Mouvement Brownien

ANDRIAMANAMBINTSOA Rojoniaina Angelo

March 31, 2025

Exercice 2:

Soit B_t un mouvement Brownien standard.

1. $X_t = -B_t$.

On va montrer que X_t est un mouvement Brownien standard.

- $\star X_0 = -B_0 = 0$. p.s.
- \star Comme B_t est processus gaussien et X_t est une combinaison linéaire de B_t , alors X_t est un processus gaussien.
- $\star \mathbb{E}(X_t) = \mathbb{E}(-B_t) = -\mathbb{E}(B_t) = 0.$
- \star Soient $s, t \geq 0$. Donc

$$Cov(X_t, X_s) = Cov(-B_t, -B_s)$$

$$= (-1)(-1)Cov(B_t, B_s)$$

$$= \min(t, s).$$

Ainsi X_t est un mouvement Brownien standard.

2. $X_t = a^{-1/2}B_{at}, \quad a > 0.$

On va montrer que X_t est un mouvement Brownien standard.

- $\star X_0 = a^{-1/2} B_{a.0} = 0$ p.s.
- \star Comme B_t est processus gaussien, a > 0 et X_t est une combinaison linéaire de B_{at} , alors X_t est un processus gaussien.
- * $\mathbb{E}(X_t) = \mathbb{E}(a^{-1/2}B_{at}) = a^{-1/2}\mathbb{E}(B_a t) = 0.$
- \star Soient $s, t \geq 0$. Comme a > 0, on a :

$$Cov(X_t, X_s) = Cov(a^{-1/2}B_{at}, a^{-1/2}B_{as})$$

$$= (a^{-1/2})^2 Cov(B_{at}, B_{as})$$

$$= a^{-1} \min(at, as)$$

$$= a^{-1} a \min(t, s)$$

$$= \min(t, s).$$

Ainsi X_t est un mouvement Brownien standard.

3. $X_t = B_{t+T} - B_T, \quad T \ge 0.$

On va montrer que X_t est un mouvement Brownien standard.

- $\star \ X_0 = B_{0+T} B_T = 0.$
- * Comme B_t est processus gaussien, $T \ge 0$ et X_t est une combinaison linéaire de B_{t+T} et B_T , alors X_t est un processus gaussien.

$$\star \mathbb{E}(X_t) = \mathbb{E}(B_{t+T} - B_T) = \mathbb{E}(B_{t+T}) - \mathbb{E}(B_T) = 0.$$

 \star Soient $s,t \geq 0$. Comme $T \geq 0$, on a :

$$Cov(X_t, X_s) = Cov(B_{t+T} - B_T, B_{s+T} - B_T)$$

$$= Cov(B_{t+T}, B_{s+T}) - Cov(B_{t+T}, B_T) - Cov(B_T, B_{s+T}) + Cov(B_T, B_T)$$

$$= \min(t + T, s + T) - 2\min(t + T, T) + \min(T, T)$$

$$= \min(t, s) + T - 2T + T$$

$$= \min(t, s).$$

Ainsi X_t est un mouvement Brownien standard.

4. $X_t = tB_{1/t}, \quad t > 0, X_0 = 0.$

On va montrer que X_t est un mouvement Brownien standard.

- $\star X_0 = 0$
- * Comme B_t est processus gaussien, 1/t > 0 et X_t est une combinaison linéaire de $B_{1/t}$, alors X_t est un processus gaussien.
- $\star \mathbb{E}(X_t = \mathbb{E}(tB_{1/t}) = t\mathbb{E}(B_{1/t}) = 0.$
- \star Soient s, t > 0. Donc

$$Cov(X_t, X_s) = Cov(tB_{1/t}, sB_{1/s})$$

= $tsCov(B_{1/t}, B_{1/s})$
= $ts \min(1/t, 1/s)$
= $\min(ts/t, ts/s)$
= $\min(t, s)$.

Ainsi X_t est un mouvement Brownien standard.

5. $X_t = B_{T-t} - B_T$, $t \in [0, T], T > 0$.

On va montrer que X_t est un mouvement Brownien standard.

