컴퓨터 네트워크

목차

- 2.1 회선 구성
- 2.2 전송 기술의 종류와 특성
- 2.3 토폴로지
- 2.4 네트워크

❖ 기본 개념

통신 장치간의 관계에 대한 기본 사항

- ✓ 회선 구성(Line configuration)
- ✓ 접속형태(Topology)
- ✓ 전송 모드(Transmission mode)
- ✓ 네트워크 분류(Categories of Networks)
- ✓ 네트워크간 네트워크(Internetworks)

2.1 회선 구성 (1/16)

점대점(point-to-point) 방식

- 메인프레임 형태의 중앙의 컴퓨터와 여러 터미널들이 독립적인 회선을 이용하여 1:1로 연결되는 방식
- 비지능형(dumb) 터미널을 비동기식으로 중앙 컴퓨터에 연결할 때 사용
- TCP/IP 환경에서는 PPP를 사용하여 1:1로 연결

2.1 회선 구성 (2/16)

다중점(Multi-point) 방식

- 하나의 장치에 연결된 하나의 전용회선을 사용하여 다수개의 장치 들을 연결하고 정보를 송수신하는 방식
- 멀티 드롭(Multi-drop)방식 이라고도 함
- 컴퓨터가 폴링하는 시스템에서만 사용 가능(단말에서 서버로 정보 전송)
- 컴퓨터가 방송하는 형태로 모든 터미널에 데이터 전송
- 터미널의 주소 판단 기능과 버퍼가 필요
- 장점: 데이터 양이 적을 때 효과적, 회선 비용 절감
- 단점: 회선 고장 시 고장지점 이후 단말장치 운용 불가

2.1 회선 구성 (3/16)

데이터 전송을 원하는 10개의 디바이스가 있고, 각 디바이스가 서로 데이터 전송을 하기 위해서는 디바이스 상호간의 연결(connection) 이 필요

- ✓ 10개의 모든 디바이스를 각각 연결하려면? --> 45개의 점대점 (point-to-point) 연결이 필요.
- ✓ 계산 : (10×9)/2=45개 --> 메시(mesh)형 연결
- ✓ 10개의 디바이스 사이의 거리가 수백 km 떨어져 있는 경우
 - --> 45개의 점대점(point-to-point) 연결은 현실적이지 못함.

디바이스 수가 증가할수록 요구되는 연결의 수가 급격히 증가

--> 비현실적인 방법

2.1 회선 구성 (4/16)

좋은 해결책은 없는가? 교환기술이 해결책 제공

- ✓ 교환기술은 다수의 디바이스 상호간에 최적의 연결성을 제공
- ✓ 각 디바이스를 데이터통신 네트워크(network)에 연결하는 방법 교환기술과 디바이스간 상호 연결
- ✓ 스테이션: 컴퓨터는 물론, 전화, 터미널 등 데이터 통신이 가능한 모든 디바이스를 포함
- ✓ 각 스테이션은 데이터 통신 네트워크를 구성하는 노드(node)에 연결
- ✓ 네트워크 노드: 라우터, 브릿지 등과 같은 디바이스에 대한 총칭으로, 전송측으로부터 목적지까지 데이터의 이동에만 관여.

2.1 회선 구성 (5/16)

- ❖ 데이터통신 네트워크의 분류 (전송기술과 구조에 따른)
 - 교환 데이터 통신 네트워크(switched data communication network)
 - 방송 데이터 통신 네트워크(broadcast data communication network)

교환 네트워크의 구분

- ✓ 회선교환 네트워크
- ✓메시지 교환 네트워크
- ✓ 패킷교환 네트워크
- 방송 네트워크의 구분
 - ✔패킷 라디오 네트워크
 - ✓ 인공위성 네트워크
 - ✓지역(local) 네트워크

2.1 회선 구성 (6/16)교환 네트워크

교환 데이터통신 네트워크의 개념

- ✓ 교환 네트워크는 6개의 노드로 구성되고 각 노드는 다수의 데이 터링크로 연결
- ✓ 스테이션 A에서 스테이션 E로 데이터를 전송하는 경우
- ✓ 스테이션 A에서 출발한 데이터는 먼저 노드 1에 보내짐 → 노드 1에서는 몇가지의 데이터링크의 조합 가능

2.1 회선 구성 (7/16)

회선교환방식

- ✓ 대표적인 회선교환(circuit switching) 방식은 전화 네트워크 시 스템
- ✓ 전송이 이루어지기 전에 먼저 데이터 통신을 위한 전용 전송로 (dedicated transmission path)를 설정.
- ✓ 정보 전송 시작할 때 물리적인 연결을 확립하고 전송이 종료될 때 까지 연결 유지
- ✓ 물리적으로 연결된 회선은 다른 사람과 공유하지 못함
- ✓ 음성 교환기의 교환방식
- ✓ POTS(Plain Old Telephone System)

