KU LEUVEN

Multi-agent systems based solution for Pickup-and-delivery

Thierry Deruyttere (r0660485) Armin Halilovic (r0679689) KU Leuven - Multi-agent systems

- 1 Problem definition
- 2 Objectives
- **3** Research questions
- 4 Hypotheses
- 6 Variables
- 6 Multi-Agent System Design
- Experiments

- Problem definition
- Objectives
- 3 Research questions
- 4 Hypotheses
- 5 Variables
- 6 Multi-Agent System Design
- Experiments

1 Problem definition - Setting

- Pizzeria chain RoboPizza
- Pizza delivery using robots (AGVs)
- RoboPizza receives pizza delivery requests (tasks), robots deliver the pizzas
- Manhattan style city blocks

1 Problem definition - Robots

- Can move from and to any position in the city
- Have maps and can compute paths between locations
- Can carry up to 5 pizzas at once
- Can only communicate with entities that are close to them

1 Problem definition - Tasks

- Consist of picking up (multiple) pizzas and delivering them to a position before a certain timepoint
- ▶ If there are more than 5 pizzas in a task, it will have to be split up
- Pizzas have no preparation time / can be picked up instantly
- Will be created every time step with low probability:
 - Delivery time window based on distance from pizzeria + randomness
 - Amount of pizzas from Gaussian distribution
 - Delivery position uniformly random in city

1 Problem definition - World

Dynamism

- Streets can become closed off due to road works
- ► Amount of pizzerias can increase/decrease

Potential AGV crashes

- Running out of battery
- **▶** ?

Efficiency measure

Total waiting time for task

Charging

- Happens on one position
- Only limited amount of robots can charge at once

- Problem definition
- Objectives
- 3 Research questions
- 4 Hypotheses
- 5 Variables
- 6 Multi-Agent System Design
- Experiments

2 Objectives

► Analyze performance of BDI & delegate MAS algorithm the setting described above

- Problem definition
- Objectives
- **3** Research questions
- 4 Hypotheses
- 5 Variables
- 6 Multi-Agent System Design
- Experiments

3 Research questions (1)

- ► What is the relation between the amount of requests that RoboPizza receives and the waiting time for customers?
- ► Are robots on the road more often when there are more requests in the system?
- Does increasing the amount of robots decrease the customer waiting time when there are many requests?
- How does the amount of robots impact the average workload (occupancy rate) of the charging station?

3 Research questions (2)

- ▶ What is the relation between the amount of charging robots and the amount of clients we have to decline?
- How do waiting times change as the amount of road works changes (dynamism)?
- ► How do waiting times change as the amount of pickup locations changes (dynamism)?

- Problem definition
- Objectives
- 3 Research questions
- 4 Hypotheses
- 5 Variables
- 6 Multi-Agent System Design
- Experiments

4 Hypotheses (1)

- ► What is the relation between the amount of requests that RoboPizza receives and the waiting time for customers?
 - H_1 : The waiting time increases with the amount of requests.
 - H₀: The waiting time does **not** increase with the amount of requests.
- ► Are robots on the road more often when there are more requests in the system?
 - H_1 : Robots are on the road more often when there are more requests in the system.
 - H₀: Robots are **not** on the road more when there are more requests in the system.

4 Hypotheses (2)

- Does increasing the amount of robots decrease the customer waiting time when there are many requests?
 - H_1 : Increasing the amount of robots decreases the customer waiting time when there are many requests.
 - H₀: Increasing the amount of robots does not decrease the customer waiting time when there are many requests.
- How does the amount of robots impact the average workload (occupancy rate) of the charging station?
 - H₁: A larger amount of robots increases the average workload of the charging station.
 - H_0 : A larger amount of robots does **not** increase the average workload of the charging station.

4 Hypotheses (3)

- What is the relation between the amount of charging robots and the amount of clients we have to decline?
 - H₁: The amount of charging robots has no influence on the amount of clients that have to be declined.
 - H₀: The amount of charging robots influences on the amount of clients that have to be declined.
- How do waiting times change as the amount of road works changes (dynamism)?
 - ullet H_1 : Waiting times increase as the amount of road works increase.
 - H₀: Waiting times do **not** increase as the amount of road works increase.

4 Hypotheses (4)

- ► How do waiting times change as the amount of pickup locations changes (dynamism)?
 - H_1 : Waiting times decrease as the amount of pickup locations increase.
 - H₀: Waiting times do **not** decrease as the amount of pickup locations increase.

- Problem definition
- Objectives
- 3 Research questions
- 4 Hypotheses
- 6 Variables
- 6 Multi-Agent System Design
- Experiments

5 Independent variables

- $ightharpoonup n_{robots} = ext{amount of delivery robots}$
- $p_{request} = \text{probability for a new request}$
- $\mu_{pizza}, \sigma_{pizza} =$ Gaussian distribution parameters for amount of pizzas
- $lacktriangledown p_{pizzeria_opens} = ext{probability for a pickup position to open}$
- $lacktriangledown p_{pizzeria_closes} = {
 m probability}$ for a pickup position to close
- $lacktriangledown p_{road_works_start} = {
 m probability} \ {
 m for} \ {
 m road} \ {
 m works} \ {
 m to} \ {
 m start}$
- $lacktriangledown p_{road_works_finish} = ext{probability for existing road works to finish}$

5 Dependent variables

- $ightharpoonup t_{wait} = {\sf total}$ waiting time for customers & tasksWaitingTime / totalTasksWaitingTime
- t_{robots_driving} = total time robots spent driving & totalRobotsTimeDriving
- lacktriangledown $t_{robots_idle} = ext{total}$ time robots were idle & totalRobotsTimeldle
- $t_{robots_charging} = ext{total time robots were charging \& totalRobotsTimeCharging}$
- $n_{robots_distance} =$ the cumulative distance all robots have traveled & totalDistance
- $n_{requests} = \text{amount of requests in the system \& tasks / totalTasks}$
- lacktriangledown $n_{pizzerias} = {\sf amount}$ of open pizzerias & pizzerias
- $n_{road_works} = \text{amount of road works \& roadWorks}$
- $lacktriangleq n_{deliveries} = {
 m amount\ of\ finished\ deliveries\ \&\ totalTasksFinished}$
- $\triangleright ava_{mizzas} = average amount of pizzas carried by robots &$

5 Other variables

- $lackbox{v}_{robots} = \text{moving speed of the robots}$
- $t_{pizza} =$ the baking time of a pizza
- lacktriangledown $t_{robot_charge} =$ time it takes to recharge a battery
- ▶ battery_size = the pizzas of a robot's battery

- Problem definition
- Objectives
- Research questions
- 4 Hypotheses
- 6 Variables
- 6 Multi-Agent System Design
- Experiments

6 Multi-Agent System Design

Ant-based Delegate MAS

6 **Delegate MAS Ants**

- Desire Ants
- Exploration Ants
- ► Intention Ants

6 Robot strategy

strategy

- Problem definition
- Objectives
- Research questions
- 4 Hypotheses
- 5 Variables
- 6 Multi-Agent System Design
- Experiments

7 Experiments

- Different parameter settings for each hypothesis
- Each experiment's final statistics are written to a file
- Samples are made of X experiment runs for each parameter setting
- ► Test method: two-sample t-test
- Significance level: 0.05
- Hypotheses entail one-tailed tests. Null hypothesis will be rejected if the mean difference between sample means is too small.

Conclusions

conclude our Conclusions

