Niektóre tautologie klasycznego rachunku zdań

- $\neg(\neg p) \Leftrightarrow p$ (prawo podwójnego zaprzeczenia)
- ¬p ∨ p (prawo wyłączonego środka)
- $ullet p\Rightarrow (pee q),\ (p\wedge q)\Rightarrow p$ (prawa pochłaniania)
- $(p \lor q) \Leftrightarrow (\neg p \Rightarrow q)$, $(p \Rightarrow q) \Leftrightarrow (\neg p \lor q)$ (zamiana implikacji na alternatywę, i odwrotnie)
- ...
- łączność (przemienność) koniunkcji / alternatywy,
- rozdzielność alternatywy względem koniunkcji (i odwrotnie).

Prawa de Morgana:

- $\neg (p \lor q) \Leftrightarrow (\neg p \land \neg q)$
- $\neg (p \land q) \Leftrightarrow (\neg p \lor \neg q)$

$$\sim \left[\bigvee_{x \in X} p(x) \right] \Leftrightarrow \underset{x \in X}{\exists} \left[\sim p(x) \right]$$

Nieprawda, że każdy student lubi matematykę. ⇔ ⇔ Istnieje student, który nie lubi matematyki.

Wybrane tautologie rachunku predykatów (1)

Twierdzenie

- • $p(x) \Rightarrow (\exists_x p(x))$
 - $(\forall_x \ p(x)) \Rightarrow p(x)$
- Negacja (Prawa de Morgana):
 - $\neg(\forall_{x \in D_x} p(x)) \Leftrightarrow (\exists_{x \in D_x} \neg p(x))$
 - $\neg(\exists_{x \in D_x} p(x)) \Leftrightarrow (\forall_{x \in D_x} \neg p(x))$
 - · analogicznie dla predykatów wielu zmiennych
- Przemienność
 - $\forall_x \forall_y \ p(x, y) \Leftrightarrow \forall_y \forall_x \ p(x, y)$
 - $\exists_x \exists_y \ p(x,y) \Leftrightarrow \exists_y \exists_x \ p(x,y)$
 - $\bullet \exists_x \forall_y \ p(x,y) \stackrel{\Rightarrow}{\underset{de}{\leftarrow}} \forall_y \exists_x \ p(x,y)$
- Specjalizacja
 - $\forall_x p(x) \stackrel{\Rightarrow}{\underset{\Leftarrow}{}} \exists_x p(x)$

Wybrane tautologie rachunku predykatów (2)

40 + 40 + 42 + 42 + 2 940

Twierdzenie

- Prawa rozkładania kwantyfikatorów
 - $\forall_x (p(x) \Rightarrow q(x)) \Rightarrow \{\forall_x p(x) \Rightarrow \forall_x q(x)\}$
 - $\forall_x (p(x) \Rightarrow q(x)) \Rightarrow \{\exists_x p(x) \Rightarrow \exists_x q(x)\}\$
- Rozdzielność kwantyfikatorów:
 - $\forall x (p(x) \land q(x)) \Leftrightarrow \{\forall_x p(x) \land \forall_x q(x)\}$
 - $\forall_x (p(x) \lor q(x)) \Leftarrow \{\forall_x p(x) \lor \forall_x q(x)\}$
 - $\exists_x (p(x) \land q(x)) \stackrel{\Rightarrow}{\leftarrow} \{\exists_x p(x) \land \exists_x q(x)\}\$
 - $\exists_x (p(x) \lor q(x)) \Leftrightarrow \{\exists_x p(x) \lor \exists_x q(x)\}$
- Znajdź przykłady potwierdzające ⟨±, ⇒!

Zaznacz formy zdaniowe które, zdania są tautologiami: [Kwantyfikatory]

Zaznacz formy zdaniowe, które są tautologiami Wybierz jedną lub więcej:

- a. $\forall x(p(x) \land q(x)) \Rightarrow \{\exists x p(x) \land \exists x q(x)\} \forall x(p(x) \land q(x)) \Rightarrow \{\exists x p(x) \land \exists x q(x)\} \forall x (p(x) \land q(x)) \Rightarrow \{\exists x p(x) \land \exists x q(x)\} \forall x (p(x) \land q(x)) \Rightarrow \{\exists x p(x) \land \exists x q(x)\} \forall x (p(x) \land q(x)) \Rightarrow \{\exists x p(x) \land \exists x q(x)\} \forall x (p(x) \land q(x)) \Rightarrow \{\exists x p(x) \land \exists x q(x)\} \forall x (p(x) \land q(x)) \Rightarrow \{\exists x p(x) \land \exists x q(x)\} \forall x (p(x) \land q(x)) \Rightarrow \{\exists x p(x) \land \exists x q(x)\} \forall x (p(x) \land q(x)) \Rightarrow \{\exists x p(x) \land \exists x q(x)\} \forall x (p(x) \land q(x)) \Rightarrow \{\exists x p(x) \land \exists x q(x)\} \forall x (p(x) \land q(x)) \Rightarrow \{\exists x p(x) \land \exists x q(x)\} \forall x (p(x) \land q(x)) \Rightarrow \{\exists x p(x) \land \exists x q(x)\} \forall x (p(x) \land q(x)) \Rightarrow \{\exists x p(x) \land \exists x q(x)\} \forall x (p(x) \land q(x)) \Rightarrow \{\exists x p(x) \land \exists x q(x)\} \forall x (p(x) \land q(x)) \Rightarrow \{\exists x p(x) \land \exists x q(x)\} \forall x (p(x) \land q(x)) \Rightarrow \{\exists x p(x) \land \exists x q(x)\} \forall x (p(x) \land q(x)) \Rightarrow \{\exists x p(x) \land q(x)\} \Rightarrow \{\exists x p(x)\} \Rightarrow \{\exists x p$
 - b. Żadna z pozostałych odpowiedzi nie jest prawdziwa
- c. $\neg(\forall_{x \in D_x} p(x)) \Leftrightarrow (\forall_{x \in D_x} \neg p(x)) \neg (\forall x \in Dx \neg p(x)) \Leftrightarrow (\forall x \in Dx \neg p(x)) \neg (\forall x \in Dx \neg p(x)) \Leftrightarrow (\forall x \in Dx \neg p(x)) \Rightarrow (\forall x \in Dx \neg p(x)$
- d. $\exists x p(x) \Rightarrow \forall x p(x)$

```
Zaznacz formy zdaniowe, które są tautologiami Wybierz jedną lub więcej:

a. \forall_x \ (p(x) \land q(x)) \Rightarrow \{\exists_x \ p(x) \land \exists_x \ q(x)\}

b. \exists_x \ p(x) \Rightarrow \forall_x \ p(x) \ \bigvee \{\sqsubseteq

c. \neg(\forall_{x \in D_x} \ p(x)) \Leftrightarrow (\forall_{x \in D_x} \ \neg p(x))

X d. Zadna z pozostałych odpowiedzi nie jest prawdziwa
```

```
xRy<=> x/y = NN x,y \( \text{N} \) zwrotna (x jest dzielnikiem y)

b) zwrotna (x jest dzielnikiem y)

b) symetnyczna

fxelN (xRx) x/x TAK

b) symetnyczna

fxelN fyelN (xRy =>yRx) (=> x/y=>y/x

x=15 y=30 15/30 => 30/15 NIE

pnechodnia

c) pnechodnia

fxyzelN [(xRy ^yRz)] => xRz

y/z (=> 3delN) y=k x

y/z (=> 3delN) zedy=dikix

pnechodnia
```

