CSCI 2200 — Foundations of Computer Science (FoCS) Homework 2

Hayden Fuller, Ben Dennison, Alex Litchfield, Kaylin Rackley

• *Problem 3.59 (Closure).

- (a) \mathbb{N} addition, multiplication, exponentiation
- (b) \mathbb{Z} addition, subtraction, multiplication, exponentiation
- (c) \mathbb{Q} addition, subtraction, multiplication, division, exponentiation
- (d) \mathbb{R} addition, subtraction, multiplication, division, exponentiation

• *Problem 4.7(b).

 $n \in \mathbb{Z} \to n^2 + n$ is even.

We prove the implication using a direct proof.

assume $n \in \mathbb{Z}$

if n is even, n = 2k

$$(2k)^2 + 2k = 4k^2 + 2k = 2(2k^2 + k)$$

therefore $n^2 + n$ is even for even n

if n is odd, n = 2k + 1

$$(2k+1)^2 + (2k+1) = 4k^2 + 4k + 1 + 2k + 1 = 4k^2 + 6k + 2 = 2(2k^2 + 3k + 1)$$

therefore $n^2 + n$ is even for odd n

so $n^2 + n$ is even for $n \in \mathbb{N}$

therefore $n \in \mathbb{Z} \to n^2 + n$ is even.

• *Problem 4.10(k-l).

(k)

3 divides $n-2 \to n$ is not a perfect square.

We will prove this by contra position:

Contraposition:

n is a perfect square $\rightarrow 3$ does not divide n-2

assume n is a perfect square k^2

 $k^2 \rightarrow 3$ does not divide $k^2 - 2$

Because n is an integer, we can prove this for both even and odd cases

Even Case:

Assume k is an even number 4m + 2

$$k^2 = (4m+2)^2 = 16m^2 + 8m + 4 = 2(8m^2 + 4m + 2)$$

This means that k^2 is even when k is even which implies that $k^2 - 2$ will also be even which means it will not be divisible by 3

Odd Case:

Assume k is an odd number 2m+1

$$k^2 = (2m+1)^2 = 4m^2 + 4m + 1 = 2(2m^2 + 2m + 1)$$

This means that k^2 is even which also implies that $k^2 - 2$ will always be even. This means

 $k^2 - 2$ will not be divisible by 3.

(L) If p > 2 is prime, then $p^2 + 1$ is composite

We prove the implication using contraposition.

Contraposition:

If $p^2 + 1$ is prime $\rightarrow p > 2$ is composite

A prime is always odd. This means that $p^2 + 1$ will always be odd if we assume that our statement **P** is true.

therefore, p^2 is always even. Even numbers are always composite because they can be divided by 1, 2, and itself.

This means that if $p^2 + 1$ is prime, p > 2 must be even which makes it a composite number.

• *Problem 4.48(c).

Use the concept of "without loss of generality" to prove these claims.

For any non-zero real number x, $x^2 + \frac{1}{x^2} \ge 2$.

This is a direct proof. Suppose x is positive or negative. Then, x^2 will always be positive. Without loss of generality, $x = \sqrt{2}$.

$$\sqrt{2}^2 + 1/\sqrt{2}^2 \ge 2$$

$$2 + 1/2 \ge 2$$

 $2+1/2 \ge 2$ means this must be true for all cases.

• *Problem 5.12(d).

For $n \geq 1$, prove by induction:

$$3^n > n^{-2}$$
.

Base Step
$$P(1)$$
:

$$3^1 > 1^2$$
.

$$3 > 1$$
 so $3^n > n^2$ is true for $n = 1$

Induction Step P(n+1):

$$3^{n+1} > (n+1)^2$$

$$\frac{3^{n+1}}{n+1} > n+1$$

$$\frac{3^{n+1}}{n+1} - n > 1$$
Which this

$$\frac{3^{n+1}}{n+1} > n+1$$

$$\frac{3^{n+1}}{n+1} - n > 1$$

With this we can plug in n = 0

$$\frac{3^1}{1} > 1$$

3 > 1 means this must be true of all cases.

• *Problem 5.20.

Prove, by induction, that every $n \ge 1$ is a sum of distinct powers of 2.

Base Step P(1):

$$n = 1 = \sum_{i=0}^{k=1} 2^{i} = 2^{1} - 2^{0} = 2 - 1 = 1$$

 $\sum_{i=0}^{k=1} 2^k = 1$ so $n \ge 1$ being a distinct power of 2 is true.

Induction Step P(n+1): $\sum_{i=0}^{k=n+1} 2^k = n+1$ $2^{n+1} - 2^0 = n+1$

$$\sum_{k=0}^{k=n+1} 2^k = n+1$$

$$\frac{2n-0}{2n+1}$$
 $2^0 - n + 1$

$$2^{n+1} - 1 = n+1$$

$$2^{n+1} = n+2$$
 so $n \ge 1$ being a distinct power of 2 is true.

• *Problem 5.39.

