此郊紅大学 博士学位论文

论文题目:越南高等教育外部质量保证体系研究

作 者: 张氏越祯

导 师: 高益民 教授

系别年级: 教育学部 2019 级

学 号: 201939010022

学科专业: 比较教育学

完成日期: 2025年7月

北京师范大学学位办

北京师范大学学位论文原创性声明

本人郑重声明: 所呈交的学位论文,是本人在导师的指导下,独立进行研究工作所取得的成果。除文中已经注明引用的内容外,本论文不含任何其他个人或集体已经发表或撰写过的作品成果。对本文的研究做出重要贡献的个人和集体,均已在文中以明确方式标明。本人完全意识到本声明的法律结果由本人承担。

学位论文作者签名:

日期: 年 月 日

学位论文使用授权书

学位论文作者完全了解北京师范大学有关保留和使用学位论文的规定,即:研究生在校攻读学位期间论文工作的知识产权单位属北京师范大学。学校有权保留并向国家有关部门或机构送交论文的复印件和电子版,允许学位论文被查阅和借阅;学校可以公布学位论文的全部或部分内容,可以允许采用影印、缩印或其它复制手段保存、汇编学位论文。保密的学位论文在解密后适用于本授权书。

本人签名:	日期 :	
导师签名:	日期:	

越南高等教育外部质量保证体系研究

摘要

本文研究越南高等教育外部质量保证体系的发展现状、存在问题及改进策略。随着越南高等教育的快速发展,建立完善的外部质量保证体系对于提升教育质量、增强国际竞争力具有重要意义。

研究采用文献分析、比较研究和案例分析等方法,系统梳理了越南高等教育外部质量保证体系的发展历程,分析了当前体系的结构特点、运行机制和实际效果。研究发现,越南在高等教育外部质量保证方面已取得一定进展,但仍存在体系不够完善、标准不够统一、实施效果有待提升等问题。

针对这些问题,本文提出了完善法律法规、统一质量标准、加强机构建设、提升评估能力等改进建议。研究对于推动越南高等教育质量保证体系建设,提升教育质量具有重要的理论和实践意义。

本文的主要创新点包括:

- 系统分析了越南高等教育外部质量保证体系的发展现状;
- 深入探讨了体系存在的问题及其成因:
- 提出了针对性的改进策略和建议。

关键词是为了文献标引工作、用以表示全文主要内容信息的单词或术语。关键词不超过 5 个,每个关键词中间用分号分隔。(模板作者注:关键词分隔符不用考虑,模板会自动处理。英文关键词同理。)

关键词: 越南高等教育;外部质量保证;质量评估;教育管理;比较教育

Research on External Quality Assurance System of Vietnamese Higher Education

ABSTRACT

This dissertation examines the current state, challenges, and improvement strategies of the external quality assurance system in Vietnamese higher education. With the rapid development of Vietnamese higher education, establishing a comprehensive external quality assurance system is crucial for enhancing educational quality and strengthening international competitiveness.

The research employs literature analysis, comparative studies, and case analysis methods to systematically review the development process of Vietnam's external quality assurance system in higher education, analyzing the structural characteristics, operational mechanisms, and actual effectiveness of the current system. The study finds that Vietnam has made certain progress in external quality assurance for higher education, but there are still issues such as an incomplete system, inconsistent standards, and room for improvement in implementation effectiveness.

Addressing these issues, this dissertation proposes improvement suggestions including perfecting laws and regulations, unifying quality standards, strengthening institutional building, and enhancing evaluation capabilities. The research has important theoretical and practical significance for promoting the construction of Vietnam's higher education quality assurance system and improving educational quality.

The main innovations of this dissertation include:

- Systematic analysis of the current development state of Vietnam's external quality assurance system in higher education;
- In-depth exploration of system problems and their causes;
- Proposal of targeted improvement strategies and recommendations.

Key words are terms used in a dissertation for indexing, reflecting core information of the dissertation. An abstract may contain a maximum of 5 key words, with semi-colons used in between to separate one another.

