Permanenza del segno, algebra dei limiti, due carabinieri, confronto, gerarchia degli infiniti e aritmetizzazione parziale di ∞ #Analisi1

Teorema (permanenza del segno):

1. Data una successione $a_{n'}$ se esiste $\lim_{n\to\infty} a_n = I \in \mathbb{R}^*$

e se l > 0 (cioè l \in (0, ∞) U {+ ∞ }) allora a_n > 0 definitivamente in n \in N

Similmente se esiste $\lim_{n\to\infty} a_n = I \in \mathbb{R}^*$

e se l < 0 (cioè l \in {- ∞ } U (∞ ,0)) allora a $_n$ < 0 definitivamente in n \in N

2. Se esiste $\lim_{n\to\infty} a_n = I \in \mathbb{R}^*$ e se $a_n \ge 0$ definitivamente in $n \in \mathbb{N}$

allora $l \ge 0$ (cioè $l \in [0, \infty) \cup \{+\infty\}$)

Similmente se $a_n \le 0$ definitivamente in $n \in N$

allora $l \le 0$ (cioè $l \in \{-\infty\}$ U (∞ ,0])

Osservazione: se $a_n > 0$ definitivamente ed $\exists \lim_{n \to \infty} a_n = I \in \mathbb{R}^*$

allora l \geq 0 per permanenza del segno 2) potrebbe però essere l = 0 infatti se $a_n = 1/n$

allora $a_n \ge 0 \quad \forall n \in \mathbb{N}$ $\lim_{n \to \infty} a_n = 0$

Dimostrazione: $I = Lim_{n->\infty} a_n \in (0, \infty]$

1. Se I = $+\infty$ per definizione di limite $\forall M > 0$ $\exists n_1 \in N$ t.c. $\forall n \ge n_1$ $a_n > M > 0$

quindi $a_n > 0$ definitivamente in $n \in N$ se $l \in (0, \infty)$

Scegliamo $\epsilon = I/2 > 0$ nella definizione di limite $\exists n_1 \in N$ t.c. $\forall n \geq n_1$ I

- ϵ < a_n < I + ϵ in particolare $\forall n \ge n_1$ a_n > (I - ϵ = I/2 > 0)

quindi $a_n > 0$ definitivamente in $n \in N$

2. Sia $a_n > 0$ definitivamente e $\exists I = Lim_{n->\infty} a_n \in \mathbb{R}^*$ vogliamo mostrare che $I \ge 0$

per assurdo sia l < 0 per la parte 1) del teorema deve essere $a_n < 0$

definitivamente in n ∈N

Assurdo perché dovrebbe essere $a_n \ge 0$ e $a_n < 0$ definitivamente in n $\in \mathbb{N} => 1 \ge 0$

Similmente si dimostra che se $\exists I = Lim_{n->\infty} a_n \in \mathbb{R}^* e$ se $a_n \le 0$ definitivamente in $n \in \mathbb{N}$ allora $I \le 0$

Teorema (algebra dei limiti):

siano $a_{n'}$ b_n due successioni t.c. esistano $a=\lim_{n\to\infty}a_{n'}$ $b=\lim_{n\to\infty}b_n$ $a,b\in R$ allora:

1.
$$\lim_{n\to\infty} (a_n \pm b_n) = a \pm b$$

2.
$$\lim_{n\to\infty} a_n b_n = ab$$

3.
$$\lim_{n\to\infty} a_n/b_n = a/b$$
 se b $\neq 0$

4.
$$\lim_{n\to\infty} a_n^{b_n} = a^b$$
 se $a > 0$

Dimostrazione:

2ε

1. Vogliamo dimostrare che $\lim_{n\to\infty} (a_n + b_n) = a + b$ osserviamo che

$$|(a_n + b_n) - (a + b)| = |(a_n - a) + (b_n - b)| \le |a_n - a| + |b_n - b|$$
 (per

disuguaglianza triangolare)

$$\forall \epsilon > 0 \quad \exists n_1 \in \mathbb{N} \text{ t.c. } |a_n - a| < \epsilon \ \forall n \geq n_1 \quad \text{ed} \qquad \exists n_2 \in \mathbb{N} \text{ t.c. } |$$

$$b_n - b| < \epsilon \ \forall n \geq n_2$$

Se
$$n \ge \max\{n_1, n_2\} \in \mathbb{N}$$
 allora $|(a_n + b_n) - (a + b)| \le |a_n - a| + |b_n - b| + |b_n - b| \le |a_n - a| + |b_n - b| + |b_$

