Revealing mesoscale structures to control dynamical processes in temporal networks

Laetitia Gauvin

in collaboration with André Panisson, Alain Barrat and Ciro Cattuto

Introduction - Motivation

 Natural systems represented as time-varying networks of interactions

 Interaction patterns of people shape the epidemic spread

How to mitigate epidemic spread by using properties of temporal network?

Detection of mesoscale structures

L. G., A. Panisson, C. Cattuto. PLoS ONE (2014)

Case study

Lyon, France 231 students 10 teachers 2 days

ISI Foundation

Detection of mesoscale structures

Detection of mesoscale structures

Mesoscale targeted intervention: SI process

Impact on the epidemic spread

Mesoscale targeted intervention: SI process

r	1	2	3	4	5	6	7
percentage of weights removed	11.3	8.6	8.8	7.1	8.3	6.9	5.7
r	8	9	10	11	12	13	14
percentage of weights removed	6.8	7.5	7.5	4.8	6.8	5.7	6

$$\tau_r = \left\langle \frac{T_j^r - T_j}{T_i} \right\rangle$$

half infection times

 T_{j}^{r} 1 structure removed T_{i} full network

behaviour robust for different stochastic processes

Mesoscale targeted intervention: SIR process

Impact on the epidemic spread

Mesoscale targeted intervention: SIR process

ISI Foundation

Lætitia Gauvin 9/14

Mesoscale targeted intervention: SIR process

Framework summary

Case study: ILI in a primary school

- Dataset: sequence of typical weeks in the school
- Influenza-like disease : SEIR
- Exposed in the school and outside
- Latent period : 2days
- Recovery: 4 days
- Infectious go home after school
- Reactive intervention: avoid interactions detected as having a strong impact once the spreading started
- Intervention equivalent to limit mix events and replace by class-like events

Case study: ILI in a primary school

Percentage of simulations with an attack rate greater than 10%:

- 54 % in case of an intervention
- 71% without intervention

ISI Foundation

Lætitia Gauvin 13/14

Conclusions

- Methodology to uncover mesocale structures in temporal networks and their importance in a spreading process in an unsupervised manner
- Targeted intervention: no need to involve the whole system no need to define a ranking of the nodes
- Non trivial mesotructures : complex patterns of correlated activity
- Systematic characterisation and evaluation of mesocale structures in temporal network
- Following the previous framework, we show that a reorganization of the schedule leads to reduction of 42% of infectious cases
- Revealing latent factors of temporal networks for mesoscale intervention in epidemic spread, ArXiv L. Gauvin, A. Panisson, A. Barrat, and C. Cattuto