Vežba 3: Osnove SPICE simulatora

111. Šta je SPICE program i čemu služi?

SPICE je program za simulaciju elektronskih kola.

112. Šta mora da bude prva linija SPICE netliste?

Asterisk (*).

113. Kojim simbolom počinju nazivi direktiva (komandi) u SPICE-u?

Tačka (.).

114. Koji numerički karakter je rezervisan za modelovanje čvora mase u SPICE-u?

Nula (0)

115. U tabeli ispod, pored naziva elementa kola upisati odgovarajući slovni simbol kojim se element opisuje u SPICE-u.

Naziv elementa	Opis u SPICE-u
Bipolarni trazistor	Q
Otpornik	R
MOS-FET trazistor	M
Kondezator	С
Dioda	D
Kalem	L
Naponski generator	V
Strujni generator	1
Naponski generator kontrolisan naponom	E
Strujni generator kontrolisan naponom	G
Naponski generator kontrolisan strujom	Н
Strujni generator kontrolisan strujom	F

116. Za kolo sa slike napisati SPICE netlistu sa komandom za pokretanje *Operating Point* analize. Vrednosti elemenata kola su: $I_1=1mADC$, $V_1=2V$, $V_2=350mVDC$, $R_1=10k\Omega$, $R_2=50\Omega$, $R_3=0.5k\Omega$.


```
* Primer 06
I1 a 0 1m
R1 a 0 10k
V1 a b 2
R3 b 0 0.5k
R2 b c 50
V2 0 c 350m
.op
.end
```

117. Za kolo sa slike napisati SPICE netlistu sa komandom za pokretanje *Alternate Current* analize. Analizirati kolo u opsegu od 100Hz do 100MHz. Opseg frekvencija zadati u logaritamskoj razmeri sa 50 tačaka po dekadi. Vrednosti elemenata kola su: $R_r=1k\Omega$, $L_r=100$ mH, $C_r=22$ nF, $V_1=0$ VDC (1VAC).


```
* Primer 07
Rr a b 1k
Lr b c 100m
Cr c 0 22n
V1 a 0 0 AC 1
.ac dec 50 100 100MEG
.end
```

118. Za kolo sa slike napisati SPICE netlistu sa komandom za pokretanje *Direct Current sweep* analize. Analizirati kolo za opseg napona V₁ od -10V do 10V sa korakom od 0.01V. Naziv modela diode je **DMOD** i ima sledeće parametre: **Is=1e-14 Vj=0.75 BV=6.8 M=0.5 Rs=5**. Vrednosti elemenata kola su: V₁=1VDC, R₁=1kΩ.


```
* Primer 08
V1 a 0 1
R1 a b 1k
D1 b 0 DMOD
.model DMOD D (Is=1e-14 Vj=0.75 BV=6.8 M=0.5 Rs=5)
.dc V1 -10 10 0.01
.end
```

119. Za kolo sa slike napisati SPICE netlistu sa komandom za pokretanje *Direct Current sweep* analize. Analizirati kolo za opseg napona V₁ od 0V do 5V sa korakom 0.01V i za listu struja I₁ 10μA, 20μA, 30μA i 40μA. Naziv modela tranzistora je **NBJT** i ima sledeće parametre: **Is=1e-15 Vje=0.7 Bf=120 Vaf=150**. Vrednosti elemenata kola su: I₁=10μADC, V₁=1VDC.


```
* Primer 09
I1 0 b 10u
V1 c 0 1
Q1 c b 0 NBJT
.model NBJT NPN (Is=1e-15 Vje=0.7 Bf=120 Vaf=150)
.dc V1 0 5 0.01 I1 list 10u 20u 30u 40u
.end
```

120. Za kolo sa slike napisati SPICE netlistu sa komandom za pokretanje *Direct Current sweep* analize. Analizirati kolo za opseg napona V₁ od 0V do 5V sa korakom 0.01V i za listu napona V₂, 0.5V, 0.75V, 1V, 1.25V. Naziv modela tranzistora je **NFET** sa sledećim parametrima: **Kp=100e-6 Vto=0.4 Lambda=0.05**. Elemenati kola su: V₁=1VDC, V₂=1VDC.


```
* Primer 10
V1 d 0 1
V2 g 0 1
M1 d g 0 0 NFET
.model NFET NMOS (Kp=100u Vto=0.4 Lambda=0.05)
.dc V1 0 5 0.01 V2 list 0.5 0.75 1 1.25
.end
```

