XXI Familles de vecteurs et espaces vectoriels de dimension finie

26 août 2025

Table des matières

1	Fan	nilles de vecteurs.	1
	1.1	Familles génératrices	1
	1.2	Familles libres et liées	2
	1.3	Bases	6
	1.4	Bases canoniques	7
2	Notion de dimension.		
	2.1	Définition	7
	2.2	Théorème fondamental	8
	2.3	Existence de bases	9
	2.4	Existence de la dimension	11
	2.5	Exemples avancés	12
3	Sou	s-espaces vectoriels en dimension finie.	12
	3.1	Dimension d'un sous-espace vectoriel	12
	3.2	Existence de supplémentaires	13
	3.3	Dimension d'une somme de sous-espaces vectoriels	14

Dans tout ce chapitre, sauf mention expresse du contraire, E désigne un espace vectoriel sur un corps \mathbb{K} , valant \mathbb{R} ou \mathbb{C} .

1 Familles de vecteurs.

Dans cette partie, sauf mention expresse du contraire, I désigne un ensemble et $(x_i)_{i\in I}$ une famille de vecteurs de E indexée par cet ensemble.

Définition 1.0.1.

Étant donné deux familles de vecteurs $(x_i)_{i\in I}$ et $(y_j)_{j\in J}$, on note $(x_i)_{i\in I}$ \uplus $(y_j)_{j\in J}$ leur concaténation.

Remarque 1.0.2.

Ce n'est pas une notation officielle et nous ne définirons pas formellement cette notion. On pourra aussi utiliser le symbole $\biguplus_{i=1}^n$ pour écrire la concaténation de n familles de vecteurs de E.

Exemple 1.0.3.

$$(x_1, x_2, x_3) \uplus (y_1, y_2) = (x_1, x_2, x_3, y_1, y_2).$$

1.1 Familles génératrices.

Définition 1.1.1.

On dit que la famille $(x_i)_{i \in I}$ est génératrice du \mathbb{K} -espace vectoriel E ou qu'elle engendre le \mathbb{K} -espace vectoriel E si $E = \text{Vect}_{\mathbb{K}}((x_i)_{i \in I})$.

Proposition 1.1.2.

Une famille $(x_i)_{i\in I}$ de vecteurs de E est génératrice de E si et seulement si tout élément de E peut s'écrire comme une combinaison linéaire des vecteurs de cette famille.

Démonstration.

 $\operatorname{Vect}_{\mathbb{K}}\left((x_{i})_{i\in I}\right)\subset E$ puisque tous les éléments de $(x_{i})_{i\in I}$ appartiennent à E. On a donc

$$E = \operatorname{Vect}_{\mathbb{K}} ((x_i)_{i \in I}) \iff E \subset \operatorname{Vect}_{\mathbb{K}} ((x_i)_{i \in I})$$

Qui est exactement ce que dit la proposition.

Exemple 1.1.3. 1. Dans \mathbb{R}^3 , $\begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$, $\begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}$, $\begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$ est génératrice car $\begin{pmatrix} x \\ y \\ z \end{pmatrix} = xe_1 + ye_2 + ze_3$. Se généralise à \mathbb{R}^n avec base canonique.

- 2. Dans \mathbb{C} considéré comme un \mathbb{R} -ev, une famille génératrice est (1,i).
- 3. Dans \mathbb{C} considéré comme un \mathbb{C} -ev, une famille génératrice est (z), pour n'importe quel $z \neq 0$. On peut noter $\mathbb{C} = \operatorname{Vect}_{\mathbb{R}}(1,i) = \operatorname{Vect}_{\mathbb{C}}(z)$.
- 4. Dans le \mathbb{R} -espace vectoriel $\mathbb{R}[X]$, la famille $\left(X^k\right)_{k\in\mathbb{N}}$ est une famille génératrice de $\mathbb{R}[X]$. Dans le \mathbb{C} -espace vectoriel $\mathbb{C}[X]$, la famille $\left(X^k\right)_{k\in\mathbb{N}}$ est une famille génératrice de $\mathbb{C}[X]$. En revanche, dans le \mathbb{R} -espace vectoriel $\mathbb{C}[X]$, la famille $\left(X^k\right)_{k\in\mathbb{N}}$ n'est pas génératrice de $\mathbb{C}[X]$ (car $\mathrm{Vect}_{\mathbb{R}}\left(\left(X^k\right)_{k\in\mathbb{N}}\right) = \mathbb{R}[X] \neq \mathbb{C}[X]$.
- 5. Dans le \mathbb{C} -espace vectoriel $\mathbb{C}(X)$, d'après le cours sur la décomposition en élément simple, on obtient une famille génératrice de $\mathbb{C}(X)$ en regroupant les familles $\left(X^k\right)_{k\in\mathbb{N}}$ et $\left(\frac{1}{(X-\alpha)^k}\right)_{(\alpha,k)\in\mathbb{C}\times\mathbb{N}^*}$.

Exemple 1.1.4.

La famille ((1,0),(0,1)) est génératrice de \mathbb{R}^2 et

$$\mathbb{R}^2 = \text{Vect}((1,0),(0,1))$$
$$= \text{Vect}((2,3),(0,1))$$
$$= \text{Vect}((2,3),(1,2)).$$

La famille ((2,3),(1,2)) est donc une famille génératrice de \mathbb{R}^2 .

C'est l'autre sens qui est le plus souvent utilisé, et qui fait apparaître un pivot de Gauss (encore et toujours):

$$Vect ((3,4), (1,5)) = Vect ((0,-11), (1,5))$$

$$= Vect ((0,1), (1,5))$$

$$= Vect ((0,1), (1,0))$$

$$= \mathbb{R}^{2}$$

La famille ((3,4),(1,5)) est donc une famille génératrice de \mathbb{R}^2 .

Remarque 1.1.5.

On a aussi la notion de famille génératrice d'un sev F de E.

Remarque 1.1.6.

On appelle droite vectorielle tout sev engendré par un seul vecteur non nul, qui est alors vecteur directeur. Correspond bien à ce qui se passe dans \mathbb{R}^2 et \mathbb{R}^3 .

Idem avec plan vectoriel et deux vecteurs non colinéaires.

- **Proposition 1.1.7.** 1. Une famille génératrice à laquelle on ajoute des vecteurs est toujours génératrice.
- 2. On peut retirer tout vecteur qui est combinaison linéaire des autres vecteurs de la famille (c'est une condition suffisante mais elle est en fait aussi nécessaire).

Démonstration. 1. Découle du fait que l'inclusion de deux parties implique l'inclusion des sous-espaces engendrés.

2. Découle du fait que pour toutes parties X et Y de E, $X \subset Y \subset Vect(X)$ implique Vect(X) = Vect(Y). П

Exemple 1.1.8. 1. Dans \mathbb{R}^4 , on considère \mathscr{P} l'ensemble de \mathbb{R}^4 défini par

$$\mathscr{P} : \left\{ \begin{array}{ll} x - y + 2t & = & 0 \\ x + y - z & = & 0 \end{array} \right.$$

où (x, y, z, t) sont les coordonnées dans \mathbb{R}^4 . On trouve

$$\mathscr{P} = \text{Vect}((1, 0, 1, -1/2), (0, 1, 1, 1/2))$$

donc c'est bien un plan.

2. On considère l'ensemble S des suites réelles vérifiant $u_{n+2} + 2u_{n+1}$ $3u_n=0$. S est un sous-espace vectoriel de $\mathbb{R}^{\mathbb{N}}$ (le vérifier). On veut en donner une famille génératrice. On résout comme dans le cours, on trouve deux vecteurs générateurs. Cela fonctionnerait de manière identique pour les solutions d'une équation différentielle.

