Test 1 Section 3 (395)

1) B

2) D

3) A

4) D

5) B

6) E

7) D

8) C

9) B

10) E

11) C

12) C

13) A

14) A

15) C

16) E

19) C

20) E

17) B

18) D

1)
$$2x+3=9$$
 (x2)
 $4x+6=18$
 -9 -9
 $4x-3=9$

$$2x+3=9$$
 $4(3)-3$
 $2x=6$ $=12-3$
 $x=3$ $=9$

2)
$$8(150) = 1200$$

 $8(200) = 1600$

$$5) \quad \frac{x+y-5}{2} \Rightarrow x+y-10$$

$$\frac{x_{+}y_{+}z_{-}}{3} = 8 = x_{+}y_{+}z_{-} = 24$$
 $10+z_{-}=24$
 $z_{-}=14$

7)
$$\int \frac{1}{1} \frac{1}{36} = 0$$
 $\int \frac{1}{4} \frac{1}{36} = 0$ $\int \frac{1}{4} \frac{1}{4} \frac{1}{4} \frac{1}{4} = 0$ $\int \frac{1}{4} \frac{1}{4} \frac{1}{4} \frac{1}{4} \frac{1}{4} = 0$ $\int \frac{1}{4} \frac{1}{4} \frac{1}{4} \frac{1}{4} \frac{1}{4} = 0$ $\int \frac{1}{4} \frac{1}{4} \frac{1}{4} \frac{1}{4} \frac{1}{4} \frac{1}{4} = 0$

9)
$$2^{2x} = 8^{x-1}$$
 $2^{2x} = (2^3)^{x+1}$ $2^{2x} = 2^{3x-3}$
 $-x = -3$ B note = plug in solutions
 $x = 3$ P $2^{x} = 2^{x}$
b) $3x - 4 = 2 + x$
 $2x = 6$
 $x = 3$ F

11)
$$2\pi r = 36\pi$$
 $r = 18$ by circle
 $r = 9$ (small semi-circles)
 $2\pi(9) = circ$ of small circle
 $18\pi = peth$ length
 C

test1.notebook August 02, 2012

paint-stope form of line $P(x_1, Y_1) \stackrel{\text{M}}{=}$ $Y-Y_1 = M(X-X_1)$ Point-scape

15)
$$45 + 76/45 = 60$$
 $\times \% 45 = 60$ $\times \% = \frac{4}{3}$ $\times \% = \frac{$

$$20)$$
 $-25,-24,-23,...0.$ $25,24,25+26=26$
(F)

Test 1 Section 6 (407)

1) E

2) A

3) D

4) A

5) A

6) D

7) D

8) B

9)3

10) 450

11) 52, 78, 104

12) 202

13) 3

14) 24

17) 1 18) 18

15) 40

16) 1.2, 6/5

3)
$$3^{2}+2^{2}-y^{2}$$
 $9+4=y^{2}$
 $y=\sqrt{13}$
3) (1) $8\div 7$

b)
$$D = w \times x = \frac{1}{3} \times x =$$

9)
$$5y+2x=33$$

 $x=y+1$ $5y+2(y+1)=23$
 $5y+2y+2=23$
 $7y=21$
 $(y=3)$
16) $300 + .50(300) = 300 + 160 = (460)$

11) D's are similar so ratio of sides
'is same
perimetr

(2)
$$(x-4)+(x-3)+(x-2)+(x-1)+(x)=1040$$

 $5x-10=1040$
 $5x=1010$
 $x=202$

13)
$$h(x) = g(2x) + 2$$

 $h(1) = g(2) + 2 = 1 + 2 = 3$
14) $\frac{1}{4}$ $\frac{1}{$

15) equiatral = equiangular

$$3x = \frac{180}{3} = 40$$

X= 20 :.

