

Development of a myocardial perfusion phantom

Gijs de Vries, s1854526

Revision 0.24

ii	Development of a myocardial perfusion phantom (Draft)

G.J. de Vries, s1854526

Monday 28th January, 2019

ii	Development of a myocardial perfusion phantom (Draft)

Preface

- 6 The system requirements specify all the requirements for the myocardial perfusion phantom.
- These requirements are based on research and interviews with stakeholders.
- 8 G.J. (Gijs) de Vries
- 9 Enschede, 7th of January 2019

10 Version

Table 1: Version control

Requirement	Old description	Date
R0.1	Initial version. Discussed in progress meeting of 2019/01/15.	2019/01/15
R0.2	Added following items:	2019/01/16
	•TR-PR02, TR-PR03, TR-PR04, TR-PR05, TR-PR06, TR-PR07,	
	TR-PR08, TR-PR09, TR-PR10	
	•TR-ER02, TR-ER03	
	•TR-IC04, and TR-IC05	
	•Added appendices C & D.	
R0.21		2019/01/18
R0.22	Added following items:	2019/01/20
	•TR-IC03 A) through E).	
	•TFR-SIM04 A) through E)	
	•TR-PR02 A) through E).	
R0.23	Added following items:	2019/01/23
	•TFR-SIM05 A) through C).	
R0.24	Modified:	2019/01/28
	•Section 2.2.1, to correspond to interview at ZGT.	
	Added following items:	
	•Figure 3.1, 3.2, and 3.3	
	Removed following items:	
	•FR08 (combined with FR07)	
	Inserted following items:	
	•TFR-SIM04 B) & C). Other requirements are shifted down.	

11 Changelog

Table 2: Table of changed requirements

Requirement	Old description	Change reason
TR-IC01	A variable amount of contrast can be injected.	Rephrased.
TFR-SIM01	An Arterial Input Function (AIF) must be ex-	The AIF, in the D-SPECT
	tractable from either the aorta or the left vent-	software, is taken from
	ricle chamber.	the left ventricle. This
		requirement is moved to TFR-SIM04.
TFR-SIM04	Multiple chambers, or areas, should be present,	Rephrased due to mis-
	such that ischaemic and non-inschaemic tissue	understanding of the 17
	can be visualised simultaneously. Typical soft-	section model.
	ware divide the heart into 17 chambers.	
TR-PR10	The phantom's chambers must match the di-	Sizes are specified for
	mensions of an average human heart, between 60-90x30-50x60-90mm [LxWxD]	the ventricles.
TR-PR02	The phantom must be anatomically correct;	Rephrased after inter-
	four heart chambers, myocardium around the	view at ZGT.
	chambers, arrow shaped bottom.	
TFR-SIM05	Phantom's compartment model should match	Rephrased and linked to
	the currently practised protocol. Does the	contrast section.
EDOO	tracer diffuse, is it trapped in tissue et cetera.	The D CDECT of the same
FR03	The high flow should be suitable for an AIF,	The D-SPECT software
	either in a ventricle chamber or an aorta de-	extracts the AIF in the left atrium.
FR04	pending on the clinical software. Cardiac defects should be simulated such that	Rephrased.
11104	the complex relation between stenotic and	Replitasea.
	non-stenotic arteries is modelled.	
FR05	The phantom must be able to visualise both	Rephrased, it should be
11100	control and stenotic areas, similar to clinical	compatible with the 17
	scans.	segment model.
FR06	The phantom must initially simulate the com-	Rephrased to be more
	partment model typically used in clinical scans,	specific.
	but be flexible enough such that other com-	
	partment models are achievable.	
FR07	The contrast agent should be equivalent to that	Rephrased and com-
	used in clinical scans.	bined with FR08 to be
		more global.
TFR-SIM04 A)	The three coronary arteries should be present	Rephrased to make it
	(RCA, LAD, LCx) and connected to a myocar-	more clear.
	dium.	
TFR-SIM04 F)	The myocardium has a longitudinal cross-	Rephrased to be more
	sectional shape of a horseshoe.	specific.
TFR-SIM04 G)	The myocardium has a transverse cross-	Rephrased to be more
	sectional shape of a circle.	specific.

