hyperrefHyper figures OFFhyperrefLink nesting OFFhyperrefHyper index ONhyperrefPlain pages OFFhyperrefBackreferencing OFF hyperrefImplicit mode ON; LaTeX internals redefined hyperrefBookmarks ON

hyperrefHyper figures OFFhyperrefLink nesting OFFhyperrefHyper index ONhyperrefbackreferencing OFFhyperrefLink coloring OFFhyperrefLink coloring with OCG OFFhyperrefPDF/A mode OFF

hyperrefDriver (autodetected): hpdftex rerunfilecheckFeature \pdfmdfivesum is not available(e.g. pdfTeX or LuaTeX with package 'pdftexcmds'). Therefore file contents cannot be checked efficiently and the loading of the package is aborted

hyperrefLink coloring OFF

Vysoké učení technické v Brně Fakulta informačních technologií

Typografie a publikování – 2. projekt Sazba dokumentů a matematických výrazů

Úvod

V této úloze si vysázíme titulní stranu a kousek matematického textu, v němž se vyskytují například Definice ?? nebo rovnice (??) na straně ??. Pro vytvoření těchto odkazů používáme kombinace příkazů \label, \ref, \eqref a \pageref. Před odkazy patří nezlomitelná mezera. Pro zvýrazňování textu se používají příkazy \verb a \emph.

Titulní strana je vysázena prostředím titlepage a nadpis je v optickém středu s využitím *přesného* zlatého řezu, který byl probrán na přednášce. Dále jsou na titulní straně čtyři různé velikosti písma a mezi dvojicemi řádků textu je použito řádkování se zadanou relativní velikostí 0,5 em a 0,6 em¹.

1 Matematický text

Matematické symboly a výrazy v plynulém textu jsou v prostředí math. Definice a věty sázíme v prostředí definovaném příkazem \newtheorem z balíku amsthm. Tato prostředí obracejí význam \emph: uvnitř textu sázeného kurzívou se zvýrazňuje písmem v základním řezu. Někdy je vhodné použít konstrukci \${}\$ nebo \mbox{}, která zabrání zalomení (matematického) textu. Pozor také na tvar i sklon řeckých písmen: srovnejte \epsilon a \varepsilon, \Xi a \varXi.

Definice 1. Konečný přepisovací stroj neboli Mealyho automat je definován jako uspořádaná pětice $tvaru\ M = (Q, \Sigma, \Gamma, \delta, q_0),\ kde$:

- Q je konečná množina stavů,
- Σ je konečná vstupní abeceda,
- Γ je konečná výstupní abeceda,
- $\delta: Q \times \Sigma \to Q \times \Gamma$ je totální přechodová funkce,
- $q_0 \in Q$ je počáteční stav.

1.1 Podsekce s definicí

Pomocí přechodové funkce δ zavedeme novou funkci δ^* pro překlad vstupních slov $u \in \Sigma^*$ do výstupních slov $w \in \Gamma^*$.

Definice 2. Nechť $M=(Q, \Sigma, \Gamma, \delta, q_0)$ je Mealyho automat. Překládací funkce $\delta^*: Q \times \Sigma^* \times \Gamma^* \to \Gamma^*$ je pro každý stav $q \in Q$, symbol $x \in \Sigma$, slova $u \in \Sigma^*$, $w \in \Gamma^*$ definována rekurentním předpisem:

- $\delta^*(q, \varepsilon, w) = w$
- $\delta^*(q, xu, w) = \delta^*(q', u, wy), kde(q', y) = \delta(q, x)$

1.2 Rovnice

Složitější matematické formule sázíme mimo plynulý text pomocí prostředí displaymath. Lze umístit i více výrazů na jeden řádek, ale pak je třeba tyto vhodně oddělit, například pomocí \quad, při dostatku místa i \quad.

$$g^{a_n} \notin A^{B^n}$$
 $y_0^1 - \sqrt[5]{x + \sqrt[7]{y}}$ $x > y^2 \ge y^3$

Velikost závorek a svislých čar je potřeba přizpůsobit jejich obsahu. Velikost lze stanovit explicitně, anebo pomocí \left a \right. Kombinační čísla sázejte makrem \binom.

$$\left| \bigcup P \right| = \sum_{\emptyset \neq X \subset P} (-1)^{|X|-1} \left| \bigcap X \right|$$

$$F_{n+1} = \binom{n}{0} + \binom{n-1}{1} + \binom{n-2}{2} + \dots + \binom{\left\lceil \frac{n}{2} \right\rceil}{\left\lfloor \frac{n}{2} \right\rfloor}$$

V rovnici (??) jsou tři typy závorek s různou explicitně definovanou velikostí. Obě rovnice mají svisle zarovnaná rovnítka. Použijte k tomu vhodné prostředí.

$$\left(\left\{b\otimes\left[c_{1}\oplus c_{2}\right]\circ a\right\}^{\frac{2}{3}}\right) = \log_{z}x\tag{1}$$

$$\int_{a}^{b} f(x) dx = -\int_{b}^{a} f(y) dy \qquad (2)$$

V této větě vidíme, jak se vysází proměnná určující limitu v běžném textu: $\lim_{m\to\infty} f(m)$. Podobně je to i s dalšími symboly jako $\bigcup_{N\in\mathcal{M}} N$ či $\sum_{i=1}^m x_i^2$. S vynucením méně úsporné sazby příkazem \limits budou vzorce vysázeny v podobě $\lim_{m\to\infty} f(m)$ a $\sum_{i=1}^m x_i^2$.

2 Matice

Pro sázení matic se používá prostředí array a závorky s výškou nastavenou pomocí \left, \right.

$$D = \begin{vmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{vmatrix} = \begin{vmatrix} x & y \\ t & w \end{vmatrix} = xw - yt$$

Prostředí **array** lze úspěšně využít i jinde, například na pravé straně následující rovnosti.

$$\binom{n}{k} = \begin{cases} \frac{n!}{k!(n-k)!} & \text{pro } 0 \le k \le n \\ 0 & \text{jinak} \end{cases}$$

¹Použijte správný typ mezery mezi číslem a jednotkou.