Introduction to Algorithms in Python

Juha Jäykkä

January 11, 2017

Contents

1 Efficient and portable I/O

1

1 Efficient and portable I/O

- You will eventually want to read and write data, too
- Badly implemented I/O can easily take 99% of your run-time!

1.1 Portable I/O

- plain text is portable, but
 - horribly space wasting (unless compressed, which then harms portability)
 - horribly slow as everything needs to be converted
 - * unless your actual calculations are done using letters
 - cannot really be parallelised so in parallel even more slower
- $\bullet\,$ some file formats will be hard or impossible to open on another computer so
- avoid machine dependent I/O, like
 - The unformatted IO in Fortran
 - * unlikely to be efficient
 - * likely to be very hard to open on another machine or Fortran library
 - C's fwrite(data, size, count, file)
 - * with the right size and count this can be very efficient for a single-threaded application
 - * but not very portable: few data types are guaranteed to be equivalent across machines and byte-order can also change
- some good libraries to portable I/O
 - HDF5 is de facto high-performance data format and very standardised

- * cross-language, cross-platform: available in every imaginable system and language!
- * will **not** load the file to memory unless it is sliced or altered: useful for processing files which are too large for your memory if you do not need to alter the data
- netcdf4 is also quite efficient (in fact it's HDF5 underneath)
- sometimes numpy's save, savez and savez_compressed are ok
 - * remember to pass allow_pickle=False to maintain portability
 - * when loading, pass mmap_mode parameter to use memmaped IO: useful for large files when only part of it is needed
 - * but have a look at Blaze, too

1.1.1 numpy can import almost any text file easily

• suppose you have a file like this

```
# This file contains a bunch of point particles of varying locationg, speeds,
# masses and charges
X Y Z Vx Vy Vz mass charge
0 0 0 0 0 0.1 100.0 0.0
1.0 0 4 0 10.0 0 10.0 -1.0
0 2 0 0.1 0 0.1 1000.0 0.0
2 2 -3 0.1 0 0.1 100.0 1.0
# A comment line
```

• you can import this with numpy easily

- please see help(numpy.genfromtxt) for full documentation: the function is capable of ingesting almost any kind of textual data, even strings!
- but it is not fast, no text import ever is
- we'll later show how to plot this

1.2 Performant I/O

- all the above formats can be internally and transparently compressed, which can help save disc space
 - but compression is not magic as we shall see

1.2.1 IO using numpy

```
import numpy
import os
import tempfile
import cProfile
import pstats
data=numpy.random.random((1000,1000,100))
tempfiles = [tempfile.TemporaryFile(dir=".") for i in [0,1,2,3]]
cps = [cProfile.Profile() for i in range(len(tempfiles))]
runs = ["numpy.savez", "numpy.savez_compressed", "numpy.savez_compressed",
        "numpy.savez_compressed"]
for i,r in enumerate(runs):
    if (i==2):
        data[100:900,100:900,30:70]=0.0
    if (i==3):
        data = numpy.ones((1000,1000,100), dtype=numpy.float64)
    cps[i].runcall(eval(r), tempfiles[i], {"array_called_data":data})
print('', 'Time spent and file sizes:
  uncompressed random data:
                              {uncompt:g}\t{uncomps}
  compressed random data:
                              {compt:g}\t{comps}
  compressed semirandom data: {semit:g}\t{semis}
  compressed zeros:
                              {zerot:g}\t{zeros}'', format(
      uncomps=os.stat(tempfiles[0].name).st_size,
      comps=os.stat(tempfiles[1].name).st_size,
      semis=os.stat(tempfiles[2].name).st_size,
      zeros=os.stat(tempfiles[3].name).st_size,
      uncompt=pstats.Stats(cps[0]).total_tt,
      compt=pstats.Stats(cps[1]).total_tt,
      semit=pstats.Stats(cps[2]).total_tt,
      zerot=pstats.Stats(cps[3]).total_tt
  ))
Time spent and file sizes:
  uncompressed random data: 18.5261 1199032850
  compressed random data:
                              150.646 902644270
  compressed semirandom data: 110.384 680404717
  compressed zeros:
                              20.7739 1747540
```

- floating point numbers are often almost random from a compression algorithm's point of view
- \bullet for random data the breakeven point with my laptop is around 6 MB/s disc write speed: slower than that and compression wins
 - unfair comparison since only one core used for compression and the algorithm used is embarrassingly parallel
 - unfair also because the data comes from a fast local SSD: the write speed is over 50 $\rm MB/s$

- in supercomputing environments disc write speeds of 5 GB/s are normal, but that would require compression speed to go up by over 1000x or more to make compression worth while
- but this all depends on both the compression factor and time it takes to compress: the last case obviously benefits even with 50 MB/s disc and single-core compression
- bottom line: only useful in special cases and when disc-space is tight but CPU seconds are not

