IPL SCORE PREDICTION

By: Aric Sharma & Akshaj Jauhri

SOFT COMPUTING TECHNIQUES

OVERVIEW

Introduction

Problem

Dataset Description

- Model Architecture
- Loss Function and Optimization

Model Training

Model Evaluation

• Output

Conclusion

IPL SCORE PREDICTION

INTRODUCTION

Overview:

 Cricket is a highly popular sport, and accurate score predictions can enhance the viewing experience and assist teams in strategy formulation.

• Importance:

- Predictive analytics in sports provides insights into performance metrics.
- Accurate predictions can aid teams, analysts, and fans.

• Objective:

 To develop a predictive model using ANN to forecast total runs in a cricket match based on various factors.

PROBLEM

A wide range of factors can affect match outcomes, such as the batting team's strength, the venue, the batsman-bowler interaction, and match progression (early innings vs. late innings).

Small events (e.g., a key player getting out or a sudden change in weather) can drastically impact the score.

First Problem

Traditional score prediction models often rely on historical averages and can lack accuracy.

Second Problem

Factors influencing scores are numerous and complex, including player performance and match conditions.

DATASET DESCRIPTION

The dataset comprises IPL match data from 2007 to 2017, including various features influencing match outcomes.

- I venue: The location of the match.
- 2 bat_team: The team batting.
- bowl_team: The team bowling.

- 4 batsman (striker): The batsman currently facing the bowler.
- 5 bowler: The bowler delivering the ball.
- 6 total: The target variable (total runs scored).

SOURCE: KAGGLE

DATA PREPROCESSING

- Dropped unnecessary columns (date, runs, wickets, etc.) to focus on relevant features.
- Applied Label Encoding to convert categorical variables into numerical format.
- Used MinMax Scaling to normalize feature values, ensuring they fall within a specific range for model training.

MODELARCHITECTURE

Input Layer:

5 features (venue, bat_team, bowl_team, batsman, bowler).

First Hidden Layer: 512 neurons with ReLU activation.

- Second Hidden Layer: 256 neurons with ReLU activation.
- Output Layer:

 I neuron with linear activation function for regression.

MODELARCHITECTURE

LOSS FUNCTION AND OPTIMIZATION

LOSS FUNCTION

Huber Loss: Combines the benefits of Mean Squared Error (MSE) and Mean Absolute Error (MAE). It is less sensitive to outliers compared to MSE.

OPTIMIZER

Adam Optimizer: Adaptive learning rate optimization algorithm that is efficient for large datasets and problems with high dimensionality.

These choices improve model accuracy and convergence during training.

MODEL TRAINING

Epoch

100 iterations over the training dataset.

Batch Size

64 samples per gradient update.

Data Split

70% training and 30% testing.

```
Epoch 90/100
                             2s 3ms/step - loss: 15.2102 - val loss: 15.6866
832/832
Epoch 91/100
                             2s 3ms/step - loss: 15.2174 - val loss: 15.4433
832/832 -
Epoch 92/100
                             2s 3ms/step - loss: 15.1808 - val_loss: 16.2030
832/832 -
Epoch 93/100
                             2s 3ms/step - loss: 15.1707 - val_loss: 15.4484
832/832 •
Epoch 94/100
832/832 •
                             2s 3ms/step - loss: 15.1888 - val_loss: 15.4883
Epoch 95/100
                             2s 3ms/step - loss: 15.1642 - val loss: 15.3458
832/832 •
Epoch 96/100
832/832 •
                             3s 3ms/step - loss: 15.1045 - val_loss: 15.4861
Epoch 97/100
                             2s 3ms/step - loss: 15.1349 - val_loss: 14.7879
832/832
Epoch 98/100
832/832 •
                             2s 3ms/step - loss: 15.1200 - val loss: 15.5119
Epoch 99/100
                             2s 3ms/step - loss: 15.0197 - val loss: 15.1709
832/832
Epoch 100/100
                             2s 3ms/step - loss: 14.9420 - val loss: 15.4208
832/832 •
```

MODEL EVALUATION

Mean Square Error
MSE = 15.9102529434174

.

OUTPUT DEMO

CONCLUSION

- Developed an ANN model for predicting cricket match scores using historical data and player statistics.
- The model demonstrates the capability of ANNs to handle complex relationships in sports analytics.

IPL SCORE PREDICTION

THANKYOU