

Curso Superior de Tecnologia em Sistemas de Computação Disciplina: Matemática para Computação AD2 - 2º semestre de 2009 - Gabarito

Atenção: ADS enviadas pelo correio, devem ser postadas cinco dias antes da data final de entrega estabelecida no calendário de entrega de ADs.

Questões

1. (1,5 ponto)

Determine os seguintes tópicos para as funções f(x) e g(x) dadas abaixo:

$$f(x) = 7x^2 - 3x + 5$$

$$g(x) = x^3 - 2x^2 + x + 1$$

- (a) (0,75 ponto)
 - Intervalos onde a função f(x) é crescente ou decrescente;
- (b) (0,75 ponto)
 - os pontos de máximo e de mínimo da função, caso existam;

Solução:

- Para a função f(x):

$$f(x) = 7x^2 - 3x + 5$$

$$f'(x) = 14x - 3$$

$$f'(x) = 0$$
 se e somente se $14x - 3 = 0$

Logo, o único número crítico é dado por:

$$x = \frac{3}{14}$$

Podemos observar que:

$$f'(x)<0$$
 quando $14x-3<0$, ou seja, quando $x<\frac{3}{14}$ $f'(x)>0$ quando $14x-3>0$, ou seja, quando $x>\frac{3}{14}$

Podemos então concluir que, a função f(x) é decrescente no intervalo: $\left(-\infty,\frac{3}{14}\right)$ e crescente no intervalo: $\left(\frac{3}{14},\infty\right)$.

Além disso, uma vez que, f''(x)=14 e $f''\left(\frac{3}{14}\right)=14>0$, temos através da segunda derivada que a função f tem um mínimo relativo em $\frac{3}{14}$.

- Para a função g(x):

$$f(x) = x^3 - 2x^2 + x + 1$$

$$f'(x) = 3x^2 - 4x + 1$$

$$f'(x) = 0$$
 se e somente se $3x^2 - 4x + 1 = 0$

$$3x^2 - 4x + 1 = 3(x - 1)\left(x - \frac{1}{3}\right) = 0$$

De onde obtemos as seguintes raizes, "números críticos":

$$x = 1$$
, $x = \frac{1}{3}$

Podemos observar que:

$$f'(x) < 0$$
 quando $3(x-1)\left(x-\frac{1}{3}\right) < 0$, ou seja, quando $\frac{1}{3} < x < 1$; $f'(x) > 0$ quando $3(x-1)\left(x-\frac{1}{3}\right) > 0$, ou seja, quando $x < \frac{1}{3}$ e $x > 1$.

Podemos então concluir que, a função f(x) é decrescente no intervalo: $\frac{1}{3} < x < 1$ e crescente nos intervalos: $\left(-\infty, \frac{1}{3}\right)$ e $(1, \infty)$.

Além disso, uma vez que, f''(x) = 6x - 4 e $f''\left(\frac{1}{3}\right) = 6\left(\frac{1}{3}\right) - 4 = -2 < 0$ e f''(1) = 6(1) - 4 = 2 > 0, temos através da segunda derivada que a função f tem um mínimo relativo em 1 e um máximo relativo em $\frac{1}{3}$.

2. (0,5 ponto) —

Determine os pontos de inflexão da seguinte função, caso existam:

$$y = 3x^4 - 10x^3 - 12x^2 + 12x - 7$$

Solução:

$$y = 3x^4 - 10x^3 - 12x^2 + 12x - 7$$

Temos para a função acima as seguintes derivadas (y' e y''):

$$y' = 12x^3 - 30x^2 - 24x + 12$$

$$y'' = 36x^2 - 60x - 24 = 12(3x+1)(x-2)$$

Fazendo y''=0 e resolvendo essa equação, podemos obter os pontos de inflexão, ou seja,

$$12(3x+1)(x-2) = 0$$

$$(3x+1)(x-2) = 0$$

$$x = -\frac{1}{3} e x = 2$$

Podemos também observar que:

y'' > 0 quando $x < -\frac{1}{3}$ e quando x > 2

- concavidade voltada para cima;

$$y'' < 0$$
 quando $-\frac{1}{3} < x < 2$

- concavidade voltada para baixo.

