Chapter 1

Concepts and Use Cases

Prof. Dr.-Ing. Michael Scharf

Hochschule Esslingen – University of Applied Sciences

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.

Concepts and Use Cases

Chapter Content

- 1. Internet of Things (IoT)
- MQTT as IoT Protocol
- 3. Industrial Cyber-Physical Networks

Internet of Things (IoT)

Prof. Dr.-Ing. Michael Scharf Hochschule Esslingen – University of Applied Sciences

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.

Scope and Use Cases

Cyber-Physical Networks

Scope and Use Cases "Internet-of-Things" (IoT) Characteristics

Scope and Use Cases Typical Internet-of-Things (IoT) Use Cases

- Logistics (tracking by "RFID tags")
- Building and home automation ("smart home")
- Digital infrastructure ("smart city")
- Medical and healthcare (telediagnosis, etc.)
- Agriculture and environmental monitoring
- •
- Increasing industrial usage (cf. later chapter)

Scope and Use Cases Examples for Related Terms

- Ubiquitous Computing
- Massive Machine-to-Machine (M2M)
 Communication
- Internet of Everything
- Industrial Internet of Things (IIoT)
- Industrial Internet
- Industrial Cyber-Physical Systems (ICPS)
- Cyber–Physical Production Systems (CPPS)
- Industry 4.0 / "Industrie 4.0"

Overlapping terminology with no clear separation and/or definition

Scope and Use Cases "IoT" and "CPS" Terminology

Example

Many definitions and unclear scope of "IoT" and "CPS"

Source: https://doi.org/10.6028/NIST.SP.1900-202

IOT CPS

Example definition of "IoT":

The term "Internet of Things" (IoT) denotes a trend where a large number of embedded devices employ communication services offered by Internet protocols. Many of these devices, often called "smart objects", are not directly operated by humans but exist as components in buildings or vehicles, or are spread out in the environment. (Source: IETF/IAB)

Example definitions of "CPS":

Cyber-Physical Systems (CPS) comprise interacting digital, analog, physical, and human components engineered for function through integrated physics and logic. (Source: NIST)

Scope and Use Cases When can a System be Labeled CPS, IoT, or both?

Example

Source: https://doi.org/10.6028/NIST.SP.1900-202

- Does the system have one or more elements in each of the component categories: logical, physical, transducing, and human? (Note that the relevant capabilities of the human component vary with differing roles such as user, component, environmental factor, etc.)
- 2. Are these elements integrated to provide for transmission, transformation, and storage of energy for physical elements and information for logical elements; as well as input, processing, and output functions for transducing elements?
- 3. Does the system have one or more CPS/IoT functions where such a function is defined as involving the linkage of logical and physical system states?
- → If the answers to all three are 'yes' in other words if the system has the components, capabilities, and functions of a CPS/IoT system then it can be appropriately labeled 'CPS,' 'IoT,' and both.

Devices

- "IoT" term originates from Radio-Frequency
 Identification (RFID) devices
- Today includes all kinds of embedded devices

Embedded device: A computer system that has a dedicated function within a larger mechanical or electronic system

- Large variety of hardware
 - CPU: Constrained microcontroller ("μC") or full microprocessor ("μP")
 - RAM: From few KiB to many GiB
 - Software: Without or with operating system (OS)
 - I/O: Typically sensors and/or actuators towards the real-world (e.g., process interface)
 - Network: Large variety including both wireline (e.g. Ethernet, special fieldbusses) and wireless technologies (e.g., WLAN, Bluetooth, LoRaWAN)
 - Possibly also a Human-Machine Interface (HMI)
- Prototyping often by single-board computers

Devices Classification of Devices

Characteristics	Microcontroller (μC)	Microprocessor (μΡ, CPU)		
Architecture	8, 16, or 32 bit	64 bit (32 bit compatible)		
Instruction set	Small	Large and complex		
Cores	Often 1, multiple possible	1-100		
Clock frequency	1 MHz – more than 1 GHz	500 MHz – more than 5 GHz		
Power consumption	Some μW – 5 W	2 – 500 W		
Addressable memory	Few KiB – multiple MiB	Multiple GiB – multiple TiB		
Cache	Seldom	Typical, up to many MiB		
Typical operating system (OS)	None, or real-time OS	Windows, Linux, macOS,		
Optimized for real-time interrupts	Yes	No		
Number of transistors	Thousands – Millions	Billions		
Realized as Systems-on-Chip	Frequently	Seldom		
Number of units per year	More than 20 billion	2 – 2.5 billion		
Cost	10 Cent – 20 EUR	30 EUR – 30,000 EUR		
Typical example	Arduino Uno Atmel Atmega 1x 8 bit	Raspberry Pi 4 Broadcom 4x ARM Cortex-A72		

