CS 446 MJT — Homework 4

haoyuan9

Version 2

Instructions.

- Homework is due Tuesday, April 2, at 11:59pm; no late homework accepted.
- Everyone must submit individually at gradescope under hw4. (There is no hw4code!)
- The "written" submission at hw4 must be typed, and submitted in any format gradescope accepts (to be safe, submit a PDF). You may use LATEX, markdown, google docs, MS word, whatever you like; but it must be typed!
- When submitting at hw4, gradescope will ask you to mark out boxes around each of your answers; please do this precisely!
- Please make sure your NetID is clear and large on the first page of the homework.
- Your solution **must** be written in your own words. Please see the course webpage for full academic integrity information. Briefly, you may have high-level discussions with at most 3 classmates, whose NetIDs you should place on the first page of your solutions, and you should cite any external reference you use; despite all this, your solution must be written in your own words.

1. VC dimension.

This problem will show that two different classes of predictors have infinite VC dimension.

Hint: to prove infinite $VC(\mathcal{H}) = \infty$, it is usually most convenient to show $VC(\mathcal{H}) \geq n$ for all n.

(a) Let $\mathcal{F} := \{x \mapsto 2 \cdot \mathbb{1}[x \in C] - 1 : C \subseteq \mathbb{R}^d \text{ is convex}\}$ denote the set of all classifiers whose decision boundary is a convex subset of \mathbb{R}^d for $d \geq 2$. Prove $\mathsf{VC}(\mathcal{F}) = \infty$.

Hint: Consider data examples on the unit sphere $\{x \in \mathbb{R}^d : ||x|| = 1\}$.

(b) Given $x \in \mathbb{R}$, let sgn denote the sign of x: $\operatorname{sgn}(x) = 1$ if $x \ge 0$ while $\operatorname{sgn}(x) = -1$ if x < 0. Let $\sigma > 0$ be given, and define \mathcal{G}_{σ} to be the set of (sign of) all RBF classifiers with bandwidth σ , meaning

$$\mathcal{G}_{\sigma} := \left\{ oldsymbol{x} \mapsto \mathrm{sgn}\left(\sum_{i=1}^m lpha_i \exp\left(-\|oldsymbol{x} - oldsymbol{x}_i\|^2/(2\sigma^2)
ight)
ight) \colon \ m \in \mathbb{Z}_{\geq 0}, \ oldsymbol{x}_1, \dots, oldsymbol{x}_m \in \mathbb{R}^d, \ oldsymbol{lpha} \in \mathbb{R}^m
ight\}.$$

Prove $VC(\mathcal{G}_{\sigma}) = \infty$.

Remark: the sign of 0 is not important: you have the freedom to choose some nice data examples and avoid this case.

Hint: remember in hw3 it is proved that if σ is small enough, the RBF kernel SVM is close to the 1-nearest neighbor predictor. In this problem, σ is fixed, but you have the freedom to choose the data examples. If the distance between data examples is large enough, the RBF kernel SVM could still be close to the 1-nearest neighbor predictor. Make sure to have an explicit construction of such a dataset.

Solution. (Your solution here.)

- (a) For any d, choose n examples on the unit sphere $\{x \in \mathbb{R}^d : ||x|| = 1\}$. Then for any labelings, we can always choose one set of data samples A and define C as the minimum convex hull of A. So \mathcal{F} can shatter any n samples on the unit sphere. Hence, $VC(\mathcal{F}) \geq n$ for all n. So we have $VC(\mathcal{F}) = \infty$.
- (b) Choose n data samples, where $\|\boldsymbol{x}_{1i} \boldsymbol{x}_{1j}\|^2 = \infty$ for any pair of i, j where $i \neq j$. Then construct \mathcal{G}_{σ} by making m = n, and choosing n \boldsymbol{x}_i where $\|\boldsymbol{x}_{2i} \boldsymbol{x}_{1i}\|^2 = c$. c is a constant. Just as HW3, we can devided the indicator function by $\exp\left(-\rho^2/2\sigma^2\right)$ without changing the sign, where $\rho = \|\boldsymbol{x}_{2i} \boldsymbol{x}_{1i}\|^2$. Then the classifier becomes

$$\mathcal{G}_{\sigma} := \left\{ \boldsymbol{x} \mapsto \operatorname{sgn}\left(\frac{\sum_{i=1}^{m} \alpha_{i} \exp\left(-\|\boldsymbol{x} - \boldsymbol{x}_{2i}\|^{2}/(2\sigma^{2})\right)}{\exp\left(-\rho^{2}/2\sigma^{2}\right)}\right) \colon \ m = n, \ \boldsymbol{x}_{1}, \dots, \boldsymbol{x}_{m} \in \mathbb{R}^{d}, \ \boldsymbol{\alpha} \in \mathbb{R}^{m} \right\}.$$

Since $\|x_{1i} - x_{1j}\|^2 = \infty$, we have $\|x_{2i} - x_{1j}\|^2 = \infty$. Hence

$$\boldsymbol{x}_{1i} \mapsto \operatorname{sgn}\left(\alpha_i\right)$$

Hence, for any labelings for a data sample of size n, we can choose α_i the same sign as x_{1i} . So $VC(\mathcal{G}_{\sigma}) \geq n$ and $VC(\mathcal{G}_{\sigma}) = \infty$.

2. Rademacher complexity of linear predictors.

Let examples $(\boldsymbol{x}_1, \dots, \boldsymbol{x}_n)$ be given with $\|\boldsymbol{x}_i\| \leq R$, along with linear functions $\{\boldsymbol{x} \mapsto \boldsymbol{w}^{\mathsf{T}} \boldsymbol{x} : \|\boldsymbol{w}\| \leq W\}$. The goal in this problem is to show $\operatorname{Rad}(\mathcal{F}) \leq \frac{RW}{\sqrt{n}}$.

(a) For a fixed sign vector $\varepsilon \in \{-1, +1\}^n$, define $\boldsymbol{x}_{\varepsilon} := \frac{1}{n} \sum_{i=1}^n \boldsymbol{x}_i \epsilon_i$. Show

$$\max_{f \in \mathcal{F}} \frac{1}{n} \sum_{i=1}^{n} \epsilon_{i} f(\boldsymbol{x}_{i}) \leq W \|\boldsymbol{x}_{\varepsilon}\|.$$

Hint: Cauchy-Schwarz!

- (b) Show $\mathbb{E}_{\varepsilon} || \boldsymbol{x}_{\varepsilon} ||^2 \leq R^2/n$.
- (c) Now combine the pieces to show $\operatorname{Rad}(\mathcal{F}) \leq \frac{RW}{\sqrt{n}}$.

Hint: one missing piece is to write $\|\cdot\| = \sqrt{\|\cdot\|^2}$ and use Jensen's inequality.

Solution. (Your solution here.)

(a)

$$\max_{f \in \mathcal{F}} \frac{1}{n} \sum_{i=1}^{n} \epsilon_{i} f(\boldsymbol{x}_{i}) = \boldsymbol{w}_{optim} \frac{1}{n} \sum_{i=1}^{n} \boldsymbol{x}_{i} \epsilon_{i}$$

$$= \boldsymbol{w}_{optim} \boldsymbol{x}_{\epsilon}$$

$$\leq \|\boldsymbol{w}_{optim}\| \|\boldsymbol{x}_{\epsilon}\|$$

$$\leq W \|\boldsymbol{x}_{\epsilon}\|$$

(b)

$$\begin{split} \mathbb{E}_{\varepsilon} \| \boldsymbol{x}_{\varepsilon} \|^2 &= \mathbb{E}_{\varepsilon} \sum_{j} \left(\frac{1}{n} \sum_{i=1}^{n} \boldsymbol{x}_{ij} \epsilon_{i} \right)^2 \\ &= \frac{1}{n^2} \sum_{j} \mathbb{E}_{\varepsilon} \left(\sum_{i=1}^{n} \boldsymbol{x}_{ij} \epsilon_{i} \right)^2 \\ &= \frac{1}{n^2} \sum_{j} \left(Var(\sum_{i=1}^{n} \boldsymbol{x}_{ij} \epsilon_{i}) + \mathbb{E}_{\varepsilon}^{2}(\sum_{i=1}^{n} \boldsymbol{x}_{ij} \epsilon_{i}) \right) \\ &= \frac{1}{n^2} \sum_{i=1}^{n} \sum_{j} \boldsymbol{x}_{ij}^{2} Var(\epsilon_{i}) \\ &= \frac{1}{n^2} \sum_{i=1}^{n} \| \boldsymbol{x}_{i} \|^2 \\ &\leq \frac{1}{n^2} nR^2 \\ &= \frac{R^2}{n} \end{split}$$

(c)

$$\operatorname{Rad}(\mathcal{F}) = \mathbb{E}_{\varepsilon} \max_{f \in \mathcal{F}} \frac{1}{n} \sum_{i=1}^{n} \epsilon_{i} f(\boldsymbol{x}_{i})$$

$$\leq \mathbb{E}_{\varepsilon} W \|\boldsymbol{x}_{\varepsilon}\|$$

$$= W \sqrt{(\mathbb{E}_{\varepsilon} \|\boldsymbol{x}_{\varepsilon}\|)^{2}}$$

$$\leq W \sqrt{\mathbb{E}_{\varepsilon} (\|\boldsymbol{x}_{\varepsilon}\|^{2})}$$

$$= W \sqrt{\frac{R^{2}}{n}}$$

$$= \frac{WR}{\sqrt{n}}$$

3. Generalization bounds for a few linear predictors.

In this problem, it is always assumed that for any (x, y) sampled from the distribution, $||x|| \le R$ and $y \in \{-1, +1\}$.

