ทีม Economical Satellite Deployment (E.S.D.Rocket) โรงเรียนอัสสัมชัญ รายละเอียดภารกิจ

ภารกิจ : เพื่อสร้างระบบจรวดปล่อย CANSAT ที่สามารถปล่อย CANSAT ขนาดมาตรฐาน (68 มม. X 124 มม.) และ สามารถสร้างระบบป้องกันความเสียหายของ Payload (ไข่) ได้อย่างมีประสิทธิภาพโดยอาจใช้ airbag และโครงสร้าง ที่แข็งแรงและยืดหยุ่นประกอบ

ปัญหาที่อาจพบและวิธีการแก้ไขปัญหา

- 1. ระบบการดีดตัวของ Rocket เกิดข้อผิดพลาดระหว่างการแยกตัวใน Interstage
 - แก้โดยสร้างระบบการแยกตัวของ Rocket สำรอง ด้วยการปรับเปลี่ยนหลักการการแยกตัวในชั้น Inter Stage จากการใช้ดินขับ เป็นการใช้สปริงที่มีความเสี่ยงต่อการผิดพลาดน้อยกว่า แม้พลังงานในการดีด อาจลดลงเล็กน้อย
- 2. ระบบการกระจายและลดแรงกระทำที่เกิดจากการกระทบกันระหว่างโครง CanSat และพื้นดินไม่มี ประสิทธิภาพมากพอในการยับยั้งความเสียหายที่ส่งไปยังไข่
 - แก้ไขได้โดยการออกแบบระบบลดแรงกระแทก จึงต้องเลือกวัสดุที่มีความแข็งแรง เบา และยืดหยุ่นมา ช่วยเป็นตัวสนับสนุนฐานโครงสร้าง ทดสอบการตกภายใต้ภาวะต่าง ๆ และในรูปแบบวิธีต่าง ๆ
- 3. ความผิดพลาดของการคำนวณเวลาในการดีดสปริงและสลัดท่อนบนของจรวด
 - การพัฒนาระบบการดีดตัวแบบสำรองโดยนำค่าความกดอากาศมาใช้ในการคำนวณความสูงแทนการใช้ เวลาในกรณีที่การคำนวณเวลาไม่สามารถทำงานได้

การจัดการข้อมูล

- 1. การเก็บค่าอุณหภูมิ ค่าความชื้นสัมพัทธ์ ความกดอากาศ และค่าตำแหน่งของ Rocket และ CanSat ในความ สูงต่าง ๆ เพื่อนำไปสร้างภาพจำลองการตกด้วยโปรแกรมที่เขียนนขึ้นจากภาษา Python และสรุปผลเป็น รูปแบบของกราฟต่อไป
- 2. การติดกล้องบริเวณภายใน CanSat เพื่อนำมาวิเคราะห์ว่าสภาพทางกายภาพของพัสดุ (ไข่) มีการ เปลี่ยนแปลงจากแรงกระทำภายนอกจากจรวดและแรงกระแทก ตั้งแต่ก่อนยิงจรวดจนถึงตอนที่ตกลงสู่พื้น
- 3. การหาข้อผิดพลาดของการเก็บข้อมูล โดยนำข้อมูลที่ได้จาก CanSat ทั้ง 2 ตัว มาเปรียบเทียบกัน

ประโยชน์ที่คาดว่าจะได้รับ

- 1. สามารถลดต้นทุน ทรัพยากร และมลพิษจากการปล่อย CanSat ได้และเป็นแบบจำลองเพื่อพัฒนาในสเกลที่ ใหญ่ขึ้น
- 2. สามารถพัฒนาจรวดที่มีเสถียรภาพ และมีระบบการทำงานภายในหลายระบบ เช่น ระบบนำทาง ระบบรับ ตำแหน่งพิกัด
- 3. สามารถพัฒนาระบบกู้ภัยของ CanSat ที่ลดผลกระทบจากแรงภายนอกหรือแรงกระแทกที่กระทำต่อพัสดุ

ข้อจำกัด

พัสดุที่ส่งได้มีขนาดเล็ก และน้ำหนักเบา ทำให้ไม่สามารถส่งพัสดุได้ในปริมาณมาก

เทคนิคและวิธีการ

การออกแบบร่มชูชีพ (parachute design)

