CAMBRIDGE INTERNATIONAL EXAMINATIONS

Cambridge International Advanced Level

MARK SCHEME for the October/November 2014 series

9231 FURTHER MATHEMATICS

www.tirenepabers.com

9231/22

Paper 2, maximum raw mark 100

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the October/November 2014 series for most Cambridge IGCSE[®], Cambridge International A and AS Level components and some Cambridge O Level components.

 ${\small \circledR}$ IGCSE is the registered trademark of Cambridge International Examinations.

Page 2	Mark Scheme	Syllabus	Paper
	Cambridge International A Level – October/November 2014	9231	22

Mark Scheme Notes

Marks are of the following three types:

- M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained.

 Accuracy marks cannot be given unless the associated method mark is earned (or implied).
- B Mark for a correct result or statement independent of method marks.
- When a part of a question has two or more "method" steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly when there are several B marks allocated. The notation DM or DB (or dep*) is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
- The symbol
 [↑] implies that the A or B mark indicated is allowed for work correctly following on
 from previously incorrect results. Otherwise, A or B marks are given for correct work only. A and
 B marks are not given for fortuitously 'correct' answers or results obtained from incorrect working.
- Note: B2 or A2 means that the candidate can earn 2 or 0.
 B2/1/0 means that the candidate can earn anything from 0 to 2.

The marks indicated in the scheme may not be subdivided. If there is genuine doubt whether a candidate has earned a mark, allow the candidate the benefit of the doubt. Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored.

- Wrong or missing units in an answer should not lead to the loss of a mark unless the scheme specifically indicates otherwise.
- For a numerical answer, allow the A or B mark if a value is obtained which is correct to 3 s.f., or
 which would be correct to 3 s.f. if rounded (1 d.p. in the case of an angle). As stated above, an A
 or B mark is not given if a correct numerical answer arises fortuitously from incorrect working. For
 Mechanics questions, allow A or B marks for correct answers which arise from taking g equal to
 9.8 or 9.81 instead of 10.

Page 3	Mark Scheme S		Paper
	Cambridge International A Level – October/November 2014	9231	22

The following abbreviations may be used in a mark scheme or used on the scripts:

AEF	Any Equivalent Form (of answer is equally acceptable)
AG	Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
BOD	Benefit of Doubt (allowed when the validity of a solution may not be absolutely clear)
CAO	Correct Answer Only (emphasising that no 'follow through' from a previous error is allowed)
CWO	Correct Working Only – often written by a 'fortuitous' answer
ISW	Ignore Subsequent Working
MR	Misread
PA	Premature Approximation (resulting in basically correct work that is insufficiently accurate)
sos	See Other Solution (the candidate makes a better attempt at the same question)
SR	Special Ruling (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a particular circumstance)

Penalties

- MR −1 A penalty of MR −1 is deducted from A or B marks when the data of a question or part question are genuinely misread and the object and difficulty of the question remain unaltered. In this case all A and B marks then become 'follow through \(\bightarrow \)' marks. MR is not applied when the candidate misreads his own figures this is regarded as an error in accuracy. An MR−2 penalty may be applied in particular cases if agreed at the coordination meeting.
- PA –1 This is deducted from A or B marks in the case of premature approximation. The PA –1 penalty is usually discussed at the meeting.

Page 4	Mark Scheme	Syllabus	Paper
	Cambridge International A Level – October/November 2014	9231	22