KEY WORDS: Vietnamese higher education; external quality assurance; quality assessment; ed-

ucational management; comparative education

目 录

摘 要 …]
ABSTRAC	CT
插图索引	V
表格索引	VI
第1章	中华人民共和国 2
1.1 其它	2例子2
1.1.1	绘图····································
1.1.2	插图
1.1.2	2.1 一个图形 2
参考文献	4
附录 I 乡	朴文资料原文
I.1 Sing	gle-Objective Programming · · · · · · · 5
I.1.1	Linear Programming · · · · · · · · · · · · · · · · · · ·
I.1.2	Nonlinear Programming · · · · · · · · · · · · · · · · · · ·
附录 II	外文资料的调研阅读报告或书面翻译
II.1 单目	目标规划
II.1.1	线性规划8
II.1.2	非线性规划 9
附录 III	其它附录10
学术成果	11
孙谢	

插图索引

图 1	和田 Yfig 制図	
1 K	11) 11 WII WILL	

表格索引

表零	正常附录表格的例子	 3

Đây là một câu có trích dẫn trong footnote $^{\scriptsize \textcircled{\tiny $\mathbb Q$}}$,

① SMITH J, DAVIS M. Advances in machine learning: A comprehensive survey[J]. Journal of Computer Science, 2020, 15(3): 245-260

第1章 中华人民共和国

1.1 其它例子

在第??章中我们学习了贝叶斯公式??,这里我们复习一下:

$$p(y|\mathbf{x}) = \frac{p(\mathbf{x}, y)}{p(\mathbf{x})} = \frac{p(\mathbf{x}|y)p(y)}{p(\mathbf{x})}$$

1.1.1 绘图

本模板不再预先装载任何绘图包(如 pstricks, pgf 等),完全由你自己来决定。个人觉得 pgf 不错,不依赖于 Postscript。此外还有很多针对 LATEX 的 GUI 作图工具,如 XFig(jFig), WinFig, Tpx, Ipe, Dia, Inkscape, LaTeXPiX, jPicEdt, jaxdraw 等等。

1.1.2 插图

强烈推荐《IATeX 2e插图指南》!关于子图形的使用细节请参看 subfig 的说明文档。

1.1.2.1 一个图形

一般图形都是处在浮动环境中。之所以称为浮动是指最终排版效果图形的位置不一定与源文件中的位置对应 $^{\circ}$,这也是刚使用 $\text{LAT}_{E}X$ 同学可能遇到的问题。如果要强制固定浮动图形的位置,请使用 float 宏包,它提供了 [H] 参数。比如图 1。

图 1 利用 Xfig 制图

大学之道,在明明德,在亲民,在止于至善。知止而后有定;定而后能静;静而后能安;安而后能虑;虑而后能得。物有本末,事有终始。知所先后,则近道矣。古之欲明明德于天下者,先治其国;欲治其国者,先齐其家;欲齐其家者,先修其身;欲修其身者,先正其心;欲正其心者,先诚其意;欲诚其意者,先致其知;致知在格物。物格而后知至;

① This is not a bug, but a feature of LATEX!

知至而后意诚;意诚而后心正;心正而后身修;身修而后家齐;家齐而后国治;国治而后 天下平。自天子以至于庶人,壹是皆以修身为本。其本乱而未治者否矣。其所厚者薄,而 其所薄者厚,未之有也!

——《大学》

古之学者必有师。师者,所以传道受业解惑也。人非生而知之者,孰能无惑?惑而不从师,其为惑也,终不解矣。生乎吾前,其闻道也固先乎吾,吾从而师之;生乎吾後,其闻道也亦先乎吾,吾从而师之。吾师道也,夫庸知其年之先後生於吾乎!是故无贵无贱无长无少,道之所存,师之所存也。

