ЛЕКЦИИ ПО МАТЕМАТИЧЕСКОМУ АНАЛИЗУ (1 СЕМЕСТР)

А. А. Пожарский

Содержание

1 лек	кция	
1.	Элементы математической логики и теории множеств	4
1.1.	Высказывания и действия над ними	4
1.2.	Множества и операции над ними	5
1.3.	Отображения множеств	6
2, 3 J	текция	
2.	Вещественные числа	8
2.1.	Аксиоматика теории вещественных чисел	8
2.2.	Алгебраические свойства вещественных чисел	9
2.3.	Минимальный и максимальный элементы	10
2.4.	Точные нижняя и верхняя грани	11
2.5.	Важнейшие подмножества вещественных чисел	12
2.6.	Основные теоремы о полноте множества вещественных чисел	13
4, 5 J	текция	
3.	Предел последовательности	16
3.1.	Предел последовательности и его основные свойства	16
3.2.	Монотонные последовательности	18
3.3.	Число е	19
3.4.	Фундаментальные последовательности	20
3.5.	Бесконечно большие последовательности	21
3.6.	Частичный предел последовательности	22
3.7.	Нижний и верхний пределы	22
6 лек	кция	
4.	Предел функции	24
4.1.	Предел функции и его основные свойства	24
4.2.	Односторонние пределы	25
4.3.	Бесконечные пределы	26
4.4.	<i>О</i> -большое и <i>о</i> -малое	26
7, 8,	9 лекция	
5.	Элементарные функции	27
5.1.	Экспонента (вещественный случай)	27
5.2.	Логарифм и степень (вещественный случай)	30
5.3.	Комплексные числа и операции над ними	31
5.4.	Экспонента (комплексный случай)	33
5.5.	Тригонометрические функции	33
5.6	Логарифм и степень (комплексный случай)	35

5.7.	Полиномы и основная теорема алгебры	36
5.8.	Рациональные функции и разложение на простейшие дроби	37
10, 11	лекция	
6.	Непрерывные функции	40
6.1.	Непрерывные функции и их элементарные свойства	40
6.2.	Классификация разрывов	41
6.3.	Основные теоремы о непрерывных функциях	41
6.4.	Монотонные функции	43
6.5.	Равномерная непрерывность	44
6.6.	Непрерывность элементарных функций	45
12, 13	3, 14 лекция	
7.	Дифференцирование	47
7.1.	Дифференцирование и его основные свойства	47
7.2.	Основные правила дифференцирования	49
7.3.	Дифференцирование элементарных функций	51
7.4.	Производные высших порядков	53
7.5.	Дифференциал функции	54
7.6.	Основные теоремы о дифференцируемых функциях	56
7.7.	Правило Лопиталя	59
15, 16	3 лекция	
8.	Формула Тейлора	61
8.1.	Формула Тейлора	61
8.2.	Формулы Маклорена для элементарных функций	62
8.3.	Вычисление пределов с помощью формулы Тейлора	64
8.4.	Геометрическое определение тригонометрических функций	65
17 ле	кция	
9.	Геометрическое исследование функций	68
9.1.	Условия монотонности функции	68
9.2.	Условия локального экстремума функции	68
9.3.	Условия выпуклости функции	70
9.4.	Схема построения графика функции	73
18 ле	·	
10.	Неопределенный интеграл	74
10.1.	Первообразная и неопределенный интеграл	74
10.2.		75
10.3.		75
•	лекция	
11.	Определенный интеграл Римана	77
11.1.		77
11.2.		78
11.3.		80
11.4.	±	82
11.5.		85
21 ле	·	~ -
12.	Определенный интеграл Римана и первообразная	87
12.1.		87
12.2.	Методы вычисления определенных интегралов	88

12.3.	Формула Тейлора	89
22 лек	ишя	
13.	Гладкая кривая на плоскости	91
13.1.	Длина гладкой кривой на плоскости	91
13.2.	Площадь криволинейной трапеции и сектора	93
13.3.	Кривизна гладкой кривой	94

1. Элементы математической логики и теории множеств

1.1. Высказывания и действия над ними.

Определение 1.1.

- Утверждение, относительно которого известно, истинно оно или ложно, называют высказыванием.
- Отрицанием высказывания P (обозначение: $\neg P$; читается: "не P") называют высказывание, которое ложно тогда, когда P истинно, и истинно, когда P ложно.
- Конъюнкцией высказываний P и Q (обозначение: $P \wedge Q$; читается: "P и Q") называют высказывание, которое истинно тогда, когда истинны оба высказывания P и Q, и ложное в остальных случаях.
- Дизтонкцией высказываний P и Q (обозначение: $P \lor Q$; читается: "P или Q") называют высказывание, которое истинно тогда, когда истинно хотя бы одно из высказываний P и Q, и ложное, если P и Q ложны.
- Импликацией высказываний P и Q (обозначение: $P \Longrightarrow Q$, $Q \Longleftarrow P$; читается: "из P следует Q", "если P, то Q") называют высказывание, которое ложно в случае, если P истинно, а Q ложно, и истинно в остальных случаях.
- Эквивалентностью высказываний P и Q (обозначение: $P \iff Q$; читается: "P тогда и только тогда когда Q", "для P необходимо и достаточно Q") называют высказывание, которое истинно тогда, когда оба высказывания P и Q либо истинны, либо ложны, и ложно если одно из высказываний P и Q истинно, а другое ложно.

Теорема 1.2 (Метод доказательства от противного). Пусть P и Q – высказывания, тогда следующее высказывание истинно:

$$(P \Longrightarrow Q) \Longleftrightarrow (\neg Q \Longrightarrow \neg P).$$

Доказательство. Необходимость (\Longrightarrow). Возможны следующие варианты.

- (1) $(P\Longrightarrow Q)$ ложно, тогда по определению 1.1 $((P\Longrightarrow Q)\Longrightarrow (\neg Q\Longrightarrow \neg P))$ истинно.
- (2) $(P \Longrightarrow Q)$ истинно, тогда возможно следующие варианты.
 - P истинно и Q истинно $\Longrightarrow \neg Q$ ложно $\Longrightarrow (\neg Q \Longrightarrow \neg P)$ истинно $\Longrightarrow ((P \Longrightarrow Q) \Longrightarrow (\neg Q \Longrightarrow \neg P))$ истинно.
 - P ложно и Q истинно $\Longrightarrow \neg Q$ ложно $\Longrightarrow (\neg Q \Longrightarrow \neg P)$ истинно $\Longrightarrow ((P \Longrightarrow Q) \Longrightarrow (\neg Q \Longrightarrow \neg P))$ истинно.
 - P ложно и Q ложно $\Longrightarrow \neg P$ истинно и $\neg Q$ истинно $\Longrightarrow (\neg Q \Longrightarrow \neg P)$ истинно $\Longrightarrow ((P \Longrightarrow Q) \Longrightarrow (\neg Q \Longrightarrow \neg P))$ истинно.

Достаточность (⇐). Аналогично, с точностью до переобозначений. 🗆

Определение 1.3. Пусть P(a) – высказывание, которое зависит от параметра a.

- ullet Высказывание ($\forall a P(a)$) означает, что P(a) истинно для всех допустимых a.
- ullet Высказывание ($\exists a: P(a)$) означает, что существует а такой, что P(a) истинно. 1
- Высказывание ($\exists !a : P(a)$) означает, что существует единственный а такой, что P(a) истинно.

 $^{^{1}}$ Классически считается правильно писать без двоеточия: $(\exists aP(a))$, но мы позволим себе использовать двоеточие в качестве замены словосочетания "такой, что".

 $^{^{2}}$ Классически считается правильно писать без двоеточия: ($\exists ! aP(a)$)

Задача 1.4. Доказать, что следующее утверждение не является высказыванием: "Брадобрей бреет тех, кто не бреет себя сам".

В дальнейшем мы будем предполагать, что все утверждения, с которыми мы имеем дело, являются высказываниями. В частности, мы предполагаем истинность принципа исключенного третьего, согласно которому высказывание $(P \lor \neg P)$ считается истинным для любого обсуждаемого в настоящем курсе утверждения (за исключением примера из задачи 1.4).

Задача 1.5. Выяснить какие из следующих высказываний истинны и доказать их, а для остальных привести контр-пример.

- $(1) \neg (P \land Q) \Longleftrightarrow (\neg P) \lor (\neg Q).$
- $(2) \neg (P \lor Q) \Longleftrightarrow (\neg P) \land (\neg Q).$
- $(3) (P \Longrightarrow Q) \Longleftrightarrow (\neg Q \Longrightarrow P).$
- $(4) (P \Longrightarrow Q) \Longleftrightarrow (Q \land P) \lor (\neg P).$
- (5) $(P \Longrightarrow Q) \Longleftrightarrow (\neg Q) \lor P$.
- (6) $\neg(\exists a P(a)) \iff \forall a(\neg P(a)).$
- $(7) \neg (\forall a P(a)) \Longleftrightarrow \exists a (\neg P(a)).$
- 1.2. Множества и операции над ними. Теория множеств может быть построена на основе системы аксиом, которые принимаются без доказательства, и на основании которых должны выводиться все последующие утверждения. Мы позволим себе не формулировать полностью всю систему аксиом, а остановимся лишь на основных операциях над множествами.

Определение 1.6.

- Пустым множеством называют множество, не содержащее ни одного элемента. Такое множество обозначают символом \varnothing .
- Запись $A = \{a_1, \dots, a_n\}$ означает, что множество A состоит из элементов a_1, \dots, a_n .
- Запись $A = \{a \mid P(a)\}$ означает, что множество A состоит из таких элементов a, что высказывание P(a) истинно.
- $3 anucь \ a \in A \ o$ значает, что a элемент множества A.
- $3anucb\ a \not\in A$ означает, что a не является элементом множества A.
- Запись $B \subset A$ означает, что B множество, состоящее из элементов множества A, или, другими словами, B подмножество множества A.
- $3anucb\ B \not\subset A$ означает, что B не является подмножеством множества A.
- Запись A = B означает, что множества A и B состоят из одних и тех же элементов.
- Запись a = b означает, что a u b обозначают один u тот же элемент некоторого множества.

В дальнейшем, заглавными буквами A, B, C, \dots мы будем обозначать множества, а строчными буквами a, b, c, \dots – элементы множеств.

Пример 1.7. Пусть
$$A = \{a, b, c\}, \ B = \{a, b\}, \ C = \{c\}.$$
 Тогда верно, что $a \in A, \quad b \in B, \quad c \in C, \quad B \subset A, \quad C \subset A, \quad c \not\in B, \quad C \not\subset B.$

Не следует путать понятия элемент с и множество $\{c\}$. Например, неверно писать $c \subset C$ или $C \in A$.

Определим теперь некоторые разрешенные операции над множествами, в результате которых, снова получаются множества.

Определение 1.8.

- Объединением $A \cup B$ множеств A и B называют множество, состоящее из элементов, принадлежащих по крайней мере одному из множеств A или B.
- Пересечением $A \cap B$ множеств A и B называют множество, состоящее из элементов, принадлежащих одновременно множествам A и B.
- Разностью $A \setminus B$ множеств A и B называют множество, состоящее из элементов множества A, не принадлежащих множеству B.
- Произведением $A \times B$ множеств A и B называют множество, состоящее из упорядоченных пар (a,b), образованных из элементов $a \in A$ и $b \in B$. Произведение $A \times A$ обозначается через A^2 .

Замечание 1.9. Аналогично можно определить объединение $\cup_n A_n$, пересечение $\cap_n A_n$ и произведение $A_1 \times A_2 \times \ldots$ нескольких множеств A_1, A_2, \ldots

Пример 1.10. Пусть $A = \{a, b, c, d\}, B = \{a, b\}, C = \{c\}, D = \{b, d\}.$ Тогда

- $B \cup C = \{a, b, c\}, B \cup D = \{a, b, d\}, B \cup C \cup D = A, B \cup A = A,$
- $B \cap C = \emptyset$, $A \cap B = B$, $B \cap D = \{b\}$,
- $A \setminus B = \{c, d\}, B \setminus D = \{a\}, B \setminus C = B, B \setminus A = \emptyset,$
- $B \times C = \{(a, c), (b, c)\}, C \times B = \{(c, a), (c, b)\}, B \times C \neq C \times B.$

Задача 1.11. Докажите истинность следующих высказываний.

- $(1) (A \cup B) \cap C = (A \cap C) \cup (B \cap C).$
- $(2) \ A \setminus (B \cup C) = (A \setminus B) \cap (A \setminus C).$
- (3) $(A \cup B) \times C = (A \times C) \cup (B \times C)$.
- (4) $(A \cup B) \subset C \iff (A \subset C) \land (B \subset C).$
- (5) $C \subset (A \cup B) \iff (C \subset A) \land (C \subset A)$.

1.3. Отображения множеств.

Определение 1.12. Однозначным отображением f множесства X во множесство Y называют правило, которое каждому элементу $x \in X$ ставит в соответствие один элемент $f(x) \in Y$. Такое отображение обозначают через $f: X \to Y$.

Определение 1.13. Многозначным отображением f множества X во множество Y называют правило, которое каждому элементу $x \in X$ ставит в соответствие подмножество $f(x) \subset Y$.

В дальнейшем, как правило, мы будем иметь дело с однозначными отображениями. Поэтому, если не оговорено противное, мы будем использовать термин отображение только для однозначного отображения.

Определение 1.14. Отображение $f: X \to Y$ называют инъекцией, если следующее высказывание истинно:

$$((x_1, x_2) \in X^2) \land (x_1 \neq x_2) \implies f(x_1) \neq f(x_2).$$

Теорема 1.15. Пусть $f: X \to Y$ – интекция, тогда следующее высказывание истинно:

$$f(x_1) = f(x_2) \quad \Longrightarrow \quad x_1 = x_2.$$

Определение 1.16. Образом подмножества $A \subset X$ при отображении $f: X \to Y$ называют множество

$$f(A) = \{ y \in Y \mid \exists \ x \in A : y = f(x) \}.$$

Определение 1.17. Прообразом подмножества $B \subset Y$ при отображении $f: X \to Y$ называют множество

$$f^{-1}(B) = \{ x \in X \mid \exists \ y \in B : y = f(x) \}.$$

Определение 1.18. Отображение $f: X \to Y$ называют сюрчекцией, если

$$f(X) = Y$$
.

Определение 1.19. Отображение $f: X \to Y$ называют биекцией X на Y, если f – интекция u сюртекция.

Определение 1.20. Тождественным отображением называют отображение $\mathrm{id}_X: X \to X$ такое, что $\forall \ x \in X \ \mathrm{id}_X(x) = x$.

Определение 1.21. Пусть $f: X \to Y$ и $g: Y \to Z$. Композицией отображений f и g называют отображение $g \circ f: X \to Z$ такое, что $\forall x \in X$ $g \circ f(x) = g(f(x))$.

Теорема 1.22 (Ассоциативность композиции). Пусть $f: X \to Y, g: Y \to Z \ u \ h: Z \to W.$ Тогда $h \circ (g \circ f) = (h \circ g) \circ f.$

Доказательство. Легко видеть, что $\forall x \in X$

$$h \circ (g \circ f)(x) = h((g \circ f)(x)) = h(g(f(x))) = (h \circ g)(f(x)) = (h \circ g) \circ f(x).$$

Теорема 1.23 (Обратимость биекции). Пусть $f: X \to Y$ – биекция, тогда $\exists ! g: Y \to X: (f \circ g = \mathrm{id}_Y) \land (g \circ f = \mathrm{id}_X)$. В этом случае говорят, что g – обратное отображение κ f и обозначают через f^{-1} .

Доказательство. Из сюръективности f следует, что $\forall y \in Y \exists x \in X : y = f(x)$, а из инъективности f следует, что такой x единственный. Положим по определению g(y) = x, где x : y = f(x). Отсюда следует, что

$$\forall \ x \in X \ g \circ f(x) = g(y) = x; \quad \forall \ y \in Y \ f \circ g(y) = f(x) = y.$$

Таким образом, $g \circ f = \mathrm{id}_X$ и $f \circ g = \mathrm{id}_Y$.

Проверим единственность g. Пусть $h: Y \to X: (f \circ h = \mathrm{id}_Y) \wedge (h \circ f = \mathrm{id}_X)$, тогда

$$g = g \circ (f \circ h) = (g \circ f) \circ h = \mathrm{id}_X \circ h = h.$$

Определение 1.24. Пусть $f: X \to Y$ и $A \subset X$. Отображение $f|_A: A \to Y$, заданное правилом $f|_A: x \longmapsto f(x)$, называют сужением отображения f на множество A.

Пример 1.25. Пусть $X = [0, \pi], Y = [0, 1]$. Тогда

- $f: x \to x/10$ интекция X в Y,
- $f: x \to \sin x c \omega p \pi e \kappa u u x X + u x Y$
- $f: x \to \sin(x/2)$ биекция X на Y.

Задача 1.26. Пусть $f: X \to Y$ и $A, B \subset X$. Докажите истинность следующих высказываний.

- (1) $A \subset B \Longrightarrow f(A) \subset f(B)$.
- (2) $\neg(\exists f: f(A) \subset f(B) \Longrightarrow A \subset B)$.
- (3) $\forall f \ f(A) \subset f(B) \Longrightarrow A \subset B$.
- (4) $f(A) \cap f(B) = \emptyset \iff A \cap B = \emptyset$.

2. Вещественные числа

2.1. Аксиоматика теории вещественных чисел.

Определение 2.1 (аксиоматика теории вещественных чисел). *Множеество* \mathbb{R} называют множеством вещественных чисел, а элементы \mathbb{R} – вещественными числами, если выполнены следующие аксиомы.

Аксиомы сложения. Определено однозначное отображение из \mathbb{R}^2 в \mathbb{R} , которое любой паре $(x,y) \in \mathbb{R}^2$ ставит в соответствие элемент, который обозначается $x+y \in \mathbb{R}$ и называется их суммой. При этом выполнены следующие аксиомы.

- (1) $\forall x, y \in \mathbb{R}$ верно, что x + y = y + x (коммутативность).
- (2) $\forall x, y, z \in \mathbb{R}$ верно, что x + (y + z) = (x + y) + z (ассоциативность).
- $(3) \exists 0 \in \mathbb{R} : \forall x \in \mathbb{R}$ верно, что x + 0 = x (существование нуля).
- (4) $\forall \ x \in \mathbb{R} \ \exists \ y \in \mathbb{R} : x + y = 0$, элемент у обозначают символом -x (существование противоположного элемента).

Аксиомы умножения. Определено однозначное отображение из \mathbb{R}^2 в \mathbb{R} , которое любой паре $(x,y) \in \mathbb{R}^2$ ставит в соответствие элемент, который обозначается $x \cdot y \in \mathbb{R}$ и называется их произведением. При этом выполнены следующие аксиомы.

- (5) $\forall x, y \in \mathbb{R}$ верно, что $x \cdot y = y \cdot x$ (коммутативность).
- (6) $\forall x, y, z \in \mathbb{R}$ верно, что $x \cdot (y \cdot z) = (x \cdot y) \cdot z$ (ассоциативность).
- (7) $\forall x, y, z \in \mathbb{R}$ верно, что $(x+y) \cdot z = x \cdot z + y \cdot z$ (дистрибутивность).
- (8) $\exists 1 \in \mathbb{R} \setminus \{0\} : \forall x \in \mathbb{R} \text{ верно, что } x \cdot 1 = x \text{ (существование единицы).}$
- (9) $\forall x \in \mathbb{R} \setminus \{0\} \exists y \in \mathbb{R} : x \cdot y = 1$, элемент у обозначают символом x^{-1} (существование обратного элемента).

Аксиомы порядка. $Ha \ \mathbb{R}$ определено отношение порядка \leq . При этом выполнены следующие аксиомы.

- (10) $\forall x \in \mathbb{R} \text{ верно, что } x \leqslant x.$
- (11) $\forall x, y \in \mathbb{R}$ верно, что $(x \leqslant y) \lor (y \leqslant x)$.
- (12) $\Pi y cm v \ x, y \in \mathbb{R} : (x \leqslant y) \land (y \leqslant x) \implies x = y.$
- (13) $\Pi ycmb \ x, y, z \in \mathbb{R} : (x \leqslant y) \land (y \leqslant z) \implies x \leqslant z \ (mpaнзитивность).$
- (14) $\Pi y cmb \ x, y \in \mathbb{R} : x \leqslant y \implies x + z \leqslant y + z \ \forall \ z \in \mathbb{R}.$
- (15) $\Pi y cm v \ x, y \in \mathbb{R} : (0 \leqslant x) \land (0 \leqslant y) \implies 0 \leqslant x \cdot y.$

Аксиома полноты.

(16) Пусть заданы непустые подмножества $X,Y \subset \mathbb{R}$ такие, что $\forall x \in X, \ \forall y \in Y$ верно, что $x \leqslant y$. Тогда $\exists z \in \mathbb{R} : (x \in X) \land (y \in Y) \implies x \leqslant z \leqslant y$.

Теорема 2.2. Система аксиом теории вещественных чисел однозначно определяет множество вещественных чисел, с точностью до изоморфизма. Более точно, если \mathbb{R}_1 и \mathbb{R}_2 – реализации множества вещественных чисел, то существует биективное отображение $f: \mathbb{R}_1 \to \mathbb{R}_2$ такое, что $\forall x, y \in \mathbb{R}_1$ следующие высказывания истинны.

- (1) f(x+y) = f(x) + f(y).
- (2) $f(x \cdot y) = f(x) \cdot f(y)$.
- (3) $x \leqslant y \iff f(x) \leqslant f(y)$.

Доказательство. Без доказательства. \square

Теорема 2.3.

- (1) Непротиворечивость системы аксиом теории вещественных чисел не может быть доказана средствами теории вещественных чисел.
- (2) Непротиворечивость системы аксиом теории вещественных чисел может быть выведена из непротиворечивости системы аксиом теории множеств.

Доказательство. Без доказательства. \square

Определение 2.4. Разностью чисел $x \in \mathbb{R}$ и $y \in \mathbb{R}$ называют число $x + (-y) \in \mathbb{R}$, которое обозначают x - y.

Определение 2.5. Частным чисел $x \in \mathbb{R}$ и $y \in \mathbb{R} \setminus \{0\}$ называют число $x \cdot y^{-1} \in \mathbb{R}$, которое обозначают $\frac{x}{y}$.

Определение 2.6. На \mathbb{R} определены отношения порядка \geqslant , < u > следующими правилами.

- $x \geqslant y \iff y \leqslant x$.
- $x < y \iff x \leqslant y \ u \ x \neq y$.
- $x > y \iff y < x$.

2.2. Алгебраические свойства вещественных чисел.

Свойство 2.7. Справедливы следующие высказывания.

- (1) $B \mathbb{R}$ cyщecmeyem единственный ноль.
- $(2) \ \forall \ x \in \mathbb{R} \ \exists \ ! \ противоположный элемент -x.$
- (3) $\forall a, b \in \mathbb{R} \exists ! x \in \mathbb{R} : a + x = b, \text{ причем } x = b a.$
- (4) $B \mathbb{R}$ существует единственная единица.
- $(5) \ \forall \ x \in \mathbb{R} \setminus \{0\} \ \exists \ ! \ oбратный элемент \ x^{-1}.$
- (6) $\forall a \in \mathbb{R} \setminus \{0\}, b \in \mathbb{R} \exists ! x \in \mathbb{R} : a \cdot x = b, \text{ npurem } x = \frac{b}{a}.$
- (7) $\forall x \in \mathbb{R} \text{ верно, что } x \cdot 0 = 0.$
- (8) $\Pi y cmb \ x, y \in \mathbb{R} : x \cdot y = 0 \implies (x = 0) \lor (y = 0).$
- (9) $\forall x \in \mathbb{R} \text{ верно, что } (-1) \cdot x = -x.$
- (10) $\forall x \in \mathbb{R}$ верно, что $(-1) \cdot (-x) = x$.
- (11) $\forall x, y \in \mathbb{R}$ верно, что $(-x) \cdot (-y) = x \cdot y$.
- (12) $\forall x, y \in \mathbb{R}$ выполняется одно и только одно из трех соотношений: x < y, x = y или x > y.
- (13) Пусть $x, y, z \in \mathbb{R}$, тогда следующие высказывания истинны.

$$(x < y) \land (y \le z) \implies x < z.$$

 $(x \le y) \land (y < z) \implies x < z.$

(14) Пусть $x, y, z, w \in \mathbb{R}$, тогда следующие высказывания истинны.

$$x < y \implies x + z < y + z.$$

$$x > 0 \implies (-x) < 0.$$

$$(x \le y) \land (z \le w) \implies (x + z \le y + w).$$

$$(x < y) \land (z \le w) \implies (x + z < y + w).$$

(15) Пусть $x, y, z \in \mathbb{R}$, тогда следующие высказывания истинны.

$$\begin{aligned} &(x>0) \wedge (y>0) &\implies x \cdot y > 0. \\ &(x<0) \wedge (y>0) &\implies x \cdot y < 0. \\ &(x>0) \wedge (y<0) &\implies x \cdot y < 0. \\ &(x<0) \wedge (y<0) &\implies x \cdot y < 0. \\ &(x<0) \wedge (y<0) &\implies x \cdot y > 0. \\ &(x>y) \wedge (z>0) &\implies x \cdot z > y \cdot z. \\ &(x>y) \wedge (z<0) &\implies x \cdot z < y \cdot z. \end{aligned}$$

- (16) 0 < 1.
- (17) Пусть $x, y \in \mathbb{R}$, тогда следующие высказывания истинны.

$$x > 0 \implies x^{-1} > 0.$$

 $(x > 0) \land (y > x) \implies y^{-1} < x^{-1}.$

Доказательство. Мы позволим себе доказать истинность лишь некоторых высказываний.

(1) Пусть существует два нуля 0 и 0'. Тогда из аксиом (1) и (3) следует, что

$$0' = 0' + 0 = 0 + 0' = 0$$
. \square

- (7) Из аксиомы (3) следует, что x+0=x, отсюда и из аксиомы (7) получим, что $x\cdot x+0\cdot x=x\cdot x$. Отсюда и из аксиомы (4) получим, что $(x\cdot x+0\cdot x)+(-x\cdot x)=x\cdot x+(-x\cdot x)$. Далее, используя аксиому (2), получим $0\cdot x=0$. Теперь необходимое утверждение следует из коммутативности произведения (аксиома (5)). \square
 - (16) Легко видеть, что

$$a.(4) \implies 1 + (-1) = 0 \stackrel{\text{a.(7)}}{\Longrightarrow} 1 \cdot (-1) + (-1) \cdot (-1) = 0 \cdot (-1) \stackrel{\text{c.(7)}}{\Longrightarrow}$$

$$\stackrel{\text{c.(7)}}{\Longrightarrow} 1 \cdot (-1) + (-1) \cdot (-1) = 0 \stackrel{\text{a.(8)}}{\Longrightarrow} (-1) + (-1) \cdot (-1) = 0 \Longrightarrow$$

$$\implies 1 + ((-1) + (-1) \cdot (-1)) = 1 + 0 \stackrel{\text{a.(2)}}{\Longrightarrow} (-1) \cdot (-1) = 1,$$

где a.(4) – аксиома (4), c.(7) – свойство (7) и т.д. Таким образом, мы доказали, что

$$(-1) \cdot (-1) = 1 \tag{2.1}$$

Из аксиомы (11) следует, что либо $1 \le 0$, либо $0 \le 1$. Допустим, что $1 \le 0$, тогда из аксиом (4) и (14) следует, что $0 \le -1$. Отсюда и из аксиомы (15) получим, что $0 \le (-1) \cdot (-1)$. Теперь, учитывая (2.1), получим, что $0 \le 1$. Полученное противоречие означает, что $0 \le 1$.

Из аксиомы (8) следует, что $0 \neq 1$, следовательно 0 < 1. \square

2.3. Минимальный и максимальный элементы.

Определение 2.8. Пусть X – произвольное подмножество \mathbb{R} .

- Элемент $m_* \in X$ называют минимальным элементом X, если для любого $x \in X$ выполнено неравенство $m_* \leqslant x$. Минимальный элемент обозначают $\min_{x \in X} x$ или $\min X$.
- Элемент $m^* \in X$ называют максимальным элементом X, если для любого $x \in X$ выполнено неравенство $m^* \geqslant x$. Максимальный элемент обозначают $\max_{x \in X} x$ или $\max X$.
- Число $|x| = \max\{x, -x\}$ называют абсолютной величиной числа x.

Теорема 2.9. Любое множество X может иметь не более одного минимального (максимального) элемента.

Доказательство. Пусть x и y — минимальные элементы X. Из того, что x — минимальный, следует, что $x \leqslant y$. Из того, что y — минимальный, следует, что $y \leqslant x$. Теперь из аксиомы (12) следует, что x = y.

Доказательство для максимального элемента проводится аналогично. 🗆

2.4. Точные нижняя и верхняя грани.

Определение 2.10. Пусть X – произвольное подмножество \mathbb{R} .

- Говорят, что X ограничено снизу, если существует $m \in \mathbb{R}$ такое, что $x \geqslant m$ для любого $x \in X$. Число m называют нижней гранью X.
- Говорят, что X ограничено сверху, если существует $M \in \mathbb{R}$ такое, что $x \leq M$ для любого $x \in X$. Число M называют верхней гранью X.
- Говорят, что X ограничено, если существует $M \in \mathbb{R}$ такое, что $|x| \leqslant M$ для любого $x \in X$.

Определение 2.11. Пусть X – произвольное подмножество \mathbb{R} .

- Число s, являющееся нижней гранью X, называют точной нижней гранью X, если $s \geqslant m$ для любой нижней грани m множества X. Точную нижнюю грань обозначают $\inf_{x \in X} x$ или $\inf X$.
- Число S, являющееся верхней гранью X, называют точной верхней гранью X, если $S \leq M$ для любой верхней грани M множества X. Точную верхнюю грань обозначают $\sup_{x \in X} x$ или $\sup_{x \in X} X$.

Теорема 2.12 (Теорема о существовании точных граней). Всякое непустое ограниченное снизу (сверху) подмножество множества \mathbb{R} имеет точную нижнюю (верхнюю) грань и притом единственную.

Доказательство. Пусть X – данное подмножество и Y – множество всех нижних граней X. По условию множества X и Y не пусты и $\forall \ x \in X, \forall \ y \in Y \ y \leqslant x$. Поэтому из аксиомы полноты следует, что $\exists \ c \in \mathbb{R} : \forall \ x \in X, \forall \ y \in Y \ y \leqslant c \leqslant x$. Из определения 2.11 следует, что c – точная нижняя грань X. Так как c – минимальный элемент Y, то единственность точной нижней грани следует из теоремы 2.9.

Доказательство для точной верхней грани проводится аналогично. \square

Определение 2.13. Пусть X – произвольное подмножество \mathbb{R} .

- Говорят, что X неограниченно сверху, если $\forall M \in \mathbb{R} \exists x \in X : x \geqslant M$. При этом $numym \sup X = +\infty$.
- Говорят, что X неограниченно снизу, если $\forall m \in \mathbb{R} \exists x \in X : x \leqslant M$. При этом пишут inf $X = -\infty$.

Пример 2.14. Пусть $X = \{x \mid (x \ge 0) \land (x < 1)\}$. Найти минимальный и максимальный элементы X.

Решение. Легко видеть, что $\min_{x \in [0,1)} x = 0$ и $\sup_{x \in [0,1)} x = 1$. Однако, $1 \notin [0,1)$, поэтому максимальный элемент не существует. \square

Задача 2.15. Пусть $X \subset \mathbb{R}$ ограниченное множество. Доказать, что

- (1) $\forall \varepsilon > 0 \exists x \in X : \sup X < x + \varepsilon;$
- (2) $\forall \varepsilon > 0 \exists x \in X : x \varepsilon < \inf X$.

2.5. Важнейшие подмножества вещественных чисел.

Определение 2.16. *Множество* X *называют индуктивным, если* $\forall x \in X \ x+1 \in X$.

Определение 2.17. Множеством натуральных чисел \mathbb{N} называют наименьшее индуктивное множество, содержащее 1. При этом вводят следующие обозначения $2=1+1,\ 3=1+2,\ 4=1+3,\ u$ т. ∂ .

Лемма 2.18 (Корректность определения 2.17). $\mathbb{N} = \bigcap_a X_a$, где X_a – семейство всех индуктивных множеств, содержащих 1.

Доказательство. Докажем, что $\bigcap_a X_a$ – индуктивное множество

$$\left(x \in \bigcap_{a} X_{a}\right) \implies (\forall \ a \ x \in X_{a}) \implies (\forall \ a \ x + 1 \in X_{a}) \implies \left(x + 1 \in \bigcap_{a} X_{a}\right).$$

Докажем теперь, что $\mathbb{N}=\bigcap_a X_a$. Пусть Y – индуктивное множество, содержащее 1. Тогда $\exists \ a:Y=X_a$ и, следовательно, $\bigcap_a X_a\subset Y$. Таким образом, $\bigcap_a X_a$ – наименьшее индуктивное множество, содержащее 1. \square

Теорема 2.19 (Принцип математической индукции). Пусть P_1, P_2, \ldots – бесконечная последовательность высказываний, занумерованных натуральными числами. Пусть

- P_1 истинное высказывание;
- для любого $n \in \mathbb{N}$ доказано, что если P_n истинно, то P_{n+1} истинно.

Тогда P_n истинно для любого $n \in \mathbb{N}$.

Доказательство. Пусть $X = \{n \in \mathbb{N} \mid P_n$ - истинно $\}$. Тогда X – индуктивное множество, содержащее 1, и $X \subset \mathbb{N}$. Теперь из определения \mathbb{N} следует, что $X = \mathbb{N}$. \square

Пример 2.20. Доказать, что для любого $n \in \mathbb{N}$ верно, что

$$\sum_{k=1}^{n} \frac{1}{2^k} = 1 - \frac{1}{2^n}.\tag{2.2}$$

Доказательство. Доказательство проведем по индукции. При n=1 равенство (2.2) имеет вид $\frac{1}{2}=\frac{1}{2}$ и потому истинно.

Пусть равенство (2.2) верно при n=p. Докажем, что (2.2) верно и при n=p+1. Действительно,

$$\sum_{k=1}^{p+1} \frac{1}{2^k} = \sum_{k=1}^{p} \frac{1}{2^k} + \frac{1}{2^{p+1}} = 1 - \frac{1}{2^p} + \frac{1}{2^{p+1}} = 1 - \frac{1}{2^{p+1}}. \square$$

Определение 2.21. Непустое множество X называют конечным, если существует $N \in \mathbb{N}$ и биекция множества $\{n \in \mathbb{N} \mid n \leq N\}$ на X. При этом говорят, что множество X содержит ровно N элементов.

Свойство 2.22. Любое конечное подмножество X множества \mathbb{R} имеет минимальный и максимальный элементы.

Доказательство. Для любого $n \in \mathbb{N}$ обозначим через \mathcal{B}_n множество всех подмножеств \mathbb{R} содержащих ровно n элементов.

Доказательство проведем по индукции. Пусть $X \in \mathcal{B}_1$, тогда, очевидно, множество X содержит единственный элемент, который будет и минимальным и максимальным.

Пусть $\forall X \in \mathcal{B}_p$ существует минимальный и максимальный элементы. Докажем, что $\forall Y \in \mathcal{B}_{p+1}$ существуют минимальный и максимальный элементы. Пусть f биекция $\{n \in \mathbb{N} \mid n \leqslant p+1\}$ на Y. Легко видеть, что $Y = Z_1 \cup Z_p$, где $Z_1 = \{f(p+1)\} \in \mathcal{B}_1$ и $Z_p = \{f(1), f(2), \ldots, f(p)\} \in \mathcal{B}_p$.

Из предположения индукции следует, что определены $m_* = \min Z_p$ и $m^* = \max Z_p$. Наконец, осталось заметить, что из свойства 2.7(12) следует, что для любого двух-элементного подмножества $\mathbb R$ существуют минимальный и максимальный элементы, и

$$\min Y = \min(m_*, f(p+1)), \quad \max Y = \max(m^*, f(p+1)). \square$$

Определение 2.23. Говорят, что множество X счетно, если существует биекция $\mathbb N$ на X.

Определение 2.24. Множеством целых чисел называют подмножество множества вещественных чисел \mathbb{R} вида

$$\mathbb{Z} = \{ n \in \mathbb{R} \mid \exists \ k, m \in \mathbb{N} : n = k - m \}.$$

Определение 2.25. Множеством рациональных чисел называют подмножество множества вещественных чисел \mathbb{R} вида

$$\mathbb{Q} = \{ r \in \mathbb{R} \mid \exists \ a \in \mathbb{N}, \ \exists \ b \in \mathbb{Z} : a \cdot r = b \}.$$

Свойство 2.26. Пусть $r_1, r_2 \in \mathbb{Q}$ и $a_1, a_2 \in \mathbb{N}$, $b_1, b_2 \in \mathbb{Z}$ такие, что $a_1 \cdot r_1 = b_1$ и $a_2 \cdot r_2 = b_2$. Тогда $r_1 + r_2 = \frac{b_1 a_2 + b_2 a_1}{a_1 a_2}$.

Доказательство. Следует из того, что $r_1 + r_2$ является решением уравнения $(r_1 + r_2) \cdot (a_1 \cdot a_2) = b_1 \cdot a_2 + b_2 \cdot a_1$. \square

Определение 2.27. *Множеством иррациональных чисел называют подмножество множества вещественных чисел* \mathbb{R} *вида* $\mathbb{I} = \mathbb{R} \setminus \mathbb{Q}$.

Tеорема 2.28. $\mathbb{I} \neq \emptyset$.

Доказательство. \mathbb{Q} – счетно, \mathbb{R} – несчетно. \square

Определение 2.29. Говорят, что множество X имеет мощность континуума, если существует биекция [0,1] на X.

2.6. Основные теоремы о полноте множества вещественных чисел.

Определение 2.30. Для любых $a, b \in \mathbb{R}$: $a \leq b$ введем в рассмотрение следующие множества

- $(a,b) = \{x \in \mathbb{R} \mid (a < x) \land (x < b)\}$ (unimersal);
- $\bullet \ (a,b] = \{x \in \mathbb{R} \mid (a < x) \land (x \leqslant b)\};$
- $\bullet [a,b) = \{x \in \mathbb{R} \mid (a \leqslant x) \land (x < b)\};$
- $[a,b] = \{x \in \mathbb{R} \mid (a \leqslant x) \land (x \leqslant b)\}$ (ompesor);
- $\bullet \ (a, +\infty) = \{x \in \mathbb{R} \mid a < x\}, \ [a, +\infty) = \{x \in \mathbb{R} \mid a \leqslant x\};$
- $\bullet \ (-\infty, a) = \{x \in \mathbb{R} \mid x < a\}, \ (-\infty, a] = \{x \in \mathbb{R} \mid x \leqslant a\}.$

Теорема 2.31 (Принцип вложенных отрезков (Коши—Кантора)). Пусть задана бесконечная последовательность вложенных отрезков

$$[a_1,b_1]\supset [a_2,b_2]\supset\ldots\supset [a_n,b_n]\supset\ldots,$$

 $m. \ e. \ \forall \ n \in \mathbb{N} \ верно, \ что \ [a_n,b_n] \supset [a_{n+1},b_{n+1}]. \ Torda \ справедливы \ следующие \ утверждения.$

- $(1) \exists c \in \mathbb{R} : \forall n \in \mathbb{N} c \in [a_n, b_n].$
- (2) Если, кроме того, $\forall \varepsilon > 0 \; \exists \; n \in \mathbb{N} : b_n a_n < \varepsilon, \; mo \; \bigcap_{n \in \mathbb{N}} [a_n, b_n] = \{c\} \; (eдинственность точки c).$

Доказательство. Пусть $A = \bigcup_{n=1}^{\infty} \{a_n\}$ и $B = \bigcup_{n=1}^{\infty} \{b_n\}$. Докажем, что $\forall \ a \in A$ и $\forall \ b \in B$ верно, что $a \leqslant b$. Доказательство проведем от противного. Пусть $a_n \in A$ и $b_p \in B$ такие, что $b_p < a_n$. Для определенности будем считать, что n < p, тогда

$$a_p \leqslant b_p < a_n \leqslant b_n$$

что противоречит включению $[a_n, b_n] \supset [a_p, b_p]$.

