

The importance of paleoecological analyses to address ecological systems beyond the instrumental record

Catalina González Arango
Departamento de Ciencias Biológicas

Universidad de los Andes

Why paleoecology?

 Lack of long, complete, reliable data sets (climate, vegetation)

 Long & slow processes underrepresented or missed in short time series

 Past as natural experiment (analogs, nonanalogs, hypothesis testing)

Barak, 2016

- Dynamic systems (interactions, feedbacks)
- Complex and nonlinear systems (steady states, attractors)
- Memory of the system
- Natural boundaries
- Stressors (single, multiple, interactions)
- What builds resilience?

Example 1. Climate & Vegetation SA during the last 2000 yr.

- Can we extract climate information from pollen records?
- Spatial/temporal patterns
- Anthropogenic impact
- How clean, reliable are the climate signals
- How do we compare sites?

UPDATED SITE COMPILATION OF THE LATIN AMERICAN POLLEN DATABASE (LAPD) 2014

Compiled by Suzette G.A. Flantua and collaborators**

Flantua et al. 2016

Atlas arqueológico Colombiano

Goldberg et al. 2016

Example 2. PaleoENSO dynamics

- PaleoENSO amplitude and frequency during different climatic states
- Response of vegetation to extremes (composition, Carbon,)
- Proxy vs. Instrumental calibration (isotopes in wood and cactus spines)

La historia climática de la Tatacoa contada por espinas de cactus columnares

Juanita Moreno Millán¹, Eloisa Lasso², Catalina González Arango¹

¹Laboratorio de Palinología y Paleoecología Tropical, Departamento de Ciencias Biológicas, Universidad de los Andes ²Laboratorio de Ecología y Fisiología Vegetal, Departamento de Ciencias Biológicas, Universidad de los Andes

Contacto: j.moreno624@uniandes.edu.co

Resultados

- 18 Dataciones con F¹⁴C permiten saber que:
- . La edad de este cactus es de c.a. 20 años.
- La tasa de crecimiento promedio es de 15 cm/año
- En la ramificación la tasa disminuye a 3 cm/año

Temperatura y DPV son las variables que más se relacionan con la señal isotópica:

 La señal isotópica tiene la misma tendencia que la temperatura: descendente desde 1999 hasta 2005 y ascendente desde 2006 hasta 2013.

 δ¹³C es más sensible a las amplitudes del parámetro DPV y a los períodos de sequía: acoplamiento con fenómeno de "El Niño" (EN)

Stable isotopes in subfossil woods: first insights into an ultra-high resolution paleoclimatic record of an Andean forest during the Late Pleistocene.

David Andrés Ayala Usma¹ and Catalina González Arango^{1*}

Figure 7: Superposition of the approximation at 5 level and the detail at the 5 level w data.

Example 3. Mangroves

Response to sea-level change, climate, humans

Response, trajectories, recovery after extreme events

Heterogeneity of responses to the same stressor

- Resilience?
- Succession trajectories?
- •Time of recovery?

- Hurricane at 1605 AD, which destroyed completely the forest and promoted the displacement of the shoreline. Supported by historical documents.
- •The mangrove started to recover after 50-70 years.
- Anthropogenic impact

Urrego et al. 2012

Example 4. Monitoring and paleolimnology of Andean lakes

Superimposed Anthropogenic impacts

- Invasive species
- Climate change
- Mining
- Agriculture, cattle

Salgado et al. In prep

M1

<u>Invertebrates</u>

Salgado et al. In prep

Diatoms

Pollen

Biomarkers

Charcoal

Geochemistry

Variables

Vegetation composition

Trophic networks (lakes)

Diversity *

Moisture availability

Temperature (atitude)

Sedimentation rates

Soil erosion

Human presence

Salinity

Fire occurence

DPV Deficit de presión de vapor

Nutrients and minerals, (C, N, P, Ca,

Scales

Interannual

Decadal

Centuries-millennia

Millions

By integrating the long term perspective, we expand the possibities of understanding our knowledge on the functioning of ecosystems.

