Tên: Nguyễn Xuân Việt Đức

MSSV: 22520274

Khoa Kỹ thuật máy tính

Thực hành nhập môn mạch số PH002.N17 - LAB04

1 Lý Thuyết

2 Thực Hành

2.1 Thiết kế bộ cộng toàn phần 1-bit (Full Adder)

2.1.1 Thiết kế mạch cộng bán phần (Half Adder)

Thiết lập bảng chân trị, ta có như sau:

A	A B S		\mathbf{C}
0	0	0	0
0	1	1	0
1	0	1	0
1	1	0	1

Kết luận biểu thức:

$$\begin{cases} S = A \oplus B \\ C = AB \end{cases}$$

Thực hiện vẽ mạch

2.1.2 Sử dụng mạch cộng bán phần để thiết kế mạch cộng toàn phần (Full Adder)

Thiết lập bảng chân trị, ta có như sau:

$C_{\rm in}$	A	В	S	$C_{ m out}$
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

Kết luận biểu thức:

$$\begin{cases} S = C_{\text{in}} \oplus (A \oplus B) \\ C_{\text{out}} = AB + BC_{\text{in}} + AC_{\text{in}} \end{cases}$$

Sử dụng mạch cộng bán phần đã đóng gói và thực hiện vẽ mạch

Mô phỏng mạch cho thấy:

2.2 Thiết kế mạch so sánh hai số A và B (4-bit)

Thiết lập bảng chân trị, ta có như sau:

A_3B_3	A_2B_2	A_1B_1	A_0B_0	GE	LE	EQ
GE_3	X	X	X	1	0	0
LE_3	X	X	X	0	1	0
EQ_3	GE_2	X	X	1	0	0
EQ_3	LE_2	X	X	0	1	0
EQ_3	EQ_2	GE_1	X	1	0	0
EQ_3	EQ_2	$ ext{LE}_1$	X	0	1	0
EQ_3	EQ_2	EQ_1	GE_0	1	0	0
EQ_3	EQ_2	EQ_1	LE_0	0	1	0
EQ_3	EQ_2	EQ_1	EQ_0	0	0	1

Thực hiện vẽ mạch

Mô phỏng mạch cho thấy:

2.3 Bài tập

2.4 Thiết kế bộ trừ 2 số A, B (4-bit) (Subtractor)

2.4.1 Thiết kế mạch trừ bán phần (Half Subtractor)

Thiết lập bảng chân trị, ta có như sau:

A	В	D	Br
0	0	0	0
0	1	1	1
1	0	1	0
1	1	0	0

Kết luận biểu thức:

$$\begin{cases} S = A \oplus B \\ C = \overline{A}B \end{cases}$$

Thực hiện vẽ mạch

2.4.2 Sử dụng mạch trừ bán phần để thiết kế mạch trừ toàn phần 1-bit (Full Subtractor)

Thiết lập bảng chân trị, ta có như sau:

$B_{\rm in}$	A	В	S	$B_{ m out}$
0	0	0	0	0
0	0	1	1	1
0	1	0	1	0
0	1	1	0	0
1	0	0	1	1
1	0	1	0	1
1	1	0	0	0
1	1	1	1	1

Kết luận biểu thức:

$$\begin{cases} S = A \oplus B \oplus B_{\text{in}} \\ C_{\text{out}} = \overline{A}B + \overline{A}B_{\text{in}} + BB_{\text{in}} \end{cases}$$

Sử dụng mạch trừ bán phần đã đóng gói và thực hiện vẽ mạch

2.4.3 Sử dụng mạch trừ toàn phần để thiết kế mạch trừ 4-bit (Bit Ripple Borrow Subtractor)

Mạch sau khi được thiết kế

Thực hiện mô phỏng mạch với 2 số A, B bất kỳ cho ra kết quả mong muốn

