CHEM / BCMB 4190/6190/8189 Introductory NMR

Lecture 17

Last Time:

-HETCOR or C, H-COSY

¹³C Chemical Shift

Two-dimensional Correlated NMR spectroscopy: The HSQC Experiment

1. HETCOR (or C,H-COSY) Versus HSQC:

- We have seen the C,H-COSY experiment where ¹H is detected in t1 and ¹³C is detected in t2. Although there is population transfer from ¹H to ¹³C, the sensitivity of this experiment is poor because ¹³C (not ¹H) is detected in t2.
- Higher sensitivity can be achieved by doing the "reverse" experiment i.e. by detecting ¹H in t2 and ¹³C in t1. The HSQC and HMQC are two experiments that achieve this heteronuclear H,C-correlation. Here, we will consider in more details the HSQC experiments.

2. The HSQC Pulse Sequence:

- In the ${}^{1}H$ - ${}^{13}C$ HSQC (X = ${}^{13}C$):
- 1) The PREPARATION period is an INEPT sequence (¹H to ¹³C).
- 2) The t1 EVOLUTION period allows for indirect ¹³C chemical shift detection.
- 3) The MIXING period is a REVERSE INEPT sequence (13C to 1H).
- 4) The t2 EVOLUTION period allows for direct ¹H chemical shift detection.
- 3. Review of the INEPT experiment:
- A) Pulse sequence in the ¹H and ¹³C channels

B) Vector diagrams showing the ¹H magnetization vectors (¹³CHCl3)

• At point g: ${}^{1}H$ 90° pulse rotates MH^{C α} to +z and MH^{C β} to -z

The populations of N2 and N4 are inverted:

before INEPT after INEPT

$$N4 = N$$
 = $N + \Delta H$
 $N3 = N + \Delta C$ = $N + \Delta C$
 $N2 = N + \Delta H$ = N
 $N1 = N + \Delta C + \Delta H$ = $N + \Delta C + \Delta H$

X1 transition: N3 - N4 = Δ C - Δ H = -3 Δ C X2 transition: N1 - N2 = Δ C + Δ H = 5 Δ C

• In the case of the HSQC, the contribution from the natural 13 C magnetization (Δ C) is unwanted and is removed using one of the selected methods that we have seen previously. The resulting populations and population differences are:

$$N4 = N + \Delta C/2 + \Delta H$$

$$N3 = N + \Delta C/2$$

$$N2 = N + \Delta C/2$$

$$N1 = N + \Delta C/2 + \Delta H$$

X1 transition: N3 – N4 =
$$-\Delta$$
H = -4Δ C

X2 transition:
$$N1 - N2 = \Delta H = 4\Delta C$$

• At point g': $MC^{H\alpha}$ is in its original position, but $MC^{H\beta}$ is inverted

C) Vector diagrams showing the ¹³C magnetization vectors

• At point h: The 90°x pulse on ¹³C creates transverse magnetization components that evolve during t1. Note that these ¹³C magnetization components are 180° out of phase with each others at the beginning of t1.

4. The t1 Evolution Period:

- 1) The ¹³C chemical shift evolves (to different points depending on the value of t1).
- 2) There is no net ¹H-¹³C coupling evolution. Note that the ¹³C magnetization components are 180° out of phase with each others at the beginning and the end of t1.

5. The Reverse-INEPT experiment:

A) Pulse sequence in the ¹H and ¹³C channels

B) Vector diagrams showing the effect of the first ¹³C 90°x' pulse on the ¹³C magnetization vectors (Ex.: ¹³CHCl3) for various t1 values. Four cases are shown below:

We will only consider the following case, where after the first 13 C 90° x pulse, MC^{H β} is in its original position, but MC^{H α} is inverted.

The populations are described as followed (same as after first ¹³C 90°x):

$$N4 = N + \Delta C/2 + \Delta H$$

$$N3 = N + \Delta C/2$$

$$N2 = N + \Delta C/2$$

$$N1 = N + \Delta C/2 + \Delta H$$

A1 transition: $N2 - N4 = -\Delta H$

A2 transition: N1 - N3 = Δ H

X1 transition: N3 – N4 = $-\Delta$ H = -4Δ C X2 transition: N1 – N2 = Δ H = 4Δ C

- The antiphase ${}^{1}H$ magnetization is refocused during the $2*\tau$ period. The two $180^{\circ}x'$ pulse (on ${}^{1}H$ and ${}^{13}C$) in the middle of the $2*\tau$ period allows J coupling evolution but refocuses the ${}^{1}H$ chemical shift evolution.
- For simplicity, one can ignore the effect of chemical shift, which is refocused during the reverse-INEPT period.

