JEGYZŐKÖNYV KLASSZIKUS FIZIKA LABORATÓRIUM

01. MÉRÉS - A NEHÉZSÉGI GYORSULÁS MÉRÉSE MEGFORDÍTHATÓ INGÁVAL

• Mérést végezte : Brindza Mátyás

 \bullet Mérést végző Neptun-azonosítója: Z2R8XS

• Mérés időpontja : NaN

• Jegyzőkönyv leadásának időpontja : 2021.06.02.

A mérés célja

A nehézségi gyorsulás meghatározásának céljára egy megfordítható (reverziós) ingát használunk : a rajta elhelyezkedő tolósúly helyzetének függvényében megmérjünk az inga lengésének periódusidejét. Az így kapott két görbe metszéspontjai nagyjából meghatározhatóak, a kettő közül egy körül további méréseket végzünk, ezáltal azt pontosabban meghatározzuk.

Ezután az inga súlypontjának helyét vizsgáljuk különböző tolósúly helyzetek mellett, illetve kiszámoljuk a szögkorrekciót, a hidrosztatikai és a hidrodinamikai korrekciót. Az előbbiből megmutatható, hogy a mérés során kapott két metszéspont nem triviális megoldáshoz vezet, az utóbbiakkal korrigáljuk a mérési eredményeket.

Mérőeszkzök

- Reverziós inga (éktávolság : $l = 1.0011 \pm 0.0002m$)
- Súlypontmérő ék
- Tolósúly
- Elektromos mérő berendezés (egy elektromos óra és egy villa alakú lengésérzékelő egység) erről részletesebb leírás "A mérés menete" fejezetben

A mérés elméleti háttere:

A reverziós ingán két ék található, mindkettőnél megmérjük a periódusidőt különböző tolósúly pozíciók mellett. Így kapunk $T_1(x)$ és $T_2(x)$ függvényeket, ahol x a tolósúly helyzete. A két ék közti távolság l. A $T_1(x)$ és $T_2(x)$ "függvények" (ezek elméletben függvények, a valóságban csupán mérési pontok) két pontban metszik egymást. E két metszéspontnál igaz lesz az alábbi összefüggés:

$$g = \frac{4\pi^2}{T^2} \cdot l$$

Ehhez az összefüggéshez vezető úton feltettük, hogy sin(x) megközelítőleg megegyezik x-szel. Nagyobb kitérések esetén ez nem lesz igaz, így korrigálni kell a képletet:

$$T^{2} = 4 \cdot \pi^{2} \cdot \frac{l}{q} \left(1 + \frac{1}{4} sin^{2} \left(\frac{\alpha}{2} \right) + \frac{9}{64} sin^{4} \left(\frac{\alpha}{2} \right) + \frac{25}{256} sin^{6} \left(\frac{\alpha}{2} \right) \right) + \dots$$

Ezen felül a hidrosztatikai és a hidrodinamikai korrekciót is figyelembe kell venni. A hidrosztatikai korrekció kimerül annyiban, hogy az ingára felhajtóerő hat, ezért könnyebbnek tűnik. A hidrodinamikai korrekció az ingához tapadó levegőt veszi figyelembe - így nagyobbnak tűnik az inga tehetetlenségi nyomatéka. A két jelenség járulékát az alábbi módon lehet összesíteni.

$$\Delta T_{korr} = 0.8 \cdot \frac{\rho_{lev}}{\rho_{inga}}$$

A szögkorrekciót egy ΔT_{α} mennyiségként kapjuk majd meg. A fentebbi képleten látszik, hogy ezt a ΔT_{α} -t hozzá kell majd adni a mért periódusidőhöz. A hidrosztatikai és hidrodinamikai korrekciónál vizsgált hatások növelik a periódusidőt, ezért ezt le kell majd vonni a mért periódusidőből.

Ezen kívül adott, hogy $\rho_{lev} = 1.259kg/m^3$ és $\rho_{inga} = 8500kg/m^3$.

