第6章 树和二叉树

第6章 树和二叉树

- 6.1 树的定义和基本术语
- 6.2 二叉树
- 6.3 遍历二叉树和线索二叉树
- 6.4 树和森林
- 6.5 哈夫曼树及其应用

字符	电码符号	字符	电码符号	字符	电码符号
A	• —	N	-•	1	• ———
В	$-\cdots$	О		2	• •
C		P	• •	3	• • • ——
D	-··	Q		4	• • • • -
E	•	R	•-•	5	
F	• • - •	S	• • •	6	$-\cdots$
G	•	T		7	· · ·
Н		U	• • -	8	•
I	• •	V	• • • –	9	•
J	•	W	•	0	
K		X	-··-	?	• • • •
L	••	Y	-··	1	- · · - ·
M		Z		()	
				_	$-\cdots-$

if(a<60)

b="不及格";

else if(a<70)

b="及格";

else if(a<80)

b="中等";

else if(a<90)

b="良好";

else

b="优秀";

分数	0~59	60~69	70 ~ 79	80 ~ 89	90~100
所占比例	5%	15%	40%	30%	10%

分数	0~59	60~69	70 ~ 79	80 ~ 89	90 ~ 100
所占比例	5%	15%	40%	30%	10%

其中A表示不及格、B表示及格、c表示中等、D表示良好、E表示优秀

相关概念

- 1. 结点间的路径长度-----从树中一个结点到另一个结点之间的分支数目
- 2.树的路径长途----从根节点到树所有节点长度总和。

n个结点的二叉树的路径长度不小于下述数列前n项的和,即

$$PL = 0 + 1 + 1 + 2 + 2 + 2 + 2 + 2 + 3 + 3 + \dots = \sum_{i=1}^{n} (i - 1)2^{i-1}$$

其路径长度最小者为 $PL=\sum_{i=1}^{n}(i-1)2^{i-1}$

相关概念

- 3.叶子结点的权值----对叶子结点赋予的一个有意义的数值量。
- 4.结点带权的路径长度(WPL)——从该结点到树根之间的路径长度与结点上权的乘积。

$$WPL=\sum_{k=1}^{n}w_{k}l_{k}$$
 从根结点到第 k 个叶子的路径长度 第 k 个叶子的权值;

赫夫曼树: 给定一组具有确定权值的叶子结点,带权路径长度最小的二叉树。

例:给定4个叶子结点,其权值分别为{2,3,4,7},可以构造出形状不同的多个二叉树。

赫夫曼树的特点:

- 1. 权值越大的叶子结点越靠近根结点,而权值越小的叶子结点越远离根结点。
- 2. 只有度为0(叶子结点)和度为2(分支结点)的结点,不存在度为1的结点.

 $WPL=5\times3+15\times3+40\times2+30\times2+10\times2$ =220

 $WPL = 40 \times 1 + 30 \times 2 + 15 \times 3 + 10 \times 4 + 5 \times 4$ = 205

证明n₀个叶子结点的哈夫曼树共有2n₀-1个结点。

证明:设度为1和2的结点个数分别为 n_1 和 n_2 ,二叉树结点总数为 n_1 则

有: n=n₀+n₁+n₂

根据二叉树的性质知: $n_0=n_2+1$

此外,由哈夫曼树的构造原理可知:哈夫曼树不存在度为1的结点,即

 $n_1 = 0$; 所以由①②可得:

$$n=n_0+0+n_2=n_0+n_0-1=2n_0-1$$

赫夫曼算法基本思想:

- (1) 初始化:由给定的n个权值{ w_1 , w_2 , ..., w_n }构造n棵只有一个根结点的二叉树,从而得到一个二叉树集合 $F = \{T_1, T_2, ..., T_n\}$;
- (2) 选取与合并: 在F中选取根结点的权值最小的两棵二叉树分别作为左、右子树构造一棵新的二叉树, 这棵新二叉树的根结点的权值为其左、右子树根结点的权值之和;
- (3) **删除与加入**: 在F中删除作为左、右子树的两棵二叉树,并将新建立的二叉树加入到F中;
- (4) <u>**重**复</u>(2)、(3)两步,当集合F中只剩下一棵二叉树时,这棵二叉树便是赫夫曼树。