Internet Fundamentals

- A network of networks
- Complex, layered, distributed system
- Packet network
 - Connectionless delivery of Internet Protocol (IP) packets
 - Forwarding based on destination IP address
 - Best effort service typically without Quality-of-Service (QoS) mechanisms

Internet Fundamentals Protocols

Protocol: Set of rules governing the communication between endpoints

- Syntax (what can be communicated)
- Semantics (how it can be communicated)
- Most protocols specify one or more of ...
 - Message format and delimiters
 - Addresses, identifiers and/or naming
 - Control (setup, handshaking, negotiation, termination)
 - Handling of errors and other events
- Communication pattern
 - Unicast vs. multicast vs. anycast vs. broadcast
 - Reliable vs. unreliable
 - Connection-less (packet-switching) vs. connection-oriented (circuit-switching)
- Transport of control data
 - In-band signaling, e.g., HyperText Transfer Protocol (HTTP)
 - Out-of-band signaling, e.g., File Transfer Protocol (FTP) or Session Initiation Protocol (SIP)
- Maintaining of state, stored in nodes
 - Hard state: State is explicitly installed and removed by messages
 - Soft state: State is installed by a message and expires after a timeout unless refreshed

Internet Fundamentals Hybrid Reference Model

Hybrid reference model: Abstract model for communication consisting of five layers with different functions, as a compromise between the Internet and the OSI reference model.

Internet Fundamentals Encapsulation Principle

Encapsulation principle: A Protocol Data Unit (PDU) of an upper-layer protocol is transported as **payload** of the lower-layer protocol and control information in a **header** and/or **trailer** is added.

Internet Fundamentals Ethernet in a Nutshell

- Connection-less transport of frames
- Functions of physical layer (PHY layer)
 - Physical transmission rate from 10 Mbit/s to more than 100 Gbit/s
 - Different physical media (e.g., twisted pair cable, fiber) over short-range and medium-range distances
- Functions of data link layer (MAC layer)
 - Transport of payload limited by the Maximum Transmission Unit (MTU) of 1500 byte
 - Switching of frames and address learning
 - Loop prevention e.g. by Spanning Tree Protocol (STP)
 - Historical media access by Carrier Sense Multiple Access / Collision Detection (CSMA/CD)
- Addressing
 - 48 bit **Media Access Control (MAC) address** with typically globally unique addresses
 - Address lookup in IPv4 networks by Address Resolution Protocol (ARP)
- Network elements
 - **Switch** (also called "bridge" if implemented in software, as well as in some standards)
 - Media converter (historically also hubs and repeaters)
- Extensions such as Virtual LAN (VLAN)

Legend:

SFD ... Start Frame Delimiter FCS ... Frame Check Sequence

Internet Fundamentals Internet Protocol (IP) in a Nutshell

- Connectionless, best effort transport of packets
- Functions
 - Next-hop forwarding based on destination address
 - Fragmentation and reassembly
- Addressing
 - 32 bit address for IP Version 4 (IPv4)
 - 128 bit address for IP Version 6 (IPv6)
 - Globally structured address space
- Network elements
 - Router
 - Firewalls, NAT Gateways, ...

