Quiz Complexități

Întrebările din acest quiz au fost luate și adaptate de pe pagina www.commonlounge.com

Obs. Nu este necesar să înțelegeți ce face codul din întrebare pentru a răspunde la întrebări.

Întrebări

Întrebare 1:

```
funcție fibonacci(n: întreg) este:
    i, j, k, t: întreg
    j = 1
    i = 0
    pentru k = 1, n+1, 1 execută
        t = i + j
        i = j
        j = t
    sf_pentru
    returnează j
sf_funcție
```

Cât este complexitatea de timp a algoritmului?

- a. Θ(1)
- b. Θ(log n)
- c. Θ(n)
- d. Θ(n*logn)
- e. Θ(n^2)
- f. Θ(n^3)

Întrebare 2:

```
funcție fibonacci(n: întreg) este:
    i, j, k, t: întreg
    j = 1
    i = 0
    pentru k = 1, n+1, 1 execută
        t = i + j
        i = j
        j = t
    sf_pentru
    returnează j
sf_funcție
```

Un calculator poate să efectueze aproximativ 10^8 (100,000,000) operații pe secundă, unde o operație este o adăugare, atribuie, incrementare, decrementare, scădere, multiplicare, etc. Cât timp va dura execuția codului pentru **n** = **100**?

- a. Mai puțin de o secundă
- b. Între o secundă și un minut
- c. Între un minut și o oră
- d. Mai mult de o oră

Întrebare 3:

```
funcție fibonacci(n: întreg) este:
    i, j, k, t: întreg
    j = 1
    i = 0
    pentru k = 1, n+1, 1 execută
        t = i + j
        i = j
        j = t
    sf_pentru
    returnează j
sf funcție
```

Un calculator poate să efectueze aproximativ 10^8 operații pe secundă, unde o operație este o adăugare, atribuie, incrementare, decrementare, scădere, multiplicare, etc. Cât timp va dura execuția codului pentru **n** = **10,000**?

- a. Mai puțin de o secundă
- b. Între o secundă și un minut
- c. Între un minut și o oră
- d. Mai mult de o oră

Întrebare 4:

```
funcție fibonacci(n: întreg) este:
    i, j, k, t: întreg
    j = 1
    i = 0
    pentru k = 1, n+1, 1 execută
        t = i + j
        i = j
        j = t
    sf_pentru
    returnează j
sf funcție
```

Un calculator poate să efectueze aproximativ 10^8 operații pe secundă, unde o operație este o adăugare, atribuie, incrementare, decrementare, scădere, multiplicare, etc. Cât timp va dura execuția codului pentru **n** = **1,000,000**?

- a. Mai puțin de o secundă
- b. Între o secundă și un minut
- c. Între un minut și o oră
- d. Mai mult de o oră

Întrebare 5:

```
funcție fibonacci(n: întreg) este:
    i, j, k, t: întreg
    j = 1
    i = 0
    pentru k = 1, n+1, 1 execută
        t = i + j
        i = j
        j = t
    sf_pentru
    returnează j
sf funcție
```

Un calculator poate să efectueze aproximativ 10^8 operații pe secundă, unde o operație este o adăugare, atribuie, incrementare, decrementare, scădere, multiplicare, etc. Cât timp va dura execuția codului pentru **n = 100,000,000**?

- a. Mai puțin de o secundă
- b. Între o secundă și un minut
- c. Între un minut și o oră
- d. Mai mult de o oră

<u>Întrebare 6:</u>

```
funcție fibonacci(n: întreg) este:
    i, j, k, t: întreg
    j = 1
    i = 0
    pentru k = 1, n+1, 1 execută
        t = i + j
        i = j
        j = t
    sf_pentru
    returnează j
sf funcție
```

Un calculator poate să efectueze aproximativ 10^8 operații pe secundă, unde o operație este o adăugare, atribuie, incrementare, decrementare, scădere, multiplicare, etc. Cât timp va dura execuția codului pentru **n** = **10,000,000,000**?

