# 日本国特許方

JAPAN PATENT OFFICE

04.03.03

2 1 MAR 2003

WIPO PCT

別紙添付の書類に記載されている事項は下記の出願書類に記載されている事項と同一であることを証明する。

This is to certify that the annexed is a true copy of the following application as filed with this Office

出願年月日

Date of Application:

2002年 7月25日

出願番号

Application Number:

特願2002-216567

[ ST.10/C ]:

[JP2002-216567]

出 願 人 Applicant(s):

小野薬品工業株式会社

#### PRIORITY DOCUMENT

SUBMITTED OR TRANSMITTED IN COMPLIANCE WITH RULE 17.1(a) OR (b)

2003年 2月18日

特 許 庁 長 官 Commissioner, Japan Patent Office 太田信一



出証番号 出証特2003-3008789

#### 特2002-216567

【書類名】

特許願

【整理番号】

ONP4272

【提出日】

平成14年 7月25日

【あて先】・

特許庁長官 及川 耕造 殿

【国際特許分類】

C07D207/00

【発明者】

【住所又は居所】

大阪府三島郡島本町桜井3丁目1番1号 小野薬品工業

株式会社 水無瀬総合研究所内

【氏名】

谷 耕輔

【発明者】

【住所又は居所】 大阪府三島郡島本町桜井3丁目1番1号 小野薬品工業

株式会社 水無瀬総合研究所内

【氏名】

小林 馨

【発明者】

【住所又は居所】 大阪府三島郡島本町桜井3丁目1番1号 小野薬品工業

株式会社 水無瀬総合研究所内

【氏名】

丸山 透

【発明者】

【住所又は居所】 大阪府三島郡島本町桜井3丁目1番1号 小野薬品工業

株式会社 水無瀬総合研究所内

【氏名】

神戸 透

【発明者】

【住所又は居所】 大阪府三島郡島本町桜井3丁目1番1号 小野薬品工業

株式会社 水無瀬総合研究所内

【氏名】

小川 幹男

【特許出願人】

【識別番号】

000185983

【住所又は居所】

大阪府大阪市中央区道修町2丁目1番5号

【氏名又は名称】

小野薬品工業株式会社

# 特2002-216567

【代表者】

松本 公一郎

【代理人】

【識別番号】

100081086

【住所又は居所】

東京都中央区日本橋人形町2丁目2番6号 堀口第2ビ

ル7階 大家特許事務所

【弁理士】

【氏名又は名称】

大家 邦久

【電話番号】

03 (3669) 7714

【代理人】

【識別番号】

100117732

【住所又は居所】

東京都中央区日本橋人形町2丁目2番6号 堀口第2ビ

ル7階 大家特許事務所

【弁理士】

【氏名又は名称】

小澤 信彦

【電話番号】

03(3669)7714

【代理人】

【識別番号】

100121050

【住所又は居所】

東京都中央区日本橋人形町2丁目2番6号 堀口第2ビ

.ル7階 大家特許事務所

【弁理士】

【氏名又は名称】

林 篤史

【電話番号】

03(3669)7714

【手数料の表示】

【予納台帳番号】

043731

【納付金額】

21,000円

【提出物件の目録】

【物件名】

明細書 1

【物件名】

要約書 1

【包括委任状番号】 0209021

【プルーフの要否】 要

【書類名】 明細書

【発明の名称】 8-アザプロスタグランジン誘導体

【特許請求の範囲】

【請求項1】 一般式(I)

【化1】

(式中、Tは

- 1) 酸素原子、または
- 2) 硫黄原子を表わし、

Xは

- 1) CH<sub>2</sub>-基、
- 2) -〇-基、または
- 3) S-基を表わし、

Aは $A^1$ または $A^2$ を表わし、

 $A^1$ は

- 1) 1~2個のC1~4アルキル基で置換されていてもよい直鎖のC2~8アルキレン基、
- 2) 1~2個のC1~4アルキル基で置換されていてもよい直鎖のC2~8アルケニレン基、または
- 3) 1~2個のC1~4アルキル基で置換されていてもよい直鎖のC2~8アルキニレン基を表わし、

 $A^2$ は $-G^1-G^2-G^3$ -基を表わし、

 $G^1$ は

- 1)  $1 \sim 2$  個の $C 1 \sim 4$  アルキル基で置換されていてもよい直鎖の $C 1 \sim 4$  アルキレン基、
- 2) 1~2個のC1~4アルキル基で置換されていてもよい直鎖のC2~4アルケニレン基、または

3)  $1 \sim 2$ 個の $C \ 1 \sim 4$  アルキル基で置換されていてもよい直鎖の $C \ 2 \sim 4$  アルキニレン基を表わし、

 $G^2$ は

- 1) Y 基、
- 2) -環1-基、
- 3) Y 環1 基、
- 4) -環1-Y-基、または
- 5) -Y-C1~4アルキレン-環1-基を表わし、

Yは

- 1) S 基、
- 2) SO-基、
- 3) -SO<sub>2</sub>-基、
- 4) -〇-基、または
- 5) N R<sup>1</sup>-基を表わし、

 $R^1$ 

- 1) 水素原子、
- 2) C1~10アルキル基、または
- 3) C2~10アシル基を表わし、

 $G^3$ 

- 1) 単結合、
- 2)  $1 \sim 2$ 個の $C1 \sim 4$  アルキル基で置換されていてもよい直鎖の $C1 \sim 4$  アルキレン基、
- 3) 1~2個のC1~4アルキル基で置換されていてもよい直鎖のC2~4アルケニレン基、または
- 4) 1~2個のC1~4アルキル基で置換されていてもよい直鎖のC2~4アルキニレン基を表わし、
- Dは $D^1$ または $D^2$ を表わし、

 $D^1$ lt

1) - COOH基、

- 2) -COOR<sup>2</sup>基、
- 3) テトラゾールー5-イル基、または
- 4)  $-CONR^3SO_2R^4$ 基を表わし、

## R<sup>2</sup>は

- 1) C1~10アルキル基、
- 2) フェニル基、
- 3) フェニル基で置換されたС1~10アルキル基、または
- 4)ビフェニル基を表わし、

# R<sup>3</sup>は

- 1) 水素原子、または
- 2) C1~10アルキル基を表わし、

## R<sup>4</sup>は

- C1~10アルキル基、または
- 2) フェニル基を表わし、

# $D^2$ は

- 1) C H<sub>2</sub>O H基、
- 2) CH<sub>2</sub>OR<sup>5</sup>基、
- 3) 水酸基、
- 4) -OR<sup>5</sup>基、
- 5) ホルミル基、
- 6) -CONR<sup>6</sup>R<sup>7</sup>基、
- 7)  $-CONR^6SO_2R^8$ 基、
- 8) -CO- (NH-アミノ酸残基-CO) m-OH基、
- 9) -O- (CO-アミノ酸残基-NH) m-H基、
- 10) -COOR<sup>9</sup>基、
- 11) -OCO-R<sup>10</sup>基、
- 12)  $-COO-Z^{1}-Z^{2}-Z^{3}$ 基、
- 13)

[化2]

#### を表わし、

 $R^5$ は $C1\sim10$ アルキル基を表わし、

 $R^6$ および $R^7$ はそれぞれ独立して、

- 1) 水素原子、または
- 2) C1~10アルキル基を表わし、

 $R^8$ はフェニル基で置換された $C1\sim10$  アルキル基を表わし、 $R^9$ は

- 1) C1~10アルキル基、C1~10アルコキシ基、およびハロゲン原子から 選ばれる1~3個の置換基で置換されていてもよいビフェニル基で置換されたC 1~10アルキル基、または
- 2)  $C1\sim10$  アルキル基、 $C1\sim10$  アルコキシ基、およびハロゲン原子から選ばれる $1\sim3$  個の置換基で置換されたビフェニル基を表わし、 $R^{10}$ は
- 1) フェニル基、または
- 2) C1~10アルキル基を表わし、

mは1または2の整数を表わし、

 $z^1$ は

- C1~15アルキレン基、
- 2) C2~15アルケニレン基、または
- 3) C2~15アルキニレン基を表わし、

7.21±

- 1) C O 基、
- 2) O C O 基、
- 3) COO-基、
- 4) -CONR<sup>Z1</sup>-基、

- 5) -NR<sup>Z2</sup>CO-基、
- 6) O 基、
- 7) S 基、
- 8) SO<sub>2</sub>-基、
- 9) SO<sub>2</sub>-NR-基、
- 10)-NRSO<sub>2</sub>-基、
- 11) -NR<sup>Z3</sup>-基、
- 12)-NR<sup>Z4</sup>CONR<sup>Z5</sup>-基、
- 13) -NR<sup>Z6</sup>COO-基;
- 14) -OCONR<sup>Z7</sup>-基、または
- 15)-OCOO-基を表わし、

 $Z^3$ は

- 1) 水素原子、
- C1~15アルキル基、
- 3) C2~15アルケニル基、
- 4) C2~15アルキニル基、
- 5) 環乙、または
- 6)  $C1\sim10$  アルコキシ基、 $C1\sim10$  アルキルチオ基、 $C1\sim10$  アルキル  $-NR^{Z8}$  基、または環Zで置換された $C1\sim10$  アルキル基を表わし、

#### 環Zは

- 1) 一部または全部が飽和されていてもよいC3~15の単環、二環または三環 式炭素環アリール、または
- 2)酸素原子、窒素原子および硫黄原子から選択される1~4個のヘテロ原子を含む、一部または全部が飽和されていてもよい3~15員の単環、二環または三環式ヘテロ環アリールを表わし、

 $R^{Z1}$ 、 $R^{Z2}$ 、 $R^{Z3}$ 、 $R^{Z4}$ 、 $R^{Z5}$ 、 $R^{Z6}$ 、 $R^{Z6}$ 、 $R^{Z7}$ および $R^{Z8}$ はそれぞれ独立して、水素原子、または $C1\sim15$ アルキル基を表わし、

 $R^{Z1}$ と $Z^3$ 基は、それらが結合している窒素原子と一緒になって、 $5\sim7$  員の単環飽和ヘテロ環を表わしてもよく、上記ヘテロ環はさらに酸素原子、窒素原子お

よび硫黄原子から選択される1個のヘテロ原子を含んでもよく、 環Z、および $R^{Z1}$ と $Z^3$ が結合している窒素原子と一緒になって表わす単環飽和 ヘテロ環は

- 1) C1~15アルキル基、
- 2) C2~15アルケニル基、
- 3) C2~15アルキニル基、
- 4)  $C1\sim1$  0 アルコキシ基、 $C1\sim1$  0 アルキルチオ基、および $C1\sim1$  0 アルキル- N R  $^{Z9}$  基で置換された $C1\sim1$  0 アルキル基から選択される、 $1\sim3$  個の基で置換されてもよく、
- $R^{29}$ は水素原子、または $C1\sim10$ アルキル基を表わし、Eは $E^1$ または $E^2$ を表わし、 $E^1$ は

-【化3】

を表わし、

R<sup>11</sup>は

- 1) C1~10アルキル基、
- 2) C1~10アルキルチオ基、
- 3) 環2で置換されたC1~10アルキル基、または
- 4)  $-W^1-W^2$ -環2で置換された $C1\sim10$ アルキル基を表わし、

 $W^1$ は

- 1) O 基、
- 2) S-基、
- 3) SO-基、
- 4) -SO<sub>2</sub>-基、
- 5) -NR<sup>11-1</sup>-基、
- 6) カルボニル基、
- 7) -NR<sup>11-1</sup>SO<sub>2</sub>-基、

- 8) カルボニルアミノ基、または
- 9) アミノカルボニル基を表わし、

R<sup>11-1</sup>は

- 1) 水素原子、
- 2) C1~10アルキル基、または
- 3) C2~10アシル基を表わし、

 $W^2$ は、C1~4アルキル基、ハロゲン原子または水酸基で置換されていてもよいC1~8アルキル基を表わし、

E21

- 1)  $U^1 U^2 U^3$ 基、または
- 2) 環4基を表わし、

 $U^1$ 

- 1) C1~4アルキレン基、
- 2) C2~4アルケニレン基、
- 3) C2~4アルキニレン基、
- 4) -環3-基、
- 5) C1~4アルキレン基-環3-基、
- 6) C2~4アルケニレン基-環3-基、または
- 7) C2~4アルキニレン基-環3-基を表わし、

 $U^2$ រេ

- 1) 単結合、
- 2) CH<sub>2</sub>-基、
- 3) CHOH-基、
- 4) -0-基、
- 5) S-基、
- 6) SO-基、
- 7) SO<sub>2</sub>-基、
- 8) -NR<sup>12</sup>-基、
- 9) カルボニル基、

- 10) -NR<sup>12</sup>SO<sub>2</sub>-基、
- 11) カルボニルアミノ基、または
- 12)アミノカルボニル基を表わし、

R<sup>12</sup>は

- 1) 水素原子、
- 2) C1~10アルキル基、または
- 3) C2~10アシル基を表わし、 . U<sup>3</sup>は
  - 1) $C1\sim10$  アルキル基、ハロゲン原子、水酸基、アルコキシ基、アルキルチオ基および $NR^{13}R^{14}$ 基から選ばれる $1\sim3$  個の置換基で置換されていてもよい  $C1\sim8$  アルキル基、
  - 2)  $C1\sim 10$  アルキル基、ハロゲン原子、水酸基、アルコキシ基、アルキルチオ基および $-NR^{13}R^{14}$ 基から選ばれる $1\sim 3$  個の置換基で置換されていてもよい $C2\sim 8$  アルケニル基、
  - 3)  $C1\sim 10$  アルキル基、ハロゲン原子、水酸基、アルコキシ基、アルキルチオ基および $-NR^{13}R^{14}$ 基から選ばれる $1\sim 3$  個の置換基で置換されていてもよい $C2\sim 8$  アルキニル基、
  - 4) 環4基で置換されているC1~8アルキル基、または
  - 5) 環4基を表わし、
  - $R^{13}$ および $R^{14}$ はそれぞれ独立して、
  - 1) 水素原子、または
  - 2) C1~10アルキル基を表わし、

環1、環2、環3および環4は下記の1) $\sim$ 25)から選択される $1\sim$ 5個の置換基で置換されていてもよく:

- 1) C1~10アルキル基、
- 2) C2~10アルケニル基、
- C2~10アルキニル基、
- 4) C1~10アルコキシ基、
- 5) C1~10アルキルチオ基、

- 6) ハロゲン原子、
- 7) 水酸基、
- 8) ニトロ基、
- 9) -NR<sup>15</sup>R<sup>16</sup>基、
- 10)  $C1\sim10$  アルコキシ基で置換された $C1\sim10$  アルキル基、
- 11) 1~3個のハロゲン原子で置換されたC1~10アルキル基、
- 12)  $1 \sim 3$  個のハロゲン原子で置換された $C1 \sim 10$  アルコキシ基で置換され

たC1~10アルキル基、

- 13)  $-NR^{15}R^{16}$ 基で置換された $C1\sim 10$ アルキル基、
- 14) 環5基、
- 15) O 環5基、
- 16) 環5基で置換されたC1~10アルキル基、
- 17)環5基で置換されたC2~10アルケニル基、
- 18)環5基で置換されたC2~10アルキニル基、
- 19)環5基で置換されたC1~10アルコキシ基、
- 20)-〇-環5基で置換されたС1~10アルキル基、
- 21) COOR<sup>17</sup>基、
- 22)1~3個のハロゲン原子で置換されたС1~10アルコキシ基、
- 23) ホルミル基、
- 24) ヒドロキシ基で置換されたС1~10アルキル基、
- 25) C2~10アシル基、
- $R^{15}$ 、 $R^{16}$ および $R^{17}$ はそれぞれ独立して、
- 1) 水素原子、または
- 2) C1~10アルキル基を表わし、

環5は下記1)~9)から選択される1~3個の置換基で置換されていてもよく

- 1) C1~10アルキル基、
- 2) C2~10アルケニル基、
- 3) C2~10アルキニル基、

- 4) C1~10アルコキシ基、
- 5) C 1  $\sim$  1 0 アルコキシ基で置換されたC 1  $\sim$  1 0 アルキル基、
- 6) ハロゲン原子、
- 7) 水酸基、
- 8)  $1 \sim 3$  個のハロゲン原子で置換された $C1 \sim 10$  アルキル基、
- 9)  $1 \sim 3$  個のハロゲン原子で置換された $C \ 1 \sim 1 \ 0$  アルコキシ基で置換された $C \ 1 \sim 1 \ 0$  アルキル基、

環1、環2、環3、環4および環5は、各々独立して

- 1) 一部または全部が飽和されていてもよいC3~15の単環、二環または三環 式炭素環アリール、または
- 2) 1~4個の窒素原子、1~2個の酸素原子および/または1~2個の硫黄原子から選択されるヘテロ原子を含む、一部または全部が飽和されていてもよい3~15員の単環、二環または三環式ヘテロ環アリールを表わす。ただし、
- 1) Eが $E^2$ を表わし、 $E^2$ が $U^1$ ー $U^2$ ー $U^3$ 基を表わし、かつ $U^1$ がC 2 アルキレン基またはC 2 アルケニレン基を表わすとき、 $U^2$ はーC H O H ー基を表わさず
- 2)  $U^3$ が少なくともひとつの水酸基によって置換された $C1\sim8$  アルキル基を表わすとき、 $U^1-U^2$ はC2 アルキレン基またはC2 アルケニレン基を表わさず
- 3) Aが $A^1$ を表わし、かつDが $D^1$ を表わすとき、Eは $E^1$ を表わさず、
- 4) Tが酸素原子を表わし、Xが $-CH_2$ -基を表わし、Dが $D^1$ を表わし、 $D^1$ がCOOH基を表わし、Aが $A^1$ を表わし、 $A^1$ が直鎖のC2-8アルキレン基を表わし、Eが $E^2$ を表わし、 $E^2$ が $U^1-U^2-U^3$ を表わし、 $U^1$ が $C1\sim 4$  アルキレン基を表わし、かつ $U^3$ が $C1\sim 8$  アルキル基を表わすとき、 $U^2$ は単結合、 $-CH_2$ -基、 $-NR^{12}$ -基、またはカルボニル基を表わさず、
- 5) Tが酸素原子を表わし、Xが $-CH_2$ -基を表わし、Dが $D^1$ を表わし、 $D^1$ がCOOH基を表わし、Aが $A^2$ を表わし、 $G^1$ が $C1\sim 4$  アルキレン基を表わし、 $G^2$ が-O-基または $-NR^1$ -基を表わし、 $G^3$ が単結合または $C1\sim 4$  アル

キレン基を表わし、Eが $E^2$ を表わし、 $E^2$ が $U^1$ - $U^2$ - $U^3$ を表わし、 $U^1$ がC1  $\sim$ 4 アルキレン基を表わし、かつ $U^3$ がC1  $\sim$ 8 アルキル基を表わすとき、 $U^2$ は 単結合、-C  $H_2$ -基、-N  $R^{12}$ -基、またはカルボニル基を表わさず、

6) Tが酸素原子を表わし、Xが $-CH_2$ -基を表わし、Dが $D^1$ を表わし、Eが  $E^2$ を表わし、 $E^2$ が $U^1-U^2-U^3$ を表わし、 $U^1$ がC2アルキレン基またはC2アルケニレン基を表わし、かつ $U^2$ が-CO-基を表わすとき、Aは $A^1$ を表わさない。)

で示される8-アザプロスタグランジン、それらの非毒性塩、またはそれらのシ クロデキストリン包接化合物。

## 【発明の詳細な説明】

[0001]

【発明の属する技術分野】

本発明は、8-アザプロスタグランジン誘導体に関する。 さらに詳しく言えば、

(1) 一般式(I)

【化4】

(式中、すべての記号は後記と同じ意味を表わす。) で示される8-アザプロスタグランジン誘導体、それらの非毒性塩、またはそれ らのシクロデキストリン包接化合物、

- (2) それらの製造方法、および
- (3) それらを有効成分として含有する薬剤に関する。

[0002]

【従来の技術】

プロスタグランジン $\mathbf{E}_2$  (PGE $_2$ ) は、アラキドン酸カスケードの中の代謝産物として知られており、細胞保護作用、子宮収縮、発痛作用、消化管の蠕動運動促進、覚醒作用、胃酸分泌抑制作用、血圧降下作用、利尿作用等を有しているこ

とが知られている。

[0003]

近年の研究の中で、プロスタグランジンE (PGE) 受容体には、それぞれ役割の異なったサブタイプが存在することが分かってきた。現時点で知られているサブタイプは、大別して4つあり、それぞれ、 $EP_1$ 、 $EP_2$ 、 $EP_3$ 、 $EP_4$ と呼ばれている (Negishi M. et al, J. Lipid Mediators Cell Signaling 12, 379-391 (1995))。

[0004]

EP2受容体は、TNF-α産生抑制、IL-10産生増強に関与していると・ 考えられているため、EP<sub>2</sub>受容体に結合する化合物は、免疫疾患(筋萎縮性側 索硬化症(ALS)、多発性硬化症、シェーグレン症候群、慢性関節リウマチ、 全身性エリテマトーデス等の自己免疫疾患、臓器移植後の拒絶反応など)、喘息 、神経細胞死、月経困難症、早産、流産、禿頭症、緑内障などの網膜神経障害、 勃起不全、関節炎、肺傷害、肺線維症、肺気腫、気管支炎、慢性閉塞性呼吸器疾 患、肝傷害、急性肝炎、ショック、腎炎(急性腎炎、慢性腎炎)、腎不全、循環 器系疾患(高血圧、心筋虚血、慢性動脈閉塞症、振動病等)、全身性炎症反応症 候群、敗血症、血球貪食症候群、マクロファージ活性化症候群、スチル(Sti 11)病、川崎病、熱傷、全身性肉芽腫、潰瘍性大腸炎、クローン病、透析時の 高サイトカイン血症、多臓器不全、骨疾患(骨折、再骨折、難治性骨折、骨癒合 不全、偽関節、骨軟化症、骨ページェット症、硬直性脊椎炎、癌骨転移、変形性 関節症およびそれらの類似疾患における骨・軟骨の破壊等)等の予防および/ま たは治療に有用であると考えられている。さらに、骨の手術後の骨形成(例えば 、骨折後の骨形成、骨移植後の骨形成、人工関節術後の骨形成、脊椎固定術後の 骨形成、多発性骨髄腫、肺癌、乳癌等の外科手術後の骨形成、その他骨再建術後 の骨形成等)の促進・治癒促進剤、骨移植代替療法、また、歯周疾患等における 歯周組織の再生促進剤等として有用であると考えられる。

[0005]

8-アザプロスタグランジン誘導体としては、例えば、特開昭53-21159号明細書に次式(A)

[0006]

【化5】

$$Q^{A}$$

$$Q^{A$$

(式中、 $Q^A$ は、 $-COOR^{3A}$ 、テトラゾール-5ーイルおよび $-CONHR^{4A}$ からなる群より選択され;

 $A^A$ は単結合またはシス二重結合であり;

B<sup>A</sup>は単結合またはトランス二重結合であり;

UAは

[0007]

【化6】



であり、

R<sup>2A</sup>は、αーチエニル、フェニル、フェノキシ、モノ置換フェニルおよびモノ置換フェノキシからなる群より選択され、該置換基は、クロル、フルオル、フェニル、メトキシ、トリフルオロメチルおよび炭素数1ないし3のアルキルからなる群より選択され;

 $R^{3A}$ は水素、炭素数 1 ないし 5 のアルキル、フェニルおよび p ービフェニルからなる群より選択され;

 $R^{4A}$ は $-COR^{5A}$ および $-SO_2R^{5A}$ からなる群より選択され;

R<sup>5A</sup>はフェニルおよびC1ないし5のアルキルからなる群より選択される。)で示される化合物およびそのC5エピマーならびにカルボキシレート基またはテトラソル-5-イル基を有するこれらの化合物のアルカリ金属、アルカリ土類金

属およびアンモニウム塩が記載されている。

[0008]

さらに、同明細書には、次式 (A')

【化7】

$$\begin{array}{c|c}
O & A^A \\
N & W^A \\
\hline
H & B^A & R^{2A}
\end{array}$$
(A')

(式中、 $W^A$ は、 $-COOR^{3A}$ 、テトラゾールー5ーイル、Nー(アシルオキシメチル)テトラゾールー5ーイル(アシルオキシ基は炭素数 2~5である。)、Nー(フタリジルー5ーイル)ーテトラゾールー5ーイルおよびNー(テトラヒドロピランー5ーイル)ーテトラゾールー5ーイルからなる群から選択され、その他の記号は前記と同じ意味を表わす。)

で示される化合物およびそのC5エピマーならびにカルボキシレート基またはテトラゾルー5ーイル基を有するこれらの化合物のアルカリ金属、アルカリ土類金属およびアンモニウム塩が記載されている。

[0009]

また、特開昭52-5764号明細書には、次式(B)

.【化8】

O 
$$(CH_2)_{nB}$$
  $COOR^{2B}$   $(B)$  OH

(式中、 $R^{1B}$ は直鎖状または分岐鎖状の飽和あるいは不飽和の $1\sim1$ 0個の炭素原子を有する脂肪炭化水素残基あるいは $3\sim7$ 個の炭素原子を有する環状脂肪族炭化水素であって、これらは次のもの、すなわち

#### [0010]

- a) 直鎖状または分岐鎖状の1~5の炭素原子を有するアルコキシー、アルキル チオー、アルケニルオキシー、あるいはアルケニルチオ残基、
- b) フェノキシ残基(これはそれ自身 1~3個の炭素原子を有する、場合によってはハロゲン置換されたアルキル基、ハロゲン原子、場合によってはハロゲン置換されたフェノキシ残基あるいは 1~4個の炭素原子を有するアルコキシ残基に

よってモノーあるいはジー置換されていてよい。)、

- c) フリルオキシー、チエニルオキシーあるいはベンジルオキシ残基(これらはそれ自身  $1 \sim 3$  個の炭素原子を有する、場合によってはハロゲン置換アルキル基、ハロゲン原子あるいは  $1 \sim 4$  個の炭素原子を有するアルコキシ基によって核がモノーあるいはジー置換されていてよい。)、
- d) トリフルオルメチルーあるいはペンタフルオルエチル基、
- e) 3~7個の炭素原子を有するシクロアルキル残基、
- f) フェニルー、チエニルーあるいはフリル残基(これらはそれ自身  $1 \sim 3$  個の炭素原子を有する、場合によってはハロゲン置換されたアルキル基、ハロゲン原子あるいは  $1 \sim 4$  個の炭素原子を有するアルコキシ基によってモノーあるいはジー置換されていてよい。)

によって置換されていてもよく、

R<sup>2B</sup>は直鎖状または分岐鎖状の飽和あるいは不飽和の1~6個の炭素原子を有する脂肪族あるいは環状脂肪族炭化水素残基あるいは7もしくは8個の炭素原子を有する芳香脂肪族炭化水素残基であり、そして

n B は 2、3 あるいは 4 なる数である。)

で示されるピロリドンならびにこれらの化合物の遊離の酸およびそれらの生理学 的に受容され得る金属塩あるいはアミン塩が記載されている。

[0011]

さらに、特開昭52-73865号および特開昭52-133975号明細書にも、同様のピロリドン誘導体が記載されている。

[0012]

また、EP572365号明細書には、次式(C)

【化9】

$$R^{C} = \begin{array}{c} X^{1C} \\ X^{3C} \\ X^{3C} \\ X^{2C} \\ X^{4C} \\ R^{2C} \\ \end{array} \begin{array}{c} R^{4C} \\ R^{5C} \\ R^{5C} \\ \end{array} \begin{array}{c} R^{6C} \\ (CH_{2})_{mC} \\ \end{array} \begin{array}{c} CH_{3} \\ (CH_{2})_{mC} \\ \end{array}$$

(式中、 $\mathbf{X}^{1\mathrm{C}}$ および $\mathbf{X}^{2\mathrm{C}}$ は $\mathbf{C}_{1}\mathbf{H}_{2}$ 基または $\mathbf{C}_{1}$ O基であり、 $\mathbf{X}^{3\mathrm{C}}$ は窒素原子または

CH基、R<sup>C</sup>は水素原子または水酸基であり、R<sup>1C</sup>およびR<sup>2C</sup>はCH<sub>2</sub>基またはCO基であり、R<sup>3C</sup>はCH<sub>2</sub>基、NH基または酸素原子であり、R<sup>4C</sup>はNH基、CH<sub>2</sub>基またはCO基であり、R<sup>5C</sup>はCH<sub>2</sub>基またはNH基であり、R<sup>6C</sup>はCH<sub>2</sub>基またはCO基であり、mCはO~4、nCはO~5である。)で示される化合物およびその薬学的に許容される塩が記載されている。

[0013]

また、GB1523178号明細書には、次式(D)

【化10】

O COOH
$$R^{3D} R^{1D}$$

$$R^{2D} OH$$
(D)

(式中、 $R^{1D}$ が水素原子またはエチル基を表わすとき、 $R^{2D}$ は水素原子またはメチル基、および $R^{3D}$ は水素原子を表わし、

または $R^{1D}$ がメチル基を表わすとき、 $R^{2D}$ は水素原子、および $R^{3D}$ はメチル基を表わす。)

で示される化合物、またはその薬学的に許容される塩が開示されている。特開昭 51-127068号、特開昭51-128961号および特開昭52-100467号明細書にも、同様の 8-アザプロスタン酸誘導体が開示されている。

[0014]

さらに、特開昭51-1461号明細書には、次式(E)、(E')および(E") 【化11】

【化12】

[0016]

【化13】

(ただし、 $R^E$ はエステル残基を表わし、点線は二重結合が存在するかまたは存在しないことを表わし、波線は $\alpha$  -配位または $\beta$  -配位を表わす。) で示される化合物が開示されている。

[0017]

また、特開昭52-142060号明細書には、次式 (F)

【化14】

(式中、 $R^{1F}$ は水素原子、メチル基またはエチル基を、 $R^{2F}$ 、 $R^{3F}$ および $R^{4F}$ は同一または異なって夫々水素原子またはメチル基を示し、 $R^{F}$ は次式

[0018]

【化15】

および

[0019]

【化16】

(式中、 $R^{5F}$ は水素原子、メチル基またはエチル基を、 $R^{6F}$ はメチル基、エチル基またはアセチル基を示し、 $R^{7F}$ および $R^{8F}$ は相異なって夫々水素原子または炭素数 $1\sim3$ の直鎖アルキル基を示す。)

からなる群から選ばれた基を示す。ただし $R^{7F}$ および $R^{8F}$ が共に水素原子を示す場合、 $R^{5F}$ はメチル基またはエチル基を示し、また、 $R^{5F}$ がメチル基を、 $R^{2F}$ 、 $R^{3F}$ 、 $R^{4F}$ 、 $R^{7F}$ および $R^{8F}$ がすべて水素原子を示す場合は、 $R^{1F}$ はエチル基を示すものとする。)

で示されるプロスタグランジン誘導体が記載されている。

さらに、特開昭51-138671号明細書にも同様のプロスタグランジン誘導体が記載されている。

[0020]

また、特開昭51-143663号明細書には、次式(G)および(G')

【化17】

[0021]

【化18】

(各式中、 $R^G$ は水素、1ないし4の炭素原子の低級アルキル基、あるいは $R^G$ が水素である化合物の場合の医薬として許容されうる非毒性塩であり;Zはトラン

ス二重結合あるいは飽和結合であり;波線はlphaあるいはeta配位、あるいはその混合物を表わす)

で示される群から選ばれるラセミ体化合物が記載されている。

[0022]

#### 【本発明の目的】

本発明者らは、 $\mathrm{EP}_2$ 受容体に特異的に結合し、また強いアゴニスト活性を示す化合物を見出すべく鋭意研究した結果、一般式( $\mathrm{I}$ )で示される $\mathrm{8}$ -アザープロスタグランジン誘導体が、この目的にかなうことを見出し、本発明を完成した。さらに、本発明者らは、 $\mathrm{EP}_2$ 受容体に結合し、かつ $\mathrm{EP}_4$ 受容体にも結合する化合物をも見出した。 $\mathrm{EP}_2$ および $\mathrm{EP}_4$ 両受容体に結合する化合物では両受容体に関連する疾患に対して相加または相乗効果が期待できる。

[0023]

【発明の開示】

本発明は、

(1) 一般式(I)

【化19】

(式中、 Tは

- 1)酸素原子、または
- 2) 硫黄原子を表わし、

Xは

- 1) CH<sub>2</sub>-基、
- 2) 〇 基、または
- 3) S-基を表わし、

Aは $A^1$ または $A^2$ を表わし、

 $A^1$ は

1) 1~2個のC1~4アルキル基で置換されていてもよい直鎖のC2~8アル

#### キレン基、

- 2) 1~2個のC1~4アルキル基で置換されていてもよい直鎖のC2~8アルケニレン基、または
- 3) 1~2個のC1~4アルキル基で置換されていてもよい直鎖のC2~8アルキニレン基を表わし、

 $A^2$ は $-G^1-G^2-G^3$ -基を表わし、

## $G^1$ は

- 1)  $1 \sim 2$ 個の $C 1 \sim 4$  アルキル基で置換されていてもよい直鎖の $C 1 \sim 4$  アルキレン基、
- 2) 1~2個のC1~4アルキル基で置換されていてもよい直鎖のC2~4アルケニレン基、または
  - 3)  $1 \sim 2$ 個の $C \ 1 \sim 4$  アルキル基で置換されていてもよい直鎖の $C \ 2 \sim 4$  アルキニレン基を表わし、

## G<sup>2</sup>は

- 1) Y 基、
- 2) -環1-基、
- 3) Y 環1 基、
- 4) -環1-Y-基、または
- 5) -Y-C1~4アルキレン-環1-基を表わし、

#### Υは

- 1) S 基、
- 2) SO-基、
- 3) SO<sub>2</sub>-基、
- 4) -〇-基、または
- 5)  $-NR^1$ -基を表わし、

## R<sup>1</sup>は

- 1) 水素原子、
- 2) C1~10アルキル基、または
- 3) C2~10アシル基を表わし、

G<sup>3</sup>は

- 1) 単結合、
- 2)  $1 \sim 2$  個の $C 1 \sim 4$  アルキル基で置換されていてもよい直鎖の $C 1 \sim 4$  アルキレン基、
- 3) 1~2個のC1~4アルキル基で置換されていてもよい直鎖のC2~4アルケニレン基、または
- 4)  $1 \sim 2$  個の $C \ 1 \sim 4$  アルキル基で置換されていてもよい直鎖の $C \ 2 \sim 4$  アルキニレン基を表わし、

Dは $D^1$ または $D^2$ を表わし、

 $D^1$ は

- 1) -COOH基、
- 2) COOR<sup>2</sup>基、
- 3) テトラゾールー5-イル基、または
- 4)  $-CONR^3SO_2R^4$ 基を表わし、

R<sup>2</sup>は

- 1) C1~10アルキル基、
- 2) フェニル基、
- 3) フェニル基で置換されたC1~10アルキル基、または
- 4)ビフェニル基を表わし、

R<sup>3</sup>は

- 1) 水素原子、または
- 2) C1~10アルキル基を表わし、

R<sup>4</sup>は

- 1) C1~10アルキル基、または
- 2) フェニル基を表わし、

D<sup>2</sup>は

- 1) CH<sub>2</sub>OH基、
- 2)  $-CH_2OR^5$ 基、
- 3)水酸基、

- 4) -OR<sup>5</sup>基、
- 5) ホルミル基、
- 6)  $-CONR^6R^7$ 基、
- 7) -CONR<sup>6</sup>SO<sub>2</sub>R<sup>8</sup>基、
- 8) CO- (NH-アミノ酸残基-CO)<sub>m</sub>-OH基、
- 9) -O- (CO-アミノ酸残基-NH) m-H基、
- 10) COOR<sup>9</sup>基、
- 11) -OCO-R<sup>10</sup>基、
- 12)  $-COO-Z^1-Z^2-Z^3$ 基、
- 13)

【化20】



を表わし、

 $R^5$ は $C1\sim10$ アルキル基を表わし、

 $R^6$ および $R^7$ はそれぞれ独立して、

- 1) 水素原子、または
- 2) C1~10アルキル基を表わし、

 $R^8$ はフェニル基で置換された $C1\sim10$  アルキル基を表わし、

R<sup>9</sup>は

- 1) C1~10アルキル基、C1~10アルコキシ基、およびハロゲン原子から 選ばれる1~3個の置換基で置換されていてもよいビフェニル基で置換されたC 1~10アルキル基、または
- 2)  $C1 \sim 10$  アルキル基、 $C1 \sim 10$  アルコキシ基、およびハロゲン原子から 選ばれる  $1 \sim 3$  個の置換基で置換されたビフェニル基を表わし、

R<sup>10</sup>は

- 1) フェニル基、または
- 2) C1~10アルキル基を表わし、

mは1または2の整数を表わし、

# $z^1$

- C1~15アルキレン基、
- 2) C2~15アルケニレン基、または
- 3) C2~15アルキニレン基を表わし、

# Z<sup>2</sup>は

- 1) CO-基、
- 2) O C O 基、
- 3) COO-基、
- 4) -CONR<sup>Z1</sup>-基、
- 5) -NR<sup>Z2</sup>CO-基、
- 6) O 基、
- 7) S-基、
- 8) -SO<sub>2</sub>-基、
- 9) SO<sub>2</sub>-NR-基、
- 10)-NRSO<sub>2</sub>-基、
- 11) -NR<sup>Z3</sup>-基、
- 12) -NR<sup>Z4</sup>CONR<sup>Z5</sup>-基、
- 13) -NR<sup>Z6</sup>COO-基、
- 14) -OCONR<sup>Z7</sup>-基、または
- 15) -OCOO-基を表わし、

## $Z^3$ は

- 1) 水素原子、
- 2) C1~15アルキル基、
- 3) C2~15アルケニル基、
- 4) C2~15アルキニル基、
- 5) 環乙、または
- 6) C1~10アルコキシ基、C1~10アルキルチオ基、C1~10アルキル
- $-NR^{Z8}$ -基、または環Zで置換された $C1\sim10$ アルキル基を表わし、

#### 環Zは

- 1) 一部または全部が飽和されていてもよいC3~15の単環、二環または三環 式炭素環アリール、または
- 2) 酸素原子、窒素原子および硫黄原子から選択される1~4個のヘテロ原子を含む、一部または全部が飽和されていてもよい3~15員の単環、二環または三環式ヘテロ環アリールを表わし、

 $R^{Z1}$ 、 $R^{Z2}$ 、 $R^{Z3}$ 、 $R^{Z4}$ 、 $R^{Z5}$ 、 $R^{Z6}$ 、 $R^{Z6}$ 、 $R^{Z7}$ および $R^{Z8}$ はそれぞれ独立して、水 素原子、または $C1\sim15$ アルキル基を表わし、

 $R^{Z1}$ と $Z^3$ 基はそれらが結合している窒素原子と一緒になって、 $5\sim7$ 員の単環飽和ヘテロ環を表わしてもよく、上記ヘテロ環はさらに酸素原子、窒素原子および硫黄原子から選択される1個のヘテロ原子を含んでもよく、

環Z、および $R^{Z1}$ と $Z^3$ が結合している窒素原子と一緒になって表わす単環飽和 ヘテロ環は

- 1) C1~15アルキル基、
- 2) C2~15アルケニル基、
- 3) C2~15アルキニル基、
- 4)  $C1\sim10$  アルコキシ基、 $C1\sim10$  アルキルチオ基、および $C1\sim10$  アルキル-N  $R^{Z9}$  基で置換された $C1\sim10$  アルキル基から選択される、 $1\sim3$  個の基で置換されてもよく、

 $R^{Z9}$ は水素原子、または $C1\sim1$ 0アルキル基を表わし、Eは $E^1$ または $E^2$ を表わし、

E<sup>1</sup>は

【化21】



を表わし、

R<sup>11</sup>は

- 1) C1~10アルキル基、
- 2) C1~10アルキルチオ基、

- 3) 環2で置換されたC1~10アルキル基、または
- 4)  $-W^1-W^2$ -環2で置換された $C1\sim 10$ アルキル基を表わし、

## $w^1$

- 1) O 基、
- 2) S-基、
- 3) S O 基、
- 4) -SO<sub>2</sub>-基、
- 5) -NR<sup>11-1</sup>-基、
- 6) カルボニル基、
- 7) -NR<sup>Î1-1</sup>SO<sub>2</sub>-基、
- 8) カルボニルアミノ基、または
- 9) アミノカルボニル基を表わし、 $R^{11-1}$ は
- 1) 水素原子、
- 2) C1~10アルキル基、または
- 3) C2~10アシル基を表わし、

 $W^2$ は、C 1  $\sim$  4 7  $\nu$  1  $\nu$  2  $\nu$  3  $\nu$  4  $\nu$  4

## E21

- 1)  $U^1 U^2 U^3$ 基、または
- 2) 環4基を表わし、

## $U^1$ U

- 1) C1~4アルキレン基、
- 2) C2~4アルケニレン基、
- 3) C2~4アルキニレン基、
- 4) -環3-基、
- 5) C1~4アルキレン基-環3-基、
- 6) C2~4アルケニレン基-環3-基、または
- 7) C2~4アルキニレン基-環3-基を表わし、

 $U^2$ は

- 1) 単結合、
- 2) CH<sub>2</sub>-基、
- 3) CHOH-基、
- 4) O 基、
- 5) S-基、
- 6) SO-基、
- 7) SO2-基、
- 8) -NR<sup>12</sup>-基、
- 9) カルボニル基、
- 10)-NR<sup>12</sup>SO<sub>2</sub>-基、
- 11) カルボニルアミノ基、または
- 12) アミノカルボニル基を表わし、

R 12 1

- 1) 水素原子、
- 2) C1~10アルキル基、または
- 3) C2~10アシル基を表わし、

 $U^3$ lt

- 2)  $C1\sim10$  アルキル基、ハロゲン原子、水酸基、アルコキシ基、アルキルチオ基または $-NR^{13}R^{14}$ 基から選ばれる $1\sim3$  個の置換基で置換されていてもよい $C2\sim8$  アルケニル基、
- 3)  $C1\sim 10$  アルキル基、ハロゲン原子、水酸基、アルコキシ基、アルキルチオ基または $-NR^{13}R^{14}$ 基から選ばれる $1\sim 3$  個の置換基で置換されていてもよい $C2\sim 8$  アルキニル基、
- 4) 環4基で置換されているC1~8アルキル基、または
- 5) 環4基を表わし、

 $R^{13}$ および $R^{14}$ はそれぞれ独立して、

- 1) 水素原子、または
- 2) C1~10アルキル基を表わし、

環1、環2、環3または環4は下記の1) $\sim$ 25)から選択される $1\sim$ 5個の置換 基で置換されていてもよく:

- C1~10アルキル基、
- C2~10アルケニル基、
- 3) C2~10アルキニル基、
- 4) C1~10アルコキシ基、
- 5) C1~10アルキルチオ基、
- 6) ハロゲン原子、
- 7) 水酸基、
- 8) ニトロ基、
- 9) -NR<sup>15</sup>R<sup>16</sup>基、
- 10)  $C1\sim10$  アルコキシ基で置換された $C1\sim10$  アルキル基、
- 11)  $1 \sim 3$ 個のハロゲン原子で置換された $C1 \sim 10$ アルキル基、
- 12)  $1 \sim 3$  個のハロゲン原子で置換された $C1 \sim 10$  アルコキシ基で置換された $C1 \sim 10$  アルキル基、
- $13) NR^{15}R^{16}$ 基で置換された $C1 \sim 10$ アルキル基、
- 14)環5基、
- 15) -〇-環5基、
- 16) 環5基で置換されたC1~10アルキル基、
- 17) 環5基で置換されたC2~10アルケニル基、
- 18)環5基で置換されたC2~10アルキニル基、
- 19)環5基で置換されたC1~10アルコキシ基、
- 20)-〇-環5基で置換されたС1~10アルキル基、
- 21) COOR <sup>17</sup>基、
- 22)1~3個のハロゲン原子で置換されたC1~10アルコキシ基、
- 23) ホルミル基、

- 24)ヒドロキシ基で置換されたC1~10アルキル基、
- 25) C2~10アシル基、
- $R^{15}$ 、 $R^{16}$ および $R^{17}$ はそれぞれ独立して、
- 1) 水素原子、または
- 2) C1~10アルキル基を表わし、

環 5 は下記 1 )  $\sim$  9 )から選択される 1  $\sim$  3 個の置換基で置換されていてもよく

:

- 1) C1~10アルキル基、
- 2) C2~10アルケニル基、
- 3) C2~10アルキニル基、
- 4) C1~10アルコキシ基、
- 5) C1~10アルコキシ基で置換されたC1~10アルキル基、
- 6) ハロゲン原子、
- 7) 水酸基、
- 8) 1~3個のハロゲン原子で置換されたC1~10アルキル基、
- 9)  $1 \sim 3$  個のハロゲン原子で置換された $C1 \sim 1$  0 アルコキシ基で置換された $C1 \sim 1$  0 アルキル基、
- 環1、環2、環3、環4および環5は、各々独立して
- 1) 一部または全部が飽和されていてもよいC3~15の単環、二環または三環 式炭素環アリール、または
- 2) 1~4個の窒素原子、1~2個の酸素原子および/または1~2個の硫黄原子から選択されるヘテロ原子を含む、一部または全部が飽和されていてもよい3~15員の単環、二環または三環式ヘテロ環アリールを表わす。 ただし、
- 1)Eが $E^2$ を表わし、 $E^2$ が $U^1$ - $U^2$ - $U^3$ 基を表わし、かつ $U^1$ がC2アルキレン基またはC2アルケニレン基を表わすとき、 $U^2$ は-CHOH-基を表わさず
- 2)  $U^3$ が少なくともひとつの水酸基によって置換された $C1 \sim 8$  アルキル基を表わすとき、 $U^1 U^2$ はC2 アルキレン基またはC2 アルケニレン基を表わさず

- 3) AがA<sup>1</sup>を表わし、かつDがD<sup>1</sup>を表わすとき、EはE<sup>1</sup>を表わさず、
- 4) Tが酸素原子を表わし、Xが $-CH_2$ -基を表わし、Dが $D^1$ を表わし、 $D^1$ がCOOH基を表わし、Aが $A^1$ を表わし、 $A^1$ が直鎖のC2-8アルキレン基を表わし、Eが $E^2$ を表わし、 $E^2$ が $U^1-U^2-U^3$ を表わし、 $U^1$ が $C1\sim 4$  アルキレン基を表わし、かつ $U^3$ が $C1\sim 8$  アルキル基を表わすとき、 $U^2$ は単結合、 $-CH_2$ -基、 $-NR^{12}$ -基、またはカルボニル基を表わさず、
- 5) Tが酸素原子を表わし、Xが $-CH_2$ -基を表わし、Dが $D^1$ を表わし、 $D^1$ がCOOH基を表わし、Aが $A^2$ を表わし、 $G^1$ が $C1\sim 4$  Pルキレン基を表わし、 $G^2$ が-O-基または-N  $R^1$ -基を表わし、 $G^3$ が単結合または $C1\sim 4$  Pルキレン基を表わし、Eが $E^2$ を表わし、 $E^2$ が $U^1$ - $U^2$ - $U^3$ を表わし、 $U^1$ が $C1\sim 4$  Pルキレン基を表わし、かつ $U^3$ が $C1\sim 8$  Pルキル基を表わすとき、 $U^2$ は単結合、 $-CH_2$ -基、-N  $R^{12}$ -基、またはカルボニル基を表わさず、
- 6) Tが酸素原子を表わし、Xが $-CH_2$ -基を表わし、Dが $D^1$ を表わし、Eが  $E^2$ を表わし、 $E^2$ が $U^1-U^2-U^3$ を表わし、 $U^1$ がC2 アルケニレン基を表わし、かつ $U^2$ が-CO-基を表わすとき、Aが $A^1$ を表わさない。)で示される8-アザプロスタグランジン、それらの非毒性塩、またはそれらのシクロデキストリン包接化合物、
  - (2) それらの製造方法、および
  - (3) それらを有効成分として含有する薬剤に関する。

[0024]

本明細書中、C1~4アルキル基とは、メチル、エチル、プロピル、ブチル基 およびそれらの異性体である。

本明細書中、C1~8アルキル基とは、メチル、エチル、プロピル、ブチル、ペンチル、ヘキシル、ヘプチル、オクチル基およびそれらの異性体である。

本明細書中、C1~10アルキル基とは、メチル、エチル、プロピル、ブチル、ペンチル、ヘキシル、ヘプチル、オクチル、ノニル、デシル基およびそれらの 異性体である。

[0025].

本明細書中、C2~8アルケニル基とは、エテニル、プロペニル、ブテニル、ペンテニル、ヘキセニル、ヘプテニル、オクテニル基およびそれらの異性体である。

本明細書中、C2~10アルケニル基とは、エテニル、プロペニル、ブテニル、ペンテニル、ヘキセニル、ヘプテニル、オクテニル、ノネニル、デセニル基およびそれらの異性体である。

#### [0026]

本明細書中、C2~8アルキニル基とは、エチニル、プロピニル、ブチニル、ペンチニル、ヘキシニル、ヘプチニル、オクチニル基およびそれらの異性体である。

本明細書中、C2~10アルキニル基とは、エチニル、プロピニル、ブチニル、ペンチニル、ヘキシニル、ヘプチニル、オクチニル、ノニニル、デシニル基およびそれらの異性体である。

本明細書中、直鎖のC1~4Pルキレン基とは、メチレン、エチレン、トリメチレンおよびテトラメチレン基である。

#### [0027]

本明細書中、直鎖のC2~8アルキレン基とは、エチレン、トリメチレン、テトラメチレン、ペンタメチレン、ヘキサメチレン、ヘプタメチレンおよびオクタメチレン基である。

本明細書中、C1~4アルキレン基とは、メチレン、エチレン、トリメチレン、テトラメチレン基およびそれらの異性体である。

本明細書中、直鎖のC2~4アルケニレン基とは、エテニレン、プロペニレン およびブテニレン基である。

## [0028]

本明細書中、直鎖のC2~8アルケニレン基とは、基中に1個または2個の二重結合を有する、エテニレン、プロペニレン、ブテニレン、ブタジエニレン、ペンテニレン、ペンタジエニレン、ヘキセニレン、ヘキサジエニレン、ヘプテニレン、ヘプタジエニレン、オクテニレンおよびオクタジエニレン基である。

本明細書中、C2~4アルケニレン基とは、エテニレン、プロペニレン、ブテ

ニレン基およびそれらの異性体である。

本明細書中、直鎖のC2~4アルキニレン基とは、エチニレン、プロピニレンおよびブチニレン基である。

#### [0029]

本明細書中、直鎖のC2~8アルキニレン基とは、基中に1個または2個の三 重結合を有する、エチニレン、プロピニレン、ブチニレン、ブタジイニレン、ペ ンチニレン、ペンタジイニレン、ヘキシニレン、ヘキサジイニレン、ヘプチニレ ン、ヘプタジイニレン、オクチニレンおよびオクタジイニレン基である。

本明細書中、C2~4アルキニレン基とは、エチニレン、プロピニレン、ブチニレン基およびそれらの異性体である。

#### [0030]

本明細書中、C1~10アルコキシ基とは、メトキシ、エトキシ、プロポキシ、ブトキシ、ペンチルオキシ、ヘキシルオキシ、ヘプチルオキシ、オクチルオキシ、ノニルオキシ、デシルオキシ基およびそれらの異性体である。

本明細書中、C1~10アルキルチオ基とは、メチルチオ、エチルチオ、プロピルチオ、ブチルチオ、ペンチルチオ、ヘキシルチオ、ヘプチルチオ、オクチルチオ、ノニルチオ、デシルチオ基およびそれらの異性体である。

本明細書中、C3~8シクロアルキル基とは、シクロプロピル、シクロブチル、シクロペンチル、シクロヘキシル、シクロヘプチル、シクロオクチル基である

### [0031]

本明細書中、C2~10アシル基とは、エタノイル、プロパノイル、ブタノイル、ペンタノイル、ヘキサノイル、ヘプタノイル、オクタノイル、ノナノイル、デカノイル基およびそれらの異性体である。

本明細書中、ピフェニル基とは、2-フェニルフェニル基、3-フェニルフェニル基、または4-フェニルフェニル基である。

一般式(I)中、ハロゲン原子とはフッ素、塩素、臭素、ヨウ素原子を意味する。

[0032]

本明細書中、-CO-(NH-P) 放残基 $-CO)_m-OH$ 基、または-O-(CO-P) が残基 $-NH)_m-H$ 基中のアミノ酸とは、天然のアミノ酸または異常アミノ酸を意味し、例えば、グリシン、アラニン、バリン、ロイシン、イソロイシン、セリン、トレオニン、システイン、メチオニン、プロリン、アスパラギン、グルタミン、フェニルアラニン、チロシン、トリプトファン、アスパラギン酸、グルタミン酸、リジン、アルギニン、ヒスチジン、 $\beta-P$ ラニン、シスタチオニン、シスチン、ホモセリン、イソロイシン、ランチオニン、ノルロイシン、ノルバリン、オルニチン、サルコシン、チロニン等が含まれる。

また、 $-CO-(NH-アミノ酸残基-CO)_m-OH基、または<math>-O-(CO-r)$ の-Pの代表には、アミノ基が保護基によって保護されたものも含まれる。

[0033]

本明細書中、環1、環2、または環3によって表わされる一部または全部が飽 和されていてもよいC3~15の単環、二環または三環式炭素環アリールとして は、例えば、シクロプロパン、シクロブタン、シクロペンタン、シクロヘキサン 、シクロヘプタン、シクロオクタン、シクロノナン、シクロデカン、シクロウン デカン、シクロドデカン、シクロトリドデカン、シクロテトラデカン、シクロペ ンタデカン、シクロペンテン、シクロヘキセン、シクロヘプテン、シクロオクテ ン、シクロペンタジエン、シクロヘキサジエン、シクロヘプタジエン、シクロオ クタジエン、ベンゼン、ペンタレン、パーヒドロペンタレン、アズレン、パーヒ ドロアズレン、インデン、パーヒドロインデン、インダン、ナフタレン、ジヒド ロナフタレン、テトラヒドロナフタレン、パーヒドロナフタレン、ヘプタレン、 パーヒドロヘプタレン、ピフェニレン、 a s ーインダセン、 s ーインダセン、ア セナフチレン、アセナフテン、フルオレン、フェナレン、フェナントレン、アン トラセン、スピロ[4.4] ノナン、スピロ[4.5] デカン、スピロ[5.5] ウンデカン、ビシクロ[2.2.1] ヘプタン、ビシクロ[2.2.1] ヘプタ -2-エン、ビシクロ[3.1.1] ヘプタン、ビシクロ[3.1.1] ヘプタ - 2 - エン、ビシクロ [2. 2. 2] オクタン、ビシクロ [2. 2. 2] オクタ -2-エン、アダマンタン、ノルアダマンタン等が挙げられる。

[0034]

本明細書中、環1、環2、環3、または環4によって表わされる1~4個の窒 素原子、 $1\sim2$ 個の酸素原子および/または $1\sim2$ 個の硫黄原子から選択される ヘテロ原子を含む、一部または全部が飽和されていてもよい3~15員の単環、 二環または三環式ヘテロ環アリールのうち、 $1 \sim 4$  個の窒素原子、 $1 \sim 2$  個の酸 素原子および/または1~2個の硫黄原子から選択されるヘテロ原子を含む、3 ~15員の単環、二環または三環式ヘテロ環アリールとしては、ピロール、イミ **ダゾール、トリアゾール、テトラゾール、ピラゾール、ピリジン、ピラジン、ピ** リミジン、ピリダジン、アゼピン、ジアゼピン、フラン、ピラン、オキセピン、 チオフェン、チオピラン、チエピン、オキサゾール、イソオキサゾール、チアゾ ール、イソチアゾール、フラザン、オキサジアゾール、オキサジン、オキサジア ジン、オキサゼピン、オキサジアゼピン、チアジアゾール、チアジン、チアジア ジン、チアゼピン、チアジアゼピン、インドール、イソインドール、インドリジ ン、ベンゾフラン、イソベンゾフラン、ベンゾチオフェン、イソベンゾチオフェ ン、ジチアナフタレン、インダゾール、キノリン、イソキノリン、キノリジン、 プリン、フタラジン、プテリジン、ナフチリジン、キノキサリン、キナゾリン、 シンノリン、ベンゾオキサゾール、ベンゾチアゾール、ベンゾイミダゾール、ク ロメン、ベンゾオキセピン、ベンゾオキサゼピン、ベンゾオキサジアゼピン、ベ ンゾチエピン、ベンゾチアゼピン、ベンゾチアジアゼピン、ベンゾアゼピン、ベ ンゾジアゼピン、ベンゾフラザン、ベンゾチアジアゾール、ベンゾトリアゾール 、カルバゾール、βーカルボリン、アクリジン、フェナジン、ジベンゾフラン、 キサンテン、ジベンゾチオフェン、フェノチアジン、フェノキサジン、フェノキ サチイン、チアンスレン、フェナントリジン、フェナントロリン、ペリミジン環 等が挙げられる。

[0035]

