Numerical Methods I

Assignment Sheet 1. Due: February 12, 2020, 11:15 sharp

Exercise 1 [3 x 5 Points]: Let $f(x) = \ln(\frac{x}{2})$.

- a) Compute the Taylor series for f developed at c=2.
- **b)** Use the Taylor series of f when truncated after the n-th term to compute $f(\frac{5}{2})$ for $n=1,\ldots,4$.
- c) Compare the values computed in b) with the actual value of $f(\frac{5}{2})$ and plot the errors over n.
- **d)** (4 Bonus Points) Show that the Taylor series for $f(x) = \ln(\frac{x}{2})$ developed at c = 2 represents the function f for $x \in [2,3]$.

Exercise 2 [5 + 5 + 5 Points]: The solutions x_1 and x_2 of a quadratic equation $\alpha x^2 + \beta x + \gamma = 0$ can be found by the equation

$$x_{1,2} = \frac{-\beta \pm \sqrt{\beta^2 - 4\alpha\gamma}}{2\alpha}.$$

- a) Compute the solutions to the quadratic equation with $\alpha = 1$, $\beta = 200$, and $\gamma = 0.000015$ when assuming normalized floating-point representations with a mantissa of k = 10 digits precision and base b = 10.
- **b)** Use the theorem from class to predict the number of lost significant bits when executing the problematic subtraction.
- c) The absolute error is calculated by the magnitude of the difference between the computed solution and the actual solution. Compute the absolute error for the solutions in a).

Exercise 3 [not graded, w/o Points]: Let $f(x) = \log_2(2x)$.

- a) Derive the truncated Taylor series expansion and the respective error term when truncating the Taylor series for f(x+h) developed at x=1 after the n-th term.
- b) For which values of h does the Taylor series in a) represent the function? Prove your claim.

Exercise 4 [not graded, w/o Points]: Determine the best integer value of $k \in \mathbb{N}$ in the equation

$$\arctan(x) = x + \mathcal{O}(x^k) \text{ as } x \to 0.$$

Exercise 5 [not graded, w/o Points]: How many digits of precision are lost in the subtraction $1-\cos(x)$ for $x=\frac{1}{4}$?