IIT-JEE CHEMISTRY

Electrode potential, Ecell, Nernt equation and ECS

- 51. Amongst the following electrodes the one with zero electrode potential is
 - (a) Calomel electrode
 - (b) Standard hydrogen electrode
 - (c) Glass electrode
 - (d) Gas electrode
- 52. Which of the following is correct expression for electrode potential of a cell

(a)
$$E = E^o - \frac{RT}{nF} ln \frac{[product]}{[reactant]}$$

(b)
$$E = E^o + \frac{RT}{F} ln \frac{[product]}{[reactant]}$$

(c)
$$E = E^o - \frac{RT}{nF} ln \frac{[\text{reactant}]}{[\text{product}]}$$

(d)
$$E = -\frac{RT}{F} ln \frac{[product]}{[reactant]}$$

change for the reaction $\frac{1}{2}\mathcal{C}u(s)$ +

$$\frac{1}{2}Cl_2(g) \rightleftharpoons \frac{1}{2}Cu^{2+} + Cl^-$$
 taking place at 25^oC in a cell whose standard e.m.f. is 1.02 *volts*

- (a) 98430 J
- (b) 98430 *J*
- (c) 96500 J
- (d) -49215 J

- 54. In which cell the free energy of a chemical reaction is directly converted into electricity?
 - (a) Leclanche cell
 - (b) Concentration cell
 - (c) Fuel cell
 - (d) Lead storage battery
- 55. Nernst equation is related with
 - (a) The electrode potential and concentration of ions in the solution
 - (b) Equilibrium constant and concentration of ions
 - (c) Free energy change and E.M.F. of the cell
 - (d) None of these
- 56. The standard reduction potentials of 4 elements are given below. Which of the following will be the most suitable reducing agent

$$I = -3.04 \ V$$
, $II = -1.90 \ V$, $III = 0 \ V$, $IV = 1.90 \ V$

(a) I

- (b) II
- (c) III
- (d) IV
- 57. Electrode potential data are given below:

$$Fe^{3+}(aq) + e^{-} \rightarrow Fe^{-1}(aq); E^{o} = +0.77V$$

$$Al^{3+}(aq) + 3e^{-} \rightarrow Al(s); E^{o} = -1.66V$$

$$Br_2(aq) + 2e^- \rightarrow 2Br^-(aq); E^o = +1.08V$$

ELECTROCHEMISATRY

Based on the data given above, reducing power of Fe^{2+} , Al and Br^- will increase in the order

(a)
$$Br^- < Fe^{2+} < Al$$

(b)
$$Fe^{2+} < Al < Br^{-}$$

(c)
$$Al < Br^- < Fe^{2+}$$

(d)
$$Al < Fe^{2+} < Br^{-}$$

58. The standard electrode potential (E^o)

for OCl^-/Cl^- and $Cl^-/\frac{1}{2}Cl_2$ respectively are 0.94V and -1.36V .

The E^o value for $OCl^-/\frac{1}{2}Cl_2$ will be

- (a) -0.42V
- (b) -2.20V
- (c) 0.52V
- (d) 1.04V
- 59. If the reduction potential is more, then
 - (a) It is easily oxidised
 - (b) It is easily reduced
 - (c) It acts as oxidising agent
 - (d) It has redox nature
- 60. One of the following is false for Hg
 - (a) It can evolve hydrogen from H_2S
 - (b) It is a metal
 - (c) It has high specific heat
 - (d) It is less reactive than hydrogen
- 61. E^o for the cell $Zn|Zn^{2+}(aq)||Cu^{2+}(aq)||Cu$ is 1.10V at 25^oC , the equilibrium constant for

the reaction $Zn + Cu^{2+}(aq) \rightleftharpoons Cu + Zn^{2+}(aq)$ is of the order of

- (a) 10^{-28}
- (b) 10^{-37}
- (c) 10^{+18}
- (d) 10^{+17}
- 62. Standard reduction potentials at $25^{o}C$ of $Li^{+}|Li,Ba^{2+}|Ba,Na^{+}|Na$ and $Mg^{2+}|Mg$ are -3.05,-2.90,-2.71 and -2.37 *volt* respectively. Which one of the following is the strongest oxidising agent
 - (a) Na^+
- (b) Li^+
- (c) Ba^{2+}
- (d) Mg^{2+}
- 63. Which of the following displaces Br_2 from an aqueous solution containing bromide ions
 - (a) Cl_2
- (b) Cl^-

