Math 4301 Mathematical Analysis I Lecture 13

Topic: Differentiability

• Differentiability

Corollary Let $f:(a,b)\to\mathbb{R}$ be differentiable for all $x\in(a,b)$ and f'(x)=0. Then f is constant.

Proof. It is sufficient to show that for all $x \in (a, b)$,

$$f(x) = c$$

where $c \in \mathbb{R}$.

- Let $y \in (a, b)$ and c = f(y).
- Let $x \neq y$ and assume that x < y.
- Then f is continuous on $[x,y] \subset (a,b)$ and differentiable on (x,y).
- Therefore, by the MVT, there is $z \in (x, y)$, such that

$$f'(z) = \frac{f(y) - f(x)}{y - x}.$$

• Since, f'(z) = 0, we have

$$f(y) - f(x) = 0$$
, so $c = f(y) = f(x)$.

• Analogously we show that, if y < x then

$$f(x) = f(y) = c.$$

• Therefore, for all $x \in (a, b)$,

$$f(x) = c$$
.

This finishes our proof. ■

• Corollary If $f, g:(a, b) \to \mathbb{R}$ are differentiable on (a, b) and f'(x) = g'(x), for all $x \in (a, b)$, then

1

$$f\left(x\right) =g\left(x\right) +C,$$

for some constant $C \in \mathbb{R}$.

Proof. Exercise

- **Proposition** Let $f:(a,b)\to\mathbb{R}$ be differentiable on (a,b).
- i) $f'(x) \ge 0$ for all $x \in (a, b)$ iff f is non-decreasing on (a, b) (if f'(x) > 0, for all $x \in (a, b)$, then f is strictly increasing).
- ii) $f'(x) \leq 0$ for all $x \in (a, b)$ iff f is non-increasing on (a, b) (if f'(x) < 0, for all $x \in (a, b)$, then f is strictly decreasing).

Proof. We only prove a) since a proof for b) is completely analogous.

- Assume that a < x < y < b.
- Since f is continuous on [x, y] and differentiable on $(x, y) \subset (a, b)$,
- it follows from the Mean Value Theorem that, there is $z \in (x, y)$, such that

$$0 \le f'(z) = \frac{f(y) - f(x)}{y - x}.$$

- Hence, $f(y) \ge f(x)$, so f is non-decreasing on (a, b).
- Notice that if f'(x) > 0, for all $x \in (a, b)$, then

$$0 < f'(z) = \frac{f(y) - f(x)}{y - x}$$

and f(y) > f(x), so f is strictly increasing.

- Conversely, suppose that f is non-decreasing on (a, b).
- Let $z \in (a, b)$.
- Since f is non-decreasing on (a, b), for x > z, $x \in (a, b)$

$$f(x) - f(z) \ge 0,$$

and x < z

$$f(x) - f(z) \le 0$$

• Therefore,

$$\frac{f(x) - f(z)}{x - z} \ge 0$$

for all $x \neq z$.

• It follows that

$$f'(z) = \lim_{x \to z} \frac{f(x) - f(z)}{x - z} \ge 0.$$

This finishes our proof. ■

• Example: Let $f: \mathbb{R} \to \mathbb{R}$, be given by $f(x) = x^3$, then $f'(x) = 3x^2 \ge 0$ so f is non-decreasing. Moreover, we see that f'(0) = 0 however, f is strictly increasing.

Example: Let $f: \mathbb{R} \to \mathbb{R}$, be given by

$$f(x) = \begin{cases} \frac{1}{2}x + x^2 \sin\left(\frac{1}{x}\right) & if \quad x \neq 0\\ 0 & if \quad x = 0 \end{cases}.$$

We show that f'(0) > 0, but there is no open neighborhood $D(0, \delta) = (-\delta, \delta)$, $\delta > 0$ of x = 0, such that f is either increasing or decreasing on $D(0, \delta)$.

