日本国特許庁 JAPAN PATENT OFFICE

別紙添付の書類に記載されている事項は下記の出願書類に記載されている事項と同一であることを証明する。

This is to certify that the annexed is a true copy of the following application as filed with this Office.

出 願 年 月 日 Date of Application:

2005年 6月 8日

出 願 番 号

Application Number:

特願2005-168914

バリ条約による外国への出願 に用いる優先権の主張の基礎 となる出願の国コードと出願 番号

JP2005-168914

The country code and number of your priority application, to be used for filing abroad under the Paris Convention, is

出 願 人

キヤノン株式会社

Applicant(s):

特許庁長官 Commissioner, Japan Patent Office 2005年 8月17日

PEST AVAILABLE COPY

```
1寸 訂 塚典
【盲烘白】
【整理番号】
           0020467-01
             平成17年 6月 8日
【提出日】
【あて先】
             特許庁長官
                       殿
             C12N 9/24
【国際特許分類】
【発明者】
  【住所又は居所】
             東京都大田区下丸子3丁目30番2号 キヤノン株式会社内
  【氏名】
             見目 敬
【発明者】
  【住所又は居所】
             東京都大田区下丸子3丁目30番2号 キャノン株式会社内
  【氏名】
             三原 知恵子
【発明者】
  【住所又は居所】
             東京都大田区下丸子3丁目30番2号 キャノン株式会社内
  【氏名】
             福井
                 樹
【発明者】
  【住所又は居所】
             東京都大田区下丸子3丁目30番2号 キヤノン株式会社内
  【氏名】
             草刈
                 亜子
【発明者】
  【住所又は居所】
             東京都大田区下丸子3丁目30番2号 キャノン株式会社内
             矢野 哲哉
  【氏名】
【特許出願人】
  【識別番号】
             000001007
  【氏名又は名称】
             キヤノン株式会社
【代理人】
  【識別番号】
             100123788
  【弁理士】
  【氏名又は名称】
             宮崎 昭夫
  【電話番号】
             03-3585-1882
【選任した代理人】
  【識別番号】
             100106138
  【弁理士】
  【氏名又は名称】
             石橋 政幸
【選任した代理人】
  【識別番号】
             100120628
  【弁理士】
  【氏名又は名称】
             岩田 慎一
【選任した代理人】
  【識別番号】
             100127454
  【弁理士】
  【氏名又は名称】
             緒方 雅昭
【先の出願に基づく優先権主張】
  【出願番号】
             特願2004-174788
  【出願日】
             平成16年 6月11日
【手数料の表示】
  【予納台帳番号】
             201087
  【納付金額】
             16,000円
【提出物件の目録】
  【物件名】
             特許請求の範囲 1
  【物件名】
             明細書
```

【物件名】

要約書 1

V 4 1 J J 1 O

【官规句】打矸胡小ツ靶曲

【請求項1】

化学式(1)で示すユニットを分子中に1ユニット以上含むことを特徴とするポリヒドロキシアルカノエート。

【化1】

(式中、Rは $-A_1$ -SO $_2$ R $_1$ を表す。R $_1$ はOH、ハロゲン原子、ON $_4$ 、OKまたはOR $_{1a}$ である。R $_{1a}$ 及びA $_1$ はそれぞれ独立して、置換または未置換の脂肪族炭化水素構造、置換または未置換の芳香族環構造、あるいは、置換または未置換の複素環構造を有する基を表す。また、mは、 $0\sim8$ から選ばれる整数であり、Zは、直鎖または分岐状のアルキル基、アリール基、アリール基で置換されているアラルキル基である。複数のユニットが存在する場合、R、R $_1$ 、R $_1$ a、A $_1$ 、m及びZは、各ユニット毎に独立して上記の意味を表す。)

【請求項2】

化学式(1)のユニットとして化学式(2)、化学式(3)、化学式(4 A)または(4 B)で示すユニットを分子中に1ユニット以上含むことを特徴とする請求項1に記載のポリヒドロキシアルカノエート。

【化2】

$$\begin{array}{c} SO_{2}R_{2} \\ A_{2} \\ N-H \\ C=O \\ \\ (CH_{2})m \\ C=O \\ (CH_{2})m \\ C=O \\ (CH_{2})m \\ C=O \\ (CH_{2})m \\ (CH_{$$

(式中、 R_2 は OH、ハロゲン原子、 ON_4 、OKまたは OR_{24} である。 R_{24} は直鎖状または分岐状の炭素数 1 から 8 のアルキル基、あるいは、置換または未置換のフェニル基である。 A_2 は直鎖状または分岐状の炭素数 1 から 8 のアルキレン基を表す。 m は、 0 ~ 8 から選ばれる整数であり、 Z_2 は、直鎖または分岐状のアルキル基、アリール基、アリール基で置換されているアラルキル基である。複数のユニットが存在する場合、 A_2 、 R_2 、 R_2 、 R_3 、m 及び Z_2 は、各ユニット毎に独立して上記の意味を表す。)

$$\begin{array}{c|c} R_{3b} & R_{3c} \\ R_{3a} & R_{3e} \\ \hline R_{3e} & R_{3e} \\ \hline & (CH_2)m \\ \hline & Q \\ \hline & Z_3 & (3) \end{array}$$

(式中、R $_{3a}$ 、R $_{3b}$ 、R $_{3c}$ 、R $_{3d}$ 及びR $_{3e}$ は、それぞれ独立して、SO $_2$ R $_{3f}$ (R $_{3f}$ はOH、ハロゲン原子、ON $_a$ 、OKまたはOR $_{3f}$ である。(R $_{3f}$ は直鎖状または分岐状の炭素数 $_1$ から $_3$ のアルキル基、置換または未置換のフェニル基である。))、水素原子、ハロゲン原子、炭素数 $_1$ ~ $_2$ のアルキル基、炭素数 $_1$ ~ $_3$ ののアルコキシ基、OH基、NH $_2$ 基、NO $_2$ 基、COOR $_{3g}$ (R $_{3g}$ はH原子、N $_3$ 原子、K原子のいずれかを表す。)、アセトアミド基、OP h基、NHP h基、CF $_3$ 基、C $_2$ F $_5$ 基またはC $_3$ F $_7$ 基を表し(P hはフェニル基を示す)、これらの基の少なくとも $_1$ つはSO $_2$ R $_3$ である。また、m は、0 ~ 8 から選ばれる整数であり、 $_3$ は、直鎖または分岐状のアルキル基、アリール基、アリール基で置換されているアラルキル基である。複数のユニットが存在する場合、R $_3$ の、R $_3$ 、R $_3$ 、R

【化4】

$$R_{4g}$$
 R_{4g}
 R_{4d}
 R_{4d}
 R_{4d}
 R_{4d}
 R_{4b}
 R_{4b}
 R_{4b}
 R_{4b}
 R_{4b}
 R_{4d}
 R

(式中、R_{4a}、R_{4b}、R_{4c}、R_{4d}、R_{4e}、R_{4f}及びR₄₈はそれぞれ独立して、SO₂ R_{4o}(R_{4o}はOH、ハロゲン原子、ONa、OKまたはOR_{4oi}である。(R_{4oi}は直鎖状または分岐状の炭素数 1 から8のアルキル基、置換または未置換のフェニル基である。))、水素原子、ハロゲン原子、炭素数 1 ~20のアルキル基、炭素数 1~20のアルコキシ基、OH基、NH₂ 基、NO₂ 基、COOR_{4p}(R_{4p}:H原子、Na原子、K原子のいずれかを表す)、アセトアミド基、OPh基、NHPh基、CF₃ 基、C₂ F₅ 基またはC₃ F₇ 基を表し(Phはフェニル基を示す)、これらの基の少なくとも1つはSO₂ R_{4o}である。また、mは、O~8から選ばれる整数であり、Z_{4a}は、直鎖または分岐状のアルキル基、アリール基、アリール基で置換されているアラルキル基である。複数のユニットが存在する場合、R_{4a}、R_{4b}、R_{4c}、R_{4d}、R_{4e}、R_{4f}、R_{4g}、R_{4o}、R_{4o}、R_{4o}、m及びZ_{4a}は、各ユニット毎に独立して上記の意味を表す。)

【請求項3】

化学式(5)で示すユニットを1ユニット以上含むことを特徴とするポリヒドロキシアルカノエート。

【化6】

$$\begin{array}{c}
COOR_5 \\
(CH_2)m \\
O \\
- O \\
Z_5
\end{array}$$
(5)

(式中、 R_5 は、水素、塩を形成する基、または、 R_{5a} である。式中、 R_{5a} は、炭素数 $1\sim 12$ の直鎖または分岐状のアルキル基、アラルキル基、あるいは、糖類を有する置換基である。 mは、 $0\sim 8$ から選ばれる整数であり、 Z_5 は、直鎖または分岐状のアルキル基、アリール基、アリール基で置換されているアラルキル基である。但し、 Z_5 が、メチル基で、mは $0\sim 1$ である場合、 R_5 は、糖類を有する置換基のみである。複数のユニットが存在する場合、 R_5 、 R_{5a} 、m及び Z_5 は、各ユニット毎に独立して上記の意味を表す。)

【請求項4】

化学式(6)で示されるユニットを更に分子中に含むことを特徴とする請求項1乃至3のいずれかに記載のポリヒドロキシアルカノエート。

【化7】

 $(R_6$ は、炭素数 $1 \sim 11$ の直鎖または分岐状のアルキレン基、アルキレンオキシアルキレン基 (各アルキレン基はそれぞれ独立して炭素数 $m \in \mathbb{Z}$)、炭素数 $1 \sim 2$ のアルキレン基である)、炭素数 $1 \sim 2$

【請求項5】

化学式(7)で示すユニットに示されるポリヒドロキシアルカノエートを酸またはアルカリの存在下で加水分解する、或いは接触還元を含む水素化分解を行う工程を有することを特徴とする、化学式(8)で示すユニットを含むポリヒドロキシアルカノエートの製造方法

【化8】

(式中、 R_1 は、炭素数 $1\sim 12$ の直鎖または分岐状のアルキル基、あるいは、アラルキル基である。mは、 $0\sim 8$ から選ばれた整数であり、 Z_1 は、直鎖または分岐状のアルキル基、アリール基、アリール基で置換されているアラルキル基である。但し、 Z_1 が、メチル基である場合、mは $2\sim 8$ から選ばれた整数である。複数のユニットが存在する場合、 R_1 、m及び Z_1 は、各ユニット毎に独立して上記の意味を表す。)

【化9】

$$\begin{array}{c}
COOR_8\\
(CH_2)m\\
O\\
\end{array}$$

$$\begin{array}{c}
Z_8
\end{array}$$
(8)

(式中、 R_8 は、水素、または、塩を形成する基である。mは、 $0\sim8$ から選ばれた整数である。 Z_8 は、直鎖または分岐状のアルキル基、アリール基、アリール基で置換されているアラルキル基である。但し、 Z_8 が、メチル基である場合、mは、 $2\sim8$ から選ばれた整数である。複数のユニットが存在する場合、 R_8 、 Z_8 及びmは、各ユニット毎に独立して上記の意味を表す。)

【請求項6】

化学式(9)で示すユニットを含むポリヒドロキシアルカノエートと、化学式(10)で示されるアミン化合物の少なくとも1種とを縮合反応させる工程を有することを特徴とする化学式(1)に示すユニットを含むポリヒドロキシアルカノエートの製造方法。

【化10】

$$\begin{array}{c}
COOR_{9} \\
(CH_{2})m \\
O \\
\downarrow II \\
Z_{9}
\end{array}$$
(9)

(式中、 R_g は、水素、または、塩を形成する基である。mは、 $0\sim8$ から選ばれた整数である。 Z_g は、直鎖または分岐状のアルキル基、アリール基、アリール基で置換されているアラルキル基である。複数のユニットが存在する場合、m、 R_g 及び Z_g は、各ユニット毎に独立して上記の意味を表す。)

(式中、 R_{10} はOH、ハロゲン原子、ON a、OKまたはOR $_{10a}$ である。また、 R_{10a} 及び A_3 はそれぞれ独立して、置換または未置換の脂肪族炭化水素構造、置換または未置換の 芳香族環構造、あるいは、置換または未置換の複素環構造を有する基から選ばれる。 複数 のユニット が存在する場合、 R_{10} 、 R_{10a} 及び A_3 は、各ユニット毎に独立して上記の意味を表す。)

【化12】

(式中、Rは $-A_1$ -SO $_2$ R $_1$ を表す。R $_1$ はOH、ハロゲン原子、ON $_4$ 、OKまたはOR $_{1a}$ である。R $_{1a}$ 及びA $_1$ はそれぞれ独立して、置換または未置換の脂肪族炭化水素構造、置換または未置換の芳香族環構造、あるいは、置換または未置換の複素環構造を有する基を表す。mは、 $0\sim8$ から選ばれる整数であり、Zは、直鎖または分岐状のアルキル基、アリール基、アリール基で置換されているアラルキル基である。複数のユニットが存在する場合、R、R $_1$ 、R $_{1a}$ 、A $_1$ 、m及びZは、各ユニット毎に独立して上記の意味を表す。)

【請求項7】

化学式(II)で示すユニットを含むポリヒドロキシアルカノエートを塩基と反応させる工程と、

前記工程で得られた化合物と化学式(12)で示す化合物とを反応させる工程とを有することを特徴とする、化学式(13)で示すユニットを含むポリヒドロキシアルカノエートの製造方法。

【化13】

$$-\left(-0\right)$$

 $(Z_{11}$ は、直鎖または分岐状のアルキル基、アリール基、アリール基で置換されているアラルキル基である。複数のユニットが存在する場合、 Z_{11} は、各ユニット毎に独立して上記の意味を表す。)

【化14】

$$X(CH_2)mCOOR_{12}$$
 (12)

(式中、mは、0~8から選ばれる整数である。Xは、ハロゲン原子である。R₁₂は、炭素数1~12の直鎖または分岐状のアルキル基、あるいは、アラルキル基である。)

$$\begin{array}{c} \text{COOR}_{13} \\ \text{|} \\ \text{(CH}_2)\text{|m} \\ \text{O} \\ \end{array}$$

$$\begin{array}{c} \text{-} \\ \text{-} \\ \text{Z}_{13} \end{array} \tag{13}$$

(式中、mは、 $0\sim8$ から選ばれる整数である。 R_{13} は、炭素数 $1\sim12$ の直鎖または分岐状のアルキル基、あるいは、アラルキル基である。 Z_{13} は、直鎖または分岐状のアルキル基、アリール基、アリール基で置換されているアラルキル基である。但し、 Z_{13} が、メチル基である場合、mは $2\sim8$ から選ばれる整数である。複数のユニットが存在する場合、 R_{13} 、m及び Z_{13} は、各ユニット毎に独立して上記の意味を表す。)

【請求項8】

化学式(II)で示すユニットを含むポリヒドロキシアルカノエートを塩基と反応させる工程と、

前記工程で得られた化合物と化学式(14)で示す化合物とを反応させる工程とを有することを特徴とする化学式(15)で示すユニットを含むポリヒドロキシアルカノエートの製造方法

【化16】

 $(Z_{11}$ は、直鎖または分岐状のアルキル基、アリール基、アリール基で置換されているアラルキル基である。複数のユニットが存在する場合、 Z_{11} は、各ユニット毎に独立して上記の意味を表す。)

【化17】

(式中、 R_{14} は $-A_{14}$ - SO_2R_{14a} を表す。 R_{14a} はOH、ハロゲン原子、 ON_a 、OKまたは OR_{14b} である。また、 R_{14b} 及び A_{14} はそれぞれ独立して、置換または未置換の脂肪族炭化水素構造、置換または未置換の芳香族環構造、あるいは、置換または未置換の複素環構造を有する基から選ばれる。複数のユニットが存在する場合、 R_{14} 、 R_{14a} 、 R_{14b} 及び A_{14} は、各ユニット毎に独立して上記の意味を表す。)

【化18】

(式中、 R_{15} は $-A_{15}$ - SO_2R_{15a} を表す。 R_{15a} はOH、ハロゲン原子、ONa、OKまたはOR_{15b}である。 R_{15b} 及び A_{15} はそれぞれ独立して、置換または未置換の脂肪族炭

に小糸伸足、単次よには小単次の万百灰塚伸足、めるいは、単次よには小単次の及糸塚伸造を有する基を表す。 Z_{15} は、直鎖または分岐状のアルキル基、アリール基、アリール基で置換されているアラルキル基である。複数のユニットが存在する場合、 R_{15} 、 R_{15a} 、 R_{15b} 及び A_{15} は各ユニット毎に独立して上記の意味を表す。)

【盲规句】 切刚盲

【発明の名称】ビニル基、エステル基、カルボキシル基並びにスルホン酸基を有するポリヒドロキシアルカン酸並びにその製造方法

【技術分野】

[0001]

本発明は、新規なポリヒドロキシアルカノエート及びその製造方法に関する。

【背景技術】

[0002]

生分解性高分子材料は、医用材料やドラッグデリバリーシステム、環境適合性材料などに幅広く応用されている。近年は、これらに加え更に、新たな機能が要求されており、様々な研究が行われている。特に、ポリ乳酸に代表される、ポリヒドロキシアルカノエートについては、分子内に化学修飾可能な官能基を導入することが検討されおり、カルボキシル基やビニル基などが導入された化合物について報告がある。例えば、側鎖にカルボキシル基を持つポリヒドロキシアルカノエートとしては、ポリリンゴ酸が知られている。このボリリンゴ酸のポリマーには、ポリマー形式の仕方により、化学式(16)、

【化1】

[0004]

で表されるαタイプと、化学式(17)、

[0005]

【化2】

$$\begin{array}{c}
COOH O \\
CH_2
\end{array}$$
(17)

[0006]

で表される β タイプが知られている。このうち、 β タイプのポリリンゴ酸及びその共重合体については、米国特許第4265247号明細書(特許文献 1)に、化学式(18)、

[0007]

【化3】

[0008]

(R₁₈:ベンジル基)

で表される β -マロラクトンのペンジルエステルを開環重合したポリマーが開示されている。また、 α タイプのポリリンゴ酸-グリコール酸共重合体、並びにグリコール酸をはじめとするその他のヒドロキシアルカン酸を含む共重合体については、特開平 2 -3415号公報 (特許文献 2)に、化学式 (19)

[0009]

[0010]

 $(R_{\mid g}$ は、メチル基、エチル基、n-プロピル基、イソプロピル基、t-ブチル基などの低級アルキル基およびベンジル基など)

で表される六貝環ジエステルモノマーと環状ジエステルであるグリコリド及びラクチド、ω-ヒドロキシカルボン酸の分子内閉環反応エステルであるラクトン類との共重合したポリマーが開示されている。

$[0\ 0\ 1\ 1\]$

[0012]

側鎖にピニル基を持つポリヒドロキシアルカノエートとしては、非特許文献 $Polymeric Materials Science & Engineering 2002,87,254 (非特許文献 4) に<math>\alpha$ -アリル (δ -バレロラクトン)を開環重合したポリマーが開示されている。また、同様に側鎖にピニル基を持つポリヒドロキシアルカノエートとしては、非特許文献 Polymer Preprints 2002,43(2),727 (非特許文献 5) に六員環ジエステルモノマーである <math>3,6-ジアリル-1,4-ジオキサン-2,5-ジオンを開環重合したポリマーが開示されている。

$[0\ 0\ 1\ 3\]$

上記のように化学修飾可能な官能基を導入したポリヒドロキシアルカノエートに機能性を付与する構造を導入し、新たな機能を持つポリマーについての報告がある。非特許文献International Journal of Biological Macromolecules 25(1999)265(非特許文献6)では、α-リンゴ酸とグリコール酸の環状二量体の開環重合により、αタイプのリンゴ酸とグリコール酸の共重合体を得、得られたポリマーを脱保護することで側鎖にカルボキシル基を有するポリエステルを得る。この側鎖のカルボキシル基にトリペプチドを化学修飾し、得られたポリマーについて、細胞接着性について評価した所、良好な結果が得られたとしている。

