2012-2013 学年第二学期《高等数学 AII》期末试卷 (B)

授课班号		_年级专	k	学号_		_姓名		•
题型	选择题	填空题	计算题	综合题	总 分	审	核	
得分		*						

一、填空题(每小题5分,共30分)

x^2 y^2				¥ 2,
方程组 $\left\{\begin{array}{c} 4 + 9 \\ y = 2 \end{array}\right\}$	在空间解析儿何中表示	- ·	得分	阅卷人
1第重	iti	•	1977	/4 G / C

- 2. $\forall z = x^3y^2 x^2 e^y$, $y = (3x^2y^2 2x) dx + (2x^3y e^y) dy$
- 3. 设f(x)在[0,4]上连续,且 $D: x^2+y^2 \le 4$,则 $\iint_D f(x^2+y^2) dx dy$ 在 极坐标系下先对r 积分的二次积分为 $\int_0^{2\pi} d \mathbf{o} \int_0^2 \mathbf{f}(\mathbf{r}^2) \cdot \mathbf{r} d\mathbf{r}$
- 4. L 为圆周 $x^2+y^2=1$,则 $\int_L x^2 ds = 1$.

5.
$$\mathcal{J}_{x, \frac{\pi}{2} \leq x < \pi} = \begin{cases}
2-x, & 0 \leq x < \frac{\pi}{2} \\
x, & \frac{\pi}{2} \leq x < \pi
\end{cases}, 又设 S(x) 是 f(x) 的以 2\pi 为周期的$$

- 6. 岩方程 y"+py'+qy=0(p, q 均为实常数) 有特解 y₁=e^{-x}, y₂=e^{3x}, 则 p 等于 <u>-2</u>, q 等于 <u>-3</u>.
- 二、计算题(每小题6分,共36分)

函数 z=z(x,y) 出方程 $z^x=x^2yz$ 所确定, 求 z_x .

$$\frac{F_{x}}{F_{y}} = \frac{3^{x} \ln 3 - 2 \times y J}{x^{2} y - x 3^{x-1}}$$

は、
$$\frac{1}{\sqrt{3}}$$
 $\frac{1}{\sqrt{3}}$ $\frac{1}{\sqrt{3}}$ $\frac{1}{\sqrt{3}}$ $\frac{3}{\sqrt{3}}$ $\frac{3}{\sqrt{3}}$

$$\pi^2 \le x^2 + y^2 \le 4\pi^2.$$

$$= \pi \left(\cos \pi^{1} - \cos \varphi \pi^{1} \right)$$

4. 计算
$$\iint_{\Sigma} x^3 dydz + y^3 dzdx + z^3 dxdy$$
, 其中 Σ 为球面 $x^2 + y^2 + z^2 = 1$ 的

5. 求级数
$$\sum_{n=1}^{\infty} \frac{1}{n^{2^n}}$$
 的和.

$$\frac{1}{\sqrt{3}} \frac{1}{\sqrt{3}} \frac{1}{\sqrt{3}} = \frac{1}{\sqrt{3}} \frac{1}{\sqrt$$

6 求微分方程
$$(a-2x)y''-y'=0$$
 的通解 (a) 为常数).

$$PP y' = \frac{C_1}{\sqrt{x}-\alpha}$$
 (3')

三、综合题(满分34分)

设级数 $\sum_{n=1}^{\infty} a_n^2$ 收敛, 证明 $\sum_{n=1}^{\infty} \frac{a_n}{n}$ 绝对收敛.

得分	阅卷人

2. (12 分) 将周长为 2p 的矩形绕它的 边旋转而构成的 个圆柱体, 问矩 形的边长各为多少时, 才能使圆柱体的体积为最大?

3.(12 分) 位于第一象限的一曲线,其上任一点的切线与坐标轴和过切点垂直于 x 轴的直线所围成的梯形面积等于常数 a², 且曲线过点(a,

直子 x 和的直线所開成的梯形面积等于常数
$$a^2$$
,且曲线过点(a .

 a),求此曲线方程.

 x^2 x^3 x^4 $x^$

2013-2014 学年第二学期《高等数学 AII》试卷 (B)

授课班号		化学号		
------	--	-----	--	--

題型	填空题	计 算 题	综合壓	总分	审 核
得分					

一、填空题(每小题3分,共24分)

1.		得分	阅卷人	
*** <u>***</u> =	设 $a=3i-j-2k$, $b=i+2j-k$, 则 $a\times 2b=(10,2/14)$			
2	曲面 $x^2 + y^2 + z^2 = a^2$ 与 $x^2 + y^2 = 2az$ 的交线为 $x^2 + y^2 = 2az$ 的交线为 $x^2 + y^2 = 2az$	14	らメンサ	WF-119
3	$\mathbb{R}^{\frac{1}{2}} = \mathbb{R}^{\frac{1}{2}} \times \mathbb{R}$	7~	12-15-1	10

3. 函数 $z = x \sin y$ 在点 $\left(2, \frac{\pi}{3}\right)$ 沿 $a = \{2,1\}$ 方向的方向导数是 $\sqrt{\left(\sqrt{2}\right)^{+1}}\right)$ $\sqrt{\left(\sqrt{2}\right)^{+1}}$ $\sqrt{\left($

- 5. 设 L 为圆周 $x^2 + y^2 = 1$, 则 $\oint_L x^2 ds = \overline{Y}$.
- 7. 当 $0 时,级数 <math>\sum_{n=1}^{\infty} \frac{(-1)^n}{n^p}$ 条件收敛.

