Tutorial 1

Last Updated:

May 21, 2024

In this tutorial, we examine the uniform distribution U[0,1]. Its cumulative distribution function is

$$F_U(x) = egin{cases} 0 & x \leq 0 \\ x & x \in (0,1) \\ 1 & x \geq 1 \end{cases}$$

Problem 1. Find the probability density function $f_U(x)$. $\[\]$ Added after $\[\]$

$$f(x) = f'(x)$$
if $x < 0$: $f(x) = \frac{d}{dx}0 = 0$
if $x \in (0,1)$: $f(x) = \frac{d}{dx}(x) = 1$
if $x > 0$: $f(x) = \frac{d}{dx}1 = 0$

F not differentiable f(0) = f(1) = 0 can be arbitrarily defined.

Problem 2. Find the expectation of U.

$$E(U) = \int_{-\infty}^{\infty} z \cdot f(x) dx.$$

$$= \int_{-\infty}^{0} z f(x) dx + \int_{0}^{1} z f(x) dx + \int_{1}^{\infty} z f(x) dx.$$

$$= \int_{-\infty}^{0} z \cdot 0 dx + \int_{1}^{1} z \cdot 1 dx + \int_{1}^{\infty} z \cdot 0 dx.$$

$$= \int_0^1 x \cdot 2 dx = \frac{1}{2} \chi^2 \Big|_0^1 = \frac{1}{2} (1^2 - 0^2) = \frac{1}{2}$$

One way of computing the variance is $Var(X) = E[(X - \mu)^2]$ where μ is the expectation.

Problem 3. Compute the variance of U.

$$E[(U-\frac{1}{2})] = \int_{0}^{2} (x-\frac{1}{2})^{2} f(x) dx$$

$$= \int_{0}^{2} (x-\frac{1}{2})^{2} \cdot 1 dx.$$

$$= \frac{1}{3} (x-\frac{1}{2})^{3} \Big|_{0}^{1}$$

$$= \frac{1}{3} ((\frac{1}{2})^{3} + (\frac{1}{2})^{3}) = \frac{1}{3} \cdot \frac{1}{4} = \frac{1}{12}$$

The moment generating function for a random variable X is defined to be $M_X(t) = E[e^{tX}]$, whenever the expectation is finite. Recall that

$$E[g(x)] = \int_{-\infty}^{\infty} g(x)f(x) \, \mathrm{d}x$$

when X has density f.

Problem 4. Compute the moment generating function of U.

if the
$$M_{t}(u) = E[e^{t \cdot u}] = \int_{0}^{1} e^{t \cdot x} \cdot 1 \, dx$$
.

$$= \frac{1}{t} e^{t \cdot x} \Big|_{0}^{1} = \frac{1}{t} e^{t} - \frac{1}{t} \cdot 1$$

$$= \frac{1}{t} e^{t} \cdot 1 \, dx$$

The moment generating function gets its name because it "generates the moments". Write

$$e^{tX} = 1 + tX + \frac{t^2X^2}{2!} + \frac{t^3X^3}{3!} + \dots$$

Since expectation is linear, we have

$$M_X(t) = E[e^{tX}] = 1 + tE[X] + \frac{t^2}{2!}E[X^2] + \frac{t^3}{3!}E[X^3] + \dots$$

$$M_{X}'(0) = E[X]$$
 Not suitable for this problem
$$M_{X}''(0) = E[X^{2}]$$

5.
$$M_{t}(u) = \begin{cases} \frac{e^{t}-1}{t} & t \neq 0 \\ 1 & t = 0. \end{cases}$$

$$\frac{e^{t}-1}{1} = (1+\frac{t}{1!}+\frac{t^{2}}{2!}+\frac{t^{3}}{3!}...-1)/t = \frac{t^{0}}{1!}+\frac{t^{1}}{2!}+\frac{t^{2}}{3!}...$$

Problem 5. Compute the second moment of U using the method above, and compute again the variance using the formula $Var(X) = E[X^2] - E[X]^2$.

compute again the variance using the formula
$$Var(X) = E[X] - E[X]$$
.

$$E[U^2] = \frac{1}{3} \text{ by matching coefficients.} = 1 + \frac{t}{1!} \cdot \frac{1}{2} + \frac{t}{2!}$$

$$Var[U] = E[U^2] - E[U]^2$$

$$= \frac{1}{3} - (\frac{1}{2})^2 = \frac{1}{3} - \frac{1}{4} = \frac{1}{12}.$$

$$E[U^2] = \int_0^1 x^2 dx = \frac{1}{3}x^2 \Big|_0^1 = \frac{1}{3}.$$

We wish to establish an easy version of distributional transform of a random variable X, which constructs a random variable from [0,1] to \mathbb{R} with the same distribution as X. Intuitively, this sorts the values of X in increasing order without changing probabilities.

However there are some technical difficulties we need to address first.

Problem 6. Let X be any random variable, and F_X be its cumulative distribution function. Show that $F_X : \mathbb{R} \to [0,1]$ is never bijective.

suppose
$$Fx$$
 is not surjective: It is not bijective. else, suppose Fx is $Surjective: Fx $C \in IR: Fx(C) = 1$. But Fx is increasing. $Fx(C + \frac{1}{2}) = 1$. Fx is not injective here not bijective.$

One way to fix this issue is to define $F_X: \mathbb{R} \cup \{\pm \infty\} = \bar{\mathbb{R}} \to [0,1]$ instead. We assume that F_X is bijective and let $Q_X: [0,1] \to \bar{\mathbb{R}}$ be its inverse. Note that Q_X must be strictly increasing.

Inverse
$$F_x \cdot Q_x = id[Q,i]$$
 $F_x(Q_x(z)) = x + x \in L_{0,1}$
 $Q_x \circ F_x = id(|\overline{R}|)$ $Q_x(F_x(y)) = y + y \in \overline{R}$
 F_x^{-1} F_x

Problem 7. Show that $Q_X(U)$ has the same distribution as X. That is, they have the same cumulative distribution function.

Let G be the coff of
$$Q_{x}(u)$$

 $G(x) = Pr(Q_{x}(u) \le x)$
 $= Pr(Q_{x}^{-1}Q_{x}(u) \le Q_{x}^{-1}(x)) (Q_{x}^{-1} \text{ strictly increasing})$
 $= Pr(u \le F_{x}(x))$
 $= F_{x}(x)$

Problem 8. Let X,Y be normal random variables with mean 0 and variances $\sigma_X^2=1$ and $\sigma_Y^2=2$. Let $X'=Q_X(U)$ and $Y'=Q_Y(U)$. Find the conditional probabilities $P(X'\geq 1|Y'\geq 1)$ and $P(Y'\geq 1|X'\geq 1)$.

Solution: Let
$$\Phi$$
 be the cof of $N(0,1)$

$$P(Y>1) = P(Y \leq -1) = P(Y/\sqrt{2} \leq 1/\sqrt{2})$$

$$= \Phi(-1/\sqrt{2})$$

$$P(X>1) = P(X \leq -1) = \Phi(-1) < \Phi(-1/\sqrt{2})$$
So $F_Y(1) < F_X(1)$