microstegium_elymus_model_summary

Amy Kendig 12/5/2019

Contents

1	Summary	1					
2	Set-up						
3	Parameters 3.1 Formatting: 3.2 Settings: 3.3 Literature:	2					
4	Model 4.1 Population equations:	3 3					
5	Function	4					
6	Simulations 6.1 No disease						

1 Summary

Simulation of *Microstegium vimineum* and *Elymus virgincus* over time. *M. vimineum* is an invasive annual grass and *E. virginicus* is a native perennial grass. *E. virginicus* grows by itself for 100 years, and then *M. vimineum* is introduced. Disease effects arise 100 years later. Population dynamics are similar in the absence of disease and when both species are susceptible to disease. In both cases, *M. vimineum* reduces the size of the *E. virginicus* population. *M. vimineum* is able to recover population losses due to disease. *E. virginicus* seedlings are impacted more than adults. When only *M. vimineum* is susceptible to disease, its population crashes.

2 Set-up

```
# clear all existing data
rm(list = ls())

# open libraries
library(data.table)
library(plotly)
library(cowplot)
library(popbio)
library(tidyverse)
```

```
# plotting parameters
axisText = 10
axisTitle = 12
legendText = 10
legendTitle = 0
colPal = c("#0072B2", "#56B4E9", "#009E73", "#E69F00")

# import data
params <- read_csv("../data/mv_ev_model_parameters_120319.csv", col_types = cols())</pre>
```

3 Parameters

3.1 Formatting:

- subscripts follow "."
- A = annual plant
- L = annual litter
- P = perennial adult (at least 1 year old)
- S = perennial seedling (germinated that spring)
- Composite parameters are capitalized

3.2 Settings:

```
# simulation time
simtime = 500

# invasion time
invtime = 100

# disease time
distime = invtime + 100

# initial conditions
NO.A = 0 # initial annual population size
NO.S = 1 # initial perennial seedling population size
NO.P = 0 # initial perennial adult population size
LO = 0 # initial annual litter amount
Ni.A = 1 # introduction of annual
```

3.3 Literature:

parameter	symbol	value	units	reference
annual germination without litter litter suppression of germination annual seed survival annual biomass without competition annual biomass-seed conversion	g.A beta s.A v.A y.A	0.1300 17.4000	g ⁻¹ year ⁻¹	Redwood et al. 2018 Foster and Gross 1998 Redwood et al. 2018 Wilson et al. 2015 Wilson et al. 2015, Redwood et al. 2018

parameter	symbol	value	units	reference
annual litter-biomass conversion	a	0.9500	year ⁻¹	DeMeester and Richter 2010
litter decomposition rate	b	0.6700	year ⁻¹	DeMeester and Richter 2010
perennial germination without litter	g.S	0.8000	year ⁻¹	Garrison and Stier 2010
perennial seed survival	s.S	1.0000	year ⁻¹	Garrison and Stier 2010
adult perennial seed production without	f.P	22.0000	seeds year ⁻¹	Stevens 1957, Garrison and
competition			v	Stier 2010
seedling perennial seed production	f.1	2.0000	seeds year-1	1/10 of f.P
without competition			· ·	,
perennial seedling survival	s.1	0.4000	year ⁻¹	Mottl et al. 2006
perennial adult survival	s.P		year ⁻¹	Mottl et al. 2006
competitive effect of annual	alpha.A	0.0200	year ⁻¹	average of alpha.iA
competitive effect of perennial seedling	alpha.S	0.0020	year ⁻¹	average of alpha.iS
competitive effect of perennial adult	alpha.P	0.0200	year ⁻¹	average of alpha.iP
reduction in biomass due to disease	dis		year ⁻¹	Flory et al. 2011, Stricker et
			v	al. 2016

4 Model

4.1 Population equations:

Assume counts are being conducted in the spring

$$N.A[t+1] = s.A * (1-G.A) * N.A[t] + G.A * V.A * y.A * N.A[t]$$

annual seeds = seed bank survival + seed production
$$L[t+1] = a * G.A * V.A * N.A[t] + (1-b) * L[t]$$

annual litter = biomass from previous fall + decomposition

$$N.S[t+1] = s.S*(1-G.S)*N.S[t] + G.S*F.1*N.S[t] + F.P*N.P[t] \\ perennial seeds = seed bank survival + seedling seed production + adult seed production$$

$$N.P[t+1] = s.P * N.P[t] + s.1 * G.S * N.S[t]$$

perennial adults = survival + seedling maturation

4.2 Litter suppression of germination

$$G.A = g.A / (1 + beta * L[t])$$
 annual seed germination = germination in the absence of litter / reduction due to litter $G.S = g.S / (1 + beta * L[t])$ perennial seed germination = germination in the absence of litter / reduction due to litter

4.3 Density-dependence on growth and fecundity

$$V.A = v.A \ / \ (1 + alpha.A * G.A * N.A[t] + alpha.P * N.P[t] + alpha.S * G.S * N.S[t]) \\ annual growth = growth in the absence of competition / (competition from annuals + competition from perennial adults + competition from perennial seedlings)$$

$$F.1 = f.1 \ / \ (1 + alpha.A * G.A * N.A[t] + alpha.P * N.P[t] + alpha.S * G.S * N.S[t])$$
 perennial seedling seed production = seed production in the absence of competition / (competition from annuals + competition from perennial adults + competition from perennial seedlings)

