

The Beauty and Joy of Computing

Lecture #7 Algorithms II

Cornel students have programed a standard PR2 robot to parse cooking instructions. Using natural language processing to break down casual kitchen verbiage into actionable commands proved to be significant a significant mechanical and AI challenge. Plus: "On July 14, he and his colleagues will show off their progress at a robotics conference at UC Berkeley."

http://www.latimes.com/science/sciencenow/la-sci-sn-robots-plainspeech-20140624-story.html

Functional Abstraction (review)

- A block, or function has inputs & outputs
 - Possibly no inputs
 - Possibly no outputs (if block is a command)
 - In this case, it would have a "side effect", i.e., what it does (e.g., move a robot)
- The contract describing what that block does is called a specification or spec

UC Berkeley "The Beauty and Joy of Computing" : Algorithms II (2)

What is IN a spec? (review)

- Typically they all have
 - NAME
 - INPUT(s)
 - (and types, if appropriate)
 - Requirements
 - OUTPUT
 - · Can write "none"
 - □ (SIDE-EFFECTS)
 - EXAMPLE CALLS
- Example
 - □ NAME : Double
 - □ INPUT : n (a number)
 - □ OUTPUT: n + n

UC Berkeley "The Beauty and Joy of Computing" : Algorithms II (3)

- How!
 - That's the beauty of a functional abstraction; it doesn't say how it will do its job.
- Example: Double
 - Could be n * 2
 - Could be n + n
 - Could be n+1 (n times)
 - if n is a positive integer
- This gives great freedom to author!
 - You choose Algorithm(s)!

UC Berkeley "The Beauty and Joy of Computing" : Algorithms II (4)

What do YOU think?

Which factor below is the most important in choosing the algorithm to use?

- A. Simplest?
- B. Easiest to implement?
- C. Takes less time?
- D. Uses up less space (memory)
- E. Gives a more precise answer?

Algorithm analysis: the basics

- An algorithm is correct if, for every input, it reports the correct output and doesn't run forever or cause an error.
 - Incorrect algorithms may run forever, or may crash, or may not return the correct answer.
 - They could still be useful!
 - · Consider an approximation...
 - For now, we'll only consider correct algorithms

UC Berkeley "The Beauty and Joy of Computing" : Algorithms II (6)

- This book launched a generation of CS students into Algorithm Analysis
 - It's on everyone's shelf
 - It might be hard to parse at this point, but if you go on in CS, remember it & own it!
 - ...but get the most recent vears

UC Berkeley "The Beauty and Joy of Computing" : Algorithms II (8)

Algorithm analysis: running time

- One commonly used criterion in making a decision is running time
 - how long does the algorithm take to run and finish its task?
- How do we measure it?

UC Berkeley "The Beauty and Joy of Computing" : Algorithms II (9)

Runtime analysis problem & solution

- Time w/stopwatch, but...
 - Different computers may have different runtimes.
 - Same computer may have different runtime on the same input.

 \omega
 - Need to implement the algorithm first to run it.
- Solution: Count the number of "steps" involved, not time!
 - Each operation = 1 step
 - If we say "running time", we'll mean # of steps, not time!

UC Berkeley "The Beauty and Joy of Computing" : Algorithms II (10)

Runtime analysis : worst or avg case?

- Could use avg case
 - Average running time over a vast # of inputs
- Instead: use worst case
 - Consider running time as input grows
- Why?
 - Nice to know most time we'd <u>ever</u> spend
 - Worst case happens often
 - Avg is often ~ worst

Garcia + Vollucci

UC Berkeley "The Beauty and Joy of Computing" : Algorithms II (12)

Runtime analysis: Final abstraction

- Instead of an exact number of operations we'll use abstraction
 - Want order of growth, or dominant term
- In CS10 we'll consider
 - Constant
 - Fractional Exponent
 - Logarithmic
 - Linear
 - Quadratic
 - Cubic
 - Exponential
- E.g. $10 \text{ n}^2 + 4 \log n + n$
 - ...is quadratic

Exponential Cubic Quadratic

Graph of order of growth curves on log-log plot

UC Berkeley "The Beauty and Joy of Computing" : Algorithms II (13)

Example: Finding a student (by ID)

- Input
 - Unsorted list of students L
 - Particular student S
- Output
 - True if S is in L, else False
- Pseudocode Algorithm
 - Go through one by one, checking for match.
 - If match, true
 - If exhausted L and didn't find S. false

UC Berkeley "The Beauty and Joy of Computing" : Algorithms II (14)

- Worst-case running time as function of the size of L?
 - 1. Constant
 - 2. Logarithmic
 - Linear
 - 4. Quadratic
 - Exponential

Example: Finding a student (by ID)

- Input
 - Sorted list of students L
 - Particular student S
- Output : same
- - Start in middle
 - If match, report true
 - If exhausted, throw away half of L and check again in the middle of remaining part of L
 - If nobody left, report

UC Berkeley "The Beauty and Joy of Computing" : Algorithms II (15)

- Pseudocode Algorithm Worst-case running time as function of the size of L?
 - 1. Constant
 - 2. Logarithmic
 - Linear
 - Quadratic
 - 5. Exponential

Example: Finding a student (by ID)

- What if L were given to you in advance and you had infinite storage?
 - Could you do any better than logarithmic?

- Worst-case running time as function of the size of L?
 - 1. Constant
 - 2. Logarithmic
 - Linear
 - Quadratic
 - Exponential

UC Berkeley "The Beauty and Joy of Computing" : Algorithms II (16)

Example: Finding a shared birthday

- Input
 - Unsorted list L (of size n) of birthdays of team
- Output
 - True if any two people shared birthday, else False
- What's the worst-case running time?

- Worst-case running time as function of the size of L?
 - Constant
 - 2. Logarithmic
 - Linear
 - Quadratic
 - Exponential

- Input:
 - Unsorted list L (of size n) of people
- Output
 - All the subsets
- Worst-case running time? (as function of n)
- E.g., for 3 people (a,b,c): 1.
 - 1 empty: { }
 - 3 1-person: {a, b, c}
 - 3 2-person: {ab, bc, ac}
 - 1 3-person: {abc}

- Worst-case running time as function of the size of L?
 - Constant
 - Logarithmic
- 3. Linear
- Quadratic
- Exponential

UC Berkeley "The Beauty and Joy of Computing" : Algorithms II (18)

Limits

- We can prove mathematically that some algorithms are never solvable!
- We can (almost) prove mathematically that some algorithms will never be efficient!
 - Famous problem P = NP ?
 - Example: Travelling Salesman Problem
 - BUT: Can use heuristics for approximation

UC Berkeley "The Beauty and Joy of Computing" : Algorithms II (19)

- When developing an algorithm, could optimize
 - Simplest
 - Easiest to implement?
 - Most efficient
 - Uses up least resources
 - Gives most precision
- In CS10 we'll consider
 - Constant
 - Logarithmic
 - Linear
 - Quadratic
 - Cubic
 - Exponential

- There are empirical and formal methods to verify efficient and correctness
- Some algorithms cannot be implemented efficiently

UC Berkeley "The Beauty and Joy of Computing" : Algorithms II (20)

