LP2980 Micropower SOT, 50 mA Ultra Low-Dropout Regulator

General Description

The LP2980 is a 50 mA, fixed-output voltage regulator designed specifically to meet the requirements of battery-powered applications.

Using an optimized VIPTM (Vertically Integrated PNP) process, the LP2980 delivers unequaled performance in all specifications critical to battery-powered designs:

Dropout Voltage. Typically 120 mV @ 50 mA load, and 7 mV @ 1 mA load.

Ground Pin Current. Typically 375 $\mu \text{A} @$ 50 mA load, and 80 $\mu \text{A} @$ 1 mA load.

Sleep Mode. Less than 1 $\mu\mathrm{A}$ quiescent current when ON/OFF pin is pulled low.

Smallest Possible Size. SOT-23 package uses an absolute minimum of board space.

Minimum Part Count. Requires only 1 $\mu {\rm F}$ of external capacitance on the regulator output.

Precision Output. 0.5% tolerance output voltages available (A grade).

5.0V, 3.3V, and 3.0V versions available as standard products.

Features

- Ultra low dropout voltage
- Output voltage accuracy 0.5% (A Grade)
- Guaranteed 50 mA output current
- Smallest possible size (SOT-23 Package)
- Requires only 1 µF external capacitance
- < 1 μA quiescent current when shutdown</p>
- Low ground pin current at all load currents
- High peak current capability (150 mA typical)
- Wide supply voltage range (16V max)
- Fast dynamic response to line and load
- Low Z_{OUT} over wide frequency range
- Overtemperature/overcurrent protection
- -25°C to +125°C junction temperature range

Applications

- Cellular Phone
- Palmtop/Laptop Computer
- Personal Digital Assistant (PDA)
- Camcorder, Personal Stereo, Camera

Block Diagram

TL/H/12078-1

Connection Diagram and Ordering Information

5-Lead Small Outline Package (M5)

TL/H/12078-38

TL/H/12078-3

For Ordering Information See Table I in this Datasheet See NS Package Number MA05A

VIP™ is a trademark of National Semiconductor Corporation

Absolute Maximum Ratings (Note 1)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.

Storage Temperature Range -65°C to +150°C Operating Junction Temperature Range -25°C to +125°C Lead Temperature (Soldering, 5 sec.)

ESD Rating (Note 2)

Power Dissipation (Note 3) Internally Limited Input Supply Voltage (Survival) -0.3V to +16VInput Supply Voltage (Operating) 2.1V to +16V Shutdown Input Voltage (Survival) -0.3V to +16VOutput Voltage (Survival, Note 4) -0.3V to +9VI_{OUT} (Survival) Short Circuit Protected Input-Output Voltage (Survival, Note 5) -0.3V to +16V

 $\textbf{Electrical Characteristics} \ \ \text{Limits in standard typeface are for T}_{J} = 25^{\circ}\text{C}, \ \text{and limits in boldface type} \ \text{apply}$ over the full operating temperature range. Unless otherwise specified: $V_{IN} = V_{O(NOM)} + 1V$, $I_L = 1$ mA, $C_{OUT} = 1$ μF , V_{ON/OFF} = 2V.

