MORE Q-LEARNING

Scott O'Hara Metrowest Developers Machine Learning Group 11/14/2018

REFERENCES

The material for this talk is primarily drawn from the slides, notes and lectures of these courses:

University of California, Berkeley CS188:

 CS188 – Introduction to Artificial Intelligence, Profs. Dan Klein, Pieter Abbeel, et al. http://ai.berkeley.edu/home.html

David Silver, DeepMind:

Introduction to Reinforcement Learning http://www0.cs.ucl.ac.uk/staff/d.silver/web/Teaching.html

CS181 course at Harvard University:

- CS181 Intelligent Machines: Perception, Learning and Uncertainty, Sarah Finney, Spring 2009
- CS181 Intelligent Machines: Perception, Learning and Uncertainty, Prof. David C Brooks, Spring 2011
- CS181 Machine Learning, Prof. Ryan P. Adams/Spring 2014. https://github.com/wihl/cs181-spring2014
- CS181 Machine Learning, Prof. David Parkes, Spring 2017. https://harvard-ml-courses.github.io/cs181-web-2017/

OVERVIEW

1. Where We Have Been

- Reinforcement Learning Overview
- Markov Decision Processes (MDPs)
- 4 MDP Algorithms

2. Reinforcement Learning Algorithms

- Reinforcement Learning
- Model-based RL
- The Bellman Equations
- States and Q-States
- Temporal Difference (TD) Learning
- o TD and Exponential Smoothing
- o Q-Learning
- SARSA

OVERVIEW

1. \rightarrow Where We Have Been \leftarrow

- Reinforcement Learning Overview
- Markov Decision Processes (MDPs)
- 4 MDP Algorithms

2. Reinforcement Learning Algorithms

- Reinforcement Learning
- Model-based RL
- The Bellman Equations
- States and Q-States
- Temporal Difference (TD) Learning
- TD and Exponential Smoothing
- o Q-Learning
- SARSA

REINFORCEMENT LEARNING OVERVIEW

MANY FACES OF REINFORCEMENT LEARNING

BRANCHES OF MACHINE LEARNING

CHARACTERISTICS OF REINFORCEMENT LEARNING

- There is no supervisor, only a reward signal
- Feedback is delayed, not instantaneous
- Time really matters (sequential, data is not i.i.d. independent and identically distributed.)
- Agent's actions affect the subsequent data it receives.

EXAMPLES OF REINFORCEMENT LEARNING

- Fly stunt maneuvers in a helicopter
- Defeat the world champion at Backgammon
- Manage an investment portfolio
- Control a power station
- Make a humanoid robot walk
- Play Atari games better than humans

EXAMPLES OF REINFORCEMENT LEARNING

RL Course by David Silver – Lecture 1: Introduction to Reinforcement Learning

https://www.youtube.com/watch?v=2pWv7GOvuf0

12:25 - 22.00

MARKOV DECISION PROCESSES

MARKOV DECISION PROCESSES

- Markov Decision Processes provide a mathematical framework for modeling decision making in situations where outcomes are partly random and partly under the control of a decision maker.
- The initial analysis of MDPs assume complete knowledge of states, actions, rewards, transitions, and discounts.

MARKOV DECISION PROCESSES

- States: s_1, \dots, s_n
- Actions: a_1, \dots, a_m
- Reward Function:

$$r(s, a, s') \in R$$

Transition model:

$$T(s,a,s') = P(s'|s,a)$$

• Discount factor: $\gamma \in [0, 1]$

EXAMPLE: GRID WORLD

- A maze-like problem
 - The agent lives in a grid
 - Walls block the agent's path
- Noisy movement: actions do not always go as planned
 - 80% of the time, the action North takes the agent North (if there is no wall there)
 - 10% of the time, North takes the agent West; 10% East
 - If there is a wall in the direction the agent would have been taken, the agent stays put
- The agent receives rewards each time step
 - Small "living" reward each step (can be negative)
 - Big rewards come at the end (good or bad)
- Goal: maximize sum of rewards

GRID WORLD ACTIONS

Deterministic Grid World

WHAT IS MARKOV ABOUT MDPS?

