Screening in digital monopolies

Pietro Dall'Ara Elia Sartori

1st Capri, in theory Workshop, 2025

Several goods exhibit:

1. Free replication;

Several goods exhibit:

- 1. Free replication;
- 2. Free damaging.

Several goods exhibit:

- 1. Free replication;
- 2. Free damaging.

This paper studies monopoly provision of goods exhibiting free replication and free damaging.

Several goods exhibit:

- 1. Free replication;
- 2. Free damaging.

This paper studies monopoly provision of goods exhibiting free replication and free damaging.

Examples of **digital goods**:

- 1. Software goods;
- 2. Digital audio content;
- 3. Data.

6-month	6-month		Annual		Perpetual	
		ata/SE Stata/M		re 4-core		
\$225 USD perpetual		S425 USD perpetual	\$595 US perpetua	D	\$795 USD perpetual	

Already own Stata? Visit our renewals order page.

		Stata/BE	Stata/SE	Stata/MP 🕧		
Product features		(Basic Edition)	(Standard Edition)	2-core	4-core	6+
Maximum number of variables	0					
Up to 2,048 variables		~	~	~	~	~
Up to 32,767 variables		-	~	~	~	~
Up to 120,000 variables		-	-	~	~	~
Maximum number of observations	0					
Up to 2.14 billion		~	~	~	✓	~
Up to 20 billion		-	-	~	~	~
					,	

Experience the difference

Go Premium and enjoy full control of your listening. Cancel anytime.

What you'll get	Spotify's Free plan	Spotify's Premium plans
Ad-free music listening		0
Download to listen offline		0
Play songs in any order		Ø
High audio quality		Ø
Listen with friends in real time		0
Organize listening queue		•

Spotify's HiFi streaming could finally arrive this year

/ A \$6/ month "Music Pro" tier could include lossless audio and perks like discounted concert tickets.

by Quantym Kennemer Feb 17, 2025, 1018 PM GBIT-1

Specifix Numberset is a writer who helps The Verge's readers save receiv by surfacing the best tech deals and presenting the latest product recommendations from our experts. He has covered tech and garning for all of his fig. but, year career for publications like Forthers, Business Indices, and more.

Equifax offers three standard Business Credit Reports: BCR Complete View, BCR Risk View and BCR Profile View. The difference between reports is the number of sections that are available in the report:

REPORT SECTION TITLE	COMPLETE VIEW	RISK VIEW	PROFILE VIEW
Business Information & Firmographics	⊘	⊘	⊘
Report Highlights & Alerts	⊘	⊘	⊘
Index Values	⊘	⊘	⊘
Quarterly Index Value & Payment History	⊘	⊘	⊘
Credit Risk Scores	⊘	\bigcirc	
Trade Details (Industry & Financial)	⊘		
Negative Occurrences (Bankruptcy, Collections, Returned Cheques)	⊘		
Legal Data (Suits, Judgments, Liens)	⊘		
Inquiries	⊘		
Other	⊘		

Plan

- 1. Model;
- 2. Monopoly;
- 3. Monopoly inefficiencies;
- 4. No screening case;
- 5. Conclusion.

Model

A continuum of buyer **types**, $\theta \in [0,1] = \Theta$, interact with a seller.

Type θ is privately informed about $\theta \sim F$ for twice diff. F.

- F is regular for these slides and $\mathbb{E}\{\cdot\}$ refers to the r.v. θ .

Type θ has payoff from **quality** $q \in \mathbb{R}_+$ and transfer $t \in \mathbb{R}$:

$$\underbrace{g(q) + \theta q}_{\text{utility } u(q,\theta)} -t,$$

for a concave, nondecreasing, and twice diff. g (Chade-Swinkels '21.) $q: \Theta \to \mathbb{R}_+$ is a quality allocation.

Model

A continuum of buyer **types**, $\theta \in [0,1] = \Theta$, interact with a seller.

Type θ is privately informed about $\theta \sim F$ for twice diff. F.

- F is regular for these slides and $\mathbb{E}\{\cdot\}$ refers to the r.v. θ .

Type θ has payoff from quality $q \in \mathbb{R}_+$ and transfer $t \in \mathbb{R}$:

$$\underbrace{g(q) + \theta q}_{\text{utility } u(q,\theta)} -t,$$

for a concave, nondecreasing, and twice diff. g (Chade-Swinkels '21.)

