

COVID-19 & Diet

DATA 622 FINAL PROJECT

Abdellah Ait Elmouden | Gabriel Abreu | Jered Ataky

CUNY School of Professional Studies

The Dataset

The dataset combined data of:

- Different types of food,
- World population obesity and
- undernourished rate, and
- Global COVID-19 cases count from around the world

Methodology

- Exploratory Data Analysis (EDA)
- Machine Learning :
 - ✓ PCA analysis
 - ✓ K-mean Clustering
 - √ Random forest,
 - ✓ Gradient Boosting
 - ✓ Cubist
 - ✓ Support Vector Regression

Data Exploration and Processing

```
[1] "Country"
                                        "Alcoholic.Beverages"
    [3] "Animal.Products"
                                        "Animal.fats"
    [5] "Aguatic.Products..Other"
                                        "Cereals...Excluding.Beer"
    [7] "Eggs"
                                        "Fish..Seafood"
    [9] "Fruits...Excluding.Wine"
                                        "Meat"
   [11] "Milk...Excluding.Butter"
                                        "Miscellaneous"
   [13] "Offals"
                                        "Oilcrops"
   [15] "Pulses"
                                        "Spices"
   [17] "Starchy.Roots"
                                        "Stimulants"
                                        "Sugar...Sweeteners"
   [19] "Sugar.Crops"
   [21] "Treenuts"
                                        "Vegetal.Products"
   [23] "Vegetable.Oils"
                                        "Vegetables"
                                        "Undernourished"
   [25] "Obesity"
   [27] "Confirmed"
                                        "Deaths"
   [29] "Recovered"
                                        "Active"
## [31] "Population"
                                        "Unit..all.except.Population."
```


Missing Data

From the empirical

Cullen and Frey graph

Histogram and theoretical densities

Empirical and theoretical CDFs

Histogram and theoretical densities

It seems that still both

From the plot we can

PCA

PCA Summary

Proportion of Variance 0.000e+00 ## Cumulative Proportion 1.000e+00

Importance of components: ## PC1 PC4 PC5 PC6 PC2 PC3 ## Standard deviation 2.9034 1.47529 1.36569 1.32158 1.1833 1.15260 1.07568 ## Proportion of Variance 0.3011 0.07773 0.06661 0.06238 0.0500 0.04745 0.04132 ## Cumulative Proportion 0.3011 0.37880 0.44541 0.50779 0.5578 0.60524 0.64657 ## PC8 PC9 PC10 PC11 PC12 PC13 ## Standard deviation 1.03489 0.99988 0.9742 0.96614 0.8663 0.83569 0.77697 ## Proportion of Variance 0.03825 0.03571 0.0339 0.03334 0.0268 0.02494 0.02156 ## Cumulative Proportion 0.68481 0.72052 0.7544 0.78775 0.8145 0.83950 0.86106 ## PC15 PC16 PC17 PC18 PC19 PC20 PC21 ## Standard deviation 0.73837 0.69250 0.65579 0.63972 0.63625 0.6033 0.57680 ## Proportion of Variance 0.01947 0.01713 0.01536 0.01462 0.01446 0.0130 0.01188 ## Cumulative Proportion 0.88053 0.89765 0.91301 0.92763 0.94209 0.9551 0.96697 ## PC22 PC23 PC24 PC25 PC26 PC27 0.53723 0.50452 0.45911 0.41348 0.00224 0.001914 ## Standard deviation ## Proportion of Variance 0.01031 0.00909 0.00753 0.00611 0.00000 0.000000 ## Cumulative Proportion 0.97728 0.98637 0.99389 1.00000 1.00000 1.000000 PC28 ## Standard deviation 1.047e-05

