ϕ (1020)

$$I^{G}(J^{PC}) = 0^{-}(1^{-})$$

ϕ (1020) MASS

VALUE (M			<u>EVTS</u>		DOCUMENT ID		TECN	COMMENT
		OUR A			1/07)/DE\/	1.0	CLADA	+ - 40 40
1019.457			610k	1	KOZYREV	16		$e^+e^- \rightarrow \kappa_S^0 \kappa_L^0$
1019.462			28k		LEES	14H		$e^+e^- \rightarrow K_S^{0}K_L^{0}\gamma$
1019.51				2	LEES	13Q	BABR	$e^+e^- \rightarrow K^+K^-\gamma$
1019.30	± 0.02	± 0.10	105k		AKHMETSHIN	06	CMD2	$0.98-1.06 e^{+}e^{-} \rightarrow \pi^{+}\pi^{-}\pi^{0}$
1019.52	± 0.05	± 0.05	17.4k		AKHMETSHIN	05	CMD2	$0.60-1.38 e^{+}e^{-} \rightarrow \eta \gamma$
1019.483	± 0.011	± 0.025	272k	3	AKHMETSHIN	04	CMD2	$e^+e^- \rightarrow \kappa_I^0 \kappa_S^0$
1019.42	± 0.05		1900k	4	ACHASOV	01E	SND	$e^+e^- \rightarrow K^+K^-$
								$\kappa_S \kappa_L$, $\pi^+ \pi^- \pi^0$
1019.40	± 0.04	±0.05	23k		AKHMETSHIN	01 B	CMD2	$e^+e^- \rightarrow \eta \gamma$
1019.36	± 0.12			_	ACHASOV	00 B	SND	$\mathrm{e^{+}e^{-}} ightarrow ~\eta \gamma$
1019.38	±0.07	± 0.08	2200	6	AKHMETSHIN	99F	CMD2	$e^+e^- \rightarrow \pi^+\pi^- \geq$
1019.51	±0.07	⊥0.10	11169		AKHMETSHIN	08	CMD2	$e^{+}e^{-} \pi^{+}\pi^{-}\pi^{0}$
1019.51	± 0.07	⊥0.10	11109		BARBERIS	98	_	$450 pp \rightarrow$
1013.0					<i>5,</i> ((<i>b</i> 2(()	30	011120	$pp2K^{+}2K^{-}$
1019.42	± 0.06		55600		AKHMETSHIN	95	CMD2	$e^+e^- \rightarrow hadrons$
1019.7	± 0.3		2012		DAVENPORT	86	MPSF	$400 pA \rightarrow 4KX$
1019.7	±0.1	± 0.1	5079		ALBRECHT	85 D	ARG	10 $e^+e^- \rightarrow$
1019.3	± 0.1		1500		ARENTON	82	AEMS	K^+K^-X 11.8 polar. $pp \rightarrow$
1019.67	± 0.17		25080	7	PELLINEN	82	RVUE	KK
1019.52	± 0.13		3681		BUKIN	7 8C	OLYA	$e^+e^- ightarrow hadrons$
• • • W	e do no	t use the	following	dat	a for averages, f	its, li	mits, etc	i. • • •
1019.48	+0.01				LEES	13F	BABR	$D^+ \rightarrow K^+ K^- \pi^+$
1019.441		3 ± 0.080	542k	8	AKHMETSHIN			1.02 $e^+e^- \rightarrow$
				a				$D^0 \stackrel{K^+}{\rightarrow} \stackrel{K^-}{K^0} K^+ K^-$
1019.63			12540	9	AUBERT,B	05J		
1019.8	± 0.7				ARMSTRONG	86	OMEG	85 $\pi^+/pp \rightarrow$
1020.1	± 0.11		5526	9	ATKINSON	86	OMEG	$\pi^{+}/p4Kp$ 20–70 γp
	± 1.0		3320		BEBEK	86		$e^+e^- \rightarrow \Upsilon(4S)$
1019.7		}	642k	10	DIJKSTRA	86		100–200 π^{\pm} , \overline{p} , p ,
1019.411	⊥0.000	,	042K		DISKSTRA	00	JI LC	K^{\pm} , on Be
1020.9	± 0.2			9	FRAME	86	OMEG	13 $K^+p \rightarrow \phi K^+p$
1021.0	± 0.2			9	ARMSTRONG	83 B	OMEG	
				a			01.150	$K^-K^+\Lambda$
1020.0	± 0.5			9	ARMSTRONG	83B	OMEG	$18.5 K^- p \rightarrow K^- K^+ \Lambda$
1019.7	± 0.3			9	BARATE	83	GOLI	$190 \pi^{-} \text{Be} \rightarrow 2\mu \text{X}$
	± 0.2	± 0.5	766		IVANOV	81	OLYA	1–1.4 $e^+e^ \to$
								K^+K^-

Page 1

1019.4	± 0.5	337	COOPER	78 B	HBC	$0.7-0.8 \overline{p}p \rightarrow$
			0			$\kappa^0_S\kappa^0_L\pi^+\pi^-$
1020	± 1	383	⁹ BALDI	77		$10 \pi^- p \rightarrow \pi^- \phi p$
1018.9	± 0.6	800	COHEN	77	ASPK	$6 \pi^{\pm} N \rightarrow K^{+} K^{-} N$
1019.7	± 0.5	454	KALBFLEISCH	76	HBC	$2.18 K^- p \rightarrow \Lambda K \overline{K}$
1019.4	± 0.8	984	BESCH	74	CNTR	$2 \gamma p \rightarrow p K^+ K^-$
1020.3	± 0.4	100	BALLAM	73	HBC	$2.8 – 9.3 \gamma p$
1019.4	± 0.7			73 B		$\pi^- p \rightarrow \phi n$
1019.6	± 0.5	120	¹¹ AGUILAR	72 B	HBC	$3.9,4.6 \ K^- p \rightarrow$
			11			$\Lambda K^+ K^-$
1019.9	± 0.5	100	¹¹ AGUILAR	72 B	HBC	3.9,4.6 $K^-p \rightarrow$
						$K^- p K^+ K^-$
1020.4	± 0.5	131	COLLEY	72	HBC	$10 K^+ p \rightarrow K^+ p \phi$
1019.9	± 0.3	410	STOTTLE	71	HBC	$2.9 K^- p \rightarrow$
						$\Sigma/\Lambda K\overline{K}$

¹ Using a vector meson dominance model with contribution from $\phi(1020)$ and higher mass excitations of $\rho(770)$, $\omega(782)$, and $\phi(1020)$.

ϕ (1020) WIDTH

VALUE (MeV)	EVTS	DOCUMENT ID		TECN	COMMENT
4.247±0.016 OUR A	VERAGE	Error includes scal	e fact	tor of 1.2	2.
4.240 ± 0.017	610k	KOZYREV	16	CMD3	$e^+e^- \rightarrow \kappa_S^0 \kappa_I^0$
$4.205\!\pm\!0.103\!\pm\!0.067$	28k	¹ LEES	14H	BABR	$e^+e^- \rightarrow \kappa_S^{0} \kappa_I^{0} \gamma$
$4.29 \pm 0.04 \pm 0.07$		² LEES	13Q	BABR	$e^+e^- \rightarrow K^+K^-\gamma$
$4.30 \pm 0.06 \pm 0.17$	105k	AKHMETSHIN	06	CMD2	$0.98-1.06 \ e_0^+ e^- \rightarrow$
$4.280 \pm 0.033 \pm 0.025$	272k	³ AKHMETSHIN	04	CMD2	$e^+e^- \rightarrow K_L^0 K_S^0$
4.21 ± 0.04	1900k	⁴ ACHASOV	01E	SND	$e^+e^- ightarrow K^+K^-$,
					$K_S K_L$, $\pi^+\pi^-\pi^0$
4.44 ± 0.09	55600	AKHMETSHIN	95	CMD2	$e^+e^- o$ hadrons
4.5 ± 0.7	1500	ARENTON	82	AEMS	11.8 polar. $pp \rightarrow KK$
4.2 ± 0.6	766	⁵ IVANOV	81	OLYA	$1-1.4 e^+e^- \rightarrow K^+K^-$

 $^{^2}$ Using a phenomenological model based on KUHN 90 with a sum of Breit-Wigner resonances for $\rho(770),~\omega(782),~\phi(1020)$ and their higher mass excitations.

³ Update of AKHMETSHIN 99D

 $^{^4}$ From the combined fit assuming that the total $\phi(1020)$ production cross section is saturated by those of K+K-, K_S K_L, $\pi^+\pi^-\pi^0$, and $\eta\gamma$ decays modes and using ACHASOV 00B for the $\eta\gamma$ decay mode.

 $^{^5\,\}text{Using a total width of }4.43\pm0.05\,\,\text{MeV}.$ Systematic uncertainty included.

 $^{^6}$ Using a total width of 4.43 \pm 0.05 MeV.

⁷ PELLINEN 82 review includes AKERLOF 77, DAUM 81, BALDI 77, AYRES 74, DE-GROOT 74.

8 Strongly correlated with AKHMETSHIN 04.

⁹ Systematic errors not evaluated.

¹⁰Weighted and scaled average of 12 measurements of DIJKSTRA 86.

¹¹ Mass errors enlarged by us to Γ/\sqrt{N} ; see the note with the $K^*(892)$ mass.

80 DM1 $e^+e^- \rightarrow \pi^+\pi^-\pi^0$

⁵ CORDIFR

4.5	± 0.0		CONDILIN	00	DIVIT	$e^+e^- \rightarrow \pi^+\pi^-\pi^-$
4.36	± 0.29	3681	⁵ BUKIN	78 C	OLYA	$e^+e^- ightarrow $ hadrons
4.4	± 0.6	984	⁵ BESCH	74	CNTR	$2 \gamma p \rightarrow p K^+ K^-$
4.67	± 0.72	681	⁵ BALAKIN	71	OSPK	$e^+e^- ightarrow $ hadrons
4.09	± 0.29		BIZOT	70	OSPK	$e^+e^- ightarrow $ hadrons
• • •	• We do not use	the followi	ng data for averag	ges, fit	s, limits,	etc. • • •
4.37	± 0.02		LEES			$D^+ \rightarrow K^+ K^- \pi^+$
4.24	$\pm 0.02\ \pm 0.03$	542k	⁶ AKHMETSHIN			1.02 $e^+e^- \to K^+K^-$
4.28	± 0.13	12540	⁷ AUBERT,B	05 J	BABR	$D^0 ightarrow \overline{K}{}^0 K^+ K^-$
4.45	± 0.06	271k	DIJKSTRA	86	SPEC	$100~\pi^-\mathrm{Be}$
3.6	± 0.8	337	⁵ COOPER	78 B	HBC	
						$\kappa^0_S \kappa^0_L \pi^+ \pi^-$
4.5	± 0.50		^{5,7} AKERLOF	77	SPEC	$400 pA \rightarrow K^+K^-X$
4.5	± 0.8	500	^{5,7} AYRES	74	ASPK	$36~\pi^-p \rightarrow$
						$\mathit{K}^{+}\mathit{K}^{-}\mathit{n},\mathit{K}^{-}\mathit{p} \rightarrow$
						$\kappa^+ \kappa^- \Lambda / \Sigma^0$
3.81	± 0.37		COSME	74 B	OSPK	$e^+e^- \rightarrow \kappa_I^0 \kappa_S^0$
3.8	± 0.7	454	⁵ BORENSTEIN			$2.18 K^- p \rightarrow K \overline{K} n$
_						*

 $^{^1}$ Using a vector meson dominance model with contribution from $\phi(1020)$ and higher mass excitations of $\rho(770),~\omega(782),~{\rm and}~\phi(1020).$

4.3 + 0.6

 $^{^2}$ Using a phenomenological model based on KUHN 90 with a sum of Breit-Wigner resonances for $\rho(770),~\omega(782),~\phi(1020)$ and their higher mass excitations.

³ Update of AKHMETSHIN 99D

⁴ From the combined fit assuming that the total $\phi(1020)$ production cross section is saturated by those of K^+K^- , K_SK_L , $\pi^+\pi^-\pi^0$, and $\eta\gamma$ decays modes and using ACHASOV 00B for the $\eta\gamma$ decay mode.

 $^{^5}$ Width errors enlarged by us to $4\Gamma/\sqrt{N}$; see the note with the $K^*(892)$ mass.

⁶ Strongly correlated with AKHMETSHIN 04.

⁷ Systematic errors not evaluated.

ϕ (1020) DECAY MODES

	Mode	Fraction (Γ_i/Γ)	Scale factor/ Confidence level
<u>Γ</u> 1	K ⁺ K ⁻	(48.9 ±0.5) %	6 S=1.1
	$K_I^0 K_S^0$	(34.2 ± 0.4) %	
	$\rho \pi + \pi + \pi - \pi^{0}$	(15.32 ± 0.32) %	% S=1.1
Γ_4	$ ho\pi$		
Γ_5	$\pi^+\pi^-\pi^0$		
Γ_6	$\eta \gamma$	(1.309 ± 0.024) %	_
	$\pi^0 \gamma$	(1.31 ± 0.05) \times	$< 10^{-3}$
Γ8	$\ell^+\ell^-$	-	4
	e^+e^-	$(2.955\pm0.029) \times$	
Γ_{10}	$\mu^+\mu^-$	$(2.87 \begin{array}{c} +0.18 \\ -0.20 \end{array}) >$	< 10 ⁻⁴
Γ_{11}	$\eta\mathrm{e^+e^-}$	(1.08 ± 0.04) \times	$< 10^{-4}$
Γ_{12}	$\pi^+\pi^-$	$(7.4 \pm 1.3) \times$	10^{-5}
Γ_{13}	$\omega\pi^{0}$	$(4.7 \pm 0.5) \times$	$< 10^{-5}$
Γ_{14}	$\omega\gamma$		6 CL=84%
_	$ ho\gamma$		$< 10^{-5}$ CL=90%
10	$\pi^+\pi^-\gamma$	$(4.1 \pm 1.3) \times$	_
Γ_{17}	$f_0(980)\gamma$	$(3.22 \pm 0.19) \times$	_
	$\pi^0\pi^0\gamma$	(1.13 ± 0.06) \times	
	$\pi^{+}\pi^{-}\pi^{+}\pi^{-}$	(4.0 +2.8) >	< 10 ⁻⁶
Γ_{20}	$\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{0}$	< 4.6 ×	$< 10^{-6}$ CL=90%
Γ ₂₁	$\pi^0 e^+ e^-$	$(1.33 \begin{array}{c} +0.07 \\ -0.10 \end{array}) >$	< 10 ⁻⁵
Γ_{22}	$\pi^{0}\eta\gamma$	(7.27 ± 0.30) \times	10^{-5} S=1.5
Γ_{23}	$a_0(980)\gamma$	$(7.6 \pm 0.6) \times$	
	$K^0\overline{K}^0\gamma$	< 1.9 ×	$< 10^{-8}$ CL=90%
Γ ₂₅	$\eta'(958)\gamma$	(6.25 ± 0.21) \times	
	$\eta \pi^0 \pi^0 \gamma$		$< 10^{-5}$ CL=90%
	$\mu^+\mu^-\gamma$	(1.4 \pm 0.5) $ imes$	$< 10^{-5}$
Γ ₂₈	$\rho\gamma\gamma$		10^{-4} CL=90%
I 29	$\eta \pi^+ \pi^-$		$< 10^{-5}$ CL=90%
I 30	$\eta \mu^+ \mu^-$		$< 10^{-6}$ CL=90%
¹ 31	$\eta U \rightarrow \eta e^+ e^-$	< 1 ×	$< 10^{-6}$ CL=90%
	Lepton Family number ((LF) violating modes	
Γ ₃₂	$e^{\pm}\mu^{\mp}$ LF	< 2 ×	$< 10^{-6}$ CL=90%

Γ_{32} $e^{\pm}\mu^{\mp}$ LF < 2 $ imes 10^{-6}$ CL=

CONSTRAINED FIT INFORMATION

An overall fit to 30 branching ratios uses 81 measurements and one constraint to determine 14 parameters. The overall fit has a $\chi^2=58.5$ for 68 degrees of freedom.

