



## **Syllabus**

## **Honours Programme in**

## **Cyber Security and Forensics**

(Offered by Department of Computer Engineering)

#### From

Academic Year 2024-25

#### **Revision 2**

(Approved in Academic Council meeting dated\_\_\_)



K J Somaiya College of Engineering, Mumbai-77

(A Constituent College of Somaiya Vidyavihar University)



#### Honours' Degree Programme in Cyber Security and Forensics

#### Offered by Department of Computer Engineering

#### **Introduction:**

Security is a critical issue in all the computing systems due to increasing number of security related breaches and incidents. The need of security professionals is ever increasing due to most of the services being made available online.

With the information sharing and processing going from centralized to distributed to the entire internet and due to inherent vulnerabilities and weaknesses of hardware, software and protocols there are constant risks and threats on compromising of data and information. This led to the need of Security in the form of controls, algorithms, procedures, policies and laws for securing information in the cyber space.

This programme will focus on basics of security starting security goals, vulnerabilities, threats & controls to advanced topics like cyber forensics and cyber laws etc. There will be topics on applied cryptography, cyber security, forensics, secure coding and vulnerability assessment & penetrative testing.

Objectives: The offered programme aims to give the understanding of:

- (1) Security goals, vulnerabilities, threats & controls.
- (2) Implementation of various control mechanisms related to various security services.
- (3) Understand cybercrime, its prevention and cyber laws.
- (4) Carrying out the various information security-related tasks such as Penetration Testing and Vulnerability Analysis.
- (5) Understand Digital forensics and Advanced Offensive Security techniques.

## **Learning Outcomes of the Honours' Degree Programme:**

At the successful completion of this programme, an Engineering Graduate will be able to:

- Design and develop secure applications and systems.
- Classify the types of cybercrimes their prevention and applicability of various cyber laws.
- Implement penetration testing, vulnerability analysis and offensive security techniques for applications and systems.
- Apply and use various digital forensic tools for cybercrime investigation.



**Assessment Methods:** Evaluation is done by a variety of tools including Open book tests, MCQs (multiple choice questions), Study of research papers, Internal Assessment tools and End Semester Examinations etc. Mini-Projects are offered in courses also to encourage project based learning among students.

| Acrony  | rms used in syllabus document |
|---------|-------------------------------|
| Acronym | Definition                    |
| CA      | Continuous Assessment         |
| ESE     | End Semester Exam             |
| IA      | Internal Assessment           |
| 0       | Oral                          |
| P       | Practical                     |
| P&O     | Practical and Oral            |
| TH      | Theory                        |
| TUT     | Tutorial                      |
| TW      | Term work                     |
| ISE     | In-semester Examination       |
| CO      | Course Outcome                |

# Acronyms used in Course code e.g. 116hxxC301

| <b>Position of Digit</b> | Acronym  | Definition                   |
|--------------------------|----------|------------------------------|
| 1                        | 2        | SUV 2023 Second Revision     |
| 2                        | 16       | KJSCE                        |
| 3                        | H        | Honour Degree Program        |
| 4                        | 02 (xx)  | Cyber Security and Forensics |
| 5                        | С        | Core Course                  |
|                          | L        | Laboratory Course            |
|                          | T        | Tutorial                     |
|                          | P        | Project Based Course         |
| 6                        | 1/2/3/4  | Semester Number              |
| 7                        | 01/02/03 | Course Number                |



# **Proposed Credit Scheme**

| Course Code | Course Name                                          | Teaching<br>Scheme<br>(Hrs.)<br>TH – P –<br>TUT | Total (Hrs. | Credits<br>Assigned<br>TH – P –<br>TUT | Total<br>Credit<br>s | Suggested<br>semester<br>of<br>Honours'<br>degree |
|-------------|------------------------------------------------------|-------------------------------------------------|-------------|----------------------------------------|----------------------|---------------------------------------------------|
| 216H02C401  | Applied Cryptography                                 | 3-0-0                                           | 03          | 3-0-0                                  | 03                   | IV                                                |
| 216H02L401  | Applied Cryptography<br>Laboratory                   | 0-2-0                                           | 02          | 0 - 1 - 0                              | 01                   | IV                                                |
| 216H02C501  | Cyber Forensics and Laws                             | 3-0-0                                           | 03          | 3-0-0                                  | 03                   | V                                                 |
| 216Н02Т502  | Cyber Security & Forensics - Case-Studies and Tools  | 0-0-2                                           | 02          | 0-0-2                                  | 02                   | V                                                 |
| 216H02C601  | Secure Coding                                        | 3-0-0                                           | 03          | 3-0-0                                  | 03                   | VI                                                |
| 216H02L601  | Secure Coding Laboratory                             | 0-2-0                                           | 02          | 0 - 1 - 0                              | 01                   | VI                                                |
| 216H02C701  | Vulnerability Assessment and Penetration Testing     | 3-0-0                                           | 03          | 3-0-0                                  | 03                   | VII                                               |
| 216Н02Т701  | Vulnerability Assessment and Penetration Testing Lab | 0-0-2                                           | 02          | 0-0-2                                  | 02                   | VII                                               |
|             | Total                                                | 12 – 04 – 4                                     | 20          | 12-2-4                                 | 18                   |                                                   |



