ЛАБОРАТОРНАЯ РАБОТА №3

ПОСТРОЕНИЕ ГРУППОВЫХ КОДОВ

Целью работы является усвоение принципов построения групповых корректирующих кодов.

Указания к построению кодов

1. Определение числа избыточных символов

Групповой код относится к блоковым кодам, в которых формируемая кодовая комбинация содержит n разрядов, из которых k—информационных и m— проверочных (m=n-k). Взаимосвязь между блоками отсутствует, то есть передача и исправление ошибок в разных блоках происходят независимо друг от друга. Математической основой группового кода является теория групп (отсюда и название кода). В качестве основной операции в групповых кодах используется операция сложения по модулю два.

Построение конкретного корректирующего кода производится исходя из числа передаваемых букв (команд) или дискретных значений измеряемой величины, то есть алфавита из N элементов и статистических данных о наиболее вероятных векторах ошибок в используемом канале связи. Вектором ошибки будем называть кодовую комбинацию, имеющую единицу в разрядах, подвергающихся искажению, и нули во всех остальных разрядах. Любую искаженную кодовую комбинацию можно рассматривать теперь как сумму по модулю два разрешенной кодовой комбинации и вектора ошибки.

Будем рассматривать как независимые ошибки, так и пачки ошибок. Независимые ошибки, это когда по одной из них ничего нельзя сказать о других. В пачках ошибки расположены рядом. Длиной пачки ошибки называется дистанция между первым и последним искаженным символом. Внутри пачки могут оказаться и неискаженные символы.

Исходя из неравенства $2^k - l \ge N$, определяем число информационных разрядов k, необходимое для передачи заданного числа команд обычным двоичным кодом.

Каждой из $2^k - 1$ ненулевых комбинаций K-разрядного кода нам необходимо поставить в соответствие комбинацию из n разрядов. Значения символов в n- κ проверочных разрядах такой комбинации устанавливаются в результате суммирования по модулю два значений символов в определенных информационных разрядах.

Нам надлежит определить число проверочных разрядов, их значение и местоположение в n-разрядной кодовой комбинации.

Из общего числа $2^n - 1$ возможных ошибок, групповой код может исправить всего $2^{n-k} - 1$ разновидностей ошибок.

Чтобы иметь возможность получить информацию о векторе ошибки, воздействию которого подверглась полученная кодовая комбинация, каждому вектору ошибки, подлежащей устранению, должна быть

сопоставлена некоторая контрольная последовательность символов, называемая опознавателем.

Каждый символ опознавателя будет определяться в результате проверки одного из равенств на приемной стороне. Эти равенства мы составим для определения значений проверочных символов при кодировании на передающей стороне.

В групповом коде значения проверочных символов подбираются так, чтобы сумма по модулю два всех символов (включая проверочный), входящих в каждое из равенств, равнялась нулю. В таком случае число единиц среди этих символов при отсутствии ошибок четное. Поэтому операции определения символов опознавателя называют проверками на четность. При отсутствии ошибок в результате всех проверок на четность образуется опознаватель, состоящий из одних нулей. Если проверочное равенство не удовлетворяется, то в соответствующем разряде опознавателя появляется единица. Исправление ошибок возможно лишь при наличии взаимно однозначного соответствия между множеством опознавателей и множеством подлежащих исправлению разновидностей ошибок.

Таким образом, количество подлежащих исправлению ошибок является определяющим для выбора числа избыточных разрядов n- κ . Последних должно быть достаточно для того, чтобы обеспечить необходимое число опознавателей.

Если, например, мы желаем исправлять все одиночные ошибки, то исправлению подлежит n ошибок. Вектора ошибок имеют в этом случае следующий вид :

$$\vec{e}_1 = (000...01)$$

 $\vec{e}_2 = (000...10)$
......
 $\vec{e}_n = (100...00)$

Различных ненулевых опознавателей должно быть не менее n.

Необходимое число проверочных разрядов, следовательно, должно определяться из соотношения : $2^{n-k} - 1 \ge C_n^1 = n$.

В общем случае для исправления всех независимых ошибок кратности до t включительно получаем : $2^{n-k} - 1 \ge C_n^1 + C_n^2 + ... + C_n^t$.

