Atty. Dkt. No. 025098-0701 (Formerly 238/168)

 X_1 , X_2 , X_m , $X_{(m+1)}$, $X_{(2m-1)}$, and X_{2m} are carboxamide residues forming carboxamide binding pairs X_1/X_{2m} , $X_2/X_{(2M-1)}$, $X_M/X_{M+1)}$,

 γ is γ -aminobutyric acid or 2,4 diaminobutyric acid, and

R₁ is -NH(CH₂)₀₋₁₀₀NR₂R₃, -NH(CH₂)₀₋₁₂CONH(CH₂)₀₋₁₀₀NR₂R₃, or -NHR₂, where R₂ and R₃ are independently selected from the group consisting of H, Cl, NO, N-acetyl, benzyl, C₁₋₁₀₀ alkyl, C₁₋₁₀₀ alkylamine, C₁₋₁₀₀ alkyldiamine, C₁₋₁₀₀ alkylcarboxylate, C₁₋₁₀₀ alkenyl, a C₁₋₁₀₀ alkynyl, and C₁₋₁₀₀ alkyl-L, where L is selected from the group consisting of arylboronic acids, biotins, polyhistidines comprised from about 2 to 8 amino acids, haptens, solid phase supports, oligodeoxynucleotides, N-ethylnitrosourea, fluorescein, bromoacetamide, iodoacetamide, DL-α-lipoic acid, acridine, captothesin, pyrene, mitomycin, texas red, anthracene, anthrinilic acid, avidin, DAPI, and oligodeoxynucleotide, isosulfan blue, malachite green, psoralen, ethyl red, 4-(psoraen-8-yloxy)-butyrate, taartaric acid, and (+)-α-tocopheral, suitable for use as a DNA-binding ligand that is selective for identified target DNA-sequences 5'-WN₁N₂...N_mW-3' where m is an integer having a value from 3 to 6, the method comprising:

- (a) identifying a target sequence of double stranded DNA having the form $5'\text{-WN}_1N_2 \dots N_mW-3'$, $N_1N_2 \dots N_m$ being the sequence to be bound by carboxamide residues, wherein each N is independently chosen from the group A, G, C, and T, each W is independently chosen from the group A and T, and m is an integer having a value from 3 to 6;
- (b) representing the identified sequence as 5'-Wab ... xW-3', wherein a is a first nucleotide to be bound by the X_1 carboxamide residue, b is a second nucleotide to be bound by the X_2 carboxamide residue, and x is the corresponding nucleotide to be bound by the X_m carboxamide residue;

Atty. Dkt. No. 025098-0701 (Formerly 238/168)

- (c) defining a as A, G, C, or T to correspond to the first nucleotide to be bound by a carboxamide residue in the identified sequence;
- (d) selecting Im as the X_1 carboxamide residue and Py as the X_{2m} carboxamide residue if a = G;
- (e) selecting Py as the X_1 carboxamide residue and Im as the X_{2m} carboxamide residue if a = C;
- (f) selecting Hp as the X_1 carboxamide residue and Py as the X_{2m} carboxamide residue if a = T;
- (g) selecting Py as the X_1 carboxamide residue and Hp as the X_{2m} carboxamide residue if a = A; and
- (h) repeating steps c g for b through x until all carboxamide residues are selected; wherein Im is N-methylimidazole, Hp is, Py is N-methylpyrrole, A is adenine, G is guanine, C is cytosine, and T is thymine.
- 49. (Amended) A polyamide designed by the method of claim 1, having the structure:

-3-

Atty. Dkt. No. 025098-0701 (Formerly 238/168)
Patent

wherein

 R_4 is selected from the group consisting of H, NH₂, SH, Cl, Br, F, N-acetyl, and N-formyl;

each R_5 is independently selected from the group consisting of H, $(CH_2)_{0-6}CH_3$, $(CH_2)_{1-6}NH_2$, $(CH_2)_{1-6}SH$, $(CH_2)_{1-6}OH$, $(CH_2)_{1-6}N(R_7)_2$, $(CH_2)_{1-6}OR_7$, and $(CH_2)_{1-6}SR_7$, wherein R_7 is $(CH_2)_{0-6}CH_3$, $(CH_2)_{1-6}NH_2$, $(CH_2)_{1-6}SH$, or $(CH_2)_{1-6}OH$;

each R_6 is independently selected from the group consisting of H, NH₂, OH, SH, Br, Cl, F, OMe, CH₂OH, CH₂SH, and CH₂NH₂;

 R_1 is $-NH(CH_2)_{0-100}NR_2R_3$, $-NH(CH_2)_{0-12}CONH(CH_2)_{0-100}NR_2R_3$, or $-NHR_2$, where R_2 and R_3 are independently selected from the group consisting of H, Cl, NO, N-acetyl, benzyl, C_{1-100} alkyl, C_{1-100} alkylamine, C_{1-100} alkyldiamine, C_{1-100} alkylcarboxylate, C_{1-100} alkenyl, a C_{1-100} alkynyl, and C_{1-100} alkyl-L, where L is selected from the group consisting of arylboronic acids, biotins, polyhistidines comprised from about 2 to 8 amino acids, haptens, solid phase supports, oligodeoxynucleotides, N-ethylnitrosourea, fluorescein, bromoacetamide, iodoacetamide, DL- α -lipoic acid, acridine, captothesin, pyrene, mitomycin, texas red, anthracene, anthrinilic acid, avidin, DAPI, and oligodeoxynucleotide, isosulfan blue, malachite green, psoralen, ethyl red, 4-(psoraen-8-yloxy)-butyrate, taartaric acid, and (+)- α -tocopheral;

each X and Y are independently selected from the group consisting of N, CH, COH, CCH₃, CNH₂, CCl, and CF;

each n is an integer from 1 to 2;

each a is an integer from 0 to 1;