Niezawodność i diagnostyka – projekt (SL 2024)

- Organizacja zajęć
- Kryteria oceny projektu
- Etapy projektu
- Narzędzia
- Tematy projektowe

Organizacja zajęć

- Grupy 3 osobowe
- Tematy nie powtarzają się
- Oddanie projektu: dokumentacja + prezentacja wyników na forum grupy (ostatnie zajęcia)
- Konsultacje dla grupy wszystkie terminy zajęć, obecność obowiązkowa

Kryteria oceny projektu

- Zakres i jakość wykonanego projektu
- Dokumentacja kompletność opis powinien zawierać założenia/model analizowanego systemu, przeprowadzone testy/symulacje/badania, analizę wyników
- Terminowość
- Udział w zajęciach, postępy w czasie semestru, znajomość przez wszystkich członków grupy projektowej zagadnień związanych z tematem projektu

Cel i ogólny schemat zadań projektowych

- 1. Opracowanie modelu systemu i symulatora umożliwiającego analizowanie wpływu losowości na działanie systemu (jakość/wydajność itd.)
- 2. Przeprowadzenie badań (symulacja Monte Carlo, metody analityczne) wpływ parametrów systemu na jakość
- 3. Dobór/optymalizacja parametrów systemu na podstawie przeprowadzonych badań symulacyjnych

System:

np. transmisja cyfrowa z wykorzystaniem kodów nadmiarowych, badamy jakość/szybkość transmisji w zależności od parametrów kodów/typów błędów w kanale transmisyjnym

np. system naprawialny ze starzeniem elementów, badamy parametry usługi SLA (dostępność itd.) w zależności od parametrów/struktury/napraw systemu

Narzędzia

- OCTAVE (MATLAB)

 np. moduł Communications
 https://gnu-octave.github.io/packages/communications/
- Python

 np. biblioteka Komm
 https://pypi.org/project/komm/
- C/C++/Python

Etapy realizacji projektu

- 1. Wybór, zrozumienie tematu. Opracowanie założeń na zadanie projektowe (model/parametry systemu, jakie miary dotyczące działania systemu będziemy obserwowali)
- Opracowanie i implementacja symulatora systemu narzędzia do symulacyjnego badania miar wyjściowych w zależności od parametrów wejściowych
- 3. Badania eksperymenty symulacyjne (Monte Carlo) dla różnych ustawień parametrów systemu
- 4. Analiza wyników, optymalizacja wybranych parametrów systemu
- 5. Opracowanie sprawozdania i prezentacja wyników na forum grupy

tygodni

Zadania projektowe - tematyka

- Symulacyjne badanie systemów transmisji cyfrowej (transmisja ARQ, FEC, Hybrid ARQ, różne kody detekcyjne/korekcyjne, różne modele zakłóceń; modulacje cyfrowe PSK (QPSK, 8-PSK), QAM; BLE 5)
- Implementacja kodera/dekodera
- Symulacyjne badanie systemu naprawialnego analiza dostępności usług / SLA
- Układy arytmetyczne zabezpieczone przed błędami kodami arytmetycznymi
- System tolerujący uszkodzenia czujników z głosowaniem

1 Transmisja w systemie ARQ (Automatic Repeat Request)

- Zadanie polega na implementacji kanału komunikacyjnego (modele BSC i Gilberta-Elliotta) i systemu transmisji ARQ z różnymi kodami detekcyjnymi (np. bit parzystości, kody Hamminga, CRC8, CRC16, CRC32).
- Symulacyjne badanie skuteczności transmisji dla różnych parametrów kanału (BER, błędy niezależne, błędy grupowe) i parametrów systemu transmisji.

2 Transmisja w systemie FEC (Forward Error Correction)

- Zadanie polega na implementacji kanału komunikacyjnego (modele BSC i Gilberta-Elliotta) i systemu transmisji FEC z różnymi kodami korekcyjnymi (np. powielanie bitów, BCH, RS, LDPC, turbo, fontannowe).
- Symulacyjne badanie skuteczności transmisji dla różnych parametrów kanału (BER, błędy niezależne, błędy grupowe) i parametrów systemu transmisji.

