```
In [3]: import pandas as pd
   import numpy as np
   import matplotlib.pyplot as plt
   %matplotlib inline
   import seaborn as sns
   from sklearn.preprocessing import OrdinalEncoder
   from tensorflow.keras.models import Sequential
   from keras.layers import Dense
   import tensorflow as tf
   from sklearn.model_selection import train_test_split
   import warnings
   warnings.filterwarnings('ignore')
```

In [7]: data = pd.read\_csv("forestfires (1).csv")
 data

## Out[7]:

|     | month | day | FFMC | DMC   | DC    | ISI  | temp | RH | wind | rain | <br>monthfeb | monthjan | mont |
|-----|-------|-----|------|-------|-------|------|------|----|------|------|--------------|----------|------|
| 0   | mar   | fri | 86.2 | 26.2  | 94.3  | 5.1  | 8.2  | 51 | 6.7  | 0.0  | <br>0        | 0        |      |
| 1   | oct   | tue | 90.6 | 35.4  | 669.1 | 6.7  | 18.0 | 33 | 0.9  | 0.0  | <br>0        | 0        |      |
| 2   | oct   | sat | 90.6 | 43.7  | 686.9 | 6.7  | 14.6 | 33 | 1.3  | 0.0  | <br>0        | 0        |      |
| 3   | mar   | fri | 91.7 | 33.3  | 77.5  | 9.0  | 8.3  | 97 | 4.0  | 0.2  | <br>0        | 0        |      |
| 4   | mar   | sun | 89.3 | 51.3  | 102.2 | 9.6  | 11.4 | 99 | 1.8  | 0.0  | <br>0        | 0        |      |
|     |       |     |      |       |       |      |      |    |      |      | <br>         |          |      |
| 512 | aug   | sun | 81.6 | 56.7  | 665.6 | 1.9  | 27.8 | 32 | 2.7  | 0.0  | <br>0        | 0        |      |
| 513 | aug   | sun | 81.6 | 56.7  | 665.6 | 1.9  | 21.9 | 71 | 5.8  | 0.0  | <br>0        | 0        |      |
| 514 | aug   | sun | 81.6 | 56.7  | 665.6 | 1.9  | 21.2 | 70 | 6.7  | 0.0  | <br>0        | 0        |      |
| 515 | aug   | sat | 94.4 | 146.0 | 614.7 | 11.3 | 25.6 | 42 | 4.0  | 0.0  | <br>0        | 0        |      |
| 516 | nov   | tue | 79.5 | 3.0   | 106.7 | 1.1  | 11.8 | 31 | 4.5  | 0.0  | <br>0        | 0        |      |

517 rows × 31 columns

In [8]: data.shape

Out[8]: (517, 31)

## In [9]: data.dtypes

| Out[9]: | month         | object  |
|---------|---------------|---------|
|         | day           | object  |
|         | FFMC          | float64 |
|         | DMC           | float64 |
|         | DC            | float64 |
|         | ISI           | float64 |
|         | temp          | float64 |
|         | RH            | int64   |
|         | wind          | float64 |
|         | rain          | float64 |
|         | area          | float64 |
|         | dayfri        | int64   |
|         | daymon        | int64   |
|         | daysat        | int64   |
|         | daysun        | int64   |
|         | daythu        | int64   |
|         | daytue        | int64   |
|         | daywed        | int64   |
|         | monthapr      | int64   |
|         | monthaug      | int64   |
|         | monthdec      | int64   |
|         | monthfeb      | int64   |
|         | monthjan      | int64   |
|         | monthjul      | int64   |
|         | monthjun      | int64   |
|         | monthmar      | int64   |
|         | monthmay      | int64   |
|         | monthnov      | int64   |
|         | monthoct      | int64   |
|         | monthsep      | int64   |
|         | size_category | object  |
|         | dtype: object |         |

