

SAMA5D2C XULT

SAMA5D2C XULT User's Guide

Introduction

This user's guide introduces the Microchip SAMA5D2C Xplained Ultra evaluation kit (SAMA5D2C-XULT kit) and describes the development and debugging capabilities for applications running on the SAMA5D2 Arm® Cortex®-A5-based microprocessor unit (MPU). The SAMA5D2C-XULT kit supports the following part numbers:

- ATSAMA5D21C
- ATSAMA5D22C
- ATSAMA5D23C
- ATSAMA5D24C
- ATSAMA5D26C
- ATSAMA5D27C
- ATSAMA5D28C

Table of Contents

Intr	oductio	on	1		
1.	Kit Co	ontents	3		
2.	Evolu	Freehooding I/4 On a official con-			
۷.		ation Kit Specifications			
	2.1. 2.2.	Electrostatic Warning Power Supply Warning			
	۷.۷.	Power Supply Warring	4		
3.	Board	l Power-Up	5		
4.	Samp	ole Code and Technical Support	6		
5.	Hardy	ware Overview	7		
	5.1.	Introduction	7		
	5.2.	Equipment List	7		
	5.3.	Board Features	7		
6.	Board	I Components	g		
	6.1.	Board Overview	g		
	6.2.	Connectors On Board	10		
	6.3.	Function Blocks	10		
	6.4.	PIO Usage and Interface Connectors	21		
	6.5.	PIO Usage on Expansion Connectors	41		
7.	Board	d Schematics	55		
8.	Errata	a	70		
	8.1.	NRST	70		
	8.2.	nLBO	70		
	8.3.	R63	70		
	8.4.	R100/R105	70		
9.	Revis	ion History	71		
The	Micro	chip Website	72		
Pro	duct C	hange Notification Service	72		
Cus	stomer	Support	72		
Mic	rochip	Devices Code Protection Feature	72		
Leg	ıal Noti	ce	73		
Tra	rademarks				
Qua	ality Ma	anagement System	74		
Wo	rldwide	e Sales and Service	75		

1. Kit Contents

The SAMA5D2C Xplained Ultra evaluation kit includes:

- One SAMA5D2C-XULT board
- One Micro-AB type USB cable

2. Evaluation Kit Specifications

Table 2-1. Evaluation Kit Specifications

Characteristic		Specifications
Board		SAMA5D2C-XULT
Part Number		ATSAMA5D2C-XULT
Board Supply Voltage		USB and/or Battery powered
Temperature Operating		0°C to +70°C
	Storage	-40°C to +85°C
Relative Humidity		0 to 90% (non-condensing)
Main Board Dimensio	ns (L x W x H)	135 × 88 × 20 mm
Board Identification		SAMA5D2 XPLAINED ULTRA

2.1 Electrostatic Warning

ESD-Sensitive Electronic Equipment!

The evaluation kit is shipped in a protective anti-static package. The board system must not be subject to high electrostatic potentials.

We recommend using a grounding strap or similar ESD protective device when handling the board in hostile ESD environments (offices with synthetic carpet, for example). Avoid touching the component pins or any other metallic element on the board.

2.2 Power Supply Warning

Hardware Power Supply Limitation

Powering the board with voltages higher than 5 VCC (e.g., the 12 VCC power adapters from other kits such as Arduino kits) may damage the board.

Hardware Power Budget

Using the USB as the main power source (max. 500 mA) is acceptable only with the use of the on-board peripherals and low-power LCD extension.

When external peripheral or add-on boards need to be powered, we recommend the use of an external power adapter connected to the USB Micro-AB connectors (can provide up to 1.2A on the 3.3V node).

3. Board Power-Up

Three sources are available to power-up the SAMA5D2C-XULT board:

- USB-powered through the USB Micro-AB connector (J23 default configuration)
- · Powered through the USB Micro-AB connector on the Embedded Debugger (EDBG) interface (J14)
- Powered through a rechargeable battery Li-polymer 3.7V connected to J3 or J4

Unlike Arduino Uno boards, the SAMA5D2C-XULT board runs at 3.3V. The maximum voltage that the I/O pins can tolerate is 3.3V. Providing higher voltages (e.g., 5V) to an I/O pin could damage the board.

The sequence for the initial power-up of the board is the following:

- 1. Unpack the board, taking care to avoid electrostatic discharge.
- 2. Connect the USB Micro-AB cable to the connector J23 (or J14).
- 3. Connect the other end of the cable to a free USB port of your PC.

Table 3-1. Electrical Characteristics

Parameter	Value
Input voltage	5 VCC
Maximum input voltage (limits)	6 VCC
Maximum DC 3.3V current available	1.2A
I/O voltage	3.3V only

4. Sample Code and Technical Support

After boot up, you can run sample code or your own application on the evaluation kit. Sample code and technical support is available on www.microchip.com. In particular, the software package (example source code and drivers) can be found on the "SAMA5D2 Software Package" page of our website.

Linux® software and demos can be found on www.at91.com/linux4sam/bin/view/Linux4SAM/.

Make sure that the latest software version is downloaded before starting your evaluation. For more information, go to www.at91.com/linux4sam/bin/view/Linux4SAM/.

5. Hardware Overview

5.1 Introduction

The SAMA5D2C-XULT kit is a full-featured evaluation platform for the SAMA5D2 series ARM-based microprocessor units (MPU). It allows users to extensively evaluate, prototype and create application-specific designs.

5.2 Equipment List

The SAMA5D2C-XULT board is based on the integration of an ARM Cortex-A5-based microprocessor with external memory, one Ethernet physical layer transceiver, one SD/MMC interface, one host USB port and one device USB port, one 24-bit RGB LCD and debug interfaces.

Seven headers, compatible with Arduino R3 (Uno, Due) and two Xplained headers are available for various shield connections.

5.3 Board Features

Table 5-1. Board Specifications

Characteristics	Specifications			
Dimensions (L x W x H)	135 x 88 x 20 mm			
Processor	SAMA5D27C (289-ball BGA package), 14x14 mm body, 0.8 mm ball pitch			
Oscillators	MPU, EDBG: 12 MHz crystal RTC: 32.768 kHz PHY: 25 MHz			
Main memory	2 x DDR3L SDRAM 2 Gbit - 16 Mbit x 16 x 8 banks (total 4 Gbit = 512 Mbyte) 1 x eMMC NAND Flash 4 Gbit			
Accessory memories	One Serial EEPROM SPI One QSPI Serial Flash			
	One EEPROM with MAC Address and Serial Number			
SD/MMC	One 4-bit SD card connector			
USB	One USB Host with power switch One Micro-AB USB device			
Display	One LCD interface connector, LCD TFT Controller with overlay, alpha-blending, rotation, scaling and color space conversion			
Image sensor	One ISC interface and connector			
Ethernet	One Ethernet PHY (RMII 10/100 MHz)			
Debug port	One JTAG interface connector One EDBG interface with CDC One serial debug console interface (3.3V level)			
Expansion connector	Arduino R3 compatible set of connectors XPRO set of connectors			

SAMA5D2C XULT

Hardware Overview

continued			
Characteristics	Specifications		
Board supply voltage	5V from USB On-board power regulation by PMIC External battery-powered capability		
Battery	On-board PowerCap		
User interface	Reset, wake-up and user configurable push buttons One tri-color user LED (red, green, blue)		

6. Board Components

6.1 Board Overview

The fully-featured SAMA5D2C-XULT board integrates multiple peripherals and interface connectors as shown in the figure below.

Figure 6-1. SAMA5D2C-XULT Board Overview

6.1.1 Default Jumper Settings

The board overview shows the default jumper settings. Blue jumpers are configuration items. Red jumpers are current measurement points. The table below describes the functionality of the jumpers.

Table 6-1. SAMA5D2C-XULT Jumper Settings

Jumper	Default	Function	
JP1	OPEN	Disable EDBG	
JP2	OPEN	Disable Debug	
JP3	CLOSE	VDD_3V3_LP current measurement	
JP4	CLOSE	VDDCORE current measurement	
JP5	CLOSE	VDDISC + VDDIOP0/1/2 current measurement	
JP6	CLOSE	VDDBU current measurement	
JP7	CLOSE	VDDIODDR_MPU current measurement	
JP8	CLOSE	VDD_5V_IN current measurement	

continued			
Jumper Default Function		Function	
JP9	OPEN	Disable CS of SPI, QSPI and eMMC memories	

6.2 **Connectors On Board**

The table below describes the interface connectors on the SAMA5D2C-XULT board.

Table 6-2. SAMA5D2C-XULT Board Interface Connectors

Connector	Interfaces to	
J23	USB-A Device. Supports USB device using a type Micro-AB connector	
J13	USB Host B. Supports USB host using a type A connector	
J1	Serial DBGU (3.3V level)	
J11	JTAG, 10-pin IDC connector	
J14	EDBG USB connector	
J15	USB-C™ (not populated)	
J6	Ethernet	
J2 Expansion connector with all LCD controller signals for display module connection (QTouch®, TF display with touchscreen and backlight)		
J19	SDHCI SD/MMC connector	
J3, J4 Battery connectors		
J12	Tamper connector (not populated)	
J7, J8, J9, J16, J17, J20, J21, J22	Expansion connectors with Arduino R3 compatible PIO signals	
J24, J25, J26	24, J25, J26 Xplained Pro Expansion connectors	
J10	EDBG JTAG (not populated)	
J18	ISC interface	
J5	Class-D amplifier output	

6.3 **Function Blocks**

6.3.1 **Processor**

The SAMA5D2 Series is a high-performance, power-efficient MPU based on the ARM Cortex-A5 processor. Refer to the SAMA5D2 Series data sheet for more information.

6.3.2 **Power Supply Topology and Power Distribution**

6.3.2.1 **Power Supplies**

Detailed information on the device power supplies is provided in the tables "SAMA5D2 Power Supplies" and "Power Supply Connections" in the SAMA5D2 Series data sheet.

DS50002691E-page 10 **User Guide** © 2020 Microchip Technology Inc.

Figure 6-2. Processor Power Lines Supplies

6.3.2.2 **Power-Up and Power-Down Considerations**

Power-up and power-down considerations are described in section "Power Considerations" of the SAMA5D2 Series data sheet.

R131

The power-up sequence provided in the SAMA5D2 Series data sheet must be respected for reliable operation.

6.3.2.3 **ACT8945A Power Management IC**

The ACT8945A is a complete, cost-effective and highly-efficient ActivePMU™ power management solution, optimized to provide a single-chip power solution and voltage sequencing for SAMA5D2/SAMA5D3/SAMA5D4 and SAM9 series MPUs. It also meets the control requirements of these devices.

The ACT8945A features three step-down DC-DC converters and four low-noise, low-dropout linear regulators along with a complete battery charging solution featuring the advanced ActivePath™ system-power selection function.

Refer to the ACT8945A data sheet at www.active-semi.com/ for more details.

The three DC-DC converters utilize a high efficiency, fixed-frequency (2 MHz), current-mode PWM control architecture that requires a minimum number of external components. Two DC-DC converters are capable of

User Guide DS50002691E-page 11 © 2020 Microchip Technology Inc.

supplying up to 1100 mA of output current, while the third supports up to 1200 mA. All four low-dropout linear regulators are high performance, low-noise regulators that supply up to 320 mA of output current.

Figure 6-3. Board Power Management

Note: Occasional board start-up problems occurred when powered from a USB source with a weak VBUS level below 4.8V. To avoid the voltage drop and resulting start-up problems, production boards were assembled with a 0 Ω resistor in place of the Schottky diode D9 shown here.

6.3.2.3.1 Supply Group Configuration

The ACT8945A provides:

- · All power supplies required by the SAMA5D2 device:
 - 1.2V VDDCORE, VDDPLLA, VDDUTMIC, VDDHSIC
 - 1.35V VDDIODDR
 - 2.0V VDDBU
 - 3.3V VDDIOP, VDDISC
 - 1.8V or 3.3V VDDSDHC (= VDDSDMMC)
 - 2.5V VDDFUSE
 - 3.3V VDDOSC, VDDUTMII, VDDANA, VDDAUDIOPLL
- · Power supplies to external chips on the main board:
 - 2.5V VDDLED
 - 4.8V VSYS 5V

6.3.2.4 Power Boost 5V

To generate a true 5V voltage from the PMIC output (4.8V typical), a FAN48610 low-power boost regulator is integrated into the design. This feeds the 5V USB host and the 5V LCD.

