

Unipolar Hall Switch

High Precision Automotive Unipolar Hall Effect Switch

TLE4964-6M

SP001042418

TLE4964-6M

Data Sheet

Revision 1.2, 2019-12-20

Sense & Control

Table of contents

	Table of contents
	List of tables
	List of figures
1 1.1 1.2 1.3 1.4	Product description Overview Features Target applications Product validation
2 2.1 2.2 2.3 2.4 2.5 2.6	Functional description General Pin configuration (top view) Pin description Block diagram Functional block description Default start-up behavior
3.1 3.2 3.3 3.4 3.5	Specification1Application circuit1Absolute maximum ratings1Operating range1Electrical and magnetic characteristics1Electro magnetic compatibility1
4.1 4.2 4.3 4.4 4.5	Package information1Package outline PG-SOT23-3-151Packing information PG-SOT23-3-151Footprint PG-SOT23-3-151PG-SOT23-3-15 distance between chip and package1Package marking1
5	Graphs of the magnetic parameters 20
6	Graphs of the electrical parameters 2
7	Revision history

TLE4964-6M

List of tables

Table 1	Ordering information	5
Table 2	Pin description PG-SOT23-3-15	
Table 3	Absolute maximum rating parameters	12
Table 4	ESD protection ($T_A = 25^{\circ}C$)	
Table 5	Operating conditions parameters	
Table 6	General electrical characteristics	14
Table 7	Magnetic characteristics	15
Table 8	Magnetic compatibility	16
Table 9	Electro magnetic compatibility	

3

List of figures

Figure 1	TLE4964-6M in the PG-SOT23-3-15 package	5
Figure 2	Pin configuration and center of sensitive area	7
Figure 3	Functional block diagram TLE4964-6M	8
Figure 4	Timing diagram TLE4964-6M	9
Figure 5	Start-up behavior of the TLE4964-6M	10
Figure 6	Application circuit #1: only pull-up resistor is necessary	11
Figure 7	Application circuit #2: for extended ESD robustness	11
Figure 8	Definition of magnetic field direction PG-SOT23-3-15	15
Figure 9	EMC test circuit	16
Figure 10	PG-SOT23-3-15 package outline (all dimensions in mm)	18
Figure 11	Packing of the PG-SOT23-3-15 in a tape	18
Figure 12	Footprint PG-SOT23-3-15	19
Figure 13	Distance between chip and package	19
Figure 14	Marking of TLE4964-6M	19
Figure 15	Operating point (B_{OP}) of the TLE4964-6M over temperature	20
Figure 16	Release point (B_{RP}) of the TLE4964-6M over temperature	20
Figure 17	Hysteresis (B_{Hys}) of the TLE4964-6M over temperature	20
Figure 18	Power on time t_{PON} of the TLE4964-6M over temperature	
Figure 19	Signal delay time of the TLE4964-6M over temperature	21
Figure 20	Supply current of the TLE4964-6M over temperature	21
Figure 21	Supply current of the TLE4964-6M over supply voltage	22
Figure 22	Output current limit of the TLE4964-6M over temperature	22
Figure 23	Output current limit of the TLE4964-6M over applied pull-up voltage	22
Figure 24	Output fall time of the TLE4964-6M over temperature	23
Figure 25	Output fall time of the TLE4964-6M over applied pull-up voltage	23
Figure 26	Output rise time of the TLE4964-6M over temperature	23
Figure 27	Output rise time of the TLE4964-6M over applied pull-up voltage	24
Figure 28	Output leakage current of the TLE4964-6M over temperature	24
Figure 29	Saturation voltage of the TLE4964-6M over temperature	
Figure 30	Saturation voltage of the TLE4964-6M over output current	
Figure 31	Effective noise of the TLE4964-6M thresholds over temperature	25
Figure 32	Output signal jitter of the TLE4964-6M over temperature	25

Product description

1 Product description

1.1 Overview

Characteristic	Supply Voltage	Supply Current	Sensitivity	Interface	Temperature
Unipolar Hall Effect Switch	3.0 V ~ 32 V	1.6 mA	High B_{OP} : 3.5 mT B_{RP} : 2.5 mT	Open Drain Output	-40°C to 170°C