Code

PCA

PC3-PC4
PC1-PC2

PCA

PC5-PC6 PC7-PC8

Linear regression with principal components

K-mean

Trees – Random Forest, Cubist, Gradient Boost

Random Forest: Food Only

Random Forest

randoModel randoModel

Cubist

Gradient Boost

#1		var	rel.inf	
m	Recovered	Recovered	35.1600955	
###	Alcoholic.Beverages	Alcoholic.Beverages	9.0825219	
##	Eggs	Eggs	6.9010083	
##	MilkExcluding.Butter	MilkExcluding.Butter	5.3945097	
111	Vegetal.Products	Vegetal.Products	5.2604965	
17.1	Animal.fats	Animal.fats	4.6215363	
#1	Undernourished	Undernourished	4.4023647	
##	Miscellaneous	Miscellaneous	3.5102497	
111	Population	Population	3.2351117	
m	Vegetable.Oils	Vegetable.Oils	2.8498912	
##	Oilcrops	Oilcrops	2.6793660	
##	Pulses	Pulses	2.3313082	
#1	Obesity	Obesity	2.1397723	
TT 1	Treenuts	Treenuts	2.0770761	
###	CerealsExcluding.Beer	CerealsExcluding.Beer	1.7274599	
##	FishSeafood	FishSeafood	1.4909817	
##	Offals	Offals	1.2420637	
111	Stimulants	Stimulants	1.1062169	
m t	Meat	Meat	0.9992101	
#1	Vegetables	Vegetables	0.9882710	
#1	Spices	Spices	0.9373554	
111	FruitsExcluding.Wine	FruitsExcluding.Wine	0.7179831	
##	SugarSweeteners	SugarSweeteners	0.6502176	
##	Starchy.Roots	Starchy.Roots	0.4949325	
##	Sugar.Crops	Sugar.Crops	0.0000000	

	var <fctr></fctr>	rel.inf <dbl></dbl>
Eggs	Eggs	16.1816192
Alcoholic.Beverages	Alcoholic.Beverages	12.7966105
Oilcrops	Oilcrops	8.0096502
MilkExcluding.Butter	MilkExcluding.Butter	7.4407244
Animal.fats	Animal.fats	7.1066959
Animal.Products	Animal.Products	6.4278695
Obesity	Obesity	5.9832168
FishSeafood	FishSeafood	4.7433491
Miscellaneous	Miscellaneous	4.5398486
Population	Population	4.0877509

Tree Prediction Results

	RMSE	Rsquared	MAE
Random Forest	0.0224314	0.7182063	0.0153533
Gradient Boosted Tree	0.0228734	0.7221370	0.0165111
Cubist	0.0278355	0.6732597	0.0170036

	RMSE	Rsquared	MAE
Random Forest	0.0295002	0.5064067	0.0214034
Gradient Boosted Tree	0.0303363	0.4756502	0.0217214
Cubist	0.0338986	0.3475386	0.0216508

Support Vector Regression Plots

MAE: 0.3288479 ## MSE 0.2374864 ## RMSE: 0.4873258 ## R-Squared: 0.673371

MAE: 0.4139295 MSE 0.2809483 RMSE: 0.5300456 R-Squared: 0.4499807

Tuned Grid Plots

Tuned SVR Plots and Results

MAE: 0.1001404 MSE 0.06744831 RMSE: 0.2597081 R-Squared: 0.8997206 ## Recovered Alcoholic.Beverages ## 28.2607712 13.4241681 ## Stimulants Vegetable, Oils ## 7.5151268 7.3795706 Vegetal.Products ## Fish..Seafood mm 6.6186768 6.6145386 ## Oilcrops mm 6.3819978 6.4095564 Cereals...Excluding.Beer Starchy, Roots пп 5.6192914 5.3327217 ## Offals m m 4.7150095 4.3883377 ## Sugar, Crops Fruits...Excluding.Wine m m 4.2012758 Miscellaneous ## Vegetables ## 2.2829954 0.9078458 ## Population

0.4452825

Animal.fats 8.3170989 Obesity 6.6640575 Milk...Excluding.Butter 6.4610278 Meat Sugar...Sweeteners 5.7479848 Undernourished 5.2363520 Pulses Eggs 4.2977024 Treenuts 3.1727651 Spices 0.6570656

x1

MAE: 0.04570103 MSE 0.04143534 RMSE: 0.2035567 R-Squared: 0.9316657

Alcoholic.Beverages 16.4929304 Vegetable.0ils 6.5122790 Eaas 6.1794657 Sugar, Crops 4.2676529 Offals 2.9662306

Animal.fats 11.1736033 Vegetal.Products 6.4161505 Sugar...Sweeteners 6.1202952 Fish..Seafood 4.0257740 Miscellaneous

1.3472979

##

Stimulants 9.6760724 Animal.Products 6.3133139 Meat Cereals...Excluding.Beer 5.0946005 Treenuts 3.8684046

Population 8 1

0.9580128

0ilcrops Obesity 9.2417270 8.2925872 Milk...Excluding.Butter Starchy.Roots 6.1961900 Undernourished 4.8510191 4.7400024 Pulses Fruits...Excluding.Wine 3,4483294 3.1342840 Spices Vegetables 0.5983853 0.2748476

Conclusion & Findings

We used several models to study the correlation between countries' diet and COVID-19 mortality rate

We found out that food cultures is very important key as in predicting the mortality rate of COVID-19

The models show foods associated with overall poor health increases the mortality rate of COVID-19 in each country

A population which has a healthy diet (food based on vegetal products, cereals,..) has a lower death rate in comparison with a population which has a higher obesity rate and consumes more animal products

Thank you!