ALGORITMOS Y ESTRUCTURAS DE DATOS:

Introducción a la Complejidad

Guillermo Román Díez (guillermo.roman@upm.es)
Lars-Åke Fredlund (larsake.fredlund@upm.es)

Universidad Politécnica de Madrid

Curso 2021/2022

¿qué entendemos por complejidad hablando de software?

¿qué entendemos por complejidad hablando de software?

Complejidad

"La complejidad de un programa es una medida (abstracta) de su uso de recursos (tiempo de ejecución, memoria, ...) "

¿qué entendemos por complejidad hablando de software?

Complejidad

"La complejidad de un programa es una medida (abstracta) de su uso de recursos (tiempo de ejecución, memoria, ...) "

- Habitualmente se habla de 2 tipos de complejidad en función de lo que miden:
 - Complejidad temporal: tiempo de ejecución
 - ► Complejidad **espacial**: espacio de memoria utilizado
- La complejidad en tiempo y en espacio suelen estar reñidas
 - ► Se ahorra tiempo a costa de usar más espacio
 - Se ahorra espacio a costa de usar más tiempo

¿qué entendemos por complejidad hablando de software?

Complejidad

"La complejidad de un programa es una medida (abstracta) de su uso de recursos (tiempo de ejecución, memoria, ...) "

- Habitualmente se habla de 2 tipos de complejidad en función de lo que miden:
 - Complejidad temporal: tiempo de ejecución
 - ► Complejidad **espacial**: espacio de memoria utilizado
- La complejidad en tiempo y en espacio suelen estar reñidas
 - ► Se ahorra tiempo a costa de usar más espacio
 - Se ahorra espacio a costa de usar más tiempo
- Ejemplo: una caché algo que usa memoria para guardar resultados anteriores para no repetir cálculos
 - Ejemplo: podemos tener un caché que recuerda si un número natural es un número primo

COMPLEJIDAD

- La complejidad de un programa se calcula en función de los datos de entrada (tamaño de la entrada o input size)
 - Se presentan como una expresión (función) de coste en términos de los datos de entrada que afectan a su complejidad
 - ► Al crecer el tamaño de la entrada, la complejidad del programa puede crecer o permanecer constante

- Quiero organizar una fiesta en mi casa
- Un parámetro a tener en cuenta es el número de invitados

• Primero tengo que ordenar mi casa – ¿el tiempo de limpiar la casa antes de la fiesta depende del número de invitados?

- Primero tengo que ordenar mi casa ¿el tiempo de limpiar la casa antes de la fiesta depende del número de invitados?
- No. El trabajo es constante. Podemos expresar el tiempo de limpieza como una función f(n), donde n es el número de invitados y c es un constante

$$f(n) = c$$

- Primero tengo que ordenar mi casa ¿el tiempo de limpiar la casa antes de la fiesta depende del número de invitados?
- No. El trabajo es constante. Podemos expresar el tiempo de limpieza como una función f(n), donde n es el número de invitados y c es un constante

$$f(n) = c$$

• Quizá el tiempo requerido de limpiar la casa **después** de la fiesta sí depende del número de invitados. . .

- Ahora, quiero mandar una invitación personal a cada persona invitada
 - ¿depende el tiempo de hacerlo del número de invitados?

- Ahora, quiero mandar una invitación personal a cada persona invitada
 ¿depende el tiempo de hacerlo del número de invitados?
- Si:
 - ▶ si el tiempo para mandar 1 invitación es i + c segundos
 (i tiempo para escribir la carta, c tiempo para ir a un correos)

- Ahora, quiero mandar una invitación personal a cada persona invitada
 ¿depende el tiempo de hacerlo del número de invitados?
- Si:
 - ▶ si el tiempo para mandar 1 invitación es i + c segundos
 (i tiempo para escribir la carta, c tiempo para ir a un correos)
 - entonces el tiempo para mandar 2 invitaciones es i * 2 + c segundos

- Ahora, quiero mandar una invitación personal a cada persona invitada
 ¿depende el tiempo de hacerlo del número de invitados?
- Si:
 - ▶ si el tiempo para mandar 1 invitación es i + c segundos
 (i tiempo para escribir la carta, c tiempo para ir a un correos)
 - entonces el tiempo para mandar 2 invitaciones es i * 2 + c segundos

