Contents

- 1강 화학의 시작!
- 2강 원자, 원소, 분자의 구별
- 3강 주기율표 암기
- 4강 화학결합의 이해
- 5강 화학식량과 몰
- 6강 화학식량과 몰 게산 실습
- 7강 화학에 필요한 필수 공식 및 법칙

강 외약의 시작

1. 원소 기호

A = 질량수 = 양성자 + 중성자

Z = 원자 번호 = 양성자수 = 중성 원자의 전자 수

2. 원소 기호의 기원

- ① 원소 기호는 라틴 어와 그리스 어 그리고 영어로 된 원소 이름에서 한 글자 또는 두 글 자를 따서 표현한다.
- ② 원소 기호와 원소 이름은 다음과 같다.

例 H − Hydrogen(수소) O − Oxygen(산소)

C - Carbon(탄소)

N - Nitrogen(질소)

3. 명명법

- ① 물질을 구성하는 성분 원소의 종류와 원자 수를 원소 기호를 이용하여 나타낸 식이다.
- 2 2CH₄
 - ① 분자를 구성하는 원소의 종류: C와 H로 구성되어 있다.
 - © 분자를 구성하는 원자의 개수: C 원자 1개와 H 원자 4개로 구성되어 있다.
 - © 분자의 개수 : CH₄ 2분자가 있다.

나, 양진석이야

02 이온이란?

- 1. 이온의 형성
 - ① 양이온 : 전자를 () 생성 ⇨ 명명법 :

Na

Mg

Al

② 음이온 : 전자를 () 생성 ⇨ 명명법 :

C1

S

N

2. 물질의 이온화

방법 : 양 / 음이온 분해

NaCl →

- ① HC1 →
- \bigcirc AgNO₃ \rightarrow
- $3 \text{ CaCl}_2 \rightarrow$
- $\textcircled{4} Na_2SO_4 \rightarrow$
- $\textcircled{5} \text{ Pb(NO}_3)_2 \rightarrow$
- © CH₃COOH →

3. 다원자 이온의 명명법

- +1 : NH₄ ⁺ (암모늄 이온)
- -1 : OH (수산화 이온) NO₃ (질산 이온)
 - $\mathrm{CH_{3}COO}^{-}$ (아세트산 이온) $\mathrm{MnO_{4}}^{-}$ (과망거니즈산 이온)
- -2: SO₄²⁻ (황산 이온) CO₃²⁻ (탄산 이온)
- -3: PO₄³⁻ (인산 이온)

4. 이온결합

$$Ca + O$$

1. 화학반응식 쓰기

① 연소반응 : 무조건 산소를 쓰자 수소의 연소반응 :

탄소의 연소반응 : 완전연소를 생각하자

탄화수소의 연소반응 : 무조건 이산화 탄소와 물이다.

② 분해반응 탄산칼슘의 분해반응

③ 중화반응 : 무조건 물과 염이다.

④ 생성반응 물의 생성반응

이산화 탄소의 생성반응

암모니아의 생성반응

철의 생성반응

2강 원소, 원자, 분자의 구별

물질의 분류

보스

여러 가지 화학 반응식의 균형 맞추기

$$\bigcirc$$
 C₃H₈ + O₂ \rightarrow CO₂ + H₂O

$$\textcircled{4} C_2 H_5 O H + O_2 \rightarrow C O_2 + H_2 O$$

- 1) 원소
- ① 원소 : 물질을 구성하는 기본 성분으로, 더 이상 분해되지 않는 물질을 이루는 기본 성분
- ② 지금까지 110여 종의 원소가 발견되었다.
- ③ 홑원소 물질 : 산소, 질소, 철과 같이 한 종류의 원소만으로 이루어진 순수한 물질이다.

- 2) 원자
- ① 원자 : 물질을 구성하는 가장 작은 입자 단위이다.
- ② 산소 원자(O), 수소 원자(H), 질소 원자(N) 등이 있다.
- 3) 분자
- ① 분자 : 물질의 특성을 갖는 가장 작은 입자 단위이다.
- ② 산소 분자(O_2), 수소 분자(H_2), 물 분자(H_2 0), 암모니아 분자(NH_3) 등이 있다.