In [10]: data.isna().sum() Out[10]: month 0 day 0 FFMC 0 DMC 0 DC 0 ISI 0 temp 0 RH 0 wind 0 rain 0 area 0 dayfri 0 daymon 0 daysat 0 daysun 0 daythu 0 daytue 0 daywed 0 monthapr 0 monthaug 0 monthdec 0 monthfeb 0 monthjan 0 monthjul 0 monthjun 0 monthmar 0 monthmay 0 monthnov 0 monthoct 0 monthsep 0 size\_category 0 dtype: int64

In [16]: data.describe(include = 'all')

## Out[16]:

|                      | month | day | FFMC       | DMC        | DC         | ISI        | temp       | RH         |
|----------------------|-------|-----|------------|------------|------------|------------|------------|------------|
| count                | 517   | 517 | 517.000000 | 517.000000 | 517.000000 | 517.000000 | 517.000000 | 517.000000 |
| unique               | 12    | 7   | NaN        | NaN        | NaN        | NaN        | NaN        | NaN        |
| top                  | aug   | sun | NaN        | NaN        | NaN        | NaN        | NaN        | NaN        |
| freq                 | 184   | 95  | NaN        | NaN        | NaN        | NaN        | NaN        | NaN        |
| mean                 | NaN   | NaN | 90.644681  | 110.872340 | 547.940039 | 9.021663   | 18.889168  | 44.288201  |
| std                  | NaN   | NaN | 5.520111   | 64.046482  | 248.066192 | 4.559477   | 5.806625   | 16.317469  |
| min                  | NaN   | NaN | 18.700000  | 1.100000   | 7.900000   | 0.000000   | 2.200000   | 15.000000  |
| 25%                  | NaN   | NaN | 90.200000  | 68.600000  | 437.700000 | 6.500000   | 15.500000  | 33.000000  |
| 50%                  | NaN   | NaN | 91.600000  | 108.300000 | 664.200000 | 8.400000   | 19.300000  | 42.000000  |
| 75%                  | NaN   | NaN | 92.900000  | 142.400000 | 713.900000 | 10.800000  | 22.800000  | 53.000000  |
| max                  | NaN   | NaN | 96.200000  | 291.300000 | 860.600000 | 56.100000  | 33.300000  | 100.000000 |
| 11 rows × 31 columns |       |     |            |            |            |            |            |            |

In [11]: data.describe(include='object')

## Out[11]:

|        | month | day | size_category |
|--------|-------|-----|---------------|
| count  | 517   | 517 | 517           |
| unique | 12    | 7   | 2             |
| top    | aug   | sun | small         |
| fron   | 184   | 95  | 378           |