1. 2x=40 4=40

$$a\triangle b = a+3b$$

$$a\square b = a+4b$$

$$4\Delta(5y) = (5y)\square 4$$

$$4+3(54)=54+4(4)$$
 $4+154=54+16$
 $104=12$
 $4=\frac{6}{5}$

$$(5,t) \Rightarrow 0 = P^{2} - 4$$

$$(5,t) \Rightarrow 5 = t^{2} - 4$$

$$(aP) = t^{2} = 4$$

18)
$$d = 45 t_{m}$$
 $d = 7.t$
 $d = 30 t_{h}$
 $t_{m} + t_{m} = 1 \Rightarrow t_{m} = (1 - t_{n})$
 $45 t_{m} = 30 t_{h}$ $t_{m} = 1 - \frac{2}{3} = \frac{2}{3}$
 $45(1 - t_{h}) = 30 t_{h}$ $d = 18 \text{ miles}$
 $45 = 75 t_{h}$
 $45 = 75 t_{h}$
 $45 = \frac{2}{3}$

Test 1 section 9 (423)

1) B

9) D

2) B

10) B

3) C

11) B

4) C

12) B

5) D

13) C

6) A

14) E

7) E

15) E

8) D

16) D

1)
$$5t = 45$$
 $t = 1$ $t = 9$ $t = \frac{1}{4}$

2)
$$3\frac{1}{2}$$
 inches \times 2 twos/inch $(\frac{2}{2})(2)=7$ twos \bigcirc

3)
$$\frac{x}{y} = \frac{2}{3}$$
 $\frac{3x}{y} = \frac{6}{3}$ $\frac{3x}{2y} = \frac{6}{6} = 1$

4)
$$\angle ROS = 20^{\circ} SD \quad y = 160^{\circ}$$

 $y - x = 90^{\circ} C$
5) $\frac{3}{2} + \frac{1}{4} + \frac{3}{2} + \left(+ \frac{3}{2} + \frac{1}{4} + \frac{3}{2} \right)$
 $\frac{12}{2} + 1 + \frac{2}{4} = 7\frac{1}{2}$
 $12 + 1 + \frac{2}{4} = 7\frac{1}{2}$
 $130pm - 7.5 hrs$
 $= 9am$
6) $2x - 5 \quad x + 1 \quad 3x - 8$
 $5a \quad 5 \quad 6 \quad 7$
 $11e \quad 17 \quad 12 \quad 35$

7)
$$P(n) = 0.75n - 50 = 100$$

 $75n = 150$
 $n = 200$
8) $x^{2}+y^{2}=73$
 $xy = 24$ $(x+y)^{2}=x^{2}+2xy+y^{2}$
 $=x^{2}+y^{2}+2xy$
 $=73+2(24)$
 $= 121$