Per la definizione di limite $\lim_{n\to\infty} (a_n \pm b_n) = a \pm b$

2. Vogliamo dimostrare che $\lim_{n\to\infty} a_n b_n = ab$ osserviamo che

$$|a_nb_n-ab|=|a_nb_n-ab_n+ab_n-ab|=|b_n(a_n-a)+a(b_n-b)|\leq |b_n|^*|a_n-a|+|a|^*|b_n-b| \qquad (\text{per disuguaglianza triangolare})$$

$$\forall \epsilon > 0 \qquad \exists n_1 \in \mathbb{N} \text{ t.c. } |a_n - a| < \epsilon \ \forall n \geq n_1 \qquad \text{ed} \qquad \exists n_2 \in \mathbb{N} \text{ t.c. } |$$

$$b_n - b| < \epsilon \ \forall n \geq n_2$$

Inoltre, poiché b_n converge, b_n è necessariamente limitata, cioè $\exists M$ >0 t.c. $|b_n| < M \ \forall n \in N$

Allora se $n \ge \max\{n_1, n_2\} \in \mathbb{N} \ |a_nb_n - ab| \le b_n|^*|a_n - a| + |a|^*|b_n - b| < M\epsilon + |a|\epsilon = (M + |a|)\epsilon$

Per la definizione di limite $\lim_{n\to\infty} a_n b_n = ab$

3) e 4) non li dimostriamo

Corollario (permanenza del segno e algebra dei limiti):

Date due successioni $a_{n'}$ b_{n} t.c. $\exists \lim_{n\to\infty} a_{n} = a$ e $b = \lim_{n\to\infty} b_{n}$

- 1. Se a > b (o a < b) allora $a_n > b_n$ definitivamente (o $a_n < b_n$ definitivamente)
- 2. Se $a \ge b$ (o $a \le b$) allora $a_n \ge b_n$ definitivamente (o $a_n \le b_n$ definitivamente)

Dimostrazione: se $c_n = a_n - b_n$, allora $\exists \text{Lim}_{n \to \infty} (a_n - b_n) = a - b \in \mathbb{R}$ (per algebra dei limiti)

nel caso 1) se a > b allora c > 0 per permanenza del segno a_n - b_n = c_n > 0 definitivamente Quindi a_n > b_n definitivamente

nel caso 2) se a \geq b allora c \geq 0 per permanenza del segno a_n - b_n = c_n \geq

Teorema (del confronto o dei due carabinieri):

date tre successioni $a_{n'}$, $b_{n'}$, c_{n} t.c. $a_{n} \le b_{n} \le c_{n}$ definitivamente in $n \in \mathbb{N}$

t.c.
$$\lim_{n\to\infty} a_n = \lim_{n\to\infty} c_n = I \in \mathbb{R}$$

allora $\exists \lim_{n\to\infty} b_n = I$

$$\begin{array}{lll} \text{Dimostrazione: } \forall \epsilon > 0 & \exists n_1 \in N \text{ t.c. } l - \epsilon < a_n < l + \epsilon \ \forall n \geq n_1 \\ & e \ \exists n_2 \in N \text{ t.c. } l - \epsilon < c_n < l + \epsilon \\ & inoltre \ \exists n_3 \in N \text{ t.c. } a_n \leq b_n \leq c_n \\ & \text{allora } \forall n \geq \max\{n_1, n_2, n_3\} \in N \\ & => \lim_{n \rightarrow \infty} b_n = l \in R \\ & \text{per definizione di limite} \end{array}$$

Teorema (del confronto, caso $\pm \infty$): date $a_{n'}$ b_n successioni t.c. $a_n \le b_n$ definitivamente in $n \in \mathbb{N}$

1.
$$\lim_{n\to\infty} a_n = +\infty$$
 allora $\exists \lim_{n\to\infty} b_n = +\infty$