Prove you can make any postage greater than 12c using only 4c and 5c stamps.

```
We prove this with leaping induction c=4a+5b bases) 12=4*3+5*0, 13=4*2+5*1, 14=4*1+5*2, 15=4*0+5*3 Case 1) c=4k Prove c=4a+5b\to c+4=4c+5d assume c=4a+5b d=0 4k+4=4a+5(0) 4(k+1)=4a+5(0) a=k+1 therefore c=4a+5b\to c+4=4c+5d assume c=4a+5b\to c+4=4c+5d
```

Prove $c = 4a + 5b \rightarrow c + 4 = 4c + 5d$ assume c = 4a + 5b d = 14k + 1 + 4 = 4a + 5(1)

4k + 5 = 4a + 5 a = k

therefore c=4a+5b is true for c=4k+1 Case 3) c=4k+2

Prove $c = 4a + 5b \rightarrow c + 4 = 4c + 5d$ assume c = 4a + 5b

d = 2 4k + 2 + 4 = 4a + 5(2) 4k + 6 = 4a + 10 4(k - 1) + 10 = 4a + 10

a = k - 1therefore c = 4a + 5b is true for c = 4k + 2

Case 4) c=4k+3 Prove $c=4a+5b \rightarrow c+4=4c+5d$ assume c=4a+5b

d = 3 4k + 3 + 4 = 4a + 5(3) 4k + 7 = 4a + 15 4(k - 2) + 15 = 4a + 15

therefore c = 4a + 5b is true for c = 4k + 3therefore c = 4a + 5b is true for $c \ge 12$

• *Problem 6.8.

a = k - 2

Prove $n^7 < 2^n$ for $n \ge 37$.

(a) Use induction

Base Step: n = 37

 $37^7 < 2^{37}$

 $9.4931877133 \times 10^{10} < 1.3743895347 \times 10^{11}$ so $n^7 < 2^n$ for n = 37 is true.

```
Induction Step P(n+1)
2^{k+1} = 2 * 2^k > 2k^7 > k^7 + 7k^6 + 21k^5 + 35k^4 + 35k^3 + 21k^2 + 7k + 1 = (k+1)^7
2^{k+1} > (k+1)^7
Therefore n^7 < 2^n for n \ge 37.
(b) Use leaping induction
Base Step 1:
n = 37
37^7 < 2^{37}
9.4931877133\times 10^{10} < 1.3743895347\times 10^{11}
so n^7 < 2^n for n = 37 is true.
Induction step 1:
2^{k+2} = 4 * 2^k > 4k^7 > k^7 + 14k^6 + 84k^5 + 280k^4 + 560k^3 + 672k^2 + 448k + 128 = (k+2)^7
2^{k+2} > (k+2)^7
Therefore n^7 < 2^n for n = 37 + 2k where k \in \mathbb{N}_0
Base Step 2:
n = 38
38^7 < 2^{38}
1.1441558259 \times 10^{11} < 2.7487790694 \times 10^{11}
so n^7 < 2^n for n = 38 is true.
Induction step 2:
2^{k+2} = 4 * 2^k > 4k^7 > k^7 + 14k^6 + 84k^5 + 280k^4 + 560k^3 + 672k^2 + 448k + 128 = (k+2)^7
2^{k+2} > (k+2)^7
```

• *Problem 6.43.

Therefore $n^7 < 2^n$ for $n \ge 37$

for a 3x3 sliding puzzle, the number of inversions always stays odd

This is a direct proof. Suppose x represents the number of inversions and that x = 1.

Suppose:

Vertical sliding of tile in either direction can be represented as 2b, where $b \in \mathbb{N}$.

Horizontal sliding of tile in either does not change the number of inversions.

$$x = 1 + 2b$$

x = 2b + 1 is an odd number, therefore the number of inversions remains odd.

• *Problem 7.4(c).

Guess a formula for A_n and prove it by induction.

Therefore $n^7 < 2^n$ for n = 38 + 2k where $k \in \mathbb{N}_0$

(a)
$$A_0 = 0$$
 and $A_n = A_{n-1} + 1$ for $n \ge 1$.

$$A_n = n$$

We prove this by induction

$$A_0 = 0$$
 is True.

assume
$$A_n = n$$

$$A_{n+1} = n+1$$

$$A_{n+1} = A_{n+1-1} + 1 = A_n + 1 = A_n + 1 = n + 1$$

$$A_n + 1 = n + 1$$

$$n + 1 = n + 1$$

therefore $A_n = n$

(b)
$$A_0=1$$
; $A_1=2$; $A_n=2A_{n-1}-A_{n-2}+2$ for $n\geq 2$. [method of differences] $A_n=n^2+1$ We prove this by induction $A_0=0^2+1=1$ is True. assume $A_n=n^2+1$ $A_{n+1}=(n+1)^2+1$ $A_{n+1}=2A_{n+1-1}-A_{n+1-2}+2=2A_n-A_{n-1}+2=(n+1)^2+1$ $2(n^2+1)-((n-1)^2+1)+2=(n+1)^2+1$ $2n^2+2-((n^2-2n+1)+1)+2=(n+1)^2+1$ $2n^2+2-(n^2-2n+2)+2=(n+1)^2+1$ $2n^2+2-n^2+2n-2+2=(n+1)^2+1$ $2n^2+2-n^2+2n=(n+1)^2+1$ $2n^2+2-n^2+2n=(n+1)^2+1$ $2n^2+2n+1+1=(n+1)^2+1$ therefore $A_n=n^2+1$ is True