

KARATINA UNIVERSITY

UNIVERSITY REGULAR EXAMINATIONS

2024/2025 ACADEMIC YEAR

SECOND YEAR FIRST SEMESTER

SUPPLEMENTARY EXAMINATION

FOR THE DEGREE OF:

BACHELOR OF SCIENCE AND EDUCATION

(P102/6/7 & E100/101/103/111/112)

COURSE CODE: MAT 214

COURSE TITLE: VECTOR ANALYSIS

DATE: TIME:

INSTRUCTION TO CANDIDATES

• SEE INSIDE

INSTRUCTION: Answer questions ONE in section A and any other TWO in section B

SECTION A

Question One (30 marks)

- a. Given $r_1 = 3i 2j + k$, $r_2 = 2i 4j 3k$, $r_3 = -i + 2j + 2k$, find the magnitude of:
 - i. $r_1 + r_2 + r_3$ (2 marks)
 - ii. $2r_1 3r_2 5r_3$ (3 marks)
- b. If $r_1 = 2i j + k$, $r_2 = i + 3j 2k$, $r_3 = -2i + j 3k$, and $r_4 = 3i + 2j + 5k$, find scalars a,b,c such that $r_4 = ar_1 + br_2 + cr_3$. (4 marks)
- c. If $A = A_1i + A_2j + A_3k$ and $B = B_1i + B_2j + B_3k$, prove that $A \cdot B = A_1B_1 + A_2B_2 + A_3B_3. \tag{3 marks}$
- d. Determine a unit vector perpendicular to the plane of A = 2i 6j 3k and B = 4i + 3j k. (4 marks)
- e. Prove that $\nabla^2(\frac{1}{r}) = 0$. (5 marks)
- a. For the space curve $x = \cos(t) + t\sin(t)$, $y = \sin(t) t\cos(t)$, $z = t^2$, t > 0. Find the;
 - i. Unit tangent vector (2 marks)
 - ii. Curvature (3 marks)
 - iii. Unit normal vector (2 marks)
 - iv. Binormal vector (2 marks)

SECTION B

Question Two (20 marks)

a. Verify Green's theorem in the plane for

(7 marks)

$$\oint (2xy - x^2)dx + (x + y^2)dy$$

where C is a closed curve bounded by C: $y = x^2$ and $y^2 = x$

- b. Evaluate $\iint_S F \cdot ndS$, where $F = 4xzi y^2j + yzk$ and S is the surface of the cube bounded by x = 0, x = 1, y = 0, y = 1, z = 0, z = 1. (6 marks)
- c. A particle moves along a curve whose parametric equations are $x = e^{-t}$, $y = 2\cos 3t$, $z = 2\sin 3t$ where t is the time. Then
 - i. Determine its velocity and acceleration at any time. (4 marks)
 - ii. Find the magnitudes of the velocity and acceleration at t = 0.

(3 marks)

Question Three (20 marks)

- a. If $A = (3x^2 + 6y)i 14yzj + 20xz^2k$, evaluate $\int_C^{\square} A \cdot dr$ from (0,0,0) to (1,1,1) along the following paths C:
 - i. $x = t, y = t^2, z = t^3$. (3 marks)
 - ii. The straight lines from (0,0,0) to (1,1,1), then to (1,1,0), and then to (1,1,1).
- b. Find the total work done in moving a particle in a force field given by F = 3xyi 5zj + 10xk along the curve $x = t^2 + 1$, $y = 2t^2$, $z = t^3$ from t = 1 to t = 2. (5 marks)
- c. If $A = A_1i + A_2j + A_3k$, $B = B_1i + B_2j + B_3k$, $C = C_1i + C_2j + C_3k$, show that (7 marks)

$$A \cdot (BXC) = \begin{vmatrix} A_1 & A_2 & A_3 \\ B_1 & B_2 & B_3 \\ C_1 & C_2 & C_3 \end{vmatrix}$$

Question Four (20 marks)

a. A vector V is called irrotational if curl V = 0. Find constants a,b,c so that V = (x + 2y + az)i + (bx - 3y - z)j + (4x + cy + 2z)k. (5 marks)

- b. Evaluate $\int AX \frac{d^2A}{dt^2} dt$. (4 marks)
- c. Given that the vector field $F = 2xyi + [xyz^3 \sin(yz)]j + ze^{x+y}k$. Determine the divergence of F. (4 marks)
- d. Find the area cut from the bottom of a paraboloid $z = x^2 + y^2$ by the plane z=1. (7 marks)

Question Five (20 marks)

- a. Find the unit tangent vector to any point on the curve $x = t^2 + 1$, y = 4t 3, $z = 2t^2 6t$. Determine also the unit tangent at the point where t = 2. (5 marks)
- b. If C_1 and C_2 are constant vectors and λ is a constant scalar, show that $H = e^{-\lambda x}(C_1 \sin \lambda y + C_2 \cos \lambda y)$ satisfies the partial differential equation. (5 marks)

$$\frac{\partial^2 H}{\partial x^2} = \frac{\partial^2 H}{\partial y^2} = 0$$

c. If $\emptyset(x, y, z) = 3x^2y - y^3z^2$, find $\nabla\emptyset$ (or grad \emptyset) at the point (1, -2, -1).

(3 marks)

d. Show that $\vec{F} = \frac{\vec{r}}{r^2}$ is an irrotational vector for $\vec{r} = x\hat{\imath} + y\hat{\jmath} + z\hat{k}$. (7 marks)