6. Data Structures

José Proença

Algorithms (CC4010) 2023/2024

CISTER - U.Porto, Porto, Portugal

https://cister-labs.github.io/alg2324

Overview

- Sets and Sequences
- Buffers:
 - Stacks
 - Queues
 - Priority queues
- Dictionaries
 - Hashtables
 - Search trees

José Proença 2 / 33

Motivation

We have seen that

Different data structures are better at different operations

We will see

Useful data structures and associated operations (code)

Examples

Arrays can have operations to implement sets, multisets, trees, etc.

José Proença 3 / 33

Sets and Sequences

Sets and Multisets

```
#define MAXS 100
typedef int SetInt [MAXS] ;
```

```
Given SetInt s:
```

$$5 \in s \Leftrightarrow s[5]!=0$$

```
#define MAXMS 100
typedef int MSetInt [MAXS] ;
```

Given MSetInt ms:

$$\{4,4\}\subseteq \mathtt{ms} \Leftrightarrow \mathtt{ms}[4]\leq 2$$

José Proença Sets and Sequences 4 / 33

```
void initSet
                 (SetInt);
int
    searchSet
              (SetInt, int);
                (SetInt, int);
int
    addSet
   emptySet (SetInt);
int
void unionSet
              (SetInt. SetInt.
                  SetInt):
void intersectSet (SetInt, SetInt,
                  SetInt):
void differenceSet(SetInt, SetInt,
                  SetInt):
```

Ex. 6.1: What is the expected cost of each function? Could you implement them?

José ProençaSets and Sequences5 / 33

```
typedef struct list { int value ;
struct list *next;
} *LInt;
```

```
LInt add (int x, LInt 1) {
  LInt new =
    malloc(sizeof(struct list));
  if (new != NULL) {
    new->value=x;
    new->next=1 ;
  }
  return new;
}
```

```
LInt dda (int x, LInt 1) {
  LInt pt = 1;
  while (pt != NULL) pt = pt->next;
  pt = malloc(sizeof(struct list));
  pt -> value = x;
  pt -> next = NULL;
  return 1;
}
```

José ProençaSets and Sequences6 / 33

Sequences – Recall linked lists (fixed)

```
typedef struct list {
  int value ;
  struct list *next;
} *LInt;
```

```
LInt add (int x, LInt 1) {
  LInt new = malloc(sizeof(struct
          list ));
  if (new != NULL) {
    new->value=x;
    new->next=1 ;
  }
  return new;
}
```

```
LInt dda (int x, LInt 1) {
 LInt pt = 1, prev;
 while (pt != NULL) {
  prev = pt; pt = pt->next; }
 pt = malloc(sizeof(struct list));
 pt->value = x;
 pt->next = NULL:
 if (1==NULL) 1 = pt;
 else prev->next = pt;
 return 1:
```

Ex. 6.2: What is the possible complexity of lookup, concat, reverse?

José Proença Sets and Sequences 7 / 33

Sequences – reverse analysis

```
LInt reverse1 (LInt 1) {
  LInt r, pt;
  if (l == NULL | | l -> next == NULL)
     r=1;
  else {
   r = pt = reverse1 (1->next);
    while (pt->next != NULL)
    pt = pt->next;
   pt->next = 1:
   1->next = NULL;
  return r; }
```

```
LInt reverse2 (LInt 1) {
  LInt r, tmp;
  r = NULL;
  while (1 !=NULL) {
    tmp=1; l=1->next;
    tmp->next=r; r=tmp;
  }
  return r;
}
```

8 / 33

Ex. 6.3: What is the complexity of each reverse?

Ex. 6.4: What is the (informal) loop invariant in reverse2, assuming: $pre:l==l_0$ and $post:r==rev(l_0)$?

