

Abstract Sheet

EP 0 014 236 A1

Abrasive grain, corundum (Al_2O_3) comprising titanium oxide, preferably Ti_2O_3 , is provided with a ceramic coating. The abrasive grain is subjected to a heat treatment whereby the Ti-oxides change from the trivalent into the quadrivalent degree of oxidation. The coating and the change of the degree of oxidation are effected simultaneously.

D1

Europäisches Patentamt
European Patent Office
Office européen des brevets

(11) Veröffentlichungsnummer:

0 014 236
A1

(12)

EUROPÄISCHE PATENTANMELDUNG

(21) Anmeldenummer: 79104569.3

(51) Int. Cl.³: B 24 D 3/00

(22) Anmeldetag: 19.11.79

C 09 K 3/14, C 04 B 31/16

(30) Priorität: 07.02.79 AT 901 78

(71) Anmelder: Tyrolit Schleifmittelwerke Swarovski K.G.
Swarovskistrasse 33
A-6130 Schwaz(AT)(43) Veröffentlichungstag der Anmeldung:
20.08.80 Patentblatt 80:17(72) Erfinder: Hellertsberger, Harald, Dr.
Boznerstrasse 13
A-6112 Wattens(AT)(62) Benannte Vertragsstaaten:
CH DE FR GB IT NL SE(73) Erfinder: Aichhorn, Anton, Dr.
Fischzuchtweg 1
A-6065 Thaur(AT)(72) Erfinder: Bogusch, Erich, Dr.
Paracelsusstrasse 9
A-6130 Schwaz(AT)(74) Vertreter: Torggler, Paul, Dr. et al.
Wilhelm-Greil-Strasse 16
A-6020 Innsbruck(AT)

(54) Verfahren zur Gütebehandlung von Schleifkorn.

(56) Schleifkorn (1) aus Al₂O₃, das einen Anteil von Titanoxid, vorzugsweise TiO₂, aufweist, wird mit einer Ummantelung aus einer keramischen Masse (3) versehen. Das Schleifkorn (1) wird einer Hitzbehandlung unterzogen, wobei eine Umwandlung der Ti-Oxide von der 3-wertigen in die 4-wertige Oxidationsstufe erfolgt. Das Aufschmelzen der Ummantelung und die Umwandlung der Kornstruktur erfolgt gleichzeitig

EP 0 014 236 A1

- 1 -

Verfahren zur Gütebehandlung von
Schleifkorn

- Die Erfindung bezieht sich auf ein Verfahren zur
Gütebehandlung von Schleifkorn aus Al_2O_3 mit einem
5 Anteil von Titanoxid, vorzugsweise Ti_2O_3 , wobei auf
das Schleifkorn eine Ummantelung aus einer keramischen
Masze aufgebracht, beispielsweise aufgeschmolzen
und/oder gesintert wird.
- 10 Die Erfindung bezieht sich auf die Behandlung von
konventionellem Schleifkorn aus geschmolzenem oder
gesintertem Elektrokorund, wie es handelsüblich
als Normalkorund oder mikrokristalliner Korund
bezeichnet wird, das einen Gehalt von 0,5 bis 5,0 Gew.%
15 Titanoxide (Ti_2O_3 und TiO_2) aufweist, wobei der
Hauptanteil Ti_2O_3 ist.
- 20 Korund, der als Schleifmittel in Schleifscheiben oder
Schleifkörpern Verwendung finden soll, wird nach
herkömmlicher Praxis fallweise bei einer Temperatur
von ca. 1350°C geäglüht, wodurch eine Änderung der
Kornstruktur und eine Verbesserung der Schleifeigen-
schaften erzielt wird. Sichtbar wird diese Behandlung
durch die blaue Farbe, die der Korund bei dieser
Behandlung annimmt.

- 2 -

Weiters ist es bekannt, Korundkörner mit einer Ummantelung zu versehen, beispielsweise aus keramischen Massen und Eisendioxiden, die eine Verbesserung der Haftung zwischen Schleifkorn und Bindung in der Schleifscheibe bzw. im Schleifkörper mit sich bringt, bzw. die Füllstoffeigenschaften aufweist und aktiv am Schleifvorgang Anteil nimmt, indem sie beispielsweise die Wärmeableitung verbessert.