3 Transmisja w systemie Hybrid ARQ

- Zadanie polega na implementacji kanału komunikacyjnego (modele BSC i Gilberta-Elliotta) i systemu transmisji HARQ z wykorzystaniem kodów detekcyjnych (jak w systemach ARQ) oraz korekcyjnych (p. systemy FEC).
- Symulacyjne badanie skuteczności transmisji dla różnych parametrów kanału (BER, błędy niezależne, błędy grupowa) i parametrów cystomu transmisji

4 Transmisja BLE 5

- Zadanie polega na symulacyjnym zbadaniu transmisji w warstwie fizycznej standardu BLE 5 – uwzględniamy CRC, whitening, FEC i pattern mapper.
- Symulacyjne badanie skuteczności transmisji dla różnych parametrów kanału transmisyjnego, porównujemy 4 warianty transmisji BLE 5 (LE1M, LE Coded S=2, LE Coded S=8, LE 2M)

4 Transmisja BLE 5

- https://www.bluetooth.com/blog/ exploring-bluetooth-5-going-thedistance/
- Bluetooth Core Specification v
 5.0
- https://www.allaboutcircuits.com/ technical-articles/long-distance-b luetooth-low-energy-bit-data-pat hs/

	LE 1M	LE Coded S=2	LE Coded S=8	LE 2M	
Symbol Rate	1 Ms/s	1 <u>Ms</u> /s	1 <u>Ms</u> /s	2 Ms/s	
Data Rate 1 Mbit/s		500 Kbit/s	125 Kbit/s	2 Mbit/s	
Error Detection CRC		CRC	CRC	CRC	
Error Correction NONE		FEC	FEC	NONE	
Range Multiplier (approx.)	1	2	4	0.8	
Bluetooth 5 Requirement	Mandatory	Optional	Optional	Optional	

5 Modulacja cyfrowa PSK (Phase-Shift Keying)

- Zadanie polega na zaimplementowaniu modulatorów i demodulatorów dla wybranych modulacji cyfrowych (BPSK, QPSK, 8-PSK, QAM) i modeli zakłóceń w kanale.
- Symulacyjne badanie skuteczności transmisji dla różnych modulacji i poziomów zakłóceń.

6 Implementacja kodera i dekodera kodu BCH

 Zadanie polega wykonaniu własnej implementacji kodera i dekodera wybranego kodu BCH (implementacja kodera i uproszczonego dekodera np. wg Mochnacki Kody korekcyjne)

 Badanie skuteczności korekcji o krotności i rodzajów (niezależności)

> Kody BCH t – liczba korygowanych błędów n-k – liczba pozycji kontrolnych W. Mochnacki, Kody korekcyjne

اِ	I I _		_ [<u>. I</u>		-				_ 1_					
.[m	n	k	t	m	n	k	t	m	n	k	t	m	n	k	t
I	3	7	4	1	6	63	10	13	7	127	15	27	8	255	123	19
l	4	15	11	1			7	15			8	31			115	21
1			7	2	7	127	120	1	8	255	247	1			107	22
ı			5	3			113	2			239	2			99	23
ı	5	31	26	1			106	3			231	3			91	25
ı			21	2			99	4			223	4			87	26
ı			16	3			92	5			215	5			79	27
ı			11	5			85	6			207	6			71	29
ı			6	7			78	7			199	7			63	30
I	6	63	57	1			71	9			191	8			55	31
ı			51	2			64	10			187	9			47	42
ı			45	3			57	11			179	10			45	43
ı			39	4			50	13			171	11			37	45
ı			36	5			43	14			163	12			29	47
ı			30	6			36	15			155	13			21	55
ı			24	7			29	21			147	14			13	59
ı			18	10			22	23			139	15			9	63
ı			16	11							131	18				

