Chapitre 2

Propriétés de \mathbb{R} .

Sommaire.

1	Une relation d'ordre sur \mathbb{R} .
	1.1 Relation \leq
	1.2 Relation < et opérations algébriques
	1.3 Intervalles
2	Valeur absolue.
	2.1 Valeur absolue
	2.2 Valeur absolue et opérations algébriques
	2.3 Une notion de distance sur $\mathbb R$
3	Entiers.
	3.1 Entiers naturels, entiers relatifs
	3.2 Partie entière d'un réel
4	Rationnels.
	4.1 Nombres décimaux
	4.2 Nombres rationnels
	4.3 Densité de $\mathbb Q$ dans $\mathbb R$
5	Parties bornées de \mathbb{R} .
	5.1 Majorants, minorants
	5.2 Maximum, minimum
6	Exercices.

Les propositions marquées de \star sont au programme de colles.

1 Une relation d'ordre sur \mathbb{R} .

1.1 Relation \leq .

Rappel : \leq est une relation d'ordre sur \mathbb{R} .

- $\forall x \in \mathbb{R} \ x \leq x \ (\text{r\'eflexivit\'e}).$
- $\forall x, y \in \mathbb{R} \ (x \leq y \text{ et } y \leq x) \Longrightarrow x = y \text{ (antisymétrie)}.$
- $\forall x, y, z \in \mathbb{R} \ (x \le y \text{ et } y \le z) \Longrightarrow x \le z \text{ (transitivité)}.$

Rappel: C'est une relation d'ordre totale.

 $\forall x,y \in \mathbb{R}, \ x \leq y \text{ ou } y \leq x.$

Rappel : Élémentaire mais fondamental.

$$\forall x, y \in \mathbb{R}, \ x \le y \iff y - x \ge 0.$$

${\bf Exemple~1:~In\'{e}galit\'{e}~arithm\'{e}tico-g\'{e}om\'{e}trique.}$

Établir l'inégalité $\sqrt{xy} \leq \frac{x+y}{2}$ pour deux réels x et y positifs. Dans quel cas a-t-on égalité ?

Solution:

Soient $x, y \in \mathbb{R}_+$.

$$\frac{x+y}{2} - \sqrt{xy} = \frac{x - 2\sqrt{xy} + y}{2} = \frac{(\sqrt{x} - \sqrt{y})^2}{2} \ge 0.$$

Donc $\sqrt{xy} \le \frac{x+y}{2}$, avec égalité si x = y.

1.2 Relation < et opérations algébriques.

Rappel : \leq et somme.

On peut sommer des inégalités. Pour tous réels x, x', y, y':

$$\begin{cases} x & \leq & y \\ & \text{et} & \Longrightarrow x + x' \leq y + y'. \\ x' & \leq & y' \end{cases}$$

Si $(x_i)_{i\in I}$ et $(y_i)_{i\in I}$ sont des familles finies de nombres réels,

$$(\forall i \in I \quad x_i \le y_i) \Longrightarrow \sum_{i \in I} x_i \le \sum_{i \in I} y_i.$$

Proposition 2: Somme nulle de termes positifs.

Soient $x_1, ..., x_n$ des réels **positifs**, alors

$$\sum_{i=1}^{n} x_i = 0 \Longrightarrow \forall i \in [1, n], \ x_i = 0.$$

Preuve:

Supposons que les x_i somment à 0 et soit $j \in [1, n]$. On a:

$$\sum_{\substack{i \in [\![1,n]\!] \\ i \neq j}} x_i \ge 0 \quad \text{car les } x_i \text{ sont positifs.}$$

Donc $x_j \leq \sum_{i=1}^n x_i = 0$, ainsi $x_j = 0$ car $0 \leq x_j \leq 0$.

Rappel : \leq et produit.

Soient x et y deux réels tels que $x \leq y$.

- Si a est un réel **positif**, alors $ax \leq ay$.
- Si a est un réel **négatif**, alors $ax \ge ay$.

On peut multiplier des inégalités dont les membres sont **positifs**. Pour touts réels x, x', y, y':

$$\begin{cases} 0 \le x \le y \\ \text{et} &\Longrightarrow x \times x' \le y \times y' \\ 0 \le x' \le y' \end{cases}$$

Rappel : \leq et quotient

$$\forall x,y \in \mathbb{R}, \quad 0 < x \le y \Longrightarrow 0 \le \frac{1}{y} \le \frac{1}{x}.$$

Exemple 3: Majorer, minorer une somme, un produit, un quotient.

Soient x et y deux réels tels que $2 \le x \le 5$ et $1 \le y \le 3$. Encadrer $x - y, (x - y)^2$ et $\frac{xy}{x + y}$.

Solution:

On a $x - y \in [-1, 4]$, $(x - y)^2 \in [0, 16]$ et $\frac{xy}{x + y} \in [\frac{1}{4}, 5]$

1.3 Intervalles.

Définition 4: Les deux infinis.

On ajoute à l'ensemble $\mathbb R$ les deux éléments $+\infty$ et $-\infty$ pour former l'ensemble

$$\overline{R} = \mathbb{R} \cup \{+\infty, -\infty\}$$

en prenant la convention que $\forall x \in \mathbb{R}, x \leq +\infty$ et $-\infty \leq x$.