# **Proposed Examination Scheme**

|            |                                                            |       | Ex | kamination        | Scheme   |       |  |  |
|------------|------------------------------------------------------------|-------|----|-------------------|----------|-------|--|--|
| Course     | Course Name                                                | Marks |    |                   |          |       |  |  |
| Code       | Course Name                                                | (     | CA | ESE <sup>\$</sup> | Lab/ Tut | Total |  |  |
|            |                                                            | ISE   | IA | ESE               | CA       | Total |  |  |
| 216H02C401 | Applied Cryptography                                       | 30    | 20 | 50                | -        | 100   |  |  |
| 216H02L401 | Applied Cryptography<br>Laboratory                         | -     | -  | -                 | 50       | 50    |  |  |
| 216H02C501 | Cyber Forensics and Laws                                   | 30    | 20 | 50                | _        | 100   |  |  |
| 216H02T502 | Cyber Security &<br>Forensics - Case-<br>Studies and Tools | -     | -  | -                 | 50       | 50    |  |  |
| 216H02C601 | Secure Coding                                              | 30    | 20 | 50                | -        | 100   |  |  |
| 216H02L601 | Secure Coding<br>Laboratory                                | -     | -  | -                 | 50       | 50    |  |  |
| 216H02C701 | Vulnerability Assessment and Penetration Testing           | 30    | 20 | 50                | -        | 100   |  |  |
| 216H02T701 | Vulnerability Assessment and Penetration Testing Lab       | -     | -  | -                 | 50       | 50    |  |  |
|            | Total                                                      | 120   | 80 | 200               | 200      | 600   |  |  |



| Course Code              | Name of the Course |               |    |     |        |  |
|--------------------------|--------------------|---------------|----|-----|--------|--|
| 216H02C401               | Appli              | ed Cryptograp | hy |     |        |  |
|                          |                    |               |    |     |        |  |
| <b>Teaching Scheme</b>   | TH                 | P             |    | TUT | Total  |  |
| (Hrs./Week)              | 03                 |               |    |     | 03     |  |
| Credits Assigned         | 03                 |               |    |     | 03     |  |
|                          |                    |               |    |     |        |  |
|                          |                    | Marks         |    |     |        |  |
| <b>Evaluation Scheme</b> | LAB/TUT            | CA (TH)       |    | ESE | Total  |  |
| Evaluation Scheme        | CA                 | ISE           | IA | LSL | 1 otai |  |
|                          |                    | 30            | 20 | 50  | 100    |  |

#### Course prerequisites (if any):

Some mathematical maturity, in terms of understanding and working with mathematical definitions, concepts, and proofs, and elementary notions of logic, set theory, number theory, probability and statistics

#### **Course Objectives**

In the era of Digital Computers and internet ensuring confidentiality, authentication, integrity of data during communication is very critical. This course impart students the knowledge of cryptographic algorithms and techniques to achieve same. It also introduces students to the advances in the area of cryptography.

#### **Course Outcomes**

#### At the end of successful completion of the course the student will be able to

| CO1 | Discuss fundamentals of Information Security and cryptography                                                                    |
|-----|----------------------------------------------------------------------------------------------------------------------------------|
| CO2 | Demonstrate and implement various Cryptographic Algorithms for securing systems                                                  |
| CO3 | Comprehend cryptographic hash functions, Message Authentication Codes and Digital Certificates and their uses for Authentication |
| CO4 | Realize advances in the field of cryptography                                                                                    |



| Module<br>No. | Unit<br>No. | Details                                                                                                                                                                                                                                   | Hrs. | СО   |
|---------------|-------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|------|
|               | Introdu     | ction to Information Security & Cryptography                                                                                                                                                                                              |      |      |
|               | 1.1         | Information Security and its goals, Vulnerability Threats and Attacks, Security services and security mechanisms                                                                                                                          |      |      |
| 1             | 1.2         | Encryption and Decryption, Symmetric and Asymmetric Key Cryptography, Types of keys, Cryptanalysis methods                                                                                                                                | 07   | CO 1 |
|               | 1.3         | Classical Cryptography: Substitution and Transposition encryption Techniques                                                                                                                                                              | Ç,   |      |
|               |             | arning: Cryptanalysis of substitution ciphers, The re of the Dancing Men - Short story by Sir Arthur Conan                                                                                                                                |      |      |
| 2             | Cryptog     | raphic Arithmetic and Key management                                                                                                                                                                                                      |      |      |
|               | 2.1         | Cryptographic Arithmetic: Modular arithmetic, additive and multiplicative inverse, set of residues, Extended Euclidean Algorithm                                                                                                          |      |      |
|               | 2.2         | Mathematics for Asymmetric key cryptography: Prime generation, primality testing, prime factorization, Euler Totient function                                                                                                             |      |      |
|               | 2.3         | Key management: Generating Keys, Nonlinear<br>Keyspaces, Transferring Keys, Verifying Keys, Using<br>Keys, Updating Keys, Storing Keys, Backup Keys,<br>Compromised Keys, Lifetime of Keys, Destroying<br>Keys, Public-Key Key Management | 08   | CO2  |
|               | 2.4         | <b>Key exchange algorithm</b> : Diffie Hellman Key exchange, Man-in Middle attack                                                                                                                                                         |      |      |
|               | Key Exc     | arning: IBM Secret-Key Management Protocol,<br>hange Algorithms: Shamir's Three-Pass Protocol,<br>nce Key Distribution and Secret Broadcasting                                                                                            |      |      |
| 3             | Symmet      | ric Key Cryptography                                                                                                                                                                                                                      |      |      |
|               | 3.1         | Building blocks of modern and classical Block<br>Ciphers: P box, S Box, EX-OR operations, circular<br>shifts, swaps, split and combine, Rounds, Initialization<br>vectors, Confusion, Diffusion, Fiestel Ciphers, Non-<br>Fiestel ciphers |      |      |
|               | 3.2         | <b>DES</b> : DES Structure, DES Analysis: Properties,<br>Design Criteria, DES Strength and Weaknesses, DES<br>Security, Multiple DES, 3DES                                                                                                | 07   | CO2  |
|               | 3.3         | AES: AES Structure, Transformations, Key<br>Expansion Analysis of AES: Security,<br>Implementation, Simplicity and Cost                                                                                                                   |      |      |
|               | 1           | arning –RC5, Classical Block Cipher Modes                                                                                                                                                                                                 |      |      |
|               | Asymmo      | etric Key Cryptography                                                                                                                                                                                                                    |      |      |
| 4             | 4.1         | <b>Public key cryptography:</b> Principles of public key cryptosystems, The RSA algorithm, attacks on RSA,                                                                                                                                | 07   | CO2  |



