$\begin{vmatrix} a^{1} & b^{1} & c^{2} \\ a & b & c \\ i & 1 & 1 \end{vmatrix}$ $= \begin{vmatrix} a^{1} - c^{2} & b^{1} - c^{2} & c^{2} \\ a + c & b + c & c \\ 0 & 0 & 1 \end{vmatrix}$ $= (a - c) (b - c) \begin{vmatrix} a^{1} & ac & c^{2} & b^{2} & bc & c^{2} \\ 1 & 1 & 1 \\ 0 & 0 & 0 \end{vmatrix}$ $= (a - c) (b - c) \begin{vmatrix} (a^{2} + b^{2}) & c(a - b) & b^{2} \\ a & c & c & c \end{vmatrix}$ $= (a - c) (b - c) (a - b) (a + b + c)$		91 I		Hacks 7/1
$= \begin{vmatrix} a^{1} - c^{1} & b^{1} + c^{1} & c^{1} \\ a + c & b + c & c \\ 0 & 0 & 1 \end{vmatrix}$ $= (a - c) (b - c) \begin{vmatrix} a^{1} + ac + c^{1} & b^{1} + bc + c^{1} \\ 1 & 1 \\ 0 & 0 \end{vmatrix}$ $= (a - c) (b + c) \begin{vmatrix} (a^{1} + b^{1}) + c(a - b) & b^{1} \\ 0 & 0 \end{vmatrix}$	21 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1) 1		
$= \frac{1}{a^{1} \cdot ac \cdot c^{1} \cdot b^{1} \cdot bc \cdot c^{2}}$ $= \frac{1}{a^{1} \cdot ac \cdot c^{1} \cdot b^{1} \cdot bc \cdot c^{2}}$ $= \frac{1}{a^{1} \cdot ac \cdot c^{1} \cdot b^{1} \cdot bc \cdot c^{2}}$ $= \frac{1}{a^{1} \cdot ac \cdot c^{2} \cdot b^{1} \cdot bc \cdot c^{2}}$ $= \frac{1}{a^{1} \cdot ac \cdot c^{2} \cdot b^{1} \cdot bc \cdot c^{2}}$ $= \frac{1}{a^{1} \cdot ac \cdot c^{2} \cdot b^{1} \cdot bc \cdot c^{2}}$ $= \frac{1}{a^{1} \cdot ac \cdot c^{2} \cdot b^{1} \cdot bc \cdot c^{2}}$,		
$= (a-c)(b-c) \begin{vmatrix} (a^{1} \cdot b^{2}) + c(a-b) & b^{2} \\ 0 & 0 \end{vmatrix}$		$\{q_{ij}\}_{i=1}^{N}$		
	1 (be + e)	$A_{+,i}$		
, i				1
- , , , , , , , , , , , , , , , , , , ,			•	١٨
(N.3. Candidates may use direct expa	noton and tact	ortze.		
<u> </u>	Adam of Paris			4:
	; (1)-1,	1.280		
•		1	(2)	•
		Ruider, so	4.31, 4.	Ú
		1 1	(i,)	·
	$Q \setminus C$	7	٠	
	γ_{\parallel}	\perp		
			•	
	·		·	

of the second se	o minosorada	71 T
Jacket tons		nackn 16-25
18 111 <u>5 - 61</u>		γ, Σ
		* 1Nr
$\frac{1}{x-1}$, $\frac{1}{2-x}$	•	2
nan '[x] < 1 ,	4.	
$\frac{1}{ x } = \frac{1}{ x } \left\{ \frac{1}{ x } \frac{1}{\sqrt{1 + \frac{1}{2}}} \left\{ \frac{1}{ x } \frac{1}{\sqrt{1 + \frac{1}{2}}} \right\} \right\}$	الروائع يقوينا	in -
$- (-1)\frac{1}{1-x} + \frac{1}{2} \left(\frac{1}{1-\frac{x}{2}} \right). $	proton to a first many	1H -
$= (-1)\sum_{k=0}^{\infty} x^{(k-k)} \cdot \frac{1}{2}\sum_{k=0}^{\infty} \left(\frac{x}{2} \right)^{k}$		3.
$= \sum_{k=0}^{\infty} \left(\frac{1}{2^{k+1}} - 1 \right) x^{k}$		2.
$a_k = \frac{1}{2^{k+1}} - 1$		11
then $ x > 2$,	·	
$t(x) = \frac{1}{x-1} \cdot \frac{1}{2-x}$		
$= \frac{1}{x} \left(\frac{1}{1 - \frac{1}{x}} \right) = \frac{1}{x} \left(\frac{1}{1 - \frac{1}{x}} \right) \qquad (4.1)$	i 	ř.e JH
$\frac{1}{x} = \frac{1}{x} \sum_{k=0}^{\infty} \left(\frac{1}{x}\right)^k = \frac{1}{x} \sum_{k=0}^{\infty} \left(\frac{2}{x}\right)^{k}$		
	· · · · · · · · · · · · · · · · · · ·	
$= \sum_{k=0}^{\infty} \frac{1}{x^{k+1}} - \sum_{k=0}^{\infty} \frac{2^k}{x^{k+1}}$		3
$= \sum_{k=0}^{\infty} (1 - 2^{k}) \frac{1}{x^{k-1}}$	•	
$= \sum_{k=1}^{\infty} (1 + 2^{k+1}) \frac{1}{x^{2k}}$.11
7 2 (1 × / X²		
$= \sum_{k=0}^{\infty} b_k \left(\frac{1}{x^2} \right)$		
where $b_{k} = \begin{cases} 0 & k = 0 \\ 1 - 2^{k-1} & k = 1, 2, \dots \end{cases}$	h 11.7.	11
		<u> </u>
•		1 7 . 福

RESTRICTED 内部文件

9 LAL-PHIA-HS-P-Z

		B
$ = \begin{pmatrix} 1 & 2 & 1 & 1 \\ 0 & -1 & 1 & 1 \\ 0 & -1 & q^1 & q \end{pmatrix} $	•	The state of the s
$= \begin{pmatrix} 1 & 2 & 1 & 1 \\ 0 & -1 & 1 & 1 \\ 0 & 0 & q^2 - 1 & q - 1 \end{pmatrix} \begin{pmatrix} \frac{1}{2} & -i & 1 & 1 & 1 & 1 \\ 0 & -1 & 1 & 1 & 1 \\ 0 & 0 & q^2 - 1 & q - 1 \end{pmatrix} \begin{pmatrix} \frac{1}{2} & -i & 1 & 1 & 1 & 1 \\ 0 & 0 & q^2 & 1 & q - 1 \end{pmatrix}$	- 1 : Startife of an	ad #¶ 3-d ¥ \$-2; **ar', d- °.
 (a) No notation → the J^{et} row is a contradiction 		н 2_
→ q1		1/
(b) Enclultoly many notations — the J rd row is always trus	•	18
$-\left[q-1\right]$:	۱۸ . ک
		4
1,1.	} = -T · ① · · ·	
N; 717		
$\triangle_{i} = 1 - i$		
	; .	
n matrica	ED 内部文件	
RE INICI		

	Sofut Loui	Hackn
(1)	() For (+1, 1, , n.	1,4
	$P(a_1) = \frac{a_1(a_1 - a_1) \dots (a_1 - a_{i-1}) (a_i - a_{i+1}) \dots (a_1 - a_n)}{(a_1 - a_1) \dots (a_i - a_i) \dots (a_i - a_n)}$	
	- 4,	18 /
ı	(ii) By $\{a\}\{i\}$, a_i , a_j ,, a_n are n distinct roots of	18
•	P(x) - x = 0	
	(III) Since $\frac{\deg(P(x) - x) \le n - 1}{2}$ and $P(x) = x = 0$ has n distinct roots,	(1H
a	P(x) = x = 0	
	Πy (a)(111), P(O) - O	11
	$\rightarrow \ \ (a_1 a_2 \dots a_n) \qquad \left\{ \frac{1}{(a_1 - a_1) \dots (a_1 - a_n)} , \frac{1}{(a_1 - a_1) (a_1 - a_1) \dots (a_1 - a_n)} \right.$	1н 2
	$+ - + \frac{1}{(a_1 - a_1) \dots (a_n - a_n - 1)} \right\} - 0$	·
	$ \frac{1}{(a_1-a_1)\cdots(a_1-a_n)} + \frac{1}{(a_2-a_1)(a_1-a_2)\cdots(a_n-a_n)} $	
2	$+ \dots + \frac{1}{(a_1 - a_1) \dots (a_n - a_{n+1})} \right\} = 0 \qquad (\because a_1 \neq 0 \forall 1)$	
		5

RESTRICTED 内部文件

GIAL-PHIA-HS-P

Solutions	内部文件 P6
- 107 + 107 + 0 (a) (b) a ¹ + b ¹ + c ¹ - (ab + bc + ca)	Harko
$-\frac{1}{2} + \frac{1}{2} + 1$	
$= 2Ra(u\overline{v}) = 0$ $= \frac{1}{2}((a+b)^{\frac{1}{2}})(b+1)^{\frac{1}{2}}(b+1)^{\frac{1}{2}}$ $= 1A$ $= \frac{1}{2}((a+b)^{\frac{1}{2}})(b+1)^{\frac{1}{2}}(b+1)^{\frac{1}{2}}$	1H (
$\frac{1}{4} \frac{1}{4} \frac{1}$	
- (A + b + c)(a ² + h ² + ah + he	111
- uvo - th tor some h∈ R V	
- u - 1k toe nome k ∈ n	
multiply the inequality in (i) by (b) (i) Since $-\ln 2 < x < \ln 2$,	a · b · c)
If $\frac{U}{V} = Ik$, then $u = ikv$.	
$50, uv + uv = ikvv + \overline{ikv}v$	11
* $1kv\bar{v} - 1k\bar{v}v$) 1H	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$. IH
(b) $Argv = \frac{\pi}{2}$	1H
7 0	
(N.B. N.H™≥C.H. Gannot be used, be negative.)	count the values may
(LL) Lue a - (a ⁻¹)	
b - (2 p ^r) ¹	
$c = (a^{\tau} - a^{\tau} + 1)^{\frac{1}{3}}$. 1н
by (b)(L), * + b + c > 0.	
Henco uning (a) (ii), we have	2
$a^{-r}(2-a^{r})(a^{r}-a^{-r}+1)$	
~ (abc) ¹	
$\leq \left[\frac{a^3 \cdot b^3 \cdot c^3}{1 - c^3} \right]^3$	
$= \frac{\left(u' + (2 - a') + (o' - a') + (o' - a') + (o' - a')\right)}{\left(a' + a'\right)}$.1'
	·J
and the state of t	F. 18. 17.
gu e a e e e e e e e e e e e e e e e e e	har to
- RESTRICTED 内部文件 91AL PHIA THS - P.	P. (