 $A=\{a,b,c,d\}$

to jak sprawdzić czy relacja R={(a,a), (a,d), (b,c), (c,b), (d,a)} jest przechodnia?

(b, c) o (c,b) == (b,b) a to nie nalezy do podanego zbioru \rightarrow relacja nie jest przechodnia Ab o bc = ac

(d,a) o (a,d)= (d,d) a to nie nalezy do podanego zbioru--> relacja nie jest przechodnia masz 2 kontrprzyklady

przechodniosc---> np masz pociągi relacji

Szczecin- Poznań i Poznań - Wrocław i chcesz sprawdzic czy istnieje pociag relacji Szczecin- Wrocław

Zwrotna - każdy obiekt jest w relacji sam ze soba np.

x jest w relacji z y jeśli obaj posługują się nickiem "divao" - jesteś w relacji sam ze sobą.

Przeciwzwrotna - żaden obiekt nie iest w relacii sam ze soba np.

x jest w relacji z y jeśli obaj posługują się różnymi nickami - nie jesteś w relacji sam ze sobą.

Symetryczna - można zamienić miejscami x i y i nadal będą w relacji, np.

x jest w relacji z y jeśli obaj mają tyle samo lat - jesteś w relacji ze swoim rówieśnikiem.

Przeciwsymetryczna - jeśli zachodzi dla pary (x,y), to nie zachodzi dla pary (y,x), np.

x jest w relacji z y jeśli x jest starszy od y - jesteś w relacji ze swoim młodszym bratem, on nie jest w relacji z tobą.

Antysymetryczna - relacja, która nie może zachodzić dla (x,y) oraz (y,x) jednocześnie, np.

x jest w relacji z y jeśli x jest starszy od y - jesteś w relacji ze swoim młodszym bratem, on nie jest w relacji z tobą.

Przechodnia - jeśli zachodzi dla (x,y) oraz dla (y,z) to zachodzi dla (x,z), np.

x jest w relacji z y jeśli x jest starszy od y - x jest starszy od y, y jest starszy od z, zatem też x jest starszy od z.

ILOCZYN KARTEZJAŃSKI

Przykład - c.d.

Niech
$$X = \{1, 2, 3\}$$
.

$$X \times X = X^2 = \{(1,1), (1,2), (1,3), (2,1), (2,2), (2,3), (3,1), (3,2), (3,3)\}$$

Liczbę elementów zbioru A oznaczamy jako|A| (albo $\overline{\overline{A}}$).

$$|X \times Y| = |X| \cdot |Y|$$

W zbiorze A = {a,b,c,d} określona jest relacja:

W zbiorze $A=\{a,b,c,d\}$ określona jest relacja $R=\{(a,c),(a,d),(b,b),(b,c),(c,c),(d,d)\}$ Zaznacz własności, które relacja ta spełnia:

Wybierz jedną lub więcej:

- a. przeciwzwrotność
- b. przechodniość
- c. nie spełnia żadnych z wymienionych własności
- d. antysymetria
- e. symetria
- f. zwrotność

a (nie bo są bb, cc i dd), **b** nie (dla ac i bc / cb nie ma ab), **c** tak, **d** (nie może być do jest bb cc dd), **e** – nie(nie ma ca, da, cb), **f** nie (nie ma aa)

W zbiorze A={a,b,c,d} określona jest relacja R={(a,c),(a,d),(b,b),(b,c),(c,c),(d,d)} nacz własności, które relacja ta spełnia:

Wybierz jedną lub więcej:

- a. przechodniość
- □ b. przeciwzwrotność
- c. antysymetria
- d. nie spełnia żadnych z wymienionych własności
- e. symetria
- f. zwrotność

```
W zbiorze A = \{a,b,c,d\} określona jest relacja R = \{(a,b),(a,c),(a,d),(b,c),(b,d),(c,d)\} Zaznacz własności, które relacja ta spełnia:

Wybierz jedną lub więcej

a. zwrotność

b. symetria

c. orzeciwzwrotność

d. przechodniość

e. antysymetria

f. nie spełnia żadnych z wymienionych własności
```

A (nie ma aa bb cc dd), b nie(nie ma ba, ca, da, cb, db, cd), c TAK, d tak (dla ad i db nie ma ab), e TAK,

```
W zbiorze A = \{a,b,c,d\} określona jest relacja R = \{(a,a),(a,c),(a,d),(b,b),(b,c),(c,c),(d,d)\} Zaznacz własności, które relacja ta spełnia:

Wybierz jedną lub więcej:

a. zwrotność

b. nie spełnia żadnych z wymienionych własności

c. symetria

d. antysymetria

e. przechodniość

f. przeciwzwrotność
```

A tak; b-; c-(ac nie ma ca, ad nie ma da, bc nie ma cb); d tak; eTAK;f-

W zbiorze $A = \{a, b, c, d\}$ określona jest relacja $R = \{(a, a), (a, b), (b, c), (c, d)\}$ Zaznacz własności, które relacja ta spełnia:

Wybierz jedną lub więcej:

a. przechodniość

b. nie spełnia żadnych z wymienionych własności

c. antysymetria

d. symetria

e. zwrotność

f. przeciwzwrotność

(+?)a-(brak ca),b-,c tak,d-,e-(brak bb cc dd),f-(bo jest aa)

Definicje (własności relacji binarnej \mathcal{R} określonej na zbiorze A)

- zwrotność: $\forall_{a \in A} a \mathcal{R} a$,
- przeciwzwrotność: $\forall_{a \in A} \neg a \mathcal{R} a$,
- symetria: $\forall_{a,b \in A} a \mathcal{R} b \Leftrightarrow b \mathcal{R} a$,
- antysymetia: $\forall_{a,b\in A}a\mathcal{R}b\wedge b\mathcal{R}a\Rightarrow a=b$,
- przechodniość: $\forall_{a,b,c\in A} a\mathcal{R}b \wedge b\mathcal{R}c \Rightarrow a\mathcal{R}c$.