- 4) 순물질
- ① 순물질: 다른 물질과 섞이지 않은 1가지 물질이다. 예) 수소, 철, 염화 나트륨, 포도당
- 5) 화합물
- ① 화합물 : 두 가지 이상의 다른 종류의 원소들이 일정한 비율로 결합하여 만들어진 순수 한 물질이다.
- ② 원소들이 다양한 방법으로 결합하여 만들어지기 때문에 수없이 많은 화합물이 존재한다.
- ③ 물, 이산화 탄소, 포도당, 염화 나트륨 등이 있다.

분자(분자식)	산소(O ₂)	물(H ₂ O)	암모니아(NH ₃)
분자 모형	0 0	HOH	HNH
구성 원자	0 0	O H H	NHHH
분자 1개를 구성 하는 원자 수(개)	2 (2원자 분자)	3 (3원자 분자)	4 (4원자 분자)
구성 원소	산소	산소, 수소	질소, 수소

연습문제

1.

그림은 $\operatorname{Fe_2O_3}$, $\operatorname{O_2}$, Fe 을 기준 (r)와 (r)로 분류하는 과정을 나타낸 것이다. $\operatorname{X} \sim \operatorname{Z}$ 는 각각 $\operatorname{Fe_2O_3}$, $\operatorname{O_2}$, Fe 중 하나이며 기준 (r)와 (r)에 따라 달라질 수 있다.

기준 (가)와 (나)로 적절하지 않은 것은?1)

(가)(나)① 분자인가?원소인가② 분자인가?화합물인가③ 화합물인가?분자인가④ 화합물인가?원소인가⑤ 이온 결합 물질인가?분자인가

문제의 재구성

① 물리적 변화 Vs 화학적 변화

કુંગલમ્લા <u>ક!</u> !		

연습문제

2.

다음은 문학 작품의 일부이다.

가을이 깊어지면, 나는 거의 매일 뜰의 낙엽을 긁어모으지 않으면 안 된다. ...(중 략)... 고생스럽게 눈물을 흘리면서 조그만 아궁이로 ⊙ 나무를 태우는 것도 기쁘 고 ...(중략)... 새삼스럽게 마음속으로 © 불의 덕을 찬미하면서...(중략)... 화로의 ◎ 숯불은 이글이글 피어야 하고 주전자의 ◎ 물은 펄펄 끓어야 된다.

- 이효석,「낙엽을 태우면서」-

이에 대한 설명으로 옳은 것만을 <보기>에서 있는 대로 고른 것은?2)

- ㄱ. ⇒은 화석 연료이다.
- ∟. ○은 물질의 연소 과정에서 발생한다.
- □. □, ② 중에서 **화학 변화**에 해당하는 것은 ②이다.

3강 주기율표 암기

01 주기율표

- 1) 주기율의 발견
- ① 주기율: 원소를 원자 번호 순으로 나열하면 성질이 비슷한 원소가 일정한 간격을 두고 주기적으로 나타나는데, 이러한 성질을 주기율(periodic law)이라고 한다.
- ② 멘델레예프의 주기율표(1896년, 멘델레예프)
 - ① 러시아의 멘델레예프는 당시에 발견된 63가지의 원소를 원자량이 증가하는 순으로 배열하면 비슷한 성질을 가지는 원소들이 주기적으로 나타난다는 것을 발견하였다.
 - © 멘델레예프는 당시까지 발견되지 않은 원소의 자리는 비워두고, 발견될 원소의 원자량, 밀도, 끓는점 등의 여러 가지 성질을 예측하였다.
- ③ 모즐리의 주기율표(1913년, 모즐리)
 - ① 영국의 모즐리는 원소에 X 선을 쪼일 때 원소에 따라 파장이 달라지는 것을 이용하여 원소의 원자 번호를 결정하고, 원소를 원자 번호 순으로 배열하였다.
 - ① 원소를 원자량 순으로 배열하면 몇몇 원소들의 성질이 주기에서 벗어난다. 그러나 원소를 원자 번호 순으로 배열하면 화학적 성질의 주기성이 유지되어 멘델레예프 주기율표의 단점을 보완할 수 있었다.
 - ⓒ 현재의 주기율표는 모즐리의 주기율표를 토대로 하고 있다.
- 2) 주기율표(periodic table)