- $\star X_0 = B_{T-0} B_T = 0.$
- ★ Comme B_t est processus gaussien, $T t \ge 0$ et X_t est une combinaison linéaire de B_{T-t} et B_T , alors X_t est un processus gaussien.
- $\star \mathbb{E}(X_t) = \mathbb{E}(B_{T-t} B_T) = \mathbb{E}(B_{T-t}) \mathbb{E}(B_T) = 0.$

 \star Soient $s, t \in [0, T]$. Donc

$$Cov(X_t, X_s) = Cov(B_{T-t} - B_T, B_{T-s} - B_T)$$

$$= Cov(B_{T-t}, B_{T-s}) - Cov(B_{T-t}, B_T) - Cov(B_T, B_{T-s}) + Cov(B_T, B_T)$$

$$= \min(T - t, T - s) - \min(T - t, T) - \min(T - s, T) + \min(T, T)$$

$$= T + \min(-t, -s) - (T - t) - (T - s) + T$$

$$= \min(-t, -s) + t + s$$

$$= \min(t + s - t, t + s - s)$$

$$= \min(t, s).$$

Ainsi X_t est un mouvement Brownien standard.

Exercice 3:

$$X_t = \rho B_t + \sqrt{1 - \rho^2} \tilde{B}_t$$

- 1. On va montrer que X_t est un mouvement Brownien standard.
 - $\star \ X_0 = \rho B_0 + \sqrt{1 \rho^2} \tilde{B}_0 = 0.$
 - * Comme B_t et \tilde{B}_t sont gaussiens et X_t est une combinaison linéaire de B_t et \tilde{B}_t , on a X_t est gaussien.
 - $\star \mathbb{E}(X_t) = \mathbb{E}(\rho B_t + \sqrt{1 \rho^2} \tilde{B}_t) = \rho \mathbb{E}(B_t) + \sqrt{1 \rho^2} \mathbb{E}(\tilde{B}_t) = 0.$
 - * Comme B_t et \tilde{B}_t sont indépendants, on a $Cov(B_t, \tilde{B}_s) = 0, \forall t, s \geq 0$. Donc

$$Cov(X_{t}, X_{s}) = Cov(\rho B_{t} + \sqrt{1 - \rho^{2}} \tilde{B}_{t}, \rho B_{s} + \sqrt{1 - \rho^{2}} \tilde{B}_{s})$$

$$= Cov(\rho B_{t}, \rho B_{s} + \sqrt{1 - \rho^{2}} \tilde{B}_{s}) + Cov(\sqrt{1 - \rho^{2}} \tilde{B}_{t}, \rho B_{s} + \sqrt{1 - \rho^{2}} \tilde{B}_{s})$$

$$= Cov(\rho B_{t}, \rho B_{s}) + Cov(\rho B_{t}, \sqrt{1 - \rho^{2}} \tilde{B}_{s})$$

$$+ Cov(\sqrt{1 - \rho^{2}} \tilde{B}_{t}, \rho B_{s}) + Cov(\sqrt{1 - \rho^{2}} \tilde{B}_{t}, \sqrt{1 - \rho^{2}} \tilde{B}_{s})$$

$$= \rho^{2} Cov(B_{t}, B_{s}) + \rho \sqrt{1 - \rho^{2}} Cov(B_{t}, \tilde{B}_{s}) + \sqrt{1 - \rho^{2}} \rho Cov(\tilde{B}_{t}, B_{s})$$

$$+ (1 - \rho^{2}) Cov(\tilde{B}_{t}, \tilde{B}_{s})$$

$$= \rho^{2} \min(t, s) + (1 - \rho^{2}) \min(t, s) = \min(t, s).$$

Donc X_t est un mouvement Brownien standard.

2. Maintenant, on va prouver que X_t et B_t sont corrélés. On a :

$$Cov(X_t, B_t) = Cov(\rho B_t + \sqrt{1 - \rho^2} \tilde{B}_t, B_t)$$

$$= Cov(\rho B_t, B_t) + Cov(\sqrt{1 - \rho^2} \tilde{B}_t, B_t)$$

$$= \rho Cov(B_t, B_t) + \sqrt{1 - \rho^2} Cov(\tilde{B}_t, B_t)$$

$$= \rho$$

Donc X_t et B_t sont corrélées avec un coefficient de corrélation ρ .

Exercice 4:

$$X_t = B_t.1_{\{B_t \ge 0\}}.$$

1. Montrons que la fonction de densité de probabilité de X_t est $f_{X_t}(x)=2f_{B_t}(x)$ pour x>0.

Soit $x \geq 0$. Comme $B_t \sim \mathcal{N}(0,t)$, on a $\mathbb{P}(B_t \geq 0) = \frac{1}{2}$. Alors

$$\mathbb{P}(x \le X_t \le x + dx) = \mathbb{P}(x \le B_t . 1_{\{B_t \ge 0\}} \le x + dx)$$