IPv4 Packet

Internet Fundamentals User Datagram Protocol (UDP) in a Nutshell

- Connectionless unreliable datagram transport
- Functions
 - Port multiplexing/demultiplexing
 - Error detection by checksum (optional)
 - No error recovery, no flow control, no congestion control
- Typical usage
 - Simple transactional interactions
 - Multicast

UDP Datagram

Internet Fundamentals Transmission Control Protocol (TCP) in a Nutshell

- Point-to-point, connection-oriented, reliable, in-order duplex byte-stream transport
- Functions
 - Port multiplexing/demultiplexing
 - Connection management
 - Segmentation and reassembly
 - Reliable transport with error detection and retransmission-based recovery
 - Flow control and congestion control
- Typical usage
 - Default transport for most Internet applications
 - Often Transport Level Security (TLS) on top of TCP for confidentiality and integrity

TCP Segment

Internet Fundamentals Examples of Standardization Organizations (SDOs)

- Third Generation Partnership Project (3GPP): Cellular 3G, 4G, 5G, ... networks
- American National Standards Institute (ANSI): ASCII, Language C, ...
- Alliance for Telecommunications Industry Solutions (ATIS): Telecommunication services
- Broadband Forum (BBF): Digital Subscriber Line (DSL), ...
- European Telecommunications Standards Institute (ETSI): GSM, DECT, ...
- International Electrotechnical Commission (IEC): Fieldbuses, ...
- Institute of Electrical and Electronics Engineers (IEEE): Ethernet, WLAN, ...
- Internet Engineering Task Force (IETF): TCP/IP protocol family, ...
- International Standards Organization (ISO): ISO/OSI reference model, ...
- International Telecommunications Union (ITU-T): Audio and video codecs (MPEG), security (X.509), optical transport networks, ...
- MEF: Metro Ethernet, ...
- Optical Interworking Forum (OIF): Optical transport networks, ...
- Organization for the Advancement of Structured Information Standards (OASIS): MQTT,
- TeleManagement Forum (TMF): Network management
- World Wide Web Consortium (W3C): HTML, XML, CSS, SVG, PNG, ...
- ...

Internet Fundamentals Examples for Network Technologies

Fixed access

- Digital Subscriber Line (DSL)
- Cable networks
- Fiber-to-the-Home (FTTH)

Mobile access

- 2G, 3G, 4G or 5G cellular networks
- Wireless LAN (WLAN) hotspots

Core networks or backbone

- Optical transport networks
- Multiprotocol Label Switching (MPLS)/Internet protocol (IP) core

Network services

- Leased Lines and Virtual Private Networks (VPNs) for business customers
- Telephony
- Internet Protocol Television (IPTV)
- ... and much more

Internet Fundamentals Networks of an Internet Service Provider (ISP)

Internet Fundamentals Evolution to IoT

Example for an IoT Protocol Stack

Exercise

The application layer protocol **Constrained Application Protocol (CoAP)** is designed for machine-to-machine (M2M) applications such as smart energy and building automation. CoAP messages are encapsulated in UDP datagrams.

A CoAP client runs on a small embedded device (e.g., a Raspberry Pi computer) with an Ethernet port that connects via IPv6 to a router. Sketch the protocol stack in the embedded device that is used for communication with CoAP.

MQTT as IoT Protocol

Prof. Dr.-Ing. Michael Scharf Hochschule Esslingen – University of Applied Sciences

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.

Communication Patterns

- Components
 - Client
 - Server
- Examples
 - Web (HTTP)
 - Databases

- Components
 - Peers
 - No hierarchy
- Examples
 - File sharing
 - Infrastructureless

- Components
 - Broker as proxy
 - Separate roles
- Examples
 - IoT (MQTT)
 - Content sharing

MQTT Communication

Message Queuing Telemetry Transport (MQTT)

- Lightweight, event and message-oriented protocol for efficient asynchronous communication in constraint environments
- Publish-subscribe architecture on top of TCP/IP
- Current de-facto standard in IoT
 - Originally developed in year 1999 inside IBM for supervision of oil pipelines
 - Standardized by OASIS since 2013, also ISO/IEC 20922 standard
 - Software support by Eclipse Foundation
- Important protocol versions
 - Version 3.1.1
 - Year 2014
 - URI: https://docs.oasis-open.org/mqtt/mqtt/v3.1.1/mqtt-v3.1.1.html
 - Version 5.0 not backward compatible
 - Year 2019
 - URI: http://docs.oasis-open.org/mqtt/mqtt/v5.0/mqtt-v5.0.html

MQTT Communication Publish-Subscribe Pattern

- Publish-subscribe pattern decouples communication
 - Subscribers do not have to know publishers
 - Asynchronous communication, e.g., publishers can be turned off

Client

- Clients can be publisher, subscriber, or both
- Bi-directional communication between each client and a broker

