

11 Publication number: 0 526 101 A1

(12)

EUROPEAN PATENT APPLICATION

(21) Application number: 92306733.4

(2) Date of filing: 23.07.92

(5) Int. Cl.⁵: **B01J 31/12**, C07C 6/04,

C07C 11/06

30 Priority: 30.07.91 FI 913627

(43) Date of publication of application: 03.02.93 Bulletin 93/05

(A) Designated Contracting States:

AT BE CH DE DK ES FR GB GR IT LI LU MC NL
PT SE

7) Applicant: NESTE OY Keilaniemi SF-02150 Espoo (FI) 72 Inventor: Hietala, Jukka
Luhtitie 2 B 5
SF-06400 Porvoo (FI)
Inventor: Knuuttila, Pekka
Torpparintie 4
SF-06400 Porvoo (FI)
Inventor: Leskela, Markku
Koivusyrja 25 I
SF-02130 Espoo (FI)
Inventor: Sillanpaa, Reijo
Auskultantinkatu 9
SF-20780 Kaarina (FI)
Inventor: Lehtonen, Ari
Frantsinkatu 5 A 29
SF-20380 Turku (FI)

(74) Representative: Lamb, John Baxter et al MARKS & CLERK 57-60 Lincoln's Inn Fields London WC2A 3LS (GB)

- (54) Metathesis catalyst and its preparation and use.
- (5) The invention relates to a catalyst for use in the metathesis reactions of olefines, characterized in that it comprises an after-treated wolfram complex, which contains diol ligands and hydrocarbon ligands, which latter are benzenes substituted with a lower alkyl group.

EP 0 526 101 A1

The present invention relates to a catalyst to be utilized in the metathesis reactions of olefines as well as a method for preparing it.

Furthermore, the invention relates to metathesis process for the conversion of olefines into olefines having

a different molecular weight.

5

10

15

25

30

The metathesis, or in other words the disproportionation, of olefines relates to a reaction, wherein one or more olefines are converted into olefines having a different molecular weight. An olefine may be disproportionated with itself into an olefine having a higher molecular weight and into an olefine having a lower molecular weight. In this case, the reaction may be called "self-disproportionation". Two different olefines may also be converted into other olefines by means of the metathesis reaction.

In order to function, the metathesis reactions of olefines require a catalyst system, which includes a transition metal compound, often a cocatalyst and sometimes also a compound acting as a promoter. The catalyst systems based on wolfram or molybdenum are especially efficient. Such catalysts generally comprise a wolfram or molybdenum oxide on an inorganic carrier, which is e.g. silica or alumina. It is known to add to such catalysts different substances as a promoter. Thus, e.g. according the EP publication 152 112, titanium oxide or other titanium-containing substances are added to the surface of the catalyst as a promoter. According to the US patent 4 559 320, it is known to use a wolfram catalyst on a silica carrier, into which magnesium oxide is additionally mixed. According to the EP publication 50 013, a catalyst composition is known comprising a molybdenum oxide or a wolfram oxide on a silica carrier.

According to the US patent 3 956 178, a metathesis catalyst of three components is known, which catalyst is prepared from a wolfram compound, an organic ligand and an organo-metallic compound. In this patent, the wolfram compound is a wolfram oxychloride and the organic ligand contains a nitrile or ester group. As examples of ligands are mentioned phtalodinitrile, adipo nitrile and ethyl phtalate.

According to the US patent 4 550 216, a metathesis catalyst is known, which comprises a compound between a wolfram, a halogen and a phenoxy group, which compound is possibly substituted.

The present invention comprises totally novel metathesis catalysts from organo-wolfram compounds.

The inventive catalyst is mainly characterized in that it comprises an after-treated wolfram complex, which contains diol ligands and hydrocarbon ligands, which are benzenes substituted with a lower alkyl group.

The inventive method for preparing a catalyst is characterized in that

a) a complex between an inorganic wolfram salt and a diol is formed,

b) the complex obtained is caused to react with a benzyl anion or a benzyl anion substituted with a lower alkyl group for obtaining a wolfram complex containing diol ligands, benzyl ligands or benzyl ligands substituted with a lower alkyl group, and

c) the wolfram complex obtained is impregnated into a carrier and calcinated.

The inventive metathesis process for the conversion of olefines, wherein the catalyst comprising a wolfram compound converts the clefine into clefines having a different molucular weight, is characterized in that said heterogenous catalyst comprises an after-treated wolfram complex, which contains did ligands and unsubstituted benzyl ligands or benzyl ligands substituted with a lower alkyl group.

