Assignment 1 • Graded

Group

PRASAD VIJAY JAWARE PRADUMNA AWASTHI KARTIKEYA SHUKLA

...and 3 more

View or edit group

Total Points

48 / 50 pts

Question 1

Derivation 10 / 10 pts

- **2 pts** Minor mistakes
- + 0 pts Completely wrong or else unanswered

Question 2

Code

34 / 35 pts

- + 0 pts No rubric -- see comments for mark breakup
- + 34 pts GROUP NO: 27

Grading scheme for code:

Dimensionality dd: dd < 550 (5 marks), 550 <= dd < 1000 (4 marks), dd >= 1000 (3 marks)

Train time tt (in sec): tt < 5 (10 marks), $5 \le tt < 10$ (9 marks), $10 \le tt < 20$ (8 marks), $20 \le tt < 50$ (7 marks), tt >= 50 (6 marks)

Map time mt (in sec): mt < 0.1 (10 marks), $0.1 \le mt \le 0.2$ (9 marks), $0.2 \le mt \le 0.5$ (8 marks), $0.5 \le mt \le 1$ (7 marks), mt >= 1 (6 marks)

Error rate ee: ee < 0.1 (10 marks), 0.1 <= ee < 0.2 (8 marks), ee > 0.2 (6 marks)

dd = 528.0 : 5 marks tt = 2.162 sec : 10 marks mt = 0.145 sec : 9 marks ee = 0.006 : 10 marks TOTAL: 34 marks

Question 3

Report

4 / 5 pts

- - 2 pts Insufficient or missing details of hyperparameters e.g. missing grid values if grid search was used.
 - + 0 pts Completely wrong or else unanswered.
- 1 pt -1 for not specifying method for hyperparameter tuning

No questions assigned to the following page.				

CS771A Introduction to Machine Learning Assignment 1

Group Member(s)

Ayush Pandey 200248 apandey20@iitk.ac.in

Navneet Singh 200626 navneets20@iitk.ac.in

Prasad Jaware 208070705 prasadvj20@iitk.ac.in

Md Sameer Idris 200578 sameer20@iitk.ac.in

Kartikeya Shukla 220506 kartikeyas22@iitk.ac.in

Pradumna Awasthi 200693 pradumna20@iitk.ac.in

Question 1:

By giving a detailed mathematical derivation (as given in the lecture slides), show how a CAR-PUF can be broken by a single linear model. Give derivations for a map ϕ :

 $\{0,1\}^{32} \to \mathbb{R}^D$ mapping 32-bit 0/1-valued challenge vectors to D-dimensional feature vectors (for some D > 0) so that for any CAR-PUF, there exists a D-dimensional linear model $W \in \mathbb{R}^D$ and a bias term $b \in \mathbb{R}$ such that for all CRPs (c,r) with $c \in \{0,1\}^{32}$, $r \in \{0,1\}$, we have

$$\frac{1 + sign(\mathbf{W}^T \phi(\mathbf{c}) + b)}{2} = r$$

Solution 1:

First we will find a linear model to break a single PUF.

An Attacker can see responses on a few challenges and use ML to predict responses on other challenges. It does not if using 32 bit or 64 bit challenges.

 t_i^u : time at which the upper signal leaves the i^{th} - MUX. t_i^l : time at which the lower signal leaves the i^{th} - MUX.

 t_1^u and t_1^l depend on t_0^u , t_0^l , p_1 , q_1 , r_1 , s_1 and c_1 .

 c_1 dictates which previous delay t_0^u and t_0^l will get carried forward and p_1, q_1, r_1, s_1 gives us delay introduce in the i^{th} - MUX itself.

$$t_1^u = (1 - c_1).(t_0^u + p_1) + c_1.(t_0^l + s_1)$$

$$t_1^l = (1 - c_1).(t_0^l + q_1) + c_1.(t_0^u + r_1)$$

let us use shorthand $\Delta = t_i^u - t_i^l$ denotes lag.

All that matter is, for a single PUF whether Δ_{31} is less then 0 or not.

$$\Delta_1 = (1 - c_1) \cdot (t_0^u + p_1 - t_0^l - q_1) + c_1 \cdot (t_0^l + s_1 - t_0^u - r_1)$$
$$= (1 - 2c_1) \cdot \Delta_0 + (q_1 - p_1 + s_1 - r_1) \cdot c_1 + (p_1 - q_1)$$

No questions assigned to the following page.				

$$\Delta_{1} = \Delta_{0}.d_{1} + \alpha_{1}.d_{1} + \beta_{1}$$

$$where, \alpha_{1} = \frac{(p_{1} - q_{1} + r_{1} - s_{1})}{2} \quad \& \quad \beta_{1} = \frac{(p_{1} - q_{1} + r_{1} - s_{1})}{2}$$

$$d_{i} = (1 - 2c_{i}) \Rightarrow d_{i} = \{-1, 1\}$$

$$\Delta_{i} = d_{i}.\Delta_{i-1} + \alpha_{i}.d_{i} + \beta_{i} \quad \dots [\Delta_{-1} = 0]$$

$$\Delta_{0} = \alpha_{0}.d_{0} + \beta_{0}$$

$$\Delta_{1} = \alpha_{0}.d_{2}.d_{1}.d_{0} + (\alpha_{1} + \beta_{0}).d_{2}.d_{1} + (\alpha_{2} + \beta_{1}).d_{2} + \beta_{2}$$

A pattern begins can be seen in these equations:

$$\Delta_{31} = w_0.x_0 + w_1.x_1 + \dots + w_{31}.x_{31} + \beta_{31}$$

$$= w^T X + b$$

$$x_i = d_i.d_{i+1}.d_{i+2}...d_{31}$$

$$w_i = \alpha_i + \beta_{i-1} \quad for \quad (i > 0)$$

$$w_0 = \alpha_0$$

If $\Delta_{31} < 0$, upper signal wins and answer is 0. And if $\Delta_{31} > 0$, then the lower signal wins and the answer is 1.

$$\Rightarrow \frac{sign(w^TX+b)+1}{2}$$

This means if we find w,b parameters then we can predict response to any challenge. Similarly, we can show the proof for the 2^{nd} PUF (reference PUF).