Définition 5

On appelle intervalle de $\mathbb R$ une partie de $\mathbb R$ ayant l'une des formes décrites ci-dessous:

- Segment $[a,b] = \{x \in \mathbb{R} : a \le x \text{ et } x \le b\}$ où $a,b \in \mathbb{R}$.
- Intervalles ouverts $]a,b[=\{x\in\mathbb{R}:\ a< x\ \text{et}\ x< b\}\ \text{où}\ a\in\mathbb{R}\cup\{-\infty\}\ \text{et}\ b\in\mathbb{R}\cup\{+\infty\}.$
- Intervalles semi-ouverts. [a, b[ou bien]a, b].

Remarque: les parties décrites peuvent être vides : $[5,3] = \emptyset$.

Exemple 6

L'ensemble des réels non nuls \mathbb{R}^* n'est \mathbf{pas} un intervalle. C'est néanmoins une réunion d'intervalles:

$$\mathbb{R}^* =]-\infty, 0[\cup]0, +\infty[.$$

2

Pour une preuve, on attendra la caractérisation des intervalles comme parties convexes de \mathbb{R} .

2 Valeur absolue.

2.1 Valeur absolue.

Définition 7

Soit $x \in \mathbb{R}$, on appelle valeur absolue de x et on note |x| le nombre réel positif donné par

$$\begin{cases} x & \text{si } x \ge 0 \\ -x & \text{si } x < 0 \end{cases}$$

Proposition 8: Propriétés élémentaires.

Pour tout réel $x, |x| = \max(x, -x), |-x| = |x|, x \le |x|, -x \le |x|, -|x| \le x \le |x|$ et $|x| = 0 \iff x = 0$.

Preuve:

- 1. Si $x \ge 0$, alors |x| = x et $\max(x, -x) = x$; si $x \le 0$, alors |x| = -x et $\max(x, -x) = -x$.
- $|x| = \max(-x, -x) = \max(-x, x) = |x|$
- 3. $x \leq \max(x, -x) \text{ donc } x \leq |x|$.
- $4. \quad -x \le \max(x, -x) \text{ donc } -x \le |x|.$
- 5. En combinant les deux précédentes, on a $-|x| \le x \le |x|$.
- 6. Si x = 0, alors |x| = 0. Si |x| = 0, on a $-|x| \le x \le 0$ donc x = 0.

2.2 Valeur absolue et opérations algébriques.

Proposition 9: Valeurs absolues et produits.

- 1. $\forall x \in \mathbb{R}, |x|^2 = x^2 \text{ et } |x| = \sqrt{x^2}.$
- 2. $\forall x, y \in \mathbb{R}, |xy| = |x||y|$.
- 3. $\forall (x,y) \in \mathbb{R} \times \mathbb{R}^*, \ \left| \frac{x}{y} \right| = \frac{|x|}{|y|}$

Preuve:

- 1. Soit $x \in \mathbb{R}$, si $x \ge 0$, alors $|x|^2 = x^2$, si x < 0, alors $|x|^2 = (-x)^2 = x^2$.
- 2. Soient $x, y \in \mathbb{R}$. $|xy| = \sqrt{(xy)^2} = \sqrt{x^2y^2} = \sqrt{x^2}\sqrt{y^2} = |x||y|$.
- 3. Soit $(x,y) \in \mathbb{R} \times \mathbb{R}^*$. $\left| \frac{x}{y} \right| = \left| \frac{x}{y} \right| \times 1 = \left| \frac{x}{y} \right| \times \frac{|y|}{|y|} = \frac{|x|}{|y|}$.

Théorème 10: Inégalité triangulaire. 🛨

$$\forall x, y \in \mathbb{R}, \ |x+y| \le |x| + |y|.$$

Preuve:

Soient $x, y \in \mathbb{R}$. On a:

$$(|x| + |y|)^{2} - |x + y|^{2} = |x|^{2} + 2|x||y| + |y|^{2} - (x + y)^{2}$$

$$= x^{2} + 2|x||y| + y^{2} - x^{2} - 2xy - y^{2}$$

$$= 2(|xy| - xy) \ge 0 \quad \text{car } |xy| \ge xy.$$

donc $(|x| + |y|)^2 \ge |x + y|^2$ donc $|x| + |y| \ge |x + y|$ par croissance de $\sqrt{\cdot}$ sur \mathbb{R}_+ .

