O

PATENT ABSTRACTS OF JAPAN

(11) Publication number:

08-292598

(43) Date of publication of application: 05.11.1996

(51)Int.CI.

GO3G 9/08 G03G 9/087 G03G 15/08

(21)Application number: 07-120532

(71)Applicant: KAO CORP

(22)Date of filing:

20.04.1995

(72)Inventor: SATA SHINICHI

SHIMIZU ATSUSHI HIDAKA YASUHIRO MARUTA MASAYUKI

(54) FLUIDIZING AGENT FOR ELECTROPHOTOGRAPHIC TONER, ELECTRO-PHOTOGRAPHIC TONER AND DEVELOPING DEVICE

(57)Abstract:

PURPOSE: To obtain a developer excellent in developing performance, transferability and its stability to the lapse of time and to stably form a high grade copied image having a proper image density and free from background fog over a long period of time without deteriorating the constituent parts of a developing machine by using the developer.

CONSTITUTION: This fluidizing agent is made of inorg, fine particles having 30-100nm average particle diameter of primary particles and made hydrophobic by treatment with dimethylsilicone oil so that the amt. of carbon in the particles derived from the oil is regulated to 3.1-6.0wt.%. This fluidizing agent is added to the surface of an electrophotographic toner having 20ì m average particle diameter and consisting essentially of a bonding resin and a colorant.

LEGAL STATUS

[Date of request for examination]

03.08.1998

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or

application converted registration]

[Date of final disposal for application]

[Patent number]

3120016

[Date of registration]

13.10.2000

[Number of appeal against examiner's decision

of rejection]

[Date of requesting appeal against examiner's

decision of rejection]

[Date of extinction of right]

Copyright (C); 1998,2000 Japan Patent Office

(19)日本国特許庁(JP)

(12) 特 許 公 報 (B 2)

(11)特許番号

特許第3120016号

(P3120016)

(45)発行日 平成12年12月25日(2000.12.25)

(24)登録日 平成12年10月13日(2000.10.13)

(51) Int.Cl.'		識別記号	FI		
G 0 3 G	9/08	374	G 0 3 G	9/08	3 7 4
		371			3 7 1
	9/087				3 3 1
	15/08	5 0 7		15/08	507L

請求項の数6(全 13 頁)

(21)出願番号	特願平7-120532	(73)特許権者	000000918		
			花王株式会社		
(22)出願日	平成7年4月20日(1995.4.20)		東京都中央区日本橋茅場町1丁目14番10 号		
(65)公開番号	特開平8-292598	(72)発明者	佐多 晋一		
(43)公開日	平成8年11月5日(1996,11.5)		和歌山市湊1334番地 花王株式会社研究		
審查請求日	平成10年8月3日(1998.8.3)		所内		
		(72)発明者	清水 淳		
			和歌山市湊1334番地 花王株式会社研究		
			所内		
		(72)発明者	日高 安啓		
			和歌山市湊1334番地 花王株式会社研究		
			所内		
		(74)代理人	100095832		
			弁理士 細田 芳徳		
		審査官	菅野 芳男		
			最終頁に続く		

(54) 【発明の名称】 電子写真トナー用流動化剤、電子写真用トナー及び現像装置

1

(57)【特許請求の範囲】

【請求項1】 一次粒子の平均粒径が30~100nmの無機微粒子よりなる電子写真トナー用流動化剤において、粒子がジメチルシリコーンオイルにより疎水化処理され、且つジメチルシリコーンオイルに由来する該粒子中の炭素量が3.1~6.0重量%であり、該ジメチルシリコーンオイルが、20量体以下のオリゴマー成分を15ppm以下だけ含有するものであることを特徴とする電子写真トナー用流動化剤。

【請求項2】 ジメチルシリコーンオイルの25℃にお 10 【化1】 ける粘度が50~500cStであることを特徴とする

請求項1記載の電子写真トナー用流動化剤。

【請求項3】 少なくとも結着樹脂と着色剤とからなる 平均粒径20μm以下の電子写真用トナーにおいて、請 求項1又は2記載の電子写真トナー用流動化剤が該トナ ー表面に外添されていることを特徴とする電子写真用ト ナー。

【請求項4】 外添後のトナー表面の被覆率が50%以上である請求項3記載の電子写真用トナー。

【請求項5】 結着樹脂として、下記の一般式(I) 【化1】

2

$$H \longrightarrow CH_{3}$$

$$CH_{3}$$

$$CH_{3}$$

$$CH_{4}$$

$$CH_{3}$$

(式中、R¹ は炭素数 2~4のアルキレン基を示し、x、yは正の整数であり、各々の平均値の和は 2~16である。)で示されるジオール成分と、下記の一般式(II) または、(III)

$$R^2$$
-CH-COOH
$$CH_2$$
-COOH
$$R^2$$
-CH-COOH

(III)

(式中、R², R³は、同一もしくは相異なって、炭素数4~20のアルキル基もしくはアルケニル基を示す。)で示される2価カルボン酸もしくはその無水物を1~50モル%、及び、トリメリット酸もしくはその無水物を10~30モル%含有する酸成分とを縮重合せしめて得られるポリエステル樹脂を用いることを特徴とする請求項3又は4記載の電子写真用トナー。

【請求項6】 静電荷像担持体上の静電荷像をトナー現像槽より供給されたトナーにより現像してトナー像を形成する現像装置において、トナー現像槽中に請求項3~5いずれか記載の電子写真用トナーが内包されていることを特徴とする現像装置。

【発明の詳細な説明】

R3-CH-COOH

[0001]

【産業上の利用分野】本発明は、電子写真、静電記録、 静電印刷等に於ける静電荷像を現像する為の現像剤に使 用される電子写真用トナー、それに用いられる流動化 剤、及び該トナーを使用する現像装置に関する。更に詳 しくは直接または間接電子写真現像方式を用いた複写 機、レーザープリンター及び、普通紙ファックス等に使 用される電子写真トナー用流動化剤、電子写真用トナ ー、及び現像装置に関する。

[0002]

