计算语言学

第4讲 形式语言与自动机

刘群

中国科学院计算技术研究所 liuqun@ict.ac.cn

中国科学院研究生院2002~2003学年第二学期课程讲义

什么是语言

- 代数学的定义方法(本次课介绍)
 - 确定性定义方法
 - 语言是句子的集合
- 统计学的定义方法(下次课介绍)
 - 不确定性定义方法
 - 语言就是一个概率分布,又称为语言模型
 - 一种语言中,每一个句子都对应一个出现概率

如何描述一种语言

- 枚举
 - 给出语言中的所有句子
 - 对于含无限多个句子的语言不合适
- 语法
 - 给出生成语言中所有句子的方法
 - 当且仅当能够用该方法产生的句子才属于该语言
- 自动机
 - 给出识别该语言中句子的机械方法

中国科学院研究生院课程讲义(2003.2~2003.6)

计算语言学 形式语言与自动机 第3页

形式语法 1

- 终结符 (Terminals) 的有限集合V_T
 - 终结符是句子中实际出现的符号
 - 相当于单词表(有时也称为字母表)
- 非终结符 (Non-terminals) 的有限集合 V_N
 - 非终结符在句子中不实际出现
 - 但在推导中起变量作用
 - 相当于语言中的语法范畴

中国科学院研究生院课程讲义(2003.2~2003.6)

计算语言学 形式语言与自动机 第4页

形式语法 2

- 起始符S
 - S属于V_N
 - 相当于句法范畴中的句子
- 重写式规则 (Rewriting Rules) 的有限集合P 产生式规则 (Production Rules) 的有限集合P
 - 基本形式: α → β
 - 含义:将α改写成β
 - α和β是终结符和非终结符组成的串
 - α非空 , β可以为空

中国科学院研究生院课程讲义(2003.2~2003.6)

计算语言学 形式语言与自动机 第5页

形式语法 3

• 形式语法:四元组 G = < V_T, V_N, S, P >

• 直接推导: $\alpha \times \beta \Rightarrow \alpha \times \beta$

如果 x→y是P中的规则

推导: α⇒β

如果 α 可以经过多次直接推导得到 β

• 语言: $L(G)=\{\alpha \mid \alpha \in V_T^* ; S \Rightarrow \alpha\}$

中国科学院研究生院课程讲义(2003.2~2003.6)

计算语言学 形式语言与自动机 第6页

乔姆斯基的语法层级

中国科学院研究生院课程讲义(2003.2~2003.6)

计算语言学 形式语言与自动机 第7页

乔姆斯基0型语法

- 短语结构语法,无限制重写语法 PSG: Phrasal Structure Grammar
- 对规则形式的约束
 - 对于规则形式没有任何限制

中国科学院研究生院课程讲义(2003.2~2003.6)

计算语言学 形式语言与自动机 第8页

乔姆斯基1型语法

- 上下位有关语法,上下位敏感语法 CSG: Context Sensitive Grammar
- 对规则形式的约束:
 - $-\alpha \rightarrow \beta$ α, β 是任意串,且 α 的长度小于 β 的长度
 - αAγ → αβγ
 A是非终结符 , α,β,γ是任意串
 - 以上两种形式等价
 - 敏感:在一定的上下文环境下A可改写为y

中国科学院研究生院课程讲义(2003.2~2003.6)

计算语言学 形式语言与自动机 第9页

乔姆斯基2型语法

- 上下位无关语法,上下位自由语法 CFG: Context Free Grammar
- 对规则形式的约束:
 - $-A \rightarrow \alpha : A$ 是非终结符, α 是任意串
 - 在任何上下文环境下A可改写为α

上下文无关语法 - 例子

- $S \rightarrow aAS$
- $\bullet S \rightarrow a$
- $A \rightarrow SbA$
- $A \rightarrow ba$

