

## UNIVERSIDADE ESTADUAL DE CAMPINAS

Instituto de Matemática, Estatística e Computação Científica



## TEOREMA DO BINÔMIO DE NEWTON

TRIANGULO DE PASCAL

Louraine de Paula Oliveira – RA: 141822

Fundamentos da Matemática – Professor Torres

29 de abril de 2014

# Sumário

| Introdução                                      | .03 |
|-------------------------------------------------|-----|
| Binômio de Newton                               | 04  |
| Coeficientes Binomiais                          | .05 |
| Propriedades dos coeficientes binomiais         | .06 |
| Triângulo de Pascal                             | .07 |
| Construção do triângulo de Pascal               | 80  |
| Propriedade do triângulo de Pascal              | 09  |
| Fórmula do desenvolvimento do binómio de Newton | .11 |
| Fórmula do termo geral do binómio               | .13 |
| Bibliografia                                    | .14 |

#### Introdução

Em matemática, **binómio de Newton** ou **binômio de Newton** permite escrever na forma canônica o polinómio correspondente à potência de um binómio. O nome é dado em homenagem ao físico e matemático Isaac Newton. Entretanto deve-se salientar que o Binômio de Newton não foi o objeto de estudos de Isaac Newton. Na verdade o que Newton estudou foram regras que valem para  $(a+b)^n$  quando o expoente  $\mathbf{n}$  é fracionário ou inteiro negativo, o que leva ao estudo de séries infinitas.

Casos particulares do Binômio de Newton são:

$$(x + y)^1 = x + y$$
  
 $(x + y)^2 = x^2 + 2xy + y^2$ 

#### Notação e fórmula

O teorema do binômio de Newton se escreve como segue:

$$(x+y)^n = \sum_{k=0}^n \binom{n}{k} x^{n-k} y^k$$

Os coeficientes  $\binom{n}{k}$ são chamados coeficientes binomiais e são definidos como:

$$\binom{n}{k} = \frac{n!}{k!(n-k)!},$$
 onde  $ne$   $k$ são inteiros,  $k \le n_e$   $x! = 1 \times 2 \times \dots x$  é o fatorial de x.

O coeficiente binomial  $\binom{n}{k}$  corresponde, em análise combinatória, ao número de combinações de n elementos agrupados k a k.

## Triângulo de Pascal

É um triângulo numérico infinito formado por números binomiais  $\binom{n}{k}$ , onde n representa o número da linha (posição horizontal) e k representa o número da coluna (posição vertical), iniciando a contagem a partir do zero. O triângulo foi descoberto pelo matemático chinês Yang Hui, e 500 anos depois várias de suas propriedades foram estudadas pelo francês Blaise Pascal.

#### Binômio de Newton

Pelos produtos notáveis, sabemos que  $(a+b)^2 = a^2 + 2ab + b^2$ . Se quisermos calcular  $(a + b)^3$ , podemos escrever:

$$(a + b)^3 = a^3 + 3a^2b + 3ab^2 + b^3$$

Se quisermos calcular (a + b)<sup>4</sup>, podemos adoptar o mesmo procedimento:

$$(a + b)^4 = (a + b)^3 (a+b) = (a^3 + 3a^2b + 3ab^2 + b^3) (a+b)$$
  
=  $a^4 + 4a^3b + 6a^2b^2 + 4ab^3 + b^4$ 

De modo análogo, podemos calcular as quintas e sextas potências e, de modo geral, obter o desenvolvimento da potência  $(a+b)^n$  a partir da anterior, ou seja, de  $(a+b)^{n-1}$ .

Porém quando o valor de **n** é grande, este processo gradativo de cálculo é muito trabalhoso. Existe um método para desenvolver a enésima potência de um binómio, conhecido como **binómio de Newton** (Isaac Newton, matemático e físico inglês, 1642 - 1727). Para esse método é necessário saber o que são coeficientes binomiais, algumas de suas propriedades e o triângulo de Pascal.

#### **Coeficientes Binomiais**

Sendo  ${\bf n}$  e  ${\bf p}$  dois números naturais  ${(n \geq p)}$  , chamamos de  ${\bf coeficiente}$  binomial de classe

p, do número n, o número  $\frac{n!}{p!(n-p)!}$ , que indicamos por  $\binom{n}{p}$  (lê-se: n sobre p). Podemos escrever:

$$\begin{pmatrix} n \\ p \end{pmatrix} = \frac{n!}{p!(n-p)!} \quad (n, p \in \mathbb{N} \quad e \quad n \ge p)$$

O coeficiente binomial também é chamado de **número binomial**. Por analogia com as fracções, dizemos que **n** é o seu **numerador** e **p**, o **denominador**. Podemos escrever:

$$C_{n,p} = \binom{n}{p}$$

É também imediato que, para qualquer n natural, temos:

$$\binom{n}{n} = 1, \, \binom{n}{1} = n \quad e \quad \binom{n}{0} = 1$$

Exemplos:

1) 
$$\binom{5}{3} = \frac{5!}{3!(5-3)!} = \frac{5!}{3!(5-3)!} = 10$$
  
2)  $\binom{4}{1} = 4$   
2)  $\binom{6}{6} = 1$   
1)  $\binom{3}{0} = 1$   
2)  $\binom{0}{0} = 1$ 

## Propriedades dos coeficientes binomiais

Se n, p, k 
$$\in$$
 ||Ne p + k = n então  $\binom{n}{p} = \binom{n}{k}$ 

Coeficientes binomiais como esses, que tem o mesmo numerador e a soma dos denominadores igual ao numerador, são chamados **complementares**.

