机器人驱动与运动控制

第四章 经典分散运动控制

4.1 关节电机的开环控制模型

华东理工大学信息科学与工程学院

卿湘运

2024年1月

† 本章目录

- 一. 关节电机的开环控制模型
- 二. 逆动力学方程的非线性与分解方法
- 三. 独立关节位置PID控制器
- 四.集中前馈补偿位置PID控制器
- 五. PID控制器的离散化

† 机械臂控制问题及方法分类

† 分散运动控制方案的分类

单关节机器人开环控制模型

● 单关节机器人模型

连杆在竖直面内旋转

† 单关节机器人开环控制模型

● 基本概念

- 开环状态——机器人关节仅由放大器和伺服电机驱动,而没有控制器进行闭环控制
- ▶ 速度模式——电机由电压型放大器驱动时的工作状态
- 力矩模式——电机由电流型放大器驱动时的工作状态

● 目标

建立速度和力矩模 式关节电机的开环 控制模型,研究两 种模式下,关节电 机对阶跃控制信号 u_c的开环速度响应

† 单关节机器人开环控制模型

● 模型参数

	项目	符号	取值	单位
	额定电压	$u_{\rm r}$	24	V
	额定转速	$\omega_{ m r}$	258	rad/s
	额定转矩	$ au_{ m r}$	8.82×10^{-2}	N⋅m
	额定电流	$i_{ m r}$	1.09	A
电机	电枢电阻	$R_{\rm a}$	2.49	Ω
参数	电枢电感	$L_{ m a}$	6.10×10^{-4}	Н
	转矩常数	K_{a}	8.22×10^{-2}	$(N \cdot m)/A$
	感应电动势常数	$K_{ m e}$	8.24×10^{-2}	V/(rad/s)
	转子惯量	$I_{ m r}$	1.19×10^{-5}	$Kg \cdot m^2$
	转子阻尼	$B_{ m r}$	4.10×10^{-4}	$(N \cdot m)/(rad/s)$
	连杆质量	m	0.5	Kg
	连杆质心距转轴距离	L	0.1	m
系统	负载惯量	I_1	5.0×10^{-3}	$Kg \cdot m^2$
参数	关节阻尼	B_1	2.0×10^{-2}	$(N \cdot m)/(rad/s)$
	电压增益	$K_{ m u}$	3	无
	跨导增益	$K_{ m g}$	1	A/V
	重力加速度	g	9.8	m/s^2

说明:连杆质量包括电机和减速器质量,转动惯量 $I_1 = mL^2$,减速器传动比N待定

● 速度模式电机驱动机器人关节的原理

▶ 其中:

K...—放大器电压增益

N——传动比

 I_1 ——机器人连杆惯量

B₁——关节阻尼

τլ——关节负载转矩

 ω_{l} 、 ε_{l} ——关节角速度和角加速度

 $I_{\rm m}$ 、 $B_{\rm m}$ ——等效到电机转子侧的系统总惯量和阻尼

 $\int I_{\rm m} = I_{\rm r} + \frac{I_1}{N^2}$

等效 $= B_{\rm m} = B_{\rm r} + \frac{B_{\rm l}}{N^2}$

- 转动惯量等效到转子侧 —— 不考虑关节负载和阻尼
 - 减速器两侧变量关系

$$\omega_{\mathrm{m}} = N\omega_{\mathrm{l}} \quad \varepsilon_{\mathrm{m}} = N\varepsilon_{\mathrm{l}} \quad \tau_{\mathrm{im}} = \frac{\tau_{\mathrm{i}}}{N}$$

关节侧动力学方程

$$\varepsilon_{\rm l} = \frac{\tau_{\rm i}}{I_{\rm l}}$$

转子侧动力学方程

$$\tau_{\rm m} - \tau_{\rm im} = I_{\rm r} \varepsilon_{\rm m} \quad \Longrightarrow \quad \tau_{\rm m} - \frac{\varepsilon_{\rm l} I_{\rm l}}{N} = I_{\rm r} \varepsilon_{\rm m} \quad \Longrightarrow \quad \tau_{\rm m} - \frac{\varepsilon_{\rm m} I_{\rm l}}{N^2} = I_{\rm r} \varepsilon_{\rm m}$$

$$\tau_{\rm m} = (I_{\rm r} + \frac{I_{\rm l}}{N^2}) \varepsilon_{\rm m} = I_{\rm m} \varepsilon_{\rm m}$$

