ESTRUTURA ATÔMICA: números quânticos

Modelo Atômico do Orbital

 Princípio da Incerteza de Heisenberg: é impossível determinar com precisão a posição e a velocidade de um elétron num mesmo instante;

Imagem: Autor Desconhecido/ Disponibilizada por Quiris/ Domínio público

Modelo Atômico do Orbital

Imagem: Autor Desconhecido/ Disponibilizada por Materialscientist/ Domínio público

 Princípio da dualidade da matéria de Louis de Broglie: o elétron apresenta característica DUAL, ou seja, comporta-se como matéria e energia sendo uma partícula-onda;

Modelo Atômico do Orbital

- Erwin Schrödinger, baseado nestes dois princípios, criou o conceito de Orbital;
- Orbital é a região onde é mais provável encontrar um elétron.

Imagem: Autor Desconhecido/ Disponibilizada por Orgullomoore / Domínio público

Princípio da Exclusão de Pauli

Imagem: Nobel foundation / Disponibilizada por Pieter Kuiper / Domínio público

 Pauli deduziu que a natureza não permite que, num mesmo átomo, existam dois elétrons com a mesma energia, em estados em que coincidam os quatro números quânticos (cada elétron é caracterizado por quatro números quânticos).

Número Quântico Principal (n)

 Indica o nível de energia do elétron no átomo. Entre os átomos conhecidos em seus estados fundamentais, n varia de 1 a 7. O número máximo de elétrons em cada nível é dado por 2n².

	Nív	eis (de Ene	rgia			Cama	da				Nún	nero	οМ	áxir	no	de I	Elét	ron	S					
			1°				K		-													2			
			2°				- L														7	8			
			2°				M															18			
			3 4°																			32			
			5°																			32			
			6°																			18			
			U				, _															0			
			30 10				Q															0			
			8°	- 100	100		R	- 1	-	-	-	1.00	ė.	-	1.00		-	-	-			2			

Número Quântico Secundário ou Azimutal (I)

 Indica a energia do elétron no subnível. Entre os átomos conhecidos em seus estados fundamentais, I varia de 0 a 3 e esses subníveis são representados pelas letras s, p, d, f, respectivamente. O número máximo de elétrons em cada subnível é dado por 2 (2 l + 1).

Su	bní	vel		-	n	° qu	ıânt	ico	(9)		+			Má	xim	o de	e el	étro	ns				- 51		-		
	-		S						0					7/	3	51	ă			2							
-	-		р					-	1	4	٠		-		10			121	2	6		(a)				-	
-			d						2			-							-	10							
*		-	f					-	3		-	101	-		1.5					14	-			-			

Número Quântico Magnético (m)

 O número quântico magnético especifica a orientação permitida para uma nuvem eletrônica no espaço, sendo que o número de orientações permitidas está diretamente relacionado à forma da nuvem (designada pelo valor de l). Dessa forma, este número quântico pode assumir valores inteiros de -l, passando por zero, até +l. Para os subníveis s, p d, f, temos:

Subnível	ક	Número de orbitais	Valores de m
S	0	1	0
р	1	3	-1, 0 , +1
d	2	5	-2, -1, 0, +1, +2
f	3	7	-3, -2, -1, 0, +1, +2, +3

Número Quântico Spin (s)

• O número quântico de spin indica a orientação do elétron ao redor do seu próprio eixo. Como existem apenas dois sentidos possíveis, esse número quântico assume apenas os valores -1/2 e +1/2.

É comum a convenção:

$$\downarrow = +1/2 \ e \uparrow = -1/2.$$

Regra de Hund

- Cada orbital do subnível que está sendo preenchido recebe inicialmente apenas um elétron. Somente depois do último orbital desse subnível receber o seu primeiro elétron, começa o preenchimento de cada orbital com o seu segundo elétron, que terá spin contrário ao primeiro.
- Exemplo:

onde as flechas indicam o spin do elétron

Qual a localização de um elétron que possui o seguinte conjunto de números quânticos: n = 5, $\ell = 2$, m=+1, s =+1/2 (considerar o 1° elétron a entrar no orbital com spin = -1/2).