$$= \mathbb{P}(x \le B_t \le x + dx | B_t \ge 0)$$

$$= \frac{\mathbb{P}(x \le B_t \le x + dx)}{\mathbb{P}(B_t \ge 0)}$$

$$= 2\mathbb{P}(x \le B_t \le x + dx).$$

Ainsi

$$f_{X_t}(x) = 2f_{B_t}(x), \quad x \ge 0.$$

2. Comme $X_t = B_t.1_{\{B_t \ge 0\}}$ et $B_t \sim \mathcal{N}(0,t)$, $f_{X_t}(x) = 0$ pour x < 0. Alors

$$\mathbb{E}(X_t) = \int_0^{+\infty} x \cdot f_{X_t}(x) dx$$

$$= 2 \int_0^{+\infty} x \cdot f_{B_t}(x) dx$$

$$= \frac{2}{\sqrt{2\pi t}} \int_0^{+\infty} x e^{-\frac{x^2}{2t}} dx$$

$$= \frac{2t}{\sqrt{2\pi t}} (0 - (-1))$$

$$= \sqrt{\frac{2t}{\pi}}.$$

et

$$\mathbb{E}(X_t^2) = \int_0^{+\infty} x^2 \cdot f_{X_t}(x) dx$$
$$= 2 \int_0^{+\infty} x \cdot f_{B_t}(x) dx$$
$$= \mathbb{E}(B_t^2) = t.$$

Donc

$$\mathbb{E}(X_t) = \sqrt{\frac{2t}{\pi}}$$

et

$$\mathbb{V}(X_t) = \mathbb{E}(X_t^2) - \mathbb{E}(X_t)^2 = t - \frac{2t}{\pi} = \left(1 - \frac{2}{\pi}\right)t.$$

3. X_t n'est pas gaussien car sa distribution est asymétrique. X_t n'est pas faiblement stationnaire car $\mathbb{E}(X_t)$ et $\mathbb{V}(X_t)$ dépendent de t.

4.

$$Y_t = |B_t| = B_t \cdot \mathbb{1}_{\{B_t > 0\}} - B_t \cdot \mathbb{1}_{\{B_t < 0\}} = X_t - B_t \cdot \mathbb{1}_{\{B_t < 0\}}.$$

Par symétrie de la loi normale B_t , on a

$$\mathbb{E}(B_t.1_{\{B_t<0\}}) = -\mathbb{E}(B_t.1_{\{B_t>0\}}) = -\mathbb{E}(X_t).$$

Par conséquent

$$\mathbb{E}(Y_t) = \mathbb{E}(X_t) - (-\mathbb{E}(X_t)) = 2\mathbb{E}(X_t) \neq \mathbb{E}(X_t).$$

Ainsi X_t et Y_t ne sont pas identiquement distribuées.

Exercices 5:

$$A_t = \int_0^t B_s ds, \quad t \ge 0.$$

1. Considérons une partition de [0,t] en n sous-intervalles : $0=t_0 < t_1 < \cdots < t_n = t$, avec $t_i-t_{i-1}=1/n$. Par définition de l'intégrale de Riemann, on a :

$$A_t = \int_0^t B_s ds = \lim_{n \to \infty} \sum_{i=1}^n B_{t_i} (t_i - t_{i-1}).$$

Comme B_t est un processus gaussien et la limite d'une suite de variables gaussiennes reste gaussienne, A_t est un processus gaussien.

2. On a

$$\mathbb{E}(A_t) = \mathbb{E}\left(\lim_{n \to \infty} \sum_{i=1}^n B_{t_i}(t_i - t_{i-1})\right)$$

$$= \lim_{n \to \infty} \mathbb{E}\left(\sum_{i=1}^n B_{t_i}(t_i - t_{i-1})\right)$$

$$= \lim_{n \to \infty} \sum_{i=1}^n (t_i - t_{i-1}) \mathbb{E}(B_{t_i}) = 0$$

et

$$\begin{split} \mathbb{V}(A_t) &= \mathbb{E}(A_t^2) - \mathbb{E}(A_t)^2 \\ &= \mathbb{E}\left[\left(\lim_{n \to \infty} \sum_{i=1}^n B_{t_i}(t_i - t_{i-1})\right)^2\right] \\ &= \lim_{n \to \infty} \mathbb{E}\left[\left(\sum_{i=1}^n B_{t_i}(t_i - t_{i-1})\right)^2\right] \\ &= \lim_{n \to \infty} \mathbb{E}\left[\sum_{i=1}^n B_{t_i}^2(t_i - t_{i-1})^2 + 2\sum_{1 \le i < j \le n} B_{t_i}B_{t_j}(t_i - t_{i-1})(t_j - t_{j-1})\right] \\ &= \lim_{n \to \infty} \left[\sum_{i=1}^n (t_i - t_{i-1})^2 \mathbb{E}(B_{t_i}^2) + 2\sum_{1 \le i < j \le n} (t_i - t_{i-1})(t_j - t_{j-1}) \mathbb{E}(B_{t_i}B_{t_j})\right] \\ &= \lim_{n \to \infty} \left[\sum_{i=1}^n t_i(t_i - t_{i-1})^2 + 2\sum_{1 \le i < j \le n} t_i(t_i - t_{i-1})(t_j - t_{j-1})\right]. \end{split}$$

