```
In [102]: import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
```

In [103]: df=pd.read_csv("C:/Users/zoaah/Downloads/world_population.csv")
 df

Out[103]:

	Rank	CCA3	Country	Capital	Continent	2022 Population	2020 Population	2015 Population	Рорι
0	36	AFG	Afghanistan	Kabul	Asia	41128771.00	38972230.00	33753499.00	28189
1	138	ALB	Albania	Tirana	Europe	2842321.00	2866849.00	2882481.00	2913
2	34	DZA	Algeria	Algiers	Africa	44903225.00	43451666.00	39543154.00	35856
3	213	ASM	American Samoa	Pago Pago	Oceania	44273.00	46189.00	51368.00	54
4	203	AND	Andorra	Andorra la Vella	Europe	79824.00	77700.00	71746.00	71:
229	226	WLF	Wallis and Futuna	Mata- Utu	Oceania	11572.00	11655.00	12182.00	13
230	172	ESH	Western Sahara	El Aaiún	Africa	575986.00	556048.00	491824.00	413
231	46	YEM	Yemen	Sanaa	Asia	33696614.00	32284046.00	28516545.00	24743
232	63	ZMB	Zambia	Lusaka	Africa	20017675.00	18927715.00	NaN	13792
233	74	ZWE	Zimbabwe	Harare	Africa	16320537.00	15669666.00	14154937.00	12839

234 rows × 17 columns

In [104]: pd.set_option('display.float_format',lambda x: '%.2f' % x)

In [105]: df.head()

Out[105]:

	Rank	CCA3	Country	Capital	Continent	2022 Population	2020 Population	2015 Population	2 Popula
0	36	AFG	Afghanistan	Kabul	Asia	41128771.00	38972230.00	33753499.00	2818967
1	138	ALB	Albania	Tirana	Europe	2842321.00	2866849.00	2882481.00	291339
2	34	DZA	Algeria	Algiers	Africa	44903225.00	43451666.00	39543154.00	3585634
3	213	ASM	American Samoa	Pago Pago	Oceania	44273.00	46189.00	51368.00	5484
4	203	AND	Andorra	Andorra Ia Vella	Europe	79824.00	77700.00	71746.00	7151
4									•

```
In [106]: df.shape
```

Out[106]: (234, 17)

In [107]: df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 234 entries, 0 to 233
Data columns (total 17 columns):

#	Column	Non-Null Count	Dtype
0	Rank	234 non-null	int64
1	CCA3	234 non-null	object
2	Country	234 non-null	object
3	Capital	234 non-null	object
4	Continent	234 non-null	object
5	2022 Population	230 non-null	float64
6	2020 Population	233 non-null	float64
7	2015 Population	230 non-null	float64
8	2010 Population	227 non-null	float64
9	2000 Population	227 non-null	float64
10	1990 Population	229 non-null	float64
11	1980 Population	229 non-null	float64
12	1970 Population	230 non-null	float64
13	Area (km²)	232 non-null	float64
14	Density (per km²)	230 non-null	float64
15	Growth Rate	232 non-null	float64
16	World Population Percentage	234 non-null	float64
44	Cl+C4/12\ :-+C4/1\	(1)	

dtypes: float64(12), int64(1), object(4)

memory usage: 31.2+ KB

In [108]: df.describe()

Out[108]:

	Rank	2022 Population	2020 Population	2015 Population	2010 Population	2000 Population	F
count	234.00	230.00	233.00	230.00	227.00	227.00	
mean	117.50	34632250.88	33600710.95	32066004.16	30270164.48	26840495.26	19
std	67.69	137889172.44	135873196.61	131507146.34	126074183.54	113352454.57	81
min	1.00	510.00	520.00	564.00	596.00	651.00	
25%	59.25	419738.50	406471.00	394295.00	382726.50	329470.00	
50%	117.50	5762857.00	5456681.00	5244415.00	4889741.00	4491202.00	3
75%	175.75	22653719.00	21522626.00	19730853.75	16825852.50	15625467.00	11
max	234.00	1425887337.00	1424929781.00	1393715448.00	1348191368.00	1264099069.00	1153

```
#to check for unique values
In [109]:
           df.nunique()
Out[109]: Rank
                                            234
           CCA3
                                            234
           Country
                                            234
           Capital
                                            234
           Continent
                                              6
           2022 Population
                                            230
           2020 Population
                                            233
           2015 Population
                                            230
           2010 Population
                                            227
           2000 Population
                                            227
           1990 Population
                                            229
           1980 Population
                                            229
           1970 Population
                                            230
           Area (km²)
                                            231
           Density (per km<sup>2</sup>)
                                            230
           Growth Rate
                                            178
           World Population Percentage
                                             70
           dtype: int64
In [110]: df.isnull().sum()
Out[110]: Rank
                                            0
           CCA3
                                            0
                                            0
           Country
                                            0
           Capital
           Continent
                                            0
           2022 Population
                                            4
           2020 Population
                                            1
                                            4
           2015 Population
           2010 Population
                                            7
                                            7
           2000 Population
           1990 Population
                                            5
                                            5
           1980 Population
           1970 Population
                                            4
                                            2
           Area (km²)
           Density (per km<sup>2</sup>)
                                            4
                                            2
           Growth Rate
           World Population Percentage
           dtype: int64
```