The line Way	31. 文件	
Solution		Harke .
(1) (L) FOC 0 - L,		
$b_1 = \frac{1}{2}(a_1 - \frac{1}{2}a_1) - (\frac{1}{4})a_1 \ge \frac{1}{2}$		11
$c_1 - \sqrt{a_1(\frac{1}{2}a_1)} - \sqrt{\frac{1}{2}a_1} > \frac{1}{2}a_1 - \frac{1}{2}a_1 -$	i er sepant	was recognizing Zigilare.
Then,		
$b_{k+1} = \frac{1}{2} (a_{k+1} + c_{k+1}) > \frac{1}{2} (A_k)$	1 ct) - přt1	1н
$c_{k+1} = \sqrt{a_{k+1}b_{k+1}} > \sqrt{a_kb_k} + c_{k+1}$	•	
(11) For n = 1 ,		
$b_1 - c_1 = \frac{1}{2}a_1 < a_1 \qquad \qquad a_1 > \dots$	> 0	iA
Adduma by say and costs.		. 2
Then,	÷	
$b_{k+1} = \frac{1}{2}(a_k + c_k) < \frac{1}{2}(a_k + A_k)$		1H
$c_{*,i} = \sqrt{a_1} \overline{b_2} \in \sqrt{a_1} \overline{a_1} = A_1 \in a_1$	1 -1	
(b) Since $\{b_n\}$ and $\{c_n\}$ are increasing	and bounded above by L ,	18 1
they are convergent.		, ,
Let $b_n \to p$ and $c_n \mapsto q$ as $n \mapsto m$.		
Then $p = \frac{1}{2}(L + q)$ and $q \cdot \sqrt{Lp}$		
$q^2 - \frac{1}{2}L(L + T)$		111 2
- (L - q)(L + 2q) = 0		i
\Rightarrow q - L or q - $-\frac{1}{2}$ L (rejucted be	caude d 5 0 } ·	13
Hence $\lim_{n\to\infty} h_n = \lim_{n\to\infty} c_n = L$.		
	· · · · · · · · · · · · · · · · · · ·	7
•	•	/
	•	
	•	
ā	:	1
		91AL-PHIA-HS-(F-)
and had many to have \$ 1000	- 10 8 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	•

	RESTRICTED 凶部文件	· p S
	. Solutions .	Harko
(a) (1) Co	notice $C(c) = \hat{\Sigma} (a_x + cb_x)^2 = \hat{\Sigma} a_x^2 + 2c\hat{\Sigma} a_x b_x + c^2 \hat{\Sigma} b_x^2$, 1H ,
· · · · · · · · · · · · · · · · · · ·	((c) ≥ 0 Vc ∧ ≤ n	1 ң
	$\left\{2 \int_{a_1} a_1 b_1\right\}^2 - 4 \left\{\int_{b_1} b_k^2\right\} \left\{\int_{b_1} a_k^2\right\} \leqslant 0$ $= \sqrt{1 - 4 \left(\int_{b_1} b_k^2\right) \left(\int_{b_1} a_k^2\right)} \leqslant 0$	i in Spinisperielegies 200
. ••	$\{\hat{\Sigma}_{a_{2}b_{3}}\}^{2}$, $\{\hat{\Sigma}_{a_{3}}\}\{\hat{\Sigma}_{b_{3}}\}$	in ·
	$s \frac{b_k}{a_k} \le q k = 1, \dots, n$	
· · ·	$a_{k}^{2}(p-\frac{b_{k}}{d_{k}})(q-\frac{b_{k}}{d_{k}})<0, k-1,, n$	1H
	$pqs_{p}^{2} + (p+q)s_{p}b_{p} + b_{p}^{2} < 0$	
-	$\sum_{k=1}^{n} (pqa_{k}^{2} - (p+q)a_{k}b_{k} + b_{k}^{2}) \le 0$	114
	$pq\sum_{k=1}^{n}a_{k}^{2}-(p+q)\sum_{k=1}^{n}a_{k}b_{k}+\sum_{k=1}^{n}b_{k}^{2}<0$	114
·	$(p+q)\sum_{k=1}^{R}a_{k}b_{k}+\sum_{k=1}^{R}b_{k}^{2}+pq\sum_{k=1}^{R}a_{k}^{2}$	
(111) ·	$\frac{1}{l} < \frac{b_k}{a_k} < \frac{bl}{m}$	1H
) i y	(b) (11) : $\left(\frac{m}{t^{\frac{1}{2}}} + \frac{M}{m}\right) \frac{B}{k+1} \alpha_k b_k$	
	$\geq \sum_{k=1}^{n} b_k^2 + \sum_{k=1}^{n} a_k^2$	15
	$2\sqrt{\sum_{k=1}^{n}h_{k}^{2}\sum_{k=1}^{n}a_{k}^{2}}$ ([VA.H. 2 G.H.])	111
- Ha	nce, $\frac{1}{4} \left(\frac{m}{H} + \frac{M}{m} \right)^2 \left(\sum_{k=1}^{L} a_k b_k \right)^2 > \sum_{k=1}^{L} a_k^2 \sum_{k=1}^{L} b_k^2$	114
		10
	$a_{k} = 1 + \frac{1}{3^{k}}$ $b_{k} = 1 - \frac{1}{3^{k+1}}$	11
	$-\frac{1}{3^{2}} s a_{k}, b_{k} s 1 + \frac{1}{3^{1}}$	
· <u> </u>		
,	$ka_1 = \frac{8}{9}$, $H = \frac{4}{3}$	1X
	arder of the state	••

2	NESTRICTED 内部文件	1-7
7	Solutiona	Harko
(6)	by (a)(LLL),	1
	$\left\{\sum_{k=1}^{n}\left(1+\frac{1}{3^{2}}\right)^{k}\right\}\left\{\sum_{k=1}^{n}\left(1+\frac{2}{3^{2+1}}\right)^{2}\right\}^{-\frac{n}{2}+\frac{n}{2}}\left\{\frac{n}{2}+\frac{2}{3^{2+1}}\right\}^{2}$	
	$\leq \frac{1}{4} \left(-\frac{\frac{4}{3}}{\frac{1}{9}} + \frac{\frac{9}{9}}{\frac{4}{3}} \right)^{2} \left(\sum_{k=1}^{n} \left(1 + \frac{1}{3^{2}} \right) \left(1 - \frac{1}{3^{2-1}} \right) \right)^{2}$	resistable to particular
	$= \frac{169}{144} \left\{ \sum_{k=1}^{n} \left(1 + \frac{1}{3^{k}} - \frac{1}{3^{k+1}} - \frac{1}{3^{2k+1}} \right) \right\}^{2}$	
	$= \frac{169}{144} \left\{ \sum_{k=1}^{K} 1 + \sum_{k=1}^{K} \frac{1}{3^{k}} - \frac{1}{3} \sum_{k=1}^{K} \frac{1}{3^{k}} - \frac{1}{3} \sum_{k=1}^{K} \frac{1}{9^{k}} \right\}^{3}$	
•	$-\frac{169}{144}\left\{n+\frac{2}{3}\sum_{k=1}^{R}\frac{1}{3^{k}}-\frac{1}{3}\sum_{k=1}^{R}\frac{1}{9^{k}}\right\}^{2}$	111
	$<\frac{169}{144}\left\{n+\frac{2}{3}\sum_{k=1}^{n}\frac{1}{3^{k}}\right\}^{2}$	
	$<\frac{169}{144}\left\{n+\frac{2}{3}:\frac{\frac{1}{3}}{1-(\frac{1}{3})}\right\}^{3}$	
	$=\frac{169}{144}\left(n+\frac{1}{3}\right)^3$	
	$\frac{\left\{\sum_{k=1}^{n}\left(1, \frac{1}{3^{2k}}\right)^{2}\right\}\left\{\sum_{k=1}^{n}\left(1, \frac{1}{3^{2k+1}}\right)^{2}\right\}}{\left\{\sum_{k=1}^{n}\left(1, \frac{1}{3^{2k+1}}\right)^{2}\right\}}$	
	$\geq \left\{ \sum_{k=1}^{r_{r}} \left(1 + \frac{1}{3^{2}} \right) \left(1 - \frac{1}{3^{2+1}} \right) \right\}^{2}$	114
	$= \left\{ n + \frac{2}{3} \sum_{k=1}^{n} \frac{1}{3^{k}} - \frac{1}{3} \sum_{k=1}^{n} \frac{1}{9^{k}} \right\}^{2}$	
-	$ > \left\{ n + \frac{2}{3} \sum_{k=1}^{n} \frac{1}{3^{k}} - \frac{1}{3} \sum_{k=1}^{n} \frac{1}{3^{k}} \right\}^{3} $	18 1
·.	$= \left\{ n + \frac{1}{3} \sum_{k=1}^{k} \frac{1}{3^k} \right\}^2$	
	$\geq \left(n + \frac{1}{3} \cdot \frac{1}{3}\right)^2$	
	$\sim \left(\pi + \frac{1}{9}\right)^2$	
	$ \left(n + \frac{1}{9}\right)^2 < \left(\sum_{k=1}^{n} \left(1 + \frac{1}{3^2}\right)^2\right) \left\{\sum_{k=1}^{n} \left(1 - \frac{1}{3^{n+1}}\right)^2\right\} < \frac{169}{144} \left(n + \frac{1}{3}\right)^2 $ $ \frac{5}{3} + \frac{1}{3} + \frac$	s
	553	Mr. red
۲. Ib	by (A)(111),	
Cž. 77	RESTRICTED 内部文件 "	а L- Рнів-НS-Р.2