Применяя аксиому полноты для множеств A и B, получим, что

$$\exists \ c \in \mathbb{R} : \forall \ a \in A \ \forall \ b \in B \ (a \leqslant c \leqslant b).$$

Отсюда следует, что $\forall n \in \mathbb{N} \ c \in [a_n, b_n].$

Утверждение (2) докажем от противного. Пусть $c_1, c_2 \in \bigcap_{n \in \mathbb{N}} [a_n, b_n]$ и $c_1 < c_2$, тогда для $\varepsilon = c_2 - c_1 > 0$ найдется $n \in \mathbb{N}$ такое, что $b_n - a_n < \varepsilon$. Следовательно,

$$\varepsilon = c_2 - c_1 \leqslant b_n - a_n < \varepsilon.$$

Полученное противоречие завершает доказательство теоремы. \square

Лемма 2.32. Пусть $\varepsilon > 0$ и a > 1, тогда $\exists n \in \mathbb{N} : \frac{1}{a^n} < \varepsilon$.

Доказательство. Пусть множество $X = \{a^n \mid n \in \mathbb{N}\}$ ограничено сверху, тогда существует конечная точная верхняя грань $\sup X$. Из определения точной верхней грани следует, что существует $p \in \mathbb{N}$: $\sup X < a^p + (a-1)$. Следовательно,

$$a^{p+1} \le \sup X < a^p + (a-1) < a^p + a^p(a-1) = a^{p+1}.$$

Полученное противоречие доказывает, что множество X неограничено сверху. Следовательно, $\forall \ \varepsilon>0 \ \exists \ n\in\mathbb{N}: a^n>\frac{1}{\varepsilon}.$ \square

Теорема 2.33 (Принцип Бореля-Лебега). Из всякой (бесконечной) системы интервалов, покрывающей отрезок, можно выбрать конечную подсистему, также покрывающую этот отрезок.

Доказательство. Пусть

$$[\alpha,\beta]\subset\bigcup_{\omega\in\Omega}(a_{\omega},b_{\omega}),$$

т. е. система интервалов (a_{ω}, b_{ω}) , где $\omega \in \Omega$, покрывает отрезок $[\alpha, \beta]$. Доказательство теоремы проведем от противного. Пусть множество Ω бесконечно и не существует конечного подмножества $W \subset \Omega$ такого, что

$$[\alpha,\beta] \subset \bigcup_{\omega \in W} (a_{\omega},b_{\omega}).$$

Представим отрезок $[\alpha, \beta]$ в виде $[\alpha, \beta] = [\alpha, \delta_1] \cup [\delta_1, \beta]$, где $\delta_1 = \frac{\alpha+\beta}{2}$. Если бы каждый из отрезков $[\alpha, \delta_1]$ и $[\delta_1, \beta]$ можно было покрыть конечной подсистемой интервалов, то оказалось бы что и исходный отрезок $[\alpha, \beta]$ можно покрыть конечной подсистемой интервалов. Обозначим через $[\alpha_1, \beta_1]$ тот из отрезков $[\alpha, \delta_1]$ и $[\delta_1, \beta]$, который нельзя покрыть конечной подсистемой интервалов. Заметим, что $\beta_1 - \alpha_1 = \frac{\beta-\alpha}{2}$.

Повторим теперь эту процедуру для отрезка $[\alpha_1, \beta_1]$. В результате получим отрезок $[\alpha_2, \beta_2] \subset [\alpha_1, \beta_1]$, который нельзя покрыть конечной подсистемой интервалов, и $\beta_2 - \alpha_2 = \frac{\beta - \alpha}{2^2}$.

Повторяя эту процедуру снова и снова, получим последовательность вложенных отрезков

$$[\alpha_1, \beta_1] \supset [\alpha_2, \beta_2] \supset \ldots \supset [\alpha_n, \beta_n] \supset \ldots,$$

такую, что $\beta_n - \alpha_n = \frac{\beta - \alpha}{2^n}$, где $n \in \mathbb{N}$. При этом ни один из отрезков данной последовательности нельзя покрыть конечной подсистемой интервалов (имеется в виду подсистема исходной системы интервалов $(a_{\omega}, b_{\omega}), \omega \in \Omega$).

Из принципа вложенных отрезков следует, что $\bigcap_{n\in\mathbb{N}}[\alpha_n,\beta_n]=c$. При этом найдется $w\in\Omega$ такое,

что $c \in (a_w, b_w)$. Пусть $p \in \mathbb{N} : \frac{\beta - \alpha}{2^p} < \min(c - a_w, b_w - c)$, тогда $[\alpha_p, \beta_p] \subset (a_w, b_w)$ Однако это противоречит тому, что отрезок $[\alpha_p, \beta_p]$ нельзя покрыть конечной подсистемой интервалов. \square

- Определение 2.34. Пусть $a \in \mathbb{R} \ u \ \delta > 0$.
 - ullet Интервал $(a-\delta,a+\delta)$ называют δ -окрестностью точки a.
 - ullet Множество $(a-\delta,a+\delta)\setminus\{a\}$ называют проколотой δ -окрестностью точки a.

Определение 2.35. Пусть $a \in \mathbb{R}$ и $A \subset \mathbb{R}$. Говорят, что a – предельная точка множества A, если любая δ -окрестность точки a содержит бесконечное число точек множества A.

Теорема 2.36 (Теорема о предельной точке множества (Больцано — Вейерштрасса)). Всякое ограниченное бесконечное множество имеет по крайней мере одну предельную точку.

Доказательство. Пусть X данное множество. Из ограниченности X следует, что $\exists \ [a,b] \subset \mathbb{R}$ такое, что

$$X \subset [a, b]. \tag{2.3}$$

Дальнейшее доказательство проведем от противного. Пусть X не имеет предельных точек, тогда $\forall \, x \in [a,b]$ существует окрестность U(x) точки x, которая содержит не более чем конечное число точек множества X. Ясно, что $[a,b] \subset \bigcup_{x \in [a,b]} U(x)$, поэтому из принципа Бореля-Лебега

следует, что найдется конечное множество W такое, что

$$[a,b] \subset \bigcup_{x \in W} U(x). \tag{2.4}$$

Так как каждое множество U(x) содержит конечно число точек множества X и множество W – конечно, то $\bigcup_{x\in W} U(x)$ содержит лишь конечно число точек множества X. Отсюда, учитывая (2.3)

и (2.4), заключаем, что X содержит конечное число точек. Полученное противоречие завершает доказательство. \square

Задача 2.37. Приведите пример бесконечной последовательности вложенных интервалов

$$(a_1,b_1)\supset (a_2,b_2)\supset\ldots\supset (a_n,b_n)\supset\ldots$$

maкux, что $\bigcap_{n\in\mathbb{N}}(a_n,b_n)=\varnothing$.

Задача 2.38. Приведите пример системы интервалов, накрывающей интервал (0,1), из которой нельзя выбрать конечную подсистему, накрывающую интервал (0,1).

Задача 2.39. Приведите пример множества, для которого $\{\frac{1}{n} \mid n \in \mathbb{N}\} \cup \{0\}$ – множество предельных точек.

Задача 2.40. Доказать, что \mathbb{N} – неограниченное сверху множество и \mathbb{Z} – неограниченное как сверху, так и снизу множество.

3. Предел последовательности

3.1. Предел последовательности и его основные свойства.

Определение 3.1.

- Отображение $f:\mathbb{N}\to\mathbb{R}$ называют числовой последовательностью.
- Значения f(n) обозначают x_n и называют n-м членом последовательности.
- Числовую последовательность вида

$$x_1, x_2, \ldots, x_n, \ldots$$

обозначают символом $\{x_n\}_{n\in\mathbb{N}}$ или, сокращенно, $\{x_n\}$.

Определение 3.2. Числовую последовательность $\{x_n\}$ называют сходящейся, если

$$\exists \ a \in \mathbb{R} : \forall \ \varepsilon > 0 \ \exists \ N = N(\varepsilon) : \forall \ n > N \ |x_n - a| < \varepsilon.$$

 Πpu этом число a называют пределом последовательности $\{x_n\}$ и используют обозначение

$$\lim_{n \to \infty} x_n = a.$$

Пример 3.3. Пусть $x_n = \frac{(-1)^n}{n}$ при $n \in \mathbb{N}$. Доказать, что $\lim_{n \to \infty} x_n = 0$.

Решение. Пусть $\varepsilon>0$ и $N(\varepsilon)=\varepsilon^{-1}$, тогда $\forall~n>N(\varepsilon)$ верно, что $|x_n-0|=\frac{1}{n}<\varepsilon$. \square

Свойство 3.4. Сходящаяся последовательность имеет только один предел.

Доказательство. Доказательство проведем от противного. Пусть a и b – пределы последовательности $\{x_n\}$. Для $\varepsilon = |b-a|/2$

$$\exists N_1 : \forall n > N_1 |x_n - a| < \varepsilon$$

И

$$\exists N_2: \forall n > N_2 |x_n - b| < \varepsilon.$$

Следовательно, $\forall n > \max(N_1, N_2)$

$$|b - a| = |b - x_n + x_n - a| \le |b - x_n| + |x_n - a| < 2\varepsilon = |b - a|.$$

Полученное противоречие завершает доказательство.

Свойство 3.5. Сходящаяся последовательность ограничена.

Доказательство. Пусть $\lim_{n\to\infty}x_n=a$, тогда для $\varepsilon=1$

$$\exists N: \forall n > N |x_n - a| < 1.$$

Следовательно, учитывая, что всякое конечное множество ограничено (см. свойство 2.22), получим, что $\forall n \geqslant 1$

$$|x_n| \le |a| + |x_n - a| \le |a| + 1 + \max_{1 \le n \le N} |x_n - a|. \square$$

Теорема 3.6 (Предел суммы последовательностей). Пусть $\lim_{n\to\infty} x_n = a$ u $\lim_{n\to\infty} y_n = b$, тогда $\lim_{n\to\infty} (x_n + y_n) = a + b$.

Доказательство. Пусть $\varepsilon > 0$, тогда

$$\exists N_1 : \forall n > N_1 |x_n - a| < \frac{\varepsilon}{2}$$

И

$$\exists N_2 : \forall n > N_2 |y_n - b| < \frac{\varepsilon}{2}.$$

Следовательно, $\forall n > N = \max(N_1, N_2)$

$$|(x_n + y_n) - (a + b)| = |(x_n - a) + (y_n - b)| \le |x_n - a| + |y_n - b| \le \varepsilon.$$

Теорема 3.7 (Предел разности последовательностей). Пусть $\lim_{n\to\infty} x_n = a \ u \lim_{n\to\infty} y_n = b, \ mor \partial a \lim_{n\to\infty} (x_n - y_n) = a - b.$

Доказательство. Доказывается также как и теорема 3.6. \square

Теорема 3.8 (Предел произведения последовательностей). Пусть $\lim_{n\to\infty} x_n = a$ u $\lim_{n\to\infty} y_n = b$, $mor\partial a \lim_{n\to\infty} (x_n \cdot y_n) = a \cdot b$.

Доказательство. Из свойства 3.5 следует, что $\exists~M>0: \forall~n\in\mathbb{N}~|x_n|\leqslant M$. Пусть $\varepsilon>0$, тогда

$$\exists N_1 : \forall n > N_1 |x_n - a| < \frac{\varepsilon}{2|b| + 1}$$

И

$$\exists N_2: \forall n > N_2 |y_n - b| < \frac{\varepsilon}{2M}.$$

Следовательно, $\forall n > N = \max(N_1, N_2)$

$$|x_ny_n - ab| = |x_ny_n - x_nb + x_nb - ab| \leqslant |x_n||y_n - b| + |b||x_n - a| < \frac{\varepsilon}{2} + \frac{\varepsilon|b|}{2|b| + 1} < \varepsilon. \square$$

Теорема 3.9 (Предел частного последовательностей). Пусть $\lim_{n\to\infty} x_n = a$, $\lim_{n\to\infty} y_n = b$, $b\neq 0$ u $\forall \ n\in\mathbb{N} \ y_n\neq 0$, $mor\partial a\lim_{n\to\infty} \frac{x_n}{y_n} = \frac{a}{b}$.

Доказательство. Из свойства 3.5 следует, что

$$\exists M > 0 : \forall n \in \mathbb{N} |x_n| \leqslant M.$$

Из определения предела следует, что

$$\exists N_1: \forall n > N_1 |y_n - b| < \frac{|b|}{2}$$

и, следовательно,

$$\forall n > N_1 |y_n| \geqslant |b| - |y_n - b| > \frac{|b|}{2}.$$

Пусть теперь $\varepsilon > 0$, тогда

$$\exists N_1: \forall n > N_2 |x_n - a| < \frac{\varepsilon |b|}{2}$$

И

$$\exists N_2: \forall n > N_3 |y_n - b| < \frac{b^2 \varepsilon}{4M}.$$

Следовательно, $\forall n > N = \max(N_1, N_2, N_3)$

$$\left|\frac{x_n}{y_n} - \frac{a}{b}\right| = \left|\frac{x_n}{y_n} - \frac{x_n}{b} + \frac{x_n}{b} - \frac{a}{b}\right| \leqslant \frac{|x_n|}{|y_n||b|}|b - y_n| + \frac{|x_n - a|}{|b|} < \frac{M}{|y_n||b|} \frac{b^2 \varepsilon}{4M} + \frac{\varepsilon}{2} = \varepsilon. \square$$

Теорема 3.10 (Предельный переход в неравенствах). Пусть $\lim_{n\to\infty} x_n = a$, $\lim_{n\to\infty} y_n = b$ $u \ \forall n \in \mathbb{N}$ $x_n \leqslant y_n$, $mor \partial a \ a \leqslant b$.

Доказательство. Доказательство проведем от противного. Пусть a>b, тогда для $\varepsilon=\frac{a-b}{2}$

$$\exists N_1: \forall n > N_1 |x_n - a| < \varepsilon$$

И

$$\exists N_2 : \forall n > N_2 |y_n - b| < \varepsilon.$$

Следовательно, $\forall n > \max(N_1, N_2)$

$$y_n = b + y_n - b < b + \varepsilon = a - \varepsilon < a + x_n - a = x_n.$$

Полученная оценка противоречит предположению теоремы о том, что $\forall n \in \mathbb{N} \ x_n \leqslant y_n$. \square

Пример 3.11. Пусть
$$x_n = \frac{1}{n}, \ y_n = \frac{2}{n} \ \partial n \ n \in \mathbb{N}. \ 3 \ a \ mem \ u \ mo \ \forall \ n \in \mathbb{N} \ x_n < y_n, \ o \ d \ h \ a \ constant$$

$$\lim_{n \to \infty} x_n = \lim_{n \to \infty} y_n = 0.$$

Таким образом, при переходе к пределу строгие неравенства, вообще говоря, превращаться в нестрогие неравенства.

Теорема 3.12 (Теорема о сжатой переменной). Пусть $\lim_{n\to\infty} x_n = a$, $\lim_{n\to\infty} z_n = a$ $u \ \forall \ n \in \mathbb{N}$ верно, что $x_n \leqslant y_n \leqslant z_n$, тогда $\lim_{n\to\infty} y_n = a$.

Доказательство. Пусть $\varepsilon > 0$, тогда

$$\exists N_1 : \forall n > N_1 |x_n - a| < \varepsilon$$

И

$$\exists N_2 : \forall n > N_2 |z_n - a| < \varepsilon.$$

Следовательно, $\forall n > N = \max(N_1, N_2)$

$$-\varepsilon < x_n - a \leqslant y_n - a \leqslant z_n - a < \varepsilon$$
,

откуда $|y_n - a| < \varepsilon$. \square

Задача 3.13. Пусть $\lim_{n\to\infty} x_n = a \ u \ X = \{x_n \mid n\in\mathbb{N}\}.$

- ullet Доказать, что а единственная предельная точка множества X.
- Пусть $b \notin X \cup \{a\}$. Доказать, что $\exists \ \varepsilon > 0 : (b \varepsilon, b + \varepsilon) \cap X = \varnothing$.

Задача 3.14. Пусть $\{x_n\}$ – ограниченная последовательность, которая не сходится. Доказать, что существует по крайней мере две предельные точки множества $X = \{x_n \mid n \in \mathbb{N}\}.$

3.2. Монотонные последовательности.

Определение 3.15. Последовательность $\{x_n\}$ называют

- неубывающей, если $\forall n \in \mathbb{N} \ x_n \leqslant x_{n+1};$
- невозрастающей, если $\forall n \in \mathbb{N} \ x_n \geqslant x_{n+1}$;
- монотонной, если она неубывающая или невозрастающая;
- убывающей, если $\forall n \in \mathbb{N} \ x_n > x_{n+1};$
- возрастающей, если $\forall n \in \mathbb{N} \ x_n < x_{n+1}$.

Теорема 3.16 (Критерий сходимости монотонной последовательности (Вейерштрасс)).

(1) $\Pi y cm \delta \{x_n\}$ – неубывающая последовательность. Тогда

$$\{x_n\}$$
 - $cxodumcs \iff \{x_n\}$ - $orpahuчeha$ $cepxy$.

(2) Пусть $\{x_n\}$ – невозрастающая последовательность. Тогда

$$\{x_n\}$$
 – $cxodumcs \iff \{x_n\}$ – $orpahuчeнa$ $chusy.$

(3) Пусть $\{x_n\}$ – монотонная последовательность. Тогда

$$\{x_n\}$$
 – $cxodumcs \iff \{x_n\}$ – $orpahuчeнa$.

Доказательство. (1) Необходимость (\Longrightarrow) . Следует из свойства (3.5).

Достаточность (\Leftarrow). По условию множество $\{x_n \mid n \in \mathbb{N}\}$ ограничено сверху, следовательно, существует конечная точная верхняя грань $a = \sup_{n \in \mathbb{N}} x_n$.

Докажем, что $\lim_{n\to\infty} x_n = a$. Пусть $\varepsilon > 0$, тогда из определения точной верхней грани следует, что $\exists \ N \in \mathbb{N} : x_N + \varepsilon > a$. Отсюда, принимая во внимание, что $\{x_n\}$ – неубывающая последовательность, получим, что $\forall \ n > N$

$$|x_n - a| = a - x_n \leqslant a - x_N < \varepsilon.$$

Утверждения (2) и (3) доказываются аналогично. □

Задача 3.17. Доказать сходимость и найти предел последовательности, заданной рекуррентно $x_1=1$ и $x_{n+1}=\frac{1}{2}\left(x_n+\frac{a}{x_n}\right)$ для $n\in\mathbb{N}$.

3.3. **Число** *e*.

Лемма 3.18 (Лемма Бернулли). Пусть a > -1 и $n \in \mathbb{N}$, тогда

$$(1+a)^n \geqslant 1+an. \tag{3.1}$$

Доказательство. Доказательство проведем по индукции. Очевидно, что при n=1 оценка (3.1) верна. Пусть оценка (3.1) справедлива при $n=p\in\mathbb{N}$, тогда при n=p+1 верно, что

$$(1+a)^{p+1} = (1+a)^p(1+a) \ge (1+ap)(1+a) = 1+a(p+1)+pa^2 \ge 1+a(p+1).$$

По индукции. □

Теорема 3.19. Пусть $x_n = \left(1 + \frac{1}{n}\right)^n$ при $n \in \mathbb{N}$, тогда последовательность $\{x_n\}$ сходится.

Доказательство. Легко видеть, что $\forall n \in \mathbb{N}$

$$\frac{x_{n+1}}{x_n} = \left(\frac{n+2}{n+1}\right)^{n+1} \left(\frac{n}{n+1}\right)^n = \frac{n+1}{n} \left(\frac{n+2}{n+1} \cdot \frac{n}{n+1}\right)^{n+1} = \frac{n+1}{n} \left(\frac{n^2+2n}{n^2+2n+1}\right)^{n+1} = \frac{n+1}{n} \left(1 - \frac{1}{(n+1)^2}\right)^{n+1} \geqslant \frac{n+1}{n} \left(1 - \frac{1}{n+1}\right) = 1.$$

Отсюда следует, что $\{x_n\}$ – неубывающая последовательность.

Рассмотрим вспомогательную последовательность $\{y_n\}$, где $y_n=\left(1+\frac{1}{n}\right)^{n+1}$ при $n\in\mathbb{N}$. Легко видеть, что \forall $n\in\mathbb{N}$

$$\frac{y_n}{y_{n+1}} = \left(\frac{n+1}{n}\right)^{n+1} \left(\frac{n+1}{n+2}\right)^{n+2} = \frac{n}{n+1} \left(\frac{n+1}{n} \cdot \frac{n+1}{n+2}\right)^{n+2} = \frac{n}{n+1} \left(\frac{n^2+2n+1}{n^2+2n}\right)^{n+2} = \frac{n}{n+1} \left(1 + \frac{1}{n^2+2n}\right)^{n+2} \geqslant \frac{n}{n+1} \left(1 + \frac{n+2}{n^2+2n}\right) = 1.$$

Отсюда следует, что $\{y_n\}$ – невозрастающая последовательность. Более того,

$$\forall n \in \mathbb{N} \quad x_1 \leqslant x_n < y_n \leqslant y_1.$$

Теперь из критерия сходимости монотонной последовательности следует, что x_n и y_n сходящиеся последовательности.

Заметим также, что $\lim_{n\to\infty} z_n=1$, где $z_n=1+\frac{1}{n}$ при $n\in\mathbb{N}$. Учитывая, что $y_n=x_nz_n$, из теоремы о пределе произведения двух последовательностей получим, что

$$\lim_{n\to\infty} y_n = \lim_{n\to\infty} x_n z_n = \lim_{n\to\infty} x_n \lim_{n\to\infty} z_n = \lim_{n\to\infty} x_n. \ \Box$$

Определение 3.20. $e = \lim_{n \to \infty} (1 + \frac{1}{n})^n$.

3.4. Фундаментальные последовательности.

Определение 3.21. Последовательность $\{x_n\}$ называют фундаментальной, если

$$\forall \ \varepsilon > 0 \ \exists \ N = N(\varepsilon) : \forall \ n > N \ \forall \ k > N \ |x_n - x_k| < \varepsilon.$$

Лемма 3.22. Пусть $\{x_n\}$ – фундаментальная последовательность, тогда $\{x_n\}$ – ограниченная последовательность.

Доказательство. Пусть $\varepsilon=1$, тогда $\exists N: \forall \ n>N \ |x_n-x_{N+1}|<1$. Отсюда и из свойства 2.22 следует, что $\forall \ n\in\mathbb{N}$

$$\min(x_1, x_2, \dots, x_N, x_{N+1} - 1) \leqslant x_n \leqslant \max(x_1, x_2, \dots, x_N, x_{N+1} + 1). \square$$

Теорема 3.23 (Критерий Коши сходимости последовательности). $\{x_n\}$ – сходящаяся последовательность $\{x_n\}$ – фундаментальная последовательность.

Доказательство. Необходимость (\Longrightarrow). Пусть $\lim_{n\to\infty}x_n=a$ и $\varepsilon>0$, тогда

$$\exists N : \forall n > N |x_n - a| < \frac{\varepsilon}{2}.$$

Следовательно, $\forall n > N$ и $\forall k > N$

$$|x_n - x_k| = |x_n - a + a - x_k| \leqslant |x_n - a| + |a - x_k| < \varepsilon.$$

Достаточность (\iff). Из леммы 3.22 следует, $\{x_n\}$ ограниченная последовательность. Предположим, что множество $X = \{x_n \mid n \in \mathbb{N}\}$ бесконечно, тогда из теоремы Больцано-Вейерштрасса следует, что X имеет по крайней мере одну предельную точку. Обозначим ее через a.

Пусть $\varepsilon > 0$. Из фундаментальности $\{x_n\}$ следует, что

$$\exists N_1 : \forall n > N_1 \ \forall k > N_1 \ |x_n - x_k| < \frac{\varepsilon}{2}.$$

Из определения предельной точки следует, что

$$\exists p > N_1 : |a - x_p| < \frac{\varepsilon}{2}.$$

Следовательно,

$$\forall n > N_1 |a - x_n| \leqslant |a - x_p| + |x_p - x_n| < \varepsilon.$$

Предположим теперь, что множество X конечно. Здесь возможны два варианта, либо

$$\exists N : \forall n > N \ \forall k > N \ x_n = x_k$$

либо

$$\forall N : \exists n > N \ \exists k > N : x_n \neq x_k. \tag{3.2}$$

Рассмотрим первый вариант. Положим $x_{N+1}=a$ и докажем, что $\lim_{n\to\infty}x_n=a$. Пусть $\varepsilon>0$, тогда

$$\forall n > N |x_n - a| = |x_n - x_{N+1}| = 0 < \varepsilon.$$

Рассмотрим второй вариант. Докажем, что в этом случае $\{x_n\}$ не может быть фундаментальной последовательностью. Из конечности X вытекает, что существует следующий минимум

$$m = \min_{x \in X, y \in X, x \neq y} |x - y| > 0.$$

Пусть тем не менее $\{x_n\}$ фундаментальная последовательность. Тогда для $\varepsilon=m$

$$\exists N: \forall n > N \ \forall k > N \ |x_n - x_k| < \varepsilon.$$

При этом из (3.2) следует, что

$$\exists n_* > N \ \exists k_* > N : x_{n_*} \neq x_{k_*},$$

и, следовательно,

$$\varepsilon = \min_{x \in X, y \in X, x \neq y} |x - y| \leqslant |x_{n_*} - x_{k_*}| < \varepsilon.$$

Полученное противоречие завершает доказательство теоремы.

Отметим, что критерий Коши удобно использовать в тех случаях, когда заранее неизвестен предполагаемый предел последовательности.

3.5. Бесконечно большие последовательности.

Определение 3.24.

• Говорят, что последовательность $\{x_n\}$ стремиться к плюс бесконечности, если

$$\forall M \in \mathbb{R} \exists N = N(\varepsilon) : \forall n > N \ x_n > M.$$

При этом используют обозначение

$$\lim_{n \to \infty} x_n = +\infty.$$

• Говорят, что последовательность $\{x_n\}$ стремиться к минус бесконечности, если

$$\forall M \in \mathbb{R} \exists N = N(\varepsilon) : \forall n > N \ x_n < M.$$

При этом используют обозначение

$$\lim_{n\to\infty} x_n = -\infty.$$

ullet Последовательность $\{x_n\}$ называют бесконечно большой, если

$$\forall M \in \mathbb{R} \exists N = N(\varepsilon) : \forall n > N |x_n| > M.$$

При этом используют обозначение

$$\lim_{n\to\infty} x_n = \infty.$$

Такие последовательности мы не называем сходящимися.

Задача 3.25. Пусть $\forall n \in \mathbb{N} \ x_n \neq 0, \ mor \partial a$

$$\lim_{n \to \infty} x_n = \infty \iff \lim_{n \to \infty} \frac{1}{x_n} = 0.$$

Задача 3.26. Всякая монотонная последовательность имеет конечный или бесконечный предел.

3.6. Частичный предел последовательности.

Определение 3.27. Пусть $\{x_n\}$ — числовая последовательность и $\{n_k\}$ — возрастающая последовательность из \mathbb{N} . Тогда $\{x_{n_k}\}$ называют подпоследовательностью последовательностью сти $\{x_n\}$.

Определение 3.28. Говорят, что последовательность $\{x_n\}$ имеет частичный предел a, если существует подпоследовательность $\{x_{n_k}\}$ такая, что

$$\lim_{k \to \infty} x_{n_k} = a.$$

Теорема 3.29 (Теорема о предельной точке для последовательностей (Больцано — Вейерштрасса)). Из всякой ограниченной последовательности можно выделить сходящуюся подпоследовательность.

Доказательство. Пусть $\{x_n\}$ – ограниченная последовательность. Предположим, что множество $X = \{x_n \mid n \in \mathbb{N}\}$ конечно, тогда

$$\exists \ a \in X : \forall \ N \ \exists \ n > N : x_n = a. \tag{3.3}$$

Построим теперь возрастающую последовательность $\{n_k\}$. Ясно, что существует $n_1 \in \mathbb{N}$: $x_{n_1} = a$. Остальные члены подпоследовательности построим рекуррентным способом. Пусть для $p \in \mathbb{N}$ задано n_p , тогда из (3.3) следует, что

$$\exists n_{p+1} \in \mathbb{N} : (n_{p+1} > n_p) \land (x_{n_{p+1}} = a).$$

Наконец, очевидно, что $\lim_{k\to\infty} x_{n_k} = a$.

Предположим теперь, что множество X бесконечно. Тогда из теоремы 2.36 Больцано — Вейерштрасса следует, что множество X имеет предельную точку. Обозначим ее через a. Так как a предельная точка X, то $\exists n_1 \in \mathbb{N} : |x_{n_1} - a| < 1$. Остальные члены подпоследовательности построим рекуррентным способом. Пусть для $p \in \mathbb{N}$ задано n_p , тогда из (3.3) следует, что

$$\exists n_{p+1} \in \mathbb{N} : (n_{p+1} > n_p) \wedge (|x_{n_{p+1}} - a| < (p+1)^{-1}).$$

Так как $\lim_{p\to\infty}\frac{1}{p}=0$ и $0\leqslant |x_{n_p}-a|<\frac{1}{p}$, то из теоремы о сжатой переменной следует, что $\lim_{p\to\infty}|x_{n_p}-a|=0$. Отсюда получим, что $\lim_{p\to\infty}x_{n_p}=a$. \square

Задача 3.30. Найти все частичные пределы последовательности $\{(-1)^n\}$.

Задача 3.31. Найти все частичные пределы последовательности $\{(-1)^n+(-1)^{1+2+\ldots+n}\}.$

Задача 3.32. Доказать, что любая сходящаяся последовательность имеет единственный частичный предел.

3.7. **Нижний и верхний пределы.** Пусть $\{x_n\}$ – ограниченная числовая последовательность и $S_n = \sup_{k \geqslant n} x_k$, $s_n = \inf_{k \geqslant n} x_k$ для $n \in \mathbb{N}$. Из определения верхней и нижней граней следует, что $\{S_n\}$ – невозрастающая, а $\{s_n\}$ – неубывающая последовательности. Поэтому всегда существуют конечные пределы $\lim_{n \to \infty} S_n$ и $\lim_{n \to \infty} s_n$.

Определение 3.33.

• Верхним пределом числовой последовательности $\{x_n\}$ называют конечный или бесконечный предел $\lim_{n\to\infty} S_n$, который обозначают символом $\overline{\lim}_{n\to\infty} x_n$.

• Нижним пределом числовой последовательности $\{x_n\}$ называют конечный или бесконечный предел $\lim_{n\to\infty} s_n$, который обозначают символом $\lim_{n\to\infty} x_n$.

Теорема 3.34.

$$\lim_{n\to\infty}x_n=a\Longleftrightarrow\{x_n\}\ -\ \text{ограниченная последовательность}\ u\ \underline{\lim_{n\to\infty}}\ x_n=\overline{\lim_{n\to\infty}}\ x_n=a.$$

Доказательство. Необходимость (\Longrightarrow). Ограниченность последовательности $\{x_n\}$ следует из свойства 3.5. Пусть $\varepsilon > 0$, тогда $\exists \ N : \forall \ n > N \ |x_n - a| < \varepsilon$. Следовательно, $\forall \ n > N \ |s_n - a| \leqslant \varepsilon$ и $|S_n - a| \leqslant \varepsilon$. Это означает, что $\varinjlim_{n \to \infty} x_n = a$ и $\varlimsup_{n \to \infty} x_n = a$.

Достаточность (\Leftarrow). Пусть $\varepsilon > 0$, тогда

$$\exists N_1: \forall n > N_1 \mid \inf_{k \geqslant n} x_k - a \mid < \varepsilon,$$

$$\exists N_2: \forall n > N_2 |\sup_{k \geqslant n} x_k - a| < \varepsilon.$$

Следовательно, $\forall n > N = \max(N_1, N_2)$

$$\varepsilon < \inf_{k \geqslant n} x_k - a \leqslant x_n - a \leqslant \sup_{k \geqslant n} x_k - a < \varepsilon. \square$$

Теорема 3.35. Пусть $\{x_{n_k}\}$ подпоследовательность последовательности $\{x_n\}$ и $\lim_{n\to\infty} x_n = a$, тогда $\lim_{k\to\infty} x_{n_k} = a$.

Доказательство. Из определения верхнего и нижнего пределов следует, что

$$\underline{\lim}_{n\to\infty} x_n \leqslant \underline{\lim}_{n\to\infty} x_{n_k} \leqslant \overline{\lim}_{n\to\infty} x_{n_k} \leqslant \overline{\lim}_{n\to\infty} x_n.$$

Теперь утверждение теоремы следует из теоремы 3.34. □

Задача 3.36. Пусть a – частичный предел ограниченной последовательности $\{x_n\}$, тогда

$$\underline{\lim}_{n\to\infty} x_n \leqslant a \leqslant \overline{\lim}_{n\to\infty} x_n.$$

Задача 3.37. Пусть $\{x_n\}$ – ограниченная последовательность, тогда $\varliminf_{n\to\infty} x_n$ и $\varlimsup_{n\to\infty} x_n$ – частичные пределы $\{x_n\}$.

4. Предел функции

4.1. Предел функции и его основные свойства.

Определение 4.1. Однозначное отображение f из $D(f) \subset \mathbb{R}$ в \mathbb{R} называют функцией. При этом

- множество D(f) называют областью определения функции f;
- множество $R(f) = \{ y \mid \exists \ x \in D(f) : y = f(x) \}$ называют областью значений функции f.

Определение 4.2. Пусть $a \in \mathbb{R}$ и $\alpha > 0$ такие, что

$$(a - \alpha, a + \alpha) \setminus \{a\} \subset D(f).$$

ullet (по Kowu) Число с называют предельным значением функции f в точке a по Kowu, если

$$\forall \ \varepsilon > 0 \ \exists \ \delta > 0 : (0 < |x - a| < \delta \Longrightarrow |f(x) - c| < \varepsilon).$$

ullet (по Гейне) Число с называют предельным значением функции f в точке а по Гейне, если

$$\left(\lim_{n\to\infty}x_n=a\right)\wedge\left(\forall\ n\in\mathbb{N}\ x_n\neq a\right)\wedge\left(\forall\ n\in\mathbb{N}\ x_n\in D(f)\right)\Longrightarrow\lim_{n\to\infty}f(x_n)=c.$$

При этом используют обозначение

$$\lim_{x \to a} f(x) = c.$$

Теорема 4.3. c – предельное значение функции f в точке a по Коши \iff c – предельное значение функции f в точке a по Γ ейне.

Доказательство. Необходимость (\Longrightarrow) . Пусть задана последовательность $\{x_n\}$ такая, что

$$\left(\lim_{n\to\infty}x_n=a\right)\wedge(\forall\ n\in\mathbb{N}\ x_n\neq a)\wedge(\forall\ n\in\mathbb{N}\ x_n\in D(f)).$$

Фиксируем $\varepsilon > 0$. Так как c – предельное значение функции f в точке a по Коши, то существует $\delta > 0$ такое, что верно высказывание $0 < |x-a| < \delta \Longrightarrow |f(x)-c| < \varepsilon$. Из сходимости $\{x_n\}$ следует, что для заданного $\delta > 0$ найдется N такое, что $\forall \ n > N \ |x_n-a| < \delta$. Таким образом, $\forall \ n > N \ |f(x_n)-c| < \varepsilon$.

Достаточность (⇐=). Доказательство проведем от противного. Пусть

$$\exists \ \varepsilon > 0 : \forall \ \delta > 0 \ \exists \ x : (|x - a| < \delta) \land (|f(x) - c| \geqslant \varepsilon).$$

Следовательно, для $\delta_n = \frac{1}{n}$ найдется

$$x_n: (|x_n - a| < \delta_n) \land (|f(x_n) - c| \geqslant \varepsilon). \tag{4.1}$$

Легко видеть, что $\lim_{n\to\infty}x_n=a.$ Так как c – предельное значение функции f в точке a по Гейне, то

$$\lim_{n \to \infty} f(x_n) = c. \tag{4.2}$$

Однако существование предела (4.2) противоречит оценке (4.1). \square

Свойство 4.4 (Единственность предела). Пусть $\lim_{x\to a} f(x) = A \ u \lim_{x\to a} f(x) = B$, тогда A=B.

Доказательство. Следует из свойсва 3.4 и теоремы 4.3. \square

Теорема 4.5 (Предельный переход и арифметические операции). Пусть существуют пределы $\lim_{x\to a} f(x) = A \ u \lim_{x\to a} g(x) = B, \ mor \partial a$

- (1) $\lim_{x \to a} (f(x) + g(x)) = A + B;$
- (2) $\lim_{x \to a} (f(x) g(x)) = A B;$
- (3) $\lim_{x \to a} (f(x) \cdot g(x)) = A \cdot B;$
- (4) $(\exists \ \delta > 0 : (|x a| < \delta \Longrightarrow g(x) \neq 0)) \land (B \neq 0) \Longrightarrow \lim_{x \to a} \frac{f(x)}{g(x)} = \frac{A}{B}.$

Доказательство. Следует из теорем 3.6, 3.7, 3.8, 3.9 и 4.3. \square

Теорема 4.6 (Предельный переход в неравенствах).

- (1) $\Pi y cmb \lim_{x \to a} f(x) = A$, $\lim_{x \to a} g(x) = B$ $u \exists \delta > 0$ makoe, $umo \forall |x a| < \delta$ $f(x) \leqslant g(x)$, $mor \partial a A \leqslant B$.
- (2) $\Pi y cmb \lim_{x \to a} f(x) = A$, $\lim_{x \to a} h(x) = A$ $u \exists \delta > 0$ makoe, $umo \forall |x a| < \delta$ $f(x) \leq g(x) \leq h(x)$, $moe \partial a \lim_{x \to a} g(x) = A$.

Доказательство. Следует из теорем 3.10, 3.12 и 4.3. □

Задача 4.7. Доказать свойство 4.4 и теоремы 4.5, 4.6 на языке $\delta - \varepsilon$.

4.2. Односторонние пределы.

Определение 4.8. Пусть $a \in \mathbb{R}$ и $\alpha > 0$ такие, что $(a - \alpha, a) \subset D(f)$. Число c называют левым предельным значением функции f в точке a, если

$$\forall \ \varepsilon > 0 \ \exists \ \delta > 0 : (x \in (a - \delta, a) \Longrightarrow |f(x) - c| < \varepsilon).$$

При этом используют обозначение

$$\lim_{x \to a-0} f(x) = c.$$

Определение 4.9. Пусть $a \in \mathbb{R}$ и $\alpha > 0$ такие, что $(a, a + \alpha) \subset D(f)$. Число c называют правым предельным значением функции f в точке a, если

$$\forall \ \varepsilon > 0 \ \exists \ \delta > 0 : (x \in (a, a + \delta) \Longrightarrow |f(x) - c| < \varepsilon).$$

При этом используют обозначение

$$\lim_{x \to a+0} f(x) = c.$$

Теорема 4.10.

$$\lim_{x \to a} f(x) = c \Longleftrightarrow \lim_{x \to a-0} f(x) = \lim_{x \to a+0} f(x) = c.$$

Доказательство. Необходимость (⇒). Очевидно.

Достаточность (\Leftarrow). Из существования левого и правого предела следует, что $\forall \varepsilon > 0$

$$\exists \ \delta_1 > 0 : (x \in (a - \delta_1, a) \Longrightarrow |f(x) - c| < \varepsilon)$$

И

$$\exists \ \delta_2 > 0 : (x \in (a, a + \delta_2) \Longrightarrow |f(x) - c| < \varepsilon).$$

Отсюда для $\delta = \min(\delta_1, \delta_2)$

$$|x-a| < \delta \Longrightarrow |f(x)-c| < \varepsilon$$
. \square

4.3. Бесконечные пределы.

Определение 4.11.

