

Санкт-Петербургский государственный электротехнический университет «ЛЭТИ» Кафедра теоретических основ радиотехники

ЦИФРОВАЯ ОБРАБОТКА СИГНАЛОВ Тема 4

Методы синтеза дискретных фильтров (Лекция 1)

Постановка задачи синтеза

Проектирование (синтез) дискретного фильтра — выбор таких наборов коэффициентов $\{b_i\}$ и $\{a_i\}$, при которых характеристики получающегося фильтра удовлетворяют заданным требованиям

Задание требований к проектируемым фильтрам

Классификация методов синтеза

- □ На основе аналогового прототипа
 - Билинейное преобразование
 - Инвариантная импульсная характеристика
- □ Прямые (без использования прототипа)
 - Субоптимальные
 - □ Оконный метод
 - Оптимальные
 - □ Минимизация квадратической ошибки
 - □ Минимаксный метод

Метод инвариантной импульсной характеристики

Производится дискретизация импульсной характеристики аналогового прототипа:

$$h_{\Pi}(k) = T h_{a}(kT)$$

□ Связь частотных характеристик:

$$\dot{K}_{\mathrm{M}}(\tilde{\omega}) = \sum_{n=-\infty}^{\infty} \dot{K}_{\mathrm{a}} \left(\frac{\tilde{\omega}}{T} - \frac{2\pi n}{T} \right)$$

- «Хвосты» частотных характеристик накладываются друг на друга
 - АЧХ прототипа на частотах выше частоты
 Найквиста должна быть пренебрежимо малой

Метод инвариантной импульсной характеристики

И.Х. аналоговой цепи с сосредоточенными параметрами:

$$h_{\rm a}(t) = \sum_{i=1}^{N} A_i e^{p_i t}, \quad t \ge 0$$

□ Дискретизированная И.Х.:

$$h_{\rm II}(k) = T \sum_{i=1}^{N} A_i e^{(p_i T)k}, \quad k \ge 0$$

Функция передачи:

■ полюсы: *е^ріТ*

■ вычеты: *ТА*;

$$H(z) = \sum_{i=1}^{N} \frac{TA_i}{1 - e^{p_i T} z^{-1}}$$

- Синтез на основе функции передачи аналогового прототипа H(p)
 - Функция передачи аналоговой цепи дробно-рациональная функция лапласовской частоты р
 - Функция передачи дискретной системы дробно-рациональная функция переменной z
 - Замена для переменной $p\left(p = f(z)\right)$ должна быть дробно-рациональной функцией

- □ Связь частотных характеристик аналоговой и дискретной систем должна сводиться к трансформации частотной оси: $K_{\rm a}(\omega_{\rm a}) = K_{\rm p}(\widetilde{\omega}_{\rm p})$
 - Это позволит сохранить все «вертикальные» параметры прототипа (пульсации в полосе пропускания, подавление в полосе задерживания и т.п.)
 - \blacksquare Функция p = f(z) должна отображать единичную окружность на мнимую ось:

$$f(e^{j\widetilde{\omega}_{\mathrm{I}}}) = j\omega_{\mathrm{a}}$$

Простейшая функция p = f(z), удовлетворяющая $p = \frac{2}{T} \frac{z-1}{z-1} = \frac{z-1}{z-1}$

$$p = \frac{2}{T} \frac{z - 1}{z + 1} = 2f_{\pi} \frac{1 - z^{-1}}{1 + z^{-1}}$$

□ Трансформация частотной оси:

$$\frac{2}{T} \frac{e^{j\tilde{\omega}_{\Pi}} - 1}{e^{j\tilde{\omega}_{\Pi}} + 1} = \frac{2}{T} \frac{e^{j\tilde{\omega}_{\Pi}/2} - e^{-j\tilde{\omega}_{\Pi}/2}}{e^{j\tilde{\omega}_{\Pi}/2} + e^{-j\tilde{\omega}_{\Pi}/2}} = j\frac{2}{T} \operatorname{tg}\left(\frac{\tilde{\omega}_{\Pi}}{2}\right) = j\omega_{a}$$

$$\omega_{\rm a} = \frac{2}{T} \operatorname{tg} \left(\frac{\tilde{\omega}_{\rm M}}{2} \right)$$

