UNIVERSITI TUNKU ABDUL RAHMAN

Department of Mathematics and Actuarial Science

CONTENTS

4	LIII	pirica	i bayes Parameter Esti-	
	mat	tion		2
	4.1	Introd	luction	2
	4.2	Nonpa	arametric Estimation	3
		4.2.1	Bühlmann Straub Model: .	
		4.2.2	Credibility-Weighted-Average	1
		4.2.3	Bühlmann model-Estimating	
			μ , v , and a	13
		4.2.4	Data with only One Poli-	
			cyholder:	18
	4.3	Empir	rical Bayes – Semi-Parametric	22
		4.3.1	Poisson Model	22
		4.3.2	Geometric Model	32

Chapter 4 Empirical Bayes Parameter 202401 Estimation 2

4 Empirical Bayes Parameter Estimation

4.1 Introduction

In the previous Chapters, the parameters (μ, v, a) needed to determine the credibility weighted premium are all given. In this chapter, we will study two methods to estimate these parameters.

Empirical Credibility

- Nonparametric estimation: This is based on unbiased estimators of μ , v and a,
- Semiparametric estimation: $f(x|\theta)$ is parametric (usually Poisson or Geometric) but the $\pi(\theta)$ is nonparametric.

UECM3473 CREDIBILITY THEORY

Chapter 4 Empirical Bayes Parameter 202401 Estimation 3 4.2 Nonparametric Estimation

4.2.1 Bühlmann Straub Model:

For each policyholder $i, 1 \leq i \leq r$ (and r > 1), we have observations $X_i = (X_{i1}, X_{i2}, \ldots, X_{i,n_i})$ of loss per exposure unit corresponding to exposures $m_i = (m_{i1}, m_{i2}, \ldots, m_{i,n_i})$ and $n_i > 1$. This means that $m_{ij}X_{ij}$ is the aggregate loss for period (or unit) j from policyholder i. Let $m_i = \sum_{j=1}^{n_i} m_{ij}$ be the total exposure for policyholder i. Be careful to distinguish between X_{ij} (a rate) and $m_{ij}X_{ij}$ (an amount).

UECM3473 CREDIBILITY THEORY

Chapter 4 Empirical Bayes Parameter 202401 Estimation 4 Estimation of Bühlmann–Straub parameters μ, v , and a:

• STEP 1.

Calculate the sample mean \bar{x}_i and biased σ_i^2 (σ^2 in TI-30).

$$\bar{x}_i = \frac{1}{m_i} \sum_{j=1}^{n_i} m_{ij} x_{ij};$$

$$\sigma_i^2 = \frac{\sum_{j=1}^{n_i} m_{ij} (x_{ij} - \bar{x}_i)^2}{m_i}$$

then the (unbiased) sample variance for each policyholder.

$$\hat{v}_i = \frac{1}{n_i - 1} \sum_{j=1}^{n_i} m_{ij} (x_{ij} - \bar{x}_i)^2 = \frac{m_i}{n_i - 1} \sigma_i^2$$

• STEP 2.

Calculate the weighted average of the sample variances \hat{v}_i with weights $n_i - 1$. If the policyholders all have the same number of periods of exposure, this is exactly the average of the sample variances.

$$\hat{v} = \frac{\sum_{i=1}^{r} (n_i - 1)\hat{v}_i}{\sum_{i=1}^{r} (n_i - 1)}$$

• STEP 3.

Calculate

$$\hat{\mu} = \bar{x} = \frac{\sum_{i=1}^{r} m_i \bar{x}_i}{m}$$

and biased

$$\sigma^2 = \frac{\sum_{i=1}^{r} m_i (\bar{x}_i - \bar{x})^2}{m}$$

then,

UECM3473 CREDIBILITY THEORY

Chapter 4 Empirical Bayes Parameter 202401 Estimation 6

$$\hat{a} = \frac{\sum_{i=1}^{r} m_i (x_i - \bar{x})^2 - (r - 1)\hat{v}}{m - m^{-1} \sum_{i=1}^{r} m_i^2}$$