 $S \Rightarrow aAS \Rightarrow aAa \Rightarrow aSbAa \Rightarrow aabAa \Rightarrow aabbaa$

中国科学院研究生院课程讲义(2003.2~2003.6)

计算语言学 形式语言与自动机 第11页

乔姆斯基3型语法

- 正规语法,正则语法
 - RG: Regular Grammar
- 对规则形式的约束
 - A → Bx 或者 A → x , A,B是非终结符 , x是 终结符
- 一部正则语法可以表示为一个正则表达式 例子: {a{b|c}*}+[d|e]{f|g|h}+

中国科学院研究生院课程讲义(2003.2~2003.6)

计算语言学 形式语言与自动机 第12页

乔姆斯基语法层级 - 例子

- $P=\{S\rightarrow A1, A\rightarrow A0, A\rightarrow 0\}$
 - $L(G) = \{0^m 1 | m > = 1\}$
 - 是正则语法
- $P = \{S \rightarrow 0S1, S \rightarrow 01\}$
 - $L(G) = \{0^n1^n | n > = 1\}$
 - 是上下位无关语法,但不是正则语法
- P={S→0SBC, S→0BC, CB→BC, 0B→01,1B→11, 1C→12, 2c→22}
 - $L(G) = \{0^n1^n2^n|n>=1\}$
 - 是上下位有关语法,但不是上下位无关语法语法

中国科学院研究生院课程讲义(2003.2~2003.6)

计算语言学 形式语言与自动机 第13页

乔姆斯基层级以外的语法

- 介干CFG和CSG之间的语法
 - 索引语法

IG: Index Grammar

- 可以生成{anbncn}形式的语言
- 树粘接语法

TAG: Tree Adjoining Grammar

• 与乔姆斯基语法层级相交叉的语法

中国科学院研究生院课程讲义(2003.2~2003.6)

计算语言学 形式语言与自动机 第14页

索引语法 1

- 索引语法是一个五元组 (V_N, V_T, V_I, P, S)
- V_{N}, V_{T}, S 与前面的定义相同
- I是索引的有限集合
- P是重写规则的有限集合,规则形式为:
 - 1) $A \rightarrow \alpha$
 - 2) $A \rightarrow B(f)$
 - 3) $A(f) \rightarrow B$

 $A, B \in V_N, f \in V_I, \alpha \in (V_N \cup V_T)^*$

中国科学院研究生院课程讲义(2003.2~2003.6)

计算语言学 形式语言与自动机 第15页

索引语法 2

- 直接推导(⇒)的定义
 - 如果A→ $X_1X_2...X_k$ 是规则集中具有1)形式的规则,那么: βA(δ)γ ⇒ β X_1 (δ₁) X_1 (δ₁) X_2 (δ₂)... X_k (δ_k)γ 其中, $X_i \in V_N$ 时, $\delta_i = \delta$; $X_i \in V_T$ 时, $\delta_i = \epsilon$
 - 如果A→B(f)是规则集中具有2)形式的规则,那么: βA(δ)γ ⇒ βB(fδ)γ
 - 如果A(f)→ $X_1X_2...X_k$ 是规则集中具有3)形式的规则,那么: βA(fδ)γ ⇒ β X_1 (δ₁) X_1 (δ₁) X_2 (δ₂)... X_k (δ_k)γ 其中, X_i ∈ V_N 时,δ_i = δ; X_i ∈ V_T 时,δ_i = ε
- 推导(⇒)的定义和语言的定义与前面类似

索引语法3

例子(规则集)推导

 $B(\alpha) \rightarrow bB$ $\Rightarrow A(\alpha \alpha \alpha) B(\alpha \alpha \alpha) C(\alpha \alpha \alpha)$ $C(\alpha) \rightarrow cC$ $\Rightarrow aA(\alpha \alpha) B(\alpha \alpha \alpha) C(\alpha \alpha \alpha)$ $A \rightarrow a$ $\Rightarrow aaA(\alpha) B(\alpha \alpha \alpha) C(\alpha \alpha \alpha)$ $B \rightarrow b$ $\Rightarrow aaaaB(\alpha \alpha \alpha) C(\alpha \alpha \alpha)$ $C \rightarrow c$ $\Rightarrow \dots \implies aaaabbbbcccc$

