H/D exchange

NMR + protein dynamics - have focussed on To timescale + Rex + Exs + Exs + what about slower processes? ms - years HD exchange: "Mg" Dro > Drigo +time > Drogo Monitor park intensity over time: \ \Idexp(-kext) - Physical interpretation? Consider a dipeptide H, D-ODZ H2 D) P acid catalysis Ikb for each pH unit -> pH v pD (?) PD=-logio [D+] (by offinition) but this is not measured directly by pH meter! PH*= PD - 0-4 Temperature effect well characterised Effect of sidechains also well studied (manual for all pains) : We can calculate random coil exchange rates wing database values -> SPHERE webserver.

What about HX within proteins? At a minimum, hydrogen bonding protects anide protons from exchange. Lindorstopm-Lang exchange model: closed $\frac{k_{op}}{k_{cl}}$ open $\frac{k_{ex}}{k_{cl}}$ > exchange (>99%) Kop = Rop = [open] Exchange of the open state is fast

- spend most of time waiting for rare opening events

- opening rate is RDS => kobs == kop

- opening rate is RDS => kobs == kop OR Equilibrium of open=closed is rapid - pre-equilibrium

Rate & lopen & Kop × exchange rate

Exz $k_{obs} \approx k_{op} k_{mex} = \frac{k_{op} k_{ex}}{h}$ From perspective of protein: so I've reached the open state... now what? General solution: Robs = Rop kex kel + kex Information content? EX 1 - kinetic! Tells you about kop EX2 - thermodynamic! Tells you %open or protection factor P = 1/Kop log k · Kopkex Can't exchange fautor
than opening rate! - Examples; -Igs - N.B. PFs not pathray into Robs always limited by slowest -amyloid (quenched AX) reaction Measurement strategies - sample prep (conc w lyophilisation)
- why HzO-DzO?
- clead time - softwar flow
- sample incubation / stability SS pallern: helix traying solænt exposed of B sheet Isotope effects H-H exchange!

	· CLEANEX	Cieneral:	BRUKER
H-H exchange:	Diffusion Scalar coupling SOLEXSY	$k_{\rm ex} > T_{\rm I}(H_{\rm 20})$	
SATIONATION TRANSFIRER: IN THE PROPERTY OF TH	Long presatured saturated protein &	exity for bulle res	large onto
- Temperature picture -	- heat diffues i	from saturated sp HX along with	H ₂ O
enchange H20 water enchange H20 water - good! ? N T N - NOT Grow Ha		hy sold and and	-
MAGNETISATION TRANS	SFER:		
15N- 11t, 11	Can Still	selective inversion el defined mixina ebserve buildup of potential for NE	time stand times
How to eliminate NOE It! I'm Iffer longitudinal cross-relaxati < 0 /n macromolecular limit (wo Tc >7 1)	£,	To NOE us RO. To your relaxation -20 long	elways >0
Solution - lock N NOE -> CLEAN Doesn't cancel NO	nagnetication at and ROE constitution of the experiment of the four rapidly	35° angle to	eg. hydration water
14 Toleanex 1 1 1	1 M Mars	In the	I rate approx:
		imescale 10s of ms	$\rightarrow k_{\rm ex} \sim 1-10s^{-1}$

(Saturation transfer

Bimoleen or MANS

Pfree + L
$$\frac{k_{on}}{k_{off}}$$
 P_{bouncl} P_{free} $\frac{k_{i}}{k_{i}}$ P_{founcl}

$$k_{-1} = k_{off}$$

$$k_{1} = L_{free} \cdot k_{on}$$

$$k_{2} = k_{off} \cdot k_{i}$$

$$k_{3} = k_{off} \cdot k_{i}$$

$$(L_{free} = k_{1}, k_{i} = k_{-1}, OK)$$

$$Cakulabry L_{free} \cdot k_{1} = \frac{P_{free} \cdot L_{free}}{PL} = \frac{(P_{o} - P_{L})(L_{o} - P_{L})}{PL}$$

$$\Rightarrow k_{1} = k_{0} \cdot k_{1} = k_{0} \cdot k_{1}$$

$$(L_{free} = k_{1}, k_{1} = k_{-1}, OK)$$

$$Cakulabry L_{free} \cdot k_{1} = \frac{P_{free} \cdot L_{free}}{PL} = \frac{(P_{o} - P_{L})(L_{o} - P_{L})}{PL}$$

$$\Rightarrow k_{1} = k_{0} \cdot k_{1} = k_{0} \cdot k_{1} \cdot k_{1}$$

$$= k_{0} \cdot k_{1} \cdot k_{1} = k_{0} \cdot k_{1} \cdot k_{1} \cdot k_{1} = k_{0} \cdot k_{1}$$