Figure 6-4. Power Boost 5V

6.3.2.5 Input Power Options

There are several power options for the SAMA5D2C-XULT board.

USB-powered operation is the default configuration, where the USB device port is connected to a PC or a 5V DC supply. The USB supply is sufficient to power the board in most applications. It is important to note that when the USB supply is used, the USB-B Host port has limited power. If USB Host port is required for the application, it is recommended that an external DC supply be used.

The figure below provides the schematics of power options.

Figure 6-5. Input Powering Scheme

Note: USB-powered operation eliminates additional wires and batteries. It is the preferred mode of operation for any project that requires only a 5V source at up to 500 mA.

6.3.2.6 Battery Supply Source

The ACT8945A features an advanced battery charger that incorporates the ActivePath architecture for system power selection. This combination of circuits provides a complete, advanced battery-management system that automatically selects the best available input supply, manages charge current to ensure system power availability, and provides a complete, high accuracy (±0.5%), thermally regulated, full-featured single-cell linear Li+ charger.

The ActivePath circuitry monitors the state of the input supply, the battery, and the system, and automatically reconfigures itself to optimize the power system. If a valid input supply is present, ActivePath powers the system from the input while charging the battery in parallel. This allows the battery to charge as quickly as possible, while supplying the system. If a valid input supply is not present, ActivePath powers the system from the battery. Finally, if the input is present and the system current requirement exceeds the capability of the input supply, ActivePath allows system power to be drawn from both the battery and the input supply.

Figure 6-6. Battery Powering Scheme

Notes:

- 1. Refer to errata NRST.
- 2. If the battery does not have a pack embedded thermistor (i.e., battery temperature monitoring), the TH pin should be connected to ground => short J3 pins 2 and 3.
- 3. If no battery is connected on connector J3 or J4, it is recommended that the charging function be disabled in the ACT8945 chip. To do so, write the SUSCHG bit to '1' in APCH register (REG 0x71, SUSCHG = 1).

6.3.2.6.1 Charger Input Interrupts

To facilitate input supply detection and eliminate the size and cost of external detection circuitry, the charger has the ability to generate interrupts based upon the status of the input supply. This function is capable of generating an interrupt when the input is connected, disconnected, or both, when the charger state machine transitions.

6.3.2.6.2 Charge Status Indicator

The charger provides a charge-status indicator output, nSTAT. nSTAT is an open-drain output which sinks current when the charger is in an active-charging state, and is high-Z otherwise. nSTAT features an internal 8 mA current limit, and is capable of directly driving an LED (D1).

6.3.2.6.3 Precision Voltage Detector

The low battery input (LBI) connects to one input of a precision voltage comparator, which can be used to monitor a system voltage such as the battery voltage. An external resistive-divider network can be used to set voltage monitoring thresholds. The output of the comparator is present at the open-drain low battery indicator output (nLBO) and connected to the red LED D1.

Table 6-3. PIOs Used to Control the Battery Charger

PIO	Function	
PA12	CHGLEV: Charge Current Selection Input	
PB13	nIRQ: Open-Drain Interrupt Output. nIRQ is asserted any time an unmasked fault condition exists or a charger interrupt occurs.	
PC8	nLBO: Low Battery Indicator Output. nLBO is asserted low whenever the voltage at LBI is lower than 1.2V; it is high-Z otherwise.	

Figure 6-7. Battery Connector J3 and Optional J4

Table 6-4. Battery J3 Signal Descriptions

Pin	Mnemonic	Signal Description		
1	VBAT	Battery I/O (exploitation and charging). Connect this pin directly to the battery anode (+ terminal)		
2	GND	Common ground		
3	TH	Temperature Sensing Input. Connect to battery thermistor. TH is pulled up with a 102 μ A (typical) current internally.		

6.3.2.7 Backup Power Supply

The SAMA5D2C-XULT board requires a power source to permanently power the backup part of the SAMA5D2 device (refer to the SAMA5D2 Series data sheet). A super capacitor sustains such permanent power to VDDBU when all system power sources are off.

Figure 6-8. VDDBU Powering Scheme Option

6.3.2.8 Power Supply Control

In the ACT8945A, three DC-DC converters (1.8V, 1.2V, 3.3V) and two LDO outputs are available.

All ACT8945A outputs can be controlled by the TWI interface through software.

The three DC-DC outputs can be enabled or disabled by the SAMA5D2 SHDN output:

- SHDN = 0: The DC-DC output is disabled.
- SHDN = 1: The DC-DC output is enabled.

Two push buttons are also available:

- Wake-up push button: When pressed, the ACT8945A power outputs are restarted if the ACT8945A is in Shutdown mode.
- Reset push button: When pressed, the ACT8945A transfers the reset signal to the MPU.

6.3.3 Reset Circuitry

The reset sources for the SAMA5D2C-XULT board are:

- Power-on Reset from the Power Management Unit (PMIC)
- · Push button reset BP3
- · External reset from Arduino connectors
- JTAG or EDBG reset from an in-circuit emulator

Figure 6-9. Reset/Wake-up and Shutdown Control

6.3.4 Clock Circuitry

The SAMA5D2C-XULT board includes four clock sources:

- Two clocks are alternatives for the SAMA5D2 processor (12 MHz, 32 kHz)
- One crystal oscillator used for the Ethernet RMII chip (25 MHz)
- · One crystal oscillator used for the EDBG (12 MHz)

Figure 6-10. Clock Circuitry

6.3.5 Memory

6.3.5.1 Memory Organization

The SAMA5D2 features a DDR/SDR memory interface and an External Bus Interface (EBI) to allow interfacing to a wide range of external memories and to almost any kind of parallel peripheral.

This section describes the memory devices that equip the SAMA5D2C-XULT board.

6.3.5.2 DDR3/SDRAM

Two DDR3L/SDRAM (MT41H128M16JT-125-K - 2 Gbit = 16 Mbit x 16 x 8 banks) are used as main system memory and total 4 Gbit of SDRAM on the board. The memory bus is 32 bits wide and operates with a frequency of up to 166 MHz.

Figure 6-11. DDR3L

6.3.5.3 DDR_CAL Analog Input

One specific analog input, DDR_CAL, is used to calibrate all DDR I/Os.

Figure 6-12. DDR Signals and CAL Analog Input

6.3.5.4 eMMC

The Secure Digital Multimedia Card (SDMMC) Controller supports the Embedded MultiMedia Card (e.MMC) Specification V4.41, the SD Memory Card Specification V3.0, and the SDIO V3.0 specification. It is compliant with the SD Host Controller Standard V3.0 specification

One MTFC4GACAJCN-4M 4 Gb eMMC is connected to the processor through the SDMMC0 port.

Table 6-5. SDMMC Reference Documents

Name	Link
SD Host Controller Simplified Specification V3.00	www.sdcard.org
SDIO Simplified Specification V3.00	www.sdcard.org
Physical Layer Simplified Specification V3.01	www.sdcard.org
Embedded MultiMedia Card (e.MMC) Electrical Standard 4.51	www.jedec.org

Figure 6-13. eMMC

6.3.5.5 CS Disable

The SAMA5D2 device boots according to the following sequence:

- SD CARD connected on SDHC1
- 2. eMMC connected on SDHC0
- 3. Serial Flash connected on SPI0 IOSET1 (Chip Select 0: NPCS0)
- 4. Optional QSPI Flash connected on QSPI0_IOSET3 (Chip Select 0: CS0)

In this sequence, the first device found with bootable contents is selected as the boot source. The others are disregarded. (see **Note** below)

An on-board jumper (JP9) controls the selection (CS#) of the on-board bootable memory components (eMMC and Serial Flash) using a non-inverting 3-state buffer.

Figure 6-14. CS Disable

The rule of operation is:

- JP9 = OFF (default) → enable normal boot from serial Flash memories mounted on board
- JP9 = ON → booting from optional serial Flash memories is disabled

Refer to the SAMA5D2 Series data sheet for more information on standard boot strategies and sequencing.

Note: The errata in the SAMA5D2 data sheet state that booting from SD/MMC devices is nondeterministic. In order to have a known behavior regardless of SD/MMC data contents, we recommend SDMMC0/SDMMC1 boot bits be disabled in the Boot Configuration Word fuse.

6.3.6 Additional Memories

6.3.6.1 Serial Flash

The SAMA5D2 provides two high-speed Serial Peripheral Interface (SPI) controllers. One port is used to interface with the on-board serial serial Flash.

The four main signals used in the SPI are Clock, Data In, Data Out, and Chip Select. The SPI is a serial interface similar to the I²C bus interface but with three main differences:

- · It operates at a higher speed.
- · Transmit and receive data lines are separate.
- · Device access is chip select-based instead of address-based.

Figure 6-15. Serial Flash

6.3.6.2 QSPI Serial Flash

The SAMA5D2 provides two Quad Serial Peripheral Interfaces (QSPI). One port is used to interface with the optional on-board QSPI serial Flash.

The Quad SPI Interface (QSPI) is a synchronous serial data link that provides communication with external devices in Master mode.

The QSPI can be used in SPI mode to interface to serial peripherals (such as ADCs, DACs, LCD controllers, CAN controllers and sensors), or in Serial Memory mode to interface to serial Flash memories.

The QSPI allows the system to execute code directly from a serial Flash memory (XIP) without code shadowing to RAM. The serial Flash memory mapping is seen in the system as other memories (ROM, SRAM, DRAM, embedded Flash memory, etc.).

With the support of the Quad SPI protocol, the QSPI allows the system to use high-performance serial Flash memories which are small and inexpensive, in place of larger and more expensive parallel Flash memories.

Figure 6-16. QSPI Serial Flash

6.3.6.3 Serial EEPROM with Unique MAC Address

The SAMA5D2C-XULT board embeds one Microchip AT24MAC402/602 EEPROM using a TWI1 interface.

The AT24MAC402/602 provides 2048 bits of Serial Electrically-Erasable Programmable Read-Only Memory (EEPROM) organized as 256 words of eight bits each and is accessed via an I²C-compatible (2-wire) serial interface. In addition, the AT24MAC402/602 incorporates an easy and inexpensive method to obtain a globally unique MAC or EUI address (EUI-48 or EUI-64).

The EUI-48/64 addresses can be assigned as the actual physical address of a system hardware device or node, or it can be assigned to a software instance. These addresses are factory-programmed by Microchip and guaranteed unique. They are permanently write-protected in an extended memory block located outside of the standard 2-Kbit memory array.

In addition, the AT24MAC402/602 provides the value-added feature of a factory-programmed, also guaranteed unique 128-bit serial number located in the extended memory block (same area as the EUI address values).

MARNING

The EEPROM device is also used as a "software label" to store board information such as chip type, manufacturer name and production date, using the last two 16-byte blocks in memory. **To preserve the ease of board identification by software, the information contained in these blocks should not be modified.**

Figure 6-17. EEPROM

6.4 PIO Usage and Interface Connectors

6.4.1 Secure Digital Multimedia Card Interface

6.4.1.1 Secure Digital Multimedia Card Controller (SDMMC)

The SAMA5D2C-XULT board has two SDMMC interfaces that support the MultiMedia Card (e.MMC) Specification V4.41, the SD Memory Card Specification V3.0, and the SDIO V3.0 specification. It is compliant with the SD Host Controller Standard V3.0 specification.

- · SDMMC0 interface is connected to the eMMC.
- SDMMC1 Interface based on a 7-pin interface (clock, command, 4-bit data, power lines).

6.4.1.2 SDMMC1 Card Connector

A standard MMC/SD card connector, connected to SDMMC1, is mounted on the top side of the board. It includes a card detection switch.

Figure 6-18. SDMMC1

Note: Refer to details on SDcard boot in CS Disable.

