Méthode pratique d'estimation des ordres p et q

Pour estimer les ordres p ou q, on utilise les propriétés vues précédemment sur les formes des autocorrélogrammes $(\rho(h))$ ou des autocorrélogrammes partiels (a(h)). En particulier

- (i) pour les processus AR(p) l'autocorrélogramme partiel s'annule à partir de p (à gauche)
- (ii) pour les processus $MA\left(q\right)$ l'autocorrélogramme s'annule à partir de q (à droite)

imple: 1 5000 cluded observation	ns: 5000					
Autocorrelation	Partial Correlation		AC	PAC	Q-Stat	Prob
		1	-0.718	-0.718	2577.6	0.00
	—	2	0.661	0.302	4766.6	0.00
		3	-0.555	-0.015	6305.7	0.00
		4	0.478	-0.006	7450.1	0.00
	ı •	5	-0.415	-0.014	8314.1	0.00
	1 •	6	0.345	-0.028	8909.1	0.00
		7	-0.298	-0.003	9353.9	0.00
—	•	8	0.247	-0.010	9659.3	0.00
=	1 +	9	-0.208	0.004	9876.5	0.00
<u> </u>	1 +	10	0.178	0.008	10036.	0.00
•	1 +	11	-0.144	0.012	10140.	0.00
<u> </u>	•	12	0.115	-0.017	10206.	0.00
•	•	13	-0.092	0.003	10248.	0.00
į.	1 •	14	0.064	-0.020	10269.	0.00
	1 4	15	-0.039	0.022	10276.	0.00
i	1 4	16	0.024	0.003	10279.	0.00
		17	-0.010	0.000	10280.	0.00
,	1 +	18	0.002	0.002	10280.	0.00
i	1 4	19	0.009	0.007	10280.	0.00
	1 •	20	-0.020	-0.014	10282.	0.00
i	1 1	21	0.019	-0.012	10284.	0.00
i	1 1	22	-0.023	0.003	10287.	0.00

Autocorrelation	Partial Correlation		AC	PAC	Q-Stat	Pro
	_	1	-0.394	-0.394	776.33	0.0
	—	2	0.277	0.144	1159.8	0.0
	_	3	0.348	0.602	1764.0	0.0
-	—	4	-0.207	0.154	1979.2	0.0
	■	5	0.268	-0.127	2338.3	0.0
	—	6		-0.203	2338.4	0.0
	•	7	0.005	0.006	2338.5	0.0
	•	8		-0.090	2339.2	0.0
		9	-0.005		2339.3	0.0
	1 1	10	0.015	0.046	2340.4	0.0
	—	11	-0.012	0.211	2341.1	0.0
•			-0.002	0.079	2341.1	0.0
	■	13	0.007	-0.081	2341.4	0.0
			-0.019		2343.1	0.0
•		15	-0.001	-0.033	2343.1	0.0
•	l •	16	-0.001	-0.027	2343.1	0.0
		17	-0.024	-0.045	2346.0	0.0
1	•	18	0.021	0.065	2348.2	0.0
	•	19	-0.017	0.133	2349.5	0.0
	•	20	0.001	0.055	2349.5	0.0
	•	21	0.011	-0.063	2350.2	0.0
		22	-0.021	-0.098	2352.4	0.0

Remarque

S'il reste de la saisonnalité, celle-ci apparaîtra également dans les autocorrélogrammes

Statistique de Box-Pierce, ou test de "portmanteau"

Le test de Box-Pierce permet d'identifier les processus de bruit blanc (i.e. les processus aléatoires de moyenne nulle, de variance constante et non autocorrélés). Cette statistique permet de tester $cov(\varepsilon_t, \varepsilon_{t-h}) = 0$ pour tout h, soit $\rho(h) = 0$ pour tout h. Ce test s'écrit

$$\left\{ \begin{array}{l} H_{0}:\rho\left(1\right)=\rho\left(2\right)=\ldots=\rho\left(h\right)=0\\ H_{a}:\text{ il existe }i\text{ tel que }\rho\left(i\right)\neq0. \end{array} \right.$$

Pour effectuer ce test, on utilise la statistique de Box et Pierce (1970) Q, donnée par

$$Q_h = T \sum_{k=1}^h \widehat{\rho}_k^2,$$

où h est le nombre de retards, T est le nombre d'observations et $\hat{\rho}_k$ l'autocorrélation empirique. Asymptotiquement, sous H_0 , Q_h suit un χ^2 à h degrés de liberté. Nous rejetons l'hypothèse de bruit blanc au seuil h si Q est supérieure au quantile d'ordre $(1-\alpha)$ de la loi du χ^2 à h degrés de liberté.