The preferred embodiments of the invention have the characteristics of the subclaims.

The wolfram complexes, in which as ligands are used a diol or a benzene substituted with a lower alkyl group, e.g. mesitylene, may be converted into heterogenous catalysts, which function in the metathesis of olefines at a higher activity than conventional catalysts, in which ammonium wolframate acts as a precursor. In addition, the preparation of the catalysts is easier, since the quantity of metal is low and the solubility in polar organic solvents is good.

The fact that the structures of the inventive synthesized precursors are of a novel type, is based on spectra and the determination of the released HCL. Thus, the inventive catalyst is used in the metathesis reaction, in which C=C bonds decompose and the moieties combine again. For example propene may be prepared from ethylene and 2-butene.

The inventive catalyst is prepared from a wolfram complex, in which as ligands are used diols and benzenes substituted with a lower alkyl group.

In the first step, an inorganic wolfram salt and a diol form a complex according to the equation 1:

WCl₆ + 2 diolH₂ --> WCl₂(diol₂) + 4 HCl (1)

in which $diolH_2 = a diol compound$, preferably a picanol or trans-1,2-cyclohexane diol.

Thereafter, the wolfram oxide obtained reacts with a bromide of a benzene substituted with a lower alkyl group, in this example with a mesitylene bromide, and a metallic magnesium for obtaining a catalyst precursor in accordance with the equation 2:

 $\mathsf{WCl_2(diol)_2} + \mathsf{2ArCH_2Br} + \mathsf{2\ Mg\ -->\ W(ArCH_2)_2(diol)_2} + \mathsf{MgBr_2} + \mathsf{MgCl_2},$ (2)

in which ArCH2 is a mesitylene ligand.

The invention is next described by means of embodiment examples, which are not intended to limit the

invention.

5

10

15

20

25

30

35

45

50

55

The syntheses were made in a nitrogen atmosphere by using a Schlenck technique. The solvents, except for the tetrahydrofurane, were dried by calsium hydride and distilled, and the tetrahydrofurane was dried with a sodium-benzophenon mixture before the distillation. The diols were sublimated before use.

The hydrochloride released in the reactions was determined by bubbling the reaction solution with nitrogen and by passing the solution into an 0.10 M NaOH solution, which was titrated.

For the determination of the wolfram content and the chlorine content of the products, they were decomposed by means of a concentrated nitric acid. The chloride was potentiometrically nitrated and the wolfram was gravimetrically determined as an oxide. As for the catalysts, the wolfram was determined by means of XRF.

The infrared spectra were run in nujol (JASCO IR-810), the NMR spectra were run in carbon tetrachloride or deuterochloroform (JEOL JNM-PMX 60, JEOL GSX-400).

The catalysts were tested in a microreactor in a quartz-glass tube, through which passed the purified propylene (molecular sieves and copper catalyst). A sample of the gas flow passed through the catalyst was taken automatically at intervals of one hour and a gas chromatogram (column Chrompackin Fused Silica) was run.

EXAMPLES 1-3

A reaction of wolfram hexachloride with trans-1,2-cyclohexane diol

Example 1

A reaction of wolfram hexachloride and trans-1,2-cyclohexane diol in a substance quantity ratio 1:1 WCl₆ + chdH₂ --> WCl₄ (chd) + 2 HCl

1.635 g (4. 12 mmol) of wolfram hexachloride was dissolved, when being in a Schlenk tube, in 15.0 ml of carbon tetrachloride. 0,4214 g (3,63 mmol) of trans-1,2-cyclohexane diol was added to the solution. The solution was admixed with a magnet mixer, and it was allowed to reflux for one hour. Thereafter, acid formation was no longer observed. The liquid phase was evaporated under an underpressure. The product was a black solid substance, which dissolved in 1,2-dimetoxy ethane and metanol. On the basis of an IR-spectrum, there was no organic moiety in the product. The test was repeated by using hexane as a solvent, whereby the product was similar to that obtained above.

Example 2

A reaction of wolfram hexachloride and trans-1,2-cyclohexane diol in a substance quantity ratio 1:2 WCl₆ + 2 chdH₂ --> WCl₂(chd)₂ + 4 HCl

1.276 g (3.22 mmol) of wolfram hexachloride and 0,7475 g (6.44 mmol) of trans-1,2-cyclohexane diol were dissolved in 15.0 ml of carbon tetrachloride. The solution was admixed and it was allowed to reflux for one and a half hour. Thereafter, acid formation was no longer observed. After the evaporation of the liquid phase, a red-brown substance was obtained, which dissolved well in toluene, chloroform, 1,2-dimetoxy ethane and metanol. It dissolved poorly in carbon tertachloride, and it did not dissolve at all in hexane. From the compound were measured IR and ¹H NMR spectra (cf. Table 1). On the basis of these, the compound contains cyclohexane diolato groups bound to the wolfram.

