Optimisation non linéaire: Théorie

Plan

Introduction

- 1. Introduction et définitions
- 2. Optimisation sans contraintes
- 3. Optimisation avec contraintes

- 1. Introduction et définitions

- 4. Extensions

•0000

Problème et solutions

On cherche à résoudre

$$\min_{\mathbf{x} \in \mathbb{R}^n} \{ f(\mathbf{x}) : \mathbf{x} \in \Omega \}$$

avec $f: \mathbb{R}^n \to \mathbb{R}$ différentiable et $\Omega \subseteq \mathbb{R}^n$

• Un point réalisable $\mathbf{x}^* \in \Omega$ est un minimum global de la fonction f sur le domaine Ω si

$$f(\mathbf{x}^*) \leq f(\mathbf{x})$$
 pout tout $\mathbf{x} \in \Omega$

• Un point réalisable $\mathbf{x}^* \in \Omega$ est un minimum local de f sur Ω s'il existe $\varepsilon > 0$ tel que

$$f(\mathbf{x}^*) \leq f(\mathbf{x})$$
 pout tout $\mathbf{x} \in \Omega \cap \mathcal{B}_{\varepsilon}(\mathbf{x}^*)$

avec
$$\mathcal{B}_{\varepsilon}(\mathbf{x}^*) = \{\mathbf{x} \in \mathbb{R}^n : ||\mathbf{x} - \mathbf{x}^*|| < \varepsilon\}$$

Dérivées

• Gradient de f en $\mathbf{x} = (x_1, x_2, \dots, x_n) \in \mathbb{R}^n$:

$$\nabla f(\mathbf{x}) = \left(\frac{\partial f(\mathbf{x})}{\partial x_1}, \frac{\partial f(\mathbf{x})}{\partial x_2}, \dots, \frac{\partial f(\mathbf{x})}{\partial x_n}\right) \in \mathbb{R}^n$$

▶ Dérivée directionnelle de f en $\mathbf{x} \in \mathbb{R}^n$ dans la direction unitaire $\mathbf{d} \in \mathbb{R}^n$:

$$f'_{\mathbf{d}}(\mathbf{x}) = \lim_{t \downarrow 0} \frac{f(\mathbf{x} + t\mathbf{d}) - f(\mathbf{x})}{t} = \mathbf{d}^{\top} \nabla f(\mathbf{x})$$

► Si les dérivées secondes de *f* existent et sont continues, alors la matrice hessienne en x s'écrit

$$\nabla^2 f(\mathbf{x}) = \left(\frac{\partial^2 f}{\partial x_i \partial x_j}(\mathbf{x})\right)_{ij}$$

Direction de descente

 $\mathbf{d} \in \mathbb{R}^n$ est une direction (stricte) de descente de f en $\mathbf{x} \in \mathbb{R}^n$ si

$$f'_{\mathbf{d}}(\mathbf{x}) = \mathbf{d}^{\top} \nabla f(\mathbf{x}) < 0$$

- Pour tout $\alpha \in \mathbb{R}$ petit, on aura $h(\alpha) = f(\mathbf{x} + \alpha \mathbf{d}) < f(\mathbf{x})$ et h'(0) < 0
- Principe de la *line search* (recherche linéaire) : Trouver α tel que $h'(\alpha) = 0$

Signe d'une matrice

 $A \in \mathbb{R}^{n \times n}$ symétrique est dite

Sans contraintes

- ▶ Semi-définie positive si $\mathbf{x}^{\top}A\mathbf{x} \geq 0$ pour tout $\mathbf{x} \in \mathbb{R}^n$
- ▶ Définie positive si $\mathbf{x}^{\top}A\mathbf{x} > 0$ pour tout $\mathbf{x} \in \mathbb{R}^n \neq 0$
- ► Semi-définie négative si $\mathbf{x}^{\top}A\mathbf{x} \leq 0$ pour tout $\mathbf{x} \in \mathbb{R}^n$
- ▶ Définie négative si $\mathbf{x}^{\top}A\mathbf{x} < 0$ pour tout $\mathbf{x} \in \mathbb{R}^n \neq 0$
- ► Indéfinie sinon