• At the end of the reverse-INEPT α and β are in phase, therefore we can turn on BB 13 C decoupling during acquisition.

6) **HSOC Spectrum**:

Example: ¹H-¹³C HSQC of Glutamic Acid

- Signals <u>not</u> obtained for ¹H that are <u>not</u> bound to ¹³C
- Comparison with C,H COSY:
 - 1) Axes are interchanged (in HSQC, ¹H is detected, in HETCOR, ¹³C is detected)
 - 2) HSQC is more sensitive and a good spectrum can be recorded quickly.
 - -Example: for 1 mM uniformly 13 C- (or 15 N-) isotopically labeled samples, typical recording times are:
 - 15-30 minutes for HSQC
 - 24 hours for C, H COSY

7) <u>Important "Biologically Biased" Applications</u>: $^1\text{H-}^{15}\text{N}$ HSQC for Analysis of Ligand Binding in Protein

CASE 1: Protein Folding Upon Ligand Binding

CASE 2: Mapping Ligand Binding Sites in Folded Proteins

• Chemical shifts of ligand binding site are perturbed:

The TOCSY Experiment

TOCSY: <u>Total Correlation SpectroscopY</u> Also known as HOHAHA (HOmonuclear HArtmann-Hahn)

• Very useful experiment for determining the structures of oligosaccharides and peptides as well as many other organic compounds.

1. Pulse sequence:

The pulse sequence is similar to that of the COSY experiment except that the second ¹H 90°x' pulse is replaced by a spin-lock pulse train:

$$90^{\circ}$$
 - t_1 - spin-lock (t_m) - FID

-The spin-lock allows polarization transfer from one selected proton to all protons within a coupled system (a.k.a. spin system).

2. Spin sytems

Lets take α -methyl-3-O-methylcellobioside for example.

• In sugar I:

H1' is coupled to H2' (i.e. $J \neq 0$)

H2' is coupled to H3'

H3' is coupled to H4'

H4' is coupled to H5'

H5' is coupled to H6'a and H6'b (JH5'-H6'a > JH5'-H6'b)

H6'a is coupled to H6'b

H1', H2', H3', H4', H5', H6'a, and H6'b form a spin system

• In sugar II:

H1 is coupled to H2 (i.e. $J \neq 0$)

H2 is coupled to H3

H3 is coupled to H4

H4 is coupled to H5

H5 is coupled to H6a and H6b (JH5-H6a > JH5-H6b)

H6a is coupled to H6b

H1, H2, H3, H4, H5, H6a, and H6b form a spin system.

• Because there is no ${}^{1}\text{H}$ - ${}^{1}\text{H}$ J coupling between sugar I and sugar II, they both form independent spin systems.

3. Differences between COSY and TOCSY

• In a COSY spectrum, we observe one crosspeak for H1' (F2):

- We also observed the symmetrical peak: H2'(F2) -H1' (F1))
- Simulated COSY spectrum of α-methyl-3-O-methylcellobioside:

• In a TOCSY spectrum, we observe multiple crosspeaks for H1'

<u>F2</u>	<u>F1</u>
H1'	H2'
H1'	H3'
H1'	H4'
H1'	H5'
H1'	H6'a
H1'	H6'b

- We also observed the symmetrical peaks across the diagonal.
- TOCSY spectrum of α -methyl-3-O-methylcellobioside:

- 4. Importance of the spin-lock mixing period
- We also observe multiple crosspeaks for H1 in the TOCSY spectrum:

<u>F2</u>	<u>F1</u>
H1	H2
H1	Н3
H1	H4
H1	H5
H1	H6b

But not H1 to H6a !!!! and H1 to H6b is very weak!

- The range to which crosspeaks can be detected depends on the length of the mixing time (τ_m) where the spin-lock is applied. τ_m usually varies from 10 ms 200 ms.
- Very short τ_m gives few crosspeaks (more like the COSY) and very long τ_m gives a total correlation spectrum.