Einführung in Matlab - Einheit 2 Programmieren, Datenstrukturen

Jochen Schulz

Georg-August Universität Göttingen

Aufbau

- Programmieren
 - Schleifen
 - Bedingungen
 - Allgemeines
- 2 Datenstrukturen
 - Zahlen
 - Container
 - Chars und Strings

Gültigkeitsbereich von Variablen

- Variablen in Skript-Files
 - globaler Workspace (d.h. bereits vorhandene Variablen können direkt benutzt oder überschrieben werden)
 - gültig bis explizit gelöscht
- Variablen in Function-Files
 - innerhalb der Funktion definiert und werden bei Verlassen der Funktion gelöscht.
 - Variablen des globalen Workspace können nicht benutzt werden.

Aufbau

- Programmieren
 - Schleifen
 - Bedingungen
 - Allgemeines
- 2 Datenstrukturen
 - Zahlen
 - Container
 - Chars und Strings

for - Schleife

```
for <variable> = <Ausdruck>
     <Befehle>
end
```

Bemerkungen:

- Der Ausdruck ist normalerweise von der Form i:s:j.
- Die Befehle werden eingerückt.
- auch weitere Schleifen-Konstrukte wie while und switch sind verfügbar.

Schleifen - Beispiele

• Berechne $\sum_{i=1}^{1000} \frac{1}{i}$

```
sum=0; for j=1:1000, sum=sum+1/j; end, sum
```

sum = 7.4855

Berechnen dreier Werte

```
for x=[pi/6 pi/4 pi/3], sin(x), end
```

```
ans = 0.5000
ans = 0.7071
ans = 0.8660
```

Matrix als Ausdruck

```
for x=eye(3), x' ,end
```

```
ans = 1 0 0
ans = 0 1 0
ans = 0 0 1
```

Fixpunkt

Suche ein $x_f \in \mathbb{R}$ so dass

Voraussetzung: Abbildung kontrahierend

$$|f(x) - f(y)| \le C|x - y|, C < 1 \forall x, y \in I$$

Fixpunkt-Iteration

Fixpunkt-Iteration

$$x_{k+1} = \cos(x_k)$$

bei geeignetem Startwert x_0 .

(Funktioniert wenn die Abbildung kontrahierend ist)

Fixpunkt-Iteration - Implementation

```
% Plot 1
x = linspace(0, 1.5, 50);
y = cos(x);
plot(x,x,x,y,'LineWidth',3),
axis([-0.1 1.5 -0.1 1.1]);
hold on:
pause; % stoppt bis eine Taste gedrückt wird
z(1) = 0.1; \% Anfangswert
it_max = 10; % Iterationsschritte
for i = 1:it max
    z(i+1) = cos(z(i));
    plot([z(i) z(i)], [z(i) z(i+1)], 'r--', 'LineWidth',1);
    pause;
    plot([z(i) z(i+1)], [z(i+1) z(i+1)], 'r--', 'LineWidth'
        ,1);
    hold on;
    pause; % stoppt bis eine Taste gedrückt wird
end;
```

Einige Grafikbefehle

- figure startet ein Grafik-Fenster.
- hold on alle Grafiken in einem Fenster werden übereinander gezeichnet.
- hold off (Standard)
 bestehende Grafik wird gelöscht und durch die neue Grafik ersetzt.

Vandermonde-Matrix I

Berechne zu einem gegebenen Vektor $x = (x_1, \dots, x_n)$ die Vandermonde-Matrix

$$V := \begin{pmatrix} 1 & x_1 & x_1^2 & \dots & x_1^{n-1} \\ 1 & x_2 & x_2^2 & \dots & x_2^{n-1} \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 1 & x_n & x_n^2 & \dots & x_n^{n-1} \end{pmatrix}.$$

Vandermonde-Matrix II

```
function V = vandermonde2(x)
% vandermonde2 berechnet die Vandermonde Matrix zu einem
               Vektor x
              INPUT:
             x Zeilenvektor
              OUTPUT:
              V Vandermonde-Matrix
   Gerd Rapin 8.11.2003
n = length(x);
V = zeros(n,n);
for i = 1:n
    for j = 1:n
       V(i,j) = x(i)^{(j-1)};
   end
end
```

Aufbau

- Programmieren
 - Schleifen
 - Bedingungen
 - Allgemeines
- 2 Datenstrukturen
 - Zahlen
 - Container
 - Chars und Strings

Quadratische Gleichung

$$\begin{cases} \text{ Suche } x \in \mathbb{R}, \text{ so dass} \\ x^2 + px + q = 0 \end{cases}$$

