Λ(1810) 1/2⁺

$$I(J^P) = O(\frac{1}{2}^+)$$
 Status: ***

Almost all the recent analyses contain a P_{01} state, and sometimes two of them, but the masses, widths, and branching ratios vary greatly. See also the $\Lambda(1600)$ P_{01} .

Λ(1810) POLE POSITION

	Λ(1	1810) POLE P	05111	ON	
REAL PART	-	DOCUMENT ID)	TECN	COMMENT
• • • We do i	not use the followin	g data for averag	es, fits,	limits, e	tc. • • •
2097 + 40		$^{ m 1}$ KAMANO	15	DPWA	Multichannel
1780		ZHANG	13A	DPWA	Multichannel
$^{ m 1}$ From the $_{ m I}$	oreferred solution A	in KAMANO 15	. Soluti	ion B rep	ports M $=1841^{+3}_{-4}$ MeV
-2×IMAGII	NARY PART				
VALUE (MeV)		DOCUMENT ID)	TECN	COMMENT
• • • We do i	not use the followin	g data for averag	es, fits,	limits, e	tc. • • •
166^{+64}_{-12}		$^{ m 1}$ KAMANO	15	DPWA	Multichannel
64		ZHANG	13A	DPWA	Multichannel
1 From the I	oreferred solution A	in KAMANO 15	Solut	ion B Re	ports $\Gamma = 62^{+6}_{-4}$ MeV.
	residue in $N\overline{K}$ – $PHASE (^{\circ})$	\rightarrow $\Lambda(1810) \rightarrow$ DOCUMEN		TECI	N COMMENT
MODULUS	not use the followin	-			COMMENT
0.205	-63	1 KAMANC			VA Multichannel
	preferred solution A				
Normalized	residue in $N\overline{K}$ –	→ Λ(1810) →	$\Sigma \pi$		
		DOCUMEN.		TECI	N COMMENT
• • • We do i	not use the followin	g data for averag	es, fits,	limits, e	tc. • • •
0.0325	29	$^{ m 1}$ KAMANC) 1	5 DPV	VA Multichannel
$^{ m 1}$ From the $_{ m I}$	oreferred solution A	in KAMANO 15			
Normalized	residue in $N\overline{K}$ –	→ Λ (1810) →	Λη		
MODULUS	PHASE (°)	DOCUMEN [*]	T ID	TECI	
• • • We do i	not use the followin				
0.155	165	¹ KAMANC		5 DPV	VA Multichannel
¹ From the _I	preferred solution A	in KAMANO 15			
HTTD://DF	G.LBL.GOV	Dago 1		Crost	od: 5/30/2017 17:2
111 11 .//FL	G.LDL.GUV	Page 1		Creat	ed: 5/30/2017 17:2

MODULUS	PHASE (°)	DOCUMENT ID		TECN	COMMENT
		ng data for averages, f		nits, etc.	• • •
0.0937	-64	¹ KAMANO	15	DPWA	Multichannel
$^{ m 1}$ From the	preferred solution A	in KAMANO 15.			
Normalized	residue in $N\overline{K}$ -	$\rightarrow \Lambda(1810) \rightarrow \Sigma($	1385	$\delta)\pi$	
MODULUS	PHASE (°)	DOCUMENT ID	-	TECN	COMMENT
• • • We do	not use the followin	ig data for averages, f	its, lir	nits, etc.	• • •
0.244	-10	$^{ m 1}$ KAMANO	15	DPWA	Multichannel
$^{ m 1}{\sf From}$ the	preferred solution A	in KAMANO 15.			
		_			
		in KAMANO 15. $ \rightarrow \Lambda(1810) \rightarrow N^{-1} $	K *(8	92), <i>S</i> =	=1/2, <i>P</i> -wav
	residue in $N\overline{K}$ -	_	•	•	•
Normalized MODULUS	residue in NK – PHASE (°)	$\rightarrow \Lambda(1810) \rightarrow N^{-1}$		TECN	COMMENT
Normalized MODULUS	residue in NK – PHASE (°)	$\rightarrow \Lambda(1810) \rightarrow N^{\frac{1}{2}}$ DOCUMENT ID	its, lir	TECN mits, etc.	<u>COMMENT</u> • • •
Normalized MODULUS • • • We do 0.159	residue in NK – PHASE (°) not use the followin – 97	$ \begin{array}{c} $	its, lir	TECN mits, etc.	<u>COMMENT</u> • • •
Normalized MODULUS • • • We do 0.159	residue in $N\overline{K}$ - PHASE (°) not use the following	$ \begin{array}{c} $	its, lir	TECN mits, etc.	<u>COMMENT</u> • • •
Normalized MODULUS • • • We do 0.159 1 From the	residue in $N\overline{K}$ - PHASE (°) not use the followin -97 preferred solution A	$ \begin{array}{c} $	ïts, lir 15	TECN mits, etc. DPWA	COMMENT • • • Multichannel
Normalized MODULUS • • • We do 0.159 1 From the Normalized	residue in $N\overline{K}$ - PHASE (°) not use the followin -97 preferred solution A residue in $N\overline{K}$ -	A(1810) → NO DOCUMENT ID ag data for averages, f 1 KAMANO A in KAMANO 15.	its, lir 15 K*(8	TECN mits, etc. DPWA 92), S=	COMMENT Multichannel 3/2, P-wave
Normalized MODULUS • • • We do 0.159 1 From the Normalized MODULUS	residue in $N\overline{K}$ - PHASE (°) not use the followin -97 preferred solution A residue in $N\overline{K}$ - PHASE (°)		its, lir 15 K *(8	TECN mits, etc. DPWA 92), S= TECN	COMMENT Multichannel 3/2, P-wave COMMENT
Normalized MODULUS • • • We do 0.159 1 From the Normalized MODULUS	residue in $N\overline{K}$ - PHASE (°) not use the followin -97 preferred solution A residue in $N\overline{K}$ - PHASE (°)	The second of t	its, lir 15 K*(8	TECN mits, etc. DPWA 92), S= TECN mits, etc.	COMMENT Multichannel 3/2, P-wave COMMENT COMMENT