José Proença Sets and Sequences

```
https://docs.scala-lang.org/
overviews/collections-2.13/
performance-characteristics.html
```

José Proença Sets and Sequences 9 / 33

Buffers (stacks and queueus)

Stacks

```
#define MAX 1000
typedef struct stack {
  int values [MAX];
  int sp;
} Stack;
```

```
typedef struct cell {
  int value;
  struct cell *next;
} Cell , *Stack;
```

```
typedef struct stack {
  int size;
  int *values;
  int sp;
} Stack;
```

Stacks

```
#define MAX 1000
typedef struct stack {
  int values [MAX];
  int sp;
} Stack;
```

```
typedef struct cell {
  int value;
  struct cell *next;
} Cell , *Stack;
```

```
typedef struct stack {
  int size;
  int *values;
  int sp;
} Stack;
```

10 / 33

with static arrays

with linked lists

with dynamic arrays

Ex. 6.5: (Informally) what is the expected complexity of: push, pop, head?

Exercise: Push-pop with dynamic arrays

```
void push (Stack *s , int x){
  if (s->sp == s->size)
    doubleArray (s);
  s->values[s->sp++] = x;
}

void doubleArray (Stack *s){
  s->size *= 2;
  s->values =
    realloc(s->values, s->size);
}
```

```
int pop (Stack *s){
  // reduces by half when only
  // 25% capacity is used
  ...
}

void halfArray (Stack *s){
  ...
}
```

Ex. 6.6: Implement the optimised pop function and discuss its complexity.

José Proença Buffers (stacks and queueus) 11/33

```
#define MAX 1000
typedef struct queue
{
  int values [MAX];
  int start, size;
} Queue;
```

```
typedef struct cell {
  int value ;
  struct cell *prox ;
} Cell ;

typedef struct queue {
  struct cell *start, *end;
} Queue;
```

```
typedef struct queue
{
  int max;
  int *values;
  int start, size;
} Queue;
```

12 / 33

```
#define MAX 1000
typedef struct queue
{
  int values [MAX];
  int start, size;
} Queue;
```

with static arrays (circular)

```
typedef struct cell {
  int value ;
  struct cell *prox ;
} Cell ;

typedef struct queue {
  struct cell *start, *end;
} Queue;
```

with linked lists

```
typedef struct queue
{
  int max;
  int *values;
  int start, size;
} Queue;
```

with dynamic arrays (circular)

Ex. 6.7: (Informally) what is the complexity of: init, is Empty, enqueue, dequeue?

Priority Queues

- Binary tree
- Each node is smaller than any of its children
- Implemented as an array

```
#define MAX 1000
typedef struct prQueue {
  int values [MAX];
  int size ;
} PriorityQ ;
```

13 / 33

Tree example in the board

```
size=17     0     1     2     3     4     5     6     7     8     9     10     11     12     13     14     15     16
values: [10     15     11     16     22     35     20     21     23     34     37     80     43     22     25     24     28]
```

Exercises

Ex. 6.8: Using the previous example, provide an expression to:

- 1. calculate the index of the *left* tree given a position i
- 2. calculate the index of the right tree given a position i
- 3. calculate the index of the parent of a given a position i
- 4. calculate the index of the index of the first leaf

Ex. 6.9: Define bubbleUp(int i, int h[])

Fixes a min-heap by swapping the i-th element with the parent while needed.

Ex. 6.10: Define bubbleDown(int i, int h[], int N)

Fixes a min-heap by swapping the i-th element with one of the children while needed.

José Proença Buffers (stacks and queueus) $14 \, / \, 33$

Exercises

Ex. 6.11: Define the following operations:

- void empty (PriorityQueue *q) initialises the queue;
- int isEmpty (PriorityQueue *q) tests if q is empty;
- int add (int x, PriorityQueue *q) adds a value x, returning 0 when the queue is full;
- int remove (PriorityQueue *q, int *rem) removes the next element, and copies it to \it{rem} .

15 / 33

Dictionaries

Hashtables

Dictionary: maps keys to values (Keys are unique)

Idea

- Magic function hash converts a key into an index (number).
- This index points to the position of an array where the value should be found.
- Usually the size of the array is less than the set of possible keys, i.e., hash is not injective.
- If 2 keys have the same hash value, there is a colision that must be mitigated (alternative solutions exist).

