

BEST AVAILABLE COPY

1

Remarks

2 1. Typing errors were corrected and some corrections were made to improve
3 readability and easier comprehension.
4 2. No new matter is introduced by this amendment.

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

Respectfully submitted,

Fikret M. Zabitcioglu

2

DEAN A. CHAINE, P.S.
100 - 112th Ave. N.E., Ste. 140
Bellevue, WA 98004
(425) 637-3035

Sent By: ;

425-637-9312;

Jan-12-05 4:04PM;

Page 4

RECORDED
CENTRAL INTER
JAN 12 2005

VERSION WITH MARKINGS

TO SHOW CHANGES MADE

TO SPECIFICATION

1 impact-shock occurs to the desktop or to the notebook as the system is running-and this
2 causes the head to ding as it is called in the field, to the hard disk surface, or sudden power
3 failures result in head crash, or damage to heads or to surface. Nevertheless, it is desirable to
4 have a fly height as close to the recording media as possible.

5 The low fly height and increased recording density can be understood from the
6 following first equation that expresses the dependence of the length of a pulse width PW50
7 obtained from a recording transition on the recording system.

$$8 \text{PW50} = (g^2 + 4(d+a)(d+a+\delta))^{1/2} \quad (1)$$

9 where:

10 g = gap length of the recording head

11 d = the distance separating the head and media

12 $a = 2 M_r \delta / H_c$ (length of a recording transition)

13 δ = film thickness

14 $M_r \delta$ = magnetization-thickness product

15 H_c = coercivity

16 This equation was provided by Williams and Comstock in "An Analytical Model of the Write
17 Process in Digital Magnetic Recording, 17th Annual AIP Conference Proceedings, part 1,
18 No.5, 1971, pp.738-742, American Institute of Physics.

19 Furthermore, disk tangential velocity is greater at outer tracks than at inner tracks that
20 result in different wind speeds based upon where the slider is positioned. In rotary actuated
21 drives, the slider changes skew angle from inner tracks to outer tracks. These differing wind
22 speeds and differing skew angles cause variations in fly height.

23 Invention assumes zero disk slippage-therefore zero variation in track radius by

1 and is also more reliable.

2 In accordance with the present invention, the above shortcomings of the former hard
3 disk drive actuator arm system, is effectively overcome by a double integrated actuator arm-
4 suspension assembly that moves upon a stationary micro-rail. Transducer head read/write
5 head (denoted R/W hereinafter) height is based on a continuous contact pad assisted constant
6 fly height that has a unique parking method.

7 It is an objective of the invention to provide a system can be applied to all form
8 factors, where it would be proportionally smaller and fit into a small formatted box storage
9 capacity, such as form factor 2.5 inch or 1.8 inch, 1 inch or even special application smaller
10 drives, so that same system can be applied on a variety of systems as notebooks and laptops,
11 and for special purpose applications-such as in special vehicles as in air crafts, space crafts
12 and the like-of very small form factors-since small form factor is correlated to better shock
13 resistivity .

14 It is an object of the invention to have a multiple number of R/W heads feature that
15 would be possible and compatible with the high speed chips and processors.

16 It is an object of the invention to provide a system that has a logic that divides the
17 total area of the disk to four quadrants with respect to an instant in time and the ability to
18 have concurrent access to two quadrants at an instant. An instant in time is to be understood
19 as a very short period in time between ~~5 ms to 15 ms~~ 1 ms to 5 ms. Thus it is based on an
20 instant in time as correlated to the relative positions of the two pair of actuators and their
21 concurrent access with respect to time.