A mérés menete

Az elektronikus óra a fényérzékelő berendezéstől kapja az impulzusokat. A fényérzékelő berendezés egy LED-ből és egy fényszerzorból áll. Amikor az inga elhalad a LED előtt, kitakarja a fény útját, és ekkor az óra elektromos impulzust kap a fotodetektortól. Egy teljes lengéshez két ilyen impulzus tartozik - figyelmen kívül hagyva az iniciális impulzust, amely elindítja a számlálást. Az óra gyári beállításai 10 és 50 lengés időtartamának mérésére ad lehetőséget. Első lépésként ellenőrizzük, hogy 10 lengés idejére van-e beállítva a berendezés.

A tolósúly helyzete az inga testén lévő skáláról olvasható le. Állítsuk a tolósúlyt a legalsó helyzetbe.

Térítsük ki az ingát kb. 5cm-re, és elengedéskor ügyeljünk arra, hogy a releváns lengéssel merőleges, vízszintes mozgást ne végezzen az inga.

Ha megnyomjuk a START gombot, az első kitakarás elindítja a számlálást, és a 21. megszakítja.

A tolósúly helyzetét lépésről-lépsére 5cm-rel változtassuk, minden helyzet mellett határozzuk meg $10\cdot T_1$ -et.

Amint eljutottunk a tolósúly lehető legfelső helyzetéig, helyezzük át az ingát a másik ékre, és hasonló módon mérjük meg $10\cdot T_2$ értékeit.

Az időmérés reprodukálhatóságát célszerű a mérés ezen szakaszán elvégezni. Helyezzük a tolósúlyt tetszőleges (lehetőleg a görbe meredek részéhez tartozó) pozícióba, mérjük meg tíz teljes lengés (tíz periódus) időtartamát. Mozdítsuk el a tolósúlyt, majd állítsuk vissza az előbbi pozícióba, és ismételjük meg a mérést. Legalább 5 ismtélt mérést végezzünk el.

Az eddigi mérési pontok alapján nagyjából meghatározhatóak a két görbe metszéspontjai. Válasszunk ki egy metszépontot, és a tolósúly pozícióján változtatva 1cm-es lépésekkel, a metszéspont 2-3cm-es környezetben mérjük meg a lengésidők tízszeresét.

A súlypontmérő ék segítségével határozzuk meg a súlypont helyzetét az előbb kiválasztott metszéspontnál. Ezután a tolósúly különböző helyzetei mellett is határozzuk meg súlypont elhelyezkedését.

Mérési adatok

Az ingán található két ék távolsága : $l=1.0011\pm0.0002m$

A levegő sűrűsége : $\rho_{lev}=1.259kg/m^3$ Az inga sűrűsége : $\rho_{inga}=8500kg/m^3$ Az inga maximális szögkitérése: $\alpha_{max}=3^\circ$

x [m]	10T ₁ [s]
-0,40	20,193
-0,35	20,104
-0,30	20,033
-0,25	19,963
-0,20	19,903
-0,15	19,858
-0,10	19,819
-0,05	19,793
0	19,777
+0,05	19,774
+0,10	19,783
+0,15	19,803
+0,20	19,834
+0,25	19,887
+0,30	19,944
+0,35	20,017
+0,40	20,106

x [m]	10T ₂ [s]
-0,353	20,107
-0,303	20,052
-0,253	20,007
-0,203	19,967
-0,153	19,937
-0,103	19,914
-0,053	19,902
-0,003	19,895
+0,047	19,897
+0,097	19,907
+0,147	19,921
+0,197	19,944
+0,247	19,978
+0,297	20,012
+0,347	20,058
+0,397	20,106
+0,447	20,160

(a) Első ék

(b) Második ék

 $10 \cdot T_1$ és $10 \cdot T_2$ mért lengésidők a tolósúly xhelyének függvényében

x [m]	10T* ₁ [s]	10T* ₂ [s]
+0,41	20,128	20,115
+0,40	20,109	20,104
+0,39	20,089	20,094
+0,38	20,073	20,085
+0,37	20,052	20,075
+0,36	20,036	20,064

 $T_1(x)$ és $T_2(x)$ egyik metszéspontja körül részletesebben mért lengésidők

10T [s]	19,801	19,806	19,805	19,804	19,802

A reprodukálhatóság mérése (x = 0.1m)

x [m]	s [m]
+0,40	0.148
+0,35	0.144
+0,30	0.14
+0,25	0.135
+0,05	0.116
0	0.112
-0,05	0.107
-0,10	0.103
-0,15	0.099
-0,20	0.094
-0,25	0.089
-0,30	0.085
-0,35	0.08
-0,40	0.075

A súlypont helye (s) különböző tolósúly helyek mellett

Kiértékelés és hibaszámítás

Metszéspontok

Kezdjük a metszéspontok meghatározásával. Polinomot illesztettem a mérési pontokra.

