What is Haberman Dataset

The dataset contains cases from a study that was conducted between 1958 and 1970 at the University of Chicago's Billings Hospital on the survival of patients who had undergone surgery for breast cancer. (https://www.kaggle.com/gilsousa/habermans-survival-data-set)

Objective of the Analysis: To classify/predict a patient survival who had undergone surgery for breast cancer.

```
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
import numpy as np
import warnings
warnings.filterwarnings('ignore')
sns.set_style('whitegrid')
%matplotlib inline

df=pd.read_csv('haberman.csv')
df.head()
```

	age	year	nodes	status
0	30	64	1	1
1	30	62	3	1
2	30	65	0	1
3	31	59	2	1
4	31	65	4	1

```
# (Q) how many data-points and features?
print (df.shape)

(306, 4)
```

There are 306 data points, 4 columns in the Haberman dataset

```
#(Q) What are the column names in our dataset?
print (df.columns)

Index(['age', 'year', 'nodes', 'status'], dtype='object')
```

haberman dataset has 4 columns namely ['age', 'year', 'nodes', 'status'] wherein status is the target column

dtypes: int64(4)
memory usage: 9.7 KB

Columns Information

df.info()

Age - Age of patient at time of operation (numerical).

Year - Patient's year of operation (year - 1900, numerical).

nodes - Number of positive axillary nodes detected (numerical).

The auxillary nodes are a group of lymph nodes located in the axillary (or armpit) region of the body.

status - Survival status (class attribute) 1 = the patient survived 5 years or longer 2 = the patient died within 5 year.

We have three independent variables (Age, Year, Nodes) and one dependent variable (status).

```
# How many data points for each class are present ?
df['status'].value_counts()

1     225
2     81
Name: status, dtype: int64
```

This is an unbalaced dataset as 75% of the data points belong to one class.

```
length_pos=len(df[df['status']==1])/df.shape[0]*100
length_neg=100-length_pos
print(length_neg)
```

```
df.describe()
```

	age	year	nodes	status
count	306.000000	306.000000	306.000000	306.000000
mean	52.457516	62.852941	4.026144	1.264706
std	10.803452	3.249405	7.189654	0.441899
min	30.000000	58.000000	0.000000	1.000000

From the above summary we can see that:

The people in the dataset were from ages 30-83 and 75% of the people were below 61 years. The operations occurred from years 58-69 and the operations see to be evenly split between years.

The number of nodes range from 0 to 52. 52 seems like an outlier since 75% of people had upto 4 nodes

```
df.columns=['Age','Treatment_year','Positive_nodes_counts','Survival_after_5years']
df.head()
```

	Age	Treatment_year	Positive_nodes_counts	Survival_after_5years
0	30	64	1	1
1	30	62	3	1
2	30	65	0	1
3	31	59	2	1
4	31	65	4	1

▼ 2-D Scatter Plot

df['Survival_after_5years']=df['Survival_after_5years'].map({1:'Survived',2:'Died'})
df.head()

	Age	Treatment_year	Positive_nodes_counts	Survival_after_5years
0	30	64	1	Survived
1	30	62	3	Survived
2	30	65	0	Survived
3	31	59	2	Survived
4	31	65	4	Survived

```
df_survived=df[df['Survival_after_5years']=='Survived']
df_died=df[df['Survival_after_5years']=='Died']
```

	Age	Treatment_year	Positive_nodes_counts	Survival_after_5years
7	34	59	0	Died
8	34	66	9	Died
24	38	69	21	Died
34	39	66	0	Died
43	41	60	23	Died

There are 2 classes.

- 1. 225 positive class points
- 2. 81 negative class points

the above calculation implies that the dataset is imbalanced with positive class outweighing the negative class

▼ PDF(Probability Density Function)'s

```
columns=['Age', 'Treatment_year', 'Positive_nodes_counts']

for feature in columns:
    sns.FacetGrid(df,hue='Survival_after_5years',height=6).map(sns.distplot,feature).add_l
    plt.grid()
    plt.title("Histogram of {}".format(feature))
    plt.ylabel("Density")
    plt.show()
```


Histogram of Positive_nodes_counts

▼ np.histogram Returns

hist: array The values of the histogram. See density and weights for a description of the possible semantics. bin_edges: array of dtype float Return the bin edges (length(hist)+1).

```
for feature in columns:
   plt.figure(1)
   # for survival case
   c,bin_edges=np.histogram(df_survived[feature],bins=10,density=True)
   pdf=c/(sum(c))
   cdf=np.cumsum(pdf)
   plt.subplot(211)
   plt.grid()
   plt.xlabel(feature)
   plt.plot(bin_edges[1:],pdf,label='PDF')
   plt.plot(bin_edges[1:],cdf,label='CDF')
   plt.legend()
   #for died case
   c,bin_edges=np.histogram(df_died[feature],bins=10,density=True)
   pdf=c/(sum(c))
   cdf=np.cumsum(pdf)
   plt.subplot(212)
   plt.grid()
   plt.xlabel(feature)
   plt.plot(bin_edges[1:],pdf,label='PDF')
   plt.plot(bin_edges[1:],cdf,label='CDF')
   plt.legend()
   plt.show()
   print('*'*20,feature,'*'*20)
```