69.6 mg of the cyclohexane compound of wolfram prepared was decomposed with 0.5 ml of concentrated nitric acid and 9,5 ml of water was added to the mixture. The released chloride ions were titrated potentiometrically by using a calomel and silver electrode. According to the determination, the compound contained 13.7% of chlorine.

For the determination of the wolfram, 102.2 mg of the compound prepared was admixed into 15.0 ml of concentrated nitric acid and 15,0 ml of water. The mixture was cooked for half an hour, whereafter a pale yellow WO_3 was separated by filtration. The wolfram oxide was dried by maintaining it at a temperature of 850°C for two hours. The oxide was weighed and according to the weight the quantity of wolfram obtained was 42.4%. If it is assumed that the four chloroligands of wolfram hexachloride are replaced with two biserrate cyclohexane diolato ligands, the $WCl(chd)_2$ thus obtained would contain 14.7% of chlorine and 38.1% of wolfram.

Example 3

A reaction of wolfram hexachloride and trans-1,2-cyclohexane diol in cold

1.899 g (4.79 mmol) of wolfram hexachloride was dissolved in 20.0 ml of 1,2-dimetoxy ethane, and 1.112 g (9.59 mmol) of trans-1,2-cyclohexane diol was added to the solution. The solution was maintained at a tem-

perature of -15°C and it was admixed by a magnet mixer. After mixing of five hours, no removal of the acid was observed. The solvent was evaporated under an underpressure. The product was a dark-brown, tough oily substance, which turned blue in connection with the sampling. The dark-blue colour possibly results from the reduction of the wolfram.

EXAMPLES 4 and 5

A reaction of wolfram hexachloride and pinacol

10 Example 4

5

15

20

25

30

A reaction of wolfram hexachloride and pinacol in a substance quantity ratio 1:1 WCl₆ + pinH₂ --> WCl₄(pin) + 2 HCl

0.807 g (2.04 mmol) of wolfram hexachloride was dissolved in 15.0 ml of carbon tetrachloride. 0.2405 g (2.04 mmol) of pinacol was added to the solution, and it was allowed to reflux for two hours, after which no acid was removed. From a green solution was evaporated the liquid phase when subjected to an underpressure. The product was a green solid substance, which rapidly turned blue when coming into contact with air. The decomposition was very rapid, due to which IR- and ¹H NMR-spectra could not be measured from the compound. The green and blue colours relate to reduced wolfram compounds.

Example 5

A reaction of wolfram hexachloride and pinacol in a substance quantity ratio 1:2 $2WCl_6 + 4 pinH_2 \longrightarrow [WCl(pin)_2]_2 + 4 HCl + Cl_2$

1.600 g (4.04 mmol) of wolfram hexachloride was dissolved in 25.0 ml of carbon tetrachloride and 0.9645 g (8.16 mmol) of pinacol was added to the solution. All pinacol did not dissolve in this step. The reaction mixture was mixed with a magnet mixer, and it was allowed to reflux for four hours. After this, no acid formation could be observed. When the reaction advanced, the pale green solution turned dark blue. After the evaporation of the liquid phase, the product obtained was a strongly blue powdery substance. An IR-spectrum was measured from the product (cf. Table 1).

105.9 mg of the compound prepared was decomposed by mixing it in 0.5 ml of concentrated nitric acid. After this, 9.5 ml of water was added to the mixture, and the chloride content was determined. The content obtained was 7.6% (the calculated content was 7.7%).

35

45

50

Table 1 Characteristic IR absorptions and ¹H NMR spectra of alkoxo compounds of wolfram

Compound	Absorptio of IR spec (cm ⁻¹)	n peaks ctrum	¹ H NMR spectrum (δ/ppm)
WCl ₂ (chd) ₂	1040 1000	C-O	1.2 3.6
	900-600	W-O	3.7
WOCl ₂ (chd) ₂	1040 1000 900-600	C-O W=O W-O	
WCl(pin ₂)] ₂	1140 960-620	C-O W-O	
VOCl ₂ (pin)	1140 980 960-600	C-O W=O W-O	·
V(chd) ₂ (mes) ₂			1.2; 1.8 2.2; 2.4 3.8 6.9
V(mes) ₂ (pin) ₂	1160 960-900	C-O	2.3; 2.4 6.9

chd = cyclohexane diolato ligand

mes = mesitylene ligand

pin = pinacolato ligand

Example 6

Preparation of dimesitylene dipinacolato wolfram

0.613 g (1.55 mmol) of wolfram hexachloride was dissolved in 10.0 ml of toluene.

