EEE104 – Digital Electronics (I) Lecture 19

Dr. Ming Xu

Dept of Electrical & Electronic Engineering

XJTLU

In This Session

- Shift Registers
 - Bidirectional Shift Registers
 - Shift Register Counters

Bidirectional Shift Registers

- A HIGH on R/L will enable G_1 to G_4 .
- The output of a stage is fed to the D input of the next stage.

Bidirectional Shift Registers

- A LOW on R/L will enable G₅ to G₈.
- The output of a stage is fed to the D input of the preceding stage.

2

Bidirectional Shift Registers

Bidirectional Shift Registers

74HC194: A 4-bit universal shift register Mode selection

Trode Serection							
S_1	S_0	Mode					
0	0	Inhibit					
0	1	Shift right					
1	0	Shift left					
1	1	Load					

SR SER: Shift-right serial data in SL SER: Shift-left serial data in

CLR: asynchronous clear

6

Bidirectional Shift Registers

Shift Register Counters

- A shift register counter is a shift register with the serial output connected back to the serial input.
- It will produce a specified sequence of state **periodically**. Hence the name "counter".
- Two most common types are the Johnson counter and the ring counter.

8

The Johnson Counter

The **Johnson counter** – The **complemented**output of the
last stage is
connected back.

The counter will fill up with 1s first and then with 0s.

Clock Pulse	Q ₀	Q 1 :	Q ₂	<i>Q</i> ₃
0	,0	0	0	0
1	1	.0	0	0
2	1	1	0	0
:3	1	.1	1	0
4	1	1	1	1
- 5	0	1	1	1
6	0	0	1	1
7	0	0	0	1

The Johnson Counter

What will happen if the initial state are not one of the 8 states?

The counter will loop through the other 8 states.

Clock Pulse	Q ₀	<u>Q</u> 1	Q_2	Q ₃
0	,0	0	1	0
1	1	.0	0	1
2	0	1	0	0
3	1	0	1	0
4.	1	1	0	1
- 5	0	1	1	0
6	1	0	1	1
7	0	1	0	1

The Johnson Counter

A 4-bit Johnson counter has 8 states.

The Johnson Counter

The Johnson Counter

A 5-bit Johnson counter has 10 states. So an n-stage Johnson counter will have 2n states.

13

The Ring Counter

The Ring Counter

Shift Register Counters

- The disadvantage is that the maximum available states are not fully utilized.
- Beware that both the Ring and the Johnson counter must initially be forced into a valid state in the count sequence, because they operate on a subset of the available number of states. Otherwise, the ideal sequence will not be followed.
- The advantage over a binary counter is that no extra decoding circuit is needed.