

Vorbesprechung

Praktikum: Data Warehousing und Mining

Team

- Matthias Bracht
 - bracht AT kit DOT edu
- Frank Eichinger
 - eichinger AT kit DOT edu
- Ursula Kotzur
 - ursula DOT kotzur AT gmx DOT de
- Emanuel Pongracz
 - emanuel DOT pongracz AT gmx DOT net

Agenda

- Behandelte Themen im Praktikum
- Organisatorisches
 - Termine
 - Scheinvoraussetzungen
 - Gruppeneinteilung
- 1. Vorlesungsteil:
 - Vorgehen beim Data Mining
 - Preprocessing

Motivation

- Grosse Datensammlungen in Unternehmen
 - Jede Abteilung hat eigene Datenbestände
 - Daten beschreiben alle Aspekte der Organisation
- Wissen in Daten nicht offensichtlich
 - Zu viele Attribute
 - Niemand hat Überblick über alle Daten
 - Mitarbeiter wechseln, alte Daten werden uninterpretierbar
 - Daten im Unternehmen verstreut
- "We are drowning in information, but starving for knowledge!" (John Naisbitt)
- Thema
 - Wie in der Vorlesung:
 Wie kommt man in diesem Szenario zu Wissen?
 - · ... praktisch an Beispielen mit marktüblicher Software

Data Warehousing

Ziel

- Integration von Unternehmensdaten in zentralen Datenbestand
- Anfragen / Analysen auf diesem Datenbestand

Charakteristika

- Materialisierte Sichten auf unterschiedliche andere Quellen
- Daten aus unterschiedlichen Quellen im Unternehmen
- Daten sind meist aggregiert
- ⇒ OLAP (Online Analytical Processing)

OLTP vs. OLAP

(Datenbank vs. Data Warehouse)

Anfragecharakteristika

	transaktional	analytisch
Fokus	Lesen, Schreiben, Modifizieren, Löschen	Lesen, periodisches Hinzufügen
Transaktionsdauer und -typ	Kurze Lese- / Schreibtransaktionen	Lange Lesetransaktionen
Anfragestruktur	Einfach strukturiert	komplex
Datenvolumen einer Anfrage	Wenige Datensätze	Viele Datensätze

nach Bauer, Günzel (Hrsg):

Data-Warehouse-Systeme – Architektur, Entwicklung, Anwendung

Data Warehousing in diesem Praktikum

- Benutzung der Tools
 - Oracle und Cognos ReportStudio
- Oracle
 - Anfragen auf dem relationalen Datenbestand
 - Datenwürfel modellieren
 - Datenwürfel erstellen
- Cognos
 - Anfragen auf dem Datenwürfel
 - Erstellen von Analysen

Data Mining

- Menge von Techniken
 - Klassifikation
 Ist der Kunde kreditwürdig?
 - Regression
 Wieviel verdient der Kunde?
 - Clustering
 Welche Kundengruppen gibt es?
 - Association Rules
 Welche Produkte werden zusammen gekauft?
- Ziel
 - Finden interessanter Muster und Eigenschaften in großen Datenbeständen

Data Mining in diesem Praktikum

- Benutzung der Tools
 - IBM SPSS Modeler (früher: Clementine)
 - Weka
 - Knime
 - FrIDA
- Daten aus dem Data Mining Cup

Synergieeffekte Data Warehousing und Data Mining

- Aufwändigster Schritt: Datenbereinigung
 - Fällt bei Data Warehousing und Data Mining an
 - ⇒ Daten des Data Warehouse eignen sich für Data Mining
- Data Mining als Analysekonzept im Data Warehouse
- · Problem:
 - Data Mining benötigt operative, transaktionsorientierte Daten
 - (z. B. Kassenbons)
 - Data Warehouse hält häufig aggregierte Daten vor

 Anderson und der Verlagen
 - ⇒ feingranulare Informationen gehen verloren

Data-Mining-Cup

- Aufgabenstellung ab Donnerstag unter
 - http://www.data-mining-cup.de
- Teilnahme als Team "Inst_KIT_1"
- Kombination der einzelnen Gruppenlösungen
- Gesamtabgabe: 31. Mai 2010

