

单元3.7 关系的性质

第七章 二元关系7.4 关系的性质

讲义参考北京大学《离散数学》及电子科技大学《离散数学》讲义

自反性(reflexivity)

- R⊂A×A
- R是自反的 ⇔ ∀x(x∈A→xRx) ⇔ (∀x∈A)xRx
- 例: 非空集合上的恒等关系、全域关系, 正整数集合上的整除关系、小于等于关系, 集合的幂集上的包含关系和相等关系等
- R是非自反的⇔∃x(x∈A∧¬xRx)

内容提要

- 关系的性质
 - 自反、反自反
 - 对称、反对称
 - 传递

自反性举例 自反 非自反

定理

- 定理:
 - R是自反的
 - $\Leftrightarrow I_{\mathsf{A}} \subseteq \mathsf{R}$
 - ⇔ R-1是自反的
 - ⇔ M(R)主对角线上的元素全为1
 - ⇔G(R)的每个顶点处均有环. #

反自反性(irreflexivity)

- R⊂A×A
- R是反自反的 ⇔ ∀x(x∈A→¬xRx) ⇔
 (∀x∈A)¬xRx
- 例: 非空集合上的空关系,自然数集合上的小于关系,集合的幂集上的真包含关系
- R是非反自反的 ⇔∃x(x∈A∧xRx)

反自反性举例

非反自反

定理

- 定理:
 - R是反自反的
 - $\Leftrightarrow I_{\Delta} \cap R = \emptyset$
 - ⇔ R-1是反自反的
 - ⇔M(R)主对角线上的元素全为0
 - ⇔ G(R)的每个顶点处均无环. #

自反性与反自反性

(自反且反自反: Ø上的空关系)

存在非自反且非反自反的关系: R={<1,1>, <2,2>, <3,1>, <3,2>}

对称性(symmetry)

- R⊂A×A
- R是对称的 ⇔

 $\forall x \forall y (x \in A \land y \in A \land xRy \rightarrow yRx)$

- $\Leftrightarrow (\forall x \in A)(\forall y \in A)[xRy \rightarrow yRx]$
- 例: 非空集合上的全域关系(对称、非反对称)、恒等关系
- R是<mark>非对称的</mark> ⇔ ∃x∃y(x∈A∧y∈A∧xRy∧¬yRx)

10

对称性举例

定理

• 定理:

R是对称的

- **⇔** R⁻¹=R
- ⇔ R-1是对称的
- ⇔ M(R)是对称的
- ⇔ G(R)的任何两个顶点之间若有边,则 必有两条方向相反的有向边. #

12

反对称性(anti-symmetry)

- R⊂A×A
- R是反对称的 ⇔

 $\forall x \forall y (x \in A \land y \in A \land x R y \land y R x \rightarrow x = y)$

- $\Leftrightarrow (\forall x \in A)(\forall y \in A)[xRy \land yRx \rightarrow x=y]$
- 例:非空集合上的恒等关系、空关系, 正整数集合上的整除关系小于等于关系、 小于关系(反对称,但非对称)
- R非反对称 ⇔∃x∃y(x∈A∧y∈A∧xRy∧yRx∧x≠y)

2

定理

- 定理: R是反对称的
- $\Leftrightarrow R^{-1} \cap R \subseteq I_{\Delta}$
- ⇔ R-1是反对称的
- ⇔在M(R)中,∀i∀j(i≠j∧r_{ij}=1→r_{ji}=0)
- ⇔在G(R)中, ∀a_i∀a_j(i≠j),若有有向边<a_i,a_j>,则 必没有<a_i,a_i>. #

传递性(transitivity)

- R⊆A×A
- · R是传递的 ⇔

 $\forall x \forall y \forall z (x \in A \land y \in A \land z \in A \land xRy \land yRz \rightarrow xRz)$ $\Leftrightarrow (\forall x \in A)(\forall y \in A)(\forall z \in A)[xRy \land yRz \rightarrow xRz]$

• R非传递 ⇔ ∃x∃y∃z(x∈A∧y∈A∧z∈A∧xRy∧yRz∧¬xRz)

7

传递性举例 传递 非传递 非传递

定理

- 定理:
 - R是传递的
- ⇔ RoR⊆R ⇔ R-1是传递的
- $\Leftrightarrow \forall i \forall j, M(RoR)(i,j) \leq M(R)(i,j)$
- ⇔ 在G(R)中, ∀a_i∀a_j∀a_k, 若有有向边<a_i,a_j>和 <a_j,a_k>, 则必有有向边<a_i,a_k>.

在N={0,1,2,...}上

- ≤={<x,y>|x∈N∧y∈N∧x≤y}自反,反对称,传递
- ≥={<x,y>|x∈N∧y∈N∧x≥y}自反,反对称,传递
- <={<x,y>|x∈N∧y∈N∧x<y}反自反,反对称,传递
- >={<x,y>|x∈N∧y∈N∧x>y}反自反,反对称,传递
- D={<x,y>|x∈N∧y∈N∧x|y}反对称,传递(¬0|0)
- I_N={<x,y>|x∈N∧y∈N∧x=y}自反,对称,反对称,传递
- E_N={<x,y>|x∈N∧y∈N}=N×N自反,对称,传递.

