Assignments for weak stabilities: genus 2 graph cases

Rhys Wells

Wednesday 27th July, 2022

Contents

1	Extending stability conditions on graphs	1
	1.1 CMSA: $g = 1$ classification	2
	1.2 Check for extending: Back to coding	2
2	Graphs with 4 vertices	2
	$2.1 I_4 \dots \dots$	2
	$2.2 G_{456} \dots \dots \dots \dots \dots \dots \dots \dots \dots $	
	$2.3 G_{455} \dots \dots \dots \dots \dots \dots \dots \dots \dots $	5
	2.4 Vertex 4, extensions of stability conditions	
3	Graphs with 3 vertices	10
	$\overline{3.1}$ I_3	10
	$3.2 G1 \dots \dots \dots \dots \dots \dots \dots \dots \dots $	
	3.3 Vertex 3 extensions of stability conditions	
4	Contraction on stability conditions	12
5	Contraction: I_3 and I_4	12

1 Extending stability conditions on graphs

Does the assignments of I_4 extend to G_{455} and G_{456} ? A: Yes Task pull assignments of each to one ote.

There are 6 stability conditions for I_4 and 6 for G_{455} and G_{456} . We see by the diagrams each stability condition of I_4 extends uniquely to a stability condition of G_{455} , and similarly for G_{456} .

My questions

• The graph G_{455} is made of 4 subgraphs of the form I_3 with a leaf). How do the leafs on these subgraphs effect how it extends (holds constant on vertex?)?

Notes

• From examples see assignments $d'_i = d'_j$ if $T_i = T_j$.

1.1 CMSA: g = 1 classification

We see that # MSA functions with $f(\{i\}) = 0$ equals the # stability conditions (from a ϕ) up to translation.

We have see that Nicolas previous bijection does not respect the translations.

Define another bijection different from one in paper. There are 4! = 24 bijections in total (could just focus on I_3 first) want bijection with stability condition with $\underline{0}$ on Γ_1 and function with $f(\{i\}) = 0$.

1.2 Check for extending: Back to coding

Tasks

- Get n = 3 trivalent graphs from pdf (or just an example selection)
- check the number of stability conditions.

Notes

- Trivalent graphs (from pdf) have no tails and are connected.
- Note, all graphs can be obtained from the contraction of a trivalent case and for trivalent graphs #V = 2g 2 + n and #E = 3g 3 + n.

2 Graphs with 4 vertices

2.1 I_4

Example 2.1. We now obtain all weak stabilities, $\sigma(\underline{d}')$, for I_4 . Where $d'_1 = \underline{0} := (0, 0, 0, 0) \in S^0(G)$. We aim to find ϕ satisfying the ϕ -inequalities for $\sigma(\underline{d}')$.

Figure 1: Labelled I_4

Figure 2: Ordered spanning trees of I_4

$$|d_1 - \phi_1| < 1$$
 $|d_2 - \phi_2| < 1$ $|d_3 - \phi_3| < 1$ $|d_4 - \phi_4| < 1$
 $|d_1 + d_2 - \phi_1 - \phi_2| < 1$ $|d_1 + d_4 - \phi_1 - \phi_4| < 1$.

For each can pull ϕ .

Figure 3:

Remark. We also obtain these non-trivial assignments by our method (see method sheet).

2.2 G_{456}

Example 2.2. Let $G := G_{456}$. We now obtain all weak stabilities, $\sigma(\underline{d}')$, for G_{456} . Where $d'_1 = \underline{0} = (0,0,0,0) \in S^0(G)$. We also aim to find ϕ satisfying the ϕ -inequalities for $\sigma(\underline{d}')$.

Figure 4: Graph G_{456} with ordered spanning trees

The ϕ -inequalities for G are as follows,

$$|d_1 - \phi_1| < \frac{3}{2}, \quad |d_2 - \phi_2| < 1, \quad |d_3 - \phi_3| < 1, \quad |d_4 - \phi_4| < \frac{3}{2},$$

$$|d_1 + d_2 - \phi_1 - \phi_2| < \frac{3}{2}, \quad |d_1 + d_4 - \phi_1 - \phi_4| < 1$$