Standard SD Socket J19

Table 6-6. Standard SD Socket J19 Signal Descriptions

Pin	Mnemonic	PIO	Signal Description
1	DAT3	PA21	Data Bit 3
2	CDA	PA28	Command Line
3	GND	_	Common ground
4	VCC	_	Supply Voltage 3.3V

cor	continued					
Pin	Mnemonic	PIO	Signal Description			
5	CLK	PA22	Clock / Command Line			
6	CD	PA30	Card Detect			
7	DAT0	PA18	Data Bit 0			
8	DAT1	PA19	Data Bit 1			
9	DAT2	PA20	Data Bit 2			
10	GND	_	Common ground			

6.4.2 Communication Interfaces

The SAMA5D2C-XULT board is equipped with GMAC and USB Host/Device communication interfaces.

6.4.2.1 Ethernet 10/100 (GMAC) Port

The SAMA5D2C-XULT board contains a MICREL PHY device (KSZ8081) operating at 10/100 Mb/s. The board supports RMII interface modes. The Ethernet interface consists of two pairs of low-voltage differential pair signals designated from GRX± and GTX± plus control signals for link activity indicators. These signals can be used to connect to a 10/100 Base-T RJ45 connector integrated on the SAMA5D2C-XULT board.

Additionally, for monitoring and control purposes, LED functionality is carried on the RJ45 connectors to indicate activity, link, and speed status information.

For more information about the Ethernet controller device, refer to the MICREL KSZ8081RN controller data sheet.

Figure 6-19. Ethernet (GMAC)

Figure 6-20. ETH RJ45 Connector J6

Table 6-7. ETH RJ45 Connector Signal Descriptions

Pin	Mnemonic	Signal Description
1	TX+	Transmit
2	TX-	Transmit
3	RX+	Receive
4	Decoupling capacitor	-
5	Decoupling capacitor	-
6	RX-	Receive
7	NC	-
8	EARTH / GND	Common ground
9	ACT LED	LED activity
10	ACT LED	LED activity
11	LINK LED	LED link connection
12	LINK LED	LED link connection
13	EARTH / GND	Common ground
14	EARTH / GND	Common ground
15	NC	_
16	NC	_

6.4.2.2 USB Host/Device A, B

The SAMA5D2C-XULT board features three USB communication ports:

- · USB-B Host High- and Full-speed Interface
 - One USB host type A connector
- · USB-A Device Interface
 - One USB device standard Micro-AB connector. This port has a VBUS detection function made through the resistor ladder R183 and R184.
- · UBC-C High-speed Host Port
 - One USB high-speed host port with a High-Speed Inter-Chip (HSIC) interface. This port is connected to a single 2-pin jumper.

Figure 6-21. USB-B Host & USB-A Device Interface

The USB-B Host port is equipped with 500 mA high-side power switch for self-powered and bus-powered applications.

Figure 6-22. USB Power Switch

6.4.3 USB-A Micro-AB Connector J23

Figure 6-23. USB-A Connector J23

6.4.4 USB-B Type B Connector J13

The USB-B host port A (J13) features a VBUS insert detection function through the ladder-type resistors R26 and R27.

Figure 6-24. USB B Connector J13

Table 6-8. USB-A & USB-B Connector Signal Descriptions

Pin	Mnemonic	Signal Description
1	VBUS	5V power
2	DM	Data minus
3	DP	Data plus
4	ID	On-the-go identification
5	GND	Common ground

6.4.5 LCD TFT Interface

6.4.5.1 LCD

The SAMA5D2C-XULT board provides 18 bits of data and control signals to the LCD interface. Other signals are used to control the LCD and are available on connector J2: TWI, SPI, two GPIOs for interrupt, 1-Wire and power supply lines.

6.4.5.2 LCD Expansion Header

J2 is a 1.27mm pitch 50-pin header. It gives access to the LCD signals.

Figure 6-25. LCD Expansion Header Interface Schematic

6.4.5.3 LCD Power

In order to operate correctly out of the processor with various LCD modules, two voltage lines are available: 3.3V and 5 VCC (default), both selected by 0R resistors R335 and R347.

Figure 6-26. LCD Power

6.4.5.4 LCD Connector J2

Figure 6-27. LCD Connector J2

Table 6-9. LCD Connector J2 Signal Descriptions

Din	Cianal	PIO	Signal	RGB Interface Function	Alternate
Pin	Signal	PIU	Signal	RGB interface Function	Alternate
1	ID_SYS	PB0/ ID00	ID	Extension module identification	EDBG_ID_01
2	_	GND	GND	GND	_
3	_	_	_	_	_
4	_	_	_	_	_
5	LCDDAT2	PC10	D2	Data line	_
6	LCDDAT3	PC11	D3	Data line	_
7	_	GND	GND	GND	_
8	LCDDAT4	PC12	D4	Data line	_
9	LCDDAT5	PC13	D5	Data line	_
10	LCDDAT6	PC14	D6	Data line	_
11	LCDDAT7	PC15	D7	Data line	_
12	_	GND	GND	GND	_
13	_	_	_	_	_
14	_	_	_	_	_
15	LCDDAT10	PC16	D10	Data line	_

