Class 16

Sec. 2.6. Integrable functions

 (X, \boldsymbol{a}, u)

 $f: X \to [-\infty, \infty]$ meas.

Def. f integrable if $\exists \{f_n\}$ simple, integrable \ni

(a) $\{f_n\}$ Cauchy in the mean; $\}$ note: Both $\int f_n \& f_n$ should conv. to $\int f \& f$.

Def. $\int f du = \lim \int f_n du$

Note1. $\lim |f_n du| = \inf |f_n du - |f_m du| \le \int |f_n - f_m| \to 0$ as $n, m \to \infty$.

2. u(X) may be $\infty \& f$ may be unbdd \Rightarrow encompassing improper integrals.

$$3. f_n \to f \text{ a.e.} \Rightarrow \int f_n \to \int f$$

 $f_n \to f \text{ in measure} \Rightarrow \int f_n \to \int f$

Thm. f integrable iff $\exists \{f_n\}$ simple, integrable \ni

(a) & (b') $f_n \rightarrow f$ in meas.

Note 3. From (b'), f integrable $\Rightarrow f$ real a.e.

Pf of Thm. " \Rightarrow ":

Check: (b')

Lma & (a) $\Rightarrow f_n \rightarrow g$ in meas. $\Rightarrow \{f_n\}$ Cauchy in measure

Thm. $\Rightarrow \exists f_{n_k} \rightarrow h$ almost unif. \Rightarrow in measure & a.e.

(b)
$$\Rightarrow f_{n_k} \to f$$
 a.e. & $f_{n_k} \to g$ in measure
 $\therefore f = h$ a.e. & $h = g$ a.e. $\Rightarrow f = g$ a.e.
 $\therefore f_n \to f$ in meas,

"⇐":

Check: (a) & (b) for a subsequence f_{n_k}

Thm & $(b') \Rightarrow \exists f_{n_k} \rightarrow g$ almost unif.

$$\Rightarrow f_{n_k} \to g \text{ a.e. } \& f_{n_k} \to g \text{ in measure}$$

$$(b') \Rightarrow f_{n_k} \to f \text{ in measure}$$

$$\Rightarrow f = g \text{ a.e.}$$

$$\Rightarrow f_{n_k} \to f \text{ a.e., i.e, (b) holds}$$

$$\Rightarrow \left\{ f_{n_k} \right\} \text{ Cauchy in the mean}$$

$$\Rightarrow f_{n_k} \to f$$
 a.e., i.e, (b) holds

(a)
$$\Rightarrow \{f_{n_k}\}$$
 Cauchy in the mean

$$\therefore \{f_{n_k}\}$$
 satisfies (a) & (b).

Thm: *f* integrable

Then $\int f du = \lim_{n} \int f_n du$ indep. of $\{f_n\}$ satisfying (a) & (b).

Lma 1. Let f, f_n be as in Def.

Let
$$\lambda(E) = \lim_{n} \int_{E} f_n$$
 for $E \in \boldsymbol{a}$

Then $\lambda : \alpha \to \mathbb{R}$ is a signed measure.

Motivation:

f integrable on $(X, \boldsymbol{\alpha}, u)$

 $\lambda(E) = \int_E f du \text{ for } E \in \boldsymbol{a}$

Then $\lambda : a \to \mathbb{R}$ is a signed measure.

Check: $\lim_{n \to \infty} \int_{E} f_n$ exists unif. in E.

$$: \left| \int_{E} f_{n} - \int_{E} f_{m} \right| \le \int_{E} \left| f_{n} - f_{m} \right| \le \int_{E} \left| f_{n} - f_{m} \right| \to 0 \text{ as } m, n \to \infty \text{ by (a)}$$

 $\therefore \{ \int_E f_n \}$ Cauchy unif. in E.

 $\Rightarrow \lim_{n} \int_{E} f_{n}$ exists unif. in E (advanced calculus)

(a)
$$\lambda(\phi) = \lim_{n \to \infty} \int_{\phi} f_n = \lim_{n \to \infty} 0 = 0$$

(b) Let
$$E = \bigcup_{i} E_{i}$$
, $\{E_{i}\} \subseteq \boldsymbol{a}$, disjoint

Check: $\lambda(E) = \sum_{i} \lambda(E_i)$

$$\lim_{n} \int_{E} f_{n} \quad \sum_{i} \lim_{n} \int_{E_{i}} f_{n}$$

(by Property (7))

$$\lim_{n} \sum_{i} \int_{E_{i}} f_{n}$$

 \therefore To prove two limits (involving n & i) interchangable if one is unif. conti.

Similar to: $f_n \to f$ unif. on E, f_n conti. on $E \Rightarrow f$ conti. on E.

Pf:
$$|f(y) - f(x)| \le |f(y) - f_n(y)| + |f_n(y) - f_n(x)| + |f_n(x) - f(x)|$$

$$\leq \frac{\varepsilon}{3} + \frac{\varepsilon}{3} + \frac{\varepsilon}{3}$$
 for a fixed large $n \& y \to x$.

$$\left| \lambda(E) - \sum_{i=1}^{m} \lambda(E_{i}) \right| \leq \left| \lambda(E) - \int_{E} f_{n} \right| + \left| \int_{E} f_{n} - \sum_{i=1}^{m} \int_{E_{i}} f_{n} \right| + \left| \sum_{i=1}^{m} \int_{E_{i}} f_{n} - \sum_{i=1}^{m} \lambda(E_{i}) \right|$$

$$\left| \left| \left| \right| \right| \right|$$

$$\left| \lim_{i \to 1} \sum_{i=1}^{m} \int_{E_{i}} f_{n} \right|$$

$$\left| \lim_{n} \sum_{i=1}^{m} \int_{E_{i}} f_{n} \right|$$

$$\left| \lim_{n} \int_{\bigcup_{i=1}^{m} f_{n}} f_{n} \right|$$

$$\left| \lim_{n \to \infty} \int_{\bigcup_{i=1}^{m} f_{n}} f_{n} \right|$$

for fixed f_n , $E \rightarrow \int_E f_n$ is countably additive

$$\leq \frac{\varepsilon}{3} + \frac{\varepsilon}{3} + \frac{\varepsilon}{3} + \frac{\varepsilon}{3} \text{ for large fixed } n \& m \to \infty$$

$$\lambda(E) = \lim_{n \to \infty} \int_{E} f_n \text{ unif. in } E \Rightarrow \forall \varepsilon > 0 \ \exists \ N \ \ni \ n > N \Rightarrow \sup_{E \in \alpha} |\lambda(E) - \int_{E} f_n | < \frac{\varepsilon}{3}$$

3