Théorème 1.1.9.

Soient F et G deux sous-espaces vectoriels de E. Alors toute concaténation d'une famille génératrice de F et d'une famille génératrice de G est une famille génératrice de F + G.

Démonstration.

Soit $(x_i)_{i\in I_1}$ une famille génératrice de F et $(x_i)_{i\in I_2}$ une famille génératrice de G. Notons $(x_i)_{i \in I} = (x_i)_{i \in I_1} \uplus (x_i)_{i \in I_2}$ Toute combinaison linéaire d'éléments de la famille $(x_i)_{i \in I}$ est dans F + G.

Réciproquement, tout élément de F+G s'écrit comme somme d'un élément de F et d'un élément de G. Le premier est une combinaison linéaire d'éléments de la famille $(x_i)_{i\in I_1}$ et le second de la famille $(x_i)_{i\in I_2}$. Donc leur somme est une combinaison linéaire d'éléments de la famille $(x_i)_{i\in I}$

1.2 Familles libres et liées.

Définition 1.2.1.

On dit que la famille $(x_i)_{i\in I}$ est libre si toute combinaison linéaire d'éléments de $(x_i)_{i\in I}$ dont la valeur est 0_E est la combinaison triviale, c'est-àdire n'a que des coefficients nuls. Formellement, la famille est libre si et seulement si, pour toute famille de scalaires $(\lambda_i)_{i\in I}$ à support fini, on a

$$\sum_{i \in I} \lambda_i x_i = 0_E \Rightarrow \forall i \in I \ \lambda_i = 0$$

Dans le cas où I = [1, n], cette condition s'écrit : pour tout n-uplet $(\lambda_1, \ldots, \lambda_n)$ de scalaires, on a

$$\sum_{i=1}^{n} \lambda_i x_i = 0_E \Rightarrow (\lambda_1, \dots, \lambda_n) = (0, \dots, 0)$$

Une famille non libre est dite *liée*.

Remarque 1.2.2. — Une famille est donc liée si et seulement s'il existe une combinaison linéaire de valeur nulle à coefficients non tous nuls.

- Si l'un des x_i est nul, la famille est liée.
- Si la famille comporte deux fois le même vecteur, elle est liée.

Proposition 1.2.3.

La famille $(x_i)_{i \in I}$ est libre si et seulement si tout élément x de E s'écrit d'au plus une façon comme combinaison linéaire d'éléments de $(x_i)_{i \in I}$.

Démonstration.Sens direct Supposons que la famille $(x_i)_{i\in I}$ est libre et montrons que tout élément x de E s'écrit d'au plus une façon comme combinaison linéaire d'éléments de $(x_i)_{i\in I}$.

Soit x un élément de E. Supposons qu'il existe deux familles de scalaires à support fini $(\lambda_i)_{i\in I}$ et $(\mu_i)_{i\in I}$ vérifiant

$$x = \sum_{i \in I} \lambda_i x_i = \sum_{i \in I} \mu_i x_i$$

Alors

$$0_E = x - x = \sum_{i \in I} (\lambda_i - \mu_i) x_i.$$

Or la famille $(x_i)_{i\in I}$ est libre, donc pour tout $i\in I$, on a $\lambda_i - \mu_i = 0$.

Donc tout élément de E s'écrit d'au plus une façon comme combinaison linéaire d'éléments de $(x_i)_{i\in I}$.

Sens indirect Supposons que tout élément de E s'écrit d'au plus une façon comme combinaison linéaire d'éléments de E et montrons que la famille $(x_i)_{i\in I}$ est libre. Soit $(\lambda_i)_{i\in I}$ une famille de scalaires à support fini vérifiant

$$\sum_{i \in I} \lambda_i x_i = 0_E.$$

Alors en posant $\mu_i = 0$ pour tout $i \in I$, on a aussi

$$\sum_{i \in I} \mu_i x_i = 0_E.$$

Ainsi, 0_E s'écrit de deux façons comme combinaison linéaire de la famille $(x_i)_{i\in I}$: les deux familles $(\lambda_i)_{i\in I}$ et $(\mu_i)_{i\in I}$ sont donc la même famille, donc

$$\forall i \in I \quad \lambda_i = 0$$

La famille $(x_i)_{i \in I}$ est donc libre.

Proposition 1.2.4.

La famille $(x_i)_{i\in I}$ est *libre* si et seulement si aucun élément de cette famille ne peut s'exprimer comme combinaison linéaire des autres éléments de la famille.

Démonstration.

On fera ici la démonstration dans le cas où $I=\llbracket 1,n \rrbracket$ qui est le cas qu'on rencontrera le plus fréquemment par la suite. La démonstration n'est pas plus compliquée dans le cas général.

Montrons que la famille considérée est liée, c'est-à-dire qu'il existe une combinaison linéaire non triviale valant 0, si et seulement si au moins un élément de la famille s'écrit comme combinaison linéaire des autres éléments de la famille.

Sens indirect Supposons qu'il existe une combinaison linéaire non triviale de (x_1, \ldots, x_n) valant 0. Notons $\lambda_1, \ldots, \lambda_n$ ses coefficients. L'un d'eux au moins étant non nul, on peut supposer $\lambda_1 \neq 0$, quitte à permuter les vecteurs. Alors a

$$\sum_{k=1}^{n} \lambda_k x_k = 0_E,$$

donc

$$x_1 = \sum_{k=2}^{n} \left(-\frac{\lambda_k}{\lambda_1} \right) x_k.$$

Donc x_1 est combinaison linéaire des autres vecteurs de la famille.

Sens direct Supposons que x_1 s'écrive

$$x_1 = \sum_{k=2}^{n} \lambda_k x_k,$$

où x_2, \ldots, x_n sont d'autres éléments de la famille et $\lambda_1, \ldots, \lambda_k$ sont des scalaires. Alors, en posant $\lambda_1 = -1$,

$$\sum_{k=1}^{n} \lambda_k x_k = 0_E.$$

Cette combinaison linéaire n'est pas triviale puisque λ_1 n'est pas nul, donc la famille est liée.

(le cas général fonctionne de même).

Exemple 1.2.5. 1. Dans \mathbb{R}^2 : une famille de deux vecteurs est liée si et seulement si les deux vecteurs sont colinéaires.

2. Dans \mathbb{R}^3 , une famille de 3 vecteurs est liée si et seulement si les 3 vecteurs sont coplanaires.

Remarque 1.2.6.

Dans \mathbb{R}^n , si on utilise la définition pour chercher si une famille est libre, on est ramené à la résolution d'un système linéaire (une fois de plus).

Exemple 1.2.7.

- Montrer que ((1,0),(-1,2),(2,4)) est liée dans \mathbb{R}^2 .
- Montrer que ((1,0,0),(0,-1,1),(1,0,2)) est libre dans \mathbb{R}^3 .
- $(x \mapsto \sin x, x \mapsto \sin 2x, x \mapsto \sin 3x)$ est libre.

Définition 1.2.8.

Soit x, y deux vecteurs de E. On dit que

- x est colinéaire à y s'il existe $\lambda \in \mathbb{K}$ tel que $x = \lambda y$;
- x et y sont colinéaires si x est colinéaire à y ou si y est colinéaire à x.

Remarque 1.2.9.

Si x et y sont tous les deux non nuls, x est colinéaire à y si et seulement si x et y sont colinéaires.

Proposition 1.2.10.

La famille vide est toujours libre.

Soit x et y deux vecteurs de E.

- 1. (x) est libre si et seulement si $x \neq 0_E$.
- 2. (x, y) est libre si et seulement si x et y ne sont pas colinéaires.