SAMA5D2C XULT

Board Components

41 LCDDISP PA29 ENABLE Display enable signal – 42 TWD1 PD4 TWI_SDA I2C data line (maXTouch®) – 43 TWCK1 PD5 TWI_SCL I2C clock line (maXTouch) – 44 GPIO PB7 IRQ1 maXTouch interrupt line –		.continued					
17	Pin	Signal	PIO	Signal	RGB Interface Function	Alternate	
18	16	LCDDAT11	PC17	D11	Data line	_	
19	17	_	GND	GND	GND	_	
20 LCDDAT14 PC20 D14 Data line - 21 LCDDAT15 PC21 D15 Data line - 22 - GND GND - - 23 - - - - - 24 - - - - - 25 LCDDAT18 PC22 D18 Data line - 26 LCDDAT19 PC23 D19 Data line - 27 - GND GND - 28 LCDDAT20 PC24 D20 Data line - 29 LCDDAT21 PC25 D21 Data line - 30 LCDDAT22 PE26 D22 Data line - 31 LCDDAT23 PE27 D23 Data line - 32 - GND GND - 33 LCDPCK PD0 PCLK Pixel clock -	18	LCDDAT12	PC18	D12	Data line	-	
1	19	LCDDAT13	PC19	D13	Data line	_	
22 - GND GND - 23 - - - - 24 - - - - 25 LCDDAT18 PC22 D18 Data line - 26 LCDDAT19 PC23 D19 Data line - 27 - GND GND - 28 LCDDAT20 PC24 D20 Data line - 29 LCDDAT21 PC25 D21 Data line - 30 LCDDAT22 PE26 D22 Data line - 31 LCDDAT23 PE27 D23 Data line - 32 - GND GND - 33 LCDPCK PD0 PCLK Pixel clock - 34 LCDVSYNC PC30 VSYNC/CS Vertical synchronization - 35 LCDHSYNC PC31 HSYNC/WE Horizontal synchronization - 36	20	LCDDAT14	PC20	D14	Data line	_	
23 - - - - 24 - - - - 25 LCDDAT18 PC22 D18 Data line - 26 LCDDAT19 PC23 D19 Data line - 27 - GND GND - 28 LCDDAT20 PC24 D20 Data line - 29 LCDDAT21 PC25 D21 Data line - 30 LCDDAT22 PE26 D22 Data line - 31 LCDDAT23 PE27 D23 Data line - 32 - GND GND - 33 LCDPCK PD0 PCLK Pixel clock - 34 LCDVSYNC PC30 VSYNC/CS Vertical synchronization - 35 LCDHSYNC PC31 HSYNC/WE Horizontal synchronization - 36 LCDDEN PD1 DATA_ENABLE/RE Data enable -	21	LCDDAT15	PC21	D15	Data line	_	
24 - - - - 25 LCDDAT18 PC22 D18 Data line - 26 LCDDAT19 PC23 D19 Data line - 27 - GND GND - 28 LCDDAT20 PC24 D20 Data line - 29 LCDDAT21 PC25 D21 Data line - 30 LCDDAT22 PE26 D22 Data line - 31 LCDDAT23 PE27 D23 Data line - 32 - GND GND - 33 LCDPCK PD0 PCLK Pixel clock - 34 LCDVSYNC PC30 VSYNC/CS Vertical synchronization - 35 LCDHSYNC PC31 HSYNC/WE Horizontal synchronization - 36 LCDDEN PD1 DATA_ENABLE/RE Data enable - 37 SPI1_SPCK PC1 SPI_SCK <td>22</td> <td>_</td> <td>GND</td> <td>GND</td> <td>GND</td> <td>_</td> <td></td>	22	_	GND	GND	GND	_	
25 LCDDAT18 PC22 D18 Data line — 26 LCDDAT19 PC23 D19 Data line — 27 — GND GND — 28 LCDDAT20 PC24 D20 Data line — 29 LCDDAT21 PC25 D21 Data line — 30 LCDDAT22 PE26 D22 Data line — 31 LCDDAT23 PE27 D23 Data line — 32 — GND GND — 33 LCDPCK PD0 PCLK Pixel clock — 34 LCDVSYNC PC30 VSYNC/CS Vertical synchronization — 35 LCDHSYNC PC31 HSYNC/WE Horizontal synchronization — 36 LCDDEN PD1 DATA_ENABLE/RE Data enable — 37 SPI1_SPCK PC1 SPI_SCK — AD3/YM PD22 38	23	_	_	_	_	_	
26 LCDDAT19 PC23 D19 Data line — 27 — GND GND — 28 LCDDAT20 PC24 D20 Data line — 29 LCDDAT21 PC25 D21 Data line — 30 LCDDAT22 PE26 D22 Data line — 31 LCDDAT23 PE27 D23 Data line — 32 — GND GND — 33 LCDPCK PD0 PCLK Pixel clock — 34 LCDVSYNC PC30 VSYNC/CS Vertical synchronization — 35 LCDHSYNC PC31 HSYNC/WE Horizontal synchronization — 36 LCDDEN PD1 DATA_ENABLE/RE Data enable — 37 SPI1_SPCK PC1 SPI_SCK — AD3/YM PD22 38 SPI1_MOSI PC2 SPI_MOSI — AD2/YP PD21	24	_	_	_	_	-	
27 - GND GND - 28 LCDDAT20 PC24 D20 Data line - 29 LCDDAT21 PC25 D21 Data line - 30 LCDDAT22 PE26 D22 Data line - 31 LCDDAT23 PE27 D23 Data line - 32 - GND GND - 33 LCDPCK PD0 PCLK Pixel clock - 34 LCDVSYNC PC30 VSYNC/CS Vertical synchronization - 35 LCDHSYNC PC31 HSYNC/WE Horizontal synchronization - 36 LCDDEN PD1 DATA_ENABLE/RE Data enable - 37 SPI1_SPCK PC1 SPI_SCK - AD3/YM PD22 38 SPI1_MOSI PC2 SPI_MOSI - AD1/XM PD20 40 SPI1_NPCS0 PC4 SPI_CS - AD0/XP PD19	25	LCDDAT18	PC22	D18	Data line	_	
28 LCDDAT20 PC24 D20 Data line - 29 LCDDAT21 PC25 D21 Data line - 30 LCDDAT22 PE26 D22 Data line - 31 LCDDAT23 PE27 D23 Data line - 32 - GND GND - 33 LCDPCK PD0 PCLK Pixel clock - 34 LCDPCK PD0 PCLK Pixel clock - 34 LCDVSYNC PC30 VSYNC/CS Vertical synchronization - 35 LCDHSYNC PC31 HSYNC/WE Horizontal synchronization - 36 LCDDEN PD1 DATA_ENABLE/RE Data enable - 37 SPI1_SPCK PC1 SPI_SCK - AD3/YM PD22 38 SPI1_MOSI PC2 SPI_MOSI - AD2/YP PD21 39 SPI1_MISO PC3 SPI_MISO - <t< td=""><td>26</td><td>LCDDAT19</td><td>PC23</td><td>D19</td><td>Data line</td><td>_</td><td></td></t<>	26	LCDDAT19	PC23	D19	Data line	_	
29 LCDDAT21 PC25 D21 Data line — 30 LCDDAT22 PE26 D22 Data line — 31 LCDDAT23 PE27 D23 Data line — 32 — GND GND — 33 LCDPCK PD0 PCLK Pixel clock — 34 LCDVSYNC PC30 VSYNC/CS Vertical synchronization — 35 LCDHSYNC PC31 HSYNC/WE Horizontal synchronization — 36 LCDDEN PD1 DATA_ENABLE/RE Data enable — 37 SPI1_SPCK PC1 SPI_SCK — AD3/YM PD22 38 SPI1_MOSI PC2 SPI_MOSI — AD2/YP PD21 39 SPI1_MISO PC3 SPI_MISO — AD1/XM PD20 40 SPI1_NPCSO PC4 SPI_CS — AD0/XP PD19 41 LCDDISP PA29 <	27	_	GND	GND	GND	_	
30 LCDDAT22 PE26 D22 Data line - 31 LCDDAT23 PE27 D23 Data line - 32 - GND GND - 33 LCDPCK PD0 PCLK Pixel clock - 34 LCDVSYNC PC30 VSYNC/CS Vertical synchronization - 35 LCDHSYNC PC31 HSYNC/WE Horizontal synchronization - 36 LCDDEN PD1 DATA_ENABLE/RE Data enable - 37 SPI1_SPCK PC1 SPI_SCK - AD3/YM PD22 38 SPI1_MOSI PC2 SPI_MOSI - AD2/YP PD21 39 SPI1_MISO PC3 SPI_MISO - AD1/XM PD20 40 SPI1_NPCS0 PC4 SPI_CS - AD0/XP PD19 41 LCDDISP PA29 ENABLE Display enable signal - 42 TWD1 PD4 <td>28</td> <td>LCDDAT20</td> <td>PC24</td> <td>D20</td> <td>Data line</td> <td>-</td> <td></td>	28	LCDDAT20	PC24	D20	Data line	-	
1	29	LCDDAT21	PC25	D21	Data line	_	
32 - GND GND - 33 LCDPCK PD0 PCLK Pixel clock - 34 LCDVSYNC PC30 VSYNC/CS Vertical synchronization - 35 LCDHSYNC PC31 HSYNC/WE Horizontal synchronization - 36 LCDDEN PD1 DATA_ENABLE/RE Data enable - 37 SPI1_SPCK PC1 SPI_SCK - AD3/YM PD22 38 SPI1_MOSI PC2 SPI_MOSI - AD2/YP PD21 39 SPI1_MISO PC3 SPI_MISO - AD1/XM PD20 40 SPI1_NPCS0 PC4 SPI_CS - AD0/XP PD19 41 LCDDISP PA29 ENABLE Display enable signal - 42 TWD1 PD4 TWI_SDA I2C data line (maXTouch®) - 43 TWCK1 PD5 TWI_SCL I2C clock line (maXTouch) - 44 <td< td=""><td>30</td><td>LCDDAT22</td><td>PE26</td><td>D22</td><td>Data line</td><td>_</td><td></td></td<>	30	LCDDAT22	PE26	D22	Data line	_	
33 LCDPCK PD0 PCLK Pixel clock - 34 LCDVSYNC PC30 VSYNC/CS Vertical synchronization - 35 LCDHSYNC PC31 HSYNC/WE Horizontal synchronization - 36 LCDDEN PD1 DATA_ENABLE/RE Data enable - 37 SPI1_SPCK PC1 SPI_SCK - AD3/YM PD22 38 SPI1_MOSI PC2 SPI_MOSI - AD2/YP PD21 39 SPI1_MISO PC3 SPI_MISO - AD1/XM PD20 40 SPI1_NPCSO PC4 SPI_CS - AD0/XP PD19 41 LCDDISP PA29 ENABLE Display enable signal - 42 TWD1 PD4 TWI_SDA I2C data line (maXTouch®) - 43 TWCK1 PD5 TWI_SCL I2C clock line (maXTouch) - 44 GPIO PB7 IRQ1 maXTouch interrupt line - <	31	LCDDAT23	PE27	D23	Data line	_	
34 LCDVSYNC PC30 VSYNC/CS Vertical synchronization — 35 LCDHSYNC PC31 HSYNC/WE Horizontal synchronization — 36 LCDDEN PD1 DATA_ENABLE/RE Data enable — 37 SPI1_SPCK PC1 SPI_SCK — AD3/YM PD22 38 SPI1_MOSI PC2 SPI_MOSI — AD2/YP PD21 39 SPI1_MISO PC3 SPI_MISO — AD1/XM PD20 40 SPI1_NPCS0 PC4 SPI_CS — AD0/XP PD19 41 LCDDISP PA29 ENABLE Display enable signal — 42 TWD1 PD4 TWI_SDA I2C data line (maXTouch®) — 43 TWCK1 PD5 TWI_SCL I2C clock line (maXTouch) — 44 GPIO PB7 IRQ1 maXTouch interrupt line —	32	_	GND	GND	GND	-	
35 LCDHSYNC PC31 HSYNC/WE Horizontal synchronization — 36 LCDDEN PD1 DATA_ENABLE/RE Data enable — 37 SPI1_SPCK PC1 SPI_SCK — AD3/YM PD22 38 SPI1_MOSI PC2 SPI_MOSI — AD2/YP PD21 39 SPI1_MISO PC3 SPI_MISO — AD1/XM PD20 40 SPI1_NPCS0 PC4 SPI_CS — AD0/XP PD19 41 LCDDISP PA29 ENABLE Display enable signal — 42 TWD1 PD4 TWI_SDA I2C data line (maXTouch®) — 43 TWCK1 PD5 TWI_SCL I2C clock line (maXTouch) — 44 GPIO PB7 IRQ1 maXTouch interrupt line —	33	LCDPCK	PD0	PCLK	Pixel clock	_	
36 LCDDEN PD1 DATA_ENABLE/RE Data enable — 37 SPI1_SPCK PC1 SPI_SCK — AD3/YM PD22 38 SPI1_MOSI PC2 SPI_MOSI — AD2/YP PD21 39 SPI1_MISO PC3 SPI_MISO — AD1/XM PD20 40 SPI1_NPCS0 PC4 SPI_CS — AD0/XP PD19 41 LCDDISP PA29 ENABLE Display enable signal — 42 TWD1 PD4 TWI_SDA I2C data line (maXTouch®) — 43 TWCK1 PD5 TWI_SCL I2C clock line (maXTouch) — 44 GPIO PB7 IRQ1 maXTouch interrupt line —	34	LCDVSYNC	PC30	VSYNC/CS	Vertical synchronization	_	
37 SPI1_SPCK PC1 SPI_SCK - AD3/YM PD22 38 SPI1_MOSI PC2 SPI_MOSI - AD2/YP PD21 39 SPI1_MISO PC3 SPI_MISO - AD1/XM PD20 40 SPI1_NPCSO PC4 SPI_CS - AD0/XP PD19 41 LCDDISP PA29 ENABLE Display enable signal - 42 TWD1 PD4 TWI_SDA I2C data line (maXTouch®) - 43 TWCK1 PD5 TWI_SCL I2C clock line (maXTouch) - 44 GPIO PB7 IRQ1 maXTouch interrupt line -	35	LCDHSYNC	PC31	HSYNC/WE	Horizontal synchronization	_	
38 SPI1_MOSI PC2 SPI_MOSI — AD2/YP PD21 39 SPI1_MISO PC3 SPI_MISO — AD1/XM PD20 40 SPI1_NPCSO PC4 SPI_CS — AD0/XP PD19 41 LCDDISP PA29 ENABLE Display enable signal — 42 TWD1 PD4 TWI_SDA I2C data line (maXTouch®) — 43 TWCK1 PD5 TWI_SCL I2C clock line (maXTouch) — 44 GPIO PB7 IRQ1 maXTouch interrupt line —	36	LCDDEN	PD1	DATA_ENABLE/RE	Data enable	_	
39 SPI1_MISO PC3 SPI_MISO — AD1/XM PD20 40 SPI1_NPCS0 PC4 SPI_CS — AD0/XP PD19 41 LCDDISP PA29 ENABLE Display enable signal — 42 TWD1 PD4 TWI_SDA I2C data line (maXTouch®) — 43 TWCK1 PD5 TWI_SCL I2C clock line (maXTouch) — 44 GPIO PB7 IRQ1 maXTouch interrupt line —	37	SPI1_SPCK	PC1	SPI_SCK	_	AD3/YM	PD22
40 SPI1_NPCS0 PC4 SPI_CS - AD0/XP PD19 41 LCDDISP PA29 ENABLE Display enable signal - 42 TWD1 PD4 TWI_SDA I2C data line (maXTouch®) - 43 TWCK1 PD5 TWI_SCL I2C clock line (maXTouch) - 44 GPIO PB7 IRQ1 maXTouch interrupt line -	38	SPI1_MOSI	PC2	SPI_MOSI	_	AD2/YP	PD21
41 LCDDISP PA29 ENABLE Display enable signal – 42 TWD1 PD4 TWI_SDA I2C data line (maXTouch®) – 43 TWCK1 PD5 TWI_SCL I2C clock line (maXTouch) – 44 GPIO PB7 IRQ1 maXTouch interrupt line –	39	SPI1_MISO	PC3	SPI_MISO	_	AD1/XM	PD20
42 TWD1 PD4 TWI_SDA I2C data line (maXTouch®) — 43 TWCK1 PD5 TWI_SCL I2C clock line (maXTouch) — 44 GPIO PB7 IRQ1 maXTouch interrupt line —	40	SPI1_NPCS0	PC4	SPI_CS	_	AD0/XP	PD19
43 TWCK1 PD5 TWI_SCL I2C clock line (maXTouch) – 44 GPIO PB7 IRQ1 maXTouch interrupt line –	41	LCDDISP	PA29	ENABLE	Display enable signal	_	
44 GPIO PB7 IRQ1 maXTouch interrupt line –	42	TWD1	PD4	TWI_SDA	I2C data line (maXTouch®)	_	
·	43	TWCK1	PD5	TWI_SCL	I2C clock line (maXTouch)	_	
45 GPIO PB8 IRQ2 Interrupt line for other I2C devices –	44	GPIO	PB7	IRQ1	maXTouch interrupt line	_	
· ·	45	GPIO	PB8	IRQ2	Interrupt line for other I2C devices	_	
46 LCDPWM PC28 PWM Backlight control -	46	LCDPWM	PC28	PWM	Backlight control	-	
47 RESET - RESET Reset for both display and maXTouch -	47	RESET	_	RESET	Reset for both display and maXTouch	_	
48 Main_5V/3V3 VCC VCC 3.3V or 5V supply (0R) -	48	Main_5V/3V3	VCC	VCC	3.3V or 5V supply (0R)	-	
49 Main_5V/3V3 VCC VCC 3.3V or 5V supply (0R) -	49	Main_5V/3V3	VCC	VCC	3.3V or 5V supply (0R)	_	
50 GND GND GND -	50	GND	GND	GND	GND	-	

6.4.6 ISC

The Image Sensor Controller (ISC) system manages incoming data from a parallel or serial csi-2 based CMOS/CCD sensor. It supports a single active interface. It supports the ITU-R BT 656/1120 422 protocol with a data width of 8 bits or 10 bits and raw Bayer format. The internal image processor includes adjustable white balance, color filter array interpolation, color correction, gamma correction, 12-bit to 10-bit compression, programmable color space conversion, horizontal and vertical chrominance subsampling module.

Figure 6-28. ISC J18

Table 6-10. ISC J18 Signal Descriptions

Pin	Mnemonic	PIO	Signal Description	
1	3V3	_	ISC Power Supply	
2	GND	_	Ground	
3	3V3	_	ISC Power Supply	
4	GND	_	Ground	
5	ISC_RST	PB11	Reset ISC module	
6	ISC_PWD	PB12	Power Down module	
7	TWCK1	PD5	TWI Clock	
8	TWD1	PD4	TWI Data	
9	GND	_	Ground	
10	ISC_MCK	PC7	ISC Master Clock	
11	GND	_	Ground	
12	ISC_VSYNC	PC5	ISC Vertical Synchronization	

continued				
Pin	Mnemonic	PIO	Signal Description	
13	GND	_	Ground	
14	ISC_HSYNC	PC6	ISC Horizontal Synchronization	
15	GND	_	Ground	
16	ISC_PCK	PC4	Clock	
17	GND	_	Ground	
18	ISC_D4	PB30	Image data D0	
19	ISC_D5	PB31	Data D1	
20	ISC_D6	PC0	Data D2	
21	ISC_D7	PC1	Data D3	
22	ISC_D8	PC2	Data D4	
23	ISC_D9	PC3	Data D5	
24	ISC_D10	PB24	Data D6	
25	ISC_D11	PB25	Data D7	
26	ISC_D0	PB26	RFU	
27	ISC_D1	PB27	RFU	
28	ISC_D2	PB28	RFU	
29	ISC_D3	PB29	RFU	
30	GND	_	Ground	

MARNING

The connector ISC J18 has been laid out to be compatible with previous evaluation kits and existing extensions in 8-bit modes. Hence, the 8-bit image data [7:0] are aligned with ISC_D[11:4] in the table above. Refer to the SAMA5D2 Series data sheet for an in-depth description of the ISC bussing scheme. A summary is also provided below.