7.45) <u> </u>	, , RESTRICTED 內部文	(['] :	1110
Ē		Solutions		Harko
<i>ij</i>		(L) $\phi(\alpha z) = \phi(\alpha z + 0z) = \alpha \phi(z) + 0 \phi(z) = \alpha \phi(z)$	$z > 0 - \alpha \phi(z)$	216
٠.	(n)	(11) 中(6)保证中(6)是16) 等1年(6) 中(10)		าหา
		- \phi(0) - 0		
	:	•		3 - 7:1
	(p)	•		·
		Let ZIMN + yAr, .x, y C R .		1#
		Then $\phi(z) = \phi(x + yI)$: $= x\phi(z) + y\phi(i)$		
		= x\psi(1) - y\psi(1) = x\psi(1) - y\psi(1)	•	
		$= \psi(x + yl)$		1H
		- y(z)		
		- y (~)		
			•	2
	(c)	(1) $\phi(1) = \phi(1 \times 1) = \phi(1) \phi(1)$		114
		$\rightarrow \qquad \phi(1) - \phi(1)\phi(1) = 0$		
		φ(1) (1 − φ(1)) σ 0		,,
		→ φ(ι) → 0 or φ(1) = 1	•	11
		but LE $\phi(1) = 0$, then $\phi(\pi) = \phi(1 \times \pi)$		
		- 中(1)中(元) - 中(1)中(元) - ウェウ(元)	••	
		- 0 Vz f C		114
	-	implying of ±0 (i)		
		· φ(1) - 1	•	11
		Henca ∀ x ∈ R ,		
		$\phi(x) = \phi(x \times 1)$		
	•	- x0 (1)	s d	111
		- x × 1	•	
		~ x		
		•	•	
		•		
		BREWELL ARTS AND A	•	
	•			. na es
	 (A	(1) (1) (an) + dian (w)	ī .] ::
		the state of the Asset of the	•	

		RES	TRICT	ED 内部	文件	1.1
		Solutions				Harks
79. (c) ((LL)	No (lest	. nhow - 本(1)	-1 or -1 +			
	ф(~1) —	φ(1 × .l)				
		ቀ (1) ቀ (1)			· · ·	1H
	and φ(-	1) · (t)		,		
		- -1		•		
	∴ -1 ·	- φ(1)φ(1)				111
	- \$(1) = 1 or -1				1Λ
	<u> </u>	φ(1) ¬ 1		÷ 1		
				l , x , y F R		
		We have ∳(z	z) = η (xc + yr)	n		
			= x(\(\frac{1}{1}\) +	5中(i) - x + yi		. 1H
			∠			
	Case 2	$\phi(i) = -i$				
		∀z∈c, L	et z = x + yi	, ·χ , γ ς π		
		He have ∳(z	$= \phi(x + y)$	")	•	
			- xp(1) +	3·\$ (1)		18
			- x - y1			
			-			10
					· · · · · · · · · · · · · · · · · · ·	
			-		:	4.
				. •		
			•		•	
					•	
		. •				
				•		•
		17 80 °	p 3 + 4 x = 11 3			
			FRANCIE	Nasi wa	!	i
÷.		. <u>1500 -</u> 160			*	
er di		Alter 6111	• • •			į
	\$1-11 ·		<i>.</i>			··`.
CY 34	• *	PECT	RICTE	一门 太江 三	7-14- 91AL-	- HIB-HS-B-4

7.		eduing	京雅之小
<i></i>	RESTRICTE	D_凹部文件	*
	Solutions	<u> </u>	Harks
(v) (r) no ($\alpha x + \beta y$	•	
u,		: '	1A
- a l	$\begin{vmatrix} u_1x_1 - x_2u_1 \end{pmatrix} + \beta \{u_1y_1 - y_1u_1 \} \\ u_2x_1 - x_1u_1 \end{pmatrix} + \beta \{u_1y_1 - y_1u_1 \} \\ u_1x_1 - x_1u_1 \end{pmatrix} + \beta \{u_1y_1 - y_1u_1 \} $. (E. 2]. 7922 by 1 more	гілцоставня Ін
- a (!	$ \begin{array}{lll} u_1x_1 &- x_2u_1 \\ u_1x_1 &- x_1u_1 \\ u_1x_2 &- x_1u_2 \end{array} + \beta \begin{pmatrix} u_1y_1 &- y_2u_1 \\ u_1y_1 &- y_1u_1 \\ u_1y_2 &- y_1u_1 \end{pmatrix} $		
- a (u	$\otimes x$) + β ($u \otimes y$)	• •	
(LT) n⊗x	,		·
$-\begin{pmatrix} u_1 \\ u_1 \\ u_1 \end{pmatrix}$	$\begin{pmatrix} x_1 - x_1 u_1 \\ x_1 - x_1 u_1 \\ x_2 - x_1 u_1 \end{pmatrix}$;
	$(x_1u_1 - u_2x_1)$ $(x_1u_1 - u_2x_1)$ $(x_1u_2 - u_1x_2)$	·	1н .
x ⁽	9 u		·
(1)	(0)	•	
(p) 0 - n ⊗ (0)	$-\begin{pmatrix}0\\u_3\\-u_1\end{pmatrix}-u_1=u_3=0$		1+1
$0 - u \otimes \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$	$= \begin{pmatrix} u_1 \\ -u_1 \\ 0 \end{pmatrix} - u_1 = 0$		1
u = 0.	•		:
10 × - × 6	O x V x		
~ u⊗x	- v Ø x = 0 × x		1н
(x ⊗	11)(a) yd) x V 0 = (v @x - n)		114
x ⊗	$(u-v)=0 \forall x \text{ (by (a)(L))}$		10
(u - t	(ill) (a) (by (a) (ill)) × ∀ × (by (a)		1н
- u - v	- 0		
- u - v	•	•	
• -			,
٠.	e company	,	
		÷	
	Town Stor		

18

. 14

114

1H

10. (c) $\forall x \in H$, let $x_i = \begin{cases} x_i \\ x_j \\ x_i \end{cases}$

Then $Hx = H = \frac{k_1}{k_2}$

$$-H\left(x_1\begin{pmatrix}1\\0\\0\end{pmatrix}+x_1\begin{pmatrix}0\\i\\0\end{pmatrix}+x_1\!\begin{pmatrix}0\\0\\0\end{pmatrix}\right)$$

$$-x_1 H \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} + x_1 H \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} + x_1 H \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$$

$$= x_1 \mathcal{M} e_1 + x_1 \mathcal{M} e_2 + x_1 \mathcal{M} e_1$$

$$= x_1 \left(u \otimes \sigma_1 \right) \rightarrow x_2 \left(u \otimes \sigma_2 \right) \rightarrow x_1 \left(u \otimes \sigma_2 \right)$$

$$-u \otimes (x_1e_1 + x_2e_2 + x_1e_3)$$

(d) Let
$$M = \begin{pmatrix} a & d & g \\ b & a & h \\ c & f & l \end{pmatrix}$$

we have
$$\begin{pmatrix} a & d & g \\ b & e & h \\ c & f & I \end{pmatrix} \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} = \begin{pmatrix} 0 \\ r \\ -q \end{pmatrix}$$

$$- \begin{pmatrix} a \\ b \\ c \end{pmatrix} = \begin{pmatrix} 0 \\ x \\ -q \end{pmatrix}$$

$$\begin{pmatrix} a & d \cdot g \\ b & c & h \\ c & f & l \end{pmatrix} \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} = \begin{pmatrix} r \\ 0 \\ p \end{pmatrix}$$

$$-- \left(\begin{array}{c} i \\ i \\ c \end{array}\right) = \left(\begin{array}{c} i \\ 0 \\ 0 \end{array}\right)$$

$$\begin{pmatrix} a & d & g \\ b & \sigma & h \\ c & f & f \end{pmatrix} \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} - \begin{pmatrix} q \\ -p \\ 0 \end{pmatrix}$$

$$- \begin{pmatrix} g \\ h \\ l \end{pmatrix} - \begin{pmatrix} q \\ -\rho \\ q \end{pmatrix}$$

$$H = \begin{pmatrix} 0 & -r & q \\ r & 0 & -p \end{pmatrix}$$

กละการาหายสม

91AL-PHTR-H4-P

(\lambda + \lambda) = (\lambda + \lambda 2) = (\lambda 2) = (\lambda

 $\begin{array}{l} \vdots \frac{3n}{k-1} \binom{2n}{k} (\sqrt{3})^{\frac{1}{2}} (\sqrt{2})^{\frac{1}{2}n-k} \\ \vdots \frac{n}{k-1} \binom{2n}{k} (\sqrt{3})^{\frac{1}{2}} (\sqrt{2})^{\frac{1}{2}(n-1)} & - \sum\limits_{l=1}^{n} \binom{2n}{2l-1} (\sqrt{3})^{\frac{2l-1}{2}(\sqrt{2})^{\frac{2n-2l+1}{2}}} \end{array}$

$$-\left\{\sum_{l=0}^{n}\binom{2n}{2\pm}3^{l}2^{n-l}\right\}+\sum_{l=1}^{n}\binom{2n}{2l-1}3^{l-1}2^{n-l}\sqrt{6}$$

$$\left\{ \sum_{i=0}^{n} {2n \choose 2i} 3^{i} 2^{n-i} \right\} \cdot \left\{ \sum_{i=1}^{n} {2n \choose 2i-1} 3^{i-1} 2^{n-i} \right\} \sqrt{6}$$
He see that
$$\left\{ \sum_{i=0}^{n} {2i \choose 2i} 3^{i} 2^{n-i} \right\} \text{ and } \left\{ \sum_{i=1}^{n} {2n \choose 2i-1} 3^{i-1} 2^{n-i} \right\}$$

, are positive integers.

(Alternatively, use mathematical induction)
(Uniqueness)

Suppose $(\sqrt{3}+\sqrt{2})^{\pm n}=r_n+s_n\sqrt{6}$ where r_n , s_n are positive integers.

