B.1 Basic definitions: Perceptron, MLP

Perceptron (McCulloch-Pitts neuron)

Perceptron has very limited learning capacity. For example, cannot learn XOR.

$$\hat{y} = f(\theta^T \mathbf{x})$$

$$f(x) = \begin{cases} 1 & \text{if } x > 0 \\ 0 & \text{if } x < 0 \end{cases}$$
 (Heaviside function)

Problem of linearly separable two-class classification task

$$\theta^T \mathbf{x} > 0$$
, if \mathbf{x} is of class 0

$$\theta^T \mathbf{x} < 0$$
, if \mathbf{x} is of class 1

Training procedure (perceptron rule)

$$\theta^{(i)} = \theta^{(i-1)} + \alpha_i \sum_{\mathbf{x}_n \in M} y_n \mathbf{x}_n$$

M – misclassified examples

B.1 Basic definitions: Perceptron, MLP

Perceptron (McCulloch-Pitts neuron)

$$\hat{y} = f(\theta^T \mathbf{x})$$
$$\dim(\mathbf{x}) = 2$$

Let's make better representation of input data:

- 1) Convert to another feature space.
- 2) Perform linear classification.

B.1 Basic definitions: Perceptron, MLP

Feed-forward multilayer neural network (MLP)

Input layer

Logistic regression models stacked on top of each other with the final layer being regression / classification model.

$$tanh(x) = \frac{exp(2x) - 1}{exp(2x) + 1} \qquad sigm(x) = \frac{1}{1 + exp(-x)}$$

ReLU(x) = max(0, x)

faster than exp!

B.2 Basic definitions: Universality of NNs

Perceptron making NAND gate

Х	Y	X Y
0	0	1
0	1	1
1	0	1
1	1	0

Provides basis for the rest of boolean functions of two variables (NAND gate is universal).

=> We can use combination of perceptrons to calculate any boolean function.

B.2 Basic definitions: Universality of NNs

MLP can approximate any function

Consider NN with one hidden layer (K neurons), single output neuron and activation f:

$$OUT(\mathbf{x}) = \sum_{k=1}^{K} c_k f(\theta^T \mathbf{x}) + c_0$$
 (1)

f(z) is non-constant, bounded and monotonically-increasing function.

Theorem:

Let $g(\mathbf{x})$ be a continuous function defined in a compact subset $\mathbf{S} \subset \mathbf{R}^n$ and any $\varepsilon > 0$. Then there is a two layer network with $K(\varepsilon)$ hidden nodes of the form (1), so that:

$$|g(\mathbf{x}) - \text{OUT}(\mathbf{x})| < \varepsilon \ \forall \ \mathbf{x} \in \mathbf{S}$$
 (2)

B.3 Basic definitions: NN structure for MNIST

Using MLP for solving MNIST task

Why 10 neurons in output layer?

Viable options:

- a) 1 neuron (regression)
- b) 4 neurons (binary code)
- c) 10 neurons (for each numeral)

Softmax activation function for output layer:

$$\hat{y}_{nk} = \frac{\exp(z_{nk})}{\sum_{k=1}^{d} \exp(z_{nk})}$$

^{*} Picture from http://neuralnetworksanddeeplearning.com/chap1.html

D.1 Training NNs: Overview and SGD

Gradient descent:

$$\theta^{(i)} = \theta^{(i-1)} - \alpha_i \nabla_{\theta} L(Y, f(\mathbf{X}, \theta))$$

Stochastic gradient descent algorithm (SGD):

SGD updates parameters after each example (online learning):

- 1. Initialize θ
- 2. For each training example (y_n, x_n) do (= one epoch):

$$\theta \leftarrow \theta - \alpha \nabla_{\theta} L(y_n, f(\mathbf{x}_n, \theta))$$

3. Repeat until stop criterion is met

Naïve approach: let's find derivatives numerically!

Much much slower.. Full forward pass for each parameter is needed.

$$\frac{\partial L}{\partial \omega_i} \approx \frac{L(\omega_i + \varepsilon) - L(\omega_i)}{\varepsilon}$$
 and same for each parameter (millions of them).

Backpropagation algorithm (BP):

Idea: let's use chain rule in order to calculate derivatives (θ is a vector!):

$$\frac{\partial}{\partial \theta} L(y_n, f(\mathbf{x}_n, \theta)) = \underbrace{\frac{\partial L(y_n, f)}{\partial f} \frac{\partial f(\mathbf{x}_n, \theta)}{\partial \theta}}_{\text{EASY!}} \underbrace{\frac{\partial L(y_n, f)}{\partial \theta}}_{\text{HARD...}}$$

Backpropagation algorithm (BP) – notations:

 ω_{jk}^l - weight for the connection from the k^{th} neuron in the $(l-1)^{th}$ layer to the j^{th} neuron in the l^{th} layer.

 b_j^l - bias for j^{th} neuron in the l^{th} layer.

 a_j^l - activation of the j^{th} neuron in the l^{th} layer.

$$a_j^l = \sigma \left(\sum_k \omega_{jk}^l a_k^{l-1} + b_j^l \right)$$

Backpropagation algorithm (BP) – matrix notations:

Same in matrix form:

 $\omega_{jk}^l o \omega^l$ - weight matrix for the l^{th} layer

 $b_i^l \rightarrow b^l$ - bias vector for the l^{th} layer.

 $a_j^l \rightarrow a^l$ - activation vector for the l^{th} layer.

 $z^{l} = \omega^{l} a^{l-1} + b^{l}$ (weighted input)

 $a^l = \sigma(z^l)$ (element-wise)

=> Use ext. libraries for fast matrix calculation.

Backpropagation algorithm (BP) – easy part:

 $a^{L}(\mathbf{x}_{n}) = f(\mathbf{x}_{n}, \theta)$ – activation of neurons of L^{th} layer.

And let's find derivative of loss function first:

And let's find derivative of loss function first:
$$\frac{\partial L(y_n, f)}{\partial f} = \frac{1}{2N} \frac{\partial}{\partial f} \sum_{n=1}^{N} (f(\mathbf{x_n}, \theta) - y_n)^2 = \frac{1}{2N} \frac{\partial}{\partial a^L} \sum_{n=1}^{N} (a^L(\mathbf{x_n}) - y_n)^2 = \frac{1}{N} \sum_{n=1}^{N} (a^L(\mathbf{x_n}) - y_n)$$

Definition

Hadamar product of matrices:

$$(A \circ B)_{ij} = A_{ij}B_{ij}$$

Backpropagation algorithm (BP) - formulas:

More complex task: Calculating $\frac{\partial a^L}{\partial \theta}$, where θ are weights ω_{jk}^l and biases b_j^l .

Let's introduce auxiliary quantities:

$$\delta_j^l \equiv \frac{\partial L}{\partial z_j^l} \qquad \text{(error on } l^{th} \text{ layer)}$$

$$\sigma(x) = \frac{1}{1 + \exp(-x)}$$

$$\sigma'(x) = \sigma(x)(1 - \sigma(x))$$

May cause slow learning if neuron is "saturated" (activation is close to 0 or 1)

Equation #1:

$$\delta_j^L = \frac{\partial L}{\partial a_j^L} (\sigma'(z_j^L))$$
 or in matrix notations: $\delta^L = \frac{\partial L}{\partial a^L} \circ \sigma'(z^L)$

Proof: just apply chain rule.

Backpropagation algorithm (BP) – formulas:

Equation #2:

$$\delta_j^l = \sum_k \omega_{kj}^{l+1} \delta_k^{l+1} \, \sigma'(z_j^l) \qquad \text{or in matrix notations: } \delta^l = \left(\left(\omega^{l+1} \right)^T \delta^{l+1} \right) \circ \sigma'(z^l)$$

Proof:

$$\delta_j^l \equiv \frac{\partial L}{\partial z_j^l} = \sum_k \frac{\partial L}{\partial z_k^{l+1}} \frac{\partial z_k^{l+1}}{\partial z_j^l} = \sum_k \frac{\partial z_k^{l+1}}{\partial z_j^l} \delta_k^{l+1} = \sum_k \omega_{kj}^{l+1} \sigma'(z_j^l) \delta_k^{l+1}$$

Use definition of z_{j}^{l} to make the last transition:

$$z^l = \omega^l a^{l-1} + b^l$$

Backpropagation algorithm (BP) – formulas:

$$\frac{\textbf{Equation #3}}{\frac{\partial L}{\partial b_j^l} = \delta_j^l} \quad \text{or in matrix notations: } \frac{\partial L}{\partial b^l} = \delta^l$$

Proof:

$$\frac{\partial L}{\partial b_j^l} = \frac{\partial L}{\partial z_j^l} \frac{\partial z_j^l}{\partial b_j^l} = \delta_j^l * 1 = \delta_j^l$$

Equation #4:

$$\frac{\partial L}{\partial \omega_{jk}^l} = a_k^{l-1} \delta_j^l \qquad \text{or in matrix notations: } \frac{\partial L}{\partial \omega^l} = a^{l-1} \delta^l$$

Proof:

$$\frac{\partial L}{\partial \omega_{ik}^{l}} = \frac{\partial L}{\partial z_{i}^{l}} \frac{\partial z_{j}^{l}}{\partial \omega_{ik}^{l}} = a_{k}^{l-1} \delta_{j}^{l}$$

Backpropagation algorithm (BP) – pseudocode 1:

Given: input x

Forward pass:

$$z^{1} = \omega^{1} \mathbf{x} + b^{1} \qquad \text{for } l = 1$$

$$a^{1} = \sigma(z^{1}) \qquad \text{for } l = 1$$

$$z^{l} = \omega^{l} a^{l-1} + b^{l} \qquad \text{for } l > 1$$

$$a^{l} = \sigma(z^{l}) \qquad \text{for } l > 1 \text{ till } l = L$$

Backpropagation algorithm (BP) – pseudocode 2:

Given: input x

Backward pass:

$$\delta^L = \frac{\partial L}{\partial a^L} \circ \sigma'(z^L) \qquad \text{for } l = L$$

$$\delta^{l} = \left(\left(\omega^{l+1} \right)^{T} \delta^{l+1} \right) \circ \sigma'(z^{l}) \qquad \text{for } l < L$$

Using derivatives calculated above:

$$\frac{\partial L}{\partial p^l} = \delta^l$$
 biases

$$\frac{\partial L}{\partial \omega^l} = a^{l-1} \delta^l \qquad \text{weights}$$