Jamboree has helped thousands of students like you make it to top colleges abroad. Be it GMAT, GRE or SAT, their unique problem-solving methods ensure maximum scores with minimum effort.

They recently launched a feature where students/learners can come to their website and check their probability of getting into the IVY league college. This feature estimates the chances of graduate admission from an Indian perspective.

How can you help here?

Your analysis will help Jamboree in understanding what factors are important in graduate admissions and how these factors are interrelated among themselves. It will also help predict one's chances of admission given the rest of the variables.

In [1]:

```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
import scipy.stats as stats
import warnings
import statsmodels.api as sm
from sklearn.linear_model import LinearRegression
from sklearn.linear_model import Ridge
from sklearn.linear model import Lasso
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import minmax_scale
from sklearn.preprocessing import StandardScaler
from sklearn.metrics import r2_score
from sklearn import metrics
from statsmodels.stats.outliers influence import variance inflation factor
from sklearn.model_selection import GridSearchCV
```

In [2]:

```
warnings.filterwarnings('ignore')
```

In [3]:

```
df = pd.read_csv('Jamboree_Admission.csv')
```

In [4]:

```
df.head()
```

Out[4]:

	Serial No.	GRE Score	TOEFL Score	University Rating	SOP	LOR	CGPA	Research	Chance of Admit
0	1	337	118	4	4.5	4.5	9.65	1	0.92
1	2	324	107	4	4.0	4.5	8.87	1	0.76
2	3	316	104	3	3.0	3.5	8.00	1	0.72
3	4	322	110	3	3.5	2.5	8.67	1	0.80
4	5	314	103	2	2.0	3.0	8.21	0	0.65

In [5]:

df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 500 entries, 0 to 499
Data columns (total 9 columns):

#	Column	Non-Null Count	Dtype
0	Serial No.	500 non-null	int64
1	GRE Score	500 non-null	int64
2	TOEFL Score	500 non-null	int64
3	University Rating	500 non-null	int64
4	SOP	500 non-null	float64
5	LOR	500 non-null	float64
6	CGPA	500 non-null	float64
7	Research	500 non-null	int64
8	Chance of Admit	500 non-null	float64

dtypes: float64(4), int64(5)

memory usage: 35.3 KB

In [6]:

df.isnull().sum()

Out[6]:

Serial No. 0 GRE Score 0 TOEFL Score 0 University Rating 0 SOP 0 LOR 0 **CGPA** 0 Research 0 Chance of Admit 0 dtype: int64

There are no null values in the dataframe

```
In [7]:
## Copy of the dataset for further usage
df_copy = df.copy(deep = True)
Taking a copy of df for future evaluations
In [8]:
df.columns
Out[8]:
Index(['Serial No.', 'GRE Score', 'TOEFL Score', 'University Rating', 'SOP',
       'LOR ', 'CGPA', 'Research', 'Chance of Admit '],
      dtype='object')
In [9]:
## There is space at the end of the column name so renaming it.
df.rename(columns={'LOR':'LOR','Chance of Admit':'Chance of Admit'},inplace = True)
In [10]:
df_copy = df.copy(deep = True)
In [11]:
## removin the first column as it has no significance just an index
df.drop(['Serial No.'],axis=1,inplace=True)
In [12]:
df[df.duplicated()]
Out[12]:
  GRE Score TOEFL Score University Rating SOP LOR CGPA Research Chance of Admit
There are no duplicated values in the dataset.
```

In []:

Univariate Analysis

```
In [13]:
```

```
cat_cols = []
for i in df.columns:
   if df[i].nunique() < 10:
      cat_cols.append(i)
      print(i + ':' + str(df[i].nunique()))</pre>
```

University Rating:5 SOP:9 LOR:9 Research:2

In [14]:

```
for i in range(len(cat_cols)):
    sns.countplot(df[cat_cols[i]])
    plt.show()
```


LOR

- -->Most of the universities are average rated (around 3)
- -->SOP of the students is on bit higher rate (4)
- -->LOR of students is around 3-4
- -->Among all the students most of the students have done research
- -->From above observaions most of the students are average students and very few students are good performing and very few students are bad performing

In [15]:

From above plots, we can say that most of the data follows normal distribution and there are no outliers in the data.