• We see that

$$f'(x) = \begin{cases} \frac{1}{2} + 2x \sin\left(\frac{1}{x}\right) - \cos\left(\frac{1}{x}\right) & if \quad x \neq 0\\ \frac{1}{2} & if \quad x = 0 \end{cases}$$

• Therefore,

$$f'\left(\frac{1}{2n\pi}\right) = \frac{1}{2} + \frac{2}{2n\pi}\sin(2n\pi) - \cos(2n\pi) = \frac{1}{2} - 1 = -\frac{1}{2} < 0$$

and

$$f'\left(\frac{1}{\frac{\pi}{2} + 2n\pi}\right) = \frac{1}{2} + \frac{2}{\frac{\pi}{2} + 2n\pi} \sin\left(\frac{\pi}{2} + 2n\pi\right) - \cos\left(\frac{\pi}{2} + 2n\pi\right)$$
$$= \frac{1}{2} + \frac{4}{\pi + 4\pi n} > 0.$$

• In particular, f'(0) > 0 does not imply that there is an open neighborhood of 0 on which f is non-increasing or non-decreasing.

Theorem (Taylor's Theorem) Suppose that f and its first n derivatives are continuous on [a, b], differentiable on (a, b) and $x_0 \in [a, b]$.

Then for each $x \in [a, b]$, $x \neq x_0$ there is c in the interval with the endpoints x_0 and x, such that

$$f(x) = \underbrace{f(x_0) + \frac{f'(x_0)}{1!}(x - x_0) + \frac{f''(x_0)}{2!}(x - x_0)^2 + \dots + \frac{f^{(n)}(x_0)}{n!}(x - x_0)^n}_{\text{nth Taylor polynomial } p_n} + \underbrace{\frac{f^{(n+1)}(c)}{(n+1)!}(x - x_0)^{n+1}}_{\text{nth Taylor polynomial } p_n}.$$

Proof. We show that for given $x_0 \in [a, b]$ and $x \neq x_0$, there is c in

• Let $x \in [a, b]$, then there is $M \in \mathbb{R}$, such that

$$f(x) = f(x_0) + \frac{f'(x_0)}{1!}(x - x_0) + \frac{f''(x_0)}{2!}(x - x_0)^2 + \dots + \frac{f^{(n)}(x_0)}{n!}(x - x_0)^n + M(x - x_0)^{n+1}.$$

- We show that $M = \frac{f^{(n+1)}(c)}{(n+1)!}$.
- Define $F:[a,b]\to\mathbb{R}$ by

$$F(t) = f(t) + \frac{f'(t)}{1!}(x-t) + \frac{f''(t)}{2!}(x-t)^2 + \dots + \frac{f^{(n)}(t)}{n!}(x-t)^n + M(x-t)^{n+1}.$$

• We see that, F(x) = f(x) and

$$F(x_0) = f(x_0) + \frac{f'(x_0)}{1!}(x - x_0) + \frac{f''(x_0)}{2!}(x - x_0)^2 + \dots + \frac{f^{(n)}(x_0)}{n!}(x - x_0)^n + M(x - x_0)^{n+1}$$
$$= f(x).$$

- Now, F is continuous on the closed interval I with the endpoints x and x₀ and
 it is differentiable on the interior of I.
- By Rolle's theorem, there is c in the interior of I, such that,

$$F'(c) = 0.$$

• However,

$$\frac{d}{dt}F(t) = f'(t)
+ \frac{f''(t)}{1!}(x-t) - \frac{f'(t)}{1!}
+ \frac{f'''(t)}{2!}(x-t)^2 - \frac{f''(t)}{1!}(x-t)
+ \frac{f^{(4)}(t)}{3!}(x-t)^3 - \frac{f^{(3)}(t)}{2!}(x-t)^2
\vdots
+ \frac{f^{(n+1)}(t)}{n!}(x-t)^n - \frac{f^{(n)}(t)}{(n-1)!}(x-t)^{n-1}
- M(n+1)(x-t)^n$$

