One-Shot Machine Unlearning with Mnemonic Code

Tomoya Yamashita, Masanori Yamada, Takashi Shibata NTT Laboratories

What is Machine Unlearning?

Challenges in Machine Unlearning

- We usually do not have access to the data.
- + we should not have access to the data.
- Computational costs

All above are addressed in this paper.

Fisher Information Matrix / Hessian Matrix

$$I(heta) = \mathbb{E}\left[\left(rac{\partial \log L(heta)}{\partial heta}
ight) \left(rac{\partial \log L(heta)}{\partial heta}
ight)^T
ight]$$

$$H(heta) = egin{bmatrix} rac{\partial^2 f}{\partial heta_1^2} & rac{\partial^2 f}{\partial heta_1 \partial heta_2} & \cdots \ rac{\partial^2 f}{\partial heta_2 \partial heta_1} & rac{\partial^2 f}{\partial heta_2^2} & \cdots \ dots & dots & dots & dots \end{bmatrix}$$

Diagonal Approximation

$$H(heta) = egin{bmatrix} rac{\partial^2 f}{\partial heta_1^2} & rac{\partial^2 f}{\partial heta_1 \partial heta_2} & \cdots \ rac{\partial^2 f}{\partial heta_2 \partial heta_1} & rac{\partial^2 f}{\partial heta_2^2} & \cdots \ dots & dots & dots & dots \end{bmatrix}$$

$$H_{ ext{diag}}(heta) = egin{bmatrix} rac{\partial^2 f}{\partial heta_1^2} & 0 & \cdots \ 0 & rac{\partial^2 f}{\partial heta_2^2} & \cdots \ dots & dots & dots \ dots & dots & dots \ \end{pmatrix}$$

Method of the Paper (1/5)

Training

Forgetting

$$\boldsymbol{\xi} \sim N(\mathbf{0}, \mathbf{1})$$

Method of the Paper (2/5)

10:

end for

12: **end for**

 $oldsymbol{w} = oldsymbol{w} - \mathrm{lr}
abla_{oldsymbol{w}} \mathcal{L}(ilde{oldsymbol{x}}; oldsymbol{w})$

Algorithm 1 Training with mnemonic code **Input**: dataset $\boldsymbol{x} \sim p^d(\boldsymbol{x})$, model parameter \boldsymbol{w} , loss \mathcal{L} **Parameter:** mnemonic code replacing probability t_{mix} , learning rate lr Output: trained model parameters 1: $\boldsymbol{\xi} \sim N(\mathbf{0}, \mathbf{1})$ 2: **for** e in epochs **do** for i in datasize do 3: $t \sim U(0,1)$ if $t < t_{\text{mix}}$ then $ilde{oldsymbol{x}}_i = oldsymbol{\xi}_c$ 6: else $ilde{oldsymbol{x}}_i = oldsymbol{x}_i$ 8: end if 9:

Method of the Paper (3/5)

$$\mathcal{L}_{\mathcal{C}_{F}}(\boldsymbol{w}^{*} + \boldsymbol{\delta})$$

$$\simeq \mathcal{L}_{\mathcal{C}_{F}}(\boldsymbol{w}^{*}) + \frac{1}{2}\boldsymbol{\delta}^{T}F_{\mathcal{C}_{F}}\boldsymbol{\delta}$$

$$= \mathcal{L}_{\mathcal{C}_{F}}(\boldsymbol{w}^{*}) + \frac{1}{2}\boldsymbol{\delta}^{T}\{t_{\text{mix}}F_{\mathcal{C}_{F}}^{\xi} + (1 - t_{\text{mix}})F_{\mathcal{C}_{F}}^{d}\}\boldsymbol{\delta}$$

$$\simeq \mathcal{L}_{\mathcal{C}_{F}}(\boldsymbol{w}^{*}) + \frac{1}{2}\{t_{\text{mix}}\sum_{i} \boldsymbol{f}_{\mathcal{C}_{F},i}^{\xi} + (1 - t_{\text{mix}})\sum_{i} \boldsymbol{f}_{\mathcal{C}_{F},i}^{d}\}\boldsymbol{\delta}_{i}^{2}, \tag{2}$$