Vežba 4: Simulacija usmerača u SPICE-u

- 121. Kojim elementima kola se modeluju primar i sekundar idealnog transformatora u SPICE-u? Spregnutim kalemovima.
- 122. Za koju vrstu usmeravanja napona se koristi transformator sa srednjim izvodom na sekundaru? **Dvostrano usmeravanje.**
- 123. Koliki odnos induktivnosti spregnutih kalemova treba odabrati da bi se u SPICE-u modelovao idealni transformator sa odnosom transformacije 1:16?

$$\frac{1}{16} = \frac{N'}{N''} = \sqrt{\frac{L'}{L''}} \Rightarrow \frac{L'}{L''} = \frac{1}{16^2} = \frac{1}{256}$$

124. Koliki je maksimalni očekivani napon na izlazu jednostranog usmerača sa jednom diodom čiji je parametar VJ=0.6V, ako je maksimalni napon na izlazu sekundara transformatora 12V?

$$V_m'' = 12V \Rightarrow V_{max} = V_m'' - V_i = 11.4V$$

125. Kojim elementima se modeluju najjednostavnija kola za ograničavanje napona (*clampers*) u SPICE-u?

Diode i otpornici.

126. Za kolo sa slike napisati SPICE netlistu sa komandom za pokretanje *Transient* analize. Simulacija kola treba da obuhvati 4 periode pobudnog signala. Naziv modela diode je **1N4001** i definisan je u fajlu **diode.mod**. Elementi kola su: R_1 =0.1 Ω , R_L =1 $k\Omega$, C_F =10 μ F, L_1 =10mH, L_2 =10 μ H, K=1, V_1 =(310V)sin(2 π (50Hz)t).


```
* Primer 16
V1 a 0 sin(0 310 50)
R1 a b 0.1
L1 b 0 10m
L2 c 0 10u
K L1 L2 1
D1 c d 1N4001
RL d 0 1k
CF d 0 10u
.lib diode.mod
.tran 80m
.end
```

127. Za kolo sa slike napisati SPICE netlistu sa komandom za pokretanje *Transient* i *Direct Current sweep* analize. *Transient* analiza treba da obuhvati 2 periode ulaznog pobudnog signala. Za *Direct Current* analizu zadati opseg napona V_i od -10V do 10V sa korakom od 0.01V. Naziv modela dioda je **1N914** i definisan je u fajlu **standard.dio**. Elementi kola su: $R_1=1k\Omega$, $V_1=2V$, $V_2=3V$, $V_i=1VDC+(5V)\sin(2\pi(1kHz)t)$.


```
* Primer 17
Vi a 0 sin(1 5 1k)
R1 a b 1k
D1 c b 1N914
V1 0 c 2
D2 b d 1N914
V2 d 0 3
.lib standard.dio
.tran 2m
.dc Vi -10 10 0.01
.end
```

128. Za kolo sa slike napisati SPICE netlistu sa komandom za pokretanje *Transient* i *Direct Current sweep* analize. *Transient* analiza treba da obuhvati 2 periode ulaznog pobudnog signala. Za *Direct Current* analizu zadati opseg ulaznog napona od -10V do 10V sa korakom od 0.01V. Naziv modela dioda je **BZX84C6V2L** i definisan je u fajlu **standard.dio**. Elementi kola su: R1=1k Ω , Vi=(12V)sin(2 π (1kHz)t).


```
* Primer 18
Vi a 0 sin(0 12 1k)
R1 a b 1k
D1 c b BZX84C6V2L
D2 c 0 BZX84C6V2L
.lib standard.dio
.tran 2m
.dc Vi -10 10 0.01
.end
```

129. Za kolo sa slike napisati SPICE netlistu sa komandom za pokretanje *Transient* analize. *Transient* analiza treba da traje jednu periodu ulaznog signala koji se najsporije menja. Naziv modela dioda je **DMOD** i ima zadat parametar **Vj=0.75**. Otpornost u kolu je: $R_1=1k\Omega$. Pobudne signale modelovati SPICE pulsnim generatorima koji imaju sledeće parametre:

```
Va = {Vinit=0, Von=5, Tdelay=1m, Trise=1n, Tfall=1n, Ton=1m, Tperiod=2m}
```

Vb = {Vinit=0, Von=5, Tdelay=2m, Trise=1n, Tfall=1n, Ton=2m, Tperiod=4m}


```
* Primer 19
Va a 0 pulse(0 5 1m 1n 1n 1m 2m)
Vb b 0 pulse(0 5 2m 1n 1n 2m 4m)
R1 c 0 1k
D1 a c DMOD
D2 b c DMOD
.model DMOD D (Vj=0.75)
.tran 4m
.end
```

