Mathematische Methoden der Physik II Übungsserie 8 - Krummlinige Koordinaten II

Dr. Agnes Sambale
agnes.sambale@uni-jena.de

Aufgabe 1 Differentialoperatoren in Kugelkoordinaten

- (a) Ein Vektor V habe in kartesischen Koordinaten die Form V = i + j + k. Geben Sie im kartesischen Punkt (1, 2, 1) seine Komponenten in Kugelkoordinaten an.
- (b) Es seien U = 2yz und $\mathbf{V} = x\mathbf{j} y\mathbf{k}$ ein skalares bzw. ein Vektorfeld. Berechnen Sie in Kugelkoordinaten
 - (i) U
- (ii) V
- (iii) $\operatorname{grad} U$
- (iv) $\operatorname{rot} \mathbf{V}$

Sommersemester 2018

Abgabe: 11.06.2018

Aufgabe 2 Paraboloidkoordinaten

Die Paraboloidkoordinaten hängen u, w und ϕ hängen mit den kartesischen Koordinaten gemäß

$$x = uw\cos\phi$$
 $y = uw\sin\phi$ $z = \frac{1}{2}(u^2 - w^2)$

zusammen.

- (a) Bestimmen Sie die zugehörigen Einheitsvektoren e_u , e_w und e_ϕ , jeweils ausgedrückt durch i, j und k.
- (b) Berechnen Sie das Linienelement $\mathrm{d}s^2$ sowie unter Verwendung der JACOBI-Determinante das Volumenelement $\mathrm{d}V$ für die Paraboloidkoordinaten.
- (c) Berechnen Sie das Volumenelement noch einmal, in dem Sie das (ein) Spatprodukt der Einheitsvektoren bilden.
- (d) Prüfen Sie ob das Koordinatensystem rechtshändig ist und die Einheitsvektoren orthogonal zueinander stehen.

Aufgabe 3 Sphärische Trigonometrie

Die Abbildung zeigt zwei verdrehte Systeme von Kugelkoordinaten. Die Drehachse ist die x-Achse, ζ der Drehwinkel. Es entsteht das sphärische Dreieck mit de Eckpunkten P, P' und G.

- (a) Schreiben Sie die Transformationsformeln auf, die die Koordinaten (x,y,z) bei Drehung um den Winkel ζ in die Koordinaten (x',y',z') überführen.
- (b) Führen Sie anstelle der kartesischen Koordinaten (x, y, z) die Kugelkoordinaten (r, ϑ, ϕ) ein (mit r = R; für die gestrichenenen Koordinaten entsprechend).

1

bitte wenden

- (c) Ersetzen Sie die Azimute ϕ und ϕ' durch die Innenwinkel C bzw. A des sphärischen Dreiecks und gewinnen Sie so
 - den sphärischen Sinussatz

$$\sin \vartheta' \sin A = \sin \vartheta \sin C,$$

• sphärische Kosinus-Formel (manchmal auch Sinus-Kosinus-Satz) genannt

$$\sin \vartheta' \cos A = -\sin \vartheta \cos C \cos \zeta + \cos \vartheta \sin \zeta$$

• den sphärischen Seiten-Kosinussatz

$$\cos \vartheta' = \sin \vartheta \cos C \sin \zeta + \cos \vartheta \cos \zeta.$$