Solution non-pertubative

$$H_0 = \hbar\omega_0 |e\rangle \langle e| = \hbar\omega_0 \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$$

$$|e\rangle = \begin{pmatrix} 0\\1 \end{pmatrix} \qquad |g\rangle = \begin{pmatrix} 1\\0 \end{pmatrix}$$

$$E = -\langle e|\hat{D} \cdot \mathbf{E}(\mathbf{r}, t)|g\rangle$$

$$H_{\text{int}} = -\hat{D} \cdot \mathbf{E}(\mathbf{r}, t) = -\hat{D} \left(\mathbf{E}_{0}(\mathbf{r})e^{-i\omega t} + cc\right)$$

$$= (|g\rangle\langle g| + |e\rangle\langle e|) \left[-\hat{D}\mathbf{E}(\mathbf{r}, t)\right] (|g\rangle\langle g| + |e\rangle\langle e|)$$

$$= -|g\rangle\langle g| \,\hat{d} \cdot \mathbf{E} \, |g\rangle\langle g| - |g\rangle\langle g| \,\hat{\mathbf{E}} \, |e\rangle\langle e| - \cdots$$

$$H = \hbar \begin{pmatrix} 0 & 0 \\ 0 & \omega_{0} \end{pmatrix} - \begin{pmatrix} \langle g|\hat{D}\mathbf{E}|g\rangle & \langle g|\hat{D}\mathbf{E}e|e\rangle \\ \langle e|\hat{D}\mathbf{E}|g\rangle & \langle e|\hat{D}\mathbf{E}|e\rangle \end{pmatrix}$$

importance des symétries

On va regarder l'effet de l'opérateur parité sur notre système.

$$\hat{H}_e = \frac{P^2}{2m} + V_{\text{coul}}(\mathbf{r})$$

on compare $H_e\Pi$ et ΠH_e : si H_e commute avec l'opérateur parité, le système à un symétrie d'inversion spatiale.

$$H_e\Pi f(x) = H_e f(-x) = -\frac{\hbar^2}{2m} f''(-x) + V_{\text{coul}} f(x)$$

dans l'aute sens

$$\Pi H_e f(x) = \Pi \left(-\frac{\hbar^2}{2m} f''(x) + V_{\text{coul}}(x) f(x) \right) = -\frac{\hbar^2}{2m} f''(-x) + V_{\text{coul}}(x) f(-x) = H_e \Pi f(x)$$

Donc $[\Pi, H_e] = 0$ si V(x) = V(-x), ce qui est vrai pour les atomes.

Pour un vecteur propre $|n\rangle$

$$H_e\Pi |n\rangle = \Pi H_e |n\rangle = \Pi E_n |n\rangle = E_n (\Pi |n\rangle)$$

Donc si $|n\rangle$ est un vecteur propre, alors $\Pi |n\rangle$ l'est aussi.

$$\Pi^2 |n\rangle = |n\rangle$$

$$\Pi |n\rangle = \pm |n\rangle$$

Si $|n\rangle$ est un vecteur propre de H_e , c'est aussi un vecteur propre de Π avec une valeur propre de ± 1

Pour un atome ψ_e et ψ_g sont soit pair, soit impair.

$$\langle e|\hat{D}|e\rangle = q \int \psi_e^* \hat{r} \psi_e = 0 = \langle g|\hat{D}|g\rangle$$

$$H_{\rm int} = -\begin{pmatrix} 0 & \langle g|D \cdot E|e \rangle \\ \langle e|D \cdot E|g \rangle & 0 \end{pmatrix}$$

Les orbitales ψ_e et ψ_g ne présente pas de moments dipolaire permanents.