- $\Pi u u y m \lim_{x \to a+0} f(x) = +\infty, \ e c \wedge u \ \forall \ M \in \mathbb{R} \ \exists \ \delta > 0 : (x \in (a, a+\delta) \implies f(x) > M).$
- $\Pi uuym \lim_{x \to +\infty} f(x) = c$, $ecnu \ \forall \ \varepsilon > 0 \ \exists \ N \in \mathbb{R} : (x > N \implies |f(x) c| < \varepsilon)$.
- $\Pi u u y m \lim_{x \to +\infty} f(x) = +\infty$, $e c n u \ \forall \ M \in \mathbb{R} \ \exists \ N \in \mathbb{R} : (x > N \implies f(x) > M)$.

Задача 4.12. Определить следующие пределы

$$\lim_{x \to a \pm 0} f(x) = \pm \infty, \quad \lim_{x \to \pm \infty} f(x) = c, \quad \lim_{x \to \pm \infty} f(x) = \pm \infty.$$

4.4. О-большое и о-малое.

Определение 4.13. Пусть $a \in \mathbb{R}$ и $\alpha > 0$ такие, что

$$(a - \alpha, a + \alpha) \setminus \{a\} \subset D(f) \cap D(g).$$

Πишут

$$f(x) = O(g(x))$$
 npu $x \to a$

если существуют $C\geqslant 0$ и δ -окрестность V точки а такие, что

$$\forall x \in V |f(x)| \leqslant C|g(x)|.$$

• *∏uшym*

$$f(x) = o(g(x))$$
 npu $x \to a$

если существуют δ -окрестность V точки a и функция $\beta: V \to \mathbb{R}$ такие, что

$$\forall x \in V \ f(x) = \beta(x)g(x) \quad u \quad \lim_{x \to a} \beta(x) = 0.$$

Задача 4.14. Доказать, что при $x \to 0$ верно, что

$$x = o(1), \ \frac{1+x}{1-x} = 1 + 2x + o(x), \ x^2 + x^3 = o(x), \ (1+3x)^2 - (1+2x)^3 = o(x),$$

 $x^3 + x^4 = O(x^3), \ (1+x)^{100} = 1 + O(x), \ (1+x)^2 = 1 + 2x + O(x^2).$

Элементарные функции

5.1. Экспонента (вещественный случай).

Лемма 5.1. Пусть $x \in \mathbb{R}$ и $x_n = \sum_{r=0}^n \frac{x^p}{p!}$ при $n \in \mathbb{N}$, тогда последовательность $\{x_n\}$ сходится.

Доказательство. Для доказательства воспользуемся критерием Коши. Пусть $\varepsilon > 0$. Так как множество \mathbb{N} неограничено сверху, то $\exists m \in \mathbb{N}: m \geqslant 2|x|$. Следовательно, $\forall p \geqslant m$

$$\frac{x^p}{p!} \leqslant m^m \frac{x^p}{m^p} \leqslant m^m \frac{1}{2^p}.$$

Отсюда, учитывая результат примера 2.20, получим, что $\forall \ n \geqslant m \ \forall \ k \geqslant m$

$$|x_n - x_k| = \left| \sum_{p=k+1}^n \frac{x^p}{p!} \right| \leqslant \sum_{p=k+1}^n \frac{|x|^p}{p!} \leqslant m^m \sum_{p=k+1}^n \frac{1}{2^p} \leqslant \frac{m^m}{2^k} \leqslant \frac{m^m}{2^k}.$$
 (5.1)

Из леммы 2.32 следует, что

$$\exists M \in \mathbb{N} : \frac{m^m}{2^M} < \varepsilon. \tag{5.2}$$

Полагая $N = \max(m, M)$, и собирая оценки 5.1, 2.32 вместе, получим, что

$$\forall n \geqslant N \ \forall k \geqslant N \quad |x_n - x_k| \leqslant \frac{m^m}{2^k} \leqslant \frac{m^m}{2^M} < \varepsilon. \ \Box$$

Определение 5.2. Для любого $x \in \mathbb{R}$ экспоненциальная функция определена равенством

$$e^x = \sum_{n=0}^{\infty} \frac{x^n}{n!} = \lim_{N \to \infty} \sum_{n=0}^{N} \frac{x^n}{n!}.$$

Теорема 5.3 (Свойства экспоненты).

- $(1) \ \forall \ x \in \mathbb{R} \ \forall \ y \in \mathbb{R} \ e^{x+y} = e^x \cdot e^y.$
- (2) $\forall x \in \mathbb{R} \ e^x > 0$.
- $(3) x < y \implies e^x < e^y.$
- (4) $\forall p \in \mathbb{Z}_+$ справедлива оценка³ $e^x = \sum_{n=0}^p \frac{x^n}{n!} + O(x^{p+1})$ при $x \to 0$.

- (5) $\lim_{x\to 0} e^x = 1$. (6) $\lim_{x\to +\infty} e^x = +\infty$. (7) $\lim_{x\to -\infty} e^x = 0$. (8) $\forall y > 0 \exists ! x \in \mathbb{R} : y = e^x$.

Доказательство. (1) Легко видеть, что $\forall x \in \mathbb{R} \ \forall y \in \mathbb{R} \ \forall p \in \mathbb{N}$

$$\sum_{n=0}^{p} \frac{(x+y)^n}{n!} = \sum_{n=0}^{p} \frac{1}{n!} \sum_{k=0}^{n} \frac{n!}{(n-k)!k!} x^k y^{n-k} = \sum_{k=0}^{p} \sum_{n=k}^{p} \frac{1}{(n-k)!k!} x^k y^{n-k} = [n=m+k] =$$

$$= \sum_{k=0}^{p} \sum_{m=0}^{p-k} \frac{1}{m!k!} x^k y^m = \sum_{k=0}^{p} \frac{x^k}{k!} \sum_{m=0}^{p-k} \frac{y^m}{m!}.$$
(5.3)

 $^{^3\}mathbb{Z}_+=\mathbb{N}\cup\{0\}.$

Заметим теперь, что $\forall x \ge 0 \ \forall y \ge 0 \ \forall p \in \mathbb{N}$

$$\sum_{k=0}^{p} \frac{x^k}{k!} \sum_{m=0}^{p} \frac{y^m}{m!} \leqslant \sum_{n=0}^{2p} \frac{(x+y)^n}{n!} \leqslant \sum_{k=0}^{2p} \frac{x^k}{k!} \sum_{m=0}^{2p} \frac{y^m}{m!}.$$
 (5.4)

Переходя к пределу $p \to \infty$ в (5.4) получим, что

$$e^x \cdot e^y \leqslant e^{x+y} \leqslant e^x \cdot e^y$$
.

Следовательно,

$$\forall x \geqslant 0 \ \forall y \geqslant 0 \quad e^{x+y} = e^x \cdot e^y. \tag{5.5}$$

Из (5.3) получим, что $\forall x \in \mathbb{R} \ \forall y \in \mathbb{R} \ \forall p \in \mathbb{N}$

$$\sum_{n=0}^{2p} \frac{(x+y)^n}{n!} = \sum_{k=0}^p \frac{x^k}{k!} \sum_{m=0}^p \frac{y^m}{m!} + S_p(x,y), \tag{5.6}$$

где

$$S_p(x,y) = \sum_{(k,m)\in T_p} \frac{x^k y^m}{k!m!}, \ T_p = \{(k,m)\in \mathbb{Z}^2 \mid k+m\in [0,2p]\} \setminus \{(k,m)\in \mathbb{Z}^2 \mid k\in [0,p], \ m\in [0,p]\}.$$

Отсюда

$$0 \leqslant |S_p(x,y)| \leqslant \sum_{(k,m)\in T_p} \frac{|x|^k |y|^m}{k!m!} = \sum_{n=0}^{2p} \frac{(|x|+|y|)^n}{n!} - \sum_{k=0}^p \frac{|x|^k}{k!} \sum_{m=0}^p \frac{|y|^m}{m!}.$$
 (5.7)

Переходя к пределу $p \to \infty$ в (5.7) получим, что

$$0 \leqslant \lim_{p \to \infty} |S_p(x, y)| \leqslant e^{|x| + |y|} - e^{|x|} \cdot e^{|y|}.$$

Отсюда, учитывая (5.5) заключаем, что

$$\lim_{p \to \infty} S_p(x, y) = 0.$$

Переходя к пределу $p \to \infty$ в (5.6) получим, что

$$\forall x \in \mathbb{R} \ \forall y \in \mathbb{R} \quad e^{x+y} = e^x \cdot e^y.$$

(2) Для любого $x \geqslant 0$

$$e^x = \lim_{N \to \infty} \sum_{n=0}^{N} \frac{x^n}{n!} \ge 1 > 0.$$

Пусть x<0, тогда $e^{-x}>0$, и из пункта (1) получим, что $e^x\cdot e^{-x}=1$. Следовательно, $e^x>0$.

(3) Пусть x < y, тогда

$$e^{y-x} > 1 + (y-x) > 1.$$

Следовательно,

$$e^y = e^{y-x}e^x > e^x.$$

(4) Пусть M > 0, тогда $\forall x : |x| \leq M$ верно, что

$$\left| e^{x} - \sum_{n=0}^{p} \frac{x^{n}}{n!} \right| \leqslant \lim_{N \to \infty} \sum_{n=p+1}^{N} \frac{|x|^{n}}{n!} = [n = k + p + 1] = x^{p+1} \lim_{N \to \infty} \sum_{n=0}^{N-p-1} \frac{|x|^{k}}{(k+p+1)!} \leqslant$$

$$\leqslant x^{p+1} \lim_{N \to \infty} \sum_{n=0}^{N} \frac{|x|^{k}}{k!} = |x|^{p+1} e^{|x|} \leqslant |x|^{p+1} e^{M}.$$

Отсюда следует, что при $x \to 0$

$$e^x - \sum_{n=0}^p \frac{x^n}{n!} = O(x^{p+1}).$$

(5) Из пункта (4) следует, что $e^x - 1 = O(x)$ при $x \to 0$. Переходя к пределу $x \to 0$, получим

$$\lim_{x \to 0} (e^x - 1) = \lim_{x \to 0} O(x) = 0.$$

(6) Для $x \ge 0$ справедлива оценка

$$e^x \geqslant 1 + x$$
.

Для любого $M \in \mathbb{R}$ выберем N = |M|. Тогда $\forall x > N$ верно, что

$$e^x \ge 1 + x > |M| + 1 > M$$
.

- (7) Заметим, что $\forall x < 0$ верно, что $e^x = \frac{1}{e^{|x|}}$. Теперь утверждение следует из пункта (6).
- (8) Пусть y > 0. Из пунктов (5) и (6) следует, что

$$\exists a \in \mathbb{R} \exists b \in \mathbb{R} : e^a < y < e^b.$$

Представим отрезок [a,b] в виде $[a,b]=[a,\delta_1]\cup[\delta_1,b]$, где $\delta_1=\frac{a+b}{2}$. Из пункта (3) получим, что $e^a< e^{\delta_1}< e^b$ и, следовательно, y принадлежит по крайней мере одному из отрезков $[e^a,e^{\delta_1}]$ или $[e^{\delta_1},e^b]$. Если $y\in[e^a,e^{\delta_1}]$, обозначим через $[a_1,b_1]$ отрезок $[a,\delta_1]$. В противном случае обозначим через $[a_1,b_1]$ отрезок $[\delta_1,b]$. Заметим, что $b_1-a_1=\frac{b-a}{2}$.

Повторим процедуру деления отрезка пополам для $[a_1,b_1]$. В результате получим новый отрезок $[a_2,b_2]$ такой, что $e^{a_2}\leqslant y\leqslant e^{b_2}$ и $b_2-a_2=\frac{b-a}{2^2}$.

Повторяя эту процедуру снова и снова, получим последовательность вложенных отрезков

$$[a_1,b_1]\supset [a_2,b_2]\supset\ldots\supset [a_n,b_n]\supset\ldots,$$

такую, что $b_n-a_n=\frac{b-a}{2^n}$, где $n\in\mathbb{N}$. При этом

$$\forall n \in \mathbb{N} \ e^{a_n} \leqslant y \leqslant e^{b_n}. \tag{5.8}$$

Из принципа вложенных отрезков следует, что

$$\exists ! x : \forall n \in \mathbb{N} \ x \in [a_n, b_n] \tag{5.9}$$

Докажем, что $y = e^x$. Из (5.9) следует, что

$$\forall n \in \mathbb{N} e^{a_n} \leqslant e^x \leqslant e^{b_n}.$$

Отсюда, учитывая (5.8) следует, что $\forall n \in \mathbb{N}$

$$0 \leqslant |e^x - y| \leqslant e^{b_n} - e^{a_n} = e^{a_n} (e^{b_n - a_n} - 1) \leqslant e^b (e^{b_n - a_n} - 1). \tag{5.10}$$

Переходя к пределу $n \to \infty$ в оценке (5.10) с учетом пункта (5), получим $0 \leqslant |e^x - y| \leqslant 0$, откуда следует, что $y = e^x$.

Единственность x следует из пункта (3) настоящей теоремы. \square

Задача 5.4. Доказать, что

$$\lim_{n \to \infty} \left(1 + \frac{1}{n} \right)^n = \lim_{N \to \infty} \sum_{n=0}^N \frac{1}{n!}.$$

5.2. **Логарифм и степень (вещественный случай).** Из пункта (8) теоремы 5.3 следует, что $\forall y > 0 \; \exists \; ! \; x \in \mathbb{R} : y = e^x$. Это обстоятельство позволяет дать следующее определение.

Определение 5.5. Функцию обратную к экспоненциальной называют натуральным логарифмом и обозначают \ln . При этом $D(\ln) = (0, +\infty)$, $R(\ln) = \mathbb{R}$.

Определение 5.6. Пусть a > 0 и $a \neq 1$. Логарифмической функцией при основании а называют отображение \log_a , действующее по правилу

$$\forall x > 0 \quad \log_a x = \frac{\ln x}{\ln a}.$$

Лемма 5.7. Пусть a > 0 и $n \in \mathbb{N}$, тогда $e^{n \ln a} = a^n$.

Доказательство. Легко видеть, что
$$e^{n \ln a} = e^{\ln a} \cdot e^{\ln a} \cdot \dots \cdot e^{\ln a} = \underbrace{a \cdot a \cdot \dots \cdot a}_{n} = a^{n}$$
. \square

Лемма 5.7 оправдывает следующие определения.

Определение 5.8. Показательной функцией с основанием a>0 называют отображение, действующее по правилу

$$\mathbb{R} \ni x \longmapsto a^x \stackrel{\text{def}}{=} e^{x \ln a}.$$

Определение 5.9. Степенной функцией с показателем $a \in \mathbb{R}$ называют отображение, действующее по правилу

$$0 > x \longmapsto x^a = e^{a \ln x}$$
.

Теорема 5.10.

- (1) $\forall x > 0 \log_e x = \ln x$.
- (2) $\Pi y cmb \ a > 0 \ u \ a \neq 1$, $mor \partial a \ \forall \ x > 0 \ \forall \ y > 0 \ \log_a(x \cdot y) = \log_a(x) + \log_a(y)$.
- (3) Пусть a > 0 и $a \neq 1$, тогда $\forall x > 0 \ \forall b \in \mathbb{R} \log_a(x^b) = b \log_a(x)$.
- (4) $\forall a > 0 \ \forall x \in \mathbb{R} \ \forall y \in \mathbb{R} \ a^{x+y} = a^x \cdot a^y$.
- (5) $\forall a > 0 \ \forall b > 0 \ \forall x \in \mathbb{R} \ (a \cdot b)^x = a^x \cdot b^x$.
- (6) $\forall a > 0 \ \forall x \in \mathbb{R} \ \forall y \in \mathbb{R} \ (a^x)^y = a^{xy}$.
- $(7) (0 < x < y) \land (a > 1) \implies \log_a(x) < \log_a(y).$
- (8) $(0 < x < y) \land (a < 1) \implies \log_a(x) > \log_a(y)$.
- (9) $(0 < a < b) \land (x > 0) \implies a^x < b^x$.
- (10) $(0 < a < b) \land (x < 0) \implies a^x > b^x$.

Доказательство. (1) Из $e^1=e$ следует, что $\ln e=1$, откуда $\forall \ x>0 \ \log_e x=\frac{\ln x}{\ln e}=\ln x.$

(2) Пусть $z \in \mathbb{R} : e^z = x$ и $\zeta \in \mathbb{R} : e^\zeta = y$, тогда

$$e^{z+\zeta} = e^z e^\zeta \implies \ln e^{z+\zeta} = \ln(e^z e^\zeta) \implies z+\zeta = \ln(x\cdot y) \implies \ln x + \ln y = \ln(x\cdot y) \implies \frac{\ln x}{\ln a} + \frac{\ln y}{\ln a} = \frac{\ln(x\cdot y)}{\ln a} \implies \log_a x + \log_a y = \log_a(x\cdot y).$$

(3) Легко видеть, что

$$\ln(x^b) = \ln\left(e^{b\ln x}\right) = b\ln x.$$

Для завершения доказательства осталось заметить, что $\log_a x = \frac{\ln x}{\ln a}$.

(4) Из свойств экспоненты следует, что

$$a^{x+y} = e^{(x+y)\ln a} = e^{x\ln a}e^{y\ln a} = a^x a^y.$$

(5) Из пункта (2) следует, что

$$(a \cdot b)^x = e^{x \ln ab} = e^{x(\ln a + \ln b)} = e^{x \ln a} e^{x \ln b} = a^x b^x.$$

(6) Из пункта (3) получим, что

$$(a^x)^y = e^{y \ln(a^x)} = e^{xy \ln a} = a^{xy}$$
. \square

Задача 5.11. Доказать пункты (7) - (10) теоремы 5.10.

Лемма 5.12. Пусть $a \in \mathbb{R} \setminus \{0\}$, b > 0 и $c \in \mathbb{R}$, тогда $x = b^{\frac{c}{a}} - e \partial$ инственное положительное решение иравнения $x^a = b^c$.

Доказательство. Используя результаты теоремы 5.10 получим, что

$$(b^{\frac{c}{a}})^a = b^{\frac{c}{a} \cdot a} = b^c,$$

следовательно $x = b^{\frac{c}{a}}$ – решение уравнения $x^a = b^c$. Далее,

$$x = b^{\frac{c}{a}} = e^{\frac{c}{a} \ln b} > 0.$$

Единственность следует из пунктов (9), (10) теоремы 5.10.

5.3. Комплексные числа и операции над ними.

Определение 5.13. Множеством комплексных чисел $\mathbb C$ называют множество упорядоченных пар вида $(x,y) \in \mathbb{R}^2$, на котором определены операции сложения и умножения по следующим правилам.

- Аксиома сложения: $(x_1, y_1) + (x_2, y_2) = (x_1 + x_2, y_1 + y_2)$.
- Аксиома умножение: $(x_1, y_1) \cdot (x_2, y_2) = (x_1x_2 y_1y_2, x_1y_2 + x_2y_1).$

Оказывается, что значительно удобнее иметь дело со множеством С, если ввести следующие обозначения. Договоримся вместо комплексного числа вида (x,0) писать просто x, а вместо (0,y) писать iy, где i – вспомогательный символ, называемый комплексной единицей. Тогда, учитывая, что согласно аксиоме сложения (x,y) = (x,0) + (0,y), получим, что произвольное комплексное число (x, y) можно переписать в виде x + iy.

Теорема 5.14. Пусть $x_1 + iy_1 \in \mathbb{C}$ и $x_2 + iy_2 \in \mathbb{C}$, тогда

- (1) $(x_1 + iy_1) + (x_2 + iy_2) = (x_1 + x_2) + i(y_1 + y_2);$
- (2) $i \cdot i = \frac{\mathbb{R}}{-1}$:
- (3) $(x_1 + iy_1)^{\mathbb{C}}(x_2 + iy_2) = (x_1 \cdot x_2 y_1 \cdot y_2)^{\mathbb{C}} + i(x_1 \cdot y_2 + x_2 \cdot y_1);$
- (4) $x_1 \cdot x_2 = x_1 \cdot x_2, \ x_1 + x_2 = x_1 + x_2.$

 $3decb+u\cdot -one$ рации сложения и умножения в $\mathbb{C}, +, -u\cdot -one$ рации сложения, вычитания u имножения $\varepsilon \mathbb{R}$.

Доказательство. Следует из определения 5.13.

Из пункта (4) теоремы 5.14 следует, что множество \mathbb{R} можно рассматривать как подмножество \mathbb{C} , дополненное аксиомами (10) – (16) из определения 2.1. Пункт (2) теоремы 5.14 позволяет, при умножении, обходиться с комплексными числами как с полиномами относительно i.

Определение 5.15. *На множестве* \mathbb{C} *определены следующие операции:*

- вычитание: $(x_1 + iy_1) (x_2 + iy_2) \stackrel{\text{def}}{=} (x_1 x_2) + i(y_1 y_2);$ деление: $\frac{x_1 + iy_1}{x_2 + iy_2} \stackrel{\text{def}}{=} \frac{x_1 x_2 + y_1 y_2}{x_2^2 + y_2^2} + i \frac{x_2 y_1 x_1 y_2}{x_2^2 + y_2^2};$
- комплексное сопряжение: $\overline{x_1+iy_1} \stackrel{\text{def}}{=} x_1-iy_1;$

- вещественная часть: $\operatorname{Re}(x_1 + iy_1) \stackrel{\text{def}}{=} x_1;$
- мнимая часть: $\operatorname{Im}(x_1 + iy_1) \stackrel{\text{def}}{=} y_1$.

Лемма 5.16. Пусть $z \in \mathbb{C}$, $\zeta \in \mathbb{C}$ и $\xi \in \mathbb{C} \setminus \{0\}$, тогда

- (1) $\zeta + (z \zeta) = z$;
- (2) $\frac{z}{\xi} \cdot \xi = z$.

Доказательство. Проверяется прямой подстановкой. \square

Определение 5.17. Корнем неотрицательного числа x называют число $\sqrt{x} = x^{\frac{1}{2}}$ при x > 0 $u\sqrt{x}=0$ npu x=0.

Определение 5.18. *Модулем комплексного числа* z = x + iy называют неотрицательное число $|z| = \sqrt{x^2 + y^2}$.

Лемма 5.19. Пусть $z = x + iy \in \mathbb{C}$, тогда $\max(|x|, |y|) \leq |z| \leq |x| + |y|$.

Доказательство. Легко видеть, что

$$(\max(|x|,|y|))^2 = \max(x^2,y^2) \leqslant x^2 + y^2 = |z|^2 = |x|^2 + |y|^2 \leqslant |x|^2 + 2|x||y| + |y|^2 = (|x| + |y|)^2.$$

Отсюда, учитывая пункт (9) теоремы 5.10, получим утверждение теоремы.

Большинство определений и теорем главы 3 могут быть перенесены на множество комплексных чисел.

Определение 5.20. Последовательность $\{z_n\}$ из комплексных чисел называют сходящейся, если

$$\exists \ a \in \mathbb{C} : \forall \ \varepsilon > 0 \ \exists \ N = N(\varepsilon) : \forall \ n > N \ |z_n - a| < \varepsilon.$$

 Πpu этом число a называют пределом последовательности $\{z_n\}$ и используют обозначение

$$\lim_{n\to\infty} z_n = a.$$

Лемма 5.21. Пусть $\forall \ n \in \mathbb{N} \ z_n = x_n + iy_n, \ a \in \mathbb{R} \ u \ b \in \mathbb{R} \ mor \partial a$

$$\lim_{n \to \infty} z_n = a + ib \iff (\lim_{n \to \infty} x_n = a) \land (\lim_{n \to \infty} y_n = b).$$

Доказательство. Следует из определения предела и леммы 5.19. \square

Теорема 5.22. Пусть $\{z_n\}$ и $\{\zeta_n\}$ – последовательности из комплексных чисел, $\lim_{n\to\infty}z_n=a$ и $\lim_{n\to\infty}\zeta_n=b,\ mor\partial a$

- (1) $\lim_{n \to \infty} (z_n + \zeta_n) = a + b;$ (2) $\lim_{n \to \infty} (z_n \zeta_n) = a b;$
- (3) $\lim_{n \to \infty} (z_n \cdot \zeta_n) = a \cdot b;$
- (4) nycmb дополнительно $b \neq 0$ $u \forall n \in \mathbb{N}$ $\zeta_n \neq 0$, $mor\partial a \lim_{n \to \infty} \frac{z_n}{\zeta_n} = \frac{a}{b}$.

Доказательство. Следует из леммы 5.21 и теорем 3.6-3.9. \square

Определение 5.23. Последовательность $\{z_n\}$ из комплексных чисел называют фундаментальной, если

$$\forall \varepsilon > 0 \exists N = N(\varepsilon) : \forall n > N \forall k > N |z_n - z_k| < \varepsilon.$$

Теорема 5.24 (Критерий Коши сходимости комплексной последовательности). $\Pi y cmb \{z_n\}$ – последовательность из комплексных чисел, тогда

 $\{z_n\}$ – cxoдящаяся последовательность $\Longleftrightarrow \{z_n\}$ – фундаментальная последовательность.

Доказательство. Следует из теоремы 3.23 и леммы 5.21. □

Задача 5.25. Доказать, что для любых $z_1 \in \mathbb{C}$ и $z_2 \in \mathbb{C}$ верно, что $|z_1 + z_2| \leqslant |z_1| + |z_2|$.

5.4. Экспонента (комплексный случай).

Лемма 5.26. Пусть $z \in \mathbb{R}$ и $z_n = \sum_{p=0}^n \frac{z^p}{p!}$ при $n \in \mathbb{N}$, тогда последовательность $\{z_n\}$ сходится.

Доказательство. Для доказательства достаточно заметить, что $\forall \ n \in \mathbb{N} \ \forall \ k \in \mathbb{N} : n > k$ верно, что

$$|z_n - z_k| \leqslant \sum_{p=k+1}^n \frac{|z|^p}{p!}$$

и воспользоваться идеей доказательства леммы 5.1. \square

Определение 5.27. Для любого $z \in \mathbb{C}$ экспоненциальная функция определена равенством

$$e^z = \sum_{n=0}^{\infty} \frac{z^n}{n!} = \lim_{N \to \infty} \sum_{n=0}^{N} \frac{z^n}{n!}.$$

Теорема 5.28 (Свойства комплексной экспоненты).

- (1) $\forall z \in \mathbb{C} \ \forall \ \zeta \in \mathbb{C} \ e^{z+\zeta} = e^z \cdot e^{\zeta}$.
- (2) $\forall p \in \mathbb{Z}_+$ справедлива оценка $e^z = \sum_{n=0}^p \frac{z^n}{n!} + O(z^{p+1})$ при $z \to 0$.
- (3) $\lim_{x\to 0} e^x = 1$.

Доказательство. Доказательство проводится в полной аналогии с доказательством пунктов (1), (4) и (5) теоремы 5.3. □

5.5. Тригонометрические функции.

Определение 5.29. Для любого $z \in \mathbb{C}$ функции синус и косинус определены равенством

$$\sin z = \frac{e^{iz} - e^{-iz}}{2i}, \quad \cos z = \frac{e^{iz} + e^{-iz}}{2}.$$

Теорема 5.30 (Свойства синуса и косинуса).

- $(1)\ \forall\ z\in\mathbb{C}\ cnpase$ дливы формулы Эйлера $e^{iz}=\cos z+i\sin z,\ e^{-iz}=\cos z-i\sin z.$
- (2) $\forall z \in \mathbb{C} \sin^2 z + \cos^2 z = 1$.
- (3) $\forall (z_1, z_2) \in \mathbb{C}^2 \sin(z_1 + z_2) = \sin z_1 \cos z_2 + \cos z_1 \sin z_2, \cos(z_1 + z_2) = \cos z_1 \cos z_2 \sin z_1 \sin z_2.$

(4)
$$\forall z \in \mathbb{C} \sin z = \sum_{n=0}^{p} \frac{(-1)^n}{(2n+1)!} z^{2n+1} + O(z^{2p+3}), \cos z = \sum_{n=0}^{p} \frac{(-1)^n}{(2n)!} z^{2n} + O(z^{2p+2}) npu z \to 0.$$

(5)
$$\forall z \in \mathbb{C} \sin z = \lim_{N \to \infty} \sum_{n=0}^{N} \frac{(-1)^n}{(2n+1)!} z^{2n+1}, \cos z = \lim_{N \to \infty} \sum_{n=0}^{N} \frac{(-1)^n}{(2n)!} z^{2n}.$$

(6) $\sin: \mathbb{R} \longmapsto \mathbb{R}, \cos: \mathbb{R} \longmapsto \mathbb{R}.$

Доказательство. (1) Следует из определения 5.29.

(2) Из определения 5.29 следует, что

$$\sin^2 z + \cos^2 z = -\frac{1}{4} \left(e^{2iz} - 2 + e^{-2iz} \right) + \frac{1}{4} \left(e^{2iz} + 2 + e^{-2iz} \right) = 1.$$

(3) Из определения 5.29 следует, что

$$\sin z_1 \cos z_2 + \cos z_1 \sin z_2 = \frac{e^{iz_1} - e^{-iz_1}}{2i} \cdot \frac{e^{iz_2} + e^{-iz_2}}{2} + \frac{e^{iz_1} + e^{-iz_1}}{2} \cdot \frac{e^{iz_2} - e^{-iz_2}}{2i} = \frac{e^{i(z_1 + z_2)} - e^{-i(z_1 + z_2)}}{2i} = \sin(z_1 + z_2),$$

$$\cos z_1 \cos z_2 - \sin z_1 \sin z_2 = \frac{e^{iz_1} + e^{-iz_1}}{2} \cdot \frac{e^{iz_2} + e^{-iz_2}}{2} + \frac{e^{iz_1} - e^{-iz_1}}{2i} \cdot \frac{e^{iz_2} - e^{-iz_2}}{2i} =$$

$$= \frac{e^{i(z_1 + z_2)} + e^{-i(z_1 + z_2)}}{2} = \cos(z_1 + z_2).$$

(4) Из теоремы 5.28 следует, что

$$\sin z = \frac{1}{2i} \sum_{n=0}^{2p+2} \frac{(iz)^n}{n!} - \frac{1}{2i} \sum_{n=0}^{2p+2} \frac{(-iz)^n}{n!} + O(z^{2p+3}) = \sum_{n=0}^{2p+2} \frac{i^{n-1}}{n!} \frac{1 - (-1)^n}{2} z^n + O(z^{2p+3}).$$
 (5.11)

Если n – четное, то $1-(-1)^n=0$, поэтому полагая n=2k+1 в (5.11), получим

$$\sin z = \sum_{k=0}^{p} \frac{i^{2k}}{(2k+1)!} z^{2k+1} + O(z^{2p+3}) = \sum_{k=0}^{p} \frac{(-1)^k}{(2k+1)!} z^{2k+1} + O(z^{2p+3}).$$

Оценка для косинуса доказывается аналогично.

(5) По аналогии с пунктом (4) получим, что

$$\sin z = \lim_{N \to \infty} \sum_{n=0}^{2N+2} \frac{i^{n-1}}{n!} \frac{1 - (-1)^n}{2} z^n = \lim_{N \to \infty} \sum_{k=0}^{N} \frac{(-1)^k}{(2k+1)!} z^{2k+1}.$$

Представление для косинуса доказывается аналогично.

(6) Из пункта (5) следует, что синус и косинус вещественного аргумента могут быть найдены как пределы вещественных последовательностей. Отсюда следует требуемое утверждение. □

Теорема 5.31. Определение $\sin x \ u \cos x \ npu \ x \in \mathbb{R}$ совпадают со стандартными геометрическими определениями.

Доказательство. Доказано на странице 66.

Исходя из геометрического определения синуса и косинуса можно доказать, что для любых вещественных α и β , удовлетворяющих условию $\alpha^2+\beta^2=1$, существует единственное число $\varphi\in (-\pi,\pi]$ такое, что

$$\sin \varphi = \alpha, \quad \cos \varphi = \beta. \tag{5.12}$$

При этом общее решение системы (5.12) имеет вид $\varphi + 2\pi n$, где $n \in \mathbb{Z}$.

Определение 5.32. Аргументом комплексного числа z = x + iy называют многозначное отображение Arg, действующее по правилу

$$\mathbb{C}\setminus\{0\}\ni z\longmapsto \operatorname{Arg} z\stackrel{\operatorname{def}}{=}\left\{\varphi\in\mathbb{R}\ \middle|\ \sin\varphi=\frac{x}{\sqrt{x^2+y^2}}\,,\ \cos(\varphi)=\frac{y}{\sqrt{x^2+y^2}}\right\}.$$

 Φ ункцию arg, действующую по правилу

$$\mathbb{C} \setminus \{0\} \ni z \longmapsto \arg z \stackrel{\text{def}}{=} \varphi,$$

где φ — единственный элемент множества $\operatorname{Arg} z \cap (-\pi, \pi]$, называют однозначной ветвью отображения $\operatorname{Arg} z$.

Теорема 5.33 (Полярная форма комплексного числа). Пусть $z = x + iy \in \mathbb{C} \setminus \{0\}$, тогда

$$z = |z| \cdot e^{i\varphi},$$

 $z\partial e \ |z| = \sqrt{x^2 + y^2} - modyль комплексного числа <math>z \ u \ \varphi$ - любой элемент множества $\operatorname{Arg} z$.

Доказательство. Из определения 5.32 следует, что

$$z = x + iy = \sqrt{x^2 + y^2} \left(\frac{x}{\sqrt{x^2 + y^2}} + i \frac{y}{\sqrt{x^2 + y^2}} \right) = |z|(\cos \varphi + i \sin \varphi) = |z|e^{i\varphi}. \square$$

5.6. Логарифм и степень (комплексный случай).

Определение 5.34. Комплексным логарифмом называют многозначное отображение Ln, действующее по правилу

$$\mathbb{C} \setminus \{0\} \ni z \longmapsto \operatorname{Ln} z \stackrel{\text{def}}{=} \ln|z| + i \operatorname{Arg} z.$$

Определение 5.35. Пусть a > 0. Показательной функцией комплексного аргумента с положительным показателем а называют однозначное отображение, действующее по правилу

$$\mathbb{C} \ni z \longmapsto a^z \stackrel{\text{def}}{=} e^{z \ln a}$$

Определение 5.36. Пусть $\zeta \in \mathbb{C}$. Степенной функцией комплексного аргумента с комплексным показателем степени ζ называют многозначное отображение, действующее по правилу

$$\mathbb{C} \setminus \{0\} \ni z \longmapsto z^{\zeta} \stackrel{\text{def}}{=} e^{\zeta \operatorname{Ln} z}.$$

Замечание 5.37. Заметим, что, вообще говоря, $\operatorname{Ln}(z^{\zeta}) \neq \zeta \operatorname{Ln} z$. Например, $\operatorname{Ln}(i^i) \neq i \operatorname{Ln} i$. Действительно, $\operatorname{Ln} i = i \frac{\pi}{2} + 2\pi i n$, где $n \in \mathbb{Z}$. Отсюда

$$i^i = e^{i \ln i} = e^{-\frac{\pi}{2} - 2\pi n}, \ n \in \mathbb{Z},$$

$$\operatorname{Ln}(i^{i}) = \ln e^{-\frac{\pi}{2} - 2\pi n} + 2\pi i k = -\frac{\pi}{2} - 2\pi n + 2\pi i k, \ n \in \mathbb{Z}, \ k \in \mathbb{Z}.$$

В то время как

$$i\operatorname{Ln} i = i\left(\frac{\pi}{2}i + 2\pi i n\right) = -\frac{\pi}{2} - 2\pi n, \ n \in \mathbb{Z}.$$

Задача 5.38 (Формула Муавра). Пусть $z = x + iy \in \mathbb{C} \setminus \{0\}$. Доказать, что

$$\forall n \in \mathbb{Z} \quad \forall \varphi \in \operatorname{Arg} z \quad z^n = |z|^n e^{in\varphi}.$$

5.7. Полиномы и основная теорема алгебры.

Определение 5.39. Полиномом степени $n \in \mathbb{Z}_+$ называют отображение P_n , действующее по правилу

$$\mathbb{C} \ni z \longmapsto P_n(z) = \sum_{k=0}^n a_k z^k = a_n z^n + a_{n-1} z^{n-1} + \dots + a_0,$$

 $\epsilon \partial e \ (a_0, a_1, a_2, \dots, a_n) \in \mathbb{C}^{n+1} \ u \ a_n \neq 0.$

Определение 5.40. Говорят, что b – корень полинома P_n , если $P_n(b) = 0$.

Лемма 5.41. b – корень полинома $P_n \iff \exists$ полином $Q_{n-1} : \forall z \in \mathbb{C}$ $P_n(z) = (z-b)Q_{n-1}(z)$.

Доказательство. Необходимость (\Longrightarrow). Преобразуя старший член полинома P_n по формуле $a_n z^n = a_n (z-b) z^{n-1} + a_n b z^{n-1}$, перепишем полином P_n в виде

$$P_n(z) = (z - b)a_n z^{n-1} + P_{n-1}(z), \quad P_{n-1}(z) = a_n b z^{n-1} + \sum_{k=0}^{n-1} a_k z^k.$$

Повторяя данную процедуру для полинома P_{n-1} , получим

$$P_n(z) = (z - b)\tilde{Q}_{n-1}(z) + P_{n-2}(z),$$

где \tilde{Q}_{n-1} и P_{n-2} – некоторые полиномы степеней (n-1) и (n-2), соответственно. Последовательно повторяя данную процедуру для $P_{n-2},\ P_{n-3},\ \ldots$, перепишем полином P_n в виде

$$P_n(z) = (z - b)Q_{n-1}(z) + c, (5.13)$$

где где Q_{n-1} – некоторые полином степеней (n-1) и c – некоторая постоянная.

Полагая в равенстве (5.13) z=b, получим $c=P_n(b)=0$. Таким образом, равенство (5.13) принимает вид

$$P_n(z) = (z - b)Q_{n-1}(z).$$

Достаточность (\iff). $P_n(b) = (b-b)Q_{n-1}(b) = 0$. \square

Теорема 5.42 (Основная теорема алгебры). Пусть $n \in \mathbb{N}$, тогда $\forall P_n \exists b \in \mathbb{C} : P_n(b) = 0$.

Доказательство. Без доказательства. \square

Теорема 5.43. Пусть $n \in \mathbb{N}$ и P_n – полином степени n, тогда

$$\exists (b_1, b_2, \dots, b_n) \in \mathbb{C}^n, \exists c \in \mathbb{C} \setminus \{0\} : \forall z \in \mathbb{C} \quad P_n(z) = c \prod_{k=1}^n (z - b_k).$$

Доказательство. Доказательство проведем по индукции. При n=1 из основной теоремы алгебры следует, что $\exists \ b_1 \in \mathbb{C} : P_1(b_1) = 0$. Тогда из леммы 5.41 следует, что $P_1(z) = a_1(z-b_1)$, где $a_1 \in \mathbb{C} \setminus \{0\}$.

Пусть теперь утверждение теоремы верно при n=p. Пусть P_{p+1} – некоторый полином степени p+1. Из основной теоремы алгебры следует, что $\exists \ b_{p+1} \in \mathbb{C} : P_{p+1}(b_{p+1}) = 0$. Тогда из леммы 5.41 следует, что существует полином Q_p степени p такой, что $P_{p+1}(z) = (z-b_{p+1})Q_p(z)$. По индукционному предположению

$$\exists (b_1, b_2, \dots, b_p) \in \mathbb{C}^p, \exists c \in \mathbb{C} \setminus \{0\} : \forall z \in \mathbb{C} \quad Q_p(z) = c \prod_{k=1}^p (z - b_k).$$

Следовательно,

$$\forall z \in \mathbb{C} \quad P_{p+1}(z) = (z - b_{p+1})Q_p(z) = (z - b_{p+1})c \prod_{k=1}^p (z - b_k) = c \prod_{k=1}^{p+1} (z - b_k). \square$$

Следствие 5.44. Пусть $n \in \mathbb{N}$ и P_n – полином степени n, тогда существуют

$$p \in \mathbb{N}, \ (\alpha_1, \alpha_2, \dots, \alpha_p) \in \mathbb{N}^p, \ (b_1, b_2, \dots, b_p) \in \mathbb{C}^p, \ \exists \ c \in \mathbb{C} \setminus \{0\}$$

такие, что

$$\sum_{k=1}^{p} \alpha_k = n, \ (\forall \ k \neq m \ b_k \neq b_m)$$

u

$$\forall z \in \mathbb{C} \quad P_n(z) = c \prod_{k=1}^p (z - b_k)^{\alpha_k}.$$

 Πpu этом говорят, что b_k – корень кратности α_k , где $k=1,\ldots,p$.

