Notes from MAT397 - Calculus III

Notetaker: Grant Griffiths

Semester: Summer Session I 2012 - Syracuse University

Contents

	ctors and The Geometry of Space	2
12.	Three Dimensional Coordinate Systems	2
12.5	2 Vectors	2
12.	The Dot Product	3
12.4	The Cross Product	4
12.	5 Equations of Lines and Planes	4
12.0	6 Cylinders and Quadric Surfaces	5
13 Ve	ctor Functions	6
13.	Vector Functions and Space Curves	6
13.5	2 Derivatives and Integrals of Vector Functions	6
13.	3 Arc Length and Curvature	7
	4 Motion in Space: Velocity and Acceleration	7
14 Pa	rtial Derivatives	8
14.	Functions of Several Variables	8
	2 Limits and Continuity	8
14.	Partial Derivatives	8
14.	4 Tangent Planes and Linear Approximations	9
14.	5 The Chain Rule	10
14.0	6 Directional Derivatives and the Gradient Vector	10
14.	7 Maximum and Minimum Values	11
14.8	B Lagrange Multipliers	11
15 Mı		12
15.	Double integrals over Rectangles	12
15.5	2 Iterated Integrals	12
15.	B Double Integrals over General Regions	12
		12
		13
15.0	Surface Area	13
		14
		14
15.9	Triple Integrals in Spherical Coordinates	15
15.	10Change of Variables in Multiple Integrals	15
		16
16.	Vector Fields	16
16.5	2 Line Integrals	16
16.	B The Fundamental Theorem for line Integrals	16
16	1. Croon's Theorem	1 7

Chapter 12: Vectors and The Geometry of Space

Lesson 12.1: Three Dimensional Coordinate Systems

• Coordinate Planes

XY-Plane: Z is always 0 and x,y can be any real numbers

XZ-Plane: Y is always 0 and x,z can be any real numbers

YZ-Plane: X is always 0 and y,z can be any real numbers

- These three coordinate planes divide space into eight parts, call **octants**. The first octant is where x,y,z are all positive.
- A point P in \mathbb{R}^3 with coordinates (x,y,z) is in the **three-dimensional rectangular coordinate system.**
- Distance Formula in Three Dimensions: The distance $|P_1P_2|$ between the points P_1 and P_2 is

$$|P_1P_2| = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2 + (z_2 - z_1)^2}$$

• Equation of a Sphere: An equation of a sphere with center C(h,h,l) and radius r is

$$(x-h)^2 + (y-k)^2 + (z-l)^2 = r^2$$

In particular, if the center is the origin O, then the equation for the sphere is $x^2 + y^2 + z^2 = r^2$

Lesson 12.2: Vectors

- Definition of Vector Addition: If \mathbf{u} and \mathbf{v} are vector positioned so the initial point of \mathbf{v} is at the terminal pointer of \mathbf{u} , then the sum $\mathbf{v} + \mathbf{u}$ is the vector from the initial point of \mathbf{u} to the terminal point of \mathbf{v} .
- Definition of Scalar Multiplication: If c is a scalar and \mathbf{v} is a vector, then the scalar multiple $c\mathbf{v}$ is the vector whose length is |c| times the length of \mathbf{v} and whose direction is the same as \mathbf{v} if c > 0 and opposite to \mathbf{v} if c < 0. if c = 0 or v = 0, then $c\mathbf{v} = 0$.
- Vectors are **parallel** if they are scalar multiples of one another.
- \bullet If a vector has the same magnitude but opposite direction, we call it the **negative** of \mathbf{v}
- Vector subtraction: $\mathbf{u} \mathbf{v} = \mathbf{u} + (-\mathbf{v})$
- Components of a Vector: $\mathbf{a} = \langle a_1, a_2, a_3 \rangle$ where $a_1, a_2,$ and a_3 are the components
- Position Vector: Vector from the origin to a point.

Given the points $A(x_1, y_1, z_1)$ and $B(x_2, y_2, z_2)$, the vector **a** with representation \overrightarrow{AB} is $\overrightarrow{AB} = \langle x_2 - x_1, y_2 - y_1, z_2 - z_1 \rangle$

• The Magnitude of a vector: The square root of the sum of all the components squared.

$$|\mathbf{a}| = \sqrt{a_1^2 + a_2^2} \text{ or } |\mathbf{a}| = \sqrt{a_1^2 + a_2^2 + a_3^2}$$

• Vector Operations: If $\mathbf{a} = \langle a_1, a_2 \rangle$ and $\mathbf{b} = \langle b_1, b_2 \rangle$, then

$$\mathbf{a} + \mathbf{b} = \langle a_1 + b_1, a_2 + b_2 \rangle$$

$$\mathbf{a} - \mathbf{b} = \langle a_1 - b_1, a_2 - b_2 \rangle$$

$$c\mathbf{a} = \langle ca_1, ca_2 \rangle$$

- Properties of Vectors: If a, b, c are vectors in V_n , and c and d are scalars, then
 - 1. a + b = b + a
 - 2. a + (b + c) = (a + b) + c
 - 3. $\mathbf{a} + 0 = \mathbf{a}$
 - 4. $\mathbf{a} + -(\mathbf{a}) = 0$
 - 5. $c(\mathbf{a} + \mathbf{b}) = c\mathbf{a} + c\mathbf{b}$
 - 6. $(c+d)\mathbf{a} = c\mathbf{a} + d\mathbf{a}$
 - 7. $(cd)\mathbf{a} = c(d\mathbf{a})$
 - 8. 1a = a
- Standard Basis Vectors:

$$\hat{i} = \langle 1, 0, 0 \rangle$$

$$\hat{j} = \langle 0, 1, 0 \rangle$$

$$\hat{k} = \langle 0, 0, 1 \rangle$$

• Unit Vectors:

Vector divided by it's magnitude. $\frac{\mathbf{a}}{|\mathbf{a}|}$

Lesson 12.3: The Dot Product

- **Definition:** If $\mathbf{a} = \langle a_1, a_2, a_3 \rangle$ and $\mathbf{b} = \langle b_1, b_2, b_3 \rangle$, then the **dot product** is the number $a \cdot b = a_1b_1 + a_2b_2 + a_3b_3$
- Properties of Dot Products: ${\bf a}$, ${\bf b}$, and ${\bf c}$ are vectors in V_3 and c is a scalar, then

$$1. \ a \cdot a = |a|^2$$

$$2. \ a \cdot b = b \cdot a$$

3.
$$a \cdot (b+c) = a \cdot b + a \cdot c$$

4.
$$(ca) \cdot b = c(a \cdot b) = a \cdot (cb)$$

5.
$$0 \cdot a = 0$$

 \bullet Theorem: If θ is the angle between the vectors ${\bf a}$ and ${\bf b}$, then

$$a \cdot b = |a||b|cos\theta$$

• Corollary If θ is the angle between the nonzero vectors **a** and **b**, then

$$\cos \theta = \frac{\mathbf{a} \cdot \mathbf{b}}{|a| |b|}$$

- The vectors **a** and **b** are orthogonal if and only if $a \cdot b = 0$
- Scalar projection of b onto a:

$$comp_a \mathbf{b} = \frac{a \cdot b}{|a|}$$

• Vector projection of b onto a:

$$proj_a \mathbf{b} = (\frac{a \cdot b}{|a|}) \frac{a}{|a|} = \frac{\mathbf{a} \cdot \mathbf{b}}{|\mathbf{a}|^2} \mathbf{a}$$

Lesson 12.4: The Cross Product

• Definition: If $\mathbf{a} = \langle a_1, a_2, a_3 \rangle$ and $\mathbf{b} = \langle b_1, b_2, b_3 \rangle$, then the cross product of \mathbf{a} and \mathbf{b} is the vector

$$\mathbf{a} \times \mathbf{b} = \langle a_2b_3 - a_3b_2, a_3b_1 - a_1b_3, a_1b_2 - a_2b_1 \rangle$$

- Theorem: The vector $\mathbf{a} \times \mathbf{b}$ is orthogonal to both \mathbf{a} and \mathbf{b} .
- \bullet Theorem: If θ is the angle between ${\bf a}$ and ${\bf b}$, then

$$|\mathbf{a} \times \mathbf{b}| = |a||b|\sin\theta$$

• Corollary: Two nonzero vectors a and b are parallel if and only if

$$\mathbf{a} \times \mathbf{b} = 0$$

- The magnitude of the cross product $\mathbf{a} \times \mathbf{b}$ is equal to the area of the parallelogram determined by \mathbf{a} and \mathbf{b} .
- Theorem: If a, b, and c are vectors and c is a scalar, then

1.
$$\mathbf{a} \times \mathbf{b} = -\mathbf{b} \times \mathbf{a}$$

2.
$$(c\mathbf{a}) \times \mathbf{b} = c(\mathbf{a} \times \mathbf{b}) = \mathbf{a} \times (c\mathbf{b})$$

3.
$$\mathbf{a} \times (\mathbf{b} + \mathbf{c}) = \mathbf{a} \times \mathbf{b} + \mathbf{a} \times \mathbf{c}$$

4.
$$(\mathbf{a} + \mathbf{b}) \times \mathbf{c} = \mathbf{a} \times \mathbf{c} + \mathbf{b} \times \mathbf{c}$$

5.
$$\mathbf{a} \cdot (\mathbf{b} \times \mathbf{c}) = (\mathbf{a} \times \mathbf{b}) \cdot \mathbf{c}$$

6.
$$\mathbf{a} \times (\mathbf{b} \times \mathbf{c}) = (\mathbf{a} \cdot \mathbf{c})\mathbf{b} - (\mathbf{a} \cdot \mathbf{b})\mathbf{c}$$

ullet The volume of the parallelpiped determined by the vectors ${\bf a}$, ${\bf b}$, and ${\bf c}$ is the magnitude of their scalar triple product:

$$V = |\mathbf{a} \cdot (\mathbf{b} \times \mathbf{c})|$$

Lesson 12.5: Equations of Lines and Planes

• Vector Equation of a Line

$$\mathbf{r} = \mathbf{r}_0 + t\mathbf{v}$$

• Parametric Equations of a Line

$$x = x_0 + at$$

$$y = y_0 + bt$$

$$z = z_0 + ct$$

• Symmetric Equations of a Line

$$\frac{x-x_0}{a} = \frac{y-y_0}{b} = \frac{z-z_0}{c}$$

• The line segment from r_0 to r_1 is given by the vector equation $\mathbf{r}(t) = (1-t)\mathbf{r_0} + t\mathbf{r_1}$ $0 \le t \le 1$

• Vector Equation of the plane:

$$\mathbf{n} \cdot (\mathbf{r} - \mathbf{r_0}) = 0$$
$$\mathbf{n} \cdot \mathbf{r} = \mathbf{n} \cdot \mathbf{r_0}$$

• Scalar Equation of the Plane through $P_0(x_0, y_0, z_0)$ with normal vector $\mathbf{n} = \langle a, b, c \rangle$:

$$a(x - x_0) + b(y - y_0) + c(z - z_0) = 0$$

At
$$P_0(0,0,0)$$
, can be rewritten as $ax + by + cz + d = 0$ where $d = -(ax_0 + by_0 + cz_0)$.

