Similarity 4 Audio

Mathieu Lagrange

January 12, 2015

Me

CNRS researcher

- Computational Auditory Scene Analysis (CASA),
- Machine listening,
- Audio processing from signal processing theory to implementation

Some history...

2001-2004 France Telecom R&D Rennes
2004-2006 LaBRI (University Bordeaux 1)
2006-2007 University of Victoria, BC, Canada
2007-2008 McGill University, QC, Canada
2008- 2009 Telecom ParisTech
1RCAM
2013- ADTSI team of IRCCYN

Rationale

"Drowning in Data yet Starving for Knowledge"

John Naisbitt (1982)

Data

Numerical data is:

- blind
- huge
- important
- needs care
- needs to be accessed
- just a material

Sound FX

- sound ideas: ¿ 450 000 files
- sounddogs: ¿ 680 000 files

Music

- Google play: database size ¿ 22 000 000
- Spotify: database size ¿ 25 000 000 additions per day ¿ 20 000
- Deezer: database size ¿ 20 000 000
- iTunes store: database size ¿ 37 000 000 downloads per minute: database size ¿ 15 000

Motivation

Let humans access audio data in a way that makes sense for them

Motivation

Let humans access audio data in a way that makes sense for them

Means

explore different means of representing sound to quantify the notion of resemblance between sounds as experienced by humans

- in musical corpora
- for environmental sounds

Motivation

Let humans access audio data in a way that makes sense for them

Means

explore different means of representing sound to quantify the notion of resemblance between sounds as experienced by humans

- in musical corpora
- for environmental sounds

Challenges

- semantic representations
- human perception processes
- mathematical representation
- computational tractability

Motivation

Let humans access audio data in a way that makes sense for them

Means

explore different means of representing sound to quantify the notion of resemblance between sounds as experienced by humans

- in musical corpora
- for environmental sounds

Challenges

- semantic representations
- human perception processes
- mathematical representation
- computational tractability

Music Information Retrieval (MIR)

As in every multimedia retrieval task, the main issue is to bridge the semantic gap.

Depending on the data at hand, the difficulty of the task ranges from impossible to hardly doable

• raw data (signal)

Music Information Retrieval (MIR)

As in every multimedia retrieval task, the main issue is to bridge the semantic gap.

Depending on the data at hand, the difficulty of the task ranges from impossible to hardly doable

- raw data (signal)
- meta data (tags: genre)

Music Information Retrieval (MIR)

As in every multimedia retrieval task, the main issue is to bridge the semantic gap.

Depending on the data at hand, the difficulty of the task ranges from impossible to hardly doable

- raw data (signal)
- meta data (tags: genre)
- user ratings (likes)

Content-based Similarity in Music

Fingerprinting: the quest of the cherry

How?

- for each item of the database, compute several fingerprints
- for a query, do the same
- match the fingerprints.

Fingerprinting: the quest of the cherry

How?

- for each item of the database, compute several fingerprints
- for a query, do the same
- match the fingerprints.

The design of a good fingerprint is the key:

- noisy channel paradigm
- express the tolerable distortions induced by the channel to the signal
- define a compact representation [Ramona'11] that
 - is robust to those degradations,
 - preserves a good precision.

Pitfall:

Fingerprinting: the quest of the cherry

How?

- for each item of the database, compute several fingerprints
- for a query, do the same
- match the fingerprints.

The design of a good fingerprint is the key:

- noisy channel paradigm
- express the tolerable distortions induced by the channel to the signal
- define a compact representation [Ramona'11] that
 - is robust to those degradations,
 - preserves a good precision.

Pitfall:

• The database may not be big enough ③

Content-based Similarity in Music

Cover detection

Principle:

• compute chromagrams (octave-folded spectrograms)

Cover detection

Principle:

- compute chromagrams (octave-folded spectrograms)
- align sub-sequences using Dynamic Time Warping (DTW) techniques $O(n^2)$

Cover detection

Principle:

- compute chromagrams (octave-folded spectrograms)
- align sub-sequences using Dynamic Time Warping (DTW) techniques $O(n^2)$

Challenge: Large scale

- chromas are not selective enough by themselves
- need a way to encode temporality
- hash-based system report an average rank of 308 369 on the Million Song Dataset! [Bertin-Maheux'11]
- lost battle?

