الجمهورية الجزائرية الديمقراطية الشعبية

الديوان الوطني للامتحانات والمسابقات

دورة: جوان 2012

وزارة التربية الوطنية

امتحان بكالوريا التعليم الثانوي

الشعبة: علوم تجريبية

المدة: 03 ساعات ونصف

اختبار في مادة: العلوم الفيزيائية

على المترشح أن يختار أحد الموضوعين التاليين: الموضوع الأول

التمرين الأول: (04 نقاط)

لدراسة تطور التفاعل الحادث بين محلول حمض الأوكساليك $H_2C_2O_4(aq)$ ومحلول بيكرومات البوتاسيوم $(2K^+(aq)+Cr_2O_7^{2-}(aq))$ بدلالة الزمن، حضر نا مزيجا تفاعليا يحتوي على البوتاسيوم $(2K^+(aq)+Cr_2O_7^{2-}(aq))$ من محلول حمض الأوكساليك الذي تركيزه المولي $V_1=100\,m$ من محلول بيكرومات البوتاسيوم الذي تركيزه المولي $V_2=100\,m$ وحجم $V_2=100\,m$ من محلول بيكرومات البوتاسيوم الذي تركيزه المولي من خلال معايرة شوارد وبضع قطرات من حمض الكبريت المركز. نتابع تطور المزيج التفاعلي من خلال معايرة شوارد الكروم $(Cr^{3+}(aq))$ الذي يمثل تطور المزكيز المولى لشوارد الكروم $(Cr^{3+}(aq))$ بدلالة الزمن المنحنى البياني المولى لشوارد الكروم $(Cr^{3+}(aq))$ بدلالة الزمن المولى المنحنى البياني المولى لشوارد الكروم $(Cr^{3+}(aq))$ بدلالة الزمن المولى المولى

1- كيف نصنف هذا التفاعل من حيث مدة استغراقه ؟

2- اعتمادا على المعطيات و المنحنى البياني أكمل جدول التقدم المميز لهذا التفاعل.

(انقل الجدول الآتي على ورقة الإجابة):

	$3H_2C_2O_4(aq) + Cr_2O_7^{2-}(aq)$	$+ \Omega H^+(aa) =$	$2Cu^{3+}(aa) + 6CO(aa)$	+ 711 0(1)
الحالة	311 ₂ 0 ₂ 0 ₄ (aq) : C ₁₂ 0 ₇ (aq)	(mmol) 611		$+ /H_2O(\ell)$
الابتدائية		بوفرة	حمدٍ- مم	بوفرة
الانتقالية		بوفرة		بوفرة
النهائية		بوفرة		بوفرة

هل التفاعل تام أم غير تام ؟ لماذا ؟

-3 عرّف زمن نصف التفاعل $t_{1/2}$ ، ثم قدّر قيمته بيانيا.

4- أ- عرّف السرعة الحجمية ٧ للتفاعل، ثم عبّر عنها

 $\cdot [Cr^{3+}(aq)]$ بدلالة التركيز المولى لشوارد الكروم

t=8sو t=0 و اللحظتين t=0 و و t=8

ج- فسر على المستوى المجهري تناقص هذه السرعة

مع مرور الزمن.

التمرين الثاني: (04 نقاط)

في يوم 2012/04/01 بمخبر الفيزياء، قرأنا من البطاقة التقنية المرفقة لمنبع مشع المعلومات الآتية:

- γ و β^- : الإشعاعات : β^- و β^- الإشعاعات : 137
- . $m_0 = 5,02 \times 10^{-2} g$: الكتلة الابتدائية $t_{1/2} = 30,15 \, ans$ نصف العمر -

بينما لاحظنا تاريخ صنع المنبع غائبا عن هذه البطاقة.

 $A = 14,97 \times 10^{10} Bq$ النشاط A للمنبع فنجد Geiger لإيجاد عمر هذا المنبع نقيس باستعمال عداد

- -1 اكتب معادلة تفكك نواة السيزيوم، ثم عرّف الإشعاعين -3 و -1
- كانت موجودة بالمنبع لحظة صنعه. N_0 لأنوية السيزيوم التي كانت موجودة بالمنبع لحظة صنعه.
 - -3 النشاط الإشعاعي λ بـ -3
- A_0 النشاط A_0 النشاط A_0 بعدد الأنوية المتبقية في المنبع، ثم احسب النشاط A_0 المميز للعينة لحظة صنعها.
 - 5- استنتج بالحساب تاريخ صننع العيّنة.

