Babeş-Bolyai University, Faculty of Mathematics and Computer Science Bachelor, Computer Science, Groups 911-917, Academic Year 2016-2017

Mathematical Analysis Seminar 11

1. In each of the following cases study whether the function $f: \mathbb{R}^2 \setminus \{0_2\} \to \mathbb{R}$ has a limit at 0_2 :

a)
$$f(x,y) = \frac{\sin(x^2 + y^2)}{x^2 + y^2}$$
, b) $f(x,y) = \frac{x^3 + y^3}{x^2 + y^2}$, c) $f(x,y) = \frac{xy}{x^2 + y^2}$.

2. Study the continuity and the partial differentiability at 0_2 for $f: \mathbb{R}^2 \to \mathbb{R}$ defined by:

a)
$$f(x,y) = \begin{cases} \frac{xy}{\sqrt{x^2 + y^2}}, & \text{if } (x,y) \neq 0_2 \\ 0, & \text{if } (x,y) = 0_2. \end{cases}$$
 b) $f(x,y) = \begin{cases} \frac{x^4 - y^4}{2(x^4 + y^4)}, & \text{if } (x,y) \neq 0_2 \\ 0, & \text{if } (x,y) = 0_2. \end{cases}$

- **3.** Find the second order partial derivatives of the following functions:
 - a) $f: \mathbb{R}^2 \to \mathbb{R}$, $f(x,y) = \cos x \cos y \sin x \sin y$.
 - b) $f:(0,+\infty)\times(0,+\infty)\to\mathbb{R}, \ f(x,y)=x^y.$
 - c) $f: \mathbb{R}^3 \to \mathbb{R}$, $f(x, y, z) = (x + y + z)[(2^x)^y]^z$.
 - d) $f: \mathbb{R} \times \mathbb{R} \times \mathbb{R}^* \to \mathbb{R}$, $f(x, y, z) = xe^y/z$.
- **4.** Let $f: \mathbb{R} \to \mathbb{R}$ be a differentiable function and let $g: \mathbb{R}^2 \to \mathbb{R}$ be defined by

$$g(x,y) = f(x^2 + y^2), \ \forall (x,y) \in \mathbb{R}^2.$$

Prove that for any $(x,y) \in \mathbb{R}^2$ we have

$$y \frac{\partial g}{\partial x}(x,y) - x \frac{\partial g}{\partial y}(x,y) = 0.$$

- **5.** Find the gradient $\nabla f(c)$ and the hessian matrix $\nabla^2 f(c)$ in the following cases:
 - a) $f: \mathbb{R}^2 \to \mathbb{R}$, $f(x, y) = x^2 y^3$ and c = (1, 1).
 - b) $f: \mathbb{R}^3 \to \mathbb{R}$, $f(x, y, z) = e^{xyz}$ and $c = 0_3$.
- **6.** Let $f: \mathbb{R}^n \to \mathbb{R}$ and $g: \mathbb{R}^n \to \mathbb{R}$ be partially differentiable functions. Prove that

$$\nabla (fg)(c) = f(c)\nabla g(c) + g(c)\nabla f(c), \ \forall c \in \mathbb{R}^n.$$

1