0.1 Definition

A **category** consists of the following:

- A class of objects obC
 if obC is a set, this is a small category
- For any objects A, B ∈ C
 a set hom_C(A,B) of morphisms f : A → B
 i.e. a homset from A to B
- For each object *A* a morphism *id_A* : *A* → *A*
 i.e. an identity morphism for every object
- For any objects *A*, *B*, *C* and morphisms *f* : *A* → *B* and *g* : *B* → *C* the **composition** is *f*;_{*A*,*B*,*C*} *g* : *A* → *C* (also written *g* ∘ *f*, the subscripts for (;) are required but sometimes shorthanded) such that:
 - For any objects A, B and f: A → B
 id_A; f = f = f; id_B [i.e. composing the identity with f equals f]
 For any objects A, B, C, D and morphisms f: A → B and g: B → C and
 - $h: C \to D$ f; (g; h) = (f; g); h [i.e. composition is associative]

0.2 Examples

0.2.1 The category of sets, Set

- An object is a set
- A morphism $A \to B$ is a function, the homset contains all function definitions as well as undefinable ones
- The identity id_A is the identity function $x \mapsto x$
- The composite $A \xrightarrow{f} B \xrightarrow{g} C$ is the composition of a function $[x \mapsto g(f(x))]$

0.2.2 The category of matrices, Mat

- An object is a natural number $n \in \mathbb{N}$
- The morphisms $m \to n \in hom(m,n)$ are all $m \times n$ matrices (m rows, n cols). i.e. every morphism is a collection of field elements (t_i^j) where i runs from 0 to m-1 and j from 0 to n-1.

- The identity id_n is the identity matrix of $n \times n$ (morphism $n \to n$) such that it acts as the identity for matrix multiplication
- The composite of $(s_i^j): m \to n \in hom(m, n)$ and $(t_j^k): n \to p \in hom(p, m)$ is matrix multiplication where the product $(s_i^j; t_i^k): m \to p \in hom(p, m)$ is

$$(s_i^j \mid \substack{i < m \ j < n}) (t_j^k \mid \substack{j < n \ k < p}) = (\sum_{j < n} s_i^j t_j^k \mid \substack{i < m \ k < p})$$

0.2.3 The category of towns in Britain

- An object is a town in Britain
- The morphisms $A \to B \in hom(A, B)$ are all routes from A to B. i.e. a finite sequence (list) of adjacent towns.
- The identity id_A is a route from a town A to itself which consists of a single element A.

i.e. the identity always is a list of length 1.

• The composite of $f: A \to B$ and $g: B \to A$ is the concatenations of the routes f and g.

e.g. if
$$f = [A, A_1, A_2, A_3, B]$$
 and $g = [B, B_1, B_2, B_3, C]$ then $f; g = [A, A_1, A_2, A_3, B, B_1, B_2, B_3, C]$

0.3 Homework Examples

0.3.1 The category of groups and group homomorphisms, Grp

- An object is a group
- The morphism $h: G \to H \in hom(G, H)$ is a group homomorphism.

i.e. a function that preserves the algebraic structure from group (G,*) in group (H, \bullet) :

given
$$a * b = c$$
 we have $h(a) \bullet h(b) = h(c)$
i.e. $h(a * b) = h(a) \bullet h(b)$

• The identity id_G is a homomorphism that maps G to itself.

More specifically, given $G = (X, e, *), x \in X$:

$$id_G: G \to G$$

 $id_G = x \mapsto x$

• The composite of morphisms $h:G\to H$ and $k:H\to K$ is $h;k:G\to K$ or $k\circ h:G\to K$

i.e. a homomorphism from *G* to *K*

A **group** (G) is a set with an operation (\bullet : $G^2 \to G$) that combines two elements in G to form a third element in G. In computer science, we generally include element e to remove existentials. For (G, \bullet) to be a group, it must satisfy:

- Closure : $(a, b \in G) \Rightarrow (a \bullet b \in G)$.
- Associativity : $\forall a, b, c \in G$. $(a \bullet b) \bullet c = a \bullet (b \bullet c)$
- **Identity** : $\forall a \in G$. $\exists e \in G$. $e \bullet a = a \bullet e = a$
- Inverse Element : $\forall a \in G . \exists b \in G . a \bullet b = b \bullet a = e$
 - * note: a group without inverse functions is a **monoid**.

i.e. for morphism $\mathbb{N} \to \mathbb{N}$, the set of all functions is a monoid while the set of all bijections is a group.

0.3.2 The category of vector spaces and linear transformations, K-Vect

- An object is a vector space (a scalable collection of vectors) over a fixed field *K*
- The morphism $V \to W \in hom(V, W)$ is a **K-linear map**, transformations between two linear subspaces that preserve addition and scalar multiplication
- The identity id_V is an endomorphism on V (a morphism from vector space V to itself)

More specifically, given $v \in V$:

$$id_V = v \mapsto v$$

• The composite of morphisms $f: V \to W$ and $g: W \to Y$ is $f; g: V \to Y$

0.3.3 The category of posets (partially ordered sets) and monotone functions

- An object is a poset
- For (S, \leq) and (T, \leq) , the morphism $f: S \to T \in hom(S, T)$ is a **order-preserving** or **monotone** function.

A monotone function is one such that:

$$\forall x, y \in S.(x \le y) \Rightarrow f(x) \le f(y)$$

- The identity id_S is a morphism from S to itself
- The composite of $f: S \to T$ and $g: T \to U$ is $f; g: S \to U$ or $(g \circ f): S \to U$, which is also monotone

Posets (S, \leq) formalise the intuitive concept of ordering, sequencing, or arrangement of the elements of a set.

Posets consist of a set (S) and a binary relation (\leq) that indicates a partial order.

A **partial order** is a binary relation between elements of a set $(a, b, c \in S)$ that is:

• reflexive: $a \le a$

• antisymmetric: $(a \le b) \land (b \le a) \Rightarrow a = b$

• transitive: $(a \le b) \land (b \le c) \Rightarrow a \le c$

0.3.4 The category of set relations, Rel

• An object is a set

The morphism f : A → B ∈ hom(A, B) is a relation.
 A relation is between A and B is defined by the crossproduct of both sets, i.e. a set of tuples.

$$(R \subseteq A \times B)$$
 and $\{(a,b) \mid (a,b) \in R \land a \in A \land b \in B\}$

- The identity morphism $id_A : A \to A$ is the identity relation $\{(a, a) \in A^2 \mid a \in A\}$
- The composite of $R: A \to B$ and $S: B \to C$ is $R; S: A \to C$ given by: $S \circ R = \{(a,c) \in A \times C \mid \exists b \in B. (a,b) \in R \land (b,c) \in S\}$