また、1~4個の窒素原子、1~2個の酸素原子および/または1~2個の硫 黄原子から選択されるヘテロ原子を含む、一部または全部飽和された3~15員 の単環、二環または三環式ヘテロ環アリールとしては、アジリジン、アゼチジン 、ピロリン、ピロリジン、イミダゾリン、イミダゾリジン、トリアゾリン、トリ アゾリジン、テトラゾリン、テトラゾリジン、ピラゾリン、ピラゾリジン、ジヒ ドロピリジン、テトラヒドロピリジン、ピペリジン、ジヒドロピラジン、テトラ ヒドロピラジン、ピペラジン、ジヒドロピリミジン、テトラヒドロピリミジン、 パーヒドロピリミジン、ジヒドロピリダジン、テトラヒドロピリダジン、パーヒ ドロピリダジン、ジヒドロアゼピン、テトラヒドロアゼピン、パーヒドロアゼピ ン、ジヒドロジアゼピン、テトラヒドロジアゼピン、パーヒドロジアゼピン、オ キシラン、オキセタン、ジヒドロフラン、テトラヒドロフラン、ジヒドロピラン 、テトラヒドロピラン、ジヒドロオキセピン、テトラヒドロオキセピン、パーヒ ドロオキセピン、チイラン、チエタン、ジヒドロチオフェン、テトラヒドロチオ フェン、ジヒドロチオピラン、テトラヒドロチオピラン、ジヒドロチエピン、テ トラヒドロチエピン、パーヒドロチエピン、ジヒドロオキサゾール、テトラヒド ロオキサゾール(オキサゾリジン)、ジヒドロイソオキサゾール、テトラヒドロ イソオキサゾール(イソオキサゾリジン)、ジヒドロチアゾール、テトラヒドロ チアゾール(チアゾリジン)、ジヒドロイソチアゾール、テトラヒドロイソチア ゾール(イソチアゾリジン)、ジヒドロフラザン、テトラヒドロフラザン、ジヒ ドロオキサジアゾール、テトラヒドロオキサジアゾール(オキサジアゾリジン) 、ジヒドロオキサジン、テトラヒドロオキサジン、ジヒドロオキサジアジン、テ トラヒドロオキサジアジン、ジヒドロオキサゼピン、テトラヒドロオキサゼピン 、パーヒドロオキサゼピン、ジヒドロオキサジアゼピン、テトラヒドロオキサジ アゼピン、パーヒドロオキサジアゼピン、ジヒドロチアジアゾール、テトラヒド ロチアジアゾール(チアジアゾリジン)、ジヒドロチアジン、テトラヒドロチア ジン、ジヒドロチアジアジン、テトラヒドロチアジアジン、ジヒドロチアゼピン 、テトラヒドロチアゼピン、パーヒドロチアゼピン、ジヒドロチアジアゼピン、 テトラヒドロチアジアゼピン、パーヒドロチアジアゼピン、モルホリン、チオモ ルホリン、オキサチアン、インドリン、イソインドリン、ジヒドロベンソフラン 、パーヒドロベンゾフラン、ジヒドロイソベンゾフラン、パーヒドロイソベンゾ フラン、ジヒドロベンゾチオフェン、パーヒドロベンゾチオフェン、ジヒドロイ ソベンゾチオフェン、パーヒドロイソベンゾチオフェン、ジヒドロインダゾール 、パーヒドロインダゾール、ジヒドロキノリン、テトラヒドロキノリン、パーヒ

ドロキノリン、ジヒドロイソキノリン、テトラヒドロイソキノリン、パーヒドロ イソキノリン、ジヒドロフタラジン、テトラヒドロフタラジン、パーヒドロフタ ラジン、ジヒドロナフチリジン、テトラヒドロナフチリジン、パーヒドロナフチ リジン、ジヒドロキノキサリン、テトラヒドロキノキサリン、パーヒドロキノキ サリン、ジヒドロキナゾリン、テトラヒドロキナゾリン、パーヒドロキナゾリン 、ジヒドロシンノリン、テトラヒドロシンノリン、パーヒドロシンノリン、ベン ゾオキサチアン、ジヒドロベンゾオキサジン、ジヒドロベンゾチアジン、ピラジ ノモルホリン、ジヒドロベンゾオキサゾール、パーヒドロベンゾオキサゾール、 ジヒドロベンゾチアゾール、パーヒドロベンゾチアゾール、ジヒドロベンゾイミ ダゾール、パーヒドロベンゾイミダゾール、ジヒドロベンゾアゼピン、テトラヒ ドロベンゾアゼピン、ジヒドロベンゾジアゼピン、テトラヒドロベンゾジアゼピ ン、ベンゾジオキセパン、ジヒドロベンゾオキサゼピン、テトラヒドロベンゾオ キサゼピン、ジヒドロカルバゾール、テトラヒドロカルバゾール、パーヒドロカ ルバゾール、ジヒドロアクリジン、テトラヒドロアクリジン、パーヒドロアクリ ジン、ジヒドロジベンゾフラン、ジヒドロジベンゾチオフェン、テトラヒドロジ ベンゾフラン、テトラヒドロジベンゾチオフェン、パーヒドロジベンゾフラン、 パーヒドロジベンゾチオフェン、ジオキソラン、ジオキサン、ジチオラン、ジチ アン、ジオキサインダン、ベンゾジオキサン、クロマン、ベンゾジチオラン、ベ ンソジチアン環等が挙げられる。

## [0036]

本発明においては、特に指示しない限り異性体はこれをすべて包含する。例えば、アルキル基、アルケニル基、アルキニル基、アルコキシ基、アルキルチオ基、アルキレン基、アルケニレン基、アルキニレン基には直鎖のものおよび分枝鎖のものが含まれる。さらに、二重結合、環、縮合環における異性体(E、Z、シス、トランス体)、不斉炭素の存在等による異性体(R、S体、α、β配置、エナンチオマー、ジアステレオマー)、旋光性を有する光学活性体(D、L、d、1体)、クロマトグラフ分離による極性体(高極性体、低極性体)、平衡化合物、回転異性体、これらの任意の割合の混合物、ラセミ混合物は、すべて本発明に含まれる。

本発明においては、特に断わらない限り、当業者にとって明らかなように記号

[0037]

【化22】

[0038]

【化23】

は紙面の手前側(すなわちβー配置)に結合していることを表わし、

[0039]

【化24】

 $\mathbf{L}_{\alpha}$   $\mathbf{-m}$ 置、 $\mathbf{\beta}$   $\mathbf{-m}$ 置またはそれらの混合物であることを表わし、

[0040]

【化25】

は、 $\alpha$  -配置と $\beta$  -配置の混合物であることを表わす。

[0041]

一般式(I)で示される化合物は、公知の方法で非毒性の塩に変換される。 非毒性の塩としては、アルカリ金属塩、アルカリ土類金属塩、アンモニウム塩 、アミン塩、酸付加塩等が挙げられる。

[0042]

塩は毒性のない、水溶性のものが好ましい。適当な塩としては、アルカリ金属 (カリウム、ナトリウム等)の塩、アルカリ土類金属 (カルシウム、マグネシウム等)の塩、アンモニウム塩、薬学的に許容される有機アミン (テトラメチルアンモニウム、トリエチルアミン、メチルアミン、ジメチルアミン、シクロペンチルアミン、ベンジルアミン、フェネチルアミン、ピペリジン、モノエタノールアミン、ジエタノールアミン、トリス (ヒドロキシメチル) アミノメタン、リジン、アルギニン、NーメチルーDーグルカミン等)の塩が挙げられる。

[0043]

酸付加塩は非毒性かつ水溶性であることが好ましい。適当な酸付加塩としては、例えば塩酸塩、臭化水素酸塩、ヨウ化水素酸塩、硫酸塩、リン酸塩、硝酸塩のような無機酸塩、または酢酸塩、乳酸塩、酒石酸塩、安息香酸塩、クエン酸塩、メタンスルホン酸塩、エタンスルホン酸塩、ベンゼンスルホン酸塩、トルエンスルホン酸塩、イセチオン酸塩、グルクロン酸塩、グルコン酸塩のような有機酸塩が挙げられる。

[004.4]

一般式 (I) で示される化合物およびそれらの塩は、溶媒和物に変換すること もできる。

溶媒和物は非毒性かつ水溶性であることが好ましい。適当な溶媒和物としては、例えば水、アルコール系の溶媒(例えば、エタノール等)のような溶媒和物が 挙げられる。

[0045]

一般式(I)で示される本発明化合物は、αー、βーあるいはγーシクロデキストリン、あるいはこれらの混合物を用いて、特公昭50-3362号、同52-31404号または同61-52146号明細書記載の方法を用いることによりシクロデキストリン包接化合物に変換することができる。シクロデキストリン包接化合物に変換することにより、安定性が増大し、また水溶性が大きくなるため、薬剤として使用する際好都合である。

一般式(I)中、Aとして好ましくは $\mathbf{A}^1$ または $\mathbf{A}^2$ であり、特に好ましくは $\mathbf{A}^2$ である。

[0046]

環1として好ましくは、一部または全部が飽和されていてもよいC3~10の単環、または2環式炭素環アリール、もしくは1~4個の窒素原子、1~2個の酸素原子および/または1~2個の硫黄原子から選択されるヘテロ原子を含む、一部または全部が飽和されていてもよいC3~10の単環、または2環式ヘテロ環アリールであり、特に好ましくは、一部または全部が飽和されていてもよいC3~7の単環式炭素環アリール、もしくは1~4個の窒素原子、1~2個の酸素

原子および/または1~2個の硫黄原子から選択されるヘテロ原子を含む、一部または全部が飽和されていてもよいC3~7の単環式ヘテロ環アリールである。

[0047]

一般式(I)中、Dとして好ましくは $\mathsf{D}^1$ または $\mathsf{D}^2$ であり、特に好ましくは $\mathsf{D}^1$ である。

 $D^1$ として好ましくは-COOH基、または $-COOR^2$ である。

 $D^2$ として好ましくは $-COO-Z^1-Z^2-Z^3$ である。

 $Z^1$ として好ましくはC  $1\sim$  1 5 7  $\nu$  キレン基であり、特に好ましくはC  $1\sim$  8 7  $\nu$  キレン基であり、さらに好ましくはC  $1\sim$  4 7  $\nu$  キレン基である。

 $Z^2$ として好ましくは-CO-基、-OCO-基、-COO-基、-CONR  $Z^1$ 基、 $-OCONRZ^7$ 基、-OCOO-基であり、特に好ましくは-OCO-基、  $-OCONRZ^7$ 基、-OCOO-基である。

 $Z^3$ として好ましくは $C1\sim15$ アルキル基、または $C1\sim10$ アルコキシ基、 $C1\sim10$ アルキルチオ基、 $C1\sim10$ アルキルー $NRZ^8$ -基または環Zで置換された $C1\sim10$ アルキル基であり、特に好ましくは $C4\sim12$ アルキル基である。

- 一般式(I)中、Tとして好ましくは酸素原子、または硫黄原子であり、特に 好ましくは酸素原子である。
- 一般式(I)中、Xとして好ましくは $-CH_2$ -基、-O-基、または-S-基であり、特に好ましくは $-CH_2$ -基である。
  - 一般式(I)中、Eとして好ましくは $E^2$ である。

[0048]

- 一般式(I)で示される化合物のうち、好ましい化合物としては、
- 一般式 (I-A)

【化26】

$$X \xrightarrow{N} A^{2} D^{1} \qquad (I-A)$$

(式中、すべての記号は前記と同じ意味を表わす。) で示される化合物、

一般式 (I-B)

【化27】

$$X \xrightarrow{N} A^2 D^2 \qquad \text{(I-B)}$$

(式中、すべての記号は前記と同じ意味を表わす。) で示される化合物、

一般式(I-C)

【化28】

$$\begin{array}{ccc}
 & T & A^1 & D^1 \\
 & E^2 & & 
\end{array}$$

(式中、すべての記号は前記と同じ意味を表わす。) で示される化合物、

一般式 (I-D)

【化29】

$$X \xrightarrow{N} A^{1}_{D^{2}} \qquad \text{(I-D)}$$

(式中、すべての記号は前記と同じ意味を表わす。) で示される化合物、

一般式 (I-E)

【化30】

$$X \xrightarrow{N} A^{2}D^{1} \qquad \text{(I-E)}$$

(式中、すべての記号は前記と同じ意味を表わす。) で示される化合物が挙げられる。

[0049]

本発明の具体的な化合物としては、表1~表6.8で示される化合物、実施例に 記載の化合物およびそれらの非毒性塩が挙げられる。 【0050】 【表1】

【0051】 【表2】

【0052】 【表3】

|   | 表   | <u>3</u> <                       | (I-A-3)<br>E CO <sub>2</sub> H                           | 1              |
|---|-----|----------------------------------|----------------------------------------------------------|----------------|
| ٠ | No. | E                                | No. E No. E                                              | 1              |
|   | 1   | CH <sub>3</sub>                  | 12 CH <sub>3</sub> 22 CH <sub>3</sub>                    |                |
| • | 2   | <b>✓</b> CH₃                     | 23 CH <sub>3</sub> 23                                    |                |
|   | 3   | <b>СН</b>                        |                                                          |                |
|   | 4   | CI                               | CH <sub>3</sub> 15 CH <sub>3</sub> 25 CH <sub>3</sub> 25 | 13             |
|   | 5   | H <sub>3</sub> C CH <sub>3</sub> | CH <sub>3</sub>                                          | H <sub>3</sub> |
|   | 6   | H <sub>3</sub> C CH <sub>3</sub> | CH <sub>3</sub>                                          |                |
|   | 7   | ОН                               | H <sub>3</sub> 18 28 OH                                  |                |
|   | . 8 | 1 1                              |                                                          |                |
|   | 9   |                                  | CH <sub>3</sub>                                          |                |
|   | 1   | O CH <sub>3</sub>                | 21 CH <sub>3</sub> 31 CF                                 | H <sub>3</sub> |
|   | 1   | CI CI                            |                                                          |                |

【0053】 【表4】

<u>表4</u>

|     |                                  |      | `E                 |                      |                                                 |
|-----|----------------------------------|------|--------------------|----------------------|-------------------------------------------------|
| No. | E                                | No.  | E                  | No.                  | E                                               |
| 1   | CH <sub>3</sub>                  | 12   | QH<br>CH₃          | 22                   | CH <sub>3</sub>                                 |
| 2   | <b>✓</b> CH₃                     | 13   | QH<br>CH₃          | 23                   | CH <sub>3</sub>                                 |
| 3   | CH <sub>3</sub>                  | 14   | CH <sub>3</sub>    | 24                   | Cons.                                           |
| 4   |                                  | 3 15 | СН                 | 3 2                  | 5 CH <sub>3</sub>                               |
| 5   | H <sub>3</sub> C CH <sub>3</sub> | 10   | CH <sub>3</sub>    | 2                    |                                                 |
| 6   | H <sub>3</sub> C CH <sub>3</sub> |      |                    |                      | CH <sub>3</sub> CH <sub>3</sub> CH <sub>3</sub> |
| 7   | ОН                               |      | 9                  |                      | 29 ОН                                           |
|     | 9 CH <sub>3</sub>                |      | 20 CH <sub>3</sub> |                      | 30                                              |
| 1   | CH <sub>3</sub>                  |      | 21                 | 13<br>H <sub>3</sub> | 31 CH <sub>3</sub>                              |
|     | 11 CH                            | 3    |                    |                      | ОН                                              |

【0054】 【表5】

| hvd | <u>表5</u> (                      |      |                                      | A-5) |                                    |
|-----|----------------------------------|------|--------------------------------------|------|------------------------------------|
| No. | E                                | No.  | `E<br>E                              | No.  | E                                  |
| 1   | CH <sub>3</sub>                  | 12   | QH<br>CH₃                            | 22   | CH <sub>3</sub>                    |
| 2   | CH <sub>3</sub>                  | 13   | OH<br>CH₃                            | 23   | CH <sub>3</sub>                    |
| 3   | CH <sub>3</sub>                  | 14   | CH <sub>3</sub>                      | 24   | CH <sub>3</sub>                    |
| 4   | <b>~</b> ~~~~~~~~сн              | 3 15 | O CH3                                | 25   | CH <sub>3</sub>                    |
| 5   | H <sub>3</sub> C CH <sub>3</sub> | 16   | O CH <sub>3</sub><br>CH <sub>3</sub> | 26   | CH <sub>3</sub>                    |
| 6   | H <sub>3</sub> C CH <sub>3</sub> | 17   |                                      | 27   | CH <sub>3</sub><br>CH <sub>3</sub> |
| 7   | CH <sub>3</sub>                  | 18   |                                      | 28   |                                    |
| 8   | OH CH <sub>3</sub>               | 19   | CH₃                                  | 29   | ОН                                 |
| 9   | CH <sub>3</sub>                  | 2    | CH <sub>3</sub>                      | 30   |                                    |
| 10  | CH <sub>3</sub>                  | 2    |                                      |      | O CH <sub>3</sub>                  |
| 11  | CH <sub>3</sub>                  |      |                                      |      | OH CH <sub>3</sub>                 |

【0055】 【表6】

|     | 表6                               | 0                 | CO <sub>2</sub> H                    | (I-A- | 6)                                 |
|-----|----------------------------------|-------------------|--------------------------------------|-------|------------------------------------|
| No. | E                                | No.               | E                                    | No.   | E                                  |
| 1   | CH <sub>3</sub>                  | 12                | OH<br>CH₃                            | 22    | СН₃                                |
| 2   | ✓✓✓∕CH₃                          | 13                | OH<br>CH₃                            | 23    | CH <sub>3</sub>                    |
| 3   | СН                               | 3 14              | CH <sub>3</sub>                      | 24    | CH <sub>3</sub>                    |
| . 4 | CI                               | H <sub>3</sub> 15 | О СН3                                | 25    | CH <sub>3</sub>                    |
| 5   | H <sub>3</sub> C CH <sub>3</sub> | 16                | O CH <sub>3</sub><br>CH <sub>3</sub> | 26    | CH <sub>3</sub>                    |
| 6   | H <sub>3</sub> C CH <sub>3</sub> | 17                |                                      | 27    | CH <sub>3</sub><br>CH <sub>3</sub> |
| 7   | CH <sub>3</sub>                  | 18                | O                                    | 28    |                                    |
| 8   | OH<br>CH <sub>3</sub>            | 19                | CH <sub>3</sub>                      | 29    | ОН                                 |
| 9   |                                  | 20                | CH <sub>3</sub>                      | 30    | CH <sub>3</sub>                    |
| 10  | CH <sub>3</sub>                  | 2                 | СН                                   | 3 31  |                                    |
| 11  | CH <sub>3</sub>                  |                   |                                      |       | OH CH <sub>3</sub>                 |

【0056】 【表7】

|     | 表7                               | L. N.           | ~_o~_scooh                                              | I-A-7 | N                                                     |
|-----|----------------------------------|-----------------|---------------------------------------------------------|-------|-------------------------------------------------------|
| •   | <                                | بلر             | `E                                                      |       | ,                                                     |
| No. | E                                | No.             | E                                                       | No.   | E                                                     |
| 1   | CH <sub>3</sub>                  | 12              | OH<br>CH₃                                               | 22    | СН3                                                   |
| 2   | <b>✓</b> CH₃                     | 13              | OH<br>CH₃                                               | 23    | CH <sub>3</sub>                                       |
| 3   | CH <sub>3</sub>                  | 14              | CH <sub>3</sub>                                         | 24    | CH <sub>3</sub>                                       |
| 4   | СН                               | <sub>3</sub> 15 | O CH                                                    | 25    | CH <sub>3</sub>                                       |
| 5   | H <sub>3</sub> C CH <sub>3</sub> | 16              | O CH <sub>3</sub><br>CH <sub>3</sub><br>CH <sub>3</sub> | 26    | CH <sub>3</sub>                                       |
| 6   | H <sub>3</sub> C CH <sub>3</sub> | 17              | ~~°                                                     | 27    | CH <sub>3</sub><br>CH <sub>3</sub><br>CH <sub>3</sub> |
| 7   | <b>CH₃</b>                       | 18              | 0                                                       | 28    |                                                       |
| 8   | OH CH <sub>3</sub>               | 19              | CH <sub>3</sub>                                         | 29    | ОН                                                    |
| 9   |                                  | 20              | CH <sub>3</sub>                                         | 30    | CH <sub>3</sub>                                       |
| 10  | CH <sub>3</sub>                  | 21              | СН                                                      | 3 3   |                                                       |
| 1   | 1 CH <sub>3</sub>                |                 |                                                         |       | ОН                                                    |

【0057】 【表8】

|     | <u>表8</u>                        |      | N CO₂H (I-                                        | -A-8) |                                    |
|-----|----------------------------------|------|---------------------------------------------------|-------|------------------------------------|
| No. | E                                | No.  | E                                                 | No.   | E                                  |
| 1.  | CH <sub>3</sub>                  | 12   | OH<br>CH₃                                         | 22    | CH <sub>3</sub>                    |
| 2   | <b>✓</b> CH₃                     | 13   | QH<br>CH₃                                         | 23    | CH <sub>3</sub>                    |
| 3   | CH <sub>3</sub>                  | 14   | CH <sub>3</sub>                                   | 24    | CH <sub>3</sub>                    |
| 4   | СН                               | 3 15 | О СН3                                             | 25    | CH <sub>3</sub>                    |
| 5   | H <sub>3</sub> C CH <sub>3</sub> | 16   | O CH <sub>3</sub> CH <sub>3</sub> CH <sub>3</sub> | 26    | CH <sub>3</sub>                    |
| 6   | H <sub>3</sub> C CH <sub>3</sub> | 17   | ~~°                                               | 27    | CH <sub>3</sub><br>CH <sub>3</sub> |
| 7   | <b>CH</b> ₃                      | 18   | O                                                 | 28    |                                    |
| 8   | OH CH <sub>3</sub>               | 19   | CH <sub>3</sub>                                   | 29    | ОН                                 |
| 9   |                                  | 20   | CH <sub>3</sub>                                   | 30    | CH <sub>3</sub>                    |
| 10  | CH <sub>3</sub>                  | 2    | СН                                                | 3 31  |                                    |
| 1   | 1 CH <sub>3</sub>                |      |                                                   |       | OH OH                              |

【0058】 【表9】

【0059】 【表10】

|     | <u>表10</u>                       |                 | N CO <sub>2</sub> H                  | A-10)             |                                    |
|-----|----------------------------------|-----------------|--------------------------------------|-------------------|------------------------------------|
| No. | E                                | No.             | E                                    | No.               | E                                  |
| 1   | CH <sub>3</sub>                  | 12              | ÖH<br>ÖH                             | 22                | CH <sub>3</sub>                    |
| 2   | <b>✓</b> CH₃                     | 13              | OH<br>CH₃                            | 23                | <b>CH</b> <sub>3</sub>             |
| 3   | CH <sub>3</sub>                  | 14              | O CH <sub>3</sub>                    | 24                | CH <sub>3</sub>                    |
| 4   | СН                               | <sub>3</sub> 15 | ОСН                                  | 25                | CH₃                                |
| 5   | H <sub>3</sub> C CH <sub>3</sub> | 16              | O CH <sub>3</sub><br>CH <sub>3</sub> | 26                | CH <sub>3</sub>                    |
| 6   | H <sub>3</sub> C CH <sub>3</sub> | 17              |                                      | 27                | CH <sub>3</sub><br>CH <sub>3</sub> |
| 7   | CH <sub>3</sub>                  | . 18            |                                      | 28                |                                    |
| 8   | OH CH <sub>3</sub>               | 19              | CH <sub>3</sub>                      | 29                | OH                                 |
| 9   |                                  | 20              | CH                                   | 30                | CH <sub>3</sub>                    |
| 11  | CH <sub>3</sub>                  | 2               | CH                                   | l <sub>3</sub> 31 |                                    |
| 1   | 1 CH <sub>3</sub>                |                 | -                                    |                   | OH OH                              |

【0060】 【表11】

【0061】 【表12】

|     |                                  |          | CO₂H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|-----|----------------------------------|----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|     | <u>表12</u>                       |          | (I-A-12)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|     |                                  | <u> </u> | F No E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| No. | E                                | No.      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 1   | CH <sub>3</sub>                  | 12       | OH<br>→ CH <sub>3</sub> 22 CH <sub>3</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 2   | <b>✓</b> CH₃                     | 13       | ОН<br>СН <sub>3</sub> 23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 3   | CH <sub>3</sub>                  | 14       | CH <sub>3</sub> 24 CH <sub>3</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 4   | СН                               | 3 15     | CH <sub>3</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 5   | H <sub>3</sub> C CH <sub>3</sub> | 16       | CH <sub>3</sub> |
| 6   | H <sub>3</sub> C CH <sub>3</sub> | 1        | 1. 6 0 6 97 CH6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 7   | J.,                              | 1:       | 8 28 28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| ٤   | OH CH <sub>3</sub>               | 1        | 9 CH <sub>3</sub> 29 OH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 9   |                                  | 2        | 20 CH <sub>3</sub> 30 CH <sub>3</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 1   | 0 CH <sub>3</sub>                | 2        | 21 CH <sub>3</sub> 31 CH <sub>3</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 1   | CH <sub>3</sub>                  |          | ОН                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |

【0062】 【表13】

【0063】 【表14】

表14 O CO₂H (I-A-14)

|     |                                  |                 | ~ E                                               |                |                                                       |
|-----|----------------------------------|-----------------|---------------------------------------------------|----------------|-------------------------------------------------------|
| No. | E                                | No.             | E                                                 | No.            | <u> </u>                                              |
| 1   | CH <sub>3</sub>                  | 12              | ÖH<br>ÖH<br>ÖH                                    | 22             | CH <sub>3</sub>                                       |
| 2   | <b>✓</b> CH <sub>3</sub>         | 13              | CH3                                               | 23             | CH <sub>3</sub>                                       |
| 3   | CH <sub>3</sub>                  | 14              | CH <sub>3</sub>                                   | 24             | CH <sub>3</sub>                                       |
| 4.  | СН                               | <sub>3</sub> 15 | CH.                                               | 25             | CH <sub>3</sub>                                       |
| 5   | H <sub>3</sub> C CH <sub>3</sub> | 16              | O CH <sub>3</sub> CH <sub>3</sub> CH <sub>3</sub> | 26             | CH <sub>3</sub>                                       |
| 6   | H <sub>3</sub> C CH <sub>3</sub> | 17              |                                                   | 27             | CH <sub>3</sub><br>CH <sub>3</sub><br>CH <sub>3</sub> |
| 7   | CH <sub>3</sub>                  | 18              |                                                   | 28             |                                                       |
| 8   | OH CH <sub>3</sub>               | 19              | CH <sub>3</sub>                                   | 2              | 9 ОН                                                  |
| 9   |                                  | 20              | C CH                                              | 3 3            | CH <sub>3</sub>                                       |
| 11  | CH <sub>3</sub>                  | 2               | 1 C                                               | ł <sub>3</sub> | CH <sub>3</sub>                                       |
| 1   | 1 CH <sub>3</sub>                |                 |                                                   |                | ОН                                                    |

【0064】 【表15】

|     | <u>表15</u>                       | <u>\</u> | СООН                                 | (1                 | -A-15)                             |
|-----|----------------------------------|----------|--------------------------------------|--------------------|------------------------------------|
| No. | E                                | No.      | E                                    | No.                | E                                  |
| 1   | CH <sub>3</sub>                  | 12       | OH<br>CH₃                            | 22                 | СН3                                |
| 2   | <b>✓</b> CH₃                     | 13       | ÖH<br>ÖH                             | 23                 | CH <sub>3</sub>                    |
| 3   | CH <sub>3</sub>                  | 14       | CH <sub>3</sub>                      | 24                 | CH <sub>3</sub>                    |
| 4   | СН                               | 15       | CH.                                  | 25                 | CH <sub>3</sub>                    |
| 5   | H <sub>3</sub> C CH <sub>3</sub> | 16       | O CH <sub>3</sub><br>CH <sub>3</sub> | 26                 | CH <sub>3</sub>                    |
| 6   | H <sub>3</sub> C CH <sub>3</sub> | 17       |                                      | 27                 | CH <sub>3</sub><br>CH <sub>3</sub> |
| 7   | CH <sub>3</sub>                  | 18       |                                      | 28                 |                                    |
| 8   | OH<br>CH₃                        | 19       | CH <sub>3</sub>                      | 2                  | ОН                                 |
| 9   |                                  | 2        | CH                                   | 3                  | CH <sub>3</sub>                    |
| 10  | CH <sub>3</sub>                  | 2        | 1 Ch                                 | l <sub>3</sub>   3 | CH <sub>3</sub>                    |
| 1   | 1 CH <sub>3</sub>                |          | ·                                    |                    | ОН                                 |

【0065】 【表16】

表16 COOH (I-A-16)

| 4 CH <sub>3</sub> 15 CH <sub>3</sub> 25  5 CH <sub>3</sub> 16 CH <sub>3</sub> 26 CH <sub>3</sub> 6 H <sub>3</sub> C CH <sub>3</sub> 17 CH <sub>3</sub> 27  7 CH <sub>3</sub> 18  9 CH <sub>3</sub> 20  10 CH <sub>3</sub> 20  10 CH <sub>3</sub> 21  10 CH <sub>3</sub> 25  16 CH <sub>3</sub> 26  17 CH <sub>3</sub> 27  18 CH <sub>3</sub> 28  19 CH <sub>3</sub> 29  10 CH <sub>3</sub> 20  10 CH <sub>3</sub> 21  10 CH <sub>3</sub> 21  10 CH <sub>3</sub> 21  10 CH <sub>3</sub> 25  26 CH <sub>3</sub> 26  27 CH <sub>3</sub> CH <sub>3</sub> 28 CH <sub>3</sub> CH <sub>3</sub> 28 CH <sub>3</sub> CH <sub>3</sub> 29 CH <sub>3</sub> CH <sub>3</sub> 20 CH <sub>3</sub> 20 CH <sub>3</sub> 21 CH <sub>3</sub> CH <sub>3</sub> 30 CH <sub>3</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |     |         |                   | ~E                                   |     |                 |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|---------|-------------------|--------------------------------------|-----|-----------------|
| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | No. | E       | No.               | E                                    | No. | E               |
| 2 CH <sub>3</sub> 14 CH <sub>3</sub> 24 CH <sub>3</sub> 25 CH <sub>3</sub> 26 CH <sub>3</sub> 26 CH <sub>3</sub> 27 CH <sub>3</sub> CH <sub>3</sub> 28 CH <sub>3</sub> 18 CH <sub>3</sub> 28 CH <sub>3</sub> 19 CH <sub>3</sub> 29 CH <sub>3</sub> 20 CH <sub>3</sub> 20 CH <sub>3</sub> 20 CH <sub>3</sub> 21 CH <sub>3</sub> 21 CH <sub>3</sub> 30 CH <sub>3</sub> 21 CH <sub>3</sub> CH <sub>3</sub> 31 CCH <sub>3</sub> CH <sub>3</sub>                                                                                  | 1   |         |                   | ÇH₃<br>QH                            |     |                 |
| 4 CH <sub>3</sub> 15 CH <sub>3</sub> 25 CH <sub>3</sub> 26 CH <sub>3</sub> C |     |         |                   | <b>O</b>                             | 24  | CH <sub>3</sub> |
| 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 4   | CH      | I <sub>3</sub> 15 | ~~°СН                                | 25  | CH <sub>3</sub> |
| 7 CH <sub>3</sub> 18 28 CH <sub>3</sub> 30 CH <sub>3</sub> 10 CH <sub>3</sub> 21 CH <sub>3</sub> 31 CH <sub>3</sub> 31 CH <sub>3</sub> 31 CH <sub>3</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 5   | 1 * X   | 16                | O CH <sub>3</sub><br>CH <sub>3</sub> |     |                 |
| 8 OH CH <sub>3</sub> 19 CH <sub>3</sub> 29 OH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |     | H₃C CH₃ | 10                |                                      |     | CH <sub>3</sub> |
| 10 CH <sub>3</sub> 21 CH <sub>3</sub> 30 CH <sub>3</sub> 31 CH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |     | ОН      |                   |                                      | 2   |                 |
| CH <sub>3</sub> 31 CH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 9   | · 🛆     | 20                | 1 11 1                               | 3 3 |                 |
| CH <sub>3</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |     |         |                   |                                      | 13  | CH <sub>3</sub> |

【0066】 【表17】

表17 O COOH (I-A-17)

|     | •                                | Ī    | ~E ~                                              |     |                                    |
|-----|----------------------------------|------|---------------------------------------------------|-----|------------------------------------|
| No. | E .                              | No.  | E                                                 | No. | E                                  |
| 1   | CH <sub>3</sub>                  | 12   | ÖH<br>ÖH                                          | 22  | CH₃                                |
| 2   | CH <sub>3</sub>                  | 13   | CH₃                                               | 23  | CH <sub>3</sub>                    |
| 3   | CH <sub>3</sub>                  | 14   | CH <sub>3</sub>                                   | 24  | CH <sub>3</sub>                    |
| 4   | СН                               | 3 15 | CH.                                               | 25  | CH <sub>3</sub>                    |
| 5   | H <sub>3</sub> C CH <sub>3</sub> | 16   | O CH <sub>3</sub> CH <sub>3</sub> CH <sub>3</sub> | 26  | CH                                 |
| 6   | H <sub>3</sub> C CH <sub>3</sub> | 17   | ~~°                                               | 2   | CH <sub>3</sub><br>CH <sub>3</sub> |
| 7   | CH <sub>3</sub>                  | 18   | O                                                 | 2   | 8                                  |
| 8   | OH CH <sub>3</sub>               | 19   | CH <sub>3</sub>                                   | 2   | 9 ОН                               |
| 9   |                                  | 20   | CH                                                | 3   | CH <sub>3</sub>                    |
| 10  | CH <sub>3</sub>                  | 2    | Ch                                                | 13  | 31 CH <sub>3</sub>                 |
| 1   | 1 CH <sub>3</sub>                |      |                                                   |     | OH                                 |

【0067】 【表18】

|     |                                  |      | `E                                                      |     |                                                       |
|-----|----------------------------------|------|---------------------------------------------------------|-----|-------------------------------------------------------|
| No. | E                                | No.  | E                                                       | No. | E                                                     |
| 1 2 | CH <sub>3</sub>                  | 12   | OH<br>CH₃<br>OH<br>CH₃                                  | 22  | CH <sub>3</sub>                                       |
| 3   | CH <sub>3</sub>                  | 14   | O CH <sub>3</sub>                                       | 24  | Ung Ung                                               |
| 4   | <b>СН</b>                        | 3 15 | CH:                                                     | 25  | CH <sub>3</sub>                                       |
| 5   | H <sub>3</sub> C CH <sub>3</sub> | 16   | O CH <sub>3</sub><br>CH <sub>3</sub><br>CH <sub>3</sub> | 26  | CH <sub>3</sub>                                       |
| 6   | H <sub>3</sub> C CH <sub>3</sub> | 17   | , ° ()                                                  | 27  | CH <sub>3</sub><br>CH <sub>3</sub><br>CH <sub>3</sub> |
| 7   | CH <sub>3</sub>                  | 18   |                                                         | 2   | 8                                                     |
| 8   | OH CH <sub>3</sub>               | 19   | CH <sub>3</sub>                                         | 2   | 9 ОН                                                  |
| g   | CH <sub>3</sub>                  | 20   | CH                                                      | 3 3 | CH <sub>3</sub>                                       |
| 11  | CH <sub>3</sub>                  | 2-   | CH                                                      | 13  | 31 CH <sub>3</sub>                                    |
| 1   | 1 CH <sub>3</sub>                |      |                                                         |     | ОН                                                    |

【0068】 【表19】

【0069】

|     | 表20                                         | 2    | N COOH                               | (I-A-20)                                           |
|-----|---------------------------------------------|------|--------------------------------------|----------------------------------------------------|
| No. | E                                           | No.  | E No                                 | o. <b>E</b>                                        |
| 1   | CH <sub>3</sub>                             | 12   | QH CH <sub>3</sub>                   | 2 CH <sub>3</sub>                                  |
| 2   | CH <sub>3</sub>                             | 13   | OH CH <sub>3</sub>                   | 3 CH <sub>3</sub>                                  |
| 3   | CH <sub>3</sub>                             | 14   | О<br>СН <sub>3</sub>                 | 24 CH <sub>3</sub>                                 |
| 4   | СН                                          | 3 15 | О СН <sub>3</sub>                    | 25 CH <sub>3</sub>                                 |
| 5   | H <sub>3</sub> C CH <sub>3</sub>            | 16   | O CH <sub>3</sub><br>CH <sub>3</sub> | 26 CH <sub>3</sub>                                 |
| 6   | H <sub>3</sub> C CH <sub>3</sub>            | 17   |                                      | 27 CH <sub>3</sub> CH <sub>3</sub> CH <sub>3</sub> |
| 7   | <b>~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~</b> | 18   |                                      | 28                                                 |
| 8   | OH CH <sub>3</sub>                          | 11   | CH <sub>3</sub>                      | 29 OH                                              |
| 9   |                                             | 2    | CH <sub>3</sub>                      | 30 CH <sub>3</sub>                                 |
| 1   | 0 CH <sub>3</sub>                           | 2    | CH <sub>3</sub>                      |                                                    |
| 1   | 1 CH <sub>3</sub>                           |      |                                      | OH OH                                              |

【0070】 【表21】

表21 ON S (I-A-21)

|     |                                                       |     | E                               |     |                     |
|-----|-------------------------------------------------------|-----|---------------------------------|-----|---------------------|
| No. | E                                                     | No. | E                               | No. | E                   |
| 1   | CH <sub>3</sub>                                       | 16  | ~o~~ci                          | 26  | CH <sub>3</sub>     |
| 2   | CH <sub>3</sub>                                       |     | F                               |     | ÇH₃                 |
| 3   | CH <sub>2</sub>                                       | 17  | <b>V</b> O <b>V</b> F           | 27  |                     |
| 4   | CH <sub>3</sub><br>CH <sub>3</sub><br>CH <sub>3</sub> |     | F F                             | 28  | H <sub>3</sub> C CI |
| 5   | O CH <sub>3</sub>                                     | 18  | O F                             |     |                     |
| 6   | CH <sub>O</sub> CH                                    | 1 1 | NO <sub>2</sub> CH <sub>3</sub> | 29  | F                   |
| 7   | <b>✓ O CH</b> <sub>3</sub>                            | 19  |                                 | 30  | O CH3               |
| 8   | OCH <sub>3</sub>                                      | 20  | ~o CI                           | 30  | CH₃                 |
| 9   |                                                       |     | CHO<br>CH <sub>3</sub>          | 31  | CH <sub>3</sub>     |
| 10  | H CH3                                                 | 21  | NO <sub>2</sub>                 |     | CH <sub>3</sub>     |
| 11  |                                                       | 22  | CH <sub>3</sub> NO <sub>2</sub> | 32  |                     |
| 12  | N N                                                   | 22  |                                 | 33  | CH <sub>3</sub>     |
| 140 | CI                                                    | 23  | 1 1 1                           | 33  | CH <sub>3</sub>     |
| 13  |                                                       | 0.4 | O NO2                           | 34  |                     |
| 14  |                                                       | 24  | CH₃                             |     | CI F.F              |
| 15  | CI                                                    | 25  | Br                              | 35  | 1、0. 人 人-           |
| Ľ   | CI CI                                                 |     |                                 |     |                     |

【0071】 【表22】

表22 O N COOH (I-A-22)

|     | .`                                                    |     | E                               |     |                     |
|-----|-------------------------------------------------------|-----|---------------------------------|-----|---------------------|
| No. | E                                                     | No. | E                               | No. | E                   |
| 1   | CH <sub>3</sub>                                       | 16  | ~o ~ CI                         | 26  | CH <sub>3</sub>     |
| 2   | <b>✓</b> CH <sub>3</sub>                              |     | CI                              |     | ÇH₃                 |
| 3   | CH <sub>3</sub>                                       | 17  | F                               | 27  |                     |
| 4   | CH <sub>3</sub><br>CH <sub>3</sub><br>CH <sub>3</sub> |     | F F                             | 28  | H <sub>3</sub> C Cl |
| 5   | O CH <sub>3</sub>                                     | 18  | ~°CF                            | 20  |                     |
| 6   | CH <sub>2</sub>                                       |     | NO <sub>2</sub> CH <sub>3</sub> | 29  | F                   |
| 7   | <b>~</b> ~~~°CH₃                                      | 19  |                                 | 30  | F CH <sub>3</sub>   |
| 8   | OCH <sub>3</sub>                                      | 20  | OCI                             | 30  | CH <sub>3</sub>     |
| 9   |                                                       | ]   | CHO<br>CH <sub>3</sub>          | 31  | CH <sub>3</sub>     |
| 10  | H CH3                                                 | 21  | NO <sub>2</sub>                 |     | CH <sub>3</sub>     |
| 11  |                                                       | 22  | CH <sub>3</sub> NO <sub>2</sub> | 32  |                     |
| 12  | O                                                     | 22  |                                 | 33  | CH <sub>3</sub>     |
| 100 | CI CI                                                 | 23  | الما                            | 33  | CH <sub>3</sub>     |
| 13  |                                                       |     | CI<br>NO <sub>2</sub>           | 34  |                     |
| 14  |                                                       | 24  | CH <sub>3</sub>                 |     | CI F F              |
| 15  | CI                                                    | 2   | 5 O Br                          | 35  | 1、0、太人-             |
|     | CICCI                                                 |     |                                 | L_  |                     |

【0072】 【表23】

|     | <u>表23</u><br>·                                                                 |     | N (I-                           | A-23) |                     |
|-----|---------------------------------------------------------------------------------|-----|---------------------------------|-------|---------------------|
| No. | E                                                                               | No. | E                               | No.   | E                   |
| 1 2 | CH <sub>3</sub>                                                                 | 16  | CI                              | 26    | CH <sub>3</sub>     |
| 3   | CH <sub>3</sub> CH <sub>3</sub> CH <sub>3</sub> CH <sub>3</sub> CH <sub>2</sub> | 17  | 0 F F                           | 27    | H <sub>3</sub> C CI |
| 5   | O CH <sub>3</sub>                                                               | 18  | P P P                           | 28    |                     |
| 6   | CH₃                                                                             | 19  | NO <sub>2</sub> CH <sub>3</sub> | 29    | F F F               |
| 8   | O CH <sub>3</sub>                                                               | 20  |                                 | 30    | CH <sub>3</sub>     |
| 9   | H CH <sub>3</sub>                                                               | 21  | O CHO NO2                       | 31    | CH <sub>3</sub>     |
| 11  | Ö                                                                               | 22  | CH <sub>3</sub>                 | 32    |                     |
| 12  | CI                                                                              | 23  | CH <sub>3</sub>                 | 33    | CH <sub>3</sub>     |
| 14  | O CI CI                                                                         | 24  | 0 .NO2                          | 34    | CI F                |
| 15  | CICICI                                                                          | 2   | 5 O Br                          | 35    | <b>し、0 人</b> 人      |

[0073]

【表24】

表24 O S CO<sub>2</sub>H (I-A-24)

|     |                                                       |     | `E                              |     |                     |
|-----|-------------------------------------------------------|-----|---------------------------------|-----|---------------------|
| No. | E                                                     | No. | .E                              | No. | E                   |
| 1   | CH <sub>3</sub>                                       | 16  | ~o~~ci                          | 26  | CH <sub>3</sub>     |
| 2   | CH <sub>3</sub>                                       |     | F CI                            |     | ÇH₃                 |
| 3   | CH <sub>3</sub>                                       | 17  | O F                             | 27  | H <sub>2</sub> C Cl |
| 4   | CH <sub>3</sub><br>CH <sub>3</sub><br>CH <sub>3</sub> |     | FF                              | 28  | H <sub>3</sub> C Cl |
| 5   | O CH <sub>3</sub>                                     | 18  | OCF                             |     |                     |
| 6   | CH                                                    | 1 1 | NO <sub>2</sub> CH <sub>3</sub> | 29  | F                   |
| 7   | <b>✓</b> ✓ O CH <sub>3</sub>                          | 19  | U                               | 30  | CH <sub>3</sub>     |
| 8   | O CH <sub>3</sub>                                     | 20  | o Cl                            |     | CH₃                 |
| 9   |                                                       |     | CHO<br>CH <sub>3</sub>          | 31  | CH <sub>3</sub>     |
| 10  | CH <sub>3</sub>                                       | 21  | NO <sub>2</sub>                 |     | CH <sub>3</sub>     |
| 11  |                                                       | 22  | CH <sub>3</sub> NO <sub>2</sub> | 32  |                     |
| 12  | 2 ON                                                  |     |                                 | 33  | CH <sub>3</sub>     |
|     | O                                                     | 23  | CI CH <sub>3</sub>              |     | CH <sub>3</sub>     |
| 1:  | Cl -                                                  | 24  | NO <sub>2</sub>                 | 34  |                     |
| 1   |                                                       | 24  | CH₃                             |     | CI F.F              |
| 1   | 5 CI                                                  | 25  | 5 O Br                          | 35  | 1、0. 太 人-           |
| Ľ   | CI CI                                                 |     |                                 |     | <del>`</del>        |

【0074】 【表25】

<u>表25</u>

| No. | E                                                     | No.      | E                               | No. | E                   |
|-----|-------------------------------------------------------|----------|---------------------------------|-----|---------------------|
| 1   | CH <sub>3</sub>                                       | 16       | O                               | 26  | CH <sub>3</sub>     |
| 2   | <b>────────────────────────────────────</b>           |          | CI<br>F                         |     | ÇH <sub>3</sub>     |
| 3   | CH <sub>3</sub>                                       | 17       | O                               | 27  | H <sub>2</sub> C CI |
| 4   | CH <sub>3</sub><br>CH <sub>3</sub><br>CH <sub>3</sub> |          | F F                             | 28  | H <sub>3</sub> C CI |
| 5   | O CH <sub>3</sub>                                     | 18       | O F                             |     |                     |
| 6   | CH CH                                                 |          | NO <sub>2</sub> CH <sub>3</sub> | 29  | FFF                 |
| 7   | <b>√ O CH</b> <sub>3</sub>                            | 19       |                                 | 30  | O CH <sub>3</sub>   |
| 8   | CH <sub>3</sub>                                       | 20       |                                 |     | CH <sub>3</sub>     |
| 9   |                                                       | <b> </b> | CHO CH <sub>3</sub>             | 31  | O CH <sub>3</sub>   |
| 10  | ☐ ☐ N CH3                                             | 21       | NO <sub>2</sub>                 |     | CH <sub>3</sub>     |
| 11  |                                                       | 22       | CH <sub>3</sub> NO <sub>2</sub> | 32  |                     |
| 12  |                                                       |          | O, CH <sub>3</sub>              | 33  | CH <sub>3</sub>     |
| 1:  | CI                                                    | 23       |                                 |     | CH <sub>3</sub>     |
|     | O. CI CI                                              | 24       | NO <sub>2</sub>                 | 3   | 4                   |
| 1   | 4 CI                                                  |          | CH <sub>3</sub>                 |     | CI F F              |
| 1   | 5 OCI                                                 | 2        |                                 | 3   | 5 F                 |
| 1   | o ci                                                  | 2        | 5 O Br                          | 3   | 5                   |

【0075】 【表26】

| <u>表26</u> | N^E | СО₂Н | (l-/ | A-26 | <b>i)</b> |
|------------|-----|------|------|------|-----------|
|            |     | <br> |      |      | 1         |

| No. | E                                                     | No. | E                               | No. | E                   |
|-----|-------------------------------------------------------|-----|---------------------------------|-----|---------------------|
| 1   | CH₃                                                   | 16  | ~o~~ci                          | 26  | CH <sub>3</sub>     |
| 2   | CH <sub>3</sub>                                       |     | F                               |     | ÇH₃                 |
| 3   | CH <sub>2</sub>                                       | 17  | O F                             | 27  |                     |
| 4   | CH <sub>3</sub><br>CH <sub>3</sub><br>CH <sub>3</sub> |     | F                               | 28  | H <sub>3</sub> C Cl |
| 5   | VO√CH3                                                | 18  | O                               | 20  |                     |
| 6   | CH-OC-CH                                              | 1 1 | NO <sub>2</sub> CH <sub>3</sub> | 29  | F F                 |
| 7   | <b>~</b> ~~°CH₃                                       | 19  | U                               | 30  | O CH <sub>3</sub>   |
| 8   | O CH <sub>3</sub>                                     | 20  | OCI                             |     | CH₃                 |
| 9   |                                                       |     | CHO<br>CH <sub>3</sub>          | 31  | CH <sub>3</sub>     |
| 10  | H → H → CH₃                                           | 21  | NO <sub>2</sub>                 |     | CH <sub>3</sub>     |
| 11  |                                                       | 22  | O NO <sub>2</sub>               | 32  |                     |
| 12  | O                                                     |     | O CH <sub>3</sub>               | 33  | CH <sub>3</sub>     |
| 13  | CI                                                    | 23  | CI                              |     | CH <sub>3</sub>     |
|     | O CI CI                                               | 24  | NO <sub>2</sub>                 | 34  |                     |
| 14  | CI                                                    |     | CH₃                             |     | CI F                |
| 15  | CI                                                    | 25  | OBr                             | 35  | 5 P                 |

【0076】 【表27】

表27 O S (I-A-27)

|     | •                 | \   | <b>∕</b> ե                      |     |                     |
|-----|-------------------|-----|---------------------------------|-----|---------------------|
| No. | E                 | No. | E                               | No. | E<br>ÇH₃            |
| 1   | <b>V</b> CH₃      | 16  | O                               | 26  | CH <sub>3</sub>     |
| 2   | CH <sub>3</sub>   |     | F CI                            |     | ÇH₃ ·               |
| 3   | ÇH <sub>3</sub>   | 17  | <b>V</b> O <b>V</b> F           | 27  |                     |
| 4   | O CH <sub>3</sub> |     | F F                             | 28  | H <sub>3</sub> C Cl |
| 5   | O CH <sub>3</sub> | 18  | O                               |     |                     |
| 6   | CH CH             | 1 1 | NO <sub>2</sub> CH <sub>3</sub> | 29  | F                   |
| 7   | O^CH <sub>3</sub> | 19  |                                 | 30  | F F CH₃             |
| 8   | O CH <sub>3</sub> | 20  | ~o ~ Ci                         | 30  | CH₃                 |
| 9   |                   |     | CHO<br>CH <sub>3</sub>          | 31  | CH <sub>3</sub>     |
| 10  | ₩                 | 21  | NO2                             |     | CH <sub>3</sub>     |
| 11  |                   |     | CH₃ O NO₂                       | 32  |                     |
| 12  |                   | 22  |                                 |     | CH <sub>3</sub>     |
| '   | CI                | 23  | O CH <sub>3</sub>               | 33  | Ch <sub>3</sub>     |
| 13  |                   |     | CI<br>NO <sub>2</sub>           | 34  |                     |
| 1.  | 4 OCI CI          | 24  | CH <sub>3</sub>                 |     | ÇI F                |
|     | CI                | 25  | 0. Br                           | 35  |                     |
| 1   | 5 CI CI           |     |                                 |     |                     |

【0077】 【表28】

表28

|                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | - Т                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|---------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| . Е                 | No.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | No.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <b>E</b> .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| CH <sub>3</sub>     | 16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | CI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | CH <sub>3</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| CH <sub>3</sub>     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | F F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ÇH <sub>3</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| CH <sub>3</sub>     | 17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | H <sub>3</sub> C CI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <b> </b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 130 SI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| O CH <sub>3</sub>   | 18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| CH <sub>3</sub>     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | NO <sub>2</sub> CH <sub>3</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | FFF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| O^CH <sub>3</sub>   | 19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | O CH <sub>3</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| CH <sub>3</sub>     | 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | CH₃                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                     | 24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | . O. CH <sub>3</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | CH <sub>3</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| N → CH <sub>3</sub> | 21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | NO <sub>2</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | CH <sub>3</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                     | 22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | NO <sub>2</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| N N                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | CH <sub>3</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| CI                  | 23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | CH <sub>3</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| O CI CI             | 24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | NO <sub>2</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 34                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| CI                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | CH <sub>3</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | CI F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                     | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 5 O Br                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 5 P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                     | CH <sub>3</sub> | CH <sub>3</sub> CCH <sub>3</sub> CC | E No. E  CH <sub>3</sub> 16  CH <sub>3</sub> 17  CH <sub>3</sub> 17  CH <sub>3</sub> 17  CH <sub>3</sub> 18  O CH <sub>3</sub> 18  O CH <sub>3</sub> 19  O CH <sub>3</sub> 20  CH <sub>3</sub> 20  CH <sub>3</sub> NO <sub>2</sub> CH <sub>3</sub> | E No. E No.  CH <sub>3</sub> 16  CH <sub>3</sub> 17  CH <sub>3</sub> 17  CH <sub>3</sub> 17  CH <sub>3</sub> 17  CH <sub>3</sub> 18  O CH <sub>3</sub> 18  O CH <sub>3</sub> 19  O CH <sub>3</sub> 20  CH <sub>3</sub> 20  CH <sub>3</sub> 21  O CH <sub>3</sub> 31  CH <sub>3</sub> 31  O CH <sub>3</sub> 31  O CH <sub>3</sub> 22  O CH <sub>3</sub> 31  O CH <sub>3</sub> 31  O CH <sub>3</sub> 31  O CH <sub>3</sub> 31  O CH <sub>3</sub> 32  O CH <sub>3</sub> 32  O CH <sub>3</sub> 32  O CH <sub>3</sub> 33  O CH <sub>3</sub> 32  O CH <sub>3</sub> 33  O CH <sub>3</sub> 32  O CH <sub>3</sub> 33  O CH <sub>3</sub> 33  O CH <sub>3</sub> 33  O CH <sub>3</sub> 33  O CH <sub>3</sub> 33 |

【0078】 【表29】

<u>表29</u>

|     |                                                       |     | `E ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |     |                     |
|-----|-------------------------------------------------------|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|---------------------|
| No. | E                                                     | No. | E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | No. | E<br>CH₃            |
| 1   | CH <sub>3</sub>                                       | 16  | O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 26  | CH <sub>3</sub>     |
| 2   | CH <sub>3</sub>                                       |     | F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |     | CH₃                 |
| 3   | CH <sub>3</sub>                                       | 17  | F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 27  |                     |
| 4   | CH <sub>3</sub><br>CH <sub>3</sub><br>CH <sub>3</sub> |     | F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 28  | H <sub>3</sub> C Cl |
| 5   | CH <sub>3</sub>                                       | 18  | ~OCCEPTED TO THE PROPERTY OF T |     |                     |
| 6   | CH CH                                                 | 3   | NO <sub>2</sub> CH <sub>3</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 29  | F F                 |
| 7   | <b>✓</b> ✓ O CH <sub>3</sub>                          | 19  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     | CH <sub>3</sub>     |
| 8   | O CH <sub>3</sub>                                     | 20  | CI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 30  | CH <sub>3</sub>     |
| 9   |                                                       |     | CHO<br>O, CH <sub>3</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 31  |                     |
| 10  | D H CH3                                               | 21  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     | CH <sub>3</sub>     |
| 1   |                                                       |     | CH₃<br>O. NO₂                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 32  |                     |
| 1:  | 0                                                     | 22  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     | CH <sub>3</sub>     |
| '   | CI                                                    | 23  | CH <sub>3</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3:  | CH <sub>3</sub>     |
| 1   | 3                                                     |     | CI<br>NO <sub>2</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 3   |                     |
| 1   | o CI CI                                               | 24  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -   | ÇI F                |
|     | CI                                                    | 2   | O Br                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -   | 35 OFF              |
|     | cı cı                                                 |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |                     |

【0079】 【表30】

|     |                                                       |     | E                               |      |                     |
|-----|-------------------------------------------------------|-----|---------------------------------|------|---------------------|
| No. | E                                                     | No. | E                               | No.  | E                   |
| 1   | CH <sub>3</sub>                                       | 16  | ~o~~ci                          | 26   | CH <sub>3</sub>     |
| 2   | CH <sub>3</sub>                                       |     | CI                              |      | ÇH₃                 |
| 3   | CH <sub>3</sub>                                       | 17  | F                               | 27   |                     |
| 4   | CH <sub>3</sub><br>CH <sub>3</sub><br>CH <sub>3</sub> |     | FF                              | 28   | H <sub>3</sub> C CI |
| 5   | VO√VCH3                                               | 18  | O F                             | 20   |                     |
| 6   | CH <sub>3</sub>                                       |     | NO <sub>2</sub> CH <sub>3</sub> | 29   | F                   |
| 7   | <b>√</b> O CH <sub>3</sub>                            | 19  |                                 |      | CH <sub>3</sub>     |
| 8   | ✓✓✓° CH <sub>3</sub>                                  | 20  | CI                              | 30   | CH₃                 |
| 9   |                                                       | )   | CHO<br>CH <sub>3</sub>          | 31   | CH <sub>3</sub>     |
| 10  | ₩                                                     | 21  | NO <sub>2</sub>                 |      | CH <sub>3</sub>     |
| 11  | Ö                                                     |     | CH <sub>3</sub>                 | 32   |                     |
| 12  | N N                                                   | 22  |                                 |      | O CH <sub>3</sub>   |
|     | CI                                                    | 23  | CH <sub>3</sub>                 | 33   | CH <sub>3</sub>     |
| 13  |                                                       |     | CI<br>NO <sub>2</sub>           | 34   |                     |
| 14  | 1 1 1                                                 | 24  | CH <sub>3</sub>                 |      |                     |
|     | CI                                                    | 2   | O. Br                           | 35   |                     |
| 15  | CICI                                                  |     |                                 | _  _ |                     |

【0080】 【表31】

|     | ***                                                   |     | COOH                              |       |                     |
|-----|-------------------------------------------------------|-----|-----------------------------------|-------|---------------------|
|     | <u>表31</u>                                            |     | N S (I-A                          | \-31) |                     |
| No. | E                                                     | No. |                                   | No.   | E                   |
| 1   | <b>CH₃</b>                                            | 16  | CI                                | 26    | CH <sub>3</sub>     |
| 2   | <b>CH</b> <sub>3</sub>                                |     | F                                 |       | ÇH₃                 |
| 3   | CH <sub>3</sub>                                       | 17  | O F                               | 27    | H <sub>2</sub> C CI |
| 4   | CH <sub>3</sub><br>CH <sub>3</sub><br>CH <sub>3</sub> |     | FF                                | 28    | H <sub>3</sub> C CI |
| 5   | O CH <sub>3</sub>                                     | 18  |                                   |       |                     |
| 6   | CH <sub>O</sub> CH                                    |     | NO <sub>2</sub> CH <sub>3</sub>   | 29    | FF                  |
| 7   | O CH3                                                 | 19  |                                   |       | O CH <sub>3</sub>   |
| 8   | O CH <sub>3</sub>                                     | 20  | 1 1 1                             | 30    | CH <sub>2</sub>     |
| 9   |                                                       |     | CHO<br>CH <sub>3</sub>            | 31    | CH <sub>3</sub>     |
| 10  | 1 1                                                   | 2   | NO <sub>2</sub>                   |       | CH <sub>3</sub>     |
| 11  |                                                       | 2:  | 2 CH <sub>3</sub> NO <sub>2</sub> | 32    |                     |
| 12  |                                                       |     | O CH <sub>3</sub>                 | 3:    | CH <sub>3</sub>     |
| 13  | 3 OCI                                                 | 2   | 3 CI                              | ,     |                     |
| 1.  |                                                       | 2   | CH <sub>3</sub>                   | 3     | CI F.F.             |
| 1   | CI CI CI                                              | 2   | 25 <b>O</b> Br                    | 3     | 5 <b>F</b>          |