- Ahora, quiero mandar una invitación personal a cada persona invitada
 ¿depende el tiempo de hacerlo del número de invitados?
- Si:
 - ▶ si el tiempo para mandar 1 invitación es i + c segundos
 (i tiempo para escribir la carta, c tiempo para ir a un correos)
 - entonces el tiempo para mandar 2 invitaciones es i * 2 + c segundos
 - **.**...
 - ▶ y el tiempo de mandar n invitaciones es i * n + c segundos
- El tiempo gastado f(n) es una función *lineal* con respecto al número de invitados:

$$f(n) = i * n * + c$$

- Un vez en la fiesta hay que saludar: cuando una persona invitada llega a la fiesta, yo la saludo, y también lo hacen las otras personas invitadas que hayan llegado antes
- Si un saludo tarda s segundos, ¿cuánto tiempo tardan todos los saludos?

- Un vez en la fiesta hay que saludar: cuando una persona invitada llega a la fiesta, yo la saludo, y también lo hacen las otras personas invitadas que hayan llegado antes
- Si un saludo tarda s segundos, ¿cuánto tiempo tardan todos los saludos?
- En total, ¿cuántos saludos hay?
 - ▶ 1 invitado ⇒ 1 saludo (yo y el invitado)
 - 2 invitados \Rightarrow 2 + 1 = 3 saludos
 - ▶ 3 invitados \Rightarrow 3 + 2 + 1 = 6
 - 4 invitados \Rightarrow 4 + 3 + 2 + 1 = 10

 - ▶ *n* invitados \Rightarrow *n* + (*n* − 1) + ... + 2 + 1 =?

- Un vez en la fiesta hay que saludar: cuando una persona invitada llega a la fiesta, yo la saludo, y también lo hacen las otras personas invitadas que hayan llegado antes
- Si un saludo tarda s segundos, ¿cuánto tiempo tardan todos los saludos?
- En total, ¿cuántos saludos hay?
 - ▶ 1 invitado ⇒ 1 saludo (yo y el invitado)
 - 2 invitados \Rightarrow 2 + 1 = 3 saludos
 - ▶ 3 invitados \Rightarrow 3 + 2 + 1 = 6
 - 4 invitados \Rightarrow 4 + 3 + 2 + 1 = 10

 - ▶ *n* invitados \Rightarrow *n* + (*n* − 1) + . . . + 2 + 1 =?
- n invitados: (n+1)*n/2

- Un vez en la fiesta hay que saludar: cuando una persona invitada llega a la fiesta, yo la saludo, y también lo hacen las otras personas invitadas que hayan llegado antes
- Si un saludo tarda s segundos, ¿cuánto tiempo tardan todos los saludos?
- En total, ¿cuántos saludos hay?
 - ▶ 1 invitado ⇒ 1 saludo (yo y el invitado)
 - 2 invitados \Rightarrow 2 + 1 = 3 saludos
 - ▶ 3 invitados \Rightarrow 3 + 2 + 1 = 6
 - 4 invitados \Rightarrow 4 + 3 + 2 + 1 = 10

 - ▶ *n* invitados \Rightarrow *n* + (*n* − 1) + ... + 2 + 1 =?
- n invitados: (n+1)*n/2
- El tiempo: $f(n) = s * (n+1) * n/2 \equiv s * (n^2 + n)/2$
- ullet El tiempo de todos los saludos es *cuadrático* con respecto al valor de n

CONSTANTE, LINEAL Y CUADRÁTICO

- El gráfico asume que el tiempo para realizar cualquier tarea es 5
- Estos cálculos exactos para calcular el tiempo son complicados –
 ; podemos simplificar?

Calculo de la Complejidad en la Informática

- Análisis experimental
 - ▶ Se hace un estudio estadístico de un programa concreto, en un entorno de ejecución concreto, con un compilador concreto, en un sistema operativa concreto...

Calculo de la Complejidad en la Informática

Análisis experimental

Se hace un estudio estadístico de un programa concreto, en un entorno de ejecución concreto, con un compilador concreto, en un sistema operativa concreto...

