Dinâmica e Controle de Veículos Espaciais Aula 1

Malha de controle de atitude Sensores de medida de atitude

Referências

- [1] Ley, W.; Wittman, K.; Hallmann, W. Handbook of Space Technology. West Sussex: Wiley, 2009.
- Seções 4.5.5 e 4.5.6
- [2] Sidi, M. J. Spacecraft Dynamics and Control: a pratical engineering approach. Revised edition, Cambridge: Cambridge University Press, 2000.
- Apêndice B

Controle de Atitude

Diagrama ilustrativo do sistema de controle de atitude de veículo espacial. Fonte: ref. [1].

Controle de Atitude

- Uma malha de controle de atitude é determinada a partir de diversos requisitos:
 - Objetivos da missão do veículo espacial (VE);
 - Fase da missão do VE;
 - Estabilização, regulação ou rastreio;
 - Precisão do apontamento;
 - Número de eixos: um, dois ou três;
 - Sensores disponíveis;
 - Atuadores disponíveis.

Controle de Atitude

- O foco do curso é:
 - Modelagem da mecânica de atitude (cinemática e dinâmica);
 - Algoritmos clássicos de controle de atitude.
- Embora seja de fundamental importância para o processo, a determinação de atitude não será investigada em profundidade;
- Somente na aula de hoje, uma pequena introdução ao assunto de determinação de atitude é realizado;
- Apresenta-se uma breve idéia do processo de determinação de atitude, a seguir, apresenta-se os principais métodos de medida, com foco nos conceitos de operação e escopo de aplicação.

Métodos:

- Observação vetorial;
- Propagação de atitude;
- Filtros.
- Observação vetorial:
 - Determinação da matriz de atitude a partir de dois vetores não colineares;
 - Medidas destes vetores no referencial do corpo são comparadas com valores conhecidos destes vetores em um referencial externo.
- Propagação de atitude:
 - Medida de velocidade angular é integrada em equações de cinemática de atitude;
- Filtros:
 - Combinam observação vetorial e propagação de atitude;
 - A observação vetorial é usada para corrigir o erro acumulado inerente à propagação.

- Para determinação de atitude, são necessários dois sistemas de referência:
 - Do corpo: determina as direções referenciais do veículo;
 - Externo: determina a referência com respeito à qual o veículo é orientado. Exemplos:
 - LVLH local vertical, local horizontal;
 - PCPF centrado e fixo ao planeta;
 - ICP inercial centrado no planeta.
- A medida de atitude é feita no sistema de referência do corpo. Mas precisamente, no sistema de referência do sensor, cuja orientação com respeito ao corpo é conhecida.

- A medida feita no referencial do corpo é comparada com o valor conhecido do vetor num referencial externo;
- O referencial externo depende da natureza do vetor medido, por exemplo:
 - Direção solar: conhecida no referencial ICP;
 - Campo magnético terrestre: conhecida no LVLH.
- Com base nas relações de transformação conhecidas entre os referenciais, os vetores de referência podem ser convertidos para um único. Por exemplo:
 - Se a atitude é determinada com respeito ao LVLH, a medida de vetor solar no ICP é convertida para o LVLH.

- Exemplo de método de observação vetorial: noção intuitiva do método. Montagem de sistema de equações;
- Métodos clássicos:
 - TRIAD:
 - F. Landis Markley, ATTITUDE DETERMINATION USING TWO VECTOR MEASUREMENTS, 1999 Flight Mechanics Symposium, 1999.
 - https://ntrs.nasa.gov/api/citations/19990052720/downloads/19990052720.pdf
 - QUEST:
 - Shuster, M.D. and Oh, S.D. "Three-Axis Attitude Determination from Vector Observations," Journal of Guidance and Control, Vol.4, No.1, Jan.-Feb. 1981, pp. 70-77.
 - https://ahrs.readthedocs.io/en/latest/filters/quest.html#shuster1981

Métodos de Medida de Atitude

Method	Example	Characteristics	
Direct	Star sensor	Three axes, high accuracy	
	GNSS attitude measurements	Three axes, medium accuracy	
Indirect	Magnetometer Earth sensor Sun sensor	Simple method High reliability Transformation of measurements needed	
Inertial	Gyroscope, Gyros	Attitude alignment High accuracy over short periods Very high angular resolution Measurement independent of external sources	

Detector de estrelas por tubo dissecador de imagem. Fonte: ref. [2].

Cálculo dos componentes do vetor unitário da estrela no referencial do sensor. Fonte: ref. [2].

Componentes de um software de determinação de atitude de um sensor de estrelas. Fonte: ref. [2].

Cabeça de sensor de estrelas com defletor. Fonte: ref. [1]. Seção transversal da cabeça de sensor de estrelas. Fonte: ref. [1].

Sensor de estrelas baseado em matriz CCD. Fonte: ref. [2].

Uso de um sub array de pixels 3x3 para aumentar a resolução do sensor pelo algoritmo do centroide da imagem. Fonte: ref. [2].