Λ(1810) MASS

VALUE (MeV)	DOCUMENT ID		TECN	COMMENT
1750 to 1850 (≈ 1810) OUR ESTIN	MATE			
1821 ± 10	ZHANG	13A	DPWA	Multichannel
1841 ± 20	GOPAL	80	DPWA	$\overline{K} N \rightarrow \overline{K} N$
1853 ± 20	GOPAL	77	DPWA	$\overline{K}N$ multichannel
1735 ± 5	CARROLL	76	DPWA	Isospin-0 total σ
1746 ± 10	PREVOST	74	DPWA	$K^- N \rightarrow \Sigma(1385) \pi$
1780 ± 20	LANGBEIN	72	IPWA	$\overline{K}N$ multichannel
• • • We do not use the following of	data for averages	s, fits,	limits, e	etc. • • •
1861 or 1953	¹ MARTIN	77	DPWA	$\overline{K}N$ multichannel
1755	KIM	71	DPWA	K-matrix analysis
1800	ARMENTERO	S70	HBC	$\overline{K} N \rightarrow \overline{K} N$
1750	ARMENTERO	S70	HBC	$\overline{K}N \rightarrow \Sigma \pi$
1690 ± 10	BARBARO	70	HBC	$\overline{K}N \rightarrow \Sigma \pi$
1740	BAILEY	69	DPWA	$\overline{K}N \rightarrow \overline{K}N$
1745	ARMENTERO	S68 B	HBC	$\overline{K}N \rightarrow \overline{K}N$
$^{ m 1}$ The two MARTIN 77 values are	from a T-matrix	x pole	and froi	m a Breit-Wigner fit.

Created: 5/30/2017 17:20

Λ(1810) WIDTH

VALUE (MeV)	DOCUMENT ID		TECN	COMMENT
50 to 250 (≈ 150) OUR ESTIMAT	E			
174 ± 50	ZHANG	13A	DPWA	Multichannel
164 ± 20	GOPAL	80	DPWA	$\overline{K} N \rightarrow \overline{K} N$
90 ± 20	CAMERON	78 B	DPWA	$K^- p \rightarrow N \overline{K}^*$
166 ± 20	GOPAL	77	DPWA	$\overline{K}N$ multichannel
46 ± 20	PREVOST	74	DPWA	$K^- N \rightarrow \Sigma(1385) \pi$
120 ± 10	LANGBEIN	72	IPWA	$\overline{K}N$ multichannel
• • • We do not use the following	data for average	s, fits,	limits, e	etc. • • •
535 or 585	$^{ m 1}$ MARTIN	77	DPWA	$\overline{K}N$ multichannel
28	CARROLL	76	DPWA	Isospin-0 total σ
35	KIM	71	DPWA	K-matrix analysis
30	ARMENTERO	S70		$\overline{K}N \rightarrow \overline{K}N$
70	ARMENTERO	S70		$\overline{K} N \rightarrow \Sigma \pi$
22	BARBARO	70	HBC	$\overline{K}N \rightarrow \Sigma \pi$
300	BAILEY	69	DPWA	$\overline{K}N \rightarrow \overline{K}N$
147	ARMENTERO	S68 B	HBC	
$^{ m 1}$ The two MARTIN 77 values are	from a T-matri	x pole	and froi	m a Breit-Wigner fit.

