Análisis Matemático Problemas resueltos

Nicolás Aguado González

9 de noviembre de 2021

Índice general

1.	Pro	Problemas resueltos	
	1.1.	Números naturales y enteros	1
	1.2	Series de números reales	2

Capítulo 1

Problemas resueltos

1.1. Números naturales y enteros

1. Ejercicio Especial 1. Tomando $a \neq 0, 1$, demostrar por inducción:

$$a + a^{2} + a^{3} + \dots + a^{n} = \frac{a - a^{n+1}}{1 - a}$$

Demostración.

a) Hipótesis tomando n=1:

1) Lado Izquierdo: a

2) Lado Derecho: $\frac{a-a^2}{1-a} = \frac{a(1-a)}{(1-a)} = a$

Como se cumple a = a, la igualdad se cumple para n = 1

b) Hipótesis de Inducción:

Suponemos que $\forall n \geqslant 1, a+a^2+a^3+\ldots+a^n=\frac{a-a^{n+1}}{1-a}$ se cumple. Por lo tanto, habrá que demostrar $a+a^2+a^3+\ldots+a^n+a^{n+1}=\frac{a-a^{n+2}}{1-a}$. Desarrollando: $a+a^2+a^3+\ldots+a^n+a^{n+1}=$ (H.I) $\frac{a-a^{n+1}}{1-a}+a^{n+1}=\frac{a-a^{n+1}+a^{n+1}-a\cdot a^{n+1}}{1-a}=\frac{a-a^{n+1}+a^{n+1}-a\cdot a^{n+2}}{1-a}=\frac{a-a^{n+2}}{1-a}$

$$a + a^{2} + a^{3} + \dots + a^{n} + a^{n+1} = (H.I) \frac{a - a^{n+1}}{1 - a} + a^{n+1} = \frac{a - a^{n+1} + a^{n+1} - a \cdot a^{n+1}}{1 - a} = \frac{a - a^{n+1} + a^{n+1} - a^{n+2}}{1 - a} = \frac{a - a^{n+2}}{1 - a}$$

Como hemos llegado a lo que queríamos demostrar, se cumple la hipótesis de inducción $\forall n \geqslant 1$

Luego, como se cumplen las dos hipótesis, la propiedad es cierta $\forall n \ge 1, a \ne 0, 1$.

2 1 Problemas resueltos

2. Tema 1. Apartado 2. Ejercicio 6. Pregunta 6. Determina el $\inf(A)$, $\sup(A)$, $\min(A)$, $\max(A)$ del siguiente conjunto:

$$A = (a, b]$$

Solución.

- a) Cotas
 - 1) Cota Inferior: a-2, a-1, a,... Suponemos a cota inferior. $\not \cup \forall x \in A$, $a \leqslant x$? Sí que se cumple por la definición del conjunto. Entonces a es cota inferior.
 - 2) Cota Superior: b + 2, b + 1, b,...Suponemos b cota superior. $\not \cup \forall x \in A$, $b \geqslant x$? Sí que se cumple por la definición del conjunto. Entonces b es cota superior.
- b) Ínfimo y Supremo:
 - 1) Ínfimo. Suponemos ínf(A) = a. Para ello se tienen que dar las dos condiciones: a' a es cota inferior. (Demostrado anteriormente)
 - $b' \ \forall \epsilon > 0 \ \exists x_0 \ / \ a \leqslant x_0 < a + \epsilon$? Entre $a \ y \ a + \epsilon$ existen infinitos números reales, y éstos pertenecen a A. Por lo tanto, x_0 es cualquiera de ellos

Como se cumplen las dos condiciones, podemos afirmar que $\inf(A) = a$

- 2) Supremo. Suponemos sup(A) = b. Para ello se tienen que dar las dos condiciones:
 - a' b es cota superior. (Demostrado anteriormente)
 - $b' \ \forall \epsilon > 0 \ \exists x_0 \ / \ b \epsilon < x_0 \leq b$? Entre $b \epsilon$ y b existen infinitos números reales, y éstos pertenecen a A. Por lo tanto, x_0 es cualquiera de ellos.

Como se cumplen las dos condiciones, podemos afirmar que sup(A) = b

- c) Máximo y Mínimo:
 - 1) Mínimo: $\inf(A) = a \notin A \Rightarrow \text{No hay mínimo} (\nexists \min(A))$
 - 2) Máximo: $sup(A) = b \in A \Rightarrow$ Máximo de A es b ($\exists máx(A) = b$)

3. Tema 1. Apartado 2. Ejercicio 6. Pregunta 5. Determina el $\inf(A)$, $\sup(A)$, $\min(A)$, $\max(A)$ del siguiente conjunto:

$$A = (-1, 1] \cap \mathbb{Q}$$

Solución.

- a) Cotas
 - Cota Inferior: -3, -2, -1,...
 Suponemos -1 cota inferior. ¿∀x ∈ A, -1 ≤ x? Sí que se cumple por la definición del conjunto.
 Entonces -1 es cota inferior.
 - 2) Cota Superior: 1, 2, 3,... Suponemos 1 cota superior. $\not \forall x \in A$, $1 \geqslant x$? Sí que se cumple por la definición del conjunto. Entonces 1 es cota superior.
- b) Ínfimo y Supremo:
 - 1) Ínfimo. Suponemos $\inf(A) = -1$. Para ello se tienen que dar las dos condiciones:

a'-1 es cota inferior. (Demostrado anteriormente)

 $b' \ \forall \epsilon > 0 \ \exists x_0 \ / \ -1 \leqslant x_0 < -1 + \epsilon$? Entre $-1 \ y \ -1 + \epsilon$ existen infinitos números racionales, y éstos pertenecen a A. Por lo tanto, x_0 es cualquiera de ellos.