- a) nível de energia = N, subnível p
- b) nível de energia = N, subnível d
- c) nível de energia = N, subnível f
- d) nível de energia = O, subnível p
- e) nível de energia = O, subnível d

Qual alternativa apresenta corretamente os quatro números quânticos do elétron colocado no orbital 2pz, representado no nível energético abaixo?

$$\begin{array}{c|ccccc}
\uparrow\downarrow & \uparrow\downarrow & \uparrow & \uparrow\\
2s & 2p_x & 2p_y & 2p_z
\end{array}$$

- a) n = 2; $\ell = 1$; m = +1; $ms = + \frac{1}{2}$.
- b) n = 2; $\ell = 2$; m = +1; $ms = + \frac{1}{2}$.
- c) n = 2; $\ell = 1$; m = +2; $ms = + \frac{1}{2}$.
- d) n = 2; $\ell = 0$; m = +1; $ms = + \frac{1}{2}$.
- e) n = 2; $\ell = 0$; m = 0; $ms = + \frac{1}{2}$.

Um átomo X é isóbaro de ₂₆Fe⁵⁶ e isótono de ₃₀Zn⁶⁵. Convencionandose que o primeiro elétron a entrar num orbital possui spin -1/2, assinale a alternativa que contém o conjunto de números quânticos do elétron mais energético do elemento X e o período em que se encontra dentro da classificação periódica dos elementos:

- a) 4, 0, 0, -1/2, 4 ° período
- b) $3, 0, 0, +1/2, 3^{\circ}$ período
- c) 4, 2, +2, -1/2, 5° período
- d) 3, 2, -2, -1/2, 4° período
- e) $3, 0, -2, +1/2, 3^{\circ}$ período

Considerando a tabela abaixo,

Números quânticos

	n	ℓ	m	S
Conjunto 1	3	2	-2	+1/2
Conjunto 2	3	3	+3	+1/2
Conjunto 3	2	0	+1	-1/2
Conjunto 4	4	3	О	+1/2
Conjunto 5	3	2	-2	1

Assinale a alternativa correta.

- a) Os conjuntos 1, 3 e 5 representam configurações impossíveis para um elétron em um átomo.
- b) Os conjuntos 1 e 4 representam configurações possíveis para um elétron em um átomo.

Números quânticos

	n	ℓ	m	S
Conjunto 1	3	2	-2	+1/2
Conjunto 2	3	3	+3	+1/2
Conjunto 3	2	0	+1	-1/2
Conjunto 4	4	3	О	+1/2
Conjunto 5	3	2	-2	-1

- c) Os conjuntos 2 e 4 representam configurações possíveis para um elétron em um átomo.
- d) Os conjuntos 4 e 5 representam configurações impossíveis para um elétron em um átomo.
- e) Os conjuntos 1, 2 e 3 representam configurações possíveis para um elétron em um átomo.

