Section 7 – Spacecraft Attitude Control Subsystem overview

Objectives

 Provide an overview of the most important methodologies for spacecraft attitude control

Topics

- Introduction to ACS: tasks and functional diagram
- ACS preliminary design procedure and requirements
- Attitude control types and working principles:
 - Magnetic field passive
 - Gravity Gradient
 - Gyroscopic tenacity, momentum bias passive/active
 - Zero momentum

Introduction to ACS

- ACS tasks (objectives)
- Ensure the correct
 pointing of all
 spacecraft subsystems
 and payloads
- Reject disturbances
 which may affect the
 pointing accuracy and
 stability

Preliminary design procedure – 1/2

Preliminary design procedure – 2/2

- Control modes: mission phases during which attitude control is requested. Analysis of control modes provides (different) requirements for each mode (e.g. stabilization during major orbital maneuvers, acquisition, on-station, slew, etc.)
- Requirements arise from both payload and bus needs
- Requirements include pointing range, accuracy, stability, knowledge;
 control authority, robustness, etc.
- Control types: specific control configurations employing different working principles (e.g. passive vs. active 3 axis vs. spin)
- Attitude disturbances: can come from the environment (external, e.g. gravity gradient, interaction with magnetic field, solar radiation pressure, aerodynamic) or from the vehicle (internal)

Control types (building blocks) – 1/5

Control types (building blocks) -2/5

- Passive techniques are simpler but provide lower **accuracy** ($\pm 0.1 \pm 5^{\circ}$) and **authority** ($< 10^{-5}$ Nm) than active ones ($< \pm 0.05^{\circ}$; < 5 Nm)
- Magnetic Field passive: residual spacecraft magnetic dipole aligns along the local magnetic field vector. Accuracy ~±5°, authority < 10⁻⁵ Nm and quickly decreases with altitude. The magnetic field does not provide a fixed reference for Earth-pointing and inertially-pointing spacecraft

Gravity gradient: body axis with minimum moment of inertia aligns along the local vertical.
 Accuracy ~±5°, authority < 10⁻⁵ Nm and quickly decreases with altitude. Stability requires implementation of specific body geometry

Control types (building blocks) – 3/5

- Gyroscopic tenacity
- Any rigid body provided by angular momentum H has an inherent resistance to external disturbance torque perpendicular to the direction of H. Such tenacity is proportional to the magnitude of H

- Gyroscopic tenacity is employed as a two-axis control principle (no control
 is possible about H), and may be implemented in two different ways:
- Making the whole satellite spin about a symmetry axis (spin-stabilized spacecraft)
- Using an active flywheel inside a 3-axis stabilized spacecraft

Control types (building blocks) – 4/5

- Momentum bias passive:
 gyroscopic tenacity provides an
 inertially-fixed spacecraft axis.
 Accuracy <±1°, authority < 10⁻³ Nm.
 Stability requires implementation
 of specific body geometry
- Momentum bias active: gyroscopic tenacity given by a momentum wheel mounted on a 3-axis stabilized platform. Accuracy <±0.1°, authority < 10⁻³ Nm. Stability requires control of nutation modes

Control types (building blocks) – 5/5

- **Zero momentum**: spacecraft momentum is kept null thanks to actuators reacting to external/internal disturbances. Main choices:
- Full 3-axis control using Reaction Wheels.
 Accuracy < ±0.05°, authority
 < 1 Nm. External actuators (e.g. active magnetic torquers) requested for momentum dumping
- 2 axis active magnetic control. Accuracy
 \$\delta \text{t0.1}^\circ\$, authority < 0.1 Nm. Control
 impossible along local magnetic field vector
- Full 3-axis control using thrusters. Accuracy <±0.05°, authority < 10 Nm. It is requested to carry propellant on-board

(a) One wheel system

(b) Two wheels system

(c) Three wheels system

(d) Four wheels system

Preliminary disturbances estimation

Distur- bance	Туре	Influenced Primarily by	Formula
Gravity- gradient	Constant torque for Earth- oriented vehicle, cyclic for inertially oriented vehicle	Spacecraft inertias Orbit altitude	$T_g = \frac{3\mu}{2R^3} \left I_z - I_y \right \sin(2\theta)$ where T_g is the max gravity torque; μ is the Earth's gravity constant (3.986 × 10 ¹⁴ m³/s²); R is orbit radius (m), θ is the maximum deviation of the Z-axis from local vertical in radians, and I_z and I_y are moments of inertia about z and y (or x , if smaller) axes in kg·m².
Solar Radiation	diation Earth-oriented vehicle, constant for solar-oriented vehicle or platform geome geome geome	Spacecraft geometry Spacecraft surface reflectivity Spacecraft geometry and cg location	Solar radiation pressure, T_{sp} , is highly dependent on the type of surface being illuminated. A surface is either transparent, absorbent, or a reflector, but most surfaces are a combination of the three. Reflectors are classed as diffuse or specular. In general, solar arrays are absorbers and the spacecraft body is a reflector. The worst case solar radiation torque is $T_{sp} = F(c_{ps} - cg)$ where $F = \frac{F_s}{c} A_s (1+q) \cos i$ and F_s is the solar constant, 1,367 W/m², c is the speed of light, 3×10^8 m/s, A_s is the surface
			the speed of light, 3×10^8 m/s, A_s is the surface area, c_{ps} is the location of the center of solar pressure, cg is the center of gravity, q is the reflectance factor (ranging from 0 to 1, we use 0.6), and i is the angle of incidence of the Sun.

Distur- bance	Туре	Influenced Primarily by	Formula
Magne- tic Field	Cyclic	Orbit altitude Residual spacecraft magnetic dipole Orbit inclination	where T_m is the magnetic torque on the spacecraft; D is the residual dipole of the vehicle in amp-turn·m² (A·m²), and B is the Earth's magnetic field in tesla. B can be approximated as $2M/R^3$ for a polar orbit to half that at the equator. M is the magnetic moment of the Earth, 7.96×10^{15} tesla·m³, and R is the radius from dipole (Earth) center to spacecraft in m .
Aerody- namic	Constant for Earth-oriented vehicles, variable for inertially oriented vehicle	Orbit altitude Spacecraft geometry and cg location	Atmospheric density for low orbits varies significantly with solar activity. $T_a = F\left(c_{pa} - cg\right) = FL$ where $F = 0.5 \ [\rho \ C_d \ AV^2]$; F being the force; C_d the drag coefficient (usually between 2 and 2.5); ρ the atmospheric density; A , the surface area; V , the spacecraft velocity; c_{pa} the center of aerodynamic pressure; and cg the center of gravity.