I claim:

1	 An apparatus for use with an electrophysiology device that
2	includes a coagulation element, the apparatus comprising:
3	a main body;
4	a suction region associated with the main body;
5	a stimulation element on the main body; and
6	a connector configured to secure at least a portion of th
7	electrophysiology device adjacent to the suction region.
1	2. An apparatus as claimed in claim 1, wherein the suction regio
2	comprises a plurality of suction regions and the stimulation element comprise
3	a plurality of stimulation elements.
1	3. An apparatus as claimed in claim 1, wherein the stimulation
2	element comprises a stimulation electrode.
1	4. An apparatus as claimed in claim 1, wherein the stimulation
2	element comprises a stimulation electrode pair.
1	5. An apparatus as claimed in claim 1, further comprising:
2	a sensing element on the main body in spaced relation to the
3	stimulation element.
1	6. An apparatus as claimed in claim 5, wherein the stimulation
2	element, the sensing element, and the connector are positioned such that the
3	stimulation element and the sensing element are located on opposite sides o
4	the connector.
1	7. An apparatus as claimed in claim 5, wherein the sensing
2	element comprises a sensing electrode.

1	8. An apparatus as claimed in claim 5, wherein the sensing
2	element comprises a sensing electrode pair.
1	9. An apparatus as claimed in claim 1, wherein the suction region
2	comprises first and second suction ports and the connector is positioned
3	between the first and second suction ports.
1	10. An apparatus as claimed in claim 9, further comprising:
2	a sensing element on the main body adjacent to the first suction
3	port;
4	wherein the stimulation element is adjacent to the second
5	suction port.
1	11. An apparatus as claimed in claim 1, wherein the connector is
2	configured to removably secure at least a portion of the electrophysiology
3	device adjacent to the suction region.
Ū	device dejacent to the baction region.
1	12. A system for use with an electrophysiology device that includes
2	a coagulation element, the system comprising:
3	a suction source; and
4	an apparatus, adapted to be operably connected to the suction
5	source, including a main body, a suction region associated with the main
6	body, a stimulation element on the main body, and a connector configured to
7	secure at least a portion of the electrophysiology device adjacent to the
8	suction region.
1	13. A system as claimed in claim 12, wherein the suction region
2	comprises a plurality of suction regions and the stimulation element comprises
3	a plurality of stimulation elements.
1	14. A system as claimed in claim 12, wherein the stimulation
2	element comprises a stimulation electrode.

1	15. A system as claimed in claim 12, wherein the stimulation
2	element comprises a stimulation electrode pair.
1	16. A system as claimed in claim 12, further comprising:
2	a sensing element on the main body in spaced relation to the
3	stimulation element.
1	17. A system as claimed in claim 16, wherein the stimulation
2	element, the sensing element, and the connector are positioned such that the
3	stimulation element and the sensing element are located on opposite sides of
4	the connector.
1	18. A system as claimed in claim 16, wherein the sensing element
2	comprises a sensing electrode.
1	19. A system as claimed in claim 16, wherein the sensing element
2	comprises a sensing electrode pair.
1	20. A system as claimed in claim 12, wherein the suction region
2	comprises first and second suction ports and the connector is positioned
3	between the first and second suction ports.
1	21. A system as claimed in claim 20, further comprising:
2	a sensing element on the main body adjacent to the first suction
3	port;
4	wherein the stimulation element is adjacent to the second
5	suction port.
1	22. A system as claimed in claim 12, wherein the connector is
2	configured to removably secure at least a portion of the electrophysiology
3	device adjacent to the suction region.
1	23. A system, comprising:
2	an electrophysiology device including a support structure and a
3	coagulation element carried on the support structure; and