The following off-diagonal array elements are the correlation coefficients $\left\langle \delta x_i \delta x_j \right\rangle / (\delta x_i \cdot \delta x_j)$, in percent, from the fit to the branching fractions, $x_i \equiv \Gamma_i / \Gamma_{\text{total}}$. The fit constrains the x_i whose labels appear in this array to sum to one.

<i>x</i> ₂	-72									
<i>x</i> ₃	-57	-16								
<i>x</i> ₆	-15	11	1							
<i>x</i> ₇	-10	9	1	7						
<i>x</i> ₉	39	-39	-7	-31	-23					
<i>x</i> ₁₀	-4	4	1	3	2	-11				
<i>x</i> ₁₂	-2	2	0	2	1	-5	1			
<i>x</i> ₁₃	-3	3	0	2	2	-7	1	0		
<i>x</i> ₁₇	0	0	0	0	0	0	0	0	0	
<i>x</i> ₁₈	-7	6	1	17	4	-16	2	1	1	0
<i>x</i> ₁₉	-1	1	0	0	0	-1	0	0	0	0
<i>x</i> ₂₃	0	0	0	0	0	0	0	0	0	0
<i>x</i> ₂₅	-5	3	0	32	2	-10	1	0	1	0
	x_1	<i>x</i> ₂	<i>x</i> ₃	<i>x</i> ₆	<i>x</i> ₇	<i>x</i> ₉	<i>x</i> ₁₀	<i>x</i> ₁₂	<i>x</i> ₁₃	<i>x</i> ₁₇
<i>×</i> 19	0									
x ₂₃	0	0								
x ₂₅	5	0	0							
-	× ₁₈	×19	<i>x</i> ₂₃							

ϕ (1020) PARTIAL WIDTHS

$\Gamma(\eta\gamma)$					Γ ₆
VALUE (keV)	DOCUMENT ID		TECN	COMMENT	
• • • We do not use the following	data for averages	, fits,	limits,	etc. • • •	
$58.9 \pm 0.5 \pm 2.4$	ACHASOV	00	SND	$\mathrm{e^+e^-} ightarrow ~\eta\gamma$	
$\Gamma(\pi^0\gamma)$					Γ ₇
VALUE (keV)	DOCUMENT ID		TECN	COMMENT	
• • • We do not use the following	data for averages	, fits,	limits,	etc. • • •	

r(0+0-)			r
$\Gamma(\ell^+\ell^-)$ VALUE (keV)	DOCUMENT ID	TECN	COMMENT 8
• • We do not use the following	-		
$1.320\pm0.017\pm0.015$			1.02 $e^+e^- \to \mu^+\mu^-$
$\Gamma(e^+e^-)$			Го
VALUE (keV)	DOCUMENT ID	TECN	COMMENT
1.27 ±0.04 OUR EVALUATION			
1.251±0.021 OUR AVERAGE Er 1.235±0.006±0.022	ror includes scale facto 2 AKHMETSHIN 11		1.02 $e^+e^- \rightarrow \phi$
$1.253 \pm 0.000 \pm 0.022$ $1.32 \pm 0.05 \pm 0.03$			1.02 $e^+e^- \rightarrow \phi$ 1.02 $e^+e^- \rightarrow e^+e^-$
1.32 ± 0.05 ± 0.05	AKHMETSHIN 95		
$\left(\Gamma(e^+e^-)\times\Gamma(\mu^+\mu^-)\right)^{1/2}$			$\left(\Gamma_{9}\Gamma_{10}\right)^{\frac{1}{2}}$
VALUE (keV)	DOCUMENT ID		COMMENT
$1.320 \pm 0.018 \pm 0.017$			1.02 $e^+e^- \to \mu^+\mu^-$
1 Weighted average of Γ_{ee} and Γ_{ee}	$\sqrt{\Gamma_{ee}\Gamma_{\mu\mu}}$ from AMB	ROSINO	05 assuming lepton uni-
versality. ² Combined analysis of the CMD- ing that the sum of their branc ³ From forward-backward asymm edition of this Review.	hing fractions is 0.9974	11 ± 0.0	0007.
ϕ (1020	Ͻ) Γ(i)Γ(<i>e</i> ⁺ <i>e</i> ⁻)/Γ(†	total)	
•		total)	$\Gamma_1\Gamma_9/\Gamma$
$\phi(1020)$ $\Gamma(K^+K^-) \times \Gamma(e^+e^-)/\Gamma_{\text{tota}}$ $VALUE \text{ (keV)}$		•	Γ ₁ Γ ₉ /Γ
$\Gamma(K^+K^-) \times \Gamma(e^+e^-)/\Gamma_{\text{tota}}$	DOCUMENT ID	<u>TECN</u>	- •
$\Gamma(K^+K^-) \times \Gamma(e^+e^-)/\Gamma_{\text{total}}$	DOCUMENT ID 1 LEES 13Q 1 lel based on KUHN 90 (1020) and their higherstematic uncertainties	TECN BABR with a er mass The s	$\frac{\textit{COMMENT}}{e^+e^- \to K^+K^-\gamma}$ sum of Breit-Wigner resexcitations. The first erecond one is due to the
$\Gamma(K^+K^-)$ × $\Gamma(e^+e^-)/\Gamma_{\text{total}}$ VALUE (keV) $0.6340\pm0.0070\pm0.0039$ ¹ Using a phenomenological mode on on onces for $\rho(770)$, $\omega(782)$, ϕ ror combines statistical and sy parametrization of the charged $\Gamma(K_L^0K_S^0)$ × $\Gamma(e^+e^-)/\Gamma_{\text{total}}$	DOCUMENT ID LEES 13Q lel based on KUHN 90 (1020) and their higherstematic uncertainties kaon form factor and in	TECN BABR with a er mass The s	$\frac{\textit{COMMENT}}{e^+e^-\rightarrow\textit{K}^+\textit{K}^-\gamma}$ sum of Breit-Wigner res- excitations. The first er- second one is due to the ibration. $\Gamma_2\Gamma_9/\Gamma$
$\Gamma(K^+K^-)$ × $\Gamma(e^+e^-)/\Gamma_{\text{total}}$ VALUE (keV) 0.6340±0.0070±0.0039 ¹ Using a phenomenological mode on on one on phenomenological mode on one of the complex of the complex of the charged of $\Gamma(K_L^0K_S^0)$ × $\Gamma(e^+e^-)/\Gamma_{\text{total}}$ VALUE (keV) EVTS	DOCUMENT ID DOCUMENT ID LEES 13Q lel based on KUHN 90 (1020) and their higherstematic uncertainties kaon form factor and in	TECN BABR with a er mass The s	$\frac{\textit{COMMENT}}{e^+e^- \to \textit{K}^+\textit{K}^-\gamma}$ sum of Breit-Wigner resexcitations. The first erection one is due to the ibration. $ \Gamma_2 \Gamma_9 / \Gamma $
$\Gamma(K^+K^-)$ × $\Gamma(e^+e^-)/\Gamma_{\text{total}}$ VALUE (keV) 0.6340±0.0070±0.0039 ¹ Using a phenomenological mode on on one on the charged of the charged	DOCUMENT ID 1 LEES 13Q lel based on KUHN 90 (1020) and their higherstematic uncertainties kaon form factor and in DOCUMENT ID 1 LEES 14	TECN BABR with a er mass The smass cali	$\frac{\textit{COMMENT}}{e^+e^-\rightarrowK^+K^-\gamma}$ sum of Breit-Wigner res- excitations. The first er- second one is due to the abration. $\frac{\Gamma_2\Gamma_9/\Gamma}{e^+e^-\rightarrowK_S^0K_L^0\gamma}$
$\Gamma(K^+K^-)$ × $\Gamma(e^+e^-)/\Gamma_{\text{total}}$ VALUE (keV) 0.6340±0.0070±0.0039 ¹ Using a phenomenological mode on on one on phenomenological mode on one of the complex of the complex of the charged of $\Gamma(K_L^0K_S^0)$ × $\Gamma(e^+e^-)/\Gamma_{\text{total}}$ VALUE (keV) EVTS	DOCUMENT ID 1 LEES 13Q Iel based on KUHN 90 (1020) and their higherstematic uncertainties kaon form factor and in DOCUMENT ID 1 LEES 14 1 model with contribute	TECN BABR with a er mass The smass cali	$\frac{\textit{COMMENT}}{e^+e^-\rightarrowK^+K^-\gamma}$ sum of Breit-Wigner res- excitations. The first er- second one is due to the abration. $\frac{\Gamma_2\Gamma_9/\Gamma}{e^+e^-\rightarrowK_S^0K_L^0\gamma}$
$\Gamma(K^+K^-)$ × $\Gamma(e^+e^-)/\Gamma_{total}$ $VALUE$ (keV) 0.6340±0.0070±0.0039 ¹ Using a phenomenological mode on on one on the control of the charged of the	DOCUMENT ID 1 LEES 13Q Iel based on KUHN 90 (1020) and their higherstematic uncertainties kaon form factor and in DOCUMENT ID 1 LEES 14 1 model with contribute	TECN BABR with a er mass The smass cali	$\frac{\textit{COMMENT}}{e^+e^-\rightarrowK^+K^-\gamma}$ sum of Breit-Wigner res- excitations. The first er- second one is due to the abration. $\frac{\Gamma_2\Gamma_9/\Gamma}{e^+e^-\rightarrowK_S^0K_L^0\gamma}$
$\Gamma(K^+K^-)$ × $\Gamma(e^+e^-)/\Gamma_{total}$ $VALUE$ (keV) 0.6340±0.0070±0.0039 ¹ Using a phenomenological mode on on one on the control of the charged of the	DOCUMENT ID 1 LEES 13Q 1 LEES 13Q 1020) and their higher externatic uncertainties kaon form factor and in 1 DOCUMENT ID 1 LEES 14	TECN BABR with a er mass The smass cali	$\frac{\textit{COMMENT}}{e^+e^-\rightarrowK^+K^-\gamma}$ sum of Breit-Wigner res- excitations. The first er- second one is due to the abration. $\frac{\Gamma_2\Gamma_9/\Gamma}{e^+e^-\rightarrowK_S^0K_L^0\gamma}$
$\Gamma(K^+K^-)$ × $\Gamma(e^+e^-)/\Gamma_{\text{total}}$ $VALUE \text{ (keV)}$ 0.6340±0.0070±0.0039 1 Using a phenomenological mode on on one of the charged of	DOCUMENT ID 1 LEES 13Q 1 LEES 13Q 1020) and their higher externatic uncertainties kaon form factor and in 1 DOCUMENT ID 1 LEES 14 1 LEES 16 1 LEES 17 1 LEES 17 1 LEES 18 1 LEES 19 1 LEES 10 1 LEES	TECN BABR with a er mass The smass cali	$\frac{COMMENT}{e^+e^- \to K^+K^-\gamma}$ sum of Breit-Wigner reservations. The first errection one is due to the libration. $\frac{\Gamma_2\Gamma_9/\Gamma}{e^+e^- \to K_S^0K_L^0\gamma}$ $\phi(1020)$ and higher mass
$\Gamma(K^+K^-)$ × $\Gamma(e^+e^-)/\Gamma_{\text{total}}$ $VALUE \text{ (keV)}$ 0.6340±0.0070±0.0039 ¹ Using a phenomenological mode on on one on the charged of the charged	DOCUMENT ID 1 LEES 13Q 1 LEES 13Q 1020) and their higher externatic uncertainties kaon form factor and in 1 DOCUMENT ID 1 LEES 14 1 LEES 15 1 LEES 16 1 LEES 16 1 LEES 17 1 LEES 17 1 LEES 18 1 LEES 19 1 LEES 19 1 LEES 19 1 LEES 10 1 LEES	TECN BABR With a er mass The smass cali TECN H BABR ion from	$\frac{COMMENT}{e^+e^- \to K^+K^-\gamma}$ sum of Breit-Wigner resexcitations. The first eraction one is due to the libration. $\frac{\Gamma_2\Gamma_9/\Gamma}{e^+e^- \to K_S^0K_L^0\gamma}$ $\phi(1020)$ and higher mass
$\Gamma(K^+K^-)$ × $\Gamma(e^+e^-)/\Gamma_{\text{total}}$ $VALUE \text{ (keV)}$ 0.6340±0.0070±0.0039 1 Using a phenomenological mode on on one of the charged of	DOCUMENT ID 1 LEES 13Q 1 LEES 13Q 1020) and their higher externatic uncertainties kaon form factor and in 1 DOCUMENT ID 1 LEES 14 1 LEES 16 1 LEES 17 1 LEES 17 1 LEES 18 1 LEES 19 1 LEES 10 1 LEES	TECN BABR With a er mass The smass cali TECN H BABI ion from	$\frac{COMMENT}{e^+e^- \to K^+K^-\gamma}$ sum of Breit-Wigner resexcitations. The first eraction one is due to the libration. $\frac{\Gamma_2\Gamma_9/\Gamma}{e^+e^- \to K_S^0K_L^0\gamma}$ $\phi(1020)$ and higher mass

HTTP://PDG.LBL.GOV

Page 6

```
\Gamma(K_I^0 K_S^0)/\Gamma_{\text{total}} \times \Gamma(e^+ e^-)/\Gamma_{\text{total}}
                                                                                                  \Gamma_2/\Gamma \times \Gamma_9/\Gamma
VALUE (units 10^{-5})
                                                DOCUMENT ID
10.09 ±0.12 OUR FIT
10.07 \pm0.13 OUR AVERAGE
                                                                         CMD3 e^+e^- \rightarrow \mathcal{K}_S^0 \mathcal{K}_L^0
CMD2 e^+e^- \rightarrow \mathcal{K}_L^0 \mathcal{K}_S^0
                                              <sup>2</sup> KOZYREV
10.078 \pm 0.223
                                610k
                                              <sup>3</sup> AKHMETSHIN 04
10.01 \pm 0.04 \pm 0.17
                                272k
                                              <sup>1</sup> ACHASOV
                                                                     01E SND
10.27 \pm 0.07 \pm 0.34
                                500k
\left[\Gamma(
ho\pi) + \Gamma(\pi^+\pi^-\pi^0)\right]/\Gamma_{
m total} \, 	imes \, \Gamma(e^+e^-)/\Gamma_{
m total}
                                                                                                  \Gamma_3/\Gamma \times \Gamma_9/\Gamma
VALUE (units 10^{-5})
4.53 ±0.10 OUR FIT
                                 Error includes scale factor of 1.1.
4.46 \pm0.12 OUR AVERAGE
                                                                            CMD2 0.98–1.06 _{\pi^{+}\pi^{-}\pi^{0}}^{e^{+}e^{-}} \rightarrow
4.51 \pm 0.16 \pm 0.11
                                105k
                                                AKHMETSHIN 06
                                                AUBERT.B
4.30 \pm 0.08 \pm 0.21
                                              <sup>1</sup> ACHASOV
                                400k
4.665 \pm 0.042 \pm 0.261
                                                                            CMD2 e^+e^- \rightarrow \pi^+\pi
                                              <sup>4</sup> AKHMETSHIN 98
4.35 \pm 0.27 \pm 0.08
                                11169
ullet ullet We do not use the following data for averages, fits, limits, etc. ullet ullet
4.38 \pm 0.12
                                                BENAYOUN
                                                                    10
                                                                           RVUE 0.4-1.05 e^{+}e^{-}
\Gamma(\eta\gamma)/\Gamma_{\text{total}} \times \Gamma(e^+e^-)/\Gamma_{\text{total}}
                                                                                                  \Gamma_6/\Gamma \times \Gamma_9/\Gamma
VALUE (units 10^{-6})
                                               DOCUMENT ID
                                                                           TECN
                                                                                     COMMENT
3.87 \pm0.07 OUR FIT Error includes scale factor of 1.2.
3.93 \pm0.09 OUR AVERAGE
                                        Error includes scale factor of 1.3. See the ideogram below.
                                             <sup>5</sup> ACHASOV
                                                                   07B SND 0.6–1.38 e^+e^- \to \eta \gamma
4.050\pm0.067\pm0.118
                                 33k
4.093 { + 0.040 \atop -0.043 } \pm 0.247
                                             <sup>6</sup> AKHMETSHIN 05
                                                                          CMD2 0.60-1.38 e^+e^- \to \eta \gamma
                               17.4k
                                          ^{7,8} AKHMETSHIN 01B CMD2 e^+e^- \rightarrow \eta\gamma
                                 23k
3.850 \pm 0.041 \pm 0.159
                                             <sup>9</sup> ACHASOV
                                                                          SND
4.00 \pm 0.04 \pm 0.11
                               2200 ^{10,11} AKHMETSHIN 99F CMD2 e^+e^- \rightarrow \eta \gamma
3.53 \pm 0.08 \pm 0.17
• • • We do not use the following data for averages, fits, limits, etc. • • •
                                           ^{12} BENAYOUN 10 RVUE 0.4–1.05 e<sup>+</sup>e<sup>-</sup>
4.19 \pm 0.06
```