【特許文献1】米国特許第4265247号明細書

【特許文献2】特開平2-3415号公報

【非特許文献 1 】 Macromolecules 2000, 33(13), 4619-4627

【非特許文献2】 Biomacromolecules 2000, 1, 275

【非特許文献3】Macromolecular Bioscience 2004, 4, 232

【非特許文献4】Polymeric Materials Science & Engineering 2002, 87, 254

【非特許文献 5】 Polymer Preprints 2002, 43(2),727

【非特許文献6】International Journal of Biological Macromolecules 25(1999)2

【発明の開示】

【発明が解決しようとする課題】

 $[0\ 0\ 1\ 4]$

以上のように分子内に反応性官能基であるカルボキシル基を有するユニットを導入し、その反応性官能基を化学修飾することで新たな機能性を付与することは可能ではあると考えられるが、その報告例は少ない。そこで本発明は、分子内に反応性官能基を有する新規なポリヒドロキシアルカノエート及びその製造方法、並びにその反応性官能基を有するポリヒドロキシアルカノエートを化学修飾することで新たな機能を持った新規ポリヒドロキシアルカノエート及びその製造方法を提供する。

【課題を解決するための手段】

[0015]

そこで本発明者らは、分子内に反応性官能基を有する新規なポリヒドロキシアルカノエート、及びその反応性官能基を有するポリヒドロキシアルカノエートポリヒドロキシアルカノエートを化学修飾することで新たな機能を持った新規ポリヒドロキシアルカノエートの開発をめざして鋭意研究を重ねてきた結果、以下に示す発明に至った。

[0016]

本発明にかかるポリヒドロキシアルカノエートには以下のものが含まれる。

[0017]

(1)化学式(1)で示すユニットを分子中に1ユニット以上含むポリヒドロキシアルカノエート。

[0018]

【化5】

$$\begin{array}{c}
R\\N-H\\
=O\\
\cdot (CH_2)m\\
-\left(-O-\frac{1}{2}\right)-\\
Z
\end{array}$$
(1)

[0019]

(式中、R は $-A_1$ $-SO_2R_1$ を表す。 R_1 は OH、ハロゲン原子、 ON_4 、OKまたは OR_{1a} である。 R_{1a} 及び A_1 はそれぞれ独立して、置換または未置換の脂肪族炭化水素構造、置換または未置換の芳香族環構造、あるいは、置換または未置換の複素環構造を有する基を表す。また、m は、 $0\sim8$ から選ばれる整数であり、Z は、直鎖または分岐状のアルキル基、アリール基、アリール基で置換されているアラルキル基である。複数のユニットが存在する場合、R、 R_1 、 R_{1a} 、 A_1 、m及びZ は、各ユニット毎に独立して上記の意味を表す。)

(2)化学式(5)で示すユニットを1ユニット以上含むポリヒドロキシアルカノエート。

[0020]

【化6】

$$\begin{array}{c}
COOR_5 \\
(CH_2)m \\
O \\
Z_5
\end{array}$$
(5)

(式中、 R_5 は、水素、塩を形成する基、または、 R_{5a} である。式中、 R_{5a} は、炭素数 $1\sim 12$ の直鎖または分岐状のアルキル基、アラルキル基、あるいは、糖類を有する置換基である。mは、 $0\sim 8$ から選ばれる整数であり、 Z_5 は、直鎖または分岐状のアルキル基、アリール基、アリール基で置換されているアラルキル基である。但し、 Z_5 がメチル基で、

mは $0\sim1$ である場合、 R_5 は糖類を有する置換基のみである。複数のユニットが存在する場合、 R_5 、 R_{5a} 、m及び Z_5 は、各ユニット毎に独立して上記の意味を表す。)

一方、本発明にかかるポリヒドロキシアルカノエートの製造方法には以下の各方法*か*含まれる。

[0022]

(A) 化学式(7)で示すユニットに示されるポリヒドロキシアルカノエートを酸またはアルカリの存在下で加水分解する、或いは接触還元を含む水素化分解を行う工程を有することを特徴とする、化学式(8)で示すユニットを含むポリヒドロキシアルカノエートの製造方法。

[0023]

【化7】

$$\begin{array}{c}
COOR_7 \\
(CH_2)m \\
O \\
\downarrow I \\
Z_7
\end{array}$$
(7)

[0024]

(式中、 R_7 は、炭素数 $1\sim 12$ の直鎖または分岐状のアルキル基、あるいは、アラルキル基である。mは、 $0\sim 8$ から選ばれる整数であり、 Z_7 は、直鎖または分岐状のアルキル基、アリール基、アリール基で置換されているアラルキル基である。但し、 Z_7 が、メチル基である場合、mは $2\sim 8$ から選ばれる整数である。複数のユニットが存在する場合、 R_7 、m及び Z_7 は、各ユニット毎に独立して上記の意味を表す。)

[0025]

【化8】

$$\begin{array}{c}
COOR_8 \\
(CH_2)m \\
O & \parallel \\
Z_8
\end{array}$$
(8)

[0026]

(式中、 R_8 は、水素、または、塩を形成する基である。mは、 $0\sim8$ から選ばれる整数である。 Z_8 は、直鎖または分岐状のアルキル基、アリール基、アリール基で置換されているアラルキル基である。但し、 Z_8 が、メチル基である場合、mは $2\sim8$ から選ばれる整数である。複数のユニットが存在する場合、 R_8 、m及び Z_8 は、各ユニット毎に独立して上記の意味を表す。)

(B)化学式(9)で示すユニットを含むポリヒドロキシアルカノエートと、化学式(10)で示されるアミン化合物の少なくとも1種とを縮合反応させることを特徴とする化学式(1)に示すユニットを含むポリヒドロキシアルカノエートの製造方法。

[0027]

$$\begin{array}{c}
COOR_{g} \\
(CH_{2})m \\
O \\
\downarrow II \\
Z_{g}
\end{array}$$
(9)

[0028]

(式中、 R_g は、水素、または、塩を形成する基である。mは、 $0\sim8$ から選ばれる整数である。 Z_g は、直鎖または分岐状のアルキル基、アリール基、アリール基で置換されているアラルキル基である。複数のユニットが存在する場合、m、 R_g 及び Z_g は、各ユニット毎に独立して上記の意味を表す。)

【0029】

 $H_2N - A_3 - SO_2R_{10}$ (10)

[0030]

(式中、 R_{10} はOH、ハロゲン原子、 ON_{a} 、OKまたは OR_{10a} である。また、 R_{10a} 及び A_{3} はそれぞれ独立して、置換または未置換の脂肪族炭化水素構造、置換または未置換の芳香族環構造、あるいは、置換または未置換の複素環構造を有する基から選ばれる。複数のユニットが存在する場合、 R_{10} 、 R_{10a} 及び A_{3} は、各ユニット毎に独立して上記の意味を表す。)

【0031】

$$\begin{array}{c}
R\\N-H\\ = O\\ (CH_2)m\\ \hline
CO & \\
Z & (1)
\end{array}$$

[0032]

(式中、R は $-A_1$ $-SO_2R_1$ を表す。 R_1 は OH、ハロゲン原子、 ON_a 、OKまたは OR_{1a} である。 R_{1a} 及び A_1 はそれぞれ独立して、置換または未置換の脂肪族炭化水素構造、置換または未置換の芳香族環構造、あるいは、置換または未置換の複素環構造を有する基を表す。mは、 $0\sim8$ から選ばれる整数であり、Zは、直鎖または分岐状のアルキル基、アリール基、アリール基で置換されているアラルキル基である。複数のユニットが存在する場合、R、 R_1 、 R_{1a} 、 A_1 、m及びZは、各ユニット毎に独立して上記の意味を表す。)

(C)化学式(11)で示すユニットを含むポリヒドロキシアルカノエートを塩基と反応させる工程と、前記工程で得られた化合物と化学式(12)で示す化合物とを反応させる工程とを有することを特徴とする、化学式(13)で示すユニットを含むポリヒドロキシアルカノエートの製造方法。

[0033]

[0034]

(Z₁₁は、直鎖または分岐状のアルキル基、アリール基、アリール基で置換されているアラルキル基である。複数のユニットが存在する場合、Z₁₁は、各ユニット毎に独立して上記の意味を表す。)

[0035]

【化13】

 $X(CH_2)mCOOR_{12}$

(12)

[0036]

(式中、mは、 $0\sim8$ から選ばれる整数である。Xは、 Λ ロゲン原子である。 R_{12} は、炭素数 $1\sim12$ の直鎖または分岐状のアルキル基、あるいは、アラルキル基である。)

[0037]

【化14】

$$\begin{array}{c}
COOR_{13} \\
(CH_2)m \\
O \\
\downarrow II \\
Z_{13}
\end{array}$$
(13)

[0038]

(式中、mは、 $0\sim8$ から選ばれる整数である。 R_{13} は、炭素数 $1\sim12$ の直鎖または分岐状のアルキル基、あるいは、アラルキル基である。 Z_{13} は、直鎖または分岐状のアルキル基、アリール基、アリール基で置換されているアラルキル基である。但し、 Z_{13} が、メチル基である場合、mは $2\sim8$ から選ばれる整数である。複数のユニットが存在する場合、 R_{13} 、m及び Z_{13} は、各ユニット毎に独立して上記の意味を表す。)

(D) 化学式(11) で示すユニットを含むポリヒドロキシアルカノエートを塩基と反応させる工程と、前記工程で得られた化合物と、化学式(14) で示す化合物とを反応させる工程とを有することを特徴とする化学式(15) で示すユニットを含むポリヒドロキシアルカノエートの製造方法。

[0039]

【化15】

$$\begin{array}{c|c} - & & \\ \hline - & & \\ \hline Z_{11} & O \end{array}$$
 (11)

[0040]

 $(Z_{1|}$ は、直鎖または分岐状のアルキル基、アリール基、アリール基で置換されているアラルキル基である。複数のユニットが存在する場合、 $Z_{1|}$ は、各ユニット毎に独立して上記の意味を表す。)

[0041]

IIL I U 1

[0042]

(式中、 R_{14} は $-A_{14}$ - SO_2R_{14a} を表す。 R_{14a} はOH、ハロゲン原子、 ON_a 、OKまたは OR_{14b} である。また、 R_{14b} 及び A_{14} はそれぞれ独立して、置換または未置換の脂肪族炭化水素構造、置換または未置換の芳香族環構造、あるいは、置換または未置換の複素環構造を有する基から選ばれる。複数のユニットが存在する場合、 R_{14} 、 R_{14a} 、 R_{14b} 及び A_{14} は、各ユニット毎に独立して上記の意味を表す。)

[0043]

【化17】

[0044]

(式中、 R_{15} は $-A_{15}$ - SO_2R_{15a} を表す。 R_{15a} はOH、ハロゲン原子、ONa、OKまたはOR_{15b}である。 R_{15b} 及びA₁₅ はそれぞれ独立して、置換または未置換の脂肪族炭化水素構造、置換または未置換の芳香族環構造、あるいは、置換または未置換の複素環構造を有する基を表す。 Z_{15} は、直鎖または分岐状のアルキル基、アリール基、アリール基で置換されているアラルキル基である。複数のユニットが存在する場合、 R_{15b} 、 R_{15b} 、 A_{15} 及び Z_{15} は各ユニット毎に独立して上記の意味を表す。)

【発明を実施するための最良の形態】

[0045]

以下に本発明の内容を述べる。本発明で目的とする化学式(1)で示すポリヒドロキシアルカノエートは、出発原料として用いる化学式(9)で表されるユニットを含むポリヒドロキシアルカノエートと化学式(10)で示すアミノスルホン酸化合物の少なくとも1種との反応で製造できる。

[0046]

【化18】

$$\begin{array}{c}
COOR_{9} \\
(CH_{2})m \\
O \\
Z_{9}
\end{array}$$
(9)

[0047]

(式中、 R_g は、水素、または、塩を形成する基である。mは、 $0\sim8$ から選ばれる整数である。 Z_g は、直鎖または分岐状のアルキル基、アリール基、アリール基で置換されているアラルキル基である。複数のユニットが存在する場合、m、 R_g 及び Z_g は、各ユニット毎に独立して上記の意味を表す。)

【化19】

 $H_2N - A_3 - SO_2R_{10}$ (10)

[0049]

(式中、 R_{10} はOH、ハロゲン原子、ONa、OKまたはOR $_{10a}$ である。また、 R_{10a} 及び A_3 はそれぞれ独立して、置換または未置換の脂肪族炭化水素構造、置換または未置換の芳香族環構造、あるいは、置換または未置換の複素環構造を有する基から選ばれる。複数のユニットが存在する場合、 R_{10} 、 R_{10a} 及び A_3 は、各ユニット毎に独立して上記の意味を表す。)

ここで、好ましくは、 $R_{\parallel 0}$ は直鎖状または分岐状の炭素数 1 から 8 のアルキル基、置換または未置換のフェニル基である。

[0050]

更に詳しくは、本発明に用いられる化学式(9)で示される化合物において、 Z_g は、直鎖または分岐状のアルキル基、アリール基、アリール基で置換されているアラルキル基である。具体的に、直鎖または分岐上のアルキル基としては、メチル基、エチル基、プロビル基、イソプロビル基(2-メチルプロビル基)、ブチル基、1-メチルプロビル基、ベンチル基、イソプロビル基(3-メチルブチル基)、ヘキシル基、イソヘキシル基(4-メチルベンチル基)、ヘプチル基などが挙げられる。また、アリール基としては、フェニル基、メチルフェニル基などが挙げられる。また、アラルキル基としては、フェニルメチル基(ベンジル基)、フェニルエチル基、フェニルプロビル基、フェニルブチル基、フェニルペンチル基、メチルベンジル基などが挙げられる。本発明においては、ポリマーの合成に関して、生産性を考慮すると、 Z_{11} は、メチル基、エチル基、プロビル基、イソプロビル基、ベンチル基、ヘキシル基、フェニル基、フェニルメチル基であることが好ましい。

[0051]

一方、本発明に用いられる化学式(10)で示される化合物において、

 A_3 は、好ましくは、 $C_1 \sim C_8$ の直鎖もしくは分岐状の置換または未置換のアルキレン基、置換または未置換のフェニレン基、置換または未置換のナフタレン基、あるいは、置換または未置換のN、S、Oの何れか一つ以上を含む複素環構造を有する基を表す。 A_3 が環構造の場合、未置換の環がさらに縮合してもよい。また、複数のユニットが存在する場合、 R_{10} 、 R_{103} 及び A_3 は、 A_3 は、 A_4 は、 A_5 とこット毎に独立して上記の意味を表す。

[0052]

A 3 が直鎖の置換または未置換のアルキレン基の場合は、下記の化学式 (20) で表されるアミノスルホン酸化合物が挙げられる。

[0053]

【化20】

 $H_2N - A_4 - SO_2R_{20}$ (20)

[0054]

(式中、 R_{20} は、OH、ハロゲン原子、 ON_{a} 、OKまたは OR_{20a} である。 R_{20a} は直鎖状または分岐状の炭素数 1 から 8 のアルキル基、あるいは、置換または未置換のフェニル基 である。 A_{4} は $C_{1}\sim C_{8}$ の直鎖もしくは分岐状の置換または未置換のアルキレン基であり、置換されている場合は、炭素数 1 から 20 のアルコキシ基などが置換されていてもよい。)

化学式(20)で示される化合物としては、2-アミノエタンスルホン酸(タウリン)、3-アミノプロバンスルホン酸、4-アミノブタンスルホン酸、2-アミノ-2-メチルプロバンスルホン酸や、そのアルカリ金属塩、エステル化物があげられる。

[0055]

A 3 が、置換または未置換のフェニレン基の場合は、下記の化学式(21)で表されるアミ

ノヘル小ノ政儿口物ルチリりれる。

【0056】

$$R_{3b}$$
 R_{3c}
 R_{3d}
 R_{3e}
 NH_2
 (21)

(式中、 R_{3a} 、 R_{3b} 、 R_{3c} 、 R_{3d} 、 R_{3e} は、それぞれ独立して、 SO_2 R_{3f} (R_{3f} はOH、ハロゲン原子、ONa、OKまたはOR_{3f1} である。(R_{3f1} は直鎖状または分岐状の炭素数 1 から 8 のアルキル基、置換または未置換のフェニル基である。))、水素原子、ハロゲン原子、炭素数 $1\sim 20$ のアルキル基、炭素数 $1\sim 20$ のアルコキシ基、OH基、NH2 基、NO2 基、COOR_{3g}(R_{3g} はH原子、Na原子及びK原子のいずれかを表す)、アセトアミド基、OPh基、NHPh基、CF₃ 基、C₂ F₅ 基またはC₃ F₇ 基を表し(Phはフェニル基を表す)、これらの基の少なくとも 1 つが SO_2 R_{3f} である。)

化学式(21)で示される化合物を用いることで化学式(3)で示されるユニットを1以上有するボリヒドロキシアルカノエートを得ることができる。

【0058】

$$R_{3b}$$
 R_{3c}
 R_{3d}
 R_{3e}
 R_{3e}
 R_{3e}
 $C=O$
 $CH_2)m$
 $C=O$
 CH_2
 CH

[0059]

(式中、 R_{3a} 、 R_{3b} 、 R_{3c} 、 R_{3d} 、 R_{3e} 、並びに式(21)で定義される R_{3f} 、 R_{3f1} 及び R_{3g} は、上記の意味を表す。mは、 $0\sim8$ から選ばれる整数であり、 Z_3 は、直鎖または分岐状のアルキル基、アリール基、アリール基で置換されているアラルキル基である。また、複数のユニットが存在する場合、 R_{3a} 、 R_{3b} 、 R_{3c} 、 R_{3d} 、 R_{3e} 、 R_{3f} 、 R_{3f1} 、 R_{3g} 、m及び Z_3 は、各ユニット毎に独立して上記の意味を表す。)

化学式(21)で示される化合物としては、p-アミノベンゼンスルホン酸(スルファニル酸)、m-アミノベンゼンスルホン酸、0-アミノベンゼンスルホン酸、m-トルイジン-4-スルホン酸、0-トルイジン-4-スルホン酸、0-トルイジン-2-スルホン酸、4-メトキシアニリン-2-スルホン酸、0-アニシジン-5-スルホン酸、p-アニシジン-3-スルホン酸、3-ニトロアニリン-4-スルホン酸、2-ニトロアニリン-4-スルホン酸ナトリウム塩、1,5-ジニトロアニリン-4-スルホン酸、2-アミノフェノール-4-ヒドロキシ-5-ニトロベンゼンスルホン酸、2,4-ジメチルアニリン-5-スルホン酸、4-イソプロピルアニリン-6-スルホン酸、3,4-ジメチルアニリン-5-スルホン酸、4-イソプロピルアニリン-6-スルホン酸、4-トリフルオロメチルアニリン-6-スルホン酸、3-カルボキシ-4-ヒドロキシアニリン-5-スルホン酸、4-カルボキシアニリン-6-スルホン酸、およびそのアルカリ金属塩、

エヘノルに切すが手りつれる。

[0060]

A₃ が、置換または未置換のナフタレン基の場合は、下記の化学式(22A)又は化学式(2 2B)で表されるアミノスルホン酸化合物が挙げられる。

【0061】

$$R_{4f}$$
 R_{4g}
 R_{4d}
 R_{4c}
 R_{4b}
 R_{4b}
 R_{4b}
 R_{4b}

[0062]

(式中、R_{4a}、R_{4b}、R_{4c}、R_{4d}、R_{4e}、R_{4f}及びR_{4g}は、それぞれ独立して、SO₂ R₄ $_0$ (R₄₀はOH、ハロゲン原子、ONa、OKまたはOR₄₀1 である。(R₄₀₁ は直鎖状または分岐状の炭素数 1 から 8 のアルキル基、置換または未置換のフェニル基である。))、水素原子、ハロゲン原子、炭素数 1 ~20のアルキル基、炭素数 1 ~20のアルコキシ基、OH基、NH₂ 基、NO₂ 基、COOR_{4p}(R_{4p}:H原子、Na原子及びK原子のいずれかを表す)、アセトアミド基、OPh基、NHPh基、CF₃ 基、C₂ F₅ 基またはC₃ F₇ 基を表し(Phはフェニル基を示す)、これらの基の少なくとも 1 つはSO₂ R₄₀である。)

