

17ª SEMANA NACIONAL

DE CIÊNCIA E TECNOLOGIA

INTELIGÊNCIA ARTIFICIAL: A NOVA FRONTEIRA DA CIÊNCIA BRASILEIRA

#SNCTMCTI

EDIÇÃO 2020

Usando o Labview para conhecer a missão Cubesat RaioSat

Lázaro Aparecido Pires de Camargo Divisão de Pequenos Satélites - DIPST Instituto Nacional de Pesquisas Espaciais — INPE São José dos Campos - SP

Contéudo:

- Missão Cubesat RaioSat

- Uma breve introdução ao LabView

- Simulando alguns funções da missão RaioSat com o LabView

O que vamos precisar???

LabVIEW Community Edition

https://www.ni.com/pt-br/shop/labview/select-edition/labview-community-edition.html

https://github.com/lazarocamargo/RaioSat_Labview

Simulando alguns funções da missão RaioSat com o LabView

Missão RaioSat

A missão RaioSAT pretende detectar simultaneamente descargas atmosféricas que ocorrem no céu (sem atingirem o solo), denominadas genericamente de intra-nuvem (IN), e descarga que efetivamente atingem o solo, denominadas genericamente de nuvem-solo (NS). A combinação dessas duas informações é chamada de dados de descargas atmosféricas totais.

Objetivos e relevância científica/tecnológica da proposta

Naccarato, K. P., Pinto Jr, O., & Pinto, I. R. C. A. (2003). Evidence of thermal and aerosol effects on the cloud-to-ground lightning density and polarity over large urban areas of Southeastern Brazil. Geophysical Research Letters, 30(13).

Impactos da proposta

NA SOCIEDADE

Eventos atmosféricos severos são responsáveis por dezenas de milhares de mortes e dezenas de bilhões de dólares de prejuízos anualmente em todo o mundo

Our World in Data na Internet

Solução(ões) proposta(s) para o sistema espacial

PLATAFORMA

Padrão CubeSat 3U

Experimentos ou instrumentos de medida propostos e precisão necessária das medidas

Câmera MT9M131C12STCD ES APTINA

características:

Active Pixels: 1280 (H) x 1024 (V)

• Optical Format : $\frac{1}{3}$ - inch (5:4)

• Pixel Size: 3.6 x 3.6 um

• Color Filter Array: RGB Bayer Pattern

• Frame Rate:

SXGA (1280 x 1024) : 15fps at 54 MHz

VGA (640 x 480): 30fps at 54 MHz

Pixel Size: 3.6 x 3.6 um

Experimentos ou instrumentos de medida propostos e precisão necessária das medidas

Receptor VHF

- Faixa de frequência: 80 a 200 MHz, para validar os eventos observados pela câmera.
- Utilizando tecnologia rádio definido por software (SDR).

Outras informações (externas ao instrumento) necessárias para o tratamento dos dados

Receptor GPS

características:

- Operação LEO (3600 km)
- Consumo de 120 mW (típico), 3.3V @25oC
- GPS sinal L1 C/A, 15 canais
- Taxa de posição 1Hz

Uma breve introdução ao LabView

Criando VIs

1) Cria a VI abaixo, e salve com o nome "calc_1.vi":

2) E dite o icone, da Vi, como mostra a figura abaixo:

- 3) Associe os terminais, as variáveis a, b e saída. Salve e feche a VI.
- 4) Crie a VI, "tanque.vi", utilizando a subvi "calc_1.vi":

For Loop Lázaro

1) Cria a VI abaixo, e salve com o nome "for_loop_teste1":

2) Ajuste o controle "Numero de vezes" para o valor 10, e execute a vi, como o "run", e com a opção "Highlight" e verifique quantas vezes a vi é executada:

Waveform Chart - Introdução

1)Crie a vi abaixo, e salve com o nome "waveform_chart_1.vi":

Case - Introdução

1) Crie a vi abaixo, e salve como "case_teste.vi":

para inserir os textos, incrementa e decrementa

Labview - Formula Node

A estrutura "Formula Node" executa uma ou mais funções, que estão no interior do quadro.

A estrutura "Formula Node" pode ser encontrado em " functions >> Mathematics >> Scripts & Formulas >> Formula Node".

1) Elabore a vi "formula_1.vi", como mostra a figura abaixo, execute e explique seu funcionamento:

- 2) Modifique a vi acima, para calcular a formula : $y = 10 * e^{x+2}$
- 3) Modifique a vi acima, para calcular a formula: $y = x * \log(2 * x)$

Importante:

As equações no "formula node", devem terminar com "; " Labview - Gravando dados em um arquivo - com header

1) Elabore a VI:

2) Modifique a Vi, para salvar os dados em um arquivo (salve com o nome teste_temperatura.txt):

Simulando alguns funções da missãa RaioSat com o LabView

Subsistemas de um cubesat

EPS – Electrical Power System

Fornece energia para o Cubesat

Paineis solares Baterias Conversores e Reguladores de Tensão

EPS – Electrical Power System

OBDH – Computador de Bordo

Controla o Cubesat e responsável para comunicação com os demais subsistemas.

Pode se chamar:

OBC – On Board Computer

OBDH - On Board Data Handling

OBDH – Computador de Bordo

OBDH – Computador de Bordo

COMM – Comunicações (Rádio)

Realiza a comunicação com as estações em Terra.

COMM – Comunicações (Rádio)

ADCS – Determinação e Controle de Atitude

Onde estou? Faz uma estimativa da posição do cubesat e controla sua orientação.

ADCS = Attitude Determination and Control System

ADCS – Determinação e Controle de Atitude

PAYLOAD – Carga útil

Nossa missão!!!

Missão RaioSat:

GPS Receptor VHF Câmera

GPS

VHF

VHF

Vamos utilizar um exemplo do LabView, e adaptar,

Help -> Find examples -> Analysis, Signal Processing -> FFT and Freq Function -> Amplitude Spectrum(sim).vi

CAMERA

RAIOSAT

RAIOSAT

Agradecimentos:

A Divisão de Extensão e Capacitação (DIEXC) / INPE

Márcia Alvarenga

Prof. Walter Abrahão

E a equipe da missão RaioSat

Obrigado!!!!