$\Gamma(\pi^0\gamma)/\Gamma_{ m total}\, imes\,\Gamma(e^+\,e^-)/\Gamma_{ m total}$

 $\Gamma_7/\Gamma \times \Gamma_9/\Gamma$

VALUE (units 10^{-7})

DOCUMENT ID TECN COMMENT

3.87 ± 0.14 OUR FIT 3.87 ± 0.15 OUR AVERAGE

$4.04\!\pm\!0.09\!\pm\!0.19$		¹³ ACHASOV	16A	SND	0.60–1.38 $e^+e^- \rightarrow \pi^0 \gamma$
$3.75 \pm 0.11 \pm 0.29$	18k	AKHMETSHIN	05	CMD2	$0.60\text{-}1.38\ e^{+}e^{-}\to\ \pi^{0}\gamma$
$3.67 \pm 0.10 + 0.27$		¹⁴ ACHASOV	00	SND	$e^+e^- ightarrow \pi^0 \gamma$

• • • We do not use the following data for averages, fits, limits, etc. • • •

 12 BENAYOUN 10 RVUE 0.4–1.05 $e^{+}e^{-}$ 4.29 ± 0.11

$\Gamma(\mu^+\mu^-)/\Gamma_{\text{total}} \times \Gamma(e^+e^-)/\Gamma_{\text{total}}$

 $\Gamma_{10}/\Gamma \times \Gamma_{9}/\Gamma$

Created: 5/30/2017 17:20

VALUE (units 10^{-8})	DOCUMENT ID		TECN	COMMENT
8.5 ±0.6 OUR FIT				
8.8 \pm 0.9 OUR AVERAGE	Error includes scale f	actor	of 1.5.	See the ideogram below.
$8.36 \pm 0.59 \pm 0.37$	ACHASOV	01 G	SND	$\mathrm{e^+e^-} ightarrow \; \mu^+\mu^-$
$9.9\ \pm 1.4\ \pm 0.9$	¹⁰ ACHASOV	99C	SND	$\mathrm{e^+e^-} ightarrow \; \mu^+\mu^-$
14.4 ±3.0	⁴ VASSERMAN	81	OLYA	$e^+e^- \rightarrow \mu^+\mu^-$
8.6 ± 5.9	⁴ AUGUSTIN	73	OSPK	$e^+e^- ightarrow \mu^+\mu^-$

$\Gamma(\pi^+\pi^-\pi^+\pi^-)/\Gamma_{\text{total}} \times \Gamma(e^+e^-)/\Gamma_{\text{total}}$ $\Gamma_{19}/\Gamma \times \Gamma_{9}/\Gamma$ VALUE (units 10^{-9})

1.2 $^{+0.8}_{-0.7}$ OUR FIT

 10 AKHMETSHIN 00E CMD2 $e^+e^- \rightarrow \pi^+\pi^-\pi^+\pi^ 1.17 \pm 0.52 \pm 0.64$ 3285

- ¹ From the combined fit assuming that the total $\phi(1020)$ production cross section is saturated by those of K^+K^- , K_SK_L , $\pi^+\pi^-\pi^0$, and $\eta\gamma$ decays modes and using ACHASOV 00B for the $\eta\gamma$ decay mode.
- ² KOZYREV 16 also reports $\Gamma(e^+e^-)$ B($\phi \to K_S^0 K_I^0$) = (0.428 \pm 0.001 \pm 0.009) keV.
- ³Update of AKHMETSHIN 99D
- ⁴Recalculated by us from the cross section in the peak.
- ⁵ From a combined fit of $\sigma(e^+e^- \to \eta \gamma)$ with $\eta \to 3\pi^0$ and $\eta \to \pi^+\pi^-\pi^0$, and fixing B($\eta \to 3\pi^0$) / B($\eta \to \pi^+\pi^-\pi^0$) = 1.44 \pm 0.04. Recalculated by us from the cross section at the peak. Supersedes ACHASOV 00D and ACHASOV 06A.
- 6 From the $\eta\to~2\gamma$ decay and using B($\eta\to~\gamma\gamma)=39.43\pm0.26\%.$ 7 From the $\eta\to~3\pi^0$ decay and using B($\eta\to~3\pi^0)=(32.24\pm0.29)\times10^{-2}$.
- ⁸ The combined fit from 600 to 1380 MeV taking into account $\rho(770)$, $\omega(782)$, $\phi(1020)$, and $\rho(1450)$ (mass and width fixed at 1450 MeV and 310 MeV respectively).
- ⁹ From the $\eta \to 2\gamma$ decay and using B($\eta \to 2\gamma$) =(39.21 \pm 0.34) \times 10⁻².
- $^{
 m 10}$ Recalculated by the authors from the cross section in the peak.
- ¹¹ From the $\eta \to \pi^+\pi^-\pi^0$ decay and using B($\eta \to \pi^+\pi^-\pi^0$) =(23.1 \pm 0.5) \times 10⁻². ¹² A simultaneous fit of $e^+e^- \to \pi^+\pi^-$, $\pi^+\pi^-\pi^0$, $\pi^0\gamma$, $\eta\gamma$ data.
- ¹³ From the VMD model with the interfering $\rho(770)$, $\omega(782)$, $\phi(1020)$ resonances, and an additional resonance describing the total contribution of the $\rho(1450)$ and $\omega(1420)$ states. Supersedes ACHASOV 00.
- 14 From the $\pi^0 \to 2\gamma$ decay and using B($\pi^0 \to 2\gamma$) = (98.798 \pm 0.032) \times 10⁻².

 15 A simultaneous fit to $e^+e^- \to \pi^+\pi^-$, $\pi^+\pi^-\pi^0$, $\pi^0\gamma$, $\eta\gamma$, $K\overline{K}$, and $\tau^- \to \pi^-\pi^0\nu_{\tau}$ data. $^{16}_{\ \ \ \ }$ Recalculated by the authors from the cross section at the peak.
- 17 AMBROSINO 08G reports $[\Gamma(\phi(1020)
 ightarrow \omega \pi^0)/\Gamma_{ ext{total}} imes \Gamma(\phi(1020)
 ightarrow e^+e^-)/\Gamma_{ ext{total}}$ $\Gamma_{\text{total}}] \times [B(\omega(782) \to \pi^+\pi^-\pi^0)] = (1.22 \pm 0.13 \pm 0.08) \times 10^{-8}$ which we divide by our best value B($\omega(782) \rightarrow \pi^+\pi^-\pi^0$) = $(89.2 \pm 0.7) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best
- 18 Calculated by the authors from the cross section at the peak.

ϕ (1020) BRANCHING RATIOS

$\Gamma(K^+K^-)/\Gamma_{\text{total}}$ Γ_1/Γ

DOCUMENT ID **0.489 \pm 0.005 OUR FIT** Error includes scale factor of 1.1.

0.493 ± 0.010 OUR AVERAGE

U. 150 = U.U=U U U					
$0.492\!\pm\!0.012$	2913	AKHMETSHIN	95	CMD2	$e^+e^- ightarrow K^+K^-$
$0.44\ \pm0.05$	321	KALBFLEISCH	76	HBC	2.18 $K^- p \to \Lambda K^+ K^-$
$0.49\ \pm0.06$	270	DEGROOT	74	HBC	4.2 $K^- p \rightarrow \Lambda \phi$
0.540 ± 0.034	565	BALAKIN	71	OSPK	$e^+e^- ightarrow K^+K^-$
0.48 ± 0.04	252	LINDSFY	66	HBC	$2.1-2.7 K^- p \rightarrow \Lambda K^+ K^-$

• • We do not use the following data for averages, fits, limits, etc. • •

$0.493 \pm 0.003 \pm 0.007$					$1.02 e^+e^- \rightarrow K^+K^-$
0.476 ± 0.017	1000k	² ACHASOV	01E	SND	$e^+e^- \rightarrow K^+K^-, K_SK_L,$
					$_{\pi}^{+}$ $_{\pi}^{-}$ $_{\pi}^{0}$