2.1 회선 구성 (7/16)

회선교환방식

- ✓ 특징
 - 전송 중 항상 동일한 경로를 경유하여 데이터가 전송된다.
 - 점대점 방식의 전송 구조를 갖는다.
 - 상대적으로 긴 접속 시간을 필요로 하나 전송 지연은 거의 없다.
 - 고정적인 대역폭을 사용한다.
 - 속도나 코드의 변환이 불가능하다
 - 회선을 할당받아 사용하기 때문에 안정적이고 실시간 데이터 서비스가 가능.
 - 효율성이 떨어짐. (연결이 설정된 후에는 회선은 다른 사용자 가 사용할 수 없음)
 - 회선의 설정, 데이터의 이동, 회선의 단절 등 3가지로 이루어 짐

2.1 회선 구성 (8/16)

회선교환방식의 동작

- ✓ 단계 1. 회선 설정(Circuit Establishment) : 데이터가 전송되기 전에 스테이션 사이에 회선 설정
- ✓ 단계 2. 데이터 전송(Data Transfer): 단계 1에서 설정된 <노드 1-노드 3-노드 4-노드 6-노드 5>으로 구성된 전송로를 따라서 스 테이션 A에서 스테이션 E로 데이터 전송이 이루어짐.
- ✓ 단계 3. 회선해제 (Circuit Termination): 데이터 전송이 완료되면 두 스테이션 중 하나의 스테이션의 동작으로 연결 해제.

회선교환방식은 전화(음성), 센서, 원격측정 등과 같은 비교적 연속 적인 데이터 흐름을 갖는 경우에 널리 사용되는 기술

2.1 회선 구성 (10/16)

메시지 교환방식

- ✓ 전용 전송로의 설정이 불필요
- ✓ 메시지에 목적지 주소를 첨부하여 전송
- ✓ 메시지는 노드에서 노드로 네트워크를 통해 이동
- ✓ 각 노드에서 메시지를 수신하게 되면 수신된 메시지를 잠시 저장 한 다음, 그 다음 노드로 보냄. ---> 축적 후 전달(store and forward) 방식

2.1 회선 구성 (11/16)

메시지 교환방식의 특성

- ✓ 회선교환방식보다 적은 비용으로 네트워크 설계가 가능 (전송로 의 효율적이용)
- ✓ 상대 스테이션이 다른 스테이션과 데이터 교환 중이거나 고장 등의 이유로 메시지를 수신할 수 없는 상태일 때에도 메시지 전송가능
- ✓ 데이터 전송량이 폭주하는 경우에 교환네트워크의 혼란 상태를 피할 수 있음(축적기능)
- ✓ 동일한 내용의 메시지를 동시에 다수의 스테이션에 보낼 수 있음
- ✓ 필요에 따라 우선순위 전송이 가능
- ✓ 메시지의 분실을 방지하기 위해 번호를 부여하거나 전송 날짜, 시 간 등을 추가하여 전송가능
- ✓ 코드와 속도가 서로 다른 단말기끼리도 메시지 교환이 가능

2.1 회선 구성 (12/16)

패킷교환(packet switching) 방식

- ✓ 메시지 교환방식과 회선교환방식의 장점을 결합하고 단점을 최소화
- ✓ 패킷 형태로 만들어진 데이터를 패킷교환기가 목적지 주소에 따라 적절 한 경로(route)를 선택하여 전송하도록 하는 교환방식
- ✓ 노드가 교환기(switch)의 역할을 수행하는 점에서는 메시지교환의 경우와 비슷하나 메시지교환의 경우처럼 노드가 메시지를 축적하지 는 않음
 - ---> 빠른 응답시간이 요구되는 응용에 사용 가능
 - 메시지 교환의 경우와 유사하게 속도와 코드가 서로 다른 디바이스 사이에서도 데이터 교환이 가능
 - ▶ 경로변경 방식에 따라 교환기 통신 회선 등의 장애가 발생할 경우에도 대체 경로를 선택할 수 있어 네트워크의 신뢰성 향상

2.1 회선 구성 (13/16)

[그림 3-10] 패킷교환방식의 개념도

2.1 회선 구성 (13/16)

- ✓ 패킷 교환 방식
 - 패킷 마다 주소를 삽입
 - 노드들이 패킷을 통하여 대역폭을 공유하는 방식
 - 패킷의 주소를 보고 최종 목적지까지 패킷을 전달
 - 데이터 트래픽이 없을 때 낭비되는 대역폭을 효율적으로 이용
 - 물리적인 전송로를 여러 노드가 공유
 - ▶ 특징
 - 교환기 자체의 비용을 현저하게 낮출 수 있다.
 - 패킷교환기는 컴퓨터 그 자체이며 교환행위는 컴퓨터 메모리 어떤 부분에 있는 데이터를 다른 메모리 위치로 옮기는 컴퓨터 명령어에 의해 수행되므로 패킷교환 방식은 소프트웨어에 의한 교환이라고 볼 수 있다. (메모리 기반 패킷 스위칭의 경우)

2.1 회선 구성 (14/16)

패킷교환방식의 구분 (패킷 스트림(stream)을 처리하는 방법에 따라)

- ✓ 데이터그램(datagram)
- ✓ 가상회선방식(virtual circuit)

데이터그램 패킷교환방식

✓ 패킷 스트림을 독립적으로 처리하는 방식으로 연결 설정 단계가 불 필요하고, 혼잡을 피해 경로구성이 가능하기 때문에 융통성이 개선.