【0081】 【表32】

|     |                                                       | _   | CO₂H                            |             |                     |
|-----|-------------------------------------------------------|-----|---------------------------------|-------------|---------------------|
|     | 表32                                                   | Ç   |                                 | I-A-32)     |                     |
|     |                                                       |     | ✓ E                             | <del></del> |                     |
| No. | E                                                     | No. | E                               | No.         | E<br>ÇH₃            |
| 1   | CH₃                                                   | 16  | ~o CI                           | 26          | CH <sub>3</sub>     |
| 2   | CH₃                                                   |     | F CI                            |             | ÇH₃                 |
| 3   | CH <sub>3</sub>                                       | 17  | F                               | 27          |                     |
| 4   | CH <sub>3</sub><br>CH <sub>3</sub><br>CH <sub>3</sub> |     | FF                              | 28          | H <sub>3</sub> C CI |
| 5   | O CH <sub>3</sub>                                     | 18  | P O F                           |             |                     |
| 6   | CH3                                                   |     | NO <sub>2</sub> CH <sub>3</sub> | 29          | F                   |
| 7   | O^CH <sub>3</sub>                                     | 19  |                                 | 30          | O CH <sub>3</sub>   |
| 8   | O CH <sub>3</sub>                                     | 20  | 1 1 1                           |             | CH₃                 |
| 9   |                                                       |     | CHO<br>CH <sub>3</sub>          | 31          | CH <sub>3</sub>     |
| 10  | H CH3                                                 | 21  | NO <sub>2</sub>                 |             | CH <sub>3</sub>     |
| 11  |                                                       | 22  | CH <sub>3</sub> NO <sub>2</sub> | 32          |                     |
| 12  | ON                                                    |     | O CH <sub>3</sub>               | 33          | CH <sub>3</sub>     |
| 13  | CI                                                    | 23  | CI                              |             | CH <sub>3</sub>     |
|     | O CI CI                                               | 24  | 1 8 1                           |             |                     |
| 14  | CI                                                    |     | CH <sub>3</sub>                 |             | CI F F              |
| 15  | - 1                                                   | 2   |                                 | 35          |                     |

【0082】 【表33】

表33 CO<sub>2</sub>H (I-A-33)

|     |                                                                                 |     | ~E                              |     |                                   |
|-----|---------------------------------------------------------------------------------|-----|---------------------------------|-----|-----------------------------------|
| No. | E                                                                               | No. | E                               | No. | E                                 |
| 1   | CH₃                                                                             | 16  | O CI                            | 26  | CH <sub>3</sub> CH <sub>3</sub>   |
| 2   | CH <sub>3</sub>                                                                 |     | ÇI<br>F                         |     | ÇH₃ .                             |
| .3  | CH <sub>3</sub> CH <sub>3</sub> CH <sub>3</sub> CH <sub>3</sub> CH <sub>3</sub> | 17  | o F                             | 27  | H <sub>3</sub> C CI               |
| 4   | · • • • • • • • • • • • • • • • • • • •                                         |     | F F                             | 28  | ~°                                |
| 5   | O CH <sub>3</sub>                                                               | 18  | F                               |     |                                   |
| 6   | CH CH                                                                           | 19  | NO <sub>2</sub> CH <sub>3</sub> | 29  | FFF                               |
| 7   | O^CH <sub>3</sub>                                                               |     | , o , ci                        | 30  | CH <sub>3</sub>                   |
| 8   | CH <sub>3</sub>                                                                 | 20  | СНО                             |     | CH <sub>3</sub> CH <sub>3</sub>   |
| 9   | H                                                                               | 21  | O <sub>CH3</sub>                | 31  |                                   |
| 10  | CH <sub>3</sub>                                                                 |     | NO <sub>2</sub>                 |     | CH <sub>3</sub>                   |
| 11  |                                                                                 | 22  | 0 NO2                           | 32  |                                   |
| 12  |                                                                                 |     | O. CH <sub>3</sub>              | 3   | 3 CH <sub>3</sub> CH <sub>3</sub> |
| 13  | S CI                                                                            | 2:  | CI                              |     |                                   |
|     | O CI CI                                                                         | 2   | 1 1 1                           | 3   | 4                                 |
| 14  | CI                                                                              |     | CH <sub>3</sub>                 |     | CI F F                            |
| 1   |                                                                                 | 2   | 5                               |     | 95 F                              |

[0083] 【表34】

表34 O CO<sub>2</sub>H (I-A-34)

|     |                                                                                 |             | `E                              |     |                                 |
|-----|---------------------------------------------------------------------------------|-------------|---------------------------------|-----|---------------------------------|
| No. | E                                                                               | No.         | E                               | No. | CH <sub>3</sub>                 |
| 1   | CH <sub>3</sub>                                                                 | 16          | OCI                             | 26  | CH <sub>3</sub>                 |
| 2   | CH <sub>3</sub>                                                                 |             | F _                             |     | CH <sub>3</sub>                 |
| 3   | CH <sub>3</sub> CH <sub>3</sub> CH <sub>3</sub> CH <sub>3</sub> CH <sub>3</sub> | 17          | O F                             | 27  | H <sub>3</sub> C Cl             |
| 4   |                                                                                 |             | F F                             | 28  |                                 |
| 5   | O CH <sub>3</sub>                                                               | 18          | F                               |     |                                 |
| 6   | CH CH                                                                           | 3 19        | NO <sub>2</sub> CH <sub>3</sub> | 29  | FFF                             |
| 7   | O CH <sub>3</sub>                                                               |             | .oci                            | 30  | O CH <sub>3</sub>               |
| 8   | CH <sub>3</sub>                                                                 | ]<br>]<br>] | сно                             |     | CH <sub>3</sub> CH <sub>3</sub> |
| 9   | H                                                                               | 21          | O CH <sub>3</sub>               | 31  | CH <sub>3</sub>                 |
| 10  |                                                                                 |             | NO <sub>2</sub>                 | 32  | CH₃                             |
| 11  |                                                                                 | 22          | NO <sub>2</sub>                 | 32  |                                 |
| 12  |                                                                                 |             | CH <sub>3</sub>                 | 33  | CH <sub>3</sub>                 |
| 1:  | 3 OCI                                                                           | 23          | CI                              |     |                                 |
|     | O CI CI                                                                         | 24          | 1 11 41                         |     |                                 |
| 1   | 4 CI CI CI                                                                      |             | CH <sub>3</sub>                 |     | 5 CI F F                        |
| 1   | 5 CI CI                                                                         | 25          |                                 |     |                                 |

【0084】 【表35】

表35 ON COOH (I-A-35)

|     | •                                                     | -   | ~E ~                            |     |                     |
|-----|-------------------------------------------------------|-----|---------------------------------|-----|---------------------|
| No. | E                                                     | No. | E                               | No. | E                   |
| 1   | CH <sub>3</sub>                                       | 16  | ~°CI                            | 26  | CH <sub>3</sub>     |
| 2   | <b>V</b> CH₃                                          |     | CI F                            |     | ÇH₃                 |
| 3   | CH <sub>3</sub>                                       | 17  | F                               | 27  | H <sub>2</sub> C Cl |
| 4   | CH <sub>3</sub><br>CH <sub>3</sub><br>CH <sub>3</sub> |     | F F                             | 28  | H <sub>3</sub> C Cl |
| 5   | CH <sub>3</sub>                                       | 18  | F                               |     |                     |
| 6.  | CH CH                                                 | 1   | NO <sub>2</sub> CH <sub>3</sub> | 29  | F                   |
| 7   | <b>✓</b> ✓ O CH <sub>3</sub>                          | 19  |                                 | 30  | CH <sub>3</sub>     |
| 8   | CH <sub>3</sub>                                       | 20  | 1 1 1                           | 30  | CH <sub>3</sub>     |
| 9   |                                                       |     | CHO<br>CH <sub>3</sub>          | 31  | CH <sub>3</sub>     |
| 10  | H CH3                                                 | 21  |                                 |     | CH <sub>3</sub>     |
| 11  | Ö                                                     |     | CH <sub>3</sub>                 | 32  |                     |
| 12  | N N                                                   | 22  |                                 |     | CH <sub>3</sub>     |
|     | Vo CI                                                 | 23  | ام لا                           | 33  | CH <sub>3</sub>     |
| 1:  |                                                       |     | CI<br>NO <sub>2</sub>           | 34  |                     |
| 1   | 4                                                     | 24  | CH <sub>3</sub>                 |     | CI F F              |
|     | CI                                                    | 2   | 5 O Br                          | 3   | 1、0. 太人-            |
| [1  | 5 CI CI                                               |     |                                 | l_  |                     |

【0085】 【表36】

表36 COOH (I-A-36)

|     |                                                       | ·   | ~E ~                            |     |                                   |
|-----|-------------------------------------------------------|-----|---------------------------------|-----|-----------------------------------|
| No. | E                                                     | No. | E                               | No. | E                                 |
| 1   | CH <sub>3</sub>                                       | 16  | ~o~~ci                          | 26  | CH <sub>3</sub>                   |
| 2   | CH <sub>3</sub>                                       |     | CI<br>F                         |     | ÇH₃                               |
| 3   | CH <sub>3</sub>                                       | 17  | O                               | 27  | H <sub>2</sub> C CI               |
| 4   | CH <sub>3</sub><br>CH <sub>3</sub><br>CH <sub>3</sub> |     | F F                             | 28  | 0                                 |
| 5   | O CH <sub>3</sub>                                     | 18  | O C F                           |     |                                   |
| 6   | CH:                                                   |     | NO <sub>2</sub>                 | 29  | FFF                               |
| 7   | O^CH <sub>3</sub>                                     | 19  |                                 | 30  | O CH <sub>3</sub>                 |
| 8   | O CH <sub>3</sub>                                     | 20  | CHO                             |     | CH <sub>3</sub>                   |
| 9   |                                                       | 2   | O, CH <sub>3</sub>              | 3-  | CH <sub>3</sub>                   |
| 10  | \ \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\                 |     | NO <sub>2</sub>                 |     | CH <sub>3</sub>                   |
| 11  |                                                       | 22  | CH <sub>3</sub> NO <sub>2</sub> | 3:  | 2                                 |
| 12  | N                                                     |     | O, CH <sub>3</sub>              | 3   | 3 CH <sub>3</sub> CH <sub>3</sub> |
| 13  | S CI                                                  | 2   | 3 CI                            |     | O O O                             |
|     | O CI CI                                               | 2   | 4 ONNO2                         | 3   | 14                                |
| 14  | CI                                                    |     | CH <sub>3</sub>                 |     | CI F F                            |
| 1:  |                                                       | 2   | 25                              | _ 3 | 35 F                              |

【00'86】 【表37】

| 表37 | N COOH              | Δ_37) |
|-----|---------------------|-------|
|     | CN <sub>E</sub> (I- |       |

| No. | E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | No. | E                                  | No. | E                               |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|------------------------------------|-----|---------------------------------|
| 1   | CH <sub>3</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 16  | O                                  | 26  | CH <sub>3</sub>                 |
| 2   | <b>✓</b> CH <sub>3</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |     | CI<br>F                            |     | ÇH₃                             |
| 3   | CH <sub>3</sub> CH <sub>3</sub> CH <sub>3</sub> CH <sub>3</sub> CH <sub>3</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 17  | O F                                | 27  | H <sub>3</sub> C CI             |
| 4   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     | F F                                | 28  |                                 |
| 5   | O CH₃                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 18  | F                                  |     |                                 |
| 6   | CH <sub>3</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 19  | NO <sub>2</sub> CH <sub>3</sub>    | 29  | FFF                             |
| 7   | O CH <sub>3</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |     | , o, a, ci                         | 30  | O CH <sub>3</sub>               |
| 8   | CH <sub>3</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 20  | сно                                |     | CH <sub>3</sub> CH <sub>3</sub> |
|     | The state of the s | 21  | O CH <sub>3</sub>                  | 31  | CH₃                             |
| 10  | CH <sub>3</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     | NO <sub>2</sub><br>ÇH <sub>3</sub> | 32  | ĊH₃                             |
| 11  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 22  | NO <sub>2</sub>                    | 32  |                                 |
| 12  | O CI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 23  | O CH <sub>3</sub>                  | 33  | CH <sub>3</sub>                 |
| 13  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 23  | CI                                 | 24  |                                 |
| 14  | O CI CI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 24  | NO <sub>2</sub>                    | 34  |                                 |
| ļ   | CI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 25  | > .0.                              | 35  | CI F F                          |
| 15  | CI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |     |                                    |     |                                 |

【0087】 【表38】

表38 COOH (I-A-38)

|     |                                                         |     | E                               |     |                                 |
|-----|---------------------------------------------------------|-----|---------------------------------|-----|---------------------------------|
| No. | E                                                       | No. | E .                             | No. | E                               |
| 1   | CH <sub>3</sub>                                         | 16  | O                               | 26  | CH <sub>3</sub> CH <sub>3</sub> |
| 2   | <b>✓✓✓</b> CH <sub>3</sub>                              |     | CI<br>F                         |     | ÇH₃                             |
| 3   | CH <sub>3</sub>                                         | 17  | <b>V</b> O <b>V</b> F .         | 27  |                                 |
| 4   | CH <sub>3</sub><br>CH <sub>3</sub><br>O CH <sub>3</sub> |     | FF                              |     | H <sub>3</sub> C Cl             |
| 5   | VO VCH3                                                 | 18  | F                               | 28  |                                 |
| 6   | CH <sub>3</sub>                                         |     | NO <sub>2</sub> CH <sub>3</sub> | 29  | F                               |
| 7   | <b>✓</b> ✓∕′0′CH₃                                       | 19  |                                 |     | F F CH <sub>3</sub>             |
| 8   | CH <sub>3</sub>                                         | 20  | CI                              | 30  |                                 |
| 9   |                                                         |     | CHO<br>CH <sub>3</sub>          | 31  | CH <sub>3</sub>                 |
| 10  | TH-VCH3                                                 | 21  | NO <sub>2</sub>                 |     | CH <sub>3</sub>                 |
| 11  |                                                         | 22  | CH <sub>3</sub> NO <sub>2</sub> | 32  |                                 |
| 12  | O                                                       |     |                                 |     | CH <sub>3</sub>                 |
| 13  | CI                                                      | 23  | ill                             | 33  | CH <sub>3</sub>                 |
|     | CI CI                                                   | 24  | O NO <sub>2</sub>               | 34  |                                 |
| 14  | CI                                                      | 24  | СН₃                             |     | Çi F                            |
| 15  | CI                                                      | 25  | O                               | 35  |                                 |
| '   | CICCI                                                   |     |                                 |     |                                 |

【0088】 【表39】

|     | <u>表39</u>                                                               |     | E COOH                          | A-39) |                 |
|-----|--------------------------------------------------------------------------|-----|---------------------------------|-------|-----------------|
| No. | E                                                                        | No. | E                               | No.   | Е               |
| 1   | CH₃                                                                      | 16  | O                               | 26    | CH <sub>3</sub> |
| 2   | CH <sub>3</sub>                                                          |     | CI                              |       | ÇH₃             |
| 3   | CH <sub>3</sub>                                                          | 17  | <b>V</b> O√F                    | 27    |                 |
| 4   | CH <sub>3</sub><br>CH <sub>3</sub><br>CH <sub>3</sub><br>CH <sub>3</sub> |     | F                               |       | H₃C CI          |
| 5   | CH <sub>3</sub>                                                          | 18  | P O F                           | 28    |                 |
| 6   | CH <sub>3</sub>                                                          |     | NO <sub>2</sub> CH <sub>3</sub> | 29    | F               |
| 7   | <b>✓</b> ✓ O ∩ CH <sub>3</sub>                                           | 19  |                                 |       | CH <sub>3</sub> |
| 8   | ✓✓✓° CH <sub>3</sub>                                                     | 20  | CI                              | 30    | CH₃             |
| 9   |                                                                          |     | CHO CH <sub>3</sub>             | 31    | CH <sub>3</sub> |
| 10  | H-VCH3                                                                   | 21  | NO <sub>2</sub>                 |       | CH <sub>3</sub> |
| 11  |                                                                          | 22  | CH <sub>3</sub> NO <sub>2</sub> | 32    |                 |
| 12  | - ON                                                                     |     | OCH <sub>3</sub>                | 33    | CH <sub>3</sub> |
| 13  | CI                                                                       | 23  | CI                              |       | CH <sub>3</sub> |
| 14  | O CI CI                                                                  | 24  | NO <sub>2</sub>                 | 34    |                 |
| 15  | CI                                                                       | 25  | > .0Br                          | 35    | CI F F          |

【0089】 【表40】

CI.

【0090】 【表41】

表41 O N COOH (I-A-41)

|     |                 |     | E                                |     |                                   |
|-----|-----------------|-----|----------------------------------|-----|-----------------------------------|
| No. | E               | No. | E.                               | No. | E                                 |
| 1   | CH <sub>3</sub> | 12  | O CH <sub>3</sub>                | 22  | F F F                             |
| 2   | CH <sub>3</sub> | 13  | CI                               | 23  | O F F                             |
| 3   | CI              | 14  | CI                               | 24  | CI                                |
| 4   | CI<br>CI<br>F   | 15  | NO <sub>2</sub>                  | 25  | L CI                              |
| 5   | CI              | 16  | CI                               | 26  | N CI                              |
| 6   | NO <sub>2</sub> | 17  | O F F                            | 27  | s Cl                              |
| 7   | F               | 40  | CI                               | 28  | CH <sub>3</sub>                   |
| 8   | O F F           | 18  | H <sub>3</sub> C CH <sub>3</sub> |     | H CH <sub>3</sub> CH <sub>3</sub> |
| 9   | CI CH3          | 19  | CH <sub>3</sub>                  | 29  | S CH <sub>3</sub> CH <sub>3</sub> |
| 10  | 0               | 20  | CH <sub>3</sub>                  | 30  |                                   |
| 11  | CH <sub>3</sub> | 21  | CH <sub>3</sub>                  | 31  | CH <sub>3</sub> CI                |

【0091】 【表42】

表42 O N COOH (I-A-42)

|     |                 | 1    | E                                | ГТ  |                                   |
|-----|-----------------|------|----------------------------------|-----|-----------------------------------|
| No. | E               | No.  | E                                | No. | E                                 |
| 1   | CH <sub>3</sub> | 12   | O CH <sub>3</sub>                | 22  | F F _                             |
| 2   | CH <sub>3</sub> | 13   | CI                               | 23  | O F                               |
| 3   | CI              | 14   | CI F                             | 24  | CI                                |
| 4   | O CI CI         | 15   | O NO <sub>2</sub>                | 25  | G                                 |
| 5   | CI              | 16   | CI                               | 26  | N CI                              |
| 6   | NO <sub>2</sub> | 17   | F F                              | 27  | s Ci                              |
| 7   | O F             |      | CI                               | 28  | CH <sub>3</sub>                   |
| 8   | F F             | 18   | H <sub>3</sub> C CH <sub>3</sub> |     | CH <sub>3</sub> CH <sub>3</sub>   |
| 9   | CI CH3          | 19   |                                  | 29  | S CH <sub>3</sub> CH <sub>3</sub> |
| 10  | CH <sub>3</sub> | 20   | s CH <sub>3</sub>                | 30  |                                   |
| 11  | CH <sub>3</sub> | . 21 | CH <sub>3</sub>                  | 31  | CH <sub>3</sub> CI                |

【0092】 【表43】

表43 O (I-A-43) CO<sub>2</sub>H

| No. | E                    | No. | E                 | No. | E                                 |
|-----|----------------------|-----|-------------------|-----|-----------------------------------|
| 1   | CH <sub>3</sub>      | 12  | O CH <sub>3</sub> | 22  | F F F                             |
| 2 . | CH <sub>3</sub>      | 13  | O CI              | 23  | 0 F F                             |
| 3   | CI                   | 14  | CI F              | 24  | CI CI                             |
| 4   | CI                   | 15  | O NO <sub>2</sub> | 25  |                                   |
| 5   | CI                   | 16  | CI                | 26  | N CI                              |
| 6   | NO <sub>2</sub>      | 17  | 0 F F             | 27  | SCI                               |
| 7   | 0, 0, F              | 18  | CI                | 28  | CH <sub>3</sub>                   |
| 8   | FF                   |     | H₃C CH₃           | 29  | CH <sub>3</sub> CH <sub>3</sub>   |
| 9   | CI O CH <sub>3</sub> | 19  | CH <sub>3</sub>   | 23  | S CH <sub>3</sub> CH <sub>3</sub> |
| 10  | CH <sub>3</sub>      | 20  | S-CH <sub>3</sub> | 30  | CH₃ <sub>CI</sub>                 |
| 11  | CH <sub>3</sub>      | 21  | CH <sub>3</sub>   | 31  | CI CI                             |

【0093】 【表44】

表44 ON S CO<sub>2</sub>H (I-A-44)

|     | E               |     |                                         |     |                                   |  |  |  |
|-----|-----------------|-----|-----------------------------------------|-----|-----------------------------------|--|--|--|
| No. | E               | No. | E                                       | No. | E                                 |  |  |  |
| 1   | CH <sub>3</sub> | 12  | O CH <sub>3</sub>                       | 22  | F F F                             |  |  |  |
| 2   | CH <sub>3</sub> | 13  | CI                                      | 23  | O F F                             |  |  |  |
| 3   | CI              | 14  | CI F                                    | 24  | CI                                |  |  |  |
| 4   | O CI<br>F       | 15  | O NO <sub>2</sub>                       | 25  | L CI                              |  |  |  |
| 5   | CI              | 16  | CI                                      | 26  | N CI                              |  |  |  |
| 6   | NO <sub>2</sub> | 17  | 0, FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF | 27  | s CI                              |  |  |  |
| 7   | F               | 40  | CI                                      | 28  | CH <sub>3</sub>                   |  |  |  |
| 8   | FF              | 18  | H₃C CH₃                                 |     | H CH <sub>3</sub> CH <sub>3</sub> |  |  |  |
| 9   | CI CH3          | 19  |                                         | 29  | S CH <sub>3</sub> CH <sub>3</sub> |  |  |  |
| 10  | CH <sub>3</sub> | 20  | S-CH3                                   | 30  |                                   |  |  |  |
| 11  | CH <sub>3</sub> | 21  | CH <sub>3</sub>                         | 31  | CH <sub>3</sub> CI                |  |  |  |

【0094】 【表45】

<u> 表45</u>

| No. | E                    | No. | E                                | No. | E                                 |
|-----|----------------------|-----|----------------------------------|-----|-----------------------------------|
| 1   | CH <sub>3</sub>      | 12  | O CH <sub>3</sub>                | 22  | FFF                               |
| 2   | CH <sub>3</sub>      | 13  | CI                               | 23  | O F                               |
| 3   | CI                   | 14  | CI F                             | 24  | CI                                |
| 4   | CI                   | 15  | NO <sub>2</sub>                  | 25  | L CI                              |
| 5   | CI                   | 16  | CI                               | 26  | CI                                |
| 6   | NO <sub>2</sub>      | 17  | O F F                            | 27  | S                                 |
| 7   | F                    | 18  | CI                               | 28  | CH <sub>3</sub>                   |
| 8   | F F                  |     | H <sub>3</sub> C CH <sub>3</sub> | 29  | CH <sub>3</sub> CH <sub>3</sub>   |
| 9   | CI O CH <sub>3</sub> | 19  | CH <sub>3</sub>                  |     | S CH <sub>3</sub> CH <sub>3</sub> |
| 10  | CI CH₃               | 20  |                                  | 30  | CH <sub>3</sub> CI                |
| 11  | CH <sub>3</sub>      | 21  |                                  | 31  |                                   |

【0095】 【表46】

<u>表46</u>

O CO<sub>2</sub>H (I-A-46)

| No. | E                  | No. | E                                | No. | E                                 |
|-----|--------------------|-----|----------------------------------|-----|-----------------------------------|
| 1   | O CH <sub>3</sub>  | 12  | O CH <sub>3</sub>                | 22  | FFF                               |
| 2   | CH <sub>3</sub>    | 13  | CI                               | 23  | F                                 |
| 3   | CI                 | 14  | CI                               | 24  | CI CI                             |
| 4   | CI                 | 15  | O NO <sub>2</sub>                | 25  | CI                                |
| 5   | o CI               | 16  | CI                               | 26  | CI                                |
| 6   | NO <sub>2</sub>    | 17  | 0 F F F                          | 27  | s CI                              |
| 7   | F                  |     | CI                               | 28  | CH <sub>3</sub>                   |
| 8   | O F F              | 18  | H <sub>3</sub> C CH <sub>3</sub> |     | H CH <sub>3</sub> CH <sub>3</sub> |
| 9   | CI CH <sub>3</sub> | 19  | CH <sub>3</sub>                  | 29  | S CH <sub>3</sub> CH <sub>3</sub> |
| 10  | CH <sub>3</sub>    | 20  | CH <sub>3</sub>                  | 30  |                                   |
| 11  | CH <sub>3</sub>    | 21  | CH <sub>3</sub>                  | 31  | CH <sub>3</sub> CI                |

【0096】 【表47】

表47 O N COOH (I-A-47)

|     | <u> </u>             | 1   | E                 | No.  | E                                 |
|-----|----------------------|-----|-------------------|------|-----------------------------------|
| No. | E                    | No. | <del></del>       | 140. | - F                               |
| 1   | CH <sub>3</sub>      | 12  | O CH <sub>3</sub> | 22   | F                                 |
| 2   | CH <sub>3</sub>      | 13  | CI                | 23   | O F                               |
| 3   | CI                   | 14  | CI F              | 24   | CI                                |
| 4   | CI<br>CI<br>F        | 15  | NO <sub>2</sub>   | 25   |                                   |
| 5   | CI                   | 16  | CI                | 26   | N CI                              |
| 6   | NO <sub>2</sub>      | 17  | ~0~~~F            | 27   | S CI                              |
| 7   | F                    |     | CI.               | 28   | CH <sub>3</sub>                   |
| 8   | O F F                | 18  | Н₃С СН₃           |      | H CH <sub>3</sub> CH <sub>3</sub> |
| 9   | CI O CH <sub>3</sub> | 19  | CH <sub>3</sub>   | 29   | S CH <sub>3</sub> CH <sub>3</sub> |
| 10  | CH <sub>3</sub>      | 20  | CH <sub>3</sub>   | 30   |                                   |
| 11  | CH <sub>3</sub>      | 21  | CH <sub>3</sub>   | 31   | CH <sub>3</sub> Cl                |

【0097】 【表48】

| <u>表48</u> | <b>Q</b> | N O S | (I-A-48 | ) |
|------------|----------|-------|---------|---|
| E          | No.      | E     | No.     | Γ |

| No. | E                    | No. | E                                        | No. | E .                                     |
|-----|----------------------|-----|------------------------------------------|-----|-----------------------------------------|
| 1   | CH <sub>3</sub>      | 12  | CH <sub>3</sub>                          | 22  | F                                       |
| 2   | CH3                  | 13  | CI CI                                    | 23  | P F F F F F F F F F F F F F F F F F F F |
| 3   | CI                   | 14  | CI                                       | 24  | CI CI                                   |
| 4   | O CI<br>F            | 15  | NO <sub>2</sub>                          | 25  | L CI                                    |
| 5   | CI                   | 16  | CI                                       | 26  | CI CI                                   |
| 6   | NO <sub>2</sub>      | 17  | ~0 ~ F F F F F F F F F F F F F F F F F F | 27  | s Ci                                    |
| 7   | F O O F              | 18  | CI                                       | 28  | CH <sub>3</sub>                         |
| 8   | F                    | 10  | H <sub>3</sub> C CH <sub>3</sub>         |     | H CH <sub>3</sub> CH <sub>3</sub>       |
| 9   | CI O CH <sub>3</sub> | 19  | CH <sub>3</sub>                          | 29  | S CH <sub>3</sub> CH <sub>3</sub>       |
| 10  | CH <sub>3</sub>      | 20  | SCH3                                     | 30  |                                         |
| 11  | CH <sub>3</sub>      | 21  | CH <sub>3</sub>                          | 31  | CH <sub>3</sub> CI                      |

【0 0.9 8】 【表4 9】

表49 (I-A-49)

|     | E                 |     |                                  |     |                                   |  |  |  |
|-----|-------------------|-----|----------------------------------|-----|-----------------------------------|--|--|--|
| No. | E                 | No. | E                                | No. | E                                 |  |  |  |
| 1   | O CH <sub>3</sub> | 12  | O CH <sub>3</sub>                | 22  | FFF                               |  |  |  |
| 2   | CH <sub>3</sub>   | 13  | CI                               | 23  | 0 F                               |  |  |  |
| ·з  | CI                | 14  | CI F                             | 24  | CI CI                             |  |  |  |
| 4   | O CI<br>F         | 15  | O NO <sub>2</sub>                | 25  |                                   |  |  |  |
| 5   | CI                | 16  | CI                               | 26  | N CI                              |  |  |  |
| 6   | NO <sub>2</sub>   | 17  | O F F                            | 27  | s CI                              |  |  |  |
| 7   | F                 | 40  | CI                               | 28  | CH <sub>3</sub>                   |  |  |  |
| 8   | FF                | 18  | H <sub>3</sub> C CH <sub>3</sub> |     | CH <sub>3</sub> CH <sub>3</sub>   |  |  |  |
| 9   | CI CH3            | 19  | CH <sub>3</sub>                  | 29  | S CH <sub>3</sub> CH <sub>3</sub> |  |  |  |
| 10  | CH <sub>3</sub>   | 20  | S CH <sub>3</sub>                | 30  |                                   |  |  |  |
| 11  | CH <sub>3</sub>   | 21  | CH <sub>3</sub>                  | 31  | CH <sub>3</sub> CI                |  |  |  |

【0099】 【表50】

> 表50 N CO₂H S (I-A-50

|     | E .                  |     |                                  |     |                                   |  |  |  |  |
|-----|----------------------|-----|----------------------------------|-----|-----------------------------------|--|--|--|--|
| No. | E                    | No. | E                                | No. | E                                 |  |  |  |  |
| 1   | CH <sub>3</sub>      | 12  | O CH <sub>3</sub>                | 22  | F F F                             |  |  |  |  |
| 2   | CH <sub>3</sub>      | 13  | CI                               | 23  | 0 F F                             |  |  |  |  |
| 3   | CI                   | 14  | CI F                             | 24  |                                   |  |  |  |  |
| 4   | CI                   | 15  | NO <sub>2</sub>                  | 25  | CI                                |  |  |  |  |
| 5   | CI                   | 16  | CI                               | 26  | N CI                              |  |  |  |  |
| 6   | NO <sub>2</sub>      | 17  | F F F                            | 27  | s Ci                              |  |  |  |  |
| 7   | F                    | 18  | CI                               | 28  | CH <sub>3</sub>                   |  |  |  |  |
| 8   | F                    | 10  | H <sub>3</sub> C CH <sub>3</sub> |     | CH <sub>3</sub> CH <sub>3</sub>   |  |  |  |  |
| 9   | CI O CH <sub>3</sub> | 19  | CH <sub>3</sub>                  | 29  | S CH <sub>3</sub> CH <sub>3</sub> |  |  |  |  |
| 10  | CI CH <sub>3</sub>   | 20  | S-CH <sub>3</sub>                | 30  | CH₃ÇI                             |  |  |  |  |
| 11  | CH <sub>3</sub>      | 21  | CI<br>CH <sub>3</sub>            | 31  |                                   |  |  |  |  |

【0100】 【表51】

表51 COOH (I-A-51

| No. | E                 | No. | E                 | No. | E                                 |
|-----|-------------------|-----|-------------------|-----|-----------------------------------|
| 1   | O CH <sub>3</sub> | 12  | O CH <sub>3</sub> | 22  | F F F                             |
| 2   | CH <sub>3</sub>   | 13  | O CI              | 23  | ~° F                              |
| 3   | CI                | 14  | CI                | 24  | CI CI                             |
| 4   | CI<br>CI<br>F     | 15  | O NO <sub>2</sub> | 25  |                                   |
| 5   | CI                | 16  | CI                | 26  | N CI                              |
| 6   | NO <sub>2</sub>   | 17  | 0 F F             | 27  | s CI                              |
| 7   | F                 |     | CI                | 28  | CH <sub>3</sub>                   |
| 8   | O F F             | 18  | н₃с сн₃           |     | CH <sub>3</sub> CH <sub>3</sub>   |
| 9   | CI CH3            | 19  | CH <sub>3</sub>   | 29  | S CH <sub>3</sub> CH <sub>3</sub> |
| 10  | CH <sub>3</sub>   | 20  | S-CH3             | 30  |                                   |
| 11  | CH <sub>3</sub>   | 21  | CH <sub>3</sub>   | 31  | CH <sub>3</sub> CI                |

【0101】 【表52】

|            |      | ;O <sub>2</sub> H |
|------------|------|-------------------|
| <u>表52</u> | ON E | (I-A-52)          |

|     |                    |     | E                 |     |                                         |
|-----|--------------------|-----|-------------------|-----|-----------------------------------------|
| No. | E                  | No. | E                 | No. | E                                       |
| 1   | CH <sub>3</sub>    | 12  | O CH <sub>3</sub> | 22  | F F                                     |
| 2   | CH <sub>3</sub>    | 13  | CI                | 23  | O F F F F F F F F F F F F F F F F F F F |
| 3   | CI                 | 14  | CI F              | 24  | O CI                                    |
| 4   | O CI<br>F          | 15  | NO <sub>2</sub>   | 25  | L CI                                    |
| 5   | CI                 | 16  | CI CI             | 26  | N                                       |
| 6   | NO <sub>2</sub>    | 17  | 0 F F             | 27  | s CI                                    |
| 7   | F                  |     | CI                | 28  | CI CH <sub>3</sub>                      |
| 8   | FF                 | 18  | н₃с Сн₃           |     | CH <sub>3</sub> CH <sub>3</sub>         |
| 9   | CI CH <sub>3</sub> | 19  | CH <sub>3</sub>   | 29  | S CH <sub>3</sub> CH <sub>3</sub>       |
| 10  | CH₃ CH₃            | 20  | CH <sub>3</sub>   | 30  |                                         |
| 11  | CH <sub>3</sub>    | 21  | CH <sub>3</sub>   | 31  | CH <sub>3</sub> CI                      |

【0102】 【表53】

表53 CO<sub>2</sub>H (I-A-53)

| No. | E                    | No. | E                                | No. | E                                 |
|-----|----------------------|-----|----------------------------------|-----|-----------------------------------|
| 1   | CH <sub>3</sub>      | 12  | O CH <sub>3</sub>                | 22  | F F F                             |
| 2   | CH <sub>3</sub>      | 13  | O CI CI                          | 23  | O F                               |
| 3   | CI                   | 14  | CI F                             | 24  | CI CI                             |
| 4   | CI CI                | 15  | NO <sub>2</sub>                  | 25  | L CI                              |
| 5   | CI                   | 16  | CI                               | 26  | N CI                              |
| 6   | NO <sub>2</sub>      | 17  | -0 FF                            | 27  | s CI                              |
| 7   | F                    | 1.0 | CI                               | 28  | CI CH <sub>3</sub>                |
| 8   | F F                  | 18  | H <sub>3</sub> C CH <sub>3</sub> |     | H CH <sub>3</sub> CH <sub>3</sub> |
| 9   | CI O CH <sub>3</sub> | 19  | CH <sub>3</sub>                  | 29  | S CH <sub>3</sub> CH <sub>3</sub> |
| 10  | CH <sub>3</sub>      | 20  | CH <sub>3</sub>                  | 30  |                                   |
| 11  | CH <sub>3</sub>      | 21  | CH <sub>3</sub>                  | 31  | CH <sub>3</sub> CI                |

【0103】 【表54】

表54 O CO<sub>2</sub>H (I-A-54)

| No. | E                    | No. | E                 | No. | E                                 |
|-----|----------------------|-----|-------------------|-----|-----------------------------------|
| 1   | O CH <sub>3</sub>    | 12  | O CH <sub>3</sub> | 22  | F F F F                           |
| 2   | CH <sub>3</sub>      | 13  | CI                | 23  | P F                               |
| 3   | CI                   | 14  | CI F              | 24  | CI CI                             |
| 4   | CI<br>CI<br>F        | 15  | O NO <sub>2</sub> | 25  | L CI                              |
| 5   | CI                   | 16  | CI                | 26  | N CI                              |
| 6   | NO <sub>2</sub>      | 17  | -0 FF             | 27  | S CI                              |
| 7   | 9 9 F                | 18  | CI                | 28  | CH <sub>3</sub>                   |
| 8   | FF                   |     | H₃C CH₃           |     | H CH <sub>3</sub> CH <sub>3</sub> |
| 9   | CI O CH <sub>3</sub> | 19  | CH <sub>3</sub>   | 29  | S CH <sub>3</sub> CH <sub>3</sub> |
| 10  | CH <sub>3</sub>      | 20  | CH <sub>3</sub>   | 30  |                                   |
| 11  | CH <sub>3</sub>      | 21  | CH <sub>3</sub>   | 31  | CH <sub>3</sub> CI                |

【0104】 <sup>;</sup> 【表55】

表55 COOH (I-A-55)

| No. | E                  | No. | E                 | No. | E                                 |
|-----|--------------------|-----|-------------------|-----|-----------------------------------|
| 1   | O CH <sub>3</sub>  | 12  | O CH <sub>3</sub> | 22  | F F -                             |
| 2   | CH <sub>3</sub>    | 13  | CI                | 23  | O F F                             |
| 3   | CI                 | 14  | CI F              | 24  | CI CI                             |
| 4   | CI                 | 15  | NO <sub>2</sub>   | 25  |                                   |
| 5   | CI                 | 16  | CI                | 26  | N CI                              |
| 6   | NO <sub>2</sub>    | 17  | O F F             | 27  | S CI                              |
| 7   | -0 F               |     | CI                | 28  | CI CH <sub>3</sub>                |
| 8   | O F F              | 18  | H₃C CH₃           |     | СН3 СН3                           |
| 9   | CI CH <sub>3</sub> | 19  | CH <sub>3</sub>   | 29  | S CH <sub>3</sub> CH <sub>3</sub> |
| 10  | CH <sub>3</sub>    | 20  | CH <sub>3</sub>   | 30  |                                   |
| 11  | CH <sub>3</sub>    | 21  | CH <sub>3</sub>   | 31  | CH <sub>3</sub> CI                |

【0105】 【表56】

表56 COOH (I-A-56)

|     |                    | · · |                                  |     | Е                                 |
|-----|--------------------|-----|----------------------------------|-----|-----------------------------------|
| No. | E                  | No. | E                                | No. | - F                               |
| 1   | O CH <sub>3</sub>  | 12  | O CH <sub>3</sub>                | 22  | F                                 |
| 2   | CH <sub>3</sub>    | 13  | CI                               | 23  | 0 F F                             |
| 3   | CI                 | 14  | CI                               | 24  | CI CI                             |
| 4   | CI<br>CI<br>F      | 15  | NO <sub>2</sub>                  | 25  | H                                 |
| 5   | CI                 | 16  | CI                               | 26  | N CI                              |
| 6   | NO <sub>2</sub>    | 17  | ~0 FF                            | 27  | s CI                              |
| 7   | F                  |     | CI                               | 28  | CH <sub>3</sub>                   |
| 8   | F F                | 18  | H <sub>3</sub> C CH <sub>3</sub> |     | CH <sub>3</sub> CH <sub>3</sub>   |
| .9  | CI CH <sub>3</sub> | 19  | CH <sub>3</sub>                  | 29  | S CH <sub>3</sub> CH <sub>3</sub> |
| 10  | CH <sub>3</sub>    | 20  | S-CH3                            | 30  |                                   |
| 1,1 | CH <sub>3</sub>    | 21  | CH <sub>3</sub>                  | 31  | CH <sub>3</sub> CI                |

【0106】 【表57】

表57 O COOH (I-A-57)

|     |                    |     | E                                |     |                                   |
|-----|--------------------|-----|----------------------------------|-----|-----------------------------------|
| No. | E                  | No. | E                                | No. | E                                 |
| 1   | CH <sub>3</sub>    | 12  | O CH <sub>3</sub>                | 22  | F F F F                           |
| 2   | CH <sub>3</sub>    | 13  | CI                               | 23  | 0 F F                             |
| 3   | CI                 | 14  | CI F                             | 24  | CI CI                             |
| 4   | O CI<br>F          | 15  | NO <sub>2</sub>                  | 25  | H CI                              |
| 5   | CI                 | 16  | CI CI                            | 26  | N CI                              |
| 6   | NO <sub>2</sub>    | 17  |                                  | 27  | s Cl                              |
| 7   | F                  |     | CI                               | 28  | CH <sub>3</sub>                   |
| 8   | O F F              | 18  | H <sub>3</sub> C CH <sub>3</sub> |     | CH <sub>3</sub> CH <sub>3</sub>   |
| 9   | CI CH <sub>3</sub> | 19  | CH <sub>3</sub>                  | 29  | S CH <sub>3</sub> CH <sub>3</sub> |
| 10  | CH₃                | 20  | CH <sub>3</sub>                  | 30  |                                   |
| 11  | CH <sub>3</sub>    | 21  | CH <sub>3</sub>                  | 31  | CH <sub>3</sub> CI                |

【0107】 【表58】

| <u>表58</u> | COOH (I-A-58) |
|------------|---------------|
|------------|---------------|

|     |                 |     | E                 |     |                                         |
|-----|-----------------|-----|-------------------|-----|-----------------------------------------|
| No. | E .             | No. | E                 | No. | E .                                     |
| 1   | CH <sub>3</sub> | 12  | O CH <sub>3</sub> | 22  | F F                                     |
| 2   | CH <sub>3</sub> | 13  | o Ci              | 23  | P F F F F F F F F F F F F F F F F F F F |
| 3   | CI              | 14  | CI                | 24  | CI CI                                   |
| 4   | O CI<br>F       | 15  | O NO <sub>2</sub> | 25  |                                         |
| 5   | CI              | 16  | CI                | 26  | H Ci                                    |
| 6   | NO <sub>2</sub> | 17  | O F F             | 27  | s Cl Cl                                 |
| 7   | 0 F             |     | CI                | 28  | CH <sub>3</sub>                         |
| 8   | O F F           | 18  | H₃C CH₃           |     | CH <sub>3</sub> CH <sub>3</sub>         |
| 9   | CI CH3          | 19  | CH <sub>3</sub>   | 29  | S CH <sub>3</sub> CH <sub>3</sub>       |
| 10  | CH <sub>3</sub> | 20  | CH <sub>3</sub>   | 30  |                                         |
| 11  | CH <sub>3</sub> | 21  | CH <sub>3</sub>   | 31  | CH <sub>3</sub> CI                      |
|     | - ОП3           |     |                   |     | CI                                      |

【0108】

| <u>表59</u> |  | O C C C C C C C C C C C C C C C C C C C | (I-A-59)<br>OOH |
|------------|--|-----------------------------------------|-----------------|
|------------|--|-----------------------------------------|-----------------|

| No. | E                 | No. | · E                              | No. | E                                       |
|-----|-------------------|-----|----------------------------------|-----|-----------------------------------------|
| 1.  | O CH <sub>3</sub> | 12  | CI CH <sub>3</sub>               | 22  | F F F                                   |
| 2   | CH <sub>3</sub>   | 13  | CI                               | 23  | O F F F F F F F F F F F F F F F F F F F |
| 3   | CI                | 14  | CI F                             | 24  | CI CI                                   |
| 4   | O CI<br>F         | 15  | O NO <sub>2</sub>                | 25  |                                         |
| 5   | CI                | 16  | CI                               | 26  | CI                                      |
| 6   | NO <sub>2</sub>   | 17  | 0 F F                            | 27  | s CI                                    |
| 7   | F O O F           | 18  | CI                               | 28  | CI CH <sub>3</sub>                      |
| 8   | FF                |     | H <sub>3</sub> C CH <sub>3</sub> |     | СН3 СН3                                 |
| 9   | CI CH3            | 19  | CH <sub>3</sub>                  | 29  | S CH <sub>3</sub> CH <sub>3</sub>       |
| 10  | CH <sub>3</sub>   | 20  | CH <sub>3</sub>                  | 30  | CH <sub>3</sub> CI                      |
| 11  | CH <sub>3</sub>   | 21  | CH <sub>3</sub>                  | 31  | O CI                                    |

【0109】

|     | <u>表60</u>           | \$ \\ | S COOH            | <b>\-6</b> 0) |                                   |
|-----|----------------------|-------|-------------------|---------------|-----------------------------------|
| No. | E                    | No.   | E                 | No.           | · . E                             |
| 1   | O CH <sub>3</sub>    | 12    | O F F             | 22            | FFF                               |
| 2   | CH <sub>3</sub>      | 13    | o Ci              | 23            | O F F                             |
| 3   | CI CI                | 14    | CI F              | 24            | CI CI                             |
| 4   | O CI                 | 15    | NO <sub>2</sub>   | 25            | L CI                              |
| 5   | CI                   | 16    | CI                | 26            | CI                                |
| 6   | NO <sub>2</sub>      | 17    | 0 F F F           | 27            | SCI                               |
| 7   | 0 F                  | 18    | CI                | 28            | CI CH <sub>3</sub>                |
| 8   | F                    |       | H₃C CH₃           | 20            | _ Д <mark>Сн₃</mark> сн₃          |
| 9   | CI O CH <sub>3</sub> | 19    | CH <sub>3</sub>   | 29            | S CH <sub>3</sub> CH <sub>3</sub> |
| 10  | CI CH <sub>3</sub>   | 20    | S CH <sub>3</sub> | 30            | CH <sub>3</sub> CI                |
| 11  | CH <sub>3</sub>      | 21    | CH <sub>3</sub>   | 31            | CI                                |

【0110】 【表61】

表61 O N COOH (I-E-1)

| No. | E                  | No.      | Ε          |
|-----|--------------------|----------|------------|
| 1   | CH <sub>3</sub>    | 15       | ~~°~       |
| 2   | CH <sub>3</sub>    |          | фн         |
| 3   | ÖH<br>CH₃          | 16       | o ci       |
| 4   | ÖH<br>S<br>ÖH      | 17       | ÖH CI      |
| 5   | ČH CH <sub>3</sub> | 18       | ÖH<br>ÖH   |
| 6   |                    | 19       | OH OH CH3  |
| 7   | ÖН                 | 20       | ÖH<br>✓✓✓S |
| 8   | ÖH O               | 21       | ÖH H       |
| 9   | ÖH O               | 22       | ŌH Ö       |
| 10  | ÖH CI              |          | ĎН         |
| 11  |                    | 23       | ÖH         |
| 12  | фн                 | 24       | ÖH         |
| 13  | ÖH O CH            | 25       | ÖH N       |
| 14  | ĎН                 | 26       | N N        |
|     | ÖН                 | <u> </u> | ÖH         |

【0111】 【表62】

|     | 0               | N-   | Соон              |
|-----|-----------------|------|-------------------|
|     | 表62             | -(s- | (I-E-2)           |
| No. | E               | No.  | E                 |
| 1   | CH₃             |      |                   |
|     | ÖH              | 15   |                   |
| 2   | CH <sub>3</sub> |      | ĎН                |
|     | ĎН              |      |                   |
| 3   | CH <sub>3</sub> | 16   | ✓✓✓o✓o✓ çı        |
| 1 1 | ŎН              |      | Ďн                |
| 4   | SCH3            | 17   |                   |
|     | ŎН              |      | QH CI             |
| 5   | CH <sub>3</sub> | 18   |                   |
|     | ÖH ↓CH₃         |      | ÖH 📗              |
| 6   |                 | 19   | O CH <sub>3</sub> |
|     | ĎН              | '~   | OH C              |
| 7   |                 |      |                   |
| .   | ŌΗ              | 20   |                   |
| 8   | ŎH ŎH           |      | ÖH H              |
| 1   | OH V            | 21   |                   |
| 9   |                 |      | ÖH Ö              |
|     | Ďн              | 22   |                   |
| 1,0 |                 |      | ĎН                |
| 10  | ÖH CI           |      |                   |
| 1   | фн СI           | 23   | ~                 |
| 11  |                 |      | ŌН                |
|     | ÖН              | 24   |                   |
| 12  |                 |      | ĎН                |
|     | ÖH 🔰            |      |                   |
| 13  | O. CH           | 25   | N N               |
|     | ŎН              |      | ÖH                |
| 14  |                 | 26   | N N               |
| 14  |                 |      | ÖH                |
|     | ÖH              |      | OH                |

【0112】 【表63】

|     | 表63 O S-               | S.<br>N | (I-E-3) |
|-----|------------------------|---------|---------|
| No. | E                      | No.     | E       |
| 1   | CH <sub>3</sub>        | 15      |         |
| 2   | ÖH                     | 13      | ÖH O    |
| 3   | ÖH CH <sub>3</sub>     | 16      | ✓ CI    |
| 4   | ÖH<br>SCH <sub>3</sub> | 17      | ФН      |
| 5   | ÖH CH <sub>3</sub>     | 18      | ÖH O    |
| 6   |                        | 19      | ÖH CH₃  |
| 7   | ÖH<br>ÖH               | 20      | Öн      |
| 8   | OH OH                  |         | ÖH H    |
| 9   |                        | 21      | ÖH O    |
|     | Öн 📗                   | 22      | ÖH CI   |
| 10  | OH CI                  | 23      |         |
| 11  |                        |         | ÖH      |
| 12  | ĎН                     | 24      | он П    |
| 13  | ÖH O CH                | 25      | ÖH N    |
| 14  |                        | 26      | ÖH N    |
|     | Öн                     | <u></u> | UH      |

COOH

[0113] 【表64】

No.

2

3

4

5

6

7

8

10

11

12

13

14

ĎН

ÖH

ÖΗ

ĎН

ΗÖ̈́

ÖН

<u>表64</u> Ε E No. .CH<sub>3</sub> 15 ÖΉ ĎН CH<sub>3</sub> ĎΗ 16 Β̈́Η ĎΗ 17 ÖΗ ĎН 18 Ö̈́Η ĎН .CH<sub>3</sub> 19 ĎН ĎН ĎН 20 Β̈́Β ĎН 21 ĎН 9

22

23

24

25

26

O CH3

ĎН

ĎН

В̈́Н

ĎН

ĎН

COOH

【0114】 【表65】

13

14

Β̈́Β

ÖΗ

(I-E-5) <u>表65</u> E Ε No. No. .CH<sub>3</sub> 1 15 ĎН ĎΗ 2 ĎН 16 3 ĎН ĎН 4 17 фĦ ĎН 5 18 ĎН ĎН 6 19 ĎН В̈́Н 7 ĎН 20 ĎН 8 ĎН 21 ĎΗ ĎН 22 ĎН 10 ĎН 23 Θ̈́Η 11 Θ̈́Н 24 ÖН 12 ÒН

25

26

В̈́Н

ÖΗ

【0115】 【表66】

| No.      | E                  | No.      | E                  |
|----------|--------------------|----------|--------------------|
| 1        | CH <sub>3</sub>    | 15       |                    |
| 2        | ÖH<br>✓ CH₃        |          | ÖH OH              |
| 3        | ÖH CH <sub>3</sub> | 16       | ✓ ✓ O CI           |
| 4        | ÖH SCH3            | 17       | ÖH CI              |
| 5        | ÖH CH <sub>3</sub> | 18       | ÖH O               |
| 6        |                    | 19       | OH CH <sub>3</sub> |
| 7        | ÖН                 | 20       | ÖH                 |
| 8        | ŎH O               | 21       | ÖH H               |
| 9        | ĎН                 | 22       | ÖH Ö               |
| 10       | ČCI                |          | CI                 |
| 11       |                    | 23       | ĎН                 |
| 12       | ÖH                 | 24       | ÖH O               |
|          | Ďн                 | 25       |                    |
| 13       | ÖH O CH            | 3 23     | ÖH N-              |
| 14       |                    | 26       | ÖH                 |
| <u> </u> | ÖH                 | <u> </u> | Un Un              |

【0116】 【表67】

(I-E-7) <u>表67</u> E No. E No. .CH<sub>3</sub> 1 15 ĎН ĎН 2 CH<sub>3</sub> ÕΗ 16 ĎН ĎН 4 17 ŌΗ ĎН 5 18 ĎН ĎН 6 19 В̈́Н ÔН 7 ВĦ 20 ĎН 8 ĎН 21 ÖН ĎН 22 ĎН 10 ΝÖ 23 ĎН 11 ĎН 24 ĎН 12 ĎН 25 13 ĎН ĎΗ 26 14 ĎН ĎН

【0117】 【表68】

|          | 0                  | $\sim$   | СООН        |
|----------|--------------------|----------|-------------|
|          | 表68                | ·        | (I-E-8)     |
| No.      | : <u>✓ E</u>       |          | E           |
| $\vdash$ |                    | No.      |             |
| 1        | ÖH CH₃             | 15       |             |
| 2        | CH <sub>3</sub>    |          | ÔН          |
| 3        | ÖH<br>CH₃          | 16       | ÖH CI       |
| 4        | ÖH CH <sub>3</sub> | 17       | OH CI       |
| 5        | ÖH CH <sub>3</sub> | 18       | ÖH O        |
| 6        |                    | 19       | ÖH<br>O CH₃ |
| 7        | ÖH                 | 20       | ÖH          |
| 8        | ÖН                 | 20       | ÖH H        |
| 9        |                    | 21       | ÖH O        |
|          | Ďн                 | 22       | ÖH C        |
| 10       | ÖH CI              | 23       |             |
| 11       |                    |          | фн О        |
| 12       | ÖH                 | 24       | ÖH O        |
|          |                    | 25       |             |
| 13       | ÖH CH              | 3        | ÖH N        |
| 14       |                    | 26       | ÖH          |
|          | ÖН                 | <u> </u> | OH          |

[0118] .