Démonstration.

П

Élémentaire : à vous de le faire.

Cet argument n'est valable que pour deux vecteurs, comme nous l'avons vu plus haut.

П

Définition 1.2.11.

Soit $(x_i)_{i\in I}$ une famille de vecteurs de E. Pour tout $J\subset I$, on dit que $(x_i)_{i\in J}$ est une sous-famille de $(x_i)_{i\in I}$ et que $(x_i)_{i\in I}$ est une sur-famille de $(x_i)_{i\in J}$.

Théorème 1.2.12. 1. Toute sur-famille d'une famille liée est liée.

- 2. Toute sous-famille d'une famille libre est libre.
- 3. Si (x_1, \ldots, x_n) est une famille libre, alors $(x_1, \ldots, x_n, x_{n+1})$ est libre si et seulement si x_{n+1} n'est pas combinaison linéaire des x_1, \ldots, x_n .

Démonstration. 1. Il existe une combinaison linéaire nulle non triviale de la sous-famille. Il suffit de la compléter par des 0 pour en obtenir une pour la sur-famille.

- 2. C'est la contraposée du point précédent.
- 3. Le sens direct est évident. Pour l'autre sens, par contraposée supposons que $(x_1, \ldots, x_n, x_{n+1})$ est liée. Alors il existe une combinaison linéaire nulle non triviale de $x_1, \ldots, x_n, x_{n+1}$. Si le coefficient de x_{n+1} est nul, il s'agit d'une combinaison linéaire des x_1, \ldots, x_n . Sinon, on peut exprimer x_{n+1} comme combinaison linéaire de x_1, \ldots, x_n .

Exemple 1.2.13.

Dans \mathbb{R}^2 , toute famille de trois vecteurs ou plus est liée : si les deux premiers vecteurs sont liés, la famille l'est aussi. Sinon, le troisième vecteur

est combinaison linéaire des deux premiers, car les deux premiers forment une base.

Idem dans \mathbb{R}^3 avec les familles de plus de 4 vecteurs.

Proposition 1.2.14.

Soient F, G deux sev d'un \mathbb{K} -ev E, et \mathscr{F}, \mathscr{G} deux familles libres de F, G respectivement.

Si F + G est directe, alors $\mathscr{F} \uplus \mathscr{G}$ est une famille libre.

Démonstration.

Notons $\mathscr{F} = (f_i)_{i \in I}$ et $\mathscr{G} = (g_j)_{j \in J}$. Soit $(\lambda_i) \in \mathbb{K}^I$, $(\mu_j) \in \mathbb{K}^J$ à support fini telles que

$$\underbrace{\sum_{i \in I} \lambda_i f_i}_{\in F} + \underbrace{\sum_{j \in J} \mu_j g_j}_{\in G} = 0_E.$$

Comme F + G est directe, on a

$$\sum_{i \in I} \lambda_i f_i = \sum_{j \in J} \mu_j g_j = 0_E.$$

Comme \mathscr{F} et \mathscr{G} sont libres, tous les λ_i, μ_j sont nuls. Ainsi, $\mathscr{F} + \mathscr{G}$ est libre.

Enfin, terminons par un résultat bien pratique:

Définition 1.2.15.

Soit $n \in \mathbb{N}^*$ et $E = \mathbb{K}^n$. Soit $p \in [1, n]$ et (v_1, \dots, v_p) une famille de vecteurs de E. Pour tout $i \in [1, p]$, notons $(v_{i,j})_{j \in [1, n]}$ les coordonnées du vecteur v_i . On dit que la famille (v_1, \dots, v_p) est échelonnée si :

- 1. pour tout $i \in [\![1,p]\!]$ il existe $r_i \in [\![1,n]\!]$ tel que $v_{i,r_i} \neq 0$ et pour tout $j \in [\![1,n]\!]$ tel que $j > r_i, \ v_{i,j} = 0$;
- 2. la suite des r_i est strictement croissante.

Exemple 1.2.16.

Dans
$$\mathbb{R}^5$$
, $\begin{pmatrix} \begin{pmatrix} 1\\0\\0\\0\\0 \end{pmatrix}, \begin{pmatrix} 1\\3\\0\\0\\0 \end{pmatrix}, \begin{pmatrix} -1\\2\\0\\-3\\0 \end{pmatrix}, \begin{pmatrix} 0\\0\\1\\2\\-5 \end{pmatrix} \end{pmatrix}$ est une famille échelonnée. La famille $\begin{pmatrix} \begin{pmatrix} 1\\2\\0\\0\\0 \end{pmatrix}, \begin{pmatrix} 1\\3\\0\\0\\0 \end{pmatrix}, \begin{pmatrix} -1\\2\\0\\-3 \end{pmatrix}, \begin{pmatrix} 0\\0\\1\\2 \end{pmatrix}$ n'en est pas une.

Remarque 1.2.17.

Avec les mêmes notations, si $0 \le k < i \le p$, alors $v_{k,r_i} = 0$.

Remarque 1.2.18.

Une famille échelonnée ne peut contenir de vecteur nul.

Proposition 1.2.19.

Toute famille échelonnée est libre.

Démonstration.

Soit $n \in \mathbb{N}^*$ et $E = \mathbb{K}^n$. Soit $p \in [1, n]$ et (v_1, \dots, v_p) une famille échelonnée de vecteurs de E.

Le résultat est assez intuitif et se voit facilement, par exemple en considérant le système

 $\sum_{i=1}^{\cdot} \lambda_i v_i = 0.$ En écrivant le système, on se rend compte qu'en remontant les lignes, les

coefficients λ_i s'annulent les uns après les autres (le faire sur un exemple).

Donnons tout de même une démonstration propre, par récurrence sur le nombre de vecteurs. Pour tout $p \in [\![1,n]\!]$, posons (H_p) : toute famille échelonnée de E ayant p vecteurs non nuls est libre.

Un vecteur non nul formant à lui seul une famille libre, (H_1) est immédiate.

Soit $p \in [1, n-1]$ tel que (H_p) soit vraie. Soit (v_1, \dots, v_{p+1}) une famille échelonnée à vecteurs non nuls. Définissons les r_i comme dans la définition 1.2.15. Soit

 $\lambda_1, \dots, \lambda_{p+1}$ des scalaires tels que $\sum_{i=1}^{p+1} \lambda_i v_i = 0$. La r_{p+1} -ème ligne de ce système s'écrit

 $\lambda_{p+1}v_{p+1,r_{p+1}}=0$, puisque pour tout $i\leqslant p,\,v_{i,r_{p+1}}=0$, par définition d'une famille

échelonnée. Mais comme $v_{p+1,r_{p+1}} \neq 0$, alors $\lambda_{p+1} = 0$. Il reste alors $\sum_{i=1}^{p} \lambda_i v_i = 0$.

Mais (v_1, \dots, v_p) est échelonnée, donc par hypothèse de récurrence elle est libre, ce qui implique que tous les λ_i sont nuls, d'où (H_{p+1}) .

Remarque 1.2.20.

Par abus, les familles de vecteurs présentant des blocs de zéros dans d'autres « coins » que le « coin inférieur gauche » peuvent aussi être dites échelonnées. En tout cas, avec la même démonstration, elles sont également libres. Par exemple les familles $\begin{pmatrix} 1 \\ 1 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ 1 \end{pmatrix}$ et $\begin{pmatrix} 1 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ 0 \end{pmatrix}$ sont libres.

Proposition 1.2.21.

Une famille de polynômes non nuls de degrés distincts deux à deux est libre.

Démonstration.

Par des considérations de degré.

1.3 Bases.

Définition 1.3.1.

