Petrucci • Harwood • Herring • Madura

Ninth GENERAL CHEMISTRY

Principles and Modern Applications

Chapter 10: Chemical Bonding I: Basic Concepts

Philip Dutton
University of Windsor, Canada
Prentice-Hall © 2007

Contents

10-1	Lewis Theory: An Overview
10-2	Covalent Bonding: An Introduction
10-3	Polar Covalent Bonds
10-4	Writing Lewis Structures
10-5	Resonance
10-6	Exceptions to the Octet Rule
10-7	The Shapes of Molecules
10-8	Bond Order and Bond Lengths
10-9	Bond Energies

> Focus On Molecules in Space: Measuring Bond Lengths

10-1 Lewis Theory: An Overview

- ◆ Valence e⁻ play a fundamental role in chemical bonding.
- ◆ e⁻ transfer leads to ionic bonds.
- ◆ Sharing of *e*⁻ leads to *covalent bonds*.
- ◆ e⁻ are transferred of shared to give each atom a noble gas configuration
 - the octet.

Lewis Symbols

- A chemical symbol represents the nucleus and the *core* e^- .
- Dots around the symbol represent *valence* e^{-} .

EXAMPLE 10-2

Writing Lewis Structures of Ionic Compounds. Write Lewis structures for the following compounds: (a) BaO; (b) MgCl₂; (c) aluminum oxide.

Note the use of the "fishhook" arrow to denote a single electron movement. A "double headed" arrow means that two electrons move.

EXAMPLE 10-2

10-2 Covalent Bonding: An Introduction

$$H \cdot + \cdot O \cdot + \cdot H \longrightarrow H : O : H \text{ and } : Cl \cdot + \cdot O \cdot + \cdot Cl : \longrightarrow : Cl : O : Cl :$$
 water dichlorine oxide

$$H \cdot + \cdot H \longrightarrow H \cdot H$$
 or $H \rightarrow H$

Bond pair

 $Cl \cdot + \cdot Cl : \longrightarrow : Cl : Cl : Or : Cl \rightarrow Cl$

Lone pairs

Coordinate Covalent Bonds

Note the "double headed" arrow showing that two electrons move.

Multiple Covalent Bonds

$$\dot{\circ}$$
 $\dot{\circ}$ $\dot{\circ}$ $\dot{\circ}$ $\dot{\circ}$ $\dot{\circ}$ $\dot{\circ}$ $\dot{\circ}$ $\dot{\circ}$

$$\ddot{\circ}$$
 $\dot{\circ}$ $\dot{\circ}$

Multiple Covalent Bonds

Paramagnetism of Oxygen

$$: \ddot{O} \cdot + \cdot \ddot{O} : \longrightarrow : \ddot{O} : \ddot{O} : \longrightarrow : \ddot{O} = \ddot{O} : ?$$

10-3 Polar Covalent Bonds and Electrostatic Potential Maps

Polar Molecules

Slide 13 of 50 General Chemistry: Chapter 10 Prentice-Hall © 2007

Electronegativity

Percent Ionic Character

10-4 Writing Lewis Structures

- *All* the valence e^- of atoms must appear.
- *Usually*, the e^- are paired.
- ◆ *Usually*, each atom requires an octet.
 - H only requires $2e^{-}$.
- Multiple bonds may be needed.
 - Readily formed by C, N, O, S, and P.

Skeletal Structure

◆ Identify central and terminal atoms.

Skeletal Structure

- ♦ Hydrogen atoms are always terminal atoms.
- ◆ Central atoms are generally those with the lowest electronegativity.
- Carbon atoms are always central atoms.
- ◆ Generally structures are compact and symmetrical.

Strategy for Writing Lewis Structures

Slide 19 of 50 General Chemistry: Chapter 10 Prentice-Hall © 2007

EXAMPLE10-7

Writing a Lewis Structure for a Polyatomic Ion. Write the Lewis structure for the nitronium ion, NO_2^+ .

Step 1: Total valence
$$e^- = 5 + 6 + 6 - 1 = 16 e^-$$

- Step 2: Identify the central and terminal atoms
- Step 3: Plausible structure: O—N—O
- Step 4: Add e^- to terminal atoms: \bullet N—O

EXAMPLE 10-7

Step 5: Determine e^- left over:

$$16 - 4 - 12 = 0$$

Step 6: Use multiple bonds to satisfy octets.

$$\bullet \overset{\frown}{\circ} \overset{$$

Formal Charge

FC =
$$\#_{\text{valence }e^-}$$
 - $\#_{\text{lone pair }e^-}$ - $\frac{1}{2}$ $\#_{\text{bond pair }e^-}$

$$\ddot{O}=N\overset{+}{=}\ddot{O}$$

$$FC(O) = 6 - 4 - \frac{1}{2}(4) = 0$$

$$FC(N) = 5 - 0 - \frac{1}{2}(8) = +1$$

Alternative Lewis Structure

$$: \overset{\longleftarrow}{O} \stackrel{\longleftarrow}{N} - \overset{\longleftarrow}{O}: \longrightarrow : \overset{+}{O} = \overset{+}{N} - \overset{-}{O}:$$

$$FC(O\equiv) = 6 - 2 - \frac{1}{2}(6) = +1$$

$$FC(N) = 5 - 0 - \frac{1}{2}(8) = +1$$

$$FC(O-) = 6 - 6 - \frac{1}{2}(2) = -1$$

Alternative Lewis Structures

- Sum of FC is the overall charge.
- ◆ FC should be as small as possible.
- ◆ Negative FC usually on most electronegative elements.
- ◆ FC of same sign on adjacent atoms is unlikely.

$$: O_{+} \longrightarrow O_{+}$$

EXAMPLE 10-7

Using the Formal Charge in Writing Lewis Structures. Write the most plausible Lewis structure of nitrosyl chloride, NOCl, one of the oxidizing agents present in *aqua regia*.

