(11) Publication number:

07-082449

(43) Date of publication of application: 28.03.1995

(51)Int.CL

COBL 27/12 COBK 3/26

(21) Application number: 05-255006

(71)Applicant: NOK CORP

(22)Date of filing:

17.09.1993

(72)Inventor: SATO TAKESHI

(54) POLYOL-VULCANIZABLE FLUORORUBBER COMPOSITION

(57)Abstract:

PURPOSE: To obtain a polyol-vulcanizable fluororubber composition having improved engine-oil resistance while keeping the processability (mold-releasability) and vulcanization properties and useful for oil-seal, packing, etc., of an engine oil part by compounding a polyolvulcanizable fluororubber with hydrotalcite. CONSTITUTION: This fluororubber composition is produced by compounding a polyol-vulcanizable fluororubber with a hydrotalcite analog compound of the HEXRY (OH) 2CO3 • 11 H2 O formula (R is Al, Cr or Fe; (x) is 4-6; (y) is 2; (z) is 12-18).

LEGAL STATUS

[Date of request for examination]

27.09.1999

[Date of sending the examiner's decision of

rejection]

13,03.2001

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of rejection]

[Date of extinction of right]

(19) 日本国特許庁(JP)

(12) 公開特許公報(A)

庁内整理器号

(11)特許出數公開番号

特開平7-82449

(43)公開日 平成7年(1995) 3月29日

(51) Int CL*

識別記号

FΙ

技術表示箇所

CO8L 27/12 CO8K 3/26

KJF

審査請求 未請求 請求項の数1 FD (全 4 頁)

(21)出联番号

特膜平5-255008

(71) 出版人 000004385

エヌオーケー株式会社

(22) 出膜日

平成5年(1993)9月17日

東京都港区芝大門1丁目12番15号

(72) 発明者 佐藤 健

神奈川県藤沢市辻堂新町4-8-1 エヌ

オーケー株式会社内

(74)代理人 弁理士 吉田 俊夫

(54) 【発明の名称】 ポリオール加成系フッ条ゴム組成物

(57)【要約】

【目的】 ポリオール加硫系フッ素ゴムが本来有する良 好な加工性(金型健型性)や加硫物性を保持したまま、耐 エンジン油性を改善したポリオール加硫系フッ深ゴム組 成物を提供する。

【梯成】 ポリオール加硫系ファ系ゴムにハイドロタル サイト類縁化合物を配合したポリオール加硫系ファ索ゴ **ム組成物。**

【特許請求の範囲】

【請求項】】 ポリオール加硫系ファ紫ゴムにハイドロ タルサイト類緑化合物を配合してなるボリオール加硫系 ファ素ゴム組成物。

1

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は、ポリオール加硫系フゥ 素ゴム組成物に関する。更に詳しくは、耐エンジン油性 を改良したポリオール加硫系ファ索ゴム組成物に関す る。

[0002]

【従来の技術】ファ素ゴム加硫剤として、ポリヒドロキ シ芳香族化合物が多く用いられており、その際2価の金 属の酸化物および/または水酸化物が受酸剤として併用 されている(特公昭52-38072号公報、特開昭57-164142~ 3号公報、同57-200437号公報、同61-12741号公報、同62 -89754号公報、同62-115055号公報、同62-138547号公 報、同63-223052号公報、同64-43553号公報、特開平1-2 94746号公和、闰1-306454号公報、同1-315449号公報な ٤)。

【0003】これらのポリオール加硫系フゥ素ゴムは、 加工性(金型離型性)や加硫物性の点ではすぐれているも のの、エンジン油と接触する部位に使用される加硫成形 品、例えばオイルシール、Oリング、バッキン等に用い られた場合には、耐エンジン油性の点でなお一層の改善 が望まれている。

【0004】フッ窯ゴムの耐エンジン油性を改善するた めに、従来はポリオール加硫系からパーオキサイド加硫 系への変更が図られているが、との場合には耐エンジン 油性の改善は達成されるものの、加工性、特に成形時の 30 金型解型性が極端に無化してしまうのを避けることがで きない。

[0005]

【発明が解決しようとする課題】本発明の目的は、ポリ オール加硫系ファ 新ゴムが本来有する良好な加工性(金 型離型性)や加硫物性を保持したまま、耐エンジン油性 を改磐したポリオール加硫系フッ素ゴム組成物を提供す ることにある。

[0006]

【課題を解決するための手段】かかる本発明の目的は、 ポリオール加硫系フッ殊ゴムにハイドロタルサイト類録 化合物を配合したポリオール加硫系フッ条ゴム組成物に よって達成される。