Przykład

- Relacja ≤ (słaba nierówność) określona w zbiorze liczb, jest zwrotna, symetryczna, antysymetryczna i przechodnia.
- Relacja < (silna nierówność), nie jest zwrotna, nie jest symetryczna, nie jest antysymetryczna, jest przechodnia,
- Relacja bycia rodzeństwem jest symetryczna i przechodnia
- Relacje jednocześnie będące symetrycznymi i antysymetrycznymi definiują równość w zbiorze.

Definicja: Relacja R między elementami zbiorów A1, A2, . . . , An, to dowolny podzbiór iloczynu kartezjańskiego A1 × A2 × . . . An. Mówimy, że R \subseteq A1 × A2 × . . . An jest relacją n-argumentową (n-arną).

 $\textbf{Definicja} : \textit{Relacja binarna R} \subseteq \textit{A1} \times \textit{A2}. \ \textit{Wtedy, zamiast zapisu (a1, a2) piszemy a1Ra2}. \ \textit{Na przykład a1} < \textit{a2}.$

Definicja: Relacja binarna określona w zbiorze A: $R \subseteq A2$.

Zbiory liczbowe
Liczby naturalne: N
$0, 1, 2, 3, 4, \dots$
Liczby całkowite: C
$0, -1, 1, -2, 2, -3, 3, \dots$
Liczby wymierne: W
Liczba jest wymierna, jeżeli możemy ją przedstawić w postaci ułamka $\frac{p}{q}$, gdzie p i q są liczbami całkowitymi i $q \neq 0$.
Przykłady: $0, 5, -4, \frac{1}{2}, -\frac{2}{3}, 4\frac{1}{5}$
Liczby niewymierne: $\mathbf{R}ackslash\mathbf{W}$
Przykłady: $\sqrt{2},\sqrt{5},\pi,1-\sqrt{7}$
Liczby rzeczywiste: ${f R}$
Liczby rzeczywiste to liczby wymierne i niewymierne.
Zadania + Rozwiązania

Ile krawędzi ma graf pełny

Ile krawędzi ma graf pełny K_8 ?

Odpowiedź: 28

pełny graf o n wierzchołkach posiada $\frac{n(n-1)}{2}$ krawędzi (n boków i $\frac{n(n-3)}{2}$ przekątnych wielokąta)

Zaznacz równania, które mają rozwiązanie w liczbach całkowitych. Odp a,c,d

Zaznacz równania, które mają rozwiązania w liczbach całkowitych. Wybierz jedną lub więcej: a. 7x + 5y = 140 b. 4x + 6y = 45 c. 3x + 7y = 89 d. 4x + 8y = 48 e. Żadne z podanych równań nie ma rozwiązań w liczbach całkowitych

11x + 16y = 268 równanie diofantyczne ax + by = c posiada rozwiązanie wtedy, gdy NWD(a, b) dzieli c, czyli NWD(a, b) | c. NWD (11, 16) = 1. 268 : 1 = 268, czyli 1 | 268, zatem równanie 11x + 16y = 268 ma rozwiązanie w zbiorze liczb całkowitych. A NWD(7,5) = 1 140/1 +; b NWD (4, 6) 2 45/2-; c NWD (3,7) 89//1+, d NWD (4, 8) 4 48/4=12+

https://brainly.pl/zadanie/4620966

https://www.matemaks.pl/algorytm-euklidesa.html

Zaznacz równania, które mają rozwiązania w liczbach całkowitych. Wybierz jedną lub więcej:
a. 3x+9y=191b. 4x+6y=9c. 4x+8y=30d. Zadne z podanych równań nie ma rozwiązań w liczbach całkowitych
e. 6x+5y=13

Odp.: e

A nwd(3,9)3-; b nwd(4,6)2-; c nwd(4,8)4; e nwd(6,5)1+

Zaznacz równania, które mają rozwiązania w liczbach całkowitych.

Wybierz jedną lub wiecej:

- \blacksquare a. 6x + 9y = 31
- b. Żadne z podanych równań nie ma rozwiązań w liczbach całkowitych
- \Box c. 3x + 9y = 191
- \blacksquare d. 4x + 6y = 17
- \blacksquare e. 4x + 8y = 30

A nwd(6,9)3-; b + ;c nwd(3,9)3-; d nwd(4,6)2;- e nwd(4,8)4-

Zaznacz równania, które mają rozwiązania w liczbach całkowitych.

Wybierz jedną lub więcej:

a.
$$7x + 5y = 11$$

$$lacksquare b. 4x + 6y = 15$$

c.
$$3x + 7y = 191$$

- d. Żadne z podanych równań nie ma rozwiązań w liczbach całkowitych
- = e.4x + 8y = 46

a-, b-, c+, d-, e-

Podaj, ile jest dzielników naturalnych liczby 10010

Podaj, ile jest dzielników naturalnych liczby **10010**.

Odpowiedź: 32

32

http://www.math.edu.pl/narzedzia.php?opcja=liczba-dzielnikow

30030

Podaj, ile jest dzielników naturalnych liczby 30030.

Odpowiedź: 64

64

2310

Podaj, ile jest dzielników naturalnych liczby **2310**.

