Solution partielle série 2

Andrey Martinez Cruz

Table des matières

1	Exe	Exercise 1 Exercise 3																2								
2	Exe																3									
3	Exercise 5															4										
	3.1	Question A																								4
	3.2	Question B																								4
	3.3	Question C																								5
	3.4	Question D																								5
	3.5	Question E																								5

1 Exercise 1

Pour démontrer que

$$f(n) + g(n) \in \Theta(\max(f(n), g(n))) \tag{1}$$

il faut démontrer que

$$f(n) + g(n) \in \mathcal{O}(\max(f(n), g(n))) \land f(n) + g(n) \in \Omega(\max(f(n), g(n)))$$
 (2)

Une façon de réprésenter celà est la suivante :

$$C_1 \max(f(n), g(n)) \le f(n) + g(n) \le C_2 \max(f(n), g(n))$$
 (3)

où C_1 et C_2 sont des constantes.

Démontrons d'abord que $f(n)+g(n) \in \mathcal{O}(\max(f(n),g(n)))$. Pour essayer de voir pair de constantes c et x telle que $f(n)+g(n) \leq c \cdot \max(f(n),g(n)), \forall n,n>x$ respecte cette inéquation, on peut essayer de voir ce qui se passe si la fonction qui grossit le plus vite est f(n) et g(n).

Pour f(n), si $f(n)+g(n)\in\mathcal{O}(f(n))$, alors on pourrait s'attendre que $\max(f(n),g(n))=f(n)$ et donc,

$$f(n) \le c \cdot f(n)$$
 est vrai pour $c = 1$ et $x = 0$.

Dans le cas de g(n), si $f(n) + g(n) \in \mathcal{O}(g(n))$, alors $\max(f(n), g(n)) = g(n)$ et donc,

$$q(n) < c \cdot q(n)$$
 est vrai pour $c = 1$ et $x = 0$.

Dans le cas, où on ne peut pas départager c'est qui qui grossit plus vite, on a l'inéquation suivante :

$$f(n) + g(n) \le \max(f(n), g(n))$$

Sachant que la partie de droite de l'inéquation est composée de deux parties, on peut faire de même pour la partie gauche ce qui donne :

$$f(n) + g(n) \le \max(f(n), g(n)) + \max(f(n), g(n))$$

$$f(n) + g(n) \le 2 \times \max(f(n), g(n))$$

En faisant cela, on obtient une constante c=2 et cette inéquation est vraie pour x=0 et pour tout n>0. Donc, cela démontre que $f(n)+g(n)\in \mathcal{O}(\max(f(n),g(n)))$.

Démonstrons que $f(n) + g(n) \in \Omega(\max(f(n), g(n)))$. Essayons de voir ce qui se passe dans le cas où $\max((f(n), g(n))) = f(n)$ et dans le cas où c'est g(n).

1. f(n):

$$f(n) + g(n) \ge c \cdot \max(f(n), g(n))$$

$$f(n) + g(n) \ge c \cdot f(n)$$

$$1 + \frac{g(n)}{f(n)} \ge 1$$

L'inéquation est respecté pour c = 1 et x = 0 telle que n > x.

 $2. \ g(n) :$

$$f(n) + g(n) \ge c \cdot \max(f(n), g(n))$$

 $f(n) + g(n) \ge c \cdot g(n)$

 $\frac{f(n)}{g(n)}+1\geq 1$ L'inéquation est respecté pour c=1 et x=0 telle que n>x.

En ayant analysé les deux cas, l'inéquation suivante :

$$f(n) + g(n) \ge c \cdot \max(f(n), g(n)) \tag{4}$$

est vraie aussi avec c=1 et x=0 telle que n>x. Donc, cela démontre que $f(n)+g(n)\in\Omega(\max(f(n),g(n)))$. La grosse inéquation est aussi bel et bien respectée avec les constantes $C_1=1$ et $C_2=2$ pour tout n>0 si on reprend les constantes trouvées dans les démonstrations précédentes. En ayant démontré que $f(n)+g(n)\in\mathcal{O}(\max(f(n),g(n)))$ et $f(n)+g(n)\in\Omega(\max(f(n),g(n)))$ soient vraies, alors cela démontre que $f(n)+g(n)\in\Theta(\max(f(n),g(n)))$.

