Merge the Tools! ★

85 more points to get your gold badge!

Rank: 388366 | Points: 315/400

Problem

Consider the following:

Submissions

Leaderboard

• A string, s, of length n where $s=c_0c_1\dots c_{n-1}$

• An integer, \boldsymbol{k} , where \boldsymbol{k} is a factor of \boldsymbol{n} .

We can split s into $\frac{n}{L}$ substrings where each subtring, t_i , consists of a contiguous block of t_i characters in s. Then, use each t_i to create string t_i such that:

Editorial A

- The characters in u_i are a subsequence of the characters in t_i .
- Any repeat occurrence of a character is removed from the string such that each character in u_i occurs exactly once. In other words, if the character at some index j in t_i occurs at a previous index < j in t_i, then do not include the character in string u_i.

Given \boldsymbol{s} and \boldsymbol{k} , print $\frac{\boldsymbol{n}}{\boldsymbol{k}}$ lines where each line \boldsymbol{i} denotes string $\boldsymbol{u_i}$.

Example

s = 'AAABCADDE'

k = 3

There are three substrings of length 3 to consider: 'AAA', 'BCA' and 'DDE'. The first substring is all 'A' characters, so $u_1 = 'A'$. The second substring has all distinct characters, so $u_2 = 'BCA'$. The third substring has 2 different characters, so $u_3 = 'DE'$. Note that a subsequence maintains the original order of characters encountered. The order of characters in each subsequence shown is important.

Function Description

Complete the merge_the_tools function in the editor below.

merge_the_tools has the following parameters:

- string s: the string to analyze
- int k: the size of substrings to analyze

Prints

Print each subsequence on a new line. There will be $\frac{n}{k}$ of them. No return value is expected.

Input Format

The first line contains a single string, s.

The second line contains an integer, **k**, the length of each substring.

Constraints

- $1 \le n \le 10^4$, where n is the length of s
- $1 \le k \le n$
- It is guaranteed that ${m n}$ is a multiple of ${m k}$.

Sample Input

Sample Output

AB CA

AD

Explanation

```
Split s into \frac{n}{k} = \frac{9}{3} = 3 equal parts of length k = 3. Convert each t_i to u_i by removing any subsequent occurrences of non-distinct characters in t_i:
```

```
1. t_0 = "AAB" \rightarrow u_0 = "AB"
```

2.
$$t_1 = "CAA" \rightarrow u_1 = "CA"$$

3.
$$t_2 = "ADA" \rightarrow u_2 = "AD"$$

Print each $oldsymbol{u_i}$ on a new line.

```
Change Theme
                                                                 Language Pypy 3
     def merge_the_tools(string, k):
 1
 2
         # your code goes here
 3
         for i in range(0, len(string), k):
 4
             subseq = string[i:i+k]
 5
             sub_set = set(subseq)
 6
            dis_seq = []
 7
             for c in subseq:
 8
                 if c in sub_set:
 9
                     dis_seq.append(c)
10
                     sub_set.remove(c)
11
            print(''.join(dis_seq))
12
13
14
15
16
    if __name__ == '__main__':
17
18
        string, k = input(), int(input())
19
         merge_the_tools(string, k)
```

EMACS Line: 1 Col: 1

Test against custom input

Run Code Submit Code

Fetching Results

\otimes	Test case 0 △	\otimes	Test case 4 △	\otimes	Test case 8	A	\otimes	Test case 12 △	\otimes	Test case 16	5
\otimes	Test case 1 △	\otimes	Test case 5 🛆	\otimes	Test case 9	A	0	Test case 13 🛆			
\otimes	Test case 2 △	\otimes	Test case 6 △	\otimes	Test case 10	A	8	Test case 14 △			
\otimes	Test case 3 △	\otimes	Test case 7 △	\otimes	Test case 11	<u>A</u>	\otimes	Test case 15 △			

Blog | Scoring | Environment | FAQ | About Us | Helpdesk | Careers | Terms Of Service | Privacy Policy