Odpowiedź: 32

Stosując algorytm Euklidesa, oblicz największy wspólny dzielnik liczb 4620 oraz 1188
Stosując algorytm Euklidesa, oblicz największy wspólny dzielnik liczb 4620 oraz 1188.
Odpowiedź: 132
132 https://www.matemaks.pl/algorytm-euklidesa.html
Stosując algorytm Euklidesa, oblicz największy wspólny dzielnik liczb 2002 oraz 770
Stosując algorytm Euklidesa, oblicz największy wspólny dzielnik liczb 2002 oraz 770.
Odpowiedź: 154
154
Stosując algorytm Euklidesa, oblicz największy wspólny dzielnik liczb 2700 oraz 756 Stosując algorytm Euklidesa, oblicz największy wspólny dzielnik liczb 2700 oraz 756. Odpowiedź: 108 108
http://smurf.mimuw.edu.pl/uczesie/?q=kombinatoryka 4 dla trzech
http://smurf.mimuw.edu.pl/uczesie/?q=kombinatoryka_3 dla dwóch <-
Na I roku kierunku "Informatyka i ekonometria" jest 77
Na I roku kierunku "Informatyka i ekonometria" jest 77 studentów. <i>Analizę</i> zaliczyło 42 studentów, zaś <i>Analizę</i> oraz <i>Ekonomię</i> zaliczyło 20 studentów. Ilu studentów zaliczyło <i>Ekonomię</i> ? Odpowiedź:
$ A \cup B = A + B - A \cap B $. x+42-20=77; x=77-42+20; x=55 $ A \cup B = A + B - A \cap B $. 77=42+b-20; 77+20-42=b /// 77=22+b
Na I roku kierunku "Informatyka i ekonometria" jest 79
Na I roku kierunku "Informatyka i ekonometria" jest 79 studentów. <i>Analizę</i> zaliczyło 42 studentów, zaś <i>Analizę</i> oraz <i>Ekonomię</i> zaliczyło 5 studentów. Ilu studentów zaliczyło <i>Ekonomię</i> ?
Odpowiedź:
X+42-5=77; x=77-42+5; x=40
Na I roku kierunku "Informatyka i ekonometria" jest 68%
Na I roku kierunku "Informatyka i ekonometria" <i>Analizę</i> zaliczyło 68% studentów, zaś <i>Analizę</i> oraz <i>Ekonomię</i> zaliczyło 27% studentów. Jaki odsetek studentów zaliczył <i>Ekonomię</i> ?
Odpowiedź:

|A∪B|=|A|+|B|-|A∩B|; 100=68+x-27; 100-68+27=x; 59

Na I roku kierunku "Informatyka i ekonometria" <i>Analizę</i> zaliczyło 68% studentów, zaś <i>Analizę</i> oraz <i>Ekonomię</i> zaliczyło 27% studentów. Jaki odsetek studentów zaliczył <i>Ekonomię</i> ?	
Odpowiedź:	
A∪B = A + B - A∩B ; 100=68+x-37; 100-68+37=x; 69	
Na I roku kierunku "Informatyka i ekonometria" jest 83% Na I roku kierunku "Informatyka i ekonometria" <i>Analizę</i> zaliczyło 83% studentów,	
zaś <i>Analiz</i> ę oraz <i>Ekonomi</i> ę zaliczyło 35% studentów. Jaki odsetek studentów zaliczył <i>Ekonomię</i> ?	
Odpowiedź: 52	
$ A \cup B = A + B - A \cap B $; 100=83+x-35; 100=48+x; x=52	
Na I roku kierunku "Informatyka i ekonometria" jest 86%	
Na I roku kierunku "Informatyka i ekonometria" <i>Analizę</i> zaliczyło 86% studentów, zaś <i>Analizę</i> oraz <i>Ekonomię</i> zaliczyło 5% studentów. Jaki odsetek studentów zaliczył <i>Ekonomię</i> ?	
Odpowiedź:	
$ A \cup B = A + B - A \cap B $; $100 = 86 + x - 5$; $100 - 86 + 5 = x$; 19 Na I roku kierunku "Informatyka i ekonometria" jest 89	
Na I roku kierunku "Informatyka i ekonometria" jest 89 studentów. <i>Analizę</i> zaliczyło 47 studentów, zaś <i>Analizę</i> oraz <i>Ekonomię</i> zaliczyło 32 studentów. Ilu studentów zaliczyło <i>Ekonomię</i> ? Odpowiedź:	
A∪B = A + B - A∩B ; 89=47+x-32; 89-47+32=x x=74	
Na I roku kierunku "Informatyka i ekonometria" jest 89 Na I roku kierunku "Informatyka i ekonometria" jest 89 studentów. <i>Analizę</i> zaliczyło 40 studentów, zaś <i>Analizę</i> oraz <i>Ekonomię</i> zaliczyło 28 stulu studentów zaliczyło <i>Ekonomię</i> ?	ıdentów.
A∪B = A + B - A∩B ; 89=40+x-28; 89-40+28=x x=77	
Na I roku kierunku "Informatyka i ekonometria" jest 96 studentów. <i>Analizę</i> zaliczyło 41 studentów, zaś <i>Analizę</i> oraz <i>Ekonomię</i> z studentów. Ilu studentów zaliczyło <i>Ekonomię</i> ?	aliczyło 19
Odpowiedź: 23	
A∪B = A + B - A∩B ; 96=41+x-19; 96-41+19=74	

Na I roku kierunku "Informatyka i ekonometria" *Analizę* zaliczyło 96% studentów, zaś *Analizę* oraz *Ekonomię* zaliczyło 25% studentów.

Jaki odsetek studentów zaliczył Ekonomie?

Odpowiedź:

23

https://wseii-my.sharepoint.com/personal/kmolenda wsei edu pl/Documents/Published/MatDyskr/Kombinatoryka/Kombinatoryka-Notatki.pd

Zadanie 1.3.1: W klasie liczącej 33 osoby 17 uczniów uczy się języka włoskiego, 17 uczniów uczy się języka hiszpańskiego i 15 uczniów uczy się języka portugalskiego. Wśród nich 7 uczniów uczy się dwóch języków: włoskiego i hiszpańskiego, 9 uczniów uczy się języka włoskiego i portugalskiego oraz 6 uczniów uczy się języka hiszpańskiego i portugalskiego. Wreszcie 2 uczniów uczy się tych trzech języków. Ilu uczniów nie uczy się żadnego z tych języków?

Rozwiazanie:

Oznaczmy literami W , H i P zbiory uczniów uczących się odpowiednio języka włoskiego, hiszpańskiego i portugalskiego. Wtedy dane zadania można zapisać następująco:

$$\begin{split} |W| &= 17, \ |H| = 17, \ |P| = 15, \\ |W \cap H| &= 7, \ |W \cap P| = 9, \ |H \cap P| = 6, \\ |W \cap H \cap P| &= 2. \end{split}$$

Z zasady włączeń i wyłączeń wynika, że

$$|W \cup H \cup P| = 17 + 17 + 15 - 7 - 9 - 6 + 2 = 29.$$

A zatem 4 uczniów nie uczy się żadnego z tych języków.