Content-based Similarity in Music

Content-based Music Similarity

Measure: Artist-filtered Genre How:

- compute in an unsupervised way an abstract representation: Bag of Frames (BOF)
- add supervision:
 - inclusion of auto-taggers output
 - learn the metric based on known tags

Content-based Music Similarity

Measure: Artist-filtered Genre How:

- compute in an unsupervised way an abstract representation: Bag of Frames (BOF)
- add supervision:
 - inclusion of auto-taggers output
 - learn the metric based on known tags

Yet, it is far from reaching the use of user ratings [Slaney]. This scheme is only useful to tackle the cold start problem, *i.e.* when you do not have user ratings.

Content-based Music Similarity

Measure: Artist-filtered Genre How:

- compute in an unsupervised way an abstract representation: Bag of Frames (BOF)
- add supervision:
 - inclusion of auto-taggers output
 - learn the metric based on known tags

Yet, it is far from reaching the use of user ratings [Slaney]. This scheme is only useful to tackle the cold start problem, *i.e.* when you do not have user ratings. Challenge: find an elegant way to fuse informations about the piece of music from very disparate channels.

The process of hearing: making sense of the input

The process of hearing: making sense of the input

- invariance
 - in time

- invariance
 - in time

- invariance
 - in time
 - in frequency

- invariance
 - in time
 - in frequency

- invariance
 - in time
 - in frequency
- compacity

The scattering in a nutshell [Anden11]

Data

The scattering in a nutshell [Anden11]

The Cosine Log Scattering (LCS) roughly consist in a DCT step over the log scattering coefficients.

Seek cheap decorrelation to achieve a good compacity (as with the MFCCs).

Experimental protocol

Some results

	ALEA	BOF	DTW	CLSo1	CLSo2
gygi	5.1	31.8	25.8	23.9	39.3
gygiExt	3.6	20.9	19.3	19.4	28.4
houix1	43.6	54.6	55.5	54.8	53.4
iowa	8.4	29.8	32.0	47.0	50.4
rwc	8.9	30.0	30.2	38.6	44.8

Do it again **\(\begin{align*}\extreme{\text{L}}\extreme{\text{:}} the scattering combined \(\text{.}\extreme{\text{.}}\extreme{\text{:}} \extreme{\text{.}} \extrm{.} \extrm{.} \extrm{.} \extrm{.} \extrm{.} \extrm{.} \extrm{.} \extrm{.} \extr**

Replace the linearly spaced bins of the DCT by some logarithmic ones to achieve frequency axis invariance at the higher order scattering levels.

More results

	ALEA	BOF	DTW	CLSo1	CLSo2	COo1	COo2
gygi	5.1	31.8	25.8	23.9	39.3	30.0	44.4
gygiExt	3.6	20.9	19.3	19.4	28.4	20.9	38.9
houix1	43.6	54.6	55.5	54.8	53.4	52.0	59.0
iowa	8.4	29.8	32.0	47.0	50.4	35.7	39.9
rwc	8.9	30.0	30.2	38.6	44.8	40.5	39.5

human (MAP=94%)

DTW (MAP=55.4%)

CLS order 2 (MAP=56.7%)

combined order 2 (MAP=59%)

Similarity: a matter of context

[Tversky 1977]

Question the metric and dimensional assumptions that underlie the geometric representation of similarity

Question the metric and dimensional assumptions that underlie the geometric representation of similarity

- $d(a,b) \ge d(a,a) = 0$ (identity, minimality)
- d(a,b) = d(b,a) (symmetry)
- $d(a,b) + d(b,c) \ge = d(a,c)$ (triangle inequality)

• The set-theoretical approach to similarity: the contrast model [Tversky 1977]

Mental representations

Real Sound: Context.