0.994 g (3.10 mmol) of tetrabutyl ammonium nitrate and 3.10 mmol of pinacol, dissolved in 15.0 mol of toluene, were added to the solution. The solution was mixed and it was allowed to reflux for six hours. As the reaction advanced, two liquid layers formed in the vessel, the lower one of which layers was an orange and the upper one was a yellow solvent. The orange solvent was dissolved in 10.0 ml of tetrahydrofurane, and 3.1 mmol (0.08 g) of magnesium and 3.1 mmol (0.47 ml) of bromine mesitylene were added to the solution. The solution was mixed at a temperature of 65°C for four hours. The solution was separated by decantation from

a non-reacting magnesium and the salt formed. The solvent was removed from the yellow solution by evaporating the solution under an under-pressure.

A 1H NMR spectrum and an IR spectrum were measured fro the brown yellow oily product (Table 1). The compound formed in the reaction contains a mesitylene ligand and a pinacolato ligand bound to the wolfram.

$$WCl_8 + 1 pinH_2 -----> WCl_2(pin)_2 + 4 HCl$$

 $WCl_2(pin)_2 + 2 Mg + 2 mesBr ----> W(mes)_2(pin)_2 + MgCl_2 + MgBr2$

Preparation and testing of catalysts

The catalysts were prepared by separately impregnating each precursor (in one catalyst the diol was pinacol and in the other trans-1,2-cyclohexane diol) from THF into silica (PQ Corporation, CS-1231) and by calcinating with nitrogen at 600°C.

The catalysts were tested by passing propene through a catalyst bed at 400°C. A WHSV 4 h⁻¹ conversion was observed in connection with both catalysts to be ca. 50%. (WHSW = weight hourly space velocity, i.e. 1 g of the feeding rate (g) flowing through the quantity of the catalyst per hour.) In the reference catalyst WO₃/SiO₂, which contained the same quantity of wolfram (2%), the conversion was clearly below 50%. See Tables 2, 3 and 4.

Example 7

20

25

15

5

10

The sample was dimesitylene dipinacolato wolfram.

A 13C-NMR and a 1H-NMR was run from the sample with a 400 MHz device. The spectra may be fitted into the assumed structure.

The sample was known to dissolve in THF, due to which a catalyst impregnated from this solution was prepared, which catalyst contained 0.1294 g of the sample and 0.4450 g of silica. A calcination was performed in a nitrogen flux (ca. 10 l/h), 600°C, 1 h). During the calcination it was observed that a green and brown oil condensated in the reactor tube. It was allowed to react with propene, as shown in Table 2.

The wolfram content of an unused catalyst was 2.1% and after the reaction 2.5%.

Example 8 30

The sample was dimesitylene bis(cyclohexane diolato)wolfram.

0.29 g of the sample and 0.94 g of silica were impregnated. 0.5425 g of the catalyst was packed in the reactor and a calcination was performed with nitrogen (ca. 10 l/h, 600°C, 1 h). A brown greenish oil was observed during the calcination. It was allowed to react with propene, as shown in Table 3.

The wolfram content of an unused catalyst was 1.4% and the corresponding percentage after the reaction was 1.9%.

REFERENCE EXAMPLES 9-10

40

35

Two reference catalysts were prepared and tested. One of them is based on wolfram oxide chloride WOCI4, which is a wolfram complex dissolving in non-polar solvents, and the other one is based on a water-soluble salt ((NH₄)₂WO₄, which is the most common reactant in metathesis catalysts.

Example 9 45

A reference catalyst from WOCl4, a low wolfram content

0.18 g of wolfram oxychloride was added gradually to and by simultaneously mixing with 1.28 g of silica in dichloromethane (0.6-1.6 mm, 310 m²/g, The PQ Corporation). They were allowed to absorb at room termperature ca. for 3 hours, after which they were evaporated in a vacuum. The wolfram content was determined to be 2.3%.

0.5302 g of the catalyst was loaded into a reactor tube, calcinated with air at 600°C and flushed with nitrogen. It was tested in a metathesis reaction of propene at flows 1.0-6.0 l/h. The wolfram content after the run was 2.2%.

55

50

Example 10

A reference catalyst from (NH₄)₂WO₄, normal wolfram content.