Corrolaire 11

- 1. $\forall (x,y) \in \mathbb{R}^2, |x-y| \le |x| + |y|.$
- 2. $\forall (x,y) \in \mathbb{R}^2, ||x| |y|| \le |x y|.$
- 3. $\forall n \in \mathbb{N}^*, \ \forall (x_1, ..., x_n) \in \mathbb{R}, \ \left| \sum_{k=1}^n x_k \right| \le \sum_{k=1}^n |x_k|.$

Preuve:

- 1. Soient $x, y \in \mathbb{R}$, $|x y| = |x + (-y)| \le |x| + |-y| = |x| + |y|$.
- $\overline{2}$. On le verra dans \mathbb{C} .
- $\overline{3}$. Par récurrence sur n, pour $x_1, ..., x_n \in \mathbb{R}$ (hérédité):

$$\left| \sum_{k=1}^{n+1} x_k \right| = \left| \sum_{k=1}^n x_k + x_{n+1} \right| \le \left| \sum_{k=1}^n x_k \right| + |x_{n+1}| \le \sum_{k=1}^n |x_k| + |x_{n+1}| = \sum_{k=1}^{n+1} |x_k|.$$

 \triangle On notera que dans la première inégalité, on a écrit un - à gauche, mais il y a toujours un + à droite!

2.3 Une notion de distance sur \mathbb{R}

|x-y| est la [distance] entre x et y.

Proposition 12

$$\forall x, a \in \mathbb{R}, \ \forall b \in \mathbb{R}_+, \quad \begin{aligned} |x - a| &\leq b \iff x \in [a - b, a + b] \\ |x - a| &\geq b \iff x \geq a + b \text{ ou } x \leq a - b \end{aligned}$$

En particulier, $\forall x \in \mathbb{R} \quad \forall b \in \mathbb{R}_+ \ |x| \le b \iff -b \le x \le b.$

3 Entiers.

3.1 Entiers naturels, entiers relatifs.

Définition 13

On note \mathbb{N} l'ensemble des entiers naturels $\mathbb{N} = \{0, 1, ...\}$ et $\mathbb{Z} = \{0, 1, ...\} \cup \{-1, -2, ...\}$ l'ensemble des entiers relatifs.

Proposition 14

L'ensemble des entiers relatifs est stable par somme, différence et produit.

Preuve:

Le résultat est admis, mais précisons le sens de stable: on a

$$\forall (p,q) \in \mathbb{Z}^2, \ p+q \in \mathbb{Z} \ \text{et} \ p-q \in \mathbb{Z} \ \text{et} \ pq \in \mathbb{Z}.$$

L'ensemble des entiers naturels quant à lui est stable par somme et produit, mais pas par différence.

Proposition 15

Toute partie non vide et majorée de \mathbb{N} ou \mathbb{Z} admet un plus grand élément.

Toute partie non vide de $\mathbb N$ admet un plus petit élément.

Toute partie non vide et minorée de \mathbb{Z} admet un plus petit élément.

3.2 Partie entière d'un réel.

Définition 16

Pour tout nombre réel x, on appelle **partie entière** de x, et on note $\lfloor x \rfloor$ le plus grand entier relatif inférieur à x:

$$\lfloor x \rfloor = \max\{k \in \mathbb{Z} \mid k \le x\}.$$

Proposition 17: Partie entière et encadrements.

Pour tout nombre réel x,

$$\lfloor x \rfloor \le x < \lfloor x \rfloor + 1.$$

En «croisant» les inégalites, on obient notamment que

$$x - 1 < \lfloor x \rfloor \le x$$

Preuve:

Par définition, on a $\lfloor x \rfloor \leq x$.

Supposons $x \ge \lfloor x \rfloor + 1$. Alors $\lfloor x \rfloor + 1$ est un entier inférieur à x, et $\lfloor x \rfloor$ est le plus grand entier inférieur à x. Donc $\lfloor x \rfloor + 1 \le \lfloor x \rfloor$, ce qui est absurde. Donc $x < \lfloor x \rfloor + 1$.

Proposition 18

La fonction $x \mapsto \lfloor x \rfloor$ est croissante sur \mathbb{R} .

Preuve:

Soient $x, y \in \mathbb{R} \mid x \leq y$, alors $|x| \leq x \leq y$, donc $|x| \leq y$.

Ainsi, |x| est un entier inférieur à y, donc inférieur à |y|, le plus grand entier inférieur à y.

On a bien $\lfloor x \rfloor \leq \lfloor y \rfloor$: la fonction est croissante.

Exemple 19: Une propriété simple de la partie entière.

Montrer que $\forall x \in \mathbb{R}, \ \lfloor x+1 \rfloor = \lfloor x \rfloor + 1.$

Ceci a pour conséquence que la fonction $x \mapsto x - \lfloor x \rfloor$ est 1-périodique.

Solution:

Soit $x \in \mathbb{R}$. On a $|x| \le x < |x| + 1$ donc $|x| + 1 \le x + 1 < |x| + 2$.

Ainsi, $\lfloor \lfloor x \rfloor + 1 \rfloor \le \lfloor x + 1 \rfloor < \lfloor \lfloor x \rfloor + 2 \rfloor$.

Donc $\lfloor x \rfloor + 1 \leq \lfloor x + 1 \rfloor < \lfloor x + 2 \rfloor < \lfloor x \rfloor + 2$ (la partie entière d'un entier est cet entier).

Donc $\lfloor x+1 \rfloor = \lfloor x \rfloor + 1$.

Lemme 20: Une utilisation de la partie entière en analyse.