Une famille $((x_i)_{i\in I})$ est une base de E si elle est libre et génératrice.

Exemple 1.3.2.

Les bases canoniques des \mathbb{R}^n .

Remarque 1.3.3.

On a aussi la notion de base d'un sev de E.

Remarque 1.3.4.

Comme pour les familles libres et génératrices, on peut permuter l'ordre des vecteurs d'une base, et on a toujours une base (mais ce n'est pas la même).

Proposition 1.3.5.

Soit $\mathscr{B} = (x_i)_{i \in I}$ une famille de E. Alors \mathscr{B} est une base si et seulement si pour tout $y \in E$, il existe une unique famille de scalaires $(\lambda_i)_{i \in I}$ à support fini telle que

$$y = \sum_{i \in I} \lambda_i x_i.$$

En particulier dans le cas où I = [1, n], \mathscr{B} est une base si et seulement si pour tout $y \in E$, il existe un unique n-uplet $(\lambda_1, \ldots, \lambda_n) \in \mathbb{K}^n$ tel que

$$y = \sum_{k=1}^{n} \lambda_k x_k.$$

Démonstration.

On a déjà vu que cette famille de scalaires existe si et seulement si $(x_i)_{i\in I}$ est génératrice et est unique sous réserve d'existence si et seulement si $(x_i)_{i\in I}$ est libre. On en déduit le résultat.

Définition 1.3.6.

Soit $\mathscr{B} = (x_i)_{i \in I}$ une base de E et $y \in E$. Alors l'unique famille de scalaires (à support fini) $(\lambda_i)_{i \in I}$ telle que $y = \sum_{i \in I} \lambda_i x_i$ est appelée famille des coordonnées de y dans \mathscr{B} .

Dans le cas où $I = [\![1,n]\!]$, cette famille est un n-uplet, appelé n-uplet des coordonnées.

Exercice 1.3.7 (Classique).

Montrer que ((1,0,1),(2,-1,0),(0,1,1)) est une base de \mathbb{R}^3 , donner les coordonnées d'un vecteur dans cette base (mais attention, les coordonnées des vecteurs dans cette base et dans la base canonique ne sont pas les mêmes !).

Exemple 1.3.8.

Donner une base de $\mathscr{P} \subset \mathbb{R}^3$ où $\mathscr{P} = \{ (x, y, z) \in \mathbb{R}^3 \mid x + 2y - z = 0 \}.$

 $(x,y,z) \in \mathscr{P}$ si et seulement si z=x+2y si et seulement s'il existe $\alpha,\beta\in\mathbb{R}$ tel que $(x,y,z)=\alpha(1,0,1)+\beta(0,1,2)$ si et seulement si $(x,y,z)\in \mathrm{Vect}((1,0,1),(0,1,2))$. Ces deux vecteurs sont non colinéaires, donc forment une famille libre.

Une base de \mathscr{P} est donc ((1,0,1),(0,1,2)).

Exemple 1.3.9.

Trouver une base de

$$\mathscr{E} = \left\{ (u_n) \in \mathbb{R}^{\mathbb{N}} \mid \forall n \in \mathbb{N}, \ u_{n+2} + u_{n+1} - 2u_n = 0 \right\}.$$

Le polynôme caractéristique est $X^2 + X - 2$ de racine 1 et -2. Donc tout élément de $\mathscr E$ est combinaison linéaire de la suite $(v_n) = (1)$ et $(w_n) = ((-2)^n)$. Donc $((v_n), (w_n))$ est génératrice. On montre qu'elle est aussi libre, c'est donc une base de $\mathscr E$.

Remarque 1.3.10.

Une famille libre est toujours une base du sous-espace vectoriel qu'elle engendre.

Théorème 1.3.11.

Soient F, G deux sev d'un \mathbb{K} -ev E, de bases respectifs \mathscr{B} et \mathscr{C} .

Si F et G sont en somme directe alors $\mathscr{B} \uplus \mathscr{C}$ est une base de F+G. Notamment, si F et G sont supplémentaires alors $\mathscr{B} \uplus \mathscr{C}$ est une base de E.

Démonstration.

Découle directement de 1.1.9 et 1.2.14.

1.4 Bases canoniques.

Les espaces vectoriels de référence viennent souvent avec des bases «par construction», que l'on appellera *canoniques*. Elles n'ont pas de propriétés particulières, mais vous pouvez les utiliser sans justifier leur caractère de base.

Proposition 1.4.1 (Base canonique de \mathbb{K}^n).

Soit $n \in \mathbb{N}^*$, pour tout $i \in [1, n]$ posons

$$e_i = (0, \dots, 0, \underbrace{1}_{i^{\text{ème}} \text{ position}}, 0 \dots, 0).$$

Alors (e_1, \ldots, e_n) est une base de \mathbb{K}^n , appelée base canonique de \mathbb{K}^n .

Proposition 1.4.2 (Bases canoniques de $\mathbb{K}_n[X]$ et $\mathbb{K}[X]$).

Soit $n \in \mathbb{N}^*$, alors la famille $(1, X, \dots, X^n)$ est une base de $\mathbb{K}_n[X]$, appelée base canonique de $\mathbb{K}_n[X]$.

La famille $(X^k)_{k\in\mathbb{N}}$ est une base de $\mathbb{K}[X]$, appelée base canonique de $\mathbb{K}[X]$.

Proposition 1.4.3 (Base canonique de $\mathcal{M}_{n,p}(\mathbb{K})$).

Soit $n, p \in \mathbb{N}^*$, pour tout $i \in [\![1, n]\!]$ et $j \in [\![1, p]\!]$, posons $E_{i,j}$ la matrice dont tous les coefficients sont nuls, sauf celui de la ligne i et la colonne j, qui vaut 1.

Alors $(E_{i,j})_{1 \leqslant i \leqslant n, 1 \leqslant j \leqslant p}$ est une base de $\mathcal{M}_{n,p}(\mathbb{K})$, appelée base canonique de $\mathcal{M}_{n,p}(\mathbb{K})$.

2 Notion de dimension.

2.1 Définition.

Définition 2.1.1.

On dit que E est de dimension finie si E admet une famille génératrice finie.

Exemple 2.1.2. 1. \mathbb{K}^n est de dimension finie car engendré notamment par la famille des $\left((\delta_{ij})_{i\in \llbracket 1,n\rrbracket}\right)_{j\in \llbracket 1,n\rrbracket}$.

- 2. $\mathbb{K}[X]$ n'est pas de dimension finie. En effet, considérons une famille finie de polynômes $(P_i)_{i \in [\![1,n]\!]}$. Alors toute combinaison linéaire de cette famille a un degré borné par le maximum des degrés des P_i . Or les éléments de $\mathbb{K}[X]$ ont des degrés arbitrairement élévés, donc la famille considérée ne peut être génératrice.
- 3. Soit A un ensemble. L'espace vectoriel \mathbb{K}^A est de dimension finie si et seulement si A est fini¹.
- 4. Soit E un \mathbb{K} -espace vectoriel (pas nécessairement de dimension finie). Soit $n \in \mathbb{N}$ et x_1, \ldots, x_n , n vecteurs de E. Alors le sous-espace vectoriel de E Vect (x_1, \ldots, x_n) est un espace vectoriel de dimension finie.

Remarque 2.1.3.

Cas particulier : l'espace vectoriel {0} est de dimension finie. En effet, toute famille en est génératrice (y compris la famille vide).

2.2 Théorème fondamental.

Dans toute la suite du chapitre, E est un \mathbb{K} -ev de dimension finie.

Théorème 2.2.1.

