

Benjamín Rivera **Evidencia de aprendizaje: Análisis de**datos

Universidad Abierta y a Distancia de México TSU en Biotecnología Materia: Estadística Básica Grupo: BI-BEBA-2002-B2-013 Unidad: Unidad 2

Matricula: ES202105994

Fecha de entrega: 18 de octubre de 2020

Antes de continuar, dado el comentario de la *Evidencia de Aprendizaje* de la primera unidad, en esta actividad exploraremos el campo de profundidad de la base de datos [3]. Esto nos permitirá poder hacer un análisis más adecuado a los temas vistos en la unidad.

1. Caso de estudio

Estoy interesado en estudiar las **técnicas de repoblación de ecosistemas** usando agentes biológicos. Uno de los témas de interes para poder desarrollar esta investigación es conocer las **especies por espacio geográfico** que habitan. Esto es importante para poder analizar ecosistemas afectados y aquellos que sean sanos, y que posean caracteristicas similares.

Figura 1: Corales muertos en el Océano Índico por culpa del calentamiento global [?]

Entonces en **esta parte** nos centraremos en las **ubicaciones de los bancos de algas del mundo**. Esta información nos pertmitira teorizar técnicas de *biorremediación* en función de otros ambientes similares. Además, el estudio de estos en algún tiempo determinado nos dara una oportunidad para identificar causas de infeccion y muerte de las agrupaciones de estos; para tratar de predecir los corales que esten en peligro por causas similares.

2. Base de Datos

De manera que usando la base de datos [3] obtenemos la visualización preliminar que podemos ver en la figura 2.

