Week 06: Tasks

 ${\sf FanFly}$

April 12, 2020

FanFly

1/11

Today we are going to introduce another combinatorial optimization problem, which is called the **task selection problem**.

◆ロト ◆個ト ◆差ト ◆差ト を めなべ

2/11

FanFly Week 06: Tasks April 12, 2020

Today we are going to introduce another combinatorial optimization problem, which is called the **task selection problem**.

Task Selection Problem

- Input: A collection of n tasks, each with a start time x_i and an end time y_i .
- Output: A maximum size subset of mutually compatible tasks.

◆ロト ◆個ト ◆差ト ◆差ト を りへで

Today we are going to introduce another combinatorial optimization problem, which is called the **task selection problem**.

Task Selection Problem

- Input: A collection of n tasks, each with a start time x_i and an end time y_i .
- Output: A maximum size subset of mutually compatible tasks.

We will use $T_i = [x_i, y_i]$ to denote the *i*th task.

Today we are going to introduce another combinatorial optimization problem, which is called the **task selection problem**.

Task Selection Problem

- Input: A collection of n tasks, each with a start time x_i and an end time y_i.
- Output: A maximum size subset of mutually compatible tasks.

We will use $T_i = [x_i, y_i)$ to denote the *i*th task.

Furthermore, two tasks T_i and T_j are compatible if

$$[x_i, y_i) \cap [x_j, y_j) = \varnothing.$$

Given a set of tasks $\{T_1, \ldots, T_n\}$, how can we check if they are mutually compatible?

4 ロ ト 4 個 ト 4 種 ト 4 種 ト 種 り 9 0 0

Given a set of tasks $\{T_1, \ldots, T_n\}$, how can we check if they are mutually compatible?

• Check if all pairs of tasks are disjoint. It takes $\Theta(n^2)$ time.

4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶

April 12, 2020

3/11

FanFly Week 06: Tasks

Given a set of tasks $\{T_1, \ldots, T_n\}$, how can we check if they are mutually compatible?

- Check if all pairs of tasks are disjoint. It takes $\Theta(n^2)$ time.
- Sort the tasks based on start time, and then check if all consecutive tasks are disjoint. It takes $\Theta(n)$ time to check the tasks.

◆ロト ◆個ト ◆重ト ◆重ト ■ からの

Given a set of tasks $\{T_1, \ldots, T_n\}$, how can we check if they are mutually compatible?

- Check if all pairs of tasks are disjoint. It takes $\Theta(n^2)$ time.
- Sort the tasks based on start time, and then check if all consecutive tasks are disjoint. It takes $\Theta(n)$ time to check the tasks.

Sorting saves lots of time!

Given a set of tasks $\{T_1, \ldots, T_n\}$, how can we check if they are mutually compatible?

- Check if all pairs of tasks are disjoint. It takes $\Theta(n^2)$ time.
- Sort the tasks based on start time, and then check if all consecutive tasks are disjoint. It takes $\Theta(n)$ time to check the tasks.

Sorting saves lots of time!

Thus, it must be a good idea to sort the tasks first.

4□ > 4□ > 4 = > 4 = > = 90

Now supposed that the tasks are sorted based on start time.

Now supposed that the tasks are sorted based on start time.

 For each possible subset of tasks, check if it contains tasks that are not disjoint.

◆ロト ◆個ト ◆差ト ◆差ト 差 めなべ

April 12, 2020

4/11

FanFly Week 06: Tasks

Now supposed that the tasks are sorted based on start time.

- For each possible subset of tasks, check if it contains tasks that are not disjoint.
- There are $\Theta(2^n)$ possible subsets.

◆ロト ◆個ト ◆差ト ◆差ト を りへで

Now supposed that the tasks are sorted based on start time.

- For each possible subset of tasks, check if it contains tasks that are not disjoint.
- There are $\Theta(2^n)$ possible subsets.
- It takes O(n) time for each subset.