- Two planes are **parallel** if their normal vectors are parallel.
- Distance between two planes:

$$D = \frac{|ax_1 + by_1 + cz_1 + d|}{\sqrt{a^2 + b^2 + c^2}}$$

Lesson 12.6: Cylinders and Quadric Surfaces

• Quadric Surface General Equation

$$Ax^{2} + By^{2} + Cz^{2} + Dxy + Eyz + Fxz + Gx + Hy + Iz + J = 0$$

- Cylinder: A surface that consist of all lines that are parallel to a given line and pass through a given plane curve.
- Parabolic Cylinder: Surface made up infinitely many shifted copies of the same parabola.

Surface	Equation	Surface	Equation
Ellipsoid	$\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$ All traces are ellipses. If $a = b = c$, the ellipsoid is a sphere.	Cone	$\frac{z^2}{c^2} = \frac{x^2}{a^2} + \frac{y^2}{b^2}$ Horizontal traces are ellipses. Vertical traces in the planes $x = k$ and $y = k$ are hyperbolas if $k \neq 0$ but are pairs of lines if $k = 0$.
Elliptic Paraboloid	$\frac{z}{c} = \frac{x^2}{a^2} + \frac{y^2}{b^2}$ Horizontal traces are ellipses. Vertical traces are parabolas. The variable raised to the first power indicates the axis of the paraboloid.	Hyperboloid of One Sheet	$\frac{x^2}{a^2} + \frac{y^2}{b^2} - \frac{z^2}{c^2} = 1$ Horizontal traces are ellipses. Vertical traces are hyperbolas. The axis of symmetry corresponds to the variable whose coefficient is negative.
Hyperbolic Paraboloid	$\frac{z}{c} = \frac{x^2}{a^2} - \frac{y^2}{b^2}$ Horizontal traces are hyperbolas. Vertical traces are parabolas. The case where $c < 0$ is illustrated.	Hyperboloid of Two Sheets	$-\frac{x^2}{a^2} - \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$ Horizontal traces in $z = k$ are ellipses if $k > c$ or $k < -c$. Vertical traces are hyperbolas. The two minus signs indicate two sheets.

Figure 12.1: Image from Calculus Early Transcendentals 6th Edition

Chapter 13: Vector Functions

Lesson 13.1: Vector Functions and Space Curves

- **Vector Function:** A function whose domain is a set of real numbers and whose range is a set of vectors. $\mathbf{r}(t) = \langle f(t), g(t), h(t) \rangle = f(t)\hat{i} + g(t)\hat{j} + h(t)\hat{k}$
- ullet The **limit** of a vector function ${f r}$ is defined by taking the limits of its component functions as follows.

If $\mathbf{r}(t) = \langle \lim_{t \to a} f(t), \lim_{t \to a} g(t), \lim_{t \to a} h(t) \rangle$ provided the limits of the component functions exist.

• A vector function \mathbf{r} is **continuous** at a if

$$\lim_{t \to a} \mathbf{r}(t) = \mathbf{r}(a)$$

• Parametric equations of a curve C with a parameter t:

$$x = f(t)$$
 $y = g(t)$ $z = h(t)$

Lesson 13.2: Derivatives and Integrals of Vector Functions

• Derivative of a vector function r:

$$\frac{d\mathbf{r}}{dt} = \mathbf{r}'(t) = \lim_{h \to 0} \frac{\mathbf{r}(t+h) - \mathbf{r}(t)}{h}$$

- Tangent Vector: $\mathbf{r}'(t)$
- Unit Tangent Vector:

$$\mathbf{T}(t) = \frac{\mathbf{r}'(t)}{|\mathbf{r}'(t)|}$$

• **Theorem:** If $\mathbf{r}(t) = \langle f(t), g(t), g(t) \rangle = f(t)\hat{i} + g(t)\hat{j} + h(t)\hat{k}$ where f, g, and h are differentiable functions, then

$$\mathbf{r}'(t) = \langle f'(t), g'(t), g'(t) \rangle = f'(t)\hat{i} + g'(t)\hat{j} + h'(t)\hat{k}$$

- **Theorem:** Suppose \mathbf{u} and \mathbf{v} are differentiable vector functions, c is a scalar, and f is a real-valued function. Then
 - 1. Sums: $\frac{d}{dt}[\mathbf{u}(t) + \mathbf{v}(t)] = \mathbf{u}'(t) + \mathbf{v}'(t)$
 - 2. Scalars: $\frac{d}{dt}[c\mathbf{u}(t)] = c\mathbf{u}'(t)$
 - 3. Product Rule (Multiplicative): $\frac{d}{dt}[f(t)\mathbf{u}(t)] = f'(t)\mathbf{u}(t) + f(t)\mathbf{u}'(t)$
 - 4. Product Rule (Dot Product): $\frac{d}{dt}[\mathbf{u}(t) \cdot \mathbf{v}(t)] = \mathbf{u}'(t) \cdot \mathbf{v}(t) + \mathbf{u}(t) \cdot \mathbf{v}'(t)$
 - 5. Product Rule (Cross Product): $\frac{d}{dt}[\mathbf{u}(t) \times \mathbf{v}(t)] = \mathbf{u}'(t) \times \mathbf{v}(t) + \mathbf{u}(t) \times \mathbf{v}'(t)$
 - 6. Chain Rule: $\frac{d}{dt}[\mathbf{u}(f(t))] = f'(t)\mathbf{u}'(f(t))$
- Definite Integral of a vector function:

$$\int_{a}^{b} \mathbf{r}(t) dt = (\int_{a}^{b} f(t) dt)\hat{i} + (\int_{a}^{b} g(t) dt)\hat{j} + (\int_{a}^{b} h(t) dt)\hat{k}$$