Data-Mining-Cup 2009

- Thema im letzten Jahr: Bücherverkauf
 - Fragestellung: Wo wird welches Buch wie oft verkauft?
 - Ziel: Einkauf angemessener Büchermengen
- Unsere Einreichung: 5. Platz weltweit
- Präsentation der Lösung durch vier Studenten in Leipzig

Libri

DATA MINING CUP 2009

DATA MINING CUP 2009 Description of Features

Feature	Туре	Description	Attributes	
ID	Integer	Unique location id	random unique key	
WGxxxxx	Integer	Number of total items sold within 12 months within a category	independent variables	
		Categories with 5 digits		
		First digit: Information about the type of product e.g. hardcover vs. paperback		
		 Second to fifth digit: Hierarchical information about the type of content e.g. second digit <u>Fiction</u> and third digit subcategory <u>Science-Fiction</u> 		
T1T8	Integer	Number of items sold within 12 target value months per title		

Organisatorisches

Praktikum: Data Warehousing und Data Mining

Tutorien

- Teams
 - Besuchen gemeinsam ein Tutorium
 - Geben DMC-Lösungen zunächst gemeinsam ab
- Tutorien
 - Je 1,5 Stunden pro Team, Woche
- Tutoren
 - Betreuen je zwei Teams
 - Führen Tutorien durch
 - Sind Ansprechpartner nach den Veranstaltungen

Weitere Veranstaltungen

- Vortrag: Prof. Thomas Ruf, GfK
 - voraussichtlich am Montag, 21.6., 9:45 Uhr
 - Data Warehousing und Mining in der Marktforschung
- Ausflug zu IBM nach Böblingen
 - voraussichtlich am Freitag, 25.6., ganztägig

Scheinvoraussetzungen

- Für jede Leistung sind Punkte erreichbar
 - Zwischenpräsentation Data Mining Cup: 2 Punkte
 - Jedes Team präsentiert Lösung in 15 Minuten
 - Ergebnis Data-Mining-Cup: 7 Punkte
 - Bis zu 7 Punkte für Lösung der Tutoriumsgruppe
 - Weitere Blöcke: 9 Punkte
 - Summe: 18 Punkte
- Scheinvoraussetzung:
 - Erlangen von 10 Punkten und mehr, Bearbeitung jeder Aufgabe und Teilnahme an der Exkursion!
- Schein ist unbenotet
- Praktikum ist prüfbar!

Veranstaltungstermine bis Ende Mai

 Danach: zwei bis drei weitere Blöcke zu den Themen Data Warehousing und Mining

Was passiert heute noch?

- Bestätigung der Teilnahme
- Vorlesungsarbeitsbereich unter <u>https://studium.kit.edu/</u>?
- Verteilung auf Tutorien
- Danach:
 - Data Mining: Vorgehen
 - Preprocessing

Tutorientermine

Ursula Kotzur	Montag	11:30 Uhr	David, Philippe, Michael, Alexander, Thomas M., Elvi
	Mittwoch	9:45 Uhr	Patricia, Muhannad, Hong, Marusa, Jingyu, Dominik
Emanuel Pongracz	Montag	11:30 Uhr	Fabian, Daniel, Stefan, Tihomir, Ivan, Thomas K., Nguyen
	Montag	14:00 Uhr	Andreas, Sven, Zhen, Raimund, Andriy, Patrick, Jens

Literaturempfehlungen

- J. Han und M. Kamber: "Data Mining: Concepts and Techniques", Morgan Kaufmann, 2006.
- I. H. Witten und E. Frank: "Data Mining Practical Machine Learning Tools and Techniques", Morgan Kaufmann, 2005.
- D. Hand, H. Mannila und P. Smyth: "Principles of Data Mining", MIT Press, 2001.
- L. I. Kuncheva: "Combining Pattern Classifiers", Wiley-Interscience, 2004.
- A. Bauer, H. Günzel: "Data Warehouse Systeme Architektur, Entwicklung, Anwendung", dpunkt.verlag, 2004.
- T. Mitchell: "Machine Learning", McGraw Hill, 1997.