【従来の技術】電子写真、静電記録、静電印刷等に於いて使用される現像剤は、その現像工程において、例えば、静電荷像が形成されている感光体等の像担持体に一旦付着され、次に転写工程において感光体から転写紙に転写された後、定着工程において紙面に定着される。その際、潜像保持面上に形成される静電荷像を現像する為の現像剤として、キャリアとトナーから成る二成分系現像剤及び、キャリアを必要としない一成分系現像剤(磁性トナー、非磁性トナー)が知られている。

【0003】該現像剤に含有されるトナーとしては、正 帯電トナーと負帯電トナーとが有り、従来より正帯電性 を付与するトナーへの添加剤として、ニグロシン系染 10 料、4級アンモニウム塩等の帯電制御剤や、キャリアに 所定の帯電性を付与するコーティング剤等が知られてい る。一方、負帯電性を付与するものとしては、含金属ア ゾ染料等の帯電制御剤や無機粉末、有機粉末及び、キャ リアのコーティング剤等が知られている。

【0004】そして、トナーの流動特性、帯電特性等を 改善する目的でトナー粒子と各種金属酸化物等の無機粉 末を混合して使用する方法が提案されており、また必要 に応じて該無機粉末表面の疎水性、帯電特性等を改質す る目的で特定のシランカップリング剤、チタネートカッ 20 プリング剤、シリコーンオイル、有機酸等で処理する方 法、特定の樹脂を被覆する方法なども提案されている。 前記無機粉末としては、例えば、二酸化珪素 (シリ カ)、二酸化チタン (チタニア)、酸化アルミニウム、 酸化亜鉛、酸化マグネシウム、酸化セリウム、酸化鉄、 酸化銅、酸化錫等が知られている。

【0005】またトナー流動化剤については、疎水化処理を施したシリカ微粒子を用いる事が特開昭48-5782号、特開昭48-47345号、特開昭55-120041号、特開昭59-34539号等の各公報により知られている。具体的には、例えば、シリカ微粒子とジメチルジクロロシラン、ヘキサメチルジシラザン、シリコーンオイル等の有機珪素化合物とを反応させシリカ微粒子表面のシラノール基を有機基で置換し疎水化したシリカ微粒子が用いられている。

【0006】これらのうち十分な疎水性を示し、且つ、トナーに含有された時に該トナーが優れた転写性を示す 疎水化処理剤としては、シリコーンオイルが好ましいが、シリコーンオイルが高分子物質であるが故に、疎水 化処理時にシリカ微粒子は凝集し易く、中にはトナー中 に分散後も数10μmの凝集体となって残り、画像部に 現像され白斑となって画質を悪化させるという欠点を有していた。

【0007】また、シリコーンオイルの添加量については、特開昭61-277964号公報等において検討されているが、これにより市販されているPPC用紙等の通常の転写紙ではカブリ等が改善されたものの、ハガキ等の厚紙 及びOHPシートを転写紙として用いた場合の「文字の中抜け」の問題点が解決されず、且つ、経時安定性に関する特性も飛躍的向上は成し得られていなかった。また、シリコーンオイルの添加量が規定されてい

るのみであり、シリコーンオイルの粘度やシリコーンオ イルの重合度についての検討は何らなされておらず、こ れらについての記載は存在しなかった。

[0008]

【発明が解決しようとする課題】本発明の目的は、前記 の問題点を解決し、現像性、転写性及びその経時安定性 に優れたトナー及びそれに用いられる流動化剤を提供 し、またそのトナー等を使用することにより、現像機各 部位を劣化させることなく、適正な画像濃度でバックグ ラウンドの無い高品位な複写画像を安定して形成する現 10 像装置を提供することにある。

[0009]

【課題を解決するための手段】本発明者らはかかる課題 を解決すべく鋭意検討した結果、特定粒径の無機微粒子 をシリコーンオイルで表面処理されたものを、電子写真 トナー用流動化剤として電子写真用トナーに用いると、 現像性、転写性及びその経時安定性に優れた現像剤が提 供でき、またその現像剤を使用することにより、現像機 各部位を劣化させることなく、適正な画像濃度でバック グラウンドの無い髙品位な複写画像を安定に提供できる 20 ことを見出した。また、シリコーンオイルの諸特性、添 加量を検討した結果、従来考えられていた疎水化率とは

無関係であり、電子写真トナー用流動化剤中に含まれる 炭素量に「文字の中抜け」の現象と相関があることを見 出すと共に、シリコーンオイルの粘度についても「文字 の中抜け」等の現象と大きな関わりを見出した。また、 シリコーンオイル使用時の懸念(疎水化処理時におい

て、シリカ微粒子は凝集し易く、中にはトナー中に分散 後も数十μmの凝集体となって残り、画像部に現像され 白斑となって画質を悪化させるという欠点)を無機微粒 子の粒径を一般に使用される範囲(数nm~20nm) より大きくし、電子写真トナー用流動化剤として使用可 能な範囲である100mmの範囲にする事で凝集体の量 を少なくするとともに、無機微粒子の単位表面積に対す

【0010】更に電子写真用トナーとしての上記に挙げ た問題点を解決すべく、検討した結果、無機微粒子の添 加量は、トナーを50%以上被覆している事で達成され た。また更に、該トナーの結着樹脂として、下記の一般 式 (I)

るシリコーンオイルの添加量を多くできる事を見出し、

[0011]【化3】

本発明に到達した。

$$H \longrightarrow 0 \longrightarrow CH^{3}$$

$$CH^{3}$$

$$CH^{3}$$

$$CH^{3}$$

【0012】 (式中、R¹ は炭素数2~4のアルキレン 基を示し、x、yは正の整数であり、各々の平均値の和 は2~16である。)で示されるジオール成分と、下記 30 且つジメチルシリコーンオイルに由来する該粒子中の炭 の一般式 (II) または、(III)

[0013]

【化4】

【0014】(式中、R²、R³は、同一もしくは相異 なって、炭素数4~20のアルキル基もしくはアルケニ ル基を示す。)で示される2価カルボン酸もしくはその 無水物を1~50モル%、及び、トリメリット酸もしく はその無水物を10~30モル%含有する酸成分とを縮 重合せしめて得られるポリエステル樹脂を用いる事によ って、他の結着樹脂では得られない靭性の高い樹脂とな り、長期にわたり無機微粒子がトナー中に埋め込まれ難 く、懸案の経時安定性の課題も容易に達成された。

