N-Channel Enhancement-Mode MOS Transistors

Product Summary

Part Number	V _{(BR)DSS} Min (V)	r _{DS(on)} Max (Ω)	V _{GS(th)} (V)	I _D (A)
2N7000		$5 @ V_{GS} = 10 V$	0.8 to 3	0.2
2N7002		$7.5 @ V_{GS} = 10 V$	1 to 2.5	0.115
VQ1000J	60	$5.5 @ V_{GS} = 10 V$	0.8 to 2.5	0.225
VQ1000P		$5.5 @ V_{GS} = 10 V$	0.8 to 2.5	0.225
BS170		5 @ V _{GS} = 10 V	0.8 to 3	0.5

Features

• Low On-Resistance: 2.5 Ω

- Low Threshold: 2.1 V
- Low Input Capacitance: 22 pF
- Fast Switching Speed: 7 ns
- Low Input and Output Leakage Low Error Voltage

Benefits

- Low Offset Voltage
- Low-Voltage Operation
- Easily Driven Without Buffer
- High-Speed Circuits

Applications

- Direct Logic-Level Interface: TTL/CMOS
- Drivers: Relays, Solenoids, Lamps, Hammers, Displays, Memories, Transistors, etc.
- **Battery Operated Systems**
- Solid-State Relays

Plastic: VQ1000J Sidebraze: VQ1000P

2N7002 (72)* *Marking Code for TO-236

BS170

Absolute Maximum Ratings ($T_A = 25^{\circ}C$ Unless Otherwise Noted)

					Single		Total Quad		
Parameter		Symbol	2N7000	2N7002	VQ1000J	VQ1000P	VQ1000J/P	BS170	Unit
Drain-Source Voltage		V_{DS}	60	60	60	60		60	v
Gate-Source Voltage		V_{GS}	±40	±40	±30	± 20		± 25	1
Continuous Drain Current	$T_A = 25^{\circ}C$	I_{D}	0.2	0.115	0.225	0.225		0.5	
$(T_{J} = 150^{\circ}C)$	$T_A = 100^{\circ} C$		0.13	0.73	0.14	0.14		0.175	A
Pulsed Drain Current ^a		I_{DM}	0.5	0.8	1	1			1
Power Dissipation	$T_A = 25^{\circ}C$	n	0.4	0.2	1.3	1.3	2	0.83	w
rower Dissipation	$T_{A} = 100^{\circ} C$	P_{D}	0.16	0.08	0.52	0.52	0.8		"
Maximum Junction-to-Ambient		R _{thJA}	312.5	625	96	96	62.5	156	°C/ W
Operating Junction and Storage Temperature Range		T_J, T_{stg}	-55 to 150						°C

Notes

Specifications^a for 2N7000 and 2N7002

		Test Conditions		2N7000		2N7002		1
Parameter	Symbol			Min	Max	Min	Max	Unit
Static								
Drain-Source Breakdown Voltage	V _{(BR)DSS}	$V_{GS} = 0 \text{ V}, I_D = 10 \mu\text{A}$	70	60		60		
Cata Threshold Voltage	V	$V_{DS} = V_{GS}$, $I_D = 1 \text{ mA}$	2.1	0.8	3			v
Gate-Threshold Voltage	V _{GS(th)}	$V_{DS} = V_{GS}, I_D = 0.25 \text{ mA}$	2.0			1	2.5	
Gate-Body Leakage	I_{GSS}	$V_{DS} = 0 \text{ V}, V_{GS} = \pm 15 \text{ V}$			± 10			nA
Gate-Body Leakage	1GSS	$V_{DS} = 0 \text{ V}, V_{GS} = \pm 20 \text{ V}$					± 100	IIA
Zero Gate Voltage Drain Current	$I_{ m DSS}$	$V_{DS} = 48 \text{ V}, V_{GS} = 0 \text{ V}$			1			
		$T_C = 125^{\circ}C$			1000			μA
Zero Gate Voltage Drain Current		$V_{DS} = 60 \text{ V}, V_{GS} = 0 \text{ V}$					1	μπ
		$T_{\rm C} = 125^{\circ}{\rm C}$					500	
On-State Drain Current ^c	I _{D(on)}	$V_{DS} = 10 \text{ V}, V_{GS} = 4.5 \text{ V}$	0.35	0.07 5				A
	()	$V_{DS} = 7.5 \text{ V}, V_{GS} = 10 \text{ V}$	1			0.5		
		$V_{GS} = 4.5 \text{ V}, I_D = 0.075 \text{ A}$	4.5		5.3			
		$V_{GS} = 5 \text{ V}, I_D = 0.05 \text{ A}$	3.2				7.5	1
Drain-Source On-Resistance ^c	r _{DS(on)}	$T_C = 125^{\circ}C$	5.8				13.5	Ω
		$V_{GS} = 10 \text{ V}, I_D = 0.5 \text{ A}$	2.4		5		7.5	
		$T_J = 125^{\circ}C$	4.4		9		13.5	
Forward Transconductance ^c	g_{fs}	$V_{DS} = 10 \text{ V}, I_D = 0.2 \text{ A}$		100		80		mS
Common Source Output Conductance ^c	gos	$V_{DS} = 5 \text{ V}, I_{D} = 0.05 \text{ A}$	0.5					1113

a. Pulse width limited by maximum junction temperature.

