

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ

ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ & ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ

ΤΟΜΕΑΣ ΕΠΙΚΟΙΝΩΝΙΩΝ, ΗΛΕΚΤΡΟΝΙΚΗΣ & ΣΥΣΤΗΜΑΤΩΝ ΠΛΗΡΟΦΟΡΙΚΉΣ

Ηλεκτρονική III

Ακαδημαϊκό Έτος 2022-2023

1η Εργαστηριακή Σειρά Ασκήσεων

Καθ. Παύλος-Πέτρος Σωτηριάδης

Επικουρία: Νικόλαος Βουδούκης, ΕΔΙΠ

Χρήστος Δήμας, Δρ

Οδηγίες

- Οι ασκήσεις είναι αυστηρά ατομικές.
- Η παράδοση γίνεται στις εργασίες στο helios.
- Παραδοτέα: ένα αρχείο .rar ή .zip το οποίο περιλαμβάνει:
 - 1. Μια τεχνική αναφορά με τις απαντήσεις, τις γραφικές παραστάσεις και τις κατάλληλες περιγραφές/ αιτιολογήσεις
 - 2. Τα κατάλληλα αρχεία προσομοιώσεων .asc του LT Spice
- Αξιολογούνται η ορθότητα, η τεχνική και επιστημονική τεκμηρίωση, η ποιότητα και η πληρότητα των εργασιών.
- Προσθεμία παράδοσης μέχρι και Κυριακή 30 Οκτωβρίου 2022.
- Οι προθεσμίες παράδοσης είναι αυστηρές και δεν θα δοθούν παρατάσεις.
- Η παράδωση των ασκήσεων προσομοίωσης SPICE ΔΕΝ είναι υποχρεωτική.

Ασκηση $1^{η}$ (20%)

Απαντήστε στα παρακάτω ερωτήματα <u>αποκλειστικά</u> με χρήση προσομοίωσης στο LTSpice:

- **A)** Να βρεθεί η τιμή της V_{bias} ώστε το ρεύμα στον συλλέκτη του Q_1 να είναι $I_{\it C}=7m{\it A}.$
- **B)** Να βρεθεί η τιμή της αντίστασης βάσης-εκπομπού R_{be} .
- $\Gamma)$ Να βρεθεί η τιμή της αντίστασης βάσης-συλλέκτη $R_{bc}.$

Ασκηση 2^η: (20%)

Σχήμα 2

Απαντήστε στα παρακάτω ερωτήματα <u>αποκλειστικά</u> με χρήση προσομοίωσης στο LTSpice:

- **A)** Να βρεθεί η τιμή της R_4 ώστε η τάση στην υποδοχή (drain) του Q_1 να είναι $V_D=6V$.
- B) Να σχεδιαστεί το διάγραμμα Bode του ενισχυτή από 1Hz μέχρι 500MHz.
- Γ) Να σχεδιαστεί το διάγραμμα του μέτρου και της φάσης της σύνθετης αντίστασης εισόδου R_{in} .
- Δ) Να σχεδιαστεί το διάγραμμα του μέτρου και της φάσης της σύνθετης αντίστασης εισόδου R_{out} .

<u>Υπόδειξη:</u> Θυμηθείτε την εντολή ".step param X start stop step" η οποία πραγματοποιεί επαναλαμβανόμενη ανάλυση για διάφορες τιμές της παραμέτρου X.

Άσκηση 4^{\eta}: (20%)

Για τους δύο καθρέπτες ρεύματος του παρακάτω σχήματος, δίνονται $V_{CC}=10V$ και $I_1=I_2=1$ 1mA. Για τα $Q_{1,}-Q_{5}$, χρησιμοποιείστε το διπολικό τρανζίστορ 2N3904.

Σχήμα 3

- **Α)** Ποια η αντίσταση εξόδου r_{out} του καθρέπτη 1 για $V_{out} = 5V$ στην συχνότητα f = 100 Hz;
- ${\bf B}$) Ποια η αντίσταση εξόδου r_{out} του καθρέπτη 2 για $V_{out}=5V\,$ στην συχνότητα $f=100{\rm Hz};$
- Γ) Ποια η ελάχιστη τάση στον συλλέκτη του Q_3 για την οποία το ρεύμα εξόδου (I_{C3}) είναι ίσο με το ονομαστικό (με απόκλιση το πολύ 5%).
- **Δ)** Ποια η ελάχιστη τάση στον συλλέκτη του Q_4 για την οποία το ρεύμα εξόδου (I_{C4}) είναι ίσο με το ονομαστικό (με απόκλιση το πολύ 5%).

Ασκηση 4^η: (20%)

Για το κύκλωμα του σχήματος της $5^{ης}$ άσκησης της $1^{ης}$ σειράς θεωρητικών ασκήσεων, με αποκλειστική χρήση του LT-Spice και χρησιμοποιώντας το διπολικό transistor **2N2222**:

- A) Να σχεδιαστεί το διάγραμμα Bode του ενισχυτή από 1Hz μέχρι 500MHz. Τι παρατηρείτε;
- **Β)** Να σχεδιαστεί το διάγραμμα του μέτρου και της φάσης της σύνθετης αντίστασης εισόδου R_{in} .
- Γ) Να σχεδιαστεί το διάγραμμα του μέτρου και της φάσης της σύνθετης αντίστασης εξόδου R_{out} . Συμφωνούν τα αποτελέσματα της προσομοίωσης με τα αναμενόμενα;

Χρησιμοποιήστε τις ΙΔΙΕΣ αριθμητικές τιμές με αυτές που δίνονται στην εκφώνηση της αντίστοιχης θεωρητικής άσκησης.

Ασκηση 5^η: (20%)

Για το κύκλωμα του σχήματος της **6**^{ης} **άσκησης της 1**^{ης} **σειράς θεωρητικών ασκήσεων**, με αποκλειστική χρήση του LT-Spice και χρησιμοποιώντας το διπολικό transistor **2N2222**:

- A) Να σχεδιαστεί το διάγραμμα Bode του ενισχυτή από 1Hz μέχρι 500MHz.
- **Β)** Να σχεδιαστεί το διάγραμμα του μέτρου και της φάσης της σύνθετης αντίστασης εισόδου R_{in} .
- Γ) Να σχεδιαστεί το διάγραμμα του μέτρου και της φάσης της σύνθετης αντίστασης εξόδου R_{out} . Συμφωνούν τα αποτελέσματα της προσομοίωσης με τα αναμενόμενα; Τι παρατηρείτε σε σχέση με το κύκλωμα της προηγούμενης προσομοίωσης (που είχε ένα διπολικό λιγότερο); Χρησιμοποιήστε τις ΙΔΙΕΣ αριθμητικές τιμές με αυτές που δίνονται στην εκφώνηση της

αντίστοιχης θεωρητικής άσκησης.