电机转子侧等效转动惯量

$$I_{\rm m} = I_{\rm r} + \frac{I_{\rm l}}{N^2}$$

- 转子侧的等效动力学模型
 - ightharpoonup 电机动力学模型 $I_{\rm m} \varepsilon_{\rm m} + B_{\rm m} \omega_{\rm m} + \tau_{\rm md} = \tau_{\rm m}$ 等效惯量 等效阻尼 等效负载转矩 (也是单关节机器人驱动空间动力学方程)
 - ightharpoonup 等效转动惯量 $I_{\rm m} = I_{\rm r} + \frac{I_{\rm l}}{N^2}$
 - ightharpoonup 等效阻尼 $B_{
 m m}=B_{
 m r}+rac{B_{
 m l}}{N^2}$ 推导方法同 $I_{
 m m}$

等效负载转矩 $\tau_{\text{md}} = \frac{\tau_{\text{l}}}{N} = \begin{bmatrix} 0, & \text{X*PIII} \\ mgL \cos \theta \\ \hline N \end{bmatrix}$ 與其未知,将被控制器 双为干扰力矩 对于示例中的单关节机器人成立

等效动力学模型

● 速度模式电机的电气模型

$$\blacktriangleright$$
 电机电气模型 $R_{\rm a}i_{\rm a}+L_{\rm a}i_{\rm a}+u_{\rm e}=u_{\rm a}$

$$\triangleright$$
 感应电动势 $u_{\rm a} = K_{\rm u} u_{\rm c}$

$$ightarrow$$
 电枢电压 $u_{
m e} = K_{
m e} \omega_{
m m}$

$$ightarrow$$
 电磁转矩 $au_{
m m} = K_{
m a} i_{
m a}$

● 模型变量关系

> 等效量

$$I_{\mathrm{m}} = I_{\mathrm{r}} + \frac{I_{\mathrm{l}}}{N^{2}}$$
 $B_{\mathrm{m}} = B_{\mathrm{r}} + \frac{B_{\mathrm{l}}}{N^{2}}$
 $au_{\mathrm{md}} = \frac{ au_{\mathrm{l}}}{N}$

▶ 电机动态方程

代入

$$u_{
m a} - u_{
m e} = L_{
m a} \dot{i}_{
m a} + R_{
m a} i_{
m a}$$
 $au_{
m m} - au_{
m md} = I_{
m m} arepsilon_{
m m} + B_{
m m} \omega_{
m m}$
 $au_{
m m} = K_{
m a} i_{
m a}$
 $u_{
m e} = K_{
m e} \omega_{
m m}$

▶ 放大器增益

拉氏变换

$$I_{a}(s) = \frac{1}{R_{a} + L_{a}s} [U_{a}(s) - U_{e}(s)]$$

$$\Omega_{m}(s) = \frac{1}{B_{m} + I_{m}s} [\tau_{m}(s) - \tau_{md}(s)]$$

$$\tau_{m}(s) = K_{a}I_{a}(s)$$

$$U_{e}(s) = K_{e}\Omega_{m}(s)$$

$$U_{a}(s) = K_{u}U_{c}(s)$$

● 开环模型

物理信号的传递关系

- 传递函数的简化
 - > 传递函数框图

两个惯性环节的另一种表达形式

$$\frac{1}{R_{\rm a} + L_{\rm a}s} \Longrightarrow \frac{1/R_{\rm a}}{1 + T_{\rm e}s}$$

$$\frac{1}{B_{\rm m} + I_{\rm m}s} \Longrightarrow \frac{1/B_{\rm m}}{1 + T_{\rm f}s}$$

- ▶ 定义
- $T_e = L_a/R_a$ 系统(电机)的电气时间常数
- $T_f = I_m / B_m$ 系统的机械时间常数
- ightharpoonup 一般情况下: $T_{\rm e} << T_{\rm f}$ 两者相差一个数量级
- ightharpoonup 工程上,可假设: $T_e = 0$

● 传递函数的简化

> 工程化的电机速度模型

● 速度模式电机的开环模型

ho 输入-输出关系 $\Omega_{\rm m}(s) = \frac{K_{\rm mv}}{1 + T_{\rm mv}s} U_{\rm c}(s) - \frac{K_{\rm dv}}{1 + T_{\rm mv}s} \tau_{\rm md}(s)$

其中,定义如下参数:

• 时间常数 ——
$$T_{\text{mv}} = \frac{R_{\text{a}}I_{\text{m}}}{K_{\text{e}}K_{\text{a}} + R_{\text{a}}B_{\text{m}}}$$