| 5 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Introduction to Elliptic Curve Cryptosystems as improvement over RSA, ECC as discrete logarithmic problem  Trining: Rabin Cryptosystem  Authentication and Digital Signatures  Overview of Authentication mechanisms: Biometrics, challenge response systems, one time pads, passwords, multi-factor authentication, token based authentication, single sign-on, Kerberos, PKI, etc Using Symmetric and Asymmetric Encryption for: Authentication, confidentiality, non-repudiation  Hash: Cryptographic Hash Function, Hash Function Requirements, Hash function attacks, Birthday Paradox SHA-512, HMAC Message Authentication Code (MAC), Digital Authentication Algorithm (DAA)  PKI: Roles - responsibilities of Certification Authority and Registration Authority, Applications of PKI, Digital certificates.  Using Public Key for Authentication, Digital Signatures, Properties of Digital Signatures beyond Message Authentication, | 09 | CO3 |
|---|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|-----|
|   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | DSS, Authentication Applications: X.509<br>Authentication Service, Kerberos                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |    |     |
|   | MD5 for Authentic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | earning: RSA and Schnorr Digital Signature r non cryptographic applications, Challenge Handshake ication Protocol (CHAP), Extensible Authentication                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |    |     |
|   | Digital certificates. Using Public Key for Authentication, Digital Signatures, Properties of Digital Signatures beyond Message Authentication, DSS, Authentication Applications: X.509 Authentication Service, Kerberos  #Self Learning: RSA and Schnorr Digital Signature MD5 for non cryptographic applications, Challenge Handshake Authentication Protocol (CHAP), Extensible Authentication Protocol (EAP)  Introduction to Advances in Cryptography  6.1 Quantum Cryptography, Quantum key distribution-QKD |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    |     |
|   | 6.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Quantum Cryptography, Quantum key distribution-QKD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |    |     |
| 6 | 6.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Homomorphic Encryption                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 07 | CO4 |
| U |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Secure Multi-Party Computation (MPC), Zero-<br>Knowledge Proofs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 07 | CO4 |
|   | 5.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Cryptographic Obfuscation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |    |     |
|   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Total                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 45 |     |

<sup>#</sup> Students should prepare all Self Learning topics on their own. Self-learning topics will enable students to gain extended knowledge of the topic. Assessment of these topics may be included in IA and Laboratory Experiments.



# **Recommended Books:**

|            | Necommended Dooks.     | TOTAL ADD 1                                                                         | N.T. 0                                                                           | T 1141                                |
|------------|------------------------|-------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|---------------------------------------|
| Sr.<br>No. | Name/s of Author/s     | Title of Book                                                                       | Name of Publisher with country                                                   | Edition and<br>Year of<br>Publication |
| 1.         | Behrouz A.<br>Forouzan | Cryptography and<br>Network<br>Security                                             | Mc Graw Hill                                                                     | 3 <sup>rd</sup> Edition,<br>2017      |
| 2.         | William Stallings      | Computer Security Principles and Practice                                           | Pearson<br>Education                                                             | 2016. 5 <sup>th</sup><br>Edition      |
| 3.         | Bruce Schneier         | Applied Cryptography                                                                | Wiley                                                                            | 2015, Second<br>Edition               |
| 4.         | Mark stamp             | Information Security Principal and Practice                                         | Wiley                                                                            | 2008, 3 <sup>rd</sup><br>Edition      |
| 5.         | Jaydip Sen             | Theory and practice of cryptography and network security protocols and technologies | Intech<br>Publishers,<br>Croatia,<br>Europe                                      | 2013. First<br>Edition                |
| 6.         | Oded Goldreich         | Foundations of<br>Cryptography –<br>A Primer                                        | Foundations and Trends® in Theoretical Computer Science: Vol. 1: No. 1, pp 1-116 | 2005                                  |



| <b>Course Code</b>       | Name of the Course        |               |        |     |       |  |
|--------------------------|---------------------------|---------------|--------|-----|-------|--|
| 216H02L401               | Applied Cry               | yptography La | borato | ry  |       |  |
|                          |                           |               |        |     |       |  |
| Teaching Scheme          | TH                        | P             |        | TUT | Total |  |
| (Hrs./Week)              |                           | 02            |        |     | 02    |  |
| <b>Credits Assigned</b>  |                           |               | 01     |     |       |  |
|                          |                           |               |        |     |       |  |
| <b>Evaluation Scheme</b> |                           | Marks         |        |     |       |  |
|                          | LAB/TUT CA (TH) ESE Total |               |        |     |       |  |
|                          | CA                        | ISE           | CA     |     |       |  |
|                          | 50                        |               |        |     | 50    |  |

#### **Laboratory Suggestions:**

Since this is an introductory course in CSF, the experiments should be a blend of programming, tools, libraries and virtual labs. Experiments relevant with course concepts needing programming skills appropriate for sem III or some applications those could use some libraries related to cryptographic concepts

Laboratory will consist of experiments covering entire syllabus of the course "Applied Cryptography". Students will be graded based on continuous assessment of laboratory work.



| Course Code               | Course Title           |      |      |            |   |            |  |
|---------------------------|------------------------|------|------|------------|---|------------|--|
| 216H02C501                | Cyber Forensics & Laws |      |      |            |   |            |  |
|                           | TH P TUT Total         |      |      |            |   | Total      |  |
| Teaching Scheme(Hrs.)     | 03                     |      | _    | -          | 1 | 03         |  |
| Credits Assigned          | 03                     |      | _    | . <b>-</b> | - | 03         |  |
| <u> </u>                  | Marks                  |      |      |            |   |            |  |
|                           | LAB/TUT                | CA ( | (TH) | БОБ        | , | TD . 4 . 1 |  |
| <b>Examination Scheme</b> | CA                     | IA   | ISE  | ESE        | 4 | Total      |  |
|                           |                        | 20   | 30   | 50         |   | 100        |  |
|                           |                        |      |      |            |   |            |  |

# Course prerequisites: Fundamentals of Cryptography, Computer Organization & Architecture.

#### **Course Objectives:**

The objective of the course is to enable students to understand the basic principles of cyber security, computer crimes and methods of defense. The course introduces the process of digital forensic investigation, extraction of evidences using appropriate tools. It covers the techniques of data hiding, recovery, disk analysis, volatile data extraction. Further, it explores different network based attacks, tools to monitor/mitigate such attacks. Tools such as metasploit, interfaces to dark web and deep web explore the conducive environment for attackers. Cyber laws, IT Acts enable the student to understand the legal aspects of various cyber-crimes.

