

Metrology and Sensing

Lecture 13-1: Confocal sensors

2020-02-09

Herbert Gross

Content

- Principle of confocal imaging
- PSF
- Examples

Confocal Microscope

- Laser scan microscope
- Depth resolution (sectioning) with confocal pinhole
- Transverse scan on field of view Digital image
- Only light comming out of the conjugate plane is detected
- Perfect system: scan mirrors conjugate to pupil location
- System needs a good correction of the objective lens, symmetric 3D distribution of intensity

Confocal 3D Image Collection

- Contact free optical sectioning
- 3D information collection & reconstruction
- 3D measurement and analysis
- The laser focus is moved over the sample (flying spot method)
- The measured intensity at each spot forms a xy image frame

Confocal Images

Depth resolved images

Ref.: M. Kempe

Confocal Microscopy

3-D volume imaging with reconstruction in confocal Laser scan microscope

a) Classical microscopy depth of object : 300 μm

Ref: M. Kempe

Examples

- Microelectronic circuit
- Abbrasive paper
- Smooth paper

Examples

Silicon surface with stitching

Microlens array

Confocal Microscope - General Aspects

- Laser scan microscope produces only images in combination with software for the image processing
 - Realtime image gathering is possible today
- Usually the illumination is a scanning laser beam
- Usually the detection/observation uses the same lens
- The confocal pinhole detection guarantees:
 - a z-sectioning capability
 - a good suppression of straylight out of other planes in the sample
- In scanning systems:
 - the field is generated by transverse scanning with a mirror in a pupil-conjugated plane
 - in case of volume imaging, the z-scan is performed by moving the stage
 - the signal beam is descanned after a beam splitter
 - primary image gathering is monochromatic in a plane-by-plane z-scan
- Due to the very small pinhole, the sensitivity of the microscope is high:
 - strong impact on residual aberrations
 - large environmental sensitivity

Confocal Laser Scan Microscope

- Complete setup: objective / tube lens / scan lens / pinhole lens
- Scanning of illumination / descanning of signal
- Scan mirror conjugate to system pupil plane
- Digital image processing necessary

Lateral and Axial Resolution

Intensity distributions

Confocal PSF

- Change of intensity distributions by confocal mode
 - 1. lateral
 - 2. axial

Lateral Resolution in Confocal Imaging

- Comparison of PSF in wide field and confocal imaging
- Improved 2-point resolution in confocal mode

conventional wide field

confocal

Microscopic Resolution

Signal, lateral and axial resolution depends on imaging mode

Imaging mode	signal	lateral resolution	axial resolution	
classical wide field	$S = I_{ill}$	$\Delta x = \frac{0.61 \cdot \lambda}{n \cdot \sin \theta} = 0.5 \cdot D_{airy}$	$\Delta z = \frac{2 \cdot \lambda}{n \cdot \sin^2 \theta} = 2 \cdot R_E$	
confocal	$S = I_{ill} \cdot I_{obs}$	$\Delta x = \frac{0.40 \cdot \lambda}{n \cdot \sin \theta} = 0.33 \cdot D_{airy}$	$\Delta z = \frac{1.4 \cdot \lambda}{n \cdot \sin^2 \theta}$	
2 photon	$S = I_{ill}^2$	$\Delta x = \frac{0.70 \cdot \lambda}{n \cdot \sin \theta} = 0.43 \cdot D_{airy}$	$\Delta z = \frac{2.3 \cdot \lambda}{n \cdot \sin^2 \theta}$	
2 photon confocal	$S = I_{ill}^2 \cdot I_{obs}$			

Approximation in these formulas: wavelength shift by fluorescence

Lateral resolution and coherence

general formula:

$$\Delta x = k \cdot \frac{\lambda}{n \cdot \sin u}$$
 factors

	coherent			incoherent		
	Rayleigh	Sparrow	Abbe	Rayleigh	Sparrow	Abbe
Classical	0.82	0.74	1.00	0.61	0.49	0.50
confocal	0.56	0.48	0.50	0.44	0.34	0.25