Nach dem herkömmlichen Verfahren werden das Glühen des Schleifkornes und das Ummanteln des Schleifkornes getrennt durchgeführt, d.h. das Schleifkorn wird vorerst auf eine Temperatur von ca. 1350°C gebracht und zwar in oxidierender Atmosphäre, bis es eine Blaufärbung erhalten hat, worauf dann das Schleifkorn wieder auf Raumtemperatur abgekühlt wird. Nach der Abkühlung wird, wie gesagt, in einem separaten Arbeitsvorgang eine keramische Umhüllung auf Phosphat- oder Silikatbasis beispielsweise mit niedrig schmelzenden, keramischen Fritten (Glasfritten) und fein vermahlenen Metalloxiden - aus Kostengründen vornehmlich Fe_2O_3 - aufgetragen, wozu das Schleifkorn nochmals auf eine Temperatur von ca. 600°C bis 800°C aufgeheizt wird.

Die dabei erzielte Ummantelung bewirkt durch ihre rauhe, körnige Oberflächenstruktur eine größere Oberfläche und eine bessere Benetzbarkeit derselben. Der Kunstharzbindung des Schleifkörpers steht somit eine vergrößerte und verbesserte Haftfläche zur Verfügung, wogegen die Haftung zwischen Schleifkorn und Mantel häufig nicht die erforderliche Intensität aufweist. Wird ein derart behandeltes Schleifkorn in Schleifkörpern eingesetzt, so kommt es besonders bei Schleifscheiben hoher Dichte zu starken Ausbrüchen von schleiftechnisch nicht oder nur unzu-

reichend genütztem Schleifkorn. Eine weitere Ursache des Korn-Ausbruches stellt der poröse und relativ dicke (15-50 µm) Mantel selbst dar, der nur geringe Festigkeit besitzt. Die Flüssig-Komponente der Kunst-

- 5 harzbindung kann den dicken Mantel nicht immer zur Gänze, d.h. bis auf seinen Grund, durchtränken, wodurch bei nachfolgender Beanspruchung der poröse Mantel selbst eine bevorzugte Bruchzone darstellt. Es kann also selbst bei guter Haftung des Mantels zu
10 Korn und Bindung dieser selbst auseinanderreißen, wobei ein Teil des Mantels am Korn und der andere Teil als Gegenstück an der Bindungsmasse des Schleifkörpers haften bleibt.

Der oben erwähnte Glühprozeß, d.h. das Aufheizen des
15 Kornes auf eine Temperatur von ca. 1350°C ändert das Bruchverhalten und die Festigkeitseigenschaften des Schleifkornes und erhöht die Schleifleistung des fertigen Schleifwerkzeuges, außerdem gewährleistet es einen kühleren Schliff. Die Ursachen des Farbumschlages von braun auf blau und der veränderten
20 mechanischen Eigenschaften sind im Übergang des Titans, welches im gegenständlichen Schleifkorn in Form von Oxiden (vornehmlich Ti_2O_3) mit maximal 5 Gew.% enthalten ist, von der 3-wertigen in die 4-wertige Oxidations-
25 stufe zu sehen. Diese Erhöhung der Oxidationsstufe von Ti^{3+} zu Ti^{4+} bewirkt die "Ausfällung" des im Al_2O_3 "gelösten" Ti_2O_3 als TiO_2 .

Aufgabe der Erfindung ist es, ein Verfahren zu schaffen,
welches es ermöglicht, den die Umwandlung der Korn-
30 struktur bewirkenden Glühprozeß und das Ummanteln des Kornes mit einer beispielsweise haftverbessernden Schicht in einem Arbeitsgang und mit geringerem Energieverbrauch durchzuführen.

Dies wird erfindungsgemäß dadurch erreicht, daß

das Schleifkorn über eine Zeitspanne von 15 min bis 2h einer Temperatur von 1250 bis 1350°C ausgesetzt wird, wobei das Aufsintern bzw. Aufschmelzen der keramischen Ummantelung gleichzeitig mit der Umwandlung der Ti-Oxide von der 3-wertigen in die 4-wertige Oxidationsstufe und damit mit der Umwandlung der Kornstruktur erfolgt.

Das nach dem erfindungsgemäßen Verfahren behandelte Schleifkorn weist eine Umhüllung von nur 2-5 µm Stärke auf, welche sich aufgrund der Ausbildung einer beispielsweise aus Spinell bestehenden Übergangsschicht durch eine außerordentlich starke Haftung an der Korn-Oberfläche und hohe innere Festigkeit auszeichnet. Abgesehen von der Energie-Ersparnis gegenüber dem herkömmlichen Verfahren besteht der entscheidende Fortschritt der erfindungsgemäß aufgebrachten Ummantelung in deren außergewöhnlichen Haftung zum Korn, hohen inneren Festigkeit und geringen Dicke.

