

Tutorial. May 12, 2023 2-6 pm

Distributed Training of Deep Neural Networks

Abhinav Bhatele, Siddharth Singh, Daniel Nichols Department of Computer Science

Data parallelism

- Work on different parts of the data in parallel on different GPUs
- Example: PyTorch's DDP, DeepSpeed's ZeRO

Work distribution in data parallelism

- Each worker has a full copy of the entire NN and processes different mini-batches
- All reduce operation to synchronize gradients

Partition batch

equally across

GPUs

Using DDP

 Code location in the tutorial repo: session_2_data_parallelism/train_ddp.py

```
cd session_2_data_parallelism/
sbatch --reservation=isc2024 run ddp.sh
```


Using DeepSpeed

- Using DDP is limited to smaller model sizes
- ZeRO implements memory optimizations to fit larger models on a GPU
- Code location in the tutorial repo:
 session_2_data_parallelism/train_deepspeed.py

```
sbatch --reservation=isc2024 run_deepspeed.sh
```


Abhinav Bhatele and Siddharth Singh Department of Computer Science bhatele@umd.edu, ssingh37@umd.edu

