CE233(CAD), Lecture 2:

Introduction to PLDs

Mehdi Modarressi

Department of Electrical and Computer Engineering,

University of Tehran

World of integrated circuits

Full-custom ICs

- General-purpose processors
 - Example: Intel and AMD microprocessors
- Application-specific processors
 - Example: Embedded processor of a digital camera
- Requires establishing a fabrication line
 - You will learn more about this in the VLSI Design course

Full-custom design

- Very efficient in terms of performance, but:
 - Long design and manufacturing cycles
 - Very expensive, sometimes several million dollars
 - Once manufactured, the logic can't simply be altered
 - large penalty if a bug is found

Full-custom design

- Requires establishing a fabrication (production) line
- Suitable for large volume production
- Example: General-purpose processors
 - Intel and AMD microprocessors

Standard-cell design

• Still needs fabrication line, but the logic are selected from a library

Semi-custom designs

- Designers use standard libraries and pre-defined chip layouts to ease implementation
 - To reduce design time/effort

Full custom

Standard cell

Standard-cell design

- Cell library
- Cell: a transistor level
 implementation of a function
 (e.g. mux, register, adder,...) in
 a rectangular shape of the same
 height
- Cells placed in rows and space between rows are used for routing

VLSI design process

- System specification
- Functional design
- Logic design
- Circuit design
- Physical design
- Fabrication and packaging
- → Test or verification after each step

$$x = (AB*CD)+(A+D)+(A(B+C))$$

 $Y=(A(B+C)+AC+D+A(BC+D))$

Physical design in ASICs

Break the circuit up into smaller segments

Place the segments on the chip

Layout out the wire paths

Picture Source: CEIT483 at Amirkabir U. of Tech., Lecture 2, by Dr Saheb-zamani, with modifications

IC fabrication process

• Silicon fabrication lab

AMD's 65 nm fabrication lab (control and clean room)

Find an interesting video at:

http://www.bloomberg.com/news/articles/2016-06-09/how-intel-makes-a-chip

TTL gates

- For very simple hardware only
- 74 series
 - 7404: hex NOT
 - 7408: quad 2-inpu AND
 - 74374: Flip-flop
 - 74193: 4-bit counter

Programmable logic devices

- Some degrees of reconfigurability in ICs
- Fabricate gates, memories, interconnects into a single chip
- Let the final user to implement logic functions by appropriately connecting these devices
- PLD chips are themselves constructed by a standard cell or full-custom method
 - But final function implementation is done by the end user
- Programmable Logic Devices (PLD) are the most common target for HDL codes
 - In comparison to standard cell and full-custom chips

Programmable devices

- You know simple
 PLDs from the Logic
 Design course
- We will review them again shortly
- Example: PAL
 - Very simple programmable IC
 - The base of more complex programmable ICs

Advantages of PLDs

- Field Programmable
 - Reduced TTM and design cost
 - Accessible everywhere: easy-to-implement functions
- Erasable and reprogrammable
 - Updating a device or correction of errors
 - By a simple patch
 - Used for full-custom prototyping

Programmable logic technologies

- Simple Programmable Logic Device (SPLD)
 - Read Only Memory (ROM)
 - Programmable Array Logic (PAL)
 - Programmable Logic Array (PLA)
- Complex Programmable Logic Device (CPLD)
- Field- Programmable Gate Array (FPGA)

ROM, PAL and PLA

PROM

PAL

PLA

ROM, PAL and PLA configurations

ROM

PAL

PLA

Technology trade-offs

High performance

Low power

High cost (low cost in high volumes)

Accessibility

Low development cost

Short time to market

Reconfigurability

ASICs

CPLD/FPGAs

Full adder

PLA

Latency= Energy= 56 PS 182 PJ

ASIC 3.7 PS 47PJ

PLD architectures

- PAL and PLA are simple devices and called SPLD (simple PLD)
- Two types complex programmable devices:

CPLDs

- Often composed of some large blocks
 - Each block is a PAL plus some storage elements
- Connection among blocks by a central interconnection part

FPGAs

- Often composed of tens to hundreds of smaller logic blocks
 - Each block has a few lookup tables plus some storage elements
- The blocks are surrounded by a sea of interconnects

CPLD

• Each block is like a large PAL with some memory elements

CPLD example

Altera® MAX 5000

Altera® MAX 5000

• Each LAB contains 16-32 Macrocells

Global Interconnect (PIA)

Altera® MAX 5000

FPGA

• An array of logic cells in a sea of interconnects

FPGA - generic structure

FPGA building blocks:

- Programmable logic blocks
 Implement combinatorial and sequential logic
- Programmable interconnect
 Wires to connect inputs and outputs to logic blocks
- Programmable I/O blocks
 Special logic blocks at the periphery of device for external connections

FPGA

• FPGA: Filed Programmable Gate Array

Digital design flow for FPGAs

- Design entry
- Logic synthesis
- Partitioning
- Placement
- Routing
- Pin assignment

Physical Design

Digital design flow for FPGAs

Physical Design (Layout Synthesis)

FPGA physical design

Programmable routing

Programming technology

• Must use a programmable technology to implement the reconfigurable parts

Programmable parts

- PAL and PLA connection points
- Multiplexers
- Interconnects among different components in a programmable chip
- Lookup table entries
- → These parts will be introduced soon!

Programming technologies

- How the programmable parts are constructed
- Three major technologies
 - SRAM+ transistor switches
 - ROM
 - Antifuse

Programming technology- SRAM

Recall the transistor functionality as a switch

Programming technology- SRAM

- The switch should be controlled by some memory element
 - To keep the configuration
- A Static Random Access Memory (SRAM) is used
 - Each switch is a pass transistor controlled by the state of an SRAM bit
 - Needs to be configured at power-on

Programming technology- ROM

- Flash Erasable Programmable ROM (Flash)
 - Device itself holds the program
 - Reprogrammable, even in-circuit
 - The configuration is kept, even if the circuit is shut down

Programming technology- ROM

- ROM: a transistor switch has and additional floating-gate
 - Can be turned off by injecting negative charge onto the floating gate: negative charge prevent channel formation
 - Can be turned on by discharging the floating gate
- EPROM: discharging by UV light
- EEPROM: discharging by electrical voltage

Programming technology- Antifuse

- Fusible Links ("Antifuse")
 - Forms a low resistance path when electrically programmed
- Lower area and higher speed than SRAM and ROM
- Once the fuse is programmed, the state never changes
 - One-time programmable

FPGA market

- Several companies produce FPGAs and CPLDs
- Two major companies: Altera and Xilinx

FPGA example: Xilinx Spartan-II

DS001_01_0948

FPGA example: Altera Apex 20K