2.
$$\lim_{n\to\infty} b_n = -\infty$$
 allora $\exists \lim_{n\to\infty} a_n = -\infty$

Dimostrazione:

$$\begin{array}{ll} \forall M>0 \ \exists n_1 \in N \ t.c. \ a_n>M \quad \forall n\geq n_1 \\ \\ in oltre \ \exists n_2 \in N \ t.c. \ a_n\leq b_n \quad \forall n\geq n_2 \\ \\ quindise \ n\geq \max\{n_1,\ n_2\}\in N \\ \\ allora \ b_n\geq a_n\geq M \ \Rightarrow \ b_n\geq M \\ \\ => \lim_{n\to\infty} b_n=\pm\infty \ \ per \ definizione \ di \ limite \\ \\ La \ dimostrazione \ per \ 2) \ \grave{e} \ analoga \end{array}$$

Corollario:

- 1. Se b_n , c_n successioni t.c. $|b_n| \le c_n$ definitivamente in $n \in \mathbb{N}$ e se $\lim_{n \to \infty} c_n = 0$, allora $\lim_{n \to \infty} b_n = 0$
- 2. Se $b_{n'}$ c_n successioni t.c. c_n sia limitato e $\lim_{n\to\infty} b_n = 0$ $\lim_{n\to\infty} b_n c_n = 0 \text{ (vero anche se } c_n \text{ non ammette limite } \nexists \text{Lim}_{n\to\infty}$

Dimostrazione:

 c_n

- 1. Per ipotesi $|b_n| \le c_n$ cioè $-c_n \le b_n \le c_n$ definitivamente $n \in \mathbb{N}$ inoltre $\lim_{n \to \infty} c_n = 0$ e $\lim_{n \to \infty} -c_n = 0$ per algebra dei limiti

 Per teorema dei due carabinieri $\lim_{n \to \infty} b_n = 0$
- 2. Vogliamo mostrare che $\lim_{n\to\infty} b_n c_n = 0$ se $\lim_{n\to\infty} b_n = 0$ e c_n limitata essendo c_n limitata $\exists M > 0$ t.c. $|c_n| < M$ $\forall n \in N$

Quindi $|b_n c_n| = |b_n|^* |c_n| < M^* |b_n|$ inoltre $\lim_{n \to \infty} |b_n| = 0$ per algebra dei limiti e $\lim_{n \to \infty} M^* |b_n| = 0$ per punto 1)

allora
$$\lim_{n\to\infty} b_n c_n = 0$$

Esempio:

$$\lim_{n\to\infty} n^{\partial} = \{+\infty \text{ se } \partial > 0;$$
 1 se $\partial = 0;$ 0 se $\partial < 0\}$ si vede con la definizione di limite

Teorema (gerarchia degli infiniti):

1.
$$\lim_{n\to\infty} (\log_a n)/n^{\partial} = 0$$
 $[\infty/\infty] \forall a > 1, \forall b > 0$

2.
$$\lim_{n\to\infty} n^{\partial}/a^n = 0$$
 $[\infty/\infty] \forall a > 1, \forall b > 0$

3.
$$\lim_{n\to\infty} a^n/n! = 0$$
 $[\infty/\infty] \forall a > 1$

Osservazione:

1.
$$\forall c > 0$$
 , $\forall a > 1$, $\forall \partial > 0$ 0 < $\log_a n < cn^{\partial}$ definitivamente in $n \in \mathbb{N}$

2.
$$\forall c > 0$$
 , $\forall a > 1$, $\forall \partial > 0$ $n^{\partial} < ca^{n}$ definitivamente in $n \in N$

Esempio:

$$a_n = (\cos n)/n^{1/2}$$
 $|a_n| = |\cos n| / n^{1/2} \le 1/n^{1/2} -> 0 => per$
confronto $\lim_{n\to\infty} a_n = 0$

Osservazione:

 $a_n = P(n)/Q(n)$ P, Q sono somme di potenze di n e di funzioni limitate in n, dove la potenza massima di n in P (positiva) sia più piccola della potenza massima di n in Q(positiva), possiamo ragionare e concludere che $\lim_{n\to\infty} a_n = 0$