En pratique, on peut vérifier le signe d'une matrice en examinant ses valeurs propres ou ses mineurs principaux dominants

- 1. Introduction et définitions
- 2. Optimisation sans contraintes
- 3. Optimisation avec contraintes
- 4. Extensions

Références

Optimisation sans contraintes: CN1

Dans le cas $\Omega = \mathbb{R}^n$:

Condition nécessaire d'optimalité de premier ordre

Si \mathbf{x}^* est un minimum local de f sur \mathbb{R}^n , alors $\nabla f(\mathbf{x}^*) = \mathbf{0}$ (\mathbf{x}^* est un point critique)

- Attention : Ce n'est pas une condition suffisante : Un point critique peut être un minimum local, un maximum local, ou un bien un point de selle
- ▶ Un point critique \mathbf{x} est un point de selle si pour tout $\varepsilon > 0$ il existe $\mathbf{a}, \mathbf{b} \in \mathcal{B}_{\varepsilon}(\mathbf{x})$ tels que $f(\mathbf{a}) < f(\mathbf{x}) < f(\mathbf{b})$
- Si x n'est pas un point critique, il ne peut pas être un minimum ou un maximum

Optimisation sans contraintes: CN2

Condition nécessaire de second ordre

Si \mathbf{x}^* est un minimum local de f sur \mathbb{R}^n , alors $\nabla f(\mathbf{x}^*) = \mathbf{0}$ et la matrice hessienne $\nabla^2 f(\mathbf{x}^*)$ est semi-définie positive

Preuve: Soit x* un minimum local. Pour toute direction unitaire $\mathbf{d} \in \mathbb{R}^n$ et pour $t \in \mathbb{R}$ suffisamment petit :

$$f(\mathbf{x}^*) \le f(\mathbf{x}^* + t\mathbf{d}) \quad \simeq f(\mathbf{x}^*) + t\mathbf{d}^{\top} \nabla f(\mathbf{x}^*) + \frac{t^2}{2} \mathbf{d}^{\top} \nabla^2 f(\mathbf{x}^*) \mathbf{d}$$
$$= f(\mathbf{x}^*) + \frac{t^2}{2} \mathbf{d}^{\top} \nabla^2 f(\mathbf{x}^*) \mathbf{d}$$
$$\Rightarrow \mathbf{d}^{\top} \nabla^2 f(\mathbf{x}^*) \mathbf{d} \ge 0$$

Si la matrice hessienne en un point critique est indéfinie, alors il s'agit d'un point de selle

Optimisation sans contraintes: CS2

Condition suffisante de second ordre

si $\mathbf{x}^* \in \mathbb{R}^n$ est un point critique et si $\nabla^2 f(\mathbf{x}^*)$ est :

- ▶ Définie positive : x* est un minimum local
- ▶ Définie négative : x* est un maximum local
- ► Indéfinie : **x*** est un point de selle
- Semi-définie positive ou semi-définie négative : on ne peut rien dire

Optimisation sans contraintes : Convexité

 $f: \mathbb{R}^n \to \mathbb{R}$ est convexe si :

- ightharpoonup pour tout $\mathbf{x},\mathbf{y}\in\mathbb{R}^n$ et tout $\lambda\in[0;1]$, $f(\lambda \mathbf{x} + (1 - \lambda)\mathbf{y}) < \lambda f(\mathbf{x}) + (1 - \lambda)f(\mathbf{y})$
- ightharpoonup ou si sa matrice hessienne $abla^2 f(\mathbf{x})$ est semi-définie positive pour tout $\mathbf{x} \in \mathbb{R}^n$
- ▶ Si f est convexe, la CN1 devient suffisante : Il suffit de trouver un point critique pour minimiser f
- ightharpoonup f est convexe