Une statistique ayant de meilleurs propriétés asymptotiques peut être utilisée :

$$Q'_{h} = T \left(T+2\right) \sum_{k=1}^{h} \frac{\widehat{\rho}_{k}}{T-k},$$

qui suit asymptotiquement, sous H_0 une loi du χ^2 à h degrés de liberté. Ces tests sont appelés par les anglo-saxons 'portmanteau tests'

Exemple Cette statistique est généralement fournie avec l'autocorrélogramme (Q-stat). Les deux sorties cidessous correspondent aux valeurs pour 2 séries de résidus

nple: 1 1000 uded observation	ns: 1000						Sample: 1 1000 Included observati	ons: 1000					
Autocorrelation	Partial Correlation		AC	PAC	Q-Stat	Prob	Autocorrelation	Partial Correlation	٨	AC .	PAC	Q-Stat	
ili.	I di	1	0.000	0.000	0.0002	0.990	-	1 0	1 -0	.046	-0.046	2.0882	
10	1 1	2	0.010	0.010	0.1020	0.950	- III	4	2 -0	.011	-0.013	2.2062	
40	1 1	3	-0.027	-0.027	0.8191	0.845	•	- •	3 -0	.043	-0.044	4.0590	
10	1 1	4	0.057	0.057	4.0955	0.393		- 1	4 -0	.025	-0.029	4.6726	
1)1	10	5	0.019	0.020	4.4761	0.483	1)	4	5 0	.051	0.047	7.2646	
10	1 1	6	0.049	0.047	6.8518	0.335	1)0	4	6 0	.037	0.039	8.6435	
100	1	7	0.047	0.050	9.0869	0.246		. •	7 -0	.041	-0.039	10.341	
			-0.040		10.676	0.221	■ !	- I			-0.094	19.234	
40	1 1	9			11.310		Ψ.	4			-0.011	19.281	
10	1 1	10	0.009	0.006	11.388	0.328	1	4	10 0		-0.006	19.281	
4	1 1	11			11.556	0.398	1	4			-0.003	19.403	
40	1 1	12			11.629	0.476	1)1	- 1		.025	0.023	20.035	
•		13	-0.034		12.803	0.463	1)1	1 1		.024	0.039	20.620	
1)1	1	14	0.024	0.025	13.373	0.497	••	. •			-0.043	23.372	
1)1	10	15	0.017		13.650	0.552	Ψ.	40			-0.017		
1 1	1 1	16	0.016	0.016	13.914	0.605	' !	· •		.088	0.082		
10	1 1	17			14.005	0.667		40			-0.019	31.806	
111	1 1	18	0.013		14.190	0.717	Ψ.	40			-0.018	31.871	
10	1 1	19	-0.014		14.383	0.761		40			-0.016	32.580	
1/1	1 1	20	0.027	0.023	15.106	0.770	- II	1 1		.014	0.028	32.783	
']'	1 4	21	0.009		15.187	0.813		1 1			-0.031	33.350	
Ψ.	1 1	22	-0.009	-0.016	15.277	0.850	1)1	-1 de	22 0	.031	0.014	34.356	

La table du χ^2 est donnée ci-dessous. A titre comparatif, nous obtenons le tableau suivant

h	1	2	3	4	5	6	7	8	9	10
Série (1)	0.000	0.102	0.819	4.095	4.476	6.852	9.087	10.676	11.310	11.388
Série (2)	2.088	2.206	4.059	4.673	7.2646	8.643	10.341	19.234	19.281	19.281
$\chi_{10\%}(h)$	2.706	4.605	6.251	7.779	9.236	10.645	12.017	13.362	14.684	15.987
$\chi_{5\%}(h)$	3.841	5.991	7.815	9.488	11.070	12.592	14.067	15.507	16.919	18.307

Si la série (1) est statistiquement un bruit blanc, il ne semble pas en être de même pour la seconde série, pour laquelle Q_h est parfois trop elevée (en particulier à partir de h=8 - ce qui était confirmé par l'analyse graphique des autocorrélogrammes, avec cette valeur ρ (8) significativement non nulle). Le seuil apparait d'ailleurs en pointillé sous EViews,