F.P = f.P / (1 + alpha.A * G.A * N.A[t] + alpha.P * N.P[t] + alpha.S * G.S * N.S[t]) perennial adult seed production = seed production in the absence of competition / (competition from annuals + competition from perennial adults + competition from perennial seedlings)

5 Function

```
simFun = function(params, NO.A, NO.S, NO.P, LO, Ni.A, simtime, invtime,
   distime) {
    # define parameters
   g.A = filter(params, symbol == "g.A")$value
   beta = filter(params, symbol == "beta")$value
   s.A = filter(params, symbol == "s.A")$value
   v.A = filter(params, symbol == "v.A")$value
   y.A = filter(params, symbol == "y.A")$value
   a = filter(params, symbol == "a")$value
   b = filter(params, symbol == "b")$value
   g.S = filter(params, symbol == "g.S")$value
   s.S = filter(params, symbol == "s.S")$value
   f.P = filter(params, symbol == "f.P")$value
   f.1 = filter(params, symbol == "f.1")$value
   s.1 = filter(params, symbol == "s.1")$value
    s.P = filter(params, symbol == "s.P")$value
    alpha.A = filter(params, symbol == "alpha.A")$value
    alpha.S = filter(params, symbol == "alpha.S")$value
    alpha.P = filter(params, symbol == "alpha.P")$value
   dis = filter(params, symbol == "dis")$value
    # initialize populations
   N.A = rep(NA, simtime)
   N.S = rep(NA, simtime)
   N.P = rep(NA, simtime)
   L = rep(NA, simtime)
   N.A[1] = NO.A
   N.S[1] = NO.S
   N.P[1] = NO.P
   L[1] = L0
    # simulate population dynamics
   for (t in 1:(simtime - 1)) {
        # introduce annual at t=100
        N.A[t] = ifelse(NO.A == 0 \& t == invtime, Ni.A, N.A[t])
        # calulate parameters to introduce disease at distime
        growth.A = ifelse(t < distime, v.A, dis * g.A)</pre>
        # reduce germination due to litter
        G.A = g.A/(1 + beta * L[t])
        G.S = g.S/(1 + beta * L[t])
```

```
# reduce fecundity or growth due to competition
    V.A = growth.A/(1 + alpha.A * G.A * N.A[t] + alpha.P * N.P[t] +
        alpha.S * G.S * N.S[t])
    F.1 = f.1/(1 + alpha.A * G.A * N.A[t] + alpha.P * N.P[t] + alpha.S *
        G.S * N.S[t]
   F.P = f.P/(1 + alpha.A * G.A * N.A[t] + alpha.P * N.P[t] + alpha.S *
        G.S * N.S[t]
    # population size
    N.A[t + 1] = s.A * (1 - G.A) * N.A[t] + G.A * V.A * y.A * N.A[t]
   L[t + 1] = a * G.A * V.A * N.A[t] + (1 - b) * L[t]
    N.S[t + 1] = s.S * (1 - G.S) * N.S[t] + G.S * F.1 * N.S[t] + F.P *
        N.P[t]
    N.P[t + 1] = s.P * N.P[t] + s.1 * G.S * N.S[t]
    # correct to prevent negative numbers
   N.A[t + 1] = ifelse(N.A[t + 1] < 1, 0, N.A[t + 1])
   L[t + 1] = ifelse(L[t + 1] < 1, 0, L[t + 1])
   N.S[t + 1] = ifelse(N.S[t + 1] < 1, 0, N.S[t + 1])
   N.P[t + 1] = ifelse(N.P[t + 1] < 1, 0, N.P[t + 1])
}
# save data
dfN = data.frame(time = rep(1:simtime, 4), N = c(N.S, N.P, N.A, L),
    species = rep(c("Elymus seedling", "Elymus adult", "Microstegium",
        "Microstegium litter"), each = simtime))
# return
return(dfN)
```

6 Simulations

6.1 No disease

```
nodisSim <- simFun(params, NO.A, NO.S, NO.P, LO, Ni.A, simtime, invtime, distime = simtime + 10)
nodisSim %>%
    ggplot(aes(x = time, y = log(N+1), color = species)) +
    geom_line(size = 1.5) +
    theme(axis.text = element_text(size = axisText),
        axis.title = element_text(size = axisTitle),
        legend.text = element_text(size = legendText),
        legend.title = element_text(size = legendTitle)) +
    scale_color_manual(values = colPal)
```


6.1.1 Elymus on non-transformed scale

6.2 Add disease

```
disSim <- simFun(params, No.A, No.S, No.P, Lo, Ni.A, simtime, invtime, distime)
disSim %>%
    ggplot(aes(x = time, y = log(N+1), color = species)) +
    geom_line(size = 1.5) +
    theme(axis.text = element_text(size = axisText),
        axis.title = element_text(size = axisTitle),
        legend.text = element_text(size = legendText),
        legend.title = element_text(size = legendTitle)) +
    scale_color_manual(values = colPal)
```


${\bf 6.2.1}\quad {\bf Microstegium\ on\ non-transformed\ scale}$

6.2.2 Time to extinction?