4	a stimulation apparatus including a main body, a suction region
5	associated with the main body, a stimulation element on the main body, and a
6	connector configured to secure at least a portion of the electrophysiology
7	device adjacent to the suction region.
1	24. A system as claimed in claim 23, wherein the
2	electrophysiological device support structure defines a cross-sectional size
3	and shape and the connector defines a corresponding cross-sectional size
4	and shape.
1	25. A system as claimed in claim 23, further comprising:
2	a suction source adapted to be operably connected to the
3	stimulation apparatus.
1	26. A system as claimed in claim 23, further comprising:
2	a stimulation energy source adapted to be operably connected
3	to the stimulation apparatus.
1	27. A system as claimed in claim 23, further comprising:
2	a coagulation energy source adapted to be operably connected
3	to the electrophysiology device.
1	28. A system as claimed in claim 23, wherein the
2	electrophysiological device includes a plurality of spaced coagulation
3	elements, the stimulation apparatus includes a plurality of spaced stimulation
4	elements, and the electrophysiological device and stimulation apparatus are
5	respectively configured such that the coagulation elements will be adjacent to
6	respective stimulation elements when the electrophysiology device is
7	connected to the stimulation apparatus.
1	29. A system as claimed in claim 28, further comprising:
2	a plurality of sensing elements on the main body;

3	wherein the stimulation elements, the sensing elements, and the
4	connector are positioned such that the stimulation elements and sensing
5	elements are located on opposite sides of the connector.
1	30. A system as claimed in claim 23, wherein the stimulation
2	element comprises a stimulation electrode.
1	31. A system as claimed in claim 23, wherein the stimulation
2	element comprises a stimulation electrode pair.
1	32. A system as claimed in claim 23, further comprising:
2	a sensing element on the main body in spaced relation to the
3	stimulation element.
1	33. A system as claimed in claim 32, wherein the stimulation
2	element, the sensing element, and the connector are positioned such that the
3	stimulation element and the sensing element are located on opposite sides of
4	the connector.
1	34. A system as claimed in claim 32, wherein the sensing element
2	comprises a sensing electrode.
1	36. A system as claimed in claim 32, wherein the sensing element
2	comprises a sensing electrode pair.
1	37. A system as claimed in claim 23, further comprising:
2	an electrophysiology recording apparatus adapted to be
3	operably connected to the sensing element on the stimulation apparatus.
1	38. A system as claimed in claim 23, wherein the connector is
2	configured to removably secure at least a portion of the electrophysiology
3	device adjacent to the suction region.
1	30 A method comprising the steps of:

2	forming a lesion in tissue,
3	securing a stimulation element to tissue adjacent to the lesio
4	with a suction device; and
5	transmitting stimulation energy to the tissue adjacent to th
6	lesion.
7	
1	40. A method as claimed in claim 39, wherein the step of forming
2	lesion comprises forming a lesion in tissue by supplying coagulation energy t
3	the tissue.
1	41. A method as claimed in claim 39, wherein the step of forming
2	lesion comprises forming a lesion in tissue by supplying coagulation energy t
3	the tissue with an electrode.
1	42. A method as claimed in claim 39, wherein the step of forming
2	lesion comprises the steps of:
3	positioning a distal portion of an electrophysiology device
4	adjacent to tissue;
5	applying a suction force to the tissue with a suction device
6	secured to the electrophysiology device; and
7	forming a lesion with the electrophysiology device in the tissue
8	while the suction force is being applied.
1	43. A method as claimed in claim 42, wherein the step of securing
2	stimulation element to tissue comprises:
3	positioning a stimulation element carried on the suction device
4	adjacent to the lesion;
5	applying a suction force to the tissue with a suction device;
6	transmitting stimulation energy to the tissue adjacent to the
7	lesion while the suction force is being applied.
1	44. A method as claimed in claim 39, further comprising the step of:
2	monitoring tissue after transmitting stimulation energy to the
3	tissue.

1	45. A method as claimed in claim 44, wherein the step of monitoring
2	tissue comprises sensing a local excitation caused by the stimulation energy.
1	46. A method as claimed in claim 44,
2	wherein the step of transmitting stimulation energy comprises
3	transmitting stimulation energy to tissue on one side of the lesion; and
4	wherein the step of monitoring tissue comprises monitoring
5	tissue on the other side of the lesion.
1	47. A method as claimed in claim 46, wherein the step of monitoring
2	tissue comprises monitoring tissue on the other side of the lesion to determine
3	a propagation delay.