원주각의 성질

#1 한 호에 대한 원주각의 크기는 그 호에 대한 중심각의 크기의 ()배이다.

원주각 \angle APB와 원의 중심 \bigcirc 의 위치 관계는 점 P의 위치에 따라 다음과 같이 세 가지 경우로 나눌 수 있다.

● ∠APB의 한 변 위에 중심 O가 있는 경우

오른쪽 그림에서 Δ OPA는 (=) 인 이등변삼각형 이므로

② ∠APB의 내부에 중심 O가 있는 경우 오른쪽 그림과 같이 지름 PQ를 그으면 **①**에 의하여

 $\angle APB = \angle APQ + \angle BPQ = (\angle AOQ + \angle BOQ) =$ 이다.

③ ∠APB의 외부에 중심 O가 있는 경우 오른쪽 그림과 같이 지름 PQ를 그으면 **①**에 의하여

 $\angle APB = \angle QPB - \angle QPA = (\angle QOB - \angle QOA) =$

한편, 한 호에 대한 원주각은 무수히 많지만, 그 호에 대한 중심각은 하나이므로 한 호에 대한 원주 각의 크기는 모두 ().

#2 원에 내접하는 사각형

오른쪽 그림과 같이 원 O에 내접하는 사각형 ABCD에서 호 BCD, 호 BAD에 대한 중심각을 각각 $\angle a$, $\angle c$ 라고 하면 원주각과 중심각 사이의 관계에 의하여

 \angle A = \Box \angle a, \angle C = \Box \angle c 이다. 이때 \angle a + \angle c = \Box 이므로 \angle A + \angle C = \Box (\angle a + \angle c) = \Box 이다. 마찬가지로 \angle B + \angle D = \Box .

또, 사각형에서 한 쌍의 대각의 크기의 합이 ()이면 이 사각형은 원에 내접한다.

#3 현과 접선이 이루는 각

● ∠BAT가 직각인 경우

오른쪽 그림과 같이 \angle BAT = 90° 일 때, 현 AB는 원 O의 지름이다. 이때 \angle BCA 는 반원에 대한 원주각이므로 \angle BCA = 이다.

따라서 ∠BAT= 이다.

② ∠BAT가 예각인 경우

오른쪽 그림과 같이 지름 AD와 선분 CD를 그으면

 $\angle DAT = \angle DCA = \boxed{01}$,

∠BAD와 는 BD에 대한 (

)이므로

_____이다. 따라서

 $\angle BAT = \angle DAT -$ 이다.

❸ ∠BAT가 둔각인 경우

오른쪽 그림과 같이 지름 AD와 선분 CD를 그으면

 $\angle DAT = \angle DCA = \boxed{0|1}$

∠BAD와 ∠BCD는 BD에 대한 ()이므로

이다. 따라서