On a

$$\sum_{i=1}^{n} t_i (t_i - t_{i-1})^2 \le t \cdot \frac{1}{n} \sum_{i=1}^{n} (t_i - t_{i-1}) = t^2 \cdot \frac{1}{n} \xrightarrow[n \to \infty]{} 0,$$

et

$$\sum_{1 \le i < j \le n} t_i(t_i - t_{i-1})(t_j - t_{j-1}) = \sum_{i=1}^n t_i(t_i - t_{i-1}) \sum_{j=i+1}^n (t_j - t_{j-1})$$

$$= \sum_{i=1}^n t_i(t_i - t_{i-1})(t_n - t_i)$$

$$= \sum_{i=1}^n t_i(t_i - t_{i-1})(t - t_i)$$

Donc

$$\mathbb{V}(A_t) = 2 \lim_{n \to \infty} \sum_{i=1}^n t_i(t - t_i)(t_i - t_{i-1})$$
$$= 2 \int_0^t s(t - s)ds = \frac{t^3}{3}.$$

Ainsi $\mathbb{E}(A_t)=0$ et $\mathbb{V}(A_t)=\frac{t^3}{3}$. Puisque $\mathbb{V}(A_t)\neq t$, le processus A_t n'est pas un mouvement Brownien standard.

3. Soit $t, s \ge 0$. La fonction d'auto-covariance est donnée par :

$$C_A(t, t+s) = \mathbb{E}(A_t A_{t+s}) - \mathbb{E}(A_t) \mathbb{E}(A_{t+s}).$$

Comme $\mathbb{E}(A_t) = \mathbb{E}(A_{t+s}) = 0$, on a $C_A(t, t+s) = \mathbb{E}(A_t A_{t+s})$. Nous avons, par la linéarité de l'espérance et par passage à la limite :

$$\mathbb{E}(A_t A_{t+s}) = \mathbb{E}\left[\int_0^t B_u du \int_0^{t+s} B_v dv\right]$$

$$= \int_0^t \int_0^{t+s} \mathbb{E}(B_u B_v) dv du$$

$$= \int_0^t \left(\int_0^u v dv + \int_u^{t+s} u dv\right) du$$

$$= \int_0^t \left(\frac{u^2}{2} + u(t+s-u)\right) du$$

$$= \int_0^t \left((t+s)u - \frac{u^2}{2}\right)$$

$$= (t+s)\frac{t^2}{2} - \frac{t^3}{6} = \frac{t^3}{3} - \frac{st^2}{2}.$$

Ainsi $C_A(t,t+s) = \frac{t^3}{3} - \frac{st^2}{2}, \quad \forall t,s \geq 0.$

Exercice 6:

$$\mathcal{F}_t = \sigma(B_s, 0 \le s \le t).$$

- 1. $X_t = B_t$
 - * Comme B_t est \mathcal{F}_t -mesurable, X_t l'est.
 - * D'après l'Exercice 4, question 4.,

$$\mathbb{E}(|B_t|) = 2\sqrt{\frac{2t}{\pi}} < \infty.$$

* Pour $s \leq t$, comme $B_t - B_s$ est indépendant de \mathcal{F}_s et B_s est \mathcal{F}_s -mesurable, on a : $\mathbb{E}(B_t | \mathcal{F}_s) = \mathbb{E}(B_t - B_s + B_s | \mathcal{F}_s) = \mathbb{E}(B_t - B_s | \mathcal{F}_s) + \mathbb{E}(B_s | \mathcal{F}_s) = 0 + B_s = B_s.$

 X_t est continue car B_t est continue. Ainsi $X_t = B_t$ est une \mathcal{F}_t -martingale continue.