L'ensemble $\mathbb R$ possède la propriété dite d'Archimède :

$$\forall x \in \mathbb{R}_+^*, \ \forall \varepsilon > 0, \ \exists n \in \mathbb{N} \mid n\varepsilon > x.$$

4 Rationnels.

4.1 Nombres décimaux.

Définition 21

On appelle **nombre décimal** un nombre réel qui s'écrit sous la forme $\frac{p}{10^k}$, où $p \in \mathbb{Z}$ et $k \in \mathbb{N}$. L'ensemble des nombres décimaux est noté \mathbb{D} .

Définition 22: généralisation.

Soit p un entier naturel supérieur ou égal à 2.

On appelle fraction p-adique un nombre réel qui s'écrit sous la forme $\frac{q}{p^k}$ où $q \in \mathbb{Z}$ et $k \in \mathbb{N}$.

Proposition 23

Soit $x \in \mathbb{R}$ et $n \in \mathbb{N}$. Le nombre décimal $d_n(x) := \frac{\lfloor 10^n x \rfloor}{10^n}$ satisfait l'encadrement

$$d_n(x) \le x < d_n(x) + 10^{-n}$$
.

Les nombres $d_n(x)$ et $d_n(x) + 10^{-n}$ sont appelés respectivement valeur décimale par défaut (resp. par excès) de x à la précision 10^{-n} .

Preuve:

Soit $x \in \mathbb{R}$ et $n \in \mathbb{N}$. On a

$$\lfloor 10^n x \rfloor \le 10^n x < \lfloor 10^n x \rfloor + 1$$
$$\frac{\lfloor 10^n x \rfloor}{10^n} \le x < \frac{\lfloor 10^n x \rfloor + 1}{10^n}$$
$$d_n(x) \le x < d_n(x) + 10^{-n}.$$

Corrolaire 24: \mathbb{D} est dense dans \mathbb{R} .

Entre deux réels distincts, il existe toujours un nombre décimal.

$$\forall (a,b) \in \mathbb{R}^2, \ a < b \Longrightarrow \mathbb{D} \cap]a,b[\neq \varnothing.$$

Preuve:

Soient $a, b \in \mathbb{R} \mid a < b$. On pose $m = \frac{a+b}{2}$. Alors pour tout $n \in \mathbb{N}$, on a $a < m < d_n(m) + 10^{-n}$. On pose $\varepsilon = b - m$. Il existe $n \in \mathbb{N} \mid 10^{-n} < \varepsilon$. Alors

$$a < m < d_n(m) + 10^{-n} < d_n(m) + \varepsilon \le m + (b - m) = b$$

Donc

$$a < \underbrace{d_n(m) + 10^{-n}}_{\in \mathbb{D}} < b.$$

4.2 Nombres rationnels.

Définition 25

Un nombre **rationnel** est un nombre réel qui s'écrit sous la forme d'un quotient d'entiers $\frac{p}{q}$, où $p \in \mathbb{Z}$ et $q \in \mathbb{N}^*$. On note \mathbb{Q} l'ensemble des nombres rationnels.

On dit d'un nombre de $\mathbb{R} \setminus \mathbb{Q}$ qu'il est **irrationnel**.

Proposition 26

 $\sqrt{2}$ est irrationnel.

Proposition 27

L'ensemble des rationnels est stable par somme, différence, produit, et passage à l'inverse.

Exemple 28

Justifier que $\mathbb{R} \setminus \mathbb{Q}$ n'est pas stable par somme, ni par produit.

Solution:

On a $-\sqrt{2} + \sqrt{2} = 0$, or $0 \in \mathbb{Q}$. On a $\sqrt{2}\sqrt{2} = 2$, or $2 \in \mathbb{Q}$.

4.3 Densité de $\mathbb Q$ dans $\mathbb R$

Théorème 29: \mathbb{Q} et $\mathbb{R} \setminus \mathbb{Q}$ sont denses dans \mathbb{R} .

Entre deux réels distincts, il existe toujours un nombre rationnel et un nombre irrationnel. Autrement dit, pour touts a, b réels avec a < b,

$$|a,b| \cap \mathbb{Q} \neq \emptyset$$
 et $|a,b| \cap (\mathbb{R} \setminus \mathbb{Q}) \neq \emptyset$.

Preuve:

Soient $a, b \in \mathbb{R} \mid a < b$.

- On sait déjà que dans]a,b[il existe un décimal: $d_n(\frac{a+b}{2})$, c'est donc un rationnel.
- Puisque $a \sqrt{2} < b \sqrt{2}$, il existe un rationnel r entre eux.

Alors $a - \sqrt{2} < r < b - \sqrt{2}$, donc $a < r + \sqrt{2} < b$.

Supposons que $r+\sqrt{2}$ soit rationnel, alors $r+\sqrt{2}-r$ l'est aussi par stabilité, donc $\sqrt{2}\in\mathbb{Q}$, absurde.

Il existe donc un nombre irrationnel entre a et b.

Corrolaire 30: Écriture séquentielle de la densité de Q.

Pour tout réel x, il existe une suite (r_n) de rationnels telle que $r_n \to x$.