 $q \colon \Theta \to \mathbb{R}_+$ is a quality allocation.

The cost of a quality allocation q is

$$C(\mathbf{q}) = c(\sup \mathbf{q}(\Theta)),$$

for a **production cost** c, increasing, strictly convex, twice diff. with c(0) = c'(0) = 0 and $\lim_{q \to \infty} c(q) = \infty$.

Model

A continuum of buyer types, $\theta \in [0,1] = \Theta$, interact with a seller.

Type θ is privately informed about $\theta \sim F$ for twice diff. F.

- F is regular for these slides and $\mathbb{E}\{\cdot\}$ refers to the r.v. θ .

Type θ has payoff from quality $q \in \mathbb{R}_+$ and transfer $t \in \mathbb{R}$:

$$\underbrace{g(q) + \theta q}_{\text{utility } u(q,\theta)} - t,$$

for a concave, nondecreasing, and twice diff. g (Chade-Swinkels '21.)

 $q \colon \Theta \to \mathbb{R}_+$ is a quality allocation.

With separable costs, the cost of quality allocation q is

$$K(q) = \mathbb{E}\{k(q(\theta))\},\$$

for some k (Mussa-Rosen '78.)

The total surplus induced by the allocation $q(\cdot)$ is

$$\mathbb{E}\{u(\boldsymbol{q}(\theta),\theta)\} - c(\sup \boldsymbol{q}(\Theta)).$$

The efficient quality allocation q^* maximizes total surplus.

Proposition 1

The efficient quality allocation satisfies $\mathbf{q}^*(\theta) = q^*$ for all θ , in which q^* is the unique quality q such that

$$\underbrace{g'(q) + \mathbb{E}\{\theta\}}_{\text{Marginal total utility}} = c'(q).$$

The total surplus induced by the allocation $q(\cdot)$ is

$$\mathbb{E}\{u(\boldsymbol{q}(\theta),\theta)\} - c(\sup \boldsymbol{q}(\Theta)).$$

The efficient quality allocation q^* maximizes total surplus.

Proposition 1

The efficient quality allocation satisfies $\mathbf{q}^*(\theta) = q^*$ for all θ , in which q^* is the unique quality q such that

$$\underbrace{g'(q) + \mathbb{E}\{\theta\}}_{\text{Marginal total utility}} = c'(q).$$

▶ It holds that $\mathbb{E}\{u(\sup q(\Theta), \theta)\} \ge \mathbb{E}\{u(q(\theta), \theta)\}.$

The total surplus induced by the quality allocation q is

$$g(q) + \mathbb{E}\{\theta\}q - c(q).$$

The efficient quality allocation q^* maximizes total surplus.

Proposition 1

The efficient quality allocation satisfies $\mathbf{q}^*(\theta) = q^*$ for all θ , in which q^* is the unique quality q such that

$$\underbrace{g'(q) + \mathbb{E}\{\theta\}}_{\text{Marginal total utility}} = c'(q).$$

▶ It holds that $\mathbb{E}\{u(\sup q(\Theta), \theta)\} \ge \mathbb{E}\{u(q(\theta), \theta)\}.$

The monopolist problem is:

$$\mathcal{P}^{M} \qquad \max_{\boldsymbol{q}, \, t(\cdot)} \int_{\Theta} t(\theta) \, \mathrm{d}F(\theta) - c(\sup \boldsymbol{q}(\Theta)) \text{ subject to:}$$

$$u(\boldsymbol{q}(\theta), \theta) - t(\theta) \ge u(\boldsymbol{q}(\hat{\theta}), \theta) - t(\hat{\theta}),$$

$$u(\boldsymbol{q}(\theta), \theta) - t(\theta) \ge 0, \text{ for all } (\theta, \hat{\theta}) \in \Theta^{2}.$$

The monopolist quality allocation q^M solves \mathcal{P}^M .