Доказательство. Очевидным образом следует из теоремы 5.43. Доказательство можно провести методом математической индукции. □

Лемма 5.45. Пусть P_n – полином степени $n \in \mathbb{N}$ с вещественными коэффициентами. Тогда, если P(b) = 0, то и $P(\bar{b}) = 0$.

Доказательство. Пусть $P_n = \sum_{k=0}^n a_k z^k$, где $a_k \in \mathbb{R}$ для $k=0,1,\ldots,n$. Воспользуемся полярным представлением комплексного числа $b=re^{i\varphi}$, где $r\geqslant 0$ и $\varphi\in\mathbb{R}$.

$$P(\bar{b}) = \sum_{k=0}^{n} a_k \bar{b}^k = \sum_{k=0}^{n} a_k \left(\overline{re^{i\varphi}} \right)^k = \sum_{k=0}^{n} a_k \left(re^{-i\varphi} \right)^k = \sum_{k=0}^{n} a_k r^k e^{-ik\varphi} = \sum_{k=0}^{n} \overline{a_k r^k e^{ik\varphi}} = \overline{P(b)} = 0. \square$$

5.8. Рациональные функции и разложение на простейшие дроби.

Определение 5.46. Рациональной дробью называют отображение $\frac{P}{Q}$, действующее по правилу

$$\mathbb{C} \setminus \mathcal{N}(Q) \ni z \longmapsto \frac{P(z)}{Q(z)},$$

где P и Q – некоторые полиномы и $\mathcal{N}(Q)$ – множество корней полинома Q.

Пемма 5.47. Пусть P, Q – полиномы u b – корень полинома Q кратности $\alpha, m.$ e. существует полином φ такой, что

$$\forall z \in \mathbb{C} \quad Q(z) = (z - b)^{\alpha} \varphi(z), \quad \varphi(b) \neq 0, \quad \mathcal{N}(\varphi) \subset \mathcal{N}(Q).$$

Тогда существуют рациональная функция F_h вида

$$F_b(z) = \sum_{k=1}^{\alpha} \frac{A_k}{(z-b)^k}$$

u полином ψ такие, что

$$\forall z \in \mathbb{C} \setminus \mathcal{N}(Q) \quad \frac{P(z)}{Q(z)} = F_b(z) + \frac{\psi(z)}{\varphi(z)}.$$

Доказательство. Легко видеть, что $\forall z \in \mathbb{C} \setminus \mathcal{N}(Q)$

$$\frac{P(z)}{Q(z)} = \frac{P(z)}{(z-b)^{\alpha}\varphi(z)} = \frac{P(b)}{(z-b)^{\alpha}\varphi(b)} + \frac{R(z)}{(z-b)^{\alpha}\varphi(z)}, \quad R(z) = \frac{P(z)\varphi(b) - P(b)\varphi(z)}{\varphi(b)}.$$

Так как $R(b) = \frac{P(b)\varphi(b) - P(b)\varphi(b)}{\varphi(b)} = 0$, то из леммы 5.41 следует, что существует полином ψ_1 такой, что $\forall \ z \in \mathbb{C} \ R(z) = (z-b)\psi_1(z)$. Следовательно, $\forall \ z \in \mathbb{C} \setminus \mathcal{N}(Q)$

$$\frac{P(z)}{Q(z)} = \frac{P(b)}{(z-b)^{\alpha}\varphi(b)} + \frac{(z-b)\psi_1(z)}{(z-b)^{\alpha}\varphi(z)} = \frac{A_{\alpha}}{(z-b)^{\alpha}} + \frac{\psi_1(z)}{(z-b)^{\alpha-1}\varphi(z)}, \quad A_{\alpha} = \frac{P(b)}{\varphi(b)}.$$

Повторяя данную процедуру для рациональной функции $\frac{\psi_1(z)}{(z-b)^{\alpha-1}\varphi(z)}$, получим, что существует полином ψ_2 такой, что $\forall z \in \mathbb{C} \setminus \mathcal{N}(Q)$

$$\frac{\psi_1(z)}{(z-b)^{\alpha-1}\varphi(z)} = \frac{A_{\alpha-1}}{(z-b)^{\alpha-1}} + \frac{\psi_2(z)}{(z-b)^{\alpha-2}\varphi(z)}, \quad A_{\alpha-1} = \frac{\psi_1(b)}{\varphi(b)}.$$

Продолжая описанную процедуру, в итоге получим, что $\forall z \in \mathbb{C} \setminus \mathcal{N}(Q)$

$$\frac{P(z)}{Q(z)} = \frac{A_{\alpha}}{(z-b)^{\alpha}} + \frac{A_{\alpha-1}}{(z-b)^{\alpha-1}} + \ldots + \frac{A_1}{z-b} + \frac{\psi_{\alpha}(z)}{\varphi(z)},$$

где $A_k = \frac{\psi_{\alpha-k}(b)}{\varphi(b)}$ при $k = 1, \dots, \alpha - 1$. \square

Теорема 5.48. Пусть P – полином степени β и Q – полином степени γ такой, что

$$\forall z \in \mathbb{C} \quad Q(z) = c \prod_{k=1}^{p} (z - b_k)^{\alpha_k},$$

 $ede\ b_k$ – корень полинома $Q\ кратности\ \alpha_k\ npu\ k=1,\ldots,p.$

Тогда если $\beta \geqslant \gamma$, то существует полином R степени $(\beta - \gamma)$ такой, что $\forall z \in \mathbb{C} \setminus \mathcal{N}(Q)$

$$\frac{P(z)}{Q(z)} = R(z) + \sum_{k=1}^{p} F_{b_k}(z).$$
 (5.14)

Если $\beta < \gamma$, то разложение (5.14) справедливо для $R \equiv 0$.

Доказательство. Рассмотрим функцию вида

$$\forall z \in \mathbb{C} \setminus \mathcal{N}(Q) \quad R(z) = \frac{P(z)}{Q(z)} - \sum_{k=1}^{p} F_{b_k}(z).$$

Ясно, что R – рациональная функция, которая может быть представлена в виде $R = \frac{H}{Q}$, где H – некоторый полином. С другой стороны из леммы 5.47 следует, что R остается ограниченной в окрестности корней Q. Следовательно, либо R – полином, либо R – функция тождественно равная нулю.

Далее, заметим, что

$$\forall k \in \{1, \dots, p\} \lim_{z \to \infty} F_{b_k}(z) = 0$$

И

$$\frac{P(z)}{Q(z)} = O(z^{\beta - \gamma}) \quad \text{при} \quad z \to \infty.$$

Следовательно, $R(z) = O(z^{\beta-\gamma})$ при $z \to \infty$. Отсюда следует, что при $\beta < \gamma$ $R \equiv 0$, а при $\beta \geqslant \gamma$ R – полином степени не выше $(\beta - \gamma)$.

Пусть $\beta \geqslant \gamma$ и полином P имеет вид $P(z) = a_{\beta}z^{\beta} + a_{\beta-1}z^{\beta-1} + \ldots + a_0$, где $a_{\beta} \neq 0$, тогда

$$\lim_{z \to \infty} \frac{R(z)}{z^{\beta - \gamma}} = \lim_{z \to \infty} \frac{z^{\gamma} P(z)}{z^{\beta} Q(z)} = \lim_{z \to \infty} \frac{P(z)}{z^{\beta}} \cdot \lim_{z \to \infty} \frac{z^{\gamma}}{Q(z)} = \frac{a_{\beta}}{c} \neq 0.$$

Следовательно, степень полинома P равна $(\beta - \gamma)$. \square

Теорема 5.49. Пусть

- $P \ u \ Q$ полиномы с вещественными коэффициентами со степенями $\alpha_P \ u \ \alpha_Q;$
- ullet $\{c_1,\ldots,c_p\}$ множество вещественных корней полинома Q с кратностями $\{\gamma_1,\ldots,\gamma_p\}$;
- $\{a_1 + ib_1, \dots, a_q + ib_q\}$ множество корней полинома Q в $\{z \in \mathbb{C} \mid \text{Im } z > 0\}$ с кратностями $\{\beta_1, \dots, \beta_q\}$, причем $(a_1, \dots, a_q) \in \mathbb{R}^q$ и $(b_1, \dots, b_q) \in \mathbb{R}^q$;

Тогда существуют постоянные A_{kn} , B_{kn} и C_{kn} такие, что $\forall z \in \mathbb{C} \setminus \mathcal{N}(Q)$

$$\frac{P(z)}{Q(z)} = R(z) + \sum_{k=1}^{p} F_k(z) + \sum_{k=1}^{q} G_k(z),$$

 $r\partial e$

$$F_k(z) = \sum_{n=1}^{\gamma_k} \frac{A_{kn}}{(z - c_k)^n}, \quad G_k(z) = \sum_{n=1}^{\beta_k} \frac{B_{kn} + C_{kn}z}{(z^2 - 2a_kz + a_k^2 + b_k^2)^n}.$$

При этом если $\alpha_P < \alpha_Q$, то $R \equiv 0$ и если $\alpha_P \geqslant \alpha_Q$, то R – полином степени $(\alpha_P - \alpha_Q)$.

Доказательство. Без доказательства. \square

Непрерывные функции 6.

6.1. Непрерывные функции и их элементарные свойства.

Определение 6.1. Функцию f называют непрерывной в точке $a \in \mathbb{R}$, если

$$\lim_{x \to a} f(x) = f(a).$$

Теорема 6.2. Следующие утверждения эквиваленты.

- (1) f непрерывна в a.
- (2) $\forall \varepsilon > 0 \exists \delta > 0 : (|x a| < \delta \implies |f(x) f(a)| < \varepsilon).$
- (3) $\lim_{x \to a-0} f(x) = \lim_{x \to a+0} f(x) = f(a).$

$$(4) (\exists \alpha > 0 : (a - \alpha, a + \alpha) \subset D(f)) \land \left(\lim_{n \to \infty} x_n = a\right) \land (\{x_n\} \subset D(f)) \implies \lim_{n \to \infty} f(x_n) = f(a).$$

Доказательство. (1) \iff (2). Следует из определения предела функции в точке по Коши.

- $(2) \iff (3)$. Следует из теоремы 4.10.
- $(2) \iff (4)$. Следует из теоремы 4.3. \square

Теорема 6.3.

- (1) f u q непрерывны e $a \in \mathbb{R} \implies f \pm q$ непрерывны e a.
- (2) f и g непрерывны e $a \in \mathbb{R} \Longrightarrow f \cdot g$ непрерывна e a.

Доказательство. (1) Следует из пунктов (1) и (2) теоремы 4.5.

- (2) Следует из пункта (3) теоремы 4.5.
- (3) Из условия следует, что для $\varepsilon = |g(a)| > 0 \; \exists \; \delta > 0 : (|x-a| < \delta \implies |g(x)-g(a)| < \varepsilon).$ Отсюда,

$$|x-a|<\delta \implies |g(x)|\geqslant |g(a)|-|g(x)-g(a)|>0.$$

Для завершения доказательства осталось воспользоваться результатом пункта (4) теоремы 4.5.

(4) Пусть $\varepsilon > 0$. Из непрерывности q в f(a) следует, что

$$\exists \ \gamma > 0 : \Big(|y - f(a)| < \gamma \implies |g(y) - g(f(a))| < \varepsilon \Big).$$

Из непрерывности f в a следует, что

$$\exists \ \delta > 0 : \Big(|x - a| < \delta \implies |y - f(a)| < \gamma \Big).$$

Отсюда,

$$|x - a| < \delta \implies |g \circ f(x) - g \circ f(a)| < \varepsilon. \square$$

Определение 6.4.

• Функцию f называют непрерывной справа в точке $a \in \mathbb{R}$, если

$$\lim_{x \to a+0} f(x) = f(a).$$

• Функцию f называют непрерывной справа в точке $a \in \mathbb{R}$, если

$$\lim_{x \to a-0} f(x) = f(a).$$

Определение 6.5. Функцию f называют непрерывной на множестве X, если f непрерывна в каждой точке множества Х. Множество всех вещественнозначных функций непрерывных на X обозначают через $C(X;\mathbb{R})$ или, сокращенно, C(X).

Oбозначение C[a,b] применяется для множества вещественнозначных функций, которые непрерывны на интервале (a, b), справа в точке a и слева в точке b.

Пример 6.6. Пусть $\forall x \in \mathbb{R}$ f(x) = x, тогда $f \in C(\mathbb{R})$. Действительно, пусть $\varepsilon > 0$, тогда ∂ ля $\delta = \varepsilon$ верно, что

$$\forall a \in \mathbb{R} \left(|x - a| < \delta \implies |f(x) - f(a)| < \varepsilon \right). \square$$

6.2. Классификация разрывов.

Определение 6.7. Пусть $f: X \to \mathbb{R}, \ a \in \mathbb{R} \ u \ \alpha > 0 \ maкие, \ что \ (a - \alpha, a + \alpha) \setminus \{a\} \subset D(f).$ Γ оворят, что функция f имеет разрыв в точке a, если f не является непрерывной в точке a.

Определение 6.8. Пусть функция f имеет разрыв в точке $a \in \mathbb{R}$.

- Говорят, что f имеет устранимый разрыв в точке a, если $\lim_{x \to a-0} f(x) = \lim_{x \to a+0} f(x)$.
 Говорят, что f имеет разрыв первого рода в точке a, если $\lim_{x \to a-0} f(x) \neq \lim_{x \to a+0} f(x)$.
- ullet Говорят, что f имеет разрыв второго рода в точке a, если не существует хотя бы один из пределов $\lim_{x\to a-0} f(x)$ или $\lim_{x\to a+0} f(x)$.

Пример 6.9. Функция Дирихле задается равенством

$$\mathfrak{D}(x) = \begin{cases} 1 & npu \ x \in \mathbb{Q}, \\ 0 & npu \ x \in \mathbb{I}. \end{cases}$$

 Φ ункция Дирихле имеет разрывы второго рода во всех точках вещественной оси.

Пример 6.10. Функция Римана задается равенством

$$\Re(x) = \left\{ egin{array}{ll} rac{1}{n} & npu \ x = rac{m}{n} \in \mathbb{Q}, \ \emph{rde} \ rac{m}{n} - \emph{несократимая дробь}, \\ 0 & npu \ x \in \mathbb{I}. \end{array} \right.$$

 Φ ункция Pимана непрерывна во всех иррациональных точках и имеет устранимые разрывы во всех рациональных точках.

6.3. Основные теоремы о непрерывных функциях.

Теорема 6.11 (Теорема Больцано-Коши 1 о достаточном условии существования корня непрерывной функции). Пусть $f \in C[a,b]$ и $f(a) \cdot f(b) < 0$, тогда $\exists c \in (a,b) : f(c) = 0$.

Доказательство. Для определенности будем считать, что f(a) < 0 < f(b). Рассмотрим точку $\alpha = \frac{a+b}{2} \in (a,b)$. Если $f(\alpha) = 0$, то теорема доказано. В противном случае, из условия $f(a) \cdot f(b) < 0$ следует, что на концах по крайней мере одного из отрезков $[a,\alpha]$ или $[\alpha,b]$ функция fпринимает значения разного знака. Обозначим этот отрезок через $[a_1, b_1]$.

Далее, рассмотрим точку $\alpha_1 = \frac{a_1 + b_1}{2} \in (a_1, b_1)$. Если $f(\alpha_1) = 0$, то теорема доказано. В противном случае, из условия $f(a_1) \cdot f(b_1) < 0$ следует, что на концах по крайней мере одного из отрезков $[a_1, \alpha_1]$ или $[\alpha_1, b_1]$ функция f принимает значения разного знака. Обозначим этот отрезок через $[a_2,b_2]$. При этом очевидно, что $[a_2,b_2]\subset [a_1,b_1]\subset [a,b]$ и $b_2-a_2=\frac{b-a}{2^2}$.

Продолжая данную процедуру получим последовательность вложенных отрезков

$$[a_1,b_1]\supset [a_2,b_2]\supset\ldots\supset [a_n,b_n]\supset\ldots,$$

причем $\lim_{n\to\infty}(b_n-a_n)=0$. Из принципа вложенных отрезков получим, что существует единственная точка c такая, что $c\in\bigcap_{n\in\mathbb{N}}[a_n,b_n]$. Отсюда следует, что

$$\lim_{n \to \infty} a_n = \lim_{n \to \infty} b_n = c.$$

Из непрерывности f и условия $f(a_n)f(b_n) < 0$ получим, что

$$f^{2}(c) = \lim_{n \to \infty} f(a_{n})f(b_{n}) \leqslant 0 \implies f(c) = 0.$$

Теорема 6.12 (Теорема Больцано-Коши 2 о промежуточных значениях непрерывной функции).

- (1) $\Pi y cmb \ f \in C[a,b] \ u \ f(a) < f(b)$. $Tor \partial a \ \forall \ d \in (f(a),f(b)) \ \exists \ c \in (a,b) : d = f(c)$.
- (2) $\Pi ycmb \ f \in C[a,b] \ u \ f(a) > f(b)$. $Tor \partial a \ \forall \ d \in (f(b),f(a)) \ \exists \ c \in (a,b) : d = f(c)$.

Доказательство. (1) Рассмотрим вспомогательную функцию g = f - d. Легко видеть, что

$$g(a)g(b) = (f(a) - d)(f(b) - d) < 0.$$

Следовательно, выполнены условия теоремы Больцано-Коши 1, и $\exists c \in (a,b) : g(c) = 0$. Отсюда получим, что f(c) = g(c) + d = d.

(2) Доказывается аналогично пункту (1). □

Теорема 6.13 (Теорема Вейерштрасса 1 об ограниченности непрерывной функции). Пусть $f \in C[a,b], \ moe \partial a \exists \ (m,M) \in \mathbb{R}^2 : \forall \ x \in [a,b] \ m \leqslant f(x) \leqslant M.$

Доказательство. Из $f \in C[a,b]$ следует, что $\forall x \in [a,b]$ существует интервал U_x такой, что

$$\forall y \in [a, b] \ (y \in U_x \Longrightarrow |f(x) - f(y)| < 1). \tag{6.1}$$

Из (6.1) следует, что f – ограничена на интервале U_x , т. е.

$$\exists (m_x, M_x) \in \mathbb{R}^2 : \forall y \in U_x \ m_x \leqslant f(y) \leqslant M_x.$$

Заметим теперь, что $[a,b]\subset\bigcup_{x\in[a,b]}U_x$ и из принципа Бореля-Лебега (см. теорему 2.33) следует,

что
$$\exists \{x_1, \dots, x_n\} : [a, b] \subset \bigcup_{k=1}^n U_{x_k}.$$

Из свойства 2.22 следует, что

$$\exists (m, M) \in \mathbb{R}^2 : m = \min\{m_{x_1}, \dots, m_{x_n}\}, M = \max\{M_{x_1}, \dots, M_{x_n}\}.$$

Отсюда получим, что $\forall x \in [a,b] \exists p : x \in U_{x_p}$, причем

$$m = \min\{m_{x_1}, \dots, m_{x_n}\} \leqslant m_{x_p} \leqslant f(x) \leqslant M_{x_p} \leqslant \max\{M_{x_1}, \dots, M_{x_n}\} = M.$$

Теорема 6.14 (Теорема Вейерштрасса 2 о максимуме и минимуме непрерывной функции). Пусть $f \in C[a,b], \ mor \partial a \ \exists \ x_*, x^* \in [a,b] : \forall \ x \in [a,b] \ f(x_*) \leqslant f(x) \leqslant f(x^*).$

Доказательство. Пусть $M = \sup_{x \in [a,b]} f(x)$ (существование точной верхней грани следует из тео-

рем 2.12 и 6.13). Дальнейшее доказательство проведем от противного. Пусть $\forall \ x \in [a,b] \ f(x) < M$, тогда $g = \frac{1}{M-f} \in C[a,b]$ и из теоремы 6.13 следует, что g – ограничена на [a,b]. Положим $G = \sup_{x \in [a,b]} g(x) > 0$.

С другой стороны из определения точной верхней грани следует, что

$$\forall \ \varepsilon > 0 \ \exists \ x \in [a, b] : M - f(x) < \varepsilon.$$

Отсюда получим, что для $\varepsilon = \frac{1}{G}$

$$\exists \ x \in [a,b]: G = \frac{1}{\varepsilon} < \frac{1}{M - f(x)} = g(x) \leqslant \sup_{x \in [a,b]} g(x) = G.$$

Полученное противоречие завершает доказательство.

Задача 6.15. Пусть $f \in C[a,b], g \in C[c,d]$ f(a) < g(a) u f(b) > g(b). Доказать, что существует точка $c \in [a,b]$ такая, что f(c) = g(c).

Задача 6.16. Доказать, что любой вещественный полином нечетной степени имеет по крайней мере один вещественный корень.

Задача 6.17. Пусть $f \in C[a,b]$. Доказать, что R(f) – отрезок.

6.4. Монотонные функции.

Определение 6.18. Функцию $f: \mathbb{R} \supset X \to \mathbb{R}$ называют

- неубывающей, если $\forall (x,y) \in \mathbb{X}^2 (x < y \Longrightarrow f(x) \leqslant f(y));$
- невозрастающей, если $\forall (x,y) \in \mathbb{X}^2 (x < y \Longrightarrow f(x) \geqslant f(y));$
- монотонной, если она неубывающая или невозрастающая;
- убывающей, если если $\forall (x,y) \in \mathbb{X}^2 (x < y \Longrightarrow f(x) > f(y));$
- возрастающей, если $\forall (x,y) \in \mathbb{X}^2 (x < y \Longrightarrow f(x) < f(y));$
- строго монотонной, если она убывающая или возрастающая.

Теорема 6.19. Пусть f – монотонная функция на интервале (a,b) и f имеет разрыв в точке $c \in (a,b)$. Тогда f имеет разрыв первого рода в точке c.

Доказательство. Пусть для определенности f — неубывающая функция. Отсюда, учитывая очевидную оценку $\sup_{x \in (a,c)} f(x) \leqslant f(c)$, получим, что существует предел $\lim_{x \to c-0} f(x)$ (доказатель-

ство этого факта вполне аналогично доказательству теоремы 3.16). Из оценки $\inf_{x \in (c,b)} f(x) \geqslant f(c)$

и неубывания f следует, что существует предел $\lim_{x\to c+0} f(x)$. Таким образом функция f имеет в точке c либо устранимый разрыв, либо разрыв первого рода.

Из неубывания f и теоремы 4.6 следует, что

$$\lim_{x \to c-0} f(x) \leqslant f(c) \leqslant \lim_{x \to c+0} f(x). \tag{6.2}$$

Из оценки 6.2 следует, что f не может иметь устранимый разрыв в точке c. Следовательно, f имеет разрыв первого рода в точке c. \square

Теорема 6.20 (Критерий непрерывности монотонной функции). Пусть f – монотонная функции на отрезке [a,b]. Тогда

(1) $ecnu\ f(a) \leqslant f(b)$, mo

$$f \in C[a, b] \iff R(f) = [f(a), f(b)];$$

(2) если $f(a) \geqslant f(b)$, то

$$f \in C[a, b] \iff R(f) = [f(b), f(a)].$$

Доказательство. (1) Необходимость (\Longrightarrow) . Из монотонности f следует, что $R(f) \subset [f(a), f(b)]$. Из теоремы Больцано-Коши 2 получим, что $\forall \ d \in [f(a), f(b)] \ \exists \ c : f(c) = d$ или, другими словами, $[f(a), f(b)] \subset R(f)$.

Достаточность (\Leftarrow). Доказательство проведем от противного. Пусть f имеет точку разрыва в $c \in (a,b)$ (случаи c=a или c=b рассматривается аналогично). Из теоремы 6.19 следует, что f имеет разрыв первого рода в точке c, откуда

$$\lim_{x \to c-0} f(x) < \lim_{x \to c+0} f(x).$$

Ясно, что существует $d \neq f(c)$ такое, что

$$f(a) < \lim_{x \to c-0} f(x) < d < \lim_{x \to c+0} f(x) < f(b).$$
(6.3)

Из (6.3) и монотонности f следует, что $\forall x \in [a,c) \ f(x) < d, \forall x \in (c,b] \ f(x) > d$. Таким образом, $d \notin R(f)$, откуда получим, что $[f(a),f(b)] \not\subset R(f)$.

(2) Доказывается аналогично пункту (1). □

Теорема 6.21 (Об обратной функции). Пусть функция f строго монотонна на $X \subset \mathbb{R}$. Тогда

- (1) существует обратная функция f^{-1} , определенная на R(f);
- (2) f^{-1} строго монотонна на R(f), причем f^{-1} имеет тот же вид монотонности на R(f), что и f на X;
- (3) если, вместе с этим, X = [a, b] и $f \in C[a, b]$, то функция f^{-1} непрерывна на отрезке с концами f(a) и f(b).

Доказательство. (1) Из строгой монотонности следует, что f – инъекция. Рассматривая f как отображение X на R(f) получим, что f – биекция. Теперь из теоремы 1.23 следует, что существует обратное отображение $f^{-1}: R(f) \to X$.

(2) Для определенности будем считать, что f – возрастающая функция, тогда

$$\forall (x_1, x_2) \in X^2 (x_1 < x_2 \Longrightarrow f(x_1) < f(x_2)). \tag{6.4}$$

Пусть $(y_1, y_2) \in D(f)^2$: $y_1 < y_2$. Докажем, что $f^{-1}(y_1) < f^{-1}(y_2)$. Доказательство проведем от противного. Пусть $f^{-1}(y_2) \leqslant f^{-1}(y_1)$, тогда из (6.4) следует, что

$$y_2 = f(f^{-1}(y_2)) \le f(f^{-1}(y_1)) = y_1.$$
 (6.5)

Соотношение (6.5) противоречит предположению $y_1 < y_2$. Полученное противоречие доказывает, что f^{-1} – возрастающая функция.

Случай, когда f – убывающая функция, может быть доказан аналогично.

(3) Для определенности будем считать, что f(a) < f(b). Из непрерывности f и теоремы 6.20 следует, что R(f) = [f(a), f(b)]. Таким образом, функция f^{-1} монотонна на отрезке [f(a), f(b)], причем $R(f^{-1}) = [a, b]$. Теперь из теоремы 6.20 следует, что $f^{-1} \in C[f(a), f(b)]$.

Случай f(a) > f(b) рассматривается аналогично. \square

6.5. Равномерная непрерывность.

Определение 6.22. Функция f называется равномерно непрерывной на $X \subset D(f)$, если

$$\forall \ \varepsilon > 0 \ \exists \ \delta > 0 : \forall \ (x_1, x_2) \in X^2 \ \Big(|x_1 - x_2| < \delta \Longrightarrow |f(x_1) - f(x_2)| < \varepsilon \Big).$$

Теорема 6.23 (Кантор). Пусть $f \in C[a,b]$. Тогда f – равномерно непрерывна на [a,b].

Доказательство. Пусть $\varepsilon>0$. Из $f\in C[a,b]$ следует, что $\forall~x\in[a,b]$ существует $\delta_x>0$ такое, что

$$\forall y \in [a, b] \left(y \in (x - \delta_x, x + \delta_x) \Longrightarrow |f(x) - f(y)| < \varepsilon \right). \tag{6.6}$$

Легко видеть, что $[a,b]\subset\bigcup_{x\in[a,b]}U_x$, где $U_x=(x-\frac{1}{2}\delta_x,x+\frac{1}{2}\delta_x)$ и из принципа Бореля-Лебега (см.

теорему 2.33) следует, что

$$\exists \{x_1, \dots, x_n\} : [a, b] \subset \bigcup_{k=1}^n U_{x_k}. \tag{6.7}$$

Из свойства 2.22 следует, что $\exists \ \delta = \frac{1}{2} \min(\delta_{x_1}, \dots, \delta_{x_n}).$

Докажем теперь, что

$$\forall (x,y) \in [a,b]^2 \left(|x-y| < \delta \Longrightarrow |f(x) - f(y)| < \frac{\varepsilon}{4} \right).$$

Пусть $(x,y) \in [a,b]^2$ и $|x-y| < \delta$. Из (6.7) следует, что $\exists \ x_q: \ x \in U_{x_p}$. Более того,

$$|y - x_q| \leqslant |y - x| + |x - x_q| < \delta + \frac{1}{2} \delta_{x_q} \leqslant \delta_{x_q}$$

или, другими словами, $y \in (x_q - \delta_{x_q}, x_q + \delta_{x_q})$. Теперь из (6.6) следует, что $|f(x) - f(y)| < \varepsilon$. \square

Задача 6.24. Доказать, что функция $\sin \frac{1}{x}$ не равномерно непрерывна на интервале (0,1).

6.6. Непрерывность элементарных функций.

Теорема 6.25.

- (1) Пусть P и Q полиномы, тогда $P \in C(\mathbb{R})$ и $\frac{P}{Q} \in C(\mathbb{R} \setminus \mathcal{N}(Q))$.
- (2) $e^x \in C(\mathbb{R})$.
- (3) $\Pi y cm b \ a > 0$, $mor \partial a \log_a x \in C(0, +\infty)$.
- (4) $\Pi y cmb \ a \in \mathbb{R}$, $mor \partial a \ x^a \in C(0, +\infty)$.
- (5) $\sin x \in C(\mathbb{R}) \ u \cos x \in C(\mathbb{R}).$

Доказательство. (1) В примере 6.6 доказано, что $x \in C(\mathbb{R})$. Теперь необходимое утверждение следует из теоремы 6.3.

- (2) Из пункта (5) теоремы 5.3 следует, что e^x непрерывна при x=0. Отсюда следует, что для любого $x_0 \in \mathbb{R}$ функция e^{x-x_0} непрерывна при $x=x_0$. Из представления $e^x=e^{x-x_0}e^{x_0}$ и теоремы 6.3 следует, что $e^x \in C(\mathbb{R})$.
- (3) Из пункта (3) теоремы 5.3 следует, что e^x возрастающая функция. Отсюда и из теоремы 6.21 следует, что $\ln \in C(0,+\infty)$. Учитывая соотношение $\log_a x = \frac{\ln x}{\ln a}$ получим, что $\log_a x \in C(0,+\infty)$.
 - (4) Следует из пункта (4) теоремы 6.3.
- (5) Из пункта (5) теоремы 5.30 следует, что $\sin 0 = 0$ и $\cos 0 = 1$. Из пункта (4) теоремы 5.30 следует, что

$$\lim_{x \to 0} \sin x = 0 = \sin 0, \quad \lim_{x \to 0} \cos x = 1 = \cos 0.$$

Таким образом, $\sin x$ и $\cos x$ непрерывны при x=0. Отсюда следует, что $\sin x - x_0$ и $\cos x - x_0$ непрерывны при $x=x_0$.

Используя пункт (3) теоремы 5.30 получим, что

$$\sin x = \sin(x - x_0)\cos x_0 + \cos(x - x_0)\sin x_0, \quad \cos x = \cos(x - x_0)\cos x_0 - \sin(x - x_0)\sin x_0.$$

Отсюда и из теоремы 6.3 получим, что $\sin x \in C(\mathbb{R})$ и $\cos x \in C(\mathbb{R})$.

Теорема 6.26.

- (1) На отрезке $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$ функция $\sin x$ имеет обратную, которую обозначают $\arcsin x$.
- (2) На отрезке $[0,\pi]$ функция $\cos x$ имеет обратную, которую обозначают $\arccos x$.

Доказательство. (1) Из геометрического определения синуса можно доказать, что на отрезке $[-\frac{\pi}{2}, \frac{\pi}{2}]$ функция $\sin x$ возрастает. Учитывая, включение $\sin x \in C[-\frac{\pi}{2}, \frac{\pi}{2}]$ и теорему 6.21, получим, что $\arcsin x \in C[-1, 1]$.

(2) Из геометрического определения косинуса можно доказать, что на отрезке $[0,\pi]$ функция $\cos x$ убывает. Учитывая, включение $\cos x \in C[0,\pi]$ и теорему 6.21, получим, что $\arccos x \in C[-1,1]$. \square

Задача 6.27. Доказать, что $\forall n \in \mathbb{N}$ функция $T_n(x) = \cos(n \arccos x)$ на области определения $D(T_n) = [-1, 1]$ является полиномом степени n (полиномы Чебышева).

Задача 6.28. Найдите корни полиномов Чебышева, точки максимума и минимума на отрезке [-1,1].

Задача 6.29. Доказать, что для любого полинома P_n степени n с коэффициентом 1 при степени x^n верно, что

$$\max_{x \in [-1,1]} |T_n(x)| \leqslant \max_{x \in [-1,1]} |P_n(x)|,$$

причем равенство достигается только если $P_n = T_n$.

7. Дифференцирование

7.1. Дифференцирование и его основные свойства.

7.1.1. Скорость движетия материальной точки. Пусть материальная точка движется в пространстве и ее координаты меняются по некоторому закону вида $\mathbf{r} = \mathbf{r}(t)$, где t – вещественный параметр (время). Средняя скорость движения на участке $t \in [a, b]$ определяется равенством

$$\hat{\mathbf{v}} = \frac{\mathbf{r}(b) - \mathbf{r}(a)}{b - a}.$$

Естественно ввести следующее определение мгновенной скорости

$$\mathbf{v}(t) = \lim_{s \to t} \frac{\mathbf{r}(s) - \mathbf{r}(t)}{s - t},$$

при условии, что последний предел существует.

7.1.2. Плотность стержня. Пусть имеется стержень с выделенным концом O. Пусть масса участка стержня длины l, измеряемой от точки O, определяется функцией вида m=m(l). Средняя плотность участка стержня между l и s задается равенством

$$\hat{\rho} = \frac{m(s) - m(l)}{s - l}.$$

Естественно ввести следующее определение плотности стержня в точке

$$\rho(l) = \lim_{s \to l} \frac{m(s) - m(l)}{s - l},$$

при условии, что последний предел существует.

7.1.3. Определение производной.

Определение 7.1. Производной функции f в точке а называют предел (если он существует)

$$\lim_{x \to a} \frac{f(x) - f(a)}{x - a},$$

который обозначают символом f'(a).

Определение 7.2. Говорят, что f дифференцируема в точке x, если

$$\exists \ A: f(x+h) = f(x) + Ah + o(h)$$

 $npu \ h \rightarrow 0.$

Теорема 7.3. f имеет производную в точке $x \iff f$ дифференцируема в точке x.

Доказательство. Необходимость (\Longrightarrow). Из существования производной функции f в точке x следует, что $\exists \ \alpha > 0 : (x - \alpha, x + \alpha) \subset D(f)$. Рассмотрим функцию

$$\beta(h) = \begin{cases} \frac{f(x+h) - f(x)}{h} - f'(x) & \text{при } 0 < |h| < \alpha, \\ 0 & \text{при } h = 0. \end{cases}$$

Для завершения доказательства достаточно доказать, что $\lim_{h\to 0}\beta(h)=0$. Из существования производной функции f в точке x следует, что

$$\forall \varepsilon > 0 \; \exists \; \delta > 0 : \left(0 < |h| < \delta \Longrightarrow |\beta(h)| = \left| \frac{f(x+h) - f(x)}{h} - f'(x) \right| < \varepsilon \right).$$

Достаточность (\iff). Из определения o(h) следует, что существует предел $\lim_{h\to 0} \frac{o(h)}{h} = 0$. Пусть A: f(x+h) = f(x) + Ah + o(h) при $h\to 0$, тогда

$$\lim_{h \to 0} \frac{f(x+h) - f(x)}{h} = A + \lim_{h \to 0} \frac{o(h)}{h} = A. \ \Box$$

Теорема 7.4. Пусть f дифференцируема в точке a, тогда f непрерывна в точке a.

Доказательство. Пусть $\varepsilon > 0$. Из дифференцируемости f следует, что $\exists \delta_1$ такое, что

$$0 < |x - a| < \delta_1 \Longrightarrow \left| \frac{f(x) - f(a)}{x - a} - f'(a) \right| < \varepsilon.$$

Пусть $\delta = \min\left(\delta_1, \frac{\varepsilon}{\varepsilon + |f'(a)|}\right) > 0$, тогда $\forall \ x : 0 < |x - a| < \delta$ верно, что

$$|f(x) - f(a)| = |x - a| \left| \frac{f(x) - f(a)}{x - a} \right| \le |x - a| \left| \frac{f(x) - f(a)}{x - a} - f'(a) \right| + |x - a| |f'(a)| < |x - a| (\varepsilon + |f'(a)|) < \delta(\varepsilon + |f'(a)|) \le \varepsilon. \square$$

Определение 7.5.

• Функцию f называют дифференцируемой справа в точке $a \in \mathbb{R}$, если существует предел

$$\lim_{x \to a+0} \frac{f(x) - f(a)}{x - a},$$

который обозначают символом f'(a+0).

ullet Функцию f называют дифференцируемой слева в точке $a\in\mathbb{R}$, если существует предел

$$\lim_{x \to a-0} \frac{f(x) - f(a)}{x - a},$$

который обозначают символом f'(a-0).

Определение 7.6.

- Вещественнозначную функцию f называют непрерывно дифференцируемой на интервале (a,b), если $\forall x \in (a,b) \exists f'(x)$ и $f' \in C(a,b)$. Множество всех вещественнозначных функций непрерывно дифференцируемых на (a,b) обозначают через $C^1(a,b)$.
- Вещественнозначную функцию f называют непрерывно дифференцируемой на отрезке [a,b], если $\forall x \in (a,b) \exists f'(x), \exists f'(a+0), \exists f'(b-0) u f' \in C[a,b]$. Множество всех вещественнозначных функций непрерывно дифференцируемых на [a,b] обозначают через $C^1[a,b]$.

Пример 7.7. Рассмотрим функцию f(x) = |x|. Легко видеть, что при x > 0

$$\lim_{t \to x} \frac{f(t) - f(x)}{t - x} = \lim_{t \to x} \frac{t - x}{t - x} = 1,$$

 $npu \ x < 0$

$$\lim_{t \to x} \frac{f(t) - f(x)}{t - x} = \lim_{t \to x} \frac{-t + x}{t - x} = -1,$$

 $npu \ x = 0$

$$\lim_{t \to 0+0} \frac{f(t) - f(x)}{t - x} = \lim_{t \to 0+0} \frac{t - x}{t - x} = 1, \quad \lim_{t \to 0-0} \frac{f(t) - f(x)}{t - x} = \lim_{t \to 0-0} \frac{-t + x}{t - x} = -1.$$

Следовательно, $f \in C^1[0,+\infty)$ и $f \in C^1(-\infty,0]$, однако, $f \notin C^1(\mathbb{R})$.

7.1.4. Геометрический смысл производной.

Определение 7.8. Пусть вещественнозначная функция f определена на множестве $X \subset \mathbb{R}$. Множество $\{(x,y) \in \mathbb{R}^2 \mid \exists \ x \in X : y = f(x)\}$ называют графиком функции f.

Пусть $f \in C^1[a,b]$ и $a \leqslant c < d \leqslant b$. Уравнение прямой, проходящей через точки (c,f(c)) и (d,f(d)) имеет вид

$$y = f(c) + \frac{f(d) - f(c)}{d - c}(x - c). \tag{7.1}$$

В пределе при $d \to c$ уравнение (7.1) принимает вид

$$y = f(c) + f'(c)(x - c). (7.2)$$

По этой причине разумно ввести следующее определение.

Определение 7.9. Касательной к графику функции f в точке (c, f(c)) называют прямую, заданную уравнением вида (7.2).

Пусть φ – угол между касательной к графику функции f в точке c и осью абсцисс, отмеряемый против хода часовой стрелки, тогда из уравнения (7.2) следует, что tg $\varphi = f'(c)$.

7.2. Основные правила дифференцирования.

