On Deciding β' from an \mathcal{H} Machine Through a Self Validating Process

Mark Inman, Ph.D.

February 27, 2015

Abstract

This paper contains a description for the configuration of a self-validating Turing Machine. This description allows such a machine to solve for β' .

1

1.1 Introduction

This paper contains a description for the configuration of a self-validating Turing Machine. Solving for β' is the equivalent to finding an exception to diagonalization.

1.2 Preliminaries

The terms $Circular\ Machine$ and $Circle-free\ Machine$ are no longer used by convention. However, it is convenient to note here that a $Circular\ Machine$ is unsatisfactory due to it's inability to continue based on the rules of a Universal Turing Machine, \mathscr{U} , set forth in Turing's Paper on the Entscheidungsproblem. In addition, a $Circle-free\ Machine$ is satisfactory based on those same rules and an ability to continue enumerating a calculation set. [1]

A Standard Description or S.D. is the rule set for any given Turing Machine \mathcal{M} in a standard form. By creating a standard, the rule sets themselves can be used to create a Description Number or D.N. which itself is readable by a Universal Turing Machine, \mathcal{U} , as an instruction set. [1]

From Turing's paper: "Let \mathscr{D} be the Turing Machine which when supplied with the Standard Description (S.D.) of any computing machine \mathscr{M} will test this S.D. and if \mathscr{M} is circular will mark the S.D. with the symbol "u" and if it is circle free, will mark it with 's' for 'unsatisfactory' and 'satisfactory' respectively. By combining machines \mathscr{D} and \mathscr{U} , we could construct a machine \mathscr{H} to compute the sequence of β '" [1] \mathscr{H} is circle free by construction since each section after the Turing machine moves to the next section, is itself finite and the calculations should take a finite number of steps. [1]

It is not in the scope of this paper to provide an in depth description of computable numbers and their processing. The only additional preliminary is that one accepts the Church-Turing thesis that says every function which is calculable, is a computable function. For an in depth understanding of Turing Machines,

the Universal Turing Machine and the history behind it's development, please read *The Annotated Turing* by Charles Petzold. [1]

1.3 Turing's Claim

In the eighth section of Turing's paper on the Entscheidungsproblem, Turing claims that β' can not be determined vis a vis the following reason:

"The instructions for calculating the R(K)-th [figure] would amount to 'calculate the first R(K)-th figures computed by \mathscr{H} and write down the R(K)-th'. This R(K)-th would never be found. I.e. \mathscr{H} is circular..." [1]

This is because, since \mathscr{H} relies on subroutines, when it reaches and tries to evaluate K, it must call itself, which provides instructions on reading inputs from 1 to K-1 in order to call the R(K)-th figure, but it can never get there, because it keeps repeating it's own instruction loop. [1] The question is, however, is there a Turing Machine which can recognize itself arbitrarily when it reaches it's own Description Number (D.N.), such that \mathscr{H} prints β' ?

2

2.1 Supermachine

Now, let us determine that \mathscr{H}' is a controller machine with a D.N. of K'. It controls two different \mathscr{H} machines: \mathscr{H}_0 and \mathscr{H}_1 . \mathscr{H}_0 and \mathscr{H}_1 have the same ability to determine "u" or "s", except \mathscr{H}_0 tests as Turing describes, from 1 counting upwards and \mathscr{H}_1 tests tests from the twos complement of whatever number is being tested by \mathscr{H}_0 and subtracts one instead of adding one to find the next number. They take each input simultaneously until the controller machine finds a redundancy. They each have a unique D.N. of K_0 or K_1 through an identifier string which differentiates the two \mathscr{H} machines from each other. The key requirements for \mathscr{H}' include storing output value pairs from the two connected \mathscr{H} machines, recognizing redundancies and recognizing when a redundancy is met with an existing nil key value on the input.

Let \mathscr{H}_s be the supermachine that is the combination of all three \mathscr{H} Machines and K_s is the D.S. for the supermachine.

Initialize the identifier strings such that $K_1 < K_0$.

Let the number of bits in the two complement be determined by n number of bits in K_0 .

Let the twos complement be the number $c=2^n-1$, If $c-K_0>K_1$, then re-initialize the identifier string in either K_0 or K_1 such that $c-K_0< K_1$. This guarantees that \mathscr{H}_0 will read K_1 before \mathscr{H}_1 reads K_1 and also guarantees \mathscr{H}_1 will read K_0 before \mathscr{H}_0 reads K_0 . When the machines have determined the field, let the controller \mathscr{H}^* contain a controller function which stores the value pairs of \mathscr{H}_0 and \mathscr{H}_1 , checks for a redundancy on the input and proceeds to utilize machine \mathscr{H}_0 to proceed upwards from c+1.

¹by recognizing itself arbitrarily, we mean that it can recognize itself even if K is dynamic and changes as the program continues to run, or there is no initializer that feeds a static K to be recognized by a sngle read instruction that skips K and just rubber stamps apportal.

At this point it should be noted that the \mathscr{H}' controller takes it's instructions from \mathscr{H}_0 and \mathscr{H}_1 .

2.2 β' is Decidable

Proof. At the point K' is received as an input, it is determined satisfactory by either \mathcal{H}_0 or \mathcal{H}_1 without calling either machine.

Finally, K_s , which describes the super machine \mathscr{H} is read by \mathscr{H}' and like all other strings, is stored with a value of nil until \mathscr{H}_0 or \mathscr{H}_1 returns a value for β' at that location. K_s is sent to be verified by \mathscr{H}_0 , which when \mathscr{H}' calls K_s under the iteration, is recognized as redundant by \mathscr{H}' in the data store, but because th value is already written as null, the controller stores the fact this process occurred, sends the same K_s to \mathscr{H}_1 , which verifies the redundancy and nil value. \mathscr{H}' now self-verifies the input K_s as it's current operating D.N., provides a value of "s" and moves to evaluate section $K_s + 1$.

Therefore, β' is decidable for any Description Number given some \mathscr{H} Machine.

References

[1] Charles Petzold *The Annotated Turing* 2008: Wiley Publishing, Indianapolis, IN.