#### **Course Outcomes**

#### At the end of successful completion of the course the student will be able to

- CO 1: Understand the fundamentals of security framework.
- CO 2: Apply security principles & tools for computer and mobiles to protect their devices.
- CO 3: Understand the fundamentals of digital forensics & investigation process.
- CO 4: Apply forensic tools to extract and investigate the evidences from network.
- CO 5: Relate the corresponding computer security laws and acts in the digital space.



| Module No. | Unit<br>No. | Details                                                                                                                                                                                                                                                                                                                                         | Hrs. | CO   |
|------------|-------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|------|
| 1          | Introdu     | action to Cyber Security Framework.                                                                                                                                                                                                                                                                                                             |      |      |
|            | 1.1         | Introduction to security architecture, goals, attack vectors, methods of defense.                                                                                                                                                                                                                                                               |      |      |
|            | 1.2         | Cybercrime, types of cybercrimes, Regulation of cyberspace, cyberspace framework, Issues and challenges of cyber security.                                                                                                                                                                                                                      | 06   | CO 1 |
|            | 1.3         | Cybercrime on Social Media - Security and Privacy management, ATM based frauds & other digital frauds.                                                                                                                                                                                                                                          |      |      |
| 2          | Digital     | Device Security.                                                                                                                                                                                                                                                                                                                                |      |      |
|            | 2.1         | End Point device and Mobile phone security, Password policy, Security patch management, electronic evidence and handling, electronic media, collection, searching and storage of electronic media.                                                                                                                                              |      |      |
|            | 2.2         | Data backup, Downloading and management of third party software, Device security policy.                                                                                                                                                                                                                                                        | 09   | CO 2 |
|            | 2.3         | Cyber Security best practices, Significance of host firewall and Ant-virus, Management of host firewall and Anti-virus, Wi-Fi security, Configuration of basic security policy and permissions, Data privacy.                                                                                                                                   |      |      |
|            | #Self L     | earning - GDPR Compliance.                                                                                                                                                                                                                                                                                                                      |      |      |
| 3          |             | Forensics Fundamentals                                                                                                                                                                                                                                                                                                                          |      |      |
|            | 3.1         |                                                                                                                                                                                                                                                                                                                                                 |      |      |
|            | 3.2         | Classification of digital evidence - volatile and non-volatile, rules and guidelines for extraction of digital evidence, forensic duplicates, establishing chain of custody, admissibility of evidence in the court of law.                                                                                                                     | 40   | GO 4 |
|            | 4 4         | Information retrieval and recovery, cloning techniques, password cracking, data recovery from file systems and mobile devices, forensics audit, tools for forensic investigation - Encase, Helix, FTK, Autopsy, Sleuth kit Forensic Browser, FIRE, Found stone Forensic ToolKit, Win Hex, Linux dd and other open source tools, anti-forensics. | 10   | CO 3 |
|            | #Self L     | earning – CERT and its role in digital investigation.                                                                                                                                                                                                                                                                                           |      |      |
| 4          | Networ      | k Forensics                                                                                                                                                                                                                                                                                                                                     |      |      |
|            |             | Network based attacks – MITM, OWASP, ARP spoofing, IP and MAC spoofing, DNS attacks, SYN flooding attacks, port scanning, DOS, DDOS etc.                                                                                                                                                                                                        |      |      |
|            | 4.2         | Network traffic log analysis, Network Monitors, Network<br>Forensics – acquisition of real time evidence, process and<br>guidelines for evidence handling on networks.                                                                                                                                                                          | 14   | CO 4 |
|            | 4.3         | E-mail in Investigations, roles of the Client and Server in E-mail, Investigating E-mail based Crimes and Violations, Examination of E-mail Messages, E-mail Headers, and Additional E-mail Files, Tracing an E-mail Message, Network E-mail Logs, E-mail Forgery and Tracking.                                                                 |      |      |



|   | 4.4     | Network Forensic Tools & Applications – Browser forensics,<br>Nmap, Nessus, Wireshark, Metasploit, Kali-Linux, Deep-Web,<br>Dark-Web.                                            |    |      |
|---|---------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|------|
|   | #Self L | earning: Network forensic cases studies.                                                                                                                                         |    |      |
| 5 | Cyber : | Laws & Acts.                                                                                                                                                                     | 06 | CO 5 |
|   | 5.1     | Introduction to cyber ethics, Software Piracy, Intellectual Property, IP Theft, Copyright, Trademark, Privacy and Censorship.                                                    |    |      |
|   | 5.2     | Indian laws – Information Technology (IT) Act 2000, IT<br>Amendment Act 2008, National Cyber Security Strategy 2020,<br>The Digital Personal Data Protection Act of 2023 (DPDP). |    |      |
|   | #Self L | earning: Network forensic cases studies.                                                                                                                                         |    |      |
|   |         | Total                                                                                                                                                                            | 45 |      |

• Instructor needs to provide additional resources to students for in-depth understanding and practical applicability of the indicated topic/topics.





