- Modelling Robot Behaviors
  - Kinematics
  - Dynamics
  - Parameters' Estimation

- Modelling Robot Behaviors
  - Kinematics
  - Dynamics
  - Parameters' Estimation
- Choice of Actuators and Gears

- Modelling Robot Behaviors
  - Kinematics
  - Dynamics
  - Parameters' Estimation
- Choice of Actuators and Gears
- Choice of Sensors and Their Allocation

- Modelling Robot Behaviors
  - Kinematics
  - Dynamics
  - Parameters' Estimation
- Choice of Actuators and Gears
- Choice of Sensors and Their Allocation
- Choice of Control Architecture
  - Linear vs. Nonlinear
  - Compensation for Friction, Delays, Lack of Velocity Measurements
  - Anti-Windup Methods
  - Adaptive Mechanisms for On-line Parameters Estimation
  - Robustness ...

Conceptual Control Loop for One Joint

- Conceptual Control Loop for One Joint
- Actuator Dynamics

- Conceptual Control Loop for One Joint
- Actuator Dynamics
- Dynamical Model of a Robot with One Joint

- Conceptual Control Loop for One Joint
- Actuator Dynamics
- Dynamical Model of a Robot with One Joint
- Controller Design
  - PD and PID Tuning;
  - Feedforward Control;
  - Problems with Gear-Boxes;
  - State Space and Observer Based Controllers



Basic structure of a feedback control system. It is often appropriate for controlling robots.

- Conceptual Control Loop for One Joint
- Actuator Dynamics
- Dynamical Model of a Robot with One Joint
- Controller Design
  - PD and PID Tuning;
  - Feedforward Control;
  - Problems with Gear-Boxes;
  - State Space and Observer Based Controllers



Principle of operation of a permanent magnet DC motor: A current-carrying conductor in magnetic field experience a force

$$ec{F}=ec{i} imesec{\phi}$$

here i is is the current;  $\phi$  is the magnetic flux



Principle of operation of a permanent magnet DC motor: A current-carrying conductor in magnetic field experience a force

$$ec{F} = ec{i} imes ec{\phi} \quad \Rightarrow \quad au_m = \left( K \cdot |ec{i}| \cdot |ec{\phi}| 
ight) ec{i}$$

here i is is the current;  $\phi$  is the magnetic flux



Principle of operation of a permanent magnet DC motor: Whenever a conductor moves in a magnetic field, the voltage  $V_b$  is induced and it is proportional to a velocity of the conductor

$$V_b = \left(K \cdot |ec{\phi}|
ight) rac{d}{dt} heta_m$$



Relations between the armature current, voltage, rotor velocity and motor torque are

$$egin{array}{lll} Lrac{d}{dt}i+Ri&=&oldsymbol{V}-oldsymbol{V}_b\ V_b&=&\left(K\cdotertec{\phi}ert
ight)rac{d}{dt} heta_m\ oldsymbol{ au_m}&=&\left(K_1\cdotertec{i}ert\cdotertec{\phi}ert
ight)ec{i}=K_mec{i} \end{array}$$

- Conceptual Control Loop for One Joint
- Actuator Dynamics
- Dynamical Model of a Robot with One Joint
- Controller Design
  - PD and PID Tuning;
  - Feedforward Control;
  - Problems with Gear-Boxes;
  - State Space and Observer Based Controllers



Lumped model of a single link with actuator/gear transmission.



Lumped model of a single link with actuator/gear transmission. In terms of the motor angle  $\theta_m$  the equation of motion is

$$J_m\left(\tfrac{d^2}{dt^2}\theta_m\right) = \tau_m - \frac{1}{r}\,\tau_l - B_m\left(\tfrac{d}{dt}\theta_m\right) = K_m \cdot i - \frac{1}{r}\,\tau_l - B_m\left(\tfrac{d}{dt}\theta_m\right)$$

Augmenting the mechanical and electrical models, we obtain:

$$L\left(\frac{d}{dt}i\right) + R \cdot i = V - K_b\left(\frac{d}{dt}\theta_m\right)$$

$$J_m \left( rac{d^2}{dt^2} heta_m 
ight) + B_m \left( rac{d}{dt} heta_m 
ight) \;\; = \;\; K_m \cdot \, i - rac{1}{r} \, au_l$$

Augmenting the mechanical and electrical models, we obtain:

$$egin{array}{lll} L\left(rac{d}{dt}i
ight) + R \cdot i & = & oldsymbol{V} - K_b \left(rac{d}{dt} heta_m
ight) \ & \ J_m \left(rac{d^2}{dt^2} heta_m
ight) + B_m \left(rac{d}{dt} heta_m
ight) & = & K_m \cdot i - rac{1}{r} au_l \end{array}$$



System is linear! We can use classical methods for controlling it!