二、计算题(每小题8分,共32分)

一直线过 A(2,-3,4)且与 z 轴垂直相交, 求其方程.

得分	阅卷人

浴内的多种交流(10,0,七).

$$\frac{1.5}{5} = (-2,3,0) \quad \text{TME} : \frac{x-2}{-2} = \frac{y+3}{3} = \frac{3-x}{0} = \frac{3-x}{3} = \frac{3-x}{0}$$

$$\frac{12}{3} = \frac{3}{3} \times \frac{3}{3} \times \frac{3}{3} \times \frac{3}{3} = \frac{3-x}{0}$$

$$\frac{12}{3} = \frac{3}{3} \times \frac{3}{3} \times \frac{3}{3} \times \frac{3}{3} = \frac{3-x}{0}$$

$$\frac{12}{3} = \frac{3}{3} =$$

②. 设
$$z=f(x,u,v)$$
, $u=2x+y$, $v=xy$, f 具有一阶连续偏导数, 求 z 对 x , y 的全微分 d z .

3. 计算二重积分
$$\iint_D (x^2 + y^2) \sqrt{a^2 - x^2 - y^2} \, dx dy$$
, 其中积分区域 $D \in x^2 + y^2 \le a^2 \, (a > 0)$.

$$\int_{0}^{\infty} \int_{0}^{\infty} d\theta \int_{0}^{\infty} \int_{0}^{\infty} \int_{0}^{\infty} \int_{0}^{\infty} d\tau \cdot r d\tau$$

$$= 2\pi \int_{0}^{\infty} \int_{0}^{\infty} \int_{0}^{\infty} \int_{0}^{\infty} \int_{0}^{\infty} d\tau \cdot r d\tau$$

$$= 2\pi \int_{0}^{\infty} \int$$

$$\frac{|\xi_{-}|}{|\chi_{4}(x)|} = \frac{(n+1)^{\frac{1}{2}}}{2n+1} \chi^{2n}.$$

$$\frac{|\xi_{-}|}{|\chi_{4}(x)|} = \frac{(n+1)^{\frac{1}{2}}}{|\chi_{4}(x)|} = \frac{(n+1)^{$$

$$\left|\frac{t}{t}\right| = \left|\frac{x^{2}}{x^{2}}\right|^{2} = \left|\frac{a_{n+1}}{a_{n}}\right| = \left|\frac{a_{n+1}}{a_{n}}\right|^{2} = \left|\frac{a_{n+1}}{a_{n}}\right$$

三、综合题(满分44分)

1. (11分)

求表面积为 S, 而体积为最大的圆柱体的体积.

得分	阅卷人

$$V = \pi r^{2}h \cdot S = 2\pi r^{2} + 2\pi rh \cdot S$$

$$\int L(r,h,\lambda) = \pi r^{2}h + \lambda(2\pi r^{2} + 2\pi rh - S)$$

$$\int L_{n} = 2\pi rh + 4\pi \lambda r + 2\pi h = 0 \quad Sr = \sqrt{5\pi}$$

$$\int L_{n} = \pi r^{2} + 2\pi \lambda r = 0 \quad \Longrightarrow \quad h = 2t = 2\sqrt{5\pi}$$

$$\int L_{n} = 2\pi r^{2} + 2\pi rh - S = 0 \quad 3r, \quad (3r)$$

$$\int L_{n} = 2\pi r^{2} + 2\pi rh - S = 0 \quad (3r)$$

$$\int L_{n} = 2\pi r^{2} + 2\pi rh - S = 0 \quad (3r)$$

$$\int L_{n} = 2\pi r^{2} + 2\pi rh - S = 0 \quad (3r)$$

$$\int L_{n} = 2\pi r^{2} + 2\pi rh - S = 0 \quad (3r)$$

$$\int L_{n} = 2\pi r^{2} + 2\pi rh - S = 0 \quad (3r)$$

$$\int L_{n} = 2\pi r^{2} + 2\pi rh - S = 0 \quad (3r)$$

2. (11 分) 计算曲线积分 $\int_L (e^x \sin y - m \cdot y) dx + (e^x \cos y - m) dy$ 式中 L 是由点 A(2a,0) 沿 $y = \sqrt{2\alpha x - x^2}$ 到 O(0,0) 的上半圆周 (a>0).