# **Recommended Books:**

| Sr.<br>No. | Name/s of Author/s                                     | Title of Book                                                                                  | Name of<br>Publisher with<br>country              | Edition and<br>Year of<br>Publication |
|------------|--------------------------------------------------------|------------------------------------------------------------------------------------------------|---------------------------------------------------|---------------------------------------|
| 1.         | Marie-Helen Maras                                      | Computer Forensics:<br>Cybercriminals, Laws and<br>Evidences                                   | Jones and<br>Bartlett<br>Learning                 | 2nd Edition,<br>2014                  |
| 2.         | Bill Nelson<br>Amelia Phillips<br>Christopher Steuart. | Guide to Computer Forensics and Investigations                                                 | Course<br>Technology,<br>Cengage<br>Learning, USA | 4th Edition,<br>2010                  |
| 3.         | Jason T. Luttgens,<br>Mathew Pepe, Kevin<br>Mandia     | Incident Response and<br>Computer Forensics.                                                   | Tata McGraw<br>Hill Education                     | 3rd Edition,<br>2014.                 |
| 4.         | Nina Godbole, Sunit<br>Belapure,                       | Cyber Security-<br>Understanding Cyber<br>Crimes, Computer Forensics<br>and Legal Perspectives | Wiley- India                                      | 2011                                  |
| 5.         | Davidoff Ham                                           | Network Forensics Tracking Hackers through Cyberspace                                          | Pearson, India                                    | 1st Edition,<br>2013.                 |
| 6.         | Cory Altheide, Harlan<br>Carvey                        |                                                                                                | Syngress,<br>Elsevier, USA                        | 2011                                  |



| Course Code           | Course Title                                        |         |     |     |     |       |       |
|-----------------------|-----------------------------------------------------|---------|-----|-----|-----|-------|-------|
| 216Н02Т502            | Cyber Security & Forensics - Case-Studies and Tools |         |     |     |     |       |       |
|                       | TH                                                  |         | P   |     | TU' |       | Total |
| Teaching Scheme(Hrs.) |                                                     |         |     | 02  |     | 02    |       |
| Credits Assigned      |                                                     |         | 02  |     |     | 02    |       |
|                       | Marks                                               |         |     |     |     |       |       |
|                       | LAB/TUT                                             | CA (TH) |     | EGE |     |       |       |
| Examination Scheme    | CA                                                  | IA      | ISE | ESE |     | Total |       |
|                       | 50                                                  |         |     |     |     |       | 50    |

Course prerequisites: Basic fundamentals of Computer Systems, Operating Systems, Networks & Cryptography.

Course Objectives: The objective of this course is to provide the student with hands-on knowledge of different tools and techniques used for investigations of cyber forensic incidents. The course covers different experimentation in the domain of Digital Forensics & Investigations, Data hiding and carving techniques, Network Forensics using different tools & techniques.

## **Course Outcomes:**

At the end of successful completion of the course the student will be able to:

- CO 1: Determine & analyze software vulnerabilities, security solutions to reduce the risk of exploitation.
- CO 2: Understand the process of identifying digital evidence and its analysis.
- CO 3: Identify & apply appropriate forensic tools & techniques for investigation of the incidents.
- CO 4: Apply different fingerprint techniques on digital assets.
- CO 5: Explore advanced forensic and anti-forensic techniques.



| N | Module | Unit Details                                          | Hrs.  | CO   |
|---|--------|-------------------------------------------------------|-------|------|
|   | No.    | No.                                                   |       |      |
|   | 1      | Cybersecurity and Forensics                           | 04    | CO 1 |
|   |        | Introduction to Forensic Tools and Techniques, Case   | Study |      |
|   |        | Analysis: Historical Cybersecurity Breaches           |       |      |
|   |        | Hands-on Lab: Setting Up Forensic Environment         |       |      |
|   |        | Case studies                                          |       |      |
|   | 2      | Digital Evidence and Analysis                         | 08    | CO 2 |
|   |        | Tools and Techniques for Evidence Collection          |       |      |
|   |        | Data Recovery and Repair                              |       |      |
|   |        | Forensic Imaging and Hashing                          |       |      |
|   |        | Hands-on Lab: Evidence Collection Practice            |       |      |
|   |        | Practical Exercise: Creating Forensic Images of Stora | ge    |      |
|   |        | Devices                                               |       |      |
|   |        | Case studies                                          |       |      |
|   | 3      | Forensics#                                            | 08    | CO 3 |
|   |        | Network Forensics                                     |       |      |
|   |        | Memory Forensics and Volatile Data Analysis           |       |      |
|   |        | Case Study: Memory Analysis in Incident Response      |       |      |
|   |        | Steganography Detection Email forensics               |       |      |
|   |        | Social media forensics                                |       |      |
|   |        | Incident response forensics                           |       |      |
|   |        | Live Forensics Tools                                  |       |      |
|   |        |                                                       |       |      |
|   |        | Case studies                                          |       |      |
|   | 4      | Digital fingerprinting                                | 06    | CO 4 |
|   |        | Digital fingerprinting                                |       |      |
|   |        | Device Fingerprinting                                 |       |      |
|   |        | Browser Fingerprinting                                |       |      |
|   |        | Network Fingerprinting                                |       |      |
|   |        | Operating System Fingerprinting                       |       |      |
|   |        | User Fingerprinting                                   |       |      |
|   |        | Case studies                                          |       | 1    |
|   | 5      | Advanced concepts in forensics                        | 04    | CO 5 |
|   |        | Anti-Forensics tools and Techniques                   |       |      |
|   |        | Counter-Forensics and Mitigation Strategies           |       |      |
|   |        | Case studies                                          |       |      |
|   |        | Total                                                 | 30    |      |
|   |        | 10001                                                 | 30    |      |

#students should explore some forensics on their own while some can be conducted during laboratory session



| Course Code              | Name of the Course |        |            |     |       |  |
|--------------------------|--------------------|--------|------------|-----|-------|--|
| 216H02C601               | Secure Coding      |        |            |     |       |  |
| Teaching Scheme          | TH                 | P      |            | TUT | Total |  |
| (Hrs./Week)              | 03                 |        |            |     | 03    |  |
| Credits Assigned         | 03                 |        |            |     | 03    |  |
| <b>Evaluation Scheme</b> |                    | Marks  |            |     |       |  |
|                          | LAB/TUT            | CA (TH | <b>(</b> ) | ESE | Total |  |
|                          | CA                 | IA     | ISE        |     |       |  |
|                          |                    | 20     | 30         | 50  | 100   |  |

#### **Course pre-requisites:**

Knowledge of programming languages, cryptography, web development

## **Course Objectives:**

By the end of this course, students should have a comprehensive understanding of secure programming principles, architecture, design, coding practices, and testing methodologies. They should be able to apply this knowledge to develop secure software and mitigate vulnerabilities effectively.