In [18]: data.hist(figsize = (20,20),xlabelsize = 8 , ylabelsize=10)
 plt.show()



```
In [19]: | data = data.drop(['month','day'],axis =1 )
In [20]: mapping = {'small':0 ,'large' :1}
In [21]:
          data = data.replace(mapping)
In [22]:
          data
Out[22]:
                 FFMC
                        DMC
                                DC
                                     ISI temp
                                                RH wind
                                                                area dayfri ... monthfeb
                                                                                          monthian mon
                                                          rain
                        26.2
                                     5.1
                                                                                        0
              0
                  86.2
                               94.3
                                           8.2
                                                51
                                                      6.7
                                                           0.0
                                                                 0.00
                                                                                                  0
              1
                  90.6
                        35.4
                              669.1
                                     6.7
                                          18.0
                                                33
                                                      0.9
                                                           0.0
                                                                 0.00
                                                                          0
                                                                                        0
                                                                                                  0
              2
                  90.6
                        43.7
                              686.9
                                                           0.0
                                                                 0.00
                                                                                        0
                                                                                                  0
                                     6.7
                                          14.6
                                                33
                                                      1.3
                                                                          0
              3
                  91.7
                        33.3
                               77.5
                                     9.0
                                           8.3
                                                97
                                                      4.0
                                                           0.2
                                                                 0.00
                                                                                        0
                                                                                                  0
              4
                  89.3
                        51.3
                              102.2
                                     9.6
                                           11.4
                                                99
                                                      1.8
                                                           0.0
                                                                 0.00
                                                                                        0
                                                                                                  0
                                                                          0
                                      ...
                                            ...
                                                 ...
            512
                  81.6
                        56.7
                              665.6
                                          27.8
                                                32
                                                      2.7
                                                           0.0
                                                                                        0
                                                                                                  0
                                     1.9
                                                                 6.44
                                                                          0
            513
                  81.6
                        56.7
                              665.6
                                     1.9
                                          21.9
                                                71
                                                      5.8
                                                           0.0
                                                               54.29
                                                                          0
                                                                                        0
                                                                                                  0
            514
                  81.6
                        56.7
                              665.6
                                     1.9
                                          21.2
                                                70
                                                      6.7
                                                           0.0
                                                                11.16
                                                                                        0
                                                                                                  0
            515
                  94.4
                       146.0
                              614.7
                                    11.3
                                          25.6
                                                42
                                                           0.0
                                                                 0.00
                                                                          0
                                                                                        0
                                                                                                  0
                                                      4.0
            516
                  79.5
                                                           0.0
                                                                                                  0
                         3.0
                             106.7
                                     1.1
                                           11.8
                                                31
                                                      4.5
                                                                 0.00
                                                                          0 ...
                                                                                        0
          517 rows × 29 columns
In [23]: | x = np.array(data.iloc[:,0:28])
          y = np.array(data.iloc[:,28])
In [26]: def norm func(i):
               x = (i-i.min())/(i.max()-i.min())
               return(x)
In [27]: x_norm = norm_func(x)
In [31]: in,x_test,y_train,y_test= train_test_split(x_norm,y, test_size=0.2,stratify = y)
In [32]:
          model = Sequential()
          model.add(Dense(8, input_dim=28, activation='linear'))
          model.add(Dense(4, activation='tanh'))
          model.add(Dense(1, activation='sigmoid'))
```

```
In [33]: model.compile(loss='binary crossentropy', optimizer='adam', metrics=['accuracy'])
In [34]: history = model.fit(x_train,y_train,validation_split=0.3,epochs = 120 ,batch_size
        Epoch 2/120
        29/29 [================ ] - 0s 4ms/step - loss: 0.6674 - accurac
        y: 0.7336 - val_loss: 0.6514 - val_accuracy: 0.7258
        29/29 [========== ] - 0s 4ms/step - loss: 0.6346 - accurac
        y: 0.7336 - val_loss: 0.6241 - val_accuracy: 0.7258
        Epoch 4/120
        29/29 [================ ] - 0s 5ms/step - loss: 0.6099 - accurac
        y: 0.7336 - val_loss: 0.6067 - val_accuracy: 0.7258
        Epoch 5/120
        29/29 [========== ] - 0s 5ms/step - loss: 0.5946 - accurac
        y: 0.7336 - val_loss: 0.5977 - val_accuracy: 0.7258
        Epoch 6/120
        29/29 [============= ] - 0s 5ms/step - loss: 0.5857 - accurac
        y: 0.7336 - val_loss: 0.5940 - val_accuracy: 0.7258
        Epoch 7/120
        29/29 [========== ] - 0s 5ms/step - loss: 0.5817 - accurac
        y: 0.7336 - val loss: 0.5927 - val accuracy: 0.7258
        Epoch 8/120
        In [36]: | scores = model.evaluate(x train,y train)
        print("%s: %.2f%%" % (model.metrics names[1], scores[1]*100))
        13/13 [============= ] - 0s 2ms/step - loss: 0.2388 - accuracy:
        0.8910
        accuracy: 89.10%
In [37]: | scores = model.evaluate(x test, y test)
        print("%s: %.2f%%" % (model.metrics names[1], scores[1]*100))
        4/4 [=========== ] - 0s 3ms/step - loss: 0.2422 - accuracy:
        0.9038
        accuracy: 90.38%
In [ ]:
```