Vorteilhaft ist vorgesehen, daß die Zeitspanne der Temperaturbehandlung zwischen 20 min und 45 min liegt.

Vorteilhaft ist vorgesehen, daß als Ummantelungsmaterial Silikate, Ton, Kaolin und/oder hochschmelzende Glasfritten Verwendung finden.

Ein weiteres vorteilhaftes Ausführungsbeispiel des Verfahrens sieht vor, daß dem Ummantelungsmaterial Metalloxide, beispielsweise Eisenoxide und/oder Manganoxid und/oder Chromoxide beigegeben werden bzw. in diesem enthalten sind.

Durch den gezielten Einsatz von Metalloxiden kommt es bei der Brenntemperatur von 1250 bis 1350°C zu

einer Abspaltung von Sauerstoff nach dem Beispiel

- Da diese Sauerstoffabgabe jeweils unmittelbar an der Kornoberfläche stattfindet, trägt der frei werdende
5 Sauerstoff zu einer erheblichen Beschleunigung der Oxidation des 3-wertigen Titans bei. Dieses zusätzliche Sauerstoffangebot gestattet eine Kürzung der Brandzeit um bis zu 50% gegenüber dem konventionellen Glühverfahren.
- 10 Vorteilhaft ist vorgesehen, daß der Anteil der Metalloxide ~a. 1-5 Gew.%, bezogen auf die Menge Schleifkorn, beträgt.
- Ein weiteres Ausführungsbeispiel der Erfindung sieht vor, daß dem Ummantelungsmaterial Substanzen mit einem
15 Ausdehnungskoeffizienten, der von dem der keramischen Masse (und dem Schleifkorn) möglichst stark abweicht, wie beispielsweise ZrO_2 , beigegeben werden.
- Durch den Zusatz von beispielsweise Zirkonkorund, welches während der Abkühlung nach dem Brand durch
20 seine starke thermische Volumsänderung (Ausdehnung bzw. Kontraktion) ein feines Netz von Mikrorissen erzeugt, wird eine größere Oberfläche der Ummantelung und eine Erhöhung der Zug- und Biegefestigkeit der Ummantelung, und damit fallweise des Schleifkornes,
25 erzielt, indem diese Mikrorisse die Bildung großer Risse verhindern.
- Bei einem besonderen Ausführungsbeispiel, bei welchem die Haftung des Schleifkornes mit der Kunstharzbindung der Schleifscheibe wesentlich verbessert wird,

wird dem Ummantelungsmaterial ein Zuschlag von 0,5-1,5 Gew.% vorzugsweise 1,1 Gew.% SiC, bezogen auf die Kornmenge, beigegeben.

Der Effekt dieses Zuschlages ist darin zu sehen,
 5 daß sich das SiC bereits bei Temperaturen ab 900°C zersetzt bzw. oxidiert. Der Zersetzunggrad ist bei den Temperaturen, bei denen erfindungsgemäß das Schleifkorn behandelt wird, nämlich 1250-1350°C optimal. Bei der Zersetzung bildet sich gasförmiges Kohlendioxid bzw. Kohlenmonoxid und SiO bzw. SiO₂ wobei die gasförmigen Kohlenstoffoxide in der Schmelze des Ummantelungsmaterials Blasen hervorrufen. Diese Blasen bewirken eine merkliche Verbesserung der Ummantelungsobерfläche und somit eine vergrößerte äußere Haftfläche am Schleifkorn und
 15 eine verbesserte Haftfähigkeit des ummantelten Schleifkernes in der Bindungsmasse.

Gemäß der Erfindung werden als Ummantelungsmaterial beispielsweise folgende Substanzen einzeln oder in
 20 Mischungen verwendet.