#### **Course Outcomes (CO):**

- 1. Understand secure coding best practices, procedures, policies and software vulnerabilities
- 2. Design software applications using secure architecture concepts
- 3. Development of secure software application
- 4. Understand and incorporate various secure software development frameworks and maturity models.



| Modul | Unit                                                     | Contents                                                                                                 | No   | CO  |
|-------|----------------------------------------------------------|----------------------------------------------------------------------------------------------------------|------|-----|
| e No. | No.                                                      |                                                                                                          | of   |     |
|       |                                                          |                                                                                                          | Hrs. |     |
| 1     |                                                          | luction                                                                                                  |      |     |
|       | 1.1                                                      | The Philosophy of Secure Programming, Defining Secure                                                    |      |     |
|       |                                                          | Programming, Robust vs. Secure Programming, Security Policies and Procedures, Secure Programming General |      |     |
|       |                                                          | Philosophy, Where to Look for Vulnerabilities, Secure                                                    |      |     |
|       |                                                          | Programming best practices,                                                                              |      |     |
|       | 1.2                                                      | Vulnerabilities in various programming                                                                   | 07   | CO1 |
|       | 1.2                                                      | languages, Vulnerabilities in various domains: Web                                                       |      | CO1 |
|       |                                                          | Application, Mobile Applications and Database Applications                                               |      |     |
|       |                                                          | Dangers of Vulnerable Components/Programs                                                                |      |     |
|       | 1.3                                                      |                                                                                                          |      |     |
|       |                                                          | developing secure code: Risk analysis, threat modelling, and                                             |      |     |
|       |                                                          | guidelines for secure coding practice.                                                                   |      |     |
|       | l                                                        |                                                                                                          | I    |     |
| 2     | Secure                                                   | e architecture and Principles of secure designing                                                        |      |     |
|       | 2.1                                                      | What is security architecture?                                                                           |      |     |
|       | 2.2                                                      | Principles of security architecture, principles of secure                                                |      |     |
|       | software development, case study: Java                   |                                                                                                          | 06   | CO2 |
|       | sandbox                                                  |                                                                                                          |      |     |
|       | 2.3                                                      | Secure design steps, Secure deployment and maintenance,                                                  |      |     |
|       |                                                          | Security Auditing                                                                                        |      |     |
|       |                                                          |                                                                                                          | 1    |     |
| 3     |                                                          | e Design and Implementation                                                                              |      |     |
|       | 3.1                                                      | Security requirements in application software, Security                                                  |      |     |
|       | 2.2                                                      | Technical reference model (TRM)                                                                          |      |     |
|       | 3.2                                                      | Secure Design steps, Special design issues, Software design                                              | 10   | CO2 |
|       |                                                          | considerations for security and resilience; Good and bad                                                 |      |     |
|       | 2.2                                                      | practises in secure design, case studies                                                                 |      |     |
|       | 3.3                                                      | Security requirements, security framework, Good and bad<br>Practises in implementation, case studies     |      |     |
|       |                                                          | Fractises in implementation, case studies                                                                |      |     |
| 4     | Softwa                                                   | are development and security test cases                                                                  |      |     |
| 7     | 4.1                                                      | Vulnerabilities and controls: mobile application development,                                            |      |     |
|       | 7.1                                                      | web based application development, cross domain application                                              |      |     |
|       |                                                          | developement.                                                                                            |      |     |
|       | 4.2                                                      | Secure coding practices, Cryptographic libraries and tools for                                           |      |     |
|       |                                                          | secure coding                                                                                            |      |     |
|       | 4.3                                                      | Standardized testing policy, security requirements, security                                             | 12   | CO3 |
|       |                                                          | testing, Secure testing approach,                                                                        |      |     |
|       | 4.4                                                      | Security test cases for : identification requirements,                                                   |      |     |
|       | authentication requirements, authorization requirements, |                                                                                                          |      |     |
|       |                                                          | confidentiality requirements, integrity requirements,                                                    |      |     |
|       |                                                          | availability requirements, non-repudiation requirements,                                                 |      |     |
|       |                                                          | system maintenance security requirements                                                                 |      |     |
|       | 4.5                                                      | Manual source code review, Automated source code analysis                                                |      |     |
|       |                                                          | Manual and automated tools for code review and analysis                                                  |      |     |



| 5 | Secure | Secure Coding Maturity Models and framework         |     |  |  |
|---|--------|-----------------------------------------------------|-----|--|--|
|   | 5.1    | Secure Software Development Framework (SSDF),       |     |  |  |
|   |        | OWASP's application security verification standard, |     |  |  |
|   |        | 10                                                  | CO4 |  |  |
|   |        | Building Security In Maturity Model (BSIMM)         |     |  |  |
|   | 5.2    | Case studies                                        |     |  |  |
|   |        | Total                                               | 45  |  |  |

