Franklin Hu, Sunil Pedapudi SID: 20157715SID: 20247144 CS 194-10

2011-09-19 Assignment 2

$1. \ \, \mathbf{Kernels}$

(a) Original input

Input mapped onto space consisting of x_1 and x_1x_2 :

The maximum margin separator is the line $x_1x_2 = 0$.

The separating line on the original input space is a plane that rests at $x_1x_2 = 0$.

(b) Given

$$(x_1 - a)^2 + (x_2 - b)^2 - r^2 = 0$$
$$x_1^2 - 2ax_1 + a^2 + x_2^2 - 2bx_2 + b^2 - r^2 = 0$$

let us pose the following:

$$\mathbf{w} = [-2a, -2b, 1, 1]$$

$$\mathbf{x} = [x_1, x_2, x_1^2, x_2^2]$$

$$\beta = a^2 + b^2 - r^2$$

 $\mathbf{w^T}\mathbf{x} + \beta > 0$, if \mathbf{x} escapes the circle region $\mathbf{w^T}\mathbf{x} + \beta < 0$, if \mathbf{x} occupies the circle region $\mathbf{w^T}\mathbf{x} + \beta = 0$, if \mathbf{x} demarcates the circle region

We then let $y_i = -1$ if **x** occupies the region inside the circle; $y_i = 1$ otherwise. Then, to satisfy the separability constraint, we note that

$$y_i(\mathbf{w^T}\mathbf{x} + \beta) > 0, \forall i$$

Thus, we show that in feature space (x_1, x_2, x_1^2, x_2^2) , the region defined by $(x_1-a)^2 + (x_2-b)^2 - r^2 = 0$ is linearly separable.

2. Logistic Regression

Given:

$$L(w) = -\sum_{i=1}^{N} log(\frac{1}{1 + e^{y_i(w^T x_i + b)}}) + \lambda ||w||_2^2$$

$$\begin{split} \frac{\partial L}{\partial w_j} &= -\sum_{i=1}^N (1 + e^{y_i(w^T x_i + b)}) \cdot -1 \cdot (1 + e^{y_i(w^T x_i + b)})^{-2} (e^{y_i(w^T x_i + b)}) \cdot x_{ij} y_i + \frac{\partial}{\partial w_j} (\lambda ||w||_2^2) \\ &= -\sum_{i=1}^N \frac{-e^{y_i(w^T x_i + b)}}{(1 + e^{y_i(w^T x_i + b)})} \cdot x_{ij} y_i + 2\lambda w_j \\ &= \sum_{i=1}^N \frac{e^{y_i(w^T x_i + b)}}{(1 + e^{y_i(w^T x_i + b)})} \cdot x_{ij} y_i + 2\lambda w_j \end{split}$$

$$\begin{split} \frac{\partial^2 L}{\partial w_j \partial w_k} &= \frac{\partial L}{\partial w_k} (\sum_{i=1}^N \frac{e^{y_i(w^T x_i + b)}}{(1 + e^{y_i(w^T x_i + b)})} \cdot x_{ij} y_i + 2\lambda w_j) \\ &= \sum_{i=1}^N \frac{x_{ij} y_i \cdot (1 + e^{y_i(w^T x_i + b)}) \cdot \frac{\partial L}{\partial w_k} (e^{y_i(w^T x_i + b)}) - e^{y_i(w^T x_i + b)} \cdot \frac{\partial L}{\partial w_k} (1 + e^{y_i(w^T x_i + b)})}{(1 + e^{y_i(w^T x_i + b)})^2} \\ &= \sum_{i=1}^N \frac{x_{ij} y_i \cdot (1 + e^{y_i(w^T x_i + b)}) \cdot \frac{\partial L}{\partial w_k} (e^{y_i(w^T x_i + b)}) - e^{y_i(w^T x_i + b)} \cdot \frac{\partial L}{\partial w_k} (e^{y_i(w^T x_i + b)})}{(1 + e^{y_i(w^T x_i + b)})^2} \\ &= \sum_{i=1}^N \frac{x_{ij} y_i \cdot (1 + e^{y_i(w^T x_i + b)} - e^{y_i(w^T x_i + b)}) \cdot \frac{\partial L}{\partial w_k} (e^{y_i(w^T x_i + b)})}{(1 + e^{y_i(w^T x_i + b)})^2} \\ &= \sum_{i=1}^N \frac{x_{ij} y_i \cdot \frac{\partial L}{\partial w_k} (e^{y_i(w^T x_i + b)})}{(1 + e^{y_i(w^T x_i + b)})^2} \\ &= \sum_{i=1}^N \frac{x_{ij} y_i \cdot e^{y_i(w^T x_i + b)} x_{ik} y_i}{(1 + e^{y_i(w^T x_i + b)})^2} \\ &= \sum_{i=1}^N \frac{x_{ij} x_{ik} y_i y_i \cdot e^{y_i(w^T x_i + b)}}{(1 + e^{y_i(w^T x_i + b)})^2} \end{split}$$

