Week 3: Matching and PSM

JJ Chen

January 30, 2015

Today's Tasks

- Homework Questions
- Matching and Propensity Score
 - Understand functional form and weight of regressions

Recap

- Week 1: RCM and RCTs
 - ▶ RCTs give IA: $Y_{0i}, Y_{1i} \perp D_i$
 - ▶ Extend to CIA: $Y_{0i}, Y_{1i} \perp D_i \mid X_i$
- Week 2: Reg and OVB
 - ▶ If CIA is believeable, regression recovers causal effect
 - Understand Reg through RCM
 - Understand OVB through CIA
- Week 3: Mat and PSM
 - ▶ If CIA + CSA are believeable, matching gives ATET (or ATE)
 - Understand Reg through Mat

Intuition: Understand Reg through Mat

- We will still want to run regressions
 - ► The matching idea helps to simplify complicated matrices from last semester, and focus on identification issues
- ▶ Idea: match silimar units, and produce a mean comparison
 - OLS gives conditional mean comparison
 - ▶ FE compares means of each unit to their average
 - DID compares difference in mean across locations
 - RD compares means around the cutoff
 - ▶ IV compares means of instrumented and non-instrumented
- ► Goal: give a believable mean comparison
 - Still need to work out the details

Matching: Idea

- Idea: recreate a control group based on the treatment group (preprocess the data)
 - Based on treatment unit's covariate values, match each unit in the treatment group to an untreated unit based on
- Drop people in the original control group (bias?)
 - ▶ If we drop obs based on a rule that does not depend on the outcome variable, then it should be good
- Invoke CIA, and compare mean

Exact Matching

- Today we will just talk about exact matching
 - ► There are many others: stratification, nearest neighbor, optimal, . . .
- Two Assumptions for Identification
 - ightharpoonup CIA: $Y_{0i}, Y_{1i} \perp D_i \mid X_i$
 - ► CSA: $0 < \Pr(D_i = 1 \mid X_i) < 1$
 - If you just need, say ATET, notations can be simplified
 - MIA:

$$\mathbf{Y}_{0i} \perp \mathbf{D}_i \mid \mathbf{X}_i \implies \mathbf{E}(\mathbf{Y}_{0i} \mid \mathbf{D}_i = 1, \mathbf{X}_i) = \mathbf{E}(\mathbf{Y}_{0i} \mid \mathbf{D}_i = 0, \mathbf{X}_i)$$

▶ CSA: $Pr(D_i = 1 \mid X_i) < 1 \implies$ at least there's a control people

Exact Matching Example: Original Data

Unit	Χ	D	Υ
1	1	0	10
2	1	1	15
3	1	1	20
4	2	0	25
5	2	1	30
6	2	0	30
7	3	1	25
8	3	1	35
9	4	0	50
10	5	0	55

Exact Matching Example: Balanced Data

Unit	X_i	Y_{1i}	Y_{0i}	Effect
2	1	15	10	5
3	1	20	10	10
5	2	30	27.5	2.5
7	3	25	NA	NA
8	3	35	NA	NA

- ► ATET: (5 + 10 + 2.5) / 3 = 5.8
- ▶ What if we want ATEN?

Exact Matching: Comments

- Construct counterfactual using untreated units
 - rely on CIA, CIA, CIA, CIA....
 - again, hard to justify
- ▶ Drop units whose $Pr(D_i = 1 \mid X_i) = 1$
 - No variation in treatment status
 - Matching only estimate the effect when there is CS
- Matching only estimates ATET in the CS region
 - This is why we need to show the CS region

What if I just run a regression?

```
X \leftarrow c(1, 1, 1, 2, 2, 2, 3, 3, 4, 5)
D \leftarrow c(0, 1, 1, 0, 1, 0, 1, 1, 0, 0)
Y \leftarrow c(10, 15, 20, 25, 30, 30, 25, 35, 50, 55)
lm(Y \sim D + X)
```

```
##
## Call:
## lm(formula = Y \sim D + X)
##
## Coefficients:
## (Intercept)
         6.757
                     -1.216
                                      9.730
##
```

X

I thought regression would give similar result. . .

- Turned out we need to worry about functional form
 - ▶ In this case, the relationship between Y and X is not quite linear
 - \blacktriangleright And the relationship between x and p is also not quite linear
- Regresion doesn't care about common support
 - ${\color{blue} \blacktriangleright}$ a treated unit with $x_i=2$ is compared with a control unit with $x_i=5$
 - because we assume linearity in X_i
- Pros: Extrapolation uses more data, gives small SE
- Cons: Linearity might be problematic

What if I allow x_i to be more flexible?

```
out <- lm(Y ~ D + factor(X))
knitr::kable(summary(out)$coef, digits=2)</pre>
```

	Estimate	Std. Error	t value	Pr(> t)
(Intercept)	11.67	3.73	3.13	0.04
D	5.00	3.95	1.26	0.27
factor(X)2	15.00	3.95	3.79	0.02
factor(X)3	13.33	4.37	3.05	0.04
factor(X)4	38.33	5.89	6.51	0.00
factor(X)5	43.33	5.89	7.35	0.00

What if I allow x_i to be more flexible?

- ▶ Great, now we got 5, which is much closer to 5.8
 - Reg actually pick only the common support region if you do it in this way
- Matching is a nonparametric way to get the effect
 - Reg can do the same job, provided you know how to add controls
 - And they both rely on CIA, CIA, CIA, CIA...

Why doesn't Reg give me a 5.8 but 5?

- Weights:
 - Mat weights the cell average based on the fraction of the treated units
 - Reg weights the cell average based on the variance of the treated units
- Mat: 2/3 of the treated units have $x_i = 1$ and the average treatment effect is 7.5; 1/3 of the treated observations have $x_i = 2$ and the average treatment effect is 2.5
 - > 7.5 * (2/3) + 2.5 * (1/3) = 5.8
- ▶ Reg: the variance in cell $x_i = 1$ and $x_i = 2$ are both $p \times (1 p) = 1/3 * 2/3$ and both cells have 3 observations, so the weights are the same
 - ightharpoonup 7.5 * (1/2) + 2.5 * (1/2) = 5

Motivation and steps

- Motivation: reduce dimensions
 - What matters is the design, not a loooooong controls
- The PS theorem looks like CIA
- Steps:
 - Choose variables that affect the selection into treatment, run a logit/probit/LPM, predict the scores, match a subsample, check for balacnce, estimate ATET/ATEN/ATE among the common support
 - Best practice according to Gary King: choose n-match-check, tweak-match-check, tweak-match-check, tweak-match-check......
 - ▶ Checking for balance: $X_i \perp D_i \mid Pr(D_i = 1 \mid X_i)$