- "Markov" generally means that given the present state, the future and the past are independent
- ► For Markov decision processes, "Markov" means action outcomes depend only on the current state

$$P(S_{t+1} = s' | S_t = s_t, A_t = a_t, S_{t-1} = s_{t-1}, A_{t-1}, \dots S_0 = s_0)$$

$$P(S_{t+1} = s' | S_t = s_t, A_t = a_t)$$

▶ This is just like search, where the successor function only depends on the current state (not the history)

Andrey Markov (1856-1922)

MDP GOAL: FIND AN OPTIMAL POLICY π

- ▶ In search problems, we look for an optimal plan, or sequence of actions, from start to a goal
- ► For MDPs, we want an optimal policy $\pi^*: S \to A$
 - \blacktriangleright A policy π gives an action for each state
 - An optimal policy is one that maximizes expected utility if followed

OPTIMAL POLICIES

R(s) = 0.05

$$R(s) = -0.01$$

$$R(s) = 0.0$$

R(s) = -2.0

4 MDP ALGORITHMS

4 MDP ALGORITHMS

- Assume complete knowledge of the MDP
- Make use of the <u>Bellman Equations</u>
- Expectimax (recursive, finite horizon)
- Value Iteration (dynamic programming, finite horizon)
- Value Iteration (dynamic programming, infinite hofizon)
- Policy Iteration (dynamic programming, infinite horizon, optimize policy)

EXPECTIMAX: A GAME AGAINST NATURE

- Expectimax is like a game-playing algorithm except the opponent is nature.
- Expectimax is strongly related to the minmax algorithm used in game theory, but the response is probabilistic.
- Nodes where you move are called **states**: $S(\triangle)$
- Nodes where nature moves are called Q-states: <S,A> ()

OPTIMAL QUANTITIES

- The value (utility) of a state s:
 V*(s) = expected utility starting in s and acting optimally
- The value (utility) of a q-state (s,a):
 Q*(s,a) = expected utility starting out having taken action a from state s and (thereafter) acting optimally
- The optimal policy: $\pi^*(s)$ = optimal action from state s

THE BELLMAN EQUATIONS

- ▶ There is one equation $V^*(s)$ for each state s.
- ▶ There is one equation $Q^*(s, a)$ for each state s and action a.
- ▶ These are equations, not assignments. They define a relationship, which when satisfied guarantees that $V^*(s)$ and $Q^*(s,a)$ are optimal for each state and action.
- \blacktriangleright This in turn guarantees that the policy π^* is optimal.

$$V^*(s) = \max_{a} Q^*(s, a)$$

$$Q^*(s, a) = \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V^*(s') \right]$$

$$V^*(s) = \max_{a} \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V^*(s') \right]$$

VALUE ITERATION USES DYNAMIC PROGRAMMING

VALUE ITERATION

- ▶ Start with $V_0(s) = 0$ no time steps left means an expected reward sum of zero
- \triangleright Given vector of $V_k(s)$ values, do one ply from each state:

$$V_{k+1}(s) \leftarrow \max_{a} \left[\sum_{s'} P(s'|s,a) \left[R(s,a,s') + \gamma V_k(s') \right] \right]$$

Repeat until convergence

- ► Complexity of each iteration: O(S²A)
 - ► For every state s, there are |A| actions
 - For every state s and action a, there are |S| possible states s'
- ▶ Theorem: will converge to unique optimal values
 - ► Basic idea: approximations get refined towards optimal values
 - Policy may converge long before values do

VALUE ITERATION EXAMPLE: GRIDWORLD

OPTIONS: -h -d D	show this help message and exit discount on future (default 0.9)
-r	reward for living for a time step (default 0.0)
-n P	how often action results in unintended direction (default 0.2)
-е Е	chance of taking a random action in g-learning (default 0.3)
-l P	TD learning rate (default 0.5)
-i R	number of rounds of value iteration (default 10)
-k K	number of episodes of the MDP to run (default 1)
-g G	grid to use (case sensitive; options are: BookGrid, BridgeGrid, CliffGrid, CliffGrid2, MazeGrid, SmallGrid, MediumGrid, default BookGrid)
-w X	request a window width of X pixels *per grid cell* (default 150)
-a A	agent type (options are 'random', 'value' and 'q', default random)
-†	use text-only ASCII display
-p	pause GUI after each time step when running the MDP
-q	skip display of any learning episodes
-s S	speed of animation, S > 1.0 is faster, 0.0 < S < 1.0 is slower (default 1.0)
-m	manually control agent
-V	display each step of value iteration

POLICY ITERATION

- ▶ Step 1: Policy Evaluation: For fixed current policy π , find values with policy evaluation:
 - ▶ Iterate until values converge:

$$V_{k+1}^{\pi_i}(s) \leftarrow \sum_{s'} T(s, \pi_i(s), s') \left[R(s, \pi_i(s), s') + \gamma V_k^{\pi_i}(s') \right]$$

- ▶ Step 2: Improvement: For fixed values, get a better policy using policy extraction:
 - ► One-step look-ahead:

$$\pi_{i+1}(s) = \arg\max_{a} \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V^{\pi_i}(s') \right]$$

REINFORCEMENT LEARNING

REINFORCEMENT LEARNING: THE BASIC IDEA

- Select an action
- If action leads to reward, reinforce that action
- If action leads to punishment, avoid that action
- Basically, a computational form of Behaviorism (Pavlov, B. F. Skinner)

OFFLINE VS. ONLINE

Offline Learning

THE LEARNING FRAMEWORK

- Learning is performed online, learn as we interact with the world
- In contrast with supervised learning, there are no training or test sets. The reward is accumulated over interactions with the environment.

- Data is not fixed, more information is acquired as you go.
- The training distribution can be influenced by a

 étion decisions.

REINFORCEMENT LEARNING

- Agent knows the current state s, takes action a, receives a reward r and observes the next state s'
- Agent has no access to reward model r(s,a,s') or the transition model p(s' | s,a)
- Agent learn to act so as to maximize expected rewards.
- All learning is based on observed samples of outcomes.

MODEL-BASED REINFORCEMENT LEARNING

MODEL-BASED LEARNING

- ► Model-Based Idea:
 - ► Learn an approximate model based on experiences
 - Solve for values as if the learned model were correct
- ▶ Step 1: Learn empirical MDP model
 - ▶ Count outcomes s' for each s, a
 - \blacktriangleright Normalize to give an estimate of $\widehat{T}(s,a,s')$
 - Discover each $\widehat{R}(s,a,s')$ when we experience (s, a, s')
- ▶ Step 2: Solve the learned MDP
 - ▶ For example, use value iteration or policy iteration

▶ Repeat

LEARN THE REWARD AND TRANSITION DISTRIBUTIONS

- Try every action in each state a number of times
- RTotal(s, a, s') =total reward for taking action a in state s and transitioning to state s'
- N(a,s) = number of times action a is taken in state s
- N(s, a, s') = number of times s transitions to s' on action a
- $\hat{R}(s, a, s') = RTotal(s, a, s') / N(s, a, s')$
- $\widehat{T}(s, a, s') = N(s, a, s')/N(a, s)$

TRANSITION/REWARD PARAMETER TABLE

For every state s:

State s'

Action a

	$\widehat{T}(s,a0,s1)$ $\widehat{R}(s,a0,s1)$	
	$\widehat{T}(s,a1,s1)$ $\widehat{R}(s,a1,s1)$	
	$\widehat{T}(s,a2,s1)$ $\widehat{R}(s,a2,s1)$	

MODEL-BASED RL: PROS AND CONS

o Pros:

- Makes maximal use of experience
- Solves model optimally, given enough experience

o Cons:

- Assumes model is small enough to solve
- Requires expensive solution procedure

MODEL-FREE REINFORCEMENT LEARNING: Q-LEARNING

Q-LEARNING

- o Don't learn a model, learn the Q function directly
- Appropriate when model is too large to store, solve or learn
 - \circ size of transition of model: $O(|S^2|)$
 - o value iteration cost: $O(|A||S^2|)$
 - o size of Q function O(|A||S|)

RECALL THE BELLMAN EQUATIONS

$$V^{*}(s) = \max_{a} Q^{*}(s, a)$$

$$Q^{*}(s, a) = \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V^{*}(s') \right]$$

$$V^{*}(s) = \max_{a} \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V^{*}(s') \right]$$

FROM VALUE ITERATION TO Q-VALUE ITERATION

- ► Value iteration: find successive (depth-limited) values
 - ► Start with $V_0(s) = 0$, which we know is right
 - ▶ Given V_k , calculate the depth k+1 values for all states:

$$V_{k+1}(s) \leftarrow \max_{a} \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V_k(s') \right]$$

- ▶ But Q-values are more useful, so compute them instead
 - ► Start with $Q_0(s,a) = 0$, which we know is right
 - ▶ Given Q_k , calculate the depth k+1 q-values for all q-states:

$$Q_{k+1}(s, a) \leftarrow \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma \max_{a'} Q_k(s', a') \right]$$

Q-LEARNING

▶ Q-Learning: sample-based Q-value iteration

$$Q_{k+1}(s, a) \leftarrow \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma \max_{a'} Q_k(s', a') \right]$$

- ► Learn Q(s,a) values as you go
 - ▶ Receive a sample transition (s,a,r,s')
 - \triangleright Consider your old estimate: Q(s,a)
 - ▶ Consider your new sample estimate:

$$Q(s,a) \approx r + \gamma \max_{a'} Q(s',a')$$

▶ Incorporate the new estimate into a running average:

$$Q(s, a) \leftarrow (1 - \alpha)Q(s, a) + (\alpha) \left[r + \gamma \max_{a'} Q(s', a') \right]$$

Q-LEARNING UPDATE RULE

► On transitioning from state s to state s' on action a, and receiving reward r, update:

$$Q(s, a) \leftarrow (1 - \alpha)Q(s, a) + (\alpha) \left[r + \gamma \max_{a'} Q(s', a') \right]$$

- $\blacktriangleright \alpha$ is the **learning rate**
- \blacktriangleright a large α results in quicker learning, but may not converge.
- $\triangleright \alpha$ is often decreased as learning goes on.

TEMPORAL DIFFERENCE (TD) LEARNING

- Q-Learning is an example of a more general approach to learning called Temporal Difference Learning
- ▶ In TD learning, the general update is:

 $NewEstimate \leftarrow OldEstmate + StepSize[Target - OldEstimate]$

▶ Rewrite Q-Learning update:

$$Q(s,a) \leftarrow (1-\alpha)Q(s,a) + \alpha[r + \gamma \max_{a'} Q(s',a')]$$
$$Q(s,a) \leftarrow Q(s,a) + \alpha[(r + \gamma \max_{a'} Q(s',a')) - Q(s,a)]$$

- ► The idea is to repeatedly nudge the new estimate towards its learning target in each time period.
- ► Another example of TD Learning is TD-Value Learning, which learns the value function V(s) instead of Q(s,a).

TD LEARNING AND EXPONENTIAL SMOOTHING

- ►The TD Learning/Q-Learning update rule is similar to a times series technique called exponential smoothing.
- ▶ the simplest form of exponential smoothing is given by the formulas:

$$egin{aligned} s_0 &= x_0 \ s_t &= lpha x_t + (1-lpha) s_{t-1}, \ t > 0 \end{aligned}$$

where α is the **decay rate** (as opposed to the **step size** or **learning rate**)

EXPONENTIAL SMOOTHING (2)

As time progresses, the affect on s_t of more remote terms decay exponentially as they recede into the past.

$$egin{aligned} s_0 &= x_0 \ s_t &= lpha x_t + (1-lpha) s_{t-1}, \ t > 0 \end{aligned}$$

The above equations can be expanded thus:

$$egin{aligned} s_t &= lpha x_t + (1-lpha) s_{t-1} \ &= lpha x_t + lpha (1-lpha) x_{t-1} + (1-lpha)^2 s_{t-2} \ &= lpha \left[x_t + (1-lpha) x_{t-1} + (1-lpha)^2 x_{t-2} + (1-lpha)^3 x_{t-3} + \dots + (1-lpha)^{t-1} x_1
ight] + (1-lpha)^t x_0. \end{aligned}$$

EXPONENTIAL SMOOTHING EXAMPLE

Notice how Curves become more "wiggly" as α increases.

Q-LEARNING ALGORITHM

For each state s and action a:

$$Q(s,a) \leftarrow 0$$

Begin in state s:

Repeat:

For all actions associated with state s,

 \rightarrow CHOOSE ACTION $a \leftarrow$ based on the

Q values for state s

Receive reward r and transition to s'

$$Q(s, a) \leftarrow (1 - \alpha)Q(s, a) + (\alpha) \left[r + \gamma \max_{a'} Q(s', a')\right]$$

$$s \leftarrow s'$$

CHOOSING THE ACTION

- Learned Q function determines the policy
 - o in state s, choose action with largest Q(s,a)
- o Still have to worry about exploration vs. exploitation.
 - o use techniques we discussed previously.

CHOOSING AN ACTION: EXPLORATION VS EXPLOITATION

- Exploit: use your current model to maximize the expected utility now.
- o **Explore:** choose an action that will help you improve your modely
- How to Exploit? use the current policy.
- o How to Explore?
 - choose an action randomly
 - choose an action you haven't chosen yet
 - choose an action that will take you to an unexplored state.

EXPLORATION STRATEGY: ϵ -GREEDY

- Explore with probability ϵ . Exploit with probability 1 $-\epsilon$.
- Weaknesses:
 - Does not exploit when learning has converged.
- o Uses:
 - appropriate if the world is changing.

EXPLORATION STRATEGY: BOLTZMANN

In state s, choose action a with probability p:

$$p = \frac{e^{\frac{Q(s,a)}{t}}}{\sum_{a'} e^{\frac{Q(s,a')}{t}}}$$

- Simulated annealing: t is a "temperature"
- o High temperature means more exploration
- o Over time, t cools, reducing exploration
- Sensitive to cooling schedule.

EXPLORATION STRATEGY: R-MAX

- o Initialize reward for each state to R_{max} , the largest reward possible
- Keep track of the number of times each state has been visited
- After c visits, mark the state as known and update and update reward and transition probabilities.
- \circ Need to know R_{max}

VIDEO OF DEMO Q-LEARNING -- GRIDWORLD

Q-LEARNING EXAMPLE: GRIDWORLD

python gridworld.py -k 40 -w 200 -s 2.0 -a q -v [-p]

Q-LEARNING EXAMPLE: CRAWLER ROBOT

Q-LEARNING EXAMPLE: CRAWLER ROBOT

Update rule:
$$Q(s,a) \leftarrow (1-\alpha)Q(s,a) + (\alpha) \left[r + \gamma \max_{a'} Q(s',a')\right]$$

Description	Training Steps	Discount (γ)	Learning Rate (a)	Avg Velocity
Default	~100K	0.8	0.8	~1.73
Low γ	~100K	0.5	0.8	0.0
High γ	~100K	0.919	0.8	~3.33
Low α	~100K	0.8	0.2	~1.73
High $lpha$	~100K	0.8	0.9	~1.73
High γ , Low $lpha$	~100K	0.919	0.2	~3.33

NEXT TIME: MORE RL

- Possible Topics:
 - SARSA Q-Learning alternative
 - More about Generalization
 - Partially Observable Markov Decision Processes (POMDPs)
 - Deep Q-Learning