

Class-5 Artificial Neural Network Unit-1 Introduction-ADALINE

Ms. Swetha R.
Assistant Professor
Department of Electronics
& Communication Engg.

<u>Outline</u>

- Adaptive filtering problem
- Unconstrained Optimization Techniques
- Linear least square Solution

Adaptive filtering problem

Unknown dynamical system:

$$\mathfrak{I}: \{X(i), d(i); i = 1, 2, ..., n,\}$$

where,

$$X(i) = [x_1(i), x_2(i), x_3(i), \dots, x_m(i)]^T$$

the 'm' pertaining to the input vetor x(i) is referred to as dimensionality of the input space.

Adaptive filtering model

The stimulus X(i) can arise in one of two fundamentally different ways:

- 1. The m elements of X(i) originate at different points in space: Spatial
- 2. The m element of X(i) represent the set of present and (m-1) past values of some excitation that are uniformly spaced in time: Temporal

Linear Neuron: Adaptive filtering model

Objective:

 Design a multiple input-single output model of the unknown dynamical system using a single neuron.

Adaptive filtering model

Objective:

 Design a multiple input-single output model of the unknown dynamical system using a single neuron.

Signal Flow Graph of linear neuron model:

Linear Neuron: Adaptive filtering model

- Develop an algorithm that adopt by neuronal model such that it controls necessary adjustment to the synaptic weights of the neuron.
- The neuronal model described is referred as adaptive filter.

Adaptive filtering problem

- Adaptive filter operation consists of two continuous processes:
 - 1. Filtering process
 - 2. Adaptive Process
- Combination of this 2 processes working together constitutes a *feedback loop* acting around the neuron.
- Since the neuron is linear, the output y(i) is exactly the same as the induced local field v(i);

$$y(i) = v(i) = \sum_{k=1}^{m} w_k(i) x_k(i)$$

Adaptive filtering problem

$$y(i) = v(i) = \sum_{k=1}^{m} w_k(i) x_k(i)$$

where

 $w_1(i), w_2(i), \dots, w_m(i)$ are the m synaptic weight of the neuron

In matrix form we may express y(i) as an inner product of the vector x(i) and w(i) as follows:

$$y(i) = X^{T}(i)W(i) = W^{T}(i)X(i)$$

where
$$W(i) = [w_1(i), w_2(i), ..., w_m(i)]^T$$

Adaptive filtering problem

 The neuron's output is compared with the corresponding output d(i) received from the unknown system at time i.

$$e(i) = d(i) - y(i)$$

- This error signal is used to control the adjustment of the neuron's synaptic weight.
- The manner in which error signal is to be used is determine by the cost function and used to derive the adaptive filtering algorithm of interest.

- Adaptive filtering problem is close to optimization problem.
- Optimization techniques: it is a mathematical technique for finding a maximum or minimum value of a function of several variables subject to a set of constraints.
- if it is not subjected to a set of constraints then, the technique is referred as <u>Unconstrained optimization</u>.

- Consider a cost function that is continuously differentiable function of some unknown weight vector W.
- The cost function is a measure of how to choose the weight vector W of an adaptive filtering algorithm so that it behaves in an optimum mannner.
- Find the optimum solution W* that satisfies the condition

$$\xi(W^*) \le \xi(W)$$

This is referred as an Unconstrained Optimization Techniques

PES UNIVERSITY ONLINE

Unconstrained Optimization Techniques:

Minimize the cost function w.r.t the weight vector W, and the necessary condition for optimality is

$$\nabla \xi(W^*) = 0$$

where the gradient operator:

$$\nabla = \left[\frac{\partial}{\partial w_1}, \frac{\partial}{\partial w_2}, \dots, \frac{\partial}{\partial w_m}\right]^T$$

$$\nabla \xi(W) = \left[\frac{\partial \xi}{\partial w_1}, \frac{\partial \xi}{\partial w_2}, \dots, \frac{\partial \xi}{\partial w_m} \right]^T$$

PES UNIVERSITY ONLINE

Unconstrained Optimization Techniques:

It is well suited to local iterative method and the statement as follows:

Starting with an initial guess denoted by W(0), generate a sequence of weight W(1),W(2),..., such that the cost function is reduced at each iteration of the algorithm as shown by

$$\xi(W^*(n+1)) \leq \xi(W(n))$$

PES UNIVERSITY

- Linear Least Square filter
- Wiener filter
- Gauss-Netwon Method
- Steepest Descent Method
- Newton's Method
- LMS Method

- Linear Least Square filter
- Gauss-Netwon Method
- Wiener filter
- Steepest Descent Method
- Newton's Method
- LMS Method

- Linear Least Square filter
- Gauss-Netwon Method
- Wiener filter
- Steepest Descent Method
- Newton's Method
- LMS Method

- Linear Least Square filter
- Gauss-Netwon Method
- Wiener filter
- Steepest Descent Method
- Newton's Method
- LMS Method

THANK YOU

Ms Swetha R

Department of Electronics and Communication Engg. swethar@pes.edu