 $N_A = 6.02 \times 10^{23} \, mol^{-1}$ عدد أيام السنة : $N_A = 6.02 \times 10^{23} \, mol^{-1}$ عدد أيام السنة : $\delta_{56}Ba$ ، $\delta_{55}Cs$ ، $\delta_{4}Xe$ ، $\delta_{53}I$ ، $\delta_{56}Ba$ ، $\delta_{55}Cs$ ، $\delta_{54}Xe$ ، $\delta_{53}I$ ، $\delta_{56}Ba$ ، $\delta_{56}Ba$

التمرين الثالث: (04 نقاط)

 $.25\,^{\circ}$ C قوخذ كل المحاليل في

نحضر محلولا S حجمه C_6H_5COOH بحل كتلة m من حمض البنزويك النقي C_6H_5COOH في الماء.

- -1 اكتب معادلة انحلال حمض البنزويك في الماء.
- . أعط عبارة ثابت الحموضة K_a للثنائية أساس/حمض.
- $V_a=20\,mL$ الصوديوم محلول حمض البنزويك بمحلول هيدروكسيد الصوديوم $V_a=20\,mL$ الشكل -3 (الشكل -2) يعطي ($Na^+(aq)+HO^-(aq)$) تركيزه المولي $V_b=0.2\,mol\cdot L^{-1}$ يعطي تطور $V_b=0.2\,mol\cdot L^{-1}$ الأساس المضاف $V_b=0.2\,mol\cdot L^{-1}$
 - أ- اكتب معادلة تفاعل المعايرة.
 - ب- عين إحداثيات النقطيتين E' و E' من (الشكل-2). ما مدلولهما الكيميائي؟ جد التركيز المولى c_a لحمض البنزويك.
 - s النقي المستعملة لتحضير المحلول s النقي المستعملة لتحضير المحلول

 $C_6H_5COOH(aq)/C_6H_5COO^-(aq)$ للثنائية K_a قيمة K_a قيمة K_a قيمة و- ما النوع الكيميائي الذي يشكل الصفة الغالبة في المزيج التفاعلي عند E_6 9 و- ما النوع الكيميائي الذي يشكل الصفة الغالبة في المزيج التفاعلي عند E_6 9 و- ما النوع الكيميائي الذي يشكل الصفة الغالبة في المزيج التفاعلي عند E_6 9 و- ما النوع الكيميائي الذي يشكل الصفة الغالبة في المزيج التفاعلي عند E_6 9 و- ما النوع الكيميائي الذي يشكل الصفة الغالبة في المزيج التفاعلي عند E_6 9 و- ما النوع الكيميائي الذي يشكل الصفة الغالبة في المزيج التفاعلي عند E_6 9 و- ما النوع الكيميائي الذي يشكل الصفة الغالبة في المزيج التفاعلي عند E_6 9 و- ما النوع الكيميائي الذي يشكل الصفة الغالبة في المزيج التفاعلي عند E_6 9 و- ما النوع الكيميائي الذي يشكل الصفة الغالبة في المزيد التفاعلي عند E_6 9 و- ما النوع الكيميائي الذي يشكل الصفة الغالبة في المزيد التفاعلي عند E_6 9 و- ما النوع الكيميائي الذي يشكل الصفة الغالبة في المزيد التفاعلي عند E_6 9 و- ما النوع الكيميائي الذي يشكل الصفة الغالبة في المزيد التفاعلي عند E_6 9 و- ما النوع الكيميائي الذي النوع الكيميائي الذي المؤلد ا

 $M(C) = 12 g \cdot mol^{-1}$ $M(H) = 1 g \cdot mol^{-1}$ $M(O) = 16 g \cdot mol^{-1}$

التمرين الرابع: (04 نقاط)

ندرس في مرجع سطحي أرضي نعتبره غالبليا حركة سقوط كرية في الهواء. (الشكل-3) يُمثّل تطور سرعة مركز عطالة الكرية v بدلالة الزمن t .