【0063】 【化24】

$$\begin{array}{c|cccc}
R_{4k} & R_{4j} \\
R_{4m} & R_{4h} \\
R_{4n} & NH_2 & (22 B)
\end{array}$$

[0064]

(式中、 R_{4h} 、 R_{4j} 、 R_{4k} 、 R_{4l} 、 R_{4m} 及び R_{4n} は、それぞれ独立して、 SO_2 R_{40} (R_{40} はOH、ハロゲン原子、ONa、OKまたはOR₄₀ である。(R_{40l} は直鎖状または分岐状の炭素数 l から 8 のアルキル基、置換または未置換のフェニル基である。))、水素原子、ハロゲン原子、炭素数 l ~20 のアルキル基、炭素数 l ~20 のアルコキシ基、OH基、NH2 基、NO2 基、COOR_{4p}(R_{4p} : H原子、Na原子及びK原子のいずれかを表す)、アセトアミド基、OPh基、NHPh基、CF3 基、C2 F5 基またはC3 F7 基を表し(Phはフェニル基を示す)、これらの基の少なくとも一つは SO_2R_{40} である。)

化学式(22A)または(22B)で示される化合物を用いて化学式(4 A)または(4 B)で示すユニットを分子中に1ユニット以上含むポリヒドロキシアルカノエートを得ることができる。

[0065]

$$\begin{array}{c|c} R_{4e} \\ R_{4g} \\ R_{4a} \\ R_{4b} \\ R_{4c} \\ R_{4b} \\ R_{$$

[0066]

(式中、 R_{4a} 、 R_{4b} 、 R_{4c} 、 R_{4d} 、 R_{4e} 、 R_{4f} 、 R_{4g} 、並びに式 (22A) で定義される R_{4o} 、 R_{4o1} 及び R_{4p} は、上記の意味を表す。また、mは、 $0\sim8$ から選ばれる整数であり、 Z_{4a} は、直鎖または分岐状のアルキル基、アリール基、アリール基で置換されているアラルキル基である。また、複数のユニットが存在する場合、 R_{4a} 、 R_{4b} 、 R_{4c} 、 R_{4d} 、 R_{4e} 、 R_{4f} 、 R_{4g} 、 R_{4o} 、 R_{4o1} 、 R_{4p} 、 R_{4o2} は、各ユニット毎に独立して上記の意味を表す。)

【0067】

[0068]

(式中、R_{4h}、R_{4j}、R_{4j}、R_{4k}、R_{4l}、R_{4m}、R_{4n}、並びに式 (22B) で定義されるR₄₀、R₄₀ 及びR_{4p}は、上記の意味を表す。また、mは、0~8から選ばれる整数であり、 Z_{4b} は、直鎖または分岐状のアルキル基、アリール基、アリール基で置換されているアラルキル基である。また、複数のユニットが存在する場合、R_{4h}、R_{4j}、R_{4j}、R_{4k}、R_{4l}、R_{4m}、R_{4n}、R_{4n}、R₄₀、R₄₀、R_{4p}、m及び Z_{4b} は、各ユニット毎に独立して上記の意味を表す。)

化学式 (22A) または (22B) で示される化合物としては、1-ナフチルアミンー5-スルホン酸、1-ナフチルアミンー4-スルホン酸、1-ナフチルアミンー8-スルホン酸、2-ナフチルアミンー5-スルホン酸、1-ナフチルアミンー6-スルホン酸、1-ナフチルアミン-7-スルホン酸、1-ナフチルアミン-1-エトキシー1-スルホン酸、1-アミノ-1-ナフトール-1-スルホン酸、1-アミノ-1-ナフトール-1-スルホン酸、1-アミノ-1-ナフトール-1-スルホン酸ーナトリウム塩、1-アミノ-1-8-ナフトール-1-スルホン酸ーナトリウム塩など、スルホン酸、またはそのアルカリ金属塩、エステル化物などが挙げられる。

.

A3 が置換または未置換のN、S、Oの何れか一つ以上を含む複素環構造を有する基の場合は、複素環として、ビリジン環、ピペラジン環、フラン環、チオール環などのいずれでもよい。化合物としては、2-アミノビリジン-6-スルホン酸、2-アミノビペラジン-6-スルホン酸など、スルホン酸、またはそのアルカリ金属塩、エステル化物などが挙げられる。

[0070]

[0071]

(化学式(1)に示すポリヒドロキシアルカノエートの製造方法)

本発明における化学式(9)に示すユニットを含むポリヒドロキシアルカノエートと化学式(10)で示すアミノスルホン酸化合物との反応について詳しく述べる。本発明に用いられる化学式(10)に示す化合物の使用量は、出発原料として用いる化学式(9)に示すユニットに対して、0.1~50.0倍モル、好ましくは、1.0~20.0倍モルの範囲である。

[0072]

本発明のカルボン酸とアミンからアミド結合を生成する方法としては、加熱脱水による縮合反応などがある。特に、ボリマー主鎖のエステル結合が切断されないようなマイルドな反応条件という点から、カルボン酸部分を活性化剤で活性化させ、活性アシル中間体を生成させてから、アミンと反応させる方法が有効である。活性アシル中間体として、酸ハロゲン化物、酸無水物、活性エステルなどがあげられる。特に、縮合剤を使用し、同一反応場中でアミド結合を形成する方法が、生産プロセスの簡略化という点からは好ましい。

[0073]

必要ならば、一旦、酸ハロゲン化物として単離してから、アミンとの縮合反応を行うことも可能である。

[0074]

用いられる縮合剤としては、芳香族ポリアミドの重縮合に使用されるリン酸系縮合剤、ペプチド合成に使用されるカルボジイミド系縮合剤、酸塩化物系縮合剤などから、化学式(10)の化合物と化学式(9)に示すユニットを有するポリヒドロキシアルカノエートとの組み合わせに応じて適宜選択することが可能である。

[0075]

リン酸系縮合剤としては、亜リン酸エステル系縮合剤、リン塩化物系縮合剤、リン酸無水物系縮合剤、リン酸エステル系縮合剤、リン酸アミド系縮合剤、などがあげられる。

[0076]

本発明の反応では、亜リン酸エステル等の縮合剤を用いることが可能である。この際使用される亜リン酸エステル類としては、亜リン酸トリフェニル、亜リン酸ジフェニル、亜リン酸トリー0-トリル、亜リン酸ジー0-トリル、亜リン酸シーm-トリル、亜リン酸トリーp-トリル、亜リン酸ジーp-トリル、亜リン酸ジー0-クロロフェニル、亜リン酸トリーp-クロロフェニル、亜リン酸シーp-クロロフェニル、亜リン酸トリエチル等が挙げられる。中でも、亜リン酸トリフェニルが好ましく用いられる。また、ボリマーの溶解性、反応性などの向上のために、リチウムクロライド、塩化カルシウムなどの金属塩を添加してもよい。

[0077]

カルボジイミド系縮合剤としては、ジシクロヘキシルカルボジイミド (D C C)、N-エチルーN'-3-ジメチルアミノプロピルカルボジイミド (E D C = W S C I)、ジイソプロピルカルボジイミド (D I P C)、なとがあげられる。D C C あるいは、W S C I と、N-

[0078]

縮合剤の使用量は、化学式(9)に示すユニットに対して、 $0.1\sim50$ 倍モル、好ましくは、 $1\sim20$ 倍モルの範囲である。

[0079]

本発明の反応では、必要に応じ、溶媒を使用することができる。使用する溶媒は、ヘキサン、シクロヘキサン、ヘプタン等の炭化水素類、アセトン、メチルエチルケトン等のケトン類、ジメチルエーテル、ジエチルエーテル、テトラヒドロフラン等のエーテル類、ジクロロメタン、クロロホルム、四塩化炭素、ジクロロエタン、トリクロロエタンなどのハロゲン化炭化水素類、ベンゼン、トルエン等の芳香族炭化水素、N,N-ジメチルホルムアミド、ジメチルスルホキシド、ジメチルアセトアミド、ヘキサメチルホスホルアミドなどの非プロトン性極性溶媒類、ビリジン、ピコリンなどのビリジン誘導体、N-メチルピロリドンなどが用いられる。溶媒の使用量は、出発原料、塩基の種類、反応条件等に応じて適宜定め得る。本発明の方法において、反応温度は、特に限定されないが、通常は-20℃~溶媒の沸点の範囲の温度である。ただし、用いる縮合剤に合わせた最適な温度で反応を行うことが望ましい。

[0800]

本発明の方法において、反応時間は、通常、1~48時間の範囲である。特に、1~10時間が好ましい。

[0081]

本発明において、このようにして生成した化学式(1)に示すユニットを有するポリヒドロキシアルカノエートを含む反応液からの目的とするポリヒドロキシアルカノエートの回収、精製は、常法である蒸留などにより可能である。または、水、メタノール及びエタノールなどのアルコール類、ジメチルエーテル、ジエチルエーテル、テトラヒドロフラン等のエーテル類等の溶媒を反応液に均一に混合して、目的とする化学式(1)に示すポリヒドロキシアルカノエートを沈殿させることにより、これを回収することができる。ここで得られた化学式(1)に示すユニットを有するポリヒドロキシアルカノエートは、必要ならば、単離精製することができる。この単離精製方法としては、特に制限はなく、化学式(1)に示すポリヒドロキシアルカノエートに不溶な溶媒を用いて沈殿させる方法、カラムクロマトグラフィーによる方法、透析法などを用いることができる。

[0082]

本発明の別の製造方法として、化学式(1)中のR部分が $-A_1$ -SO $_3$ Hの場合、アミンとの縮合反応後にメチルエステル化剤を用いて、化学式(1)中のR部分を $-A_1$ -SO $_3$ C H $_3$ とするメチルエステル化を行う方法がある。メチルエステル化剤としては、ガスクロマトグラフィー分析における脂肪酸のメチルエステル化に用いられているものを利用することができる。メチルエステル化法としては、酸触媒法である塩酸-メタノール法、三フッ化ホウ素-メタノール法、硫酸-メタノール法は、ナトリウムメトキシド法、テトラメチルグアニジン法、トリメチルシリルジアゾメタン法などの塩基触媒法などがあげられる。中でも、温和な条件下でメチル化ができるのでトリメチルシリルジアゾメタン法が好ましい。

[0083]

本発明の反応で使用する溶媒は、ヘキサン、シクロヘキサン、ヘブタン等の炭化水素類、メタノール、エタノール等のアルコール類、ジクロロメタン、クロロホルム、四塩化炭素、ジクロロエタン、トリクロロエタンなどのハロゲン化炭化水素類、ベンゼン、トルエン等の芳香族炭化水素などが挙げられる。特に好ましくは、ハロゲン化炭化水素類などが用いられる。溶媒の使用量は、出発原料、反応条件等に応じて適宜定め得る。本発明の方法において、反応温度は、特に限定されないが、通常は-20~30℃の範囲の温度である。

たたし、用いる棚口則、畝米に口むせた取恩な血反で以心で11 / ことが起よしい。

[0084]

また、本発明では、化学式(!!)で示すユニットを有するポリヒドロキシアルカノエート を塩基と反応させる工程と、前記工程で得られた化合物と、化学式(14)で示す化合物とを 反応させる工程を経ることにより化学式(15)で示すユニットを含むポリヒドロキシアルカ ノエートを製造することができる。

[0085]

【化27】

(-0-TI)

[0086]

(式中、 Z | 」は、直鎖または分岐状のアルキル基、アリール基、アリール基で置換されて いるアラルキル基である。)

[0087]

【化28】

(式中、 R_{14} は $-A_{14}$ - $S_{02}R_{14a}$ を表す。 R_{14a} は O_{14} H、ハロゲン原子、 O_{14} Na、 O_{14} Kまた はOR_{14h}である。また、R_{14h}及びA₁₄はそれぞれ独立して、置換または未置換の脂肪族 炭化水素構造、置換または未置換の芳香族環構造、あるいは、置換または未置換の複素環 構造を有する基から選ばれる。複数のユニットが存在する場合、R₁₄、R_{14a}、R_{14h}及び A₁₄は、各ユニット毎に独立して上記の意味を表す。)

[0089]【化29】

[0090]

(式中、R_{15a}は-A₁₅-SO₂R_{15h}を表す。R_{15h}はOH、ハロゲン原子、ONa、OK または OR_{15c} である。 R_{15c} 及 VA_{15} はそれぞれ独立して、置換または未置換の脂肪族 炭化水素構造、置換または未置換の芳香族環構造、あるいは、置換または未置換の複素環 構造を有する基を表す。 乙15は、直鎖または分岐状のアルキル基、アリール基、アリール 基で置換されているアラルキル基である。複数のユニットが存在する場合、R₁₅₁、R_{15h} 、 R_{15c} 、 A_{15} 及び Z_{15} は各ユニット毎に独立して上記の意味を表す。)

更に詳しくは、本発明に用いられる化学式(11)で示される置換α-ヒドロキシ酸のユニ ットからなるポリヒドロキシアルカノエートにおいて、 乙二は、直鎖または分岐状のアル キル基、アリール基、アリール基で置換されているアラルキル基である。具体的に、直鎖 または分岐上のアルキル基としては、メチル基、エチル基、プロピル基、イソプロピル基 (2-メチルプロビル基)、ブチル基、1-メチルプロビル基、ペンチル基、イソプロビル基 (3⁻/ブルノブル至/、「マンル至、「ノハマンル至(ま⁻/ブル、ノブル至)、「ファル至などが挙げられる。また、アリール基としては、フェニル基、メチルフェニル基などが挙げられる。また、アラルキル基としては、フェニルメチル基(ベンジル基)、フェニルエチル基、フェニルプロピル基、フェニルブチル基、フェニルベンチル基、メチルベンジル基などが挙げられる。本発明においては、ポリマーの合成に関して、生産性を考慮すると、Z_{||}は、メチル基、エチル基、プロピル基、イソプロピル基、ベンチル基、ヘキシル基、フェニル基、フェニルメチル基であることが好ましい。

[0091]

また、化学式(14)で示される化合物としては、2-アクリルアミド-2-メチルプロパンスルホン酸や、そのアルカリ金属塩、そのエステル化物があげられる。

[0092]

(化学式(15)に示すポリヒドロキシアルカノエートの製造方法)

本発明における化学式(11)に示すユニットを含むポリヒドロキシアルカノエートと化学式(14)で示す化合物との反応について詳しく述べる。

[0093]

本発明は、ボリマー主鎖中のカルボニル基の隣にある α -メチン基に、化学式 (14) で示される化合物をマイケル付加反応することで達成される。具体的には、マイケル付加の反応条件下で、化学式 (11) に示すユニットを含むボリヒドロキシアルカノエートと、化学式 (11) に示すユニットを含むボリヒドロキシアルカノエートのボリマー主鎖中のカルボニル基の隣にある α -メチン基をアニオン形成できる塩基とを反応させ、引き続き、化学式 (14) で示す化合物とを反応させることにより達成される。また、本発明において、用いる化学式 (14) で示す化合物の使用量は、化学式 (11) に示すユニットに対して $0.001 \sim 100$ 倍モル量、好ましくは、 $0.01 \sim 10$ 倍モル量である。

[0094]

本発明の反応で使用される溶媒は、反応に不活性な溶媒であり、出発物質をある程度溶解するものであれば特に限定はないが、例えば、ヘキサン、シクロヘキサン、ヘプタン、リグロイン又は石油エーテルのような脂肪族炭化水素類;ベンゼン、トルエン又はキシレンのような芳香族炭化水素類;ジエチルエーテル、ジイソプロピルエーテル、テトラヒドロフラン、ジオキサン、ジメトキシエタン又はジエチレングリコールジメチルエーテルのようなエーテル類;あるいは、ホルムアミド、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、N-メチル-2-ピロリドン、N-メチルピロリジノン又はヘキサメチルホスホロトリアミドのようなアミド類であり、好ましくは、テトラヒドロフランである。

[0095]

反応は塩基の存在下で行われる。使用される塩基としては、メチルリチウム、プチルリチウムのようなアルキルリチウム類;リチウムへキサメチルジシラジド、ナトリウムへキサメチルジシラジド、カリウムへキサメチルジシラジドのようなアルカリ金属ジシラジド類;リチウムジイソプロピルアミド、リチウムジシクロへキシルアミドのようなリチウムアミド類であり、好ましくはリチウムジイソプロピルアミドである。また、本発明における塩基の使用量は、化学式(11)に示すユニットに対して、0.001~100倍モル量、好ましくは、0.01~10倍モル量である。

[0096]

本発明の方法において、反応温度は、通常-78 $\mathbb{C}\sim40\mathbb{C}$ であり、好ましくは-78 $\mathbb{C}\sim30\mathbb{C}$ である。

[0097]

本発明の方法において、反応時間は通常、通常10分間~24時間の範囲である。特に、10分間~4時間が好ましい。

[0098]

一方、本発明の化学式(5)で示すユニットを有するポリヒドロキシアルカノエートにおいて、化学式(8)で示すユニットを有するポリヒドロキシアルカノエートは、化学式(7)で示されるユニットを有するポリヒドロキシアルカノエートを用い、その側鎖エステル部

カで取るには!ルルフの日は「に加小刀牌りの刀広、以いは按照坯儿でロロ小糸に刀牌りる方法により製造できる。

【0099】

$$\begin{array}{c}
COOR_8\\
(CH_2)m\\
O\\
\end{array}$$

$$\begin{array}{c}
COOR_8\\
COH_2
\end{array}$$

[0100]

(式中、 R_8 は、水素、または、塩を形成する基である。また、mは、 $0\sim8$ から選ばれる整数である。 Z_8 は、直鎖または分岐状のアルキル基、アリール基、アリール基で置換されているアラルキル基である。但し、 Z_8 が、メチル基である場合、mは $2\sim8$ から選ばれる整数である。複数のユニットが存在する場合、 R_8 、m及び Z_8 は、各ユニット毎に独立して上記の意味を表す。)

【0101】

$$\begin{array}{c}
COOR_7 \\
(CH_2)m \\
O \\
\downarrow II \\
Z_7
\end{array}$$
(7)

[0102]

(式中、 R_7 は、炭素数 $1\sim 12$ の直鎖または分岐状のアルキル基、あるいは、アラルキル基である。mは、 $0\sim 8$ から選ばれる整数であり、 Z_7 は、直鎖または分岐状のアルキル基、アリール基、アリール基で置換されているアラルキル基である。但し、 Z_7 が、メチル基である場合、mは $2\sim 8$ から選ばれる整数である。複数のユニットが存在する場合、 R_7 、m及び Z_7 は、各ユニット毎に独立して上記の意味を表す。)

更に詳しくは、本発明に用いられる化学式 (7)で示されるユニットからなるボリヒドロキシアルカノエートにおいて、 Z_7 は、具体的に、直鎖または分岐上のアルキル基としては、メチル基、エチル基、プロピル基、イソプロピル基 (2-メチルプロピル基)、ブチル基、1-メチルプロピル基、ベンチル基、イソプロピル基 (3-メチルプチル基)、ヘキシル基、イソヘキシル基 (4-メ チルペンチル基)、ヘプチル基などが挙げられる。また、アリール基としては、フェニル基、メチルフェニル基などが挙げられる。また、アラルキル基としては、フェニルメチル基 (ペンジル基)、フェニルエチル基、フェニルプロピル基、フェニルブチル基、フェニルペンチル基、メチルペンジル基などが挙げられる。本発明においては、ボリマーの合成に関して、生産性を考慮すると、 Z_{11} は、メチル基、エチル基、プロピル基、イソプロピル基、ペンチル基、ヘキシル基、フェニル基、フェニルメチル基であることが好ましい。

[0103]

(化学式(8)に示すポリヒドロキシアルカノエートの製造方法)

本発明における化学式(7)で示されるユニットを有するポリヒドロキシアルカノエートを用い、その側鎖エステル部分を酸またはアルカリの存在下に加水分解する方法、或いは接触還元を含む水素化分解すること化学式(8)で示されるユニットを有するポリヒドロキシアルカノエートの製造方法について詳しく述べる。

[0104]

