Score-Based Multimodal Autoencoders

Week 1

Konstantin Yakovlev ¹

¹MIPT Moscow, Russia

MIPT 2023

Week 1 MIPT 2023

Score-Based Multimodal Autoencoders

Challenge: conditioning on more modalities often reduces the quality of the generated modality.

Solution: instead of learning a joint posterior, try to model a joint prior $p_{\theta}(\mathbf{z}_{1:M})$. This allows us to better model correlation among modalities.

The Method: Assume that

$$p(\mathbf{x}_{1:M}|\mathbf{z}_{1:M}) = \prod_{k=1}^{M} p(\mathbf{x}_k|\mathbf{z}_k),$$

$$q(\mathbf{z}_{1:M}|\mathbf{x}_{1:M}) = \prod_{k=1}^{M} q(\mathbf{z}_k|\mathbf{x}_k).$$

Then, $\mathrm{ELBO} = \sum_k \mathrm{ELBO}_k$ if the prior is decomposable.

Two-stage training:

- Train the autoencoders separately, assuming that $p(\mathbf{z}_m) = \mathcal{N}(0, \mathbf{I})$.
- Freeze the autoencoders and leran a joint prior $p(\mathbf{z}_{1:M})$. More precisely, we need a score function $s_{\theta}(\mathbf{z}_{1:M})$ to sample from the prior.

Finally, it becomes trivial to sample from any subset of missing modalities using Langevin dynamics.

Week 1 MIPT 2023

Selecting dependent modalities (proposed)

Task: remove independent modalities from $\mathbf{x}_{1:M}$. Are we really intended to solve it?

Solution: learn the structure of $s_{\theta}(\mathbf{z}_{1:M}) = \sum_{i \in \mathcal{I}} s_{\theta}(\mathbf{z}_i) + s_{\theta}(\mathbf{z}_{i:i \in \mathcal{D}})$.

The Method: greedily remove modalities one by one, decreasing the score matching objective. Initialize \mathcal{D}_0 with $\{1, \ldots, M\}$.

Week 1 MIPT 2023 3