Exemplos:

1) 
$$\begin{pmatrix} 5 \\ 3 \end{pmatrix} = \begin{pmatrix} 5 \\ 2 \end{pmatrix}$$
 2)  $\begin{pmatrix} 10 \\ 6 \end{pmatrix} = \begin{pmatrix} 10 \\ 4 \end{pmatrix}$  3)  $\begin{pmatrix} 8 \\ 1 \end{pmatrix} = \begin{pmatrix} 8 \\ 7 \end{pmatrix}$ 

Essa igualdade é conhecida como **relação de Stifel** (Michael Stifel, matemático alemão, 1487 - 1567).

Exemplos:

1) 
$$\begin{pmatrix} 2 \\ 1 \end{pmatrix} + \begin{pmatrix} 2 \\ 2 \end{pmatrix} = \begin{pmatrix} 3 \\ 2 \end{pmatrix}$$
 2)  $\begin{pmatrix} 5 \\ 2 \end{pmatrix} + \begin{pmatrix} 5 \\ 3 \end{pmatrix} = \begin{pmatrix} 6 \\ 3 \end{pmatrix}$  3)  $\begin{pmatrix} 7 \\ 4 \end{pmatrix} + \begin{pmatrix} 7 \\ 5 \end{pmatrix} = \begin{pmatrix} 8 \\ 5 \end{pmatrix}$ 

### Triângulo de Pascal



Nesta tabela triangular, os números binomiais com o mesmo numerador são escritos na mesma linha e os de mesmo denominador, na mesma coluna.

Por exemplo, os números binomiais 
$$\binom{3}{0}$$
,  $\binom{3}{1}$ ,  $\binom{3}{2}$ e  $\binom{3}{3}$ estão na linha 3 e os números pinomiais  $\binom{1}{1}$ ,  $\binom{2}{1}$ ,  $\binom{3}{1}$ ,  $\binom{4}{1}$ , ..., estão na coluna 1.

Substituindo cada número binomial pelo seu respectivo valor, temos:

### Construção do triângulo de Pascal

Para construir o triângulo do Pascal, basta lembrar as seguintes propriedades dos números binomiais, não sendo necessário calculá-los:

- $\binom{n}{0}$  = 1, todos os elementos da coluna 0 são iguais a 1.
- $\binom{n}{n}$  = 1, o último elemento de cada linha é igual a 1.
- 3ª) Cada elemento do triângulo que não seja da coluna 0 nem o último de cada linha é igual à soma daquele

que está na mesma coluna e linha anterior com o elemento que se situa à esquerda deste último (relação

de Stifel).

Observe os passos e aplicação da relação de Stifel para a construção do triângulo:



### Propriedade do triângulo de Pascal

P1 Em Qualquer linha, dois números binomiais equidistantes dos extremos são iguais.

1
1 1
1 2 1
1 3 3 1
1 4 6 4 1
1 5 10 10 5 1
1 6 15 20 15 6 1

$$\begin{pmatrix} 3 \\ 1 \end{pmatrix} = \begin{pmatrix} 3 \\ 2 \end{pmatrix} \\
4 \\ 1 \end{pmatrix} = \begin{pmatrix} 4 \\ 3 \end{pmatrix} \\
5 \\ 1 \end{pmatrix} = \begin{pmatrix} 5 \\ 4 \end{pmatrix} e \begin{pmatrix} 5 \\ 2 \end{pmatrix} = \begin{pmatrix} 5 \\ 3 \end{pmatrix} \\
6 \\ 1 \end{pmatrix} = \begin{pmatrix} 6 \\ 5 \end{pmatrix} e \begin{pmatrix} 6 \\ 2 \end{pmatrix} = \begin{pmatrix} 6 \\ 4 \end{pmatrix}$$

De fato, esses binomiais são complementares.

