6.4. ESERCIZI 95

6.4 Esercizi

Esercizio 6.1 Dimostrare che (\mathbb{R}^* , ·) é isomorfo a $\mathbb{R} \times \mathbb{Z}_2$. (Suggerimento: si usi $\mathbb{Z}_2 \cong \{\pm 1, \cdot\}$ e si consideri l'applicazione $\mathbb{R} \times \mathbb{Z}_2 \to R^*$, $(s, x) \mapsto (-1)^s e^x$).

Esercizio 6.2 Sia G un gruppo e sia $D = \{(x, x) \in G \times G \mid x \in G\}$. Si dimostri che:

- 1. D é un sottogruppo di $G \times G$;
- 2. D é normale in $G \times G$ se e solo se G é abeliano.

Esercizio 6.3 Sia G un gruppo e siano N_j , j = 1, ..., r, sottogruppi normali di G tali che:

1.
$$N_i \cap N_i = \{1\}, \forall i, j = 1, ..., n, i \neq j;$$

2.
$$G = N_1 \dots N_r$$
.

Dimostrare con un esempio che G non é isomorfo a $N_1 \times \cdots \times N_r$ (e che quindi il *Teorema prodotto* visto a lezione non si estende in questo modo a piú di due sottogruppi).

Esercizio 6.4 Sia G un gruppo abeliano e $f:G\to G$ un omomorfismo di gruppi tale che $f\circ f=f$. Dimostrare che $G\cong f(G)\times \operatorname{Ker} f$.

Esercizio 6.5 Sia $f_1: K \to G$ e $f_2: K \to H$ due omomorfismi e sia

$$F: K \to G \times H$$
, $x \mapsto (f_1(x), f_2(x))$.

Dimostrare che:

- 1. F é un omomorfismo e $p_i \circ F = f_i$, i = 1, 2;
- 2. ogni omomorfismo $\tilde{F}: K \to G \times H$ si ottiene in questo modo cioé gli omomorfismi $f_1: K \to G$ e $f_2: K \to H$ dati da $f_i = p_i \circ \tilde{F}, i = 1, 2$, danno luogo ad un omomorfismo $F: K \to G \times H$ descritto sopra, che coincide con \tilde{F} .

Esercizio 6.6 Sia G un gruppo di 8 elementi. Dimostrare che se tutti gli elementi di G hanno ordine 2, allora G è abeliano ed esistono $a,b,c \in G$ distinti tra loro e dall'elemento neutro tali che

$$G = \{1, a, b, c, ab, ac, bc, abc\}$$

e quindi $G \cong \mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_2$.

Esercizio 6.7 Sia G un gruppo di 8 elementi, sia $a \in G$ tale che o(a) = 4 e sia $H = \langle a \rangle = \{1, a, a^2, a^3\}.$

(i) Dimostrare che per ogni $b \in G \setminus H$ si ha:

$$G = \{1, a, a^2, a^3, b, ab, a^2b, a^3b\}.$$

- (ii) Dedurre dal punto (i) che per ogni $b \in G \setminus H$ si hanno tre possibilità:
 - 1. ba = ab
 - 2. $ba = a^2b$
 - 3. $ba = a^3b$

Esercizio 6.8 Sia G un gruppo di 8 elementi, sia $a \in G$ tale che o(a) = 4 e $H = \{1, a, a^2, a^3\}$ come nell'Esercizio 6.7. Supponiamo che esista $b \in G \setminus H$ tale che o(b) = 2.

- (i) Dimostrare che $ba \neq a^2b$ e quindi, dal punto (ii) dell'Esercizio 6.7, ba = ab oppure $ba = a^3b$.
- (ii) Dimostrare che se ab = ba allora G è abeliano è isomorfo a $\mathbb{Z}_2 \times \mathbb{Z}_4$.
- (iii) Dimostrare che se $ba = a^3b$ allora G è isomorfo al gruppo diedrale D_4 .

Esercizio 6.9 Sia G un gruppo di 8 elementi, sia $a \in G$ tale che o(a) = 4 e $H = \{1, a, a^2, a^3\}$ come nell'Esercizio 6.7. Supponiamo che tutti gli elementi di $G \setminus H$ abbiamo ordine 4.

- (i) Dimostrare che se $b \in G \setminus H$ allora $a^2 = b^2$.
- (ii) Dedurre dal punto (i) che $ba \neq a^2b$ e $ba \neq ab$.
- (iii) Dedurre dal punto (ii) dell'Esercizio 6.7 che $ba = a^3b$ e che quindi G è isomorfo al gruppo dei quaternioni Q_8 .
- (iv) Usare il punto precedente e gli Esercizi 6.6, 6.7 e 6.8 per dimostrare che un gruppo *G* di ordine 8 è isomorfo ad uno dei seguenti cinque gruppi:

$$\mathbb{Z}_8$$
, $\mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_2$, $\mathbb{Z}_2 \times \mathbb{Z}_4$, D_4 , Q_8 .

Esercizio 6.10 Sia *G* un gruppo con 10 elementi.

6.4. ESERCIZI 97

(i) Dimostrare che

$$G = \{1, a, b, b^2, b^3, b^4, ab, ab^2, ab^3, ab^4\},$$
 dove $o(a) = 2$ e $o(b) = 5$.

- (ii) Dimostrare che ba non puó essere uguale a: 1, a, b, b^2 , b^3 , b^4 .
- (iii) Dimostrare che se ba = ab allora $G \cong \mathbb{Z}_{10}$.
- (iv) Dimostrare che $ba \neq ab^2$ e $ba \neq ab^3$.
- (v) Dimostrare che se $ba = ab^4$ allora G è isomorfo al gruppo diedrale D_5 .
- (vi) Dedurre che un gruppo G di ordine 10 é isomorfo a \mathbb{Z}_{10} oppure a D_5 .
- (vii) Estendere il ragionamento precedente per dimostrare che un gruppo G di ordine |G| = 2p, con p primo dispari. è isomorfo a \mathbb{Z}_{2p} oppure a D_p .