~ Genetic Algoritms ~ In Search of the Missing Solution

Davide Carneiro

Press Start!

للعبار والروانة فلأفاز والمعارون والمناف فالمراوي والمناف والمناف والمناف والمناف والمنافي والمناف والمنافة

لجريمان والمراجي والمنطف فالمراج ومانون والمراج فالمطاب والمراج والمراجعة

\$ About

- * PhD from the Universities of Minho, Aveiro and Porto (MAP-i)
- * Interests/Teaching:
 - Artificial Intelligence
 - Data Science/Engineering
 - Decision Support Systems

....

* Participation in Scientific Projects with real-life applications

ويتريك والمراز والمناط والمتراز والمناط والمنا

\$ About this

NEW YORK TIMES BESTSELLER

DOUGLAS ADAMS

What is the meaning of life?

How does this computer work?
How does it find a solution?
What does the solution even look like?

\$ What are GAs?

- * Search algorithms inspired by the natural mechanics of biological evolution
- * Are good at taking potentially large multi-dimensional search spaces and navigating them, looking for optimal solutions

* Ideal when the path towards a good solution is not known and/or when brute-force approaches are not feasible

\$ Algorithm

* Find the minimum of between –pi and pi

$$f(x) = 2 * \sin(x) - 1 * \cos(x)$$

* Find the maximum of

- * Population size: 20
- * heredityRate: 0
- * crossoverRate: 0
- * mutationRate: 0.75
- * maxIterations: 1000
- * DeltaMin: 0,0000001
- * MutationFactor: 0.2

* Population

* heredityF

* crossove

* mutation

* maxIterat

* DeltaMin

* Mutation!

- * Population size: 20
- * heredityRate: 0.1
- * crossoverRate: 0.25
- * mutationRate: 0.25
- * maxIterations: 1000
- * DeltaMin: 0.000001
- * MutationFactor: 0.2

* Population size: 20

* heredityF

* crossove

* mutation

* maxIterat

* DeltaMin

* Mutation

+20 Intuition
+25 Methodology

- * Population size: 20
- * heredityRate: 0.1
- * crossoverRate: 0.25
- * mutationRate: 0.25
- * maxIterations: 1000
- * DeltaMin: 0,0000001
- * MutationFactor: 0,2

- * Population size: 20
- * heredityRate: 0.1
- * crossoverRate: 0.25
- * mutationRate: 0,25
- * maxIterations: 1000
- * DeltaMin: 0,0000001
- * MutationFactor: 0,2

- * Population size: 20
- * heredityRate: 0.1
- * crossoverRate: 0.25
- * mutationRate: 0.25
- * maxIterations: 1000
- * DeltaMin: 0.000001
- * MutationFactor: 0.2

- * Population size: 20
- * heredityRate: 0.1
- * crossoverRate: 0.25
- * mutationRate: 0.25
- * maxIterations: 1000
- * DeltaMin: 0.000001
- * MutationFactor: 0.2

- * Population size: 20
- * heredityRate: 0.1
- * crossoverRate: 0.25
- * mutationRate: 0.25
- * maxIterations: 1000
- * DeltaMin: 0.000001
- * MutationFactor: 0.2

^{*} Strategy: apply the genetic operators with the given probabilities to the top 20% of solutions, select best

* Strategy: apply the genetic operators with the given probabilities to the top 20% of solutions, select best

- * Population size: 20
- * heredityRate: 0.1
- * crossoverRate: 0.25
- * mutationRate: 0,25
- * maxIterations: 1000
- * DeltaMin: 0,0000001
- * MutationFactor: 0,2

^{*} Strategy: apply the genetic operators with the given probabilities to the top 20% of solutions, select best

"A very educational movie, addressing the importance of proper selection strategies and genetic diversity towards the successful evolution of species. And a wake up call to our own evolution!"