Lesson 13.3: Arc Length and Curvature

• Arc Length of a function function:

$$L = \int_{a}^{b} |\mathbf{r}'(t)| dt$$

- A parametrization $\mathbf{r}(t)$ is called **smooth** on an interval I if \mathbf{r}' is continuous and $\mathbf{r}'(t) \neq 0$
- **Definition:** The **curvature** of a curve is

$$\kappa(t) = \frac{|\mathbf{T}'(t)|}{|\mathbf{r}'(t)|}$$

 \bullet **Theorem:** The curvature of the curve give by the vector function \mathbf{r} is

$$\kappa(t) = \frac{|\mathbf{r}'(t) \times \mathbf{r}''(t)|}{|\mathbf{r}'(t)|^3}$$

• Unit Normal Vector:

$$\mathbf{N}(t) = \frac{\mathbf{T}'(t)}{|\mathbf{T}'(t)|}$$

• Binormal Vector:

$$\mathbf{B}(t) = \mathbf{T}(t) \times \mathbf{N}(t)$$

Lesson 13.4: Motion in Space: Velocity and Acceleration

• Velocity Vector $\mathbf{v}(t)$ at time t

$$\mathbf{v}(t) = \lim_{h \to 0} \frac{\mathbf{r}(t+h) - \mathbf{r}(t)}{h} = \mathbf{r}'(t)$$

- The speed of a particle at a time is the magnitude of the velocity $|\mathbf{v}(t)|$
- Acceleration of a particle: $\mathbf{a}(t) = \mathbf{v}'(t) = \mathbf{r}''(t)$
- Parametric Equations of Trajectory:

$$x = (v_0 \cos \alpha) t$$
 $y = (v_0 \sin \alpha) t - \frac{1}{2}gt^2$

• Acceleration of a particle(2): $\mathbf{a} = v' \mathbf{T} + \kappa v^2 \mathbf{N}$

Chapter 14: Partial Derivatives

Lesson 14.1: Functions of Several Variables

- Function f of two variables: f(x,y)
- Level Curves of a function f are the curves with equation f(x,y) = k where k is a constant
- Function f of three variables: f(x, y, z)

Lesson 14.2: Limits and Continuity

• **Definition:** Let f be a function of two variables whose domain D includes points arbitrarily close to (a, b). Then we say that the **limit of f(x,y)** as **x,y** approaches (a,b) is L and we write:

$$\lim_{(x,y)\to(a,b)} f(x,y) = L$$

if for every $\epsilon > 0$ there is a corresponding number $\delta > 0$ such that

$$(x,y) \in D$$
 and $0 < \sqrt{(x-a)^2 + (y-b)^2} < \delta$ then $|f(x,y) - L| < \epsilon$

- If the limit as f(x,y) approaches a point P is different with different paths, then the limit does not exist at P.
- **Definition:** A function f of two variables is called **continuous** at (a, b) if

$$\lim_{(x,y)\to(a,b)} f(x,y) = f(a,b)$$

We say f is **continuous on D** if f is continuous at every point (a, b) in D

Lesson 14.3: Partial Derivatives

• Partial Derivative of f with respect to x at (a, b):

$$f_x(a,b) = g'(a)$$
 where $g(x) = f(x,b)$

• If f is a function of two variables, its **partial derivatives** are the functions f_x and f_y defined by

$$f_x(x,y) = \lim_{h \to 0} \frac{f(x+h,y) - (fx,y)}{h}$$

$$f_y(x,y) = \lim_{h \to 0} \frac{f(x,y+h) - (fx,y)}{h}$$

• Notations for Partial Derivatives: If z = f(x, y) we write

$$f_x(x,y) = f_x = \frac{\partial f}{\partial x} = \frac{\partial}{\partial x} f(x,y) = \frac{\partial z}{\partial x} = f_1 = D_1 f = D_x f$$

$$f_y(x,y) = f_y = \frac{\partial f}{\partial y} = \frac{\partial}{\partial y} f(x,y) = \frac{\partial z}{\partial y} = f_2 = D_2 f = D_y f$$

