Definizioni Algebra

Ian

October 2021

Contents

1	Cap	itolo 1	4
	1.1	Corrispondenza	4
	1.2	Relazione	4
	1.3	Relazione/Corrispondenza inversa:	4
	1.4	Relazione di equivalenza:	4
	1.5	Relazione banale (di uguaglianza):	4
	1.6	Relazione caotica:	4
	1.7	Classe di equivalenza:	4
	1.8	Insieme quoziente:	5
	1.9	Partizione insiemistica	5
	1.10	Funzione/Applicazione:	5
	1.11	Iniettiva:	6
	1.12	Suriettiva:	6
	1.13	Biunivoca (biiettiva):	6
		Funzione caratteristica:	6
	1.15	Operazione binaria:	6
		Assiomi di Peano	6
	1.17	Principio del buon ordinamento di \mathbb{N} :	7
	1.18	Teor: Divisione con resto su \mathbb{N}	7
2	Calo	colo combinatorio	7
	2.1	Notazione funzionale:	7
	2.2	Fattoriale crescente:	7
	2.3	Fattoriale decrescente:	7
	2.4	Pigenhole principle (principio dei cassetti):	7
	2.5	Permutazione:	7
	2.6	Coefficiente binomiale	8
	2.7	Formula:	8
	2.8	Relazione ricorsiva:	8
	2.9	Simmetria:	8
	2.10	Relazione d'ordine:	8
	2.11	POSET (Partial order set):	8

3	I nu	ımeri	9
	3.1	Costruzione di $\mathbb Z$ (interi)	9
	3.2	Definizione di \mathbb{Z} :	9
	3.3	Classi su \mathbb{Z} :	9
	3.4	Sottoinsiemi di \mathbb{Z} :	9
	3.5	Somma su \mathbb{Z} :	9
	3.6	Prodotto su \mathbb{Z} :	9
	3.7	Proprietà operazioni su \mathbb{Z} :	9
	3.8	Gruppo:	10
	3.9	Gruppo commutativo (abeliano):	10
	3.10	Anello:	10
		Anello unitario:	10
		Divisore dello zero:	11
		Dominio di integrità:	11
		Legge di annullamento del prodotto:	11
		Divisibilità:	11
		Multiplo:	11
		Associati	11
		Unità:	11
		Irriducibile	11
		Primo:	11
	0.20	3.20.1 Proposizione: in \mathbb{Z} a è primo \Rightarrow a irriducibile	11
		3.20.2 Proposizione: in \mathbb{Z} a irriducibile \Rightarrow a primo	12
	3.21	Massimo comune divisore:	12
	0.21	3.21.1 Teor: Esistenza del MCD tra due numeri	12
		3.21.2 Prop: se $c a $ e $c b $ allora c divide ogni combinazione lineare	12
		di a e b	13
	3 22	Proposizione	13
	0.22	3.22.1 Lemma MCD(m,m+1)=1	13
	3.23	Algoritmo di Euclide	13
	0.20	3.23.1 Lemma1: L'algoritmo termina	13
		3.23.2 Lemma2: Se $a = bq + r MCD(a, b) = MCD(b, r)$	13
		3.23.3 Corollario: $MCD(a,b) = MCD(r_n,0) = r_n 1 \dots$	14
		3.23.4 Lemma3	14
	3 24	Coprimi	14
	5.24	3.24.1 Osservazione1	14
		3.24.2 Osservazione 2	14
		3.24.3 Proposizione 1	14
			14
	2 25	3.24.4 Proposizione 2	14
	3.23	Equazione diofantea	
	2.06	3.25.1 Teor: Soluzione equazione diofantea	14
	3.20	Teorema fondamentale dell'aritmetica	15
		3.26.1 Osservazione 1	15
		3.26.2 Osservazione 2	15
	0.05	3.26.3 Dimostrazione esistenza	15
	3.27	Dimostrazione unicità	15

	3.28	Teor. Euclide - Esistenza infiniti primi	6
4	Con	gruenze 1	7
	4.1	Congruenza modulo n	7
	4.2	Proposizione	7
	4.3	Quoziente	7
	4.4	Proposizione	7
	4.5	Osservazione	8
	4.6	Proposizione somma	8
	4.7	Dimostrazione prodotto	8
	4.8	Campo	8
	4.9	Proposizione	9
	4.10	Classi resto invertibili	9
	4.11	Teorema Uguaglianza sbagliata	9
		4.11.1 Grande teorema di Fermat	0
		4.11.2 Piccolo teorema di Fermat	0
	4.12	Teorema Eulero-Fermat	1
	4.13	Corollario	1
5	Sem	igruppo 2	2
6	Mor	noide 2	2
7	Eler	aco gruppi 2	2
8	Gru	ppo simmetrico 2	3
	8.1	Permutazione	3
	8.2	S_n	3
	8.3	Proposizione	3
	8.4	Proposizione	3
	8.5	3^a notazione: Permutazione come prodotto di cicli disgiunti 2	3
	8.6	Orbita	3
	8.7	Proposizione	3

1 Capitolo 1

Relazione e corrispondenza sono interscambiabili.

1.1 Corrispondenza

Una corrispondenza ρ di X in Y è una terna (ρ, X, Y) dove $\rho \subseteq X \times Y$.

1.2 Relazione

Una Relazione di X in sè, è una corrispondenza ρ di X in X. Se $(x,y) \in \rho$ si scrive anche $x\rho y$ (notazione infissa), cioè x è in relazione ρ con y.

