Computational Geometry

- Introduction
- Algorithms Classification
- Computational complexity
- Degeneracies and Robustness

What is computational geometry?

Computational geometry is a branch of the theory of computations that studies geometric problems of great size focusing on robust and asymptotically fast algorithms.

Given a set S of n points on the plane. Find the convex hull of S.

Given a set S of n points on the plane and a point $z \notin S$. Find a point in S closest to z.

Given a set of n line segments on the plane. Do any two segments intersect?

Computational complexity

- Computational complexity of an **algorithm**: amount of time spending by the algorithm as a function of size of the problem. Usual notation is T(n), where n denotes the size of the problem.
- Computational complexity of a **problem**: complexity of the best algorithm that solves this problem.

Computational complexity

$$T(n) = c_1 \frac{n(n-1)}{2} + c_2 n + c_3$$

Asymptotic complexity

Asymptotic complexity is behavior of computational complexity T(n) if n approaches the infinity.

Example:

If for some constant C > 0 and $N \ge 0$ such that for all $n \ge N$

$$T(n) = c_1 \frac{n(n-1)}{2} + c_2 n + c_3 \le C n^2,$$

then an asymptotic notation is used

$$T(n) = O(n^2).$$

The constants C and N can be estimated as

$$C = a + |b| + c, N = \left| \frac{2|b|}{a} \right|,$$

where $a = c_1/2$, $b = c_2 - a$, $c = c_3$.

O-notation

A notation

$$T(n) = O(f(n))$$

means that there exist constants C>0 and N>0 such that for all $n\geq N$ $T(n)\leq Cf(n),$

By definition, it means that

$$\lim_{n\to\infty} \frac{T(n)}{f(n)} = 1.$$

- Is used to denote the worst-case of algorithm running time.
- We say that, in the worst-case, the algorithm will spend at most O(f(n)) time to solve the problem.

Ω -notation

A notation

$$T(n) = \Omega(f(n))$$

means that there exist constants C>0 and N>0 such that for all $n\geq N$ $T(n)\geq Cf(n),$

- Is used to denote the lower-bound of the complexity of a problem.
- We say that the best algorithm will need at least $\Omega(f(n))$ time to solve this problem.

θ -notation

A notation

$$T(n) = \theta(f(n))$$

means that

$$T(n) = O(f(n)) = \Omega(f(n)).$$

- We say that f(n) is an **asymptotically tight** bound of T(n).
- Is used to denote computational complexity of optimal algorithms for the specified problem.

T(n)	$T_1 = T(1000)$	$T_2 = T(1000000)$	T_2/T_1
$\log n$	10	20	2
n	10^{3}	10^{6}	10^{3}
$n \log n$	10 ⁴	2×10^{7}	2×10^3
n^2	10^{6}	10^{12}	10 ⁶
2^n	10 ³⁰⁰	10^{300000}	10^{299700}

T(n)	$T_1 = T(1000)$	$T_2 = T(1000000)$	T_2/T_1
$\log n$	10	20	2
n	10^{3}	10 ⁶	10 ³
$n \log n$	10 ⁴	2×10^7	2×10^3
n^2	10^{6}	10^{12}	10 ⁶
2^n	10^{300}	10^{300000}	10^{299700}

Linear growth of complexity regarding growth of the input

T(n)	$T_1 = T(1000)$	$T_2 = T(1000000)$	T_2/T_1
$\log n$	10	20	2
n	10^{3}	10^{6}	10^{3}
$n \log n$	10 ⁴	2×10^{7}	2×10^3
n^2	10^{6}	10 ¹²	10 ⁶
2^n	10 ³⁰⁰	10^{300000}	10^{299700}

1000 times growth of complexity regarding growth of the input!

T(n)	$T_1 = T(1000)$	$T_2 = T(1000000)$	T_2/T_1		
$\log n$	10	20	2		
n	10^{3}	10^{6}	10^{3}		
$n \log n$	10 ⁴	2×10^{7}	2×10^{3}		
n^2	10^{6}	10^{12}	10^{6}		
2^n	10 ³⁰⁰	10^{300000}	10^{299700}		

1000 times growth of complexity regarding growth of the input!

Natural limitation for solving problems of great size

Digital Terrain Model

Stanford's Digital Michelangelo

When and what kind of optimization is appropriate?

- $O(\log n)$: real time request (milliseconds)
 - Search and display of the current information under mouse pointer, onMouseMove() event handler.
 - Analysis and display of permanently changing object status.
- O(n): mouse click request (0.5 1 sec).
- $O(n \log n)$: short time computation (1 sec few minutes).
- $O(n^k)$: long computation (few hours few days).
- $O(2^n)$: (years, centuries)

Algorithm development: three steps

- **Step 1.** Design an algorithm with the **best asymptotical complexity**.
- Step 2. Handle degeneracies.
- **Step 3.** Provide **computational robustness**.

Given a simple polygon P and a point z, identify whether z belongs to P.

Step 1: design an algorithm with the best asymptotical complexity.

Step 1: design an algorithm with the best asymptotical complexity.

Step 1: design an algorithm with the best asymptotical complexity.

Asymptotical complexity: $T(n) = \theta(n)$

Step 2: handle degeneracies.

Step 3: provide computational robustness.

Rounding errors may crucially impact on algorithm execution.

Identify location of a point c on the plane relative to an oriented line, that passes through points a and b.

In other words, are the points a, b and c arranged in clockwise (CW) order, counterclockwise (CCW) order or they are collinear?

- The points are defined by their coordinates of type double.
- The solution must be correct for any input.

$$D = \begin{vmatrix} a_x & a_y & 1 \\ b_x & b_y & 1 \\ c_x & c_y & 1 \end{vmatrix} = \begin{vmatrix} a_x - c_x & a_y - c_y \\ b_x - c_x & b_y - c_y \end{vmatrix}$$

- $D > 0 \Rightarrow c$ is on the **left** of the line (a, b)
- $D < 0 \Rightarrow c$ is on the **right** of the line (a, b)
- $D = 0 \Rightarrow c$ is **on** the line (a, b)

```
int orient2d(double ax, double ay, double bx, double by, double cx, double cy)
{
    return (ax - cx) * (by - cy) - (bx - cx) * (ay - cy);
}
```


Identify location of a point d on the plane relative to a circle that passes through points a, b and c.

In other words, is d inside, outside or exactly on the circle?

$$D = \begin{vmatrix} a_x & a_y & a_x^2 + a_y^2 & 1 \\ b_x & b_y & a_x^2 + a_y^2 & 1 \\ c_x & c_y & a_x^2 + a_y^2 & 1 \\ d_x & d_y & d_x^2 + d_y^2 & 1 \end{vmatrix}$$

- $D > 0 \Rightarrow d$ is inside the circle,
- $D < 0 \Rightarrow d$ is outside the circle,
- $D = 0 \Rightarrow d$ is on the circle

Triangulation [Shewchuk 1999]

Incorrect identification of point location relative to a circle (the Delaunay test) caused by rounding errors

Computational robustness

- Big numbers
- Exact arithmetic
- Adaptive arithmetic

A particular case: integer arithmetic

- point positions are specified by __int32 (4 bytes),
- intermediate and final results are stored in __int64 (8 bytes) and __int128 (16 bytes).

Computational robustness

- Big numbers
- Exact arithmetic
- Adaptive arithmetic

Arbitrary precision floating-point arithmetic:

a number x is expressed as an expansion

$$x = x_n + \dots + x_2 + x_1,$$

- $|x_n| > \cdots > |x_1|$,
- components x_i are nonoverlapping by digit positions

for example,
$$12.3456 = 12. + 0.34 + 0.0056$$

The sign of x is equal to the sign of the largest component x_n !

Exact arithmetic

Addition rule [Dekker]:

Fast-Two-Sum(a, b)

1	06	,	~	\bigoplus	h
T	$\boldsymbol{\mathcal{X}}$	$\overline{}$	α	T	IJ

2 $b_{virt} \leftarrow x \ominus a$

3 $y \leftarrow b \ominus b_{virt}$

4 return (x, y)

(x + y) = (7287. +0.78)

Exact arithmetic

Kahan Summation Formula:

Summation $(a_1, ..., a_n)$

```
\begin{array}{lll}
1 & s \leftarrow a_1 \\
2 & y \leftarrow 0 \\
3 & \textbf{for } i \leftarrow 1 \textbf{ to } n \\
4 & b \leftarrow a_i \ominus y \\
3 & x \leftarrow s \oplus b \\
4 & b_{virt} = x - s \\
5 & y = b_{virt} \ominus b \\
6 & S = x \\
7 & \textbf{return } S
\end{array}
```

Computed sum is equal to

$$\sum x_i(1+\delta_i) + O(n\epsilon^2)\sum |x_i|,$$

where

$$|\delta_i| \le 2\epsilon$$

Naïve summation gives

$$\sum x_i(1+\delta_i)$$
,

where

$$|\delta_i| < (n-i)\epsilon$$
.

Computational robustness

- Big numbers
- Exact arithmetic
- Adaptive arithmetic

The idea: use exact arithmetic **only when necessary**!

Adaptive arithmetic

Jonathan Shewchuk

Professor in Computer Science University of California at Berkeley

```
int orient2d(p, p1, p2);
int orient3d(p, p1, p2, p3);
int inctint(p, p1, p2, p3);
int inctint(p, p1, p2, p3);
int inctint(p, p1, p2, p3);
int orient3d(p, p1, p2, p3);
int inctint(p, p1, p3);
int inctint(p, p3);
int inctint(p,
```

Does a point belong to a given triangle?

1. Primitive (non-robust) solution: estimate the barycentric coordinates of p_0

$$x_0 = x_1b_1 + x_2b_2 + x_3b_3$$

$$y_0 = y_1b_1 + y_2b_2 + y_3b_3$$

$$1 = b_1 + b_2 + b_3$$

bool inside =
$$(b1 >= 0 \&\& b1 <= 1) \&\& (b2 >= 0 \&\& b2 <= 1) \&\& (b3 >= 0 \&\& b3 <= 1);$$

2. Robust solution: estimate exact position of p_0 relative to the sides of the triangle

References

- **1. Franco P. Preparata, Michael Ian Shamos.** Computational Geometry: An Introduction. Springer-Verlag, 1985
- 2. Mark de Berg, et al. Computational Geometry. *Algorithms and Applications*. Springer, 2008.
- **Д. М. Васильков.** Геометрическое моделирование и компьютерная графика: вычислительные и алгоритмические основы. Мн., БГУ, 2011.
- **David Goldberg**. What every computer scientist should know about floating-point arithmetic. *Journal ACM Computing Surveys (CSUR)*, vol. 23 Issue 1, March 1991 (5-48).
- **J. R. Shewchuk**. Adaptive precision floating-point arithmetic and fast robust geometric predicates. *Discrete & Computational Geometry*, 18:305–363, 1997.
- 6. https://www.cs.cmu.edu/~quake/robust.html