criterion performance measurements

overview

want to understand this report?

Monitor/Parsing rules

Outlying measurements have slight (8.1%) effect on estimated standard deviation.

get/cost

250

Outlying measurements have slight (8.3%) effect on estimated standard deviation.

get/auto-scaling

Outlying measurements have moderate (19.9%) effect on estimated standard deviation.

get/redundancy

Outlying measurements have slight (6.5%) effect on estimated standard deviation.

get/firewall

 OLS regression
 29.9 μs
 $30.0 \mu s$ $30.0 \mu s$ $30.0 \mu s$

 R² goodness-of-fit
 1.000
 1.000
 1.000

 Mean execution time
 29.2 μs
 29.3 μs
 29.4 μs

 Standard deviation
 295 ns
 351 ns
 431 ns

Outlying measurements have slight (6.8%) effect on estimated standard deviation.

Synchronizer/Determine order Safety

OLS regression $40.7~\mu s$ $40.8~\mu s$ $40.8~\mu s$ R^2 goodness-of-fit 1.000 1.000 1.000 Mean execution time $39.5~\mu s$ $39.7~\mu s$ $39.9~\mu s$ Standard deviation 488~n s 582~n s 718~n s

Outlying measurements have slight (9.3%) effect on estimated standard deviation.

Synchronizer/Determine order Last

150 100 50 ms 0 s 1×10³ iters 2 3 4 5

regression

Synchronizer/Determine order Last times

250

200

OLS regression $40.9 \,\mu s$ $41.0 \,\mu s$ $41.1 \,\mu s$ R^2 goodness-of-fit 1.000 1.000 1.000 Mean execution time $39.8 \,\mu s$ $40.0 \,\mu s$ $40.2 \,\mu s$ Standard deviation $480 \,n s$ $574 \,n s$ $690 \,n s$

Synchronizer/Order Safety

Outlying measurements have moderate (12.8%) effect on estimated standard deviation.

Synchronizer/Order Last

 OLS regression
 348 ns
 349 ns
 350 ns

 R² goodness-of-fit
 1.000
 1.000
 1.000

 Mean execution time
 338 ns
 340 ns
 342 ns

 Standard deviation
 4.28 ns
 5.15 ns
 6.35 ns

Outlying measurements have moderate (16.2%) effect on estimated standard deviation.

Analysis and Planning http/All (determine order, ordering and analysis & plan)

Mean execution time 82.4 ms 83.3 ms 84.7 ms Standard deviation 1.31 ms 1.83 ms 2.58 ms

Outlying measurements have slight (9.0%) effect on estimated standard deviation.

Analysis and Planning http/Cost

Outlying measurements have slight (8.0%) effect on estimated standard deviation.

Analysis and Planning http/Firewall

Outlying measurements have moderate (18.2%) effect on estimated standard deviation.

623 μs 1.18 ms

Standard deviation 273 µs

Analysis and Planning http/Redundancy

lower bound estimate upper bound

Outlying measurements have slight (4.8%) effect on estimated standard deviation.

Analysis and Planning http/AutoScaling

OLS regression 32.6 ms 33.2 ms 33.7 ms R^2 goodness-of-fit 0.995 0.998 1.000 Mean execution time 32.1 ms 32.5 ms 32.9 ms Standard deviation 569 μ s 776 μ s 1.15 ms

Outlying measurements have slight (5.9%) effect on estimated standard deviation.

Analysis and Planning local/All (determine order, ordering and analysis & plan)

Outlying measurements have slight (3.8%) effect on estimated standard deviation.

Analysis and Planning local/Cost

lower bound estimate upper bound

OLS regression 3.46 ms 3.47 ms 3.49 ms R^2 goodness-of-fit 1.000 1.000 1.000 Mean execution time 3.36 ms 3.40 ms Standard deviation 51.7 μ s 74.0 μ s 101 μ s

Analysis and Planning local/Firewall

 OLS regression
 161 μs
 162 μs
 163 μs

 R^2 goodness-of-fit
 1.000
 1.000
 1.000

 Mean execution time
 158 μs
 159 μs
 159 μs

 Standard deviation
 1.98 μs
 2.36 μs
 2.82 μs

Outlying measurements have slight (8.1%) effect on estimated standard deviation.