• Hence, we have

$$\frac{d}{dt}F\left(t\right) = \frac{f^{(n+1)}\left(t\right)}{n!}\left(x-t\right)^{n} - M\left(n+1\right)\left(x-t\right)^{n}.$$

and for t = c,

$$0 = F'(c) = \frac{f^{(n+1)}(c)}{n!} (x-c)^n - M(n+1) (x-c)^n.$$

• Since $c \neq x$,

$$\frac{f^{(n+1)}(c)}{n!} - M(n+1) = 0, \text{ so } M = \frac{f^{(n+1)}(c)}{(n+1)!}.$$

This finishes our proof. ■

• Let $P_{n}(x) = f(x_{0}) + \frac{f'(x_{0})}{1!}(x - x_{0}) + \frac{f''(x_{0})}{2!}(x - x_{0})^{2} + \dots + \frac{f^{(n)}(x_{0})}{n!}(x - x_{0})^{n},$ $x \in [a, b].$

 \bullet We call this polynomial, the nth Taylor's polynomial and

$$R_n(x) = \frac{f^{(n+1)}(c)}{(n+1)!} (x - x_0)^{n+1}$$

will be called the nth reminder.

• We observe that, if

$$p_n(x) = a_0 + a_1(x - x_0) + ... + a_n(x - x_0)^n$$

is nth degree polynomial such that

$$p_n^{(j)}(x_0) = f^{(j)}(x_0)$$
 for all $j = 0, 1, 2, ..., n$

then

$$a_j = \frac{f^{(j)}(x_0)}{j!}$$
, for $j = 0, 1, 2, ..., n$.

- Hence $p_n(x) = P_n(x)$, for all $x \in [a, b]$.
- Indeed, since

$$p_n^{(j)}(x_0) = f^{(j)}(x_0)$$
 for all $j = 0, 1, 2, ..., n$,

in particular,

$$a_{0} = p_{n}^{(0)}(x_{0}) = f^{(0)}(x_{0}) = f(x_{0}), \text{ so } a_{0} = f(x_{0}).$$

$$1!a_{1} = p_{n}^{(1)}(x_{0}) = f^{(1)}(x_{0}), \text{ so } a_{1} = \frac{f^{(1)}(x_{0})}{1!}$$

$$2!a_{2} = p_{n}^{(2)}(x_{0}) = f^{(2)}(x_{0}), \text{ so } a_{2} = \frac{f^{(2)}(x_{0})}{2!}$$

$$\vdots$$

$$n!a_{n} = p_{n}^{(n)}(x_{0}) = f^{(n)}(x_{0}), \text{ so } a_{n} = \frac{f^{(n)}(x_{0})}{n!}.$$

• Therefore, the statement follows.

Example: We find $P_n(x)$ for $f(x) = e^x$ and $x_0 = 0$.

Since $f^{(n)}(x) = e^x$, $f^{(n)}(0) = 1$, so

$$P_n\left(x\right) = \sum_{k=0}^{n} \frac{x^n}{n!}.$$

Example: We find $P_n(x)$ for $f(x) = \sin(x)$ and $x_0 = 0$.

 \bullet Since

$$\begin{split} f\left(x\right) &= \sin\left(x\right), \text{ then } f\left(0\right) = 0 \\ f'\left(x\right) &= \cos\left(x\right) = \sin\left(x+1\cdot\frac{\pi}{2}\right), \text{ then } f'\left(0\right) = 1 \\ f''\left(x\right) &= -\sin\left(x\right) = \sin\left(x+2\cdot\frac{\pi}{2}\right), \text{ then } f''\left(0\right) = 0 \\ f^{(3)}\left(x\right) &= -\cos\left(x\right) = \sin\left(x+3\cdot\frac{\pi}{2}\right), \text{ then } f^{(3)}\left(0\right) = -1 \\ &\vdots \\ f^{(n)}\left(x\right) &= \sin\left(x+n\cdot\frac{\pi}{2}\right), \text{ then } \\ f^{(n)}\left(0\right) &= \sin\left(n\cdot\frac{\pi}{2}\right) = \left\{ \begin{array}{cc} \left(-1\right)^k & if & n=2k+1 \\ 0 & if & n=2k \end{array} \right., \ k = 0, 1, \dots \end{split}$$