ร่มชูชีพที่ออกแบบไว้นั้น เป็นรูปแบบของ วงกลมและมีรูตรงกลางอ้างอิงตามหลักอากาศ พลศาสตร์ โดยอากาศสามารถไหลผ่านรูนี้ได้บ้างเพื่อ ลดความแปรปรวน โดยรูนี้จะต้องมีขนาดไม่ใหญ่ จนเกินไป ซึ่งจากการคำนวณขนาดของร่มผ่านสูตร

$$v = \sqrt{\frac{2mg}{\rho c_D A}}$$

ร่มชูชีพที่ผ่านการคำนวณ มีขนาดเส้นผ่าน ศูนย์กลางยาว 45 เซนติเมตร สำหรับ CanSat ทั้งสอง ตัว และเส้นผ่านศูนย์กลางยาว 45 เซนติเมตรสำหรับ Rocket ทั้งส่วนบนและล่าง หากถูกลมพัดตัวดาวเทียม และ Rocket อาจตกเร็วขึ้นหรือช้าลงหรือตกนอกระยะ ได้

รูปทรงขอร่มชูชีพมีลักษณะเป็นรูปโดม มากกว่าที่จะเป็นแบบทรงกลมใหญ่ เนื่องจากรูปทรง โดมนั้นจะมีโอกาสกางสำเร็จมากกว่าแบบทรงกลมใหญ่ ขนาดเล็กกว่า และสร้างแรงต้านได้มากพอจากการ ทดสอบโดย 3D Simulation

การออกแบบโครงสร้างของ CanSat

จากเป้าหมายที่ต้องการปกป้องไข่ภายใน CanSat จึงเลือกวัสดุที่มีความเหนียว แข็งแรง เหมาะสม มีน้ำหนักเบา ซึ่งจากการหาข้อมูลสรุปได้ว่า วัสดุ มีคุณสมบัติตรงตามที่ต้องการคือพลาสติก PETG ซึ่งเป็นพลาสติกที่มีเหมือนประเภทเดียวกับขวดน้ำแต่มี การผสมไกลคอล (Glycol) ลงไป มีค่า Young's Modulus ประมาณ 10 GPa อีกทั้งยังใช้สปริงซึ่งมีค่า คงตัวของสปริง ที่สามารถลดแรงกระแทกระหว่างลง จอด และการเลือกวัสดุห่อหุ้มไข่ที่มีความแข็งแรง มี ความเหนียว ยึดเกาะตัวได้ดี คงรูปได้ง่าย อีกทั้งยังมี น้ำหนักที่เบาอีกด้วย ซึ่งก็คือ Polycarbonate

การสื่อสารกับภาคพื้นดิน และการจัดการข้อมูล

เนื่องด้วยภารกิจปล่อย CanSat สองตัวในการ ปล่อยจรวดในครั้งเดียว ทำให้ต้องมีระบบสื่อสารของ CanSatทั้งสองตัวที่อยู่ใกล้กัน ซึ่งระบบการสื่อสารที่จะ ใช้คือ "LoRa" ซึ่งมีความเหมาะสมเพราะเป็น เครือข่ายสื่อระยะไกลที่ใช้พลังงานต่ำ โดยการตั้ง ความถี่ของคลื่นสัญญาณของ CanSat ตัวที่ 1 และ CanSat ตัวที่ 2 ให้มีความแตกต่างกันมากกว่า 15 MHz (1 Channel) เพื่อป้องกันการรบกวนกันของ คลื่นสัญญาณ

นำข้อมูลเชิงสถิติที่ได้มาผ่านกระบวนการสถิติ ต่าง ๆ เช่น Linear Regression เพื่อวิเคราะห์ให้ข้อมูล มีความสมบูรณ์มากยิ่งขึ้น นำข้อมูลที่ได้ CanSat ทั้ง 2 ตัวมาหาความคลาดเคลื่อนผ่านระบบต่าง ๆ (อ้างอิง Research Article: A Comparative Prediction Accuracy of Hybrid Time Series Models) เช่น Mean Absolute Error, Mean Square Error นำ ข้อมูลที่เป็นรูปภาพ และข้อมูลเชิงสถิติคำนวณค่า ความสัมพันธ์ ผ่านการ Visualization