取または、ルカリの日は「に加小カ海ッの月伝を用いる場口、低寒として小価限中よたは、メタノール、エタノール、テトラヒドロフラン、ジオキサン、ジメチルホルムアミド、ジメチルスルホキシドなどの水親和性の有機溶媒中において、塩酸、硫酸、硝酸、或いはリン酸などの無機酸類の水溶液あるいはトリフルオロ酢酸、トリクロロ酢酸、p-トルエンスルホン酸、メタンスルホン酸などの有機酸を用いるか或いは、水酸化ナトリウム、水酸化カリウムなどの水性苛性アルカリ類、炭酸ナトリウム、炭酸カリウムなどの炭酸アルカリ類の水溶液、ナトリウムメトキシド、ナトリウムエトキシドなどの金属アルコキシド類のアルコール溶液を用いておこなうことができる。反応温度は、通常0~40℃、好ましくは0~30℃とするのがよい。反応時間は、通常0.5~48時間とするのがよい。但し、酸またはアルカリにより加水分解した場合、何れにおいても主鎖のエステル結合も切断され、分子量低下が認められる場合がある。

[0105]

接触還元を含む水素化分解する方法を用いてカルボン酸を得る方法を用いる場合、下記 の如く行われる。即ち、適宜な溶媒中において、-20℃~使用溶媒の沸点、好ましくは、 0~50℃の範囲の温度で、還元触媒存在下、水素を常圧又は、加圧下で作用させて接触還 元をおこなう。使用溶媒としては、例えば水、メタノール、エタノール、プロパノール、 ヘキサフルオロイソプロパノール、酢酸エチル、ジエチルエーテル、テトラヒドロフラン 、ジオキサン、ベンゼン、トルエン、ジメチルホルムアミド、ピリジン、N-メチルピロ リドンなどが挙げられる。また、上記の混合溶媒として用いることもできる。還元触媒と しては、バラジウム、白金、ロジウムなどの単独または担体に担持された触媒またはラネ ーニッケルなどが用いられる。反応時間は、通常0.5~72時間とするのがよい。このよう にして生成した化学式(8)に示すユニットを有するポリヒドロキシアルカノエートを含む 反応液は、ろ過により触媒を除去し、蒸留などにより溶媒を除去することで粗製のポリマ ーとして回収される。ここで得られた化学式(8)に示すユニットを有するポリヒドロキシ アルカノエートは、必要ならは、単離精製することができる。この単離精製方法としては 、特に制限はなく、化学式(8)に示すユニットを有するポリヒドロキシアルカノエートに 不溶な溶媒を用いて再沈殿する方法、カラムクロマトグラフィーによる方法、透析法など を用いることができる。但し、接触還元を用いた場合においても主鎖のエステル結合も切 断され、分子量低下が認められる場合もある。

[0106]

(化学式(23)に示すポリヒドロキシアルカノエートの製造方法)

また、本発明の化学式(5)で示すユニットを有するポリヒドロキシアルカノエートにおいて、化学式(23)で示すユニットを有するポリヒドロキシアルカノエートは、出発原料として化学式(24)で示されるユニットを有するポリヒドロキシアルカノエートを用い、エステル化剤を用いてエステル化することで製造できる。

[0107]

【化32】

[0108]

(式中、 R_{23} は、炭素数 $1\sim$ 12の直鎖または分岐状のアルキル基、アラルキル基、あるいは、糖類を有する置換基である。mは、 $0\sim$ 8から選ばれる整数であり、 Z_{23} は、直鎖または分岐状のアルキル基、アリール基、アリール基で置換されているアラルキル基である。但し、 Z_{23} が、メチル基で、mは $0\sim$ 1 である場合、 R_{23} は、糖類を有する置換基のみである。複数のユニットが存在する場合、 R_{23} 、m及び Z_{23} は、各ユニット毎に独立して

上礼ツ念峤で叙り。)

【0109】

$$\begin{array}{c}
COOR_{24} \\
(CH_2)m \\
O & \parallel \\
Z_{24}
\end{array}$$
(24)

[0110]

(式中、 R_{24} は、水素、または塩を形成する基である。mは、 $0\sim8$ から選ばれる整数であり、 Z_{24} は、直鎖または分岐状のアルキル基、アリール基、アリール基で置換されているアラルキル基である。複数のユニットが存在する場合、 R_{24} 、m及び Z_{23} は、各ユニット毎に独立して上記の意味を表す。)

用いられるエステル化剤としては、ジアゾメタン及びDMF ジメチルアセタール類を用いることができる。例えば、化学式 (24) に示されるユニットを有するボリヒドロキシアルカノエートは、トリメチルシリルジアゾメタン、DMF ジメチルアセタール、DMF ジエチルアセタール、DMF ジブロビルアセタール、DMF ジイソプロビルアセタール、DMF デーn-ブチルアセタール、DMF -tert-ブチルアセタール、またはDMF ジネオペンチルアセタールなどと容易に反応し、対応するエステルを与える。また、アルコール類、例えば、メタノール、エタノール、ブロバノール、イソプロビルアルコール、ブチルアルコール、ネオペンチルアルコール、ヘキシルアルコール、はert-ブチルアルコール、オクチルアルコール、ネオペンチルアルコール、ペラルアルコール、ラウリルアルコール、オクチルアルコール、ノニルアルコール、デシルアルコール、ラウリルアルコールなど、糖構造を導入するための糖類、例えば、D-グルコース、D-フルクトース、その他の糖類などとの反応を、酸触媒、または、DCCなどの縮合剤を用いた方法により行うことで、エステル化されたボリヒドロキシアルカノエートが得られる。

$[0\ 1\ 1\ 1\]$

また、本発明では、化学式(11)で示すユニットを有するポリヒドロキシアルカノエートを塩基と反応させる工程と、前記工程で得られた化合物と、化学式(12)で示す化合物とを反応させる工程を経ることにより化学式(13)で示すユニットを含むポリヒドロキシアルカノエートを製造することができる。

【0112】

[0113]

(式中、Z₁₁は、水素原子、直鎖または分岐状のアルキル基、アリール基、アリール基で 置換されているアラルキル基である。)

[0114]

【化35】

 $X(CH_2)mCOOR_{12}$

(12)

[0115]

(式中、mは、0~8から選ばれる整数である。Xは、ハロゲン原子である。R₁₂は、炭素数1~12の直鎖または分岐状のアルキル基、あるいは、アラルキル基である。)

[0116]

$$COOR_{13}$$

$$(CH_2)m$$

$$COUR_{13}$$

$$CH_2 = 0$$

$$COOR_{13}$$

$$CH_2 = 0$$

$$COOR_{13}$$

$$COOR_{13}$$

$$COOR_{13}$$

$$COOR_{13}$$

$$COOR_{13}$$

[0117]

(式中、mは、 $0\sim8$ から選ばれる整数である。 R_{13} は、炭素数 $1\sim12$ の直鎖または分岐状のアルキル基、あるいは、アラルキル基である。 Z_{13} は、直鎖または分岐状のアルキル基、アリール基、アリール基で置換されているアラルキル基である。複数のユニットが存在する場合、 R_{13} 、m及び Z_{13} は、各ユニット毎に独立して上記の意味を表す。但し、 Z_{13} が、メチル基である場合、mは $2\sim8$ である)

または、化合物(13)は、開環重合可能な環状化合物を経由して、製造することもできる

[0118]

更に詳しくは、本発明に用いられる化学式 (11) で示されるユニットからなるボリヒドロキシアルカノエートにおいて、 Z_{11} は、直鎖または分岐状のアルキル基、アリール基、アリール基で置換されているアラルキル基である。具体的に、直鎖または分岐上のアルキル基としては、メチル基、エチル基、プロビル基、イソプロビル基 (2-メチルプロビル基)、ブチル基、1-メチルプロビル基、ベンチル基、イソプロビル基(3-メチルブチル基)、ヘキシル基、イソヘキシル基 (4-メチルベンチル基)、ヘブチル基などが挙げられる。また、アリール基としては、フェニル基、メチルフェニル基などが挙げられる。また、アラルキル基としては、フェニルメチル基(ベンジル基)、フェニルエチル基、フェニルプロビル基、フェニルブチル基、フェニルブチル基、ステールでンジル基などが挙げられる。本発明においては、ボリマーの合成に関して、生産性を考慮すると、 Z_{11} は、メチル基、エチル基、プロビル基、イソプロビル基、ベンチル基、ヘキシル基、フェニル基、フェニルメチル基であることが好ましい。

[0119]

また、化学式(12)で示される化合物としては、クロロギ酸メチル、クロロギ酸エチル、 クロロギ酸プロピル、クロロギ酸イソプロピル、クロロギ酸ブチル、クロロギ酸シクロへ キシル、クロロギ酸ベンジル、ブロモギ酸メチル、ブロモギ酸エチル、ブロモギ酸プロピ ル、ブロモギ酸イソプロピル、ブロモギ酸ブチル、ブロモギ酸シクロヘキシル、ブロモギ 酸ベンジル、クロロ酢酸メチル、クロロ酢酸エチル、クロロ酢酸プロピル、クロロ酢酸イ ソプロピル、クロロ酢酸ブチル、クロロ酢酸シクロヘキシル、クロロ酢酸ベンジル、ブロ モ酢酸メチル、ブロモ酢酸エチル、ブロモ酢酸プロビル、ブロモ酢酸イソプロピル、ブロ モ酢酸ブチル、ブロモ酢酸シクロヘキシル、ブロモ酢酸ペンジル、3-クロロプロピオン 酸メチル、3-クロロプロピオン酸エチル、3-クロロプロピオン酸プロピル、3-クロロ プロピオン酸イソプロピル、3-クロロプロピオン酸プチル、3-クロロプロピオン酸シク ロヘキシル、3-クロロプロピオン酸ペンジル、3-ブロモプロピオン酸メチル、3-ブロ モプロピオン酸エチル、3-ブロモプロピオン酸プロピル、3-ブロモプロピオン酸イソブ ロピル、3-ブロモプロピオン酸ブチル、3-ブロモプロピオン酸シクロヘキシル、3-ブ ロモプロピオン酸ベンジル、4-クロロ酪酸メチル、4-クロロ酪酸エチル、4-クロロ酪 酸プロピル、4-クロロ酪酸イソプロビル、4-クロロ酪酸ブチル、4-クロロ酪酸シクロ ヘキシル、4-クロロ酪酸ベンジル、4-ブロモ酪酸メチル、4-ブロモ酪酸エチル、4-ブ ロモ酪酸プロピル、4-プロモ酪酸イソプロピル、4-ブロモ酪酸プチル、4-プロモ酪酸 シクロヘキシル、4-ブロモ酪酸ペンジル、5-クロロ吉草酸メチル、5-クロロ吉草酸エ チル、5-クロロ吉草酸プロピル、5-クロロ吉草酸イソプロピル、5-クロロ吉草酸プチ ル、5-クロロ吉草酸シクロヘキシル、5-クロロ吉草酸ベンジル、5-プロモ吉草酸メチ

ル、 リニノロモロ芋餃エアル、 リニノロモロ芋餃ノロモル、 リニノロモロ芋餃コノノロモル 、5-ブロモ吉草酸プチル、5-ブロモ吉草酸シクロヘキシル、5-プロモ吉草酸ベンジル 、 6 -クロロヘキサン酸メチル、 6 -クロロヘキサン酸エチル、 6 -クロロヘキサン酸プロ ピル、6-クロロヘキサン酸イソプロピル、6-クロロヘキサン酸ブチル、6-クロロヘキ サン酸シクロヘキシル、6-クロロヘキサン酸ペンジル、6-プロモヘキサン酸メチル、6 -ブロモヘキサン酸エチル、6-ブロモヘキサン酸プロピル、6-ブロモヘキサン酸イソプ ロピル、6-ブロモヘキサン酸ブチル、6-ブロモヘキサン酸シクロヘキシル、6-ブロモ ヘキサン酸ペンジル、7-クロロヘブタン酸メチル、7-クロロヘブタン酸エチル、7-ク ロロヘプタン酸プロビル、7-クロロヘプタン酸イソプロビル、7-クロロヘプタン酸ブチ ル、7-クロロヘプタン酸シクロヘキシル、7-クロロヘプタン酸ベンジル、7-ブロモヘ プタン酸メチル、7-ブロモヘプタン酸エチル、7-ブロモヘプタン酸プロピル、7-ブロ モヘブタン酸イソプロピル、7-ブロモヘブタン酸ブチル、7-ブロモヘプタン酸シクロヘ キシル、7-ブロモオクタン酸ベンジル、8-クロロオクタン酸メチル、8-クロロオクタ ン酸エチル、8-クロロオクタン酸プロピル、8-クロロオクタン酸イソプロピル、8-ク ロロオクタン酸プチル、8-クロロオクタン酸シクロヘキシル、8-クロロオクタン酸ベン ジル、8-ブロモオクタン酸メチル、8-ブロモオクタン酸エチル、8-ブロモオクタン酸 プロピル、8-ブロモオクタン酸イソプロピル、8-ブロモオクタン酸ブチル、8-ブロモ オクタン酸シクロヘキシル、8-ブロモオクタン酸ベンジル、9-クロロノナン酸メチル、 9-クロロノナン酸エチル、9-クロロノナン酸プロピル、9-クロロノナン酸イソプロピ ル、9-クロロノナン酸プチル、9-クロロノナン酸シクロヘキシル、9-クロロノナン酸 ベンジル、9-ブロモノナン酸メチル、9-ブロモノナン酸エチル、9-ブロモノナン酸プ ロピル、9-ブロモノナン酸イソプロピル、9-ブロモノナン酸プチル、9-ブロモノナン 酸シクロヘキシル、9-プロモノナン酸ベンジル等があげられる。

[0120]

(化学式(13)に示すポリヒドロキシアルカノエートの製造方法)

本発明における化学式(11)に示すユニットを含むポリヒドロキシアルカノエートと化学式(12)で示す化合物との反応について詳しく述べる。

[0121]

本発明は、ボリマー主鎖中のカルボニル基の隣にある α -メチン基に、化学式 (12)で示される化合物を付加反応することで達成される。具体的には、付加反応の条件下で、化学式 (11)に示すユニットを含むボリヒドロキシアルカノエートと、化学式 (11)に示すユニットを含むボリヒドロキシアルカノエートのボリマー主鎖中のカルボニル基の隣にある α -メチン基をアニオン形成できる塩基とを反応させ、引き続き、化学式 (12)で示す化合物とを反応させることにより達成される。また、本発明において、用いる化学式 (12)で示す化合物の使用量は、化学式 (11)に示すユニットに対して $0.001\sim100$ 倍モル量、好ましくは、 $0.01\sim100$ 倍モル量である。

[0122]

本発明の反応で使用される溶媒は、反応に不活性な溶媒であり、出発物質をある程度溶解するものであれば特に限定はないが、例えば、ヘキサン、シクロヘキサン、ヘプタン、リグロイン又は石油エーテルのような脂肪族炭化水素類;ベンゼン、トルエン又はキシレンのような芳香族炭化水素類;ジエチルエーテル、ジイソプロピルエーテル、テトラヒドロフラン、ジオキサン、ジメトキシエタン又はジエチレングリコールジメチルエーテルのようなエーテル類;あるいは、ホルムアミド、N・N-ジメチルホルムアミド、N・N-ジメチルアセトアミド、N-メチル-2-ピロリドン、N-メチルピロリジノン又はヘキサメチルホスホロトリアミドのようなアミド類であり、好ましくは、テトラヒドロフランである。

[0123]

反応は塩基の存在下で行われる。使用される塩基としては、メチルリチウム、ブチルリチウムのようなアルキルリチウム類;リチウムへキサメチルジシラジド、ナトリウムへキサメチルジシラジド、カリウムへキサメチルジシラジドのようなアルカリ金属ジシラジド類;リチウムジイソプロピルアミド、リチウムジシクロへキシルアミドのようなリチウム

リミア州でのリ、刈みレ、はソアソムンコノノロビルノミアでのる。 みた、平元切においる塩基の使用量は、化学式(11)に示すユニットに対して、0.001~100倍モル量、好ましくは、0.01~10倍モル量である。

[0124]

本発明の方法において、反応温度は、通常-78℃~40℃であり、好ましくは-78℃~30℃である。

[0125]

本発明の方法において、反応時間は通常、通常10分間~24時間の範囲である。特に、10分間~4時間が好ましい。

[0126]

なお、本発明で用いられる化学式 (11) で示される置換 α -ヒドロキシ酸のユニットからなるボリヒドロキシアルカノエートは、公知の方法を用いて合成することができる。例えば、置換 α -ヒドロキシ酸から、直接、ボリエステルを製造することができる。もしくは、重合工程に先立ち、置換 α -ヒドロキシ酸を重合活性の高い誘導体に変換した後に、開環重合により製造することもできる。

[0127]

(置換α-ヒドロキシ酸から化学式(II)で示される置換α-ヒドロキシ酸のユニットからなるポリヒドロキシアルカノエートの製造方法)

化学式(II)で示される置換α-ヒドロキシ酸のユニットからなるポリヒドロキシアルカ ノエートは、置換α-ヒドロキシ酸と重合触媒とを有機溶媒中で還流し、重合過程で生成 する水を反応系外に除去することによって縮合重合を進行させ得ることができる。

[0128]

(ア)重合触媒

置換 α -ヒドロキシ酸の縮合重合に際し、重合触媒としては、例えば、スズ粉末や亜鉛粉末等の金属、酸化スズ、酸化亜鉛、酸化マグネシウム、酸化チタン、酸化アルミニウム等の金属酸化物、2塩化スズ、4塩化スズ、2臭化スズ、4臭化スズ、塩化亜鉛、塩化マグネシウム、塩化アルミニウム等の金属ハロゲン化物、テトラフェニルスズ、オクチル酸スズ、 α -トルエンスルホン酸等を用いることができる。

[0129]

重合触媒の使用量は、置換 α -ヒドロキシ酸に対し、 $0.001\sim10$ 質量%、好ましくは、 $0.01\sim5$ 質量%である。

[0130]

(イ)重合溶媒

置換 α -ヒドロキシ酸の縮合重合に際し、重合溶媒としては、容易に水と分液分離できるものが好ましい。例えば、トルエン、キシレン、メシチレン、1、2、3、5-テトラメチルベンゼン、クロロベンゼン、1、2-ジクロロベンゼン、1、3-ジクロロベンゼン、、ブロモベンゼン、1、2-ジブロモベンゼン、1、3-ジブロモベンゼン、1 、3-ジブロモベンゼン、ヨードベンゼン、1、2-ジョードベンゼン、ジフェニルエーテル、ジベンジルエーテル等の溶媒を用いることができ、これらは混合して用いてもよい。

[0131]

重合溶媒の使用量は、置換α-ヒドロキシ酸の濃度が5~50質量%となる量が好ましい

[0132]

(ウ)重合条件

置換 α -ヒドロキシ酸の縮合重合に際し、重合温度は、ボリマーの生成速度と生成したボリマーの熱分解速度を考慮して、 $50\sim200$ $\mathbb C$ 、好ましくは、 $110\sim180$ $\mathbb C$ である。縮合重合反応は、通常、常圧下で使用する有機溶媒の留出温度で行われる。高沸点の有機溶媒を用いる場合には、減圧下で行ってもよい。置換 α -ヒドロキシ酸の縮合重合に際し、不活性ガス雰囲気下で行うことが好ましく、不活性ガスで反応装置を置換しながら、または不活性ガスでバブリングしながら行っても良い。また、重合反応過程で生成した水は、適宜

、八心衣但かつば云りる。

[0133]

重合によって得られるポリエステルの数平均分子量は、重合溶媒の種類、重合触媒の種類や量、重合温度、重合時間等の条件を変えることによって種々の分子量のものが得られるが、次工程の反応を考慮すると、ポリスチレン換算で、1000~100000であることが好ましい。

[0134]

(置換α-ヒドロキシ酸の環状2量体から化学式(II)で示される置換α-ヒドロキシ酸の ユニットからなるポリヒドロキシアルカノエートの製造方法)

置換 α -ヒドロキシ酸を 2 分子脱水して環状ジエステル化を行い、置換 α -ヒドロキシ酸の誘導体として環状 2 量体 = クチドを作製後、この環状 2 量体 = クチドを開環重合することにより、ポリエステルを製造することができる。開環重合は一般に重合速度が高く、高重合度のポリエステルを製造することができる。

[0135]

