CS 103: Mathematical Foundations of Computing Problem Set #3

[Caleb Liu, Justin Shen] February 4, 2023

Due Friday, October 21 at 2:30 pm Pacific

Problem One is autograded. You won't include your answers to that problem here.

Symbols Reference

Here are some symbols that may be useful for this problem set.

- f is a function from A to B: $f:A \to B$.
- Function composition: $f \circ g$.
- Power sets: $\wp(()S)$.
- Unions and intersections: $S \cup T$, $S \cap T$.
- Cardinality: |S|.
- $\bullet \mbox{ Sets: } \{\ 1,2,3\ \} \mbox{ or } \{\ n\in \mathbb{N} \ | \ n\geq 137\ \}$
- Exponents (use curly braces if exponent is more than 1 character): x^2 , 2^{3x}
- Subscripts (use curly braces if subscript is more than 1 character): x_0, x_{10}

Problem Two: $|\mathbb{N}| = |\mathbb{Z}|$

i. Fill in the blanks for Problem Two, part i. below.

- f(0) = 0.
- f(1) = -1.
- f(2) = 1.
- f(3) = -2.
- f(4) = 2.
- f(5) = -3.

ii.

Theorem: Prove that f is a bijection.

Proof: To prove that f is a bijection, we need to prove that f is injective and surjective.

Proof of injectivity: Pick an arbitrary $a \in N$ and $b \in N$, such that a = b. We need to show that f(a) = f(b). We can split the proof into two cases:

Case 1: a and b are even. Then, $\exists k_1, k_2 \in N$ such that $a = 2k_1$ and $b = 2k_2$. Since a = b, we see

$$a = b$$
 $(2k_1) = (2k_2)$
 $k_1 = k_2$
(1)

and thus, $f(a) = k_1 = f(b) = k_2$.

Case 2: a and b are odd. Then, $\exists k_1, k_2 \in N$ such that $a = 2k_1 + 1$ and $b = 2k_2 + 1$. Since a = b, we see

$$a = b$$

$$(2k_1 + 1) = (2k_2 + 1)$$

$$2k_1 = 2k_2$$

$$k_1 = k_2$$
(2)

and thus $f(a) = -(k_1 + 1) = f(b) = -(k_2 + 1)$.

which is what we wanted to show.

Proof of Surjectivity: Pick an arbitrary $y \in \mathbb{Z}$. We need to show there exists an $x \in N$ such that f(x) = y. We can split the proof into two cases:

Case 1: y = k for some $k \in N$. Then, x = 2k is a solution.

Case 2: y = -(k+1) for some $k \in \mathbb{N}$. Then, x = 2k+1 is a solution.

Therefore, f is surjective. Since f is both injective and surjective, it is a bijection.

Problem Three: Strictly Increasing Functions

i.

 $f(x) = x^2$ is not strictly increasing, but $f(x) = x^3$ is strictly increasing.

ii.

Theorem: Let $f: \mathbb{Z} \to \mathbb{Z}$ and $g: \mathbb{Z} \to \mathbb{Z}$ be arbitrary strictly increasing functions. Prove that $g \circ f$ is strictly increasing.

Proof: Consider any $x, y \in \mathbb{Z}$ such that x < y. We need to show that g(f(x)) < g(f(y)). Because function f is strictly increasing and x < y, we know that f(x) < f(y). Furthermore, because function g is strictly increasing and f(x) < f(y), we know that g(f(x)) < g(f(y)), which is what we need to show.

iii.

Theorem: Let $f: \mathbb{Z} \to \mathbb{Z}$ be an arbitrary strictly increasing function. Prove that f is injective.

Proof: We will prove the contrapositive, that if $x \neq y$, $f(x) \neq f(y)$. To do so, consider any $x, y \in \mathbb{Z}$ such that $x \neq y$. We want to show that $f(x) \neq f(y)$. As $x \neq y$, either x < y or y < x. Assume, without loss of generality, that x < y. Because x < y and f is strictly increasing, we know that f(x) < f(y). Because f(x) < f(y), $f(x) \neq f(y)$, which is what we needed to show.

iv.

Theorem: Let $f: \mathbb{Z} \to \mathbb{Z}$ be a strictly increasing function and consider any integers x and y. Prove that if f(x) = y, and f(y) = x, then x = y.

Proof: We will take the contrapositive of the above theorem, namely if $x \neq y$, then $f(x) \neq y$ or $f(y) \neq x$. For the sake of contradiction, consider any $x, y \in \mathbb{Z}$ such that $x \neq y$ and f(x) = y and f(y) = x.

As $x \neq y$, either x < y or y < x. Assume, without loss of generality, that x < y. Because x < y and f is strictly increasing, we know that f(x) < f(y). We then see

$$f(x) < f(y) y < x$$
 (3)

This is impossible because x < y. We have reached a contradiction, so our assumption must have been wrong, so if $x \neq y$, then $f(x) \neq y$ or $f(y) \neq x$, which is what we wanted to show.

Problem Four: Eventual Bijections

i. Fill in the blanks for Problem Four, part i. below.

- $f^3(2) = 9$.
- $f^{137}(1) = 1$.
- $f^0(137) = 137$.

ii.

Theorem: Let $f: A \to A$ be a function. Prove that if f^3 is surjective, then f is surjective.

Proof: Pick an arbitrary $y \in A$. We need to show that there exists an $x \in A$, such that f(x) = y. Because $f^3(x)$ is surjective, we know that there exists an $a \in A$, such that f(f(f(a))) = y. Now, let x = f(f(a)). We see that

$$f(f(f(a))) = y$$

$$f(x) = y$$
(4)

which is what we wanted to prove.

iii.

Theorem: Let $f: A \to A$ be a function. Prove that if f^3 is injective, then f is injective.

Proof: We will prove the the contrapositive: if f is not injective, f^3 is not injective. Pick an $a, b \in A$, such that $a \neq b$. We want to show that $f^3(a) \neq f^3(b)$. Because f is injective and $a \neq b$, we know that $f(a) \neq f(b)$. We then see

$$f(a) \neq f(b)$$

$$f(f(a)) \neq f(f(b))$$

$$f(f(f(a))) \neq f(f(f(b)))$$
(5)

which is what we needed to show.

Problem Five: Understanding Diagonalization

i.

 \mathbb{N}

ii.

Any element that is not the empty set and that does not contain all the elements in the domain (i.e. {5})

iii.

This set contains all natural numbers that are < n.

iv.

All natural numbers that are < n-1

 $\mathbf{v}.$

 $f(n) = \{n \in \mathbb{N} | 2n - 1\}$. This function produces all natural numbers that are odd. Therefore, the set D will contain any natural number that is no odd, and not contain any number that is odd (even natural numbers).

February 4, 2023

Problem Six: Simplifying Cantor's Theorem?

The incorrect statement is the following: "Since f is not surjective, it is not a bijection. Thus $|S| \neq |\wp(S)|$." f not being surjective does not prove that $|S| \neq |\wp(S)|$ because there could be some other function that is bijective. In order to prove that $|S| \neq |\wp(S)|$, we must pick an **arbitrary** function $f: S \to \wp(S)$ and prove that it is not bijective.

Problem Seven: Proofs on Sets

iii.

Theorem: For all sets A and B, if $\wp(A) = \wp(B)$, then A = B.

Proof: For the sake of contradiction, assume that $\wp(A) = \wp(B)$ and $A \neq B$. Therefore, there exists an $x \in A$, where $x \notin B$. If $x \in A$, $\{x\} \in \wp(A)$. Because $\wp(A) = \wp(B)$, $\{x\} \in \wp(B)$. However, this is impossible because $x \notin B$. We have reached a contradiction, so our previous assumption must be false.

Problem Eight: The Universal Set

i.

Theorem: Prove that if A and B are arbitrary subsets where $A \subseteq B$, then $|A| \leq |B|$.

Proof: Pick two arbitrary subsets A and B where $A \subseteq B$. Secondly, consider the function $f: A \to B$ where f(x) = x. We want to show that f is an injection.

First, we'll show that f is a well-defined function. Because $A \subseteq B$, we know that $\forall x \ (x \in A \to x \in B)$. Therefore, for any $x \in A$, we have $f(x) = x \in B$

Second, we'll show that f is injective. Pick any $x_1, x_2 \in A$ where $f(x_1) = f(x_2)$. We need to show that $x_1 = x_2$. Since $f(x_1) = f(x_2)$, we see by definition of f that $x_1 = x_2$, as required.

Because f is an injection, it follows that $|A| \leq |B|$.

ii.

Theorem: Let U be the universal set discussed in problem 8's description. Using your result from (i), prove that if U exists, then $|\wp(U)| \leq |U|$.

Proof: Consider the function $f: \wp(U) \to U$ where f(x) = x. Because we proved earlier that if $A \subseteq B$, then $|A| \le |B|$, we want to prove that $\wp(U) \subseteq U$.

Assuming that U exists, we know that $\forall x(x \in U)$. It follows that for any $x \in \wp(U)$, $x \in U$. Therefore, $\wp(U) \subseteq U$. Because $\wp(U) \subseteq U$, we know from the earlier proof that $|\wp(U)| \leq |U|$.

iii.

Write your answer to Problem Eight, part iii. here.

iv.

Theorem: Let U be the universal set discussed in problem 8's description. Prove that U does not exist.

Proof: Above, we proved that if U exists, then $|\wp(U)| \leq |U|$. By contrapositive, if $|\wp(U)| > |U|$, then U does not exist. Thus, we need to show that $|\wp(U)| > |U|$.

By Cantor's Theorem, we know that because U is a set, $|U| < |\wp(U)|$, which is what we needed to show.

Optional Fun Problem: Infinity Minus Two

Write your answer to the Optional Fun Problem here.