- Rule for Finding Partial Derivative of z = f(x, y)
 - 1. To find f_x , regard y as a constant and differentiate f(x,y) with respect to x
 - 2. To find f_y , regard x as a constant and differentiate f(x,y) with respect to y
- Second Partial Derivatives of f:

$$(f_x)_x = f_{xx} = f_{11} = \frac{\partial}{\partial x} (\frac{\partial f}{\partial x}) = \frac{\partial^2 f}{\partial x^2} = \frac{\partial^2 z}{\partial x^2}$$

$$(f_x)_y = f_{xy} = f_{12} = \frac{\partial}{\partial y} (\frac{\partial f}{\partial x}) = \frac{\partial^2 f}{\partial y \partial x} = \frac{\partial^2 z}{\partial y \partial x}$$

$$(f_y)_x = f_{yx} = f_{21} = \frac{\partial}{\partial x} (\frac{\partial f}{\partial y}) = \frac{\partial^2 f}{\partial x \partial y} = \frac{\partial^2 z}{\partial x \partial y}$$

$$(f_y)_y = f_{yy} = f_{22} = \frac{\partial}{\partial y} (\frac{\partial f}{\partial y}) = \frac{\partial^2 f}{\partial y^2} = \frac{\partial^2 z}{\partial y^2}$$

• Clairaut's Theorem: Suppose f is defined on a disk D that contains the point (a, b). If the function f_{xy} and f_{yx} are both continuous on D. Then

$$f_{xy}(a,b) = f_{yx}(a,b)$$

Lesson 14.4: Tangent Planes and Linear Approximations

- Suppose f has continuous partial derivatives. An equation of the **tangent plane** to the surface is $z = z_0 = f_x(x_0, y_0)(x x_0) + f_y(x_0, y_0)(y y_0)$
- Linearization of f at (a, b):

$$L(x,y) = f(a,b) + f_x(a,b)(x-a) + f_y(a,b)(y-b)$$

• If z = f(x, y) then f is **differentiable** at (a, b) if Δz can be expressed in the form

$$\Delta z = f_x(a,b)\Delta x + f_y(a,b)\Delta y + \epsilon_1\Delta x + \epsilon_2\Delta y \text{ where } \epsilon_1 \text{ and } \epsilon_2 \to 0 \text{ as}(\Delta x,\Delta y) \to (0,0).$$

- **Theorem:** If the partial derivatives f_x and f_y exist near (a, b) and are continuous at (a, b), then f is differentiable at (a, b).
- The **differential** of y = f(x) is defined as dy = f'(x) dx
- For a differentiable function of two variables, z = f(x, y), we define the **differentials** dx and dy. The **total differential** dz can be defined by:

$$dz = f_x(x, y)dx + f_y(x, y)dy = \frac{\partial z}{\partial x}dx + \frac{\partial z}{\partial y}dy$$

Lesson 14.5: The Chain Rule

• The Chain Rule (Case 1): Suppose that z = f(x, y) is a differentiable function of x and y, where x = g(t) and y = h(t) are both differentiable function of t. Then z is a differentiable function of t Then

$$\frac{dz}{dt} = \frac{\partial f}{\partial x}\frac{\partial x}{\partial t} + \frac{\partial f}{\partial y}\frac{dy}{dt}$$

• The Chain Rule (Case 2): Suppose that z = f(x, y) is a differentiable function of x and y, where x = g(t) and y = h(t) are both differentiable function of t. Then z is a differentiable function of s and t. Then

$$\frac{\partial z}{\partial s} = \frac{\partial z}{\partial x} \frac{\partial x}{\partial s} + \frac{\partial z}{\partial y} \frac{\partial y}{\partial s}$$

• The Chain Rule (General Version): Suppose that u is a differentiable function of n variables $x_1, x_2, ..., x_n$ and each x_j is a differentiable function of the m variables $t_1, t_2, ..., t_m$. Then u is a function of $t_1, t_2, ..., t_m$ and

$$\frac{\partial u}{\partial t_i} = \frac{\partial u}{\partial x_1} \frac{\partial x_1}{\partial t_i} + \frac{\partial u}{\partial x_2} \frac{\partial x_2}{\partial t_i} + \dots + \frac{\partial u}{\partial x_n} \frac{\partial x_n}{\partial t_i}$$

• Implicit Function Theorem:

$$\frac{dy}{dx} = -\frac{\frac{\partial F}{\partial x}}{\frac{\partial F}{\partial y}} = -\frac{F_x}{F_y}$$

Lesson 14.6: Directional Derivatives and the Gradient Vector

• The directional derivative of f at (x_0, y_0) in the direction of a unit vector $\mathbf{u} = \langle a, b \rangle$ is

$$D_{\mathbf{u}}f(x_0, y_0) = \lim_{h \to 0} \frac{f(x_0 + ha, y_0 + hb) - f(x_0, y_0)}{h}$$
 if this limit exists

• **Theorem:** If f is differentiable function of x and y, then f has a directional derivative in the direction of any vector $\mathbf{u} = \langle a, b \rangle$ and

$$D_{\mathbf{u}}f(x,y) = f_x(x,y)a + f_y(x,y)b$$

• **Definition:** If f is a function of two variables x and y, then the **gradient** of f is the vector function ∇f defined by

$$\nabla f(x,y) = \langle f_x(x,y), f_y(x,y) \rangle = \frac{\partial f}{\partial x} \mathbf{i} + \frac{\partial f}{\partial y} \mathbf{j}$$

• **Directional derivative** of a differentiable function:

$$D_{\mathbf{u}}f(x,y) = \nabla f(x,y) \cdot \mathbf{u}$$

• **Definition:** The **directional derivative** of f at (x_0, y_0, z_0) in the direction of a unit vector $\mathbf{u} = \langle a, b, c \rangle$ is

$$D_{\mathbf{u}}f(x_0, y_0, z_0) = \lim_{h \to 0} \frac{f(x_0 + ha, y_0 + hb, z_0 + hc) - f(x_0, y_0, z_0)}{h}$$
 if this limit exists