การออกแบบวงจรไฟฟ้าและระบบจ่ายพลังงาน

การออกแบบแผงวงจรนั้นมีข้อจำกัดมากมาย ทั้งด้านพื้นที่ ด้านอากาศพลศาสตร์ และด้านความ เรียบง่ายของแผงวงจร โดยการออกแบบจะต้องเน้นไป ด้านการประหยัดพื้นที่และราคาไม่สูง โดยที่แผงวงจรที่ ออกแบบไว้นั้นเป็นแบบชั้น เพราะเป็นการประหยัด พื้นที่ภายในและสามารถบรรจุอุปกรณ์ ต่าง ๆ ตามที่ ต้องการได้และมีการใช้ Battery ที่มีความเหมาะสมกับ พลังงานที่ใช้ (14500 Li-ion) เพื่อที่จะประหยัดเนื้อที่ ในการติด Sensor ตัวอื่น ๆ และลดน้ำหนักของ CanSat อุปกรณ์อิเล็กโทรนิกส์ทั้งหมดใช้กระแสไฟฟ้า ทั้งแบบ 3.3 V และ 5 V ระบบใช้ได้ต่อเนื่องประมาณ 2 ชั่วโมง 30 นาที

แนวคิดในการออกแบบ CanSat

ในการทำงานของ CanSat นั้นเป็นการทำงานที่ใช้ในภารกิจการกู้ชีพ หรือ ภารกิจในการช่วยเหลือ มีการ ออกแบบโดยคำนึงถึงการป้องกันวัตถุและการเก็บกู้หลังปล่อยเป็นหลัก ตัวของ CanSat มีน้ำหนักเบา ทนทานต่อแรง กระแทก โดยการคำนึงถึงหลักการทางฟิสิกส์เป็นหลักคือ กฎของนิวตัน หลักการถ่ายเทแรง หลักการออกแบบ parachute มีการปกป้องวัสดุข้างในเพื่อให้สามารถส่งสิ่งของหรืออุปกรณ์ได้โดยไม่มีความเสียหาย มีระบบเก็บกู้ คือ buzzer และการเก็บรวบรวมพิกัดค่า GPS โดย CanSat ของเรานั้นจะเน้นความเรียบง่ายโดยเน้นการทดสอบ combination ของวัสดุ เพื่อที่จะใช้เป็นวัสดุหุ้มไข่ จะมีระบบไฟฟ้าที่จำเป็นเพียงเล็กน้อยเท่านั้น

หลักการทำงานของ CanSat

เมื่อ CanSat ถูกดีดตัวออกมาจาก Rocket หลังจากนั้นจะทำการวัดค่าความกดอากาศ ค่าแรง g ค่าอุณหภูมิ ค่าความชื้น และทำการถ่ายภาพการเปลี่ยนแปลงของไข่ หลังจากนั้นจะนำค่าที่วัดได้ส่งข้อมูลไปยังสถานีภาคพื้นด้วย LoRa ด้วยคลื่นความถี่ที่ต่างกัน 15 Hz ของ CanSat 2 ตัว (433 MHz และ 448 MHz) เมื่อ CanSat กระทบถึงพื้นจะ มีระบบช่วยลดแรงกระแทก คือ ทางด้านล่างของ CanSat จะมีลักษณะกลมมน ทำจากวัสดุที่มีความยืดหยุ่น เพื่อที่จะ ช่วยรับแรงกระแทกแทนตัวของ CanSat

ลำดับ	ชื่ออุปกรณ์	การใช้งาน	การใช้พลังงาน	น้ำหนัก(g)	รูปทรง(mm³)
1	Arduino UNO R3	เพื่อใช้ควบคุมการส่งข้อมูลให้ภาคพื้นดิน	500mA @5V	45	50*70*12.5
2	RF-LORA-868-SO	เพื่อใช้ในการส่งข้อมูลกับภาคพื้นดิน	125mA @3.3V	15	23*20*2
3	Ublox NEO-M8N GPS-GLONASS Module	ใช้ในการระบุค่า GPS เพื่อระบุตำแหน่งของ CANSAT	70mA @3.3V	20	25*33*3
4	BME280 Digital Module	ใช้ในการเก็บข้อมูลพื้นฐานต่างๆ คือ อุณหภูมิ ความชื้นสัมพัทธ์ ความกดอากาศ	3.6µA @3.3V	1.5	2.5*2.5*0.93
5	Li-ion Batteries	ใช้เพื่อจ่ายพลังงาน	N/A	50	80*50*10
6	GY-80 IMU/10DOF	ใช้วัดค่าความเร่ง ไจโรสโคป และทิศทาง	6.3mA @3.3V	10	17*25*1
7	Buzzer	ใช้ส่งเสียงบอกตำแหน่ง	50mA @5V	2	12*12*9.5