## **Spring 2021, NCUE**

## **Applied Statistics I – Final Project Report**

# **Topic**

Diamond Price Forecast Analysis and Regression Modeling

## Member

S0722020 數三甲 梁家瑀

本研究欲使用 SPSS 軟體分析鑽石相關數據,並藉由統計圖表及相應方法得出的結果加以解讀來研究對鑽石價格產生影響的因素為何並藉此建構出價格與鑽石其他屬性之關係,最終目的在於利用這些資料去配置出可預測鑽石價格之複迴歸模型。

### 1. 資料介紹

## 1.1 資料來源及簡述

這份資料來自於 kaggle 平台, 共有 10 個維度, 共計 53,940 筆資料。

資料來源網址:<a href="https://www.kaggle.com/shivam2503/diamonds">https://www.kaggle.com/shivam2503/diamonds</a>

### 1.2 欲處理之議題

此數據集包含近 54,000 顆鑽石的價格及其相關屬性,目的在於利用其它屬性來對鑽石價格加以預測。

### 2. 資料變數介紹

本數據集含有 10 個維度的資料,因此我們在此設定應變數Y為鑽石價格,而其餘自變數 $X_{1\sim9}$ 分別代表鑽石的重量(單位:克拉)、切工品質、顏色、淨度、長度(單位:公釐)、寬度(單位:公釐)、高度(單位:公釐)、深度比例及檯面寬比例,由圖 1 所示。

- ▶ Y:鑽石價格(單位:美金)
- ▶ X<sub>1</sub>: 鑽石重量(單位: 克拉)
- ▶ X<sub>2</sub>: 切工品質(分為五類: Ideal, Premium, Very Good, Good, Fair)
- ▶ X<sub>3</sub>: 鑽石顏色(由好到壞分為七類: D~J)
- ▶ X<sub>4</sub>: 鑽石淨度

(由好到壞分為八類: IF, VVS1, VVS2, VS1, VS2, SI1, SI2, I1)

- ▶ X<sub>5</sub>: 鑽石長度 x (單位: 公釐(mm))
- ▶ X<sub>6</sub>: 鑽石寬度 y (單位: 公釐(mm))
- ▶ X<sub>7</sub>: 鑽石高度 z (單位:公釐(mm))
- ▶ X<sub>8</sub>: 鑽石深度比例
- ▶ X<sub>9</sub>: 鑽石檯面寬比例

圖1、資料變數設定

## 2.1 虛擬變數設定

本研究在資料處理步驟上針對類別型資料 $X_2$ (切工品質)、 $X_3$ (鑽石顏色)、 $X_4$ (鑽石淨度)進行虛擬變數的轉換,如公式(1)、公式(2)、公式(3)所示。

$$X_{2} \rightarrow (X_{21}, X_{22}, X_{23}, X_{24}) = \begin{cases} (1,0,0,0) & \text{if quality is "Ideal"} \\ (0,1,0,0) & \text{if quality is "Premium"} \\ (0,0,1,0) & \text{if quality is "VeryGood"} \\ (0,0,0,1) & \text{if quality is "Good"} \\ (0,0,0,0) & \text{if quality is "Fair"} \end{cases}$$
(1)

$$X_{3} \rightarrow (X_{31}, X_{32}, X_{33}, X_{34}, X_{35}, X_{36}) = \begin{cases} (1,0,0,0,0,0) & if \ color \ is \ "E" \\ (0,0,1,0,0,0) & if \ color \ is \ "F" \\ (0,0,0,1,0,0) & if \ color \ is \ "G" \\ (0,0,0,0,1,0) & if \ color \ is \ "H" \\ (0,0,0,0,0,1) & if \ color \ is \ "I" \\ (0,0,0,0,0,0) & if \ color \ is \ "I" \\ (0,0,0,0,0,0) & if \ color \ is \ "IF" \\ (0,1,0,0,0,0,0) & if \ clarity \ is \ "VVS1" \\ (0,0,1,0,0,0,0) & if \ clarity \ is \ "VVS2" \\ (0,0,0,1,0,0) & if \ clarity \ is \ "VS2" \\ (0,0,0,0,0,1,0) & if \ clarity \ is \ "VS2" \\ (0,0,0,0,0,0,1) & if \ clarity \ is \ "SI1" \\ (0,0,0,0,0,0,0) & if \ clarity \ is \ "SI2" \\ (0,0,0,0,0,0,0) & if \ clarity \ is \ "I1" \end{cases}$$

### 3. 敘述統計

#### 3.1 變數轉換

首先觀察鑽石價格Y的直方圖,如圖 2 所示。其圖形過於偏左且資料差距過大,因此將Y取底數為 10 之對數以方便分析其迴歸模型,其中圖 3 為對數價格 $log_{10}Y$ 的直方圖。

在此提供Y的 P-P 圖和 $log_{10}$ Y的 P-P 圖以呈現轉換前後的常態分配情形,分別為圖 4 、圖 5 所示。相較之下,取對數後的Y較接近常態分配。



圖 2、Y的直方圖



圖  $3 \cdot log_{10}Y$ 的直方圖





圖 5、log<sub>10</sub>Y的 P-P 圖

## 3.2 連續型資料 - 相關性

透過圖 6 呈現出各連續型資料 $X_1$ 、 $X_{5\sim9}$ 與對數價格 $\log_{10}Y$ 及各連續型資料之間的相關係數。由圖可知深度比例( $X_8$ )和對數價格之間的線性關係並不顯著,而重量( $X_1$ )、長度( $X_5$ )、寬度( $X_6$ )與高度( $X_7$ )和價格有著高度的線性關係,其中這 4 個自變數之間也存在著高度的線性關係,因此可能會有共線性的問題在此當中。

|           |            |           |        | 相關     |        |        |        |      |
|-----------|------------|-----------|--------|--------|--------|--------|--------|------|
|           |            | log_price | carat  | depth  | table  | Х      | у      | Z    |
| log_price | Pearson 相關 | 1         | .920** | .001   | .158   | .961** | .938** | .938 |
|           | 顯著性 (雙尾)   |           | .000   | .841   | .000   | .000   | .000   | .00  |
|           | 個數         | 53932     | 53932  | 53932  | 53932  | 53932  | 53932  | 5393 |
| carat     | Pearson 相關 | .920**    | 1      | .028** | .182** | .978** | .954** | .956 |
|           | 顯著性 (雙尾)   | .000      |        | .000   | .000   | .000   | .000   | .00  |
|           | 個數         | 53932     | 53932  | 53932  | 53932  | 53932  | 53932  | 5393 |
| depth     | Pearson 相關 | .001      | .028** | 1      | 296**  | 025    | 029**  | .095 |
|           | 顯著性 (雙尾)   | .841      | .000   |        | .000   | .000   | .000   | .00  |
|           | 個數         | 53932     | 53932  | 53932  | 53932  | 53932  | 53932  | 5393 |
| table     | Pearson 相關 | .158**    | .182** | 296**  | 1      | .196** | .185** | .152 |
|           | 顯著性 (雙尾)   | .000      | .000   | .000   |        | .000   | .000   | .00  |
|           | 個數         | 53932     | 53932  | 53932  | 53932  | 53932  | 53932  | 5393 |
| Х         | Pearson 相關 | .961**    | .978** | 025    | .196** | 1      | .975** | .971 |
|           | 顯著性 (雙尾)   | .000      | .000   | .000   | .000   |        | .000   | .00  |
|           | 個數         | 53932     | 53932  | 53932  | 53932  | 53932  | 53932  | 5393 |
| у         | Pearson 相關 | .938**    | .954   | 029**  | .185   | .975** | 1      | .952 |
|           | 顯著性 (雙尾)   | .000      | .000   | .000   | .000   | .000   |        | .00  |
|           | 個數         | 53932     | 53932  | 53932  | 53932  | 53932  | 53932  | 5393 |
| Z         | Pearson 相關 | .938**    | .956** | .095** | .152** | .971** | .952** |      |
|           | 顯著性 (雙尾)   | .000      | .000   | .000   | .000   | .000   | .000   |      |
|           | 個數         | 53932     | 53932  | 53932  | 53932  | 53932  | 53932  | 5393 |

