We claim:

15

A benzoyl-substituted phenylalanineamide of the formula I

$$R^{11}$$
 R^{12}
 R^{13}
 R^{14}
 R^{15}
 R^{7}
 R^{8}
 R^{15}
 R^{15}
 R^{15}
 R^{15}

- 5 in which the variables are as defined below:
 - R¹ is halogen, cyano, C₁-C₆-alkyl, C₁-C₆-haloalkyl, C₁-C₆-haloalkoxy, nitro, hydroxycarbonyl, C₁-C₆-alkoxycarbonyl, C₁-C₆-haloalkylthio or phenyl;
- 10 R², R³, R⁴, R⁵ are hydrogen, halogen, cyano, C₁-C₆-alkyl, C₁-C₆-haloalkyl, C₁-C₆-alkoxy, C₁-C₆-haloalkoxy, nitro, amino, C₁-C₆-alkylamino, di(C₁-C₆-alkyl)amino, C₁-C₆-alkylthio or C₁-C₆-alkoxycarbonyl;
 - R^6 , R^7 are hydrogen, hydroxyl or $C_1\text{-}C_6\text{-alkoxy}$;

 R^8 is C_1 - C_6 -alkyl, C_1 - C_4 -cyanoalkyl or C_1 - C_6 -haloalkyl;

 R^9 is OR^{16} , SR^{17} or $NR^{18}R^{19}$;

20 R^{10} is hydrogen or C_1 - C_6 -alkyl;

R¹¹, R¹² are hydrogen, halogen, cyano, C₁-C₆-alkyl, C₁-C₆-haloalkyl, hydroxyl, C₁-C₆-alkoxy, C₁-C₆-haloalkoxy, hydroxyl, nitro, hydroxy-C₁-C₄-alkyl, C₁-C₆-alkoxy-C₁-C₄-alkyl, tri(C₁-C₆-alkyl)silyloxy-C₁-C₄-alkyl, C₁-C₄-alkyl, C₁-C₆-alkylthio, (hydroxycarbonyl)-C₁-C₆-alkyl, (C₁-C₆-alkoxycarbonyl)-C₁-C₆-alkyl, (hydroxycarbonyl)-C₂-C₆-alkenyl, (C₁-C₆-alkoxycarbonyl)-C₂-C₆-alkenyl, (hydroxycarbonyl)-C₁-C₄-alkoxy, (C₁-C₄-alkoxycarbonyl)-C₁-C₄-alkoxy, (C₁-C₄-alkylcarbonyl)oxy-C₁-C₄-alkyl, hydroxycarbonyl-C₁-C₄-alkoxy-C₁-C₄-alkyl, (C₁-C₄-alkylsulfonyl)oxy-C₁-C₄-alkyl, C₁-C₄-alkyl-O-alkoxy-C₁-C₄-alkyl, (C₁-C₄-alkylsulfonyl)oxy-C₁-C₄-alkyl, C₁-C₄-alkyl-O-alkyl-O-alkyl-C₁-C₄-alkyl-C₁-C₄-alkyl-O-alkyl-C₁-C₄-

5

10

15

20

C(O)-[C_1 - C_4 -alkyl-O]₃- C_1 - C_4 -alkyl, carbamoyloxy- C_1 - C_4 -alkyl, (C_1 - C_4 -alkylaminocarbonyl)oxy- C_1 - C_4 -alkyl, [di(C_1 - C_4 -alkyl)aminocarbonyl]oxy- C_1 - C_4 -alkyl, [(C_1 - C_4 -haloalkylsulfonyl)aminocarbonyl]oxy- C_1 - C_4 -alkyl, benzyloxy, where the phenyl ring may be substituted by 1 to 3 radicals from the group consisting of halogen and C_1 - C_4 -alkyl, amino, C_1 - C_4 -alkylamino, di(C_1 - C_4 -alkyl)amino, (C_1 - C_4 -alkylsulfonyl)-amino, C_1 - C_4 -(haloalkylsulfonyl)amino, (C_1 - C_4 -alkylamino)carbonylamino, [di(C_1 - C_4 -alkyl)amino]carbonylamino, [(C_1 - C_4 -haloalkylsulfonyl)aminocarbonyl]-amino, phenyl or heterocyclyl, where the phenyl and the heterocyclyl radical of the two last-mentioned substituents may carry 1 to 3 radicals from the following group: halogen, nitro, C_1 - C_4 -alkyl, C_1 - C_4 -haloalkyl, hydroxycarbonyl and C_1 - C_6 -alkoxycarbonyl;

R¹³, R¹⁴, R¹⁵ are hydrogen, halogen, cyano, C₁-C₆-alkyl, C₁-C₆-haloalkyl, C₁-C₆-alkoxy, C₁-C₆-haloalkoxy, nitro, hydroxyl, C₁-C₄-alkylthio or benzyloxy;