- Davide Carneiro

$$Ch = \begin{bmatrix} V_{1,1} & \cdots & V_{1,n} \\ \vdots & \ddots & \vdots \\ V_{m,1} & \cdots & V_{m,n} \end{bmatrix} \qquad Ch = \begin{bmatrix} P1 & P2 \\ 0,2 & 0,3 & 0,5 \\ 1 & 0 & 0 \\ 0,1 & 0,8 & 0,1 \end{bmatrix}$$

$$P = \begin{bmatrix} Ch_1 = \begin{bmatrix} V_{1,1} & \cdots & V_{1,n} \\ \vdots & \ddots & \vdots \\ V_{m,1} & \cdots & V_{m,n} \end{bmatrix} \quad Ch_2 = \begin{bmatrix} V_{1,1} & \cdots & V_{1,n} \\ \vdots & \ddots & \vdots \\ V_{m,1} & \cdots & V_{m,n} \end{bmatrix} \quad \dots \quad Ch_S = \begin{bmatrix} V_{1,1} & \cdots & V_{1,n} \\ \vdots & \ddots & \vdots \\ V_{m,1} & \cdots & V_{m,n} \end{bmatrix}$$

$$V_{m,n} \in A, \quad A = \{x \in \mathbb{R} \mid 0 \le x \le 1\}$$
 $\sum_{i=1}^{n} V_{m,n} = 1, \forall m \in \{1, 2, ..., m\}$
 $R_n = \sum_{i=1}^{m} V_{m,n}$
 $V_{m,i} = 1 \Rightarrow V_{m,x} = 0, \forall x \in \{1, 2, ..., n\}, x \ne i$

$$Ch = \begin{bmatrix} V_{1,1} & \cdots & V_{1,n} \\ \vdots & \ddots & \vdots \\ V_{m,1} & \cdots & V_{m,n} \end{bmatrix} \qquad Ch = \begin{bmatrix} 0,2 & 0,3 & 0,5 \\ 1 & 0 & 0 \\ 0,1 & 0,8 & 0,1 \end{bmatrix}$$

$$P = \begin{bmatrix} Ch_1 = \begin{bmatrix} V_{1,1} & \cdots & V_{1,n} \\ \vdots & \ddots & \vdots \\ V_{m,1} & \cdots & V_{m,n} \end{bmatrix} \quad Ch_2 = \begin{bmatrix} V_{1,1} & \cdots & V_{1,n} \\ \vdots & \ddots & \vdots \\ V_{m,1} & \cdots & V_{m,n} \end{bmatrix} \quad \dots \quad Ch_s = \begin{bmatrix} V_{1,1} & \cdots & V_{1,n} \\ \vdots & \ddots & \vdots \\ V_{m,1} & \cdots & V_{m,n} \end{bmatrix}$$

$$V_{m,n} \in A, \quad A = \{x \in \mathbb{R} \mid 0 \le x \le 1\}$$
 $\sum_{i=1}^{n} V_{m,n} = 1, \forall m \in \{1, 2, ..., m\}$
 $R_n = \sum_{i=1}^{m} V_{m,n}$
 $V_{m,i} = 1 \Rightarrow V_{m,x} = 0, \forall x \in \{1, 2, ..., n\}, x \neq i$

والمراب والمطاب والمطاب والمطاب والمطاب والمستقال والمطاب والمطاب والمطاب والمطاب والمطاب والمطاب والمطاب والم

TL;DR

- * Does not need a lot of domain knowledge
- * It's often faster and more efficient than traditional methods
- * Is easily parallelized and/or distributed
- * Optimizes both discrete and continuous functions
- * Finds multiple "good" solutions
- * Always finds a solution
- * Useful when the search space is multi-dimensional and very large

- * Cannot be applied to every problem
- * Efficiency depends significantly on the fitness function
- * Does not guarantee optimum solutions nor the quality of the solution found
- * May not converge to the optimum solution
- * Has the disadvantage of gradient search methods

All the state of t

TL;DR

~ Genetic Algoritms ~ In Search of the Missing Solution

Game Over!

