VLSI SYSTEM DESIGN - FINAL PROJECT

A CNN accelerator for fruit recognition

男童俱樂部

黄昱澄 黄冠予 王昱承 俞杉麒 陳奕萍 賴致文

CONTENTS

1 System architecture

NN architecture HW architecture EPU architecture

Full sys verification

Verification
EPU verification

Overall results

Speed perf Area perf Power perf

1 System architecture

- 1. NN architecture
- 2. HW architecture
- 3. EPU architecture

NN architecture

	Imap	Kernel	Omap	Note	Time (s)
Conv 0	32*32*3	3*3*3*60	32*32*60	3x3 conv	0.014
Conv 1	32*32*60	1*1*60*33	32*32*33	1x1 conv	0.051
Conv 2	32*32*33	1*1*33*20	32*32*20	1x1 conv	0.019
Pool 0	32*32*20	32*32	1*1*20	32x32 Max	0.002

Dataset:

Source: Fruit Classification (kaggle)

Number of classes: 20 (fruits and vegetables)

Image size: **32*32**

Train: 200 img/per fruit, Total = 4000 images

Test: Average 50 img/per fruit, Total = 1000 images

Final Accuracy = 80.6%

NN architecture

For Example : Conv0

HW architecture

EPU architecture

EPU structure

- Weight buffer(180KB)
- Bias buffer(2KB)
- Input buffer(384KB)
- Output buffer(384KB)

EPU mode

- Conv3x3
 - 4PE,each with 9 MACs
 - zero padding
 - Relu
- Convlxl
 - 1PE with 9 MACs
 - Relu
- Max pooling

2 Verification

- 1. EPU Verify
- 2. FULL Sys Verify

EPU verification

- A. Stand-alone testbench for EPU
- B. TB loads input/weight/bias data into RTL-simulated SRAM buffers.
- C. TB pulls start signal to high
- D. EPU starts computation and writes results to output buffer.
- E. EPU pulls finish signal to high
- F. TB verify the content of output buffer.

	lmap	Kernel	Omap	Note	Time (s)
Conv 0	32*32* 3	3*3*3*60	32*32*60	3x3 conv	0.014
Conv 1	32*32* 60	1*1*60*33	32*32*33	lx1 conv	0.051
Conv 2	32*32* 33	1*1*33*20	32*32*20	1*1 conv	0.019
Pool 0	32*32* 20	32*32	1*1*20	32*32 Max	0.002

Full sys verification

Program flow

- A. Assume ALL input/weight/bias data in DRAM.
- B. CPU runs booting program with DMA.
- C. Use DMA to move data from DRAM to EPU's buffer.
- D. CPU writes to EPU ctrl registers.
- E. 8-bit weight shared by that layer
- F. "start" signal
- G. EPU writes to output buffer as CPU stuck at WFI.
- H. EPU finishes and send interrupt. CPU continues with ISR.
 - I. CPU writes ctrl signals for next layer.
- J. Trigger "In-Output buffer swap"
- K. Output of this layer is the input of next layer
- L. If done, DMA move data from EPU to DRAM.
- M. TB verify the content of DRAM.

3

Overall results

- 1. Speed perf
- 2. Area perf
- 3. Power perf

Overall Results

Clock period	12.5ns		
Area	69447383.21 um^2		
Power	304.26555650mW		

Q&A