The monopolist problem is:

$$\mathcal{P}^{M} \qquad \max_{\boldsymbol{q}, \, t(\cdot)} \int_{\Theta} t(\theta) \, \mathrm{d}F(\theta) - c(\sup \boldsymbol{q}(\Theta)) \text{ subject to:}$$

$$u(\boldsymbol{q}(\theta), \theta) - t(\theta) \ge u(\boldsymbol{q}(\hat{\theta}), \theta) - t(\hat{\theta}),$$

$$u(\boldsymbol{q}(\theta), \theta) - t(\theta) \ge 0, \text{ for all } (\theta, \hat{\theta}) \in \Theta^{2}.$$

The monopolist quality allocation q^M solves \mathcal{P}^M .

With separable costs: the monopolist problem can be solved via "pointwise maximization".

The q contingent problem and its value V(q) are:

$$\begin{split} \mathcal{P}(q) \qquad V(q) \coloneqq \max_{\boldsymbol{q},\ t(\cdot)} \int_{\Theta} t(\theta) \, \mathrm{d}F(\theta) - \underline{c(\sup_{\boldsymbol{q}}(\Theta))} \text{ subject to:} \\ & \underline{\boldsymbol{q}}(\theta) \leq q, \\ & u(\boldsymbol{q}(\theta),\theta) - t(\theta) \geq u(\boldsymbol{q}(\hat{\theta}),\theta) - t(\hat{\theta}), \\ & u(\boldsymbol{q}(\theta),\theta) - t(\theta) \geq 0, \text{ for all } (\theta,\hat{\theta}) \in \Theta^2. \end{split}$$

The q contingent problem and its value V(q) are:

$$\begin{split} \mathcal{P}(q) \qquad V(q) \coloneqq \max_{\boldsymbol{q},\ t(\cdot)} \int_{\Theta} t(\theta) \, \mathrm{d}F(\theta) - \underline{c(\sup \boldsymbol{q}(\Theta))} \text{ subject to:} \\ & \underline{\boldsymbol{q}(\theta)} \leq q, \\ & u(\boldsymbol{q}(\theta),\theta) - t(\theta) \geq u(\boldsymbol{q}(\hat{\theta}),\theta) - t(\hat{\theta}), \\ & u(\boldsymbol{q}(\theta),\theta) - t(\theta) \geq 0, \text{ for all } (\theta,\hat{\theta}) \in \Theta^2. \end{split}$$

Lemma 1 (Invest then distribute)

The quality allocation q solves \mathcal{P}^M if and only if:

- (1) \boldsymbol{q} solves $\mathcal{P}(q^M)$, where
- (2) q^M solves $\max_q V(q) c(q)$.

The q contingent problem and its value, V(q), are:

$$\begin{split} \mathcal{P}(q) \qquad V(q) \coloneqq \max_{\boldsymbol{q},\ t(\cdot)} \int_{[0,1]} \underbrace{g(\boldsymbol{q}(\theta)) + \varphi(\theta) \boldsymbol{q}(\theta)}_{\text{Virtual surplus}} \mathrm{d}F(\theta) \text{ subject to:} \\ \boldsymbol{q}(\theta) \leq q \text{ for all } \theta \in \Theta, \\ \boldsymbol{q} \text{ is nondecreasing;} \end{split}$$

in which
$$\varphi(\theta) \coloneqq \theta - \frac{1 - F(\theta)}{F'(\theta)}$$
.

Lemma 1 (Invest then distribute)

The quality allocation \mathbf{q} solves \mathcal{P}^{M} if and only if:

- (1) q solves $\mathcal{P}(q^M)$, in which
- (2) q^M solves $\max_q V(q) c(q)$.

The virtual-surplus maximizer β is

$$\beta(\theta) \in \operatorname*{argmax}_{q} g(q) + \varphi(\theta)q,$$

and is such that:

1.
$$\beta(\theta) = \infty \text{ if } \theta > \varphi^{-1}(0);$$

The virtual-surplus maximizer $\boldsymbol{\beta}$ is

$$\beta(\theta) \in \operatorname*{argmax}_{q} g(q) + \varphi(\theta)q,$$

and is such that:

- 1. $\beta(\theta) = \infty \text{ if } \theta > \varphi^{-1}(0);$
- 2. β is nondecreasing;

The virtual-surplus maximizer β is

$$\beta(\theta) \in \operatorname*{argmax}_{q} g(q) + \varphi(\theta)q,$$

and is such that:

- 1. $\beta(\theta) = \infty$ if $\theta > \varphi^{-1}(0)$;
- 2. β is nondecreasing;
- 3. $\beta(0) > 0$ if g is "Inada".

