Capítulo 1:

Conceitos iniciais

Sistemas Finais: Dispositivos onde a aplicação é executada

Enlaces de comunicação: Comutadores (switches):

Taxa de transmissão: Quantidade de bit por unidade de tempo que um pacote é enviado da origem ao destino

Rota: Sequência de enlaces de comunicação e comutadores de pacotes que um pacote percorre desde o sistema final transmissor até o sistema final receptor.

ISP's (Internet Service Provider): Uma rede de comutadores de pacotes e enlaces de comunicação. Todas as ISP's precisam estar conectadas direta ou indiretamente para que haja conexão de todos os sistemas finais conectados à diferentes ISP's.

API (Application Program Interface): Especificação de como o programa em um sistema final solicia à estrutura da internet que envie dados a um programa de destino específico, executado em outro sistema final. Conjunto de regras que o software emissor deve cumprir para que a internet seja capaz de enviar os dados ao programa destino.

Protocolo: Definição de um formato e ordem de mensagens trocadas entre duas ou mais entidades comunicantes, bem como as ações realizadas na transmissão e/ou recebimento de uma mensagem ou outro evento.

Redes de acesso

Redes de acesso: Rede física que conecta um sistema final ao primeiro roteador (conhecido como roteador de borda) de um caminho partindo de um sistema final a outro qualquer.

Nome	Tipo de acesso	Fornecida por	Estrutura	Taxa de transmissão	Característica notável
DSL (Linha digital de Assinante)	Doméstico	Operadora telefônica	Utiliza linha telefônica existente. Se conectam às CT, onde o sinal analógico é convertido para digital	até 24 MBits/s downstream até 2,5 MBits/s upstream	Distâncias curtas entre a casa e a CT
Internet à Cabo	Doméstico	Operadora de televisão	Utiliza infraestrutura de TV existente. Se conectam por cabo coaxial à nós de fibra ótica, ligados por fibra ótica à terminais de distribuição. Uso de fibra e coaxial (HFC)	até 42,8 MBits/s downstream até 30,7 Mbits/s upstream	Utiliza um meio de transmissão compartilhado . A taxa de envio e recebimento de pacotes de cada cliente é afetada pela atividade dos cliente

FTTH (Fiber to the Home)	Doméstico	Fibra ótica diretamente até a residência. Fibra direta (diretamente da CT até a casa) ou compartilhada (uma fibra para várias residências).	pode fornecer taxas de Gbits/s	Passive Optic Network (PON) e Active Optic Network (AON)
Ethernet	Empresa (e doméstico)	Par de fios de cobre trançado para conexão a um comutador ethernet. Comutador ethernet, ou uma rede de comutadores, é conectado à internet maior.	usuários com acesso normalmente de 100Mbits/s servidores com acesso de 1 Gbit/s até 10 Gbit/s	Principal rede usadas em Local Areas Networks (LAN's) em redes universitáriass , corporativas e domésticas
Wi-fi	Empresa (e doméstico)	Usuários transmitem/re cebem pacotes para/de um ponto de acesso remoto, que por sua vez se conecta à internet com fio		O usuário deve estar no espaço proximo de alguns metros do ponto de acesso.
3G	Sem fio em longa distância	Utilizam a infraestrutura sem fios usada para telefonia celular para enviar/receber pacotes por uma estação-base controlada pela operadora da rede celular.		O usuário pode estar a quilômetros de distância da estação-base

Redes de acesso

Meios Físicos: Espaço material onde ocorre a propagação de bits.

Meios guiados: Meios físicos em que as ondas são dirigidas ao longo de um meio sólido como fibra

ótica, par de fios trançado ou cabo coaxial.

Meios não guiados: Meios físicos em que as ondas se propagam na atmosfera e no espaço como o uso de uma LAN sem fío, 3g, ou canal digital de satélite.

Nome	Característica 1	Característica 2	Taxa de transmissão	Usabilidade
Par de fios de cobre trançado	Reduz interferência elétrica de pares semelhantes que estejam próximos	Um único enlace de comunicação	taxas de 10 Mbits/s a 10 Gbits/s. Dependem da bitola do fio e distância entre transmissor e receptor	Muito usado em acesso residencial
Cabo coaxial	Isolante e com blindagens especiais, alcança altas taxas de transmissão	Meio compartilhado guiado, onde vários sistemas finais podem ser conectados diretamente ao cabo	taxas de dezenas de Mbits/s	Usado em acesso residencial
Fibra ótica	Meio delgado e flexível que conduz pulsos de luz, cada um representando um bit	Suporta altíssimas taxas de transmissão. Imunes à interferência eletromagnética e baixíssima atenuação de sinal para longas distâncias	taxas de centenas de Gbits/s	Meio preferido para transmissão guiada de grande alcance, como cabos submarinos
Canais de rádio terrestres	Carregam sinais dentro do espectro eletromagnético	Não requerem cabos físicos, atravessam parede e transmitem sinal a grandes distâncias	depende do porte	desde redes locais a grandes distâncias
Canais de rádio por satélite	Um satélite de comunicação liga dois ou mais transmissores-rec eptores de	Uso de satélites geoestacionários ou satélites de órbita baixa (LEO)	centenas de MBits/s	

outra.