【本発明化合物の製造方法】

- 一般式(I)で示される本発明化合物は、以下の方法または実施例に記載した 方法により製造することができる。
- 1) 一般式 (I) で示される化合物のうち、Tが酸素原子を表わし、かつ、Xが  $-CH_2$ -基を表わす化合物、すなわち、一般式 (IA)

[0119]

【化31】

(式中、すべての記号は前記と同じ意味を表わす。) で示される化合物は以下に 示す方法によって製造することができる。

[0120]

一般式 (IA) で示される化合物は、一般式 (II) 【化32】

(式中、R<sup>16</sup>はC1~10アルキル基を表わし、E'はEと同じ意味を表わすが、E'によって表わされる基に含まれる水酸基、アミノ基、カルボキシル基、またはホルミル基は保護が必要な場合には保護されているものとする。)で示される化合物と、一般式(III)

[0121]

【化33】

H<sub>2</sub>N A' D' (III)

「式中、A'およびD'はAおよびDと同じ意味を表わすが、A'およびD'によって表わされる基に含まれる水酸基、アミノ基、カルボキシル基、またはホルミル基は保護が必要な場合には保護されているものとする。)で示される化合物を還元的アミノ化反応に付し、さらに必要に応じて保護基の脱保護反応に付すこ

とにより製造することができる。

[0122]

上記還元的アミノ化反応は公知であり、例えば、有機溶媒(メタノール、エタ ノール、ジクロロメタン、テトラヒドロフラン、ジメトキシエタン、ジエチルエ ーテル等)中、還元剤(シアノ水素化ホウ素ナトリウム、水素化ホウ素ナトリウ ム、水素化トリアセトキシホウ素化ナトリウム、ピリジンボラン等)の存在下、 0~100℃で反応させることにより行うことができる。

[0123]

保護基の脱保護反応は以下の方法によって行うことができる。

カルボキシル基、水酸基、アミノ基またはホルミル基の保護基の脱保護反応は 、よく知られており、例えば、

- (1) アルカリ加水分解、
- (2) 酸性条件下における脱保護反応、
- (3) 加水素分解による脱保護反応、
- (4) シリル基の脱保護反応、
- (5)金属を用いた脱保護反応、
- (6) 有機金属を用いた脱保護反応等が挙げられる。

[0124]

これらの方法を具体的に説明すると、

(1) アルカリ加水分解による脱保護反応は、例えば、有機溶媒(メタノール、テトラヒドロフラン、ジオキサン等)中、アルカリ金属の水酸化物(水酸化ナトリウム、水酸化カリウム、水酸化リチウム等)、アルカリ土類金属の水酸化物(水酸化バリウム、水酸化カルシウム等)または炭酸塩(炭酸ナトリウム、炭酸カリウム等)あるいはその水溶液もしくはこれらの混合物を用いて、0~40℃の温度で行なわれる。

[0125]

(2)酸条件下での脱保護反応は、例えば、有機溶媒(ジクロロメタン、クロロホルム、ジオキサン、酢酸エチル、アニソール等)中、有機酸(酢酸、トリフルオロ酢酸、メタンスルホン酸、pートシル酸等)、または無機酸(塩酸、硫酸

等) もしくはこれらの混合物(臭化水素/酢酸等)中、0~100℃の温度で行なわれる。

[0126]

(3) 加水素分解による脱保護反応は、例えば、溶媒(エーテル系(テトラヒドロフラン、ジオキサン、ジメトキシエタン、ジエチルエーテル等)、アルコール系(メタノール、エタノール等)、ベンゼン系(ベンゼン、トルエン等)、ケトン系(アセトン、メチルエチルケトン等)、ニトリル系(アセトニトリル等)、アミド系(ジメチルホルムアミド等)、水、酢酸エチル、酢酸またはそれらの2以上の混合溶媒等)中、触媒(パラジウムー炭素、パラジウム黒、水酸化パラジウム、酸化白金、ラネーニッケル等)の存在下、常圧または加圧下の水素雰囲気下またはギ酸アンモニウム存在下、0~200℃の温度で行なわれる。

[0127]

- (4) シリル基の脱保護反応は、例えば、水と混和しうる有機溶媒(テトラヒドロフラン、アセトニトリル等)中、テトラブチルアンモニウムフルオライドを 用いて、0~40℃の温度で行なわれる。
- (5) 金属を用いた脱保護反応は、例えば、酸性溶媒(酢酸、pH4.2~7.2の 緩衝液またはそれらの溶液とテトラヒドロフラン等の有機溶媒との混合液)中、 粉末亜鉛の存在下、超音波をかけるかまたは超音波をかけないで、0~40℃の 温度で行なわれる。

[0128]

(6)金属錯体を用いる脱保護反応は、例えば、有機溶媒(ジクロロメタン、ジメチルホルムアミド、テトラヒドロフラン、酢酸エチル、アセトニトリル、ジオキサン、エタノール等)、水またはそれらの混合溶媒中、トラップ試薬(水素化トリブチルスズ、トリエチルシラン、ジメドン、モルホリン、ジエチルアミン、ピロリジン等)、有機酸(酢酸、ギ酸、2-エチルヘキサン酸等)および/または有機酸塩(2-エチルヘキサン酸ナトリウム、2-エチルヘキサン酸カリウム等)の存在下、ホスフィン系試薬(トリフェニルホスフィン等)の存在下または非存在下、金属錯体(テトラキストリフェニルホスフィンパラジウム(0)、二塩化ビス(トリフェニルホスフィン)パラジウム(II)、酢酸パラジウム(II

)、塩化トリス(トリフェニルホスフィン)ロジウム(I)等)を用いて、0~ 40℃の温度で行なわれる。

#### [0129]

また、上記以外にも、例えば、T. W. Greene, Protective Groups in Organic Synthesis, Wiley, New York, 1999に記載された方法によって脱保護反応を行なうことができる。

#### [0130]

当業者には容易に理解できることではあるが、これらの脱保護反応を使い分けることにより、目的とする本発明化合物が容易に製造することができる。

#### [0131]

カルボキシル基の保護基としては、例えばメチル基、エチル基、アリル基、 tープチル基、トリクロロエチル基、ベンジル(Bn)基、フェナシル基等が挙げられる。

#### [0132]

水酸基の保護基としては、例えば、メチル基、トリチル基、メトキシメチル(MOM)基、1-エトキシエチル(EE)基、メトキシエトキシメチル(MEM)基、2-テトラヒドロピラニル(THP)基、トリメチルシリル(TMS)基、トリエチルシリル(TES)基、t-ブチルジメチルシリル(TBDMS)基、t-ブチルジフェニルシリル(TBDPS)基、アセチル(Ac)基、ピバロイル基、ベンゾイル基、ベンジル(Bn)基、p-メトキシベンジル基、アリルオキシカルボニル(Alloc)基、2,2,2-トリクロロエトキシカルボニル(Troc)基等が挙げられる。

# [0133]

アミノ基の保護基としては、例えばベンジルオキシカルボニル基、 t ープトキシカルボニル基、アリルオキシカルボニル (Alloc) 基、1ーメチルー1ー (4ーピフェニル) エトキシカルボニル (Bpoc) 基、トリフルオロアセチル基、9ーフルオレニルメトキシカルボニル基、ベンジル (Bn) 基、pーメトキシベンジル基、ベンジルオキシメチル (BOM) 基、2ー(トリメチルシリル) エトキシメチル (SEM) 基等が挙げられる。

[0134]

ホルミル基の保護基としては、例えば、アセタール(ジメチルアセタール等) 基等が挙げられる。

カルボキシル基、水酸基、アミノ基またはホルミル基としては、上記した以外にも容易にかつ選択的に脱離できる基であれば特に限定されない。例えば、T. W. Greene, Protective Groups in Organic Synthesis, Wiley, New York, 1999に記載されたものが用いられる。

[0135]

2) また、一般式 (IA) で示される化合物は、一般式 (IV)

【化34】

$$R^{16}O_2C$$
 $NH_2$ 
 $E'$ 
(IV)

(式中、すべての記号は前記と同じ意味を表わす。)で示される化合物と、一般式(V)

【化35】

 $A^{1a}$ または $A^{2a}$ を表わし、

A<sup>la</sup>は

- 1) 1~2個のC1~4アルキル基で置換されていてもよい直鎖のC1~7アルキレン基、
- 2) 1~2個のC1~4アルキル基で置換されていてもよい直鎖のC2~7アルケニレン基、または
- 3) 1~2個のC1~4アルキル基で置換されていてもよい直鎖のC2~7アルキニレン基を表わし、

 $A^{2a}$ は $-G^{1a}-G^{2a}-G^3-$ を表わし、 $G^{1a}$ は

1)  $1 \sim 2$ 個の $C 1 \sim 4$  アルキル基で置換されていてもよい $C 1 \sim 3$  アルキレン基、

- 2)  $1 \sim 2$  個の $C 1 \sim 4$  アルキル基で置換されていてもよい $C 2 \sim 3$  アルケニレン基、または
- 3)  $1 \sim 2$  個の $C 1 \sim 4$  アルキル基で置換されていてもよい $C 2 \sim 3$  アルキニレン基を表わし、

 $G^{2a}$ は $G^2$ と同じ意味を表わすが、 $G^{2a}$ によって表わされる基に含まれるアミノ基、水酸基およびカルボキシ基は保護が必要な場合には保護されているものとする。その他の記号は前記と同じ意味を表わす。)で示される化合物を還元的アミノ化反応に付し、さらに必要に応じて保護基の脱保護反応に付すことにより製造することができる。

[0136]

還元的アミノ化反応、および保護基の脱保護反応は前記と同様の方法により行うことができる。

[0137]

3) 一般式 (I) で示される化合物のうち、Tが酸素原子を表わし、かつXがOー基を表わす化合物、すなわち、一般式 (IB)

【化36】

(式中、すべての記号は前記と同じ意味を表わす。) で示される化合物は以下に 示す方法によって製造することができる。

[0138]

一般式 (IB) で示される化合物は、一般式 (VI)

【化37】

(式中、すべての記号は前記と同じ意味を表わす。)で示される化合物を環化反応に付し、必要に応じて保護基の脱保護反応に付すことにより製造することができる。

[0139]

上記環化反応は公知であり、例えば、有機溶媒(テトラヒドロフラン、ジクロロメタン、ジメトキシエタン、ジエチルエーテル、ジメチルホルムアミド等)中、塩基(トリエチルアミン、ピリジン、炭酸カリウム、炭酸水素ナトリウム等)の存在下、カルボニル化剤(トリホスゲン、1,1'ーカルボニルジイミダゾール(CDI)、ホスゲン等)を、0~50℃で反応させることにより行うことができる。

[0140]

保護基の脱保護反応は前記と同様の方法により行うことができる。

4) 一般式(I) で示される化合物のうち、Tが酸素原子を表わし、かつXがー S-基を表わす化合物、すなわち、一般式(IC)

【化38】

(式中、すべての記号は前記と同じ意味を表わす。)で示される化合物は以下に 示す方法によって製造することができる。

[0141]

一般式 (IC) で示される化合物は、一般式 (VII)

【化39】

(式中、すべての記号は前記と同じ意味を表わす。)で示される化合物を環化反応に付し、必要に応じて保護基の脱保護反応に付すことにより製造することができる。

[0142]

環化反応および保護基の脱保護反応は前記と同様の方法により行うことができる。

[0143]

5) 一般式(I) で示される化合物のうち、Tが硫黄原子を表わす化合物、すなわち、一般式(ID)

【化40】

(式中、すべての記号は前記と同じ意味を表わす。)で示される化合物は以下に 示す方法によって製造することができる。

[0144]

一般式 (ID) で示される化合物は、一般式 (VIII)

【化41】

(式中、すべての記号は前記と同じ意味を表わす。)で示される化合物をチオアミド化反応に付し、必要に応じて保護基の脱保護反応に付すことにより製造することができる。

[0145]

チオアミド化反応は公知であり、例えば、有機溶媒(トルエン、ジエチルエーテル、塩化メチレン、クロロホルム、ジオキサン、テトラヒドロフラン等)中、チオン化剤(ローソン試薬(2,4-ピス(4-メトキシフェニル)-1,3-ジチア-2,4-ジホスフェタン-2,4-ジスルフィド)、五酸化二リン等)の存在下、0~150℃で反応させることにより行うことができる。

保護基の脱保護反応は前記と同様の方法により行うことができる。

[0146]

6) 一般式(I)で示される化合物のうち、Dが $-CH_2OH$ 基を表わす化合物 、すなわち、一般式(IE) 【化42】

(式中、すべての記号は前記と同じ意味を表わす。)で示される化合物は以下に 示す方法によっても製造することができる。

[0147]

一般式 (IE) で示される化合物は、一般式 (IX) 【化43】

(式中、すべての記号は前記と同じ意味を表わす。)で示される化合物を還元反応に付し、さらに必要に応じて保護基の脱保護反応に付すことにより製造することができる。

[0148]

上記還元反応は公知であり、例えば、有機溶媒(テトラヒドロフラン、ジメトキシエタン、ジエチルエーテル、ジメチルホルムアミド、ジオキサン、メタノール、エタノール、イソプロパノール等)中またはその水溶液中、還元剤(水素化ホウ素ナトリウム、水素化ホウ素リチウム等)の存在下、0~70℃で反応させることにより行うことができる。

保護基の脱保護反応は前記と同様の方法により行うことができる。

[0149]

7) 一般式(I)で示される化合物のうち、Dが $-CONR^3SO_2R^4$ 基、 $-CONR^6R^7$ 基、 $-CONR^6SO_2R^8$ 基、または $-CO-(NH-アミノ酸残基-CO)_m-OH基を表わす化合物、すなわち、一般式(IF)$ 

[0150]

【化44】

(式中、 $D^a$ は $-CONR^3SO_2R^4$ 基、 $-CONR^6R^7$ 基、 $-CONR^6SO_2R^8$ 基、または $-CO-(NH-アミノ酸残基-CO)_m$ -OH基を表わし、その他の記号は前記と同じ意味を表わす。)で示される化合物は、以下に示す方法によっても製造することができる。

[0151]

一般式 (IF) で示される化合物は、一般式 (X)

【化45】

(式中、すべての記号は前記と同じ意味を表わす。)で示される化合物と、一般式 (XI-1)

【化46】

# $H-NR^3SO_2R^4$ (XI-1)

(式中、すべての記号は前記と同じ意味を表わす。)

で示される化合物、または一般式(XI-2)

【化47】

# $H-NR^6R^7$ (XI-2)

(式中、すべての記号は前記と同じ意味を表わす。)で示される化合物、または一般式 (XI-3)

【化48】

# $H-NR^6SO_2R^8$ (XI-3)

(式中、すべての記号は前記と同じ意味を表わす。) で示される化合物、または一般式 (XI-4)

【化49】

# H-(NH-アミノ酸残基-CO)m-OH (XI-4)

(式中、すべての記号は前記と同じ意味を表わすが、一般式(XI-4)で示される 化合物に含まれるアミノ基、水酸基、またはカルボキシル基は保護が必要な場合 には保護されているものとする。)で示される化合物をアミド化反応に付し、必 要に応じて保護基の脱保護反応に付すことにより製造することができる。

[0152]

アミド化反応は公知であり、例えば、

- (1)酸ハライドを用いる方法、
- (2) 混合酸無水物を用いる方法、
- (3)縮合剤を用いる方法等が挙げられる。 これらの方法を具体的に説明すると、 アミド化反応は公知であり、例えば、
- (1)酸ハライドを用いる方法、
- (2) 混合酸無水物を用いる方法、
- (3)縮合剤を用いる方法等が挙げられる。

[0153]

これらの方法を具体的に説明すると、

(1)酸ハライドを用いる方法は、例えば、カルボン酸を有機溶媒(クロロホルム、ジクロロメタン、ジエチルエーテル、テトラヒドロフラン等)中または無溶媒で、酸ハライド化剤(オキザリルクロライド、チオニルクロライド等)と一20℃~還流温度で反応させ、得られた酸ハライドを塩基(ピリジン、トリエチルアミン、ジメチルアニリン、ジメチルアミノピリジン、ジイソプロピルエチルアミン等)の存在下、アミンと不活性有機溶媒(クロロホルム、ジクロロメタン、ジエチルエーテル、テトラヒドロフラン等)中、0~40℃の温度で反応させることにより行なわれる。また、有機溶媒(ジオキサン、テトラヒドロフラン等)中、アルカリ水溶液(重曹水または水酸化ナトリウム溶液等)を用いて、酸ハライドと0~40℃で反応させることにより行なうこともできる。

[0154]

(2)混合酸無水物を用いる方法は、例えば、カルボン酸を有機溶媒(クロロホルム、ジクロロメタン、ジエチルエーテル、テトラヒドロフラン等)中または無溶媒で、塩基(ピリジン、トリエチルアミン、ジメチルアニリン、ジメチルアミノピリジン、ジイソプロピルエチルアミン等)の存在下、酸ハライド(ピバロイルクロライド、トシルクロライド、メシルクロライド等)、または酸誘導体(クロロギ酸エチル、クロロギ酸イソブチル等)と、0~40℃で反応させ、得られた混合酸無水物を有機溶媒(クロロホルム、ジクロロメタン、ジエチルエーテル、テトラヒドロフラン等)中、アミンと0~40℃で反応させることにより行なわれる。

# [0155]

(3)縮合剤を用いる方法は、例えば、カルボン酸とアミンを、有機溶媒(クロロホルム、ジクロロメタン、ジメチルホルムアミド、ジエチルエーテル、テトラヒドロフラン等)中、または無溶媒で、塩基(ピリジン、トリエチルアミン、ジメチルアニリン、ジメチルアミノピリジン等)の存在下または非存在下、縮合剤(1、3-ジシクロヘキシルカルボジイミド(DCC)、1-エチル-3-[3-(ジメチルアミノ)プロピル]カルボジイミド(EDC)、1,1'-カルボニルジイミダゾール(CDI)、2-クロロ-1-メチルピリジニウムヨウ素、1-プロピルホスホン酸環状無水物(1-propanephosphonic acid cyclic anhydride、PPA)等)を用い、1-ヒドロキシベンズトリアゾール(HOBt)を用いるか用いないで、0~40℃で反応させることにより行なわれる。

[0156]

これら(1)、(2)および(3)の反応は、いずれも不活性ガス(アルゴン、窒素等)雰囲気下、無水条件で行なうことが望ましい。

保護基の脱保護反応は前記と同様の方法により行うことができる。

[0157]

8) 一般式 (I) で示される本発明化合物のうち、Dが-O-(CO-アミノ酸 残基-NH) $_{m}-$  H基または $-OCO-R^{10}$ 基を表わす化合物、すなわち、一般式 (IG)

【化50】

(式中、 $D^b$ はO-(CO-Tミノ酸残基 $-NH)_m$ -H基またはOCO-R10基を表わし、その他記号は前記と同じ意味を表わす。)で示される化合物は以下に示す方法によっても製造することができる。

[0158]

一般式 (IG) で示される化合物は、一般式 (XII)

【化51】

(式中、 $D^c$ は-OH基、または $-CH_2OH$ 基を表わし、その他の記号は前記と同じ意味を表わす。)で示される化合物と、一般式(XIII-1)

【化52】

# HO-(CO-アミノ酸残基-NH)m-H (XIII-1)

(式中、すべての記号は前記と同じ意味を表わすが、一般式(XIII-1)で示される化合物に含まれるアミノ基、水酸基、またはカルボキシル基は保護が必要な場合には保護されているものとする。)で示される化合物、または一般式(XIII-2)

【化53】

# HO<sub>2</sub>C-R<sup>10</sup> (XIII-2)

(式中、 $R^{10}$ は前記と同じ意味を表わす。)で示される化合物をエステル化反応に付し、必要に応じて保護基の脱保護反応に付すことにより製造することができる。

[0159]

エステル化反応は公知であり、例えば、

(1)酸ハライドを用いる方法、

- (2) 混合酸無水物を用いる方法、
- (3) 縮合剤を用いる方法等が挙げられる。

[0160]

これらの方法を具体的に説明すると、

(1)酸ハライドを用いる方法は、例えば、カルボン酸を有機溶媒(クロロホルム、ジクロロメタン、ジエチルエーテル、テトラヒドロフラン等)中または無溶媒で、酸ハライド化剤(オキザリルクロライド、チオニルクロライド等)と一20℃~還流温度で反応させ、得られた酸ハライドを塩基(ピリジン、トリエチルアミン、ジメチルアニリン、ジメチルアミノピリジン、ジイソプロピルエチルアミン等)の存在下、アルコールと不活性有機溶媒(クロロホルム、ジクロロメタン、ジエチルエーテル、テトラヒドロフラン等)中、0~40℃の温度で反応させることにより行なわれる。また、有機溶媒(ジオキサン、テトラヒドロフラン等)中、アルカリ水溶液(重曹水または水酸化ナトリウム溶液等)を用いて、酸ハライドと0~40℃で反応させることにより行なうこともできる。

[0161]

(2)混合酸無水物を用いる方法は、例えば、カルボン酸を有機溶媒(クロロホルム、ジクロロメタン、ジエチルエーテル、テトラヒドロフラン等)中または無溶媒で、塩基(ピリジン、トリエチルアミン、ジメチルアニリン、ジメチルアミノピリジン、ジイソプロピルエチルアミン等)の存在下、酸ハライド(ピバロイルクロライド、トシルクロライド、メシルクロライド等)、または酸誘導体(クロロギ酸エチル、クロロギ酸イソブチル等)と、0~40℃で反応させ、得られた混合酸無水物を有機溶媒(クロロホルム、ジクロロメタン、ジエチルエーテル、テトラヒドロフラン等)中、アルコールと0~40℃で反応させることにより行なわれる。

[0162]

(3)縮合剤を用いる方法は、例えば、カルボン酸とアルコールを、有機溶媒 (クロロホルム、ジクロロメタン、ジメチルホルムアミド、ジエチルエーテル、テトラヒドロフラン等)中、または無溶媒で、塩基(ピリジン、トリエチルアミン、ジメチルアニリン、ジメチルアミノピリジン等)の存在下または非存在下、

縮合剤(1,3ージシクロヘキシルカルボジイミド(DCC)、1-xチルー3 -[3-(ジメチルアミノ)プロピル] カルボジイミド(EDC)、1,1,1,2 カルボニルジイミダゾール(CDI)、2-クロロー1-メチルピリジニウムヨウ素、1-プロピルホスホン酸環状無水物(1-propanephosphonic acid cyclic anhydride、PPA)等)を用い、1-ヒドロキシベンズトリアゾール(HOBt)を用いるか用いないで、 $0\sim40$ で反応させることにより行なわれる。

[0163]

これら(1)、(2)および(3)の反応は、いずれも不活性ガス(アルゴン、窒素等)雰囲気下、無水条件で行なうことが望ましい。

保護基の脱保護反応は前記と同様の方法により行うことができる。

[0164]

9) 一般式 (I) で示される本発明化合物のうち、Dがホルミル基を表わす化合物、すなわち、一般式 (IH)

【化54】

(式中、すべての記号は前記と同じ意味を表わす。)で示される化合物は以下に 示す方法によっても製造することができる。

[0165]

一般式 (IH) で示される化合物は、一般式 (XIV) 【化55】

(式中、すべての記号は前記と同じ意味を表わす。)で示される化合物を酸化反応に付し、必要に応じて保護基の脱保護反応に付すことにより製造することができる。

[0166]

この酸化反応は公知であり、例えば

- (1) スワン酸化 (Swern oxidation) を用いる方法、
- (2) デスーマーチン試薬 (Dess-Martin Reagent) を用いる方法,
- (3) テンポ (TEMPO) 試薬を用いる方法等が挙げられる。

[0167]

これらの方法を具体的に説明すると、

(1) スワン酸化を用いる方法は、例えば、有機溶媒(クロロホルム、ジクロロメタン等)中、オキザリルクロライドとジメチルスルホキシドを-78℃で反応させ、得られた溶液にアルコール化合物を反応させ、さらに三級アミン(トリエチルアミン、N, N-ジイソプロピルエチルアミン、N-メチルモルホリン、N-エチルピペリジン、ジアザピシクロ[5.4.0]ウンデセ-7-エン等)と-78~20℃で反応させることにより行なわれる。

[0168]

(2) デスーマーチン試薬を用いる方法は、例えば、有機溶媒(クロロホルム、ジクロロメタン、1, 2-ジクロロエタン、テトラヒドロフラン、アセトニトリル、t-ブチルアルコール等)中、デスーマーチン試薬(1, 1, 1-トリアセトキシー1, 1-ジヒドロー1, 2-ベンゾヨードキソールー3-(1H)ーオン)の存在下、塩基(ピリジン等)の存在下または非存在下、 $0\sim40$ で反応させることにより行なわれる。

[0169]

(3) テンポ試薬を用いる方法は、例えば、有機溶媒(クロロホルム、ジクロロメタン、テトラヒドロフラン、トルエン、アセトニトリル、酢酸エチル、水等)中またはそれらの混合溶媒中、テンポ試薬(2,2,6,6ーテトラメチルー1ーピペリジニルオキシ,フリーラジカル)および再酸化剤(過酸化水素水、次亜塩素酸ナトリウム、3ークロロ過安息香酸、ヨードベンゼンジアセテート、ポタシウムパーオキシモノスルフェート(オキソン;商品名)等)の存在下、四級アンモニウム塩(テトラブチルアンモニウムクロライド、テトラブチルアンモニウムブロミド等)の存在下または非存在下、無機塩(臭化ナトリウム、臭化カリウム等)の存在下または非存在下、無機塩基(炭酸水素ナトリウム、酢酸ナトリウム等)の存在下または非存在下、無機塩基(炭酸水素ナトリウム、酢酸ナトリ

ウム等)の存在下または非存在下、20~60℃で反応させることにより行なわれる。

[0170]

酸化反応としては、上記した以外にも容易にかつ選択的にアルコールをケトンへ酸化できるものであれば特に限定されない。例えば、ジョーンズ酸化、PCCによる酸化、三酸化イオウ・ピリジン錯体を用いる酸化または「Comprehensive Organic Transformations」 (Richard C. Larock, VCH Publishers, Inc., (1989), page 604-614) に記載されたものが用いられる。

[0171]

10) 一般式(I)で示される本発明化合物のうち、Dが $-COOR^2$ 基、-COOR $^9$ 基、または $-COO-Z^1-Z^2-Z^3$ -基を表わす化合物、すなわち、-般式(IJ)

【化56】

(式中、 $D^d$ は $-COOR^2$ 基、 $-COOR^9$ 基、または $-COO-Z^1-Z^2-Z^3$  -基を表わし、その他の記号は前記と同じ意味を表わす。)で示される化合物は以下に示す方法によっても製造することができる。

[0172]

すなわち、一般式(IJ)で示される化合物は、一般式(X)

【化57】

(式中、すべての記号は前記と同じ意味を表わす。)で示される化合物と、一般式 (XV-1)

【化58】

 $R^{17}-R^2$  (XV-1)

(式中、 $R^{17}$ は水酸基またはハロゲン原子を表わし、その他の記号は前記と同じ意味を表わす。)で示される化合物、または一般式(XV-2)

【化59】

# $R^{17}-R^9$ (XV-2)

(式中、すべての記号は前記と同じ意味を表わす。)で示される化合物、または 一般式 (XV-3)

【化60】

# $R^{17}$ — $Z^{1a}$ - $Z^{2a}$ - $Z^{3a}$ (XV-3)

(式中、 $Z^{1a}$ 、 $Z^{2a}$ および $Z^{3a}$ は $Z^1$ 、 $Z^2$ および $Z^3$ とそれぞれ同じ意味を表わすが、 $Z^{1a}-Z^{2a}-Z^{3a}$ 基によって表わされる基に含まれる水酸基、アミノ基、カルボキシル基、またはホルミル基は保護が必要な場合には保護されているものとする。)で示される化合物をエステル化反応に付し、必要に応じて保護基の脱保護反応に付すことにより製造することができる。

#### [0173]

一般式 (XV-1)、 (XV-2) および (XV-3) において、 $R^{17}$ が水酸基を表わす場合のエステル化反応は前記と同様に行うことができる。

一般式 (XV-1)、 (XV-2) および (XV-3) において、R<sup>17</sup>がハロゲン原子を表わす場合のエステル化反応は、例えば、有機溶媒 (ジメチルホルムアミド、テトラヒドロフラン、ジオキサン、ジエチルエーテル、ジメチルアセトアミド等) 中、塩基 (炭酸カリウム、炭酸セシウム、炭酸ナトリウム、炭酸水素カリウム、炭酸水素ナトリウム、水酸化カリウム、水酸化ナトリウム等) の存在下、0~150℃で反応させることにより行うことができる。

#### [0174]

保護基の脱保護反応は前記と同様の方法により行うことができる。

'一般式 (II)、 (III)、 (IV)、 (V)、 (VI)、 (VII)、 (XI-1)、 (XI-2)、 (XI-3)、 (XI-4)、 (XIII-1)、 (XIII-2)、 (XV-1) および (XV-2) で示される化合物はそれ自体公知であるか、あるいは公知の方法により容易に製造することができる。

例えば、一般式 (VI) および (VII) で示される化合物は以下の反応工程式に

示される方法により製造することができる。

[0175]

【化61】

# 反応工程式

[0176]

反応工程式中、 $R^{18}$ は水酸基の保護基を表わし、Acはアセチル基を表わし、その他の記号は前記と同じ意味を表わす。

反応工程式中、出発原料として用いる一般式(XVI)で示される化合物は公知であるか、あるいは公知の方法により容易に製造することができる。

#### [0177]

本明細書中の各反応において、反応生成物は通常の精製手段、例えば、常圧下または減圧下における蒸留、シリカゲルまたはケイ酸マグネシウムを用いた高速液体クロマトグラフィー、薄層クロマトグラフィー、あるいはカラムクロマトグラフィーまたは洗浄、再結晶等の方法により精製することができる。精製は各反応ごとに行なってもよいし、いくつかの反応終了後に行なってもよい。

[0178]

【本発明化合物の薬理活性】

例えば、実験室の実験では、プロスタノイドレセプターサブタイプ発現細胞を 用いた受容体結合実験により、これらを確認した。

[0179]

(i) プロスタノイドレセプターサブタイプ発現細胞を用いた受容体結合実験スギモト (Sugimoto) らの方法 (J. Biol. Chem. 267, 6463-6466 (1992)) に準じて、プロスタノイドレセプターサブタイプ (マウス $\mathrm{EP}_1$ 、 $\mathrm{EP}_2$ 、 $\mathrm{EP}_3$   $\alpha$ 、 $\mathrm{EP}_4$ ) をそれぞれ発現したCHO細胞を調製し、膜標品とした。

調製した膜画分 (0.5 mg/m1)、 $^3\text{H-PGE}_2$ を含む反応液( $200 \mu 1$ )を室温で1時間インキュベートした。反応を氷冷バッファー(3 m1)で停止し、減圧下吸引ろ過して結合した $^3\text{H-PGE}_2$ をガラスフィルター(G F/B)にトラップし、結合放射活性を液体シンチレーターで測定した。

[0180]

K d 値は、Scatchard plotsから求めた [Ann. N. Y. Acad. Sci. 51,660 (19 49)]。非特異的結合は過剰量( $2.5\,\mu$  M)の非標識 P G E  $_2$ の存在下での結合として求めた。本発明化合物による $^3$ H - P G E  $_2$ 結合阻害作用の測定は、 $^3$ H - P G E  $_2$  ( $2.5\,\mathrm{n}$  M)および本発明化合物を各種濃度で添加して行なった。なお、反応にはすべて次のバッファーを用いた。

バッファー : リン酸カリウム (10mM, pH6.0), EDTA (1mM), MgCl<sub>2</sub> (10mM), NaCl (0.1M)。

[0181]

各化合物の解離定数Ki (μM) は次式により求めた。

【数1】

 $K i = I C_{50} / (1 + ([C] / K d));$ 

実施例4 (1) の化合物のマウス $EP_2$ 受容体に対する結合活性(Ki値)は 14nMであった。

[0182]

【毒性】

一般式 (I) で示される本発明化合物の毒性は十分に低いものであり、医薬品として使用するために十分安全であることが確認された。

[0183]

# 【医薬品への適用】

本発明化合物は、PGE受容体のうちサブタイプ $EP_2$ に対する結合が強く、 ΤΝFーα産生抑制、ΙL-10産生増強に関与していると考えられているため 、EP<sub>2</sub>受容体に結合する化合物は、免疫疾患(筋萎縮性側索硬化症(ALS) 、多発性硬化症、シェーグレン症候群、慢性関節リウマチ、全身性エリテマトー デス等の自己免疫疾患、臓器移植後の拒絶反応など)、喘息、神経細胞死、月経 困難症、早産、流産、禿頭症、緑内障などの網膜神経障害、勃起不全、関節炎、 肺傷害、肺線維症、肺気腫、気管支炎、慢性閉塞性呼吸器疾患、肝傷害、急性肝 炎、ショック、腎炎(急性腎炎、慢性腎炎)、腎不全、循環器系疾患(高血圧、 心筋虚血、慢性動脈閉塞症、振動病等)、全身性炎症反応症候群、敗血症、血球 貪食症候群、マクロファージ活性化症候群、スチル (Still)病、川崎病、 熱傷、全身性肉芽腫、潰瘍性大腸炎、クローン病、透析時の高サイトカイン血症 、多臓器不全、骨疾患(骨折、再骨折、難治性骨折、骨癒合不全、偽関節、骨軟 化症、骨ページェット症、硬直性脊椎炎、癌骨転移、変形性関節症およびそれら の類似疾患における骨・軟骨の破壊等)等の予防および/または治療に有用であ ると考えられる。さらに、骨の手術後の骨形成(例えば、骨折後の骨形成、骨移 植後の骨形成、人工関節術後の骨形成、脊椎固定術後の骨形成、多発性骨髄腫、 肺癌、乳癌等の外科手術後の骨形成、その他骨再建術後の骨形成等)の促進・治 癒促進剤、骨移植代替療法、また、歯周疾患等における歯周組織の再生促進剤等 として有用であると考えられる。

# [0184]

また、一般式(I)で示される化合物の中には、EP2受容体に結合し、かつ EP4受容体にも結合する化合物も含まれている。EP4受容体に結合する化合物は、免疫疾患(筋萎縮性側索硬化症(ALS)、多発性硬化症、シェーグレン症 候群、慢性関節リューマチ、全身性エリトマトーデス等の自己免疫疾患、臓器移植後の拒絶反応など)、喘息、神経細胞死、関節炎、肺傷害、肺線維症、肺気腫

、気管支炎、慢性閉塞性呼吸器疾患、肝傷害、急性肝炎、腎炎(急性腎炎、慢性腎炎)、腎不全、高血圧、心筋虚血、全身性炎症反応症候群、敗血症、血球貪食症候群、マクロファージ活性化症候群、スチル(Still)病、川崎病、熱傷、全身性肉芽腫、潰瘍性大腸炎、クローン病、透析時の高サイトカイン血症、多臓器不全、ショック等の疾患の予防および/または治療に有用であると考えられる。また、EP4受容体は粘膜保護作用にも関係しており、胃潰瘍、十二指腸潰瘍などの消化管潰瘍や口内炎の予防および/または治療に有用であると考えられる。また、EP4受容体は発毛および育毛作用にも関係しており、禿頭症、脱毛症等の予防および/または治療にも有用であると考えられる。また、EP4受容体は子宮頸管の熟化にも関与しているため、子宮頸管熟化(促進)剤としても有用であると考えられる。

## [0185]

さらに、EP<sub>4</sub>受容体に結合する化合物は、骨形成促進作用も有していることから、骨量低下疾患、例えば、

- 1) 原発性骨粗鬆症(例えば、加齢に伴う原発性骨粗鬆症、閉経に伴う原発性骨 粗鬆症、卵巣摘出術に伴う原発性骨粗鬆症等)、
- 2) 二次性骨粗鬆症(例えば、グルココルチコイド誘発性骨粗鬆症、甲状腺機能 亢進性骨粗鬆症、固定誘発性骨粗鬆症、ヘパリン誘発性骨粗鬆症、免疫抑制誘発 性骨粗鬆症、腎不全による骨粗鬆症、炎症性骨粗鬆症、クッシング症候群に伴う 骨粗鬆症、リューマチ性骨粗鬆症等)、
- 3) 癌骨転移、高カルシウム血症、ページェット病、骨欠損(歯槽骨欠損、下顎骨欠損、小児期突発性骨欠損等)、骨壊死等の骨疾患の予防および/または治療に有用であるばかりでなく、骨の手術後の骨形成(例えば、骨折後の骨形成、骨移植後の骨形成、人工関節術後の骨形成、脊椎固定術後の骨形成、その他骨再建術後の骨形成等)の促進・治癒促進剤、また骨移植代替療法として有用であると考えられる。

#### [0186]

また、 $\mathrm{EP}_4$ は生理的睡眠の誘発や血小板凝集抑制作用を有し、 $\mathrm{EP}_4$ 受容体に結合する化合物は睡眠障害や血栓症にも有用であると考えられる。

EP<sub>2</sub>およびEP<sub>4</sub>両受容体に結合する化合物では両受容体に関連する疾患に対して相加または相乗効果が期待できる。

[0187]

- 一般式(I)で示される化合物またはそれらの非毒性塩は、
- 1) その化合物の予防および/または治療効果の補完および/または増強、
- 2) その化合物の動態・吸収改善、投与量の低減、

および/または

3) その化合物の副作用の軽減のために他の薬剤と組み合わせて、併用剤として 投与してもよい。

[0188]

一般式(I)で示される化合物と他の薬剤の併用剤は、1つの製剤中に両成分を配合した配合剤の形態で投与してもよく、また別々の製剤にして投与する形態をとってもよい。別々の製剤にして投与する場合には、同時投与および時間差による投与が含まれる。また、時間差による投与は、一般式(I)で示される化合物を先に投与し、他の薬剤を後に投与してもよいし、他の薬剤を先に投与し、一般式(I)で示される化合物を後に投与してもよい。それぞれの投与方法は同じでも異なっていてもよい。

[0189]

上記併用剤により予防および/または治療効果を奏する疾患は特に限定されず、一般式(I)で示される化合物の予防および/または治療効果を補完および/または増強する疾患であればよい。

例えば、一般式(I)で示される化合物の骨疾患に対する予防および/または 治療効果の補完および/または増強のための他の薬剤としては、例えば、ホスホ ジエステラーゼ4阻害剤、ビスホスホネート製剤、ビタミンD製剤、カルシウム 補助剤、エストロゲン製剤、カルシトニン製剤、イソフラボン系製剤、タンパク 同化ステロイド剤、ビタミンK製剤、カテプシンK阻害剤、プロスタグランジン 類、スタチン、副甲状腺ホルモン、成長因子等が挙げられる。

[0190]

例えば、一般式(I)で示される化合物の慢性閉塞性肺疾患および/または喘

息に対する予防および/または治療効果の補完および/または増強のための他の薬剤としては、例えば、ホスホジエステラーゼ4阻害剤、ステロイド剤、β作動薬、ロイコトリエン受容体拮抗剤、トロンボキサン合成酵素阻害剤、トロンボキサンA2受容体拮抗剤、メディエーター遊離抑制薬、抗ヒスタミン剤、キサンチン誘導体、抗コリン薬、サイトカイン阻害薬、プロスタグランジン類、フォルスコリン製剤、エラスターゼ阻害剤、メタロプロテアーゼ阻害剤、去痰薬、抗生物質等が挙げられる。

# [0191]

例えば、一般式(I)で示される化合物の月経困難症に対する予防および/または治療効果の補完および/または増強のための他の薬剤としては、例えば、鎮痛剤(非ステロイド系抗炎症薬(N S A I D)、シクロオキシゲナーゼ(C O X )阻害剤等)、経口避妊薬、ホルモン製剤、鎮痙剤、 $\beta$  作動薬、バソプレシンV 1 a 拮抗剤、プロスタグランジン合成酵素阻害剤、局所麻酔薬、カルシウムチャネル拮抗剤、カリウムチャネル遮断薬、ロイコトリエン遮断薬、平滑筋弛緩剤、血管拡張薬等が挙げられる。

#### [0192]

例えば、一般式(I)で示される化合物の関節炎または慢性関節リウマチに対する予防および/または治療効果の補完および/または増強のための他の薬剤としては、例えば、メタロプロテアーゼ阻害剤、免疫抑制剤、非ステロイド系抗炎症剤(NSAID)、ステロイド剤、ホスホジエステラーゼ4阻害剤等が挙げられる。

#### [0193]

例えば、一般式(I)で示される化合物の勃起不全に対する予防および/または治療効果の補完および/または増強のための他の薬剤としては、例えば、ホスホジエステラーゼ5阻害剤等が挙げられる。

例えば、一般式(I)で示される化合物のショックに対する予防および/または治療効果の補完および/または増強のための他の薬剤としては、例えば、エラスターゼ阻害剤等が挙げられる。

### [0194]

例えば、一般式(I)で示される化合物の大腸炎に対する予防および/または 治療効果の補完および/または増強のための他の薬剤としては、例えば、一酸化 窒素合成酵素阻害剤、ポリ(ADP-リボース)ポリメラーゼ阻害剤、ホスホジ エステラーゼ4阻害剤、エラスターゼ阻害剤、インターロイキン8拮抗剤等が挙 げられる。

#### [0195]

例えば、一般式(I)で示される化合物の急性腎炎および慢性腎炎に対する予防および/または治療効果の補完および/または増強のための他の薬剤としては、例えば、ステロイド剤、ホスホジエステラーゼ4阻害剤、非ステロイド系抗炎症薬、トロンボキサンA2受容体拮抗剤、ロイコトリエン受容体拮抗剤、アンギオテンシンII拮抗剤、アンギオテンシン変換酵素阻害剤、利尿剤等が挙げられる

#### [0196]

例えば、一般式(I)で示される化合物の高血圧に対する予防および/または 治療効果の補完および/または増強のための他の薬剤としては、カルシウム拮抗 薬、アンギオテンシンII拮抗剤、アンギオテンシン変換酵素阻害剤、ホスホジエ ステラーゼ4阻害剤、利尿剤等が挙げられる。

## [0197]

ホスホジエステラーゼ4阻害剤としては、例えば、ロリプラム、シロミラスト (商品名アリフロ)、Bay19-8004、NIK-616、シロミラスト (BY-217)、シパムフィリン (BRL-61063)、アチゾラム (CP-80633)、SCH-351591、YM-976、V-11294A、PD-168787、D-4396、IC-485等が挙げられる。

ホスホジエステラーゼ5阻害剤としては、例えば、シルデナフィル等が挙げられる。

#### [0198]

ビスホスホネート製剤としては、例えば、アレンドロネートナトリウム、クロ ドロネートニナトリウム、パミドロネートニナトリウム、エチドロネートニナト リウム、イバンドロネート、インカドロネートニナトリウム、ミノドロネート、 オルパドロネート、リセドロネートナトリウム、チルドロネート、ゾレドロネート等が挙げられる。

#### [0199]

カルシトニン製剤としては、例えば、カルシトニン、エルカトニン等が挙げられる。

プロスタグランジン類(以下、PGと略記する。)としては、PG受容体アゴニスト、PG受容体アンタゴニスト等が挙げられる。

PG受容体としては、PGE受容体(EP1、EP2、EP3、EP4)、PGD受容体(DP)、PGF受容体(FP)、PGI受容体(IP)等が挙げられる。

#### [0200]

ステロイド剤としては、例えば、外用薬として、プロピオン酸クロベタゾール、酢酸ジフロラゾン、フルオシノニド、フランカルボン酸モメタゾン、ジプロピオン酸ベタメタゾン、 古草酸ベタメタゾン、ジフルプレドナート、プデソニド、吉草酸ジフルコルトロン、アムシノニド、ハルシノニド、デキサメタゾン、プロピオン酸デキサメタゾン、 吉草酸デキサメタゾン、酢酸デキサメタゾン、酢酸ピドロコルチゾン、酪酸プロピオン酸ヒドロコルチゾン、酪酸プロピオン酸ヒドロコルチゾン、酪酸プロピオン酸ヒドロコルチゾン、プロピオン酸デプロドン、 古草酸酢酸プレドニゾロン、フルオシノロンアセトニド、プロピオン酸ベクロメタゾン、トリアムシノロンアセトニド、ピバル酸フルメタゾン、プロピオン酸アルクロメタゾン、酪酸クロベタゾン、プレドニゾロン、プロピオン酸ペクロメタゾン、フルドロキシコルチド等が挙げられる。

#### [0201]

内服薬、注射剤としては、酢酸コルチゾン、ヒドロコルチゾン、リン酸ヒドロコルチゾンナトリウム、コハク酸ヒドロコルチゾンナトリウム、酢酸フルドロコルチゾン、プレドニゾロン、酢酸プレドニゾロン、コハク酸プレドニゾロンナトリウム、ブチル酢酸プレドニゾロン、リン酸プレドニゾロンナトリウム、酢酸ハロプレドン、メチルプレドニゾロン、酢酸メチルプレドニゾロン、コハク酸メチルプレドニゾロンナトリウム、トリアムシノロン、酢酸トリアムシノロン、トリ

アムシノロンアセトニド、デキサメサゾン、酢酸デキサメタゾン、リン酸デキサメタゾンナトリウム、パルミチン酸デキサメタゾン、酢酸パラメサゾン、ベタメタゾン等が挙げられる。

[0202]

吸入剤としては、プロピオン酸ベクロメタゾン、プロピオン酸フルチカゾン、 ブデソニド、フルニソリド、トリアムシノロン、ST-126P、シクレソニド 、デキサメタゾンパロミチオネート、モメタゾンフランカルボネート、プラステ ロンスルホネート、デフラザコート、メチルプレドニゾロンスレプタネート、メ チルプレドニゾロンナトリウムスクシネート等が挙げられる。

[0203]

β作動薬としては、例えば、臭化水素酸フェノテロール、硫酸サルブタモール、硫酸テルブタリン、フマル酸フォルモテロール、キシナホ酸サルメテロール、硫酸イソプロテレノール、硫酸オルシプレナリン、硫酸クロルプレナリン、エピネフリン、塩酸トリメトキノール、硫酸ヘキソプレナリンメシル、塩酸プロカテロール、塩酸ツロブテロール、ツロブテロール、塩酸ピルブテロール、塩酸ケレンブテロール、塩酸マブテロール、塩酸リトドリン、バンブテロール、塩酸ドペキサミン、酒石酸メルアドリン、AR-C68397、レボサルブタモール、R、R-フォルモテロール、イソクスプリン、メタプロテレノール、KUR-1246、KUL-7211、AR-C89855、S-1319等が挙げられる。

[0204]

ロイコトリエン受容体拮抗剤としては、例えば、プランルカスト水和物、モンテルカスト、ザフィルルカスト、セラトロダスト、MCC-847、KCA-757、CS-615、YM-158、L-740515、CP-195494、LM-1484、RS-635、A-93178、S-36496、BIIL-284、ONO-4057等が挙げられる。

[0205]

トロンボキサン合成酵素阻害剤としては、例えば、塩酸オザグレル、イミトロダストナトリウム等が挙げられる。

トロンボキサン $A_2$ 受容体拮抗剤としては、例えば、セラトロダスト、ラマト

ロバン、ドミトロバンカルシウム水和物、KT-2-962等が挙げられる。

[0206]

メディエーター遊離抑制薬としては、例えば、トラニラスト、クロモグリク酸ナトリウム、アンレキサノクス、レピリナスト、イブジラスト、ダザノラスト、ペミロラストカリウム等が挙げられる。

#### [0207]

抗ヒスタミン剤としては、例えば、フマル酸ケトチフェン、メキタジン、塩酸アゼラスチン、オキサトミド、テルフェナジン、フマル酸エメダスチン、塩酸エピナスチン、アステミゾール、エバスチン、塩酸セチリジン、ベポタスチン、フェキソフェナジン、ロラタジン、デスロラタジン、塩酸オロパタジン、TAK-427、乙CR-2060、NIP-530、モメタゾンフロエート、ミゾラスチン、BP-294、アンドラスト、オーラノフィン、アクリバスチン等が挙げられる。

#### [0208]

キサンチン誘導体としては、例えば、アミノフィリン、テオフィリン、ドキソフィリン、シパムフィリン、ジプロフィリン等が挙げられる。

抗コリン剤としては、例えば、臭化イプラトロピウム、臭化オキシトロピウム、臭化フルトロピウム、臭化シメトロピウム、テミベリン、臭化チオトロピウム、レバトロペート(UK-112166)等が挙げられる。

サイトカイン阻害薬としては、例えばトシル酸スプラタスト(商品名アイピーディ)等が挙げられる。

# [0209]

去痰薬としては、例えば、アンモニアウイキョウ精、炭酸水素ナトリウム、塩酸プロムヘキシン、カルボシステイン、塩酸アンブロキソール、塩酸アンブロキソール、塩酸アンブロキソール徐放剤、メチルシステイン塩酸塩、アセチルシステイン、塩酸 L-エチルシステイン、チロキサポール等が挙げられる。

成長因子としては、例えば、線維芽細胞成長因子(FGF)、血管内皮成長因子 (VEGF)、肝細胞成長因子 (HGF)、インシュリン様成長因子 (IGF - 1) 等が挙げられる。

[0210]

非ステロイド系抗炎症薬としては、例えば、サザピリン、サリチル酸ナトリウ ム、アスピリン、アスピリン・ダイアルミネート配合、ジフルニサル、インドメ タシン、スプロフェン、ウフェナマート、ジメチルイソプロピルアズレン、ブフ エキサマク、フェルビナク、ジクロフェナク、トルメチンナトリウム、クリノリ ル、フェンブフェン、ナプメトン、プログルメタシン、インドメタシンファルネ シル、アセメタシン、マレイン酸プログルメタシン、アンフェナクナトリウム、 モフェゾラク、エトドラク、イブプロフェン、イブプロフェンピコノール、ナプ ロキセン、フルルビプロフェン、フルルビプロフェンアキセチル、ケトプロフェ ン、フェノプロフェンカルシウム、チアプロフェン、オキサプロジン、プラノプ ロフェン、ロキソプロフェンナトリウム、アルミノプロフェン、ザルトプロフェ ン、メフェナム酸、メフェナム酸アルミニウム、トルフェナム酸、フロクタフェ ニン、ケトフェニルブタゾン、オキシフェンブタゾン、ピロキシカム、テノキシ カム、アンピロキシカム、ナパゲルン軟膏、エピリゾール、塩酸チアラミド、塩 酸チノリジン、エモルファゾン、スルピリン、ミグレニン、サリドン、セデスG 、アミピロ-N、ソルボン、ピリン系感冒薬、アセトアミノフェン、フェナセチ ン、メシル酸ジメトチアジン、シメトリド配合剤、非ピリン系感冒薬、ブロムフ エナク、フェナメート、スリンダク、ナブメトン、ケトロラク等が挙げられる。

# [0211]

COX阻害剤としては、例えば、セレコキシブ、ロフェコキシブ、エトリコキシブ等が挙げられる。

鎮痙剤としては、例えば、スコポラミン等が挙げられる。

バソプレシンV1a拮抗剤としては、例えば、レルコバプチン等が挙げられる

#### [0212]

プロスタグランジン合成酵素阻害剤としては、例えば、サラゾスルファピリジン、メサラジン、オサラジン、4-アミノサリチル酸、JTE-522、オーラノフィン、カルプロフェン、ジフェンピラミド、フルノキサプロフェン、フルルビプロフェン、インドメタシン、ケトプロフェン、ロルノキシカム、ロキソプロ

フェン、メロキシカム、オキサプロジン、パーサルミド、ピプロキセン、ピロキシカム、ピロキシカムベータデックス、ピロキシカムシンナメート、トロピンインドメタシネート、ザルトプロフェン、プラノプロフェン、当帰芍薬散、芍薬甘草湯等が挙げられる。

#### [0213]

局所麻酔薬としては、例えば、塩酸コカイン、塩酸プロカイン、リドカイン、 塩酸ジブカイン、塩酸テトラカイン、メピバカイン、エチドカイン、ブピバカイン、塩酸-2-クロロブチロカインなどが挙げられる。

カルシウム拮抗剤としては、例えば、ニフェジピン、塩酸ベニジピン、塩酸ジルチアゼム、塩酸ベラパミル、ニソルジピン、ニトレンジピン、塩酸ベプリジル、ベシル酸アムロジピン、塩酸ロメリジン、イスラジピン、ニモジピン、フェロジピン、ニカルジピン等が挙げられる。

#### [0214]

カリウムチャネル遮断薬としては、例えば、ドフェチリド、E-4031、アルモカラント、セマチリド、アムバシリド、アジミリド、テジサミル、RP58866、ソタロール、ピロキシカム、イブチリド等が挙げられる。

血管拡張薬としては、例えば、ニトログリセリン、イソソルビドジニトレート 、一硝酸イソソルビド等が挙げられる。

#### [0215]

利尿剤としては、例えば、マンニトール、フロセミド、アセタゾラミド、ジクロルフェナミド、メタゾラミド、トリクロルメチアジド、メフルシド、スピロノラクトン、アミノフィリン等が挙げられる。

#### [0216]

一般式(I)で示される化合物と他の薬剤の重量比は特に限定されない。

他の薬剤は、任意の2種以上を組み合わせて投与してもよい。

また、一般式(I)で示される化合物の予防および/または治療効果を補完および/または増強する他の薬剤には、上記したメカニズムに基づいて、現在までに見出されているものだけでなく今後見出されるものも含まれる。

#### [0217]

本発明で用いる一般式(I)で示される本発明化合物、または一般式(I)で示される本発明化合物と他の薬剤の併用剤を上記の目的で用いるには、通常、全身的または局所的に、経口または非経口の形で投与される。

# [0218]

投与量は、年齢、体重、症状、治療効果、投与方法、処理時間等により異なるが、通常、成人一人あたり、1回につき、1ngから100mgの範囲で、1日1回から数回経口投与されるか、または成人一人あたり、1回につき、0.1ngから10mgの範囲で、1日1回から数回非経口投与されるか、または1日1時間から24時間の範囲で静脈内に持続投与される。

### [0.219]

もちろん前記したように、投与量は、種々の条件によって変動するので、上記 投与量より少ない量で十分な場合もあるし、また範囲を越えて必要な場合もある

#### [0220]

一般式(I)で示される本発明化合物、または一般式(I)で示される化合物と他の薬剤の併用剤を投与する際には、経口投与のための内服用固形剤、内服用液剤、および非経口投与のための注射剤、外用剤、坐剤、点眼剤、吸入剤等として用いられる。

経口投与のための内服用固形剤には、錠剤、丸剤、カプセル剤、散剤、顆粒剤等が含まれる。カプセル剤には、ハードカプセルおよびソフトカプセルが含まれる。

#### [0221]

このような内服用固形剤においては、ひとつまたはそれ以上の活性物質はそのままか、または賦形剤 (ラクトース、マンニトール、グルコース、微結晶セルロース、デンプン等)、結合剤 (ヒドロキシプロピルセルロース、ポリビニルピロリドン、メタケイ酸アルミン酸マグネシウム等)、崩壊剤 (繊維素グリコール酸カルシウム等)、滑沢剤 (ステアリン酸マグネシウム等)、安定剤、溶解補助剤 (グルタミン酸、アスパラギン酸等)等と混合され、常法に従って製剤化して用いられる。また、必要によりコーティング剤 (白糖、ゼラチン、ヒドロキシプロ

ピルセルロース、ヒドロキシプロピルメチルセルロースフタレート等)で被覆していてもよいし、また2以上の層で被覆していてもよい。さらにゼラチンのような吸収されうる物質のカプセルも包含される。

# [0222]

経口投与のための内服用液剤は、薬剤的に許容される水剤、懸濁剤、乳剤、シロップ剤、エリキシル剤等を含む。このような液剤においては、ひとつまたはそれ以上の活性物質が、一般的に用いられる希釈剤(精製水、エタノールまたはそれらの混液等)に溶解、懸濁または乳化される。さらにこの液剤は、湿潤剤、懸濁化剤、乳化剤、甘味剤、風味剤、芳香剤、保存剤、緩衝剤等を含有していてもよい。

# [0223]

非経口投与のための外用剤の剤形には、例えば、軟膏剤、ゲル剤、クリーム剤、湿布剤、貼付剤、リニメント剤、噴霧剤、吸入剤、スプレー剤、エアゾル剤、点眼剤、および点鼻剤等が含まれる。これらはひとつまたはそれ以上の活性物質を含み、公知の方法または通常使用されている処方により製造される。

## [0224]

軟膏剤は公知または通常使用されている処方により製造される。例えば、ひとつまたはそれ以上の活性物質を基剤に研和、または溶融させて製造される。軟膏基剤は公知あるいは通常使用されているものから選ばれる。例えば、高級脂肪酸または高級脂肪酸エステル(アジピン酸、ミリスチン酸、パルミチン酸、ステアリン酸、オレイン酸、アジピン酸エステル、ミリスチン酸エステル、パルミチン酸エステル、ステアリン酸エステル、オレイン酸エステル等)、口ウ類(ミツロウ、鯨ロウ、セレシン等)、界面活性剤(ポリオキシエチレンアルキルエーテルリン酸エステル等)、高級アルコール(セタノール、ステアリルアルコール、セトステアリルアルコール等)、シリコン油(ジメチルポリシロキサン等)、炭化水素類(親水ワセリン、自色ワセリン、精製ラノリン、流動パラフィン等)、グリコール類(エチレングリコール、ジエチレングリコール、プロピレングリコール、ポリエチレングリコール、マクロゴール等)、植物油(ヒマシ油、オリーブ油、ごま油、テレピン油等)、動物油(ミンク油、卵黄油、スクワラン、スクワ

レン等)、水、吸収促進剤、およびかぶれ防止剤から選ばれるものを単独でまた は2種以上を混合して用いられる。さらに、保湿剤、保存剤、安定化剤、抗酸化 剤、着香剤等を含んでいてもよい。

# [0225]

ゲル剤は公知または通常使用されている処方により製造される。例えば、ひとつまたはそれ以上の活性物質を基剤に溶融させて製造される。ゲル基剤は公知あるいは通常使用されているものから選ばれる。例えば、低級アルコール(エタノール、イソプロピルアルコール等)、ゲル化剤(カルボキシメチルセルロース、ヒドロキシエチルセルロース、ヒドロキシプロピルセルロース、エチルセルロース等)、中和剤(トリエタノールアミン、ジイソプロパノールアミン等)、界面活性剤(モノステアリン酸ポリエチレングリコール等)、ガム類、水、吸収促進剤、およびかぶれ防止剤から選ばれるものを単独でまたは2種以上を混合して用いられる。さらに、保存剤、抗酸化剤、着香剤等を含んでいてもよい。

#### [0226]

クリーム剤は公知または通常使用されている処方により製造される。例えば、ひとつまたはそれ以上の活性物質を基剤に溶融または乳化させて製造される。クリーム基剤は公知あるいは通常使用されているものから選ばれる。例えば、高級脂肪酸エステル、低級アルコール、炭化水素類、多価アルコール(プロピレングリコール、1,3ーブチレングリコール等)、高級アルコール(2ーヘキシルデカノール、セタノール等)、乳化剤(ポリオキシエチレンアルキルエーテル類、脂肪酸エステル類等)、水、吸収促進剤、およびかぶれ防止剤から選ばれるものを単独でまたは2種以上を混合して用いられる。さらに、保存剤、抗酸化剤、着香剤等を含んでいてもよい。

### [0227]

湿布剤は公知または通常使用されている処方により製造される。例えば、ひとつまたはそれ以上の活性物質を基剤に溶融させ、練合物とし支持体上に展延塗布して製造される。湿布基剤は公知あるいは通常使用されているものから選ばれる。例えば、増粘剤(ポリアクリル酸、ポリビニルピロリドン、アラビアゴム、デンプン、ゼラチン、メチルセルロース等)、湿潤剤(尿素、グリセリン、プロピ

レングリコール等)、充填剤(カオリン、酸化亜鉛、タルク、カルシウム、マグネシウム等)、水、溶解補助剤、粘着付与剤、およびかぶれ防止剤から選ばれる ものを単独でまたは2種以上を混合して用いられる。さらに、保存剤、抗酸化剤 、着香剤等を含んでいてもよい。

## [0228]

貼付剤は公知または通常使用されている処方により製造される。例えば、ひとつまたはそれ以上の活性物質を基剤に溶融させ、支持体上に展延塗布して製造される。貼付剤用基剤は公知あるいは通常使用されているものから選ばれる。例えば、高分子基剤、油脂、高級脂肪酸、粘着付与剤、およびかぶれ防止剤から選ばれるものを単独でまたは2種以上を混合して用いられる。さらに、保存剤、抗酸化剤、着香剤等を含んでいてもよい。

## [0229]

リニメント剤は公知または通常使用されている処方により製造される。例えば、ひとつまたはそれ以上の活性物を水、アルコール(エタノール、ポリエチレングリコール等)、高級脂肪酸、グリセリン、セッケン、乳化剤、懸濁化剤等から選ばれるもの単独または2種以上に溶解、懸濁または乳化させて製造される。さらに、保存剤、抗酸化剤、着香剤等を含んでいてもよい。