BiVariate Analysis

In [16]:

sns.countplot(x=df['University Rating'],hue =df['Research'])

Out[16]:

<AxesSubplot:xlabel='University Rating', ylabel='count'>

Most of the students who have done research has done research prefers for universities with high rating

In [17]:

sns.boxplot(y=df['TOEFL Score'],x=df['Research'])

Out[17]:

<AxesSubplot:xlabel='Research', ylabel='TOEFL Score'>

Median of TOFEL Scores is higher for students who have research experience

In [18]:

sns.boxplot(y=df['CGPA'],x=df['Research'])

Out[18]:

<AxesSubplot:xlabel='Research', ylabel='CGPA'>

Students who have high CGPA are more likely to have research experience

In [19]:

sns.boxplot(x=df['University Rating'],y=df['GRE Score'])

Out[19]:

<AxesSubplot:xlabel='University Rating', ylabel='GRE Score'>

As the GRE scores increases the university prefrence of the students also increases

In [20]:

sns.boxplot(x=df['University Rating'],y=df['GRE Score'],hue = df['Research'])

Out[20]:

<AxesSubplot:xlabel='University Rating', ylabel='GRE Score'>

Students who have high GRE scores are having research experience

In [21]:

sns.boxplot(x=df['LOR'],y=df['GRE Score'],hue = df['Research'])

Out[21]:

<AxesSubplot:xlabel='LOR', ylabel='GRE Score'>

In [22]:

sns.boxplot(x=df['SOP'],y=df['GRE Score'],hue = df['Research'])

Out[22]:

<AxesSubplot:xlabel='SOP', ylabel='GRE Score'>

From above plots we can say that students who have research experience gets high GRE scores than others

In [23]:

df.corr()

Out[23]:

	GRE Score	TOEFL Score	University Rating	SOP	LOR	CGPA	Research	Chance of Admit
GRE Score	1.000000	0.827200	0.635376	0.613498	0.524679	0.825878	0.563398	0.810351
TOEFL Score	0.827200	1.000000	0.649799	0.644410	0.541563	0.810574	0.467012	0.792228
University Rating	0.635376	0.649799	1.000000	0.728024	0.608651	0.705254	0.427047	0.690132
SOP	0.613498	0.644410	0.728024	1.000000	0.663707	0.712154	0.408116	0.684137
LOR	0.524679	0.541563	0.608651	0.663707	1.000000	0.637469	0.372526	0.645365
CGPA	0.825878	0.810574	0.705254	0.712154	0.637469	1.000000	0.501311	0.882413
Research	0.563398	0.467012	0.427047	0.408116	0.372526	0.501311	1.000000	0.545871
Chance of Admit	0.810351	0.792228	0.690132	0.684137	0.645365	0.882413	0.545871	1.000000

In [24]:

sns.heatmap(df.corr(), annot = True)

Out[24]:

<AxesSubplot:>

From above heat map we can infer that

- --> GRE, TOFEL, CGPA and chance of admit are highly correlated
- --> University rating and SOP are highly correlated

Linear Regression

In [25]:

df.columns

Out[25]:

In [26]:

df.head()

Out[26]:

	GRE Score	TOEFL Score	University Rating	SOP	LOR	CGPA	Research	Chance of Admit
0	337	118	4	4.5	4.5	9.65	1	0.92
1	324	107	4	4.0	4.5	8.87	1	0.76
2	316	104	3	3.0	3.5	8.00	1	0.72
3	322	110	3	3.5	2.5	8.67	1	0.80
4	314	103	2	2.0	3.0	8.21	0	0.65

In [27]:

```
## Target Feature
predict = df['Chance of Admit']
```

In [28]:

```
## dropping target column from dataframe
df.drop(['Chance of Admit'],axis=1,inplace=True)
```

In [29]:

df.head()

Out[29]:

	GRE Score	TOEFL Score	University Rating	SOP	LOR	CGPA	Research
0	337	118	4	4.5	4.5	9.65	1
1	324	107	4	4.0	4.5	8.87	1
2	316	104	3	3.0	3.5	8.00	1
3	322	110	3	3.5	2.5	8.67	1
4	314	103	2	2.0	3.0	8.21	0

In [30]:

```
# Normalisation
df.columns
for i in df.columns:
    df[i] = minmax_scale(df[i])
df.head()
```

Out[30]:

	GRE Score	TOEFL Score	University Rating	SOP	LOR	CGPA	Research
0	0.94	0.928571	0.75	0.875	0.875	0.913462	1.0
1	0.68	0.535714	0.75	0.750	0.875	0.663462	1.0
2	0.52	0.428571	0.50	0.500	0.625	0.384615	1.0
3	0.64	0.642857	0.50	0.625	0.375	0.599359	1.0
4	0.48	0.392857	0.25	0.250	0.500	0.451923	0.0

In [31]:

```
predict = pd.DataFrame(predict,columns=['Chance of Admit'])
```

In [32]:

```
#Normalisation of target feature
predict['Chance of Admit'] = minmax_scale(predict['Chance of Admit'])
```

In [33]:

predict.head()

Out[33]:

Chance of Admit

0	0.920635
1	0.666667
2	0.603175
3	0.730159
4	0.492063

In [34]:

```
#Train and Test data split
x_train,x_test,y_train,y_test = train_test_split(df,predict,train_size=0.30,random_state=1)
```

```
In [35]:
```

```
x_train.head()
```

Out[35]:

	GRE Score	TOEFL Score	University Rating	SOP	LOR	CGPA	Research
409	0.20	0.214286	0.00	0.250	0.375	0.391026	0.0
103	0.54	0.428571	0.25	0.875	0.750	0.535256	0.0
220	0.46	0.392857	0.50	0.750	0.750	0.625000	0.0
130	0.98	0.785714	1.00	0.750	0.875	0.948718	1.0
353	0.20	0.357143	0.50	0.625	0.375	0.439103	0.0

```
In [36]:
```

```
lr_1 = LinearRegression()
```

In [37]:

```
lr_1.fit(x_train,y_train)
```

Out[37]:

LinearRegression()

In [38]:

```
y_predict = lr_1.predict(x_test)
```

In [39]:

```
lr_1.intercept_
```

Out[39]:

array([0.06052024])

In [40]:

```
for idx, col_name in enumerate(x_train.columns):
    print("The coefficient for {} is {}".format(col_name, lr_1.coef_[0][idx]))
```

```
The coefficient for GRE Score is -0.0050978648509186104
```

The coefficient for TOEFL Score is 0.21669717001842637

The coefficient for University Rating is 0.05851981351758148

The coefficient for SOP is 0.03264096702009038

The coefficient for LOR is 0.03798672416464777

The coefficient for CGPA is 0.591252249663798

The coefficient for Research is 0.05080772261800126

In [41]:

```
intercept = lr_1.intercept_[0]
print("The intercept for our model is {}".format(intercept))
```

The intercept for our model is 0.060520238439629614

Ridge

```
In [42]:
ridge = Ridge() # initializing the model
In [43]:
params = {'alpha': [0.0001, 0.001, 0.01, 0.05, 0.1,
 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 2.0, 3.0, 4.0,5.0]} ## Parameters for alpha t
In [44]:
folds = 5 #total number of crossvaldations to be done during the model building
In [45]:
model_cv = GridSearchCV(estimator = ridge,
                        param_grid = params,
                        scoring= 'neg_mean_absolute_error',
                        cv = folds,
                        return_train_score=True,
                        verbose = 1)
In [46]:
model_cv.fit(x_train, y_train) # fit the model
Fitting 5 folds for each of 18 candidates, totalling 90 fits
Out[46]:
GridSearchCV(cv=5, estimator=Ridge(),
             param_grid={'alpha': [0.0001, 0.001, 0.01, 0.05, 0.1, 0.2, 0.3,
                                    0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 2.0,
3.0,
                                   4.0, 5.0]},
             return_train_score=True, scoring='neg_mean_absolute_error',
```

verbose=1)

