CAN YOU MAKE AN INTERMEDIATE-MASSIVE BLACK HOLE IN DWARF GALAXIES DURING THE COSMIC NOON? [WORKING TITLE]

1 Motivation

Until today, the "chicken-or-egg" origin of black holes and galaxies has remained a mystery, because directly observing the first black holes at high redshift are extremely challenging with most existing instruments. Therefore, most of the observational efforts in understanding the primordial black seeding mechanisms have mainly focused on determining the black hole occupation fraction in local dwarf galaxies, which can be used to discern different primordial BH seeding scenarios because local dwarf galaxies are the fossil records of the high redshift galaxies that have undergone little or no galaxy mergers (citations). However, direct measurements of BH occupation fraction are limited to the most nearby galaxies (e.g., the AMUSE survey, see Miller et al. 2015), which can only provide a lower-limit on the BH occupation fraction due to the challenges in detecting weak X-ray emission from individual galaxies with black holes that are not accreting actively. Many works have therefore searched for actively accreting intermediate-mass black holes (IMBHs, black holes with $M_{\rm BH}=10^4-10^6 M_{\odot}$), as the fraction of dwarf galaxies hosting active galactic nuclei (AGN) powered by IMBHs can be regarded as a proxy of the BH occupation fraction. Due to various observational constraints such severe host galaxy contamination in optical emission lines (citations) and mid-IR color (citations), the limited survey area and bias against obscured sources of < 10 keV X-ray observations (citations), and flux limits (citations), our understanding of the AGN fraction and BH occupation fraction in local dwarf galaxies remain far from clear.

Average $M_{\rm BH}$ accreted during the cosmic noon: Here we propose an alternative approach to measure the mass of black holes in dwarf galaxies: instead of finding AGNs in individual low-mass galaxies or measure $M_{\rm BH}$ in individual galaxies, we will measure the average BH accretion rates for the progenitor galaxies of present-day dwarf galaxies with $M_{\star}=10^{9.5}M_{\odot}$ (the mass of the Large Magellanic Cloud) across different redshift epochs. With the Chandra data from several multiwavelength survey fields including the CANDELS fields and the COSMOS survey region, we will focus on the redshift range at which the cosmic SMBH accretion rate density peaks, 0.5 < z < 2.0, the "cosmic noon". This epoch spans about a half the age of the universe. Due to the high MBH accretion density, the majority of the black mass is expected to be accreted during this epoch. By measuring the average black hole accretion rate (BHAR) for the dwarf galaxy progenitors throughout this redshift range, we can measure the average cumulative $M_{\rm BH}$. Through studying the average BH mass accumulated via accretion for the bulk of the cosmic history, we will determine whether the bulk of dwarf galaxies can harbor IMBHs through pure accretion, or the existence of IMBHs in the local universe require massive BH seeds formed via direct collapse of primordial gas clouds. This will shed light on one of the most fundamental questions in extragalactic astronomy.

2 Specific Science Goals and Proposed Archival Analyses

We propose archival analyses of *Chandra* observations in order to place a strong constraint on the average mass of the IMBHs hosted by dwarf galaxies at $z \approx 0.5$.

Tracing the dwarf galaxy progenitors at $z \approx 0.5-2$: The key to measuring the cumulative $M_{\rm BH}$ is to select galaxies that are progenitors of local dwarf galaxies at different redshift epochs. There are a number of different approaches that can identify the progenitors and descendants for a galaxy population, such as the assumption of a constant cumulative comoving number density (e.g., van Dokkum et al. 2010, Wellons & Torrey 2016). In this method, the progenitors and descendants of a galaxy population can be obtained by simply matching the cumulative comoving number