• Gradient Vector of a function f(x, y, z) can be defined

$$\nabla f = \langle f_x, f_y, f_z \rangle = \frac{\partial f}{\partial x} \mathbf{i} + \frac{\partial f}{\partial y} \mathbf{j} + \frac{\partial f}{\partial z} \mathbf{k}$$

• Directional derivative of a differentiable function of three variables:

$$D_{\mathbf{u}}f(x,y,z) = \nabla f(x,y,z) \cdot \mathbf{u}$$

- **Theorem:** Suppose f is a differentiable function of two or three variables. The maximum value of the directional derivatives $D_U f(x)$ is $|\nabla f(x)|$ and it occurs when **u** has the same direction as the gradient vector $\nabla f(x)$.
- Tangent Plane to the level surface:

$$F_x(x_0, y_0, z_0)(x - x_0) + F_y(x_0, y_0, z_0)(y - y_0) + F_z(x_0, y_0, z_0)(z - z_0) = 0$$

Lesson 14.7: Maximum and Minimum Values

- **Definition:** A function of two variables has a **local maximum** at (a,b) if $f(x,y) \le f(a,b)$ when (x,y) is near (a,b). The number f(a,b) is called a **local maximum value**. If $f(x,y) \ge f(a,b)$ when (x,y) is near (a,b), then f has a **local maximum value** at (a,b) and f(a,b) is a **local minimum value**.
- If the inequalities above hold for all points (x, y) in the domain of f, then f has an **absolute maximum or minimum** at (a, b). **Theorem:** If f has a local maximum or minimum at (a, b) and the first-order partial derivative of f exist there, then $f_x(a, b) = 0$ and $f_y(a, b) = 0$.
- Critical Point: Point of f where $f_x = 0$, $f_y = 0$, or one of the partial derivatives does not exist.
- Second Derivative Test: Suppose the second partial derivatives of f are continuous on a disk with center (a, b), and suppose that $f_x(a, b) = 0$ and $f_y(a, b) = 0$ Let

$$D = D(a,b) = f_{xx}(a,b)f_{yy}(a,b) - [f_{xy}(a,b)]^{2}$$

- If D > 0 and $f_{xx}(a, b) > 0$, then f(a, b) is a local minimum.
- If D > 0 and $f_{xx}(a,b) < 0$, then f(a,b) is a local maximum.
- If D < 0, then f(a, b) is not a local maximum or minimum. (Saddle Point)
- Extreme Value Theorem for Functions of Two Variables: If f is continuous on a closed, bounded set D in \mathbb{R}^2 , then f attains an absolute maximum value $f(x_1, y_1)$ and an absolute minimum value $f(x_2, y_2)$ at some points (x_1, y_1) and (x_2, y_2) in D.
- To find the absolute max and min values of a continuous function f on a closed, bounded set D:
 - 1. Find the values of f at the critical points of f in D.
 - 2. Find the extreme values of f on the boundary of D.
 - 3. The largest of the values from steps 1 and 2 is the absolute maximum value; the smallest of these values is the absolute minimum value.

Lesson 14.8: Lagrange Multipliers

- Definition: $\nabla f(x_0, y_0, z_0) = \lambda \nabla g(x_0, y_0, z_0)$ where λ is called a Lagrange multiplier.
- Method of Lagrange Multipliers: To find the max and min values of f(x, y, z) subject to the constraint g(x, y, z) = k [assuming that these extreme values exist and $\nabla g \neq 0$ on the surface g(x, y, z) = k]:
 - 1. Find all values of x, y, z and λ such that

$$\nabla f(x, y, z) = \lambda \nabla g(x, y, z)$$
 $g(x, y, z) = k$

2. Evaluate f at all the points (x, y, z) that result from step (1). The largest of these values is the **maximum** value of f; the smallest is the **minimum** value of f

Chapter 15: Multiple Integrals

Lesson 15.1: Double integrals over Rectangles

• **Definition:** The **double integral** of f over the rectangle R is

$$\iint\limits_R f(x,y) \, dA$$

• The **volume** V of the solid that lies above the rectangle R and below the surface z = f(x, y) is

$$V = \iint\limits_R f(x,y) \, dA$$

Lesson 15.2: Iterated Integrals

• Fubini's Theorem: If f is continuous on the rectangle $R = (x,y) \mid a \le x \le b, c \le y \le d$, then

$$\iint\limits_{R} f(x,y) \, dA = \int\limits_{a}^{b} \int\limits_{c}^{d} f(x,y) \, dy \, dx = \int\limits_{c}^{d} \int\limits_{a}^{b} f(x,y) \, dx \, dy$$

More generally, this is true if we assume that f is bounded on R, f is discontinuous only on a finite number of smooth curves, and the iterated integrals exit.

