Math 1 - Econ Bootcamp

Cooper Nederhood

2018.04.05

Exercise 1.3

- Let $A_1 := \{A : A \subset \mathbb{R}, open\}$. Then A^c is closed so $A \not\subset A_1$ and thus A_1 is not an algebra
- Let $A_2 := \{A : A \text{ is a finite union of the form } (a, b], (-\infty, b], \text{ and } (a, \infty)\}.$ First, note that (a, a] is the empty set and the real line is contained in $(-\infty, b] \cup (b, \infty)$

If A = (a, b] then $A^c = (-\infty, a] \cup (b, \infty) \in A_2$

If $A = (-\infty, b]$ then $A^c = (b, \infty) \in A_2$

If $A = (a, \infty)$ then $A^c = (-\infty, a] \in A_2$

So any 'primitive' set type is closed under complement. Further, because the left end-point is always either negative infinity or open and the right end-point is always either infinity or closed any possible union of 'primitive' types does not change the nature of the end points and thus cannot result in a new set interval type. Thus, any finite union remains in A_2 and thus A_2 is an algebra.

• Let $A_3 := \{A : A \text{ is a countable union of the form } (a, b], (-\infty, b], \text{ and } (a, \infty)\}.$ Then by the last example A_2 it is clearly an algebra and further, because an infinite union of these elements is still in A_3 it is also closed under countable infinite unions and thus it is a σ -algebra.

Exercise 1.7

An algebra must contain the empty set. Further, it must be closed under complements so X must be in the algebra. Further, the empty set and the union of X is just X so it is closed under unions, and we have the smallest possible algebra.

Further, if A is an algebra then it contains subsets of X, and P(X) is by definition the largest set of subsets of X and thus $A \subset P(X)$

Exercise 1.10

Each S_{α} is a σ -algebra so $\emptyset \in S_{\alpha} \forall \alpha$. Thus, $\emptyset \in \bigcap_{\alpha} S_{\alpha}$

Further, let $A_i \in \bigcap_{\alpha} S_{\alpha}$ so $A_i \in S_{\alpha} \forall \alpha$. Then because each S_{α} is a σ -algebra $A_i^c \in S_{\alpha} \forall \alpha$. Thus, $A_i^c \in \bigcap_{\alpha} S_{\alpha}$ and it is closed under complements.

Finally, let $A_1, A_2, ... \in \bigcap_{\alpha} S_{\alpha}$ then $A_1, A_2, ... \in S_{\alpha} \forall \alpha$ and because each of these is a σ -algebra $\bigcup_{\alpha}^{\infty} A_i \in S_{\alpha} \forall \alpha$. Thus, σ -algebra $\bigcup_{\alpha}^{\infty} A_i \in \bigcap_{\alpha} S_{\alpha}$ and it is closed under a countable union, and is thus a sigma algebra.

Exercise 1.17

- Because $A \subset B$, define $C = (A^c \cap B)$. Then, $C \cap B = \emptyset$ and $A \cup C = B$. And because μ is a measure, $\mu(B) = \mu(A) + \mu(C)$ and $\mu(C) \ge 0$ so $\mu(B) \ge \mu(A)$.
- Because μ is a measure, if $A_i \cap A_j = \emptyset \ \forall i \neq j$, then we have pairwise disjoints set and we have equality and we are done.

Therefore, assume $\exists i \neq j \text{ s.t. } A_i \cap A_j = C \neq \emptyset$. So $\mu(C) \geq 0$.

Thus, $\mu(A_i) + \mu(A_i) = \mu(A_i \cup A_i) + \mu(C)$ and we are done.

Exercise 1.18

First, $\lambda(\emptyset) = \mu(\emptyset \cap B) = \mu(\emptyset) = 0$.

