PROJEKTOWANIE ALGORYTMÓW I METODY SZTUCZNEJ INTELIGENCJI Imię i nazwisko: XXXX XXXX Nr albumu: XXXXXXXX Projekt 2

I. Wprowadzenie

Głównym zadaniem do wykonania były testy implementacji poszczególnych sortowań dla różnych warunków początkowych.

II. Algorytmy oraz ich złożoność obliczeniowa

Zaimplementowane zostały trzy algorytmy sortujące:

Sortowanie szybkie – wybierana jest oś podziału (tzw. Pivot). Często wybierany losowo lub poprzez określenie wartości środkowego elementu. Następnie kolejne elementy tablicy rozdzielane są do lewej lub prawej podtablicy zależnie od tego, czy są one większe od wybranego pivot'a.

W najgorszym przypadku złożoność obliczeniowa tego algorytmu to $O(n^2)$, oczekiwaną jest jednak złożoność (nlog(n)).

Sortowanie przez scalanie – tablica dzielona jest na dwie równe części rekurencyjnie, do czasu otrzymania elementu o najmniejszej (lub największej) wartości, następnie otrzymane części są "scalane" aż do otrzymania w pełni posortowanej tablicy. Złożoność obliczeniowa algorytmu to (nlog₂(n)).

Sortowanie introspektywne – jest to sortowanie polegające na obejściu najgorszego przypadku w sortowaniu szybki. Dzięki zastosowaniu współczynnika, po którego przekroczeniu następuje zmiana stosowanego sortowania. Na takie o stałej złożoności obliczeniowej. W zaimplementowanym przypadku użyto sortowania przez scalanie.

III. Wyniki eksperymentów

Przeprowadzony został szereg eksperymentów na zaimplementowanych i wymienionych powyżej algorytmach sortowania.

Dla każdego algorytmu ustalane były następujące warunki początkowe:

- Procent posortowania losowych tablic: 0, 25, 50, 75, 95, 99, 99.7.
- Ilość elementów tablicy: 10 000, 50 000, 100 000, 500 000, 1 000 000.
- Wykonanie algorytmu dla 1 lub 100 tablic.
- Wykonanie algorytmu dla odwrotnie posortowanej tablicy.

Na potrzeby eksperymentów w programie zaimplementowana została ręczna konfiguracja pozwalająca na ustalenie dowolnych z powyższych warunków początkowych. Wszystkie pomiary wykonywane były WYŁĄCZNIE dla algorytmów sortowania, nie uwzględniały one czasu wykonania jakichkolwiek innych operacji. Na potrzebę testów napisana została również funkcja sprawdzająca posortowanie tablic.

Wyniki pomiarów w milisekundach: Sortowanie szybkie z losowym pivotem:

QS	0	25	50	75	95	99	99,7	inverted
10000	2	2	2	2	2	2	2	1
50000	17	16	14	12	11	10	10	8
100000	39	36	30	24	22	21	21	17
500000	441	316	214	145	113	109	110	95
1000000	1473	961	582	336	228	227	222	191
QS 100	0	25	50	75	95	99	99,7	inverted
10000	292	281	273	256	222	203	198	163
50000	1716	1649	1480	1269	1097	1051	1040	861
100000	3944	3584	3063	2545	2186	2118	2118	1784
500000	43524	31461	21335	14216	11275	10926	10995	9421
1000000	147168	96801	58023	32517	23006	22294	22208	19401

Sortowanie szybkie z pivotem po środku:

QS	0	25	50	75	95	99	99,7	inverted
10000	2	2	2	2	1	1	1	0
50000	15	15	12	10	8	7	7	4
100000	38	33	29	20	15	14	14	9
500000	431	294	191	128	85	75	76	54
1000000	1449	936	531	291	175	157	156	114
QS 100	0	25	50	75	95	99	99,7	inverted
10000	255	246	231	206	166	140	137	85
50000	1605	1537	1296	1037	808	707	709	453
100000	3762	3333	2723	2121	1599	1450	1453	940
500000	42596	29981	19480	12527	8550	7557	7600	5514
1000000	144775	93949	54425	29235	17639	15747	15564	11339

Sortowanie przez scalenie

MS	0	25	50	75	95	99	99,7	inverted	
10000	2	2	2	2	2	2	3	2	
50000	16	15	13	12	11	11	11	11	
100000	34	32	29	27	24	24	24	24	
500000	189	174	161	148	137	135	134	135	
1000000	389	361	334	316	286	281	279	281	
MS 100	0	25	50	75	95	99	99,7	inverted	
10000	283	264	252	225	209	206	207	208	
50000	1623	1516	1385	1271	1214	1157	1157	1158	
100000	3401	3161	2896	2648	2463	2415	2407	2426	
500000	18710	17331	15995	14671	13601	13396	13339	13394	
1000000	38747	35865	33151	30525	28337	27910	27794	27954	

Sortowanie Introspektywne

SS	0	25	50	75	95	99	99,7	inverted	
10000	3	3	3	3	2	2	1	1	
50000	24	22	17	12	9	8	7	9	
100000	55	45	33	22	18	15	14	19	
500000	350	255	186	119	99	87	84	106	
1000000	770	604	408	269	209	182	177	226	
SS 100	0	25	50	75	95	99	99,7	inverted	
10000	359	337	325	300	233	161	133	157	
50000	2477	2291	1737	1210	958	802	731	902	
100000	5497	4682	3426	2296	1867	1561	1496	1932	
500000	34056	26440	18695	11807	9915	8660	8439	10613	
1000000	77313	59568	41176	25405	20989	18344	17696	22583	

Wykres przedstawiający czas wykonywania sortowania całkowicie losowych stu tablic dla poszczególnych algorytmów:

IV. Wnioski

W ogólnym przypadku najszybszym algorytmem okazało się sortowanie przez scalanie. Sortowanie szybkie oraz introspektywne było od niego szybsze tylko przy odpowiednich warunkach początkowych (czyli częściowo posortowanej/odwrotnie posortowanej tablicy).

Czasy wykonania sortowania przez scalanie zdawały się być "stabilne" względem reszty zaimplementowanych algorytmów, ponieważ czas ich wykonania zmieniał się nieznacznie przy zmianie warunków początkowych.

Przy sortowaniu szybkim okazało się, że wybór pivot'a jako środka tablicy, we wszystkich wykonanych testach był wyborem szybszym od pivot'a losowego. Dodatkowo sortowanie to było najszybsze przy określonych warunkach początkowych (sortowanie odwrotnie posortowanej tablicy algorytmem Quick Sort dla miliona elementów trwało krócej, niż sortowanie tej samej tablicy algorytmem Merge Sort dla pół miliona elementów).

Sortowanie introspektywne wykazywało dużą zależność od warunków początkowych, dodatkowo okazując się szybszym od sortowania szybkiego dla większej ilości elementów.

Źródła:

wykłady dr.inż. Łukasza Jelenia

C++ Kompendium Wiedzy Wydanie IV (2014), Bjarne'a Stroustrup'a

https://pl.wikipedia.org/wiki/ http://www.algorytm.org/ http://www.cplusplus.com/ https://stackoverflow.com/ https://4programmers.net/