Model checking with edge-valued decision diagrams

Pierre Roux¹ Radu I. Siminiceanu²

NASA Formal Methods Symposium

April 15, 2010

ÉNS Lyon, France (pierre.roux@ens-lyon.org)
NIA (radu@nianet.org)

1 Decision Diagrams

EVMDDs

3 Implementation

The State of Symbolic Model Checking

Evolution and Impact of Decision Diagrams

- Early 90s: the wow factor, BDDs are (re)discovered
- Late 90s early 2000s : real progress
 - Extensions, generalizations (MTBDDs, BMDs, EVMDDs, etc)
 - New algorithms (saturation, bounded MC, CEGAR)
- Since then ...
 - Interest has shifted to other areas of verification
 - There are even rumors out there that symbolic MC has enetered a Brezhnev era (~ stagnation)
 - Fact or fiction ?

Purpose of this work

Stagnation: fact or fiction?

- A little bit of both
- New ideas exist, but are disparate
- Example of untapped resources:
 - Edge-valued decision diagrams (EVMDD)
 - Identity-reduced decision diagrams
 - Hashing, caching, garbage collection
 - Heuristics for SAT/SMT solving

Our goal

Represent in one formalism (some of) the best techniques available at the moment across a spectrum of existing tools

Encoding of functions

The advent of symbolic MC: compact representation of

- boolean functions $f: \{0,1\}^n \rightarrow \{0,1\}$
- sets $\{x \in \{0,1\}^n \mid f(x) = 1\}$

Evolution:

- Truth table: 2ⁿ entries
- Binary Decision Diagram (BDD): merge common subtrees still exponential size in worst case, often better in practice

а	Ь	С	f(a,b,c)
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	1
1	0	0	1
1	0	1	0
1	1	0	0
1	1	1	1

Integer/arithmetic functions

- $f: \{0,1\}^n \to \mathbb{Z}$
- Extend BDD to Multi-Terminal BDD (MTBDD)

Figure: $f:(a,b)\mapsto 2a+b$

• Inefficient if Img(f) is large: less chances to share subtrees

Other forms of DDs:

- Multiway DDs (MDD): $f: \{0, \dots, k_1\} \times \dots \times \{0, \dots, k_n\} \rightarrow \{0, 1\}$
- Binary Moment Diagrams (BMD):
 - → work well for multipliers, but not much else

Edge Valued MDDs (EVMDDs)

- EVBDDs introduced in 1992, but not sufficiently exploited
 ⇒ (Reed-Müller spectrum !?!)
- From MTBDDs to EVMDDs: merge all terminals (0) and assign (integer) values to edges

• Value of f: composition of edge-values (e.g. addition, +) along the path from root to terminal node

EVMDD characteristics

- EVMDD encoding cannot have more nodes than MTBDDs
 - ⇒ proved in this paper
- Size can be linear instead of exponential (e.g. linear functions)
- Composition \Rightarrow a generic algorithm for all binary operators: for f, g encoded by EVMDDs of size |f| and |g| f*g computed in $O(|f||g||\mathrm{Img}(f)||\mathrm{Img}(g)|)$
- This algorithm has exactly the same complexity
 as its equivalent for MTBDDs, hence
 no gain in (worst-case) time complexity
- Is there room for improvement?

EVMDD algorithms

Yes, for following operations:

Addition:

$$f + g$$
 computed in $O(|f| \cdot |g|)$

- Multiplication by constant: $f \times c$ computed in O(|f|)
- Multiplication:

$$f \times g$$
 computed in $O(|f|^2 \cdot |g|^2 \cdot |f \times g|)$

- exponential in worst case
- much better in many "practical" cases
- Remainder and Euclidean division by constant: f/c and f%c computed in $O(c \cdot |f|)$

An EVMDD-based Model Checker

We have developed an EVMDD library featuring:

- EVMDDs for arithmetic expressions
- (Regular) MDDs for boolean expressions
- Identity-reduced encoding of transition relations
- Saturation-based state space construction
- Unsophisticated (i.e. fast) garbage collector (mark & sweep)

Some stats:

- 7 kLOC of ANSI C : library
- 4 kLOC : model checking front-end

Available at http://research.nianet.org/~radu/evmdd/

Results

Building state space vs CUDD (BFS) and SMART (saturation)

Model	Model	Reachable	CUDD	SMART	EVMDD
	size	states	(sec)	(sec)	(sec)
Dining	100	4×10^{62}	11.42	1.49	0.03
philosophers	200	2×10^{125}	3054.69	3.03	0.07
	15000	2×10^{9404}	_	_	195.29
Round robin	40	9×10^{13}	4.44	0.44	0.08
mutual exclusion	100	2×10^{32}	_	2.84	1.17
protocol	200	7×10^{62}	_	20.02	9.14
Slotted ring	10	8×10^9	1.16	0.19	0.01
protocol	20	2×10^{20}	_	0.71	0.04
	200	8×10^{211}	_	412.27	25.97

On Intel Core 2, 1.2GHz, 1.5GB mem ("—" means "> 1h").

Results

Building state space vs CUDD (BFS) and SMART (saturation)

Model	Model	Reachable	CUDD	SMART	EVMDD
	size	states	(sec)	(sec)	(sec)
Kanban	15	4×10^{10}	80.43	3.41	0.01
assembly line	20	8×10^{11}	2071.58	8.23	0.02
	400	6×10^{25}	_		74.89
Knights	5	6×10^7	1024.42	5.29	0.27
problem	7	1×10^{15}		167.41	3.46
	9	8×10^{24}	_	<u> </u>	32.20
Randomized	6	2×10^{6}	4.22	8.42	0.86
leader election	9	5×10^9	_	954.81	18.89
protocol	11	9×10^{11}			109.25

On Intel Core 2, 1.2GHz, 1.5GB mem ("—" means "> 1h").

Questions

?