Introducción al Diseño Lógico (E0301)

Ingeniería en Computación

Clase 4. Representaciones en Punto Fijo Curso 2021

En esta clase:

- Concepto de Representación en Punto Fijo
- Precisión Rango
- Operaciones en Punto Fijo

- En los sistemas de numeración posicionales de cualquier base, se pueden diferenciar los valores fraccionarios de los enteros mediante el uso convencional de un simbolo que los separa (punto o coma decimal)
- En el caso binario por ejemplo el número representado con 9 bits en la siguiente figura sería:

24	2 ³	2 ²	2 ¹	20	•	2-1	2-2	2-3	2-4
1	0	0	1	0	•	1	1	1	1

$$2^{4}+2^{1}+2^{-1}+2^{-2}+2^{-3}+2^{-4} = 16+2+0.5+0.25+0.125+0.0625=18.9375$$

- ¿Cuál sería el número más grande y el más chico (omitiendo el cero) que puede representarse en este caso?
 - Es fácil ver que el mayor sería 31.9375 y el menor 0.0625
 - tambien que la *resolución* o sea el incremento mínimo entre un valor y el siguiente también es 0.0625=2-4

 Si ahora cambiamos la posición del punto, podemos obtener otro rango de representaciones y resolución.

•	2-1	2 -2	2 -3	2-4	2 -5	2-6	2 -7	2-8	2 -9
•	1	0	0	1	0	1	1	1	1

$$2^{-1}+2^{-4}+2^{-6}+2^{-7}+2^{-8}+2^{-9} = 1/2+1/16+1/64+1/128+1/256+1/512 = 0.591796875$$

- ¿Y ahora cuál sería el número más grande y el más chico (omitiendo el cero) que puede representarse?
 - Es fácil ver que el mayor sería 0.998046875 y el menor 0.001953125
 - tambien que la resolución o sea el incremento mínimo entre un valor y el siguiente también es 0.001953125=2-9

 Por último situemos el punto en otra posición. Veamos que rango de valores podemos representar.

28	27	2 ⁶	2 ⁵	24	2 ³	2 ²	21	20	•
1	0	0	1	0	1	1	1	1	•

$$2^{8}+2^{5}+2^{3}+2^{2}+2^{1}+2^{0} = 256+32+8+4+2+1=303$$

- ¿Y ahora cuál sería el número más grande y el más chico (omitiendo el cero) que puede representarse?
 - Es fácil ver que el mayor sería 511 y el menor 1.
 - Tambien que la resolución o sea el incremento mínimo entre un valor y el siguiente también es 1=2°.

Representación de valores grandes

212	211	210	2 ⁹	28	2 ⁷	2 ⁶	2 ⁵	2 ⁴	2 ³	2 ²	21	20	•
1	0	0	1	0	1	1	1	1	0	0	0	0	•

Aqui estamos usando los mismos 9 bits para representar el número, pero asumimos que hay 4 digitos menos significativos "ficticios" que no utilizamos.

En el ejemplo anterior teníamos:

$$2^{8}+2^{5}+2^{3}+2^{2}+2^{1}+2^{0} = 256+32+8+4+2+1 = 303$$

y en este tenemos

$$2^{12}+2^9+2^7+2^6+2^5+2^4=4096+512+128+64+32+16=4848$$

- ¿Y ahora cuál sería el número más grande y el más chico (omitiendo el cero) que puede representarse?
 - Es fácil ver que el mayor sería 8176 y el menor 16.
 - Tambien que la resolución o sea el incremento mínimo entre un valor y el siguiente también es 16=2⁴.
- Se puede verificar que los valores representados de esta manera son los mismos que se obtenían en el ejemplo anterior, pero multiplicados por 16 o sea 2^{4.}

• Si hacemos el cociente entre el valor mas alto y el mas pequeño que se pueden representar en todos los casos vistos podemos encontrar que:

$$31.9375 / 0.0625 = (2^5 - 2^{-4})/2^{-4} = 2^9 - 1 = 511$$
 $0.998046875 / 0.001953125 = (2^0 - 2^{-9})/2^{-9} = 2^9 - 1 = 511$
 $511 / 1 = (2^9 - 2^0)/2^0 = 2^9 - 1 = 511$
 $8176 / 16 = (2^{13} - 2^4) / 2^4 = 2^4 (2^9 - 1) / 2^4 = 511$

- Podemos observar que:
 - Con la misma cantidad de bits, podemos representar distintos rangos de valores numéricos dependiendo de donde situemos el punto decimal que separa la parte fraccionaria de la parte entera.
 - La cantidad de valores que pueden representarse es la misma.
 - La resolución corresponde al minimo valor representable distinto que cero y esta dada por el valor asignado al LSB.
 - Esta idea se puede extender para representar valores muy pequeños o muy grandes
 - Puede interpretarse que la ubicación del punto con respecto al LSB puede modificarse multiplicando por una *escala 2* $^{\text{M}}$, donde M es un entero.

