

CSC401/2511 – Natural Language Computing – Spring 2017 Lecture 8-2 Frank Rudzicz University of Toronto

This lecture

- Automatic speech recognition (ASR)
 - Applying HMMs to ASR,
 - Practical aspects of ASR, and
 - Levenshtein distance.

Consider what we want speech to do

Speech is dynamic

- Speech changes over time.
 - GMMs are good for high-level clustering, but they encode no notion of order, sequence, or time.
- Speech is an expression of language.
 - We want to incorporate knowledge of how phonemes and words are ordered with language models.

Speech is sequences of phonemes *

Phoneme dictionaries

- There are many phonemic dictionaries that map words to pronunciations (i.e., lists of phoneme sequences).
- The CMU dictionary (http://www.speech.cs.cmu.edu/cgi-bin/cmudict) is popular.
 - 127K words transcribed with the ARPAbet.
 - Includes some rudimentary prosody markers.

```
EVOLUTION EH2 V AH0 L UW1 SH AH0 N
EVOLUTION(2) IY2 V AH0 L UW1 SH AH0 N
EVOLUTION(3) EH2 V OW0 L UW1 SH AH0 N
EVOLUTION(4) IY2 V OW0 L UW1 SH AH0 N
EVOLUTIONARY EH2 V AH0 L UW1 SH AH0 N EH2 R IY0
```


Annotation/transcription

- Speech data must be segmented and annotated in order to be useful to an ASR learning component.
 - Programs like Wavesurfer or Praat allow you to demarcate where a phoneme begins and ends in time.

Putting it together?

The noisy channel model for ASR

Reminder – discrete HMMs

 Previously we saw discrete HMMs: at each state we observed a discrete symbol from a finite set of discrete symbols.

word	P(word)
ship	0.1
pass	0.05
camp	0.05
frock	0.6
soccer	0.05
mother	0.1
tops	0.05

word	P(word)
ship	0.25
pass	0.25
camp	0.05
frock	0.3
soccer	0.05
mother	0.09
tops	0.01

Continuous HMMs (CHMM)

- A continuous HMM has observations that are distributed over continuous variables.
 - Observation probabilities, b_i , are also continuous.
 - E.g., here $b_0(\vec{x})$ tells us the probability of seeing the (multivariate) continuous observation \vec{x} while in state 0.

Defining CHMMs

Continuous HMMs are very similar to discrete HMMs.

•
$$S = \{s_1, ..., s_N\}$$

: set of states (e.g., subphones)

•
$$X = \mathbb{R}^{42}$$

: continuous observation space

$$\theta = \{\pi_1, \dots, \pi_N\}$$

$$A = \{a_{ij}\}, i, j \in S$$

$$B = b_i(\vec{x}), i \in S, \vec{x} \in X$$

: initial state probabilities

: state transition probabilities

: state output probabilities

(i.e., Gaussian mixtures)

yielding

•
$$Q = \{q_0, ..., q_T\}, q_i \in S$$

• $\mathcal{O} = \{\sigma_0, ..., \sigma_T\}, \sigma_i \in X$

•
$$\mathcal{O} = \{\sigma_0, \dots, \sigma_T\}, \sigma_i \in X$$

: observation sequence

Word-level HMMs?

- Imagine that we want to learn an HMM for each word in our lexicon (e.g., 60K words → 60K HMMs).
- No, thank you! Zipf's law tells us that many words occur very infrequently.
 - 1 (or a few) training examples of a word is **not** enough to train a model as highly parameterized as a CHMM.

 In a word-level HMM, each state might be a phoneme.

Phoneme HMMs

- Phonemes change over time we model these dynamics by building one HMM for each phoneme.
 - Tristate phoneme models are popular.
 - The centre state is often the 'steady' part.

tristate phoneme model (e.g., /oi/)

Phoneme HMMs

- We train each phoneme HMM using all sequences of that phoneme.
 - Even from different words.

64	8	5		ae
85	9	6		sh
96	1	02	2	epi
102		1()6	m

		Time, <i>t</i>							
			85		96				
	1	•••				•••			
U	2	•••		•••		•••			
MFCC	3	•••		•••		•••			
		•••	•••	•••	•••	•••			
	42	•••							

annotation

observations

Combining models

- We can learn an N-gram <u>language model</u> from word-level transcriptions of speech data.
 - These models are discrete and are trained using MLE.
- Our phoneme HMMs together constitute our <u>acoustic model</u>.
 - Each phoneme HMM tells us how a phoneme 'sounds'.
- We can combine these models by concatenating phoneme HMMs together according to a known lexicon.
 - We use a word-to-phoneme dictionary.

Combining models

- If we know how phonemes combine to make words, we can simply concatenate together our phoneme models by inserting and adjusting transition weights.
 - e.g., Zipf is pronounced /z ih f/, so...