가상회선 패킷교환방식

✓ 논리적 연결설정(logical connection)을 하는 방식으로 에러제어, 흐름제어가 가능하여 신뢰성이 높아짐.

2.1 회선 구성 (15/16)

- ▶ 데이터그램(Datagram) 방식
 - 컴퓨터통신의 기본 단위
 - 그 자체로 모든 것을 완비한 하나의 독립된 메시지
 - 패킷마다 주소를 넣어 구성 패킷을 독립적으로 취급
 - 송신지의 패킷 순서와 수신지의 패킷 순서가 다를 수 있음
 - 패킷 손실시 송/수신지에서 복구 제어
 - 장점
 - 호 설정 절차가 필요 없음
 - 적은양의 데이터를 전송하는 경우 효과적
 - 노드별로 전송을 하기 때문에 망 운용에 높은 유연성 □
 제공 (오류 발생의 경우에 효과적)

1C→

321C →

В

2.1 회선 구성 (16/16)

- ▶ 가상회선(Virtual Circuit) 방식
 - 전송 시작할 때 두 지점 사이에 논리적 전송경로 설정
 - 송수신자 주소 대신에 논리적 전송경로 번호를 이용하여 스위칭
 - 회선교환방식의 회선과 유사한 기능제공 -> 가상회선
 - 각 패킷은 데이터정보 뿐만 아니라 가상회선 식별자를 포함
 - 경로 설정과 관련된 결정을 할 필요 없음; 각 노드가 패킷에 대한 경로를 알고 있음
 - 장점
 - 패킷의 순서 및 오류 제어를 망에서 제공
 - 패킷을 신속하게 전송

교환방식의 특성 비교

방식 특성	회선교환	메시지 교환	가상회선 패킷교환	데이터그램 패킷교환
전용전송로	٩	무	무	무
전송단위	연속적인 데이터	메시지	패킷	패킷
메시지의 저장 여부	저장하지 않음	저장, 필요시 검색	일시적 저장, 검색기능 없음	일시적 저장, 검색기능 없음
이용에 적합한 전송 형태	길이가 긴 연속적 전송	저속 메시지 전송	순간적인 대량 데이터의 고속전송	순간적인 대량 데이터 의 고속전송
전송 경로의 형태	동일한 전송경로	메시지마다 경로설정	전체 패킷전송을 위해 경 로설정	각 패킷마다 경로설정
지연 시간 영향	연결호출 설정지연, 전송지연은 무시	메시지 전송지연	연결호출 설정지연, 패킷 전송지연	패킷전송지연
과부하시	연결호출 설정중단	메시지 전송지연 증가	연결호출 설정중단; 연결 설정 후에는 패킷전송지 연 증가	패킷전송지연 증가
코드 및 속도변환	무	유	유	유
전송데이터와 수신 데이터의 순서일치	일치	불일치	일치	불일치
대역폭	고정	동적사용 가능	동적사용 가능	동적사용 가능
회선 에러발생시	다른 회선 재설정	여러 경로 중 선택	다른 회선 재설정	여러 경로 중 선택
오버헤드	연결설정 후 불필요	메시지마다 필요	각 패킷마다 필요	각 패킷마다 필요
응용분야	실시간 대화형	실시간 대화형 부적합	실시간 대화형	실시간 대화형

2.2 전송 기술의 종류와 특성 (1/10)

단방향과 양방향 전송

- ✓ 단방향(simplex) 전송 방식
 - 데이터 전송로에서 한 방향으로만 데이터가 흐르는 전송 방식
 - ▶ 원격 측정기(telemeter), 라디오, TV 방송 등
 - 데이터는 컴퓨터측에서 제어를 받는 장비측으로 전송

- ✓ 양방향(duplex) 전송 방식
 - ▶ 방향의 전환에 의해 데이터의 흐르는 방향을 바꾸어 전송 가능
 - 송수신측이 미리 결정되어 있지 않음

2.2 전송 기술의 종류와 특성 (2/10)

- ▶ 반이중(half duplex) 전송 방식
 - 두 장치 간에 교대로 데이터를 교환 (e.g., 무전기)
 - 한 순간에는 반드시 한쪽 방향으로만 전송

