

Probability and Statistics: To p, or not to p?

Module Leader: Dr James Abdey

3.5 The normal distribution

The **normal distribution** is by far the most important probability distribution in statistics. This is for three broad reasons.

- Many variables have distributions which are *approximately* normal, for example heights of humans or animals, and weights of various products.
- The normal distribution has extremely convenient mathematical properties, which make it a useful default choice of distribution in many contexts.
- Even when a variable is not itself even approximately normally distributed, functions of several observations of the variable ('sampling distributions') are often approximately normal, due to the **central limit theorem** (covered in Section 5.5). Because of this, the normal distribution has a crucial role in statistical inference. This will be discussed later in the course.

The equation of the normal distribution curve is:

$$f(x) = rac{1}{\sqrt{2\pi\sigma^2}} \exp\left[-rac{(x-\mu)^2}{2\sigma^2}
ight] \quad ext{for } -\infty < x < \infty$$

where π is the mathematical constant (i.e. $\pi = 3.14159...$), and μ and σ^2 are parameters, with $-\infty < \mu < \infty$ and $\sigma^2 > 0$.

A random variable X with this function is said to have a normal distribution with a mean of μ and a variance of σ^2 , denoted $X \sim N(\mu, \sigma^2)$. The mean can also be inferred from the observation that the normal distribution is symmetric about μ , which also implies that the median of the normal distribution is μ .

- The mean μ determines the location of the curve.
- The variance σ^2 determines the dispersion (spread) of the curve.

The figure below shows three normal distributions with different means and/or variances.

- N(0, 1) and N(5, 1) have the same dispersion but different location: the N(5, 1) curve is identical to the N(0, 1) curve, but shifted 5 units to the right.
- N(0, 1) and N(0, 9) have the same location but different dispersion: the N(0, 9) curve is centered at the same value, 0, as the N(0, 1) curve, but spread out more widely.

Linear transformations of the normal distribution

We now consider one of the convenient properties of the normal distribution. Suppose X is a random variable, and we consider the **linear transformation** Y = aX + b, where a and b are constants.

Whatever the distribution of X, if it has a mean of μ and a variance of σ^2 then it is true that Y has a mean of $a\mu + b$ and a variance of $a^2\sigma^2$.

Furthermore, if X is normally distributed, then so is Y. In other words, if $X \sim N(\mu, \sigma^2)$, then:

$$Y = aX + b \sim N(a\mu + b, a^2\sigma^2). \tag{1}$$

This type of result is *not* true in general. For other families of distributions, the distribution of Y = aX + b is *not always* in the same family as X.

Let us apply (1) with $a = 1/\sigma$ and $b = -\mu/\sigma$, to get:

$$Z = \frac{1}{\sigma} \, X - \frac{\mu}{\sigma} = \frac{X - \mu}{\sigma} \sim N \left(\frac{1}{\sigma} \, \mu - \frac{\mu}{\sigma}, \, \left(\frac{1}{\sigma} \right)^2 \, \sigma^2 \right) = N(0, \, 1).$$

The transformed variable $Z=(X-\mu)/\sigma$ is known as a **standardised variable** or a **z-score**.

The distribution of the z-score is N(0, 1), i.e. the normal distribution with mean $\mu = 0$ and variance $\sigma^2 = 1$ (and, therefore, a standard deviation of $\sigma = 1$). This is known as the **standard** normal distribution.

The figure below shows tail probabilities for the standard normal distribution. The shaded areas are $P(Z \le -z) = P(Z \ge z)$, by symmetry of the distribution about zero.