Broker

- Server that forwards content organized in topics between clients
- Brokers can serve many clients (i.e., many publishers and/or subscribers)

MQTT Communication Topics

- Topics to define communication channels
 - Publishers send messages for at least one topic
 - Subscribers receive these messages if subscribed to this topic
- Topics defined by a string
 - UTF-8 encoding of characters
 - Example for topic: Topic level Topic separator
 myhome/groundfloor/kitchen/temperature
- Hierarchical structure of topic levels
 - Levels separated by slash ("/") as topic separator
 - Wildcards for entire topic levels
 - Single-level wildcard "+" for one level: Allowed one or multiple times
 - Multi-level wildcard "#" for all subsequent levels: Allowed only at the end
 - No partial use of a wildcard inside topic level

MQTT Communication Use of Wildcards

Example

Example topic:

myhome/groundfloor/kitchen/temperature

String	Matching	Not matching
Single-level	myhome/groundfloor/kitchen/temperature	myhome/groundfloor/livingroom/temperature
Single-level with wildcard	myhome/groundfloor/+/temperature	myhome/groundfloor/kitchen
	+/groundfloor/kitchen/temperature	groundfloor/+/kitchen/temperature
	myhome/groundfloor/kitchen/+	myhome/groundfloor/k+/temperature *)
Single-level wildcard with recursion	myhome/+/+/temperature	groundfloor/+/+/temperature
	myhome/+/kitchen/+	myhome/+/groundfloor/+
	+/+/+	+/+/+
Multi-level	myhome/groundfloor/#	myhome/firstfloor/#
	+/groundfloor/#	myhome/#/temperature *)
	#	groundfloor/#

Legend: *) invalid MQTT syntax

MQTT Communication System Topics

- System topics "\$SYS" for internals of the MQTT broker
- Subscription to "#" does not match "\$SYS"
- Subscription to "\$SYS/#" required

Example \$SYS topics in Mosquitto broker Source: https://github.com/mqtt/mqtt.org/wiki/SYS-Topic				
Topic	Description			
\$SYS/broker/clients/connected	The number of currently connected clients.			
\$SYS/broker/messages/received	The total number of messages of any type received since the broker started.			
\$SYS/broker/messages/sent	The total number of messages of any type sent since the broker started.			
\$SYS/broker/messages/publish/received	The total number of PUBLISH messages received since the broker started.			
\$SYS/broker/messages/publish/sent	The total number of PUBLISH messages sent since the broker started.			
\$SYS/broker/subscriptions/count	The total number of subscriptions active on the broker.			
\$SYS/broker/time	The current time on the server.			
\$SYS/broker/uptime	The amount of time in seconds the broker has been online.			
\$SYS/broker/version	The version of the broker. Static.			

MQTT Messages

- MQTT can use any reliable transport
- Default operation: Use of TCP
 - Unencrypted (plaintext) on port 1883
 - Secured by TLS on port 8883
- Some brokers also support transport over WebSockets
- MQTT messages with a simple format
 - Fixed header [2 5 byte]
 - Variable header [optional]
 - Payload [optional]

MQTT

7 - 5	Message Queuing Telemetry Transport (MQTT)
4	TCP (Port 1883)
3	Internet Protocol (IP)
2	Data Link Layer
1	Physical Layer

MQTT Messages Message Types

- 14 message types
 - Login/logout: CONNECT, CONNACK, DISCONNECT
 - Publication: PUBLISH, PUBACK, PUBREC, PUBREL, PUBCOMP
 - Subscription: SUBSCRIBE, SUBACK, UNSUBSCRIBE, UNSUBACK
 - Monitoring: PINGREQ, PINGRESP
- Different Quality-of-Service (QoS) levels
 - QoS Level 0: At most once ("fire and forget")
 - QoS Level 1: At least once
 - QoS Level 2: Guaranteed once

Warning: MQTT uses acronym "QoS" in a very specific way!