A 3.9% water solution of ammonium volfram 35.30 g was added gradually to and by simultaneously mixing with 19.96 g of silica (0.6-1.6 mm, 310 m²/g, The PQ Corporation). They were allowed to absorb at 80°C ca. for one hour, after which they were evaporated at 115°C for 17 hours.

16.7 g of the same solution was impregnated once again, it was allowed to absorb at 80°C and dried at 115°C for 23 hours. The metallic content was determined to be 5.8%.

0.3782 g of the catalyst was loaded into a reactor tube, calcinated with air at 600°C and bushed with nitrogen. It was tested in a metathesis reaction of propene at flows 0.1-4.1 l/h. The wolfram content after the run was 6.3%.

The test results are shown in the enclosed Tables 2-5. In the product distribution, the ratio between ethene and butenes is not the molar ratio 1:1 required by theory (the ratio of the weight percentages was ca. 1:2), since some ethene disappears from the system before the analysis. The conversion and the activity have been calculated from the butene observed.

					5
5				Notes	lene 1.0 L
				Activity (g/gh)	82.5 propylene 1.0 l/h 85.2 84.9 84.6 84.6 84.6 84.6 84.6 84.8 84.8
10	EXAMPLE 7			Propylene conversion (X)	51.4 52.9 52.9 52.9 52.0 52.7 52.8 52.8 52.8 52.8
15			a		31.408 36.417 35.245 35.245 35.346 35.346 35.346 35.346 35.346 35.346 35.346 35.346 35.346 35.346 35.346
			na wolfred	w Others (X)	12.071 6.792 8.133 8.754 8.923 8.950 8.902 8.432 8.334 8.339 8.339 8.339 8.339
20			990 dipinacolai 231 0.6-1.6 h 600°C 1 h	Cis-2-butene Others Butenes (X) (X) (X)	10.667 14.128 13.646 13.403 13.403 13.427 13.427 13.427 13.420 13.503 13.559 13.596 13.596 13.756 13.756
25		•	L2 Feb 12-14, 1990 Dimesitylene dipinacolato wolfram SiO, PO cs-1231 0.6-1.6 mm 0.345 310 183.85 2.5 400 W.C.a. 10 L/h 600°C 1 h	1-butene (X)	6.673 3.918 4.371 4.663 4.554 4.556 4.571 4.371 4.215 4.108
30		IALYST	·	Trans-2-butene (%)	14,058 18,137 17,600 17,232 17,232 17,337 17,337 17,344 17
35	TABLE 2	CTIVITY OF A METATHESIS CATALYST	io. of run: **RECURSOR: **RECURSOR: **Ass of catalyst (9): **Area of catalyst (m'/9): **Area of catalyst (m'/9): **Activation: **Propylene flow (1/h):	Propylene (X)	44, 553 46,017 47,618 47,136 47,426 47,429 47,620 47,630 47,630 47,609 47,728
40		7 OF A NE	io. of run: nete: netCukSOR: nerrier: tass of catalyst (g): trea of catalyst (g): trea of catalyst (g): trea of catalyst (g): trea of metal (f content of metal (K): femperature (°C): Activation: Propylene flow (1/h):	Ethylene (X)	11.968 9.000 9.600 8.632 8.855 8.195 8.195 8.769 8.519 8.519 8.519
		ACTIVI	No. of run: Date: PRECURSOR: Carier: Mass of cat. Area of cat. Area of cat. Area of cat. Act. Temperature Activation: Propylene f	<u>=</u> =	0.0.0.4 % % % % % % % % % % % % % % % % % % %
45					
50		-			