Lesson 15.3: Double Integrals over General Regions

• If F is integrable over R, then we define the **double integral of f over D** by

$$\iint\limits_D f(x,y) \, dA = \iint\limits_R F(x,y) \, dA$$

where F(x,y)=f(x,y) if (x,y) is in D and F(x,y)=00 if (x,y) is in R but not in D

• If f is continuous on a type I region D such that $D = (x,y) \mid a \le x \le b, g_1(x) \le y \le g_2(x)$

then
$$\iint\limits_D f(x,y)\,dA = \int\limits_a^b \int\limits_{g_1(x)}^{g_2(x)} f(x,y)\,dy\,dx$$

Lesson 15.4: Double Integrals in Polar Coordinates

• Polar Coordinates:

- Functions of the form $f(r, \theta)$

$$-r^2 = x^2 + y^2$$

$$-x = r \cos \theta$$

$$-y = r \sin \theta$$

• Change to Polar Coordinates in a Double Integrals: If f is continuous on a polar rectangle R given by $0 \le a \le r \le b$, $\alpha \le \theta \le \beta$, where $0 \le \beta - \alpha \le 2\pi$, then

$$\iint\limits_R f(x,y)\,dA = \int\limits_{\alpha}^{\beta} \int\limits_a^b f(r\cos\theta,r\sin\theta)\,r\,dr\,d\theta$$

• If f is continuous on a polar region of the form $D = (r, \theta) \mid \alpha \le \theta \le \beta, h_1(\theta) \le r \le h_2(\theta)$

$$\iint\limits_{D} dA = \int\limits_{\alpha}^{\beta} \int\limits_{h_{1}(\theta)}^{h_{2}(\theta)} f(r\cos\theta, r\sin\theta) \, r \, dr \, d\theta$$

Lesson 15.5: Applications of Double Integrals

- **Density** at a point (x, y) in D is given by $\rho(x, y)$, where ρ is a continuous function on D. This means that $\rho(x, y) = \lim \frac{\Delta m}{\Delta A}$
- Mass with density ρ : $m = \iint_{D} \rho(x, y) dA$
- Moment about the x axis: $M_x = \iint_D y \, \rho(x, y) \, dA$
- Moment about the y axis: $M_y = \iint_D x \, \rho(x, y) \, dA$
- The coordinates (\bar{x}, \bar{y}) of the **center of mass** of a lamina occupying the region D and having density function $\rho(x, y)$ are

$$\bar{x} = \frac{M_y}{m} = \frac{1}{m} \iint\limits_D x \rho(x, y) dA$$
 $\bar{y} = \frac{M_x}{m} = \frac{1}{m} \iint\limits_D y \rho(x, y) dA$

where the mass m is given by

$$m = \iint\limits_{D} \rho(x, y) \, dA$$

- Moment of Inertia of the lamina about the x-axis: $I_x = \iint_D y^2 \rho(x,y) dA$
- Moment of Inertia of the lamina about the y-axis: $I_y = \iint_D x^2 \rho(x,y) dA$
- Moment of inertia of the lamina about the origin: $I_0 = \iint_D (x^2 + y^2) \rho(x, y) dA$

Lesson 15.6: Surface Area

• The area of the surface with equation $z = f(x, y), (x, y) \in D$, where f_x and f_y are continuous is,

$$A(S) = \iint_{D} \sqrt{[f_x(x,y)]^2 + [f_y(x,y)]^2 + 1} \, dA$$

or using partial derivative notation...

$$A(s) = \iint\limits_{D} \sqrt{1 + (\frac{\partial z}{\partial x})^2 + (\frac{\partial z}{\partial x})^2} \ dA$$

Lesson 15.7: Triple Integrals

• **Definition**: The **triple integral** of f over the box B is

$$\iiint\limits_B f(x,y,z)\,dV$$

• Fubini's Theorem for Triple Integrals: If f is continuous on the rectangular box $B = [a, b] \times [c, d] \times [r, s]$, then

$$\iiint f(x, y, z) dV = \int_{r}^{s} \int_{c}^{d} \int_{a}^{b} f(x, y, z) dx dy dz$$

• Triple Integral over a General Region E. If $E = (x, y, z) \mid a \le x \le b, g_1(x) \le y \le g_2(x), u_1(x, y) \le z \le u_2(x, y)$, then

$$\iiint\limits_{E} f(x,y,z) \, dV = \int\limits_{a}^{b} \int\limits_{g_{1}(x)}^{g_{2}(x)} \int\limits_{u_{1}(x,y)}^{u_{2}(x,y)} f(x,y,z) \, dz \, dy \, dx$$

Lesson 15.8: Triple Integrals in Cylindrical Coordinates

- Function Format: $f(r, \theta, z)$.
- Cylindrical to Rectangular Coordinates:

$$x = r \cos \theta$$
 $y = r \sin \theta$ $z = z$

• Rectangular to Cylindrical Coordinates:

$$r^2 = x^2 + y^2$$
 $\tan \theta = \frac{y}{x}$ $z = z$

• Triple Integral in Cylindrical Coordinates: If $E = (x, y, z) | (x, y) \in D, u_1(x, y) \le z \le u_2(x, y)$, then

$$\iiint\limits_{E} f(x,y,z) \, dV = \int\limits_{\alpha}^{\beta} \int\limits_{h_{1}(\theta)}^{h_{2}(\theta)} \int\limits_{u_{1}}^{u_{2}} f(r\cos\theta, r\sin\theta, z) \, r \, dz \, dr \, d\theta$$

Notice the single r inserted near the end of the equation. This is the jacobian of our transformation into polar coordinates. (covered in 15.10)

Lesson 15.9: Triple Integrals in Spherical Coordinates

- Function Format: $f(\rho, \theta, \phi)$
- Spherical to Rectangular Coordinates:

$$x = \rho \sin \phi \cos \theta$$
 $y = \rho \sin \phi \sin \theta$ $z = \rho \cos \theta$