<u>Kaolin,</u>	<u>Glasfritten,</u>
vorteilhaft in	vorzugsweise in der
folgender Zusammensetzung	Zusammensetzung

	Glühverlust	13,0 Gew.%	allgemein
25	SiO ₂	46,6 "	SiO ₂ 45-70Gew.%
	Al ₂ O ₃	37,8 "	Al ₂ O ₃ 7-15 "
	Fe ₂ O ₃	0,6 "	B ₂ O ₃ 0-25 "
	K ₂ O	1,0 "	MgO 0-3,5"
	Na ₂ O	0,2 "	CaO 0-7 "
30	CaO	0,3 "	Na ₂ O 0-5 "

MgO	0,2	Gew.%	K ₂ O	0-12	Gew.%
TiO ₂	0,3	"	P ₂ O ₅	0-6	"

	<u>Ton,</u>		<u>Manganoxidhaltige Tone,</u>	
	vorteilhaft in folgenden		MnO ₂	12-15 Gew.%
5	Zusammensetzungen		SiO ₂	25-30 "
	SiO ₂	63-70 Gew.%	Al ₂ O ₃	14-16 "
	Al ₂ O ₃	25-27 "	Fe ₂ O ₃	25-28 "
	TiO ₂	0,6-0,7 "	CaO	0,6 "
	Fe ₂ O ₃	0,5-0,6 "	MgO	0,2 "
10	Na ₂ O	0,6-0,7 "	K ₂ O }	2,5 "
	K ₂ O	0,9-1,0 "	Na ₂ O }	

	<u>Eisenoxidhaltige Tone,</u>	
	SiO ₂	58,0 Gew.%
	Al ₂ O ₃	19,8 "
15	Fe ₂ O ₃	8,1 "
	CaO	0,1 "
	MgO	0,1 "
	K ₂ O	5,3 "
	Na ₂ O	3,5 "
20	Glühverlust	4,6 "

Weiters kommen gemäß der Erfindung als Ummantelungsmaterial Phosphate, Borate und Silikate in Betracht, die einzeln oder in Mischung aufgetragen werden.

In der Technologie der Aufbringung des Ummantelungsmaterials auf die Kornoberfläche hat sich erfindungsgemäß eine Anfeuchtung des Schleifkornes als vorteilhaft erwiesen.

- 8 -

Als Anfeuchtmittel werden erfindungsgemäß verwendet:
wässrige Lösungen von Silikaten, Phosphaten
und Boraten, Phosphorsäuren,
Borsäuren,
5 Kieselsäuren,
organische Si-Verbindungen, wie z.B. Äthyl-
und Methylpolysiloxane.

Wesentlich bei der Wahl der Mantelmaterialien und
Anfeuchtmittel ist erfindungsgemäß, daß ein rauher,
10 makroskopisch geschlossener Mantel, der fallweise
die erwähnten Mikrorisse enthält, am Schleifkorn
erzielt wird und daß es während der Hitzebehandlung
trotz der hohen Temperatur zu keiner unerwünschten,
starken Kantenkorrasion am Schleifkorn kommt, wodurch
15 die Schleifeigenschaften des letzteren wesentlich
herabgesetzt werden würden. Dagegen ist eine leichte,
oberflächliche Anlösung der Schleifmittelpartikel
unerlässlich, da nur dadurch die Bildung einer
chemischen Übergangsschicht (siehe Abbildung) er-
möglicht wird. Dazu dürfen die Anfeuchtmittel nur in
20 entsprechend niedrigen Konzentrationen eingesetzt
werden.

Nachstehend werden fünf Ausführungsbeispiele der
Erfindung beschrieben.

25 In der Figur der Zeichnung ist das Schleifkorn nach
Ausführungsbeispiel 4 mit 1 (Normalkorund, Al_2O_3),
eine daran angrenzende Galaxitübergangsschicht
 MnAl_2O_4 mit 2 und eine gesinterte Schicht aus Mangan-
oxid-Körnern 3 in Glasmatrix 4 bezeichnet. Die Über-
30 gangsschichte 2 bindet dabei sowohl chemisch als
auch mechanisch mit dem Korund 1 und der eigentlichen
Überzugsschichte 3. Die durch beispielsweise ZrO_2
verursachten Mikrorisse sind mit 5 bezeichnet.

- 9 -

Die Figur der Zeichnung zeigt schematisch einen Schnitt durch den Randbereich eines Schleifkörnelles.