В общем случае это неравенство записывается следующим образом: $2^{n-k}-I \ge Q$, где Q число ошибок, которые необходимо исправить. Например, для исправления пачек в 3 и менее символов

$$Q = n + (n-1) + 2(n-2)$$
, где

n — одиночные ошибки,

(n-1) – пачки в 2 соседних символа (... 0110...)

2(n-2) — пачки в 3 соседних символа (...01110...) и в два символа через один (...01010...).

Стоит подчеркнуть, что в приведенных соотношениях указывается теоретический предел минимально возможного числа проверочных разрядов, который далеко не во всех случаях можно реализовать практически.

2. Составление таблицы опознавателей

Начнем для простоты с установления опознавателей для случая исправления одиночных ошибок. Допустим, необходимо закодировать 15 команд (букв).

Таблица 1

N разряда	Вектор ошибки	Опознаватель
1	0000001	001
2	0000010	010
3	0000100	011
4	0001000	100
5	0010000	101
6	0100000	110
7	1000000	111

Тогда κ =4, n=7. Три избыточных разряда позволяют использовать в качестве опознавателей трехразрядные двоичные последовательности. В принципе они могут быть сопоставлены подлежащим исправлению ошибкам в любом порядке. Однако, опознаватели целесообразно сопоставлять с номерами разрядов, в которых произошли ошибки (табл. 1).

Коды, в которых опознаватели устанавливаются по указанному принципу, известны как коды Хэмминга Эрнестуэя.

Возьмем теперь более сложный случай исправления всех одиночных и двойных независимых ошибок, то есть две ошибки в любых разрядах. В качестве опознавателей одиночных ошибок в первом и втором разрядах можно принять, как и ранее две комбинации 0...001 и 0...010 (табл. 2).

Подлежащий исправлению вектор ошибки 0...011 может рассматриваться как результат суммарного воздействия двух векторов ошибок 0...010 и 0...001 и, следовательно, ему должен быть сопоставлен опознаватель, представляющий собой сумму по модулю два опознавателей этих ошибок, т.е. 0...011.

Вектору ошибки 0...0100 сопоставляем опознаватель 0...0100 и т.д. Выбирая в качестве опознавателя единичной ошибки в i-м разряде комбинацию с числом разрядов меньшим i, необходимо убедиться в том, что для всех остальных подлежащих исправлению векторов ошибок, имеющих единицы в i-м и более младших разрядах, получаются опознаватели, отличные от уже использованных. В результате имеем:

Таблица 2

Вектор ошибки	Опознаватель	Вектор ошибки	Опознаватель
00000001	000001	00001010	001010
00000010	000010	00001100	001100
00000011	000011	00010000	001111
00000100	000100	00010001	001110
00000101	000101	00010010	001101
00000110	000110	00010100	001011
00001000	001000	00011000	000111
00001001	001001	00100000	010000

Таким путем можно получить таблицу опознавателей для векторов ошибок в любом числе разрядов.

Если опознаватели векторов ошибок с единицами в нескольких разрядах устанавливаются как суммы по модулю два опознавателей одиночных ошибок в этих разрядах, то для определения проверочных равенств достаточно знать только опознаватели одиночных ошибок в каждом из разрядов.

Для построения кодов, исправляющих двойные независимые ошибки, пачки ошибок в двух и трех разрядах опознаватели одиночных ошибок в каждом из разрядов сведены в таблицах 3, 4, 5, которые составлены с помощью ЭВМ.

Таблица 3 - Опознаватели одиночных ошибок для кода, исправляющий двойные независимые ошибки

Таблица 4 - Опознаватели одиночных ошибок для кода, исправляющего пачки ошибок в двух и менее разрядов

N разряда	Опознаватель
1	0000001
2	0000010
3	0000100
4	0001000
5	0001111
6	0010000
7	0100000
8	0110011
9	1000000

Опознаватель	
)1	
10	
00	
00	
)1	
11	
10	
00	

Таблица 5 - Опознаватели одиночных ошибок для кода, исправляющего пачки ошибок в трех и менее разрядах

N разряда	Опознаватель	
1	0000001	
2	0000010	
3	0000100	
4	0001000	
5	0010000	
6	0100000	
7	0001001	
8	0010010	
9	0100100	
10	1000000	

3. Определение проверочных равенств

Пользуясь таблицей опознавателей одиночных ошибок в каждом из разрядов, нетрудно определить, символы каких разрядов должны входить в каждую из проверок на четность.