Block-McCornell equations (single pulse experiment) Free precession of single spin in complex plane M+(t) = M+(0) eiwte-R2t $\frac{dM^{\dagger}}{dt} = i\omega M^{\dagger}(0)e^{i\omega t} = i\omega M^{\dagger}(t)$ $(i\omega - R_2)M^{\dagger}(0)e^{i\omega t} = R_2t = (i\omega - R_2)M^{\dagger}(t)$ Two isolated spins Ma and Mb => 2 ODEs - write in matin form of (Mat) = (iwa-Rra-la) o kba · (Mat) = ([iwa-Rra] Mat) o kba iwb-Rra Mat) The off-cliagonal terms - spin are uncoupled (not in)

Exchange Was couple the spin evolution together dtM = N.M is solved by combinations of exituition where {\lambda}; are eigenvalues of A

Eigenvalues $A\vec{x} = \lambda \vec{x} =$

VM=eAt M

Simpler case: Symmetric 2-side exchange without elements on
$$(Rab-kh_1-k)$$
 $A = \begin{pmatrix} R - k & i & k \\ - k & i & k \end{pmatrix}$
 $A = \begin{pmatrix} R - k & i & k \\ - k & i & k \end{pmatrix}$
 $A = \begin{pmatrix} R - k & i & k \\ - k & i & k \end{pmatrix} = -(R+\lambda)(iw-k-\lambda)-k^2$
 $A = \begin{pmatrix} -k-\lambda & k & i & -k-\lambda \\ -k-\lambda & i & k \end{pmatrix} = -(R+\lambda)(iw-k-\lambda)-k^2$
 $A = \begin{pmatrix} -k-\lambda & k & i & -k-\lambda \\ -k-\lambda & i & -k-\lambda \end{pmatrix} = -(R+\lambda)(iw-k-\lambda)-k^2$
 $A = \begin{pmatrix} -k-\lambda & k & i & -k-\lambda \\ -k-\lambda & i & -k-\lambda \end{pmatrix} = -(R+\lambda)(iw-k-\lambda)-k^2$
 $A = \begin{pmatrix} -k-\lambda & k & i & -k-\lambda \\ -k-\lambda & i & -k-\lambda \end{pmatrix} = -(R+\lambda)(iw-k-\lambda)-k^2$
 $A = \begin{pmatrix} -k-\lambda & k & -k-\lambda \\ -k-\lambda & i & -k-\lambda \end{pmatrix} = -(R+\lambda)(iw-k-\lambda)-k^2$
 $A = \begin{pmatrix} -k-\lambda & k & -k-\lambda \\ -k-\lambda & i & -k-\lambda \end{pmatrix} = -(R+\lambda)(iw-k-\lambda)-k^2$
 $A = \begin{pmatrix} -k-\lambda & k & -k-\lambda \\ -k-\lambda & i & -k-\lambda \end{pmatrix} = -(R+\lambda)(iw-k-\lambda)-k^2$
 $A = \begin{pmatrix} -k-\lambda & k & -k-\lambda \\ -k-\lambda & i & -k-\lambda \end{pmatrix} = -(R+\lambda)(iw-k-\lambda)-k^2$
 $A = \begin{pmatrix} -k-\lambda & k & -k-\lambda \\ -k-\lambda & i & -k-\lambda \end{pmatrix} = -(R+\lambda)(iw-k-\lambda)-k^2$
 $A = \begin{pmatrix} -k-\lambda & k & -k-\lambda \\ -k-\lambda & i & -k-\lambda \end{pmatrix} = -(R+\lambda)(iw-k-\lambda)-k^2$
 $A = \begin{pmatrix} -k-\lambda & k & -k-\lambda \\ -k-\lambda & k-\lambda \end{pmatrix} = -(R+\lambda)(iw-k-\lambda)-k^2$
 $A = \begin{pmatrix} -k-\lambda & k & -k-\lambda \\ -k-\lambda & k-\lambda \end{pmatrix} = -(R+\lambda)(iw-k-\lambda)-k^2$
 $A = \begin{pmatrix} -k-\lambda & k & -k-\lambda \\ -k-\lambda & k-\lambda \end{pmatrix} = -(R+\lambda)(iw-k-\lambda)-k^2$
 $A = \begin{pmatrix} -k-\lambda & k & -k-\lambda \\ -k-\lambda & k-\lambda \end{pmatrix} = -(R+\lambda)(iw-k-\lambda)-k^2$
 $A = \begin{pmatrix} -k-\lambda & k & -k-\lambda \\ -k-\lambda & k-\lambda \end{pmatrix} = -(R+\lambda)(iw-k-\lambda)-k^2$
 $A = \begin{pmatrix} -k-\lambda & k & -k-\lambda \\ -k-\lambda & k-\lambda \end{pmatrix} = -(R+\lambda)(iw-k-\lambda)-k^2$
 $A = \begin{pmatrix} -k-\lambda & k & -k-\lambda \\ -k-\lambda & k-\lambda \end{pmatrix} = -(R+\lambda)(iw-k-\lambda)-k^2$
 $A = \begin{pmatrix} -k-\lambda & k & -k-\lambda \\ -k-\lambda & k-\lambda \end{pmatrix} = -(R+\lambda)(iw-k-\lambda)-k^2$
 $A = \begin{pmatrix} -k-\lambda & k & -k-\lambda \\ -k-\lambda & k-\lambda \end{pmatrix} = -(R+\lambda)(iw-k-\lambda)-k^2$
 $A = \begin{pmatrix} -k-\lambda & k & -k-\lambda \\ -k-\lambda & k-\lambda \end{pmatrix} = -(R+\lambda)(iw-k-\lambda)-k^2$
 $A = \begin{pmatrix} -k-\lambda & k & -k-\lambda \\ -k-\lambda & k-\lambda \end{pmatrix} = -(R+\lambda)(iw-k-\lambda)-k^2$
 $A = \begin{pmatrix} -k-\lambda & k & -k-\lambda \\ -k-\lambda & k-\lambda \end{pmatrix} = -(R+\lambda)(iw-k-\lambda)-k^2$
 $A = \begin{pmatrix} -k-\lambda & k & -k-\lambda \\ -k-\lambda & k-\lambda \end{pmatrix} = -(R+\lambda)(iw-k-\lambda)-k^2$
 $A = \begin{pmatrix} -k-\lambda & k & -k-\lambda \\ -k-\lambda & k-\lambda \end{pmatrix} = -(R+\lambda)(iw-k-\lambda)-k^2$
 $A = \begin{pmatrix} -k-\lambda & k & -k-\lambda \\ -k-\lambda & k-\lambda \end{pmatrix} = -(R+\lambda)(iw-k-\lambda)-k^2$
 $A = \begin{pmatrix} -k-\lambda & k & -k-\lambda \\ -k-\lambda & k-\lambda \end{pmatrix} = -(R+\lambda)(iw-k-\lambda)-k^2$
 $A = \begin{pmatrix} -k-\lambda & k & -k-\lambda \\ -k-\lambda & k-\lambda \end{pmatrix} = -(R+\lambda)(iw-k-\lambda)-k^2$
 $A = \begin{pmatrix} -k-\lambda & k & -k-\lambda \\ -k-\lambda & k-\lambda \end{pmatrix} = -(R+\lambda)(iw-k-\lambda)-k^2$
 $A = \begin{pmatrix} -k-\lambda & k & -k-\lambda \\ -k-\lambda & k-\lambda \end{pmatrix} = -(R+\lambda)(iw-k-\lambda)-k^2$

