Project2 Report - Randomized Optimization

Kyle Grace kgrace6@gatech.edu

Abstract—
1 OVERVIEW
2 PROBLEMS
2.1 Performance
2.2 Summary
2.3 Problem 1
2.3.1 Theory and Prediction
2.3.2 Results
2.4 Problem 2
2.4.1 Theory and Prediction
2.4.2 Results
2.5 Problem 3
2.5.1 Theory and Prediction
2.5.2 Results
3 RANDOMIZED OPTIMIZATION IN NEURAL NETWORKS
3.1 Summary
3.2 Randomized Hill Climbing
3.2.1 Theory and Prediction
3.2.2 Results
3.3 Simulated Annealing
3.3.1 Theory and Prediction
3.3.2 Results
3.4 Genetic Algorithm
3.4.1 Theory and Prediction
3.4.2 Results

4 CONCLUSION

5 REFERENCES

REFERENCES

- [1] Hayes, G (2019). mlrose: Machine Learning, Randomized Optimization and SEarch package for Python. https://github.com/gkhayes/mlrose. Accessed: day month year.
- [2] Mitchell, Tom M. (2013). Machine Learning. McGraw-Hill.