Возьмем в качестве примера табл. 1 опознавателей для кодов, предназначенных исправлять одиночные ошибки. В принципе можно построить код, усекая эту таблицу на любом уровне. Однако оптимальными будут коды, которые среди кодов, имеющих одно и то же число проверочных символов, допускают наибольшее число информационных символов, например код (7,4) n=7, $\kappa=4$.

То есть при трех проверочных разрядах опознавателя мы можем передавать четыре информационных символ. Найдем места и значения проверочных разрядов.

Предположим, что в результате первой проверки на четность для младшего разряда опознавателя будет получена единица. Очевидно, это может быть следствием ошибки в одном из разрядов, опознаватели которых в младшем разряде имеют единицу. Следовательно, первое проверочное равенство должно включать символы 1-го, 3-го, 5-го и 7-го разрядов:

$$a_1 \oplus a_3 \oplus a_5 \oplus a_7 = 0$$
.

Единица во втором разряде опознавателя может быть следствием ошибки в разрядах, опознаватели которых имеют единицу во втором разряде. Отсюда, второе проверочное равенство должно иметь вид:

$$a_2 \oplus a_3 \oplus a_6 \oplus a_7 = 0$$

Аналогично находим и третье равенство:

$$a_4 \oplus a_5 \oplus a_6 \oplus a_7 = 0$$

Чтобы эти равенства при отсутствии ошибок удовлетворялись при любых значениях информационных символов в кодовой комбинации, в нашем распоряжении имеется три проверочных разряда. Мы должны так выбрать номера этих разрядов, чтобы каждый из них входил только в одно из равенств. Это обеспечит однозначное определение значений символов в проверочных разрядах при кодировании. Указанному условию удовлетворяют разряды, по одному разу входящие в полученные уравнения. В нашем случае это будут первый, второй и четвертый разряды.

Таким образом, для кода (7,4), исправляющего одиночные ошибки, искомые правила построения кода, т.е. соотношения, реализуемые в процессе кодирования, принимают вид:

$$a_1 = a_3 \oplus a_5 \oplus a_7;$$

 $a_2 = a_3 \oplus a_6 \oplus a_7;$
 $a_4 = a_5 \oplus a_6 \oplus a_7.$

Введение проверочного разряда, обеспечивающего четность числа единиц во всей кодовой комбинации, $a_8 = \sum_{i=1}^7 a_i \, mod \, 2$ позволяет построить код (8,4), способный одновременно исправлять одиночные ошибки и обнаруживать двойные.

Используя таблицу опознавателей (табл. 3) и рассуждая аналогичным образом, можно составить проверочные равенства для любого кода, исправляющего одиночные и двойные независимые ошибки. Например, для кода (8,2). Минимальное число разрядов в кодовой комбинации должно быть менее $n_{min} \ge 7$. Находятся из уравнения $2^{n-2} - 1 \ge C_n^1 + C_n^2$. При n = 7 имеем $31 > 7 + \frac{7 \cdot 6}{2}$. Однако, из табл. 2.3 для опознавателя кодовой комбинации из 7 разрядов требуется 6 разрядов. Поэтому приходится применить код (8,2). Соотношения, которые необходимо реализовать в процессе кодирования и декодирования этого кода:

1.	$a_2 \oplus a_5 \oplus a_8 = 0$	$a_1 = a_5 \oplus a_8$
2.	$a_1 \oplus a_5 \oplus a_8 = 0$	$a_1 = a_5 \oplus a_8$
3.	$a_4 \oplus a_5 = 0$	$a_3 = a_5$
4.	$a_3 \oplus a_5 = 0$	$a_4 = a_5$
5.	$a_6 \oplus a_8 = 0$	$a_6 = a_8$
6.	$a_7 \oplus a_8 = 0$	$a_7 = a_8$

Эти уравнения, как и уравнение для кода (7,4), получаются из вертикальных столбцов опознавателей.

ЗАДАНИЕ

- 1. Ознакомится с принципами построения групповых кодов.
- 2. Пользуясь табл. 2.1, 2.3 составить уравнения кодирования для кодов:
 - (7,4), обеспечивающего коррекцию одиночных ошибок;
- (8,4), обеспечивающего коррекцию одиночных ошибок и одновременное обнаружение двойных ошибок;
- (7,3), обеспечивающего коррекцию двойных смежных ошибок (т.е. пачку ошибок не более двух символов);