1.3 Relazione/Corrispondenza inversa:

di ρ di X in Y è la relazione di Y in X denotata con ρ^{-1} data dalla seguente:

$$y\rho^{-1}x \Leftrightarrow x\rho y$$

1.4 Relazione di equivalenza:

una relazione su A (cioè un sotto
insieme ρ di AxA) si dice di equivalenza se verifica le tre segu
enti proprietà:

Riflessiva: $\forall a \in A, a\rho a$.

Simmetrica: $\forall a, b \text{ in } A, a\rho b \Rightarrow b\rho a$

Transitiva: $\forall a, b, c \in A \text{ se } (a\rho b \land b\rho c) \Rightarrow a\rho c$

1.5 Relazione banale (di uguaglianza):

su A $x, y \in A \ x \rho y \Leftrightarrow x = y$

1.6 Relazione caotica:

su A $x \rho y \ \forall x, y \in A$

1.7 Classe di equivalenza:

data la relazione ρ in A, si definisce classe di equivalenza modulo ρ di un elemento $a \in A$ l'insieme di tutti gli elementi che sono equivalenti ad a; si denota con $[a]_{\rho}$.

$$[x]_{\rho} := \{ y \in A : y \rho x \}$$

1.8 Insieme quoziente:

data la relazione di equivalenza ρ su A, si definisce insieme quoziente l'insieme delle classi di equivalenza di ρ dato $x \in A$ si denota con A/ρ .

$$A/_{\rho} = \{ [x]_{\rho} : x \in A \}$$

Nota: Relazione di equivalenza e partizioni insiemistiche sono sostanzialmente la stessa cosa.

1.9 Partizione insiemistica

di A è una famiglia di sottoinsiemi di A non vuoti, tali che ad ogni elemento di A corrisponde un solo sottoinsieme.

$$H = \{A_i : i \in I\}$$

con

$$A_i \subseteq A \ \forall i \in I$$

con

$$i \neq j, i, j \in I \Leftrightarrow A_i \cap A_j = \emptyset$$

che equivale a dire:

$$\bigcup_{i \in I} A_i = A$$

cioè la famiglia H ricopre A.

1.10 Funzione/Applicazione:

 $f:S\to T$ è un'applicazione di S in T se (f, S, T) è una corrispondenza di S in T, ovvero $f\subseteq S\times T$ che soddisfa la seguente proprietà:

 $\forall x \in S \exists ! y \text{ in T denotato con } y = f(x)$

f è una legge univoca (ben definita)

L'elemento f(x) si chiama **immagine dell'elemento**.

L'immagine di f è un sottoinsieme del codominio T definito da:

$$Im(f) := \{ y \in T : \exists \ x \in S, y = f(x) \}$$

Controimmagine di y è il sottoinsieme di S del dominio definito da:

$$f^{-1}(y) := \{x \in S : f(x) = y\} \subseteq S$$

1.11 Iniettiva:

f è iniettiva $\Leftrightarrow \forall x, x' \in S : [f(x) = f(x') \Rightarrow x = x'].$ Definizione alternativa: f è iniettiva $\Leftrightarrow \forall x, x' \in S : [f(x) \neq f(x') \Rightarrow x \neq x'].$ f è iniettiva $\Leftrightarrow \forall y \in T \mid f^{-1} \mid \leq 1$, ovvero per ogni elemento y in T esiste al più un'immagine.

1.12 Suriettiva:

f è suriettiva se $\Rightarrow \forall y \in T \; \exists \; x \in S : f(x) = y$ Definizione alternativa: f è suriettiva $\Leftrightarrow f(S) = Im(S) = T$. f è suriettiva $\Leftrightarrow \forall y \in T \; |f^{-1}(y)| \geq 1$, ovvero per ogni elemento y in T esiste almeno un'immagine.

1.13 Biunivoca (biiettiva):

se f è sia iniettiva che suriettiva.

f è biiettiva $\Leftrightarrow \forall y \in T |f^{-1}(y)| = 1$, ovvero per ogni elemento y in T esiste una sola immagine.

1.14 Funzione caratteristica:

è la funzione che vale 1 se $x \in S$, 0 se $x \notin S$.

1.15 Operazione binaria:

su S, è un'applicazione $m: S \times S \to S$; notazione funzionale $(s,s') \mapsto m(s,s')$; notazione infissa sms' o s*s.

1.16 Assiomi di Peano

per la costruzione dei naturali N

- 1. I numeri formano una classe
- 2. Lo "zero" è un numero
- 3. Se a è un numero allora il successore a' è un numero
- 4. Se $a \neq b$ sono due numeri allora $a' \neq b'$
- 5. Lo "zero" non è successore di nessun numero ($\nexists a$ numero tale che zero = a')
- 6. Assioma di induzione:

Se S è una classe di numeri tale che:

- \bullet $zero \in S$
- Se $a \in S$ allora $a' \in S$

allora ogni naturale è in S.

I naturali sono la più piccola classe che

- Contiene lo zero
- Chiusa rispetto a contenere i successori

1.17 Principio del buon ordinamento di N:

Se $S \subseteq \mathbb{N}, S \neq \emptyset$, allora esiste un minimo in S, cioè esiste $m \in S$ tale che se $h \in \mathbb{N}, h < m$ allora $h \notin S$.