2 kV

Symbol	Parameter	Conditions	Тур	LP2980AI-XX (Note 6)		LP2980I-XX (Note 6)		Units
				Min	Max	Min	Max	UG VEST
Vo	Output Voltage	$V_{IN} = V_{O(NOM)} + 1V$	5.0	4.975	5.025	4.950	5.050	billes
	(5.0V Versions)	1 mA < I _L < 50 mA	5.0	4.962 4.875	5.038 5.125	4.925 4.825	5.075 5.175	F Aug B F trood PSCNIS
	Output Voltage	$V_{IN} = V_{O(NOM)} + 1V$	3.3	3.283	3.317	3.267	3.333	EN ST
	(3.3V Versions)	1 mA < I _L < 50 mA	3.3	3.275 3.217	3.325 3.383	3.250 3.184	3.350 3.416	V
	Output Voltage	$V_{IN} = V_{O(NOM)} + 1V$	3.0	2.985	3.015	2.970	3.030	
	(3.0V Versions)	1 mA < I _L < 50 mA	3.0	2.977 2.925	3.023 3.075	2.955 2.895	3.045 3.105	A) aid
$\frac{\Delta V_{O}}{\Delta V_{IN}}$	Output Voltage Line Regulation	V _{O(NOM)} + 1V ≤ V _{IN} ≤ 16V	0.007		0.014 0.032		0.014 0.032	%/V
V _{IN} -V _O	Dropout Voltage (Note 7)	I _L = 0	1		3 5		3 5	mV
9		I _L = 1 mA	7		10 15		10 15	
		I _L = 10 mA	40		60 90		60 90	
		I _L = 50 mA	120		150 225		150 225	
IGND	Ground Pin Current	I _L = 0	65		95 125		95 125	μΑ
		I _L = 1 mA	80	niveby(110 170	erpeiO	110 170	
		I _L = 10 mA	140	mil basid	220 460		220 460	
		I _L = 50 mA	375		600 1200		600 1200	
		V _{ON/OFF} < 0.18V	0		1		1	
V _{ON/OFF}	ON/OFF Input Voltage	High = O/P ON	1.4	2.0		2.0		V
	(Note 8)	Low = O/P OFF	0.55		0.18		0.18	
I _{ON/OFF}	ON/OFF Input Current	V _{ON/OFF} = 0	0	or itselfings	-1		-1	пД
		V _{ON/OFF} = 5V	5	and the same	15		15	μΑ

Electrical Characteristics Limits in standard typeface are for $T_J = 25^{\circ}\text{C}$, and limits in **boldface type** apply over the full operating temperature range. Unless otherwise specified: $V_{\text{IN}} = V_{\text{O(NOM)}} + 1\text{V}$, $I_L = 1$ mA, $C_{\text{OUT}} = 1$ μF , $V_{\text{ON/OFF}} = 2\text{V}$. (Continued)

Symbol	Parameter	Conditions	Тур	LP2980AI-XX (Note 6)		LP2980I-XX (Note 6)		Units
				Min	Max	Min	Max	mA μV
I _{O(PK)}	Peak Output Current	$V_{OUT} \ge V_{O(NOM)} - 5\%$	150	100		100		mA
e _n	Output Noise Voltage (RMS)	$BW = 300 \text{ Hz}-50 \text{ kHz},$ $C_{OUT} = 10 \mu\text{F}$	160	8054				μV
$\frac{\Delta V_{OUT}}{\Delta V_{IN}}$	Ripple Rejection	f = 1 kHz $C_{OUT} = 10 \mu\text{F}$	63	00000.1 20000.1		A ST	3	dB
I _{O(MAX)}	Short Circuit Current	R _L = 0 (Steady State) (Note 9)	150	ang nu		A	8	mA

Note 1: Absolute maximum ratings indicate limits beyond which damage to the component may occur. Electrical specifications do not apply when operating the device outside of its rated operating conditions.

Note 2: The ESD rating of pins 3 and 4 is 1 kV.

Note 3: The maximum allowable power dissipation is a function of the maximum junction temperature, $T_{J(MAX)}$, the junction-to-ambient thermal resistance, θ_{JA} , and the ambient temperature, T_A . The maximum allowable power dissipation at any ambient temperature is calculated using:

$$P (MAX) = \frac{T_{J(MAX)} - T_{A}}{\theta_{JA}}$$

The value of θ_{JA} for the SOT-23 package is 300°C/W. Exceeding the maximum allowable power dissipation will cause excessive die temperature, and the regulator will go into thermal shutdown.

Note 4: If used in a dual-supply system where the regulator load is returned to a negative supply, the LP2980 output must be diode-clamped to ground.