MQTT Messages QoS Levels

MQTT Messages List of all Messages

Name	Msg Type	Direction	Description
Reserved	0000 (0x00)	Forbidden	Reserved
CONNECT	0001 (0x01)	Client to server	Client request to connect to server
CONNACK	0010 (0x02)	Server to client	Connect acknowledgment
PUBLISH	0011(0x03)	Both	Publish message
PUBACK	0100 (0x04)	Both	Publish acknowledgement
PUBREC	0101 (0x05)	Both	Publish received (step 1)
PUBREL	0110 (0x06)	Both	Publish released (step 2)
PUBCOMP	0111 (0x07)	Both	Publish complete (step 3)
SUBSCRIBE	1000 (0x08)	Client to server	Subscribe request
SUBACK	1001 (0x09)	Server to client	Subscribe acknowledgement
UNSUBSCRIBE	1010 (0x0A)	Client to server	Unsubscribe request
UNSUBACK	1011 (0x0B)	Server to client	Unsubscribe acknowledgement
PINGREQ	1100 (0x0C)	Client to server	PING request
PINGRESP	1101 (0x0D)	Server to client	PING response
DISCONNECT	1110 (0x0E)	Client to server	Client disconnecting
Reserved	1111 (0x0F)	Forbidden	Reserved

MQTT Messages Fixed Header

- Fixed header with 2 5 byte length in all messages
- Structure of first byte
 - Msg Type [4 bit]
 - Flags [4bit]
 - Duplication (DUP)
 - QoS
 - RETAIN
- Further structure defined by field Remaining Length

MQTT Messages Flags Field in Fixed Header

- Flags are only set in PUBLISH messages
- DUP [1 bit]
 - Default is value 0
 - If set to 1, the message is a retransmission (in QoS 1 or 2)

QoS [2 bit]

QoS level	Bit 2	Bit 1	Description	Meaning
0	0	0	At most once "<=1"	Fire and forget
1	0	1	At least once ">=1"	Acknowledged delivery
2	1	0	Exactly once "==1"	Assured delivery
3	1	1	Reserved	

RETAIN [1 bit]

- If retained flag is set to true, broker stores the last retained message (and QoS) for that topic
- Each client that subscribes to a matching topic receives retained message immediately after subscription
- Broker stores only one retained message per topic

MQTT Messages Remaining Length Field in Fixed Header

- Remaining Length [1 4 byte]
 - Encodes the remaining number of bytes
 - 1 to 4 bytes with 7 bit digits
 - Min length: 0 byte (message only with fixed header)
 - Max. length: 268,435,455 byte (ca. 256 MiB)
- Field format defined by most significant bit in each byte

Encoding of numerical value of the Remaining Length with 7 bit digits

Digits	From	То	Value
1	0 (0x00)	127 (0x7F)	a
2	128 (0x8001)	16,383 (0xFF7F)	b · 128 + a
3	16,384 (0x808001)	2,097,151 (0xFFFF7F)	c · 128 ² + b · 128 + a
4	2,097,152 (0x80808001)	268,435,455 (0xFFFFFF7F)	$d \cdot 128^3 + c \cdot 128^2 + b \cdot 128 + a$

MQTT Messages Example for Remaining Length Encoding

MQTT Messages Message Content Format

- Variable header [optional]
 - Multiple variable headers allowed
 - Examples
 - Topic [2 byte + content]
 - Packet identifier in QoS levels 1 and 2

Payload [optional]

- Actual content
- Length results from total length in fixed header minus length of variable header

MQTT Messages Transport

- MQTT messages between 2 byte and ca. 268 MB (≈ 256 MiB)
- Transport as byte stream over TCP connection
 - TCP offers reliable transport, flow control and congestion control
 - Maximum Segment Size (MSS) of 1460 byte (IPv4) or 1440 byte (IPv6) avoids IP packet fragmentation for Ethernet MTU of 1500 byte
- MQTT only has to deal with TCP connection failures

MQTT Messages Encapsulation in Ethernet, IPv4, and TCP

MQTT Messages Example for Traversal of Protocol Stacks

MQTT Example

MQTT Example Selected Messages

Example (2/3)