Теорема 7.10.

- (1) $\forall x \in (a,b) \ f(x) = c \in \mathbb{R} \Longrightarrow \forall x \in (a,b) \ f'(x) = 0.$
- (2) f и g дифференцируемы g $x \in \mathbb{R} \Longrightarrow (f(x) + g(x))' = f'(x) + g'(x)$.
- (3) f и g дифференцируемы g $x \in \mathbb{R} \Longrightarrow (f(x) g(x))' = f'(x) g'(x)$.
- (5) f u g дифференцируемы e $x \in \mathbb{R}$ u $g(x) \neq 0 \Longrightarrow \left(\frac{f}{g}\right)'(x) = \frac{f'(x)g(x) f(x)g'(x)}{g^2(x)}$.

Доказательство. (1) Легко видеть, что

$$f'(x) = \lim_{t \to x} \frac{f(t) - f(x)}{t - x} = \lim_{t \to x} \frac{c - c}{t - x} = 0.$$

(2) Из свойств предела следует, что

$$(f+g)'(x) = \lim_{t \to x} \frac{f(t) + g(t) - f(x) - g(x)}{t - x} = \lim_{t \to x} \frac{f(t) - f(x)}{t - x} + \lim_{t \to x} \frac{g(t) - g(x)}{t - x} = f'(x) + g'(x).$$

(3) Из свойств предела следует, что

$$(f-g)'(x) = \lim_{t \to x} \frac{f(t) - g(t) - f(x) + g(x)}{t - x} = \lim_{t \to x} \frac{f(t) - f(x)}{t - x} - \lim_{t \to x} \frac{g(t) - g(x)}{t - x} = f'(x) - g'(x).$$

(4) Из теоремы 7.4 следует, что f и g непрерывны в точке a. Отсюда и из свойств предела следует, что

$$(f \cdot g)'(x) = \lim_{t \to x} \frac{f(t)g(t) - f(x)g(x)}{t - x} = \lim_{t \to x} \frac{f(t)g(t) - f(x)g(t)}{t - x} + \lim_{t \to x} \frac{f(x)g(t) - f(x)g(x)}{t - x} = \lim_{t \to x} \frac{f(t) - f(x)}{t - x} \cdot \lim_{t \to x} g(t) + f(x) \cdot \lim_{t \to x} \frac{g(t) - g(x)}{t - x} = f'(x)g(x) + f(x)g'(x).$$

(5) Из теоремы 7.4 следует, что f и g непрерывны в точке x. Отсюда и из свойств предела следует, что

$$\left(\frac{f}{g}\right)'(x) = \lim_{t \to x} \frac{\frac{f(t)}{g(t)} - \frac{f(x)}{g(x)}}{t - x} = \lim_{t \to x} \frac{f(t)g(x) - f(x)g(t)}{g(t)g(x)(t - x)} =
= \frac{1}{g(x)} \cdot \lim_{t \to x} \frac{1}{g(t)} \cdot \lim_{t \to x} \frac{f(t)g(x) - f(x)g(x) + f(x)g(x) - f(x)g(t)}{t - x} =
= \frac{1}{g^2(x)} \cdot \left(g(x) \cdot \lim_{t \to x} \frac{f(t) - f(x)}{t - x} + f(x) \cdot \lim_{t \to x} \frac{g(x) - g(t)}{t - x}\right) = \frac{f'(x)g(x) - f(x)g'(x)}{g^2(x)}. \quad \square$$

Теорема 7.11 (Дифференцирование композиции). Пусть функция f дифференцируема в точке x, а функция g дифференцируема в точке f(x). Тогда $(g \circ f)'(x) = g'(f(x)) \cdot f'(x)$.

Доказательство. Пусть $h \to 0$, тогда $f'(x)h + o(h) \to 0$. Из определения 7.2 и теоремы 7.3 следует, что

$$(g \circ f)(x+h) = g(f(x) + f'(x)h + o(h)) =$$

$$= g(f(x)) + g'(f(x)) \cdot (f'(x)h + o(h)) + o(f'(x)h + o(h)) =$$

$$= g(f(x)) + g'(f(x)) \cdot f'(x)h + g'(f(x))o(h) + o(h) =$$

$$= g(f(x)) + g'(f(x)) \cdot f'(x)h + o(h). \square$$

Теорема 7.12 (Дифференцирование обратной функции). Пусть f – строго монотонная функция на $[a,b], f \in C[a,b]$ и для некоторой точки $x \in (a,b) \exists f'(x) \neq 0$.

Тогда определена обратная функция $f^{-1}:D(f)\to [a,b]$, которая дифференцируема в точке y=f(x), причем

$$(f^{-1})'(y) = \frac{1}{f'(x)}.$$

Доказательство. Из дифференцируемости f в точке x следует, что существует функция α такая, что

$$f(x+h) = f(x) + f'(x)h + h\alpha(h)$$

$$(7.3)$$

при $h\to 0$ и $\lim_{h\to 0}\alpha(h)=0$. Из теоремы 6.21 следует, что существует непрерывная обратная функция $f^{-1}:D(f)\to [a,b]$. Применяя функцию f^{-1} к обеим частям равенства (7.3) получим, что

$$x + h = f^{-1}\left(y + h(f'(x) + \alpha(h))\right) \Longleftrightarrow f^{-1}\left(y + h(f'(x) + \alpha(h))\right) - f^{-1}(y) = h \Longleftrightarrow$$

$$\Longleftrightarrow \frac{f^{-1}\left(y + h(f'(x) + \alpha(h))\right) - f^{-1}(y)}{h(f'(x) + \alpha(h))} = \frac{1}{f'(x) + \alpha(h)}$$

$$(7.4)$$

Правая часть равенства (7.4) имеет предел при $h \to 0$, следовательно и левая часть равенства (7.4) имеет предел при $h \to 0$. Переходя к пределу при $h \to 0$ в (7.4) и учитывая, что

$$\lim_{h \to 0} h(f'(x) + \alpha(h)) = 0,$$

получим

$$(f^{-1})'(y) = \frac{1}{f'(x)}.$$

Теорема 7.13 (Дифференцирование функции, заданной параметрически). Пусть $\psi \in C^1(a,b)$, $\varphi \in C^1(a,b), \forall t \in (a,b) \varphi'(t) \neq 0$ и функция φ обратима⁴.

 $Tor \partial a \ \forall \ t \in (a,b)$

$$(\psi \circ \varphi^{-1})'(x) = \frac{\psi'(t)}{\varphi'(t)}, \quad e \partial e \quad x = \varphi(t).$$

Доказательство. Из теорем 7.11 и 7.12 следует, что $\forall t \in (a, b)$

$$(\psi \circ \varphi^{-1})'(x) = \psi'(\varphi^{-1}(x)) \cdot (\varphi^{-1}(x))' = \psi'(t) \cdot \frac{1}{\varphi'(t)} = \frac{\psi'(t)}{\varphi'(t)},$$

где $x = \varphi(t)$. \square

Задача 7.14. Пусть $f \in C^1(\mathbb{R})$ $u \ \forall \ x \in \mathbb{R}$ f(-x) = f(x), тогда $\forall \ x \in \mathbb{R}$ f'(-x) = -f'(x).

Задача 7.15. Пусть $f \in C^1(\mathbb{R})$ $u \ \forall \ x \in \mathbb{R}$ f(-x) = -f(x), тогда $\forall \ x \in \mathbb{R}$ f'(-x) = f'(x).

Задача 7.16. Доказать, что f дифференцируема в точке $a \iff$ существуют $\varepsilon > 0$ и непрерывная в точке а функция g такая, что $\forall x \in (a - \varepsilon, a + \varepsilon)$ f(x) - f(a) = g(x)(x - a).

7.3. Дифференцирование элементарных функций.

Лемма 7.17. $\forall x \in \mathbb{R} \ (e^x)' = e^x$.

Доказательство. Из теоремы 5.3 следует, что $\forall x \in \mathbb{R}$

$$\lim_{t \to x} \frac{e^t - e^x}{t - x} = e^x \lim_{t \to x} \frac{e^{t - x} - 1}{t - x} = e^x \lim_{t \to x} \frac{t - x + O((t - x)^2)}{t - x} = e^x \left(1 + \lim_{t \to x} O(t - x) \right) = e^x. \ \Box$$

Лемма 7.18. $\forall x \in \mathbb{R} \setminus \{0\} (\ln |x|)' = \frac{1}{x}$.

Доказательство. Пусть x > 0 и $y = \ln x$. Из строгой монотонности экспоненты, теоремы 7.12 и леммы 7.17 следует, что

$$(\ln|x|)' = (\ln x)' = \frac{1}{(e^y)'} = \frac{1}{e^y} = \frac{1}{e^{\ln x}} = \frac{1}{x}.$$

Пусть теперь x < 0 и $y = \ln |x|$, тогда $x = -e^y$ и, следовательно,

$$(\ln|x|)' = \frac{1}{(-e^y)'} = \frac{1}{-e^y} = \frac{1}{x} . \square$$

Теорема 7.19.

- (1) $\Pi y cmb \ \forall \ x \in (a,b) \ f(x) = c \in \mathbb{R}, \ mor \partial a \ \forall \ x \in (a,b) \ f'(x) = 0.$
- (2) $\Pi y cm b \ a > 0$, $mor \partial a \ \forall \ x \in \mathbb{R} \ (a^x)' = a^x \ln a$.
- (3) $\Pi y cmb \ a > 0 \ u \ a \neq 1$, $mor \partial a \ \forall \ x \in \mathbb{R} \setminus \{0\} \ (\log_a |x|)' = \frac{1}{x \ln a}$. (4) $\Pi y cmb \ a \in \mathbb{R}$, $mor \partial a \ \forall \ x \in (0, +\infty) \ (x^a)' = ax^{a-1}$.
- (5) $\forall x \in \mathbb{R} (\sin x)' = \cos x$.
- (6) $\forall x \in \mathbb{R} (\cos x)' = -\sin x$.
- (7) $\forall x \in (-1,1) (\arcsin x)' = \frac{1}{\sqrt{1-x^2}}$.
- (8) $\forall x \in (-1,1) (\arccos x)' = \frac{1}{\sqrt{1-x^2}}$

 $^{^4}$ Позднее будет доказано, что это условие можно отбросить, поскольку для обратимости функции достаточно существование отличной нуля производной.

Доказательство. (1) Доказано в пункте (1) теоремы 7.10.

(2) Из теоремы 7.11 и леммы 7.17 следует, что $\forall x \in \mathbb{R}$

$$(a^x)' = (e^{x \ln a})' = e^{x \ln a} \ln a = a^x \ln a.$$

(3) Из леммы 7.18 следует, что $\forall x \in \mathbb{R} \setminus \{0\}$

$$(\log_a |x|)' = \left(\frac{\ln |x|}{\ln a}\right)' = \frac{1}{x \ln a}.$$

(4) Из лемм 7.17, 7.18 и теоремы 7.11 следует, что $\forall x \in (0, +\infty)$

$$(x^a)' = (e^{a \ln x})' = e^{a \ln x} \cdot (a \ln x)' = x^a \cdot a \cdot \frac{1}{x} = ax^{a-1}.$$

(5) Заметим, что $\forall (x,t) \in \mathbb{R}^2$ верно, что

$$\sin x - \sin t = 2\cos\left(\frac{x+t}{2}\right)\sin\left(\frac{x-t}{2}\right).$$

Отсюда и из теорем 5.30, 6.25 следует, что

$$(\sin x)' = \lim_{t \to x} \frac{\sin x - \sin t}{x - t} = \lim_{t \to x} \frac{2\cos\left(\frac{x+t}{2}\right)\sin\left(\frac{x-t}{2}\right)}{x - t} = 2\lim_{t \to x} \cos\left(\frac{x+t}{2}\right)\lim_{t \to x} \frac{\sin\left(\frac{x-t}{2}\right)}{x - t} = 2\cos x \lim_{t \to x} \frac{\frac{x-t}{2} + O((x-t)^2)}{x - t} = 2\cos x \left(\frac{1}{2} + \lim_{t \to x} O(x-t)\right) = \cos x.$$

(6) Заметим, что $\forall (x,t) \in \mathbb{R}^2$ верно, что

$$\cos x - \cos t = -2\sin\left(\frac{x+t}{2}\right)\sin\left(\frac{x-t}{2}\right).$$

Отсюда и из теорем 5.30, 6.25 следует, что

$$(\cos x)' = \lim_{t \to x} \frac{\cos x - \cos t}{x - t} = -\lim_{t \to x} \frac{2\sin\left(\frac{x + t}{2}\right)\sin\left(\frac{x - t}{2}\right)}{x - t} = -2\lim_{t \to x} \sin\left(\frac{x + t}{2}\right)\lim_{t \to x} \frac{\sin\left(\frac{x - t}{2}\right)}{x - t} =$$

$$= -2\sin x \lim_{t \to x} \frac{\frac{x - t}{2} + O((x - t)^2)}{x - t} = -2\sin x \left(\frac{1}{2} + \lim_{t \to x} O(x - t)\right) = -\sin x.$$

(7) Пусть $x\in (-1,1)$ и $y=\arcsin x\in (-\frac{\pi}{2},\frac{\pi}{2})$. Тогда $x=\sin y$ и из теоремы 7.12 следует, что

$$(\arcsin x)' = \frac{1}{(\sin y)'} = \frac{1}{\cos y} = \frac{1}{\sqrt{1 - \sin^2 y}} = \frac{1}{\sqrt{1 - x^2}}.$$

Здесь мы учли, что $\cos y>0$ при $y\in (-\frac{\pi}{2},\frac{\pi}{2}).$

(8) Пусть $x \in (-1,1)$ и $y = \arccos x \in (0,\pi)$. Тогда $x = \cos y$ и из теоремы 7.12 следует, что

$$(\arccos x)' = \frac{1}{(\cos y)'} = -\frac{1}{\sin y} = -\frac{1}{\sqrt{1 - \cos^2 y}} = -\frac{1}{\sqrt{1 - x^2}}.$$

Здесь мы учли, что $\sin y > 0$ при $y \in (0, \pi)$. \square

Задача 7.20. Доказать, что

- (1) $\forall x \neq \frac{\pi}{2} + \pi n$, $e \partial e \ n \in \mathbb{Z} \ (\operatorname{tg} x)' = \frac{1}{\cos^2 x}$; (2) $\forall x \neq \pi n$, $e \partial e \ n \in \mathbb{Z} \ (\operatorname{ctg} x)' = -\frac{1}{\sin^2 x}$;
- (3) $\forall x \in (-1,1) (\operatorname{arctg} x)' = \frac{1}{1+x^2};$
- (4) $\forall x \in (-1,1) (\operatorname{arcctg} x)' = -\frac{1}{1+x^2}$;

Задача 7.21. Гиперболические функции определены следующими равенствами

(1)
$$\forall x \in \mathbb{R} \text{ sh } x = \frac{e^x - e^{-x}}{2}, \text{ ch } x = \frac{e^x + e^{-x}}{2}, \text{ th } x = \frac{\sinh x}{\cosh x};$$

(2) $\forall x \in \mathbb{R} \setminus \{0\} \text{ cth } x = \frac{\cosh x}{\sinh x}.$

$$(2) \ \forall \ x \in \mathbb{R} \setminus \{0\} \ \operatorname{cth} x = \frac{\operatorname{ch} x}{\operatorname{sh} x}$$

Доказать, что

(1)
$$\forall x \in \mathbb{R} (\operatorname{sh} x)' = \operatorname{ch} x, (\operatorname{ch} x)' = \operatorname{sh} x, (\operatorname{th} x)' = \frac{1}{\operatorname{ch}^2 x};$$

(2)
$$\forall x \in \mathbb{R} \setminus \{0\} (\operatorname{cth} x)' = -\frac{1}{\operatorname{sh}^2 x}$$
.

Задача 7.22. Доказать, что обратные гиперболические функции определены следующими равенствами

(1)
$$\forall x \in \mathbb{R} \text{ atsh } x = \ln(x + \sqrt{1 + x}),$$

(2) $\forall x \in (1, +\infty) \text{ arch } x = \ln(x \pm \sqrt{x^2 - 1});$
(3) $\forall x \in (-1, 1) \text{ arth } x = \frac{1}{2} \ln \frac{1+x}{1-x};$

(3)
$$\forall x \in (-1,1)$$
 arth $x = \frac{1}{2} \ln \frac{1+x}{1-x}$,

(4)
$$\forall x \in (-\infty, -1) \cup (1, +\infty) \ \operatorname{arcth} x = \frac{1}{2} \ln \frac{x+1}{x-1}$$
.

Пользуясь теоремой 7.12 доказать, что

(1)
$$\forall x \in \mathbb{R} (\operatorname{arsh} x)' = \frac{1}{\sqrt{1+x^2}};$$

(2)
$$\forall x \in (1, +\infty) (\operatorname{arch} x)' = \pm \frac{1}{\sqrt{x^2 - 1}};$$

(3)
$$\forall x \in (-1,1) (\operatorname{arth} x)' = \frac{1}{1-x^2};$$

(3)
$$\forall x \in (-1,1) (\operatorname{arth} x)' = \frac{1}{1-x^2};$$

(4) $\forall x \in (-\infty,-1) \cup (1,+\infty) (\operatorname{arcth} x)' = \frac{1}{1-x^2}.$

7.4. Производные высших порядков.

Определение 7.23. Пусть $n \in \mathbb{N}$ и определена производная порядка n функции f в точке x. которую обозначают символом $f^{(n)}(x)$. Пусть функция $f^{(n)}$ дифференцируема в точке x. Тогда производную порядка (n+1) функции f в точке x определяют равенством

$$f^{(n+1)}(x) = (f^{(n)})'(x).$$

Определение 7.24. Пусть $n \in \mathbb{N}$ и a < b.

- Множество всех вещественнозначных функций, имеющих непрерывные производные порядка n на интервале (a,b) обозначают через $C^{n}(a,b)$.
- \bullet Говорят, что вещественнозначная функция f имеет непрерывные производные порядка п на отрезке [a,b], если $\forall x \in (a,b) \exists f^{(n)}(x), \exists f^{(n)}(a+0), \exists f^{(n)}(b-0) u f^{(n)} \in C[a,b].$ Множество всех вещественнозначных функций, имеющих непрерывные производные порядка n на отрезке [a,b], обозначают через $C^n[a,b]$.

Теорема 7.25 (Формула Лейбница). Пусть $n \in \mathbb{N}$, $f \in C^n[a,b]$ и $g \in C^n[a,b]$, тогда

$$(fg)^{(n)} = \sum_{k=0}^{n} C_n^k f^{(n-k)} g^{(k)},$$

$$ede \ f^{(0)} = f, \ g^{(0)} = g \ u \ C_n^k = \frac{n!}{(n-k)!k!}.$$

Доказательство. Доказательство теоремы проведем по индукции. При n=1 формула Лейбница следует из пункта (4) теоремы 7.10.

Пусть формула Лейбница верна при $n = p \in \mathbb{N}$. Следовательно,

$$(fg)^{(p+1)} = \left(\sum_{k=0}^{p} C_p^k f^{(p-k)} g^{(k)}\right)' = \sum_{k=0}^{p} C_p^k \left(f^{(p-k)} g^{(k)}\right)' = \sum_{k=0}^{p} C_p^k \left(f^{(p-k+1)} g^{(k)} + f^{(p-k)} g^{(k+1)}\right) =$$

$$= \sum_{k=0}^{p} C_p^k f^{(p-k+1)} g^{(k)} + \sum_{k=1}^{p+1} C_p^{k-1} f^{(p-k+1)} g^{(k)} =$$

$$= C_p^0 f^{(p+1)} g^{(0)} + C_p^0 f^{(0)} g^{(p+1)} + \sum_{k=1}^{p} (C_p^k + C_p^{k-1}) f^{(p-k+1)} g^{(k)}.$$

Заметим, что $C_p^0 = C_{p+1}^0 = 1$ и

$$C_p^k + C_p^{k-1} = \frac{p!}{(p-k)!k!} + \frac{p!}{(p-k+1)!(k-1)!} = \frac{p!(p-k+1) + p!k}{(p-k+1)!k!} = \frac{(p+1)!}{(p-k+1)!k!} = C_{p+1}^k.$$

Следовательно,

$$(fg)^{(p+1)} = \sum_{k=0}^{p+1} C_{p+1}^k f^{(p-k+1)} g^{(k)}. \square$$

Задача 7.26. Пусть $f(x) = \operatorname{arctg} x$. Найти $f^{(n)}(0)$ для $n \in \mathbb{N}$.

7.5. Дифференциал функции.

Определение 7.27. Пусть $X \subset \mathbb{R}, \ f: X \to \mathbb{R} \ u \ f \ дифференцируема в точке <math>x \in X$.

Дифференциалом функции f в точке x называют отображение $df(x): \mathbb{R} \to \mathbb{R}$, действующее по правилу

$$\forall h \in \mathbb{R} \quad df(x)[h] = f'(x)h. \tag{7.5}$$

Из определения 7.27 получим, что

$$\forall h \in \mathbb{R} \quad dx[h] = h.$$

Следовательно, соотношение (7.5) можно переписать в виде

$$df(x) = f'(x)dx.$$

В частности, для производной функции f используют обозначение

$$f'(x) = \frac{df(x)}{dx}.$$

Теорема 7.28 (Инвариантность формы первого дифференциала). Пусть $\varphi \in C^1(a,b)$ и $f \in C^1(R(\varphi))$. Тогда $\forall t \in (a,b)$

$$df(\varphi(t)) = f'(\varphi(t))d\varphi(t) \tag{7.6}$$

Доказательство. Из определения 7.27 следует, что

$$df(\varphi(t)) = \frac{df(\varphi(t))}{dt}dt = f'(\varphi(t))\varphi'(t)dt = f'(\varphi(t))d\varphi(t). \square$$

Теорема 7.29.

- (1) f и g дифференцируемы g $x \in \mathbb{R} \Longrightarrow d(f(x) + g(x)) = df(x) + dg(x)$.
- (2) f и g дифференцируемы g $x \in \mathbb{R} \Longrightarrow d(f(x) g(x)) = df(x) dg(x)$.

Доказательство. Следует из теоремы 7.10 и связи между дифференциалом и производной. \square

Теорема 7.30 (Дифференциал композиции). Пусть функция f дифференцируема в точке x, а функция g дифференцируема в точке y = f(x). Тогда $d(g \circ f)(x) = dg(y) \circ df(x)$.

Доказательство. Из теоремы 7.11 следует, что $\forall h \in \mathbb{R}$

$$d(g \circ f)(x)[h] = g'(f(x))f'(x)dx[h] = g'(y)df(x)[h] = dg(y)[df(x)[h]] = dg(y) \circ df(x)[h].$$

Теорема 7.31 (Дифференциал обратной функции). Пусть f – строго монотонная функция на $[a,b], f \in C[a,b],$ для некоторой точки $x \in (a,b)$ функция f дифференцируема и дифференциал df(x) обратим.

Тогда определена обратная функция $f^{-1}:D(f)\to [a,b]$, которая дифференцируема в точке y=f(x), причем

$$df^{-1}(y) = [df(x)]^{-1},$$

 $\partial e [df(x)]^{-1}$ – отображение обратное $\kappa df(x)$.

Доказательство. Из теоремы 7.12 следует, что $\forall h \in \mathbb{R}$

$$df(x) \circ df^{-1}(y)[h] = f'(x)dx \left[\frac{1}{f'(x)}h\right] = h. \square$$

Определение 7.32.

• Пусть $f \in C(X)$. Отображение $f(dx)^n : X \times \mathbb{R}^n \to \mathbb{R}$, действующее по правилу

$$\forall (x, h_1, \dots, h_n) \in (a, b) \times \mathbb{R}^n \quad f(x)(dx)^n [h_1, \dots, h_n] = f(x)h_1 \cdot \dots \cdot h_n,$$

называют дифференциальной п-формой.

• Пусть $f \in C^1(X)$. Дифференциалом формы $f(dx)^n$ называют (n+1) форму $d(f(dx)^n)$: $X \times \mathbb{R}^{n+1} \to \mathbb{R}$ действующую по правилу

$$d(f(x)(dx)^n) = f'(x)(dx)^{n+1}.$$

Из определения 7.32 следует, что если $f \in C^{(n)}(X)$, то

$$d^n f(x) = f^{(n)}(x) dx.$$

В частности, для производной порядка n функции f используют обозначение

$$f^{(n)}(x) = \frac{d^n f(x)}{dx^n}.$$

Теорема 7.33. Пусть $f\in C^2(X),\ \varphi\in C^2(T)\ u\ R(\varphi)\subset X$. Тогда $\forall\ t\in T$

$$d^2f(\varphi(t)) = f''(\varphi(t))(d\varphi(t))^2 + f'(\varphi(t))\varphi''(t)(dt)^2. \tag{7.7}$$

Доказательство. Из определения дифференциала следует, что $\forall t \in T$

$$d^2 f(\varphi(t)) = d \left(f'(\varphi(t)) \varphi'(t) dt \right) = f''(\varphi(t)) (\varphi'(t))^2 (dt)^2 + f'(\varphi(t)) \varphi''(t) (dt)^2 =$$

$$= f''(\varphi(t)) (d\varphi(t))^2 + f'(\varphi(t)) \varphi''(t) (dt)^2. \square$$

Из за появления члена $f'(\varphi(t))\varphi''(t)(dt)^2$ в формуле (7.7) (сравни с формулой (7.6)) говорят, что дифференциальные 2-формы не инвариантны относительно замены переменных.

Следствие 7.34. Пусть $f \in C^2(X)$, $\varphi \in C^2(T)$ и $R(\varphi) \subset X$. Тогда $\forall t \in T$

$$\frac{d^2 f(\varphi(t))}{dt^2} = f''(\varphi(t))(\varphi'(t))^2 + f'(\varphi(t))\varphi''(t).$$

Доказательство. Немедленно следует из теоремы 7.33. \square

Теорема 7.35 (Вторая производная функции, заданной параметрически). Пусть $\psi \in C^2(a,b)$, $\forall t \in (a,b) \ \varphi'(t) \neq 0 \ u \ \phi y$ нкция φ обратима⁵. Тогда $\forall t \in (a,b)$

$$(\psi \circ \varphi^{-1})''(x) = \frac{\psi''(t)\varphi'(t) - \psi'(t)\varphi''(t)}{(\varphi'(t))^3}, \quad e \partial e \quad x = \varphi(t).$$

Доказательство. Следует из теоремы 7.34. \square

Теорема 7.36 (Инвариантная форма записи второй производной функции). Пусть $x(\cdot) \in C^2(a,b), y(\cdot) \in C^2(a,b), \forall t \in (a,b) \ x'(t) \neq 0 \ u \ \phi$ ункция $x(\cdot)$ обратима.

Пусть уравнения x=x(t) и y=y(t) являются параметрическим заданием функции y=f(x). Тогда $\forall \ t\in (a,b)$

$$f''(x) = \frac{d^2ydx - dyd^2x}{(dx)^3}, \quad e \partial e \quad x = x(t), \ y = y(t).$$

Доказательство. Из инвариантности формы первого дифференциала следует, что

$$f''(x) = (y'(x))' = \frac{d(\frac{dy}{dx})}{dx} = \frac{\frac{d^2ydx - d^2xdy}{dx^2}}{dx} = \frac{d^2ydx - dyd^2x}{(dx)^3}. \square$$

7.6. Основные теоремы о дифференцируемых функциях.

Определение 7.37. Пусть $x \in \mathbb{R} \ u \ \delta > 0$.

- δ -окрестностью точки x называют интервал $U_{\delta}(x)=(x-\delta,x+\delta).$
- ullet Проколотой δ -окрестностью точки x называют множество $\dot{U}_{\delta}(x)=(x-\delta,x+\delta)\setminus\{x\}.$

Определение 7.38. Пусть $X \subset \mathbb{R} \ u \ f : X \to \mathbb{R}$.

• Точку $c \in X$ называют точкой локального максимума, а значение функции в ней локальным максимумом функции f, если существует δ -окрестность $U_{\delta}(c)$ такая, что

$$x \in U_{\delta}(c) \cap X \Longrightarrow f(x) \leqslant f(c).$$

• Точку $c \in X$ называют точкой локального минимума, а значение функции в ней локальным минимумом функции f, если существует δ -окрестность $U_{\delta}(c)$ такая, что

$$x \in U_{\delta}(c) \cap X \Longrightarrow f(x) \geqslant f(c).$$

- Точку $c \in X$ называют точкой локального экстремума, а значение функции в ней локальным экстремумом, если c точка локального максимума или минимума.
- Точку $c \in X$ называют точкой строго локального максимума, а значение функции в ней строгим локальным максимумом функции f, если существует δ -окрестность $U_{\delta}(c)$ такая, что

$$x \in U_{\delta}(c) \cap X \Longrightarrow f(x) < f(c).$$

 $^{^{5}}$ Позднее будет доказано, что это условие можно отбросить, поскольку для обратимости функции достаточно существование отличной нуля производной.

• Точку $c \in X$ называют точкой строгого локального минимума, а значение функции в ней строгим локальным минимумом функции f, если существует δ -окрестность $U_{\delta}(c)$ такая, что

$$x \in U_{\delta}(c) \cap X \Longrightarrow f(x) > f(c).$$

Теорема 7.39 (Теорема Ферма). Пусть $f:[a,b] \to \mathbb{R}$, f дифференцируема в точке $c \in (a,b)$ и c – точка локального экстремума функции f. Тогда f'(c) = 0.

Доказательство. Пусть c – точка локального максимума, тогда существует $\delta > 0$ такое, что

$$|x - c| < \delta \Longrightarrow f(x) \leqslant f(c).$$

Следовательно,

$$x \in [c, c + \delta) \Longrightarrow \frac{f(x) - f(c)}{x - c} \le 0;$$

 $x \in (c - \delta, c] \Longrightarrow \frac{f(x) - f(c)}{x - c} \ge 0.$

Отсюда и из дифференцируемости f в точке c получим, что

$$0 \leqslant \lim_{x \to c-0} \frac{f(x) - f(c)}{x - c} = f'(c) = \lim_{x \to c+0} \frac{f(x) - f(c)}{x - c} \leqslant 0.$$

Доказательство в случае, когда c – точка локального минимума, проводится аналогично. \square

Теорема 7.40 (Теорема Ролля). Пусть $f \in C[a,b] \cap C^1(a,b)$ и f(a) = f(b), тогда⁶

$$\exists c \in (a,b) : f'(c) = 0.$$

Доказательство. Из теоремы Вейерштрасса 2 (см. теорему 6.14) следует, что существует точка $x_* \in [a,b]$ локального минимума и точка $x^* \in [a,b]$ локального максимума.

Если обе точки x_* и x^* лежат на границе отрезка [a,b], то из условия f(a) = f(b) получим, что $f(x_*) = f(x^*)$. Следовательно, f – постоянная функция и $\forall c \in (a,b)$ f'(c) = 0.

Если хотя бы одна из точек x_* или x^* принадлежит интервалу (a,b), то из теоремы Ферма следует, что производная функции f в этой точке равна нулю. \square

Теорема 7.41 (Теорема Лагранжа). Пусть $f \in C[a,b] \cap C^1(a,b)$, тогда

$$\exists c \in (a,b) : f(b) - f(a) = f'(c)(b-a).$$

Доказательство. Рассмотрим вспомогательную функцию

$$\forall x \in [a, b] \quad F(x) = f(x) - \frac{f(b) - f(a)}{b - a}(x - a).$$

Легко видеть, что $F \in C[a,b] \cap C^1(a,b)$ и F(a) = F(b). Из теоремы Ролля следует, что

$$\exists c \in (a,b) : F'(c) = f'(c) - \frac{f(b) - f(a)}{b - a} = 0. \square$$

Теорема 7.42 (Критерий постоянности функции). Пусть $f \in C[a,b], \ mor \partial a$

$$\forall x \in (a,b) \ f'(x) = 0 \iff \exists \ c : \forall \ x \in [a,b] \ f(x) = c.$$

Доказательство. Необходимость (\Longrightarrow) . Пусть c=f(a). Из теоремы Лагранжа следует, что

$$\forall \ x \in (a, b] \ \exists \ \xi \in (a, x) : f(x) - f(a) = f'(\xi)(x - a) = 0.$$

Достаточность (⇐⇒). Следует из пункта (1) теоремы 7.10. □

⁶Условие $f \in C^1(a,b)$ можно заменить на более слабое $\forall x \in (a,b) \exists f'(x)$.

Следствие 7.43 (Связь между монотонностью функции и знаком ее производной). $\Pi ycmb$ $f \in C^1(a,b),\ mor\partial a$

- (1) $\forall x \in (a,b) \ f'(x) \geqslant 0 \iff f$ не убывает на (a,b);
- $(2) \ \forall \ x \in (a,b) \ f'(x) > 0 \Longrightarrow f$ возрастает на (a,b);
- (3) $\forall x \in (a,b) \ f'(x) = 0 \iff \exists \ c \in \mathbb{R} : \forall \ x \in (a,b) \ f(x) = c;$
- (4) $\forall x \in (a,b) \ f'(x) \leq 0 \iff f$ не возрастает на (a,b);
- (5) $\forall x \in (a,b) \ f'(x) < 0 \Longrightarrow f y \text{бывает на } (a,b);$
- (6) $\forall x \in (a,b) \ f'(x) \neq 0 \Longrightarrow f$ строго монотонна на (a,b).

Доказательство. (1) Необходимость (\Longrightarrow) . Пусть $a < x_1 < x_2 < b$, тогда из теоремы Лагранжа следует, что

$$\exists c \in (x_1, x_2) : f(x_2) - f(x_1) = f'(c)(x_2 - x_1) \geqslant 0.$$

Достаточность (\iff). Пусть $x \in (a,b)$. Из неубывания f следует, что $\forall t \in (x,b)$ $\frac{f(t)-f(x)}{t-x} \geqslant 0$. Отсюда и из дифференцируемости f' в точке x следует, что

$$f'(x) = \lim_{t \to x} \frac{f(t) - f(x)}{t - r} = \lim_{t \to x + 0} \frac{f(t) - f(x)}{t - r} \ge 0.$$

(2) Пусть $a < x_1 < x_2 < b$, тогда из теоремы Лагранжа следует, что

$$\exists c \in (x_1, x_2) : f(x_2) - f(x_1) = f'(c)(x_2 - x_1) > 0.$$

- (3) Следует из теоремы 7.42.
- (4), (5) Доказываются аналогично пунктам (1) и (2). \square
- (6) Из теоремы Больцано-Коши 1 (см. теорему 6.11) следует, что f'(x) сохраняет знак на всем интервале (a,b) (иначе $\exists c \in (a,b): f'(c)=0$). Если f' положительна на (a,b), то из пункта (2) следует, что f возрастает на (a,b). Если же f' отрицательна на (a,b), то из пункта (4) следует, что f убывает на (a,b). \square

Замечание 7.44. Вообще говоря, из предположения $f \in C^1(a,b)$ и f – возрастает на (a,b) не следует, что $\forall \ x \in (a,b) \ f'(x) > 0$. Действительно, рассмотрим функцию: $\forall \ x \in \mathbb{R} \ f(x) = x^3$. Легко видеть, что f – возрастает на \mathbb{R} , однако, $f'(0) = 3x^2|_{x=0} = 0$.

Аналогично, из $f \in C^1(a,b)$ и f – убывает на (a,b) не следует, что $\forall x \in (a,b)$ f'(x) < 0.

Теорема 7.45 (Теорема Коши). Пусть $f, g \in C[a, b] \cap C^1(a, b)$ $u \, \forall \, x \in (a, b) \, g'(x) \neq 0$, тогда

$$\exists \ c \in (a,b) : \frac{f'(c)}{g'(c)} = \frac{f(b) - f(a)}{g(b) - g(a)}.$$

Доказательство. Из следствия 7.43 вытекает, что $g(b) \neq g(a)$. Рассмотрим вспомогательную функцию

$$\forall \ x \in [a, b] \quad F(x) = f(x) - \frac{f(b) - f(a)}{g(b) - g(a)} (g(x) - g(a)).$$

Легко видеть, что $F\in C[a,b]\bigcap C^1(a,b)$ и F(a)=F(b). Из теоремы Ролля следует, что

$$\exists c \in (a,b) : F'(c) = f'(c) - \frac{f(b) - f(a)}{g(b) - g(a)}g'(c) = 0. \square$$

Задача 7.46. Доказать, что между любыми двумя вещественными корнями полинома P с вещественными коэффициентами найдется корень полинома P'.

Задача 7.47. Пусть $n \in \mathbb{N}$, $f \in C^n(a,b)$, $a < x_1 < \ldots < x_{n+1} < b \ u \ \forall \ k \in \{1,\ldots,(n+1)\}$ верно, что $f(x_k) = 0$. Тогда $\exists \ c \in (a,b) : f^{(n)}(c) = 0$.

7.7. Правило Лопиталя.

Теорема 7.48 (Правило Лопиталя для неопределенностей вида $\frac{0}{0}$). Пусть $(a,b) \subset \mathbb{R}$ и выполнены следующие условия.

(1)
$$f \in C^1(a,b), g \in C^1(a,b).$$

$$(2) \ \forall \ x \in (a,b) \ g'(x) \neq 0.$$

(3)
$$\lim_{x \to a+0} f(x) = \lim_{x \to a+0} g(x) = 0.$$

(4)
$$\lim_{x \to a+0} \frac{f'(x)}{g'(x)} = A \in \mathbb{R}.$$

 $Tor \partial a \lim_{x \to a+0} \frac{f(x)}{g(x)} = A.$

Доказательство. Доопределим функции f и q в точке a их предельными значениями справа, т. е. $f(a) \stackrel{\text{def}}{=} \lim_{x \to a+0} f(x) = 0$ и $g(a) \stackrel{\text{def}}{=} \lim_{x \to a+0} g(x) = 0$. Очевидно, что таким образом доопределеные функции f и g непрерывны на [a,b). Из теоремы Коши (см. теорему 7.45) следует, что

$$\forall \ x \in (a,b) \ \exists \ c \in (a,x) : \frac{f'(c)}{g'(c)} = \frac{f(x) - f(a)}{g(x) - g(a)} = \frac{f(x)}{g(x)}.$$

Пусть $\varepsilon > 0$. Тогда $\exists \delta > 0$ такое, что

$$\forall c \in (a, a + \delta) \left| \frac{f'(c)}{g'(c)} - A \right| < \varepsilon.$$

Следовательно,

$$\forall x \in (a, a + \delta) \left| \frac{f(x)}{g(x)} - A \right| = \left| \frac{f'(c)}{g'(c)} - A \right| < \varepsilon. \ \delta$$

Теорема 7.49 (Правило Лопиталя для неопределенностей вида $\frac{\infty}{\infty}$). Пусть $(a,b) \subset \mathbb{R}$ и выполнены следующие условия.

- (1) $f \in C^1(a,b), g \in C^1(a,b).$
- (2) $\forall x \in (a, b) \ g'(x) \neq 0.$ (3) $\lim_{x \to a+0} f(x) = \infty, \lim_{x \to a+0} g(x) = \infty.$ (4) $\lim_{x \to a+0} \frac{f'(x)}{g'(x)} = A \in \mathbb{R}.$

 $Tor \partial a \lim_{x \to a+0} \frac{f(x)}{g(x)} = A.$

Доказательство. Без доказательства. \square

Замечание 7.50. Правило Лопиталя остается в силе для пределов $x \to b - 0, \ x \to \pm \infty, \ a$ также для случая $A = \pm \infty$.

Пример 7.51.

$$\lim_{x \to 0} \frac{\sin x - x}{x^3} = \lim_{x \to 0} \frac{\cos x - 1}{3x^2} = \lim_{x \to 0} \frac{-\sin x}{6x} = \lim_{x \to 0} \frac{-\cos x}{6} = -\frac{1}{6}.$$

Пример 7.52. Пусть $f(x) = x^2 \sin(x^{-1}) u q(x) = x$, тогда

$$\lim_{x \to 0+0} \frac{f(x)}{g(x)} = \lim_{x \to 0+0} x \sin(x^{-1}) = 0.$$

Однако,

$$\frac{f'(x)}{g'(x)} = 2x\sin(x^{-1}) - \cos(x^{-1})$$

u предел $\lim_{x \to 0+0} \frac{f'(x)}{g'(x)}$ не существует.