$$= \frac{m\sigma^2 - (r - 1)\hat{v}}{m - m^{-1} \sum_{i=1}^{r} m_i^2}$$

- The estimator \hat{a} may be negative. If it is negative but small in absolute value, the authors suggest setting it to zero and $Z_i = 0$ for all i. The estimator for all risks is $\hat{\mu} = \bar{x}$ in this case
- After estimating the Bühlmann parameters, we estimate a given client's credibility premium based on its own experience as

$$\hat{Z}_i \bar{x}_i + (1 - \hat{Z}_i)\hat{\mu}$$

where

$$\hat{k} = \frac{\hat{v}}{\hat{a}}$$

and

$$\hat{Z}_i = \frac{m_i}{m_i + \hat{k}} = \frac{m_i \hat{a}}{m_i \hat{a} + \hat{v}}$$

Example 1. Past data on a portfolio of group policyholders are given below.

Estimate the Bühlmann–Straub credibility premiums to be charged to each group member in year 4.

		Ye	ear		
Policyholder		1	2	3	4
Claims	1		20,000	25,000	
No. in group		_	100	120	110
Claims	2	19,000	18,000	17,000	
No. in group		90	75	70	60
Claims	3	26,000	30,000	35,000	
No. in group		150	170	180	200

203.79, 225.82, 183.1

Chapter 4 Empirical Bayes Parameter 202401 Estimation 8 Example 2 (T4Q1).

Past data on two group policyholders are available and are given in the following table. Determine the estimated total credibility premium to be charged to the first group in year

	Policyholder	Year 1	Year 2	Year 3	Year 4
Total Claims	1	-	10950	12150	-
No. in Group		-	90	140	140
Total Claims	2	21400	25700	22650	-
No. in Group		60	150	170	250

UECM3473 CREDIBILITY THEORY

Example 3 (T4Q2).

An insurance company has for five years insured three different types of risk. The number of policies in the j^{th} year for the ith type of risk is denoted by m_{ij} for i=1,2,3 and j=1,2,3,4,5. The average claim size per policy over all five years for the i^{th} type of risk is denoted by \bar{X}_i . The values of m_{ij} and \bar{X}_i are tabulated below.

		Mean claim size				
Risk type i	Year 1	Year 2	Year 3	Year 4	Year 5	\bar{X}_i
1	20	27	25	25	35	888.0
2	50	57	60	61	40	700.0
3	52	39	71	97	110	930.0

The insurance company will be insuring 30 policies of type 1 next year and has calculated the aggregate expected claims to be 26275.91 using the assumptions of Empirical Bayes method. Calculate the expected annual claims next year for risks 2 assuming the number of policies will be 41.

UECM3473 CREDIBILITY THEORY

Chapter 4 Empirical Bayes Parameter 202401 Estimation 10 Example 4 (T4Q3).

For four group policyholders, the number of exposures in each group for years 1 and 2 are:

	Year 1	Year 2
I	48	55
II	39	45
III	_	18
IV	_	7

Empirical Bayes non-parametric methods are used to assign credibility. You are given:

$$\sum_{i,j} m_{ij} (x_{ij} - \bar{x}_i)^2 = 13,000$$
$$\sum_i m_i (\bar{x}_i - \bar{x})^2 = 56,000$$

$$\sum_{i} m_i (\bar{x}_i - \bar{x})^2 = 56,000$$

Determine the credibility assigned to group 1.

Chapter 4 Empirical Bayes Parameter 202401 Estimation 11 4.2.2 Credibility-Weighted-Average

The method which preserves total losses

Because exposures may vary by group, credibility factors Z will also vary by group. This means that the mean of the predictive estimates will not be the mean of the distribution. To avoid this problem, instead of using $\hat{\mu} = \bar{x}$, we can define $\hat{\mu}$ as the credibility weighted average:

$$\hat{\mu} = \frac{\sum_{i=1}^{r} \hat{Z}_{i} \bar{x}_{i}}{\sum_{i=1}^{r} \hat{Z}_{i}}$$

UECM3473 CREDIBILITY THEORY

Chapter 4 Empirical Bayes Parameter 202401 Estimation 12 Example 5 (T4Q4).