- 전이중(full duplex) 전송 방식
 - 두 장치 간에 동시에 양방향으로 데이터를 교환
 - 전송 회선의 사용 효율이 높음
 - 회선비용이 많이 소요

2.2 전송 기술의 종류와 특성 (3/10)

아날로그 및 디지털 전송

- 아날로그 데이터 : 연속적으로 변화하는 물리량의 변화값으로부터 획득되는 데이터
 - 예) 온도, 압력, 전압 등
- 디지털 데이터 : 불연속적인 값을 가지며 임의의 최소값의 정수배를 다루는 데이터
 - 예) 문자열, 숫자 등

✓ 아날로그 전송 방식

- 아날로그 신호를 수단으로 전송
- 아날로그 신호는 음성이나 변조된 디지털 데이터
- 전송거리 증가에 따른 신호 감쇠 [減衰, attenuation] 현상을 막기 위하여 증폭기(Amplifier) 사용

2.2 전송 기술의 종류와 특성 (3/10)

- ✓ 디지털 전송 방식
 - ▶ 디지털 신호를 전송하는 수단
 - 제한된 거리에서의 감쇠현상은 없으나 전송거리의 제한을 극 복하기 위해서 리피터(Repeater) 사용
 - 디지털 전송의 장점
 - > 재생이 용이
 - ▶ 잡음에 강함
 - 높은 신뢰성 확보
 - > 저장이나 조작이 용이
 - ▶ IC 사용이 가능
 - 높은 보안성

2.2 전송 기술의 종류와 특성 (4/10)

직렬 및 병렬 전송

- ✓ 직렬 전송 방식
 - ▶ 한번에 한 비트씩 순서대로 데이터 전송
 - ▶ 쉬프트 레지스터(Shift Register) 사용
 - 직렬 신호 ↔ 병렬 신호
 - 문자나 비트들을 구별 할 수 있는 방법 필요
 - 원거리 전송에 적합하며, 대부분의 데이터 통신에 사용
 - ▶ 구성 비용이 적게 듬

2.2 전송 기술의 종류와 특성 (5/10)

✓ 병렬 전송 방식

- 여러 개의 bit 를 그룹으로 한번에 전송
- 패리티 또는 제어비트 전송을 위해 추가적인 전송로 필요
- 컴퓨터와 주변기기 사이의 데이터 전송예) 컴퓨터와 프린터 연결
- 전송 속도가 빠르지만, 구성 비용이 많이 듬
- 거리가 멀수록 전송비용이 증가

2.2 전송 기술의 종류와 특성 (6/10)

비동기 및 동기 전송

- ✓ 비동기식 전송 방식 (Asynchronous Transmission)
 - 데이터는 짧은 비트열로 나뉘어 전송, 각 전송 비트열 내부에서 동 기화 유지
 - 비트열 전후에 시작 비트(ST: Start bit)와 정지 비트(SP: Stop bit) 를 추가
 - 전송할 데이터가 있을 경우, 휴지상태(1상태)의 선로에 시작비트(0 상태)를 전송하여 선로를 0상태로 전환
 - 정해진 비트 수 만큼 전송후, 정지 비트를 확인하고 종료
 - 최근에는 고속 전송에도 사용
 - 시작 비트와 정지 비트로 인한 회선 이용효율 저하

2.2 전송 기술의 종류와 특성 (6/10)

비동기 및 동기 전송

✓ 비동기식 전송 방식 (Asynchronous Transmission)

2.2 전송 기술의 종류와 특성 (8/10)

- ✓ 동기식 전송 방식(Synchronous Transmission)
 - 문자 또는 비트들의 데이터 블록 단위로 송수신
 - ▶ 데이터 블록의 전후에 프리앰블 (preamble), 포스트앰블 (postamble)의 제어정보 삽입
 - ▶ 데이터와 제어정보를 합쳐서 프레임(frame) 이라고 함
 - 전송 효율 및 전송속도가 높음
 - ▶ 비트 전송방식
 - ▶ 문자 전송방식

2.2 전송 기술의 종류와 특성 (8/10)

- ✓ 동기식 전송 방식(Synchronous Transmission)
 - 비트 전송방식
 - 데이터 블록을 플래그를 사용하여 구분
 - 플래그 : 데이터 블록의 전후에 추가되어 블록의 시작과 끝을 나타내는 특별한 비트
 - ▶ 문자 전송방식
 - 특정문자를 이용하여 동기화 수행, 전송 데이터도 문자 단위 로 취급
 - 프레임은 동기화 문자를 포함
 예) SYN : 블록의 시작, ETX : 블록의 마지막
 - HDLC(High-level Data Link Control)

2.2 전송 기술의 종류와 특성 (9/10)

