Mathematics Department Perth Modern

ormula sheet provi	zəY :bəbiv	
lask weighting:	% 0ı ⁻	
Narks available:	——40 — marks	
		ators approved for use in the
:sməti laiɔəqō	Drawing instruments, t of	tes, notes on one unfolded sheel
:sməti brabnas	Pens (blue/black preferrec sharpener, correction fluic	cils (including coloured), eraser, ruler, highlighters
Materials required:	: No calculators nor classpa	
Number of question	:su	
ime allowed for thi	snim040nins	
lask type:	уesbouse	
:əmen tnəbut:	Теасћег	 :
Course	12 Methods	Year12
		SA SCHOOL

			Ьаве	ι
working to obtain full marks.	2 marks require	worth more than	ote: All part questions	N
		səy :bəb	ormula sheet provio	ь

Determine $\frac{dy}{dx}$ for each of the following.(No need to simplify) $y = \frac{3}{x}$

$$y = \frac{3}{x}$$

b)
$$y = (3x^2 + 4x)(5x - 1)$$

$$y = \frac{x+1}{5-x^2}$$

Q2 (2 & 3 = 5 marks) (3.1.8)

Consider $f(x) = (4x - 2)^5$ a) Determine f'(0)

- b) Determine the equation of the tangent at x = 0

Perth Modern

Mathematics Department

Q3 (1, 1, 3 & 3 = 8 marks) (3.1.7-3.1.8, 3.1.15) Consider the following functions $\int_{V} \frac{8.9}{V}$.

- x = x netermine the derivative of x = x (s
- 0=x mhem $(x)_{\theta} \mathcal{E}$ to derivative of
- c) Determine the derivative of $\int (x)g(x) dx = 0$.

d) Determine the derivative of $\int_{-1}^{1} (g(x))^{n} dx$ when x = 0.

Mathematics Department Perth Modern

.Q7 (4 marks) (3.1.16) Consider a hollow cylindrical container that has one open end. The surface area of the container is $50 {\rm cm}^2$. Determine the **exact** value of the radius of the closed end that maximises the volume. (Justify) (Hint- refer to formula sheet)

Total surface area 50cm^2

6 P a g e

Q4 (2, 3 & 2 = 7marks) (3.1.13 – 3.1.17)

The following is the graph of f'(x), the derivative of f'(x).

a) State the x values of all stationary points of f(x).

b) State the nature of each stationary point above and justify.

c) State approximate x value for an infection point(s) and explain why.

Q5 (3 & 2 = 5 marks) (3.1.12)

Mathematics Department

The displacement of a body from the origin O, at time t seconds, is x metres where

$$x = \frac{t^3}{3} - \frac{5t^2}{2} + 6t + 1$$

a) Determine the time(s) that the velocity is zero metres/second.

b) Determine when the acceleration is zero.

Q6 (3 marks) (3.1.10)

The period T of a swinging pendulum of length I is given by $T=2\pi\sqrt{\frac{I}{10}}$

Using the increments formula, determine the approximate percentage change in T if I changes by 3%