∧(1810) DECAY MODES

	Mode	Fraction (Γ_i/Γ)
$\overline{\Gamma_1}$	NK	20–50 %
Γ_2	$\Sigma \pi$	10–40 %
Γ3	$\Lambda\eta$	
Γ_4	ΞK	
Γ_5	$\Sigma(1385)\pi$	seen
Γ_6	$N\overline{K}^*(892)$	30–60 %
Γ_7	$N\overline{K}^*(892)$, $S{=}1/2$, $P{-}$ wave	
Γ ₈	$N\overline{K}^*(892)$, $S=3/2$, P -wave	

1/(1810) BRANCHING RATIOS

See "Sign conventions for resonance couplings" in the Note on \varLambda and \varSigma Resonances.

			Γ ₁	_L /Γ
DOCUMENT ID		TECN	COMMENT	
ZHANG	13A	DPWA	Multichannel	
GOPAL	80	DPWA	$\overline{K}N \rightarrow \overline{K}N$	
LANGBEIN	72	IPWA	$\overline{K}N$ multichannel	
	ZHANG GOPAL	ZHANG 13A GOPAL 80	ZHANG 13A DPWA GOPAL 80 DPWA	DOCUMENT IDTECNCOMMENTZHANG13ADPWAMultichannelGOPAL80DPWA $\overline{K}N \rightarrow \overline{K}N$

• • • We do not use the following	data for averages	, fits,	limits, e	etc. • • •	
0.225	¹ KAMANO	15	DPWA	Multichannel	
0.21 ± 0.04		77		See GOPAL 80	•
0.52 or 0.49	^			$\overline{K}N$ multichannel	
0.30	KIM			K-matrix analysis	
0.15	ARMENTEROS			•	
0.55	BAILEY	69		$\overline{K}N \rightarrow \overline{K}N$	
0.4	ARMENTERO:	S68 B	DPWA	$\overline{K}N \rightarrow \overline{K}N$	
$^{ m 1}$ From the preferred solution A in $^{ m 2}$ The two MARTIN 77 values are		c pole	and from	m a Breit-Wigner f	it.
$\Gamma(\Sigma\pi)/\Gamma_{total}$					Γ ₂ /Γ
VALUE	DOCUMENT ID		TECN	COMMENT	
ullet $ullet$ We do not use the following	data for averages	, fits,	limits, e	etc. • • •	
0.009	¹ KAMANO	15	DPWA	Multichannel	
$^{ m 1}$ From the preferred solution A i	n KAMANO 15.				
$\Gamma(\Lambda\eta)/\Gamma_{\text{total}}$					Г ₃ /Г
VALUE	DOCUMENT ID		TECN	COMMENT	J,
• • We do not use the following	data for averages	, fits,	limits, e	etc. • • •	
0.111	¹ KAMANO	15	DPWA	Multichannel	
$^{ m 1}$ From the preferred solution A in	n KAMANO 15.				
$\Gamma(\Xi K)/\Gamma_{\text{total}}$					Γ ₄ /Γ
VALUE	DOCUMENT ID		TECN	COMMENT	•,
• • We do not use the following					
0.051	¹ KAMANO	15	DPWA	Multichannel	
$^{ m 1}$ From the preferred solution A in	n KAMANO 15.				
$\Gamma(\Sigma(1385)\pi)/\Gamma_{total}$					Γ ₅ /Γ
VALUE	DOCUMENT ID		TECN	COMMENT	. 5/ .
• • We do not use the following	•				
0.600	¹ KAMANO	15	DPWA	Multichannel	
$^{ m 1}$ From the preferred solution A i	n KAMANO 15.				
$\Gamma(N\overline{K}^*(892), S=1/2, P-wave)$)/Γ _{total}				Γ ₇ /Γ
VALUE	DOCUMENT ID		TECN	COMMENT	
ullet $ullet$ We do not use the following	data for averages	, fits,	limits, e	etc. • • •	
0.003	$^{ m 1}$ KAMANO	15	DPWA	Multichannel	
$^{ m 1}$ From the preferred solution A i	n KAMANO 15.				