(It's a tiny bit more complicated than this – normally phoneme HMMs have special 'handle' states at either end that connect to other HMMs)

Co-articulation and triphones

 Co-articulation: n. When a phoneme is influenced by adjacent phonemes.

- A triphone HMM captures co-articulation.
 - Triphone model /a-b+c/ is phoneme b when preceded by a and followed by c.

Combining triphone HMMs

 Triphone models can only connect to other triphone models that 'match'.

Concatenating phoneme models

Lexicon

w ah n one two t uw three th r iv four f ao r five SIX seven eight ev t nine n ay n zivrow zero

Phone HMM

We can easily incorporate unigram probabilities through transitions, too.

Bigram models

Using CHMMs

- As before, these HMMs are generative models that encode statistical knowledge of how output is generated.
- We train CHMMs with Baum-Welch (a type of Expectation-Maximization), as we did before with discrete HMMs.
 - Here, the observation parameters, $b_i(\vec{x})$, are adjusted using the GMM training 'recipe' from last lecture.
- We find the best state sequences using Viterbi, as before.
 - Here, the best state sequence gives us a sequence of phonemes and words.

Speech recognition architecture

Speech databases

- Large-vocabulary continuous ASR is meant to encode full conversational speech, with a vocabulary of >64K words.
 - This requires lots of data to train our models.
- The Switchboard corpus contains 2430 conversations spread out over about 240 hours of data (~14 GB).
- The TIMIT database contains 63,000 sentences from 630 speakers.
 - Relatively small (~750 MB), but very popular.
- Speech data from conferences (e.g., TED) or from broadcast news tends to be between 3 GB and 30 GB.

Aspects of ASR systems in the world

• Speaking mode: Isolated word (e.g., "yes") vs. continuous (e.g., "Siri, ask Cortana for the weather")

Speaking style: Read speech vs. spontaneous speech;

the latter contains many dysfluencies

(e.g., stuttering, uh, like, ...)

Enrolment: Speaker-dependent (all training data from

one speaker) vs. speaker-independent

(training data from many speakers).

Vocabulary: Small (<20 words) or large (>50,000 words).

• Transducer: Cell phone? Noise-cancelling microphone?

Teleconference microphone?

Signal-to-noise ratio

- We are often concerned with the signal-to-noise ratio (SNR), which measures the ratio between the power of a desired **signal** within a recording (P_{signal} , e.g., the human speech) and additive noise (P_{noise}) .
 - Noise typically includes:
 - Background noise (e.g., people talking, wind),
 - Signal degradation. This is normally 'white' noise produced by the medium of transmission.

$$SNR_{db} = 10 \log_{10} \left(\frac{P_{signal}}{P_{noise}}\right)$$
 You don't have to memorize this formula

High SNR_{dh} is >30dB. Low SNR_{dh} is < 10 dB.

formula.

Audio-visual speech methods

- Observing the vocal tract directly, rather than through inference, can be very helpful in automatic speech recognition.
- The shape and aperture of the mouth gives some clues as to the phoneme being uttered.
 - Depending on the level of invasiveness, we can even measure the glottis and tongue directly.

Example of articulatory data

- TORGO was built to train augmented ASR systems.
 - 9 subjects with cerebral palsy (1 with ALS), 9 matched controls.
 - Each reads 500—1000 prompts over 3 hours that cover phonemes and articulatory contrasts (e.g., meat vs. beat).
 - Electromagnetic articulography (and video) track points to <1 mm.

Example - Lip aperture and nasals

Evaluating ASR accuracy

- How can you tell how good an ASR system at recognizing speech?
 - E.g., if somebody said

Reference: <u>how to</u> recognize speech

but an ASR system heard

Hypothesis: how to wreck a nice beach

how do we quantify the error?

- One measure is word accuracy: #CorrectWords/#ReferenceWords
 - E.g., 2/4, above
 - This runs into problems similar to those we saw with SMT.
 - E.g., the hypothesis 'how to recognize speech boing boing boing boing' has 100% accuracy by this measure.
 - Normalizing by #HypothesisWords also has problems...

Word-error rates (WER)

 ASR enthusiasts are often concerned with word-error rate (WER), which counts different kinds of errors that can be made by ASR at the word-level.

Substitution error: One word being mistook for another

e.g., 'shift' given 'ship'

Deletion error: An input word that is 'skipped'

e.g. 'I Torgo' given 'I am Torgo'

Insertion error: A 'hallucinated' word that was not in

the input.

e.g., 'This Norwegian parrot is no more'

given 'This parrot is no more'

Evaluating ASR accuracy

But how to decide which errors are of each type?

