Rewetting drained boreal peatland forests does not mitigate climate warming in 21st century

Samuli Launiainen, Paavo Ojanen, Anssi Ahtikoski, Janne Rinne, Hannu Hökkä 5.3.2024

Content

- Atmospheric radiative forcing
- Methods to estimate climate-impact of peatland use change
- Does rewetting drained peatland forests warm or cool the climate?
- Should we rewet?

Photos: Paavo Ojanen & Luke media bank

Atmospheric radiative forcing changes

Peatland use change affects how solar radiation is absorbed in the Earth system

Radiative forcing (RF)

- Measures how Earth's energy budget changes due to e.g. land-use change
- Elevated atm. GHG concentrations increase absorption of thermal radiation
- Change in peatland structure can affect albedo
- Metric to compare climate impacts from multiple causes: several GHG's, albedo, ...
- We compare two alternative land-use cases: continued forestry use and restoration

Radiative forcing of gas k

Change in annual surface flux of gas *k* creates cumulative change in atm. concentration of gas *k* over time *t*:

$$\Delta S_{a,k}(t) = \int_{t=0}^{t} \Delta F_{k,d\to r}(t') e^{(t'-t)/\tau_k} dt'.$$

Change in atm. concentration of k leads to change in RF:

$$\Delta RF_k(t) = \xi_k E_k \times \Delta S_{a,k}(t).$$

 $\xi_k E_k$ depict radiative efficiency of gas k

$$\Delta S_{a,co2}(t) = \Delta S_{a,co2}(t_0) \times \left[\beta_0 + \sum_{j=1}^3 \beta_j e^{-t/\tau_{co.,j}}\right]$$

RF's are additive

$$\begin{split} \Delta RF_{tot}(t) &= \Delta RF_{co\ ,soil}(t) + \Delta RF_{tree}(t) + \Delta RF_{res}(t) + \Delta RF_{wp}(t) \\ &+ \Delta RF_{ch4}(t) + \Delta RF_{n2o}(t) \\ &+ \Delta RF_{alb}(t), \end{split}$$

Time-varying contribution of

- Different GHG's
- (eco)system components
- Can climate impact of peatland use be determined based on CO₂ only?

Fig. S5: Radiative forcing (RF) timeseries for nutrient rich forest (FNR, Mtkg in Southern Finland) and restored open eutrophic/minerotrophic peatland (Case 1, Fig. 2a,b). Total radiative forcing from greenhouse-gases (GHG's) is the sum of individual GHG's dynamic contributions (Sect. S1.3). The change in radiative forcing (ΔRF) due to restoration is the difference between restored and forestry drained peatland RF; i.e. restoration has a cooling effect when dashed line is below the continuous line. Note that y-axis scale varies between panels.

Bookkeeping model and boundaries

We compute change in system CO_2 storage and CO_2 , CH_4 and N_2O fluxes over time (forestry vs. restoration). These change atmospheric GHG concentrations and RF's.

"Use what is out there, in a clever way."

CO₂ budget

$$F_{c,net}(t) = F_{c,soil}(t) - F_{c,tree}(t) + F_{c,res}(t) + F_{c,wp}(t).$$

CO₂ flux between system and the atmosphere

Growth simulator

- biomass C → NPP
- Harvests → wood products, residues
- Vol.

Empirical soil CO_2 balance = f(Vol.)

System boundaries

- On-site (ecosystem)
- On-site + wood use

$$S_{bio}(t) = S_{soil}(t) + S_{tree}(t) + S_{res}(t) + S_{wps}(t) + S_{wpl}(t)$$

CO₂ storage in the system

Tree stand growth and CO₂ uptake

Motti growth simulator (Hynynen et al, 2005)

 BAU, Southern (Tampere) and Northern (Oulu) Finland

Nutrient-rich peatlands (FNR)

- Herb-rich (Rhtkg), mesotrophic Vaccinium myrtillus-type (Mtkg)
- Rotation ca. 58 / 68 yr, 2 thinnings

Nutrient-poor peatlands (FNP)

- Oligotrophic V. vitis-idaea type (Ptkg)
- Rotation ca. 75 yr, 2-3 thinnings

- Annual tree NPP estimated from predicted biomass change
- Understory NPP omitted

Soil CO₂, CH₄ and N₂O balance

Forest soil CO₂ balance: f(Vol, fertility)

Based on: $F_{c,soil} = f(WT, fertility), Ojanen & Minkkinen (2019)$ WT = f(Vol), Sarkkola et al. (2010)

- Laine et al. 2024 give overview of annual net soil gas balances
- We assume CH₄ and N₂O fluxes from forest & restored, and CO₂ flux from restored, are constant in time (Table 1)

Table 1: Soil GHG balances (g (gas) m⁻² a⁻¹) used in this study. For CO₂, the rotation-cycle average of eq. S3 (Fig. S4) and range corresponding to young and mature (in parenthesis) are given. Laine et al. (2024) used constant values +265 gCO₂ m⁻² a⁻¹ (FNR) and -45 gCO₂ m⁻² a⁻¹ (FNP).