Marine 11 Villa

例

A={a,b,c}
 R₁={<a,a>,<a,b>,<b,c>,<a,c>},
 R₂={<a,a>,<a,b>,<b,c>,<c,a>},
 R₃={<a,a>,<b,b>,<a,b>,<b,a>,
 <c,c>},
 R₄={<a,a>,<a,b>,<b,b>,<c,c>},
 R₅={<a,a>,<a,b>,<b,b>,<c,c>},
 R₆={<a,b>,<b,a>,<b,c>,<a,a>},

22

关系性质与关系运算

• 定理: $R_1,R_2\subseteq A\times A$ 具有某些共同性质。经过 运算后是否能保持原性质?

	自反	反自反	对称	反对称	传递			
R ₁ ⁻¹ , R ₂ ⁻¹	1	1	1	√ ₍₄₎	1			
$R_1 \cup R_2$	1	1	1					
$R_1 \cap R_2$	1	√ ₍₂₎	1	1	√ ₍₅₎			
$R_1 \circ R_2$, $R_2 \circ R_1$	$\sqrt{(1)}$							
			- 34		10.19			
R_1-R_2 , R_2-R_1	Marie and	1	√ ₍₃₎	1	/a.s			
~R ₁ ,~R ₂		. 100	√ ₍₃ ')		27			

关系性质判别

•	自反性	反自反 性	对称性	反对称性	传递性
表达 式	$I_A \subseteq R$	$R \cap I_A = \emptyset$	$R=R^{-1}$	$R \cap R^{-1} \subseteq I_A$	R∘R⊆R
关系 矩阵	主对角 线元素 全是1	主对角 线元素 全是0	矩阵是对称 矩阵	若r _{ij} =1,且 i≠j,则r _{ji} =0	对M ² 中1所在 位置,M中相 应位置都是1
关系 图	每个顶 点都有 环	每个顶 点都没 有环	如果两个顶 点之间有边, 一定是一对 方向相反的 边(无单边)	如果两点之间有边,一定是一条有向边(无双向边)	如果顶点 x_i 到 x_i 有边, x_j 到 x_k 有边,则从 x_i 到 x_k 也有边

定理(1)证明

- · R₁,R₂自反⇒R₁oR₂自反
- 证明: ∀x,

x∈A

 $\Rightarrow xR_1x \wedge xR_2x$

 $\Rightarrow xR_1oR_2x$

 $:: R_1, R_2$ 自反 $\Rightarrow R_1 \circ R_2$ 自反.

定理(2)证明

- R_1, R_2 反自反 $\Rightarrow R_1 \cap R_2$ 反自反
- 证明: (反证) 若R₁∩R₂非反自反,则 $\exists x \in A$,

 $x(R_1 \cap R_2)x$

 $\Leftrightarrow xR_1x \wedge xR_2x$

与R₁,R₂反自反矛盾!

 $: R_1, R_2$ 反自反 $\Rightarrow R_1 \cap R_2$ 反自反. #

定理(3)证明

- R₁,R₂对称 ⇒ R₁-R₂对称
- 证明: ∀x,y∈A,

 $x(R_1-R_2)y$

 $\Leftrightarrow xR_1y \wedge \neg xR_2y$

 \Leftrightarrow yR₁x $\land \neg$ yR₂x (R₁,R₂对称)

 $\Leftrightarrow y(R_1-R_2)x$

∴ R₁,R₂对称 ⇒ R₁-R₂对称.

定理(3′)证明

- R₁对称 ⇒ ~R₁对称
- 证明: ∀x,y∈A,

 $x(^R_1)y$

 $\Leftrightarrow x(E_{\Delta}-R_{1})y \Leftrightarrow xE_{\Delta}y \wedge \neg xR_{1}y$

 \Leftrightarrow yE_Ax $\land \neg$ yR₁x \Leftrightarrow y(E_A-R₁)x (E_A,R₁对称)

 \Leftrightarrow y($^{\sim}R_1$)x

:. R₁对称 ⇒ ~R₁对称.

定理(4)证明

- R_1 反对称 $\Rightarrow R_1^{-1}$ 反对称
- 证明: (反证) 若R₁⁻¹非反对称,则∃x,y∈A,

 $xR_1^{-1}y \wedge yR_1^{-1}x \wedge x\neq y$

 \Leftrightarrow yR₁x \wedge xR₁y \wedge x \neq y

与R₁反对称矛盾!

∴ R₁反对称 ⇒ R₁-¹反对称. #

定理(5)证明

- R₁,R₂传递 ⇒ R₁∩R₂传递
- ・证明: ∀x,y,z∈A, x(R₁∩R₂)y∧y(R₁∩R₂)z
 - $\Leftrightarrow (xR_1y \land xR_2y) \land (yR_1z \land yR_2z)$
 - $\Leftrightarrow (xR_1y \land yR_1z) \land (xR_2y \land yR_2z)$
 - $\Rightarrow xR_1z \land xR_2z \Leftrightarrow x(R_1 \cap R_2)z$
- ∴ R₁,R₂传递 ⇒ R₁∩R₂传递.#

小结

• 自反,反自反,对称,反对称,传递