The virtual-surplus maximizer β is

$$\beta(\theta) \in \operatorname*{argmax}_{q} g(q) + \varphi(\theta)q,$$

and is such that:

- 1. $\beta(\theta) = \infty$ if $\theta > \varphi^{-1}(0)$;
- 2. β is nondecreasing;
- 3. $\beta(0) > 0$ if g is "Inada".

b is the inverse of β .

The virtual-surplus maximizer β is

$$\beta(\theta) \in \operatorname*{argmax}_{q} g(q) + \varphi(\theta)q,$$

and is such that:

- 1. $\beta(\theta) = \infty$ if $\theta > \varphi^{-1}(0)$;
- 2. β is nondecreasing;
- 3. $\beta(0) > 0$ if g is "Inada".

b is the inverse of β .

Lemma 2
The quality allocation q solves $\mathcal{P}(q)$ iff:

$$\mathbf{q}(\theta) = \min\{\boldsymbol{\beta}(\theta), q\},\$$

for all θ .

Distributive properties of the monopolist allocation for Inada g:

- 1. Bunching at the top; $\beta(\theta) = \infty$ for $\theta > \varphi^{-1}(0)$
- 2. Distributional inefficiency at the bottom or full bunching; β increasing on $[0, \varphi^{-1}(0))$
- 3. No exclusion. $\beta(0) > 0$

Linear preferences

Distributive properties of the monopolist allocation for g(q) = 0:

- 1. Bunching at the top; $\beta(\theta) = \infty$ for $\theta > \varphi^{-1}(0)$
- 2. Exclusion at the bottom; β is 0 on $[0, \varphi^{-1}(0))$
- 3. Single-quality menu.

The monopolist allocation

Proposition 2

The monopolist allocation q^M is such that:

- (1) $q^M : \theta \mapsto \min\{\beta(\theta), q^M\},$
- (2) for $0 < q^M < q^*$.

The monopolist allocation

Proposition 2

The monopolist allocation q^M is such that:

- (1) $q^M : \theta \mapsto \min\{\beta(\theta), q^M\},$
- (2) for $0 < q^M < q^*$.
 - ► Productive inefficiency occurs.

V'(q) is the marginal revenue given the q constrained allocation $\theta \mapsto \min\{\beta(\theta), q\}$,

V'(q) is the marginal revenue given the q constrained allocation $\theta \mapsto \min\{\beta(\theta), q\}$,

V'(q) is the marginal revenue given the q constrained allocation $\theta \mapsto \min\{\beta(\theta), q\}$,

V'(q) is the marginal revenue given the q constrained allocation $\theta \mapsto \min\{\beta(\theta), q\}$, and

$$V'(q) = \underbrace{(1 - F(b(q)))}_{\text{Mass of bunched types}} \underbrace{(g'(q) + b(q))}_{\text{Marginal } u(\cdot, b(q))}.$$

V'(q) is the marginal revenue given the q constrained allocation $\theta \mapsto \min\{\beta(\theta), q\}$, and

$$V'(q) = \underbrace{(1 - F(b(q)))}_{\substack{\text{Mass of} \\ \text{bunched types}}} \underbrace{(g'(q) + b(q))}_{\substack{\text{Marginal} \\ u(\cdot, b(q))}}.$$

▶ V is not differentiable if F is not regular: a kink occurs if β "bunches" at q.

Productive inefficiency arises if:

$$\underbrace{V'(q)}_{\begin{array}{c} \text{Marginal revenues} \\ \text{given } \theta \mapsto \min\{\beta(\theta), q\} \end{array}} < \underbrace{g'(q) + \mathbb{E}\{\theta\}}_{\begin{array}{c} \text{Marginal total utility} \\ \text{given } \theta \mapsto q \end{array}}$$

Productive inefficiency arises if:

$$\underbrace{V'(q)}_{\begin{subarray}{c} {\rm Marginal\ revenues} \\ {\rm given}\ \theta\mapsto \min\{\beta(\theta),q\} \end{subarray}} < \underbrace{g'(q)+\mathbb{E}\{\theta\}}_{\begin{subarray}{c} {\rm Marginal\ total\ utility} \\ {\rm given}\ \theta\mapsto q \end{subarray}}.$$

