Университет ИТМО

Факультет программной инженерии и компьютерной техники

Вычислительная математика. Лабораторная работа №3. Численное интегрирование

Группа: Р32131

Студент: Смирнов Виктор Игоревич

Вариант: 17

Ключевые слова

Численные методы, интегрирование.

1 Цель работы

Цель данной работы - найти приближенное значение определенного интеграла с требуемой точностью различными численными методами, реализовав численные методы на языке программирования.

2 Вычислительная часть

Необходимо вычислить интеграл функции $y = 3x^3 - 4x^2 + 7x - 17$ на интервале [1, 2].

2.1 Вычисление вручную

$$f(x) = 3x^3 - 4x^2 + 7x - 17 (1)$$

$$\int f(x) = 3x^3 - 4x^2 + 7x - 17 = \frac{3x^4}{4} - \frac{4x^3}{3} + \frac{7x^2}{2} - 17x + const$$
 (2)

$$F(x) = \frac{3x^4}{4} - \frac{4x^3}{3} + \frac{7x^2}{2} - 17x \tag{3}$$

$$\int_{1}^{2} f(x) = F(2) - F(1) = -\frac{55}{12} = -4.583(3) \tag{4}$$

2.2 Вычисление по формуле Ньютона-Котеса при n=5

```
1  $ math-tool integrator cotes5 1 2 0.0001
2  6
3  Report
4  Taken method: Cotes n = 5
5  Scope: [1.000000, 2.000000]
6  Accuracy: 0.0001
7  Result: -4.58341
```

Листинг 1: Результаты вывода программы 1

Таблина	1:	Трассировка	метода Котеса	(n = 5))

n	size	prev	curr	diff
1	8	-4.92739	-4.75271	0.174676
2	16	-4.75271	-4.66735	0.0853653
3	32	-4.66735	-4.62517	0.0421784
4	64	-4.62517	-4.60421	0.0209617
5	128	-4.60421	-4.59376	0.0104488
6	256	-4.59376	-4.58854	0.00521638
7	512	-4.58854	-4.58594	0.00260618
8	1024	-4.58594	-4.58464	0.00130259
9	2048	-4.58464	-4.58398	0.000651167
10	4096	-4.58398	-4.58366	0.000325552
11	8192	-4.58366	-4.5835	0.000162768
12	16384	-4.5835	-4.58341	8.13822e-05

2.3 Вычисление методом средних прямоугольников

```
1  $ math-tool integrator rect-m 1 2 0.0001
2  6
3  Report
4  Taken method: Rectangle Middle
5  Scope: [1.000000, 2.000000]
6  Accuracy: 0.0001
7  Result: -4.58335
```

Листинг 2: Результаты вывода программы 2

Таблица 2: Трассировка метода Средних Прямоугольников

n	size	prev	curr	diff
1	8	-4.63281	-4.5957	0.0371094
2	16	-4.5957	-4.58643	0.00927734
3	32	-4.58643	-4.58411	0.00231934
4	64	-4.58411	-4.58353	0.000579834
5	128	-4.58353	-4.58338	0.000144958
6	256	-4.58338	-4.58335	3.62396e-05

2.4 Вычисление по формуле Трапеций

```
1  $ math-tool integrator trapeze 1 2 0.0001
2  6
3  Report
4  Taken method: Trapeze
5  Scope: [1.000000, 2.000000]
6  Accuracy: 0.0001
7  Result: -4.58331
```

Листинг 3: Результаты вывода программы 3

Таблица 3: Трассировка метода Трапеций

n	size	prev	curr	diff
1	8	-4.48438	-4.55859	0.0742188
2	16	-4.55859	-4.57715	0.0185547
3	32	-4.57715	-4.58179	0.00463867
4	64	-4.58179	-4.58295	0.00115967
5	128	-4.58295	-4.58324	0.000289917
6	256	-4.58324	-4.58331	7.24792e-05

2.5 Вычисление по формуле Симпсона

```
1 $ math-tool integrator simpson 1 2 0.0001
2 6
3 Report
4 Taken method: Simpson
5 Scope: [1.000000, 2.000000]
6 Accuracy: 0.0001
7 Result: -4.58333
```

Листинг 4: Результаты вывода программы 4

2.6 Функция с разрывом - расходящийся интеграл

Таблица 4: Трассировка метода Симпсона

n	size	prev	curr	diff
1	8	-4.58333	-4.58333	1.77636e-15

```
1 $ math-tool integrator simpson -1 2 0.0001
2 7
3 Report
4 Taken method: Simpson
5 Scope: [-1.000000, 2.000000]
6 Accuracy: 0.0001
7 No result: Can't integrate given function, maybe it diverges in given interval
```

Листинг 5: Результаты вывода программы при расходящемся интеграле 1

3 Анализ полученных результатов

Начнем со случая, когда функция терпит разрыв в точке на интервале. Если несобственный интеграл расходится, то его интеграл стремится к бесконечности, поэтому при каждом новом приближении мы получаем все большее и большее число в результате, поэтому я просто ограничил количество интераций 20ю, и если это кол-во превышено кидаю ошибку.