Note 5: The output PNP structure contains a diode between the V_{IN} and V_{OUT} terminals that is normally reverse-biased. Reversing the polarity from V_{IN} to V_{OUT} will turn on this diode (see Application Hints).

Note 6: Limits are 100% production tested at 25°C. Limits over the operating temperature range are guaranteed through correlation using Statistical Quality Control (SQC) methods. The limits are used to calculate National's Averaging Outgoing Level (AOQL).

Note 7: Dropout voltage is defined as the input to output differential at which the output voltage drops 100 mV below the value measured with a 1V differential.

Note 8: The ON/OFF inputs must be properly driven to prevent misoperation. For details, refer to Application Hints.

Note 9: See Typical Performance Characteristics curves.

Basic Application Circuit

^{*}ON/OFF input must be actively terminated. Tie to VIN if this function is not to be used.

^{**}Minimum Output Capacitance is 1 µF to insure stability over full load current range. More capacitance provides superior dynamic performance and additional stability margin (see Application Hints).

^{***}Do not make connections to this pin.

Ordering Information

TABLE I. Package Marking and Order Information

Output Voltage (V)	Grade	Order Information	Package Marking	Supplied as:	
5.0	A	LP2980AIM5X-5.0	L01A	3k Units on Tape and Reel	
5.0	Α	LP2980AIM5-5.0	L01A	250 Units on Tape and Reel	
5.0	STD	LP2980IM5X-5.0	L01B	3k Units on Tape and Reel	
5.0	STD	LP2980IM5-5.0	L01B	250 Units on Tape and Reel	
3.3	Α	LP2980AIM5X-3.3	L00A	3k Units on Tape and Reel	
3.3	A	LP2980AIM5-3.3	L00A	250 Units on Tape and Reel	
3.3	STD	LP2980IM5X-3.3	L00B	3k Units on Tape and Reel	
3.3	STD	LP2980IM5-3.3	L00B	250 Units on Tape and Reel	
3.0	Α	LP2980AIM5X-3.0	L02A	3k Units on Tape and Reel	
3.0	A	LP2980AIM5-3.0	L02A	250 Units on Tape and Reel	
3.0	STD	LP2980IM5X-3.0	L02B	3k Units on Tape and Reel	
3.0	STD	LP2980IM5-3.0	L02B	250 Units on Tape and Reel	

Connection Diagram

See NS Package Number MA05A

 $\label{eq:total_problem} \textbf{Typical Performance Characteristics} \\ \textbf{Unless otherwise specified: T}_{A} = 25^{\circ}\text{C}, \ \textbf{V}_{IN} = \ \textbf{V}_{O(NOM)} + \ \textbf{1V}, \ \textbf{C}_{OUT} = 2.2 \ \mu\text{F, all voltage options, ON/OFF pin tied to V}_{IN}.$

TL/H/12078-9

TL/H/12078-40

TL/H/12078-15

TL/H/12078-39

TL/H/12078-16

 $\begin{tabular}{ll} \textbf{Typical Performance Characteristics} & (Continued) \\ \textbf{Unless otherwise specified: } T_A = 25^{\circ}C, \ V_{IN} = \ V_{O(NOM)} + \ 1V, \ C_{OUT} = 2.2 \ \mu\text{F, all voltage options, ON/OFF} \end{tabular} \begin{tabular}{ll} \textbf{pin tied to } V_{IN}. \end{tabular}$

TL/H/12078-11

Ground Pin Current vs Temperature

TL/H/12078-10

Input Current vs VIN

TL/H/12078-17

Dropout Voltage vs Load Current

TL/H/12078-20

Ground Pin Current vs

TL/H/12078-19

Input Current vs VIN

 $\begin{tabular}{ll} \textbf{Typical Performance Characteristics} & (Continued) \\ \textbf{Unless otherwise specified: $T_A=25^{\circ}$C, $V_{IN}=V_{O(NOM)}+1$V, $C_{OUT}=2.2$ μF, all voltage options, ON/\overline{OFF} pin tied to V_{IN}.} \end{tabular}$

