Anmerkungen und Lösungen zu

Einführung in die Algebra

Jendrik Stelzner

Letzte Änderung: 19. November 2017

Aufgabe 4

Wir betrachten im Folgenden nur die Fälle $n \geq 3$, da die auf dem Übungszettel gegebene Defition für D_1 und D_2 nicht (ohne weiteres) funktoniert.

(a)

Es gibt verschiedene Möglichkeiten, die (Anzahl der) Elemente von D_n zu bestimmen:

- Es gibt n Rotation, jeweils um Vielfache von $360^{\circ}/n$, bzw. um $2\pi/n$. Zudem gibt es noch n Spiegelungen:
 - $\circ~$ Ist nungerade, so gehen die Spiegelungsachsen durch einen der Eckpunkte, sowie den Mittelpunkt der gegebenüberliegenden Kante.
 - \circ Ist n gerade, so gibt es zwei Arten von Spiegelungen:
 - * Es gibt n/2 Spiegelungen, deren Spiegelungsachse durch einen Eckspunkt sowie den gegenüberliegenden Eckpunkt gehen.
 - \ast Es gibt n/2 Spiegelungen, deren Spiegelungsachse durch den Mittelpunkte einer Kante sowie den Mittelpunkt der gegenüberliegenden Kante gehen.

Damit ergeben sich insgesamt 2n Isometrien.

• Es sei x einer der Eckpunkte und x' einer der zu x benachbarten Eckpunkte. Dann ist jede Isometrie des n-Ecks durch die Wirkung auf den benachbarten Eckpunkten x und x' bereits eindeutig bestimmt.

Der Eckpunkt x kann auf jeden der anderen Eckpunkte abgebildet werden, wofür es n Möglichkeiten gibt. Wird der Eckpunkt x auf einen Eckpunkt y abgebildet, so kann x' auf jeden der beiden zu y benachbarten Eckpunkt geschickt werden.

Somit ergeben sich 2n Isometrien

Um zu zeigen, dass D_n nicht abelsch ist, nummerieren wir die Eckpunkte des n-Ecks mit den Elementent von \mathbb{Z}/n , so dass der Eckpunkt \overline{k} mit den Eckpunkten $\overline{k-1}$ und $\overline{k+1}$ benachbart sind.

Die Rotation um $360^{\circ}/n$ ist dann durch

$$r: \mathbb{Z}/n \to \mathbb{Z}/n, \quad \overline{k} \mapsto \overline{k+1}$$

gegeben. Die Spiegelung, deren Achse durch den Eckpunkt $\bar{0}$ geht, ist dann durch

$$r: \mathbb{Z}/n \to \mathbb{Z}/n, \quad \overline{k} \mapsto \overline{-k}$$

gegeben. Es gilt

$$(r \circ s)(\overline{0}) = r(s(\overline{0})) = r(\overline{0}) = \overline{1}$$

aber

$$(s \circ r)(\overline{0}) = s(r(\overline{0})) = s(\overline{0}) = \overline{-1},$$

wobei $\overline{1} \neq \overline{-1}$ da $n \geq 3$.

(b)

Das regelmäßige n-Eck lässt sich in die Ebene \mathbb{R}^2 einbetten, so dass der Nullpunkt (0,0) der Schwerpunkt des n-Ecks ist, und einer der Eckpunkte der n-Ecks auf der x-Achse liegt. Dann lassen sich die Elemente von D_n als Rotationen und Spiegelungen der Ebene auffassen, und somit als Rotations- und Spiegelungsmatrizen. Für $\alpha \in \mathbb{R}$ ist die Rotation um den Winkel α durch die Matrix

$$R_{\alpha} := \begin{pmatrix} \cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha \end{pmatrix}$$

gegeben, und die Spiegelung an der Gerade mit Winkel α (zur x-Achse)ist durch die Matrix

$$S_{\alpha} := \begin{pmatrix} \cos 2\alpha & \sin 2\alpha \\ \sin 2\alpha & -\cos 2\alpha \end{pmatrix}$$

gegeben. Die Gruppe D_n ist dann durch die Matrizen

$$\hat{D}_n := \{ R_{k2\pi/n} \mid k = 0, \dots, n-1 \} \cup \{ S_{k\pi/n} \mid k = 0, \dots, n-1 \}$$

gegeben. Es ist $\hat{D}_n \leq \mathrm{O}(2)$ eine Untergruppe, weshalb wir den surjektiven Gruppenhomomorphismus $\det|_{\mathrm{O}(2)}\colon \mathrm{O}(2) \to \{1,-1\}$ zu einem Gruppenhomomorphismus $\det|_{\hat{D}_n}\colon \hat{D}_n \to \{1,-1\}$ einschränken. Es gilt $\det R_\alpha = 1$ und $\det S_\alpha = -1$ für alle $\alpha \in \mathbb{R}$, weshalb auch $\det|_{\hat{D}_n}$ noch surjektiv ist. Damit erhalten wir einen surjektiven Gruppenhomomorphismus

$$\hat{g} \colon D_n \to \{1, -1\}, \quad x \mapsto \begin{cases} 1 & \text{falls } x \text{ eine Rotation ist,} \\ -1 & \text{falls } x \text{ eine Spiegelung ist.} \end{cases}$$

Da $\{1,-1\}\cong \mathbb{Z}/2$ lässt sich \hat{g} auch als ein Gruppenhomomorphismus

$$g: D_n \to \mathbb{Z}/2, \quad x \mapsto \begin{cases} \overline{0} & \text{falls } x \text{ eine Rotation ist,} \\ \overline{1} & \text{falls } x \text{ eine Spiegelung ist,} \end{cases}$$

auffassen.

(c)

Jedes Element $x \in D_n$ liefert einen Gruppenhomomorphismus

$$\tilde{s} \colon \mathbb{Z} \to D_n, \quad n \mapsto x^n.$$

Ist x eine Spiegelung, so gilt $x\neq 1$ aber $x^2=1$, und somit ker $\tilde{s}=2\mathbb{Z}$. Somit induziert \tilde{s} einen wohldefinierten Gruppenhomomorphismus

$$s: \mathbb{Z}/2 \to D_n, \quad \overline{n} \mapsto x^n.$$

Dann gilt

$$(g\circ s)(\overline{1})=g(s(\overline{1}))=g(x^1)=g(x)=\overline{1}.,$$

sowie $(g \circ s)(\overline{0}) = \overline{0}$ da $g \circ s$ ein Gruppenhomomorphismus ist. Somit gilt $g \circ s = \mathrm{id}_{\mathbb{Z}/2}$.