Figure 1 TLE4964-6M in the PG-SOT23-3-15 package

1.2 Features

- 3.0 V to 32 V operating supply voltage
- Operation from unregulated power supply
- Reverse polarity protection (-18 V)
- Overvoltage capability up to 42 V without external resistor
- Output overcurrent and overtemperature protection
- Active error compensation
- High stability of magnetic thresholds
- Low jitter (typ. 0.35 μs)
- · High ESD performance
- Small SMD package PG-SOT23-3-15

Table 1 Ordering information

Product name	Product type	Ordering code	Package
TLE4964-6M	Unipolar Hall Switch	SP001042418	PG-SOT23-3-15

Product description

1.3 Target applications

Target applications for the TLE496x Hall Switch family are all applications which require a high precision Hall Switch with an operating temperature range from -40°C to 170°C. Its superior supply voltage range from 3.0 V to 32 V with overvoltage capability (e.g. load-dump) up to 42 V without external resistor makes it ideally suited for automotive and industrial applications.

1.4 Product validation

Qualified for automotive applications. Product validation according to AEC-Q100.

2 Functional description

2.1 General

The TLE4964-6M is an integrated Hall effect switch designed specifically for highly accurate applications with superior supply voltage capability, operating temperature range and temperature stability of the magnetic thresholds.

2.2 Pin configuration (top view)

Figure 2 Pin configuration and center of sensitive area

2.3 Pin description

Table 2 Pin description PG-SOT23-3-15

Pin no.	Symbol	Function
1	VDD	Supply voltage
2	Q	Output
3	GND	Ground

2.4 Block diagram

Figure 3 Functional block diagram TLE4964-6M

2.5 Functional block description

The chopped Hall IC switch comprises a Hall probe, bias generator, compensation circuits, oscillator and output transistor.

The bias generator provides currents for the Hall probe and the active circuits. Compensation circuits stabilize the temperature behavior and reduce influence of technology variations.

The active error compensation (chopping technique) rejects offsets in the signal path and the influence of mechanical stress to the Hall probe caused by molding and soldering processes and other thermal stress in the package. The chopped measurement principle together with the threshold generator and the comparator ensures highly accurate and temperature stable magnetic thresholds.

The output transistor has an integrated overcurrent and overtemperature protection.

Figure 4 Timing diagram TLE4964-6M

2.6 Default start-up behavior

The magnetic thresholds exhibit a hysteresis $B_{HYS} = B_{OP} - B_{RP}$. In case of a power-on with a magnetic field B within hysteresis ($B_{OP} > B > B_{RP}$) the output of the sensor is set to the pull up voltage level (V_Q) per default. After the first crossing of B_{OP} or B_{RP} of the magnetic field the internal decision logic is set to the corresponding magnetic input value.

 $V_{\rm DDA}$ is the internal supply voltage which is following the external supply voltage $V_{\rm DD}$.

This means for $B > B_{OP}$ the output is switching, for $B < B_{RP}$ and $B_{OP} > B > B_{RP}$ the output stays at V_O .

Figure 5 Start-up behavior of the TLE4964-6M

3 Specification

3.1 Application circuit

The following **Figure 6** shows the basic option of an application circuit. Only a pull-up resistor R_Q is necessary. An external series resistor for V_S is not needed. The resistor R_Q has to be in a dimension to match the applied V_S to keep I_Q limited to the operating range of maximum 25 mA.

e.g.:
$$V_{\rm S}$$
 = 12 V; $I_{\rm Q}$ = 12 V/1200 Ω = 10 mA

Figure 6 Application circuit #1: only pull-up resistor is necessary

Figure 7 Application circuit #2: for extended ESD robustness

3.2 Absolute maximum ratings

Table 3 Absolute maximum rating parameters

Parameter	Symbol	Values			Unit	Note or Test Condition
		Min.	Тур.	Max.		
Supply voltage ¹⁾	V_{DD}	-18	-	32 42	V	- 10h, no external resistor required
Output voltage	V_{Q}	-0.5	_	32	V	_
Reverse output current	IQ	-70	_	_	mA	-
Junction temperature ¹⁾	T _J	-40	_	155 165 175 195	°C	for 2000h (not additive) for 1000h (not additive) for 168h (not additive) for 3 x 1h (additive)
Storage temperature	T_{S}	-40	_	150	°C	_
Thermal resistance Junction ambient	R_{thJA}	_	_	300	K/W	for PG-SOT23-3-15 (2s2p)
Thermal resistance Junction lead	R_{thJL}	-	-	100	K/W	for PG-SOT23-3-15

¹⁾ This lifetime statement is an anticipation based on an extrapolation of Infineon's qualification test results. The actual lifetime of a component depends on its form of application and type of use etc. and may deviate from such statement. The lifetime statement shall in no event extend the agreed warranty period.

Attention: Stresses above the max. values listed here may cause permanent damage to the device.

Exposure to absolute maximum rating conditions for extended periods may affect device reliability. Maximum ratings are absolute ratings; exceeding only one of these values may cause irreversible damage to the integrated circuit.

Calculation of the dissipated power P_{DIS} and junction temperature T_{J} of the chip (SOT23 example):

e.g. for: $V_{DD} = 12 \text{ V}$, $I_{S} = 2.5 \text{ mA}$, $V_{QSAT} = 0.5 \text{ V}$, $I_{Q} = 20 \text{ mA}$

Power dissipation: $P_{DIS} = 12 \text{ V} \times 2.5 \text{ mA} + 0.5 \text{ V} \times 20 \text{ mA} = 30 \text{ mW} + 10 \text{ mW} = 40 \text{ mW}$

Temperature $\Delta T = R_{thJA} \times P_{DIS} = 300 \text{ K/W} \times 40 \text{ mW} = 12 \text{ K}$

For $T_A = 150$ °C: $T_J = T_A + \Delta T = 150$ °C + 12 K = 162°C

Table 4 ESD protection¹⁾ ($T_A = 25^{\circ}C$)

Parameter	Symbol	Values			Unit	Note or Test Condition	
		Min.	Тур.	Max.			
ESD voltage (HBM) ²⁾	V_{ESD}	-7	-	7	kV	$R = 1.5 \text{ k}\Omega, C = 100 \text{ pF}$	
ESD voltage (CDM) ³⁾	V_{ESD}	-1	-	1	kV	-	
ESD voltage (system level) ⁴⁾	V_{ESD}	-15	_	15	kV	with circuit shown in Figure 7	

- 1) Characterization of ESD is carried out on a sample basis, not subject to production test.
- 2) Human Body Model (HBM) tests according to ANSI/ESDA/JEDEC JS-001.
- 3) Charge device model (CDM) tests according to JESD22-C101.
- 4) Gun test $(2 k\Omega / 330 pF or 330 \Omega / 150 pF)$ according to ISO 10605-2008.

3.3 Operating range

The following operating conditions must not be exceeded in order to ensure correct operation of the TLE4964-6M.

All parameters specified in the following sections refer to these operating conditions unless otherwise mentioned.

The maximum tested magnetic field is 600 mT.

Table 5 Operating conditions parameters

Parameter	Symbol		Value	S	Unit	Note or
		Min.	Тур.	Max.		Test Condition
Supply voltage	V_{DD}	3.0	_	32 ¹⁾	V	-
Output voltage	$V_{\rm Q}$	-0.3	_	32	V	-
Junction temperature	T_{J}	-40	-	170	°C	-
Output current	IQ	0	-	25	mA	-
Magnetic signal input frequency ²⁾	$f_{\sf SW}$	0	-	10	kHz	-

¹⁾ Latch-up test with factor 1.5 is not covered. Please see max ratings also.

²⁾ For operation at the maximum switching frequency the magnetic input signal must be 1.4 times higher than for static fields. This is due to the -3 dB corner frequency of the internal low-pass filter in the signal path.

3.4 Electrical and magnetic characteristics

Product characteristics involve the spread of values guaranteed within the specified voltage and ambient temperature range. Typical characteristics are the median of the production and correspond to $V_{\rm DD}$ = 12 V and $T_{\rm A}$ = 25°C. The below listed specification is valid in combination with the application circuit shown in **Figure 6** and **Figure 7**.