A súlypont helye(s)különböző tolósúly helyek mellett

Ezekre a mérési pontokra interpoláltam, és meghatároztam a metszéspontokat. A két metszéspontx=-0.3459799m és x=0.40025126m felett van.

A súlypont helye (s) különböző tolósúly helyek mellett

Az utóbbit választottam, így ez a pont körül kisebb lépésközzel megmértem a periódusidők tízszeresét. Ezen mérési pontok közelíthetők egyenessel. Függvényillesztéssel határoztam meg a két egyenest, majd hasonlóan, interpolációval meghatároztam a metszéspontot.

A súlypont helye(s)különböző tolósúly helyek mellett

A metszéspontra ezúttal x=0.39488488m jött ki, itt $10 \cdot T_1=10 \cdot T_2=20.09942635s$. Az x-nek a T(x) függvénybe való behelyettesítése, illetve az illesztés T-ben 10^{-9} nagyságrendű hibát eredményez. Ennél sokkal nagyobb az idő mérésének hibája, illetve a reprodukálhatóságból számolt hiba is.

Reprodukálhatóság

Rögzített x mellett megmértem ötször ugyanazt az időt:

- átlaguk : $< 10 \cdot T > = 19.8036s$
- az átlagtól való legnagyobb eltérés : $\Delta(10 \cdot T) = 0.0026000000000001046s$
- így $\Delta T = 0.00026s$

Ezekből az adatokból már meghatározható g és a hibája az alábbi módszerrel.

$$g = \frac{4\pi^2}{T^2} \cdot l$$
$$\frac{\Delta g}{g} = \frac{\Delta l}{l} + 2 \cdot \frac{\Delta T}{T}$$
$$\Delta g = g \cdot \frac{\Delta g}{q}$$

Így:

$$g = \frac{4\pi^2}{(20.09942635/10)^2} \cdot 1.0011 \frac{m}{s^2} = 9.78295088 \frac{m}{s^2}$$

$$\frac{\Delta g}{g} = \frac{0.0002}{1.0011} + 2 \cdot \frac{0.00026}{20.09942635/10} = 0.0004584941$$

$$\Delta g = 0.00448543 \frac{m}{s^2}$$

Szögkorrekció

Ha $\alpha_{max} = 3^{\circ}$ a maximális szögkitérés, akkor:

$$\begin{split} T^2 &= 4 \cdot pi^2 \cdot \frac{l}{g_\alpha} \bigg(1 + \frac{1}{4} sin^2 \Big(\frac{\alpha_{max}}{2} \Big) + \frac{9}{64} sin^4 \Big(\frac{\alpha_{max}}{2} \Big) + \frac{25}{256} sin^6 \Big(\frac{\alpha_{max}}{2} \Big) + \ldots \bigg) = \\ T^2 &= 4 \cdot pi^2 \cdot \frac{l}{g_\alpha} \cdot k \\ g_\alpha &= 4 \cdot pi^2 \cdot \frac{l}{T^2} \cdot k \end{split}$$

Esetünkben:

$$k = 1.0001713742166882$$

$$g_{\alpha} = g \cdot k = 9.784627426 \frac{m}{s^2}$$

$$\Delta g_{\alpha} = g_{\alpha} - g = g \cdot (k - 1) = 0.0016765455 \frac{m}{s^2}$$