1.2.2 HDF5 and h5py: writing and transparent compression

- HDF5's szip algorithm is supposed to understand floating point numbers and compress smartly
 - unfortunately we do not have it available here
- learn by example: a simple 3D array of random numbers

```
import numpy
import h5py
import os
import tempfile
import cProfile
import pstats
def h5py_create(filename, datadict, compression):
    '''Create a new HDF5 file called "filename" and save the values of
    "datadict" into it using its keys as the dataset names; create an
   attribute called "compression" holding the value of "compression"
   parameter. ','
   f = h5py.File(filename, mode="w")
   attrvalue = "nothing interesting for now"
   f.attrs.create("top-level-attribute", attrvalue,
   dtype="S{x}".format(
        x=len(attrvalue)))
   for name,value in datadict.items():
        ds = f.create_dataset(name, data=value, compression=compression, chunks=True)
        ds.attrs.create("compression", str(compression),
    dtype="S{x}".format(
        x=len(str(compression))))
   return
def szip_available():
    '''Try to create a dataset using szip: return True if succeeds, False
    on ValueError (szip not available) and raise on others. "
   import tempfile
   tempf = tempfile.NamedTemporaryFile(dir=".")
   f = h5py.File(tempf.name,"w")
   try:
        f.create_dataset("foo", shape=(10,10), dtype="f8", compression="szip")
```

```
except ValueError:
        ret = False
    else:
        ret = True
    finally:
        f.close()
    return ret
data=numpy.random.random((1000,1000,100))
tempfiles = [tempfile.NamedTemporaryFile(dir=".") for i in [0,1,2,3]]
cps = [cProfile.Profile() for i in range(len(tempfiles))]
if (szip_available()):
    comp="szip"
else:
    comp="gzip"
runs = [None] + 3*[comp]
for i,r in enumerate(runs):
    if (i==2):
        data[100:900,100:900,30:70]=0.0
    if (i==3):
        data = numpy.ones((1000,1000,100), dtype=numpy.float64)
    cps[i].runcall(h5py_create, tempfiles[i].name, {"array_called_data":data}, r)
print(''', Time spent writing hdf5 data and file sizes:
  uncompressed random data: {uncompt:g}\t{uncomps}
  {comp} compressed random data:
                                     {compt:g}\t{comps}
  {comp} compressed semirandom data: {semit:g}\t{semis}
  {comp} compressed zeros:
                                     {zerot:g}\t{zeros}''.format(
      uncomps=os.stat(tempfiles[0].name).st_size,
      comps=os.stat(tempfiles[1].name).st_size,
      semis=os.stat(tempfiles[2].name).st_size,
      zeros=os.stat(tempfiles[3].name).st_size,
      uncompt=pstats.Stats(cps[0]).total_tt,
      compt=pstats.Stats(cps[1]).total_tt,
      semit=pstats.Stats(cps[2]).total_tt,
      zerot=pstats.Stats(cps[3]).total_tt,
      comp=comp
  ))
Time spent writing hdf5 data and file sizes:
  uncompressed random data: 0.958511 867455344
  gzip compressed random data:
                                   45.6555 756436309
  gzip compressed semirandom data: 30.6861 564465654
                                   7.04421 2177388
  gzip compressed zeros:
```

1.2.3 Always write huge chunks of data

 \bullet latency is more likely to ruin performance than anything else, so unless you know exactly where the I/O bottleneck is, do big writes into big files, even buffering internally in your code if necessary

- and big writes really means big: a 10 MB write is not a big write, let alone a big file!
- unfortunately, python is not very good at demonstrating this but you can try to compile and run this (available in codes/cpp/chunk_size_effect.c)

```
// This file is generated by org-mode, please do not edit
#define _GNU_SOURCE 1
#define _POSIX_C_SOURCE 200809L
#define _XOPEN_SOURCE 700
#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <time.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>
#define SIZE 1000*1000*100
int main(int argc, char *argv[]) {
  char *file1, *file2;
  if (argc != 3) {
    // please note this is UNSAFE: if such files exist, they will be overwritten
   file1 = "testfile1";
   file2 = "testfile2";
  } else {
   file1 = argv[1];
    file2 = argv[2];
  }
  int fd1 = open(file1, O_WRONLY|O_TRUNC|O_CREAT, S_IRUSR|S_IWUSR);
  int fd2 = open(file2, O_WRONLY|O_TRUNC|O_CREAT, S_IRUSR|S_IWUSR);
  double *data = (double *) calloc(SIZE, sizeof(double));
  struct timespec t1, t2, t3;
  clock_gettime(CLOCK_MONOTONIC, &t1);
  for (int i=0; i<SIZE; i++) {</pre>
    write(fd1, data+i, sizeof(double)*1);
  clock_gettime(CLOCK_MONOTONIC, &t2);
  write(fd2, data, sizeof(double)*SIZE);
  clock_gettime(CLOCK_MONOTONIC, &t3);
  printf("Writing one element at a time took %61i seconds\n", t2.tv_sec-t1.tv_sec);
  printf("Writing all elements at once took %61i seconds\n", t3.tv_sec-t2.tv_sec);
  close(fd1);
  close(fd2);
  return 0;
Writing one element at a time took
                                      102 seconds
Writing all elements at once took
                                       1 seconds
```

