Job No.: Whyte Address: 21 Twyford Rd, Hastings, New Zealand Date: 7/27/2022 Latitude: -39.607294 Longitude: 176.785901 Elevation: 20 m

General Input

Roof Live Load	0.25 KPa	Roof Dead Load	0.25 KPa	Roof Live Point Load	1.1 Kn
Snow Zone	N1	Ground Snow Load	0 KPa	Roof Snow Load	0 KPa
Earthquake Zone	3	Subsoil Category	D	Exposure Zone	В
Importance Level	1	Ultimate wind ARI	100 Years	Max Height	4.05 m
Wind Region	NZ2	Terrain Category	2.46	Design Wind Speed	36.66 m/s
Wind Pressure	0.81 KPa	Lee Zone	NO	Ultimate ARI	100 Years
Wind Category	Medium				

Pressure Coefficients and Pressues

Shed Type = Gable Open

For roof Cp,i = -0.3

For roof CP,e from 0 m To 4.05 m Cpe = -0.9 pe = -0.65 KPa pnet = -0.65 KPa

For roof CP,e from 4.05 m To 8.10 m Cpe = -0.5 pe = -0.36 KPa pnet = -0.36 KPa

For wall Windward Cp, i = -0.3 side Wall Cp, i = -0.3

For wall Windward and Leeward CP_{e} from 0 m To 12 m Cpe = 0.7 pe = 0.51 KPa pnet = 0.75 KPa

For side wall CP,e from 0 m To 4.05 m Cpe = pe = -0.47 KPa pnet = -0.47 KPa

Maximum Upward pressure used in roof member Design = 0.65 KPa

Maximum Downward pressure used in roof member Design = 0.39 KPa

Maximum Wall pressure used in Design = 0.75 KPa

Maximum Racking pressure used in Design = 0.73 KPa

Design Summary

Purlin Design

Purlin Spacing = 900 mm Purlin Span = 6800 mm Try Purlin 290x45 LVL8

Moisture Condition = Dry (Moisture in timber is less than 16% and timber does not remain in continuous wet condition after installation)

K1 Short term = 1 K1 Medium term = 0.8 K1 Long term = 0.6 K4 = 1 K5 = 1 K8 Downward = 0.89

First Page

K8 Upward =0.17 S1 Downward =15.23 S1 Upward =41.87

Shear Capacity of timber = 5 MPa Bending Capacity of timber = 30 MPa NZS3603 Amt 4, table 2.3

Capacity Checks

M _{1.35D}	1.76 Kn-m	Capacity	8.14 Kn-m	Passing Percentage	462.50 %
M1.2D+1.5L 1.2D+Sn 1.2D+WnDn	3.59 Kn-m	Capacity	10.85 Kn-m	Passing Percentage	302.23 %
$M_{0.9D\text{-W}nUp}$	-2.21 Kn-m	Capacity	-2.59 Kn-m	Passing Percentage	117.19 %
V _{1.35D}	1.03 Kn	Capacity	20.98 Kn	Passing Percentage	2036.89 %
V1.2D+1.5L 1.2D+Sn 1.2D+WnDn	2.11 Kn	Capacity	27.98 Kn	Passing Percentage	1326.07 %
V0.9D-WnUp	-1.30 Kn	Capacity	-34.97 Kn	Passing Percentage	2690.00 %

Deflections

Modulus of Elasticity = 8000 MPa NZS3603 Amt 4, Table 2.3 considering at least 4 members acting together

k2 for Long Term Loads = 2

Deflection under Dead and Live Load = 20.55 mm Limit by AS1170.0 Table C1 Span/250 = 27.20 mm Deflection under Dead and Service Wind = 23.80 mm Limit by AS1170.0 Table C1 Span/120 = 56.67 mm

Reactions

Maximum downward = 2.11 kn Maximum upward = -1.30 kn

Number of Blocking = 0 if 0 then no blocking required, if 1 then one midspan blocking required

Rafter Design Internal

Internal Rafter Load Width = 5500 mm Internal Rafter Span = 12000 mm Try Rafter 2x150x50 SG8 Dry