嗟乎!师道之不传也久矣,欲人之无惑也难矣。古之圣人,其出人也远矣,犹且从师而问焉;今之众人,其下圣人也亦远矣,而耻学於师。是故圣益圣,愚益愚。圣人之所以为圣,愚人之所以为愚,其皆出於此乎?爱其子,择师而教之,於其身也,则耻师焉,惑焉。彼童子之师,授之书而习其句读者,非吾所谓传其道、解其惑者也。句读之不知,惑之不解,或师焉,或不焉,小学而大遗,吾未见其明也。巫医、乐师、百工之人不耻相师,士大夫之族曰"师"曰"弟子"之云者,则群聚而笑之。问之,则曰:彼与彼年相若也,道相似也,位卑则足羞,官盛则近谀。呜呼!师道之不复,可知矣。巫医、乐师、百工之人。吾子不齿,今其智乃反不能及,其可怪也欤!圣人无常师。孔子师郯子、苌子、师襄、老聃。郯子之徒,其贤不及孔子。孔子曰:"三人行,必有我师。"是故弟子不必不如师,师不必贤於弟子。闻道有先後,术业有专攻,如是而已。

李氏子蟠,年十七,好古文、六艺,经传皆通习之,不拘於时,学於余。余嘉其能行古道,作师说以贻之。

参考文献

[1] SMITH J, DAVIS M. Advances in machine learning: A comprehensive survey[J]. Journal of Computer Science, 2020, 15(3): 245-260.

附录 I 外文资料原文

As one of the most widely used techniques in operations research, *mathematical programming* is defined as a means of maximizing a quantity known as *objective function*, subject to a set of constraints represented by equations and inequalities. Some known subtopics of mathematical programming are linear programming, nonlinear programming, multiobjective programming, goal programming, dynamic programming, and multilevel programming^[1].

It is impossible to cover in a single chapter every concept of mathematical programming. This chapter introduces only the basic concepts and techniques of mathematical programming such that readers gain an understanding of them throughout the book^[2,3].

I.1 Single-Objective Programming

The general form of single-objective programming (SOP) is written as follows,

$$\begin{cases} \max f(x) \\ \text{subject to:} \end{cases}$$

$$g_j(x) \le 0, \quad j = 1, 2, \dots, p$$

$$(123)$$

which maximizes a real-valued function f of $x = (x_1, x_2, \dots, x_n)$ subject to a set of constraints.

Definition I.1: In SOP, we call x a decision vector, and x_1, x_2, \dots, x_n decision variables. The function f is called the objective function. The set

$$S = \left\{ x \in \mathfrak{R}^n \mid g_j(x) \le 0, \ j = 1, 2, \cdots, p \right\}$$
 (456)

is called the feasible set. An element x in S is called a feasible solution.

Definition I.2: A feasible solution x^* is called the optimal solution of SOP if and only if

$$f(x^*) \ge f(x) \qquad \qquad \vec{x} \quad (-)$$

for any feasible solution x.

One of the outstanding contributions to mathematical programming was known as the Kuhn-Tucker conditions (—) . In order to introduce them, let us give some definitions. An inequality

constraint $g_j(x) \le 0$ is said to be active at a point x^* if $g_j(x^*) = 0$. A point x^* satisfying $g_j(x^*) \le 0$ is said to be regular if the gradient vectors $\nabla g_j(x)$ of all active constraints are linearly independent.

Let x^* be a regular point of the constraints of SOP and assume that all the functions f(x) and $g_j(x)$, $j = 1, 2, \dots, p$ are differentiable. If x^* is a local optimal solution, then there exist Lagrange multipliers λ_j , $j = 1, 2, \dots, p$ such that the following Kuhn-Tucker conditions hold,

$$\begin{cases} \nabla f(x^*) - \sum_{j=1}^p \lambda_j \nabla g_j(x^*) = 0 \\ \lambda_j g_j(x^*) = 0, \quad j = 1, 2, \dots, p \\ \lambda_j \ge 0, \quad j = 1, 2, \dots, p. \end{cases}$$

If all the functions f(x) and $g_j(x)$, $j = 1, 2, \dots, p$ are convex and differentiable, and the point x^* satisfies the Kuhn-Tucker conditions ((\Box)), then it has been proved that the point x^* is a global optimal solution of SOP.

I.1.1 Linear Programming

If the functions f(x), $g_j(x)$, $j = 1, 2, \dots, p$ are all linear, then SOP is called a *linear programming*.