# **Reference Books:**

| Sr. | Name/s of Author/s                                                          | Title of Book                                                              | Publisher         | Edition/Year      |  |  |  |
|-----|-----------------------------------------------------------------------------|----------------------------------------------------------------------------|-------------------|-------------------|--|--|--|
| No  |                                                                             |                                                                            |                   |                   |  |  |  |
| 1   | Mark G. Graaff,                                                             | Secure Coding: Principles and                                              | O'Reilly          | 2003, First       |  |  |  |
|     | Kenneth R. van Wyk                                                          | Practices                                                                  |                   | Edition           |  |  |  |
| 2   | Mark Merkow,                                                                | Secure and Resilient software:                                             | CRC Press         | 2012              |  |  |  |
|     | Lakshmikanth                                                                | Requirements, test cases and                                               |                   |                   |  |  |  |
|     | Raghvan                                                                     | testing methods                                                            |                   |                   |  |  |  |
| 3   | Michael Howard,                                                             | Writing secure code                                                        | Microsoft         | Second            |  |  |  |
|     | David LeBlanc                                                               |                                                                            | Press             | Edition           |  |  |  |
| 4   | Neil Daswani,                                                               | Foundations of Security                                                    | Apress            | 2007,First        |  |  |  |
|     | Christoph Kern, and                                                         |                                                                            |                   | Edition           |  |  |  |
|     | Anita Kesavan.                                                              |                                                                            |                   |                   |  |  |  |
| 5   |                                                                             |                                                                            |                   |                   |  |  |  |
| 1.  | Best Practises for secur                                                    | re coding, <a href="https://safecomputing.um">https://safecomputing.um</a> | ich.edu/protec    | ct-the-u/protect- |  |  |  |
|     | your-unit/secure-codin                                                      | g/best-practices, last retrieved on De                                     | ec 13,2023        |                   |  |  |  |
| 0.  | OWASP Top 10 Mobil                                                          | le Vulnerabilities Developers Need                                         | to Understand     | ,                 |  |  |  |
|     | https://www.cypressda                                                       | tadefense.com/blog/owasp-mobile-t                                          | op-10-vulnera     | abilities/, last  |  |  |  |
|     | retrieved on Dec 13,20                                                      | 23                                                                         |                   |                   |  |  |  |
| 0.  |                                                                             | lication Vulnerabilities Explained,                                        |                   |                   |  |  |  |
|     | "https://securityscorecard.com/blog/common-web-application-vulnerabilities- |                                                                            |                   |                   |  |  |  |
|     | explained", last retriev                                                    |                                                                            |                   |                   |  |  |  |
| 0.  | OWASP Top Ten, "htt                                                         | ps://owasp.org/www-project-top-ter                                         | 1/", last retriev | ved on Dec        |  |  |  |
|     | 13,2023                                                                     |                                                                            |                   |                   |  |  |  |



| <b>Course Code</b>       | Name of the Course |               |       |     |       |
|--------------------------|--------------------|---------------|-------|-----|-------|
| 216H02L601               | Secure             | Coding Labora | atory |     |       |
|                          |                    |               |       |     |       |
| <b>Teaching Scheme</b>   | TH                 | P             |       | TUT | Total |
| (Hrs./Week)              |                    | 02            |       |     | 02    |
| <b>Credits Assigned</b>  |                    | 01            |       |     | 01    |
|                          |                    |               |       |     |       |
| <b>Evaluation Scheme</b> |                    | Marks         |       |     |       |
|                          | LAB/TUT CA (TH)    |               | ()    | ESE | Total |
|                          | CA*                | IA            | ISE   |     |       |
|                          | 50                 |               |       |     | 50    |

#### LAB/TUT CA:

\*LAB/TUT CA is an evaluation carried out during the said laboratory/tutorial throughout the semester on a continuous basis. In case of Laboratory, it can be a combination of laboratory experiments performed (at least 8-10), written record of experiments (Journal), Viva/On-screen test and/or Quiz, programming assignments (wherever applicable) and practical examination (if any) conducted during the semester. In case of tutorial, it can be a combination of graded assignments, group/individual activities such as presentations, group discussion, report writing etc. (as applicable).

#### Please note:

- The total marks assigned for Continuous Assessment (LAB/TUT) as per scheme can be distributed in a number of components as given above.
- Course coordinator should decide the rubrics/distribution of marks for different components in consultation with all other faculty teaching the same course.
- The rubrics/distribution should be uniform for all batches.
- The rubrics/distribution should be communicated to all students at the beginning of the semester.



| Course Code              | Name of the Course                             |        |            |     |       |  |
|--------------------------|------------------------------------------------|--------|------------|-----|-------|--|
| 216H02C701               | Vulnerability Analysis and Penetration Testing |        |            |     |       |  |
|                          |                                                | Γ      |            |     |       |  |
| Teaching Scheme          | TH                                             | P      |            | TUT | Total |  |
| (Hrs./Week)              | 03                                             |        |            |     | 03    |  |
| Credits Assigned         | 03                                             |        |            |     | 03    |  |
|                          |                                                |        |            |     |       |  |
| <b>Evaluation Scheme</b> |                                                | Marks  |            |     |       |  |
|                          | LAB/TUT                                        | CA (TI | <b>I</b> ) | ESE | Total |  |
|                          | CA                                             | IA     | ISE        |     |       |  |
|                          |                                                | 20     | 30         | 50  | 100   |  |

#### Course pre-requisites:

Knowledge of Networking and System Programming

#### **Course Objectives:**

The objective of this course is to impart knowledge about the principles and techniques associated with the information and cybersecurity practice known as penetration testing or ethical hacking. The topics covered in the course are the entire penetration testing process including planning, reconnaissance, scanning, exploitation, post exploitation, and result reporting.

#### **Course Outcomes (CO):**

- 1. Understand penetration testing with scope of its ethical implications, documentation, and reporting.
- 2. Perform Penetration testing and vulnerability assessment on various systems.
- 3. Comprehend post exploitation phase of penetration testing.
- 4. Apply unique techniques to gather exploitation intelligence, identify risk and demonstrate impact with Red Team and Blue Team strategies