CLASSIFICAÇÃO PERIÓDICA

Grupos

											1							
Grupo #	<u>1</u>	<u>2</u>	<u>3</u>	<u>4</u>	<u>5</u>	<u>6</u>	<u>7</u>	<u>8</u>	<u>9</u>	<u>10</u>	<u>11</u>	<u>12</u>	<u>13</u>	<u>14</u>	<u>15</u>	<u>16</u>	<u>17</u>	<u>18</u>
<u>Período</u>																		
<u>1</u>	1 H																	2 He
<u>2</u>	3 Li	4 Be											5 B	6 C	7 N	8	9 F	10 Ne
<u>3</u>	11 Na	12 Mg											13 Al	14 Si	15 P	16 S	17 Cl	18 Ar
<u>4</u>	19 V	20 Ca	21 Sc	22 Ti	23 V	24 Cr	25 Mp	26 Fe	27 <u>Co</u>	28 Ni	29 Cu	30 Zn	31 Ga	32 Ge	33 As	34 <u>Se</u>	35 Br	36 <u>Kr</u>
<u>5</u>	37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
<u>6</u>	<u>Rb</u> 55	<u>Sr</u> 56	<u>Y</u> *	72	<u>Nb</u> 73	<u>Mo</u> 74	<u>Tc</u> 75	<u>Ru</u> 76	<u>Rh</u> 77	<u>Pd</u> 78	<u>Ag</u> 79	<u>Cd</u> 80	<u>In</u> 81	<u>Sn</u> 82	<u>Sb</u> 83	<u>Te</u> 84	85 85	_ <u>Xe</u> 86
<u>7</u>	<u>Cs</u> 87	<u>Ba</u> 88	**	<u>Hf</u> 104	<u>Ta</u> 105	<u>W</u> 106	<u>Re</u> 107	<u>Os</u> 108	<u>lr</u> 109	<u>Pt</u> 110	<u>Au</u> 111	<u>Hg</u> 112	113	<u>Pb</u> 114	<u>Bi</u> 115	<u>Po</u> 116	<u>At</u> (117)	<u>Rn</u> 118
<u>-</u>	<u>Fr</u>	<u>Ra</u>		<u>Rf</u> :	<u>Db</u>	<u>Sg</u>	<u>: Bh</u>	<u>Hs</u>	<u>Mt</u>	<u>Ds</u>	<u>Rg</u>	<u>Cn</u>	<u>Uut</u>	<u>Fl</u>	<u>Uup</u>	<u>Lv</u>	(Uus)	<u>Uuo</u>
			57	58	59	60	61	62	63	64	65	66	67	68	69	70	71	W(1) (W)
	* <u>La</u>	antanídios -	<u>La</u>	<u>Ce</u>	<u>Pr</u>	<u>Nd</u>	<u>Pm</u>	<u>Sm</u>	<u>Eu</u>	<u>Gd</u>	<u>Tb</u>	<u>Dy</u>	<u>Ho</u>	<u>Er</u>	<u>Tm</u>	<u>Yb</u>	<u>Lu</u>	
	**	<u>Actinídios</u>	89 <u>Ac</u>	90 <u>Th</u>	91 <u>Pa</u>	92 <u>U</u>	l 93 l <u>Np</u>	94 <u>Pu</u>	95 <u>Am</u>	96 <u>Cm</u>	97 <u>Bk</u>	98 <u>Cf</u>	99 <u>Es</u>	100 <u>Fm</u>	101 <u>Md</u>	102 <u>No</u>	103 <u>Lr</u>	-

Grupos

As dezoito colunas verticais são chamadas FAMÍLIAS ou GRUPOS

Estes grupos são divididos em REPRESENTATIVOS (A) ou TRANSIÇÃO (B)

REPRESENTATIVOS (A) \rightarrow 1, 2, 13, 14, 15, 16, 17 e 18

TRANSIÇÃO (B) \rightarrow 3, 4, 5, 6, 7, 8, 9, 10, 11 e 12

Os elementos representativos possuem

o elétron DIFERENCIAL (mais energético) em um

subnível "s" ou "p" da última camada

Os elementos de transição possuem
o elétron DIFERENCIAL (mais energético) em um
subnível " d " (transição externa) da penúltima camada
ou

"f" (transição interna) da antepenúltima camada

Para os elementos REPRESENTATIVOS e seu grupoé identificada pelo TOTAL DE ELÉTRONS NA CAMADA DE VALÊNCIA (última camada).