20 μs/div ->

TL/H/12078-21

10 μs/div →

TL/H/12078-41

Load Transient Response

10 µs/div →

TL/H/12078-23

Line Transient Response

20 μs/div ->

TL/H/12078-22

Load Transient Response

10 μs/div →

TL/H/12078-42

Load Transient Response

10 μs/div --

 $\begin{tabular}{ll} \textbf{Typical Performance Characteristics} & (Continued) \\ \textbf{Unless otherwise specified: } T_A = 25^{\circ}C, \ V_{IN} = \ V_{O(NOM)} + \ 1V, \ C_{OUT} = 2.2 \ \mu F, \ all \ voltage \ options, \ ON/\overline{OFF} \ pin \ tied \ to \ V_{IN}. \\ \end{tabular}$

Short Circuit Current

TL/H/12078-32

Short Circuit Current

TL/H/12078-33

Output Impedance vs

TL/H/12078-44

Instantaneous Short Circuit Current vs Temperature

TL/H/12078-12

Instantaneous Short Circuit Current vs Output Voltage

TL/H/12078-43

Ripple Rejection

 $\begin{tabular}{ll} \textbf{Typical Performance Characteristics} & (Continued) \\ \textbf{Unless otherwise specified: } T_A = 25^{\circ}\text{C, } V_{\text{IN}} = V_{\text{O(NOM)}} + 1\text{V, } C_{\text{OUT}} = 2.2 \ \mu\text{F, all voltage options, ON/$\overline{\text{OFF}}$ pin tied to V_{IN}.} \\ \end{tabular}$

TL/H/12078-27

Input to Output Leakage vs Temperature

TL/H/12078-28

Turn-On Waveform

20 μs/div ->

TL/H/12078-30

Output Impedance vs Frequency

TL/H/12078-26

Output Reverse Leakage vs Temperature

TL/H/12078-29

Turn-Off Waveform

10 ms/div→

Typical Performance Characteristics (Continued)

Unless otherwise specified:

 $T_A=25^{\circ}\text{C},~V_{\text{IN}}=V_{\text{O(NOM)}}+1\text{V},~C_{\text{OUT}}=2.2~\mu\text{F},$ all voltage options, ON/OFF pin tied to $V_{\text{IN}}.$

TL/H/12078-45

Application Hints

OUTPUT CAPACITOR

Like any low-dropout regulator, the LP2980 requires an output capacitor to maintain regulator loop stability. This capacitor must be selected to meet the requirements of minimum capacitance and equivalent series resistance (ESR) range. It is not difficult to find capacitors which meet the criteria of the LP2980, as the acceptable capacitance and ESR ranges are wider than for most other LDOs.

In general, the capacitor value must be at least 1 μF (over the actual ambient operating temperature), and the ESR must be within the range indicated in Figures 1, 2, and 3. It should be noted that, although a maximum ESR is shown in these Figures, it is very unlikely to find a capacitor with ESR that high.

Tantalum Capacitors

Surface-mountable solid tantalum capacitors offer a good combination of small physical size for the capacitance value, and ESR in the range needed by the LP2980.

The results of testing the LP2980 stability with surface-mount solid tantalum capacitors show good stability with values of at least 1 $\mu F.$ The value can be increased to 2.2 μF (or more) for even better performance, including transient response and noise.

Small value tantalum capacitors that have been verified as suitable for use with the LP2980 are shown in Table II. Capacitance values can be increased without limit.

Aluminum Electrolytic Capacitors

Although probably not a good choice for a production design, because of relatively large physical size, an aluminum electrolytic capacitor can be used in the design prototype for an LP2980 regulator. A value of at least 1 μ F should be used, and the ESR must meet the conditions of *Figures 1, 2*, and 3. If the operating temperature drops below 0°C, the regulator may not remain stable, as the ESR of the aluminum electrolytic capacitor will increase, and may exceed the limits indicated in the Figures.

