ĐẠI HỌC QUỐC GIA THÀNH PHỐ HỒ CHÍ MINH TRƯỜNG ĐẠI HỌC BÁCH KHOA KHOA CƠ KHÍ BỘ MÔN CƠ ĐIỆN TỬ

BÁO CÁO BÀI TẬP LỚN $$\begin{split} \mathbf{K}\tilde{\mathbf{Y}} \ \mathbf{THU}\mathbf{\hat{A}}\mathbf{T} \ \mathbf{ROBOT} \end{split}$$

GVHD: TS. PHÙNG TRÍ CÔNG

SINH VIÊN THỰC HIỆN:

Họ và tên	MSSV
Võ Tuấn Anh	2112591
Đào Trọng Chân	2210350
Trần Quang Đạo	2210647
Võ Hữu Dư	2210604
Dương Quang Duy	2210497

Mục lục

1	KIN	NEMATIC PROBLEM	2
	1.1	Topic	2
	1.2	Theory	2
		Application	
2	INV	VERSE KINEMATIC PROBLEM	Ę
	2.1	Topic	
	2.2	Theory	
		Application	
3	SIN	MULATING THE MOTION OF ROBOT	8
	3.1	Topic	8
		Theory	
		Application	
\mathbf{P}	hu lu	ac	12

Chương 1

KINEMATIC PROBLEM

1.1 Topic

Formulate the forward kinematic problem. Then determine the coordinates of the endpoint according to the three joint variables. Make a plot for a certain case.

1.2 Theory

The transformation matrix $i^{-1}T$ to transform coordinate frames B_i to B_i-1 is represented as a product of four basic transformations using parameters of link (i) and joint i

$$\frac{i-1}{i}T = \begin{bmatrix}
\cos(\theta_i) & -\sin(\theta_i)\cos(\alpha_i) & \sin(\theta_i)\sin(\alpha_i) & a_i\cos(\theta_i) \\
\sin(\theta_i) & \cos(\theta_i)\cos(\alpha_i) & -\cos(\theta_i)\sin(\alpha_i) & a_i\sin(\theta_i) \\
0 & \sin(\alpha_i) & \cos(\alpha_i) & d_i \\
0 & 0 & 0 & 1
\end{bmatrix}$$
(1.1)

To find the single transformation that relates frame $\{i\}$ to frame $\{0\}$, the transformation matrices of every link are then multiplied together:

$${}_{i}^{0}T = {}_{1}^{0} T {}_{2}^{1}T \dots {}_{i}^{i-1}T \tag{1.2}$$

This transformation ${}_{i}^{0}T$ is a function of all i joint variables. If the robot's joint-position sensors are queried, the Cartesian position and orientation of the end effector could be computed by ${}_{i}^{0}T$.

1.3 Application

We have:

$${}^{0}T_{1} = \begin{bmatrix} \cos\theta_{1} & -\sin\theta_{1} & 0 & 0\\ \sin\theta_{1} & \cos\theta_{1} & 0 & 0\\ 0 & 0 & 1 & 0\\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$(1.3)$$

$${}^{1}T_{2} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & d_{2} \\ 0 & 0 & 0 & 1 \end{bmatrix}$$
 (1.4)

$${}^{2}T_{3} = \begin{bmatrix} 1 & 0 & 0 & \ell_{3} \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$
 (1.5)

$${}^{3}T_{4} = \begin{bmatrix} \cos\theta_{4} & -\sin\theta_{4} & 0 & \ell_{4} \cdot \cos\theta_{4} \\ \sin\theta_{4} & \cos\theta_{4} & 0 & \ell_{4} \cdot \sin\theta_{4} \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$(1.6)$$

Thus

$${}^{0}T_{4} = {}^{0}T_{1} \cdot {}^{1}T_{2} \cdot {}^{2}T_{3} \cdot {}^{3}T_{4} = \begin{bmatrix} \cos(\theta_{1} + \theta_{4}) & -\sin(\theta_{1} + \theta_{4}) & 0 & \ell_{4} \cdot \cos(\theta_{1} + \theta_{4}) + \ell_{3} \cdot \cos\theta_{1} \\ \sin(\theta_{1} + \theta_{4}) & \cos(\theta_{1} + \theta_{4}) & 0 & \ell_{4} \cdot \sin(\theta_{1} + \theta_{4}) + \ell_{3} \cdot \sin\theta_{1} \\ 0 & 0 & 1 & d_{2} \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