Soit $n \in \mathbb{N}$ tel que E admette une famille génératrice à n éléments. Alors toute famille de E contenant strictement plus de n vecteurs est liée.

Démonstration.

Remarquons d'abord qu'il suffit de montrer que toute famille de E contenant n+1 vecteurs est liée. En effet, une famille contenant strictement plus de n vecteurs, en contient au moins n+1. Elle contient donc une sous-famille liée, donc est liée elle-même. Montrons le résultat par récurrence sur n, en posant pour tout $n \in \mathbb{N}$:

 (H_n) : pour tout \mathbb{K} -ev E admettant une famille génératrice à n éléments, toute famille de E contenant n+1 vecteurs est liée.

- Le cas n=0 est celui où $E=\{0\}$, et le résultat est alors vrai.
- Soit $n \in \mathbb{N}$. Supposons (H_n) vraie. Soient (g_1, \ldots, g_{n+1}) une famille génératrice d'un \mathbb{K} -ev E, et (v_1, \ldots, v_{n+2}) une famille de vecteurs de E.

Pour tout $i \in [1, n+2]$, on note $v_i = \sum_{k=1}^{n+1} \alpha_{i,k} g_k$. Distinguons deux cas:

 $\begin{array}{l} \underline{\text{ler cas}} \ : \text{si pour tout } i, \, \alpha_{i,1} = 0, \, \text{alors pour tout } i, \, v_i \in \text{Vect}(g_2, \dots, g_{n+1}). \, \text{Si l'on note} \\ F = \text{Vect}(g_2, \dots, g_{n+1}), \, \text{on peut appliquer l'hypothèse de récurrence à } F, \, \text{qui admet une famille génératrice à } n \, \text{éléments, et à } (v_1, \dots, v_{n+1}) \, : (v_1, \dots, v_{n+1}) \, \text{ est liée dans} \\ F, \, \text{donc } (v_1, \dots, v_{n+1}) \, \text{ est liée dans } F, \, \text{donc aussi dans } E, \, \text{dont } F \, \text{est un sev.} \\ \underline{2\text{ème cas}} \, : \, \text{il existe } i \in \llbracket 1, n+2 \rrbracket \, \text{ tel que } \alpha_{i,1} \neq 0, \, \text{par exemple } \alpha_{1,1} \neq 0. \\ \underline{\text{Alors}} \end{array}$

$$g_1 = \frac{1}{\alpha_{1,1}} \left(v_1 - \sum_{k=2}^{n+1} \alpha_{1,k} g_k \right),$$

d'où

pour tout
$$i \in [2, n+2]$$
, $v_i = \frac{\alpha_{i,1}}{\alpha_{1,1}} \left(v_1 - \sum_{k=2}^{n+1} \alpha_{1,k} g_k \right) + \sum_{k=2}^{n+1} \alpha_{i,k} g_k$.

Si l'on pose $w_i = v_i - \frac{\alpha_{i,1}}{\alpha_{1,1}} v_1$, alors pour tout $i \in [\![2,n+2]\!]$ $w_i \in \mathrm{Vect}(g_2,\ldots,g_{n+1})$. Par hypothèse de récurrence, (w_2,\ldots,w_{n+2}) est liée. Il existe donc une combinaison linéaire nulle en les w_i , à coefficients non tous nuls. Il est facile de voir que cette combinaison linéaire est aussi une combinaison linéaire nulle en les v_1,\ldots,v_{n+2} , à coefficients non tous nuls. Ainsi (H_{n+1}) est vraie.

Remarque 2.2.2.

On notera que l'idée de la démonstration précédente est très proche de celle de l'algorithme du pivot de Gauss.

Exemple 2.2.3.

- Dans \mathbb{R}^2 , toute famille de trois vecteurs est liée. Mais une famille de strictement moins de trois vecteurs n'est pas forcément libre !
- Dans \mathbb{R}^3 , toute famille de quatre vecteurs est liée.
- Dans $\mathbb{R}_n[X]$, toute famille de n+2 polynômes est liée.
- Dans $\mathbb{C}_n[X]$, vu comme \mathbb{C} -espace vectoriel, toute famille de n+2 polynômes est liée.
- Dans $\mathbb{C}_n[X]$, vu comme \mathbb{R} -espace vectoriel, toute famille de 2n+3 polynômes est liée, tandis que la famille de 2n+2 polynômes $(1,i,X,iX,\ldots,X^n,iX^n)$ est libre.

^{1.} Le «si» est facile à voir, le «seulement si» est beaucoup plus difficile à démontrer ; on pourra utiliser le résultat 2.2.1

Nous verrons dans la partie 2.4 que ce résultat (fondamental!) mène directement au corollaire suivant.

Corollaire 2.2.4.

Dans un espace vectoriel de dimension finie, toutes les bases sont finies et de même cardinal.

2.3 Existence de bases.

On peut développer une première idée afin d'obtenir une base dans un espace vectoriel de dimension finie, idée d'ailleurs déjà ébauchée dans le cours sur les espaces vectoriels. On part d'une famille génératrice finie de

- si cette famille est libre, c'est une base ;
- sinon, un de ses vecteurs est « redondant », soit combinaison linéaire des autres, et on peut l'enlever pour obtenir une famille génératrice strictement plus petite.

En itérant, on obtient une suite de familles génératrices strictement décroissante (en taille) : on s'arrête donc et l'on obtient une base.

Nous allons voir un résultat plus fin qui nous permet de retrouver ceci : le théorème de la base incomplète.

Lemme 2.3.1.

Soit $p \in \mathbb{N}$ et $(x_i)_{i \in [\![1,p]\!]}$ une famille de vecteurs de E. La famille $(x_i)_{i \in [\![1,p]\!]}$ est liée si et seulement s'il existe $k \in [\![1,p]\!]$ vérifiant

$$x_k \in \operatorname{Vect}(x_1, \dots, x_{k-1}).$$

Autrement dit si et seulement si l'un des vecteurs de la famille est combinaison linéaire des précédents.

Démonstration.

Supposons que la famille est liée. Alors il existe une combinaison linéaire $\sum \lambda_i x_i$

non triviale de valeur 0. On note k le plus grand entier i tel que $\lambda_i \neq 0$. Alors on a successivement:

$$\sum_{i=1}^{k} \lambda_i x_i = 0,$$

$$x_k = -\frac{1}{\lambda_k} \sum_{i=1}^{k-1} \lambda_i x_i,$$

$$x_k \in \text{Vect}(x_1, \dots, x_{k-1}).$$

П

L'implication réciproque est évidente.

Corollaire 2.3.2.

Soit

- $-p \in \mathbb{N}$,
- (x_1, \ldots, x_p) une famille libre de vecteurs de E,
- -x un vecteur de E.

Alors

$$(x_1, \ldots, x_p, x)$$
 est liée $\iff x \in \text{Vect}(x_1, \ldots, x_p).$

Démonstration.

Supposons (x_1, \ldots, x_p, x) liée, et posons $x_{p+1} = x$. D'après le lemme, il existe $k \in$ [1, p+1] vérifiant $x_k \in \text{Vect}(x_1, \dots, x_{k-1})$. On ne peut avoir $k \leq p$ puisque la famille (x_1,\ldots,x_p) est libre. Donc k=p+1 et on a $x\in \mathrm{Vect}\,(x_1,\ldots,x_p)$.

Théorème 2.3.3 (de la base incomplète).

Soient E un \mathbb{K} -espace vectoriel engendré par une famille \mathscr{G} finie, et \mathscr{L} une famille libre de E. Alors on peut compléter \mathscr{L} en une base de E en lui rajoutant des vecteurs de \mathscr{G} .

Remarque 2.3.4.

