Introduction

- Lors de toute étude statistique, il est nécessaire de décrire et explorer les données avant d'en tirer de quelconques lois ou modèles prédictifs
- Dans beaucoup de situations, les données sont trop nombreuses pour pouvoir être visualisables (nombre de caractéristiques trop élevées)
- Il est alors nécessaire d'extraire l'information pertinente qu'elles contiennent; Les techniques d'ADD répondent à ce besoin

Introduction

- Les analyses des Données est un ensemble de méthodes descriptives ayant pour objectif de résumer et visualiser l'information pertinente contenue dans un grand tableau de données
- Il existe plusieures méthodes pour analyser des données. Dans ce cours on va étudier les deux méthodes suivantes
 - i) L'analyse des composantes principales (ACP) :
 Elle s'applique sur les variables quantitatives et a pour objectif de repérer et visualiser les ressemblances entre individus
 - ii) Analyse factorielle des correspondances (AFC et AFCM) : Elle s'applique sur les variables qualitaives et a pour objectif de repérer et visualiser les corrèlations multiples entre variables ainsi que réaliser une typologie des individus

Analyse en Correspondances Principales

Mourad El Ouali

Introduction

- Données: n individus observés sur p variables quantitatives.
 L'A.C.P. permet d'explorer les liaisons entres variables et les ressemblances entre individus.
- Résultats :
 - Visualisation des individus : Notion de distances entre individus.
 - ii) Visualisation des variables : en fonction de leurs corrèlations

Données

<u>Définition</u>: On appelle –variable– un vecteur x de taille n.

Chaque coordonnèe x_i correspond à un individu. On s'intéresse ici à des valeurs numériques.

 $\begin{array}{c} \underline{\text{Poids}}: \text{ Chaque individu peut avoir un poids } p_i, \text{ tel que} \\ p_1+\cdots+p_n=1, \text{ notamment quand les individus} \\ \text{n'ont pas la même importance (échantillons redressés,} \\ \text{données regroupées,...)}. \text{ On a souvent } p=1/n. \end{array}$

Exemple de Données Quantitatives

Un tableau de notes attribué à des scolaries dans cinq matiéres

	Maths	Physique	Francais	Anglais	Science
Fatima	6	6	5	5,5	8
Karim	8	8	8	8	9
Ahmed	6	7	11	9,5	11
Meriem	14,5	14,5	15,5	15	8
Fouad	14	14	12	12	10
Naima	11	10	5,5	7	13
Abdelallah	5,5	7	14	11,5	10
Khadija	13	12,5	8,5	9,5	12
Salah	9	9,5	12,5	12	18

En général

On considère un tableau de données numériques où n individus sont décrits sur p variables.

$$X^{1} \quad \cdots \quad X^{j} \quad \cdots \quad X^{p}$$

$$e_{1} \quad \begin{bmatrix} x_{1}^{1} & \cdots & x_{1}^{j} & \cdots & x_{n}^{1} \\ \vdots & \vdots & & \vdots & & \vdots \end{bmatrix}$$

$$\vdots \quad \vdots \quad \vdots \quad \vdots \quad \vdots \quad \vdots \quad \vdots$$

$$e_{n} \quad \begin{bmatrix} x_{n}^{1} & \cdots & x_{n}^{j} & \cdots & x_{n}^{p} \\ \vdots & \vdots & \ddots & \vdots \\ \vdots & \vdots & \ddots & \vdots \end{bmatrix}$$

Individu=Élément de \mathbb{R}^p Variable=Élément de \mathbb{R}^n

Principe de L'A.C.P.

• Interpétation. Chaque individu est considèré comme un point d'un espace vectoriel \mathbb{R}^p de dimension p. L'ensemble des individus est un nuage de points dans \mathbb{R}^p , dont les axe sont les p variables du tableau.

$$e_i = (x_{i1}, \cdots, x_{ip}, \cdots, x_{ip})^t$$

- **Principe**. On cherche à réduire le nombre *p* de variables tout en prèservant au maximum la structure du problème.
- **Méthode**. On cherche une représentation des individus dans un sous-espace de dimension k inférieure á p.