In [111]:	df.count()	
Out[111]:	Rank	234
	CCA3	234
	Country	234
	Capital	234
	Continent	234
	2022 Population	230
	2020 Population	233
	2015 Population	230
	2010 Population	227
	2000 Population	227
	1990 Population	229
	1980 Population	229
	1970 Population	230
	Area (km²)	232
	Density (per km²)	230
	Growth Rate	232
	World Population Percentage	234
	dtype: int64	
	,	

In [112]: #if we want to sort the values in a particular order based on a specific column
df.sort_values(by='2022 Population',ascending=False).head()

Out[112]:

	Rank	CCA3	Country	Capital	Continent	2022 Population	2020 Population	201 Populatio
41	1	CHN	China	Beijing	Asia	1425887337.00	1424929781.00	1393715448.0
92	2	IND	India	New Delhi	Asia	1417173173.00	1396387127.00	1322866505.0
221	3	USA	United States	Washington, D.C.	North America	338289857.00	335942003.00	324607776.0
93	4	IDN	Indonesia	Jakarta	Asia	275501339.00	271857970.00	259091970.0
156	5	PAK	Pakistan	Islamabad	Asia	235824862.00	227196741.00	210969298.0
4								•

In [113]: #correlation

correlation=df.corr()


```
In [115]: df.columns
```

```
In [116]: df.groupby('Continent').mean()
```

Out[116]:

	Rank	2022 Population	2020 Population	2015 Population	2010 Population	2000 Population	1990 Population
Continent							
Africa	92.16	25455879.68	23871435.26	21419703.57	18898197.31	14598365.95	11376964.52
Asia	77.56	96327387.31	94955134.37	89165003.64	89087770.00	80580835.11	48639995.33
Europe	124.50	15055371.82	14915843.92	15027454.12	14712278.68	14817685.71	14785203.94
North America	160.93	15007403.40	14855914.82	14259596.25	13568016.28	12151739.60	10531660.62
Oceania	188.52	2046386.32	1910148.96	1756664.48	1613163.65	1357512.09	1162774.87
South America	97.57	31201186.29	30823574.50	29509599.71	26789395.54	25015888.69	21224743.93
4							

In [117]: df.groupby('Continent').mean().sort_values(by="2022 Population",ascending=False

Out[117]:

	Rank	2022 Population	2020 Population	2015 Population	2010 Population	2000 Population	1990 Population
Continent							
Asia	77.56	96327387.31	94955134.37	89165003.64	89087770.00	80580835.11	48639995.33
South America	97.57	31201186.29	30823574.50	29509599.71	26789395.54	25015888.69	21224743.93
Africa	92.16	25455879.68	23871435.26	21419703.57	18898197.31	14598365.95	11376964.52
Europe	124.50	15055371.82	14915843.92	15027454.12	14712278.68	14817685.71	14785203.94
North America	160.93	15007403.40	14855914.82	14259596.25	13568016.28	12151739.60	10531660.62
Oceania	188.52	2046386.32	1910148.96	1756664.48	1613163.65	1357512.09	1162774.87
4							•

In [118]: df2=df.groupby('Continent')[df.columns[5:13].tolist()[::-1]].mean(numeric_only)

Out[118]:

	1970 Population	1980 Population	1990 Population	2000 Population	2010 Population	2015 Population	Popu
Continent							
Asia	43839877.83	40278333.33	48639995.33	80580835.11	89087770.00	89165003.64	94955
South America	13781939.71	17270643.29	21224743.93	25015888.69	26789395.54	29509599.71	30823
Africa	6567175.27	8586031.98	11376964.52	14598365.95	18898197.31	21419703.57	238714
Europe	13118479.82	14200004.52	14785203.94	14817685.71	14712278.68	15027454.12	149158
North America	7885865.15	9207334.03	10531660.62	12151739.60	13568016.28	14259596.25	148559
Oceania	846968.26	996532.17	1162774.87	1357512.09	1613163.65	1756664.48	1910 ⁻
4							