【0007】ボリオール加硫系によって加硫されるフッ 素ゴムは、高度にフッ素化された弾性体状の共重合体で あり、例えばフッ化ピニリデンと他の含フッポオレフィ ンとの共産合体を用いることができる。具体的には、フ ッ化ビニリデンとヘキサフルオロプロピレン、ペンタフ ルオロブロビレン、トリフルオロエチレン、トリフルオ ロクロロエチレン、テトラフルオロエチレン、フッ化ビ 50 ム塩、第4級ホスホニウム塩、N-アルキル置換アミド化

ニル、パーフルオロアクリル酸エステル、アクリル酸パ ーフルオロアルキル、パーフルオロメチルビニルエーテ ル、パーフルオロプロピルピニルエーテルなどの1 穂ま たは2種以上との共重合体が挙げられ、好ましくはフッ 化ビニリデン-ヘキサフルオロプロビレン2元共重合体お よびファ化ビニリデン-テトラフルオロエチレン-ヘキサ フルオロブロビレン3元共重合体が挙げられる。

【0008】また、このフッ絮ゴムの加錠剤として用い られるポリヒドロキシ芳香族化合物としては、2,2-ピス 10 (4-ヒドロキシフェニル)プロパン[ピスフェノールA]、 2,2-ビス(4-ヒドロキシフェニル)パーフルオロブロパン [ビスフェノールAF]、ヒドロキノン、カテコール、レゾ ルシン、4,4~=ジヒドロキシジフェニル、4,4~=ジヒド ロキシジフェニルメタン、4,4~-ジヒドロキシジフェニ ルスルホン、2,2-ビス(4-ヒドロキシフェニル)ブタンな どが挙げられ、好ましくはピスフェノールA、ピスフェ ノールAF、ヒドロキノンなどが用いられる。 これらはま た、アルカリ金属塩あるいはアルカリ土類金属塩の形で あってもよい。これらの加硫剤は、フッ深ゴム100重量 20 部当り約0.5~10重量部、好ましくは約0.5~6重量部の 割合で用いられる。これより少ない使用割合では架橋密 度が不足し、一方とれより多いと架橋密度が高くなりす ぎて、ゴム状弾性を失う傾向がみられるようになる。

[0009]受敵剤として用いられていた2個の金属の 酸化物または水酸化物、例えばマグネシウム、カルシウ ム、バリウム、鉛、亜鉛等の酸化物または水酸化物の代 わりにあるいはそれと併用して配合されるハイドロタル サイト類録化合物は、次の一般式を有しており、

MOXRY (OH) ZCO2 · IN H2 O

R: Al, Cr. Fe

x: 4~6

y: 2

z: 12~18

例えば次のようなものが一般に用いられる。

MQ A72 (OH)20 CO3 + 4H2 O

Mg., Al. (OH), CO, . 3.5H O

Mg, A7, (OH),,,, CO3 - 3.5H, O

これらのハイドロタルサイト類縁化合物は、フッ素ゴム 100重量部当り約1~20重量部、好ましくは約3~6重量部 の割合で用いられる。配合割合がこれより多いと、常態 物性の低下がみられるようになり、一方これより少ない **割合で用いられると、所期の目的を達成することができ** ない。

[0010]フッ案ゴム組成物中には、以上の各成分以 外に、加硫促進剤、充填剤、補強剤、可塑剤、滑剤、加 工助剤、安定剤等の各種配合剤が、必要に応じて適宜配 合されて用いられる。

【0011】加硫促進剤としては、前記特許公告公報お よび特許公開公報に記載される如く、第4級アンモニウ

合物、活性水素含有芳香族化合物-第4級ホスホニウム塩 等モル分子化合物、2個金属アミン錯体化合物等を、フ ッ素ゴム100重量部当り約10重量部以下、好ましくは約 0.1~9重量部の割合で用いることもできる。

【0012】加硫系各成分は、そのまま配合し、温練し てもよく、また充填剤、補強剤などで希釈分散したり、 ファ索ゴムとのマスターバッチ分散物として使用しても よい。加硫は、一般にファ素ゴムに加硫系各成分および それ以外の各種配合剤を、ロール混合、ニーダ混合、バ ンパリー混合、溶液混合などの一般に用いられる混合法 10 成される。 によって混合した後、加熱することによって行われる。 一般には、一次加硫は約140~200°Cの温度で約2~120分 間程度ブレス加硫することによって、また二次加硫は約米

*150~250°Cの꾆度で0~30時間程度オーブン加強すると とによって、加硫が行われる。

[0013]