圖 6、各連續型資料間與對數價格log<sub>10</sub>Y的相關係數表

## 3.3 類別型資料 - 分布情形

透過圖 7、圖 8 及圖 9 分別為類別型資料 $X_{2\sim4}$ 與對數價格 $log_{10}Y$ 的盒形圖。由圖可知類別型資料和對數價格的相關性都不高,且在圖形上的走勢有著和一般認知相違背的行為存在,如「顏色等級越好,價格越低」、「淨度等級越高,價格越低」等,這個部分目前較難透過圖形觀察出整體的趨勢,在之後的模型配置過程會在對其做解釋。



圖 7、切工品質(X<sub>2</sub>)的盒形圖

圖 8、鑽石顏色(X<sub>3</sub>)的盒形圖



圖 9、鑽石淨度(X<sub>4</sub>)的盒形圖

## 4. 推論統計

### 4.1 迴歸方法

在配置初始模型時,本研究利用以下三種方法配置出複回歸模型之雛型,針對每種方式給出的模型做為參考依據來決定所欲配置之模型所需納入的變數為何。

## ■ Backward Selection(向後法)

利用 Backward Selection 所得出之模型摘要如圖 10 所示。由圖可知,藉由向後法得出之模型選入了所有的自變數,而這些自變數對 $log_{10}Y$ 的解釋力高達 97%。



## ■ Forward Selection (向前法)

利用 Forward Selection 所得出之模型摘要如圖 11、圖 12 所示。由圖可知,藉由向前法得出之模型選入與向後法一致。

| 模   | -10 | fac. | 395 |
|-----|-----|------|-----|
| 15% | ~~  | Jeri | -32 |

調過後的R平

.918

估計的標準誤

.12635

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | .932<br>.936 | .11521 |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|--------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              | .11125 |
| 4 .968 <sup>d</sup> .9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1            |        |
| 選人順除的變數 <sup>3</sup> 5 .970 <sup>e</sup> .9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | .940         | .10800 |
| 模式 選入的變數 網除的變數 方法 6 .971 f                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | .942         | .10592 |
| 1 x 向前選擇法 (争附F-選人的機率 <= .050) 7 .9729 .9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | .944         | .10408 |
| 2   Clarity_Sl2   向前選擇法 (準則F-選人的機率 <= .050)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |              |        |
| 3   Clarity_SI1   向前選擇法 (準順:F-選入的機率 <= .050)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | .946         | .10227 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | .948         | .10003 |
| 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1 .951       | .09747 |
| 6 depth   同則選择法(準則:1-進入的機率 <= .050)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | .            |        |
| 7 Color_H 向前選擇法 (準期F-選人的機率 <= .050) 11 .976 <sup>k</sup> .9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | .953         | .09575 |
| 8 Clarity_VVS1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | .954         | .09436 |
| 9   Clarity_F   向前選擇法 (準期F-選人的機率 <= .050)     10   Clarity_WS2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 6 .956       | .09263 |
| 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -            |        |
| 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | .961         | .08724 |
| 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | .962         | .08602 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 9 .969       | .07721 |
| ASSOCIATION CONTROL CO |              |        |
| 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | .969         | .07702 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0 .970       | .07688 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0 .970       | .07674 |
| 19 Cut VeryGood 向前被增生/每即F.碳人的概率 <= 050)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -            |        |
| 20   Cut_Premium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0 .970       | .07663 |
| 21   Cut_Good   .   向前選擇法 (準則F-選入的機率 <= .050)           21   .985                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0 .970       | .07640 |
| 22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0 .970       | .07630 |
| 23   z   向前選擇法 (準則:F-强人的機率 <= .050)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -            |        |
| a. 依變數: log_price                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | .970         | .07625 |

圖 11、向前法所選入之變數

圖 12、向前法之模式摘要

## ■ Forward Stepwise Selection (逐步迴歸向前法)

利用 Forward Stepwise Selection 所得出之模型摘要如圖 13、圖 14 所示。由圖可知,藉由逐步迴歸向前法得出之模型選入與向後法和向前法一致。