### [0230]

噴霧剤、吸入剤、およびスプレー剤は、一般的に用いられる希釈剤以外に亜硫酸水素ナトリウムのような安定剤と等張性を与えるような緩衝剤、例えば塩化ナトリウム、クエン酸ナトリウムあるいはクエン酸のような等張剤を含有していてもよい。スプレー剤の製造方法は、例えば米国特許第2,868,691号および同第3,095,355号に詳しく記載されている。

#### [0231]

非経口投与のための注射剤としては、溶液、懸濁液、乳濁液および用時溶剤に溶解または懸濁して用いる固形の注射剤を包含する。注射剤は、ひとつまたはそれ以上の活性物質を溶剤に溶解、懸濁または乳化させて用いられる。溶剤として、例えば注射用蒸留水、生理食塩水、植物油、プロピレングリコール、ポリエチレングリコール、エタノールのようなアルコール類等およびそれらの組み合わせ

が用いられる。さらにこの注射剤は、安定剤、溶解補助剤(グルタミン酸、アスパラギン酸、ポリソルベート80(登録商標)等)、懸濁化剤、乳化剤、無痛化剤、緩衝剤、保存剤等を含んでいてもよい。これらは最終工程において滅菌するか無菌操作法によって製造される。また無菌の固形剤、例えば凍結乾燥品を製造し、その使用前に無菌化または無菌の注射用蒸留水または他の溶剤に溶解して使用することもできる。

### [0232]

非経口投与のための点眼剤には、点眼液、懸濁型点眼液、乳濁型点眼液、用時 溶解型点眼液および眼軟膏が含まれる。

### [0233]

これらの点眼剤は公知の方法に準じて製造される。例えば、ひとつまたはそれ以上の活性物質を溶剤に溶解、懸濁または乳化させて用いられる。点眼剤の溶剤としては、例えば、滅菌精製水、生理食塩水、その他の水性溶剤または注射用非水性用剤(例えば、植物油等)等およびそれらの組み合わせが用いられる。点眼剤は、等張化剤(塩化ナトリウム、濃グリセリン等)、緩衝化剤(リン酸ナトリウム、酢酸ナトリウム等)、界面活性化剤(ポリソルベート80(商品名)、ステアリン酸ポリオキシル40、ポリオキシエチレン硬化ヒマシ油等)、安定化剤(クエン酸ナトリウム、エデト酸ナトリウム等)、防腐剤(塩化ベンザルコニウム、パラベン等)等などを必要に応じて適宜選択して含んでいてもよい。これらは最終工程において滅菌するか、無菌操作法によって製造される。また無菌の固形剤、例えば凍結乾燥品を製造し、その使用前に無菌化または無菌の滅菌精製水または他の溶剤に溶解して使用することもできる。

#### [0234]

非経口投与のための吸入剤としては、エアロゾル剤、吸入用粉末剤または吸入 用液剤が含まれ、当該吸入用液剤は用時に水または他の適当な媒体に溶解または 懸濁させて使用する形態であってもよい。

### [0235]

これらの吸入剤は公知の方法に準じて製造される。

例えば、吸入用液剤の場合には、防腐剤(塩化ベンザルコニウム、パラベン等

)、着色剤、緩衝化剤(リン酸ナトリウム、酢酸ナトリウム等)、等張化剤(塩 化ナトリウム、濃グリセリン等)、増粘剤(カリボキシビニルポリマー等)、吸 収促進剤などを必要に応じて適宜選択して調製される。

## [0236]

吸入用粉末剤の場合には、滑沢剤(ステアリン酸およびその塩等)、結合剤(デンプン、デキストリン等)、賦形剤(乳糖、セルロース等)、着色剤、防腐剤(塩化ベンザルコニウム、パラベン等)、吸収促進剤などを必要に応じて適宜選択して調製される。

## [0237]

吸入用液剤を投与する際には通常噴霧器(アトマイザー、ネブライザー)が使用され、吸入用粉末剤を投与する際には通常粉末薬剤用吸入投与器が使用される

非経口投与のためその他の組成物としては、ひとつまたはそれ以上の活性物質 を含み、常法により処方される直腸内投与のための坐剤および膣内投与のための ペッサリー等が含まれる。

#### 【局所への適用】

本発明の局所投与としては、疾患(特に、骨量低下疾患)の部位へ本発明化合物を局所的に供給できればよく、その投与方法に限定されない。例えば、筋肉内、皮下、臓器、関節部位などへの注射剤、埋め込み剤、顆粒剤、散剤等の固形製剤、軟膏剤等が挙げられる。

### [0238]

本発明の持続性製剤としては、疾患(特に、骨量低下疾患)の部位で、本発明 化合物を持続的に供給できればよく、その製剤に限定されない。例えば、徐放性 注射剤(例えば、マイクロカプセル製剤、マイクロスフェア製剤、ナノスフェア 製剤等)、埋め込み製剤(例えば、フィルム製剤等)等が挙げられる。

### [0239]

本発明のマイクロカプセル製剤、マイクロスフェア製剤、ナノスフェア製剤とは、活性成分として一般式(I)で示される化合物、または一般式(I)で示される化合物と他の薬剤の併用剤を含有し、生体内分解性重合物との微粒子状の医

薬組成物である。

### [0240]

本発明の生体内分解性重合物とは、脂肪酸エステル重合体またはその共重合体、ポリアクリル酸エステル類、ポリヒドロキシ酪酸類、ポリアルキレンオキサレート類、ポリオルソエステル、ポリカーボネートおよびポリアミノ酸類が挙げられ、これらは1種類またはそれ以上混合して使用することができる。脂肪酸エステル重合体またはその共重合体とは、ポリ乳酸、ポリグリコール酸、ポリクエン酸、ポリリンゴ酸および乳酸ーグリコール酸共重合体が挙げられ、これらは1種類またはそれ以上混合して使用することができる。その他に、ポリαーシアノアクリル酸エステル、ポリβーヒドロキシ酪酸、ポリトリメチレンオキサート、ポリオルソエステル、ポリオルソカーボネート、ポリエチレンカーボネート、ポリィーベンジルーレーグルタミン酸およびポリレーアラニンを1種類で、または2種以上混合して使用することができる。好ましくは、ポリ乳酸、ポリグルコール酸または乳酸ーグリコール酸共重合体である。

### [0241]

### [0242]

本明細書中、重量平均分子量は、ゲルパーミェーションクロマトグラフィー(GPC)で測定したポリスチレン換算の分子量をいう。

前記した生体内分解性高分子重合物は、本発明の目的が達成される限り、一般式(I)で示される化合物の薬理活性の強さと、目的とする薬物放出によって変えることができ、例えば当該生理活性物質に対して約0.2ないし10,000倍(重量比)の量で用いられ、好ましくは約1ないし1,000倍(重量比)、さらに好ましくは約1ないし100倍(重量比)の量で用いるのがよい。

## [0243]

本発明のマイクロスフェア、マイクロカプセル、ナノカプセルは、例えば水中 乾燥法(例えば、o/w法、w/o/w法等)、相分離法、噴霧乾燥法、超臨界 流体による造粒法あるいはこれらに準ずる方法などが挙げられる。

以下に、水中乾燥法(o/w法)と噴霧乾燥法について、具体的な製造方法を 記述する。

## [0244]

(1)水中乾燥法(o/w法)本方法においては、まず生体内分解性重合物の有機溶媒溶液を作製する。本発明のマイクロスフェア、マイクロカプセル、ナノカプセルの製造の際に使用する有機溶媒は、沸点が120℃以下であることが好ましい。有機溶媒としては、例えばハロゲン化炭化水素(例、ジクロロメタン、クロロホルム等)、脂肪族エステル(例、酢酸エチル等)、エーテル類、芳香族炭化水素、ケトン類(アセトン等)等が挙げられる。これらは2種以上適宜の割合で混合して用いてもよい。有機溶媒は、好ましくはジクロロメタン、アセトニトリルである。有機溶媒は、好ましくはジクロロメタンである。生体内分解性重合物の有機溶媒溶液中の濃度は、生体内分解性重合物の分子量、有機溶媒の種類などによって異なるが、一般的には約0.01~約80%(v/w)から選ばれる。好ましくは約0.1~約70%(v/w)、さらに好ましくは約1~約60%(v/w)である。

### [0245]

このようにして得られた生体内分解性重合物の有機溶媒溶液中に、一般式(I)で示される化合物、または一般式(I)で示される化合物と他の薬剤の併用剤を、添加し溶解させる。この一般式(I)で示される化合物、または一般式(I)で示される化合物、または一般式(I)で示される化合物と他の薬剤の併用剤の添加量は、薬物の種類、骨形成におけ

る作用機作および効果の持続時間等により異なるが、生体内分解性高分子重合物の有機溶媒溶液中の濃度として、約0.001%~約90%(w/w)、好ましくは約0.01%~約80%(w/w)、さらに好ましくは約0.3~30%(w/w)である。 【0246】

次いで、このようにして調製された有機溶媒溶液をさらに水相中に加えて、撹拌機、乳化機などを用いて o / w エマルジョンを形成させる。この際の水相体積は一般的には油相体積の約1倍~約10,000倍から選ばれる。さらに好ましくは、約2倍~約5,000倍から選ばれる。特に好ましくは、約5倍~約2,000倍から選ばれる。前記外相の水相中に乳化剤を加えてもよい。乳化剤は、一般的に安定な o / w エマルジョンを形成できるものであれば何れでもよい。乳化剤としては、例えばアニオン性界面活性剤、非イオン性界面活性剤、ポリオキシエチレンヒマシ油誘導体、ポリビニルピロリドン、ポリビニルアルコール、カルボキシメチルセルロース、レシチン、ゼラチンなどが挙げられる。これらは適宜組み合わせて使用してもよい。外水相中の乳化剤の濃度は、好ましくは約0.001%~約20%(w/w)である。さらに好ましくは約0.01%~約10%(w/w)、特に好ましくは約0.05%~約5%(w/w)である。

## [0247]

油相の溶媒の蒸発には、通常用いられる方法が採用される。その方法としては、撹拌機、あるいはマグネチックスターラー等で撹拌しながら常圧もしくは徐々に減圧して行うか、ロータリーエバポレーターなどを用いて、真空度を調節しながら行う。このようにして得られたマイクロスフェアは遠心分離法あるいはろ過して分取した後、マイクロスフェアの表面に付着している遊離の一般式(I)で示される化合物、または一般式(I)で示される化合物と他の薬剤の併用剤、乳化剤などを、例えば界面活性剤溶液またはアルコール等で数回繰り返し洗浄した後、再び、蒸留水または賦形剤(マンニトール、ソルビトール、ラクトース等)を含有した分散媒などに分散して凍結乾燥する。前記したっ/w法においては、一般式(I)で示される化合物、または一般式(I)で示される化合物と他の薬剤の併用剤を生体内分解性重合物の有機溶媒溶液中に分散させる方法、すなわちェノの/w法によりマイクロスフェアを製造してもよい。

[0248]

(2) 噴霧乾燥法によりマイクロスフェアを製造する場合には、生体内分解性重合物と一般式(I)で示される化合物、または一般式(I)で示される化合物と他の薬剤の併用剤を溶解した有機溶媒またはエマルジョンを、ノズルを用いてスプレードライヤー装置(噴霧乾燥機)の乾燥室内へ噴霧し、きわめて短時間に微粒化液滴内の有機溶媒または水を揮発させマイクロスフェアを調製する。ノズルとしては、二液体ノズル型、圧力ノズル型、回転ディスク型等がある。このとき、所望により、o/wエマルジョンの噴霧と同時にマイクロスフェアの凝集防止を目的として、有機溶媒または凝集防止剤(マンニトール、ラクトース、ゼラチン等)の水溶液を別ノズルより噴霧する事も有効である。このようにして得られたマイクロスフェアは、必要があれば加温し、減圧化でマイクロスフェア中の水分及び溶媒の除去をより完全に行う。

## [0249]

フィルム製剤とは、前記の生体内分解性重合物と一般式(I)で示される化合物、または一般式(I)で示される化合物と他の薬剤の併用剤を有機溶媒に溶解した後、蒸留乾固し、フィルム状としたものまたは生体内分解性重合物と一般式(I)で示される化合物、または一般式(I)で示される化合物と他の薬剤の併用剤を適当な溶剤に溶かした後、増粒剤(セルロース類、ポリカーボネート類等)を加えて、ゲル化したもの等がある。

### [0250]

本発明のマイクロスフェア、マイクロカプセル、ナノスフェアは、例えばその まま、あるいは球状、棒状、針状、ペレット状、フイルム状、クリーム状の医薬 組成物を原料物質として種々の剤型に製剤化することもできる。

#### [0251]

また、この製剤を用いて、局所投与用の非経口剤(例、筋肉内、皮下、臓器、関節部位などへの注射剤、埋め込み剤、顆粒剤、散剤等の固形製剤、懸濁剤等の液剤、軟膏剤等)などとして投与することもできる。例えば、マイクロスフェアを注射剤とするには、マイクロスフェアを分散剤、保存剤、等張化剤、緩衝剤、p H 調整剤等と共に水性懸濁剤とすることにより実用的な注射用製剤が得られる

。また、植物油あるいはこれにレシチンなどのリン脂質を混合したもの、あるいは中鎖脂肪酸トリグリセリド(例、ミグリオール812等)と共に分散して油性 懸濁剤として実際に使用できる注射剤とする。

### [0252]

マイクロスフェアの粒子径は、例えば懸濁注射剤として使用する場合にはその分散度、通針性を満足する範囲であればよく、例えば平均粒子径として約0.1~約 $300\mu$ mの範囲が挙げられる。好ましくは、約 $1\sim150\mu$ m、さらに好ましくは、約 $2\sim100\mu$ mの範囲の粒子径である。本発明の医薬組成物は、前記のように懸濁液であることが好ましい。本発明の医薬組成物は微粒子状であることが好ましい。なぜならば該医薬組成物は、通常の皮下あるいは筋肉内注射に使用される注射針を通して投与される方が、患者に対し過度の苦痛を与えることがないからである。本発明の医薬組成物は特に注射剤であることが好ましい。マイクロスフェアを無菌製剤にするには、製造全工程を無菌にする方法、ガンマ線で滅菌する方法、防腐剤を添加する方法等が挙げられるが、特に限定されない。

### [0253]

本発明の医薬組成物は、一般式(I)で示される化合物、または一般式(I)で示される化合物と他の薬剤の併用剤の作用が徐放性を有し、生体内分解性重合物の種類、配合量などによりその徐放期間は異なるが、通常1週間から3カ月の徐放期間を有するので、骨低下疾患等に用いることができる。これらの中で特に骨折患者の場合、患部を固定しギブスなどで覆うことが多いため、頻回投与を避け1回の投与で持続的に治癒促進することが望まれるため、本発明の医薬組成物は特に有効である。

#### [0254]

本発明の医薬組成物の投与量は、一般式(I)で示される化合物、または一般式(I)で示される化合物と他の薬剤の併用剤の種類と含量、剤型、薬物放出の持続時間、投与対象動物などにより異なるが、一般式(I)で示される化合物、または一般式(I)で示される化合物と他の薬剤の併用剤の有効量であればよい。例えばマイクロスフェアとして骨折部位に使用する場合、1回当りの投与量として、成人(体重50kg)当たり、有効成分として約0.001mgから500m

g、好ましくは約0.01mgから50mgを1週間ないし3カ月に1回投与すればよい。

[0255]

### 【実施例】

以下、参考例および実施例によって本発明を詳述するが、本発明はこれらに限 定されるものではない。

クロマトグラフィーによる分離の箇所およびTLCに示されているカッコ内の 溶媒は、使用した溶出溶媒または展開溶媒を示し、割合は体積比を表わす。

[0256]

NMRの箇所に示されているカッコ内は測定に使用した溶媒を示す。

なお、THPはテトラヒドロピラン-2-イル基を表わし、Bocはt-ブトキシカルボニル基を表わす。

また、二種類のジアステレオマーが存在する場合、薄層シリカゲルクロマトグラフィーで、Rf値が、より小さい化合物を「高極性体」、より大きい化合物を「低極性体」として示すことがある。

[0257]

## 参考例1

S-(2,2-ジエトキシエチル)エタンチオエート 【化62】

アルゴン雰囲気下、ジメチルホルムアミド(20mL)中、2-ブロモアセトアルデヒドジエチルアセタール(7.29g)とチオ酢酸カリウム(4.23g)を混合し、50℃で5時間撹拌した。冷却後、この反応溶液に水を加え、酢酸エチルーヘキサン混合溶媒で抽出した。有機層を水および飽和食塩水で洗浄し、無水硫酸マグネシウムで乾燥後、濃縮し、下記物性値を有する標題化合物(7.10g)を得た。

[0258]

TLC: Rf 0.56 (n-ヘキサン: 酢酸エチル=9:1);

NMR (CDC1<sub>3</sub>):  $\delta$  4.43 (t, J=5.4 Hz, 1H), 3.67-3.43 (m, 4H), 3.04 (d, J=5 .4 Hz, 2H), 2.28 (s, 3H), 1.14 (t, J=7.2 Hz, 3H).

[0259]

## 参考例2

2-(2,2-ジエトキシエチルチオ)チアゾール-4-カルボン酸・エチルエ ステル

【化63】

参考例1で製造した化合物(1.76g)、2-ブロモチアゾールー4-カルボン酸エチルエステル(1.80g)およびトリブチルホスフィン(0.19mL)のエタノール(10mL)溶液に、氷冷下で炭酸カリウム(1.57g)を加え、室温で終夜撹拌した。この反応溶液に水を加え、酢酸エチルで抽出した。有機層を水および飽和食塩水で洗浄し、無水硫酸マグネシウムで乾燥後、濃縮し、標題化合物を得た。得られた化合物は精製することなく次の反応に用いた。

[0260]

TLC: Rf 0.40 (トルエン: 酢酸エチル=9:1);

NMR (CDC1<sub>3</sub>):  $\delta$  8.02 (s, 1H), 4.77 (t, J=5.4 Hz, 1H), 4.39 (q, J=7.2 Hz, 2H), 3.79-3.54 (m, 4H), 3.47 (d, J=5.4 Hz, 2H), 1.39 (t, J=7.2 Hz, 3H), 1.22 (t, J=7.2 Hz, 6H).

[0261]

# 参考例3

2- (ホルミルメチルチオ) チアゾール-4-カルボン酸・エチルエステル

【化64】

参考例2で製造した化合物をエタノール(15mL)に溶解し、2N塩酸(5.7mL)を加え、60℃で3時間撹拌した。冷却後、この反応溶液に水を加え、酢酸エチルで抽出した。有機層を水および飽和食塩水で洗浄し、無水硫酸マグネシウムで乾燥後、濃縮した。得られた残渣をシリカゲルカラムクロマトグラフィー(n-ヘキサン:酢酸エチル=3:1)で精製し、下記物性値を有する標題化合物(714mg)を得た。

[0262]

TLC: Rf 0.20 (n-ヘキサン: 酢酸エチル=4:1);

NMR (CDCl<sub>3</sub>):  $\delta$  9.72 (t, J=2.1 Hz, 1H), 8.05 (s, 1H), 4.39 (q, J=6.9 Hz, 2H), 4.09 (d, J=2.1 Hz, 2H), 1.39 (t, J=6.9 Hz, 3H).

[0263]

# 参考例4

【化65】

た。水層をtーブチルメチルエーテルで抽出した。合わせた有機層を、水および 飽和食塩水で洗浄し、無水硫酸マグネシウムで乾燥後、濃縮して下記物性値を有 する標題化合物(17.9g)を得た。

TLC: Rf 0.67 (n-ヘキサン: 酢酸エチル=1:1)。

[0264]

## 参考例5

(1S) - 1 - (1 - エチルシクロブチル) - 3 - (1 - フェニルー<math>1H-テトラゾールー5 - イルスルホニル) プロパン-1 - オール

【化66】

参考例4で製造した化合物(17.9g)のメタノール(225mL)溶液に、室温でオキソン(OXONE) (52.0g)を水(225mL)に溶かした溶液を加え、60℃で8時間撹拌した。冷却後、この反応溶液に水を加え酢酸エチルで抽出した。有機層を水および飽和食塩水で洗浄し、無水硫酸マグネシウムで乾燥後、濃縮し、下記物性値を有する標題化合物(19.7g)を得た。

TLC: Rf 0.78 (n-ヘキサン: 酢酸エチル=1:1)。

[0265]

## 参考例 6

【化67】

アルゴン雰囲気下、参考例 5 で製造した化合物 (19.7g) および 2, 3 ージヒドロー 2 Hーピラン (5.68g) の塩化メチレン (100 m L) 溶液に、氷冷下、p-hルエンスルホン酸 1 水和物 (54 m g) を加え、0  $\mathbb{C}$   $\mathbb{C}$  10  $\mathbb{C}$  で 2 時間撹拌した。この反応溶液にトリエチルアミン (1 m L) を加えた後濃縮した。得られた残渣をシリカゲルカラムクロマトグラフィー ( $n-\Lambda$ キサン: 酢酸エチル=9:1→4:1) で精製して下記物性値を有する標題化合物 (15.3g) を得た。

[0266]

TLC: Rf 0.50 and 0.45 (n-ヘキサン: 酢酸エチル=4:1);

NMR (CDC1<sub>3</sub>):  $\delta$  7.80-7.50 (m, 5H), 4.65 (m, 0.3H), 4.44 (m, 0.7H), 4.05 -3.40 (m, 5H), 2.30-1.35 (m, 16H), 1.00-0.85 (m, 3H).

[0267]

## 参考例7

(4R) - 4 - ホルミルー4 - t - ブトキシカルボニルアミノブタン酸・エチル エステル

【化68】

アルゴン雰囲気下、(4R) -4-t-ブトキシカルボニルアミノ-5-ヒドロキシペンタン酸・エチルエステル(1.62g) およびジイソプロピルエチルアミン(6.5m1)のジメチルスルホキシドー酢酸エチル混合溶液(1:1,40mL)に、氷冷下で三酸化硫黄・ピリジン錯体(2.96g)を加え、氷冷下で1時間撹拌した。この反応溶液を氷水に注ぎ、酢酸エチルで抽出した。有機層を0.5N塩酸、水および飽和食塩水で洗浄し、無水硫酸マグネシウムで乾燥後、濃縮し、下記物性値を有する標題化合物(1.65g)を得た。

[0268]

TLC: Rf 0.25 (n-ヘキサン: 酢酸エチル=4:1);

NMR (CDC1<sub>3</sub>):  $\delta$  9.60 (s, 1H), 5.20 (br, 1H), 4.27 (br, 1H), 4.14 (q, J= 7.2 Hz, 2H), 2.60-2.20 (m, 3H), 1.91 (m, 1H), 1.45 (s, 9H), 1.26 (t, J=7

.2 Hz, 3H).

[0269]

## 参考例8

(4R, 5E, 8S) - 4 - t - ブトキシカルボニルアミノー 8 - (1 - エチルシクロブチル) - 8 - (テトラヒドロピラン - 2 - イルオキシ) オクト - 5 - エン酸・エチルエステル

【化69】

アルゴン雰囲気下、参考例 6 で製造した化合物(4.31g)の無水 1 , 2-ii メトキシエタン(30m1)溶液に、-78  $\mathbb{C}$   $\pi$  で0.5M カリウム ビス(トリメチルシリル)アミドのトルエン溶液(18.6m1)を滴下し、1 時間同温度で撹拌した。この反応溶液に参考例 7 で製造した化合物(1.65g)の 1 , 2-ii メトキシエタン溶液(10m1)を滴下し、2 時間かけて 0  $\mathbb{C}$  まで昇温した。この反応溶液に飽和炭酸水素ナトリウム水溶液を加え、酢酸エチルで抽出した。有機層を水および飽和食塩水で洗浄し、無水硫酸マグネシウムで乾燥後、濃縮した。得られた残渣をシリカゲルカラムクロマトグラフィー(n-n+1 m-n+1 m-1 m-1

[0270]

TLC: Rf 0.50 (n-ヘキサン: 酢酸エチル=4:1);

NMR (CDC1<sub>3</sub>):  $\delta$  5.85-5.55 (m, 1H), 5.45-5.30 (m, 1H), 4.65-4.55 (m, 1H), 4.20-3.85 (m, 5H), 3.65-3.40 (m, 2H), 2.45-1.40 (m, 20H), 1.43 (s, 9H), 1.30-1.20 (m, 3H), 1.00-0.85 (m, 3H).

[0271]

### 参考例 9

(4R, 5E, 8S) -4-アミノ-8-(1-エチルシクロブチル) -8-ヒ ドロキシオクト-5-エン酸・エチルエステル・塩酸塩 【化70】

参考例8で製造した化合物(172mg)のエタノール(2m1)溶液に、4 N塩酸ジオキサン溶液(0.5m1)を加え、室温で8時間撹拌した。この反応溶液を濃縮し、標題化合物(120mg)を得た。

TLC: Rf 0.20 (クロロホルム:メタノール=9:1)。

[0272]

## 実施例1

 $(13E, 16\alpha) - 17, 17 - プロパノ - 16 - ヒドロキシ - 5 - (4 - エトキシカルボニルチアゾール - 2 - イル) - 9 - オキソ - 1, 2, 3, 4, 20 - ペンタノル - 5 - チア - 8 - アザプロスト - 13 - エン$ 

【化71】

アルゴン雰囲気下、参考例9で製造した化合物(120mg)および参考例3で製造した化合物(102mg)のテトラヒドロフラン(2mL)溶液を室温で30分間撹拌した。この溶液にナトリウムトリアセトキシボロハイドライド(116mg)を加え、室温で終夜撹拌した。この反応溶液に水を加え、酢酸エチルで抽出した。有機層を飽和食塩水で洗浄し、無水硫酸マグネシウムで乾燥後、濃縮した。得られた残渣をシリカゲルカラムクロマトグラフィー(酢酸エチル)で精製して、下記物性値を有する本発明化合物(93mg)を得た。

[0273]

TLC: Rf 0.29 (酢酸エチル);

NMR (CDCl<sub>3</sub>): δ 8.02 (s, 1H), 5.82 (dt, J=15.3, 6.9 Hz, 1H), 5.39 (dd, J=15.3, 8.7 Hz, 1H), 4.39 (q, J=7.2 Hz, 2H), 4.19 (m, 1H), 3.82 (m, 1H), 3.56-3.35 (m, 4H), 2.50-1.55 (m, 13H), 1.40 (m, 1H), 1.39 (t, J=7.2 Hz, 3H), 1.26 (m, 1H), 0.90 (t, J=7.5 Hz, 3H).

[0274]

## 実施例1(1)~1(16)

参考例3で製造した化合物またはその代わりに相当するアルデヒド誘導体、および参考例9で製造した化合物またはその代わりに相当するアミン誘導体を用いて、実施例1と同様の操作に付すことにより、以下に示す本発明化合物を得た。

[0275]

## ・実施例1(1)

(13E) - 20 -メチル-15 -ヒドロキシ-9 -オキソ-5, 17 -ジチア-8 -アザプロスト-13 -エン酸・ブチルエステル

【化72】

[0276]

### 高極性体

TLC: Rf 0.40 (酢酸エチル);

NMR (CDCl<sub>3</sub>):  $\delta$  5.73 (dd, J=15.3, 5.1 Hz, 1H), 5.61 (dd, J=15.3, 8.1 Hz, 1H), 4.24 (m, 1H), 4.15 (m, 1H), 4.08 (t, J=7.2 Hz, 2H), 3.68 (m, 1H), 3.11 (m, 1H), 2.80-2.20 (m, 13H), 1.97-1.70 (m, 3H), 1.67-1.32 (m, 8H), 0.94 (t, J=7.5 Hz, 3H), 0.93 (t, J=7.5 Hz, 3H),

なお、15位の立体は決定していないが、単一の化合物である。

[0277]

# 実施例1(2)

(13E, 15α) - 15 - ヒドロキシ - 5 - (4 - エトキシカルボニルチアゾ

-ル-2-7ル)-9-3キソー1, 2, 3, 4-7トラノル-5-4アー8-アザプロスト-13-4エン

【化73】

[0278]

TLC: Rf 0.51 (酢酸エチル);

NMR (CDCl<sub>3</sub>): 8 8.02 (s, 1H), 5.78 (dd, J=15.3, 5.7 Hz, 1H), 5.54 (dd, J=15.3, 9.0 Hz, 1H), 4.39 (q, J=6.9 Hz, 2H), 4.21 (m, 1H), 4.10 (m, 1H), 3.79 (m, 1H), 3.50-3.38 (m, 3H), 2.50-2.10 (m, 3H), 1.95 (bs, 1H), 1.77 (m, 1H), 1.66-1.20 (m, 11H), 0.87 (t, J=6.9 Hz, 3H).

[0279]

# <u>実施例1(3)</u>

 $(13E, 15\alpha) - 20, 20-エタノ-15-ヒドロキシ-9-オキソ-5$ ーチア-8-アザプロスト-13-エン酸・ブチルエステル

【化74】

[0280]

TLC: Rf 0.49 (酢酸エチル);

NMR (CDC1<sub>3</sub>): 8 5.74 (dd, J=15.9, 6.0 Hz, 1H), 5.52 (dd, J=15.9, 8.4 Hz, 1H), 4.21-4.03 (m, 4H), 3.63 (m, 1H), 3.10 (m, 1H), 2.73-2.20 (m, 9H), 1.98-1.18 (m, 16H), 0.93 (t, J=7.5 Hz, 3H), 0.65 (m, 1H), 0.40 (m, 2H), 0.00 (m, 2H).

[0281]

# <u> 実施例1 (4)</u>

(13E, 16α)-17, 17-プロパノ-16-ヒドロキシ-9-オキソー 20-ノル-8-アザプロスト-13-エン酸・エチルエステル

【化75】

[0282]

TLC: Rf 0.42 (酢酸エチル);

NMR (CDCl<sub>3</sub>): 8 5.77 (dt, J=15.3, 7.2 Hz, 1H), 5.38 (dd, J=15.3, 9.0 Hz, 1H), 4.12 (q, J=7.2 Hz, 2H), 4.03 (m, 1H), 3.62-3.44 (m, 2H), 2.88 (m, 1H), 2.50-1.20 (m, 23H), 2.28 (t, J=7.5 Hz, 2H), 1.25 (t, J=7.2 Hz, 3H), 0.93 (t, J=7.2 Hz, 3H).

[0283]

## 実施例1(5)

 $(13E, 16\alpha) - 17, 17-プロパノ-16-ヒドロキシ-9-オキソ-2, 7-(1, 3-インターフェニレン) - 3, 4, 5, 6, 20-ペンタノル - 8-アザプロスト-13-エン酸・メチルエステル$ 

【化76】

[0284]

TLC: Rf 0.54 (クロロホルム: メタノール=9:1);

NMR (CDC1<sub>3</sub>): 8 7.30-7.22 (m, 1H), 7.20-7.10 (m, 3H), 5.70 (dt, J=15.0, 7.2 Hz, 1H), 5.34 (dd, J=15.0, 9.0 Hz, 1H), 4.91 (d, J=15.0 Hz, 1H), 3.92 (d, J=15.0 Hz, 1H), 3.87 (m, 1H), 3.70 (s, 3H), 3.61 (s, 2H), 3.52 (dd, J=9.9, 2.1 Hz, 1H), 2.55-1.35 (m, 14H), 0.93 (t, J=7.2 Hz, 3H).

[0285]

## 実施例1(6)

 $(13E, 16\alpha) - 17, 17-プロパノ-16-ヒドロキシ-9-オキソ-1, 5-(1, 3-インターフェニレン) - 2, 3, 4, 20-テトラノル-8-アザプロスト-13-エン酸・エチルエステル$ 

【化77]

[0286]

TLC: Rf 0.38 (酢酸エチル);

NMR (CDC1<sub>3</sub>):  $\delta$  7.86 (m, 2H), 7.36 (m, 2H), 5.72 (m, 1H), 5.35 (dd, J=1 5.3, 8.7 Hz, 1H), 4.37 (q, J=6.9 Hz, 2H), 4.00 (m, 1H), 3.63-3.45 (m, 2H), 2.98 (m, 1H), 2.65 (m, 2H), 2.50-2.07 (m, 4H), 2.05-1.23 (m, 16H), 0.91 (t, J=7.5 Hz, 3H).

[0287]

### 実施例1(7)

 $(13E, 16\alpha) - 17, 17-プロパノ-16-ヒドロキシー9ーオキソー1, 5-(2, 5-インターチエニレン) - 2, 3, 4, 20-テトラノル-8-アザプロスト-13-エン酸・メチルエステル$ 

【化78]

[0288]

TLC: Rf 0.32 (酢酸エチル);

NMR (CDCl<sub>3</sub>):  $\delta$  7.61 (d, J=3.6 Hz, 1H), 6.80 (d, J=3.6 Hz, 1H), 5.75 (m, 1H), 5.36 (dd, J=15.0, 8.7 Hz, 1H), 4.01 (m, 1H), 3.86 (s, 3H), 3.66 (m, 2H), 3.03 (m, 1H), 2.82 (m, 2H), 2.50-2.15 (m, 4H), 2.10-1.37 (m, 13H), 0.90 (t, J=7.5 Hz, 3H).

[0289]

## 実施例1(8)

 $(13E, 16\alpha) - 17, 17-プロパノ-16-ヒドロキシ-9-オキソ-1, 6-(1, 4-インターフェニレン) - 2, 3, 4, 5, 20-ペンタノル <math>-8-アザプロスト-13-エン酸・メチルエステル$ 

【化79】

TLC: Rf 0.27 (酢酸エチル)。

[0290]

# 実施例1 (9)

(13E) - 17, 17 - プロパノ - 5 - (4 - エトキシカルボニルチアゾール <math>-2 - 4ル) -9 - オキソ-1, 2, 3, 4, 19, 20 - ヘキサノル - 5 - チ

アー8ーアザプロストー13-エン 【化80】

[0291]

TLC: Rf 0.29 (n-ヘキサン: 酢酸エチル=1:2);

NMR (CDCl<sub>3</sub>): δ 8.02 (s, 1H), 5.68 (dt, J=15.3, 6.6 Hz, 1H), 5.22 (dd, J=15.3, 9.0 Hz, 1H), 4.39 (q, J=7.2 Hz, 2H), 4.13 (m, 1H), 3.83 (m, 1H), 3.49-3.41 (m, 2H), 3.32 (m, 1H), 2.44-2.29 (m, 2H), 2.19 (m, 1H), 2.04-1.48 (m, 8H), 1.43-1.31 (m, 6H), 1.05 (s, 3H).

[0292]

# 実施例1(10)

 $(16\alpha)-17$ , 17-プロパノ-16-ヒドロキシ-5-(4-エトキシカルボニルチアゾール-2-イル) -9-オキソ-1, 2, 3, 4, 20-ペンタノル-5-チア-8-アザプロスタン

【化81】

[0293]

TLC: Rf 0.25 (酢酸エチル);

NMR (CDCl<sub>3</sub>):  $\delta$  8.01 (s, 1H), 4.38 (q, J=7.2 Hz, 2H), 3.89 (m, 1H), 3.7 2 (m, 1H), 3.56-3.30 (m, 4H), 2.46-2.09 (m, 3H), 2.02-1.20 (m, 16H), 1.3

9 (t, J=7.2 Hz, 3H), 0.91 (t, J=7.5 Hz, 3H).

[0294]

## 実施例1(11)

 $(13E, 16\alpha) - 17, 17-プロパノ-16-ヒドロキシ-9-オキソー1, 5-(1, 4-インターフェニレン) - 2, 3, 4, 20-テトラノル-8-アザプロスト-13-エン酸・メチルエステル$ 

【化82】

[0295]

TLC: Rf 0.29 (酢酸エチル);

NMR (CDCl<sub>3</sub>):  $\delta$  7.95 (d, J=8.1 Hz, 2H), 7.25 (d, J=8.1 Hz, 2H), 5.69 (d t, J=15.3, 6.9 Hz, 1H), 5.34 (dd, J=15.3, 8.7 Hz, 1H), 3.97 (m, 1H), 3.9 0 (s, 3H), 3.72-3.45 (m, 2H), 2.97 (m, 1H), 2.66 (t, J=7.8 Hz, 2H), 2.50 -1.55 (m, 15H), 1.50-1.35 (m, 2H), 0.91 (t, J=7.5 Hz, 3H).

[0296]

### 実施例1(12)

(13E, 16 $\alpha$ ) -17, 17-プロパノ-16-ヒドロキシ-5-(4-エトキシカルボニルチアゾール-2-イル) -9-オキソ-1, 2, 3, 4, 20-ペンタノル-8-アザプロスト-13-エン

【化83】

[0297]

TLC: Rf 0.14 (酢酸エチル);

NMR (CDCl<sub>3</sub>): 8 8.04 (s, 1H), 5.78 (dt, J=15.3, 6.6 Hz, 1H), 5.38 (dd, J=15.3, 8.7 Hz, 1H), 4.42 (q, J=7.2 Hz, 2H), 4.06 (m, 1H), 3.65-3.50 (m, 2H), 3.10-3.00 (m, 2H), 2.50-1.55 (m, 17H), 1.43 (m, 1H), 1.40 (t, J=7.2 Hz, 3H), 0.92 (t, J=7.2 Hz, 3H).

[029.8]

## <u>実施例1(13)</u>

 $(13E, 16\alpha) - 17, 17-プロパノ-16-ヒドロキシ-5-(4-エトキシカルボニルチアゾール-2-イル) - 9-オキソ-1, 2, 3, 4, 20-ペンタノル-5, 8-ジアザプロスト-13-エン$ 

【化84】

[0299]

TLC: Rf 0.49 (酢酸エチル:メタノール=9:1);

NMR (CDCl<sub>3</sub>):  $\delta$  7.37 (s, 1H), 6.07 (br, 1H), 5.81 (dt, J=15.3, 6.6 Hz, 1H), 5.41 (dd, J=15.3, 9.0 Hz, 1H), 4.34 (q, J=6.9 Hz, 2H), 4.07 (m, 1H)

, 3.66-3.40 (m, 5H), 2.50-1.60 (m, 14H), 1.44 (m, 1H), 1.36 (t, J=6.9 Hz, 3H), 0.92 (t, J=7.5 Hz, 3H).

[0300]

# 実施例1(14)

【化85】

[0301]

TLC:Rf 0.30 (ヘキサン:酢酸エチル=1:2);

NMR: δ 8.02 (s, 1H), 5.66 (dt, J=15.3, 6.9 Hz, 1H), 5.21 (dd, J=15.3, 8.7 Hz, 1H), 4.39 (q, J=6.9 Hz, 2H), 4.14 (m, 1H), 3.83 (dt, J=13.5, 6.9 Hz, 1H), 3.48-3.40 (m, 2H), 3.30 (dt, J=13.5, 6.9 Hz, 1H), 2.48-2.10 (m, 4H), 2.08-1.93 (m, 2H), 1.71 (m, 1H), 1.39 (t, J=6.9 Hz, 3H), 1.35-1.1 6 (m, 5H), 0.86 (t, J=7.2 Hz, 3H).

[0302]

### 実施例1(15)

(13E) - 17, 17 - プロパノ - 5 - (4 - エトキシカルボニルチアゾール - 2 - イル) - 9 - オキソー1, 2, 3, 4, <math>20 - ペンタノル - 5 - チア - 8 - アザプロストー13 - エン

【化86】

[0303]

TLC: Rf 0.32 (ヘキサン: 酢酸エチル=1:2);

NMR (CDC1<sub>3</sub>): 8 8.02 (s, 1H), 5.69 (dt, J=15.3, 6.6 Hz, 1H), 5.21 (dd, J=15.3, 9.0 Hz, 1H), 4.39 (q, J=7.2 Hz, 2H), 4.12 (m, 1H), 3.84 (dt, J=1 3.5, 6.9 Hz, 1H), 3.50-3.39 (m, 2H), 3.31 (dt, J=13.5, 6.9 Hz, 1H), 2.48 -2.12 (m, 3H), 1.96-1.52 (m, 8H), 1.47-1.32 (m, 8H), 0.74 (t, J=7.2 Hz, 3H).

[0304]

# 実施例1(16)

(13E) -14-(3,5-ジクロロフェニル) -5-(4-エトキシカルボニルチアゾール-2-イル) -9-オキソー1,2,3,4,15,16,17,18,19,20-デカノル-5-チア-8-アザプロストー13-エン【化87】

[0305]

TLC: Rf 0.27 (ヘキサン: 酢酸エチル=1:2);

NMR (CDCl<sub>3</sub>):  $\delta$  7.95 (s, 1H), 7.23 (t, J=1.8 Hz, 1H), 7.18 (d, J=1.8 Hz, 2H), 6.50 (d, J=15.9, 1H), 6.04 (dd, J=15.9, 9.0 Hz, 1H), 4.47-4.34 (m

, 3H), 3.89 (m, 1H), 3.56-3.28 (m, 3H), 2.55-2.14 (m, 3H), 1.86 (m, 1H), 1.38 (t, J=7.2 Hz, 3H).

[0306]

## 実施例2

 $(13E, 16\alpha) - 17, 17-プロパノ-16-ヒドロキシ-5-(4-カルボキシチアゾール-2-イル) - 9-オキソ-1, 2, 3, 4, 20-ペンタノル-5-チア-8-アザプロスト-13-エン$ 

【化88】

実施例1で製造した化合物(93mg)のエタノール(2mL)溶液に、2N水酸化ナトリウム水溶液(0.5mL)を加え、室温で2時間撹拌した。この反応溶液に塩酸を加えて中和し、酢酸エチルで抽出した。有機層を飽和食塩水で洗浄し、無水硫酸マグネシウムで乾燥後、濃縮した。得られた残渣をシリカゲルカラムクロマトグラフィー(クロロホルム:メタノール:酢酸=90:10:1)で精製して、下記物性値を有する本発明化合物(78mg)を得た。

[0307]

TLC: Rf 0.25 (クロロホルム:メタノール=4:1);

NMR (CDCl<sub>3</sub>): 8 8.08 (brs, 1H), 5.84 (m, 1H), 5.40 (m, 1H), 4.10 (m, 1H), 4.00-2.50 (br, 2H), 3.78 (m, 1H), 3.59 (m, 1H), 3.49 (m, 1H), 3.32 (m, 2H), 2.50-1.58 (m, 12H), 1.44 (m, 1H), 1.26 (m, 1H), 0.92 (t, J=7.5 Hz, 3H).

[0308]

# 実施例2(1)~2(16)

実施例1で製造した化合物の代わりに実施例1(1)~1(16)で製造した 化合物を用いて、実施例2と同様の操作に付すことにより、以下に示す本発明化 合物を得た。

[0309]

# 実施例2(1)

(13E) -20-メチルー15-ヒドロキシー9-オキソー5,17-ジチア -8-アザプロストー13-エン酸

【化89】

[0310]

## 高極性体

TLC: Rf 0.37 (クロロホルム:メタノール=9:1);

NMR (CDCl<sub>3</sub>):  $\delta$  5.75 (dd, J=15.6, 4.8 Hz, 1H), 5.63 (dd, J=15.6, 8.1 Hz, 1H), 4.25 (m, 1H), 4.17 (m, 1H), 3.66 (m, 1H), 3.23-2.20 (m, 16H), 1.9 9-1.70 (m, 3H), 1.58 (m, 2H), 1.40 (m, 2H), 0.93 (t, J=7.2 Hz, 3H).

なお、15位の立体は決定していないが、単一の化合物である。

[0311]

# 実施例2(2)

 $(15\alpha, 13E) - 15 - E$ ドロキシー5 - (4 -カルボキシチアゾールー2 -イル) - 9 -オキソー1, 2, 3, 4 -テトラノルー5 -チアー8 -アザプロストー13 -エン

【化90】

[0312]

TLC: Rf 0.30 (クロロホルム: メタノール=9:1);

NMR (CDCl<sub>3</sub>):  $\delta$  8.10 (s, 1H), 5.80 (dd, J=15.6, 6.0 Hz, 1H), 5.55 (dd, J=15.6, 8.7 Hz, 1H), 4.30-3.77 (m, 5H), 3.60-3.29 (m, 3H), 2.58-2.20 (m, 3H), 1.80 (m, 1H), 1.62-1.21 (m, 8H), 0.88 (t, J=7.5 Hz, 3H).

[0313]

# 実施例2(3)

 $(15\alpha, 13E) - 20, 20-エタノー15-ヒドロキシー9ーオキソー5ーチアー8ーアザプロストー<math>13-$ エン酸

【化91】

[0314]

TLC: Rf 0.37 (クロロホルム: メタノール=9:1);

NMR (CDCl<sub>3</sub>):  $\delta$  5.73 (dd, J=15.3, 5.7 Hz, 1H), 5.53 (ddd, J=15.3, 8.1, 1.0 Hz, 1H), 4.18 (m, 2H), 3.63 (m, 1H), 3.30-2.78 (m, 2H), 2.75-2.20 (m, 10H), 1.98-1.67 (m, 3H), 1.62-1.10 (m, 8H), 0.62 (m, 1H), 0.40 (m, 2H), -0.02 (m, 2H).

[0315]

# <u> 実施例2 (4)</u>

 $(13E, 16\alpha) - 17, 17-プロパノー<math>16-$ ヒドロキシー9-オキソー20-ノルー8-アザプロストー13-エン酸

【化92】

[0316]

TLC: Rf 0.38 (クロロホルム:メタノール=9:1);

NMR (CDCl<sub>3</sub>):  $\delta$  5.79 (dt, J=15.3, 6.9 Hz, 1H), 5.38 (dd, J=15.3, 8.7 Hz, 1H), 4.05 (m, 1H), 4.00-3.00 (br, 2H), 3.58 (dd, J=9.9, 2.4 Hz, 1H), 3.52 (m, 1H), 2.87 (m, 1H), 2.50-1.20 (m, 24H), 0.93 (t, J=7.2 Hz, 3H).

[0317]

# 実施例2(5)

 $(13E, 16\alpha) - 17, 17-プロパノー16-ヒドロキシー9ーオキソー2, 7-(1, 3-インターフェニレン) - 3, 4, 5, 6, 20-ペンタノル <math>-8-$ アザプロストー13-エン酸

【化93】



[0318]

TLC: Rf 0.32 (クロロホルム:メダノール=9:1);

NMR (CDCl<sub>3</sub>):  $\delta$  7.25 (m, 1H), 7.20-7.10 (m, 3H), 5.71 (dt, J=15.3, 7.2 Hz, 1H), 5.32 (dd, J=15.3, 9.0 Hz, 1H), 4.96 (d, J=14.4 Hz, 1H), 4.50-3. 00 (br, 2H), 3.86 (d, J=14.4 Hz, 1H), 3.81 (m, 1H), 3.65 (d, J=15.3 Hz, 1H), 3.59 (d, J=15.3 Hz, 1H), 3.56 (dd, J=9.9, 2.1 Hz, 1H), 2.55-1.50 (m, 13H), 1.44 (m, 1H), 0.93 (t, J=7.2 Hz, 3H).

[0319]

# <u>実施例2(6)</u>

 $(13E, 16\alpha) - 17, 17-プロパノー16-ヒドロキシー9ーオキソー 1, 5-(1, 3-インターフェニレン) - 2, 3, 4, 20ーテトラノルー8-アザプロストー<math>13-$ エン酸

【化94】

[0320]

TLC: Rf 0.48 (クロロホルム: メタノール=9:1);

NMR (CDCl<sub>3</sub>):  $\delta$  7.93 (m, 2H), 7.45-7.38 (m, 2H), 5.74 (m, 1H), 5.36 (dd, J=15.3, 9.0 Hz, 1H), 4.01 (m, 1H), 3.63-3.51 (m, 2H), 3.00 (m, 1H), 2.67 (t, J=7.0 Hz, 2H), 2.55-2.12 (m, 4H), 2.08-1.58 (m, 12H), 1,41 (m, 1H), 0.91 (t, J=7.8 Hz, 3H).

[0321]

# 実施例2(7)\_

 $(13E, 16\alpha) - 17, 17-プロパノ-16-ヒドロキシー9ーオキソー1, 5-(2, 5-インターチエニレン) - 2, 3, 4, 20-テトラノルー8-アザプロスト-13-エン酸$ 

【化95】

[0322]

TLC: Rf 0.19 (クロロホルム: メタノール=9:1);

NMR (CDCl<sub>3</sub>):  $\delta$  7.68 (d, J=3.9 Hz, 1H), 6.83 (d, J=3.9 Hz, 1H), 5.77 (m, 1H), 5.65 (bs, 1H), 5.36 (dd, J=15.3, 8.7 Hz, 1H), 4.05 (m, 1H), 3.62-3.50 (m, 2H), 3.03 (m, 1H), 2.86 (t, J=7.0 Hz, 2H), 2.55-2.18 (m, 4H), 2.11-1.58 (m, 12H), 1.41 (m, 1H), 0.92 (t, J=7.2 Hz, 3H).

[0323]

## 実施例2 (8)

 $(13E, 16\alpha) - 17, 17 - プロパノー 16 - ヒドロキシー 9 - オキソー 1, 6 - (1, 4 - インターフェニレン) - 2, 3, 4, 5, 20 - ペンタノル <math>-8 -$ アザプロストー 13 -エン酸

【化96】

TLC: Rf 0.28 (酢酸エチル: 酢酸=100:1);

NMR (CDCl<sub>3</sub>):  $\delta$  8.01 (d, J=8.1 Hz, 2H), 7.29 (d, J=8.1 Hz, 2H), 5.67 (d dd, J=15.3, 8.1, 6.6 Hz, 1H), 5.27 (dd, J=15.3, 9.0 Hz, 1H), 3.88-3.72 (m, 2H), 3.57 (dd, J=9.6, 2.7 Hz, 1H), 3.20 (m, 1H), 3.00-2.80 (m, 2H), 2.50-1.58 (m, 13H), 1.45 (m, 1H), 0.93 (t, J=7.5 Hz, 3H).

[0325]

# <u>実施例2 (9)</u>

(13E) - 17, 17 - プロパノ - 5 - (4 - カルボキシチアゾール - 2 - イル) - 9 - オキソー1, 2, 3, 4, 19, 20 - ヘキサノル - 5 - チア - 8 - アザプロスト - 13 - エン

【化97】

[0326]

TLC: Rf 0.35 (クロロホルム:メタノール: 酢酸=9:1:0.1);

NMR (CDC1<sub>3</sub>): 8 8.08 (s, 1H), 5.74 (dt, J=15.0, 6.9 Hz, 1H), 5.27 (dd, J=15.0, 8.4 Hz, 1H), 4.06 (m, 1H), 3.82 (m, 1H), 3.49 (m, 1H), 3.40-3.20 (m, 2H), 2.53-2.15 (m, 3H), 2.09-1.53 (m, 9H), 1.50-1.40 (m, 2H), 1.08 (s, 3H).

[0327]

# 実施例2(10)

 $(16\alpha)-17$ , 17-プロパノ-16-ヒドロキシ-5-(4-カルボキシチアゾール-2-イル) -9-オキソ-1, 2, 3, 4, 20-ペンタノル-5

【化98】

[0328]

TLC: Rf 0.28 (クロロホルム: メタノール: 酢酸=90:10:1); NMR (CDCl<sub>3</sub>):  $\delta$  8.07 (s, 1H), 5.00-4.00 (br, 2H), 3.88 (m, 1H), 3.75-3. 20 (m, 5H), 2.50-1.20 (m, 18H), 0.91 (t, J=7.2 Hz, 3H).

[0329]

# <u>実施例2(11)</u>

 $(13E, 16\alpha) - 17, 17-プロパノ-16-ヒドロキシ-9-オキソー1, 5-(1, 4-インターフェニレン) - 2, 3, 4, 20-テトラノル-8-アザプロスト-13-エン酸$ 

【化99】

[0330]

TLC: Rf 0.24 (酢酸エチル: 酢酸=100:1);

NMR (CDCl<sub>3</sub>): δ 8.00 (d, J=8.1 Hz, 2H), 7.27 (d, J=8.1 Hz, 2H), 7.00-4 .00 (br, 2H), 5.71 (dt, J=15.6, 6.9 Hz, 1H), 5.36 (dd, J=15.6, 8.7 Hz, 1 H), 4.00 (m, 1H), 3.58 (m, 1H), 3.53 (dd, J=9.9, 2.4 Hz, 1H), 2.98 (m, 1H), 2.67 (t, J=7.5 Hz, 2H), 2.50-1.55 (m, 15H), 1.43 (m, 1H), 0.91 (t, J=7.2 Hz, 3H).

[0331]

# 実施例2(12)

 $(13E, 16\alpha) - 17, 17 - プロパノ - 16 - ヒドロキシ - 5 - (4 - カルボキシチアゾール - 2 - イル) - 9 - オキソ - 1, 2, 3, 4, 20 - ペンタノル - 8 - アザプロスト - <math>13 -$ エン

【化100】

[0332]

TLC:Rf 0.47 (クロロホルム:メタノール:酢酸=80:20:1);
NMR (CDC1<sub>3</sub>): δ 8.13 (s, 1H), 5.81 (dt, J=15.0, 7.2 Hz, 1H), 5.41 (dd, J=15.0, 8.7 Hz, 1H), 5.50-4.00 (br, 2H), 4.07 (m, 1H), 3.61 (dd, J=9.6, 2.7 Hz, 1H), 3.56 (m, 1H), 3.14 (m, 1H), 3.04 (t, J=7.5 Hz, 2H), 2.50-1.

60 (m, 15H), 1.45 (m, 1H), 0.92 (t, J=7.5 Hz, 3H).

[0333]

## 実施例2(13)

 $(13E, 16\alpha) - 17, 17 - プロパノ - 16 - ヒドロキシ - 5 - (4 - カルボキシチアゾール - 2 - イル) - 9 - オキソ - 1, 2, 3, 4, 20 - ペンタノル - 5, 8 - ジアザプロスト - 13 - エン$ 

【化101】

[0334]

TLC: Rf 0.49 (クロロホルム: メタノール: 酢酸=80:20:1);
NMR (CDCl<sub>3</sub>): 8 11.78 (br, 1H), 7.31 (s, 1H), 6.03 (dt, J=15.0, 7.2 Hz, 1H), 5.29 (dd, J=15.0, 8.7 Hz, 1H), 4.07 (m, 1H), 3.65-3.30 (m, 5H), 2.50-1.55 (m, 15H), 1.42 (m, 1H), 0.90 (t, J=7.5 Hz, 3H)。

[0335]

## 実施例2(14)

(13E) -5-(4-カルボキシチアゾール-2-イル) -9-オキソー1,2,3,4,20-ペンタノル-5-チアー8-アザプロストー13-エン 【化102】

[0.336]

TLC: Rf 0.37 (クロロホルム: メタノール: 酢酸=9:1:0.1); NMR (CDCl<sub>3</sub>):  $\delta$  8.08 (s, 1H), 5.72 (dt, J=15.3, 6.6 Hz, 1H), 5.27 (dd, J=15.3, 9.0 Hz, 1H), 4.05 (m, 1H), 3.80 (m, 1H), 3.51 (m, 1H), 3.40-3.21

(m, 2H), 2.54-2.15 (m, 3H), 2.13-2.00 (m, 2H), 1.75 (m, 1H), 1.45-1.17 (m, 6H), 0.89 (t, J=6.6 Hz, 3H).

[0337]

# 実施例2 (15)

(13E) - 17, 17 - プロパノ - 5 - (4 - カルボキシチアゾール - 2 - イル) - 9 - オキソー1, 2, 3, 4, 20 - ペンタノル - 5 - チア - 8 - アザプロスト - 13 - エン

【化103】

[0338]

TLC: Rf 0.37 (クロロホルム: メタノール: 酢酸=9:1:0.1);
NMR (CDCl<sub>3</sub>): 8 8.09 (s, 1H), 5.74 (dt, J=15.3, 6.6 Hz, 1H), 5.28 (dd, J=15.3, 8.7 Hz, 1H), 4.06 (m, 1H), 3.82 (m, 1H), 3.49 (m, 1H), 3.41-3.23 (m, 2H), 2.54-2.16 (m, 3H), 2.04-1.89 (m, 2H), 1.88-1.63 (m, 7H), 1.52-1.40 (m, 4H), 0.77 (t, J=7.2 Hz, 3H)。

[0339]

# <u>実施例2(16)</u>,

(13E) - 14 - (3, 5-ジクロロフェニル) - 5 - (4-カルボキシチア ソール-2-イル) - 9 - オキソー1, 2, 3, 4, 15, 16, 17, 18, 19, 20-デカノル-5-チア-8-アザプロスト-13-エン

【化104】

[0340]

TLC: Rf 0.33 (クロロホルム: メタノール: 酢酸=9:1:0.1);
NMR (CDC1<sub>3</sub>): 8 8.08 (s, 1H), 7.27 (t, J=1.8 Hz, 1H), 7.24 (d, J=1.8 Hz, 2H), 6.49 (d, J=15.6, 1H), 6.07 (dd, J=15.6, 8.7 Hz, 1H), 4.30 (m, 1H), 3.90 (m, 1H), 3.49 (m, 1H), 3.41-3.30 (m, 2H), 2.62-2.43 (m, 2H), 2.35 (m, 1H), 1.89 (m, 1H)。

[0341]

# 参考例10

2-(2-アミノエチルチオ)チアゾール-4-カルボン酸・エチルエステル・ 塩酸塩

【化105】

2ープロモーチアゾールー4ーカルボン酸・エチルエステル(3.00g)のエタノール(15mL)溶液にトリブチルホスフィン(25mg)、システアミン(1.2g)を加え室温で16時間撹拌した。さらにシステアミン(1.0g)を加え、室温で3時間、50℃で5時間撹拌した。反応溶液を室温まで冷却後、飽和炭酸水素ナトリウム水溶液を注いで中和し、クロロホルムで抽出した。有機層を飽和食塩水で洗浄し、無水硫酸ナトリウムで乾燥後、濃縮した。残渣を酢酸エチル(30mL)で希釈し、4N塩化水素一酢酸エチル溶液を加えた。析出した固体を濾取し、下記物性値を有する標題化合物(2.28g)を得た。

[0342]

TLC: Rf 0.20 (クロロホルム: メタノール=9:1);

NMR (CD<sub>3</sub>OD):  $\delta$  8.33 (s, 1H), 4.37 (q, J=7.2 Hz, 2H), 3.55 (t, J=6.6 Hz, 2H), 3.37 (t, J=6.6 Hz, 2H), 1.38 (t, J=7.2 Hz, 3H).