12 Contents

13	1	Introduction	1
14	2	Functional system overview	2
15		2.1 Drivers	2
16		2.2 Approach	2
17		2.3 Business model	3
18		2.4 Requirements	3
19		2.5 Business and system use cases	3
20		2.6 Architectural overview	3
21	3	Technical system overview	6
22		3.1 Function requirements	6
23		3.2 Physical requirements	8
24		3.3 Environmental requirements	9
25		3.4 External interfaces	10
26		3.5 System qualities	10
27		3.6 Constraints and Assumptions	10
28 29	A	Appendix: Normal heart rate/blood pressure and myocardial perfusion rates by Uren et al. (1994)	1 12
30 31	В	Appendix: Normal heart rate/blood pressure and myocardial perfusion rates by Ho et al. (2014)	t 13
32	C	Appendix: heart chamber volumes by Lin et al. (2008)	14
33	D	Appendix: heart chamber volumes by Maceira et al. (2006a,b)	15
34	Bi	bliography	16

vi	Development of a myocardial perfusion phantom (Draft)

1 Introduction

- Myocardial Perfusion Imaging (MPI), or, simply put, the imaging of the blood flow in the heart
- 97 muscle, plays an important role in diagnosing heart failure or detecting Coronary Artery Dis-
- ease (CAD). Imaging systems like Computed Tomography (CT), Magnetic Resonance Imaging
- 39 (MRI), Single-Photon Emission Computed Tomography (SPECT), or Positron Emission Tomo-
- 40 graphy (PET) can visualise a (radioactive) contrast bolus in the supplying arteries and in un-
- 41 derlying myocardial tissue, whose flow can give an indication of narrowed or blocked blood
- 42 vessels.
- 43 Many variations in the visualisation process of myocardial perfusion, including variations in
- hard- and software, can (significantly) influence the outcome and in turn have consequences
- for patient treatment. These variations need to be validated against a well-known baseline.
- ⁴⁶ A myocardial perfusion phantom will be developed that is able to simulate the blood flow in
- 47 the heart muscle, i.e. the myocardium, and is able to mimic cardiac defects like (significant)
- 48 stenosis.

49 Document overview

⁵⁰ [todo] This section

51 Abbreviations

- 52 **AIF** Arterial Input Function
- 53 CAD Coronary Artery Disease
- 54 **CT** Computed Tomography
- 55 **LA** Left Atrium
- 56 LV Left Ventricle
- 57 MPI Myocardial Perfusion Imaging
- 58 MRI Magnetic Resonance Imaging

- 59 MV Maximal Vasodilation
- 60 **PET** Positron Emission Tomography
- 61 **RA** Right Atrium
- 62 ROI Region of Interest
- 63 **RV** Right Ventricle
- SPECT Single-Photon Emission Computed
- 65 Tomography

70

2 Functional system overview

This chapter goes into detail on the functional aspects of the myocardial perfusion phantom.

58 2.1 Drivers

Many factors influence the outcome of MPI. Some of these factors are:

	Tracer	Patient	Technology	Software
	- Concentration,	- Breathing artefacts,	- Modality,	- Package,
70	- Volume,	- Cardiac motion,	- Spatial resolution,	- Mathematical model,
	- Molecule size,	- BMI.	- Temporal resolution.	- Filters,
	- Injection speed.			- ROI.