You are making credibility estimates for regional rating factors. You observe that the Bhlmann-Straub nonparametric empirical Bayes method can be applied, with rating factor playing the role of pure premium. X_{ij} denotes the rating factor for region i and year j, where i=1,2,3, and j=1,2,3,4. Corresponding to each rating factor is the number of reported claims, m_{ij} , measuring exposure. You are given:

i	m_i	\bar{x}_i	\hat{v}_i
1	60	10.44	1.233
2	120	11.76	1.345
3	140	10.38	1.84

Determine the nonparametric Empirical Bayes credibility premium for each member in group 1, using the method that preserves total losses.

$\begin{array}{cccc} \textbf{Chapter 4 Empirical Bayes Parameter} \\ \textbf{202401} & \textbf{Estimation} & \textbf{13} \\ \textbf{4.2.3} & \textbf{B\"{u}hlmann model-Estimating } \mu, v, \\ & \text{and } a \end{array}$

 $n_i = n$ and $m_{ij} = 1$ for all i and j.

STEP 1.

Calculate the sample mean \bar{x}_i . Then, the unbiased estimator of v_i is simply

$$\hat{v}_i = \frac{\sum_{j=1}^n (x_{ij} - \bar{x}_i)^2}{n-1} = s_i^2$$

for each risk.

STEP 2.

The unbiased estimator of v is

$$\hat{v} = \frac{1}{r} \sum_{i=1}^{r} \hat{v}_i$$

UECM3473 CREDIBILITY THEORY

Chapter 4 Empirical Bayes Parameter 202401 Estimation 14 STEP 3.

The unbiased estimators of μ and a are

$$\hat{\mu} = \bar{x}$$

and

$$\hat{a} = s^2 - \frac{\hat{v}}{n}$$

where

$$s^2 = \frac{\sum_{i=1}^r (\bar{x}_i - \bar{x})^2}{r - 1}$$

is the unbiased estimate of the variance of the sample means.

Chapter 4 Empirical Bayes Parameter 202401 Estimation 15 Example 6 (T4Q5).

Three individual policyholders have the following claim amounts over four years:

Policyholder	Year 1	Year 2	Year 3	Year 4
X	150	100	120	100
Y	210	250	200	150
Z	300	400	360	350

Using the nonparametric empirical Bayes procedure, estimate the pure premium for the coming year for Policyholder Y.

Chapter 4 Empirical Bayes Parameter 202401 Estimation 16 Example 7 (T4Q6).

An insurer has data on losses for 6 policyholders for 10 years. X_{ij} is the loss from the ith policyholder for year j. You are given:

$$\sum_{i=1}^{6} \sum_{j=1}^{10} (X_{ij} - \bar{X}_i)^2 = 40.2;$$
$$\sum_{i=1}^{6} (\bar{X}_i - \bar{X})^2 = 3.8$$

Calculate the Buhlmann credibility factor for an individual policyholder using nonparametric empirical Bayes estimation.

UECM3473 CREDIBILITY THEORY

Chapter 4 Empirical Bayes Parameter 202401 Estimation 17 Example 8 (T4Q7).

An actuary has, for three years, recorded the volume of unsolicited advertising that he receives. He has recorded X_{ij} the number of items received in the i^{th} quarter of the j^{th} year (i=1,2,3,4) and j=1,2,3. The actuary wishes to estimate the number of items that he will receive in the first quarter of year 4. He has recorded the following data:

Use empirical Bayes non-parametric methods to estimate the number of items that the actuary expects to receive in the first quarter of year 4.