8

5		propylene 2.0 l/h propylene 3.9 l/h	propylene 6.1 l/h	
10	85.0 85.0	172.6 172.4 172.3 322.7 316.6	480.4 43.1 433.0 432.9 420.1 420.1	432.1 425.9 429.0 432.1 430.1 430.1 431.4 431.2 431.2 407.4
			64,25,25,25,25,25,25,25,25,25,25,25,25,25,	44.1 43.5 43.8 43.8 43.0 43.0 43.0 43.0 43.0
15			35.926 32.832 32.246 32.027 32.018 31.689 31.799	32.024 31.510 31.672 31.643 31.030 31.330 31.145 31.145 30.505 30.505
20	8.127 7.835 8.136	3.650 3.343 3.240 1.313 1.031 0.647	0.734 0.486 0.439 0.269 0.250 0.193	0.196 0.243 0.243 0.270 0.246 0.257 0.185 0.242 0.251 0.251
	13.789 13.897 13.774	15.803 15.836 16.280 16.145	7.083 7.033 7.651 7.651 7.651 7.651 7.651	14.617 14.422 14.452 14.356 14.356 14.297 14.206 13.969 13.795
25	4.224 4.170 4.152 2.266	2.127 1.276 1.077	000.0 000.0 000.0 000.0 000.0 000.0	000000000000000000000000000000000000000
30				e de la companya de La companya de la co
	17.748 17.628 17.747 19.921	20.03 20.195 20.195 787.00 27.	17.545 17.545 17.707 17.216 17.208	17.407 17.088 17.223 17.371 17.371 17.293 16.870 17.033 16.939 16.939 16.553
35 (S	47.781 47.874 47.778 50.010	50.285 50.377 53.256 54.390 54.717 56.002	59.615 60.337 60.643 60.868 60.829	60.849 61.974 61.974 61.975 61.092 61.093 61.688 62.787 62.807
& (ABLE 2 (Continues)	8.331 8.367 8.413	8.34 8.34 7.680 7.511 7.678	7.069 6.978 7.063 7.078 7.179	6.931 7.101 7.171 7.171 7.046 6.621 6.621 6.532 6.488 6.488
TABLE	15.0 17.0 16.0	82222 90022 80022	23 22 23 25 23 25 25 25 25 25 25 25 25 25 25 25 25 25	2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.

5	EXAMPLE &		ctivity Notes (g/gh) 91.3 propylene 1.0 l/h 336.6 propylene 4.0 l/h 39.5 77.0 61.1	propytene 6.0 L/h
10	u		refore A	379.2 368.7 471.7 490.0 457.5 482.9
15		ato)wolfram		
20		L3 Mar 29-30, 1990 Dimesitylene bis(cyclohexane diolato)wolfran SiO, Pq cs-1231 0.6-1.6 mm 0.5425 310 183.85 1.4 400 NZ ca. 10 1/h 600°C 1 h 1-6	Cis-2-butene Others Buternes (X) (X) (X) 12.732 (4.407 33.328 15.182 2.230 33.258 14.361 0.397 32.843 16.867 0.363 36.412	
25		L3 Mar 29-30, 1990 Dimesitylene bistcyclohexas SiO, Pq cs-1231 0.6-1.6 mm 0.5425 310 183.85 1.4 4.00 N2 ca. 10 1/h 600·C 1 h 1-6	2	0.615 0.000 17.001 0.000 16.707 0.000 14.678 0.000 12.627 0.000 14.562
30	TABLE 3	13 810, 29 810, 24 810, 24 810, 24 16, 25 11, 4 11, 4 11, 4 11, 4 11, 4 11, 4	-butene	
05	iis catalyst	: () () () () () () () () () () () () ()	٠ .	16 18.476 12 21.451 58 21.064 75 17.421 68 18.108 26 15.344 53 18.183 26 17.784
35	ITY OF A METATHESIS CATALYST	No. of run: Date: PRECMSOR: Carrier: Mass of catalyst (g): Molar mass of metal (g/mol): Content of metal (g/mol): Temperature (°C): Activation: Propylene flow (L/h):	Ethylene Propyle (X) (X) 12.598 49.667 6.436 58.076 10.345 56.415 7.526 53.699 10.712 53.494	
40	ACTIVITY	No. of ru Date: PRECASOR Carrier: Hass of Area (Area)		28.22.22.22.22.22.22.22.22.22.22.22.22.2
45				
50				
55				

