Finite State Machine

-- Sakshi Surve

Definition of DFA

- Deterministic Finite automata or DFA is defined as
- $M = (Q, \Sigma, \delta, q_0, F)$
- Where
- Q is a finite set of internal states
- Σ is a finite set of symbols called the input alphabet
- $\delta: Q \times \Sigma \rightarrow Q$ is a Total Function called Transition Function
- q_o is an initial state $q_o \varepsilon Q$
- F is a set of final states $F \subseteq Q$

To	aking into	consideration two strings as example
0	7	(a)
	0010	1100
	90,0) = 91	8(90,1) = 90
51	91,0) = 92	s(90,1) = 90
8	(92,1)=90	8 (90,0) = 91
8	(90,0)=90	8 (91,0)= 92
As	90 € F,	As 92 EF, the string
etain	y'oolo' is the FSM.	Rejected '1100' à Acceptéd
by	the FSM.	by the machine

• Design an FSM for strings containing '101' or '110' as substrings

• Design an FSM for strings ending with '101' or '110'

FSM for Stings starting with a 'o' and ending with a 'i'

FSM for Stings starting with even positioned 'a's and odd positioned 'b's

Homework:

- FSM for strings Not having '101' as a substring
- FSM for recognizing substring 'CAT' from input symbols {'C', 'H', 'A', 'R', 'I', 'O', 'T' }

FSM for checking whether a decimal number is divisible by 3

e.	$3 \cdot 1002$. 3(90,1) = 91 3(91,0) = 91 3(91,0) = 91 3(91,2) = 90	e.g. 25783 $\delta(90,2) = 92$ $\delta(92,5) = 91$ $\delta(91,7) = 92$ $\delta(92,8) = 91$ $\delta(91,3) = 91$
As	92 EF, the string is accepted.	As 9, ¢F, the string is rejected.

Design FSM to accept language $L=\{x \in \{a, b, c\} * | Every 'b' in x is immediately followed by 'c' \}$

• FMS to accept even number of o's and add number of i's

• FSM to check divisibility of a decimal number by 5