- a. Mai puțin de o secundă
- b. Între o secundă și un minut
- c. Între un minut și o oră
- d. Mai mult de o oră

Întrebare 7:

```
funcție fibonacci(n: întreg) este:
    i, j, k, t: întreg
    j = 1
    i = 0
    pentru k = 1, n+1, 1 execută
        t = i + j
        i = j
        j = t
    sf_pentru
    returnează j
sf funcție
```

Un calculator poate să efectueze aproximativ 10^8 operații pe secundă, unde o operație este o adăugare, atribuie, incrementare, decrementare, scădere, multiplicare, etc. Cât timp va dura execuția codului pentru **n = 1,000,000,000,000**?

- a. Mai puțin de o secundă
- b. Între o secundă și un minut
- c. Între un minut și o oră
- d. Mai mult de o oră

Întrebare 8:

```
funcție fibonacci(n: întreg) este:
    i, j, k, t: întreg
    j = 1
    i = 0
    pentru k = 1, n+1, 1 execută
        t = i + j
        i = j
        j = t
    sf_pentru
    returnează j
sf_funcție
```

Cât este complexitatea de spațiu a algoritmului?

- a. Θ(1)
- b. Θ (n)
- c. Θ (n^2)
- d. Θ (n^3)

Întrebare 9:

c. Θ(n)d. Θ(n*logn)e. Θ(n^2)f. Θ(n^3)

```
funcție fibonacci(n: întreg) este:
     a, ta, b, tb, c, rc, tc, d, rd: întreg
     a = 1
     b = 1
     c = 1
     rc = 0
     d = 0
     rd = 1
     câttimp n > 0 execută
           dacă n mod 2 == 1 atunci
                 tc = rc
                 rc = rc*a + rd*c
                 rd = tc*b + rd*d
           sf_dacă
           ta = a
           tb = b
           tc = c
           a = a*a + b*c
           b = ta*b + b*d
           c = c*ta + d*c
           d = tc*tb + d*d
           n = n / 2
     sf câttimp
     returnează rc
sf funcție
Cât este complexitatea de timp a algoritmului?
   a. Θ(1)
   b. Θ(log n)
```

Întrebare 10:

```
funcție fibonacci(n: întreg) este:
     a, ta, b, tb, c, rc, tc, d, rd: întreg
     a = 1
     b = 1
     c = 1
     rc = 0
     d = 0
     rd = 1
     câttimp n > 0 execută
           dacă n mod 2 == 1 atunci
                 tc = rc
                 rc = rc*a + rd*c
                 rd = tc*b + rd*d
           sf_dacă
           ta = a
           tb = b
           tc = c
           a = a*a + b*c
           b = ta*b + b*d
           c = c*ta + d*c
           d = tc*tb + d*d
           n = n / 2
     sf câttimp
     returnează rc
sf funcție
Cât este complexitatea de spațiu a algoritmului?
```

- a. Θ(1)
- b. Θ(n)
- c. Θ(n^2)
- d. Θ(n^3)

Întrebare 11:

```
funcție fibonacci(n: întreg) este:
    fib: întreg[n]
    k: întreg
    fib[0] = 0
    fib[1] = 1
    pentru k = 2, n+1, 1 execută
        fib[k] = fib[k-1]+fib[k-2]
    sf_pentru

    returnează fib[n]
sf_funcție
```

Cât este complexitatea de timp a algoritmului?

- a. Θ(1)
- b. Θ(log n)
- c. Θ(n)
- d. Θ(n*logn)
- e. Θ(n^2)
- f. Θ(n^3)

Întrebare 12:

```
funcție fibonacci(n: întreg) este:
    fib: întreg[n]
    k: întreg
    fib[0] = 0
    fib[1] = 1
    pentru k = 2, n+1, 1 execută
        fib[k] = fib[k-1]+fib[k-2]
    sf_pentru

    returnează fib[n]
sf funcție
```

Cât este complexitatea de spațiu a algoritmului?