In [47]:

```
cv_results = pd.DataFrame(model_cv.cv_results_) # to get the output of the model
cv_results = cv_results[cv_results['param_alpha']<=200]
cv_results.head()</pre>
```

Out[47]:

	mean_fit_time	std_fit_time	mean_score_time	std_score_time	param_alpha	params	split		
0	0.007201	0.001834	0.004627	0.001250	0.0001	{'alpha': 0.0001}			
1	0.007750	0.005073	0.003419	0.003326	0.001	{'alpha': 0.001}			
2	0.000000	0.000000	0.006252	0.007658	0.01	{'alpha': 0.01}			
3	0.003126	0.006252	0.003125	0.006250	0.05	{'alpha': 0.05}			
4	0.007425	0.005962	0.004122	0.002295	0.1	{'alpha': 0.1}			
5 rows × 21 columns									
4							•		

In [48]:

```
cv_results.columns
```

Out[48]:

Here we have the scores for each test and train split, as we gave cross validation as 5 there are 5 train and test splits along with the ranks for each alpha

In [49]:

```
# plotting mean test and train scoes with alpha
cv_results['param_alpha'] = cv_results['param_alpha'].astype('int32')

# plotting
plt.plot(cv_results['param_alpha'], cv_results['mean_train_score'])
plt.plot(cv_results['param_alpha'], cv_results['mean_test_score'])
plt.xlabel('alpha')
plt.ylabel('Negative Mean Absolute Error')
plt.title("Negative Mean Absolute Error and alpha")
plt.legend(['train score', 'test score'], loc='upper right')
plt.show()
```

Negative Mean Absolute Error and alpha train score test score -0.074 -0.074 -0.076 -0.078 -0.080 0 1 2 3 4 5

In [50]:

```
alpha = 1
ridge = Ridge(alpha=alpha)

ridge.fit(x_train, y_train)
ridge.coef_
```

Out[50]:

```
array([[0.10754325, 0.20096854, 0.06723524, 0.06535809, 0.0690688, 0.3543325, 0.0545913]])
```

Lasso

In [51]:

```
params = {'alpha': [0.0001, 0.001, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0]}
```

```
In [52]:
```

Fitting 5 folds for each of 14 candidates, totalling 70 fits

Out[52]:

In [53]:

```
cv_results = pd.DataFrame(model_cv.cv_results_)
cv_results.head()
```

Out[53]:

	mean_fit_time	std_fit_time	mean_score_time	std_score_time	param_alpha	params	split0_t
0	0.004125	0.006066	0.007277	0.007109	0.0001	{'alpha': 0.0001}	
1	0.006106	0.005892	0.001620	0.001984	0.001	{'alpha': 0.001}	
2	0.006251	0.007655	0.003125	0.006251	0.01	{'alpha': 0.01}	
3	0.011153	0.008083	0.003000	0.002683	0.05	{'alpha': 0.05}	
4	0.004725	0.005737	0.001600	0.002059	0.1	{'alpha': 0.1}	

5 rows × 21 columns

In [54]:

```
# plotting mean test and train scoes with alpha
cv_results['param_alpha'] = cv_results['param_alpha'].astype('float32')

# plotting
plt.plot(cv_results['param_alpha'], cv_results['mean_train_score'])
plt.plot(cv_results['param_alpha'], cv_results['mean_test_score'])
plt.xlabel('alpha')
plt.ylabel('Negative Mean Absolute Error')

plt.title("Negative Mean Absolute Error and alpha")
plt.legend(['train score', 'test score'], loc='upper left')
plt.show()
```



```
In [55]:
```

```
alpha = 0.1
lasso = Lasso(alpha=alpha)

ridge.fit(x_train, y_train)
ridge.coef_
Out[55]:
array([[0.10754325, 0.20096854, 0.06723524, 0.06535809, 0.0690688 ,
```