#### 模式摘要

調過後的R平

|        |               |       |                                                                                                  | 模式  | R                 | R平方  | 方    | 估計的標準誤 |
|--------|---------------|-------|--------------------------------------------------------------------------------------------------|-----|-------------------|------|------|--------|
|        |               |       |                                                                                                  | 1   | .958ª             | .918 | .918 | .12635 |
|        |               |       |                                                                                                  | 2   | .963 <sup>b</sup> | .926 | .926 | .11950 |
|        |               |       | 選人/刪除的變數"                                                                                        | 3   | .965°             | .932 | .932 | .11521 |
| 模式     | 選入的變數         | 刪除的變數 | 方法                                                                                               | 4   | .968 <sup>d</sup> | .936 | .936 | .11125 |
| 1      | х             |       | 逐步迴歸分析法 (準則:F-選入的機率 <= .050, F-刪除的機率 >= .100)。                                                   | 5   | .970 <sup>e</sup> | .940 | .940 | .10800 |
| 2      | Clarity_SI2   |       | 逐步迴歸分析法 (準則:F-選入的機率 <= .050 , F-刪除的機率 >= .100)。                                                  | 6   | .971 <sup>f</sup> | .942 | .942 | .10592 |
| 3      | Clarity_SI1   |       | 逐步迴歸分析法 (準則:F-選入的機率 <= .050 , F-刪除的機率 >= .100)。                                                  | 7   | .9729             | .944 |      |        |
| 4      | Color_I       |       | 逐步迴歸分析法 (準則:F-選入的機率 <= .050 , F-刪除的機率 >= .100)。                                                  | l ′ |                   |      | .944 | .10408 |
| 5      | carat         |       | 逐步迴歸分析法 (準則:F-選入的機率 <= .050 , F-刪除的機率 >= .100)。                                                  | 8   | .973 <sup>h</sup> | .946 | .946 | .10227 |
| 6      | depth         |       | 逐步迴歸分析法 (準則:F-選入的機率 <= .050 , F-刪除的機率 >= .100)。                                                  | 9   | .974 <sup>i</sup> | .948 | .948 | .10003 |
| 7      | Color_H       |       | 逐步迴歸分析法 (準則:F-選入的機率 <= .050 , F-刪除的機率 >= .100) 。                                                 | 10  | .975 <sup>j</sup> | .951 | .951 | .09747 |
| 8      | Clarity_VVS1  |       | 逐步迴歸分析法 (準則:F-選入的機率 <= .050 , F-刪除的機率 >= .100)。                                                  | 11  | .976 <sup>k</sup> | .953 | .953 | .09575 |
| 9      | Clarity_IF    |       | 逐步迴歸分析法 (準則:F-選入的機率 <= .050 , F-刪除的機率 >= .100)。                                                  | 1   |                   |      |      |        |
| 10     | Clarity_VVS2  |       | 逐步迴歸分析法 (準則:F-選入的機率 <= .050 , F-刪除的機率 >= .100)。                                                  | 12  | .977 <sup>1</sup> | .954 | .954 | .09436 |
| 11     | Color_D       |       | 逐步迴歸分析法 (準則:F-選入的機率 <= .050 , F-刪除的機率 >= .100)。                                                  | 13  | .978 <sup>m</sup> | .956 | .956 | .09263 |
| 12     | Color_E       |       | 逐步迴歸分析法 (準則:F-選入的機率 <= .050, F-刪除的機率 >= .100)。                                                   | 14  | .980 <sup>n</sup> | .961 | .961 | .08724 |
| 13     | Color_F       |       | 逐步迴歸分析法 (準則:F-選入的機率 <= .050, F-刪除的機率 >= .100)。                                                   | 15  | .981°             | .962 | .962 | .08602 |
| 14     | Color_G       |       | 逐步迴歸分析法 (準則:F-選入的機率 <= .050 , F-刪除的機率 >= .100) 。                                                 | 1   |                   |      |      |        |
| 15     | Clarity_VS1   |       | 逐步迴歸分析法 (準則:F-選入的機率 <= .050 , F-刪除的機率 >= .100) 。                                                 | 16  | .985 <sup>p</sup> | .969 | .969 | .07721 |
| 16     | Clarity_VS2   |       | 逐步迴歸分析法 (準則:F-選入的機率 <= .050 , F-刪除的機率 >= .100) 。                                                 | 17  | .985 <sup>q</sup> | .969 | .969 | .07702 |
| 17     | Cut_ldeal     |       | 逐步迴歸分析法 (準則:F-選入的機率 <= .050 , F-刪除的機率 >= .100) 。                                                 | 18  | .985'             | .970 | .970 | .07688 |
| 18     | table         |       | 逐步迴歸分析法 (準則:F-選入的機率 <= .050 , F-刪除的機率 >= .100) 。                                                 | 19  | .985 <sup>s</sup> | .970 | .970 | .07674 |
| 19     | Cut_VeryGood  |       | 逐步迴歸分析法 (準則:F-選入的機率 <= .050 , F-刪除的機率 >= .100) 。                                                 |     |                   |      |      |        |
| 20     | Cut_Premium   |       | 逐步迴歸分析法 (準則:F-選入的機率 <= .050 , F-刪除的機率 >= .100) 。                                                 | 20  | .985 <sup>t</sup> | .970 | .970 | .07663 |
| 21     | Cut_Good      |       | 逐步迴歸分析法 (準則:F-選入的機率 <= .050 , F-刪除的機率 >= .100) 。                                                 | 21  | .985 <sup>u</sup> | .970 | .970 | .07640 |
| 22     | y             |       | 逐步迴歸分析法 (準則:F-選人的機率 <= .050, F-刪除的機率 >= .100)。<br>逐步迴歸分析法 (準則:F-選人的機率 <= .050, F-刪除的機率 >= .100)。 | 22  | .985 <sup>v</sup> | .970 | .970 | .07630 |
|        | 變數: log_price |       | 是罗温姆汀桁法 (学與:F-透入的機率 >= .000,F-關稅的機率 ≥= .100)。                                                    | 23  | .985 <sup>w</sup> | .970 | .970 | .07625 |
| a. 150 | - 2_p         |       |                                                                                                  |     |                   |      |      |        |

圖 13、逐步迴歸向前法所選入之變數

圖 14、逐步迴歸向前法之模式摘要

#### 4.2 變數挑選

藉由上述三種方式得到之模型皆相同,因為逐步迴歸向前法能夠清楚地表示各變數被選入前後的差異,因此最後本研究由逐步迴歸向前法得出之結果去做篩選變數。

由圖 14 可知,在模型選入變數執行到第 17 次左右時,R 平方的改變量已無較大改變,這表示對於第 16 號模型來說,當模型選入了前 16 個變數後再選入後面的  $17 \sim 23$  號變數已經對模型沒有太大的幫助。因此可考慮將 R 平方改變量小於 0.001 的變數剔除,由表 1 所示,這樣的作法表示我們可以利用更少的成本得到具相同解釋力的模型。

| 變數名稱                                | R平方改變量  |
|-------------------------------------|---------|
| X <sub>32</sub> (顏色"E")             | 0.001   |
| X <sub>44</sub> (淨度"VS1")           | 0.001   |
| X <sub>9</sub> (檯面寬比例)              | 0.001   |
| X <sub>21</sub> (切工品質"Ideal")       | < 0.001 |
| X <sub>23</sub><br>(切工品質"VeryGood") | < 0.001 |
| X <sub>22</sub><br>(切工品質"Premium")  | < 0.001 |
| X <sub>24</sub> (切工品質"Good")        | < 0.001 |
| <i>X</i> <sub>6</sub> (寬度)          | < 0.001 |
| X <sub>7</sub> (高度)                 | < 0.001 |

表 1、R 平方改變量小於 0.001 之變數

由於變數 $X_{32}$ (顏色"E")和 $X_{44}$ (淨度"VS1")為虛擬變數的其中一部分,因此在顏色與淨度的其它虛

擬變數沒有被剔除下,我們也不將其剔除。而由切工品質所設定的虛擬變數整組皆被選入剔除候補,因此選擇將其拿掉,最終剔除的變數有 $X_2$ (切工品質)、 $X_6$ (寬度)、 $X_7$ (高度)、 $X_9$ (檯面寬比例)。

## 4.3 模型選擇

將部分變數剔除後再建立一次迴歸模型,得到結果如圖 15 所示。由圖可得,儘管前一步驟刪除許多變數但剩餘變數對模型的解釋力僅下降0.001,因此這個剔除的動作的確大幅度降低成本,且對模型解釋力無太大影響,因此選定由剩餘的這些變數 $(X_1 \times X_{31\sim 36} \times X_{41\sim 47} \times X_5 \times X_8)$ 配出之模型作為本研究之初始模型。