The transfer function from V(s) to  $\Theta_m(s)$  is

$$G_{\{v \to \theta\}}(s) = \frac{\Theta_m(s)}{V(s)} = \frac{K_m}{\left[ (Ls + R)(J_m s + B_m) + K_m K_b \right] s}$$

The transfer function from V(s) to  $\Theta_m(s)$  is

$$G_{\{v \to \theta\}}(s) = \frac{\Theta_m(s)}{V(s)} = \frac{K_m}{\left[ (Ls + R)(J_m s + B_m) + K_m K_b \right] s}$$

The transfer function from  $au_l(s)$  to  $\Theta_m(s)$  is

$$G_{\{\tau_l \to \theta\}}(s) = \frac{\Theta_m(s)}{\tau_l(s)} = \frac{1}{r} \frac{-(Ls + R)}{\left[(Ls + R)(J_m s + B_m) + K_m K_b\right] s}$$

The transfer function from V(s) to  $\Theta_m(s)$  is

$$G_{\{v \to \theta\}}(s) = \frac{\Theta_m(s)}{V(s)} = \frac{K_m}{\left[ (Ls + R)(J_m s + B_m) + K_m K_b \right] s}$$

The transfer function from  $au_l(s)$  to  $\Theta_m(s)$  is

$$G_{\{\tau_l \to \theta\}}(s) = \frac{\Theta_m(s)}{\tau_l(s)} = \frac{1}{r} \frac{-(Ls+R)}{\left[(Ls+R)(J_ms+B_m)+K_mK_b\right]s}$$

If 
$$rac{L}{R}pprox 0 \quad \Rightarrow \quad G_{\{v
ightarrow heta\}}(s)pprox \ rac{K_m}{\left[R(J_ms+B_m)+K_mK_b
ight]s}$$

The transfer function from V(s) to  $\Theta_m(s)$  is

$$G_{\{v 
ightarrow \theta\}}(s) = rac{\Theta_m(s)}{V(s)} = rac{K_m}{ig[(Ls+R)(J_ms+B_m)+K_mK_big]s}$$

The transfer function from  $\tau_l(s)$  to  $\Theta_m(s)$  is

$$G_{\{\tau_l \to \theta\}}(s) = \frac{\Theta_m(s)}{\tau_l(s)} = \frac{1}{r} \frac{-(Ls + R)}{\left\lceil (Ls + R)(J_m s + B_m) + K_m K_b \right\rceil s}$$

$$rac{L}{R}pprox 0 \Rightarrow G_{\{v
ightarrow heta\}}(s)pprox rac{K_m}{igl[R(J_ms+B_m)+K_mK_bigr]sigr]}$$
 Correctness of reduction of the model based on size of the

parameter can be justified via e.g. balanced model reduction

- Conceptual Control Loop for One Joint
- Actuator Dynamics
- Dynamical Model of a Robot with One Joint
- Controller Design
  - PD and PID Tuning;
  - Feedforward Control;
  - Problems with Gear-Boxes;
  - State Space and Observer Based Controllers

### Example:

Suppose that  $K_b = 1$  and

$$G_{\{v
ightarrow heta\}}(s)pprox \left|rac{K_m}{\left[R(J_ms+B_m)+K_mK_b
ight]s}
ight|=rac{1}{\left(s+1
ight)s}$$

Design a PD-controller that closed loop poles are at -3, -1



## Example:

Suppose that  $K_b = 1$  and

$$G_{\{v \to \theta\}}(s) pprox \left| rac{K_m}{\left[ R(J_m s + B_m) + K_m K_b \right] s} \right| = rac{1}{J s^2 + B s}$$

Find a PID-controller gains such that that closed loop is stable



## Dealing with Input Saturation



The closed loop system can be drastically different if we take into account signals limits in the loop!