Os elementos de transição interna estão localizados na grupos 3

Para os de transição (externa) observamos o número de elétrons do subnível "d" mais energético e seguimos a tabela abaixo

3	4	5	6	7	8	9	10	11	12
d ¹	d ²	d^3	d ⁴	d ⁵	d ⁶	d ⁷	d ⁸	d ⁹	d ¹⁰

TABELA PERIÓDICA

As famílias dos elementos REPRESENTATIVOS POSSUEM NOMES ESPECIAIS

Grupos	nome especial	elementos da família
1	metais alcalinos	Li, Na, K, Rb, Cs, Fr
2	metais alcalinos terrosos	Be, Mg, Ca, Sr, Ba, Ra
13	família do boro	B, Al, Ga, In, TI
14	família do carbono	C, Si, Ge, Sn, Pb
15	família do nitrogênio	N, P, As, Sb, Bi
16	calcogênio	O,S,Se,Te,Po
17	halogênio	F, CI, Br, I, At
18	gases nobres	He, Ne, Ar, Kr, Xe, Rn

METAIS, AMETAIS e GASES NOBRES

Gru	<u>po #</u>	<u>1</u>	<u>2</u>	<u>3</u>	<u>4</u>	<u>5</u>	<u>6</u>	<u>7</u>	<u>8</u>	<u>9</u>	<u>10</u>	<u>11</u>	<u>12</u>	<u>13</u>	<u>14</u>	<u>15</u>	<u>16</u>	<u>17</u>	<u>18</u>
<u>Per</u>	<u>íodo</u>		•												:				
	<u>1</u>	1 <u>H</u>																	2 <u>He</u>
	<u>2</u>	3 <u>Li</u>	4 <u>Be</u>											5 <u>B</u>	6 <u>C</u>	7 <u>N</u>	8 <u>0</u>	9 <u>F</u>	10 <u>Ne</u>
	<u>3</u>	11 <u>Na</u>	12 <u>Mg</u>											13 <u>Al</u>	14 <u>Si</u>	15 <u>P</u>	16 <u>S</u>	17 <u>Cl</u>	18 <u>Ar</u>
	<u>4</u>	19 <u>K</u>	20 <u>Ca</u>	21 <u>Sc</u>	22 <u>Ti</u>	23 <u>V</u>	24 <u>Cr</u>	25 <u>Mn</u>	26 <u>Fe</u>	27 <u>Co</u>	28 <u>Ni</u>	29 <u>Cu</u>	30 <u>Zn</u>	31 <u>Ga</u>	32 <u>Ge</u>	33 <u>As</u>	34 <u>Se</u>	35 <u>Br</u>	36 <u>Kr</u>
	<u>5</u>	37 <u>Rb</u>	38 <u>Sr</u>	39 <u>Y</u>	40 <u>Zr</u>	41 <u>Nb</u>	42 <u>Mo</u>	43 <u>Tc</u>	44 <u>Ru</u>	45 <u>Rh</u>	46 <u>Pd</u>	47 <u>Ag</u>	48 <u>Cd</u>	49 <u>In</u>	50 <u>Sn</u>	51 <u>Sb</u>	52 <u>Te</u>	53 <u>I</u>	54 <u>Xe</u>
	<u>6</u>	55 Cs	56 <u>Ba</u>	*	72 <u>Hf</u>	73 <u>Ta</u>	74 <u>W</u>	75 <u>Re</u>	76 <u>Os</u>	77 <u>Ir</u>	78 <u>Pt</u>	79 <u>Au</u>	80 <u>Hg</u>	81 <u>Tl</u>	82 <u>Pb</u>	83 <u>Bi</u>	84 <u>Po</u>	85 <u>At</u>	86 <u>Rn</u>
	<u>7</u>	87 <u>Fr</u>	88 <u>Ra</u>	**	104 <u>Rf</u>	105 <u>Db</u>	106 Sg	107 <u>Bh</u>	108 <u>Hs</u>	109 <u>Mt</u>	110 <u>Ds</u>	111 Rg	112 <u>Cn</u>	113 <u>Uut</u>	114 Fl	115 <u>Uup</u>	116 <u>Lv</u>	(117) (Uus)	118 <u>Uuo</u>
		* <u>La</u>	ntanídios	57 <u>La</u>	58 Ce	59 Pr	60 Nd	61 Pm	62 Sm	63 <u>Eu</u>	64 <u>Gd</u>	65 <u>Tb</u>	66 <u>Dy</u>	67 <u>Ho</u>	68 <u>Er</u>	69 <u>Tm</u>	70 <u>Yb</u>	71 <u>Lu</u>	
		**	<u>Actinídios</u>	90	90 <u>Th</u>	91 <u>Pa</u>	92 <u>U</u>	93 <u>Np</u>	94 <u>Pu</u>	95 <u>Am</u>	96 <u>Cm</u>	97 <u>Bk</u>	98 <u>Cf</u>	99 <u>Es</u>	100 <u>Fm</u>	101 <u>Md</u>	102 <u>No</u>	103 <u>Lr</u>	. =
		* *		Hidrogé	ènio			Ameta	ais		Gas	es Nobre	es		N	//etais			

