Double Sequences

Def: A real valued for f: IN × IN -> IR (or f: Z_+ × Z_+ -) IR)
is called a double Seyn.

We write f simply as $\{f(m,n)\}$ or $\{a_m,n\}_{m,n \in \mathbb{N}}$. $a_{m,n} := f(m,n)$ $\forall (m,n) \in \mathbb{N} \times \mathbb{N}$.

eq: $\left\{\frac{1}{m+n}\right\}_{m,n\in\mathbb{N}}$, $\left\{e^{mn}\right\}_{m,n\in\mathbb{N}}$, $\left\{m+\cos mn\right\}_{m,n\in\mathbb{N}}$

Obs: For each fixed m & IN, an fam, n = 1 sa Segn. $\frac{1}{4}$ - $n \in \mathbb{N}$, $\left\{ Q_{m,n} \right\}_{m=1}^{\infty}$ - 1 - 1

. . It make sense to talk about:

 $\lim_{n\to\infty} \left(\lim_{m\to\infty} a_{mn} \right) & \lim_{m\to\infty} \left(\lim_{n\to\infty} a_{mn} \right).$

Ans: No $a_{11} \ a_{22} \ a_{23}$ ---) az (say) Same limit ??

$$\frac{eq!}{a_{m,n}} = \frac{n}{m+n} \quad \forall m, n \ge 1$$

eq:
$$a_{m,n} = \frac{n}{m+n}$$
 $\forall m, n \ge 1$.
i. $\lim_{n\to\infty} a_{m,n} = 1 \neq 0 = \lim_{m\to\infty} a_{m,n}$.

i.
$$\lim_{m\to\infty} \left(\lim_{n\to\infty} \alpha_{m,n}\right) \neq \lim_{n\to\infty} \left(\lim_{m\to\infty} \alpha_{m,n}\right) \quad \text{in general.}$$

For $\{a_n\}$, we say $a_n \rightarrow a$ if $\{a_n\} \in A$ NEINT S. L. $|a_n-a| < \epsilon$ $\forall n \in A$.

3 Similarly

Def: A double Scyn fam, n } Converges to the double limit a if for E> 0 7 NEIN S.E.

$$a_{m,n} - a$$
 $\langle \varepsilon \rangle + m, n \rangle N$

Def: 9º {amin} does not converige, we say that it diverges.

Jaydeb Sanker

Def: Itarated limits of the double Seyn faming are: $\lim_{m\to\infty} \left(\lim_{m\to\infty} C_{m,n} \right) \quad \text{in} \quad \left(\lim_{m\to\infty} C_{m,n} \right).$

Thm: Let amin -> a as min -> os. of lem amin exists +m, then $\lim_{m\to\infty} \left(\lim_{n\to\infty} q_{m,n} \right) = a$.

Wy if line am, n exists &n other line (line amen) = a

Prof: Set dm:= lin amin 7 m. [claim: dm > a].

Fix E>0. 3 No EN S. E.

| amm | am,n - a | < E/2 + m,n > N.

Jam amin = dm for allow, for each meIN For all m)

For all m)

For all m)

| amin - xm | < E/2 + n > N (m).

Fix m>N. Then pick mENT S.F. n>N(m).

· | dm - a | { | dm - amin | + | amin - a |

< \\ \(\ext{\figs.} + \ext{\figs.} \)

> |dm-a| < 2 + m> N.

 \Rightarrow $d_m \rightarrow a$.

				(78)
eg: (=	i.e. lim	$\frac{\left(\lim_{n\to\infty} a_{m,n}\right)}{\left(\lim_{n\to\infty} a_{m,n}\right)} = \frac{1}{n}$	exists of fin	am, n cross
# amen:	= (-1) m+n (1/m+ Cauchy Courtering	towever. for each ment , {am,	mein, faming div.	o cus min-) or & also fur ed limit DNE!!
	{am,n} Gnu	enges (=) for s	EJO & NEIN	S. L-
	la	m,n - ap,2 < E	H m > 1> >	· N > N ·
Prof:		$Q_{m,n} \longrightarrow a$. a		
		Then I NEIN amin - a / < E		n 7/J.

:. For m > p > N > n > 2 > N, $|a_{min} - a_{pi2}| \leq |a_{min} - a| + |a_{pi2} - a|$ $< \frac{2}{2} + \frac{2}{2} = \epsilon.$

We " Let 270. Then $\exists N \in \mathbb{N}$ S.t. \otimes holds. $\forall n \in \mathbb{N}$, set $\forall n := a_{n,n}$. \Leftrightarrow "the diagonal." $\Rightarrow \exists \forall n \neq \exists \in \mathbb{R}$ is Cauchy. $\Rightarrow \exists \forall n \neq \exists \in \mathbb{R}$ is Cauchy.

=> {dn} converges. Les dn -> a. as n-100.

.. For E>O 3 Notin s. E.

Set N:= max & N, No}.

.. $\forall m, n \geq N$, we have:

| amin - a | \ | amin - anin + | amin - a | .

< 2/2+ 2/2 = 8.

=> amin a.