• The set-theoretical approach to similarity: the contrast model [Tversky 1977]

$$s(a,b) = F(A \cap B, A - B, B - A)$$

Mental representations

Real Sound: Context

 The Interrelationship Between Similarity and Spatial **Density** [Krumhansl 1978]

"A geometric approach may be compatible with these effects if the traditional multidimensional scaling model is augmented by the assumption that spatial density in the configuration has an effect on the similarity measure"

•
$$d'(a,b) = d(a,b) + \alpha \delta(a) + \beta \delta(b)$$

Congruency Advantage [Gygi and Shafiro 2011]

Identification: significant advantage for sounds that are contextually incongruous with the background scene (e.g., a rooster crowing in a hospital)

Congruency Advantage [Gygi and Shafiro 2011]

Identification: significant advantage for sounds that are contextually incongruous with the background scene (e.g., a rooster crowing in a hospital)

repeated 2x2 ANOVA

- So/Sc effect:
 F(1,11) = 96.04
 p < .00001
- Congruence: F(1, 11) = 4.84p < .05

Mental representations

Simulation: Environmental Auditory Scenes

Does human qualitative evaluation of sounds rely on semantic attributes or quantitative properties like sound levels and sound activity ?

Paradigm (Cognitive Psychology)

Simulation vs. describing task

Corpus Generation

Based on sound categories

Protocol

Simulation of two urban auditory scenes: one ideal the other not ideal (40 subjects: 80 simulated scenes)

Results: Quantitative attributes

	Event classes	Texture classes
i-scenes	-6.8 (5.4)	-2.6 (3.9)
ni-scenes	-2.4 (3.2)	-1.6 (2.6)

Sound levels: mean sound levels in dB averaged over the subjects (p < 0.0001). The deviation between the texture sound levels is not significant(p = 0.14).

Results: Quantitative attributes

	Density of the sound events	
i-scenes	53 (65)	
ni-scenes	63 (64)	

Density of the sound events: mean number of sound events of each scene averaged over the subjects (p=0.14).

left: i-scenes, right: ni-scenes
top: events, bottom: texture

Does human qualitative evaluation of sounds rely on semantic attributes ?

• Each simulated scene is represented by a boolean vector of n dimensions $S_i = (x_1, x_2, \dots, x_n)$, $i \in [1, 80]$. Each dimension corresponds to a sound class (event and texture) of a particular semantic level

- Each simulated scene is represented by a boolean vector of n dimensions $S_i = (x_1, x_2, \dots, x_n)$, $i \in [1, 80]$. Each dimension corresponds to a sound class (event and texture) of a particular semantic level
- Precision at rank 5: the average number of items of the same class among the 5 closest items to a given seed item

- Each simulated scene is represented by a boolean vector of n dimensions $S_i = (x_1, x_2, \dots, x_n)$, $i \in [1, 80]$. Each dimension corresponds to a sound class (event and texture) of a particular semantic level
- Precision at rank 5: the average number of items of the same class among the 5 closest items to a given seed item
- ullet A Jaccard distance is then computed between the vectors S_i

- Each simulated scene is represented by a boolean vector of n dimensions $S_i = (x_1, x_2, \dots, x_n)$, $i \in [1, 80]$. Each dimension corresponds to a sound class (event and texture) of a particular semantic level
- Precision at rank 5: the average number of items of the same class among the 5 closest items to a given seed item
- ullet A Jaccard distance is then computed between the vectors S_i
- mds visualization

Does human qualitative evaluation of sounds rely on semantic attributes ?

Semantic level	Event and texture	Event	Texture
0	81 %	76 %	70 %
1	90 %	91 %	78 %
2	92 %	89 %	80 %
3	93 %	91 %	_

Precision at rank 5 (P@5) computed from the *Jaccard* distances between the scenes for different semantic levels

Sound Markers

Is there an event class which has been mostly used in one type of sound environment ?

Sound Markers

Is there an event class which has been mostly used in one type of sound environment ?

V-test at 0.001% significance level (Bonferroni Correction)

Sound Markers

Is there an event class which has been mostly used in one type of sound environment ?

V-test at 0.001% significance level (Bonferroni Correction)

Semantic level	Markers		
	i-scenes	ni-scenes	
0		construction work	
1	church bell	klaxon	
	bicycle bell	siren	
	animal	vehicle work	
	footsteps		
2	church bell	klaxon	
	birds	siren	
	bicycle bell	vehicle work	
	female laugh		
	male laugh		
3	church bell	klaxon	
	birds singing	siren	
	bicycle bell	vehicle work	
	female laugh		
	male footsteps concrete		

Event classes are ordered using descending order of V-test values

Data

Mental representations

Thank you !!

People

Carlo Baugé

Mathias Rossignol

Joakim Anden

Grégoire Lafay