Fallunterscheidung für $d := \frac{p^2}{4} - q$:

Fall a) : d > 0 2 Lösungen: $x = -\frac{p}{2} \pm \sqrt{d}$

Fall b) : d = 0 1 Lösung: $x = -\frac{p}{2}$

Fall c): d < 0 keine Lösung

Implementierung

```
function [anz_loesungen, loesungen] = quad_gl(p,q)
 quad gl berechnet die Loesungen der quadratischen
         Gleichung x^2 + px + q = 0
           INPUT: Skalare
           OUTPUT: anz loesungen Anzahl der Loesungen
                   loesungen Vektor der Loesungen
  Gerd Rapin 8.11.2003
d=p^2/4-q; % Diskriminante
```

Implementierung II

```
% 2 Loesungen
if d>0
    anz_loesungen=2;
    loesungen=[-p/2-sqrt(d) -p/2+sqrt(d)];
end
% 1 Loesung
if d==0
    anz_loesungen=1;
    loesungen=[-p/2];
end
% 0 Loesungen
if d<0
    anz_loesungen=0;
    loesungen=[];
end
```

Logische Operationen

- Es gibt in MATLAB logische Variablen. Der Datentyp ist logical.
- Variablen dieses Typs sind entweder TRUE (1) oder FALSE (0).
- Numerische Werte ungleich 0 werden als TRUE gewertet.

```
a = (1<2)
```

a = 1

```
b = ([ 1 2 3 ] < [ 2 2 2 ])
```

```
b = 1 0 0
```

```
whos
```

```
Name Size Bytes Class
a 1x1 1 logical array
b 1x3 3 logical array
```

Vergleichs-Operatoren

$$a=[1 \ 1 \ 1], b=[0 \ 1 \ 2]$$

Operation	Bedeutung	Ergebnis	
a == b	gleich	0 1 0	
a ~= b	ungleich	1 0 1	
a < b	kleiner	0 0 1	
a > b	größer	1 0 0	
a <= b	kleiner oder gleich	0 1 1	
a >= b	größer oder gleich	1 1 0	

Bem: 1 = wahre Aussage, 0 = falsche Aussage

Bem: Komponentenweise Vergleiche sind auch für Matrizen gleicher Größe möglich!

Logische Operatoren

38	logisches und	~	logisches nicht
	logisches oder	xor	exklusives oder

Beispiele:

```
x=[-1 1 1]; y=[1 2 -3];
```

```
>> (x>0) & (y>0)
ans =
0 1 0
```

```
>> ~( (x>0) & (y>0))
ans =
1  0  1
```

```
>> (x>0) | (y>0)
ans =
1 1 1
```

```
>> xor(x>0,y>0)
ans =
1 0 1
```

Bedingung

Einfache Bedingung

```
if <Ausdruck>
     <Befehle>
end
```

Bed. mit Alternative

```
if <Ausdruck>
     <Befehle>
else
     <Befehle>
end
```

Die Befehle zwischen **if** und **end** werden ausgeführt, wenn der *Ausdruck* wahr (TRUE) ist. Andernfalls werden (soweit vorhanden) die Befehle zwischen **else** und **end** ausgeführt.

Ausdruck ist wahr, wenn alle Einträge von Ausdruck ungleich 0 sind.

While-Schleifen

Die Befehle werden wiederholt, so lange die Bedingung *Ausdruck* wahr ist. *Ausdruck* ist wahr, wenn alle Einträge von *Ausdruck* ungleich 0 sind.

```
Beispiel: Berechne \sum_{i=1}^{1000} \frac{1}{i}.
```

```
n = 1000; sum = 0; i = 1;
while (i <= n)
   sum = sum+(1/i);
   i = i+1;
end
sum</pre>
```

Größter gemeins. Teiler (ggT)

Berechnung des ggT von natürlichen Zahlen a und b mit Hilfe des euklidischen Algorithmus

Idee: Es gilt
$$ggT(a, b) = ggT(a, b - a)$$
 für $a < b$.