The table below shows how ISC_DATA[11:0] is routed to image data D[11:0] in relation to the bit mode.

Table 6-11. ISC Interface - ISC_DATA to Image Data

Interface	12-bit	11-bit	10-bit	9-bit	8-bit
isc_data[11](MSB)	D[11]	D[10]	D[9]	D[8]	D[7]
isc_data[10]	D[10]	D[9]	D[8]	D[7]	D[6]
isc_data[9]	D[9]	D[8]	D[7]	D[6]	D[5]
isc_data[8]	D[8]	D[7]	D[6]	D[5]	D[4]
isc_data[7]	D[7]	D[6]	D[5]	D[4]	D[3]
isc_data[6]	D[6]	D[5]	D[4]	D[3]	D[2]
isc_data[5]	D[5]	D[4]	D[3]	D[2]	D[1]
isc_data[4]	D[4]	D[3]	D[2]	D[1]	D[0]
isc_data[3]	D[3]	D[2]	D[1]	D[0]	Not Used

continued					
Interface	12-bit	11-bit	10-bit	9-bit	8-bit
isc_data[2]	D[2]	D[1]	D[0]	Not Used	Not Used
isc_data[1]	D[1]	D[0]	Not Used	Not Used	Not Used
isc_data[0]	D[0]	Not Used	Not Used	Not Used	Not Used

Figure 6-29. ISC J18 Header

6.4.7 Audio Class D Amplifier

The Audio Class D Amplifier (CLASSD) is a digital input, Pulse Width Modulated (PWM) output stereo Class D amplifier. It features a high-quality interpolation filter embedding a digitally controlled gain, an equalizer and a deemphasis filter.

On its input side, the CLASSD is compatible with most common audio data rates. On the output side, its PWM output can drive either:

- high-impedance single-ended or differential output loads (Audio DAC application) or,
- external MOSFETs through an integrated non-overlapping circuit (Class D power amplifier application).

Figure 6-30. Audio PWM Class D MOSFET Mono Amplifier

Table 6-12. CLASSD Output Connector J5 Signal Descriptions

Pin	Mnemonic	Signal Description
1	VSYS_5V	Power
2	GND	GND
3	OUTPUT RIGHT P	Positive Level
4	OUTPUT RIGHT N	Negative Level

6.4.8 Tamper Interface

The SAMA5D2C-XULT board features eight tamper pins for static or dynamic intrusion detections, UART reception, and two analog pins for comparison.

For information on intrusion detection for SAMA5D23 and SAMA5D28, refer to the document "SAMA5D2 Security Module", document no. 44036. This document is available under Non-Disclosure Agreement (NDA).

Contact a Microchip sales representative for further details.

Figure 6-31. Tamper Pin Connector J12

6.4.9 Tamper Connector

Figure 6-32. Tamper Connector J12

Table 6-13. Tamper Connector J12 Signal Descriptions

Signal	Pin No.		Signal
PIOBU0	1	2	PIOBU1
PIOBU2	3	4	PIOBU3
PIOBU4	5	6	PIOBU5

continued					
Signal	Pin No.		Signal		
PIOBU6	7	8	PIOBU7		
RXD	9	10	NC		
GND	11	12	GND		
ACP	13	14	ACN		

6.4.10 RGB LED

There is one RGB LED on the SAMA5D2C-XULT board; it can be controlled by the user. The three LED cathodes are controlled via GPIO PWM pins.

Figure 6-33. RGB LED Indicators

6.4.11 Push Button Switches

The SAMA5D2C-XULT board features three push buttons:

- One board Reset button (BP3) connected to the PMIC ACT8945A. When pressed and released, it causes a Power-on Reset of the board.
- One wake-up push button connected to the PMIC ACT8945A, used to exit the processor from Low-power mode (BP2).
- · One User momentary push button (BP1).

Figure 6-34. User Push Buttons (BP1)

6.4.12 Debug Interfaces

The SAMA5D2C-XULT board includes a JTAG, a Debug serial COM port and an EDBG interface port, to provide debug level access to the SAMA5D2.

6.4.12.1 Debug JTAG

A 10-pin JTAG header is provided on the SAMA5D2C-XULT board to facilitate the software development and debugging by using various JTAG emulators. The interface signals have a voltage level of 3.3V.

Figure 6-35. JTAG Interface

Figure 6-36. JTAG J11

Table 6-14. JTAG/ICE Connector J11 Signal Descriptions

Pin	Mnemonic	Signal Description
1	VTref. 3.3V power	This is the target reference voltage (main 3.3V).
2	TMS TEST MODE SELECT	JTAG mode set input into target CPU
3	GND	Common ground
4	TCK TEST CLOCK – Output timing signal, for synchronizing test logic and control register access	JTAG clock signal into target CPU
5	GND	Common ground
6	TDO JTAG TEST DATA OUTPUT – Serial data input from the target	JTAG data output from target CPU

	continued								
Pin	Mnemonic	Signal Description							
7	RTCK – Input Return test clock signal from the target	Some targets having too slow of a system clock must synchronize the JTAG inputs to internal clocks. In present case such synchronization is unneeded and TCK merely looped back into RTCK.							
8	TDI TEST DATA INPUT – Serial data output line, sampled on the rising edge of the TCK signal	JTAG data input into target CPU							
9	GND	Common ground							
10	nSRST RESET	Active-low reset signal. Target CPU reset signal.							

6.4.12.2 Serial Console Port

The SAMA5D2C-XULT board has a dedicated serial port for debugging, which is accessible through the 6-pin male header J1. Various interfaces can be used as USB/Serial DBGU port bridge, such as FTDI TTL-232R USB to TTL serial cable or basic breakout board for the RS232/USB converter.

Figure 6-37. Debug Com Port for Console

A jumper (JP2) is available to disable the Debug communication interface.

R341 and R342 are optional (not implemented) resistors that can be used for power selection. Power can be delivered either by the SAMA5D2C-XULT board or by the debug interface tool. To avoid malfunction between the debug interface (e.g., FTDI) and the on-board power system, ensure that the selected voltage level corresponds to application requirements. The console baud rate is set to 115200 by default.

Figure 6-38. DEBUG Connector J1

Table 6-15. DEBUG Connector J1 Signal Descriptions

Pin	Mnemonic	PIO	Signal Description	
1	CTS	RFU	Handshake input	
2	TXD1 (Transmitted Data)	PD3	RS232 serial data output signal	
3	RXD1 (Received Data)	PD2	RS232 serial data input signal	
4	Power	-	5V/3.3V (selected by resistors)	
5	RTS	RFU	Handshake output	
6	GND	_	Common ground	

<u>∧</u>WARNING

When using a console connected to the DEBUG interface J1, the jumper JP2 DEBUG DIS should be OFF.

6.4.13 Embedded Debugger (EDBG) Interface

The Embedded Debugger (EDBG)⁽¹⁾ is an intuitive plug-and-play solution which adds full programming and debugging support to embedded hardware kits containing Microchip microcontrollers and microprocessors. It enables seamless integration between the target hardware and the Atmel Studio front end.

Device and Ordering Information—The EDBG is a factory-programmed AT32UC3A4256J-C1UR standard microcontroller with ordering code AT32UC3A4256HHB-C1UR. For more information, contact your local Microchip sales representative.

In addition to the Virtual COM port which provides a UART bridge to the target device, the EDBG provides a Data Gateway Interface, through which the target device and host PC can communicate, facilitating high-level application debugging, monitoring, graphing and logging of system information in real-time.

The EDBG is based on the AT32UC3A4256J high-performance low-power 32-bit AVR microcontroller running at up to 60 MHz. The device includes an on-chip USB 2.0 high-speed hardware module with dedicated DMA channels, making it ideal for data communications.

By default, the EDBG is in Reset state and not usable. To use the EDBG interface, remove the jumper JP1. To avoid any conflicts with the debug signals, do not use the JTAG and EDBG at the same time.

Figure 6-39. EDBG Interface

6.4.14 CDC Debug Interface

This feature is enabled only if pin J9 (RESET_N) of the microcontroller is not tied to ground. The pin is normally pulled high and controlled by jumper JP1.

- · Jumper JP1 not installed: The CDC device is enabled.
- Jumper JP1 installed: The CDC device is disabled.

The default baud rate CDC is 57600 (57600/N/8/1).

<u></u> **⚠WARNING**

When using a console with the EDBG-CDC, the jumper JP2 DEBUG DIS should be ON.

6.4.15 EDBG USB Type Micro-AB

Figure 6-40. EDBG USB Type Micro-AB Connector J14

Table 6-16. USB Connector J14 Signal Descriptions

Pin	Mnemonic	Signal Description
1	VBUS	5V power
2	DM	Data minus
3	DP	Data plus
4	ID	On-the-go identification (not connected)
5	GND	Common ground

6.5 PIO Usage on Expansion Connectors

6.5.1 Arduino Connectors

Five 8-pin, one 6-pin, one 10-pin and one 36-pin headers (J7, J8, J9, J16, J17, J20, J21, J22) are provided on the SAMA5D2C-XULT board to enable the PIO connection of various expansion cards. These headers' physical and electrical implementation match the Arduino R3 extension ("shields") system.

Due to I/O multiplexing, different signals can be provided on each pin.

Figure 6-41. Expansion Boards Connectors

6.5.1.1 Functions Available Through the Arduino Headers

The multiplexing of the SAMA5D27 I/Os (standard parallel I/O and up to three peripheral functions per pin) makes it possible to route alternate signals via Arduino extension headers. To enable these signals, SAMA5D27 PIO multiplexing must be properly configured. For more details, refer to Board Schematics and the section PIO Controller (PIO) in the SAMA5D2 Series data sheet.

The tables below, together with the connector schematics, provide the alternate signals available for use with Arduino connectors.