130. Za kolo sa slike napisati SPICE netlistu sa komandom za pokretanje *Transient* analize. *Transient* analiza treba da traje jednu periodu ulaznog signala. Naziv modela dioda je **1N4148** i definisan je u fajlu **standard.dio**. Elementi kola su: R_1 =10k Ω , C_1 =10µF i V_i =1VDC + (10V)sin(2 π (0.5kHz)t).


```
* Primer 20
Vi a 0 sin(1 10 0.5k)
C1 a b 10u
R1 b 0 10k
D1 0 b 1N4148
.lib standard.dio
.tran 2m
.end
```

Vežba 5: Simulacija pojačavača u SPICE-u

- 131. Kojim tipom kontrolisanog generatora se modeluje naponski pojačavač u SPICE-u?

 Naponski generator kontrolisan naponom (E).
- 132. Nabrojati najmanje četiri SPICE analize koje se obavezno koriste prilikom verifikacije i projektovanja pojačavača.

```
.op, .tran, .ac, .noise
```

133. Koja SPICE analiza se koristi za procenu prenosne funkcije, ulazne i izlazne otpornosti pojačavača za male signale?

.tf

- 134. Koja SPICE analiza se koristi za procenu ekvivalentnog napona šuma na ulazu i izlazu pojačavača?

 .noise
- 135. Koja SPICE analiza se koristi za procenu propusnog opsega pojačavača?

.ac

136. Napisati SPICE netlistu za model naponskog pojačavača sa sledećim parametrima: R_{ulp} =10M Ω , R_{izp} =10 Ω , A_o =100. Model enkapsulirati u pod-kolo pod nazivom **VAMP**. Usvojiti sledeći redosled navođenja portova: inp, inm, outp, outm. Pod-kolo VAMP instancirati i pobuditi generatorom, V_u =10mVDC, koji ima unutrašnju otpornost, R_u =10k Ω . Otpornost potrošača je, R_p =100 Ω . Zadati *Transfer Function* analizu.


```
* Primer 26
.subckt VAMP inp inm outp outm
Rulp inp inm 10MEG
Eamp outi outm inp inm 100
Rizp outi outp 10
.ends
Vu a 0 10m
Ru a b 10k
Xa b 0 c 0 VAMP
Rp c 0 100
.tf V(c) Vu
.end
```

137. Za kolo sa slike napisati SPICE netlistu sa komandom za pokretanje *Transfer function* analize. Izlaz pojačavača je na emitoru tranzistora, a ulaz pojačavača je pobuđen generatorom V_i . Naziv modela tranzistora je **2N2222** i definisan je u fajlu **standard.bjt**. Elementi kola su: R_1 =150k Ω , R_2 =300 Ω , V_i =0.8VDC, V_{CC} =5VDC.


```
* Primer 27
Vi b 0 0.8
R1 a b 150k
Q1 c b e 2N2222
R2 e 0 300
Vcc a 0 5
.lib standard.bjt
.tf V(e) Vi
.end
```

138. Za kolo sa slike napisati SPICE netlistu sa komandom za pokretanje *Alternate Current* analize. Analizirati kolo u opsegu od 1Hz do 100MHz. Opseg frekvencija zadati u logaritamskoj razmeri sa 2 tačke po oktavi. Naziv modela tranzistora je **BCW60A** i definisan je u fajlu **standard.bjt**. Elementi kola su: R_u =100 Ω , R_B =100k Ω , R_C =450 Ω , R_D =10k Ω , C_{S1} = C_{S1} =1 μ F, V_{CC} =12VDC, V_i =0VDC (1VAC).


```
* Primer 28
Vi 1 0 AC 1
Ru 1 2 100
Cs1 2 3 1u
Rb 3 6 100k
Q1 4 3 0 BCW60A
Rc 4 6 450
Cs2 4 5 1u
Rp 5 0 10k
Vcc 6 0 12
.lib standard.bjt
.ac oct 2 1 100MEG
.end
```

139. Za kolo sa slike napisati SPICE netlistu sa komandom za pokretanje *Transient* analize. Analiza treba da obuhvati 5 perioda ulaznog signala. Naziv modela tranzistora je **BSP89** i definisan je u fajlu **standard.mos**. Elementi kola su: R_{G1} =100k Ω , R_{G2} =70k Ω , R_{D} =650 Ω , R_{S} =100 Ω , R_{u} =50 Ω , R_{p} =5k Ω , C_{S1} = C_{S2} =1 μ F, C_{S3} =150nF, V_{DD} =5VDC i V_{i} =1VDC + (10mV)cos(2 π (10kHz)t).


```
Primer 29
   1 0 sin(1 10m 10k 0 0 90)
    1 2 50
Cs1 2 3 1u
Rg1 3 7 100k
     0 70k
      3 4 4 BSP89
        650
    4 0 100
   4 0 150n
Cs2 5 6 1u
    6 0 5k
Vdd 7 0 5
.lib standard.mos
.tran 500u
.end
```

140. Za kolo sa slike napisati SPICE netlistu sa komandom za pokretanje *Direct Current sweep* i *Noise* analize. Za *Direct Curent* analizu zadati promenu napona Vi od -10V do 10V sa korakom od 0.01V. *Noise* analizu zadati u opsegu od 10Hz do 10MHz sa 20 tačaka po dekadi. Izlazni napon pojačavača je napon čvora 5. Operacioni pojačavač je opisan kao pod-kolo pod nazivom **OP747** čiji se opis nalazi u fajlu **ADI.lib**. Elementi kola su: R_1 =1k Ω , R_2 =3k Ω , R_3 =5k Ω , R_4 =10k Ω , R_p =100 Ω , C_p =270nF, V_{CC} = V_{EE} =5VDC.


```
Primer 30
    1 0 DC 0
    2 0 1k
        3k
        10k
        100
        270n
       6 7 3 OP747
     4 6 7 5 OP747
X2
   6
      0
        5
Vcc
Vee 0 7 5
.lib ADI.lib
.dc Vi -10 10 0.01
.noise V(5) Vi dec 20 10 10MEG
.end
```

Vežba 6: Simulacija oscilatora u SPICE-u

- 141. Navesti tri osnovna elementa kojima se modeluju LC oscilatori u SPICE-u? Kalem, kondenzator, pojačavač (tranzistor, operacioni pojačavač).
- 142. Navesti tri osnovna elementa kojima se modeluju RC oscilatori u SPICE-u?

 Kondenzator, otpornik, pojačavač (tranzistor, operacioni pojačavač).
- 143. Kojim elementima kola se obično ograničava izlazni napon oscilatora?

 Diodama.
- 144. Koja je osnovna SPICE analiza koja se koristi prilikom verifikacije i projektovanja kola oscilatora?

 .tran
- 145. Nakon SPICE simulacije i obrade izlaznog signala oscilatora dobijen je spektar prikazan na slici. Na osnovu slike spektra proceniti osnovnu frekvenciju oscilovanja oscilatora.

 $f_0 \approx 12kHz$

146. Za kolo *Colpitts* sa slike napisati SPICE netlistu sa komandom za pokretanje *Transient* analize. Analiza treba da obuhvati najmanje 500 perioda signala oscilatora. Naziv modela tranzistora je **BCW60A** i

definisan je u fajlu **standard.bjt**. Elementi kola su: L_r =10mH, C_1 =240nF, C_2 =24nF, C_S =1 μ F, R_1 =10k Ω , R_2 =500 Ω i V_{CC} =5V.

$$C_r = \frac{1}{\frac{1}{C_1} + \frac{1}{C_2}} = 21.82nF, f_o = \frac{1}{2\pi\sqrt{L_rC_r}} = 10.78kHz, T_{sim} \ge \left[\frac{500}{f_o[kHz]} \cdot 10^3\right]ms = 47ms$$

```
* Primer 36
Q1 c b e BCW60A
R1 b a 10k
R2 e 0 500
C1 c e 240n
C2 e 0 24n
Lr c a 10m
Cs b 0 1u
Vcc a 0 5
.lib standard.bjt
.tran 48m
.end
```

147. Za kolo *Colpitts* oscilatora sa slike napisati SPICE netlistu sa komandom za pokretanje *Transient* analize. Analiza treba da obuhvati najmanje 300 perioda signala oscilatora. Naziv modela tranzistora je **BSP89** i definisan je u fajlu **standard.mos**. Elementi kola su: L_r =10mH, C_1 =500nF, C_2 =50nF, C_{S1} =0.1 μ F, C_{S2} =1 μ F, R_{G1} =100k Ω , R_{G2} =70k Ω , R_{D} =650 Ω , R_{S} =500 Ω i V_{DD} =5V.


```
* Primer 37
Lr 1 2 10m
C1 1 0 500n
C2 2 0 50n
Cs1 2 3 0.1u
Cs2 4 0 1u
Rg1 3 5 100k
Rg2 3 0 70k
Rd 1 5 650
Rs 4 0 500
M1 1 3 4 4 BSP89
Vdd 5 0 5
.lib standard.mos
.tran 42m
.end
```