• Niech A, B będą zbiorami skończonymi, rozłącznymi $(A \cap B = \emptyset)$.

$$|A \cup B| = |A| + |B|$$

2 Niech A_1, A_2, \ldots, A_n będą zbiorami skończonymi, parami rozłącznymi $(A_i \cap A_j = \emptyset, i \neq j, i, j \in \{1, \ldots, n\})$

$$|A_1 \cup A_2 \cup \ldots \cup A_n| = |A_1| + |A_2| + \ldots + |A_n|$$

Fakt (Zasada włączania i wyłączania - dla 2 i 3 zbiorów)

Niech A, B będą zbiorami skończonymi.

$$|A \cup B| = |A| + |B| - |A \cap B|$$

Niech A₁, A₂, A₃ będą zbiorami skończonymi

$$|A_1 \cup A_2 \cup A_3| = \\ |A_1| + |A_2| + |A_3| - |A_1 \cap A_2| - |A_1 \cap A_3| - |A_2 \cap A_3| + |A_1 \cap A_2 \cap A_3|$$

 $\underline{\text{https://wseii-my.sharepoint.com/personal/kmolenda}} \ \ \text{wsei} \ \ \underline{\text{edu}} \ \ \underline{\text{pl/Documents/Published/MatDyskr/Kombinatoryka/Kombinatoryka-wyklad-2017.pdf}} \\ \underline{\text{https://wseii-my.sharepoint.com/personal/kmolenda}} \ \ \ \text{wsei} \ \ \underline{\text{edu}} \ \ \underline{\text{pl/Documents/Published/MatDyskr/Kombinatoryka/Kombinatoryka-wyklad-2017.pdf}} \\ \underline{\text{https://wseii-my.sharepoint.com/personal/kmolenda}} \ \ \ \ \underline{\text{wsei}} \ \ \underline{\text{pl/Documents/Published/MatDyskr/Kombinatoryka/Kombinatoryka-wyklad-2017.pdf}} \\ \underline{\text{https://wseii-my.sharepoint.com/personal/kmolenda}} \ \ \ \ \underline{\text{wsei}} \ \ \underline{\text{pl/Documents/Published/MatDyskr/Kombinatoryka/Kombinatoryka-wyklad-2017.pdf}} \\ \underline{\text{https://wseii-my.sharepoint.com/personal/kmolenda}} \ \ \ \underline{\text{wsei}} \ \ \underline{\text{pl/Documents/Published/MatDyskr/Kombinatoryka/Kombinatoryka-wyklad-2017.pdf}} \\ \underline{\text{https://wseii-my.sharepoint.com/personal/kmolenda}} \ \ \underline{\text{wsei}} \ \ \underline{\text{https://wseii-my.sharepoint.com/personal/kmolenda}} \\ \underline{\text{https://wseii-my.sharepoint.com/personal/kmolenda}} \ \ \underline{\text{https://wseii-my.sharepoint.com/personal/kmolenda}} \\ \underline{\text{https://wseii-my.sharepoint.com/$

Jaką najmniejszą liczbą kolorów można pokolorować regiony grafu załączonego poniżej:

Jaką najmniejszą liczbą kolorów można pokolorować regiony grafu załączonego poniżej

ODP 2

Ustal, co zwraca poniższa funkcja rekurencyjna dla wartości 6, 7, 8:

```
Ustal, co zwraca poniższa funkcja rekurencyjna dla wartości 6, 7, 8:
  int fun(int n) {
  if (n<2) return n;
  if (n % 2 == 1) return fun(n-2);
  else return fun(n-1);
 Wybierz jedną odpowiedź:
 o a. Funkcja jest stała i zwraca wartość 1
 o b. Kolejno: 1 1 2
 o c. funkcja zapętla się
  o d. Funkcja jest stała i zwraca wartość 0
  o e. Kolejno: 223
      static void Main(string[] args)
           int fun(int n)
           {
                if (n < 2) return n;
                if (n % 2 == 1) return fun(n - 2);
                else return fun(n - 1);
           Console.WriteLine(fun(6));
           Console.WriteLine(fun(7));
           Console.WriteLine(fun(8));
ODP A funkcja jest stała i zwraca 1
 Ustal, co zwraca poniższa funkcja rekurencyjna dla wartości 6, 7, 8:
   int fun(int n) {
   if (n<2) return n;
   if (n 96 2 == 1) return fun(n/2)+1;
   else return fun(n-1);
 Wybierz jedną odpowiedź:
  o a. Funkcja jest stała i zwraca wartość 2

    b. Funkcja jest stała i zwraca wartość 1

  o c. Kolejno: 233
```

ODP C 2 3 3

d. Kolejno: 2 2 3 o e. funkcja zapętla się

ODP D:445

Które z podanych napisów pasują do regex-a (notacja PCRE) [a-z]+[\.\?!]

Jazda! koniec. Pijesz? Dalej! https://www.freeformatter.com/regex-tester.html + https://www.regextester.com/96926 -

a.[bc]+ Które z podanych napisów pasują do regex-a (notacja PCRE) a.[bc]+ Wybierz jedną lub więcej: asccbbbbcbcccc azc abc ac abc ac abbbbbbbb abcbcbcbc żadne z podanych nie pasują

Ascebbbbcbccccc, azc, abc, abbbbbbbb, abcbcbcbc

Ab+c Odp. abc Pytanie 4 Zakończone Oceniono na 1,00 z P Oflaguj pytanie

Które z podanych napisów pasują do regex-a (notacja PCRE)

ab+c?

Wybierz jedną lub więcej:

- abbb
- ✓ abc
- zadne z podanych nie pasuja
- bbc
- ac

Oblicz, ile jest 3-elementowych podzbiorów zbioru 6-elementowego:

Oblicz, ile jest 3-elementowych podzbiorów zbioru 6-elementowego.

Odpowiedź:

(6/3) = 6!/(6-3)! * 3! = 3!*4*5*6/3!*3*2*1 = 20

$$C_n^k = \binom{n}{k} = \frac{n!}{k!(n-k)!}$$

Oblicz, ile jest 3-elementowych podzbiorów zbioru 8-elementowego

Oblicz, ile jest 3-elementowych podzbiorów zbioru 8-elementowego.