Question Number	Mark Scheme Details		Part Mark	Total
1	Use conservation of momentum, e.g.:	$2mv_A + mv_B = 8mu - 3mu $ B1		
	Use restitution (must be consistent with prev. eqn.):	$v_A - v_B = -e (4u + 3u)$ B1		
	Solve for v_A (or $3v_A$):	$v_A = \frac{1}{3}(5 - 7e)u $ M1		
		$[v_B = \frac{1}{3}(5+14e)u]$		
	Find lower limit on e for which $v_A < 0$:	$5 - 7e < 0, e > \frac{5}{7} \text{ or } 0.714 \text{ M1 A1}$	5	[5]
2	Find speed component along barrier:	$V\cos\beta = 4\cos\alpha$ B1		
	Find speed component normal to barrier:	$V\sin\beta = 0.4 \times 4\sin\alpha \qquad \qquad \text{B1}$		
	Find β by eliminating α with $V = 2$:	$V^{2} = 2^{2} = 1.6^{2} \sin^{2} \alpha + 16 \cos^{2} \alpha \qquad M1$ $1 - \sin^{2} \alpha + 0.16 \sin^{2} \alpha = 0.25$ $\sin^{2} \alpha = \frac{0.75}{0.84} = \frac{25}{28} = 0.8929$		
		$\underline{or} \cos^2 \alpha = \frac{3}{28} = 0.1071$ $\alpha = 1.24 \text{ rad } or 70.9^\circ \qquad M1 \text{ A}1$	5	[5]
3	Use conservation of energy:	$\frac{1}{2}mv_B^2 = \frac{1}{2}mu^2 + 2mga\cos\alpha \qquad B1$ $[v_B^2 = u^2 + \frac{12ag}{5}]$		
	Use $F = ma$ radially at A and B (B1 for either):	$R_{A} = \frac{mu^{2}}{a} - mg\cos\alpha$ $R_{B} = \frac{mv_{B}^{2}}{a} + mg\cos\alpha$ B1		
	Equate R_B to 10 R_A :	$\frac{mv_B^2}{a} + mg\cos\alpha$ $\frac{mv_B^2}{a} + mg\cos\alpha = 10\left(\frac{mu^2}{a} - mg\cos\alpha\right)$ M1 A1		
	Eliminate v_B^2 :	$u^{2} + 4ag \cos \alpha = 10u^{2} - 11ag \cos \alpha$ $\left[v_{B}^{2} = \frac{17ag}{5}\right]$		
		$u^2 = (\frac{5ag}{3}) \cos \alpha = ag \text{ A.G.} M1 \text{ A1}$	6	_

Page 5	Mark Scheme	Syllabus	Paper
	Cambridge International A Level – October/November 2014	9231	22

	Use conservation of energy for loss of contact:	$\frac{1}{2}mv^2 = \frac{1}{2}mu^2 + mga(\cos\alpha - \cos\theta)$ $\frac{or}{2}\frac{1}{2}mv_B^2 - mga(\cos\alpha + \cos\theta) B1$		
	Use $F = ma$ radially with $R = 0$:	$\frac{mv^2}{a} = mg\cos\theta $ B1		
	Eliminate v^2 with $u^2 = ag$ to find $\cos \theta$.	$ga + 2ga (\cos \alpha - \cos \theta) = ga \cos \theta$ $\cos \theta = \frac{1}{3} (2\cos \alpha + 1) = \frac{11}{15}$ M1 A1	4	[10]
4 (i)	Relate F_A and R_A using $F = \mu R$:	$F_A = \frac{1}{3}R_A $ B1		
	Resolve horizontally:	$R_B = F_A \ [= \frac{1}{3}R_A] $ B1		
	Resolve vertically (may not be needed here):	$S = mg - R_A $ B1		
	EITHER: Take moments about C:	$R_B \frac{1}{4} l \sin \alpha + F_A \frac{3}{4} l \sin \alpha$		
		$+ mg \frac{1}{4} l \cos \alpha = R_A \frac{3}{4} l \cos \alpha M1 A1$		
	Combine, using $\tan \alpha = \frac{3}{4}$, to find R_A :	$R_A + 3R_A + 4mg = 12R_A$		
		$R_A = \frac{1}{2} mg \text{ A.G.} $ M1 A1		
	OR: Take moments about A:	$R_B l \sin \alpha + S \frac{3}{4} l \cos \alpha$		
		$= mg \frac{1}{2} l \cos \alpha \qquad (M1 A1)$		
	Combine, using $\tan \alpha = \frac{3}{4}$, to find R_A :	$R_A + 3(mg - R_A) = 2mg$		
		$R_A = \frac{1}{2} mg \text{ A.G.} $ (M1 A1)		
	OR: Take moments about B:	$F_A l \sin \alpha + mg \frac{1}{2} l \cos \alpha$		
		$= R_A l \cos \alpha + S \frac{1}{4} l \cos \alpha \qquad (M1 A1)$		