Moisture Condition = Dry (Moisture in timber is less than 16% and does not remain in continuous wet condition after installation)

K1 Short term = 1 K1 Medium term = 0.8 K1 Long term = 0.6 K4 = 1 K5 = 1 K8 Downward = 1.00

K8 Upward = 1.00 S1 Downward = 4.28 S1 Upward = 4.28

Shear Capacity of timber = 3 MPa Bending Capacity of timber = 14 MPa NZS3603 Amt 4, table 2.3

Capacity Checks

$M_{1.35D}$	33.41 Kn-m	Capacity	2.82 Kn-m	Passing Percentage	8.44 %
M1.2D+1.5L 1.2D+Sn 1.2D+WnDn	68.31 Kn-m	Capacity	3.78 Kn-m	Passing Percentage	5.53 %
M0.9D-WnUp	-42.08 Kn-m	Capacity	-4.72 Kn-m	Passing Percentage	11.22 %

Second page

V _{1.35D}	11.14 Kn	Capacity	14.48 Kn	Passing Percentage	129.98 %
V1.2D+1.5L 1.2D+Sn 1.2D+WnDn	22.77 Kn	Capacity	19.3 Kn	Passing Percentage	84.76 %
$ m V_{0.9D ext{-}WnUp}$	-14.03 Kn	Capacity	-24.12 Kn	Passing Percentage	171.92 %

Deflections

Modulus of Elasticity = 5400 MPa NZS3603 Amt 4, Table 2.3

k2 for Long Term Loads = 2

Deflection under Dead and Live Load = 2640 mm Limit by AS1170.0 Table C1 Span/250 = 48.00 mm Deflection under Dead and Service Wind = 3397.78 mm Limit by AS1170.0 Table C1 Span/120 = 100.00 mm

Reactions

Maximum downward = 22.77 kn Maximum upward = -14.03 kn

Rafter to Pole Connection check

Bolt Size = M12 Number of Bolts = 3

Calculations as per NZS 3603:1993 Amend 2005 clause 4.4

Joint Group for Rafters =J5 Joint Group for Pole = J5

Minimum Bolt edge, end and spacing for Load perpendicular to grains = 60 mm

Factor of Safety = 0.7

For Perpendicular to grain loading

K11 = 14.9 fpj = 12.9 Mpa for Rafter with effective thickness = 100 mm

For Parallel to grain loading

K11 = 2.0 fcj = 36.1 Mpa for Pole with effective thickness = 100 mm

Capacity under short term loads = 32.51 Kn > -14.03 Kn

Rafter Design External

External Rafter Load Width = 3500 mm External Rafter Span = 6009 mm Try Rafter 300x45 LVL8

Moisture Condition = Dry (Moisture in timber is less than 16% and timber does not remain in continuous wet condition after installation)

K1 Short term = 1 K1 Medium term = 0.8 K1 Long term = 0.6 K4 = 1 K5 = 1 K8 Downward = 0.88

K8 Upward =0.88 S1 Downward =15.50 S1 Upward =15.50

Shear Capacity of timber = 5 MPa Bending Capacity of timber = 30 MPa NZS3603 Amt 4, table 2.3

Capacity Checks

$M_{1.35D}$	5.33 Kn-m	Capacity	8.56 Kn-m	Passing Percentage	160.60 %
M1.2D+1.5L 1.2D+Sn 1.2D+WnDn	10.90 Kn-m	Capacity	11.41 Kn-m	Passing Percentage	104.68 %
$M_{0.9D\text{-W}nUp}$	-6.71 Kn-m	Capacity	-14.26 Kn-m	Passing Percentage	212.52 %
V1.35D	3.55 Kn	Capacity	21.71 Kn	Passing Percentage	611.55 %
V1.2D+1.5L 1.2D+Sn 1.2D+WnDn	7.26 Kn	Capacity	28.94 Kn	Passing Percentage	398.62 %
$V_{0.9D\text{-W}nUp}$	-4.47 Kn	Capacity	-36.18 Kn	Passing Percentage	809.40 %