7 Niezawodność systemu naprawialnego, SLA

- Zadanie polega opracowaniu symulatora systemu naprawialnego o zadanej strukturze i zadanych parametrach – czasy życia i czasy napraw elementów. Model czasu życia może zakładać starzenie się elementów (rosnąca funkcja intensywności uszkodzeń).
- Symulacyjne badanie dostępności systemu (i in. miar opisujących jakość usług) w zależności od jakości elementów i czasów napraw (umów serwisowych)
- Przykładowy system: model serwerowni, analizujemy parametry usług, które można zaoferować klientom (SLA – Service Level Agreement)
- Wariant tego zadania: Model Markowa analiza wpływu napraw prewencyjnych na dostępność systemu (preventive maintenance planning – wg Wykładu 8)

Przykładowa struktura systemu

Umowa SLA standard

Warianty umowy SLA

Poziom serwisu	Dostęp ność	llość przerw	maksymal na długość przerwy	średni czas naprawy	koszt utrzymani a/rok	do zapłaty/ro k	kara za przekrocze nie/rok
standard	>95%	<52	<200	<50	430 000	535 000	100 000
szansa na osiągnięcie	99.8%	98.7%	98.7%	96%			93.3%
premium	>99%	<22	<70	<24	915 000	1 050 000	437 500
szansa na osiągnięcie	98.4%	96.8%	96.6%	95.1%			87,5%
ultra premium	>99.9%	<3	<32	<24	2 300 000	2 500 000	1 250 000
szansa na osiągnięcie	98.5%	98.3%	96.2%	96.1%			89,5%

8 Scrambling

- Długie ciągi zer lub jedynek w przesyłanym sygnale cyfrowym mogą powodować utratę synchronizacji pomiędzy nadajnikiem a odbiornikiem. W celu uniknięcia tego problemu, w koderze stosuje się skramblery, które zamieniają niektóre bity na odwrotne za pomocą sekwencji pseudolowej (rejestr LFSR). W dekoderze wykonuje się operację odwrotną.
- Celem projektu jest poznanie, zaimplementowanie i zbadanie własności różnych scramblerów: addytywnych, multiplikatywnych, opartych na różnych wielomianach generujących sekwencje pseudolosową (rejestr LFSR), np. V.34, DVB, BLE itd.

8 Scrambling

Przykładowy scrambler (whitening) stosowany w BLE 5

https://www.allaboutcircuits.com/technical-articles/long-distance-bluetooth-low-energy-bit-data-paths

9 Jednostka arytmetyczna z detekcją błędów

 Zadanie polega na opracowaniu jednostki arytmetycznej (minimum dodawanie i mnożenie liczb bez znaku) z detekcyjnym kodem resztowym, który pozwoli wykrywać błędy w obliczeniach. Implementacja symulatora jednostki logicznej z możliwością wprowadzania wybranych rodzajów błędów na różnych etapach działania. Analiza skuteczności wykrywania błędów.

10 System tolerujący uszkodzenia czujników z głosowaniem

Zadanie polega na rozważeniu systemu tolerującego uszkodzenia składającego się z pewnej liczby czujników lub kanałów obliczeniowych, zwielokrotnionych (min. 3) celem podwyższenia niezawodności, znajdujących zastosowanie w tzw. systemach krytycznych, których uszkodzenie może zagrażać zdrowiu lub życiu ludzkiemu (np. system wspomagania hamulców ABS, kolejowe lub lotnicze systemy sterowania, etc.). Wyniki dostarczane przez całkowicie sprawne czujniki lub kanały obliczeniowe w zasadzie powinny być identyczne lub przynajmniej zbliżone do siebie. Wynik uznany za poprawny jest wybierany z użyciem algorytmu głosującego (istnieje szereg modeli do wyboru). Celem projektu jest implementacja i porównanie różnych algorytmów głosowania dla róznych modeli błędów i uszkodzeń.