f. [[0 0 0 0] f. [0 0 0 0] sigma(G)= [[0 1 0 1] [1 1 0 0] [1 0 1 0] [2 0 0 0] [1 0 0 1] [0 0 0 2] [0 0 1 1]]	ASSIGNMENT = 200 C [[0 0 0 0 0] C [1 1 0 0 0] C [-1 0 0 0] C [0 0 0 0] C [0 0 0 0] C [0 0 0 0] C [0 0 0 0] C [0 0 0 0] C [0 0 0 0] C [0 0 0 0 0] C [0 0 0 0 0] C [0 0 0 0 0] C [0 0 0 0 0 0] C [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	f. [[0 0 0 0] f. [-1 1 0 0] f. [-1 1 0 0] f. [-1 0 1 0] f. [-1 0 0 0] f. [-1 1 0 0] f. [-1 1 0 1] sigma(G)= [[0 1 0 1] [1 1 0 0] [-1 1 0 2] [-1 1 1 1] [0 1 1 0] [1 0 1 0]
Assignment= 4 1. [[0 0 0 0 0] 1. [0 1 0 -1] 1. [0 0 1 -1] 1. [0 0 1 -1] 1. [0 0 0 0] 1. [0 1 0 -1] 1. [0 0 1 -1] 1. [0 0 1 -1] 1. [0 0 1 -1] 1. [0 0 1 -1] 1. [0 0 1 0 1] 1. [1 0 0] 1. [0 1 0] 1. [1 0 1 0] 1. [1 0 1 0] 1. [1 0 1 0] 1. [1 1 1 -1] 1. [0 0 1 1]	Assignment = 5 T. [[0 0 0 0 0] T. [0 1 0 -1] T. [-1 1 1 -1] T. [-1 0 1 0] T. [0 0 0 0] T. [0 1 0 -1] T. [-1 0 1 0]] Sigma(G) = [[0 1 0 1] [1 1 0 0] [-1 1 1 1] [0 1 1 0] [1 0 1 0] [1 1 1 -1] [0 0 1 1]	Assignment= 6. T. [[0 0 0 0 0] T. [1 0 0 -1] T. [0 0 1 -1] T. [0 0 0 0] T. [0 0 0 0] T. [0 0 0 0] T. [1 0 0 -1] T. [0 0 0 0] Sigma(G)= [[0 1 0 1] [1 0 0 0] [1 0 0 0] [2 0 0 0] [1 0 0 1] [2 0 1 -1] [0 0 1 1]]

Assignment= **1**

Assignment=3,

Figure 5:

We see there are 3 stability conditions up to translation. Each $\sigma(G)$ satisfy the ϕ -inequalities for some ϕ (can add ϕ terms if necessary). The elements of $\sigma(G)$ are pairwise chip-firing independent (checked in Sage).

2.3 G_{455}

Example 2.3. Let $G := G_{455}$. We now obtain all weak stabilities, $\sigma(\underline{d}')$, for G_{455} . Where $d'_1 = \underline{0} = (0,0,0,0) \in S^0(G)$. We aim to find ϕ satisfying the ϕ -inequalities for $\sigma(\underline{d}')$.

The ϕ -inequalities are:

$$|d_1 - \phi_1| < 1, |d_2 - \phi_2| < \frac{3}{2}, |d_3 - \phi_3| < 1, |d_4 - \phi_4| < \frac{3}{2}$$
$$|d_1 + d_2 - \phi_1 - \phi_2| < \frac{3}{2}, |d_1 + d_4 - \phi_1 - \phi_4| < \frac{3}{2}.$$

Assignment= 1 T, [[0 0 0 0] T, [-1 1 0 0]	Assignment= 2 v. v. v. v. [.[0 0 0 0 0] .[0 1 0 -1] .[0 0 1 -1] .[0 0 1 -1] .[0 0 0 1 -1] .[0 0 0 0] .[0 0 0 0] .[0 0 0 0]	Assignment= 3 V, V, V, V, I, [[0 0 0 0 0] I, [0 1 0 -1] I, [-1 1 1 -1] I, [-1 0 1 0] I, [-1 2 0 -1] I, [-1 1 0 0] I, [-1 1 0 0]
sigma(G) = 1 [[0 1 0 1] [-1 2 1 0] [-1 2 0 1] [-1 1 0 2] [-1 1 1 1] [0 1 1 0] [0 2 0 0] [0 0 1 1]]	sigma(G)= \(\bar{L} \) [[0	sigma(G)= } v. v. v. V. [[0 1 0 1] [-1 2 1 0] [-1 2 0 1] [-1 1 1 1] [0 1 1 0] [0 2 1 -1] [0 2 0 0] [0 0 1 1]]

Each $\sigma(G)$ satisfy the ϕ -inequalities for some ϕ (can add ϕ terms if necessary). The elements of $\sigma(G)$ are pairwise chip-firing independent (checked in Sage).

2.4 Vertex 4, extensions of stability conditions

Assignment= 4 [[0 0 0 0] [0 1 0 -1] [0 0 1 -1] [0 0 0 1 -1] [0 1 0 -1] [0 0 0 1 -1]	Assignment= [[0 0 0 0] [0 1 0 -1] [-1 1 1 -1] [-1 0 1 0] [0 0 0 0] [0 1 0 -1] [-1 0 1 0]
Assignment= [[0 0 0 0] [0 1 0 -1] [0 0 1 -1] [0 0 1 -1]	Assignment= [[0 0 0 0] [0 1 0 -1] [-1 1 1 -1] [-1 0 1 0]]
Assignment= $ \begin{bmatrix} [0 & 0 & 0 & 0 \\ [1 & 0 & 0 & -1 \\ [1 & 0 & 0 & -1 \\ [0 & 0 & 1 & -1 \\ [0 & 0 & 0 & 0 \\ [0 & 0 & $	Assignment= Assignment= [[0 0 0 0] [[0 0 0 0] [-1 1 0 0] [-1 1 0 0] [-1 1 0 0] [-1 0 0] [-1 0 0] [-1 0 0] [-1 0 0] [-1 0 0] [-1 0 0] [-1 0 0] [-1 0 0] [-1 0 0] [-1 0 0] [-1 0 0] [-1 0 0]
Assignment= Assignment= [[0 0 0 0] [[0 0 0 0] [0 0 0] [0 0 0 0] [0 0 0 0] [0 0 0 0] [0 0 0 0] [0 0 0 0] [0 0 0 0] [0 0 0 0] [0 0 0 0] [0 0 0 0] [0 0 0 0] [0 0 0 0] [0 0 0 0] [0 0 0] [0 0 0 0] [0 0 0 0] [0 0 0	Assignment= Assignment= [[0 0 0 0] 0 0] 0 0 0 0 0 0 0 0 0 0 0