Optimisation sans contraintes : Méthode du gradient

Pour la minimisation d'une fonction $f: \mathbb{R}^n \to \mathbb{R}$ sans contraintes

[0] Initialisation Point de départ : $\mathbf{x}^0 \in \mathbb{R}^n$ $k \leftarrow 0$ [1] Itération kCalculer $\mathbf{d}^k = -\nabla f(\mathbf{x}^k)$ (dir. de descente)

Si $(\mathbf{d}^k = \mathbf{0})$: Stop (point critique) Trouver $\alpha^k \in \arg\min h(\alpha) = f(\mathbf{x}^k + \alpha \mathbf{d}^k)$ $\mathbf{x}^{k+1} \leftarrow \mathbf{x}^k + \alpha^k \mathbf{d}^k$ $k \leftarrow k + 1$ Aller en [1]

Méthode de Newton

ightharpoonup Soit le modèle quadratique de f autour de x:

$$m(\mathbf{d}) = f(\mathbf{x}) + \mathbf{d}^{\top} \nabla f(\mathbf{x}) + \frac{1}{2} \mathbf{d}^{\top} \nabla^2 f(\mathbf{x}) \mathbf{d}$$

▶ Si $\nabla^2 f(\mathbf{x})$ est définie positive, alors m est une fonction convexe et on peut identifier son minimum global avec

$$\nabla m(\mathbf{d}) = \nabla f(\mathbf{x}) + \nabla^2 f(\mathbf{x})\mathbf{d} = \mathbf{0}$$

Au lieu de considérer $\mathbf{d}^k = -\nabla f(\mathbf{x}^k)$ comme direction de descente, on prend donc $\mathbf{d}^k = -\left(\nabla^2 f(\mathbf{x}^k)\right)^{-1} \nabla f(\mathbf{x}^k)$ (direction de Newton)

Méthode quasi-Newton

Introduction

- La direction de Newton n'est pas définie si la matrice hessienne n'est pas définie positive
- Calculer (et inverser) la matrice hessienne peut aussi être très coûteux
- On peut considérer la direction quasi-Newton

$$\mathbf{d} = -B(\mathbf{x})^{-1} \nabla f(\mathbf{x})$$

avec $B(\mathbf{x})$ définie positive qui remplace la matrice hessienne

Une méthode quasi-Newton sera d'autant plus efficace quand elle pourra intégrer l'information de second-ordre dans B

- 1. Introduction et définitions
- 2. Optimisation sans contraintes
- 3. Optimisation avec contraintes
- 4. Extensions

Références

Optimisation avec contraintes

$$\min_{\mathbf{x} \in \mathbb{R}^n} \{ f(\mathbf{x}) : \mathbf{x} \in \Omega \}$$

Théorème

Introduction

Si Ω est fermé et borné et si f est continue sur Ω , alors il existe un minimum global atteint en un point de Ω et un maximum global atteint en un point de Ω

En pratique, cela signifie que pour résoudre le problème, on peut énumérer tous les candidats (les points critiques) et les comparer afin de trouver les optima

Optimisation avec une contrainte égalité

Avec
$$\Omega = \{ \mathbf{x} \in \mathbb{R}^n : c(\mathbf{x}) = 0 \} \subseteq \mathbb{R}^n :$$

CN₁

Introduction

Si \mathbf{x}^* est un minimum local de f dans Ω , et si $\nabla c(\mathbf{x}^*) \neq \mathbf{0}$, alors $c(\mathbf{x}^*) = 0$ et il existe $\lambda \in \mathbb{R}$ tel que

$$\nabla f(\mathbf{x}^*) = \lambda \nabla c(\mathbf{x}^*)$$

- Un point x* satisfaisant cette condition est appelé un point critique
- **Exemple 1 :** $\min 3x_1 2x_2$ s.c. $x_1^2 + 2x_2^2 = 44$

Optimisation avec une contrainte inégalité

Avec
$$\Omega = \{ \mathbf{x} \in \mathbb{R}^n : c(\mathbf{x}) \ge 0 \} \subseteq \mathbb{R}^n :$$

