

Waves on a String

Standing Waves

Standing Waves

Node

Node

Node

Node

Node

Node

Node

$$n = 1 \quad \lambda_1 = \frac{2}{1}L$$

$$n = 2 \quad \lambda_2 = L \quad \lambda_2 = \frac{2}{2}L$$

$$n = 3 \quad \frac{3}{2}\lambda_3 = L \quad \lambda_3 = \frac{2}{3}L$$

$$n = 4 \quad \lambda_4 = \frac{2}{4}L$$

$$\lambda_1 = \frac{2}{1}L \quad \lambda_4 = \frac{2}{4}L$$

$$\lambda_1 = \frac{2}{1}L \quad \lambda_4 = \frac{2}{4}L$$

$$\lambda_1 = \frac{2}{1}L \quad \lambda_4 = \frac{2}{4}L$$

Bohr Atomic Model

Methods

$$\frac{\partial \Psi}{\partial t} = v \frac{\partial \Psi}{\partial x},$$

$$\Psi_i^{n+1} = \Psi_i^n - \frac{c\Delta t}{\Delta x} (\Psi_{i+1}^n - \Psi_{i-1}^n),$$

$$\Psi_i^{n+1} = \frac{1}{2} (\Psi_{i+1}^n + \Psi_{i-1}^n) - \frac{c\Delta t}{\Delta x} (\Psi_{i+1}^n - \Psi_{i-1}^n),$$

$$\Psi_i^{n+1} = \Psi_i^n - \frac{1}{2} (\frac{c\Delta t}{\Delta x}) (\Psi_{i+1}^n + \Psi_{i-1}^n) + \frac{1}{2} (\frac{c\Delta t}{\Delta x})^2 (\Psi_{i+1}^n - \Psi_{i-1}^n - 2\Psi_i^n),$$

Methods

$$\Psi_t(x,t) = Asin(k(x-vt)).$$
+
$$\Psi_t(x,t) = Asin(k(x+vt)),$$

= 2Asin(kx)cos(kvt)

Time Evolution Along Circular Path, n = 1

Time Evolution Along Circular Path, n = 2

Time Evolution Along Circular Path, n = 3

Time Evolution Along Circular Path, n = 4

270°

2250

270°

Time Evolution Along Circular Path, n = 7

Time Evolution Along Circular Path, n = 10

Results - Lax Addendum

Results - Different Initial Condition

$$\Psi_{right} + \Psi_{left} = Asin(k(x - vt)) + Asin(k(x + vt))$$

$$\Psi(x,0) = \sin(\frac{2n\pi x}{R}),$$

Results - Different Initial Condition

 $\Psi_{right} + \Psi_{left} = Asin(k(x - vt)) + Asin(k(x + vt))$

$$\Psi(x,0) = \cos(\frac{\pi x}{\sigma})e^{\frac{-x^2}{2\sigma^2}},$$

Results - Amplitude decay

To Conclude

