0. Introduction for Multi-omics Integrative Analysis

This module consists of two functions: **Integrative Analysis of Two Omics Data Sets** and **Integrative Analysis of Three Omics Data Sets**.

Functions	Description	Input	Output	Time (test data)	Reference
Integrative Analysis of Two Omics Data Sets	Visualize genes' abundance in two omics data sets via a scatter plot and perform kmeans cluster based on genes' abundace in each omics data.	A quantification matrix of RNA modifications-related genes on two omics data sets	An interactively HTML document recoding the scatter plot and kmeans cluster results	~5s	In-house scripts
Integrative Analysis of Three Omics Data Sets	Group genes into seven categories based on their abundance in each omics data sets and visualize each gene's abundance via a ternary plot	A quantification matrix of RNA modifications-related genes on three omics data sets	An interactively HTML document recoding the ternary plot, categories details defined by multiomics data	~6s	In-house scripts

1. Integrative Analysis of Two Omics Data Sets

This function is designed to perform integrative analysis of two omics data sets (e.g., m6A and RNA-Seq). Taking a quantification matrix as input, deepEA firstly normalize raw quantification based on user-specific normalization method (currently, three normalization methods including **cumulative distribution, Z-score normalization and min-max normalization** are available), then using kmeans clustering method to cluster genes into four groups and visualize genes by an interactive scatter plot.

Input

• **Two omics quantication data**: a matrix with three columns, seperated by TAB, see following table for details

geneID	m ⁶ A level	Expression level
Zm00001d001784	4.153	22.09
Zm00001d001790	4.629	4.667
Zm00001d001798	7.069	6.491
Zm00001d001898	4.153	11.62

Output

• An HTML document for integrative analysis of two omics data sets

How to use this function

- **Step 1**: upload gene quantification matrix in test_data/Quality_Control/quantification_matrix_two_omics.txt into history panel, please see here for details about how to upload local data to deepEA server
- **Step 2**: see the following screenshot to run this function

2. Integrative Analysis of Three Omics Data Sets

This function is designed to perform integrative analysis of three omics data sets. According RNA modifications-related genes' relative abundace in three omics data sets, deepEA grouped genes into seven categories. For example, if users would like to integrate m6A with gene expression and translation, the following categories will be illustrated in a ternary plot:

- Balanced
- m⁶A dominant
- m⁶A suppressed
- Expression dominant
- Expression suppressed
- Translation dominant
- Translation suppressed

Input

• Multi omics quantication data: see following table for details

geneID	RNA modification level	Expression level	Translation level
Zm00001d001784	4.153	22.09	35.18
Zm00001d001790	4.629	4.667	5.406
Zm00001d001798	7.069	6.491	7.891
Zm00001d001898	4.153	11.62	24.42

• Duplicated gene pairs (homoeologs): see following table for details:

Gene 1	Gene 2
Zm00001d034918	Zm00001d012811
Zm00001d034901	Zm00001d012816
Zm00001d034896	Zm00001d012817
Zm00001d034876	Zm00001d012830

Output

• An HTML document for integrative analysis of three omics data sets

How to use this function

• **Step 1**: upload gene quantification matrix in test_data/Quality_Control/quantification_matrix_three_omics.txt into history panel, please see here for details about how to upload local data to deepEA server

• **Step 2**: see the following screenshot to run this function