• 开环增益 —
$$K_{\text{mv}} = \frac{K_{a}K_{u}}{K_{e}K_{a} + R_{a}B_{m}}$$

• 干扰增益 —
$$K_{dv} = \frac{1}{K_a K_a / R_a + B_m}$$

● 速度模式电机简化的结构图

▶ 电压-速度模型

$$\frac{U_{\rm c}(s)}{1+T_{\rm mv}s} \frac{\Omega_{\rm m}(s)}{1+T_{\rm mv}s}$$

$$\frac{\Omega_{\rm m}(s)}{U_{\rm c}(s)} = \frac{K_{\rm mv}}{1 + T_{\rm mv}s}$$

▶ 干扰-速度模型

$$\frac{-\tau_{\mathrm{md}}(s)}{1+T_{\mathrm{mv}}s} \boxed{\frac{K_{\mathrm{dv}}}{1+T_{\mathrm{mv}}s}}$$

$$\frac{\Omega_{\rm m}(s)}{\tau_{\rm md}(s)} = \frac{K_{\rm dv}}{1 + T_{\rm mv}s}$$

- 水平工况
 - ➤ 传动比 N=10

系统参数	参数	符号	数值	单位
	连杆质量	m	0.5	Kg
	连杆质心距转轴距离	L	0.1	m
	负载惯量	I_1	5.0×10^{-3}	Kg⋅m ²
	关节阻尼	B_1	0.02	$(N \cdot m)/(rad/s)$
	电压增益	K_{u}	3	无
	重力加速度	g	9.8	m/s^2

• $u_c=8V$

● 水平工况关节与电机空载开环响应对比

▶ 水平工况

> 空载

- 上升时间比空载大——惯量大
- 转速低于空载转速——关节阻尼大
- · 电流大于空载电流——关节阻尼大

- 竖直工况
 - ➤ 传动比 N=10

- 周期干扰下,速度波动
- 波动幅度与控制电压大小无关
- 电流波动与速度波动相差180°相位
- 感应电动势负反馈抑制速度波动

		参数	符号	数值	单位
		连杆质量	m	0.5	Kg
	系	连杆质心距转轴距离	L	0.1	m
统参数	统参	负载惯量	I_1	5.0×10^{-3}	Kg⋅m²
	数	关节阻尼	B_1	0.02	$(N \cdot m)/(rad/s)$
		电压增益	K_{u}	3	无
		重力加速度	g	9.8	m/s^2

● 垂直工况不同传动比对比

▶ 增加传动比可减小波动的原因

- 传动比增加,等效负载惯量和等效关节阻尼成平方倍减小
- 负载转矩成正比减小

† 力矩模式关节电机开环控制模型

● 力矩模式电机驱动机器人关节的原理

2024/2/23

电机电流-力矩模型

等效动力学模型

22

† 力矩模式关节电机开环控制模型

● 模型变量关系

$$I_{
m m}=I_{
m r}+rac{I_{
m l}}{N^2}$$
 $B_{
m m}=B_{
m r}+rac{B_{
m l}}{N^2}$ $au_{
m md}=rac{ au_{
m l}}{N}$

▶ 放大器增益

$$\Box i_{\rm a} = K_{\rm g} u_{\rm c}$$

跨导增益

拉氏变换

$$\Omega_{\rm m}(s) = \frac{1}{B_{\rm m} + I_{\rm m}s} [\tau_{\rm m}(s) - \tau_{\rm md}(s)]$$

$$\tau_{\rm m}(s) = K_{\rm \tau} U_{\rm c}(s)$$

➤ 其中:

$$K_{\tau} = K_{\rm g} K_{\rm a}$$
 —— 力矩增益

† 力矩模式关节电机开环控制模型

● 传递函数

$$\Omega_{\rm m}(s) = \frac{K_{\rm \tau}}{B_{\rm m} + I_{\rm m}s} U_{\rm c}(s) - \frac{1}{B_{\rm m} + I_{\rm m}s} \tau_{\rm md}(s)$$
电机动力学模型

> 系统框图

用时间常数表达的传递函数

$$\Omega_{\rm m}(s) = \frac{K_{\rm m\tau}}{1 + T_{\rm m\tau}s} U_{\rm c}(s) - \frac{K_{\rm d\tau}}{1 + T_{\rm m\tau}s} \tau_{\rm md}(s)$$

• 时间常数——
$$T_{\text{mt}} = \frac{I_{\text{m}}}{B_{\text{m}}}$$

• 开环增益——
$$K_{\text{mr}} = \frac{K_{\tau}}{B_{\text{m}}}$$

• 干扰增益——
$$K_{d\tau} = \frac{K_{m\tau}^{m}}{K_{\tau}} = \frac{1}{B_{m}}$$

力矩模式关节电机开环控制模型

● 传递函数

$$\Omega_{\rm m}(s) = \frac{K_{\rm m\tau}}{1 + T_{\rm m\tau}s} U_{\rm c}(s) - \frac{K_{\rm d\tau}}{1 + T_{\rm m\tau}s} \tau_{\rm md}(s)$$