Taylor Series Expansion / Laplace's Method

$$f(x) = f(a) + f'(a)(x-a) + rac{1}{2}f''(a)(x-a)^2 + O((x-a)^3)$$

$$\mathcal{L}(oldsymbol{w}^* + oldsymbol{\delta}) pprox \mathcal{L}(oldsymbol{w}^*) +
abla \mathcal{L}(oldsymbol{w}^*)^ op oldsymbol{\delta} + rac{1}{2} oldsymbol{\delta}^ op H oldsymbol{\delta} + O(\|oldsymbol{\delta}\|^3)$$

$$egin{aligned} \mathcal{L}(oldsymbol{w}^* + oldsymbol{\delta}) &pprox \mathcal{L}(oldsymbol{w}^*) + rac{1}{2}oldsymbol{\delta}^ op Holdsymbol{\delta} \ \mathcal{L}_{\mathcal{C}_{ ext{F}}}(oldsymbol{w}^* + oldsymbol{\delta}) &pprox \mathcal{L}_{\mathcal{C}_{ ext{F}}}(oldsymbol{w}^*) + rac{1}{2}\sum_{i}f_{\mathcal{C}_{ ext{F}},i}oldsymbol{\delta}_{i}^{2} \end{aligned}$$

Method of the Paper (4/5)

 $\alpha_{\boldsymbol{\eta}^l} = \min\left(\lambda_1, \frac{\lambda_2}{\max_{n \in \boldsymbol{\eta}^l} \eta_i}\right),$

$$w_{i} = w_{i} \pm \alpha_{\eta^{l}} \eta_{i},$$

$$\eta_{i} = \frac{f_{\mathcal{C}_{F,i}}}{f_{\mathcal{C}_{R,i}}} = \frac{\frac{1}{|\#\mathcal{C}_{F}|} \sum_{j \in \mathcal{C}_{F}} \mathbb{E}\left[\left(\frac{\partial \mathcal{L}_{j}}{\partial w_{i}}\right)^{2}\right]}{\frac{1}{|\#\mathcal{C}_{R}|} \sum_{k \in \mathcal{C}_{R}} \mathbb{E}\left[\left(\frac{\partial \mathcal{L}_{k}}{\partial w_{i}}\right)^{2}\right]},$$

$$(6)$$

Metho

Algorithm 2 Forgetting with mnemonic code

Input: trained model parameter w, loss \mathcal{L} , forget class set \mathcal{C}_{F} , remain class set \mathcal{C}_{R} , mnemonic codes $\boldsymbol{\xi}$, layers $\{l_1, l_2, \cdots\}$ Parameter: λ_1, λ_2

Output: Forgotten parameters

- 1: $f_{C_{\rm E}} = 0$ 2: $f_{C_R} = 0$
- 3: for c in $C_{\mathbb{F}}$ do
- 4: $f_{C_{\mathrm{F}}} = f_{C_{\mathrm{F}}} + \nabla_{\boldsymbol{w}} \mathcal{L}(\boldsymbol{\xi}_{c}; \boldsymbol{w})$ 5: end for
- 6: for c in C_R do
- 7: $f_{\mathcal{C}_{\mathrm{R}}} = f_{\mathcal{C}_{\mathrm{R}}} + \nabla_{m{w}} \mathcal{L}(m{\xi}_c; m{w})$
- 8: end for
- 9: $f_{C_{\rm F}} = f_{C_{\rm F}}/|\#C_{\rm F}|$
- 10: $f_{C_{\rm R}} = f_{C_{\rm R}}/|\#C_{\rm R}|$
- 11: $\eta = \frac{f_{C_F}}{f_{C_R}}$
- 12: **for** l in layers **do**
- 13: $\alpha_{\eta^l} = \min\left(\lambda_1, \frac{\lambda_2}{\max_{\eta_i \in \eta^l} \eta_i}\right)$
- 14: $\boldsymbol{w}_1^l = \boldsymbol{w}^l + \alpha_{\boldsymbol{\eta}^l} \boldsymbol{\eta}^l$
- 15: $\boldsymbol{w}_{2}^{l} = \boldsymbol{w}^{l} \alpha_{\boldsymbol{\eta}^{l}} \boldsymbol{\eta}^{l}$
- 16: end for
- 17: if $A_{\rm R}(\mathbf{w}_1) + E_{\rm F}(\mathbf{w}_1) > A_{\rm R}(\mathbf{w}_2) + E_{\rm F}(\mathbf{w}_2)$ then
- 18: return w_1
- 19: **else**
- $\mathbf{return} \ oldsymbol{w}_2$ 20:
- 21: end if

Results (1/4)