Attributes	Value	Annotations
Accuracy (EOL)	LOS 0.025°, 3 σ Cross 0.003°, 3 σ	EOL (End of Life) approx. 10 years, rotation rates < 0.1°/s LOS (Line of Sight) = optical axis
Temperature stability	±0.003°	Temperature range -30 to +30 °C
Update rate	8 Hz	_
Baffle	30° (Sun exclusion angle) 25° (albedo exclusion angle)	Angular distance between incident radiation and optical axis
FOV	About 18° × 13°	FOV = Field of View
Temperature range	<pre>-45 to +35 °C (sensor head) -45 to +50 °C (electronic box)</pre>	Temperature at the mounting interface
Mass	3.7 kg	Total: head, electronic box, harness
Power	8 W (cooler off) 14 W (cooler on)	At 20 °C ambient temperature

- Tipos de sensor solar:
 - Grosseiro: mede somente o lado iluminado do VE;
 - Fino: mede o ângulo de incidência da luz solar.

Ilustração de sensor solar grosseiro.

Aspect	Fine Sun sensor	Coarse Sun sensor
Attitude accuracy	0.01°	15°
Power consumption	1 W	0 W, connection to AD converter
Mass	1 kg	0.02 kg
Application area	Sun pointing	Orientation, safe mode

Célula solar em uma estrutura de montagem, como parte de um sensor solar grosseiro. Fonte: ref. [1].

Sensor solar fino. Fonte: ref. [1].

Arranjo de dois detectores cossenoidais que propiciam uma medida uniaxial quase linear em um intervalo predeterminado.

Detector solar biaxial. Fonte: ref. [2].

Características de um sensor solar analógico com saturação forçada fora de uma faixa linear.

Sensor solar digital. Fonte: ref. [2].

Distribuição espectral da emissão térmica da Terra. Fonte: ref. [2].

- Dois tipos:
 - Estático.
 - Varredura;

Princípio de medida de um sensor terrestre estático. Fonte: ref. [1].

Arranjo de 3 sensores terrestres estáticos. Fonte: ref. [1].

Geometria de escaneamento de um sensor terrestre de varredura. Fonte: ref. [1].

Princípio de medição de sensores terrestres de varredura. Dependência do sinal do detector com os ângulos de rolamento e arfagem do satélite Fonte: ref. [1].

Princípio do sensor de varredura simples do horizonte. Fonte: ref. [2].

Determinação dos ângulos de rolamento e arfagem com um único cone. Fonte: referência [2].

Sensor de varredura dupla do horizonte. Fonte: ref. [2].

Detalhes construtivos do sensor de dupla varredura e meio cone. Fonte: ref. [2].

Aspects	Static	Scanning	Comments
Accuracy	1°, 3σ	Bias: 0.05°, 3 σ Noise: 0.05°	After compensation for systematic errors
Field of view	20° (× 15°)	Roll ±30° Pitch ±20°	LEO
Measurement axes	1	2	
Mass	0.2 kg	3.5 kg	-
Power consumption	0.35 W	7.5 W	Without thermal control

Campos de Visão e Limitações

Sensor Magnético

Cabeça de sensor com dois elementos perpendiculares do tipo "núcleo fluxgate anelar biaxial". Cada elemento propicia a medida de duas componentes do vetor campo magnético. Fonte: ref. [1].

Magnetômetro redundante, consistindo de uma unidade eletrônica internamente redundante e duas cabeças de sensor. Fonte: ref. [1].

Sensor Magnético

Aspect	Value	Comments
Measurement accuracy of the magnetic field	0.5°	With adequate post calibration: 0.05°
Measurement bandwidth	40 Hz	Cut-off frequency for 50% of the effective value (see Section 4.5.6.1)
Power consumption	0.3 W	-
Mass	0.5 kg	Sensor head + cabling + electronic box
Application area	LEO	LEO = Low Earth Orbit

Princípio de medida de taxa de rotação por um giroscópio mecânico. Fonte: ref. [1].

Aparência externa de um giroscópio mecânico. Fonte: ref. [1].

Princípio de um giro de fibra ótica. Fonte: ref. [1].

Bloco de vidraçaria de um giro laser anelar (aproximadamente 5 cm) com cabeamento da eletrônica. Fonte: ref. [1].

Aspect	Mechanical gyro	HRG	RLG	FOG	Comments
Bias	0.01°/h	0.01°/h	0.01°/h	1°/h	1 σ , after compensation
Scale factor error	50 PPM	30 PPM	100 PPM	1000 PPM	1σ , after compensation
Random walk	0.005°/h ^{1/2}	0.0005°/h ^{1/2}	0.01°/h ^{1/2}	0.3°/h ^{1/2}	1σ
Degradation	Deterioration	No	Aging	Yes	-
Moving parts	Yes	No (oscillating)	No (dither)	No	=

GNSS

X_{sat}

Posicionamento de 3 antenas GPS A, B e C em um satélite. Fonte: ref. [1].

Princípio de determinação de atitude baseada em GPS. Fonte: ref. [1].

GNSS

Aspect	Value	Comments
Attitude accuracy	0.1°	1.5 m baseline, stationary measurement setup
Power consumption	7 W	Inclusive position determination
Mass	3 kg	Inclusive position determination Single receiver, four antennas with LNA and harness
Application area	LE0	Studies: use in GEO is possible