• Therefore,

$$P_{2n+1}(x) = \sum_{k=0}^{n} \frac{(-1)^k x^{2k+1}}{(2k+1)!}.$$

Example: We find $P_n(x)$ for $f(x) = \cos(x)$ and $x_0 = 0$.

• Since

$$\begin{split} f\left(x\right) &= \cos\left(x\right), \text{ then } f\left(0\right) = 1 \\ f'\left(x\right) &= -\sin\left(x\right) = \cos\left(x + 1 \cdot \frac{\pi}{2}\right), \text{ then } f'\left(0\right) = 0 \\ f''\left(x\right) &= -\cos\left(x\right) = \cos\left(x + 2 \cdot \frac{\pi}{2}\right), \text{ then } f''\left(0\right) = -1 \\ f^{(3)}\left(x\right) &= \sin\left(x\right) = \cos\left(x + 3 \cdot \frac{\pi}{2}\right), \text{ then } f^{(3)}\left(0\right) = 0 \\ &\vdots \\ f^{(n)}\left(x\right) &= \cos\left(x + n \cdot \frac{\pi}{2}\right), \text{ then } \\ f^{(n)}\left(0\right) &= \cos\left(n \cdot \frac{\pi}{2}\right) = \left\{ \begin{array}{cc} \left(-1\right)^k & if & n = 2k \\ 0 & if & n = 2k + 1 \end{array} \right., \ k = 0, 1, \dots \end{split}$$

• Therefore,

$$P_{2n}(x) = \sum_{k=0}^{n} \frac{(-1)^k x^{2k}}{(2k)!}.$$

• Exercise: Show that

$$\lim_{x \to 0} \frac{1 - \cos(x)}{x^2} = \frac{1}{2}$$

Solution: Let $x \neq 0$ and $x_0 = 0$.

• By Taylor's Theorem, there is c_x in the interval with the endpoints x and 0, such that

$$\cos(x) = 1 - \frac{x^2}{2!} + \frac{\cos(c_x)}{4!} x^4, \text{ so}$$

$$\frac{1 - \cos(x)}{x^2} = \frac{\frac{x^2}{2!} - \frac{\cos(c_x)}{4!} x^4}{x^2} = \frac{1}{2!} - \frac{\cos(c_x)}{4!} x^2.$$

- Now, let $\epsilon > 0$ be given and assume that $0 < |x| < \delta$.
- Then

$$\left| \frac{1 - \cos(x)}{x^2} - \frac{1}{2} \right| = \left| \left(\frac{1}{2!} - \frac{\cos(c_x)}{4!} x^2 \right) - \frac{1}{2} \right|$$
$$= \frac{\left| \cos(c_x) \right|}{4!} |x|^2 \le \frac{|x|^2}{24} < \frac{\delta^2}{24}.$$

• If $0 < \delta < 2\sqrt{6\epsilon}$, then for $0 < |x| < \delta$,

$$\left| \frac{1 - \cos(x)}{x^2} - \frac{1}{2} \right| < \frac{\delta^2}{24} < \frac{\left(2\sqrt{6\epsilon}\right)^2}{24} = \epsilon.$$

• We showed that

$$\lim_{x \to 0} \frac{1 - \cos(x)}{x^2} = \frac{1}{2}.$$

Exercise: Let $f(x) = \sqrt{x}$. Find p_2 for f at $x_0 = 9$ to estimate $\sqrt{8.8}$. What is the error?