8. Формула Тейлора

8.1. Формула Тейлора.

Теорема 8.1 (Формула Тейлора с остаточным членом в общей форме). Пусть $n \in \mathbb{Z}_+$, $f \in C^{(n+1)}(a,b)$, $\varphi \in C^1(a,b)$ $u \, \forall \, x \in (a,b) \, \varphi'(x) \neq 0$. Тогда $\forall \, x \in (a,b) \, u \, \forall \, y \in (a,b)$ существует точка c, принадлежащая отрезку c концами x u y такая, что

$$f(x) = \sum_{k=0}^{n} \frac{f^{(k)}(y)}{k!} (x - y)^{k} + r_{n}(y, x),$$

где

$$r_n(y,x) = \frac{\varphi(x) - \varphi(y)}{\varphi'(c) \, n!} f^{(n+1)}(c) (x-c)^n.$$

Доказательство. Пусть I – отрезок с концами x и y. Рассмотрим вспомогательную функцию

$$\forall t \in I, \ F(t) = f(x) - \sum_{k=0}^{n} \frac{f^{(k)}(t)}{k!} (x-t)^{k}.$$

Легко видеть, что $F \in C^1(I)$ и $\forall t \in I$

$$F'(t) = -\sum_{k=0}^{n} \frac{f^{(k+1)}(t)}{k!} (x-t)^k + \sum_{k=1}^{n} \frac{f^{(k)}(t)}{(k-1)!} (x-t)^{k-1} =$$

$$= -\sum_{k=0}^{n} \frac{f^{(k+1)}(t)}{k!} (x-t)^k + \sum_{k=0}^{n-1} \frac{f^{(k+1)}(t)}{k!} (x-t)^k = -\frac{f^{(n+1)}(t)}{n!} (x-t)^n.$$

Из теоремы Коши (см. теорему 7.45) следует, что

$$\exists \ c \in I : \frac{F(x) - F(y)}{\varphi(x) - \varphi(y)} = \frac{F'(c)}{\varphi'(c)}.$$

Отсюда, учитывая очевидное равенство F(x) = 0, получим, что

$$F(y) = -(F(x) - F(y)) = -\frac{(\varphi(x) - \varphi(y))F'(c)}{\varphi'(c)} = \frac{\varphi(x) - \varphi(y)}{\varphi'(c) n!} f^{(n+1)}(c)(x - c)^n = r_n(y, x). \square$$

Теорема 8.2 (Формула Тейлора с остаточным членом в форме Коши). Пусть $n \in \mathbb{Z}_+$ и $f \in C^{(n+1)}(a,b)$. Тогда $\forall \ x \in (a,b)$ и $\forall \ y \in (a,b)$ существует точка c, принадлежащая отрезку c концами x и y такая, что

$$f(x) = \sum_{k=0}^{n} \frac{f^{(k)}(y)}{k!} (x - y)^k + r_n(y, x), \quad r_n(y, x) = \frac{1}{n!} f^{(n+1)}(c) (x - c)^n (x - y).$$

Доказательство. Следует из теоремы 8.1 с $\varphi(t) = x - t$. \square

Теорема 8.3 (Формула Тейлора с остаточным членом в форме Лагранжа). Пусть $n \in \mathbb{Z}_+$ и $f \in C^{(n+1)}(a,b)$. Тогда $\forall \ x \in (a,b)$ и $\forall \ y \in (a,b)$ существует точка c, принадлежащая отрезку c концами x и y такая, что

$$f(x) = \sum_{k=0}^{n} \frac{f^{(k)}(y)}{k!} (x - y)^{k} + r_{n}(y, x), \quad r_{n}(y, x) = \frac{f^{(n+1)}(c)}{(n+1)!} (x - y)^{n+1}.$$

Доказательство. Следует из теоремы 8.1 с $\varphi(t) = (x-t)^{(n+1)}$. \square

8.2. Формулы Маклорена для элементарных функций.

Определение 8.4. Формулу Тейлора при y = 0 называют формулой Маклорена.

Для экспоненты ряд Маклорена имеет вид

$$\forall x \in \mathbb{R} \quad e^x = \sum_{k=0}^n \frac{x^k}{k!} + r_n(0, x),$$
 (8.1)

где, согласно теореме 8.3,

$$r_n(0,x) = \frac{e^c}{(n+1)!}(x-0)^{n+1}$$

и точка с принадлежит отрезку с концами 0 и х. Следовательно,

$$|r_n(0,x)| \le \frac{|x|^{n+1}e^{|x|}}{(n+1)!}$$

и $\forall x \in \mathbb{R}$ $\lim_{n \to \infty} r_n(0, x) = 0$. Таким образом, $\forall x \in \mathbb{R}$ возможен предельный переход при $n \to \infty$ в формуле (8.1). В результате мы получим формулу с помощью которой исходно определялась экспонента (см. определение 5.2).

Теорема 8.5. Пусть |x| < 1, тогда

$$\ln(1+x) = \lim_{n \to \infty} \sum_{k=1}^{n} \frac{(-1)^{k+1}}{k} x^{k}.$$
 (8.2)

Вместе с этим, для любого $n \in \mathbb{N}$

$$\ln(1+x) = \sum_{k=1}^{n} \frac{(-1)^{k+1}}{k} x^k + O(x^{n+1})$$
(8.3)

 $npu \ x \to 0.$

Доказательство. Из леммы 7.18 следует, что

$$\forall x \in (-1,1)$$
 $\frac{d \ln(1+x)}{dx} = \frac{1}{1+x}.$

По индукции легко установить, что $\forall \ k \in \mathbb{N}$ и $\forall \ x \in (-1,1)$ верно, что

$$\frac{d^k \ln(1+x)}{dx^k} = (-1)^{k+1} \frac{(k-1)!}{(1+x)^k}.$$

Из теоремы 8.2 получим, что $\forall n \in \mathbb{N}$ и $\forall x \in (-1,1)$ верно, что

$$\ln(1+x) = \sum_{k=1}^{n} \frac{(-1)^{k+1}}{k} x^k + r_n(0,x), \quad r_n(0,x) = (-1)^n \frac{x}{1+c} \left(\frac{x-c}{1+c}\right)^n, \tag{8.4}$$

где точка c принадлежит отрезку c концами 0 и x. Заметим, что

$$\left| \frac{x-c}{1+c} \right| = \frac{|x|-|c|}{|1+c|} \leqslant \frac{|x|-|x||c|}{1-|c|} = |x| \tag{8.5}$$

И

$$\frac{1}{|1+c|} \leqslant \frac{1}{1-|c|} \leqslant \frac{1}{1-|x|}.$$

Следовательно,

$$\forall n \in \mathbb{N} \ \forall x \in (-1,1) \quad |r_n(0,x)| \leqslant \frac{|x|^{n+1}}{1-|x|}.$$
 (8.6)

Теперь из леммы 2.32 следует, что $\forall \ x \in (-1,1)$

$$0 \leqslant \lim_{n \to \infty} |r_n(0, x)| \leqslant \lim_{n \to \infty} \frac{|x|^{n+1}}{1 - |x|} = 0.$$

Переходя к пределу при $n \to \infty$ в равенстве (8.4) получим соотношение (8.2). Из оценки (8.6) следует, что

$$\forall n \in \mathbb{N} \quad r_n(0,x) = O(x^{n+1})$$

при $x \to 0$. Отсюда и из (8.4) получим оценку (8.3). \square

Теорема 8.6. Пусть |x| < 1 и $a \in \mathbb{R}$, тогда

$$(1+x)^a = 1 + \lim_{n \to \infty} \sum_{k=1}^n \frac{a(a-1)\dots(a-k+1)}{k!} x^k.$$
 (8.7)

Вместе с этим, для любого $n \in \mathbb{N}$

$$(1+x)^a = 1 + \sum_{k=1}^n \frac{a(a-1)\dots(a-k+1)}{k!} x^k + O(x^{n+1})$$
(8.8)

 $npu \ x \to 0.$

Доказательство. Из теоремы 7.19 следует, что

$$\forall x \in (-1,1)$$
 $\frac{d(1+x)^a}{dx} = a(1+x)^{a-1}.$

По индукции легко установить, что $\forall \ k \in \mathbb{N}$ и $\forall \ x \in (-1,1)$ верно, что

$$\frac{d^k(1+x)^a}{dx^k} = a(a-1)\dots(a-k+1)(1+x)^{a-k}.$$

Из теоремы 8.2 получим, что $\forall n \in \mathbb{N}$ и $\forall x \in (-1,1)$ верно, что

$$(1+x)^a = 1 + \sum_{k=1}^n \frac{a(a-1)\dots(a-k+1)}{k!} x^k + r_n(0,x), \tag{8.9}$$

где

$$r_n(0,x) = \frac{a \cdot \ldots \cdot (a-n)}{n!} (1+c)^{a-n-1} (x-c)^n x$$

и точка c принадлежит отрезку с концами 0 и x. Далее, учитывая оценку 8.5, получим, что $\forall n \in \mathbb{N} \ \forall x \in (-1,1)$

$$|r_n(0,x)| = |x||a||1 + c|^{a-1} \left| \frac{x-c}{1+c} \right|^n \prod_{k=1}^n \left| 1 - \frac{a}{k} \right| \le |x|^{n+1} |a||1 + c|^{a-1} \prod_{k=1}^n \left(1 + \frac{|a|}{k} \right). \tag{8.10}$$

Пусть $N \in \mathbb{N}$ такое, что $\frac{|x||a|}{1-|x|} < N$, тогда

$$\varepsilon = |x| + \frac{|x||a|}{N} < 1.$$

Теперь из (8.10) следует, что $\forall n > N \ \forall x \in (-1, 1)$

$$|r_n(0,x)| \le |a||1+c|^{a-1} \prod_{k=1}^N \left(1+\frac{|a|}{k}\right) \prod_{k=N+1}^n \left(|x|+\frac{|x||a|}{k}\right) <$$

 $<|a||1+c|^{a-1} (1+|a|)^N \varepsilon^{n-N} \le F \varepsilon^n,$

где

$$F = |a|(1+|a|)^N \varepsilon^{-N} \max\left((1+|x|)^{a-1}, (1-|x|)^{a-1} \right) < \infty.$$

Учитывая, что F не зависит от n и $\varepsilon < 1$, из леммы 2.32 получим, что $\forall x \in (-1,1)$

$$0 \leqslant \lim_{n \to \infty} |r_n(0, x)| \leqslant F \lim_{n \to \infty} \varepsilon^n = 0.$$

Переходя к пределу при $n \to \infty$ в равенстве (8.9) получим соотношение (8.7).

Из оценки (8.10) следует, что

$$\forall n \in \mathbb{N} \quad r_n(0,x) = O(x^{n+1})$$

при $x \to 0$. Отсюда и из (8.9) получим оценку (8.8). \square

Задача 8.7. Доказать, что формулы Маклорена для синуса и косинуса приводят к разложениям из пунктов (4) и (5) теоремы 5.29 для вещественных аргументов.

8.3. Вычисление пределов с помощью формулы Тейлора. Напомним основные асимптотические разложения для элементарных функций. Пусть $n \in \mathbb{Z}_+$ и $x \to 0$, тогда

•
$$e^x = \sum_{k=0}^n \frac{x^k}{k!} + O(x^{n+1});$$

•
$$\sin x = \sum_{k=0}^{n} \frac{(-1)^k}{(2k+1)!} x^{2k+1} + O(x^{2n+3});$$

•
$$\cos x = \sum_{k=0}^{n} \frac{(-1)^k}{(2k)!} x^{2k} + O(x^{2n+2});$$

•
$$\ln(1+x) = \sum_{k=1}^{n} \frac{(-1)^{k+1}}{k} x^k + O(x^{n+1});$$

•
$$(1+x)^a = 1 + \sum_{k=1}^n \frac{a(a-1)\dots(a-k+1)}{k!} x^k + O(x^{n+1})$$
, где $a \in \mathbb{R}$.

Пример 8.8. Найти предел

$$\lim_{x \to 0} \frac{\sin x - x}{x^3}.$$

Решение. При $x \to 0$ верно, что

$$\lim_{x \to 0} \frac{\sin x - x}{x^3} = \lim_{x \to 0} \frac{x - \frac{1}{6}x^3 + O(x^5) - x}{x^3} = \lim_{x \to 0} \left(-\frac{1}{6} + O(x^2) \right) = -\frac{1}{6}. \ \Box$$

Пример 8.9. Найти предел

$$\lim_{x \to +\infty} x \left[e - \left(\frac{x+1}{x} \right)^x \right].$$

Решение. Заметим, что $\frac{1}{x} \to 0$ при $x \to 0$. Следовательно,

$$\lim_{x \to +\infty} x \left[e - \left(\frac{x+1}{x} \right)^x \right] = \lim_{x \to +\infty} x \left[e - e^{x \ln\left(1 + \frac{1}{x}\right)} \right] = \lim_{x \to +\infty} x \left[e - e^{x\left(\frac{1}{x} - \frac{1}{2x^2} + O\left(\frac{1}{x^3}\right)\right)} \right] = e \lim_{x \to +\infty} x \left[1 - e^{-\frac{1}{2x} + O\left(\frac{1}{x^2}\right)} \right] = e \lim_{x \to +\infty} x \left[1 - \left(1 - \frac{1}{2x} + O(x^{-2}) \right) \right] = \frac{e}{2}.$$

Задача 8.10. Найти пределы

$$\lim_{x \to 0} \frac{\cos x - \cos 2x}{x \sin 3x}, \quad \lim_{x \to 0} \left(\frac{2x+1}{x}\right)^{\sin x}, \quad \lim_{x \to 0} \frac{1}{x} \left(\frac{1}{\sin x} - \frac{2}{\sin 2x}\right).$$

8.4. Геометрическое определение тригонометрических функций. Здесь мы докажем, что определение тригонометрических функций через ряды (см. определение 5.29) эквивалентно стандартному геометрическому определению.

Напомним геометрическое определение синуса и косинуса. Рассмотрим окружность \mathbb{T} единичного радиуса с центром начале координат O(0,0). Пусть точка B(x,y) (имеется в виду точка B с координатами (x,y)) лежит на окружности \mathbb{T} , т. е. ее координаты удовлетворяют уравнению $x^2+y^2=1$. Рассмотрим также вспомогательные точки A(1,0), C(x,0) – проекция точки B(x,y) на ось абсцисс и D – пересечение радиуса OB с окружностью радиуса |OC| с центром в начале координат (см. рис. 1).

Далее, нам понадобится понятие длины дуги окружности. Строгое определение длины дуги будет дано после изучения интегрального исчисления, а сейчас мы будем пользоваться интуитивными соображениями. Обозначим длину дуги полуокружности единичного радиуса через π . Для $\varphi \in \mathbb{R}$ отложим дугу длиной $|\varphi|$ вдоль окружности \mathbb{T} , начиная от точки A(1,0), при-

Рис. 1. Геометрическое определение синуса и косинуса.

чем если $\varphi>0$, то откладывать будем против часовой стрелки, а если $\varphi<0$ – по часовой стрелке. Может оказаться, что $|\varphi|>2\pi$. В этом случае дуга будет «наматываться» на окружность в несколько слоев. Пусть конец данной дуги оказался в точке B(x,y)

Число φ называют углом между лучами OA и OB, измеряемым в радианах. Синусом угла φ называют функцию, определенную равенством $s(\varphi) = y$. Косинусом угла φ называют функцию, определенную равенством $c(\varphi) = x$.

Напомним следующие хорошо известные из геометрии свойства тригонометрических функний.

Свойство 8.11.

- (1) s(0) = 0, c(0) = 1.
- (2) $\forall \varphi \in \mathbb{R} \ s^2(\varphi) + c^2(\varphi) = 1$.
- $(3) \ \forall \ (\varphi_1, \varphi_2) \in \mathbb{R}^2 \ s(\varphi_1 + \varphi_2) = s(\varphi_1)c(\varphi_2) + c(\varphi_1)s(\varphi_2), \ c(\varphi_1 + \varphi_2) = c(\varphi_1)c(\varphi_2) s(\varphi_1)s(\varphi_2).$

Лемма 8.12. Пусть $0 < |\varphi| < \frac{\pi}{2}$, тогда $c^2(\varphi) < \frac{s(\varphi)}{\varphi} < 1$.

Доказательство. Пусть $\varphi \in (0, \frac{\pi}{2}), S_{\triangleleft OCD}$ – площадь сектора $OCD, S_{\Delta OAB}$ – площадь треугольника OAB и $S_{\triangleleft OAB}$ – площадь сектора OAB. Легко видеть, что

$$S_{\lhd OCD} < S_{\Delta OAB} < S_{\lhd OAB}$$

$$S_{\lhd OCD} = \frac{1}{2} \varphi c^2(\varphi), \quad S_{\Delta OAB} = \frac{1}{2} s(\varphi), \quad S_{\lhd OAB} = \frac{1}{2} \varphi.$$

Следовательно,

$$\frac{1}{2}\varphi c^2(\varphi) < \frac{1}{2}s(\varphi) < \frac{1}{2}\varphi,$$

$$c^2(\varphi) < \frac{s(\varphi)}{\varphi} < 1.$$

Случай $\varphi \in (-\frac{\pi}{2},0)$ рассматривается аналогично. \square

Лемма 8.13. $\lim_{\varphi \to 0} \frac{s(\varphi)}{\varphi} = 1$, $\lim_{\varphi \to 0} \frac{1 - c(\varphi)}{\varphi} = 0$.

Доказательство. Из теоремы 4.6 и леммы 8.12 следует, что

$$0 \leqslant \lim_{\varphi \to 0} |s(\varphi)| \leqslant \lim_{\varphi \to 0} |\varphi| = 0,$$
$$0 = -\lim_{\varphi \to 0} |s(\varphi)| \leqslant \lim_{\varphi \to 0} |s(\varphi)| \leqslant \lim_{\varphi \to 0} |s(\varphi)| = 0$$

Таким образом, $\lim_{\varphi \to 0} s(\varphi) = 0$.

Отсюда и из леммы 8.12 следует, что

$$1 = 1 - \lim_{\varphi \to 0} s^2(\varphi) = \lim_{\varphi \to 0} c^2(\varphi) \leqslant \lim_{\varphi \to 0} \frac{s(\varphi)}{\varphi} \leqslant 1.$$

Таким образом, $\lim_{\varphi \to 0} \frac{s(\varphi)}{\varphi} = 1$.

Далее,

$$\lim_{\varphi \to 0} \frac{1 - c(\varphi)}{\varphi} = \lim_{\varphi \to 0} \frac{1}{1 + c(\varphi)} \frac{1 - c^2(\varphi)}{\varphi} = \lim_{\varphi \to 0} \frac{1}{1 + c(\varphi)} \cdot \lim_{\varphi \to 0} \frac{s^2(\varphi)}{\varphi} =$$

$$= \lim_{\varphi \to 0} \frac{1}{1 + \sqrt{1 - s^2(\varphi)}} \cdot \lim_{\varphi \to 0} \frac{s(\varphi)}{\varphi} \cdot \lim_{\varphi \to 0} s(\varphi) = \frac{1}{2} \cdot 1 \cdot 0 = 0. \square$$

Лемма 8.14. $\forall \varphi \in \mathbb{R} \ s'(\varphi) = c(\varphi), \ c'(\varphi) = -s(\varphi).$

Доказательство. Из пункта 1 леммы 8.11 следует, что $\forall \varphi \in \mathbb{R} \ \forall \ \Delta \varphi \in \mathbb{R} \setminus \{0\}$

$$\frac{s(\varphi + \Delta \varphi) - s(\varphi)}{\Delta \varphi} = \frac{s(\varphi)c(\Delta \varphi) + c(\varphi)s(\Delta \varphi) - s(\varphi)}{\Delta \varphi} = s(\varphi)\frac{c(\Delta \varphi) - 1}{\Delta \varphi} + c(\varphi)\frac{s(\Delta \varphi)}{\Delta \varphi}.$$

Отсюда и из леммы 8.13 получим, что $\forall \ \varphi \in \mathbb{R}$

$$s'(\varphi) = \lim_{\Delta \varphi \to 0} \frac{s(\varphi + \Delta \varphi) - s(\varphi)}{\Delta \varphi} = -s(\varphi) \lim_{\Delta \varphi \to 0} \frac{1 - c(\Delta \varphi)}{\Delta \varphi} + c(\varphi) \lim_{\Delta \varphi \to 0} \frac{s(\Delta \varphi)}{\Delta \varphi} = c(\varphi).$$

Аналогично, $\forall \varphi \in \mathbb{R}$

$$c'(\varphi) = \lim_{\Delta \varphi \to 0} \frac{c(\varphi + \Delta \varphi) - c(\varphi)}{\Delta \varphi} = \lim_{\Delta \varphi \to 0} \frac{c(\varphi)c(\Delta \varphi) - s(\varphi)s(\Delta \varphi) - c(\varphi)}{\Delta \varphi} =$$
$$= c(\varphi) \lim_{\Delta \varphi \to 0} \frac{c(\Delta \varphi) - 1}{\Delta \varphi} - s(\varphi) \lim_{\Delta \varphi \to 0} \frac{s(\Delta \varphi)}{\Delta \varphi} = -s(\varphi). \square$$

Лемма 8.15. $s \in C^{\infty}(\mathbb{R}), c \in C^{\infty}(\mathbb{R}) \ u \ \forall \ n \in \mathbb{Z}_+$

$$s^{(2n)}(0) = 0$$
, $s^{(2n+1)}(0) = (-1)^n$, $c^{(2n)}(0) = (-1)^n$, $c^{(2n+1)}(0) = 0$. (8.11)

Доказательство. Из леммы 8.14 легко получить, что $\forall n \in \mathbb{Z}_+$

$$s^{(2n)} = (-1)^n s, \ s^{(2n+1)} = (-1)^n c, \ c^{(2n)} = (-1)^n c, \ c^{(2n+1)} = (-1)^{n+1} s. \tag{8.12}$$

Из (8.12) и теоремы 7.4 следует, что $s\in C^\infty(\mathbb{R}),\,c\in C^\infty(\mathbb{R}).$

Далее, из (8.12) и пункта 1 леммы 8.11 получим (8.11). \square

Теорема 8.16. $\forall \varphi \in \mathbb{R} \ s(\varphi) = \sin(\varphi), \ c(\varphi) = \cos(\varphi).$

Доказательство. Из теоремы 8.3 для $x=\varphi,\,y=0,\,n=2N$ и леммы 8.15 следует, что $\forall\,\varphi\in\mathbb{R}$ $\forall\,n\in\mathbb{Z}_+$ существует число c из отрезка с концами 0 и φ такое, что

$$s(\varphi) = \sum_{k=0}^{N} \frac{(-1)^k}{(2k+1)!} \varphi^{2k+1} + r_{2N}(0,\varphi), \quad r_{2N}(0,\varphi) = \frac{s^{(2N+1)}(c)}{(2N+1)!} (\varphi - c)^{2N+1}.$$
 (8.13)

где $|c| < |\varphi|$. Оценим $r_{2N}(0,\varphi)$

$$|r_{2N}(0,\varphi)| \leqslant \frac{(2|\varphi|)^{2N+1}}{(2N+1)!} \max_{x \in \mathbb{R}} |s^{(2N+1)}(x)| = \frac{(2|\varphi|)^{2N+1}}{(2N+1)!}.$$

Используя идеи доказательства леммы 5.1 получим, что $\lim_{N\to\infty} \frac{(2|\varphi|)^{2N+1}}{(2N+1)!} = 0$. Следовательно,

$$0 = -\lim_{N \to \infty} |r_{2N}(0, \varphi)| \leqslant \lim_{N \to \infty} r_{2N}(0, \varphi) \leqslant \lim_{N \to \infty} |r_{2N}(0, \varphi)| = 0$$

и $\lim_{N\to\infty} r_{2N}(0,\varphi)=0$. Отсюда и из (8.13) следует, что $\forall\ \varphi\in\mathbb{R}$

$$s(\varphi) = \lim_{N \to \infty} \sum_{k=0}^{N} \frac{(-1)^k}{(2k+1)!} \,\varphi^{2k+1}.$$
(8.14)

Сравнивая (8.14) и пункт 5 теоремы 5.30 получим, что $\forall \varphi \in \mathbb{R} \ s(\varphi) = \sin(\varphi)$. Аналогично можно доказать, что

$$c(\varphi) = \lim_{N \to \infty} \sum_{k=0}^{N} \frac{(-1)^k}{(2k)!} \varphi^{2k}.$$

Отсюда и из пункта 5 теоремы 5.30 получим, что $\forall \varphi \in \mathbb{R} \ c(\varphi) = \cos(\varphi)$. \square

9. Геометрическое исследование функций

- 9.1. **Условия монотонности функции.** Напомним основные результаты из следствия 7.43. Пусть $f \in C^1(a,b)$, тогда
 - (1) $\forall x \in (a,b) \ f'(x) > 0 \Longrightarrow f$ возрастает на (a,b);
 - (2) $\forall x \in (a,b) \ f'(x) = 0 \Longleftrightarrow \exists c \in \mathbb{R} : \forall x \in (a,b) \ f(x) = c;$
 - (3) $\forall x \in (a,b)$ $f'(x) < 0 \Longrightarrow f$ убывает на (a,b).

Пример 9.1. Пусть $f(x) = 2x^3 - 3x^2 + 1$. Легко видеть, что $f'(x) = 6x^2 - 6x = 6x(x-1)$ и

- $\forall x \in (-\infty, 0) \cup (1, +\infty) f'(x) > 0$;
- $\forall x \in (0,1) \ f'(x) < 0.$

Следовательно, на интервале $(-\infty,0)$ функция f возрастает, на интервале (0,1) – убывает, на интервале $(1,+\infty)$ – возрастает.

Заметим, что f(-0.1) > f(1.1). Поэтому на множестве $(-\infty,0) \cup (1,+\infty)$ функция f не является возрастающей.

9.2. Условия локального экстремума функции.

Теорема 9.2 (Необходимое условие локального экстремума). Пусть функция $f: X \to \mathbb{R}$ имеет в точке с локальный экстремум. Тогда либо f'(c) = 0, либо f недифференцируема в точке c.

Доказательство. Следует из теоремы Ферма (см. теорему 7.39).

Теорема 9.3 (Достаточное условие строгого экстремума в терминах первой производной). Пусть $c \in (a,b)$ и $f \in C(a,b) \cap C^1((a,b) \setminus \{c\})$, тогда

- (1) $(\forall x \in (a,c) \ f'(x) > 0) \land (\forall x \in (c,b) \ f'(x) < 0) \implies c$ точка строгого максимума функции f на (a,b);
- (2) $(\forall x \in (a,c) \ f'(x) < 0) \land (\forall x \in (c,b) \ f'(x) > 0) \Longrightarrow c$ точка строгого минимума функции f на (a,b).

Доказательство. (1) Из теоремы Лагранжа (см. теорему 7.41) следует, что

$$\forall x \in (a,c) \ \exists \ d \in (x,c) : f(c) - f(x) = f'(d)(c-x) > 0;$$

$$\forall x \in (c,b) \ \exists \ d \in (c,x) : f(x) - f(c) = f'(d)(x-c) < 0.$$

Следовательно, $\forall x \in (a,b) \setminus \{c\}$ f(x) < f(c) и c – точка строгого максимума на (a,b).

(2) Доказывается аналогично пункту (1). □

Теорема 9.4 (Достаточное условие локального экстремума в терминах второй производной). $\Pi y cmb \ f \in C^2(a,b), \ c \in (a,b) \ u \ f'(c) = 0, \ mor \partial a$

- (1) $f''(c) < 0 \Longrightarrow c$ точка строгого локального максимума функции f;
- $(2) \ \forall \ x \in (a,b) \ f''(x) < 0 \Longrightarrow c$ точка строгого максимума функции f на (a,b);
- (3) $f''(c) > 0 \Longrightarrow c$ точка строгого локального минимума функции f.
- $(4) \ \forall \ x \in (a,b) \ f''(x) > 0 \Longrightarrow c moчка строгого минимума функции <math>f$ на (a,b);

Доказательство. (1) Из непрерывности f'' в точке c и условия f''(c) < 0 следует, что существует δ -окрестность $U_{\delta}(c)$ точки c такая, что $\forall \ x \in U_{\delta}(c) \ f''(x) < 0$. Отсюда и из теоремы 8.3 можно заключить, что $\forall \ x \in \dot{U}_{\delta}(c)$ существует точка d из интервала c концами x и c такая, что

$$f(x) = f(c) + f'(c)(x - c) + \frac{f''(d)}{2!}(x - d)^2 = f(c) + \frac{f''(d)}{2!}(x - d)^2 < f(c).$$

(2) Из теоремы 8.3 получим, что $\forall x \in (a,b) \setminus \{c\}$ существует точка d из интервала с концами x и c такая, что

$$f(x) = f(c) + f'(c)(x - c) + \frac{f''(d)}{2!}(x - d)^2 = f(c) + \frac{f''(d)}{2!}(x - d)^2 < f(c).$$

- (3) Доказывается аналогично пункту (1).
- (4) Доказывается аналогично пункту (2). □

9.2.1. Неравенство Юнга.

Теорема 9.5 (Неравенство Юнга). Пусть a > 0, b > 0, p > 1, q > 1 и $\frac{1}{p} + \frac{1}{q} = 1$. Тогда

$$a^{\frac{1}{p}}b^{\frac{1}{q}} \leqslant \frac{a}{p} + \frac{b}{q}.$$

Доказательство. Рассмотрим функцию

$$\forall x > 0 \ f(x) = \frac{1}{q} + \frac{x}{p} - x^{\frac{1}{p}}.$$

Легко видеть, что $\forall x > 0$

$$f'(x) = \frac{1}{p} - \frac{1}{p}x^{-\frac{1}{q}} = \frac{1}{p}(1 - x^{-\frac{1}{q}}), \quad f''(x) = \frac{1}{pq}x^{-\frac{1}{q}-1} > 0.$$

Учитывая, что f'(1)=0, из теоремы 9.4 получим, что функция f имеет в точке x=1 строгий минимум. Следовательно, $\forall \ a>0$ и $\forall \ b>0$

$$0 = bf(1) \leqslant bf\left(\frac{a}{b}\right) = \frac{b}{q} + \frac{a}{p} - a^{\frac{1}{p}}b^{\frac{1}{q}}. \square$$

9.2.2. Неравенство Гёльдера.

Теорема 9.6 (Неравенство Гёльдера). Пусть $p>1,\ q>1,\ \frac{1}{p}+\frac{1}{q}=1,\ \forall\ k\in\{1,\dots,n\}\ x_k\geqslant 0\ u$ $y_k\geqslant 0.\ Tor\partial a$

$$\sum_{k=1}^{n} x_k y_k \leqslant \left(\sum_{k=1}^{n} x_k^p\right)^{\frac{1}{p}} \left(\sum_{k=1}^{n} y_k^q\right)^{\frac{1}{q}}.$$

Доказательство. Пусть $\forall k \in \{1, \dots, n\}$

$$a_k = \frac{x_k^p}{X}, \ X = \sum_{k=1}^n x_k^p > 0, \quad b_k = \frac{y_k^q}{Y}, \ Y = \sum_{k=1}^n y_k^q > 0.$$

Из неравенства Юнга следует, что $\forall k \in \{1, ..., n\}$

$$a_k^{\frac{1}{p}}b_k^{\frac{1}{q}} \leqslant \frac{a_k}{p} + \frac{b_k}{q}.$$
 (9.1)

Суммируя неравенства (9.1) от 1 до n, получим

$$\sum_{k=1}^{n} a_{k}^{\frac{1}{p}} b_{k}^{\frac{1}{q}} \leqslant \frac{1}{p} \sum_{k=1}^{n} a_{k} + \frac{1}{q} \sum_{k=1}^{n} b_{k} = \frac{1}{p} + \frac{1}{q} = 1 \iff \frac{1}{X^{\frac{1}{p}} Y^{\frac{1}{q}}} \sum_{k=1}^{n} x_{k} y_{k} \leqslant 1 \iff \sum_{k=1}^{n} x_{k} y_{k} \leqslant X^{\frac{1}{p}} Y^{\frac{1}{q}}. \square$$

9.2.3. Неравенство Минковского.

Теорема 9.7 (Неравенство Минковского). Пусть p > 1, $\forall k \in \{1, ..., n\}$ $x_k \geqslant 0$ $u y_k \geqslant 0$. Тогда

$$\left(\sum_{k=1}^{n} (x_k + y_k)^p\right)^{\frac{1}{p}} \leqslant \left(\sum_{k=1}^{n} x_k^p\right)^{\frac{1}{p}} + \left(\sum_{k=1}^{n} y_k^p\right)^{\frac{1}{p}}.$$

Доказательство. Пусть $q=\frac{p}{p-1}$, тогда q>1 и $\frac{1}{p}+\frac{1}{q}=1$. Используя неравенство Гёльдера, получим

$$\sum_{k=1}^{n} (x_k + y_k)^p = \sum_{k=1}^{n} x_k (x_k + y_k)^{p-1} + \sum_{k=1}^{n} y_k (x_k + y_k)^{p-1} \leqslant$$

$$\leqslant \left(\sum_{k=1}^{n} x_k^p\right)^{\frac{1}{p}} \left(\sum_{k=1}^{n} (x_k + y_k)^{(p-1)q}\right)^{\frac{1}{q}} + \left(\sum_{k=1}^{n} y_k^p\right)^{\frac{1}{p}} \left(\sum_{k=1}^{n} (x_k + y_k)^{(p-1)q}\right)^{\frac{1}{q}} =$$

$$= \left(\sum_{k=1}^{n} (x_k + y_k)^p\right)^{\frac{1}{q}} \left[\left(\sum_{k=1}^{n} x_k^p\right)^{\frac{1}{p}} + \left(\sum_{k=1}^{n} y_k^p\right)^{\frac{1}{p}}\right].$$

Отсюда, учитывая соотношение $1-\frac{1}{q}=\frac{1}{p},$ получим требуемую оценку. \square

9.3. Условия выпуклости функции.

Определение 9.8. Пусть f – вещественнозначная функция, заданная на интервале (a,b). Если $\forall \ x_1 \in (a,b) \ \forall \ x_2 \in (a,b) \ \forall \ \alpha_1 > 0 \ \forall \ \alpha_2 > 0 \ makux, \ что \ x_1 \neq x_2 \ u \ \alpha_1 + \alpha_2 = 1 \ выполнено неравенство$

- $f(\alpha_1 x_1 + \alpha_2 x_2) \leqslant \alpha_1 f(x_1) + \alpha_2 f(x_2)$, то f называют выпуклой вниз на (a,b);
- $f(\alpha_1x_1+\alpha_2x_2)<\alpha_1f(x_1)+\alpha_2f(x_2)$, то f называют строго выпуклой вниз на (a,b);
- $f(\alpha_1 x_1 + \alpha_2 x_2) \geqslant \alpha_1 f(x_1) + \alpha_2 f(x_2)$, то f называют выпуклой вверх на (a,b);
- $f(\alpha_1x_1+\alpha_2x_2)>\alpha_1f(x_1)+\alpha_2f(x_2)$, то f называют строго выпуклой вверх на (a,b).

Лемма 9.9.

- (1) f выпукла вниз на $(a,b) \iff \left(a < x_1 < x < x_2 < b \Longrightarrow \frac{f(x) f(x_1)}{x x_1} \leqslant \frac{f(x_2) f(x)}{x_2 x}\right);$
- (2) f строго выпукла вниз на $(a,b) \iff \left(a < x_1 < x < x_2 < b \Longrightarrow \frac{f(x) f(x_1)}{x x_1} < \frac{f(x_2) f(x)}{x_2 x}\right);$
- (3) f выпукла вверх на $(a,b) \iff \left(a < x_1 < x < x_2 < b \Longrightarrow \frac{f(x) f(x_1)}{x x_1} \geqslant \frac{f(x_2) f(x)}{x_2 x}\right);$
- (4) f строго выпукла вверх на $(a,b) \iff \left(a < x_1 < x < x_2 < b \Longrightarrow \frac{f(x)-f(x_1)}{x-x_1} > \frac{f(x_2)-f(x)}{x_2-x}\right)$.

Доказательство. (1) Необходимость (\Longrightarrow) . Пусть $a < x_1 < x < x_2 < b$ и

$$\alpha_1 = \frac{x_2 - x}{x_2 - x_1}, \ \alpha_2 = \frac{x - x_1}{x_2 - x_1}.$$
 (9.2)

Легко видеть, что $\alpha_1 > 0$, $\alpha_2 > 0$, $\alpha_1 + \alpha_2 = 1$ и $x = \alpha_1 x_1 + \alpha_2 x_2$. Отсюда

$$f(\alpha_1 x_1 + \alpha_2 x_2) \leqslant \alpha_1 f(x_1) + \alpha_2 f(x_2) \iff (9.3)$$

$$\iff f(x) \leqslant \frac{x_2 - x}{x_2 - x_1} f(x_1) + \frac{x - x_1}{x_2 - x_1} f(x_2) \iff$$

$$\iff (x_2 - x_1) f(x) \leqslant (x_2 - x) f(x_1) + (x - x_1) f(x_2) \iff$$

$$\iff (x_2 - x) f(x) - (x_2 - x) f(x_1) \leqslant (x - x_1) f(x_2) - (x - x_1) f(x) \iff$$

$$\iff \frac{f(x) - f(x_1)}{x - x_1} \leqslant \frac{f(x_2) - f(x)}{x_2 - x}.$$

$$(9.4)$$

Достаточность (\Leftarrow). Пусть $a < x_1 < x_2 < b$, $\alpha_1 > 0$, $\alpha_2 > 0$ и $\alpha_1 + \alpha_2 = 1$. Положим $x = \alpha_1 x_1 + \alpha_2 x_2$. Легко видеть, что $x_1 = \alpha_1 x_1 + \alpha_2 x_1 < x < \alpha_1 x_2 + \alpha_2 x_2 = x_2$ и выполнено представление (9.2). Поэтому из (9.4) следует (9.3). \square

Теорема 9.10. Пусть $f \in C^1(a,b)$. Тогда

- (1) f выпукла вниз на $(a,b) \iff f'$ не убывает на (a,b);
- (2) f строго выпукла вниз на $(a,b) \iff f'$ возрастает на (a,b);
- (3) f выпукла вверх на $(a,b) \iff f'$ не возрастает на (a,b);
- (4) f строго выпукла вверх на $(a,b) \iff f'$ убывает на (a,b).

Доказательство. (1) Необходимость (\Longrightarrow) . Пусть $a < x_1 < x < x_2 < b$. Из леммы 9.9 следует, что

$$\frac{f(x) - f(x_1)}{x - x_1} \leqslant \frac{f(x_2) - f(x)}{x_2 - x}.$$
(9.5)

Переходя поочередно к пределам $x \to x_1$ и $x \to x_2$ в оценке (9.5), получим

$$f'(x_1) \leqslant \frac{f(x_2) - f(x_1)}{x_2 - x_1} \leqslant f'(x_2).$$

Достаточность (\Leftarrow). Пусть $a < x_1 < x < x_2 < b$. Из теоремы Лагранжа (см. теорему 7.41) следует, что существуют $c_1 \in (x_1, x)$ и $c_2 \in (x, x_2)$ такие, что

$$f'(c_1) = \frac{f(x) - f(x_1)}{x - x_1}, \quad f'(c_2) = \frac{f(x_2) - f(x)}{x_2 - x}.$$
 (9.6)

Из (9.6) и неубывания f' следует, что выполнена оценка (9.5). Теперь из леммы 9.9 следует, что f выпукла вниз на (a,b).