José Proença Dictionaries 16 / 33

Hashtables: Closed and Open Addressing

Closed Addressing (or chaining)

- Table = array of linked lists
- Find value of key k:
 - go to index hash(k)
 - traverse list until k

Open Addressing

- Table = just an array
- Find value of key k:
 - go to index hash(k)
 - "jump" until k

Some concerns

- Use dynamic arrays (grow when the load factor (#keys/HSIZE) gets high)
 - -Need to rehash
- Smart *jumps* (probe function to know where to jump)
- Need to garbage collect in open addressing

José Proença Dictionaries 17 / 33

Intuition: Hashtables with Closed Addressing

(from Wikipedia)

José Proenca Dictionaries 18 / 33

Hashtables with Closed Addressing

```
int hash(int k, int size);
void initTab(HTChain h);
int lookup(HTChain h, int k, int *i);
int update(HTChain h, int k, int i);
int remove(HTChain h, int k);
```

```
#define HSIZE 1000

typedef struct bucket {
  int key;
  int info;
  struct bucket *next;
} *Bucket;

typedef Bucket
  HTChain[HSIZE];
```

Ex. 6.12: Implement lookup

Ex. 6.13: (Informally) what is the expected complexity of each function?

José Proença Dictionaries 19 / 33

Intuition: Hashtables with Open Addressing

(from Wikipedia)

 José Proença
 Dictionaries
 20 / 33

```
int hash(int k, int size);
void initTab(HashTable h);
void lookup(HashTable h, int k, int *i);
void update(HashTable h, int k, int i);
void remove(HashTable h, int k);
int find_probe (HashTable h, int k)
- linear vs. quadratic probing (why quadratic?)
```

```
#define HSTZE 1000
#define STATUSFREE O
#define STATUSUSED 1
typedef struct bucket {
  int status :
 int key;
  int info:
} Bucket :
typedef Bucket
  HashTable [HSIZE]:
```

Ex. 6.14: Define a linear probing function and update.

 José Proença
 Dictionaries
 21 / 33

José Proença Dictionaries 22 / 33

```
int hash(int k, int size);
void initTab(HashTable h);
void lookup(HashTable h, int k, int *i);
void update(HashTable h, int k, int i);
int find_probe (HashTable h, int k);
void remove(HashTable h, int k);
```

```
#define HSTZE 1000
#define STATUSEREE O
#define STATUSUSED 1
#define STATUSDEL 2
typedef struct bucket {
  int status :
  int key;
  int info;
} Bucket :
typedef Bucket
  HashTable [HSIZE]:
```

Ex. 6.15: How would you implement update?

How would you implement a garbageCollect that removes deleted cells?

What is their complexity?

Dictionaries with trees – not for

evaluation

More dictionaries: balanced trees

We will see:

- Height- and weight-balanced tree
- Self-balancing binary search tree
 - AVL tree
 - Red-black tree

Binary Balanced Search Trees

Height-balanced

- more used
- AVL: left-height = right-height \pm 1
- Red-black: similar wrt black
- height = $\log n$

Weight-balanced

- less used
- leafs-left/right $\geq \alpha \times$ leafs, $0 < \alpha < 1$
- better for lookup intensive systems

AVL trees

- By Adelson-Velsky and Landis
- Oldest self-balancing binary search tree data structure to be invented ('62)
- Binary (left-right) search (sorted) tree
- Labels in the nodes
- At every node, the height of left and right trees differ at most by 1
- Insertions and removals preserve this

Function	Amortized	Worst Case	Amortized (RB)	Worst case (RB)
Search	$\Theta(\log n)$	$\mathcal{O}(\log n)$	$\mathcal{O}(\log n)$	$\mathcal{O}(\log n)$
Insert	$\Theta(\log n)$	$\mathcal{O}(\log n)$	$\mathcal{O}(1)$	$\mathcal{O}(\log n)$
Delete	$\Theta(\log n)$	$\mathcal{O}(\log n)$	$\mathcal{O}(1)$	$\mathcal{O}(\log n)$

Ex. 6.16: Are these balanced?

Update in an AVL tree

See animation

```
https://en.wikipedia.org/wiki/AVL_tree#/media/File:
AVL_Tree_Example.gif
4 rotations: left, right, right-left, right-right
```

```
typedef struct avl {
  int bal;
  int key, info;
  struct avl *left , *right;
} *AVL;
#define LEFT -1
#define RIGHT 1
#define BAL 0

// returns 0 if key already existed
int updateAVL (AVL *a, int k, int i);
```

Ex. 6.17: How would you implement an update without balancing?

