ROOM SENSOR WITH AUTOMATION END SEMESTER PROJECT

SUBCODE: MEC102

SUB NAME: INTRODUCTION TO ENGINEERING DESIGN

Submitted by,

TEAM MEMBERS:

- 1) Divya Dharshini S (125014012)
- 2) Harsheni V P (125006079)
- 3) Mirudhulha S R (125004157)
- 4) Narmada S B (125002056)

OUTLOOK OF OUR DESIGN:

NEED:

A device to close the door in the absence of people to ensure safety.

REQUIREMENTS:

- 1) Biometric lock
- 2) Sensors (motion sensors, temperature sensors, pressure sensors)
- 3) Connectors

OBJECTIVE:

1) To automatically close the door, using sensor

5) It is waterproof therefore it won't rust

2) To avoid stranger entry 3) Ensuring safety 4) Controlling by means of remote **FUNCTIONS:** 1) To sense the human presence 2) To lock the door when no one is present 3) Using both biometrics and manual to open and lock **SUB FUNCTIONS:** 1) If temperature sensor is used, change in body temperature is noticed 2) To avoid overheating of device 3) Efficient speed of process 4) Touch screen is given where password or pattern can be given

MORPHOLOGICAL CHART:

Functions	Means	M1	M2	M3
F1	To sense	Passive Infrared	Temperature	
	human	(PIR) sensor	sensor	
	presence			
F2	To be	Glass coating	Sealing	
	waterproof		open space	
F3	To be	Thermoplastic	Metallic	Wooden covering
	durable		covering	
	material			
F4	To lock	Biometrics	Touch	Biometrics, touch
			screen	screen and manual
				keys/barcodes.

CONSTRAINTS:

- 1) It should not occupy more space and power
- 2) It should not over heat
- 3) Should be water proof and non-flammable
- 4) Material should be durable
- 5) Device should be adaptable to updated version.

KANO-MODEL OF QUALITY:

MUST:

- 1) Room sensing and automation of closing door
- 2) Overheat protection
- 3) Smart keypads

WANTS:

- 1) Waterproof protection
- 2) Battery or electric supply.

EXCITEMENT:

- 1) key shaped barcode
- 2) App & Alarm

DECISION MATRIX USING SCREENING METHOD:

SELECTION	ROOM	USING LOCK	CONNECTING
CRITERIA	SENSING	WITH	BOTH AND
		BIOMETRICS,	TRANSFERRIN
		TOUCH SCREEN	G SIGNALS
		& MANUAL	
EASE OF	+	+	+
HANDLING			
EASE OF USE	+	+	+
PORTABILITY	+	+	+
MANUFACTURING	+	+	+
EASE			

❖ From the above matrix it is shown that the concepts can be implemented easily.

USER SPECIFICATIONS:

F1-M1

F2-M1

F3-M1

The above given set of functions and means is the best choice and satisfies the user as per requirements.

BRIEF ABOUT CONCEPT DESIGN:

Our concept design helps in the automation of closing doors when the user forget by sensing the room every 5 minutes for human presence.
 When it is locked, it can be opened using key/password or using biometrics