Ausführungsbeispiel 1:

5	Al_2 (Normalkorund) $\approx 700 \mu\text{m}$	96,5 Gew.%
	Anfeuchtmittel, wie erwähnt	1,0
	Kaolin (Korngröße $< 5 \mu\text{m}$)	1,1
	Al_2O_3 Korngröße $< 10 \mu\text{m}$	1,4

Ausführungsbeispiel 2:

10	Al_2O_3 (Normalkorund $= 700 \mu\text{m}$)	96,45 Gew.%
	Anfeuchtmittel, wie erwähnt	1,3
	hochschmelzende Fritte $< 38 \mu\text{m}$	1,25
	MnO_2 (Korngröße $< 10 \mu\text{m}$)	2,0

Ausführungsbeispiel 3:

15	Al_2O_3 (Normalkorund) $\approx 700 \mu\text{m}$	95,5 Gew.%
	Anfeuchtmittel, wie erwähnt	1,3
	Ton $< 5 \mu\text{m}$	1,2
	MnO_2 $< 10 \mu\text{m}$	2,0

Ausführungsbeispiel 4:

20	Al_2O_3 (Normalkorund) $\approx 700 \mu\text{m}$	95,55 Gew.%
	Anfeuchtmittel, wie erwähnt	1,2
	Fritte (Korngröße $< 38 \mu\text{m}$)	1,25
	MnO_2 (Korngröße $< 10 \mu\text{m}$)	1,8
	ZrO_2 (Korngröße $< 10 \mu\text{m}$)	0,2

- 10 -

Ausführungsbeispiel 5:

	Al_2O_3 (Normalkorund $\approx 700 \mu\text{m}$)	96,8 Gew.%
	Anfeuchtmittel, wie erwähnt	1,0
	Kaolin (Korngröße $< 5 \mu\text{m}$)	1,1
5	SiC (Korngröße $< 20 \mu\text{m}$)	1,1

10 Gemäß der Erfindung wird das Schleifkorn vorzugsweise nach vorangegangener Befeuchtung mit dem fein gemahlenen Überzugsmaterial in einem herkömmlichen Mischer vermischt und ummantelt und anschließend in einem Drehrohrofen bei einer Temperatur von 1250°C bis 1350°C gebrannt, wobei die Temperaturbehandlung 2h nicht überschreiten soll, beispielsweise zwischen 20 und 45 min liegt.

15 Um den Einfluß der erfindungsgemäßen Behandlung des Schleifkornes auf das Festigkeitsverhalten eines fertigen Schleifkörpers zu ergründen, wurden nach untenstehender Zusammensetzung Prüfkörper gefertigt. Diese waren für die Prüfung der Biegebruch-Spannung mit $120 \times 10 \times 15$ und für die Prüfung der Druckbruchspannung mit $10 \times 10 \times 15$ mm dimensioniert und auf eine Pressdichte von $d_0 = \dots 2,79$ verdichtet.

	Korngröße $\approx 700 \mu\text{m}$	50 Vol.-%
	Phenolharz (fest:flüssig = 4:6)	30 Vol.-%
	Füllstoff (Kryolith)	15 Vol.-%
25	(Poren)	5-10 Vol.-%

Die Aushärtung erfolgte bei 190°C über 54 Stunden.

20 Ebenso wurde ... weiterer Zusammensetzung mit unbehandeltem, herkömmlich gebrühtem und ummanteltem und erfindungsgemäß behandeltem Normalkorund Probeschleifkörper (Trennscheiben) $400 \times 45 \times 32$ mm) ge-

- 11 -

fertigt und geprüft. Zur Prüfung wurden Baustahlrundprofile Ø 30 mm getrennt. Die Ergebnisse der vorgerommenen Vergleichsprüfung sind der anschlossenen Tabelle zu entnehmen.

KORN	BIEGEBRUCHSPANNUNG kN/mm ²	DRUCKBRUCHSPANNUNG kN/mm ²	G-FAKTOR SCHLEIF- VERHÄLTNIS
unbehandelter Normalkorund	5200	13 300	3.0
herkömmlich ummantelt u. geglühter Normalkorund	6000	16 600	3.7
erfindungsge- mäß behandelter Normalkorund	7100	17 300	4.1

G-Faktor = Verhältnis von getrennter Werkstückquerschnittsfläche zu verbrauchter Scheibenfläche (Scheibenverschleiß)

P a t e n t a n s p r ü c h e :

