Fiber Bundles

Ikhan Choi Lectured by Takuya Sakasai University of Tokyo, Spring 2023

April 25, 2023

Contents

1	Day 1: April 10	2
2	Day 2: April 17	3
3	Day 3: April 24	5

1 Day 1: April 10

References: Steenrod, The topology of fiber bundles, and Tamaki, Fiber bundles and homotopy (Japanese)

1. Introduction

An ultimate goal of topology is to classify topological spaces, up to homeomorphism. If you want to show two spaces are homeomorphic, we should construct a homeomorphism: *Shokuninwaza* (wild knot, Casson handle). If you want to show two spaces are not homeomorphic, then we can investigate topological *properties*, and as their quantitative comparison, we can investigate topological *invariants* Some examples include

- the number of connected componenets,
- the Euler characteristic,
- · homology groups,
- · homotopy groups,
- the minimal number of open contractible sets to cover the spaces (Lusternik-Schnirelmann category, topological complexity),
- Gelfand-Naimark theorem: $C(X) \cong C(Y)$ implies $X \cong Y$ if they are compact Hausdorff.

We will restrict objects to study. For example, metric spaces, manifolds, CW-complexes. As the assumptions change, invariants may have different appearances. For a manifold X,

$$\chi(X) = \sum_{q=0}^{\infty} (-1)^q \operatorname{rk}_{\mathbb{Z}} H_q(X) = \sum_{q=0}^{\infty} (-1)^q b_q(X).$$

For a CW-complex X,

$$\chi(X) = \sum_{q=0}^{\infty} (-1)^q$$
 (the number of *q*-cells).

Let M be an connected closed n-dimensional manifold. Some classification results are as follows(up to both homeomorphisms and diffeomorphisms, because $d \le 2$):

- $(n = 0) M \cong *$, and $\chi(*) = 1$.
- $(n = 1) M \cong S^1$, and $\chi(S^1) = 0$.
- (*n* = 2)
 - If M is orientable, then $M \cong \Sigma_g$ for $g \ge 0$, and $\chi(\Sigma_g) = 2 2g$. $\Sigma_0 \cong S^2$, $\Sigma_1 \cong T^2$.
 - If M is not orientable, then $M \cong (\mathbb{RP}^2)^{\#h}$ for $h \geq 1$, and $\chi((\mathbb{RP}^2)^{\#h}) = 2 h$. $\mathbb{RP}^2(\cong \text{M\"obius strip} \cup D^2), K = \mathbb{RP}^2 \# \mathbb{RP}^2$

Problem 1. Show $\mathbb{RP}^2 \# T^2 \cong \mathbb{RP}^2 \# K$.

Here are some facts about triangulability:

- Cairns(1935), Whitehead (1940): every C¹-manifold is triangulable (unique as a PL-manifold).
- Rado(1925, n = 2), Moise(1952, n = 3): for $n \le 3$, every C^0 -manifold is triangulable (unique as a PL-manifold).
- Kirby-Siebermann(1966, $n \ge 5$): for $n \ge 4$, there is a non-triangulable PL-manifold.

- Donaldson, Freedman, Casson: for n = 4, there is a non-triangulable manifold as a topological space.
- Manolescu(2013): for $n \ge 5$, there is a non-triangulable manifold as a topological space.

Orientability? For a connected closed surface S, it is orientable iff $H_2(S) \cong \mathbb{Z}$, not orientable iff $H_2(S) \cong 0$. The generator of $H_2(S)$ is called the fundamental class. Orientability asks if the tubular neighborhood of every simple closed curve is homeomorphic to an anulus. It is described by the first Stiefel-Whitney class:

$$w_1(S) \in H^1(S; \mathbb{Z}/2\mathbb{Z}) \cong \operatorname{Hom}(H^1(S), \mathbb{Z}/2\mathbb{Z}) \cong \operatorname{Hom}(\pi_1(S), \mathbb{Z}/2\mathbb{Z}).$$

Euler characteristic of manifolds

(0) Odd-dimensional manifolds

Theorem. For an odd-dimensional closed connected manifold, $\chi(M^{2n+1}) = 0$.

Proof. If orientable, then $b_0(M) = 1$, $b_3(M) = 1$, $b_1(M) = b_2(M)$ by the Poincaré duality. If not, a double cover is orientable, and $\chi(\widetilde{M}) = 2\chi(M)$.

