# Data Structures Hashing – Introduction

**Team Emertxe** 



### Hashing -Collision Resolution Technique

## Concept

### .Collision Resolution Technique

Open Addressing

**Linear Probing** 

**Quadratic Probing** 

Direct Chaining



## Concept



SIZE =10

Data Pool

8, 5, 3, 7, 2

**Hash Function** 

h(x) =data % SIZE





## Concept



SIZE =10

**Data Pool** 

8, 5, 3, 7, 2

**Hash Function** 

h(x) =data % SIZE

$$h(x) = 8 \% 10 = 8$$





## Concept



Data Pool

8, 5, 3, 7, 2

SIZE =10

**Hash Function** 

h(x) =data % SIZE

$$h(x) = 8 \% 10 = 8$$

$$h(x) = 5 \% 10 = 5$$

|     |     |     |     |     | 5   |     |     | 8   |     |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| [0] | [1] | [2] | [3] | [4] | [5] | [6] | [7] | [8] | [9] |



## Concept



SIZE =10

**Data Pool** 

8, 5, 3, 7, 2

**Hash Function** 

h(x) =data % SIZE

$$h(x) = 8 \% 10 = 8$$

$$h(x) = 5 \% 10 = 5$$

$$h(x) = 3 \% 10 = 3$$

$$h(x) = 7 \% 10 = 7$$

$$h(x) = 2 \% 10 = 2$$

|     |     | 2   | 3   |     | 5   |     | 7   | 8   |     |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| [0] | [1] | [2] | [3] | [4] | [5] | [6] | [7] | [8] | [9] |



## Concept



SIZE =10

**Data Pool** 

8, 5, 3, 7, 2,50

**Hash Function** 

h(x) =data % SIZE

$$h(x) = 8 \% 10 = 8$$

$$h(x) = 5 \% 10 = 5$$

$$h(x) = 3 \% 10 = 3$$

$$h(x) = 7 \% 10 = 7$$

$$h(x) = 2 \% 10 = 2$$

$$h(x) = 50 \% 10 = 0$$

| 50  |     | 2   | 3   |     | 5   |     | 7   | 8   |     |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| [0] | [1] | [2] | [3] | [4] | [5] | [6] | [7] | [8] | [9] |



## Concept

SIZE =10

**Data Pool** 

8, 5, 3, 7, 2,50

**Hash Function** 

h(x) =data % SIZE

$$h(x) = 8 \% 10 = 8$$

$$h(x) = 5 \% 10 = 5$$

$$h(x) = 3 \% 10 = 3$$

$$h(x) = 7 \% 10 = 7$$

$$h(x) = 2 \% 10 = 2$$

$$h(x) = 50 \% 10 = 0$$

$$h(x) = 22 \% 10 = 2$$

| 50  |     | 2   | 3   |     | 5   |     | 7   | 8   |     |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| [0] | [1] | [2] | [3] | [4] | [5] | [6] | [7] | [8] | [9] |



## Concept



SIZE =10

**Data Pool** 

8, 5, 3, 7, 2,50

**Hash Function** 

h(x) =data % SIZE

$$h(x) = 8 \% 10 = 8$$

$$h(x) = 5 \% 10 = 5$$

$$h(x) = 3 \% 10 = 3$$

$$h(x) = 7 \% 10 = 7$$

$$h(x) = 2 \% 10 = 2$$

$$h(x) = 50 \% 10 = 0$$

$$h(x) = 22 \% 10 = 2$$

### **Collision**

| 50  |     | 2   | 3   |     | 5   |     | 7   | 8   |     |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| [0] | [1] | [2] | [3] | [4] | [5] | [6] | [7] | [8] | [9] |



## Linear Probing

## Linear Probing



SIZE =10

**Data Pool** 

8, 5, 3, 7, 2,50

**Hash Function** 

h(x) =data % SIZE

$$h'(x) = h(x) + i$$

$$h(x) = 2 \% 10 = 2$$

$$h(x) = 22 \% 10 = 2$$

| 50  |     | 2   | 3   |     | 5   |     | 7   | 8   |     |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| [0] | [1] | [2] | [3] | [4] | [5] | [6] | [7] | [8] | [9] |



## Linear Probing



SIZE =10

**Data Pool** 

**Hash Function** 

h(x) =data % SIZE

$$h'(x) = h(x) + i$$

where 
$$i = 1,2.....SIZE$$

$$h(x) = 2 \% 10 = 2$$

$$h'(x) = 2 + 1 = 3$$

$$h(x) = 22 \% 10 = 2$$

|    | 50 |     | 2   | 3   |     | 5   |     | 7   | 8   |     |
|----|----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| [[ | )] | [1] | [2] | [3] | [4] | [5] | [6] | [7] | [8] | [9] |



