

Open System and Chemical Potential

Susmita Roy

d5≥0

Equilibrium condition in terms of system properties

	Thermodynamic state of system	Thermodynamic potential	Condition of equilibrium in terms of	
			Reservoir properties	System properties
Isolated system	S, V, N	U = U(S, V, N)		Minimization of <i>U</i>
System + Thermostat	T , V , N	F = U - TS	$T_{sys} = T_{res}$	Minimization of F
System + Thermostat + Barostat	T, p, N	G = U - TS + pV	$T_{sys} = T_{res}$ $p_{sys} = p_{res}$	Minimization of <i>G</i>

Free energy: Amount of energy that is free to do external work

$$A = U - TS$$
 and $G = H - TS$

Types of Equilibrium

Thermal Equilibrium

Mechanical Equilibrium

Material Equilibrium

©P.W. Atkins and Julio de Paula, Physical Chemistry, 8th Edition

Equilibrium State of an Open System

System	Wall			Equilibrium state
Open	Diathermal	Flexible	Permeable	Τ, p , μ _k

Equilibrium State of an Open System

System		Equilibrium state		
Open	Diathermal	Rigid	Permeable	Τ, V, μ
		Flexible		Τ, p, μ
Closed	Diathermal	Rigid	Impermeable	T, V, N_{ϵ}
	Diathermal	Flexible	Impermeable	T, p, N
Isolated	Adiabatic	Rigid	Impermeable	U, V, N Or S, V, N

General Definition of Chemical Potential

• Chemical potential, μ_i is the rate of change of the thermodynamic potential with respect to change in number of particles, n_i of type i (i=1,M)

$$dU = T dS - p dV + \sum_{i=1}^{M} \mu_{i} dn_{i} \quad \Rightarrow \mu_{i} = \left(\frac{\partial \mathbf{U}}{\partial n_{i}}\right)_{S,V,n_{j \neq i}}$$

$$dH = T dS + V dp + \sum_{i=1}^{M} \mu_{i} dn_{i} \quad \Rightarrow \mu_{i} = \left(\frac{\partial \mathbf{H}}{\partial n_{i}}\right)_{S,p,n_{j \neq i}}$$

$$dF = -S dT - p dV + \sum_{i=1}^{M} \mu_{i} dn_{i} \quad \Rightarrow \mu_{i} = \left(\frac{\partial \mathbf{F}}{\partial n_{i}}\right)_{T,V,n_{j \neq i}}$$

$$dG = -S dT + V dp + \sum_{i=1}^{M} \mu_{i} dn_{i} \quad \Rightarrow \mu_{i} = \left(\frac{\partial \mathbf{G}}{\partial n_{i}}\right)_{T,p,n_{j \neq i}}$$

Most common formulae of Chemical Potential

Commonly used definition of chemical potential

$$\mu_i = \left(\frac{\partial G}{\partial n_i}\right)_{T,p,n_{j\neq i}}$$

$$dG = -S dT + V dp + \sum_{i=1}^{M} \mu_i dn_i$$

$$G = G(T, p, n_1, n_{2, \cdots}, n_M)$$

•Thank you all!

