- 1. Find the general solution of the following ODE using the given solution:
 - (a) e^{2x} is a solution of (2x+1)y'' 4(x+1)y' + 4y = 0.
 - (b) $\frac{1}{x}$ is a solution of x(1-x)y'' + 2(1-2x)y' 2y = 0.
 - (c) x is a solution of $(1 x^2)y'' 2xy' + 2y = 0$.
- 2. Show that $\frac{\sin x}{\sqrt{x}}$ is a solution of $x^2y'' + xy' + \left(x^2 \frac{1}{4}\right)y = 0$ in any $I \subset (0, \infty)$. Consequently, find its general solution.
- 3. Find the general solution of the following linear, homogeneous, constant coefficient ODE:
 - (a) y'' 4y' + 3y = 0.
 - (b) $y'' + 2y'' + (\omega^2 + 1)y = 0$ where ω is a real number.
 - (c) $y^{(5)} 2y^{(4)} + y^{(3)} = 0$.
 - (d) $y^{(6)} 2y^{(3)} + y = 0$
 - (e) $y^{(4)} + 2y^{(3)} + 6y'' + 2y' + 5y = 0$ given that $\sin x$ is a solution of the ODE.
- 4. Solve the following IVP:
 - (a) y'' + 4y' + 4y = 0 with y(0) = 1 and y'(0) = -1.
 - (b) y'' 2y' 3y = 0 with y(0) = 1 and y'(0) = 3.
- 5. Find the general solution of the following linear, inhomogeneous, constant coefficient ODE (using method of undetermined coefficients)
 - (a) $y^{(4)} + 2y^{(3)} 3y'' = 18x^2 + 16xe^x + 4e^{3x} 9$.
 - (b) $y'' + y = \sin x + (1 + x^2)e^x$.
 - (c) $y'' y = e^{-x}(\sin x + \cos x)$.
 - (d) $y^{(3)} 3y'' y' + 3y = x^2 e^x$.
- 6. Find the general solution of the following linear, inhomogeneous constant coefficient ODE (using method of variation of parameters):
 - (a) $y'' 2y' + y = xe^x \ln x \text{ in } (0, \infty).$
 - (b) $y'' + y = \cot^2 x$.
- 7. Find the general solution of the following ODE using both the method of undetermined coefficients and the variation of parameters:
 - (a) $y'' + 4y = 2\cos^2 x + 10e^x$.
 - (b) $y'' + y = x \sin x.$
- 8. Find the general solution of the following linear, inhomogeneous, variable coefficient ODE:
 - (a) $x^2y'' x(x+2)y' + (x+2)y = x^3$ for x > 0 given that y = x is a solution of the homogeneous part.

(b)
$$x^2y'' + xy' + 4y = 2x \ln x$$
 in $(0, \infty)$.

(c)
$$(x+2)^2y'' - (x+2)y' - 3y = 0$$
 in $(-2, \infty)$.

(d)
$$x^2y'' + 2xy' - 12y = 0$$
.

(e)
$$x^2y'' + 5xy' + 13y = 0$$
.

(f)
$$x^2y'' - xy' + y = 0$$
.