# Optimisation Convexe

Adrien Taylor

28 novembre 2024



## Table des matières

| 1 | Modélisation                                                                                                              | 1 |
|---|---------------------------------------------------------------------------------------------------------------------------|---|
|   | 1.1 Ensembles Convexes                                                                                                    | 1 |
| 2 | Méthodes                                                                                                                  | 3 |
| • | Notation 0.1 • $\mathbb{S}^n$ est l'ensemble des matrices symétriques. $\mathbb{S}^n_+$ est l'ensemble des matrices symé- |   |

## 1 Modélisation

#### 1.1 Ensembles Convexes

**Définition 1.1** Un ensemble C est convexe si et seulement si :

$$\forall x, y \in C, \forall \theta \in [0, 1], \theta x + (1 - \theta) y \in C$$

Un ensemble convexe C est dit propre s'il est non vide.

**Définition 1.2** L'enveloppe convexe Conv S d'un ensemble S est le plus petit ensemble convexe qui contient S. Les combinaisons convexes de  $x_1, \ldots, x_k$  sont les :

$$\sum_{i=1}^{k} \theta_i x_i, \sum \theta_i = 1$$

Définition 1.3 Un hyperplan est un ensemble de la forme

$$\{x \mid {}^{\mathsf{t}}axx = b\}, a \neq 0$$

**Proposition 1.1** 1. Les hyperplans sont affines et convexes, de vecteur normal a.

1.1 Ensembles Convexes 2

2. Les boules euclidiennes de la forme :

$$B(x_c, r) = \{x \mid ||x - x_c||_2 \le r\}$$

sont convexes

3. Les ellipsoïdes de la forme :

{}

sont convexes.

**Définition 1.4** Un ensemble K est un cône si :

$$x \in K \Rightarrow \theta x \in K \forall \theta > 0$$

**Proposition 1.2** Les ensembles suivants sont convexes :

- $\bullet \ K = \{x \in \mathbb{R}^n \mid x \ge 0\}$
- $K = \{(x, t) \in \mathbb{R}^{n+1} \mid ||x|| \le t\}$
- $K\left\{x \in \mathbb{R}^{n+1} \mid x_0 + x_1 t + \dots + x_n t^n \ge 0\right\}$
- $K = \{X \in \mathbb{S}^n \mid \}$

**Définition 1.5** On définit  $K^*$  le cone dual d'un cone K:

$$K^* = \left\{ y \in {}^{\mathsf{t}} y x \ge 0 \forall x \in K \right\}$$

On va s'intéresser aux opérations qui préservent la convexité.

Proposition 1.3 Soient  $C, C_1, C_2$  des ensembles convexes :

- $C_1 \cap C_2$  est convexe
- $C_1 \cup C_2$  n'est pas nécessairement convexe.
- Si L(x) = Ax + b est affine, L(C) est convexe.  $L^{-1}(C)$  est convexe.

Définition 1.6 On définit les polyèdres :

$$S = \{ x \in \mathbb{R}^n \mid Ax \le b, C_x = d \}$$

Ils sont convexes comme intersection d'ensembles convexes.

Théorème 1.1 Un ensemble convexe est l'intersection de tous les demi-espaces qui le contiennent.

**Définition 1.7** Un hyperplan H supporte l'ensemble convexe C en  $x \in \partial C$  si :

$${}^{\mathsf{t}}sx = r \wedge {}^{\mathsf{t}}sy < r \forall y \in C$$

**Définition 1.8** L'opérateur de cone normal d'un ensemble convexe C en x est définit pas :

$$N_C(x) = \begin{cases} \{g \mid {}^{\mathsf{t}}g(y-x) \leq 0 \forall y \in C\} & \text{si } x \in C \\ \varnothing & \text{si } x \notin C \end{cases}$$

C'est l'ensemble des vecteurs qui forment des angles obtus pour tout y-x avec  $y \in C$ .

**Définition 1.9** Le cone tangent à C en  $x \in \partial C$  est définit par le cône dual négatif :

$$T_C(x) = N_C^{\diamond}(x)$$

**Définition 1.10** Une fonction est dite convexe si son épigraphe l'est. Une fonction est dite concave si et seulement si son opposé est convexe.

**Définition 1.11** Soit  $f: \mathbb{R}^n \to \mathbb{R}^n$ . Son ensemble de sous-niveau de niveau  $\alpha$  est :

$$S_{\alpha}(f) = \{ x \in \mathbb{R}^n \mid f(x) \le n \}$$

<++>

#### 2 Méthodes