(a) 문자 전송 방식

(b) 비트 전송 방식

ASCII 코드표

Dec Hx Oct Char	Dec Hx Oct Html Chr	Dec Hx Oct Html Chr Dec Hx Oct Html Chr
0 0 000 NUL (null)	32 20 040 @#32; <mark>Space</mark>	64 40 100 4#64; 8 96 60 140 4#96;
1 1 001 <mark>50H</mark> (start of heading)	33 21 041 @#33; !	65 41 101 a#65; A 97 61 141 a#97; a
2 2 002 STX (start of text)	34 22 042 @#34; "	66 42 102 a#66; B 98 62 142 a#98; b
3 3 003 ETX (end of text)	35 23 043 # #	67 43 103 6#67; C 99 63 143 6#99; C
4 4 004 <mark>EOT</mark> (end of transmission)	36 24 044 @#36; \$	68 44 104 D D 100 64 144 d d
5 5 005 ENQ (enquiry)	37 25 045 @#37; %	69 45 105 E E 101 65 145 e e
6 6 006 <mark>ACK</mark> (acknowledge)	38 26 046 & &	70 46 106 F F 102 66 146 f f
7 7 007 BEL (bell)	39 27 047 @#39; "	71 47 107 6#71; G 103 67 147 6#103; g
8 8 010 <mark>BS</mark> (backspace)	40 28 050 4#40; (72 48 110 6#72; H 104 68 150 6#104; h
9 9 011 TAB (horizontal tab)	41 29 051 6#41;)	73 49 111 6#73; I 105 69 151 6#105; i
10 A 012 LF (NL line feed, new line)		74 4A 112 6#74; J 106 6A 152 6#106; j
ll B 013 VT (vertical tab)	43 2B 053 @#43; +	75 4B 113 6#75; K 107 6B 153 6#107; k
12 C 014 FF (NP form feed, new page)		76 4C 114 L L 108 6C 154 l L
13 D 015 CR (carriage return)	45 2D 055 @#45; -	77 4D 115 6#77; M 109 6D 155 6#109; M
14 E 016 <mark>50</mark> (shift out)	46 2E 056 @#46; •	78 4E 116 N N 110 6E 156 n n
15 F 017 <mark>SI</mark> (shift in)	47 2F 057 @#47; /	79 4F 117 6#79; 0 111 6F 157 6#111; 0
16 10 020 DLE (data link escape)	48 30 060 @#48; <mark>0</mark>	80 50 120 P P 112 70 160 p P
17 11 021 DC1 (device control 1)	49 31 061 1 1	81 51 121 4#81; Q 113 71 161 4#113; Q
18 12 022 DC2 (device control 2)	50 32 062 4#50; 2	82 52 122 R R 114 72 162 r r
19 13 023 DC3 (device control 3)	51 33 063 3 3	83 53 123 4#83; 5 115 73 163 4#115; 5
20 14 024 DC4 (device control 4)	52 34 064 4 4	84 54 124 T T 116 74 164 t t
21 15 025 NAK (negative acknowledge)	53 35 065 5 <mark>5</mark>	85 55 125 6#85; <mark>U</mark> 117 75 165 6#117; u
22 16 026 SYN (synchronous idle)	54 36 066 @#54; 6	86 56 126 V V 118 76 166 v V
23 17 027 ETB (end of trans. block)	55 37 067 @#55; 7	87 57 127 6#87; ₩ 119 77 167 6#119; ₩
24 18 030 CAN (cancel)	56 38 070 @#56; <mark>8</mark>	88 58 130 X X 120 78 170 x ×
25 19 031 EM (end of medium)	57 39 071 @#57; 9	89 59 131 6#89; Y 121 79 171 6#121; Y
26 1A 032 SUB (substitute)	58 3A 072 @#58; :	90 5A 132 6#90; Z 122 7A 172 6#122; Z
27 1B 033 ESC (escape)	59 3B 073 ; ;	91 5B 133 6#91; [123 7B 173 6#123; {
28 1C 034 FS (file separator)	60 3C 074 < <	92 5C 134 \ \ 124 7C 174
29 1D 035 GS (group separator)	61 3D 075 = =	93 5D 135 6#93;] 125 7D 175 6#125; }
30 1E 036 RS (record separator)	62 3E 076 > >	94 5E 136 ^ ^ 126 7E 176 ~ ~
31 1F 037 <mark>US</mark> (unit separator)	63 3F 077 ? ?	95 5F 137 _ _ 127 7F 177 DEL

Source: www.pubblinet.com

2.2 전송 기술의 종류와 특성 (10/10)

구 분	내용
비동기식 전송	 전송되는 각 문자는 앞쪽에 1개의 시작비트, 뒤쪽에 1~2개의 정지비트를 갖는다. 각 글자 사이에는 일정치 않은 시간의 휴지기간이 있을 수 있다. 글자를 구성하는 각 비트의 길이는 통신 속도에 따라 정해지며 일정하다. 동기는 글자단위로 이루어지며 송신측과 수신측이 항상 동기 상태에 있을 필요는 없다.
동기식 전송	 데이터의 앞쪽에 반드시 동기문자가 온다. 동기문자는 송신측과 수신측이 동기를 이루도록 하는 목적으로 사용된다. 한 묶음으로 구성하는 글자들 사이에는 휴지간격이 없다. 타이밍신호는 변복조기, 터미널 등에 의해 공급된다. 터미널은 반드시 버퍼를 갖고 있어야 한다.