【0015】即ち、本発明の要旨は、

(1) 一次粒子の平均粒径が30~100nmの無機 50 微粒子の粒子径が小さすぎると、使用中に無機微粒子が

- 微粒子よりなる電子写真トナー用流動化剤において、粒 子がジメチルシリコーンオイルにより疎水化処理され、 素量が3.1~6.0重量%であり、該ジメチルシリコ ーンオイルが、20量体以下のオリゴマー成分を15p pm以下だけ含有するものであることを特徴とする電子 写真トナー用流動化剤、

- (2) 少なくとも結着樹脂と着色剤とからなる平均粒 径20μm以下の電子写真用トナーにおいて、上記
- (1)記載の電子写真トナー用流動化剤が該トナー表面 に外添されていることを特徴とする電子写真用トナー、 並びに
- (3) 静電荷像担持体上の静電荷像をトナー現像槽よ り供給されたトナーにより現像してトナー像を形成する 現像装置において、トナー現像槽中に上記(2)記載の 電子写真用トナーが内包されていることを特徴とする現 像装置、に関する。

【0016】無機徼粒子としては、例えば、一次粒子の 平均粒子径が30~100mmである二酸化珪素(シリ カ)、二酸化チタン(チタニア)、酸化アルミニウム、 酸化亜鉛、酸化マグネシウム、酸化セリウム、酸化鉄、 酸化銅、酸化錫等が挙げられる。本発明において、無機

トナー中に埋没してしまい、その効果が持続しない。ま た、逆に大きすぎると、無機微粒子が感光体表面を傷つ

日本アエロジル社製:MOX80

O X 5 0

(平均粒子径、約40nm)

(平均粒子径、約30nm)

アエロジル50(平均粒子径、約35 nm)

られる物としては、

TT600 (平均粒子径、約40nm)

出光興産社製: (平均粒子径、約40 n m) IT-PB

> (平均粒子径、約60nm) IT-PC

富士チタン工業社製:TAF110A(平均粒子径、約40~50nm)

TAF510 (平均粒子径、約40~50nm)

チタン工業製 STT-30 (平均粒子径、約50nm)

> STT-60(平均粒子径、約80nm)

> STT-65 (平均粒子径、約50mm)

MT-500B (平均粒子径、約35nm) テイカ社製

MT-600B (平均粒子径、約50nm)

等が都合よく使用できる。

【0017】なお、本発明に使用される無機微粒子の粒 子径は、動的光散乱を利用する粒径分布測定装置により 測定可能であるが、粒子の二次凝集を解離することは困 難であるため、走査型電子顕微鏡もしくは透過型電子顕 20 1~6.0重量%となる量である。無機微粒子に対する 微鏡により得られる写真より粒径を求めることが最善で ある。また、別の指標としては、無機微粒子が真比重 2. 2 g / c m³ のシリカの場合、BET比表面積 2 0 ~80m²/gの物が上記粒子径に相当する。

【0018】ここでのBET比表面積は、市販されてい る窒素吸着によるBET比表面積測定装置を用いて測定 することができ、例えば、 (株) 島津製作所製流動式比 表面積自動測定装置(フローソープ2300型)などを 用いることができる。

メチルシリコーンオイルにより疎水化処理されているこ とを特徴とするものであるが、かかるジメチルシリコー ンオイルとしては、25℃における粘度(動粘度)が5 0~10000cStのものが好ましく、さらに好まし くは50~500cStである。この範囲より粘度が小 さいと、シリコーンオイルの揮発性が高くなり、且つ、 シリコーンオイルの引火性も懸命される傾向があり、こ の範囲より粘度が大きいと、無機微粒子表面に均等にシ リコーンオイルが付かなくなる傾向がある。このような ジメチルシリコーンオイルは、例えば市販のものが使用 40 でき、信越化学工業(株)製のKF-96-50~30 00、東レダウコーニング・シリコーン(株) 製のSH -200-50~10000、東芝シリコーン (株) 製 のTSF-451-50~10000等が使用できる。 【0020】また、ジメチルシリコーンオイルが、20 量体以下のオリゴマー成分を15ppm以下だけ含有す るものであることが、長期印刷において転写状態や画像 品位を良好に維持する点から好ましい。なお、オリゴマ 一成分の量をこの範囲に調整するには、市販されている

し、ガスクロマトグラフィー等によりその成分量を確認 すればよい。

けやすい等の弊害が大きくなる。本発明に好ましく用い

【0021】また、シリコーンオイルの処理量は、ジメ チルシリコーンオイルに由来する粒子中の炭素量が3. シリコーンオイル量は、少なすぎると「文字の中抜け」 に対する効果がなくなる。そこで、流動化剤中に含まれ る炭素量が3.1~6.0重量%、さらに好ましくは 3. 1~4. 0重量%にすることで、ハガキ等の厚い転 写紙やOHPフィルムを用いてもバックグランドのな く、「文字の中抜け」等の現象のないか、または、抑制 されている、髙品位な画像が得られる。

【0022】前記の無機微粒子は、電子写真トナーに用 いる際には、単独で用いても2種以上混合して用いても 【0019】本発明の電子写真トナー用流動化剤は、ジ 30 良い。あるいは、本発明の流動化剤とともに、1種類以 上の公知である無機微粒子を合わせて使用しても良い。 【0023】本発明の電子写真用トナーは、少なくとも

結着樹脂と着色剤とからなる平均粒径20μm以下(通 常3~20μm)の電子写真用トナーにおいて、上記の 流動化剤が該トナー表面に外添されている事を特徴とす るものである。

【0024】本発明に使用されるトナーの組成として は、少なくとも結着樹脂と着色剤とからなるものであ り、

【0025】本発明に使用されるトナー用結着樹脂とし ては、従来より公知のが使用可能であるが、スチレン、 クロルスチレン、 α -メチルスチレン等のスチレン類: エチレン、プロピレン、ブチレン、イソブチレン等のモ ノオレフィン類 : 酢酸ビニル、プロピオン酸ビニル、安 息香酸ビニル、酪酸ビニル等のビニルエステル類:アク リル酸メチル、アクリル酸エチル、アクリル酸ブチル、 アクリル酸オクチル、アクリル酸ドデシル、アクリル酸 フェニル、メタクリル酸メチル、メタクリル酸エチル、 メタクリル酸ブチル、メタクリル酸ドデシル等のα-メ オリゴマー成分量の異なるシリコーンオイルをブレンド 50 チレン脂肪族モノカルボン酸のエステル類:ビニルメチ