 $W = \{2, 3, 4, 5\}$ 赫夫曼树的构造过程

 $W = \{2, 3, 4, 5\}$ 赫夫曼树的构造过程

重复第2步

重复第3步

 $W = \{2, 3, 4, 5\}$ 赫夫曼树的构造过程

重复第2步

重复第3步

赫夫曼算法的存储结构

1. 设置一个数组huffTree[2n-1]保存赫夫曼树中各点的信息,

数组元素的结点结构。

weight | lchild | rchild | parent |

```
struct element
{  int weight;
  int lchild, rchild, parent;
};
```

其中: weight: 权值域,保存该结点的权值;

lchild: 指针域,结点的左孩子结点在数组中的下标;

rchild: 指针域,结点的右孩子结点在数组中的下标;

parent: 指针域,该结点的双亲结点在数组中的下标。

伪代码

- 1. 数组huffTree初始化,所有元素结点的双亲、左右孩子都置为-1;
- 2. 数组huffTree的前n个元素的权值置给定值w[n];
- 3. 进行n-1次合并
 - 3.1 在二叉树集合中选取两个权值最小的根结点, 其下标分别为i₁, i₂;
 - 3.2 将二叉树i₁、i₂合并为一棵新的二叉树k;

初态

过程

过程


```
void HuffmanTree(element huffTree[], int w[], int n ) {
  for (i=0; i<2*n-1; i++) {
    huffTree [i].parent= −1;
    huffTree [i].lchild= −1;
    huffTree [i].rchild= −1;
  for (i=0; i<n; i++)
    huffTree [i].weight=w[i];
  for (k=n; k<2*n-1; k++) {
    Select (huffTree, i1, i2);
    huffTree[k].weight=huffTree[i1].weight+huffTree[i2].weight;
    huffTree[i1].parent=k;
    huffTree[i2].parent=k;
    huffTree[k].lchild=i1;
    huffTree[k].rchild=i2;
```

赫夫曼树应用——赫夫曼编码

主要用途是实现数据压缩。

设给出一段报文:

CAST CAST SAT AT A TASA

字符集合是 { C, A, S, T }, 各个字符出现的频度 (次数)是 $W = \{ 2, 7, 4, 5 \}$ 。

若给每个字符以等长编码

A: 00 T: 10 C: 01 S: 11

则总编码长度为 (2+7+4+5)*2=36.

若按各个字符出现的概率不同而给予不等长编码,可望减少总编码长度。

因各字符出现的概率为{2/18,7/18,4/18,5/18}。

化整为 { 2, 7, 4, 5 }, 以它们为各叶结点上的权值, 建立 赫夫曼树。左分支赋 0, 右分支赋 1, 得赫夫曼编码(变长编码)。

A:0 T:10 C:110 S:111 它的总编码长度:7*1+5*2+(2+4)*3 = 35。比等长编码的情形要短。

总编码长度正好等于 赫夫曼树的带权路径长 度WPL。

赫夫曼编码是一种无 前缀的编码。解码时不会 混淆。


```
typedef struct{
    unsigned int weight;
    unsigned int parent, lchild, rchild;
} HTNode, *HuffmanTree;
typedef char **HuffmanCode;
void HuffmanCoding(HuffmanTree &HT, HuffmanCode &HC, int *w, int n){
    HuffmanTree p; char *cd;
    int i, s1, s2, start; unsigned int c, f;
    if (n <= 1) return; // n为字符数目, m为结点数目
    int m = 2 * n - 1;
    HT = (HuffmanTree)malloc((m + 1) * sizeof(HTNode));// 0号单元未用
    for (p = HT, i = 1; i <= n; ++i, ++p, ++w) {
        p->weight = *w; p->parent = 0; p->lchild = 0; p->rchild = 0;
    // *W = \{5, 29, 7, 8, 14, 23, 3, 11\}
    // *p = { *w,0,0,0 };
    for (; i <= m; ++i, ++p) {
        p->weight = 0; p->parent = 0; p->lchild = 0; p->rchild = 0;
    // *p={ 0,0,0,0 };
```

```
for (i = n + 1; i <= m; ++i){ // 建赫夫曼树
   Select(HT, i - 1, s1, s2);
   HT[s1].parent = i; HT[s2].parent = i; HT[i].lchild = s1;
   HT[i].rchild = s2;
   HT[i].weight = HT[s1].weight + HT[s2].weight;
// 从叶子到根逆向求赫夫曼编码
HC = (HuffmanCode)malloc((n + 1) * sizeof(char *));
cd = (char *)malloc(n * sizeof(char)); //分配求编码的工作空间
cd[n - 1] = ' \ 0';
for (i = 1; i <= n; ++i){
    start = n - 1; //编码结束符位置
    for (c = i, f = HT[c].parent; f != 0; c = f, f = HT[f].parent)
       if (HT[f].lchild == c) cd[- -start] = '0';
       else cd[--start] = '1';
   HC[i] = (char *)malloc((n - start) * sizeof(char));
    strcpy(HC[i], &cd[start]);
   printf("%s\n", HC[i]);
free(cd);
```