Control of a smart home socket (from Delock) powering a light bulb

CONNECT:

```
Frame 6: 91 bytes on wire (728 bits), 91 bytes captured (728 bits) on interface 0
Ethernet II, Src: dc:a6:32:87:7b:c8, Dst: ec:08:6b:53:39:da
Internet Protocol Version 4, Src: 192.168.0.184, Dst: 192.168.2.1
Transmission Control Protocol, Src Port: 37094, Dst Port: 1883, Seq: 1, Ack: 1, Len: 37
MQ Telemetry Transport Protocol, Connect Command
    Header Flags: 0x10, Message Type: Connect Command
        0001 .... = Message Type: Connect Command (1)
        \dots 0000 = Reserved: 0
    Msg Len: 35
    Protocol Name Length: 4
    Protocol Name: MQTT
    Version: MOTT v3.1.1 (4)
    Connect Flags: 0x02, QoS Level: At most once delivery (Fire and Forget), Clean Session Flag
        0... = User Name Flag: Not set
        .0.. .... = Password Flag: Not set
        ..0. .... = Will Retain: Not set
        ...0 0... = QoS Level: At most once delivery (Fire and Forget) (0)
        .... .0.. = Will Flag: Not set
        .... ..1. = Clean Session Flag: Set
        \dots 0 = (Reserved): Not set
    Keep Alive: 60
    Client ID Length: 23
                                                                                                   Frame 6
    Client ID: mosqsub|708-raspberrypi
```

Explanation

- Ethernet MAC Addresses: Client dc:a6:32:87:7b:c8, Router ec:08:6b:53:39:da
- IPv4 Addresses: Client 192.168.0.184, Broker 192.168.2.1
- Port numbers: Client 37094, Broker 1883
- Application: Client mosquitto_sub, Broker mosquitto

MQTT Example Selected Messages (Contd.)

Example (3/3)

Control of a smart home socket (from Delock) powering a light bulb

SUBSCRIBE:

```
Frame 10: 78 bytes on wire (624 bits), 78 bytes captured (624 bits) on interface 0

Ethernet II, Src: dc:a6:32:87:7b:c8, Dst: ec:08:6b:53:39:da

Internet Protocol Version 4, Src: 192.168.0.184, Dst: 192.168.2.1

Transmission Control Protocol, Src Port: 37094, Dst Port: 1883, Seq: 38, Ack: 5, Len: 24

MQ Telemetry Transport Protocol, Subscribe Request

Header Flags: 0x82, Message Type: Subscribe Request

1000 .... = Message Type: Subscribe Request (8)

.... 0010 = Reserved: 2

Msg Len: 22

Message Identifier: 1

Topic Length: 17

Topic: stat/delock/POWER

Requested QoS: At most once delivery (Fire and Forget) (0)

Frame 10
```

PUBLISH:

```
Frame 29: 77 bytes on wire (616 bits), 77 bytes captured (616 bits) on interface 0

Ethernet II, Src: ec:08:6b:53:39:da, Dst: dc:a6:32:87:7b:c8

Internet Protocol Version 4, Src: 192.168.2.1, Dst: 192.168.0.184

Transmission Control Protocol, Src Port: 1883, Dst Port: 37094, Seq: 40, Ack: 82, Len: 23

MQ Telemetry Transport Protocol, Publish Message

Header Flags: 0x30, Message Type: Publish Message, QoS Level: At most once delivery (Fire and Forget)

0011 ... = Message Type: Publish Message (3)

... 0... = DUP Flag: Not set

... .00. = QoS Level: At most once delivery (Fire and Forget) (0)

... ... 0 = Retain: Not set

Msg Len: 21

Topic Length: 17

Topic: stat/delock/POWER

Message: ON
```

MQTT Broker

- Broker is an MQTT-specific server logic
 - Clients connect to brokers
 - Brokers manage the hierarchy of topics
- Brokers receive all messages from publishers and forward them to appropriate subscribers
 - If there are no subscribers for a topic, message is discarded
 - Exception: If the message is flagged as retained, the last retained message is stored in broker
 - Retained messages enable new subscribers to a topic to receive the most recent value immediately

Last-will message

- Broker keeps track of all the session to clients
- Clients can specify a last-will message, i.e., a normal MQTT message with a topic, retained message flag, QoS, and payload
- Last-will message is stored in the broker
- When a client disconnects ungracefully, the broker sends the last-will message to all subscribed clients of the last-will message topic
- Last-will message is discarded by the broker if a client disconnects gracefully, i.e., with DISCONNECT message

MQTT Broker Bridges

- Bridging connects multiple brokers
- Example use cases
 - Load balancing (e.g., horizontal scaling)
 - Resiliency, redundancy

MQTT Broker Security

- User authentication and authorization possible
 - Username and password
 - Tokens, e.g. OAuth 2.0 token
 - Unencrypted transport in plaintext (port 1883)
- Better alternative MQTT over TLS (port 8883)
 - Confidentiality and integrity protection
 - Encryption of MQTT communication
 - Authentication by X.509 client certificates possible

Software Examples

MQTT Brokers (and Clients)

- Eclipse Mosquitto (in C): https://mosquitto.org
- HiveMQ (in Java): https://www.hivemq.com

– ...