圖 15、經變數篩選後之初始模型摘要

## 5. 模型分析

#### 5.1 整體模型之顯著性

選定初始模型後,接著分析此模型是否有較大的問題存在。根據圖 16 得到的初始模型之 ANOVA 表可得知在顯著性那欄為0.000 < 0.05,因此拒絕由假設檢定所選定之 $H_0$ :係數皆為零的假設,也就是說在此階段選入之變數與 $log_{10}Y$ 的確有顯著的關係。

|                                                                                                                                                                                                   | Anova <sup>a</sup> |           |       |         |            |       |  |  |  |  |  |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|-----------|-------|---------|------------|-------|--|--|--|--|--|--|
| 模式                                                                                                                                                                                                |                    | 平方和       | df    | 平均平方和   | F          | 顯著性   |  |  |  |  |  |  |
| 1 迴                                                                                                                                                                                               | 歸                  | 10152.364 | 16    | 634.523 | 106451.865 | .000b |  |  |  |  |  |  |
| 殘                                                                                                                                                                                                 | 差                  | 321.416   | 53923 | .006    |            |       |  |  |  |  |  |  |
| 總                                                                                                                                                                                                 | 數                  | 10473.781 | 53939 |         |            |       |  |  |  |  |  |  |
| a. 依變數                                                                                                                                                                                            | ζ: log             | _price    |       |         |            |       |  |  |  |  |  |  |
| a. 依變數: log_price b. 預測變數:(常數), Clarity_SI2, Color_I, depth, Clarity_IF, Clarity_VVS1, Color_D, Clarity_VVS2, Color_H, Clarity_VS1, Color_F, carat, Color_E, Clarity_VS2, Color_G, Clarity_SI1, x |                    |           |       |         |            |       |  |  |  |  |  |  |

圖 16、初始模型之 ANOVA 表

#### 5.2 共線性診斷

接著透過統計量 VIF 值診斷此模型的變數之間是否存在共線性的問題,由圖 17 可以得知,有部分變數之 VIF 值超過 10 以上,因此此模型選入之變數的確存在共線性問題。

|      |                |        |      |         | 係數ª     |      |         |        |      |        |
|------|----------------|--------|------|---------|---------|------|---------|--------|------|--------|
|      |                | 未標準化   | 上係數  | 標準化係數   |         |      | B的95.0% | 信賴區間   | 共線性  | 統計量    |
| 模式   |                | B之估計值  | 標準誤差 | Beta 分配 | t       | 顯著性  | 下界      | 上界     | 允差   | VIF    |
| 1    | (常數)           | -1.154 | .018 |         | -65.726 | .000 | -1.189  | -1.120 |      |        |
|      | carat          | 262    | .003 | 282     | -79.059 | .000 | 269     | 256    | .045 | 22.357 |
|      | depth          | .020   | .000 | .065    | 83.008  | .000 | .020    | .020   | .928 | 1.078  |
|      | x              | .530   | .001 | 1.348   | 377.415 | .000 | .527    | .532   | .045 | 22.416 |
|      | Color_D        | .228   | .002 | .172    | 127.782 | .000 | .225    | .232   | .316 | 3.166  |
|      | Color_E        | .203   | .002 | .177    | 119.127 | .000 | .199    | .206   | .256 | 3.899  |
|      | Color_F        | .189   | .002 | .163    | 111.220 | .000 | .185    | .192   | .264 | 3.786  |
|      | Color_G        | .159   | .002 | .147    | 95.914  | .000 | .156    | .163   | .242 | 4.130  |
|      | Color_H        | .116   | .002 | .095    | 67.950  | .000 | .112    | .119   | .294 | 3.407  |
|      | Color_I        | .061   | .002 | .042    | 34.022  | .000 | .058    | .065   | .378 | 2.648  |
|      | Clarity_IF     | .489   | .003 | .199    | 141.991 | .000 | .482    | .496   | .290 | 3.444  |
|      | Clarity_VVS1   | .449   | .003 | .256    | 141.304 | .000 | .443    | .456   | .173 | 5.783  |
|      | Clarity_VVS2   | .420   | .003 | .278    | 135.841 | .000 | .414    | .426   | .136 | 7.364  |
|      | Clarity_VS1    | .367   | .003 | .299    | 122.161 | .000 | .361    | .373   | .095 | 10.509 |
|      | Clarity_VS2    | .337   | .003 | .321    | 114.074 | .000 | .332    | .343   | .072 | 13.907 |
|      | Clarity_SI1    | .275   | .003 | .267    | 93.306  | .000 | .269    | .281   | .069 | 14.405 |
|      | Clarity_SI2    | .201   | .003 | .172    | 67.868  | .000 | .195    | .207   | .089 | 11.238 |
| a. 1 | 依變數: log_price |        |      |         |         |      |         |        |      | ,      |

圖 17、模型係數表與 VIF 值

### 5.3 殘差分析

再來進行殘差分析,由圖 18 可見此模型之標準化殘差 P-P 圖呈現 Heavy Tail 的狀態,這表示殘差有特大值或特小值存在,而此現象在圖 19 的標準化殘差散佈圖中也可發現左上角有很異常的資料點存在,因此本研究會先著手於離群值的分析而非模型的配置。



圖 18、標準化殘差之 P-P 圖



圖 19、標準化殘差散佈圖

## 6. 模型矯正

## 6.1 共線性問題

將選入之變數再次使用逐步迴歸向前法分析,得出每次選入變數之 VIF 值之差異,如圖 20、圖 21 和圖 22 所示。當模型選入變數執行至第 4 次與第 5 次時,可由圖 20 所知,當 $X_1$ (重量)被選入時,它與 $X_5$ (長度)產生共線性問題。同樣在執行至第 15 次與第 16 次時,可由圖 21 和圖 22 所知,當 $X_{45}$ (淨度"VS2")被選入時,它與 $X_{44}$ (淨度"VS1")、 $X_{46}$ (淨度"SI1")和 $X_{47}$ (淨度"SI2")也會產生共線性問題。

|    |             |       |      | Esta es         |          |      |       |        |
|----|-------------|-------|------|-----------------|----------|------|-------|--------|
|    |             |       |      | 係數 <sup>a</sup> |          |      |       |        |
|    |             | 未標準化  | 上係數  | 標準化係數           |          |      | 共線性   | 統計量    |
| 模式 |             | B之估計值 | 標準誤差 | Beta 分配         | t        | 顯著性  | 允差    | VIF    |
| 1  | (常數)        | 1.225 | .003 |                 | 432.489  | .000 |       |        |
|    | х           | .376  | .000 | .958            | 775.955  | .000 | 1.000 | 1.000  |
| 2  | (常數)        | 1.185 | .003 |                 | 435.046  | .000 |       |        |
|    | х           | .387  | .000 | .984            | 811.400  | .000 | .927  | 1.079  |
|    | Clarity_SI2 | 113   | .001 | 097             | -79.780  | .000 | .927  | 1.079  |
| 3  | (常數)        | 1.181 | .003 |                 | 449.607  | .000 |       |        |
|    | х           | .391  | .000 | .996            | 840.986  | .000 | .903  | 1.107  |
|    | Clarity_SI2 | 140   | .001 | 119             | -97.712  | .000 | .849  | 1.178  |
|    | Clarity_SI1 | 078   | .001 | 075             | -63.938  | .000 | .910  | 1.098  |
| 4  | (常數)        | 1.167 | .003 |                 | 458.418  | .000 |       |        |
|    | х           | .396  | .000 | 1.007           | 870.328  | .000 | .882  | 1.134  |
|    | Clarity_SI2 | 144   | .001 | 123             | -103.871 | .000 | .847  | 1.180  |
|    | Clarity_SI1 | 078   | .001 | 076             | -66.756  | .000 | .910  | 1.098  |
|    | Color_I     | 101   | .002 | 069             | -62.556  | .000 | .977  | 1.024  |
| 5  | (常數)        | .769  | .007 |                 | 104.519  | .000 |       |        |
|    | х           | .501  | .002 | 1.275           | 265.987  | .000 | .048  | 20.623 |
|    | Clarity_SI2 | 144   | .001 | 123             | -106.968 | .000 | .847  | 1.180  |
|    | Clarity_SI1 | 082   | .001 | 080             | -72.278  | .000 | .907  | 1.103  |
|    | Color_I     | 093   | .002 | 064             | -59.308  | .000 | .969  | 1.031  |
|    | carat       | 255   | .004 | 275             | -57.393  | .000 | .049  | 20.568 |