Os pontos de inflexão são dados por: $\left(-\frac{1}{3}, -\frac{322}{27}\right)$ e (2, -63)

visto que y'' muda de sinal em $x=-\frac{1}{3}$ e x=2. Observe o gráfico abaixo:

3. (1.5 ponto) -

Calcule as antiderivadas:

(a) (0.5 ponto)

$$\int \left(6x^8 - \frac{2}{3}x^5 + 7x^4 + \sqrt{3}\right) dx =$$

(b) (0.5 ponto)

$$\int \left(\frac{1}{3}x^3 + 7\right)^5 x^2 dx =$$

(c) (0.5 ponto)

$$\int (3s+4)^2 ds =$$

Solução:

(a) (0.5 ponto)

$$\int \left(6x^8 - \frac{2}{3}x^5 + 7x^4 + \sqrt{3}\right)dx =$$

$$= \int 6x^8 dx - \int \frac{2}{3} x^5 dx + \int 7x^4 dx + \int \sqrt{3} dx$$
$$= 6\left(\frac{x^9}{9}\right) - \frac{2}{3}\left(\frac{x^6}{6}\right) + 7\left(\frac{x^5}{5}\right) + \sqrt{3}x + C$$
$$= \frac{2}{3} x^9 - \frac{1}{9} x^6 + \frac{7}{5} x^5 + \sqrt{3}x + C$$

(b) (0.5 ponto)

$$\int \left(\frac{1}{3}x^3 + 7\right)^5 x^2 dx =$$

podemos resolver por substituição:

$$\int \left(\frac{1}{3}x^3 + 7\right)^5 x^2 dx =$$

escolhemos $g(x)=\left(\frac{1}{3}x^3+7\right)$ e fazemos r=5, assim podemos resolvê-la da seguinte forma:

$$\int (g(x))^r g'(x) dx = \frac{1}{r+1} (g(x))^{r+1} + C$$

Dessa forma, obtemos:

$$\int \left(\frac{1}{3}x^3 + 7\right)^5 x^2 dx = \frac{1}{5+1} \left(\frac{1}{3}x^3 + 7\right)^6 + C = \frac{1}{6} \left(\frac{1}{3}x^3 + 7\right)^6 + C$$

(c) (0.5 ponto)

$$\int (3s+4)^2 ds =$$

$$= \int 9s^2 + 24s + 16ds$$

$$= \int 9s^2 ds + \int 24s ds + \int 16ds$$

$$= 9\left(\frac{s^3}{3}\right) + 24\left(\frac{s^2}{2}\right) + 16s + C$$

$$= 3s^3 + 12s^2 + 16s + C$$

ou podemos ainda resolver essa questão utilizando a fórmula:

$$\int (g(x))^r g'(x) dx = \frac{1}{r+1} (g(x))^{r+1} + C$$

$$= \int (3s+4)^2 ds = \frac{1}{3} \int (3s+4)^2 3 ds$$
$$= \frac{1}{3} \left(\frac{1}{2+1} (3s+4)^{2+1} \right) + C$$
$$= \frac{1}{3} (3s+4)^3 + C$$

4. (2.0 pontos) —

Calcule as integrais definidas:

(a) (1.0 ponto)

$$\int_{2}^{6} (3x+4) \, dx =$$

(b) (1.0 ponto)

$$\int_{1}^{9} \sqrt{5x + 4} \, dx =$$

Solução:

(a) (1.0 ponto)

$$\int_{2}^{6} (3x+4) dx =$$

$$= \left[\int 3x dx \right]_{2}^{6} + \left[\int 4 dx \right]_{2}^{6}$$

$$= 3 \left[\int x dx \right]_{2}^{6} + 4 \left[\int dx \right]_{2}^{6}$$

$$= 3 \left[\frac{x^{2}}{2} \right]_{2}^{6} + 4 \left[x \right]_{2}^{6}$$

$$= 3 \left(\frac{6^{2}}{2} - \frac{2^{2}}{2} \right) + 4(6-2)$$

$$= 54 - 6 + 16$$

$$= 64$$

(b) (1.0 ponto)

$$\int_{1}^{9} \sqrt{5x + 4} dx =$$

Fazemos u = 5x + 4. Então, du = 5dx.