- a. Θ(1)
- b. Θ(n)
- c. Θ(n^2)
- d. Θ(n^3)

Întrebare 13:

```
funcție fibonacci(n: întreg) este:
    fib: întreg[n]
    k: întreg
    fib[0] = 0
    fib[1] = 1
    pentru k = 2, n+1, 1 execută
        fib[k] = fib[k-1]+fib[k-2]
    sf_pentru

    returnează fib[n]
sf funcție
```

Un număr întreg ocupă 4 bytes de memorie. Câtă memorie folosește algoritmul pentru **n = 10,000,000?** (1 MB = 1024 bytes)

- a. Aproximativ 1 MB
- b. Aproximativ 4 MB
- c. Aproximativ 10 MB
- d. Aproximativ 40 MB
- e. Aproximativ 100 MB
- f. Aproximativ 400 MB

Întrebare 14:

Cât este complexitatea de timp a algoritmului?

- a. Θ(1)
- b. Θ(log n)
- c. Θ(n)
- d. Θ(n*logn)
- e. Θ(n^2)
- f. Θ(n^3)

Întrebare 15:

Cât este complexitatea de spațiu a algoritmului (ignorând datele de intrare)?

- a. Θ(1)
- b. Θ(n)
- c. Θ(n^2)
- d. Θ(n^3)

Întrebare 16:

Un calculator poate să efectueze aproximativ 10^8 operații pe secundă, unde o operație este o adăugare, atribuie, incrementare, decrementare, scădere, multiplicare, etc. Cât timp va dura execuția codului pentru **n = 100?**

- a. Mai puțin de o secundă
- b. Între o secundă și un minut
- c. Între un minut și o oră
- d. Mai mult de o oră

Întrebare 17:

Un calculator poate să efectueze aproximativ 10^8 operații pe secundă, unde o operație este o adăugare, atribuie, incrementare, decrementare, scădere, multiplicare, etc. Cât timp va dura execuția codului pentru **n = 1,000?**

- a. Mai puțin de o secundă
- b. Între o secundă și un minut
- c. Între un minut și o oră
- d. Mai mult de o oră

Întrebare 18:

Un calculator poate să efectueze aproximativ 10^8 operații pe secundă, unde o operație este o adăugare, atribuie, incrementare, decrementare, scădere, multiplicare, etc. Cât timp va dura execuția codului pentru n = 10,000?

- a. Mai puțin de o secundă
- b. Între o secundă și un minut
- c. Între un minut și o oră
- d. Mai mult de o oră

Întrebare 19:

Un număr întreg ocupă 4 bytes de memorie. Câtă memorie ocupă vectorul *result* pentru **n = 1500?** (1 MB = 1024 bytes)

- a. Aproximativ 1 MB
- b. Aproximativ 4 MB
- c. Aproximativ 10 MB
- d. Aproximativ 40 MB
- e. Aproximativ 100 MB
- f. Aproximativ 400 MB

Avem 2 algoritmi care respectă următoarele condiții:

Algoritmul L (linear) are complexitate de timp $\Theta(n)$, mai exact face aproximativ 100*n operații.

Algoritmul Q (pătratic) are complexitate de timp $\Theta(n^2)$, mai exact face aproximativ $10*n^2 + 10*n$ operații.

La următoarele 4 întrebări, trebuie să vă decideți care algoritmi va rula mai repede pentru diferite valori ale lui n, presupunând că toate operațiile durează la fel de mult.

Întrebare 20:

Care algoritm este mai rapid pentru n=5?

- a. Algoritmul L
- b. Algoritmul Q

Întrebare 21:

Care algoritm este mai rapid pentru n=20?

- a. Algoritmul L
- b. Algoritmul Q

Întrebare 22:

Care algoritm este mai rapid pentru **n=100?**

- a. Algoritmul L
- b. Algoritmul Q

Întrebare 23:

Care algoritm este mai rapid pentru n=2000?