Then pn + qn/G ~ rn + sn/G

$$-p_n - F_n = (S_n - G_n)/6$$

$$\Rightarrow p_n = r_n + n_n + n_n = 0$$

$$\rightarrow p_n + r_n$$
 and $\sigma_{n-n}^{*}(q_n)$

$$(\sqrt{3} - \sqrt{2})^{2n}$$

$$= \sum_{k=0}^{2n} {2n \choose k} (\sqrt{3})^k (-\sqrt{2})^{2n-k}$$

$$= \sum_{i=0}^{n} \binom{2n}{2i} (\sqrt{J})^{2i} (-\sqrt{2})^{2(n-1)} + \sum_{i=0}^{n} \binom{2n}{2i-1} (\sqrt{J})^{2i-1} (-\sqrt{2})^{2n-2i+1}$$

$$= \left\{ \sum_{l=0}^{n} {2n \choose 2l} 3^{l} 2^{n-l} \right\} - \left\{ \sum_{l=1}^{n} {2n \choose 2l-1} 3^{l-1} 2^{n-l} \right\} \sqrt{6}$$

$$= p_n - q_n \sqrt{\epsilon}$$

[Altornatively, use mathematical induction]

$$\rightarrow$$
 0 $\langle (\sqrt{3} - \sqrt{2})^{2n} \langle 1$

$$\frac{1}{1}$$
 0 ($p_n - q_n\sqrt{6}$ (1

$$\rightarrow 0 \langle 2p_n - \langle p_n + q_n / \overline{c} \rangle \langle 1$$

$$\Rightarrow g < 2p_n - (\sqrt{J} + \sqrt{2})^{2n} < 1$$

$$\rightarrow$$
 0 (1) $(\sqrt{3} + \sqrt{2})^{\frac{1}{100}}$ and $2p_n = (\sqrt{3} + \sqrt{2})^{\frac{1}{10}} < 1$

$$\frac{1}{12} = \frac{1}{12} \left(\sqrt{3} + \sqrt{2} \right)^{2n} \left(2p_n \text{ and } 2p_n - 1 \right) \left(\sqrt{3} + \sqrt{2} \right)^{2n}$$

LDEOUDTOWED HE MI

91AL-PHIB-HS-P.7

Provided by dse.life

	RESTRICTED 内部文件	Til).		1/2011/0~162 1912人工	12.16
	Solutions	Hacks	· · · · · · · · · · · · · · · · · · ·	Solutions	Harku
1. (b)	$\{\lambda\} = 2^{1\sigma} - 2^{n}$		\$(2. (n)	Vu. νελοπ, α, βεπ much that α, β > 0 and α + β - 1,	
	- (2 ³) ⁿ - 2 ⁿ		•	$\alpha u + \beta v \in A \ (\exists A \text{ convex and } u \text{ , } v \in A)$	
•	$= (2^{2} - 2) \left((2^{3})^{n-1} + (2^{3})^{n-2} 2^{n-1} + 2^{n-1} \right)$	1/1		au + βv ∈ B (∵B convex and n , v ∈ B)	14
	- 30 x (a positive integer)			∴ αu + βr ∈ A ∩ B	111
	il:, *.10 x (a positive integer)			$A = \{(0,0,0)\}$, $B = \{(1,1,1)\}$ are convex.	1H
	$(11) 3^{1a} = 1$	ľ		But $A\cup B=\{(0,0,0)$, $\{1,1,1\}\}$ in not convex because	100 : 0
	$- (3^{\ell})^n - \lambda^n$			$\frac{1}{2}(0,0,0) \cdot \frac{1}{2}(1,1,1) - \left(\frac{1}{2}, \frac{1}{2}, \frac{1}{2}\right)$	1H
	$= (3^{4} - 1) ((3^{4})^{n-1} + (3^{4})^{n+2} + \dots + 1)$	1/		€ A U D	
	- 80 x (A ponitive integer)	\·			1
	- 10 x (a postt <u>ive</u> integor)			$\forall \alpha, \beta \in R$ such that $\alpha, \beta > 0$ and $\alpha + \beta = 1$,	
	(111)P10 + 1010/6	1		Υ w ₁ , w ₁ e Λ + B ,	
	" (√J + √Z) ⁴ "			we have $w_i = u_i + v_i$ for some $u_i \in A$, $v_i \in B$	
	~ (5 + 2√6) In	18		$v_1 - u_1 + v_1$ for nome $u_1 \in \lambda$, $v_1 \in B$	
	#120 lekto 60 10-k			then $\alpha w_1 + \beta w_2$	
	$= \sum_{k=0}^{10} {2n \choose k} 5^k (2\sqrt{6})^{2n-k}$			$= \alpha (u_1 + v_1) + \beta (u_2 + v_2)$	111
	$= \sum_{i=0}^{n} \left(\frac{2n}{2i}\right) 5^{2i} \left(2\sqrt{6}\right)^{2n+2i} + \sum_{i=0}^{n} \left(\frac{2n}{2i-1}\right) 5^{2i-1} \left(2\sqrt{6}\right)^{2n-2i+1}$	·		$= (\alpha u_1 + \beta u_2) + (\alpha v_1 + \beta v_2)$:
				= $u' + v'$ where $u' = \alpha u_1 + \beta u_2 \in A$ (∇A convex)	
	$= \left\{ \sum_{i=0}^{n} {2n \choose 2i} 5^{2i} 2^{2n-i} 6^{n-i} \right\} + \sum_{i=0}^{n} {2n \choose 2i-1} 5^{2i-1} 2^{2n-i} 6^{n-i} \sqrt{6}$			and $v' \cdot av_i + \beta v_i \in B (:B convex)$	114
	$\therefore \rho_{1n} = \sum_{i=0}^{n} \binom{2ii}{2i} 5^{1i} 2^{1(n-i)} 6^{n-i}$	IV	 ,. ·	y ∈ A + B	
			(c)	$\forall \alpha, \beta \ge 0$ and $\alpha + \beta = 1$,	
,	$= \frac{2p_{2n}}{n} \left(\frac{2n}{0} \right) S^{0} 2^{2n+1} 5^{n} + 10 \sum_{l=1}^{n} \left(\frac{2n}{2l} \right) S^{2l+1} 2^{2(n-l)} 5^{n-l}$		•	∀ u, νεγλ,	
	$- 2p_m - 2^{2n+1}6^n + 10 \times (n \text{ positive integer})$			$u = \gamma u_i$, $v = \gamma v_i$ for some u_i , $v_i \in \Lambda$.	
	$\Rightarrow 2p_{1n} = 2^{2n+1}e^n = 10 \times (a \text{ positive integer})$	111		Hence, $\alpha u + \beta v$	
-	$-2p_{7n}-2^{1n+1}2^n)^n-10 \times (a positive integer)$:	$= \alpha (\gamma u_i) + \beta (\gamma v_i)$	18
	$- 2p_{1n} - 2^{1n+1} 3^n - 10 \times (a positive integer)$	5	•	$= \gamma(\alpha u_1 + \beta v_1)$	
(c)	¥.7-		••	= $\gamma u'$ where $u' = \alpha u_1 + \beta v_1 \in \Lambda$ ($\nabla \Lambda$ convex)	114
(0)	$2p_{10}-1$	17		€ YA	
		114			2
	- (10 x(a positive integer) + 2''1'1'3 } - 1 (by (b)(ill))	***			
	= (10 x(a positive integer) + 2 x 2 ^{3×13} x 3 x 3 ^{4×4}) - 1	,,,			
*	- (10 x(a positive integer) > 6 x 2 ³⁺³ x 1) - 1	IH .	•		
	= $(10 \times (a \text{ positive integer}) + 6 \times 2^1 \times 1) = 1$			and the same of th	
• •	(-19-x-(a positive integer) + 8) - 1				19.0016.0
·	= 10X.(a.požitlv4 integer) + 7				
	The unit digit is 7.	$\frac{-1\Lambda}{4}$			1

7	изотителью	内部文件	12 18
	Solutions		P,18
. 13.	(a) (rofloxive)		Harke
	v - v - 0 - od Y v e k'		
	(Hymmotric)		114
	v - w - v - w - ku		1
	- w - v = (-k) u		
	the another featible		114
	(transitive)		
	V = W and W = X	i .	
	v - w - ku and w - x k'u		
•	+v-x=(v-w)+(w-x)	•	
	= ku + k'n		1H
	= (k + k') 11	·	
	-v-x	•	
•			
	(b) (1) $\forall v \in \mathbb{R}^3$, $v = (v \cdot u)u$ extets	- f((v)) extata.	F>-
	Now, If (v) = (w) ,	•	111
	then v-w		
	→ V-W-ku for noine k ∈ R		
	→ ν = ν + ku	er e	1
	Hence, $f([v]) = v - (v \cdot u)u$		1H
	= (w + ku) - ((w	· · ku) · u) u	1
٠.	- w + ku - (w · u	·	
	= w + ku - (w · u		114
	= w + ku - (w · u)		}
	* w = (w · u) u		
-	= E((w))		,
	(11) If $E((v)) = E((w))$		
••	then v - (v · u) u - w - (w · u) u		111
• .	$v = w = ((v \cdot u) - (w \cdot u))u$		
	- Winds		1н
	- (v) - (w)		
	(111)(-)		
	T# her works are to	, n) n	
	A(7)	w/u	
	T M = 0		1 1H
::-	# € £(R²/~)		

1.	TITE I WILLIAM I	1 h Paradage
1/	Sector from	Hacks
t.	Submittanting present into 28 1 - 282 - 128 (8 + 1) + (8 + 1) 282 - 128 (8 + 1) + (8 + 1) 281	111 //
	$5x^2 + 4cx + c^2 + 1 = 0$	
	the (x_1,y_1) - and (x_1,y_1) that the differential points. Then, $x_1 + x_2 = \text{subject cools}$	1. 11
	<u>4c</u>	- 1Λ
	$- y_1 + y_2 + x_1 + c + x_3 + c$ $\frac{4c}{5} + 2c$	
`	. 6c	
(§	Let $H(x,y)$ be the mid-point.	
رو	We have $x = \frac{1}{2}(y_1 + y_2) = -\frac{3c}{5}$ and $y = -\frac{1}{2}(y_1 + y_2) = -\frac{3c}{5}$	11
	r Eliminating c , we obtain 3x + 2y = 0, x atcaight line	11