원소들을 원자 번호 순으로 나열하여 화학적 성질이 비슷한 원소들이 같은 세로줄에 오도 록 만Ⅰ 든 원소의 분류표

- ① 주기율이 나타나는 까닭: 전자 배치의 규칙성에 의해 원자가전자 수가 같은 원소가 주기적으로 나타나기 때문이다.
- ② 주기 : 주기율표의 가로줄로, 1~7주기가 있다.
 - ① 같은 주기에 속한 원소들은 전자껍질 수가 모두 같으며, 주기는 전자껍질 수와 같다.
 - ① $1 \sim 3$ 주기를 단주기, $4 \sim 7$ 주기를 장주기라고 하며, 7주기는 아직 완성되지 않았다.
 - ⓒ 6, 7주기는 원소들의 수가 너무 많아 따로 떼어내어 분류한다.
 - 6주기(란탄족): ₅₇La ~ ₇₁Lu
 - 7주기(악티늄족): 89Ac~103Lr

- ③ 족 : 주기율표의 세로줄로, $1 \sim 18$ 족이 있다.
 - ① 같은 족에 속한 원소(동족 원소)들은 원자가전자 수가 같아서 화학적인 성질이 비슷하다. 18 족을 제외하고 원자가전자 수는 족 번호의 일의 자릿수와 같다.

ⓒ 같은 족 원소들의 물리적인 성질은 일정한 경향성을 나타낸다.

주7	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
1	Н																	Не
2	Li	Ве											В	С	N	О	F	Ne
3	Na	Mg											Al	Si	Р	S	Cl	Ar
4	K	Ca	Sc	Ti	V	Cr	Mn	Fe	Со	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
5	Rb	Sr	Y	Zr	Nb	Мо	Тс	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Те	Ι	Xe
6	Cs	Ва	란탄족	Hf	Та	W	Re	Os	Ir	Pt	Au	Hg	Tl	Pb	Bi	Ро	At	Rn
7	Fr	Ra	악티늄족	Rf	Db	Sg	Bh	Hs	Mt	Ds	Rg	Cn						

란탄족 원소	La	Се	Pr	Nd	Pm	Sm	Eu	`Gd	Tb	Dy	Но	Er	Tm	Yb	Lu
악티늄족 원소	Ac	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr

각자 주기울표를 완성 해 봅시다.

주기 주기	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
1																		
2																		
3																		
4			Sc	Ti	V	Cr	Mn	Fe	Со	Ni	Cu	Zn	Ga	Ge	As	Se	В	Kr

3) 원소의 분류

주기율표에서 원소들은 크게 전형 원소와 전이 원소, 금속 원소와 비금속 원소 등으로 나눌 수 있다.

① 전형 원소와 전이 원소

구분	전형 원소	전이 원소
주기율표에서의 위치	1족, 2족, 12족~18족	3족~11족
원자가전자 수	족의 끝 번호와 일치	1개 또는 2개
전자 배치	최외각 껍질의 s 오비탈이나 p 오비탈에 전자가 채워진다.	d 오비탈이나 f 오비탈에 전자가 부분적으로 채워진다.
특징	• 금속 원소와 비금속 원소가 존재한다. • 동족 원소는 원자가전자의 수가 같으 므로 화학적 성질이 비슷하다. • 족과 족 사이에 성질 변화가 뚜렷하게 나타난다.	 모두 금속이며, 대부분 밀도가 4g/cm³ 이 상인 중금속이다. 족에 관계없이 원자가전자가 1~2개로 일정하므로, 대부분 화학적 성질이 비슷하다.

□ ② 금속 원소와 비금속 원소 : 금속 원소는 전자를 잃고 양이온이 되기 쉽고, 비금속 원소는 전자를 얻어 음이온이 되기 쉽다.