R¹⁶, R¹⁷, R¹⁸ are hydrogen, C₁-C₆-alkyl, tri(C₁-C₆-alkyl)silyl, C₃-C₆-cycloalkyl, C₃-C₆-alkenyl, C₃-C₆-alkynyl, C₃-C₆-haloalkenyl, C₃-C₆-haloalkynyl, formyl, C₁-C₆-alkylcarbonyl, C₃-C₆-cycloalkylcarbonyl, C₂-C₆alkenylcarbonyl, C₂-C₆-alkynylcarbonyl, C₁-C₆-alkoxycarbonyl, C₃-C₆alkenyloxycarbonyl, C₃-C₆-alkynyloxycarbonyl, C₁-C₆alkylaminocarbonyl, C₃-C₆-alkenylaminocarbonyl, C₃-C₆alkynylaminocarbonyl, C₁-C₆-alkylsulfonylaminocarbonyl, C₁-C₆haloalkylsulfonylaminocarbonyl, di(C₁-C₆-alkyl)aminocarbonyl, N-(C₃-C₆alkenyl)-N-(C₁-C₆-alkyl)aminocarbonyl, N-(C₃-C₆-alkynyl)-N-(C₁-C₆alkyl)aminocarbonyl, N-(C₁-C₆-alkoxy)-N-(C₁-C₆-alkyl)aminocarbonyl, N-(C₃-C₆-alkenyl)-N-(C₁-C₆-alkoxy)aminocarbonyl, N-(C₃-C₆-alkynyl)-N-(C₁-C₆-alkoxy)aminocarbonyl, di(C₁-C₆-alkyl)aminothiocarbonyl, C₁-C₆alkylcarbonyl-C₁-C₆-alkyl, C₁-C₆-alkoxyimino-C₁-C₆-alkyl, N-(C₁-C₆alkylamino)imino-C₁-C₆-alkyl or N-(di-C₁-C₆-alkylamino)imino-C₁-C₆alkyl,

where the alkyl, cycloalkyl and alkoxy radicals mentioned may be partially or fully halogenated and/or may carry 1 to 3 of the following groups: cyano, hydroxyl, C_3 - C_6 -cycloalkyl, C_1 - C_4 -alkylthio, di(C_1 - C_4 -alkyl)amino, C_1 - C_4 -alkylcarbonyl,

25

30

35

hydroxycarbonyl, C_1 - C_4 -alkoxycarbonyl, aminocarbonyl, C_1 - C_4 -alkylaminocarbonyl, di(C_1 - C_4 -alkyl)-aminocarbonyl or C_1 - C_4 -alkylcarbonyloxy;

5

phenyl, phenyl- C_1 - C_6 -alkyl, phenylcarbonyl, phenylcarbonyl- C_1 - C_6 -alkyl, phenoxycarbonyl, phenylaminocarbonyl, phenylsulfonylaminocarbonyl, N- $(C_1$ - C_6 -alkyl)-N-(phenyl)aminocarbonyl, phenyl- C_1 - C_6 -alkylcarbonyl, heterocyclyl, heterocyclyl- C_1 - C_6 -alkyl, heterocyclylcarbonyl, heterocyclylcarbonyl- C_1 - C_6 -alkyl, heterocyclyloxycarbonyl, heterocyclylaminocarbonyl, heterocyclylsulfonylaminocarbonyl, N- $(C_1$ - C_6 -alkyl)-N-(heterocyclyl)aminocarbonyl or heterocyclyl- C_1 - C_6 -alkylcarbonyl,

10

where the phenyl and the heterocyclyl radical of the 17 lastmentioned substituents may be partially or fully halogenated and/or may carry 1 to 3 of the following groups: nitro, cyano,

15

 C_1 - C_4 -alkyl, C_1 - C_4 -haloalkyl, C_1 - C_4 -alkoxy or C_1 - C_4 -haloalkoxy SO_2R^{20} ; -C(O)-[C_1 - C_4 -alkyl-O]₃- C_1 - C_4 -alkyl; or

20

-C(O)-O- C_1 - C_4 -alkyl-O-phenyl, where the phenyl radical may optionally be substituted by 1 to 3 radicals from the group consisting of halogen and C_1 - C_4 -alkyl;

 R^{19}

is hydrogen, C_1 - C_6 -alkyl, C_3 - C_6 -cycloalkyl, C_3 - C_6 -alkenyl, C_3 - C_6 -alkynyl, C_3 - C_6 -haloalkenyl, C_3 - C_6 -haloalkynyl,

25

where the alkyl and cycloalkyl radicals mentioned may be partially or fully halogenated and/or may carry 1 to 3 of the following groups: cyano, hydroxyl, C_3 - C_6 -cycloalkyl, C_1 - C_4 -alkoxy, C_1 - C_4 -alkylthio, di(C_1 - C_4 -alkyl)amino, C_1 - C_4 -alkylcarbonyl, hydroxycarbonyl, C_1 - C_4 -alkoxycarbonyl, aminocarbonyl, C_1 - C_4 -alkylaminocarbonyl, di(C_1 - C_4 -alkyl)aminocarbonyl or C_1 - C_4 -alkylcarbonyloxy; or