(to

	Solution 1	~ 	ואלה	12 M		.1:1	42 1	1 on			<u></u>
	$(1 + \cos \theta + \cos 2\theta + \cos 2\theta) \approx \ln(\frac{1}{2}\theta)$					selati:	dy , , , , , ,	· · · · · · · · · · · · · · · · · · ·			lil
	$= \sin\left(\frac{1}{2}\theta\right) + \cos\theta \cos\left(\frac{1}{2}\theta\right) + \cos\theta \sin\left(\frac{1}{2}\theta\right) + \cot\left(\frac{1}{2}\theta\right) + \cot\left(\frac{1}{2}\theta\right)$ $= \sin\left(\frac{1}{2}\theta\right) + \frac{1}{2}\left[\sin\left(\frac{1}{2}\theta\right) + \sin\left(\frac{1}{2}\theta\right) + \sin\left(\frac{1}{2}\theta\right)\right]$		IM :	(a)		- [] (5511016.50) - [] (5511016.50)		₹£ at	,		
	$\frac{1}{1+2} \left(\frac{1}{2} \ln \left(\frac{(2n+1)\theta}{1+2(1+2n+1)\theta} \right) \frac{1}{2} \ln \left(\frac{(2n-1)\theta}{2} \right) \right)$	r Palisija	IA ครั้งและเก็บได้เก็บเก็ดคุดให้แก่ง	1	á.	$= \int_{a}^{\frac{\pi}{4}} j \sin t \alpha \cos t \alpha$					11
	$-\frac{1}{2} \left\{ \sin \left(\frac{1}{2} \theta \right) + \sin \left(\frac{(2n + 1) \theta}{2} \right) \right\}$ $-\sin \left(\frac{1}{2} (n + 1) \theta \right) \cos \left(\frac{1}{2} n \theta \right)$.,	18			$= \left[1, \frac{\sigma_1}{2}, \frac{\sigma_2}{2}, \frac{1}{2} \right]$		•			
	To oplyo the cost of costs of the costs of t	i				- 3					18
×	Figure 1 or $0 = 0$ is obviously not a solution. Then, for $0 = (0, 2\pi)$,		IM	(6)	Acos =	\" \ (cca, v) (14)	n'tcomt) dt		•		
	$\min \frac{1}{2} \theta \neq 0 \ ,$ hence the equation becomes $\min \{\frac{1}{2}(n+1)\theta\} \cos (\frac{1}{2}n\theta) = 0 \ .$	٠				of nin coon't			,		1ħ
·	$\alpha = -\pi \ln\left(\frac{1}{2}(n+1)\theta\right) = n \cdot \exp\left(\cos\left(\frac{1}{2}n\theta\right) + n\right).$			13)	, •	$\int_0^{\frac{\pi}{2}} \left(\frac{\pi \ln 2\pi}{2} \right)^3 dx$	on'tht			;	
	$\frac{1}{2}(n+1)\theta - k\pi \text{ or } \frac{1}{2}n\theta - \frac{1}{2}(2k+1)\pi \text{ , } k \in \mathbb{Z}$	•	11			$\int_0^{\frac{\pi}{2}} \left(\frac{\sin \ln 2L}{2} \right)^2 \left(\frac{\sin \ln 2L}{2$		1			in ·
	$0 = \frac{2k\pi}{(n-1)}, k+1,2,,n$ or $0 = \frac{(2k+1)\pi}{n}, k=0,1,2,,n-1$		1/4	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		$= \frac{3}{6} \left\{ \left[\frac{1}{2} \sin^2 2\pi \right] \right\}$ $= \frac{1}{6} \left\{ \frac{1}{2} \left[\frac{\sin^2 2\pi}{3} \right] \right\}$					
	Allematic relation for the fact part			÷		$= \frac{3}{8} \left\{ \gamma + \frac{1}{2} \int_{0}^{\frac{\pi}{2}} 1 \right\}$,	•		
-	When it = 1. L.H.S = (11 coe) and					$= \frac{3}{15} \left z - \frac{\sin 4}{1} \right $	c 1,		,	· \	
	= 200 \$ 1 (15 (200 \$)		IA IA			- <u>] n</u>] 2	· .				
	= 1: (5.11 2 + .2-11 2) = 1.11 (10) 2					· ·			•		}
	= 12.11 S),	IM								
	Assume (1) test a control of anti-of- there (1) test a control of anti-of- $= -m \cdot \frac{1}{2} \left(k \cdot r \right) \theta \cdot \cot k \theta + \cot k \cdot r \right) \sin \frac{1}{2} \theta$ $= \frac{1}{2} \left(k \cdot r \cdot \left(\frac{-k \cdot r}{2} \right) \theta + \cot \left(\frac{k}{2} \right) \log_{2} \theta + \cot \left(\frac{-k \cdot r}{2} \right) \theta - \cot \left(\frac{-k \cdot r}{2} \right) \theta \right)$ $= \frac{1}{2} \left(\sin \left(\frac{-k \cdot r}{2} \right) \theta + \cot \left(\frac{-k}{2} \right) \log_{2} \theta \right) - \sin \left(\frac{-k \cdot r}{2} \right) \theta \cdot \cot \left(\frac{-k \cdot r}{2} \right) \theta$ $= \frac{1}{2} \left(\sin \left(\frac{-k \cdot r}{2} \right) \theta + \cot \left(\frac{-k \cdot r}{2} \right) \theta - \cot \left(\frac{-k \cdot r}{2} \right) \theta \right)$		IA.		. -	e e e				 -	
	RESTRICTED 内部文件	<u>-</u> . 91	IAL-PHIIA-HS-	1 ! !	,				:	9171	-PHIIA-NS-
	ر میان به رو های به در میشود به این به این به در در میان به در در میان به میان به میان میان به در میان به در د در میان به روید به در میشود به میشود به در میان به در در میان به در در میان به میان میان به میان به در میان به	· • • · · · · · · · · ·	Alter Syria Control	5 .		RESTRI	CLED 15	1 郡 文 作 P 1	rovided	l by d	ise.lif

RESURCECTED PLAN A (中)	p.4
Solutions	Harko
Unn the substitution $t = \tan \frac{1}{2}\theta$	1H
Then $\min_{t \in \mathbb{R}^{n}} \frac{2\varepsilon}{(t^{n} + \varepsilon^{n})}$ at $t = 0$, $t = 0$, at $t = 1$.	1A
therefore, the integral	
$= \int_0^1 \frac{1}{1 + 2 \left(\frac{2 \pi}{1 + 2} + \frac{2 \pi}{1 + 2 \pi}\right)^2} = \frac{1 + \frac{2}{1 + \frac{2}{1 + 2}} d\tau}{1 + \frac{2}{1 + 2} d\tau}$	
$-\int_{0}^{1} \frac{2}{1+c^{2}-4c} dt$	ΙΛ
$-\int_{2}^{1} \frac{2}{(5-2)^{\frac{3}{2}}} \frac{2}{(5-2)^{\frac{3}{2}}} dx$	1н
$= (\frac{1}{\sqrt{3}}) \int_0^1 \frac{1}{c + 2 - \sqrt{3}} - \frac{1}{c + 2 + \sqrt{3}} \cdot 10$	1H
$= \left(\frac{1}{\sqrt{3}}\right) \left\{ \left\{ \ln \left k + 2 - \sqrt{3} \right - \ln \left k + 2 + \sqrt{3} \right \right\} \right\}$,
$= \left(\frac{1}{\sqrt{3}} \right) \left\{ \ln \left \frac{3 - \sqrt{3}}{3 + \sqrt{3}} \right - \ln \left \frac{2 - \sqrt{3}}{2 + \sqrt{3}} \right \right\}$. IA
	1

1	TE CLUTED PREX 件:	v .)
′	Solutions	Hacks
	5. (a) C'Hempital's cuts cannot be small	
	Let $y = \frac{1}{2} \left(\frac{a}{a} + \frac{1}{1} \right)^{\frac{1}{2}}$	
	then $\lim_{x \to \infty} \ln \frac{1}{x} \ln \frac{x^2 - 1}{x^2 + 1}$	skinii h
	$= (\lim_{x \to \infty} \frac{1}{x}) (\lim_{x \to \infty} \ln \frac{x^2 - 1}{x - 1})$	1н
	$-0 \times \ln \left(\frac{0}{a} - \frac{1}{1} \right)$	
	n n	
•	honco, limy - 1	1A
	(b) - , una C'Honpital'a rule:	
)	the tay = the $\frac{1}{x}$ to $\frac{a^2}{a}$. $\frac{1}{1}$	111
	$-\lim_{n\to\infty} \left(\frac{a-1}{a^n-1} \right) \frac{d}{dx} \left(\frac{a^n-1}{a-1} \right) \frac{d}{dx} \left(e^{i\frac{\pi}{2}a} \right)$ $\lim_{n\to\infty} \left(e^{i\frac{\pi}{2}a} \right) \frac{d}{dx} \left(e^{i\frac{\pi}{2}a} \right)$ $\lim_{n\to\infty} \left(e^{i\frac{\pi}{2}a} \right) \frac{d}{dx} \left(e^{i\frac{\pi}{2}a} \right)$	1н
a	$= \frac{1}{1} \left[\left(\frac{1}{a} - \frac{1}{1} \right) \left(\frac{a \ln a}{a \ln a} \right) \right] \qquad \qquad (2a)$	
	$\frac{1}{2} = \frac{1}{2} \left\{ \left(\frac{1}{1 - \left(\frac{1}{a^2} \right)} \right) (\ln a)^2 \right\}$	
	$\frac{1}{1-0}$ lna	· IA .
	⇒ Ina	
9	hence (mj - j	11

 { } :	54	141	t t		区間区	1-1-
----------------	----	-----	------------	--	-----	------

	. •	dish (2) 1/15 = (100 (/2) 1/16	17
s. ا	n)	The contraction of the contraction	71
((b)	$F(x) = \int_0^{\cos x} (\sqrt{2})^{x^2} dx = \int_0^{\tan x} (\sqrt{2})^{x^2} dx$ $(\sqrt{2})^{\cos^2 x} = \operatorname{and}^2 x (\sqrt{2})^{\tan^2 x}$	1

$$F'(x) = \frac{1}{2} \frac{\operatorname{sec}(x)}{\operatorname{sec}(x)} = \frac{\operatorname{sec}(x)}{\operatorname{sec}(x)} = \frac{\operatorname{sec}(x)}{\operatorname{sec}(x)}$$

$$\operatorname{single}(x) = \frac{1}{2} \operatorname{sec}(x) + \frac{1}{2} \operatorname{sec}(x) = \frac{1}{2}$$

$$\operatorname{sec}(x) = \frac{1}{2} \operatorname{sec}(x) = \frac{1}{2} \operatorname{sec$$

$$+ n \ln x - \frac{1}{\sqrt{2}}$$

$$+ - x - \frac{\pi}{q}$$

7. (a)
$$|f(x) - f(c)| \le |x - c|^2$$
 for all $x \in \mathbb{R}$

$$\rightarrow -|x - c|^2 \le |f(x) - f(c)| \le |x - c|^2 \text{ for all } x \in \mathbb{R}$$

$$\rightarrow -|x - c| \le |\frac{f(x) - f(c)}{|(x - c)|} \le |x - c| \text{ for all } x \in \mathbb{R} \setminus \{c\}$$

$$\Rightarrow -|x - c| \le |\frac{f(x) - f(c)}{|(x - c)|} \le |x - c| \text{ for all } x \in \mathbb{R} \setminus \{c\}$$

Since
$$\lim_{x \to c} (x - c) = 0$$
, by inqueezing theorem, $\lim_{x \to c} \frac{f(x) - f(c)}{(x - c)} = 0$.