В целом, сразу видно, насолько хорош Симпсон, хотя это на самом деле из-за того, что наша исходная функция является полиномом 4ой степени и данный метод своими приближениями очень точно подходит под данную модель.

Метод трапеции и прямоугольников работают примерно одинаково. А вот формула Ньютона-Котеса при n=5 расстроила - не стоила она потраченных сил. А все почему? Потому что интерполяционные многочлены подвели.

4 Фрагменты программ

```
1 template <typename T>
using TrivialMethod = std::function<T(Function<T>, Interval<T>)>;
4 template <typename T>
5 using Method = std::function<T(Function<T>, Partition<T>)>;
7 template <typename T>
8 using PointPeeker = std::function<T(Interval<T>)>;
10 template <typename T>
11 TrivialMethod<T> trivialO(PointPeeker<T> peek) noexcept {
12
    return [peek](auto f, auto interval) {
      return f(peek(interval)) * interval.length();
13
14
    };
15 }
17 template <typename T>
18 TrivialMethod<T> trivial1() noexcept {
   return [](auto f, auto interval) {
      auto left = f(interval.left());
      auto right = f(interval.right());
21
      return (left + right) / 2 * interval.length();
22
23
24 }
26 template <typename T>
27 TrivialMethod<T> trivial2() noexcept {
    return [](auto f, auto interval) {
      auto a = interval.left();
29
      auto b = interval.right();
30
      return (b - a) / 6 * (
31
          + 1 * f(a)
32
          + 4 * f((a + b) / 2)
          + 1 * f(b)
34
    );
```

```
36
    };
37 }
38
39 template <typename T>
40 TrivialMethod<T> trivial5() noexcept {
   return [](auto f, auto interval) {
41
       const auto s = interval.left();
42
43
       const auto 1 = interval.length() / 6;
       return interval.length() / 288 * (
44
45
           + 19 * f(s + 0 * 1)
           +75 * f(s + 1 * 1)
46
           + 50 * f(s + 2 * 1)
47
           + 50 * f(s + 3 * 1)
           +75 * f(s + 4 * 1)
49
           + 19 * f(s + 5 * 1)
50
      );
51
    };
52
53 }
54
55 template <typename T>
56 class Cotes {
57 public:
58
     explicit Cotes(TrivialMethod <T> trivial)
         : trivialAreaUnderGraph(trivial) {}
60
     T areaUnderGraph(Function < T > function, Partition < T > partition) noexcept {
61
62
       T sum = 0;
       for (auto interval : partition) {
63
         sum += trivialAreaUnderGraph(function, interval);
65
66
       return sum;
     }
67
68
69 private:
    TrivialMethod <T> trivialAreaUnderGraph;
70
71 };
73 template <typename T>
74 class Approx {
75 public:
     explicit Approx(T epsilon, Cotes<T> cotes)
76
77
         : epsilon(epsilon), cotes(cotes) {}
78
     T integrate(Function <T> f, Interval <T> scope) {
79
       auto size = 4;
81
       auto prev = cotes.areaUnderGraph(f, Partition<T>(scope, size));
82
       for (Index i = 0; i < iterationsLimit; i++) {</pre>
83
         size *= 2;
84
85
         auto curr = cotes.areaUnderGraph(f, Partition<T>(scope, size));
86
87
88
         if (std::abs(prev - curr) < epsilon) {</pre>
          return curr;
89
90
91
         prev = curr;
92
       };
93
       throw Error::ProcessDiverges(
94
            "Can't integrate given function, "
95
           "maybe it diverges in given interval"
97
       );
98
100 private:
    Count iterationsLimit = 20;
101
T epsilon;
    Cotes <T > cotes;
103
104 };
```

Листинг 6: Программы для численного интегрирования

5 Вывод

Выполняя данную лабораторную работу я познакомился с основными численными методами интегрирования.

Интегрирование - вычислительно сложная задача, то есть для нее требуется много ресурсов. Для сильно скачущих функциях требуются довольно мелкое разбиение из-за чего колчество итераций сильно возрастает. Кроме того мы увеличиваем количество этих итераций при каждой неудаче.

С расходящимися интегралами могут быть проблемы: мы можем попытаться вычислить значение функции на интервале, на котором она не определена и получить Undefined Behaviour, а если она будет просто стремится к бесконечности на заданном интервале, мы просто потратим много сил на вычисление и в конце-концов сдадимся.