Figure 6-42. J7 Connector

Table 6-17. J7 Connector Signals

Pin No.	Signal	Function
1	VBAT	NC
2	3V3	(IOREF)
3	RST	_
4	3V3	-
5	5V	_
6	GND	-
7	GND	_
8	VIN	NC

Figure 6-43. J8 Connector

Table 6-18. J8 Connector Signals

Pin		SAMA5D27 PIO Muxi	SAMA5D27 PIO Muxing Alternates									
No.	Туре											
1	PA16	SPI0_MISO	TD1	QSPI0_IO0	I2SWS1	FLEXCOM3_IO4	D11	_				
2	PD19	PCK0	TWD1	URXD2	_	12SCK0	ISC_D11	AD0				
3	PD20	TIOA2	TWCK1	UTXD2	_	I2SMCK0	ISC_PCK	AD1				
4	PD23	URXD2	_	FLEXCOM4_IO3	_	12SDO0	ISC_FIELD	AD4				
5	PD21	TIOB2	TWD0	FLEXCOM4_IO1	_	12SWS0	ISC_VSYNC	AD2				
6	PD22	TCLK2	TWCK0	FLEXCOM4_IO2	_	12SDI0	ISC_HSYNC	AD3				
7	PD24	UTXD2	_	FLEXCOM4_IO4	_	-	_	AD5				
8	PD30	SPI1_NPCS2	TMS	FLEXCOM2_O1	TIOB3	TWCK0	_	AD11				

Figure 6-44. J9 Connector

Table 6-19. J9 Connector Signals

Pin		SAMA5D27 PIO Muxing Alternates									
No.	Туре										
1	PA19	SPI0_NPCS2	RF1	QSPI0_IO3	TIOA0	SDHC1_DAT1	D14				
2	PA17	SPI0_NPCS0	RD1	QSPI0_IO1	12SDI1	FLEXCOM3_O1	D12				
3	PA18	SPI0_NPCS1	RK1	QSPI0_IO2	12SDO1	SDHC1_DAT0	D13				
4	PC8	LCDDEN	NANDRDY	FIQ	РСК0	UTXD1	ISC_FIELD				
5	PC27	LCDDAT23	GTX3	PCK1	CANRX1	TWD0	A16				
6	PC26	LCDDAT22	-	GTX2	CANTX1	-	A15				
7	PC11	LCDDAT3	GTXEN	ISC_D2	TCLK4	CANRX0	A0/NBS0				
8	PC10	LCDDAT2	GTXCK	ISC_D1	TIOB4	CANTX0	-				

Figure 6-45. J20 Connector

Table 6-20. J20 Connector Signals

Pin		SAMA5D27 PIO Muxir	SAMA5D27 PIO Muxing Alternates								
No.	Туре										
10	PC0	LCDDAT21	A23	FLEXCOM0_O1	TWCK0	_	ISC_D6				
9	PB31	LCDDAT20	A20	FLEXCOM0_IO4	TWD0	_	ISC_D5				
8	AREF	_	_	-	-	_	_				
7	GND	-	_	-	-	-	-				
6	PD25	SPI1_SPCK		FLEXCOM4_O1	-	_	AD6				
5	PD27	SPI1_MISO	тск	FLEXCOM2_IO2	-	-	AD8				
4	PD26	SPI1_MOSI	_	FLEXCOM2_IO1	-	_	AD7				
3	PD28	SPI1_NPCS0	TDI	FLEXCOM2_IO3	-	-	AD9				
2	PB5	TCLK2	D10	PWMH2	QSPI1_SCK	PTCPORT5	GTSUCOMP				
1	PB6	TIOA2	D11	PWML2	QSPI1_CS	PTCPORT6	GTXER				

Figure 6-46. J21 Connector

Table 6-21. J21 Connector Signals

Pin		SAMA5D27 PIO Muxi	SAMA5D27 PIO Muxing Alternates								
No.	Туре										
1	PB9	TIOA3	D14	PWMFI1	QSPI1_IO2	_	GCOL				
2	PA19	SPI0_NPCS2	RF1	QSPI0_IO3	TIOA0	SDHC1_DAT1	D14				
3	PA20	SPI0_NPCS3	-	-	TIOB0	SDHC1_DAT2	D15				
4	PD29	SPI1_NPCS1	TDO	FLEXCOM2_IO4	TIOA3	TWD0	AD10				
5	PB10	TIOB3	D15	PWMEXTRG1	QSPI1_IO3	_	GRX2				
6	PA21	IRQ	PCK2		TCLK0	SDHC1_DAT3	NANDRDY				
7	PD12	TIOB1	FLEXCOM4_IO0	UTMI_LS1	GRXER	ISC_D5	ISC_D0				
8	PD13	TCLK1	FLEXCOM4_IO1	UTMI_CRDCPSEL0	GRX0	ISC_D6	ISC_D1				

Figure 6-47. J22 Connector

Table 6-22. J22 Connector Signals

Pin		SAMA5D27 PIO Muxing Alternates								
No.	Туре									
1	PA24	FLEXCOM1_IO0	D2	TDO	SPI1_MISO	_	QSPI0_IO0			
2	PA23	FLEXCOM1_IO1	D1	TDI	SPI1_MOSI	_	QSPI0_CS			
3	PB28	LCDDAT17	A17	FLEXCOM0_IO0	TIOA5	_	ISC_D2			
4	PB29	LCDDAT18	A18	FLEXCOM0_IO1	TIOB5	_	ISC_D3			
5	PB23	LCDDAT12	A12	RD0	TIOB2	FLEXCOM3_IO1	GMDIO			
6	PB22	LCDDAT11	A11	TD0	TIOA2	FLEXCOM3_IO2	GMDC			
7	PD4	TWD1	URXD2	_	GCOL	ISC_D10	NCS0			
8	PD5	TWCK1	UTXD2	_	GRX2	ISC_D9	NCS1			

Figure 6-48. J17 Connector

Table 6-23. J17 Connector Signals

Pin		SAMA5D27 PIO Muxing Alternates							
No.	Туре								
1	5V	_	-	_	_	_	_		
2	5V	_	-	-	_	_	-		
3	PD6	TCK	PCK1	_	GRX3	ISC_D8	NCS2		
4	PA14	SPI0_SPCK	TK1	QSPI0_SCK	I2SMCK1	FLEXCOM3_IO3	D9		
5	PA15	SPI0_MOSI	TF1	QSPI0_CS	I2SCK1	FLEXCOM3_IO1	D10		
6	PB30	LCDDAT19	A19	FLEXCOM0_IO3	TCLK5	_	ISC_D4		
7	PB31	LCDDAT20	A20	FLEXCOM0_IO4	TWD0	_	ISC_D5		
8	PC0	LCDDAT21	A23	FLEXCOM0_O1	TWCK0	_	ISC_D6		
9	PB20	LCDDAT9	A9	TK0	TIOB3	PCK1	GTX0		
10	PB21	LCDDAT10	A10	TF0	TCLK3	FLEXCOM3_IO3	GTX1		
11	PB27	LCDDAT16	A16	UTXD0	PDMCLK0	_	ISC_D1		
12	PB26	LCDDAT15	A15	URXD0	PDMDAT0	_	ISC_D0		
13	PB29	LCDDAT18	A18	FLEXCOM0_IO1	TIOB5	_	ISC_D3		
14	PB28	LCDDAT17	A17	FLEXCOM0_IO0	TIOA5	-	ISC_D2		
15	PB31	LCDDAT20	A20	FLEXCOM0_IO4	TWD0	_	ISC_D5		
16	PB30	LCDDAT19	A19	FLEXCOM0_IO3	TCLK5	_	ISC_D4		

SAMA5D2C XULT

Board Components

continued										
Pin		SAMA5D27 PIO Mu	xing Alternates							
No.	Туре									
17	PC1	LCDDAT22	A24	CANTX0	SPI1_SPCK	I2SCK0	ISC_D7			
18	PC0	LCDDAT21	A23	FLEXCOM0_O1	TWCK0	-	ISC_D6			
19	PA22	FLEXCOM1_IO3	D0	TCK	SPI1_SPCK	SDHC1_CK	QSPI0_SCK			
20	PA25	FLEXCOM1_IO4	D3	TMS	SPI1_NPCS0	-	QSPI0_IO1			
21	PA26	FLEXCOM1_O1	D4	NTRST	SPI1_NPCS1	-	QSPI0_IO2			
22	PC3	LCDPWM	NWAIT	TIOA1	SPI1_MISO	12SWS0	ISC_D9			
23	PC2	LCDDAT23	A25	CANRX0	SPI1_MOSI	I2SMCK0	ISC_D8			
24	PC6	LCDHSYNC	NCS1	TWD1	SPI1_NPCS2		ISC_HSYNC			
25	PC5	LCDVSYNC	NCS0	TCLK1	SPI1_NPCS1	12SDO0	ISC_VSYNC			
26	PC4	LCDDISP	NWR1/NBS1	TIOB1	SPI1_NPCS0	12SDI0	ISC_PCK			
27	PB11	LCDDAT0	A0/NBS0	URXD3	PDMDAT0	-	GRX3			
28	PB12	LCDDAT1	A1	UTXD3	PDMCLK0	-	GTX2			
29	PC7	LCDPCK	NCS2	TWCK1	SPI1_NPCS3	URXD1	ISC_MCK			
30	PB25	LCDDAT14	A14	RF0	-	FLEXCOM3_IO1	ISC_D11			
31	PB24	LCDDAT13	A13	RK0	TCLK2	FLEXCOM3_IO4	ISC_D10			
32	PC8	LCDDEN	NANDRDY	FIQ	PCK0	UTXD1	ISC_FIELD			
33	PD31	ADTRG	NTRST	IRQ	TCLK3	PCK0	_			
34	PC26	LCDDAT22	-	GTX2	CANTX1		A15			
35	GND	_	_	-	-	-	_			
36	GND	-	-	-	-	-	-			

Figure 6-49. J16 Connector

Table 6-24. J16 Connector Signals

Pin		SAMA5D27 PIO Muxing Alternates								
No.	Туре									
1	PD27	SPI1_MISO	тск	FLEXCOM2_IO2	_	_	AD8			
2	POWER (1)	_	_	-	_	_	-			
3	PD25	SPI1_SPCK	-	FLEXCOM4_O1	_	-	AD6			
4	PD26	SPI1_MOSI	_	FLEXCOM2_IO1	_	_	AD7			
5	nRST	_	_	_	_	_	_			
6	GND	_	_	_	_	_	-			

Note: 5V/3.3V selected by resistors

6.5.2 XPRO

The SAMA5D2C-XULT board features three connectors to interface with standard Xplained PRO extensions.

Figure 6-50. XPRO Connectors Schematics

The standard extension headers include common signals.

Figure 6-51. XPRO Connectors

Table 6-25. XPRO Power Connector J24 Signal Descriptions

Signal	Pin No.		Signal
EXP_5V	1	2	GND

continued								
Signal	Pin No.		Signal					
VDD_5V	3	4	VSYS_3V3					

Table 6-26. XPRO EXT1 Connector J25 Signal Descriptions

Pin		XPRO Signal	SAMA5D27 PIO Muxing Alternates								
No.	Туре										
1	-	EDBG_ID_02	_	_	_	-	-	-	_		
2	GND	_	_	_	_	-	_	_	-		
3	PD11	ADC(+)	TIOA1	PCK2	UTMI_LS0	GRXDV	ISI_D4	ISI_MCK	PTCCOL0		
4	PD12	ADC(-)	TIOB1	FLEXCOM4_IO0	UTMI_LS1	GRXER	ISI_D5	ISI_D4	PTCCOL1		
5	PD13	GPIO	TCLK1	FLEXCOM4_IO1	UTMI_CDRCPSEL0	GRX0	ISI_D6	ISI_D5	PTCCOL2		
6	PD18	GPIO	NTRST	_	_	GMDIO	ISI_FIELD	ISI_D10	PTCCOL7		
7	PB9	PWM(+)	TIOA3	D14	PWMFI1	QSPI1_IO2	_	GCOL	_		
8	PB10	PWM(-)	TIOB3	D15	PWMEXTRG1	QSPI1_IO3	-	GRX2	-		
9	PD13	IRQ/GPIO	TCLK1	FLEXCOM4_IO2	UTMI_CDRCPSEL0	GRX0	ISI_D6	ISI_D5	PTCCOL2		
10	PD29	SPI_SS_B/GPIO	SPI1_NPCS1	TDO	FLEXCOM2_IO4	TIOA3	TWD0	-	AD10		
11	PB31	TWI_SDA	LCDDAT20	A20	FLEXCOM0_IO4	TWD0	_	ISI_D5	-		
12	PC0	TWI_SCL	LCDDAT21	A23	FLEXCOM0_O1	TWCK0	-	ISI_D6	-		
13	PA23	UART_RX	FLEXCOM1_IO2	D1	TDI	SPI1_MOSI	_	QSPI0_CS	-		
14	PA24	UART_TX	FLEXCOM1_IO1	D2	TDO	SPI1_MISO	_	QSPI0_IO0	-		
15	PD28	SPI_SS_A	SPI1_NPCS0	TDI	FLEXCOM2_IO3	_	_	_	AD9		
16	PD26	SPI_MOSI	SPI1_MOSI	_	FLEXCOM2_IO1	-	_	_	AD7		
17	PD27	SPI_MISO	SPI1_MISO	тск	FLEXCOM2_IO2	_	_	_	AD8		
18	PD25	SPI_SCK	SPI1_SPCK	_	FLEXCOM4_O1	-	_	-	AD6		
19	GND	_	_	_	_	_	_	_	_		
20	3V3	_	-	-	-	-	-	-	-		

