

Congratulations! You passed!

Grade received 100% To pass 80% or higher

Go to next item

 $\textbf{1.} \quad \text{Matrices make transformations on vectors, potentially changing their magnitude and direction.}$

1/1 point

If we have two unit vectors (in orange) and another vector,

$$\mathbf{r} = \begin{bmatrix} 3 \\ 2 \end{bmatrix}$$
 (

pink), before any transformations - these look like this:

Take the matrix, $A=egin{bmatrix}1/2&-1\\0&3/4\end{bmatrix}$, see how it transforms the unit vectors and the vector,

What new vector, \mathbf{r}' , does A transform \mathbf{r} to? Specifically, what does the following equal?

$$A\mathbf{r} = \begin{bmatrix} 1/2 & -1 \\ 0 & 3/4 \end{bmatrix} \begin{bmatrix} 3 \\ 2 \end{bmatrix} =$$

- $\bigcirc \, \left[\begin{smallmatrix} -3/2 \\ 3/2 \end{smallmatrix} \right]$
- $\bigcirc \ \left[\begin{smallmatrix} 3/2 \\ -3/4 \end{smallmatrix} \right]$

You could either calculate this or read it off the graph.

2. Let's use the same matrix, $A=\begin{bmatrix}1/2&-1\\0&3/4\end{bmatrix}$, from the previous question.

Type an expression for the vector, $\mathbf{s} = A egin{bmatrix} -2 \\ 4 \end{bmatrix}$.

- 1 # Replace a and b with the correct values below: 2 s = [-5, 3]

Well done.

3. Select the transformation which best corresponds to the matrix, $M=egin{bmatrix} -1/2 & 1/2 \\ 1/2 & 1/2 \end{bmatrix}$.

1/1 point

\$\$\$\$

\$\$\$\$

\$\$\$\$

\$\$\$\$

⊘ Correct

The axes have been rotated, and also flipped here.

4. A digital image can be stored by putting lots of coloured pixels at their particular coordinates on a grid.

1/1 point

If we apply a matrix transformation to the coordinates of each of the pixels in an image, we transform the image as a whole.

Given a starting image (such as this one of "The Ambassadors" [1533] by Hans Holbein the Younger),

which is made up of 400×400 pixels, if we apply the same transformation to each of those 160,000 pixels, the transformed image becomes:

Pick a matrix that could correspond to the transformation.

$$\bigcirc \begin{bmatrix} 1/2 & 0 \\ -\sqrt{3}/2 & 1/2 \end{bmatrix}$$

$$\bigcirc \ \begin{bmatrix} -1/2 & 0 \\ 0 & \sqrt{3}/2 \end{bmatrix}$$

$$\bigcirc \begin{bmatrix} \sqrt{3}/2 & \sqrt{3}/2 \\ 1/2 & 1/2 \end{bmatrix}$$

⊘ Correct

This is a rotation matrix (by 30° anticlockwise).

5. At the bottom of the "The Ambassadors", in the middle of the floor, there is a skull that Holbein has already applied a matrix transformation to!

1/1 point

To undo the transformation, build a matrix which is firstly a shear in the y direction followed by a scaling in y direction. I.e., multiply the matrices,

$$M = \begin{bmatrix} 1 & 0 \\ 0 & 8 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ -1/2 & 1 \end{bmatrix}$$

⊘ Correct

Well don

Use your answer in the next question to transform the skull back.

6. Use your answer from the previous question to transform the skull back to normal. Change the values of the matrix and press *Gol* to score on this question.

1/1 point

You can also use this example to experiment with other matrix transformations. Try some of the ones in this quiz. Have a play!

∠ Expand

⊘ Correct

Feel free to use the tool to try out different matrices too.