9
$$\triangle$$
 ABD is isolobe $\lambda = angles$

So $BD = 1$
 $1^2 + 13^2 = (^2)$
 $1 + 3 = (^2)$
 $1 + 3 = (^2)$
 $1 + 3 = (^2)$
 $1 + 3 = (^2)$
 $1 + 3 = (^2)$
 $1 + 3 = (^2)$
 $1 + 3 = (^2)$
 $1 + 3 = (^2)$
 $1 + 3 = (^2)$
 $1 + 3 = (^2)$
 $1 + 3 = (^2)$
 $1 + 3 = (^2)$
 $1 + 3 = (^2)$
 $1 + 3 = (^2)$
 $1 + 3 = (^2)$
 $1 + 3 = (^2)$
 $1 + 3 = (^2)$
 $1 + 3 = (^2)$
 $1 + 3 = (^2)$
 $1 + 3 = (^2)$
 $1 + 3 = (^2)$
 $1 + 3 = (^2)$
 $1 + 3 = (^2)$
 $1 + 3 = (^2)$
 $1 + 3 = (^2)$
 $1 + 3 = (^2)$
 $1 + 3 = (^2)$
 $1 + 3 = (^2)$
 $1 + 3 = (^2)$
 $1 + 3 = (^2)$
 $1 + 3 = (^2)$
 $1 + 3 = (^2)$
 $1 + 3 = (^2)$
 $1 + 3 = (^2)$
 $1 + 3 = (^2)$
 $1 + 3 = (^2)$
 $1 + 3 = (^2)$
 $1 + 3 = (^2)$
 $1 + 3 = (^2)$
 $1 + 3 = (^2)$
 $1 + 3 = (^2)$
 $1 + 3 = (^2)$
 $1 + 3 = (^2)$
 $1 + 3 = (^2)$
 $1 + 3 = (^2)$
 $1 + 3 = (^2)$
 $1 + 3 = (^2)$
 $1 + 3 = (^2)$
 $1 + 3 = (^2)$
 $1 + 3 = (^2)$
 $1 + 3 = (^2)$
 $1 + 3 = (^2)$
 $1 + 3 = (^2)$
 $1 + 3 = (^2)$
 $1 + 3 = (^2)$
 $1 + 3 = (^2)$
 $1 + 3 = (^2)$
 $1 + 3 = (^2)$
 $1 + 3 = (^2)$
 $1 + 3 = (^2)$
 $1 + 3 = (^2)$
 $1 + 3 = (^2)$
 $1 + 3 = (^2)$
 $1 + 3 = (^2)$
 $1 + 3 = (^2)$
 $1 + 3 = (^2)$
 $1 + 3 = (^2)$
 $1 + 3 = (^2)$
 $1 + 3 = (^2)$
 $1 + 3 = (^2)$
 $1 + 3 = (^2)$
 $1 + 3 = (^2)$
 $1 + 3 = (^2)$
 $1 + 3 = (^2)$
 $1 + 3 = (^2)$
 $1 + 3 = (^2)$
 $1 + 3 = (^2)$
 $1 + 3 = (^2)$
 $1 + 3 = (^2)$
 $1 + 3 = (^2)$
 $1 + 3 = (^2)$
 $1 + 3 = (^2)$
 $1 + 3 = (^2)$
 $1 + 3 = (^2)$
 $1 + 3 = (^2)$
 $1 + 3 = (^2)$
 $1 + 3 = (^2)$
 $1 + 3 = (^2)$
 $1 + 3 = (^2)$
 $1 + 3 = (^2)$
 $1 + 3 = (^2)$
 $1 + 3 = (^2)$
 $1 + 3 = (^2)$
 $1 + 3 = (^2)$
 $1 + 3 = (^2)$
 $1 + 3 = (^2)$
 $1 + 3 = (^2)$
 $1 + 3 = (^2)$
 $1 + 3 = (^2)$
 $1 + 3 = (^2)$
 $1 + 3 = (^2)$
 $1 + 3 = (^2)$
 $1 + 3 = (^2)$
 $1 + 3 = (^2)$
 $1 + 3 = (^2)$
 $1 + 3 = (^2)$
 $1 + 3 = (^2)$
 $1 + 3 = (^2)$
 $1 + 3 = (^2)$
 $1 + 3 = (^2)$
 $1 + 3 = (^2)$
 $1 + 3 = (^2)$
 $1 + 3 = (^2)$
 $1 + 3 = (^2)$
 $1 + 3 = (^2)$
 $1 + 3 = (^2)$
 $1 + 3 = (^2)$
 $1 + 3 = (^2)$
 $1 + 3 = (^2)$
 $1 + 3 = (^2)$
 $1 + 3 = (^2)$
 $1 + 3 = (^2)$
 $1 + 3 = (^2)$
 $1 + 3 =$

10)
$$.30.40.x = .20.w.x$$
 $.12 = .2w$
 $.6=w$
 $.6=w$

13)
$$n$$
 $4n$
 $n+3$
 $6n+3$ = $2n+1$
 $a+b=1$
 $a+b=1$

15) If
$$PQ = 6$$
 the x-coold of $Q = 3$
 $Y = X^{2}$ $Y = a - X^{2}$
 $Y = y$ $X^{2} = a - X^{2}$ When $X = 3$
 $Q = a - Q$ (E)

 $Q = 18$