CS 2420: Sorting Algorithms

Dr. Tsung-Wei (TW) Huang

Department of Electrical and Computer Engineering

University of Utah, Salt Lake City, UT

Outline

- In this topic, we will introduce sorting, including:
 - Definitions
 - Assumptions
 - In-place sorting
 - Sorting techniques and strategies
 - Overview of run times

- Lower bound on run times
- Define inversions and use this as a measure of unsortedness

Definition

Sorting is the process of:

Taking a list of objects which could be stored in a linear order

$$(a_0, a_1, ..., a_{n-1})$$

e.g., numbers, and returning an reordering

$$(a'_0, a'_1, ..., a'_{n-1})$$

such that

$$a'_0 \leq a'_1 \leq \cdots \leq a'_{n-1}$$

The conversion of an Abstract List into an Abstract Sorted List

Definition

In these topics, we will assume that:

- Arrays are to be used for both input and output,
- We will focus on sorting objects and leave the more general case of sorting records based on one or more fields as an implementation detail

In-place Sorting

Sorting algorithms may be performed *in-place*, that is, with the allocation of at most $\Theta(1)$ additional memory (e.g., fixed number of local variables)

• Some definitions of *in place* as using o(n) memory

Other sorting algorithms require the allocation of second array of equal size

• Requires $\Theta(n)$ additional memory

We will prefer in-place sorting algorithms

Run-time

The run time of the sorting algorithms we will look at fall into one of three categories:

$$\Theta(n)$$
 $\Theta(n \ln(n))$ $O(n^2)$

We will examine average- and worst-case scenarios for each algorithm

The run-time may change significantly based on the scenario

Run-time

We will review the more traditional $O(n^2)$ sorting algorithms:

Insertion sort, Bubble sort, Selection sort

Some of the faster $\Theta(n \ln(n))$ sorting algorithms:

Heap sort, Quicksort, and Merge sort

And linear-time sorting algorithms

- Bucket sort and Radix sort
- We must make assumptions about the data

Sorting

- The most fundamental algorithm in all subjects ...
- Goal: puts elements in a certain order
 - Increasing order: 1, 2, 5, 6, 8, 90, 123
 - Decreasing order: 123, 90, 8, 6, 5, 2, 1
- Many algorithm paradigms
 - Bubble sort
 - Selection sort
 - Merge sort
 - Qsort
 - ...
- Today, new sorting algorithms are being invented

Selection Sort

- Two loops
 - Outer loop to repeat n-1 times
 - Inner loop to find the minimum element

Selection Sort Implementation

```
void brute_force(std::vector<int>& D, int beg, int end) {
  int max = std::numeric_limits<int>::min();
  for (int i = beg; i < end; ++i) {</pre>
    int min_v = D[i];
    int min_j = i;
    for (int j = i+1; j < end; ++j) {
      if(D[j] < min_v) {</pre>
        min_v = D[j];
        min_j = j;
    std::swap(D[i], D[min_j]);
```

Time complexity $O(N^2)$

Using Divide and Conquer: Merge Sort

- **Divide**: If S has at two or more elements (nothing needs to be done if S has zero or one elements), remove all the elements from S and put them into two sequences, S_L and S_R , each containing about half of the elements of S. (i.e. S_L contains the first $\lceil n/2 \rceil$ elements and S_R contains the remaining $\lfloor n/2 \rfloor$ elements.
- Recurse: Recursively sort sequences S_L and S_R.
- Conquer: Put back the elements into S by merging the two sorted sequences S_L and S_R into a sorted sequence.

Illustration

Illustration

Illustration

Merge Sort Complexity

- Run Time Analysis
 - At each level in the binary tree created for Merge Sort, there are n elements, with O(1) time spent at each element
 - O(n) running time for processing one level
 - The height of the tree is O(log n)

Therefore, the time complexity is O(nlog n)

Summary

Introduction to sorting, including:

- Assumptions
- In-place sorting (O(1) additional memory)
- Sorting techniques
 - insertion, exchanging, selection, merging, distribution
- Run-time classification: $O(n) O(n \ln(n)) O(n^2)$

Overview of proof that a general sorting algorithm must be $\Omega(n \ln(n))$

We will have out second Midterm next Week (starting on 11/22)