1.18 Teor: Divisione con resto su N

: Siano $a,b\in\mathbb{N},b\neq0$; allora esistono $q,r\in\mathbb{N}$ tali che

- a = bq + r
- $0 \le r < b$

 $\forall a, b \in \mathbb{Z}, b \neq 0; \exists \text{ unici } q, r \in \mathbb{Z} \text{ con } a = bq + r \land 0 \leq r < b$

2 Calcolo combinatorio

2.1 Notazione funzionale:

Insieme delle applicazioni da A verso B

$$B^A = \{f : A \to B\}$$

2.2 Fattoriale crescente:

$$n^{(m)} := n * (n+1) * \dots * (n+m-1)$$

2.3 Fattoriale decrescente:

$$n_{(m)} := n * (n-1) * ... * (n-m+1)$$

2.4 Pigenhole principle (principio dei cassetti):

Se ho n oggetti e m cassetti, se n>m e devo disporre tutti gli oggetti nei cassetti allora esiste un cassetto che contiene almeno due oggetti.

2.5 Permutazione:

Sia A un insieme. Una biiezione $f: A \to A$ si chiama anche permutazione di A.

2.6 Coefficiente binomiale

Prima interpretazione combinatoria: $\binom{n}{i}$ è il coefficiente di x^iy^{n-i} nello sviluppo $(x+y)^n = \sum_{z_i \in \{x,y\}} z_1...z_n$, ovvero il numero di stringhe binarie (su x, y)

- lunghe n
- con i occorrenze di x
- con n-i occorrenze di y
- $(x+y)^n = \sum_{i=0}^n \binom{n}{i} x^i y^{n-i}$

Seconda interpretazione combinatoria: numero di sottoinsiemi di cardinalità i su un insieme [n] di cardinalità n.

2.7 Formula:

$$\binom{n}{i} = \frac{n(n-1)*\dots*(n-i+1)}{i!} = \frac{n!}{i!(n-i)!}$$

2.8 Relazione ricorsiva:

$$\binom{n}{i} = \binom{n-1}{i-1} + \binom{n-1}{i}$$

Dimostrazioni algebrica e combinatoria.

2.9 Simmetria:

$$\binom{n}{i} = \binom{n}{n-i}$$

Il coefficiente binomiale è simmetrico rispetto al centro della riga n-esima $\lfloor \frac{n}{2} \rfloor$ del triangolo rappresentante tutti i coefficienti del coefficiente binomiale.

Dimostrazioni algebrica e combinatoria.

2.10 Relazione d'ordine:

Una relazione ρ su X è una relazione d'ordine (o un ordine, un ordinamento) se valgono per ρ le proprietà:

- (R) $\forall x, x \rho x$
- (AS) $\forall x, y (x \rho y \land y \rho x) \Rightarrow x = y$
- (T) $\forall x, y, z \ (x\rho y \land y\rho z) \Rightarrow x\rho z$

2.11 POSET (Partial order set):

Un insieme munito di una relazione d'ordine si dice parzialmente ordinato.

3 I numeri

3.1 Costruzione di \mathbb{Z} (interi)

a partire da \mathbb{N} : prendiamo su $\mathbb{N} \times \mathbb{N}$ la relazione ρ definita sulle coppie $(n,m) \in \mathbb{N} \times \mathbb{N}$ tale che $(n,m)\rho(n',m') \Leftrightarrow n+m'=m+n'$

3.2 Definizione di \mathbb{Z} :

$$\mathbb{Z} = \mathbb{N} \times \mathbb{N}/\rho$$

3.3 Classi su \mathbb{Z} :

$$\frac{\overline{(0,0)} \text{ zero}}{\underline{(m,0)}, m > 0 \text{ positivi}}$$
$$\overline{(0,n)}, n > 0 \text{ negativi}$$

3.4 Sottoinsiemi di \mathbb{Z} :

$$\mathbb{Z} = \mathbb{Z}^{>0} \cup \{0,0\} \cup \mathbb{Z}^{<0}$$

3.5 Somma su \mathbb{Z} :

$$\overline{(n,m)} + \overline{(n',m')} = \overline{(n+n',m+m')}$$

3.6 Prodotto su \mathbb{Z} :

$$\overline{(n,m)} \cdot \overline{n',m'} = \overline{(nn' + mm', nm' + mn')}$$

3.7 Proprietà operazioni su \mathbb{Z} :

 $\forall a, b, c \in \mathbb{Z}$ (coppie $\overline{(n, m)}$) valgono le seguenti:

- 1. Associatività: (a+b) + c = a + (b+c)
- 2. Commutatività: a + b = b + a
- 3. Esiste uno zero per la somma, cioè un elemento 0: a+0=0+a=a
- 4. $\forall a \in \mathbb{Z}$ esiste un elemento detto *opposto*, denotato con -a, cioè un elemento tale che: a + (-a) = (-a) + a = 0.

$$a = \overline{(n,m)}$$
$$-a = \overline{(m,n)}$$

- 5. Associatività prodotto: $a \cdot (b \cdot c) = (a \cdot b) \cdot c$
- 6. Commutatività prodotto: $a \cdot b = b \cdot a$

7. Esiste un elemento neutro per il prodotto, "1", cioè un numero in $\mathbb Z$ tale che:

$$\frac{a \cdot 1 = 1 \cdot a = a}{\overline{(n,m)} \cdot \overline{(1,0)} = \overline{(n,m)}}$$

8. Distributività del prodotto sulla somma:

$$a \cdot (b+c) = a \cdot b + a \cdot c$$

3.8 Gruppo:

Un insieme S non vuoto, munito di una operazione

$$m: S \times S \to S$$

$$(a,b) \mapsto m(a,b) = a * b$$
 (notazione infissa)

che verifica i punti 1, 3, 4 si chiama gruppo(S, *). L'operazione su S è:

- associativa
- con elemento neutro $e, \forall x, x * e = e * x = x$
- per ogni elemento x esiste un inverso rispetto al prodotto * cioè un elemento y tale che x*y=y*x=e, che si denota x^{-1}

3.9 Gruppo commutativo (abeliano):

Se il gruppo (S, *) soddisfa anche la proprietà 2 (quindi associatività, commutatività, elemento neutro, opposto).