Principe de L'A.C.P.

- On projette le nuage sur un sous-espace vectoriel de dimension k inférieure à p ou la structure de nuage sera préservée le maximum possible
- Autrement dit, on cherche á définir k nouvelles variables combinaisons linéaires des p variables initiales qui feront perdre le minimum possible d'information.
 - Ces variables seront appelées : Composantes principales
 - 2 les axes qu'elles déterminent : axes principaux
 - 3 les formes linéaires associées : facteurs principaux

Distance entre deux individus

- Afin de pouvoir considèrer la structure du nuage des individus, il faut définir une distance, qui induira une géométrie.
- La distance la plus simple entre deux points de \mathbb{R}^p est la distance euclidienne définie par

$$d(u,v)^2 = \sum_{j=1}^{p} (u_j - v_j)^2, \quad u, v \in \mathbb{R}^p$$

• Si on donne un poids $m_i > 0$ à la variable j alors,

$$d(u, v)^2 = \sum_{i=1}^p m_j (u_j - v_j)^2, \quad u, v \in \mathbb{R}^p$$

• Eloignement d'un point du nuage par rapport au centre de gravité :

$$d(e_i,g)^2 = \sum_{j=1}^{p} (x_{ij} - \bar{x}_j)^2, \quad u, v \in \mathbb{R}^p$$

Formulation matricielle

Matrice poids: On associe aux individus un poids p_i tel que $p_1 + \cdots + p_n = 1$. On appelle matrice poids la matrice diagonale definie comme suit

$$D_{p} = egin{pmatrix}
ho_{1} & & & & 0 \ &
ho_{2} & & & \ & & \ddots & & \ & & & \ddots & & \ 0 & & &
ho_{p} \end{pmatrix}$$

Cas uniforme tous les individus ont le même poids $p_i=1/n$ et $D_p=rac{1}{n}I_n$

Centre de gravité et tableau centré

Centre de gravité c'est le vecteur g des moyennes arithmétiques de chaque variable

$$g=(ar{x}^1,\cdots,ar{x}^p)^t$$
 avec $ar{x}^j=\sum_{i=1}^n p_i x_i^j$

Tableau centré il est obtenu en centrant les variables autour de leur centre de gravité

$$Y = (y_i^j)_{(i,j) \in [n] \times [p]}$$
 avec $y_i^j = (x_i^j - \bar{x}^j)$

Exemple

• On considère le tableau de données suivant

$$X = \begin{pmatrix} 1 & 1 \\ 1 & 2 \\ 1 & 3 \end{pmatrix}$$

$$\bar{x}_1 = \frac{1+1+1}{3} = 1$$
, $\bar{x}_2 = \frac{1+2+3}{3} = 2$ et $g = \begin{pmatrix} 1 \\ 2 \end{pmatrix}$

• Le tableau centé est :

$$Y = \begin{pmatrix} 1 - 1 & 1 - 2 \\ 1 - 1 & 2 - 2 \\ 1 - 1 & 3 - 2 \end{pmatrix} = \begin{pmatrix} 0 & -1 \\ 0 & 0 \\ 0 & 1 \end{pmatrix}$$

Variance et écart-type

Definition

La variance du vecteur colonne x^j est donnée par

$$var(x^{j}) = \sigma_{x^{j}}^{2} = \frac{1}{n} \sum_{i=1}^{n} (x_{i}^{j} - \bar{x^{j}})^{2}$$
 (1)

Généralement on a

$$var(x^{j}) = \sum_{i=1}^{n} p_{i}(x_{i}^{j} - \bar{x^{j}})^{2}$$
 (2)

L'écart-type σ est la racine carrée de la variance.