CN1

Si \mathbf{x}^* est un minimum local de f dans Ω , alors il existe $\lambda \geq 0$ tel que $\nabla f(\mathbf{x}^*) = \lambda \nabla c(\mathbf{x}^*)$ et $c(\mathbf{x}^*)\lambda = 0$

- Un point x* satisfaisant ces conditions est appelé un point critique
- ▶ Si $c(\mathbf{x}^*) > 0$, la condition devient $\nabla f(\mathbf{x}^*) = \mathbf{0}$
- **Exemple 2**: $\min_{x_1, x_2} (x_1 1)^2 + (x_2 2)^2$ s.c. $x_1^2 + x_2^2 \le 45$

Optimisation avec plusieurs contraintes égalité

Avec $\Omega = \{ \mathbf{x} \in \mathbb{R}^n : c_i(\mathbf{x}) = 0, i \in \mathcal{E} \} \subseteq \mathbb{R}^n \text{ et } |\mathcal{E}| = m :$

CN1

Si \mathbf{x}^* est un minimum local de f dans Ω où $\{\nabla c_i(\mathbf{x}^*): i \in \mathcal{E}\}$ est un ensemble linéairement indépendant, alors $c_i(\mathbf{x}^*)=0$ pour tout $i \in \mathcal{E}$ et il existe $\lambda \in \mathbb{R}^m$ tel que

$$\nabla f(\mathbf{x}^*) = \sum_{i \in \mathcal{E}} \lambda_i \nabla c_i(\mathbf{x}^*)$$

- Un point x* satisfaisant cette condition est appelé un point critique
- ► Exemple 3: $\min_{x \in \mathbb{R}^3} x_1 x_2 + x_3$ s.c. $\begin{cases} x_1^2 + x_2^2 + x_3^2 &= 1 \\ x_1^2 + (x_2 1)^2 + (x_3 2)^2 &= 4 \end{cases}$

Multiplicateurs de Lagrange

- Les λ des conditions nécessaires sont appelés les multiplicateurs de Lagrange
- ► Ils peuvent servir à effectuer des analyses de sensibilité sur les membres de droite des contraintes
- En effet, un λ représente la variation de f lorsque le mdd de la contrainte associée augmente d'une unité

Optimisation avec contraintes : Cas général

$$\min_{\mathbf{x} \in \mathbb{R}^n} \{ f(\mathbf{x}) : \mathbf{x} \in \Omega \}$$

avec

Introduction

$$\Omega = \left\{ \mathbf{x} \in \mathbb{R}^n \middle| \begin{array}{c} c_i(\mathbf{x}) = 0, & i \in \mathcal{E} \\ c_i(\mathbf{x}) \ge 0, & i \in \mathcal{I} \end{array} \right\} \subseteq \mathbb{R}^n$$

et

$$|\mathcal{E}|=m$$
 , $|\mathcal{I}|=p$

- Les fonctions décrivant le problème sont toutes différentiables et Ω est un ensemble fermé et borné
- On va décrire les conditions d'optimalité de ce problème. Trois ingrédients sont nécessaires : Le cône tangent, le cône normal, et la qualification des contraintes

CN1: Conditions de KKT

Sans contraintes

La CN1 peut se reformuler comme les conditions de Karush-Kuhn-Tucker (KKT) :

CN₁

Si \mathbf{x}^* est un minimum local de f dans Ω , alors il existe $\lambda \in \mathbb{R}^{m+p}$ tel que

$$\nabla f(\mathbf{x}^*) - \sum_{i \in \mathcal{E} \cup \mathcal{I}} \lambda_i \nabla c_i(\mathbf{x}^*) = \mathbf{0}$$

$$\lambda_i c_i(\mathbf{x}^*) = 0 \quad i \in \mathcal{I}$$

$$c_i(\mathbf{x}^*) = 0 \quad i \in \mathcal{E}$$

$$c_i(\mathbf{x}^*) \geq 0 \quad i \in \mathcal{I}$$

$$\lambda_i > 0 \quad i \in \mathcal{I}$$

Comme pour toutes les conditions nécessaires, les conditions de KKT ne sont pas suffisantes et peuvent aussi correspondre à des maximums et des points de selle

