NeRF in the Wild Neural Radiance Fields for Unconstrained Photo Collections

Tabisheva Anastasia, 171

What is NeRF-W?

NeRF-W (Neural Radiance Fields in the Wild) - an extension of NeRF for synthesizing novel views of complex outdoor scenes using only unstructured collections of in-the-wild photographs

Input Output

Why not NeRF?

- In outdoor photography, time of day and camera settings directly impact the illumination
- Real-world landmarks are rarely captured in isolation,
 without moving objects or distractors around them

Input

Viewpoint

Appearance embedding

Transient embedding

Static

Transient

Uncertainty

Reconstruction

Target

NeRF-W model architecture

Adaptation NeRF to variable lighting

NeRF

$$\bar{\mathbf{C}}(\mathbf{r}) = \int_{t_n}^{t_f} T(t)\sigma(t)\mathbf{c}(t)dt$$

$$T(t) = \exp\left(-\int_{t}^{t} \sigma(s)ds\right)$$

$$\mathbf{c}(t) = \mathrm{MLP}_{\theta_2}(\mathbf{z}(t), \gamma_{\mathbf{d}}(\mathbf{d}))$$

$$\bar{\mathbf{C}}_{i}(\mathbf{r}) = \int_{t_{-}}^{t_{f}} T(t)\sigma(t)\mathbf{c}_{i}(t)dt$$

$$T(t) = \exp\left(-\int_{t_n}^t \sigma(s)ds\right)$$

$$\mathbf{c}_{i}(t) = \mathrm{MLP}_{\theta_{2}}\left(\mathbf{z}(t), \gamma_{\mathbf{d}}(\mathbf{d}), \boldsymbol{\ell}_{i}^{(a)}\right)$$

Adaptation NeRF to transient phenomena

$$\bar{\mathbf{C}}_i(\mathbf{r}) = \int_{t_n}^{t_f} T_i(t) \left(\sigma(t) \, \mathbf{c}_i(t) + \frac{\sigma_i^{(\tau)}(t) \, \mathbf{c}_i^{(\tau)}(t)}{t} \right) dt \qquad T_i(t) = \exp\left(-\int_{t_n}^{t} \left(\sigma(s) + \frac{\sigma_i^{(\tau)}(s)}{t} \right) ds \right)$$

(we augment static density and radiance with transient counterparts)

$$\left[\sigma_i^{(\tau)}(t), \mathbf{c}_i^{(\tau)}(t), \tilde{\beta}_i(t)\right] = \mathrm{MLP}_{\theta_3}\left(\mathbf{z}(t), \boldsymbol{\ell}_i^{(\tau)}\right)$$

(new MLP in NeRF-W for transient parts)

NeRF-W's loss function

$$Loss = \sum_{i,j} L_i(\mathbf{r}_{ij}) + \frac{1}{2} \left\| \mathbf{C}(\mathbf{r}_{ij}) - \hat{\mathbf{C}}_c(\mathbf{r}_{ij}) \right\|_2^2$$

$$L_i(\mathbf{r}) = \frac{1}{2\beta_i(\mathbf{r})^2} \left\| \mathbf{C}_i(\mathbf{r}) - \hat{\mathbf{C}}_i(\mathbf{r}) \right\|_2^2 + \frac{1}{2} \log \beta_i(\mathbf{r})^2 + \frac{\lambda_u}{K} \sum_{k=1}^K \sigma_i^{(\tau)}(t_k)$$

(only for fine model with extensions)

Models for experiments

- NeRF, NeRF-W
- NeRF-A (appearance), wherein the 'transient' head is eliminated
- NeRF-U (uncertainty), wherein appearance embedding is eliminated

Datasets

- Phototourism Dataset
- Lego Dataset

Controllable Appearance:

Quantitative results on the Lego dataset

	ORIGINAL				COLOR PERTURBATIONS			
51	↑ PSNR	↑ MSSSIM	↓ CT	↓ LPIPS	↑ PSNR	↑ MSSSIM	↓ CT	↓ LPIPS
NERF	33.35±0.05	0.989±0.000	0.033±0.000	0.019±0.000	23.38±0.05	0.964 ± 0.001	0.039 ± 0.000	0.076±0.001
NERF-A	33.04 ± 0.06	0.989 ± 0.000	0.033 ± 0.000	0.020 ± 0.000	30.66 ± 1.38	0.983 ± 0.007	0.038 ± 0.006	0.031 ± 0.015
NERF-U	33.07 ± 0.27	0.989 ± 0.001	0.033 ± 0.000	0.019 ± 0.001	24.87 ± 0.52	0.968 ± 0.000	0.039 ± 0.001	0.063 ± 0.007
NERF-W	32.89 ± 0.14	0.989 ± 0.000	0.033 ± 0.000	0.020 ± 0.001	31.51 ± 0.28	0.987 ± 0.001	0.034 ± 0.000	0.022 ± 0.001
		OCCL	UDERS		CoL	ORS PERTURBA	TIONS & OCCL	UDERS
	↑ PSNR	OCCL	LUDERS	↓ LPIPS	COLe	ORS PERTURBA	TIONS & OCCL	UDERS ↓ LPIPS
NERF	↑ PSNR 19.35±0.11	↑ MSSSIM	↓ CT		↑PSNR	↑ MSSSIM		↓ LPIPS
NERF NERF-A	19.35±0.11	↑MSSSIM 0.891±0.001	↓ CT 0.057±0.000	0.112±0.001	↑PSNR 15.73±3.13	↑ MSSSIM	↓CT	↓LPIPS 0.217±0.100
	19.35±0.11	↑MSSSIM 0.891±0.001 0.922±0.005	↓ CT 0.057±0.000 0.051±0.001	0.112±0.001	↑PSNR 15.73±3.13 21.08±0.41	↑ MSSSIM 0.804±0.109 0.903±0.007	↓CT 0.061±0.003 0.057±0.004	↓LPIPS 0.217±0.100 0.116±0.016

Вопросы

- Какие проблемы возникают при использовании NeRF на реальных датасетах?
- Какой лосс оптимизирует NeRF-W?
- Опишите архитектуру модели NeRF-W, какие входы и выходы