PMATH 333 Preview Notes

mzx!

June 30, 2019

Contents

1	The	Real	Number System		
2	Sequences in R				
	2.1	Limits	s of Sequences		
		2.1.1	Holds for large		
		2.1.2	At Most One Limit		
		2.1.3	Subsequence		
		2.1.4	Example		
		2.1.5	Example		
		2.1.6			
3	Pro	of Tecl	hnique		
	3.1		·		
		3.1.1	Limits Not Exist		
Ι	ne	wpart	L		

Chapter 1

The Real Number System

This Chapter Will Be Skipped Due To The Easiness of The Chapter

Chapter 2

Sequences in R

2.1 Limits of Sequences

Infinite Sequence is a function whose domain is N. For example,

- $1, \frac{1}{2}, \frac{1}{4}$... represents the sequence $\{\frac{1}{2^{n-1}}\}_{n \in \mathbb{N}}$
- -1,1,-1,1...represents the sequence $\{(-1)^n\}_{n\in\mathbb{N}}$
- It is important not to confuse a **Sequence** with the **Set**. For example,

Sequence
$$\{x_n\}_{n\in\mathbb{N}}$$
 is $1,2,3,4...$

Set $\{x_n : n \in \mathbb{N}\}$ could be 2,1,3,4...

• Also, the **Sequence** 1,-1,1,-1, is infinite, but the **Set** $\{(-1)^n : n \in \mathbb{N}\}$ has only 2 points.

Definition 2.1.1

A sequence of real numbers x_n is said to *converge* to a real number $a \in \mathbf{R}$ \iff for every $\varepsilon > 0$, there is an $N \in \mathbf{N}$ (which in general depends on ε), such that

 $n \ge N$ implies $|x_n - a| < \varepsilon$

Interchangeable notation We shall use the following phrases and notation interchangeably

- a) $\{x_n\}$ converges to a
- b) x_n converges to a;
- $c)a = \lim_{n \to \infty} x_n;$
- $d)x_n \to a \text{ as } n \to \infty$

e)the *limit* of x_n exists and equals a

2.1.1 Holds for large

Let \mathcal{P}_n be a property indexed by **N**.We shall say that \mathcal{P}_n Holds for large n if there is an $N \in \mathbf{N}$ such that \mathcal{P}_n is true for all $n \geq N$.

Hence a loose summary of Definition 2.1 is that x_n converges to $a \iff |x_n - a|$ is small for large n

2.1.2 At Most One Limit

A sequence can have at most one limits

Proof Suppose that $\{x_n\}$ converges to both a and b. By definition, given $\varepsilon > 0$ there is an integer N such that $n \geq N$ implies $|x_n - a| < \frac{\varepsilon}{2}$ and $|x_n - b| < \frac{\varepsilon}{2}$. Thus it follows

$$|a - b| \le |a - x_n| + |x_n - b| < \varepsilon$$

Since $|a - b| < \varepsilon$, we conclude that $a = b^1$

2.1.3 Subsequence

Definition 2.1.2

By a Subsequence of a sequence $\{x_n\}_{n\in\mathbb{N}}$, we shall mean a sequence of the form $\{x_nk\}_{k\in\mathbb{N}}$, where each $n_k\in\mathbb{N}$ and $n_1< n_2<\dots$

- Thus a subsequence x_{n1}, x_{x2}, \dots of x_1, x_2, \dots is obtained by "deleting" from x_1, x_2, \dots all x_n 's except those such that n = nk
- Subsequence are sometimes used to correct a sequence that behaves badly or to speed up convergence of another that converges slowly.

2.1.4 Example

- 1. Prove that $\frac{1}{n} \to 0$ as $n \to \infty$
- 2. if $x_n \to 2$, prove that $\frac{(2x_n+1)}{x_n} \to \frac{5}{2}$ as $n \to \infty$

 $^{^{1}\}mathrm{By}$ Theorem 1.9

Proof 1) Let $\varepsilon > 0$. Use the Archimedean Principle² to choose $N \in \mathbb{N}$ such that $N > \frac{1}{\varepsilon}$. By taking the reciprocal of this inequality. We see that $n \geq N$ implies $\frac{1}{n} \leq \frac{1}{N} < \varepsilon$. Since $\frac{1}{n}$ are all positive, it follows that $|\frac{1}{n} < \varepsilon|$ for all $n \geq N$

Proof 2) Let $\varepsilon > 0$

Since $x_n \to 2$, apply Definition 2.1 to this $\varepsilon > 0$ to choose $N_1 \in \mathbf{N}$ such that $n \ge N_1$ implies $|x_n - 2| < \varepsilon$

Next, apply Definition 2.1 with $\varepsilon = 1$ to choose N_2 such that $n \geq N_2$ implies $|x_n - 2| < 1$

By Fundamental Theorem of Absolute Values, we have $n \geq N_2$ implies $x_n > 1$ Set $N = \max\{N_1, N-2\}$ and suppose that $n \geq N$.

Since $n \ge N_1$, we have $|2 - x_n| = |x_n - 2| < \varepsilon$ Since $n \ge N_2$, we have $0 < \frac{1}{(2x_n)} < \frac{1}{2} < 1$ It follows that

$$\left|\frac{2x_n+1}{x_n} - \frac{5}{2}\right| = \frac{|2-x_n|}{2x_n} < \frac{\varepsilon}{2x_n} < \varepsilon$$

for all $x \geq N$

2.1.5 Example

1. Prove the sequence $\{(-1)^n\}_{n\in\mathbb{N}}$ has no limits

Proof Suppose that $(-1)^n \to a$ as $n \to \infty$ for some $a \in R$. Given $\varepsilon = 1$, there is an $N \in \mathbb{N}$ such that $n \geq N$ implies $|(-1)^n - a| < \varepsilon$

For n odd, this implies |1+a|=|-1-a|<1

For n even, this implies |1-a| < 1

$$2 = |1 + 1| \le |1 - a| + |1 + a| < 1 + 1 = 2$$

that is, 2 < 2, a contradiction³

2.1.6

²Definition An ordered field F has the Archimedean Property if, given any positive x and y in F there is an integer n>0 so that nx>y. ³Triangle Inequality

Chapter 3

Proof Technique

3.1 Limits

3.1.1 Limits Not Exist

1. Prove the sequence $\{(-1)^n\}_{n\in\mathbb{N}}$ has no limits

Proof Suppose that $(-1)^n \to a$ as $n \to \infty$ for some $a \in R$. Given $\varepsilon = 1$, there is an $N \in \mathbb{N}$ such that $n \ge N$ implies $|(-1)^n - a| < \varepsilon$ For n odd, this implies |1 + a| = |-1 - a| < 1 For n even, this implies |1 - a| < 1

$$2 = |1 + 1| \le |1 - a| + |1 + a| < 1 + 1 = 2$$

that is, 2 < 2, a contradiction¹

 $^{^1{\}rm Triangle~Inequality}$

Part I newpart