- Performant IO is a bit of a dark magic as there are loads of caches on the way from memory to disc and only the limit as file size goes to infinity will measure true IO speed
 - in the above case, my laptop gives 71 and 2 seconds, but 2 s is 4 times the theoretical maximum speed!
- Even more of a dark magic as disc, unlike the CPU, is a shared resource: other users use same discs

1.3 Parallel I/O

- always use parallel I/O for parallel programs
- poor man's parallel I/O
 - every worker writes its own file
 - can be the fastest solution
 - but how do you use those files with different number of workers for e.g. post-processing?
- MPI I/O or MPI-enabled HDF5 library deal with that
 - they can write a single file simultaneously from all workers
 - may do some hardware-based optimisations behind the scenes
 - can also map the writes to the MPI topology
 - needs a bit of a learning curve, unless you chose to use h5py or some other library like it which handles the complexity for you

1.3.1 Parallel IO with PETSc

```
import sys
import time
import numpy
import mpi4py
from mpi4py import MPI
import petsc4py
petsc4py.init(sys.argv)
from petsc4py import PETSc
import tempfile
dm = PETSc.DMDA().create(dim=3, sizes = (-11,-7,-5),
                         proc_sizes=(PETSc.DECIDE,)*3,
                         boundary_type=(PETSc.DMDA.BoundaryType.GHOSTED,)*3,
                         stencil_type=PETSc.DMDA.StencilType.BOX,
                         stencil_width = 1, dof = 1, comm =
                         PETSc.COMM_WORLD, setup = False)
dm.setFromOptions()
dm.setUp()
vec1 = dm.createGlobalVector()
vec1.setName("NameOfMyHDF5Dataset")
```

```
vec2 = vec1.duplicate()
vec2.setName("NameOfMyHDF5Dataset")
fn = tempfile.NamedTemporaryFile()
vwr=PETSc.Viewer().createHDF5(fn.name, mode=PETSc.Viewer.Mode.WRITE)
vec1.view(vwr)
vwr.destroy()
vwr=PETSc.Viewer().createHDF5(fn.name, mode=PETSc.Viewer.Mode.READ)
vec2.load(vwr)
print("Are they equal? " + ["No!", "Yes!"][vec1.equal(vec2)])
```

Are they equal? Yes!

 if you ran this in parallel using parallel HDF5 library, you just got all the hard bits for free

1.3.2 Parallel IO with h5py

• note that running this in the frontend uses just one rank

```
import mpi4py
from mpi4py import MPI
import h5py
import tempfile
import os
import array
if (MPI.COMM_WORLD.rank == 0):
    temp="files/hdf5_visualisation_example.h5"
else:
    temp=""
KEEP_ME_AROUND = MPI.COMM_WORLD.bcast(temp, root=0)
rank = MPI.COMM_WORLD.rank
f = h5py.File(KEEP_ME_AROUND, "w", driver="mpio", comm=MPI.COMM_WORLD)
dset = f.create_dataset("test", (4,), dtype="f8")
dset[rank] = rank
f.close()
```

• running it from the shell with mpirun will use more ranks

%%bash

mpirun -np 4 python codes/python/parallel_io_h5py.py

• performance might still be bad, because

1.4 Know your filesystem

- \bullet typical HPDA/HPC system will have a high bandwith, high latency parallel file system where big files should go
- most common is Lustre
 - one often needs to set up a special directory on Lustre for very high bandwidth operations

- files are $\it striped$ onto different pieces of hardware (OSTs) to increase bandwidth
- can be tricky as both the number of active OSTs and number of writers in code affect the bandwidth
- in our example, we did not use a distributed file system, so parallellism gave no benefit
 - sorry about that, we would have needed to arrange supercomputer access to demonstrate this: will do on a later course

1.5 Checkpointing

- Your code should be able to do this on its own to support solving the problem by running the code several times: often not possible to obtain access to a computer for long enough to solve in one go.
- Basically, you save your iterate or current best estimate solution and later load it from file instead of using random or hard coded initial conditions.

1.6 Exercises

1.6.1 Experiment with different way so saving a 100x100x100 numpy array

Unfortunately cannot speed-test these easily, but try at least

- 1. On your own
- 2. numpy functions
- 3. h5py

1.6.2 Memmapped IO

- Sometimes your file is too big to load into memory, memmap is then your friend
- Files which have been memmapped, are only loaded into memory a small chunk at a time as it is needed
- But they look like normal files to whoever is using them
- Use h5py's memmap mode and numpy's memmap mode to process (does not matter what you do with it, perhaps just add one) the file you saved above
 - nothing in your code would change if you needed to process the largest file in the world