1.0

Huge overlap between Age and Treatment_year higher survival rate for patients with postive lymph count less than 3

```
- PDF
print("Mean")
print("survived",df_survived['Positive_nodes_counts'].mean())
print("died",df_died['Positive_nodes_counts'].mean())
print('**'*20)
print("mean with outliers for survived,", np.mean(np.append(df_survived['Positive_nodes_co
print("mean with outliers for died,", np.mean(np.append(df_died['Positive_nodes_counts'],2
print("std-dev")
print(df_died['Age'].std())
print('**'*20)
print("Median")
print(df_survived['Positive_nodes_counts'].median())
print("median with outliers,", np.median(np.append(df_survived['Positive_nodes_counts'],20
from statsmodels.robust import mad
print("mad",mad(df_survived['Positive_nodes_counts']))
print('quantile')
print(np.percentile(df_survived['Age'],np.arange(0,100,25)))
print("90 Percentile")
print(np.percentile(df_died['Age'],90))
print("99.9 Percentile")
```

```
print(np.percentile(df_died['Age'],99.9))
```

```
Mean
survived 2.7911111111111113
died 7.45679012345679
************
mean with outliers for survived, 3.663716814159292
mean with outliers for died, 9.804878048780488
std-dev
10.16713720829741
***********
0.0
median with outliers, 0.0
mad 0.0
quantile
[30. 43. 52. 60.]
90 Percentile
67.0
99.9 Percentile
82.600000000000008
```

Observation(s):

1. Mean is susceptible to outliers while median is not.

Boxplot

```
for feature in columns:
    sns.boxplot(x='Survival_after_5years',y=feature,data=df)
    plt.title('Survival_after_5years vs {}'.format(feature))
    plt.show()
```


→ Violin Plot

```
Survival after 5years vs Positive nodes counts
```

```
for feature in columns:
    sns.violinplot(x='Survival_after_5years',y=feature,data=df)
    plt.title('Survival_after_5years vs {}'.format(feature))
    plt.show()
```


plot1: patients within age group (44-60) have high survival chances plo12: patients who are treated in between 60 to 66 years have high survival chances plot3: high survival chances for lymph count less than 3

outvival_attel_oyears vs Fositive_flodes_counts

→ 2-d scatter plots

```
for feature1 in df.columns:
    for feature2 in df.columns:
        if feature1!=feature2:
            sns.FacetGrid(df,hue='Survival_after_5years', height=6).map(plt.scatter,featur plt.title('{} vs {}'.format(feature2,feature1))
            plt.show()
```


→ Pair Plot

sns.pairpiot(ατ, nue= survivai_arter_syears , neignτ=σ)
plt.show()

<seaborn.axisgrid.PairGrid at 0x1b33985e8c8>

for feature1 in df.columns:

for feature2 in df.columns:

sns.jointplot(feature2,feature1,df,hue='Survival_after_5years', kind='kde')
plt.show()

df_survived_SW = df_survived.iloc[:,1]
df_died_SW = df_died.iloc[:,1]

```
from scipy import stats
stats.ks_2samp(df_survived_SW, df_died_SW)
     Ks_2sampResult(statistic=0.0725925925925926, pvalue=0.885895386162465)
x = stats.norm.rvs(loc=0.2, size=10)
stats.kstest(x,'norm')
     KstestResult(statistic=0.23419198726467017, pvalue=0.577930458922569)
x = stats.norm.rvs(loc=0.2, size=100)
stats.kstest(x,'norm')
     KstestResult(statistic=0.09438269372806596, pvalue=0.3163014519569194)
x = stats.norm.rvs(loc=0.2, size=1000)
stats.kstest(x,'norm')
     KstestResult(statistic=0.0816633379289381, pvalue=3.0024930586146754e-06)
Final observations:
Patients with lymph count less than 3 have high survival chances after 5 years.
Lymph count feature is the most effective for modelling
Younger people and people whose year of treatment is in (60-66) age group have higher sur
The given dataset is not lineraly separable from each class. one of the reasons may be bec
There are too much overlapping in the data-points and hence can't be separated by a straig
We cannot build a simple model to determine the survival rate.
The only feature that was promising was nodes.
```