Problems for Discussion 1, 09/11/13

Compiled by Mai Le

1 Alternate Expressions for Sequences

Let $x[n] = \begin{cases} \left(\frac{1}{2}\right)^n, & n \text{ nonnegative multiple of 4} \\ -\left(\frac{1}{2}\right)^n, & n \text{ nonnegative multiple of 2, but not a nonnegative multiple of 4} \\ 0, & \text{otherwise} \end{cases}$

Express x[n] mathematically in three different ways

2 Nonlinear Systems

Give an example of a system that is nonlinear but satisfies $\mathcal{T}\{\alpha x[n]\} = \alpha \mathcal{T}\{x[n]\}$ for all sequences x[n] and for all scalars $\alpha \in \mathbb{R}$.

3 Length of Convolution

Let x[n] be non-zero only over $N_1 \leq n \leq N_2$ and h[n] be non-zero only over $M_1 \leq n \leq M_2$. Let y[n] = x[n] * h[n]. Then y[n] is only non-zero over $L_1 \leq n \leq L_2$. Define L_1 and L_2 in terms of N_1 , N_2 , M_1 , and M_2 .

4 Distributivity of Convolution

Prove the distributive property of convolution.

5 Computing Discrete Convolution

Let y[n] = x[n] * h[n]. Find an expression for y[n].

(a)

$$x[n] = \begin{cases} 1, & n = -2, 0, 1 \\ 2, & n = -1 \\ 0, & otherwise \end{cases}$$

$$h[n] = \delta[n] - \delta[n-1] + \delta[n-4] + \delta[n-5]$$

(b)

$$x[n] = u[n+1] - u[n-4] - \delta[n-5]$$

$$h[n] = (u[n+2] - u[n-3]) (3 - |n|)$$

6 Convolution and Signal Energy

Let
$$y[n] = x[n] * h[n]$$
. Prove that $\left(\sum_{n=-\infty}^{\infty} y[n]\right) = \left(\sum_{n=-\infty}^{\infty} x[n]\right) \left(\sum_{n=-\infty}^{\infty} h[n]\right)$.

7 Impulse Response of a BIBO Stable System

Let h[n] be the impulse response of a BIBO stable system. (Remember that impulse responses are only defined for LSI systems, so this system is also LSI.) What must hold true for h[n]?

8 Impulse Response of a Causal System

Let h[n] be the impulse response of a causal system. What must hold true for h[n]?

9 Impulse Response of an Invertible System

A system \mathcal{T}_1 is invertible if there exists a system \mathcal{T}_2 such that $\mathcal{T}_2\{\mathcal{T}_1\{x[n]\}\}=x[n]$ for all $n\in\mathbb{Z}$. Let h[n] be the impulse response of an invertible system. What must hold true for h[n]?

10 Eigensequences

A sequence x[n] is an eigensequence of a system \mathcal{T} if $\mathcal{T}\{x[n]\} = \lambda x[n]$ for some scalar $\lambda \in \mathbb{C}$. What are the eigensequences for the following systems?

10.1
$$\mathcal{T}\{x[n]\} = 3x[n]$$

10.2
$$\mathcal{T}\{x[n]\} = x[n]u[n]$$

10.3 causal moving average:
$$\mathcal{T}\{x[n]\} = \frac{1}{M} \sum_{k=0}^{M-1} x[n-k]$$

10.4 general LSI system:
$$\mathcal{T}\{x[n]\} = \sum_{k=-\infty}^{\infty} h[k]x[n-k]$$

11 Geometric Basis for Sequences

Consider the signal $\gamma[n] = a^n u[n]$ for 0 < a < 1.

(a)

Show that any sequence x[n] can be decomposed as $x[n] = \sum_{n=-\infty}^{\infty} c_k \gamma[n-k]$ and express c_k in terms of x[n].

(b)

Use the properties of linearity and time invariance to express the output $y[n] = \mathcal{T}\{x[n]\}$ in terms of the input x[n] and the signal $g[n] = \mathcal{T}\{y[n]\}$, where \mathcal{T} is an LTI system.

(c)

Express the impulse response $h[n] = \mathcal{T}\{\delta[n]\}$ in terms of g[n].

12 Steady State of Stable Systems

Let \mathcal{T} be an LTI, BIBO stable system. Show if x[n] is bounded and tends to a constant, the corresponding output, y[n], will also tend to a constant.