HTTP://PDG.LBL.GOV

Page 10

$\Gamma(K_L^0K_S^0)/\Gamma_{\text{tot}}$	tal EVTS	Γ ₂ /Γ
		includes scale factor of 1.1.
0.331±0.009 OU		
0.335 ± 0.010	40644	AKHMETSHIN 95 CMD2 $e^+e^- ightarrow \mathcal{K}^0_I\mathcal{K}^0_S$
0.326 ± 0.035		DOLINSKY 91 ND $e^+e^- ightarrow \kappa_I^{\c 0} \kappa_S^{\c 0}$
0.310 ± 0.024		DRUZHININ 84 ND $e^+e^- ightarrow \mathcal{K}_I^{ar{0}}\mathcal{K}_S^{ar{0}}$
\bullet \bullet We do not	use the follow	ving data for averages, fits, limits, etc. • • •
$0.336 \pm 0.002 \pm 0.$	006	1 AKHMETSHIN 11 CMD2 1.02 $e^{+}e^{-} ightarrow ~\mathcal{K}^{0}_{S} ~\mathcal{K}^{0}_{I}$
0.351 ± 0.013	500k	² ACHASOV 01E SND $e^+e^- \rightarrow K^+K^-$, K_SK_L , $\pi^+\pi^-\pi^0$
0.27 ± 0.03	133	KALBFLEISCH 76 HBC 2.18 $K^-p \rightarrow \Lambda K_L^0 K_S^0$
0.257 ± 0.030	95	BALAKIN 71 OSPK $e^+e^- \rightarrow \kappa_L^0 \kappa_S^0$
0.40 ± 0.04	167	LINDSEY 66 HBC 2.1–2.7 $K^-p \rightarrow \Lambda K_L^0 K_S^0$
$\Gamma(K_1^0 K_5^0)/\Gamma(H_5^0)$	(+ K-)	Γ_2/Γ_1
VALUE	<u>EVTS</u>	<u>DOCUMENT ID</u> <u>TECN</u> <u>COMMENT</u> includes scale factor of 1.1.
		includes scale factor of 1.1.
0.740±0.031 OU 0.70 ±0.06	2732	BUKIN 78C OLYA $e^+e^- \rightarrow K_I^0 K_S^0$
0.70 ± 0.00 0.82 ± 0.08	2132	BUKIN 78C OLYA $e^+e^- ightarrow K_L^0 K_S^0$ LOSTY 78 HBC 4.2 $K^-p ightarrow \phi$ hyperon
0.82 ± 0.08 0.71 ± 0.05		LAVEN 77 HBC 10 $K^-p \rightarrow K^+K^-\Lambda$
0.71 ± 0.03 0.71 ± 0.08		LYONS 77 HBC 3-4 $K^-p \rightarrow \Lambda \phi$
0.89 ± 0.10	144	AGUILAR 72B HBC 3.9,4.6 K ⁻ p
\bullet \bullet We do not	use the follow	ving data for averages, fits, limits, etc. • • •
$0.68\ \pm0.03$		³ AKHMETSHIN 95 CMD2 $e^+e^- ightarrow \kappa_L^0 \kappa_S^0$, $\kappa^+\kappa^-$
$\Gamma(K_L^0K_S^0)/\Gamma(K_S^0)$	⟨ K)	$\Gamma_2/(\Gamma_1+\Gamma_2)$
VALUE		DOCUMENT ID TECN COMMENT
0.411±0.005 OU 0.45 ±0.04 OU		includes scale factor of 1.1.
0.44 ±0.07	IN AVENAGE	LONDON 66 HBC 2.24 $K^- p \rightarrow \Lambda K \overline{K}$
0.48 ± 0.07	52	BADIER 65B HBC 3 K^-p
$0.40\ \pm0.10$		SCHLEIN 63 HBC 1.95 $K^- p \rightarrow \Lambda K \overline{K}$
$\big[\Gamma\big(\rho\pi\big)+\Gamma\big(\pi^{-1}$	· •	
<u>VALUE</u> 0.1532±0.0032.0	<u>EVTS</u>	DOCUMENT ID TECN COMMENT ror includes scale factor of 1.1.
		E Error includes scale factor of 1.7.
0.161 ± 0.008		AKHMETSHIN 95 CMD2 $e^+e^- ightarrow \pi^+\pi^-\pi^0$
0.143 ± 0.007		DOLINSKY 91 ND $e^+e^- ightarrow \pi^+\pi^-\pi^0$
\bullet \bullet We do not	use the follow	ving data for averages, fits, limits, etc. ● ●
$0.155 \pm 0.002 \pm$	0.005	1 AKHMETSHIN 11 CMD2 1.02 $e^{+}e^{-} ightarrow \pi^{+}\pi^{-}\pi^{0}$
0.159 ± 0.008	400k	² ACHASOV 01E SND $e^+e^- \rightarrow K^+K^-$,
$0.145 \pm 0.009 \pm$	0.003 11169	4 AKHMETSHIN 98 CMD2 $e^+e^- \rightarrow \pi^+\pi^-\pi^0$
0.139 ± 0.007		⁵ PARROUR 76B OSPK e^+e^-

```
\left\lceil \Gamma(\rho\pi) + \Gamma(\pi^+\pi^-\pi^0) \right\rceil / \Gamma(K^+K^-)
                                                                                                     \Gamma_3/\Gamma_1
                                             DOCUMENT ID
0.313\pm0.009 OUR FIT Error includes scale factor of 1.1.
0.28 \pm 0.09
                                 34
                                             AGUILAR-...
                                                               72B HBC
                                                                                3.9,4.6~K^{-}p
\left[\Gamma(\rho\pi) + \Gamma(\pi^+\pi^-\pi^0)\right]/\Gamma(K\overline{K})
                                                                                            \Gamma_3/(\Gamma_1+\Gamma_2)
                                        DOCUMENT ID
0.184±0.005 OUR FIT Error includes scale factor of 1.1.
0.24 \pm 0.04 OUR AVERAGE
0.237 \pm 0.039
                                        CERRADA
                                                           77B HBC
                                                                           4.2 K^- p \rightarrow \Lambda 3\pi
                                                                           2.24 K^- p \to \Lambda \pi^+ \pi^- \pi^0
0.30 \pm 0.15
                                        LONDON
                                                           66
                                                                 HBC
\left[\Gamma(\rho\pi) + \Gamma(\pi^+\pi^-\pi^0)\right]/\Gamma(K_I^0K_S^0)
                                                                                                     \Gamma_3/\Gamma_2
                                    DOCUMENT ID TECN COMMENT
                      EVTS
0.448 ± 0.011 OUR FIT Error includes scale factor of 1.1.
0.51 \pm 0.05 OUR AVERAGE
                                                       78C OLYA e^+e^- \rightarrow K_L^0 K_S^0, \pi^+\pi^-\pi^0
74 OSPK e^+e^- \rightarrow \pi^+\pi^-\pi^0
0.56 \pm 0.07
                      3681
                                    BUKIN
0.47 \pm 0.06
                       516
                                    COSME
\Gamma(\pi^+\pi^-\pi^0)/\Gamma_{\rm total}
                                                                                                      \Gamma_5/\Gamma
                CL% EVTS
                                        DOCUMENT ID TECN COMMENT
• • • We do not use the following data for averages, fits, limits, etc. • •
                                                           03 KLOE 1.02 e^+e^- \rightarrow \pi^+\pi^-\pi^0
                                  6,7 ALOISIO
                         1.98M
\simeq 0.0087
                                      <sup>8</sup> ACHASOV
                                                           02
                                                                  SND
< 0.0006
                                                                            e^+e^- \rightarrow \pi^+\pi^-\pi^0
                                      <sup>8</sup> CORDIER
                                                           80
                                                                  DM1
< 0.23
                  90
                                                           76B OSPK e^{+}e^{-} \rightarrow \pi^{+}\pi^{-}\pi^{0}
                                      <sup>8</sup> PARROUR
< 0.20
                  90
\Gamma(\eta\gamma)/\Gamma_{\text{total}}
                                                                                                      \Gamma_6/\Gamma
VALUE (units 10^{-2})
                                            DOCUMENT ID TECN COMMENT
                             EVTS
1.309\pm0.024 OUR FIT Error includes scale factor of 1.2.
1.26 \pm0.04 OUR AVERAGE
                                         <sup>9</sup> ACHASOV
                                                               98F SND
                                                                               e^+e^- \rightarrow 7\gamma
1.246 \pm 0.025 \pm 0.057
                               10k
                                        <sup>10</sup> AKHMETSHIN 95
                                                                     CMD2 e^+e^- \rightarrow \pi^+\pi^-3\gamma
1.18 \pm 0.11
                               279
                                        <sup>11</sup> DRUZHININ
                                                               84
1.30 \pm 0.06
                                                                     ND
                                        <sup>12</sup> DRUZHININ
                                                               84
                                                                     ND
                                                                               e^+e^- \rightarrow 6\gamma
1.4 \pm 0.2
                                            KURDADZE
                                                               83C OLYA e^+e^- \rightarrow 3\gamma
0.88 \pm 0.20
                               290
1.35 \pm 0.29
                                            ANDREWS
                                                               77
                                                                     CNTR 6.7–10 \gamma Cu
                                        <sup>11</sup> COSME
                                54
                                                               76
                                                                     OSPK e^+e^-
1.5 \pm 0.4
• • • We do not use the following data for averages, fits, limits, etc. • • •
                                         <sup>1</sup> AKHMETSHIN 11
                                                                     CMD2 1.02 e^+e^- \rightarrow \eta \gamma
1.38 \pm 0.02 \pm 0.02
                                        <sup>13</sup> ACHASOV
                                                               07в SND
                                                                               0.6-1.38 e^{+}e^{-} \rightarrow \eta \gamma
1.37 \pm 0.05 \pm 0.01
                            17.4k <sup>14,15</sup> AKHMETSHIN 05
                                                                     CMD2 0.60-1.38 e^+e^- \to \eta \gamma
1.373 \pm 0.014 \pm 0.085
                                    ^{16,17} AKHMETSHIN 01B CMD2 e^+e^- 
ightarrow ~\eta \gamma
1.287 \pm 0.013 \pm 0.063
                                        <sup>18</sup> ACHASOV
                                                               00
                                                                     SND
                                                                               e^+e^- \rightarrow \eta \gamma
1.338 \pm 0.012 \pm 0.052
                                        ^{19} AKHMETSHIN 99F CMD2 e^+e^- 
ightarrow \eta \gamma
1.18 \pm 0.03 \pm 0.06
                             2200
                                        <sup>20</sup> BENAYOUN
                                                              96
                                                                     RVUE 0.54-1.04 e^+e^- \rightarrow n\gamma
1.21 \pm 0.07
```

```
\Gamma(\pi^0\gamma)/\Gamma_{\text{total}}
                                                                                                       \Gamma_7/\Gamma
VALUE (units 10^{-3})
                                                                    TECN
1.31 \pm 0.05 OUR FIT
1.31 \pm0.13 OUR AVERAGE
1.30 \pm 0.13
                                          DRUZHININ
                                                                    ND
                                                                    OSPK e^+e^-
1.4 \pm 0.5
                                          COSME
                                                             76
• • • We do not use the following data for averages, fits, limits, etc. • • •
                                                                              0.60-1.38~e^{+}e^{-} \rightarrow ~\pi^{0}\gamma
                                      <sup>21</sup> ACHASOV
                                                             16A SND
1.367 \pm 0.072
                             18k <sup>22,23</sup> AKHMETSHIN 05
                                                                    CMD2 0.60-1.38 e^+e^- \rightarrow \pi^0 \gamma
1.258 \pm 0.037 \pm 0.077
1.226\pm0.036^{+0.096}_{-0.089}
                                      <sup>24</sup> ACHASOV
                                                                              e^+e^- \rightarrow \pi^0 \gamma
                                                                    SND
                                      <sup>20</sup> BENAYOUN
                                                                    RVUE 0.54-1.04 e^+e^- \to \pi^0 \gamma
                                                             96
1.26 \pm 0.17
\Gamma(\eta\gamma)/\Gamma(\pi^0\gamma)
                                                                                                     \Gamma_6/\Gamma_7
                                             DOCUMENT ID TECN COMMENT
• • • We do not use the following data for averages, fits, limits, etc. • • •
10.9 \pm 0.3 ^{+0.7}_{-0.8}
                                                                                 e^+e^- \rightarrow \eta \gamma, \pi^0 \gamma
                                             ACHASOV
                                                                       SND
                                                                00
\Gamma(e^+e^-)/\Gamma_{\rm total}
                                                                                                       \Gamma_0/\Gamma
VALUE (units 10^{-4})
                                                                       TECN COMMENT
                               EVTS
2.955 ± 0.029 OUR FIT
                               Error includes scale factor of 1.1.
2.98 \pm 0.07 OUR AVERAGE
                                       Error includes scale factor of 1.1.
                                         <sup>25</sup> ACHASOV
2.93 \pm 0.14
                              1900k
                                                                01E SND
                                                                                     K_{S}K_{I}, \pi^{+}\pi^{-}\pi^{0}
                                                                       CMD2 e^+e^- \rightarrow \text{hadrons}
                                             AKHMETSHIN 95
2.88 \pm 0.09
                              55600
                                                                                 e^+e^- 
ightarrow hadrons
                                             BUKIN
                                                                78C OLYA
3.00 \pm 0.21
                              3681
                                         <sup>26</sup> PARROUR
3.10 \pm 0.14
                                                                76 OSPK e^+e^-
                                                                       OSPK e^+e^- \rightarrow \text{hadrons}
3.3 \pm 0.3
                                             COSME
                                                                       OSPK e^+e^- \rightarrow \text{hadrons}
2.81 \pm 0.25
                                681
                                             BALAKIN
                                                                71
3.50 \pm 0.27
                                                                       OSPK e^+e^-
                                             CHATELUS
                                                                71
\Gamma(\mu^+\mu^-)/\Gamma_{\text{total}}
                                                                                                     \Gamma_{10}/\Gamma
VALUE (units 10^{-4})
                                                                       TECN
2.87^{+0.18}_{-0.20} OUR FIT
2.5 \pm 0.4 OUR AVERAGE
                                         <sup>27</sup> HAYES
                                                                      CNTR 8.3,9.8 \gammaC \rightarrow \mu^+\mu^-X
2.69 \pm 0.46
                                         <sup>27</sup> EARLES
2.17 \pm 0.60
                                                                70
                                                                      CNTR 6.0 \gammaC \rightarrow \mu^{+}\mu^{-}X
• • • We do not use the following data for averages, fits, limits, etc. • •
                                         <sup>28</sup> ACHASOV
                                                                01G SND
                                                                                e^+e^- \rightarrow \mu^+\mu^-
2.87 \pm 0.20 \pm 0.14
                                          <sup>4</sup> ACHASOV
                                                                99c SND
3.30 \pm 0.45 \pm 0.32
                                         <sup>29</sup> VASSERMAN 81 OLYA e^+e^- \rightarrow \mu^+\mu^-
4.83 \pm 1.02
                                         <sup>29</sup> AUGUSTIN
                                                                73 OSPK e^+e^- \to \mu^+\mu^-
2.87 \pm 1.98
```

```
\Gamma(\eta e^+ e^-)/\Gamma_{\text{total}}
                                                                                                          \Gamma_{11}/\Gamma
VALUE (units 10^{-4})
                               EVTS
                                                                         TECN
1.08 \pm0.04 OUR AVERAGE
                                          <sup>30</sup> BABUSCI
                                                                         KLOE 1.02 e^+e^- \to ne^+e^-
1.075 \pm 0.007 \pm 0.038
                                30k
                                          <sup>31</sup> ACHASOV
1.19 \ \pm 0.19 \ \pm 0.12
                                213
                                          <sup>32</sup> AKHMETSHIN 01
                                                                         CMD2 e^+e^-
1.14 \pm 0.10 \pm 0.06
                                355
     • We do not use the following data for averages, fits, limits, etc.
                                          33 AKHMETSHIN 01
                                                                         CMD2 e^+e^- \rightarrow ne^+e^-
1.13 \pm 0.14 \pm 0.07
                                183
                                                                         CMD2 e^+e^- \rightarrow \eta e^+e^-
                                          <sup>34</sup> AKHMETSHIN 01
1.21 \pm 0.14 \pm 0.09
                                130
                                                                         CMD2 e^+e^- \rightarrow ne^+e^-
                                          <sup>35</sup> AKHMETSHIN 01
1.04 \pm 0.20 \pm 0.08
                                 42
       +0.8 \\ -0.6
                                                                                   e^+e^- \rightarrow ne^+e^-
                                   7
                                                                         ND
1.3
                                              GOLUBEV
                                                                  85
\Gamma(\pi^+\pi^-)/\Gamma_{\text{total}}
                                                                                                          \Gamma_{12}/\Gamma
VALUE (units 10^{-4})
                                 CL%
                                               DOCUMENT ID
                                                                          TECN COMMENT
• • • We do not use the following data for averages, fits, limits, etc. • • •
                                             <sup>4</sup> ACHASOV
                                                                                    e^+e^- \rightarrow \pi^+\pi^-
                                                                   00c SND
   0.71 \pm 0.11 \pm 0.09
   0.65^{\,+\,0.38}_{\,-\,0.29}
                                             <sup>4</sup> GOLUBEV
                                                                   86
                                                                          ND
   2.01^{+1.07}_{-0.84}
                                                                          OLYA e^+e^- \rightarrow \pi^+\pi^-
                                             <sup>4</sup> VASSERMAN
                                                                   81
                                                                   78B OLYA e^{+}e^{-} \to \pi^{+}\pi^{-}
 < 6.6
                                 95
                                                                          CNTR 6.7 \gammaC \rightarrow C\pi<sup>+</sup>\pi<sup>-</sup>
 < 2.7
                                 95
                                               ALVENSLEB... 72
\Gamma(\omega \pi^0)/\Gamma_{\rm total}
                                                                                                          \Gamma_{13}/\Gamma
VALUE (units 10^{-5})
                                                                  TECN COMMENT
   4.7±0.5 OUR FIT
                                36,37 AULCHENKO 00A SND
• • We do not use the following data for averages, fits, limits, etc. • •
                                    <sup>38</sup> AMBROSINO 08G KLOE e^+e^- 
ightarrow \pi^+\pi^-2\pi^0, 2\pi^0\gamma
   4.4 \pm 0.6
                                                                            e^+e^- \rightarrow \pi^0\pi^0\gamma
                                    <sup>39</sup> ACHASOV
                                                           00E SND
\sim 5.4
  5.5^{+1.6}_{-1.4}\pm0.3
                                37,40 AULCHENKO 00A SND
                                                                             e^{+}e^{-} \rightarrow \pi^{+}\pi^{-}\pi^{0}\pi^{0}
  4.8^{+1.9}_{-1.7}\pm0.8
                                                                             e^{+}e^{-} \rightarrow \pi^{+}\pi^{-}\pi^{0}\pi^{0}
                                   <sup>39</sup> ACHASOV
                                                            99
                                                                  SND
\Gamma(\omega\gamma)/\Gamma_{\text{total}}
                                                                                                          \Gamma_{14}/\Gamma
VALUE
                  CL%
                                 DOCUMENT ID
                                                            TECN
                                                                     COMMENT
                                                                      2.1-2.7 K^- p \rightarrow \Lambda \pi^+ \pi^- neutrals
 < 0.05
                                 LINDSEY
                                                           HBC
\Gamma(\rho\gamma)/\Gamma_{\text{total}}
                                                                                                          \Gamma_{15}/\Gamma
VALUE (units
                  CL%
                                 DOCUMENT ID
                                                            TECN
                                                                      COMMENT
   10^{-4})
                             <sup>41</sup> AKHMETSHIN 99B CMD2 e^+e^- 
ightarrow \pi^+\pi^-\gamma
 < 0.12
                  90
• • We do not use the following data for averages, fits, limits, etc. • •
                                 AKHMETSHIN 97C CMD2 e^+e^- \rightarrow \pi^+\pi^-\gamma
 < 7
                  90
                                                     66 HBC
                                                                      2.1-2.7 K^- p \rightarrow \Lambda \pi^+ \pi^- neutrals
                                 LINDSEY
 < 200
                  84
```

