What is Bayes risk? What is a Bayes rule?
BICKEL AND DOCKSUM
What is minimax risk?
BICKEL AND DOCKSUM
What is mean squared error and how does it decompose?
BICKEL AND DOCKSUM

Definition. Given a loss function l and a decision procedure δ and a set of probability distributions P_{θ} parameterized by θ with a distribution P' on the θ the Bayes risk is

$$r(\delta) = \mathbb{E}[l(\delta(X), \theta)]$$

where the expectation is taken over P' and P_{θ} .

Definition. A Bayes rule is a decision procedure δ^* with

$$r(\delta^*) = \min_{\delta} r(\delta)$$

Definition. Given a loss function l and a decision procedure δ and a set of probability distributions P_{θ} , the max risk is

$$R(\delta) = \sup_{\theta} \mathbb{E}[l(\delta(X), \theta)]$$

Definition. The minimax procedure is a procedure δ^* with

$$R(\delta^*) = \min_{\delta} r(\delta)$$

Definition. The mean squared error is the risk under the quadratic loss function:

$$R(\delta(X), \theta) = \mathbb{E}[(\delta(X) - \theta)^2] = Bias(\delta)^2 + Var(\delta)$$

What are one parameter exponential families?
BICKEL AND DOCKSUM
What is a risk set?
BICKEL AND DOCKSUM
What is an admissable strategy set?
BICKEL AND DOCKSUM

Definition. Probability densities with the form

$$p(x,\theta) = h(x) \exp\{\eta(\theta)T(x) - B(\theta)\}\$$

Example. Normal, Binomial, Poisson, exponential.

Definition. The risk set is the set of risk vectors for every decision rule

$$S = \{ (R(\theta, \delta))_{\theta \in \Theta} \mid \delta \in \mathcal{D} \}$$

where \mathcal{D} is the set of decision rules and $R(\theta, \delta)$ is the risk for the particular value of θ .

Remark. The risk set is a finite set of points in $\mathbb{R}^{|\Theta|}$ if the action space for the decision rules is finite. If stochastic decisions are allowed, the risk set becomes the convex hull of this finite set. For different priors π , the risk for a stochastic strategy is $\langle \pi, (R(\delta, \theta)) \rangle$, hence the level sets of Bayes risk are $\langle \pi, \cdot \rangle = c$. The Bayes estimator is the solution to this linear programming problem over a convex hull and hence is either on a line of the boundary or on a corner. Hence, deterministic strategies do well enough for Bayes risk.

Remark. For minimax strategies, the problem, geometrically, is about finding the smallest square that fits below the convex hull (bounded by non-negative weights on each of the θ dimensions).

Definition.		

What is the relationship between minimax risk and Bayes i	risk?
BICKEL AND DOC	KSUM
When are stochastic decision an improvement on determiniones? BICKEL AND DOC	

Theorem.		
Definition.		
Deminion.		