 구분	금속 원소	비금속 원소
주기율표에서의 위치	왼쪽, 아래	오른쪽, 위
열과 전기 전도성	좋다	나쁘다
산화물의 특징	물과 반응하여 염기성을 나타낸다.	물과 반응하여 산성을 나타낸다.
상온에서의 상태	고체(단, 수은은 액체)	고체, 기체(단, 브롬은 액체)
특징	 대부분의 금속은 산과 반응하여 수소기체를 발생한다. 금속 광택이 있고, 열과 전기 전 도성이 크며, 펴짐성과 뽑힘성 이 있다. 	• 산과 반응하지 않는다. • 광택이 없고, 열과 전기를 통하지 않으며, 펴짐성과 뽑힘성이 매우 작다.

③ 비활성 기체 : 주기율표의 18쪽에 속한 원소로, 매우 안정하여 예외적인 경우를 제외하면 다른 원소와 화학 반응을 일으키지 않는다.

연습문제

3.

그림은 주기율표의 일부를 나타낸 것이다.

족 주기	1	2	13	14	15	16	17
1	Н						
2	Li	Ве	В	С	N	0	F
3	Na	Mg	Al	Si	Р	S	Cl
4	K	Са					

위 원자 중 다음 (가)~(다)에 해당하는 수를 모두 합한 값은?3)

- (가) 전기 음성도가 가장 큰 원자의 바닥상태에서의 홀전자 수
- (나) 원자 반지름이 가장 큰 원자의 원자가 전자 수
- (다) 이온화 에너지가 가장 작은 원자의 바닥상태에서의 전자가 들어 있는 전자 껍질 수

- ① 6 ② 7 ③ 8 ④ 9 ⑤ 10

신의 변형

- (가)
- (나)
- (다)

4강 화학 결합의 이해

07 공유결합

1. 공유 결합

- 2. 공유 결합의 표시
- ┗ [[1] 루이스 전자점식 : 원소 기호에 원자가전자를 점으로 표시한 식

[2] 구조식 : 공유 전자쌍을 결합선으로 나타낸 식

분자식	H_2	HF	CO_2	C_2H_4
루이스 전자점식	н:н	н:Ё:	:ö::c::ö	$\begin{matrix} H & \vdots \\ C & \vdots \\ H & H \end{matrix}$
구조식	н-н	H-F	O = C = O	H $C = C$

1) 이온의 형성

일반적으로 18족 원소와 같은 전자 배치로 되면서 이온이 형성된다.

- ① 양이온의 형성 : 중성의 금속 원자가 원자가전자를 잃어 형성된다.
- ② 음이온의 형성 : 중성의 비금속 원자가 전자를 얻어 형성된다.

양이온과 음이온이 되기 쉬운 원소들의 특성

양이온이 되기 쉬운 원소	음이온이 되기 쉬운 원소
• 원자가전자 수가 적은 원소	• 원자가전자 수가 많은 원소
(1족, 2족, 13족 원소)	(16족, 17족 원소)
• 금속성이 큰 원소	• 비금속성이 큰 원소
• 이온화 에너지가 작은 원소	• 전자 친화도가 큰 원소

③ 옥텟(octet) 규칙: 18쪽 원소인 비활성 기체는 최외각 전자 껍질에 전자가 8개(단, He은 2개) 배치되어 있으므로 매우 안정하다. 비활성 기체 이외의 원자들도 전자를 잃거나 얻어서 이온을 형성할 때 비활성 기체와 같이 최외각 전자 껍질에 8개의 전자를 가져 안정해지려는 경향을 가지는데, 이것을 옥텟 규칙이라고 한다.

- 2) 이온 결합의 형성
- ① 이온 결합: 양이온과 음이온 사이에 작용하는 정전기적 인력에 의하여 형성되는 결합을 이온 결합이라고 하며, 이온 결합으로 이루어진 화합물을 이온 결합 물질이라고 한다.

- ② 이온 결합의 형성과 에너지
 - ① 일반적으로 양이온과 음이온이 접근하면 두 이온 사이에는 정전기적 인력이 작용하여 에너 지가 감소한다.
 - ① 두 이온이 너무 가까워지면 반발력이 커져 에너지가 높은 불안정한 상태가 된다.
 - © 양이온과 음이온은 인력과 반발력에 의해 에너지가 가장 낮은 상태, 즉 가장 안정한 상태의 핵간 거리에서 이온 결합을 형성한다.