## Linear Probing



SIZE =10

**Data Pool** 

**Hash Function** 

h(x) =data % SIZE

$$h'(x) = h(x) + i$$

where 
$$i = 1,2.....SIZE$$

$$h(x) = 2 \% 10 = 2$$

$$h'(x) = 2 + 2 = 4$$

$$h(x) = 22 \% 10 = 2$$

| 50  |     | 2   | 3   |     | 5   |     | 7   | 8   |     |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| [0] | [1] | [2] | [3] | [4] | [5] | [6] | [7] | [8] | [9] |



## Linear Probing



SIZE =10

**Data Pool** 

**Hash Function** 

h(x) =data % SIZE

$$h'(x) = h(x) + i$$

where 
$$i = 1,2.....SIZE$$

$$h(x) = 2 \% 10 = 2$$

$$h'(x) = 2 + 2 = 4$$

$$h(x) = 22 \% 10 = 2$$

| 50  |     | 2   | 3   |     | 5   |     | 7   | 8   |     |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| [0] | [1] | [2] | [3] | [4] | [5] | [6] | [7] | [8] | [9] |



## Linear Probing



SIZE =10

**Data Pool** 

8, 5, 3, 7, 2,50

**Hash Function** 

h(x) =data % SIZE

$$h'(x) = h(x) + i$$

where 
$$i = 1,2....SIZE$$

$$h(x) = 2 \% 10 = 2$$

$$h'(x) = 2 + 2 = 4$$

$$h(x) = 22 \% 10 = 2$$

| 50  |     | 2   | 3   | 22  | 5   |     | 7   | 8   |     |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| [0] | [1] | [2] | [3] | [4] | [5] | [6] | [7] | [8] | [9] |



## Linear Probing



SIZE =10

Data Pool

**Hash Function** 

$$h'(x) = h(x) + i$$

where 
$$i = 1,2.....SIZE$$

$$h(x) = 2 \% 10 = 2$$

$$h'(x) = 2 + 2 = 4$$

$$h(x) = 22 \% 10 = 2$$





## **Quadratic** Probing

## Concept



SIZE =10

Data Pool

8, 5, 3, 7, 2,50

**Hash Function** 

h(x) =data % SIZE

$$h(x) = 8 \% 10 = 8$$

$$h(x) = 5 \% 10 = 5$$

$$h(x) = 3 \% 10 = 3$$

$$h(x) = 7 \% 10 = 7$$

$$h(x) = 2 \% 10 = 2$$

$$h(x) = 50 \% 10 = 0$$

$$h(x) = 22 \% 10 = 2$$

### **Collision**

| 50  |     | 2   | 3   |     | 5   |     | 7   | 8   |     |  |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|--|
| [0] | [1] | [2] | [3] | [4] | [5] | [6] | [7] | [8] | [9] |  |



Data Structure – Hashing Quadratic Probing





## Concept

Data Pool

**Hash Function** 

$$h'(x) = h(x) + i^2$$

$$h(x) = 2 \% 10 = 2$$

$$h(x) = 22 \% 10 = 2$$

#### Collision

| 50  |     | 2   | 3   |     | 5   |     | 7   | 8   |     |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| [0] | [1] | [2] | [3] | [4] | [5] | [6] | [7] | [8] | [9] |



## Concept



SIZE =10

**Data Pool** 

**Hash Function** 

$$h'(x) = h(x) + i^2$$

where 
$$i = 1,2.....SIZE$$

$$h'(x) = 2 + 1^2 = 3$$

$$h(x) = 2 \% 10 = 2$$

$$h(x) = 22 \% 10 = 2$$

#### Collision

| 50  |     | 2   | 3   |     | 5   |     | 7   | 8   |     |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| [0] | [1] | [2] | [3] | [4] | [5] | [6] | [7] | [8] | [9] |



## Concept



SIZE =10

**Data Pool** 

**Hash Function** 

$$h'(x) = h(x) + i^2$$

where 
$$i = 1,2.....SIZE$$

$$h'(x) = 2 + 1^2 = 3$$

$$h(x) = 2 \% 10 = 2$$

$$h(x) = 22 \% 10 = 2$$

#### Collision

| 50  |     | 2   | 3   |     | 5   |     | 7   | 8   |     |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| [0] | [1] | [2] | [3] | [4] | [5] | [6] | [7] | [8] | [9] |



## Concept



SIZE =10

**Data Pool** 

**Hash Function** 

$$h'(x) = h(x) + i^2$$

where 
$$i = 1,2.....SIZE$$

$$h(x) = 22 \% 10 = 2$$

h(x) = 2 % 10 = 2

$$h'(x) = 2 + 2^2 = 6$$

#### Collision

| 50  |     | 2   | 3   |     | 5   |     | 7   | 8   |     |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| [0] | [1] | [2] | [3] | [4] | [5] | [6] | [7] | [8] | [9] |