Created: 5/30/2017 17:20

$(\Gamma_i \Gamma_f)^{1/2} / \Gamma_{\text{total}} \text{ in } N \overline{K} \to \Lambda$	$(1810) \rightarrow \Sigma \pi$			$(\Gamma_1\Gamma_2)^{\frac{1}{2}}/\Gamma$
VALUE	DOCUMENT ID		TECN	COMMENT
-0.08 ± 0.05	ZHANG	13A	DPWA	Multichannel
-0.24 ± 0.04	GOPAL	77	DPWA	$\overline{K}N$ multichannel
• • • We do not use the followi	ng data for average	es, fits,	limits, e	etc. • • •
+0.25 or +0.23	$^{ m 1}$ MARTIN	77	DPWA	$\overline{K}N$ multichannel
< 0.01	LANGBEIN	72	IPWA	$\overline{K}N$ multichannel
0.17	KIM	71		K-matrix analysis
+0.20	² ARMENTERO)S70	DPWA	$\overline{K} N o \mathbf{\Sigma} \pi$
-0.13 ± 0.03	BARBARO	70	DPWA	$\overline{K}N \rightarrow \Sigma \pi$
$^{ m 1}$ The two MARTIN 77 values	are from a T-matr	ix pole	and from	m a Breit-Wigner fit.

¹The two MARTIN 77 values are from a T-matrix pole and from a Breit-Wigner fit.

²The published sign has been changed to be in accord with the baryon-first convention.

$(\Gamma_i \Gamma_f)^{\frac{1}{2}} / \Gamma_{\text{total}} \text{ in } N\overline{K} \to 1$	$\Lambda(1810) \rightarrow \Sigma(1385)$	π			$(\Gamma_1\Gamma_5)^{\frac{1}{2}}/\Gamma$
<u>VALUE</u>	DOCUMENT ID		TECN	COMMENT	
$+0.18\pm0.10$	PREVOST	74	DPWA	$K^-N \rightarrow$	$\Sigma(1385)\pi$

$(\Gamma_i \Gamma_f)^{\frac{1}{2}} / \Gamma_{\text{total}} \text{ in } N\overline{K} \to K$	$\Lambda(1810) \rightarrow N\overline{K}^*(8)$	92),	<i>S</i> =1/2	, P-wave	$(\Gamma_1\Gamma_7)^{\frac{1}{2}}/\Gamma$
VALUE	DOCUMENT ID		TECN	COMMENT	
-0.14 ± 0.03	1 CAMERON	78B	DPWA	$K^-p \rightarrow$	N <i>K</i> *

 $^{^{1}}$ The published sign has been changed to be in accord with the baryon-first convention.

$(\Gamma_i \Gamma_f)^{\frac{1}{2}} / \Gamma_{\text{total}} \text{ in } N\overline{K} \rightarrow \Lambda(1810) \rightarrow N\overline{K}^*(892), S=3/2, P-\text{wave } (\Gamma_1 \Gamma_8)^{\frac{1}{2}} / \Gamma_{\text{total}}$

VALUE	•	DOCUMENT ID	- ,,		COMMENT
$+0.38\pm0.06$		ZHANG	13A	DPWA	Multichannel
$+0.35\pm0.06$		CAMERON	78 B	DPWA	$K^- p \rightarrow N \overline{K}^*$

Λ(1810) REFERENCES

KAMANO ZHANG GOPAL CAMERON	15 13A 80 78B	PR C92 025205 PR C88 035205 Toronto Conf. 159 NP B146 327	H. Kamano <i>et al.</i> H. Zhang <i>et al.</i> G.P. Gopal W. Cameron <i>et al.</i>	(ANL, OSAK) (KSU) (RHEL) IJP (RHEL, LOIC) IJP
GOPAL	77 77	NP B119 362	G.P. Gopal <i>et al.</i>	(LOIC, RHEL) IJP
MARTIN	77	NP B127 349	B.R. Martin, M.K. Pidcock, R.G.	,
Also		NP B126 266	B.R. Martin, M.K. Pidcock	`(LOUC)
Also		NP B126 285	B.R. Martin, M.K. Pidcock	(LOUC) IJP
CARROLL	76	PRL 37 806	A.S. Carroll et al.	`(BNL)́ I
PREVOST	74	NP B69 246	J. Prevost et al.	(SACL, CERN, HEID)
LANGBEIN	72	NP B47 477	W. Langbein, F. Wagner	(MPIM) IJP
KIM	71	PRL 27 356	J.K. Kim	(HARV) IJP
Also		Duke Conf. 161	J.K. Kim	(HARV) IJP
Hyperon Re	esonanc	ces, 1970		
ARMENTEROS	70	Duke Conf. 123	R. Armenteros et al.	(CERN, HEID, SACL) IJP
Hyperon Re	esonanc	ces, 1970		
BARBARO Hyperon Re			A. Barbaro-Galtieri	(LRL) IJP
BAILÉÝ		Thesis UCRL 50617	J.M. Bailey	(LLL) IJP
ARMENTEROS	68B	NP B8 195	R. Armenteros et al.	(CERN, HEID, SACL) IJP

Created: 5/30/2017 17:20