The feasible set of linear is always convex. A point x is called an extreme point of convex set S if $x \in S$ and x cannot be expressed as a convex combination of two points in S. It has been shown that the optimal solution to linear programming corresponds to an extreme point of its feasible set provided that the feasible set S is bounded. This fact is the basis of the *simplex algorithm* which was developed by Dantzig as a very efficient method for solving linear programming.

Table 1 This is an example for manually numbered table, which would not appear in the list of tables

Network Topology		# of nodes	# of clients		ts	Server
GT-ITM	Waxman	600	2%	10%	50%	Max. Connectivity
	Transit-Stub					
Inet-2.1		6000				
Xue	Rui	Ni	BNUTHESIS			Tireie
Auc	ABCDEF		BINOTHESIS			

Roughly speaking, the simplex algorithm examines only the extreme points of the feasible set, rather than all feasible points. At first, the simplex algorithm selects an extreme point as the initial point. The successive extreme point is selected so as to improve the objective function value.

The procedure is repeated until no improvement in objective function value can be made. The last extreme point is the optimal solution.

I.1.2 Nonlinear Programming

If at least one of the functions f(x), $g_j(x)$, $j = 1, 2, \dots, p$ is nonlinear, then SOP is called a nonlinear programming.

A large number of classical optimization methods have been developed to treat special-structural nonlinear programming based on the mathematical theory concerned with analyzing the structure of problems.

Now we consider a nonlinear programming which is confronted solely with maximizing a real-valued function with domain \Re^n . Whether derivatives are available or not, the usual strategy is first to select a point in \Re^n which is thought to be the most likely place where the maximum exists. If there is no information available on which to base such a selection, a point is chosen at random. From this first point an attempt is made to construct a sequence of points, each of which yields an improved objective function value over its predecessor. The next point to be added to the sequence is chosen by analyzing the behavior of the function at the previous points. This construction continues until some termination criterion is met. Methods based upon this strategy are called ascent methods, which can be classified as direct methods, gradient methods, and Hessian methods according to the information about the behavior of objective function f. Direct methods require only that the function can be evaluated at each point. Gradient methods require the evaluation of first derivatives of f. Hessian methods require the evaluation of second derivatives. In fact, there is no superior method for all problems. The efficiency of a method is very much dependent upon the objective function.

附录 Ⅱ 外文资料的调研阅读报告或书面翻译

Ⅱ.1 单目标规划

北冥有鱼,其名为鲲。鲲之大,不知其几千里也。化而为鸟,其名为鹏。鹏之背,不知 其几千里也。怒而飞,其翼若垂天之云。是鸟也,海运则将徙于南冥。南冥者,天池也。

$$p(y|\mathbf{x}) = \frac{p(\mathbf{x}, y)}{p(\mathbf{x})} = \frac{p(\mathbf{x}|y)p(y)}{p(\mathbf{x})}$$
(123)

吾生也有涯,而知也无涯。以有涯随无涯,殆已!已而为知者,殆而已矣!为善无近名,为恶无近刑,缘督以为经,可以保身,可以全生,可以养亲,可以尽年。

Ⅱ.1.1 线性规划

庖丁为文惠君解牛,手之所触,肩之所倚,足之所履,膝之所倚,砉然响然,奏刀騞 然,莫不中音,合于桑林之舞,乃中经首之会。

Network Topology # of nodes # of clients Server Waxman **GT-ITM** 600 Transit-Stub 2% Max. Connectivity 10% 50% Inet-2.1 6000 Ni Rui Xue **BNUTHESIS ABCDEF**

表 1 这是手动编号但不出现在索引中的一个表格例子

表一 正常附录表格的例子

Network Topology		# of nodes	# of clients		its	Server
GT-ITM	Waxman Transit-Stub	600	2%	10%	50%	Max. Connectivity
Inet-2.1		6000				
Xue	Rui	Ni	BNUTHESIS			Tirraia
Aue	ABCDEF		BINUTHESIS			HE515