Chapter 4 Empirical Bayes Parameter 202401 Estimation 18 4.2.4 Data with only One Policyholder:

In this special case of r=1, one policyholder, this method can still be applied if the unconditional mean (or manual premium) μ is given. The formulas in this case are simply

$$\bar{x} = \frac{\sum_{j=1}^{n} m_{1j} x_{j}}{m_{1}}$$

$$\hat{v} = \frac{\sum_{j=1}^{n} m_{1j} (x_{1j} - \bar{x})^{2}}{n - 1} = \frac{m \sigma_{1}^{2}}{n - 1}$$

$$\tilde{a} = (\bar{x} - \mu)^{2} - \frac{\hat{v}}{m_{1}}$$

UECM3473 CREDIBILITY THEORY

Example 9. Past data on one policyholder are available and are given in the following table. Determine the estimated credibility premium to be charged in year 3 if the manual rate is 500 per year.

Year 1 Year 2 Claims 200 400

350

Chapter 4 Empirical Bayes Parameter 202401 Estimation 20 Example 10 (T4Q8).

For a group policyholder, we have the following data available:

	Year 1	Year 2	Year 3
Total Claims	5000	7000	-
No. in Group	10	15	20

If the manual rate per person is 455 per year, estimate the total credibility premium for year 3 using the nonparametric method.

UECM3473 Credibility Theory

UECM3473 Credibility Theory

Example 11 (T4Q9).

The following data are available for a group policyholder:

	Year 1	Year 2	Year 3
Total claims	21,950	33,740	_
Number in groups	75	115	145

The manual rate per exposure is 450 per year. Estimate the total credibility premium for year 3 using empirical Bayes non-parametric methods.

Chapter 4 Empirical Bayes Parameter 202401 Estimation 4.3 Empirical Bayes – Semi-Parametric

If $n_i = 1, i = 1, \dots, r$, the nonparametric estimation method discussed in the previous section does not work $(v_i = 1)$. In this section, we can apply two special semiparametric estimation methods:

- $f(x|\theta)$ has a Poisson distribution.
- $f(x|\theta)$ has a Geometric distribution.

Poisson Model 4.3.1

In this case, we have

$$E(X) = E[E(X|\Theta)] = E[\Theta] = \mu$$

$$v = E[V(X|\Theta)] = E[\Theta] = \mu$$

$$\hat{v} = \hat{\mu} = \bar{x}$$

UECM3473 CREDIBILITY THEORY

$$\overline{V(X)} = E[V(X|\Theta)] + V[E(X|\Theta)]$$

$$= v + a$$

$$= \mu + a$$

$$\hat{a} = \hat{V}(X) - \hat{\mu} = s^2 - \bar{x}$$

$$\hat{k} = \frac{\hat{v}}{\hat{a}}$$

where

$$\bar{x} = \frac{\sum_{i=1}^{r} x_i}{r}$$

$$s^{2} = \frac{\sum_{i=1}^{r} (x_{i} - \bar{x})^{2}}{r - 1}$$

UECM3473 CREDIBILITY THEORY

Chapter 4 Empirical Bayes Parameter 202401 Estimation 24 Example 12 (T4Q10).

Health insurance is sold to 529 individuals. The following table summarizes the number of claims submitted by these individuals is a year.

Number of Claims	Number of Policyhoders
0	379
1	116
2	26
3	8
4 or more	0

Credibility is calculated using empirical Bayes semiparametric methods. annual claim counts for each individual are assumed to follow a Poisson distribution. Determine the estimate of the number of claims submitted in the next year by someone who submitted 4 claims in the current year.

Chapter 4 Empirical Bayes Parameter 202401 Estimation 25 Example 13 (T4Q11).

The following information comes from a study of robberies of convenience stores over the course of a year:

- X_i is the number of robberies of the i^{th} store, with $i = 1, 2, \ldots, 450$.
- $\sum X_i = 90$
- $\bullet \sum X_i^2 = 180$
- The number of robberies of a given store during the year is assumed to be Poisson distributed with an unknown mean that varies by store.

Determine the semiparametric empirical Bayes estimate of the expected number of robberies next year of a store that reported 5 robberies during the studied year.

UECM3473 CREDIBILITY THEORY

Chapter 4 Empirical Bayes Parameter 202401 Estimation 26 Example 14 (T4Q12).

