fubianhanshu 05

MKQ

September 19, 2019

Contents

1	复变	变函数的积分															1							
	1.1	定义																						1
	1.2	定理																						1
	1.3	解法																						2
	1.4	长大不	等式																					2
	1.5	柯西郡	分定理	里.																				2
		1.5.1	推论																					2
		1.5.2	推论																					2

1 复变函数的积分

1.1 定义

$$\int_{c} f(z)dz = \int_{c} (u+iv)(dx+idy)$$

更类似于曲线积分 (II)

1.2 定理

$$f(z) = u(x, y) + iv(x, y)$$

在 C 上连续,则积分

$$\int_C f(z)dz$$

存在

1.3 解法

参数化, 求解拆成好几段, 把每一段都参数化

$$I = \int_C \frac{dz}{(z-a)^n}$$

C:a 为中心,R 为半径的圆 $\begin{cases} I = 0 (n \neq 1) \\ I = 2\pi i (n = 1) \end{cases}$

1.4 长大不等式

$$[\int_C f(z)dz] <= \int_C [f(z)][dz] <= Ml$$

- M:f(z) 在 C 上最大值
- l:C 弧长

1.5 柯西积分定理

D 由闭合回路 C 围成的单连通区域 f(z) 在 =D+C 上解析, 那么,

$$\int_C f(z)dz = 0$$

1.5.1 推论

设 f(z) 在单联通区域 D 上解析, 此时 D 内任一曲线

$$\int_C f(z)dz = 0$$

1.5.2 推论

设 f(z) 在单联通区域 D 解析,C 是任一简单曲线在 D 内,那么积分结果不依赖于 C,仅仅取决于起点终点