> 等效框图

† 力矩模式关节电机的开环响应

- 水平工况
 - ➤ 传动比 N=10

控制	1	$\overline{}$
4分 田川		7
7-1-1127	<i>،</i> ب	

- $u_c = 0.88V$
- $u_c = 1.77V$

系统参数	参数	符号	数值	单位
	连杆质量	m	0.5	Kg
	连杆质心距转轴距离	L	0.1	m
	负载惯量	I_1	5.0×10^{-3}	$Kg \cdot m^2$
	关节阻尼	B_1	0.02	$(N \cdot m)/(rad/s)$
	跨导增益	K_g	1	无
	重力加速度	g	9.8	m/s^2

† 力矩模式关节电机的开环响应

● 与速度模式响应的对比

▶ 速度模式

> 力矩模式

- 开环状态下力矩模式电流恒定,在示例给定的控制电压下启动力矩比速度模式小,导致启动时间变长
- 闭环状态下,可以利用控制电压力矩获得恒定的大启动力矩

† 力矩模式关节电机的开环响应

● 垂直工况

- 力矩模式下,感应电动势带来的速度负反馈被抑制,使电流恒定,造成系统转速对负载 波动更敏感
- 在闭环系统中,速度闭环控制器可抑制速度波动
- 大传动比仍然有抑制波动的效果

通用电机模型

> 速度模式电机开环模型

➤ 通用电机模型

$$\Omega_{\rm m}(s) = \frac{K_{\rm m}}{1 + T_{\rm m}s} U_{\rm c}(s) - \frac{K_{\rm d}}{1 + T_{\rm m}s} \tau_{\rm md}(s)$$

$$\Rightarrow 时间常数T_{\rm m}$$

$$\Rightarrow 开环增益K_{\rm m}$$

$$\Rightarrow 干扰增益K_{\rm d}$$

† 速度模式与力矩模式的比较

项目	速度模式	力矩模式	对比
传递函数 和结构图	$\Omega_{\rm m}(s) = \frac{K_{\rm m}}{1 + T_{\rm m}s} U_{\rm c}(s)$ $\frac{K_{\rm d}}{K_{\rm m}}$ $U_{\rm c}(s) + \frac{U_{\rm c}(s) + \frac{1}{2}}{2}$	力矩模式下,电机输出力矩 正比于控制电压 $\tau_{\rm m}=K_{\rm \tau}u_{\rm c}$, 物理意义明确,有利于复杂 控制器的设计	
时间常数	$T_{\rm m} = T_{\rm mv} = \frac{R_{\rm a}I_{\rm m}}{K_{\rm e}K_{\rm a} + R_{\rm a}B_{\rm m}}$	$T_{\rm m} = T_{\rm m\tau} = \frac{I_{\rm m}}{B_{\rm m}}$	$T_{ m mv} < T_{ m mr}$ 速度模式开环时间常数小
开环增益	$K_{\rm m} = K_{\rm mv} = \frac{K_{\rm a}K_{\rm u}}{K_{\rm e}K_{\rm a} + R_{\rm a}B_{\rm m}}$	$K_{\rm m} = K_{\rm m\tau} = \frac{K_{\rm \tau}}{B_{\rm m}}$	<i>K</i>_{mv}: 定值<i>K</i>_{mπ}: 一般可调节
干扰增益	$K_{\rm d} = K_{\rm dv} = \frac{1}{\frac{K_{\rm e}K_{\rm a}}{R_{\rm a}} + B_{\rm m}}$	$K_{\rm d} = K_{\rm d\tau} = \frac{1}{B_{\rm m}}$	$K_{ m dv} < K_{ m dr}$ 开环状态,速度模式对干扰 力矩更不敏感

† 速度模式和力矩模式电机特点和适用场景

▶ 速度模式

- 放大器成本低
- 对负载波动的敏感度低,易于实现稳定控制
- 控制信号与电机力矩存在非线性关系,难以根据动力学方程补偿扰动
- 不利于实现力矩控制
- 闭环状态下,对控制信号的响应速度低于力矩模式
- 适用于大传动比机器人的点位控制

▶ 力矩模式

- 放大器成本相对较高
- 闭环时能够始终以最大力矩启动电机,能实现准时间最优控制
- 控制电压与机器人关节力矩成正比,有利于实现关节力矩控制
- 物理意义明确, 更易于动力学建模和验证复杂控制算法, 以补偿干扰力矩
- 系统更敏感,整定控制器参数难度相对较大
- 适用于要求跟踪动态信号的工业机器人和力控制

课后作业

作业

1、简述有刷直流伺服电机速度模式和力矩模式的特点及适用场合。

