$E_{v_2,1}=v_2v_1v_2v_5v_4v_5v_3v_5v_2$, $H_{v_2,1}=v_2v_1v_5v_4v_3v_2$, $W(H_{v_2,1})=32$; $E_{v_2,2}=v_2v_1v_2v_5v_3v_5v_4v_5v_2$, $H_{v_2,2}=v_2v_1v_5v_3v_4v_2$, $W(H_{v_2,2})=33$; $E_{v_2,3}=v_2v_5v_3v_5v_4v_5v_2v_1v_2$, $H_{v_2,3}=v_2v_5v_3v_4v_1v_2$, $W(H_{v_2,3})=33$, $E_{v_2,4}=v_2v_5v_4v_5v_3v_5v_2v_1v_2$, $H_{v_2,4}=v_2v_5v_4v_3v_1v_2$, $W(H_{v_2,4})=33$ 。 (3) 第一步:求最小生成树 T,如下图所示。

第二步: T 中奇度顶点集合 $V' = \{v_1, v_3, v_4, v_5\}$ 。 G[V'] 如下图所示。

最小权完美匹配 $M=\{(v_1,v_4),(v_3,v_5)\}$,将 M 中的边加到 T 上所得欧拉图 G^* 如下图所示。

第三步: 从 v_1 出发的欧拉回路有 2 条:

 $E_{v_1,1}=v_1v_2v_5v_3v_5v_4v_1\text{, }H_{v_1,1}=v_1v_2v_5v_3v_4v_1\text{, }W(H_{v_1,1})=31\text{;}$