

计算机组成原理实验

授课老师: 吴炜滨

大纲

- ▶ 快速加法器设计实验1
 - 8位可控加减法器
 - 4位先行进位电路

实验报告

- 本次实验报告提交时间
 - 周二教学班: 11月8号凌晨0点前 (第11周周二)
 - 周四教学班: 11月10号凌晨0点前 (第11周周四)

实验目的

- 验证串行加法器逻辑实现
 - 能设计8位可控加减法电路
- 掌握快速加法器逻辑实现
 - 能设计4位先行进位电路

实验电路

- 实验涉及子电路
 - 8位可控加减法器 (子电路1, 需完成)
 - 4位先行进位74182 (子电路2, 需完成)

■ 一位全加器

• S_i: 和数

• Cout: 高位进位输出

• C_{in}: 低位进位输入

• X_i, Y_i: 操作数

• $S_i = X_i \oplus Y_i \oplus C_{in}$

• $C_{out} = X_i Y_i + (X_i \bigoplus Y_i) C_{in}$

- n+1位加法器
 - 最高位为符号位
 - 溢出判断
 - 数值最高位的进位 ⊕ 符号位的进位

- n+1位加法器
 - 输入: 操作数X、Y
 - 作加法
 - $C_0 = 0$, $X = X_n ... X_0$, $Y' = Y_n ... Y_0$

- n+1位加法器
 - 输入: 操作数X、Y
 - 作减法

•
$$C_0 = 1$$
, $X = X_n \dots X_0$, $Y' = \overline{Y_n} \dots \overline{Y_0}$

- 可控加减法器
 - 引入减法标志Sub
 - Sub=0: 作加法, Sub=1: 作减法
 - 输入:操作数X、Y,减法标志: Sub

- 可控加减法器
 - 输入:操作数X、Y,减法标志: Sub
 - 作加法, Sub=0
 - $C_0 = \operatorname{Sub}, X = X_n ... X_0, Y'_i = Y_i \oplus \operatorname{Sub}$

- 可控加减法器
 - 输入:操作数X、Y,减法标志: Sub
 - 作减法, Sub=1
 - $C_0 = \operatorname{Sub}, X = X_n ... X_0, Y'_i = Y_i \oplus \operatorname{Sub}$

■ 可控加减法器

- 输入:操作数X、Y,减法标志: Sub
- $C_0 = \operatorname{Sub}, X = X_n ... X_0, Y'_i = Y_i \oplus \operatorname{Sub}$
- 溢出: C_{n+1} ⊕ C_n

■ 8位可控加减法器

• 输入: 8位操作数X、Y, 减法标志: Sub

• 输出: 8位和数S, 最高位进位: Cout, 溢出标志: Overflow

• 请勿增改删引脚及子电路封装,使用隧道标签实现相应逻辑

功能说明: 8位可控加减法器 Sub=0: S = X+Y Sub=1:S = X-Y Cout为最高位进位位,Overflow为有符号溢出标志

■ 测试要求

- 作加法运算 (共两张截图)
 - · 当出现溢出和没有溢出时,观察得到的输出结果(8位和数S,最高位进位:Cout,溢出标志:Overflow)是否正确,各截图一张
- 作减法运算 (共两张截图)
 - 当出现溢出和没有溢出时,观察得到的输出结果(8位和数S,最高位进位: Cout, 溢出标志: Overflow)是否正确,各截图一张

- ■串行进位链逻辑表达式分析
 - 进位链: 传送进位的电路
 - $S_i = X_i \oplus Y_i \oplus C_i$
 - $C_{i+1} = X_i Y_i + (X_i \oplus Y_i) C_i$

■串行进位链逻辑表达式分析

•
$$S_i = X_i \oplus Y_i \oplus C_i$$

•
$$C_{i+1} = X_i Y_i + (X_i \oplus Y_i) C_i$$

•
$$G_i = X_i Y_i$$

• 进位生成函数Generate

•
$$P_i = X_i \oplus Y_i$$

- 进位传递函数Propagate
- P_i 、 G_i : 只与操作数有关

$$\bullet \ C_{i+1} = G_i + P_i C_i$$

- ■串行进位链逻辑表达式分析
 - $S_i = X_i \oplus Y_i \oplus C_i$
 - $\bullet \ C_{i+1} = G_i + P_i C_i$
 - P_i 、 G_i : 只与操作数有关
- 高位运算依赖于低位进位
 - 计算不能并行
- 能否提前得到各位的进位输入?

■串行进位链逻辑表达式分析

•
$$C_1 = G_0 + P_0 C_0$$

•
$$C_2 = G_1 + P_1C_1$$

= $G_1 + P_1(G_0 + P_0C_0) = G_1 + P_1G_0 + P_1P_0C_0$

•
$$C_3 = G_2 + P_2C_2$$

= $G_2 + P_2(G_1 + P_1G_0 + P_1P_0C_0) = G_2 + P_2G_1 + P_2P_1G_0 + P_2P_1P_0C_0$

•
$$C_4 = G_3 + P_3 C_3$$

$$= G_3 + P_3 (G_2 + P_2 G_1 + P_2 P_1 G_0 + P_2 P_1 P_0 C_0)$$

$$= G_3 + P_3 G_2 + P_3 P_2 G_1 + P_3 P_2 P_1 G_0 + P_3 P_2 P_1 P_0 C_0$$

■串行进位链逻辑表达式分析

•
$$C_4 = G_3 + P_3G_2 + P_3P_2G_1 + P_3P_2P_1G_0 + P_3P_2P_1P_0C_0$$

•
$$G^* = G_3 + P_3G_2 + P_3P_2G_1 + P_3P_2P_1G_0$$

- 成组进位生成函数
- 只与操作数有关

$$\bullet \ P^* = P_3 P_2 P_1 P_0$$

- 成组进位传递函数
- 只与操作数有关

•
$$C_4 = G^* + P^*C_0$$

•
$$C_1 = G_0 + P_0C_0$$
 上下两式形式一样

■ 4位先行进位74182

- 输入: 进位生成函数 G_4-G_1 , 进位传递函数 P_4-P_1 , 最低位进位 C_{in}
- 输出: 进位输出 $C_4 C_1$, 成组进位传递函数 P^* , 成组进位生成函数 G^*
- 请勿增改删引脚及子电路封装, 使用隧道标签实现相应逻辑

■ 4位先行进位74182

•
$$C_0 = C_{in}$$

•
$$C_1 = G_1 + P_1 C_{in}$$

•
$$C_2 = G_2 + P_2G_1 + P_2P_1C_{in}$$

•
$$C_3 = G_3 + P_3G_2 + P_3P_2G_1 + P_3P_2P_1C_{in}$$

•
$$C_4 = G_4 + P_4G_3 + P_4P_3G_2 + P_4P_3P_2G_1 + P_4P_3P_2P_1C_{in}$$

•
$$G^* = G_4 + P_4G_3 + P_4P_3G_2 + P_4P_3P_2G_1$$

•
$$P^* = P_4 P_3 P_2 P_1$$

■ 测试要求

- 手动输入: 进位生成函数 G_4-G_1 , 进位传递函数 P_4-P_1 , 最低位进位 C_{in}
- 观察输出(进位输出 $C_4 C_1$,成组进位传递函数 P^* ,成组进位生成函数 G^*)是否正确
- 截图一张

谢谢!