(1) Gauss-Bonnet theorem

Theorem (Gauss-Bonnet). *If a smooth manifold* M^n *embeds into* \mathbb{R}^{n+1} *(hypersurface), then it is orientable and the Euler characteristic is given by*

$$\chi(M) = \frac{2}{\operatorname{vol}(S^n)} \int_M K \, d \operatorname{vol}_M.$$

2 Day 2: April 17

We have a cohomological interpretation. In the Chern-Weil theory, we have a generalized version of the Gauss-Bonnet theorem for a general compact manifold using the theory of connections. We can interpret $2\operatorname{vol}(S^n)^{-1}K\cdot d\operatorname{vol}_M$ as a differential form which provides with the Euler characteristic. In the context of the de Rham theorem, we will eventually call the equivalence class of this differential form as the *Euler class*.

(2) Poincaré-Hopf theorem

Let M^n be a orientable connected smooth closed manifold. Let X be a smooth vector field on M such that there are only finitely many zeros $\{p_1, \dots, p_m\}$. For each p_j , define the index $\operatorname{Ind}(X, p_j)$ as follows: seeing X as a vector field on $\varphi_j(U_j)$ for a chart (U_j, φ_j) not containing zeros of X but p_j and mapping p_j to zero in \mathbb{R}^n , we define $\operatorname{Ind}(X, p_j) = \deg f_j$, where $f_j : S_{\varepsilon}(\approx S^{n-1}) \to S^{n-1} : x \mapsto X_x/||X_x||$.

Example. Let n = 2. We have indices 1, 1, 1, -1, 0, 2 for

$$X_1(x,y) = (x,y), \quad X_2(x,y) = (-x,-y), \quad X_3(x,y) = (-y,x),$$

 $X_4(x,y) = (-x,y), \quad X_5(x,y) = \sqrt{x^2 + y^2}(1,1), \quad X_6(x,y) = (x^2 - y^2, 2xy).$

Theorem (Poincaré-Hopf).

$$\sum_{j=1}^{m} \operatorname{Ind}(X, p_j) = \chi(M).$$

We have a cohomological interpretation. Let $c = \sum_{j=1}^{m} \operatorname{Ind}(X, p_j) p_j$ be a singular 0-cycle on M. Then, the Poincaré-Hopf theorem states that we have

$$\begin{array}{ccc} H_0(M) & \xrightarrow{\sim} & \mathbb{Z} \\ p_j & \mapsto & 1 \\ c & \mapsto & \gamma(M). \end{array}$$

By the Poincaré duality, we can identify the homology class [c] with a de Rham cohomology class, and the above map is just an integration map.

The cycle c tells us the information of intersections of X and zero section (of the tangent bundle). If TM is trivial, then the zero section does not self-intersection(?) so that c = 0. The Euler characteristic measures the twist of a bundle, and the characteristic class generalizes this wakugumi.

2. Fiber bundles

From now we will only consider paracompact Hausdorff spaces. Recall that a space is paracompact iff for every open cover there is a locally finite refinement.

Example. Open sets of \mathbb{R}^n , metric spaces, CW-complexes, countable inductive limit of compact spaces are paracompact.

Theorem 2.1. For any open cover of a paracompact Hausdorff space X, there is a partition of unity subordinate to it.

Problem 2. Prove the above theorem.

Definition 2.2. Let B be connected(for simplicity). A map $E \to B$ is called a fiber bundle with fiber F, or just a F-bundle, if it is locally trivial: every point $x \in B$ has an open neighborhood U_x such that there is a homeomorphism $\varphi: p^{-1}(U_x) \to U_x \times F$ with $p = \operatorname{pr}_{U_x} \circ \varphi$.

For each $y \in B$ $E_y := p^{-1}(y)$ is homeomorphic to F, and is called the fiber at y. Also, E and B are called the total space and the base space. We somtimes write as $\xi = (F \to E \xrightarrow{p} B)$.

Example.

- (a) We say $pr_1 : B \times F \to B$ is the product or bundle.
- (b) $p: \mathbb{R} \to S^1 = \mathbb{R}/\mathbb{Z}: t \mapsto [t]$ is a \mathbb{Z} -bundle. In general, a fiber bundle with a discrete fiber is called a covering space.
- (c) $p_1: S^n \to \mathbb{RP}^n = S^n/(x \sim -x)$ is a $\mathbb{Z}/2\mathbb{Z}$ -bundle.
- (d) $p: S^{2n+1} \to \mathbb{CP}^n = S^{2n+1}/(z \sim uz)$ for $u \in S^1$ is a S^1 -bundle. (a generalization of Hopf bundles)
- (e) Let M^n be a smooth manifold. Then, the tangent and the contangent bundles are \mathbb{R}^n -bundles.