		5
5	6	(g/gh) 31.2 propylene 1.0 l/h 37.5 53.6 59.5 62.5 62.5 62.7 72.0 72.8 74.9 76.0
3	EXAMPLE 9	Activity (9/9h) 31.2 prop) 37.5 53.6 53.0 65.0 65.0 72.0 72.6 74.9 74.9
10	. 1.5 h	Propytene (25.0 (25.0) 25.0) 25.0) 25.0) 25.0) 25.4) 25.4) 25.4) 25.6)
15	۱/4 400	0thers (%) 7.125 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
	72 CB. 10	Butenes (X) 10.147 11.462 21.229 22.085 23.006 23.006 23.413 24.519 24.510 25.567 25.567 25.567
20	ale 4 licro 1 LOCI4	Cis-2-butene Butenes (X) 4.674 10.147 3.451 11.462 8.504 18.028 9.344 20.096 9.396 21.229 10.396 22.085 10.687 23.006 11.066 23.413 11.286 23.865 11.585 24.612 11.737 24.612 11.737 24.612 11.737 24.612 11.737 25.667 11.954 25.667
25	Micro 1 Wichold Apr 18-20, 1990 W(0)Cl4 S10, PQ cs-1231 0.5502 0.5014 2.3 2.2 air cs-10 l/h 6 400 1-6	1-butene (X) 0.590 0.659 0.736 0.771 0.673 0.648 0.598 0.598 0.775
30	- 로	1 rans 2 - butene (K) 4,883 7,352 8,788 9,936 10,975 11,523 11,693 11,531 12,592 12,379 12,593 12,593 13,270
35	ACTIVITY OF A METATHESIS CATALYST Code of run: Date: RECURSOR: Carcines: Ass of catalyst before run (8): Content of metal before run (8): Activation: Temperature (°C) Propylene flow (1/h):	Propylene (\$) 75.581 76.581 77.705 77
40	ACTIVITY OF A METATHE Code of run: Date: Carrier: Carrier: Mass of catalyst befo Mass of catalyst befo Content of metal befo after run Activation: Temperature (°C) Propylere flow (I/h):	Ethylene (X) 3. 196 3. 196 4. 313 4. 4.313 4. 4.313 5. 234
	Code of run: Date: PRECIESOR: Carrier: Rass of cata Content of m Activation: Temperature Propylene fil	= :

45

50

55

nament kan kepada terpangan penggan sebagai sebagai sebagai sebagai kepada penggan penggan kepada sebagai seba Penggan pengga

		5 5	5	
5		150.3 propylene 4.0 L/h 153.5 150.4 148.9 185.2 propylene 6.0 L/h 181.8	73.3 67.8 67.8 70.3 71.7 72.9 73.9 73.1	50 50 50 50 50 50 50 50 50 50 50 50 50 5
	75.6 76.7 76.3 76.4	\$ £ \$ \$ \$ \$ \$ \$	5225555555	CEEE
10				
	% % % % % % % % %	18.4 18.6 17.9 14.8	25.6 24.0 34.0 35.0 35.0 35.0	
15	00.000	0.000		99.00
	25.820 26.272 26.178 26.174	12.463 12.726 12.430 12.306 10.175 9.965	20.910 23.028 23.028 24.088 24.595 24.866 24.866 24.930	25.601 25.601 25.812 25.668 25.803 25.668
20			_	
	12.192 12.246 12.345 12.349	6.334 6.354 6.354 6.233 5.252 5.129	4.889 9.952 11.264 11.700 11.965 11.975 11.975 11.975 11.975 11.975	12.297 12.297 12.406 12.448 12.428 12.421
25	0.559 0.655 0.543 0.527	0.000 0.000 0.000 0.000 0.000	0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	0.000 0.000 0.000 0.000 0.000 0.000
30	13.069 13.371 13.241 13.298	6.12 6.212 6.076 6.073 4.923	4.592 10.445 11.764 12.366 12.525 12.631 12.766 12.890	13.016 13.306 13.408 13.220 13.407 13.283
35 (*)	68.169 67.759 67.889 67.879	85.064 87.065 87.937 87.984	69.295 77.452 77.696 70.536 69.530 69.383 69.383	69.041 68.330 68.333 68.239 68.336 83.336
ABLE 4 (continues)	6.011 5.969 5.981 5.947	2.472 2.610 2.732 1.941 2.068	2.5.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2	5.626 6.069 5.865 6.112 6.020 6.025
TABLE	16.5 17.5 18.5 2.6 19.5	2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3 3 3 3	25555555555555555555555555555555555555	26.5 20.5 20.5 20.5 20.5 20.5 20.5 20.5 20

- 31.		.		0.52 L/h 1.1 L/h
		(9/9t) 14.2 600°C 18.6 23.2 28.7 28.7		13.6 400°C 13.5 13.5 28.0 400°C
10	1°C 0.5 h	Conversion (X)	2222222 2442000 44420000000000000000000	45.54. 6.6.4.54. 7.54.
	10 1/h 600°C 0.5		28.33 29.25 29.75 29.75 29.75 30.53 30.53	
	1.5 h, W2	(X) 5.503 1.502 1.817 2.036 1.82	. 17. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.	2.102 2.515 2.551 2.545 1.731
20 884. 172 1731 0	7. 900.00 P. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.		11.498 11.879 11.922 12.058 12.044 12.290	10.524 10.524 10.375 11.846
25 28 27 28 28 28 28 28 28 28 28 28 28 28 28 28	0.09-4.00 0.09-4.00	2 1.891 2.882 3.28 2.905 2.905 2.905 2.905	2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.	3.487 3.896 1.956 4.160 2.526
30 Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z		6.668 9.204 11.627 13.676 13.650	7	15. 110 14. 514 14. 565 13. 803 14. 912
METATHESIS CATA Catalyat (9): Lucate (9):	(L/h): Propylene	(\$) 76.505 73.233 61.344 61.176 65.665	50.02 50.02 50.02 50.02 50.02 50.03	% % % % % % % % % % % % % % % % % % %
frun: frun: RSOR: er: of unused of calver content	Activation: Temperature (°C) Propylene flow (Time Ethylene	(X) 4.378 6.938 6.939 9.015	75.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.	12.06 11.970 12.574 9.341
ACTIVITY CALLES	Property 1	5 22.20.	22.25.25.25.25.25.25.25.25.25.25.25.25.2	22.0.2 22.0.2 22.0.2 23.0 23.0 23.0 23.0