1. The q constrained allocation $\theta \mapsto \min\{\beta(\theta), q\}$ induces total utility

$$U(q) \coloneqq \mathbb{E}\{u(\min\{\pmb{\beta}(\theta),q\},\theta)\};$$

Productive inefficiency arises if:

$$\underbrace{V'(q)}_{\begin{subarray}{c} \begin{subarray}{c} \begin{subarra$$

1. The q constrained allocation $\theta \mapsto \min\{\beta(\theta), q\}$ induces total utility

$$U(q) := \mathbb{E}\{u(\min\{\beta(\theta), q\}, \theta)\};$$

2. $U'(q) < \text{marginal total utility given } \theta \mapsto q$, because

$$U'(q) = \int_{[b(q),1]} g'(q) + \theta \, dF(\theta) \le g'(q) + \mathbb{E}\{\theta\};$$

3. It holds that

$$V'(q) < V'(q) + \text{Rents}'(q) = U'(q).$$

Productive inefficiency arises if:

$$\underbrace{V'(q)}_{\begin{subarray}{c} \begin{subarray}{c} \begin{subarra$$

1. The q constrained allocation $\theta \mapsto \min\{\beta(\theta), q\}$ induces total utility

$$U(q) := \mathbb{E}\{u(\min\{\boldsymbol{\beta}(\theta), q\}, \theta)\};$$

2. $U'(q) < \text{marginal total utility given } \theta \mapsto q$, because

$$U'(q) = \int_{[b(q),1]} g'(q) + \theta \, dF(\theta) \le g'(q) + \mathbb{E}\{\theta\};$$

Productive inefficiency arises if:

$$\underbrace{V'(q)}_{\begin{subarray}{c} \begin{subarray}{c} \begin{subarra$$

1. The q constrained allocation $\theta \mapsto \min\{\beta(\theta), q\}$ induces total utility

$$U(q) := \mathbb{E}\{u(\min\{\boldsymbol{\beta}(\theta), q\}, \theta)\};$$

2. $U'(q) < \text{marginal total utility given } \theta \mapsto q$, because

$$U'(q) = \int_{[b(q),1]} g'(q) + \theta \, dF(\theta) \le g'(q) + \mathbb{E}\{\theta\};$$

3. It holds that

$$V'(q) < V'(q) + \text{Rents}'(q) = U'(q).$$

By technological constraints, damaging may be infeasible.

By technological constraints, damaging may be infeasible.

▶ The q contingent no-damaging problem and its value, $V_N(q)$, are:

$$\begin{split} V_N(q) \coloneqq \max_{\boldsymbol{q}(\cdot),\,t(\cdot)} \int_{\Theta} t(\theta)\,\mathrm{d}F(\theta) \text{ subject to:} \\ \boldsymbol{q}(\theta) \le q,\,\mathrm{IC},\,\mathrm{IR},\,\boldsymbol{q}(\theta) \in \{0,\sup \boldsymbol{q}(\Theta)\} \text{ for all } \theta \in \Theta. \end{split}$$

By technological constraints, damaging may be infeasible.

▶ The q contingent no-damaging problem and its value, $V_N(q)$, are:

$$\begin{split} V_N(q) \coloneqq \max_{\boldsymbol{q}(\cdot),\,t(\cdot)} \int_{\Theta} t(\theta)\,\mathrm{d}F(\theta) \text{ subject to:} \\ \boldsymbol{q}(\theta) \le q,\,\mathrm{IC},\,\mathrm{IR},\,\boldsymbol{q}(\theta) \in \{0,\sup \boldsymbol{q}(\Theta)\} \text{ for all } \theta \in \Theta. \end{split}$$

▶ The monopolist chooses the **marginally excluded** type n(q) and the revenues are

$$V_N(q) = (1 - F(n(q)))(g(q) + n(q)q)$$
 for $g(q) + \varphi(n(q))q = 0$.

► With damaging:

$$V'(q) = (1 - F(b(q)))(g'(q) + b(q)), \text{ for } g'(q) + \varphi(b(q)) = 0.$$

By technological constraints, damaging may be infeasible.