已知某系统在通信联络中只可能出现8种字符,其概率分别为0.05,0.29,0.07,0.08,0.14,0.23,0.03,0.11,试设计赫夫曼编码。

HT					
	weight	parent	lehild	rchild	
1	5	0	0	0	
2	29	0	0	0	
3	7	0	0	0	
4	8	0	0	0	
5	14_	0	0	0	
	23	0	0	0	
6 7 8	3	0	0	0	
8	11	0	0	0	
9	_	0	0	0	
10		0	0	0	
11	_	0	0	0	
12	-	0	0	0	
13	-	0	0	0	
14	_	0	0	0	
15		0	0	0	

нт						
	weight	parent	kehild	rchild		
1	5	9	0	0		
2	29	14	0	0		
3	7	10	0	0		
4	8	10	0	0		
5	14	12	С	0		
6	23	13	0	0		
7	3	9	0	0		
8	11	11	0	0		
9	8	11	ĺ	7		
10	15	12	3	4		
11	19	13	8	9		
12	29	14	5	10		
13	42	15	6	11		
14	58	15	2	12		
15	100	0	13	14		

赫夫曼树应用——赫夫曼编码

前缀编码:一组编码中任一编码都不是其它任何一个编码的前缀。

前缀编码保证了在解码时不会有多种可能。

例: 一组字符{A,B,C,D,E,F,G} 出现的频率分别是{9,11,5,7,8,2, 3},设计最经济的编码方案。

编码方案:

A: 00

B: 10

C: 010

D: 110

E: 111

F: 0110

G: 0111

例 假设用于通信的电文仅由8个字母 {a, b, c, d, e, f, g, h} 构成, 它们在电文中出现的概率分别为{ 0.07, 0.19, 0.02, 0.06, 0.32, 0.03, 0.21, 0.10 }, 试为这8个字母设计哈夫曼编码。如果用0~7的二进制编码方案又如何?

解: 先将概率放大100倍,以方便构造哈夫曼树。 放大后的权值集合 w={7,19,2,6,32,3,21,10}, 按哈夫曼树构造规则(合并、删除、替换),可得到哈夫曼 树。

w={ 7, 19, 2, 6, 32, 3, 21, 10 }在机内存储形式为:

6.6 赫夫曼树及赫夫曼编码

对应赫夫曼编码:

符	编码	频率
а	0010	0.07
b	10	0.19
С	00000	0.02
d	0001	0.06
е	01	0.32
f	00001	0.03
g	11	0.21
h	0011	0.10

符	编码	频率
а	000	0.07
b	001	0.19
С	010	0.02
d	011	0.06
е	100	0.32
f	101	0.03
g	110	0.21
h	111	0.10

Huffman码的WPL=2(0.19+0.32+0.21) + 4(0.07+0.06+0.10) + 5(0.02+0.03)=1.44+0.92+0.25=2.61

二进制等长码的WPL= $\frac{3}{(0.19+0.32+0.21+0.07+0.06+0.10+0.02+0.03)=3}$

例: 要传输的字符集 $D = \{C, A, S, T, \}$ 字符出现的频率 $w = \{2, 4, 2, 3, 3\}$

(1) 每个字符的赫夫曼编码

T	00
•	01
A	10
C	110
S	111

(2) 电文 {CAS;CAT;SAT;AT} 的编码是

110101110111010000111111000011000

(3) 还原下述编码{11110000111010111101001111100111010}

SAT;CAS;TSC;CCA

1、树的概念

结点的度:结点的*子节点*个数

树的度:结点的*最大*度数

路径长度: 路经过边的个数 用*l*表示

树的路径长度: $\sum_{i=1}^{n} l_i$ (l_i 是第i个结点的路径长度)