Analysis and Planning local/Redundancy

 OLS regression
 3.00 ms
 3.01 ms
 3.02 ms

 R² goodness-of-fit
 1.000
 1.000
 1.000

 Mean execution time
 2.90 ms
 2.92 ms
 2.94 ms

 Standard deviation
 48.1 µs
 58.5 µs
 73.5 µs

Outlying measurements have slight (7.6%) effect on estimated standard deviation.

Analysis and Planning local/AutoScaling

OLS regression 13.4 ms 13.5 ms 13.6 ms R^2 goodness-of-fit 1.000 1.000 1.000 Mean execution time 13.4 ms 13.5 ms 13.5 ms Standard deviation 106 μ s 163 μ s 243 μ s

Outlying measurements have slight (3.7%) effect on estimated standard deviation.

put/cost

OLS regression 1.69 ms 1.69 ms 1.70 ms R^2 goodness-of-fit 1.000 1.000 1.000 Mean execution time 1.63 ms 1.64 ms 1.66 ms Standard deviation 30.7 μ s 35.3 μ s 40.9 μ s

Outlying measurements have slight (9.4%) effect on estimated standard deviation.

put/auto-scaling

 OLS regression
 472 μs
 474 μs
 476 μs

 R^2 goodness-of-fit
 1.000
 1.000
 1.000

 Mean execution time
 456 μs
 459 μs
 461 μs

 Standard deviation
 7.37 μs
 8.93 μs
 10.8 μs

Outlying measurements have moderate (11.1%) effect on estimated standard deviation.

put/redundancy

 OLS regression
 $373 \, \mu s$ $375 \, \mu s$ $376 \, \mu s$

 R² goodness-of-fit
 1.000 1.000 1.000

 Mean execution time
 $360 \, \mu s$ $363 \, \mu s$ $365 \, \mu s$

 Standard deviation
 $6.85 \, \mu s$ $8.05 \, \mu s$ $9.70 \, \mu s$

Outlying measurements have moderate (13.7%) effect on estimated standard deviation.

put/firewall

 OLS regression
 161 μs
 162 μs
 162 μs

 R^2 goodness-of-fit
 1.000
 1.000
 1.000

 Mean execution time
 157 μs
 158 μs
 158 μs

 Standard deviation
 2.29 μs
 2.66 μs
 3.10 μs

Outlying measurements have moderate (10.6%) effect on estimated standard deviation.

understanding this report

In this report, each function benchmarked by criterion is assigned a section of its own. The charts in each section are active; if you hover your mouse over data points and annotations, you will see more details.

- The chart on the left is a kernel density estimate (also known as a KDE) of time measurements. This graphs the probability of any given time measurement occurring. A spike indicates that a measurement of a particular time occurred; its height indicates how often that measurement was repeated.
- The chart on the right is the raw data from which the kernel density estimate is built. The x axis indicates the number of loop iterations, while the y axis shows measured execution time for the given number of loop iterations. The line behind the values is the linear regression prediction of execution time for a given number of iterations. Ideally, all measurements will be on (or very near) this line.

Under the charts is a small table. The first two rows are the results of a linear regression run on the measurements displayed in the right-hand chart.

- OLS regression indicates the time estimated for a single loop iteration using an ordinary least-squares regression model. This number is more accurate than the mean estimate below it, as it more effectively eliminates measurement overhead and other constant factors.
- R² goodness-of-fit is a measure of how accurately the linear regression model fits the observed measurements. If the measurements are not too noisy, R² should lie between 0.99 and 1, indicating an excellent fit. If the number is below 0.99, something is confounding the accuracy of the linear model.
- Mean execution time and standard deviation are statistics calculated from execution time divided by number of iterations.

We use a statistical technique called the bootstrap to provide confidence intervals on our estimates. The bootstrap-derived upper and lower bounds on estimates let you see how accurate we believe those estimates to be. (Hover the mouse over the table headers to see the confidence levels.)

A noisy benchmarking environment can cause some or many measurements to fall far from the mean. These outlying measurements can have a significant inflationary effect on the estimate of the standard deviation. We calculate and display an estimate of the extent to which the standard deviation has been inflated by outliers.

colophon

This report was created using the criterion benchmark execution and performance analysis tool.

Criterion is developed and maintained by Bryan O'Sullivan.