22 The system consists of at least; a. one platter; b. Spindle, c. Dual actuator arm
23 assembly that are made of two actuator arm members; d. at least one analog voice coil motor-

DESCRIPTION OF THE PREFERRED EMBODIMENT

The system of this invention can be described by the following second formula
equations with respect to seek time at full stroke:

The 1 ms to 5 ms it takes for the C-concurrent-timing full stroke access to a set of
uninterrupted data tracks and sectors on two quadrants of disk area <= (in every 1/4 π
radians per one revolution of disk) X 2 (on two quadrants) X 4 (by two pairs) X 2 (on
both sides of the number of units of platters) -(2 sides of upper-most and lower-most
disks of the stack of disks.) **(2)**

With reference to figure 1, the prior art has a rotating disk 10 and carriage arm 10c, where the transducer head 10b moves along a path 10a. At that instant the transducer head 10b can only access tracks that are on quarter 10d. Tracks on quadrant areas 10e, 10f and 10g are not accessible by the straight-arm actuator 10c at that instant in time. For example, for any track on quarter area 10g to be accessible by transducer head 10b, the disk 10 must make many more revolutions than one single revolution or less than one revolution and even then the carriage arm 10c has to make many swinging motions on the path 10a until the desired track becomes accessible. The back and forth motions-direction reversals also involve vibrations as is indicated by 10h.

With reference to figure 2, the wing shaped dual actuation arm assembly 13 and 14 are able to reach concurrently two different quadrants 20 and 21 respectively of the disk 33. The reference center line C divides the half of disk 33 area further into two equal halves to indicate the limit that one of the pair member that reaches the inner reach border of actuator 13, that is, it shows the inner limit of the distance 17a that one of the pair member of wing shaped actuation-carriage arm 13 moves within the 1/2 quarter area, 1/2 of the radius of disk 33.

1 Similarly, the inner actuator member 14 moves within limited distance 18. Wing shaped dual
2 actuation arm assembly structure 13 is moved by a linear analog voice coil motor 12 and
3 wing shaped dual actuation assembly structure 14 is moved by a second linear analog voice
4 coil motor 11 linearly, by moving the connection and mover member 13c (see fig. 7). When
5 the wing shaped actuators arms 13 and 14 are positioned on different circumferential areas, a
6 set of adjacent multiple number of tracks 22 and 23 become accessible for R/W functions.
7 These multiple number of tracks 22 and 23 can reach R/W heads 26a with only less than one
8 revolution of the disk 33. Furthermore, since the wing shaped geometry of actuators-carriage
9 arms 13 and 14 each have a length that extends as an arc like shape along the concentric
10 tracks of the disk 33 and conform to the track curvatures-arcs 22 and 23, not only a multitude
11 of tracks 22 and 23 are reached concurrently, but also many complete sectors in a row 22c
12 and 23c pass under the continuous-uninterrupted reach of the R/W heads 26a for a longer
13 time. Therefore, many complete sectors can be identified instantly-instead of sequentially-as
14 in the serial data transfer scheme. Sector interleaves and head skew would become more
15 effective and efficient. A very fast input-output bus and large buffer in RAM would be
16 needed for this system. Track 22a is the outer most border between inner most tracks and the
17 outer tracks-that divides 1/2 of the radius of the disk to two halves, upon which actuators 13
18 and 14 move. Border tracks 22a of fig. 22a 2 and the inner non-data zone 22d of fig. 14 are
19 located adjacent to each other. Those skilled in the art will recognize that the complete hard
20 disk sectors 22c and 23c depicted are not drawn to scale in FIG.2 , but are rather depicted as
21 much thicker lines for visual clarity.

22 Referring to figure 2-upper right quadrant 21, the cutaway view of the multiple R/W
23 heads 26a shows how the R/W heads 26a are in a series below the wings of the wing shaped

1 dual actuator-carriage arm 14, and face the disk surface 33a. The disks 33 and 34 are turned
2 by a spindle motor 32.