有序树: 若树中各结点的子 $\sum_{i=1}^n w_i \times l_i$ 目的次序从左向

右安排的, 且相对次序不能随意变换, 则称为有序树

无序树: 节点没有左右之分

2、树的基本性质

PS: N_{\odot} —— 树的总结点个数 N_{i} —— 度为i的结点个数 B —— 树的分支树,即边数

(1)★最重要的公式, 联立起来求解方程组,可以解决大部分选择题

$$\textcircled{1} N_{\ddot{\mathbb{B}}} = N_0 + N_1 + N_2 + \ldots + N_m$$

$$\textcircled{2}B = (0 \times N_0) + (1 \times N_1) + (2 \times N_2) + \ldots + (m \times N_m)$$

$$3N_{\centrifont{B}}=B+1$$

例如二叉树的一个性质: $N_0 = N_2 + 1$ 就是联立的3个返程组,最后把 N_1 消掉了得出的结论

2、树的基本性质

- (2) 度为 m 的树中第i层至多有 mi-1 个结点
- (3) 深度为h的m叉树至多有 m^h-1 个结点 (满m叉树时, 等比数列 求和)
- (4) 具有n个结点的m次树的最小高度为 $\lceil log_m(n(m-1)+1) \rceil$
- (5) 树的结点总个数确定下,"完全"m叉树时, 高度最小
- (6) 树的结点总个数确定下,单边树,可以使高度最大

"完全"m叉树

3、二叉树的概念(至多只有两颗子树,有左右之分)

(1)5种形态:

(a) 空二叉树

(b) 只有根结点 的二叉树

(c) 只有左子树 的二叉树

(d) 左右子树均非 空的二叉树

(e) 只有右子树的 二叉树

(2) 满二叉树(特殊的完全二叉树)和完全二叉树

满二叉树

完全二叉树

4、二叉树的几个重要性质(对比前面第二大点树度为2的情况)

- (1) 性质1: 在二叉树的第 i 层上至多有 2^{i-1} 个结点 ($i \ge 1$)
- (2) 性质2: 深度为 k 的二叉树上至多含 2^k-1 个结点 $(k \ge 1)$
- (3) 性质3: 对任何一棵二叉树,若它含有 n_0 个叶子结点(0度节点)、 n_2 个度为 2 的结点,则必存在关系式: $n_0 = n_2 + 1$
- (4) 性质4: 具有n个(n>0) 结点的完全二叉树的s深度为 $\log_2 n$ +1

4、二叉树的几个重要性质(对比前面第二大点树度为2的情况)

- (5) 性质5: 若对含*n*个结点的完全二叉树从上到下且从左至右进行*1*至*n*的编号,则对完全二叉树中任意一个编号为*i*的结点:
 - 1) 若 i=1,则该结点是二叉树的根,无双亲, 否则,编号为 $\lfloor i/2 \rfloor$ 的结点为其双亲结点;
 - 2) 若 2i>n,则该结点无左孩子, 否则,编号为 2i 的结点为其左孩子结点;
 - 3) 若 2*i*+1>*n*,则该结点无右孩子结点, 否则,编号为2*i*+1 的结点为其右孩子结点;
 - 4)若 *i* 为偶数,且*i* != *n*,则其右兄弟为*i*+1若 i 为奇数, 且*i* != 1,则其左兄弟为*i*-1
 - 5) i所在层次为 $\lfloor log_2 i \rfloor + 1$, $i > \lfloor n/2 \rfloor$ 是叶子节点。

5、二叉树的存储结构

- (1)顺序存储结构: (数组)下标从1开始,左孩子2i,右孩子2i+1 适合存放完全二叉树和满二叉树(这样不会浪费空间)
- (2) 链式存储结构:

```
(至少包含3个域 左孩子lchild, 数据域data, 右孩子rchild)
typedef struct BiTNode {
    ElemType data;
    struct BiTNode *lchild, *rchild;
}BiTNode, *BiTree;

重要结论:含有n个结点的二叉链表含有n+1个空域(记)
(可以利用这些空链域来组成线索链表)
```