③ 이온 결합력(쿨롱의 힘)의 세기 : 이온 결합력(F)은 양이온과 음이온 사이에 작용하는 정전기 적 인력이다. 그 세기는 두 이온 사이의 거리(r)의 제곱에 반비례하고, 두 이온의 전하량(q)의 곱에 비례한다.

$$F \propto rac{q^+ \cdot q^-}{r^2} \ (q^+, \ q^-$$
 : 이온의 전하량, r : 이온 사이의 거리)

- ① 이온 결합력은 이온 사이의 거리가 짧을수록 강하다.
 - \bigcirc NaCl > KCl > RbCl > CsCl
- ⓒ 이온 결합력은 양이온과 음이온의 전하량이 클수록 강하다.
 - 예 MgO > LiF
- ⓒ 이온 결합력이 강할수록 이온 결합 물질의 녹는점과 끓는점이 높다.

Magic Study

이온 결합력의 세기

다음과 같은 이온 결합 물질 중에서 녹는점이 가장 높은 것을 각각 고르시오.

(1) LiF, LiCl, LiBr (2) MgO, CaO, KI

- ▮ ▮3) 이온 결합 물질의 성질
 - ① 고체 상태는 전기 전도성이 없으나, 액체나 수용액 상태는 전기 전도성이 있다.
 - ② 일반적으로 극성 용매인 물에 잘 녹는다.
- ▮ ③ 상온에서 고체 상태며, 녹는점과 끓는점이 높고 비휘발성이다.
 - ④ 단단하지만 외부 압력에 의해 쉽게 부스러진다.

이온 결정이 부스러지는 원인

연습문제

4.

표는 1기압에서 물질 A~C의 몇 가지 성질을 나타낸 것이다.

물 질	녹는점	끓는점	물에 대한	전기	전도성
	(℃)	(℃)	용해성	고체	액체
A	-182	-164	×	×	×
В	801	1465	0	×	О
С	-77.7	-33.5	0	×	×

O : 있음, × : 없음

이에 대한 설명으로 옳은 것만을 있는 대로 고른 것은?4)

- ¬. A의 구성 입자는 이온이다.
- L. 고체와 액체상태의 B에는 모두 이온이 존재한다.
- □. C는 25℃, 1기압에서 기체로 존재한다.

신의 변형

5강 화학식량과 몰

07 화학식량과 몰

- 1) 원자량
- ① 실제 원자 1개의 질량은 너무 작아서 사용하기 불편하므로 질량수가 12인 탄소원자(12C)
 1개의 질량을 12로 정하고, 이것과 비교하여 다른 원자의 상대적 질량을 정하여 사용하는데,
 이 상대적 질량을 원자량이라고 한다.

- ② 평균 원자량
 - 존재하는 동위 원소의 존재 비율을 고려한 평균 원자량을 사용한다.

○ 일반적으로 사용되는 원자량은 평균 원자량을 의미한다.

* 동위워소 *

원자 번호는 같으나 중성자 수가 다르기 때문에 질량수가 서로 다른 원소로, 자연계에 존 재하는 동위 원소의 비율은 일정하다.

Magic Study

평균 원자량

자연계에 염소(C1)의 동위원소는 35 C1(원자량 35)가 75%, 37 C1(원자량 37)가 25% 존재한다. C1의 평균 원자량은 얼마인지 쓰시오.

답 35.5

- ① 화학식량: 화학식을 구성하는 모든 원자들의 원자량의 합을 화학식량이라고 한다. 화학식의 종류에 따라 실험식량, 분자량 등이 있다.
- ② 분자량: 분자를 구성하는 모든 원자들의 원자량의 합을 분자량이라고 하며, 상대적 질량이므로 단위가 없다.

2) 몰(mole)

예

물질의 양을 표현할 때 사용하는 단위로, 몰을 사용하면 입자의 수, 질량, 기체의 부피 사이의 관계를 알 수 있다.