2.3 토폴로지 (1/6)

토폴로지(Topology): 네트워크 상의 컴퓨터의 위치나 컴퓨터 간의 케이블 연결 등의 물리적인 배치

접속형태에 따른 분류: 버스형, 성형, 원형, 계층형, 그물형(Mesh) 등

2.3 토폴로지 (1/6)

버스(Bus) 방식

- ✓ 버스라 불리는 공통배선을 모든 노드가 공유
- ✓ 근거리 통신망(LAN)의 일반적 방식
- ✓ 케이블링에 소요되는 비용의 최소화
- √ 특정 노드의 상태에 따라 네트워크 형태가 변하지 않음
 - : 브로드캐스팅 방식

2.3 토폴로지 (2/6)

- ✓ 장점
 - 네트워크 구성이 간단, 작은 네트워크에 유용, 사용이 용이
 - 관리가 용이하고 새로운 노드의 추가가 용이.
- ✓ 단점
 - 통신 채널이 단 한 개이므로 고장 시 네트워크 전체가 동작을 하지 않으므로 잉여 채널이 필요.
 - 네트워크 트래픽이 많을 경우 네트워크 효율이 떨어짐.
 - 브로트캐스등으로 인한 잦은 컴퓨터 인터럽트로 호스트의 성 능을 떨어트리고 네트워크 대역폭을 낭비할 수 있음.

2.3 토폴로지 (2/6)

링(Ring) 방식

- ✓ 데이터의 흐름이 한 방향
- ✓ 수신된 데이터가 자신의 것이면 네트워크에서 삭제
- ✓ 그렇지 않은 경우 인접 노드로 데이터를 중계
- ✓ 만일 다른 호스트가 수신을 하지 못한 경우, 송신자는 해당 데이터 를 제거해야 함

2.3 토폴로지 (3/6)

✓ 장점

- 병목 현상이 드물다.
- ▶ 분산 제어와 검사, 회복 등이 쉽다.

✓ 단점

- 새로운 네트워크에 대한 확장이나 구조의 변경이 비교적 어렵다.
- 네트워크상의 어떤 노드라도 문제가 발생하면 네트워크 전체가 통신 불능상태에 빠질 수 있다.
- 다중 링 형태로 구성하는 것이 일반적.

2.3 토폴로지 (4/6)

성형(Star) 방식

- ✓ 중앙 제어 노드가 통신상의 제어에 대한 권한과 책임
- ✓ 분산 처리 능력이 제한

- ✓ 장점
 - ▶ 고장의 발견과 수리가 쉽고, 노드의 증설, 이전이 쉽다.
- ✓ 단점
 - 잠재적 병목성을 가지며 중앙 지역 고장에 취약.
 - 중앙 제어 노드에 문제가 발생하면 네트워크 전체가 통신 불능 상태에 빠지게 됨.

2.3 토폴로지 (5/6)

트리(Tree) 방식

- ✓ 다수의 버스 방식을 허브(스위치)를 이용하여 트리처럼 연결
- ✓ 제어와 오류 해결을 각각의 허브에서 수행
- ✓ 허브로 구성되는 경우와 스위치로 구성되는 경우 다르게 동작

- ✓ 장점
 - 제어가 간단하여 관리 및 확장이 용이.
- ✓ 단점
 - 중앙 지점에서 병목 현상이 발생할 수 있음.
 - 중앙 지점의 고장 발생시 대체 방법이 없을 경우 네트워크가 마비 또는 분할될 수 있음.

2.3 토폴로지 (6/6)

그물형(Mesh) 방식

- ✓ 중앙의 제어 노드에 의한 중계 대신에 각 노드간 점대점 방식으로 직접 연결
- ✓ 완전 그물형(full mesh)과 부분 그물형(partial mesh)으로 나뉨
- ✔ 장애발생시 대체경로로 전달 가능
- ✓ 링형과 더불어 네트워크 백본을 구성하는 방식

- ✓ 장점
 - ▶ 고장의 발견이 쉬움.
 - 한 노드의 고장 시 네트워크의 다른 트래픽에 미치는 영향을 최소화할 수 있음
- ✓ 단점
 - 선로 구축 비용이 많이 듬.
 - 선로 설치 및 설정 과정이 상대적으로 오래 걸리고 어려움.42

