Pravděpodobnost a statistika - zkoušková písemka 7.6.2012

Jméno a příjmení		2	3	4	celkem	známka

Úloha 1. Park je rozdělený na severní a jižní zahradu, přičemž jižní je dvakrát větší než severní. Do parku přilétá v době 5:00-23:00 jistý druh ptáků, přičemž průměrně přiletí 9 jedinců za den (předpokládejme, že v uvedenou dobu není žádný čas ani žádné místo v parku ptáky preferované, ptáci přilétají nezávisle na sobě a jejich počet je teoreticky neomezený). Určete pravděpodobnost, že

- a) během dopoledne (tj. do 12:00) přiletí do parku maximálně dva zmínění ptáci, přičemž všichni přiletí až po 7:00,
- b) po 14:00 přiletí do severní zahrady alespoň tři ptáci,
- c) doba čekání na přílet prvního ptáka do parku bude kratší než 1 hodina,
- d) v pěti náhodně vybraných ptácích v parku přiletěli právě čtyři do jižní zahrady.
- e) v padesáti náhodně vybraných ptácích v parku jich přiletělo alespoň 30 do jižní zahrady. (Použijte CLV)

Úloha 2. Sdružené pravděpodobnosti náhodných veličin X a Y jsou dány následující tabulkou:

	X = 0	X = 1	X = 2	X = 3
Y = 0	1/6	0	1/6	0
Y=1	1/3	1/8	1/12	1/8

- a) Určete marginální rozdělení X a Y.
- b) Určete pravděpodobnost P(Y > 0|X < 2).
- c) Spočtěte kovarianci cov(X, Y).
- d) Jaká je souvislost této kovariance s nezávislostí X a Y?
- e) Určete sdružené rozdělení (tj. tabulku sdružených pravděpodobností) náhodného vektoru (U, V), v němž náhodné veličiny U, resp. V, mají stejná marginální rozdělení jako X, resp. Y, ale přitom jsou U a V nezávislé.

Úloha 3. Na 16 místech (o stejné ploše 100m^2) byly sledovány počty výskytů dané rostliny. Tyto počty jsou uvedeny v následující tabulce:

1	2	2	3	3	0	3	2	5	1	3	3	2	2	5	3
- 1		_	_	_		~	_		-	•	_	_	_		

- a) Nakreslete histogram a empirickou distribuční funkci těchto dat.
- b) Určete, jaké rozdělení mají tato data, a zdůvodněte.
- c) Metodou maximální věrohodnosti určete parametr(y) rozdělení z otázky b).
- d) Spočtěte výběrový průměr z dat.
- e) Statisticky otestujte na hladině 5%, zda střední počet rostlin na ploše 100m² je možno považovat za roven 3. Použitý test zdůvodněte.

Úloha 4. Počty prodaných zájezdů jistou cestovní kanceláří ve dvou po sobě jdoucích letech byly (dle záznamů z kartotéky):

rok \ čtvrtletí	1.	2.	3.	4.
1.	90	120	110	80
2.	130	180	170	120

- a) Otestujte na hladině 5%, zda v prvním roce bylo množství prodaných zájezdů ve všech čtvrtletích přibližně stejné.
- b) Otestujte na hladině 5%, zda v prvním roce i ve druhém roce bylo množství prodaných zájezdů přibližně stejné.
- c) Určete marginální rozdělení náhodného vektoru (X,Y), kde X popisuje rok a Y popisuje čtvrtletí prodeje zájezdu náhodně vybraného z kartotéky.
- d) Určete pravděpodobnost, že zájezd náhodně vybraný z kartotéky je zájezd prodaný ve druhém pololetí prvního roku?
- e) Definujte nezávislost náhodných veličin R a S.