Deflections

Modulus of Elasticity = 5400 MPa NZS3603 Amt 4, Table 2.3

k2 for Long Term Loads = 2

Deflection under Dead and Live Load = 25.00 mm Limit by AS1170.0 Table C1 Span/250 = 24.00 mm Deflection under Dead and Service Wind = 28.96 mm Limit by AS1170.0 Table C1 Span/120 = 50.00 mm

Reactions

Maximum downward = 7.26 kn Maximum upward = -4.47 kn

Rafter to Pole Connection check

Bolt Size = M12 Number of Bolts = 2

Calculations as per NZS 3603:1993 Amend 2005 clause 4.4

Joint Group for Rafters = J5 Joint Group for Pole = J5

Factor of Safety = 0.7

For Perpendicular to grain loading

K11 = 14.9 fpj = 12.9 Mpa for Rafter with effective thickness = 45 mm

For Parallel to grain loading

K11 = 2.0 fcj = 36.1 Mpa for Pole with effective thickness = 100 mm

Eccentric Load check

V = phi x k1 x k4 x k5 x fs x b x ds (Eq 4.12) = -37.80 kn > -4.47 Kn

Single Shear Capacity under short term loads = -9.75 Kn > -4.47 Kn

Intermediate Design Front and Back

Intermediate Spacing = 3500 mm Intermediate Span = 2304 mm Try Intermediate 2x150x50 SG8 Dry

Moisture Condition = Dry (Moisture in timber is less than 16% and does not remain in continuous wet condition after installation)

K1 Short term = 1 K4 = 1 K5 = 1 K8 Downward = 1.00

K8 Upward = 1.00 S1 Downward = 9.63 S1 Upward = 0.49

Shear Capacity of timber = 3 MPa Bending Capacity of timber = 14 MPa NZS3603 Amt 4, table 2.3

Capacity Checks

Mwind+Snow 1.74 Kn-m Capacity 4.72 Kn-m Passing Percentage 271.26 % V_{0.9D-WnUp} 3.02 Kn-m Capacity -24.12 Kn-m Passing Percentage 798.68 %

Deflections

Modulus of Elasticity = 5400 MPa NZS3603 Amt 4, Table 2.3

Deflection under Snow and Service Wind = 6.335 mm Limit by AS1170.0 Table C1 Span/120 = 19.20 mm

Reactions

Maximum = 3.02 kn

Intermediate Design Sides

Intermediate Spacing = 3000 mm Intermediate Span = 3102 mm Try Intermediate 2x150x50 SG8 Dry

Moisture Condition = Dry (Moisture in timber is less than 16% and does not remain in continuous wet condition after installation)

K1 Short term = 1 K4 = 1 K5 = 1 K8 Downward = 1.00

K8 Upward = 1.00 S1 Downward = 9.63 S1 Upward = 0.57

Shear Capacity of timber = 3 MPa Bending Capacity of timber = 14 MPa NZS3603 Amt 4, table 2.3

Capacity Checks

Mwind+Snow 1.35 Kn-m Capacity 4.72 Kn-m Passing Percentage **349.63 %** V_{0.9D-WnUp} 1.74 Kn-m Capacity 24.12 Kn-m Passing Percentage **1386.21 %**

Deflections

Modulus of Elasticity = 5400 MPa NZS3603 Amt 4, Table 2.3

Deflection under Snow and Service Wind = 17.855 mm Limit by AS1170.0 Table C1 Span/120 = 25.85 mm

Reactions

Maximum = 1.74 kn

Middle Pole Design

Geometry

200 SED H5 (Minimum 250 dia. at Floor Level)	Dry Use	Height	2650 mm
Area	49063 mm2	As	36796.875 mm2
Ix	191650391 mm4	Zx	1533203 mm3
Iy	191650391 mm4	Zx	1533203 mm3
Lateral Restraint	1300 mm c/c		

Loads

Total Area over Pole = 33 m²

Dead	8.25 Kn	Live	8.25 Kn
Wind	12.87 Kn	Snow	0.00 Kn
Moment wind	Kn-m		
Phi	0.8	K8	1.00
K1 snow	0.8	K1 Dead	0.6
K1wind	1		