• Solution: For $f(x) = \sqrt{x}$,

$$f'(x) = \frac{1}{2\sqrt{x}}$$

$$f''(x) = -\frac{1}{4\sqrt{x^3}}$$

$$f'''(x) = \frac{3}{8\sqrt{x^5}}$$

• Therefore,

$$f'(9) = \frac{1}{2\sqrt{9}} = \frac{1}{6}$$

 $f''(9) = -\frac{1}{4\sqrt{9^3}} = -\frac{1}{108}.$

and by Taylor's theorem, for $x \neq 9$,

there is $c_x \in I_x$, where

$$I_x = \begin{cases} [9, x] & if \quad x > 9 \\ [x, 9] & if \quad x < 9 \end{cases}$$

such that

$$f\left(x\right) = p_2\left(x\right) + R_2\left(c_x\right),\,$$

where

$$p_2(x) = \sum_{i=0}^{2} \frac{f^{(i)}(9)}{(i)!} (x-9)^i = 3 + \frac{1}{6} (x-9) - \frac{1}{216} (x-9)^2 \text{ and}$$

$$R_2(c_x) = \frac{f^{(3)}(c_x)}{3!} (x-9)^3 = \frac{\frac{3}{8\sqrt{c_x^5}}}{6} (x-9)^3 = \frac{1}{16\sqrt{c_x^5}} (x-9)^3$$

• If x = 8.8, then

$$p_2(8.8) = 3 + \frac{1}{6}(8.8 - 9) - \frac{1}{216}(8.8 - 9)^2 \approx 2.9665.$$

and

$$\left| \sqrt{8.8} - p_2(8.8) \right| = \left| R_2(c_{8.8}) \right| = \left| \frac{f^{(3)}(c_{8.8})}{3!} \right| \left| 8.8 - 9 \right|^3$$
$$= \frac{0.008}{16\sqrt{c_x^5}} = \frac{1}{2000\sqrt{c_{8.8}^5}}.$$

• Since $c_{8.8} \in (8.8, 9)$,

$$c_{8.8} > 8.8,$$

so
$$\frac{1}{c_{8.8}} < \frac{1}{8.8}$$
.

• Therefore,

$$\frac{1}{2000\sqrt{c_{8.8}^5}} < \frac{1}{2000\sqrt{(8.8)^5}} \approx 2.1765 \times 10^{-6}.$$

• Hence,

$$\left| \sqrt{8.8} - p_2(8.8) \right| \le 2.1765 \times 10^{-6}.$$

• So the error of the approximation of $\sqrt{8.8}$ that we obtain using Taylor's theorem is $\leq 2.176.5 \times 10^{-6}$. **Theorem** (*L'Hospital's Rule*) Let f, g be continuous on [a, b] and differentiable on (a, b). Suppose that $c \in [a, b]$ and f(c) = g(c) = 0, and there is $\delta > 0$, such that

$$g'(x) \neq 0$$

for $x \in D^*(c, \delta) \cap (a, b)$, where $D^*(c, \delta) = D(c, \delta) \setminus \{c\}$.

If $\lim_{x\to c} \frac{f'(x)}{g'(x)} = L$ then

$$\lim_{x \to c} \frac{f(x)}{g(x)} = L.$$

Proof. Let $\{x_n\} \subseteq D^*(c,\delta) \cap (a,b)$ and assume that $x_n \to c$ as $n \to \infty$.

• We show that

$$\lim_{n \to \infty} \frac{f(x_n)}{g(x_n)} = L.$$

- Consider the closed interval I_n with the endpoints c and x_n
- Observe that f and g are continuous on I_n and differentiable in its interior.
- By Cauchy's Mean Value Theorem, there is c_n in the interior of I_n , such that

$$f'(c_n)(g(x_n) - g(c)) = g'(c_n)(f(x_n) - f(c)).$$

• Since, f(c) = g(c) = 0,

$$f'(c_n) g(x_n) = g'(c_n) f(x_n)$$
.

• Since $c_n \in \text{Int}(I_n) \subset D^*(c, \delta) \cap (a, b)$,

$$g'(c_n) \neq 0.$$

• If $g(x_n) = 0$ then since

$$g\left(c\right) =0,$$

g is continuous on the closed interval with the endpoints x_n and c and differentiable in its interior, by Rolle's theorem, there is c'_n in the interior of the interval with the endpoints c and x_n , such that

$$g'\left(c_n'\right) = 0.$$

• However, as we see,

$$c'_n \in I_n \subset D^*(c,\delta) \cap (a,b)$$
,

so

$$g'(c'_n) \neq 0$$
,

a contradiction.

• Therefore, we must be

$$g'(x_n) \neq 0$$

and hence

$$\frac{f'\left(c_{n}\right)}{g'\left(c_{n}\right)} = \frac{f\left(x_{n}\right)}{g\left(x_{n}\right)}$$

- Observe that since $x_n \to c$, then $c_n \to c$ as c_n is a point in the interior of I_n .
- Therefore

$$\lim_{n \to \infty} \frac{f(x_n)}{g(x_n)} = \lim_{n \to \infty} \frac{f'(c_n)}{g'(c_n)} = L$$

since

$$\lim_{x\to c}\frac{f'\left(x\right)}{g'\left(x\right)}=L.$$

• It follows that

$$\lim_{x \to c} \frac{f(x)}{g(x)} = L.$$

This finishes our proof. ■

• Remark: Let a > 0 and

$$f, g: (a, \infty) \to \mathbb{R}$$

be differentiable and

$$g'(x) \neq 0$$
,

for all $x \in (a, \infty)$.

• If

$$\lim_{x \to \infty} f\left(x\right) = \lim_{x \to \infty} g\left(x\right) = 0 \text{ and } \lim_{x \to \infty} \frac{f'\left(x\right)}{g'\left(x\right)} = L,$$

then

$$\lim_{x \to \infty} \frac{f(x)}{g(x)} = L.$$

• Indeed, we define

$$F\left(x\right) = f\left(\frac{1}{x}\right)$$

and

$$G(x) = g\left(\frac{1}{x}\right),$$

for $x \in \left(0, \frac{1}{a}\right)$.

• We see that

$$\lim_{x\to\infty}\frac{f\left(x\right)}{g\left(x\right)}=L\text{ iff }\lim_{x\to0^{+}}\frac{F\left(x\right)}{G\left(x\right)}=L.$$

• Since $F'(x) = -\frac{f'\left(\frac{1}{x}\right)}{x^2}$ and $G'(x) = -\frac{g'\left(\frac{1}{x}\right)}{x^2}$, then for $x \in \left(0, \frac{1}{a}\right)$,

$$\frac{F'\left(x\right)}{G'\left(x\right)} = \frac{f'\left(\frac{1}{x}\right)}{g'\left(\frac{1}{x}\right)}.$$

• Since

$$\lim_{x\to 0^{+}} F\left(x\right) = \lim_{x\to 0^{+}} G\left(x\right) = 0 \text{ and } G'\left(x\right) \neq 0$$

• for all $x \in (0, \frac{1}{a})$, by L'Hospital's Rule

$$\lim_{x \to 0^{+}} \frac{F\left(x\right)}{G\left(x\right)} = \lim_{x \to 0^{+}} \frac{F'\left(x\right)}{G'\left(x\right)}.$$

• Therefore,

$$\lim_{x \to \infty} \frac{f\left(x\right)}{g\left(x\right)} = \lim_{x \to 0^{+}} \frac{F\left(x\right)}{G\left(x\right)} = \lim_{x \to 0^{+}} \frac{F'\left(x\right)}{G'\left(x\right)} = \lim_{x \to \infty} \frac{f'\left(x\right)}{g'\left(x\right)} = L.$$

- Analogous argument applies for two differentiable functions
- $f, g: (-\infty, a) \to \mathbb{R}$, where a < 0, such that

$$g'(x) \neq 0$$
,

for all $x \in (-\infty, a)$, and

• $\lim_{x\to-\infty} f(x) = \lim_{x\to-\infty} g(x) = 0$ and $\lim_{x\to-\infty} \frac{f'(x)}{g'(x)} = L$. **Theorem** (*Inverse Function Theorem*) Suppose that $f:(a,b)\to\mathbb{R}$ and

for all $x \in (a, b)$ or f'(x) < 0 for all $x \in (a, b)$.

