Lecture 07 Exercise Solutions

Mark Eramian

Exercise 1

Name: Queue<*G*>

Sets:

Q : set of queues containing items from *G G* : set of items that can be in the queue

B: {true, false}

 \mathbb{N}_0 : set of non-negative integers

Signatures:

newQueue<G>(n) : $\mathbb{N}_0 \not\to Q$

Q.isEmpty: $\rightarrow B$ Q.isFull: $\rightarrow B$ Q.add(g): $G \not\rightarrow Q$ Q.remove: $\not\rightarrow G$ **Preconditions:** For all $q \in Q$, $g \in G$

newQueue<G>(n): n > 0

q.isEmpty: none
q.isFull: none

q.add(g): q is not full
q.remove:q is not empty

Semantics: For $q \in Q$, $g \in G$, $n \in \mathbb{N}_0$

newQueue<G>(n): create a queue of items

from G with capacity n

q.isEmpty: returns true if q is empty, false

otherwise

q.isFull: return true if q is full, false otherwise q.add(g): enqueues g at the back of the queue g.remove: removes then returns the item at

the front of the queue

Exercise 2

Name: Stack<*G*>

Sets:

S : set of stacks containing items from *G G* : set of items that can be in the stack

 $B : \{ true, false \}$

 \mathbb{N}_0 : set of non-negative integers

Signatures:

newStack<G>(n) : $\mathbb{N}_0 \not\rightarrow S$

S.isEmpty: $\rightarrow B$ S.isFull: $\rightarrow B$ S.push(g): $G \not\rightarrow S$

S.pop: $\not\rightarrow S$ S.top: $\not\rightarrow G$ **Preconditions:** For all $s \in S$, $g \in G$, $n \in \mathbb{N}_0$

newStack<G>(n): n > 0

s.isEmpty: none s.isFull: none

s.push(g): s is not fulls.pop: s is not emptys.top: s is not empty

Semantics: For $s \in S$, $g \in G$, $n \in \mathbb{N}_0$

newStack<G>(n): create an empty stack of

items from G with capacity n

s.isEmpty: returns true if s is empty, false

otherwise

s.isFull: return true if s is full, false otherwise

s.push(g): adds g to the top of the stack

s.pop: removes the element at the top of the

stack

s.top: return the element at the top of the stack