Out[119]:

Continent	Asia	South America	Africa	Europe	North America	Oceania
1970 Population	43839877.83	13781939.71	6567175.27	13118479.82	7885865.15	846968.26
1980 Population	40278333.33	17270643.29	8586031.98	14200004.52	9207334.03	996532.17
1990 Population	48639995.33	21224743.93	11376964.52	14785203.94	10531660.62	1162774.87
2000 Population	80580835.11	25015888.69	14598365.95	14817685.71	12151739.60	1357512.09
2010 Population	89087770.00	26789395.54	18898197.31	14712278.68	13568016.28	1613163.65
2015 Population	89165003.64	29509599.71	21419703.57	15027454.12	14259596.25	1756664.48
2020 Population	94955134.37	30823574.50	23871435.26	14915843.92	14855914.82	1910148.96
2022 Population	96327387.31	31201186.29	25455879.68	15055371.82	15007403.40	2046386.32

In [120]: df3.plot()

Out[120]: <Axes: >

In [121]: #detection of outliers df.boxplot(figsize=(20,10))

Out[121]: <Axes: >

In [122]: #using histograms to analyze the relationship
sns.distplot(df['2022 Population'],bins=5)
plt.show()

In [123]: sns.catplot(x='2020 Population',kind='box',data=df)

Out[123]: <seaborn.axisgrid.FacetGrid at 0x1a30a86cd90>

In [124]: df.select_dtypes(include='number')

Out[124]:

	Rank	2022 Population	2020 Population	2015 Population	2010 Population	2000 Population	1990 Population	Pop
0	36	41128771.00	38972230.00	33753499.00	28189672.00	19542982.00	10694796.00	12486
1	138	2842321.00	2866849.00	2882481.00	2913399.00	3182021.00	3295066.00	2941
2	34	44903225.00	43451666.00	39543154.00	35856344.00	30774621.00	25518074.00	18739
3	213	44273.00	46189.00	51368.00	54849.00	58230.00	47818.00	32
4	203	79824.00	77700.00	71746.00	71519.00	66097.00	53569.00	35
229	226	11572.00	11655.00	12182.00	13142.00	14723.00	13454.00	11
230	172	575986.00	556048.00	491824.00	413296.00	270375.00	178529.00	116
231	46	33696614.00	32284046.00	28516545.00	24743946.00	18628700.00	13375121.00	9204
232	63	20017675.00	18927715.00	NaN	13792086.00	9891136.00	7686401.00	5720
233	74	16320537.00	15669666.00	14154937.00	12839771.00	11834676.00	10113893.00	7049

234 rows × 13 columns

In [125]: df.select_dtypes(include='object')

Out[125]:

	CCA3	Country	Capital	Continent
0	AFG	Afghanistan	Kabul	Asia
1	ALB	Albania	Tirana	Europe
2	DZA	Algeria	Algiers	Africa
3	ASM	American Samoa	Pago Pago	Oceania
4	AND	Andorra	Andorra la Vella	Europe
229	WLF	Wallis and Futuna	Mata-Utu	Oceania
230	ESH	Western Sahara	El Aaiún	Africa
231	YEM	Yemen	Sanaa	Asia
232	ZMB	Zambia	Lusaka	Africa
233	ZWE	Zimbabwe	Harare	Africa

234 rows × 4 columns

In [126]: #to remove warnings import warnings warnings.filterwarnings('ignore')

CONCLUSION

Exploratory data analysis is a Data exploration technique to understand the sequence of data.

objectives-:

- 1.Identify the type of data (numeric, categorical, etc.) and recognizes the data distribution and patterns.
- 2.Identify any unusual patterns or extreme values that might indicate errors or anomalies in the data.
- 3.Calculate summary statistics (mean, median, standard deviation, etc.) to describe the central tendency and variability of the data.
- 4. Identify missing values and assess their impact on the analysis.

In the exploratory data analysis (EDA) report conducted on world population data using the Pandas library, a comprehensive examination of the dataset was performed to gain insights into its key characteristics. The analysis involved understanding the structure of the data, detecting anomalies or outliers, exploring relationships between variables such as population size, growth rates, and geographic regions, and summarizing essential statistics to describe the distribution of population figures worldwide. Visualizations such as histograms and scatter plots were utilized to identify patterns and trends, providing a clear overview of the dataset. The report also addressed the presence of missing data and potential implications for analysis, laying the foundation for informed decision-making and further statistical modeling.