- The strength of a phantom is that small modifications, for example, in contrast concentration or volume, or the mathematical model, can be directly mapped to the outcome. It provides insight into dependent and independent factors in perfusion imaging.
- Current phantoms either require modifications to software packages or do not model defects in a physiological way. Defects are typically modelled by reducing the flow through the myocar-dium by reducing the pump rate, effectively ignoring the complex relation between stenotic and non-stenotic arteries. Therefore, a myocardial perfusion phantom is needed that is compatible with clinical software and is able to mimic cardiac defects in a physiological way. This will increase the similarity with patient studies resulting in more reliable validation.
- In addition to being a tool for validation of scanners and/or software packages, the phantom can be used for educational and training purposes to demonstrate the impact of hard- and software variables (sampling rate, Region of Interest (ROI), mathematical model), patient variables (BMI, blood flow and -pressure), tracer variables (concentration, type, injection speed), and many more.

85 2.2 Approach

The V-Model defines the project's development cycle.

87 2.2.1 Concept of operations

- Is the D-SPECT's dynamic scanning, in comparison with other modalities (CT, MRI, PET, or
 SPECT), suitable for quantitative myocardial perfusion imaging?
- 90 Quantitative flow measurements is made possible due to dynamic scanning. Dynamic scan-
- 91 ning is not a newly emerged technique, it has been used with CT in past research. Due to the
- 92 solid-state detectors (Cadmium-Zinc Telluride), dynamic scanning is made possible for SPECT.
- The D-SPECT is relatively new in the Netherlands. However, it has been employed in Japan,
- Canada, France, and Great-Britain. The D-SPECT is a highly specialised cardiac system. Due to
- the relatively small patient population, clinics often choose more all-purpose systems. The D-
- SPECT is very patient friendly due to its design in contrast to alternatives, e.g. GE uses a gantry
- 97 design.
- 98 CT is a well established modality with the highest spatial resolution. However, its largest draw-
- back is that the radiation dose is directly proportional to the number of images, therefore in-
- creasing the likelihood of complication due to radiation exposure. MRI does not rely an ion-
- ising radiation, but its lower temporal resolution makes it less suitable for dynamic imaging.
- SPECT and PET use radioactive tracers to image blood flow, thus exposing the patient to some
- degree of radiation. However, it is not directly proportional to the amount of images taken and
- is therefore less dangerous than CT.

In addition, traditional SPECT is, on average, 22% less expensive than the current gold standard, PET. D-SPECT is supposed to be even less expensive and faster. Furthermore, significant dose reduction, due to more sensitive solid-state detectors, reduces the strain and risk for patients. In addition, these solid-state detectors improve the image resolution.

In summary, although the D-SPECT is relatively new in the Netherlands, it is more widely employed in Japan, Canada, France, and Great-Britain. The highly cardiac specialised system, its patient friendly design, the ability to scan faster and more accurate at significant dose reductions, make the D-SPECT suitable for quantitative myocardial perfusion imaging.

2.2.2 What must the myocardial perfusion phantom be able to simulate to validate quantitative MPI?

At the most basic level, the phantom must be able to create an AIF, either via the left ventricle or via an aorta, and simulate the perfusion in the myocardium. Furthermore, the phantom must be able to simulate the complex relation between stenotic and non-stenotic arteries in the myocardium; simply reducing the flow to the entire myocardium is not adequate. It should be possible, in case of simulated stenosis, to visualise the ischaemic tissue along non-ischaemic tissue.

Different kinds of compartment models exist for tracer kinetics. Initially, the phantom should simulate the compartment model consistent with clinical protocol. Additionally, other compartment models should be realisable by, for example, interchanging components.

2.3 Business model

113

114

115

117

118

119

120

124

The development of the myocardial perfusion phantom is primarily for the purpose of validating MPI. An added benefit is the educational and training purpose. The phantom will distinguish itself from other phantoms due to its more true-to-nature design, ability to physiologically mimic cardiac defects, and the possibility of modelling different compartment models.

The primary focus remains on the current application of MPI as performed at the ZGT in Hengelo, Overijssel.