Figure 1: Left: The stellar mass histories for galaxies hosted by dark matter halos of different mass, adopted from Behroozi et al. (2013). For demonstration purposse, we adopt the stellar mass history for galaxies with $M_{\star}=10^{9}.5M_{\odot}$ at z=0, and select the progenitors of these local dwarf galaxies from the Santini et al. (2015) CANDELS sample in GOODS-South. Right: The redshift- M_{\star} distribution of the GOODS-South sample. The full GOODS-South sample from Santini et al. (2015) is displayed as the green dots. The progenitor galaxies at four different redshift epochs are shown as the red dots.

density, which is assumed to be a constant for each unique galaxy population. Another approach is based simulations of structure formation models. For instance, Behroozi et al. (2013) studied the dark matter halo evolution based on the structure formation models for dark matter halos under the ΛCDM framework. The observed galaxies are then matched to dark matter halos using the halo-abundance-matching method. This approach can quantify stellar mass growth histories of galaxies of different masses throughout the simulated cosmic history. Therefore the mass of the progenitors and descendants for galaxies of an arbitrary mass can be easily obtained (see Fig. 1 –left). We plan to adopt these two different schools of progenitor-descendant selection methods and construct samples of progenitors of local dwarf galaxies.

Multiwavelength surveys In order to study the average BH accretion rate for samples of progenitor galaxies of local dwarf galaxies across different redshift ranges, it is important to have mass-complete samples of galaxies. Given the faint nature of dwarf galaxies at high redshifts, deep optical-to-IR and X-ray observations are essential. For this proposal, we plan to utilize data from the CANDELS surveys, including GOODS-South & North, EGS, UDS, and the COSMOS survey. All of the survey regions have deep *Chandra* observations (GOODS-South: 7 Ms, Luo et al. 2017; GOODS-North: 2 Ms, Xue et al. 2016; EGS: 800 ks, Nandra et al. 2015; UDS: 600 ks, Kocevski et al. in prep.; COSMOS: 200 ks, Civano et al. 2016) and extensive, deep multiwavelength coverage from ground-based telescopes (with 18-42 bands of photometry) that enabled accurate stellar mass measurements. For these survey regions, we will focus on mass-complete subsamples with $M_{\star} > 10^8 M_{\odot}$ at $z \approx 2$ from the ≈ 900 arcmin² CANDELS fields. This will enable us to trace a volume-limited sample of progenitors for local dwarf galaxies with $10^{9.25} M_{\odot} < M_{\star} < 10^{9.75} M_{\odot}$ since $z \approx 2$. At lower redshifts $(z \approx 1)$ where the pencil-beam CANDELS fields have limited volume, we will supplement the analysis with the full COSMOS sample. For demonstration purpose, we utilize the Santini et al. (2015) sample of CANDELS galaxies in GOODS-South and select the progenitor galaxies of the local dwarf galaxies based on the Behroozi et al. (2013) model. The redshift- M_{\star} distributions for the full GOODS-South sample and the selected progenitor galaxies at 0.5 < z < 2.0 are shown in Fig. 1.

Measuring the sample-average BH accretion rate with deep Chandra observations. We will divide our progenitor samples into several redshift epochs and adopt an X-ray stacking analysis to obtain the average X-ray flux for each redshift epoch. This is a crucial step because the instantaneous BHAR can vary over several orders of magnitude over the time span of each

Figure 2: Left: The average BHAR for the progenitor galaxies selected from the Santini et al. (2015) GOODS-South sample (the red dots shown in Fig. 1-right), calculated using X-ray stacking analyses. The horizontal error bars shows the redshift bin size. The vertical error bars are obtained via Monte Carlo simulations (see Yang et al. 2017 for details). Middle: The average black hole mass accreted at each redshift epoch. Right: The cumulative $M_{\rm BH}$ in each redshift bin. The results from GOODS-South show that present-day dwarf galaxies already harbor an IMBH at $z \approx 0.5$ formed without any significant BH seed at $z \approx 2.0$. However, accuracy of this test sample is limited to the small sample size. We propose to expand this analysis to include all of the galaxies from the five CANDELS fields as well as those from COSMOS.