Problem 3. Show that $p: S^{2n+1} \to \mathbb{CP}^n$ is a S^1 -bundle by checking concretely its local triviality.

Definition 2.3. If F, E, B are C^r , $p: E \to B$ is C^r , and the local trivialization is C^r , then we say the fiber bundle is C^r .

Definition 2.4. For $\xi_1 = (F \to E_1 \xrightarrow{p_1} B_1)$, $\xi_2 = (F \to E_2 \xrightarrow{p_2} B_2)$, a bundle map $\Phi = (\widetilde{f}, f) : \xi_1 \to \xi_2$ is a pair of maps $\widetilde{f} : E_1 \to E_2$ and $f : B_1 \to B_2$ such that $f \circ p_1 = p_2 \widetilde{f}$ and the restriction $\widetilde{f} : p_1^{-1}(b) \to p_2^{-1}(f(b))$ is a homeomorphism for every $b \in B$.

If both f and \widetilde{f} are homeomorphisms, then Φ is called a bundle isomorphism. If a bundle is isomorphic to a product bundle, then it is called to be trivial.

Problem 4 For a bundle map Φ , is \widetilde{f} homeomorphic if f is homeomorphic? (If we are doing in the category of smooth manifolds, then the inverse function theorem may be helpful.)

3 Day 3: April 24

Transition maps and structure groups

Let $\xi = (F \to E \xrightarrow{p} B)$ be an F-bundle. We have an open cover $\{U_{\alpha}\}$ such that for each α we have a local trivialization $p^{-1}(U_{\alpha}) \xrightarrow{\sim} U_{\alpha} \times F$. For $U_{\alpha} \cap U_{\beta} \neq \emptyset$, we have a map

$$\varphi_{\alpha} \circ \varphi_{\beta}^{-1} : (U_{\alpha} \cap U_{\beta}) \times F \to (U_{\alpha} \cap U_{\beta}) \times F,$$

by which we can define $\widetilde{g}_{\alpha\beta}:(U_{\alpha}\cap U_{\beta})\times F\to F$ such that $\varphi_{\alpha}\circ\varphi_{\beta}^{-1}(b,f)=:(b,\widetilde{g}_{\alpha\beta}(b,f))$. The map $\widetilde{g}_{\alpha\beta}$ is continuous, and we have for each b a homeomorphism

$$g_{\alpha\beta}(b): F \to F: f \mapsto \widetilde{g}(b, f),$$

that is, $g_{\alpha\beta}: U_{\alpha} \cap U_{\beta} \to \text{Homeo}(F)$. If we endow the compact-open topology on Homeo(F), then $g_{\alpha\beta}$ is continuous.

From definition, $g_{\alpha\beta}(b) \circ g_{\beta\alpha}(b) = \mathrm{id}_F$ for $b \in U_\alpha \cap U_\beta \neq \emptyset$, and $g_{\alpha\beta}(b) \circ g_{\beta\gamma}(b) = g_{\alpha\gamma}(b)$ for $b \in U_\alpha \cap U_\beta \cap U_\gamma \neq \emptyset$ (Note that the second relation implies the first.). The second condition is called the cocycle condition. The maps $\{g_{\alpha\beta}\}$ are called transition maps.

Theorem 2.5. Let $\{U_a\}$ be an open cover of a connected space B. Suppose we have a collection of continuous maps

$$\{g_{\alpha\beta}: U_{\alpha} \cap U_{\beta} \to \operatorname{Homeo}(F)\}_{(\alpha,\beta):U_{\alpha} \cap U_{\beta} \neq \emptyset}$$

satisfying the cocycle condition.

(\spadesuit) Suppose also that F is locally compact, or there exists a topological transformation group G(i.e. G is a topological group such that the group action $G \times F \to F$ is continuous) with

$$\bigcup_{\alpha,\beta} g_{\alpha\beta}(U_{\alpha} \cap U_{\beta}) \subset G \subset \operatorname{Homeo}(F).$$

Then, there exists a unique F- bundle (F \rightarrow E \xrightarrow{p} B such that it is locally trivializable over { U_{α} } and { $g_{\alpha\beta}$ } is the transition maps of the bundle.

The viewpoint of the above theorem is more likely to be the physicist's way of defining manifolds in the sense that they sometimes deifne a manifold as a collection of open subsets of a Euclidean space and transition maps between them.

