CSC4200/5200 - COMPUTER NETWORKING

Instructor: Susmit Shannigrahi

ROUTING

sshannigrahi@tntech.edu

GTA: dereddick42@students.tntech.edu

So far...

- We now know how communication works
- How does routing work?

Forwarding vs Routing

- Forwarding:
 - to select an output port based on destination address

and routing table

Local path

SubnetNumber	SubnetMask	NextHop
128.96.34.0	255.255.255.128	Interface 0
128.96.34.128	255.255.255.128	Interface 1
128.96.33.0	255.255.255.0	R2

- Routing:
 - process by which routing table is built
 - End-to-end path

Why bother?

- Quality of path affects performance
 - Longer path = more delay

- Balance path usage, avoid congested paths
- Deal with failures

SubnetNumber	SubnetMask	NextHop	
128.96.34.0	255.255.255.128	Interface 0	
128.96.34.128	255.255.255.128	Interface 1	
128.96.33.0	255.255.255.0	R2	

Router architecture overview

Two key router functions:

router input ports

- •run routing algorithms/protocol (RIP, OSPF, BGP)
- forwarding datagrams from incoming to outgoing link

Control Plane = routing Vs Data Plane = forwarding

router output ports

Graph abstraction

graph: G = (N,E)

 $N = set of routers = \{ u, v, w, x, y, z \}$

 $E = \text{set of links} = \{ (u,v), (u,x), (v,x), (v,w), (x,w), (x,y), (w,y), (w,z), (y,z) \}$

$X \rightarrow Z$

Cost (x,v,w,z) = cost(x,v) + cost(v,w) + cost(w,z) = 10Cost (x,w,z) = cost(x,w) + cost(w,z) = 8Cost(x,y,z) = ?

Objective → find the lowest cost path between all nodes

Dijkstra's Shortest-Path Algorithm

- Given a graph (network) with link costs
- Find the lowest cost paths to all nodes

- Iterative
 - After n iterations, you will find least cost path to n nodes
- S = Least cost paths already known, initially source node {U}
- D(v): current cost of path from source(U) to node V
 - Initially, D(v) = c(u,v) for all nodes v adjacent to u
 - $D(v) = \infty$ for all other nodes
 - Update D(v) as we go

Dijsktra's Algorithm

```
1 Initialization:
   N' = \{u\}
   for all nodes v
     if v adjacent to u
5
       then D(v) = c(u,v)
6
    else D(v) = \infty
   Loop
    find w not in N' such that D(w) is a minimum
     add w to N'
     update D(v) for all v adjacent to w and not in N':
       D(v) = \min(D(v), D(w) + c(w,v))
    /* new cost to v is either old cost to v or known
     shortest path cost to w plus cost from w to v */
15 until all nodes in N'
```

Dijkstra's algorithm: example

Step	N'	D(v) p(v)	D(w) p(w)	D(x) p(x)	D(y) p(y)	D(z) p(z)
0	u	7,u	3,u	5,u	∞	∞
1	uw	6,w		5,u	11,W	∞
2	uwx	6,W			11,W	14,X
3	uwxv				10,V	14,X
4	uwxvy					12,y
5	uwxvyz					
3 4	uwx uwxv uwxvy			<u>5,u</u>	11,W	14,×

notes:

- construct shortest path tree by tracing predecessor nodes
- ties can exist (can be broken arbitrarily)

Dijkstra's algorithm: another example

Step	N'	D(v),p(v)	D(w),p(w)	D(x),p(x)	D(y),p(y)	D(z),p(z)
0	u	2,u	5,u	1,u	∞	∞
1	ux ←	2,u	4,x		2,x	∞
2	uxy 🕶	2,u	3,y			4,y
3	uxyv		3,y			4,y
4	uxyvw •					4,y
5	uxyvwz •					

Dijsktra's → Link State Routing

- Each node keeps track of adjacent links
- Each router broadcasts it's state
- Each router runs Dijkstra's algorithm
- Each router has complete picture of the network
- Example: Open Shortest Path First (OSPF)

Link State Routing – controlled flooding

Flooding of link-state packets. (a) LSP arrives at node X; (b) X floods LSP to A and C; (c) A and C flood LSP to B (but not X); (d) flooding is complete

Link State Routing – controlled flooding

- Flood when topology changes or link goes down
 - Detected by periodic hello messages
 - If message missed → link down
- Refresh and flood periodically
- Problems?
 - High computational cost
 - Reliable flooding may not be reliable

Next Steps

Distance Vector routing Midterm review