Osservazione:

 $a_n = P(n)/Q(n)$ P, Q sono somme di potenze di n e di funzioni limitate in n, dove la potenza massima di n in P (positiva) sia uguale alla potenza massima di n in Q(positiva), ALLORA $\lim_{n\to\infty} a_n = I \in \mathbb{R}\setminus\{0\}$ dove I è il quoziente fra il coefficiente della potenza massima di n in P e il coefficiente della potenza massima di n in Q

Teorema (aritmetizzazione parziale di ∞):

siano a_n, b_n successioni

1. Se
$$\lim_{n\to\infty} a_n = a \in \mathbb{R}$$
, $\lim_{n\to\infty} b_n = \pm \infty$ => $\lim_{n\to\infty} a_n + b_n = -\infty$

$$\pm\infty \quad (a \pm \infty = \pm \infty \quad \forall a \in \mathbb{R})$$
2. Se $\lim_{n\to\infty} a_n = \pm\infty = \lim_{n\to\infty} b_n = \sum_{n\to\infty} b_n$

$$a_n + b_n = \pm\infty \quad (+\infty + \infty = +\infty; -\infty - \infty = -\infty)$$

3. Se
$$\lim_{n\to\infty} a_n = a \in \mathbb{R}^* \setminus \{0\}$$
, $\lim_{n\to\infty} b_n = \pm \infty = \sum \lim_{n\to\infty} a_n b_n = \pm \infty$ ($a^*\infty = \infty$ con la regola dei segni $\forall a \in \mathbb{R}^* \setminus \{0\}$)

4. Se
$$\lim_{n\to\infty} a_n = a \in R^* \setminus \{0\}$$
, $\lim_{n\to\infty} b_n = 0^{\pm} = \lim_{n\to\infty} a_n/b_n = \pm \infty$ (a/0[±] = ∞ con la regola dei segni $\forall a \in R^* \setminus \{0\}$)

5. Se
$$\lim_{n\to\infty} a_n = a \in \mathbb{R}$$
, $\lim_{n\to\infty} b_n = \pm \infty$ => $\lim_{n\to\infty} a_n b_n = \pm \infty$ (a*\infty = \infty con |a regola dei segni \forall a \in \mathbb{R}^*\{0}\})

Osservazione:

 ∞ - ∞ *0 ∞ / ∞ 0/0 forme di indeterminazione

Esempio:

$$- a_n = (1)^{-1}/n$$
 $b_n = n$ => $\lim_{n \to \infty} a_n b_n = \#$ [0*\infty]

Osservazione:

 $a_n = P(n)/Q(n)$ P, Q sono somme di potenze di n e di funzioni limitate in n, dove la potenza massima di n in P (positiva) sia più grande della potenza massima di n in Q(positiva), possiamo ragionare e concludere che $\lim_{n\to\infty} a_n = \pm \infty$

Teorema:

se a_n e b_n successioni $\lim_{n\to\infty} a_n = a \in \mathbb{R}^*, \ a \ge 0$ $[a_n > 0]$ definitivamente] e $\lim_{n\to\infty} b_n = b \in \mathbb{R}^*$

$$\lim_{n\to\infty} a_n^{bn} = a^b \qquad \text{tranne nei casi } (\infty^0, 0^0, 1^{\pm\infty})$$

Osservazione:

$$-a^{+\infty} = +\infty \qquad \forall a > 1$$

$$-a^{-\infty} = 0 \qquad \forall a > 1$$

$$-a^{+\infty} = 0 \qquad 0 \le a < 1$$

$$-a^{-\infty} = +\infty \qquad 0 \le a < 1$$

$$-\infty^b = \infty \qquad \text{se } b > 0$$

$$-\infty^b = 0 \qquad \text{se } b < 0$$

Osservazione:

$$a_n^b n = e^{\log_{an} bn} = e^{b_n \log a_n}$$

Osservazione:

$$a_n = 1^n = 1$$
 $\forall n \in N$
 $a_n = 0/n * n = 0$ $\forall n \in N$

$$\lim_{n\to\infty} a_n = 1$$

$$\lim_{n\to\infty} a_n = 0$$