TEMIC

Siliconix

2N7000/7002, VQ1000J/P, BS170

Specifications^a for 2N7000 and 2N7002

				Limits					
				2N'	2N7000 2N700		7002	1	
Parameter	Symbol	Test Conditions	Typb	Min	Max	Min	Max	Unit	
Dynamic									
Input Capacitance	C _{iss}		22		60		50		
Output Capacitance	Coss	$V_{DS} = 25 \text{ V}, V_{GS} = 0 \text{ V}$ f = 1 MHz	11		25		25	pF	
Reverse Transfer Capacitance	C_{rss}				5		5		
Switching ^e									
Turn-On Time	t _{ON}	$V_{DD} = 15 \text{ V}, R_L = 25 \Omega$ $I_D \approx 0.5 \text{ A}, V_{GEN} = 10 \text{ V}$	7		10				
Turn-Off Time	t _{OFF}	$R_G = 25 \Omega$	7		10			ns	
Turn-On Time	t _{ON}	$V_{\rm DD} = 30 \text{ V}, R_{\rm L} = 150 \Omega$ $I_{\rm D} \cong 0.2 \text{ A}, V_{\rm GEN} = 10 \text{ V}$	7				20	118	
Turn-Off Time	t _{OFF}	$R_G = 25 \Omega$	11				20		

a. $T_A = 25^{\circ}\text{C}$ unless otherwise noted.d. b. For DESIGN AID ONLY, not subject to production testing. VNBF06

- c. Pulse test: PW $\leq 80 \,\mu s$ duty cycle $\leq 1\%$.
- d. This parameter not registered with JEDEC.
- Switching time is essentially independent of operating temperature.

Specifications^a for VQ1000J/P and BS170

					VQ1000J/P		BS170		1
Parameter Symbol Test Conditions		Typb	Min	Max	Min	Max	Unit		
Static									
Drain-Source Breakdown Voltage	V _{(BR)DSS}	$V_{GS} = 0 \text{ V}, I_D =$	100 μΑ	70	60		60		.,
Gate-Threshold Voltage	V _{GS(th)}	$V_{DS} = V_{GS}, I_D =$	= 1 mA	2.1	0.8	2.5	0.8	3	V
Gate-Body Leakage		$V_{DS} = 0 \text{ V}, V_{GS} =$	= ±10 V			± 100			
	I_{GSS}		$T_J = 125^{\circ}C$			±500			nA
		$V_{DS} = 0 \text{ V}, V_{GS} = \pm 15 \text{ V}$						±10	1
	I_{DSS}	$V_{DS} = 25 \text{ V}, V_{GS} = 0 \text{ V}$ $V_{DS} = 48 \text{ V}, V_{GS} = 0 \text{ V}, T_J = 125 ^{\circ}\text{C}$						0.5	μΑ
Zero Gate Voltage Drain Current						500			
		$V_{DS} = 60 \text{ V}, V_{GS} = 0 \text{ V}$				10			
On-State Drain Current ^c	I _{D(on)}	$V_{DS} = 10 \text{ V}, V_{GS}$	i = 10 V	1	0.5				Α
		$V_{GS} = 5 \text{ V}, I_D =$	= 0.2 A	4		7.5			
Drain-Source On-Resistance ^c	.	$V_{GS} = 10 \text{ V}, I_D = 0.2 \text{ A}$		2.3				5	Ω
Dram-Source On-Resistance	r _{DS(on)}	$V_{GS} = 10 \text{ V}, I_D = 0.3 \text{ A}$		2.3		5.5			<u>1</u> 22
			$T_J = 125^{\circ}C$	4.2		7.6			1
Forward Transconductance ^c	g _a	$V_{DS} = 10 \text{ V}, I_{D} = 10 \text{ V}$	= 0.2 A				100		
rorwaru Iransconductance	g fs	$V_{DS} = 10 \text{ V}, I_D = 0.5 \text{ A}$			100				mS
Common Source Output Conductance ^c	gos	V_{DS} =5 V, I_D =	0.05 A	0.5					1

P-37993—Rev. C (08/08/94) 3

VNBF06

Specifications^a for VQ1000J/P and BS170

				Limits				
				VQ1000J/P Min Max		BS170		
Parameter	Symbol	Test Conditions	Typb			Min	Max	Unit
Dynamic								
Input Capacitance	C _{iss}		22		60		60	
Output Capacitance	Coss	$V_{DS} = 25 \text{ V}, V_{GS} = 0 \text{ V}$ f = 1 MHz	11		25			pF
Reverse Transfer Capacitance	C _{rss}				5			1
Switching ^d								
Turn-On Time	t _{ON}	$V_{DD} = 15 \text{ V}, R_L = 23 \Omega$ $I_D \approx 0.6 \text{ A}, V_{GEN} = 10 \text{ V}$	7		10			
Turn-Off Time	t _{OFF}	$R_G = 25 \Omega$	7		10			ns
Turn-On Time	t _{ON}	$V_{DD} = 25 \text{ V}, R_{L} = 125 \Omega$ $I_{D} \approx 0.2 \text{ A}, V_{GEN} = 10 \text{ V}$	7				10	113
Turn-Off Time	t _{OFF}	$R_G = 25 \Omega$	7				10	

a. T_A = 25°C unless otherwise noted.
 b. For DESIGN AID ONLY, not subject to production testing.

Pulse test: PW $\leq 80 \,\mu s \,duty \,cycle \,\leq 1\%$.

Switching time is essentially independent of operating temperature.

Typical Characteristics (25°C Unless Otherwise Noted)

2N7000/7002, VQ1000J/P, BS170

Typical Characteristics (25°C Unless Otherwise Noted)

TEMIC

2N7000/7002, VQ1000J/P, BS170

Siliconix

Typical Characteristics (25°C Unless Otherwise Noted)

6 P-37993—Rev. C (08/08/94)

2N7000/7002, VQ1000J/P, BS170

