Gradient Coding

Rashish Tandon*, Qi Lei*, Alexandros Dimakis*, Nikos Karampatziakis†

* The University of Texas at Austin, † Microsoft Research

Overview

We propose a novel coding theoretic framework for mitigating stragglers in distributed learning. We show how to achieve tolerance to **failures/stragglers** for **synchronous Gradient-based methods** by:

- Replicating data blocks across machines
- Coding over the gradients transmitted

Introduction

Given a dataset $D = \{(x_1, y_1), \dots, (x_d, y_d)\}$, many ML tasks have the form:

$$\beta^* = \underset{\beta \in \mathbb{R}^p}{\operatorname{argmin}} \sum_{i=1}^d \ell(\beta; x_i, y_i) \tag{2}$$

Gradient-based methods solve this via the update step:

$$\beta^{(t+1)} = h\left(\beta^{(t)}, g^{(t)}\right) \tag{2}$$

- $g := \sum_{i=1}^{d} \nabla \ell(\beta^{(t)}; x_i, y_i)$, the gradient
- If d is large, its computation can be distributed
- Several methods e.g. gradient descent, accelerated gradient descent, conditional gradient, LBFGS, bundle methods etc. fit in this framework
- Notation: d samples, n workers denoted as $\{W_1, \ldots, W_n\}$, s stragglers (with s < n), Data partitions denoted as $\{D_1, \ldots, D_n\}$

General Setup

We seek matrices $A \in \mathbb{R}^{f \times n}$, $B \in \mathbb{R}^{n \times n}$:

$$AB = \mathbf{1}_{f \times n} \tag{3}$$

- f is number of combinations of non-straggler workers
- $\mathbf{1}_{f \times n}$ is the all 1s matrix of size $f \times n$
- B_i (i^{th} row of B) is linear combination over **partial gradients** computed by i^{th} worker
- A_i (ith row of A) is linear combination over workers when $supp(A_i)$ survive
- In the above example:

$$\bullet A = \begin{pmatrix} 0 & 1 & 2 \\ 1 & 0 & 1 \\ 2 & -1 & 0 \end{pmatrix}, B = \begin{pmatrix} 1/2 & 1 & 0 \\ 0 & 1 & -1 \\ 1/2 & 0 & 1 \end{pmatrix}$$

Full Stragglers

- Stragglers are allowed to be arbitrarily slow, to the extent of complete failure
- Rows of A have all subsets over [n] of size (n-s) as supports $(f=\binom{n}{n-s})$

We require that for any set $I \subseteq [n]$ s.t. |I| = n - s, B satisfies:

$$\mathbf{1}_{1\times n} \in \operatorname{span}\left\{B_i \,\middle|\, i \in I\right\} \tag{4}$$

• The above condition is necessary and sufficient to get (A, B) s.t. AB = 1

Theorem (Lower Bound on B's density): If all rows of *B* have the same no. of non-zeros, then:

$$||B_i||_0 \ge (s+1)$$
 for all $i \in [n]$

Fractional Repetition Scheme:

- Applicable when n is a multiple of (s + 1)
- Partition data equally among $\frac{n}{(s+1)}$ workers
- Create (s + 1) replicas using other workers
- Every worker sends sum of its partial gradients

Figure: Fractional Repetition Scheme for n = 6, s = 2

Cyclic Repetition Scheme: B has the support structure

$$supp(B) = \begin{bmatrix} \star & \star & \cdots & \star & \star & 0 & 0 & \cdots & 0 & 0 \\ 0 & \star & \star & \cdots & \star & \star & 0 & \cdots & 0 & 0 \\ \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & \cdots & 0 & 0 & \star & \star & \cdots & \star & \star \\ \vdots & \vdots \\ \star & \cdots & \star & \star & 0 & 0 & \cdots & 0 & 0 & \star \end{bmatrix}_{n \times n}$$
 (5)

- Pick rows of B from a random subspace S (described as null-space of an $s \times n$ MDS matrix) and also containing $\mathbf{1}_{n \times 1}$
- Always possible for any *n* and *s*

Partial Stragglers

- Stragglers are allowed to be at most α -times slower than any non-straggler
- Key idea is to couple the naive scheme with the coding scheme
- Data is split into a *naive* component and *coded* component
- When a straggler finishes processing its *naive* components, a non-straggler finishes its *naive+coded* components

Figure: Scheme for Partial Stragglers, n = 3, s = 1, $\alpha = 2$. $g(\cdot)$ represents the partial gradient. Each worker gets 4/9 fraction of the data (as opposed to a 2/3 fraction in the earlier scheme).

Experiments

Artificial Dataset:

- Generate a dataset with d=554400 samples, $D=\{(x_1,y_1),\ldots,(x_d,y_d)\}$
- $x \sim \frac{1}{2} \times \mathcal{N}(\mu_1, I) + \frac{1}{2} \mathcal{N}(\mu_2, I)$ and $y \sim Ber(p), p = 1/(\exp(2x^T \beta^*) + 1)$
- Model dimension p = 100, and μ_1, μ_2, β^* chosen randomly

(a) One straggler

(b) Two stragglers

Figure: Empirical running time on EC2 with $n=12\,\mathrm{ml}$. small machines, and one or two stragglers. Other machines run at normal speed while stragglers are artificially delayed. α is slowdown rate for partial schemes. We note that the partial straggler schemes for $\alpha=1.2$ needs to only replicate approximately 10% of the blocks.

Real Dataset:

- Train a logistic regression model on a real binary classification dataset
- Generalization error comparison with *ignoring stragglers* approach *i.e.* data is distributed equally and we only wait for (n s) machines to finish

(b) n = 5, s = 1: Missing 1/5 of the data

Figure: Generalization Error comparison of our scheme vs. *ignoring stragglers*. The straggling worker was fixed to be the same machine across iterations.