圖 20、模型 4 至模型 5 之 VIF 值改變量

| 15 | (常數)         | 714  | .019 |       | -37.426 | .000 |      |        |
|----|--------------|------|------|-------|---------|------|------|--------|
|    | x            | .533 | .002 | 1.357 | 341.063 | .000 | .045 | 22.405 |
|    | Clarity_SI2  | 114  | .001 | 097   | -94.820 | .000 | .673 | 1.485  |
|    | Clarity_SI1  | 043  | .001 | 042   | -39.961 | .000 | .652 | 1.533  |
|    | Color_I      | .059 | .002 | .040  | 29.473  | .000 | .378 | 2.648  |
|    | carat        | 282  | .004 | 303   | -76.445 | .000 | .045 | 22.295 |
|    | depth        | .018 | .000 | .059  | 67.325  | .000 | .933 | 1.072  |
|    | Color_H      | .111 | .002 | .091  | 58.469  | .000 | .294 | 3.405  |
|    | Clarity_VVS1 | .128 | .002 | .073  | 77.864  | .000 | .803 | 1.245  |
|    | Clarity_IF   | .167 | .002 | .068  | 75.962  | .000 | .880 | 1.137  |
|    | Clarity_VVS2 | .100 | .001 | .066  | 69.155  | .000 | .776 | 1.288  |
|    | Color_D      | .225 | .002 | .169  | 113.103 | .000 | .316 | 3.165  |
|    | Color_E      | .199 | .002 | .174  | 104.717 | .000 | .257 | 3.897  |
|    | Color_F      | .184 | .002 | .159  | 97.202  | .000 | .264 | 3.783  |
|    | Color_G      | .155 | .002 | .143  | 83.959  | .000 | .242 | 4.128  |
|    | Clarity_VS1  | .048 | .001 | .039  | 39.239  | .000 | .716 | 1.396  |

圖 21、模型 15 之 VIF 值

|    |              |        |      | 1     |         |      | 1    |        |
|----|--------------|--------|------|-------|---------|------|------|--------|
| 16 | (常數)         | -1.154 | .018 |       | -65.726 | .000 |      |        |
|    | X            | .530   | .001 | 1.348 | 377.415 | .000 | .045 | 22.416 |
|    | Clarity_SI2  | .201   | .003 | .172  | 67.868  | .000 | .089 | 11.238 |
|    | Clarity_SI1  | .275   | .003 | .267  | 93.306  | .000 | .069 | 14.405 |
|    | Color_I      | .061   | .002 | .042  | 34.022  | .000 | .378 | 2.648  |
|    | carat        | 262    | .003 | 282   | -79.059 | .000 | .045 | 22.357 |
|    | depth        | .020   | .000 | .065  | 83.008  | .000 | .928 | 1.078  |
|    | Color_H      | .116   | .002 | .095  | 67.950  | .000 | .294 | 3.407  |
|    | Clarity_VVS1 | .449   | .003 | .256  | 141.304 | .000 | .173 | 5.783  |
|    | Clarity_IF   | .489   | .003 | .199  | 141.991 | .000 | .290 | 3.444  |
|    | Clarity_VVS2 | .420   | .003 | .278  | 135.841 | .000 | .136 | 7.364  |
|    | Color_D      | .228   | .002 | .172  | 127.782 | .000 | .316 | 3.166  |
|    | Color_E      | .203   | .002 | .177  | 119.127 | .000 | .256 | 3.899  |
|    | Color_F      | .189   | .002 | .163  | 111.220 | .000 | .264 | 3.786  |
|    | Color_G      | .159   | .002 | .147  | 95.914  | .000 | .242 | 4.130  |
|    | Clarity_VS1  | .367   | .003 | .299  | 122.161 | .000 | .095 | 10.509 |
|    | Clarity_VS2  | .337   | .003 | .321  | 114.074 | .000 | .072 | 13.907 |

圖 22、模型 16 之 VIF 值

所謂共線性是指當 2 個以上的自變數互不獨立時,即這些變數具有共線性。若變數之間韓有共線性會使迴歸模型中存在著重複的自變數,使得模型的建構不準確。因此在本研究採取的作法為,透過

觀察簡單線性迴歸(如圖 23、圖 24)所配置出的 R 平方值(即該變數對 $log_{10}Y$ 的解釋力),選擇留下具較高解釋力的變數 $X_5$ (長度),而 $X_1$ (重量)則剔除。





圖  $23 \times X_5$ (長度)對 $log_{10}Y$ 的解釋力

圖  $24 \times X_1$ (重量)對 $log_{10}Y$ 的解釋力

而因為 $X_{45}$ (淨度"VS2")、 $X_{44}$ (淨度"VS1")、 $X_{46}$ (淨度"SI1")和 $X_{47}$ (淨度"SI2")為淨度的部分虛擬變數,因此不能將其所剔除,所以在此選擇保留這些虛擬變數。

## 6.2 離群值分析

#### 6.2.1 殘差異常資料點

由圖 19 得知有部分資料點之標準化殘差過大,因此從資料中將其調出來觀察,如圖 25 所示。由圖可見這些資料的 $X_5$ (長度)皆為 0,因此懷疑這些資料為缺失項,而這部分也經 kaggle 平台上求證過,的確是資料缺失,於是選擇將這些資料剔除。

| carat 🕝 | cut 🔽 | color 💌 | clarity 🔽 | depth 🕝 | table 🔽 | price 🔽 | Х | у    | Z - | index 🗷 |
|---------|-------|---------|-----------|---------|---------|---------|---|------|-----|---------|
| 1.07    | 5     | 3       | SI2       | 61.6    | 56      | 4954    | 0 | 6.62 | 0   | 11183   |
| 1       | 3     | 5       | VS2       | 63.3    | 53      | 5139    | 0 | 0    | 0   | 11964   |
| 1.14    | 1     | 4       | VS1       | 57.5    | 67      | 6381    | 0 | 0    | 0   | 15952   |
| 1.56    | 5     | 4       | VS2       | 62.2    | 54      | 12800   | 0 | 0    | 0   | 24521   |
| 1.2     | 4     | 1       | VVS1      | 62.1    | 59      | 15686   | 0 | 0    | 0   | 26244   |
| 2.25    | 4     | 5       | SI2       | 62.8    | 59      | 18034   | 0 | 0    | 0   | 27430   |
| 0.71    | 2     | 3       | SI2       | 64.1    | 60      | 2130    | 0 | 0    | 0   | 49557   |
| 0.71    | 2     | 3       | SI2       | 64.1    | 60      | 2130    | 0 | 0    | 0   | 49558   |