OLS Regression

0.3543325 , 0.0545913]])

In [56]:

xtrain_ols1 = sm.add_constant(x_train) ## adding constant to perform OLS regression
ols_regression1 = sm.OLS(y_train,xtrain_ols1).fit() ## fitting model

In [57]:

print(ols_regression1.summary()) ## Summary of the OLS Model

OLS Regression Results

=======================================		_	ion kesuits		
==					
Dep. Variable: 95	Chance o	of Admit	R-squared:		0.7
Model: 85		OLS	Adj. R-squan	red:	0.7
Method: 89	Least	Squares	F-statistic	:	78.
Date: 46	Tue, 08 N	lov 2022	Prob (F-stat	tistic):	9.01e-
Time: 34	1	7:10:19	Log-Likeliho	ood:	142.
No. Observations:		150	AIC:		-26
Df Residuals: 4.6		142	BIC:		-24
Df Model: Covariance Type:	no	7 onrobust			
• •					
	coef	std err	t	P> t	[0.025
0.975]					
const 0.118	0.0605	0.029	2.089	0.038	0.003
GRE Score 0.147	-0.0051	0.077	-0.066	0.947	-0.158
TOEFL Score 0.360	0.2167	0.073	2.980	0.003	0.073
University Rating 0.153	0.0585	0.048	1.225	0.223	-0.036
SOP 0.141	0.0326	0.055	0.598	0.551	-0.075
LOR 0.134	0.0380	0.048	0.785	0.434	-0.058
CGPA 0.774	0.5913	0.092	6.411	0.000	0.409
Research 0.088	0.0508	0.019	2.700	0.008	0.014
=======================================	=======	:======	========	========	
== Omnibus: 07		33.098	Durbin-Watso	on:	2.1
Prob(Omnibus): 71		0.000	Jarque-Bera	(JB):	54.4
Skew: 12		-1.085	Prob(JB):		1.49e-
Kurtosis: 5.1		5.001	Cond. No.		2
	=======	=======	========	========	
==					

Notes:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

4

In [58]:

```
## VIF of the features present in the model

xtrain_vif1 = x_train
vif_data = pd.DataFrame()
vif_data["feature"] = xtrain_vif1.columns
vif_data["VIF"] = [variance_inflation_factor(xtrain_vif1.values, i) for i in range(xtrain_v
vif_data['VIF'] = round(vif_data['VIF'],2)
vif_data = vif_data.sort_values(by = 'VIF',ascending=False)
vif_data
```

Out[58]:

	feature	VIF
5	CGPA	44.80
0	GRE Score	32.49
1	TOEFL Score	29.84
3	SOP	20.12
4	LOR	16.23
2	University Rating	12.23
6	Research	3.14

P-Value and VIF is higher for GRE Score, hence dropping the column and rebuilding the model

In [59]:

```
## Removing the columns in the dataset

xtrain_ols2 = xtrain_ols1.drop('GRE Score',1)
xtrain_vif2 = xtrain_vif1.drop('GRE Score',1)

xtrain_ols2 = sm.add_constant(xtrain_ols2)
ols_regression2 = sm.OLS(y_train,xtrain_ols2).fit()
```

In [60]:

		<i>,</i> ,	• • • • • • • • • • • • • • • • • • • •	٠.
- 1	1 n i n t	\cap	_regression2.summary()	11
H	<i>,</i> , <u> </u>	(0±3_	_i cgi cootonz.oumiai y (,,