- ① 1몰 : 원자, 분자, 이온과 같은 입자 6.02×10^{23} 개를 1몰(mole)이라고 하며, 입자 1몰의 수인 6.02×10^{23} 을 아보가드로수(N)라고 한다.
- ② 1몰의 질량 : 화학식량에 g을 붙인 값으로, 원자, 분자, 이온 6.02×10^{23} 개의 질량이다.
- ③ 기체 1몰의 부피 : 0℃, 1기압(표준 상태)에서 기체의 종류에 관계없이 22.4L이다.

④ 기체의 몰 수와 질량, 분자 수, 부피 사이에는 다음과 같은 관계가 성립한다.

| | 연습문제

5.

그림은 물질의 양과 몰수와의 관계를, 표는 세 가지 물질에 대한 자료를 나타낸 것이다.

물질	물질의 양 (0°C, 1기압)	분자의 몰수
H ₂ O	27g	x
CO ₂	11.2L	y
NH ₃	1.2×10 ²⁴ 기H	z

분자의 몰수 x, y, z 의 합으로 옳은 것은?

나만의 해설 만들기!

연습문제

6.

다음은 몇 가지 물질의 질량에 대한 자료이다.

- A₂ 분자 0.5몰의 질량은 1g이다.
- BA₄ 분자 3.01×10²³개의 질량은 8g이다.
- 0°C, 1기압에서 기체 BC 5.6L의 질량은 7g이다.
- \bigcirc ABD 분자 2몰과 A_2C 분자 3몰의 질량은 같다.

화합물 D_2A_4 의 분자량으로 옳은 것은?

(단, A~D는 임의의 원소 기호이고, 아보가드로수는 6.02×10^{23} 이며, 0° C, 1기압에서 기체 1몰의 부피는 22.4L이다.)⁵⁾

① 26

② 28 ③ 30 ④ 32 ⑤ 34

나만의 해설 만들기!					

6강 화학식량과 몰 계산 실습

1

표는 3가지 원소 X~Z의 원자 1개의 실제 질량을 나타낸 것이다.

원소	X	Y	Z
원자 1개의	2.0 \ 1.0=23	4.0 > 4.0 = 23	0.70.10=23
질량(g)	2.0×10^{-23}	4.0×10^{-23}	6.7×10^{-23}

【 X 의 원자량이 12라고 할 때 Y 와 Z의 원자량으로 옳은 것은? 【 (단, X∼Z는 임의의 원소 기호이고, 원자량은 정수로 나타낸다.)6)

- Y Z
- Y Z
- ① 4 7
- ② 12 20
- ③ 12 40
- ④ 24 40

Point Check

2

표는 X~Z로 구성된 3가지 물질의 화학식과 화학식량을나타낸 것이다.

물질	XY	XY_2	ZY 2
화학식량	30	46	64

【 X~Z의 원자량의 크기를 옳게 비교한 것은?

▮ (단, X~Z는 임의의 원소 기호이다.)7)

- ① X>Y>Z
- ② Y>X>Z
- 3 Y>Z>X
- ④ Z>X>Y
- **I** ⑤ Z>Y>X

Point Check

4

『표는 원소 A∼C로 이루어진 물질 (가)~(다)의 분자식과 분자량을 나타낸 것이다.

ı	п)	(-1)	(- 1)	(-1)
Ĺ	물질	(フト)	(나)	(다)
ľ	분자식	A_2B_2	AC	B_2C_2
ĺ	분자량	26	28	34

『이에 대한 옳은 설명만을 <보기>에서 있는 대로 고른 것은? (단, A∼C는 임의의 원소 기호이 『다.) [3점]⁹⁾

П

- ! **보** ¬. 원자량은 A가 C보다 크다.
- Ⅰ 및 ∟. 분자식이 AB₂C인 물질의 분자량은 30이다.
 - ㄷ. 같은 질량에 들어 있는 분자 수는 (다)가 (나)보다 많다.

Point Check -

5

□ 다음은 A₂B, A₂, A₂B₂ 분자에 대한 자료이다.

- A₂B 분자 1.2×10²⁴개의 질량은 36g이다.
- A₂분자 17개의 질량은 A₂B₂ 분자 1개의 질량과 같다.

이에 대한 설명으로 옳은 것만을 <보기>에서 있는 대로 고른 것은?10) I(단, A와 B는 임의의 원소 기호이고, 아보가드로수는 6.02×10²³이다.)