Since $y_i^2 = 1$, we simply rewrite this as

$$\sum_{i=1}^{N} x_{ij} x_{ik} \cdot \frac{e^{y_i(w^T x_i + b)}}{(1 + e^{y_i(w^T x_i + b)})^2} \tag{1}$$

(c) Then, we wish to show

$$\mathbf{a^THa} \equiv \sum_{j,k} a_j a_k H_{j,k} \ge 0$$

Note that summation (1) indicates the j, k^{th} element of the Hessian which allows us to rewrite the the above inequality as

$$\sum_{j,k} a_{j} a_{k} H_{j,k} = \sum_{j,k} a_{j} a_{k} \sum_{i=1}^{N} x_{ij} x_{ik} \cdot \frac{e^{y_{i}(w^{T} x_{i} + b)}}{(1 + e^{y_{i}(w^{T} x_{i} + b)})^{2}}$$

$$= \sum_{j,k} a_{j} a_{k} \sum_{i=1}^{N} x_{ij} x_{ik} \cdot \frac{e^{y_{i}(w^{T} x_{i} + b)}}{(1 + e^{y_{i}(w^{T} x_{i} + b)})^{2}}$$

$$= \sum_{i=1}^{N} \frac{e^{y_{i}(w^{T} x_{i} + b)}}{(1 + e^{y_{i}(w^{T} x_{i} + b)})^{2}} \sum_{j,k} a_{j} a_{k} x_{ij} x_{ik}$$

$$= \sum_{i=1}^{N} \frac{e^{y_{i}(w^{T} x_{i} + b)}}{(1 + e^{y_{i}(w^{T} x_{i} + b)})^{2}} \sum_{j,k} \mathbf{a}^{T} \mathbf{x} \mathbf{a}_{k} x_{ik}$$

$$= \sum_{i=1}^{N} \frac{e^{y_{i}(w^{T} x_{i} + b)}}{(1 + e^{y_{i}(w^{T} x_{i} + b)})^{2}} \sum_{j,k} \mathbf{a}^{T} \mathbf{x} \mathbf{a}^{T} \mathbf{x}$$

$$= \sum_{i=1}^{N} \frac{e^{y_{i}(w^{T} x_{i} + b)}}{(1 + e^{y_{i}(w^{T} x_{i} + b)})^{2}} \sum_{j,k} \mathbf{a}^{T} \mathbf{x} \mathbf{a}^{T} \mathbf{x}$$

$$= \sum_{i=1}^{N} \frac{e^{y_{i}(w^{T} x_{i} + b)}}{(1 + e^{y_{i}(w^{T} x_{i} + b)})^{2}} \cdot (\mathbf{a}^{T} \mathbf{x})^{2} \ge 0$$

We show this summation is non-negative by showing each component of the summation is non-negative. Consider

$$\sum_{i=1}^{N} \frac{\alpha}{\beta} \cdot \epsilon = \sum_{i=1}^{N} \frac{e^{y_i(w^T x_i + b)}}{(1 + e^{y_i(w^T x_i + b)})^2} \cdot (\mathbf{a^T x})^2 \ge 0 \text{ Then, we realize that}$$

$$\alpha = e^{y_i(w^T x_i + b)} > 0, \text{ since } e^z \text{ is always positive}$$

$$\beta = (1 + e^{y_i(w^T x_i + b)})^2 > 0$$

$$\epsilon = (\mathbf{a^T x})^2 \ge 0$$

Therefore, L is convex.

