

Computational Physics & Mechanics

Peridynamic Modeling of the Failure of Heterogeneous Solids

Stewart Silling

Computational Physics Department, 9232 Sandia National Laboratories Albuquerque, New Mexico 87185-0820 sasilli@sandia.gov

ARO Workshop on Analysis and Design of New Engineered Materials and Systems with Applications

February 5, 2002

Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockeed Martin Company, for the United States Department of Energy under contract DE-AC04-94AL85000.

Need for a new theory of solid mechanics

Computational Physics & Mechanics

- Classical formulation uses partial differential equations.
- The necessary spatial derivatives <u>may not exist</u> everywhere in the body.
- Example: Fracture (*u* is discontinuous)

 Special techniques (of which there are many) are needed to model cracks in the classical theory.

Goal

Develop a model in which exactly the same equations hold everywhere, regardless of any discontinuities.

To do this, get rid of spatial derivatives.

Basic idea of the peridynamic theory

Computational Physics & Mechanic

• Equation of motion:

$$\rho \ddot{u} = \dot{L}_{u} + \dot{p}$$

where L_{μ} is a functional.

• A useful special case:

$$L_{u}(\underline{x},t) = \int_{R} f(\underline{u}(\underline{x}',t) - \underline{u}(x,t), \underline{x}' - \underline{x}) dV_{\underline{x}'}.$$

where \underline{x} is any point in the reference configuration, and \underline{f} is a vector-valued function.

More concisely:

$$L = \int_{R} f(\underline{u}' - \underline{u}, \underline{x}' - \underline{x}) dV'.$$

- f is the <u>pairwise force</u> <u>function</u>. It contains all constitutive information.
- It is convenient to assume that
 f vanishes outside some
 horizon δ.

Microelastic materials

A material is <u>microelastic</u> if, holding any \underline{x} fixed, the work done by \underline{f} in moving any \underline{x} ' around a closed path is 0.

In this case, Stokes' Theorem implies:

◆ There exists a scalar-valued function w, called the micropotential, such that

$$f(\eta, \xi) = \frac{\partial w}{\partial \eta}(\eta, \xi)$$

where

$$\xi = x' - x$$

$$\eta = \underline{u}' - \underline{u}$$

Can further show:

◆ There exists a scalar function *H* such that

$$f(\eta, \xi) = (\xi + \eta) H(|\xi + \eta|, \xi)$$

Interpretation of microelasticity

So the micropotential can depend only on:

- the current separation distance $|\xi + \eta|$
- the reference separation vector ξ .

Meaning: any two points \underline{x} and \underline{x} are connected by a (possibly nonlinear) spring.

The spring properties can depend on the reference separation vector.

- Can prove: "microelastic implies macroelastic":
 - Work done by external forces is stored in a recoverable form

Some material models

Computational Physics & Mechanics

- Microelastic
 - Each pair of particles is connected by a spring.
 - Linear
 - Bilinear
 - etc.

- Brittle microelastic
 - Springs break irreversibly

- Microplastic
 - Permanent bond deformation upon unloading.

 All of the above can have explicit rate dependence.

How bond breakage leads to material fracture

Computational Physics & Mechanics

Continuum damage is caused by deformation:

Broken springs: $\left|\xi + \eta\right| - \left|\xi\right| \ge \epsilon$

• This causes a change in the "stress-strain" curve:

 Need to understand the mathematical conditions under which discontinuities can emerge.

Determination of constitutive parameters

Computational Physics & Mechanics

- Linear microelastic:
 - Basic:
 - Spring constant is fit to wave speed data.
 - Advanced:
 - Can fit wave dispersion data if available.
 - Bond properties can depend on initial bond length.
- Microplastic:
 - Fit to uniaxial stress-strain curve.
- Bond breakage properties:
 - Fit breakage stretch to fracture toughness data.

Sum over bonds that are broken by the fracture:

Fracture energy = \sum bond breakage energy

Numerical solution method for dynamic problems

- Theory lends itself to mesh-free numerical methods.
 - No elements.
 - Changing connectivity.
- Brute-force integration in space.

$$\rho \ddot{u}^{i} = \sum_{\left| x^{j} - x^{i} \right| < \delta} f(u^{j} - u^{i}, x^{j} - x^{i}) (\Delta x)^{3}$$

- Solution method has been found to scale well (almost linear speedup) when run on the Intel Teraflops computer at Sandia.
- Stable time step does not depend on mesh spacing (!)

Peridynamic fracture model is "autonomous"

- Cracks grow when and where it is energetically favorable for them to do so.
- Path, growth rate, arrest, branching, mutual interaction are predicted by the constitutive model and equation of motion (alone).
 - No need for any externally supplied relation controlling these things.
- Any number of cracks can occur and interact.
- Interfaces between materials have their own bond properties.

Mode-III crack tip field

- Same equations are applied everywhere.
- Crack faces have cusp shape near tip.
 - No need for additional hypotheses (e.g. Barenblatt).

Surface into which a plane deforms

Enlarged view of crack tip

Dynamic brittle fracture

Computational Physics & Mechanics

Stretching of a PMMA plate¹

1. J. Fineberg and M. Marder, Physics Reports 313 (1999) 1-108

Dynamic fracture in a tough steel: Kalthoff-Winkler experiment

Computational Physics & Mechanics

Code predicts correct crack angles.

Perforation of thin ductile targets

Computational Physics & Mechanics

• Peak force occurs at about 0.4ms (end of drilling phase):¹

1. Not all of the target is shown.

Dynamic fracture in a balloon

Nonhomogeneous materials: Perforation of reinforced concrete

Nonhomogeneous materials: Perforation of a fabric

Computational Physics & Mechanics

• Model includes fiber breakage, contact, and adhesion:

Nonhomogeneous materials: Fracture in a composite unit cell

- Crack path, growth, and stability depend only on material properties.
- No need for separate laws governing crack growth.

Initial condition

Weak matrix

Weak interface

Weak fiber

Layered material example: Where does failure first occur?

- Layers have identical properties.
- Interfaces have half the strength of the layers.

Initial failure site and mode depends on loading rate

Computational Physics & Mechanics

Low rate

High rate

Correspondence with atomic-scale physics

- Can a constitutive model be derived rigorously from an atomic-scale physical description?
 - Classical theory: people have been trying for a long time.
 - Peridynamic theory may be a more natural way to do this because of its similarity to molecular dynamics.
 - This is currently being attempted by Bhattacharya (Caltech) and Abeyaratne (MIT).
 - May lead to a good way to do multiscale modeling.

Conclusions

Computational Physics & Mechanics

- Method appears to have the potential to model:
 - Heterogeneous materials of great complexity.
 - Complex fracture systems without the need to keep track of each crack.

Possible research directions

- Mechanics of heterogeneous materials
 - Understand how failure progresses from one material to another.
 - Improved material models.
 - Validation against interface crack data.
 - Fatigue cracks.
 - Multiscale modeling.
 - Learn how to do complex material systems.
- Theory and numerical solutions
 - Improved solvers.
 - Multigrid, iterative, implicit, etc.