<u>Página Principal</u> / Mis cursos / <u>GRADUADO-A EN INGENIERÍA INFORMÁTICA Y MATEMÁTICAS (2011) (297)</u> / <u>TOPOLOGÍA I (2122)-297 11 26 2122</u> / <u>Tema 1. Espacios topológicos</u> / <u>Prueba tema 1</u>

Comenzado el	viernes, 12 de noviembre de 2021, 09:05
Estado	Finalizado
Finalizado en	viernes, 12 de noviembre de 2021, 09:48
Tiempo empleado	42 minutos 38 segundos
Calificación	7,50 de 10,00 (75 %)

Pregunta 1

Correcta

Se puntúa 2,50 sobre 2,50

Dado un espacio métrico (X,d) y un punto $x\in X$, denotamos por $\overline{B}(x,r)$ a la bola cerrada de centro x y radio r>0. La familia de conjuntos

$$\mathcal{B}_x = \{ \mathrm{int}(\overline{B}(x,r)) : r > 0 \}$$

es una base de entornos del punto x; este enunciado es

Seleccione una:

- Verdadero

 ✓
- Falso

Como $B(x,r)\subset \overline{B}(x,r)$, y el interior de un conjunto es el mayor conjunto abierto contenido en el conjunto, se tiene que $B(x,r)\subset \operatorname{int}(\overline{B}(x,r))$. Por tanto, los elementos de \mathcal{B}_x son entornos de x. Si $U\in \mathcal{N}_x$, como las bolas cerradas forman una base de entornos de x, existe r>0 tal que $\overline{B}(x,r)\subset U$. Entonces

$$\operatorname{int}(\overline{B}(x,r))\subset \overline{B}(x,r)\subset U$$

y concluimos que \mathcal{B}_x es base de entornos de x.

La respuesta correcta es 'Verdadero'

Pregunta **2**

Incorrecta

Se puntúa 0,00 sobre 2,50

Sea (X,T) un espacio topológico, $x\in X$. Consideramos la familia de subconjuntos de X definida por

$$T_x = \{U \in T : x \in U\} \cup \{\emptyset\}.$$

Marcar las respuestas correctas.

- lacksquare a. T_x es una topología en X
- lacksquare b. Si (X,T) es T_1 y x
 eq y, entonces $T_x
 eq T_y$
- ${\Bbb Z}$ c. Para cualquier espacio topológico (X,T) y todo par de puntos $x,y\in X$ tales que x
 eq y se tiene que $T_x
 eq T_y$
- lacksquare d. T_x no es una topología en X

Respuesta incorrecta.

Es fácil comprobar que T_x es una topología en X para todo $x \in X$.

- 1. $\emptyset \in T_x$ por definición. $X \in T_x$ porque $X \in T$ y $x \in X$.
- 2. Si $\{U_i\}_{i\in I}\subset T_x$ o bien todos los conjuntos son vacíos y la unión también lo es, o alguno de ellos no es vacío y debe contener a x, por lo que la unión $\cup_{i\in I}U_i$ pertenece a T y contiene a x. Entonces $\cup_{i\in I}U_i\in T_x$.
- 3. Si $U_1,\ldots,U_k\in T_x$, o bien alguno de los conjuntos es vacío y $U_1\cap\ldots\cap U_k$ es vacío, o bien todos los conjuntos son distintos del vacío y todos deben contener a x. Entonces $x\in U_1\cap\ldots\cap U_k\in T$, por lo que $U_1\cap\ldots\cap U_k\in T_x$.

Si T es la topología trivial en X entonces $T_x=T$ para todo $x\in X$.

Si (X,T) es T_1 , dados $x,y\in X$ tales que $x\neq y$, existe un abierto $U\in T$ tal que $x\in U,y\notin U$. Por tanto $U\in T_x$ y $U\notin T_y$, por lo que $T_x\neq T_y$.

Las respuestas correctas son:

 T_x es una topología en X

 $C: (Y, T) \cap T \cup M \neq M$ ontonces $T \neq T$

or (A, I) es I_1 y $x \neq y$, enconces $I_x \neq I_y$

Pregunta **3**

Correcta

Se puntúa 2,50 sobre 2,50

Sea T_S la topología de Sorgenfrey en $\mathbb R$ generada por la base

$$\mathcal{B}_S = \{[a,b): a < b\}.$$

Sea $A=\mathbb{Q}\cap [0,1]$. Marcar una respuesta

$$igcap$$
 a. $\mathring{A}=\emptyset, \quad \overline{A}=[0,1)$

$$lacksquare$$
 b. $\mathring{A}=\emptyset, \quad \overline{A}=[0,1]$

$$igcup c. \quad \mathring{A}=(0,1), \quad \overline{A}=[0,1)$$

$$igcup ext{d.} \quad \mathring{A}=(0,1), \quad \overline{A}=[0,1]$$

Respuesta correcta

Para todo punto $x \in \mathbb{R}$, una base de entornos de x es

$$\mathcal{B}_x = \{[x, x + \varepsilon) : \varepsilon > 0\}.$$

Como cada conjunto de la base de entornos contiene números irracionales, $\mathring{A}=\emptyset$.

Por otra parte $A\subset \overline{A}$. Si x<0, el conjunto [x,0) es un entorno de x que no corta a A. Si x>1, el conjunto [x,x+1) es un entorno de x que no corta a A. Si $x\in[0,1]\setminus A$ es un número irracional, entonces $x\in(0,1)$ y todo entorno $[x,x+\varepsilon)$, con $\varepsilon>0$, contiene números racionales del intervalo [0,1], por lo que $x\in\overline{A}$. Por tanto $\overline{A}=[0,1]$.

La respuesta correcta es:

$$\mathring{A}=\emptyset,\quad \overline{A}=[0,1]$$

Pregunta 4

Correcta

Se puntúa 2,50 sobre 2,50

Sea T_K la topología de Kuratowski en $\mathbb R$ generada por la base

$$\mathcal{B}_K = \{(a,b): a < b\} \cup \{(a,b) \setminus K: a < b\},$$

donde $K=\{rac{1}{n}:n\in\mathbb{N}\}$. Consideramos en \mathbb{R} la sucesión $\{rac{1}{n}\}_{n\in\mathbb{N}}$. Marcar una única respuesta

- a. La sucesión no converge
- igcup b. La sucesión converge sólo a 0
- igcup c. La sucesión converge sólo a -1
- Od. La sucesión converge a todos los puntos del espacio

Respuesta correcta

La sucesión no puede converger a x<0 porque (x-1,0) es un entorno de x que no contiene ningún punto de la sucesión. Tampoco a x>0 porque $\left(\frac{x}{2},x+1\right)$ es un entorno de x que contiene solo una cantidad finita de puntos de la sucesión. Si existe un límite, debe ser x=0. Pero la sucesión tampoco converge a 0 porque $(-1,1)\setminus K$ es un entorno de 0 que no contiene ningún punto de la sucesión. Se concluye que la sucesión no converge.

La respuesta correcta es:

La sucesión no converge

Ir a...

Grabaciones problemas ►