3 With reference to figure 3, the two pairs of wing shaped actuator-carriage arms and
4 suspensions 13 and 14 cover two quadrants 20 and 21 of the disk 33 area concurrently and
5 can move independently. Data track 23a is one set of innermost tracks of the outer most set
6 of tracks, that are located on the outer 1/2 area of the disk 33. Similarly data track 22b is one
7 set of the inner most tracks that are within the inner 1/2 area of disk 33. The limited
8 designated distances 17 and 17a are assigned to each actuator members of the pair actuator
9 13. Similarly, the actuator pairs 14 move within the designated limited distances of 18 and
10 18a. The opposite quadrants 20 and 21 that the pair of actuators 13 and 14 function upon, are
11 the areas over which the system has concurrent R/W capability. Pair actuator arms and
12 suspension 13 moves on linear stationary micro-rail 16. Similarly, the pair of actuator arm
13 and suspension 14 moves on linear stationary micro-rail 15. Also shown is one of the
14 flexible printed circuit (FPC) electronic wiring 13c and 13d connection that connects wiring
15 13a to the drive electronics board.

16 With reference to figure 4, depicted in perspective view are both pairs of wing shaped
17 actuators-carriage arms 13 and 14 that move upon the stationary micro-rails 16 and 15
18 respectively. This pair of actuator arms 13 enables access to two different quadrant areas 20
19 and 21 of the disks 33 and 34 concurrently. Due to the pair of actuators 13 and 14, a
20 multitude number of inner tracks 22 and a multitude number of outer tracks 23 are
21 read/written concurrently with only 1/2 of a revolution of the disk 33 and 34. The flexible
22 printed circuit (FPC) electronic wiring board 13c and 13d that have a wiring pattern that have
23 signal lines that connect the wing shaped actuator-carriage arms 13 and the actuator pair

1 below for the second platter 34, 13a and R/W heads 26, 27, 28, 26b a, 27b a, 28b a(all not
2 shown) to the drive electronics board. The identical and parallel reference center lines C
3 indicates the inner limit of the outer actuator 13-one member of the pairs of actuator 13 that
4 is over the outer 1/2 tracks of the disk 33, this is the inner limit reaching border for the outer
5 one of the actuator 13. Same applies for actuator arm assembly pair 14.

6 With reference to figure 5, depicted is a partial 1/2 side elevational view of the disk of
7 the two platters 33 and 34 and the R/W heads 26, 27, 28 and their single continuous contact
8 pad system (not shown in this drawing) per each one R/W head 26-43, 26a, 27-43, 27a, 28-
9 43, 28a that move linearly on the stationary micro-rails 16 and 16a and 16b, by analog voice
10 coil actuator motors 12, 12a and 12b, that also have a digital mode-which enables a fast skip
11 function of data tracks 22, 22a, 23 (please see Fig. 2). The half of the disks of 33 and 34 is
12 are further divided into two identical and parallel to each other by a reference center-lines C
13 to be indicative of the limits of the distance that one of the outer of the pair of the actuator-
14 carriage arm system moves. These R/W heads 26, 27, 28 are able to read/write on disks 33
15 and 34:surfaces 33a, 33b and 34a and 34b concurrently. The spindle motor 32 of the double
16 platter system is seen at left. The stationary micro-rails 16,16a and 16b cover one of the
17 quadrant areas 20, of the two disks 33, 34 with both surfaces 33a, 33b and 34a and 34b being
18 read and written upon. Note, not shown are the same components that are at the other half-
19 quarter of the disk 33, (left side of figure 5,) for actuator-carriage arm 14 and R/W heads 26b
20 a, 27b a, and 28b a and their single continuous contacts pads 26a, 27a, 28a 43. The micro-
21 rail 15 covers the other half area of the disk 33.

22 With reference to figure 6, the wing shaped actuation-carriage arms 13 and 14 are
23 able to reach concurrently two different quadrants 20 and 21 of the disk area, when these are

1 in a symmetrical positioning-as depicted. When the wing shaped actuators 13 and 14 are
2 positioned symmetrically on the same opposite concentric areas, a set of multiple tracks 24
3 and 25 becomes accessible, this multiple number of tracks 24 and 25 reach R/W heads with
4 only 1/2 of a revolution. The flexible printed circuit (FPC) board 13c and 13d and 14c and
5 14d electronics wiring-signal connection to said wing shaped actuators 13 and 14 that
6 connect actuator and R/W heads 26, 27, 28 of actuator pair 13, and 26a, 27a, 28a of actuator
7 pair 14 (not shown-see drawings 2,5,7) respectively to the drive electronics board. R/W
8 heads 26 through 28a are not shown in this drawing, R/W heads 26a through 28a are the
9 counter part R/W heads of actuator-carriage arm 14 that is for quadrant 21.

