Контроллеры ARMatura

© Dmitry Ponyatov

 dponyatov@gmail.com>, SSAU ASCL 26 февраля 2013 г.

Оглавление

Ι	Введение	4				
II	Железо	6				
1	STM32VLDISCOVERY /STM32F100RBT6/					
2	2 STM32F4DISCOVERY /SRM32F407VGT6/ 3 ARMatypa /STM32F427IIT6/					
3						
4	4 PION /STM32F100C4T6B/					
Η	I Установка ПО	11				
5	Компиляторы	12				
	5.1 GCC 5.2 KeilCC 5.3 IAR	12				
6	IDE	13				
	6.1 Eclipse 6.2 Code::Blocks 6.3 gVim 6.4 Keil uVision 6.5 IAR	13 13 13				
7	Программаторы 7.1 STlink 7.2 Serial Boot					
8	Отладчики 8.1 JTAG					
	8.2 STM32 SWD 8.3 GDB 8.3.1 STlink gdbserver	15				
	8.3.2 OpenOCD	15				

2

${f IV}$ Основы языка C^{+^+}	16
V Первые шаги	17
9 Установка Keil MDK-ARM	18
10 blink	19
11 Hell Of World	20
VI Отладка	21
12 JTAG	22
13 GDB	23
14 OpenOCD	24
VII CMSIS	25
15 Startup	26
16 Стандартная библиотека STM32	27
17 USB client/host	28
VIII Встроенные фичи кристалла	29
18 Режимы ARM и Thumb	30
19 DMA	31
20 DSP	32
21 FPU	33
IX Интерфейсы	34
22 USB	35
23 UART	
24 SPI	37
25 I2C	38

Оглавление 3

26 CAN			39		
${f X}$ Стек ${f TCP/IP}$			40		
27 Ethernet			41		
28 PPP					
XI Типовые применения			43		
29 GPS 29.1 Tripod15					
30 GSM 30.1 WISMO228			45 45		
31 шина Dallas 1Wire 31.1 RTC					
XII Приложения			47		
32 Сводная таблица процессоров 32.1 STM32F10x					

Часть I

Введение

Эта книга – набор методичек по разработке ПО для встраиваемых систем, написанных для Института космического приборостроения СГАУ.

Для применения в реальных проектах научной аппаратуры была разработана линейка унифицированных модулей:

1. ARMatura – модуль на мощном микропроцессоре STM32F727IIT: 2M Flash, 256K SRAM, TQFP176, DSP, FPU...

предназначен для использования в качестве центрального процессора цифровой системы: обработка данных, сложные алгоритмы управления, ЦОС, вычисления, реализация протоколов передачи данных по интерфейсам USB, Ethernet, RS232/UART, SPI, I2C, CAN,...

2. PION 4 — модуль на самом простом и дешевом STM32F100: 128K Flash, 8K SRAM, UART, SPI

периферийный модуль для стыковки с аналоговыми датчиками и исполнительными устройствами, предварительная ЦОС обработка, передача данных на ARMatura-модули для дальнейшей обработки данных.

также модуль применим в качестве самостоятельного простого интерфейса при замене на чип STM32F103 с портом USB или установки внешних интерфейсных микросхем FT232RL (USB Serial), CP1202, MC1551 (CAN).

- 3. BACKPLANE коммутационная плата межмодульного интерфейса
- 4. POWER модуль импульсного источника питания
- 5. STEPPER модуль управления двухфазным шаговым двигателем
- 6. WISMO несущая плата для GPS/GSM модуля WISMO 228
- 7. QVGA несущая плата для TFT touch-панели

В качестве базового микроконтроллера были выбраны чипы семейства STM32Fxxx с ядрами Cortex-M3, Cortex-M4F (ARM) как самые дешевые, и имеющие хорошую поддержку в виде отладочных плат линейки Discovery.

В общем, линейка модулей ARMatura может рассматриваться в качестве замены устаревшей линейки периферийных контроллеров Arduino на базе MK AVR8.

Проект размещен в репозитории https://github.com/ponyatov/ARMatura.git и предоставляется на условиях OpenHardware licence (за исключением прошивок и схем по тематике ИКП СГАУ).

Контакты разработчиков:

- ИКП СГАУ <semkin@ssau.ru>
- Дмитрий Понятов <dponyatov@gmail.com>

Часть II

Железо

Глава 1 STM32VLDISCOVERY /STM32F100RBT6/

Глава 2 STM32F4DISCOVERY /SRM32F407VGT6/

ARMatypa /STM32F427IIT6/

PION /STM32F100C4T6B/

Модуль PION предназначен для мелких задач управления, первичной обработки данных, стыковки с устройствами измерения и исполнительными устройствами, т.е. для тех задач, для которых ранее использовались микроконтроллеры Atmel AVR8.

процессор	STM32F100C4T6B	32.1.1
ROM	16K	
RAM	4K	
шина	AUTObus	
интерфейсы	UART	1
	SPI	1
	ΑЦП	10x12b
	ЦАП	2x12b
буфер	Parallel Flash	64K

Часть III Установка ПО

Компиляторы

- 5.1 GCC
- 5.2 KeilCC
- 5.3 IAR

IDE

- 6.1 Eclipse
- 6.2 Code::Blocks
- 6.3 gVim
- 6.4 Keil uVision
- 6.5 IAR

Программаторы

- 7.1 STlink
- 7.2 Serial Boot

Отладчики

- 8.1 JTAG
- 8.2 STM32 SWD
- 8.3 GDB
- 8.3.1 STlink gdbserver
- 8.3.2 OpenOCD

Часть V Первые шаги

Глава 9 Установка Keil MDK-ARM

blink

Глава 11 Hell Of World

Часть VI

Отладка

JTAG

GDB

OpenOCD

Часть VII CMSIS

Startup

Глава 16 Стандартная библиотека STM32

 Γ лава 17 USB client/host

Часть VIII Встроенные фичи кристалла

Глава 18 Режимы ARM и Thumb

DMA

DSP

FPU

Часть IX Интерфейсы

USB

UART

SPI

I2C

CAN

\mathbf{Y} асть \mathbf{X} \mathbf{C} \mathbf{T} \mathbf{C} \mathbf{P} \mathbf{I} \mathbf{P}

Ethernet

PPP

Часть XI Типовые применения

GPS

- $29.1 \quad Tripod 15$
- 29.2 WISMO228

GSM

30.1 WISMO228

шина Dallas 1Wire

- 31.1 RTC
- 31.2 Датчики температуры DS18x20

Часть XII Приложения

Глава 32

Сводная таблица процессоров

	ядро				корпус				
	Cortex-	MHz	Flash	SRAM	LQFP	USB	UART	SPI	CAN
STM32F100C4T6B	M3	24	16K	4K	48		2	1	
STM32F100RBT	M3	24	128K	8K	100		1		
STM32F103RBT	M3				100	1	1		
STM32F407VGT	M4F	168	1M	192K	144	2	6		2
STM32F407IGT	M4F	168	1M	192K	176	2	8		2
STM32F427IIT	M4F	168	2M	256K	176	2	8		2

32.1 STM32F10x

32.1.1 STM32F100C4T6B

```
Ядро Cortex-M3
Flash 16K
SRAM 4K
16-битные таймеры 6
таймеры ШИМ 3
RTC да
UART 2
SPI 1
I2C 1
DMA 1 канал
АЦП 10х12 бит
ЦАП 2х12 бит
корпус LQFP48
```