6、二叉树的遍历(二叉树的大部分考题和操作都围绕遍历)

先序遍历DLR

- (1) 访问根结点;
- (2) 先序遍历左子树;
- (3) 先序遍历右子树。

中序遍历LDR

- (1) 中序遍历左子树;
- (2) 访问根结点;
- (3) 中序遍历右子树。

后序遍历LRD

- (1) 后序遍历左子树;
- (2) 后序遍历右子树;
- (3) 访问根结点。

6、二叉树的遍历(二叉树的大部分考题和操作都围绕遍历)

遍历的实质: 怎么把一个二维的结构变成一个一维的序列

(1) 递归写法(打印操作在IIIII的位置上为不同的遍历)

```
void Order(BiTree T) {
    if(T!= NULL) {
        // I 先序遍历
        Order(T->lchild);
        // II 中序遍历
        Order(T->rchild);
        // III 后序遍历
    }
}
```

递归工作栈的深度恰好为树的深度

6、二叉树的遍历(二叉树的大部分考题和操作都围绕遍历)

- (2) 非递归算法
 - ①先序遍历(栈):右孩子先进栈,左孩子后进栈
 - ②中序遍历(栈):如果栈顶结点左孩子存在,则左孩子入栈。若左孩子不存在,则出栈并输出栈顶,再看右孩子是否存在。若存在就把右孩子进栈
 - ③后序遍历:每遇到一个结点,先把它入栈,根据访问情况设置访问标签,遍历完右子树后,结点退栈访问
 - ④层次遍历(队列):用一个队列, 若队列不空, 出队一个元素并输出, 把其左右孩子分别入队(若不空)

6、二叉树的遍历(二叉树的大部分考题和操作都围绕遍历)

(3) 其他知识点

中**序序列** 与 (任何一个先,后,层)序列可以**唯一确定**一颗二叉树。先序和后序不行

先序的第一个结点是**根**

后序的最后一个结点是根

中序可以分成两个子序列

先: A BCDEFGHI (中A 左BC 右 DEFGHI) 根据下面中序序列得出的结论

中: BC A EDGHFI (左中右)

7、二叉树的建立(用#表示空节点)

按先序遍历序列建立二叉树的二叉链表

- ①从键盘输入二叉树的结点信息,建立二叉树的存储结构;
- ②在建立二叉树的过程中按照二叉树先序方式建立。

ABC##DE#G##F###

```
Status CreateBiTree(BiTree &T) {
    scanf(&c);//-->cin>>c;
    if(c == '#') T = NULL; //递归结束,建空树
    else { //递归建立二叉树
        if(!(T = BiTNode*)malloc(sizeof(BiTNode)))
            exit(OVERFLOW);//T = new BiTNode;
        T->data = c;//生成根结点
        CreateBiTree(T->lchild); //构造左子树
        CreateBiTree(T->rchild); //构造右子树
    }
    return OK;
```

8、线索二叉树: (利用好n个结点有n+1个空指针)

- (1) 目的:加快查找结点的前驱和后继的速度(把他们链起来)
- (2) 结点结构: ltag lchild data rchild rtag
 - ①Itag = 0 (左孩子) Itag = 1 (前驱结点) rtag = 0 (右孩子) rtag = 1 (后继结点)
 - ②这种结点构成的二叉链表叫线索链表
 - ③对二叉树以某种次序遍历使其变成为线索二叉树的过程叫线索

化。有时候为了仿照线性表, 线索链表上也加一个头结点。

8、线索二叉树: (利用好n个结点有n+1个空指针)

(3) 线索二叉树的遍历: (代码了解)

①求中序线索二叉树中序序列的第一个结点

```
ThreadNode* FirstNode(ThreadNode *p) {
    while(p->ltag == 0)
        p = p->lchild; //最左下的结点不一定是叶子结点
    return p;
}
```

②求中序线索二叉树结点p在中序序列下的后继结点

```
ThreadNode* NextNode(ThreadNode *p) {
    if(p->rtag == 0)
        return FirstNode(p->rchild);
    else
        return p->rchild; //后继
}
```

9、树、森林与二叉树转换

- (1) 树转换为二叉树
 - ①加线: 在所有的兄弟结点之间加线
 - ②去线:对树中的每一个结点,只保留它与第一个结点的连线,删除与其他孩子结点之间的连线
 - ③旋转:调整成一颗二叉树(第一个孩子是二叉树的左孩子,兄弟转换过来是它的右孩子)