- Conceptual Control Loop for One Joint
- Actuator Dynamics
- Dynamical Model of a Robot with One Joint
- Controller Design
  - PD and PID Tuning;
  - Feedforward Control;
  - Problems with Gear-Boxes;
  - State Space and Observer Based Controllers

#### Idea of Feedforward Control



• Transfer function F(s) is new parameter for design

#### Idea of Feedforward Control



- Transfer function F(s) is new parameter for design
- Not any F(s) can be used:
  - $\circ$  F(s) should be stable;
  - $\circ$  F(s) should be proper

#### Idea of Feedforward Control



- Transfer function F(s) is new parameter for design
- Not any F(s) can be used:
  - $\circ$  F(s) should be stable;
  - $\circ$  F(s) should be proper
- Reasonable choice is  $F(s) \approx 1/G(s)$

- Conceptual Control Loop for One Joint
- Actuator Dynamics
- Dynamical Model of a Robot with One Joint
- Controller Design
  - PD and PID Tuning;
  - Feedforward Control;
  - Problems with Gear-Boxes;
  - State Space and Observer Based Controllers

### Gear-Boxes



• Lossless transmission means that  $au_m \dot{ heta}_m = au_s \dot{ heta}_s$ ;

#### Gear-Boxes



- Lossless transmission means that  $au_m\dot{ heta}_m= au_s\dot{ heta}_s$ ;
- Gear-box always introduces additional friction and delay;

#### Gear-Boxes



- Lossless transmission means that  $au_m \dot{ heta}_m = au_s \dot{ heta}_s$ ;
- Gear-box always introduces additional friction and delay;
- Gear-box can complicate the dynamics and limit the performance.



The dynamics are

$$J_l \ddot{ heta}_l + B_l \dot{ heta}_l + k \left( heta_l - heta_m 
ight) = 0$$
 $J_m \ddot{ heta}_m + B_m \dot{ heta}_m - k \left( heta_l - heta_m 
ight) = u$ 

where u is a control torque.



The dynamics are

$$J_l \ddot{ heta}_l + B_l \dot{ heta}_l + k heta_l = k heta_m$$
 $J_m \ddot{ heta}_m + B_m \dot{ heta}_m + k heta_m = k heta_l + \mathbf{u}$ 

where u is a control torque.



$$\Theta_{l}(s) = \frac{k}{p_{l}(s)}\Theta_{m}(s) = \frac{k}{J_{l}s^{2} + B_{l}s + k}\Theta_{m}(s)$$

$$\Theta_{m}(s) = \frac{1}{p_{m}(s)}\left(k\Theta_{l}(s) + \mathbf{U}(s)\right) = \frac{k\Theta_{l}(s) + \mathbf{U}(s)}{J_{m}s^{2} + B_{m}s + k}$$



$$\Theta_{l}(s) = \frac{k}{p_{l}(s)}\Theta_{m}(s) = \frac{k}{J_{l}s^{2} + B_{l}s + k}\Theta_{m}(s)$$

$$\Theta_{m}(s) = \frac{1}{p_{m}(s)}\left(k\Theta_{l}(s) + \mathbf{U}(s)\right) = \frac{k\Theta_{l}(s) + \mathbf{U}(s)}{J_{m}s^{2} + B_{m}s + k}$$



$$egin{align} \Theta_l(s) &= rac{k}{p_l(s)p_m(s) - k^2} m{U}(s) \ &= rac{k}{J_m J_l s^4 + (J_l B_m + J_m B_l) s^3 + (k(J_m + J_l) + B_m B_l) s^2 + k(B_m + B_l) s} m{U}(s) \ \end{array}$$



$$egin{align} \Theta_l(s) &= rac{k}{p_l(s)p_m(s) - k^2} m{U}(s) \ &= rac{k}{J_m J_l s^4 + (J_l B_m + J_m B_l) s^3 + (k(J_m + J_l) + B_m B_l) s^2 + k(B_m + B_l) s} m{U}(s) \ &pprox rac{k}{J_m J_l s^4 + k(J_m + J_l) s^2} m{U}(s) \ \end{aligned}$$

# PD controller with $heta_m$ or $heta_l$ feedbacks







The root-locus of the closed loop system with  $\theta_m$ -feedback and

$$PD = K_P + K_D s = K(a+s)$$



The root-locus of the closed loop system with  $\theta_l$ -feedback and

$$PD = K_P + K_D s = K(a+s)$$