Data Mining: Vorgehen

Von Daten zur Entscheidung (Gianotti und Pedreschi)

Daten

- Kundendaten
- Daten aus den Filialen
- Demographische Daten
- Geographische Daten

W hat Geld in Z

X und S sind umgezogen

Vorgehensmodell: CRISP-DM

- "CRoss Industry Standard Process for Data Mining"
- Zusammenschluss verschiedener Herstellerund Anwenderfirmen
- Definiert allgemeines Prozessmodell
- "Modeling" ist eigentlicher Data-Mining-Schritt

www.crisp-dm.org

Business Understanding

- Identifiziere Geschäftsziele
- Aneignen von Domänenwissen
- Analysiere Situation und Umfeld
- Formuliere Data-Mining-Ziele (und Erfolgskriterium!)
- Erstelle Projektplan
 - Zeitaufwand:
 - Data Understanding 20-30%
 - Data Preparation 50-70% (!)
 - Modeling + Evaluation 10-20%
 - Deployment 5-10%

Data Understanding

- Initiale Daten sammeln
 - Quellen identifizieren und zusammenstellen
- Daten beschreiben
 - Metadaten, z.B. Volumen, Tabellen und Attribute
- Daten erforschen
 - Visualisierung, Anfragen, Statistik
- Datenqualität sicherstellen
 - Missing Values, ...

Data Preparation

- Selektieren
- Säubern
 - Falsche und fehlende Werte ersetzen
- Zusammenstellen
 - Abgeleitete/aggregierte Attribute berechnen
 - Numerische Attribute normieren
- Integrieren
 - Daten aus verschiedenen Quellen
 - Semantische Ungleichheiten beachten
- Formatieren

Modeling

- Verfahren auswählen
- Trainings- und Testdaten separieren
- Modell lernen
 - Parameter geeignet einstellen
 (in der Regel mehrere Iterationen erforderlich)
- Ergebnis pr

 üfen
 - Anhand von allgemeinen Kriterien
 - Im Vergleich zu anderen Verfahren
 - Ggf. neue Parameter (oder Verfahren!) und nochmal bauen…

Evaluation & Deployment

- Evaluation
 - Messen an den Business Objectives
 - Fehler im Prozess identifizieren
- Deployment
 - Deployment-Plan
 - Wie lange soll das Modell genutzt werden?
 - Erfahrungen sammeln und dokumentieren

CRISP-DM

Data Preprocessing

Beispiel: Teilnehmerliste eines Praktikums

- Ziel:
 - Alle Studenten sollen teilnehmen!
- Vorgehen
 - Liste wurde handschriftlich ausgefüllt
 - Dann in Teilnehmerdatenbank übertragen
- Probleme
 - Feld männlich/weiblich fehlt
 - Ist Conny männlich oder weiblich?
 - Feld Fachsemester ist nicht vielsagend
 - ein Masterstudent ist im 3. Semester, ein anderer im 9.
 - Beim Übertragen in Datenbank treten Fehler auf
 - E-Mail-Adressen sind undeutlich geschrieben
 - Übertragender ist im Stress und liest nur oberflächlich

Teilnehmerliste des Praktikums II

- Probleme (fortges.)
 - Einträge im Feld "Studiengang" (Auszug): "InfoDipl.", "InfoMa", "InfoMaster", "Infowirt.", Infowirt.Ma", "Info Erasm"
 - Wer ist in einem Diplomstudiengang?
 - Suche nach "Dipl(om)" findet nicht alle Treffer
- Was ist zu tun?
 - Hier:
 - Alle Angemeldeten können teilnehmen.
 - "Politisch korrekt"
 - Aber:
 - Was, wenn Unternehmenserfolg von Prognose abhängt?
 - Dann:
 - Datenqualität essentiell
 - Daten müssen vorverarbeitet werden

Eigenschaften von Produktivdaten

- Daten sind meist...
 - Unvollständig
 - Enthalten NULL-Werte
 - Enthalten Aggregate
 - Interessante Informationen fehlen
 - Verunreinigt:
 - Enthalten Fehler
 - Enthalten Ausreißer
 - Inkonsistent:
 - Daten verschiedener Quellen unterscheiden sich

Data Preprocessing – Vorgehen

- Analyse der Daten
 - "Ansehen" von einzelnen Tupel / Aggregaten von Tupeln
 - Deskriptive Statistik
 - Visualisierung der Eingangsdaten
- Durchführung des Data Preprocessing
 - Datenbereinigung
 - Datenintegration
 - Datentransformation
 - Datenreduktion

"Ansehen" der Daten

- Nutzen:
 - Oft sind Eigenschaften am leichtesten beim direkten Betrachten der Daten zu entdecken
- Meist erster Schritt des Data Preprocessing
- Beispiele
 - Entdecken von NULL-Werten
 - Skalentypen der Werte
 - Größe der Wertebereiche
 - Diskrepanz zwischen Attributlänge und Datenlänge
 - •

Skalentypen

Skalentyp	Wertebereich	Mögliche Operationen	Beispiele
Nominale Größen	diskret, endlich	Gleichheit	Geschlecht Augenfarbe
Ordinale Größen	diskret, endlich, Ordnung	Gleichheit, größer / kleiner als	Prüfungsnoten Schulabschluss
Intervallgrößen	kontinuierlich bzw. ganzzahlig, unendlich, "gleichabständig"	Gleichheit, größer / kleiner als Differenz	Celsius-Skala Datum
Ratiogrößen	kontinuierlich bzw. ganzzahlig, unendlich, "natürlicher Nullpunkt"	Gleichheit größer / kleiner als Differenz Verhältnis	Abstand Alter Masse Kelvin-Skala

- Anwendbarkeit der Statistiken abhängig vom Skalentyp
 - Mittelwert des Geschlechts
 - Modalwert der Prüfungsnoten

Deskriptive Statistik

- Nutzen
 - Identifikation typischer Dateneigenschaften
 - Identifikation von Ausreißern und Datenfehlern
- Wichtige Statistiken
 - Maße für die Zentralität.
 - Mittelwert
 - Median
 - Modalwert
 - Maße für die Verteilung
 - Interquartilsabstand
 - Varianz
 - Skewness (Schiefe)
 - ...

Maße für Zentralität

Mittelwert

$$\bar{x} = \frac{\sum_{i=1}^{N} x_i}{N} = \frac{x_1 + x_2 + \dots + x_N}{N}$$

- Entspricht average (avg()) in SQL
- Median
 - "Mittlerer Wert" aller sortierten Werte
 - Durchschnitt der zwei "mittleren Werte" bei gerader Wertanzahl
- Modalwert
 - Häufigster Wert
 - Abhängig von Anzahl der Werte: unimodal, bimodal, ...

Maße für die Verteilung

- Quartil
 - Seien Daten aufsteigend sortiert
 - 1. Quartil enthält unterste 25% der sortierten Werte
 - 2. Quartil enthält untere 25% 50% der sortierten Werte
 - usw.
- Interquartilsabstand
 - Abstand zwischen oberem und unterem Quartil
 - Einfaches Maß für die Verteilung der Daten
- Varianz

$$\sigma^2 = \frac{1}{N} \sum_{i=1}^{N} (x_i - \bar{x})^2 = \frac{1}{N} \left[\sum_{i=1}^{N} x_i^2 - \frac{1}{N} (\sum_{i=1}^{N} x_i)^2 \right]$$

- Nur sinnvoll, wenn Mittelwert als Zentrum der Daten
- Maß für die Verteilung der Daten

Visualisierung der Eingangsdaten

- Nutzen
 - Menschliches Gehirn ist auf Erfassung graphischer Inhalte optimiert
 - Mehrere Aspekte können simultan untersucht werden
- Wichtige Visualisierungen
 - Boxplot
 - Histogramm
 - Scatterplot

