

HierarchicalClustering Documentation

Description: Agglomerative hierarchical clustering of genes/experiments **Author:** Joshua Gould (Broad Institute), gp-help@broad.mit.edu

HierarchicalClustering is distributed under the license available at http://rana.lbl.gov/EisenSoftwareSource.htm.

Summary:

Given a set of items to be clustered (items can be either genes or chips/experiments), agglomerative hierarchical clustering (HC) recursively merges items with other items, or with the result of previous merges, according to their pair-wise distance (with the closest item pairs being merged first). As a result, it produces a tree structure, referred to as dendogram, whose nodes correspond to: i) the original items (these are the leaves of the tree); and ii) the merging of other nodes (these are the internal nodes of the tree).

HierarchicalClustering will produce a cdt file which contains the original data, but reordered to reflect the clustering. Additionally, either a dendrogram or two dendrogram files are created (one for clustering rows and one for clustering columns). The row dendrogram has the extension gtr, while the column dendrogram has the extension atr. These files describe the order in which nodes were joined during the clustering. For a more detailed description of the format of the output files see http://genome-www5.stanford.edu/help/formats.shtml.

The module includes several preprocessing options. The order of the preprocessing operations is:

- 1. Log Base 2 Transform
- 2. Row (gene) center
- 3. Row (gene) normalize
- 4. Column (sample) center
- 5. Column (sample) normalize

References:

- M.B. Eisen, et al. "Cluster Analysis and Display of Genome-Wide Expression Patterns," PNAS, 14863-14868 (1998).
- M. J. L. de Hoon, S. Imoto, J. Nolan, and S. Miyano: Open Source Clustering Software. *Bioinformatics*, **20** (9): 1453--1454 (2004).

Parameters:

Name	Description
input.filename	input data file namegct, .res, .odf type =
	Dataset
column.distance.measure	distance measure for column (sample)
	clustering
row.distance.measure	distance measure for row (gene) clustering
	NOTE: Filtering beforehand is recommended
	since row clustering is computationally
	intensive.
clustering.method	hierarchical clustering method to use
log.transform	log-transform the data before clustering
row.center	whether to center each row (gene) in the data

	Centering each row subtracts the row-wise mean or median from the values in each row of data, so that the mean or median value of each row is 0.
row.normalize	whether to normalize each row (gene) in the data Normalizing each row multiplies all values in each row of data by a scale factor S so that the sum of the squares of the values in each row is 1.0 (a separate S is computed for each row).
column.center	whether to center each column (sample) in the data Centering each column subtracts the column- wise mean or median from the values in each column of data, so that the mean or median value of each column is 0.
column.normalize	whether to normalize each column (sample) in the data Normalizing each column multiplies all values in each column of data by a scale factor S so that the sum of the squares of the values in each column is 1.0 (a separate S is computed for each column).
output.base.name	base name for output files

Output Files:

- 1. cdt file
- 2. atr file if clustering by columns, gtr file if clustering by rows

Platform dependencies:

Module type: Clustering

CPU type: any
OS: any
Java JVM level: 1.5
Language: Java, C