148. Za kolo *Colpitts* oscilatora sa slike napisati SPICE netlistu sa komandom za pokretanje *Transient* analize. Analiza treba da obuhvati 800 perioda signala oscilatora. Naziv modela tranzistora je **BCW60A** i definisan je u fajlu **standard.bjt**. Elementi kola su: $L_C=300$ mH, $L_r=10$ mH, $C_1=40$ nF, $C_2=400$ nF, $C_{S1}=0.1$ µF, $C_{S2}=10$ nF, $C_{B1}=10$ k Ω , $C_{B2}=4.7$ k Ω , $C_{E}=1.5$ k Ω i $C_{CE}=1.5$ k Ω i $C_{CE}=1.$

$$C_r = \frac{1}{\frac{1}{C_1} + \frac{1}{C_2}} = 36.36nF, f_o = \frac{1}{2\pi\sqrt{L_rC_r}} = 8.346kHz, T_{sim} \geq \left[\frac{800}{f_o[kHz]} \cdot 10^3\right]ms = 96ms$$

```
* Primer 38
Lc 1 5 300m
Lr 1 2 10m
C1 1 0 40n
C2 2 0 400n
C31 2 3 0.1u
C52 4 0 10n
Rb1 3 5 10k
Rb2 3 0 4.7k
Re 4 0 1.5k
Q1 1 3 4 BCW60A
Vcc 5 0 5
.lib standard.bjt
.tran 97m
.end
```

149. Za kolo oscilatora sa *Wien* mostom prikazano na slici napisati SPICE netlistu sa komandom za pokretanje *Transient* analize. Analiza treba da obuhvati 150 perioda signala oscilatora. Operacioni pojačavač je opisan kao pod-kolo pod nazivom **OP747** čiji se opis nalazi u fajlu **ADI.lib**. Naziv modela dioda je **1N914** i definisan je u fajlu **standard.dio.** Elementi kola su: $R_1=1k\Omega$, $R_2=2.5k\Omega$, $R_3=R_4=R=10k\Omega$, $C_3=C_4=C=10$ nF i $V_{CC}=V_{EE}=5$ V.


```
* Primer 39
    2 0 1k
      3 2.5k
      4 10k
С3
        10n
C4
        10n
    3 2 1N914
    2 3 1N914
    1 2 5 6 3 OP747
Vcc 5 0 5
.lib ADI.lib
.lib standard.dio
.tran 96m
.end
```

150. Za kolo *Phase-shift* oscilatora prikazano na slici napisati SPICE netlistu sa komandom za pokretanje *Transient* analize. Analiza treba da obuhvati 1000 perioda signala oscilatora. Operacioni pojačavač je opisan kao pod-kolo pod nazivom **OP747** čiji se opis nalazi u fajlu **ADI.lib**. Naziv modela dioda je **1N914** i definisan je u fajlu **standard.dio.** Elementi kola su: R₁=R₂=R₃=R=1kΩ, R₄=40kΩ, C₁=C₂=C₃=C=10nF i V_{CC}=V_{EE}=5V.

$$f_o = \frac{1}{2\pi RC\sqrt{6}} = 6.497kHz, T_{sim} \ge \left[\frac{1000}{f_o[kHz]} \cdot 10^3\right]ms = 154ms$$

```
* Primer 40
R1 1 0 1k
R2 2 0 1k
R3 3 4 1k
R4 4 5 40k
R5 5 6 500
C1 1 5 10n
C2 1 2 10n
C3 2 3 10n
D1 6 0 1N914
D2 0 6 1N914
X1 0 4 7 8 5 OP747
Vcc 7 0 5
Vee 0 8 5
.lib ADI.lib
.lib standard.dio
.tran 155m
.end
```

Vežba 7: Simulacija osnovnih logičkih kola u SPICE-u

- 176. Koliko tranzistora je potrebno za realizaciju invertora u CMOS tehnologiji?
- 177. Koliko tranzistora je potrebno za realizaciju logičke funkcije sa dva ulaza i jednim izlazom u CMOS tehnologiji?

Četiri.