Then f is bijective onto $f\left(\left(a,b\right)\right),\,f^{-1}$ is differentiable on its domain, and

$$\left(f^{-1}\right)'(y) = \frac{1}{f'(x)}$$

where y = f(x).

Example: Let $f(x) = \sin(x)$, $x \in \left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$.

- Then $f'(x) = \cos(x) > 0$, for all $x \in \left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$.
- \bullet By the Inverse Function Theorem, f has the inverse

$$f^{-1}:\left(-1,1\right)\to\left(-\frac{\pi}{2},\frac{\pi}{2}\right)$$

which we call $\arcsin = f^{-1}$.

• Now,

$$\frac{d}{dy}(\arcsin(y)) = (f^{-1})'(y) = \frac{1}{f'(x)} = \frac{1}{\cos x}$$
$$= \frac{1}{\sqrt{1 - \sin^2 x}} = \frac{1}{\sqrt{1 - y^2}}.$$

Proof. Since f is monotone (strictly increasing if f'(x) > 0 or strictly decreasing if f'(x) < 0),

 \bullet f is injective, so

$$f^{-1}: f((a,b)) \to (a,b)$$

is defined and f((a,b)) is an interval since (a,b) is an interval and f is continuous.

- Suppose that f'(x) > 0, for all $x \in (a, b)$, so f is strictly increasing.
- We want to show that $f^{-1}: f((a,b)) \to (a,b)$ is continuous.
- Let $U \subset (a,b)$ is open, it is sufficient to show that

$$(f^{-1})^{-1}(U) = f(U) \subseteq f((a,b)) - \text{Why?}$$

is open.

• Let $y \in f(U)$, so there is $x \in U$, such that

$$y = f(x).$$

- Since U is open, there is an open interval $(x_1, x_2) \subseteq U$, such that $x \in (x_1, x_2)$.
- \bullet Since f increases

$$f\left(x_1\right) < f\left(x\right) < f\left(x_2\right)$$

and

$$f\left(\left(x_{1},x_{2}\right)\right)\subseteq\left(f\left(x_{1}\right),f\left(x_{2}\right)\right).$$

• If $c \in (f(x_1), f(x_2))$, then by the Intermediate Value Theorem, there is $z \in (x_1, x_2)$, such that

$$f(z) = c$$

so

$$(f(x_1), f(x_2)) \subseteq f((x_1, x_2)).$$

• It follows that

$$y \in (f(x_1), f(x_2)) = f((x_1, x_2)) \subseteq f(U) = (f^{-1})^{-1}(U),$$

so $(f^{-1})^{-1}(U) = f(U)$ is open.

- It follows that f^{-1} is **continuous.**
- Now let y = f(x), then $x = f^{-1}(y)$ and $y_0 = f(x_0)$, so $x_0 = f^{-1}(y_0)$.
- Since f^{-1} is continuous,

$$\lim_{y \to y_0} f^{-1}(y) = \lim_{y \to y_0} x = x_0.$$

Then

$$(f^{-1})'(y_0) = \lim_{y \to y_0} \frac{f^{-1}(y) - f^{-1}(y_0)}{y - y_0} = \lim_{y \to y_0} \frac{x - x_0}{f(x) - f(x_0)}$$
$$= \lim_{x \to x_0} \frac{1}{\frac{f(x) - f(x_0)}{x - x_0}} = \frac{1}{f'(x_0)}.$$

This finishes our proof. ■