ID		latitude	longitude	Ocean	Realm	Ecoregion	Country_Name	State_Island_Pro	depth	Average_Bleach				Temperature_Mi		Temperature_K
unitless		degrees_north	degrees_east	unitless	unitless	unitless	unitless	unitless	m	percent	Degrees Celsius	Kelvin	Degree Celsius	Degree Celsius	Degree Celsius	Kelvin
	97	-20.89983333	149.4077222		Central Indo-Pac			Queensland	4	6.25		301.67	298.17	291.91	303.85	2.74
	98	-20.89305556	149.421		Central Indo-Pac			Queensland	5	8.75	297.78	301.67	298.17	291.91	303.85	2.7
	116	-20.74580556	149.4720556		Central Indo-Pac			Queensland	6	11.25	298.17	301.38	298.34	292.67	303.76	2.5
	117	-20.73769444	149.4649444		Central Indo-Pac			Queensland	5	25	298.21	301.56	298.37	292.01	304.04	2.5
	142	-20.25936111	148.8145833		Central Indo-Pac			Queensland	2	1	296.48	296.38	298.47	291.83	304.54	2.
	145	-20.2525556	148.8129167		Central Indo-Pac			Queensland	2	33.75	296.48	296.38	298.47	291.83	304.54	2.
	155	-20.06580556	148.9481111		Central Indo-Pac			Queensland	7	9.25		299.31	298.68		304.04	2.4
	158	-20.039 -19.81777778	148.8758333		Central Indo-Pac			Queensland	4	40 9.5	296.79 295.74	299.88	298.69		304.3	2.4
	166	-19.81777778	149.0658056 149.0658056		Central Indo-Pac			Queensland Queensland	5	11.75	295.74	299.34	298.72	292.92	304.14	2.2
	168	-19.81777778	149.0658056		Central Indo-Pac			Queensland		1.25	296.83	296.51	298.72		304.14	2.2
	169	-19.80755566	149.0637222		Central Indo-Pac			Queensland		4.75	295.74	299.34	298.72	292.92	304.14	2.2
	172	-19.80733336	149.0627222		Central Indo-Pac			Queensland	-	32.5	293.74	299.34	298.59		303.52	2.2
	173	-19.74577778	149.1659444		Central Indo-Pac			Queensland	5	32.5	298.59	296.76	298.59		303.52	2.2
	174	-19.74577776	149.1658333		Central Indo-Pac			Queensland	5	17.25	298.51	298.76	298.59		303.52	2.2
	175	-19.74555566	149.1658333		Central Indo-Pac			Queensland	5	1.25	298.59	296.16	298.59	293.64	303.52	2.2
	183	-19.29				Cook Islands, so		Manuae	10	0	298.72	298.79	299.67	296.01	304.19	1.3
	184	-19.26833333	-158.975			Cook Islands, so		Manuae	10	0	298.74	298.91	299.69		303.92	1.3
	185	-19.19833333	146.8151667		Central Indo-Pag			Queensland	3	57.5	295.29	296.98	299.21	292.58	306.14	2.9
	186	-19.19833333	146.8151667	Pacific	Central Indo-Pac	Central and norti	Australia	Queensland	3	1	298.7	303.57	299.21	292.58	306.14	2.9
	187	-19.19805556	146.815	Pacific	Central Indo-Pac	Central and norti	Australia	Queensland	5	1	298.7	303.57	299.21	292.58	306.14	2.9
	189	-19.17066667	146.8485	Pacific	Central Indo-Pag	Central and norti	Australia	Queensland	5	0	295.84	296.47	299.09	292.57	306.11	2.9
	190	-19.16944444	146.8472222	Pacific	Central Indo-Pac	Central and norti	Australia	Queensland	2	0.5	301.47	300.76	299.09	292.57	306.11	2.9
	193	-19.16916667	146.8469444	Pacific	Central Indo-Pac	Central and norti	Australia	Queensland	5	4.75	297.02	300.69	299.09	292.57	306.11	2.9
	194	-19.16916667	146.8469444	Pacific	Central Indo-Pac	Central and norti	Australia	Queensland	4	3.5	294.83	296.25	299.09	292.57	306.11	2.9
	198	-19.15430556	146.8660556	Pacific	Central Indo-Pac	Central and norti	Australia	Queensland	1	20	295.18	296.98	299.07	292.2	305.77	2.8
	199	-19.15430556	146.8660556	Pacific	Central Indo-Pac	Central and norti	Australia	Queensland	3	6	298.66	304.27	299.07	292.2	305.77	2.8
	201	-19.14833333	146.8702778	Pacific	Central Indo-Pac	Central and norti	Australia	Queensland	3	4.5	297.14	300.69	299.07	292.2	305.77	2.8
	202	-19.14833333	146.8702778	Pacific	Central Indo-Pac	Central and norti	Australia	Queensland	6	8.25	297.14	300.69	299.07	292.2	305.77	2.8
	203	-19.14833333	146.8702778	Pacific	Central Indo-Pac	Central and norti	Australia	Queensland	4	2	294.89	295.33	299.07	292.2	305.77	2.8
	204	-19.14833333	146.8702778		Central Indo-Pac	Central and norti	Australia	Queensland	4	2.25	294.89	295.33	299.07	292.2	305.77	2.8
	206	-19.12269444	146.8813611		Central Indo-Pac			Queensland	3	6.25	298.66	304.27	299.07	292.2	305.77	2.8
	207	-19.12188889	146.8808333		Central Indo-Pac			Queensland	3	5	295.18	296.98	299.07	292.2	305.77	2.8
	209	-18.95605556	146.95625			Central and norti		Queensland	3	17.5	299.09	299.77	299.05		304.85	2.5
	210	-18.91966667	-159.8466667			Cook Islands, so		Aitutaki	10	0.375	298.72	299.29	299.86		303.63	1.2
	211	-18.88666667	-159.825			Cook Islands, so		Aitutaki	3	3.5	298.72	299.38	299.88	295.82	304.05	1.2
	212	-18.88666667	-159.825			Cook Islands, so		Aitutaki	10	0.75	298.72	299.38	299.88	295.82	304.05	1.2
	213	-18.855	-159.8083333			Cook Islands, so		Aitutaki	3	0.25	298.61	298.8	299.87	295.82	303.92	1.2
	214	-18.855	-159.8083333			Cook Islands, so		Aitutaki	10	0	298.61	298.8	299.87	295.82	303.92	
	215	-18.85333333	-159.805			Cook Islands, so		Aitutaki	10	4	298.68	299.6	299.87	295.82	303.92	1.2
	216	-18.85261111	-159.8061667			Cook Islands, so		Aitutaki	3	0.75	298.78	299.07	299.87	295.82	303.92	1.2
	217	-18.85261111	-159.8061667			Cook Islands, so		Aitutaki	12	0.25	298.78	299.07	299.87	295.82	303.92	1.2
	218	-18.84333333	-159.8025			Cook Islands, so		Aitutaki	3	17	298.78	299.07	299.87	295.82	303.92	1.2
	219	-18.84333333	-159.8025	Pacific	Eastern Indo-Pa	Cook Islands, so	Cook Islands	Aitutaki	10	0	298.78	299.07	299.87	295.82	303.92	1.2