131 2.4 Requirements

132 The functional requirements are summarised in table 2.1.

2.5 Business and system use cases

The myocardial perfusion phantom is used by researchers with varying goals. Primarily, the phantom set-up is a tool to validate perfusion imaging hard- and software and to educate on independent and dependent factors, see section 2.1. The researcher should be able to adjust the blood flow, both in the myocardium and in the aorta, and be able to set a cardiac defect.

Please note, setting the imaging and contrast parameters are not part of the phantom itself.

2.6 Architectural overview

A schematic overview of the flow set-up is shown in figure 2.2. The set-up consists of a flow generating system, e.g. mechanical pumps or pressure based, to generate the required aortic and myocardial flow, measuring systems, e.g. flow and pressure sensors, and the phantom itself, simulating the heart. The flow is controlled by means of a control system, over which the user has control. The flow parameters, i.e. flow and pressure, are measured by sensors which are monitored by a monitoring system. The monitoring system and control system cooperate such that user parameters are maintained. Figure 2.2 shows a distinction between high and low flow, which is not a requirement. Low flow can be created by means of pressure difference in

Table 2.1: Functional requirements

This table summarises the functional requirements for the prototype myocardial perfusion phantom.

Requirement number	Description
FR01	The phantom must be able to simulate blood flow, either using water of
	blood-mimicking fluid, at high flow rates (aortic flow).
FR02	The phantom must be able to simulate blood flow, either using water or
	blood-mimicking fluid, at low flow rates (myocardial flow).
FR03	The high flow should be suitable for an AIF extracted from the left atrium.
FR04	Cardiac defects must simulate the complex relation between stenotic and
	non-stenotic arteries.
FR05	The phantom must be able to visualise (and measure) the 17-segment car-
	diac model.
FR06	The phantom must use a 2-compartment model (simulating contrast up-
	take in tissue).
FR07	The contrast protocol must be equivalent to that used in clinical scans with
	D-SPECT.
FR08	Contrast should be mixed equivalently to contrast mixing in patients.

Figure 2.1: Use case diagram for the prototype myocardial perfusion phantom

high and low flow circuit; increasing pressure in low flow circuit results in less volume passing through.

Figure 2.2: Functional architecture for the myocardial perfusion set-up

3 Technical system overview

3.1 Function requirements

This section specifies the requirements set for the functions mentioned in figure 2.2.

153 3.1.1 Generate flow

- In the project plan, a literature overview is given on perfusion phantoms, for a variety of organs,
- but also on physiological factors: perfusion rates, blood pressures, rates of stenosis et cetera.
- The TFR-GF requirements are based on the estimates by Uren et al. (1994), summarised in
- appendix A, Chiribiri et al. (2013a), Ho et al. (2014), summarised in appendix B, and Slart (2015).

Table 3.1: Function requirements for function: Generate flow

This table specifies the requirements for the generated flow and pressure.

Requirement number	Description
TFR-GF01	A constant flow is to be generated, i.e. non-pulsatile.
TFR-GF02	Flow generators need to be interchangeable.
TFR-GF03*	Minimum achievable upper limit of myocardial perfusion is 300
	mL/min/100g.
TFR-GF04*	Minimum achievable lower limit of myocardial perfusion is 60
	ml/min/100g.
TFR-GF05**	Minimum achievable upper limit of cardiac output is 8 L/min.
TFR-GF06+	Minimum arterial pressure is 56 mmHg.
TFR-GF07+	Maximum arterial pressure is 155 mmHg.
TFR-GF08	Flow generators are controlled via a flow feedback system.

^{*} combined flow to myocardium, indicated by blue arrows in figure 3.1

⁺ based on the diastolic and systolic blood pressures, measured at dashed line P in figure 3.1

Figure 3.2: 17-segment heart model

^{**} flow **not** entering the myocardium, indicated by red arrow in figure 3.1

58 3.1.2 Measuring flow and pressure

Table 3.2: Function requirements for function: Measure flow and pressure

This table specifies the requirements for the measuring of flow and pressure.