ルエーテル、ビニルエチルエーテル、ビニルブチルエー テル等のビニルエーテル類:ビニルメチルケトン、ビニ ルヘキシルケトン、ビニルイソプロペニルケトン等のビ ニルケトン等の単独重合体あるいは共重合体が挙げられ る。

【0026】また、更に天然及び合成ワックス類、ポリエステル、ポリアミド、エポキシ樹脂、ポリカーボネー

ト、ポリウレタン、シリコーン系樹脂、フッ素系樹脂、 石油樹脂等を用いる事ができるが、好ましくはポリエス テル樹脂が用いられる。

10

【0027】ポリエステル樹脂としては、下記の一般式(I)

[0028]

【化5】

$$H \longrightarrow CH^{*}$$

$$CH^{*}$$

$$CH^{*}$$

$$CH^{*}$$

$$CH^{*}$$

$$CH^{*}$$

【0029】 (式中、 R^1 は炭素数 $2\sim 4$ のアルキレン 基を示し、x、y は正の整数であり、各々の平均値の和は $2\sim 16$ である。)で示されるジオール成分と、下記の一般式 (II) または、(III)

[0030]

【化6】

【0031】(式中、 R^2 , R^3 は、同一もしくは相異なって、炭素数4~20のアルキル基もしくはアルケニル基を示す。)で示される2価カルボン酸もしくはその無水物を1~50モル%、及び、トリメリット酸もしくはその無水物を10~30モル%含有する酸成分とを縮重合せしめて得られるポリエステル樹脂がより好ましい。

【0032】上記の一般式(I)のジオール成分としては、例えばポリオキシプロピレン(2.2)-2,2ービス(4ーヒドロキシフェニル)プロパン、ポリオキシエチレン(2)-2,2ービス(4ーヒドロキシフェニル)プロパン、ポリオキシプロピレン(6)-2,2ービス(4ーヒドロキシフェニル)プロパン、ポリオキシプロピレン(16)-2,2ービス(4ーヒドロキシフェニル)プロパン等のビスフェノールA系のモノマーが挙げられる。

【0033】その他のジオール成分としては、例えばエチレングリコール、プロピレングリコール、グリセリン、ペンタエリスリトール、トリメチロールプロパン、水素添加ビスフェノールA、ソルビトール、またはそれらのエーテル化ポリヒドロキシル化合物、即ちポリオキシエチレン(10)ソルビトール、ポリオキシエチレン(3)グリセリン、ポリオキシエチレン(4)ペンタエリスリトール等が挙げられる。

【0034】上記の一般式 (II) または一般式 (III) に タロシアニン・グリーン)等の緑色顔料等が使用可能でおいて、 R^2 , R^3 は、同一もしくは相異なって、炭素 50 ある。これらの染顔料は、単独で用いても 2 種以上混合

数4~20のアルキル基もしくはアルケニル基を示すが、R², R³ としては、例えばnーブチル基、nーオクチル基、イソオクチル基、イソドデシル基、nードデセニル基、等が挙げられる。一般式(II)または一般式(III)で示される2価のカルボン酸もしくはその無水物を具体的に示すと、例えばnードデセニルコハク酸、イソドデシルコハク酸、イソオクチルコハク酸、nーオクチルコハク酸、nーオクチルコハク酸、nープチルコハク酸等のコハク酸誘導体もしくはその無水物が挙げられる。

【0035】その他の酸成分としては、例えばフタル酸、イソフタル酸、テレフタル酸、フマル酸、マレイン酸、トリメリット酸、ピロメリット酸等及び、これらの酸無水物、及びそれらの低級アルキルエステル等の通常のポリエステル樹脂の製造に使用される化合物が挙げられる。

【0036】本発明に使用されるポリエステル樹脂は、 通常、ポリオール成分と多価カルボン酸成分とを不活性 30 ガス雰囲気中にて180℃~250℃の温度で縮重合す る事により製造する事ができる。この際反応を促進せし める為、通常使用されているエステル化触媒、例えば酸 化亜鉛、酸化第一錫、ジブチル錫オキシド、ジブチル錫 ジラウレート等を使用する事ができる。

【0037】また、トナーに使用される着色剤としては、カーボンブラック: C. I. ピグメント・イエロー1、同3、同74、同97、同98等のアセト酢酸アリールアミド系モノアゾ黄色顔料: C. 1. ピグメント・イエロー12、同13、同14、同17等のアセト酢酸7リールアミド系ジスアゾ黄色顔料: C. I. ソルベント・イエロー19、同77、同79、C. I. ディスパース・イエロー164等の黄色染料: C. I. ピグメント・レッド48、同49:1、同53:1、同57、同57:1、同81、同122、同5等の赤色もしくは紅色顔料: C. I. ソルベント・レッド49、同52、同58、同8等の赤色系染料: C. I. ピグメント・ブルー15:3等の銅フタロシアニン及びその誘導体の青色系染顔料: C. I. ピグメント・グリーン、同36(フタロシアニン・グリーン)等の緑色顔料等が使用可能である。これらの染顔料は、単独で用いても2種以上混合

して用いても良い。

【0038】本発明の電子写真用トナーは、帯電制御剤 を含有していてもよく、使用できる帯電制御剤として は、負帯電トナー用として、クロム・アソ錯体染料、鉄 アゾ錯体染料、コバルト・アゾ錯体染料、サリチル酸も しくはその誘導体のクロム・亜鉛・アルミニウム・ほう 素錯体もしくは塩化合物、ナフトール酸もしくはその誘 導体のクロム・亜鉛・アルミニウム・ほう素錯体もしく は塩化合物、ベンジル酸もしくはその誘導体のクロム・ 亜鉛・アルミニウム・ほう素錯体もしくは塩化合物、長 10 鎖アルキル・カルボン酸塩、長鎖アルキル・スルフォン 酸塩などの界面活性剤類を、正帯電トナー用として、ニ グロシン染料及びその誘導体、トリフェニルメタン誘導 体、四級アンモニウム塩、四級ホスフォニウム塩、四級 ピリジニウム塩、グアニジン塩、アミジン塩等の誘導体 等が例示される。

