Práctico 8

Coordenadas - Matriz de cambio de base

Objetivos.

- Aprender a determinar las coordenadas de un vector en una base ordenada de un espacio
- Dadas dos bases ordenadas, aprender a operar con la matriz de cambio de base.

Ejercicios.

- (1) Probar que los vectores $v_1 = (1, 0, -i), v_2 = (1 + i, 1 i, 1), v_3 = (i, i, i)$ forman una base de \mathbb{C}^3 , y dar las coordenadas de un vector (x, y, z) en esta base.
- (2) Dados los siguientes vectores de \mathbb{R}^4 ,

$$v_1 = (1, 1, 0, 0), \quad v_2 = (0, 0, 1, 1), \quad v_3 = (1, 0, 0, 4), \quad v_4 = (0, 0, 0, 2).$$

- (a) Demostrar que $\mathcal{B} = \{v_1, v_2, v_3, v_4\}$ es una base de \mathbb{R}^4 .
- (b) Hallar las coordenadas de los vectores de la base canónica respecto de \mathcal{B} .
- (c) Hallar las matrices de cambio de base de la base canónica a \mathcal{B} y viceversa.
- (3) Sea $V = P_3$. Sean

$$g_1 = 1 - x$$
, $g_2 = x + x^2$, $g_3 = (x+1)^2$.

- (a) Demostrar que $\mathcal{B} = \{g_1, g_2, g_3\}$ es una base de V.
- (b) Hallar las matrices de cambio de base con respecto a \mathcal{B} y a la base canónica $\{1, x, x^2\}.$
- $(4) \text{ Sea } \mathcal{B} = \left\{ \begin{bmatrix} 2 & 0 & 0 \\ 0 & 3 & 1 \end{bmatrix}, \begin{bmatrix} 0 & 2 & -1 \\ 0 & 2 & -1 \end{bmatrix}, \begin{bmatrix} -1 & 1 & 1 \\ 2 & 0 & 2 \end{bmatrix}, \begin{bmatrix} 1 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix}, \begin{bmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 & 0 \\ 1 & 2 & 1 \end{bmatrix} \right\}.$ $(a) \text{ Demostrar que } \mathcal{B} \text{ es una base de } M_{2\times 3}(\mathbb{R}).$

 - (b) Hallar las coordenadas de $\begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$ con respecto a la base \mathcal{B} .
 - (c) Hallar las matrices de cambio de base de la base canónica a \mathcal{B} y viceversa.
- (5) Sea $W = \langle v_1, v_2 \rangle$, el subespacio de \mathbb{C}^3 generado por $v_1 = (1, 0, i)$ y $v_2 = (1 + i, 1, -1)$.
 - (a) Demostrar que $\mathcal{B}_1 = \{v_1, v_2\}$ es una base de W.
 - (b) Describir W implícitamente.
 - (c) Demostrar que los vectores $w_1 = (1, 1, 0)$ y $w_2 = (1, i, 1+i)$ pertenecen a W y que $\mathcal{B}_2 = \{w_1, w_2\}$ es otra base de W.
 - (d) ¿Cuáles son las coordenadas de v_1 y v_2 en la base ordenada \mathcal{B}_2 ?
 - (e) Hallar las matrices de cambio de base $P_{\mathcal{B}_1,\mathcal{B}_2}$ y $P_{\mathcal{B}_2,\mathcal{B}_1}$.
- (6) Sea $\mathcal{B} = \left\{ \begin{bmatrix} 2 & 0 \\ 0 & -1 \end{bmatrix}, \begin{bmatrix} 0 & -1 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \right\} \subseteq M_2(\mathbb{R}).$
 - (a) Demostrar que \mathcal{B} es una base de $M_2(\mathbb{R})$.
 - (b) Hallar las matrices de cambio de base de la base ordenada canónica de $M_2(\mathbb{R})$ a la base ordenada \mathcal{B} y viceversa.
 - (c) Hallar las coordenadas de la matriz $\begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix}$ con respecto a la base ordenada \mathcal{B} .

Más ejercicios.

- (1) Sea $\mathcal{B} = \{(1,1,0,0), (0,0,1,1), (1,0,0,2), (0,0,-1,1)\} \subseteq \mathbb{R}^4$. Hallar la matriz de cambio de base de la base ordenada $\mathcal{B}' = \{(0,0,1,0), (0,0,0,1), (0,1,0,0), (1,0,0,0)\}$ a la base ordenada \mathcal{B} .
- (2) Sea W el subespacio de \mathbb{R}^4 generado los vectores $\alpha_1 = (-3, 1, 0, 0)$, $\alpha_2 = (-2, 0, 1, 0)$ y $\alpha_3 = (-1, 1, -1, 1)$. Probar que $\mathcal{B} = \{\alpha_1, \alpha_2, \alpha_3\}$ es base de W y dar las coordenadas de un vector (x, y, z, t) de W en la base ordenada \mathcal{B} .
- (3) Calcular la matriz de cambio de base de la base ordenada \mathcal{B} a la base ordenada \mathcal{B}' , donde:
 - $\mathcal{B} = \{(0, 1, 1, -1), (0, 2, 0, 0), (2, 0, 1, -1), (1, 1, 1, 1)\}, \quad \mathcal{B}' = \{e_1 e_2, e_1, e_3 e_4, e_3\},$ siendo $\{e_1, e_2, e_3, e_4\}$ la base ordenada canónica de \mathbb{R}^4 .