- 3. Training data
 - (a) Yes the classes {+,-} are linearly separable. The class is represented by circles in the graph below.

(b) The best hyperplane by inspection is:

$$x_{2} = -x_{1} + 1.5$$

$$x_{1} + x_{2} - 1.5 = 0$$

$$\begin{pmatrix} 1 & 1 \end{pmatrix} \begin{pmatrix} x_{1} \\ x_{2} \end{pmatrix} - 1.5 = 0$$

So therefore $w = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$ and b = -1.5. The support vectors are (1,0), (0,1), (2,0), (1,1).

- (c) If we remove a support vector, then the optimal margin will increase since there are fewer constraints.
- (d) The answer for (c) is not always true. Consider if we have a class + with points (0,0), (0,1), (0,2) and a class with points (1,0), (1,1), (1,2). If we remove either (0,1) or (1,1), the best hyperplane does not change and thus the optimal margin remains the same.

- 4. 3 point dataset
- 5. Seismic waves
 - (a) phase, iphase frequencies
 - phase

	phase	absolute frequency	relative frequency
	Lg	1594	0.017811
	P	61779	0.690322
	PKP	5974	0.066754
	Pg	403	0.004503
	Pn	10762	0.120255
	Rg	11	0.000123
	S	4685	0.052350
	Sn	4285	0.047881

 \bullet iphase

	iphase	absolute frequency	relative frequency
_	Lg	2171	0.024259
	N	10683	0.119372
	Р	50815	0.567810
	Pg	5291	0.059122
	Pn	12610	0.140905
	Px	365	0.004079
	Rg	444	0.004961
	Sn	318	0.003553
	Sx	4179	0.046696
	tx	2617	0.029243

(b) Confusion matrix (empty cells are zero)

[phase										
			Lg	PKP	Р	S	Rg	Sn	Pn	Pg	Total	Accuracy (%)
		Lg	293	2	114	860	5	859	34	4	2171	13.496
		Sx	297	61	971	1257	3	1191	393	6	4179	58.579
		$\mathbf{t}\mathbf{x}$	17	383	2039	26		18	111	23	2617	0
		Px	30	13	101	46		68	61	46	365	60.548
	iphase	N	431	564	6097	1278	1	1133	1149	30	10683	0
		Р	105	4586	42600	336		153	2993	42	50815	83.834
		Rg	83		8	182	2	169			444	0.450
		Pg	218	120	2716	318		303	1509	107	5291	2.022
		Pn	95	244	7123	243	256		4504	145	12610	35.717
		Sn	25	1	10	139		135	8		318	42.453

(c) Top stations

i. 7: 8751 detections

ii. 24: 5794 detections

iii. 3: 2677 detections

iv. 80: 2528 detections

v. 19: 2478 detections

vi. 38: 2429 detections

vii. 63: 2411 detections

viii. 12: 2343 detections

ix. 74: 2265 detections

x. 65: 2227 detections

(d) Data munging

	station	iphase accuracy (%)	classifier accuracy (%)
	7	97.75	88.08
	24	87.23	92.15
	3	83.86	92.02
•	80	95.64	88.10
	19	67.56	88.87
	38	94.74	90.69
	63	91.09	88.18
	12	82.33	88.77
	74	81.44	89.56
	65	81.56	92.51

(e) Optimal c

7

station	c	accuracy
7	0.42	93.23
24	0.5	86.64
	0.1	87.43
	0.2	87.03
)	0.05	87.98
	0.01	89.79
	0.001	92.04
	0.0001	92.20
	0	92.15