• 可以生成{anbncn}形式的语言,不是CFG

中国科学院研究生院课程讲义(2003.2~2003.6)

计算语言学 形式语言与自动机 第17页

语法的判定复杂度

• PSG: 半可判定

对于一个属于0型语言的句子L,总可以在确定步内判断出"是";但对于一个不属于0型语言的句子L,不存在一个算法,可以在确定步内判断出"否"。

• CSG:可判定,复杂度:NP完全

• CFG:可判定,复杂度:多项式

• RG:可判定,复杂度:线性

用什么语法描述自然语言

- 正则语法描述能力太弱、上下文有关语法计算复杂度太高,上下文无关语法使用最为普遍
- 从描述能力上说,上下文无关语法不足以描述 自然语言——自然语言中上下文相关的情况非 常常见
- 从计算复杂度来说,上下文无关语法的复杂度 是多项式的,其复杂度可以忍受
- 为弥补上下文无关语法描述能力的不足 , 需要加上一些其他手段扩充其描述能力

中国科学院研究生院课程讲义(2003.2~2003.6)

当前读写头的位置

中国科学院研究生院课程讲义(2003.2~2003.6)

计算语言学 形式语言与自动机 第19页

计算语言学 形式语言与自动机 第20页

其中q为当前状态, a为当前纸带上的字符串, i为

图灵机 - 形式定义

- 图灵机是一个七元组
 - $M=(Q, \Sigma, \Gamma, \delta, q_0, B, F)$
 - O为自动机状态的有限集合
 - 「为一个有限的字符集合
 - B为空白字符, B∈Γ
 - $Σ ⊂ Γ {B}, 为输入字符集合$
 - $-\delta$ 是一个状态转移函数:Q× Σ →Q× Σ × {R,L,S} R,L,S分布表示读写头左移、右移或者不动
 - $-q_0$ ∈Q为初始状态
 - F⊂Q为终止状态集

中国科学院研究生院课程讲义(2003.2~2003.6)

计算语言学 形式语言与自动机 第21页

图灵机接受的字符串

- 开始时,纸带中间有n个字符构成输入串,余 下的无穷多个字符为空白字符,空白字符不是 输入符号
- 开始时,读写头处于输入串的最左端,图灵机的状态为 q_0
- 如果图灵机M对于字符串α在执行过程中进入 某个终止状态,称为M接受字符串α;如果执 行过程中遇到一个格局在状态转移函数中没有 定义,那么称M不接受字符串α

中国科学院研究生院课程讲义(2003.2~2003.6)

计算语言学 形式语言与自动机 第22页

图灵机识别的语言

- 图灵机识别的语言等价于0型语法所生成的语言
 - 某个0型语法所生成的语言必定能被某个图 灵机所识别
 - 一个图灵机所能识别的语言必定可以用某种 0型语法来生成

中国科学院研究生院课程讲义(2003.2~2003.6)

计算语言学 形式语言与自动机 第23页

线性有界自动机

- 线性有界自动机的构造与图灵机完全一致
- 对图灵机的限制:纸带存在一个左右边界(用两个特殊符号来标识),图灵机的执行过程中读写头位置不能超出边界
- 线性有界自动机所识别的语言等价于1型 语法所生成的语言

中国科学院研究生院课程讲义(2003.2~2003.6)

计算语言学 形式语言与自动机 第24页

下推自动机 - 直观描述

在每一个时刻,可以定义下推自动机的格局为(q,w,z)

其中q为当前状态,w为当前纸带上未读入的字符串,z为状态栈中的字符串

中国科学院研究生院课程讲义(2003.2~2003.6)

