Introduction to Computer Science and Media Computation, part 2

Lecture 2

What Computers Understand

Source Dielectric Drain

p-type intrinsic n-type

semiconductor wafer

- Encoding: eight "bits" == one "byte"
 - "bit" means "binary digit"
- Computery numbers
 - 256
 - 512
 - 1024

Digital Media

Source Dielectric Drain

p-type intrinsic n-type

semiconductor wafer

Moore's Law:
 Computer power
 doubles for the
 same price every 1.5
 years

Programming as a Process

Need to know:

- How to write the instructions "source code"
- How to convert source code → machine code "interpret", "compile"
- How to run the machine code "execute"

Choices

- Where and when
- Capabilities
- Skills

Interpreted and Compiled Languages

Compiled

- 1. Source code
- 2. Run compiler; create the executable
- 3. Distribute and run the executable

Interpreted

- 1. Source code
- 2. Distribute
- 3. Interpret

Ready to run, but not portable
Optimized; runs faster
Private source code (proprietary)

Cross-platform (portable)
Simpler/faster to write source
Runs slower
Open source only

Third option: hybrid

- Both compiled and Interpreted
- Intermediate Language, a.k.a. Byte Code
- Just In Time (JIT) compilation

Compiled

- C
- C++
- Objective-C

Interpreted

- PHP
- JavaScript

Hybrid

- Java
- C#
- .NET
- Python

Media Computation: Why Digitize Media?

- The physical world (five senses) →
- 0s and 1s \rightarrow
- store/recall | manipulate | transmit →
- The physical world (five senses)

- Understand: physics and psychophysics
 - A whisper in a symphonic performance
 - An entire room in a photograph

Avis

Computer Science for Everyone

- It's About Communication
- It's About Process
- You Will Probably Need It