置換α-ヒドロキシ酸を2分子脱水して環状ジエステル化を行う方法としては、例えば Dean Starktrapを備えた反応装置を用い、置換α-ヒドロキシ酸とp-トルエンスルホン酸などの縮合触媒とを、トルエン中で窒素雰囲気下30時間共沸脱水を行い、Dean Starktrap内に溜まった水を適宜除去することによって環状2量体ラクチドを高収率で得ることができる。

[0136]

目的とするボリエステルは、環状2量体ラクチドに重合触媒を加え、不活性ガス雰囲気下、開環重合することによっても得られる。

[0137]

(ア)重合触媒

環状2量体ラクチドの開環重合に際し、重合触媒としては、例えば、スズ粉末や亜鉛粉末等の金属、酸化スズ、酸化亜鉛、酸化マグネシウム、酸化チタン、酸化アルミニウム等の金属酸化物、2塩化スズ、4塩化スズ、2臭化スズ、4臭化スズ、塩化亜鉛、塩化マグネシウム、塩化アルミニウム等の金属ハロゲン化物、テトラフェニルスズ、オクチル酸スズ等を用いることができる。これらの中でも、スズまたはスズ化合物の触媒活性が優れていることから、これらが特に好ましい。

[0138]

重合触媒の使用量は、環状2量体ラクチドに対し、0.001~10質量%、好ましくは、0.01~5 質量%である。

[0139]

(イ)重合条件

環状2量体ラクチドの開環重合に際し、重合温度は、ポリマーの生成速度と生成したポリマーの熱分解速度を考慮して、100~200℃、好ましくは、120~180℃である。

[0140]

環状2量体ラクチドの開環重合に際し、不活性ガス雰囲気下で行うことが好ましい。不活性ガスとして、例えば、窒素ガスやアルゴンガスを用いることができる。

$[0 \ 1 \ 4 \ 1]$

重合によって得られるポリエステルの数平均分子量は、重合触媒の種類や量、重合温度、重合時間等の条件を変えることによって種々の分子量のものが得られる。本発明で用いる化学式(11)で示される置換α-ヒドロキシ酸のユニットからなるポリヒドロキシアルカノエート次工程の反応を考慮するとポリスチレン換算で、1000~100000が好ましい。

[0142]

本発明にかかるポリヒドロキシアルカノエートは、先に示した化学式(1)あるいは(5)で示されるユニットを主体として構成されるが、機械特性、分解特性など物性を種々変化させるために、第2成分等を共重合させたコポリマーとしてもよい。例えば、化学式(6)で示されるユニットを更に分子中に含有させることができる。

【化37】

[0144]

 $(R_6$ は、炭素数 $1 \sim 11$ の直鎖または分岐状のアルキレン基、アルキレンオキシアルキレン基 (各アルキレン基はそれぞれ独立して炭素数が $1 \sim 2$ のアルキレン基である) または、アリールで置換されていてもよい炭素数 $1 \sim 5$ のアルキリデン基である。複数のユニットが存在する場合、 R_7 は、各ユニット毎に独立して上記の意味を表す。)

第2成分としての具体例としては、 α -ヒドロキシカルボン酸や ω -ヒドロキシカルボン酸で示されるユニットなどが挙げられる。更に、具体的には α -ヒドロキシカルボン酸としては、 α -ヒドロキシプロピオン酸 (乳酸)、 α -ヒドロキシ酪酸、 α -ヒドロキシイソ酪酸、 α -ヒドロキシ市草酸、 α -ヒドロキシイソ市草酸、 α -ヒドロキシー α -メチル酪酸、 α -ヒドロキシカプロン酸、 α -ヒドロキシイソカプロン酸、 α -ヒドロキシー β -メチル市草酸、 α -ヒドロキシへプタン酸、マンデル酸、 β -フェニル乳酸等が挙げられる。また、不斉炭素を有するものは、上体、D体、ラセミ体、メソ体のいずれでもよい。また、 ω -ヒドロキシカルボン酸としては、 β -ヒドロキシブロピオン酸、 β -ヒドロキシイソ市草酸、 β -ヒドロキシイタ市草酸、 β -ヒドロキシイタ市草酸、 β -ヒドロキシー β -メチル市草酸、 β -ヒドロキシー β -メチル市 β -ヒドロキシー β -ストル市 β -ストル β -ストル市 β -ストル市 β -ストル β -

[0145]

本発明により製造されるポリヒドロキシアルカノエートの数平均分子量は、反応時間、 反応温度、反応時間などの条件を変えることで種々の分子量のものが得られる。目的とす る機能により、最適なポリヒドロキシアルカノエートの数平均分子量は異なるが、例えば 、医療用軟質部材等としての利用を考えた場合、そのポリヒドロキシアルカノエートの数 平均分子量は、1000~100000が好ましい。

[0146]

本発明のポリヒドロキシアルカノエートの分子量は、相対分子量、絶対分子量として測定可能である。簡便にたとえばGPC(ゲルバーミエーションクロマトグラフィー)などにより測定できる。具体的なGPCの測定方法としては、予め上記ポリヒドロキシアルカノエートを可溶な溶媒に溶解し、同様の移動相で測定する。検出器としては、示差屈折検出器 (RI)または紫外検出器 (UV)など測定するポリヒドロキシアルカノエートに合わせて用いることができる。試料 (ポリスチレン、ポリメチルメタクリレートなど) との相対比較として分子量が求められる。溶媒としては、ジメチルホルムアミド (DMF)、ジメチルスルホキシド (DMSO),クロロホルム、テトラヒドロフラン (THF)、トルエン、ヘキサフルオロイソプロバノール (HFIP) などポリマーが可溶なものから選択すればよい。極性溶媒の場合には、塩添加により測定することもできる。

[0147]

また、本発明により製造されるボリヒドロキシアルカノエートの数平均分子量は、反応時間、反応温度、反応時間などの条件を変えることで種々の分子量のものが得られる。目的とする機能により、最適なボリヒドロキシアルカノエートの数平均分子量は異なるが、例えば、医療用軟質部材等としての利用を考えた場合、そのボリヒドロキシアルカノエートの数平均分子量は、 $1000\sim100000$ であり、重量平均分子量 (Mw)と数平均分子量 (Mn)との比率 (Mw/Mn)が、 $1\sim10$ の範囲内にあるボリヒドロキシアルカノエートであることが好ましい。

[0148]

なお、本発明の化学反応における、反応溶媒、反応温度、反応時間、精製方法等は、上

記い川広にKKC11のもいじはない。

【実施例】

[0149]

(実施例1)[フェニルラクチドを用いたポリエステル合成]

フェニルラクチド 29.63g(100.0mmol)、0.1mol/Lのオクチル酸スズ(2-エチルヘキサン酸スズ)のトルエン溶液 4.0ml、0.1mol/Lのp-tertーブチルベンジルアルコールのトルエン溶液 4.0mlを重合アンブルに装入し、1時間減圧乾燥、窒素置換を行った後、減圧下にて溶封し、180℃に加熱し、開環重合を行った。10時間後反応を終了し、冷却した。得られたボリマーをクロロホルムに溶解し、溶解に要したクロロホルムの10倍量のメタノール中に再沈殿した。沈殿を回収し、減圧乾燥することでボリマーを24.00g得た。得られた化合物の構造を特定するため、以下の条件でNMR分析を行った。

<測定機器> FT-NMR:Bruker DPX400

共鳴周波数: ${}^{1}H = 400MHz$ <測定条件> 測定核種: ${}^{1}H$ 使用溶媒: ${}^{1}H$

測定温度:室温

その結果、得られた化合物は、モノマーユニットとして、下記化学式(201)に示されるユニットを含むポリヒドロキシアルカノエートであることが確認された。

【0150】

[0151]

また、得られたボリヒドロキシアルカノエートの平均分子量は、ゲル・パーミエーション・クロマトグラフィー(GPC;東ソーHLC-8220、カラム;東ソー TSK-GEL Super HM-H、溶媒;クロロホルム、ボリスチレン換算)により評価した。その結果、数平均分子量 Mn=35000、重量平均分子量 Mw=49000であった。

[0152]

(実施例2)[L-ラクチドを用いたポリエステル合成]

L-ラクチド 14.41g(100.0 mmol)、0.1 mol/Lon 14.41g(200.0 mmol) 14.41g

[0153]

B (202)

[0154]

また、得られたポリヒドロキシアルカノエートの平均分子量は、実施例 1 と同様の条件で測定した結果、数平均分子量 Mn=42800、重量平均分子量 Mw=59100であった。

[0155]

(実施例3)[エチルグリコリド(3,6-ジエチル-1,4-ジオキサン-2,5-ジオン)を用いたポリエステル合成]

L-ラクチドのかわりにエチルグリコリド 17.22g(IOO.0mmol)を用いた以外は、実施例2と同様の方法でポリマーを12.05g得た。得られたポリマーは、実施例1と同様の条件でNMR分析を行った結果、下記化学式(203)に示されるユニットを含むポリヒドロキシアルカノエートであることが確認された。

[0156]

【化40】

[0157]

また、得られたボリヒドロキシアルカノエートの平均分子量は、実施例 1 と同様の条件で測定した結果、数平均分子量 Mn=37500、重量平均分子量 Mw=53300であった。

[0158]

(実施例4)[ジイソプロビルグリコリド(3, 6-ジイソプロピル-1, 4-ジオキサン-2, 5-ジオン)を用いたポリエステル合成]

L-ラクチドのかわりにジイソプロピルグリコリド 22.83g(100.0mmol)を用いた以外は、実施例 2 と同様の方法でポリマーを14.15g得た。得られたポリマーは、実施例 1 と同様の条件でNMR分析を行った結果、下記化学式(204)に示されるユニットを含むポリヒドロキシアルカノエートであることが確認された。

[0159]

【化41】

В

(204)

[0160]

また、得られたポリヒドロキシアルカノエートの平均分子量は、実施例1と同様の条件

て剛定した附木、数下均27.j 里 [VIIIー)/0000、里里下均27.j 里 [VI W ー 40,000 C のうた。

[0161]

(実施例5)[ヘキシルグリコリド(3,6-ジヘキシル-1,4-ジオキサン-2,5-ジオン)を用いたポリエステル合成]

L-ラクチドのかわりにヘキシルグリコリド 25.63g(100.0 mmol)を用いた以外は、実施例 2 と同様の方法でポリマーを16.66g得た。得られたポリマーは、実施例 1 と同様の条件でNMR分析を行った結果、下記化学式(205)に示されるユニットを含むポリヒドロキシアルカノエートであることが確認された。

【0162】 【化42】

[0163]

また、得られたポリヒドロキシアルカノエートの平均分子量は、実施例 1 と同様の条件で測定した結果、数平均分子量 Mn=28900、重量平均分子量 Mw=42200であった。

[0164]

(実施例6)

実施例1で得られた化学式 (201)で示されるユニットからなるボリヒドロキシアルカノエート 10.00gをナスフラスコ中に加え、THF500mlを加えて溶解した。これを窒素雰囲気下に置き、-78Cにて攪拌した。次に2mol/LのリチウムジイソブロビルアミドのTHF溶液 33.75ml (67.5mmol)をゆっくり加えて、-78C下で30分間攪拌した。次に、クロコギ酸ベンジルを11.58g (130.5mmol)加えた後、室温で30分間攪拌した。反応終了後、反応液を塩化アンモニウム水溶液1000ml中に注いだ後、ジクロロメタン500mlを加えて有機層を抽出した。水250mlで、3回洗浄した後、有機層を回収した。溶媒留去することで粗製のボリマーを回収した。次にTHF60mlに溶解し、次に、THFに溶解し、溶解に要したTHFの50倍量のメタノール中に再沈殿した。沈殿を回収し、減圧乾燥することでボリマーを8.03g得た。得られたボリマーの構造を特定するため、実施例1と同様の条件で1000mlを行った結果、モノマーユニットとして、下記化学式 1000mlを介った結果、モノマーユニットとして、下記化学式 1000mlを介ったまれるユニットを含むボリヒドロキシアルカノエートであることが確認された。また、そのモノマーユニットの割合は、Aユニット11mol%、Bユニット10mol%であることが確認された。

[0165]

[0166]

また、得られたポリヒドロキシアルカノエートの平均分子量は、ゲル・パーミエーション・クロマトグラフィー (GPC;東ソーHLC-8220、カラム;東ソー TSK-GEL Super HM-H、溶媒;クロロホルム、ポリスチレン換算)により評価した。その結果、数平均分子量 Mn=28500、重量平均分子量 Mw=41000であった。

[0167]

ここで得られた化学式 (206) で示されるポリヒドロキシアルカノエート共重合体 5.008 をジオキサン-エタノール (75:25) の混合溶媒 500m lに溶解し、これに 5% パラジウム/ 炭素触媒 1.108 を加えて、反応系内を水素で満たし、室温で 1 日攪拌した。反応終了後、触媒を取り除くために、 0.25μ mのメンブランフィルターにてろ過を行い、反応溶液を回収した。溶液を濃縮した後、クロロホルムに溶解させた後、その10 倍量のメタノール中にて再沈殿を行った。得られたポリマーを回収し、減圧乾燥することでポリマーを3.668 得られたポリマーの構造を特定するため、実施例 1 と同様の条件で1 MR分析を行った結果、モノマーユニットとして、下記化学式 (207) に示されるユニットを含むポリヒドロキシアルカノエート共重合体であることが確認された。また、そのモノマーユニットの割合は、10 コニット11 mol 10 、10 カニュット10 であることが確認された。

【0168】

[0169]

また、得られたポリヒドロキシアルカノエートの平均分子量は、ゲル・バーミエーション・クロマトグラフィー(GPC;東ソーHLC-8220、カラム;東ソー TSK-GEL Super HM-H、溶媒;クロロホルム、ポリスチレン換算)により評価した。その結果、数平均分子量 Mn=22500、重量平均分子量 Mw=33800であった。

[0170]

よた、ここで同つれたホッピトロマン・ルのノーニドマVIII 8で1VVIII 1台ァへノノへコーに加え、クロロホルム2.1ml、メタノール0.7mlを加えて溶解した。これに2mol/Lのトリメチルシリルジアゾメタン-ヘキサン溶液0.5mlを加えて、室温で1時間攪拌した。反応終了後、溶媒留去した後、ポリマーを回収した。これをメタノール50mlで洗浄後、ポリマーを回収した。減圧乾燥することでポリヒドロキシアルカノエートを29mg得た。

[0171]

ここで得られたポリヒドロキシアルカノエートを実施例1と同様の方法を用いてNMR分析を行った。その結果、Cのユニットのカルボキシル基がカルボン酸メチルエステルになっていることが確認され、得られたポリマーは再度、エステル化することが可能であることが確認された。

[0172]

(実施例7)

クロロギ酸ペンジルのかわりにプロモ酢酸ペンジル15.53g(130.5mmol)を用いる以外は、実施例6と同様の方法でポリマーを8.70g得た。得られたポリマーは、実施例1と同様の条件でNMR分析を行った結果、下記化学式(208)に示されるユニットを含むポリヒドロキシアルカノエートであり、そのモノマーユニットの割合は、Aユニット10mol%、Bユニット90mol%であることが確認された。

[0173]

【化45】

[0174]

また、得られたポリヒドロキシアルカノエートの平均分子量は、実施例 1 と同様の条件で測定した結果、数平均分子量 Mn=27100、重量平均分子量 Mw=47100であった。

[0175]

また、上記ポリマーを実施例 6 と同様の方法により水素化分解を行い、ポリマーを 3.83 g 得た。 得られたポリマーは、実施例 1 と同様の条件で N M R 分析を行った結果、モノマーユニットとして、下記化学式 (209) に示されるユニットを含むポリヒドロキシアルカノエート共重合体であることが確認された。また、そのモノマーユニットの割合は、C ユニット 10 m 01 %、D ユニット 90 m 01 % であることが確認された。

[0176]

IL4 UI

[0177]

また、得られたポリヒドロキシアルカノエートの平均分子量は、実施例 1 と同様の条件で測定した結果、数平均分子量 Mn=23100、重量平均分子量 Mw=24900であった。

[0178]

(実施例8)

クロロギ酸ベンジルのかわりに 5 - プロモ吉草酸エチル 14.41g (130.5mm ol)を用いる以外は、実施例 6 と同様の方法でポリマーを 8.02g 得た。 得られたポリマーは、実施例 1 と同様の条件で NMR 分析を行った結果、下記化学式 (210)に示されるユニットを含むポリヒドロキシアルカノエートであり、そのモノマーユニットの割合は、Aユニット 8 m ol %、Bユニット 92m ol %であることが確認された。

[0179]

【化47】

[0180]

また、得られたポリヒドロキシアルカノエートの平均分子量は、実施例 1 と同様の条件で測定した結果、数平均分子量 Mn=28500、重量平均分子量 Mw=39600であった。

[0181]

また、上記ボリマーを実施例 6 と同様の方法により水素化分解を行い、ボリマーを 3.94 8 得た。得られたボリマーは、実施例 1 と同様の条件で N M R 分析を行った結果、モノマーユニットとして、下記化学式 (211) に示されるユニットを含むボリヒドロキシアルカノエート共重合体であることが確認された。また、そのモノマーユニットの割合は、C ユニット 8 m o 1%、D 2 m o 1% であることが確認された。

[0182]

[0183]

また、得られたポリヒドロキシアルカノエートの平均分子量は、実施例 1 と同様の条件で測定した結果、数平均分子量 $M_n = 24900$ 、重量平均分子量 $M_w = 35400$ であった。

[0184]

(実施例9)

実施例 2 で得られた化学式 (202)で示されるユニットからなるポリヒドロキシアルカノエート 10.00 gをナスフラスコ中に加え、THF500 m lを加えて溶解した。これを窒素雰囲気下に置き、-78 $\mathbb C$ にて攪拌した。次に 2 m o l/LのリチウムジイソプロビルアミドのT HF溶液 69.38 m l (138.8 m m o l) をゆっくり加えて、-78 $\mathbb C$ 下で 30 分間攪拌した。次に、クロロギ酸ベンジルを 23.81 g (277.5 m m o l) 加えた後は、実施例 6 と同様の方法により、ポリマーを 9.55 g 得た。 得られたポリマーは、実施例 1 と同様の条件で 1 N M R 分析を行った結果、下記化学式 1 (212) に示されるユニットを含むポリヒドロキシアルカノエートであり、そのモノマーユニットの割合は、1 A ユニット 1 2 m o 1 %、1 B ユニット 1 8 m o 1 % であることが確認された。

[0185]

【化49】

[0186]

また、得られたポリヒドロキシアルカノエートの平均分子量は、実施例 1 と同様の条件で測定した結果、数平均分子量 Mn=32100、重量平均分子量 Mw=46500であった。

[0187]

また、上記ポリマーを実施例6と同様の方法により水素化分解を行い、ポリマーを3.47 g得た。得られたポリマーは、実施例1と同様の条件でNMR分析を行った結果、モノマーユニットとして、下記化学式(213)に示されるユニットを含むポリヒドロキシアルカノエート共重合体であることが確認された。また、そのモノマーユニットの割合は、Cユニット12mol%、Dユニット88mol%であることが確認された。

[0189]

また、得られたポリヒドロキシアルカノエートの平均分子量は、実施例 1 と同様の条件で測定した結果、数平均分子量 Mn=30100、重量平均分子量 Mw=45200であった。

[0190]

(実施例10)

クロロギ酸ベンジルのかわりにブロモ酢酸ベンジル31.93g(277.5mmol)を用いる以外は、実施例9と同様の方法でポリマーを9.17g得た。得られたポリマーは、実施例1と同様の条件でNMR分析を行った結果、下記化学式(214)に示されるユニットを含むポリヒドロキシアルカノエートであり、そのモノマーユニットの割合は、Aユニット10mol%、Bユニット90mol%であることが確認された。

[0191]

【化51】

[0192]

また、得られたポリヒドロキシアルカノエートの平均分子量は、実施例 1 と同様の条件で測定した結果、数平均分子量 Mn=30500、重量平均分子量 Mw=46100であった。

[0193]

[0194]

[0195]

また、得られたポリヒドロキシアルカノエートの平均分子量は、実施例 1 と同様の条件で測定した結果、数平均分子量 Mn=28500、重量平均分子量 Mw=43900であった。