Figura 2: Representación de la información guardada en la base de datos.

2.1. Tabla

Con los datos de la columna profundidad¹ de la figura 2, obtenemos la tabla de frecuencias de la figura 3. En esta se calcularon la frecuencia absoluta, la frecuencia absoluta acumulada, la frecuencia relativa y la frecuencia relativa acumulada, además de las clases usadas y los limites, inferiores y superiores, de los datos con los que trabajaremos en este proyecto.

Esta tabla únicamente incluirá los primeros 100 datos de la base de datos. Debemos de tener cuidado con esto porque puede ser que estos datos no estén bien distribuidos y podría llevarnos a conclusiones erróneas si son considerados de otra manera.

¹ depth porque esta en ingles.

Minimo	1			
Maximo	15			
Clases	Frecuencia Absoluta	Frecuenia Abs Acumulada	Frecuencia Relativa	Frecuencia Rel Acumulada
1-3	38	38	38%	38%
4-6	39	77	39%	77%
7-9	7	84	7%	84%
10-12	15	99	15%	99%
13-15	1	100	1%	100%
Total	100	398	100%	398%

Figura 3: Tabla de frecuencias de los primeros 100 datos de profundidad de los datos de los corales.

2.2. Gráficos

En la figura 4 podemos apreciar los cuatro datos que expresamos en la tabla de frecuencias.

Para las frecuencias absolutas escogí un gráfico de barras porque permite apreciar de manera bruta los datos. Respecto a la frecuencia relativa tome un gráfico circular que permite apreciar de una sola vista la distribución de los datos en el universo. Para ambos acumulados tome una gráfica de puntos y lineas que permite observar como se van acumulando los datos de ambas frecuencias e ir viendo las pendientes entre los datos.

3. Conclusiones

Respecto a la representación de datos, es bastante evidente que tanto los gráficos como las tablas ayudan entender mejor los datos con los que se este trabajando.

Respecto a la interpretación de los gráficos, de un análisis externo podemos ver que la mayoría de los datos sobre los que trabajamos corresponden a corales de la zona del mar *Indo-Pacifico*, principalmente Australia y Figi.

De estos corales podemos ver que la mayoría están a menos de 6 metros de profundidad, creo que esto puede deberse a la disposición del suelo marino en esta zona, pero requeriría de verificar otros datos para poder corroborarlo. Y de echo, solo tenemos un registro de corales a más de 13 datos de profundidad.

Figura 4: Gráficos generados de la tabla de distribución de frecuencias.

De manera que podemos concluir que en esta zona, las especies nativas de corales, se desarrollan mejor en aguas poco profundas.

Referencias

- [1] Rivera C., B. (2020). Evidencia de Aprendizaje U1. No Publicado.
- [2] Universidad Abierta y a Distancia de México. (s/f). Unidad 2. Representación numérica y gráfica de datos. UnADM.
- [3] van Woesik, R. (2019). Dataset: Global Bleaching and Environmental Data [Base de Datos]. Florida Institute of Technology.https://www.bco-dmo.org/dataset/773466