1. Verfahren zur Gütebehandlung von Schleifkorn aus Al_2O_3 mit einem Anteil von Titanoxid, vorzugsweise Ti_2O_3 , wobei auf das Schleifkorn eine Ummantelung aus einer keramischen Masse aufgebracht, vorzugsweise aufgeschmolzen und/oder aufgesintert wird,
5 dadurch gekennzeichnet, daß das Schleifkorn über eine Zeitspanne von 15 min bis 2h einer Temperatur von 1250 bis 1350°C ausgesetzt wird, wobei das Aufsintern bzw. Aufschmelzen der keramischen Ummantelung gleichzeitig mit der 10 Umwandlung der Ti-Oxide von der 3-wertigen in die 4-wertige Oxidationsstufe und damit mit der Umwandlung der Kornstruktur erfolgt.
- 15 2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß die Zeitspanne der Temperaturbehandlung zwischen 20 min und 45 min liegt.
- 20 3. Verfahren nach Anspruch 1 und/oder 2, dadurch gekennzeichnet, daß als Ummantelungsmaterial Silikate, Ton und/oder hochschmelzende Glasfritten und/oder Borate und/oder Phosphate eingesetzt werden.
- 25 4. Verfahren nach Anspruch 3, dadurch gekennzeichnet, daß als Ummantelungsmaterial eisenoxidhältige und/oder manganoxydhältige Tone eingesetzt werden.
5. Verfahren nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß dem Ummantelungsmaterial Metalloxide, vorzugsweise Eisenoxide und/oder Manganoxide und/oder Chromoxide, beigegeben werden.

6. Verfahren nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, daß dem Ummantelungsmaterial Substanzen mit hohen Ausdehnungskoeffizienten, wie ZrO_2 , beigegeben werden.
- 5 7. Verfahren nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, daß als Ummantelungsmaterial Kaolin eingesetzt wird.
- 10 8. Verfahren nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, daß das Schleifkorn vor dem Ummanteln mit einer wässrigen Lösung von Boraten angefeuchtet wird.
- 15 9. Verfahren nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, daß das Schleifkorn vor dem Ummanteln mit einer Phosphor-, Bor- oder Kieselsäure angefeuchtet wird.
10. Verfahren nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, daß das Schleifkorn vor dem Ummanteln mit einer organischen Si-Verbindung angefeuchtet wird.
- 20 11. Verfahren nach einem der Ansprüche 1 bis 10, dadurch gekennzeichnet, daß dem Ummantelungsmaterial ein Zuschlag von 0,5 - 1,5 Gew.% SiC, bezogen auf die Kornmenge, beigegeben wird.

0014236

111

0014236

Nummer der Anmeldung

EP 79 10 4555

Europäisches
Patentamt

EUROPÄISCHER RECHERCHENBERICHT

EINSCHLÄGIGE DOKUMENTE			KLASSIFIKATION DER ANMELDUNG (Int. CLS)
Kategorie	Kennzeichnung des Dokuments mit Angabe, soweit erforderlich der mitgezählten Teile	befreit Anspruch	RECHERCHIERTE SACHGEBiete (Int. CLS)
A	DE -- A1 -- 2 723 036 (CARBORUNDUM CO.) * Anspruch 1; Seite 16 *	1,2	B 24 D 5/00 C 09 K 3/14 C 04 B 31/16
A	DE - U - 7 324 515 (TYROLIT-SCHLEIF-MITTELWERKE SWAROVSKI) * Ansprüche *	1,5	
A	US - A - 3 269 815 (P. KOOPMAN) * Anspruch 1 *	1,3, 11	
A	US - A - 3 615 308 (J.J. AMERO)		B 24 D 3/00
A	DE - B - 1 167 725 (WAKEFIELD CORP.)		C 04 B 31/00 C 04 E 35/00
A	DE - A - 1 923 562 (GENERAL ELECTRIC CO.)		C 04 B 41/00 C 09 K 3/14
			KATEGORIE DER GENANNTEN DOKUMENTE
			X: von besonderer Bedeutung A: technologischer Hintergrund O: rechtschriftliche Offenbarung P: Zwischenliteratur T: der Erfindung zugrunde liegende Theorien oder Grundsätze E: kollidierende Anmeldung D: In der Anmeldung angeführtes Dokument L: aus anderen Gründen angeführtes Dokument S: Mitglied der gleichen Patentfamilie übereinstimmendes Dokument
<input checked="" type="checkbox"/> Der vorliegenden Recherchenbericht wurde für alle Patentansprüche erstellt			
Recherchenort	Abschlußdatum der Recherche	Prüfer	
Berlin	07-05-1980	HÖRNER	