【0039】また、トナー中には、フェライト等の磁性 体、導電性調整剤、酸化錫、シリカ、アルミナ、ジルコ ニア、チタニア、酸化セリウム、酸化亜鉛等の金属酸化 物、体質顔料、繊維状物質等の補強充填剤、酸化防止 剤、老化防止剤及び離型剤等が必要に応じて加えられて も良い。

【0040】本発明のトナーの製造方法としては、混練 粉砕法、スプレイドライ法、重合法等の従来より公知の 製造法が使用可能である。例えば、一般的な例として は、まず樹脂、着色剤、ワックス、帯電制御剤等を公知 の混合機で均一に分散混合し、次いで混合物を密閉式ニ ーダー或いは1軸または2軸の押出機等で溶融混練し、 冷却後、粉砕し、分級すればよい。混練機は連続生産で きる等の優位性から近年は1軸または2軸の押出機が主 30 流であり、例えば、神戸製鋼所社製KTK型2軸押出 機、東芝機械社製TEM型押出機、ケイ・シー・ケイ社 製2軸押出機、池貝鉄工所社製PCM型2軸押出機、ブ ス社製コニーダー等が好適に用いられる。

【0041】このようにして得られるトナーの平均粒径 は、通常平均粒径20μm以下であり、平均粒径3~2 Oμmが好適である。なお、ここでの平均粒径は、体積 平均の粒子径である。

【0042】本発明の電子写真用トナーは、前述の流動 化剤が該トナー表面に外添されているものである。この 40 して示す図である。この電子写真記録装置は、感光体 ような外添処理の方法は、分級したトナーと外添無機微 粒子をスーパーミキサー、ヘンシェルミキサー等の高速 攪拌機等で攪拌混合すれば良く、必要に応じてスタート 現像剤用トナーと補給用トナーの使用する外添無機微粒 子の種類、添加量を違えても良い。また、攪拌する回転 数、混合時間等の混合条件はトナー性能に合わせて適時 決定すれば良い。また、無機微粒子は、予め解砕処理を 施しておくと更に良い。

【0043】このときの電子写真トナー用流動化剤の被

12

5%以上である。この範囲より小さいと「文字の中抜 け」の目立つ画像となる傾向がある。但し、本発明にお いて流動化剤として、例えばシリカをトナーに添加した 場合、シリカは一部凝集状態でトナー表面に付着する 為、実際の被覆率は低くなっている。

【0044】従って、本発明における被覆率 f は、次の 一般式で算出されたものとする。

f (%) = $\sqrt{3/2} \pi \times (D \cdot \rho \tau) / (d \cdot \rho s) \times$ C × 1 0 0

(式中、流動化剤の粒径をd、トナーの粒径をDとし、 ρt、ρsはそれぞれトナー、流動化剤の真比重であ る。またCは流動化剤/トナーの重量比である。)

【0045】また、本発明のトナーを2成分系現像剤に 用いる場合には、磁性キャリアと混合して用いれば良 く、現像剤中のキャリアとトナーの含有比は、キャリア 100重量部に対してトナー1~10重量部が好まし い。磁性キャリアとしては、粒子径20~200μm程 度の鉄粉、フェライト粉、マグネタイト粉、磁性樹脂キ ャリアなど従来から公知のものが使用できる。また、こ 20 れらの表面に公知のシリコーン系樹脂、アクリル系樹 脂、フッ素系樹脂、スチレン系樹脂など、或いはこれら の樹脂の混合物をコーティングしたものも好適に使用で きる。

【0046】また、本発明のトナーはキャリアを使用し ない1成分系の磁性トナー或いは、非磁性トナーとして も用いることができる。

【0047】本発明のトナーは、従来より公知であるコ ロトロン転写装置を備えた電子写真現像装置を用いても その転写性は改善できるが、静電荷像担持体表面に転写 材を介し転写手段を当接させトナー像を転写材に静電転 写する現像装置に用いた場合、その効果はとりわけ有効 なものとなる。

【0048】本発明の現像装置は、静電荷像担持体上の 静電荷像をトナー現像槽より供給されたトナーにより現 像してトナー像を形成する現像装置において、トナー現 像槽中に以上のような電子写真用トナーが内包されてい ることを特徴とするものである。以下、図面を参照して 本発明に係る電子写真記録装置について説明する。図1 は本発明に係る電子写真記録装置の要部構成を一部破断 1、帯電装置2、露光装置3、現像装置4、転写装置5 及び、クリーニング装置6を有している。

【0049】感光体1は、例えばアルミニウムなどの導 電体により形成され、外周面に感光導電材料を塗布して 感光層を形成したものである。感光体1は、図示しない 駆動伝達機構により図示矢印方向に回転される。この感 光体1の周辺に、感光体1の外周面に沿って帯電装置 2、露光装置3、現像装置4、転写装置5及び、クリー ニング装置6がそれぞれ配置されている。

覆率は、通常50%以上が好ましく、より好ましくは8~50~【0050】帯電装置2は、例えば周知のスコロトロン

帯電器などよりなり、感光体1の表面を所定電位(例えば-600V)に均一帯電する。露光装置3はLEDへッドを含んでなり、感光体1の感光面の露光を行って感光体1の感光面に静電潜像を形成するものである。現像装置4は、トナーホッパー41、トナーパック42、供給ローラー43、現像ローラー44、現像ブレード45、支持棒46、板ばね47、支持体48及び、アジテーター49からなる。

【0051】トナー現像槽である、トナーホッパー41は、側面の一部及び、上面を開口した中空の容器であり、内部空間に本発明のトナーを貯留する。このトナーホッパー41の上部開口部41aには、トナーパック42が装着されている。トナーパック42は一面を開口した容器であり、その内部にトナーが充填されるとともに、開口部がシールシートによって封止されている。そしてトナーパック42は、図示の如くトナーホッパー41へと供給するものになっている。