圖 25、殘差過大之資料點數據

#### 6.2.2 具影響力之離群值

在剔除資料缺失的資料後,重新審視剩餘資料的標準化殘差散佈圖,如圖 26 所示,發現圖形右側存在線性的趨勢。因此在仔細對資料做檢查後發現有部分資料存在明顯不尋常之處,如「體質皆一致,價格卻差 5 倍」等。這種現象是由於資料上存在無法被量化的因素或是沒有被提供之資訊所導致,如依據產地不同、鑽石職人的輩分不同等因素所導致價格上會有異常。

在透過人工檢查後,將從 520 筆離群值資料剔除中明顯可看出異常之資料(共計 230 筆資料),至 於其它離群資料在相較之下沒有明顯不同處,因此未將其視為具影響的離群值



圖 26、剔除資料缺失後之標準化殘差散佈圖

#### 6.3 矯正後模型

解決共線性問題與離群值問題後,重新配置模型得出之結果如圖 27 所示。由圖可見經過矯正後的模型其 R 平方往上提升至 0.974,較原先配出之初始模型要好一些。



圖 27、矯正後模型摘要

#### 7. 模型檢視

配置出大致的模型後,本階段要對此模型作檢驗,檢查項目分別為自變數對應變數的顯著性、迴 歸模型之四大假設以及高影響點的檢查。

#### 7.1 整體模型之顯著性

根據圖 28 得到的初始模型之 ANOVA 表可得知在顯著性那欄為0.000 < 0.05,因此拒絕由假設檢定所設定之 $H_0$ :係數皆為零的假設,也就是說選入之變數與 $log_{10}Y$ 的確有顯著的關係。

|   |                                                                                                                                                                              |          |           | Anov  | a <sup>a</sup> |            |                   |  |  |  |  |  |
|---|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|-----------|-------|----------------|------------|-------------------|--|--|--|--|--|
|   | 模式                                                                                                                                                                           |          | 平方和       | df    | 平均平方和          | F          | 顯著性               |  |  |  |  |  |
| 1 | 1                                                                                                                                                                            | 迴歸       | 10072.296 | 15    | 671.486        | 135243.455 | .000 <sup>b</sup> |  |  |  |  |  |
|   |                                                                                                                                                                              | 殘差       | 266.552   | 53686 | .005           |            |                   |  |  |  |  |  |
| ٠ |                                                                                                                                                                              | 總數       | 10338.848 | 53701 |                |            |                   |  |  |  |  |  |
|   | a. 化                                                                                                                                                                         | 划變數: log | _price    |       |                |            |                   |  |  |  |  |  |
|   | b. 預測變數:(常數), Clarity_SI2, Color_F, depth, Clarity_IF, Clarity_WS1,<br>Color_I, Clarity_WS2, Color_D, Clarity_VS1, Color_H, x, Color_E,<br>Clarity_VS2, Color_G, Clarity_SI1 |          |           |       |                |            |                   |  |  |  |  |  |

圖 28、矯正後模型之 ANOVA 表

#### 7.2 迴歸診斷

#### 7.2.1 迴歸假設-獨立性

由圖 29 可知此模型的 DW 值為1.897(≈ 2),這邊用到 Durbin-Watson Test[3],此檢定法是說明當 DW 值接近 2 時,表示樣本中沒有檢測到自相關,因此此模型之殘差確實有符合獨立性假設。



圖 29、矯正後模型之 DW 值

## 7.2.2 迴歸假設 - 變異數同質性

由圖 30 可知刪去具影響力的資料點後,殘差散佈圖上仍能觀察到右側明顯有一部份資料呈現遞減的直線關係,這個部分以一個外行人去看資料也許很難觀察到其原因所在,可能需要有相關知識的人才能為此現象做解釋。但除紅色區域所為出之資料點,綠色部分所納入的資料點幾乎都平均散布在e = 0這條線的上下,所以大部分的樣本點之殘差的變異數都有符合同質性假設。若將來有機會學習到更進階的統計模型時,也許能再針對兩群資料各自配置適當的模型。



圖 30、矯正後模型之標準化殘差散佈圖

#### 7.2.3 迴歸假設 - 常態性

由圖 31 可知此模型的標準化殘差 P-P 圖分布於 45 度線上,也就表示此模型之殘差確實有服從常態分配。



圖 31、矯正後模型之標準化殘差 P-P 圖

## 7.3 檢查是否存在高影響點

分別對資料點的 Cook's D 值遞減排序及遞增排序,分別由圖 32 及圖 33 所示。可得每筆資料的 Cook's D 值皆介於  $0 \sim 0.00792$  之間,沒有資料的 Cook's D 值大於 1,於是我們得知本資料不存在 高影響點。

| COO_2  | COO_2  |
|--------|--------|
| .00792 | .00000 |
| .00761 | .00000 |
| .00741 | .00000 |
| .00712 | .00000 |
| .00685 | .00000 |
| .00611 | .00000 |
| .00579 | .00000 |
| .00556 | .00000 |
| .00538 | .00000 |
| .00498 | .00000 |

圖 32 (左圖)、Cook's D 值遞減排序 圖 33 (右圖)、Cook's D 值遞增排序

#### 7.4 最終模型

檢視完上述問題後,得知此模型的配適性是不錯的。因此藉由模型係數表(如圖 34)得到最終模型 為公式(4)所示,其中根據不同的顏色 $(X_3)$ 與淨度 $(X_4)$ ,共計有56種模型。

$$log_{10}\hat{Y} = -0.531 + \alpha X_{3i} + \beta X_{4j} + 0.427X_5 + 0.016X_8, i = 1,2,3...,6; j = 1,2,3...,7$$
 (4) 其中

$$\alpha = \begin{cases} 0.244 & if \ i = 1 \ (i.e. \ color \ is \ D) \\ 0.219 & if \ i = 2 \ (i.e. \ color \ is \ E) \\ 0.204 & if \ i = 3 \ (i.e. \ color \ is \ F) \\ 0.173 & if \ i = 4 \ (i.e. \ color \ is \ G) \\ 0.126 & if \ i = 5 \ (i.e. \ color \ is \ H) \\ 0.067 & if \ i = 6 \ (i.e. \ color \ is \ I) \\ 0 & if \ color \ is \ "J" \end{cases}$$