Claims

- A catalyst for use in the metathesis reactions of olefines, characterized in that it comprises an after-treated wolfram complex, which contains diol ligands and hydrocarbon ligands, which latter are benzenes substituted with a lower alkyl group.
- 2. A catalyst according to Claim 1, characterized in that the substituted benzene is mesitylene.
- 3. A catalyst according to Claim 1 or 2, characterized in that the structure of the precursor of the catalyst is W(ArCH₂)₂(diol)₂, in which ArCH₂ is mesitylene and diol is 1, 2-cyclohexane diol or picanol.
 - A catalyst according to any of the Claims 1-3, characterized in that the catalyst precursor is impregnated in silica and calcined.

- 5. A method for preparing a heterogenous catalyst for use in the metathesis reaction of olefines, characterized in that
 - a) a complex between an inorganic wolfram salt and a diol is formed,
 - b) the complex obtained is caused to react with a benzyl anion or a benzyl anion substituted with a lower alkyl group for obtaining a wolfram complex containing diol ligands and benzyl ligands or benzyl ligands substituted with a lower alkyl group, and
 - c) the wolfram complex obtained is impregnated into a carrier and calcined.
- 6. A method according to Claim 5, characterized in that the inorganic wolfram salt is a wolfram halide, preferably a wolfram chloride WCl₆.
 - 7. A method according to Claim 5 or 6, characterized in that the diol is picanol or 1, 2-cyclohexane diol.
 - 8. A method according to any of Claims 5-7, characterized in that the carrier is a silica.
- 9. A method according to any of the Claims 5-8, characterized in that the complex of the wolfram salt and the diol is treated with a halide of a benzene substituted with a lower alkyl group, preferably with a bromide and a magnesium metal.
- 10. A method according to any of the Claims 5-9, characterized in that the impregnation is performed from20 an inert solvent into a carrier, which is preferably a silica.
 - 11. A method according to any of the Claims 5-10, characterized in that the calcination with an inert gas, preferably nitrogen, is performed at a temperature of 400-800°C.
- 12. A metathesis process for the conversion of olefines, wherein a catalyst comprising a wolfram compound converts the olefine into olefines having a different molucular weight, characterized in that said heterogenous catalyst comprises an after-treated wolfram complex, which contains diol ligands and benzyl ligands substituted with a lower alkyl group.
- 13. A process according to Claim 12, characterized in that the olefine comprises one or more olefines, e.g. an ethene or a 2-butene, for preparing a propylene.

50

45

35

5

EUROPEAN SEARCH REPORT

Application Number

EP 92 30 6733

	DOCUMENTS CONSID			
ategory	Citation of document with ind of relevant pass		Relevant to claim	CLASSIFICATION OF THE APPLICATION (Int. CL5)
`	US-A-4 818 442 (VAND	ERVEEN ET AL)		B01J31/12
),A	EP-A-0 129 474 (SOCI AQUITAINE)	ETE NATIONALE ELF		C07C6/04 C07C11/06
),A	US-A-3 956 178 (GREC	O ET AL)		
				TECHNICAL FIELDS SEARCHED (Im. CL5)
				B01J
				C07C
			-	
	The present search report has be			
	Place of search THE HAGUE	Date of completion of the search 03 NOVEMBER 1992		LO CONTE C.
Y : pa	CATEGORY OF CITED DOCUMEN articularly relevant if taken alone articularly relevant if combined with ano cument of the same category	E : earlier palen after the filli ther D : éocument ci	nciple underlying to t document, but pung date ted in the applications ted for other reason	blished on, or
O: n	chnological background on-written disclosure termediate document	å: member of t document	he same patent fan	nily, corresponding