【0052】供給ローラー43は導電性スポンジからなるもので、その一部がトナーホッパー41の内部に位置する状態で、トナーホッパー41の側面の開口部に設置20されている。供給ローラー43は、現像ローラー44に当接している。現像ローラー44は、感光体1と供給ローラー43との間に配置されている。現像ローラー44は、図示しは、感光体1及び供給ローラー43に各々当接している。供給ローラー43及び現像ローラー44は、図示しない回転駆動機構によってそれぞれ図示矢印方向に回転される。供給ローラー43は、トナーホッパー41に貯留されているトナーを担持して現像ローラー44に供給する。現像ローラー44は、供給ローラー43によって供給されるトナーを担持して感光体1の表面に接触させ30名。

【0053】現像ブレード45は、シリコーン樹脂やウレタン樹脂等により形成されている。この現像ブレード45は、現像ローラー44に平行に配置された円柱状の支持棒46に支持されており、現像ローラー44に当接している。支持棒46は、支持体48に固定された板ばね47によって現像ローラー44側に所定の力(50g/cm~150g/cm程度)で押圧されている。この為、現像ブレード45は、所定の力で現像ローラー44に押圧されている。支持体48は、トナーホッパー41の側壁に固定されている。

【0054】アジテーター49は、図示しない回転駆動機構によってそれぞれ図示矢印方向に回転されており、トナーを攪拌するとともに、トナーを供給ローラー43側に搬送する。

【0055】転写装置5は、感光体1に対して平行に配 こで転写紙Pの背面に注入される電荷は正極性であるの 置された転写ローラー51を有してなる。この転写ロー で、負極性に帯電しているトナーは転写紙P側に引きつ けられ、これにより感光体1の表面に形成されたトナーとは逆極性で所定電圧値(例えば+1350V)の転写 像が転写紙Pに転写される。この後、感光体1の感光面 電圧が印加される。そしてこの転写装置5は、感光体1 50 は、転写紙Pが剥離された後、転写されずに残留してい

14

と転写ローラー51との間に挿通された転写紙 Pに対して、感光体1に形成されたトナー像を転写するものである。

【0056】一方クリーニング装置6は、クリーニングブレード61、廃トナー収容部62、廃トナーローラー63及び、逆流防止弁64よりなる。クリーニングブレード61は、感光体1に当接して配置され、感光体1に付着しているトナーを掻き落とす。廃トナー収容部62は、クリーニングブレード61によって掻き落とされたトナーを回収する。廃トナーローラー63は、クリーニングブレード61によって掻き落とされたトナーを廃トナー収容部62側へと搬送する。逆流防止弁64は、廃トナー収容部62内のトナーが感光体1側に逆流することを防止する。

【0057】以上のように構成された電子写真現像装置では、次のようにして画像の記録が行われる。即ち、まず感光体1の表面(感光面)は、帯電装置2によって所定の電位(例えば-600V)に帯電される。続いて、帯電されたのちの感光体1の感光面を記録すべき画像に応じて露光装置3によって露光し、感光面に静電潜像を形成する。そして、その感光体1の感光面に形成された静電潜像の現像を現像装置4で行う。

【0058】現像装置4は、トナーホッパーから主として供給ローラー43により供給されるトナーを現像ローラー44に担持し、搬送して感光体1の表面に接触させる。現像ローラー44に担持されたトナーは搬送される際、現像プレード45によって薄層化されるとともに、所定の極性(ここでは感光体1の帯電電位と同極性であり、負極性)に摩擦帯電される。

30 【0059】現像ローラー44には、図示しない現像バイアス電源から感光体1の帯電電位と同極性且つ低電位 (例えば、-200V) な現像バイアスを印加してあり、静電潜像、現像バイアス及び、トナーの電荷の間の電界の作用により、感光体1に選択的にトナーを付着させる、即ち、感光体1上の未露光部には、感光体1側が高電位であるためにトナーが付着せず、また露光され除電された部分には、感光体1側が低電位であるためにトナーが付着する。このようにして感光体1の表面に静電潜像に対応するトナー像が形成される。そしてこのトナー像は、転写装置5によって転写紙Pに転写される。

【0060】転写装置5は、画像の記録時においては、 転写ローラー51に正極性の転写電圧(例えば、+13 50V)が印加されている。感光体1と転写ローラー5 1との間には転写紙Pが挿通されており、転写ローラー 51からは転写紙Pの背面に電荷の注入が行われる。こ こで転写紙Pの背面に注入される電荷は正極性であるの で、負極性に帯電しているトナーは転写紙P側に引きつ けられ、これにより感光体1の表面に形成されたトナー 像が転写紙Pに転写される。この後、感光体1の感光面 は、転写紙Pが剥離された後、転写されずに残留してい

るトナーがクリーニング装置6で除去される。

[0061]

【実施例】以下に本発明の実施例を記載するが、本発明 は勿論これらの実施例に限定されるものではない。な お、例中、「部」と表示するものは、特にこだわりのな い限り重量部を表す。

【0062】樹脂製造例(ポリエステル樹脂)

ポリオキシプロピレン (2.2) -2, 2-ビス (4-ヒドロキシフェニル) プロパン525g、テレフタル酸 90g、nードデセニル無水コハク酸96g、無水トリ 10 【0063】<u>参考例</u>1~6及び比較例1~5 メリット酸58gをガラス製1リットル4つロフラスコ

上記で得られたポリエステル樹脂

カーボンブラック (CABOT製、MOGULL) クロム・アゾ錯体(保土谷化学工業製、T-77)

低分子量ポリプロピレン・ワックス (三洋化成製、550P)

100部

℃、重量平均分子量は22万であった。

3部

1. 5部

1部

【0064】上記組成を予備混合し、120℃に加熱し た2軸ニーダーで混練した後冷却し冷却物を機械式粉砕 機で2mmのメッシュをパスする程度まで粗粉砕し、次 いで風力式粉砕・分級機にて粉砕分級して、平均粒径を になる様にトナー母体を調製した。

