Beobachtung

Abb. 6.2 bis 6.5 zeigen jeweils acht Positionen eines Galileischen Mondes (mit Pfeil markiert) zu unterschiedlichen Zeitpunkten (24 h-Uhrzeit), sowie eine Kalibrationsskala für den Beobachtungswinkel in Bogenminuten.

- 1. Bestimme für jede Aufnahme den linearen Abstand *x* des jeweiligen Mondes zum Jupiter in mm.
- 2. Rechne die Datums- und Zeitangaben der Positionsaufnahmen in eine fortlaufende Zeitmessung in Stunden um.
- 3. Bestimme für jede der vier Aufnahmeserien den jeweiligen Kalibrationsfaktor der Skala in °/mm.

Auswertung

- 1. Trage die gemessenen mm-Abstände als *y*-Werte gegen die fortlaufende Zeitmessung auf.
- 2. Der Verlauf der Datenpunkte kann mit einer Sinus-Funktion (nur eine halbe Schwingung) angenähert werden. Das Maximum dieser Ausgleichsfunktion entspricht der größten Elongation x₀ des Mondorbits.
- 3. Wähle pro Mond je einen Messpunkt links und rechts des Maximums aus (P_1 und P_2 mit x_1 und x_2) und bestimme für diese die Winkel ϑ_1 und ϑ_2 :

$$\vartheta_1 = \arccos \frac{x_1}{x_0}$$
 und $\vartheta_2 = \arccos \frac{x_2}{x_0}$

 $\Delta \vartheta$ ergibt sich nach Abb. 6.1 aus der Summe dieser beiden Winkel.

- 4. Berechne nach Gl. 6.4 die Orbitalperiode der Monde, wobei $\Delta t = t_2 t_1$ der Zeitabstand der beiden ausgewählten Punkte P_1 und P_2 ist.
- 5. Für die Bestimmung des Bahnradius r muss die ermittelte größte Elongation x_0 mit Hilfe des zugehörigen Kalibrationsfaktors in einen Sichtwinkel α umgerechnet werden. Geometrisch ergibt sich dabei folgende Situation:

Mit einem Abstand Erde – Jupiter von $d=6.88\times 10^{11}\,\mathrm{m}$ kann $r=d\cdot \tan\alpha$ für jeden Mond berechnet werden.

6. Über Gl. 6.1 mit $G = 8,65 \times 10^{-4} \,\mathrm{m}^3 \,\mathrm{kg}^{-1} \,\mathrm{h}^{-2}$ ergibt sich die Jupitermasse. Mittle diesen Wert über alle vier Gallieischen Monde (Literaturwert: $M_{\mathrm{Jup}} = 1,90 \times 10^{27} \,\mathrm{kg}$).

Material

Abbildung 6.2.: Aufnahmen des Jupitermondes Io

Abbildung 6.3.: Aufnahmen des Jupitermondes Europa

Abbildung 6.4.: Aufnahmen des Jupitermondes Ganymed

Abbildung 6.5.: Aufnahmen des Jupitermondes Kallisto