Ce théorème est vrai pour tout espace vectoriel E et non seulement pour ceux de dimension finie. La démonstration est relativement délicate dans le cas général (on utilise en général le lemme de Zorn, équivalent à l'axiome du choix), nous nous contenterons de la donner dans le cas de la dimension finie.

Démonstration.

Une démonstration possible est de considérer l'algorithme suivant :

 \mathscr{L} est libre et l'invariant est clairement vérifié avant l'entrée dans la boucle.

Si l'invariant est vérifié, au début d'un tour de boucle, \mathscr{B} est libre et $\mathscr{G} \setminus \operatorname{Vect} \mathscr{B} \neq \varnothing$, donc on peut effectivement choisir \mathbf{v} dans $\mathscr{G} \setminus \operatorname{Vect} \mathscr{B}$.

Alors puisque \mathscr{B} est libre, d'après le lemme 2.3.1, $\mathscr{B} \cup \{ v \}$ est libre également.

À la fin du tour de boucle, $\mathscr B$ est donc toujours libre, est toujours un sur-ensemble de $\mathscr L$ et un sous-ensemble de $\mathscr G$, l'invariant est donc encore vérifié.

Par ailleurs, \mathscr{B} est libre et \mathscr{G} est génératrice, donc, avec le lemme fondamental, $\operatorname{Card}\mathscr{B}\leqslant\operatorname{Card}\mathscr{G}$. Ainsi $\operatorname{Card}\mathscr{G}-\operatorname{Card}\mathscr{B}$ est un entier naturel. De plus, à chaque étape de la boucle, on ajoute à \mathscr{B} un élément de \mathscr{G} qui n'est pas déjà dans $\operatorname{Vect}\mathscr{B}$, donc pas déjà dans \mathscr{B} , donc le cardinal de \mathscr{B} augmente strictement. Donc à chaque tour de boucle $\operatorname{Card}\mathscr{G}-\operatorname{Card}\mathscr{B}$ décroît strictement, donc l'algorithme termine.

À la fin de l'exécution de l'algorithme, $\mathscr B$ est une famille libre, et $\mathscr G\subset \mathrm{Vect}\,\mathscr B$. Donc $\mathscr B$ est une base de E. De plus, on a $\mathscr L\subset \mathscr B$ donc on a bien construit $\mathscr B$ en rajoutant à $\mathscr L$ des vecteurs de $\mathscr G$.

Exemple 2.3.5.

Compléter ((1, 2, 0, 0), (1, 0, 1, 0)) en une base de \mathbb{R}^4 .

Le théorème de la base incomplète a deux corollaires. Le premier est fondamental.

Corollaire 2.3.6.

Tout espace vectoriel de dimension finie admet une base finie.

Démonstration.

Il suffit d'appliquer le théorème de la base incomplète avec la famille vide et une famille génératrice finie. \Box

Remarque 2.3.7.

Cas particulier : l'espace vectoriel {0} a pour base la famille vide. C'est la seule famille libre (donc la seule base) de cet espace vectoriel, puisque toute famille d'au moins un élément contient le vecteur nul et est donc liée.

Il peut sembler étonnant (au premier abord) que le résultat qui suit soit un corollaire du théorème de la base incomplète.

Corollaire 2.3.8.

De toute famille génératrice finie on peut extraire une base.

Démonstration.

Lorsque la famille génératrice considérée est finie, il suffit là encore d'appliquer le théorème de la base incomplète avec la famille vide et une famille génératrice finie : en complétant la famille vide avec des vecteurs de la famille génératrice considérée, on obtient bien une base extraite de la famille génératrice de départ.

Lorsque la famille génératrice considérée est infinie, on peut montrer le résultat en utilisant l'algorithme donné pour la démonstration du théorème de la base incomplète mais un problème se pose, celui de la terminaison. Celle-ci peut être justifiée par le théorème fondamental 2.2.1: dans un espace de dimension finie, le nombre d'éléments d'une famille libre est majoré par un entier p, où p est par exemple le cardinal d'une famille génératrice finie de E.

Or le nombre d'éléments de la famille $\mathcal B$ croît strictement à chaque tour de boucle, p moins ce nombre d'éléments est donc un variant de l'algorithme, donc celui-ci termine.

2.4 Existence de la dimension.

Théorème 2.4.1 (de la dimension).

Soit E un \mathbb{K} -espace vectoriel de dimension finie. Alors toutes les bases ont même nombre d'éléments.

Démonstration.

E étant de dimension finie, il admet une base \mathscr{B}_1 finie. Soit \mathscr{B}_2 une seconde base de E. Étant libre, elle a moins d'éléments que \mathscr{B}_1 . Mais réciproquement, \mathscr{B}_2 est génératrice et \mathscr{B}_1 est libre, donc \mathscr{B}_1 a moins d'éléments que \mathscr{B}_2 , ce qui montre que toutes les bases de E ont le même nombre d'éléments que \mathscr{B}_1 . D'où le résultat.

Définition 2.4.2.

Soit E un \mathbb{K} -espace vectoriel de dimension finie. On appelle dimension du \mathbb{K} -espace vectoriel E et on note $\dim_{\mathbb{K}} E$ (voire $\dim E$ si le contexte permet de savoir clairement ce qu'est \mathbb{K}) le nombre d'éléments commun à toutes les bases de E.

On notera parfois $\dim_{\mathbb{K}} E < +\infty$ l'assertion «le \mathbb{K} -espace vectoriel E est de dimension finie».

Remarque 2.4.3.

Pour que cette définition ait un sens il est nécessaire et suffisant d'être assuré :

- d'une part que toutes les bases d'un espace vectoriel de dimension finie ont toutes le même nombre d'éléments
- d'autre part que tout espace vectoriel de dimension finie possède bien au moins une base.

Ce qu'on a bien vérifié plus haut.

Remarque 2.4.4.

Cas particulier : $\dim\{0\} = 0$.

Exemple 2.4.5.

Soit $n, p \in \mathbb{N}$.

- $\dim_{\mathbb{K}} \mathbb{K}^n = n$
- $\dim_{\mathbb{R}} \mathbb{C}^n = 2n$
- $\dim_{\mathbb{K}} \mathbb{K}_n[X] = n+1$
- $\dim_{\mathbb{R}} \mathbb{C}_n[X] = 2(n+1)$
- $\dim_{\mathbb{K}} \mathscr{M}_{n,p}(\mathbb{K}) = np$
- $\dim_{\mathbb{R}} \mathscr{M}_{n,p}(\mathbb{C}) = 2np$

Proposition 2.4.6.

Soit E un \mathbb{K} -espace vectoriel de dimension finie.

- Toute famille libre de E a au plus $\dim_{\mathbb{K}} E$ éléments.
- Toute famille génératrice de E a au moins $\dim_{\mathbb{K}} E$ éléments.

Démonstration.

C'est une conséquence directe du théorème fondamental 2.2.1.

Proposition 2.4.7 (Caractérisation des bases).

Soit E un \mathbb{K} -espace vectoriel de dimension finie, et soit \mathscr{F} une famille constituée d'exactement $\dim_{\mathbb{K}} E$ vecteurs de E.

Alors les trois propositions suivantes sont équivalentes.

- 1. \mathscr{F} est une base de E.
- 2. \mathscr{F} est une famille génératrice de E.
- 3. \mathscr{F} est une famille libre de E.

Démonstration.

Il est clair que si ${\mathscr F}$ est une base alors elle est libre et génératrice.