(6)	For all $y \in \mathbb{R}$, by (a), $f'(y) = 0$
	all - a for all y = A , f in constant.

RESTRICTED 內部文件

Solutions	. Harks
(a) $\xi'(x) = 1 - \frac{1}{1+x} - \frac{x}{1+x}$	11/
f'(x) < 0 on (-1, 0)	114
and : 6 ((x) -> 0 on (0, -)	₽ .
now £(0) = 0 , the result follows.	: History Typenter .
(b) $a_{n-1} - a_n$	
$= \frac{1}{n+1} - \ln(n+2) + \ln(n+1)$	
$= \frac{1}{n+1} - \ln\left(1 - \frac{1}{n+1}\right)$	1н
> 0 (by (a))	
$b_n - b_{n+1}$	
$= -\ln n - \frac{1}{n+1} + \ln (n+1)$	
$= -\frac{1}{n+1} - \ln\left(1 - \frac{1}{n+1}\right)$	114
> 0 (" $-1 < \frac{1}{n+1} < 0$ and use (a))	
$a_n = 1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n} - \ln(n+1)$	
$<1+\frac{1}{2}+\frac{1}{3}++\frac{1}{n}-1$ ru	
$= b_n \le b_1$. Н
\therefore $\{a_n\}$ is bounded above and increasing.	
→ lima _n exicts.	
$b_n = 1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n} - \ln n$	
$> 1 + \frac{1}{2} + \frac{1}{3} + + \frac{1}{n} - \ln(n+1)$	
- a _σ ≥ a ₁	1H
: (b _n) is bounded below and decreasing.	
limb, exists	
$\lim_{n\to\infty} a_n - \lim_{n\to\infty} a_n - \lim_{n\to\infty} (b_n - a_n)$	
$= \lim_{n \to \infty} (\ln(n + 1) - \ln n)$	
- Hairi + The The Table 1	1н
<u>≇0</u> ud	
: limb, = lima, :	5

	RESTRICTED 以能义件	1.8	
/ _	Solutions A DD X Pr	Harks	_
8.	(c) (1) $\frac{1}{kn+1} + \frac{1}{kn+2} + \cdots + \frac{1}{kn+n}$.	
	$= \left[1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{(k+1)n}\right] - \left[1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{kn}\right]$	114	
	$= [b_{(k+1)n} + \ln((k+1)n)] - \{b_{kn} + \ln(kn)\}$	114	
	$= b_{(k+1),a} - b_{ka} + 1r_1\left(\frac{k+1}{k}\right)$		
	$\rightarrow 0 + \ln\left(\frac{k+1}{k}\right)$ as $n \rightarrow -$	114	
	$= \ln\left(\frac{k+1}{k}\right)$	1 /	<u>:</u>
	(ii) $1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \dots + \frac{1}{2n-1} - \frac{1}{2n}$ = $\left(1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{2n}\right) - 2\left(\frac{1}{2} + \frac{1}{4} + \dots + \frac{1}{2n}\right)$	1H	
	$= \left(1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{2n}\right) - \left(1 + \frac{1}{2} + \dots + \frac{1}{n}\right)$		
	$= \frac{1}{n+1} + \frac{1}{n+2} + \dots + \frac{1}{n+n}$	1H	
	$= \ln\left(\frac{1+1}{1}\right) \text{(by (c)(1), put } k=1\text{)}$ $= \ln 2$	1A -7	
			·

RESTRICTED 内か久け	
Solutions	Harks
	1
(a) Lat $y = \sqrt[n]{n}$	
$\ln y - \frac{1}{n} \sin x$	
limity - limiting	1#
$= 0 \ \left(:: \lim_{x \to -\infty} \frac{1 \ln x}{x} = \lim_{x \to -\infty} \frac{\frac{1}{x}}{1} = 0 \right)$	114
: limy - 1	1A
(p) - V.)	-
	1H
Σ area of small rectangle 4 area under the curve	
Σ area of small rectangle Σ area of big rectangle	114
$\therefore \ln 1 + \ln 2 + + \ln (n-1) \le \int_{1}^{n} \ln x dx \le \ln 2 + \ln 3 + + \ln n$	
$\ln((n-1)!) \le \int_1^n \ln x dx \le \ln(n!)$	1A
Now $\int_{1}^{n} \ln x dx$	
$= \left\{ x \ln x \right\}_{1}^{n} - \int_{1}^{n} x d \left(\ln x \right)$	iн
$-n \ln n - \int_1^a 1 dx$	
$= n \ln n - (n-1)$	1A
$\therefore \ln(n-1) + c \ln n - (n-1) \le \ln(n!)$	17
$\Rightarrow (n-1) \mid s \mid e^{alnn} \cdot e^{-a\cdot 1} \mid s \mid n \mid$	1H
$ (n-1)! \le n^n e^{-n^{n}!} \le n!$	7
week the state of	1

	RESTRICTED	内部文件	1.10		RESTRICTED	内部又任	Pill
-	Solutions	(1)	Harks	· Cir	Solutions	N	Marke
(9 (5)	Ву (b),		٠.	//-	0. (a) ((x) - 0		}
	(n − 1) ≤ n n e · n · 1 ≤ n	•	. 🖠	,	$+ x^{3} - x^{1} - x + 1 = 0$		
	$\frac{1}{n} < \frac{n^n}{n!} e^{-nt} < 1$				$\leftrightarrow x(x^2-1)-(x^2-1)=0$	•	
	$\frac{e^{n-1}}{n} \le \frac{n^n}{n!} \le e^{n-1}$	•	1/		$\leftrightarrow (x^2 - 1)(x - 1) = 0$		
•		·			$++ (x+1)(x-1)^2 - 0$		in
	$- e^{1-n} \le \frac{n!}{n!} \le n \cdot e^{1-n}$	•			+ x - 1 or x - 1		1
	$\sigma^{\frac{1-n}{n}} \leq \frac{(n1)^{\frac{1}{n}}}{n} \leq \sqrt[n]{n} e^{\frac{1-n}{n}}$				(b) $E(x) = \{(x+1)(x-1)^2\}^{\frac{1}{2}}$	••	
	Now lime in a get		11		for $x + \pm 1^-$, $f'(x) = \frac{1}{3}((x+1)$	$(x+1)^{2}\Big]^{-\frac{1}{2}}\frac{d}{dx}(x^{1}-x^{2}-x+1)$	
	and $\lim_{n\to\infty} \sqrt{n}e^{\frac{1}{n}-1}$ = $\lim_{n\to\infty} \sqrt{n}\lim_{n\to\infty} e^{\frac{1}{n}-1}$		1#			$\frac{1}{7}(x-1)^{-\frac{1}{7}}(3x^2-2x-1)$	-
	- 1 · σ · ¹ - σ · 1		IA.			$(x-1)^{-\frac{4}{3}}(x-1)^{-\frac{4}{3}}(3x+1)(x-1)$	
	By squeezing theorem.				$= \frac{1}{3} \left(x + 1 \right)$	$-\frac{1}{3}(x-1)^{-\frac{1}{3}}(3x+1)$	1A
	$\lim_{n \to \infty} \frac{(nt)^{\frac{1}{n}}}{n} = \frac{1}{c}$	· · · · · · · · · · · · · · · · · · ·	1A 		$\frac{f(x)-f(1)}{x-1}$		
					$\sqrt[3]{(x+1)(x-1)^3-9}$		
					$\sqrt{x+1}$		1н
	· • .				$= \frac{\sqrt[4]{x+1}}{\sqrt[4]{x-1}}$		
					$\rightarrow \sim as x \rightarrow 1$		
				•	∴ f'(1) does not nxint.		
	•			,	$\frac{f(x) - f(-1)}{x - (-1)}$		
	•				$= \frac{\sqrt[1]{(x+1)(x-1)^{3}}-0}{x+1}$	•	1H
	;	•			·		·
				•	$=\sqrt[3]{\frac{(x-1)^2}{(x+1)^2}}$	·	l
					→ ↔ as x → -1		
					∴ f'(-1) does not exist.		3
		•			(c) (i) $E'(x) = 0$	•	·
•	entjakterik		1		$+ \frac{1}{3}(x+1)^{-\frac{1}{2}}(x-1)^{-\frac{1}{2}}$	(3x+1)=0	
•		·•			# x = -1/3	· · · · · · · ·	!" 1A
					the space from the		
	the state of the s	L. 317 - 111-	91AL-PHIE-H	5-	The second se	11 11 2 11 2 11 11 2 11 1 1 1 1 1 1 1 1	91ALLPHIIB-HS-F
	RESTRICTED	内部文件	ا د منصر چسونون د د		RESTRICTED	四部义件: 1	1 1.0

