

Automotive N-channel 80 V, 5.6 mΩ typ., 95 A, STripFET F7 Power MOSFET in a PowerFLAT 5x6 package

PowerFLAT 5x6

Features

Order code	V _{DS}	R _{DS(on)} max.	I _D
STL105N8F7AG	80 V	6.5 mΩ	95 A

- AEC-Q101 qualified
- Among the lowest R_{DS(on)} on the market
- Excellent FoM (figure of merit)
- Low C_{rss}/C_{iss} ratio for EMI immunity
- · High avalanche ruggedness
- · Wettable flank package

Applications

· Switching applications

Description

This N-channel Power MOSFET utilizes STripFET F7 technology with an enhanced trench gate structure that results in very low on-state resistance, while also reducing internal capacitance and gate charge for faster and more efficient switching.

Product status link STL105N8F7AG

Product summary				
Order code	STL105N8F7AG			
Marking	105N8F7			
Package	PowerFLAT 5x6			
Packing	Tape and reel			

1 Electrical ratings

Table 1. Absolute maximum ratings

Symbol	Parameter	Value	Unit
V_{DS}	Drain-source voltage	80	V
V _{GS}	Gate-source voltage	±20	V
	Drain current (continuous) at T _C = 25 °C	95	
I _D	Drain current (continuous) at T _C = 100 °C	68	_ A
I _{DM} ⁽¹⁾	Drain current (pulsed)	380	А
P _{TOT}	Total power dissipation at T _C = 25 °C	127	W
I _{AV}	Avalanche current, repetitive or not repetitive (pulse width limited by maximum junction temperature)	40	А
E _{AS}	Single pulse avalanche energy $(T_J = 25 ^{\circ}\text{C}, I_D = I_{AV}, V_{DD} = 60 \text{V}, R_G \text{min} = 47 \Omega)$	135	mJ
TJ	Operating junction temperature range	55 to 475	°C
T _{stg}	Storage temperature range	-55 to 175	°C

^{1.} Pulse width limited by safe operating area.

Table 2. Thermal data

Symbol	Parameter	Value	Unit
R _{thJC}	Thermal resistance, junction-to-case	1.18	°C/W
R _{thJB} ⁽¹⁾	Thermal resistance, junction-to-board	31.3	°C/W

^{1.} When mounted on an FR-4 board of 1 inch², 2oz Cu, t < 10s.

DS13615 - Rev 2 page 2/14

2 Electrical characteristics

(T_C = 25 °C unless otherwise specified)

Table 3. On/off states

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
V _{(BR)DSS}	Drain-source breakdown voltage	I _D = 250 μA, V _{GS} = 0 V	80			V
I _{DSS}	Zero gate voltage drain current	V _{GS} = 0 V, V _{DS} = 80 V			1	μA
I _{GSS}	Gate-body leakage current	V _{GS} = 20 V, V _{DS} = 0 V			100	nA
V _{GS(th)}	Gate threshold voltage	$V_{DS} = V_{GS}$, $I_D = 250 \mu A$	2.5		4.5	V
R _{DS(on)}	Static drain-source on-resistance	V _{GS} = 10 V, I _D = 25 A		5.6	6.5	mΩ

Table 4. Dynamic

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
C _{iss}	Input capacitance		-	3475	-	pF
C _{oss}	Output capacitance	$V_{DS} = 25 \text{ V}, f = 1 \text{ MHz}, V_{GS} = 0 \text{ V}$	-	904	-	pF
C _{rss}	Reverse transfer capacitance		-	88	-	pF
Qg	Total gate charge	V _{DD} = 40 V, I _D = 95 A,	-	46	-	nC
Q _{gs}	Gate-source charge	V _{GS} = 0 to 10 V	-	24	-	nC
Q _{gd}	Gate-drain charge	(see Figure 13. Test circuit for gate charge behavior)	-	10	-	nC

Table 5. Switching times

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
t _{d(on)}	Turn-on delay time	$V_{DD} = 40 \text{ V}, I_D = 50 \text{ A},$	-	19	-	ns
t _r	Rise time	R_G = 4.7 Ω , V_{GS} = 10 V (see Figure 12. Test circuit for resistive load switching times and Figure 17. Switching time waveform)	-	22	-	ns
t _{d(off)}	Turn-off delay time		-	31	-	ns
t _f	Fall time		-	13	-	ns