The condition () gaurantees for the second map in

$$\widetilde{g}_{\alpha\beta}: (U_{\alpha} \cap U_{\beta}) \times F \to (U_{\alpha} \cap U_{\beta}) \times \text{Homeo}(F) \times F \to (U_{\alpha} \cap U_{\beta}) \times F$$

$$(b,f) \mapsto (b,g_{\alpha\beta}(b),f) \mapsto (b,g_{\alpha\beta}(f))$$

to be continuous.

Proof. (Sketch) Define

$$\widetilde{E}:= \prod U_{\alpha} \times F$$

and $E:=\widetilde{E}/\sim$, where the equivalence relation \sim is generated by: for each $(b_1,f_1)\in U_\alpha\times F$ and $(b_2,f_2)\in U_\beta\times F$ we have $(b_1,f_1)\sim (b_2,f_2)$ iff $b_1=b_2$ and $f_1=g_{\alpha\beta}(b_2)(f_2)$. Let $\pi:\widetilde{E}\to E$ be the canonical projection. Define also

$$\varphi_{\alpha}: p^{-1}(U_{\alpha}) \to U_{\alpha} \times F: [(b, f) \in U_{\alpha}, F] \mapsto (b, f),$$

which are homeomorphisms by the assumption (\spadesuit), satisfying pr₁ $\circ \varphi_{\alpha} = p$.

For the second condition in (\spadesuit) , G is called a structure group of the F-bundle. From now on, whenever we consider a fiber bundle along with a structure group G, we assume it includes the data of local trivialization.

Remark. We will always think of G for bundle maps between fiber bundles with structure group G. We will frequently consider the maximal transition data and compatible (i.e. satisfying the cocycle condition) local trivializations.

Example.

- 1. Let $F = V \cong \mathbb{R}^n$ be a real vector space, and $G \in \{GL(V), SL(V)\}$ or $G \in \{O(V), SO(V)\}$ with a fixed inner product on V. These fiber bundles are called real vector bundles.
- 2. Let $F = V \cong \mathbb{C}^n$ be a complex vector space, and $G \in \{GL_{\mathbb{C}}(V)\}$ or $G \in \{U(V)\}$ with a fixed inner product on V. These fiber bundles are called complex vector bundles.
- 3. F = G be a Lie group. Then, G-bundle with structure group G is called a principal bundle.
- 4. Let F be a nice smooth manifold and $G = \text{Diff}^{C^{\infty}}(F)$ be the group of smooth diffeomorphisms together with the Fréchet topology. Then, we have smooth F-bundles.

Definition 2.6. Let G be a structure group and B be a topological space. If an F-bundle $\xi = (F \to E \to B, G)$ and an F'-bundle $\xi = (F' \to E' \to B, G)$ has the same transition data, then they are called associated bundles.

Example. Let $F = \mathbb{R}^n$ be a real vector space with the standard inner product. Let G = O(n). With $S^{n-1} \subset F$, the sphere bundle inside a real vector bundle is an associated bundle of the original real vector bundle. In particular for n = 2 and G = SO(2), then the circle bundle can be recognized as a principal SO(2)-bundle associated to a real plane bundle, and if we see the plane bundle as a complex line bundle, then it corresponds to a pricipal U(1)-bundle.

Proposition 2.7. Let G be a topological group and $\xi = (G \to E \to B, G)$ be a principal G-bundle. Then, there is a natural right action of G on E which is free and the orbit space E/G is homeomorphic to B(transitively act on each fiber).

Proof. Let $u \in E$ and φ_{α} a local trivialization containing u such that

$$\varphi_{\alpha}: p^{-1}(U_{\alpha}) \to U_{\alpha} \times G: u \mapsto (p(u), h).$$

We can check the well-definedness of $ug = \varphi_g^{-1}(p(u), hg)$ by

$$\varphi_{\beta}(ug) = \varphi_{\beta} \circ \varphi_{\alpha}^{-1}(p(u), hg) = (p(u), g_{\beta\alpha}(p(u))(hg)) = (p(u), h'g).$$

The right action of G on G is continuous, free, and transitive. The right action of G on E is continuous and free, and $\overline{p}: E/G \to B$ is continuous and bijective.

Problem 5. Show that \overline{p}^{-1} is also continuous.

Remark. A principal *G*-bundle may also be defined as follows: a *G*-bundle such that (1) there is a continuous free right action of *G* on *E* which is (2) fiber-preserving and fiberwise transitive, and (3) we can choose *G*-equivariant local trivialization such that $\varphi_{\alpha}(u) = (p(u), h)$ implies $\varphi_{\alpha}(ug) = (p(u), hg)$.