Visualisierung - Boxplot

 Fasst mehrere statistische Maße zusammen

- Zeigt
 - Mittelwert, Quartile, Minimum Maximum, Interquartilsabstand
- Nutzen
 - Finden der Verteilung
 - Finden von Ausreißern

Visualisierung - Histogramm

- Zeigt die Verteilung einzelner, numerischer Attribute
- Verteilung abhängig von kategorischem Attribut möglich
- Darstellung der Anzahl

Prozentsatz interpretierbar

Kenngröße gegebenenfalls in Buckets gruppiert

- Nutzen
 - Finden von Ausreißern
 - Finden der Verteilung
 - Erkennen von Tupelcharakteristika

Visualisierung – Scatterplot

- Visualisiert einzelne Tupel
- Bis zu drei numerische Attribute angebbar

Formatierung der Datenpunkte abhängig

von weiteren Attributen

- Finden von Korrelationen
- Finden von Clustern
- Finden von Ausreißern

Visualisierung – dreidimensionaler Scatterplot

Exkurs: Risiken (I)

Quelle: http://www.bildblog.de/11395/

Exkurs: Risiken (II)

Quelle: http://www.bildblog.de/1711/

Exkurs: Risiken (III)

»Sollen wir das arithmetische Mittel als durchschnittliche Körpergröße nehmen und den Gegner erschrecken, oder wollen wir ihn einlullen und nehmen den Median?«

Quelle: D. Huff: How to Lie with Statistics bzw. W. Krämer: So lügt man mit Statistik. Nach einer Auswahl von C. Borgelt: Intelligent Data Analysis

Data Preprocessing – Vorgehen

- Analyse der Daten
 - "Ansehen" von einzelnen Tupeln / Aggregaten von Tupeln
 - Deskriptive Statistik
 - Visualisierung der Eingangsdaten
- Durchführung des Data Preprocessing
 - Datenbereinigung
 - Datenintegration
 - Datentransformation
 - Datenreduktion

Datenbereinigung

- Beseitigung von...
 - fehlenden Werten
 - verunreinigten Daten

Beseitigung von fehlenden Werten I

- Ignorieren von Tupeln
 - Notgedrungen bei Klassifikation: Klasse fehlt
 - Sinnvoll, wenn in Tupel viele Werte fehlen
 - Sonst vorsichtig:
 - Fehlender Wert kann Logik sein
 - Kritisch, wenn Häufigkeit der fehlenden Werte unter Attributen unterschiedlich
 - Beispiele:
 - · Beruf: Hausfrau
 - Sensor fällt bei großer Kälte aus
- Manuelles Auffüllen
 - Nur bei geringer Zahl fehlender Werte sinnvoll
 - Auffüllender muss über Expertenwissen verfügen
- Ersetzen durch globale Konstante
 - Beispiel: Alles durch "unbekannt" oder "-∞"
 - Aber vorsichtig:
 - Kann als besonderer Wert interpretiert werden

Beseitigung von fehlenden Werten II

- Finsetzen des Mittelwertes
 - Beispiel: Mittelwert des Einkommens
 - Aber: nur bei metrischen Attributen sinnvoll
 - Vorsicht: Daten werden gebiast
- Einsetzen des Mittelwertes der Klasse
 - Beispiel: Mittelwert des Einkommens über alle in derselben Kreditrisiko-Klasse
 - Aber: nur bei metrischen Attributen sinnvoll
 - Vorsicht: Daten werden gebiast
- Einsetzen des wahrscheinlichsten Wertes
 - Finden des Wertes über Modalwert
 - Finden mit Klassifikationsalgorithmen
 - Vorsicht: Daten werden gebiast
- Wichtig:
 - Einige Algorithmen können mit fehlenden Daten umgehen

Beseitigung von verunreinigten Daten

- Binning
 - ...mit gemeinsamer Häufigkeit
 - Ersetzen durch Mittelwert
 - Ersetzen durch Median
 - Ersetzen durch nächste Bucketgrenze
 - ...mit gemeinsamer Breite der Buckets
 - Hilft bei Glätten der Eingangsdaten
- Regression
 - Daten werden durch Regressionsfunktion beschrieben
- Clustering
 - Daten werden geclustert
 - Dabei können Ausreißer identifiziert werden.
- Hinweis:
 - Verfahren können auch zur Datenreduktion genutzt werden