- 178. Koji parametar specijalne funkcije u LTSpice-u određuje nivo logičke nule? **Vlow**.
- 179. Koji parametar specijalne funkcije u LTSpice-u određuje nivo logičke jedinice? **Vhigh**.
- 180. Kojim logičkim kolima se opisuju potpuni i polu-sabirač? **XOR, AND i OR**.
- 181. Napisati SPICE netlistu za kolo statičkog CMOS bafera prikazano na slici. Naziv modela PMOS/NMOS tranzistora je **NM/PM** i definisan je u fajlu **180nm_bulk.txt**. Dimezije NMOS tranzistora su

 W_n =320nm i L_n =180nm. Dimezije PMOS tranzistora su W_p =620nm i L_p =180nm. Model enkapsulirati u pod-kolo pod nazivom **BUF1x1**. Usvojiti sledeći redosled navođenja portova: a, dd, ss i y. Pod-kolo instancirati i pobuditi naponskim generatorom koji ima sledeće parametre:

Va = {Vinit=0, Von=1.8, Tdelay=0.5u, Trise=1n, Tfall=1n, Ton=0.498n, Tperiod=1u}

Instacirano pod-kolo analizirati u vremenskom domenu. *Transient* analiza treba da obuhvati jednu periodu pobudnog signala. Nivoi logičke nule i jedinice su V_{SS} =0V i V_{DD} =1.8V, respektivno. Kolo opteretiti kapacitivnim opterećenjem od C_L =1pF.


```
* Primer 46
.subckt BUF1x1 a dd ss y
Mn1 g a ss ss NM L=180n W=320n
Mn2 y g ss ss NM L=180n W=640n
Mp1 g a dd dd PM L=180n W=640n
Mp2 y g dd dd PM L=180n W=640n
.ends
Vdd dd 0 1.8
Vss ss 0 0
Va a 0 pulse(0 1.8 0.5u ln ln 0.498u lu)
X1 a dd ss y BUF1x1
CL y 0 lp
.lib 180nm_bulk.txt
.tran lu
.end
```

182. Napisati SPICE netlistu za kolo statičkog CMOS NOR gejta prikazano na slici. Naziv modela PMOS/NMOS tranzistora je **NM/PM** i definisan je u fajlu **180nm_bulk.txt**. Dimenzije svih NMOS tranzistora su W_n=320nm i L_n=180nm. Dimezije PMOS tranzistora su W_p=1.28um i L_p=180nm. Model enkapsulirati u pod-kolo pod nazivom **NOR2x1**. Usvojiti sledeći redosled navođenja portova: A, DD, SS i Y. Pod-kolo instancirati i pobuditi naponskim generatorima koji imaju sledeće parametre:

Va = {Vinit=0, Von=1.8, Tdelay=0.5u, Trise=1n, Tfall=1n, Ton=0.498n, Tperiod=1u}

Vb = {Vinit=0, Von=1.8, Tdelay=1u, Trise=1n, Tfall=1n, Ton=1.998u, Tperiod=2u}

Instacirano pod-kolo analizirati u vremenskom domenu. *Transient* analiza treba da obuhvati jednu periodu pobudnog signala koji se sporije menja. Nivoi logičke nule i jedinice su V_{SS} =0V i V_{DD} =1.8V, respektivno. Kolo opteretiti kapacitivnim opterećenjem od C_L =1pF.


```
* Primer 47
.subckt NOR2x1 a b dd ss y
Mn1 y a ss ss NM L=180n W=320n
Mn2 y b ss ss NM L=180n W=320n
Mp1 d a dd dd PM L=180n W=1.28u
Mp2 y b d dd PM L=180n W=1.28u
.ends
Vdd dd 0 1.8
Vss ss 0 0
Va a 0 pulse(0 1.8 0.5u 1n 1n 0.498u 1u)
X1 a b dd ss y NOR2x1
CL y 0 1p
.lib 180nm bulk.txt
.tran 2u
.end
```

183. Napisati SPICE netlistu za kolo multipleksera 2 u 1 prikazano na slici. Za opis gejtova koristiti specijalne funkcije u LTspice-u. Model enkapsulirati u pod-kolo pod nazivom **MUX2x1**. Usvojiti sledeći redosled navođenja portova: A, B, SEL i Y. Pod-kolo instancirati i pobuditi naponskim generatorima koji imaju sledeće parametre:

```
Vsel = \{Vinit=0, Von=1.8, Tdelay=0.5u, Trise=1n, Tfall=1n, Ton=0.498n, Tperiod=1u\} \\ Va = \{1.8VDC\}, Vb=\{0VDC\} \\
```