3.10 Anello:

Un anello è una terna $(A, +, \cdot)$ con:

- A insieme non vuoto
- \bullet + · due operazioni binarie, associative
- \bullet (A, +) è un gruppo abeliano
- Distributività: $\forall a, b, c \in A, \ a \cdot (b+c) = a \cdot b + a \cdot c$

Anello commutativo: Se un anello $(A, +, \cdot)$ il prodotto è commutativo, cioè se $\forall a, b \in A, \ a \cdot b = b \cdot a$.

3.11 Anello unitario:

Se esiste un elemento di A, che si denota con 1_A , tale che $a \cdot 1_A = 1_A \cdot a = a$.

3.12 Divisore dello zero:

Un elemento $a \in A$, $a \neq 0_A$ di un anello di dice divisore dello zero se esiste $b \in A, b \neq 0$ con $a \cdot b = 0_A$.

3.13 Dominio di integrità:

se $(A, +, \cdot)$ è privo di divisori dello zero.

3.14 Legge di annullamento del prodotto:

se in un dominio di integrità $a \cdot b = 0_A$ allora $a = 0_A$ oppure $b = 0_A$.

3.15 Divisibilità:

dati $a, b \in \mathbb{Z}$ si dice che a divide b, e si indica a|b, se e solo se $\exists c \in \mathbb{Z}$ tale che $b = a \cdot c$. La divisibilità è una relazione sugli interi:

$$a|b \Leftrightarrow \exists c \in \mathbb{Z} : b = a \cdot c$$

3.16 Multiplo:

se a|b diremo che b è un multiplo di a.

3.17 Associati

a,b sono associate se a|b e b|a

Oss1: in \mathbb{N}^* sono associati $\Leftrightarrow a = b$.

Oss2: in generale, in $\mathbb{Z} \Leftrightarrow a = b$ oppure a = -b.

3.18 Unità:

In \mathbb{Z} sono +1 e -1.

3.19 Irriducibile

Un elemento $a \in \mathbb{Z}, \ a \neq 0$ è irriducibile se $a = b \cdot c \Rightarrow b$ oppure c sono unità.

3.20 Primo:

Un elemento $a \in \mathbb{Z}$ si dice primo se:

$$a|b \cdot c \Rightarrow a|b \ oppure \ b|c$$

3.20.1 Proposizione: in \mathbb{Z} a è primo $\Rightarrow a$ irriducibile

Sia $a = b \cdot c$: usando l'ipotesi che a è primo allora a|b oppure a|c. Se $a|b \Rightarrow \exists h : b = a \cdot h \Rightarrow a = a \cdot h \cdot c \Rightarrow h \cdot c = 1 \Rightarrow c = \pm 1$

Allora $a = b \cdot (+1)$ oppure $a = b \cdot (-1)$, a è irriducibile.

3.20.2 Proposizione: in \mathbb{Z} a irriducibile \Rightarrow a primo

Ipotesi: a irriducibile

Tesi: a primo Supponiamo che $a|bc \Leftrightarrow \exists h \in \mathbb{Z} : bc = ah$,

voglio mostrare che a|b oppure a|c ovvero che se $a \nmid b$ allora a|c.

Ora a irriducibile, i suoi divisori sono a, -a, 1, -1. $a \nmid b$ allora anche $-a \nmid b \Rightarrow$ i divisori comuni tra $a \in b$ sono $1, -1 \rightarrow MCD(a, b) = 1$.

$$\exists (id. \text{ B\'ezout}) \exists h, k \in \mathbb{Z}$$

$$1 = ah + bk$$

$$c = cah + cbk = a(ck + k)$$
 $[cb = a]$

quindi a|c.

3.21 Massimo comune divisore:

Dati a,b non entrambi nulli, un elemento $d\in\mathbb{Z}$ si chiama massimo comune divisore tra a e b un numero tale che:

- $d|a \wedge d|b$
- Se $c|a \wedge c|b$, allora c|d: d è il massimo tra i divisori comuni.

Chiamiamo massimo comune divisore l'unico positivo che soddisfa le due proprietà.

3.21.1 Teor: Esistenza del MCD tra due numeri

 $\forall a, b \in \mathbb{Z}$ non entrambi nulli, esiste un numero $d \in \mathbb{N}^*$ tale che d = MCD(a, b) Il massimo comune divisore si esprime come una combinazione lineare tra a e b, ovvero esistono $s, t \in \mathbb{Z}$ tali che $d = s \cdot a + t \cdot b$ (identità di Bézout).

Dimostrazione:

Sia
$$S = \{xa + yb : x, y \in \mathbb{Z}, xa + yb > 0\}$$

- 1. $S \subseteq \mathbb{N}$
- 2. $S \neq \emptyset$

a e b sono non entrambi nulli, quindi almeno uno dei due è $\neq 0$. Sia esso a.

Se a>0 allora $1\cdot a+0\cdot b=a>0$ Se a<0 allora $(-1)\cdot a+0\cdot b=a>0$

Dimostrazione che $d|a \in d|b$:

Dividiamo a per d (divisione col resto): $\exists q, r$ con a = dq + r, $0 \le r < d$ Se r = 0 allora d|a

Se $r \neq 0$ allora 0 < r < d

r = a - dq; dato che $d \in S \Rightarrow d = x_0 a + y_0 b$ allora

$$r = a - q(x_0a + y_0b) = a - qx_0a + qy_0b = a(1 - qx_0) - (qy_0)b$$

Quindi $r \in S$ perchè è una combinazione lineare > 0 ma r < d, però d è il minimo di $S \Rightarrow$ Assurdo.

Dimostrazione se d'|a e d'|b allora d'|d: Poichè d'|a e d'|b si ha che

$$\exists h : a = d' \cdot h, \exists k : b = d' \cdot k$$

Ora

$$d = x_0 a + y_0 b$$
$$= x_0 (d'h) + y_0 (d'k) =$$
$$= d'(x_0 h + y_0 h) \Rightarrow d'|d$$

3.21.2 Prop: se c|a e c|b allora c divide ogni combinazione lineare di a e b

$$a = ch$$

$$b = ck$$

$$\Rightarrow xa + yb = xch + yck$$

$$= c(xh + yk) \Rightarrow \in \mathbb{Z}$$

$$\Rightarrow c|xa + yb|$$

3.22 Proposizione

$$1 = at + bs \Rightarrow MCD(a, b) = 1$$

3.22.1 Lemma MCD(m,m+1)=1

Sia $m \in \mathbb{N}$, $m \ge 1$ allora MCD(m, m + 1) = 1.

Dimostrazione:

$$m+1-m=1 \Rightarrow 1(m+1)+(-1)m=1$$

Potendo scrivere 1 come combinazione lineare di m e m+1, m e m+1 sono primi tra loro.

3.23 Algoritmo di Euclide

3.23.1 Lemma1: L'algoritmo termina

La successione dei resti è un numero $0 \le ... < r_2 < r_1 < b$.

3.23.2 Lemma2: Se $a = bq + r \ MCD(a, b) = MCD(b, r)$

TODO: scrivere dimostrazione

3.23.3 Corollario: $MCD(a, b) = MCD(r_n, 0) = r_n 1$

Per il lemma 2 $MCD(a,b)=MCD(b,r_1)=MCD(r_1,r_2)=\ldots=MCD(r_{n-1},r_n)=MCD(r_n,0)$

3.23.4 Lemma3

Se $x \in \mathbb{N}^*$ allora MCD(x,0) = x

3.24 Coprimi

a,b non entrambi nulli, $a \in b$ si dicono coprimi (o primi fra loro) se MCD(a,b)=1.

3.24.1 Osservazione1

Se a e b sono primi fra loro, allora

$$\exists \ x, y \in \mathbb{Z} : 1 = xa + yb$$

3.24.2 Osservazione 2

Se

$$d = MCD(a, b) \Rightarrow \exists x, y : d = ax + by$$

3.24.3 Proposizione 1

Se $\exists x_0, y_0 \text{ con } 1 = ax + by$ allora a, b sono primi tra loro.

3.24.4 Proposizione 2

Se $a \in b$ sono coprimi e dividono un terzo numero c, allora ab|c.

3.25 Equazione diofantea

Equazione con una o più incognite sugli interi di cui si cercano le soluzioni intere.

3.25.1 Teor: Soluzione equazione diofantea

L'equazione diofante lineare in x e y ax + by = c $a, b, c \in \mathbb{Z}$ possiede soluzioni intere $(x, y) \in \mathbb{Z}^2 \Leftrightarrow d = MCD(a, b)|c$

(Dim \Rightarrow) La condizione MCD(a, b)|c è necessaria.

Ipotesi: esiste una soluzione di $x^2 + y^2 = z^2$

Tesi: $d|\text{termine noto}, d = MCD(a, b): d|a e d|b \Rightarrow d|$ ogni combinazione lineare di a, b.

Se x_0, y_0 sono una soluzione, allora $ax_0 + by_0 = c \Rightarrow d|c = ax_0 + by_0$

(Dim⇐) La condizione è sufficiente.

Ipotesi MCD(a, b) = ah + bk, per opportuni $h, k \in \mathbb{Z}$

3.26 Teorema fondamentale dell'aritmetica

 $\forall n > 1, n \in \mathbb{N}, \exists p_1, ..., p_j \in \mathbb{N}$ (irriducibili) $\exists h_1, ..., h_j \geq 1$ tali che:

- $n = p_1^{h_1} ... p_j^{h_j} p_1, ... p_j$ distinti
- la fattorizzazione di $n=p_1^{h_1}...p_j^{h_j} \ p_1,...p_j$ è unica a meno di riordinare i fattori

3.26.1 Osservazione 1

j può essere 1, cioè potrebbe esserci un solo irriducibile nella fattorizzazione di n, anche h possono essere 1. Se n è irriducibile $\Rightarrow n = n$ è la fattorizzazione in irriducibili di n.

3.26.2 Osservazione 2

 $1\,$ non è considerato irriducibile perché si perderebbe l'unicità della scrittura in irriducibili.

3.26.3 Dimostrazione esistenza

Con principio di induzione in forma forte.

Base: n=2, 2 è irriducibile.

Per oss $1 = 2^1$ è la fattorizzazione in primi in irriducibili di 2

Ipotesi induttiva: ogni $2 \le a < n \pmod{2} \le a \le n-1$) è fattorizzabile in ir-

riducibili: $\exists \alpha_1...\alpha_t\alpha_i \leq 1$ e $q_1,...q_t$ irriducibili con $a=q_1^{\alpha_1}...q_t^{\alpha_t}$ Passo induttivo: provare che n sia prodotto di irriducibili

Primo caso: n irriducibile \rightarrow fatto, per oss.1

Secondo caso: n riducibile: $\exists b, c \in \mathbb{Z}, 1 \neq b, c \neq n$ (divisori propri) con $n = bc \Rightarrow 2 \leq b, c < n$.

Allora per $b \in c$ vale l'ipotesi induttiva e quindi

$$b = q_1^{\alpha_1} ... q_t^{\alpha_t} \quad c = x_1^{\beta_1} ... x_s^{\beta_s}$$

$$n = bc = q_1^{\alpha_1}...q_t^{\alpha_t}x_1^{\beta_1}...x_s^{\beta_s}$$

3.27 Dimostrazione unicità

Per induzione su m, con m è la lunghezza minima di una fattorizzazione per n. m: minimo numero di irriducibili di una fattorizzazione di n

Base: $m = 1 \Rightarrow n = n$ è primo.

Se per assurdo $n = q_1...q_s$, $s \ge 2$ allora $n|q_1$ o $n|q_2...q_s$.

Prendiamo $n|q_1$, anche q_1 è primo $\Rightarrow n=q_1$; semplificando da entrambe le parti $\Rightarrow 1=q_2....q_s$ che porterebbe ad un assurdo perché 1=1.

Quindi $n=q_1$ ed è l'unica fattorizzazione.

Ipotesi induttiva: se il minimo numero di primi in una fattorizzazione di $n \in m-1$, allora la fattorizzazione è unica a meno dell'ordine.

Passo induttivo: m è il minimo di una fattorizzazione di n.

3.28 Teor. Euclide - Esistenza infiniti primi

L'insieme $P = \{ p \in \mathbb{N} : p \text{ è primo} \}$ è infinito.

Dimostrazione: Supponiamo che P sia finito, cioè $P = \{p_1, ..., p_n\}$.

Sia $m = p_1, ...p_n$ il prodotto di tutti i primi.

Considero m+1: per il teorema fondamentale dell'aritmetica $m+1=p_1^{k_1}...p_n^{k_n}$, $k_1,...,k_n\geq 0$ almeno uno degli esponenti $\dot{\varrho}0$.

Per il lemma su MCD di un numero ed il suo successivo m e m+1 sono coprimi. Sia j tale che $k_j > 0$, cioè $p_j^{k_k}|m+1$; vale anche $p_j|m$ allora $p_j|MCD(m,m+1) = 1$ che è un assurdo.

4 Congruenze

4.1 Congruenza modulo n

La congruenza modulo
n (n fissato) è una relazione di equivalenza definita su
 $\mathbb Z.$

$$x \equiv y \pmod{n} \Leftrightarrow x - y$$
 multiplo di $n \Leftrightarrow n|x - y|$

4.2 Proposizione

La congruenza $(mod \ n)$ è una relazione di equivalenza.

Dimostrazione:

(R)
$$\forall x \in \mathbb{Z} : x \equiv x \pmod{n} \Leftrightarrow n | (x - x)$$

Vera perché $0 = 0 \cdot n$.

(S)
$$\forall x, y \in \mathbb{Z} : x \equiv y \pmod{n} \Rightarrow y \equiv x \pmod{n}$$

So che $n|x-y \Leftrightarrow x-y=nh$ per qualche $h \in \mathbb{Z}$.

Moltiplicando per -1: y - x = -nh = n(-h) quindi $n|y - x \Rightarrow y \equiv x \pmod{n}$

(T)
$$x \equiv y \pmod{n} \land y \equiv z \pmod{n} \Rightarrow x \equiv z \pmod{n}$$

$$(x-y)=nh_1\wedge (y-z)=nh_2 (x-z)=(x-y)-(y-z)=nh_1-nh_2=n(h_1-h_2) \text{ quindi } n|x-z\Rightarrow x\equiv z (mod\ n)$$

4.3 Quoziente

Il quoziente della congruenza $(mod\ n)$ si denota come $\mathbb{Z}_{/\equiv (mod\ n)} = \{[x]_n : x \in \mathbb{Z}\}.$

Il quoziente \mathbb{Z}_n si chiama anche **interi modulo n**.

4.4 Proposizione

Dati $x,y\in\mathbb{Z}$ si ha: $x\equiv y \pmod n \Leftrightarrow$ il resto delle divisioni di x e di y per n è lo stesso.

Dimostrazione \Rightarrow (se $x \equiv_n y$ hanno lo stesso resto x - y = nh (per qualche h)

$$x = nh + y$$

Dividendo y per $n: \exists !q, r \in \mathbb{Z} : y = nq + r, \ 0 \le r < n.$

Scambiando in x: x = nh + nq + r = n(h+q) + r, x ed y hanno quindi lo stesso resto.

4.5 Osservazione

Sia $x = nq + r, \ 0 \le r < n$ la divisione con resto di x per n. Allora

$$[x]_n = [r]_n \Leftrightarrow x \equiv r \pmod{n} \Leftrightarrow x - r = nq$$

Quindi

$$n|x-r$$

4.6 Proposizione somma

La somma classi resto in \mathbb{Z}_n , definita da: $\overline{x} + \overline{y} := \overline{x+y}$, è ben posta, ovvero non dipende dalla scelta dei rappresentanti.

Dimostrazione Siano $x' \in \overline{x}$, cioè $\overline{x'} = \overline{x}$ e $y' \in \overline{y}$ cioè $\overline{y'} = \overline{y}$, allora

$$x' \equiv x \pmod{n} \Leftrightarrow x' = x + kn$$

$$y' \equiv y \pmod{n} \Leftrightarrow y' = y + hn$$

Da verificare: $\overline{x'+y'}=\overline{x+y}\Leftrightarrow x'+y'=x+y+tn$ Quindi:

$$x' + y' = x + kn + y + hn$$
$$= x + y + kn + hn$$
$$= x + y + (k+h)n [(k+h) = t]$$

4.7 Dimostrazione prodotto

$$x' \cdot y' = (x + kn)(y + hn)$$
$$= xy + xhn + kny + khn^{2}$$
$$xy + n(xh + ky + khn), \quad [(xh + ky + khn) = t]$$

4.8 Campo

Un campo è una terna $(K, +, \cdot)$ con K insieme non vuoto e 2 operazioni.

- $(K, +, \cdot)$ anello commutativo unitario
- Detto 0_k l'elemento neutro della somma e denotato con $K^* = K \setminus \{0_k\}$, deve valere che $\forall x \in K^* : x \cdot x^{-1} = 1_k$

Quindi campo \Leftrightarrow anello commutativo unitario con in più $K\setminus\{0_k\}=(K^*,\cdot)$ gruppo.

4.9 Proposizione

 $a \in \mathbb{Z}, \overline{a}$ invertibile in $\mathbb{Z}_n \Leftrightarrow MCD(a, n) = 1$

 $Dim \Rightarrow$

Ipotesi: $\overline{a} \in \mathbb{Z}$ invertibile

Tesi: (a,n)=1

Esiste $b \in \mathbb{Z} : \overline{a} \cdot \overline{b} = 1$

$$\Leftrightarrow ab \equiv 1 (mod \ n)$$

$$\Leftrightarrow n|1-ab$$

$$\Leftrightarrow 1-ab=nk$$

$$\Leftrightarrow 1 = ab + nk$$

$$\Rightarrow MCD(a, n) = 1$$

 $\mathbf{Dim} \Leftarrow$

Ipotesi: MCD(a, n) = 1

Tesi: \overline{a} è invertibile

Se MCD(a, n) = 1 allora esistono $h, k \in \mathbb{Z}$:

$$1 = ah + nk \in \mathbb{Z}$$

$$\overline{1} = \overline{ah + nk}$$

$$\overline{1} = \overline{a}\overline{h} + \overline{n}\overline{k} \in \mathbb{Z}$$

$$\overline{n}\overline{k} = \overline{0}\overline{k}$$

$$\overline{1} = \overline{a}\overline{h} \Rightarrow \overline{h} = (\overline{a})^{-1}$$

4.10 Classi resto invertibili

$$\cup (\mathbb{Z}_n) := \{ a \in \mathbb{Z}_n : \overline{a} \ invertibile \} \subseteq \mathbb{Z}_n$$

$$\cup (\mathbb{Z}_n) = \{ \overline{a} : MCD(a, n) = 1 \}$$

4.11 Teorema Uguaglianza sbagliata

Se p è primo allora $\forall x,y \in \mathbb{Z}$ vale:

$$(x+y)^p \equiv x^p + y^p \pmod{p}$$

$$(\overline{x} + \overline{y})^p = \overline{x}^p + \overline{y}^p \pmod{p}$$

Dimostrazione:
$$(x+y)^p = \sum_{i=0}^p \binom{p}{i} x^i y^{p-i}$$

$$\binom{p}{0} = 1 = \binom{p}{p}$$

$$\binom{p}{0}x^0y^p = 1y^p$$

$$\binom{p}{p}x^p y^0 = 1x^p$$

Considerare con 0 < i < p il coefficiente binomiale è:

$$\binom{p}{i} = \frac{p(p-1)...(p-i+1)}{i(i-1)...2 \cdot 1} \in \mathbb{N}$$

$$p(\frac{(p-1)...(p-i+1)}{i!}) \Rightarrow p|\binom{p}{i} \forall i = 2, ..., p-1$$

$$\Rightarrow \binom{p}{i} \equiv 0 \pmod{p}$$

4.11.1 Grande teorema di Fermat

 $x^n+y^n=z^n, n\geq 3$ non ha soluzioni intere.

4.11.2 Piccolo teorema di Fermat

 $\forall a \in \mathbb{Z}, \forall p (mod) \text{ primo si ha che: } a^p \equiv a (mod \ p) \text{ in } \mathbb{Z}_{\text{\tiny I}}, \ p \text{ primo vale } \overline{a}^p = \overline{a}.$

Dimostrazione per $a \in \mathbb{N}$

Per induzione su a

Base:

$$a = 0$$

$$0^{p} \equiv^{?} 0 \pmod{p}$$

$$0^{p} = 0 \in \mathbb{Z} \Rightarrow 0^{p} \equiv \pmod{p}$$

Ipotesi induttiva: supponiamo vera per a l'affermazione $a^p \equiv a \pmod{p}$

Passo induttivo: verifichiamo per (a + 1).

$$(a+1)^p \equiv a^p + 1^p \equiv a+1$$

 $a^p \rightarrow a$ e $1^p \rightarrow 1$ per ipotesi induttiva.

Se a < 0 è ancora vero?

