Adjoint and Duals

Kunlong Wu

22.3.12 RECALL

Some basis definition and blue print of Dual space.

1. V is a f.d.v.s. over \mathbf{F} . the dual space $V' = \mathcal{L}(V, \mathbf{F})$ is defined as the set of all linear maps $\varphi : V \to \mathbf{F}$ (linear functionals). Thus

 $\dim V' = \dim V$

2. Suppose V, W are f.d.v.s over \mathbf{F} . Then there is an isomorphic between $T \in \mathcal{L}(V, W)$ and $T' \in \mathcal{L}(W', V')$ For any $\varphi \in W'$, define $T'(\varphi)$ as

$$(T'(\varphi))(v) = \varphi(Tv)$$

3. Let V be a f.d.i.p.s over ${\bf F}$ Recall Riesz representation theorem, define $L^V:\overline V\to V'$ as

$$(L^V(v))(u) = \varphi_v^V(u) := \langle u, v \rangle$$

Under this definition, we claim that L' is a linear function. For any $v \in \overline{V}$, $u \in V$ and $\lambda \in \mathbf{F}$, we have

$$(L'(\lambda * v))u = \langle u, \overline{\lambda}v \rangle$$

$$= \lambda \langle u, v \rangle$$

$$= \lambda \varphi_v(u)$$

$$= \lambda (L'(v))(u)$$

4. Let V,W be f.d.i.p.s., and $T\in\mathcal{L}(V,W)=\mathcal{L}(\overline{V},\overline{W})$ (*) The " = " in (*) is true since

$$T(\lambda * v) = T(\overline{\lambda}v) = \overline{\lambda}Tv = \lambda * Tv$$

THEOREM

$$T' \circ \varphi^W = \varphi^V \circ T^*$$

Proof

Let $w \in \overline{W}$, $v \in V$ be arbitrary

$$(T'\varphi^W(w))(v) = T'(\varphi_w^W)(v) = (\varphi_w^W(Tv)) = \langle Tv, w \rangle$$
$$((\varphi^V T^*)(w))(v) = (\varphi^V(T^*(w))(v) = \langle v, T^*(w) \rangle = \langle Tv, w \rangle$$