Method	Processing Time	Data-Free	MU Target
CertifiedRemoval (Guo et al., 2020)	$\mathcal{O}(N_{ m R}+N_{ m F})$	×	item
SISA (Bourtoule et al., 2021)	$\mathcal{O}(E \cdot rac{N_{\mathrm{R}}}{M})$	×	item
Arcane (Yan et al., 2022)	$\mathcal{O}(E \cdot rac{ ilde{N}_{ m R}}{C_{ m R} + C_{ m F}})$	×	${\bf item}$
FastMU (Tarun et al., 2023)	$\mathcal{O}(S \cdot C_{ m F} + \overset{\circ}{E} \cdot \overset{\circ}{C_{ m F}} + N_{ m R})$	\checkmark	class
ZeroShotMU (Chundawat et al., 2023)	$\mathcal{O}((S+E)(C_{ ext{F}}+C_{ ext{R}}))$	\checkmark	class
LwSF (Shibata et al., 2021)	$\mathcal{O}(E(N_{ m new}+C_{ m R}))$	\checkmark	class/task
SFDN (Golatkar et al., 2020a)	$\mathcal{O}(N_{ m R})$	X	${ m class/item}$
NTK-F (Golatkar et al., 2020b)	$\mathcal{O}(N_{ m R}+N_{ m F})$	×	${ m class/item}$
SSD (Foster et al., 2024)	$\mathcal{O}(N_{ m R}+N_{ m F})$	×	${ m class/item}$
ERM-KTP (Lin et al., 2023)	$\mathcal{O}(E\cdot N_{ m R})$	X	${ m class}$
Ours	$\mathcal{O}(C_{ m R}+C_{ m F})$	✓	${ m class}$

Results (2/4)

Table 2: Comparison results in $A_{\rm R}$. We evaluate the baseline and our methods three times and provide the mean and standard deviation. The highest values are shown in bold.

	MNIST	CIFAR10	CUB	STN
FastMU	96.5 ± 0.1	90.4 ± 0.5	73.1 ± 1.3	88.0 ± 0.1
LwSF	43.7 ± 9.6	65.4 ± 16.6	68.2 ± 3.5	80.1 ± 6.7
SFDN	94.1 ± 0.7	93.4 ± 0.2	78.2 ± 0.6	88.3 ± 0.6
SSD	96.9 ± 0.0	94.2 ± 0.0	44.3 ± 0.0	74.4 ± 0.0
ERM-KTP	-	$92.7\ \pm0.4$	42.8 ± 3.2	75.6 ± 4.0
Ours	95.9 ± 0.1	94.4 ± 0.1	79.3 ± 0.7	91.7 ± 0.3

Results (3/4)

Table 3: Comparison results in $E_{\rm F}$. We evaluate the baseline and our methods three times and provide the mean and standard deviation. The highest values are shown in bold.

	MNIST	CIFAR10	CUB	STN
FastMU	98.0 ± 0.3	100 ± 0.0	68.6 ± 12.0	60.9 ± 6.9
LwSF	94.4 ± 1.7	100 ± 0.0	93.1 ± 7.0	98.2 ± 1.8
SFDN	100 ± 0.0	96.3 ± 2.5	100 ± 0.0	100 ± 0.0
SSD	93.1 ± 0.0	100 ± 0.0	100 ± 0.0	100 ± 0.0
ERM-KTP	-	100 ± 0.0	100 ± 0.0	100 ± 0.0
Ours	100 ± 0.0	100 ± 0.0	100 ± 0.0	100 ± 0.0

Results (4/4)

Table 4: Forgetting for ImageNet dataset. We perform fine-tuning using mnemonic code on the pre-trained model and forget with our method. We show the forgetting capability and processing time for the pre-trained, fine-tuned, and forgotten models, respectively.

Architecture		$A_{ m R}\uparrow$	$E_{ m F}\uparrow$	Time [s] \downarrow
	Pretrained	69.8	12.0	-
ResNet-18	Fine-tuned	67.5	12.0	882
	After MU	67.5	100	8.66
	Pretrained	77.4	6.0	_
ResNeXt-50	Fine-tuned	75.9	12.0	6923
	After MU	75.9	100	21.0
Swin-Transformer	Pretrained	80.9	4.0	_
	Fine-tuned	78.8	4.0	8488
	After MU	75.3	92.0	28.6

Hyperparameter Search

Figure 6: Hyperparameter search on MNIST.

Figure 7: Hyperparameter search on CIFAR10.

Figure 3: Comparison results in MU processing time. We measure the forgetting time concerning our method and the baselines.

Future Work

- Actually using Fisher Information Matrix
- Calculating Fisher Information only in important layers
- More realistic scenarios (not class-wise unlearning)