Preuve:

Soit $x \in \mathbb{R}$. Pour tout $n \in \mathbb{N}^*$, il existe $y_n \in \mathbb{Q} \cap]x, x + \frac{1}{n}[$ par densité de \mathbb{Q} dans \mathbb{R} .

Alors $\forall n \in \mathbb{N}^*, \ x < y_n < x + \frac{1}{n}$.

Par encadrement, $y_n \to x$.

5 Parties bornées de \mathbb{R} .

5.1 Majorants, minorants.

Dans tout ce qui suit, A est une partie de \mathbb{R} .

Définition 31: Majorant, minorant.

- On dit que A est **majorée** si il existe $M \in \mathbb{R} \mid \forall x \in A, \ x \leq M$. Dans ce contexte, M est un **majorant** de A
- On dit que A est **minorée** si il existe $m \in \mathbb{R} \mid \forall x \in A, \ m \leq x$. Dans ce contexte, m est un **minorant** de A.
- On dit que A est **bornée** si elle est majorée et minorée.

Exemple 32

Donner des majorants et des minorants de A = [0, 1].

Soit $A' = [1, +\infty[$, démontrer que A' n'est pas majorée.

Solution:

A est majorée par 1, mais aussi par π , 666... et minorée par 0, -1, ...

Supposons A' majorée, alors $\exists M \in \mathbb{R} \mid \forall x \in A, \ x \leq M, \text{ or } M+1 \in A' \text{ donc } M+1 \leq M, \text{ absurde.}$

Proposition 33: Caractérisation des parties bornées avec la valeur absolue. 🛨

Soit A une partie de \mathbb{R} .

A est bornée $\iff \exists \mu \in \mathbb{R}_+ \mid \forall x \in A, \mid x \mid \leq \mu.$

Preuve:

 \implies Supposons A bornée, alors il existe $M \in \mathbb{R} \mid \forall x \in A, \ x \leq M$ et $m \in \mathbb{R} \mid \forall x \in A, \ m \leq x$.

 $\overline{\text{Alors}} \ \forall x \in A, -|m| \le x \le |M|, \text{ donc } |x| \le \max(|M|, |m|).$

Supposons $\exists \mu \in \mathbb{R}_+ \mid \forall x \in A, \ |x| \leq \mu$. Alors $\forall x \in A, -\mu \leq x \leq \mu$. Donc A est bornée.

Maximum, minimum.

Définition 34: Maximum, minimum. *

- S'il existe un élément $a \in A$ tel que $\forall x \in A, x \leq a$, alors cet élément est unique. Il est appelé plus grand élément de A ou encore **maximum** de A et noté $\max(A)$.
- S'il existe un élément $b \in A$ tel que $\forall x \in A, b \leq x$, alors cet élément est unique. Il est appelé plus petit élément de A ou encore **minimum** de A et noté min(A).

Preuve:

Soient M et M' deux maximums de A, alors $M \leq M'$ et $M' \leq M$ donc M = M', il y a bien unicité.

Exemple 35: ★

La partie [0,1] admet 0 comme minimum, mais n'a pas de maximum.

Solution:

Supposons que A ait un maximum M.

On a $0 \le M < 1$ donc $\frac{1}{2} \le \frac{M+1}{2} < 1$. Alors $\frac{M+1}{2} \in [0,1[:\frac{M+1}{2} \le M, \text{ donc } M+1 \le 2M \text{ donc } 1 \le M, \text{ absurde.}$

Exercices. 6

Exercice 1: $\Diamond \Diamond \Diamond$

Soient a et b deux nombres réels strictement positifs. Démontrer l'inégalité

$$\frac{a^2}{b} + \frac{b^2}{a} \ge a + b$$

Solution:

On a:

$$\frac{a^2}{b} + \frac{b^2}{a} \ge a + b$$

$$\iff \frac{a^3 - a^2b + b^3 - ab^2}{ab} \ge 0$$

$$\iff \frac{a^2(a - b) + b^2(b - a)}{ab} \ge 0$$

$$\iff \frac{(a - b)(a^2 - b^2)}{ab} \ge 0$$

$$\iff \frac{(a - b)^2(a + b)}{ab} \ge 0$$

Or $(a-b)^2 \ge 0$, $(a+b) \ge 0$ et $ab \ge 0$.

Ainsi, cette inégalité est vraie pour tout $(a, b) \in \mathbb{R}_{+}^{*}$.

Exercice 2: $\Diamond \Diamond \Diamond$

- 1. Montrer que $\forall (a,b) \in (\mathbb{R}_+)^2 \sqrt{a+b} \leq \sqrt{a} + \sqrt{b}$.
- 2. Montrer que $\forall (a,b) \in (\mathbb{R}_+)^2 |\sqrt{a} \sqrt{b}| \leq \sqrt{|a-b|}$.

Solution:

1. Soit $(a,b) \in (\mathbb{R}_+)^2$.

$$\sqrt{a+b} \le \sqrt{a} + \sqrt{b}$$

$$\iff a+b \le a+2\sqrt{ab} + b$$

$$\iff 2\sqrt{ab} \ge 0$$

$$\iff \sqrt{ab} \ge 0$$

$$\iff ab \ge 0$$

Ainsi, $\forall (a,b) \in (\mathbb{R}_+)^2 \sqrt{a+b} \le \sqrt{a} + \sqrt{b}$.

