操作系统 期未建成

第-奉 引讫

- 操作系统的主要功能
 - 1、处理机管理
 - 1.存储器管理
 - 3 设备管理
 - 4、文件管理
 - 5.接口管理
- 操作系统的特征
 - 1. 并发:两个或多个事件在同一时间 间隔内发生。
 - 2.共享: 系统中的资源可供内存中 多个开发执行的进程共同使 耳.
 - 3. 虚拟: 把一个物理上的实体至为 若干个逻辑上的对应物.
 - 4.异步:在多道程序环境下.运 行走走停停, 从不可知的速·线程 度向前推进.
- •操作系统在计算机系统中处于计算机 程序执行流的最小单位. 硬件和用户之间的位置
- ·操作系统,约生在亲型 有 实时操作纸 批处理操作系统及与时操作系统.
 - 1. 实时操作系统:

伏先处理紧急事务,实时性,可能

2. 批处理操作系统:

多盖批处理并发执行,提高崇和雕

3. 与时操作系统:

允许用户直接与计算机进行交互

第二章 进程的描述与控制

bilibili

• 进程: 动态纳,程序的-次执行进程

进程的组成 数据校 运行时产生的数据 • 连褶的特征

动意性,并发性,胜主性,异步性,结构性

• 连程的转换

运行志→就编志:时悔出到,CPU被集党易级优先 级的进程抢占

运行志→阻圭恕:等待杀统名派为面已,等从县本 件发生.

• 进程通信的 3种 成:

1.共享存储器机制

2. 消息传递 抓制

3. 贫盈適倍

线程是一个基本的CPU的执行单元,也是

引入线程之后, 进程之间 可开发, 进程内 的名线程之间也可以开发.

止程是片源台配的基本配,线程是 调度的基本单位

每个线程都有一个线程1D,线程控制 块(TCB).

线程 也有献始志 组里志、运行志三种基本 状态.

线程的实现方式 对内核级纯旺 *用户级线程 45.4 性程 铁柱 地位 19.15 进程

逐奏

第一元

以操作系统》 冰毁少年---

第3章 处理机洞度与死辙.

*进程调度方式

1. 非抢占方式:

进程 ~ 直机行完, 才执行下- 个进程

2. 抢占式:

有更重要的进程需要处理机时,将 处理机为配约重要的过程。

•调度算法价格标

周转时间=完成时间-到达时间

带权周特时间= 周转时间

等待时间=周转时间-实际运行时间

• 调度革法

1. 先亲先服务(FCFS)

进程	到上时间	运行时间
PI	0	7
P2	2	4
P3	4	1
P4	5	. 4

周转时间: P1=7-0=7

P2=11-2=9

P3= 12-4=8

P4 = 16 - 5 = 11

带权周转时间: P1=7/7=1

P2 = 9/4=2.25

P3= 8/1=8

P4=11/4=2.75

等待时间: P1= 7-7=0

12=9-4=5

P3=8-1=7

P4=11-4=7

2. 短作业代先

2.1 非抢占式

建程	五世时间	近行时间
PI	0	7
01	2	4
Pa	4	1
Þ4	5	4

P1 P3 P2 P4

周转时间: 李权用特计问

等待时间 P1=7-7=0

P1= 7-0=7 P1= 7/7=1 P2=12-2=10 D2 =/9/4=25

P2=10-4=6

P3= 8-4=4

P3:4/1:4

P3=4-1=3

P4=16 -5=11 P4=11/4=275 P4= 11-4=7

2.2 抢占式

进程	到达对河	运行对的
PI		7
P 2	2	4
P 3	4	1
P4	5	4

0: P. (7)

21 P. (5) , Pa (4)

4: P. (5) . P. (2). P. (1)

5 : P. (5) . P. (2) . P4 (4)

7: P. (5) . P4(4)

11 1 P. (5)

周转时间:

带权周转时间:

P1: 16-0=16

P.: 16/7=2.28

P2: 7-2=5

P2:5/4=1.25

P3: 5 - 4 = 1

P3: 1/1=1

P4: 11-5=6

P4: 6/4=1.5

쏰符耐洞:

171:16-7=9

P3: 1-1=0

P2: 5-4=1

P4:6-4=2

3.优先级调度

3.1 排枪占式

进程	到此时间	正行时间	ALT!
PI	0	7	1
P 2	2	4	2
P3	4	F	3
P4	5	4	2
PI	P3 . 1	2 . P	4
	7 8	12	

国特时间。

带权周转时间

等待时间

PI: 7- 0 = 7

P1: 7/7=1

P1 . 7 - 7=0

P1:12-2=10

Pa: 10/4=2.5

P2: 10-4=6

P3: 8- 4=4

P3 . 4/1=4

P3: 4-1=3

P4: 16 - 5=11

P4: 11/4=2.75 P4: 11-4=7

4.高响白比优先

非抢台式, 走响在比最高的进程上机

441	हा स्टाह	进行 制币
PI	0	7
P2	2	4
P.3	4	1
P4	6	4

确证化:

等符号 特定服务

O耐刻:只有PI到色,PI上处理机

7时刻 队列中有 P4. P2. P3.