$$P = e^{x_{y}} - my$$
, $Q = e^{x_{0}} - m$
 $P = e^{x_{y}} - my$, $Q = e^{x_{0}} - m$
 $P = e^{x_{y}} - my$, $Q = e^{x_{0}} - my$
 $P = e^{x_{y}} - my$, $Q = e^{x_{0}} - my$
 $P = e^{x_{y}} - my$, $Q = e^{x_{0}} - my$
 $P = e^{x_{y}} - my$, $Q = e^{x_{0}} - my$
 $P = e^{x_{y}} - my$, $Q = e^{x_{0}} - my$
 $P = e^{x_{y}} - my$, $Q = e^{x_{0}} - my$
 $P = e^{x_{y}} - my$, $Q = e^{x_{0}} - my$
 $P = e^{x_{y}} - my$, $Q = e^{x_{0}} - my$
 $P = e^{x_{y}} - my$, $Q = e^{x_{0}} - my$
 $P = e^{x_{y}} - my$, $Q = e^{x_{0}} - my$
 $P = e^{x_{y}} - my$, $Q = e^{x_{0}} - my$
 $P = e^{x_{y}} - my$, $Q = e^{x_{0}} - my$
 $P = e^{x_{y}} - my$, $Q = e^{x_{0}} - my$
 $P = e^{x_{y}} - my$, $Q = e^{x_{0}} - my$
 $P = e^{x_{y}} - my$, $Q = e^{x_{0}} - my$
 $P = e^{x_{y}} - my$, $Q = e^{x_{0}} - my$
 $P = e^{x_{y}} - my$, $Q = e^{x_{0}} - my$
 $P = e^{x_{y}} - my$, $Q = e^{x_{0}} - my$
 $P = e^{x_{y}} - my$, $Q = e^{x_{0}} - my$
 $P = e^{x_{y}} - my$, $Q = e^{x_{0}} - my$
 $P = e^{x_{y}} - my$, $Q = e^{x_{0}} - my$
 $P = e^{x_{y}} - my$

#Greewati: G polx+ody=J mod $dy = m. <math>\overline{J}$. $\overline{M} = \overline{J}$ $\overline{M} = \overline{J} = \overline{M} = \overline{J} = \overline{J} = \overline{M} = \overline{J} = \overline{M} = \overline{J} = \overline{M} = \overline{J} =$

3. (11 分) 求级数
$$\sum_{n=1}^{\infty} nx^{n+1}$$
 在 (-1,1) 内的和函数.

$$S(x) = x^{2} \sum_{h=1}^{20} h x^{h-1} = x^{2} \cdot \left(\frac{x}{1-x}\right)^{h} = x^{2} \cdot \left(\frac{x}{1-x}\right)^{h}$$

$$= x^{2} \cdot \frac{1}{(1-x)^{2}} = \frac{x^{2}}{(1-x)^{2}} \cdot -|ex|^{2}$$

$$= (2^{-})$$

$$S(x) = \sum_{h=1}^{\infty} (h+2) \chi^{h+1} - 2 \sum_{h=1}^{\infty} \chi^{h+1}$$

$$= \left(\sum_{h=1}^{\infty} \chi^{h+2}\right)^{1} - 2 \cdot \frac{\chi^{L}}{1-\chi}$$

$$= \left(\frac{\chi^{2}}{1-\chi}\right)^{1} - \frac{2\chi^{L}}{1-\chi} = \frac{\chi^{L}}{(1-\chi)^{L}}, \quad 1 < \chi < 1$$

已知上半平面内一曲线 $y = y(x)(x \ge 0)$ 过原点,且曲线上任一点 4. (11分) $M(x_0, y_0)$ 处切线斜率数值上等于该点横坐标与纵坐标之和的 2 倍减去由此曲线与x轴,直线 $x=x_0$ 所围成的面积,求此曲线方

$$y'(x_0) = 2(x_0 + y_0) - \int_0^x y_{t+1} dt
 \Rightarrow y' = 2(x_0 + y_0) - \int_0^x y_{t+1} dt
 \Rightarrow y'' = 2 + 2y' - y \Rightarrow \begin{cases} y'' - 2y' + y = 2 & \text{fin} \\ y'' - 2y' - y = 0 & \text{fin} \end{cases}$$

$$\frac{12454}{11/6} \frac{1}{10} \frac{1}{10} = 0 \quad 8759 = 2 \cdot 0 \quad (2)$$

$$\frac{1}{10} \frac{1}{10} \frac{1}{10} \frac{1}{10} = 0 \quad 8759 = 2 \cdot 0 \quad (2)$$

$$\frac{1}{10} \frac{1}{10} \frac{1}{10} \frac{1}{10} = 0 \quad (2)$$

$$\frac{1}{10} \frac{1}{10} \frac{1}{10} \frac{1}{10} = 0 \quad (2)$$

$$\frac{1}{10} \frac{1}{10} \frac{1}{10} = 0 \quad (2)$$

$$\begin{array}{c}
S_{2}+G=0 \\
\Rightarrow S_{C}=-1
\end{array}$$