kex = k-1+k1 = Zk OK

$$\overrightarrow{M_0} = \begin{pmatrix} P_A \\ P_B \end{pmatrix}$$

$$M_{\perp} = \begin{pmatrix} P_A \\ P_B \end{pmatrix}$$

$$A \rightarrow A \qquad B \rightarrow A$$

$$A \rightarrow B \qquad B \rightarrow B$$

to find mation entires?

$$A(\epsilon)$$

$$A(0) = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$

$$K = \begin{pmatrix} -k_{ab} & k_{ba} \\ k_{ab} & -k_{ba} \end{pmatrix}$$

$$R = \begin{pmatrix} -R_{1a} & 0 \\ k_{ab} & -k_{ba} \end{pmatrix} \qquad R = \begin{pmatrix} -R_{1a} & 0 \\ 0 & -R_{1b} \end{pmatrix}$$

$$M(t) = e^{(K+R)t} \rightarrow M(0)$$

$$2^{X} = 1 + X + \frac{1}{2}X^{2} + \cdots$$

Motive exponential:
$$e^{X} = 1 + X + \frac{1}{2}X^{2} + \cdots$$
-- For small T , $A \approx \begin{pmatrix} 1-k_{ab}t-R_{1a}t & k_{ba}t \\ k_{ab}t & 1-k_{ba}t-R_{1b}t \end{pmatrix}$