Vamos a formalizar esto para representaciones de números positivos

• Sea una representación de punto fijo de N bits, que llamaremos U(a, b). Con $b \le N$; a = N - b

N bits

• Esto se puede interpretar como ubicar el punto fraccionario entre los bits n = b - 1 y n = b representando al conjunto de números:

$$P = \{ p / 2^b \mid 0 \le p \le 2^N - 1, \, p \in Z \}.$$

- El bit n tiene un peso de $2^n/2^b=2^{n-b}$ y la resolución es el menor valor representable 2^{-b}
- El valor de un numero x en particular está dado por $x = (1/2^b) \sum_{n=0}^{N-1} 2^n x_n$ dónde x representa el enésimo bit de x.
- El rango de la representación está dado por : $0 \le x \le (2^n 1)/2^b = 2^{n-b} 2^{-b} = 2^a 2^{-b}$

Rango:
$$0 \le x \le =2^a - 2^{-b}$$

Resolución: 2^{-b}

Representacion de Punto Fijo: Ca1 y Ca2

- Si consideremos U(N,0), a=N, b=0, nos queda que la resolución es 1 y el rango representable será $0 \le x \le 2^N 1$
- Esto coincide con la representación binaria natural en N bits, y sabemos que si queremos representar números con signo, debemos utilizar el MSB para esta finalidad.
- Se puede verificar que si definimos $\widetilde{x} = Ca \, 1(x)$, entonces para U(N,0) tendremos $\widetilde{x} = 2^N 1 x$.
- Si definimos $\hat{x} = Ca \, 2(x)$, entonces $\hat{x} = \tilde{x} + 1 = 2^N x$
- Ahora si queremos representar números con signo, y el MSB nos da el signo, entonces podemos decir que el rango de números positivos, lo vamos a reprentar con N-1 bits, y el MSB será cero.
- Para representar los números negativos, usaremos Ca2, y los valores que obtendremos es ese caso estarán dados por $\hat{x} = \tilde{x} + 1 = 2^N x$
- El rango de números que podemos representar estará dado por:

$$P = \{ p \mid -2^{N-1} \le p \le (2^{N-1} - 1), p \in \mathbb{Z} \}$$

Representacion de Punto Fijo con signo

y el valor obtenido para una representación dada en N bits será:

$$x = \left[-2^{N-1} x_{N-1} + \sum_{n=0}^{N-2} 2^n x_n \right]$$

- Puede verse que si el MSB (ubicado en la posición N-1) es cero, la representación de χ es la de un número positivo de N-1 bits.
- Si el MSB es 1, podemos comprobar que se está realizando la operación de Ca2 sobre x y queda representado un número negativo.
- Si combinamos esta representación con lo que vimos para punto fijo positivo , estaríamos pasando de U(N,0) a una representación con signo, que llamaremos Q(N-1,0).
- Si ahora tomamos como antes a bits para la parte entera y b bits para la parte fraccionaria, generalizamos la representación a Q(a,b) en la cual a=N-b-1 y el conjunto de números que pueden representarse será:

$$P = \{ p / 2^b \mid -2^{N-1} \le p \le (2^{N-1} - 1), p \in \mathbb{Z} \}$$

Representacion de Punto Fijo con signo

• El valor χ representado por una Q(a,b) de N bits será entonces:

$$x = \left(\frac{1}{2^{b}}\right) \left[-2^{N-1}x_{N-1} + \sum_{n=0}^{N-2} 2^{n}x_{n}\right]$$

- El factor $\left(\frac{1}{2^b}\right)$ se llama *Escala* y el rango de representación será: $-2^{N-1-b} < x < +2^{N-1-b} 1/2^b$
- Nótese que a+b=N-1 porque se utiliza el MSB para el signo
 - Ejemplo 1: ¿Qué número representa 01011001 en Q(3,4)?
 - Podemos ver que el número es positivo, entonces el valor corresponde a la representación entera del número 89 y debe multiplicarse por la escala dada por $1/2^4 = 1/16$ se obtiene 5,5625
 - Ejemplo 2: ¿Qué número representa 10010110 en Q(2,5)?
 - El número es negativo (MSB=1) y la escala es $1/2^5 = 1/32$, entonces el número representado es -106/32 = -3,3125

Operaciones

- Largo sin signo
 - El número de bits para representar U(a,b) es a+b
- Largo con signo
 - El número de bits para representar Q(a,b) es a+b+1
- Rango sin signo.
 - El rango de U(a,b) es $0 \le x \le 2^a 2^{-b}$.
- Rango con signo
 - el rango de Q(a,b) es $-2^{a} \le x \le 2^{a} 2^{-b}$.
- Cambio de escala:
 - Si tengo una representación de un número x en Q(a,b) donde la escala es $1/2^b$ y quiero pasarlo a otra representación $Q_l(a_l,b_l)$ con la misma cantidad de bits N, se debe cambiar la escala desplazando los bits de la representación hacia la izquierda o hacia la derecha según b_l sea mayor o menor que b respectivamente. Esto equivale a multiplicar o dividir por 2 respectivamente.
 - Debe analizarse si no se pierden bits más significativos al realizar esta operación
- Operandos de adición
 - Dos números binarios deben tener igual escala para poder sumarlos.
 - Esto es, la operación X(c,d) + Y(e,f) es solamente válida si X = Y (ya sea Q o U) y además se tiene que cumplir que c=e y d=f.