TABLE II. Surface-Mount Tantalum Capacitor
Selection Guide

1 μF Surface	-Mount Tantalums			
Manufacturer	Part Number			
Kemet	T491A105M010AS			
NEC	NRU105M10			
Siemens	B45196-E3105-K			
Nichicon	F931C105MMAA			
Sprague	293D105X0016A2T			
2.2 μF Surface	e-Mount Tantalums			
Manufacturer	Part Number			
Kemet	T491A225M010AS NRU225M06			
NEC				
Siemens	B45196/2.2/10/10			
Nichicon	F930J225MA3			
Sprague	293D225X0010A2T			

Multilayer Ceramic Capacitors

Surface-mountable multilayer ceramic capacitors may be an attractive choice because of their relatively small physical size and excellent RF characteristics. However, they sometimes have ESR values lower than the minimum required by the LP2980, and relatively large capacitance change with temperature. The manufacturer's datasheet for the capacitor should be consulted before selecting a value.

Test results of LP2980 stability using multilayer ceramic capacitors show that a minimum value of 2.2 μ F is usually needed for the 5V regulator. For the lower output voltages, or for better performance, a higher value should be used, such as 4.7 μ F.

Multilayer ceramic capacitors that have been verified as suitable for use with the LP2980 are shown in Table III.

TABLE III. Surface-Mount Multilayer Ceramic Capacitor Selection Guide

p	ace-Mount Ceramic		
Manufacturer	Part Number		
Tokin	1E225ZY5U-C203		
Murata	GRM42-6Y5V225Z016		
	GRM42-2Y5V225Z016		
	GRM43-2Y5V225Z016		
4.7 μF Surfa	ace-Mount Ceramic		
Manufacturer	Part Number		
Tokin	1E475ZY5U-C304		

Application Hints (Continued)

FIGURE 1. 1 µF ESR Range

FIGURE 2. 2.2 µF ESR Range

FIGURE 3. 10 µF ESR Range

REVERSE CURRENT PATH

The power transistor used in the LP2980 has an inherent diode connected between the regulator input and output (see below).

TL/H/12078-34

If the output is forced above the input by more than a V_{BE} , this diode will become forward biased and current will flow from the V_{OUT} terminal to V_{IN} . No damage to the LP2980 will occur under these conditions as long as the current flowing into the output pin does not exceed 100 mA.

ON/OFF INPUT OPERATION

The LP2980 is shut off by pulling the ON/OFF input low, and turned on by driving the input high. If this feature is not to be used, the ON/OFF input should be tied to V_{IN} to keep the regulator on at all times (the ON/OFF input must **not** be left floating).

To ensure proper operation, the signal source used to drive the ON/OFF input must be able to swing above and below the specified turn-on/turn-off voltage thresholds which guarantee an ON or OFF state (see Electrical Characteristics)

The ON/OFF signal may come from either a totem-pole output, or an open-collector output with pull-up resistor to the LP2980 input voltage or another logic supply. The high-level voltage may exceed the LP2980 input voltage, but must remain within the Absolute Maximum Ratings for the ON/OFF pin.

It is also important that the turn-on/turn-off voltage signals applied to the ON/OFF input have a slew rate which is greater than 40 mV/ μ s.

Important: the regulator shutdown function will operate incorrectly if a slow-moving signal is applied to the ON/OFF input.

5-Lead Small Outline Package (M5) NS Package Number MA05A

For Order Numbers, refer to Table I in the "Order Information" section of this document.

