Тема 1. Аксиомы стереометрии

Теория Аксиомы стереометрии

- А1. Для любой плоскости пространства существует точка, ей не принадлежащая.
- А2. В любой плоскости пространства выполняются все аксиомы планиметрии.
- АЗ. Через любые три точки пространства, не принадлежащие одной прямой, проходит плоскость и притом только одна.
- А4. Если две точки прямой принадлежат плоскости, то и вся прямая принадлежит этой плоскости.
- А5. Если две плоскости имеют общую точку, то они пересекаются по прямой.
- Аб. Расстояние между любыми двумя точками пространства одинаково для любой плоскости, проходящей через эти точки.

Ключевая задача

Задача. Докажите, что если две плоскости имеют общую точку, то они пересекаются по прямой, проходящей через эту точку.

Решение. Пусть точка A является общей для двух плоскостей α и β , т. е. $A \in \alpha$ и $A \in \beta$ (рис. 1.16). По аксиоме A5 плоскости α и β пересекаются по прямой. Пусть $\alpha \cap \beta = a$. Тогда все общие точки плоскостей α и β принадлежат прямой a. Точка A является общей для плоскостей α и β . Следовательно, $A \in a$.

Pur 1.10

Упражнения

- **1.1.** Изобразите плоскость α , точку M, ей принадлежащую, и точку K, ей не принадлежащую. Запишите это с помощью соответствующих символов.
- **1.2.** Изобразите плоскость γ, проходящую через прямую *c*. Запишите это с помощью соответствующих символов.
- **1.3.** Изобразите плоскость α и прямую b, пересекающую данную плоскость в точке A. Запишите это с помощью соответствующих символов. Сколько точек прямой b принадлежит плоскости α ?
- Изобразите плоскости β и γ, пересекающиеся по прямой с. Запишите это с помощью соответствующих символов.
- **1.5.** Прямая a проходит через точку A плоскости α . Следует ли из этого, что прямая a пересекает плоскость α ?
- Запишите с помощью символов взаимное расположение точек и прямых, изображённых на рисунке 1.17, и плоскости α.

- **1.7.** Даны точки A, B и C такие, что AB = 5 см, BC = 6 см, AC = 7 см. Сколько плоскостей можно провести через точки A, B и C?
- **1.8.** Даны точки D, E и F такие, что DE = 2 см, EF = 4 см, DF = 6 см. Сколько плоскостей можно провести через точки D, E и F?
- 1.9. В комнате на люстре сидели три мухи. Одновременно они начали летать: первая кружить вокруг люстры на одинаковой высоте, вторая спускаться от люстры вертикально вниз и подниматься обратно, третья перемещаться от люстры до двери и обратно. Скорость всех мух одинакова. Через какое время все три мухи окажутся в одной плоскости?
- 1.10. Могут ли две плоскости иметь только одну общую точку?
- **1.11.** Изобразите плоскости α и β , прямую c, точки A и B, если известно, что $\alpha \cap \beta = c$, $A \in c$, $B \in \alpha$, $B \notin \beta$.
- **1.12.** Изобразите плоскости α , β , γ и прямую m, если известно, что $\alpha \cap \beta = m$, $\alpha \cap \gamma = m$.
- **1.13.** Изобразите плоскости α , β , γ и прямые a, b, c, если известно, что $\alpha \cap \beta = c$, $\alpha \cap \gamma = b$, $\beta \cap \gamma = a$.

1.15. Квадраты ABCD и ABC_1D_1 не лежат в одной плоскости (рис. 1.19). На отрезке AD отметили точку E, а на отрезке BC_1 — точку F. Постройте точку пересечения:

1) прямой CE с плоскостью ABC_1 ;

2) прямой FD_1 с плоскостью $AB\hat{C}$.

1.16. Верно ли утверждение: любая прямая, проходящая через центры вписанной и описанной окружностей данного треугольника, лежит в плоскости этого треугольника?

1.17. О плоскостях α и β и прямой a известно, что $\alpha \cap \beta = c$, $a \subset \alpha$, $a \cap \beta = M$. Докажите, что $a \cap c = M$.

1.18. О плоскостях α и β и прямой a известно, что $\alpha \cap \beta = c$, $a \subset \alpha$, $a \cap c = A$. Докажите, что $A \in \beta$.

1.19. Точки A, B, C и D не лежат в одной плоскости. Докажите, что никакие три из них не лежат на одной прямой.

1.20. Докажите, что если две соседние вершины четырёхугольника и точка пересечения его диагоналей принадлежат одной плоскости, то и две другие вершины принадлежат этой плоскости.

1.21. Вершина D четырёхугольника ABCD принадлежит плоскости α , а остальные вершины лежат вне этой плоскости. Продолжения сторон BA и BC пересекают плоскость α в точках M и K соответственно. Докажите, что точки M, D и K лежат на одной прямой.

1.22. Вершина A треугольника ABC принадлежит плоскости α, а вершины B и C лежат вне этой плоскости. Продолжения медиан BM и CN треугольника ABC пересекают плоскость α в точках K и E соответственно. Докажите, что точки A, K и E лежат на одной прямой.

1.23. О плоскостях α , β и γ известно, что $\alpha \cap \beta = c$, $\beta \cap \gamma = a$, $\alpha \cap \gamma = b$, $a \cap c = M$. Докажите, что $M \in b$.

1.24. Точка M — общая точка двух плоскостей ABC и BCD. Найдите отрезок BC, если BM = 4 см, MC = 7 см.

1.25. Даны n точек, $n \geq 4$, каждые 4 из которых лежат в одной плоскости. Докажите, что все эти точки лежат в одной плоскости.

1.26. Точки M, N, K и P, принадлежащие соответственно звеньям AB, BC, CD и DA замкнутой ломаной ABCD, лежат в плоскости α . Верно ли, что точки A, B, C и D также принадлежат плоскости α ?

1.27. Пять точек, являющихся серединами звеньев замкнутой ломаной ABCDE, принадлежат плоскости α . Докажите, что точки A, B, C, D и E принадлежат этой же плоскости.

1.28. Имеется n (n ≥ 2) плоскостей, каждые две из которых пересекаются. Какое наибольшее количество прямых, являющихся линиями пересечения данных плоскостей, может при этом образоваться?

Упражнения для повторения

1.29. В треугольнике ABC сторона AC равна 30 см. Медианы AM и CN соответственно равны 39 см и 42 см. Найдите площадь треугольника ABC.
1.30. Диагональ AC равнобокой трапеции

ABCD (AB = CD) делит угол BAD пополам (рис. 1.20). Точка E — середина отрезка AB. Прямая, проходящая через точку E параллельно основаниям трапеции, пересекает отрезок AC в точке K, а отрезок CD — в точке E. Найдите периметр трапеции E0, если E1 см, E2 см.