MQTT Client Libraries

- Eclipse Paho (Java, C, Python, ...): https://www.eclipse.org/paho
- ...

Other MQTT-enabled applications

- Node-RED for browser-based apps: https://nodered.org
- HAProxy for scaling: https://www.haproxy.org

– ...

Software Examples Simple Python Client on Raspberry Pi

Example MQTT Publishing of Temperature and Humidity from DHT22 Sensor with Paho Library

```
#!/usr/bin/python3
# Import required Python libraries
import paho.mgtt.client as mgtt
import Adafruit DHT
import time
# Configuration
dht22qpiopin=17
broker='broker.picoIOT.test'
port=1883
publish topic="raspberry/dht22"
clientid='raspberry-mqtt-dht22'
username='mosquitto'
password='password'
gos=1
retain message=True
while True:
    # Establish the MOTT connection
    client=mqtt.Client(clientid)
    client.username pw set (username, password)
    client.connect(broker, port)
    client.loop start()
    # Publish temperature and humidity
    humidity, temperature = Adafruit DHT.read retry(Adafruit DHT.AM2302, dht22qpiopin)
    client.publish("{}/temperature".format(publish topic),"{:.1f}".format(temperature),qos,retain message)
    client.publish("{}/humidity".format(publish topic),"{:.1f}".format(humidity),gos,retain message)
    client.disconnect()
    client.loop stop()
    time.sleep(10)
```

Alternatives to MQTT

Constrained Application Protocol (CoAP)

- Lightweight protocol for M2M without full TCP/IP stack
- UDP-based protocol similar to HTTP
- Similar to MQTT

Advanced Message Queuing Protocol (AMQP)

- Message-oriented middleware, e.g. for enterprise integration
- Binary protocol
- Widely used in large-scale distributed systems

Example for MQTT Message Encapsulation

Exercise

A sensor sends an MQTT message by Wireless LAN (WLAN) to an MQTT broker that is running on a server with IP address 192.168.2.1. Protocol data units in WLAN, i.e. frames, include both a header and a trailer. Sketch the resulting structure of a WLAN frame that encapsulates MQTT data if no encryption is used, i.e., the series of bytes that are sent by the sensor.

Structure of an MQTT message over TCP, IPv4 and WLAN:

Industrial Cyber-Physical Networks

Prof. Dr.-Ing. Michael Scharf
Hochschule Esslingen – University of Applied Sciences

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.

Industrial Revolutions

Mechanization

- Water and steam power
- Machines
- Railroads

Mass production

- Electricity and electric power
- Assembly line
- Roads

Automation

- Electronics and computer
- Robotics
- Internet and WWW

Cyber-Physical Systems

- Ubiquitous connectivity
- Smart devices
- Internet of Things (IoT)

Industrial Revolutions Example Use Cases Related to "Industry 4.0"

- Manufacturing ("Smart factory")
 - Robotics
 - "Digital Twin"
- Vertical industries
 - Transportation, e.g. railroad
 - Energy and utilities, e.g., oil and gas industry, electrical power grid
 - **–** ...
- Emerging new use cases
 - Augmented reality (AR) / virtual reality (VR)
 - Remotely operated vehicles such as drones, cars, etc.
 - **–** ...