Peatland type	Soil gas balance (g (gas) m ⁻² a ⁻¹)		
	CO ₂	CH ₄	N ₂ O
Drained nutrient rich (FNR)	+384 (140490)	+0.34	+0.23
Drained nutrient poor (FNP)	-15 (-130+40)	+0.34	+0.08
Spruce mire	-91	+1.7	+0.10
Pine mire	-97	+4.8	+0.03
Open eu/mesotrophic	-104	+15	+0.10
Open oligotrophic	-124	+22	+0.03
Open ombotrophic	-95	+9.7	+0.03

Wood products and residue pools

Wood products (removed from site)

- Short-term 2 yr, long-term 20 yr.
- Allocation based on timber fraction x saw yield

Residues 3 pools (left to the site)

- Foliage 3 yr
- FWD 7 yr
- CWD forestry (stumps, coarse roots) 30 yr
- CWD (restored) 300 yr (anoxic conditions)

Filled from harvests, decay exponentially

CO₂ storage change
$$\Delta S_i(t) = \alpha_i H(t) - F(t)_{c,wi}$$

CO₂ flux to atm.
$$F_{c,wi}(t) = S_{wi}(t)e^{-1/\tau_i}$$
.

ΔRF from albedo change

- Forest albedo < open peatland albedo
- Difference largest in mature (high Vol.) stands during wintertime
- Albedo RF depends on local albedo change, surface area & solar radiation
- On annual scale a rough approximation:

$$\Delta RF_{alb} = SW_{\downarrow} \times \Delta \alpha \times \tau_{atm} \times \frac{A}{A_{earth}}$$

• We use literature to parameterize ΔRF_{alb} as function of stand Vol. in Southern Finland.

"Restoring to open peatland increases albedo and contributes to cooling (ΔRF_{alb} <0). The effect saturates with stand Vol."

Does restoration warm or cool the climate?

Some case-examples

Comparing restoration to continued forestry

- Continued forestry for next 200 years as in the past
- Rewetting and restoration either to: i) an open peatland, ii) tree-covered mire
- Restoration takes place after clear-cutting at end of rotation
- Harvest residues and wood products 'decompose' in restoration-scenario, while are periodically replenished in continued forestry scenario
- We focus on change in total radiative forcing and its components

$$\begin{split} \Delta RF_{tot}(t) &= \Delta RF_{co\ ,soil}(t) + \Delta RF_{tree}(t) + \Delta RF_{res}(t) + \Delta RF_{wp}(t) \\ &+ \Delta RF_{ch4}(t) + \Delta RF_{n2o}(t) \\ &+ \Delta RF_{alb}(t), \end{split}$$

Nutrient-rich forest to open mesotrophic fen

- Net warming over 2 first rotations, mainly due to increased CH_4 emissions & strong tree CO_2 sink
- Albedo-change provide cooling
- Very different outcomes if only:
 - CO₂ effect is considered
 - part of system considered (soil, no wood products, ...)
- Warming effect of rewetting is the stronger the more productive stand is restored

Restore nutrient rich stand to tree-covered mire

- Net cooling IF tree stand CO₂ storage is preserved after restoration
- Albedo-effect is opposite to Case 1
- Small impact of CH₄ and N₂O as fluxes do not change much

What happens for climate benefits if restoration does not affect wood demand?

Restoring nutrient poor stands

Restoring to open peatland

- Persistent net warming, due to CH₄ emissions
- Soil (CH₄ + CO₂) balance contributes to warming

Restoring to pine mire

- Climate-neutral if tree CO₂ storage preserved
- Small contribution from CH₄

Table 1: Soil GHG balances (g (gas) m^2 a^{-1}) used in this study. For CO₂, the rotation-cycle average of eq. S3 (Fig. S4) and range corresponding to young and mature (in parenthesis) are given. Laine et al. (2024) used constant values +265 gCO₂ m^2 a^{-1} (FNR) and -45 gCO₂ m^2 a^{-1} (FNP).

Peatland type	Soil gas balance (g (gas) m ⁻² a ⁻¹)		
	CO ₂	CH ₄	N ₂ O
Drained nutrient rich (FNR)	+384 (140490)	+0.34	+0.23
Drained nutrient poor (FNP)	-15 (-130+40)	+0.34	+0.08
Spruce mire	-91	+1.7	+0.10
Pine mire	-97	+4.8	+0.03
Open eu/mesotrophic	-104	+15	+0.10
Open oligotrophic	-124	+22	+0.03
Open ombotrophic	-95	+9.7	+0.03

What if one restores during rotation cycle?

Nutrient rich stand → open mesotrophic fen

- Reweting by clear-cutting during rotation period (t_{rot})
- Restore large stand late in rotation
 - earlier large emissions from residues & wood products
- Restore small stand early in rotation:
 - small emissions from residues & wood products but large 'gap' due to lost growth
- Best to restore at rotation end but not always practicable

Case 3: FRM --> Open mesotrophic. Restoration during stand rotation.

What if recovery takes time?

- After rewetting hydrology recovers fast, other ecosystem functions gradually
- Rate of soil GHG balance recovery is unknown, estimated to take 15 – 30 yr (Escobar et al. 2022)
- Delayed recovery leads to more favorable short-term but more harmfull medium-term climate impact
 - Mainly due to gradual increase of CH₄ emissions

Case 4: FRM --> Open mesotrophic. Gradual change of F_{soil} .

Key message

Should we restore?

RESEARCH ARTICLE

Climate change mitigation potential of restoration of boreal peatlands drained for forestry can be adjusted by site selection and restoration measures

Anna M. Laine^{1,2,3} ⊙, Paavo Ojanen^{4,5}, Tomi Lindroos⁶, Kati Koponen⁶, Liisa Maanavilja⁷, Maija Lampela⁷, Jukka Turunen⁷, Kari Minkkinen⁴, Anne Tolvanen⁸ ⊙

Climate impact dynamics of rewetting

No climate benefit except if successfully restoring nutrient rich stands to tree-covered mires

Should we rewet forest peatlands?

- For ecological benefits & biodiversity
- For improved water retention & natural hydrology
- For better water quality?
- For climate not, except in a rare case when tree C storage is preserved
 - Climate impact of peatland use change can't be assessed by CO₂ only
 - Restoration does not provide more for everything
- Our results are by no means ground-breaking
- Knowledge is not respected other motives important?

LS-Hydro (2023-2027): From forest structure to hydrological function – merging dense EO data and process-models

PREFER (2022-2026): Precision nutrient management - a tool for mitigation of climate change and environmental loading in boreal forestry

GreenFeedBack – Greenhouse gas fluxes and Earth system feedbacks

Thanks!

Contact: samuli.Launiainen@luke.fi

luke.fi

References

- Escobar et al. 2022. Front. Env. Sci., doi: 10.3389/fenvs.2022.834371
- Hynynen et al. 2005. For. Ecol. Manag., 207(1-2), pp.5-18.
- Laine et al. 2024. Rest. Ecol., https://doi.org/10.1111/rec.14213
- Launiainen et al. 2025. Ambio (in review), https://doi.org/10.31223/X5H43K
- Lohila et al. 2010 J. Geophys. Res., doi:10.1029/2010JG001327
- Peräkylä et al. 2025. Biogeosci., https://doi.org/10.5194/bg-22-153-2025
- Ojanen, P. and Minkkinen, K., 2019. Mires and Peat, 24(Article 27), p.27.
- Sarkkola et al. 2010. Can. J. For. Res. 40(8), pp.1485-1496.

SER HORIZON

RESEARCH ARTICLE

Climate change mitigation potential of restoration of boreal peatlands drained for forestry can be adjusted by site selection and restoration measures

Anna M. Laine^{1,2,3}, Paavo Ojanen^{4,5}, Tomi Lindroos⁶, Kati Koponen⁶, Liisa Maanavilja⁷, Maija Lampela⁷, Jukka Turunen⁷, Kari Minkkinen⁴, Anne Tolvanen⁸ O

Global **Biogeochemical Cycles**

RESEARCH ARTICLE

Key Points:

Rewetting of tropical peat soils resulted in immediate cooling
In temperate and boreal agricultural peat soils, methane emissions offset a major part of the cooling for the

Rewetting Offers Rapid Climate Benefits for Tropical and Agricultural Peatlands But Not for Forestry-Drained Peatlands

Paavo Ojanen¹ and Kari Minkkinen¹

¹Department of Forest Sciences, University of Helsinki, Helsinki, Finland

Global Change Biology (2002) 8, 785-799

Carbon balance and radiative forcing of Finnish peatlands 1900–2100 – the impact of forestry drainage

KARI MINKKINEN*, RIITTA KORHONEN†, ILKKA SAVOLAINEN† and JUKKA LAINE* *Department of Forest Ecology, P.O. Box 27, FIN-00014 University of Helsinki, Finland, †VTT Energy, Tekniikantie 4, P.O. Box 1606 FIN-02044 VTT, Finland

JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 115, G04011, doi:10.1029/2010JG001327, 2010

Forestation of boreal peatlands: Impacts of changing albedo and greenhouse gas fluxes on radiative forcing

Annalea Lohila,1 Kari Minkkinen,2 Jukka Laine,3 Ilkka Savolainen,4 Juha-Pekka Tuovinen, Lauri Korhonen, Tuomas Laurila, Hanna Tietäväinen, and Ari Laaksonen1

Received 17 February 2010; revised 2 July 2010; accepted 7 July 2010; published 12 October 2010.