Datenintegration

- Ziel...
 - Integration von Daten aus verschiedenen Quellen

Datenintegration

- Daten aus Unternehmensquellen
 - ... ähnlich Data Warehousing
 - Jetzt nicht Fokus
- Daten aus zusätzlichen Quellen
 - Frei verfügbar
 - Postleitzahlen zu Adressen
 - Umrechnungskurse zwischen Währungen
 - Extern zukaufbar
 - Schufa-Daten
 - Daten von der Post
 - Diverse andere Datenquellen

Datenintegration - Schwierigkeiten

- Entitätsidentifikationsproblem
 - Attributnamen:
 - Stimmt "Kunden-ID" mit "Kundennummer" überein?
 - Attributwerte:
 - Ist "m" in Geschlecht gleich "männlich"?
- Korrelationsanalyse
 - Finden von Redundanzen:
 - Mehrinformation Jahres- gegenüber Monatseinkommen
- Skalierungsprobleme
 - Beispiele:
 - Temperaturen in Celsius bzw. Fahrenheit
 - Einkommen in Dollar bzw. Euro

Datentransformation

- Ziel
 - Vorbereitung der Daten für das Data Mining

Datentransformation

- Bereinigung von Daten
 - Wie eben
- Aggregation
 - Aggregat über Tageseinnahmen zu Monatseinnahmen
 - Besonders interessant, wenn auch Data Warehouse erstellt wird
- Generalisierung
 - Daten werden auf sinnvolles Niveau aggregiert
 - Beispiel: Von Adresse auf Stadt
- Normalisierung
 - Skalierung auf überschaubaren Wertebereich
 - Beispiel: auf 0,0 bis 1,0
- Attributgenerierung
 - Zusammenfassen mehrerer Attribute zu einem
 - Beispiel: Umrechnung in Vergleichswährung

Datenreduktion

- Ziel:
 - Eingrenzen des Curse of Dimensionality

Feature Selection

- Vorteile
 - Gewonnene Regeln sind leichter interpretierbar
 - Skalierbarkeit ermöglicht
- Vorgehen (allgemein)
 - Bestimmen des Attributwertes
 - ... über statistische Signifikanz
 - ... über Information Gain
- Vorgehen (Alternativen)
 - Schrittweise Vorwärtsselektion
 - Ausgangssituation: Leere Attributmenge
 - Rekursive Erweiterung um je ein Attribut
 - Schrittweise Rückwärtsselektion
 - Ausgangssituation: Vollständige Attributmenge
 - Rekursive Entfernung um je ein Attribut
 - · Entscheidungsbauminduktion
 - Entscheidungsbaum wird generiert
 - Alle Attribute im Entscheidungsbaum werden genutzt
- Optional:
 - Expertenwissen nutzen

Sampling

- Motivation
 - Zu viele Lerndatensätze
 - Balancieren der Klassengröße
- Vorgehen
 - Auswahl einzelner Tupel
- Einfaches zufälliges Sampling
 - Zufälliges Ziehen von Tupeln
- Stratified Sampling
 - Attribut wird gewählt
 - Anteil der einzelnen Attributwerte in Ausgangsdaten gleich dem Anteil im Sample

Was fehlt noch?

- Ausblick auf nächste Woche
 - DMC-Aufgabe
 - Klassifikation, ggf. Regression
- Accounts beantragen
- Termin für die folgenden Treffen
 - Nächste Woche Montag 9:45 Uhr
- Hinweise zur verwendeten Software: in den Tutorien.
- http://dbis.ipd.uni-karlsruhe.de/1523.php
- Wiki: http://www.ipd.uni-karlsruhe.de/~ipd/wiki/mediawiki-1.5.6/index.php/DWM-Praktikum (User: Dbisstud)
- Ab Donnerstag: DMC-Aufgabe ansehen!