Supposons que \mathscr{F} est génératrice. Par le théorème de la base incomplète, on peut extraire de \mathscr{F} une base \mathscr{B} , qui possède $\dim_{\mathbb{K}}(\mathbb{E})$ vecteurs, c'est-à-dire autant que \mathscr{F} . On a donc $\mathscr{B}=\mathscr{F}$, donc \mathscr{F} est une base de E.

De même, supposons que \mathscr{F} est libre. On pourrait raisonner comme précédemment en complétant \mathscr{F} en une base de E. Voici un autre raisonnement. Si $x \in E$, alors $\mathscr{F} \uplus (x)$ contient strictement plus de $\dim_{\mathbb{K}}(E)$ donc est liée. Par le corollaire 2.3.2, $x \in \mathrm{Vect}(\mathscr{F})$. Ainsi, $\mathrm{Vect}(\mathscr{F}) = E$, donc \mathscr{F} engendre E, donc est une base de E. \square

Exercice 2.4.8.

Soient $a, b, c, d \in \mathbb{K}$ deux à deux distincts et

$$A = (X - b)(X - c)(X - d),$$

$$B = (X - a)(X - c)(X - d),$$

$$C = (X - a)(X - b)(X - d),$$

$$D = (X - a)(X - b)(X - c).$$

Montrer que (A, B, C, D) est une base de $\mathbb{K}_3[X]$.

Enfin, terminons par un outil bien pratique.

Définition 2.4.9.

Une famille de polynômes (P_0, \ldots, P_n) est dite échelonnée en degrés si $\forall k \in [0, n], \deg P_k = k$.

Une famille de polynômes $(P_k)_{k\in\mathbb{N}}$ est dite échelonnée en degrés si $\forall k\in\mathbb{N},\ \deg P_k=k.$

Proposition 2.4.10.

Toute famille de polynômes (P_0, \ldots, P_n) échelonnée en degrés est une base de $\mathbb{K}_n[X]$.

Toute famille de polynômes $(P_k)_{k\in\mathbb{N}}$ échelonnée en degrés est une base de $\mathbb{K}[X]$.

Démonstration.

Si pour tout $k \in [0, n]$, deg $P_k = k$, alors (P_0, \ldots, P_n) est une famille de n+1 polynômes de $\mathbb{K}_n[X]$, et est libre d'après la proposition 1.2.21. Comme $\dim_{\mathbb{K}} \mathbb{K}_n[X] = n+1$, la proposition 2.4.7 permet d'affirmer que (P_0, \ldots, P_n) est une base de $\mathbb{K}_n[X]$.

De même, si pour tout $k \in \mathbb{N}$, deg $P_k = k$, alors la famille $(P_k)_{k \in \mathbb{N}}$ est libre, et tout polynôme appartient à $\mathbb{K}_n[X]$ pour un certain n et est donc combinaison linéaire de la famille $(P_k)_{k \in \mathbb{N}}$.

2.5 Exemples avancés.

Exemple 2.5.1.

• Les solutions d'une équation différentielle linéaire homogène du premier

ordre forment un espace vectoriel de dimension 1.

• Les solutions d'une équation différentielle linéaire homogène du second ordre à coefficients constants forment un espace vectoriel de dimension 2.

Proposition 2.5.2.

Soit E et F deux \mathbb{K} -espaces vectoriels de dimensions finies.

Alors $E \times F$ est de dimension finie et

$$\dim_{\mathbb{K}} (E \times F) = \dim_{\mathbb{K}} E + \dim_{\mathbb{K}} F.$$

Plus précisément, posons $n=\dim E$ et $p=\dim F$ et choisissons (e_1,\ldots,e_n) une base de E et (f_1,\ldots,f_p) une base de F. Alors $(b_i)_{i\in \llbracket 1,n+p\rrbracket}$ est une base de $E\times F$, où

$$\begin{cases} b_i = (e_i, 0_F) & \text{pour } i \in [1, n], \\ b_{n+i} = (0_E, f_i) & \text{pour } i \in [1, p]. \end{cases}$$

Démonstration.

Un vecteur $z \in E_1 \times E_2$ s'écrit de manière unique $(x,y) = (x,0_F) + (0_E,y)$. De plus, x (resp. y) s'écrit de manière unique comme combinaison linéaire des e_i (resp. f_i). L'existence assure l'aspect générateur de la famille. L'unicité assure la liberté.

Remarque 2.5.3.

Ce résultat se généralise à n \mathbb{K} -ev de dimension finie et à leur produit $E_1 \times \cdots \times E_n$.

3 Sous-espaces vectoriels en dimension finie.

3.1 Dimension d'un sous-espace vectoriel.

Pour démontrer qu'un sous-espace vectoriel d'un espace de dimension finie est de dimension finie, nous utiliserons le résultat suivant :

Proposition 3.1.1.

Soit E un \mathbb{K} -espace vectoriel. Notons L l'ensemble des entiers n tels qu'il existe au moins une famille libre de E à n éléments. Alors

- ou bien E est de dimension finie et alors $L = [0, \dim E]$.
- ou bien E n'est pas de dimension finie et alors $L = \mathbb{N}$.

En particulier, E est de dimension finie si et seulement si L est majoré.

Démonstration.

Si E est de dimension finie, on a nécessairement $L \subset \llbracket 0, \dim E \rrbracket$. Notons alors $\mathscr B$ une base de E. $\mathscr B$ est une famille libre à dim E éléments et toute sous-famille de $\mathscr B$ est encore libre. Donc $\llbracket 0, \dim E \rrbracket \subset L$. D'où l'égalité.

Supposons désormais que E n'est pas de dimension finie. Montrons qu'alors L n'est pas majoré.

Par l'absurde supposons que L possède un majorant. Comme L est un ensemble d'entier non vide (il contient 0), il admet alors un maximum M. Soit alors $\mathscr F$ une famille libre à M éléments. Si on rajoute un élément à $\mathscr F$ on obtient une famille à M+1 éléments, or $M+1 \notin L$ donc cette sur-famille ne peut être libre. Par le corollaire 2.3.2, cet élément est dans $\mathrm{Vect}(\mathscr F)$, donc $\mathscr F$ engendre E, donc c'est une base de E, donc E est de dimension finie ce qui est absurde.

L n'est donc pas majoré, donc pour tout entier n il existe $p \in L$ vérifiant $p \geqslant n$. On peut donc trouver une famille libre à p éléments. Toute sous-famille de cette famille en est libre, en prenant une sous-famille arbitraire à n éléments, on voit donc qu'on a $n \in L$.

Donc $L \supset \mathbb{N}$, donc $L = \mathbb{N}$.

Proposition 3.1.2.

Soit E un \mathbb{K} -espace vectoriel de dimension finie et F un sous-espace vectoriel de E.

Alors F est de dimension finie et dim $F \leq \dim E$.

De plus dim $F = \dim E$ si et seulement si F = E.

Démonstration.

Toute famille libre de F est une famille libre d'éléments de E et a donc un nombre d'élément majoré par dim E. Donc d'après la proposition 3.1.1, F est de dimension finie, et dim $F \leq \dim E$.

En outre on a trivialement $F = E \Rightarrow \dim F = \dim E$.

Réciproquement, supposons $\dim F = \dim E$ et montrons F = E. Alors on peut trouver une base \mathscr{B} de F comportant $\dim E$ éléments. On a Vect $(\mathscr{B}) = F$. En outre, \mathscr{B}

est une famille libre de F donc de E or elle comporte dim E éléments, donc d'après 2.4.7, c'est une famille génératrice de E, donc Vect $(\mathscr{B}) = E$. On a donc F = E.

Définition 3.1.3.