- a. Algoritmul L
- b. Algoritmul Q

Întrebare 24:

- a. Θ(1)
- b. Θ(n)
- c. Θ(n^2)
- d. Θ(n^3)
- e. Θ(2ⁿ)
- f. Niciuna dintre aceste funcții

Întrebare 25:

Alegeți toate clasele de complexitate asimptotică de care aparține funcția următoare: **3/2 * n** (mai multe răspunsuri corecte sunt posibile)

- a. O(1)
- b. O(n)
- c. O(n^2)
- d. O(n^3)
- e. O(2ⁿ)
- f. Ω(1)
- g. Ω(n)
- h. Ω (n^2)
- i. Ω (n^3)
- j. Ω (2^n)
- k. Θ(1)
- I. Θ(n)
- m. Θ(n^2)
- n. Θ(n^3)
- o. Θ(2ⁿ)

Întrebare 26:

- a. Θ(1)
- b. Θ(n)
- c. Θ(n^2)
- d. Θ(n^3)
- e. Θ(2ⁿ)
- f. Niciuna dintre aceste funcții

Întrebare 27:

Alegeți toate clasele de complexitate asimptotică de care aparține funcția următoare: **2n^2 + 5n + 1000** (mai multe răspunsuri corecte sunt posibile)

- a. O(1)
- b. O(n)
- c. O(n^2)
- d. O(n^3)
- e. O(2ⁿ)
- f. Ω(1)
- g. Ω(n)
- h. Ω (n^2)
- i. Ω (n^3)
- j. Ω (2^n)
- k. Θ(1)
- I. Θ(n)
- m. Θ(n^2)
- n. Θ(n^3)
- o. Θ(2ⁿ)

Întrebare 28:

Alegeți cea mai bună clasă de complexitate asimptotică pentru funcția următoare: 100n^3 + 18*nl	Aleget	ti cea mai bună	i clasă de compl	exitate asimptotică	pentru funcția	a următoare:	100n^3 + 18*n	ogr
---	--------	-----------------	------------------	---------------------	----------------	--------------	---------------	-----

- a. Θ(1)
- b. Θ(n)
- c. Θ(n^2)
- d. Θ(n^3)
- e. Θ(2ⁿ)
- f. Niciuna dintre aceste funcții

Întrebare 29:

Alegeți toate clasele de complexitate asimptotică de care aparține funcția următoare: **100n^3 + 18*nlogn** (mai multe răspunsuri corecte sunt posibile)

- a. O(1)
- b. O(n)
- c. O(n^2)
- d. O(n^3)
- e. O(2ⁿ)
- f. Ω(1)
- g. Ω(n)
- h. Ω (n^2)
- i. Ω (n^3)
- j. Ω (2^n)
- k. Θ(1)
- I. Θ(n)
- m. Θ(n^2)
- n. Θ(n^3)
- o. Θ(2ⁿ)

ntrebare 30:

- a. Θ(1)
- b. Θ(n)
- c. Θ(n^2)
- d. Θ(n^3)
- e. Θ(2ⁿ)
- f. Niciuna dintre aceste funcții

Întrebare 31:

Alegeți toate clasele de complexitate asimptotică de care aparține funcția următoare: **50** (mai multe răspunsuri corecte sunt posibile)

- a. O(1)
- b. O(n)
- c. O(n^2)
- d. O(n^3)
- e. O(2ⁿ)
- f. Ω(1)
- g. Ω(n)
- h. Ω (n^2)
- i. Ω (n^3)
- j. Ω (2^n)
- k. Θ(1)
- I. Θ(n)
- m. Θ(n^2)
- n. Θ(n^3)
- o. Θ(2ⁿ)

Întrebare 32:

- a. Θ(1)
- b. Θ(n)
- c. Θ(n^2)
- d. Θ(n^3)
- e. Θ(2ⁿ)
- f. Niciuna dintre aceste funcții