| Module<br>No. | Unit<br>No.                                              | Contents                                                     | No of<br>Hrs. | со   |
|---------------|----------------------------------------------------------|--------------------------------------------------------------|---------------|------|
| 1             | Introd                                                   | uction to Penetration Testing                                |               |      |
|               | 1.1                                                      | Introduction to Penetration testing, Ethics, Laws.           |               |      |
|               | 1.2                                                      | Types of Penetration Testing, Phases of Penetration Testing. | 4             | C01  |
|               | 1.3                                                      | Setting up a Penetration Lab                                 |               |      |
|               |                                                          | udy: Kali Linux, Parrot OS                                   |               |      |
|               |                                                          |                                                              |               | I    |
| 2             | Inforn                                                   | nation Gathering/ Footprinting                               |               |      |
|               |                                                          | Reconnaissance: Passive Information gathering with Foot      |               |      |
|               | 2.1 printing, Active Information Gathering, Open Service |                                                              |               |      |
|               |                                                          | Information Gathering                                        | 0             | G0.2 |
|               | 2.2                                                      | Network Scan: Passive and active Network Scan, Port          | 9             | CO2  |
|               | 2.2 Scanning, ARP Spoofing, Network Traffic Scanning.    |                                                              |               |      |
|               | 2.3                                                      | OS Fingerprinting                                            |               |      |
|               | Self St                                                  | udy: Maltego, Recon-ng, NMAP                                 |               |      |
|               |                                                          | 7 07                                                         |               | I    |
| 3             | Identif                                                  | fication of Vulnerability and Exploits                       |               |      |
|               | 3.1                                                      | Understanding Vulnerabilities                                |               |      |
|               | 3.2                                                      | Buffer Overflow Exploitation                                 |               |      |
|               | 3.3                                                      | Fuzzing                                                      |               |      |
|               | 3.4                                                      | Searching for Exploits                                       | 14            | CO3  |
|               | 3.5                                                      | System Hacking                                               |               |      |
|               | 3.6                                                      | Post Exploitation and Covering tracks                        |               |      |
|               | 3.7                                                      | Privilege Escalation Exploits (Windows and Linux)            |               |      |
|               | 3.8                                                      | Port Redirection and Tunnelling                              |               |      |
|               |                                                          |                                                              |               |      |
| 4             | Exploi                                                   | tation and Professional Reporting                            |               |      |
|               | 4.1                                                      | ARP Spoofing, MITM and Session Hijacking                     |               |      |
| ·             | 4.2                                                      | Shell Script Exploitation                                    |               |      |
|               | 4.3                                                      | Password Cracking: Exploring Hydra and John the Ripper       | 10            | CO3  |
|               | 4.4                                                      | Metasploit Framework: Metasploit User Interfaces, Setting up |               |      |
|               | 4.4                                                      | Metasploit Framework, Exploring the Metasploit Framework     |               |      |
|               | 4.5                                                      | Preparing Report and Presenting Findings                     |               |      |
|               |                                                          |                                                              |               |      |
| 5             | Securi                                                   | ty Landscape, Red Team, and Blue Team                        |               |      |
|               | 5.1                                                      | Incident Response Process                                    |               |      |
|               | 5.2                                                      | Red Team and Blue Team                                       | 8             | CO4  |
|               | 5.3                                                      | Red Team Operations                                          |               |      |
|               | 5.4                                                      | Blue Team Défense                                            |               |      |
|               |                                                          | Total                                                        | 45            |      |



## **Reference Books:**

| Sr.<br>No | Name/s of<br>Author/s                                    | Title of Book                                                                                  | Publisher                                   | Edition/Ye ar                    |
|-----------|----------------------------------------------------------|------------------------------------------------------------------------------------------------|---------------------------------------------|----------------------------------|
| 1         | Georgia Weidman                                          | Penetration Testing: A Hands-On Introduction to Hacking                                        | No Starch Press                             | 1 <sup>st</sup> Edition,<br>2014 |
| 2         | George Kurtz,<br>Joel Scambray,<br>and Stuart<br>McClure | Hacking Exposed 7: Network<br>Security Secrets and<br>Solutions                                | McGraw Hill                                 | 2012                             |
| 3         | Rafay Baloch                                             | Ethical Hacking and Penetration Testing Guide                                                  | CRC Press                                   | 2015                             |
| 4         | Peter Kim                                                | The Hacker Playbook 2                                                                          | Secure Planet LLC                           | 2015                             |
| 5         | Micah Zenko                                              | Red Team How to Succeed by Thinking Like the Enemy                                             | Basic Books                                 | 2015                             |
| 6         | Don Murdoch<br>GSE                                       | Blue Team Handbook: A<br>Condensed Field Guide for<br>the Cyber Security Incident<br>Responder | Createspace Independent Publishing Platform | 2014                             |

<sup>\*</sup>In addition to printed books, faculty can suggest (authentic) URL's or e-books, e-contents etc.





| <b>Course Code</b>       | Name of the Course                                      |         |     |     |       |
|--------------------------|---------------------------------------------------------|---------|-----|-----|-------|
| 216H02C701               | Vulnerability Analysis and Penetration Testing Tutorial |         |     |     |       |
|                          |                                                         |         |     |     |       |
| <b>Teaching Scheme</b>   | TH                                                      | P       |     | TUT | Total |
| (Hrs./Week)              | ł                                                       |         |     | 02  | 02    |
| <b>Credits Assigned</b>  | 1                                                       |         |     | 02  | 02    |
|                          |                                                         |         |     |     |       |
| <b>Evaluation Scheme</b> | Marks                                                   |         |     |     |       |
|                          | LAB/TUT                                                 | CA (TH) |     | ESE | Total |
|                          | CA*                                                     | IA      | ISE |     |       |
|                          | 50                                                      |         |     |     | 50    |

#### LAB/TUT CA:

\*LAB/TUT CA is an evaluation carried out during the said laboratory/tutorial throughout the semester on a continuous basis. In case of Laboratory, it can be a combination of laboratory experiments performed (at least 8-10), written record of experiments (Journal), Viva/On-screen test and/or Quiz, programming assignments (wherever applicable) and practical examination (if any) conducted during the semester. In case of tutorial, it can be a combination of graded assignments, group/individual activities such as presentations, group discussion, report writing etc. (as applicable).

#### Please note:

- The total marks assigned for Continuous Assessment (LAB/TUT) as per scheme can be distributed in a number of components as given above.
- Course coordinator should decide the rubrics/distribution of marks for different components in consultation with all other faculty teaching the same course.
- The rubrics/distribution should be uniform for all batches.
- The rubrics/distribution should be communicated to all students at the beginning of the semester.