2 Exercise 3

Supposant que $x = a^{\log_b(n)}$ et $y = n^{\log_b(a)}$. En se fiant au fait que le fonction $\log_b(x)$ est injective si et seulement si x = y pour $\log_b(x) = \log_b(y)$, on peut substituer x et y dans l'équation ci-haut.

$$\log_b(x) = \log_b(y)$$

$$\log_b(a^{\log_b(n)}) = \log_b(n^{\log_b(a)})$$
$$\log_b(n)\log_b(a) = \log_b(a)\log_b(n)$$
$$\log_b(n) = \log_b(n)$$

3 Exercise 5

3.1 Question A

Pour savoir si cette énoncé est vrai, on peut essayer de démontrer que $2n \in \Theta(n)$. Pour démontrer cela, il faut d'abord démontrer que $2n \in \mathcal{O}(n)$ et $2n \in \Omega(n)$.

Démontrons d'abord que $2n \in \mathcal{O}(n)$.

$$2n < c \cdot n$$

L'inéquation est vrai pour c=2 pour tout n>0. Donc, $2n\in\mathcal{O}(n)$.

Démontrons maintenant que $2n \in \Omega(n)$.

$$2n > c \cdot n$$

Cette inéquation est vraie pour c=1 pour tout n>0. Donc, $2n\in\Omega(n)$. Par conséquent, en ayant démontré que $2n\in\mathcal{O}(n)$ et $2n\in\Omega(n)$, alors, $2n\in\Theta(n)$. En ayant démontré cela, on peut faire aussi conclure que $n\in\Theta(2n)$. En conclusion, l'énoncé est vrai.

3.2 Question B

Essayons de trouver des constantes c et x telle que

$$\left(\frac{n}{\log(n)}\right)^{2} < c \cdot \left(\frac{n^{2}}{\log(n)}\right), \forall n, n > x$$

$$\frac{n}{\log^{2}(n)} < c \cdot \frac{n^{2}}{\log(n)}$$

$$\frac{n^{2} \times \log(n)}{\log^{2}(n)} < c \cdot \frac{n^{2} \times \log(n)}{\log(n)}$$

$$\frac{n^{2}}{\log(n)} < n^{2}$$

$$\frac{n^{2} \times \log(n)}{\log(n)} < c \cdot n^{2} \times \log(n)$$

$$\frac{n^{2} \times \log(n)}{\log(n)} < c \cdot n^{2} \times \log(n)$$
(5)

$$n^2 < c \cdot n^2 \log(n)$$

Cette inéquation est vraie pour c=1 et x=2 telle que n>x. Donc cela démontre que $(\frac{n}{\log(n)})^2\in l(\frac{n^2}{\log(n)})$

3.3 Question C

L'énoncé de cette question est fausse, car $\sqrt{n}=n^{\frac{1}{2}}$ et la définition ω signifie que $n^{\frac{1}{2}}$ grossit strictement plus vite que lui-même. Ce qui est contradictoire à la définition de ω .

3.4 Question D

Afin de vérifier si l'énoncé est vrai, on peut déjà simplifier la fonction $\log(4^n)$ qui se simplifie en $n \log(4) = 2n$. Or, $2n \in \Theta(n)$. Et donc, cet énoncé est vraie.

3.5 Question E

Essayons de démontrer cet énoncé en supposant que c'est vrai. Si l'énoncé savère vrai, alors il des constantes c et x telle que $2^n \ge c \times 3^n$ pour $\forall n, n > x$.

$$2^{n} \ge 3^{n}$$

$$\sqrt[n]{2} \ge \sqrt[n]{3}$$

$$2 \ge 3$$

Or, on aboutit à une contradiction, car 2 ne peut pas jamais être plus grand ou égale à 3 et donc, il n'existe pas de c et x qui satisfait l'équation et par conséquent, l'énoncé est faux.