Întrebare 33:

Alegeți toate clasele de complexitate asimptotică de care aparține funcția următoare: $5n*(n^2 + n)$ (mai multe răspunsuri corecte sunt posibile)

- a. O(1)
- b. O(n)
- c. O(n^2)
- d. O(n^3)
- e. O(2ⁿ)
- f. Ω(1)
- g. Ω(n)
- h. Ω (n^2)
- i. Ω (n^3)
- j. Ω (2^n)
- k. Θ(1)
- I. Θ(n)
- m. Θ(n^2)
- n. Θ(n^3)
- o. Θ(2ⁿ)

Întrebare 34:

- a. Θ(1)
- b. Θ(n)
- c. Θ(n^2)
- d. Θ(n^3)
- e. Θ(2ⁿ)
- f. Niciuna dintre aceste funcții

Întrebare 35:

Alegeți toate clasele de complexitate asimptotică de care aparține funcția următoare: n^2*2^n (mai multe răspunsuri corecte sunt posibile)

- a. O(1)
- b. O(n)
- c. O(n^2)
- d. O(n^3)
- e. O(2ⁿ)
- f. Ω(1)
- g. Ω(n)
- h. Ω (n^2)
- i. Ω (n^3)
- j. Ω (2^n)
- k. Θ(1)
- I. Θ(n)
- m. Θ(n^2)
- n. Θ(n^3)
- o. Θ(2ⁿ)

Întrebare 36:

- a. Θ(1)
- b. Θ(n)
- c. Θ(n^2)
- d. Θ(n^3)
- e. Θ(2ⁿ)
- f. Niciuna dintre aceste funcții

Întrebare 37:

Alegeți toate clasele de complexitate asimptotică de care aparține funcția următoare: **3^n** (mai multe răspunsuri corecte sunt posibile)

- a. O(1)
- b. O(n)
- c. O(n^2)
- d. O(n^3)
- e. O(2ⁿ)
- f. Ω(1)
- g. Ω(n)
- h. Ω (n^2)
- i. Ω (n^3)
- j. Ω (2^n)
- k. Θ(1)
- I. Θ(n)
- m. Θ(n^2)
- n. Θ(n^3)
- o. Θ(2ⁿ)

Întrebare 38:

Adevărat sau fals?

- a. $n^2 \in O(n^3)$
- b. $n^3 \in O(n^2)$
- c. $2^{n+1} \in \Theta(2^n)$
- d. $2^{2n} \in \Theta(2^n)$
- e. $n^2 \in \Theta(n^3)$
- f. $2^n \in O(n!)$
- g. $\log_{10} n \in \Theta(\log_2 n)$
- h. $(n + m)^2 \in O(n^2 + m^2)$
- i. $3^n \in O(2^n)$
- j. $\log_2 3^n \in O(\log_2 2^n)$

Răspunsuri:

- 1. C
- 2. A
- 3. A
- 4. A
- 5. B
- 6. C
- 7. D
- 8. A
- 9. B
- 10. A
- 11. C
- 12. B
- 13. D
- 14. F
- 15. C
- 16. A
- 17. B

- 18. D
- 19. C
- 20. B
- 21. A
- 22. A
- 23. A
- 24. B
- 25. B, C, D, E, F, G, L
- 26. C
- 27. C, D, E, F, G, H, M
- 28. D
- 29. D, E, F, G, H, I, N
- 30. A
- 31. A, B, C, D, E, F, K
- 32. D
- 33. D, E, F, G, H, I, N
- 34. E

- 35. E, F, G, H, I, J, O
- 36. F
- 37. F, G, H, I, J
- 38.
- a. Adevărat
- b. Fals
- c. Adevărat
- d. Fals
- e. Fals
- f. Adevărat
- g. Adevărat
- h. Adevărat
- i. Fals
- j. Adevărat