[0196]

(実施例11)

クロロギ酸ベンジルのかわりに 3 -プロモプロビオン酸メチル 23.31g (277.5 m m o l) を用いる以外は、実施例 9 と同様の方法でポリマーを 8.38 g 得た。得られたポリマーは、実施例 1 と同様の条件で N M R 分析を行った結果、下記化学式 (216) に示されるユニットを含むポリヒドロキシアルカノエートであり、そのモノマーユニットの割合は、A ユニット ll m o l %、B ユニット 8 9 m o l % であることが確認された。

[0197]

【化53】

[0198]

また、得られたポリヒドロキシアルカノエートの平均分子量は、実施例 1 と同様の条件で測定した結果、数平均分子量 Mn=34100、重量平均分子量 Mw=48800であった。

[0199]

[0200]

$$\begin{array}{c|c}
 & COOH \\
 & (CH_2)_{2O} \\
\hline
 & (OH_3)_{2O} \\
\hline
 & COH_3 \\
\hline$$

ょた、守つれたホッピトロオンテルカノエートツエ4カカリ里は、大旭門エビ凹が20本田で測定した結果、数平均分子量 Mn=36200、重量平均分子量 Mw=45600であった。

[0202]

(実施例12)

クロロギ酸ベンジルのかわりに 4 - ブロモ酪酸エチル 27.07 g (277.5 m m o l) を用いる以外は、実施例 9 と同様の方法でポリマーを 8.69 g 得た。得られたポリマーは、実施例 1 と同様の条件で N M R 分析を行った結果、下記化学式 (218) に示されるユニットを含むポリヒドロキシアルカノエートであり、そのモノマーユニットの割合は、Aユニット 10 m o l %、Bユニット 90 m o l % であることが確認された。

[0203]

【化55】

$$\begin{array}{c} CH_{3} \\ CH_{2} \\ O \end{array}$$

$$\begin{array}{c} CH_{2} \\ O \end{array}$$

$$\begin{array}{c} CH_{2} \\ O \end{array}$$

$$\begin{array}{c} CH_{3} \\ CH_{3} \end{array}$$

[0204]

また、得られたポリヒドロキシアルカノエートの平均分子量は、実施例 1 と同様の条件で測定した結果、数平均分子量 Mn=31000、重量平均分子量 Mw=43500であった。

[0205]

また、上記ポリマーを実施例6と同様の方法により水素化分解を行い、ポリマーを4.01g得た。得られたポリマーは、実施例1と同様の条件でNMR分析を行った結果、モノマーユニットとして、下記化学式(219)に示されるユニットを含むポリヒドロキシアルカノエート共重合体であることが確認された。また、そのモノマーユニットの割合は、Cユニット10mol%、Dユニット90mol%であることが確認された。

[0206]

【化56】

[0207]

また、得られたポリヒドロキシアルカノエートの平均分子量は、実施例 1 と同様の条件で測定した結果、数平均分子量 Mn=27500、重量平均分子量 Mw=39900であった。

[0208]

フィーを凹払しに。 WLLXM 4 るしにじかりにドロオントルカノユートで401118時に。

[0209]

ここで得られたポリヒドロキシアルカノエートを実施例1と同様の方法を用いてNMR 分析を行った。その結果、Cのユニットのカルボキシル基がカルボン酸メチルエステルに なっていることが確認された。

[0210]

(実施例13)

クロロギ酸ペンジルのかわりに8-ブロモオクタン酸エチル34.85g(277.5mmol)を用いる以外は、実施例9と同様の方法でポリマーを8.63g得た。得られたポリマーは、実施例1と同様の条件でNMR分析を行った結果、下記化学式(220)に示されるユニットを含むポリヒドロキシアルカノエートであり、そのモノマーユニットの割合は、Aユニット7mol%、Bユニット93mol%であることが確認された。

[0211]

【化57】

[0212]

また、得られたポリヒドロキシアルカノエートの平均分子量は、実施例 1 と同様の条件で測定した結果、数平均分子量 Mn=35500、重量平均分子量 Mw=52500であった。

[0213]

また、上記ボリマーを実施例 6 と同様の方法により水素化分解を行い、ボリマーを 4.10 g得た。得られたボリマーは、実施例 1 と同様の条件で NMR分析を行った結果、モノマーユニットとして、下記化学式 (221)に示されるユニットを含むボリヒドロキシアルカノエート共重合体であることが確認された。また、そのモノマーユニットの割合は、C ユニット 10m 0.1%、D ユニット 90m 0.1% であることが確認された。

[0214]

【化58】

[0215]

また、得られたポリヒドロキシアルカノエートの平均分子量は、実施例 1 と同様の条件で測定した結果、数平均分子量 Mn=31000、重量平均分子量 Mw=48100であった。

[0216]

(実施例14)

実施例3で得られた化学式(203)で示されるユニットからなるポリヒドロキシアルカノ

[0217]

【化59】

[0218]

また、得られたポリヒドロキシアルカノエートの平均分子量は、実施例 1 と同様の条件で測定した結果、数平均分子量 Mn=26500、重量平均分子量 Mw=37100であった。

[0219]

[0220]

【化60】

[0221]

また、得られたポリヒドロキシアルカノエートの平均分子量は、実施例 1 と同様の条件で測定した結果、数平均分子量 Mn=22000、重量平均分子量 Mw=33400であった。

[0222]

(実施例15)

クロロ酢酸エチルのかわりに8-ブロモオクタン酸エチル29.17g(232.3mmol)を用いる

以介は、天旭門はこ四様の月伍でホッマーでの 418 時に。 再つれにホッマーは、天旭門はと同様の条件でNMR分析を行った結果、下記化学式 (224)に示されるユニットを含むポリヒドロキシアルカノエートであり、そのモノマーユニットの割合は、Aユニット8 mol %、Bユニット92 mol %であることが確認された。

[0223]

【化61】

[0224]

また、得られたポリヒドロキシアルカノエートの平均分子量は、実施例 1 と同様の条件で測定した結果、数平均分子量 Mn=28500、重量平均分子量 Mw=43300であった。

[0225]

また、上記ポリマーを実施例 6 と同様の方法により水素化分解を行い、ポリマーを 3.91 g 得た。得られたポリマーは、実施例 1 と同様の条件で NMR 分析を行った結果、モノマーユニットとして、下記化学式 (225) に示されるユニットを含むポリヒドロキシアルカノエート共重合体であることが確認された。また、そのモノマーユニットの割合は、 C ユニット $8 \, \mathrm{mol} \, \mathrm{N}$ 、 D ユニット $92 \, \mathrm{mol} \, \mathrm{N}$ であることが確認された。

[0226]

【化62】

[0227]

また、得られたポリヒドロキシアルカノエートの平均分子量は、実施例 1 と同様の条件で測定した結果、数平均分子量 Mn=23500、重量平均分子量 Mw=36400であった。

[0228]

(実施例16)

実施例 4 で得られた化学式 (204) で示されるユニットからなるポリヒドロキシアルカノエート 10.00gをナスフラスコ中に加え、THF500mlを加えて溶解した。これを窒素雰囲気下に置き、-78Cにて攪拌した。次に 2 mol/LのリチウムジイソプロピルアミドのTHF溶液43.81ml(87.6mmol)をゆっくり加えて、-78C下で30分間攪拌した。次に、クロロギ酸ベンジルを15.03g (175.2mmol)加えた後は、実施例 6 と同様の方法により、ポリマーを8.11g得た。得られたポリマーは、実施例 1 と同様の条件で1 NMR分析を行った

m末、「礼ルチ环(は40)に小されるユーットでロジルッとドロオンノルタノエードであり、そのモノマーユニットの割合は、Aユニット12mol%、Bユニット88mol%であることが確認された。

[0229]

【化63】

[0230]

また、得られたポリヒドロキシアルカノエートの平均分子量は、実施例 1 と同様の条件で測定した結果、数平均分子量 Mn=28700、重量平均分子量 Mw=45300であった。

[0231]

また、上記ポリマーを実施例 6 と同様の方法により水素化分解を行い、ポリマーを 3.71 g得た。得られたポリマーは、実施例 1 と同様の条件で NMR 分析を行った結果、モノマーユニットとして、下記化学式 (227) に示されるユニットを含むポリヒドロキシアルカノエート共重合体であることが確認された。また、そのモノマーユニットの割合は、C ユニット 12m 0.1%、D ユニット 88m 0.1% であることが確認された。

[0232]

【化64】

[0233]

また、得られたポリヒドロキシアルカノエートの平均分子量は、実施例 1 と同様の条件で測定した結果、数平均分子量 Mn=24300、重量平均分子量 Mw=37500であった。

[0234]

(実施例17)

クロロギ酸エチルのかわりに5-ブロモ吉草酸エチル18.32g(175.2mmol)を用いる以外は、実施例16と同様の方法でポリマーを7.64g得た。得られたポリマーは、実施例1と同様の条件でNMR分析を行った結果、下記化学式(228)に示されるユニットを含むポリヒドロキシアルカノエートであり、そのモノマーユニットの割合は、Aユニット8mol%、

Dユーフト 3/1111リ1/0 じのることが11性砂で1にに。

[0235]

【化65】

[0236]

また、得られたポリヒドロキシアルカノエートの平均分子量は、実施例 1 と同様の条件で測定した結果、数平均分子量 Mn=26500、重量平均分子量 Mw=41100であった。

[0237]

また、上記ポリマーを実施例 6 と同様の方法により水素化分解を行い、ポリマーを 4.05 g得た。得られたポリマーは、実施例 1 と同様の条件で NMR 分析を行った結果、モノマーユニットとして、下記化学式 (229) に示されるユニットを含むポリヒドロキシアルカノエート共重合体であることが確認された。また、そのモノマーユニットの割合は、C ユニット 11m 01%、D ユニット 89m 01%であることが確認された。

【0238】 【化66】

[0239]

また、得られたポリヒドロキシアルカノエートの平均分子量は、実施例 1 と同様の条件で測定した結果、数平均分子量 Mn=22200、重量平均分子量 Mw=33700であった。

[0240]

(実施例18)

実施例 5 で得られた化学式 (205) で示されるユニットからなるポリヒドロキシアルカノエート 10.00gをナスフラスコ中に加え、THF500mlを加えて溶解した。これを窒素雰囲気下に置き、-78Cにて攪拌した。次に 2 mol/LのリチウムジイソプロピルアミドのTHF溶液39.0lml(78.0mmol)をゆっくり加えて、-78C下で30分間攪拌した。次に、プロモ酢酸ベンジルを17.95g (156.0mmol)加えた後は、実施例 6 と同様の方法により、ポリマーを8.40g得た。得られたポリマーは、実施例 1 と同様の条件でNMR分析を行った

MI 示、「乱ルチ环 いがたかられるユーソトでロジ かっこ トロコン ノル ツァユート じのっ、そのモノマーユニットの割合は、Aユニット 9 mol%、Bユニット 9 lmol%であることが確認された。

[0241]

【化67】

[0242]

また、得られたポリヒドロキシアルカノエートの平均分子量は、実施例 1 と同様の条件で測定した結果、数平均分子量 Mn=23000、重量平均分子量 Mw=34500であった。

[0243]

[0244]

【化68】

[0245]

また、得られたボリヒドロキシアルカノエートの平均分子量は、実施例 1 と同様の条件で測定した結果、数平均分子量 Mn=19800、重量平均分子量 Mw=30900であった。

[0246]

(実施例19)

クロロ酢酸ペンジルのかわりに 6-ブロモヘキサン酸エチル 17.56g (156.0m mol)を用いる以外は、実施例 18と同様の方法でポリマーを 7.52g 得た。 得られたポリマーは、実施例 1 と同様の条件で NMR 分析を行った結果、下記化学式 (232)に示されるユニットを含むポリヒドロキシアルカノエートであり、そのモノマーユニットの割合は、Aユニット 8 mol%、Bユニット 92mol%であることが確認された。

【化69】

[0248]

また、得られたポリヒドロキシアルカノエートの平均分子量は、実施例 1 と同様の条件で測定した結果、数平均分子量 Mn=22500、重量平均分子量 Mw=32200であった。

[0249]

また、上記ポリマーを実施例6と同様の方法により水素化分解を行い、ポリマーを4.05 g得た。得られたポリマーは、実施例1と同様の条件でNMR分析を行った結果、モノマーユニットとして、下記化学式(233)に示されるユニットを含むポリヒドロキシアルカノエート共重合体であることが確認された。また、そのモノマーユニットの割合は、Cユニット11mol%、Dユニット89mol%であることが確認された。

[0250]

$$\begin{array}{c|c}
COOH \\
(CH_2)_{5O} \\
CH_2)_5 \\
CH_3 \\
C
\end{array}$$

$$\begin{array}{c|c}
CH_2)_5 \\
CH_3 \\
C
\end{array}$$

$$\begin{array}{c|c}
CH_2 \\
CH_3
\end{array}$$

$$\begin{array}{c|c}
CH_3 \\
CH_3
\end{array}$$

$$\begin{array}{c|c}
CH_3 \\
CH_3
\end{array}$$

$$\begin{array}{c|c}
CH_3
\end{array}$$

$$\begin{array}{c|c}
CH_3
\end{array}$$

[0251]

また、得られたポリヒドロキシアルカノエートの平均分子量は、実施例 1 と同様の条件で測定した結果、数平均分子量 Mn=20100、重量平均分子量 Mw=30200であった。

[0252]

(実施例20)

A v A I A N $_{0}$ $_{0}$ $_{1}$ $_{1}$ $_{1}$ $_{1}$ $_{1}$ $_{1}$ $_{1}$ $_{1}$ $_{1}$ $_{2}$ $_{3}$ $_{4}$ $_{5}$ $_{5}$ $_{6}$ $_{6}$ $_{1}$ $_{1}$ $_{1}$ $_{2}$ $_{3}$ $_{4}$ $_{5}$ $_{5}$ $_{6}$ $_{6}$ $_{1}$ $_{1}$ $_{1}$ $_{2}$ $_{3}$ $_{4}$ $_{5}$ $_{5}$ $_{6}$ $_{6}$ $_{1}$ $_{1}$ $_{1}$ $_{2}$ $_{3}$ $_{4}$ $_{5}$ $_{1}$ $_{5}$ $_{5}$ $_{6}$ $_{6}$ $_{1}$ $_{1}$ $_{2}$ $_{3}$ $_{4}$ $_{5}$ $_{5}$ $_{5}$ $_{6}$ $_{6}$ $_{1}$ $_{1}$ $_{2}$ $_{3}$ $_{4}$ $_{5}$ $_{5}$ $_{5}$ $_{6}$ $_{6}$ $_{1}$ $_{1}$ $_{2}$ $_{3}$ $_{4}$ $_{5}$ $_{5}$ $_{5}$ $_{6}$ $_{6}$ $_{1}$ $_{5}$ $_{5}$ $_{6}$ $_{6}$ $_{1}$ $_{5}$ $_{5}$ $_{6}$ $_{6}$ $_{7}$ $_{1}$ $_{1}$ $_{1}$ $_{2}$ $_{2}$ $_{3}$ $_{2}$ $_{2}$ $_{3}$ $_{2}$ $_{3}$ $_{2}$ $_{3}$ $_{2}$ $_{3}$ $_{2}$ $_{3}$ $_{3}$ $_{2}$ $_{3}$ $_{3}$ $_{3}$ $_{2}$ $_{3}$

[0253]

「H-NMRの結果より、2-アミノベンゼンスルホン酸構造の芳香環に由来するピークがシフトしていることから、得られたポリマーは、モノマーユニットとして、下記化学式(234)に示されるユニットを含むポリヒドロキシアルカノエートであることが確認された

【0254】 【化71】

[0255]

また、化学式 (234) で示されるボリヒドロキシアルカノエートのユニットは、Eのユニットが、 $11m_01\%$ を含む共重合体であることが確認された。得られたボリマーの平均分子量は、ゲル・バーミエーション・クロマトグラフィー (GPC;東ソーHLC-8120、カラム;ボリマーラボラトリーズ PLgel 5μ MIXED-C、溶媒; DMF/LiBr 0.1% (w/v)、ボリスチレン換算)により評価した。その結果、数平均分子量 $M_n=20500$ 、重量平均分子量 $M_w=30800$ であった。

[0256]

(実施例21)

実施例 20における 2-r ミノベンゼンスルホン酸のかわりに 4-メトキシアニリン-2-スルホン酸 0.29g(1.4mmol) を用いる以外は、実施例 20と同様の方法でポリマーを 0.34g 得た。得られたポリマーは、実施例 20と同様の条件で NMR 分析及びフーリエ変換 -赤外吸収スペクトル分析を行った結果、下記化学式 (235) に示されるユニットを含むポリヒドロキシアルカノエートであり、E ユニット 11mol% を含む共重合体であることが確認された。

[0257]

[0258]

また、得られたポリマーの平均分子量は、実施例20と同様の条件で測定した結果、数平均分子量 $M_n=19800$ 、重量平均分子量 $M_w=30100$ であった。

[0259]

(実施例22)

実施例20における 2-r ミノベンゼンスルホン酸のかわりに 2-r ミノー1-t フタレンスルホン酸 0.32g (1.4mmol)を用いる以外は、実施例20と同様の方法でポリマーを 0.37g 得た。得られたポリマーは、実施例20と同様の条件でNMR分析及びフーリエ変換-赤外吸収スペクトル分析を行った結果、下記化学式 (236)に示されるユニットを含むポリヒドロキシアルカノエートであり、E ユニット 8mol%を含む共重合体であることが確認された。

【0260】 【化73】

[0261]

また、得られたポリマーの平均分子量は、実施例20と同様の条件で測定した結果、数平均分子量 $M_n=17000$ 、重量平均分子量 $M_w=26900$ であった。

(236)

[0262]

(実施例23)

全系分四 XII、 大旭四 I で 日 つれた によ X (203) で かっと 1000 に 100 に

【0263】 【化74】

$$\begin{array}{c|c}
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & &$$

[0264]

また、得られたボリマーの平均分子量は、実施例20と同様の条件で測定した結果、数平均分子量 $M_n=19900$ 、重量平均分子量 $M_w=29900$ であった。

(237)

[0265]

(実施例24)

実施例23における4-rミノベンゼンスルホン酸のかわりに2-rミノ-2-メチルプロバンスルホン酸 0.20g(1.3mmol)を用いる以外は、実施例23と同様の方法でポリマーを0.33g得た。得られたポリマーは、実施例20と同様の条件でNMR分析及びフーリエ変換-赤外吸収スペクトル分析を行った結果、下記化学式(238)に示されるユニットを含むポリヒドロキシアルカノエートであり、Eユニット8mol%を含む共重合体であることが確認された。

[0266]

ILI JI

[0267]

また、得られたポリマーの平均分子量は、実施例20と同様の条件で測定した結果、数平均分子量 $M_{\rm N}=18900$ 、重量平均分子量 $M_{\rm W}=28900$ であった。

[0268]

(実施例25)

実施例 23における 4-r ミノベンゼンスルホン酸のかわりに 1-t フチルアミン-8-xルホン酸 0.29g(1.3mmol) を用いる以外は、実施例 23 と同様の方法でポリマーを 0.35g 得た。得られたポリマーは、実施例 20 と同様の条件で NMR 分析及びフーリエ変換-赤外吸収スペクトル分析を行った結果、下記化学式 (239) に示されるユニットを含むポリヒドロキシアルカノエートであり、E ユニット 10mol%を含む共重合体であることが確認された

【0269】 【化76】

[0270]

また、得られたポリマーの平均分子量は、実施例20と同様の条件で測定した結果、数平均分子量 $M_n=20500$ 、重量平均分子量 $M_w=30200$ であった。

[0271]

(実施例26)

実施例23における4-アミノベンゼンスルホン酸のかわりに2-アミノベンゼンスルホン

[0272]

【化77】

[0273]

また、得られたポリマーの平均分子量は、実施例20と同様の条件で測定した結果、数平均分子量 $M_n = 20900$ 、重量平均分子量 $M_w = 33000$ であった。

[0274]

(実施例27)