Requirement number	Description
TFR-MFP01	Flow measuring accuracy less than 5%.
TFR-MFP02	Pressure measuring accuracy less than 5%.
TFR-MFP03	Minimum absolute flow resolution of 1 mL/min.
TFR-MFP04	Minimum sampling rate of 100Hz.

59 3.1.3 Simulate myocardial perfusion

Table 3.3: Function requirements for function: Simulate myocardial perfusion

This table specifies the requirements specific for the phantom that simulates the myocardial perfusion.

periusion.		
Requirement	Description	
number		
TFR-SIM01	An AIF must be extractable from the left ventricle, as per software	
	requirement.	
TFR-SIM02	Stenotic arteries are mimicked in a physiological way by physically narrow-	
	ing (or increasing flow resistance) of certain arteries.	
TFR-SIM03	Different stenotic severity, should be possible by, for example, variable flow	
	resistors or interchanging components.	
TFR-SIM04	The phantom must be compatible with D-SPECT protocol.	
A)	Flow to the myocardium is supplied by the RCA, LAD, and LCx.	
B)	Flow for each segment is supplied individually by branches of the RCA, LAD,	
	and LCx, see figure 3.3.	
C)	Flow from each segment is measured separately such that they can be com-	
	pared to the 17-segment model.	
D)	An ROI can be taken in the left ventricle.	
E)	An AIF can be taken from the left atrium.	
F)	The left ventricle's myocardium has a Vertical and Horizontal Longitudinal	
	Axial (VLA/HLA) cross-sectional shape of a horseshoe.	
G)	The left ventricle's myocardium has a Short Axial (SA) cross-sectional shape	
	of a circle.	
TFR-SIM05*	Phantom's compartment model should match the currently practised pro-	
	tocol.	
A)	The contrast agent specified as Technetium (^{99m} Tc) tetrofosmin, see section	
	3.1.4.	
B)	The contrast agent is absorbed by the myocardium to approximately 1.2%	
	of administered activity in 5 minutes.	
C)	Contrast accumulates in skeletal muscles, spleen, liver, and kidneys (poten-	
	tial interference).	

^{*}https://pubchem.ncbi.nlm.nih.gov/compound/131704316#section=Absorption-Distribution-and-Excretion

60 3.1.4 Inject contrast

The injection protocol is not part of the development of the phantom. However, there are certain requirements to be monitored:

Figure 3.3: Schematic representation of the supply to each segment.

Table 3.4: Contrast requirements

This table summarises the requirements on the contrast and contrast injection protocol.

Requirement number	Description
TR-IC01	Contrast volume is variable.
TR-IC02	Contrast injection is reproducible.
TR-IC03	Contrast protocol should match the currently practised protocol.
A)	Contrast agent is Technetium (^{99m} Tc) tetrofosmin.
B)	Contrast agent is injected, as bolus, via infusion pump.
C)	A pre-bolus is to be used of 37mBq, for proper placement of the heart in the
	scanner.
D)	A main bolus is to be used of 500mBq.
E)	A main bolus is to be used of 700mBq, for more hefty patients.
TR-IC04	Contrast concentration is variable.
TR-IC05	Contrast agent is variable.

163 3.2 Physical requirements

- [todo] Determine size of seating of D-SPECT
- ¹⁶⁵ [todo] Determine weight limit of seating of D-SPECT
- [todo] Must it be completely anatomical?
- ¹⁶⁷ [todo] Adjust requirements if the phantom does not have to be anatomical.
- Size, weight et cetera.

Table 3.5: Physical requirements

This table summarises the physical requirements.

