Aplicação de ferramentas de bioinformática ao estudo de metilação de DNA

Dra Patrícia Natália Silva

Curso de Introdução à análise bioinformática aplicada à genética

Sumário

- Conceito de Epigenética
- Mecanismo de metilação de DNA
- Métodos de obtenção DNA metilado:
 - Precipitação com anticorpos
 - Conversão com bissulfito de sódio
- Metodologias para estudo da metilação:
 - Métodos para avaliação de metilação global
 - Methylation Specific PCR (MSP), High Resolution
 Melting (HRM), Pirosequenciamento, MALDI-TOF,
 Sequenciamentos de Sanger e NGS.

Regulação Epigenética

• Epigenética:

"Alterações herdadas, mitoticamente ou meioticamente, na expressão gênica, que não resultaram de modificações na sequência de DNA"

Regulação Epigenética

PROCESSOS NORMAIS FISIOLÓGICOS:

- Desenvolvimento embrionário (embriogênese);
- Imprinting Genômico
- Inativação do X
- Na regulação da expressão gênica
- Estabilidade dos cromossomos

Modificações estáveis e reversíveis

Presente em plantas, Drosophilas e mamíferos, entre outros

Regulação Epigenética

Herança Genética x
Sequência dos genes

x Herança EpigenéticaAtividade dos genes

Alterações na Cromatina – inibindo transcrição ou tradução

Metilação de DNA

- Modificação epigenética mais estudada em humanos
- Ocorre pela adição de um grupo metil ao carbono 5' do anel pirimídico da citosina

Metilação de DNA

- 5-hydroxy-methylcytosine (5hmC): Produto da oxidação de 5-methylcytosine (5mC)
- Catalizada por uma família de enzimas chamada TET

Metilação de DNA

- Ilhas CpGs dinucleotídeos CpG em regiões do genoma ricas em GC
 - Presentes em promotores
 - Regiões do DNA com aprox. 200pb
 - Conteúdo GC maior que 50%

- Mediadas por enzimas DNA metiltransferases (DNMTs);
 - DNMT1 manutenção baseada na replicação dos padrões de metilação
 - DNMT3a e DNMT3b capazes de promover a metilação de novo no DNA

Replicação

pela DNMT1

Manutenção da Metilação

DNMT1

Metilação do DNA

- Atuaria reprimindo seqüências de DNA parasitário, como transposons e retrovírus endógenos
- Distribuição no genoma:
 - Está associada a regiões não codificantes
 - Não em CpG de genes ativos
- Pode inibir a transcrição gênica de 2 maneiras:
 - Pontualmente inibindo fatores de transcrição
 - Compactando a cromatina

Metilação do DNA

 Pontualmente - inibe a ligação direta de fatores de transcrição ao DNA; como Sp1 (Specifity protein 1) e CTF (CCAAT-binding transcription factor)

- Além disso, atrai repressores transcricionais específicos ao DNA metilado
 - Família MDB (methyl-binding domain) age como repressora,
 recrutando histonas desacetilases, histonas metiltransferases
 e proteínas de heterocromatina compactação

Metilação e Silenciamento Gênico

Metilação e Doenças

Gene ativo

Perda ou Ganho de função

Genes supressores tumorais

Gene Inativo

• Proto-oncogenes = Oncogenes

- | Ilha CpG não metilada
- 🗦 Ilha CpG metilada

Métodos de obtenção DNA metilado

Methylated DNA immunoprecipitation - MeDIP

Precipitação com anticorpos

Métodos de obtenção DNA metilado

- Conversão com bissulfito de sódio
 - Desaminação

Métodos de obtenção DNA metilado

- Conversão com bissulfito de sódio
 - Desaminação

Métodos para avaliação de Metilação Global

- Métodos de screening
- Panorama geral da situação

- Dois métodos que utilizam pirosequenciamento
 - Sequenciamento de LINE1 e Alu
 - LUMA (Luminometric Methylation Assay)

Pirosequenciamento

- Sequenciamento de fragmentos curtos
- Detecção da atividade da polimerase pela ação de enzimas quimioluminescentes

- 1 Adiciona um nucleotideo por vez
 - 2 Adição libera PPi que é convertido em ATP
 - 3 ATP é convertido em luz pela luciferase

 PCR: Reação com um par de primers biotinilado e posteriormente um primer de sequenciamento;

 Isolar os produtos de PCR com beads de streptavidina

 Desnaturação e liberação das sequências sem o primer biotinilado

Processo de lavagem – wash station

 Separar o DNA e liberar as amostras no plate com o primer de sequenciamento;

 Inserir a placa no pirosequenciador com o dispenser de nucleotídeos e substrato

Metilação Global – LINE1 / Alu

LINE-1 retrotransposable elements make up about 15% of human genome. DNA methylation within the promoter region of human LINE-1 elements is important for maintaining transcriptional inactivation and for inhibiting transposition. Genome-wide losses of DNA methylation within the promoter region of human LINE-1 elements have been regarded as a common epigenetic event in malignancies and may play crucial roles in carcinogenesis. This methylation assay amplifies a region of the LINE-1 element and serves as a marker for global methylation.