4□ > 4□ > 4 = > 4 = > = 90

Now supposed that the tasks are sorted based on start time.

- For each possible subset of tasks, check if it contains tasks that are not disjoint.
- There are $\Theta(2^n)$ possible subsets.
- It takes O(n) time for each subset.
- Thus, we can solve the problem in $O(2^n n)$ time.

◄□▶◀圖▶◀불▶◀불▶ 불 ∽Q

April 12, 2020

4/11

FanFly Week 06: Tasks

By the way, how to enumerate all subsets of a set?

By the way, how to enumerate all subsets of a set?

By the way, how to enumerate all subsets of a set?

```
>>> subsets(3)
```

- 4 ロ ト 4 個 ト 4 差 ト 4 差 ト - 差 - かくぐ -

FanFly Week 06: Tasks

5 / 11

FanFly

By the way, how to enumerate all subsets of a set?

```
def subsets(n):
    """Returns all subsets of [0, 1, ..., n-1]."""
    subsets = []
    for m in range(2 ** n):
        subset = []
        for i in range(n):
            if (m // (2 ** i)) % 2 == 1:
                 subset.append(i)
            subsets.append(subset)
    return subsets
```

```
>>> subsets(3)
[[], [0], [1], [0, 1], [2], [0, 2], [1, 2], [0, 1, 2]]
```

Week 06: Tasks

4 D P 4 DP P 4 Z P 4 Z P Z Z P 3 Q Q

April 12, 2020

5 / 11

The following theorem is a simple result, but it can help us develop a faster algorithm.

- 4 ロ ト 4 個 ト 4 恵 ト 4 恵 ト - 恵 - りへの

The following theorem is a simple result, but it can help us develop a faster algorithm.

Theorem

Let $S = \{T_1, \dots, T_n\}$ be a collection of tasks.

4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶

The following theorem is a simple result, but it can help us develop a faster algorithm.

Theorem

Let $S = \{T_1, \dots, T_n\}$ be a collection of tasks.

• If $T_i \subseteq T_j$, then there must be a maximum-size subset of mutually compatible tasks that does not contain T_i .

4□ > 4□ > 4 = > 4 = > = 90

The following theorem is a simple result, but it can help us develop a faster algorithm.

Theorem

Let $S = \{T_1, \ldots, T_n\}$ be a collection of tasks.

- If $T_i \subseteq T_j$, then there must be a maximum-size subset of mutually compatible tasks that does not contain T_i .
- The task with earliest finish time must be included in some maximum-size subset of mutually compatible tasks.

< ロト < 個 ト < 重 ト < 重 ト ■ ■ の Q @

This theorem leads us to find the following algorithm.

This theorem leads us to find the following algorithm.

For each step, let $S = \{T_1, \dots, T_n\}$ be the set of tasks that we are currently dealing with, where T_1, \dots, T_n are sorted based on start time.

4 ロ ト 4 間 ト 4 差 ト 4 差 ト 差 り 9 0 0

This theorem leads us to find the following algorithm.

For each step, let $S = \{T_1, \dots, T_n\}$ be the set of tasks that we are currently dealing with, where T_1, \dots, T_n are sorted based on start time.

• Note that $T_1 = [x_1, y_1)$ is the task with earliest start time.

◆ロト ◆個ト ◆差ト ◆差ト を りへで

This theorem leads us to find the following algorithm.

For each step, let $S = \{T_1, \dots, T_n\}$ be the set of tasks that we are currently dealing with, where T_1, \dots, T_n are sorted based on start time.

- Note that $T_1 = [x_1, y_1)$ is the task with earliest start time.
- If $y_1 \ge y_2$, then we discard T_1 .

◆ロト ◆個ト ◆重ト ◆重ト ■ からの

This theorem leads us to find the following algorithm.

For each step, let $S = \{T_1, \dots, T_n\}$ be the set of tasks that we are currently dealing with, where T_1, \dots, T_n are sorted based on start time.