 $\boxed{2.}$ Soit $(a,b) \in (\mathbb{R}_+)^2$.

Considérons $a \ge b$, alors |a - b| = a - b.

$$|\sqrt{a} - \sqrt{b}| \le \sqrt{a - b}$$

$$\iff a - 2\sqrt{ab} + b \le a - b$$

$$\iff 2b \le 2\sqrt{ab}$$

$$\iff b^2 \le ab$$

$$\iff b \le a$$

Le raisonnement est symétrique lorsque $b \ge a$.

Ainsi, $\forall (a,b) \in (\mathbb{R}_+)^2 | \sqrt{a} - \sqrt{b} | \leq \sqrt{|a-b|}$.

Exercice 3: $\Diamond \Diamond \Diamond$

En utilisant la notion de distance sur \mathbb{R} , écrire comme réunion d'intervalles l'ensemble

$$E = \{x \in \mathbb{R} \mid |x+3| \le 6 \text{ et } |x^2 - 1| > 3\}$$

Solution:

On a $x \in [-9, 3]$ et $x \in]-\infty, -2[\cup]2, +\infty[$ donc $x \in [-9, -2] \cup [2, 3].$

Exercice 4: ♦♦◊

Soient a et b deux réels tels que $0 < a \le b$. On définit les nombres m, g, h par

$$m = \frac{a+b}{2},$$
 $g = \sqrt{ab},$ $\frac{1}{h} = \frac{1}{2} \left(\frac{1}{a} + \frac{1}{b} \right).$

Et on les appelle respectivement moyenne arithmétique, géométrique et harmonique de a et b. Démontrer l'encadrement

$$a \le h \le g \le m \le b$$

Solution:

Montrons les inégalités une par une :

- $m \le b \iff \frac{a+b}{2} b \le 0 \iff \frac{a-b}{2} \le 0 \iff a-b \le 0 \iff a \le b$.
- $g \le m \iff \sqrt{ab} \le \frac{a+b}{2} \iff \frac{a-2\sqrt{ab}+b}{2} \ge 0 \iff \frac{(\sqrt{a}-\sqrt{b})^2}{2} \ge 0.$
- $\bullet \ h \leq g \iff \frac{1}{h} \geq \frac{1}{g} \iff \frac{1}{2a} + \frac{1}{2b} \frac{1}{\sqrt{ab}} \geq 0 \iff \frac{a 2\sqrt{ab} + b}{2ab} \geq 0 \iff \frac{(\sqrt{a} \sqrt{b})^2}{2ab} \geq 0.$ $\bullet \ a \leq h \iff \frac{1}{a} \geq \frac{1}{h} \iff \frac{1}{a} \frac{1}{2a} \frac{1}{2b} \geq 0 \iff \frac{b a}{2ab} \geq 0 \iff b a \geq 0 \iff a \leq b$ Ainsi, $a \leq h \leq g \leq m \leq b$.

Exercice 5: $\Diamond \Diamond \Diamond$

Résoudre l'équation

$$\ln|x| + \ln|x+1| = 0$$

Solution:

Soit $x \in \mathbb{R} \setminus \{-1, 0\}$.

$$\ln|x| + \ln|x + 1| = 0$$

$$\iff \ln(|x(x+1)|) = 0$$

$$\iff |x(x+1)| = 1$$

Supposons $x \in]-\infty, -1[\cup]0, +\infty[.$

On a:

$$|x(x+1)| = 1$$

$$\iff x(x+1) = 1$$

$$\iff x^2 + x - 1 = 0$$

$$\iff x = \frac{1 \pm \sqrt{5}}{2}$$

Supposons $x \in]-1,0[$.

$$|x(x+1)| = 1$$

$$\iff -x^2 - x - 1 = 0$$

Il n'y a donc pas de solutions dans] -1,0[.

L'ensemble des solutions de l'équation est : $\{\frac{1-\sqrt{5}}{2}, \frac{1+\sqrt{5}}{2}\}$.

Exercice 6: $\Diamond \Diamond \Diamond$

Résoudre l'équation

$$|x-2| = 6 - 2x$$

Solution:

Soit $x \in \mathbb{R}$.

Considérons $x \geq 2$

$$|x - 2| = 6 - 2x$$

$$\iff x - 2 = 6 - 2x$$

$$\iff x = \frac{8}{3}$$

Considérons $x \leq 2$

$$|x - 2| = 6 - 2x$$

$$\iff 2 - x = 6 - 2x$$

$$\iff x - 4$$

Seul la solution $x = \frac{8}{3}$ convient. Ainsi, l'unique solution à l'équation est $\frac{8}{3}$.

Exercice 7: ♦♦♦

Démontrer l'égalité $\lfloor \frac{\lfloor nx \rfloor}{n} \rfloor = \lfloor x \rfloor$ pour tout entier $n \in \mathbb{N}^*$ et tout réel x. Soient $(x, n) \in \mathbb{R} \times \mathbb{N}^*$.

Solution:

Notons r la partie fractionnaire de x, ainsi x = |x| + r.