Table 6. Source-drain diode

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
I _{SD}	Source-drain current				95	Α
V _{SD} ⁽¹⁾	Source-drain voltage	I _{SD} = 95 A, V _{GS} = 0 V	-		1.2	V
t _{rr}	Reverse recovery time	$I_{SD} = 50 \text{ A, di/dt} = 100 \text{ A/}\mu\text{s,}$	-	37		ns
Q _{rr}	Reverse recovery charge	V _{DD} = 64 V	-	37		nC
I _{RRM}	Reverse recovery current	(see Figure 14. Test circuit for inductive load switching and diode recovery times)	-	1.5		Α

1. Pulsed: pulse duration = $300 \mu s$, duty cycle 1.5%.

DS13615 - Rev 2 page 3/14

2.1 Electrical characteristics (curves)

Figure 3. Typical output characteristics GADG211220201123OCH I_D (A) $V_{GS} = 8, 9, 10 V$ 160 140 120 100 80 60 6 V 40 20 5 V 2 3 5 6 8 9 $\overrightarrow{V}_{DS}(V)$

DS13615 - Rev 2 page 4/14

Figure 7. Typical capacitance characteristics

Figure 8. Normalized gate threshold voltage vs temperature

Figure 9. Normalized on-resistance vs temperature

Figure 10. Normalized V_{(BR)DSS} vs temperature

Figure 11. Typical reverse diode forward characteristics

DS13615 - Rev 2 page 5/14

3 Test circuits

Figure 12. Test circuit for resistive load switching times

Figure 13. Test circuit for gate charge behavior

Figure 14. Test circuit for inductive load switching and diode recovery times

AM01470v1

Figure 15. Unclamped inductive load test circuit

Figure 16. Unclamped inductive waveform

Figure 17. Switching time waveform

DS13615 - Rev 2 page 6/14

4 Package information

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK packages, depending on their level of environmental compliance. ECOPACK specifications, grade definitions and product status are available at: www.st.com. ECOPACK is an ST trademark.

4.1 PowerFLAT 5x6 WF type C package information

Figure 18. PowerFLAT 5x6 WF type C package outline

8231817_WF_typeC_r20

DS13615 - Rev 2 page 7/14

Table 7. PowerFLAT 5x6 WF type C mechanical data

Dim.	mm		
Dilli.	Min.	Тур.	Max.
А	0.80		1.00
A1	0.00		0.05
A2		0.25	
b	0.30		0.50
С	5.80	6.00	6.10
D	5.00	5.20	5.40
D2	4.15		4.45
D3	4.05	4.20	4.35
D4	4.80	5.00	5.10
D5	0.25	0.40	0.55
D6	0.15	0.30	0.45
е		1.27	
Е	6.20	6.40	6.60
E2	3.50		3.70
E3	2.35		2.55
E4	0.40		0.60
E5	0.08		0.28
E6	0.20	0.325	0.45
E7	0.85	1.00	1.15
E9	4.00	4.20	4.40
E10	3.55	3.70	3.85
K	1.05		1.35
L	0.90	1.00	1.10
L1	0.175	0.275	0.375
θ	0°		12°

DS13615 - Rev 2 page 8/14

Figure 19. PowerFLAT 5x6 recommended footprint (dimensions are in mm)

DS13615 - Rev 2 page 9/14

4.2 PowerFLAT 5x6 WF packing information

Figure 20. PowerFLAT 5x6 WF tape (dimensions are in mm)

- (I) Measured from centreline of sprocket hole to centreline of pocket.
- (II) Cumulative tolerance of 10 sprocket holes is \pm 0.20 .
- (III) Measured from centreline of sprocket hole to centreline of pocket.

Base and bulk qua ntity 3000 pcs

8234350_TapeWF_rev_C

Figure 21. PowerFLAT 5x6 package orientation in carrier tape

DS13615 - Rev 2 page 10/14

PART NO.