9、树、森林与二叉树转换

(2) 森林转换成二叉树

方法一:

①转换: 把每一棵树转换成二叉树

②连接: 第一棵二叉树不变, 从第二棵二叉树开始, 依次将后一棵二

叉树的根节点作为前一棵二叉树根节点的右孩子,用线连起来

方法二:森林直接变兄弟,再转为二叉树

兄弟相连 长兄为父,头树为根 孩子靠左

55/49

9、树、森林与二叉树转换

- (3) 二叉树转换成树或森林
 - ①加线——若某结点x是其双亲y的左孩子,则把结点x的右孩子、右孩子的右孩子、……,都与结点y用线连起来;
 - ②去线——删去原二叉树中所有的双亲结点与右孩子结点的连线;
 - ③层次调整——整理由(1)、(2)两步所得到的树或森林,使之层次分明。

10、树、森林的遍历

(1) 树的遍历

树的遍历

深度优先遍历(先根、后根)

广度优先遍历(层次)

先根遍历

- ① 访问根结点;
- ② 依次先根遍历根结点的每棵子树。

后根遍历

- ① 依次后根遍历根结点的每棵子树;
- ② 访问根结点。
- ①树的先根遍历与二叉树的先序遍历相同;
- ②树的后根遍历相当于二叉树的中序遍历;
- ③树没有中序遍历,因为子树无左右之分。

10、树、森林的遍历

(2) 森林的遍历

森林的遍历 { 深度优先遍历(先序、中序) 广度优先遍历(层次)

先序遍历

- ① 若森林为空,返回;
- ② 访问森林中第一棵树的根结点;
- ③ 先序遍历第一棵树的根结点的子树森林;
- ④ 先序遍历除去第一棵树之后剩余的树构成的森林。

中序遍历

- ① 若森林为空,返回;
- ② 中序遍历森林中第一棵树的根结 点的子树森林;
- ③ 访问第一棵树的根结点;
- ④ 中序遍历除去第一棵树之后剩余的树构成的森林。

11、赫夫曼树

- (1) 赫夫曼树相关概念
 - ① 叶子结点的权值----对叶子结点赋予的一个有意义的数值量。
 - ② 结点带权的路径长度(WPL)———从该结点到树根之间的路径 长度与结点上权的乘积。

$$WPL = \sum_{k=1}^{n} w_k l_k$$
 从根结点到第 k 个叶子的路径长度 第 k 个叶子的权值;

11、赫夫曼树

- (1) 赫夫曼树相关概念
 - ③ 赫夫曼树----带权路径长度(WPL)最小的二叉树
 - ✓ 权值越大的叶子结点越靠近根结点,而权值越小的叶子结点越 远离根结点。
 - ✓ 只有度为0(叶子结点)和度为2(分支结点)的结点,不存在 度为1的结点。

11、赫夫曼树

(2) 赫夫曼树存储结构

weight | lchild | rchild | parent

- (3) 构造赫夫曼树
 - ①构造森林全是根,②选用两小造新树,
 - ③删除两小添新人, ④重复2、3 剩单根。
 - 1. 数组huffTree初始化,所有元素结点的双亲、左右孩子都置为-1;
 - 2. 数组huffTree的前n个元素的权值置给定值w[n];
 - 3. 进行n-1次合并
 - 3.1 在二叉树集合中选取两个权值最小的根结点,其下标分别为 i_1 , i_2 ;
 - 3.2 将二叉树 i_1 、 i_2 合并为一棵新的二叉树 k_1

11、赫夫曼树

(4) 赫夫曼编码

构造好Huffman树后,将树中每个分支结点的左分支上标上"0", 右分支上标上"1",把从根到叶子结点的路径上分支符号(0或1) 连接起来得到的二进制编码称为叶子结点的Huffman编码。

- ①为什么哈夫曼编码能够保证是前缀编码? 因为没有一片树叶是另一片树叶的祖先, 所以每个叶结点的编码就不可能是其它叶结点编码的前缀。
- ②为什么哈夫曼编码能够保证字符编码总长最短? 因力哈夫曼树的带权路径长度最短, 故字符编码的总长最短。

正在答疑