(2) Необходимость (\Longrightarrow) . Пусть $a < x_1 < x < x_2 < b$. Из пункта (1) следует, что f' не убывает на (a,b). Из леммы 9.9 и строгой выпуклости вниз функции f следует, что

$$\frac{f(x) - f(x_1)}{x - x_1} < \frac{f(x_2) - f(x)}{x_2 - x}. (9.7)$$

Отсюда и из теоремы Лагранжа (см. теорему 7.41) следует, что существуют точки $c_1 \in (x_1, x)$ и $c_2 \in (x, x_2)$ такие, что

$$f'(x_1) \leqslant f'(c_1) = \frac{f(x) - f(x_1)}{x - x_1} < \frac{f(x_2) - f(x)}{x_2 - x} = f'(c_2) \leqslant f'(x_2).$$

Достаточность (\Leftarrow). Пусть $a < x_1 < x < x_2 < b$. Из теоремы Лагранжа (см. теорему 7.41) следует, что существуют $c_1 \in (x_1, x)$ и $c_2 \in (x, x_2)$ такие, что выполнено (9.6). Из (9.6) и возрастания f' следует, что выполнена оценка (9.7). Теперь из леммы 9.9 следует, что f строго выпукла вниз на (a, b).

(3), (4) Доказывается аналогично пунктам (1) и (2). \square

Следствие 9.11. Пусть $f \in C^2(a,b)$. Тогда

- (1) f выпукла вниз на $(a,b) \iff \forall x \in (a,b) \ f''(x) \geqslant 0$;
- (2) f строго выпукла вниз на $(a,b) \iff x \in (a,b)$ f''(x) > 0;
- (3) f выпукла вверх на $(a,b) \iff \forall x \in (a,b) \ f''(x) \leq 0$;
- (4) f строго выпукла вверх на $(a,b) \iff \forall x \in (a,b) \ f''(x) < 0$.

Доказательство. Следует из следствия 7.43 и теоремы 9.10. □

Теорема 9.12. Пусть $f \in C^1(a,b)$.

- (1) f выпукла вниз на $(a,b) \iff$ график функции f лежит не ниже графика касательной κ нему в любой точке (a,b);
- (2) f выпукла вверх на $(a,b) \iff$ график функции f лежит не выше графика касательной κ нему в любой точке (a,b);

Доказательство. Уравнение касательной к графику функции f в точке $t \in (a,b)$ имеет вид

$$y = f(t) + f'(t)(x - t).$$

(1) Необходимость (\Longrightarrow). Пусть a < t < x < b, тогда

$$\exists \ c \in (t,x) : f'(c) = \frac{f(x) - f(t)}{x - t} \Longrightarrow f'(t) \leqslant \frac{f(x) - f(t)}{x - t} \Longrightarrow f(t) + f'(t)(x - t) \leqslant f(x).$$

Пусть a < x < t < b, тогда

$$\exists \ c \in (x,t) : f'(c) = \frac{f(x) - f(t)}{x - t} \Longrightarrow f'(t) \geqslant \frac{f(x) - f(t)}{x - t} \Longrightarrow f(t) + f'(t)(x - t) \leqslant f(x).$$

Достаточность (\Leftarrow). Пусть $a < x_1 < x_2 < b$, тогда

$$f(x_1) + f'(x_1)(x_2 - x_1) \le f(x_2) \Longrightarrow f'(x_1) \le \frac{f(x_2) - f(x_1)}{x_2 - x_1}$$

И

$$f(x_2) + f'(x_2)(x_1 - x_2) \le f(x_1) \Longrightarrow f'(x_2) \ge \frac{f(x_1) - f(x_2)}{x_1 - x_2}.$$

Следовательно, $f'(x_1) \leqslant f'(x_2)$ и из теоремы 9.10 следует, что f – выпукла вниз на (a,b). \square

Пример 9.13. $\forall x \in \mathbb{R} \ e^x \geqslant 1 + x$.

Доказательство. Легко видеть, что $\forall x \in \mathbb{R} \ \frac{d^2e^x}{dx^2} = e^x > 0$. Отсюда и из следствия 9.11 получим, что f – строго выпукла вниз.

Уравнение касательной к графику функции e^x в точке x=0 имеет вид y=1+x. Из теоремы 9.12 следует, что $\forall \ x \in \mathbb{R} \ e^x \geqslant 1+x$. \square

Определение 9.14. Пусть $f:(a,b)\to \mathbb{R}$ и $c\in (a,b)$. Говорят, что c – точка перегиба функции f, если выполнено одно из двух следующих условий.

- ullet f выпукла вниз на (a,c) и выпукла вверх на (c,b).
- f выпукла вверх на (a,c) и выпукла вниз на (c,b).

Теорема 9.15. Пусть $f \in C^2(a,b)$, $c \in (a,b)$ и c – точка перегиба функции f, тогда f''(c) = 0.

Доказательство. Для определенности будем считать, что f – выпукла вниз на (a,c) и выпукла вверх на (c,b). Из следствия 9.11 получим, что $\forall \ x \in (a,c) \ f''(x) \geqslant 0$ и $\forall \ x \in (c,b) \ f''(x) \leqslant 0$. Отсюда и из непрерывности f'' в точке c следует, что $0 \leqslant f''(c) \leqslant 0$. \square

- 9.4. Схема построения графика функции. Приведем схему исследования графика функции, которая может быть использована во многих случаях.
 - (1) Определить область определения функции.
 - (2) Определить характерные особенности функции: периодичность, четность и т. д.
 - (3) Определить асимптотическое поведение функции в окрестности границ области определения функции.
 - (4) Найти интервалы монотонности и точки экстремума функции.
 - (5) Выяснить характер выпуклости графика на участках монотонности функции и тип точек экстремума.
 - (6) Найти точки пересечения графика функции с осями координат.

Пример 9.16. Построить график функции $f(x) = 2\sqrt{x^2 + 3} + x$.

Решение.

- (1) $D(f) = \mathbb{R}$.
- (2) Характерных особенностей нет.
- (3) При $x \longrightarrow +\infty$

$$f(x) = 2x\sqrt{1 + \frac{3}{x^2}} + x = 2x\left(1 + \frac{3}{2x^2} + O(x^{-4})\right) + x = 3x + \frac{3}{x} + O(x^{-3}).$$

Следовательно, график функции f приближается к асимптоте y = 3x сверху.

• При $x \longrightarrow -\infty$

$$f(x) = -2x\sqrt{1 + \frac{3}{x^2}} + x = -2x\left(1 + \frac{3}{2x^2} + O(x^{-4})\right) + x = -x - \frac{3}{x} + O(x^{-3}).$$

Следовательно, график функции f приближается к асимптоте y = -x сверху.

(4)

$$f'(x) = \frac{2x}{\sqrt{x^2 + 3}} + 1.$$

Найдем нули производной

$$f'(x) = 0 \iff \frac{2x}{\sqrt{x^2 + 3}} + 1 = 0 \iff \sqrt{x^2 + 3} = -2x \iff (x < 0) \land (x^2 = 1) \iff x = -1.$$

- $\forall x \in (-\infty, -1)$ f'(x) < 0, т. е. на интервале $(-\infty, -1)$ функция f убывает.
- $\forall x \in (-1,\infty)$ f'(x) > 0, т. е. на интервале $(-1,\infty)$ функция f возрастает.
- f'(-1) = 0, т. е. x = -1 точка экстремума.

(5)

$$f''(x) = \frac{2\sqrt{x^2 + 3} - 2x\frac{x}{\sqrt{x^2 + 3}}}{x^2 + 3} = \frac{6}{(x^2 + 3)^{\frac{3}{2}}}.$$

- \bullet \forall $x \in \mathbb{R}$ f'(x) > 0, т. е. на \mathbb{R} функция f выпукла вниз.
- f'(-1) = 0 и f''(-1) > 0, т. е. x = -1 точка минимума функции f.
- (6) $f(0) = 2\sqrt{3}$, т. е. $(0, 2\sqrt{3})$ точка пересечения графика функции f с осью ординат.

$$f(x) = 0 \iff 2\sqrt{x^2 + 3} + x = 0 \iff 2\sqrt{x^2 + 3} = -x \iff (x < 0) \land (3x^2 = -12).$$

Таким образом, график функции f не пересекает ось абсцисс.

Рис. 2. График функции $f(x) = 2\sqrt{x^2 + 3} + x$.

10. Неопределенный интеграл

10.1. Первообразная и неопределенный интеграл.

Определение 10.1. Функцию F называют первообразной функции f на интервале (a,b), если $\forall x \in (a,b) \ F'(x) = f(x)$.

Лемма 10.2. Пусть F и G – первообразные функции f на интервале (a,b), тогда

- (1) $\exists C \in \mathbb{R} : \forall x \in (a,b) F(x) G(x) = C;$
- (2) \forall $C \in \mathbb{R}$ функция F + C первообразная функции f на интервале (a,b).

Доказательство. (1) Из определения первообразной следует, что

$$\forall x \in (a,b) (F_1(x) - F_2(x))' = F_1'(x) - F_2'(x) = f(x) - f(x) = 0.$$

Теперь необходимое утверждение следует из теоремы 7.42.

(2) Следует из очевидного равенства

$$\forall x \in (a,b) (F(x) + C)' = F'(x) = f(x). \square$$

Определение 10.3. Множество всех первообразных функции f называют неопределенным интегралом, который обозначают символом

$$\int f(x) \, dx.$$

Пусть F – первообразная функции f, тогда из леммы 10.2 следует, что любая первообразная функции f может быть записана в виде F+C, где C – некоторая постоянная. Символически этот факт записывают в виде

$$\int f(x) \, dx = F(x) + C$$

или, учитывая соотношение dF(x) = f(x)dx, в виде

$$\int dF(x) = F(x) + C.$$

Теорема 10.4 (Основные свойства неопределенного интеграла). Пусть существуют первообразные функций f и g на интервале (a,b), тогда

- (1) $(\int f(x) dx)' = f(x);$
- (2) $\int f'(x) dx = f(x) + C$;
- (3) $\forall \alpha, \beta \in \mathbb{R}$ $\int (\alpha f(x) + \beta g(x)) dx = \alpha \int f(x) dx + \beta \int g(x) dx$;
- (4) $d \int f(x) dx = f(x) dx$.

Доказательство. (1) Следует из определения неопределенного интеграла и первообразной.

- (2) Следует из равенства (f(x) + C)' = f'(x).
- (3) Из свойств производной следует, что

$$\left(\alpha \int f(x) \, dx + \beta \int g(x) \, dx\right)' = \alpha \left(\int f(x) \, dx\right)' + \beta \left(\int g(x) \, dx\right)' = \alpha f(x) + \beta g(x).$$

(4) Из свойств дифференциала следует, что

$$d\left(\int f(x)\,dx\right)' = \left(\int f(x)\,dx\right)'\,dx = f(x)\,dx.\ \Box$$

10.2. Таблица основных неопределенных интегралов.

Теорема 10.5.

- (1) $\int 0 dx = C;$ (2) $\int x^a dx = \frac{1}{a+1}x^{a+1} + C, \ a \in \neq -1;$
- (3) $\int \frac{1}{x} dx = \ln x + C;$ (4) $\int a^x dx = \frac{1}{\ln a} a^x + C, \ 0 < a \neq 1;$
- (5) $\int \sin x \, dx = -\cos x + C;$
- (6) $\int \cos x \, dx = \sin x + C;$

- (7) $\int \frac{dx}{\cos^2 x} dx = \tan x + C$, (8) $\int \frac{dx}{\sin^2 x} dx = -\cot x + C$, $x \neq \frac{\pi}{2} + \pi n$, $n \in \mathbb{Z}$; (9) $\int \frac{dx}{\sqrt{1-x^2}} dx = \arcsin x + C = -\arccos x + \tilde{C}$, $x \in (-1,1)$; (10) $\int \frac{dx}{1+x^2} dx = \arctan x + C = -\arctan x + \tilde{C}$; (11) $\int \frac{dx}{\sqrt{x^2+1}} dx = \ln |x + \sqrt{x^2+1}| + C$;

- (12) $\int \frac{dx}{\sqrt{x^2-1}} dx = \ln |x+\sqrt{x^2-1}| + C, |x| > 1;$

Доказательство. Следует из теоремы 7.19 о производных элементарных функций и правил дифференцирования сложных функций.

10.3. Методы вычисления неопределенных интегралов.

Теорема 10.6 (Замена переменных в неопределенном интеграле). Пусть $\varphi \in C^1(a,b)$ и существует первообразная функции f на области значений функции φ , тогда

$$\int f(\varphi(t))\varphi'(t) dt = \int f(x) dx \bigg|_{x=\varphi(t)}.$$

Доказательство. Заметим, что область значений функции φ совпадает с некоторым интервалом (c,d). Пусть F – первообразная функции f на интервале (c,d). Тогда из правил дифференцирования сложной функции следует, что

$$\left(\int f(x) \, dx \bigg|_{x=\varphi(t)}\right)' = \left(F(\varphi(t))\right)' = F'(x) \bigg|_{x=\varphi(t)} \cdot \varphi'(t) = f(\varphi(t))\varphi'(t). \ \Box$$

Теорема 10.7 (Интегрирование по частям). Пусть $f, g \in C^1(a, b)$, тогда

$$\int f(x)g'(x) dx = f(x)g(x) - \int f'(x)g(x) dx, \quad \int f(x) dg(x) = f(x)g(x) - \int g(x) df(x).$$

Доказательство. Первое равенство следует из правил дифференцирования суммы и произведения:

$$\left(f(x)g(x) - \int f'(x)g(x) \, dx \right)' = (f(x)g(x))' - f'(x)g(x) = f(x)g'(x).$$

Второе равенство следует из определения дифференциала функции.

11. Определенный интеграл Римана

11.1. Определение интеграла Римана.

Определение 11.1.

- Разбиением \mathcal{P} отрезка [a,b] называется конечное множество точек $\{x_k\}_{k=0}^n$ такое, что $a = x_0 < x_1 < \ldots < x_n = b$.
- Параметром разбиения $\mathcal P$ называют число $\lambda(\mathcal P) = \max_{k=1,\dots,n} (x_k x_{k-1}).$
- Говорят, что (\mathcal{P}, ξ) разбиение с отмеченными точками отрезка [a, b], если в каждом отрезке $[x_{k-1}, x_k]$ выбрана по точке $\xi_k \in [x_{k-1}, x_k]$, где $k = 1, \ldots, n$. При этом множество $\{\xi_k\}_{k=1}^n$ обозначается одним символом ξ .
- Множество всех разбиений с отмеченными точками отрезка [a, b], удовлетворяющих оценке $\lambda(\mathcal{P}) < \delta$, где $\delta > 0$, обозначают символом \mathcal{B}_{δ} .

Определение 11.2. Пусть $f:[a,b] \to \mathbb{R}$ и (\mathcal{P},ξ) – разбиение с отмеченными точками отрезка [a,b]. Интегральной суммой функции f, соответствующей (\mathcal{P},ξ) , называют число

$$\sigma(f, (\mathcal{P}, \xi)) = \sum_{k=1}^{n} f(\xi_k) \Delta x_k, \quad \Delta x_k = x_k - x_{k-1}.$$

Определение 11.3. Пусть $f:[a,b] \to \mathbb{R}$. Говорят, что число I – интеграл Римана от функции f по отрезку [a,b], если для любого $\varepsilon > 0$ существует $\delta > 0$ такое, что для любого $(\mathcal{P},\xi) \in \mathcal{B}_{\delta}$ справедлива оценка

$$|\sigma(f,(\mathcal{P},\xi)) - I| < \varepsilon. \tag{11.1}$$

ullet Интеграл Pимана от функции f по отрезку [a,b] обозначают символом

$$\int_{a}^{b} f(x) \, dx.$$

• Определение интеграла Римана сокращенно записывают в виде

$$\int_{a}^{b} f(x) dx = \lim_{\lambda(\mathcal{P}) \to +0} \sigma(f, (\mathcal{P}, \xi)).$$

Определение 11.4.

- Функцию f называют интегрируемой по Риману на отрезке [a,b], если существует интеграл Римана от функции f по отрезку [a,b].
- Множество всех функций, интегрируемых по Риману на отрезке [a,b], обозначают символом $\mathcal{R}[a,b]$.

Теорема 11.5 (Необходимое условие интегрируемости). Для того, чтобы функция $f:[a,b] \to \mathbb{R}$ была интегрируема по Риману на отрезке [a,b], необходимо, что она была ограничена на этом отрезке.

Доказательство. Доказательство проведем от противного. Пусть f неограничена на [a,b] и интегрируема по Риману от f равен I. Фиксируем $\varepsilon > 0$ и покажем, что для любого разбиения $\mathcal P$ найдется разбиение с отмеченной точкой такое, что оценка (11.1) не выполнена.

Так как f неограничена на [a, b], то для любого разбиения \mathcal{P} найдется отрезок $[x_{i-1}, x_i]$, на котором функция f неограничена. Перепишем интегральную сумму в виде

$$\sigma(f, (\mathcal{P}, \xi)) = \sum_{k \neq i} f(\xi_k) \Delta x_k + f(\xi_i) \Delta x_i.$$
(11.2)

При изменении ξ_i первое слагаемое в правой части (11.2) не изменяется. В силу неограниченности функции f на $[x_{i-1}, x_i]$, найдется $\xi_i \in [x_{i-1}, x_i]$ такое, что

$$|f(\xi_i)| > \frac{1}{\Delta x_i} \left| \sum_{k \neq i} f(\xi_k) \Delta x_k - I \right| + \varepsilon.$$

Отсюда, для данного разбиения с отмеченными точками получим

$$|\sigma(f,(\mathcal{P},\xi)) - I| \ge |f(\xi_i)|\Delta x_i - \left|\sum_{k \ne i} f(\xi_k)\Delta x_k - I\right| > \varepsilon.$$
 (11.3)

Оценка (11.3) очевидным образом противоречит оценке (11.1). \square

11.2. Суммы Дарбу.

Определение 11.6. Пусть функция $f:[a,b] \to \mathbb{R}$ ограничена на отрезке $[a,b], \mathcal{P}$ – разбиение этого отрезка u

$$m_k = \inf_{x \in [x_{k-1}, x_k]} f(x), \quad M_k = \sup_{x \in [x_{k-1}, x_k]} f(x), \quad k = 1, 2, \dots, n.$$

Суммы

$$s(f, \mathcal{P}) = \sum_{k=1}^{n} m_k \Delta x_k, \quad S(f, \mathcal{P}) = \sum_{k=1}^{n} M_k \Delta x_k$$

называют соответственно нижней и верхней интегральными суммами Дарбу.

Лемма 11.7. Пусть функция $f:[a,b] \to \mathbb{R}$ ограничена на отрезке [a,b]. Тогда для любого (\mathcal{P},ξ) справедлива оценка

$$s(f, \mathcal{P}) \leqslant \sigma(f, (\mathcal{P}, \xi)) \leqslant S(f, \mathcal{P}).$$

Доказательство. Из определения inf и sup следует, что

$$m_k \leqslant f(\xi_k) \leqslant M_k, \ k = 1, \dots, n.$$

Отсюда следует утверждение леммы.

Лемма 11.8. Пусть функция $f:[a,b] \to \mathbb{R}$ ограничена на отрезке [a,b] и \mathcal{P} – разбиение этого отрезка. Тогда

$$s(f, \mathcal{P}) = \inf_{\xi} \sigma(f, (\mathcal{P}, \xi)), \tag{11.4}$$

$$S(f, \mathcal{P}) = \sup_{\xi} \sigma(f, (\mathcal{P}, \xi)). \tag{11.5}$$

Доказательство. Докажем оценку (11.4). Учитывая лемму 11.7, достаточно доказать, что для любого $\varepsilon > 0$ существует $\xi = \{\xi_k\}_{k=1}^n$ такой, что

$$\sigma(f, (\mathcal{P}, \xi)) - \varepsilon \leqslant s(f, \mathcal{P}). \tag{11.6}$$

Из определения m_k следует, что найдется $\xi_k \in [x_{k-1}, x_k]$ такой, что $f(\xi_k) - \frac{\varepsilon}{b-a} \leqslant m_k$, где $k \in \{1, \ldots, n\}$. Отсюда получим, что

$$\sigma(f,(\mathcal{P},\xi)) = \sum_{k=1}^{n} f(\xi_k) \Delta x_k \leqslant \sum_{k=1}^{n} \left(m_k + \frac{\varepsilon}{b-a} \right) \Delta x_k = \sum_{k=1}^{n} m_k \Delta x_k + \frac{\varepsilon}{b-a} \sum_{k=1}^{n} \Delta x_k = s(f,\mathcal{P}) + \varepsilon.$$

Второе утверждение леммы доказывается аналогично.

Определение 11.9. Пусть \mathcal{P} и $\tilde{\mathcal{P}}$ – разбиения отрезка [a,b] множествами точек $\{x_k\}_{k=0}^n$ и $\{\tilde{x}_k\}_{k=0}^p$ соответственно. Говорят, что $\tilde{\mathcal{P}}$ – измельчение разбиения \mathcal{P} и пишут $\mathcal{P} \subset \tilde{\mathcal{P}}$, если $\{x_k\}_{k=0}^n \subset \{\tilde{x}_k\}_{k=0}^p$.

Лемма 11.10 (Монотонность сумм Дарбу). Пусть функция $f : [a, b] \to \mathbb{R}$ ограничена на отрезке [a, b] и $\mathcal{P} \subset \tilde{\mathcal{P}}$. Тогда

$$s(f, \mathcal{P}) \leqslant s(f, \tilde{\mathcal{P}}), \quad S(f, \tilde{\mathcal{P}}) \leqslant S(f, \mathcal{P}).$$
 (11.7)

Доказательство. Рассмотрим случай, когда разбиение $\tilde{\mathcal{P}}$ получено из разбиения \mathcal{P} добавлением одной точки x'. Для определенности будем считать, что $x' \in [x_{q-1}, x_q]$ для некоторого q. Легко видеть, что

$$s(f, \mathcal{P}) = \sum_{k=1}^{n} m_{k} \Delta x_{k} = \sum_{k \neq q} m_{k} \Delta x_{k} + m_{q}(x_{q} - x') + m_{q}(x' - x_{q-1}) \leqslant$$

$$\leqslant \sum_{k \neq q} m_{k} \Delta x_{k} + \left(\inf_{x \in [x', x_{q}]} f(x)\right) (x_{q} - x') + \left(\inf_{x \in [x_{q-1}, x']} f(x)\right) (x' - x_{q-1}) = s(f, \tilde{\mathcal{P}}),$$

$$S(f, \mathcal{P}) = \sum_{k=1}^{n} M_{k} \Delta x_{k} = \sum_{k \neq q} M_{k} \Delta x_{k} + M_{q}(x_{q} - x') + M_{q}(x' - x_{q-1}) \geqslant$$

$$\geqslant \sum_{k \neq q} M_{k} \Delta x_{k} + \left(\sup_{x \in [x', x_{q}]} f(x)\right) (x_{q} - x') + \left(\sup_{x \in [x_{q-1}, x']} f(x)\right) (x' - x_{q-1}) = S(f, \tilde{\mathcal{P}}).$$

В общем случае, разбиение $\tilde{\mathcal{P}}$ может быть получено за конечное число шагов из разбиения \mathcal{P} последовательным добавлением новых точек. Поскольку на каждом шаге будет выполняться оценка вида (11.7), то и для произвольных разбиений, удовлетворяющих условию $\mathcal{P} \subset \tilde{\mathcal{P}}$, оценка (11.7) будет выполнена. \square

Лемма 11.11. Пусть функция $f:[a,b] \to \mathbb{R}$ ограничена на отрезке [a,b] и \mathcal{P}_1 , \mathcal{P}_2 – произвольные разбиения отрезка [a,b]. Тогда

$$s(f, \mathcal{P}_1) \leqslant S(f, \mathcal{P}_2). \tag{11.8}$$

Доказательство. Пусть разбиение \mathcal{P} получено путем объединения точек разбиений \mathcal{P}_1 и \mathcal{P}_2 . Тогда $\mathcal{P}_1 \subset \mathcal{P}$ и $\mathcal{P}_2 \subset \mathcal{P}$. Теперь из лемм 11.7 и 11.10 следует, что

$$s(f, \mathcal{P}_1) \leqslant s(f, \mathcal{P}) \leqslant S(f, \mathcal{P}) \leqslant S(f, \mathcal{P}_2). \square$$

Определение 11.12. Пусть функция $f:[a,b]\to\mathbb{R}$ ограничена на отрезке [a,b]. Ниженим интегралом Дарбу функции f называют число

$$I_* = \sup_{\mathcal{D}} s(f, \mathcal{P}).$$

Верхним интегралом Дарбу функции f называют число

$$I^* = \inf_{\mathcal{P}} S(f, \mathcal{P}).$$

Лемма 11.13. Для любой ограниченной функции $f:[a,b] \to \mathbb{R}$ существуют конечные верхний и нижний интегралы Дарбу, причем $I_* \leqslant I^*$.

Доказательство. Из леммы 11.11 следует, что множество верхних сумм ограничено снизу, а нижних сумм – сверху. Поэтому из теоремы 2.12 о существовании точных граней следует, что существуют конечные верхний и нижний интегралы Дарбу.

Доказательство оценки $I_* \leqslant I^*$ проведем от противного. Пусть $I_* > I^*$, тогда $\varepsilon = I_* - I^* > 0$. Из определения точных граней следует, что

$$\exists \mathcal{P}_1 : s(f, \mathcal{P}_1) + \frac{\varepsilon}{2} > I_*,$$

И

$$\exists \mathcal{P}_2 : S(f, \mathcal{P}_2) - \frac{\varepsilon}{2} < I^*.$$

Отсюда получим, что

$$S(f, \mathcal{P}_2) < I^* + \frac{\varepsilon}{2} = I_* - \frac{\varepsilon}{2} < s(f, \mathcal{P}_1).$$

Полученная оценка противоречит лемме 11.11. \square

11.3. Критерий существования интеграла Римана.

Теорема 11.14 (Критерий интегрируемости). Пусть функция $f:[a,b] \to \mathbb{R}$ ограничена на отрезке [a,b]. Тогда следующее высказывание истинно:

f интегрируема по Риману на $[a,b] \iff \forall \varepsilon > 0 \exists \delta > 0 : (\lambda(\mathcal{P}) < \delta) \implies S(f,\mathcal{P}) - s(f,\mathcal{P}) < \varepsilon.$

Доказательство. Необходимость (\Longrightarrow). Из определения интеграла Римана следует, что для любого $\varepsilon > 0$ существует $\delta > 0$ такое, что для любого (\mathcal{P}, ξ) $\in \mathcal{B}_{\delta}$ справедлива оценка

$$|\sigma(f,(\mathcal{P},\xi)) - I| < \frac{\varepsilon}{4}.$$

Фиксируем произвольное \mathcal{P} так, чтобы $\lambda(\mathcal{P}) < \delta$. Теперь выберем $\xi_k^1 \in [x_{k-1}, x_k]$ так, чтобы $f(\xi_k^1) - m_k < \frac{\varepsilon}{4(b-a)}$ и $\xi_k^2 \in [x_{k-1}, x_k]$ так, чтобы $M_k - f(\xi_k^2) < \frac{\varepsilon}{4(b-a)}$, где $k = 1, \ldots, n$. Отсюда

$$S(f,\mathcal{P}) - s(f,\mathcal{P}) = S(f,\mathcal{P}) - \sigma(f,(\mathcal{P},\xi^1)) + \sigma(f,(\mathcal{P},\xi^1)) - I + I - \sigma(f,(\mathcal{P},\xi^2)) + \sigma(f,(\mathcal{P},\xi^2)) - s(f,\mathcal{P}) \leqslant \sum_{k=1}^{n} (M_k - f(\xi_k^1)) \Delta x_k + \frac{\varepsilon}{2} + \sum_{k=1}^{n} (f(\xi_k^2) - m_k) \Delta x_k < \varepsilon.$$

Достаточность (\iff). Из условия достаточности и леммы 11.13 следует, что для любого $\varepsilon>0$ найдется $\mathcal P$ такое, что

$$0 \leqslant I^* - I_* \leqslant S(f, \mathcal{P}) - s(f, \mathcal{P}) < \varepsilon.$$

Отсюда в силу произвольности ε заключаем, что $I_* = I^*$. Положим $I = I_* = I^*$ и докажем, что I – интеграл Римана от функции f по [a,b].

Далее, для любого $\varepsilon > 0$ существует $\delta > 0$ такое, что $S(f, \mathcal{P}) - s(f, \mathcal{P}) < \varepsilon$ для всех \mathcal{P} таких, что $\lambda(\mathcal{P}) < \delta$. Пусть теперь (\mathcal{P}, ξ) – произвольное разбиение с отмеченными точками из \mathcal{B}_{δ} , тогда

$$-\varepsilon < s(f, \mathcal{P}) - S(f, \mathcal{P}) \leqslant s(f, \mathcal{P}) - I^* \leqslant \sigma(f, (\mathcal{P}, \xi)) - I \leqslant S(f, \mathcal{P}) - I_* \leqslant S(f, \mathcal{P}) - s(f, \mathcal{P}) < \varepsilon.$$

Отсюда следует, что $\forall (\mathcal{P}, \xi) \in \mathcal{B}_{\delta}$ справедлива оценка $|\sigma(f, (\mathcal{P}, \xi)) - I| < \varepsilon$. \square

Следствие 11.15 (Критерий интегрируемости). Пусть функция $f : [a, b] \to \mathbb{R}$ ограничена на отрезке [a, b]. Тогда следующее высказывание истинно:

$$f$$
 интегрируема по Риману на $[a,b] \iff \forall \ \varepsilon > 0 \ \exists \ \delta > 0 : (\lambda(\mathcal{P}) < \delta) \implies \sum_{k=1}^n \omega_k \Delta x_k < \varepsilon,$

 $e \partial e \omega_k = M_k - m_k$.

Доказательство. Следует из теоремы 11.14 и равенства

$$S(f, \mathcal{P}) - s(f, \mathcal{P}) = \sum_{k=1}^{n} \omega_k \Delta x_k. \square$$

Теорема 11.16. $f \in C[a,b] \implies f \in \mathcal{R}[a,b]$.

Доказательство. Из теоремы Вейерштрасса 1 следует, что f ограничена на [a,b]. Для доказательства теоремы воспользуемся критерием интегрируемости 11.15.

Из теоремы Кантора следует, что f равномерно непрерывна на [a,b]. Следовательно, для любого $\varepsilon > 0$ существует $\delta > 0$ такое, что $\forall x_1, x_2 \in [a,b]: |x_1 - x_2| < \delta \implies |f(x_1) - f(x_2)| < \frac{\varepsilon}{b-a}$. Пусть теперь \mathcal{P} – произвольное разбиение, удовлетворяющее условию $\lambda(\mathcal{P}) < \delta$. Тогда из теоремы Вейерштрасса 2 вытекает, что для любого $k = 1, \ldots, n$ найдутся $\xi_k, \eta_k \in [x_{k-1}, x_k]$ такие, что

$$\sup_{x \in [x_{k-1}, x_k]} f(x) = f(\xi_k), \quad \inf_{x \in [x_{k-1}, x_k]} f(x) = f(\eta_k).$$

Отсюда для любого k = 1, ..., n получим

$$\omega_k = M_k - m_k = \sup_{x \in [x_{k-1}, x_k]} f(x) - \inf_{x \in [x_{k-1}, x_k]} f(x) = f(\xi_k) - f(\eta_k) < \frac{\varepsilon}{b - a}.$$

Следовательно,

$$\sum_{k=1}^{n} \omega_k \Delta x_k < \frac{\varepsilon}{b-a} \sum_{k=1}^{n} \Delta x_k = \varepsilon.$$

Теперь утверждение теоремы следует из критерия интегрируемости 11.15. □

Теорема 11.17. Пусть функция f монотонна на отрезке [a,b], тогда $\mathcal{R}[a,b]$.

Доказательство. Пусть $f(a) \neq 0$ f(b), иначе f – постоянна и утверждение теоремы тривиально. Далее, для любого $\varepsilon > 0$ положим $\delta = \frac{\varepsilon}{|f(b) - f(a)|}$. Пусть теперь \mathcal{P} – произвольное разбиение с параметром $\lambda(\mathcal{P}) < \delta$. Учитывая монотонность f получим

$$\sum_{k=1}^{n} \omega_k \Delta x_k \leqslant \delta \sum_{k=1}^{n} |\omega_k| = \delta \sum_{k=1}^{n} |f(x_k) - f(x_{k-1})| = \delta \left| \sum_{k=1}^{n} f(x_k) - f(x_{k-1}) \right| = \delta |f(b) - f(a)| = \varepsilon.$$

Теперь утверждение теоремы следует из критерия интегрируемости 11.15. 🗆

Теорема 11.18. Пусть функция f непрерывна на отрезке [a,b] за исключением конечного числа точек и ограничена на [a,b], тогда $f \in \mathcal{R}[a,b]$.

Доказательство. Пусть $\sup_{x \in [a,b]} |f(x)| = M$ и функция f имеет разрывы в точках $\{c_k\}_{k=1}^p$. Доказательство будем проводить на основании критерия интегрируемости 11.15.

Для любого $\varepsilon > 0$ положим $\delta_1 = \frac{\varepsilon}{16Mp}$. Представим теперь отрезок [a,b] в виде объединения двух множеств

$$A = [a, b] \cap \left(\bigcup_{k=1}^{p} (c_k - \delta_1, c_k + \delta_1) \right), \quad B = [a, b] \setminus A.$$

Ясно, что множество B состоит из объединения конечного числа отрезков, на каждом из которых функция f непрерывна. Из теоремы Кантора следует, что f равномерно непрерывна на каждом из этих отрезков и, так как количество отрезков конечно, на всем множестве B. Поэтому существует $\delta_2 > 0$ такое, что

$$\sup_{x_1, x_2 \in B, |x_1 - x_2| < \delta_2} |f(x_1) - f(x_2)| < \frac{\varepsilon}{2(b - a)}.$$

Выберем теперь $\delta = \min(\delta_1, \delta_2)$ и произвольное разбиение $\mathcal P$ отрезка [a,b], удовлетворяющее условию $\lambda(\mathcal P) < \delta$. Множество точек $\{1,\ldots,n\}$ разбиения $\mathcal P$ можно представить в виде объединения непересекающихся множеств

$$X_b = \{k : k \in \{1, \dots, n\}, [x_{k-1}, x_k] \subset B\} \text{ } \text{ } \text{ } \text{ } X_a = \{1, \dots, n\} \setminus X_b.$$

Легко видеть, что

$$\sum_{k \in X_a} \omega_k \Delta x_k \leqslant 2M \sum_{k \in X_a} \Delta x_k \leqslant 8M \delta_1 p = \frac{\varepsilon}{2},$$

$$\sum_{k \in Y_a} \omega_k \Delta x_k < \frac{\varepsilon}{2(b-a)} \sum_{k \in Y_a} \Delta x_k \leqslant \frac{\varepsilon}{2},$$

откуда

$$\sum_{k=1}^{n} \omega_k \Delta x_k = \sum_{k \in X_a} \omega_k \Delta x_k + \sum_{k \in X_b} \omega_k \Delta x_k < \varepsilon.$$

Теперь утверждение теоремы следует из критерия интегрируемости 11.15. □

11.4. Основные свойства интеграла.

Теорема 11.19. Пусть $f,g \in \mathcal{R}[a,b]$ и $\alpha,\beta \in \mathbb{R}$, тогда $\alpha f(x) + \beta g(x) \in \mathcal{R}[a,b]$, причем

$$\int_{a}^{b} \alpha f(x) + \beta g(x) dx = \alpha \int_{a}^{b} f(x) dx + \beta \int_{a}^{b} g(x) dx.$$

Доказательство. Так так $f, g \in \mathcal{R}[a, b]$, то найдется $\delta > 0$ такое, что для любого $(\mathcal{P}, \xi) \in \mathcal{B}_{\delta}$ верно

$$|\sigma(f(x), (\mathcal{P}, \xi)) - I(f)| < \frac{\varepsilon}{2|\alpha| + 1}, \quad |\sigma(g(x), (\mathcal{P}, \xi)) - I(g)| < \frac{\varepsilon}{2|\beta| + 1},$$

где

$$I(f) = \int_{a}^{b} f(x) dx, \quad I(g) = \int_{a}^{b} g(x) dx.$$

Из определения интегральных сумм следует, что

$$\sigma(\alpha f(x) + \beta g(x), (\mathcal{P}, \xi)) = \alpha \sigma(f(x), (\mathcal{P}, \xi)) + \beta \sigma(g(x), (\mathcal{P}, \xi)).$$

Следовательно, для любого $(\mathcal{P}, \xi) \in \mathcal{B}_{\delta}$ справедлива оценка

$$|\sigma(\alpha f(x) + \beta g(x), (\mathcal{P}, \xi)) - \alpha I(f) + \beta I(g) dx| \leq$$

$$\leq |\alpha \sigma(f(x), (\mathcal{P}, \xi)) - \alpha I(f)| + |\alpha \sigma(f(x), (\mathcal{P}, \xi)) - \alpha I(f)| < \frac{\varepsilon |\alpha|}{2|\alpha| + 1} + \frac{\varepsilon |\beta|}{2|\beta| + 1} < \varepsilon. \square$$

Теорема 11.20. Пусть a < b < c u $f \in \mathcal{R}[a,c]$, тогда $f \in \mathcal{R}[a,b]$ u $f \in \mathcal{R}[b,c]$, причем

$$\int_{a}^{c} f(x) dx = \int_{a}^{b} f(x) dx + \int_{b}^{c} f(x) dx.$$

Доказательство. Фиксируем произвольное $\varepsilon > 0$ и выбираем $\delta > 0$ так, чтобы для любого разбиения интервала [a,c], удовлетворяющго условию $\lambda(\mathcal{P}_{[a,c]}) < \delta$, выполнялась оценка

$$S(f, \mathcal{P}_{[a,c]}) - s(f, \mathcal{P}_{[a,c]}) < \varepsilon.$$

Пусть теперь $\mathcal{P}_{[a,b]}$ и $\mathcal{P}_{[b,c]}$ – разбиения интервалов [a,b] и [b,c], удовлетворяющие условиям $\lambda(\mathcal{P}_{[a,b]}) < \delta$ и $\lambda(\mathcal{P}_{[b,c]}) < \delta$. Для разбиения $\mathcal{P}_{[a,c]}$, полученного путем объединения разбиений $\mathcal{P}_{[a,b]}$ и $\mathcal{P}_{[b,c]}$, выполнена оценка $\lambda(\mathcal{P}_{[a,c]}) < \delta$. Следовательно,

$$S(f, \mathcal{P}_{[a,b]}) - s(f, \mathcal{P}_{[a,b]}) \leqslant S(f, \mathcal{P}_{[a,c]}) - s(f, \mathcal{P}_{[a,c]}) < \varepsilon$$

И

$$S(f, \mathcal{P}_{[b,c]}) - s(f, \mathcal{P}_{[b,c]}) \leqslant S(f, \mathcal{P}_{[a,c]}) - s(f, \mathcal{P}_{[a,c]}) < \varepsilon.$$

Отсюда и из критерия интегрируемости 11.14 следует, что $f \in \mathcal{R}[a,b]$ и $f \in \mathcal{R}[b,c]$. Далее, для тех же разбиений $\mathcal{P}_{[a,b]}$, $\mathcal{P}_{[b,c]}$ и $\mathcal{P}_{[a,c]}$ справедливо, что

$$-\varepsilon < s(f, \mathcal{P}_{[a,c]}) - S(f, \mathcal{P}_{[a,c]}) = s(f, \mathcal{P}_{[a,c]}) - S(f, \mathcal{P}_{[a,b]}) - S(f, \mathcal{P}_{[b,c]}) \leqslant$$

$$\leqslant \int_{a}^{c} f(x) dx - \int_{a}^{b} f(x) dx - \int_{b}^{c} f(x) dx \leqslant$$

$$= S(f, \mathcal{P}_{[a,c]}) - s(f, \mathcal{P}_{[a,b]}) - s(f, \mathcal{P}_{[b,c]}) = S(f, \mathcal{P}_{[a,c]}) - s(f, \mathcal{P}_{[a,c]}) < \varepsilon$$

Из произвольности выбора $\varepsilon>0$ следует требуемое утверждение. \square

Теорема 11.21. Пусть $f, g \in \mathcal{R}[a, b]$ $u \ \forall \ x \in [a, b]$ $f(x) \leqslant g(x)$, тогда

$$\int_{a}^{b} f(x) \, dx \leqslant \int_{a}^{b} g(x) \, dx.$$

Доказательство. Пусть (\mathcal{P}_n, ξ^n) — некоторая последовательность разбиений с выделенными точками, удовлетворяющая условию $\lambda(\mathcal{P}_n) < \frac{1}{n}$, где $n \in \mathbb{N}$. Тогда

$$\sigma(f, (\mathcal{P}_n, \xi^n)) \leqslant \sigma(g, (\mathcal{P}_n, \xi^n)) \tag{11.9}$$

И

$$\lim_{n \to \infty} \sigma(f, (\mathcal{P}_n, \xi^n)) = \int_a^b f(x) \, dx, \quad \lim_{n \to \infty} \sigma(g, (\mathcal{P}_n, \xi^n)) = \int_a^b g(x) \, dx.$$

Переходя к пределу $n \to \infty$ в неравенствах (11.9) (см. теорему 3.10) получим, что

$$\int_{a}^{b} f(x) dx \leqslant \int_{a}^{b} g(x) dx. \ \Box$$

Теорема 11.22. Пусть $f \in \mathcal{R}[a,b]$, тогда $|f(x)| \in \mathcal{R}[a,b]$, причем

$$\left| \int_{a}^{b} f(x) \, dx \right| \leqslant \int_{a}^{b} |f(x)| \, dx. \tag{11.10}$$

Доказательство. Из $f \in \mathcal{R}[a,b]$ и критерия интегрируемости 11.15 следует, что

$$\forall \varepsilon > 0 \; \exists \; \delta > 0 : (\lambda(\mathcal{P}) < \delta) \implies \sum_{k=1}^{n} \omega_k(f) \Delta x_k < \varepsilon.$$

Легко видеть, что для любого k = 1, ..., n верно

$$\omega_{k}(|f|) = \sup_{x \in [x_{k-1}, x_{k}]} |f(x)| - \inf_{x \in [x_{k-1}, x_{k}]} |f(x)| = \sup_{x \in [x_{k-1}, x_{k}]} |f(x)| + \sup_{x \in [x_{k-1}, x_{k}]} (-|f(x)|) =$$

$$= \sup_{x, y \in [x_{k-1}, x_{k}]} (|f(x)| - |f(y)|) \leqslant \sup_{x, y \in [x_{k-1}, x_{k}]} (|f(x) - f(y)|) = \sup_{x, y \in [x_{k-1}, x_{k}]} (f(x) - f(y)) =$$

$$= \sup_{x \in [x_{k-1}, x_{k}]} f(x) + \sup_{y \in [x_{k-1}, x_{k}]} (-f(y)) = \sup_{x \in [x_{k-1}, x_{k}]} f(x) - \inf_{y \in [x_{k-1}, x_{k}]} f(y) = \omega_{k}(f).$$

Отсюда следует, что

$$\lambda(\mathcal{P}) < \delta \implies \sum_{k=1}^{n} \omega_k(|f|) \Delta x_k \leqslant \sum_{k=1}^{n} \omega_k(f) \Delta x_k < \varepsilon$$

Теперь, применяя критерий интегрируемости 11.15, получим, что $|f| \in \mathcal{R}[a,b]$. Из свойства модуля следует, что $\forall x \in [a,b]$ справедлива оценка

$$-|f(x)| \leqslant f(x) \leqslant |f(x)|.$$

Отсюда и из теоремы 11.21 следует оценка (11.10). \square

Теорема 11.23. Пусть $f, g \in \mathcal{R}[a, b]$, тогда $f \cdot g \in \mathcal{R}[a, b]$.