Odpowiedź: 56

$$\binom{8}{3} = \frac{8!}{3! \cdot 5!} = \frac{51 \cdot 61 \cdot 8}{12 \cdot 5!} = 56$$

Oblicz, ile jest 3-elementowych podzbiorów zbioru 7-elementowego

Oblicz, ile jest 3-elementowych podzbiorów zbioru 7-elementowego.

Odpowiedź:

Oblicz, ile można utworzyć 4-elementowych multizbiorów(z powtórzeniami) ze zbioru A ={a,b,c}

Oblicz, ile można utworzyć 4-elementowych multizbiorów (zbiorów z powtórzeniami) ze zbioru $A=\{a,b,c\}$

Odpowiedź:

$$\bar{C}_n^k = \binom{k+n-1}{k} = \frac{(k+n-1)!}{k!(n-1)!}$$

Obliczymy na ile sposobów można wybrać trzy gałki lodów spośród 8 smaków, przy czym wybór jest zupełnie dowolny, tzn. możemy np. wybrać trzy (lub dwie) gałki lodów tego samego smaku. Jak widać są to kombinacje trójelementowe z powtórzeniami w zbiorze 8-miu elementów, przy czym zakładamy, że kolejność wkładania gałek lodów do kubka nie ma znaczenia. Otrzymujemy:

$$\bar{C}_8^3 = \binom{3+8-1}{3} = \frac{(3+8-1)!}{3!(8-1)!} = 120$$

$$\bar{c}_3^4 = \begin{pmatrix} 4+3-1 \\ 4 \end{pmatrix} = \frac{(4+3-1)!}{4!*(3-1)!} = \frac{6!}{4!*2!} = \frac{4!*5*6\sqrt{3}}{4!*1*2} = 15$$

k = 4, n = 3

Oblicz, ile jest można 2-elementowych multizbiorów(z powtórzeniami) ze zbioru A ={a,b,c}

Oblicz, ile można utworzyć 2-elementowych multizbiorów (zbiorów z powtórzeniami) ze zbioru $A=\{a,b,c\}$.

Odpowiedź: 6

2

6

K=2, n=3 C=((2+3-1)/2)=(2+3+1)!/2!(3-1)! = 4!/2!*2!= 2! * 3*4/2!

Ile wynosi liczba chromatyczna załączonego grafu

Ile wynosi liczba chromatyczna załączonego grafu

Odpowiedź: 2

Najmniejszą liczbę kolorów potrzebną do pokolorowania wierzchołków grafu G tak, że każde dwa wierzchołki połączone krawędzią mają różne kolory, nazywamy **liczbą chromatyczną grafu** G i oznaczamy przez χ(G).

Twierdzenie Brooksa. Niech G = (V;E) będzie spójnym grafem o największym stopniu wierzchołka równym d. Jeżeli G jest grafem pełnym lub składa się z pojedynczego cyklu o nieparzystej liczbie krawędzi, to: $\chi(G) = d + 1$. We wszystkich pozostałych przypadkach wystarcza $\chi(G) < d$

Ile wynosi indeks chromatyczny załączonego grafu?

Najmniejszą liczbę kolorów potrzebną do pokolorowania krawędzi grafu G tak, że żadne dwie krawędzie tego samego koloru nie mają wspólnego wierzchołka końcowego, **nazywamy indeksem chromatycznym grafu** G i oznaczamy ją przez κ(G). Twierdzenie Vizinga. Krawędzie grafu prostego, w którym największy stopień wierzchołka wynosi d, można pokolorować przy użyciu co najmniej d kolorów

Zaznacz własności poniższego grafu b,e,

https://e.wsei.edu.pl/pluginfile.php/27755/mod resource/content/2/TEORIA%20GRAF%C3%93W%20prezentacja.pdf

Graf prosty – graf bez krawędzi wielokrotnych i pętli; Trasa (szlak) – "linia", po której przedostajemy się z jednego wierzchołka do drugiego; Droga (ścieżka) – trasa, w której żaden wierzchołek nie występuje więcej niż raz;

Zaznacz, które poniższe stwierdzenia dotyczą grafu prostego

a+. e+

Graf spójny – graf stanowiący jedną część, składający się z jednego kawałka (jeżeli dla dowolnej pary wierzchołków tego grafu istnieje w nim ścieżka je łącząca)nie ma wierzchołka izolowanego **Graf niespójny** – graf składający się z kilku części; **Graf eulerowski** – graf, w którym istnieją trasy przechodzące przez każdą krawędź dokładnie raz i kończące się w punkcie wejściowym trasy; **Graf planarny** – graf, który można narysować tak aby jego krawędzie nie przecinały się; Mówimy, że wierzchołki są sąsiednie, jeżeli istnieje krawędź łącząca je. Stosuje się też określenie, że wierzchołki są incydentne z tą krawędzią. Krawędzie są sąsiednie, jeżeli mają wspólny wierzchołek.

Graf pełny jest grafem prostym, w którym dla każdej pary węzłów istnieje krawędź je łącząca.

Graf dwudzielny – graf, którego zbiór wierzchołków można podzielić na dwa rozłączne zbiory tak, że krawędzie nie łączą wierzchołków tego samego zbioru. Równoważnie: graf, który nie zawiera cykli nieparzystej długości. Jeśli pomiędzy wszystkimi parami wierzchołków należących do różnych zbiorów istnieje krawędź, graf taki nazywamy pełnym grafem dwudzielnym lub kliką dwudzielną i oznaczamy Kn,m gdzie n i m oznaczają liczności zbiorów wierzchołków

Graf regularny stopnia n to graf, w którym wszystkie wierzchołki są stopnia n czyli z każdego wierzchołka grafu regularnego

 \Diamond

wychodzi n krawędzi. Graf regularny stopnia n określa się dla wygody mianem grafu n- regularnego.

Graf eulerowski, **graf Eulera** – rodzaj <u>grafu</u> rozpatrywany w <u>teorii grafów</u>. Graf eulerowski odznacza się tym, że da się w nim skonstruować <u>cykl Eulera</u>, czyli cykl, który przechodzi przez każdą jego <u>krawędź</u> dokładnie raz. Graf półeulerowski zawiera w sobie ścieżkę, która pozwala przejść przez wszystkie jego krawędzie tylko raz. Ścieżka ta nazywana jest ścieżka Eulera.

