Devoir facultatif n° 7

Vous pourrez rendre l'un ou l'autre des problèmes. Bien entendu, ce « ou » est inclusif.

Premier problème

L'objet du problème est de calculer explicitement la limite de la suite des moyennes arithmético-géométriques pour certaines valeurs initiales.

Soit $x \in \left[0, \frac{\pi}{2}\right[$. On définit la suite (u_n) par :

$$u_0 = \cos x \text{ et } \forall n \in \mathbb{N}, \ u_{n+1} = u_n \cos\left(\frac{x}{2^{n+1}}\right).$$

- 1) a) Montrer que la suite de terme général $v_n = u_n \sin\left(\frac{x}{2^{n+1}}\right)$ est géométrique.
 - b) En déduire, pour tout $n \in \mathbb{N}$, l'expression de u_n en fonction de x et de n.
 - c) Montrer que la suite (u_n) est convergente et donner sa limite.

On considère désormais les deux suites $(a_n)_{n\in\mathbb{N}}$ et $(b_n)_{n\in\mathbb{N}}$ définies par

$$a_0 = 1$$
 et $\forall n \in \mathbb{N}, \ a_{n+1} = \frac{a_n + b_n}{2}$

ainsi que

$$b_0 = \frac{1}{\cos(x)}$$
 et $\forall n \in \mathbb{N}, b_{n+1} = \sqrt{a_{n+1}b_n}.$

- 2) a) Donner l'expression de b_1 comme quotient de deux cosinus.
 - **b)** Montrer que, pour tout $n \in \mathbb{N}$, $a_n > 0$ et $b_n > 0$.
- 3) a) Établir que, pour tout $n \in \mathbb{N}$,

$$b_{n+1} - a_{n+1} = \frac{\sqrt{a_{n+1}}}{2(\sqrt{b_n} + \sqrt{a_{n+1}})}(b_n - a_n).$$

- **b)** Montrer que pour tout $n \in \mathbb{N}$, $a_n < b_n$.
- c) En déduire les variations des suites (a_n) et (b_n) .
- d) Montrer que, pour tout $n \in \mathbb{N}$, on a

$$0 < b_n - a_n \leqslant \frac{1}{2^n} \left(\frac{1}{\cos x} - 1 \right).$$

- e) Montrer que les suites (a_n) et (b_n) sont convergentes et ont la même limite, notée L.
- 4) a) Vérifier que, pour tout entier $n \in \mathbb{N}$, on a

$$a_n = u_n \frac{\cos\left(\frac{x}{2^n}\right)}{\cos^2(x)}$$
 et $b_n = \frac{u_n}{\cos^2(x)}$.

- b) En déduire la valeur de L.
- 5) Dans cette question, on considère le cas particulier $x = \frac{\pi}{4}$.
 - a) Calculer la valeur de L.
 - b) En déduire un encadrement de π en utilisant a_n et b_n .
 - c) Montrer que, pour tout entier $n \in \mathbb{N}$,

$$0 < b_{n+1} - a_{n+1} \leqslant \frac{1}{4}(b_n - a_n).$$

d) Combien suffit-il de calculer de termes des suites (a_n) et (b_n) pour obtenir un encadrement de π à 10^{-8} pres?

Remarque : on ne demande pas de calculer les valeurs de a_n et b_n correspondantes.

Second problème

On considère une suite $(u_n)_{n\in\mathbb{N}}$ de réels non nuls et on lui associe la suite $(p_n)_{n\in\mathbb{N}}$ définie par

$$\forall n \in \mathbb{N}^*, \ p_n = \prod_{k=1}^n u_k.$$

On dit que le produit (p_n) converge si et seulement si la suite (p_n) admet une limite finie **non nulle**. Sinon, on dira que le produit (p_n) diverge.

Première Partie : quelques exemples

- 1) Montrer que si le produit (p_n) converge, alors la suite (u_n) est convergente et préciser sa limite.
- 2) On suppose dans cette question uniquement que, pour tout $n \in \mathbb{N}$,

$$u_n = \left(1 + \frac{1}{n}\right).$$

Calculer p_n pour $n \ge 1$ et en déduire la nature du produit (p_n) .

3) On considère un réel α tel que : $\forall k \in \mathbb{Z}, a \neq k\pi$. Dans cette question uniquement, on considère la suite de terme général

$$u_n = \cos\left(\frac{a}{2^n}\right)$$

- a) Pour un entier $n \ge 1$, calculer le réel $p_n \sin\left(\frac{a}{2^n}\right)$.
- b) Montrer ensuite que le produit (p_n) converge et préciser la limite de la suite (p_n) .

Deuxième Partie : une caractérisation de la convergence d'un produit

On considère dans cette partie une suite $(u_n)_{n\in\mathbb{N}}$ qui converge vers 1.

4) Montrer qu'il existe un entier n_0 tel que pour tout entier $n \ge n_0$, $u_n > 0$. On définit alors la suite $(S_n)_{n \in \mathbb{N}}$ à partir du rang n_0 par :

$$S_n = \sum_{k=n_0}^n \ln(u_k).$$

- 5) Montrer que la suite (S_n) converge si et seulement si le produit (p_n) converge.
- 6) Dans cette question uniquement, on considère la suite de terme général $u_n = \sqrt[n]{n}$ et le produit (p_n) associé.
 - a) Montrer que, pour tout $p \ge 3$,

$$\int_{p}^{p+1} \frac{\ln x}{x} \, \mathrm{d}x \leqslant \frac{\ln p}{p}.$$

b) En déduire la nature du produit (p_n) .

Troisième Partie : un autre critère de convergence d'un produit

On considère maintenant une suite $(\nu_n)_{n\in\mathbb{N}}$ telle que pour tout entier $n\geqslant 1, \nu_n>0$, et le produit

$$p_n = \prod_{k=1}^{n} (1 + v_k).$$

On définit la suite (T_n) de terme général

$$T_n = \sum_{k=1}^n \nu_k.$$

- 7) Montrer que pour tout $x \in \mathbb{R}_+^*$, $\ln(1+x) \leqslant x$.
- 8) Montrer que si la suite (T_n) converge, alors le produit (p_n) converge également.

- 9) Montrer la réciproque : si le produit (p_n) , alors la suite (T_n) converge également.
- 10) On considère dans cette question la suite (T_n) de terme général

$$T_n = \sum_{k=1}^n \frac{1}{k}.$$

- a) En utilisant la question 2), que peut-on dire de la limite de la suite (T_n) ?
- b) En encadrant l'intégrale $\int_{k}^{k+1} \frac{\mathrm{d}x}{x}$ pour $k \ge 2$, trouvez un équivalent de la suite (T_n) , c'est à dire une suite (T'_n) vérifiant

$$\frac{T_n}{T_n'} \xrightarrow[n \to +\infty]{} 1.$$

Remarque : on chercher bien entendu une suite (T_n^\prime) la plus simple possible.

Quatrième Partie: étude d'un produit

On considère dans cette partie un réel a>0 et le produit

$$p_n = \prod_{k=1}^n \left(1 + a^{2^k}\right).$$

11) Si $a \ge 1$, que peut-on dire du produit (p_n) ?

On suppose désormais que $a \in]0,1[$.

- 12) Montrer que le produit (p_n) converge.
- 13) Soit un entier $n \ge 1$. Calculer $(1 a^2)p_n$ et en déduire la limite de la suite (p_n) .