Page 6	Mark Scheme	Syllabus	Paper
	Cambridge International A Level – October/November 2014	9231	22

	Combine, using $\tan \alpha = \frac{3}{4}$, to find R_A :	$R_A + 2mg = 4R_A + mg - R_A$			
		$R_A = \frac{1}{2} mg \text{ A.G.}$	(M1 A1)		
	OR: Take moments about D:	$R_A \frac{3}{4} l \cos \alpha$			
		$= R_B l \sin \alpha + mg \frac{1}{4} l \cos \alpha$	(M1 A1)		
	Combine, using $\tan \alpha = \frac{3}{4}$, to find R_A :	$3R_A = R_A + mg$			
		$R_A = \frac{1}{2} mg \text{ A.G.}$	(M1 A1)	7	
(ii)	Use Hooke's Law to relate extn. <i>e</i> and nat. length				
		$S = \frac{1}{2}mg = \frac{2mge}{L}, e = \frac{1}{4}L$	B1		
	Find length of <i>CD</i> :	$CD = \frac{3}{4}l\sin\alpha = \frac{9l}{20}$	B1		
	Combine to find L :	$L - \frac{1}{4}L = \frac{9l}{20}, \ L = \frac{3l}{5}$	M1 A1	4	[11]

Page 7	Mark Scheme	Syllabus	Paper
	Cambridge International A Level – October/November 2014	9231	22

5 (i)	Find extn. of either string by equating equil. tensi	ons:		
		$\frac{6mge_A}{3a} = \frac{mg(3a - e_A)}{2a}$ $\frac{or}{3a} = \frac{6mg(3a - e_B)}{3a} = \frac{mge_B}{2a} \qquad M1 A1$ $e_A = \frac{3a}{5} \underline{or} e_B = \frac{12a}{5} \qquad A1$		
	Find <i>AO</i> : A.G.	$AO = 3a + e_A \underline{or} 6a - e_B = 3.6a B1$	4	
(ii)	Apply Newton's law at general point, e.g.:	$m \frac{\mathrm{d}^2 x}{\mathrm{d}t^2} = \frac{mg(3a - e_A - x)}{2a}$		
	(lose A1 for each incorrect term)	$-\frac{6mg(e_A + x)}{3a}$ $\underline{or} \ m \ \frac{d^2y}{dt^2} = -\frac{mg(3a - e_A + y)}{2a}$ $+ \frac{6mg(e_A - y)}{3a} \qquad M1 A2$		
	Simplify to give standard SHM eqn, e.g.: S.R.: B1 if no derivation (max 3/6)	$\frac{\mathrm{d}^2 x}{\mathrm{d}t^2} = -\frac{5gx}{2a}$ A1		
	Find period T using SHM with $\omega = \sqrt{\left(\frac{5g}{2a}\right)}$:	$T = 2\pi \sqrt{\left(\frac{2a}{5g}\right)}$ (A.E.F.) M1 A1	6	
(iii)	Find max speed using ωA with $A = 0.2 a$:	$v_{max} = \sqrt{\left(\frac{5g}{2a}\right)} \times 0.2a$ $= \sqrt{\left(\frac{ag}{10}\right)} \underline{or} \sqrt{a} \text{ (A.E.F.) M1 A1}$	2	[12]
6	Estimate population variance for combined samp			
		$s^{2} = \frac{s_{\chi}^{2}}{50} + \frac{s_{\gamma}^{2}}{60}$ $= \frac{1391}{1500} \underline{or} \ 0.9273 \underline{or} \ 0.9630^{2} $ M1		
	Calculate value of z (to 2 d.p., either sign):	$z = \frac{1.8}{s} = 1.869$ M1 A1		
	Find $\Phi(z)$ and set of possible values of α (to 1 d.p.) (M1 A0 for $\alpha \leq 3.1 \ \underline{or} \ \alpha > 93.8$)	o.): $\Phi(z) = 0.9692 \ [\underline{or} \ 96.92\%]$ $\alpha \le (\underline{or} \le 0.2) \ 6.2 \ (allow 6.1)$ M1 A1	5	[5]