|      |                |       |      | 係數 <sup>a</sup> |          |      |      |        |
|------|----------------|-------|------|-----------------|----------|------|------|--------|
|      |                | 未標準化  | 上係數  | 標準化係數           |          |      | 共線性  | 統計量    |
| 模式   |                | B之估計值 | 標準誤差 | Beta 分配         | t        | 顯著性  | 允差   | VIF    |
| 1    | (常數)           | 531   | .014 |                 | -37.420  | .000 |      |        |
|      | depth          | .016  | .000 | .051            | 73.187   | .000 | .982 | 1.018  |
|      | х              | .427  | .000 | 1.079           | 1366.962 | .000 | .771 | 1.296  |
|      | Color_D        | .244  | .002 | .184            | 149.440  | .000 | .317 | 3.151  |
|      | Color_E        | .219  | .002 | .193            | 141.012  | .000 | .257 | 3.887  |
|      | Color_F        | .204  | .002 | .178            | 132.414  | .000 | .266 | 3.761  |
|      | Color_G        | .173  | .002 | .161            | 114.462  | .000 | .243 | 4.113  |
|      | Color_H        | .126  | .002 | .103            | 80.743   | .000 | .294 | 3.403  |
|      | Color_I        | .067  | .002 | .046            | 40.344   | .000 | .377 | 2.651  |
|      | Clarity_IF     | .488  | .003 | .198            | 153.214  | .000 | .286 | 3.494  |
|      | Clarity_VVS1   | .451  | .003 | .259            | 153.368  | .000 | .168 | 5.936  |
|      | Clarity_WS2    | .425  | .003 | .283            | 148.422  | .000 | .132 | 7.569  |
|      | Clarity_VS1    | .375  | .003 | .307            | 134.907  | .000 | .093 | 10.785 |
|      | Clarity_VS2    | .344  | .003 | .329            | 125.658  | .000 | .070 | 14.288 |
|      | Clarity_SI1    | .284  | .003 | .277            | 104.115  | .000 | .068 | 14.778 |
|      | Clarity_SI2    | .205  | .003 | .175            | 74.429   | .000 | .087 | 11.479 |
| a. 依 | 攻變數: log_price |       |      |                 |          |      |      |        |

圖 34、最終模型之係數表

## 8. 模型評估與解釋

#### 8.1 模型評估

## 8.1.1 連續型資料

由圖 35 得知長度 $(X_5)$ 和對數價格 $log_{10}Y$ 有著高度正相關,對應到模型的係數為0.427,其結果是吻合的。

接著看深度比例  $(X_8)$ 和對數價格 $log_{10}Y$ 的線性相關並不高,因此對應到模型的係數為0.016 ( $\approx$ 0),其結果也是吻合的。

| 相關        |            |           |       |        |  |
|-----------|------------|-----------|-------|--------|--|
|           |            | log_price | depth | Х      |  |
| log_price | Pearson 相關 | 1         | .000  | .962** |  |
|           | 顯著性 (雙尾)   |           | .943  | .000   |  |
|           | 個數         | 53702     | 53702 | 53702  |  |
| depth     | Pearson 相關 | .000      | 1     | 026    |  |
|           | 顯著性 (雙尾)   | .943      |       | .000   |  |
|           | 個數         | 53702     | 53702 | 53702  |  |
| Х         | Pearson 相關 | .962**    | 026** | 1      |  |
|           | 顯著性 (雙尾)   | .000      | .000  |        |  |
|           | 個數         | 53702     | 53702 | 53702  |  |
| **. 在顯    |            | 变尾),相關顯   | 者。    |        |  |

圖 35、模型中連續型變數與應變數log<sub>10</sub>Y之相關係數表

## 8.1.2 類別型資料 - X<sub>3</sub>(顏色)

在前面敘述統計階段提到顏色與對數價格的走勢呈現「顏色越差,價格越高」的現象,而在模型配置完後,其係數對其顏色的關係呈現「顏色越好,相關程度越高」的狀態。這時本研究推測會產生這種矛盾之結果的理由有二:

#### (1) 資料筆數不均:

用軟體繪出各顏色類別個數之長條圖,如圖 36 所示。乍看之下資料筆數好像差不多,但由於本資料筆數高達 54,000 筆,所以直條圖呈現的個數每一單位就會差好幾千筆資料,因此才可能產出此違反以往認知的結果。



圖 36、X<sub>3</sub>(顏色)的個數長條圖

## (2) 對長度( $X_5$ )的相關性呈遞減:

用軟體繪出各顏色類別和長度之相關係數圖,如圖 37 所示。可以得知,它們關係呈現「顏色越好,相關程度越高」,其中走勢為負相關。這表示顏色越差的鑽石挖出來的大小會越大,且加上長度 $(X_5)$ 對 $log_{10}Y$ 的解釋性高達 91.8%(如圖 23 所示),因此鑽石價格很容易被長度 $(X_5)$ 帶偏,所以顏色 $(X_3)$ 對價格的影響力微乎其微。

|           |            | log_price | Х      | Color_D | Color_E | Color_F | Color_G | Color_H | Color_I |
|-----------|------------|-----------|--------|---------|---------|---------|---------|---------|---------|
| log_price | Pearson 相關 | 1         | .962** | 065**   | 095**   | 009     | .003    | .054**  | .076**  |
|           | 顯著性 (雙尾)   |           | .000   | .000    | .000    | .029    | .462    | .000    | .000    |
|           | 個數         | 53702     | 53702  | 53702   | 53702   | 53702   | 53702   | 53702   | 53702   |
| Х         | Pearson 相關 | .962**    | 1      | 107**   | 134**   | 046     | 022**   | .094**  | .145**  |
|           | 顯著性 (雙尾)   | .000      |        | .000    | .000    | .000    | .000    | .000    | .000    |
|           | 個數         | 53702     | 53702  | 53702   | 53702   | 53702   | 53702   | 53702   | 53702   |

圖  $37 \times X_3$ (顏色)對 $X_5$ (長度)之相關係數表

#### 8.1.3 類別型資料 - X<sub>4</sub>(淨度)

在前面敘述統計階段提到淨度與對數價格的走勢呈現「淨度等級越差,價格越高」的現象,會產 生這種矛盾之結果的理由與上述兩個原因一致:

#### (1) 資料筆數不均:

用軟體繪出各淨度等級之個數的長條圖,如圖 38 所示。由於本資料筆數多達 54,000 筆,所以直條圖呈現的個數每一單位就會差好幾千筆資料,因此才可能產出此違反以往認知的結果。



圖 38、 X<sub>4</sub>(淨度)的個數長條圖

### (2) 對長度(X<sub>5</sub>)的相關性呈遞減:

用軟體繪出各淨度等級和長度之相關係數圖,如圖 39 所示。可以得知,它們關係呈現「淨度等級越高,相關程度越高」,其中走勢亦為負相關。表示淨度等級越差的鑽石挖出來的大小也會越大,再加上長度 $(X_5)$ 主掌了 $log_{10}Y$ 高達 91.8%的解釋性 (如圖 23 所示),因此鑽石價格很容易被長度 $(X_5)$ 帶偏,因此在長度 $(X_5)$ 的作用下淨度 $(X_4)$ 對價格的影響力也是微乎其微。

|           |            | log_price | Х      | Clarity_IF | Clarity_VVS1 | Clarity_VVS2 | Clarity_VS1 | Clarity_VS2 | Clarity_SI1 | Clarity_SI2 |
|-----------|------------|-----------|--------|------------|--------------|--------------|-------------|-------------|-------------|-------------|
| log_price | Pearson 相關 | 1         | .962** | 074**      | 123**        | 080**        | 024**       | 011         | .036**      | .165**      |
|           | 顯著性(雙尾)    |           | .000   | .000       | .000         | .000         | .000        | .014        | .000        | .000        |
|           | 個數         | 53702     | 53702  | 53702      | 53702        | 53702        | 53702       | 53702       | 53702       | 53702       |
| х         | Pearson 相關 | .962**    | 1      | 129        | 185          | 147**        | 059**       | 033**       | .083**      | .267**      |
|           | 顯著性 (雙尾)   | .000      |        | .000       | .000         | .000         | .000        | .000        | .000        | .000        |
|           | 個數         | 53702     | 53702  | 53702      | 53702        | 53702        | 53702       | 53702       | 53702       | 53702       |