OLS Regression Results					
=======================================	======	======			
Dep. Variable:	Chance	of Admit	R-squared:		0.7
Model: 87		OLS	Adj. R-square	ed:	0.7
Method:	Least	Squares	F-statistic:		92.
68 Date:	Tue, 08	Nov 2022	Prob (F-stat:	istic):	8.97e-
47 Time:	:	17:10:19	Log-Likelihoo	od:	142.
No. Observations:		150	AIC:		-27
0.7 Df Residuals:		143	BIC:		-24
9.6		_			
Df Model: Covariance Type:	n	6 onrobust			
========	=======	=======	=========	========	:========
0.975]	coef	std err	t	P> t	[0.025
const	0.0606	0.029	2.101	0.037	0.004
0.118 TOEFL Score 0.337	0.2142	0.062	3.440	0.001	0.091
University Rating 0.150	0.0579	0.047	1.240	0.217	-0.034
SOP 0.139	0.0332	0.054	0.617	0.538	-0.073
LOR 0.132	0.0385	0.048	0.811	0.419	-0.055
CGPA 0.751	0.5885	0.082	7.152	0.000	0.426
Research 0.086	0.0505	0.018	2.807	0.006	0.015
=======================================	=======	=======			========
==					
Omnibus: 06		33.364	Durbin-Watson	ı:	2.1
Prob(Omnibus): 59		0.000	Jarque-Bera	(JB):	55.1
Skew: 12		-1.091	Prob(JB):		1.05e-
Kurtosis: 1.6		5.016	Cond. No.		2
=======================================	=======	=======			========
_ _					
Notes:	assumo +h	at the cov	anianco matri	v of the enn	ons is compo

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

In [61]:

```
vif_data2 = pd.DataFrame()
vif_data2["feature"] = xtrain_vif2.columns
vif_data2["VIF"] = [variance_inflation_factor(xtrain_vif2.values, i) for i in range(xtrain_vif_data2['VIF'] = round(vif_data2['VIF'],2)
vif_data2 = vif_data2.sort_values(by = 'VIF',ascending=False)
vif_data2
```

Out[61]:

	feature	VIF
4	CGPA	34.99
0	TOEFL Score	22.07
2	SOP	19.63
3	LOR	15.66
1	University Rating	11.68
5	Research	2.87

P-Value and VIF is higher for SOP Score, hence dropping the column and rebuilding the model

In [62]:

```
xtrain_ols3 = xtrain_ols2.drop('SOP',1)
xtrain_vif3 = xtrain_vif2.drop('SOP',1)

xtrain_ols3 = sm.add_constant(xtrain_ols3)
ols_regression3 = sm.OLS(y_train,xtrain_ols3).fit()
```

In [63]:

print(ols_regression3.summary())

OLS Regression Results					
== Dep. Variable:	Chance o	of Admit	R-squared:		0.7
95 Model: 88		OLS	Adj. R-squar	ed:	0.7
Method: 1.6	Least	Squares	F-statistic:		11
Date:	Tue, 08 N	lov 2022	Prob (F-stat	istic):	9.72e-
Time:	1	7:10:20	Log-Likeliho	ood:	142.
No. Observations: 2.3		150	AIC:		-27
Df Residuals: 4.2		144	BIC:		-25
Df Model: Covariance Type:	no	5 onrobust			
========	 coef		 t		[0.025
0.975]		3tu en		·	[0.023
const 0.120	0.0633	0.028	2.227	0.028	0.007
TOEFL Score 0.339	0.2158	0.062	3.476	0.001	0.093
University Rating 0.153	0.0715	0.041	1.737	0.084	-0.010
LOR 0.137	0.0461	0.046	1.008	0.315	-0.044
CGPA 0.756	0.5959	0.081	7.334	0.000	0.435
Research 0.086	0.0507	0.018	2.831	0.005	0.015
=======================================	=======	:======	========	========	========
== Omnibus: 02		33.060	Durbin-Watso	on:	2.1
Prob(Omnibus): 95		0.000	Jarque-Bera	(JB):	54.9
Skew: 12		-1.077	Prob(JB):		1.14e-
Kurtosis: 0.1		5.039	Cond. No.		2
==	=======	:======:	=======	========	========

Notes:

4

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

In [64]:

```
vif_data3 = pd.DataFrame()
vif_data3["feature"] = xtrain_vif3.columns
vif_data3["VIF"] = [variance_inflation_factor(xtrain_vif3.values, i) for i in range(xtrain_vif_data3['VIF'] = round(vif_data3['VIF'],2)
vif_data3 = vif_data3.sort_values(by = 'VIF',ascending=False)
vif_data3
```