: من البيان -1

أ- حدِّد المجال الزمني لنظامي الحركة. ب- عيِّن قيمة السرعة الحدية ، v.

ج- احسب a_0 تسارع مركز عطالة الكرية في اللحظة t = 0

ماذا تستنتج؟

د- ما هي قيمة التسارع لحظة وصول
الكرية إلى سطح الأرض؟

t = 3s اللحظة t = 3s اللحظة الحركية للكرية في اللحظة الطاقة الحركية الحر

v(t) عطالة الكرية في الفراغ. v(t) مثل كيفيا مخطط السرعة v(t) لحركة السقوط الشاقولي لمركز عطالة الكرية في الفراغ. $g = 9,80 \ m \cdot s^{-2}$

التمرين التجريبي: (04 نقاط)

لدراسة تطور شدة التيار الكهربائي i(t) المار في ثنائي القطب RL بدلالة الزمن، وتأثير المقدارين R و L على هذا التطور، نركب الدارة الكهربائية (الشكل-4).

1- نتابع تطور التوتر الكهربائي u_R بين طرفي الناقل الأومي R باستعمال راسم اهتزاز مهبطي ذي ذاكرة -1 أ- أعد رسم الدارة على ورقة الإجابة ثم بيّن عليها كيفية ربط راسم الاهتزاز المهبطي.

 $u_{R}(t)$ متابعة تطور التوتر الكهربائي $u_{R}(t)$ مكنتنا من متابعة تطور الشدة i(t) للتيار الكهربائي المار في الدارة. فسرّ ذلك.

2- نغلق القاطعة:

أ- جد المعادلة التفاضلية لشدة التيار الكهربائي i(t) المار في الدارة.

auب علما أن حل هذه المعادلة من الشكل: $i(t) = A(1-e^{-\frac{t}{\tau}})$ جد عبارتي A و au

ماذا يمثلان ؟

-3 ننجز ثلاث تجارب مختلفة باستعمال وشيعة مقاومتها t ثابتة تقريبا وذاتيتها t قابلة للتغيير ونواقل أومية مختلفة. يبيِّن (الشكل-5) المنحنيات البيانية لتطور شدة التيار الكهربائي i(t) بدلالة الزمن t بالنسبة للتجارب الثلاث ويمثل الجدول المرفق قيم t المستعملة في كل تجربة:

		1	_	_			•••	***		 		-
	/			•••		2						
1	1	٠.:	-	-	-	_			3			
7	4.											
15											 	
10											t (m

	التجربة 1	التجربة 2	التجربة 3			
L (mH)	30	20	40			
$R(\Omega)$	290	190	190			

أ- أنسب كل تجربة بالمنحنى البياني الموافق لها. علِّل ذلك.

ب- جد قيمة المقاومة r.

الموضوع الثاني

التمرين الأول: (04 نقاط)

تؤخذ كل المحاليل في 25℃.

 $c_1=1,0\times 10^{-2}\ mol\cdot L^{-1}$ تركيزه المولي CH_3-COOH الإيثانويك S_1 لحمض الإيثانويك PH=3,4 وله PH=3,4

أ- اكتب معادلة تفاعل حمض الإيثانويك مع الماء.

ب- أنشئ جدو لا لتقدم التفاعل الكيميائي.

ج- بيّن أن CH3-COOH لا يتفاعل كليا مع الماء.

د- أثبت أن K_1 ثابت التوازن للتفاعل يعطى بالعلاقة:

. ثم احسب قيمته، حيث: au_{lf} نسبة التقدم النهائي للتفاعل. $K_I = c_I \frac{ au_{lf}^2}{1- au_{lf}}$

ه- ما النوع الكيميائي الذي يشكل الصفة الغالبة في المحلول؟

 $c_2 = 1.0 \times 10^{-1} \, mol \cdot L^{-1}$ في تجربة ثانية حضرنا محلو S_2 لحمض الإيثانويك تركيزه المولي -2 الناقلية النوعية له $\sigma = 5.0 \times 10^{-2} \, mS \cdot m^{-1}$ الناقلية النوعية له

أ- احسب التراكيز المولية للأنواع الشاردية المتواجدة في المحلول.