RESTRICTED NOW AFT.	1,1~
Solutions	Harko
(c) (II) f'(x) > 0	
$+ \frac{1}{3} \left((x+1)^{-\frac{1}{3}} \right)^2 \cdot \frac{1}{\sqrt{x-1}} \cdot (3x+1) > 0$	
$+ \frac{1}{\sqrt[3]{x-1}} \cdot (3x+1) > 0 (x r - 1)$	
\leftrightarrow $x > 1$ or $x \in -\frac{1}{3}$	17
(111)f'(x) < 0	
$+ \frac{1}{\sqrt[3]{x-1}} \cdot (3x+1) < 0$	
$\frac{1}{3} < x < 1$	1h
(d) From (c), colativo max. io	
$\left(-\frac{1}{3}, \ \epsilon\left(-\frac{1}{3}\right)\right)$	
$=\left(-\frac{1}{3}, \sqrt[3]{\left(-\frac{1}{3}+1\right)\left(-\frac{1}{3}-1\right)^2}\right)$	
$= \left(-\frac{1}{3}, \sqrt[3]{\left(\frac{2}{3}\right)\left(\frac{4}{3}\right)^{3}}\right)$	
$=\left(-\frac{1}{3}, \frac{1}{3}\sqrt[3]{32}\right)$	
$=\left(-\frac{1}{3}, \frac{2}{3}\sqrt[3]{4}\right)$	11
relative min. io (1.f(1))	1 1 1
= (1, 0)	10
$f^{*}(x) = \frac{d}{dx} \left\{ \frac{1}{3} (x+1)^{-\frac{2}{3}} (x-1)^{-\frac{1}{3}} (3x+1) \right\}$	
$= \frac{1}{3} \left\{ -\frac{2}{3} (x+1)^{-\frac{1}{3}} (x-1)^{-\frac{1}{3}} (3x+1) - \frac{1}{3} (x+1)^{-\frac{2}{3}} (x-1) \right\}$	¯ (3x → L) .
$+ 3(x + 1)^{-\frac{2}{3}}(x - 1)^{-\frac{1}{3}}$	
$= \frac{1}{9}(x+1)^{-\frac{5}{3}}(x-1)^{-\frac{4}{3}}(-2(x-1)(3x+1)$	
-(x+1)(3x+1)+9(x+1)(x-1)	
$= \frac{1}{9} \left(\frac{1}{(x+1)^{\frac{1}{2}}} \right) \left(\frac{1}{(x-1)^{\frac{1}{2}}} \right) \left((3x+1)(-3x+1) + 9(x^2-1) \right)$	1))
$\frac{1}{1}$ $\frac{1}$	
$\frac{8}{(x+1)^{\frac{1}{3}}} \left(\frac{1}{(x+1)^{\frac{1}{3}}} \right) \left(\frac{1}{(x-1)^{\frac{4}{3}}} \right)$	18
proTPLCTED 内部文件	91AL-PHIIB-HS-P.

••/	RESIRILIEU MADALE	1,15
<u>/</u>		Harks
	Sulutions	
(d)	$\vdots f''(x) > 0 \text{on} (\neg \neg, \neg 1)$	
,-,	and $f''(x) < 0$ on $(-1, -)$	
	Hence the point of inflaxion is at x = -1.	,,
	- (-1, 0) is the point of inflextion.	11
	The second secon	15 78 83
(e)	Clearly there is no vertical asymptote.	
	Let $y = mx + b$ be an oblique asymptote,	
	then $\lim_{x\to a} \{f(x) - (mx + b)\} = 0$	
	$=\lim_{x\to -}\frac{f(x)-(mx+b)}{x}=0$	
	$-\lim_{x\to -\frac{1}{2}} \frac{\sqrt{x^{1}-x^{2}-x+1}}{x} = 0$	
	$\rightarrow \lim_{x \to \infty} \sqrt{1 - \frac{1}{x} - \frac{1}{x^2} + \frac{1}{x^3}} - m - \frac{b}{x} = 0$	1
	→ m = 1	1A
	Then $\lim_{x\to a} \{f(x) - (x+b)\} = 0$	
	$= \lim_{x \to \infty} (f(x) - x) - \lim_{x \to \infty} b = 0$	
	*** .	
	$\pm \sum_{x=1}^{\infty} \lim_{x \to \infty} (E(x), -, x).$	
	$= \lim_{x \to \infty} \left(\sqrt[3]{x^3 - x^1 - x + 1} - x \right)$	
	$x^3 - x^1 - x + 1 - x^1$	
	$= \lim_{x \to \infty} \frac{x^3 - x^1 - x + 1 - x^3}{(x^3 - x^1 - x + 1)^{\frac{1}{3}} + (x^3 - x^2 - x + 1)^{\frac{1}{3}} x + x^2}$	
	$-x^2-x+1$	
	$= \lim_{x \to \infty} \frac{-x^2 - x + 1}{(x^3 - x^2 - x + 1)^{\frac{1}{3}} + (x^3 - x^2 - x + 1)^{\frac{1}{3}}x + x^2}$	
	$-1 - \frac{1}{x} + \frac{1}{x^2}$	
	$= \lim_{x \to \infty} \frac{x^{1} - x^{1} - x + 1}{\left(\frac{x^{1} - x^{1} - x + 1}{x^{1}}\right)^{\frac{1}{2}} + \left(\frac{x^{1} - x^{2} - x + 1}{x^{1}}\right)^{\frac{1}{2}} + 1}$	
	$\left(\frac{x_1}{x_2}\right)$	
	$-1 - \frac{1}{x} + \frac{1}{x^1}$	
	$= \frac{11m}{x-1} \left(1 - \frac{1}{x} - \frac{1}{x^2} + 1\right)^{\frac{1}{1}} + \left(1 - \frac{1}{x} - \frac{1}{x^2} + 1\right)^{\frac{1}{1}} + 1$	
	$\left(\begin{array}{cccccccccccccccccccccccccccccccccccc$	
	$-\frac{1}{3}$	11
	1	2
	\therefore the asymptote is $y = x - \frac{1}{3}$.	

Jan 1980 Jan	ices De tionnée
RESTRICTED 内部文件	P.14
Solutions	Harks
	!
10. (f) (g) (g) (g) (g) (g) (g) (g) (g) (g) (g	
	The same (see a contract of
	ŀ
	2
Tanal Caracher Caracher Control of the Control of t	-2

f				P.U
	RESTRICTED			Harke
	Solutions			
(a) (non-paral	lel)	enertion		1 H
(1, 2, 3)	and (2, 3, 5) are not in pr		.	<u></u>
L_1 , L_2	ard non-parallel.		•	
(non-inter	mocting)			
ΙĒ (α, β.	γ) ε L, Λ L,		÷.	
then	$\frac{\sigma-2}{1}-\frac{\beta-3}{2}-\frac{\gamma-3}{3}$			1H
•	$\frac{\alpha-4}{2} - \frac{\beta-5}{3} - \frac{\gamma-11}{5}$			
	$= \frac{1}{2}(\beta - 3) - \frac{1}{3}(\gamma - 3)$ $= \frac{1}{3}(\beta - 6) + 1 = \frac{1}{5}(\gamma - 11)$	+ 1	· · · · · · · · · · · · · · · · · · ·	
•	$\begin{array}{lll} -3) & = & \frac{1}{3} (\beta - 6) + 1 \\ -3) & = & \frac{1}{5} (\gamma - 11) + 1 \end{array}$			
	-3) = 2(β - 6) + 6 -3) = 3(γ - 11) + 15			
- {	$\frac{1}{2}(-33 + 15 + 15) = -\frac{3}{2}$:	•	
- { <u>r</u>	$\frac{-3}{3} = \frac{3-3}{2} = 0$			
į ė	$\frac{-3}{2}$, $\frac{\gamma-3}{3}$, a contradict	ion.		1H 3
(S. 2.11) T.B	st $P(x,y,z) \in \pi$.	•		
, (n) - (n) mc	ω Λ = (2,3,3) € L ₁			
	$\vec{u} = \hat{i} + 2\hat{f} + 3\hat{k}/L,$			18
	V = 21 + 31 + 5 kll L,	•		
. :	. AP×ū·√ = 0			1H
	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			17
	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1)(z - 3) = 0		
.:	(x-2) + (y-3) - (z-3) =	0 . •.		, ,
	(x-2) + (y-3) - (2-3)			11
	x + y - 4 = 4			
•	process of the second			ļ

11. (

RESTRICTED 内部文件	P. 16
/ (1701/1/20/20/	Harks
Solutionu	
(b) (11) Lot $P(x,y,z) \in \pi'$	
Now $B = (4,6,11) \in L_2$	1A
V - 21 + 31 · 5 K//L,	
ν - f + f - k ± π	18
$H\vec{F} \times \vec{v} \cdot \vec{v} = 0$	
$\begin{vmatrix} x - 4 & y - 6 & z - 11 \\ 2 & 3 & 5 \\ 1 & 1 & -1 \end{vmatrix} = 0$	
(-8)(x-4)-(-7)(y-6)+(-1)(x-11)-0	
(-6x + 32) + (7y - 42) - (z - 11) - 0	
-8x + 7y - z + 1 = 0	1A
8x - 7y + z = 1 - 0	
(c) (1) $L_1: x-2=\frac{y-3}{2}=\frac{z-3}{3}=\lambda$	
π' : 8x - 7y + π - 1. = 0.	
Substitute L_i to π' :	
$8(\lambda + 2) - 7(2\lambda + 3) + (3\lambda + 3) - 1 = 0$	
$(8-14+3)\lambda+(16-21-3-1)=0$	
-3\lambda - 3 = 0	11
λ = -1	
$\therefore x = -1 + 2 = 1$	
y = 2(-1) + 3 = 1	
z = 3(-1) + 3 = 0	1A
5 - (1,1.0)	-
(ii) Direction of the line	114
= (1 · 2f · 3β · (2f · 3f · 5β)	1A
- f + f - k	
: Equations of the line is	
$\frac{x-1}{1} - \frac{y-1}{1} \cdot \frac{z-0}{-1}$	114
1 1 -1	5
	4
	•