LIFE SUPPORT POLICY

NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform, when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

National Semiconductor Corporation 2900 Semiconductor Drive P.O. Box 58090 Santa Clara, CA 95052-8090 Tel: 1(800) 272-9959 TWX: (910) 339-9240 National Semiconductor GmbH Industriestrasse 10 D-82256 Fürstenfeldbruck Germany Tel: (0-81-41) 103-0 Telex: 527649 Fax: (0-81-41) 10-35-06 National Semiconductor Japan Ltd. Sumitomo Chemical Engineering Center Bldg. 7F 1-7-1, Nakase, Mihama-Ku Chiba-City, Ciba Prefecture 261 Tel: (043) 299-2300 Fax: (043) 299-2500

National Semiconductor Hong Kong Ltd. 13th Floor, Straight Block Ocean Centre, 5 Canton Rd. Tsimshatsui, Kowloon Hong Kong Tels: (552) 737-1600 Telse: 51292 NSHKL Fax: (852) 736-9960

National Semiconductores Do Brazil Ltda. Rue Deputado Lacorda Franco 120-3A Sao Paulo-SP Brazil 05418-000 Tel: (55-11) 212-5066 Telex: 391-1131931 NSBR BR Fax: (55-11) 212-1181 National Semiconductor (Australia) Pty, Ltd. 16 Business Park Dr. Notting Hill, VIC 3168 Australia Tel: (3) 558-9999 Fax: (3) 558-9998

Typical Applications

5V/400 mA Regulator

TL/H/12078-51

The LP2980 can be used to control higher-current regulators, by adding an external PNP pass device. With the PNP transistors shown, the output current can be as high as 400 mA, as long as the input voltage is held within the Safe Operation Boundary Curves shown below.

To ensure regulation, the minimum input voltage of this regulator is 6V. This "headroom" is the sum of the V_{BE} of the external transistor and the dropout voltage of the LP2980.

Notes:

A. Drive this input with a logic signal (see Application Hints). If the shutdown function is not to be used, tie the ON/OFF pin directly to the $V_{\rm IN}$ pin.

B. Recommended devices (other PNP transistors can be used if the current gain and voltage ratings are similar).

C. Capacitor is required for regulator stability. Minimum size is shown, and may be increased without limit.

D. Increasing the output capacitance improves transient response and increases phase margin.

E. Maximum safe input voltage and load current are limited by power dissipation in the PNP pass transistor and the maximum ambient temperature for the specific application. If a TO-92 transistor such as the MPS2907A is used, the thermal resistance from junction-to-ambient is 180°C/W in still air

Assuming a maximum allowable junction temperature of 150°C for the MPS2907A device, the following curves show the maximum $\rm V_{IN}$ and $\rm I_L$ values that may be safely used for several ambient temperatures.

Safe Operation Boundary Curves

Typical Applications (Continued)

5V to 3.3V @ 3A Converter

TL/H/12078-53

With limited input voltage range, the LP2980 can control a 3.3V, 3A regulator with the use of a high current-gain external PNP pass transistor. If the regulator is to be loaded with the full 3A, heat sinking will be required on the pass transistor to keep it within its rated temperature range. Refer to the Heatsink Thermal Resistance Requirements, below. For best load regulation at the high load current, the LP2980 output voltage connection should be made as close to the load as possible.

Although this regulator can handle a much higher load current than can the LP2980 alone, it can be shut down in the same manner as the LP2980. When the ON/OFF control is brought low, the converter will be in shutdown, and will draw less than 1 μA from the source.

Notes

A. Drive this input with a logic signal (see Application Hints). If the shutdown function is not to be used, tie the ON/OFF pin directly to the $V_{\rm IN}$ pin.

- B. Capacitor is required for regulator stability. Minimum size is shown, and may be increased without limit.
- C. Increasing the output capacitance improves transient response and increases phase margin.
- D. A heatsink may be required for this transistor. The maximum allowable value for thermal resistance of the heatsink is dependent on ambient temperature and load current (see curves below). Once the value is obtained from the graph, a heatsink must be selected which has a thermal resistance equal to or lower than this value. If the value is above 60°C/W, no heatsink is required (the TO-220 package alone will safely dissipate this).

For these curves, a maximum junction temperature of 150°C is assumed for the pass transistor. The case-to-heatsink attachment thermal resistance is assumed to be 1.5°C/W. All calculations are for 5.5V input voltage (which is worst-case for power dissipation).

Heatsink Thermal Resistance Requirements