(c) I_2

- (d) I_3^-
- 64. For the cell reaction

 $Cu^{2+}(C_1aq) + Zn(s) = Zn^{2+}(C_2aq) + Cu(s)$ of an electrochemical cell, the change in free energy at a given temperature is a function of

- (a) $\ln (C_1)$
- (b) $\ln (C_2)$
- (c) $\ln (C_1 + C_2)$
- (d) $\ln (C_2/C_1)$
- following reaction $Zn(s) + Ni^{2+}(a = 1.0) \rightleftharpoons Zn^{2+}(a = 10) + Ni(s)$ occurs, is found to be 0.5105V at $298 \rightleftarrows K$. The standard e.m.f. of the cell is

IIT-JEE CHEMISTRY

- (a) 0.5400
- (b) 0.4810 V
- (c) 0.5696 V
- (d) 0.5105 V
- 66. For the redox reaction Zn(s) + $Cu^{2+}(0.1M) \rightarrow Zn^{2+}(1M) + Cu(s)$ taking place in a cell, E_{cell}^o is 1.10 volt.

 E_{cell} for the cell will be $\left(2.303 \frac{RT}{F}\right)$

0.0591

- (a) 2.14 volt
- (b) 1.80 volt
- (c) 1.07 volt
- (d) 0.82 volt
- 67. The *emf* of a Daniel cell at 298K is E_1 $Zn|ZnSO_4||CuSO_4|Cu \qquad \text{when} \qquad \text{the}$ ${}^{(0.01M)}{}^{(0.01M)}{}^{(1.0M)}$

concentration of $ZnSO_4$ is 1.0 M and that of $CuSO_4$ is 0.01 M, the *emf* changed to E_2 . What is the relationship between E_1 and E_2

- (a) $E_2 = 0 \neq E_1$
- (b) $E_1 > E_2$
- (c) $E_1 < E_2$
- (d) $E_1 = E_2$
- 68. The oxidation potentials of following half-cell reactions are given $Zn \rightarrow Zn^{2+} + 2e^-$; $E^o = 0.76V$, $Fe \rightarrow Fe^{2+} + 2e^-$; $E^o = 0.44V$ what will be the *emf* of cell, whose cell-reaction is $Fe^{2+}(aq) + Zn \rightarrow Zn^{2+}(aq) + Fe$
 - (a) 1.20 V
- (b) + 0.32 V
- (c) 0.32 V
- (d) + 1.20 V

- 69. The E^o for half cells Fe/Fe^{2+} and Cu/Cu^{2+} are 0.44 V and + 0.32 V respectively. Then
 - (a) Cu^{2+} oxidises Fe
 - (b) Cu^{2+} oxidises Fe^{2+}
 - (c) Cu oxidises Fe^{2+}
 - (d) Cu reduces Fe^{2+}
- 70. What is E^o for electrode represented by Pt, $O_2(1atm)/2H^+(Im)$
 - (a) Unpredictable
- (b) Zero
- (c) 0.018 V
- (d) 0.118 V
- 71. The cell potential of a cell in operation is
 - (a) Zero
 - (b) Positive
 - (c) Negative
 - (d) None of the above
- 72. Which of the following is displaced by Fe
 - (a) Ag
- (b) Hg
- (c) Zn
- (d) *Na*
- 73. The standard electrode potential of the half cells are given below $Zn^{2+} + 2e^- \rightarrow Zn$; E = -7.62V, $Fe^{2+} + 2e^- \rightarrow Fe$; E = -7.81V

The *emf* of the cell $Fe^{2+} + Zn \rightarrow Zn^{2+} + Fe$ is

- (a) 1.54 V
- (b) -1.54 V
- (c) 0.19 V
- (d) + 0.19 V

74.
$$Zn^{2+} + 2e^{-} \rightarrow Zn(s); E^{o} = -0.76$$

 $Fe^{3+} + e^{-} \rightarrow Fe^{2+}; E^{o} =$
 $-0.77, Cr^{3+} + 3e^{-} \rightarrow Cr; E^{o} = -0.79,$
 $H^{+} + 2e^{-} \rightarrow 1/2H_{2}; E^{o} = 0.00$

Strongest reducing agent is

- (a) Fe^{2+}
- (b) Zn
- (c) Cr
- (d) H_2
- Standard reduction electrode potentials of three metals A, B and C are respectively +0.5V, -3.0V and -1.2V. The reducing powers of these metals are
 - (a) B > C > A
- (b) A > B > C(d) A > C > B
- (c) C > B > A