- 2. $Y_t = B_t^2 t$
 - \star Comme B_t^2 est \mathcal{F}_t -mesurable, Y_t l'est.
 - $\star \mathbb{E}(|Y_t|) = \mathbb{E}(|B_t^2 t|) \le \mathbb{E}(B_t^2) + t = 2t < \infty.$
 - \star Pour $s \leq t$, comme $B_t B_s$ est indépendant de \mathcal{F}_s et B_s est \mathcal{F}_s -mesurable, on a :

$$\mathbb{E}(Y_t|\mathcal{F}_s) = \mathbb{E}(B_t^2 - t|\mathcal{F}_s)$$

$$= \mathbb{E}((B_t - B_s + B_s)^2|\mathcal{F}_s) - t$$

$$= \mathbb{E}((B_t - B_s)^2 + 2B_s(B_t - B_s) + B_s^2|\mathcal{F}_s) + \mathbb{E}(B_s^2|\mathcal{F}_s) - t$$

$$= \mathbb{E}((B_t - B_s)^2|\mathcal{F}_s) + 2\mathbb{E}(B_s(B_t - B_s)|\mathcal{F}_s) + \mathbb{E}(B_s^2|\mathcal{F}_s) - t$$

$$= \mathbb{E}((B_t - B_s)^2) + 2B_s\mathbb{E}(B_t - B_s) + B_s^2 - t$$

$$= t - s + 0 + B_s^2 - t$$

$$= B_s^2 - s = Y_s$$

 Y_t est continue car B_t et $t \mapsto t$ sont continues. Ainsi $Y_t = B_t^2 - t$ est une \mathcal{F}_t -martingale continue.

3.
$$Z_t = \exp\left(\lambda B_t - \frac{\lambda^2}{2}t\right), \quad \lambda \in \mathbb{R}.$$

- * Comme B_t est \mathcal{F}_t -mesurable et la fonction exp est mesurable, Z_t est \mathcal{F}_t -mesurable.
- $\star~Z_t$ est une exponentielle d'une variable aléatoire gaussienne. On a

$$\mathbb{E}(|Z_t|) = \mathbb{E}(Z_t) = \mathbb{E}(\exp\left(\lambda B_t - \frac{\lambda^2}{2}t\right)) = \exp\left(-\frac{\lambda^2}{2}t\right)\mathbb{E}(\exp(\lambda B_t)).$$

Comme $B_t \sim \mathcal{N}(0,t)$, on a $\lambda B_t \sim \mathcal{N}(0,\lambda^2 t)$. Donc $\mathbb{E}(\exp(\lambda B_t)) = \exp\left(\frac{\lambda^2}{2}t\right)$. Par conséquent

$$\mathbb{E}(|Z_t|) = \exp\left(\left(-\frac{\lambda^2}{2}t + \frac{\lambda^2}{2}t\right)\right) = 1 < \infty.$$

 $\star \ \text{Pour } s \leq t,$ comme $B_t - B_s$ est indépendant de \mathcal{F}_s et B_s est \mathcal{F}_s -mesurable, on a :

$$\mathbb{E}(Z_t | \mathcal{F}_s) = \mathbb{E}(\exp\left(\lambda B_t - \frac{\lambda^2}{2}t\right) | \mathcal{F}_s)$$

$$= \exp\left(-\frac{\lambda^2}{2}t\right) \mathbb{E}\left[\exp\left(\lambda (B_t - B_s + B_s)\right) | \mathcal{F}_s\right]$$

$$= \exp\left(-\frac{\lambda^2}{2}t\right) \mathbb{E}\left[\exp(\lambda B_s) \exp(\lambda (B_t - B_s)) | \mathcal{F}_s\right]$$

$$= \exp\left(-\frac{\lambda^2}{2}t\right) \exp(\lambda B_s) \mathbb{E}\left[\exp(\lambda (B_t - B_s)) | \mathcal{F}_s\right]$$

$$= \exp\left(\lambda B_s - \frac{\lambda^2}{2}t\right) \mathbb{E}\left[\exp(\lambda (B_t - B_s))\right]$$

Comme $B_t - B_s \sim \mathcal{N}(0, t - s)$, on a $\lambda(B_t - B_s) \sim \mathcal{N}(0, \lambda^2(t - s))$. Donc $\mathbb{E}(\exp(\lambda(B_t - B_s))) = \exp\left(\frac{\lambda^2}{2}(t - s)\right)$. Par conséquent :

$$\mathbb{E}(Z_t|\mathcal{F}_s) = \exp\left(\lambda B_s - \frac{\lambda^2}{2}t\right) \exp\left(\frac{\lambda^2}{2}(t-s)\right) = \exp(\lambda B_s - \frac{\lambda^2}{2}s) = Z_s.$$

 Z_t est continue car B_t et \exp sont continues. Ainsi Z_t est une \mathcal{F}_t -martingale continue.