Mesure de la liaison entre de variables

Definition

La variance du vecteur colonne x^j est donnée par, pour $I, t \in [p]$

$$cov(x^{l}, x^{t}) = \sigma_{x^{l}x^{t}} = \sum_{i=1}^{n} p_{i}(x_{i}^{l} - \bar{x^{l}})(x_{i}^{t} - \bar{x^{t}})$$
(3)

Le coefficient de corrèlation est donné par

$$cor(x^{l}, x^{t}) = r_{x^{l}x^{t}} = \frac{\sigma_{x^{l}x^{r}}}{\sigma_{x^{l}}\sigma_{x^{t}}}$$
(4)

- Deux variables x^l et x^t sont linéairement liés ssi $|cor(x^l, x^t)| = 1$.
- Dans le cas $|cor(x^I, x^t)| = 0$ on dit que les variables sont décorélées. Cela ne veut pas dire qu'ils sont indépendantes.

Matrice de variance-covariance

Definition

La matrice de variance-covariance est une matrice carrée de dimension *p*

$$V = \begin{pmatrix} \sigma_{11}^2 & \sigma_{12} & \dots & \sigma_{1p} \\ \sigma_{21} & \sigma_{22}^2 & & & \\ \vdots & & \ddots & & \\ \sigma_{p1} & & & \sigma_{pp} \end{pmatrix}$$

Où σ_{lt} est la covariance des variables x^l et x^t et σ_j^2 est la variance de la variable x^t .

qui se calcule matriciellement comme $V = Y'D_pY$

Matrice de corrélation

Definition

La matrice de corrélation est une matrice carrée d'ordre p

qui se calcule matriciellement comme
$$R = D_{\underline{1}} VD_{\underline{1}}$$

Données centrées réduites

C'est la matrice Z donnée par

$$Z = (z_{ij})_{(i,j)\in[n]\times[p]} \quad \text{avec} \quad z_i^j = \frac{x_i^j - \bar{x^j}}{\sigma_{x^j}}$$
 (5)

qui se calcule matriciellement comme $Z=YD_{rac{1}{\sigma}}$

L'A.C.P. sur les données centrées réduites

• La matrice de corrélation est données par,

$$Z'D_{p}Z = D_{\frac{1}{\sigma}}Y'D_{p}YD_{\frac{1}{\sigma}} = D_{\frac{1}{\sigma}}VD_{\frac{1}{\sigma}} = R \qquad (6)$$

- Dans le cas uniforme $p_i = \frac{1}{n}$ on a $R = \frac{1}{n}Z'Z$.
- Facteurs principaux ce sont les p vecteurs orthonormés de R c-à-d les vecteurs u_k pour $k \in [p]$ tel que

$$Ru_k = \lambda u_k$$
 avec $\langle u_k, u_l \rangle = 1$ si $k = l$ et 0 sinon

dont les valeurs propres verifient $\lambda_1 + \lambda_2 + \cdots + \lambda_p = p$.

• Composantes principales elles sont données par $c_k = Zu_k$ pour $k \in [p]$.

L'inertie

• L'inertie I_g mesure la moyenne des carrées des distances entre les individus. Dans la pratique elle est donnée par

$$I_g = tr(V) = \sum_{i=1}^p \sigma_i^2 \tag{7}$$

Dans le cas de données réduites on a

$$I_g = \sum_{i=1}^p \lambda_i = tr(R) = p \tag{8}$$

Les axes à retenir

- Le critère de Kaiser (variables centrées réduites). On ne retient que les axes associés à des valeurs propres supérieures à 1, c'est-à-dire dont la variance est supérieure à celle des variables d'origine. Une autre interprétation est que la moyenne des valeurs propres étant 1, on ne garde que celles qui sont supérieures à cette moyenne.
- Qualité de l'analyse la qualité de la représentation obtenue par k valeurs propres est la proportion de l'inertie expliquée

$$\frac{\lambda_1 + \dots + \lambda_k}{\lambda_1 + \dots + \lambda_p} \tag{9}$$