CS3120 Introduction of Integrated Circuit Design Chapter 3 Exercise

3.6 Problems

[3.1] Consider the interconnect pattern shown in Figure P3.1. The line has a width of 1 unit, and the sheet resistance is $R_s = 25 \Omega$. Find the

resistance from A to B if each corner square contributes a factor of 0.625 of a "straight-path" square.

7 RS=25=52

Figure P3.1

(3.2] An interconnect line can be made in either of two layers. If a gate polysilicon layer is selected, the sheet resistance is $25\,\Omega$; for this case, the interconnect will have a width of $0.5\,\mu m$ and a length of $27.5\,\mu m$. A metal layer can also be used. It has a sheet resistance of $0.08\,\Omega$. The metal line has a width of $0.8\,\mu m$ but requires a different routing length of $32.4\,\mu m$.

Calculate the line resistance R_{line} for each case and determine the lower resistance alternate. What is the percentage increase in resistance if the larger resistance line is used instead?

- [3.3] An interconnect line is made from a material that has a resistivity of ρ = 4 $\mu\Omega\text{-cm}.$ The interconnect is 1200 Å thick, where 1 Angstrom (Å) is 10^{-8} cm. The line has a width of 0.6 μm .
 - (a) Calculate the sheet resistance R_s of the line.
 - (b) Find the line resistance for a line that is $125 \,\mu m$ long.
- (3.4) Consider equation (3.14) for the interconnect time constant τ . Prove that τ has units of seconds by expressing ohms and farads in fundamental MKS units and reducing.
- [3.5] An interconnect line runs over an insulating oxide layer that is 10,000 Å thick. The line has a width of 0.5 μm and is 40 μm long. The sheet resistance is known to be 25 Ω .
 - (a) Find the line resistance R_{line}.
- (b) Find the line capacitance C_{line} . Use $\varepsilon_{ox} = 3.453 \times 10^{-13}$ F/cm, and express your answer in femtofarads (fF) where 1 fF = 10^{-15} F.
- (c) Find the time constant τ for the line in units of picoseconds (ps) where 1 ps = 10^{-12} sec.
- **[3.6]** A sample of silicon is doped with arsenic with $N_d = 4 \times 10^{17}$ cm⁻³.
 - (a) Find the majority carrier density.
 - (b) Find the minority carrier density.
- (c) Calculate the electron and hole mobilities and then find the conductivity of the sample.

Andy, Yu-Guang Chen 2024/10/05

- [3.7] A region of silicon is doped with both phosphorus and boron. The P-doping is $N_d = 2 \times 10^{16} \, \mathrm{cm}^{-3}$ while the B-doping level is $N_a = 6 \times 10^{18} \, \mathrm{cm}^{-3}$. Determine the polarity (n or p) of the region, and find the carrier densities.
- **[3.8]** A sample of silicon is doped with boron atoms at an acceptor density of $N_a = 4 \times 10^{14}$ cm⁻³.
 - (a) Find the majority and minority carrier densities.
 - (b) Find the resistivity ρ of the sample.
- (c) Suppose that the region has dimensions of $2\,\mu m\times 0.5\,\mu m\times 100\,\mu m.$ Find the largest resistance of an end-to-end block of the region.
- [3.9] Consider a doped semiconductor where

$$\sigma = q(\mu_n n + \mu_p p) \tag{3.71}$$

and $np=n_i^2$. Suppose we wish to minimize the conductivity.

- (a) Use the mass-action law to write in terms of p only.
- (b) Compute the derivative $(d\sigma/dp)$ and set it equal to 0 to find the hole concentration that minimizes σ .
- (c) Noting that $\mu_n > \mu_p$, what polarity (n-type or p-type) is required for the highest resistivity? Then use your equations to find the doping type and density that give the highest resistivity.
- [3.10] An n-channel MOSFET has a mobility value of μ_n = 560 cm²/V-sec and uses a gate oxide with a thickness of t_{ox} = 90 Å. The gate voltage is given as V_G = 2.5 V, and the threshold voltage is 0.65 V.
 - (a) Calculate the value of C_{ox} in units of F/cm².
 - (b) Find the process transconductance k_n .
- (c) Find the device transconductance β_n if the FET has a channel length of 0.25 μm and a channel width of 2 μm .
- [3.11] Use equation (3.57) for R_n to find the units of the electron mobility μ_n . Then suppose that $\mu_n = 500 \text{ cm}^2/\text{V-sec}$ and $(V_G V_{Tn}) = (3.3 0.7) \text{ V}$ is known.
 - (a) Find the nFET resistance if $W=10~\mu\mathrm{m}$, $L=0.5~\mu\mathrm{m}$, and $t_{ox}=10~\mathrm{nm}$.
- (b) Find R_n if the channel width is increased to a value of W = 22 μm while the channel length remains the same.
- [3.12] A pFET is described by $\mu_p = 220$ cm²/V-sec and $(V_G |V_{Tp}|) = (3.3 0.8)$ V, W = 14 μ m, L = 0.5 μ m, and $t_{ox} = 11.5$ nm. Find the pFET resistance R_p of the device.
- **[3.13]** Consider a process that has an oxide thickness of $t_{ox} = 9.5$ nm. The particle mobilities are given as $\mu_n = 540$ and $\mu_p = 220$ cm²/V-sec. An nFET and a pFET are made, both with W = 12 μ m, L = 0.35 μ m. Both have gate voltages of $V_G = 3.3$ V, while the threshold voltages are $V_{Tn} = 0.65$ V and $V_{Tp} = -0.74$ V.
 - (a) Find the values of R_n and R_p for the two transistors.
 - (b) Suppose that we want to keep the nFET the same size, but increase

Andy, Yu-Guang Chen 2024/10/05

the width of the pFET to the point where $R_p = 0.8 R_n$. Find the required width of the pFET.

[3.14] Design a CMOS logic gate that provides the function

$$Out = \overline{x \cdot (y \cdot z + z \cdot w)} \tag{3.72}$$

Then perform the basic layout of circuit.

[3.15] Design the circuit and layout for a CMOS gate that implements the function

$$F = \overline{a \cdot b \cdot c + a \cdot d} \tag{3.73}$$

using the fewest number of transistors and a compact layout style.

(3.16) Consider the OAI logic function

$$g = \overline{(a+b)\cdot(c+d)\cdot e} \tag{3.74}$$

Design the CMOS logic gate and then construct a basic layout for the circuit.

- [3.17] Expand the function g given in equation (3.74) [Problem 3.16 above] into AOI form. Then design the CMOS logic circuit and layout.
- [3.18] Examine the stick diagram in Figure 3.44. Is this a functional logic gate? If so, determine the logic operation it provides.
- [3.19] Consider the logic function

$$g = \overline{a \cdot b \cdot c + d} \tag{3.75}$$

- (a) Design the CMOS logic gate that provides this function.
- (b) Is it possible to find an Euler graph for the circuit? If so, construct the graph and use it to perform a stick-level layout. If not, find a layout strategy for the gate.