 E_n posant $d_{eg} = \langle e|D|g\rangle$

$$\hat{H} = \hbar\omega_0 |e\rangle\langle e| - d_{eg}\mathbf{E}(\mathbf{r}, t) |e\rangle\langle g| - d_{eg}^*\mathbf{E}(\mathbf{r}, t) |g\rangle\langle e|$$

Changement de base pour H : Base tournante avec la pompe $\left(e^{-i\omega t}\right)$

Si on prend un unitaire U

Dans la nouvelle base (changement de base définis par U)

$$H' = UHU^{\dagger} + i\hbar \frac{\mathrm{d}U}{\mathrm{d}t}U$$

Shro:

$$\frac{\mathrm{d}\psi}{\mathrm{d}t} = \frac{-i}{\hbar}H\psi$$

$$U\frac{\mathrm{d}\psi}{\mathrm{d}t} = \frac{-i}{\hbar}UH\underbrace{1}_{U^{\dagger}U}\Psi$$

$$\frac{\mathrm{d}}{\mathrm{d}t} = \frac{\mathrm{d}U}{\mathrm{d}t}\psi + U\frac{\mathrm{d}\psi}{\mathrm{d}t} = \frac{\mathrm{d}U}{\mathrm{d}t}U^{\dagger}U\psi + U\frac{\mathrm{d}u}{\mathrm{d}t}$$

$$\frac{\mathrm{d}}{\mathrm{d}t} = \frac{-i}{\hbar}UHU^{\dagger}U\psi + \frac{\mathrm{d}U}{\mathrm{d}t}U^{\dagger}U\psi = \frac{-i}{\hbar}\left(UHU^{\dagger} + i\hbar\frac{\mathrm{d}U}{\mathrm{d}t}U^{\dagger}\right)U\psi$$

$$U = e^{i\omega t|e\rangle\langle e|}$$

$$U\left|e\right\rangle = e^{i\omega t\left|e\right\rangle\left\langle e\right|}\left|e\right\rangle = \sum_{k}\frac{1}{k!}\left(i\omega t\right)^{k}\left|e\right\rangle = \sum_{k}\frac{1}{k!}\left(i\omega\right)^{k}\left|e\right\rangle = e^{i\omega t}\left|e\right\rangle$$

$$\langle e | U^{\dagger} = e^{-i\omega t} \langle e |$$

$$i\hbar\left(\frac{\mathrm{d}}{\mathrm{d}t}U\right)U^{\dagger}=i\hbar\left(i\omega\left|e\right\rangle\!\!\left\langle e\right|\right)e^{i\omega t\left|e\right\rangle\!\!\left\langle e\right|}e^{-i\omega t\left|e\right\rangle\!\!\left\langle e\right|}=-\hbar\omega\left|e\right\rangle\!\!\left\langle e\right|$$

$$UHU^{\dagger} = \cdots$$

. . .

$$H' = -\hbar \underbrace{\Delta}_{\omega - \omega_0} |e\rangle\langle e| - d_{eg} \mathbf{E}_o |e\rangle\langle g| - d_{eg} \mathbf{E}_0^* e^{2i\omega t} |e\rangle\langle g| + d_{eg}^* \mathbf{E}_0 e^{-2i\omega t} |g\rangle\langle e| + d_{eg}^* \mathbf{E}_0 e^{-2i\omega t} |g\rangle\langle e|$$

Dans la base tournante on renormalise l'énérgie $\hbar\omega_{0\rightarrow}\hbar(\omega-\omega_{0})$

Approximation Séculaire (Rotating wave approximation | RWA)

Négliger les termes en $2\omega t$

$$H_{\mathrm{s\acute{e}culaire}} = -\hbar\Delta \left| e \right\rangle\!\!\left\langle e \right| - d_{eg}\mathbf{E}_{0} \left| e \right\rangle\!\!\left\langle g \right| d_{eg}^{*}E_{0}^{*} \left| g \right\rangle\!\!\left\langle e \right|$$

Pour obtenir $\mathcal{P}_{g\to e}(t)$, il faut diagonaliser H_{sec}

On pose
$$\underbrace{\Omega}_{\text{Freq. de Rabi}} = -\frac{2d_{eg}\mathbf{E}_0}{\hbar}$$

$$H_{\rm sec} = \hbar \begin{pmatrix} 0 & \frac{\Omega}{2} \\ \frac{\Omega}{2} & -\Delta \end{pmatrix}$$

$$\implies E_{\pm} = -\frac{\hbar\Delta}{2} \pm \frac{\hbar}{2} \sqrt{\left|\Omega\right|^2 + \Delta^2}$$

Pour $\Delta = 0$

$$|+\rangle = \frac{\sqrt{2}}{2} \left(e^{-i\frac{\varphi}{2}} \right)$$