LUMA (Luminometric Methylation Assay)

 Clivagem por enzimas de restrição seguido de extensão de nucleotídeos individuais

- DNA: 250ng a 500ng não tratado com bissulfito
- Digestão do DNA com 2 enzimas que cortam CCGG:
 - Mix A: com EcoR1 (AATT) e HapII sensível à metilação (não corta C^mCGG)
 - Mix B: com EcoR1 (AATT) e Mspl (não sensível à metilação)

LUMA (Luminometric Methylation Assay)

- Incubação por 37°C for 4 horas
- Amostras em duplicata, para cada tratamento, ou seja, 4 amostras de cada indivíduo;
- Qto mais dCTP incorporados, maior a quantidade de sítios clivados, e menor a metilação
- Metilação é determinada pela razão Hpall/Mspl.
 0% met = 1.0
 - 100% met = 0

Methylation Specific PCR (MSP)

 Amplificação usando conjuntos de primers para as sequências metiladas e não metiladas

High Resolution Melting (HRM)

- Metodologia para análise de curva de dissociação do DNA
- Temperatura de melting = Temperatura onde metade do produto de PCR está dissociado (denaturado)

MALDI-TOF

- Ionização e dessorção a laser assistida por matriz (MALDI)
- Espectrometria de massa do tipo (MALDI-TOF)
- Amplificação e purificação das sequências gênicas por PCR convencional
- Transcrição in vitro do DNA para RNA
- Clivagem enzimática para a determinação da porcentagem de metilação baseada na massa dos fragmentos
- Diferenças na massa das moléculas

MALDI-TOF

 Amplificação por PCR: primer com T7 para iniciar a transcrição pela RNA polimerase

- RNAse A cleaves after "C" and "T" in RNA
- · For a C-only cleavage:
 - Incorporate deoxyTTP, rCTP, rGTP, & rATP with T7 R&DNA polymerase
 - Only C's available for Cleavage

Transcrição – RNA e Clivagem

Mix com Buffer, RNA polimerase e RNAseA.

Diferem em 16 Da de massa de G para A

Spectrum

EpiGram

Sequence

Α	В	С	D	Е	F	G	Н		J	K	L	M	N
102	ar2008	2	0	M	NA	NA	NA	0	0,1	0,02	NA	0,18	0,26
104	ar2082	2	0	M	NA	NA	NA	NA	NA	NA	NA	NA	NA
114	ar2093	2	0	F	0,03	NA	0,13	0,05	0,01	0,08	NA	0,04	0,1
115	ar2083	2	0	M	0,03	NA	0,13	0,05	0	0,03	NA	0	0,09
118	ar1108	2	0	M	0,05	NA	0,12	0,03	0,02	0,06	NA	0,02	0,09
119	ar1136	2	0	M	0,07	NA	0,11	0,04	0,01	0,02	NA	0,05	0,07
129	ar2138	2	0	M	0,01	NA	0,12	0,04	0,01	0,03	NA	0,03	0,03
131	ianc1303	2	0	M	0,03	NA	0,12	0,06	0,01	0,02	NA	0,02	0,07
134	ianc1328	2	0	M	0,03	NA	0,11	0,05	0	0,01	NA	0,04	0,08
146	sri1028	2	0	F	0,05	NA	0,11	0,08	0	0,01	NA	0,04	0,03
147	sri1085	2	0	F	0,05	NA	0,12	0,04	0	0,07	NA	0,03	0,08
150	sri1116	2	0	F	0,04	NA	0,11	0,03	0	0,05	NA	0,05	0,04
152	sri1122	2	0	M	NA	NA	0,03	0	0,03	0	NA	0,15	0,16
161	sri1162	2	0	F	0,04	NA	0,13	0,07	0	0,03	NA	0	0,08
163	sri1175	2	0	F	0,06	NA	0,15	0,09	0,01	0,05	NA	0,04	0,11
166	sri1180	2	0	F	0,03	NA	0,13	0,03	0	0,01	NA	0,03	0,08
168	sri1182	2	0	F	0	NA	0,1	0,02	0,05	0,02	NA	0,18	0,08
178	sri1188	2	0	F	0,04	NA	0,11	0,05	0	0,04	NA	0	0,06
179	sri1297	2	0	F	0,03	NA	0,12	0,05	0	0,05	NA	0,03	0,07
181	sri1157	2	0	M	0,04	NA	0,13	0,06	0,01	0,07	NA	0,03	0,05
verage					0,0378		0,1153	0,0430	0,0160	0,0360		0,0485	0,0845
ndard de	V.				0,0166		0,0237	0,0234	0,0260	0,0230		0,0548	0,0505
135	positive control				0,96	NA	0,97	0,97	0,86	0,91	NA	0,72	0,78
136	egative control				NA	NA	NA	NA	NA	NA	NA	NA	NA
183	positive control				1	NA	0,98	1	0,9	0,98	NA	0,75	0,79
184	egative control				NA	NA	NA	NA	NA	NA	NA	NA	NA
			PSYCHOSIS	T_Test	0,1697		0,1139	0,1982	0,0159	0,1183		0,2405	0,0672
			SCHIZOPHRENIA	T Test	0,2248		1,0000	0,5024	0,0744	0,5330		0,9125	0,2796
			BIPOLAR	T_Test			0,0816		0,0959	0,1015		0,1447	0,0965

- Analisa um sítio CpG isolado ou a média dos CpGs
- CpGs isolados Fatores de transcrição específicos

Sanger - Capilaridade

- Conversão por bissulfito de sódio
- PCR do fragmento Alvo
- Inserção em um vetor
- Inserção do vetor em bactérias
- Crescimento da bactéria em meio de cultura
- Extração do DNA das bactérias
- PCR e sequenciamento

Vários clones bacterianos 5-10

In vivo cloning and amplification

Cycle sequencing

Electrophorsesis (1 read/capillary)

Sanger - Pós sequenciamento

- Alinhar a sequência dos clones com a sequência referência
- Verificação da metilação em cada sítio CG
- Quantificação das médias de CG e análise estatica

Vários clones bacterianos 5-10

Next Generation Sequencing

- Ion Torrent
 - Amplificação das sequências por PCR
 - Construção das bibliotecas com os fragmentos
 - Carregamento do chip
 - Sequenciamento baseado em biocondutores

- Análise é bem mais complexa
- Muito reads x alinhamento