 $\cdot K_2$ و τ_{2f} ب- احسب

3- أ- ما تأثير التراكيز المولية الابتدائية على نسبة التقدم النهائي؟

ب- هل يتعلق ثابت التوازن K بالتراكيز المولية الابتدائية؟

 $\lambda_{H_3O^+} = 35$, $9 \text{ mS} \cdot m^2 \cdot mol^{-1}$; $\lambda_{CH_3-COO^-} = 4$, $1 \text{ mS} \cdot m^2 \cdot mol^{-1}$

التمرين الثاني: (04 نقاط)

يستخدم اليود 1 131 أساسا في معالجة سرطان الغدة الدرقية.

1- أعط تركيب نواة اليود ¹³¹.

-2 احسب E_{r} طاقة الربط لنواة اليود E_{r}

-3 إن اليود 131 يصدر -3

اكتب معادلة التفكك الحاصلة لنواة اليود 131، علما أن نواة البنت الناتجة $^{A}_{Z}X$ تكون واحدة من الأنوية التالية: $^{127}_{51}Sb$; $^{131}_{52}Te$; $^{131}_{54}Xe$ تكون واحدة من

 $m_0 = 0,696 g$ عينة من اليود 131 كتلتها -4

أ- اكتب قانون التناقص الإشعاعي.

ب- يمثل (الشكل-1) منحنى تطور In N بدلالة الزمن t. استنتج منه قيمة λ ثابت التفكك

و t_{131} نصف العمر لليود 131.

ج- ما كتلة اليود 131 المتفككة بعد 16 jours ؟

الشكل-1

<u>المعطيات:</u>

 $m({}_{1}^{1}H)=1,00728\,u$; $m({}_{53}^{131}I)=130,97851\,u$; $m(n)=1,00866\,u$; $1u=931,5\,MeV/c^{2}$

التمرين الثالث: (04 نقاط)

تتكون دارة كهربائية (الشكل-2) من:

- مولد للتوتر الكهربائي قوته المحركة الكهربائية E.
 - ناقل أومى مقاومته Ω 100- .
 - وشيعة ذاتيتها L ومقاومتها r
 - قاطعة A.

نوصل مدخلي راسم الاهتزاز المهبطي ذي ذاكرة (الشكل-2)، في اللحظة t=0 نغلق القاطعة K فنشاهد على الشاشة المنحنيين البيانيين (1) و (2) (الشكل-3).

الشكل-3

- 1-i حدِّد لكل مدخل المنحنى البياني الموافق له. علَّل. -i بتطبيق قانون جمع التوترات الكهربائية جد المعادلة التفاضلية لشدة التيار الكهربائي i(t).
 - Eاً ما قيمة التوتر الكهربائي E? -1 جد قيمة شدة التيار الكهربائي الأعظمي -10.

ج- احسب قيمة r مقاومة الوشيعة.

- τ الزمن. وبيّن بالتحليل البُعدي أنه متجانس مع الزمن. وبيّن بالتحليل البُعدي أنه متجانس مع الزمن.
 - ب- احسب L ذاتية الوشيعة.
 - 4- احسب الطاقة الأعظمية المخزنة في الوشيعة.

التمرين الرابع: (04 نقاط)

خلال منافسة رمي الجلة في الألعاب الأولمبية ببكين، حقق الرياضي الذي فاز بهذه المنافسة النتيجة $d = 21,51 \, m$

اعتمادا على الفيلم المسجل لعملية الرمي و لأجل معرفة قيمة السرعة v_0 التي قذفت بها الجلة، تَمَّ استخراج بعض المعطيات أثناء لحظة الرمي:

 $h_A = 2,00 \, m$ ويقد على ارتفاع A النصبة الخلة من النقطة A النصبة لسطح الأرض وبالسرعة $\overline{v_0}$ التي تصنع الزاوية $\alpha = 45^\circ$ مع الخط الأفقى (الشكل-4).

