### Many types of trees: cellular genealogies





Figure 1 from DeWett et al. 2018

# Many types of trees: "gene tree" within a species tree





Figure 1 from Liu et al. (2010)



Figure 2 from Hahn and Nakhleh (2016)

# Inferring a species tree while accounting for the coalescent



Figure 2 from Heled and Drummond (2010) \*BEAST See also the recent work by Huw Ogilvie and colleagues on StarBEAST2.

#### Considering ILS effects without modeling gene trees

#### PoMo model

SVDQuartets (Kubatko + Swofford next Thursday)



Figure 1 from De Maio et al. (2015)





Opazo, Hoffmann and Storz "Genomic evidence for independent origins of  $\beta$ -like globin genes in monotremes and therian mammals" PNAS **105(5)** 2008

# Joint estimation of gene duplication, loss, and coalescence with DLCoalRecon



Figure 2A from Rasmussen and Kellis (2012)

#### **DL** models and coalescence



Figure 2B from Rasmussen and Kellis (2012)

#### Many types of trees: Lateral Gene Transfer

tree - a graph without cycles (loops)network - general graph; cycles allowed

#### Cycles can represent

- lateral ("horizontal") gene transfer ,
- hybridization between species,
- introgression between populations.



#### Many types of trees: Lateral Gene Transfer



Figure 2c from Szöllősi et al. (2013)

a) evolutionary scenario along complete phylogeny



Figure 3 from Szöllősi et al. (2013)

They used 423 single-copy genes

in  $\geq 34$  of 36 cyanobacteria

They estimate:

2.56 losses/family

2.15 transfers/family

pprox 28% of transfers between

non-overlapping branches



Figure 4 from Noutahi et al. (2016)

## (3b) sources of error cartoon



#### References

- De Maio, N., Schrempf, D., and Kosiol, C. (2015). Pomo: An allele frequency-based approach for species tree estimation. *Systematic Biology*, 64(6):1018–1031.
- Hahn, M. W. and Nakhleh, L. (2016). Irrational exuberance for resolved species trees. *Evolution*, 70(1):7–17.
- Heled, J. and Drummond, A. (2010). Bayesian inference of species trees from multilocus data. *Molecular Biology and Evolution*, 27(3):570–580.
- Liu, Y., Cotton, J. A., Shen, B., Han, X., Rossiter, S. J., and Zhang, S. (2010). Convergent sequence evolution between echolocating bats and dolphins. *Current Biology*, 20(2):R53 R54.
- Noutahi, E., Semeria, M., Lafond, M., Seguin, J., Boussau, B., Guéguen, L., El-Mabrouk, N., and Tannier, E. (2016). Efficient gene tree correction guided by species and synteny evolution. *PLoS One*.
- Rasmussen, M. D. and Kellis, M. (2012). Unified modeling of gene duplication, loss, and coalescence using a locus tree. *Genome Research*, 22(4):755–765.

Szöllősi, G. J., Tannier, E., Lartillot, N., and Daubin, V. (2013). Lateral gene transfer from the dead. *Systematic Biology*.