Grassmann Formula in \mathbb{R}^4 with Two Planes

Let U and V be two planes (i.e., 2-dimensional subspaces) in \mathbb{R}^4 , both passing through the origin and not parallel. We apply the Grassmann formula:

$$\dim(U+V) = \dim(U) + \dim(V) - \dim(U \cap V)$$

Since both U and V are planes:

$$\dim(U) = \dim(V) = 2$$

Then:

$$\dim(U+V) = 2 + 2 - \dim(U \cap V) = 4 - \dim(U \cap V)$$

Possible Cases

- $\dim(U \cap V) = 0$: The planes intersect only at the origin. Then $\dim(U + V) = 4$, and their span fills all of \mathbb{R}^4 .
- $\dim(U \cap V) = 1$: The planes intersect along a line. Then $\dim(U + V) = 3$, and their span is a 3D subspace of \mathbb{R}^4 .
- $\dim(U \cap V) = 2$: The planes coincide. Then $\dim(U+V) = 2$, which means they are the same plane.

Since the planes are not parallel, we exclude the third case.

Example

Let:

$$U = \mathrm{span} \{ (1, 0, 0, 0), \ (0, 1, 0, 0) \}$$

$$V = \text{span}\{(0,0,1,0), (0,0,0,1)\}$$

Then:

$$U\cap V=\{0\}$$

$$\dim(U+V) = 4$$

These two planes intersect only at the origin and together span all of \mathbb{R}^4 .