Consider the following version of the soft-margin SVM:

$$\min_{\boldsymbol{w} \in \mathbb{R}^d} \quad \frac{\lambda}{2} \|\boldsymbol{w}\|^2 + \frac{1}{n} \sum_{i=1}^n \left[1 - \boldsymbol{w}^\top \boldsymbol{x}_i y_i \right]_+ = \frac{\lambda}{2} \|\boldsymbol{w}\|^2 + \widehat{\mathcal{R}}_{\text{hinge}}(\boldsymbol{w}).$$

Let $\hat{\boldsymbol{w}}$ denote the (unique!) optimal solution, and $\hat{f}(\boldsymbol{x}) = \hat{\boldsymbol{w}}^{\top} \boldsymbol{x}$.

Prove that for any regularization level $\lambda > 0$, with probability at least $1 - \delta$, it holds that

$$\mathcal{R}(\hat{f}) \leq \widehat{\mathcal{R}}(\hat{f}) + R\sqrt{\frac{8}{\lambda n}} + 3\left(1 + R\sqrt{\frac{2}{\lambda}}\right)\sqrt{\frac{\ln(2/\delta)}{2n}}.$$

Hint: use the fact from slide 5/61 of the first ML Theory lecture that $\|\hat{\boldsymbol{w}}\| \leq \sqrt{2/\lambda}$, the linear predictor Rademacher complexity bound from the previous problem, and the Rademacher generalization theorem on slide 57 of the final theory lecture.

Solution. (Your solution here.)

1. First, let's proof Hinge Loss is 1-Lipschitz.

For any w_1 and w_2 , if $w_1 > 1$, then

$$\begin{aligned} |[1 - \boldsymbol{w}_{1}^{\mathsf{T}} x y]_{+} - [1 - \boldsymbol{w}_{2}^{\mathsf{T}} x y]_{+}| &= |[1 - \boldsymbol{w}_{2}^{\mathsf{T}} x y]_{+}| \\ &\leq |[\boldsymbol{w}_{1}^{\mathsf{T}} x y - \boldsymbol{w}_{2}^{\mathsf{T}} x y]_{+}| \\ &\leq |\boldsymbol{w}_{1}^{\mathsf{T}} x y - \boldsymbol{w}_{2}^{\mathsf{T}} x y| \end{aligned}$$

Similarly, we can prove that when $\boldsymbol{w}_2 > 1$, $|[1 - \boldsymbol{w}_1^\intercal xy]_+ - [1 - \boldsymbol{w}_2^\intercal xy]_+| \leq |\boldsymbol{w}_1^\intercal xy - \boldsymbol{w}_2^\intercal xy|$ When $\boldsymbol{w}_1 \leq 1$, $\boldsymbol{w}_2 \leq 1$

$$|[1 - \boldsymbol{w}_{1}^{\mathsf{T}}xy]_{+} - [1 - \boldsymbol{w}_{2}^{\mathsf{T}}xy]_{+}| = |1 - \boldsymbol{w}_{1}^{\mathsf{T}}xy - 1 + \boldsymbol{w}_{2}^{\mathsf{T}}xy|$$
$$= |\boldsymbol{w}_{1}^{\mathsf{T}}xy - \boldsymbol{w}_{2}^{\mathsf{T}}xy|$$

Hence, Hinge Loss using affine f is 1-Lipschitz.

In addition, since $\|\boldsymbol{x}\| \leq R$ and $\|\boldsymbol{w}\| \leq \sqrt{\frac{2}{\lambda}}$, we have $0 \leq [1 - \boldsymbol{w}^{\intercal} \ xy]_{+} \leq 1 + R\sqrt{\frac{2}{\lambda}}$. Hence,

$$\begin{split} \mathcal{R}(\hat{f}) &\leq \widehat{\mathcal{R}}(\hat{f}) + \operatorname{Rad}(\mathcal{F}) + (b - a) \sqrt{\frac{\ln(1/\delta)}{n}} \\ &\leq \widehat{\mathcal{R}}(\hat{f}) + R\sqrt{\frac{2}{\lambda n}} + (1 + R\sqrt{\frac{2}{\lambda}})\sqrt{\frac{\ln(1/\delta)}{n}} \\ &\leq \widehat{\mathcal{R}}(\hat{f}) + R\sqrt{\frac{8}{\lambda n}} + 3\left(1 + R\sqrt{\frac{2}{\lambda}}\right) \sqrt{\frac{\ln(2/\delta)}{2n}}. \end{split}$$