Année 2018/2019 Analyse 1

Portails Math-Info/Math-Physique L1 S1

Exercice 1. Pour quels réels x a-t-on |x+5| > 3?

Exercice 2. On considère une fonction f d'ensemble de définition [0, 10] à valeurs réelles. On suppose que f est strictement décroissante sur [0, 4], strictement croissante sur [4, 10], et qu'on a : f(0) = 3, f(4) = -2, f(10) = 5, f(2) = f(7) = 0.

- a) Pour $x \in [0, 7[$, quel encadrement a-t-on pour f(x)? Et pour $x \in [7, 10]$?
- b) Pour quels $x \in [0, 10]$ a-t-on f(x) > 0?

Exercice 3. On considère la fonction $f: x \mapsto \frac{1}{1+|x|}$.

- a) Déterminer l'ensemble de définition de f.
- b) Calculer $f \circ f$.

Exercice 4. On consière la fonction $f: \mathbb{R} \to \mathbb{R}$ définie par $f(x) = x^2 + 1$ et la fonction $g:]0, +\infty[\to \mathbb{R}$ définie par g(x) = 1/x.

- a) Calculer les fonction $f\circ f,\ f\circ g,\ g\circ f,\ g\circ g$ en précisant à chaque fois l'ensemble de définition.
- b) Quel est le sens de variation de la fonction $f \circ g$? Justifier la réponse.

Exercice 5. On considère la fonction rationnelle $F: x \mapsto \frac{x^4 + 2x^2 + 1}{x^3 + x}$.

- a) Quel est l'ensemble de définition de F?
- b) Simplifier F(x).
- c) Déterminer les limites en $+\infty$ et en $-\infty$ de la fonction F.

Exercice 6. On considère la fonction rationnelle $G: x \mapsto \frac{x^4 - 16}{(x-2)(x^3+1)}$.

- a) Quel est l'ensemble de définition de G?
- b) Simplifier G(x).
- c) Déterminer les limites en $+\infty$, en $-\infty$ et en 2 de la fonction G.

Exercice 7. On considère une fonction f définie sur \mathbb{R} par $f(x) = a + bx + c\sin(\frac{\pi}{2}x)$; a, b, c sont des paramètres réels.

- a) Montrer que si b=0, la fonction f est périodique, de période à préciser.
- b) A quelle condition (sur les paramètres) la fonction f est-elle impaire?
- c) On suppose à présent que f(0) = 2, f(1) = 0 et f(2) = -1. Déterminer a,b et c.

Exercice 8. Déterminer $\lim_{x\to+\infty} f(x)$ dans les cas suivants.

a)
$$f(x) = \sqrt{x}(\sqrt{x+2} - \sqrt{x+1})$$

a)
$$f(x) = \sqrt{x}(\sqrt{x+2} - \sqrt{x+1})$$
 b) $f(x) = \frac{3x^5 - x^4 + 2x}{x^6 + x^5 - 3x^2 + 4}$

Exercice 9. On pose $f(t) = t^4 + \frac{1}{t}$.

a) Donner la fonction dérivée de f (et dire où cette fonction est définie).

b) A quoi est égal
$$\lim_{h\to 0} \frac{f(2+h)-f(2)}{h}$$
?

Exercice 10. Donner le domaine de définition et calculer la dérivée de la fonction f dans les exemples suivants. Préciser le domaine de définition de f' dans le cas où il ne coïncide pas avec celui de f.

$$a) \ t \mapsto \frac{\sin t}{t+3}$$

a)
$$t \mapsto \frac{\sin t}{t+3}$$
 b) $t \mapsto \frac{1}{4+\cos t}$ c) $t \mapsto (t^2-2)^3$ d) $t \mapsto \sin(t^4+t)$

$$c) \ t \mapsto (t^2 - 2)^3$$

$$d) \ t \mapsto \sin(t^4 + t)$$

$$e) x \mapsto \cos(1/x)$$

$$f) x \mapsto \sqrt{2 - \sin x}$$

$$e) x \mapsto \cos(1/x)$$
 $f) x \mapsto \sqrt{2 - \sin x}$ $g) x \mapsto \sqrt{x^2 - 3x + 2}$ $h) x \mapsto \arcsin(x^3/8)$.

$$h) x \mapsto \arcsin(x^3/8)$$

Exercice 11. On considère une fonction dérivable $f:]0, +\infty[\to \mathbb{R}$. On suppose que $\forall x \in]0, +\infty[, f(1/x) = f(x)]$. Montrer que

$$\forall x \in]0, +\infty[, f'(1/x) = -x^2 f'(x).$$

Exercice 12. Déterminer $\lim_{h\to 0} \frac{\tan(\frac{\pi}{3}+h) - \tan(\frac{\pi}{3})}{h}$.

Exercice 13. Montrer que pour tout $x \in [-1, 1]$,

$$\arccos(x) + \arccos(-x) = \pi$$
.