文惠君曰:"嘻,善哉! 技盖至此乎?"庖丁释刀对曰:"臣之所好者道也,进乎技矣。始臣之解牛之时,所见无非全牛者;三年之后,未尝见全牛也;方今之时,臣以神遇而不

以目视,官知止而神欲行。依乎天理,批大郤,导大窾,因其固然。技经肯綮之未尝,而况大坬乎!良庖岁更刀,割也;族庖月更刀,折也;今臣之刀十九年矣,所解数千牛矣,而刀刃若新发于硎。彼节者有间而刀刃者无厚,以无厚入有间,恢恢乎其于游刃必有余地矣。是以十九年而刀刃若新发于硎。虽然,每至于族,吾见其难为,怵然为戒,视为止,行为迟,动刀甚微,謋然已解,如土委地。提刀而立,为之而四顾,为之踌躇满志,善刀而藏之。"

文惠君曰:"善哉!吾闻庖丁之言,得养生焉。"

II.1.2 非线性规划

孔子与柳下季为友,柳下季之弟名曰盗跖。盗跖从卒九千人,横行天下,侵暴诸侯。 穴室枢户,驱人牛马,取人妇女。贪得忘亲,不顾父母兄弟,不祭先祖。所过之邑,大国 守城,小国入保,万民苦之。孔子谓柳下季曰:"夫为人父者,必能诏其子;为人兄者,必 能教其弟。若父不能诏其子,兄不能教其弟,则无贵父子兄弟之亲矣。今先生,世之才士 也,弟为盗跖,为天下害,而弗能教也,丘窃为先生羞之。丘请为先生往说之。"

柳下季曰:"先生言为人父者必能诏其子,为人兄者必能教其弟,若子不听父之诏,弟不受兄之教,虽今先生之辩,将奈之何哉?且跖之为人也,心如涌泉,意如飘风,强足以距敌,辩足以饰非。顺其心则喜,逆其心则怒,易辱人以言。先生必无往。"

孔子不听, 颜回为驭, 子贡为右, 往见盗跖。

附录 Ⅲ 其它附录

前面两个附录主要是给本科生做例子。其它附录的内容可以放到这里,当然如果你愿意,可以把这部分也放到独立的文件中,然后将其\input 到主文件中。

学术成果

- 1. Yang Y, Ren T L, Zhang L T, et al. Miniature microphone with silicon-based ferroelectric thin films. Integrated Ferroelectrics, 2003, 52:229-235. (SCI 收录, 检索号:758FZ.)
- 2. 杨轶, 张宁欣, 任天令, 等. 硅基铁电微声学器件中薄膜残余应力的研究. 中国机械工程, 2005, 16(14):1289-1291. (EI 收录, 检索号:0534931 2907.)
- 3. 杨轶, 张宁欣, 任天令, 等. 集成铁电器件中的关键工艺研究. 仪器仪表学报,2003, 24(S4):192-193. (EI 源刊.)
- 4. Yang Y, Ren T L, Zhu Y P, et al. PMUTs for handwriting recognition. Inpress. (已被 Integrated Ferroelectrics 录用. SCI 源刊.)
- 5. Wu X M, Yang Y, Cai J, et al. Measurements of ferroelectric MEMS microphones. Integrated Ferroelectrics, 2005, 69:417-429. (SCI 收录, 检索号:896KM.)
- 6. 贾泽, 杨轶, 陈兢, 等. 用于压电和电容微麦克风的体硅腐蚀相关研究. 压电与声光, 2006, 28(1):117-119. (EI 收录, 检索号:06129773469.)
- 7. 伍晓明, 杨轶, 张宁欣, 等. 基于 MEMS 技术的集成铁电硅微麦克风. 中国集成电路, 2003, 53:59-61.

致 谢

衷心感谢导师 xxx 教授和物理系 xxx 副教授对本人的精心指导。他们的言传身教将使 我终生受益。

在美国麻省理工学院化学系进行九个月的合作研究期间,承蒙 xxx 教授热心指导与帮助,不胜感激。感谢 xx 实验室主任 xx 教授,以及实验室全体老师和同学们的热情帮助和支持!本课题承蒙国家自然科学基金资助,特此致谢。

感谢清华的薛瑞尼及相关同学,他们制作维护的清华学位论文模板极大的方便了 LAT_EX 用户的论文写作。

> 张氏越祯 2025 年 7 月