SMA 2172 Calculus I Tutorial I: Functions

Topics: functions, domain, codomain, range, properties of functions, composition of functions, and Inverse functions.

1 Domains, Co-domains and Range of Functions

- 1. Determine the largest domain and range for the following functions:
 - (a) $y = x^2 + 1$
 - (b) $y = 1 x^2$
 - (c) $y = \sqrt{x^2 64}$
 - $(d) \ y = \frac{1}{1-x}$
 - (e) y = (x+1)(x+4)
 - (f) $y = \frac{4x 7}{x^2 6x + 8}$
 - (g) $y = \frac{x}{6} + x^2$
 - (h) $y = \sqrt{15 3x}$
 - (i) $y = \frac{(x-1)(x+2)}{x-3}$
 - (j) $y = \frac{x+1}{x^2-4}$
 - (k) $y = \sqrt{9 x^2}$
 - (1) $x^2 + 4.5x + 2$
- 2. Let $f(x) = \sqrt{3x+12}$ and $g(x) = \sqrt{12-3x}$. Determine the largest domain and range of the functions: (a). f(x) + g(x) (b). $\frac{f(x)}{g(x)}$.
- 3. Let $f(x) = \sqrt{1-x}$ and $g(x) = \sqrt{x^2-4}$. Determine the largest domain and range of the functions: (a) f(x) + g(x) (b). $f(x) \cdot g(x)$. (c). $\frac{f(x)}{g(x)}$.
- 4. Let $f(x) = \sqrt{2+x} \cdot \sqrt{9-x^2}$ and $g(x) = \sqrt{(2+x)(9-x^2)}$. Show that, as functions $\sqrt{2+x} \cdot \sqrt{9-x^2} \neq \sqrt{(2+x)(9-x^2)}$.
- 5. For the following functions, find the maximal domains of: $(f+g)(x), (f-g)(x), (fg) \cdot (x), \left(\frac{f}{g}\right)(x).$
 - (a) $f(x) = \frac{1}{x+1}$; $g(x) = \frac{1}{x+2}$.
 - (b) $f(x) = \frac{1}{\sqrt{x+1}};$ $g(x) = \sqrt{12-3x}.$
 - (c) $f(x) = x^2 1;$ $g(x) = \frac{1}{x+1}.$

(d)
$$f(x) = \sqrt{3x + 12}$$
; $g(x) = \sqrt{3x^2 + 12x}$.

- 6. Find the domain of $f(x) = \sqrt{\frac{x}{x+1}}$
- 7. Find the domain and range of the function $f(x) = 2\sqrt{4-x^2} 3$.
- 8. Let $f(x) = \frac{\sqrt{x^2 4}}{5 \sqrt{36 x^2}}$. Then, in interval notation, that part of the domain of f which is to the right of the origin is $[2, a) \cup (a, b]$. Find the values of a and b.
- 9. Let $f(x) = (-x^2 7x 10)^{-1/2}$ Find
 - (a) f(-3)
 - (b) the domain of f.
- 10. Find the domain of the function $f(x) = \sqrt{1 + \sin x}$.
- 11. Find the range of the function $f(x) = 4\sin(2x) + 1$.
- 12. Find the domain of $f(x) = \sqrt{\frac{x}{x+1}}$
- 13. Find the domain and range of the function $f(x) = 2\sqrt{4-x^2} 3$.
- 14. Let $f(x) = \frac{\sqrt{x^2 4}}{5 \sqrt{36 x^2}}$. Then, in interval notation, that part of the domain of f which is to the right of the origin is $[2, a) \cup (a, b]$. Find the values of a and b.
- 15. Let $f(x) = (-x^2 7x 10)^{-1/2}$ Find
 - (a) f(-3)
 - (b) the domain of f.
- 16. Find the domain of the function $f(x) = \sqrt{1 + \sin x}$.
- 17. Find the range of the function $f(x) = 4\sin(2x) + 1$.