1/4

§ Double Series:

Given a double seyn faming, we set

 $S_{m,n} = \sum_{i=1}^{m} \frac{n}{2} a_{i,j} \qquad \forall m, n \geqslant 1.$

(m,n)-th partial

The double seyn { Smin} is said to be the double services generated by { amin}. , & denoted by 2 amin.

If lim min-) or a (i.e. Converges),

then we say that I amin convenges of write

 $\sum_{m,n=1}^{\infty} a_{m,n} = a,$

(HW:) Let Zamin Converges. Then amin -> 0 as min -> 0.

(=) the double Seyn. I 3m,n mon 21 is bounded.

Eg: Lackett. Therefore each is Converigent.

Men 2 dm B7 1. Then 2 dm Bn is Converigent.

Prof. $S_{m,n} = \sum_{i=1}^{m} \sum_{j=1}^{m} a_{ij} = \sum_{i=1}^{m} \frac{n}{\sum_{j=1}^{m} a_{ij}}$

$$\left\langle \left(\frac{m}{\sum_{i=1}^{m} \frac{1}{\alpha^{i}}} \right) \times \left(\frac{m}{\sum_{i=1}^{m} \frac{1}{\beta^{i}}} \right) \right\rangle$$

Illy $\begin{cases} \frac{n}{2} - \frac{1}{3} \\ \frac{1}{3} - \frac{1}{3} \end{cases}$ is a bid seque.

 \Rightarrow { $S_{m,n}$ } $M_{(n,n)}$ is a bdd Seyn.

min = Converges.

Compavison test:

Let Za_{min} & Zb_{min} be two double series. Suffose a_{min} , b_{min} 7,0 \forall m,n & also Let $a_{min} \leq b_{min}$ \forall m,n.

If I bmin conv. then I amin conv.

- HW-.

The beneing Yesult

You will en counter this in measure theory.

Ihm: (Fubini - Tonelli theorem for Series).

A double series 2 amin is absolutely convergent-

(=> one (x hence, both) of the following conditions hold:

 $(i) \sum_{m=1}^{\infty} \sum_{n=1}^{\infty} |q_{m,n}| < \infty ,$

(ii) $\sum_{n=1}^{\infty} \sum_{m=1}^{\infty} |a_{m,n}| < \infty$.

More over, in this case: $\frac{\infty}{2} a_{m,n} = \frac{\infty}{2} \frac{\infty}{2} a_{m,n} =$

Proof. As usual, set $S_{m,n} = \sum_{i=1}^{m} \sum_{j=1}^{n} Q_{ij}$ $S_{m,n} = \sum_{i=1}^{m} \sum_{j=1}^{n} |Q_{ij}|.$

(=" is now obvious! I or, wait till the pand.

"

The state of t Now | Smin - Spig | { | Tmin - Tpig | < 8 + - 4. . . By Cauchy contertion, again, Zamin converges. Set: $Q:=\sum_{m:n=1}^{\infty} q_{m:n}$ Set: $Q:= 2q_{m,n}$ $m_{i,n-1}$ Also, set $T:= sup_{m,n}$ $m_{i,n}$ $m_{i,n}$ $m_{i,n}$ $m_{i,n}$ $m_{i,n}$ $m_{i,n}$ $\forall i \in \mathbb{N}$, $\sum_{j=1}^{m} |a_{i,j}| \leqslant r_{i,n} \leqslant r$. $\Rightarrow \forall i \in \mathbb{N}, \quad \sum_{m=1}^{\infty} |a_{i,n}| < \infty \Rightarrow \sum_{m=1}^{\infty} a_{i,m} \quad \text{Converges}.$ ", a = 29min, for 2/0 7 NEIN S.E. | Smm-a| < 2 7 min > N. i.e. / 2 7 9; - a / < & +m.n7/1.

Jaydeb Sankan

Fix
$$m \gg let m \rightarrow \infty$$
. \Rightarrow

$$\left| \langle x_m - a \rangle \right| \leq \varepsilon \qquad \forall m \gg N.$$

$$\Rightarrow \langle x_m - a \rangle = \langle x_m - x_m \rangle$$

$$\frac{2}{2} \frac{2}{q_{m,n}} = \frac{2}{2} \frac{2}{2} \frac{2}{q_{m,n}}$$

$$\frac{2}{m,n=1} \frac{2}{m=1} \frac{2}{m=1} \frac{2}{q_{m,n}}$$

$$\frac{2}{m,n=1} \frac{2}{m=1} \frac{2}{m=1} \frac{2}{q_{m,n}}$$

Finally (the pending case).

Let
$$\alpha := \sum_{m,n=1}^{issue} |Q_{min}|$$
.

 $\gamma := \sum_{m,n=1}^{m} |Q_{min}|$.

 $\gamma := \sum_{m,n=1}^{m} |Q_{min}|$.

 $\gamma := \sum_{m,n=1}^{m} |Q_{min}|$.

Also, for each mein, the Seeps. I min? I.

=) lim Imin & a. H mein.

Atso, observe that Tmin & Tpiq & m & p? Sn & q.

i.e
$$\lim_{m\to\infty}\lim_{n\to\infty}\lim_{m\to\infty}\lim_{m\to\infty}\times\infty$$

i.e $\lim_{m\to\infty}\lim_{n\to\infty}\lim_{n\to\infty}\times\infty$.

14)