## Concept



SIZE =10

**Data Pool** 

8, 5, 3, 7, 2,50

**Hash Function** 

h(x) =data % SIZE

$$h'(x) = h(x) + i^2$$

where 
$$i = 1,2.....SIZE$$

$$h(x) = 2 \% 10 = 2$$

$$h'(x) = 2 + 2^2 = 6$$

$$h(x) = 22 \% 10 = 2$$

#### Collision

| 50  |     | 2   | 3   |     | 5   | 22  | 7   | 8   |     | _ |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|---|
| [0] | [1] | [2] | [3] | [4] | [5] | [6] | [7] | [8] | [9] |   |



## Concept



SIZE =10

**Data Pool** 

8, 5, 3, 7, 2,50 22, 32

**Hash Function** 

h(x) =data % SIZE

h(x) = 32 % 10 = 2

| 50  |     | 2   | 3   |     | 5   | 22  | 7   | 8   |     |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| [0] | [1] | [2] | [3] | [4] | [5] | [6] | [7] | [8] | [9] |



## Concept



SIZE =10

**Data Pool** 

8, 5, 3, 7, 2,50 22, 32

**Hash Function** 

h(x) =data % SIZE

h(x) = 32 % 10 = 2

$$h'(x) = h(x) + i^2$$

where i = 1,2.....SIZE

$$h'(x) = 2 + 1^2 = 3$$

| 50  |     | 2   | 3   |     | 5   | 22  | 7   | 8   |     |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| [0] | [1] | [2] | [3] | [4] | [5] | [6] | [7] | [8] | [9] |



## Concept



SIZE =10

**Data Pool** 

8, 5, 3, 7, 2,50 22, 32

**Hash Function** 

h(x) =data % SIZE

h(x) = 32 % 10 = 2

$$h'(x) = h(x) + i^2$$

where i = 1,2....SIZE

$$h'(x) = 2 + 1^2 = 3$$

$$h'(x) = 2 + 2^2 = 6$$

| 50  |     | 2   | 3   |     | 5   | 22  | 7   | 8   |     |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| [0] | [1] | [2] | [3] | [4] | [5] | [6] | [7] | [8] | [9] |



## Concept



SIZE =10

Data Pool

8, 5, 3, 7, 2,50 22, 32

**Hash Function** 

h(x) =data % SIZE

$$h(x) = 32 \% 10 = 2$$

$$h'(x) = h(x) + i^2$$

where i = 1,2....SIZE

$$h'(x) = 2 + 1^2 = 3$$

$$h'(x) = 2 + 2^2 = 6$$

$$h'(x) = 2 + 3^2 = 11$$

| 50  |     | 2   | 3   |     | 5   | 22  | 7   | 8   |     |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| [0] | [1] | [2] | [3] | [4] | [5] | [6] | [7] | [8] | [9] |



## **Direct Chaining**

## Direct Chaining



#### **Data Pool**

8, 5, 2, 7



## Direct Chaining



8, 5, 2, 7

### **Hash Function**

$$h(x) = data \% SIZE$$



## Direct Chaining



#### **Data Pool**

8, 5, 2, 7

### **Hash Function**

h(x) = data % SIZE

#### **Hash Table**

[0]

[1]

[2]

[3]

[4]



### Direct Chaining



8, 5, 2, 7

#### **Hash Function**

$$h(x) = data \% SIZE$$

$$h(x) = 8 \% 5 = 3$$





### Direct Chaining

#### **Data Pool**

8, 5, 2, 7

#### **Hash Function**

$$h(x) = data \% SIZE$$

$$h(x) = 8 \% 5 = 3$$

$$h(x) = 5 \% 5 = 0$$





## Direct Chaining

#### **Data Pool**

8, 5, 2, 7

#### **Hash Function**

$$h(x) = data \% SIZE$$

$$h(x) = 8 \% 5 = 3$$

$$h(x) = 5 \% 5 = 0$$

$$h(x) = 2 \% 5 = 2$$





## Direct Chaining

#### **Data Pool**

8, 5, 2, 7

#### **Hash Function**

$$h(x) = data \% SIZE$$

$$h(x) = 8 \% 5 = 3$$

$$h(x) = 5 \% 5 = 0$$

$$h(x) = 2 \% 5 = 2$$

$$h(x) = 7 \% 5 = 2$$





## Data Structure –Hashing Introduction

### **Operations**

•create\_hashtable : Create a Hashtable

insert\_hashtable: Insert an element in Hashtable

•search\_hashtable: Search an element in Hashtable

•delete\_hashtable : Delete the entire Hashtable



## Hashing – Create hashtable