

From Amdahl's Law to Big Data: A Story of Computer Sciences and Technology

Xian-He Sun

Illinois Institute of Technology sun@iit.edu

The Journey of Supercomputing

- The Background of Parallel Processing
 - Speedup
 - Sources of overhead
- The Laws of Scalable Computing
 - □ The Amdahl's law
 - □ The Gustafson's law
 - □ The Sun-Ni's law
- Impacts and Discussions

Performance Evaluation

(Improving performance is the goal)

- Performance Measurement
 - Metric, Parameter
- Performance Prediction
 - Model, Application-Resource
- Performance Diagnose/Optimization
 - □ Post-execution, Algorithm improvement, Architecture improvement, State-of-the-art, Scheduling, Resource management/Scheduling

Performance of Parallel Processing

Models of Speedup

- Speedup
 - \Box Ts = time for the best serial algorithm
 - □ Tp= time for parallel algorithm using p processors

$$S_p = \frac{T_s}{T_p}$$

Simple enough, but also unexpected complex

$$S_p = \frac{\text{Uniprocess or Execution Time}}{\text{Parallel Execution Time}}$$

Example

perfect parallelization

$$S_p = \frac{100}{35} = 2.85,$$
 perfect load balancing

Example (cont.)

$$S_p = \frac{100}{40} = 2.5,$$

no synch

but load imbalance

$$S_p = \frac{100}{50} = 2.0,$$

load imbalance and synch cost

What Is "Good" Speedup?

• *Linear* speedup:

$$S_p = p$$

Superlinear speedup

$$S_p > p$$

■ *Sub-linear* speedup:

$$S_p < p$$

Speedup

Sources of Parallel Overheads

- Interprocessor communication
- Load imbalance
- Synchronization
- Extra computation

Causes of Superlinear Speedup

- Cache size increased
- Overhead reduced
- Latency hidden
- Randomized algorithms
- Mathematical inefficiency of the serial algorithm
- Higher memory access cost in sequential processing

• X.H. Sun, and J. Zhu, <u>"Performance Considerations of Shared Virtual Memory Machines,"</u> *IEEE Trans. on Parallel and Distributed Systems*, Nov. 1995

Degradations of Parallel Processing

Overheads

- communication
- Load imbalance
- Synchronization
- Extra computation

Communication Delay

Overhead Increases with the Ensemble Size

Degradations of Distributed Computing

Unbalanced Computing Power and Workload

Shared Computing and Communication Resource

Uncertainty, Heterogeneity, and Overhead Increases with the Ensemble Size

Principals of Architecture Design

- Make common case fast (90/10 Rule)
- Amdahl's Law
 - Law of diminishing returns
- Speedup
 - Achieved performance improvement over original

Gene Amdahl

$$Speedup Overall = \frac{speed new}{speed old} = \frac{execution time old}{execution time new}$$

Here performance is measured in **Speed**

Amdahl's Law

Execution time of any code has two portions

Portion I: not affected by enhancement

Portion II: affected by enhancement

execution time_{old} = execution time_{p1} + execution time_{p2}

 α is % of original code that cannot benefit from enhancement

As p -> infinity, execution time $_{\rm new}$ -> α * execution time $_{\rm old}$

execution time_{new} =
$$(\alpha)$$
* execution time_{old} + $(1-\alpha)$ * $\frac{\text{execution time}_{\text{old}}}{p}$

Execution time_{p1}

Execution time_{p2}

p is speedup factor of old/new execution times for portion II

Amdahl's Law for Parallel Processing (1967)

- Let α = fraction of program (algorithm) that is <u>serial</u> and <u>cannot be parallelized</u>. For instance:
 - Loop initialization
 - Reading/writing to a single disk
 - Procedure call overhead
- Parallel run time is given by

execution time_{new} =
$$(\alpha)$$
* execution time_{old} + $(1-\alpha)$ * $\frac{\text{execution time}_{\text{old}}}{p}$

$$T_p = (\alpha + \frac{1 - \alpha}{p}) \bullet T_s$$

Gene M Amdahl, "Validity of the single processor approach to achieving large scale computing capabilities," AFIPS spring joint computer conference, 1967

Amdahl's Law

• Amdahl's law gives a limit on speedup in terms of α

$$S_p = \frac{T_s}{T_p} = \frac{T_s}{\alpha T_s + \frac{(1-\alpha)T_s}{p}} = \frac{1}{\alpha + \frac{1-\alpha}{p}}$$

If we assume that the serial fraction is fixed, then the speedup for infinite processors is limited by $1/\alpha$

$$\lim_{p\to\infty} S_p = \frac{1}{\alpha}$$

For example, if $\alpha=10\%$, then the maximum speedup is 10, even if we use an infinite number of processors

Amdahl Law

The sequential part becomes the dominate factor quickly

Amdahl's Law

execution time_{new} = (α) * execution time_{old} + $(1-\alpha)$ * $\frac{\text{execution time}_{\text{old}}}{p}$

Example: alpha = 20%

Speedup_{overall} = $\frac{\text{execution time}_{\text{old}}}{\text{execution time}_{\text{new}}} = \frac{1}{(\alpha) + \frac{1 - \alpha}{n}}$

Amdahl's Law with Overhead

- To include overhead will be even worse
- The overhead includes parallelism and interaction overheads

$$Speedup_{FS} = \frac{T_1}{\alpha T_1 + \frac{(1-\alpha)T_1}{p} + T_{overhead}} \rightarrow \frac{1}{\alpha + \frac{T_{overhead}}{T_1}} as \ p \rightarrow \infty$$

Amdahl's law: argument against massively parallel systems

Example

- Enhanced mode is used 50% of resulting execution time_{new}
- Portions of code using enhanced mode improve performance by factor 10x
- What is speedup for fast mode?

First find 1- α (% of code affected by enhancement)

execution time_{new} =
$$\underbrace{(.5)*$$
 execution time_{new} + $\underbrace{(.5)*}$ execution time_{new} not enhanced enhanced

$$(\alpha)$$
* execution time_{old} = $\frac{(1-\alpha)$ * execution time_{old} $\frac{10}{10}$

$$1 - \alpha = .909091$$
 Speedup_{overall} = $\frac{1}{(\alpha) + \frac{1 - \alpha}{n}} = \frac{1}{(1 - .9) + \frac{.9}{10}} = 5.3$

Example

- Enhancement: Parallel processing with 20 computing nodes
- Portions of code containing computations run 20x faster in parallel processing mode.
- What % of original code must be parallelizable to achieve speedup_{overall} = 2?

Speedup_{overall} =
$$\frac{\text{execution time}_{\text{old}}}{\text{execution time}_{\text{new}}} = \frac{1}{(\alpha) + \frac{1 - \alpha}{n}}$$

$$2 = \frac{1}{(\alpha) + \frac{1 - \alpha}{20}} \qquad 1 - \alpha = .5263$$

History back to 1988

IBM 7030 Stretch

IBM 7950 Harvest

Cray X-MP Fastest computer 1983-1985

Cray Y-MP

All have up to 8 processors, citing Amdahl's law,

 $\lim_{p\to\infty} S \, peedup_{Amdahl} = \frac{1}{\alpha}$

Gene Amdahl

9/19/2019

Summit: the World Fastest Computer

- ➤ 148.6 petaflops (187.66 petaflop theoretical peak)
- > 2,282,544 IBM Power 9 core
- > 2,090,880 Nvidia Volta GV100 core
- ➤ Power efficiency 11.324gigaflop/watt

Bombshell: Gustafson, etc. Got Speedup of more than 1,000 on Three Applications

- On a 1024-processor nCUBE parallel computer
- For three applications: wave mechanics, fluid dynamics, and structural analysis.
- Introduced the concept of **Scalable Computing**, *problem* size increases with the machine size

John L. Gustafson, Gary R. Montry, and Robert E. Benner, "Development of Parallel Methods for a 1024-Processor Hypercube," SIAM Journal on Scientific and Statistical Computing, Vol. 9, No.4, 1988 (submitted 3/10/1988, accepted 3/25/1988, appeared April 1988)

John Gustafson, "Reevaluation of Amdahl's Law," Communications of the ACM, Vol. 31, No. 5, May 1988.

Reevaluate Amdahl's Law

- Amdahl's Law is designed for technology improvement, but has been widely used to against parallel processing in terms of reducing execution time
- But: large computers are not (only) designed for solving existing problem faster, they are designed for solving otherwise unsolvable large problems
- The introduction of scalable computing, where *problem* size increases with the machine size

• Fixed-Time Speedup (Gustafson, 88)

- O Emphasis on work finished in a fixed time
- Problem size is scaled from W to W
- W': Work finished within the fixed time with parallel processing

$$S'_{p} = \frac{\text{Uniprocessor Time of Solving } W'}{\text{Parallel Time of Solving } W'}$$

$$= \frac{\text{Uniprocessor Time of Solving } W'}{\text{Uniprocessor Time of Solving } W}$$

$$= \frac{W'}{W}$$

John L. Gustafson

Fixed-Time Speedup (Gustafson)

Solving a larger application within the time limit

Reexam Amdahl Law (Fixed-Size Speedup)

It is on time reduction for solving a fixed problem (size)

- Amdahl's law (Fixed-Size Speedup)
 - Emphasis on turnaround time
 - Problem size, W, is fixed

$$S_p = \frac{\text{Uniprocess or Execution Time}}{\text{Parallel Execution Time}}$$

$$S_p = \frac{\text{Uniprocess or Time of Solving } W}{\text{Parallel Time of Solving } W}$$

Gustafson's Law (Without Overhead)

- Under **Gustafson's Law** the parallel processing part is changing with the number of processors, *p*, and problem size
- Linear speedup

$$Speedup_{FT} = \frac{Work(p)}{Work(1)} = \frac{\alpha W + (1 - \alpha)pW}{W} = \alpha + (1 - \alpha)p$$

If
$$\alpha$$
=0.1

$$Speedup_{FT} = \alpha + (1 - \alpha)p = 0.1 + 0.9p$$

Gustafson's Law (With Overhead)

In practice, the overhead can increase with P, and limit the scalability

$$P \underbrace{\frac{Work(p)}{Work(1)}} = \alpha + (1 - \alpha - \frac{T_{overhead}}{T_1})p$$
time

But: Gustafson's Applications are not Scalable

 Most applications cannot get more than 1,000 speedup on a 1024-processor nCUBE parallel computer

Parallel Processing overhead

Even the three applications are not Scalable (increase problem size further does not help)

Why?

Memory Constrained Scaling:

Sun and Ni's Law

- Scaling is limited by memory space (disk will increase overhead significantly), e.g. fixed memory capacity/usage per processor
 - □ (ex) N-body problem
- Problem size is scaled from W to W*, W* is the work executed under memory limitation
- The relation between memory & computing requirement is determined by the underlying algorithm/program
- Memory-scaling function

$$W^* = G(p * M)$$

Xian-He Sun

Sun & Ni's Law

存储受限理论

Lionel M. Ni

$$Speedup_{MB} = \frac{Work(p)/Time(p)}{Work(1)/Time(1)} = \frac{\alpha + (1-\alpha)G(p)}{\alpha + (1-\alpha)G(p)/p}$$

Assuming $\alpha=0.1$, the problem needs $2n^3$ computation and $3n^2$ memory Then $G(p)=G(p)=p^{\frac{3}{2}}$, and

$$Speedup_{MB} = \left(0.1 + 0.9 \times p^{\frac{3}{2}}\right) / \left(0.1 + (0.9 \times p^{\frac{3}{2}})/p\right)$$

Memory-Bounded Speedup 存储受限理论

(Sun & Ni, 90)

- Emphasis on work finished under current physical limitation
 - ° Problem size is scaled from W to W*
 - $^{\circ}$ W^{*} : Work executed under memory limitation with parallel processing

$$S_p^* = \frac{\text{Uniprocessor Time of Solving }W^*}{\text{Parallel Time of Solving }W^*}$$

Memory-Bounded Speedup (Sun & Ni)

In practice, memory-bounded performs better than fixed-time but both hard to achieve linear speedup

$$Speedup_{MB} = \frac{Work(p)/Time(p)}{Work(1)/Time(1)} = \frac{\alpha + (1-\alpha)G(p)}{\alpha + \frac{(1-\alpha)G(p)}{p} + overhead(p,G(p))}$$

Elapsed

Time

$$Speedup_{FT} = \frac{Work(p)}{Work(1)} = \alpha + (1 - \alpha - \frac{T_{overhead}}{T_1})p$$

Example of calculating Sun & Ni's Law

$$Speedup_{MB} = \frac{Work(p)/Time(p)}{Work(1)/Time(1)} = \frac{\alpha + (1-\alpha)G(p)}{\alpha + (1-\alpha)G(p)/p}$$

Example:

- Assuming that the problem needs $2n^3$ computation and $3n^2$ memory requirement
- $\alpha = 0.6$
- p = 8
- $G(p) = G(8) = 8^{\frac{3}{2}} \approx 22.63$
- □ $Speedup_{MB} = (0.6 + 0.4 \times 22.63)/(0.6 + (0.4 \times 22.63)/8) \approx 5.576$

Rethinking of Speedup

Speedup

$$S_{p} = \frac{Uniprocessor\ ExecutionTime}{Parallel\ ExecutionTime}$$

- It is only the true speedup if problem size is fixed, but now we have scalable computing
- Generalized speedup

$$S_p = \frac{\text{Parallel Speed}}{\text{Sequential Speed}}$$

X.H. Sun, and J. Gustafson, "Toward A Better Parallel Performance Metric," Parallel Computing, Vol. 17, pp.1093-1109, Dec. 1991.

Performance Example

- Performance is measured in Speed
- But since they work on the same of work, Speedup equals Time Reduction
- My car (X) travels a distance of 1 in one hour
 - □ Time between start and completion of event is 1 hour
 - Execution time
- Your car (Y) travels a distance of 1 in two hours
- Intuition: my car is twice as fast as your car

Performance Example

- My car (X) travels a distance of 1 in one hour
 - □ Time between start and completion of event is 1 hour
 - Execution time
- Your car (Y) travels a distance of 1 in two hours
- Intuition: my car is twice as fast as your car
- Intuition assumes performance = speed

Is intuition correct?

$$\frac{\text{execution time of your car (Y)}}{\text{execution time of my car (X)}} = n$$

Implies X performs n times better than Y

performance = speed =
$$\frac{1}{\text{execution time}}$$

$$n = \frac{\text{execution time of Y}}{\text{execution time of X}} = \frac{1/\text{speed of Y}}{1/\text{speed of X}} = \frac{\text{speed of X}}{\text{speed of Y}} = \frac{\text{performance of X}}{\text{performance of Y}}$$

Speed is one measure of performance, throughput is another

Models of Speedup

The Three Laws

- Tacit assumption of Amdahl's law
 - Problem size is fixed
 - Speedup emphasizes on time reduction
- Gustafson's Law, 1988
 - Fixed-time speedup model

$$\alpha$$
 (1- α) p

 $(1-\alpha)G(p)$

Work: $\alpha + (1-\alpha)G(p)$

Work: $\alpha + (1-\alpha)p$

1- α

◆ Work: 1 **→**

 α

$$Speedup_{fixed-time} = rac{Sequential\ Time\ of\ Solving\ Scaled\ Workload}{Parallel\ Time\ of\ Solving\ Scaled\ Workload} = lpha + (1-lpha)p$$

- Sun and Ni's law, 1990
 - Memory-bounded speedup model

$$Speedup_{memory-bound} = \frac{Sequential \ Time \ of \ Solving \ Scaled \ Workload}{Parallel \ Time \ of \ Solving \ Scaled \ Workload}$$
$$= \frac{\alpha + (1 - \alpha)G(p)}{\alpha + (1 - \alpha)G(p)/p}$$

The Three Laws: and their impact

- I can improve Amdahl's law
- Amdahl's law (1967) shows the inherent limitation of parallel processing
- Gustafson's law (scalable computing, 1988) shows there is I have a no inherent limitation for scalable parallel computing, exceeding huge engineering issues
- **Sun-Ni's law** (memory-bounded, 1990) shows memory (data) is the constraint of scalable computing (the engineering issue)
- The Memory-Wall Problem (1994) shows memory-bound is a general performance issue for computing, not just for parallel computing

William Wulf, Sally Mckee, "Hitting the memory wall: implications of the obvious," ACM SIGARCH Computer Architecture News Homepage archive, Vol. 23 Issue 1, March 1995

Impact of Scalable Computing