Graf hamiltonowski – graf rozważany w teorii grafów zawierający ścieżkę (drogę) przechodzącą przez każdy wierzchołek dokładnie jeden raz zwaną ścieżką Hamiltona. W szczególności grafem hamiltonowskim jest graf zawierający cykl Hamiltona, tj. zamkniętą ścieżkę Hamiltona. W niektórych źródłach graf zawierający tylko ścieżkę Hamiltona nazywany jest grafem *półhamiltonowskim*. Aby lepiej zrozumieć właściwości grafu hamiltonowskiego można się posłużyć przykładem komiwojażera, który chce odwiedzić wszystkich swoich klientów, ale tylko raz (problem komiwojażera). Klienci, to wierzchołki grafu, a drogi między nimi są jego krawędziami. Jeżeli graf jest hamiltonowski, to znaczy, że komiwojażer może obejść wszystkich klientów bez mijania drugi raz żadnego z nich i wrócić do punktu wyjścia.

Graf planarny – <u>graf</u>, który można narysować na płaszczyźnie (i każdej powierzchni <u>genusu</u> 0) tak, by krzywe obrazujące krawędzie grafu nie przecinały się ze sobą. Odwzorowanie grafu planarnego na płaszczyznę o tej własności nazywane jest jego rysunkiem płaskim. Graf planarny o zbiorze wierzchołków i krawędzi zdefiniowanym poprzez rysunek płaski nazywany jest <u>grafem płaskim[[]</u> Macierz incydencji – pokazuje czy wierzchołek i jest incydentny z krawędzią j. Jej elementami są liczby 0 i 1. Ma tyle wierszy ile wierzchołków i tyle kolumn ile krawędzi

Macierz incydencji grafu zorientowanego (skierowanego) G = (V, K) o zbiorze wierzchołków V i krawędzi K. pokazuje czy wierzchołek i jest incydentny z krawędzią j. Jej elementami są liczby 0 i 1. Ma tyle wierszy ile wierzchołków i tyle kolumn ile krawędzi.

Zaznacz prawdzie stwierdzenie dotyczące macierzy incydencji:

Zaznacz prawdziwe stwierdzenia dotyczące macierzy incydencji:	
Wybierz jedną lub więcej:	
🗌 a. jest zawsze macierzą kwadratową	
🔲 b. żadne z podanych stwierdzeń nie jest prawdziwe	
🗷 c. jej elementami są tylko cyfry 0 i 1	
☐ d. jej elementami są tylko liczby całkowite	
\swarrow e. pokazuje, czy wierzchołek i jest sąsiedni z krawędzią j	
$\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	

Dana jest macierz sąsiedztwa grafu nieskierowanego

haminton X

E,f, d,

Dana jest macierz sąsiedztwa grafu nieskierowanego

	a	b	C	d	e	f	g
a	1	0	1	0	1	0	0
b	0	1	0	1	0	1	0
c	1	0	1	1	0	0	0
d	0	1	1	1	0	0	0
e	1	0	0	0	1	1	0
f	0	1	0	0	1	1	0
g	0	0	0	0	0	0	1

Zaznacz, które z własności spełnia ten graf?

Wybierz jedną lub więcej:

- a. Zawiera cykl Eulera
- b. Zawiera cykl Hamiltona
- c. Jest planarny
- d. Jest spójny
- e. Jest regularny
- 📵 f. Żadna z odpowiedzi nie jest poprawna
- 📵 g. Jest póleulerowski
- h. Jest półhamiltonowski

C,

Dana jest macierz sąsiedztwa grafu nieskierowanego

	a	b	c	d	e	f	g
a	1	0	0	0	1	1	0
b	0	1	1	1	0	1	1
c	0	1	1	1	0	0	0
d	0	1	1	1	0	0	0
e	1	0	0	0	1	1	0
a b c d e f	1	1	0	0	1	1	0
g	0	1	0	0	0	0	1

Zaznacz, które z własności spełnia ten graf?

Wybierz jedną lub więcej:

- a. Jest półhamiltonowski
- b. Żadna z odpowiedzi nie jest poprawna
- c. Jest póleulerowski
- d. Zawiera cykl Eulera
- e. Jest planarny
- f. Jest regularny
- g. Zawiera cykl Hamiltona
- h. Jest spójny

Dana jest macierz sąsiedztwa grafu nieskierowanego

	a	b	C	d	e	f	g
a	1	0	0	0	1	1	0
b	0	1	1	1	0	1	1
c	0	1	1	1	0	0	0
d	0	1	1	1	0	0	0
e	1	0	0	0	1	1	0
f	1	1	0	0	1	1	0
g	0	1	0	0	0	0	1

Zaznacz, które z własności spełnia ten graf?

Wybierz jedną lub więcej:

- a. Jest regularny
- b. Jest spójny
- 🔲 c. Zawiera cykl Hamiltona
- d. Zawiera cykl Eulera
- e. Jest półhamiltonowski
- f. Żadna z odpowiedzi nie jest poprawna

🖳 g. Jest póleulerowski

h. Jest planarny

Zaznacz grafy planarne

Zaznacz grafy planarne:

Wybierz jedną lub więcej:

- a. żaden z podanych grafów nie jest planarny
- \blacksquare b. K_6
- \blacksquare c. W_5 koła
- \exists d. $K_{2,4}$ dwudzielne (2-planarne)
- \oplus e. C_5 cykliczny

e+,d+,b-,c+ ,a-

Dany jest graf nieskierowany G=(v,E) reprezentowany w postaci listy sąsiedztwa:

Dany jest graf nieskierowany G=(V, E) reprezentowany w postaci listy sąsiedztwa:

- V = {1, 2, 3, 4, 5, 6, 7} zbiór wierzchołków
- F = j

1: {1, 2, 3, 5, 7}

2: {1, 2, 3, 4, 5, 6}

3: {1, 2, 3, 4, 5, 7}

4: {2, 3, 4, 5}

5: {1, 2, 3, 4, 5, 6, 7}

7: {1, 3, 5, 6, 7}

} - zbiór krawędzi w postaci listy sąsiedztwa

Zaznacz, które z własności spełnia ten graf?

Wybierz jedną lub więcej:

- a. Żadna z odpowiedzi nie jest poprawna
- 🤯 b. Jest półhamiltonowski
- c. Jest regularny
- d. Zawiera cykl Eulera
- e. Jest póleulerowski
- f. Zawiera cykl Hamiltona

🖳 g. lest spójny

🥫 h. Jest planarny

Oblicz, ile jest funkcji wzajemnie jednoznacznych f: A -> A, jeśli moc zbioru A wynosi 6 odp 1

Oblicz, ile jest funkcji wzajemnie jednoznacznych f:A o A, jeśli moc zbioru A wynosi 6.