$\Gamma(\pi^+\pi^-\gamma)/\Gamma_{\text{total}}$								Γ_{16}/Γ
$VALUE$ (units 10^{-4})	CL%	EVTS		DOCUMENT IL)	TECN	COMMENT	
$0.41 \pm 0.12 \pm 0.04$,	30175	42	AKHMETSH	IIN 99B	CMD2	$e^+e^- \rightarrow$	$\pi^+\pi^-\gamma$
• • • We do not use	the fo	llowing	data	for averages,	fits, lim	its, etc.	• • •	,
< 0.3	90		43	3 AKHMETSH	IIN 97C	CMD2	$e^+e^- \rightarrow$	$\pi^+\pi^-\gamma$
<600	90			KALBFLEIS				,
							$\Lambda \pi^+ \pi^-$	$-\gamma$
< 70	90			COSME	74		$e^+e^- \rightarrow$,
<400	90			LINDSEY	65	HBC	2.1–2.7 K	
							$\Lambda \pi^+ \pi^-$	neutrals
$\Gamma(f_0(980)\gamma)/\Gamma_{\text{tota}}$	ı							Γ ₁₇ /Γ
$VALUE$ (units 10^{-4})		EVTS		DOCUMENT ID		TECN	COMMENT	
3.22±0.19 OUR FIT								
3.21±0.19 OUR AVE	RAGE							
$3.21^{+0.03}_{-0.09}\pm0.18$			44	AMBROSINO	07	KLOE	$e^+e^- \rightarrow$	$\pi^0\pi^0\gamma$
$2.90\pm0.21\pm1.54$			45	AKHMETSHI	N 99C	CMD2	$e^+e^- \rightarrow$	$\pi^+\pi^-\gamma$
							$\pi^0\pi^0\gamma$, ,
\bullet \bullet We do not use	the fo	llowing	data	$for \ averages,$	fits, lim	its, etc.	• • •	
4.47 ± 0.21		2438	46	ALOISIO	02 D	KLOE	$e^+e^- \rightarrow$	$\pi^0\pi^0\gamma$
$3.5 \pm 0.3 ^{+1.3}_{-0.5}$		419 4	7,48	ACHASOV	00н	SND	$e^+e^- \rightarrow$	$\pi^0\pi^0\gamma$
$1.93 \pm 0.46 \pm 0.50$		27188	49	AKHMETSHI	N 99 B	CMD2	$e^+e^- \rightarrow$	$\pi^+\pi^-\gamma$
$3.05 \pm 0.25 \pm 0.72$		268		AKHMETSHI				
1.5 ± 0.5		268		AKHMETSHI				
$3.42 \pm 0.30 \pm 0.36$		164		ACHASOV			$e^+e^- \rightarrow$	
< 1	90		52	AKHMETSHI	N 97C	CMD2	$e^+e^- \rightarrow$	$\pi^+\pi^-\gamma$
< 7	90		53	AKHMETSHI				
< 20	90			DRUZHININ	87	ND	$e^+e^- \rightarrow$	$\pi^0\pi^0\gamma$
$\Gamma(f_0(980)\gamma)/\Gamma(\eta\gamma)$	/)							Γ_{17}/Γ_{6}
` ^ `	EV	/TS	DC	CUMENT ID	TE	ECN CC	NAMENIT	- 17, - 0
2.46±0.15 OUR FIT						<u>.c.v</u>	/IVIIVILIV I	
				CHASOV (ın +	0	0
$2.6 \pm 0.2 ^{+0.8}_{-0.3}$	4	19	. AC	.HASOV (JUH SIV	ND e	$e \rightarrow \pi^{\circ}$	π ° γ
$\Gamma(\pi^0\pi^0\gamma)/\Gamma_{ m total}$								Γ ₁₈ /Γ
VALUE (units 10^{-4})	CI %	FVTS		DOCUMENT I	ID	TECN	СОММЕНТ	
1.07 ±0.06 OUR A				<u>DOCOMEIVI I</u>		7201	COMMENT	
$1.07 \begin{array}{c} +0.01 \\ -0.03 \end{array} \begin{array}{c} +0.06 \\ -0.06 \end{array}$			5	⁴ AMBROSIN	IO 07	KLOE	e ⁺ e ⁻ -	$\pi^0\pi^0\gamma$
$-0.03 - 0.06$ $1.08 \pm 0.17 \pm 0.09$		268		AKHMETSI				
• • • We do not use	the fo		data					· π π · γ
$1.09 \pm 0.03 \pm 0.05$		2438		ALOISIO			: e ⁺ e ⁻ -	$\pi^{0}\pi^{0}$
$1.09 \pm 0.03 \pm 0.05$ $1.158 \pm 0.093 \pm 0.052$			48,5	⁵ ACHASOV			e^+e^-	
<10	90	713	,	DRUZHININ	N 87		e^+e^-	
\ - \	50			2	. 51	.,,,		J

```
\Gamma(\pi^0\pi^0\gamma)/\Gamma(\eta\gamma)
                                                                                                  \Gamma_{18}/\Gamma_{6}
VALUE (units 10^{-2})
0.86 \pm 0.04 OUR FIT
                                         <sup>55</sup> ACHASOV
0.865 \pm 0.070 \pm 0.017
                               419
                                                               00H SND
• • We do not use the following data for averages, fits, limits, etc
0.90 \pm 0.08 \pm 0.07
                               164
                                            ACHASOV
                                                               981
                                                                     SND
\Gamma(\pi^+\pi^-\pi^+\pi^-)/\Gamma_{\text{total}}
                                                                                                   \Gamma_{19}/\Gamma
VALUE (units 10^{-6}) CL\% EVTS
                                          DOCUMENT ID TECN COMMENT
• • • We do not use the following data for averages, fits, limits, etc. • • •
                                          AKHMETSHIN 00E CMD2 e^+e^- \rightarrow \pi^+\pi^-\pi^+\pi^-
                              3285
                                                             79 WIRE e^+e^- \to \pi^+\pi^-\pi^+\pi^-
                                          CORDIER
< 870
                       90
\Gamma(\pi^+\pi^+\pi^-\pi^-\pi^0)/\Gamma_{\text{total}}
                                                                                                    \Gamma_{20}/\Gamma
VALUE (units 10^{-6}) CL%
                                     DOCUMENT ID
                                                              TECN COMMENT
                                     AKHMETSHIN 00E CMD2 e^+e^- \rightarrow \pi^+\pi^-\pi
• • • We do not use the following data for averages, fits, limits, etc. • •
                                                                        e^{+}e^{-} \rightarrow \pi^{+}\pi^{-}\pi^{+}\pi^{-}\pi^{0}
<150
                                     BARKOV
                                                               CMD
\Gamma(\pi^0 e^+ e^-)/\Gamma_{\text{total}}
                                                                                                   \Gamma_{21}/\Gamma
VALUE (units 10^{-5}) CL\% EVTS
                                                DOCUMENT ID
                                                                         TECN COMMENT
    1.33^{+0.07}_{-0.10} OUR AVERAGE
                                                                  16B KLOE e^+e^- \rightarrow \pi^0e^+e^-
    1.35\pm0.05 ^{+0.05}_{-0.10}
                                            <sup>56</sup> ANASTASI
                                  9.5k
                                            <sup>57</sup> ACHASOV
                                                                  02D SND
                                    52
    1.01 \pm 0.28 \pm 0.29
                                            ^{58} AKHMETSHIN 01C CMD2 \,\mathrm{e^{+}\,e^{-}}\,
ightarrow\,\pi^{0}\,\mathrm{e^{+}\,e^{-}}
    1.22 \pm 0.34 \pm 0.21
                                    46
• • • We do not use the following data for averages, fits, limits, etc. •
                                                                                   e^+e^- 
ightarrow \pi^0 e^+e^-
                                                                         ND
<12
                          90
                                                DOLINSKY
\Gamma(\pi^0\eta\gamma)/\Gamma_{\rm total}
                                                                                                    \Gamma_{22}/\Gamma
VALUE (units 10^{-5})
                        CL%
                                             DOCUMENT ID
                              EVTS
                                                                       TECN COMMENT
7.27±0.30 OUR AVERAGE
                                   Error includes scale factor of 1.5. See the ideogram below.
                                          <sup>59</sup> AMBROSINO 09F KLOE 1.02 e^+e^- \rightarrow \eta \pi^0 \gamma
                              16.9k
7.06 \pm 0.22
                                          60 ALOISIO
                                                                02C KLOE e^+e^- \rightarrow \eta \pi^0 \gamma
8.51 \pm 0.51 \pm 0.57
                                607
                                                                02C KLOE e^+e^- \rightarrow \eta \pi^0 \gamma
                                          <sup>61</sup> ALOISIO
7.96 \pm 0.60 \pm 0.40
                                197
                                          <sup>62</sup> ACHASOV
                                                                00F SND
                                  36
8.8 \pm 1.4 \pm 0.9
                                             AKHMETSHIN 99C CMD2 e^+e^- \rightarrow \eta \pi^0 \gamma
9.0 \pm 2.4 \pm 1.0

    • • We do not use the following data for averages, fits, limits, etc.

                              13.3k ^{60,63} AMBROSINO 09F KLOE 1.02 e^+e^- \rightarrow \eta \pi^0 \gamma
7.01\!\pm\!0.10\!\pm\!0.20
                                                                      KLOE 1.02 e^+e^- \rightarrow \eta \pi^0 \gamma
                               3.6k 61,64 AMBROSINO 09F
7.12 \pm 0.13 \pm 0.22
                                  20
                                             ACHASOV
                                                                98B
                                                                      SND
8.3 \pm 2.3 \pm 1.2
                                             DOLINSKY
                                                                       ND
<250
                        90
```


$\Gamma(a_0(980)\gamma)/\Gamma_{\text{total}}$ Γ_{23}/Γ VALUE (units 10^{-5}) CL% EVTSDOCUMENT ID TECN 7.6±0.6 OUR FIT 7.6±0.6 OUR AVERAGE ⁶⁵ ALOISIO 02C KLOE $e^+e^- ightarrow \, \eta \pi^0 \, \gamma$ 7.4 ± 0.7 ⁶⁶ ACHASOV 00F SND $8.8\!\pm\!1.7$ 36 \bullet $\,\bullet$ We do not use the following data for averages, fits, limits, etc. $\,\bullet$ RVUE $e^+e^- \rightarrow \eta \pi^0 \gamma$ ND $e^+e^- \rightarrow \pi^0 \eta \gamma$ ⁶⁷ GOKALP 11 ± 2 < 500 90 **DOLINSKY** $\Gamma(f_0(980)\gamma)/\Gamma(a_0(980)\gamma)$ Γ_{17}/Γ_{23} **VALUE** 02C KLOE $e^+e^- \rightarrow n\pi^0\gamma$ 6.1 ± 0.6 $\Gamma(K^0\overline{K}^0\gamma)/\Gamma_{\text{total}}$ Γ_{24}/Γ CL% AMBROSINO 090 KLOE $e^+e^- \rightarrow \kappa_S^0 \kappa_S^0 \gamma$ 90 $\Gamma(\eta'(958)\gamma)/\Gamma_{\text{total}}$ Γ_{25}/Γ VALUE (units 10^{-5}) CL% EVTSDOCUMENT ID TECN COMMENT 6.25 ± 0.21 OUR FIT 6.25 ± 0.30 OUR AVERAGE 69 AMBROSINO 07A KLOE $^{1.02}$ $_{\pi}^{+}$ $_{\pi}^{-}$ $_{7\gamma}^{-}$ $6.24 \pm 0.28 \pm 0.11$ 3407 $6.7 \begin{array}{c} +2.8 \\ -2.4 \end{array} \pm 0.8$ ⁷⁰ AULCHENKO 03B SND HTTP://PDG.LBL.GOV Page 17 Created: 5/30/2017 17:20

```
• • • We do not use the following data for averages, fits, limits, etc. • • •
                                             AULCHENKO 03B SND
                                         <sup>71</sup> ALOISIO
 6.10\pm0.61\pm0.43
 8.2 \begin{array}{c} +2.1 \\ -1.9 \end{array} \pm 1.1
                                         ^{72} AKHMETSHIN 00B CMD2 e^+e^- \rightarrow \pi^+\pi^- 3\gamma
                                         73 AKHMETSHIN 00F CMD2 e^+e^- \rightarrow \pi^+\pi^- \geq 2\gamma
 4.9 \begin{array}{c} +2.2 \\ -1.8 \end{array} \pm 0.6
                                         <sup>74</sup> AKHMETSHIN 00F CMD2 e^+e^- \rightarrow \eta'(958)\gamma
 6.4 \pm 1.6
 6.7 \begin{array}{c} +3.4 \\ -2.9 \end{array} \pm 1.0
                                         <sup>75</sup> AULCHENKO 99 SND e^+e^- \rightarrow \pi^+\pi^- 3\gamma
                                             AULCHENKO 98 SND e^+e^- \rightarrow 7\gamma
<11
12 \quad \begin{array}{cc} +7 \\ -5 \end{array} \quad \pm 2
                                         ^{72} AKHMETSHIN 97B CMD2 e^+e^- \rightarrow \pi^+\pi^- 3\gamma
                                                                                  e^+e^- \rightarrow \gamma \eta \pi^+\pi^-
                                                                 87
                                                                        ND
< 41
                        90
                                             DRUZHININ
\Gamma(\eta'(958)\gamma)/\Gamma(K_L^0K_S^0)
                                                                                                         \Gamma_{25}/\Gamma_{2}
VALUE (units 10^{-4}) EVTS
                                                                  TECN COMMENT
1.83±0.06 OUR FIT
1.46^{+0.64}_{-0.54}\pm0.18
                                     ^{76} AKHMETSHIN 00F CMD2 _{2\gamma}^{+\,e^-} \rightarrow _{\pi^+\pi^-\pi^+\pi^-} \geq
\Gamma(\eta'(958)\gamma)/\Gamma(\eta\gamma)
                                                                                                         \Gamma_{25}/\Gamma_{6}
VALUE (units 10^{-3})
                                                                       TECN COMMENT
4.77±0.15 OUR FIT
4.78 ± 0.20 OUR AVERAGE
                                            AMBROSINO 07A KLOE 1.02 e^+e^- \rightarrow \pi^+\pi^-7\gamma
4.77 \pm 0.09 \pm 0.19
                             3407
                                                                02E KLOE 1.02 e^+e^- \to \pi^+\pi^- 3\gamma
4.70 \pm 0.47 \pm 0.31
                              120
6.5 \  \, ^{+1.7}_{-1.5} \  \, \pm 0.8
                                            AKHMETSHIN 00B CMD2 e^+e^- \rightarrow \pi^+\pi^- 3\gamma
                               21
• • • We do not use the following data for averages, fits, limits, etc. • • •
9.5 \begin{array}{c} +5.2 \\ -4.0 \end{array} \pm 1.4
                                        <sup>78</sup> AKHMETSHIN 97B CMD2 e^+e^- \rightarrow \pi^+\pi^- 3\gamma
\Gamma(\eta \pi^0 \pi^0 \gamma) / \Gamma_{\text{total}}
                                                                                                           \Gamma_{26}/\Gamma
VALUE (units 10^{-5})
                                 CL%
 <2
                                                                          SND
                                               AULCHENKO 98
\Gamma(\mu^+\mu^-\gamma)/\Gamma_{\text{total}}
VALUE (units 10^{-5})
                                               DOCUMENT ID TECN COMMENT
                                EVTS
                                           <sup>49</sup> AKHMETSHIN 99B CMD2 e^+e^- \rightarrow \mu^+\mu^-\gamma
1.43\pm0.45\pm0.14
                              27188
• • • We do not use the following data for averages, fits, limits, etc. • •
                                            ^{79} AKHMETSHIN 97C CMD2 e^+e^- 
ightarrow \mu^+\mu^-\gamma
2.3 \pm 1.0
                          824\pm33
\Gamma(\rho\gamma\gamma)/\Gamma_{\text{total}}
                                                                                                           \Gamma_{28}/\Gamma
VALUE (units 10^{-4})
                                                                          TECN COMMENT
                                 CL%
                                               DOCUMENT ID
                                                                          CMD2 \phi \rightarrow \pi^+\pi^-\gamma\gamma
 <1.2
                                 90
                                               AULCHENKO 08
• • • We do not use the following data for averages, fits, limits, etc. • • •
                                               AKHMETSHIN 98 CMD2 e^+e^- \rightarrow \pi^+\pi^-\gamma\gamma
HTTP://PDG.LBL.GOV
                                                   Page 18
                                                                            Created: 5/30/2017 17:20
```

```
\Gamma(\eta \pi^+ \pi^-)/\Gamma_{\text{total}}
                                                                                                              \Gamma_{29}/\Gamma
VALUE (units 10^{-5})
                                          AKHMETSHIN 00E CMD2 e^+e^- \rightarrow \pi^+\pi^-\pi^+\pi^-\pi^0
 < 1.8
                           90
• • • We do not use the following data for averages, fits, limits, etc. • •
                           90
                                          AULCHENKO 08
                                                                      CMD2 \phi \rightarrow \eta \pi^+ \pi^-
                                                                      CMD2 e^+e^- \rightarrow \pi^+\pi^-\gamma\gamma
                                          AKHMETSHIN 98
 <30
                           90
\Gamma(\eta \mu^+ \mu^-)/\Gamma_{\text{total}}
                                                                                                              \Gamma_{30}/\Gamma
VALUE (units 10^{-6})
                                                                             TECN COMMENT
                                                 AKHMETSHIN 01 CMD2 e^+e^- \rightarrow ne^+e^-
 <9.4
\Gamma(\eta U \rightarrow \eta e^+ e^-)/\Gamma_{\text{total}}
                                               DOCUMENT ID TECN COMMENT
                                                                   13B KLOE 1.02 e^{+}e^{-} \rightarrow ne^{+}e^{-}
   ^1 Combined analysis of the CMD-2 data on \phi\to K^+K^- , K^0_S\,K^0_L , \pi^+\,\pi^-\,\pi^0 , \eta\gamma assuming that the sum of their branching fractions is 0.99741 \pm 0.00007.
   <sup>2</sup> Using B(\phi \rightarrow e^+e^-)= (2.93 ± 0.14) × 10<sup>-4</sup>.
   <sup>3</sup>Theoretical analysis of BRAMON 00 taking into account phase-space difference, elec-
     tromagnetic radiative corrections, as well as isospin breaking, predicts 0.62. FLOREZ-
     BAEZ 08 predicts 0.63 considering also structure-dependent radiative corrections. FIS-
     CHBACH 02 calculates additional corrections caused by the close threshold and predicts
     0.68. See also BENAYOUN 01 and DUBYNSKIY 07. BENAYOUN 12 obtains 0.71\pm0.01
     in the HLS model.
   <sup>4</sup> Using B(\phi \rightarrow e^+e^-)=(2.99 ± 0.08) × 10<sup>-4</sup>.
   <sup>5</sup> Using \Gamma(\phi)=4.1 MeV. If interference between the \rho\pi and 3\pi modes is neglected, the
     fraction of the \rho\pi is more than 80% at the 90% confidence level.
   <sup>6</sup> From a fit without limitations on charged and neutral \rho masses and widths.
   ^7 Adding the direct and \omega\pi contributions and considering the interference between the 
ho\pi
     and \pi^+\pi^-\pi^0.
   8 Neglecting the interference between the \rho\pi and \pi^+\pi^-\pi^0.
   <sup>9</sup> Using B(\phi \rightarrow e^+e^-) = (2.99 \pm 0.08) \times 10<sup>-4</sup> and B(\eta \rightarrow 3\pi^0) = (32.2 \pm 0.4) \times 10<sup>-2</sup>.
  <sup>10</sup> From \pi^+\pi^-\pi^0 decay mode of \eta.
  <sup>11</sup> From 2\gamma decay mode of \eta.
  <sup>12</sup> From 3\pi^0 decay mode of \eta.
 <sup>13</sup> ACHASOV 07B reports [\Gamma(\phi(1020) \rightarrow \eta \gamma)/\Gamma_{\mathsf{total}}] \times [\mathsf{B}(\phi(1020) \rightarrow e^+e^-)] =
     (4.050 \pm 0.067 \pm 0.118) \times 10^{-6} which we divide by our best value B(\phi(1020) \rightarrow e^+e^-)
     = (2.955 \pm 0.029) \times 10^{-4}. Our first error is their experiment's error and our second
     error is the systematic error from using our best value. Supersedes ACHASOV 00D and
 14 Using B(\phi \rightarrow e^+e^-) = (2.98 \pm 0.04) \times 10<sup>-4</sup> and B(\eta \rightarrow \gamma \gamma) = 39.43 \pm 0.26%. 15 Not independent of the corresponding \Gamma(e^+e^-) \times \Gamma(\eta \gamma)/\Gamma_{\text{total}}^2.
 <sup>16</sup> Using B(\phi \rightarrow e^+e^-) = (2.99 ± 0.08)×10<sup>-4</sup> and B(\eta \rightarrow 3\pi^0)=(32.24 ± 0.29)×10<sup>-2</sup>.
  <sup>17</sup> The combined fit from 600 to 1380 MeV taking into account \rho(770), \omega(782), \phi(1020),
     and \rho(1450) (mass and width fixed at 1450 MeV and 310 MeV respectively).
 <sup>18</sup> From the \eta \to 2\gamma decay and using B(\phi \to e^+e^-) =(2.99 \pm 0.08) \times 10<sup>-4</sup>.
  <sup>19</sup> From \pi^+\pi^-\pi^0 decay mode of \eta and using B(\phi \rightarrow e^+e^-)= (2.99 \pm 0.08) \times 10<sup>-4</sup>.
  <sup>20</sup> Reanalysis of DRUZHININ 84, DOLINSKY 89, and DOLINSKY 91 taking into account
     a triangle anomaly contribution.
 ^{21} Using B(\phi 
ightarrow e^+e^-) from PDG 15. Supersedes ACHASOV 00.
 <sup>22</sup> Using B(\phi \rightarrow e^+e^-) = (2.98 ± 0.04) × 10<sup>-4</sup>.
```

