)

FIG. 6

SUBSTITUTE SHEET (RULE 26)

SUBSTITUTE SHEET (RULE 26)

FIG. 8A

SUBSTITUTE SHEET (RULE 26)

FIG.8C

FIG.9A

SUBSTITUTE SHEET (RULE 26)

FIG.9B

115 watts/div

P_D = 18.4 watts

Plasma Current I = 52 mArms

Plate Voltage V = 920 Vrms

SUBSTITUTE SHEET (RULE 26)

FIG. 10

SUBSTITUTE SHEET (RULE 26)

SUBSTITUTE SHEET (RULE 26)

FIG. 12

SUBSTITUTE SHEET (RULE 26)

SUBSTITUTE SHEET (RULE 26)

IPC(5): HOIJ 7/24; H05B 31/26; D04H 1/58; US CL: 315/111.21, 111.51; 118/723E, 723I; 204/298.04; 428/288; 204/164 According to International Patent Classification (IPC) or to both national classification and IPC B. FIELDS SEARCHED Minimum documentation searched (classification system followed by classification symbols)						
According to International Patent Classification (IPC) or to both national classification and IPC B. FIELDS SEARCHED						
B. FIELDS SEARCHED						
						
U.S. : 315/111.21, 111.51; 118/723E, 723I; 204/298.04; 428/224, 288, 903; 429/247, 249, 250; 204/164						
Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched						
Electronic data base consulted during the international search (name of data base and, where practicable, search to APS	erms used)					
C. DOCUMENTS CONSIDERED TO BE RELEVANT						
Category* Citation of document, with indication, where appropriate, of the relevant passages Releva	ant to claim No.					
Y JP,02,312,223(Koga) 27 December 1990, abstract. 1-13						
Y JP, 61-177374(Shimadzu) 30 January 1985, abstract. 1-13						
Y JP, 58-200529(Kubonai) 22 November 1983, abstract. 1-13						
Second Annual TANDEC Conference, Rakowski, Witold, "Effect and Cost of Plasma Treatment of Melt Blown Polymer Webs", 13-16 October 1992, p.11, l.22+; p.18, lines 5+.	"Effect and Cost of Plasma Treatment of Melt Blown Polymer					
A, p US, A, 5,270, 137(Kubota) 14 December 1993, the entire document.	4					
X Further documents are listed in the continuation of Box C. See patent family annex.						
*Special categories of cited documents: *A* document defining the general state of the art which is not considered to be of particular relevance *E* *C* *A* document of particular relevance *C* *X* document of particular relevance; the claimed in:	d to understand the					
"E" carlier document published on or after the international filing date "X" document of particular relevance; the claimed in considered novel or cannot be considered to involve when the document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another critation or other						
special reason (as specified) Or document referring to an oral disclosure, use, exhibition or other means or document referring to an oral disclosure, use, exhibition or other means or document referring to an oral disclosure, use, exhibition or other means or document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art						
'P' document published prior to the international filing date but later than '&' document member of the same patent family the priority date claimed						
Date of the actual completion of the international search Date of mailing of the international search report O A IIC 100 A	t					
22 AUGUST 1994 3 0 AUG 1994						
Name and mailing address of the ISA/US Commissioner of Patents and Trademarks Box PCT Washington, D.C. 20231 Afthorized officer Darius Gambino						
Facsimile No. N/A Telephone No. (703) 308-4090						

Facsimile No. N/A

CHARACTER SOUTH OF DECEMBER AND OFF

PCT/US94/06151

Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
A	US, A, 5,147,493(Nishimura et al.) 15 September 1992, figs. 1-2.	1-13
	·	
	•	
ļ		

Form PCT/ISA/210 (continuation of second sheet)(July 1992)=

		PCT/US94/06151
Bo	x l- C	Observations where certain claims were found unsearchable (Continuation of item 1 of first sheet)
Th	is inter	mational report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:
1.		Claims Nos.: because they relate to subject matter not required to be searched by this Authority, namely:
2.		Claims Nos.: because they relate to parts of the international application that do not comply with the presented requirements to such an extent that no meaningful international search can be carried out, specifically:
3.		Claims Nos.: because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).
Во	x II (Observations where unity of invention is lacking (Continuation of item 2 of first sheet)
Th	is Inter	mational Searching Authority found multiple inventions in this international application, as follows:
	Gr Th cla	roup I Claims 1-13 frawn to a plasma device classified in 315/111.51 roup II Claims 14-24 drawn to a chemical web classified in 428/288 the claims of these two groups are directed to different inventions which are not linked to form a single general concept. The sims in the different groups do not have in common the same of corresponding "special technical features". In particular the emical web of Group II is different from the plasma device described in Group I.
1.	X	As all required additional search fees were timely paid by the applicant, this international search report covers all searchable claims.
2.		As all searchable claims could be searched without effort justifying an additional fee, this Authority did not invite payment of any additional fee.
3.		As only some of the required additional search fees were timely paid by the applicant, this international search report covers only those claims for which fees were paid, specifically claims Nos.:
4.		No required additional search fees were timely paid by the applicant. Consequently, this international search report is
		restricted to the invention first mentioned in the claims; it is covered by claims Nos.:

The additional search fees were accompanied by the applicant's protest.

No protest accompanied the payment of additional search fees.

Remark on Protest