Polarkoordinater for komplekse tall

Polarkoordinatene kan bl.a. brukes til å finne en geometrisk tolkning av kompleks multiplikasjon. Se senere.

Polarkoordinatene v og O til et komplekst tall.

$$V = avstand$$
 fra z til origo = $\sqrt{a^2 + b^2}$

0 = vinkel mot klokken requet fra første akse, målt i RAD.

Vi har
$$\frac{\alpha}{r} = \cos \theta$$
, so $\alpha = r \cos \theta$
 $\frac{b}{r} = \sin \theta$, so $b = r \sin \theta$

Ergo:
$$2 = a + bi = (rcos \theta) + (rsin \theta)i$$

eks Finn polarkoordinatere til 2 = 53 + i = 53 + 1.i

Løsn. Lurt å tegne figur.

Pyt:
$$r^2 = (\sqrt{3})^2 + 1^2$$

= 3 + 1 = 4
 $r = 2$

 $S_{a}^{\circ} \Theta = 30^{\circ} = \frac{\pi}{6}$

Polarkoordinatene til 2 er $(r, \theta) = (2, \frac{\pi}{6})$

Komplekse tall på eksponentiell form z=reid

Man kan vise (Kalkulus setning 12.8.2) at for alle reelle tall x gjelder ($4! = 4 \cdot 3 \cdot 2 \cdot 1$)

$$e^{x} = \left[+ x + \frac{x^{2}}{2!} + \frac{x^{3}}{3!} + \frac{x^{4}}{4!} + \dots \right]$$

$$\sin x = x - \frac{3!}{x^3} + \frac{x}{5!} - \frac{x^{\frac{1}{2}}}{x^{\frac{1}{2}}} + \dots$$

$$\cos x = \left[-\frac{x^2}{2!} + \frac{x^4}{4!} - \frac{x^6}{6!} + \cdots \right]$$

Hvis rekkene skal gjelde med $x = i\theta$, får vi

$$e^{i\theta} = \left[+ i\theta + \frac{(i\theta)^{2}}{2!} + \frac{(i\theta)^{3}}{3!} + \frac{(i\theta)^{4}}{4!} + \frac{(i\theta)^{5}}{5!} + \dots \right]$$

$$= \left[+ i\theta - \frac{\theta^{2}}{2!} - i\frac{\theta^{3}}{3!} + \frac{\theta^{4}}{4!} + i\frac{\theta^{5}}{5!} + \dots \right]$$

$$= \left[\left[- \frac{\theta^{2}}{2!} + \frac{\theta^{4}}{4!} - \dots \right] + i\cdot \left(\theta - \frac{\theta^{3}}{3!} + \frac{\theta^{5}}{5!} - \dots \right)$$

$$= \cos \theta + i\cdot \sin \theta$$

Figur:

Dermed gjær vi følgende definisjon:

$$re^{i\theta} = r \cdot e^{i\theta} = r \left(\cos\theta + i\sin\theta\right)$$

$$= \left(r\cos\theta\right) + i\left(r\sin\theta\right)$$

Figur:

À skrive et komplekst tall 2 på formen 2 = re i , kalles å skrive 2 på eksponentiell form.

eks. Skriv $z = -1 + \sqrt{3}i$ på formen $z = re^{i\theta}$ Løsn. Figur: r = 2 r

Teorem 3.2.3 (Caspar Wessel, 1797)
Huis $z_1 = r_1 e^{i\theta_1}$ og $z_2 = r_2 e^{i\theta_2}$, så er $z_1 \cdot z_2 = (r_1 r_2) e^{i(\theta_1 + \theta_2)}$

Bevis

$$\lambda \theta_1 \quad \lambda \theta_2 \quad \lambda \theta_1 \quad \lambda \theta_2$$
 $\lambda \theta_1 \quad \lambda \theta_2 \quad \lambda \theta_1 \quad \lambda \theta_2$
 $\lambda \theta_1 \quad \lambda \theta_2 \quad \lambda \theta_1 \quad \lambda \theta_2$
 $\lambda \theta_1 \quad \lambda \theta_2 \quad \lambda \theta_1 \quad \lambda \theta_2$
 $\lambda \theta_1 \quad \lambda \theta_2 \quad \lambda \theta_1 \quad \lambda \theta_2$
 $\lambda \theta_1 \quad \lambda \theta_2 \quad \lambda \theta_1 \quad \lambda \theta_2$
 $\lambda \theta_1 \quad \lambda \theta_2 \quad \lambda \theta_1 \quad \lambda \theta_2$
 $\lambda \theta_1 \quad \lambda \theta_2 \quad \lambda \theta_1 \quad \lambda \theta_2$
 $\lambda \theta_1 \quad \lambda \theta_2 \quad \lambda \theta_1 \quad \lambda \theta_2$
 $\lambda \theta_1 \quad \lambda \theta_2 \quad \lambda \theta_1 \quad \lambda \theta_2$
 $\lambda \theta_1 \quad \lambda \theta_2 \quad \lambda \theta_1 \quad \lambda \theta_2$
 $\lambda \theta_1 \quad \lambda \theta_2 \quad \lambda \theta_2 \quad \lambda \theta_2$
 $\lambda \theta_1 \quad \lambda \theta_2 \quad \lambda \theta_3$
 $\lambda \theta_1 \quad \lambda \theta_2 \quad$