▶ The q contingent no-damaging problem and its value, $V_N(q)$, are:

$$\begin{split} V_N(q) \coloneqq \max_{\boldsymbol{q}(\cdot),\,t(\cdot)} \int_{\Theta} t(\theta)\,\mathrm{d}F(\theta) \text{ subject to:} \\ \boldsymbol{q}(\theta) \le q,\,\mathrm{IC},\,\mathrm{IR},\,\boldsymbol{q}(\theta) \in \{0,\sup \boldsymbol{q}(\Theta)\} \text{ for all } \theta \in \Theta. \end{split}$$

▶ The monopolist chooses the marginally excluded type n(q) and the marginal revenues are

$$V_N'(q) = (1 - F(n(q)))(g'(q) + n(q)), \text{ for } g(q) + \varphi(n(q))q = 0.$$

► With damaging:

$$V'(q) = (1 - F(b(q)))(g'(q) + b(q)), \text{ for } g'(q) + \varphi(b(q)) = 0.$$

Productive inefficiency is worse: $q_N^M < q^M$, because

$$b(q) \in \underset{\theta}{\operatorname{argmax}} (1 - F(\theta))(g'(q) + \theta).$$

Compared to q^M , the no-damaging quality allocation q_N^M features:

- ► Less production;
- ► Less damaging;
- ► Potential exclusion for "Inada" *q*.

1. With digital goods: the 'efficiency at the top' insight changes, because of the damaging and productive inefficiencies.

- 1. With digital goods: the 'efficiency at the top' insight changes, because of the damaging and productive inefficiencies.
- 2. Richness of versions is necessarily due to curvature in preferences.

- 1. With digital goods: the 'efficiency at the top' insight changes, because of the damaging and productive inefficiencies.
- 2. **Richness** of versions is necessarily due to curvature in preferences.
- 3. The profit expression admits two **interpretations**:

$$\underbrace{\int_{\Theta} t(\theta) \, \mathrm{d}F(\theta) - c(\sup \boldsymbol{q}(\Theta))}_{\text{Magnitude gap}} \quad \text{v.} \quad \underbrace{\int_{\Theta} t(\theta) - c(\sup \boldsymbol{q}(\Theta)) \, \mathrm{d}F(\theta)}_{\text{Costly replication}}.$$

- 1. With digital goods: the 'efficiency at the top' insight changes, because of the damaging and productive inefficiencies.
- 2. **Richness** of versions is necessarily due to curvature in preferences.
- 3. The profit expression admits two **interpretations**:

$$\underbrace{\int_{\Theta} t(\theta) \, \mathrm{d}F(\theta) - c(\sup \boldsymbol{q}(\Theta))}_{\text{Magnitude gap}} \quad \text{v.} \quad \underbrace{\int_{\Theta} t(\theta) - c(\sup \boldsymbol{q}(\Theta)) \, \mathrm{d}F(\theta)}_{\text{Costly replication}}.$$

4. In general, $C(\mathbf{q}) = c(\sup \mathbf{q}(\Theta)) + \int_{\Theta} k(\mathbf{q}(\theta)) dF(\theta)$, for some k,

- 1. With digital goods: the 'efficiency at the top' insight changes, because of the damaging and productive inefficiencies.
- 2. Richness of versions is necessarily due to curvature in preferences.
- 3. The profit expression admits two **interpretations**:

$$\underbrace{\int_{\Theta} t(\theta) \, \mathrm{d}F(\theta) - c(\sup \boldsymbol{q}(\Theta))}_{\text{Magnitude gap}} \quad \text{v.} \quad \underbrace{\int_{\Theta} t(\theta) - c(\sup \boldsymbol{q}(\Theta)) \, \mathrm{d}F(\theta)}_{\text{Costly replication}}.$$

4. In general, $C(\boldsymbol{q}) = c(\sup \boldsymbol{q}(\Theta)) + \int_{\Theta} k(\boldsymbol{q}(\theta)) \, \mathrm{d}F(\theta)$, for some k, or, also, $C(\boldsymbol{q}) = \int_{\Theta} k(\boldsymbol{q}(\theta); \boldsymbol{q}) \, \mathrm{d}F(\theta)$ (Bergemann et al. (2025).)