【0065】トナー表面に外添する無機微粒子(流動化 剤)は、表1に挙げる無機微粒子原体を用いてシリコー ンオイル等で処理して得られたものである。本発明の流

動化剤のトナーへの表面処理は、トナー母体100部に 流動化剤を被覆率が50%以上になるように各々1.2 部加えて、ヘンシェルミキサーで混合することにより行 なった。このようにして画像評価に供されるトナーを調 コールター・カウンターの重量中位粒径で10.5μm 20 製した。なお、用いたシリコーンオイルの20量体以下 のオリゴマー成分は、23ppm含まれるものを用い た。

[0066]

【表 1 】

16

に入れ、温度計、ステンレス製攪拌棒、流下式コンデン

サー及び窒素導入管を取り付け、電熱マントル中で23

0℃に昇温せしめ、窒素気流下にて攪拌しつつ反応せし

め、ASTM E28-67に準拠した軟化点追跡を行

い、軟化点120℃になった所で反応を止めた。得られ

た樹脂は淡黄色の固体で環球法による軟化温度は120

g、水酸基価は26KOHmg/g、ガラス転移点65

℃であった。得られた樹脂の酸価は22KOHmg/

		無機像粒子	粒子	処 理 剤	炭素量*	疎水化率**
		原体	粒径(加)		(%)	(%)
参考例	1	SiO:	40	ジナチルシリコーンオイル 100cSt	3. 1	74.0
例	2	S i O2	40	ジメチルシリコーンオイル 100cSt	3. 4	99. 8
	3	T i O ₂	50	ジナチルシリコーンオイル 100cSt	3. 5	77.0
	4	A12 O1	40	ジナチルシリコーンオイル 100cSt	3.7	81. 0
	5	S i O ₂	40	ジナチルシリコーンオイル 500cSt	3. 3	98. 5
	6	SiO2	40	ジナチルシリコーンオイル 1000cSt	3. 4	98. 0
比於	1	SiO2	40	ジメチルシリコーンオイル 100cSt	3.0	99. 0
較例	2	S i O ₂	40	ジメチルシリコーンオイル 100cSt	2.5	90. 4
	· 3	S i O ₂	40	ヘキサメチレンジシラザン	3. 1	88. 4
	4	S i O ₂	12	ジメチルシリコーンオイル 100cSt	3. 2	99. 7
	5	S i O ₂	110	ジナチルシリコーンオイル 100cSt	3, 1	96. 0

- *) 炭素量は、堀場製作所製、堀場金属中炭素分析装置 BMIA-110 を用いて 測定した。
- **) 疎水化率は、密栓式の容器に純水 100ml、及び試料 1 gを入れ、振盪機 にて10分間振盪し、振盪後、数分間静置し、試料粉末層と水層が分離し た後、水層を採取し、500mm の波長で試料粉末を入れていないプランク の純水を基準として透過率を測定し、その透過率の値をもって試料の疎 水化率とする。

【0067】なお、無機微粒子への表面処理は、以下の 様にして行った。

- (1)無機微粒子原体100部を混合槽で攪拌する。
- (2) 処理剤を必要量溶媒にて希釈し、混合槽内の無機 微粒子に噴霧する。
- (3) 攪拌を続けながら槽内を105℃迄昇温し2時間 維持する。
- (4)冷却後取り出す。

【0068】以上のようにして得られた現像剤を用い て、一般に「文字の中抜け」の現像が発生し易いと考え 40 【表2】

られていた、静電荷像担持体表面に転写材を介し転写手 段を当接させトナー像を転写材に静電転写する電子写真 記録装置((株)東芝製、普通紙ファクシミリ、TF-5500)により、トナー定着画像を下記の如く評価し た。結果を表2に示す。なお、「中抜け」とは、図2に 示すように、文字等を構成する線の内部において、本来 トナーが転写されるべき部分にトナーが転写されておら ず、転写材のままの状態になっていることをいう。

[0069]

		初	期評	価	12.000枚後の評価		
		転写状態	画像品位	白ポチ	転写状態	画像品位	白ポチ
参考例	1	0	0	0	0	0	0
例	2	0	0	0	0	0	0
	3	0	0	0	Δ~Ο	0	0
	4	0	0	0	Δ~Ο	0	0
	5	0	0	0	0	0.	0
	6	0	0	0	Δ~0	0	0
比於	1	Δ	0	0	×	0	0
較例	2	0	Δ~0	Δ	0	Δ	×
	3	×	×~∆	Δ	×	×	Δ
į	4	×~∆	0	Δ	×	Δ	×

【0070】(a)転写状態:転写の条件等して非常に 過酷なOHPシートを通紙して「文字の中抜け」状態を 確認した。

○:良好、△:実用可、×:実用不可

(b) 画像品位:感光体カブリ、トナー飛散、ガザツキ 等を目視で評価した。

○:良好、△:実用可、×:実用不可

(c) 画像白ポチ: 画像部のシリカのダマによる白ポチ を目視で評価した。

○:良好、△:実用可、×:実用不可

なお、これらの評価を初期印字時と12,000枚印字

後に評価した。

0

【0071】これらの評価結果から、ジメチルシリコー ンオイルで処理された、一次粒子径の平均粒径が30~ 100 n m の無機微粒子であって、試料中の炭素量が 3. 1~6. 0重量%である流動化剤が極めて有効で、 30 平均粒径20 μ m以下の電子写真用トナーにおいて、そ の無機微粒子を外添させることで経時的に安定して、転 写状態、画像品位がともに優れ、白ポチのない画像を提 供できることができた。

×

20

【0072】参考例7

スチレン/nープチルメタクリレート共重合樹脂

Δ

100部

(重量平均分子量=75,000、数平均分子量=20,000、

ガラス転移点=65℃)

カーボンブラック(CABOT製、MOGULL)

3部

クロム・アゾ錯体(保土谷化学工業製、T-77)

1. 5部

低分子量ポリプロピレン・ワックス(三洋化成製、550P)

3部

【0073】上記組成を予備混合し、120℃に加熱し た2軸ニーダーで混練した後冷却し冷却物を機械式粉砕 機で2mmのメッシュをパスする程度まで粗粉砕し、次 いで風力式粉砕・分級機にて粉砕分級して、平均粒径を コールター・カウンターの重量中位粒径で10.5μm になる様にトナー母体を調製した。