redshift bin, and the stacking analysis can be used to account for the average X-ray emission originated from galaxies that are not individually X-ray detected (e.g., Chen et al. 2013, Hickox et al. 2014, Yang et al. 2017). We have utilized the deep *Chandra* observations for the GOODS-South progenitor galaxies described in the previous paragraph. We divide the progenitor galaxies into four redshift bins and carried out the stacking analyses for the progenitor galaxies in each redshift bin. We convert the stacked X-ray count rates to fluxes following the recipe described in Vito et al. (2016) and Yang et al. (2017), in which the stacked X-ray photons are assumed to follow a power-law spectrum with an effective photon index of $\Gamma = 1.8$. The X-ray detected sources were excluded from the stacking analyses, and their X-ray luminosities were calculated based on spectral fitting results assuming a standard absorbed power-law model (see §2.3 of Yang et al. 2017 for details). The average BH accretion rate in each bin is then derived based on the AGN bolometric luminosity and a radiation efficiency 0.1. The AGN bolometric luminosity is obtained assuming the luminosity-dependent bolometric correction factors from Lusso et al. (2012). Note that the X-ray luminosity in each bin is dominated by the X-ray detected sources with $L_{\rm X} > 10^{42}~{\rm erg~s^{-1}}$, where the bolometric correction factors are well-constrained. In each redshift epoch, we can then quantify the average black hole mass gained for the stacked galaxies. Due to the volume limits, and to avoid missing heavily obscured AGNs due to the rest-frame energy detectable by Chandra falling under 10 keV, we do not plan to continue the analysis for galaxies at z < 0.5. Based on the Behroozi et al. (2013) stellar mass history and the recent developments of the "specific X-ray luminosity function"¹, the growth of galaxies and MBHs since $z \approx 0.5$ are expected to be modest compared to that in the "cosmic noon". The average BHAR, M_{BH} gained in each redshift epoch, and the cumulative $M_{\rm BH}$, are shown in Fig. 2.

Interpretation and uncertainty assessments The result of our test sample appears to show that on average, the central black holes in the progenitors of local dwarf galaxies can accumulate most of its mass and grow into an IMBH since $z\approx 2$ (Fig. 2–right). This implies only very light primordial BH seeds are required, which appears to contradict with previous studies of X-ray AGN fractions that favor heavy BH seeds (e.g., Pardo et al. 2016, Mezcua et al. 2017). However, the accuracy of stacking only the GOODS-South sources is severely limited by the small sample size

¹X-ray luminosity of the accreting MBH normalized by the stellar mass of its host galaxy, see Aird et al. (2017) and Yang et al. (2018).

of X-ray detected AGNs. Including samples from CDF-N, UDS, and COSMOS will immediately mitigate this problem and will provide an accurate measurement on the average $M_{\rm BH}$ at z=0.5. As shown in Fig. 2 and previous studies that stacked galaxies with similar M_{\star} (Yang et al. 2017), the X-ray luminosities for the selected progenitor galaxies can become comparable to those originated from the X-ray binary population. For the test sample shown here, we have subtracted the X-ray binary contribution based on the Lehmer et al. (2016) scaling relation between X-ray binary luminosities, M_{\star} , and SFR. For the proposed analyses, we will further assess how the scattering in the Lehmer et al. (2016) relation and the statistical fluctuations of the X-ray emission from the X-ray binaries in individual galaxies (e.g., Gilfanov et al. 2004) affect the cumulative $M_{\rm BH}$ using Markov Chain Monte Carlo (MCMC) simulations. Additionally, we will include the uncertainty in our progenitor selection methods into the MCMC process to obtain the realistic uncertainties of our results. We will then compare the average BH mass derived based on the *Chandra* observations with those based on theoretical models and semi-analytical simulations (e.g., Somerville et al. 2008, Volonteri & Begelman 2010).

[A concluding paragraph to be completed].

3 Use of Funds Narrative

To be completed

4 References

To be completed