Page 8	Mark Scheme	Syllabus	Paper
	Cambridge International A Level – October/November 2014	9231	22

	S.R. Assuming equal population variances:	Explicit assumption (B1)	
	Find pooled estimate of common variance s^2	$\frac{(49s_x^2 + 59s_y^2)}{108}$ $= \frac{2777}{108} \underline{or} 25.71 \underline{or} 5.071^2$		
	and calculate value of z (to 2 d.p.):	$z = \frac{1.8}{s\sqrt{50^{-1} + 60^{-1}}} = 1.854 (M1 \text{ A}1)$)	
	Find $\Phi(z)$ and values of α (to 1 d.p.): (M1 A0 for $\alpha \le 3.2 \ \underline{or} \ \alpha > 93.6$)	$\Phi(z) = 0.9681 [\underline{or} 96.81\%]$ $\alpha \le (\underline{or} \le) 6.4 $ (M1 A1))	
7 (i)	State or find $E(T)$:	$E(T) = \frac{1}{0.01} = 100$ B	. 1	
(ii)	State or use eqn. for median <i>m</i> of <i>T</i> :	$\left[-e^{-0.01t}\right]_0^m = \frac{1}{2} \text{ (A.E.F.)}$		
	Find value of <i>m</i> :	$e^{-0.01m} = \frac{1}{2}$, $m = 100 \ln 2 = 69.3$ M1 A	. 3	
	Find $P(T > 20)$:	$P(T > 20) = 1 - (1 - e^{-0.2})$		
	S.R. B1 for 0·181	$= e^{-0.2} \underline{or} 0.819$ M1 A3	. 2	[6]
8	Find mean of sample data for use in Poisson distri	$\lambda = \frac{225}{100} = 2.25$ B		
	State (at least) null hypothesis (A.E.F.):	H ₀ : Poisson distn. fits data B		
	Find expected values $\frac{100\lambda^r e^{-\lambda}}{r!}$ (to 1 d.p.):	10.540 23.715 26.679 20.009 11.255		
	(ignore incorrect final value here for M1)	5·065 1·899 0·6105 0·2275 M1 A		
	Combine last four cells so that exp. value ≥ 5 :	O_i : 16 14 4 E_i : 20.009 11.255 7.802 *M		
	Calculate value of χ^2 (to 1 d.p.; A1 dep *M1):	$\chi^2 = 1.189 + 0.582 + 5.690 + 0.803 + 0.6695 + 1.853 = 10.8 \text{ (allow } 10.7)$ M1 A		
	State or use consistent tabular value (to 1 d.p.):	$\chi_{4, 0.975}^2 = 11.14 \text{ (if cells combined)}$ B: $[\chi_{7, 0.975}^2 = 16.01, \chi_{5, 0.975}^2 = 12.83]$		
	Consistent conclusion (A.E.F., * on two χ^2 values	s): $\chi^2 < 11.1$ so Poisson distn. fits B1	9	[9]

Page 9	Mark Scheme	Syllabus	Paper
	Cambridge International A Level – October/November 2014	9231	22

9	(i)	Calculate gradient b in $y - \overline{y} = b(x - \overline{x})$:	$S_{xy} = 513 - 73 \times \frac{64}{10} = 45.8$		
			$S_{xx} = 651 - \frac{73^2}{10} = 118.1$		
			$b = \frac{S_{xy}}{S_{xx}} = 0.388 \qquad M1 A1$		
		Find regression line of y on x :	$y = \frac{64}{10} + 0.388 (x - \frac{73}{10})$ $= 0.388 x + 3.57$ M1		
			$\frac{or}{1181} \frac{(458x + 4215)}{1181} $ A1	4	
	(ii)	Find correlation coefficient r :	$S_{yy} = 462 - \frac{64^2}{10} = 52.4$		
			$r = \frac{S_{xy}}{\sqrt{(S_{xx}S_{yy})}} = 0.582$ M1 A1	2	
	(iii)	Find y when $x = 10$:	y = 7.45 B1		
		State valid comment on reliability, e.g.:	Not reliable as value of r is small \underline{or} reliable since $x = 10$ is in range \underline{or} is near mean B1	2	
	(iv)	Formulate condition for <i>N</i> :	Require one-tail $r_{N,1\%} < r \ [0.582]$ M1		
		Identify critical value near r using table:	15 \underline{or} 16 ($^{\land}$ on r) A1 $^{\land}$		
		State set of possible values of <i>N</i> :	$N \ge 16$ A1	3	[11]

Page 10	Mark Scheme	Syllabus	Paper
	Cambridge International A Level – October/November 2014	9231	22

10	Find $F(x)$ for $1 \le x \le 3$:	$F(x) = \frac{1}{2} (x - 1)$	B1		
	Find G(y) from $Y = X^3$ for $1 \le x \le 3$:	G(y) = P(Y < y) = P(X ³ < y) = P(X < y ^{1/3}) = F(y ^{1/3})			
	(result may be stated)	$= \frac{1}{2} (y^{\frac{1}{3}} - 1); (1 \le y \le 27) M1$	A1; B1		
	State $G(y)$ for other values of y :	0 $(y < 1)$ <u>and</u> 1 $(y > 27)$	B1	5	
	Find $g(y)$ for $1 \le y \le 27$ ($^{\blacktriangle}$ on $G(y)$):	$g(y) = \frac{y^{-\frac{2}{3}}}{6} \underline{or} \frac{1}{6y^{\frac{2}{3}}}$	B1√ [^]		
	Sketch $g(y)$ for $1 \le y \le 27$ with $g(y) = 0$ on either side of this interval		B1 B1	3	
	Find mean of <i>Y</i> :	$E(Y) = \int y g(y) dy = \int (\frac{y^{\frac{1}{3}}}{6}) dy$			
	(no need to find median = 8)	$= \left[\frac{y^{\frac{4}{3}}}{8}\right]_{1}^{27} = 10$	M1 A1		
	Find probability <i>Y</i> lies between median and mean	G(10) - G(8) $or G(10) - \frac{1}{2} $			
		$= \frac{1}{2} \left(10^{\frac{1}{3}} - 8^{\frac{1}{3}} \right)$			
	(2 s.f. sufficient)	$\frac{or}{\left \frac{1}{2}\left(10^{\frac{1}{3}}-1\right)-\frac{1}{2}\right }=0.077[2]$			
		2 ' ' 2	M1 A1	4	[12]

Page 11	Mark Scheme	Syllabus	Paper
	Cambridge International A Level – October/November 2014	9231	22

11a (i)	EITHER:	State or find (by \perp axes) MI of X about	t <i>AB</i> :			
			$I_X = \frac{1}{2} mr^2$	M1 A1		
		State or find MI of Y (or Z) about AB :	$I_Y = \frac{1}{2} mr^2 + mr^2 = \frac{3mr^2}{2}$	M1 A1		
		State or find (by \perp axes) MI of W about	at AB:			
			$I_W = \frac{1}{2} 3mR^2 = \frac{1}{2} 3mr^2 (1 + \frac{1}{2} + 1$	$(\frac{2}{3}\sqrt{3})^2$		
			$= \frac{1}{2} (7 + 4\sqrt{3}) mr^2$	M1 A1		
		Find MI of object about AB:	$I = (\frac{1}{2} + 2 \times \frac{3}{2} + \frac{7}{2} + 2\sqrt{3}) mr$			
			$= (7 + 2\sqrt{3}) mr^2$ A.G.	M1 A1		
	OR:	State or find MI of X , Y or Z about cen	2	, ²		
			$I_X = mr^2 + m\left(\frac{2r}{\sqrt{3}}\right)^2 = \frac{7mr}{3}$	—(M1 A1)		
		State or find MI of <i>W</i> about <i>O</i> :	$I_W = 3mR^2 = 3mr^2(1 + \frac{2}{3}\sqrt{3})$	2		
			$= (7 + 4\sqrt{3}) mr^2$	(M1 A1)		
		Find MI of object about O:	$I_O = 3I_X + I_W = (14 + 4\sqrt{3})$	mr ² (M1 A1)		
		Find (by \perp axes) MI of object about A.	1			
			$I = \frac{1}{2} I_O = (7 + 2\sqrt{3}) mr^2$	A.G.		
				(M1 A1)	8	
(ii)	Find new	MI of object plus particle about AB:	$I' = I + 9mR^{2}$ = I + 3 (7 + 4\sqrt{3}) mr ² = 14 (2 + \sqrt{3}) mr ²	M1 A1		
	Find eqn	for angular speed ω using energy:	$\frac{1}{2}I'\omega^2 = 9mg \times R\sin 60^\circ$	M1 A1		
	Substitute	ϵ and simplify to find ω :	$\omega^2 = \frac{9mgR\sqrt{3}}{I'}$			
	(AEF)		$\omega = \sqrt{\frac{9g}{14r}} \ \underline{or} \ 0.802 \sqrt{\frac{g}{r}}$	M1 A1	6	[14]

Page 12	Mark Scheme	Syllabus	Paper
	Cambridge International A Level – October/November 2014	9231	22

11b	Estimate population variance using A's sample: (allow use of biased: $\sigma_{A,8}^2 = 2.23 \text{ or } 1.493^2$)	$s_A^2 = \frac{\left(1422.34 - \frac{106^2}{8}\right)}{7}$ $= \frac{446}{175} \ \underline{or} \ 2.549 \ \underline{or} \ 1.596^2$	M1 A1		
	Find confidence interval:	$\frac{106}{8} \pm t \sqrt{\left(\frac{s_x^2}{8}\right)}$	M1		
	State or use correct tabular value of <i>t</i> :	$t_{7,0.975} = 2.36 [5]$	A1		
	Evaluate C.I. correct to 1 d.p.:	13·25 ± 1·335 <u>or</u> [11·9, 14·6]	A1	5	
	State suitable assumptions (A.E.F.):	Distribution of <i>B</i> is Normal with same population variance	B1		
	State hypotheses (B0 for \overline{a}) e.g.:	$H_0: \mu_A = \mu_B, \ H_1: \mu_A > \mu_B$	B1		
	Estimate (or imply) <i>B</i> 's population variance:	$s_B^2 = \frac{\left(971.53 - \frac{75.9^2}{6}\right)}{5}$			
	(allow use of biased: $\sigma_{B,6}^2 = 1.899 \ \underline{or} \ 1.378^2$)	$= 2.279 \ or \ 1.510^2$			
	and find pooled estimate of common variance s^2	: -			
		$s^{2} = \frac{\left(7s_{A}^{2} + 5s_{B}^{2}\right)}{12}$ $= \frac{(17.84 + 11.395)}{12}$ $= 2.436 \ \underline{or} \ 1.561^{2}$	M1		
	Calculate value of t (to 2 d.p., either sign):	$t = \frac{(13.25 - 12.65)}{s\sqrt{(8^{-1} + 6^{-1})}}$ $= \frac{0.6}{0.8430} = 0.712$	M1 A1		
	State or use correct tabular <i>t</i> -value (to 2 d.p.): (or compare 0.6 with 1.782 $s\sqrt{(8^{-1} + 6^{-1})} =$	$t_{12,0.95} = 1.782$ $1.50)$	B1		
	Consistent conclusion (AEF, $\sqrt{}$ on two t values):	: [Accept H ₀]; mean lengths are the same	B1√^	7	
	Find confidence interval for the difference:	$13.25 - 12.65 \pm t s\sqrt{(8^{-1} + 6^{-1})}$	M1		
	Evaluate C.I. with $t_{12,0.975} = 2.179$, to 2 d.p.:	0.6 ± 1.84 <u>or</u> [-1.24, 2.44]	A1	2	[14]