Odpowiedź:

$$(6) = \frac{6}{6!} = \frac{1}{6!} = \frac{1}{6!} = \frac{1}{3!} = 1$$

Twierdzenie

Przypomnienie: bijekcja = funkcja wzajemnie jednoznaczna zbioru X w zbiór Y. Uwaga: Dla skończonych zbiorów X,Y, zbiory te są równoliczne (|X|=|Y|=n) Liczba bijekcji wynosi n!

Przykład

Na kurs tańca uczęszcza pięciu chłopaków i pięć dziewcząt. Większość kroków tanecznych ćwiczy się parami. Dla urozmaicenia pary często się zmieniają. Na ile sposobów może być wykonany jeden taniec?

Matematyczny model doboru par to funkcja $para:\mathcal{C}\to\mathcal{D}$, gdzie \mathcal{C} - zbiór chłopców, \mathcal{D} - zbiór dziewcząt. Zbiory są równoliczne ($\mathcal{C}=\mathcal{D}=5$). Liczba możliwych do utworzenia par wynosi zatem 5!=120.

Komentarz

W terminologii kombinatorycznej zliczanie bijekcji odpowiada kombinacjom bez powtórzeń.

Funkcja wzajemnie jednoznaczna (bijekcja) – <u>funkcja</u> będąca jednocześnie funkcją <u>różnowartościową</u> i <u>"na"</u>. Innymi słowy, bijekcja to funkcja (<u>relacja</u>) taka, że każdemu elementowi obrazu odpowiada dokładnie jeden element <u>dziedziny</u>.

Funkcja "na" a. surjekcja[1] a. surjekcja[2][3] – funkcja przyjmująca jako swoje wartości wszystkie elementy

przeciwdziedziny, tj. której obraz jest równy przeciwdziedzinie.

Twierdzenie

Przypomnienie: iniekcja = funkcja różnowartościowa zbioru X w zbiór Y. Dla skończonych zbiorów X,Y liczba iniekcji wynosi

$$\frac{|Y|!}{(|Y|-|X|)!}$$

Przykład

Liczba 4-cyfrowych kodów PIN, w których cyfry się nie powtarzają, wynosi $\frac{10!}{(10-4)!} = 5040$. Tak określony kod PIN jest funkcją przypisującą każdej pozycji kodu różną cyfrę:

$$pin: \{0, 1, 2, 3\} \to \{0, \dots, 9\}, \quad pin(i) \neq pin(j), i \neq j$$

Komentarz

W terminologii kombinatorycznej zliczanie iniekcji odpowiada wariacjom bez powtórzeń.

https://wseii-

my.sharepoint.com/personal/kmolenda wsei edu pl/Documents/Published/MatDyskr/Kombinatoryka/Kombinatoryka-Notatki.pdf

https://wseii-my.sharepoint.com/personal/kmolenda_wsei_edu_pl/Documents/Published/MatDyskr/Logika/Logika-wyklad-2017.pdf

Funkcja różnowartościowa (*iniekcja*^[1], *injekcja, funkcja 1-1*) – <u>funkcja</u>, której każdy element <u>przeciwdziedziny</u> przyjmowany jest co najwyżej raz.

Moc zbioru A oznacza się symbolem |A| =6 Różnowartościowych

Oblicz, ile jest funkcji różnowartościowych $f\colon A\to B$, jeśli moc zbioru A wynosi 4, a moc zbioru B wynosi 6.

Odpowiedź:

|A|=4, |B|=6;

Oblicz, ile jest funkcji różnowartościowych f:A o B, jeśli moc zbioru A wynosi 3, a moc zbioru B wynosi 6.

Odpowiedź: 2

$$\frac{6!}{(6-3)!} = \frac{31.4.5}{31} = 20$$

Oblicz, ile jest funkcji różnowartościowych f:A o B, jeśli moc zbioru A wynosi 3, a moc zbioru B wynosi 5.

Odpowiedź:

Oblicz, ile jest wszystkich funkcji $f:X \to Y$, jeśli zbiór X jest 5-elementowy zaś zbiór Y jest 3-elementowy.

Odpowiedź:

Jezyk nad alfabetem T={0,1}

język nad alfabetem T*(0,1) będący zbiorem wszystkich niepustych łańcuchów zerojedynkowych w których każda para zer przedzielona jest co najmniej jedną jedynką, może być opisany następującym wyrażeniem regularnym (notacja teoretyczna):

Wybierz jedną lub więcej:

- (1+01*0)*
- 11+(0+1)1(0+1)+(0+1)1(0+1)*1(0+1)
- 1*+1*(011*)*01*
- (1+01*0)(1+01*0)*
- 11*+1*(011*)*01*
- żadne z podanych wyrażeń nie opisuje takiego języka

żadne z podanych

Wybierz jedną lub więcej:

$$N=\{S,A,B\},\;P=\{S
ightarrow A|B,\;A
ightarrow ab|aB,\;B
ightarrow ba|bA\}$$

$$N=\{S,A,B\},\;P=\{S
ightarrow A|B,\;A
ightarrow a|ab|abA,\;B
ightarrow b|ba|baB\}$$

$$N=\{S,A,B\},\;P=\{S
ightarrow A|B,\;A
ightarrow \epsilon|a|ab|abA,\;B
ightarrow \epsilon|b|ba|baB\}$$

 $\ \ \, \square \ \, N=\{S\},\; P=\{S\rightarrow a|b|Sa|Sb\}$

$$N=\{S,A,B\},\; P=S
ightarrow a|b|aA|bB,\; A
ightarrow bS|b,\; B
ightarrow aS|a\}$$

Następujące wyrażenie regularne (notacja teoretyczna):
0*+00*10(0+10)*
opisuje język nad alfabetem T={0, 1} będących zbiorem wszystkich łańcuchów zerojedynkowych, w których:
Wybierz jedną lub więcej:
i żadne z pozostałych stwierdzeń nie jest prawdziwe
 każda jedynka jest poprzedzona co najmniej jednym zerem i po każdej jedynce występuje co najmniej jedno zero
każde dwie jedynki przedzielone są przynajmniej jednym zerem
występują co najmniej dwie jedynki
drugim od początku i przedostatnim symbolem jest jedynka
liczba jedynek jest parzysta