On a alors $nx = n\lfloor x \rfloor + nr$ et $\lfloor nx \rfloor = \lfloor n \lfloor x \rfloor + nr \rfloor = n\lfloor x \rfloor + \lfloor nr \rfloor$. Conséquemment, $\frac{\lfloor nx \rfloor}{n} = \lfloor x \rfloor + \frac{\lfloor nr \rfloor}{n}$. Or, $0 \le \frac{\lfloor nr \rfloor}{n} < 1$ car $0 \le r < 1$, donc $\lfloor x \rfloor \le \lfloor x \rfloor + \frac{\lfloor nr \rfloor}{n} < \lfloor x \rfloor + 1$.

Ainsi, $\lfloor x \rfloor \le \lfloor \frac{\lfloor nx \rfloor}{n} \rfloor < \lfloor x+1 \rfloor$. Par conséquent, $\lfloor \frac{\lfloor nx \rfloor}{n} \rfloor = \lfloor x \rfloor$.

Exercice 8: $\Diamond \Diamond \Diamond$

1. Démontrer :

$$\forall x \in \mathbb{R}_+^* \quad \frac{1}{2\sqrt{x+1}} < \sqrt{x+1} - \sqrt{x} < \frac{1}{2\sqrt{x}}.$$

2. Soit p un entier supérieur à 2. Que vaut la partie entière de

$$\sum_{k=1}^{p^2-1} \frac{1}{\sqrt{k}}$$

Solution:

1. Soit $x \in \mathbb{R}_+^*$.

On a:

$$\sqrt{x+1} - \sqrt{x} < \frac{1}{2\sqrt{x}}$$

$$\iff 2\sqrt{x(x+1)} - 2x < 1$$

$$\iff (2\sqrt{x(x+1)})^2 < (1+2x)^2$$

$$\iff 4x(x+1) < 4x^2 + 4x + 1$$

$$\iff 4x^2 + 4x - 4x^2 - 4x < 1$$

$$\iff 0 < 1$$

 $\mathrm{Et}:$

$$\frac{1}{2\sqrt{x+1}} < \sqrt{x+1} - \sqrt{x}$$

$$\iff 1 < 2\sqrt{(x+1)^2} - 2\sqrt{x(x+1)}$$

$$\iff 1 < 2|x+1| - 2\sqrt{x(x+1)}$$

$$\iff (2x+1)^2 > (2\sqrt{x(x+1)})^2$$

$$\iff 4x^2 + 4x + 1 > 4x^2 + 4x$$

$$\iff 1 > 0$$

2. Soit $x \in \mathbb{R}_+^*$

On a:

$$\frac{1}{2\sqrt{x+1}} < \sqrt{x+1} - \sqrt{x} < \frac{1}{2\sqrt{x}}$$

Donc, en remplaçant x par x-1:

$$\frac{1}{2\sqrt{x}}<\sqrt{x}-\sqrt{x-1}<\frac{1}{2\sqrt{x-1}}$$

Ainsi,

$$\sqrt{x+1} - \sqrt{x} < \frac{1}{2\sqrt{x}} < \sqrt{x} - \sqrt{x-1}$$

Mais alors:

$$\sum_{k=1}^{p^2-1} \left(\sqrt{k+1} - \sqrt{k} \right) < \sum_{k=1}^{p^2-1} \frac{1}{2\sqrt{k}} < \sum_{k=1}^{p^2-1} \left(\sqrt{k} - \sqrt{k-1} \right)$$

$$\iff \sqrt{p^2} - \sqrt{1} < \frac{1}{2} \sum_{k=1}^{p^2-1} \frac{1}{\sqrt{k}} < \sqrt{p^2 - 1} - \sqrt{0}$$

$$\iff 2p - 2 < \sum_{k=1}^{p^2-1} \frac{1}{\sqrt{k}} < 2\sqrt{p^2 - 1}$$

$$\iff 2p - 2 < \sum_{k=1}^{p^2-1} \frac{1}{\sqrt{k}} < \lfloor 2\sqrt{p^2 - 1} \rfloor$$

Or $2p - 2 < 2\sqrt{p^2 - 1} < 2p \text{ donc } \lfloor 2\sqrt{p^2 - 2} \rfloor = 2p - 2$

On en conclut:

$$\lfloor \sum_{k=1}^{p^2-1} \frac{1}{\sqrt{k}} \rfloor = 2p - 2$$

Exercice 9: ♦♦♦

Prouver que $\frac{\ln(2)}{\ln(3)}$ est un nombre irrationnel.

Solution:

Supposons que $\frac{\ln 2}{\ln 3} \in \mathbb{Q}$. Alors il existe $p \in \mathbb{N}$ et $q \in \mathbb{N}^*$ premiers entre eux tels que :

$$\frac{\ln 2}{\ln 3} = \frac{p}{q}$$

Alors:

$$p \ln 3 = q \ln 2$$

$$\iff \ln(3^p) = \ln(2^q)$$

$$\iff e^{\ln(3^p)} = e^{\ln 2^q}$$

$$\iff 3^p = 2^q$$

Or 3^p est toujours impair et 2^q est toujours pair, donc cela est absurde. Ainsi, $\frac{\ln 2}{\ln 3}$ est irrationnel.