Material

Peeling	Steaming	Normal	Dry Use
fb =	36.3 MPa	$f_S =$	2.96 MPa
fc =	18 MPa	fp =	7.2 MPa
ff =	22 MPa	E =	9257 MPa

Capacities

PhiNcx Wind	706.50 Kn	PhiMnx Wind	44.52 Kn-m	PhiVnx Wind	87.14 Kn
PhiNcx Dead	423.90 Kn	PhiMnx Dead	26.71 Kn-m	PhiVnx Dead	52.28 Kn

Checks

(Mx/PhiMnx)+(N/phiNcx) = 0.32 < 1 OK

 $(Mx/PhiMnx)^2 + (N/phiNcx) = 0.12 < 1 \text{ OK}$

Deflection at top under service lateral loads = 10.47 mm < 35.33 mm

Drained Lateral Strength of Middle pile in cohesionless soils Free Head short pile

Soil Properties

Gamma 18 Kn/m3 Friction angle 30 deg Cohesion 0 Kn/m3

 $K0 = \frac{(1-\sin(30)) / (1+\sin(30))}{Kp} = \frac{(1+\sin(30)) / (1-\sin(30))}{(1-\sin(30))}$

Geometry For Middle Bay Pole

Ds = 600 mm Pile Diameter

L= 2000 mm Pile embedment length

f1 = 3037 mm Distance at which the shear force is applied

f2 = 0 mm Distance of top soil at rest pressure

Loads

Moment Wind = 12.32 Kn-m Shear Wind = 4.06 Kn

Pile Properties

Safety Factory 0.55

Hu = 14.15 Kn Ultimate Lateral Strength of the Pile, Short pile

Mu = 26.45 Kn-m Ultimate Moment Capacity of Pile

Checks

Applied Forces/Capacities = 0.47 < 1 OK

End Pole Design

Geometry For End Bay Pole

Ds = 600 mm Pile Diameter

L= 1500 mm Pile embedment length

f1 = 3037 mm Distance at which the shear force is applied

f2 = 0 mm Distance of top soil at rest pressure

Loads

Total Area over Pole = 10.5 m^2

Moment Wind = 5.23 Kn-mShear Wind = 1.72 Kn

Pile Properties

Safety Factory 0.55

Hu = 6.63 Kn Ultimate Lateral Strength of the Pile, Short pile

Mu = 11.97 Kn-m Ultimate Moment Capacity of Pile

Checks

Applied Forces/Capacities = 0.44 < 1 OK

Drained Lateral Strength of End pile in cohesionless soils Free Head short pile

Soil Properties

Gamma 18 Kn/m3 Friction angle 30 deg Cohesion 0 Kn/m3

 $K0 = \frac{(1-\sin(30)) / (1+\sin(30))}{Kp} = \frac{(1+\sin(30)) / (1-\sin(30))}{(1-\sin(30))}$

Geometry For End Bay Pole

Ds = 600 mm Pile Diameter

L= 1500 mm Pile embedment length

f1 = 3037 mm Distance at which the shear force is applied

f2 = 0 mm Distance of top soil at rest pressure

Loads

Moment Wind = 5.23 Kn-m Shear Wind = 1.72 Kn

Pile Properties

Safety Factory 0.55

Hu = 6.63 Kn Ultimate Lateral Strength of the Pile, Short pile

Mu = 11.97 Kn-m Ultimate Moment Capacity of Pile

Checks

Applied Forces/Capacities = 0.44 < 1 OK

Uplift Check

Density of Concrete = 24 Kn/m³

Density of Timber Pole = 5 Kn/m3

Due to cast in place pile, the surface interaction between soil and pile will be rough thus angle of friction between both is taken equal to soil angle of internal friction

Ks (Lateral Earth Pressure Coefficient) for cast into place concrete piles = 1.5

Formula to calculate Skin Friction = Safecty factor (0.55) x Density of Soil(18) x Height of Pile(2000) x Ks(1.5) x tan(30) x Pi x Dia of Pile(0.6) x Height of Pile(2000)

Skin Friction = 32.31 Kn

Weight of Pile + Pile Skin Friction = 36.60 Kn

Uplift on one Pile = 14.03 Kn

Uplift is ok