Додаток 1

Міністерство освіти і науки України Національний технічний університет України «Київський політехнічний інститут імені Ігоря Сікорського" Факультет інформатики та обчислювальної техніки

Кафедра інформатики та програмної інженерії

Звіт

з лабораторної роботи № 1 з дисципліни «Алгоритми та структури даних-1. Основи алгоритмізації»

«Дослідження лінійних алгоритмів»

Варіант 12

Виконав	студент	111-13 Дойчев Костянтин Миколайович		
		(шифр, прізвище, ім'я, по батькові)		
Перевіри	В			
1 1		(прізвище, ім'я, по батькові)		

Лабораторна робота №4

Тема: Дослідження арифметичних циклічних алгоритмів

Мета – дослідити особливості роботи арифметичних циклів та набути практичних навичок їх використання під час складання програмних специфікацій.

Варіант 12

1) Постановка задачі:

Отримати таблицю температур по Цельсію від 0 до n градусів і їх еквівалентів по шкалі Фаренгейта, використовуючи для переводу формулу.

$$^{\circ}F = \left(\frac{9}{5} \times ^{\circ}C\right) + 32$$

Розв'язання

Крок 1. Визначимо основні дії.

Крок 2. Деталізуємо дію переведення 0°С в Фаренгейти

Крок 3. Деталізуємо дію переведення n°C в Фаренгейти

2) Побудова математичної моделі:

Таблиця імен змінних

Змінна	Тип	Ім'я	Призначення
Температура в Цельсіях	Дійсний	celsiusTemperature	Вхідні дані
Крок розрахунку від 0 до п	Дійсний	step	Вхідні дані

Двовимірний масив(таблиця) з температурами	Дійсний	temperatures	Вихідні дані
Температура в Фаренгейтах	Дійсний	fahrenheit	Проміжні дані
Масив(рядок таблиці) з значенням температури в Цельсіях та Фаренгейтах на 1 та 2 місці відповідно	Дійсний	values	Проміжні дані
Актуальна температура на ітерації	Дійсний	currentTemp	Проміжні дані

Таким чином, математичне формулювання задачі зводиться до отримання температури та кроку виміру від користувача. Переводу кожного значення температури з Цельсія в Фаренгейти та запис їх у виді таблиці відповідностей, що відповідають двовимірному масиву

3) Псевдокод алгоритму

Крок 1:

Початок

Введення даних <u>Обчислення температур</u> Перевід температур у Фаренгейти Заповнення даних у таблицю Вивід даних

Кінець

```
Крок 2:
      Початок
            Введення даних
            для currentTemp від 0 до celsiusTemperature + step, збільшувати на step
                   Перевід температур у Фаренгейти
                   Заповнення даних у таблицю
            Вивід даних
      Кінець
Крок 3:
      Початок
            Введення даних
            для currentTemp від 0 до celsiusTemperature + step, збільшувати на step
                   fahrenheit:= 5 * currentTemp / 9 + 32;
                   Заповнення даних у таблицю
            Вивід даних
      Кінець
Крок 4:
      Початок
            Введення даних
            для currentTemp від 0 до celsiusTemperature + step, збільшувати на step
                   fahrenheit:= 5 * currentTemp / 9 + 32;
                   values[2]:= {currentTemp,fahrenheit}
                   temperatures:= temperatures + values
            Вивід даних
      Кінець
```

4) Блок схема алгоритму

5) Випробування алгоритму:

Блок	Дія
	Початок
1	celsiusTemperature:= 2; step:= 1;
2	currentTemp:= 0, currentTemp < celsiusTemperature + 1 == true
3	fahrenheit:= 32;
4	values[2] = {0, 32};
5	temperatures := $\{0, 32\}$;
6	currentTemp:= 1, currentTemp < celsiusTemperature + 1 == true

7	fahrenheit:= 33.8;
8	values[2]={1, 33.8}
9	temperatures={{0, 32}, {1, 33.8}};
10	currentTemp:= 2, currentTemp < celsiusTemperature + 1 == true
11	fahrenheit:= 35.6;
12	values[2]={2, 35.6};
13	temperatures:={{0, 32}, {1, 33.8}, {2, 35.6}};
14	currentTemp:= 3, currentTemp < celsiusTemperature + 1 == false
15	{{0, 32}, {1, 33.8}, {2, 35.6}}
	Кінець

Блок	Дія
	Початок
1	celsiusTemperature:= 1; step:= 0.5;
2	<pre>currentTemp:= 0, currentTemp < celsiusTemperature + 0.5 == true</pre>
3	fahrenheit:= 32;
4	values[2] = $\{0, 32\}$;
5	temperatures := $\{0, 32\}$;
6	currentTemp:= 0.5, currentTemp < celsiusTemperature + 0.5 == true
7	fahrenheit:= 32.9;
8	values[2]={0.5, 32.9};
9	temperatures:={ {0, 32}, {0.5, 32.9} }

10	<pre>currentTemp:= 1, currentTemp < celsiusTemperature + 0.5 == true</pre>
11	fahrenheit:= 33.8;
12	values[2]={1, 33.8};
13	temperatures:={ {0, 32}, {0.5, 32.9}, {1, 33.8} };
14	currentTemp:= 1.5, currentTemp < celsiusTemperature + 0.5 == false
15	{ {0, 32}, {0.5, 32.9}, {1, 33.8} }
	Кінець

6) Виновки:

Я дослідив особливості роботи арифметичних циклів та набув практичних навичок їх використання під час складання програмних специфікацій. Побудував мат. модель, псевдокод та блок схему. Протестував алгоритм.