Consider the relation on $\mathbb{R}^3 - \{(0,0,0)\}$ defined by

$$(x, y, z) \sim (x', y', z') \iff$$
 there exists $c \in \mathbb{R} - \{0\}$ such that $(cx, cy, cz) = (x', y', z')$.

(1) Verify that \sim is an equivalence relation.

Definition 1. Denote the equivalence class of $(x, y, z) \in \mathbb{R}^3 - \{0\}$ by [x : y : z]. The set of equivalence classes of \sim is called the **real projective plane** and denoted

$$\mathbb{RP}^2 := (\mathbb{R}^3 - \{\mathbf{0}\}) / \sim$$

= \{ [x : y : z] \| (x, y, z) \in \mathbb{R}^3 - \{\mathbf{0}\}.

(In general, n-dimensional real projective space \mathbb{RP}^n is $(\mathbb{R}^{n+1} - \{\mathbf{0}\})/\sim$ where two n+1-dimensional vectors are equivalent if and only if one is a non-zero scalar multiple of the other.)

(2) What is the equivalence class of (1,0,0) as a subset of $\mathbb{R}^3 - \{\mathbf{0}\}$? What about (1,1,1)? (0,1,0)?

We consider \mathbb{RP}^2 as a topological space by giving it the quotient topology. Write

$$p: \mathbb{R}^3 - \{\mathbf{0}\} \to \mathbb{RP}^2$$
$$(x, y, z) \mapsto [x: y: z]$$

for the quotient map.

(1) Denote by D(z) the subset of \mathbb{RP}^2 defined by

$$D(z) = \{[x:y:z] \in \mathbb{RP}^2 \mid z \neq 0\}$$

(This is well-defined since the third coordinate of (x, y, z) is 0 if and only if the third coordinate of (cx, cy, cz) is 0 for a nonzero number c.)

Show that D(z) is an open subset of \mathbb{RP}^2 .

(2) Write

$$\tilde{D}(z) \coloneqq p^{-1}(D(z)) = \{(x,y,z) \in \mathbb{R}^3 - \{0\} \mid z \neq 0\}.$$

Show that the restriction $p_z : \tilde{D}(z) \to D(z)$ of p to $\tilde{D}(z)$ is a quotient map.

(3) Show that

$$\varphi: \mathbb{R}^2 \to D(z)$$
$$(x,y) \mapsto [x:y:1]$$

is a homeomorphism with inverse

$$\psi: D(z) \to \mathbb{R}^2$$

$$[x:y:z] \mapsto \left(\frac{x}{z}, \frac{y}{z}\right).$$

(Hint: To show φ is continuous, write it as a composite of functions $\mathbb{R}^2 \to \tilde{D}(z) \to D(z)$. To show ψ is continuous, use the universal property of quotients.)

Remark 2. One can define similar open subsets D(x) and D(y) which are also homeomorphic to \mathbb{R}^2 . Therefore \mathbb{RP}^2 has an open cover by open subsets homeomorphic to \mathbb{R}^2 . We say that \mathbb{RP}^2 is a **topological manifold**.

(4) Any line L in \mathbb{R}^2 can be written in the form

$$L = \{(x, y) \in \mathbb{R}^2 \mid ax + by + c = 0\}$$

where $a, b, c \in \mathbb{R}$ and at least one of a, b is nonzero. Consider the set

$$\overline{L} = \{[x:y:z] \in \mathbb{RP}^2 \mid ax+by+cz=0\}.$$

Show that \overline{L} is well-defined and that $\varphi(L) = \overline{L} \cap D(z)$. How many points are in \overline{L} but not L? (The notation comes from the fact that \overline{L} is the closure of $\varphi(L)$ in \mathbb{RP}^2 .)

(5) Let L_1 be the line in \mathbb{R}^2 defined by x = 0 and L_2 the line defined by x = 1. Form $\overline{L_1}$ and $\overline{L_2}$ as in the previous problem. Compute and compare $L_1 \cap L_2$ with $\overline{L_1} \cap \overline{L_2}$.

(6) In fact, any algebraic variety in \mathbb{R}^2 extends in a nice way to \mathbb{RP}^2 . Let $f(x,y) = \sum_{i,j} c_{ij} x^i y^j$ be a polynomial of degree d, i.e., the largest value of i+j for which $c_{ij} \neq 0$ is d. Write

$$V = \left\{ (x, y) \in \mathbb{R}^2 \mid f(x, y) = \sum_{i, j} c_{ij} x^i y^j = 0 \right\}$$

for the variety it defines. Consider the set

$$\overline{V} = \left\{ [x:y:z] \in \mathbb{RP}^2 \, \middle| \, \sum_{i,j} c_{ij} x^i y^j z^{d-i-j} = 0 \right\}.$$

Show that \overline{V} is well-defined and $\varphi(V) = \overline{V} \cap D(z)$.