- **1.3.E.** I must verify that the union of a co-dense and a nowhere dense set is a co-dense set.
- **Proof.** Let C be co-dense and N nowhere dense. Let U be a non-empty open set. We must show that $U \setminus (C \cup N) = U \cap (X \setminus (C \cup N))$ is non-empty. But this equals $(U \setminus C) \cap (U \setminus N) \supset (U \setminus C) \cap (U \setminus \overline{N})$. If $U \setminus \overline{N} = \emptyset$, then $X = \overline{U \setminus \overline{N}} = \emptyset$, a contradiction. So $U \setminus \overline{N}$ is a non-empty open set, which therefore must intersect non-trivially with $U \setminus C$, completing the proof.
- **1.3.F.** I must show that any open subset of a dense in itself space is dense in itself.
- **Proof.** Let U be an open subset of the dense in itself topological space X. Let $u \in U$. By assumption, $u \in \overline{X \setminus \{u\}} = \overline{(U \setminus \{u\}) \cup (X \setminus U)} = \overline{U \setminus \{u\}} \cup \overline{X \setminus U}$. If $u \notin \overline{U \setminus \{u\}}$, then $u \in \overline{X \setminus U}$. But since, $u \notin X \setminus U$, then $X \setminus U$ is not closed, which means U is not open, a contradiction. Therefore u is an accumulation point, and U is dense in itself, completing the proof.
- **1.3.G.** I must show that the family of all Borel sets in the real line can be represented as the union $\Phi = \bigcup_{\alpha < \omega_1} \mathcal{F}_{\alpha}$, where \mathcal{F}_0 is the family of all closed sets, and \mathcal{F}_{α} consists of all countable unions of sets from $\Phi_{\alpha} = \bigcup_{\xi < \alpha} \mathcal{F}_{\xi}$ for an odd ordinal number α , and of all countable intersections of sets from Φ_{α} for an even ordinal number α . Note that all families \mathcal{F}_{α} are of cardinality \mathbf{c} and deduce that the real line has subsets which are non-Borel sets.
- **Proof.** I will be using axioms BS1', BS2, BS3' from the text for all Borel sets. The proof will proceed in two steps. The first step is to show that Φ satisfies the axioms for Borel sets; the second step is to show that Φ is the minimal family satisfying those axioms.
 - Step 1: BS1' and BS3' follow trivially.

1

Now for BS2: I must show that if $A \in \Phi$, then $\mathbb{R} \setminus A \in \Phi$. In other words, I must show that for all ordinals $\kappa < \omega_1$ and $A \in \mathcal{F}_{\kappa}$, that $\mathbb{R} \setminus A \in \Phi$. I'll proceed by transfinite induction.

The base case follows from realizing that a closed set, i.e. a member of \mathcal{F}_0 is an open set, which, as stated in the introductory note to the problem, is a Borel set and obeys BS2.

Now suppose that κ is a limit ordinal, i.e. ω_0 , and let $A \in \mathcal{F}_{\omega_0}$. Then A is the countable intersection of elements from \mathcal{F}_r for various finite r. Thus, by DeMorgan's Law, $\mathbb{R} \setminus A$ is the countable union of complements of various elements from the \mathcal{F}_r s, each complement an element of Φ by the inductive hypothesis, implying that their union, $\mathbb{R} \setminus A$ is by definition contained in some \mathcal{F}_{α} , where α is the first odd ordinal greater than the union of each index corresponding to the \mathcal{F}_r containing the complement. Thus $\mathbb{R} \setminus A \in \Phi$.

Now suppose that κ is a successor ordinal, and let $A \in \mathcal{F}_k$. Then A is the countable intersection or union of elements from \mathcal{F}_{k-1} , so $\mathbb{R} \setminus A$ is the countable union or intersection of complements of elements in \mathcal{F}_{k-1} , each complement, by the inductive hypothesis, an element of Φ , so essentially using the same argument as in the limit ordinal case, adjusting for intersection versus union and odd versus even, $\mathbb{R} \setminus A \in \Phi$.

Step 2: Let \mathcal{B} be the smallest family obeying the Borel axioms in \mathbb{R} . I must show that $\Phi \subset \mathcal{B}$, or equivalently, that for all $\alpha < \omega_1, \mathcal{F}_{\alpha} \subset \mathcal{B}$. We'll proceed by transfinite induction.

The base case follows, since all closed sets of \mathbb{R} are contained in \mathcal{B} .

Now suppose that for all $\alpha < \omega_0$, the only limit ordinal less than ω_1 , that $\mathcal{F}_{\alpha} \subset B$. Then \mathcal{F}_{ω_0} , the union of all such sets is also contained in \mathcal{B} .

For κ a successor ordinal, suppose that $\mathcal{F}_{\kappa-1} \subset \mathcal{B}$. Then since \mathcal{F}_{κ} is the set of countable unions (intersections) of elements from $\mathcal{F}_{\kappa-1}$, for odd (even) κ , then we can just apply BS3 (BS 3'), since once again $\mathcal{F}_{\kappa-1} \subset \mathcal{B}$, to complete the induction.

For the last remark, note that the union of \mathbf{c} sets of cardinality \mathbf{c} , has cardinality \mathbf{c} ; hence, so does the set of Borel sets, whereas the power set of the real line has cardinality $2^{\mathbf{c}}$, and by Cantor's Theorem the power set properly contains the family of Borel sets.