[0343]

# 参考例11

3-(4-t-ブチルベンゾイル)プロパン酸・エチルエステル

【化106】

tーブチルベンゼン (2.00g) の1, 2ージクロロエタン (30mL) 溶液に 氷冷下、塩化アルミニウム (2.2g) を加え、エチル スクシニルクロライド (2 .3mL) を滴下し、室温で 2 3 時間撹拌した。反応溶液を水に注ぎ、酢酸エチル で抽出した。有機層を 1 N 塩酸、水および飽和食塩水で洗浄し、無水硫酸マグネ シウムで乾燥後、濃縮した。残渣をシリカゲルカラムクロマトグラフィー (n-ヘキサン:酢酸エチル=9:1→5:1) で精製し、下記物性値を有する標題化 合物 (6 2 9 m g) を得た。

[0344]

TLC: Rf 0.65 (n-ヘキサン: 酢酸エチル=3:1);

NMR (CDC1<sub>3</sub>):  $\delta$  7.92 (d, J=8.7 Hz, 2H), 7.48 (d, J=8.7 Hz, 2H), 4.16 (q, J=7.2 Hz, 2H), 3.29 (t, J=6.6 Hz, 2H), 2.75 (t, J=6.6 Hz, 2H), 1.34 (s, 9H), 1.26 (t, J=7.2 Hz, 3H).

[0345]

### 実施例3

2-(2-(2-(4-t-ブチルフェニル)-5-オキソピロリジン-1-イル)エチルチオ)チアゾールー4-カルボン酸・エチルエステル

【化107】

アルゴン気流下、参考例10で製造した化合物(270mg)のエタノール(

5 m L)溶液に炭酸水素ナトリウム(84 m g)を加え10分間撹拌した後、酢酸(0.12 m L)および参考例11で製造した化合物(262 m g)を加え、室温で15分間撹拌した。反応溶液に水素化シアノホウ素ナトリウム(125 m g)を加え、70℃で終夜撹拌した。反応溶液に水を加え酢酸エチルで抽出した。有機層を水でおよび飽和食塩水で洗浄し、無水硫酸マグネシウムで乾燥後、濃縮した。残渣をシリカゲルカラムクロマトグラフィー(n - ヘキサン:酢酸エチル=1:1→2:3)で精製し、下記物性値を有する本発明化合物(170 m g)を得た。

[0346]

TLC: Rf 0.28 (ヘキサン: 酢酸エチル=1:1);

NMR (CDCl<sub>3</sub>):  $\delta$  7.99 (s, 1H), 7.34 (d, J=8.4 Hz, 2H), 7.12 (d, J=8.4 Hz, 2H), 4.79 (dd, J=7.8, 5.4 Hz, 1H), 4.40 (q, J=7.2 Hz, 2H), 3.93 (dt, J=14.4, 7.2 Hz, 1H), 3.45-3.28 (m, 2H), 3.01 (dt, J=14.4, 6.9 Hz, 1H), 2.64-2.33 (m, 3H), 1.90 (m, 1H), 1.40 (t, J=7.2 Hz, 3H), 1.30 (s, 9H).

[0347]

# 実施例3(1)~3(13)

参考例11で製造した化合物の代わりに相当する誘導体を用いて、実施例3と 同様の操作に付すことにより、以下に示す本発明化合物を得た。

[0348]

# <u> 実施例3 (1)</u>

2-(2-(2-(4-n-ブチルフェニル)-5-オキソピロリジン-1-イール) エチルチオ)チアゾールー4-カルボン酸・エチルエステル

【化108】

[0349]

TLC: Rf 0.64 (クロロホルム: メタノール=9:1);

NMR (CDCl<sub>3</sub>): 8 8.00 (s, 1H), 7.14 (d, J=8.4 Hz, 2H), 7.10 (d, J=8.4 Hz, 2H), 4.79 (dd, J=7.5, 5.4 Hz, 1H), 4.41 (q, J=7.2 Hz, 2H), 3.93 (dt, J=14.1, 7.2 Hz, 1H), 3.37 (m, 2H), 3.01 (dt, J=14.1, 6.3 Hz, 1H), 2.64-2. 35 (m, 5H), 1.90 (m, 1H), 1.55 (m, 2H), 1.40 (t, J=7.2 Hz, 3H), 1.35 (m, 2H), 0.93 (t, J=7.2 Hz, 3H).

[0350]

#### 実施例3(2)

2-(2-(2-(4-((1S)-1-2) - 1) - 1) - 1) - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -

【化109】

[0351]

TLC: Rf 0.80 (クロロホルム: メタノール: 酢酸=90:10:1);
NMR (CDC1<sub>3</sub>): δ 7.99 (s, 1H), 7.31 (d, J=8.1 Hz, 2H), 7.18 (d, J=8.1 Hz, 2H), 4.82 (m, 1H), 4.65 (m, 1H), 4.40 (q, J=7.2 Hz, 2H), 3.91 (m, 1H), 3.36 (m, 2H), 3.02 (m, 1H), 2.65-2.35 (m, 3H), 2.10-1.55 (m, 6H), 1.40 (t, J=7.2 Hz, 3H), 1.40-1.15 (m, 4H), 0.87 (t, J=6.6 Hz, 3H).

[0352]

### <u> 実施例3(3)</u>

2-(2-(2-(4-プロポキシフェニル)-5-オキソピロリジン-1-イル) エチルチオ) チアゾール-4-カルボン酸・エチルエステル

【化110】

[0353]

TLC: Rf 0.15 (n-ヘキサン: 酢酸エチル=1:1);

NMR (CDCl<sub>3</sub>):  $\delta$  8.00 (s, 1H), 7.11 (d, J=9.0 Hz, 2H), 6.84 (d, J=9.0 Hz, 2H), 4.76 (dd, J=7.8, 5.4 Hz, 1H), 4.40 (q, J=7.2 Hz, 2H), 3.94-3.81 (m, 3H), 3.44-3.28 (m, 2H), 3.01 (dt, J=14.4, 6.9 Hz, 1H), 2.60-2.35 (m, 3H), 1.88 (m, 1H), 1.80 (q, J=7.2 Hz, 2H), 1.40 (t, J=7.2 Hz, 3H), 1.03 (t, J=7.2 Hz, 3H).

[0354]

## <u>実施例3 (4)</u>

2-(2-(2-(1,1'-ビフェニル-4-イル)-5-オキソピロリジン -1-イル) エチルチオ) チアゾールー4-カルボン酸・メチルエステル 【化111】

[0355]

TLC: Rf 0.23 (ヘキサン: 酢酸エチル=1:1);

NMR (CDC1<sub>3</sub>):  $\delta$  7.98 (s, 1H), 7.62-7.52 (m, 4H), 7.49-7.32 (m, 3H), 7.3 1-7.24 (m, 2H), 4.89 (t, J=6.3 Hz, 1H), 4.38 (q, J=7.2 Hz, 2H), 3.98 (dt, J=14.4, 7.2 Hz, 1H), 3.46-3.37 (m, 2H), 3.06 (dt, J=14.4, 6.9 Hz, 1H),

2.64-2.37 (m, 3H), 1.95 (m, 1H), 1.38 (t, J=7.2 Hz, 3H).

[0356]

【化112】

### 実施例3 (5)

2-(2-(2-(4-n-ヘキシルフェニル)-5-オキソピロリジン-1-イル) エチルチオ) チアゾール-4-カルボン酸・エチルエステル

[0357]

TLC: Rf 0.34 (酢酸エチル: n-ヘキサン= 1:1);

NMR (CDC1<sub>3</sub>): δ 8.00 (s, 1H), 7.21-7.26 (m, 4H), 4.82-4.75 (m, 1H), 4.4 1 (q, J=6.9 Hz, 2H), 3.98-3.87 (m, 1H), 3.44-3.29 (m, 2H), 3.07-2.95 (m, 1H), 2.63-2.33 (m, 5H), 1.97-1.84 (m, 1H), 1.65-1.51 (m, 2H), 1.46-1.21 (m, 9H), 0.93-0.82 (m, 3H).

[0358]

# <u>実施例3 (6)</u>

【化113】

[0359]

TLC: Rf 0.21 (酢酸エチル: n-ヘキサン=1:1);

NMR (CDC1<sub>3</sub>):  $\delta$  8.00 (s, 1H), 7.15-7.09 (m, 4H), 4.79 (dd, J=7.5, 5.7 H z, 1H), 4.41 (q, J=7.2 Hz, 2H), 3.93 (dt, J=14.1, 7.2 Hz, 1H), 3.42-3.39 (m, 2H), 3.00 (dt, J=14.1, 6.6 Hz, 1H), 2.60-2.35 (m, 5H), 1.96-1.83 (m, 1H), 1.68-1.55 (m, 2H), 1.40 (t, J=7.2 Hz, 3H), 0.93 (t, J=7.2 Hz, 3H)

[0360]

### 実施例3 (7)

2-(2-(2-フェニル-5-オキソピロリジン-1-イル) エチルチオ)チ アゾール-4-カルボン酸・エチルエステル

【化114】

[0361]

TLC: Rf 0.15 (酢酸エチル: n-ヘキサン=1:1);

NMR (CDCl<sub>3</sub>):  $\delta$  8.00 (s, 1H), 7.36-7.27 (m, 3H), 7.24-7.16 (m, 2H), 4.8 3 (t, J=6.9 Hz, 1H), 4.40 (q, J=6.9 Hz, 2H), 3.95 (dt, J=14.1, 7.2 Hz, 1 H), 3.46-3.30 (m, 2H), 3.01 (dt, J=14.1, 6.3 Hz, 1H), 2.64-2.35 (m, 3H), 1.99-1.83 (m, 1H), 1.40 (t, J=6.9 Hz, 3H).

[0362]

### 実施例3 (8)

2-(2-(2-(4-エチルフェニル)-5-オキソピロリジン-1-イル) エチルチオ)チアゾール-4-カルボン酸・エチルエステル 【化115】

[0363]

TLC: Rf 0.17 (酢酸エチル: n-ヘキサン=1:1);

NMR (CDCl<sub>3</sub>):  $\delta$  8.00 (s, 1H), 7.20-7.07 (m, 4H), 4.79 (dd, J=7.5, 5.4 Hz, 1H), 4.40 (q, J=7.2 Hz, 2H), 3.93 (dt, J=14.1, 6.9 Hz, 1H), 3.37 (dt, J=6.6, 1.8 Hz, 2H), 3.01 (dt, J=14.1, 6.3 Hz, 1H), 2.66-2.37 (m, 5H), 1.96-1.84 (m, 1H), 1.40 (t, J=6.9 Hz, 3H), 1.23 (t, J=7.2 Hz, 3H).

[0364]

### 実施例3(9)

2-(2-(2-(4-n-ペンチルフェニル)-5-オキソピロリジン-1-イル) エチルチオ) チアゾール-4-カルボン酸・エチルエステル

【化116】

[0365]

TLC: Rf 0.31 (酢酸エチル: n-ヘキサン=1:1);

NMR (CDCl<sub>3</sub>):  $\delta$  8.00 (s, 1H), 7.15-7.08 (m, 4H), 4.78 (dd, J=8.1, 5.7 H z, 1H), 4.41 (q, J=7.2 Hz, 2H), 3.98-3.86 (m, 1H), 3.37 (dt, J=6.6, 2.4 Hz, 2H), 3.06-2.95 (m, 1H), 2.63-2.35 (m, 5H), 1.97-1.86 (m, 1H), 1.40 (t, J=7.2 Hz, 3H), 1.37-1.26 (m, 4H), 0.91-0.85 (m, 3H).

[0366]

### 実施例3(10)

2-(2-(2-(4-メチルフェニル)-5-オキソピロリジン-1-イル)
エチルチオ)チアゾールー4ーカルボン酸・エチルエステル
【化117】

TLC: Rf 0.33 (酢酸エチル: n-ヘキサン=1:1);

NMR (CDCl<sub>3</sub>): 8 8.00 (s, 1H), 7.20-7.05 (m, 4H), 4.82-4.75 (m, 1H), 4.4 0 (q, J=6.9 Hz, 2H), 3.98-3.86 (m, 1H), 3.37 (dt, J=6.3, 2.1 Hz, 2H), 3.06-2.96 (m, 1H), 2.62-2.32 (m, 6H), 1.96-1.83 (m, 1H), 1.40 (t, J=6.9 Hz, 3H).

[0368]

### 実施例3(11)

【化118】

[0369]

TLC: Rf 0.25 (酢酸エチル: n-ヘキサン=1:1);

NMR (CDCl<sub>3</sub>):  $\delta$  8.00 (s, 1H), 7.20-7.09 (m, 4H), 4.82-4.76 (m, 1H), 4.4 1 (q, J=7.2 Hz, 2H), 3.98-3.87 (m, 1H), 3.37 (dt, J=6.3, 2.4 Hz, 2H), 3.06-2.96 (m, 1H), 2.63-2.35 (m, 5H), 1.97-1.84 (m, 1H), 1.65-1.52 (m, 2H)

, 1.40 (t, J=7.2 Hz, 3H), 1.35-1.23 (m, 10H), 0.92-0.85 (m, 3H).

# <u> 実施例3 (12)</u>

[0371]

TLC: Rf 0.32 (酢酸エチル: n-ヘキサン=1:1);

NMR (CDC1<sub>3</sub>):  $\delta$  8.00 (s, 1H), 7.19-7.05 (m, 4H), 4.82-4.76 (m, 1H), 4.4 0 (q, J=7.2 Hz, 2H), 3.98-3.87 (m, 1H), 3.37 (dt, J=6.6, 2.1 Hz, 2H), 3.06-2.95 (m, 1H), 2.63-2.34 (m, 5H), 1.98-1.85 (m, 1H), 1.66-1.52 (m, 2H), 1.40 (t, J=7.2 Hz, 3H), 1.37-1.21 (m, 8H), 0.95-0.82 (m, 3H).

[0372]

# <u>実施例3 (13)</u>

 $2-(2-(2-(3-n-\Lambda+シルフェニル)-5-オキソピロリジン-1-$ イル) エチルチオ) チアゾール-4-カルボン酸・エチルエステル 【化120】

[0373]

TLC: Rf 0.32 (酢酸エチル: n-ヘキサン=1:1);

NMR (CDC1<sub>3</sub>):  $\delta$  8.00 (s, 1H), 7.24 (t, J=7.8 Hz, 1H), 7.13-7.08 (m, 1H)

, 7.03-6.97 (m, 2H), 4.82-4.76 (m, 1H), 4.40 (q, J=7.2 Hz, 2H), 3.99-3.8 9 (m, 1H), 3.38 (dt, J=6.6, 1.2 Hz, 2H), 3.07-2.97 (m, 1H), 2.62-2.36 (m, 5H), 1.97-1.85 (m, 1H), 1.63-1.51 (m, 2H), 1.40 (t, J=7.2 Hz, 3H), 1.3 7-1.22 (m, 6H), 0.92-0.83 (m, 3H).

[0374]

# 実施例4~4(13)

実施例1で製造した化合物の代わりに実施例3~3(13)で製造した化合物を用いて、実施例2と同様の操作に付すことにより、以下に示す本発明化合物を得た。

. [0375].

#### 実施例4

2-(2-(2-(4-t-ブチルフェニル)-5-オキソピロリジン-1-イル) エチルチオ) チアゾールー4ーカルボン酸

【化121】

[0376]

TLC: Rf 0.29 (クロロホルム: メタノール: 酢酸=9:1:0.1);
NMR (CDCl<sub>3</sub>): 8 8.07 (s, 1H), 7.39 (d, J=8.4 Hz, 2H), 7.14 (d, J=8.4 Hz, 2H), 4.68 (dd, J=7.5, 6.0 Hz, 1H), 3.97 (m, 1H), 3.30-3.10 (m, 3H), 2.69-2.39 (m, 3H), 1.95 (m, 1H), 1.32 (s, 9H)。

[0377]

# 実施例4 (1)

2-(2-(2-(4-n-ブチルフェニル)-5-オキソピロリジン-1-イル) エチルチオ) チアゾールー4ーカルボン酸

#### 【化122】

[0378]

TLC: Rf 0.25 (クロロホルム:メタノール: 酢酸=200:20:1);
NMR (CDCl<sub>3</sub>): 8 8.07 (s, 1H), 7.19 (d, J=8.4 Hz, 2H), 7.12 (d, J=8.4 Hz, 2H), 4.67 (dd, J=7.8, 6.0 Hz, 1H), 3.94 (m, 1H), 3.30-3.05 (m, 3H), 2.70-2.40 (m, 5H), 1.95 (m, 1H), 1.60 (m, 2H), 1.36 (m, 2H), 0.93 (t, J=7.5 Hz, 3H)。

[0379]

#### 実施例4 (2)

2-(2-(2-(4-((1S)-1-ヒドロキシヘキシル))フェニル)-5ーオキソピロリジン-1ーイル)エチルチオ)チアゾール-4ーカルボン酸【化123】

[0380]

[0381]

TLC: Rf 0.51 (クロロホルム: メタノール: 酢酸=90:10:1);
NMR (CDCl<sub>3</sub>): 8 8.07 (s, 1H), 7.37 (d, J=8.1 Hz, 2H), 7.20 (d, J=8.1 Hz, 2H), 4.77-4.63 (m, 2H), 3.96 (m, 1H), 3.35-3.07 (m, 3H), 2.71-2.40 (m, 3H), 2.02-1.58 (m, 3H), 1.55-1.17 (m, 6H), 0.87 (t, J=6.6 Hz, 3H)。

# 実施例4 (3)

2-(2-(2-(4-プロポキシフェニル)) -5-オキソピロリジン<math>-1-4

ル)エチルチオ)チアゾールー4ーカルボン酸【化124】

TLC: Rf 0.35 (クロロホルム: メタノール: 酢酸=9:1:0.1);
NMR (CDCl<sub>3</sub>): δ 8.08 (s, 1H), 7.14 (d, J=8.7 Hz, 2H), 6.89 (d, J=8.7 Hz, 2H), 4.65 (dd, J=7.5, 6.6 Hz, 1H), 3.92 (t, J=6.6 Hz, 2H), 3.89 (m, 1H), 3.32-3.05 (m, 3H), 2.69-2.38 (m, 3H), 1.95 (m, 1H), 1.81 (m, 2H), 1.04 (t, J=7.5 Hz, 3H)。

[0383]

## 実施例4(4)

2-(2-(2-(1,1'-ビフェニル-4-イル)-5-オキソピロリジン -1-イル) エチルチオ)チアゾールー4-カルボン酸 【化125】

[0384]

TLC: Rf 0.31 (クロロホルム:メタノール: 酢酸=9:1:0.1); NMR (CDCl<sub>3</sub>):  $\delta$  8.07 (s, 1H), 7.65-7.55 (m, 4H), 7.49-7.41 (m, 2H), 7.40-7.27 (m, 3H), 4.76 (dd, J=7.8, 5.7 Hz, 1H), 4.01 (m, 1H), 3.38-3.11 (m, 3H), 2.76-2.43 (m, 3H), 2.00 (m, 1H).

[0385]

### 実施例4(5)

2-(2-(2-(4-n-ヘキシルフェニル)-5-オキソピロリジン-1-イル)エチルチオ)チアゾール-4-カルボン酸
【化126】

TLC: Rf 0.26 (塩化メチレン: メタノール=5:1):

NMR (CDC1<sub>3</sub>):  $\delta$  8.08 (s, 1H), 7.22-7.10 (m, 4H), 4.72-4.65 (m, 1H), 4.0 0-3.85 (m, 1H), 3.31-3.08 (m, 3H), 2.71-2.40 (m, 5H), 2.02-1.89 (m, 1H), 1.67-1.54 (m, 2H), 1.43-1.24 (m, 6H), 0.95-0.83 (m, 3H).

[0387]

#### 実施例4 (6)

2-(2-(2-(4-n-プロピルフェニル)-5-オキソピロリジン-1-イル) エチルチオ) チアゾールー4-カルボン酸 【化127】

TLC: Rf 0.24(塩化メチレン:メタノール=5:1);

NMR (CDCl<sub>3</sub>):  $\delta$  8.08 (s, 1H), 7.22-7.11 (m, 4H), 4.72-4.65 (m, 1H), 4.0 0-3.86 (m, 1H), 3.44-3.09 (m, 3H), 2.70-2.40 (m, 5H), 2.01-1.89 (m, 1H), 1.70-1.57 (m, 2H), 0.94 (t, J=7.2 Hz, 3H).

[0389]

# 実施例4 (7)

2-(2-(2-フェニル-5-オキソピロリジン-1-イル)エチルチオ)チ

アゾールー4ーカルボン酸

【化128】

. [0390]

TLC: Rf 0.21 (塩化メチレン: メタノール=5:1);

NMR (CDC1<sub>3</sub>):  $\delta$  8.08 (s, 1H), 7.42-7.31 (m, 3H), 7.28-7.20 (m, 2H), 4.7 6-4.70 (m, 1H), 4.02-3.89 (m, 1H), 3.34-3.10 (m, 3H), 2.71-2.42 (m, 3H), 2.02-1.90 (m, 1H).

[0391]

### 実施例4 (8)

2-(2-(2-(4-エチルフェニル)-5-オキソピロリジン-1-イル) エチルチオ) チアゾール-4-カルボン酸

【化129】

[0392]

TLC: Rf 0.17 (塩化メチレン: メタノール=5:1);

NMR (CDC1<sub>3</sub>):  $\delta$  8.07 (s, 1H), 7.22-7.10 (m, 4H), 4.70-4.64 (m, 1H), 4.0 1-3.88 (m, 1H), 3.29-3.12 (m, 3H), 2.71-2.41 (m, 5H), 2.01-1.89 (m, 1H), 1.25 (t, J=7.5 Hz, 3H).

[0393]

#### 実施例4 (9)

2-(2-(2-(4-n-ペンチルフェニル)-5-オキソピロリジン-1-イル) エチルチオ) チアゾールー4-カルボン酸

【化130】

TLC: Rf 0.23 (塩化メチレン: メタノール=5:1);

NMR (CDCl<sub>3</sub>):  $\delta$  8.84 (brs, 1H), 8.08 (s, 1H), 7.22-7.09 (m, 4H), 4.74-4 .67 (m, 1H), 3.98-3.87 (m, 1H), 3.35-3.12 (m, 3H), 2.69-2.40 (m, 5H), 2.03-1.88 (m, 1H), 1.66-1.55 (m, 2H), 1.42-1.25 (m, 4H), 0.93-0.85 (m, 3H)

[0395]

# 実施例4 (10)

2-(2-(2-(4-メチルフェニル)-5-オキソピロリジン-1-イル)
エチルチオ)チアゾール-4-カルボン酸

【化131】

TLC: Rf 0.17 (ジクロロエタン: メタノール=5:1);

NMR (CDCl<sub>3</sub>):  $\delta$  8.07 (s, 1H), 7.22-7.09 (m, 4H), 4.70-4.63 (m, 1H), 3.9 8-3.85 (m, 1H), 3.30-3.03 (m, 3H), 2.69-2.41 (m, 3H), 2.36 (s, 3H), 2.01 -1.88 (m, 1H).

[0397]

### 実施例4 (11)

2-(2-(2-(4-n-オクチルフェニル)-5-オキソピロリジン-1-イル) エチルチオ) チアゾールー4-カルボン酸

【化132】

[0398]

TLC: Rf 0.32 (ジクロロエタン: メタノール=5:1);

NMR (CDC1<sub>3</sub>):  $\delta$  8.08 (s, 1H), 7.22-7.09 (m, 4H), 4.70-4.63 (m, 1H), 4.0 0-3.89 (m, 1H), 3.31-3.08 (m, 3H), 2.67-2.40 (m, 5H), 2.01-1.90 (m, 1H), 1.68-1.54 (m, 2H), 1.39-1.16 (m, 10H), 0.96-0.82 (m, 3H).

[0399]

#### 実施例4(12)

2-(2-(2-(4-n-へプチルフェニル)-5-オキソピロリジン-1-イル) エチルチオ) チアゾールー4-カルボン酸

【化133】

[0400]

TLC: Rf 0.16 (ジクロロエタン:メタノール=5:1);

NMR (CDCl<sub>3</sub>):  $\delta$  9.22 (brs, 1H), 8.09 (s, 1H), 7.23-7.09 (m, 4H), 4.75-4 .68 (m, 1H), 4.01-3.86 (m, 1H), 3.36-3.12 (m, 3H), 2.69-2.39 (m, 5H), 2.02-1.89 (m, 1H), 1.67-1.53 (m, 2H), 1.39-1.20 (m, 8H), 0.92-0.83 (m, 3H)

[0401]

#### 実施例4(13)

2-(2-(2-(3-n-ヘキシルフェニル)-5-オキソピロリジン-1-イル) エチルチオ) チアゾール-4-カルボン酸【化134】

[0402]

TLC: Rf 0.32 (ジクロロエタン:メタノール=5:1);

NMR (CDC1<sub>3</sub>): 8 8.08 (s, 1H), 7.29 (t, J=8.1 Hz, 1H), 7.18-7.13 (m, 1H), 7.06-7.00 (m, 2H), 4.71-4.65 (m, 1H), 4.01-3.90 (m, 1H), 3.30-3.07 (m, 3H), 2.69-2.41 (m, 5H), 2.02-1.89 (m, 1H), 1.64-1.52 (m, 2H), 1.37-1.22 (m, 6H), 0.91-0.82 (m, 3H).

[0403]

# 実施例5(1)~5(45)

参考例3で製造した化合物またはその代わりに相当するアルデヒド誘導体、および参考例9で製造した化合物の代わりに相当するアミン誘導体を用いて、実施例1と同様の操作に付すことにより、以下に示す本発明化合物を得た。

[0404]

### 実施例5(1)

 $(13E, 16\alpha) - 17, 17-プロパノ-16-ヒドロキシ-5-(4-メトキシカルボニルオキサゾール-2-イル) - 9-オキソ-1, 2, 3, 4, 2$ 0-ペンタノル-8-アザプロスト-13-エン

【化135】

[0405]

TLC: Rf 0.07 (酢酸エチル);

NMR (CDC1<sub>3</sub>): 8 8.14 (s, 1H), 5.78 (dt, J=15.0, 7.5 Hz, 1H), 5.37 (dd, J=15.0, 9.0 Hz, 1H), 4.05 (m, 1H), 3.90 (s, 3H), 3.62-3.49 (m, 2H), 3.05 (m, 1H), 2.80 (t, J=7.5 Hz, 2H), 2.49-2.14 (m, 4H), 2.10-1.52 (m, 11H), 1.44 (m, 1H), 0.91 (t, J=7.5 Hz, 3H).

[0406]

# 実施例5(2)

5-(4-x)+2 カルボニルチアゾールー2ーイル) -9-x+y-14, 1 5-(1,4-4) ターフェニレン) -1, 2, 3, 4-x

【化136】

[0407]

TLC: Rf 0.19 (酢酸エチル: n-ヘキサン=1:1);

NMR (CDCI<sub>3</sub>):  $\delta$  7.99 (s, 1H), 7.10-7.01 (m, 4H), 4.43-4.34 (m, 3H), 3.4 4-3.28 (m, 3H), 3.08-2.94 (m, 1H), 2.89-2.41 (m, 8H), 1.84-1.48 (m, 4H), 1.41-1.19 (m, 9H), 0.92-0.81 (m, 3H).

[0408]

# <u>実施例5 (3)</u>

【化137】

[0409]

TLC: Rf 0.29 (ヘキサン: 酢酸エチル=1:2);

NMR (CDCl<sub>3</sub>): δ 8.03 (s, 1H), 5.65 (dt, J=15.3, 6.6 Hz, 1H), 5.22 (dd, J=15.3, 8.7 Hz, 1H), 4.40 (q, J=7.2 Hz, 2H), 4.14 (m, 1H), 3.83 (dt, J=1 3.5, 6.9 Hz, 1H), 3.50-3.40 (m, 2H), 3.30 (dt, J=13.5, 6.9 Hz, 1H), 2.46 -2.10 (m, 3H), 2.02-1.90 (m, 2H), 1.72 (m, 1H), 1.39 (t, J=7.2 Hz, 3H), 1.38-1.28 (m, 2H), 0.85 (t, J=7.2 Hz, 3H).

[0410]

#### 実施例5 (4)

(13E) - 5 - (4-エトキシカルボニルチアゾール-2-イル) - 9 - オキソー1, 2, 3, 4, 19, 20-ヘキサノル-5-チア-8-アザプロストー13-エン

【化138】

[0411]

TLC: Rf 0.30 (ヘキサン: 酢酸エチル=1:2);

NMR (CDCl<sub>3</sub>):  $\delta$  8.02 (s, 1H), 5.65 (dt, J=15.3, 6.6 Hz, 1H), 5.21 (dd, J=15.3, 8.7 Hz, 1H), 4.40 (q, J=7.2 Hz, 2H), 4.14 (m, 1H), 3.83 (dt, J=1 3.5, 6.9 Hz, 1H), 3.50-3.39 (m, 2H), 3.29 (dt, J=13.5, 6.9 Hz, 1H), 2.46 -2.10 (m, 3H), 2.04-1.93 (m, 2H), 1.72 (m, 1H), 1.39 (t, J=7.2 Hz, 3H), 1.36-1.17 (m, 4H), 0.86 (t, J=7.2 Hz, 3H).

[0412]

# 実施例5 (5)

 $(2E, 13E, 16\alpha) - 17, 17-プロパノ-16-ヒドロキシ-3, 6$  -(1, 4-インターフェニレン) - 9-オキソ-4, 5, 20-トリノル-8 -アザプロスト-2, 13-ジエン酸・エチルエステル

【化139】

[0413]

TLC: Rf 0.30 (酢酸エチル);

NMR (CDCl<sub>3</sub>):  $\delta$  7.65 (d, J=16.0 Hz, 1H), 7.45 (d, J=9.0 Hz, 2H), 7.20 (d, J=9.0 Hz, 2H), 6.40 (d, J=16.0 Hz, 1H), 5.67 (dt, J=15.4, 7.2 Hz, 1H), 5.28 (dd, J=15.4, 8.7 Hz, 1H), 4.25 (q, J=7.2 Hz, 2H), 3.88-3.70 (m, 2H), 3.57 (m, 1H), 3.15 (m, 1H), 2.95-2.70 (m, 2H), 2.50-1.40 (m, 15H), 1.35 (t, J=7.2 Hz, 3H), 0.92 (t, J=7.2 Hz, 3H).

[0414]

#### 実施例5(6)

 $(13E, 16\alpha) - 17, 17 - プロパノ - 16 - ヒドロキシ - 1, 7 - (2$ , 5 - インターチエニレン) - 9 - オキソ - 2, 3, 4, 5, 6, 20 - ヘキサノル - 8 - アザプロスト - 13 - エン酸・メチルエステル

【化140】

[0415]

TLC: Rf 0.58 (クロロホルム: メタノール=9:1);

NMR (CDCI<sub>3</sub>):  $\delta$  0.93 (t, J= 7.2 Hz, 3H), 1.73 (m, 11H), 2.35 (m, 4H), 3 .55 (m, 1H), 3.86 (s, 3H), 4.01 (m, 1H), 4.20 (d, J=15.4 Hz, 1H), 4.92 (d, J=15.4 Hz, 1H), 5.37 (dd, J=15.0, 9.0 Hz, 1H), 5.78 (dt, J=15.0, 7.2 Hz, 1H), 6.93 (m, 1H), 7.64 (m, 1H).

[0416]

#### 実施例5 (7)

(13E)-5-(4-エトキシカルボニルチアゾールー2ーイル)-9-オキソー1,2,3,4-テトラノルー5ーチアー8ーアザプロストー<math>13-エン【化141】

[0417]

TLC: Rf 0.36 (ヘキサン: 酢酸エチル= 1:2);

NMR (CDCl<sub>3</sub>): 8 8.02 (s, 1H), 5.66 (dt, J=15.3, 6.6 Hz, 1H), 5.21 (dd, J=15.3, 8.7 Hz, 1H), 4.40 (q, J=7.2 Hz, 2H), 4.14 (m, 1H), 3.83 (dt, J=1 3.5, 6.9 Hz, 1H), 3.50-3.40 (m, 2H), 3.29 (dt, J=13.5, 6.9 Hz, 1H), 2.46 -2.12 (m, 3H), 2.03-1.91 (m, 2H), 1.72 (m, 1H), 1.39 (t, J=7.2 Hz, 3H), 1.38-1.17 (m, 8H), 0.87 (t, J=7.2 Hz, 3H).

[0418]

# <u> 実施例5(8)</u>

【化142】

[0419]

TLC: Rf 0.37 (ヘキサン: 酢酸エチル=1:2);

NMR (CDCl<sub>3</sub>):  $\delta$  8.02 (s, 1H), 5.66 (dt, J=15.0, 6.6 Hz, 1H), 5.21 (dd, J=15.0, 9.0 Hz, 1H), 4.40 (q, J=7.2 Hz, 2H), 4.14 (m, 1H), 3.83 (dt, J=1 3.8, 6.9 Hz, 1H), 3.50-3.40 (m, 2H), 3.29 (dt, J=13.8, 6.9 Hz, 1H), 2.46 -2.12 (m, 3H), 2.03-1.93 (m, 2H), 1.72 (m, 1H), 1.39 (t, J=7.2 Hz, 3H), 1.38-1.16 (m, 10H), 0.88 (t, J=7.2 Hz, 3H).

[0420]

# <u> 実施例5 (9)</u>

【化143】

[0421]

TLC: Rf 0.18 (酢酸エチル);

NMR (CDCl<sub>3</sub>): δ 0.89 (m, 3H), 1.49 (m, 9H), 2.12 (m, 1H), 2.35 (m, 2H), 2.87 (m, 2H), 3.12 (m, 1H), 3.79 (m, 2H), 3.91 (s, 3H), 4.11 (m, 1H), 5 .38 (dd, J=15.38, 8.52 Hz, 1H), 5.58 (dd, J=15.38, 6.32 Hz, 1H), 7.25 (d, J=7.69 Hz, 2H), 7.96 (d, J=7.97 Hz, 2H).

[0422]

#### 実施例5 (10)

(13E, 15 $\alpha$ ) -15-ヒドロキシー1, 5-(2, 5-インターチエニレン) -9-オキソー2, 3, 4-トリノル-8-アザプロストー13-エン酸・メチルエステル

【化144】

[0423]

TLC: Rf 0.26 (酢酸エチル);

NMR (CDCl<sub>3</sub>): δ 0.89 (t, J=6.59 Hz, 3H), 1.40 (m, 9H), 1.80 (m, 3H), 2. 31 (m, 2H), 2.83 (t, J=7.69 Hz, 2H), 2.98 (m, 1H), 3.58 (m, 1H), 3.86 (s, 3H), 4.08 (m, 3H), 5.48 (dd, J=15.38, 8.79 Hz, 1H), 5.68 (dd, J=15.38, 6.32 Hz, 1H), 6.81 (d, J=3.85 Hz, 1H), 7.62 (d, J=3.85 Hz, 1H).

[0424]

### <u>実施例5(11)</u>

(13E,  $15\alpha$ ) -15-ビドロキシー9-オキソー5-チアー8-アザプロストー13-エン酸・エチルエステル

【化145】

[0425]

TLC: Rf 0.30 (酢酸エチル);

NMR (CDCl<sub>3</sub>): δ 0.89 (m, 3H), 1.41 (m, 8H), 1.81 (m, 4H), 2.32 (m, 5H), 2.63 (m, 4H), 3.11 (m, 1H), 3.67 (m, 1H), 4.13 (m, 4H), 5.53 (dd, J=15.38, 8.24 Hz, 1H), 5.74 (dd, J=15.38, 5.77 Hz, 1H).

[0426]

### <u>実施例5(12)</u>

【化146]

[0427]

TLC: Rf 0.38 (酢酸エチル);

NMR (CDCl<sub>3</sub>):  $\delta$  8.02 (s, 1H), 6.58 (dd, J=15.6, 7.8 Hz, 1H), 6.24 (d, J=15.6 Hz, 1H), 4.52-4.35 (m, 3H), 3.99-3.88 (m, 1H), 3.53-3.37 (m, 2H), 3.29-3.19 (m, 1H), 2.51 (t, J=7.5 Hz, 2H), 2.47-2.22 (m, 3H), 1.89-1.78 (m, 1H), 1.61-1.50 (m, 2H), 1.42-1.23 (m, 5H), 0.90 (t, J=7.5 Hz, 3H).

[0428]

## <u> 実施例5(13)</u>

5-(4-エトキシカルボニルチアゾール-2-イル)-9-オキソ-1,2,3,4,20-ペンタノル-5-チア-8-アザプロスタン【化147】

[0429]

TLC: Rf 0.35 (ヘキサン: 酢酸エチル=1:2);

NMR (CDC1<sub>3</sub>): 8 8.02 (s, 1H), 4.39 (q, J=7.2 Hz, 2H), 3.89 (m, 1H), 3.7 1 (m, 1H), 3.54-3.31 (m, 3H), 2.46-2.22 (m, 2H), 2.12 (m, 1H), 1.78-1.60 (m, 2H), 1.39 (t, J=7.2 Hz, 3H), 1.38-1.16 (m, 11H), 0.87 (t, J=7.2 Hz, 3H).

[0430]

# 実施例5(14)

【化148】

[0431]

TLC: Rf 0.40 (酢酸エチル);

NMR (CDCl<sub>3</sub>): δ 0.88 (m, 3H), 0.97 (t, J=7.42 Hz, 3H), 1.27 (m, 10H), 1 .45 (m, 4H), 1.76 (m, 3H), 1.95 (d, J=4.40 Hz, 1H), 2.30 (m, 3H), 3.41 (m, 3H), 3.76 (m, 1H), 4.08 (m, 1H), 4.22 (m, 1H), 4.33 (m, 2H), 5.55 (m, 1H), 5.79 (m, 1H), 7.99 (d, J=3.02 Hz, 1H).

[0432]

#### 実施例5 (15)

【化149】

[0433]

TLC: Rf 0.32 (酢酸エチル);

NMR (CDC1<sub>3</sub>): 8 7.99 (s, 1H), 5.79 (dd, J=15.3, 5.7 Hz, 1H), 5.54 (ddd, J=15.3, 8.4, 1.2 Hz, 1H), 4.33 (t, J=6.9 Hz, 2H), 4.26-4.16 (m, 1H), 4. 14-4.04 (m, 1H), 3.80-3.70 (m, 1H), 3.50-3.30 (m, 4H), 2.45-2.15 (m, 3H), 1.95-1.90 (m, 1H), 1.80-1.65 (m, 3H), 1.50-1.40 (m, 3H), 1.35-1.20 (m, 8H), 0.97 (t, J=7.2 Hz, 3H), 0.90-0.80 (m, 3H).

[0434]

#### 実施例5(16)

【化150】

[0435]

TLC: Rf 0.32 (酢酸エチル);

NMR (CDC1<sub>3</sub>): 8 7.99 (s, 1H), 5.78 (dd, J=15.6, 5.7 Hz, 1H), 5.54 (ddd, J=15.6, 8.4, 1.2 Hz, 1H), 4.33 (t, J=6.9 Hz, 2H), 4.26-4.16 (m, 1H), 4. 14-4.04 (m, 1H), 3.80-3.70 (m, 1H), 3.50-3.30 (m, 4H), 2.45-2.15 (m, 3H), 1.95-1.90 (m, 1H), 1.80-1.65 (m, 3H), 1.50-1.40 (m, 3H), 1.35-1.20 (m, 12H), 0.97 (t, J=7.2 Hz, 3H), 0.90-0.80 (m, 3H).

[0436]

# 実施例5(17)

(13Z) - 5 - (4 - x + 5) カルボニルチアゾールー2ーイル) -9 - x サンコー1, 2, 3, 4, 20 - ペンタノルー5 - チアー8 - アザプロストー13 - エン

【化151】

[0437]

TLC:Rf 0.28 (ヘキサン:酢酸エチル=1:2);

NMR (CDC1<sub>3</sub>):  $\delta$  8.02 (s, 1H), 5.59 (dt, J=10.5, 7.8 Hz, 1H), 5.22 (dd, J=10.5, 9.9 Hz, 1H), 4.53 (dt, J=9.9, 6.9 Hz, 1H), 4.39 (q, J=7.2 Hz, 2H), 3.77 (dt, J=14.1, 6.3 Hz, 1H), 3.45 (t, J=6.3 Hz, 2H), 3.33 (dt, J=14.1, 6.3 Hz, 1H), 2.45-1.93 (m, 5H), 1.67 (m, 1H), 1.39 (t, J=7.2 Hz, 3Hz)

), 1.38-1.16 (m, 6H), 0.87 (t, J=7.2 Hz, 3H).

[0438]

# 実施例 5 (18)

(13Z) - 16 - オキサー17, 17 - ジメチルー5 - (4 - エトキシカルボ ニルチアゾールー2 - イル) - 9 - オキソー1, 2, 3, 4, 19, 20 - ヘキサノルー5 - チアー8 - アザプロストー13 - エン

【化152】

[0439]

TLC: Rf 0.20 (ヘキサン: 酢酸エチル=1:2);

NMR (CDC1<sub>3</sub>): 8 8.02 (s, 1H), 5.76 (dt, J=11.1, 6.3 Hz, 1H), 5.37 (dd, J=11.1, 9.9 Hz, 1H), 4.64 (dt, J=9.9, 6.6 Hz, 1H), 4.39 (q, J=7.2 Hz, 2H), 4.04-3.90 (m, 2H), 3.82 (dt, J=13.5, 6.3 Hz, 1H), 3.54 - 3.41 (m, 2H), 3.35 (dt, J=13.5, 6.3 Hz, 1H), 2.48-2.13 (m, 3H), 1.71 (m, 1H), 1.39 (t, J=7.2 Hz, 3H), 1.19 (s, 9H)<sub>a</sub>

[0440]

## <u>実施例5(19)</u>

# 【化153】

#### [044'1]

TLC: Rf 0.20 (ヘキサン: 酢酸エチル=1:2);

NMR (CDCl<sub>3</sub>):  $\delta$  8.02 (s, 1H), 5.77 (dt, J=15.3, 5.1 Hz, 1H), 5.50 (dd, J=15.3, 9.0 Hz, 1H), 4.40 (q, J=7.2 Hz, 2H), 4.20 (dt, J=5.1, 8.1 Hz, 1H), 3.90-3.78 (m, 3H), 3.44 (t, J=6.3 Hz, 2H), 3.31 (dt, J=13.2, 6.3 Hz, 1H), 2.48-2.12 (m, 3H), 1.77 (m, 1H), 1.39 (t, J=7.2 Hz, 3H), 1.18 (s, 9 H).

### [0442]

# 実施例5(20)

 $(13E, 15\alpha) - 19 - 7x$  エルー15 - E ドロキシー5 - (4 - 7) トキシカルボニルチアゾールー2 - 7 イル)-9 - 7 キソー1, 2, 3, 4, 20 - 7 タノルー5 - 7 テアー8 - 7 ザプロストー13 - x

### 【化154】

#### [0443]

TLC: Rf 0.27 (酢酸エチル);

NMR (CDCl<sub>3</sub>):  $\delta$  0.96 (t, J=7.14 Hz, 3H), 1.51 (m, 11H), 2.00 (d, J=4.67 Hz, 1H), 2.29 (m, 3H), 2.58 (t, J=7.69 Hz, 2H), 3.37 (m, 3H), 3.76 (m, 1H), 4.14 (m, 2H), 4.31 (t, J=6.59 Hz, 2H), 5.54 (ddd, J=15.38, 8.52, 1.

10 Hz, 1H), 5.78 (dd, J=15.66, 5.77 Hz, 1H), 7.21 (m, 5H), 7.98 (s, 1H)

[0444]

### 実施例5(21)

(13E,  $15\alpha$ ) -20-7ェニル-15-ヒドロキシ-5-(4-ブトキシカルボニルチアゾール-2-イル) -9-オキソ-1, 2, 3, 4-テトラノル-5-チア-8-アザプロスト-13-エン

【化155】

[0445]

TLC: Rf 0.29 (酢酸エチル);

NMR (CDC1<sub>3</sub>): δ 0.97 (t, J=7.42 Hz, 3H), 1.52 (m, 13H), 1.97 (d, J=4.67 Hz, 1H), 2.31 (m, 3H), 2.59 (t, J=7.14 Hz, 2H), 3.40 (m, 3H), 3.77 (m, 1H), 4.14 (m, 2H), 4.32 (t, J=6.87 Hz, 2H), 5.54 (ddd, J=15.38, 8.52, 1.10 Hz, 1H), 5.79 (dd, J=15.38, 5.49 Hz, 1H), 7.22 (m, 5H), 7.95 (s, 1H)

[0446]

#### 実施例5(22)

 $(13E, 15\alpha) - 20 - ベンジル- 15 - ヒドロキシ- 5 - (4 - ブトキシカルボニルチアゾール- 2 - イル) - 9 - オキソ- 1, 2, 3, 4 - テトラノル- 5 - チア- 8 - アザプロスト- <math>13 -$ エン

【化156】

[0447]

TLC: Rf 0.29 (酢酸エチル);

NMR (CDCl<sub>3</sub>): 8 0.97 (t, J=7.42 Hz, 2H), 1.52 (m, 15H), 1.96 (d, J=4.67 Hz, 1H), 2.31 (m, 3H), 2.59 (t, J=7.42 Hz, 2H), 3.39 (m, 3H), 3.77 (m, 1H), 4.14 (m, 2H), 4.32 (t, J=6.87 Hz, 2H), 5.55 (ddd, J=15.66, 8.79, 1.10 Hz, 1H), 5.78 (dd, J=15.66, 5.77 Hz, 1H), 7.23 (m, 5H), 7.97 (s, 1H)

[0448]

# 実施例5(23)

 $(13E, 16\alpha) - 17, 17-プロパノ-16-ヒドロキシ-1, 6-(1, 3-インターフェニレン) - 9-オキソ-2, 3, 4, 5, 20-ペンタノル - 8-アザプロスト-13-エン酸・メチルエステル$ 

【化157】

TLC: Rf 0.29(酢酸エチル);

NMR (CDC1<sub>3</sub>):  $\delta$  0.92 (t, J=7.4 Hz, 3H), 1.43 (m, 1H), 2.00 (m, 14H), 2.80 (m, 1H), 2.92 (m, 1H), 3.15 (m, 1H), 3.57 (dd, J=9.7, 2.3 Hz, 1H), 3.76 (m, 1H), 3.88 (m, 1H), 3.91 (m, 3H), 5.26 (dd, J=15.2, 8.9 Hz, 1H), 5

.79 (dt, J=15.2, 7.2 Hz, 1H), 7.39 (m, 2H), 7.89 (m, 2H).

[0450]

## 実施例5 (24)

 $(15\alpha)-15-$ ビドロキシー5-(4-エトキシカルボニルチアゾールー2-イル)-9-オキソー1, 2, 3, 4-テトラノルー5-チアー8-アザプロスタン

【化158】

[0451]

TLC: Rf 0.20 (酢酸エチル);

NMR (CDCl<sub>3</sub>):  $\delta$  0.89 (t, J=6.59 Hz, 3H), 1.48 (m, 15H), 1.97 (m, 1H), 2.14 (m, 1H), 2.36 (m, 2H), 2.53 (d, J=5.22 Hz, 1H), 3.60 (m, 6H), 4.38 (q, J=7.14 Hz, 2H), 7.99 (s, 1H).

[0452]

# <u>実施例5(25)</u>

【化159】

[0453]

TLC: Rf 0.20 (酢酸エチル);

NMR (CDC1<sub>3</sub>):  $\delta$  0.90 (t, J=6.59 Hz, 3H), 1.47 (m, 13H), 2.04 (m, 1H), 2.32 (m, 2H), 2.87 (m, 2H), 3.06 (m, 1H), 3.40 (m, 1H), 3.57 (m, 1H), 3.8 6 (m, 4H), 7.30 (d, J=8.52 Hz, 2H), 7.97 (d, J=8.52 Hz, 2H).

[0454]

## 実施例5 (26)

(13E)-17, 17-ジメチル-5-(4-エトキシカルボニルチアゾール-2-イル)-9-オキソー1, 2, 3, 4, 19, 20-ヘキサノル-5-チアー8-アザプロストー13-エン

【化160】

[0455]

TLC: Rf 0.20 (ヘキサン: 酢酸エチル=1:1);

NMR (CDCl<sub>3</sub>):  $\delta$  8.02 (s, 1H), 5.67 (dt, J=15.0, 6.9 Hz, 1H), 5.21 (dd, J=15.0, 8.7 Hz, 1H), 4.39 (q, J=7.2 Hz, 2H), 4.14 (m, 1H), 3.83 (dt, J=1 3.5, 6.9 Hz, 1H), 3.50-3.37 (m, 2H), 3.30 (dt, J=13.5, 6.9 Hz, 1H), 2.46 -2.11 (m, 3H), 2.00-1.89 (m, 3H), 1.71 (m, 1H), 1.39 (t, J=7.2 Hz, 3H), 1.22-1.12 (m, 2H), 0.86 (s, 9H)<sub>s</sub>

[0456]

## 実施例5 (27)

(13E)-17, 17-iyメチル-5-(4-x)キシカルボニルチアゾール-2-4ル) -9-xキソー1, 2, 3, 4, 20-4ンタノル-5-4アー8

【化161】

[0457]

TLC: Rf 0.20 (ヘキサン: 酢酸エチル=1:1);

NMR (CDC1<sub>3</sub>): 8 8.02 (s, 1H), 5.67 (dt, J=15.0, 6.9 Hz, 1H), 5.21 (dd, J=15.0, 8.7 Hz, 1H), 4.39 (q, J=7.2 Hz, 2H), 4.14 (m, 1H), 3.83 (dt, J=1 3.5, 6.6 Hz, 1H), 3.50-3.38 (m, 2H), 3.30 (dt, J=13.5, 6.6 Hz, 1H), 2.47 -2.08 (m, 3H), 1.96-1.84 (m, 3H), 1.72 (m, 1H), 1.39 (t, J=7.2 Hz, 3H), 1.24-1.18 (m, 2H), 0.86-0.71 (m, 9H).

[0458]

### 実施例5(28)

(13E, 15α) -19-フェニル-15-ヒドロキシ-9-オキソ-20-ノル-5-チア-8-アザプロスト-13-エン酸・ブチルエステル 【化162】

[0459]

TLC: Rf 0.33 (塩化メチレン:メタノール=9:1);

NMR (CDC1<sub>3</sub>):  $\delta$  7.32-7.24 (m, 2H), 7.21-7.14 (m, 3H), 5.72 (dd, J=15.3, 6.0 Hz, 1H), 5.50 (ddd, J=15.3, 9.0, 0.6 Hz, 1H), 4.20-4.00 (m, 4H), 3.70-3.60 (m, 1H), 3.10-3.00 (m, 1H), 2.70-2.50 (m, 6H), 2.45-2.15 (m, 5H), 1.95-1.30 (m, 14H), 0.93 (t, J=7.2 Hz, 3H).

[0460]

# 実施例5 (29)

【化163】

[0461]

TLC: Rf 0.33 (塩化メチレン: メタノール=9:1);

NMR (CDCl<sub>3</sub>):  $\delta$  7.30-7.23 (m, 2H), 7.20-7.13 (m, 3H), 5.73 (dd, J=15.3, 5.7 Hz, 1H), 5.51 (ddd, J=15.3, 8.7, 1.2 Hz, 1H), 4.20-4.05 (m, 4H), 3.75-3.60 (m, 1H), 3.15-3.05 (m, 1H), 2.70-2.50 (m, 6H), 2.45-2.15 (m, 5H), 1.95-1.30 (m, 16H), 0.93 (t, J=7.5 Hz, 3H).

[0462]

# <u>実施例5 (30)</u>

 $(13E, 15\alpha) - 20 - ベンジルー15 - ヒドロキシー9 - オキソー5 - チャー8 - アザプロストー13 - エン酸・ブチルエステル$ 

【化164]

[046.3]

TLC: Rf 0.33 (塩化メチレン:メタノール=9:1);

NMR (CDCl<sub>3</sub>):  $\delta$  7.30-7.22 (m, 2H), 7.20-7.15 (m, 3H), 5.73 (dd, J=15.3, 5.7 Hz, 1H), 5.52 (ddd, J=15.3, 8.4, 1.2 Hz, 1H), 4.20-4.05 (m, 4H), 3.72-3.60 (m, 1H), 3.15-3.05 (m, 1H), 2.70-2.20 (m, 11H), 1.95-1.20 (m, 18 H), 0.93 (t, J=7.5 Hz, 3H).

### [0464]

#### 実施例5(31)\_

14-オキサー14-フェニルー5-(4-ブトキシカルボニルチアゾールー2-イル) -9-オキソー1, 2, 3, 4, 15, 16, 17, 18, 19, 20-デカノルー5-チアー8-アザプロスタン

【化165】

[0465]

TLC: Rf 0.45 (酢酸エチル);

NMR (CDCl<sub>3</sub>):  $\delta$  7.97 (s, 1H), 7.25 (dd, J=8.7, 7.5 Hz, 2H), 6.94 (t, J=7.5 Hz, 1H), 6.88 (d, J=8.7 Hz, 2H), 4.37 (dd, J=9.9, 3.6 Hz, 1H), 4.35-4.27 (m, 2H), 4.14 (m, 1H), 4.00 (dd, J=9.9, 3.6 Hz, 1H), 3.64-3.32 (m, 3H), 2.58 (m, 1H), 2.37 (m, 1H), 2.22 (m, 1H), 2.03 (m, 1H), 1.80-1.68 (m, 2H), 1.52-1.37 (m, 2H), 0.97 (t, J=7.2 Hz, 3H).

[0466]

# 実施例5(32)

14-オキサー14-(3,5-ジクロロフェニル)-5-(4-ブトキシカルボニルチアゾール-2-イル)-9-オキソー1,2,3,4,15,16,17,18,19,20-デカノル-5-チア-8-アザプロスタン

【化166】

[0467]

TLC: Rf 0.53 (酢酸エチル);

NMR (CDCl<sub>3</sub>): 8 7.97 (s, 1H), 6.93 (t, J=1.8 Hz, 1H), 6.87 (d, J=1.8 Hz, 2H), 4.69 (dd, J=10.2, 3.0 Hz, 1H), 4.38-4.30 (m, 2H), 4.12 (m, 1H), 4.00 (dd, J=10.2, 3.0 Hz, 1H), 3.84 (m, 1H), 3.61 (m, 1H), 3.4 7 (m, 1H), 3.26 (m, 1H), 2.57 (m, 1H), 2.39 (m, 1H), 2.23 (m, 1H), 2.06 (m, 1H), 1.80-1.69 (m, 2H), 1.52-1.38 (m, 2H), 0.97 (t, J=7.2 Hz, 3H).

[0468]

## <u> 実施例5(33)</u>

 $(13E, 16\alpha) - 17, 17-プロパノ-16-ヒドロキシ-6-(4-エトキシカルボニルチアゾール-2-イルスルフォニル) - 9-オキソ-1, 2, 3, 4, 5, 20-ヘキサノル-8-アザプロスト-13-エン$ 

【化167】

[0469]

TLC: Rf 0.33 (酢酸エチル);

NMR (CDCl<sub>3</sub>):  $\delta$  · 0.93 (t, J=7.5 Hz, 3H), 1.42 (m, 1H), 1.42 (t, J=7.2 Hz

, 3H), 1.84 (m, 10H), 2.29 (m, 4H), 3.75 (m, 5H), 4.22 (m, 1H), 4.45 (q, J=7.2 Hz, 2H), 5.39 (dd, J=15.1, 9.0 Hz, 1H), 5.93 (dt, J=15.1, 7.2 Hz, 1H), 8.47 (s, 1H).

[0470]

## <u> 実施例5 (34)</u>

14-オキサー5ー(4-ブトキシカルボニルチアゾールー2-イル)-9-オキソー1, 2, 3, 4, 19, 20-ヘキサノル-5-チアー8-アザプロスタン

【化168】

[0471]

TLC: Rf 0.47 (酢酸エチル);

NMR (CDCl<sub>3</sub>): δ 0.88 (t, J=7.2 Hz, 3H), 0.97 (t, J=7.2 Hz, 3H), 1.23-1. 58 (m, 7H), 1.69-1.89 (m, 3H), 2.09 (m, 1H), 2.28 (m, 1H), 2.44 (m, 1H), 3.37-3.60 (m, 6H), 3.63 (dd, J=10.2, 3.6 Hz, 1H), 3.84-3.97 (m, 2H), 4. 33 (t, J=6.6 Hz, 2H), 8.00 (s, 1H).

[0472]

#### 実施例5(35)

17, 17-プロパノー5-(4-エトキシカルボニルチアゾールー2-イル) -9, 16-ジオキソー1, 2, 3, 4, 20-ペンタノルー5-チアー8-アザプロスタン

【化169】

[0473]

TLC: Rf 0.41 (酢酸エチル);

NMR (CDC1<sub>3</sub>):  $\delta$  0.74 (t, J=7.5 Hz, 3H), 1.39 (t, J=7.1 Hz, 3H), 1.56 (m, 1H), 1.65-2.00 (m, 9H), 2.10-2.55 (m, 8H), 3.35-3.55 (m, 3H), 3.72 (m, 1H), 3.88 (m, 1H), 4.38 (q, J=7.1 Hz, 2H), 8.01 (s, 1H).