You are given:

• During a 2-year period, 27,135 policies had the following claims experience:

Total Claims in	Number of Policies
Year 1 - Year 2	
0	14,680
1	8,220
2	2,400
3	1,690
4	145

- The number of claims per year follows a Poisson distribution.
- Each policyholder was insured for the entire 2-year period.

A randomly selected policyholder had 4 claims over the 2-year period. Using semiparametric empirical Bayes estimation, determine the Buhlmann estimate for the number of claims in Year 3 for the same policyholder.

Example 15 (T4Q13).

For a large sample of insureds, the observed relative frequency of claims during an observation period is as follows:

Number of Claims	Relative Frequency of Claims
0	62.0
1	28.0
2	8.0
3	1.0
4	1.0
5+	0

Assume that for a randomly chosen insured, the underlying conditional distribution of number of claims per period given the parameter Θ is Poisson with parameter Θ . Given and individual who had c claims in the observation period. The semi empirical Bayesian estimate of the expected number of claims that the individual will have in the next period is 0.4386. Determine c.

UECM3473 CREDIBILITY THEORY

Chapter 4 Empirical Bayes Parameter 202401 Estimation 28 Example 16 (T4Q14).

The number of claims submitted by seven policyholders over three months is shown in the following table:

	January	February	March
Α	2	1	1
В	2	2	1
С	1	2	2
D	2	3	2
Е	2	2	3
F	1	0	2
G	2	1	2

The number of claims for the following year is estimated using empirical Bayes semiparametric methods. It is assumed that each policyholder's annual claims follow a Poisson distribution. Unbiased estimators are used for the expected value of the process variance and the variance of hypothetical means.

UECM3473 Credibility Theory

Calculate the credibility projection of the annual number of claims for policyholder A.

Chapter 4 Empirical Bayes Parameter 202401 Estimation 30 Example 17 (T4Q15).

You are given the followings:

• The number of losses arising from m + 53 individual insureds over a single period of observation is distributed as follows:

Number of Losses	Number of Insureds
0	m
1	34
2	19
3 or more	0

- The number of losses for each insured follows a Poisson distribution, but the mean of each such distribution may be different for individual insureds.
- The variance of the hypothetical means is to be estimated from the data.

UECM3473 CREDIBILITY THEORY

UECM3473 Credibility Theory

Determine all values of m for which the estimate of the variance of the hypothetical means will be greater than 0.

UECM3473 CREDIBILITY THEORY

Chapter 4 Empirical Bayes Parameter 202401 Estimation 32 4.3.2 Geometric Model

In this case we assume $(X|\Theta)$ follow a Geometric distribution.

$$E(X) = E[E(X|\Theta)] = E[\Theta] = \mu$$

$$v = E[V(X|\Theta)] = E(\Theta(1+\Theta)] = \mu + E(\Theta^2)$$

$$\Longrightarrow E(\Theta^2) = v - \mu$$

$$V(X) = v + a = v + v - \mu - \mu^2$$

$$s^2 = 2\hat{v} - \bar{x} - \bar{x}^2$$

$$\Longrightarrow \hat{v} = \frac{s^2 + \bar{x} + \bar{x}^2}{2}$$

$$\hat{a} = \hat{v} - \bar{x} - \bar{x}^2$$

$$\Longrightarrow \hat{a} = \frac{s^2 - \bar{x} - \bar{x}^2}{2}$$

$$\hat{k} = \frac{\hat{v}}{\hat{a}} = \frac{s^2 + \bar{x} + \bar{x}^2}{s^2 - \bar{x} - \bar{x}^2}$$
UECM3473 Credibility Theory

Example 18 (T4Q16).

For a group of auto policyholders, you are given:

- The number of claims for each policyholder has a conditional Geometric distribution.
- During Year 1, the following data are observed:

Number of Claims	number of Policyhoders
0	14580
1	2590
2	1980
3	160
4	110
5+	0

A randomly selected policyholder had 1 claims in Year 1. Determine the semiparametric empirical Bayes estimate of the number of claims in Year 2 for the same policyholder.