Ha kimérünk egy g_0 értéket, akkor tekinthetjük a két módszerrel kiszámolt periódusidókülönbséget:

$$g_0 = 4 \cdot \pi^2 \cdot \frac{l}{T_\alpha^2} \cdot k = 4 \cdot \pi^2 \cdot \frac{l}{T^2}$$
$$T_\alpha = \sqrt{k} \cdot T$$

$$\Delta T_{\alpha} = (\sqrt{k} - 1) \cdot T$$

$$\Delta T_{\alpha} = 8.568345 \cdot 10^{-5} \cdot T$$

$$\Delta T_{\alpha} = 1.7221879 \cdot 10^{-4} s$$

Mivel a T mennyiséget mértük, és a T_{α} mennyiségre vagyunk kívácsiak, a $T+\Delta T_{\alpha}=T_{\alpha}$ összefüggés alapján a mért periódusidőhöz kell majd hozzáadni ΔT_{α} -t.

Hidrosztatikai és hidrodinamikai korrekció

Az itt figyelembe vett hatások növelik az inga lengésidejét, ezért ΔT_{korr} -t le kell majd vonni T-ből.

$$\Delta T_{korr} = 0.8 \cdot \frac{\rho_{lev}}{\rho_{inaa}} \cdot T = 2.38166379 \cdot 10^{-4} s$$

Jelöljük T_0 -val azt a periódusidőt, amiben minden korrekció benne van:

$$T_0 = T + \Delta T_{\alpha} - \Delta T_{korr} \pm \Delta T = 2.00979015s \pm 0.00026s$$

$$g_0 = 4 \cdot \pi^2 \cdot \frac{l}{T_0^2} = 9.78359288 \frac{m}{s^2}$$

A relatív hiba $(\frac{\Delta g}{g}=\frac{\Delta l}{l}+2\cdot\frac{\Delta T}{T})$ értéke nem változik, viszont az abszolút hiba értéke igen:

$$\Delta g = g \cdot \frac{\Delta g}{g} = 9.78359288 \frac{m}{s^2} \cdot 0.0004584941 = 0.00448571 \frac{m}{s^2}$$

Súlypont

A súlypont helye (s) különböző tolósúly helyek mellett

$$s = 0.0912956 \cdot x + 0.11200593m$$

A triviáis megoldás:

$$x_{triv} = \frac{-b}{a} = -1.226848m$$

Ez közel sem egyezik meg a fent használt két metszétponthoz tartozó x-szel.

Eredmények

A nehézségi gyoruslás értéke, ha

- nem vesszük figyelembe a hibaforrásokat : $9.78295088 \frac{m}{s^2} \pm 0.00448543 \frac{m}{s^2}$
- ha a korrekciókat is figyelembe veszünk : $9.78359288 \frac{m}{s^2} \pm 0.00448571 \frac{m}{s^2}$

A súlypont és a tolósúly helyzete közti összefüggés:

$$s = 0.0912956 \cdot x + 0.11200593m$$

A triviáis megoldás:

$$x_{triv} = -1.226848m$$

Diszkusszió

A nehézségi gyorsulás névleges értéke $9.80665\frac{m}{s^2}$. Ehhez képest kb. 0.023-mal kisebb értéket kaptunk. Ez nem esik bele a kiszámolt korrigált nehézségi gyorsulás konfidencia tartományába. A mérés menete megfelelőnek tekinthető, mert az eredmény elég jól megközelíti a névleges értéket, viszont az emberi hiba és a mérési elrendezés pontossága ronthatott az eredményen.

A korrekciókkal és a korrekciók nélkül kiszámolt nehézségi gyorsulások beleesnek egymás konfidencia tartományába. Ez azért jó, mert ha nem a korrigált értékkel számoluk, ezen a mérési elrendezésen belül még nem fogunk túl nagyot tévedni. Bár ez olyan szempontból viszont rossz, hogy a korrekció sokkal kevésbé jelentős járulékot adott, mint a reprodukálhatóságból számolt hiba - azaz túl nagy az emberi hiba és a mérés pontatlansága.

Megmutattuk azt is, hogy a megmért $T_2(x)$ és $T_1(x)$ görbék metszéspontjai nem triviális megoldáshoz vezetnek.

Felhasznált irodalom

[1] Böhönyey - Havancsák - Huhn: Mérések a klasszikus fizika laboratóriumban, szerkesztette: Havancsák Károly, ELTE Eötvös Kiadó, Budapest, 2003.