2 Composition of Functions

- 1. For f(x) = 2x + 3 and $g(x) = -x^2 + 1$, find the composite function defined by $(f \circ g)(x)$.
- 2. Given f(2) = 3, g(3) = 2, f(3) = 4 and g(2) = 5, evaluate $f(\circ g)(3)$.
- 3. Functions f and g are given by $f(x) = \sqrt{x+2}$ and $g(x) = \ln(1-x)$. Find the composite function defined by $(g \circ f)(x)$ and describe its domain and range.
- 4. Find the range of the composite function f(g(x)) given that f(x) = x + 4 and $g(x) = x^2 + 2$.
- 5. Find the domain of the composite function $g \circ f$ if $f(x) = \sqrt{x}$ and $g(x) = x^2 + 2$.
- 6. Find $(f \circ g)(x)$ and the domain of $f \circ g$, given f(x) = (x-1)/(x+2), g(x) = (x+1)/(x-2).

7. Find the composition $(f \circ g)(x)$ and the domain of $f \circ g$, given $f(x) = x^2 + 2$, $g(x) = \sqrt{x-2}$.

8. Let
$$f(x) = x + 5$$
, $g(x) = \sqrt{x}$, and $h(x) = x^2$. Find $(g \circ (h - (g \circ f)))(4)$.

9. Let
$$h(x) = \frac{1}{\sqrt{x+6}}$$
, $f(x) = \frac{1}{x}$ and $g(x) = 5 - x^2$. Calculate

(a)
$$(h \circ g)(2)$$

(b)
$$(g \circ f)(2)$$

(c)
$$(f \circ f)(2)$$

(d)
$$(g \circ f \circ h)(5)$$

10. Find the composition $(f \circ g)(x)$ and its domain given f and g below.

(a)
$$f(x) = 2x^3 + x - 1$$
, $g(x) = x^2$

(b)
$$f(x) = |x^2 - 4|, g(x) = x - 1$$

(c)
$$f(x) = x^2 - 5$$
, $g(x) = \sqrt{x+5}$

(d)
$$f(x) = \ln x, g(x) = \sqrt{x+5}$$

(e)
$$f(x) = \sin x, g(x) = x - 2$$
.

3 Injective, Surjective and Bijective functions

1. If $f: R \to R$ is given by f(x) = 3x + 7, prove it is one-to-one.

2. Why is
$$f: R \to R$$
 given by $f(x) = x^2$ not $1-1$?

3. Let $f: \mathbb{R}^+ \to \mathbb{R}$ be defined by $f(x) = x^2 - 4x + 5$. What is the largest codomain so that f is subjective (onto)?

Answer: The codomain is the set B say where $B = \{x | x \in \mathbb{R} \text{ and } x \geq 1\}.$

4. Which of the following functions are injective, surjective, and bijective on their respective domains. Take the domains of the functions as those values of x for which the function is well defined

(a)
$$f(x) = x^3 - 2x + 1$$

(b)
$$f(x) = \frac{x+1}{x-1}$$

(c)
$$f(x) = \begin{cases} x^2 & x \le 0 \\ x+1 & x > 0 \end{cases}$$

(d)
$$f(x) = \frac{1}{x^2 - 1}$$

5. For the function $f:(1,\infty)\to(0,1)$ defined ny

$$f(x) = \frac{x-1}{x+1}, \quad x > 1$$

(a) Draw the graph of the function

(b) Prove that the function is 1-1

(c) Find the inverse of the function

(d) Find the domain and range of the inverse function

(e) Draw the graph of the inverse function

4 Inverse functions

- 1. If $f(x) = x^5 1$, find the inverse function.
- 2. Let $f(x) = 2x + \cos x + \sin^2 x$ for $-10 \le x \le 10$. Show t hat f has an inverse.
- 3. Let $f(x) = \frac{4x+3}{x+2}$.
 - (a) Show that f is one-to-one
 - (b) Find $f^{-1}(-2)$
 - (c) Find dom f^{-1}
- 4. Find the inverse of each of the following functions

(a)
$$f(x) = (x-2)^5 + 3$$

(b)
$$g(x) = \frac{-2x - 2}{x + 2}$$

(c)
$$g(x) = \sqrt[5]{\frac{-x+2}{2}}$$

(d)
$$f(x) = \frac{7 - 3x}{x - 2}$$

(e)
$$f(x) = \frac{3}{4x-4} x > 1$$

(f)
$$f(x) = \frac{2x-7}{3x+5}$$

(g)
$$f(x) = \frac{4x-3}{2x+1}$$

(h)
$$f(x) = \frac{5}{6}x - \frac{3}{4}$$

(i)
$$f(x) = \frac{2x - 5}{3}$$

$$(j) f(x) = \frac{x+1}{x-3}$$

(k)
$$f(x) = \frac{2x+5}{3x-2}$$