

Universidade Federal de Viçosa Centro de Ciências Exatas Departamento de Matemática

MAT 140 - Cálculo I 2016/I Gabarito da $2^{\underline{a}}$ Lista - Limites e Continuidade

1.
$$(a) -9$$

(c)
$$\frac{1}{10}$$

(e)
$$-2$$

(g) 4
(h)
$$\frac{1}{2}$$

(i)
$$\frac{3}{2}$$

(b)
$$\frac{5}{4}$$

$$(d) -1$$

(f)
$$\frac{4}{3}$$

2. (a) O gráfico de
$$f$$
 é:

(b)
$$\lim_{x \to 2^+} f(x) = 2 \text{ e } \lim_{x \to 2^-} f(x) = -1.$$

- (c) Não existe o limite $\lim_{x\to 2} f(x)$.
- 3. (a) O gráfico de f é:

(b)
$$\lim_{x\to 2^+} f(x) = 1 \lim_{x\to 2^-} f(x) = 1 \text{ e } f(2) = 2.$$

- (c) Existe $\lim_{x\to 2} f(x)$ e $\lim_{x\to 2} f(x) = 1$.
- 4. (a) O gráfico de f é:

- (b) $\lim_{x \to -2^+} f(x) = 0$, $\lim_{x \to -2^-} f(x) = 0$ e f(-2) = 1.
- (c) Existe o limite $\lim_{x\to -2} f(x)$ e $\lim_{x\to -2} f(x) = 0$.
- (d) $\lim_{x \to -1^+} f(x) = -1$, $\lim_{x \to -1^-} f(x) = -1$ e f(-1) = -1.
- (e) Existe $\lim_{x \to -1} f(x)$ e $\lim_{x \to -1} f(x) = -1$.
- (f) $\lim_{x \to 0^+} f(x) = 1$, $\lim_{x \to 0^-} f(x) = -1$ e f(0) = 0.
- (g) Não existe o limite $\lim_{x\to 0} f(x)$.
- 5. (a) 1

(b) -1

(c) $\sqrt{2}$

(d) $-\sqrt{2}$

6. (a) 1

(c) 0

(e) 2

(g) $\frac{3}{8}$

(b) a

(d) $\frac{1}{2}$

 $(f) \ \frac{1}{2}$

7. (a) $\frac{2}{5}$

(d) 0

(g) $\frac{1}{2}$

 $(j) -\infty$

(b) 7

(e) 0

(h) 3

 $(k) -\infty$

(c) 0

(f) 0

(i) $+\infty$

(l) $+\infty$

- 8. $c = -1 \text{ e } L = \frac{5}{2}$.
- 9. $\lim_{x \to 4} f(x) = 7$.
- 10. Neste exercício, considere $\lim_{x\to 2} \frac{f(x)}{x^2} = 1$. Então: $\lim_{x\to 2} \frac{f(x)}{x} = 2$ e $\lim_{x\to 2} f(x) = 4$.
- 11. $\lim_{x \to 0} f(x) = \sqrt{5}$.
- 12. $\lim_{x \to 0} f(x) = 2$.

- 13. $\lim_{x \to 0} \frac{f(x^3)}{x} = 0.$
- 14. $\lim_{x \to 0} f(x) = 0$ e $\lim_{x \to 0} \left(f(x) \cos\left(\frac{1}{x + x^2}\right) \right) = 0$.
- 15. Neste exercício, considere $0 \le g(x) \le 1 + |senx|$, para qualquer $x \in \mathbb{R}$. Então: $\lim_{x \to 0} (f(x) g(x) + g(x)) = 0$ cosx) = 1.
- 16. (a) f não é contínua em x = 0.
- (c) f é contínua em x=2.
- (b) f não é contínua em x = 1.
- 17. (a) f é contínua em \mathbb{R} .

(d) f é contínua em $\mathbb{R} \setminus \{-2\}$.

(b) f é contínua em $\mathbb{R} \setminus \{1\}$.

(e) f é contínua em $\mathbb{R} \setminus \{3\}$.

- (c) f é contínua em \mathbb{R} .
- 18. (a) a = 6

- (b) $a = \frac{3}{2}$ (c) $a = \frac{4}{3}$
- (d) Neste exercício, considere $f(x)=\left\{\begin{array}{ccc} a^2x-2a & \text{se} & x\geq 2\\ 12 & \text{se} & x<2 \end{array}\right.$. Você deverá encontrar a=1-2 e a = 3.
- (e) Neste exercício, considere $f(x)=\left\{ \begin{array}{lll} -2 & \text{se} & x\leq -1\\ ax-b & \text{se} & -1< x<1 \end{array} \right.$ Você deverá encontrar 3 se $x\geq 1$ $a = \frac{5}{2} e b = -\frac{1}{2}.$
- 19.
- 20.