보 ¬. A₂B의 분자량은 18이다.

l - 1 ∟. A₂B 3g 속에 들어 있는 A 원자는 1.0×10²³개이다.

-ㄷ. 원자량은 B가 A의 16배이다

- | Point Check |-

표는 원소 A~C로 이루어진 물질 (가)~(다)의 분자식과 분자량을 나타낸 것이다.

물질	(가)	(나)	(다)
분자식	A_2B_2	AC	B_2C_2
분자량	26	28	34

이에 대한 옳은 설명만을 <보기>에서 있는 대로 고른 것은? (단, A~C는 임의의 원소 기호이다.) [3점]11)

보 ¬. 원자량은 A가 C보다 크다.

기 ∟. 분자식이 AB₂C인 물질의 분자량은 30이다.

ㄷ. 같은 질량에 들어 있는 분자 수는 (다)가 (나)보다 많다.

- Point Check I-

표는 A와 B 두 원소로 이루어진 분자 (가)와 (나)에 대한 자료이다. 원자량은 A가 B보다 크다

분자	분자당 구성 원자의 수	분자량(상대값)
(가)	2	10
(나)	4	17

이에 대한 설명으로 옳은 것만을 <보기>에서 있는 대로 고른 것은? (단 A와 B는 임의의 원소 기호이다) (3점)12)

보 ¬. (나)를 구성하는 원자의 수는 B가 A보다 많다.

□ L. 1g당 B 원자의 수는 (나)가 (가)의 3배이다.

□. AB₅의 분자량은 (가)의 2.4배이다.

----- Point Check |--

그림은 포도당 $(C_6H_{12}O_6)$ 의 분자 모형을 나타낸 것이다. 포도당에 대한 옳은 설명만을 <보기>에서 있는 대로 고른 것은? ■ (단, 포도당의 분자량은 180이다.)¹³⁾ 보 □. 포도당은 화합물이다. **┓** ∟. 분자 1개의 질량은 180g이다. ㄷ. 포도당 1몰에 들어 있는 원자는 24몰이다. Point Check

강 화학식에 필요한 필수 공식 및 법칙

1. 질량 보존의 법칙 : 라보아지에

$$N_2 + H_2 \rightarrow NH_3$$

$$2H_2 + O_2 \rightarrow 2H_2O$$

$$C + O_2 \rightarrow CO_2$$

Point Check

2. 일정 성분비의 법칙 : 프루스트 : 한 화합물을 구성하는 성분 원소들의 질량비는 항상 일정하다 $N_2 \, + \, H_2 \, o \, NH_3$

$$2H_2 + O_2 \rightarrow 2H_2O$$

$$C + O_2 \rightarrow CO_2$$

Point Check

3. 배수 비례 법칙 : 돌턴 : 두 가지의 원소 A와 B가 화합하여 두 가지 이상의 화합물을 만들 때 A의 일정량과 화합하는 B의 질량 사이에는 간단한 정수비가 성립한다는 사실을 발견하였다.

CO, CO₂

Point Check

그림은 질소(N)와 산소(O)로 이루어진 분자 (가)와 (나)에서 성분 원소들의 질량 관계를 나타 낸 것이다.

(가)와 (나)에서 1분자를 구성하는 질소(N) 원자 수는 2개이다.

4. 이상기체 법칙

PV = nRT

Point Check

그림은 부피가 다른 두 용기에 기체 분자가 들어 있는 것을 모형으로 나타낸 것이다. 기체의 온 도와 압력은 같다.

이에 대한 설명으로 옳은 것만을 <보기>에서 있는 대로 고른 것은? (단, X, Y는 임의의 원소 기호이다.) 14

- ㄱ. (가)는 혼합물이다.
- ㄴ. 기체의 밀도는 (가)와 (나)가 같다.
- □. 기체의 부피는 (가)가 (나)의 1.5배이다.

- 1) 4
- 2) ②
- 3) ①
- 4) ④
- 5) ④
- 6) ④
- 7) ⑤
- 8) ⑤
- 9) ∟
- 10) ¬, ⊏
- 11) ∟
- 12) ¬, ⊏
- 13) ¬, ⊏
- 14) ④