Instacirano pod-kolo analizirati u vremenskom domenu. *Transient* analiza treba da obuhvati dve periode selektorskog signala, SEL. Nivoi logičke nule i jedinice su V_{SS} =0V i V_{DD} =1.8V, respektivno. Kolo opteretiti kapacitivnim opterećenjem od C_L =1pF.


```
* Primer 48
.subckt MUX2x1 a b sel y
A1 sel 0 0 0 0 1 0 0 BUF Vhigh=1.8
A2 a sel 0 0 0 0 2 0 AND Vhigh=1.8
     b
           0 0 0 0 3 0 AND Vhigh=1.8
A3 1
A4 2
           0 0 0 0 y 0 OR Vhigh=1.8
      3
.ends
        0 1.8
Va
   a
Vb b
        0 0
Vsel sel 0 pulse(0 1.8 0.5u 1n 1n 0.498u 1u)
        b sel y MUX2x1
Xmux a
.tran 2u
.end
```

184. Napisati SPICE netlistu za kolo potpunog sabirača prikazano na slici. Za opis gejtova koristiti specijalne funkcije u LTspice-u. Model enkapsulirati u pod-kolo pod nazivom **FA**. Usvojiti sledeći

redosled navođenja portova: A, B, Ci, Co i S. Pod-kolo instancirati i pobuditi naponskim generatorima koji imaju sledeće parametre:

Vci = {Vinit=0, Von=1.8, Tdelay=0.5u, Trise=1n, Tfall=1n, Ton=0.498n, Tperiod=1u}

Vb = {Vinit=0, Von=1.8, Tdelay=1u, Trise=1n, Tfall=1n, Ton=0.998n, Tperiod=2u}

Va = {Vinit=0, Von=1.8, Tdelay=2u, Trise=1n, Tfall=1n, Ton=1.998n, Tperiod=4u}

Instacirano pod-kolo analizirati u vremenskom domenu. *Transient* analiza treba da obuhvati dve periode selektorskog signala. Nivoi logičke nule i jedinice su V_{SS} =0V i V_{DD} =1.8V, respektivno. Izlaze kolo opteretiti kapacitivnim opterećenjem od C_L =1pF.


```
* Primer 49
.subckt FA a b ci co s
Al a b 0 0 0 0 1 0 XOR Vhigh=1.8
A2 1 ci 0 0 0 0 s 0 XOR Vhigh=1.8
A3 ci 1 0 0 0 0 2 0 AND Vhigh=1.8
A4 a b 0 0 0 0 3 0 AND Vhigh=1.8
A5 2 3 0 0 0 0 co 0 OR Vhigh=1.8
.ends
Vci ci 0 pulse(0 1.8 0.5u 1n 1n 0.498u 1u)
Vb b 0 pulse(0 1.8 1u 1n 1n 0.998u 2u)
Va a 0 pulse(0 1.8 2u 1n 1n 1.998u 4u)
Xfa a b ci co s FA
CL1 co 0 1p
CL2 s 0 1p
.tran 4u
.end
```

185. Napisati SPICE netlistu za kolo trobitnog sabirača prikazano na slici. Model enkapsulirati u pod-kolo pod nazivom **ADD3b**. Usvojiti sledeći redosled navođenja portova: A2, A1, A0, B2, B1, B0, S2, S1, S0, Co. Opis pod-kola **FA** i **HA** se nalazi u fajlu **logic.ckt**. Redosled portova pod-kola FA je A, B, Ci, Co i S. Redosled portova pod-kola HA je A, B, Co i S. Pod-kolo CNT3b instancirati i pobuditi naponskim generatorima koji imaju sledeće parametre:

Vb2 = {0VDC}, Vb1={1.8VDC}, Vb0={1.8VDC}

Va2 = {0VDC}, Va1={1.8VDC}, Va0={0VDC}

Zadati *Operating Point* analizu. Nivoi logičke nule i jedinice su V_{SS} =0V i V_{DD} =1.8V, respektivno. Izlaze kolo opteretiti kapacitivnim opterećenjem od C_L =1pF.


```
* Primer 50
.subckt ADD3b a2 a1 a0 b2 b1 b0 s2 s1 s0 co
Xha0 a0 b0 1 s0 HA
Xfal al bl 1 2 sl FA
Xfa2 a2 b2 2 co s2 FA
.ends
Vb2 b2 0 0
Vb1 b1 0 1.8
Vb0 b0 0 1.8
Va2 a2 0 0
Val al 0 1.8
Va0 a0 0 0
Xadd a2 a1 a0 b2 b1 b0 s2 s1 s0 co ADD3b
Cs2 s2 0 1p
Cs1 s1 0 1p
Cs0 s0 0 1p
Cco co 0 1p
.lib logic.ckt
.op
.end
```

