

Departamento de Ciência da Computação - DCC

Prof. Ricardo Martins

Site: https://ricardofm.com

Email: ricardo.martins@udesc.br

Ramal: 348<u>1-7823</u>

Sala: Bloco F – 2° piso (sala 8)

LINGUAGENS FORMAIS E AUTÔMATOS

LFA0001:

Ciência da Computação 4ª fase

Aula: 05 Versão: 222

AUTÔMATO FINITO COM MOVIMENTOS VAZIO

Movimento Vazio

- generalização do não-determinismo
- importante no estudo
 - * da computação
 - * das linguagens (sintaxe e semântica)
- nem sempre aumenta o poder computacional
 - * de uma classe de autômatos
- em particular...
 - * qq AFN com movimentos vazio
 - * pode ser simulado por um AFN

AUTÔMATO FINITO COM MOVIMENTOS VAZIO

Movimento Vazio

- relativamente aos AF, facilita
 - * construções
 - * demonstrações

♦ Ideia básica

- função programa pode incluir:
 - * transições sem leitura de símbolo da fita
- em semântica formal
 - * transições encapsuladas

LINGUAGENS REGULARES

- ♦ AF com Movimentos Vazio
 - AFNE ou simplesmente AFE
 - $M = (\sum, Q, \delta, q0, F)$
 - \sum , Q, F, q₀ como em um AFN
 - * \sum alfabeto de símbolos de entrada
 - * Q conjunto finito de estados
 - * q_0 estado inicial do autômato $tq q_0 \in Q$
 - * F conjunto de estados finais tq $F \subseteq Q$
 - δ função programa ou função de transição
 - função parcial

FUNÇÃO PROGRAMA

- Processamento (semântica)
 - análogo ao de um AFN
 - processamento de uma transição vazia
 - * também é não-determinista
 - * assume simultaneamente os estados origem e destino
 - * origem de uma transição vazia sempre é um caminho alternativo

PROCESSAMENTO (FORMAL)

função programa estendida

- conjunto de estados
- palavra
- baseado na noção de fecho vazio

Fecho Vazio

- de um estado (ou conjunto de estados)
- resulta em um conjunto de estados
- atingíveis exclusivamente por zero ou mais movimentos vazios

DEFINIÇÃO. FECHO VAZIO

- ♦ FECHO-ε ou Fε
- $seja M = (\sum, Q, \delta, q0, F) um \mathbf{AF} \varepsilon$
- FE: Q \rightarrow 2^Q é indutivamente definida
- $\delta(q, \varepsilon) n\tilde{a}o$ é definido
 - $F\epsilon(q) = \{q\}$
- $\delta(q, \epsilon)$ é definido

$$F_{\varepsilon}(q) = \{q\} \cup \delta(q, \varepsilon) \cup_{p \in \delta(q, \varepsilon)} F_{\varepsilon}(p)$$

DEFINIÇÃO. FECHO VAZIO ESTENDIDA

- **♦ Para conjunto de estados**
 - para conjunto de estados
 - $\underline{F_{\varepsilon}}$: $2^{Q} \rightarrow 2^{Q}$ tq • $\underline{F_{\varepsilon}}(P) = \bigcup_{q \in P} F_{\varepsilon}(q)$

FUNÇÃO PROGRAMA ESTENDIDA

- Seja M = $(\Sigma, Q, \delta, q_0, F)$ um AF ϵ
- $\delta: 2^{\mathbb{Q}} \times \Sigma^* \to 2^{\mathbb{Q}}$, é indutivamente definida
 - * $\delta(P, \varepsilon) = F\varepsilon(P)$
 - * $\delta(P, wa) = F\epsilon(R)$
 - * $R = \{r \mid r \in \delta(s, a) \in s \in \delta(P, w)\}$

LINGUAGEM ACEITA / REJEITADA

- análogo ao AFN
- ♦ W ∈ ACEITA(M)
 - * pelo menos um caminho alternativo aceita W
 - $w \in REJEITA(M)$
 - * todas as alternativas rejeitam W

EXEMPLO

L₇ = { w | qualquer símbolo a <u>antecede</u> qualquer símbolo b}

EXEMPLO

Exemplo: L8 = $\{w \mid w \text{ possui como } \underline{\text{sufixo}} \text{ a ou bb ou ccc}\}$

$$M = (\{a, b, c\}, \{q_0, q_1, q_2, q_3, q_4, q_5, q_6, q_f\}, \delta_8, q_0, \{q_f\})$$