Requirement number	Description		
TR-PR01	The phantom, and its set-up, must fit on the D-SPECT's chair.		
TR-PR02	The phantom must be anatomically shaped.		
A)	In correspondence with requirements TFR-SIM04 D) and E).		
B)	Four chambered phantom that correspond to left/right ventricle and		
	left/right atrium.		
C)	Myocardium surrounds heart chambers.		
D)	Three coronary arteries, RCA, LAD and LCx, supply the myocardium.		
E)	The coronary arteries run outside of the myocardium.		
TR-PR03	The phantom must be placed inside a thorax phantom, QRM TRX-116, with		
	maximum diameter of 100mm.		
TR-PR04	Total weight, on patient chair, cannot exceed 171kg.		
TR-PR05	The flow set-up must remain horizontal, to prevent additional flow resist-		
	ance.		
TR-PR06*	The phantom must match the size of an average human heart, 12x8x6cm		
	[LxWxD] (OpenStax College, 2013).		
TR-PR07	The phantom must resemble the weight of an average human heart, 250-		
	300g (female) or 300-350g (male) (OpenStax College, 2013).		
TR-PR08+	The phantom's ventricles must match the volume of average human vent-		
	ricles, between 40 and 180mL.		
TR-PR09+	The phantom's atria must match the volume of average human atria,		
	between 80 and 115mL.		
TR-PR10**	The phantom's ventricles must match the dimensions of an average human		
	heart, between 60-90x30-50x60-90mm [LxWxD]		
TR-PR11	The phantom cannot contain air bubbles.		

^{*}Length (L): longitudinal axis (apex-basal), width (W): transverse axis (septal - lateral), Depth (D): transverse axis (anterior-inferior).

3.3 Environmental requirements

¹⁷⁰ [todo] Determine how much noise output it may have.

[todo] Determine the height of the chair of the D-SPECT

In what environment is the system operating.

^{**}Length (L): longitudinal axis (apical-annular), width (W): transverse axis (septal-lateral (LV) or septal-medial (RV)), depth (D): transverse axis (apical-annular)

⁺Chiribiri et al. (2013b) uses LA/RA of 105mL and LV/RV of 120mL.

Table 3.6: Environmental requirements

This table summarises the environmental requirements, i.e. the restrictions set by the environment to the phantom.

Requirement number	Description
TR-ER01*	No high-density or "High-Z" material is to be used.
TR-ER02	The phantom's left and front side must remain free such that the D-SPECT
	camera image around it.
TR-ER03**	Any part of the flow set-up and/or phantom, that does not fit directly on the
	patient chair, must remain horizontal with the remaining parts between 63
	and 93cm.

^{*} High-density and "High-Z" material, i.e. material with high atomic number, tend to block gamma radiation emitted by SPECT tracers. Examples are Titanium (Ti), Chromium (Cr), Vanadium (V), Iron (Fe), or Lead (Pb); atom number >22, Lead is 82.

173 3.4 External interfaces

Table 3.7: External interface requirements

This table summarises the requirements for the external interface.

Requirement number	Description	
TR-EI01	Live plotting, at 10Hz, of system system flow and pressure.	
TR-EI02	Ability to adjust the output of the flow generators.	
TR-EI03	Serial communication between control/monitoring systems and external	
	interface.	

74 3.5 System qualities

- ¹⁷⁵ [todo] Specify pressure threshold.
- Define the quality of the system: such as reliability, availability, serviceability, security, scalab-
- ility, maintainability.

Table 3.8: System qualities

This table summarises the system qualities.

Requirement number	Description
TR-SQ01	The flow set-up must perform an emergency shut down when the arterial
	pressure exceeds specified threshold.
TR-SQ2	The flow set-up must perform an emergency shut down when the flow can-
	not be controlled, i.e. erratic.

8 3.6 Constraints and Assumptions

Design constraints that have been imposed and assumptions that have been made by the requirements engineering team when gathering and analyzijng the requirements.

^{**} The patient chair's seating is adjustable between 63 and 93cm.

Table 3.9

This table summarises constraints placed on the design and assumptions made to yield the system requirements.

