$AML6_Rx$

jtrincado

2022-02-08 16:37:17

Contents

	 Put together both 34 and 38 libraries. Apply QC and dimensionality reduction. Get the LSC6 score	4 6	
	Put together both 34 and 38 libraries. Apply QC and dimensionality reduces.	10-	
##	CD34_AAACCCAAGATGGTCG-1 CD34_AAACGCTCAACTCGTA-1 CD34_AAAGAACCAAATACGA-1		
##	12 13 0		
##	CD34_AAAGGATAGTGGTGAC-1 CD34_AAAGGATCAGCACAAG-1		
##	0 0		
##	Levels: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14		
##	Warning: The default method for RunUMAP has changed from calling Python UMAP via ret	ciculate to the	Ι
##	To use Python UMAP via reticulate, set umap.method to 'umap-learn' and metric to 'co	rrelation'	
##	This message will be shown once per session		

2. Get the LSC6 score

[1] "CD34" "SPINK2" "SOCS2" "FAM30A" "ADGRG1" "DNMT3B"

3. Predict the class of the cells using the markers and the expression of the BM cells form Van_Galen paper

- ## Performing PCA on the provided reference using 1821 features as input.
- ## Projecting cell embeddings
- ## Finding neighborhoods
- ## Finding anchors
- ## Found 2373 anchors
- ## Filtering anchors
- ## Retained 1407 anchors
- ## Finding integration vectors
- ## Finding integration vector weights
- ## Predicting cell labels

##													
##		HSC	Prog	GMP	${\tt ProMono}$	${\tt Mono}$	cDC	pDC	earlyEry	lateEry	${\tt ProB}$	В	${\tt Plasma}$
##	CD34	30	45	313	1338	22	470	17	44	27	5	2	0
##	CD38	79	134	541	1906	38	1338	46	0	9	0	3	1

4. Project the predictions from Velten onto our UMAP

The only cluster with HSC predicted is cluster 10. Altough it has a really low LSC6, this cluster colocalize well with cluster 11 at Dx. Therefore this cluster seems the one more likely to be enriched in LSC