Ex. 6.18: How would you implement AVL rotateRight(AVL a)?

28 / 33

Full code: updateAVL

```
AVL updateAVLRec(AVL a , int k ,
                   int i, int *g , int *u){
 if (a == NULL) {      // insert k->i here
   a = malloc (sizeof (struct avl )):
   a \rightarrow key = k; a \rightarrow info = i; a \rightarrow bal = BAL;
   a->left=a->right=NULL; *g=1; *u=0;
 } else if (a->kev==k) { // update k->i
   a->info=i; *g=0; *u=1;
 } else if (a->key > k) {  // update left
   a->left = updateAVLRec(a->left,k,i,g,u);
   if (*g == 1) switch (a->bal){ // balance}
     case LEFT: a= fixLeft(a); *g=0; break;
     case RIGHT: a \rightarrow bal = BAL: *g=0: break:
     case BAL: a \rightarrow bal = LEFT;
                                         break:
 } else{ // a->key < k</pre>
                                 update right
   // left <--> right
 return a:
      Dictionaries with trees - not for evaluation
```

Full code: updateAVL - fix-left

```
AVL fixLeft(AVL a) {
 AVL b, c;
  b=a->left :
 if (b->bal==LEFT) {
    a \rightarrow bal = b \rightarrow bal = BAL;
    a=rotateRight(a);
  } else {
    c = b - > right;
    switch (c->bal) {
      case LEFT: a->bal=RIGHT: b->bal=BAL: break:
      case RIGHT: a->bal=BAL; b->bal=LEFT; break;
      case BAL: a \rightarrow bal = BAL; b \rightarrow bal = BAL;
    c \rightarrow bal = BAL;
    a->left = rotateLeft(b);
    a = rotateRight(a);
  return a;
```

Red-Black Trees

- 1. Nodes are black or red
- 2. Empty nodes count as black
- 3. Red nodes have only black children
- 4. All down paths from a root have equal black-height
- The root is black.
- Only 1 on the left is a RB tree

Red-Black Trees – inserting and deleting

- 6 cases for insertion (with nesting)
- 6 cases for deletion (with nesting)

Properties

- height is $\mathcal{O}(\log n)$.
- no path from the root to a leaf is more than twice as long as a path to another leaf

Function	Amortized (AVL)	Worst Case (AVL)	Amortized	Worst case
Search	$\Theta(\log n)$	$\mathcal{O}(\log n)$	$\mathcal{O}(\log n)$	$\mathcal{O}(\log n)$
Insert	$\Theta(\log n)$	$\mathcal{O}(\log n)$	$\mathcal{O}(1)$	$\mathcal{O}(\log n)$
Delete	$\Theta(\log n)$	$\mathcal{O}(\log n)$	$\mathcal{O}(1)$	$\mathcal{O}(\log n)$

Red-Black trees height is in $O(\log n)$

- 1. Nodes are black or red
- 2. Empty nodes count as black
- 3. Red nodes have only black children
- 4. All down paths from a root have equal black-height

Lemma: size of a subtree – $size(x) \ge 2^{bh(x)-1}$

- bh(x) is the black-height of a node x
- base case: $2^{bh(\text{NULL})-1} = 2^0 1 = size(\text{NULL})$
- inductive case: For each child c of x: bh(c) = bh(x) or bh(c) = bh(x) 1. Then $size(x) \ge 2 \times (2^{bh(x)-1} 1) + 1$ $= 2^{bh(x)-1+1} 2 + 1 = 2^{bh(x)-1}$

Theorem: Height of a RB tree is $O(\log n)$

- Let h be the height of a RB tree x
- For any trace $x, \ldots, leaf$, more than half are black
- $\Rightarrow bh(h) \geq h/2$
- \Rightarrow size $(x) \ge 2^{h/2} 1 \Leftrightarrow h \le 2 \log n + 1 \in \mathcal{O}(\log n)$