Dodatak

Sintaksa osnovnih SPICE komandi

Opis	SPICE sintaksa ¹
Operating Point analiza	.op
Direct Current (DC) analiza	.dc <srcnam1> <start> <stop> <incr> [+ <srcnam2> list <val1> [<val2>]]</val2></val1></srcnam2></incr></stop></start></srcnam1>
Alternate Current (AC) analiza	<pre>.ac <oct, dec,="" lin=""> <nsteps> <startfreq> <endfreq> .ac list <firstfreq> [<nextfreq> [<nextfreq>]]</nextfreq></nextfreq></firstfreq></endfreq></startfreq></nsteps></oct,></pre>
Transfer Function (TF) analiza	<pre>.tf V(<node>[, <ref>]) <source/> .tf I(<voltage source="">) <source/></voltage></ref></node></pre>
Noise analiza	<pre>.noise V(<outnode>[,<refnode>]) <srcnam> + <oct, dec,="" lin=""> <nsteps> <startfreq> <endfreq> .noise V(<out>[,<ref>]) <src> list <firstfreq> [<nextfreq> [<nextfreq>]]</nextfreq></nextfreq></firstfreq></src></ref></out></endfreq></startfreq></nsteps></oct,></srcnam></refnode></outnode></pre>
Traisient analiza	<pre>.tran <tstep> <tstop> [Tstart [dTmax]] [modifiers] .tran <tstop> [modifiers]</tstop></tstop></tstep></pre>
Uključivanje modela/pod-kola iz eksternog fajla	.lib <filename> .inc <filename></filename></filename>
Modelska kartica	<pre>.model <modelname> D NMOS PMOS NPN PNP JFN JFP + [(<pre>prameters>)]</pre></modelname></pre>
Opis pod-kola	<pre>.subckt <subcktname> <pin1> [<pin2>] <subcktdescription> .ends</subcktdescription></pin2></pin1></subcktname></pre>
Instaciranje primitiva/pod- kola	<pre>Rnnn Lnnn Cnnn Dnnn Mnnn Qnnn Jnnn Vnnn Innn Xnnn + <pin list=""> + <modelname> <subcktname> [<properties>]</properties></subcktname></modelname></pin></pre>
Instaciranje specijalnih funkcija (logička kola) ²	Annn <in1> <in2> <in3> <in4> <in5> + <notout> <out> <ref> + INV BUF AND OR XOR [extra parameters]</ref></out></notout></in5></in4></in3></in2></in1>
Generator kontrolisan naponom (između čvorova ctrl+ i ctrl-).	<pre>E G <out+> <out-> <ctrl+> <ctrl-> + <gain transconductance></gain transconductance></ctrl-></ctrl+></out-></out+></pre>
Genereator kontrolisan strujom (kroz generator Vnnn)	F H <out+> <out-> Vnnn <gain transresistance></gain transresistance></out-></out+>

Spregnuti kalemovi ³	Knnn L1 L2 [L3] <kcoeff></kcoeff>
Sinusni generator	sine(Voffset Vamp Freq Tdeay Damping Phase Ncycles)
Pulsni generator	pulse(Vinit Von Tdelay Trise Tfall Ton Tperiod Ncycles)
Pice Wise Linear generator	pwl(t1 v1 t2 v2 t3 v3)
Redosled navođenja pinova tranzistora i pod-kola operacionog pojačavača.	BJT: <collector> <base/> <emitter> [<substrate>] MOS: <drain> <gate> <source/> <bulk> JFET: <drain> <gate> <source/> OPAMP: <in+> <in-> <supply+> <supply-> <out> <subcktname></subcktname></out></supply-></supply+></in-></in+></gate></drain></bulk></gate></drain></substrate></emitter></collector>

¹ [] – Opcioni argumenti, <> – Opis vrednosti/argumenta, | – Logičko "ili", n – Dezignator (indeks).

Frekvencija oscilovanja *Colpitts* LC oscilatora:

$$f_o = \frac{1}{2\pi\sqrt{L_rC_r}}, C_r = \frac{1}{\frac{1}{C_1} + \frac{1}{C_2}}$$

Frekvencija oscilovanja Wien RC oscilatora:

$$f_o = \frac{1}{2\pi RC}$$

Frekvencija oscilovanja *phse shift* RC oscilatora:

$$f_o = \frac{1}{2\pi RC\sqrt{6}}$$

² Model: INV, BUF, AND, OR, XOR, SCHMITT, SCHMTBUF, SCHMTINV, DFLOP, VARISTOR, MODULATE Napomena: Pinove koji se ne koriste povezati na masu.

³ Kcoeff – Koeficijent sprege (međuinduktivnosti).