- 1. With digital goods: the 'efficiency at the top' insight changes, because of the damaging and productive inefficiencies.
- 2. **Richness** of versions is necessarily due to curvature in preferences.
- 3. The profit expression admits two **interpretations**:

$$\underbrace{\int_{\Theta} t(\theta) \, \mathrm{d}F(\theta) - c(\sup \boldsymbol{q}(\Theta))}_{\text{Magnitude gap}} \quad \text{v.} \quad \underbrace{\int_{\Theta} t(\theta) - c(\sup \boldsymbol{q}(\Theta)) \, \mathrm{d}F(\theta)}_{\text{Costly replication}}.$$

- 4. In general, $C(\mathbf{q}) = c(\sup \mathbf{q}(\Theta)) + \int_{\Theta} k(\mathbf{q}(\theta)) dF(\theta)$, for some k, or, also, $C(\mathbf{q}) = \int_{\Theta} k(\mathbf{q}(\theta); \mathbf{q}) dF(\theta)$ (Bergemann et al. (2025).)
- 5. **Competition** is beneficial for damaging inefficiency and harmful for productive efficiency.

▶ More details

Literature

Multi-product monopoly ??? ...??.

Mechanism & information design ???.

Pricing of information ???? ...

Literature

Multi-product monopoly ??? ...??.

Mechanism & information design ???.

Pricing of information ???? ...

Thanks!

Extra slides

Interpretation

The profit expression admits two **interpretations**:

$$\underbrace{\int_{\Theta} t(\theta) \, \mathrm{d}F(\theta) - c(\sup \boldsymbol{q}(\Theta))}_{\text{Magnitude gap}} \quad \text{v.} \quad \underbrace{\int_{\Theta} t(\theta) - c(\sup \boldsymbol{q}(\Theta)) \, \mathrm{d}F(\theta)}_{\text{Costly replication}}.$$

- 1. Maintained interpretation: $c(\sup q(\Theta))$ is paid once and is "incomparable" with the utility of a single buyer.
 - ▶ Population \uparrow by $\alpha \iff \text{Costs} \downarrow \text{by } \alpha$.
 - $ightharpoonup q^M$ and $b(q^M)$ increase as population scales up.
- 2. Alternative interpretation: $c(\sup q(\Theta))$ is paid for every buyer.
 - Free replication does not hold: the cheapest way to produce $q \leq \sup q(\Theta)$ is to damage $\sup q(\Theta)$.
 - ightharpoonup Profits scale up by α as population scales up by α .

▶ Back

Competition

The game among N firms has two stages:

- 1. Every firm i simultaneously chooses a quality q_i .
- 2. Every firm i, observing all stage-1 qualities, simultaneously chooses a pricing function $p_i : \mathbb{R}_+ \to \mathbb{R}$, with $p_i(q) = \infty$ if $q > q_i$.

Then: each type buys a good from a firm i, or does not buy any good for a payoff of 0.

Firms play a subgame-perfect Nash equilibrium.

Competition

The game among N firms has two stages:

- 1. Every firm i simultaneously chooses a quality q_i .
- 2. Every firm i, observing all stage-1 qualities, simultaneously chooses a pricing function $p_i : \mathbb{R}_+ \to \mathbb{R}$, with $p_i(q) = \infty$ if $q > q_i$.

Then: each type buys a good from a firm i, or does not buy any good for a payoff of 0.

Firms play a subgame-perfect Nash equilibrium.

Definition 1

An n equilibrium is an equilibrium in which exactly n firms are active; an n equilibrium is symmetric if active firms play the same strategy.

Competitive allocations

Let's order qualities (q_1, \ldots, q_N) so that:

$$x > y > \cdots$$

Every quality below y comes at zero price.

Competitive equilibria

Lemma 2

In any pure-strategy equilibrium: one firm produces q^M and other firms are idle.

Competitive equilibria

Lemma 2

In any pure-strategy equilibrium: one firm produces q^M and other firms are idle.

 \implies Every symmetric *n* equilibrium is mixed if $n \ge 2$ (competitive.)

Competitive equilibria

Lemma 2

In any pure-strategy equilibrium: one firm produces q^M and other firms are idle.

