INF1411 Lab6

Erik Øystein Gåserud erikoga@uio.no

May 8, 2015

Oppgave 1

a)

Vi erstatter R_1, R_2, R_3 med én motstand, R_{tot} .

$$R_{tot} = \frac{R_2 R_3}{R_2 + R_3} + R_1 = \frac{150 M \Omega^2}{25 k \Omega} + 5 k \Omega = 11 k \Omega$$

b)

$$V_{RMS} = 1 + 2sin(t) \cdot 0,707$$

Vi har $-1 \le sin(t) \le 1$. Vi setter inn max for sin(t) og får

$$V_{RMS} = 1 + 2 * \cdot 0,707$$

fra Ohms-lov V=RI får vi da

$$I_{RMS} = \frac{V_{RMS}}{R_{tot}} = \frac{2,414V}{11k\Omega} = 0,22mA$$

c)

$$-1V < V_{in} < 3V$$

Den største og minste øyeblikksverdien for V_{out} blir da gitt ved

$$\frac{R_1}{R_{tot}}V_{in-} \le V_{out} \le \frac{R_1}{R_{tot}}V_{in+}$$
$$-\frac{5k\Omega}{11k\Omega}1V \le V_{out} \le \frac{5k\Omega}{11k\Omega}3V$$
$$-0.45V \le V_{out} \le 1.36V$$

d)

$$V_{out} = \frac{X_c}{R_{tot} - R_1 + X_c} V_{in}$$
 $A = \frac{V_{out}}{V_{in}}$ $R_{tot} = \frac{R_2 R_3}{R_2 + R_3} + R_1$

$$A = \frac{\frac{X_c}{R_{tot} - R_1 + X_c} V_{in}}{V_{in}} = \frac{X_c}{R_{tot} - R_1 + X_c} = \frac{X_c}{\frac{R_2 R_3}{R_2 + R_3} + X_c}$$

 $\mathbf{e})$

Fra tidligere vet vi at

$$A = \frac{X_c}{\frac{R_2 R_3}{R_2 + R_3} + X_c} \qquad X_c = \frac{1}{2\pi f C}$$

Vi setter $f = 0 \land \infty$ og får.

$$X_c \lim_{f \to 0} = \infty$$
 $X_c \lim_{f \to \infty} = 0$
 $A \lim_{f \to 0} = 1$ $A \lim_{f \to \infty} = 0$

Oppgave 2

a)

Leser fra figur at $V_R=-60\rm V$ gir $I_R=5\rm nA,\ V_F=0.5\rm V$ gir $I_F=500\mu\rm A$ og $V_F=0.8\rm V$ gir $I_F=6.5\rm mA$ slik at ved bruk av Ohms lov V=RI lov får vi

$$R_R = \frac{-60V}{5nA}$$
 $R_F = \frac{0.5V}{500\mu A}$ $R_F = \frac{0.8V}{6.5mA}$ $R_F = 123\Omega$

b)

 $V_{in} = V_{ac} + V_{dc}$ gir $0V \leq V_{in} \leq 2V$ slik at strømmen gjennom Rblir gitt ved

$$I_{max} = \frac{1.3}{10k\Omega}$$
 $I_{min} = \frac{0V}{10k\Omega}$
 $I_{max} = 130mA$ $I_{min} = 0A$

Spenningsfallet over R for I_{min} blir 0V fordi V_{ac} ikke greier å trenge gjennom diodens barriere spenning på 0.7V.

c)

V_a	V_b	V_{out}
0	0	1
0	1	1
1	0	1
1	1	0

Table 1: sannhetstabell til kretsen i figur 4

Denne kjenner vi igjen som en NAND. For at transistoren skal slutte kretsen mellom V_{out} og jord, så må spenningen over diodene være mindre enn barrierespenningene. For å oppnå dette så må både V_a og V_b være høye, da blir ikke spenningen trukket mot jord via V_a og V_b , og transistoren slutter kretsen mellom V_{out} og jord.

Oppgave 3

a-1)

Figur 5 viser en inverterende summasjonsforsterker. Dette ser vi fordi

- Negativt tilbaketoblet, altså en forsterker.
- \bullet Legger sammen V_1, V_2 og V_3 til én ledning, den summerer.
- Inngangssignalet er koblet til den den negative inngangen, altså inverterende.

a-2

$$gain = A = \frac{-R_f}{R_i} = -\frac{14.1k\Omega}{\frac{4.7k\Omega}{3}} = -9$$

a-3

$$A(V_1 + V_2 + V_3) = V_{out}$$
$$-9(1V - 2V + V_3) = -8V$$
$$-1V + V_3 = \frac{8}{9}V$$
$$V_3 = \frac{17}{9}V$$