- 23 Not independent of the corresponding $\Gamma(e^+e^-) \times \Gamma(\pi^0\gamma)/\Gamma_{\mathrm{total}}^2$
- ²⁴ From the $\pi^0 \rightarrow 2\gamma$ decay and using B($\phi \rightarrow e^+e^-$) = (2.99 \pm 0.08) \times 10⁻⁴.
- 25 From the combined fit assuming that the total $\phi(1020)$ production cross section is saturated by those of K^+K^- , K_SK_L , $\pi^+\pi^-\pi^0$, and $\eta\gamma$ decays modes and using ACHASOV 00B for the $\eta\gamma$ decay mode.
- 26 Using total width 4.2 MeV. They detect 3π mode and observe significant interference with ω tail. This is accounted for in the result quoted above.
- 27 Neglecting interference between resonance and continuum.
- ²⁸ Using B($\phi \rightarrow e^+e^-$) = (2.91 ± 0.07) × 10⁻⁴.
- ²⁹ Recalculated by us using B($\phi \rightarrow e^+e^-$)= (2.99 \pm 0.08) \times 10⁻⁴.
- 30 Using B($\eta \to 3\pi^0$) = (32.57 \pm 0.23)% from PDG 12.
- 31 Using B($\eta \to \gamma \gamma$) = (39.25 \pm 0.32)%, B($\phi \to \eta \gamma$) = (1.26 \pm 0.06)%, and B($\phi \to \eta \gamma$) e^+e^-) = $(3.00 \pm 0.06) \times 10^{-4}$.
- ³²The average of the branching ratios separately obtained from the $\eta \to \gamma \gamma$, $3\pi^0$, $\pi^+\pi^-\pi^0$ decays.
- ³³ From $\eta \to \gamma \gamma$ decays and using B($\eta \to \gamma \gamma$) = (39.33 ± 0.25)×10⁻², B($\eta \to \pi^+ \pi^- \gamma$) $= (4.75 \pm 11) \times 10^{-2}$, and $B(\phi \rightarrow \eta \gamma) = (1.297 \pm 0.033) \times 10^{-2}$.
- ³⁴ From $\eta \to 3\pi^0$ decays and using B($\pi^0 \to \gamma \gamma$) = (98.798 \pm 0.033) \times 10⁻², B($\eta \to$ $3\pi^0)=(32.24\pm0.29)\times10^{-2}$, B($\eta\to\pi^+\pi^-\gamma$) = $(4.75\pm0.11)\times10^{-2}$, and B($\phi\to\eta\gamma$) = $(1.297\pm0.033)\times10^{-2}$.
- 35 From $\eta \to \pi^+\pi^-\pi^0$ decays and using B($\pi^0 \to \gamma\gamma$) = (98.798 \pm 0.033) \times 10⁻², $B(\pi^0 \to e^+ e^- \gamma) = (1.198 \pm 0.032) \times 10^{-2}, B(\eta \to \pi^+ \pi^- \pi^0) = (23.0 \pm 0.4) \times 10^{-2}$ $B(\phi \to \pi^+ \pi^- \pi^0) = (15.5 \pm 0.6) \times 10^{-2}$, and $B(\phi \to \eta \gamma) = (1.297 \pm 0.033) \times 10^{-2}$.
- ³⁶ Using the 1996 and 1998 data.
- 37 (2.3 \pm 0.3)% correction for other decay modes of the ω (782) applied.
- ³⁸ Not independent of the corresponding $\Gamma(\omega \pi^0) \times \Gamma(e^+e^-) / \Gamma^2$ (total).
- ³⁹ Using the 1996 data.
- ⁴⁰ Using the 1998 data.
- ⁴¹Supersedes AKHMETSHIN 97C.
- ⁴² For $E_{\gamma} > 20$ MeV and assuming that B $(\phi(1020) \rightarrow f_0(980)\gamma)$ is negligible. Supersedes AKHMETSHIN 97c.
- 43 For $E_{\gamma} >$ 20 MeV and assuming that B($\phi(1020) \rightarrow f_0(980)\gamma$) is negligible.
- Obtained by the authors taking into account the $\pi^+\pi^-$ decay mode. Includes a component due to $\pi\pi$ production via the $f_0(500)$ meson. Supersedes ALOISIO 02D.
- ⁴⁵ From the combined fit of the photon spectra in the reactions $e^+e^- \rightarrow \pi^+\pi^-\gamma$, $\pi^{0}\pi^{0}\gamma$.
- ⁴⁶ From the negative interference with the $f_0(500)$ meson of AITALA 01B using the ACHASOV 89 parameterization for the $f_0(980)$, a Breit-Wigner for the $f_0(500)$, and ACHASOV 01F for the $\rho\pi$ contribution. Superseded by AMBROSINO 07. ⁴⁷ Assuming that the $\pi^0\pi^0\gamma$ final state is completely determined by the $f_0\gamma$ mechanism,
- neglecting the decay B($\phi \to K\overline{K}\gamma$) and using B($f_0 \to \pi^+\pi^-$)= 2B($f_0 \to \pi^0\pi^0$).
- ⁴⁸ Using the value B($\phi \rightarrow \eta \gamma$)=(1.338 \pm 0.053) \times 10⁻².
- 49 For $E_{\gamma} >$ 20 MeV. Supersedes AKHMETSHIN 97C.
- ⁵⁰ Neglecting other intermediate mechanisms ($\rho \pi$, $\sigma \gamma$).
- 51 A narrow pole fit taking into account $f_0(980)$ and $f_0(1200)$ intermediate mechanisms.
- ⁵² For destructive interference with the Bremsstrahlung process
- 53 For constructive interference with the Bremsstrahlung process
- ⁵⁴ Supersedes ALOISIO 02D.
- $^{55}\,\mathrm{Supersedes}$ ACHASOV 981. Excluding $\omega\,\pi^0$.
- ⁵⁶ Using B($\pi^0 \rightarrow \gamma \gamma$) from the 2014 Edition of this Review (PDG 14).

- ⁵⁷ Using various branching ratios from the 2000 Edition of this Review (PDG 00).
- ⁵⁸ Using B($\pi^0 \to \gamma \gamma$) = 0.98798 \pm 0.00032, B($\phi \to \eta \gamma$) = (1.297 \pm 0.033) \times 10⁻², and B($\eta \to \pi^+ \pi^- \gamma$) = (4.75 \pm 0.11) \times 10⁻².
- ⁵⁹ Combined results of $\eta \to \gamma \gamma$ and $\eta \to \pi^+ \pi^- \pi^0$ decay modes measurements.
- ⁶⁰ From the decay mode $\eta \to \gamma \gamma$.
- ⁶¹ From the decay mode $\eta \to \pi^+\pi^-\pi^0$.
- ⁶² Supersedes ACHASOV 98B.
- 63 Using B($\phi \to \eta \gamma$) = (1.304 \pm 0.025)%, B($\eta \to 3\pi^0$) = (32.56 \pm 0.23)%, and B($\eta \to \gamma \gamma$) = (39.31 \pm 0.20)%.
- 64 Using B($\phi \to \eta \gamma$) = (1.304 \pm 0.025)%, B($\eta \to 3\pi^0$) = (32.56 \pm 0.23)%, and B($\eta \to \pi^+\pi^-\pi^0$) = (22.73 \pm 0.28)%.
- $65 \ {\rm Using} \ M_{a_0(980)} = 984.8 \ {\rm MeV}$ and assuming $a_0(980) \, \gamma$ dominance.
- ⁶⁶ Assuming $a_0(980)\gamma$ dominance in the $\eta\pi^0\gamma$ final state.
- ⁶⁷ Using data of ACHASOV 00F.
- ⁶⁸ Using results of ALOISIO 02D and assuming that $f_0(980)$ decays into $\pi\pi$ only and $a_0(980)$ into $\eta\pi$ only.
- ⁶⁹ AMBROSINO 07A reports $[\Gamma(\phi(1020) \rightarrow \eta'(958)\gamma)/\Gamma_{\text{total}}]$ / $[B(\phi(1020) \rightarrow \eta\gamma)] = (4.77 \pm 0.09 \pm 0.19) \times 10^{-3}$ which we multiply by our best value $B(\phi(1020) \rightarrow \eta\gamma) = (1.309 \pm 0.024) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.
- 70 Averaging AULCHENKO 03B with AULCHENKO 99.
- 71 Using B($\phi \to \eta \gamma$)= (1.297 ± 0.033)%.
- ⁷² Using the value B($\phi \rightarrow \eta \gamma$) = (1.26 \pm 0.06) \times 10⁻².
- ⁷³ Using B($\phi \to K_I^0 K_S^0$) = (33.8 ± 0.6)%.
- ⁷⁴ Averaging AKHMETSHIN 00B with AKHMETSHIN 00F.
- 75 Using the value B($\eta' \to \eta \pi^+ \pi^-$)= (43.7 \pm 1.5) \times 10⁻² and B($\eta \to \gamma \gamma$)= (39.25 \pm 0.31) \times 10⁻².
- ⁷⁶ Using various branching ratios of K_S^0 , K_L^0 , η , η' from the 2000 edition (The European Physical Journal **C15** 1 (2000)) of this Review.
- 77 From the decay mode $\eta' \to \eta \pi^+ \pi^-$, $\eta \to \gamma \gamma$.
- ⁷⁸ Superseded by AKHMETSHIN 00B.
- 79 For $E_{\gamma} > 20$ MeV.
- 80 For a narrow vector U with mass between 5 and 470 MeV, from the combined analysis of $\eta\to\pi^+\pi^-\pi^0$ and $\eta\to\pi^0\pi^0\pi^0$ from ARCHILLI 12. Measured 90% CL limits as a function of m_H range from 2.2 \times 10 $^{-8}$ to 10 $^{-6}$.

Lepton Family number (LF) violating modes ———

$\Gamma(e^{\pm}\mu^{\mp})/\Gamma_{total}$					Γ ₃₂ /Γ
<u>VALUE</u>	CL%	DOCUMENT ID		TECN	COMMENT
$<2 \times 10^{-6}$	90	ACHASOV	10A	SND	$e^+e^- ightarrow e^{\pm}\mu^{\mp}$

$\pi^+\pi^-\pi^0$ / $ho\pi$ AMPLITUDE RATIO a_1 IN DECAY OF $\phi ightarrow \, \pi^+\pi^-\pi^0$

NIECKNIG 12 describes final-state interactions between the three pions in a dispersive framework using data on the $\pi\pi$ P-wave scattering phase shift.

VALUE (units 10^{-2}) CL% EVTSTECN COMMENT 9.1 ± 1.2 OUR AVERAGE ¹ AKHMETSHIN 06 CMD2 $1.017-1.021 e^{+}e^{-} \rightarrow \pi^{+}\pi^{-}\pi^{0}$ $10.1 \pm 4.4 \pm 1.7$ 80k ^{2,3} ALOISIO 1.98M $9.0 \pm 1.1 \pm 0.6$

• • We do not use the following data for averages, fits, limits, etc.

$$-6 < a_1 < 6$$
 500k 3 ACHASOV 02 SND $e^+e^- \rightarrow \pi^+\pi^-\pi^0$ $-16 < a_1 < 11$ 90 9.8k 1,4 AKHMETSHIN 98 CMD2 $e^+e^- \rightarrow \pi^+\pi^-\gamma\gamma$

PARAMETER β IN $\phi \rightarrow Pe^+e^-$ DECAYS

In the one-pole approximation the electromagnetic transition form factor for $\phi \to Pe^+e^-$ ($P=\pi,\eta$) is given as a function of the e^+e^- invariant mass squared, q^2 , by the expression: $|F(q^2)|^2 = (1-q^2/\Lambda^2)^{-2}$,

where vector meson dominance predicts parameter $\Lambda \approx 0.770~\text{GeV}$ ($\Lambda^{-2} \approx$ 1.687 GeV⁻²). The slope of this form factor, $\beta = dF/dq^2(q^2=0)$, equals Λ^{-2} in this approximation.