**P2** Teorema das linhas: A soma dos elementos da enésima linha é  $2^n$ .



De modo geral temos:

$$\sum_{i=0}^{n} \binom{n}{0} = \binom{n}{0} + \binom{n}{1} + \binom{n}{2} + \dots + \binom{n}{n} = 2^{n}$$

**P3** Teorema das colunas: A soma dos elementos de qualquer coluna, do 1º elemento até um qualquer, é igual ao elemento situado na coluna à direita da considerada e na linha imediatamente abaixo.

```
1
1
   1
   2
1
       1
1
   3
       3
                                      1 + 2 + 3 + 4 + 5 + 6 = 21
   4
       6
            4
                 1
                                       1 + 4 + 10 + 20 = 35
   5
                 5
1
      10
           10
                     1
      15
                     6
                         1
           35
                     21 7 1
```

**P4** Teorema das diagonais: A soma dos elementos situados na mesma diagonal desde o elemento da 1ª coluna até o de uma qualquer é igual ao elemento imediatamente abaixo deste.



#### Fórmula do desenvolvimento do binómio de Newton

Como vimos, a potência da forma  $(a+b)^n$ , em que a,  $b \in \mathbb{R}$  e  $n \in \mathbb{N}$ , é chamada binómio de Newton. Além disso:

- quando n = 0 temos  $(a + b)^0 = 1$
- quando n = 1 temos  $(a + b)^1 = 1a + 1b$
- quando n = 2 temos  $(a+b)^2 = 1a^2 + 2ab + 1b^2$
- quando n = 3 temos  $(a+b)^3 = 1a^3 + 3a^2b + 3ab^2 + 1b^3$
- quando n = 4 temos  $(a+b)^4 = 1a^4 + 4a^3b + 6a^2b^2 + 4ab^3 + 1b^4$

Observe que os coeficientes dos desenvolvimentos foram o triângulo de Pascal. Então, podemos escrever também:

$$(a+b)^{0} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} a^{0}b^{0}$$

$$(a+b)^{1} = \begin{pmatrix} 1 \\ 0 \end{pmatrix} a^{1}b^{0} + \begin{pmatrix} 1 \\ 1 \end{pmatrix} a^{0}b^{1}$$

$$(a+b)^{2} = \begin{pmatrix} 2 \\ 0 \end{pmatrix} a^{2}b^{0} + \begin{pmatrix} 2 \\ 1 \end{pmatrix} a^{1}b^{1} + \begin{pmatrix} 2 \\ 2 \end{pmatrix} a^{0}b^{2}$$

$$(a+b)^{3} = \begin{pmatrix} 3 \\ 0 \end{pmatrix} a^{3}b^{0} + \begin{pmatrix} 3 \\ 1 \end{pmatrix} a^{2}b^{1} + \begin{pmatrix} 3 \\ 2 \end{pmatrix} a^{1}b^{2} + \begin{pmatrix} 3 \\ 3 \end{pmatrix} a^{0}b^{3}$$

$$(a+b)^{4} = \begin{pmatrix} 4 \\ 0 \end{pmatrix} a^{4}b^{0} + \begin{pmatrix} 4 \\ 1 \end{pmatrix} a^{3}b^{1} + \begin{pmatrix} 4 \\ 2 \end{pmatrix} a^{2}b^{2} + \begin{pmatrix} 4 \\ 3 \end{pmatrix} a^{1}b^{3} + \begin{pmatrix} 4 \\ 3 \end{pmatrix} a^{0}b^{4}$$

De modo geral, quando o expoente é n, podemos escrever a fórmula do desenvolvimento do binómio de Newton:

$$(a+b)^{n} = \binom{n}{0} a^{n}b^{0} + \binom{n}{1} a^{n-1}b^{1} + \binom{n}{2} a^{n-2}b^{2} + \dots + \binom{n}{n} a^{0}b^{n}$$

Note que os expoentes de **a** vão diminuindo de unidade em unidade, variando de **n** até 0, e os expoentes de **b** vão aumentando de unidade em unidade, variando de 0 até **n**. O desenvolvimento de  $(a + b)^n$  possui n + 1 termos.

### Fórmula do termo geral do binómio

Observando os termos do desenvolvimento de (a +  $\binom{n}{p}$ .  $a^{n-p}$ .  $b^p$ .

• Quando p = 0 temos o 1º termo:  $\binom{n}{0}$ .  $a^{n}$ .  $b^{0}$ . • Quando p = 1 temos o 2º termo:  $\binom{n}{1}$ .  $a^{n-1}$ .  $b^{1}$ . • Quando p = 2 temos o 3º termo:  $\binom{n}{2}$ .  $a^{n-2}$ .  $b^{2}$ . • Quando p = 3 temos o 4º termo:  $\binom{n}{3}$ .  $a^{n-3}$ .  $b^{3}$ .

• Quando p = 4 temos o 5º termo: 4

Percebemos, então, que um termo qualquer T de ordem p + 1pode ser expresso por:

$$T_{p+1} = \begin{pmatrix} n \\ p \end{pmatrix}, a^{n \cdot p}, b^p$$

## **Bibliografia**

## www.google.com.br

www.infoescola.com/Matemática

www.mundoeducacao.com/.../binomio-newton-desenvolvendo-expressao

www.colegioweb.com.br > ... > Matemática > Binômio de Newton