Soit E un \mathbb{K} -espace vectoriel (non nécessairement de dimension finie). Soit $n \in \mathbb{N}$ et (x_1, \ldots, x_n) une famille de n vecteurs. On appelle rang de la famille (x_1, \ldots, x_n) et on note $\operatorname{rg}(x_1, \ldots, x_n)$ la dimension de l'espace vectoriel qu'ils engendrent :

$$\operatorname{rg}(x_1,\ldots,x_n)=\dim\operatorname{Vect}(x_1,\ldots,x_n).$$

Remarque 3.1.4.

Vect (x_1, \ldots, x_n) étant engendré par la famille de n vecteurs $(x_i)_{i \in [\![1,n]\!]}$, il s'agit d'un espace vectoriel de dimension finie, et sa dimension est au plus n.

Donc le rang de $(x_i)_{i \in [1,n]}$ est bien défini et $\operatorname{rg}(x_1,\ldots,x_n) \leqslant n$.

De manière directe, ce rang vaut n si et seulement si la famille est libre.

De plus, $(x_i)_{i \in [\![1,n]\!]}$ est génératrice si et seulement si E est de dimension finie et $(x_i)_{i \in [\![1,n]\!]}$ est de rang dim E.

De plus, si E est de dimension finie p, alors $\operatorname{rg}(x_1,\ldots,x_n) \leq p$.

3.2 Existence de supplémentaires.

Théorème 3.2.1 (Existence de supplémentaires).

Soit E un \mathbb{K} -espace vectoriel et F un sous-espace vectoriel de E.

Alors F admet un supplémentaire S dans E.

Remarque 3.2.2.

Ce théorème est vrai pour tout espace vectoriel E et non seulement pour ceux de dimension finie. Nous nous contenterons de donner la démonstration dans le cas de la dimension finie, mais la généralisation au cas infini est relativement immédiate.

Démonstration.

Supposons que E soit de dimension finie. Alors, on peut choisir une base (b_1, \ldots, b_p) de F où $p = \dim F$.

Cette base de F est une famille libre de vecteurs de F, donc de E. On peut donc la compléter en une base (b_1, \ldots, b_n) de E, avec $n = \dim E \geqslant p$.

Posons alors $S = \text{Vect}(b_{p+1}, \dots, b_n)$. La famille (b_{p+1}, \dots, b_n) , sous-famille d'une base de E, est une famille libre. De plus, elle est génératrice de S, donc c'est une base de S.

On a donc trouvé une base de F et une base de S dont la réunion est une base de E. F et S sont donc supplémentaires. \Box

Ne parlez jamais du supplémentaire : en effet tout sev admet en fait une infinité de supplémentaires ! Regardez l'exercice suivant pour vous convaincre que dans la démonstration précédente, il existe une infinité de choix pour compléter une famille libre en une base, ce qui mène à une infinité de supplémentaires à un sev, sans rien supposer sur l'espace vectoriel de départ.

Exercice 3.2.3.

Soit F et G deux sous-espaces supplémentaires d'un \mathbb{K} -ev E, tous les trois non nuls. Soit x un vecteur non nul de F et (y_1, y_2, \ldots, y_p) une base de G.

- 1. Montrer que les vecteurs $x + y_1, x + y_2, \dots, x + y_p$ engendrent un sous-espace supplémentaire de F, noté G_x .
- 2. Montrer que si $x, x' \in F$ tel que $x \neq x'$ alors $G_x \neq G_{x'}$. En déduire que F admet une infinité de sous-espaces supplémentaires distincts (sauf dans des cas triviaux : lesquels?)

Exemple 3.2.4.

Déterminer un supplémentaire dans \mathbb{R}^4 de

$$F = \text{Vect}((1, 2, 0, 0), (1, 0, 0, -3)).$$

3.3 Dimension d'une somme de sous-espaces vectoriels.

Proposition 3.3.1 (Formule de Grassmann).

Soit E un \mathbb{K} -espace vectoriel. Soit F et G deux sous-espaces de dimensions finies de E. Alors F+G est de dimension finie et

$$\dim (F + G) = \dim F + \dim G - \dim (F \cap G).$$

En particulier

$$\dim (F+G) \leqslant \dim F + \dim G$$

et l'égalité a lieu si et seulement si F et G sont en somme directe.

Démonstration. 1. Montrons tout d'abord le résultat dans le cas où la somme F+G est directe : On peut alors choisir une base de F et une base de G, elles ont respectivement $\dim F$ et $\dim G$ éléments. Leur réunion possède donc $\dim F + \dim G$ éléments et est une base de $F \oplus G$. Donc $F \oplus G$ est de dimension finie et

$$\dim (F \oplus G) = \dim F + \dim G$$

(c'est bien un cas particulier car alors dim $(F \cap G) = \dim \{0\} = 0$).

2. Montrons maintenant le résultat dans le cas général. Remarquons tout d'abord que $F \cap G$ est un sous-espace vectoriel de F qui est de dimension finie. Donc $F \cap G$ possède un supplémentaire S dans F et dim $F = \dim (F \cap G) + \dim S$, d'où

$$\dim S = \dim F - \dim (F \cap G)$$

De plus

$$S \cap G = (S \cap F) \cap G$$
$$= S \cap (F \cap G)$$
$$= \{ 0 \}.$$

Comme $F \cap G \subset G$, on a $F+G=(S+(F\cap G))+G=S+G$, donc S et G sont supplémentaires dans F+G.

Donc F + G est de dimension finie et

$$\dim (F+G) = \dim S + \dim G,$$

$$\dim (F+G) = \dim F - \dim (F\cap G) + \dim G.$$

Exercice 3.3.2.

Soit \mathscr{P}_1 et \mathscr{P}_2 deux plans distincts de \mathbb{R}^3 (sev de dimension 2). Montrer que $\mathscr{P}_1 + \mathscr{P}_2 = \mathbb{R}^3$. Que peut-on dire de $\mathscr{P}_1 \cap \mathscr{P}_2$?

Proposition 3.3.3.

Soit E un \mathbb{K} -espace vectoriel et F et G deux sous-espaces vectoriels de dimensions finies.

Alors si F et G sont supplémentaires, les trois propositions suivantes sont vraies :

- 1. $F \cap G = \{0\},\$
- 2. F + G = E,
- 3. $\dim E < +\infty$ et $\dim F + \dim G = \dim E$.

Réciproquement il suffit que deux de ces propositions soient vraies pour que F et G soient supplémentaires.

Démonstration.

Pour le sens direct, les deux premières propositions sont des conséquences connues, la troisième est la conséquence de la formule de Grassmann.

Pour le sens réciproque, étudions les différentes possibilités :

- 1. Supposons 1 et 2. Alors F et G sont supplémentaires dans E.
- 2. Supposons 1 et 3. Alors

$$\dim (F + G) = \dim F + \dim G - \dim (F \cap G)$$
$$= \dim F + \dim G$$
$$= \dim E.$$

Or F+G est un sous-espace vectoriel de E donc F+G=E. Donc F et G sont supplémentaires.

 $3.\,$ Supposons 2 et $3.\,$ Alors

$$\dim E = \dim F + \dim G - \dim (F \cap G)$$
 et
$$\dim E = \dim F + \dim G.$$

Ainsi, dim $(F \cap G) = 0$, et donc $F \cap G = \{0\}$. F et G sont donc supplémentaires.

Corollaire 3.3.4.

Soit E un \mathbb{K} -espace vectoriel de dimension finie et F un sous-espace vectoriel de E. Alors tous les supplémentaires de F ont même dimension : $\dim E - \dim F$.

Démonstration.

E est de dimension finie donc F et tous ses supplémentaires également. D'après ce qui précède tout supplémentaire S de F vérifie dim F + dim S = dim E, donc dim S = dim E - dim F.