ندرس حركة الجلة في المعلم المتعامد والمتجانس

 $d = x_C = 21.51 \, m$

المختار، ثم z=h(t) المحلم المختار ، ثم x=f(t) المحلم المختار ، ثم z=h(t) المختار ، ثم المختار ، ثم المختار ، ثم z=g(x) المختار ، ثم عادلة مسار الجلة z=g(x) بدلالة المقادير z=g(x) ،

و من أم احسب قيمتها، و g ، α ، h_A بدلالة v_0 بدلالة السرعة الابتدائية و v_0 بدلالة السرعة الابتدائية و v_0

3- جد المدة الزمنية التي تستغرقها الجلة في الهواء.

 $g = 9.8 \, m \cdot s^{-2}$

التمرين التجريبي: (04 نقاط)

لأجل الدراسة الحركية لتفاعل محلول يود البوتاسيوم مع الماء الأكسجيني، نحضر في بيسشر في اللحظة t=0 المزيج التفاعلي t=0 المشكل من الحجم $V_1=368\,m$ من محلول يود البوتاسيوم الدي تركيزه المولي $c_1=0.05mol\cdot L^{-1}$ والحجم $v_2=32\,m$ من الماء الأكسجيني الدي تركيزه المولي تركيزه المولي $v_1=32\,m$ والحجم الكبريت المركز، فيتم إرجاع الماء الأكسجيني بواسطة شوارد اليود $v_2=0.10\,m$ وفق تفاعل بطيء ينتج عنه ثنائي اليود.

ننمذج التفاعل الكيميائي الحادث بالمعادلة الآتية:

$$H_2O_2(aq) + 2I^-(aq) + 2H^+(aq) = 2H_2O(\ell) + I_2(aq)$$

نتابع التطور الحركي للتفاعل من خلال قياس التركيز المولي لثنائي اليود المتشكل في لحظات زمنية متعاقبة، وذلك باستعمال طريقة المعايرة اللونية الآتية:

نأخذ في اللحظة t عينة حجمها V=40,0~mL من المزيج التفاعلي s ونسكبها في بيشر يحتوي الجليد المنصهر والنشاء، فيتلون المزيج بالأزرق، بعد ذلك نضيف تدريجيا إلى هذه العينة محلولا مائيسا لثيوكبريتات الصوديوم ($2Na^+(aq)+S_2O_3^{2-}(aq)$) الذي تركيزه المولي $c_3=0,10~mol\cdot L^{-1}$ المعايرة الختفاء اللون الأزرق. باستغلال الحجم V_E لثيوكبريتات الصوديوم المُضاف ومعادلة تفاعل المعايرة نستنتج التركيز المولى لثنائي اليود في اللحظة t.

نعيد العملية في لحظات متعاقبة، ثم نرسم تطور التركيز المولي لثنائي اليود $[I_2(aq)]$ المتشكل بدلالة الزمن t فنحصل على المنحنى البياني (الشكل-5).

1- أ- ارسم بشكل تخطيطي عملية المعايرة.

ب- ما هي الوسيلة التي نستعملها لأخذ 40mL من المزيج التفاعلي؟

ج- اكتب معادلة تفاعل المعايرة.

الثنائيتان مرجع/مؤكسد المساهمتان في هذا التحول هما: $I_2(aq)/I^-(aq)$

 $S_4O_6^{2-}(aq)/S_2O_3^{2-}(aq)$ و

- يد التكافؤ، ثم جد العبارة الحرفية الموافقة للتركيز المولي لثنائي اليود $I_2(aq)$ بدلالة الحجم V والحجم V والتركيز المولي C_3 لثيوكبريتات الصوديوم،
- 3- أنشئ جدو لا للتقدم المميز لتفاعل يود البوتاسيوم والماء الأكسجيني وبيِّن أن الماء الأكسجيني هو المتفاعل المحد.
 - t = 100s السرعة الحجمية للتفاعل، ثم احسب قيمتها في اللحظة -4
 - $t_{\frac{1}{2}}$ جد بیانیا زمن نصف التفاعل -5