□ Трансформация частотной оси

Билинейное преобразование пример

Одиночный колебательный контур

 \square Функция передачи прототипа ($j\omega \rightarrow p$):

$$H(p) = \frac{1}{1 + \frac{1}{Q\omega_0} p + \frac{1}{\omega_0^2} p^2}$$

Билинейное преобразование пример

П Замена переменной $p = \frac{2}{T} \frac{1-z^{-1}}{1+z^{-1}}$

$$H(z) = \frac{1}{1 + \frac{1}{O\omega_{0}} \frac{2}{T} \frac{1 - z^{-1}}{1 + z^{-1}} + \frac{1}{\omega_{0}^{2}} \left(\frac{2}{T} \frac{1 - z^{-1}}{1 + z^{-1}} \right)^{2}} =$$

$$= \frac{(\omega_{0}T)^{2}Q}{\left((\omega_{0}T)^{2}+4\right)Q+2\omega_{0}T} \times \frac{1+2z^{-1}+z^{-2}}{1+\frac{2\left((\omega_{0}T)^{2}-4\right)Q}{\left((\omega_{0}T)^{2}+4\right)Q+2\omega_{0}T}z^{-1}+\frac{\left((\omega_{0}T)^{2}+4\right)Q-2\omega_{0}T}{\left((\omega_{0}T)^{2}+4\right)Q+2\omega_{0}T}z^{-2}}$$

Билинейное преобразование — пример

Идеализированные дискретные фильтры

- Способы расчета импульсной характеристики
 - По частотной

то частотной характеристике:
$$h(k) = \frac{1}{2\pi} \int_{-\pi}^{\pi} \dot{K}(\tilde{\omega}) e^{j\tilde{\omega}k} d\tilde{\omega}$$

Во временной области:

Одиночный импульс $\delta(k) \rightarrow$

→ Восстановление аналогового сигнала

$$(s(t) = \sin(\pi t/T)/(\pi t/T)) \rightarrow$$

- ightarrow Фильтрация аналогового сигнала ightarrow
 - \rightarrow Дискретизация $\rightarrow \{h(k)\}$

Идеализированные фильтры — расчет по частотной характеристике

 \square Фильтр нижних частот с частотой среза $\widetilde{\omega}_0$:

$$\dot{K}(\tilde{\omega}) = \begin{cases} 1, & |\tilde{\omega}| < \tilde{\omega}_0 \\ 0, & \tilde{\omega}_0 < |\tilde{\omega}| < \pi \end{cases}$$

$$h(k) = \frac{1}{2\pi} \int_{-\tilde{\omega}_0}^{+\tilde{\omega}_0} e^{j\tilde{\omega}k} d\tilde{\omega} = \frac{e^{j\tilde{\omega}_0 k} - e^{-j\tilde{\omega}_0 k}}{2\pi j k} = \frac{\tilde{\omega}_0}{\pi} \frac{\sin(\tilde{\omega}_0 k)}{\tilde{\omega}_0 k}$$

Идеальный фильтр нижних частот

Идеализированные фильтры расчет во временной области

Дифференцирующий фильтр:

$$s_{\rm BX}(t) = \frac{\sin(\pi t/T)}{\pi t/T}$$

$$S_{\text{BMX}}(t) = \frac{dS_{\text{BX}}(t)}{dt} = \frac{\pi}{T} \frac{(\pi t/T)\cos(\pi t/T) - \sin(\pi t/T)}{(\pi t/T)^2}$$

$$h(k) = s_{\text{BLIX}}(kT) = \frac{\pi}{T} \frac{\pi k \cos(\pi k) - \sin(\pi k)}{(\pi k)^2} = \begin{cases} 0, & k = 0\\ \frac{(-1)^k}{kT}, & k \neq 0 \end{cases}$$

Идеальный дифференцирующий фильтр