10 With reference to figure 7, the wing shaped actuator-carriage arm 14 with the cutaway
11 view of the R/W heads 26a that fly over disk surface 33a, where a set of multiple tracks 22
12 and a row of complete-uninterrupted hard disk sectors 22c come under the R/W heads 26a-as
13 the heads 26a need not to be repositioned very frequently.

14 With reference to figure 8, the inner side wing shaped actuator-carriage arm and
15 suspension 13 can move linearly on the stationary micro-rail 16 towards and away from the
16 center of the disk surface 33a and thereby the R/W heads 26 of actuator 13, that fly over the
17 disk surface 33a are capable to read/write on a set of multiple adjacent tracks 22b,
18 concurrently. The disks 33 and 34 are turned by spindle motor 32.

19 With reference to figures 9A and 9B, in sectional view, the transducer head 35 of the
20 prior art has a wider head width gap 36 and greater head area 36a as compared to the
21 invention transducer head width gap 37 and invention transducer area 37a. The fly height 39
22 of the invention R/W head 38 26 is higher by only few microns-and has continuous contact
23 pads 43-where fly height of transducer 38 26 parts are only few microns higher than the

1 With reference to figure 16, this is the sectional view of actuator 13 along the line 41-
2 41. It shows the series of arc formation R/W heads 26 and micro-pads 43 that conform to the
3 arcs of the set of adjacent data tracks 23.

4 With reference to figure 17, this shows the partial plan view of actuator arm 13, with
5 the cover plate of actuator completely removed-showing the multiple R/W heads 26 of the
6 arc like formation, that conform to the data tracks 23. Thereby, this drawing shows the
7 micro-actuation function of the integrated wing shaped actuator arm 13 member of the dual
8 actuator arm assembly with respect to the adjacent tracks. When R/W heads 26 and thin pads
9 43 move from track origin O to track T7 the actuator 13 enables access to data tracks 23 by
10 moving only a distance D.sub.o and R/W heads 26 are able to reach a set of points on track
11 T7 as a function of the linear-adjacent track to track movement of the actuator and as far as
12 points on track T7.sub.a, shows concurrent access of the arc section and continuous sector
13 access component of the data tracks due to the curved shape of the actuator itself, as where
14 the limit on inner tracks is indicated by tangent reference line D.sub.r, that is the border of
15 maximized reach due to the arc like geometric shape of actuator 13. The group of adjacent
16 tracks are depicted as 23. Distance moved D.sub.o makes this distance to be multiplied and
17 to be equal to D.prime.sub.o. As an example to adjacent tracks 23; actuator 13 makes
18 distance D.sub.o to be equal to the micro distance DT7, with respect to the data tracks that are
19 adjacent and can be accessed concurrently.

20 With reference to figure 18, it is a plan view of the prior art straight arm actuator 10c
21 that must swing over a distance d.sub.p, as compared to the much shorter distance of the
22 invention d.sub.o, that actuator 13 of the invention covers for an identical distance in terms of
23 the number of adjacent tracks-from track origin O to track T7. The D.prime.o of figure 17

**This Page is Inserted by IFW Indexing and Scanning
Operations and is not part of the Official Record**

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

- BLACK BORDERS**
- IMAGE CUT OFF AT TOP, BOTTOM OR SIDES**
- FADED TEXT OR DRAWING**
- BLURRED OR ILLEGIBLE TEXT OR DRAWING**
- SKEWED/SLANTED IMAGES**
- COLOR OR BLACK AND WHITE PHOTOGRAPHS**
- GRAY SCALE DOCUMENTS**
- LINES OR MARKS ON ORIGINAL DOCUMENT**
- REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY**
- OTHER: _____**

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.