In conclusion, we have the solution for the forward kinematic problem as below

$$\begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} \ell_4 \cdot \cos(\theta_1 + \theta_4) + \ell_3 \cdot \cos \theta_1 \\ \ell_4 \cdot \sin(\theta_1 + \theta_4) + \ell_3 \cdot \sin \theta_1 \\ d_2 \end{bmatrix}$$
(1.7)

Make a plot for a certain case:

During the time t from 0s to 10s, the input $(\theta_1, d_2, \theta_4)$ gradually increases from $(0^{\circ}, 2200, 0^{\circ})$ to $(90^{\circ}, 2700, 90^{\circ})$. Using MATLAB, the position (x, y, z) of the end-effector can be plotted as below:

Kỹ thuật robot Trang 3/19

Hình 1.1: The position of the end-effector (x, y, z) with respect to time

Solution check:

- At time t = 0 s, the end-effector is at position (x, y, z) = (1300, 0, 2200) mm. Correct!
- At time t=10 s, the end-effector is at position (x,y,z)=(-300,1000,2700) mm. Correct!

So we can confirm the accurate of the solution.

Kỹ thuật robot

Chương 2

INVERSE KINEMATIC PROBLEM

2.1 Topic

Formulate the inverse kinematic problem. Then determine the three joint values according to the coordinates of the end-point. Make a plot for a certain case.

2.2 Theory

Inverse kinematics is the mathematical process of calculating the variable joint parameters needed to place the end of a kinematic chain which is, in this project, the position of the end effector of a robot arm [1].

2.3 Application

We have the forward kinematic equation:

$$\begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} \ell_4 \cdot \cos(\theta_1 + \theta_4) + \ell_3 \cdot \cos\theta_1 \\ \ell_4 \cdot \sin(\theta_1 + \theta_4) + \ell_3 \cdot \sin\theta_1 \\ d_2 \end{bmatrix}$$

The position of the end-effector (X,Y,Z) can be extracted from the matrix as below:

$$x = \ell_4 \cdot \cos(\theta_1 + \theta_4) + \ell_3 \cdot \cos\theta_1 \tag{2.1}$$

$$y = \ell_4 \cdot \sin(\theta_1 + \theta_4) + \ell_3 \cdot \sin \theta_1 \tag{2.2}$$

$$z = d_2 \tag{2.3}$$

(2.4)

From (2.1) and (2.2) we have

$$x^{2} + y^{2} = \ell_{4}^{2} + \ell_{3}^{2} + 2\ell_{3} \cdot \ell_{4} \left[\cos(\theta_{1} + \theta_{4}) \cdot \cos \theta_{1} + \sin(\theta_{1} + \theta_{4}) \cdot \sin \theta_{1} \right]$$

$$= \ell_{4}^{2} + \ell_{3}^{2} + 2\ell_{3} \cdot \ell_{4} \cos(\theta_{1} + \theta_{4} - \theta_{1})$$

$$= \ell_{4}^{2} + \ell_{3}^{2} + 2\ell_{3} \cdot \ell_{4} \cos(\theta_{4})$$

Set

$$a = \cos(\theta_4) = \frac{x^2 + y^2 - \ell_4^2 - \ell_3^2}{2\ell_3 \cdot \ell_4}$$

Thus

$$\theta_4 = \operatorname{atan2}\left(\pm\sqrt{1-a^2}, a\right)$$

The x and y components can be expressed as:

$$x\cos\theta_1 + y\sin\theta_1 = \ell_4 \cdot \cos(\theta_1 + \theta_4)\cos\theta_1 + \ell_4 \cdot \sin(\theta_1 + \theta_4) \cdot \sin\theta_1 + \ell_3$$
$$= \ell_4 \cdot \cos(\theta_4) + \ell_3$$

We can rewrite

$$x \cos \theta_1 + y \sin \theta_1 = \sqrt{x^2 + y^2} \left(\frac{x}{\sqrt{x^2 + y^2}} \cos \theta_1 + \frac{y}{\sqrt{x^2 + y^2}} \sin \theta_1 \right)$$

Set

$$\cos \phi = \frac{x}{\sqrt{x^2 + y^2}}$$

$$\sin \phi = \frac{y}{\sqrt{x^2 + y^2}}$$

$$\phi = \operatorname{atan2}(y, x)$$

Thus we have

$$\sqrt{x^2 + y^2} \left(\cos \phi \cdot \cos \theta_1 + \sin \phi \cdot \sin \theta_1\right) = \ell_4 \cdot \cos(\theta_4) + \ell_3$$