Operational Technology (OT), also known as Industrial Control System (ICS), differs to Information Technology (IT) using Commodity-of-the-Shelf (COTS) technology

Industrial Networks

Industrial Networks Industrial Automation Systems

Enterprise Resource Planning (ERP)

- Management of business processes
- Example: SAP S/4HANA

Manufacturing Execution System (MES)

- Management of production processes
- Example: SAP Manufacturing Execution

Supervision Control And Data Acquisition (SCADA)

- High-level supervision of production processes
- Typically including a Human-Machine Interface (HMI)
- Example: Siemens WinCC

Programmable Logic Control (PLC)

- Also known in German as "Speicherprogrammierbare Steuerung (SPS)"
- Real-time control of production processes
- Example: Siemens Simatic

Sensors and Actuators

Industrial Networks Historical Evolution

1. Wiring harness (main approach until ca. 1980)

- Central control of devices out of a control cabinet
- One cable per signal

2. Field bus (since ca. 1980)

- Fieldbus for signals from/to multiple devices
- Simple technologies using shared bus

3. Networks (since ca. 2000)

- Distributed control, several controllers
- Complex topologies
- Trend towards
 Industrial Ethernet

4. Internet Connection (since ca. 2015)

Industrial Networks Internet Connection

Industrial Networks Industry Sectors

Process Automation

- Relatively slow processes
- Oil, gas, chemical industry, energy, water, ...
- Pumps, compressors, mixers, temperature/ pressure/flow sensors, ...
- Delay ~1s

Factory Automation

- Time-critical processes
- Most manufacturing, food and beverages, pharmaceuticals, ...
- Metal forming, welding, stamping, cutting, packaging, filling, ...
- Delay 1 ms 100 ms

Motion Control

- Multi-axis motion control
- Utilities, advanced factory automation, life/equipment safety
- Printing presses, wire drawing, web making, picking and placing, ...
- Delay 100 μs 10 ms

Industrial Networks Survey of Deployed Network Technologies

Industrial Networks Typical Network Architecture

Enterprise Zone

- Level 5: Enterprise Network
- Level 4: Site Business Planning and Logistics Network

Industrial Demilitarized Zone (IDMZ)

- Border between IT and OT networks
- Firewalls with security rules limit communication

Industrial Zone (Manufacturing Zone)

- Level 3: Site Manufacturing
 Operations and Control
- Level 2: Area Supervisory Control
- Level 1: Basic Control
- Level 0: Process

Cells

(areas)

Industrial Networks IT/OT Network Example 1

Industrial Networks IT/OT Network Example 2

Network Requirements

	IT Network Information Technology	OT Network Operational Technology	ISP Network Internet Service Provider
Physical environment	Office or server roomsAir conditionedProtected against dust, water, etc.	 Outside or shop floor Wide temperature range Electrical disturbance, mechanical vibrations, etc. 	 Outdoor cabinets possible Extended temperature range Typically some protection against dust and water
Topology	Star/tree in LAN, mesh in WAN	Static linear or ring structures	Mesh or ring
Port density	High	Typically low	Low to high
Outage risk	Some commercial impact	Production downtime	Significant commercial impact
Devices	Commodity-of-the-Shelf (COTS)	Often proprietary	Few major vendors
Lifecycle	3 – 5 years	Decades possible	5 – 10 years
Rollout	Dedicated IT department	Machine rollout personal	Dedicated rollout personal
Operation	Dedicated IT department	Part of SCADA operation	Dedicated operation team
Priorities	 Efficiency and usability Sufficient performance, e.g. high throughput Confidentiality, integrity 	 Availability and reliability Determinism and real-time transmission Safety and plant protection 	 Availability and reliability Performance to fulfill Service Level Agreements (SLAs) Confidentiality, integrity

Trend to IT/OT convergence

Network Requirements Summary of key requirements

- Availability ("Verfügbarkeit")
- Reliability ("Zuverlässigkeit")
- Safety ("Funktionssicherheit")
- Security ("Sicherheit")
- Real-time support ("Echtzeitunterstützung")
- ... and ...
 - Robustness in rough environments
 - Electromagnetic compatibility
 - Long lifetime
 - Ease of maintenance
 - Low Operational Expenditures (OPEX)
 - Low Capital Expenditures (CAPEX)
 - etc.

Network Requirements Ingress Protection (IP) Rating

Example for an IP Rating

Exercise

Image source: https://www.lorixone.io/sites/default/files/2018-11/lorixone_details_0.png

The data sheet of an outdoor wireless base station lists protection according to IP65. What protection does this rating imply?

IP65:

5 -> Protected against water-jets: No harmful effect from water projected by a (small) nozzle from any direction

6 -> Dust-tight: No ingress of dust