Reference number	Description
TR-CA01	Cardiac artefacts, beating of the heart, is initially too complex. The phantom will be static.
TR-CA02	Breathing artefacts are not simulated in the phantom itself. A breathing thorax phantom can be used if available.
TR-CA03	Chest size, the amount of tissue between heart and scanner, is not simulated in the phantom itself. Thorax phantoms with modular rings are available to simulate tissue patients with varying BMIs.

A Appendix: Normal heart rate/blood pressure and myocardial perfusion rates by Uren et al. (1994)

The following tables summarise Uren et al. (1994).

Table A.1: Heart rate and blood pressure according to Uren et al. (1994).

This table shows the heart rate and blood pressure in (Uren et al., 1994) among 35 patients with single-vessel CAD and 21 control patients.

		Control	Stenosis
Heart wate [DDM]	Base line	65 ± 7	63 ± 10
Heart rate [BPM]	MV*	84 ± 10	88 ± 16
	Diastolic (B)	76 ± 8	74 ± 11
Pland procesure [mmHg]	Diastolic (MV)	75 ± 12	72 ± 12
Blood pressure [mmHg]	Systolic (B)	132 ± 19	148 ± 22
	Systolic (MV)	140 ± 20	153 ± 21

^{*} Maximal Vasodilation (MV)

Table A.2: Myocardial blood flow according to Uren et al. (1994).

This table shows the determined perfusion rates in (Uren et al., 1994), converted to ml/min/100g.

Control			Sten	osis	
		<40%	40-59 %	60-79%	>80%
Base line	113 ± 26	96 ± 19	125 ± 34	123 ± 57	92 ± 33
MV^*	337 ± 125	344 ± 147	207 ± 83	151 ± 37	122 ± 36

^{*} Maximal Vasodilation (MV)

B Appendix: Normal heart rate/blood pressure and myocardial perfusion rates by Ho et al. (2014)

The following tables summarise Ho et al. (2014).

Table B.1: Heart rate and blood pressure according to Ho et al. (2014).

This table shows the heart rate and blood pressure in (Ho et al., 2014) among 35 patients with documented CAD and 35 control (low-risk) patients. The 35 documented CAD patients are

			Control	Stenosis
	Heart rate [BPM]	Base line	66 ± 10	73 ± 14
	Heart rate [DrW]	MV*	88.54 ± 11.45	82 ± 16
from a previous study.		Diastolic (B)	63 ± 13	_
	Pland prosecure [mmHg]	Diastolic (MV)	56 ± 10	_
	Blood pressure [mmHg]	Systolic (B)	111 ± 17	_
		Systolic (MV)	105 ± 21	_

^{*} Maximal Vasodilation (MV)

186

Table B.2: Myocardial blood flow according to Ho et al. (2014).

This table shows the myocardial perfusion rates by Ho et al. (2014), given in mL/min/100g.

	Low risk	Historic ischaemia	Previous infarction
Global rest	74.08 ± 16.3	82.29 ± 16.87	81.98 ± 18.54
Global stress	141.92 ± 30.83	107.95 ± 25.25	106.93 ± 32.91

C Appendix: heart chamber volumes by Lin et al. (2008)

The following tables summarise Lin et al. (2008) who investigated the ventricles and atria of 103 non-obese adults using 1D, 2D, and 3D techniques.

Table C.1: Heart chamber volumes according to Lin et al. (2008).

		End-systolic volume [mL]	End-diastolic volume [mL]	Average wall thickness [mm]
LV	2D	65.2 ± 20.9	150 ± 35.6	7.3 ± 1.3
LV	3D	52.6 ± 19.2	143.6 ± 36.4	7.3±1.3
RV	2D	_	_	2.4 ± 0.7
ΝV	3D	82.10 ± 29.2	174.9 ± 48.0	2.4 ± 0.7
LA	2D	86.5 ± 29.1	-	
LA	3D	102.3 ± 24.4	_	_
RA	2D	_	_	
NΑ	3D	111.9 ± 29.1	_	_

Left Ventricle (LV), Right Ventricle (RV), Left Atrium (LA), Right Atrium (RA)

Table C.2: Heart chamber sizes according to Lin et al. (2008).