Algorithmus:

Wiederhole, bis a = b

- Ist a > b, so a = a b.
- Ist a < b, so b = b a

Implementierung

```
function a = ggt(a,b)
 ggt berechnet den groessten gemeinsamen Teiler (ggT)
         zweier natuerlichen Zahlen a und b
            INPUT: natuerliche Zahlen a
                                        h
            OUTPUT: ggT
  Gerd Rapin 11.11.2003
while (a ~= b)
  if (a > b)
   a = a-b;
  else
    b = b-a;
  end
end
```

break

• Der Befehl break verläßt die while oder for-Schleife.

```
x=1;
while 1
    xmin=x;
    x=x/2;
    if x==0
        break
    end
end
xmin
```

```
xmin = 4.9407e - 324
```

continue

• Durch continue springt man sofort in die nächste Iteration der Schleife, ohne die restlichen Befehle zu durchlaufen.

```
for i=1:10
   if i<5
      continue
   end
   x(i)=i;
end
x</pre>
```

```
x = 0 \quad 0 \quad 0 \quad 0 \quad 5 \quad 6 \quad 7 \quad 8 \quad 9 \quad 10
```

Aufbau

- Programmieren
 - Schleifen
 - Bedingungen
 - Allgemeines
- 2 Datenstrukturen
 - Zahlen
 - Container
 - Chars und Strings

Operator Rangfolge

Level	Operator
1	Exponent (^, .^), transpose
2	logische Verneinung (~)
3	Multiplikation $(*, *)$, Division $(/, ./, \setminus, .\setminus)$
4	Addition (+), Subtraktion (-)
5	Doppelpunktoperator (:)
6	Vergleichsoperatoren (<,>,<=,>=,==,~=)
7	Logisches und (&)
8	Logisches oder ()

Bei gleicher Rangfolge wertet MATLAB von links nach rechts aus.

Die Rangfolge kann durch Klammersetzung geändert werden.

Warnung

Wiederholte Anwendung von Script-Files kann zu Fehlern führen!

Programm

```
% plotte_sin.m

disp(['Plot der Sinus'...
    'Funktion auf [0,10]']);
n = input(['Plot an '...
    'wievielen Punkten?']);
x = linspace(0,10,n);
for i=1:n
y(i) = sin(x(i));
end;
plot(x,y);
```

Aufruf

```
>>> plotte_sin
Plot der Sinus Funktion auf [0,10]
Plot an wievielen Punkten?20
>>> plotte_sin
Plot der Sinus Funktion auf [0,10]
Plot an wievielen Punkten?10
??? Error using =>> plot
Vectors must be the same lengths.

Error in =>> plotte_sin.m
On line 9 =>> plot(x,y);
```

globale Variablen

Mittels des Befehls global können Variablen des globalen Workspace auch für Funktionen manipulierbar gemacht werden.

Funktion

```
function f=myfun(x)
% myfun.m
% f(x)=x^alpha sin(1/x)

global alpha
f=x.^alpha.*sin(1./x);
```

Plotten

```
% plot_myfun
global alpha
alpha_w=[0.4 0. 6 1 1.5
    2];
for i = 1:length(alpha_w)
    alpha = alpha_w(i);
    fplot(@myfun,[0.1,1])
    hold on;
end
hold off;
```

Ein Guter Stil

- Alle Programme sollten zu Beginn einen Kommentar enthalten, in dem beschrieben wird, was das Programm macht. Insbesondere sollten die Eingabe- und Ausgabevariablen genau beschrieben werden.
- Vor und nach logischen Operatoren und = sollte ein Leerzeichen gesetzt werden.
- Man sollte pro Zeile nur einen Befehl verwenden.
- Befehle in Strukturen, wie if, for oder while, sollten eingerückt werden.

Ein Guter Stil

- Die Namen der Variablen sollten, soweit möglich, selbsterklärend sein.
- Verfasst man umfangreiche Programme, so sollten M-Funktionen, die eine logische Einheit bilden in einem separaten Unterverzeichnis gespeichert sein. Die Verzeichnisse können durch addpath eingebunden werden.
- Potenzielle Fehler sollten, soweit möglich, aufgefangen werden.
 Speziell sollten die Eingabeparameter der Funktionen geprüft werden.

Aufbau

- Programmieren
 - Schleifen
 - Bedingungen
 - Allgemeines
- 2 Datenstrukturen
 - Zahlen
 - Container
 - Chars und Strings

Datenstrukturen

- In MATLAB gibt es verschiedene Datentypen. Sie werden bestimmt durch ihre Eigenschaften.
- Einzelne Elemente eines Datentyps werden Objekte genannt.
- Ein Objekt besteht meist aus drei Teilen: Bezeichner, Referenzen und Werte des Objekts.
- Variablen sind Datenobjekte deren Werte während eines Programmablaufs verändert werden können.

Datentypen in MATLAB

- Alle Variablen sind Felder (Array). Ein Skalar ist eine 1×1 -Matrix.
- Zuweisung des Datentyps implizit.
- Den Datentyp eines Objekts a kann durch den Befehl class(a) bestimmt werden.