$$F\varepsilon(\{q_0\}) = \{q_0, q_1, q_2, q_4\}$$

```
\begin{split} & \underline{\delta}(\{q_0\},\,abb) = F\epsilon(\{r \,|\, r \in \ \delta(s,\,b)\,e\,s \in \ \underline{\delta}(\{q_0\},\,ab)\}) \\ & \underline{\delta}(\{q_0\},\,ab) = F\epsilon(\{r \,|\, r \in \ \delta(s,\,b)\,e\,s \in \ \underline{\delta}(\{q_0\},\,a)\}) \\ & \underline{\delta}(\{q_0\},\,a) = F\epsilon(\{r \,|\, r \in \ \delta(s,\,a)\,e\,s \in \ \underline{\delta}(\{q_0\},\,\epsilon)\}) \\ & * \ \underline{\delta}(\{q_0\},\,\epsilon) = F\epsilon(\{q_0\}) = \{q_0\,,\,q_1\,,\,q_2\,,\,q_4\} \\ & * \ \underline{\delta}(\{q_0\},\,ab) = \{q_0\,,\,q_1\,,\,q_2\,,\,q_4\,,\,q_f\} \\ & * \ \underline{\delta}(\{q_0\},\,abb) = \{q_0\,,\,q_1\,,\,q_2\,,\,q_4\,,\,q_f\} \\ & * \ \underline{\delta}(\{q_0\},\,abb) = \{q_0\,,\,q_1\,,\,q_2\,,\,q_4\,,\,q_f\} \end{split}
```

NÃO-DETERMINISMO × MOVIMENTOS VAZIOS

- movimentos vazio
 - aparentemente, um significativo acréscimo
 - ao poder computacional de um AFN
- na realidade
 - não aumenta o poder computacional
- para cada AFε
 - é possível construir um AFN equivalente
 - (que realiza o mesmo processamento)
 - * o contrário também é verdadeiro

EQUIVALÊNCIA

♦ Teorema: A classe dos AFε é equivalente à classe dos AFN

- uma linguagem é regular sse é aceita por um AFε
- a capacidade de reconhecimento dos AFε é a mesma dos AFD e dos AFN

♦ Prova

- · mostrar que
 - * a partir de um AFε qq
 - * é possível construir um AFN
 - * que realiza o mesmo processamento

EQUIVALÊNCIA

- AFε →AFN
 - * cada transição (não-vazia)
 - estendida com todos os estados possíveis de serem atingidos por transições vazias
- AFN →AFε
 - * decorre trivialmente das definições (por que?)

EQUIVALÊNCIA

♦ Prova

- seja M = $(\sum, Q, \delta, q_0, F)$ um AF ε qualquer
- seja M' = (Σ, Q, δ', q₀, F') um AFN
- δ'
 - * $\delta': \mathbb{Q} \times \Sigma \to 2^{\mathbb{Q}}$
 - * $\delta'(q, a) = \underline{\delta}(\{q\}, a)$
- F'
 - * conjunto de todos q ∈ Q tq
 - * algum elemento do Fε(q) pertence a F
- ¿ AFN simula ο AFε?
 - indução no tamanho da palavra

EQUIVALÊNCIA - EXEMPLO

• $M_9 = (\{a, b\}, \{q_0, q_1, q_2\}, \delta_9, q_0, \{q_2\})$

89	а	b	ε
q0	{q0}	-	{q1}
q1	-	(q1)	{q2}
92	(q ₂)	-	-

- $M_9' = (\{a, b\}, \{q_0, q_1, q_2\}, \delta_9', q_0, F')$
- $F' = \{q_0, q_1, q_2\}$, pois
 - * $F_{\epsilon}(q_0) = \{q_0, q_1, q_2\}$
 - * $F_{\epsilon}(q_1) = \{q_1, q_2\}$
 - * $F_{\varepsilon}(q_2) = \{q_2\}$

EQUIVALÊNCIA - EXEMPLO

```
• \delta_9'(q_0, a) = \delta_9(\{q_0\}, a) =
F\varepsilon(\{r \mid r \in \delta(s, a) \in s \in \delta(\{q_0\}, \varepsilon)\}) = \{q_0, q_1, q_2\}
• \delta_9'(q_0, b) = \underline{\delta}_9(\{q_0\}, b) =
F_{\varepsilon}(\{r \mid r \in \delta(s, b) \in s \in \underline{\delta}(\{q_0\}, \varepsilon)\}) = \{q_1, q_2\}
• \delta_9'(q_1, a) = \delta_9(\{q_1\}, a) =
F_{\varepsilon}(\{r \mid r \in \delta(s, a) \in s \in \delta(\{q_1\}, \varepsilon)\}) = \{q_2\}
• \delta_9'(q_1, b) = \underline{\delta}_9(\{q_1\}, b) =
F\varepsilon(\{r \mid r \in \delta(s, b) \in s \in \delta(\{q_1\}, \varepsilon)\}) = \{q_1, q_2\}
• \delta_9'(q_2, a) = \delta_9(\{q_2\}, a) =
F_{\varepsilon}(\{r \mid r \in \delta(s, a) \in s \in \delta(\{q_2\}, \varepsilon)\}) = \{q_2\}
• \delta_9'(q_2, b) = \underline{\delta}_9(\{q_2\}, b) =
    F_{\varepsilon}(\{r \mid r \in \delta(s, b) \in s \in \underline{\delta}(\{q_2\}, \varepsilon)\}) é indefinida
```

EQUIVALÊNCIA - EXEMPLO