圖 39、X<sub>4</sub>(淨度)對X<sub>5</sub>(長度)之相關係數表

#### 8.2 模型解釋

本研究得出之模型如公式(4)所示,在此階段會針對各變數變動一單位下會對 $log_{10}Y$ 造成多大幅度的影響做出解釋,並利用原始資料來比對模型的可信度。

#### 8.2.1 連續型資料 - X<sub>5</sub>(長度)

由公式(4)所得出之模型來看,當顏色為 D 且淨度為 VS2 時,代入表 2 中的數據,並由所得最終模型 $log_{10}\hat{Y}=-0.531+0.244X_{31}+0.344X_{45}+0.427X_5+0.016X_8$ 計算,得出當鑽石長度每增加一單位,其對數價格會變動為  $\frac{3.07191}{2.64651}\approx 1.16$ 倍。

對照表 2 原始資料本身的變動比例為  $\frac{2.95}{2.56} \approx 1.15$  倍,兩者相異不大。

| index | log <sub>10</sub> Y<br>(價格) | X <sub>31</sub><br>(顏色"D") | X <sub>45</sub><br>(淨度"VS2") | X <sub>5</sub><br>(長度) | X <sub>8</sub><br>(深度比例) |
|-------|-----------------------------|----------------------------|------------------------------|------------------------|--------------------------|
| 31601 | 2.56                        | D                          | VS2                          | 3.73                   | 62.3                     |
| 35164 | 2.95                        | D                          | VS2                          | 4.73                   | 62.2                     |

表 2、針對 X<sub>5</sub>(長度)變動之資料比對表

## 8.2.2 連續型資料 - X<sub>8</sub>(深度比例)

由公式(4)所得出之模型來看,當顏色為 F 且淨度為 I1 時,代入表 3 中的數據,並由所得最終模型  $log_{10}\hat{Y}=-0.531+0.204X_{33}+0.427X_5+0.016X_8$ 計算,得出當鑽石深度比例每增加一單位,其對數價格會變動為  $\frac{3.38278}{3.29419}\approx 1.03$  倍。

對照表 3 原始資料本身的變動比例為  $\frac{3.36}{3.20} \approx 1.05$  倍,兩者相異不大。

| index | log <sub>10</sub> Y<br>(價格) | X <sub>33</sub><br>(顏色"F") | X <sub>4</sub><br>(淨度"I1") | X <sub>5</sub><br>(長度) | X <sub>8</sub><br>(深度比例) |
|-------|-----------------------------|----------------------------|----------------------------|------------------------|--------------------------|
| 44212 | 3.20                        | F                          | I1                         | 5.97                   | 67                       |
| 50583 | 3.36                        | F                          | I1                         | 6.14                   | 68                       |

表 3、針對 X<sub>8</sub>(深度比例)變動之資料比對表

### 8.2.3 類別型資料 - X<sub>3</sub>(顏色)

由公式(4)所得出之模型來看,當顏色為 D & E 且淨度為 VS2 時,代入表 4 中的數據,並分別由所得最終模型  $\begin{cases} log_{10}\hat{Y} = -0.531 + 0.244X_{31} + 0.344X_{45} + 0.427X_5 + 0.016X_8 \\ log_{10}\hat{Y} = -0.531 + 0.219X_{32} + 0.344X_{45} + 0.427X_5 + 0.016X_8 \end{cases}$ 

等級每下降一個等級,其對數價格會變動為  $\frac{3.77489}{3.75827} \approx 1.00$  倍。

對照表 4 原始資料本身的變動比例為  $\frac{3.66}{3.79} \approx 0.97$  倍,雨者相異不大。

| index | log <sub>10</sub> Y<br>(價格) | X <sub>31</sub> & X <sub>32</sub><br>(顏色"D & E") | X <sub>45</sub><br>(淨度"VS2") | X <sub>5</sub><br>(長度) | X <sub>8</sub><br>(深度比例) |
|-------|-----------------------------|--------------------------------------------------|------------------------------|------------------------|--------------------------|
| 15421 | 3.79                        | D                                                | VS2                          | 6.21                   | 65.6                     |
| 9098  | 3.66                        | Е                                                | VS2                          | 6.27                   | 66.6                     |

表 4、針對 X<sub>3</sub>(顏色)變動之資料比對表

#### 8.2.4 類別型資料 - X<sub>4</sub>(淨度)

由公式(4)所得出之模型來看,當顏色為 I 且淨度為 VVS1 & VVS2 時,代入表 5 中的數據,並分別由所得最終模型  $\begin{cases} log_{10}\hat{Y} = -0.531 + 0.067X_{36} + 0.451X_{42} + 0.427X_5 + 0.016X_8 \\ log_{10}\hat{Y} = -0.531 + 0.067X_{36} + 0.425X_{43} + 0.427X_5 + 0.016X_8 \end{cases}$  ,得出當鑽石

淨度等級每下降一個等級,其對數價格會變動為  $\frac{2.85636}{2.92826} \approx 0.98$  倍。

對照表 5 原始資料本身的變動比例為  $\frac{2.87}{2.78} \approx 1.03$  倍,雨者相異不大。

| index | log <sub>10</sub> Y<br>(價格) | X <sub>36</sub><br>(顏色"I") | X <sub>42</sub> & X <sub>43</sub><br>(淨度"VVS1 & VVS2") | X <sub>5</sub><br>(長度) | X <sub>8</sub><br>(深度比例) |
|-------|-----------------------------|----------------------------|--------------------------------------------------------|------------------------|--------------------------|
| 15694 | 2.78                        | I                          | VVS1                                                   | 4.58                   | 61.6                     |
| 30832 | 2.87                        | I                          | VVS2                                                   | 4.48                   | 61.4                     |

表 5、針對 X<sub>4</sub>(淨度)變動之資料比對表

#### 9. 結論及後續探討可能

總之,鑽石價格和鑽石本身的顏色 $(X_3)$ 、淨度 $(X_4)$ 、長度 $(X_5)$ 以及深度比例 $(X_8)$ 存在顯著的關係。

尤其是長度,鑽石的長度主掌其價格約九成左右的解釋性。

根據網路上的資料[2]顯示,「4C」是判斷一顆鑽石價值與品質的衡量標準。所謂「4C」指的是重量(CARAT)、色澤(COLOR)、淨度(CLARITY)及切工(CUT),所以在業界也有人說此四項指標的總和就是一顆鑽石的價值。這個說法與本研究最後得出之模型組成相異並不是很大,且此模型能做到的價格預測也已經達到 97%,所以若 kaggle 平台上的數據來源可靠,我們的確可以依據此模型來預測鑽石的價格。

## 参考文獻

- [1] Kutner: Applied Linear Regression Models 4/e '04
- [2] CHU, Singfat. Pricing the C's of Diamond Stones. Journal of Statistics Education, 2001, 9.2
- [3] https://www.investopedia.com/terms/d/durbin-watson-statistic.asp