University of Toronto Faculty of Applied Science and Engineering Department of Electrical and Computer Engineering

ECE330F Semiconductor Physics Fall 2001 http://www.courses.ece.utoronto.ca/ece330f/

Final Examination - December 11, 2001

Exam Type: D Examiner: Tatiana Allen

Two hand-written aid sheets, written on both sides, are permitted. Non-programmable calculator allowed.

100 marks constitute a perfect paper; 15 bonus marks available.

ALL WORK TO BE MARKED IS TO BE DONE ON THOSE SHEETS

There are two spare pages at the back

Last name:	
First name:	
Student number:	

Part	Max	Mark
1	5	
2	10	
3	40	
4	20	
5	40	
Total	115	/100

15 bonus marks

Part 1	
1-1 The work function for Na is 2.3 eV.	
a) Does Na show a photoelectric effect for yellow light (λ =589 nm)?	
	2 MARKS
b)What is the cutoff wavelength for photoelectric emission in Na?	
b) what is the cutoff wavelength for photoelectric emission in Na:	
$\lambda_{ m cutoff} =$	
$\lambda_{ m cutoff} =$	3 MARKS

photon emitted?	n excited state of a nucleus is 10 ⁻¹² s. What	is the uncertainty of energy of the
$\Delta E =$		
		3 MARKS
2-2 A thermal neutro	on has a kinetic energy (3/2)kT, where T=3 of the Mass of neutron is 1,675,10 ⁻²⁷ kg	00K (room temperature). What is
2-2 A thermal neutro Broglie waveleng	on has a kinetic energy (3/2)kT, where T=3 gth? Mass of neutron is 1.675 10 ⁻²⁷ kg	00K (room temperature). What is
2-2 A thermal neutro Broglie waveleng	on has a kinctic energy (3/2)kT, where T=3 gth? Mass of neutron is 1.675 10 ⁻²⁷ kg	00K (room temperature). What is
2-2 A thermal neutro Broglie waveleng	on has a kinetic energy (3/2)kT, where T=3 gth? Mass of neutron is 1.675 10 ⁻²⁷ kg	00K (room temperature). What is
2-2 A thermal neutro Broglie waveleng	on has a kinetic energy (3/2)kT, where T=3 gth? Mass of neutron is 1.675 10 ⁻²⁷ kg	00K (room temperature). What is

	2-3 Write expressions for group and phase velocities in terms of angular frequency, ω , and wave number, k
	Phase velocity:
•	Group velocity:
-	Prove that group velocity is equal to the velocity of the particle, v, whose motion is governed by this group of waves.
=	
_	
=	
=	
=	4 MARKS

Calculate the expectation value of momentum for a particle in the ground state of 1-dimensional box of width a. The wave-function is

$$\Psi(x,t)=(2/a)^{1/2}\cos{(\pi x/a)}\exp{(-iEt/\hbar)}$$

 $\Psi(x,t)=0$

$$-a/2 < x < a/2$$

 $x < -a/2$; $x > a/2$

=

A particle is in the ground state of 1-dimensional box of width a. The wave-function is

$$\Psi(x,t)=(2/a)^{1/2}\cos(\pi x/a)\exp(-iEt/\hbar)$$
 $-a/2 < x < a/2$
 $\Psi(x,t)=0$ $x < -a/2; x > a/2$

Calculate the probability that the particle would be found in a measurement within a distance of a/3 from the right-hand end of the box.

Probability =

Particle is approaching a step pote equal $V(x)=V_0$ for $x>0$ and $V(x)=0$ derive the expressions for transmis) for x<0. The energy of:	the particle is E, E>V ₀ .	e potential ene Sketch a diagr

Part	4
------	---

Suppose that the dispersion relationship for electrons in the lowest allowed band of a particular one-dimensional crystal is found $E=E_b+C(1-\cos{(ka)})$, where E_b and C are constants. Find the effective mass for any allowed energy in the band $(-\pi/a < k < \pi/a)$.

Specify the behavior of the effective mass at the following points/regions:

k= 0

 $k = \pm \pi/2a$

 $\pi/2$ a < $|k| < \pi/a$

 $|\mathbf{k}| = \pi/a$

D	•	-+	5
	71		. 1

A semiconductor is n-type and doped with 10^{15} cm⁻³ donor atoms. The effective densities of states are given by Nc=Nv=1.5 10^{19} cm⁻³ and are independent of temperature. The requirement is that at T=400K the electron concentration would be no greater than 1.01 10^{15} cm⁻³. What is the minimum acceptable value of the bandgap energy?

Eg =

5	-7

A body-centered cubic (BCC) crystal is made of hard spheres (no overlapping). The lattice parameter is a. Find the packing fraction (P.F. = volume occupied by atoms in unit cell / total volume of the unit cell)

P.F. =

	rom the center of bandga

Page 13 of 15

Page 14 of 15