The measurements below obtain β in the one-pole approximation.

PARAMETER β IN $\phi \rightarrow \pi^0 e^+ e^-$ DECAY

$VALUE$ (GeV $^{-2}$)	EVTS	DOCUMENT ID		TECN	COMMENT
2.02±0.11	9.5k	¹ ANASTASI	16 B	KLOE	$1.02 e^{+}e^{-} \rightarrow \pi^{0}e^{+}e^{-}$

¹ The error combines statistical and systematic uncertainties.

PARAMETER β IN $\phi \rightarrow \eta e^+ e^-$ DECAY

$VALUE$ (GeV $^{-2}$)	EVTS	DOCUMENT ID		TECN	COMMENT
1.29±0.13 OUR AVE	RAGE				
$1.28 \pm 0.10 ^{+0.09}_{-0.08}$	30k	BABUSCI	15	KLOE	$1.02~e^+e^- \rightarrow~\etae^+e^-$
3.8 ± 1.8	213	$^{ m 1}$ ACHASOV	01 B	SND	1.02 $e^+e^- \to \eta e^+e^-$

 $^{^{1}}$ The uncertainty is statistical only. The systematic one is negligible, in comparison.

 $^{^{1}}$ Dalitz plot analysis taking into account interference between the contact and $ho\pi$ ampli-

 $^{^2}$ From a fit without limitations on charged and neutral ho masses and widths.

 $^{^3}$ Recalculated by us to match the notations of AKHMETSHIN 98.

⁴ Assuming zero phase for the contact term.

ϕ (1020) REFERENCES

ACHASOV	16A	PR D93 092001	M.N. Achasov et al.	(SND Collab.)
ANASTASI	16B	PL B757 362	A. Anastasi <i>et al.</i>	(KLOE-2 Collab.)
KOZYREV	16	PL B760 314	E.A. Kozyrev <i>et al.</i>	
			•	(CMD3 Collab.)
BABUSCI	15	PL B742 1	D. Babusci <i>et al.</i>	(KLOE-2 Collab.)
PDG	15	RPP 2015 at pdg.lbl.gov		(PDG Collab.)
LEES	14H	PR D89 092002	J.P. Lees <i>et al.</i>	(BABAR Collab)
PDG	14	CP C38 070001	K. Olive <i>et al.</i>	(PDG Collab.)
BABUSCI	13B	PL B720 111	D. Babusci <i>et al.</i>	(KLOE-2 Collab.)
BENAYOUN	13	EPJ C73 2453	M. Benayoun, P. David, L.	DelBuono (PARIN, BERLIN+)
LEES	13F	PR D87 052010	J.P. Lees et al.	(BABAR Collab.)
LEES	13Q	PR D88 032013	J.P. Lees <i>et al.</i>	(BABAR Collab.)
	12		F. Archilli <i>et al.</i>	
ARCHILLI		PL B706 251		(KLOE-2 Collab.)
BENAYOUN	12	EPJ C72 1848	M. Benayoun <i>et al.</i>	
NIECKNIG	12	EPJ C72 2014	F. Niecknig, B. Kubis, S.P.	Schneider (BONN)
PDG	12	PR D86 010001	J. Beringer <i>et al.</i>	(PDG Collab.)
AKHMETSHIN	11	PL B695 412	R. Akhmetshin et al.	(CMD2 Collab.)
ACHASOV	10A	PR D81 057102	M.N. Achasov et al.	(Novosibirsk SND Collab.)
BENAYOUN	10	EPJ C65 211	M. Benayoun <i>et al.</i>	(**************************************
AMBROSINO	09C	PL B679 10	F. Ambrosino <i>et al.</i>	(KLOE Collab.)
				(KLOE Collab.)
AMBROSINO	09F	PL B681 5	F. Ambrosino <i>et al.</i>	(KLOE Collab.)
AKHMETSHIN	08	PL B669 217	R.R. Akhmetshin et al.	(CMD-2 Collab.)
AMBROSINO	08G	PL B669 223	F. Ambrosino <i>et al.</i>	(KLOE Collab.)
AULCHENKO	80	JETPL 88 85	V. Aulchenko <i>et al.</i>	(CMD-2 Collab.)
		Translated from ZETFP	88 93.	,
FLOREZ-BAEZ	08	PR D78 077301	F.V. Florez-Baez, G. Lopez	Castro
ACHASOV	07B	PR D76 077101	M.N. Achasov et al.	(SND Collab.)
AMBROSINO	07	EPJ C49 473	F. Ambrosino <i>et al.</i>	(KLOE Collab.)
AMBROSINO	07A	PL B648 267	F. Ambrosino et al.	(KLOE Collab.)
DUBYNSKIY	07	PR D75 113001	S. Dubynskiy <i>et al.</i>	
ACHASOV	06A	PR D74 014016	M.N. Achasov et al.	(SND Collab.)
AKHMETSHIN	06	PL B642 203	R.R. Akhmetshin et al.	(CMD-2 Collab.)
AKHMETSHIN	05	PL B605 26	R.R. Akhmetshin et al.	(Novosibirsk CMD-2 Collab.)
AMBROSINO	05	PL B608 199	F. Ambrosino <i>et al.</i>	(KLOE Collab.)
AUBERT,B	05J	PR D72 052008	B. Aubert <i>et al.</i>	(BABAR Collab.)
AKHMETSHIN		PL B578 285	R.R. Akhmetshin <i>et al.</i>	(Novosibirsk CMD-2 Collab.)
AUBERT,B	04N	PR D70 072004	B. Aubert <i>et al.</i>	(BABAR Collab.)
ALOISIO	03	PL B561 55	A. Aloisio <i>et al.</i>	(KLOE Collab.)
AULCHENKO	03B	JETP 97 24	V.M. Aulchenko <i>et al.</i>	(Novosibirsk SND Collab.)
		Translated from ZETF 12	24 28.	,
ACHASOV	02	PR D65 032002	M.N. Achasov et al.	(Novosibirsk SND Collab.)
ACHASOV	02D	JETPL 75 449	M.N. Achasov et al.	(Novosibirsk SND Collab.)
7101171301	020	Translated from ZETFP		(Novosibilisk Sivb Collab.)
ALOISIO	02C	PL B536 209	A. Aloisio <i>et al.</i>	(KLOE Collab.)
ALOISIO	02D	PL B537 21	A. Aloisio et al.	(KLOE Collab.)
ALOISIO	02E	PL B541 45	A. Aloisio <i>et al.</i>	(KLOE Collab.)
FISCHBACH	02	PL B526 355	E. Fischbach, A.W. Overha	user, B. Woodahl
GOKALP	02	JP G28 2783	A. Gokalp <i>et al.</i>	
ACHASOV	01B	PL B504 275	M.N. Achasov et al.	(Novosibirsk SND Collab.)
ACHASOV	01E	PR D63 072002	M.N. Achasov et al.	(Novosibirsk SND Collab.)
ACHASOV	01F	PR D63 094007	N.N. Achasov, V.V. Gubin	(Novosibirsk SND Collab.)
ACHASOV	01G	PRL 86 1698	M.N. Achasov <i>et al.</i>	(Novosibirsk SND Collab.)
AITALA	01B	PRL 86 770	E.M. Aitala <i>et al.</i>	(FNAL E791 Collab.)
AKHMETSHIN		PL B501 191	R.R. Akhmetshin et al.	(Novosibirsk CMD-2 Collab.)
AKHMETSHIN	01B	PL B509 217	R.R. Akhmetshin et al.	(Novosibirsk CMD-2 Collab.)
AKHMETSHIN	01C	PL B503 237	R.R. Akhmetshin et al.	(Novosibirsk CMD-2 Collab.)
BENAYOUN	01	EPJ C22 503	M. Benayoun, H.B. O'Conn	,
ACHASOV	00	EPJ C12 25	M.N. Achasov <i>et al.</i>	(Novosibirsk SND Collab.)
		JETP 90 17	M.N. Achasov et al.	,
ACHASOV	00B	Translated from ZETF 1:		(Novosibirsk SND Collab.)
ACHACOV	000			(Newseibirel CND Celleb)
ACHASOV	00C	PL B474 188	M.N. Achasov et al.	(Novosibirsk SND Collab.)
ACHASOV	00D	JETPL 72 282	M.N. Achasov et al.	(Novosibirsk SND Collab.)
4.6114.6617		Translated from ZETFP		(1)
ACHASOV	00E	NP B569 158	M.N. Achasov <i>et al</i> .	(Novosibirsk SND Collab.)
ACHASOV	00F	PL B479 53	M.N. Achasov et al.	(Novosibirsk SND Collab.)
ACHASOV	00H	PL B485 349	M.N. Achasov et al.	(Novosibirsk SND Collab.)
AKHMETSHIN		PL B473 337	R.R. Akhmetshin et al.	(Novosibirsk CMD-2 Collab.)
AKHMETSHIN		PL B491 81	R.R. Akhmetshin <i>et al.</i>	(Novosibirsk CMD-2 Collab.)
AKHMETSHIN		PL B494 26	R.R. Akhmetshin <i>et al.</i>	(Novosibirsk CMD-2 Collab.)
AULCHENKO	00A	JETP 90 927	V.M. Aulchenko <i>et al.</i>	(Novosibirsk SND Collab.)
AULCHLINNU	UUA	Translated from ZETF 1:		(MOVOSIDIISK SIND COIRD.)
		mansiated Holl ZETF 1.	11 1001.	