Análisis teórico

- Estudia los programas independientemente del entorno de ejecución
- ▶ Se pueden analizar algoritmos en pseudo-código o programas concretos
- ▶ El objetivo es obtener los ordenes de magnitud de la complejidad
- Las constantes no son relevantes a la hora de obtener la complejidad asintótica
- Esas constantes pueden ser útiles a la hora de extrapolar los resultados teórico a entornos concretos (p.e. WCET)

EN LA INFORMÁTICA - UNA APROXIMACIÓN

- Cada operación (+, *, -, =, if, method call, etc) consume una unidad de tiempo (t)
- Un acceso a la memoria consume una unidad de tiempo

```
int max(int i, int j) {
  if (i > j) return i;
  else return j;
}
```

• Cuantos unidades de tiempo "cuesta" una llamada max(1,3)?

```
int max(int i, int j) {
  if (i > j) return i;
  else return j;
}
```

- Cuantos unidades de tiempo "cuesta" una llamada max(1,3)?
- - ▶ 1 (llamada) + 2 (accesos a i y j) + 1 (comparación i > j) + 1 (if) + 2 (acceso a j, return)

```
int max(int i, int j) {
  if (i > j) return i;
  else return j;
}
```

- Cuantos unidades de tiempo "cuesta" una llamada max(1,3)?
- - ▶ 1 (llamada) + 2 (accesos a i y j) + 1 (comparación i > j) + 1 (if) + 2 (acceso a j, return)
- f(n) = 7
- Pero, ¿qué es n?

Ejemplo

Un método que busca si un elemento está en un array

```
static <E> boolean member(E e, E[] arr) {
  boolean found = false;
  for (int i=0; i < arr.length && !found;; i++) {
    found = e.equals(arr[i]);
  }
  return found;
}</pre>
```

- El "tamaño de la entrada" es el tamaño del array en el que se hace la búsqueda
- El tamaño del elemento a buscar no suele ser relevante

```
static <E> boolean member(E e, E[] arr) {
  boolean found = false;
  for (int i=0; i < arr.length && !found;; i++) {
    found = e.equals(arr[i]);
  }
  return found;
}</pre>
```

• ¿Cuántas unidades de tiempo "cuesta" una llamada member(5,[1,2,3])?

```
static <E> boolean member(E e, E[] arr) {
  boolean found = false;
  for (int i=0; i<arr.length && !found;; i++) {
    found = e.equals(arr[i]);
  }
  return found;
}</pre>
```

- ¿Cuántas unidades de tiempo "cuesta" una llamada member (5, [1,2,3])?
 - ▶ El coste de una "ronda" r sin salida en el bucle for: $r \approx 11$:

$$4 \; (\textit{i} < \textit{arr.length}) + 1 \; (\texttt{if}) + 4 \; (\textit{e.equals}(\textit{arr}[\textit{i}])) + 2 \; (\texttt{i}++)$$

► El coste total:

$$1 (call) + 1 (iniciar for) + 3 * r + 1 (return) \equiv 3 + r * 3 \equiv 36$$

```
static <E> boolean member(E e, E[] arr) {
  boolean found = false;
  for (int i=0; i<arr.length && !found;; i++) {
    found = e.equals(arr[i]);
  }
  return found;
}</pre>
```

- ¿Cuántas unidades de tiempo "cuesta" una llamada member(5,[1,2,3])?
 - ▶ El coste de una "ronda" r sin salida en el bucle for: $r \approx 11$:

$$4 \; (\textit{i} < \textit{arr.length}) + 1 \; (\texttt{if}) + 4 \; (\textit{e.equals}(\textit{arr}[\textit{i}])) + 2 \; (\texttt{i}++)$$

► El coste total:

$$1 (call) + 1 (iniciar for) + 3 * r + 1 (return) \equiv 3 + r * 3 \equiv 36$$

• En general: f(n) = 3 + 11 * n donde n es el tamaño del array, si el elemento i **no esta presente** en arr

Complejidad – diferentes casos

- No sólo el tamaño de los datos es relevante, también la distribución de los datos puede ayudar (o perjudicar)
- Podemos encontrarnos diferentes escenarios para member(E e, E[] arr):
 - ▶ El elemento a buscar es siempre el primero en ser accedido
 - El elemento a buscar puede estar en cualquier sitio (y todos los casos son equiprobables)
 - ▶ El elemento a buscar está siempre el último o no está
 - ▶ El elemento a buscar estás más veces el primero que en otra posición
 - **...**
- Podemos estudiar la complejidad:
 - ► En el caso mejor (lower-bound)
 - ► En el caso (pro-)medio
 - ► En el caso peor (upper-bound)
 - ► En el caso amortizado