• Rectangular to Spherical:

$$\rho = x^2 + y^2 + z^2$$

• Triple Integration in Spherical Coordinates: If E is the spherical wedge given by $E = (\rho, \theta, \phi) \mid a \le \rho \le b, \alpha \le \theta \le \beta, c \le \phi \le d$, then

$$\iiint\limits_E f(x,y,z) \, dV = \int\limits_c^d \int\limits_\alpha^\beta \int\limits_a^b f(\rho \sin \phi \cos \theta, \rho \sin \phi \sin \theta, \rho \cos \phi) \, \rho^2 \sin \phi \, d\rho \, d\theta \, d\phi$$

Lesson 15.10: Change of Variables in Multiple Integrals

• **Definition:** The **Jacobian** of the transformation T given by x = g(u, v) and y = h(u, v) is

$$\frac{\partial(x,y)}{\partial(u,v)}\begin{vmatrix} \frac{\partial x}{\partial u} & \frac{\partial x}{\partial v} \\ \frac{\partial y}{\partial u} & \frac{\partial y}{\partial v} \end{vmatrix} = \frac{\partial x}{\partial u}\frac{\partial y}{\partial v} - \frac{\partial x}{\partial v}\frac{\partial y}{\partial u}$$

• Charge of Variables in a Double Integral: Suppose that T is a C^1 transformation whose Jacobian is nonzero and that maps a region S in the uv-plane onto a region R in the xy-plane. Suppose that f is continuous on R and that R and S are type I or type II plane regions. Suppose also that T is one-to-one, except perhaps on the boundary of S. Then

$$\iint\limits_R f(x,y) \, dA = \iint\limits_S f(x(u,v),y(u,v)) \left| \frac{\partial(x,y)}{\partial(u,v)} \right| \, du \, dv$$

• **Jacobian** for a transformation in space, where x = g(u, v, w) y = h(u, v, w) z = k(u, v, w)

is the following
$$3 \times 3$$
 determinant:
$$\frac{\partial(x,y,z)}{\partial(u,v,w)} = \begin{vmatrix} \frac{\partial x}{\partial u} & \frac{\partial x}{\partial v} & \frac{\partial x}{\partial w} \\ \frac{\partial y}{\partial u} & \frac{\partial y}{\partial v} & \frac{\partial y}{\partial w} \\ \frac{\partial z}{\partial u} & \frac{\partial z}{\partial v} & \frac{\partial z}{\partial w} \end{vmatrix}$$

• Similar to how we do double integrals with their Jacobians, we can use the above Jacobian when finding a triple integral after a transformation T.

15

Chapter 16: Vector Calculus

Lesson 16.1: Vector Fields

- **Definition:** Let D be a set in \mathbb{R}^2 (a plane region). A **vector field** on \mathbb{R}^2 is a function **F** that assigns to each point (x, y) in D a two-dimensional vector $\mathbf{F}(\mathbf{x}, \mathbf{y})$
- **Definition:** Let E be a subset \mathbb{R}^3 . A **vector field** on \mathbb{R}^3 is a function **F** that assigns to each point (x, y, z) in E three-dimensional vector $\mathbf{F}(x, y, z)$

Lesson 16.2: Line Integrals

• **Definition:** If f is defined on a smooth curve C given by parametric equations, then the **line integral of f along** C is

$$\int_C f(x,y) ds = \int_a^b f(x(t), y(t)) \sqrt{\left(\frac{dx}{dt}\right)^2 + \left(\frac{dy}{dt}\right)^2} dt$$

• Line Integral with respect to Arc Length:

$$\int_{C} f(x,y) dx = \int_{a}^{b} f(x(t), y(t)) x'(t) dt$$

$$\int_C f(x,y) \, dy = \int_a^b f(x(t), y(t)) \, y'(t) \, dt$$

• **Definition:** Let **F** be a continuous vector field defined on a smooth curve C given by a vector function $\mathbf{r}(t)$, $a \le t \le b$. Then the **line integral of F along C** is

$$\int\limits_{C} \mathbf{F} \cdot d\mathbf{r} = \int\limits_{a}^{b} \mathbf{F}(\mathbf{r}(t)) \cdot \mathbf{r}'(t) dt = \int\limits_{C} \mathbf{F} \cdot \mathbf{T} ds$$

Lesson 16.3: The Fundamental Theorem for line Integrals

• Theorem: Let C be a smooth curve given by the vector function $\mathbf{r}(t)$, $a \le t \le b$, Let f be a differentiable function of two or three variables whose gradient vector ∇f is continuous on C. Then

$$\int_{C} \nabla \cdot d\mathbf{r} = f(\mathbf{r}(b)) - f(\mathbf{r}(a))$$

- Theorem: $\int_C \mathbf{F} \cdot d\mathbf{r}$ is independent of path in D if and only if $\int_C \mathbf{F} \cdot d\mathbf{r} = 0$ for every closed path C in D.
- **Theorem:** Suppose **F** is a vector field that is continuous on an open connected region D. If $\int_C \mathbf{F} \cdot d\mathbf{r}$ is independent of path in D, then **F** is a conservative vector field on D; that is, there exists a function f such that $\nabla f = \mathbf{F}$

Lesson 16.4: Green's Theorem

• Green's Theorem: Let C be a positively oriented, piecewise-smooth, simple closed curve in the plane and let D be a region bounded by C. If P and Q have continuous partial derivatives on an open region that contains D, then

$$\int_{C} P dx + Q dy = \iint_{D} \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y}\right) dA$$

Bibliography

Book used: Calculus Early Transcendentals 7th Edition

Professor: Notes from Dr. Dan Zacharia's Summer Session I 2012 Calculus III course