BRAMON	00	DI D496 406	A Promon of al	
PDG	00 00	PL B486 406 EPJ C15 1	A. Bramon <i>et al.</i> D.E. Groom <i>et al.</i>	(PDG Collab.)
ACHASOV	99	PL B449 122	M.N. Achasov <i>et al.</i>	(i be condb.)
ACHASOV	99C	PL B456 304	M.N. Achasov et al.	
AKHMETSHIN		PL B462 371	R.R. Akhmetshin et al.	(Novosibirsk CMD-2 Collab.)
AKHMETSHIN		PL B462 380	R.R. Akhmetshin <i>et al.</i>	(Novosibirsk CMD-2 Collab.)
AKHMETSHIN	99D	PL B466 385	R.R. Akhmetshin <i>et al.</i>	(Navasikinsk CMD 2 Callah)
Also AKHMETSHIN	gaF	PL B508 217 (errat.) PL B460 242	R.R. Akhmetshin <i>et al.</i> R.R. Akhmetshin <i>et al.</i>	(Novosibirsk CMD-2 Collab.) (Novosibirsk CMD-2 Collab.)
AULCHENKO	99	JETPL 69 97	V.M. Aulchenko <i>et al.</i>	(NOVOSIDIISK CIVID-2 COIIAD.)
		Translated from ZETFP		
ACHASOV	98B	PL B438 441	M.N. Achasov et al.	(Novosibirsk SND Collab.)
ACHASOV	98F	JETPL 68 573	M.N. Achasov et al.	(Novosibirsk SND Collab.)
ACHASOV AKHMETSHIN	98I 08	PL B440 442 PL B434 426	M.N. Achasov <i>et al.</i> R.R. Akhmetshin <i>et al.</i>	(CMD-2 Collab.)
AULCHENKO	98	PL B436 199	V.M. Aulchenko <i>et al.</i>	(Novosibirsk SND Collab.)
BARBERIS	98	PL B432 436	D. Barberis <i>et al.</i>	(Omega Expt.)
AKHMETSHIN		PL B415 445	R.R. Akhmetshin <i>et al.</i>	(NOVO, BOST, PITT+)
AKHMETSHIN	97C	PL B415 452	R.R. Akhmetshin et al.	(Novosibirsk CMD-2 Collab.)
BENAYOUN	96	ZPHY C72 221	M. Benayoun et al.	(IPNP, NOVO)
AKHMETSHIN		PL B364 199	R.R. Akhmetshin <i>et al.</i>	(Novosibirsk CMD-2 Collab.)
DOLINSKY	91	PRPL 202 99	S.I. Dolinsky <i>et al.</i>	(NOVO)
KUHN ACHASOV	90 89	ZPHY C48 445 NP B315 465	J.H. Kuhn <i>et al.</i>	(MPIM)
DOLINSKY	89	ZPHY C42 511	N.N. Achasov, V.N. Ivanch S.I. Dolinsky <i>et al.</i>	(NOVO)
BARKOV	88	SJNP 47 248	L.M. Barkov <i>et al.</i>	(NOVO)
		Translated from YAF 47		(110110)
DOLINSKY	88	SJNP 48 277	S.I. Dolinsky et al.	(NOVO)
	87	Translated from YAF 48	V.P. Druzhinin <i>et al.</i>	(NOVO)
DRUZHININ ARMSTRONG	86	ZPHY C37 1 PL 166B 245	T.A. Armstrong <i>et al.</i>	(NOVO) (ATHU, BARI, BIRM+)
ATKINSON	86	ZPHY C30 521	M. Atkinson <i>et al.</i>	(BONN, CERN, GLAS+)
BEBEK	86	PRL 56 1893	C. Bebek <i>et al.</i>	(CLEO Collab.)
DAVENPORT	86	PR D33 2519	T.F. Davenport (TUFTS,	ARIZ, FNAL, $\dot{F}SU$, $NDAM+\dot{J}$
DIJKSTRA	86	ZPHY C31 375	H. Dijkstra <i>et al.</i>	(ANIK, BRIS, CERN+)
FRAME	86	NP B276 667	D. Frame <i>et al.</i>	(GLAS)
GOLUBEV	86	SJNP 44 409 Translated from YAF 44	V.B. Golubev et al.	(NOVO)
ALBRECHT	85D	PL 153B 343	H. Albrecht <i>et al.</i>	(ARGUS Collab.)
GOLUBEV	85	SJNP 41 756	V.B. Golubev <i>et al.</i>	(NOVO)
		Translated from YAF 41		,
DRUZHININ	84	PL 144B 136	V.P. Druzhinin et al.	(NOVO)
ARMSTRONG	83B	NP B224 193	T.A. Armstrong et al.	(BARI, BIRM, CERN+)
BARATE KURDADZE	83 83C	PL 121B 449 JETPL 38 366	R. Barate <i>et al.</i> L.M. Kurdadze <i>et al.</i>	(SACL, LOIC, SHMP, IND) (NOVO)
NONDADZE	030	Translated from ZETFP		(11010)
ARENTON	82	PR D25 2241	M.W. Arenton et al.	(ANL, ILL)
PELLINEN	82	PS 25 599	A. Pellinen, M. Roos	(HELS)
DAUM	81	PL 100B 439	,	AMST, BRIS, CERN, CRAC+)
IVANOV	81	PL 107B 297	P.M. Ivanov <i>et al.</i>	
Also VASSERMAN		Drivata Comm		(NOVO)
	81	Private Comm.	S.I. Eidelman	(NOVO)
	81	PL 99B 62	S.I. Eidelman I.B. Vasserman <i>et al.</i>	
Also	81		S.I. Eidelman I.B. Vasserman <i>et al.</i> L.M. Kurdadze <i>et al.</i>	(NOVO)
Also CORDIER	80	PL 99B 62 SJNP 35 240 Translated from YAF 35 NP B172 13	S.I. Eidelman I.B. Vasserman <i>et al.</i> L.M. Kurdadze <i>et al.</i> 352. A. Cordier <i>et al.</i>	(NOVO) (NOVO) (LALO)
Also CORDIER CORDIER	80 79	PL 99B 62 SJNP 35 240 Translated from YAF 35 NP B172 13 PL 81B 389	S.I. Eidelman I.B. Vasserman <i>et al.</i> L.M. Kurdadze <i>et al.</i> 352. A. Cordier <i>et al.</i> A. Cordier <i>et al.</i>	(NOVO) (NOVO) (LALO) (LALO)
Also CORDIER	80	PL 99B 62 SJNP 35 240 Translated from YAF 35 NP B172 13 PL 81B 389 SJNP 27 521	S.I. Eidelman I.B. Vasserman et al. L.M. Kurdadze et al. 352. A. Cordier et al. A. Cordier et al. A.D. Bukin et al.	(NOVO) (NOVO) (LALO)
Also CORDIER CORDIER BUKIN	80 79	PL 99B 62 SJNP 35 240 Translated from YAF 35 NP B172 13 PL 81B 389	S.I. Eidelman I.B. Vasserman et al. L.M. Kurdadze et al. 352. A. Cordier et al. A. Cordier et al. A.D. Bukin et al. 985.	(NOVO) (NOVO) (LALO) (LALO) (NOVO)
Also CORDIER CORDIER	80 79 78B	PL 99B 62 SJNP 35 240 Translated from YAF 35 NP B172 13 PL 81B 389 SJNP 27 521 Translated from YAF 27	S.I. Eidelman I.B. Vasserman et al. L.M. Kurdadze et al. 352. A. Cordier et al. A. Cordier et al. A.D. Bukin et al. 985. A.D. Bukin et al.	(NOVO) (NOVO) (LALO) (LALO) (NOVO)
Also CORDIER CORDIER BUKIN BUKIN COOPER	80 79 78B 78C 78B	PL 99B 62 SJNP 35 240 Translated from YAF 35 NP B172 13 PL 81B 389 SJNP 27 521 Translated from YAF 27 SJNP 27 516 Translated from YAF 27 NP B146 1	S.I. Eidelman I.B. Vasserman et al. L.M. Kurdadze et al. 352. A. Cordier et al. A. Cordier et al. A.D. Bukin et al. 985. A.D. Bukin et al. 976. A.M. Cooper et al.	(NOVO) (NOVO) (LALO) (LALO) (NOVO) (NOVO) (TATA, CERN, CDEF+)
Also CORDIER CORDIER BUKIN BUKIN COOPER LOSTY	80 79 78B 78C 78B 78	PL 99B 62 SJNP 35 240 Translated from YAF 35 NP B172 13 PL 81B 389 SJNP 27 521 Translated from YAF 27 SJNP 27 516 Translated from YAF 27 NP B146 1 NP B133 38	S.I. Eidelman I.B. Vasserman et al. L.M. Kurdadze et al. 352. A. Cordier et al. A. Cordier et al. A.D. Bukin et al. 985. A.D. Bukin et al. 976. A.M. Cooper et al. M.J. Losty et al.	(NOVO) (NOVO) (LALO) (LALO) (NOVO) (NOVO) (TATA, CERN, CDEF+) (CERN, AMST, NIJM+)
Also CORDIER CORDIER BUKIN BUKIN COOPER LOSTY AKERLOF	80 79 78B 78C 78B 78 77	PL 99B 62 SJNP 35 240 Translated from YAF 35 NP B172 13 PL 81B 389 SJNP 27 521 Translated from YAF 27 SJNP 27 516 Translated from YAF 27 NP B146 1 NP B133 38 PRL 39 861	S.I. Eidelman I.B. Vasserman et al. L.M. Kurdadze et al. 352. A. Cordier et al. A. Cordier et al. A.D. Bukin et al. 985. A.D. Bukin et al. 976. A.M. Cooper et al. M.J. Losty et al. C.W. Akerlof et al.	(NOVO) (NOVO) (LALO) (LALO) (NOVO) (NOVO) (TATA, CERN, CDEF+) (CERN, AMST, NIJM+) (FNAL, MICH, PURD)
Also CORDIER CORDIER BUKIN BUKIN COOPER LOSTY AKERLOF ANDREWS	80 79 78B 78C 78B 78 77 77	PL 99B 62 SJNP 35 240 Translated from YAF 35 NP B172 13 PL 81B 389 SJNP 27 521 Translated from YAF 27 SJNP 27 516 Translated from YAF 27 NP B146 1 NP B133 38 PRL 39 861 PRL 38 198	S.I. Eidelman I.B. Vasserman et al. L.M. Kurdadze et al. 352. A. Cordier et al. A.D. Bukin et al. 985. A.D. Bukin et al. 976. A.M. Cooper et al. M.J. Losty et al. C.W. Akerlof et al. D.E. Andrews et al.	(NOVO) (NOVO) (LALO) (LALO) (NOVO) (NOVO) (TATA, CERN, CDEF+) (CERN, AMST, NIJM+) (FNAL, MICH, PURD) (ROCH)
Also CORDIER CORDIER BUKIN BUKIN COOPER LOSTY AKERLOF ANDREWS BALDI	80 79 78B 78C 78B 78 77 77	PL 99B 62 SJNP 35 240 Translated from YAF 35 NP B172 13 PL 81B 389 SJNP 27 521 Translated from YAF 27 SJNP 27 516 Translated from YAF 27 NP B146 1 NP B133 38 PRL 39 861	S.I. Eidelman I.B. Vasserman et al. L.M. Kurdadze et al. 352. A. Cordier et al. A.D. Bukin et al. 985. A.D. Bukin et al. 976. A.M. Cooper et al. M.J. Losty et al. C.W. Akerlof et al. D.E. Andrews et al. R. Baldi et al.	(NOVO) (NOVO) (LALO) (LALO) (NOVO) (NOVO) (TATA, CERN, CDEF+) (CERN, AMST, NIJM+) (FNAL, MICH, PURD) (ROCH) (GEVA)
Also CORDIER CORDIER BUKIN BUKIN COOPER LOSTY AKERLOF ANDREWS	80 79 78B 78C 78B 78 77 77	PL 99B 62 SJNP 35 240 Translated from YAF 35 NP B172 13 PL 81B 389 SJNP 27 521 Translated from YAF 27 SJNP 27 516 Translated from YAF 27 NP B146 1 NP B133 38 PRL 39 861 PRL 38 198 PL 68B 381	S.I. Eidelman I.B. Vasserman et al. L.M. Kurdadze et al. 352. A. Cordier et al. A.D. Bukin et al. 985. A.D. Bukin et al. 976. A.M. Cooper et al. M.J. Losty et al. C.W. Akerlof et al. D.E. Andrews et al.	(NOVO) (NOVO) (LALO) (LALO) (NOVO) (NOVO) (TATA, CERN, CDEF+) (CERN, AMST, NIJM+) (FNAL, MICH, PURD) (ROCH)
Also CORDIER CORDIER BUKIN BUKIN COOPER LOSTY AKERLOF ANDREWS BALDI CERRADA COHEN LAVEN	80 79 78B 78C 78B 78 77 77 77 77B 77	PL 99B 62 SJNP 35 240 Translated from YAF 35 NP B172 13 PL 81B 389 SJNP 27 521 Translated from YAF 27 SJNP 27 516 Translated from YAF 27 NP B146 1 NP B133 38 PRL 39 861 PRL 38 198 PL 68B 381 NP B126 241 PRL 38 269 NP B127 43	S.I. Eidelman I.B. Vasserman et al. L.M. Kurdadze et al. 352. A. Cordier et al. A. Cordier et al. A.D. Bukin et al. 985. A.D. Bukin et al. 976. A.M. Cooper et al. M.J. Losty et al. C.W. Akerlof et al. D.E. Andrews et al. R. Baldi et al. M. Cerrada et al. D. Cohen et al. H. Laven et al.	(NOVO) (NOVO) (LALO) (LALO) (LALO) (NOVO) (NOVO) (TATA, CERN, CDEF+) (CERN, AMST, NIJM+) (FNAL, MICH, PURD) (ROCH) (GEVA) (AMST, CERN, NIJM+) (ANL) AACH3, BERL, CERN, LOIC+)
Also CORDIER CORDIER BUKIN BUKIN COOPER LOSTY AKERLOF ANDREWS BALDI CERRADA COHEN LAVEN LYONS	80 79 78B 78C 78B 78 77 77 77 77B 77 77	PL 99B 62 SJNP 35 240 Translated from YAF 35 NP B172 13 PL 81B 389 SJNP 27 521 Translated from YAF 27 SJNP 27 516 Translated from YAF 27 NP B146 1 NP B133 38 PRL 39 861 PRL 38 198 PL 68B 381 NP B126 241 PRL 38 269 NP B127 43 NP B125 207	S.I. Eidelman I.B. Vasserman et al. L.M. Kurdadze et al. 352. A. Cordier et al. A. Cordier et al. A.D. Bukin et al. 985. A.D. Bukin et al. 976. A.M. Cooper et al. M.J. Losty et al. C.W. Akerlof et al. D.E. Andrews et al. R. Baldi et al. M. Cerrada et al. D. Cohen et al. H. Laven et al. (A. L. Lyons, A.M. Cooper, A.M.	(NOVO) (NOVO) (LALO) (LALO) (LALO) (NOVO) (NOVO) (TATA, CERN, CDEF+) (CERN, AMST, NIJM+) (FNAL, MICH, PURD) (ROCH) (GEVA) (AMST, CERN, NIJM+) (ANL) AACH3, BERL, CERN, LOIC+) .G. Clark (OXF)
Also CORDIER CORDIER BUKIN BUKIN COOPER LOSTY AKERLOF ANDREWS BALDI CERRADA COHEN LAVEN LYONS COSME	80 79 78B 78C 78B 78 77 77 77 77 77 77 77	PL 99B 62 SJNP 35 240 Translated from YAF 35 NP B172 13 PL 81B 389 SJNP 27 521 Translated from YAF 27 SJNP 27 516 Translated from YAF 27 NP B146 1 NP B133 38 PRL 39 861 PRL 38 198 PL 68B 381 NP B126 241 PRL 38 269 NP B127 43 NP B125 207 PL 63B 352	S.I. Eidelman I.B. Vasserman et al. L.M. Kurdadze et al. 352. A. Cordier et al. A. Cordier et al. A.D. Bukin et al. 985. A.D. Bukin et al. 976. A.M. Cooper et al. M.J. Losty et al. C.W. Akerlof et al. D.E. Andrews et al. R. Baldi et al. M. Cerrada et al. D. Cohen et al. H. Laven et al. L. Lyons, A.M. Cooper, A. G. Cosme et al.	(NOVO) (NOVO) (LALO) (LALO) (LALO) (NOVO) (NOVO) (TATA, CERN, CDEF+) (CERN, AMST, NIJM+) (FNAL, MICH, PURD) (ROCH) (GEVA) (AMST, CERN, NIJM+) (ANL) AACH3, BERL, CERN, LOIC+) G. Clark (OXF)
Also CORDIER CORDIER BUKIN BUKIN COOPER LOSTY AKERLOF ANDREWS BALDI CERRADA COHEN LAVEN LAVEN LYONS COSME KALBFLEISCH	80 79 78B 78C 78B 78 77 77 77 77 77 77 76 76	PL 99B 62 SJNP 35 240 Translated from YAF 35 NP B172 13 PL 81B 389 SJNP 27 521 Translated from YAF 27 SJNP 27 516 Translated from YAF 27 NP B146 1 NP B133 38 PRL 39 861 PRL 38 198 PL 68B 381 NP B126 241 PRL 38 269 NP B127 43 NP B125 207 PL 63B 352 PR D13 22	S.I. Eidelman I.B. Vasserman et al. L.M. Kurdadze et al. 352. A. Cordier et al. A. D. Bukin et al. 985. A.D. Bukin et al. 976. A.M. Cooper et al. M.J. Losty et al. C.W. Akerlof et al. D.E. Andrews et al. R. Baldi et al. M. Cerrada et al. D. Cohen et al. L. Lyons, A.M. Cooper, A. G. Cosme et al. G.R. Kalbfleisch, R.C. Stra	(NOVO) (NOVO) (LALO) (LALO) (LALO) (NOVO) (NOVO) (TATA, CERN, CDEF+) (CERN, AMST, NIJM+) (FNAL, MICH, PURD) (ROCH) (GEVA) (AMST, CERN, NIJM+) (ANL) AACH3, BERL, CERN, LOIC+) G. Clark (OXF) (ORSAY) und, J.W. Chapman (BNL+)
Also CORDIER CORDIER BUKIN BUKIN COOPER LOSTY AKERLOF ANDREWS BALDI CERRADA COHEN LAVEN LYONS COSME	80 79 78B 78C 78B 78 77 77 77 77 77 77 77	PL 99B 62 SJNP 35 240 Translated from YAF 35 NP B172 13 PL 81B 389 SJNP 27 521 Translated from YAF 27 SJNP 27 516 Translated from YAF 27 NP B146 1 NP B133 38 PRL 39 861 PRL 38 198 PL 68B 381 NP B126 241 PRL 38 269 NP B127 43 NP B125 207 PL 63B 352	S.I. Eidelman I.B. Vasserman et al. L.M. Kurdadze et al. 352. A. Cordier et al. A. Cordier et al. A.D. Bukin et al. 985. A.D. Bukin et al. 976. A.M. Cooper et al. M.J. Losty et al. C.W. Akerlof et al. D.E. Andrews et al. R. Baldi et al. M. Cerrada et al. D. Cohen et al. H. Laven et al. L. Lyons, A.M. Cooper, A. G. Cosme et al.	(NOVO) (NOVO) (LALO) (LALO) (LALO) (NOVO) (NOVO) (TATA, CERN, CDEF+) (CERN, AMST, NIJM+) (FNAL, MICH, PURD) (ROCH) (GEVA) (AMST, CERN, NIJM+) (ANL) AACH3, BERL, CERN, LOIC+) G. Clark (OXF)

KALBFLEISCH	75	PR D11 987	G.R. Kalbfleisch, R.C. Strand, J.V.	V. Chapman (BNL+)
AYRES	74	PRL 32 1463	D.S. Ayres et al.	· (ANL)
BESCH	74	NP B70 257	H.J. Besch <i>et al.</i>	(BÒNN)
COSME	74	PL 48B 155	G. Cosme <i>et al.</i>	(ÒRSAY)
COSME	74B	PL 48B 159	G. Cosme et al.	(ORSAY)
DEGROOT	74	NP B74 77	A.J. de Groot <i>et al.</i>	(AMST, NIJM)
AUGUSTIN	73	PRL 30 462	J.E. Augustin <i>et al.</i>	` (ORSAY)
BALLAM	73	PR D7 3150	J. Ballam <i>et al.</i>	(SLÀC, LBL)
BINNIE	73B	PR D8 2789	D.M. Binnie et al.	(LÒIC, SHMP)
AGUILAR	72B	PR D6 29	M. Aguilar-Benitez et al.	` (BNL)
ALVENSLEB	72	PRL 28 66	H. Alvensleben <i>et al.</i>	(MIT, DESY)
BORENSTEIN	72	PR D5 1559	S.R. Borenstein et al.	(BNL, MICH)
COLLEY	72	NP B50 1	D.C. Colley et al.	(BIRM, GLAS)
BALAKIN	71	PL 34B 328	V.E. Balakin <i>et al.</i>	` (NOVO)
CHATELUS	71	Thesis LAL 1247	Y. Chatelus	(STRB)
Also		PL 32B 416	J.C. Bizot <i>et al.</i>	(ÔRSAY)
HAYES	71	PR D4 899	S. Hayes <i>et al.</i>	(CORN)
STOTTLE	71	Thesis ORO 2504 170	A.R. Stottlemyer	(UMD)
BIZOT	70	PL 32B 416	J.C. Bizot <i>et al.</i>	(ORSAY)
Also		Liverpool Sym. 69	J.P. Perez-y-Jorba	
EARLES	70	PRL 25 1312	D.R. Earles et al.	(NEAS)
LINDSEY	66	PR 147 913	J.S. Lindsey, G. Smith	(LRL)
LONDON	66	PR 143 1034	G.W. London et al.	(BNL, SYRA) IGJPC
BADIER	65B	PL 17 337	J. Badier <i>et al.</i>	(EPOL, SACL, AMST)
LINDSEY	65	PRL 15 221	J.S. Lindsey, G.A. Smith	(LRL)
		a included in LINDSEY 66		
SCHLEIN	63	PRL 10 368	P.E. Schlein <i>et al.</i>	(UCLA) IGJP