[0474]

### 実施例5 (36)

(13E) - 17 - オキサー5 - (4 - エトキシカルボニルチアゾールー2 - イル) - 9 - オキソー1, 2, 3, 4, 20 - ペンタノルー5 - チアー8 - アザプロストー13 - エン

【化170】

[0475]

TLC: Rf 0.16 (ヘキサン: 酢酸エチル=1:2);

NMR (CDCl<sub>3</sub>): 8 8.02 (s, 1H), 5.70 (dt, J=15.3, 6.6 Hz, 1H), 5.33 (dd, J=15.3, 8.7 Hz, 1H), 4.40 (q, J=7.2 Hz, 2H), 4.15 (m, 1H), 3.82 (m, 1H), 3.50-3.27 (m, 7H), 2.47-2.12 (m, 5H), 1.73 (m, 1H), 1.39 (t, J=7.2 Hz, 3H), 1.17 (t, J=7.2 Hz, 3H).

[0476]

### 実施例5 (37)

(13E) - 16 - オキサー5 - (4 - エトキシカルボニルチアゾールー2 - イル) - 9 - オキソー1, 2, 3, 4, 20 - ペンタノルー5 - チアー8 - アザプロストー13 - エン

【化171】

[0477]

TLC: Rf 0.17 (ヘキサン: 酢酸エチル=1:2);

NMR (CDCl<sub>3</sub>): 8 8.02 (s, 1H), 5.79 (dt, J=15.3, 5.1 Hz, 1H), 5.53 (ddt, J=15.3, 8.4, 1.8 Hz, 1H), 4.39 (q, J=7.2 Hz, 2H), 4.24 (m, 1H), 3.92 (dd, J=5.1, 1.8 Hz, 2H), 3.85 (m, 1H), 3.50-3.41 (m, 2H), 3.40-3.24 (m, 3H), 2.49-2.14 (m, 3H), 1.77 (m, 1H), 1.65-1.51 (m, 2H), 1.39 (t, J=7.2 Hz, 3H), 0.90 (t, J=7.2 Hz, 3H).

[0478]

### 実施例5(38)

13-(N-(ベンジルスルフォニル)アミノ)-5-(4-ブトキシカルボニルチアゾール-2-イル)-9-オキソ-1,2,3,4,14,15,16,17,18,19,20-ウンデカノル-5-チア-8-アザプロスタン 【化172】

[0479]

TLC: Rf 0.32 (酢酸エチル);

NMR (CDCl<sub>3</sub>): 8 0.97 (t, J=7.20 Hz, 3H), 1.45 (m, 2H), 1.73 (m, 2H), 1.90 (m, 1H), 2.10 (m, 1H), 2.33 (m, 2H), 3.02 (m, 1H), 3.16 (m, 1H), 3.29 (m, 1H), 3.50 (m, 2H), 3.82 (m, 2H), 4.28 (m, 4H), 5.67 (t, J=6.50 Hz, 1H), 7.30 (m, 3H), 7.42 (m, 2H), 8.01 (s, 1H).

[0480]

#### 実施例5 (39)

【化173】

[0481]

TLC: Rf 0.41 (ヘキサン: 酢酸エチル=1:2);

NMR (CDC1<sub>3</sub>): 8 8.01 (s, 1H), 5.64 (dt, J=15.6, 6.6 Hz, 1H), 5.20 (dd, J=15.6, 8.7 Hz, 1H), 4.38 (q, J=7.2 Hz, 2H), 4.13 (m, 1H), 3.81 (m, 1H), 3.48-3.38 (m, 2H), 3.27 (m, 1H), 2.58 (t, J=7.5 Hz, 2H), 2.46-2.11 (m, 3H), 2.04-1.93 (m, 2H), 1.69 (m, 1H), 1.64-1.52 (m, 2H), 1.38 (t, J=7.2 Hz, 3H), 1.40-1.22 (m, 4H).

[0482]

#### 実施例5 (40)·

5-(4-x)キシカルボニルチアゾールー2ーイル)-9, 13-ジオキソー1, 2, 3, 4, 20-ペンタノルー<math>5-チアー8, 14-ジアザプロスタン

## 【化174】

[0483]

TLC: Rf 0.19 (酢酸エチル);

NMR (CDC1<sub>3</sub>):  $\delta$  8.02 (s, 1H), 7.32 (m, 1H), 4.45-4.34 (m, 3H), 3.88 (m, 1H), 3.48-3.30 (m, 3H), 3.29-3.11 (m, 2H), 2.74 (dt, J=16.2, 7.8 Hz, 1H), 2.39-2.10 (m, 3H), 1.48-1.34 (m, 5H), 1.31-1.10 (m, 4H), 0.81 (t, J=6.9 Hz, 3H).

[0484]

### <u> 実施例5 (41)</u>

【化175】

[0485]

TLC: Rf 0.28 (酢酸エチル);

NMR (CDC1<sub>3</sub>): δ 0.91 (m, 3H), 1.36 (m, 7H), 1.74 (m, 1H), 2.25 (m, 5H), 3.58 (m, 6H), 4.18 (m, 1H), 4.39 (q, J=7.1 Hz, 2H), 5.37 (m, 1H), 5.80 (m, 1H), 8.01 (m, 1H).

[0486]

### 実施例5(42)

13-(N-メチル-N-(ベンジルスルフォニル) アミノ) -5-(4-ブトキシカルボニルチアゾール-2-イル) -9オキソ-1, 2, 3, 4, 14, 15, 16, 17, 18, 19, 20-ウンデカノル-5-チア-8-アザプロスタン

【化176】

[0487]

TLC: Rf 0.55 (酢酸エチル);

NMR (CDCl<sub>3</sub>): 8 0.96 (t, J=7.28 Hz, 3H), 1.44 (m, 2H), 1.73 (m, 2H), 2.03 (m, 2H), 2.25 (m, 1H), 2.42 (m, 1H), 2.86 (s, 3H), 2.95 (dd, J=13.87, 8.10 Hz, 1H), 3.20 (dd, J=14.01, 4.12 Hz, 1H), 3.29 (m, 1H), 3.42 (m, 2H), 3.82 (m, 2H), 4.30 (m, 4H), 7.38 (m, 5H), 8.01 (s, 1H).

[0488]

## <u>実施例 5 (4 3)</u>

14-オキサー14-(ピリジンー3-イル)-5-(4-ブトキシカルボニルチアゾールー2-イル)-9-オキソー1, 2, 3, 4, 15, 16, 17, 18, 19, 20-デカノル-5-チアー8-アザプロスタン

【化177]

[0489]

TLC: Rf 0.47 (酢酸エチル: メタノール=9:1);

NMR (CDCl<sub>3</sub>): 8 0.97 (t, J=7.40 Hz, 3H), 1.46 (m, 2H), 1.74 (m, 2H), 2.07 (m, 1H), 2.32 (m, 2H), 2.60 (m, 1H), 3.34 (m, 1H), 3.49 (m, 1H), 3.61 (m, 1H), 3.89 (m, 1H), 4.13 (m, 2H), 4.32 (m, 2H), 4.59 (dd, J=10.16, 3.30 Hz, 1H), 7.18 (ddd, J=8.40, 4.40, 0.60 Hz, 1H), 7.26 (ddd, J=8.40, 2.90, 1.40 Hz, 1H), 7.97 (s, 1H), 8.22 (dd, J=4.40, 1.40 Hz, 1H), 8.32 (m, 1H).

[0490]

### 実施例5(44)

 $(13E, 15\alpha) - 19 - 7x / + 2 - 15 - 2 + 15 - 2 - 4 - 7 + 5 - 2 + 2 - 4 - 7 + 5 - 2 + 2 - 4 - 7 + 2 - 4 - 7 + 2 - 4 - 7 + 2 - 4 - 7 + 2 - 4 - 7 + 2 - 4 - 7 + 2 - 4 - 7 + 2 - 4 - 7 + 2 - 7 + 2 - 7 + 2 - 7 + 2 - 7 + 2 - 7 + 2 - 7 + 2 - 7 + 2 - 7 + 2 - 7 + 2 - 7 + 2 - 7 + 2 - 7 + 2 - 7 + 2 - 7 + 2 - 7 + 2 - 7 + 2 - 7 + 2 - 7 + 2 - 7 + 2 - 7 + 2 - 7 + 2 - 7 + 2 - 7 + 2 - 7 + 2 - 7 + 2 - 7 + 2 - 7 + 2 - 7 + 2 - 7 + 2 - 7 + 2 - 7 + 2 - 7 + 2 - 7 + 2 - 7 + 2 - 7 + 2 - 7 + 2 - 7 + 2 - 7 + 2 - 7 + 2 - 7 + 2 - 7 + 2 - 7 + 2 - 7 + 2 - 7 + 2 - 7 + 2 - 7 + 2 - 7 + 2 - 7 + 2 - 7 + 2 - 7 + 2 - 7 + 2 - 7 + 2 - 7 + 2 - 7 + 2 - 7 + 2 - 7 + 2 - 7 + 2 - 7 + 2 - 7 + 2 - 7 + 2 - 7 + 2 - 7 + 2 - 7 + 2 - 7 + 2 - 7 + 2 - 7 + 2 - 7 + 2 - 7 + 2 - 7 + 2 - 7 + 2 - 7 + 2 - 7 + 2 - 7 + 2 - 7 + 2 - 7 + 2 - 7 + 2 - 7 + 2 - 7 + 2 - 7 + 2 - 7 + 2 - 7 + 2 - 7 + 2 - 7 + 2 - 7 + 2 - 7 + 2 - 7 + 2 - 7 + 2 - 7 + 2 - 7 + 2 - 7 + 2 - 7 + 2 - 7 + 2 - 7 + 2 - 7 + 2 - 7 + 2 - 7 + 2 - 7 + 2 - 7 + 2 - 7 + 2 - 7 + 2 - 7 + 2 - 7 + 2 - 7 + 2 - 7 + 2 - 7 + 2 - 7 + 2 - 7 + 2 - 7 + 2 - 7 + 2 - 7 + 2 - 7 + 2 - 7 + 2 - 7 + 2 - 7 + 2 - 7 + 2 - 7 + 2 - 7 + 2 - 7 + 2 - 7 + 2 - 7 + 2 - 7 + 2 - 7 + 2 - 7 + 2 - 7 + 2 - 7 + 2 - 7 + 2 - 7 + 2 - 7 + 2 - 7 + 2 - 7 + 2 - 7 + 2 - 7 + 2 - 7 + 2 - 7 + 2 - 7 + 2 - 7 + 2 - 7 + 2 - 7 + 2 - 7 + 2 - 7 + 2 - 7 + 2 - 7 + 2 - 7 + 2 - 7 + 2 - 7 + 2 - 7 + 2 - 7 + 2 - 7 + 2 - 7 + 2 - 7 + 2 - 7 + 2 - 7 + 2 - 7 + 2 - 7 + 2 - 7 + 2 - 7 + 2 - 7 + 2 - 7 + 2 - 7 + 2 - 7 + 2 - 7 + 2 - 7 + 2 - 7 + 2 - 7 + 2 - 7 + 2 - 7 + 2 - 7 + 2 - 7 + 2 - 7 + 2 - 7 + 2 - 7 + 2 - 7 + 2 - 7 + 2 - 7 + 2 - 7 + 2 - 7 + 2 - 7 + 2 - 7 + 2 - 7 + 2 - 7 + 2 - 7 + 2 - 7 + 2 - 7 + 2 - 7 + 2 - 7 + 2 - 7 + 2 - 7 + 2 - 7 + 2 - 7 + 2 - 7 + 2 - 7 + 2 - 7 + 2 - 7 + 2 - 7 + 2 - 7 + 2 - 7 + 2 - 7 + 2 - 7 + 2 - 7 + 2 - 7 + 2 - 7 + 2 - 7 + 2 - 7 + 2 - 7 + 2 - 7 + 2 - 7 + 2 - 7 + 2 - 7 + 2 - 7 + 2 - 7 + 2 - 7 + 2 - 7 + 2 - 7 + 2 - 7 + 2 - 7 + 2 - 7 + 2 - 7 + 2 - 7 + 2 - 7 + 2 - 7 + 2 - 7 + 2 - 7 + 2 - 7 + 2 - 7 + 2 - 7 + 2 - 7 + 2 - 7 + 2 - 7 + 2 - 7 + 2 - 7 + 2 - 7 + 2 - 7 + 2 - 7 +$ 

【化178】

[0491]

NMR (CDC1<sub>3</sub>): 8 7.98 (s, 1H), 7.25 (m, 2H), 6.90 (m, 3H), 5.81 (dd, J=1 5.0, 5.7 Hz, 1H), 5.58 (dd, J=15.0, 8.4 Hz, 1H), 4.32 (t, J=7.2 Hz, 2H), 4.18 (m, 2H), 3.93 (t, J=7.2 Hz, 2H), 3.67 (m, 1H), 3.42 (m, 3H), 2.31 (m, 3H), 2.12 (d, J=5.1 Hz, 1H), 1.78 (m, 5H), 1.50 (m, 6H), 0.96 (t, J=7.2 Hz, 3H).

[0492]

#### 実施例5 (45)

(13E, 15α) - 20 - 7x / 4 シ - 15 - EFロキシ - 5 - (4 - ブトキシカルボニルチアゾール - 2 - イル) - 9 - オキソー1, 2, 3, 4 - テトラノ

ルー 5 ーチアー 8 ーアザプロストー 1 3 ーエン 【化 1 7 9 】

[0493]

NMR (CDCl<sub>3</sub>):  $\delta$  7.99 (s, 1H), 7.25 (m, 2H), 6.90 (m, 3H), 5.82 (dd, J=1 5.0, 5.7 Hz, 1H), 5.58 (dd, J=15.0, 8.4 Hz, 1H), 4.32 (t, J=7.2 Hz, 2H), 4.18 (m, 2H), 3.95 (t, J=7.2 Hz, 2H), 3.67 (m, 1H), 3.42 (m, 3H), 2.31 (m, 3H), 2.04 (d, J=5.1 Hz, 1H), 1.78 (m, 5H), 1.50 (m, 8H), 0.96 (t, J=7.2 Hz, 3H).

[0494]

### 実施例6(1)~6(92)

実施例1で製造した化合物の代わりに実施例5 (1) ~5 (45)で製造した 化合物またはその代わりに相当するエステルを用いて、実施例2と同様の操作に 付すことにより、以下に示す本発明化合物を得た。

[0495]

#### <u>実施例6(1)</u>

 $(13E, 16\alpha) - 17, 17 - プロパノ - 16 - ヒドロキシ - 5 - (4 - カルボキシオキサゾ - ルー2 - イル) - 9 - オキソ - 1, 2, 3, 4, 20 - ペンタノル - 8 - アザプロスト - 13 - エン$ 

【化180】

[0496]

TLC: Rf 0.10 (クロロホルム:メタノール:酢酸=9:1:0.1);

NMR (CDCl<sub>3</sub>): 8 8.21 (s, 1H), 5.82 (dt, J=15.3, 7.2 Hz, 1H), 5.42 (dd, J=15.3, 9.0 Hz, 1H), 4.06 (m, 1H), 3.64 (dd, J=9.6, 2.1 Hz, 1H), 3.49 (dt, J=14.1, 7.2 Hz, 1H), 3.16 (ddd, J=14.1, 8.1, 6.0 Hz, 1H), 2.83 (t, J=7.5 Hz, 2H), 2.52-2.16 (m, 4H), 2.15-1.90 (m, 5H), 1.90-1.56 (m, 6H), 1.44 (m, 1H), 0.92 (t, J=7.5 Hz, 3H).

[0497]

### 実施例6(2)

5-(4-カルボキシチアゾール-2-イル)-9-オキソー14,15-(1 ,4-インターフェニレン)-1,2,3,4-テトラノル-5-チア-8-ア ザプロスタン

【化181】

[0498]

TLC: Rf 0.55 (塩化メチレン: メタノール=5:1);

NMR (CDCl<sub>3</sub>):  $\delta$  8.07 (s, 1H), 7.16-7.01 (m, 4H), 3.98-3.83 (m, 1H), 3.7 3-3.62 (m, 1H), 3.50-3.19 (m, 4H), 2.71-2.01 (m, 8H), 1.82-1.51 (m, 4H), 1.39-1.18 (m, 6H), 0.93-0.78 (m, 3H).

[0499]

#### <u>実施例 6 (3)</u>

(13E) -5-(4-カルボキシチアゾール-2-イル) -9-オキソー1, 2,3,4,18,19,20-ヘプタノル-5-チア-8-アザプロスト-1 3-エン 【化182】

TLC: Rf 0.42 (クロロホルム:メタノール: 酢酸=9:1:0.1);

NMR (CDC1<sub>3</sub>):  $\delta$  8.09 (s, 1H), 5.71 (dt, J=15.3, 6.9 Hz, 1H), 5.27 (dd, J=15.3, 8.7 Hz, 1H), 4.07 (m, 1H), 3.82 (ddd, J=15.3, 9.0, 5.7 Hz, 1H), 3.50 (ddd, J=15.3, 9.6, 5.7 Hz, 1H), 3.41-3.22 (m, 2H), 2.55-2.17 (m, 3H), 2.17-1.98 (m, 2H), 1.75 (m, 1H), 1.41 (q, J=7.5 Hz, 2H), 0.90 (t, J=7.5 Hz, 3H).

[0501]

### 実施例6(4)

(13E) -5-(4-カルボキシチアゾールー2-イル) -9-オキソー1,2,3,4,19,20-ヘキサノルー5-チアー8-アザプロストー13-エン

【化183】

[0502]

TLC: Rf 0.39 (クロロホルム:メタノール: 酢酸=9:1:0.1);

NMR (CDCl<sub>3</sub>): 8 8.09 (s, 1H), 5.72 (dt, J=15.3, 6.6 Hz, 1H), 5.27 (dd, J=15.3, 9.0 Hz, 1H), 4.06 (m, 1H), 3.81 (ddd, J=15.3, 9.6, 6.3 Hz, 1H), 3.50 (ddd, J=15.3, 9.6, 5.7 Hz, 1H), 3.42-3.22 (m, 2H), 2.44-2.25 (m, 3H), 2.25-2.01 (m, 2H), 1.75 (m, 1H), 1.44-1.32 (m, 4H), 0.90 (t, J=6.9 Hz, 3H).

[0503]

#### 実施例6(5)

(13E, 16 $\alpha$ ) - 17, 17-プロパノ-16-ヒドロキシ-3, 6-(1, 4-インターフェニレン) - 9-オキソ-4, 5, 20-トリノル-3-オキサ-8-アザプロスト-13-エン酸

【化184】

TLC: Rf 0.30 (クロロホルム:メタノール:酢酸=90:10:1);

NMR (CDC1<sub>3</sub>):  $\delta$  0.92 (t, J=7.5 Hz, 3H), 1.43 (m, 1H), 1.55-2.50 (m, 13H), 2.65-2.85 (m, 2H), 3.10 (m, 1H), 3.57 (dd, J=9.6, 2.7 Hz, 1H), 3.65-3.80 (m, 2H), 4.00-5.00 (br, 2H), 4.63 (s, 2H), 5.20 (dd, J=15.0, 9.0 Hz, 1H), 5.60 (dt, J=15.0, 7.2 Hz, 1H), 6.85 (d, J=8.2 Hz, 2H), 7.09 (d, J=8.2 Hz, 2H),

[0505.]

#### 実施例6(6)

(2E, 13E, 16 $\alpha$ ) -17, 17-プロパノ-16-ヒドロキシ-3, 6 -(1, 4-インターフェニレン) <math>-9-オキソ-4, 5, 20-トリノル-8-アザプロスト-2, 13-ジエン酸

【化185】

TLC: Rf 0.48 (クロロホルム:メタノール:酢酸=90:10:1);

NMR (CDCl<sub>3</sub>):  $\delta$  0.93 (t, J=7.5 Hz, 3H), 1.44 (m, 1H), 1.55-2.50 (m, 13H), 2.75-2.95 (m, 2H), 3.18 (m, 1H), 3.57 (dd, J=9.6, 2.4 Hz, 1H), 3.70-3 .90 (m, 2H), 5.29 (dd, J=15.3, 8.7 Hz, 1H), 5.68 (dt, J=15.3, 7.5 Hz, 1H), 6.41 (d, J=15.9 Hz, 1H), 7.23 (d, J=8.2 Hz, 2H), 7.47 (d, J=8.2 Hz, 2H), 7.73 (d, J=15.9 Hz, 1H).

[0507]

### 実施例 6 (7)

 $(13E, 16\alpha) - 17, 17-プロパノー16-ヒドロキシー1, 7-(2, 5-インターチエニレン) - 9-オキソー2, 3, 4, 5, 6, 20-ヘキサノル-8-アザプロストー<math>13-$ エン酸

【化186]



[0508]

TLC: Rf 0.42 (クロロホルム:メタノール:酢酸=90:10:1);

NMR (CDCl<sub>3</sub>): 8 0.93 (t, J=7.5 Hz, 3H), 1.44 (m, 1H), 1.55-2.60 (m, 13H), 3.00-4.50 (br, 2H), 3.57 (dd, J=9.9, 2.1 Hz, 1H), 4.02 (m, 1H), 4.20 (d, J=15.0 Hz, 1H), 4.94 (d, J=15.0 Hz, 1H), 5.37 (dd, J=15.3, 9.3 Hz, 1H), 5.80 (dt, J=15.3, 7.5 Hz, 1H), 6.95 (d, J=3.0 Hz, 1H), 7.68 (d, J=3.0 Hz, 1H).

[0509].

## 実施例6(8)

(13E) - 5 - (4 - カルボキシチアゾール-2 - イル) - 9 - オキソー1,2, 3, 4 - テトラノル-5 - チア-8 - アザプロストー<math>13 -エン

【化187]

[0510]

TLC: Rf 0.30 (クロロホルム: メタノール: 酢酸=9:1:0.1);

NMR (CDCl<sub>3</sub>):  $\delta$  8.08 (s, 1H), 5.72 (dt, J=15.0, 6.9 Hz, 1H), 5.26 (dd, J=15.0, 8.7 Hz, 1H), 4.06 (m, 1H), 3.81 (ddd, J=13.5, 9.6, 6.0 Hz, 1H), 3.50 (ddd, J=13.5, 9.6, 5.1 Hz, 1H), 3.40-3.21 (m, 2H), 2.55-2.14 (m, 3H), 2.12-1.99 (m, 2H), 1.75 (m, 1H), 1.45-1.20 (m, 8H), 0.88 (t, J=6.9 Hz, 3H).

[0511]

### 実施例6(9)

【化188】

TLC: Rf 0.30 (クロロホルム:メタノール: 酢酸=9:1:0.1);

NMR (CDCl<sub>3</sub>): 8 8.09 (s, 1H), 5.71 (dt, J=15.3, 6.6 Hz, 1H), 5.26 (dd, J=15.3, 8.7 Hz, 1H), 4.06 (m, 1H), 3.81 (ddd, J=13.5, 9.6, 5.7 Hz, 1H), 3.49 (ddd, J=13.5, 9.6, 5.7 Hz, 1H), 3.42-3.20 (m, 2H), 2.54- 2.15 (m, 3 H), 2.14-1.99 (m, 2H), 1.75 (m, 1H), 1.45-1.17 (m, 10H), 0.88 (t, J=6.9 Hz, 3H).

[0513]

## 実施例6(10)

 $(13E, 15\alpha) - 15 - ヒドロキシー1, 6 - (1, 4 - インターフェニレン) - 9 - オキソー2, 3, 4, 5 - テトラノルー8 - アザプロストー<math>13$  - エン酸

【化189】

[0514]

TLC: Rf 0.51 (クロロホルム:メタノール: 酢酸=9:1:0.1);

NMR (d6-dmso): δ 7.84 (d, J=8.4 Hz, 2H), 7.28 (d, J=8.4 Hz, 2H), 5.62 (dd, J=15.6, 6.3 Hz, 1H), 5.33 (dd, J=15.6, 8.7 Hz, 1H), 4.71 (d, J=4.8 Hz, 1H), 4.00-3.84 (m, 2H), 3.60 (m, 1H), 2.99 (m, 1H), 2.89-2.66 (m, 2H), 2.30-2.00 (m, 3H), 1.60 (m, 1H), 1.50-1.15 (m, 8H), 0.81 (t, J=6.3 Hz, 3H).

[0515]

## 実施例6(11)

 $(13E, 15\alpha) - 15 - ヒドロキシー1, 5 - (2, 5 - インターチエニレン) - 9 - オキソー2, 3, 4 - トリノルー8 - アザプロストー<math>13 -$ エン酸【化190】

[0516]

TLC: Rf 0.44 (クロロホルム:メタノール:酢酸=9:1:0.1);

NMR (CDCl<sub>3</sub>):  $\delta$  7.69 (d, J=3.9 Hz, 1H), 6.83 (d, J=3.9 Hz, 1H), 5.69 (d d, J=15.3, 6.0 Hz, 1H), 5.49 (ddd, J=15.3, 8.4, 1.0 Hz, 1H), 4.20-3.99 (m, 2H), 3.60 (m, 1H), 3.00 (m, 1H), 2.85 (t, J=7.8 Hz, 2H), 2.52-2.17 (m

, 3H), 2.00-1.70 (m, 3H), 1.61-1.20 (m, 8H), 0.89 (t, J=6.3 Hz, 3H).
[0517]

## 実施例6(12)

 $(13E, 15\alpha) - 15-ヒドロキシー9-オキソー5-チアー8-アザプロストー<math>13-$ エン酸

【化191】

[0518]

TLC: Rf 0.49 (クロロホルム:メタノール: 酢酸=9:1:0.1);

NMR (CDCl<sub>3</sub>):  $\delta$  5.73 (dd, J=15.3, 5.7 Hz, 1H), 5.53 (ddd, J=15.3, 8.4, 1.2 Hz, 1H), 4.18 (m, 2H), 3.63 (m, 1H), 3.11 (m, 1H), 2.78-2.20 (m, 9H), 2.00-1.70 (m, 3H), 1.62-1.21 (m, 8H), 0.90 (t, J=6.6 Hz, 3H).

[0519]

#### 実施例6(13)

5-(4-カルボキシチアゾール-2-イル)-9-オキソー1,2,3,4, 20-ペンタノル-5-チア-8-アザプロスタン

【化192】

TLC: Rf 0.37 (クロロホルム: メタノール: 酢酸=9:1:0.1);

NMR (CDC1<sub>3</sub>):  $\delta$  8.09 (s, 1H), 3.94 (ddd, J=13.2, 9.3, 5.1 Hz, 1H), 3.65 (m, 1H), 3.54-3.25 (m, 3H), 2.52-2.28 (m, 2H), 2.16 (m, 1H), 1.82-1.62 (m, 2H), 1.46-1.02 (m, 11H), 0.88 (t, J=6.9 Hz, 3H).

[0521]

### 実施例6(14)

【化193】

[0522]

TLC: Rf 0.10 (クロロホルム:メタノール=9:1);

NMR (CDC1<sub>3</sub>): δ 8.10 (s, 1H), 5.79 (dd, J=15.3, 5.7 Hz, 1H), 5.55 (dd, J=15.3, 8.7 Hz, 1H), 4.21-4.11 (m, 2H), 4.0-3.1 (br), 3.90-3.75 (m, 1H), 3.55-3.30 (m, 3H), 2.56-2.20 (m, 3H), 1.86-1.72 (m, 1H), 1.62-1.42 (m, 2H), 1.42-1.20 (m, 10H), 0.90 (t, J=7.2 Hz, 3H).

[0523]

#### 実施例6(15)

【化194】

[0524]

TLC: Rf 0.20 (塩化メチレン: メタノール: 酢酸=90:10:1);

NMR (CDC1<sub>3</sub>):  $\delta$  8.09 (s, 1H), 5.79 (dd, J=15.6, 6.0 Hz, 1H), 5.53 (dd, J=15.6, 9.0 Hz, 1H), 4.20-4.10 (m, 2H), 3.90-3.70 (m, 1H), 3.50-3.30 (m,

3H), 2.50-2.20 (m, 3H), 1.85-1.70 (m, 1H), 1.60-1.40 (m, 2H), 1.40-1.15 (m, 8H), 0.95-0.80 (m, 3H).

[0525]

## 実施例6(16)

 $(13E, 15\alpha) - 20-n-プロピルー15-ヒドロキシー5-(4-カルボキシチアゾールー2ーイル) - 9-オキソー1, 2, 3, 4ーテトラノルー5-チアー8-アザプロストー13-エン$ 

【化195】

[0526]

TLC: Rf 0.23 (塩化メチレン: メタノール: 酢酸=90:10:1);

NMR (CDC1<sub>3</sub>): 8 8.09 (s, 1H), 5.79 (dd, J=15.3, 6.0 Hz, 1H), 5.53 (dd, J=15.3, 8.4 Hz, 1H), 4.20-4.10 (m, 2H), 3.90-3.70 (m, 1H), 3.50-3.30 (m, 3H), 2.50-2.20 (m, 3H), 1.85-1.70 (m, 1H), 1.60 -1.40 (m, 2H), 1.40-1.1 5 (m, 12H), 0.90-0.80 (m, 3H).

[0527]

## 実施例6(17)

(13Z) -5-(4-カルボキシチアゾール-2-イル) -9-オキソー1,2,3,4,20-ペンタノル-5-チア-8-アザプロストー13-エン 【化196】

[0528]

TLC: Rf 0.34 (クロロホルム:メタノール:酢酸=9:1:0.1);

NMR (CDCl<sub>3</sub>):  $\delta$  8.08 (s, 1H), 5.67 (dt, J=10.8, 7.8 Hz, 1H), 5.25 (dd,

J=10.8, 9.6 Hz, 1H), 4.49 (dt, J=9.6, 7.2 Hz, 1H), 3.76 (m, 1H), 3.51 (m, 1H), 3.42-3.23 (m, 2H), 2.54-2.32 (m, 2H), 2.22 (m, 1H), 2.17-2.01 (m, 2H), 1.71 (m, 1H), 1.45-1.20 (m, 6H), 0.90 (t, J=6.6 Hz, 3H).

[0529]

## 実施例6(18)

(13Z) - 16 - オキサー17, 17 - ジメチルー5 - (4 - カルボキシチア ゾールー2 - イル) - 9 - オキソー1, 2, 3, 4, 19, 20 - ヘキサノルー <math>5 - チアー8 - アザプロストー13 - エン

【化197]

TLC: Rf 0.30 (クロロホルム:メタノール:酢酸=9:1:0.1);

NMR (CDCl<sub>3</sub>): δ 8.08 (s, 1H), 5.84 (dt, J=10.8, 7.2 Hz, 1H), 5.41 (ddt, J=10.8, 9.9, 1.5 Hz, 1H), 4.62 (dt, J=9.9, 7.2 Hz, 1H), 4.07 (ddd, J=11.7, 7.2, 1.5 Hz, 1H), 3.94 (ddd, J=11.7, 7.2, 1.5 Hz, 1H), 3.82 (m, 1H), 3.60-3.38 (m, 2H), 3.24 (m, 1H), 2.56-2.18 (m, 3H), 1.74 (m, 1H), 1.23 (s, 9H).

[0531]

## <u>実施例6(19)</u>

(13E) - 16 - オキサー17, 17 - ジメチルー5 - (4 - カルボキシチア ゾールー2 - イル) - 9 - オキソー1, 2, 3, 4, 19, 20 - ヘキサノルー 5 - チアー8 - アザプロストー<math>13 -エン

【化198】

[0532]

TLC:Rf 0.28 (クロロホルム:メタノール:酢酸=9:1:0.1);

NMR (CDCl<sub>3</sub>): 8 8.08 (s, 1H), 5.83 (dt, J=15.3, 5.1 Hz, 1H), 5.55 (ddt, J=15.3, 9.0, 1.5 Hz, 1H), 4.14 (m, 1H), 3.93 (dd, J=5.1, 1.5 Hz, 2H), 3 .83 (dt, J=13.8, 7.8 Hz, 1H), 3.50 (dt, J=13.8, 7.8 Hz, 1H), 3.32 (t, J=7.8 Hz, 2H), 2.55-2.17 (m, 3H), 1.79 (m, 1H), 1.21 (s, 9H).

[0533]

## 実施例6(20)\_

 $(13E, 15\alpha)$  -19 -7 -15 -15 -15 -15 -15 -15 -15 -15 -15 -15 -15 -15 -15 -15 -15 -15 -15 -15 -15 -15 -15 -15 -15 -15 -15 -15 -15 -15 -15 -15 -15 -15 -15 -15 -15 -15 -15 -15 -15 -15 -15 -15 -15 -15 -15 -15 -15 -15 -15 -15 -15 -15 -15 -15 -15 -15 -15 -15 -15 -15 -15 -15 -15 -15 -15 -15 -15 -15 -15 -15 -15 -15 -15 -15 -15 -15 -15 -15 -15 -15 -15 -15 -15 -15 -15 -15 -15 -15 -15 -15 -15 -15 -15 -15 -15 -15 -15 -15 -15 -15 -15 -15 -15 -15 -15 -15 -15 -15 -15 -15 -15 -15 -15 -15 -15 -15 -15 -15 -15 -15 -15 -15 -15 -15 -15 -15 -15 -15 -15 -15 -15 -15 -15 -15 -15 -15 -15 -15 -15 -15 -15 -15 -15 -15 -15 -15 -15 -15 -15 -15 -15 -15 -15 -15 -15 -15 -15 -15 -15 -15 -15 -15 -15 -15 -15 -15 -15 -15 -15 -15 -15 -15 -15 -15 -15 -15 -15 -15 -15 -15 -15 -15 -15 -15 -15 -15 -15 -15 -15 -15 -15 -15 -15 -15 -15 -15 -15 -15 -15 -15 -15 -15 -15 -15 -15 -15 -15 -15 -15 -15 -15 -15 -15 -15 -15 -15 -15 -15 -15 -15 -15 -15 -15 -15 -15 -15 -15 -15 -15 -15 -15 -15 -15 -15 -15 -15 -15 -15 -15 -15 -15 -15 -15 -15 -15 -15 -15 -15 -15 -15 -15 -15 -15 -15 -15 -15 -15 -15 -15 -15 -15 -15 -15 -15 -15 -15 -15 -15 -15 -15 -15 -15 -15 -15 -15 -15 -15 -15 -15 -15 -15 -15 -15 -15 -15 -15 -15 -15 -15 -15 -15 -15 -15 -15 -15 -15 -15 -15 -15 -15 -15 -15 -15 -15 -15 -15 -15 -15 -15 -15 -15 -15 -15 -15 -15 -15 -15 -15 -15 -15 -15 -15 -15 -15 -15 -15 -15 -15 -15 -15 -15 -15 -15 -15 -15 -15 -1

【化199】

[0534]

TLC: Rf 0.34 (クロロホルム:メタノール: 酢酸=9:1:0.1);

NMR (CDCl<sub>3</sub>):  $\delta$  8.09 (s, 1H), 7.36-7.10 (m, 5H), 5.79 (dd, J=15.0, 5.7 Hz, 1H), 5.60-5.15 (m, 1H), 4.22-4.10 (m, 2H), 3.80 (m, 1H), 3.47-3.28 (m, 3H), 2.64-2.18 (m, 5H), 1.82-1.23 (m, 7H).

[0535]

## 実施例6(21)

(13E, 15α) -20-フェニルー15-ヒドロキシー5-(4-カルボキ

シチアゾールー2ーイル) -9-オキソー1, 2, 3, 4-テトラノルー5-チアー8-アザプロストー13-エン

【化200】

[0536]

TLC: Rf 0.34 (クロロホルム: メタノール: 酢酸=9:1:0.1);
NMR (CDC1<sub>3</sub>): δ 8.09 (s, 1H), 7.36-7.12 (m, 5H), 5.78 (dd, J=15.3, 5.7 Hz, 1H), 5.54 (dd, J=15.3, 8.7 Hz, 1H), 4.20-4.10 (m, 2H), 3.81 (m, 1H), 3.55-3.27 (m, 3H), 2.65-2.20 (m, 5H), 1.85-1.23 (m, 9H)。

[0537]

### <u> 実施例6 (22)</u>

 $(13E, 15\alpha) - 20 - \text{ベンジル} - 15 - \text{ヒドロキシ} - 5 - (4 - \text{カルボキ } \text{シチアゾ} - \text{ル} - 2 - \text{イル}) - 9 - \text{オキソ} - 1, 2, 3, 4 - テトラノル - 5 - チア - 8 - アザプロスト - 13 - エン$ 

【化201】



[0538]

TLC: Rf 0.35 (クロロホルム:メタノール:酢酸=9:1:0.1);

NMR (CDCl<sub>3</sub>):  $\delta$  8.09 (s, 1H), 7.37-7.12 (m, 5H), 5.78 (dd, J=15.3, 6.0 Hz, 1H), 5.55 (ddd, J=15.3, 8.7, 1.2 Hz, 1H), 4.20-4.08 (m, 2H), 3.81 (m, 1H), 3.55-3.27 (m, 3H), 2.64-2.20 (m, 5H), 1.86-1.21 (m, 11H).

[0539]

## 実施例6(23)

 $(13E, 16\alpha) - 17, 17-プロパノー<math>16-$ ヒドロキシー1, 6-(1,3-インターフェニレン)-9-オキソー2, 3, 4, 5, 20-ペンタノル-8-アザプロストー13-エン酸

【化202】

TLC: Rf 0.41 (酢酸エチル:酢酸=100:1);

NMR (CDCl<sub>3</sub>):  $\delta$  0.92 (t, J=7.5 Hz, 2H), 1.44 (m, 1H), 1.55-2.50 (m, 13H), 2.75-3.00 (m, 2H), 3.20 (m, 1H), 3.59 (dd, J=9.9, 2.4 Hz, 1H), 3.70-3 .90 (m, 2H), 5.28 (dd, J=15.0, 9.0 Hz, 1H), 5.79 (dt, J=15.0, 7.2 Hz, 1H), 7.39 (t, J=7.5 Hz, 1H), 7.46 (m, 1H), 7.92-8.00 (m, 2H).

[0541]

# 実施例6(24)

 $(15\alpha)-15-ヒドロキシー5-(4-カルボキシチアゾールー2ーイル)$ -9-オキソー1, 2, 3, 4-テトラノルー5-チアー8-アザプロスタン【化203】

[0542]

TLC: Rf 0.49 (クロロホルム:メタノール: 酢酸=9:1:0.1);

NMR (CDCl<sub>3</sub>):  $\delta$  8.08 (s, 1H), 3.95-3.23 (m, 6H), 2.55-2.06 (m, 3H), 1.9 4 (m, 1H), 1.78-1.60 (m, 2H), 1.59-1.00 (m, 10H), 0.89 (t, J=6.6 Hz, 3H)

[0543]

## 実施例6 (25)

 $(15\alpha)-15-ヒドロキシー1, 6-(1,4-インターフェニレン)-9$ ーオキソー2,3,4,5ーテトラノルー5ーチアー8ーアザプロスタン酸 【化204】

[0544]

TLC: Rf 0.21 (クロロホルム: メタノール=9:1);

NMR (CDC1<sub>3</sub>-CD<sub>3</sub>OD):  $\delta$  7.97 (d, J=8.1 Hz, 2H), 7.30 (d, J=8.1 Hz, 2H), 3 .82 (m, 1H), 3.60-3.30 (m, 3H), 3.20 (m, 1H), 3.01-2.80 (m, 2H), 2.45-2. 21 (m, 2H), 2.08 (m, 1H), 1.80-1.20 (m, 13H), 0.89 (t, J=6.6 Hz, 3H).

[0545]

## 実施例6(26)\_

(13E) - 17, 17 - iii メチルー 5 - (4 - カルボキシチアゾールー 2 - イル) - 9 - オキソー 1, 2, 3, 4, 19, 20 - ヘキサノルー 5 - チアー 8 - アザプロストー <math>13 - x

【化205】

[0546]

TLC: Rf 0.34 (クロロホルム: メタノール: 酢酸=9:1:0.1);
NMR (CDC1<sub>3</sub>): 8 8.08 (s, 1H), 5.73 (dt, J=15.3, 6.6 Hz, 1H), 5.27 (dd, J=15.3, 9.0 Hz, 1H), 4.05 (m, 1H), 3.83 (ddd, J=13.5, 9.0, 6.3 Hz, 1H), 3.49 (ddd, J=13.5, 9.6, 6.0 Hz, 1H), 3.39-3.21 (m, 2H), 2.54-2.15 (m, 3H)

), 2.09-1.97 (m, 2H), 1.75 (m, 1H), 1.30-1.20 (m, 2H), 0.89 (s, 9H).

## 実施例6(27)

(13E) - 17, 17-ジメチル-5-(4-カルボキシチアゾール-2-イル) - 9-オキソー1, 2, 3, 4, 20-ペンタノル-5-チアー8-アザプロスト-13-エン

【化206】

[0548]

TLC: Rf 0.35 (クロロホルム:メタノール:酢酸=9:1:0.1);

NMR (CDCl<sub>3</sub>):  $\delta$  8.09 (s, 1H), 5.72 (dt, J=15.0, 6.9 Hz, 1H), 5.26 (dd, J=15.0, 8.7 Hz, 1H), 4.05 (m, 1H), 3.82 (ddd, J=13.5, 9.0, 6.9 Hz, 1H), 3.49 (ddd, J=13.5, 9.9, 6.0 Hz, 1H), 3.40-3.24 (m, 2H), 2.54-2.15 (m, 3H), 2.10-1.93 (m, 2H), 1.75 (m, 1H), 1.29-1.16 (m, 4H), 0.98-0.75 (m, 9H)

[0549]

## <u>実施例6 (28)</u>

 $(13E, 15\alpha)$  -19-フェニル-15-ヒドロキシー9-オキソー20- -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -

【化207】

[0550]

TLC: Rf 0.24 (塩化メチレン: メタノール=9:1);

NMR (CDCl<sub>3</sub>): δ 7.30-7.23 (m, 2H), 7.21-7.14 (m, 3H), 5.71 (dd, J=15.3, 5.7 Hz, 1H), 5.50 (dd, J=15.3, 8.4 Hz, 1H), 4.20-4.06 (m, 2H), 3.72-3.5 8 (m, 1H), 3.14-3.00 (m, 1H), 2.70-2.16 (m, 11H), 1.96-1.82 (m, 2H), 1.80-1.20 (m, 7H).

[0551]

### 実施例 6 (29<u>)</u>

(13E, 15α) - 20-フェニル-15-ヒドロキシ-9-オキソ-5-チ ア-8-アザプロスト-13-エン酸

【化208】

[0552]

TLC: Rf 0.24 (塩化メチレン:メタノール=9:1);

NMR (CDC1<sub>3</sub>):  $\delta$  7.30-7.23 (m, 2H), 7.21-7.14 (m, 3H), 5.72 (dd, J=15.3, 5.7 Hz, 1H), 5.51 (dd, J=15.3, 8.1 Hz, 1H), 4.20-4.06 (m, 2H), 3.72-3.5 8 (m, 1H), 3.16-3.04 (m, 1H), 2.72-2.16 (m, 11H), 1.96-1.82 (m, 2H), 1.8 0-1.24 (m, 9H).

[0553]

# 実施例6 (30)

(13E, 15α) - 20-ベンジル-15-ヒドロキシ-9-オキソ-5-チ ア-8-アザプロスト-13-エン酸

【化209】

[0554]

TLC: Rf 0.24 (塩化メチレン:メタノール=9:1);

NMR (CDCl<sub>3</sub>): δ 7.30-7.23 (m, 2H), 7.21-7.14 (m, 3H), 5.73 (dd, J=15.3, 5.4 Hz, 1H), 5.51 (ddd, J=15.3, 8.1, 0.9 Hz, 1H), 4.20-4.06 (m, 2H), 3.72-3.60 (m, 1H), 3.16-3.04 (m, 1H), 2.72-2.16 (m, 11H), 1.96-1.84 (m, 2H), 1.80-1.20 (m, 11H).

[0555]

## 実施例6 (31)

14-オキサー14-フェニルー5-(4-カルボキシチアゾールー2-イル) -9-オキソー1, 2, 3, 4, 15, 16, 17, 18, 19, 20-デカノルー5-チアー8-アザプロスタン

【化210]

[0556]

TLC: Rf 0.35 (クロロホルム: メタノール: 酢酸=9:1:0.1);
NMR (CDCl<sub>3</sub>): 8 8.08 (s, 1H), 7.29 (dd, J=8.4, 7.5 Hz, 2H), 6.98 (t, J=7.5 Hz, 1H), 6.88 (d, J=8.4 Hz, 2H), 4.20 (dd, J=9.9, 3.6 Hz, 1H), 4.09 (m, 1H), 3.99 (dd, J=9.9, 5.4 Hz, 1H), 3.91 (m, 1H), 3.75 (m, 1H), 3.51 (m, 1H), 3.29 (m, 1H), 2.60 (m, 1H), 2.43 (m, 1H), 2.25 (m, 1H), 1.96 (m, 1H)。

[0557]

### 実施例6(32)

14-オキサー14-(3, 5-ジクロロフェニル)-5-(4-カルボキシチアゾール-2-イル)-9-オキソー1, 2, 3, 4, 15, 16, 17, 18, 19, 20-デカノル-5-チア-8-アザプロスタン

【化211】

[0558]

TLC: Rf 0.41 (クロロホルム: メタノール: 酢酸=9:1:0.1); NMR (CDCl<sub>3</sub>):  $\delta$  8.11 (s, 1H), 6.98 (t, J=1.8 Hz, 1H), 6.82 (d, J=1.8 Hz, 2H), 4.31 (dd, J=9.9, 3.0 Hz, 1H), 4.08 (m, 1H), 3.98 (dd, J=9.9, 3.0 Hz, 1H), 3.90 (m, 1H), 3.68 (m, 1H), 3.48 (m, 1H), 3.28 (m, 1H), 2.59 (m, 1H), 2.43 (m, 1H), 2.25 (m, 1H), 1.97 (m, 1H).

[0559]

### 実施例6 (33)

 $(13E, 16\alpha) - 17, 17-プロパノ-16-ヒドロキシ-6-(4-カルボキシチアゾール-2-イルスルフォニル) - 9-オキソ-1, 2, 3, 4, 5, 20-ヘキサノル-8-アザプロスト-13-エン$ 

【化212】

[0560]

TLC: Rf 0.14 (クロロホルム: メタノール: 酢酸=90:10:1); NMR (CDC1 $_3$ ):  $\delta$  0.93 (t, J=7.5 Hz, 3H), 1.44 (m, 1H), 1.55-2.20 (m, 10H), 2.20-2.55 (m, 4H), 3.60-4.00 (m, 5H), 4.00-4.40 (m, 2H), 5.41 (dd, J=15.3, 9.0 Hz, 1H), 5.96 (dt, J=15.3, 7.2 Hz, 1H), 8.54 (s, 1H).

[0561]

## 実施例6 (34)

14-オキサー5-(4-カルボキシチアゾールー2ーイル) -9-オキソー12,3,4,19,20-ヘキサノル-5-チアー8-アザプロスタン【化213】

[0562]

TLC: Rf 0.25 (クロロホルム: メタノール: 酢酸=9:1:0.1);
NMR (CDC1<sub>3</sub>): δ 8.08 (s, 1H), 3.96-3.69 (m, 3H), 3.58-3.38 (m, 5H), 3.2
9 (m, 1H), 2.56-2.29 (m, 2H), 2.12 (m, 1H), 1.75 (m, 1H), 1.60-1.48 (m, 2H), 1.42-1.24 (m, 2H), 0.91 (t, J=7.2 Hz, 3H).

[0563]

### 実施例<u>6(35)</u>

17, 17-プロパノー5-(4-カルボキシチアゾールー2ーイル) -9, 16-ジオキソー1, 2, 3, 4, 20-ペンタノルー5ーチアー8ーアザプロスタン

【化214】

TLC: Rf 0.43 (クロロホルム: メタノール: 酢酸=90:10:1).; NMR (CDC13):  $\delta$  0.75 (t, J=7.5 Hz, 3H), 1.30-2.00 (m, 11H), 2.10-2.55 (m, 7H), 3.25-3.55 (m, 3H), 3.67 (m, 1H), 3.95 (m, 1H), 8.09 (s, 1H)。

[0565]

[0564]

## <u> 実施例 6 (3 6)</u>

(13E) - 17 - オキサー5 - (4 - カルボキシチアゾールー2 - イル) - 9 - オキソー1, 2, 3, 4, 20 - ペンタノルー5 - チアー8 - アザプロストー 13 -エン

【化215】

TLC: Rf 0.34 (クロロホルム: メタノール: 酢酸=9:1:0.1);
NMR (CDCl<sub>3</sub>): δ 8.08 (s, 1H), 5.77 (dt, J=15.3, 6.9 Hz, 1H), 5.37 (dd, J=15.3, 8.7 Hz, 1H), 4.07 (m, 1H), 3.76 (m, 1H), 3.63-3.42 (m, 5H), 3.3 8-3.28 (m, 2H), 2.55-2.17 (m, 5H), 1.76 (m, 1H), 1.20 (t, J=7.2 Hz, 3H)

[0567]

## <u>実施例6(37)</u>

(13E) - 16 - オキサー5 - (4 - カルボキシチアゾールー2 - イル) - 9 - オキソー1, 2, 3, 4, 20 - ペンタノルー5 - チアー8 - アザプロストー 13 -エン

【化216】

TLC: Rf 0.36 (クロロホルム: メタノール: 酢酸=9:1:0.1);

NMR (CDC1<sub>3</sub>): δ 8.09 (s, 1H), 5.83 (dt, J=15.3, 5.4 Hz, 1H), 5.57 (ddt, J=15.3, 8.7, 1.2 Hz, 1H), 4.15 (m, 1H), 3.98 (dd, J=5.4, 1.2 Hz, 2H), 3.85 (m, 1H), 3.55-3.26 (m, 5H), 2.55-2.17 (m, 3H), 1.79 (m, 1H), 1.68-1.53 (m, 2H), 0.92 (t, J=7.2 Hz, 3H).

[0569]

### 実施例6(38)

13-(N-(フェニルスルフォニル) アミノ) -5-(4-カルボキシチアゾール-2-イル) -9-オキソー1, 2, 3, 4, 14, 15, 16, 17, 18, 19, 20-ウンデカノル-5-チア-8-アザプロスタン【化217】

TLC: Rf 0.22 (クロロホルム:メタノール=9:1);

NMR (CDC1<sub>3</sub>):  $\delta$  2.00-2.25 (m, 2H), 2.38 (m, 1H), 2.60 (m, 1H), 3.00-3.4 2 (m, 5H), 3.90-4.02 (m, 2H), 6.19 (t, J=6.6 Hz, 1H), 7.45-7.60 (m, 3H), 7.86 (m, 2H), 8.09 (s, 1H).

[0571]

# 実施例6 (39)

13-(N-(ベンジルスルフォニル) アミノ) -5-(4-カルボキシチアゾ -ル-2-イル) -9-オキソー1, 2, 3, 4, 14, 15, 16, 17, 18, 19, 20-ウンデカノルー<math>5-チアー8-アザプロスタン【化218】

[0572]

TLC: Rf 0.27 (クロロホルム:メタノール=9:1);

NMR (CDC1<sub>3</sub>): δ 1.90-2.18 (m, 2H), 2.31 (m, 1H), 2.51 (m, 1H), 2.95-3.4

0 (m, 5H), 3.76 (m, 1H), 3.91 (m, 1H), 4.31 (s, 2H), 5.72 (t, J=6.6 Hz, 1H), 7.30-7.40 (m, 3H), 7.40-7.45 (m, 2H), 8.12 (s, 1H).

[0573]

### 実施例6(40)

(13E) - 19 - フェニルー5 - (4 - カルボキシチアゾールー2 - イル) - 9 - オキソー1, 2, 3, 4, 20 - ペンタノルー5 - チアー8 - アザプロスト - 13 - エン

【化219】

[0574]

TLC: Rf 0.43 (クロロホルム: メタノール: 酢酸=9:1:0.1);
NMR (CDC1<sub>3</sub>): 8 8.08 (s, 1H), 7.36-7.23 (m, 2H), 7.22-7.14 (m, 3H), 5.6
9 (dt, J=15.0, 6.6 Hz, 1H), 5.25 (dd, J=15.0, 8.7 Hz, 1H), 4.04 (m, 1H),
3.80 (m, 1H), 3.48 (m, 1H), 3.38-3.18 (m, 2H), 2.61 (t, J=7.5 Hz, 2H),
2.53-2.29 (m, 2H), 2.21 (m, 1H), 2.13-1.98 (m, 2H), 1.73 (m, 1H), 1.68-1
.54 (m, 2H), 1.48-1.34 (m, 4H)。

[0575]

## 実施例6(41)

5- (4-カルボキシチアゾール-2-イル) -9, 13-ジオキソー1, 2, 3, 4, 20-ペンタノル-5-チア-8, 14-ジアザプロスタン 【化220】

[0576]

TLC: Rf 0.17 (クロロホルム: メタノール: 酢酸=9:1:0.1);

NMR (CDCl<sub>3</sub>):  $\delta$  8.11 (s, 1H), 7.16 (t, J=5.4 Hz, 1H), 4.41 (dd, J=8.4, 3.6 Hz, 1H), 3.90 (m, 1H), 3.53-3.23 (m, 5H), 2.72 (m, 1H), 2.47-2.03 (m, 3H), 1.52-1.35 (m, 2H), 1.34-1.10 (m, 4H), 0.82 (t, J=6.9 Hz, 3H).

[0577]

## 実施例6(42)

(13E) - 16 - ヒドロキシ-5 - (4 - カルボキシチアゾール-2 - イル) - 9 - オキソー1, 2, 3, 4, 20 - ペンタノル-5 - チアー8 - アザプロストー13 - エン

【化221】

TLC: Rf 0.28 (クロロホルム:メタノール: 酢酸=90:10:1);

NMR (CDCl<sub>3</sub>):  $\delta$  0.92 (t, J=6.30 Hz, 3H), 1.41 (m, 4H), 1.74 (m, 1H), 2. 30 (m, 5H), 3.52 (m, 5H), 4.10 (m, 1H), 4.52 (br. s., 2H), 5.37 (m, 1H), 5.82 (m, 1H), 8.07 (s, 1H).

[0579]

# 実施例6(43)

13-(N-メチル-N-(ベンジルスルフォニル) アミノ) -5-(4-カルボキシチアゾール-2-イル) -9-オキソー1, 2, 3, 4, 14, 15, 16, 17, 18, 19, 20-ウンデカノル-5-チア-8-アザプロスタン【化222】

[0580]

TLC: Rf 0.33 (クロロホルム: メタノール: 酢酸=90:10:1);
NMR (CDCl<sub>3</sub>): δ 1.89 (m, 1H), 2.06 (m, 1H), 2.29 (m, 1H), 2.44 (m, 1H),
2.76 (dd, J=14.30, 7.80 Hz, 1H), 2.85 (s, 3H), 3.02 (dd, J=14.30, 4.40
Hz, 1H), 3.20 (m, 1H), 3.34 (m, 2H), 3.72 (m, 1H), 3.90 (m, 1H), 4.30 (s, 2H), 7.39 (s, 5H), 8.10 (s, 1H)。

[0581]

### 実施例6(44)

14-オキサー14-(ピリジンー3-イル)-5-(4-カルボキシチアゾールー2-イル)-9-オキソー1, 2, 3, 4, 15, 16, 17, 18, 19, 20-デカノル-5-チアー8-アザプロスタン

【化223】

[0582]

TLC: Rf 0.32 (クロロホルム:メタノール: 酢酸=90:10:1);
NMR (CDCl<sub>3</sub>): δ 2.09 (m, 1H), 2.26 (m, 1H), 2.43 (ddd, J=16.80, 9.90, 5.70 Hz, 1H), 2.62 (ddd, J=16.80, 10.00, 6.90 Hz, 1H), 3.23 (m, 1H), 3.47 (m, 1H), 3.68 (m, 1H), 3.84 (m, 1H), 4.17 (m, 2H), 4.88 (m, 1H), 6.64 (br. s., 1H), 7.31 (m, 2H), 8.03 (s, 1H), 8.22 (m, 1H), 8.58 (m, 1H).

[0583]

## <u>実施例6(45)</u>

14-オキサー14-(2,5-ジクロロフェニル)-5-(4-カルボキシチアゾール-2-イル)-9-オキソー1,2,3,4,15,16,17,18,19,20-デカノル-5-チア-8-アザプロスタン

【化224】

TLC: Rf 0.44 (クロロホルム: メタノール: 酢酸=90:10:1);
NMR (CDCl<sub>3</sub>): δ 1.94 (m, 1H), 2.29 (m, 1H), 2.45 (m, 1H), 2.68 (m, 1H), 3.28 (m, 1H), 3.55 (m, 1H), 3.81 (m, 1H), 3.99 (m, 2H), 4.15 (m, 1H), 4.30 (dd, J=9.89, 2.47 Hz, 1H), 6.93 (m, 2H), 7.29 (d, J=9.60 Hz, 1H), 8.

[0585]

## 実施例6(46)

08 (s, 1H).

14-オキサー14-(2, 4, 5ートリクロロフェニル)-5-(4ーカルボキシチアゾール-2-イル)-9-オキソー1, 2, 3, 4, 15, 16, 17, 18, 19, 20-デカノル-5-チア-8-アザプロスタン

【化225】

TLC: Rf 0.44 (クロロホルム: メタノール: 酢酸=90:10:1);
NMR (CDCl<sub>3</sub>): δ 1.96 (m, 1H), 2.37 (m, 2H), 2.69 (m, 1H), 3.27 (m, 1H), 3.53 (m, 1H), 3.77 (m, 1H), 3.97 (m, 2H), 4.13 (m, 1H), 4.37 (dd, J=9.8 9, 2.47 Hz, 1H), 7.07 (s, 1H), 7.46 (s, 1H), 8.09 (s, 1H).

[0587]

## 実施例6(47)

14-オキサー14-(3, 4-ジクロロフェニル)-5-(4-カルボキシチアゾール-2-イル)-9-オキソー1, 2, 3, 4, 15, 16, 17, 18, 19, 20-デカノル-5-チアー8-アザプロスタン

【化226]

TLC: Rf 0.40 (クロロホルム: メタノール: 酢酸=90:10:1);
NMR (CDC1<sub>3</sub>): δ 1.97 (m, 1H), 2.26 (m, 1H), 2.43 (m, 1H), 2.59 (m, 1H),

3.28 (m, 1H), 3.48 (m, 1H), 3.70 (m, 1H), 3.94 (m, 2H), 4.08 (m, 1H), 4.25 (m, 1H), 6.76 (dd, J=8.80, 2.70 Hz, 1H), 7.02 (d, J=2.70 Hz, 1H), 7.33 (d, J=8.80 Hz, 1H), 8.10 (s, 1H).

