Power Electronics

Chapter 6

Snubber Circuits

Power Electronics

Problem 1: Switching Power Losses of Power Devices

$$\mathbf{W}_{dynamic} = \int_{turn-on} \mathbf{i}(t) \ \mathbf{v}(t) \ dt + \int_{turn-off} \mathbf{i}(t) \ \mathbf{v}(t) \ dt$$

 $\mathbf{P}_{\mathbf{dynamic}} = \mathbf{f} \mathbf{W}_{\mathbf{dynamic}}$

--- significant at high-frequency operation

Problem 2: Surge Voltage at Turn-off

Stray inductance in series with high-voltage side of power device Q_{sw} causes overvoltage at turn-off.

 L_{σ} -- Stray inductance

Safe Operating Area

Switching Locus of the Turn-off Transition

Without stray inductance

With stray inductance

Switching Locus of the Turn-on Transition

Snubber Circuits

to control, or limit, the transient voltage and current of a power device when it makes turn-off and turn-on commutations

keeping the voltage and current within the safe operating area

Two kinds of snubber circuits:

• turn-off snubber

to control the turn-off by small capacitors

• turn-on snubber

to control the turn-on by small inductors

6-1 The Turn-off Snubber

Turn-off Dissipation

With stray inductance

$$W_{diss} = \int_0^{t_f} v_Q i_Q dt$$

If the switching frequency were f Hz, fW_{diss} would be dissipated in the transistor.

Snubbers

A Basic Turn-off Snubber

O d)

With stray inductance

C_S -- to limit the rise rate of the voltage during the turn-off transition.

Snubbers

The tunn-on and turn-off switching loci of the transistor when a basic snubber circuit added.

A More Practical Snubber

R_S -- to limit the discharge current when the BJT is turned on.

 D_S -- to allow the charging current to bypass R_S during turn-off.

6-2 The Turn-on Snubber

Turn-on Dissipation

Without snubber

A Basic Turn-on Snubber

L_S -- to limit the rise rate of the current during the turn-on transition.

Snubbers

The turn-on and turn-off switching loci of the transistor when a basic snubber circuit added.

A More Practical Snubber

 R_S – to provide an alternative path for L_S current when turn-off.

 D_S -- to keep R_S from conducting during turn-on.

6-3 Energy Recovery Snubbers

An clamp turn-off.

An energy recovery turn-off.

6-4 Snubbers in Bridge Inverters