计算语言学 形式语言与自动机 第25页

下推自动机 - 形式描述

• 下推自动机是一个七元组

 $M=(Q, \Sigma, \Gamma, \delta, q_0, Z_0, F)$

- Q为自动机状态的有限集合
- Σ为输入纸带上字符的有限集合
- Г为堆栈字符的有限集合
- $-q_0$ ∈ Q为初始状态
- $-Z_0 \in \Gamma$ 是堆栈中的一个特殊符号,表示栈底
- F⊂Q为终止状态集
- $-\delta$ 是一个状态转移函数: $Q \times (\Sigma \cup \{\epsilon\}) \rightarrow Q \times \Gamma$

中国科学院研究生院课程讲义(2003.2~2003.6)

计算语言学 形式语言与自动机 第26页

有限状态自动机 - 形式定义

• 有限状态自动机是一个七元组

M=(Q, I, U, δ, σ , q_0 , F)

- Q为自动机状态的有限集合
- I为输入字符的有限集合
- O为输出字符的有限集合
- $-\delta$ 是一个状态转移函数:Q× I→Q
- σ 是一个输出函数: Q x I→U
- q₀ ∈Q为初始状态
- F⊂Q为终止状态集

中国科学院研究生院课程讲义(2003.2~2003.6)

计算语言学 形式语言与自动机 第27页

有限状态接收机

有限状态接收机 (Acceptor) 是一个五元组
 M=(Q, I, δ, q₀, F)

识别一个十进制实数的自动机

中国科学院研究生院课程讲义(2003.2~2003.6)

计算语言学 形式语言与自动机 第28页

有限状态转录机

• 有限状态转录机 (Transducer) 是一个六元组 $M=(Q, I, U, \delta, \sigma, q_0)$

中国科学院研究生院课程讲义(2003.2~2003.6)

计算语言学 形式语言与自动机 第29页

有限状态自动机的应用

- 有限状态自动机具有简单、直观、高效的特点,在很多领域中得到了广泛的应用
 - 词典构造 (Xerox Europe)
 - 机器翻译 (Alshiwi's work)
- 有限状态机自动机通过递归(输入另一个自动机的识别结果)可以实现上下文无关语法的描述能力
- 有限状态转录机可以进行翻译

中国科学院研究生院课程讲义(2003.2~2003.6)

计算语言学 形式语言与自动机 第30页

语法、自动机和语言

	语法	自动机	语言	复杂度
0型	无约束短语 结构语法	图灵机	递归可枚举 语言	半可判定
1型	上下文有关 语法	线性有界 自动机	上下文有关 语言	NP完全
2型	上下文无关 语法	下推自动机	上下文无关 语言	多项式
3型	正则语法	有限自动机	正则语言	线性

中国科学院研究生院课程讲义(2003.2~2003.6)

计算语言学 形式语言与自动机 第31页

复习思考题

• 给出能够识别以下语言的语法

```
 \begin{aligned} & \{a^i \ b^j \ c^k \ d^l \ | \ i, j, k, 1 \geq 1 \ \} \\ & \{a^j \ b^k \ c^k \ d^j \ | \ j, k \geq 1 \ \} \\ & \{a^j \ b^j \ c^k \ d^k \ | \ j, k \geq 1 \ \} \\ & \{a^k \ b^k \ c^k \ | \ k \geq 1 \ \} \end{aligned}
```

- 写一部简单的上下文无关语法分析以下句子,并给出其各种分析结果(画出句法分析树)
 - 咬死了猎人的狗
 - Time flies like an arrow.
 - The boy saw the girl with a telescope in the park.
- 写一部正则语法能够识别一个英语的简单名词短语 (BaseNP),并画出其有限状态自动机

中国科学院研究生院课程讲义(2003.2~2003.6)

计算语言学 形式语言与自动机 第32页