Infer the following:

$$\cos(\theta_{1} - \phi) = \frac{\ell_{4} \cdot a + \ell_{3}}{\sqrt{x^{2} + y^{2}}}$$

$$\sin(\theta_{1} - \phi) = \pm \frac{\sqrt{x^{2} + y^{2} - (\ell_{4} \cdot a + \ell_{3})^{2}}}{\sqrt{x^{2} + y^{2}}}$$

$$\Rightarrow \theta_{1} - \phi = \operatorname{atan2}\left(\pm \sqrt{x^{2} + y^{2} - (\ell_{4} \cdot a + \ell_{3})^{2}}, \ell_{4} \cdot a + \ell_{3}\right)$$

$$\Rightarrow \theta_{1} = \phi + \operatorname{atan2}\left(\pm \sqrt{x^{2} + y^{2} - (\ell_{4} \cdot a + \ell_{3})^{2}}, \ell_{4} \cdot a + \ell_{3}\right)$$

$$= \operatorname{atan2}(y, x) + \operatorname{atan2}\left(\pm \sqrt{x^{2} + y^{2} - (\ell_{4} \cdot \cos(\theta_{4}) + \ell_{3})^{2}}, \ell_{4} \cdot \cos(\theta_{4}) + \ell_{3}\right)$$

Conclusion, we have the following solution for the inverse kinematic problem:

$$\begin{cases} \theta_1 = \operatorname{atan2}(y, x) + \operatorname{atan2}\left(\pm\sqrt{x^2 + y^2 - (\ell_4 \cdot \cos(\theta_4) + \ell_3)^2}, \ell_4 \cdot \cos(\theta_4) + \ell_3\right) \\ d_2 = z \\ \theta_4 = \operatorname{atan2}\left(\pm\sqrt{1 - a^2}, a\right) \end{cases}$$

Kỹ thuật robot Trang 6/19

or can rewrite as:

$$\begin{bmatrix} \theta_1 \\ d_2 \\ \theta_4 \end{bmatrix} = \begin{bmatrix} \tan 2(y, x) + \tan 2\left(\pm\sqrt{x^2 + y^2 - (\ell_4 \cdot \cos(\theta_4) + \ell_3)^2}, \ell_4 \cdot \cos(\theta_4) + \ell_3\right) \\ \frac{Z}{\tan 2\left(\pm\sqrt{1 - a^2}, a\right)} \end{bmatrix}$$

with

$$a = \frac{x^2 + y^2 - \ell_4^2 - \ell_3^2}{2\ell_3 \cdot \ell_4}$$

Solution check:

As forward kinematic solution, with the input $(\theta_1, d_2, \theta_4) = (0^\circ, 2200, 0^\circ)$, the position of the end-effector is (x, y, z) = (1300, 0, 2200).

Using (x, y, z) = (1300, 0, 2200) as an input to inverse function, we got $(\theta_1, d_2, \theta_4) = (0^{\circ}, 2200, 0^{\circ})$.

Similarly, using (x, y, z) = (-300, 1000, 2700) as an input to inverse function, we got $(\theta_1, d_2, \theta_4) = (90^{\circ}, 2700, 90^{\circ})$. Correct.

So we can confirm the accurate of the solution.

Kỹ thuật robot Trang 7/19

Chương 3

SIMULATING THE MOTION OF ROBOT

3.1 Topic

Simulate the motion of this robot to plot initial letters from the first names of your team members on a certain plane that is perpendicular to axis z_0 .

3.2 Theory

Simulate robot in simscape $(\theta_1, d_2, \theta_4)$ change from (0, 2200, 0) to $(90^{\circ}, 2700, 90^{\circ})$.

Hình 3.1: Simulation of the robot

Apply to forward, get position of end-effector (x, y, z) with respect to time t

Hình 3.2: Simulation of the robot

3.3 Application

Modeling robot by Solidworks then convert to step file, this is suitable for Simscape Multibody Link.

Hình 3.3: Robot model in Solidworks

Model in Simscape Multibody Link

Kỹ thuật robot Trang 9/19

Hình 3.4: Robot model in Simscape Multibody Link

Block diagrams of Matlab Simulink is as the follow:

Hình 3.5: Block diagram of Matlab Simulink

Results of simulation:

Position (x,y,z) of robot from transsform sensor

Kỹ thuật robot Trang 10/19

Hình 3.6: Position of robot

Result on YZ plane

Hình 3.7: Result on YZ plane

Kỹ thuật robot Trang 11/19

Appendices