E.g., Reference: how to recognize speech

Hypothesis: how to wreck a nice beach,

- It's not so simple: 'speech' seems to be mistaken for 'beach', except the /s/ phoneme is incorporated into the preceding hypothesis word, 'nice' (/n ay s/).
 - Here, 'recognize' seems to be mistaken for 'wreck a nice'
 - Are each of 'wreck a nice' substitutions of 'recognize'?
 - Is 'wreck' a substitution for 'recognize'?
 - If so, the words 'a' and 'nice' must be insertions.
 - Is 'nice' a substitution for 'recognize'?
 - If so, the words 'wreck' and 'a' must be insertions.

- In practice, ASR people are often more concerned with overall WER, and don't care about how those errors are partitioned.
 - E.g., 3 substitution errors are 'equivalent' to 1 substitution plus 2 insertions.
- The Levenshtein distance is a straightforward algorithm based on dynamic programming that allows us to compute overall WER.


```
Allocate matrix R[n+1, m+1] // where n is the number of reference words
                                      // and m is the number of hypothesis words
Initialize R[0,0] := 0, and R[i,j] := \infty for all other i = 0 or j = 0
for i := 1...n // #ReferenceWords
    for j := 1..m // #Hypothesis words
         R[i,j] := \min(R[i-1,j]+1, \frac{deletion}{deletion}
                            R[i-1, j-1], // if the i^{th} reference word and
                                               // the j^{th} hypothesis word match
                            R[i-1, j-1] + 1, // if they differ, i.e., substitution
                            R[i, i-1]+1) // insertion
Return 100 \times R[n,m]/n
```

Levenshtein distance - initialization

					hypot	thesis		
		-	how	to	wreck	а	nice	beach
	-	0	∞	∞	∞	∞	∞	∞
ce	how	∞						
Reference	to	∞						
Ref	recognize	∞						
	speech	∞						

The value at cell (i, j) is the **minimum** number of **errors** necessary to align i with j.

					hypot	thesis		
		-	how	to	wreck	а	nice	beach
	-	0	∞	∞	∞	∞	∞	∞
ce	how	∞	0					
Reference	to	∞						
Rei	recognize	∞						
	speech	∞						

- $R[1,1] = \min(\infty + 1, (0), \infty + 1) = 0$ (match)
- We put a little arrow in place to indicate the choice.
 - 'Arrows' are normally stored in a backtrace matrix.

				hypothesis						
		-	how	to	wreck	а	nice	beach		
	-	0	∞	∞	∞	∞	∞	∞		
ce	how	∞	0 =	1 =	2	3 =	4	> 5		
Reference	to	∞								
Rei	recognize	∞								
	speech	∞								

- We continue along for the first reference word...
 - These are all insertion errors

And onto the second reference word

					hypot	hesis		
		-	how	to	wreck	а	nice	beach
	-	0	∞	∞	∞	∞	∞	∞
ce	how	∞	0	1 =	2 =	3 =	4 =	5
Reference	to	∞	1	0 5	1 =	2 =	3 =	4
Rei	recognize	∞	2	1	1 =	2 =	3 =	4
	speech	∞						

- Since recognize \(\neq \) wreck, we have a substitution error.
- At some points, you have >1 possible path as indicated.
 - We can prioritize types of errors arbitrarily.

			hypothesis					
		-	how	to	wreck	а	nice	beach
	-	0	∞	∞	∞	∞	∞	∞
ce	how	∞	0	1 =	2 =	3 =	4	5
Reference	to	∞	1	0 5	1 =	2 =	→ 3 ■	4
Rei	recognize	∞	2	1	1 5	2 =	3 =	4
	speech	∞	3	2	2	2	3 =	4

- And we finish the grid.
- There are R[n, m] = 4 word errors and a WER of 4/4 = 100%.
 - WER can be greater than 100% (relative to the reference).

• If we want, we can **backtrack** using our arrows to find the proportion of substitution, deletion, and insertion errors.

					hypot	hesis		
		-	how	to	wreck	а	nice	beach
	-	0	∞	∞	∞	∞	∞	∞
ce	how	∞	0	1 =	2 =	3 =	4 =	5
Reference	to	∞	1	0 5	1 =	2 =	3 =	4
Rei	recognize	∞	2	1	1	2 =	3 =	4
	speech	∞	3	2	2	2	3	4

- Here, we estimate 2 substitution errors and 2 insertion errors.
- Arrows can be encoded within a special backtrace matrix.

Recent performance

Corpus	Speech type	Lexicon size	ASR WER (%)	Human WER (%)
Digits	Spontaneous	10	0.3 %	0.009 %
Phone directory	Read	1000	3.6 %	0.1 %
Wall Street Journal	Read	64,000	6.6 %	1 %
Radio news	Mixed	64,000	13.5 %	-
Switchboard (telephone)	conversation	10,000	19.3 %	4 %