Table 6 General electrical characteristics

Parameter	Symbol	Values			Unit	Note or Test Condition	
		Min.	Тур.	Max.			
Supply current	Is	1.1	1.6	2.5	mA	-	
Reverse current	I _{SR}	-	0.05	1	mA	for V _{DD} = -18 V	
Output saturation voltage	V_{QSAT}	-	0.2	0.5	V	I _Q = 20 mA	
		-	0.24	0.6	V	I _Q = 25 mA	
Output leakage current	I _{QLEAK}	-	_	10	μΑ	-	
Output current limitation	I _{QLIMIT}	30	56	70	mA	internally limited and thermal shutdown	
Output fall time ¹⁾	t_{f}	0.17	0.4	1	μs	1.2 kΩ / 50 pF, see Figure 4	
Output rise time ¹⁾	t _r	0.4	0.5	1	μs	1.2 kΩ / 50 pF, see Figure 4	
Output jitter ¹⁾²⁾	t_{QJ}	-	0.35	1	μs	for square wave signal with 1 kHz	
Delay time ¹⁾³⁾	$t_{\sf d}$	12	15	30	μs	see Figure 4	
Power-on time ¹⁾⁴⁾	t _{PON}	-	80	150	μs	$V_{\rm DD} = 3 \text{ V}, B \le B_{\rm RP} - 0.5 \text{ mT or}$ $B \ge B_{\rm OP} + 0.5 \text{ mT}$	
Chopper frequency ¹⁾	$f_{\rm OSC}$	_	350		kHz	-	

¹⁾ Not subject to production test, verified by design/characterization.

²⁾ Output jitter is the 1 σ value of the output switching distribution.

³⁾ Systematic delay between magnetic threshold reached and output switching.

⁴⁾ Time from applying $V_{\rm DD}$ = 3.0 V to the sensor until the output is valid.

Table 7 Magnetic characteristics

Parameter	Symbol	T (°C)		Values	Unit	Note / Test	
			Min.	Тур.	Max.		Condition
Operating point	B _{OP}	-40	2	4	6	mT	-
		25	1.6	3.5	5.4		
		170	0.9	2.5	4.1		
Release point	B_{RP}	-40	1.1	2.8	4.5	mT	_
		25	0.9	2.5	4.1		
		170	0.3	1.8	3.2		
Hysteresis	B_{HYS}	-40	_	1.1	_	mT	_
		25	-	1	-		
		170	_	0.7	-		
Effective noise value of the magnetic switching points ¹⁾	B_{Neff}	25	_	62	-	μΤ	_
Temperature compensation of magnetic thresholds ²⁾	T _C	-	-	-2000	-	ppm/K	_

¹⁾ The magnetic noise is normal distributed and can be assumed as nearly independent to frequency without sampling noise or digital noise effects. The typical value represents the rms-value and corresponds therefore to a 1 σ probability of normal distribution. Consequently a 3 σ value corresponds to 99.7% probability of appearance.

Field direction definition

Positive magnetic fields are defined with the south pole of the magnet to the branded side of package.

Figure 8 Definition of magnetic field direction PG-SOT23-3-15

²⁾ Not subject to production test, verified by design/characterization.

3.5 Electro magnetic compatibility

Characterization of electro magnetic compatibility is carried out on a sample basis from one qualification lot. Not all specification parameters have been monitored during EMC exposure.

Figure 9 EMC test circuit

Ref: ISO 7637-2 (Version 2004), test circuit **Figure 9** (with external resistor, $R_S = 100 \Omega$)

Table 8 Magnetic compatibility

Parameter	Symbol	Level / Type	Status
Testpulse 1	V_{EMC}	-100 V	С
Testpulse 2a ¹⁾		60 V/110 V	A/C
Testpulse 2b		10 V	С
Testpulse 3a		-150 V	Α
Testpulse 3b		100 V	Α
Testpulse 4 ²⁾		-7 V / -5.5 V	Α
Testpulse 5b ³⁾		$U_{\rm S} = 86.5 \rm V / U_{\rm S}^* = 28.5 \rm V$	Α

- 1) ISO 7637-2 (2004) describes internal resistance = 2 Ω (former 10 Ω).
- 2) According to 7637-2 for test pulse 4 the test voltage shall be 12 V \pm 0.2 V.
- 3) A central load dump protection of 42 V is used. $U_s^* = 42 \text{ V} 13.5 \text{ V}$.

