# **EXPERIMENT 6**

Poem Generation using RNN Variants: Comparative Analysis Report

## **Objective**

To investigate the effect of model architecture and input encoding method on the learning capability and convergence behavior for the task of character-level poem generation.

## **Models and Encoding Methods**

- Models Used:
  - o Vanilla RNN
  - o LSTM
  - o GRU
- Encoding Techniques:
  - One-Hot Encoding (OHE)
  - Embedding Layer (EMB)

Each combination (e.g., RNN-OHE, LSTM-EMB) was trained and monitored for loss over epochs.

#### **Training Curve Analysis**

- 1. RNN with One-Hot Encoding (RNN-OHE)
  - Observation: Loss curve is noisy and convergence is slow.
  - **Inference:** Lacks capacity to learn long-term dependencies; performance limited by sparse input representation.

#### 2. RNN with Embedding (RNN-EMB)

- Observation: Training loss is smoother and converges slightly faster.
- Inference: Embeddings improve input representation, enabling better learning.

#### 3. LSTM with One-Hot Encoding (LSTM-OHE)

- Observation: More stable than RNN-OHE, though convergence is still slower.
- **Inference:** LSTM's gating mechanism helps learn longer dependencies even with sparse input.

#### 4. LSTM with Embedding (LSTM-EMB)

- Observation: Fastest convergence with the lowest loss among all models.
- **Inference:** Best combination of architecture and input representation; embeddings enhance LSTM's learning efficiency.

## 5. GRU with One-Hot Encoding (GRU-OHE)

- **Observation:** Performance is better than RNN-OHE but not as stable as LSTM-OHE.
- **Inference:** GRU is more efficient than RNN in learning sequences, but still affected by input sparsity.

### 6. GRU with Embedding (GRU-EMB)

- **Observation:** Similar to LSTM-EMB, but with occasional instability in loss.
- Inference: Good performance, slightly less stable than LSTM-EMB.

#### **Results**

| Model | Encoding | Test Loss | Perplexity | Accuracy |
|-------|----------|-----------|------------|----------|
| RNN   | OHE      | 3.13      | 22.93      | 0.1582   |
| RNN   | EMB      | 2.64      | 14.00      | 0.2254   |
| LSTM  | OHE      | 2.38      | 10.77      | 0.2657   |
| LSTM  | EMB      | 2.09      | 8.08       | 0.3056   |
| GRU   | OHE      | 2.43      | 11.33      | 0.2619   |
| GRU   | EMB      | 2.15      | 8.57       | 0.2946   |

# Conclusion

| Model | Encoding | Stability | Convergence<br>Speed | Final Loss<br>(approx.) | Remarks                       |
|-------|----------|-----------|----------------------|-------------------------|-------------------------------|
| RNN   | OHE      | Low       | Slow                 | High                    | Poor performance              |
| RNN   | EMB      | Medium    | Moderate             | Moderate                | Improved with embeddings      |
| LSTM  | OHE      | Medium    | Moderate             | Moderate                | Stable with moderate results  |
| LSTM  | ЕМВ      | High      | Fast                 | Low                     | Best overall performance      |
| GRU   | OHE      | Medium    | Moderate             | Moderate                | Efficient but affected by OHE |
| GRU   | ЕМВ      | High      | Fast                 | Low                     | Near-LSTM<br>performance      |

# Recommendation

For optimal poem generation performance:

- Use LSTM or GRU architectures.
- **Prefer Embedding** over One-Hot Encoding.

LSTM-EMB offers the best trade-off between stability, speed, and final model accuracy.

# **Appendix**

# • Training Curves:



