Your Transformer is Secretly Linear

8th June 2024

Transformers

- 1. Large number of parameters →Subject to overfitting
- 2. As size grows → More hardware required for inference (bottleneck)
- 3. Hard to visualize/understand all the layers and importance (as opposed to CNN's where several hierarchical features can be understood)

Efficient transformers

1. https://arxiv.org/pdf/2009.06732 (Efficient Transformers: A Survey)

Key concepts

- 1. Embedding transformations can be thought of as change of the values of input embeddings as they go through the different transformer layers
- 2. Residual component refers to the skip connections that are present in transformers i.e. Output = f(input)+Input
 - a. Introduced originally to solve the problem of vanishing gradients
 - b. Keep the input context intact
- 3. Output norm is the magnitude of the output from a layer
- 4. Linearity score measured by Procrustes similarity

Main motivation (make the model smaller)

- 1. Understand and quantify this linearity
- 2. Depth pruning
- 3. Cosine-similarity-based regularization, aimed at reducing layer linearity (having more information / layer)

- Normalized depth → Layer index / Total number of layers
- 2. Linearity score w/o residuals is non-linear since the transformation function can be highly non-linear.. Output = f(input), where as with residuals Output = f(input)+Input the linearity score is ~0.99
- 3. Norms ratio = f(input) / Output

Model Name	Super_Glue/MultiRC	Super_Glue/BoolQ	Super_Glue/CB	Reward Modeling
OPT-125M	0.085 ± 0.008	0.217 ± 0.038	0.048 ± 0.009	0.060 ± 0.008
OPT-1.3B	0.055 ± 0.021	0.382 ± 0.004	0.088 ± 0.010	0.062 ± 0.007
OPT-2.7B	0.061 ± 0.025	0.356 ± 0.005	0.066 ± 0.029	0.054 ± 0.003
Llama2-7B	0.141 ± 0.006	0.051 ± 0.024	0.081 ± 0.070	0.194 ± 0.027
GPT2	0.085 ± 0.021	0.048 ± 0.016	0.004 ± 0.003	0.092 ± 0.013
GPT2-Large	0.049 ± 0.003	0.023 ± 0.008	0.025 ± 0.014	0.085 ± 0.008
GPT2-XL	0.040 ± 0.007	0.037 ± 0.007	0.028 ± 0.019	0.038 ± 0.008

Table 1: Delta of linearity score w/o residuals after fine-tuning various tasks. Note that all values are strictly positive, which means that linearity always increases during fine-tuning.

XStoryCloze consists of the professionally translated version of the English StoryCloze dataset (Spring 2016 version) to 10 non-English languages. This dataset is intended to be used for evaluating the zero- and few-shot learning capabilities of multiingual language models. This dataset is released by Meta AI.