Ref: ISO 7637-2 (Version 2004), test circuit **Figure 9** (without external resistor, $R_S = 0 \Omega$)

Table 9 Electro magnetic compatibility

Parameter	Symbol	Level / Type	Status
Testpulse 1	V_{EMC}	-50 V	С
Testpulse 2a ¹⁾		50 V	Α
Testpulse 2b		10 V	С
Testpulse 3a		-150 V	Α
Testpulse 3b		100 V	Α
Testpulse 4 ²⁾		-7 V / 5.5 V	Α
Testpulse 5b ³⁾		$U_{\rm S} = 86.5 \rm V / U_{\rm S}^* = 28.5 \rm V$	A

- 1) ISO 7637-2 (2004) describes internal resistance = 2Ω (former 10Ω).
- 2) According to 7637-2 for test pulse 4 the test voltage shall be 12 V \pm 0.2 V.
- 3) A central load dump protection of 42 V is used. $U_s^* = 42 \text{ V} 13.5 \text{ V}$.

Package information

4 Package information

The TLE4964-6M is available in the small halogen-free SMD package PG-SOT23-3-15.

4.1 Package outline PG-SOT23-3-15

Figure 10 PG-SOT23-3-15 package outline (all dimensions in mm)

4.2 Packing information PG-SOT23-3-15

Figure 11 Packing of the PG-SOT23-3-15 in a tape

Package information

4.3 Footprint PG-SOT23-3-15

Figure 12 Footprint PG-SOT23-3-15

4.4 PG-SOT23-3-15 distance between chip and package

Figure 13 Distance between chip and package

4.5 Package marking

Figure 14 Marking of TLE4964-6M

Graphs of the magnetic parameters

5 Graphs of the magnetic parameters

Figure 15 Operating point (B_{OP}) of the TLE4964-6M over temperature

Figure 16 Release point (B_{RP}) of the TLE4964-6M over temperature

Figure 17 Hysteresis ($B_{\rm Hys}$) of the TLE4964-6M over temperature

Figure 18 Power on time t_{PON} of the TLE4964-6M over temperature

Figure 19 Signal delay time of the TLE4964-6M over temperature

Figure 20 Supply current of the TLE4964-6M over temperature

Figure 21 Supply current of the TLE4964-6M over supply voltage

Figure 22 Output current limit of the TLE4964-6M over temperature

Figure 23 Output current limit of the TLE4964-6M over applied pull-up voltage

Figure 24 Output fall time of the TLE4964-6M over temperature

Figure 25 Output fall time of the TLE4964-6M over applied pull-up voltage

Figure 26 Output rise time of the TLE4964-6M over temperature

Figure 27 Output rise time of the TLE4964-6M over applied pull-up voltage

Figure 28 Output leakage current of the TLE4964-6M over temperature

Figure 29 Saturation voltage of the TLE4964-6M over temperature

Figure 30 Saturation voltage of the TLE4964-6M over output current

Figure 31 Effective noise of the TLE4964-6M thresholds over temperature

Figure 32 Output signal jitter of the TLE4964-6M over temperature

Revision history

7 Revision history

Revision	Date	Changes
Revision 1.2	2019-12-20	Updated text and figure in Chapter 2.6 Updated standards in Table 4 Added maximum tested magnetic field in Chapter 3.3 Editorial changes
Revision 1.0	2013-07-05	Initial release

Trademarks

www.infineon.com

Edition 2019-12-20 Published by Infineon Technologies AG 81726 Munich, Germany

© 2019 Infineon Technologies AG. All Rights Reserved.

Do you have a question about any aspect of this document?

Email: erratum@infineon.com

Document reference

Legal Disclaimer

The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics. With respect to any examples or hints given herein, any typical values stated herein and/or any information regarding the application of the device, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation, warranties of non-infringement of intellectual property rights of any third party.

Information

For further information on technology, delivery terms and conditions and prices, please contact the nearest Infineon Technologies Office (www.infineon.com).

Warnings

Due to technical requirements, components may contain dangerous substances. For information on the types in question, please contact the nearest Infineon Technologies Office. Infineon Technologies components may be used in life-support devices or systems only with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support device or system or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered.