Name : Kang	chin shen
matriculation	chin shen 10: 01411921.
Question 1	
0025110.0	
	Given a string x:
	n characters.
	Find the minimum number of characters to add to the string 9th that it becomes a passind rome.
Part 1a - Let	D[isj] be the minimum number of characters that need to be inserted
+0	make the string x[i] x[j] a palindrome.
- i is pointing the string.	g to first character of the string; j is pointing to the last character of
8 0	
o. Recurrence	
	$D[i,j] = \{D[i,j-1] \mid if \times [i] = \times [j] \}$
	MIN(O[i+1,j],O[i,j-1])+1 if $n[i]!=x[j]$.
Base cases	
	$D[i,i] = \{(0 \text{ if } x[i] == x[i] \text{ else } 1) \text{ if } i == i-1.$
	$D[i,j] = \begin{cases} 0 & \text{if } i = j. \\ 0 & \text{if } x[i] = x[j] \text{ else } 1) & \text{if } i = j-1. \end{cases}$ $In[EGER_MAX] \qquad if i > j.$
Part 16.	
	1) base case: if i== , 1 character by itself is a palindrome, return 0.
- Suppose v problem,	we have the fullowing cases.
G a	bca - This implies that DSi, il == DEi+1 7-17
	bca - Inis implies that D[i,j] == D[i+1,j-1]
138	i]==x[j] asmaller problem.
(3) a.	be d - Then we have 2 wave of booking the archieve
	bcd - Then, we have 2 ways of breaking the groblem:
x	$[i] = \times [j] \qquad \qquad \downarrow \qquad \qquad \downarrow$
	add d in front: add a at the end:
	dabcda abcda
	d a b c d a
	To define a smaller problem for To define a smaller problem
	this case, we take o[i,j-1] for this case, we take o[it1,j]

```
Since there are two ways of breaking the big problem, and we are trying to find the minimum number of characters to be added:
                return MIN( D[i,j-1], D[i+1,j]) +1
                   Example: a b c b } min(2,0) +1 = 1.
                    a b c mi~(1,1) + 1 b c b
¢ 70
 .. Hence, the recurrence formulation is combining 1 and 2:
       D[i,j] = \{D[i+1,j-1] | if x[i] == x[j]
                 | MIN ( D[i+1,j], D[i,j-1]) +1 if \[i]!=\[i].
  For base cases, we have to consider the following cases:
          i==0 aa j==1
          x[i] == x[i],
   - if will enter (), finding D[1,0],
                                                 works well with 1
   in which izj, this should return 0
                                                   pase case.
   instead.
     (2) base case:
  - Go one level above,
  - if (i==j-1), return 0 if (xti] == xtj]) else (.
     6 base case:
  - if (i>j) return INTEGER_MAX & incorrect input.
  c'. Hence, the three base cases are:
       D[i,j] = \begin{cases} 0 & \text{if } x[i] = x[j] \text{ else } 1 \end{cases} \text{ if } i = j-1.
INJEGER\_MAX \qquad \text{if } i > j.
```



```
part 2b.
Iterative Pseudocode ( Dynamic Programming ): * Assuming price is not negative.
PROCEDURE FIND-MAX-REVENUEL PRICE, N)
      SET values to an array of 0's of size N+1
      SEL values [0] to D
      FOR = | TO N
          SET max-value TO -1
         FOR = 1 TO L
              SET max-value to MAX(max-value, price[;] + val [i-;-1])
              SEL values [?] = max-val.
     RETURN values[N]
   Part 2c.
- Initial recurrence formulation assumed that sub-problems do not share resources.
- Violation of optimal substructure property as additional contraint is imposed.
- This implies sub-problems can no longer be solved independently.
```