Second, let $\{A_i\}_{i=1}^{\infty}$ be pairwise disjoint collection of sets. Then $(A_i \cap B) \cap (A_j \cap B) = \emptyset \ \forall i \neq j$. So,

$$\lambda(\cup^{\infty} A_i) = \mu((\cup^{\infty} A_i) \cap B)$$

$$= \mu(\cup^{\infty} (A_i \cap B))$$

$$= \sum (\mu(A_i \cap B))$$

$$= \sum (\mu(A_i \cap B))$$

$$= \sum (\lambda(A_i))$$

Exercise 2.10

 μ^* is an outer measure so it is countably subadditive and $(B \cap E)$ and $(B \cap E^c)$ are disjoint sets. Thus, $\mu^* \leq \mu^*(B \cap E) + \mu^*(B \cap E^c)$ and thus we must have equality.

Exercise 2.14 We can invoke Caratheodory once we show that $B(R) := \sigma(O) = \sigma(A)$, and then we have our result.

Exercise 3.1

Proof by contradiction. Let $a_i \in \mathbb{R}$, assume $\mu(a_i) > 0$, then let $(a, b) \subset \mathbb{R}$ such that $a_i \in (a, b)$

Then $(a, b) = (a, a_i) \cup \{a_i\} \cup (a_i, b)$

But
$$\mu((a, a_i) \cup (a_i, b)) = (a_i - a) + (b - a_i) = b - a = \mu((a, b))$$

And $\mu(a_i) > 0$ so it must be that

$$\mu((a, a_i) \cup \{a_i\} \cup (a_i, b)) > \mu((a, a_i)) + \mu(a_i) + \mu((a_i, b))$$

Thus, $\mu(a_i) = 0 \ \forall \text{ single points in } \mathbb{R}$.

By extension $\mu(\cup a_i) = 0$

Exercise 3.4

 \mathcal{M} must be closed under complements so $f^{-1}((-\infty, a)) \in \mathcal{M} \iff f^{-1}([a, \infty)) \in \mathcal{M}$ Further, we know $\mu(\{a\}) = 0$ so we can freely add/remove this single point as we see fit without altering the meaning of the statement.

Exercise 3.7

We can define functions like:

$$F(f(x), g(x)) := f(x) + g(x)$$

$$F(f(x), g(x)) := f(x)g(x)$$

$$F(f(x), g(x)) := max(f(x), g(x))$$

$$F(f(x), g(x)) := min(f(x), g(x))$$

And we can use sup and inf result from 2. for |f|.

Exercise 3.14 If f is bounded $\exists B \in \mathbb{R} \text{ s.t. } f(x) \leq B \ \forall x \in X$

Further, $\{s_n\}$ each function is simple and thus has a finite range.

So, given $\epsilon > 0$ we know $s_n \to f$ pointwise, and we have a finite range so just take the max for uniform convergence.

Exercise 4.13

$$f \in \mathcal{L}^1(E,\mu) \Longleftrightarrow \int_E ||f|| d\mu < \infty \Rightarrow \int_E f^+ - \int_E f^-$$
 And also, $\mu(E) < \infty \Rightarrow \int_E f d\mu < \infty \Rightarrow \int_E ||f|| d\mu < \infty$

Exercise 4.14

Because $f \in \mathcal{L}^1(E,\mu)$ it is measureable. Then, define $E_n = \{x \in E, f(x) \geq n\}$ and thus $\int_E f d\mu < \int_E n d\mu = n\mu(E_n) < \infty$

Exercise 4.15

First, $f, g \in \mathcal{L}^1$ thus it is measureable. Then, by Prop 4.7, $\int_E f d\mu \leq \int_E g$

Exercise 4.16

Because $A \subset E$ and $A \in \mathcal{M}$ and f is measureable we have $\int_A f = \int_A f^+ - \int_A f^-$ Also, because f is absolutely integrable the integral of the subset is also finite so $||f|| = f^+ + f^- \Rightarrow f \in \mathcal{L}^1$

Exercise 4.21

$$A = (A - B) \cup B \Rightarrow \mu(A) = \mu(A - B) + \mu(B) \Rightarrow \mu(A) - \mu(B) = 0 \Rightarrow \int_A f = \mu(A) - \mu(B) = \int_B f \Rightarrow \int_A f - \mu(A) = \int_B f + \mu(B)$$
$$\Rightarrow \int_A f \leq \int_B f$$