【0074】トナー表面に外添する無機微粒子(流動化 剤)は、表1に挙げる無機微粒子原体を用いてシリコー った。トナー母体100部に対して、被覆率が50%以

動化剤のトナーへの表面処理は、トナー母体100部に 流動化剤を被覆率が50%以上になるように各々1.2 部加えて、ヘンシェルミキサーで混合することにより行 なった。このようにして画像評価に供されるトナーを調 製した。

【0075】比較例6

上記トナーに比較例4の無機微粒子により表面処理を行 ンオイル等で処理して得られたものである。本発明の流 50 上になるように各々 1. 2 部加えて、ヘンシェルミキサ

ーで混合してトナーを調製した。得られたトナーについ て上記と同じ評価を行った。表3に記す。

[0076] 【表3】

		初期評価			12,000枚後の評価		
		転写状態	画像品位	白ポチ	転写状態	画像品位	白ポチ
	1	0	0	0	0	0	. 0
参考例	7	0	0	0	Δ	Δ	0
比較例	6	×	Δ	Δ	×	Δ	×

【0077】結着樹脂としてスチレン/アクリルを用い た場合でも本発明の無機微粒子を用いれば実用上問題は ないが、結着樹脂として、一般式(I)で示されるジオ ール成分と、一般式(II) または、(III) で示される2 び、トリメリット酸もしくはその無水物を10~30モ ル%含有する酸成分とを縮重合せしめて得られるポリエ ステル樹脂を用いる事で、もっと経時安定性に優れた画 像を提供できる事ができた。

【0078】実施例A、B

表4に示す100cStのシリコーンオイルを用いて、

20量体以下のオリゴマー成分量が10.2ppmのも の、5 p p m以下のものの2種類について、トナーを調 製し、参考例1で得られたトナーと共に、参考例1と同 様にしてトナー定着画像を初期印字と48,000枚印 価カルボン酸もしくはその無水物を1~50モル%、及 20 字後について評価した。得られた結果を表5に示す。な お、オリゴマー成分の量の調整は、成分量の異なるシリ コーンオイルを単独で用いるか、又はそれらをブレンド して行った。

22

[0079]

【表4】

		無機後粒子原体	粒子 粒径 (nm)	処理剤	炭素量* (%)	20量体以下 重量割合 (ppm)
参考例	1	S i O ₂	40	ジゲルシリコーンオイル 100cSt 信越化学工業(検製、 KF-96-100	3. 1	23
実施例	A	S i O2	40	ジナチルシリコーンオイル 100cSt ブレンド品**	3. 1	10. 2
ניש	В	S i O2	40	ジチルシリコーンオイル 100cSt 信越化学工業㈱製、 KP-96-100-SS	3. 1	5 以下

- *) 炭素量は、堀場製作所製、堀場金属中炭素分析装置 EMIA-110 を用いて 測定した。
- **) 信越化学工業㈱製、KF-96-100とKP-96-100-SSをプレンドし(ブルバ重量比 50:50) ポスクロマトグラフィーで、オリゴマー量を確認したもの。

[0080]

【表5】

		初期評価			48,000枚後の評価		
		転写状態	画像品位	白ポチ	転写状態	画像品位	白ポチ
4 4 8	学 1	0	0	0	Ο~Δ	Δ	0
9	A B	0	0	0	0	0	0
8	B	0	0	0	0	0	0

【0081】表5の結果が示すように、オリゴマー成分量が15ppm以下の場合では長期印刷における転写状態、画像品位等がいずれも良好であったのに対して、15ppmを超える場合では、長期印刷における転写状態と画像品位がやや劣るものであった。

[0082]

【発明の効果】本発明の流動化剤、電子写真用トナーを 20 用いると、現像性、転写性及びその経時安定性に優れた 現像剤が提供でき、またその現像剤を使用することにより、現像機各部位を劣化させることなく、適正な画像濃度でバックグラウンドの無い高品位な複写画像を長期に わたり安定して得ることができる電子写真現像装置が提供できる。また、シリコーンオイルのオリゴマー成分を 少なくした場合、オリゴマー成分が現像システムの内部 で揮発することなく、特に帯電器を汚染しないことで経時的に安定した画像を提供することができる。

【0083】より具体的には、次の効果が得られる。

- (1) ハガキ等の厚い転写紙やOHPフィルムを用いてもバックグランドの無く、「文字の中抜け」等の現象の無いか、または、抑制されている、高品位な画像を与える電子写真用トナー及び電子写真現像装置を提供することができる。
- (2) 感光体等の静電荷像担持体上のカブリを抑制し、 その経時安定性、耐久性に優れた電子写真用トナー及び

電子写真現像装置を提供することができる。

- (3)「文字の中抜け」等の現象の発生し易い、静電荷像担持体表面に転写材を介し転写手段を当接させトナー像を転写材に静電転写する電子写真記録装置においても長期にわたり「文字の中抜け」等の現象を抑制できる電子写真現像装置を提供することができる。
- 20 (4) シリコーンオイルの揮発成分が画像形成装置内 の帯電チャージャー等を汚染することを限りなく低減さ せ、経時的に安定した画像を形成できる。

【図面の簡単な説明】

【図1】図1は、本発明に係る電子写真記録装置の要部構成を一部破断して示した図である。

【図2】図2は、「文字の中抜け」を説明する図である。

【符号の説明】

- 1 感光体
- 30 2 帯電装置
 - 3 露光装置
 - 4 現像装置
 - 5 転写装置
 - 6 クリーニング装置
 - P 転写紙
 - T トナー

[図2]

25

[図1]

フロントページの続き

(72) 発明者 丸田 将幸

和歌山市湊1334番地 花王株式会社研究 (56)参考文献 特開 平5-333594 (JP, A) 所内 特開 平6-51554 (JP, A) 特開 平2-3073 (JP, A) 特開 平7-36217 (JP, A) 特開 平7-84405 (JP, A) 30 特開 平5-119517 (JP, A) 特開 平6-11886 (JP, A) 特開 平4-337738 (JP, A) 特開 平2-61649 (JP, A) 特開 平4-204664 (JP, A) 特開 平6-202374 (JP, A) 特開 平6-83107 (JP, A)

> (58)調査した分野(Int. Cl. 7, DB名) GO3G 9/08