10-5 Resonance

$$\ddot{\mathbf{O}} = \ddot{\mathbf{O}}_{+} - \ddot{\mathbf{O}}_{:} \leftarrow \cdots \rightarrow \ddot{:} \ddot{\mathbf{O}} - \ddot{\mathbf{O}}_{+} = \ddot{\mathbf{O}}_{:}$$

10-6 Exceptions to the Octet Rule

• Odd e^- species.

Exceptions to the Octet Rule

◆ Incomplete octets.

Exceptions to the Octet Rule

Expanded octets.

Expanded Valence Shell

Normal octet

Expanded valence shell

10-7 The Shapes of Molecules

Terminology

- ♦ Bond length distance between nuclei.
- ◆ Bond angle angle between adjacent bonds.
- VSEPR Theory
 - Electron pairs repel each other whether they are in chemical bonds (bond pairs) or unshared (lone pairs). Electron pairs assume orientations about an atom to minimize repulsions.
- Electron group geometry distribution of e^- pairs.
- ◆ Molecular geometry distribution of nuclei.

Balloon Analogy

Methane, Ammonia and Water

Table 10.1 Molecular Geometry as a Function of Electron Group Geometry

Number Number VSEPR Basic Molecular Electronof of Ideal Configurations models Electron Group Lone **VSEPR** Molecular Bond Geometry **Pairs** Notation **Angles** Example Groups Geometry linear AX_2 180° BeC12 (linear)

^bFor a discussion of the placement of the lone-pair electrons in this structure, see page 401.

Applying VSEPR Theory

- Draw a plausible Lewis structure.
- ♦ Determine the number of e^- groups and identify them as *bond* or *lone* pairs.
- Establish the e^- group geometry.
- ◆ Determine the molecular geometry.
- Multiple bonds count as one group of electrons.
- More than one central atom can be handled individually.

Dipole Moments

Dipole Moments

(a) CCl₄: a nonpolar molecule

(b) CHCl₃: a polar molecule

Bond Order and Bond Length

- Bond Order
 - Single bond, order = 1
 - Double bond, order = 2
- Bond Length
 - Distance between two nuclei
- Higher bond order
 - Shorter bond
 - Stronger bond

TABLE 10.2 Some Average Bond Lengths^a

Bond	Bond Length, pm	Bond	Bond Length, pm	Bond	Bond Length, pm
H—H H—C H—N H—O H—S H—F H—C1 H—Br H—I	74.14 110 100 97 132 91.7 127.4 141.4 160.9	C-C $C=C$ $C=C$ $C-N$ $C=N$ $C=N$ $C=0$ $C-C1$	154 134 120 147 128 116 143 120 178	N-N $N=N$ $N=N$ $N=0$ $O-O$ $O=O$ $F-F$ $C1-C1$ $Br-Br$ $I-I$	145 123 109.8 136 120 145 121 143 199 228 266

^aMost values (C-H, N-H, C-H, and so on) are averaged over a number of species containing the indicated bond and may vary by a few picometers. Where a diatomic molecule exists, the value given is the actual bond length in that molecule (H₂, N₂, HF, and so on) and is known more precisely.

Bond Energies

435.93 kJ/mol

498.7 kJ/mol

$$H = O - H$$

428.0 kJ/mol

TABLE 10.3	Some Average Bond Energies ^a						
Bond	Bond Energy, kJ/mol	Bond	Bond Energy kJ/mol	Bond	Bond Energy kJ/mol		
н—н	436	С—С	347	N-N	163		
H-C	414	C = C	611	N=N	418		
H-N	389	$C \equiv C$	837	$N \equiv N$	946		
H-O	464	C-N	305	N-O	222		
H-S	368	C=N	615	N=0	590		
H-F	565	$C \equiv N$	891	O-O	142		
H-C1	431	C-O	360	O=O	498		
H—Br	364	C=O	736 ^b	F - F	159		
H-I	297	C-C1	339	C1-C1	243		
				Br—Br	193		
				I-I	151		

^a Although all data are listed with about the same precision (three significant figures), some values are actually known more precisely. Specifically, the values for the diatomic molecules H_2 , HF, HCl, HBr, HI, N_2 ($N \equiv N$), O_2 ($O \equiv O$), F_2 , Cl_2 , Br_2 , and I_2 are actually bond-dissociation energies, rather than average bond energies.

^b The value for the $C \equiv O$ bonds in CO_2 is 799 kJ/mol.

EXAMPLE 10-15

Calculating an Enthalpy of Reaction from Bond Energies.

The reaction of methane (CH_4) and chlorine produces a mixture of products called chloromethanes. One of these is monochloromethane, CH_3Cl , used in the preparation of silicones. Calculate ΔH for the reaction.

 $\Delta H_{rxn} = \sum \Delta H(product\ bonds) - \sum \Delta H(reactant\ bonds)$

 $= \sum \Delta H$ bonds formed $- \sum \Delta H$ bonds broken

= -770 kJ/mol - (657 kJ/mol) = -113 kJ/mol

Focus on Molecules in Space: Measuring Bond Lengths

End of Chapter Questions

- Testing your decisions:
 - -If you get an error or a nonsense result, then climb back to an intersection where you KNOW you were correct, and take another route.