Out[64]:

	feature	VIF
3	CGPA	33.10
0	TOEFL Score	22.02
2	LOR	14.05
1	University Rating	9.32
4	Research	2.87

P-Value and VIF is higher for LOR Score, hence dropping the column and rebuilding the model

In [65]:

```
xtrain_ols4 = xtrain_ols3.drop('LOR',1)
xtrain_vif4 = xtrain_vif3.drop('LOR',1)

xtrain_ols4 = sm.add_constant(xtrain_ols4)
ols_regression4 = sm.OLS(y_train,xtrain_ols4).fit()
```

In [66]:

nrint	റിട	regression4.summary())
bi Tiici	(0±3_	i cgi cooronittodimiai y (/ /

OLS Regression Results					
=======================================		_			
== Dep. Variable: 93	Chance o	of Admit	R-squared:		0.7
Model:		OLS	Adj. R-square	ed:	0.7
Method: 9.3	Least	Squares	F-statistic:		13
Date:	Tue, 08 N	lov 2022	Prob (F-stati	istic):	1.28e-
Time:	1	7:10:20	Log-Likelihoo	od:	141.
No. Observations:		150	AIC:		-27
Df Residuals: 8.2		145	BIC:		-25
Df Model: Covariance Type:	nc	4 onrobust			
=======================================		=======	========		========
=======	coef	std err	+	P> t	[0.025
0.975]					_
const	0.0730	0.027	2.726	0.007	0.020
0.126 TOEFL Score	0.2138	0.062	3.446	0.001	0.091
0.337 University Rating	0.0882	0.038	2.343	0.020	0.014
0.163 CGPA	0.6164	0.079	7.837	0.000	0.461
0.772 Research 0.086	0.0506	0.018	2.820	0.005	0.015
=======================================	-======	:======:	========		========
== Omnibus:		32.983	Durbin-Watsor	ı:	2.0
98 Prob(Omnibus):		0.000	Jarque-Bera ((JB):	54.1
20 Skew:		-1.083	Prob(JB):		1.77e-
12 Kurtosis: 8.2		4.991	Cond. No.		1
==	=======	:======:	========	=======	========
Notes: [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.					

In [67]:

```
vif_data4 = pd.DataFrame()
vif_data4["feature"] = xtrain_vif4.columns
vif_data4["VIF"] = [variance_inflation_factor(xtrain_vif4.values, i) for i in range(xtrain_vif_data4['VIF'] = round(vif_data4['VIF'],2)
vif_data4 = vif_data4.sort_values(by = 'VIF',ascending=False)
vif_data4
```

Out[67]:

	feature	VIF
2	CGPA	25.51
0	TOEFL Score	22.01
1	University Rating	8.16
3	Research	2.86

-->xtrain_ols4 has the data with features from which we can exactly predict our model, going further we will be using this data.

-->Eventhough the VIF of the features is high but from OLS we can see that p-value of the features less than 0.05 so from which we are rejecting the null hypothesis

In [68]:

```
ytrain_predict = ols_regression4.predict(xtrain_ols4)
```

In [69]:

```
x_test.head()
```

Out[69]:

	GRE Score	TOEFL Score	University Rating	SOP	LOR	CGPA	Research
304	0.46	0.500000	0.25	0.375	0.250	0.522436	0.0
340	0.44	0.535714	0.50	0.500	0.500	0.532051	1.0
47	0.98	0.964286	1.00	0.875	0.750	0.929487	0.0
67	0.52	0.535714	0.25	0.625	0.625	0.589744	1.0
479	0.70	0.642857	0.75	0.875	0.750	0.692308	1.0

In [70]:

```
xtrain ols4.columns
```

Out[70]:

```
Index(['const', 'TOEFL Score', 'University Rating', 'CGPA', 'Research'], dty
pe='object')
```

In [71]:

```
x_test = x_test[['TOEFL Score', 'University Rating', 'CGPA', 'Research']]
```

```
In [72]:
```

```
x_test.head()
```

Out[72]:

	TOEFL Score	University Rating	CGPA	Research
304	0.500000	0.25	0.522436	0.0
340	0.535714	0.50	0.532051	1.0
47	0.964286	1.00	0.929487	0.0
67	0.535714	0.25	0.589744	1.0
479	0.642857	0.75	0.692308	1.0

```
In [73]:
```

```
x_test = sm.add_constant(x_test)
```

In [74]:

```
x_test.head()
```

Out[74]:

	const	TOEFL Score	University Rating	CGPA	Research
304	1.0	0.500000	0.25	0.522436	0.0
340	1.0	0.535714	0.50	0.532051	1.0
47	1.0	0.964286	1.00	0.929487	0.0
67	1.0	0.535714	0.25	0.589744	1.0
479	1.0	0.642857	0.75	0.692308	1.0

```
In [75]:
```

```
ytest_predict = ols_regression4.predict(x_test)
```

Linearity Check

```
In [76]:
```

```
df_copy.columns
```

```
Out[76]:
```

In [77]:

```
sns.pairplot(df_copy, x_vars=['TOEFL Score', 'University Rating', 'CGPA', 'Research'],y_var
Out[77]:
```

<seaborn.axisgrid.PairGrid at 0x2978b1d1f40>

Mean of residuals

```
In [78]:
```

```
ytest_predict = pd.DataFrame(ytest_predict,columns = ['Chance of Admit'])
```

In [79]:

```
np.mean(ytest_predict-y_test)
```

Out[79]:

Chance of Admit 0.012823

dtype: float64

Test for Homoscedasticity

```
In [80]:
```

```
ytest_predict = pd.DataFrame(ytest_predict,columns=['Chance of Admit'])
```

In [81]:

```
ytest_predict.head()
```

Out[81]:

Chance of Admit

304	0.524003
340	0.610173
47	0.940345
67	0.623686
479	0.753918

In [82]:

y_test.head()

Out[82]:

Chance of Admit

304	0.444444
340	0.650794
47	0.873016
67	0.365079
479	0.714286

In [83]:

```
data = pd.DataFrame()
data['Predicted'] = ytest_predict
data['Residuals'] = y_test - ytest_predict
sns.lmplot(x='Predicted',y='Residuals',data=data)
```

Out[83]:

<seaborn.axisgrid.FacetGrid at 0x2978a963190>

Normality of residuals

In [84]:

sns.distplot(y_test-ytest_predict)

Out[84]:

<AxesSubplot:ylabel='Density'>

form the above plot we can see that the graph is similar to the normal plot, Hence we can say that the assumption is True

Model Evaluation

```
In [85]:
```

```
print('Mean Absolute Error:', metrics.mean_absolute_error(y_test,ytest_predict))
print('Mean Squared Error:', metrics.mean_squared_error(y_test,ytest_predict))
print('Root Mean Squared Error:', np.sqrt(metrics.mean_squared_error(y_test,ytest_predict))
```

Mean Absolute Error: 0.06971171640623312 Mean Squared Error: 0.010046336251067323 Root Mean Squared Error: 0.10023141349430988

In [86]:

```
## R2 Score
r2 = r2_score(y_test,ytest_predict)
r2
```

Out[86]:

0.80978591888805

In [87]:

```
## Adjusted R2 Score
m = y_test.shape[0]
d = xtrain_vif4.shape[1]
adj_r2 = 1-((1-r2)*(m-1)/(m-d-1))
adj_r2
```

Out[87]:

0.8075805382374766

```
Mean errors are nearly equals to zero
R2 score is 80% and adjusted R2 score is also almost same
If there are any other information like the state/region the student belongs to and the
```

Actionable Insights & Recommendations

```
--> Research feature makes more sense in prediction.
```

- --> R2 score is 80 which states that this is a good model
- --> Information like state/region or educational qualifications and work experience in the field of intrest adds more value to the model
- -->Few features had multicollinearity which makes the model to predict inappropriate outputs so they are not much required to predict the output
- --> Factors like Research, CGPA, TOFEL Score, University Rating effects the chance of the student getting seat in the applied college from the given dataset