LV [mm]				RV [mm]		
		End-Systolic	End-Diastolic		End-Systolic	End-Diastolic
	SL	_	47.4 ± 4.7	SM	29.6 ± 5.3	37.0 ± 5.7
	AI	_	57.7 ± 5.5	AI	29.6 ± 5.3	72.6 ± 9.0
	AA	_	87.6 ± 9.3	AA	62.0 ± 8.8	77.7 ± 10.4

Left Ventricle (LV), Right Ventricle (RV), Septal-Lateral (SL), Anterior-Inferior (AI), Apical-Annular (AA), Septal-Medial (SM)

D Appendix: heart chamber volumes by Maceira et al. (2006a,b)

The following table summarises Maceira et al. (2006a,b), who investigated the left and right ventricles, respectively, of 120 patients.

Table D.1: Heart chamber volumes according to Lin et al. (2008).

		End-systolic volume [mL]	End-diastolic volume [mL]
	All	47 ± 10	142 ± 21
LV	Female	42 ± 9.5	128 ± 21
	Male	53 ± 11	156 ± 21
	All	50 ± 14	144 ± 23
RV	Female	43 ± 13	126 ± 21
	Male	57 ± 15	163 ± 25

Left Ventricle (LV), Right Ventricle (RV), Left Atrium (LA), Right Atrium (RA)

193

Bibliography

- Chiribiri, A., G. Morton, A. Schuster, E. Sammut, G. Hautvast, M. Breeuwer, N. Zarinabad and E. Nagel (2013a), Normal myocardial perfusion values on high-resolution pixel-wise perfusion maps, **vol. 15**, no.1, p. P21.
- Chiribiri, A., A. Schuster, M. Ishida, G. Hautvast, N. Zarinabad, G. Morton, J. Otton, S. Plein,
 M. Breeuwer, P. Batchelor et al. (2013b), Perfusion phantom: An efficient and reproducible
 method to simulate myocardial first-pass perfusion measurements with cardiovascular magnetic resonance, vol. 69, no.3, pp. 698–707.
- Ho, K.-T., H.-Y. Ong, G. Tan and Q.-W. Yong (2014), Dynamic CT myocardial perfusion measurements of resting and hyperaemic blood flow in low-risk subjects with 128-slice dual-source CT, vol. 16, no.3, pp. 300–306.
- Lin, F. Y., R. B. Devereux, M. J. Roman, J. Meng, V. M. Jow, A. Jacobs, J. W. Weinsaft, L. J. Shaw,
 D. S. Berman, T. Q. Callister et al. (2008), Cardiac chamber volumes, function, and mass as
 determined by 64-multidetector row computed tomography: mean values among healthy
 adults free of hypertension and obesity, vol. 1, no.6, pp. 782–786.
- Maceira, A., S. Prasad, M. Khan and D. Pennell (2006a), Normalized left ventricular systolic and
 diastolic function by steady state free precession cardiovascular magnetic resonance, vol. 8,
 no.3, pp. 417–426.
- Maceira, A. M., S. K. Prasad, M. Khan and D. J. Pennell (2006b), Reference right ventricular systolic and diastolic function normalized to age, gender and body surface area from steady-state free precession cardiovascular magnetic resonance, **vol. 27**, no.23, pp. 2879–2888.
- OpenStax College (2013), Anatomy and physiology, Rice University.
- Slart, R. (2015), Myocard perfusion: SPECT(CT) and PET(CT).
- Uren, N. G., J. A. Melin, B. De Bruyne, W. Wijns, T. Baudhuin and P. G. Camici (1994), Relation between myocardial blood flow and the severity of coronary-artery stenosis, **vol. 330**, no.25, pp. 1782–1788.