 \implies Every symmetric n equilibrium is mixed if $n \ge 2$ (competitive.)

Proposition 3

- 1. For all $n \leq N$, there exists a symmetric n equilibrium.
- 2. Every symmetric and competitive n equilibrium induces the random allocation $q[\hat{x}, \hat{y}]$, letting \hat{x} and \hat{y} be, resp., the first and second order statistics of the n i.i.d. draws from the CDF

$$H_n(q) = \left(\frac{c'(q)}{V'(q)}\right)^{\frac{1}{n-1}}, \text{ for } q \in [0, q^M].$$

Properties of competitive equilibria

Corollary 1

Every symmetric competitive equilibrium leads to an allocation such that, with probability one:

- 1. The lowest quality is positive and free;
- 2. The highest quality is strictly lower than q^M .

In the paper:

- 1. Equilibrium welfare with $n \geq 2$ active firms decreases in n.
- 2. Monopoly dominates duopoly if monopoly fully bunches.
- 3. Duopoly dominates monopoly if: full bunching does not occur and costs are approximately fixed.

Productive inefficiency arises because:

$$V'(q) < g'(q) + \mathbb{E}\{\theta\}.$$

Productive inefficiency arises because:

$$V'(q) < g'(q) + \mathbb{E}\{\theta\}.$$

The monopoly that produces quality q implies total surplus

$$V(q) + U(q) - c(q),$$

with $U(q) = \int_{[0,1]} \int_{[0,\theta]} \min\{\beta(\theta'), \overline{q}\} d\theta' dF(\theta)$ (Envelope Theorem).

Productive inefficiency arises because:

$$V'(q) < g'(q) + \mathbb{E}\{\theta\}.$$

The monopoly that produces quality q implies total surplus

$$V(q) + U(q) - c(q),$$

with $U(q) = \int_{[0,1]} \int_{[0,\theta]} \min\{\beta(\theta'), \overline{q}\} d\theta' dF(\theta)$ (Envelope Theorem).

The marginal surplus is V'(q) + U'(q) and satisfies

$$V'(q) < V'(q) + U'(q) \le g'(q) + \mathbb{E}\{\theta\}.$$

- 1. Monopolist does not internalize buyer surplus;
- 2. Damaging inefficiency.

WTS:
$$V'(q) + U'(q) \le g'(q) + \mathbb{E}\{\theta\}.$$

- 1. $U'(q) = \int_{[b(q),1]} \theta b(q) dF(\theta)$, because the marginal $u(\mathbf{q}(\theta), \theta)$ increases at rate $g'(q) + \theta$ and the marginal transfer at rate g'(q) + b(q), for $\theta > b(q)$ and $\mathbf{q}(\cdot) = \min\{\beta(\cdot), q\}$;
- 2. Using V'(q) = (1 F(b(q)))(g'(q) + b(q)), we have

$$V'(q) + U'(q) = (1 - F(b(q)))g'(q) + \int_{[b(q),1]} \theta \, dF(\theta).$$

(Note that U'(q) > 0 for all q > 0, because $b(q) \le \varphi^{-1}(0) < 1$ for all $q \ge 0$.)

The game

Type θ buys quality $D_{(p_1,\ldots,p_N)}(\theta)$ from firm $\iota_{(p_1,\ldots,p_N)}(\theta)$, given the pricing functions p_1,\ldots,p_N .

The revenues of i given pricing functions p_1, \ldots, p_N are

$$R_i(p_1,\ldots,p_N) := \int_{\left\{\theta: \iota_{(p_1,\ldots,p_N)}(\theta)=i\right\}} p_i(D_{(p_1,\ldots,p_N)}(\theta)) \, \mathrm{d}F(\theta).$$

The set of strategies for firm i is $S_i := Q \times P_i$, letting $P_i \subseteq (\mathbb{R}^Q)^{Q^N}$ be the set of "conditional" pricing functions of firm i.

The payoff of firm i from the profile $s := (\dots, (\overline{q}_i^s, P_i^s), \dots) \in \times_{i=1}^N S_i$ is

$$\Pi_i(s) := R_i(P_1^s[\overline{q}^s], \dots, P_N^s[\overline{q}^s]) - c(\overline{q}_i^s).$$