Dualité

Fonction Lagrangienne (ou Lagrangien):

$$L(\mathbf{x}, \lambda) = f(\mathbf{x}) - \sum_{i \in \mathcal{E} \cup \mathcal{I}} \lambda_i c_i(\mathbf{x})$$

(la 1ère équation des conditions KKT peut s'écrire $\nabla_{\mathbf{x}}L(\mathbf{x},\lambda)=\mathbf{0}$)

Théorème de dualité faible

Soit $\mathbf{x}^* \in \operatorname*{arg\,min}_{x \in \Omega} f$. Pour tout $\lambda \in \mathbb{R}^{m+p}$ avec $\lambda_i \geq 0$ pour $i \in \mathcal{I}$, on a

$$\overline{L}(\lambda) = \min_{\mathbf{x} \in \Omega} L(\mathbf{x}, \lambda) \le f(\mathbf{x}^*)$$

La meilleure borne inférieure est donc donnée par le problème dual

$$\max_{\substack{\lambda \in \mathbb{R}^{m+p} \\ \lambda_i > 0, \ i \in \mathcal{I}}} \overline{L}(\lambda)$$

Cas de l'optimisation linéaire (1/3)

$$\min_{\mathbf{x} \in \mathbb{R}^n} \mathbf{c}^\top \mathbf{x} \quad \text{ s.c. } \left\{ \begin{array}{ll} A\mathbf{x} & \geq \mathbf{b} \\ \mathbf{x} & \geq \mathbf{0} \end{array} \right. \quad \text{avec } \mathbf{c} \in \mathbb{R}^n \text{, } \mathbf{b} \in \mathbb{R}^m \text{, } A \in \mathbb{R}^{m \times n}$$

Le Lagrangien est considéré avec les variables $\mathbf{x} \in \mathbb{R}^n$, $\mu \in \mathbb{R}^m$ et $\lambda \in \mathbb{R}^n$:

$$L(\mathbf{x}, \lambda, \mu) = \mathbf{c}^{\top} \mathbf{x} - \mu^{\top} (A\mathbf{x} - \mathbf{b}) - \lambda^{\top} \mathbf{x} = \mathbf{b}^{\top} \mu + \mathbf{x}^{\top} \left(\mathbf{c} - \lambda - A^{\top} \mu \right)$$

Une borne inférieure est donnée par

$$\min_{\mathbf{x} \in \Omega} \mathbf{b}^{\top} \mu + \mathbf{x}^{\top} \left(\mathbf{c} - \lambda - A^{\top} \mu \right)$$

avec
$$\lambda, \mu \geq \mathbf{0}$$

Les conditions KKT sont

Introduction

$$\nabla_{\mathbf{x}} L(\mathbf{x}, \lambda, \mu) = \mathbf{c} - \lambda - A^{\top} \mu = \mathbf{0}$$

$$\mu_i (A_i^{\top} \mathbf{x} - \mathbf{b}_i) = 0 \quad i \in \{1, 2, \dots, m\}$$

$$\lambda_j x_j = 0 \quad j \in \{1, 2, \dots, n\}$$

$$A\mathbf{x} - \mathbf{b} \geq \mathbf{0}$$

$$\mathbf{x} \geq \mathbf{0}$$

$$\lambda_j \geq 0 \quad j \in \{1, 2, \dots, n\}$$

$$\mu_i \geq 0 \quad i \in \{1, 2, \dots, m\}$$

Obtenir la meilleure borne inférieure revient donc à résoudre

$$\max_{\lambda,\mu > \mathbf{0}} \mathbf{b}^{\top} \mu \quad \text{s.c. } \left\{ \mathbf{c} - \lambda - A^{\top} \mu = \mathbf{0} \right.$$