Complejidad

- La variabilidad de los casos experimentales o estadísticos es grande
- El estudio del caso peor (upper-bound) nos da resultados más precisos y fiables
 - ► El análisis del peor de los casos nos permite "razonar" que el código podrá ejecutar en un cierto hardware o en un cierto "tiempo"
 - Conocer el peor de los casos nos permite movernos en un escenario "seguro"
- La complejidad asintótica implica calcular la complejidad cuando el tamaño de los datos de entrada tiende a infinito

- El caso amortizado no razona sobre el coste de llamada aisladas c, sino sobre el coste de medio de una llamada c_i en una secuencia de llamadas c_1, \ldots, c_n
- Ejemplo motivador: añadir un elemento x a la ultima posición no ocupada en un array a – a.add(x):

- El caso amortizado no razona sobre el coste de llamada aisladas c, sino sobre el coste de medio de una llamada c_i en una secuencia de llamadas c_1, \ldots, c_n
- Ejemplo motivador: añadir un elemento x a la ultima posición no ocupada en un array a – a.add(x):
- ¿Cómo se ejecuta después a.add(3)?

- El caso amortizado no razona sobre el coste de llamada aisladas c, sino sobre el coste de medio de una llamada c_i en una secuencia de llamadas c_1, \ldots, c_n
- Ejemplo motivador: añadir un elemento x a la ultima posición no ocupada en un array a – a.add(x):
- ullet Ejecutar a.add(2) cuando a es $egin{bmatrix} 0 & 1 \end{bmatrix}$ es facil $egin{bmatrix} 0 & 1 & 2 \end{bmatrix}$
- ¿Cómo se ejecuta después a.add(3)?
- Normalmente creamos un array nuevo con el doble de tamaño y copiamos los elementos al array nuevo, y insertamos 3:
- El coste es lineal en el peor caso mover todos los elementos de un array a otro

- Pero, ¿cuándo ocurre el caso peor?
- Sólo ocurre cuando el array esta lleno
- ¿Qué sabemos sobre las secuencias de llamadas c_1, \ldots, c_n que contienen el caso peor?

EL CASO AMORTIZADO

- Pero, ¿cuándo ocurre el caso peor?
- Sólo ocurre cuando el array esta lleno
- ¿Qué sabemos sobre las secuencias de llamadas c_1, \ldots, c_n que contienen el caso peor?
- Por ejemplo, después que ha tocado el caso peor no puede ocurrir otro caso peor hasta que se ha añadido n elementos más
- Por ejemplo, no hay ninguna secuencia de llamadas ...; c_i ; c_j ; ... con dos "casos peores" consecutivos
- En el análisis amortizado pretende identificar cuáles son las secuencias de llamadas posibles y su coste

EL CASO AMORTIZADO PARA ADD: ANÁLISIS

• Asumimos que el tamaño del array es n, estudiamos una secuencia de n+1 llamadas a add:

```
a.add(x1); a.add(x2); ...; a.add(xn); a.add(xn+1);
```

- La llamada a.add(xn+1) tiene complejidad c1 * n (lineal)
- Las demás llamadas tiene complejidad constante c2
- Entonces el tiempo de ejecución f(n) de media de una llamada dentro la secuencia es:

$$f(n) = (c1 * n + c2 + ... + c2)/n + 1 = n * (c1 + c2)/n + 1$$

(complejidad constante)

La Complejidad en Java

- Los interfaces no implican ninguna medida de complejidad
- La complejidad va asociada a la implementación de los métodos de la interfaz en una clase
- En la especificación del interfaz se puede *exigir* que ciertos métodos se implementen con una complejidad determinada

FUNCIONES DE COMPLEJIDAD

Función constante

$$f(n) = c$$

Función polinomial

$$f(n) = c_1 * n^{e_1} + ... + c_m * n^{e_m}$$

- ▶ El grado del polinomio lo marca el exponente de mayor valor
- ► Entre las funciones polinomiales encontramos la lineal (grado 1), cuadrática (grado 2) y cúbica (grado 3)
- Función logarítmica

$$f(n) = log_2(n)$$

Función exponencial

$$f(n) = c^n$$

Notación O()

- El objetivo intuitivo es establecer la complejidad de una función en términos de n con una función proporcional que la acota asintóticamente
 - Ignorando los factores constantes y de orden menor
- Decimos que un método tiene un orden de complejidad O(n) cuando O(n) acota asintóticamente la función de complejidad del método
- Una escala de complejidad de menor a mayor:

Constante	O(1)
Logarítmica	O(log(n))
Lineal	O(n)
N-Log-N	O(n * log(n))
Cuadrática	$O(n^2)$
Cúbica	$O(n^3)$
Polinomial de orden k	$O(n^k)$
Exponencial	$O(2^n)O(m^n)$

FORMAL DEFINITION OF BIG-OH

- Usamos la notación f(x) = O(g(x)) cuando $x \to \infty$ si el valor de $f(x) \le c * g(x)$, donde c es una constante, para todos los valores x suficientement grandes
- Estamos interesados en el caso cuando x es muy grande (complejidad asintótica). Podemos buscar g(x) simplificando f(x):
 - **①** Si f(x) es una suma de factores $t_1(x) + \ldots + t_n(x)$ podemos borrar todos los factores excepto el que crece mas rápido
 - ② Si f(x) es un producto de factores $t_1(x) \times ... \times t_n(x)$ podemos borrar todos los factores que son constantes
- Por ejemplo: podemos simplificar $f(x) = 3x^4 + 2x^3 + x * log_2(x) + 4$ $\Rightarrow 3x^4$ (regla 1) $\Rightarrow x^4$ (regla 2) y entonces obtener $O(x^4)$

ALGUNAS CIFRAS

Función	n = 32	n = 64	n = 128
$log_2(n)$	5	6	7
n	32	64	128
$n * log_2(n)$	160	384	896
n^2	1.024	4.096	16.384
n^3	32.768	262.144	2.097.152
2 ⁿ	4.294.967.296	18.446.744.073.709.551.616	(no cabe)

ALGUNAS CIFRAS

Función	n = 32	n = 64	n = 128
$log_2(n)$	5	6	7
n	32	64	128
$n * log_2(n)$	160	384	896
n^2	1.024	4.096	16.384
n^3	32.768	262.144	2.097.152
2 ⁿ	4.294.967.296	18.446.744.073.709.551.616	(no cabe)

Pregunta

¿tan grande es 2¹²⁸?

ALGUNAS CIFRAS

Función	n = 32	n = 64	n = 128
$log_2(n)$	5	6	7
n	32	64	128
$n * log_2(n)$	160	384	896
n^2	1.024	4.096	16.384
n^3	32.768	262.144	2.097.152
2 ⁿ	4.294.967.296	18.446.744.073.709.551.616	(no cabe)

Pregunta

¿tan grande es 2128?

 $2^{128}: 340.282.366.920.938.463.463.374.607.431.768.211.456$

GRÁFICAMENTE

GRÁFICAMENTE

ALGUNOS EJERCICIOS DE EXAMEN

```
<E> boolean m1(IndexedList<E> 1, E e) {
  boolean res = false;
  if (!l.isEmpty())
    res = l.get(0).equals(e);
  }
  return res;
}
```

ALGUNOS EJERCICIOS DE EXAMEN

```
<E> boolean m1(IndexedList<E> 1, E e) {
  boolean res = false;
  if (!1.isEmpty())
    res = 1.get(0).equals(e);
  }
  return res;
}
```

```
void m2(IndexedList < E > 1) {
  int i = 0;
  while (i < 1.size()) {
    int j = 0;
    while (j < 1.size()) {
        ++j;
    }
    ++i;
}</pre>
```

```
void m2(IndexedList<E> 1) {
  int i = 0;
  while (i < 1.size()) {
    int j = 0;
    while (j < 1.size()) {
        ++j;
    }
    ++i;
}</pre>
```

```
<E> int method (IndexedList < E> 1) {
  int i = l.size();
  int counter = 0;
  while (i > 0) {
    counter ++;
    i = i / 2;
  }
  return counter;
}
```

```
<E> int method (IndexedList<E> 1) {
  int i = 1.size();
  int counter = 0;
  while (i > 0) {
    counter ++;
    i = i / 2;
  }
  return counter;
}
```

```
<E> int method (IndexedList < E> 1) {
  int counter = 0;
  for (int i = 0; i < 1.size(); i++) {
    int j = 1.size();
    while (j > 0) {
      counter ++;
      j = j / 2;
    }
  }
  return counter;
}
```

```
<E> int method (IndexedList <E> 1) {
  int counter = 0;
  for (int i = 0; i < 1.size(); i++) {
    int j = 1.size();
    while (j > 0) {
      counter ++;
      j = j / 2;
  return counter;
O(N * log N)
```