Hackathon Report

Electrical Conductivity Prediction in Metallurgical Alloys

BY: Sonia (23118074), Swaroop (23118077) & Aahana (23118001)

1. Problem Statement

The objective of this hackathon is to predict the **electrical conductivity (%IACS)** of metallurgical alloy samples based on their **chemical composition**, **processing parameters**, and **mechanical properties**. Accurate prediction of conductivity aids in designing high-performance materials in aerospace, automotive, and electronics industries.

2. Dataset Description

The dataset comprises detailed records of metallurgical alloys, including:

Features

- **Alloy Formula**: Chemical formula (dropped in model input due to high complexity and sparsity).
- Alloy Class: Categorical label for alloy type (also dropped).

Elemental Composition (Weight fractions)

Cu, Al, Ag, B, Be, Ca, Co, Ce, Cr, Fe, Hf, La, Mg, Mn, Mo, Nb, Nd, Ni, P, Pb, Pr, Si, Sn, Ti, V, Zn, Zr

Processing Conditions

- Tss (K): Solution treatment temperature
- tss (h): Solution treatment time
- CR reduction (%): Cold rolling reduction
- Aging: Binary feature indicating aging process
- Tag (K): Aging temperature
- tag (h): Aging time
- Secondary thermo-mechanical process: Categorical

Mechanical Properties

- Hardness (HV)
- Yield Strength (MPa) (Dropped)
- Ultimate Tensile Strength (MPa) (Dropped)

Target Variable

• Electrical Conductivity (%IACS): The prediction target

3. Evaluation Metric

Submissions are evaluated using **Mean Absolute Error (MAE)**:

Lower MAE indicates better model performance.

4. Data Preprocessing

- **Dropped** irrelevant columns: 'ID', 'Alloy Formula', 'Alloy Class', 'Yield Strength', 'Ultimate Tensile Strength'
- Label encoding of categorical variables
- Missing values filled using mean/mode for numeric fields and a placeholder for categoricals
- Feature scaling performed before training deep learning models

5. Model Development

Traditional ML Models

- Random Forest
- XGBoost
- LightGBM
- Ridge Regression

Best Performing: Random Forest (post-hyperparameter tuning)

Deep Learning Models

- Regression MLP: 2 hidden layers with BatchNorm, Dropout
- Wide & Deep Network: Combines linear and deep features
- Residual Network (ResNet-style): Deep model with skip connections
- TabNet: Attention-based deep learning for tabular data

Best Performing: Wide & Deep (after Optuna tuning)

Ensemble Learning

- Combined predictions of Regression MLP and Wide & Deep Network
- Simple average ensemble reduced MAE further

6. Hyperparameter Tuning

- Performed using **Optuna** for deep learning models
- RandomizedSearchCV for ML models
- Optimization focused on MAE minimization

7. Final Submission & Output

Predictions were made using the best Random Forest model

Output file format:

ID, Electrical conductivity (%IACS)

2,45.5

5,99.2

- 6,94.5
- Submitted predictions.csv for leaderboard evaluation

8. Conclusion

- **Wide & Deep models** demonstrated strong performance, but Random Forest remained a robust and fast baseline.
- **Ensembling** yielded slight MAE reduction.
- Further improvements may involve:
 - Feature engineering (e.g., interaction terms)
 - o Incorporating domain knowledge in pre-processing
 - Advanced architectures (e.g., GNN for structural data)

Goal Achieved: Predictive model with low MAE for alloy conductivity, aiding materials design.