窒素雰囲気下、実施例 8 で得られた化学式 (211) で示されるユニットからなるボリヒドロキシアルカノエート共重合体 $(C:8\,m_0|\%,\,D:92m_0|\%)$ を 0.40g、2-アミノベンゼンスルホン酸 0.18g $(1.0\,mm_0|)$ を 100m $1 \equiv 0$ フラスコに入れて、ピリジン $15.0\,m$ 1 加えて攪拌した後、亜リン酸トリフェニル $0.53\,m$ 1 $(1.0\,mm_0|)$ を加えた後は、実施例 20 と同様の方法により、ボリマーを $0.33\,g$ 得た。 得られたボリマーは、実施例 20 と同様の条件で 100 NMR 分析及びフーリエ変換 100 -赤外吸収スペクトル分析を行った結果、下記化学式 100 公司 であるユニットを含むボリヒドロキシアルカノエートであり、100 と 100 であることが確認された。

[0275]

[0276]

また、得られたポリマーの平均分子量は、実施例 20 と同様の条件で測定した結果、数平均分子量 $M_n=20200$ 、重量平均分子量 $M_w=31900$ であった。

[0277]

(実施例28)

実施例27における2-アミノベンゼンスルホン酸のかわりにタウリン 0.13g(1.0mmol)を用いる以外は、実施例27と同様の方法でポリマーを0.31g得た。得られたポリマーは、実施例20と同様の条件でNMR分析及びフーリエ変換-赤外吸収スペクトル分析を行った結果、下記化学式(242)に示されるユニットを含むポリヒドロキシアルカノエートであり、Eユニットを6mol%含む共重合体であることが確認された。

【0278】

[0279]

また、得られたボリマーの平均分子量は、実施例20と同様の条件で測定した結果、数平均分子量 $M_n=19800$ 、重量平均分子量 $M_w=31700$ であった。

[0280]

(実施例29)

【0281】

[0282]

また、得られたボリマーの平均分子量は、実施例 20と同様の条件で測定した結果、数平均分子量 $M_n=17800$ 、重量平均分子量 $M_w=28800$ であった。

[0283]

(実施例30)

窒素雰囲気下、実施例 9 で得られた化学式 (213) で示されるユニットからなるボリヒドロキシアルカノエート共重合体 $(C:12m_01\%、D:88m_01\%)$ を 0.40g、2-アミノベンゼンスルホン酸 0.54g $(3.1mm_01)$ を 100m $1 \equiv$ ロフラスコに入れて、ピリジン 15.0m 1 加えて攪拌した後、亜リン酸トリフェニル 1.62m $1(6.2mm_01)$ を加えた後は、実施例 20 と同様の方法により、ボリマーを 0.38g 得た。 得られたボリマーは、実施例 20 と同様の条件で NMR 分析及びフーリエ変換 -赤外吸収スペクトル分析を行った結果、下記化学式 (244) に示されるユニットを含むボリヒドロキシアルカノエートであり、E ユニット $11m_01\%$ を含む共重合体であることが確認された。

[0284]

116011

$$SO_3H$$
 $O O O$
 CH_3
 CH_3
 CH_3
 CH_3
 CH_3
 CH_3
 CH_3

[0285]

また、得られたポリマーの平均分子量は、実施例20と同様の条件で測定した結果、数平均分子量 $M_n=26500$ 、重量平均分子量 $M_w=42400$ であった。

[0286]

(実施例31)

実施例30における2-rミノベンゼンスルホン酸のかわりに4-メトキシアニリン-2-スルホン酸 0.63g(3.1mmol)を用いる以外は、実施例30と同様の方法でポリマーを0.31g 得た。得られたポリマーは、実施例20と同様の条件でNMR分析及びフーリエ変換-赤外吸収スペクトル分析を行った結果、下記化学式(245)に示されるユニットを含むポリヒドロキシアルカノエートであり、E ユニットを11mol%含む共重合体であることが確認された。

【0287】 【化82】

$$CH_3$$
 SO_3H
 $O O O$
 CH_3
 CH_3

[0288]

また、得られたポリマーの平均分子量は、実施例20と同様の条件で測定した結果、数平均分子量 $M_n = 26100$ 、重量平均分子量 $M_w = 41200$ であった。

[0289]

(実施例32)

実施例30における2-rミノベンゼンスルホン酸のかわりに2-rミノ-1-tフタレンスルホン酸 0.69g(3.1mmol)を用いる以外は、実施例30と同様の方法でポリマーを0.37g 得た。得られたポリマーは、実施例20と同様の条件でNMR分析及びフーリエ変換-赤外吸収スベクトル分析を行った結果、下記化学式(246)に示されるユニットを含むポリヒドロキシアルカノエートであり、Eユニットを8mol%含む共重合体であることが確認された。

[0290]

IILO O I

[0291]

また、得られたポリマーの平均分子量は、実施例20と同様の条件で測定した結果、数平均分子量 $M_n=27200$ 、重量平均分子量 $M_w=43000$ であった。

[0292]

(実施例33)

窒素雰囲気下、実施例10で得られた化学式(215)で示されるユニットからなるボリヒドロキシアルカノエート共重合体(C:10m01%、D:90m01%)を0.40g、2-rミノベンゼンスルホン酸0.44g(3.1mm01)を100m1三ロフラスコに入れて、ピリジン15.0m1加えて攪拌した後、亜リン酸トリフェニル1.34m1(5.1mm01)を加えた後は、実施例20と同様の方法により、ポリマーを0.38g得た。得られたポリマーは、実施例20と同様の条件でNMR分析及びフーリエ変換-赤外吸収スペクトル分析を行った結果、下記化学式(247)に示されるユニットを含むポリヒドロキシアルカノエートであり、Eユニット10m01%を含む共重合体であることが確認された。

[0293]

【化84】

$$SO_3H$$
 $N-H$
 $=O$
 CH_2O
 $+O$
 CH_3
 CH_3
 CH_3
 CH_3
 CH_3
 CH_3

[0294]

また、得られたポリマーの平均分子量は、実施例 20と同様の条件で測定した結果、数平均分子量 $M_n=24300$ 、重量平均分子量 $M_w=39600$ であった。

[0295]

(実施例34)

実施例33における2-アミノベンゼンスルホン酸のかわりに3-アミノベンゼンスルホン酸 0.44g(2.6mmol)を用いる以外は、実施例33と同様の方法でポリマーを0.36g得た。得られたポリマーは、実施例20と同様の条件でNMR分析及びフーリエ変換-赤外吸収スベクトル分析を行った結果、下記化学式(248)に示されるユニットを含むポリヒドロキシアルカノエートであり、Eユニットを9mol%含む共重合体であることが確認された。

[0297]

また、得られたポリマーの平均分子量は、実施例20と同様の条件で測定した結果、数平均分子量 $M_n=23000$ 、重量平均分子量 $M_w=37300$ であった。

[0298]

(実施例35)

実施例33における2-アミノベンゼンスルホン酸のかわりに4-アミノベンゼンスルホン酸 0.44g(2.6mmol)を用いる以外は、実施例33と同様の方法でポリマーを0.38g得た。得られたポリマーは、実施例20と同様の条件でNMR分析及びフーリエ変換-赤外吸収スペクトル分析を行った結果、下記化学式(249)に示されるユニットを含むポリヒドロキシアルカノエートであり、Eユニットを10mol%含む共重合体であることが確認された。

[0299]

【化86】

$$CH_{2}O$$
 $CH_{3}O$
 $CH_{4}O$
 $CH_{3}O$
 $CH_{4}O$
 $CH_{4}O$
 $CH_{5}O$
 $CH_{$

[0300]

また、得られたポリマーの平均分子量は、実施例20と同様の条件で測定した結果、数平均分子量 $M_n=24500$ 、重量平均分子量 $M_w=37800$ であった。

[0301]

(実施例36)

実施例33における2-rミノベンゼンスルホン酸のかわりに4-メトキシアニリン-2-スルホン酸 0.52g (2.6mmol)を用いる以外は、実施例33と同様の方法でポリマーを0.40g 得た。得られたポリマーは、実施例20と同様の条件でNMR分析及びフーリエ変換-赤外吸収スベクトル分析を行った結果、下記化学式(250)に示されるユニットを含むポリヒドロキシアルカノエートであり、Eユニットを10mol%含む共重合体であることが確認された。

$$CH_3$$
 SO_3H
 $N-H$
 $=O$
 CH_2O
 CH_3
 C

[0303]

また、得られたポリマーの平均分子量は、実施例20と同様の条件で測定した結果、数平均分子量 $M_n=22900$ 、重量平均分子量 $M_w=39200$ であった。

[0304]

(実施例37)

実施例33における2-アミノベンゼンスルホン酸のかわりに2-アミノ-2-メチルプロバンスルホン酸 0.39 g (2.6 mm ol) を用いる以外は、実施例33と同様の方法でポリマーを0.33 g 得た。得られたポリマーは、実施例20と同様の条件でNMR分析及びフーリエ変換-赤外吸収スペクトル分析を行った結果、下記化学式 (251) に示されるユニットを含むポリヒドロキシアルカノエートであり、E ユニットを7mol % 含む共重合体であることが確認された。

[0305]

【化88】

$$SO_3H$$
 CH_2
 H_3C
 CH_3
 $N-H$
 CH_3
 CH_3

[0306]

また、得られたポリマーの平均分子量は、実施例20と同様の条件で測定した結果、数平均分子量 $M_n=20200$ 、重量平均分子量 $M_w=34100$ であった。

[0307]

(実施例38)

窒素雰囲気下、実施例11で得られた化学式(217)で示されるユニットからなるポリヒドロキシアルカノエート共重合体(C:11m01%、D:89m01%)を0.40g、2-アミノベンゼンスルホン酸0.48g(2.7mm01)を100m1三ロフラスコに入れて、ピリジン15.0m1加えて攪拌した後、亜リン酸トリフェニル1.43m1(5.4mm01)を加えた後は、実施例20と同様の方

広により、ホクマーでいり18時に。時の4にホッマーは、大旭門40 C 門様の木田 C N IVI N 分析及びフーリエ変換-赤外吸収スペクトル分析を行った結果、下記化学式 (252)に示されるユニットを含むポリヒドロキシアルカノエートであり、Eユニット II m o I %を含む共重合体であることが確認された。

[0308]

【化89】

$$SO_3H$$
 $N-H$
 CH_2
 CH_3
 CH_3
 CH_3
 CH_3
 CH_3
 CH_3
 CH_3
 CH_3

[0309]

また、得られたポリマーの平均分子量は、実施例20と同様の条件で測定した結果、数平均分子量 $M_n=26900$ 、重量平均分子量 $M_w=40400$ であった。

(252)

[0310]

(実施例39)

実施例38における2-アミノベンゼンスルホン酸のかわりに2-アミノ-1-ナフタレンスルホン酸 0.61g(2.7mmol)を用いる以外は、実施例38と同様の方法でポリマーを0.41g 得た。得られたポリマーは、実施例20と同様の条件でNMR分析及びフーリエ変換-赤外吸収スベクトル分析を行った結果、下記化学式(253)に示されるユニットを含むポリヒドロキシアルカノエートであり、Eユニットを11mol%含む共重合体であることが確認された。

【0311】 【化90】

$$SO_3H$$
 SO_3H
 $CH_2)_{2O}$
 CH_3
 CH_3

[0312]

また、得られたポリマーの平均分子量は、実施例20と同様の条件で測定した結果、数平均分子量 $M_n=26500$ 、重量平均分子量 $M_w=42900$ であった。

[0313]

(実施例40)

至糸芬四×4.1、大爬切10で行りれた心子x(1/1)で小されるサーフドがりなるホテレド ロキシアルカノエート共重合体(C:7 mol%、D:93mol%)を0.40g、2-アミノベンセン スルホン酸0.30g(1.7mmol)を100m1三ロフラスコに入れて、ピリジン15.0m1加えて攪 拌した後、亜リン酸トリフェニル0.89ml(3.4mmol)を加えた後は、実施例20と同様の方 法により、ポリマーを0.36g得た。得られたポリマーは、実施例20と同様の条件でNMR 分析及びフーリエ変換-赤外吸収スペクトル分析を行った結果、下記化学式(254)に示され るユニットを含むポリヒドロキシアルカノエートであり、E ユニット 7 m ol % を含む共重 合体であることが確認された。

[0314]

【化91】

[0315]

また、得られたポリマーの平均分子量は、実施例20と同様の条件で測定した結果、数平 均分子量 $M_n = 27800$ 、重量平均分子量 $M_w = 43900$ であった。

[0316]

(実施例41)

実施例40における2-アミノベンゼンスルホン酸のかわりに2-アミノベンゼンスルホン 酸フェニルエステル 0.43g(1.7mmol)を用いる以外は、実施例40と同様の方法でポリマ ーを0.39g得た。得られたポリマーは、実施例20と同様の条件でNMR分析及びフーリエ 変換-赤外吸収スペクトル分析を行った結果、下記化学式(280)に示されるユニットを含む ポリヒドロキシアルカノエートであり、Eユニットを7mol%含む共重合体であることが 確認された。

[0317]【化92】

(280)

[0318]

よた、同つ4にホットーツ下均の1里は、大心内40と四78ツ末日と例足した和末、奴下均分子量 $M_n=27500$ 、重量平均分子量 $M_w=44600$ であった。

[0319]

(実施例42)

窒素雰囲気下、実施例14で得られた化学式 (223)で示されるユニットからなるボリヒドロキシアルカノエート共重合体 $(C:13m_01\%, D:87m_01\%)$ を 0.40g、2-アミノベンゼンスルホン酸 <math>0.48g $(2.8mm_01)$ を 100m $1 \equiv D$ フラスコに入れて、ピリジン 15.0m 1 m 之て攪拌した後、亜リン酸トリフェニル 1.45m $1(5.6mm_01)$ を加えた後は、実施例 20 と同様の方法により、ボリマーを 0.38g 得た。 得られたボリマーは、実施例 20 と同様の条件で NMR 分析及びフーリエ変換-赤外吸収スペクトル分析を行った結果、下記化学式 (255) に示されるユニットを含むボリヒドロキシアルカノエートであり、E ユニット $12m_01\%$ を含む共重合体であることが確認された。

[0320]

【化93】

$$SO_3H$$
 $N-H$
 CH_2O
 CH_2O
 CH_2
 CH_3
 CH_3
 CH_3
 CH_3
 CH_3
 CH_3
 CH_3
 CH_3
 CH_3
 CH_3

[0321]

また、得られたポリマーの平均分子量は、実施例20と同様の条件で測定した結果、数平均分子量 $M_n=18900$ 、重量平均分子量 $M_w=28400$ であった。

[0322]

(実施例43)

実施例42における2-アミノベンゼンスルホン酸のかわりに4-メトキシアニリン-2-スルホン酸 0.42g (2.8mmol)を用いる以外は、実施例42と同様の方法でポリマーを0.42g 得た。得られたポリマーは、実施例20と同様の条件でNMR分析及びフーリエ変換-赤外吸収スベクトル分析を行った結果、下記化学式 (256)に示されるユニットを含むポリヒドロキシアルカノエートであり、E ユニットを12mol%含む共重合体であることが確認された。

[0323]

1147 41

$$CH_3$$
 SO_3H
 $N-H$
 CH_2O
 CH_2O
 CH_2
 CH_3
 CH_3

[0324]

また、得られたポリマーの平均分子量は、実施例20と同様の条件で測定した結果、数平均分子量 $M_n=18600$ 、重量平均分子量 $M_w=28500$ であった。

[0325]

(実施例44)

実施例42における 2-r ミノベンゼンスルホン酸のかわりに 2-r ミノー1-t フタレンスルホン酸 0.62g (2.8mm 01) を用いる以外は、実施例42と同様の方法でポリマーを 0.41g 得た。得られたポリマーは、実施例20と同様の条件で NMR 分析及びフーリエ変換-赤外吸収スペクトル分析を行った結果、下記化学式 (257)に示されるユニットを含むポリヒドロキシアルカノエートであり、E ユニットを 11m 01 % 含む共重合体であることが確認された。

【0326】 【化95】

$$SO_3H$$
 SO_3H
 CH_2O
 CH_2O
 CH_2
 CH_3
 CH_3
 CH_3
 CH_3
 CH_3
 CH_3
 CH_3
 CH_3
 CH_3

[0327]

また、得られたポリマーの平均分子量は、実施例20と同様の条件で測定した結果、数平均分子量 $M_n=18000$ 、重量平均分子量 $M_w=28400$ であった。

[0328]

(実施例45)

天旭四44においる 2^{-1} ミノニンセンヘルホン酸のがわりに 2^{-1} ミノニステルノロハンスルホン酸 0.41g(2.8mmol) を用いる以外は、実施例42と同様の方法でポリマーを0.40g得た。得られたポリマーは、実施例20と同様の条件でNMR分析及びフーリエ変換-赤外吸収スペクトル分析を行った結果、下記化学式(258)に示されるユニットを含むポリヒドロキシアルカノエートであり、Eユニットを9mol%含む共重合体であることが確認された。

【0329】 【化96】

$$SO_3H$$
 CH_2
 H_3C
 CH_3
 $N-H$
 CH_2
 CH_2
 CH_3
 CH_2
 CH_3
 CH_3

[0330]

また、得られたポリマーの平均分子量は、実施例20と同様の条件で測定した結果、数平均分子量 $M_n=18700$ 、重量平均分子量 $M_w=29900$ であった。

[0331]

(実施例46)

窒素雰囲気下、実施例15で得られた化学式(225)で示されるユニットからなるポリヒドロキシアルカノエート共重合体(C:8 mol%、D:92mol%)を0.40g、2-rミノベンゼンスルホン酸0.28g(1.6mmol)を100m1三ロフラスコに入れて、ピリジン15.0m1加えて攪拌した後、亜リン酸トリフェニル0.85m1(3.3mmol)を加えた後は、実施例20と同様の方法により、ポリマーを0.36g得た。得られたポリマーは、実施例20と同様の条件でNMR分析及びフーリエ変換-赤外吸収スベクトル分析を行った結果、下記化学式(259)に示されるユニットを含むポリヒドロキシアルカノエートであり、Eユニット8mol%を含む共重合体であることが確認された。

[0332]

116711

$$SO_3H$$
 SO_3H
 CH_2
 CH_3
 CH_3
 CH_3
 CH_3
 CH_3
 CH_3
 CH_3
 CH_3
 CH_3
 CH_3

[0333]

また、得られたポリマーの平均分子量は、実施例 20 と同様の条件で測定した結果、数平均分子量 $M_n=20500$ 、重量平均分子量 $M_w=33600$ であった。

[0334]

(実施例47)

実施例46における 2-r ミノベンゼンスルホン酸のかわりに 4-r ミノベンゼンスルホン酸フェニルエステル 0.41g(1.6mmol) を用いる以外は、実施例46と同様の方法でポリマーを 0.35g 得た。得られたポリマーは、実施例20と同様の条件でNMR分析及びフーリエ変換-赤外吸収スペクトル分析を行った結果、下記化学式(260)に示されるユニットを含むポリヒドロキシアルカノエートであり、E ユニットを 7 mol % 含む共重合体であることが確認された。

[0335]

【化98】

[0336]

また、得られたポリマーの平均分子量は、実施例20と同様の条件で測定した結果、数平均分子量 $M_n=21000$ 、重量平均分子量 $M_w=32600$ であった。

10001.1

(実施例48)

窒素雰囲気下、実施例17で得られた化学式(229)で示されるユニットからなるポリヒドロキシアルカノエート共重合体(C:||mo|%、D:89mo|%)を0.40g、2-rミノ-1-+7タレンスルホン酸0.39g(1.8mmol)を100m|三ロフラスコに入れて、ビリジン15.0m|加えて攪拌した後、亜リン酸トリフェニル0.92m|(3.5mmol)を加えた後は、実施例20と同様の方法により、ポリマーを0.37g得た。得られたポリマーは、実施例20と同様の条件でNMR分析及びフーリエ変換-赤外吸収スペクトル分析を行った結果、下記化学式(261)に示されるユニットを含むポリヒドロキシアルカノエートであり、Eユニット11mol%を含む共重合体であることが確認された。

【0338】 【化99】

[0339]