Como se cumplen las dos condiciones, podemos afirmar que $\inf(A) = a$

- 2) Supremo. Suponemos sup(A) = 1. Para ello se tienen que dar las dos condiciones:
 - $a^\prime~1$ es cota superior. (Demostrado anteriormente)
 - $b' \ \forall \epsilon > 0 \ \exists x_0 \ / \ 1 \epsilon < x_0 \leqslant 1$? Entre 1ϵ y 1 existen infinitos números racionales, y éstos pertenecen a A. Por lo tanto, x_0 es cualquiera de ellos
- c) Máximo y Mínimo:
 - 1) Mínimo: $\inf(A) = -1 \notin A \Rightarrow \text{No hay mínimo } (\nexists \min(A))$
 - 2) Máximo: $sup(A) = 1 \in A \Rightarrow$ Máximo de A es 1 (\exists máx(A) = 1)

4 1 Problemas resueltos

1.2. Series de números reales

a) Ejercicio Especial 2. Estudiar el carácter de la serie

$$\sum_{n} \frac{2n+1}{n} \cdot a^n, a > 0$$

Solución.

Como es una serie de números positivos, aplicamos D'Alambert:

$$\frac{a_{n+1}}{a_n} = \frac{\frac{(2(n+1)+1) \cdot a^{n+1}}{n+1}}{\frac{(2n+1) \cdot a^n}{n}} = \frac{(2n+3) \cdot a^{n+1} \cdot n}{(2n+1) \cdot a^n \cdot (n+1)} = \frac{(2n+3) \cdot a \cdot n}{(2n+1) \cdot (n+1)}$$

$$\lim_{n \to \infty} \frac{(2n+3) \cdot a \cdot n}{(2n+1) \cdot (n+1)} = \lim_{n \to \infty} \frac{2n^2 \cdot a}{2n^2} = a$$

Por los criterios de D'Alambert:

Cuando a > 1, la serie es divergente.

Cuando a < 1, la serie es convergente.

Ahora estudiaremos el caso a = 1, aplicando Raabe:

$$n\left(1 - \frac{a_{n+1}}{a_n}\right) = n\left(1 - \frac{(2n+3)\cdot n}{(2n+1)(n+1)}\right) = n\left(\frac{-2n^2 - 3n + 2n^2 + 2n + n + 1}{2n^2 + 2n + n + 1}\right)$$

$$\lim_{n \to \infty} \frac{n}{2n^2 + 2n + n + 1} = \lim_{n \to \infty} \frac{n}{2n^2} = 0$$

Como l = 0, por los criterios de Raabe (0 < 1):

Cuando a = 1, la serie es divergente

b) Tema 3. Ejercicio 4. Pregunta 2. Determina el carácter de la series con el siguiente término general:

$$\sum_{n} \frac{(n!)^2}{(2n)!} \cdot a^n, a > 0$$

Solución.

Como es una serie de números positivos, aplicamos D'Alambert:

$$\frac{a_{n+1}}{a_n} = \frac{\frac{((n+1)!)^2 \cdot a^{n+1}}{(2(n+1))!}}{\frac{(n!)^2 \cdot a^n}{(2n)!}} = \frac{((n+1)!)^2 \cdot a^{n+1} \cdot (2n)!}{(2(n+1))! \cdot a^n \cdot (n!)^2} = \frac{(n!)^2 \cdot (n+1)^2 \cdot a \cdot (2n)!}{(2n)! \cdot (2n+1) \cdot (2n+2) \cdot (n!)^2}$$

$$= \frac{(n+1)^2 \cdot a}{(2n+1) \cdot 2(n+1)} = \frac{a(n+1)}{2(2n+1)}$$

$$\lim_{n \to \infty} \frac{a_{n+1}}{a_n} = \lim_{n \to \infty} \frac{a(n+1)}{2(2n+1)} = \lim_{n \to \infty} \frac{an+a}{4n+2} = \frac{a}{4}$$

Entonces, por los criterios de D'Alambert:

Si
$$\frac{1}{4} < 1$$
 ó $a < 4$, la serie es convergente.
Si $\frac{1}{4} > 1$ ó $a > 4$, la serie es divergente.
Si $\frac{1}{4} = 1$ ó $a = 4$, es un caso dudoso.

Cuando a=4, tenemos la serie $\sum_{n} \frac{(n!)^2}{(2n)!} \cdot 4^n$. Entonces, aplicaremos Raabe:

$$n\left(1 - \frac{a_{n+1}}{a_n}\right) = n\left(1 - \frac{4n+4}{4n+2}\right) = n\left(\frac{4n+2-4n+4}{4n+2}\right) = \frac{-2n}{4n+2}$$

$$\lim_{n \to \infty} n\left(1 - \frac{a_{n+1}}{a_n}\right) = \lim_{n \to \infty} \frac{-2n}{4n+2} = \frac{-2}{4} = \frac{-1}{2} = -0,5$$

Por el criterio de Raabe, como -0,5<1, podemos decir que la serie es divergente cuando a=4.