Cas de l'optimisation linéaire (3/3)

En considérant les λ comme des variables d'écart, on obtient le problème dual

$$\max_{\mu \in \mathbb{R}^n} \mathbf{b}^{\top} \mu$$
s.c.
$$\begin{cases} A^{\top} \mu & \leq \mathbf{c} \\ \mu & \geq \mathbf{0} \end{cases}$$

qui correspond à ce qui a été vu en OL

Note : Les conditions KKT redonnent le théorème des écarts complémentaires

Méthodes de pénalités

Introduction

- Les méthodes de pénalités sont des algorithmes itératifs qui, à chaque itération, considèrent la minimisation sans contraintes d'une fonction critère dans laquelle les violations des contraintes sont associées à des coûts
- Ces coûts vont être augmentés au fil des itérations
- On espère ainsi générer une suite de points tendant à respecter les contraintes

Exemples de pénalités

► Pénalité quadratique :

$$f(\mathbf{x}) + \frac{\mu}{2} \sum_{i \in \mathcal{E}} c_i^2(\mathbf{x}) + \frac{\mu}{2} \sum_{i \in \mathcal{I}} \min\{0, c_i(\mathbf{x})\}^2$$

- ► Avantage : Formulation lisse
- Inconvénients : Non exacte, mal conditionnée
- Pénalité ℓ_1 :

$$f(\mathbf{x}) + \mu \sum_{i \in \mathcal{E}} |c_i(\mathbf{x})| + \mu \sum_{i \in \mathcal{I}} |\min\{0, c_i(\mathbf{x})\}|$$

- Avantage : Exacte : Il existe μ tel que l'optimum sans contraintes correspond à l'optimum avec contraintes
- Inconvénient : Formulation non-lisse

Algorithme du Lagrangien augmenté (1/2)

- ightharpoonup On considère $\mathcal{I} = \emptyset$ à des fins de simplicité
- Méthode de pénalité basée sur la pénalité quadratique, donc qui donne une formulation lisse, mais qui réduit le mauvais conditionnement grâce à l'emploi des multiplicateurs de Lagrange
- Le Lagrangien augmenté pour contraintes égalité est

$$L_a(\mathbf{x}, \lambda, \mu) = L(\mathbf{x}, \lambda) + \frac{\mu}{2} \sum_{i \in \mathcal{E}} c_i^2(\mathbf{x})$$
$$= f(\mathbf{x}) - \sum_{i \in \mathcal{E}} \lambda_i c_i(\mathbf{x}) + \frac{\mu}{2} \sum_{i \in \mathcal{E}} c_i^2(\mathbf{x})$$

L'algorithme suivant converge vers un point critique (selon les conditions KKT) et fournit également les multiplicateurs de Lagrange

Algorithme du Lagrangien augmenté (2/2)

[0] Initialisation

Introduction

Point de départ : $\mathbf{x}^0 \in \mathbb{R}^n$, $\lambda^0 \in \mathbb{R}^m$

Précision initiale : $\tau^0>0$ Pénalité initiale : $\mu^0>0$

 $k \leftarrow 1$

[1] Itération k

Trouver approximativement $\mathbf{x}^{k+1} \in \arg\min_{\mathbf{x} \in \mathbb{R}^n} L_a(\mathbf{x}, \lambda^k, \mu^k)$

avec $\|
abla_{\mathbf{x}} L_a(\mathbf{x}^{k+1}, \lambda^k, \mu^k) \| \leq au^k$ comme critère d'arrêt

Si (test de convergence) : Stop (point critique)

$$\lambda_i^{k+1} \leftarrow \lambda_i^k - \mu^k c_i(\mathbf{x}^{k+1}) \quad i \in \mathcal{E}$$

Choisir $\mu^{k+1} \ge \mu^k$ Choisir τ^{k+1}

 $k \leftarrow k+1$

Aller en [1]