江时刻: P4

· 死統

名进程互相等符对下于里的资源,导致走程新阻塞,无法向前推走的现象。

- 死轮产生分分心,竟张件
- 1. 互斥条件 2. 不利专条件
- 3. 清水和保持条件 4. 编环条件
- · 死铱的处理策略
 - 1. 多个月底锅;破坏死钱中兰四个山里来 件中的一个.
 - 2、避免死缺: 同某种方式防止止入不 宙鱼状态.
 - 3. 趙洞死缺 允许灭缺发生, 程测出发生的采取措施。
 - 4.解陈元钫.
- 处理策略

预防死缺:对资源未用抢停与配金略。

避免死缺 银行家葬出。

条统处于安全状态,就-定不会发生死缺条统处于安全状态,就可能发生死较.

·银行家箅法

1. 数据结构

可利用资源何量 Available

最大需求矩阵 Max

分面已矩阵 Allocation

需求矩阵 Need

工,安全性算法

9:

- (1) 若我到Finish[1]=FALSE, Need[1,]] ≤ Work[j]
- (2) work[j] = work[j] + Allocation[i,j]
 Finish[i] = TRUE
- (3) 所有进程满足Finish[i]=TRUE, 宏生状态

	Mex	Allocation	Need	Avoilable
	ABC	ABC	ABC	ABC
Po	7 5 3	010	7 4 3	3 3 2
PI	3 2 2	200	1 2 2	
P2	902	3 0 2	600	
PB	2 2 2	211	0 ()	
P4	4 3 3	0 0 2	431	

PI: Available: 5 3 2

PI→P3. Available: 7 4 3

PI-P3-P4: Available: 745

PI -> P3 -> P4 -> Po : Available : 755

PI - P3 - P4 - Po - P2 : Available: 10 57

3.银灯家箅法

- () Request[j] = Need[i,j]
- (2) Request[j] & Available[j]
- (3) Available [j] = Available [j] Request[j]

 Allocation[i,j] = Allocation[i,j] + Request[j]:

 Need [i,j] = Need [i,j] Request[j]

(4) 检察是否处于安全状态。

罗·P1发出请求向量 Request(1.0.2),系统 招银行家算法进行检查.

- (1) Request (1.0.2) { Need (1.2.2)
- (2) Request (1.0.1) {Available (3.3.2)
- (3) Available (2,30) (4) 安生性算法 Allocation (3.0.2) need (0,2.0)

billali 建铝水车-- / 据在条约为 声志

· 充锈的粒测

我出一条有向业与它相连且该有向卫对应 资源的申请数量》于等系统中已有空闲资 源数量。(从资源向进程的业减去,还有资派)。

上国未灭铁,下国为死缺.

第四章 进程同步

• 进程同步与进程互东

进程同步:两个表多个进程在它们的工作次序产生的制约关系。

进程互斥:- 1 进程访问临胃溃瘦时, 另一1也要访问浓灵源时处煤等

- 信号量机制

wait (6)原语 P操作 signal (s)原语 V操作 记录型信号量

|*记录型信号量的定义*|
typedef struct {
 int value; || 剩余浇源数
 struct process *L; ||等符以列
} semaphore;

void wait (semaphore s) {
 S.value --;
 if (S.value < 0) bolck(S.L);
} 用有能性入門室

void signal (semaphore s) {
 S.value ++;
 if (s.value <=0) wakeup(S.L);
} 用可能性的可能

S. value ++ 主后 <=0, 有进程等将该资源.

S.value++上后>0,已没有进程等待.