2.4 네트워크 (1/15)

네트워크 정의

✓ 네트워크 : 통신 회선에 의해서 서로 연결되어 있는 노드와 링크의 집합

네트워크 구성 요소

- ✓ 네트워크 케이블
 - 노드 간을 연결시키는 매개체
 - ▶ 동축케이블, 트위스티드 페어, 광섬유, 무선 등
- ✓ 네트워크 인터페이스 카드(NIC: Network Interface Card)
 - 네트워크 전송매체와 노드 간을 연결시키는 인터페이스
 - ▶ 전송매체 제어방식에 따라 이더넷(Ethernet), 토큰링(Token Ring) 등 여러가지 형태가 존재
 - 콘트롤칩 : 데이터의 입출력과 기본적인 기능을 관장
 - 통신전용칩 : 통신기능을 관장
 - 버퍼 : 데이터를 저장
 - MAC주소 (media access control address) ; 48 비트 43

2.4 네트워크 (3/15)

- ◆ 네트워크 장비
 - ▶ 리피터(Repeater)
 - 전송거리에 따른 신호감쇠를 보상하기 위해 신호를 수신, 증폭하여 매체의 다음 구간으로 재전송 시키는 장치
 - 근거리통신망 내에서 세그먼트들을 서로 연결
 ; 신호를 먼거리까지 연장 가능
 - OSI 계층의 물리 계층에서 동작

2.4 네트워크 (2/15)

- ▶ 허브(Hub); 멀티포트 리피트
 - 집중화장비(concentrator)라고 부르기도 함
 - 연결된 장치들은 네트워크 공유
 - OSI 계층의 물리 계층에서 동작
 - 하나의 버스에 접속된 것처럼 동작
 - ✓ Dummy Hub
 - ✓ Switching Hub
 - ✓ Stackable Hub
 - ✓ MAC 주소(Media Access Control Address)

2.4 네트워크 (4/15)

브리지(Bridge)

- 매체를 공유하는 근거리 통신망에서 하나의 장비가 데이터를 보내고 있을 때 또 다른 장비가 데이터를 보내면 충돌이 발생.(이 영역을 충돌 모메인(Collision Domain))
- 네트워크에 장비들의 수가 늘어나면, 즉 충돌 도메인이 커지면 충돌 이 발생할 확률도 높아지게 되고 통신 속도와 효율이 저하되게 됨
- 따라서 네트워크를 확장하기 위해 충돌 도메인을 나누어 줄 수 있는 장비가 필요
- 브리지는 데이터 링크 계층에서 동작하는 장비로 데이터 링크에서 사용하는 MAC(Media Access Control)이라는 네트워크 장비에 고 정되어 있는 유일무이한 주소, 즉 하드웨어 주소를 기반으로 전송할 포트를 결정
- 매체 접근 제어(MAC) 방식이 같거나 다른 LAN간의 상호 접속
 예) 이더넷과 토큰링 네트워크를 연결
- 동일한 통신 프로토콜을 사용하는 두 네트워크 세그먼트 사이에서 패킷을 연결하고 전달하는 장치
- OSI 참조 모델의 2계층인 데이터 링크 계층에서 작동

2.4 네트워크 (6/15)

▶ 라우터(Router)

- 동일한 네트워크 프로토콜을 사용하는 네트워크 세그먼트들을 연결하는 장비
- 네트워크 주소(IP 주소)를 기반으로 목적지까지의 경로 선택
- 라우팅 테이블에 따라 효율적인 경로를 선택하여 패킷 전송
- 흐름제어 및 서브 네트워크 구성 관리 기능
- 라우터는 네트워크 세그먼트를 연결하는 기능
- 특히 브로드캐스트 패킷을 차단하는 기능을 제공.
- 세그먼트에서 발생한 브로드캐스트 패킷은 다른 세그먼트로 저다디지 아느디

전달되지 않는다.

- 네트워크 계층에서 동작
- 다른 LAN간 연결
 - 프로토콜 구조가 다른 네트워크 간의 연결

2.4 네트워크 (8/15)

▶ 게이트웨이(Gateway)

- 컴퓨터 네트워크에서 서로다른 통신망,프로토콜을 사용하는 네트워크간의 통신을 가능하게 하는 컴퓨터,소프트웨어를 통칭
- 넓은 의미로는 종류가 다른 네트워크 간의 통로의 역할을 하는 장치
- 게이트웨이는 OSI 참조모델의 전계층을 인식하여 전송방식이 다른 통신 망도 흡수하여, 서로 다른 기종간의 접속도 가능
- 2개 이상의 다른 종류 혹은 같은 종류의 네트워크를 상호 접속
- 라우터와 혼용하여 사용
- 다른 네트워크로의 입구를 나타내는 네트워크 장비
- 프로토콜 구조가 다른 네트워크 연결 (e.g., PSTN과 데이터 네트워크)
 ; 프로토콜 변환기능으로 네트워크 내에서 병목 현상을 발생하기도 함
- 프록시 서버(Proxy Server)나 방화벽(Firewall)의 기능을 수행하기도 함
- OSI 계층의 모든 계층에 걸쳐 동작