Se a < 0 allora -a > 0, cioè $(-a)^p \equiv -a \pmod{p}$. Ora:

$$0 = a - a$$

$$0^p = (a-a)^p$$

$$0^p \equiv (a-a)^p \equiv a^p + (-a)^p$$

$$\equiv a^p - a \equiv 0 \cdot (mod \ p) \Leftrightarrow a^p \equiv a (mod \ p)$$

4.12 Teorema Eulero-Fermat

Se (a,p)=1 cioè se $\overline{a}\neq \overline{0}$ in \mathbb{Z}_p allora

$$a^{p-1} \equiv 1 \pmod{p}$$

Dimostrazione: se (a, p) = 1 allora esiste l'inverso moltiplicativo di \overline{a} in \mathbb{Z}_p . So che

$$a^p \equiv a (mod \; p)$$

$$(\overline{a}^p) \equiv \overline{a} (mod \ p)$$

 \Rightarrow moltiplicando per l'inverso $\Rightarrow \overline{a}^{p-1} = \overline{1}$ in \mathbb{Z}_p

$$\Leftrightarrow a^{p-1} \equiv 1 \pmod{p}$$

4.13 Corollario

Se (a,p)=1e se p primo allora \overline{a}^{p-2} è l'inverso moltiplicativo di \overline{a} in \mathbb{Z}_p

Dimostrazione: l'inverso di \overline{a} è \overline{x} con $\overline{a} \cdot \overline{x} = \overline{2}$, ma

$$\overline{a} \cdot \overline{a}^{p-2} = \overline{a}^{p-1} = \overline{1}$$

per il teorema di Eulero-Fermat.

5 Semigruppo

Sia X un insieme non vuoto. $\begin{tabular}{ll} \end{tabular}$

$$X \ * \ X \to Z$$

$$(a.b) \mapsto a * b$$

una operazione binaria associativa: $\forall a, b, c \in X : a + (b + c) = (a + b) + c$ Un insieme X, munito di una operazione associativa si chiama **semigruppo**.

6 Monoide

Se (X, +) è un semigruppo e inoltre esiste un elemento 1_X tale che $a + 1_X = 1_X * a = a$ (1_X elemento neutro dell'operazione *), allora (X, +) si chiama monoide.

7 Elenco gruppi

- (A^*,\cdot) è un monoide non commutativo.
- $(\mathbb{N},+)$ (commutativo) monoide (0 el. neutro) ma non è un gruppo.
- $(\mathbb{Z},+)$ gruppo commutativo (0 el. neutro).
- $(\mathbb{Q},+)$ gruppo commutativo (0 el. neutro); $\frac{p}{a} \to opposto \frac{p}{a}$.
- (\mathbb{N}^*, \cdot) monoide, non è un gruppo.
- (\mathbb{Z}^*,\cdot) monoide, non è un gruppo.
- (\mathbb{Q},\cdot) non è un gruppo, 0 non ha inverso.
- (\mathbb{Q}^*,\cdot) gruppo.
- $(\mathbb{R},+)$ gruppo.
- (\mathbb{R}^*, \cdot) monoide, gruppo.
- $(\mathbb{Z}_n,+)$ gruppo finito commutativo; el. neutro $\overline{0}$.
- (\mathbb{Z}_n,\cdot) monoide, semigruppo (non è un gruppo $\overline{0}$ non è invertibile.
- $(\cup(\mathbb{Z}_n),\cdot)$ gruppo, el. neutro $\overline{1}=\{\overline{a}:(a,n)=1\}$ (el. invertibili).

8 Gruppo simmetrico

8.1 Permutazione

 $f:[n]\to[n]$ si chiama permutazione di n elementi se f è biiettiva.

8.2 S_n

$$S_n := \{ \sigma : [n] \to [n] : \sigma \text{ è biiettiva} \}$$
$$= \{ \sigma : \sigma \text{ è una biiezione} \}$$

8.3 Proposizione

$$|S_n| = n!$$

8.4 Proposizione

 (S_n, \cdot) l'insieme delle permutazioni di n elementi con il prodotto di composizione funzionale è un gruppo di cardinalità n! non commutativo.

Dimostrazione

- S_n non vuoto, $n \ge 1$
- Esiste un elemento neutro rispetto al prodotto ·, la permutazione identica: $\sigma \circ id = id \circ \sigma = \sigma$.
- Prodotto associativo $\forall \sigma, \tau, \rho \in S_n \ (\sigma \circ \tau) \circ \rho(i) = \sigma \circ (\tau \circ \rho)(i) = \sigma(\tau(\rho(i)))$
- $\forall \sigma \in S_n$ esiste un elemento σ^{-1} tale che $\sigma \circ \sigma^{-1} = id$.

8.5 3^a notazione: Permutazione come prodotto di cicli disgiunti

 S_n : Definire una relazione di equivalenza su [n] associata a $\sigma \in S_n$.

$$x, y \in [n]$$
$$x \equiv_{\sigma} y \Leftrightarrow \exists i : y = \sigma^{i}(x)$$

Si osservi che $\sigma \in S_n$, allora la potenza i-esima di σ , con $i \in \mathbb{N}$ è la permutazione $\sigma^i = \sigma \circ \dots \circ \sigma$ per i volte.

8.6 Orbita

L'orbita di $x \in [n]$ è la classe di equivalenza di x nella relazione \equiv_{σ} .

$$O_{\sigma}(x) = \{ y \in [n] \exists i \ con \ y = \sigma^{i}(x) \}$$

8.7 Proposizione

Se τ_1 e τ_2 hanno cicli disgiunti $\tau_1 \circ \tau_2 = \tau_2 \circ \tau_1$