S. value 初值为某资源的数目。

S. value = -2 , 有2个进程在等待.

•用信号量实现进程五年、同步

1. 进程互斥

(互斥信号量 mutex, 初值为1) 在进入区 P(mutex)——申请负源 在退出区 V (mutex)——释放资源

semaphore mutex = 1;

P(1){

P(mutex);

代码程

v(mutex);

2.连程同步

(同步信号量 S, 初值为 o) 在前操作"之后执行 V(s) 在"后操作"之前执行 P(s) 设代码2 在代码4 之前执行

3. 南引瓜关系

		•	
}	P2(){ P(a); S2; v(c); v(d); }	P3(){ P(b); s3; v(s1;	
P4() { P(c); S4; v(e); }	P5(1); F(d); S5; v(f);	P(C) { P(e); P(f); S6;	

第五章 存储器管理

- · 解决"程序大小超过物理内存总和"问题 使用覆盖拉水与支换技术.
- 连续为配存储等理方式
 - 1.单一连续分西己

分为系统区与用户区.

系统区位于内存的低地址部的

用户区存的用户进程的数据.

2、固定分区分配

国户区划专国定大小的乡区,每代 区只装一届作业

3. 云力态 为区分面己

空讯与反差

ち丘号	去区 \$12 (MB)	配处法	枚志
-	20	8	宝漏
2	10	32	主讯
9	4	60	主闲

空闲为匹链

动态与压与配套法

- D首次适应算法:找到第一个能满足以的
- ②最佳适应草法: 伏先使用更小的皇闲区
- 国最坏点应算法:优先使用更大的空闲压.
- 图邻近逢应英法:从上次意找结束企遇开始意 找第一个空闲台区.
- · 台表存储管理.

页号=逻辑地址/页面长度 而内偏移量二逻辑地址《页面长店 物理地址二页面的址十页内偏移量

四:某作业」的逻辑地址室间为4份(每分2048字书) 克面映像表如右图,苏出逻辑地址4865的对 应的物理地址.

有号

4

6

秀= 4865/2048=2 及内偏移量= 4865% 2048=769

物理地位= 6×2048+769=13057

第6章 虚拟存储器

• 页面置换算法

1.最佳置换算法(OPT)

淘汰分面将是以后最长时间内研 被访问的介面.

SP 与两己3个内存块

访问专面	7	0	,	2	030	4	23	0	32	1	20	17	0
内存1	7	7	7	2	2	2		2		2	,	7	
内4 2		0	0	0	0	4		0		0		0	
内有 3			1	1	3	3		3		1		1	
是李软克	v	V	4	1	~	~	-	~		~	-	1	

发生9次缺点、点面置换发生6次 缺元率= 9/20= 45%

2.先些先出器换算法 (FIFO)

每次选择淘汰负面是最早进入内存

151760	3	2		O	3	2	4	3	2	1	0	4
内在块门	3	3	3	3			4	4	4	4	0	0
内在來2		2	2	2		-	2.	3	3	3	3	4
150Km 内容块1 内容块2 内容块3			1	1			1	1	2	2	2	7
1在块4				0			0	0	0	1	1	- (
是不会快会	>	V	¥	1			~	V	~	1	1	1

缺点次数:10次

缺页率 10/12=83.3%

3、最近最久未使用置换算法(LRU)

真次淘汰的负面是最近最久未使用的 五面

访问表面 内なし 内な 2	1	8	1	7	8	2	7	2	1	8	3	8	2	1	3	1	7	13	7
thor I	1	1		1		1					1						ı		
内存 2		8		8		8					8						7		
内在 3				7		7					3						3		
内存 4						2		75 III			2						2		
るなまを	>	~		V		~					~					,	V		

缺元率: 6/20=30%

第7章 输入/输出系统

• 磁盘调度算法

1. 先来先服务算法(FCFS)

明: 7段设磁状的初始企置是100号 磁道,有多4进程先后陆续地请求 访问55、58、39、18.90、160、150、38、184磁

石威长总共和3计3:

45+3+19+21+72+70+10+112+146=498 平均移动 498/9=55.3 行磁通

2、最短寻找时间优先(SSTF)

南湖为100号石版图,治河55、58.39.18.90、160、150、38.184.

* 10 1 1

3. 扫描算法(SCAN)

只有成果的到最外侧石或道的对间才能往内的动, 移动到最内侧石或道的对面, 移动到最内侧石或道的对面, 有对能性外 未多动。

共鹅动: (200 - 100)+(200-18)=282 平均: 282/9=3134磁道.

4. 循环扫描算法

规定只有不成长期某个方向移动方能处理访问请求。

设石美兰为 0 ~ 200. 访问 55、58、39,18.90、160、150、38、184.

共移云力:(200-100)+(200-0)+(90-0)=390 平均:39019=43.3个石弧道

n