Introduction to Logic and Computer Design

Final Exam

ID: NAME:

1. Design a synchronous counter that goes through the sequence

1 3 5 7 4 2 0 6 and repeat

Using D flip flops.

2. Draw a State diagram

A Moore system, the output of which is 1 iff there have been two or more consecutive 1's or three or more consecutive 0's (five state)

- z ???11000100011001000
- 3. In Following the Block diagram(Mealy model)

- (a) Boolean equation (D_1, D_2, Z)
- (b) Write a State table
- (c) Draw a State diagram

- 4. Ordered Binary Decision Diagram(OBDD)
 - (a) Explain the purpose of Ordered Binary Decision Diagram(OBDD)
 - (b) Draw a OBBD (function f) Sequence b -> c -> a -> d

$$f = abc + b'd + c'd$$

5. SR Latch (a) Draw a Logic Schematic (b) Wirte a Truth table (c) Complete Timing Diagram (Gate unit Delay = 1.4)

6. For each of the following state tables, design the system using JK flip flops

AB	A* B*			Z	
	x=0	x=1	x=0	x=1	
0.0	10	1 1	0	0	
0 1	0 0	0 1	0	0	
1 0	0 1	1 1	1	0	
1 1	0 0	0 0	1	1	

Show the equations for each and a block diagram for the JK design (using AND , OR, and NOT gates)