Numerical Analysis Homework1

Zhang Jiyao,PB20000204

2023年3月7日

1 Introduction

计算汉明级数 [Hamming(1962)]

$$\varphi(x) = \sum_{k=1}^{\infty} \frac{1}{k(k+x)}$$

其中 x 的取值为 x = 0.0, 0.1, 0.2, ...1.0, 10.0, 20.0, ...300.0 共 41 个值, 要求误差小于 10^{-6} , 并给出相应的 k 的取值上界。

2 Method

为了计算这个级数, 我认为采取直接累加的方法是不可取的。不仅可能损失精度, 还有可能导致复杂度过高。因此我打算参考计算多项式时的思路, 改进这个算法。

我们首先考虑 x 为整数的情况。当 x=1 时,我们通过裂项可以直接算出 $\varphi(1)=1$. 那么接下来都考虑 x 为整数的情况。对此,我们有

$$\varphi(x) = \sum_{k=1}^{\infty} (\frac{1}{k} - \frac{1}{k+x}) \frac{1}{x}$$

$$\varphi(x+1) = \frac{1}{x+1} \sum_{k=1}^{\infty} (\frac{1}{k} - \frac{1}{k+x+1})$$

$$(x+1)\varphi(x+1) - x\varphi(x) = \sum_{k=1}^{\infty} (\frac{1}{k+x} - \frac{1}{k+x+1}) = -\frac{1}{x+1}$$

$$\varphi(x+1) = \frac{x\varphi(x) + \frac{1}{x+1}}{(x+1)}$$

那么在 x 为整数的情况下,我们就能通过递推式和初值 $\varphi(1) = 1$ 得出所有的 $\varphi(x), x$ 为整数。同样的, 对 x 为小数的情况, 我们也可以做类似的分析。

$$\varphi(x) = \sum_{k=1}^{\infty} \frac{1}{k(k+x)}, \varphi(1) = \sum_{k=1}^{\infty} \frac{1}{k(k+1)}$$

$$f(x) = \varphi(x) - \varphi(1) = \sum_{k=1}^{\infty} \frac{1-x}{k(k+1)(k+x)}$$

$$F(x) = \frac{f(x)}{1-x} = \sum_{k=1}^{\infty} \frac{1}{k(k+1)(k+x)}$$
$$g(x) = F(x) - F(2) = \sum_{k=1}^{\infty} \frac{2-x}{k(k+1)(k+2)(k+x)}$$
$$\varphi(x) = [g(x) + F(2)](1-x) + \varphi(1)$$

那么只需要注意到 $F(2) = 0.25, \varphi(1) = 1$, 代入计算即可。

为了求对应的 k 的取值上界, 我们就把之前求得的 $\varphi(x)$ 当成精确值, 然后从第一项开始求和, 直到做差小于 10^{-6} 即可. 具体的细节我们在后面的讨论会说到。

3 Results

A 3	变量 - A										
	A ×										
H 3	31x3 double										
	1	2	3	4	5	6	7	8	9	10	11
1	1	1	1000000								
2	10	0.2929	999995								
3	20	0.1799	999990								
4	30	0.1332	999985								
5	40	0.1070	999980								
6	50	0.0900	999975								
7	60	0.0780	999970								
8	70	0.0690	999965								
9	80	0.0621	999960								
10	90	0.0565	999955								
11	100	0.0519	999950								
12	110	0.0480	999945								
13	120	0.0447	999940								
14	130	0.0419	999935								
15	140	0.0394	999930								
16	150	0.0373	999925								
17	160	0.0353	999920								
18	170	0.0336	999915								
19	180	0.0321	999910								
20	190	0.0307	999905								
21	200	0.0294	999900								
22	210	0.0282	999895								
23	220	0.0272	999890								
24	230	0.0262	999885								
25	240	0.0252	999880								
26	250	0.0244	999875								
27	260	0.0236	999870								
28	270	0.0229	999865								
29	280	0.0222	999860								
30	290	0.0215	999855								
31	300	0.0209	999850								

图 1: 当 x 为整数时的运行结果

图 2: 当 x 为小数时的运行结果

4 Discussion

本次实验我是用 MATLAB 进行编程。

我一共编写了 3 个程序, 一个是函数文件, 用于计算递推的关系式。另外两个一个是 x 为整数的情况, 一个是 x 为小数的情况.

在之前讨论 x 为小数的过程中, 我们在最终计算求和时肯定只能取一个较大的 k 来计算。因为对余项我们有估计

$$\sum_{i=k}^{\infty} \frac{1}{i(i+x)} \le \int_{k}^{\infty} \frac{1}{x^2} dx$$

因此只需要考虑 k 的阶数即可。因为题目要求了误差控制在 10^{-6} 次方以内,那么我们取一个 $k = 10^6$ 即可。此时 k^2 的阶数在 10^{12} 左右, 在求 k 的上界过程中无影响.

得到的结果也是十分漂亮, 在 x 为小数时求得的 k 全是 10^7 , 但这个可能是由于设计的算法精度不够导致的。在 x 为整数时我们求得的为精确值, 此时求得的 k 呈现出一个等差数列的规律。

A Computer Code

induction.m

```
function y=induction(phi,x)
y=(x*phi+1/(x+1))/(x+1);
end
construct_A.m
A = zeros(31,3);
phi=zeros(1,301);
S=zeros(1,301);
K=zeros(1,31);
A(1,1)=1;
A(1,2)=1;
i=1;
j=1;
t=1;
phi(1)=1;
S(1)=1;
for i=2:300
phi(i) = induction(phi(i-1),i-1);
if i == 10*j
j=j+1;
A(j,1){=}i;
A(j,2)=phi(i);
\operatorname{end}
end
s=1;
S(1)=phi(1);
while (S(1)>=1E-6)
S(1)=S(1)-1/(s^*(s+1));
s=s+1;
end
A(1,3)=s-1;
for i=2:300
S(i)=phi(i);
s=1;
if i==10*t
while (S(i)>=1E-6)
S(i)=S(i)-1/(s*(s+i));
s=s+1;
\quad \text{end} \quad
A(t+1,3)=s-1;
t=t+1;
end
end
Α
construct_B.m
phi=zeros(1,301);
S=zeros(1,10);
K=zeros(1,31);
```

```
B=zeros(10,3);
B(1,1)=0;
B(1,2)=pi*pi/6;
for x = 1 : 1 : 9
sum = 0;
for k = 1:100000
sum = sum \, + \, 1/(k*(k+0.1*x)*(k+1)*(k+2));
end
B(x+1,1)=x*0.1;
B(x+1,2)=(sum^*(2-0.1^*x)+0.25)^*(1-0.1^*x)+1;
end
for i = 1:10
s=1;
S(i)=B(i,2);
while(S(i)>=1E-6)
S(i)=S(i)-1/(s*(s+0.1*(i-1)));
s=s+1;
\quad \text{end} \quad
B(i,3)=s-1;
\quad \text{end} \quad
В
```