また、得られたポリマーの平均分子量は、実施例 20 と同様の条件で測定した結果、数平均分子量 $M_n=19800$ 、重量平均分子量 $M_w=33100$ であった。

[0340]

(実施例49)

実施例48における 2-r ミノ-1-t フタレンスルホン酸のかわりに 2-r ミノ-2-t チルプロバンスルホン酸 0.27g(1.8mmol) を用いる以外は、実施例48と同様の方法でポリマーを 0.33g 得た。 得られたポリマーは、実施例20と同様の条件で NMR 分析及びフーリエ変換-赤外吸収スペクトル分析を行った結果、下記化学式 (262) に示されるユニットを含むポリヒドロキシアルカノエートであり、E=- ットを 9mol % 含む共重合体であることが確認された。

[0341]

ILI V V I

[0342]

また、得られたポリマーの平均分子量は、実施例20と同様の条件で測定した結果、数平均分子量 $M_n=20900$ 、重量平均分子量 $M_w=35500$ であった。

[0343]

(実施例50)

【0344】 【化101】

$$SO_3H$$
 SO_3H
 CH_2O
 CH_2O
 CH_2O
 CH_3
 CH_3
 CH_3
 CH_3
 CH_3
 CH_3
 CH_3
 CH_3
 CH_3

[0345]

また、得られたポリマーの平均分子量は、実施例20と同様の条件で測定した結果、数平均分子量 $M_n=18900$ 、重量平均分子量 $M_w=30400$ であった。

[0346]

3大地野ヨリ

実施例50における 2-r ミノベンゼンスルホン酸のかわりに 4- メトキシアニリン-2- スルホン酸 0.27g (1.3mmol)を用いる以外は、実施例 50 と同様の方法でポリマーを 0.37g 得た。得られたポリマーは、実施例 20 と同様の条件で NMR 分析及びフーリエ変換 - 赤外吸収スペクトル分析を行った結果、下記化学式 (264)に示されるユニットを含むポリヒドロキシアルカノエートであり、E ユニットを 8mol% 含む共重合体であることが確認された。

【0347】 【化102】

SO₃H
N-H
$$\downarrow$$
SO₃H
 \downarrow
CH₂O
 \downarrow
(CH₂)₅
CH₃
 \downarrow
CH₃
 \downarrow
E
 \downarrow
F
(264)

[0348]

また、得られたポリマーの平均分子量は、実施例20と同様の条件で測定した結果、数平均分子量 $M_n=19000$ 、重量平均分子量 $M_w=30000$ であった。

[0349]

(実施例52)

実施例20で得られた化学式 (234) で示されるユニットからなるボリヒドロキシアルカノエート共重合体(0.30gをナスフラスコ中に加え、クロロホルム (21.0m)1、メタノール (7.0m)2 で溶解し、(0.0m)2 で冷却した。これに (2.0m)3 にのトリメチルシリルジアゾメタン-ヘキサン溶液 (A)3 には社製) (0.78m)3 を加えて、(4)4 時間攪拌した。 反応終了後、エバボレーターにより溶媒を留去した後、ボリマーを回収した。 更に、クロロホルム (21.0m)3 、メタノール (7.0m)3 を加えて、ボリマーを再溶解させて、エバボレーターにより溶媒を留去した。この操作を (2.0m)3 回繰り返した。ここで回収したボリマーを、減圧乾燥することでボリマー(2.0m)3 の (2.0m)3 により行った。 得られたボリマーの構造決定は、 (2.0m)4 に由来するビークが (2.0m)6 に示されるユニットを含むボリヒドロキシアルカノエートであることが確認された

[0350]

ILL V O I

[0351]

[0352]

(実施例53)

[0353]

また、実施例52と同様の酸価滴定により、スルホン酸に由来するピークが見られなかったことからも、スルホン酸がスルホン酸メチルになっていることから明らかになった。

[0354]

$$G$$
 CH_3
 SO_3CH_3
 CH_2
 CH_2

[0355]

また、得られたポリマーの平均分子量は、実施例52と同様の条件で測定した結果、数平均分子量 $M_n = 18900$ 、重量平均分子量 $M_w = 28900$ であった。

[0356]

(実施例54)

実施例52における化学式(234)で示されるポリヒドロキシアルカノエートのかわりに実施例24で得られた化学式(238)で示されるポリヒドロキシアルカノエートを用い、また、2 mol/Lのトリメチルシリルジアゾメタン-ヘキサン溶液(Aldrich社製)0.55mlを用いる以外は、実施例52と同様の方法により、ポリマーを0.29g得た。得られたポリマーは、実施例52と同様の条件でNMR分析を行った結果、下記化学式(267)に示されるユニットを含むポリヒドロキシアルカノエートであり、Gユニットを8 mol%含む共重合体であることが確認された。

[0357]

また、実施例52と同様の酸価滴定により、スルホン酸に由来するピークが見られなかったことからも、スルホン酸がスルホン酸メチルになっていることから明らかになった。

[0358]

【化105】

$$\begin{array}{c} \text{SO}_3\text{CH}_3 \\ \text{H}_3\text{C} \xrightarrow{\text{CH}_2} \text{CH}_3 \\ \text{N-H} \\ \text{=0} \\ \text{CH}_2 \\ \text{C$$

[0359]

よた、持つMにかっく「似下Mの」」里は、大心的Mと同様の木匠と間にした和木、奴下均分子量 $M_n=19100$ 、重量平均分子量 $M_w=29600$ であった。

[0360]

(実施例55)

[0361]

また、実施例52と同様の酸価滴定により、スルホン酸に由来するピークが見られなかったことからも、スルホン酸がスルホン酸メチルになっていることから明らかになった。

[0362]

【化106】

[0363]

また、得られたポリマーの平均分子量は、実施例52と同様の条件で測定した結果、数平均分子量 $M_n = 16800$ 、重量平均分子量 $M_w = 27200$ であった。

[0364]

(実施例56)

実施例52における化学式 (234) で示されるポリヒドロキシアルカノエートのかわりに実施例30で得られた化学式 (244) で示されるポリヒドロキシアルカノエートを用い、また、 $2\,m\,o\,l/L$ のトリメチルシリルジアゾメタン-ヘキサン溶液 ($A\,l\,dr\,i\,c\,h\,t\,t$ 製) $1.23\,m\,l\,t\,t$ に外は、実施例52と同様の方法により、ポリマーを $0.29\,g$ 得た。得られたポリマーは、実施例52と同様の条件で $N\,M\,R\,$ 分析を行った結果、下記化学式 ($26\,9$) に示されるユニットを含むポリヒドロキシアルカノエートであり、G ユニットを $11\,m\,o\,l\,$ %含む共重合体であることが確認された。

[0365]

また、実施例52と同様の酸価滴定により、スルホン酸に由来するピークが見られなかったことからも、スルホン酸がスルホン酸メチルになっていることから明らかになった。

[0366]

LILI V. / I

[0367]

また、得られたポリマーの平均分子量は、実施例52と同様の条件で測定した結果、数平均分子量 $M_n = 26000$ 、重量平均分子量 $M_w = 42400$ であった。

[0368]

(実施例57)

実施例52における化学式(234)で示されるポリヒドロキシアルカノエートのかわりに実施例31で得られた化学式(245)で示されるポリヒドロキシアルカノエートを用い、また、2 mol/Lのトリメチルシリルジアゾメタン-ヘキサン溶液(Aldrich社製)1.20mlを用いる以外は、実施例52と同様の方法により、ポリマーを0.29g得た。得られたポリマーは、実施例52と同様の条件でNMR分析を行った結果、下記化学式(270)に示されるユニットを含むポリヒドロキシアルカノエートであり、Gユニットを11mol%含む共重合体であることが確認された。

[0369]

また、実施例52と同様の酸価滴定により、スルホン酸に由来するビークが見られなかったことからも、スルホン酸がスルホン酸メチルになっていることから明らかになった。

[0370]

【化108】

$$CH_3$$
 SO_3CH_3
 OH_3
 OH_3
 OH_4
 OH_5
 OH_5
 OH_5
 OH_5
 OH_5
 OH_5
 OH_5
 OH_6
 OH_7
 $OH_$

[0371]

また、得られたポリマーの平均分子量は、実施例52と同様の条件で測定した結果、数平均分子量 $M_n = 25500$ 、重量平均分子量 $M_w = 39500$ であった。

[0372]

(実施例58)

実施例52における化学式(234)で示されるポリヒドロキシアルカノエートのかわりに実施例32で得られた化学式(246)で示されるポリヒドロキシアルカノエートを用い、また、2 mol/Lのトリメチルシリルジアゾメタン-ヘキサン溶液(Aldrich社製)0.90mlを用いる

以介は、大心内はく凹体の月伝により、ホリャーでいい8時に。同り4にホリャーは、大施例52と同様の条件でNMR分析を行った結果、下記化学式(271)に示されるユニットを含むポリヒドロキシアルカノエートであり、Gユニットを8mol%含む共重合体であることが確認された。

[0373]

また、実施例52と同様の酸価滴定により、スルホン酸に由来するピークが見られなかったことからも、スルホン酸がスルホン酸メチルになっていることから明らかになった。

[0374]

【化109】

$$SO_3CH_3$$
 $O = O$
 $O = O$
 CH_3
 CH_3
 $O = O$
 CH_3
 $O = O$
 $O =$

[0375]

また、得られたポリマーの平均分子量は、実施例52と同様の条件で測定した結果、数平均分子量 $M_n = 27000$ 、重量平均分子量 $M_w = 43700$ であった。

[0376]

(実施例59)

実施例52における化学式(234)で示されるポリヒドロキシアルカノエートのかわりに実施例33で得られた化学式(247)で示されるポリヒドロキシアルカノエートを用い、また、2 mol/Lのトリメチルシリルジアゾメタン-ヘキサン溶液(Aldrich社製)1.02mlを用いる以外は、実施例52と同様の方法により、ポリマーを0.30g得た。得られたポリマーは、実施例52と同様の条件でNMR分析を行った結果、下記化学式(272)に示されるユニットを含むポリヒドロキシアルカノエートであり、Gユニットを10mol%含む共重合体であることが確認された。

[0377]

また、実施例52と同様の酸価滴定により、スルホン酸に由来するピークが見られなかったことからも、スルホン酸がスルホン酸メチルになっていることから明らかになった。

[0378]

$$SO_3CH_3$$
 SO_3CH_3
 CH_2O
 CH_3
 CH_3

[0379]

また、得られたポリマーの平均分子量は、実施例52と同様の条件で測定した結果、数平均分子量 $M_n=23900$ 、重量平均分子量 $M_w=39400$ であった。

[0380]

(実施例60)

実施例52における化学式 (234) で示されるポリヒドロキシアルカノエートのかわりに実施例39で得られた化学式 (253) で示されるポリヒドロキシアルカノエートを用い、また、2 mol/Lのトリメチルシリルジアゾメタン-ヘキサン溶液 (A Idrich 社製) 0.98 ml を用いる以外は、実施例52と同様の方法により、ポリマーを0.29 8 得た。得られたポリマーは、実施例52と同様の条件でNMR分析を行った結果、下記化学式 (273) に示されるユニットを含むポリヒドロキシアルカノエートであり、G ユニットを11 mol % 含む共重合体であることが確認された。

[0381]

また、実施例52と同様の酸価滴定により、スルホン酸に由来するピークが見られなかったことからも、スルホン酸がスルホン酸メチルになっていることから明らかになった。

[0382]

【化111]

[0383]

また、得られたポリマーの平均分子量は、実施例52と同様の条件で測定した結果、数平均分子量 $M_n=25500$ 、重量平均分子量 $M_w=40800$ であった。

[0384]

(実施例61)

天旭門の2においるに子取(201)で示されるボリヒドロキシアルカノエートを用い、また、 他例43で得られた化学式(256)で示されるボリヒドロキシアルカノエートを用い、また、 2 mol/Lのトリメチルシリルジアゾメタン-ヘキサン溶液(Aldrich社製)1.08mlを用いる以外は、実施例52と同様の方法により、ボリマーを0.29g得た。得られたボリマーは、実施例52と同様の条件でNMR分析を行った結果、下記化学式(274)に示されるユニットを含むボリヒドロキシアルカノエートであり、Gユニットを12mol%含む共重合体であることが確認された。

[0385]

また、実施例52と同様の酸価滴定により、スルホン酸に由来するピークが見られなかったことからも、スルホン酸がスルホン酸メチルになっていることから明らかになった。

[0386]

【化112】

$$CH_3$$
 SO_3CH_3
 $N-H$
 $=0$
 CH_2
 CH_2
 CH_3
 CH_3

[0387]

また、得られたポリマーの平均分子量は、実施例52と同様の条件で測定した結果、数平均分子量 $M_n=18900$ 、重量平均分子量 $M_w=30200$ であった。

[0388]

(実施例62)

実施例52における化学式 (234) で示されるポリヒドロキシアルカノエートのかわりに実施例46で得られた化学式 (259) で示されるポリヒドロキシアルカノエートを用い、また、2 mol/Lのトリメチルシリルジアゾメタン-ヘキサン溶液 (A ldrich社製) 0.49 mle用いる以外は、実施例52と同様の方法により、ポリマーを0.308得た。得られたポリマーは、実施例52と同様の条件でNMR分析を行った結果、下記化学式 (275) に示されるユニットを含むポリヒドロキシアルカノエートであり、Gユニットを8 mol %含む共重合体であることが確認された。

[0389]

また、実施例52と同様の酸価滴定により、スルホン酸に由来するピークが見られなかったことからも、スルホン酸がスルホン酸メチルになっていることから明らかになった。

[0390]

IILI I O I

$$SO_3CH_3$$
 $N-H$
 CH_2
 CH_2
 CH_3
 CH_3

[0391]

また、得られたポリマーの平均分子量は、実施例52と同様の条件で測定した結果、数平均分子量 $M_n=20000$ 、重量平均分子量 $M_w=33000$ であった。

[0392]

(実施例63)

実施例52における化学式 (234)で示されるポリヒドロキシアルカノエートのかわりに実施例48で得られた化学式 (261)で示されるポリヒドロキシアルカノエートを用い、また、2 mol/Lのトリメチルシリルジアゾメタン-ヘキサン溶液 (A ldrich社製) 0.70 mlを用いる以外は、実施例52と同様の方法により、ポリマーを0.29 g 得た。得られたポリマーは、実施例52と同様の条件でNMR分析を行った結果、下記化学式 (276)に示されるユニットを含むポリヒドロキシアルカノエートであり、G ユニットを11 mol % 含む共重合体であることが確認された。

[0393]

また、実施例52と同様の酸価滴定により、スルホン酸に由来するピークが見られなかったことからも、スルホン酸がスルホン酸メチルになっていることから明らかになった。

(276)

[0394]

【化114】

[0395]

ょた、同つ Λ にホッマーの下均の丁里は、大旭四 Λ 1 に四 Λ 2 の本日に即たした和木、奴下均分子量 $M_n=19500$ 、重量平均分子量 $M_w=33200$ であった。

[0396]

(実施例64)

実施例52における化学式 (234) で示されるポリヒドロキシアルカノエートのかわりに実施例50で得られた化学式 (263) で示されるポリヒドロキシアルカノエートを用い、また、 $2\,m\,o\,l/l$ のトリメチルシリルジアゾメタン-ヘキサン溶液 ($A\,l\,d\,r\,i\,c\,h$ 社製) $0.60\,m\,l\,e\,m\,l\,o\,s$ 以外は、実施例52と同様の方法により、ポリマーを $0.29\,g$ 得た。得られたポリマーは、実施例52と同様の条件でNMR分析を行った結果、下記化学式 (277) に示されるユニットを含むポリヒドロキシアルカノエートであり、G ユニットを $8\,m\,o\,l\,0$ % 含む共重合体であることが確認された。

[0397]

また、実施例52と同様の酸価滴定により、スルホン酸に由来するピークが見られなかったことからも、スルホン酸がスルホン酸メチルになっていることから明らかになった。

[0398]

【化115】

$$SO_3CH_3$$
 $N-H$
 O
 CH_2O
 CH_2O
 CH_2O
 CH_3
 CH_3
 CH_3
 CH_3
 CH_3
 CH_3
 CH_3
 CH_3

[0399]

また、得られたポリマーの平均分子量は、実施例52と同様の条件で測定した結果、数平均分子量 $M_n=18600$ 、重量平均分子量 $M_w=31200$ であった。

[0400]

(実施例65)

[0401]

$$\begin{array}{c} SO_3CH_3 \\ CH_2 \\ H_3C \longrightarrow CH_3 \\ N-H \\ = O \\ CH_2 \\$$

[0402]

また、得られたポリヒドロキシアルカノエートの平均分子量は、ゲル・パーミエーション・クロマトグラフィー(GPC;東ソーHLC-8120、カラム;ポリマーラボラトリーズPLgel 5μ MIXED-C、溶媒;DMF/LiBr 0.1% (w/v)、ポリスチレン換算)により評価した。その結果、数平均分子量 Mn=25500、重量平均分子量 Mw=38200であった。

[0403]

(実施例66)

[0404]

$$\begin{array}{c} \text{SO}_{3}\text{CH}_{3} \\ \text{CH}_{2} \\ \text{H}_{3}\text{C} \longrightarrow \text{CH}_{3} \\ \text{N} \longrightarrow \text{H} \\ & = \text{O} \\ \text{CH}_{2} \\ \text{CH}_{3} \\ \text{CH}_{3} \\ \text{E} \end{array}$$

[0405]

また、得られたボリヒドロキシアルカノエートの平均分子量は、ゲル・パーミエーション・クロマトグラフィー(GPC; 東ソーHLC-8120、カラム; ボリマーラボラトリーズ PLgel 5μ MIXED-C、溶媒; DMF/LiBr 0.1% (w/v)、ボリスチレン換算) により評価した。その結果、数平均分子量 Mn=30000、重量平均分子量 Mw=44900であった。

【産業上の利用可能性】

[0406]

本発明により、側鎖に反応活性基であるカルボキシル基を分子中に含む新規なポリヒドロキシアルカノエート、並びにアミド基とスルホン酸基を有しているユニットを分子中に含む新規なポリヒドロキシアルカノエートおよびその製造方法が提供される。これにより、カルボキシル基を有する新規なポリヒドロキシアルカノエートは、その反応活性基を利用した、機能性官能基の導入ができることから機能性材料への応用展開が可能である。さらには、カルボキシル基や、アミド基とスルホン酸基を有しているユニットを分子中に含むポリヒドロキシアルカノエートは、溶融加工性に優れ、その親水性により生体適合性にも優れており、医療用軟質部材等としての利用が期待できる。

自规句】女利盲

【要約】

【課題】 分子内に反応性官能基を有する新規なポリヒドロキシアルカノエート及びその 製造方法、並びにその反応性官能基を有するポリヒドロキシアルカノエートを化学修飾す ることで新たな機能を持った新規ポリヒドロキシアルカノエート及びその製造方法を提供 すること。

【解決手段】 側差にカルボキシル基を有するユニットを含むポリヒドロキシアルカノエートを利用して、アミド基とスルホン酸基を有しているユニットを分子中に含むポリヒドロキシアルカノエートを誘導する。

【選択図】 なし

0 0 0 0 0 0 1 0 0 7 19900830 新規登録 5 9 5 0 1 7 8 5 0

東京都大田区下丸子3丁目30番2号キャノン株式会社

Document made available under the **Patent Cooperation Treaty (PCT)**

International application number: PCT/JP05/011000

International filing date:

09 June 2005 (09.06.2005)

Document type:

Certified copy of priority document

Document details:

Country/Office: JP

Number:

2005-168914

Filing date: 08 June 2005 (08.06.2005)

Date of receipt at the International Bureau: 01 September 2005 (01.09.2005)

Remark:

Priority document submitted or transmitted to the International Bureau in

compliance with Rule 17.1(a) or (b)

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

□ BLACK BORDERS
M IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
FADED TEXT OR DRAWING
BLURRED OR ILLEGIBLE TEXT OR DRAWING
SKEWED/SLANTED IMAGES
☐ COLOR OR BLACK AND WHITE PHOTOGRAPHS
☐ GRAY SCALE DOCUMENTS
LINES OR MARKS ON ORIGINAL DOCUMENT
☐ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY
□ OTHER:

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.