2.4 네트워크 (9/15)

- ✓ 네트워크 운영체제(NOS: Network Operating System)
 - 네트워크를 관리하고 제어하는 시스템 소프트웨어
 - 예) Window NT와 유닉스(리눅스)
 - **투**징
 - 하나 이상의 업체가 만든 H/W 환경에서 동작할 수 있다.
 - 하나 이상의 같지 않은 H/W LAN을 같은 NOS하에서 연결 가능하다.
 - 네트워크 보안 기능과 사용자의 파일 접근 권한을 관리한다.
 - 다수의 서버를 지원하며 사용자가 접속한 서버의 종류와 무관할 수 있는 투명성(transparency)있는 환경을 제공한 다.
 - 다중 사용자 환경에서 프로그램 및 파일에 대한 보안 기능 을 제공한다.

2.4 네트워크 (10/15)

네트워크 구성 방식

- ✓ 피어투피어(Peer-to-Peer) 방식
 - 네트워크에 연결된 각각의 노드가 동등하게 클라이언트 혹은 서버로 동작
 - 동등한 수평적 관계
- ✓ 클라이언트 서버(Client/Server) 방식
 - 클라이언트: 서비스 요구자, 서버: 서비스 제공자
 - 대개 서버는 공유를 위한 자료(Database)를 가지고 있어서 클 라이언트의 요청 시 자료를 전송
 - 대표적인 예로는 월드와이드웹.
 - ▶ 웹 서버가 서버 역할
 - 사용자가 쓰는 웹 브라우저가 클라이언트 프로그램

2.4 네트워크 (11/15)

Peer-to-Peer 방식		Client-Server 방식	
장 점	단 점	장 점	단 점
* 서버쪽의 H/W나 S/W 에 대한 특별한 투자 가 필요 없다 * 설치가 용이하다.	하가 있다. * 많은 컴퓨터의 접속	* H/W 및 S/W를 서버 에서 공통으로 사용 할 수 있어서 비용이 절감된다. * 중앙 집중식 보안으 로 보안이 강력하다.	* 고가의 전용 H/W, S/W가 필요하다. * 특정한 중앙 네트워 크 관리자가 필요하 다.
* 네트워크 관리자를 필요로 하지 않는다. * 작업의 수행에 있어 서 다른 컴퓨터에 대 한 의존이 덜하다. * 비용이 저렴하다.	* 데이터 보관에 대한 중앙 매체가 없다. * 보안에 취약하며 일 관성이 없다.	* 중앙에서 데이터에 대한 보관을 담당한다. * 장비의 공유가 가능 하다. * 하나의 네트워크와	
HOW MEMH.	* 중앙 관리가 불가능 하다.	계정으로 포메인 내의 자원을 사용할 수 있다. * 많은 수의 사용자를 관리할 수 있다.	
		* 사용자의 자원공유 작업을 없애준다.	52

2.4 네트워크 (12/15)

근거리통신망(LAN: Local Area Network)

- ✓ 좁은 지역(약 50km) 내의 통신회선으로 연결된 PC, 메인프레임, 워크스테이션 등의 네트워크 집합
- ✓ 근거리통신망 내의 정보기기, 소프트웨어, DB등을 공유
- ✓ 통신 속도는 보통 10~100Mbps이며, 1Gbps와 10Gbps급 으로 바뀌어가는 추세

a. Single building LAN

2.4 네트워크 (13/15)

도시권통신망(MAN: Metropolitan Area Network)

- ✓ 기업, 가정, 학교 등을 망라한 1개 도시 정도의 지역을 연결한 정보 통신망
- ✓ 데이터, 음성, 화상을 종합적으로 전송
- ✓ 전송 매체로는 주로 광섬유를 사용하며, 대용량 고속 전송 지원

2.4 네트워크 (14/15)

광역통신망(WAN: Wide Area Network)

- ✓ 국가, 대륙 등과 같은 넓은 지역을 연결하는 네트워크
- ✓ 장거리 지역을 연결하는 백본(backbone) 네트워크
- ✓ 공공망까지 포함하는 사설망 혹은 임차한 망

2.4 네트워크 (15/15)

인터네트워크(Internetwork)

- ✓ 두 개 이상의 네트워크를 연결
- ✓ 인터네트워킹(internetworking) : 네트워크간 하드웨어나 소프트 웨어 모두를 연결시키는 방법론
- ✓ '네트워크들의 네트워크(A Network of Networks)'

비교

✓ Internet : 상호 연결된 네트워크

✓ Internet : 전세계적인 특정 네트워크