Datentypen in MATLAB

- Gleitkommazahlen (Komplexe Zahlen)
- Characters und Strings
- Strukturen
- Cell Arrays
- Funktionen
- Sparse Matrizen
- Integer-Zahlen
- Logische Ausdrücke

Aufbau

- Programmieren
 - Schleifen
 - Bedingungen
 - Allgemeines
- 2 Datenstrukturen
 - Zahlen
 - Container
 - Chars und Strings

Gleitkommazahlen / Maschinengenauigkeit

- Standard-Datentyp ist ein Array von Gleitkommazahlen (double).
- ullet Abstand von 1 zur nächsten Gleitkommazahl: $\epsilon=2^{-52}$ (vgl. eps)
- Sei $x \in \mathbb{R}$ eine reelle Zahl und \tilde{x} die Darstellung in MATLAB. Dann gilt für den Rundungsfehler $|x \tilde{x}| = 1$

$$\frac{|x-\tilde{x}|}{|x|} \le \frac{1}{2}\epsilon.$$

 Die größte bzw. kleinste in MATLAB darstellbare positive Zahl ist in realmin bzw. realmax gespeichert.

Ausnahmen

 Ist eine Zahl größer als realmax, so meldet MATLAB einen 'Overflow' und gibt als Ergebnis Inf zurück.

```
realmax*1.1
```

```
ans = Inf
```

• Bei Operationen wie 0/0 oder ∞/∞ , erhält man als Ergebnis NaN (*Not a Number*).

```
0/0
```

```
Warning: Divide by zero. ans = NaN
```

Umgang mit NaN und Inf

ullet Mit Hilfe von isinf und isnan kann auf ∞ bzw. NaN getestet werden.

```
isnan(0/0), isinf(1.2*realmax)
```

```
ans = 1 \quad ans = 1
```

Test auf NaN durch == ist nicht möglich

```
ans = 0
```

Bei Inf ist der Test durch == möglich!

Single

- Ähnlich wie in C gibt es den Datentyp single. Es ist eine Darstellung in geringerer Genauigkeit.
- Durch den Befehl single() wird eine double-Zahl in eine single-Zahl konvertiert.
- Arithmetische Operationen mit double- und single-Objekten ergeben single-Objekte.

Single

```
a = sqrt(2); b = single(a);
c = a+b; d = a-b
```

d = 2.4203e - 08

```
whos
```

Name	Size	Bytes Class
a	1 x 1	8 double
b	1 x 1	4 single
С	1 x 1	4 single
d	1 x 1	4 single

[realmax, single(realmax)], realmax

```
ans =
    Inf Inf
ans =
    1.7977e+308
```

Darstellungsformate am Beispiel 1/7

```
format short 0.1429
format short e 1.4286e-01
format short g 0.14286
format long 0.14285714285714
format long g 0.142857142857143
format long e 1.428571428571428e-01
Das Default-Format ist short.
```

Beispiel - Berechnung von e

Approximation der Exponentialfunktion durch eine Taylor-Reihe

$$P_n(x) = \sum_{j=0}^n \frac{x^j}{j!}$$

```
x = -10:0.01:10; \% die x-Werte
expx = exp(x); % die wahre Exponentialfunktion
for n=0:1:25
    % so viele Nullen wie x Elemente hat
    sum=zeros(size(x));
    for j=0:n
        % das berechnet die Partialsumme
        sum=sum+x.^j/factorial(j);
    end
    % plottet relativen Fehler
    plot(x,(sum-expx)./expx);
    % wir plotten alles uebereinander
    hold on
end
```

Berechnung von e - Figure

Auslöschung

```
% Ausloeschung, mit 6 Dezimalstellen
format long g % sorgt fuer lange Ausgabezahlen
x = 0.344152
xwahr = 0.344152*1.0000001 % das ergibt 0.01% relativen
    Fehler
relfx = abs(xwahr-x)/xwahr
y = 0.344135
z = x-y
zwahr = xwahr-y
relfz = abs(z-zwahr)/abs(zwahr) % relativer Fehler von z
```

```
x = 0.344152
xwahr = 0.3441520344152
relfx = 9.99999900671778e-08
y = 0.344135
z = 1.69999999999992e-05
zwahr = 1.70344152000124e-05
relfz = 0.00202033352005498
```

Komplexe Zahlen

Komplexe Zahlen $z \in \mathbb{C}$ haben die Form

$$z = x + iy, \quad x, y \in \mathbb{R}$$

mit $i = \sqrt{-1}$.