Quando x=1, temos que u=5.1+4=9 e quando x=9, temos que u=5.9+4=49. Assim,

$$\int_{1}^{9} \sqrt{5x + 4} dx =$$

$$= \int_{9}^{49} \sqrt{u} \frac{1}{5} du$$

$$= \left[\frac{1}{5} \frac{2}{3} u^{3/2} \right]_{9}^{49}$$

$$= \left[\frac{2}{15} u^{3/2} \right]_{9}^{49}$$

$$= \frac{2}{15} \left[(49)^{3/2} - (9)^{3/2} \right]$$

$$= \frac{2}{15} \left[\left(\sqrt{49} \right)^{3} - \left(\sqrt{9} \right)^{3} \right]$$

$$= \frac{2}{15} (7^{3} - 3^{3})$$

$$= \frac{2}{15} (316)$$

$$= \frac{632}{15}$$

5. (1.5 ponto)

Determine a área sob a parábola $y = x^2 - 2x + 2$, acima do eixo x e entre x = 0 e x = 1.

Solução:

$$\int_0^1 (x^2 - 2x + 2) dx = \left[\frac{x^3}{3} - 2\left(\frac{x^2}{2}\right) + 2x \right]_0^1$$

$$= \left[\frac{x^3}{3} - x^2 + 2x\right]_0^1$$

$$= \left[\frac{1}{3} - 1 + 2\right] - [0 - 0 + 0]$$

$$= \left[\frac{1}{3} + 1\right]$$

$$= \frac{4}{3}$$

6. (1.5 ponto)

Determine a área da região limitada pela reta y=4x e pela curva $y=x^3+3x^2$.

Solução:

Para obter os pontos de intersecção, basta igualar as duas equações:

$$4x = x^3 + 3x^2$$

$$x^3 + 3x^2 - 4x = 0$$

$$x(x^2 + 3x - 4) = 0$$

$$x(x-1)(x+4) = 0$$

Dessa forma, temos três valores de x que são intersecções entre as retas:

$$x = 0, x = -4 e x = 1$$

Pontos de interseção:

$$(0,0); (-4,-16); (1,4)$$

No intervalo $-4 \leq x \leq 0$, a curva está acima da reta e a área é:

$$A_{1} = \int_{-4}^{0} \left[(x^{3} + 3x^{2}) - 4x \right] dx$$
$$= \left[\frac{x^{4}}{4} + 3\left(\frac{x^{3}}{3}\right) - 4\left(\frac{x^{2}}{2}\right) \right]_{-4}^{0}$$

$$= 32$$

No intervalo $0 \leq x \leq 1$, a reta está acima da curva, portanto,

$$A_{2} = \int_{0}^{1} \left[4x - (x^{3} + 3x^{2}) \right] dx$$

$$= \left[2x^{2} - \frac{x^{4}}{4} - x^{3} \right]_{0}^{1}$$

$$= \left[2(1^{2}) - \frac{1^{4}}{4} - 1^{3} \right]$$

$$= \left[2 - \frac{1}{4} - 1 \right]$$

$$= \left[1 - \frac{1}{4} \right]$$

$$= \frac{3}{4}$$

A área total limitada pela reta e a curva é:

$$A = A_1 + A_2 = 32 + \frac{3}{4} = 32,75$$

termine o volume do sólido de revolução gerado quando a região limitada pela partábola $y=4x^2$, as linhas x=0 e y=16 é girada em torno do eixo y. Utilize o método dos discos, integrando ao longo do eixo y. Esboce o gráfico.

-De-

Integral = 0.75 ponto;

Gráfico = 0,75 ponto.

Solução:

$$V = \pi \int_0^{16} x^2 dy = \pi \int_0^{16} \frac{y}{4} dy$$
$$= \frac{\pi}{8} [y^2]_0^{16}$$
$$= \frac{\pi}{8} (256)$$

 $=32\pi$