Colle 14 \sim 28 janvier 2016 \sim Colleur : Isenmann \sim MPSI \sim Trinôme :

Planche 1.

Question de cours. Montrer que K[X] est intègre.

Exercice 1. Soit $P \in \mathbb{C}[X]$ vérifiant qu'il existe $a \in \mathbb{C}^*$ telle que P(X + a) = P(X). Montrer que P est un polynôme constant.

Exercice 2. Déterminer le reste de la division euclidienne de $(X-2)^{2n} + (X-1)^n + 1$ par $X^2 - 3X + 2$.

Planche 2.

Question de cours. Montrer qu'un polynôme $P \in K[X]$ a au plus deg(P) racines.

Exercice 1. On pose $P_0(X) = 1$ et $P_1(X) = X$ et on définit la suite de polynômes (P_n) par $P_{n+1} = 2XP_n - P_n$. Calculer P_2, P_3, P_4 . Déterminer le degré de P_n et son coefficient dominant.

Exercice 2. Est-ce que le polynôme $X^5 - X^2 + 1$ admet une racine rationnelle?

Planche 3.

Question de cours. Quels sont les inversibles de K[X]?

Exercice 1. Soit $P \in \mathbb{R}[X]$. Soit $\lambda \in \mathbb{C}$ une racine de P. Montrer que $\overline{\lambda}$ est aussi racine avec la même multiplicité.

Exercice 2. Calculer $pgcd(X^m-1,X^n-1)$ pour n et m deux entiers.

Solutions - Planche 1.

Question de cours. Soit P et Q deux polynômes de K[X] tels que PQ = 0. Supposons que P et Q soient non nuls. Alors on note $P(X) = \sum_{k=0}^{n} a_k X^k$ où n est le degré de P et $Q(X) = \sum_{k=0}^{m} b_k X^k$ où m est le degré de Q et $a_k \in K$, $b_k \in K$. Par définition du degré, $a_n \neq 0$ et $b_m \neq 0$. Donc comme PQ = 0, alors le coefficient dominant de PQ est nul. Donc $a_n b_m = 0$. Par intégrité de K, $a_n = 0$ ou $b_m = 0$. C'est impossible. Donc un des deux polynômes est nul. K[X] est donc intègre.

Exercice 1. On va utiliser la méthode de "trop de racines donc nul". Pour cela on veut montrer que P est constant donc faut un truc du genre P-c avec c bien choisi.

On pose Q(X) = P(X) - P(0). Alors pour tout k entier Q(ka) = P(ka) - P(0) = 0. Donc Q a une infinité de racines. Donc Q = 0. Donc P est constant.

Exercice 2. Le reste est de degré au plus 1. Il est donc de la forme aX + b. Or on a $(X - 2)^{2n} + (X - 1)^n + 1 = P(X)(X^2 - 3X + 2) + aX + b$. On connaît pas P. Il faut donc évaluer ça aux bonnes valeurs pour déterminer a et b.

Or $X^2 - 3X + 2$ a quoi comme racines? 1 et 2. En 1 on obtient $(-1)^{2n} + 1 = a + b$. Donc a + b = 2. En 2 on obtient $1^n + 1 = 2a + b$. Donc 2a + b = 2. Donc en faisant la différence on a a = 0 et donc b = 2.

Solutions - Planche 2.

Question de cours. On va montrer l'assertion par récurrence sur le degré n de P. Si P est constant non nul, alors P n'a pas de racines. Donc l'assertion est bien vérifiée pour n=0. Supposons l'assertion vraie au rang n pour $n\geq 0$. Alors soit P un polynôme de degré n+1. Si P n'a pas de racines alors c'est bon P a moins de n+1 racines. Sinon, P a une racine a. Donc il existe Q de degré n-1 tel que P=(X-a)Q. Si P admet une autre racine $b\neq a$, alors 0=(b-a)Q(b). Donc Q(b)=0 et b est une racine de Q. Or par récurrence Q admet au plus n racines. Donc P admet au plus n autres racines. Finalement, P admet au plus n+1 racines.

On a donc bien prouvé l'assertion.

Exercice 1. Par récurrence, P_n est de degré n et de coefficient dominant 2^n .

Exercice 2. Si a/b est une racine rationnelle. On suppose que $\operatorname{pgcd}(a,b)=1$ (forme réduite). On injecte dans l'équation et on vire les dénominateurs parce qu'on gère mieux si on a pas de fractions. D'où $a^5-a^2b^3+b^5=0$. D'où $a^5=b^3(a^2-b^2)$. D'où b divise a^5 . C'est impossible car $\operatorname{pgcd}(a,b)=1$. Donc il n'y a pas de racine rationelle.

Solutions - Planche 3.

Question de cours. Soit P un polynôme inversible. Alors il existe Q un polynôme tel que PQ=1. Par égalité des degrés, P est de degré 0 donc constant non nul. Un tel polynôme convient. Donc les inversibles de K[X] sont les constantes non nuls.

Exercice 1. On écrit $P(X) = \sum a_k X^k$. Donc $P(\lambda) = \sum a_k \lambda^k$. On passe au conjugé. Ça passe très bien avec la somme et les produits. D'où $P(\overline{\lambda}) = \sum a_k \overline{\lambda}^k$ car a_k est réel. On fait pareil mais avec la dérivée pour montrer qu'elles ont même multiplicité.

Exercice 2. Première méthode : on se place dans \mathbb{C} . On montre que toute racine de $X^d - 1$ est racine de $X^n - 1$ et $X^m - 1$. Puis on montre que toute racine commune de $X^n - 1$ et de $X^m - 1$ est racine de $X^d - 1$. Pour ce dernier point on utilise Bezout : il existe u et v entier tel que d = un + vm.

En effet si $x \in \mathbb{C}$ est une racine commune. On a $x^n = 1$ et $x^m = 1$. Donc $x^d = x^{un+vm} = (x^n)^u(x^m)^v = 1$. Donc x est racine de $X^d - 1$.

Si x est racine de $X^d - 1$. Alors $x^d = 1$. Or d divise n. Donc il existe k tel que kd = n. Donc $x^n = (x^d)^k = 1^k = 1$. Donc x est racine de $X^n - 1$. De même x est racine de $X^m - 1$. Donc racine du pgcd.