

Due: 11:59 pm on Dec 6, 2024

Problem 1 (30 pts)

Sunlight is normally incident on the surface of water with index of refraction n = 1.33.

1. Derive the Fresnel equations for this case first, and then obtain the energy reflection and transmission coefficients, R and T.

2. If the incident flux is $1kW/m^2$, what is the pressure that sunlight exerts on the surface of the water?

Problem 2 (35 pts)

- 1. Consider the Fraunhofer diffraction pattern due to two unequal slits. Let a and b be the unequal slit widths and c the distance between their centers. Derive an expression for the intensity of the pattern for any diffraction angle θ , assuming the arrangement to be illuminated by perpendicular light of wavelength λ .
- 2. Use your formula from 1. to obtain expressions for the pattern in the following special cases and make a sketch of those patterns:
 - (a) a = b,
 - (b) a = 0.

Problem 3 (35 pts)

A sound field is created by an arrangement of identical line sources grouped into two identical arrays of N sources each as shown below.

All radiators lie in a plane perpendicular to the page and produce waves of wavelength λ .

- 1. Assuming $r \gg d, c, \lambda$ find the intensity of the sound produced as a function of the maximum intensity $I_m, \lambda, \theta, N, c$ and d, the distance between the centers of the arrays.
- 2. By taking an appropriate limit, derive an approximate result for the interference pattern produced by two slits of width a whose centers are a distance d apart.