[0.589]

## <u> 実施例 6 (4 8)</u>

14-オキサー14-(2,3,4,5,6-ペンタフルオロフェニル)-5-(4-カルボキシチアゾール-2-イル)-9-オキソー1,2,3,4,15,16,17,18,19,20-デカノル-5-チア-8-アザプロスタン 【化227】

[0590]

TLC: Rf 0.38 (クロロホルム:メタノール: 酢酸=90:10:1);
NMR (CDCl<sub>3</sub>): δ 2.01 (m, 1H), 2.28 (m, 1H), 2.43 (m, 1H), 2.59 (m, 1H), 3.39 (m, 1H), 3.52 (m, 1H), 3.70 (m, 1H), 4.10 (m, 3H), 4.38 (dd, J=9.90, 3.00 Hz, 1H), 8.10 (s, 1H)。

[0591]

## 実施例6(49)

14-オキサ-14-(3,4-ジフルオロフェニル)-5-(4-カルボキシチアゾール-2-イル)-9-オキソ-1,2,3,4,15,16,17,18,19,20-デカノル-5-チア-8-アザプロスタン 【化228】

TLC: Rf 0.36 (クロロホルム:メタノール: 酢酸=90:10:1);
NMR (CDC1<sub>3</sub>): δ 1.97 (m, 1H), 2.26 (m, 1H), 2.43 (m, 1H), 2.59 (m, 1H), 3.29 (m, 1H), 3.48 (m, 1H), 3.71 (m, 1H), 3.94 (m, 2H), 4.07 (m, 1H), 4.18 (m, 1H), 6.59 (m, 1H), 6.73 (m, 1H), 7.07 (m, 1H), 8.10 (s, 1H).

[0593]

### 実施例6(50)

14-オキサー14-(2-ニトロー3-メチルフェニル) -5-(4-カルボ キシチアゾールー2-イル) -9-オキソー1, 2, 3, 4, 15, 16, 17, 18, 19, 20-デカノルー5-チアー8-アザプロスタン 【化229】

[0594]

TLC: Rf 0.33 (クロロホルム: メタノール: 酢酸=90:10:1);

NMR (CDCl<sub>3</sub>): 8 1.84 (m, 1H), 2.32 (m, 1H), 2.32 (s, 3H), 2.48 (m, 2H), 3.27 (m, 1H), 3.45 (m, 1H), 3.69 (m, 1H), 3.96 (m, 1H), 4.10 (m, 2H), 4.23 (m, 1H), 6.87 (d, J=8.10 Hz, 1H), 6.92 (d, J=8.10 Hz, 1H), 7.32 (t, J=8.10 Hz, 1H), 8.07 (s, 1H).

[059.5]

#### 実施例6(51)

14-オキサー14-(3-クロロー4-ホルミルフェニル) -5-(4-カルボキシチアゾール-2-イル) -9-オキソー1, 2, 3, 4, 15, 16, 17, 18, 19, 20-デカノル-5-チア-8-アザプロスタン

【化230】

TLC: Rf 0.56 (クロロホルム: メタノール: 酢酸=90:10:1);
NMR (CDCl<sub>3</sub>): 8 2.00 (m, 1H), 2.29 (m, 1H), 2.45 (m, 1H), 2.61 (m, 1H), 3.29 (m, 1H), 3.48 (m, 1H), 3.69 (m, 1H), 3.94 (m, 1H), 4.12 (m, 2H), 4.40 (m, 1H), 6.91 (m, 1H), 6.98 (d, J=2.20 Hz, 1H), 7.90 (d, J=8.79 Hz, 1H), 8.10 (s, 1H), 10.32 (s, 1H)。

[0597]

#### 実施例6(52)

14-オキサー14-(4-ニトロー3-メチルフェニル)-5-(4-カルボキシチアゾールー2-イル)-9-オキソー1, 2, 3, 4, 15, 16, 17, 18, 19, 20-デカノル-5-チア-8-アザプロスタン

【化231】

TLC: Rf 0.51 (クロロホルム: メタノール: 酢酸=90:10:1);
NMR (CDCl<sub>3</sub>): δ 2.00 (m, 1H), 2.29 (m, 1H), 2.45 (m, 1H), 2.62 (m, 1H), 2.62 (s, 3H), 3.29 (m, 1H), 3.48 (m, 1H), 3.70 (m, 1H), 3.94 (m, 1H), 4.11 (m, 2H), 4.36 (m, 1H), 6.81 (m, 2H), 8.07 (m, 1H), 8.10 (s, 1H)。

[0599]

# 実施例6(53)

14-オキサー14-(3-ニトロー2-メチルフェニル) -5-(4-カルボキシチアゾールー2-イル) -9-オキソー1, 2, 3, 4, 15, 16, 17, 18, 19, 20-デカノルー5-チアー8-アザプロスタン

【化232】

[0600]

TLC: Rf 0.47 (クロロホルム: メタノール: 酢酸=90:10:1);

NMR (CDCl<sub>3</sub>): 8 2.02 (m, 1H), 2.33 (m, 1H), 2.33 (s, 3H), 2.47 (m, 1H), 2.62 (m, 1H), 3.29 (m, 1H), 3.50 (m, 1H), 3.72 (m, 1H), 3.96 (m, 1H), 4.14 (m, 2H), 4.29 (dd, J=9.60, 3.00 Hz, 1H), 7.07 (d, J=8.20 Hz, 1H), 7.27 (t, J=8.20 Hz, 1H), 7.44 (m, 1H), 8.09 (s, 1H).

[0601]

#### 実施例6(54)

14-オキサ-14-(4-クロロ-3-メチルフェニル)-5-(4-カルボキシチアゾール-2-イル)-9-オキソ-1, 2, 3, 4, 15, 16, 17, 18, 19, 20-デカノル-5-チア-8-アザプロスタン

【化233】

TLC: Rf 0.51 (クロロホルム: メタノール: 酢酸=90:10:1);
NMR (CDCl<sub>3</sub>): 8 1.95 (m, 1H), 2.33 (m, 2H), 2.33 (s, 3H), 2.59 (m, 1H), 3.27 (m, 1H), 3.49 (m, 1H), 3.74 (m, 1H), 3.92 (m, 2H), 4.06 (m, 1H), 4.16 (dd, J=9.60, 3.00 Hz, 1H), 6.66 (dd, J=8.80, 2.70 Hz, 1H), 6.76 (d, J=2.70 Hz, 1H), 7.23 (d, J=8.80 Hz, 1H), 8.09 (s, 1H)。

[0603]

# 実施例6(55)

14-オキサ-14-(3-ニトロー4-メチルフェニル)-5-(4-カルボキシチアゾール-2-イル)-9-オキソー1,2,3,4,15,16,17,18,19,20-デカノル-5-チア-8-アザプロスタン

【化234】

TLC: Rf 0.56 (クロロホルム: メタノール: 酢酸=90:10:1);
NMR (CDCl<sub>3</sub>): δ 2.02 (m, 1H), 2.35 (m, 2H), 2.51 (s, 3H), 2.63 (m, 1H), 3.29 (m, 1H), 3.49 (m, 1H), 3.70 (m, 1H), 3.93 (m, 1H), 4.10 (m, 2H), 4.41 (dd, J=10.03, 2.88 Hz, 1H), 5.66 (br. s., 1H), 7.06 (dd, J=8.38, 2.61 Hz, 1H), 7.24 (d, J=8.52 Hz, 1H), 7.54 (d, J=2.75 Hz, 1H), 8.10 (s, 1H).

[0605]

## 実施例6 (56)

14-オキサー14-(3-ブロモフェニル) -5-(4-カルボキシチアゾール-2-イル) -9-オキソー1, 2, 3, 4, 15, 16, 17, 18, 19, 20-デカノル-5-チア-8-アザプロスタン

【化235】

[0606]

TLC: Rf 0.46 (クロロホルム: メタノール: 酢酸=9:1:0.1);
NMR (CDCl<sub>3</sub>): δ 1.96 (m, 1H), 2.25 (m, 1H), 2.43 (m, 1H), 2.60 (m, 1H),
3.28 (ddd, J=13.40, 10.16, 5.36 Hz, 1H), 3.49 (ddd, J=13.40, 10.16, 5.2
2 Hz, 1H), 3.72 (m, 1H), 4.01 (m, 3H), 4.22 (dd, J=9.89, 3.02 Hz, 1H), 6

.82 (td, J=4.60, 2.34 Hz, 1H), 7.10 (m, 3H), 8.09 (s, 1H).

[0607]

#### 実施例6(57)\_

14-オキサー14-(2, 3-ジメチルフェニル)-5-(4-カルボキシチアゾール-2-イル)-9-オキソ-1, 2, 3, 4, 15, 16, 17, 18, 19, 20-デカノル-5-チア-8-アザプロスタン

【化236】

TLC: Rf 0.48 (クロロホルム: メタノール: 酢酸=9:1:0.1);
NMR (CDC1<sub>3</sub>): δ 1.97 (m, 1H), 2.11 (s, 3H), 2.27 (s, 3H), 2.27 (m, 1H), 2.45 (m, 1H), 2.63 (m, 1H), 3.26 (ddd, J=13.40, 10.16, 5.49 Hz, 1H), 3.52 (ddd, J=13.40, 10.16, 5.22 Hz, 1H), 3.88 (m, 3H), 4.17 (m, 2H), 6.68 (d, J=8.52 Hz, 1H), 6.81 (d, J=7.69 Hz, 1H), 7.05 (t, J=7.97 Hz, 1H), 8.08 (s, 1H)。

[0609]

## <u>実施例6(58)</u>

14-オキサー14-(4-クロロー2, 6-ジメチルフェニル) -5-(4-カルボキシチアゾールー2-イル) -9-オキソー1, 2, 3, 4, 15, 16, 17, 18, 19, 20-デカノルー5-チアー8-アザプロスタン

【化237】

TLC: Rf 0.47 (クロロホルム: メタノール: 酢酸=9:1:0.1);
NMR (CDCl<sub>3</sub>): δ 1.94 (m, 1H), 2.34 (m, 2H), 2.34 (s, 6H), 2.59 (m, 1H), 3.27 (ddd, J=13.32, 10.03, 5.22 Hz, 1H), 3.49 (m, 1H), 3.74 (m, 1H), 3.91 (m, 2H), 4.12 (m, 2H), 6.62 (s, 2H), 8.08 (s, 1H).

[0611]

#### 実施例6 (59)

14-オキサー14-(ナフタレンー2-イル)-5-(4-カルボキシチアゾールー2-イル)-9-オキソー1, 2, 3, 4, 15, 16, 17, 18, 19, 20-デカノルー5-チアー8-アザプロスタン

【化238】

[0612]

TLC: Rf 0.44 (クロロホルム: メタノール: 酢酸=9:1:0.1);
NMR (CDCl<sub>3</sub>): δ 2.01 (m, 1H), 2.28 (m, 1H), 2.45 (m, 1H), 2.64 (m, 1H),
3.29 (m, 1H), 3.52 (m, 1H), 3.80 (m, 1H), 3.94 (m, 1H), 4.12 (m, 2H), 4
.32 (m, 1H), 7.12 (m, 2H), 7.36 (td, J=7.49, 1.24 Hz, 1H), 7.46 (td, J=7.55, 1.37 Hz, 1H), 7.75 (m, 3H), 8.06 (s, 1H)。

#### 実施例6 (60)

14-オキサー14-(2-フルオロ-3-トリフルオロメチルフェニル)-5-(4-カルボキシチアゾール-2-イル)-9-オキソー1,2,3,4,15,16,17,18,19,20-デカノル-5-チア-8-アザプロスタン 【化239】

TLC: Rf 0.35 (クロロホルム:メタノール: 酢酸=9:1:0.1);
NMR (CDCl<sub>3</sub>): 8 1.95 (m, 1H), 2.28 (m, 1H), 2.44 (m, 1H), 2.61 (m, 1H),
3.35 (ddd, J=13.40, 10.10, 5.40 Hz, 1H), 3.52 (ddd, J=13.40, 10.10, 5.40 Hz, 1H), 3.72 (m, 1H), 4.09 (m, 3H), 4.33 (dd, J=9.48, 2.88 Hz, 1H), 7
.17 (m, 3H), 8.09 (s, 1H)。

[0614]

# <u>実施例6(61)</u>

14-オキサー14-(3, 5-ジメチルフェニル) -5-(4-カルボキシチアゾール-2-イル) -9-オキソー1, 2, 3, 4, 15, 16, 17, 18, 19, 20-デカノル-5-チア-8-アザプロスタン

【化240】

[0615]

TLC: Rf 0.45 (クロロホルム:メタノール: 酢酸=90:10:1);
NMR (CDCl<sub>3</sub>): δ 1.93 (m, 1H), 2.23 (m, 1H), 2.28 (s, 6H), 2.42 (m, 1H), 2.59 (m, 1H), 3.27 (m, 1H), 3.51 (m, 1H), 3.95 (m, 5H), 6.50 (s, 2H), 6.64 (s, 1H), 8.08 (s, 1H)。

[0616]

#### 実施例 6 (<u>6</u>2)

14-オキサー14-(3, 4, 5-トリメチルフェニル) -5-(4-カルボ キシチアゾール-2-イル) -9-オキソー1, 2, 3, 4, 15, 16, 17, 18, 19, 20-デカノル-5-チア-8-アザプロスタン

【化241】

[0617]

TLC:Rf 0.43 (クロロホルム:メタノール:酢酸=90:10:1);
NMR (CDCl<sub>3</sub>): δ 1.92 (m, 1H), 2.10 (s, 3H), 2.20 (m, 1H), 2.25 (s, 6H),
2.42 (m, 1H), 2.58 (m, 1H), 3.26 (m, 1H), 3.51 (m, 1H), 3.96 (m, 5H), 6
.55 (s, 2H), 8.07 (s, 1H)。

[0618]

#### <u>実施例6(63)</u>

14-オキサー14-(5, 6, 7, 8-テトラヒドロナフタレンー1-イル) -5-(4-カルボキシチアゾールー2-イル) -9-オキソー1, 2, 3, 4, 15, 16, 17, 18, 19, 20-デカノルー5-チアー8-アザプロスタン

【化242】

[0619]

TLC: Rf 0.42 (クロロホルム: メタノール: 酢酸=90:10:1);
NMR (CDCl<sub>3</sub>): δ 1.76 (m, 4H), 1.97 (m, 1H), 2.27 (m, 1H), 2.58 (m, 6H), 3.23 (m, 1H), 3.51 (m, 1H), 3.96 (m, 5H), 6.61 (d, J=8.24 Hz, 1H), 6.74 (d, J=7.42 Hz, 1H), 7.06 (t, J=7.97 Hz, 1H), 8.07 (s, 1H).

[0620]

#### <u>実施例6(64)</u>

【化243】

14-オキサー14-(4-アセチルー3-メチルフェニル)-5-(4-カルボキシチアゾールー2-イル)-9-オキソー1, 2, 3, 4, 15, 16, 17, 18, 19, 20-デカノルー5-チアー8-アザプロスタン

[0621]

TLC: Rf 0.42 (クロロホルム: メタノール: 酢酸=90:10:1);
NMR (CDC1<sub>3</sub>): δ 1.97 (m, 1H), 2.45 (m, 3H), 2.55 (s, 6H), 3.27 (m, 1H), 3.49 (m, 1H), 3.74 (m, 1H), 3.93 (m, 1H), 4.08 (m, 2H), 4.24 (m, 1H), 6.74 (m, 2H), 7.74 (d, J=9.34 Hz, 1H), 8.08 (s, 1H).

[0622]

# 実施例6(65)

14-オキサー14-(ナフタレンー1-イル)-5-(4-カルボキシチアゾールー2-イル)-9-オキソー1, 2, 3, 4, 15, 16, 17, 18, 19, 20-デカノルー5-チアー8-アザプロスタン

【化244】

[0623]

TLC:Rf 0.43 (クロロホルム:メタノール:酢酸=90:10:1);
NMR (CDCl<sub>3</sub>): 8 2.07 (m, 1H), 2.35 (m, 1H), 2.51 (m, 1H), 2.70 (m, 1H), 3.26 (m, 1H), 3.55 (m, 1H), 3.92 (m, 2H), 4.23 (m, 2H), 4.36 (m, 1H), 6 .82 (m, 1H), 7.37 (m, 1H), 7.50 (m, 3H), 7.82 (m, 1H), 8.03 (s, 1H), 8.0 9 (m, 1H)。

[0624]

# 実施例6 (66)

14ーオキサー14ー(2ークロロー3ートリフルオロメチルフェニル)ー5ー (4ーカルボキシチアゾールー2ーイル)ー9ーオキソー1,2,3,4,15 ,16,17,18,19,20ーデカノルー5ーチアー8ーアザプロスタン 【化245】

TLC: Rf 0.42 (クロロホルム: メタノール: 酢酸=90:10:1); NMR (CDCl<sub>3</sub>):  $\delta$  1.96 (m, 1H), 2.38 (m, 2H), 2.69 (m, 1H), 3.31 (m, 1H),

3.55 (m, 1H), 3.81 (m, 1H), 4.11 (m, 3H), 4.33 (m, 1H), 7.14 (m, 1H), 7.34 (m, 2H), 8.08 (s, 1H).

[0626]

#### 実施例 6 (6<u>7)</u>

14-オキサー14-(3-メチルフェニル) -5-(4-カルボキシチアゾール-2-イル) -9-オキソー1, 2, 3, 4, 15, 16, 17, 18, 19, 20-デカノル-5-チア-8-アザプロスタン

【化246】

[0627]

TLC: Rf 0.49 (クロロホルム: メタノール: 酢酸=90:10:1);
NMR (CDCl<sub>3</sub>): δ 1.95 (m, 1H), 2.25 (s, 1H), 2.33 (s, 3H), 2.43 (m, 1H), 2.60 (m, 1H), 3.15 (br. s., 1H), 3.28 (m, 1H), 3.51 (m, 1H), 3.76 (m, 1H), 3.94 (m, 2H), 4.12 (m, 2H), 6.68 (m, 2H), 6.81 (m, 1H), 7.17 (t, J=7.69 Hz, 1H), 8.08 (s, 1H).

[0628]

# 実施例6(68)

14-オキサー14-(4-メチルフェニル)-5-(4-カルボキシチアゾール-2-イル)-9-オキソー1, 2, 3, 4, 15, 16, 17, 18, 19, 20-デカノル-5-チア-8-アザプロスタン

【化247】

TLC: Rf 0.47 (クロロホルム: メタノール: 酢酸=90:10:1);
NMR (CDC1<sub>3</sub>): 8 1.94 (m, 1H), 2.23 (m, 1H), 2.29 (s, 3H), 2.42 (ddd, J=16.80, 10.00, 6.00 Hz, 1H), 2.59 (ddd, J=16.80, 10.00, 6.90 Hz, 1H), 3.28 (ddd, J=13.20, 10.20, 5.40 Hz, 1H), 3.50 (ddd, J=13.20, 10.20, 5.40 Hz, 1H), 3.77 (ddd, J=13.20, 10.20, 5.40 Hz, 1H), 3.93 (m, 2H), 4.10 (m, 2H), 6.77 (d, J=8.80 Hz, 2H), 7.09 (d, J=8.80 Hz, 2H), 8.08 (s, 1H)。

[0630]

#### 実施例6(69)

14-オキサー14-(2,3,5-トリクロロフェニル)-5-(4-カルボキシチアゾールー2ーイル)-9-オキソー1,2,3,4,15,16,17,18,19,20-デカノルー5-チアー8-アザプロスタン

【化248】

[0631]

TLC: Rf 0.55 (クロロホルム: メタノール: 酢酸=90:10:1);
NMR (CDCl<sub>3</sub>): 8 1.95 (m, 1H), 2.30 (m, 1H), 2.45 (m, 1H), 2.68 (m, 1H), 3.26 (m, 1H), 3.54 (m, 1H), 3.78 (m, 1H), 3.99 (m, 2H), 4.15 (m, 1H), 4.32 (m, 1H), 6.88 (d, J=2.20 Hz, 1H), 7.14 (dd, J=2.20, 0.55 Hz, 1H), 8.08 (s, 1H).

[0632]

#### <u> 実施例 6 (70)</u>

14-オキサー14-(3-クロロ-4-フルオロフェニル) -5-(4-カルボキシチアゾール-2-イル) -9-オキソー1, 2, 3, 4, 15, 16, 17, 18, 19, 20-デカノル-5-チア-8-アザプロスタン

【化249】

TLC: Rf 0.52 (クロロホルム: メタノール: 酢酸=90:10:1);
NMR (CDCl<sub>3</sub>): δ 1.96 (m, 1H), 2.25 (m, 1H), 2.43 (m, 1H), 2.59 (m, 1H),
3.28 (m, 1H), 3.48 (m, 1H), 3.70 (m, 1H), 3.93 (m, 2H), 4.07 (m, 1H), 4
.21 (m, 1H), 6.75 (dt, J=9.00, 3.00 Hz, 1H), 6.94 (dd, J=5.70, 3.00 Hz, 1H), 7.05 (t, J=9.00 Hz, 1H), 8.09 (s, 1H).

[0634]

#### 実施例6 (71)

14-オキサー14-(2, 3-ジクロロフェニル)-5-(4-カルボキシチアゾール-2-イル)-9-オキソー1, 2, 3, 4, 15, 16, 17, 18, 19, 20-デカノル-5-チア-8-アザプロスタン

【化250】

[0635]

TLC: Rf 0.41 (クロロホルム: メタノール: 酢酸=90:10:1);
NMR (CDC1<sub>3</sub>): 8 1.93 (m, 1H), 2.29 (m, 1H), 2.45 (m, 1H), 2.67 (m, 1H), 2.00 (m, 1H), 2.67 (m, 1H), 2.00 (m, 1H), 2.67 (m, 1H), 2.00 (m, 1H

3.29 (m, 1H), 3.56 (m, 1H), 3.81 (m, 1H), 4.12 (m, 4H), 6.84 (dd, J=7.4 2, 1.92 Hz, 1H), 7.14 (m, 2H), 8.07 (s, 1H).

[0636]

# 実施例6 (72)

14-オキサー14-(3-ニトロフェニル) -5-(4-カルボキシチアゾール-2-イル) -9-オキソー1, 2, 3, 4, 15, 16, 17, 18, 19, 20-デカノル-5-チア-8-アザプロスタン

【化251】

[0637]

TLC: Rf 0.45 (クロロホルム:メタノール:酢酸=90:10:1);

NMR (CDC1<sub>3</sub>):  $\delta$  2.04 (m, 1H), 2.29 (m, 1H), 2.45 (m, 1H), 2.63 (m, 1H), 3.30 (m, 1H), 3.49 (m, 1H), 3.69 (m, 1H), 3.95 (m, 1H), 4.13 (m, 2H), 4.45 (m, 1H), 7.23 (m, 1H), 7.44 (t, J=8.24 Hz, 1H), 7.76 (t, J=2.34 Hz, 1H), 7.85 (m, 1H), 8.09 (s, 1H).

[0638]

# <u>実施例6 (73)</u>

14-オキサー14-(3-トリフルオロメチルフェニル)-5-(4-カルボキシチアゾール-2-イル)-9-オキソー1, 2, 3, 4, 15, 16, 17, 18, 19, 20-デカノル-5-チア-8-アザプロスタン

【化252】

[0639]

TLC: Rf 0.43 (クロロホルム:メタノール: 酢酸=90:10:1);

NMR (CDC1<sub>3</sub>): δ 1.98 (m, 1H), 2.27 (m, 1H), 2.44 (m, 1H), 2.61 (m, 1H), 3.29 (m, 1H), 3.49 (m, 1H), 3.71 (m, 1H), 4.02 (m, 3H), 4.30 (dd, J=9.7 5, 2.88 Hz, 1H), 7.07 (m, 1H), 7.13 (br. s., 1H), 7.25 (m, 1H), 7.41 (t, J=7.97 Hz, 1H), 8.09 (s, 1H).

[0640]

#### 実施例6(74)

14-オキサー14-(3-トリフルオロメトキシフェニル)-5-(4-カルボキシチアゾールー2-イル)-9-オキソー1, 2, 3, 4, 15, 16, 17, 18, 19, 20-デカノルー5-チアー8-アザプロスタン

【化253】

[0641]

TLC: Rf 0.43 (クロロホルム: メタノール: 酢酸=90:10:1);
NMR (CDC1<sub>3</sub>): δ 1.98 (m, 1H), 2.26 (m, 1H), 2.43 (m, 1H), 2.60 (m, 1H),
3.29 (m, 1H), 3.49 (m, 1H), 3.71 (m, 1H), 4.02 (m, 3H), 4.24 (dd, J=9.8
9, 3.02 Hz, 1H), 6.75 (br. s., 1H), 6.84 (m, 2H), 7.30 (t, J=8.24 Hz, 1H), 8.09 (s, 1H)。

[0642]

#### 実施例6 (75)

14-オキサー14-(2-クロロ-4-メトキシフェニル) -5-(4-カルボキシチアゾール-2-イル) -9-オキソー1, 2, 3, 4, 15, 16, 17, 18, 19, 20-デカノル-5-チア-8-アザプロスタン

【化254】

TLC: Rf 0.43 (クロロホルム: メタノール: 酢酸=90:10:1);
NMR (CDCl<sub>3</sub>): δ 1.92 (m, 1H), 2.26 (m, 1H), 2.43 (m, 1H), 2.65 (m, 1H),
3.31 (m, 1H), 3.56 (m, 1H), 3.76 (s, 3H), 3.80 (m, 2H), 4.06 (m, 3H), 6.75 (dd, J=9.00, 2.70 Hz, 1H), 6.85 (d, J=9.00 Hz, 1H), 6.96 (d, J=2.70 Hz, 1H), 8.07 (s, 1H).

[0644]

#### 実施例6(76)

14-オキサー14-(4-クロロ-3-エチルフェニル) -5-(4-カルボ キシチアゾール-2-イル) -9-オキソー1, 2, 3, 4, 15, 16, 17 , 18, 19, 20-デカノル-5-チア-8-アザプロスタン 【化255】

TLC: Rf 0.50 (クロロホルム: メタノール: 酢酸=90:10:1);
NMR (CDCl<sub>3</sub>): δ 1.21 (t, J=7.50 Hz, 3H), 1.95 (m, 1H), 2.25 (m, 1H), 2.43 (m, 1H), 2.59 (m, 1H), 2.70 (q, J=7.50 Hz, 2H), 3.27 (m, 1H), 3.49 (m, 1H), 3.73 (m, 1H), 4.03 (m, 4H), 6.66 (dd, J=8.70, 3.00 Hz, 1H), 6.76 (d, J=3.00 Hz, 1H), 7.23 (d, J=8.70 Hz, 1H), 8.08 (s, 1H)。

[0646]

#### 実施例6 (77)

14-オキサー14-(4-メチルインダンー7-イル) ー5-(4-カルボキシチアゾールー2-イル) ー9-オキソー1, 2, 3, 4, 15, 16, 17, 18, 19, 20-デカノルー5-チアー8-アザプロスタン

【化256】

TLC: Rf 0.52 (クロロホルム: メタノール: 酢酸=90:10:1);
NMR (CDCl<sub>3</sub>): δ 1.91 (m, 1H), 2.10 (m, 2H), 2.20 (s, 3H), 2.24 (m, 1H), 2.42 (m, 1H), 2.60 (m, 1H), 2.84 (m, 4H), 3.25 (m, 1H), 3.52 (m, 1H), 3.96 (m, 5H), 6.55 (d, J=8.20 Hz, 1H), 6.92 (d, J=8.20 Hz, 1H), 8.07 (s, 1H)。

[0648]

#### 実施例6 (78)

14-オキサー14-(4-フルオロー3-メチルフェニル)-5-(4-カルボキシチアゾールー2-イル)-9-オキソー1, 2, 3, 4, 15, 16, 17, 18, 19, 20-デカノルー5-チアー8-アザプロスタン

【化257】

TLC: Rf 0.50 (クロロホルム: メタノール: 酢酸=90:10:1);
NMR (CDC1<sub>3</sub>): δ 1.94 (m, 1H), 2.24 (d, J=1.90 Hz, 3H), 2.25 (m, J=1.92 Hz, 1H), 2.42 (m, 1H), 2.59 (m, 1H), 3.27 (m, 1H), 3.49 (m, 1H), 3.75 (m, 1H), 4.01 (m, 4H), 6.66 (m, 2 H), 6.91 (t, J=9.00 Hz, 1H), 8.08 (s, 1H),

[0650]

#### 実施例6 (79)

14-オキサー14-(2, 3, 4-トリクロロフェニル)-5-(4-カルボキシチアゾールー2-イル)-9-オキソー1, 2, 3, 4, 15, 16, 17, 18, 19, 20-デカノル-5-チア-8-アザプロスタン

【化258】

TLC: Rf 0.41 (クロロホルム: メタノール: 酢酸=9:1:0.1);
NMR (CDC1<sub>3</sub>): δ 1.94 (m, 1H), 2.36 (m, 2H), 2.67 (m, 1H), 3.28 (ddd, J=13.20, 10.40, 5.22 Hz, 1H), 3.54 (ddd, J=13.20, 10.40, 4.94 Hz, 1H), 3.8 0 (m, 1H), 4.06 (m, 3H), 4.28 (d d, J=9.75, 2.61 Hz, 1H), 6.83 (d, J=9.07 Hz, 1H), 7.34 (d, J=9.07 Hz, 1H), 8.08 (s, 1H).

[0652]

## 実施例6 (80)

14-オキサー14-(2-クロロ-4-フルオロフェニル) -5-(4-カルボキシチアゾール-2-イル) -9-オキソー1, 2, 3, 4, 15, 16, 17, 18, 19, 20-デカノル-5-チア-8-アザプロスタン

【化259】

TLC: Rf 0.33 (クロロホルム: メタノール: 酢酸=9:1:0.1);
NMR (CDCl<sub>3</sub>): δ 1.94 (m, 1H), 2.28 (m, 1H), 2.45 (m, 1H), 2.66 (m, 1H),
3.31 (ddd, J=13.20, 10.40, 5.22 Hz, 1H), 3.55 (ddd, J=13.20, 10.40, 4.9
4 Hz, 1H), 3.80 (m, 1H), 4.01 (m, 2H), 4.13 (m, 1H), 4.23 (dd, J=9.60, 1
.80 Hz, 1H), 6.91 (m, 2H), 7.15 (dd, J=7.97, 3.02 Hz, 1H), 8.08 (s, 1H)

[0654]

#### 実施例6 (81)

14-オキサー14-(4-クロロー3-ニトロフェニル)-5-(4-カルボキシチアゾールー2-イル)-9-オキソー1, 2, 3, 4, 15, 16, 17, 18, 19, 20-デカノルー5-チアー8-アザプロスタン

【化260】

TLC: Rf 0.37 (クロロホルム: メタノール: 酢酸=9:1:0.1);
NMR (CDC1<sub>3</sub>): δ 2.03 (m, 1H), 2.29 (m, 1H), 2.45 (m, 1H), 2.62 (m, 1H), 3.27 (ddd, J=13.50, 10.10, 5.36 Hz, 1H), 3.47 (ddd, J=13.50, 10.10, 5.49 Hz, 1H), 3.68 (m, 1H), 3.89 (m, 1H), 4.10 (m, 2H), 4.51 (dd, J=9.89, 2)

.75 Hz, 1H), 7.09 (dd, J=9.00, 2.90 Hz, 1H), 7.43 (d, J=9.00 Hz, 1H), 7.49 (d, J=2.90 Hz, 1H), 8.11 (s, 1H).

[0656]

#### 実施例6 (82)

14-オキサー14-(2,4-ジクロロフェニル)-5-(4-カルボキシチ アゾール-2-イル)-9-オキソー1,2,3,4,15,16,17,18 ,19,20-デカノル-5-チア-8-アザプロスタン 【化261】

O S S CI CI [0 6 5 7]

TLC: Rf 0.34 (クロロホルム: メタノール: 酢酸=9:1:0.1);
NMR (CDC1<sub>3</sub>): 8 1.93 (m, 1H), 2.29 (m, 1H), 2.45 (m, 1H), 2.66 (m, 1H),
3.29 (ddd, J=13.32, 10.40, 5.22 Hz, 1H), 3.55 (ddd, J=13.32, 10.40, 5.2
2 Hz, 1H), 3.80 (m, 1H), 4.00 (m, 2H), 4.14 (m, 1H), 4.25 (dd, J=9.60, 1
.80 Hz, 1H), 6.86 (d, J=8.79 Hz, 1H), 7.20 (dd, J=8.79, 2.47 Hz, 1H), 7.
38 (d, J=2.47 Hz, 1H), 8.08 (s, 1H)。

[0658]

#### 実施例6(83)

14-オキサー14-(4-クロロー3-トリフルオロメチルフェニル) -5-(4-カルボキシチアゾールー2-イル) -9-オキソー1, 2, 3, 4, 15, 16, 17, 18, 19, 20-デカノル-5-チア-8-アザプロスタン

# 【化262】

TLC: Rf 0.34 (クロロホルム: メタノール: 酢酸=9:1:0.1);
NMR (CDC1<sub>3</sub>): δ 2.00 (m, 1H), 2.27 (m, 1H), 2.44 (m, 1H), 2.62 (m, 1H), 3.29 (m, 1H), 3.48 (m, 1H), 3.69 (m, 1H), 4.01 (m, 3H), 4.33 (dd, J=9.75, 2.88 Hz, 1H), 7.01 (dd, J=8.80, 2.90 Hz, 1H), 7.21 (d, J=2.90 Hz, 1H), 7.40 (d, J=8.80 Hz, 1H), 8.10 (s, 1H).

[0660]

#### 実施例6 (84)

14-オキサー14-(2,4-ジメチルフェニル)-5-(4-カルボキシチアゾール-2-イル)-9-オキソー1,2,3,4,15,16,17,18,19,20-デカノル-5-チア-8-アザプロスタン

【化2.63】

TLC: Rf 0.34 (クロロホルム: メタノール: 酢酸=9:1:0.1);
NMR (CDC1<sub>3</sub>): δ 1.95 (m, 1H), 2.16 (s, 3H), 2.26 (s, 3H), 2.26 (m, 1H),
2.43 (m, 1H), 2.61 (m, 1H), 3.25 (ddd, J=13.30, 10.30, 5.22 Hz, 1H), 3.
51 (ddd, J=13.30, 10.30, 5.22 Hz, 1H), 3.79 (m, 1H), 3.95 (m, 2H), 4.12 (m, 2H), 6.68 (d, J=8.24 Hz, 1H), 6.95 (m, 2H), 8.07 (s, 1H).

[0662]

# 実施例6(85)

14-オキサー14-(3-エチルフェニル) -5-(4-カルボキシチアゾール-2-イル) -9-オキソー1, 2, 3, 4, 15, 16, 17, 18, 19, 20-デカノル-5-チア-8-アザプロスタン

【化264】

[0663]

TLC: Rf 0.34 (クロロホルム: メタノール: 酢酸=9:1:0.1);
NMR (CDCl<sub>3</sub>): δ 1.23 (t, J=7.69 Hz, 3H), 1.94 (m, 1H), 2.24 (m, 1H), 2.
42 (m, 1H), 2.61 (m, 3H), 3.27 (ddd, J=13.30, 10.40, 5.49 Hz, 1H), 3.51 (ddd, J=13.30, 10.40, 5.22 Hz, 1H), 3.78 (m, 1H), 3.94 (m, 2H), 4.07 (m, 1H), 4.16 (dd, J=9.60, 3.00 Hz, 1H), 6.70 (m, 2H), 6.84 (d, J=7.97 Hz, 1H), 7.21 (t, J=7.69 Hz, 1H), 8.08 (s, 1H).

[0664]

# <u>実施例6(86)</u>

【化265】

14-オキサー14-(3-メチルー4-メチルチオフェニル) -5-(4-カルボキシチアゾールー2-イル) -9-オキソー1, 2, 3, 4, 15, 16, 17, 18, 19, 20-デカノルー5-チアー8-アザプロスタン

[0665]

TLC: Rf 0.36 (クロロホルム: メタノール: 酢酸=9:1:0.1);
NMR (CDC1<sub>3</sub>): δ 1.93 (m, 1H), 2.38 (m, J=14.28 Hz, 2H), 2.36 (s, 3H), 2.40 (s, 3H), 2.60 (m, 1H), 3.26 (ddd, J=13.30, 10.40, 5.22 Hz, 1H), 3.50 (ddd, J=13.30, 10.40, 5.36 Hz, 1H), 3.75 (m, 1H), 4.04 (m, 4H), 6.72 (m, 2H), 7.17 (d, J=7.97 Hz, 1H), 8.08 (s, 1H)。

[0666]

#### 実施例6(87)

14-オキサー14-(4-クロロー3,5-ジメチルフェニル)-5-(4-カルボキシチアゾール-2-イル)-9-オキソー1,2,3,4,15,16,17,18,19,20-デカノル-5-チア-8-アザプロスタン 【化266】

[0667]

TLC: Rf 0.36 (クロロホルム: メタノール: 酢酸=9:1:0.1);
NMR (CDC1<sub>3</sub>): δ 1.93 (m, 1H), 2.34 (m, 2H), 2.34 (s, 6H), 2.59 (m, 1H), 3.25 (ddd, J=13.30, 10.50, 5.49 Hz, 1H), 3.49 (ddd, J=13.30, 10.50, 5.2 2 Hz, 1H), 3.76 (m, 1H), 3.91 (m, 2H), 4.09 (m, 2H), 6.61 (s, 2H), 8.08 (s, 1H)。

[0668]

#### 実施例6(88)\_

14-オキサー14-(2, 3, 5ートリフルオロフェニル) -5-(4ーカルボキシチアゾール-2-イル) -9-オキソー1, 2, 3, 4, 15, 16, 17, 18, 19, 20-デカノル-5-チア-8-アザプロスタン

【化267】

[0669]

TLC: Rf 0.32 (クロロホルム: メタノール: 酢酸=9:1:0.1);
NMR (CDCl<sub>3</sub>): 8 1.95 (m, 1H), 2.28 (m, 1H), 2.44 (m, 1H), 2.62 (m, 1H), 3.31 (m, 1H), 3.51 (m, 1H), 3.72 (m, 1H), 4.05 (m, 3H), 4.32 (dd, J=9.75, 2.88 Hz, 1H), 6.55 (m, 2H), 8.09 (s, 1H)。

[0670]

#### 実施例6 (89)

14-オキサー14-(4-フルオロ-3-トリフルオロメチルフェニル)-5- (4-カルボキシチアゾールー2-イル)-9-オキソー1, 2, 3, 4, 15, 16, 17, 18, 19, 20-デカノル-5-チア-8-アザプロスタン【化268】

TLC: Rf 0.36 (クロロホルム: メタノール: 酢酸=9:1:0.1);
NMR (CDC1<sub>3</sub>): δ 1.98 (m, 1H), 2.27 (m, 1H), 2.44 (m, 1H), 2.60 (m, 1H),
3.29 (ddd, J=13.30, 10.20, 5.08 Hz, 1H), 3.48 (ddd, J=13.30, 10.20, 4.9
4 Hz, 1H), 3.70 (m, 1H), 4.01 (m, 3H), 4.27 (dd, J=9.61, 3.02 Hz, 1H), 7
.08 (m, 3H), 8.09 (s, 1H)。

[0672]

#### 実施例 6 (90)

14-オキサー14-(4-クロロー3-フルオロフェニル)-5-(4-カルボキシチアゾールー2-イル)-9-オキソー1, 2, 3, 4, 15, 16, 17, 18, 19, 20-デカノルー5-チアー8-アザプロスタン

【化269】

TLC:Rf 0.41 (クロロホルム:メタノール:酢酸=9:1:0.1);
NMR (CDCl<sub>3</sub>): δ 1.96 (m, 1H), 2.26 (m, 1H), 2.43 (m, 1H), 2.59 (m, 1H), 3.27 (ddd, J=13.32, 10.30, 5.22 Hz, 1H), 3.48 (ddd, J=13.32, 10.30, 5.40 Hz, 1H), 3.71 (m, 1H), 3.93 (m, 2H), 4.08 (m, 1H), 4.21 (dd, J=9.75, 3.16 Hz, 1H), 6.64 (m, 1H), 6.72 (dd, J=10.44, 2.75 Hz, 1H), 7.28 (t, J=8.65 Hz, 1H), 8.09 (s, 1H)。

[0674]

# 実施例6 (91)

 $(13E, 15\alpha) - 19 - 7$ ェノキシー15 - Eドロキシー5 - (4 - カルボ キシチアゾールー2 - イル) - 9, 20 - ジオキソー1, 2, 3, 4, 20 - ペンタノルー5 - チアー8 - アザプロストー<math>13 -エン

【化270]

[0675]

TLC: Rf 0.22 (クロロホルム:メタノール=9:1);

NMR (CDC1<sub>3</sub>): δ 1.63 (m, 7H), 2.35 (m, 3H), 3.39 (m, 3H), 3.78 (m, 1H), 3.94 (t, J=6.18 Hz, 2H), 4.18 (m, 2H), 5.09 (m, 2H), 5.56 (dd, J=15.38, 8.52 Hz, 2H), 5.81 (dd, J=15.38, 5.77 Hz, 1H), 6.89 (m, 3H), 7.26 (m, 2H), 8.07 (s, 1H).

[0676]

#### 実施例 6 (9<u>2)</u>

 $(13E, 15\alpha) - 20 - 7$ ェノキシ-15 - Eドロキシ-5 - (4 - カルボ キシチアゾール<math>-2 - 4ル) -9 - オキソ-1, 2, 3, 4 -テトラノル-5 - 4チア-8 - 7ザプロスト-13 - 4エン

【化271】

[0677]

TLC:Rf 0.22 (クロロホルム:メタノール=9:1);

NMR (CDCl<sub>3</sub>):  $\delta$  1.47 (m, 6H), 1.76 (m, 3H), 2.35 (m, 3H), 3.38 (m, 3H), 3.79 (m, 1H), 3.94 (t, J=6.32 Hz, 2H), 4.16 (m, 2H), 4.76 (m, 2H), 5.55 (ddd, J=15.31, 8.58, 0.82 Hz, 1H), 5.80 (dd, J=15.38, 5.77 Hz, 1H), 6.9 1 (m, 3H), 7.27 (m, 2H), 8.08 (s, 1H).

[0678]

#### 実施例7(1)~(2)

参考例11で製造した化合物の代わりに相当する誘導体を用いて、実施例3と 同様の操作に付すことにより、以下に示す本発明化合物を得た。

[0679]

#### 実施例 7 (1)

2- (2- (2- (4- (2-ヒドロキシメチルフェニル) フェニル) -5-オ キソピロリジン-1-イル) エチルチオ) チアゾール-4-カルボン酸・エチル エステル

【化272]

[0680]

TLC: Rf 0.11 (酢酸エチル: n-ヘキサン=3:1);

NMR (CDCl<sub>3</sub>): δ 8.02 (s, 1H), 7.59-7.55 (m, 1H), 7.44-7.32 (m, 4H), 7.3 0-7.23 (m, 3H), 4.93-4.86 (m, 1H), 4.58 (d, J=5.4 Hz, 2H), 4.38 (q, J=7.2 Hz, 2H), 3.99-3.87 (m, 1H), 3.51-3.30 (m, 2H), 3.16-3.05 (m, 1H), 2.68 -2.45 (m, 3H), 2.03-1.89 (m, 1H), 1.81 (t, J=5.4 Hz, 1H), 1.38 (t, J=7.2 Hz, 3H).

[0681]

#### 実施例7(2)

2-(2-(2-(4-(2-プロポキシエチル)) フェニル) -5-オキソピロリジン-1-イル) エチルチオ) チアゾール-4-カルボン酸・エチルエステル【化273】

[0682]

TLC: Rf 0.13 (ヘキサン: 酢酸エチル=1:1);

NMR (CDC1<sub>3</sub>):  $\delta$  8.00 (s, 1H), 7.19 (d, J=8.4 Hz, 2H), 7.12 (d, J=8.4 Hz

, 2H), 4.79 (m, 1H), 4.40 (q, J=7.2 Hz, 2H), 3.93 (m, 1H), 3.61 (t, J=7.2 Hz, 2H), 3.44-3.32 (m, 4H), 3.01 (m, 1H), 2.87 (t, J=7.2 Hz, 2H), 2.64 -2.34 (m, 3H), 1.88 (m, 1H), 1.68-1.48 (m, 2H), 1.40 (t, J=7.2 Hz, 3H), 0.89 (t, J=7.2 Hz, 3H).

[0683]

#### 実施例8(1)~(2)

実施例1で製造した化合物の代わりに実施例7(1)で製造した化合物を用いて、実施例2と同様の操作に付すことにより、以下に示す本発明化合物を得た。

[0684]

# 実施例8(1)

2- (2- (2- (4- (2-ヒドロキシメチルフェニル) フェニル) -5-オ キソピロリジン-1-イル) エチルチオ) チアゾール-4-カルボン酸

【化274】

[0.685]

TLC: Rf 0.16(塩化メチレン: メタノール=5:1);

NMR (CDCl<sub>3</sub>):  $\delta$  8.08 (s, 1H), 7.58-7.53 (m, 1H), 7.45-7.32 (m, 4H), 7.2 9-7.22 (m, 3H), 4.83-4.76 (m, 1H), 4.61 (s, 2H), 4.05-3.96 (m, 1H), 3.37 -3.21 (m, 3H), 2.70-2.44 (m, 3H), 2.07-1.94 (m, 1H).

[0686]

#### 実施例8(2)

2-(2-(2-(4-(2-プロポキシエチル))フェニル)-5-オキソピロ リジン-1-イル)エチルチオ)チアゾール-4-カルボン酸 【化275】

TLC: Rf 0.27 (クロロホルム: メタノール: 酢酸=9:1:0.1); NMR (CDCl<sub>3</sub>):  $\delta$  8.06 (s, 1H), 7.25 (d, J=8.1 Hz, 2H), 7.13 (d, J=8.1 Hz, 2H), 4.67 (m, 1H), 3.94 (m, 1H), 3.67 (t, J=6.9 Hz, 2H), 3.43 (t, J=6.9 Hz, 2H), 3.35-3.04 (m, 3H), 2.90 (t, J=6.9 Hz, 2H), 2.70-2.36 (m, 3H), 1.94 (m, 1H), 1.69-1.50 (m, 2H), 0.90 (t, J=7.2 Hz, 3H)。

[0688]

#### 実施例9

【化276]

[0689]

実施例 2 (2) で製造した化合物 (3  $12 \,\mathrm{mg}$ )、 $2 - (2 - \mathrm{x} + \mathrm$ 

ナトリウム水溶液および飽和食塩水で順次洗浄し、無水硫酸ナトリウムで乾燥後、減圧濃縮した。残留物をシリカゲルカラムクロマトグラフィー(ヘキサン:酢酸エチル=1:3→酢酸エチル)で精製し、下記物性値を有する本発明化合物(316mg)を得た。

[0690]

TLC: Rf 0.30 (酢酸エチル);

NMR (CDCl<sub>3</sub>): 8 8.00 (s, 1H), 5.79 (d, J=15.6, 5.7 Hz, 1H), 5.54 (ddd, J=15.6, 8.4, 1.0 Hz, 1H), 4.55 (m, 2H), 4.40 (m, 2H), 4.20 (m, 1H), 4.10 (m, 1H), 3.79 (m, 1H), 3.53-3.31 (m, 3H), 2.50-2.19 (m, 3H), 2.09 (d, J=4.7 Hz, 1H), 1.83 -1.61 (m, 3H), 1.58-1.20 (m, 10H), 1.10 (s, 3H), 0.9 5-0.78 (m, 9H).

[0691]

# 実施例9(1)~実施例9(4)

実施例2(2)で製造した化合物または相当するカルボン酸誘導体を用いて、 実施例7と同様の操作に付すことにより、下記の本発明化合物を得た。

[0692]

#### <u> 実施例9 (1)</u>

 $(13E, 15\alpha) - 15 - ヒドロキシ-1, 6 - (1, 4 - インターフェニレン) - 9 - オキソー2, 3, 4, 5 - テトラノルー8 - アザプロストー<math>13 -$ エン酸・2 - (2 -エチルー2 -メチルブタノイルオキシ)エチルエステル

【化277】

[0693]

TLC: Rf 0.28 (酢酸エチル);

NMR (CDCl<sub>3</sub>):  $\delta$  7.92 (d, J=8.1 Hz, 2H), 7.25 (d, J=8.1 Hz, 2H), 5.59 (d

d, J=15.6, 6.3 Hz, 1H), 5.39 (dd, J=15.6, 8.7 Hz, 1H), 4.55 (m, 2H), 4.4 1 (m, 2H), 4.12 (m, 1H), 3.80 (m, 2H), 3.11 (m, 1H), 3.00-2.80 (m, 2H), 2.44-2.25 (m, 2H), 2.16 (m, 1H), 1.79-1.23 (m, 14H), 1.10 (s, 3H), 0.95-0.78 (m, 9H).

[0694]

#### 実施例9(2)

 $(13E, 15\alpha)-15-ヒドロキシー1, 5-(2, 5-インターチエニレン)-9-オキソー2, 3, 4-トリノルー8-アザプロストー<math>13-$ エン酸・2-(2-エチルー2-メチルブタノイルオキシ)エチルエステル

【化278】

[0695]

TLC: Rf 0.26 (酢酸エチル);

NMR (CDCl<sub>3</sub>): 8 7.62 (d, J=3.3 Hz, 1H), 6.81 (d, J=3.3 Hz, 1H), 5.68 (d d, J=15.6, 6.3 Hz, 1H), 5.48 (dd, J=15.6, 8.7 Hz, 1H), 4.47 (m, 2H), 4.3 8 (m, 2H), 4.18-4.00 (m, 2H), 3.60 (m, 1H), 2.99 (m, 1H), 2.83 (t, J=7.8 Hz, 2H), 2.50-2.16 (m, 3H), 1.97-1.23 (m, 16H), 1.10 (s, 3H), 0.98-0.80 (m, 9H).

[0696]

#### 実施例9(3)

【化279】

[0697]

TLC: Rf 0.26 (酢酸エチル);

NMR (CDCl<sub>3</sub>):  $\delta$  5.73 (dd, J=15.3, 5.7 Hz, 1H), 5.52 (dd, J=15.3, 9.0 Hz, 1H), 4.28 (s, 4H), 4.15 (m, 2H), 3.66 (m, 1H), 3.09 (m, 1H), 2.77-2.50 (m, 4H), 2.49-2.20 (m, 5H), 1.96-1.82 (m, 2H), 1.80-1.22 (m, 14H), 1.10 (s, 3H), 0.94-0.80 (m, 9H).

[0698]

#### 実施例9(4),

(15α) -15-ヒドロキシ-5-(4-(2-(2-エチル-2-メチルブタノイルオキシ) エトキシカルボニル) チアゾールー2ーイル) -9-オキソー1, 2, 3, 4-テトラノル-5-チア-8-アザプロスタン【化280】

. [0699]

TLC: Rf 0.45 (酢酸エチル);

NMR (CDC1<sub>3</sub>): 8 0.85 (m, 9H), 1.10 (s, 3H), 1.51 (m, 16H), 1.98 (m, 1H), 2.13 (m, 1H), 2.39 (m, 3H), 3.59 (m, 6H), 4.39 (m, 2H), 4.52 (m, 2H), 7.97 (s, 1H).

[0700]

#### 実施例10

14-オキサー14-(3, 5-ジクロロフェニル)-5-(4-ヒドロキシメチルチアゾールー2-イル)-9-オキソー1, 2, 3, 4, 15, 16, 17, 18, 19, 20-デカノル-5-チアー8-アザプロスタン

【化281】

[0701]

実施例 5 (32)で製造した化合物 (125 mg)のテトラヒドロフラン (3 mL)溶液に水素化ホウ素ナトリウム 40 mgを加え室温で1日間撹拌した。 反応混合物に水を注いだ後、酢酸エチルで抽出した。有機層を水および飽和食塩水で洗浄し、無水硫酸マグネシウムで乾燥後、濃縮した。得られた残渣をシリカゲルカラムクロマトグラフィー (n-ヘキサン:酢酸エチル=1:4)で精製し、下記物性値を有する本発明化合物 (68.9 mg) 得た。

[0702]

TLC: Rf 0.34 (酢酸エチル);

NMR (CDCl<sub>3</sub>):  $\delta$  1.93 (m, 1H), 2.22 (m, 1H), 2.38 (m, 1H), 2.53 (m, 2H), 3.34 (m, 1H), 3.51 (m, 2H), 3.93 (m, 2H), 4.11 (m, 2H), 4.68 (br. s., 2 H), 6.77 (d, J=1.70 Hz, 2H), 6.99 (t, J=1.70 Hz, 1H), 7.05 (s, 1H).

[0703]

#### 製剤例1

以下の各成分を常法により混合した後、打錠して、1錠中に0.5mgの活性成分を含有する錠剤100錠を得た。

・2-(2-(2-(4-n-ブチルフェニル)-5-オキソピロリジン-1-イル) エチルチオ) チアゾールー4ーカルボン酸・ $\alpha$ -シクロデキストリン・・・・250mg(含有量50mg)

# 特2002-216567

|       | ・カルボキシメチルセルロース                         | カルシウム       | 200mg         |
|-------|----------------------------------------|-------------|---------------|
|       | ・ステアリン酸マグネシウム                          |             | 100mg         |
|       |                                        |             | 9.2g          |
|       | ・微結晶セルロース                              |             |               |
|       | [0704]                                 | ·           |               |
| 製剤例 2 |                                        |             |               |
|       | 以下の各成分を常法により混合した後、溶液を常法により滅菌し、1 m 1 ずっ |             |               |
|       |                                        |             |               |
|       | バイアルに充填し、常法により凍結乾燥し、1バイアル中0.2mgの活性成分を  |             |               |
|       | 含有するバイアル100本を得                         | た。          |               |
|       | $\cdot 2 - (2 - (2 - (4 - n -$         | ブチルフェニル) -5 | ーオキソピロリジンー1-  |
|       | イル) エチルチオ) チアソールー4ーカルボン酸・αーシクロデキストリン   |             |               |
|       | ,                                      | 1           | 00mg (含有量20mg |
|       |                                        |             | <i>:</i>      |
|       | )                                      |             | 5 d           |
|       | ・マンニット                                 |             | 5g            |
|       | ・蒸留水                                   |             | · · · 100ml   |
|       | *****                                  |             | •             |

【書類名】

要約書

【要約】

【構成】 一般式(I)で示される8-アザプロスタグランジン、それらの非毒性塩、またはそれらのシクロデキストリン包接化合物(式中の記号は明細書に記載の通り。)。

【化1】

【効果】 式(I)で示される化合物は、PGE受容体のうちサブタイプEP2に対する結合が強いため、免疫疾患、喘息、神経細胞死、月経困難症、早産、流産、禿頭症、緑内障などの網膜神経障害、勃起不全、関節炎、肺傷害、肺線維症、肺気腫、気管支炎、慢性閉塞性呼吸器疾患、肝傷害、急性肝炎、ショック、腎炎、腎不全、循環器系疾患、全身性炎症反応症候群、敗血症、血球貪食症候群、マクロファージ活性化症候群、スチル(Still)病、川崎病、熱傷、全身性肉芽腫、潰瘍性大腸炎、クローン病、透析時の高サイトカイン血症、多臓器不全、骨疾患等の予防および/または治療に有用である。

【選択図】なし

# 認定・付加情報

特許出願の番号 特願2002-216567

受付番号 50201096731

書類名特許願

担当官 第五担当上席 0094

作成日 平成14年 7月31日

<認定情報・付加情報>

【特許出願人】

【識別番号】 000185983

【住所又は居所】 大阪府大阪市中央区道修町2丁目1番5号

【氏名又は名称】 小野薬品工業株式会社

【代理人】 申請人

[識別番号] 100081086

【住所又は居所】 東京都中央区日本橋人形町2丁目2番6号 堀口

第2ビル7階 大家特許事務所

【氏名又は名称】 大家 邦久

【代理人】

[識別番号] 100117732

【住所又は居所】 東京都中央区日本橋人形町2丁目2番6号 堀口

第二ビル7階 大家特許事務所

【氏名又は名称】 小澤 信彦

【代理人】

【識別番号】 100121050

【住所又は居所】 東京都中央区日本橋人形町2丁目2番6号 堀口

第2ビル7階 大家特許事務所

【氏名又は名称】 林 篤史

#### 出願人履歴情報

識別番号

[000185983]

1. 変更年月日

1990年 9月 2日

[変更理由]

新規登録

住 所

大阪府大阪市中央区道修町2丁目1番5号

氏 名

小野薬品工業株式会社

# This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

# **BEST AVAILABLE IMAGES**

Defective images within this document are accurate representations of the original documents submitted by the applicant.

| Defects in the images include but are not limited to the items checked: |  |  |
|-------------------------------------------------------------------------|--|--|
| ☐ BLACK BORDERS                                                         |  |  |
| ☐ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES                                 |  |  |
| ☐ FADED TEXT OR DRAWING                                                 |  |  |
| ☐ BLURRED OR ILLEGIBLE TEXT OR DRAWING                                  |  |  |
| ☐ SKEWED/SLANTED IMAGES                                                 |  |  |
| ☐ COLOR OR BLACK AND WHITE PHOTOGRAPHS                                  |  |  |
| ☐ GRAY SCALE DOCUMENTS                                                  |  |  |
| ☐ LINES OR MARKS ON ORIGINAL DOCUMENT                                   |  |  |
| ☐ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY                 |  |  |

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.