1.50

1.50

1.50

1.50

1.50

1.50

1.50

1.50

1.50

1.50

1.50

1.50

1.50

1.50

1.50

1.50

1.50

1.50

1.50

1.50

1.50

1.50

1.50

1.50

1.50

1.50

1.50

1.50

1.50

1.50

1.50

1.50

1.50

1.50

1.50

1.50

1.50

1.50

1.50

1.50

1.50

1.50

1.50

1.50

1.50

1.50

1.50

1.50

1.50

1.50

1.50

1.50

1.50

1.50

1.50

1.50

1.50

1.50

1.50

1.50

1.50

1.50

1.50

1.50

1.50

1.50

1.50

1.50

1.50

1.50

1.50

1.50

1.50

1.50

1.50

1.50

1.50

1.50

1.50

1.50

1.50

1.50

1.50

1.50

1.50

1.50

1.50

1.50

1.50

1.50

1.50

1.50

1.50

1.50

1.50

1.50

1.50

1.50

1.50

1.50

1.50

1.50

1.50

1.50

1.50

1.50

1.50

1.50

1.50

1.50

1.50

1.50

1.50

1.50

1.50

1.50

1.50

1.50

1.50

1.50

1.50

1.50

1.50

1.50

1.50

1.50

1.50

1.50

1.50

1.50

1.50

1.50

1.50

1.50

1.50

1.50

1.50

1.50

1.50

1.50

1.50

1.50

1.50

1.50

1.50

1.50

1.50

1.50

1.50

1.50

1.50

1.50

1.50

1.50

1.50

1.50

1.50

1.50

1.50

1.50

1.50

1.50

1.50

1.50

1.50

1.50

1.50

1.50

1.50

1.50

1.50

1.50

1.50

1.50

1.50

1.50

1.50

1.50

1.50

1.50

1.50

1.50

1.50

1.50

1.50

1.50

1.50

1.50

1.50

1.50

1.50

1.50

1.50

1.50

1.50

1.50

1.50

1.50

1.50

1.50

1.50

1.50

1.50

1.50

1.50

1.50

1.50

1.50

1.50

1.50

1.50

1.50

1.50

1.50

1.50

1.50

1.50

1.50

1.50

1.50

1.50

1.50

1.50

1.50

1.50

1.50

1.50

1.50

1.50

1.50

1.50

1.50

1.50

1.50

1.50

1.50

1.50

1.50

1.50

1.50

1.50

1.50

1.50

1.50

1.50

1.50

1.50

1.50

1.50

1.50

1.50

1.50

1.50

1.50

1.50

1.50

1.50

1.50

1.50

1.50

1.50

1.50

1.50

1.50

1.50

1.50

1.50

1.50

1.50

1.50

1.50

1.50

1.50

1.50

1.50

1.50

1.50

1.50

1.50

1.50

1.50

1.50

1.50

1.50

1.50

1.50

1.50

1.50

1.50

1.50

1.50

1.50

1.50

1.50

1.50

1.50

1.50

1.50

1.50

1.50

1.50

1.50

1.50

1.50

1.50

1.50

1.50

1.50

1.50

1.50

1.50

1.50

1.50

1.50

1.50

1.50

1.50

1.50

1.50

1.50

1.50

1.50

1.50

1.50

1.50

1.50

1.50

1.50

1.50

1.50

1.50

1.50

1.50

1.50

1.50

1.50

1.50

1.50

1.50

1.

Figure 22. PowerFLAT 5x6 reel (dimensions are in mm)

DS13615 - Rev 2 page 11/14

Revision history

Table 8. Document revision history

Date	Version	Changes
04-Jan-2021	1	First release.
08-Mar-2021	2	Updated Table 1. Absolute maximum ratings.

DS13615 - Rev 2 page 12/14

Contents

1	Elec	trical ratings	2
2	Elec	trical characteristics	3
	2.1	Electrical characteristics (curves)	4
3	Test	circuits	6
4	Pacl	kage information	7
	4.1	PowerFLAT 5x6 WF type C package information	7
	4.2	PowerFLAT 5x6 WF packing information	10
Rev	vision	history	12

IMPORTANT NOTICE - PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. For additional information about ST trademarks, please refer to www.st.com/trademarks. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2021 STMicroelectronics - All rights reserved

DS13615 - Rev 2 page 14/14