Contents

Crystal Field Splitting		1
	Definition	1
	Mechanism of crystal field splitting	1
	Strength of Ligands	2

Crystal Field Splitting

Definition

- · Crystal Field Splitting is the phenomenon
- of *splitting* of d- orbital into **energy levels**
- The energy levels are e_g, t_{2g} followed by the arrangement of electrons in these orbitals
- \cdot based on their pairing energy and crystal field splitting energy

Mechanism of crystal field splitting

- A central metal atom is surrounded by ligands from all sides.
- The *electrons* of **ligands** and **metal** atom interact.
- The d- orbital of **metal** atom breaks into two energy levels.
 - **-** e_g
 - $-t_{2q}$
 - e_g has two **orbitals**
 - t_{2g} has **three** orbitals .
 - e_g has **higher** energy level.
 - t_{2g} has **lower** energy level.
- Electrons fill up at the lower energy level.
- The remaining **electron** have two choices:
 - pair up with t_{2g}

- move to e_g
- **Electrons** move to \boldsymbol{e}_g if,
 - Pairing Energy > Crystal Field Splitting Energy
 - This case has **high spin complex**.
- Electrons pair at t_{2g} if,
 - Crystal Field Splitting Energy > Pairing Energy
 - This case has **low spin complex**

Strength of Ligands

- Weak field ligands have less gap between \boldsymbol{e}_g and \boldsymbol{t}_{2g} .
- Strong field ligands have more gap between \boldsymbol{e}_g and \boldsymbol{t}_{2g} .