- $\sqrt{-1}$ ist in MATLAB vordefiniert in den Variablen *i,j*.
- Durch complex(x,y) kann aus $x, y \in \mathbb{R}$ die komplexe Zahl x + iy erzeugt werden.
- Für $z = x + iy \in \mathbb{C}$ erhält man den Realteil mit real(z) und den Imaginärteil durch imag(z).

Polarkoordinaten

$$z \in \mathbb{C}, \quad z = re^{i\varphi} = r(\cos\varphi + i\sin\varphi)$$

- abs(z) ergibt den Betrag r von z.
- ullet φ erhält man durch $\mathrm{angle}(\mathbf{z})$.
- grafische Darst.: compass(z) (z = 3 + 3i).

Integer

- In diesen Datentypen werden ganze bzw. natürliche Zahlen gepeichert.
- Zur effizienten Speicherung gibt es die Datentypen int8, uint8, int16, uint16, uint16, int32, uint32, int64, uint64.
- In den Datentypen, die mit u beginnen, werden natürliche Zahlen gespeichert, sonst ganze Zahlen.
- Die abschließende Zahl gibt den Speicherbedarf an. uint8 benötigt z.B. 8-Bit. (Wertebereich $0\dots 2^8-1$).

Integer

ans = 31

```
a = int8(20); b = int16(20); c = int8(20);
a*c, a*b
 ans = 127
 ??? Error using ==> mtimes
 Integers can only be combined with integers
 of the same class, or scalar doubles.
a+0.2
 ans = 20
a+0.5
 ans = 21
a * 1.54
```

49/58

Aufbau

- Programmieren
 - Schleifen
 - Bedingungen
 - Allgemeines
- 2 Datenstrukturen
 - Zahlen
 - Container
 - Chars und Strings

Structures

Structures:

Strukturen sind eine Möglichkeit verschiedene Objekte in einer Datenstruktur zu bündeln.

Beispiel: komplexe Zahlen

```
komp_Zahl.real=1;
komp_Zahl.imag=1;
komp_Zahl
```

```
komp_Zahl =
    real: 1
    imag: 1
```

Structures II

Alternativ können Strukturen durch

```
struktur = struct('Feld1', <Wert1>, 'Feld2', <Wert2>,..)
definiert werden.
```

• Ein Feld einer Struktur struktur kann durch

```
struc2 = rmfield( <struktur> ,'Feld')
```

gelöscht werden.

Cell Arrays

Cell Arrays:

Cell Arrays sind spezielle Matrizen, deren Einträge aus unterschiedlichen Datentypen bestehen können. Erzeugt werden sie durch geschweifte Klammern.

```
C = { 1:10, hilb(4);...
    'Hilbert Matrix', pi}
```

```
C =
    [1x10 double]     [4x4 double]
    'Hilbert Matrix' [ 3.1416]
```

Befehle für Cell Arrays

Zugriff auf Cell-Arrays:

Hilbert Matrix

```
C{2,1}

ans =

ans =
```

0.2500

- Durch celldisp(C) wird der Inhalt von C dargestellt.
- cellplot(C) stellt C grafisch dar.

Aufbau

- Programmieren
 - Schleifen
 - Bedingungen
 - Allgemeines
- 2 Datenstrukturen
 - Zahlen
 - Container
 - Chars und Strings

Characters (char) - Zeichen

- Darstellung durch Integer
- Die Werte zwischen 0 und 128 entsprechen den ASCII Werten.
- 2 Bytes Speicherbedarf \Rightarrow Zahl zwischen 0 und $2^{16}-1$

```
s='d'
```

s = c

```
s1=double(s)
```

```
s1 = 100
```

```
s2=char(100)
```

```
s2 = d
```

Strings - Vektor von Zeichen

AB6de*

Die Zeichen werden wiederum durch die ASCII Werte dargestellt.

```
s='AB6de*'
 AB6de*
sd=double(s)
 sd =
     65
            66
                  54
                        100
                              101
                                      42
s2=char(sd)
 s2 =
```

Befehle für Strings

Durch strcat werden Strings verbunden, z.B.

```
strcat('Hello',' world')
```

```
ans = Hello world
```

- num2str(x,n) konvertiert x in einen String mit n signifikanten Stellen. (Default: n = 4)
- int2str(x) rundet x und konvertiert es in einen String.
- strcmp(s,t) vergleicht die Strings s und t.
- Durch help strfun erhält man eine Liste aller Befehle im Zusammenhang mit Strings.