Exceto o mercúrio (Hg), todos os outros metais são sólidos à temperatura ambiente (25°C). Geralmente apresentam elevadas temperaturas de fusão e ebulição.

Sabendo-se que os elementos químicos I e II apresentam as seguintes configurações eletrônicas em suas camadas de valência:

- I. $4s^2 4p^3$
- II. $3s^2$

assinale o que for correto.

- 01. O elemento II é um metal alcalino.
- 02. O elemento II possui número atômico igual a 12.
- 04. O elemento I é um não-metal.
- 08. O elemento I pertence ao grupo 5 e ao quarto período.

O cálcio (Z = 20) é um elemento químico de importância inquestionável tanto para as plantas quanto para os animais. Ao ionizar-se, o elemento perde dois elétrons, transformando-se no íon Ca^{2+} . Para o elemento ou para o íon, podemos afirmar corretamente que:

- a) O elemento pertence à família dos alcalinos.
- b) O elemento pertence à família dos calcogênios.
- c) O íon é isoeletrônico do gás nobre neônio (Z = 10).
- d) 1s² 2s² 2p⁶ 3s² 3p⁶ 4s² é a distribuição eletrônica do íon.
- e) 1s² 2s² 2p6 3s² 3p6 é a distribuição eletrônica do íon.

Considere os elementos químicos, com símbolos hipotéticos (X, Y e Z) que apresentam os seguintes íons: X^{2+} , Y^{2-} , Z^{+1} . Sabendo-se que estes íons são isoeletrônicos do gás nobre argônio (Z = 18), assinale a alternativa correta.

- a) Os três elementos pertencem ao mesmo período da tabela periódica.
- b) Se o número de massa do elemento Z for 39, este apresenta 20 nêutrons no núcleo.
- c) O elemento X é um metal alcalino.
- d) O elemento Y é um halogênio.
- e) Os três elementos pertencem à mesma família da tabela periódica.

O excesso de radicais livres no organismo é prejudicial à saúde. Para tentar evitar isso, nossas células apresentam um sistema antioxidante enzimático. Uma das principais enzimas desse sistema depende de um elemento denominado de X. Sabendo-se que o ânion X⁻² tem a seguinte distribuição eletrônica:

1s² 2s² 2p⁶ 3s² 3p⁶ 4s² 3d¹⁰ 4p⁶

Sabendo-se que o ânion X⁻² tem a seguinte distribuição eletrônica:

1s² 2s² 2p⁶ 3s² 3p⁶ 4s² 3d¹⁰ 4p⁶

É correto afirmar que o elemento X

- a) é um gás nobre do 4º período da classificação periódica dos elementos químicos.
- b) é um metal alcalino terroso do 5º período da classificação periódica dos elementos químicos.
- c) é um metal de transição.
- d) tem 8 elétrons na última camada.
- e) é um calcogênio do 4º período da classificação periódica dos elementos químicos.