Figure 6: I_4 to G_{456} extensions

Assignment= 1 $ \begin{array}{cccccccccccccccccccccccccccccccccc$	Assignment= 6 v. v. v. v. r.[[0 0 0 0] r.[[0 0 0 -1]] r.[[0 0 1 -1]] r.[[0 0 0 0] r.[[0 0 0 0] r.[[0 0 0 0]] r.[[0 0 0 0]] r.[[0 0 0 0]]
Assignment= [[0 0 0 0] [-1 1 0 0] [-1 1 0 0] [-1 0 1 0]]	Assignment= [[0 0 0 0] [1 0 0 -1] [0 0 1 -1] [0 0 0 0]]
Assignment= 5 v v v v r.[[0 0 0 0]] r.[0 0 0 0] r.[-1 1 0 0] r.[-1 0 0 1] r.[-1 0 0 1]	Assignment= $\frac{2}{3}$, $\frac{4}{4}$
Assignment= [[0 0 0 0] [0 0 0 0] [-1 1 0 0] [-1 0 0 1]]	Assignment= [[0 0 0 0] [0 1 0 -1] [0 0 1 -1] [0 0 1 -1]
Assignment= 4	Assignment= 3 r, v,
Assignment= [[0 0 0 0] [0 0 0 0] [0 0 0 0] [0 0 0 0]	Assignment= [[0 0 0 0] [0 1 0 -1] [-1 1 1 1] [-1 0 1 0]]

Figure 7: I_4 to G_{455} extensions

3 Graphs with 3 vertices

3.1 *I*₃

Example 3.1. We now obtain all weak stabilities, $\sigma(\underline{d}')$, for I_3 . Where $d'_1 = \underline{0} := (0,0,0) \in S^0(G)$. We aim to find ϕ satisfying the ϕ -inequalities for $\sigma(\underline{d}')$.

Figure 8: Labelled I_3

Figure 9: Ordered spanning trees of I_3

$$|d_1 - \phi_1| < 1$$
, $|d_2 - \phi_2| < 1$, $|d_3 - \phi_3| < 1$.

Figure 10: Assignments

3.2 *G*1

Example 3.2. Let G := G1 and fix $\underline{0} := (0,0,0) \in S^0(G)$ (allowed modulo translation). We will present the non-constant weak stabilities, $\sigma(\underline{d}')$, for G, where $d_1' = \underline{0}$. And for $\sigma(\underline{d}')$ we aim to find a ϕ satisfying the ϕ -inequalities.

The ϕ -inequalities for G are as follows.

$$|d_1 - \phi_1| < \frac{3}{2}, |d_2 - \phi_2| < 1, |d_3 - \phi_3| < \frac{3}{2}.$$

```
Assignment= 2
 Assignment= 1
[0 0 0]]
r. [0 0 0]
r, [0 0 0]
                                      1]
[0 \ 0 \ 0]
r<sub>s</sub> [0 0 0]]
 sigma(G)=
                           sigma(G)=
 [[1 0 1]
                                  1
                                      2]
  [1 \ 1 \ 0]
                                  0 1]
   [0 0 2]
                              1
                                      0]
   [2 0 0]
                                  0 2]
   [0 1 1]]
                                      1]]
```

The elements of $\sigma(G)$ are pairwise chip-firing independent (checked in Sage).

3.3 Vertex 3 extensions of stability conditions

Figure 11: I_3 to G_1 extensions

4 Contraction on stability conditions

Given σ_{I_n} does contraction of an edge give $\sigma_{I_{n-1}}$? (where for subgraph Γ_0 of I_n , we have $\sigma_{I_n}(\Gamma_0)^{contraction} = \sigma_{I_n}(\Gamma_0^{contract})$).

Note: For $\Gamma_0 \subseteq \Gamma$, we have σ_{Γ} , we also can consider σ_{Γ_0} and for $\Gamma_0' \subseteq \Gamma_0 \subseteq \Gamma$, $\sigma_{\Gamma_0}(\Gamma_0') = \sigma_{\Gamma}(\Gamma_0')$

5 Contraction: I_3 and I_4

Figure 12: Extending from I_3 to I_4 .