	RESTRICTED 内部文件:	7117
	Solutions	Harks
2. (a) (1)	$I_0 = \int_0^{\frac{\pi}{2}} d\theta dx dx = 1$ When $n \ge 1$,	1h
	$\int_{0}^{\frac{\pi}{2}} \cos^{3\alpha+1} x dx = \int_{0}^{\frac{\pi}{2}} \cos^{2\alpha} x d (\pi \ln x)$	- Jerspan of subjective continuous and .
	$= \left[\cos^{2n} x \sin x \right]^{\frac{1}{2}} - \int_0^{\frac{\pi}{2}} \operatorname{sinxd} \left(\cos^{2n} x \right)$	
	$= \int_{0}^{\frac{\pi}{2}} 2\pi \cos^{2n-1}x \sin^{2}n dx$ $= \int_{0}^{\frac{\pi}{2}} 2\pi \cos^{2n-1}x (1 - \cos^{2}x) dx$	11
	$= 2n \int_0^{\frac{\pi}{2}} \cos^{2n-1} x dx - 2n \int_0^{\frac{\pi}{2}} \cos^{2n+1} x dx$	
	Hence $I_n = \frac{2n}{2n+1} I_{n-1}$	11
(11) When $n=0$, the result is proved in (a)(i). Assume the result holds for $n=k\ge 0$, i.e. $I_k=\frac{(k!)^22^{2k}}{(2k+1)!}$	1H
	Then $I_{k+1} = \frac{2(k+1)}{2(k+1)+1} I_k$	1.
	$= \frac{2(k+1)}{2k+2} \left(\frac{(k!)^{2} 2^{2k}}{(2k+1)!} \right)$ $= \frac{[(k+1)]^{2} 2^{2(k+1)}}{[2(k+1)+1]!}$	18
		5
(p) (T)	$S_{x} = \sum_{n=0}^{\infty} \left(\frac{1}{2} \right)^{n-1} \int_{0}^{\frac{\pi}{2}} \cos^{2n+1} x dx$ (by (a))	1H
	$= \int_0^{\frac{\pi}{2}} 2\cos x \sum_{n=0}^{\infty} \left(\frac{1}{2}\cos^2 x\right)^n dx$	114
	$= \int_0^{\frac{\pi}{2}} 2\cos x \frac{1 - (\frac{1}{2}\cos^2 x)^{\frac{n-1}{2}}}{1 - (\frac{1}{2}\cos^2 x)} dx$	
	- 4681	
	TIMO (

<i>y</i> .	RESTRICTED 内部文件	1118
	Solutions	Harks
TT)	Since $\frac{2\cos x(\frac{1}{2}\cos^3 x)^{\frac{n-1}{2}}}{1-(\frac{1}{2}\cos^3 x)} \ge 0 \text{(or } 0 \le x \le \frac{\pi}{2} ,$	1 X
	we have	
	$S_{m} = \int_{0}^{\frac{\pi}{2}} 2\cos x \frac{1 - (\frac{1}{2}\cos^{2}x)^{m+1}}{1 - (\frac{1}{2}\cos^{2}x)} dx$	
	$\int_{0}^{\frac{\pi}{2}} \frac{2\cos x}{1 - \frac{1}{2}\cos^{2}x} - \frac{2\cos x(\frac{1}{2}\cos^{2}x)^{x+1}}{1 - (\frac{1}{2}\cos^{2}x)} dx$	
	$\leq \int_0^{\frac{\pi}{2}} \frac{2\cos x}{1 - \frac{1}{2}\cos^2 x} - 0 dx$	1H
	$= \int_0^{\frac{\pi}{2}} \frac{2\cos x}{1 - \frac{1}{2}\cos^2 x} dx$	•
	$\Lambda 1 = \frac{2\cos x(\frac{1}{2}\cos^2 x)^{m+1}}{1 - (\frac{1}{2}\cos^2 x)} \le \frac{1}{2^{m-1}} \forall x$	18
	because $\frac{2\cos x\left(\frac{1}{2}\cos^2 x\right)^{n-1}}{1-\left(\frac{1}{2}\cos^2 x\right)}$	
	$\frac{1}{2^m} \left(\frac{\cos x (\cos^2 x)^{m+1}}{1 - \frac{1}{2} \cos^2 x} \right)$	
	$s \frac{1}{2^n} \left(\frac{1}{1 - \frac{1}{2} \cos^2 x} \right)$	
	$=\frac{1}{2^n}\left(\frac{2}{2-\cos^2x}\right)$	1H
	$s \cdot \frac{1}{2^m} \left(\frac{2}{2-1} \right)$	-
	$= \frac{1}{2^n} \cdot \frac{2}{1}$	
	$-\frac{1}{2^{n-1}}$	·
	Hence $S_{\mu} = \int_{0}^{\frac{\pi}{2}} 2\cos x \frac{1 - \left(\frac{1}{2}\cos^{2}x\right)^{n+1}}{1 - \frac{1}{2}\cos^{2}x} dx$	} 17:
	$2 \int_{0}^{\frac{\pi}{2}} \frac{2\cos x}{1 - \left(\frac{1}{2}\cos^{2}x\right)} - \frac{1}{2^{n-1}} dx$	1H
	$= \int_0^{\frac{\pi}{4}} \frac{2\cos x}{1 - \left(\frac{1}{2}\cos^2 x\right)} dx - \frac{\pi}{2^n}$	
	-JAL و المراجبات وابناء بالتي يسوعم سوميس و موجب سوسو سو مو	РНЖ-HS-P.12

	The state of the s	- 61X -
•	RESTRICTED 內部文件	Harks
. ,	Solutions	
12.	(b) (iii) $\lim_{n \to \infty} \frac{\pi}{2^n} = 0$ $\lim_{n \to \infty} S_n = \int_0^{\frac{\pi}{2}} \frac{2\cos x}{1 - \frac{1}{2}\cos^2 x} dx$	1ħ .
÷	$= \int_0^{\frac{\pi}{2}} \frac{4}{1 + \sin^2 x} d(\sin x)$ $= 4 \int_0^1 \frac{1}{1 + c_1} dc$.1A
	- 4(tan ⁻⁽ t) - π	10
_		
	en e	
-		
. :		
	in Marian Baran Bar Baran Baran Ba Baran Baran Ba	

	1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 1 1 1 1 1	
<u>/</u>	Solutions .	Harko
(a)	(1) Since $(x^2-1)^n=x^{2n}+$ terms of lower dogres	
	$\frac{d^n}{dx^n} (x^2 - 1)^n = \frac{(2n)!}{n!} x^n + terms of lower degree$	1λ
	The result (ollows.	
	(11) When $n=0$, $P(x)^*=\sigma_{1}^{**} \circ CP_{d}(x)$. The state of the s	, H ,
	Assume the result in true for $n \le k$.	1H
	Let $P(x)$ be a polynomial of degree $k+1$.	
	Then $\exists a_{k+1} \in \mathbb{R}$ much that degree of $(P(x) - a_{k+1}P_{k+1}(x))$ is	
	less than or equal to k .	1H
	By induction assumption, $\exists \alpha_i \in \mathbb{R}$, $i = 0,, k$ such that	
	$P(x) = \alpha_{k+1} P_{k+1}(x) = \sum_{i=1}^{k} \alpha_i P_i(x)$	<u> 1H</u>
	Hence $P(x) = \sum_{i=0}^{r-1} \alpha_i P_i(x)$ and the result (ollows.	.4
(b)	(1) $R_n(x) = (x^2 - 1)^n$, $R_n^{(1)}(x) = 2nx(x^2 - 1)^{n-1}$	
	$R_n^{(2)}(x) = 4n(n-1)x^2(x^2-1)^{n-1} + 2n(x^2-1)^{n-1}$	1A .
	Hence $(1-x^1)R_n^{(1)}(x) + 2x(n-1)R_n^{(1)}(x) + 2nR_n(x)$	
	$= \left[-4\pi(n-1)x^2(x^2-1)^{n-1} - 2\pi(x^2-1)^n\right]$	
	$+4n(n-1)x^{2}(x^{2}-1)^{n-1}+2n(x^{2}-1)^{n}$	
	- 0	
	L.e. When $k = 0$, the result holds.	
	Assume the result holds for $k*l>0$.	114
	Then $\frac{d}{dx}[(1-x^2)R_n^{(t+2)}(x) + 2x(n-t-1)R_n^{(t+1)}(x)]$	
	+ $\{(1+1),(2\pi-1)R_n^{(1)}(x)\}=0$	114
	$\rightarrow \left[(1-x^2) R_n^{(l+2)}(x) - 2x R_n^{(l+2)}(x) \right] + \left[2(n-(l-1)) R_n^{(l+1)}(x) \right]$	
	+ $2x(n-l-1)R_n^{(l+1)}(x)$ + $(l+1)(2n-l)R_n^{(l+1)}(x) = 0$	
	$\rightarrow (1-x^2)R_n^{\{(l+1)-2\}} + 2x\{n-(l+1)-1\}R_n^{\{(l+1)-1\}}$	
	+ $((l+1)+1)(2n-(l+1))R_n^{(l+1)}(x)=0$	
	By the principle of H.I., the result follows.	
	Putting $k = \pi$, we have	114
	$(1-x^2)P_n^{(2)}(x) = 2xP_n^{(1)}(x) + n(n+1)P_n(x) = 0$	
	So $[(1-x^2)P_n^{(1)}(x)]'$	
	$= (1 - x)^{2} P_{n}^{(1)}(x) - 2x P_{n}^{(1)}(x)$	114
	$=-\hat{n}(n+1)P_n(x)$	5

·	RESTRICTED 內部文件	Harko
J. (c)	(1) $n(n+1) \int_{-1}^{1} P_{\mu}(x) P_{\mu}(x) dx$	
	$= \int_{-1}^{1} P_{n}(x) (-1) \{ (1 - x^{2}) P_{n}^{j}(x) \}^{j} dx$	1н
٠.	$= (-1) \left\{ \left[P_n(x) \left(1 - x^2 \right) P_n'(x) \right]_1^1 - \int_{-1}^1 \left(1 - x^2 \right) P_n'(x) P_n'(x) dx \right\}$	114
	$= (-1) \left\{ 0 - \int_{-1}^{1} (1 - x^2) P'_n(x) P'_n(x) dx \right\}$	
	$= \int_{-1}^{1} (1 - x^2) P_n'(x) P_n'(x) dx$	
	(ii) By symmetry, $m(m+1) \int_{-1}^{1} P_{n}(x) P_{n}(x) dx = \int_{-1}^{1} (1-x^{2}) P'_{n}(x) P'_{n}(x) dx$	1н
	hence $\pi(n+1)\int_{-1}^{1}P_{n}(x)P_{n}(x)dx = m(m+1)\int_{-1}^{1}P_{n}(x)P_{n}(x)dx$	17
	$\Rightarrow \{n(n+1) - m(m+1)\} \int_{-1}^{1} P_n(x) P_n(x) dx = 0$	
•	$- (n^2 - m^2 + n - m) \int_{-1}^{1} P_m(x) P_m(x) dx = 0$	
	$+ (n - m) (n + m + 1) \int_{-1}^{1} P_n(x) P_n(x) dx = 0$	17
	If $n \neq m$, then $n = m \neq 0$ and $n + m + 1 > 0$ (\(\tau_n, m \ge 0\)	14
	$\int_{-1}^{1} P_m(x) P_n(x) dx = 0$	6