CHEM 242 - Lecture 9

Overheads: - Outline

Model: to show anti elimination

Recap Friday: E2 vs E1 Reactions

Other factors in predicting E1 vs E2:

2) Base Strength:

E2 needs strong base (OH or better)

⇒ high concentration helps increase rate

E1: weak base is ok (eg H₂O)

⇒ NaHCO₃, Na₂CO₃ are weak bases, but not good nucleophiles ∴ help E1 ⇔ recall Lab 2: side product with lower BP = E1 product

3) Solvents: polar aprotic = E2 protic = E1 same reasons as $S_N 1 \ vs \ S_N 2$

Stereochemistry of Elimination Reactions (cis vs trans)

1) E1: Zaitsev: most stable alkene formed

2) E2: more complicated!

- ⇒ reaction is <u>concerted</u> (one step)
- : orbitals must line up in same plane (*ie* β-H & LG must be in same plane)

Two ways possible:

Consequences: - depends on the molecule

(2) If β -C is a CH group (only one "anti" possible!)

But... E1: both give E > Z : stereoselective

Summary: E1 \longrightarrow E (or trans) > Z (or cis) E2 for R-CH₂-CR₂-Br \longrightarrow E > Z E2 for R₂-CH-CR₂-Br \longrightarrow anti elimination controls E or Z

Elimination from Cyclohexanes

- for E2 to go by anti elim., H & LG must both be axial (even though axial is BAD)