- Note that $T_1 = [x_1, y_1)$ is the task with earliest start time.
- If $y_1 \ge y_2$, then we discard T_1 .
- If $y_1 < y_2$, then we choose T_1 and discard the tasks overlapping with T_1 .

◆ロト ◆個ト ◆重ト ◆重ト ■ からの

This theorem leads us to find the following algorithm.

For each step, let $S = \{T_1, \dots, T_n\}$ be the set of tasks that we are currently dealing with, where T_1, \dots, T_n are sorted based on start time.

- Note that $T_1 = [x_1, y_1)$ is the task with earliest start time.
- If $y_1 \ge y_2$, then we discard T_1 .
- If $y_1 < y_2$, then we choose T_1 and discard the tasks overlapping with T_1 .

Since we always make the choice that looks best at the moment, the algorithm is usually called a **greedy algorithm**.

◆ロト ◆問 ト ◆ 恵 ト ◆ 恵 ・ 釣 へ ②

April 12, 2020

7 / 11

FanFly Week 06: Tasks

Task Selection Problem

- Input: A collection of n tasks, each with a start time x_i and an end time y_i .
- Output: A maximum size subset of mutually compatible tasks.

What is the overall time complexity of the greedy algorithm that solves the task selection problem?

Θ(n)

- $\Theta(n \log n)$
- \bullet $\Theta(n^2)$

 \bullet $\Theta(2^n)$

8/11

Task Selection Problem

- Input: A collection of n tasks, each with a start time x_i and an end time y_i .
- Output: A maximum size subset of mutually compatible tasks.

What is the overall time complexity of the greedy algorithm that solves the task selection problem?

 \bullet $\Theta(n)$

 \bullet $\Theta(n \log n)$

 $\Theta(n^2)$

 \bullet $\Theta(2^n)$

Solution

It takes $\Theta(n \log n)$ time to sort the tasks based on start time. Then it takes $\Theta(n)$ to choose the compatible tasks. Thus, the overall time complexity is $\Theta(n \log n)$.

Consider the following code, which is slightly different from the previous version.

```
def subsets(n):
    """Returns all subsets of [0, 1, ..., n-1]."""
    subsets = {} # use dict instead of list
    for m in range(2 ** n):
        subset = []
        for i in range(n):
            if (m // (2 ** i)) % 2 == 1:
                subset.append(i)
        subsets[m] = subset
    return subsets
```

◄□▶◀圖▶◀불▶◀불▶ 불 ∽Q♡

Consider the following code, which is slightly different from the previous version.

Then we have the following result.

```
>>> subsets(2)
{0: [], 1: [0], 2: [1], 3: [0, 1]}
```

FanFly Week 06: Tasks April 12, 2020 9 / 11

4 D > 4 B > 4 B > 4 B >

Exercise #2 (cont.)

Now we assume that the following Python code is executed.

```
= subsets(n)
```

Please find the value of P[18].

Exercise #2 (cont.)

Now we assume that the following Python code is executed.

```
= subsets(n)
```

Please find the value of P[18].

Solution

Since $18 = 2^1 + 2^4$, the value of P[18] should be [1, 4]. (That is, 18 can be represented as 10010 in binary.)

Consider the task selection problem for the following set of tasks.

Task	T_1	T_2	T_3	T_4	T_5	T_6	T_7	T_8	T_9	T_{10}	T_{11}
Start	0	1	2	3	3	5	5	6	8	8	12
Start End	6	4	14	5	9	7	9	10	11	12	16

What is the maximum size of subset of mutually compatible tasks?

Consider the task selection problem for the following set of tasks.

Task											
Start	0	1	2	3	3	5	5	6	8	8	12
End	6	4	14	5	9	7	9	10	11	12	16

What is the maximum size of subset of mutually compatible tasks?

Solution

There can be at most 4 mutually compatible tasks, e.g., $\{T_2, T_6, T_9, T_{11}\}$.