30

phenyl, phenyl-C₁-C₆-alkyl, heterocyclyl or heterocyclyl-C₁-C₆-alkyl, where the phenyl and the heterocyclyl radical of the 4 last-mentioned substituents may be partially or fully halogenated, and/or may carry 1 to 3 of the following groups: nitro, cyano, C₁-C₄-alkyl, C₁-C₄-haloalkyl, C₁-C₄-alkoxy or C₁-C₄-haloalkoxy;

35

 R^{20} is C_1 - C_6 -alkyl, C_1 - C_6 -haloalkyl or phenyl,

where the phenyl radical may be partially or fully halogenated and/or may carry 1 to 3 of the following groups: C_1 - C_6 -alkyl, C_1 - C_6 -haloalkyl or C_1 - C_6 -alkoxy;

- 5 or an agriculturally useful salt thereof.
 - 2. The benzoyl-substituted phenylalanineamide of the formula I according to claim 1, where R^1 is halogen or C_1 - C_6 -haloalkyl.
- The benzoyl-substituted phenylalanineamide of the formula according to claim 1 or 2, where R² and R³ independently of one another are hydrogen, halogen or C₁-C₆-haloalkyl.
- 4. The benzoyl-substituted phenylalanineamide of the formula I according to any of claims 1 to 3, where R⁴, R⁵, R⁶, R⁷, R¹⁰, R¹³, R¹⁴ and R¹⁵ are hydrogen.
 - 5. The benzoyl-substituted phenylalanineamide of the formula I according to any of claims 1 to 4, where R⁹ is OR¹⁶.
- 20 6. A process for preparing benzoyl-substituted phenylalanineamides of the formula I according to claim 1, which comprises

reacting phenylalanines of the formula V

$$R^{12}$$
 R^{13}
 R^{10}
 R^{14}
 R^{9}
 R^{15}
 R^{14}
 R^{15}
 R^{16}
 R^{16}

25

where R^6 and R^9 to R^{15} are as defined in claim 1 and L^1 is a nucleophilically displaceable leaving group,

30 with benzoic acids or benzoic acid derivatives of the formula IV

5

15

where R^1 to R^5 are as defined in claim 1 and L^2 is a nucleophilically displaceable leaving group

to give the corresponding benzoyl derivatives of the formula III

$$R^{10}$$
 R^{10}
 R^{10}
 R^{14}
 R^{15}
 R^{14}
 R^{15}
 R^{14}
 R^{15}
 R^{15}
 R^{10}
 R^{14}
 R^{15}
 R

where R¹ to R⁶ and R⁹ to R¹⁵ are as defined in claim 1 and L¹ is a nucleophilically displaceable leaving group

and then reacting the resulting benzoyl derivatives of the formula III with an amine of the formula II

HNR7R8 II,

where R⁷ and R⁸ are as defined in claim 1.

7. The process for preparing benzoyl-substituted phenylalanineamides of the formula I according to claim 6, where R⁹ is hydroxyl and R¹⁰ is hydrogen, which comprises converting benzoyl derivatives of the formula III where R⁹ is hydroxyl and R¹⁰ is hydrogen by acylation of keto compounds of the formula XIII

where R^6 and R^{11} to R^{15} are as defined in claim 1 and L^1 is a nucleophilically displaceable leaving group

5

with benzoic acids/benzoic acid derivatives of the formula IV into N-acyl keto compounds of the formula XII

$$R^{11}$$
 R^{12}
 R^{13}
 R^{14}
 R^{14}
 R^{15}
 R^{14}
 R^{15}
 R^{14}
 R^{15}
 R^{14}
 R^{15}
 R^{14}
 R^{15}
 R

10

where R^1 to R^6 and R^{11} to R^{15} are as defined in claim 1 and L^1 is a nucleophilically displaceable leaving group, followed by reduction of the keto group.

15 8. A benzoyl derivative of the formula III

$$R^{10}$$
 R^{10}
 R^{10}
 R^{14}
 R^{15}
 R^{14}
 R^{15}
 R^{14}
 R^{15}
 R^{14}
 R^{15}
 R^{15}
 R^{15}
 R^{15}
 R^{15}
 R^{15}
 R^{15}

where R¹ to R⁶ and R⁹ to R¹⁵ are as defined in claim 1 and L¹ is a nucleophilically displaceable leaving group.

5

9. A composition, comprising a herbicidally effective amount of at least one benzoyl-substituted phenylalanineamide of the formula I or an agriculturally useful salt of I according to any of claims 1 to 5 and auxiliaries customary for formulating crop protection agents.

10

10. A process for preparing compositions according to claim 8, which comprises mixing a herbicidally effective amount of at least one benzoyl-substituted phenylalanineamide of the formula I or an agriculturally useful salt of I according to any of claims 1 to 5 and auxiliaries customary for formulating crop protection agents.

15

11. A method for controlling unwanted vegetation, which comprises allowing a herbicidally effective amount of at least one benzoyl-substituted phenylalanineamide of the formula I or an agriculturally useful salt of I according to any of claims 1 to 5 to act on plants, their habitat and/or on seed.

20

12. The use of a benzoyl-substituted phenylalanineamide of the formula I according to any of claims 1 to 5 or an agriculturally useful salt thereof as a herbicide.