【発明の効果】ポリオール加硫系ファ素ゴムに、従来受 酸剤として用いられてきた2個金属の酸化物または水酸 化物の代わりに、あるいはそれと併用してハイドロタル サイト類縁化合物を配合することにより、ポリオール加 硫系フッ素ゴムが本来有する良好な加工性(金型離型性) や加硫物性を保持したまま、耐エンジン油性の改善が達

[0014]

【実施例】次に、実施例について本発明を説明する。

【0015】 実施例

ポリオール含有フッ紫ゴム(デュポン社製品バイトンE-60) 100 承量部 30 MTカーボンブラック 酸化マグネシウム 3 6 . ハイドロタルサイト(協和化学製品DHT-4A) ピスフェノールAF(デュポン社製品キュラティブ#30) 第4級オニウム塩(デュポン社製品キュラティブ#20)

以上の各配合成分をニーダで混練し、170°C、30分間の 一次加硫(プレス加硫)および230°C、24時間の二次加硫 (オープン加硫)条件下で加硫した。

【0018】加硫物について、JIS K-6301に従って常態 値を測定すると共に、空気加熱老化試験(200°C、70時 間)を行った後の常盤値変化量、潤滑油№.1または№.3 浸漬試験 (175°C、70時間)、SE級エンジン油浸渍試験 (15 O°Cまたは175°C、150時間)を行った後の常應値変化量も※

20%よび体積変化率をそれぞれ測定し、また加工性(金型競 型性)を評価した。

[0017]比較例1

突施例において、ハイドロタルサイトの代わりに、同量 の水酸化カルシウムが用いられ、加硫物について、同様 の測定および評価が行われた。

【0018】比較例2

フッ銀ゴム(ダイキン製品ダイエルG-801)	100班班部
MTカーボンブラック	30
酸化マグネシウム	3
水酸化カルシウム	6
ジクミルバーオキサイド	2
トリアリルイソシアヌレート (M-60)	5

以上の各配合成分をニーダで混練し、170°C、30分間の 一次加硫(プレス加硫)および230℃、24時間の二次加硫 (オーブン加硫)条件下で加硫し、加硫物について、実施 例と同様の測定および評価が行われた。

【0019】上配実施例および各比較例で得られた結果 は、次の表に示される。この結果から、次のようなこと がいえる。

(1)従来のポリオール加硫系が用いられた比較例1と比 ★

★較して、SG級エンジン油浸潤試験、特に175°Cでの浸漉 試験での結果は、本発明のポリオール加硫系での硬さ変 化量に明らかな差が認められる。

(2)2元系パーオキサイド加硫フッ素ゴムが用いられた比 較例2は、SE級エンジン油浸漬試験では良好な結果を示 しているものの、加工性(金型雕型性)の点で寄しく劣っ 40 ている。

寒 測定項目 実施例 比較例1 比較例2 [常悠値] 71 73 硬さ (JIS A) 71 16.8 16.0 17.3 ち姫毎旧 (M Pa) 440 270 伸び **(%)** 250 [空気加熱老化試験] +2 +1. 硬さ変化(ポイント) +2 引張強さ変化率 (%) -10 -5 +25

特開平7-82449

	(4)			特期平7
5				6
伸び変化率(名)	-5	-8	-10	
[潤滑油No.1浸渍試験]				
硬さ変化(ポイント)	0	-1	-3	
引張強さ変化率(%)	-7	-3	-4	
伸び変化率(%)	0	-2 .	+2	
体积变化率 (%)	+0.1	+0.1	+0.5	
[涸滑油No.3浸渍式験]				
硬さ変化(ポイント)	-1	-1	-6	
引張強さ変化率 (%)	-15	-9	-4	
伸び変化率 😕	-6	-3	+8	
体積変化率 (%)	+2.5	+2.4	+5.0	
[エンジン油150°C浸漬試験]	•			
硬さ変化(ポイント)	+2	+4	-2	
引張強さ変化率 (%)	-51	–62	-58	
伸び変化率 (%)	-50	-71	-20	
体積変化率 (%)	+0.9	+0.9	+2,6	
[エンジン油175℃浸潤試験]				
硬さ変化(ポイント)	+5	48	+1	
引張強さ変化率 (%)	-69	-73	-60	
伸び変化率(%)	-57	-79	-62	
体徴変化率 (%)	+1.1	+1.1	+3.4	
[加工性]				
金型雕型性	良	良	悪	

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

BLACK BORDERS
☐ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
☐ FADED TEXT OR DRAWING
BLURRED OR ILLEGIBLE TEXT OR DRAWING
SKEWED/SLANTED IMAGES
☐ COLOR OR BLACK AND WHITE PHOTOGRAPHS
☐ GRAY SCALE DOCUMENTS
☐ LINES OR MARKS ON ORIGINAL DOCUMENT
☐ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY
Потнев.

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.