Exercice 10: ♦♦♦

Soient x et y deux rationnels positifs tels que

 \sqrt{x} et \sqrt{y} soient irrationnels.

Montrer que $\sqrt{x} + \sqrt{y}$ est irrationnel.

Solution:

Supposons $\sqrt{x} + \sqrt{y} \in \mathbb{Q}$.

On a:

$$(\sqrt{x} + \sqrt{y})(\sqrt{x} - \sqrt{y}) = x - y$$

$$\iff \sqrt{x} - \sqrt{y} = \frac{x - y}{\sqrt{x} + \sqrt{y}}$$

Or $x-y\in\mathbb{Q}$ et $\sqrt{x}+\sqrt{y}\in\mathbb{Q}$ par hypothèse. Donc $\sqrt{x}-\sqrt{y}\in\mathbb{Q}$. D'autre part,

$$\sqrt{x} + \sqrt{y} + \sqrt{x} - \sqrt{y} = 2\sqrt{x}$$

 \sqrt{x} est donc la somme de deux rationnels, et est donc rationnel. C'est absurde. On en conclut que $\sqrt{x} + \sqrt{y}$ est irrationnel.

Exercice 11: ♦♦◊

Soit l'ensemble

$$A = \left\{ \frac{n - \frac{1}{n}}{n + \frac{1}{n}}, n \in \mathbb{N}^* \right\}$$

Cette partie de $\mathbb R$ est-elle bornée ? Possède-t-elle un maximum ? Un minimum ?

Solution:

Soit (u_n) une suite telle que $\forall n \in \mathbb{N}^*, u_n = \frac{n - \frac{1}{n}}{n + \frac{1}{n}}$.

Soit $n \in \mathbb{N}^*$.

On a:

$$u_n = \frac{n - \frac{1}{n}}{n + \frac{1}{n}} = \frac{n^2 - 1}{n} \cdot \frac{n}{n^2 + 1}$$
$$= \frac{n^3 - n}{n^3 + n} = \frac{n^3 + n}{n^3 + n} - \frac{2n}{n^3 + n}$$
$$= 1 - \frac{2}{n^2 + 1}$$

Étudions le signe de $u_{n+1} - u_n$.

$$u_{n+1} - u_n = 1 - \frac{2}{(n+1)^2 + 1} - 1 + \frac{2}{n^2 + 1}$$

$$= \frac{2}{n^2 + 1} - \frac{2}{n^2 + 2n + 2}$$

$$= \frac{4n + 2}{(n^2)(n^2 + 2n + 2)}$$

C'est toujours positif : on en déduit que, (u_n) est croissante sur \mathbb{N}^* .

Elle admet donc un minimum en 1, qui est 0.

Elle admet aussi un majorant lorsque n tend vers l'infini :

$$\lim_{n \to +\infty} u_n = 1$$

Ainsi, A admet 0 comme minimum, n'a pas de maximum et est majorée par 1.

Exercice 12: $\Diamond \Diamond \Diamond$

1. Montrer que

$$\forall (a,b) \in (\mathbb{R}_+^*)^2$$
 : $\frac{a^2}{a+b} \ge \frac{3a-b}{4}$.

Étudier le cas d'égalité.

2. En déduire que l'ensemble

$$E = \left\{ \frac{a^2}{a+b} + \frac{b^2}{b+c} + \frac{c^2}{c+a} \mid (a,b,c) \in (\mathbb{R}_+^*)^3 \text{ et } a+b+c \ge 2 \right\}$$

admet un minimum et le calculer.

Solution:

1. Soit $(a, b) \in (\mathbb{R}_+^*)^2$ On a :

$$\frac{a^2}{a+b} - \frac{3a-b}{4} \ge 0$$

$$\iff \frac{a^2 - 2ab + b^2}{4(a+b)} \ge 0$$

$$\iff (a-b)^2 \ge 0$$

D'autre part,

$$\frac{a^2}{a+b} = \frac{3a-b}{4}$$

$$\iff (a-b)^2 = 0$$

$$\iff a = b$$

2. Soient $(a, b, c) \in \mathbb{R}^*_+$ tels que $a + b + c \ge 2$.

$$\begin{split} \frac{a^2}{a+b} + \frac{b^2}{b+c} + \frac{c^2}{c+a} &\geq \frac{3a-b}{4} + \frac{3b-c}{4} + \frac{3c-a}{4} \\ &\geq \frac{2a+2b+2c}{4} \\ &\geq \frac{a+b+c}{2} \\ &\geq 1 \end{split}$$

Or, lorsque $a=b=c=\frac{2}{3},$ on a $a+b+c\geq 2$ et:

$$\frac{a^2}{a+b} + \frac{b^2}{b+c} + \frac{c^2}{c+a} = 3\frac{a}{2} = 3 \cdot \frac{2}{3} \cdot \frac{1}{2} = 1$$

Ainsi, $1 \in E$ et $\forall x \in E, x \ge 1$ donc 1 est minimum de E.