Álgebra lineal II, Grado en Matemáticas

Septiembre 2017

No se permite el uso de material impreso (libros, apuntes) ni ningún tipo de calculadora. Todas las soluciones tendrán que darse suficientemente razonadas.

Defina los siguientes conceptos: (2 puntos)

Importante: utilice una única cara para las cuatro definiciones. Si utiliza más espacio no se tendrá en cuenta.

- (a) Matriz de Jordan.
- (b) Forma bilineal
- (c) Coeficientes de Fourier.
- (d) Multiplicidad algebraica y geométrica de un autovalor.

Ejercicio 1: (2 puntos)

Sean $\mathfrak{M}_2(\mathbb{R})$ el espacio vectorial de las matrices reales de orden 2, $A = \begin{pmatrix} a & c \\ c & b \end{pmatrix} \in \mathfrak{M}_2(\mathbb{R})$ y $f: \mathfrak{M}_2(\mathbb{R}) \times \mathfrak{M}_2(\mathbb{R}) \to \mathbb{R}$ la aplicación dada por $f(X,Y) = \operatorname{tr}(XAY^t)$. Demuestre que f es bilineal y simétrica.

Ejercicio 2: (3 puntos)

- (a) Determine la forma canónica de Jordan, J, de un endomorfismo f de \mathbb{K}^5 que respecto de una base $\mathcal{B} = \{v_1, v_2, v_3, v_4, v_5\}$ cumple las siguientes condiciones:
 - $(1) \ f(v_1) = -v_1,$
 - (2) $f(v_5) = -v_1$,
 - (3) $f(v_2-v_3)=v_3-v_2$,
 - (4) $\operatorname{Ker}(f 2\operatorname{Id}) \neq \operatorname{Ker}(f 2\operatorname{Id})^2 \equiv \{x_1 + x_2 x_3 = 0, x_1 + x_4 = 0, x_5 = 0\}.$

Obtenga una base de Jordan \mathcal{B}' tal que $\mathfrak{M}_{\mathcal{B}'}(f) = J$.

(b) Obtenga dos planos invariantes por f: uno que contenga sólo dos rectas invariantes y otro que contenga infinitas rectas invariantes.

Ejercicio 3: (3 puntos)

Encuentre la matriz en la base canónica de la simetría ortogonal de \mathbb{R}^3 de base un plano que transforma el vector (1,2,0) en el vector (-1,-2,0).