eks. Z = 1+i 2 = -2 + 2i Skal regne ut z. Zz på to ulike måter. Mak 1: $\frac{2}{2}, \frac{1}{2} = \frac{\pi}{4}$ $= -2 + 2/i - 2/i + 2/i^{2}$ = -43,32 $V_2 = \sqrt{4 + 4} = \sqrt{8}$ $\Theta_2 = \frac{3\pi}{4}$ $V_1 = \sqrt{1^2 + 1^2} = \sqrt{2}$ $V_2 = \sqrt{4 + 4} = \sqrt{8}$ $V_3 = \sqrt{4 + 4} = \sqrt{8}$ $V_4 = \sqrt{8}$ V_4 $= \sqrt{2} \cdot \sqrt{8} e^{\lambda \left(\frac{\pi}{4}\right) + \lambda \left(\frac{3\pi}{4}\right)}$ $=\sqrt{2.8} e^{i\pi} = 4e^{i\pi}$ $= 4\left(\cos\pi + i\sin\pi\right) = -4$ Merk at $e^{i\pi} = -1$, dvs. $e^{i\pi} + 1 = 0$

eks.
$$z = 2 + 3\pi$$
 gir $\bar{z} = 2 - 3\pi$

eks. $\bar{\lambda}^3 \left(-7 + 6\pi \right) = -7\pi^3 + 6\pi^4 = -7\pi^2 + 6\pi^2 + 6\pi^2 + 6\pi^2 = 6 - 7\pi$
 $= 7\pi + 6 = 6 + 7\pi = 6 - 7\pi$

Merk:
$$\overline{2} \cdot \overline{2} = (a + bi) \cdot (a - bi)$$

$$= (a^2 + bia - abi - b^2 i^2)$$

$$= a^2 + b^2 = r^2$$
So huis $\overline{2} = re$, er $\overline{2} \cdot \overline{2} = r^2$

Teorem 3.1.5

(i)
$$\overline{z} + \overline{w} = \overline{z + w}$$
 (ii) $\overline{z} \cdot \overline{w} = \overline{z \cdot w}$ (iii) $\overline{z} \cdot \overline{w} = \overline{z \cdot w}$

Bevis: Oppgave 3.1.8.

August 26, 2016 22082016.notebook

Divisjon av komplekse fall For å finne $\frac{2}{w}$, gang med \overline{w} oppe og nede på brøken.

$$\frac{5+\lambda}{4-3\lambda} = \frac{(5+\lambda)\cdot(4+3\lambda)}{(4-3\lambda)\cdot(4+3\lambda)} = \frac{20+4\lambda+15\lambda-3}{16-12\lambda+12\lambda-9\lambda^2} = \frac{17+19\lambda}{25} = \frac{17}{25} + \frac{19}{25}\lambda$$

Definisjon
$$\frac{\partial e^{finisjon}}{\partial z^{-1}} = \frac{1}{z^{n}} \quad \text{for hele fall } n = 1, 2, 3, ...$$

$$e^{ks} \cdot \lambda^{-1} = \frac{1}{\lambda} = \frac{1}{0+1\lambda} = \frac{1\cdot(0-1\lambda)}{(0+1\lambda)(0-1\lambda)}$$

$$= \frac{-\lambda}{\lambda(-\lambda)} = \frac{-\lambda}{1} = -\lambda$$

Begrunnelse: Se snart.

eks. Uttrykk
$$\cos 2\theta$$
 og $\sin 2\theta$ ved $\cos \theta$ og $\sin \theta$
Løsn. $\cos 2\theta + i \sin 2\theta = (\cos \theta + i \sin \theta)^2$
 $= (\cos \theta + i \sin \theta) \cdot (\cos \theta + i \sin \theta)$
 $= \cos^2 \theta + i \sin \theta \cos \theta + i \cos \theta \sin \theta - \sin^2 \theta$
 $= (\cos^2 \theta - \sin^2 \theta) + (2 \sin \theta \cos \theta) i$
Ergo $\cos 2\theta = \cos^2 \theta - \sin^2 \theta$ og $\sin 2\theta = 2 \sin \theta \cos \theta$.

Teorem
$$e \cdot e = e$$
 for alle komplekse tall $\frac{2}{2}$ og $\frac{1}{2}$ $\frac{1}{2}$

(Delle gir også det vi manglet for å begranne De Moivres formel)

Geometri i det komplekse planet C

this z = re, så er r austanden fra z til origo, dus. r er lengden av vektoren z Ofte skriver man r = [z]

[z] kalles modulusen til z

Kompleks frekantulikhet

For alle $z, w \in C$ gielder $|z+w| \leq |z| + |w|$

Austand i det kompkkse planet

[2-w] er austanden fra z fil w

eks. Skisser delmengden av \mathbb{C} gitt ved $\left\{ z : \left| z - 2 \right| \leq \left| z - 2 - 4i \right| \right\}$

Losn. Trix: $\left| \frac{2}{2} - 2 - \frac{4}{i} \right| = \left| \frac{2}{2} - \left(2 + \frac{4}{i} \right) \right| = \begin{cases} \text{austanden fra } 2 \\ \text{ti punklet} \end{cases}$ $2 + \frac{4}{i}$

|2-2| = austanden fra z til punktet 2 = 2+0i

Løse likninger med komplekse fall som ukjente

eks.
$$3i + 10i - iii = 8i$$

Vi regner vanlig:
 $[0i - 8i - iii = -3i$
 $[2-ii]i = -3i$
 $2 = \frac{-3i}{2-i} = \frac{trix}{(2-i)(2+i)}$
 $= \frac{-6i - 3i^2}{4-i^2} = \frac{-6i + 3}{5}$
 $= \frac{3}{5} - \frac{6}{5}i$