Доказательство. Докажем вначале, что если $h \in \mathcal{R}[a,b]$, то $h^2 \in \mathcal{R}[a,b]$. Пусть $h \in \mathcal{R}[a,b]$, тогда из необходимого условия интегрируемости (см. теорему 11.5) следует, что $\exists M : \forall x \in [a,b] \ |h(x)| \leqslant M$. Фиксируем теперь $\varepsilon > 0$. Из критерия интегрируемости 11.15 следует, что найдется $\delta > 0$ такое, что

$$\lambda(\mathcal{P}) < \delta \implies \sum_{k=1}^{n} \omega_k(h) \Delta x_k < \frac{\varepsilon}{2M}.$$

Далее, $\forall k \in \{1, \ldots, n\}$

$$\omega_k(h^2) = \sup_{x,y \in [x_{k-1},x_k]} (h^2(x) - h^2(y)) = \sup_{x,y \in [x_{k-1},x_k]} (h(x) + h(y))(h(x) - h(y)) \leqslant$$

$$\leqslant 2M \sup_{x,y \in [x_{k-1},x_k]} |h(x) - h(y)| = 2M \sup_{x,y \in [x_{k-1},x_k]} (h(x) - h(y)) = 2M\omega_k(h).$$

Отсюда следует, что $\forall \mathcal{P} : \lambda(\mathcal{P}) < \delta$ верно, что

$$\sum_{k=1}^{n} \omega_k(h^2) \Delta x_k \leqslant 2M \sum_{k=1}^{n} \omega_k(h) \Delta x_k < \varepsilon.$$

Отсюда и из критерия интегрируемости 11.15 следует, что $h^2 \in \mathcal{R}[a,b]$. Заметим теперь, что

$$f \cdot g = \frac{1}{4} \Big((f+g)^2 - (f-g)^2 \Big). \tag{11.11}$$

Учитывая только что доказанное утверждение, из (11.11) следует, что $f \cdot g \in \mathcal{R}[a,b]$. \square

Определение 11.24. Пусть a > b, тогда по определению полагают

$$\int_{a}^{b} f(x) dx = -\int_{b}^{a} f(x) dx.$$

11.5. Первая теорема о среднем для интегралов.

Лемма 11.25.

$$\int_{a}^{b} 1 \, dx = b - a.$$

Доказательство. Заметим, что $\forall (\mathcal{P}, \xi)$ верно, что

$$\sigma(f,(\mathcal{P},\xi)) = \sum_{k=1}^{n} \Delta x_k = b - a. \square$$

Теорема 11.26 (Первая теорема о среднем). Пусть $f \in C[a,b]$, тогда существует $c \in [a,b]$ такое, что

$$\int_{a}^{b} f(x) dx = f(c)(b - a).$$

Доказательство. Из теоремы Вейерштрасса 2 (см. теорему 6.14) следует, что

$$\exists x_*, x^* \in [a, b] : \forall x \in [a, b] \ f(x_*) \leqslant f(x) \leqslant f(x^*).$$

Отсюда, из леммы 11.25 и из теоремы 11.21 получим, что

$$f(x_*)(b-a) \leqslant \int_a^b f(x) dx \leqslant f(x^*)(b-a).$$
 (11.12)

Оценка (11.12) гарантирует, что $\frac{1}{b-a} \int_a^b f(x) dx \in [f(x_*), f(x^*)]$, поэтому из теоремы Больцано-Коши 2 (см. теорему 6.12) следует, что существует $c \in [a, b]$ такое, что

$$\frac{1}{b-a} \int_{a}^{b} f(x) \, dx = f(c). \ \Box$$

Теорема 11.27 (Первая теорема о среднем в обобщенной форме). Пусть $f \in C[a,b], g \in \mathcal{R}[a,b]$ $u \ \forall \ x \in [a,b] \ g(x) \geqslant 0, \ mor \partial a \ cymecmbyem \ c \in [a,b] \ makoe, \ umo$

$$\int_{a}^{b} f(x)g(x) dx = f(c) \int_{a}^{b} g(x) dx.$$

Доказательство. Из теоремы Вейерштрасса 2 (см. теорему 6.14) следует, что

$$\exists x_*, x^* \in [a, b] : \forall x \in [a, b] \ f(x_*) \leq f(x) \leq f(x^*).$$

Отсюда, учитывая неотрицательность g, получим, что для любого $x \in [a,b]$ верно, что

$$f(x_*)g(x) \le f(x)g(x) \le f(x^*)g(x).$$
 (11.13)

Из теорем 11.16 и 11.23 следует, что $f\cdot g\in\mathcal{R}[a,b]$. Полагая $g_0=\int\limits_a^bg(x)\,dx$, из (11.13) и теоремы 11.21 получим, что

$$f(x_*)g_0 \leqslant \int_a^b f(x)g(x) dx \leqslant f(x^*)g_0.$$

Ясно, что $g_0 f \in C[a,b]$, поэтому из теоремы Больцано-Коши 2 (см. теорему 6.12) следует, что существует $c \in [a,b]$ такое, что

$$\int_{a}^{b} f(x)g(x) dx = f(c)g_0. \square$$

12. Определенный интеграл Римана и первообразная

12.1. Определенный интеграл Римана с переменным верхним пределом.

Теорема 12.1. Пусть b > a u $f \in \mathcal{R}[a,b]$, тогда \forall $x \in [a,b]$ $f \in \mathcal{R}[a,x]$ u $F \in C[a,b]$, где

$$F(x) = \int_{a}^{x} f(t) dt, \quad x \in [a, b].$$
 (12.1)

Доказательство. Истинность высказывания ($\forall x \in [a,b] \ f \in \mathcal{R}[a,x]$) следует из теоремы 11.20. Докажем, что F равномерно непрерывна. В силу $f \in \mathcal{R}[a,b]$ найдется M>0 такое, что $\forall x \in [a,b] \ |f(x)| \leqslant M$. Для любого $\varepsilon>0$ выберем $\delta=\frac{\varepsilon}{M}$. Тогда для любых $x,y \in [a,b]: |x-y|<\delta$ верно, что

$$|F(x) - F(y)| = \left| \int_{a}^{x} f(t) dt - \int_{a}^{y} f(t) dt \right| = \left| \int_{y}^{x} f(t) dt \right| \leqslant M|x - y| < M\delta = \varepsilon.$$

Отсюда следует, что F – равномерно непрерывно, а следовательно и непрерывна на [a,b]. \square

Теорема 12.2 (Барроу). Пусть b > a, $f \in \mathcal{R}[a,b]$, f непрерывна в точке $c \in [a,b]$ и F задана равенством (12.1). Тогда F дифференцируема в точке c, причем F'(c) = f(c).

Доказательство. Доказательство проведем по определению. Фиксируем произвольное $\varepsilon > 0$. В силу непрерывности f в точке c найдется $\delta > 0$ такое, что

$$(x \in [a, b]) \land (|x - c| < \delta) \implies |f(x) - f(c)| < \varepsilon.$$

Отсюда следует, что

$$(x \in [a,b]) \land (0 < |x-c| < \delta) \implies \left| \frac{F(x) - F(c)}{x-c} - f(c) \right| = \left| \frac{1}{x-c} \left(\int_{c}^{x} f(t) dt - \int_{c}^{x} f(c) dt \right) \right| = \left| \frac{1}{x-c} \int_{c}^{x} (f(t) - f(c)) dt \right| \leqslant \frac{1}{|x-c|} \left| \int_{c}^{x} |f(t) - f(c)| dt \right| < \varepsilon. \square$$

Замечание 12.3. В случае, если c = a или c = b под F'(c) следует понимать одностороннюю производную F'(a+0) или F'(b+0).

Пемма 12.4. Пусть $f \in C[a,b]$, тогда F, заданная равенством (12.1), является первообразной функции f.

Доказательство. Вытекает из теорем 12.1 и 12.2. □

Теорема 12.5 (Формула Ньютона-Лейбница). Пусть $f \in C[a,b]$ и Ф – первообразная f. Тогда

$$\int_{a}^{b} f(t) dt = \Phi(b) - \Phi(a).$$
 (12.2)

Доказательство. Из леммы 12.4 следует, что функция F, заданная равенством (12.1), является первообразной функции f. Следовательно

$$\forall \ x \in [a, b] \ \Phi(x) = \int_{a}^{x} f(t) \, dt + C, \tag{12.3}$$

где C – некоторая вещественная постоянная. Полагая в (12.3) x=a, найдем

$$\Phi(a) = \int_{a}^{a} f(t) dt + C = C.$$

Полагая в (12.3) x = b, получим

$$\Phi(b) = \int_{a}^{b} f(t) dt + \Phi(a). \square$$

Замечание 12.6. Выражение $\Phi(b) - \Phi(a)$ кратко обозначают символом $\Phi(x)\big|_a^b$. В этих обозначениях формула Нъютона-Лейбница примет вид

$$\int_{a}^{b} f(x) dx = \Phi(x) \Big|_{a}^{b}.$$

12.2. Методы вычисления определенных интегралов.

Теорема 12.7 (Замена переменных в определенном интеграле). Пусть $\varphi \in C^1[\alpha, \beta], \ \varphi(\alpha) = a,$ $\varphi(\beta) = b \ u \ f \in C(\varphi([\alpha, \beta])), \ mor \partial a \ (f \circ \varphi) \cdot \varphi' \in C[\alpha, \beta] \ u$

$$\int_{a}^{b} f(x) dx = \int_{a}^{\beta} f(\varphi(t))\varphi'(t) dt, \quad \int_{a}^{b} f(x) dx = \int_{a}^{\beta} f(\varphi(t)) d\varphi(t).$$

Доказательство. Из теоремы (6.3) следует, что $(f \circ \varphi) \cdot \varphi' \in C[\alpha, \beta]$.

Пусть F – первообразная функции f на [a,b], тогда из правила дифференцирования сложной функции найдем

$$(F \circ \varphi)'(t) = F'(\varphi(t))\varphi'(t) = f(\varphi(t))\varphi'(t).$$

Следовательно, $F \circ \varphi$ – первообразная функции $(f \circ \varphi) \cdot \varphi'$. Далее, используя формулу Ньютона-Лейбница получим, что

$$\int_{a}^{b} f(x) dx = F(x) \Big|_{a}^{b} = F(b) - F(a),$$

$$\int_{\alpha}^{\beta} f(\varphi(t)) \varphi'(t) dt = F \circ \varphi(t) \Big|_{\alpha}^{\beta} = F(\varphi(\beta)) - F(\varphi(\alpha)) = F(b) - F(a).$$

Отсюда следует требуемое утверждение. \square

Теорема 12.8 (Интегрирование по частям в определенном интеграле). Пусть $f, g \in C^1[a, b],$ $mor \partial a$

$$\int_{a}^{b} f(x)g'(x) dx = f(x)g(x)\Big|_{a}^{b} - \int_{a}^{b} f'(x)g(x) dx, \quad \int_{a}^{b} f(x) dg(x) = f(x)g(x)\Big|_{a}^{b} - \int_{a}^{b} g(x) df(x).$$

Доказательство. Из правил дифференцирования произведения функций следует, что

$$(f(x)g(x))' = f'(x)g(x) + f(x)g'(x).$$

По условию теоремы функции (fg)', f'g и fg' непрерывны на [a,b]. Отсюда и из формулы Ньютона-Лейбница следует, что

$$f(x)g(x)\big|_a^b = \int_a^b f'(x)g(x) \, dx + \int_a^b f(x)g'(x) \, dx.$$

Второе равенство следует из определения дифференциала функции. \square

12.3. Формула Тейлора.

Теорема 12.9 (Формула Тейлора с остаточным членом в интегральной форме). Пусть a < b, $n \in \mathbb{N}$ и $f \in C^n[a,b]$. Тогда $\forall x,c \in [a,b]$ верно, что

$$f(x) = \sum_{k=0}^{n-1} \frac{f^{(k)}(c)}{k!} (x-c)^k + r_n(x), \quad r_n(x,c) = \frac{1}{(n-1)!} \int_{c}^{x} f^{(n)}(t) (x-t)^{n-1} dt.$$
 (12.4)

Доказательство. Доказательство проведем по индукции. При n=1 из формулы Ньютона-Лейбница получим, что $\forall \ x,c\in [a,b]$

$$f(x) - f(c) = \int_{c}^{x} f'(t) dt.$$

Пусть теперь формула (12.4) верна при $n=p\in\mathbb{N}$. Докажем, что формула (12.4) верна при n=p+1. Применяя теорему 12.8, получим (все дифференцирования, интегрирования и подстановки производятся по переменной t)

$$f(x) - \sum_{k=0}^{p-1} \frac{f^{(k)}(c)}{k!} (x - c)^k = \frac{1}{(p-1)!} \int_c^x f^{(p)}(t) (x - t)^{p-1} dt =$$

$$= -\frac{1}{p!} \int_c^x f^{(p)}(t) d(x - t)^p = -\frac{1}{p!} f^{(p)}(t) (x - t)^p \Big|_c^x + \frac{1}{p!} \int_c^x (x - t)^p df^{(p)}(t) =$$

$$= \frac{f^{(p)}(c)}{p!} (x - c)^p + \frac{1}{p!} \int_c^x f^{(p+1)}(t) (x - t)^p dt. \square$$

Теорема 12.10 (Формула Тейлора с остаточным членом в форме Коши). *Пусть* $a < b, n \in \mathbb{N}$ $u \ f \in C^n[a,b]$. *Тогда* $\forall \ x,c \in [a,b] \ \exists \ \xi \in [\min(x,c),\max(x,c)]$ такое, что

$$f(x) = \sum_{k=0}^{n-1} \frac{f^{(k)}(c)}{k!} (x-c)^k + r_n(x), \quad r_n(x,c) = \frac{1}{(n-1)!} f^{(n)}(\xi) (x-\xi)^{n-1} (x-c).$$
 (12.5)

Доказательство. Пусть $c \leqslant x$, тогда, учитывая, что $f^{(n)} \in C[c,x]$, из первой теоремы о среднем 11.26 следует, что $\exists \ \xi \in [c,x]$ такое, что

$$r_n(x,c) = \frac{1}{(n-1)!} \int_{c}^{x} f^{(n)}(t)(x-t)^{n-1} dt = \frac{1}{(n-1)!} f^{(n)}(\xi)(\xi-t)^{n-1}(x-c).$$

Случай $x \leqslant c$ доказывается аналогично. \square

Теорема 12.11 (Формула Тейлора с остаточным членом в форме Лагранжа). *Пусть* a < b, $n \in \mathbb{N}$ $u \in \mathbb{C}^n[a,b]$. *Тогда* $\forall x,c \in [a,b] \exists \xi \in [\min(x,c),\max(x,c)]$ такое, что

$$f(x) = \sum_{k=0}^{n-1} \frac{f^{(k)}(c)}{k!} (x - c)^k + r_n(x), \quad r_n(x, c) = \frac{1}{n!} f^{(n)}(\xi) (x - c)^n.$$
 (12.6)

Доказательство. Пусть $c\leqslant x$, тогда, учитывая, что $f^{(n)}\in C[c,x]$ и $(x-t)^{n-1}\geqslant 0$, из обобщенной формы первой теоремы о среднем 11.27 следует, что $\exists\ \xi\in[c,x]$ такое, что

$$r_n(x,c) = \frac{1}{(n-1)!} \int_{c}^{x} f^{(n)}(t)(x-t)^{n-1} dt = \frac{1}{(n-1)!} f^{(n)}(\xi) \int_{c}^{x} (x-t)^{n-1} dt = \frac{1}{n!} f^{(n)}(\xi)(x-c)^{n}.$$

Случай $x \leqslant c$ доказывается аналогично. \square

13. Гладкая кривая на плоскости

13.1. Длина гладкой кривой на плоскости.

Определение 13.1. Пусть отображение $\gamma:[a,b]\ni t\mapsto (x(t),y(t))\in\mathbb{R}^2$ удовлетворяет условиям $x\in C^1[a,b], y\in C^1[a,b]$ и $\forall\ t\in [a,b]\ |x'(t)|+|y'(t)|>0.$

- Образ отображения γ называют гладкой кривой Γ .
- $Кривую \Gamma$ называют простой, если γ биекция.
- ullet Отображение γ называют гладкой параметризацией кривой Γ .
- Если $\forall \ t \in [a,b] \ |\gamma'(t)| \stackrel{\text{def}}{=} \sqrt{(x'(t))^2 + (y'(t))^2} = 1$, то параметризация кривой называется естественной.

Пример 13.2. Рассмотрим отображение $\gamma: \mathbb{R} \ni t \mapsto (x(t), y(t)) = (|t|t^3, t^2)$. Несмотря на то, что $x, y \in C^1[a, b]$ образ отображения γ имеет точку возврата при t = 0 и поэтому не является гладкой кривой. Отметим, что при t = 0 не выполнено условие |x'(t)| + |y'(t)| > 0.

Лемма 13.3. Пусть отображения

$$\gamma_1 : [a, b] \ni t \mapsto (x_1(t), y_1(t)) \in \mathbb{R}^2, \quad \gamma_2 : [c, d] \ni t \mapsto (x_2(t), y_2(t)) \in \mathbb{R}^2$$

гладко параметризуют кривую Γ . Тогда

(1) $\exists f \in C^1[a,b] : \gamma_1 = \gamma_2 \circ f$, причем либо f(a) = c, f(b) = d и f' > 0 на [a,b], либо f(a) = d, f(b) = c и f' < 0 на [a,b];

$$f(b) = c \ u \ f' < 0 \ \text{Ha} \ [a, b];$$

$$(2) \int_{a}^{b} \sqrt{(x_1'(t))^2 + (y_1'(t))^2} \ dt = \int_{c}^{d} \sqrt{(x_2'(t))^2 + (y_2'(t))^2} \ dt.$$

Доказательство. (1) Без доказательства.

(2) Для определенности будем считать, что f(a)=c, f(b)=d и f'>0 на [a,b]. Из теоремы 12.7 следует, что

$$|\gamma_{2}| = \int_{c}^{d} \sqrt{(x'_{2}(t))^{2} + (y'_{2}(t))^{2}} dt = \int_{a}^{b} \sqrt{(x'_{2}(f(s)))^{2} + (y'_{2}(f(s)))^{2}} f'(s) ds =$$

$$= \int_{a}^{b} \sqrt{(x'_{2}(f(s))f'(s))^{2} + (y'_{2}(f(s))f'(s))^{2}} ds = \int_{a}^{b} \sqrt{\left(\frac{x_{2} \circ f(s)}{ds}\right)^{2} + \left(\frac{y_{2} \circ f(s)}{ds}\right)^{2}} ds =$$

$$= \int_{a}^{b} \sqrt{(x'_{1}(s))^{2} + (y'_{1}(s))^{2}} ds = |\gamma_{1}|. \square$$

Определение 13.4. Длиной гладкой кривой Γ называют число

$$|\Gamma| = \int_{a}^{b} \sqrt{(x'(t))^2 + (y'(t))^2} dt,$$

где $\gamma:[a,b]\ni t\mapsto (x(t),y(t))\in\mathbb{R}^2$ – параметризация кривой $\Gamma.$

Лемма 13.5. Любая гладкая кривая Γ имеет естественную параметризацию.

Доказательство. Пусть $\gamma:[a,b]\ni t\mapsto (x(t),y(t))\in\mathbb{R}^2$ – гладкая параметризация кривой Γ . Рассмотрим функцию

$$[a,b] \ni t \mapsto f(t) = \int_{a}^{t} \sqrt{(x'(\tau))^2 + (y'(\tau))^2} d\tau.$$

Легко видеть, что f возрастающая функция и потому обратима. Обратная функция f^{-1} определена на отрезке [0, L], где L – длина кривой Γ .

Докажем теперь, что отображение $\hat{\gamma}:[0,L]\ni s\mapsto \left(x(f^{-1}(s)),y(f^{-1}(s))\right)\in\mathbb{R}^2$ задает естественную параметризация кривой Γ . Заметим, что

$$\forall t \in [a, b] \quad \hat{\gamma} \circ f(t) = \hat{\gamma}(f(t)) = (x(t), y(t)) = \gamma(t)$$

и, следовательно, $\hat{\gamma}([0,L]) = \gamma([a,b]) = \Gamma$. Далее,

$$\forall s \in [0, L] \quad \hat{\gamma}'(s) = \frac{d\gamma(f^{-1}(s))}{ds} = \begin{pmatrix} \frac{dx(f^{-1}(s))}{ds} \\ \frac{dx(f^{-1}(s))}{ds} \end{pmatrix} = \begin{pmatrix} x'(f^{-1}(s)) \\ y'(f^{-1}(s)) \end{pmatrix} \frac{df^{-1}(s)}{ds} = \begin{pmatrix} x'(f^{-1}(s)) \\ y'(f^{-1}(s)) \end{pmatrix} \frac{1}{\sqrt{(x'(f^{-1}(s)))^2 + (y'(f^{-1}(s)))^2}}.$$

Отсюда получим, что

$$\forall s \in [0, L] \quad |\hat{\gamma}'(s)| = \left| \begin{pmatrix} x'(f^{-1}(s)) \\ y'(f^{-1}(s)) \end{pmatrix} \right| \frac{1}{\sqrt{(x'(f^{-1}(s)))^2 + (y'(f^{-1}(s)))^2}} = 1. \ \Box$$

Теорема 13.6 (Длина кривой, заданной графиком функции). Пусть отображение

$$[a,b] \ni x \mapsto (x, f(x)) \in \mathbb{R}^2,$$

гладко параметризуют кривую Γ . Тогда

$$|\Gamma| = \int_{a}^{b} \sqrt{1 + (f'(x))^2} \, dx.$$

Доказательство. Утверждение теоремы следует из определения длины кривой и равенства

$$(x')^2 + (f'(x))^2 = 1 + (f'(x))^2$$
. \square

Теорема 13.7 (Длина кривой в полярном представлении). Пусть отображение

$$[\varphi_1, \varphi_2] \ni \varphi \mapsto (x(\varphi), y(\varphi)) \in \mathbb{R}^2,$$

где

$$x(\varphi) = r(\varphi)\cos\varphi, \ y(\varphi) = r(\varphi)\sin\varphi$$

гладко параметризуют кривую Γ . Тогда

$$|\Gamma| = \int_{\varphi_1}^{\varphi_2} \sqrt{(r(\varphi))^2 + (r'(\varphi))^2} \, d\varphi.$$

Доказательство. Утверждение теоремы следует из определения длины кривой и равенства $(x'(\varphi))^2 + (y'(\varphi))^2 = (r'(\varphi)\cos\varphi - r(\varphi)\sin\varphi)^2 + (r'(\varphi)\sin\varphi + r(\varphi)\cos\varphi)^2 = (r(\varphi))^2 + (r'(\varphi))^2$. \square

13.2. Площадь криволинейной трапеции и сектора.

Определение 13.8. Пусть $f \in \mathcal{R}[a,b]$ и $f \geqslant 0$ на [a,b]. Тогда площадью криволинейной трапеции, ограниченной прямыми $x=a,\ x=b,\ y=0$ и кривой y=f(x) называют число

$$S = \int_{a}^{b} f(x) \, dx.$$

Теорема 13.9. Пусть отображение

$$\gamma: [\varphi_1, \varphi_2] \ni \varphi \mapsto (x(\varphi), y(\varphi)) \in \mathbb{R}^2,$$

где

$$x(\varphi) = r(\varphi)\cos\varphi, \ y(\varphi) = r(\varphi)\sin\varphi$$

гладко параметризуют кривую Γ . Тогда площадь сектора ограниченного лучами $\varphi = \varphi_1, \ \varphi = \varphi_2$ и кривой Γ может быть вычислена по формуле

$$S = \frac{1}{2} \int_{\varphi_1}^{\varphi_2} r^2(\varphi) \, d\varphi.$$

Доказательство. Рассмотрим случай, когда кривая Γ гладко проецируется на ось абсцисс. То есть существует $f \in C[a,b]$ такая, что отображение

$$\hat{\gamma}: [a,b] \ni x \mapsto (x,f(x)) \in \mathbb{R}^2$$

гладко параметризует кривую Г. Предположим также, что $\hat{\gamma}(a) = \gamma(\varphi_2)$ и $\hat{\gamma}(b) = \gamma(\varphi_1)$. Введем обозначения: $O(0,0),\ A(a,0),\ B(b,0),\ C(b,f(b))$ и $D(a,f(a)),\$ смотри рисунок 3. Легко видеть, что

$$S_{\triangleleft OCD} = S_{\triangle OAD} + S_{\Box ABCD} - S_{\triangle OBC}.$$

Площади треугольников OAD и OBC могут быть вычислены геометрически

$$S_{\Delta OAD} = \frac{1}{2} a f(a), \quad S_{\Delta OBC} = \frac{1}{2} b f(b).$$

Рис. 3. Площадь сектора.

Найдем площадь криволинейной трапеции ABCD. Используя замену переменных и интегрирование по частям, получим, что

$$S_{\Box ABCD} = \int_{a}^{b} f(x) dx = \int_{\varphi_{2}}^{\varphi_{1}} r(\varphi) \sin \varphi d (r(\varphi) \cos \varphi) = \int_{\varphi_{2}}^{\varphi_{1}} r(\varphi) \sin \varphi \Big(r'(\varphi) \cos \varphi - r(\varphi) \sin \varphi \Big) d\varphi =$$

$$= \int_{\varphi_{1}}^{\varphi_{2}} r^{2}(\varphi) \sin^{2} \varphi d\varphi - \int_{\varphi_{1}}^{\varphi_{2}} r(\varphi) r'(\varphi) \sin \varphi \cos \varphi d\varphi =$$

$$= \int_{\varphi_{1}}^{\varphi_{2}} r^{2}(\varphi) \sin^{2} \varphi d\varphi - \frac{1}{4} \int_{\varphi_{1}}^{\varphi_{2}} \sin(2\varphi) dr^{2}(\varphi) =$$

$$= \int_{\varphi_{1}}^{\varphi_{2}} r^{2}(\varphi) \sin^{2} \varphi d\varphi + \frac{1}{2} \int_{\varphi_{1}}^{\varphi_{2}} r^{2}(\varphi) \cos(2\varphi) d\varphi - \frac{1}{4} \sin(2\varphi) r^{2}(\varphi) \Big|_{\varphi_{1}}^{\varphi_{2}} =$$

$$= \frac{1}{2} \int_{\varphi_{1}}^{\varphi_{2}} r^{2}(\varphi) d\varphi - \frac{1}{2} r(\varphi) \cos \varphi r(\varphi) \sin \varphi \Big|_{\varphi_{1}}^{\varphi_{2}} = \frac{1}{2} \int_{\varphi_{1}}^{\varphi_{2}} r^{2}(\varphi) d\varphi - \frac{1}{2} \Big(af(a) - bf(b) \Big).$$

Следовательно,

$$S_{\triangleleft OCD} = S_{\triangle OAD} + S_{\Box ABCD} - S_{\triangle OBC} =$$

$$= \frac{1}{2} af(a) + \frac{1}{2} \int_{\varphi_1}^{\varphi_2} r^2(\varphi) \, d\varphi - \frac{1}{2} \left(af(a) - bf(b) \right) - \frac{1}{2} bf(b) = \frac{1}{2} \int_{\varphi_2}^{\varphi_2} r^2(\varphi) \, d\varphi.$$

Общий случай рассматривается аналогично.

13.3. **Кривизна гладкой кривой.** Пусть (\cdot,\cdot) – скалярное произведение в \mathbb{R}^2 и $\|\cdot\|$ – норма в \mathbb{R}^2 , определенные соотношениями \forall $\mathbf{v}=(x,y)\in\mathbb{R}^2, \, \forall$ $\mathbf{u}=(\xi,\eta)\in\mathbb{R}^2$

$$(\mathbf{u}, \mathbf{v}) = x\xi + y\eta, \quad \|\mathbf{v}\| = \sqrt{x^2 + y^2}.$$

Определение 13.10. Пусть точка M движется по гладкой кривой $\Gamma \subset \mathbb{R}^2$, ее координаты меняются во времени по закону $(a,b) \ni t \mapsto (x(t),y(t))$ и $x,y \in C^2(a,b)$.

ullet Скоростью точки M в момент времени t называют вектор

$$\mathbf{v}(t) = (x'(t), y'(t)).$$

• Ускорением точки M в момент времени t называют вектор

$$\mathbf{a}(t) = (x''(t), y''(t)).$$

• Пусть $\forall t \in (a,b) |\mathbf{v}(t)| = 1$ (то есть параметризация является естественной), тогда вектором кривизны кривой Γ в точке M называют вектор $\mathbf{k}(t) = \mathbf{a}(t)$, а кривизной – число $k(t) = |\mathbf{a}(t)|$.

Лемма 13.11. Пусть точка M движется по гладкой кривой $\Gamma \subset \mathbb{R}^2$, ее координаты меняются во времени по закону $\gamma:[a,b]\ni t\mapsto (x(t),y(t))$ и $x,y\in C^2[a,b]$. Пусть вместе с этим γ – естественная параметризация, тогда \forall $t\in [a,b]$ $(\mathbf{k}(t),\mathbf{v}(t))=0$.

Доказательство. Продифференцировав равенство $(\mathbf{v}(t), \mathbf{v}(t)) = 1$ по t, получим

$$(\mathbf{v}'(t), \mathbf{v}(t)) + (\mathbf{v}(t), \mathbf{v}'(t)) = 0 \iff 2(\mathbf{v}'(t), \mathbf{v}(t)) = 0 \iff (\mathbf{k}(t), \mathbf{v}(t)) = 0.$$

Теорема 13.12. Пусть точка M движется по гладкой кривой $\Gamma \subset \mathbb{R}^2$, ее координаты меняются во времени по закону $[a,b] \ni t \mapsto (x(t),y(t)), \ x,y \in C^2[a,b] \ u \ \forall \ t \in [a,b] \ \|\mathbf{v}(t)\| > 0.$ Тогда

- (1) $\forall t \in [a, b]$ вектор скорости $\mathbf{v}(t)$ касается кривой Γ в точке (x(t), y(t));
- (2) $\mathbf{a}(t) = \mathbf{a}_n(t) + \mathbf{a}_t(t)$, $\varepsilon \partial e \ \mathbf{a}_n(t) = \|\mathbf{v}(t)\|^2 \mathbf{k}(f(t))$, $\mathbf{a}_t(t) = \frac{d\|\mathbf{v}(t)\|}{dt} \frac{\mathbf{v}(t)}{\|\mathbf{v}(t)\|} \ u \ f(t) = \int_a^t \|\mathbf{v}(\tau)\| \ d\tau$;
- (3) векторы $\mathbf{a}_n(t)$ и $\mathbf{a}_t(t)$ ортогональны, то есть $(\mathbf{a}_n(t), \mathbf{a}_t(t)) = 0$;
- (4) $k(f(t)) = \frac{|x(t)''y'(t) x'(t)y''(t)|}{[(x'(t))^2 + (y'(t))^2]^{3/2}}$

Доказательство. (1) Из теоремы 7.13 следует, что угол наклона φ касательной к кривой Γ в точке (x(t),y(t)) удовлетворяет уравнению

$$tg(\varphi) = \frac{y'(t)}{x'(t)}. (13.1)$$

Очевидно, что угол наклона вектора скорости $\mathbf{v}(t) = (x'(t), y'(t))$ также удовлетворяет уравнению (13.1).

(2) Из леммы 13.5 следует, что существует естественная параметризация кривой Г:

$$[0, L] \ni s \mapsto (\alpha(s), \beta(s)) \in \Gamma.$$

Для определенности будем считать, что $(\alpha(0), \beta(0)) = (x(a), y(a)).$

Докажем, что

$$\forall t \in [a, b] \quad x(t) = \alpha(f(t)), \ y(t) = \beta(f(t)). \tag{13.2}$$

Из определения длины кривой следует, что длина дуги кривой Γ от точки (x(a),y(a)) до точки (x(t),y(t)) определяется выражением

$$\int_{a}^{t} \sqrt{(x'(\tau))^{2} + (y'(\tau))^{2}} d\tau = \int_{a}^{t} \|\mathbf{v}(\tau)\| d\tau = f(t).$$
(13.3)

С другой стороны, длина дуги кривой Γ от точки $(\alpha(0), \beta(0))$ до точки $(\alpha(f(t)), \alpha(f(t)))$ определяется выражением

$$\int_{0}^{f(t)} \sqrt{(\alpha'(\tau))^2 + (y'(\tau))^2} d\tau = \int_{0}^{f(t)} d\tau = f(t).$$
 (13.4)

Сравнивая (13.3) и (13.4), получим (13.2).

Далее,

$$\begin{aligned} \mathbf{v}(t) &= (x'(t), y'(t)) = (\alpha'(f(t))f'(t), \beta'(f(t))f'(t)) \,, \\ \mathbf{a}(t) &= (x''(t), y''(t)) = \left(\alpha''(f(t))(f'(t))^2 + \alpha'(f(t))f''(t), \beta''(f(t))(f'(t))^2 + \beta'(f(t))f''(t)\right) = \\ &= (f'(t))^2 \left(\alpha''(f(t)), \beta''(f(t))\right) + f''(t) \left(\alpha'(f(t)), \beta'(f(t))\right) = \\ &= \|\mathbf{v}(t)\|^2 \mathbf{k}(f(t)) + \frac{d\|\mathbf{v}(t)\|}{dt} \frac{\mathbf{v}(t)}{\|\mathbf{v}(t)\|}. \end{aligned}$$

(3) Следует из леммы 13.11.

(4) Рассмотрим вспомогательную вектор-функцию

$$\mathbf{b}(t) = (y'(t), -x'(t)).$$

Легко видеть, что

$$(\mathbf{b}(t), \mathbf{v}(t)) = 0. \tag{13.5}$$

Отсюда и из пункта (3) следует, что вектора $\mathbf{b}(t)$ и $\mathbf{k}(t)$ коллинеарны, то есть

$$|(\mathbf{b}(t), \mathbf{k}(t))| = |\mathbf{b}(t)| \cdot |\mathbf{k}(t)|. \tag{13.6}$$

Из (13.5), (13.6) и пункта (2) получим, что

$$|(\mathbf{b}(t), \mathbf{a}(t))| = |(\mathbf{b}(t), \mathbf{a}_n(t))| = |(\mathbf{b}(t), \mathbf{k}(f(t)))| \cdot ||\mathbf{v}(t)||^2 = |\mathbf{b}(t)| \cdot |\mathbf{k}(f(t))| \cdot ||\mathbf{v}(t)||^2$$

Следовательно,

$$k(f(t)) = |\mathbf{k}(f(t))| = \frac{|(\mathbf{b}(t), \mathbf{a}(t))|}{|\mathbf{b}(t)| \cdot ||\mathbf{v}(t)||^2} = \frac{|x(t)''y'(t) - x'(t)y''(t)|}{||\mathbf{v}(t)||^3} = \frac{|x(t)''y'(t) - x'(t)y''(t)|}{[(x'(t))^2 + (y'(t))^2]^{3/2}}. \square$$

Лемма 13.13. Пусть точка M движется по окружности $x^2 + y^2 = R^2$ с постоянной скоростью v, где R>0 и v>0. Тогда $k(t)=\frac{1}{R}$, а вектор $\mathbf{k}(t)$ начинается в точке на окружности и направлен κ центру окружности.

Доказательство. Для определенности будем считать, что в начальный момент времени точка M находится в точке (R,0) и движется против часовой стрелки. Уравнение движения точки M имеет вид

$$x(t) = R\cos\left(\frac{vt}{R}\right), \quad y(t) = R\sin\left(\frac{vt}{R}\right).$$

Действительно,

$$\mathbf{v}(t) = v\left(-\sin\left(\frac{vt}{R}\right), \cos\left(\frac{vt}{R}\right)\right), \quad \|\mathbf{v}(t)\| = v.$$

Далее,

$$\mathbf{a}(t) = -\frac{v^2}{R} \left(\cos \left(\frac{vt}{R} \right), \sin \left(\frac{vt}{R} \right) \right), \quad \|\mathbf{a}(t)\| = \frac{v^2}{R}. \tag{13.7}$$

Из (13.7) при v=1 получим, что

$$\mathbf{k}(t) = -\frac{1}{R} \left(\cos \left(\frac{vt}{R} \right), \sin \left(\frac{vt}{R} \right) \right), \quad k(t) = \frac{1}{R}. \ \Box$$

Лемма 13.13 мотивирует следующее определение.

Определение 13.14. Paduycom кривизны кривой Γ в точке M называют величину $\frac{1}{k}$, где k - кривизна кривой Γ в точке M.