For working PUF, let us assume $(\Delta w)_{31}$ For reference PUF, let us assume $(\Delta r)_{31}$

In the given question, we require a linear model to break two PUF whose time difference $|(\Delta w)_{31} - (\Delta r)_{31}|$ is smaller than some unknown $\tau > 0$

$$\Rightarrow |(\Delta w)_{31} - (\Delta r)_{31}| < \tau$$

So, now we will prove Melbo wrong and give a single linear model to break such combination of PUF.

$$(\Delta w)_{31} = w_0.x_0 + w_1.x_1 + \dots + w_{31}.x_{31} + \beta_{31}$$

$$= w^T X + b \qquad \dots [b = \beta_{31}]$$

$$\Rightarrow (w_0 \quad w_1 \quad w_2 \quad \cdots \quad w_{31} \quad \beta_{31}) \begin{pmatrix} x_0 \\ x_1 \\ x_2 \\ \vdots \\ x_{31} \\ 1 \end{pmatrix}$$

$$w_i = \alpha_i + \beta_{i-1} \quad for \quad (i > 0, I \in I)$$

 $\alpha_i \& \beta_i$ are system constant for working PUF.

No questions assigned to the following page.				

$$(\Delta r)_{31} = v_0.x_0 + v_1.x_1 + \dots + v_{31}.x_{31} + \beta_{31}$$

$$= v^T X + b \qquad \dots [b = B_{31}]$$

$$\Rightarrow (v_0 \quad v_1 \quad v_2 \quad \dots \quad v_{31} \quad B31) \begin{pmatrix} x_0 \\ x_1 \\ x_2 \\ \vdots \\ x_{31} \\ 1 \end{pmatrix}$$

$$v_i = A_i + B_{i-1}$$
 for $(i > 0, i \in I)$

 $A_i \& B_i$ are system constant for reference PUF.

given -

$$|(\Delta w) - (\Delta r)| \le \tau \to 1$$

$$|(\Delta w) - (\Delta r)| > \tau \to 0$$

From the lecture notes we know:

$$(\Delta w) = u^T . x + P$$

$$(\Delta r) = v^T . x + Q$$

$$|(\Delta w) - (\Delta r)| = |(u - v)^T \cdot x + (P - Q)|$$

$$|(\Delta w) - (\Delta r)| - \tau = |(u - v)^T . x + (P - Q)| - \tau$$

as far as bit is concerned, it will be:

$$\frac{1+sign(|(u-v)^T.x+(P-Q)|-\tau)}{2}$$

So we can see that above expression is for a genearalized linear model

Now, we can prove that sign(|a| - b) is same as $sign(a^2 - b^2)$

So, we can say that

$$\begin{split} sign(|(u-v)^T.x + (P-Q)| - \tau) &= sign(((u-v)^T.x + (P-Q))^2 - \tau^2) \\ & \text{let } (u-v) \rightarrow \alpha \ \& \ (P-Q) \rightarrow \beta \\ &\Rightarrow sign((\alpha^T.x + \beta)^2 - \tau^2) \\ &\alpha^T.x = \text{can be expanded as} \rightarrow (\alpha_1.x_1 + \alpha_2.x_2 + \alpha_3.x_3 + \dots + \alpha_{32}.x_{32}) \\ &\Rightarrow \text{sign}((\alpha_1^2.x_1^2 + \alpha_2^2.x_2^2 + \alpha_3^2.x_3^2 + \dots + \alpha_{32}^2.x_{32}^2) + \text{C}) \end{split}$$

also value of $(x_1, x_2 \cdots x_{32})$ is either (1 or -1) so value of $(x_1^2, x_2^2 \cdots x_{32}^2)$ will be 1 only So Now,

$$\Rightarrow sign(\sum_{\substack{i,j=1\\i\neq j}}^{32} \alpha_i.\alpha_j.x_i.x_j + C)$$

No questions assigned to the following page.				

Question 3:

LinearSVC					
Loss Accuracy time					
Hinge 98.93 51s					
Squared hinge 99.19 1m 1s					

Table 1: Changing the loss hyperparameter in LinearSVC (hinge vs squared hinge)

С	LinearSVC		
	Accuracy	Time	
100	99.2	1m 38s	
1	99.16	1m 1s	
0.01	98.65	6s	

С	Logistic Regression		
	Accuracy	Time	
100	99.31	3s	
1	99.07	3s	
0.01	96.35	2s	

Table 2: Changing the c hyperparameter in LinearSVC and LogisticRegression to high/low/medium values

tol	LinearSVC		
	Accuracy	Time	
High	97.21	25s	
Medium	99.04	59s	
Low	99.19	1m 18s	

tol	Logistic Regression		
	Accuracy	Time	
High	99.07	1s	
Medium	99.07	2s	
Low	99.07	3s	

Table 3: Changing the tol hyperparameter in LinearSVC and LogisticRegression to high/low/medium values

Penalty	LinearSVC		Logistic Re	egression
	Accuracy	Time	Accuracy	Time
11	99.1425	12m 40s	N/A	N/A
12	99.19	1m	99.07	2s

Table 4: Changing the penalty (regularization) hyperparameter in LinearSVC and LogisticRegression (12 vs 11)