Table 6-27. XPRO EXT2 Connector J26 Signal Descriptions

Pin		XPRO Signal SAMA5D27 PIO Muxing Alternates								
No.	Туре									
1	-	EDBG_ID_03	_	_	_	_	_	_	_	
2	GND	_	_	_	_	_	_	_	-	
3	PD7	ADC(+)	TDI	_	UTMI_RXVAL	GTX2	ISI_D0	NWR1/NBS1	PTCROW4	
4	PD8	ADC(-)	TDO	-	UTMI_RXERR	GTX3	ISI_D1	NANDRDY	PTCROW5	
5	PD9	GPIO	TMS	_	UTMI_RXACT	GTXCK	ISI_D2	_	PTCROW6	
6	PD10	GPIO	NTRST	-	UTMI_HDIS	GTXEN	ISI_D3	_	PTCROW7	
7	PB5	PWM(+)	TCLK2	D10	PWMH2	QSPI1_SCK	PTCPORT5	GTSUCOMP	_	
8	PB6	PWM(-)	TIOA2	D11	PWML2	QSPI1_CS	PTCPORT6	GTXER	_	

SAMA5D2C XULT

Board Components

	continued											
Pin		XPRO Signal	SAMA5D27 PIO N	SAMA5D27 PIO Muxing Alternates								
No.	Туре											
9	PA21	IRQ/GPIO	IRQ	PCK2	_	TCLK0	SDHC1_DAT3	NANDRDY	_			
10	PD28	SPI_SS_B/GPIO	SPI1_NPCS0	TDI	FLEXCOM2_IO3	_	_	_	AD9			
11	PB28	TWI_SDA	LCDDAT17	A17	FLEXCOM0_IO1	TIOA5	_	ISI_D2	_			
12	PB29	TWI_SCL	LCDDAT18	A18	FLEXCOM0_IO2	TIOB5	_	ISI_D3	_			
13	PB29	UART_RX	LCDDAT18	A18	FLEXCOM0_IO2	TIOB5	_	ISI_D3	_			
14	PB28	UART_TX	LCDDAT17	A17	FLEXCOM0_IO1	TIOA5	_	ISI_D2	_			
15	PD29	SPI_SS_A	SPI1_NPCS1	TDO	FLEXCOM2_IO4	TIOA3	TWD0	_	AD10			
16	PD26	SPI_MOSI	SPI1_MOSI	-	FLEXCOM2_IO1	_	_	_	AD7			
17	PD27	SPI_MISO	SPI1_MISO	TCK	FLEXCOM2_IO2	_	_	_	AD8			
18	PD25	SPI_SCK	SPI1_SPCK	_	FLEXCOM4_O1	_	_	_	AD6			
19	GND	_	_	_	_	_	_	_	_			
20	3V3	_	_	_	_	-	_	_	-			

7. Board Schematics

This section contains the following schematics:

- · Block Diagram
- PIO Muxing Table
- · Power Supply
- SAMA5D27 Power
- SAMA5D27 DDR3
- SAMA5D27 PIOA and PIOB
- SAMA5D27 PIOC and PIOD
- SAMA5D27 SYS, Tamper, and Debug
- · USB, ISC, and LCD
- · Serial Flash, LEDS, Push Button and ClassD
- Ethernet
- SD and eMMC
- FDBG
- · Expansion and XPRO Connectors

Important: Design Reuse Recommendation

In case the memory or PIO busses go to multiple destinations, series resistors must be added. These resistors must be located at the beginning of each branch, as close as possible to the MPU.

In case these connections are point-to-point, the branch resistors found in the following schematics can be removed

In all cases, it is recommended to always perform routing simulation to check signal integrity prior to PCB manufacturing.

Figure 7-2. PIO Muxing Table

PIO Muxing & Jumper setting

LCD

ID_SYS	1
GND	2
NC	3
NC	4
LCDDAT2	5
LCDDAT3	6
GND	7
LCDDAT4	8
LCDDAT5	9
LCDDAT6	10
LCDDAT7	11
GND	12
NC	13
NC	14
LCDDAT10	15
LCDDAT11	16
GND	17
LCDDAT12	18
LCDDAT13	19
LCDDAT14	20
LCDDAT15	21
GND	22
NC	23
NC	24
LCDDAT18	25
LCDDAT19	26
GND	27
LCDDAT20	28
LCDDAT21	29
LCDDAT22	30
LCDDAT23	31
GND	32
LCDPCK	33
LCDVSYNC	34
LCDHSYNC	35
LCDDEN	36
SPI1_SPCK/AD0_XP	37
SPI1_MOSI/AD1_XM	38
SPI1_MISO/AD2_YP	39
SPI1_NPCS0/AD3_YM	40
LCDDISP	41
TWD1	42
TWCK1	43
IRQ1	44
IRQ2	45
LCDPWM	46
NRST	47
VCC	48
VCC	49
GND	50

PIOA	USAGE	PIOA	USAGE	PIOB	USAGE	PIOB	USAGE	PIOC	USAGE
PA0	SDHC0_CK	PA16	SPI0_MISO/EXP	PB0	LED_BLUE/LCD_ID	PB16	ETH_GRXDV	PC0	ISC_D6/EXP/XPRO
PA1	SDHC0_CMD	PA17	SPI0_CS0/EXP	PB1	CLASSD_R0	PB17	ETH_GRXER	PC1	ISC_D7/SPI1_SPCK/EXP
PA2	SDHC0_DAT0	PA18	SDHC1_DAT0/EXP	PB2	CLASSD_R1	PB18	ETH_GRX0	PC2	ISC_D8/SPI1_MOSI/EXP
PA3	SDHC0_DAT1	PA19	SDHC1_DAT1/EXP	PB3	CLASSD_R2	PB19	ETH_GRX1	PC3	ISC_D9/SPI1_MISO/EXP
PA4	SDHC0_DAT2	PA20	SDHC1_DAT2/EXP	PB4	CLASSD_R3	PB20	ETH_GTX0/EXP	PC4	ISC_PCK/SPI1_NPCS0/EXP
PA5	SDHC0_DAT3	PA21	SDHC1_DAT3/EXP/XPRO	PB5	LED_GREEN/EXP/XPRO	PB21	ETH_GTX1/EXP	PC5	ISC_VSYNC/EXP
PA6	SDHC0_DAT4	PA22	SDHC1_CK/QSPI0_SCK/EXP	PB6	LED_RED/EXP/XPRO	PB22	ETH_GMDC/EXP	PC6	ISC_HSYNC/EXP
PA7	SDHC0_DAT5	PA23	QSPI0_CS/EXP/XPRO	PB7	LCD_IRQ1	PB23	ETH_GMDIO/EXP	PC7	ISC_MCK/EXP
PA8	SDHC0_DAT6	PA24	QSPI0_IO0/EXP/XPRO	PB8	LCD_IRQ2	PB24	ISC_D10/EXP	PC8	PMIC_LBO/EXP
PA9	SDHC0_DAT7	PA25	QSPI0_IO1/EXP	PB9	USER_PB/EXP/XPRO	PB25	ISC_D11/EXP	PC9	ETH_INT
PA10	SDHC0_RSTN	PA26	QSPI0_IO2/EXP	PB10	USBB_EN5V/EXP/XPRO	PB26	ISC_D0/EXP	PC10	LCD_DAT2/EXP
PA11	SDHC0_VDDSEL	PA27	QSPI0_IO3	PB11	ISC_RST/EXP	PB27	ISC_D1/EXP	PC11	LCD_DAT3/EXP
PA12	PMIC_CHGLEV	PA28	SDHC1_CMD	PB12	ISC_PWD/EXP	PB28	ISC_D2/EXP/XPRO	PC12	LCD_DAT4
PA13	SDHC0_CD	PA29	USBB_OVCUR	PB13	PMIC_IRQ	PB29	ISC_D3/EXP/XPRO	PC13	LCD_DAT5
PA14	SPI0_SPCK/EXP	PA30	SDHC1_CD	PB14	ETH_GTXCK	PB30	ISC_D4/EXP	PC14	LCD_DAT6
PA15	SPI0_MOSI/EXP	PA31	USBA_VBUS Detection	PB15	ETH_GTXEN	PB31	ISC_D5/EXP/XPRO	PC15	LCD_DAT7

PIOC	USAGE	PIOD	USAGE	PIOD	USAGE
PC16	LCD_DAT10	PD0	LCD_PCK	PD16	JTAG_TDO
PC17	LCD_DAT11	PD1	LCD_DEN	PD17	JTAG_TMS
PC18	LCD_DAT12	PD2	DBGU_URXD1	PD18	XPRO
PC19	LCD_DAT13	PD3	DBGU_UTXD1	PD19	LCD_XP/EXP
PC20	LCD_DAT14	PD4	LCD/EEP/ISC/EXP_TWD1	PD20	LCD_XM/EXP
PC21	LCD_DAT15	PD5	LCD/EEP/ISC/EXP_TWCK1	PD21	LCD_YP/PMIC_TWD0/EXP
PC22	LCD_DAT18	PD6	EXP	PD22	LCD_YM/PMIC_TWCK0/EXP
PC23	LCD_DAT19	PD7	XPRO	PD23	EXP
PC24	LCD_DAT20	PD8	XPRO	PD24	EXP
PC25	LCD_DAT21	PD9	XPRO	PD25	EXP/XPRO
PC26	LCD_DAT22/EXP	PD10	XPRO	PD26	EXP/XPRO
PC27	LCD_DAT23/EXP	PD11	XPRO	PD27	EXP/XPRO
PC28	LCD_PWM	PD12	EXP/XPRO	PD28	EXP/XPRO
PC29	LCD_DISP	PD13	EXP/XPRO	PD29	EXP/XPRO
PC30	LCD_VSYNC	PD14	JTAG_TCK	PD30	EXP
PC31	LCD_HSYNC	PD15	JTAG_TDI	PD31	EXP

	JUMPER DESCRIPTION								
PART	DEFAULT	FUNCTION							
JP1	OPEN	Disable EDBG							
JP2	OPEN	Disable Debug							
JP3	CLOSE	I VDD_3V3_LP Measurement							
JP4	CLOSE	I VDDCORE Measurement							
JP5	CLOSE	I VDDISC+VDDIOP0/1/2 Measurement							
JP6	CLOSE	I VDDBU Measurement							
JP7	CLOSE	I VDDIODDR_MPU Measurement							
JP8	CLOSE	I VDD_5V_IN Measurement							
JP9	OPEN	Disable CS of SPI&QSPI&eMMC Memory							

SAMA5D2C XULT

Board Schematics

SAMA5D2C XULT

Board Schematics

SAMA5D2C XULT

Board Schematics

SAMA5D2C XULT

Board Schematics

SAMA5D2C XULT

Board Schematics

SAMA5D2C XULT

Board Schematics

SAMA5D2C XULT

Board Schematics

SAMA5D2C XULT

Board Schematics

SAMA5D2C XULT

Board Schematics

Figure 7-14. Expansion and XPRO Connectors

8. Errata

8.1 NRST

Issue: Pullup R6 is connected to VDD_3V3 **Workaround:** Connect pullup R6 to VDDBU.

8.2 nLBO

Issue: No pullup on nLBO

Workaround: Add pullup 10K to nLBO output.

8.3 R63

Issue: Incorrect R63 resistance in schematic "EDBG"

Workaround: Correct the resistance to 47R.

8.4 R100/R105

Issue: The values of resistors R100/R105 (mounted as a resistive divider on VDD_5V_IN) are swapped. This results in:

- a leakage current path is created from VDD_5V_IN to VDDDU through the ACP pin, and
- the ACP pin is biased around 4V instead of 0.88V, therefore the voltage detection between ACP and CAN does not work

Workaround: Swap R100 and R105.

9. Revision History

Table 9-1. Rev. E - 08/2020

Changes

Updated PD12 and PD13 in XPRO EXT1 Connector J25 Signal Descriptions and J21 Connector Signals.

Table 9-2. Rev. D - 05/2019

Changes

Updated 7. Board Schematics: all schematics regenerated.

Table 9-3. Rev. C - 10/2018

Changes

Document title modified to SAMA5D2C XULT User's Guide (was SAMA5D2 (Rev. C) Xplained Ultra Evaluation Kit User's Guide)

Updated Figure 6-10.

Changed eMMC reference in section eMMC.

All schematics regenerated.

Added R100/R105 in section Errata.

Table 9-4. Rev. B - 12/2017

Changes

Updated SAMA5D27 – PIOA and PIOB.

Removed Declaration of Conformity.

Table 9-5. Rev. A - 10/2017

Changes

First issue.

The Microchip Website

Microchip provides online support via our website at www.microchip.com/. This website is used to make files and information easily available to customers. Some of the content available includes:

- Product Support Data sheets and errata, application notes and sample programs, design resources, user's
 guides and hardware support documents, latest software releases and archived software
- General Technical Support Frequently Asked Questions (FAQs), technical support requests, online discussion groups, Microchip design partner program member listing
- Business of Microchip Product selector and ordering guides, latest Microchip press releases, listing of seminars and events, listings of Microchip sales offices, distributors and factory representatives

Product Change Notification Service

Microchip's product change notification service helps keep customers current on Microchip products. Subscribers will receive email notification whenever there are changes, updates, revisions or errata related to a specified product family or development tool of interest.

To register, go to www.microchip.com/pcn and follow the registration instructions.

Customer Support

Users of Microchip products can receive assistance through several channels:

- · Distributor or Representative
- · Local Sales Office
- Embedded Solutions Engineer (ESE)
- Technical Support

Customers should contact their distributor, representative or ESE for support. Local sales offices are also available to help customers. A listing of sales offices and locations is included in this document.

Technical support is available through the website at: www.microchip.com/support

Microchip Devices Code Protection Feature

Note the following details of the code protection feature on Microchip devices:

- · Microchip products meet the specifications contained in their particular Microchip Data Sheet.
- Microchip believes that its family of products is secure when used in the intended manner and under normal
 conditions.
- There are dishonest and possibly illegal methods being used in attempts to breach the code protection features
 of the Microchip devices. We believe that these methods require using the Microchip products in a manner
 outside the operating specifications contained in Microchip's Data Sheets. Attempts to breach these code
 protection features, most likely, cannot be accomplished without violating Microchip's intellectual property rights.
- Microchip is willing to work with any customer who is concerned about the integrity of its code.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of its code. Code
 protection does not mean that we are guaranteeing the product is "unbreakable." Code protection is constantly
 evolving. We at Microchip are committed to continuously improving the code protection features of our products.
 Attempts to break Microchip's code protection feature may be a violation of the Digital Millennium Copyright Act.
 If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue
 for relief under that Act.

Legal Notice

Information contained in this publication is provided for the sole purpose of designing with and using Microchip products. Information regarding device applications and the like is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications.

THIS INFORMATION IS PROVIDED BY MICROCHIP "AS IS". MICROCHIP MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION INCLUDING BUT NOT LIMITED TO ANY IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY, AND FITNESS FOR A PARTICULAR PURPOSE OR WARRANTIES RELATED TO ITS CONDITION, QUALITY, OR PERFORMANCE.

IN NO EVENT WILL MICROCHIP BE LIABLE FOR ANY INDIRECT, SPECIAL, PUNITIVE, INCIDENTAL OR CONSEQUENTIAL LOSS, DAMAGE, COST OR EXPENSE OF ANY KIND WHATSOEVER RELATED TO THE INFORMATION OR ITS USE, HOWEVER CAUSED, EVEN IF MICROCHIP HAS BEEN ADVISED OF THE POSSIBILITY OR THE DAMAGES ARE FORESEEABLE. TO THE FULLEST EXTENT ALLOWED BY LAW, MICROCHIP'S TOTAL LIABILITY ON ALL CLAIMS IN ANY WAY RELATED TO THE INFORMATION OR ITS USE WILL NOT EXCEED THE AMOUNT OF FEES, IF ANY, THAT YOU HAVE PAID DIRECTLY TO MICROCHIP FOR THE INFORMATION. Use of Microchip devices in life support and/or safety applications is entirely at the buyer's risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights unless otherwise stated.

Trademarks

The Microchip name and logo, the Microchip logo, Adaptec, AnyRate, AVR, AVR logo, AVR Freaks, BesTime, BitCloud, chipKIT, chipKIT logo, CryptoMemory, CryptoRF, dsPIC, FlashFlex, flexPWR, HELDO, IGLOO, JukeBlox, KeeLoq, Kleer, LANCheck, LinkMD, maXStylus, maXTouch, MediaLB, megaAVR, Microsemi, Microsemi logo, MOST, MOST logo, MPLAB, OptoLyzer, PackeTime, PIC, picoPower, PICSTART, PIC32 logo, PolarFire, Prochip Designer, QTouch, SAM-BA, SenGenuity, SpyNIC, SST, SST Logo, SuperFlash, Symmetricom, SyncServer, Tachyon, TempTrackr, TimeSource, tinyAVR, UNI/O, Vectron, and XMEGA are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

APT, ClockWorks, The Embedded Control Solutions Company, EtherSynch, FlashTec, Hyper Speed Control, HyperLight Load, IntelliMOS, Libero, motorBench, mTouch, Powermite 3, Precision Edge, ProASIC, ProASIC Plus, ProASIC Plus logo, Quiet-Wire, SmartFusion, SyncWorld, Temux, TimeCesium, TimeHub, TimePictra, TimeProvider, Vite, WinPath, and ZL are registered trademarks of Microchip Technology Incorporated in the U.S.A.

Adjacent Key Suppression, AKS, Analog-for-the-Digital Age, Any Capacitor, AnyIn, AnyOut, BlueSky, BodyCom, CodeGuard, CryptoAuthentication, CryptoAutomotive, CryptoCompanion, CryptoController, dsPICDEM, dsPICDEM.net, Dynamic Average Matching, DAM, ECAN, EtherGREEN, In-Circuit Serial Programming, ICSP, INICnet, Inter-Chip Connectivity, JitterBlocker, KleerNet, KleerNet logo, memBrain, Mindi, MiWi, MPASM, MPF, MPLAB Certified logo, MPLIB, MPLINK, MultiTRAK, NetDetach, Omniscient Code Generation, PICDEM, PICDEM.net, PICkit, PICtail, PowerSmart, PureSilicon, QMatrix, REAL ICE, Ripple Blocker, SAM-ICE, Serial Quad I/O, SMART-I.S., SQI, SuperSwitcher, SuperSwitcher II, Total Endurance, TSHARC, USBCheck, VariSense, ViewSpan, WiperLock, Wireless DNA, and ZENA are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

SQTP is a service mark of Microchip Technology Incorporated in the U.S.A.

The Adaptec logo, Frequency on Demand, Silicon Storage Technology, and Symmcom are registered trademarks of Microchip Technology Inc. in other countries.

GestIC is a registered trademark of Microchip Technology Germany II GmbH & Co. KG, a subsidiary of Microchip Technology Inc., in other countries.

All other trademarks mentioned herein are property of their respective companies.

© 2020, Microchip Technology Incorporated, Printed in the U.S.A., All Rights Reserved.

ISBN: 978-1-5224-6567-6

AMBA, Arm, Arm7, Arm7TDMI, Arm9, Arm11, Artisan, big.LITTLE, Cordio, CoreLink, CoreSight, Cortex, DesignStart, DynamIQ, Jazelle, Keil, Mali, Mbed, Mbed Enabled, NEON, POP, RealView, SecurCore, Socrates, Thumb,

TrustZone, ULINK, ULINK2, ULINK-ME, ULINK-PLUS, ULINKpro, μ Vision, Versatile are trademarks or registered trademarks of Arm Limited (or its subsidiaries) in the US and/or elsewhere.

Quality Management System

For information regarding Microchip's Quality Management Systems, please visit www.microchip.com/quality.

Worldwide Sales and Service

AMERICAS	ASIA/PACIFIC	ASIA/PACIFIC	EUROPE
Corporate Office	Australia - Sydney	India - Bangalore	Austria - Wels
2355 West Chandler Blvd.	Tel: 61-2-9868-6733	Tel: 91-80-3090-4444	Tel: 43-7242-2244-39
Chandler, AZ 85224-6199	China - Beijing	India - New Delhi	Fax: 43-7242-2244-393
Tel: 480-792-7200	Tel: 86-10-8569-7000	Tel: 91-11-4160-8631	Denmark - Copenhagen
Fax: 480-792-7277	China - Chengdu	India - Pune	Tel: 45-4485-5910
Technical Support:	Tel: 86-28-8665-5511	Tel: 91-20-4121-0141	Fax: 45-4485-2829
www.microchip.com/support	China - Chongqing	Japan - Osaka	Finland - Espoo
Web Address:	Tel: 86-23-8980-9588	Tel: 81-6-6152-7160	Tel: 358-9-4520-820
www.microchip.com	China - Dongguan	Japan - Tokyo	France - Paris
Atlanta	Tel: 86-769-8702-9880	Tel: 81-3-6880- 3770	Tel: 33-1-69-53-63-20
Duluth, GA	China - Guangzhou	Korea - Daegu	Fax: 33-1-69-30-90-79
Tel: 678-957-9614	Tel: 86-20-8755-8029	Tel: 82-53-744-4301	Germany - Garching
Fax: 678-957-1455	China - Hangzhou	Korea - Seoul	Tel: 49-8931-9700
Austin, TX	Tel: 86-571-8792-8115	Tel: 82-2-554-7200	Germany - Haan
Tel: 512-257-3370	China - Hong Kong SAR	Malaysia - Kuala Lumpur	Tel: 49-2129-3766400
Boston	Tel: 852-2943-5100	Tel: 60-3-7651-7906	Germany - Heilbronn
Westborough, MA	China - Nanjing	Malaysia - Penang	Tel: 49-7131-72400
Tel: 774-760-0087	Tel: 86-25-8473-2460	Tel: 60-4-227-8870	Germany - Karlsruhe
Fax: 774-760-0088	China - Qingdao	Philippines - Manila	Tel: 49-721-625370
Chicago	Tel: 86-532-8502-7355	Tel: 63-2-634-9065	Germany - Munich
Itasca, IL	China - Shanghai	Singapore	Tel: 49-89-627-144-0
Tel: 630-285-0071	Tel: 86-21-3326-8000	Tel: 65-6334-8870	Fax: 49-89-627-144-44
Fax: 630-285-0075	China - Shenyang	Taiwan - Hsin Chu	Germany - Rosenheim
Dallas	Tel: 86-24-2334-2829	Tel: 886-3-577-8366	Tel: 49-8031-354-560
Addison, TX	China - Shenzhen	Taiwan - Kaohsiung	Israel - Ra'anana
Tel: 972-818-7423	Tel: 86-755-8864-2200	Tel: 886-7-213-7830	Tel: 972-9-744-7705
Fax: 972-818-2924	China - Suzhou	Taiwan - Taipei	Italy - Milan
Detroit	Tel: 86-186-6233-1526	Tel: 886-2-2508-8600	Tel: 39-0331-742611
Novi, MI	China - Wuhan	Thailand - Bangkok	Fax: 39-0331-466781
Tel: 248-848-4000	Tel: 86-27-5980-5300	Tel: 66-2-694-1351	Italy - Padova
Houston, TX	China - Xian	Vietnam - Ho Chi Minh	Tel: 39-049-7625286
Tel: 281-894-5983	Tel: 86-29-8833-7252	Tel: 84-28-5448-2100	Netherlands - Drunen
Indianapolis	China - Xiamen		Tel: 31-416-690399
Noblesville, IN	Tel: 86-592-2388138		Fax: 31-416-690340
Tel: 317-773-8323	China - Zhuhai		Norway - Trondheim
Fax: 317-773-5453	Tel: 86-756-3210040		Tel: 47-72884388
Tel: 317-536-2380	15 55 155 52 155 15		Poland - Warsaw
Los Angeles			Tel: 48-22-3325737
Mission Viejo, CA			Romania - Bucharest
Tel: 949-462-9523			Tel: 40-21-407-87-50
Fax: 949-462-9608			Spain - Madrid
Tel: 951-273-7800			Tel: 34-91-708-08-90
Raleigh, NC			Fax: 34-91-708-08-91
Tel: 919-844-7510			Sweden - Gothenberg
New York, NY			Tel: 46-31-704-60-40
Tel: 631-435-6000			Sweden - Stockholm
San Jose, CA			Tel: 46-8-5090-4654
Tel: 408-735-9110			UK - Wokingham
Tel: 408-436-4270			Tel: 44-118-921-5800
Canada - Toronto			Fax: 44-118-921-5820
Tel: 905-695-1980			1 da. 77-110-321-3020
Fax: 905-695-2078			
I an. 300-030-20/0			