Домашнее задание 4

Юрасов Никита Андреевич

Обновлено 2 декабря 2019 г.

Содержание

1	Проверка гипотез о виде распределения			2
	1.1	Простые гипотезы		
		1.1.1	Критерий согласия Колмогорова-Смирнова	2
		1.1.2	Критерий согласия χ^2	4
	1.2	Слож	ные гипотезы	6
		1.2.1	Критерий Колмогорова	6
		1.2.2	Критерий χ^2	7

1 Проверка гипотез о виде распределения

1.1 Простые гипотезы

1.1.1 Критерий согласия Колмогорова-Смирнова

Введем статистику, которая представляет собой максимальной отклонение эмпирической функции распределения $\hat{F}(x)$, построенной по выборке X, от гипотетической функции распределения F(x):

$$D_n = D_n(X) = \sup_{-\infty < x < \infty} |\hat{F}(x) - F(x)|$$

Пусть существует $X=(X_1,...,X_n)$ – выборка из $\mathcal{L}(\xi)$ с неизвестной функцией распределения $F_{\xi}(x)$, и пусть выдвинута гипотеза $H_0:F_{\xi}(x)=F(x)$, где функция F(x) полностью задана.

Для принятия или отвержения гипотезы H_0 необходимо по критерию Колмогорова сравнить $\sqrt{n}D_n$ с λ_α , которая определяется следующим равенством:

$$K(\lambda_{\alpha}) = 1 - \alpha,$$

где K(x) – распределение Колмогорова.

На практике статистику D_n удобнее вычислять в следующем виде $D_n = max(D_n^+, D_n^-)$, где

$$D_n^+ = \max_{1 \le k \le n} \left(\frac{k}{n} - F(X_{(k)}) \right), \quad D_n^- = \max_{1 \le k \le n} \left(F(X_{(k)}) - \frac{k-1}{n} \right)$$

Ответ на вопрос о виде распределения дает следующее сравнение:

- Если $\sqrt{n}D_n\geqslant \lambda_{\alpha},$ то гипотеза H_0 отвергается;
- Если $\sqrt{n}D_n\leqslant \lambda_{\alpha},$ то гипотеза H_0 принимается.

В неравенстве можно воспользоваться поправкой Большева о статистике $S(D_n)$, которая быстрее сходится к распределению Колмогорова:

$$S = \frac{6nD_n + 1}{6\sqrt{n}}$$

Преимущества

Критерий согласия Колмогорова начинает эффективно работать при выборке объемом $n \geqslant 20$, что допускает использование его при достаточно малых выборках данных.

Недостатки

Критерий Колмогорова-Смирнова применяется только для непрерывных распределениях. Также вычисление статистики D_n предполагает достаточно большие аналитические вычисления, что затрудняет проверку.

Реализация для непрерывного распределения

В приложенном Jupyter Notebook написана функция simple_kolmogorov_text, которая по заданной выборке и уровне значимости проверяет критерий согласия Колмогорова-Смирнова. Далее будут представлены только результаты, а саму выборку размера $1000\,$ можно будет в переменной erlang_sample_for_KSTest. Выборка генерировалась с параметрами $m=2, \lambda=0.2\,$

Рис. 1: Сравнение эмпирической функции и функции распределения Эрланга

1.1.2 Критерий согласия χ^2

Введем статистику \mathring{X} , введенную К. Пирсоном, которая будет показывать отклонение эмпирических данных от гипотетических значений и которая называется мера xu- $\kappa \epsilon a \partial pam$:

$$\mathring{X}_{n}^{2} = \mathring{X}_{n}^{2}(
u) = \sum_{i=1}^{N} rac{(
u_{i} - n\mathring{p}_{i})^{2}}{n\mathring{p}_{i}},$$
 где

- N количество принимаемых значений в эксперименте;
- \bullet $\nu = (\nu_1, ..., \nu_N)$ частоты появления каждого результата эксперимента;
- $n = \sum_{i=1}^{N} \nu_i$ общий объем выборки;
- $\mathring{p} = (\mathring{p}_1, ..., \mathring{p}_N)$ вероятность появления i-го события;

После подсчета *меры хи-квадрат* необходимо сравнить ее с критическим значением распределения хи-квадрат на уровне значимости α с N-1 степенями свободы:

$$\chi^2_{1-\alpha,N-1}$$

Сравнение:

- ullet Если $\mathring{X}_n^2 > \chi_{1-lpha,N-1}^2,$ то говорят, что гипотеза H_0 отклоняется;
- ullet Если $\mathring{X}_n^2\leqslant\chi^2_{1-lpha,N-1},$ то говорят, что гипотеза H_0 принимается.

где гипотеза H_0 определена так же, как и в критерии согласия Колмогорова-Смирнова (см. страницу 2).

Преимущества

Критерий работает первоначально только с дискретными данными, но так как любые данные можно свести к дискретным методом группировки (см. правило Стёрджеса: Википедия). Также, этот критерий можно использовать для расчетов с хорошим приближением уже при $n \geqslant 50$.

Недостатки

Критерий χ^2 ошибается на выборках с низкочастотными (редкими) событиями. Решить эту проблему можно отбросив низкочастотные события, либо объединив их с другими событиями. Этот способ называется koppekuueй lem ca.

Указания для проверки непрерывных распределений

Так как вероятность попадания в одну конкретную точку (в случае непрерывных распределений) равна 0, воспользуемся отмеченным ранее правилом Стёрджеса для разбиения отрезка на k не пересекающихся интервалов:

$$k = 1 + \lfloor loq_2 N \rfloor$$

Также необходимо вместо вектора гипотетических вероятностей в каждой точек использовать вероятность попадания в каждый из полученных интервалов. Для этого нужно вычислить значение интеграла:

$$\int\limits_{x_{i}}^{x_{i+1}}f(x)dx$$
, где

f(x) – плотность распределения, а x_i – точки разбиения отрезка.

Реализация для дискретного распределения

Сгенерируем выборку (распределение Пуассона) с параметром $\lambda=2$ и размером 1000, которую будем хранить в переменной poisson_sample_for_Chi2Test. Результаты для двух уровней значимости выглядят следующим образом:

 $S = 9.32952003034001 \le 10.644640675668422$ and Chi2 test accepts with alpha=0.1

Рис. 2: Сравнение полигона частот и распределения Пуассона

Реализация для непрерывного распределения

Выборка, хранящаяся в переменной erlang_sample_for_Chi2Test, генерировалась с параметрами $m=2, \lambda=0.2.$

```
Результаты
```

 $S = 5.527258712276454 \le 15.50731305586545$ and Chi2 test accepts with alpha=0.05 $S = 5.527258712276454 \le 13.36156613651173$ and Chi2 test accepts with alpha=0.1

Рис. 3: Сравнение гистограммы частот и плотности распределения Эрланга

1.2 Сложные гипотезы

Для реализации сложных гипотез, будем использовать построение оценок параметров методом максимального правдоподобия. Каждую выборку, которую будем проверять по критериями хи-квадрат (дискретное и непрерывное распределение) и Колмогорова (только непрерывное распределение), разобьем предварительно на две части (50 на 50, но эту пропорцию можно варьировать): X_{est}, X_{test} . По первой части - X_{est} будем находить оценку максимального правдоподобия, а по X_{test} будем проверять критерий.

Напомним ОМП для распределений Пуассона и Эрланга:

• Пуассон: $\hat{\lambda} = \overline{X}$

• Эрланг: $\hat{\lambda} = \frac{m}{\overline{X}}$

1.2.1 Критерий Колмогорова

Критическая граница для критерия определяется следующим образом: $\tau_{1\alpha} = \{t \ge t_{\alpha}\}$, где $t_{\alpha} = \frac{\lambda_{\alpha}}{\sqrt{n}}$, а λ_{α} определяется из распределения Колмогорова $K(\lambda_{\alpha}) = 1 - \alpha$ при заданном уровне α .

Сгенерируем выборку erlang_sample_for_complicated_KS_test из 1000 элементов. Вот какие получились результаты:

Результаты

 $S_Bolshev = 0.9483064237024541 < 1.3580986393225505$ and K-S test accepts with alpha=0.05 $S_Bolshev = 0.9483064237024541 < 1.2238478702170825$ and K-S test accepts with alpha=0.1

Значения критической границы указаны после знака <, соответствующие выбранному уровню α .

Рис. 4: Критерий согласия Колмогорова в случае сложной гипотезы

1.2.2 Критерий χ^2

Критическая граница $\tau_{1\alpha}$ рассчитывается как $\tau_{1\alpha} = \{\mathring{X}_n^2 > t_\alpha\}$, где t_α вычисляется их распределения хи-квадрат с N-1-r степенями свободы при заданном уровне α :

$$t_{\alpha} = \chi_{1-\alpha, N-1-r}^2$$

Реализация для непрерывного распределения

Сгенерируем выборку размера 1000 из распределения Эрланга, которая будет храниться в переменной erlang_sample_for_complicated_Chi2_test. Так как параметр m известен, то оцениваемый параметр один - λ .

Результаты

 $S = 7.528579505480654 \le 14.067140449340169$ and Chi2 test accepts with alpha=0.05

 $S = 7.528579505480654 \le 12.017036623780532$ and Chi2 test accepts with alpha=0.1

Рис. 5: Критерий хи-квадрат в случае сложной гипотезы для распределения Эрланга

Реализация для дискретного распределения

Создадим набор выборку данных из распределения Пуассона размера n=1000 poisson_sample_for_complicated_Chi2_test. Функция плотности зависит всего от одного параметра, следовательно r=1 - оцениваемый параметр.

Результаты

 $S = 1.9708909736466178 \le 12.591587243743977$ and Chi2 test accepts with alpha=0.05 $S = 1.9708909736466178 \le 10.644640675668422$ and Chi2 test accepts with alpha=0.1

Рис. 6: Критерий хи-квадрат в случае сложной гипотезы для распределения Пуассона