Núcleo da rede:

Pacotes: Fragmento de uma mensagem a ser enviada de um sistema final remetente a um sistema final destinatário.

Tempo para transmissão de um pacote: Se um pacote de L bits é enviado por um enlace a uma taxa de transmissão de R bits por segundo, então o pacote é transmitido em L/R segundos.

Transmissão armazena-e-reenvia: O comutador de pacotes deve receber o pacote inteiro antes de transmitir o primeiro bit para o enlace de saída.

Buffer de saída: Estrutura de um comutador de pacotes que armazena pacotes a serem enviados pelo roteador para um enlace de saída.

Atraso de fila: Quando comutador de pacotes está ocupado transmitindo um pacote mas um novo pacote que chega, ele é alocado em uma filla no buffer de saída. O tempo de espera no buffer é o atraso de fila.

Perda de pacote: Como o espaço no buffer é finito, um pacote que está chegando pode encontrá-lo lotado e ser descartado pelo comutador. Do ponto de vista de um sistema final, a perda de pacote é vista como um pacote que foi transmitido para o núcleo da rede mas não chegou ao destino.

Tabela de encaminhamento: Tabela contida nos roteadores que mapeia endereços de destino (aka IP) para um dado enlace de saída do roteador.

Comutação de circuitos: Os recursos necessários ao longo de um caminho (buffers, taxa de transmissão de enlaces) para oferecer a comunicação entre sistemas finais são reservados pelo período da sessão entre os hosts. É utilizado para esse fim a multiplexação por divisão de frequência (FDM) e a multiplexação por divisão de tempo (TDM).

Comutação de pacotes: Os recursos necessários para a comunicação entre dois sistemas finais não são reservados, as mensagens utilizam os recursos por demanda e podem ter que esperar para conseguir acesso a um enlace de comunicação. É utilizado o princípio da multiplexação estatística.

FDM (Multiplexação por divisão de frequência): O espectro de frequência de um enlace é compartilhado e as conexões são estabelecidas através desse enlace. O enlace reserva uma banda de frequência para cada conexão.

TDM (Multiplexação por divisão de tempo): O tempo de uso dos recursos de um enlace é dividido em quadros de duração fixa, onde cada quadro é dividido em um número fixo de compartimentos (slots). Cada slot é reservado para uso exclusivo de uma conexão e um dos compartimentos de tempo fica disponível para transmitir dados dela.

ISP global: Rede de roteadores e enlaces de comunicação que se espalham pleno planeta e se conectam a ISP's de acesso (abaixo na hierarquia).

ISP de nível 1: ISP onde ISP's regionais se conectam.

ISP regional: ISP onde diversas ISP's de acesso de uma região se conectam.

ISP de acesso: ISP de nível inferior, de menor escala na hierarquia.

PoP's (Pontos de presença): Um grupo de um ou mais roteadores na rede do provedor onde ISPs clientes podem se conectar a um ISP provedor. Presentes em todos os níveis de hierarquia de ISP, exceto na de acesso.

Multi-home: Conexão de um ISP (exceto de acesso) a dois ou mais ISP's provedores quaisquer.

Emparelhamento: Conexão direta entre ISP's de uma mesma hierarquia de modo que o tráfego entre elas passe por uma conexão direta, evitando intermediários.

IXP (Internet exchange point): Ponto de encontro onde vários ISP's podem se emparelhar. Redes de provedor de conteúdo: Rede própria de um provedor de conteúdo, se conectando diretamente a ISP's de níveis 1, IXP, regional e de acesso, reduzindo seus pagamentos à ISP's da camada mais alta e tendo maior controle sobre como seus serviços são entregues aos usuários finais.

Atraso, perda e vazão em redes de comutação de pacotes:

Atraso de processamento nodal: Tempo exigido para examinar o cabeçalho do pacote e determinar para onde direcioná-lo e verificar os erros em bits existentes no pacote. Da ordem de microssegundos. Atraso de fila: Tempo de espera de um pacote para ser transmitido em um enlace. Depende da quantidade de pacotes que chegaram antes e estão aguardando na fila. Da ordem de micro a milissegundos.

Atraso de transmissão: Tempo necessário para transmitir todos os bits do pacote para o enlace. Dada pela relação entre tamanho L de bits de um pacote e a taxa de transmissão do roteador bits/s, L/R segundos. Da ordem de micro a milissegundos.

Atraso de propagação: Tempo necessário para um bit propagar pelo enlace de um roteador A a um roteador B. Em função da velocidade de propagação do enlace, na faixa de 2.10^8 m/s a 3.10^8 m/s, que depende do meio físico (fibra ótica, par de fíos de cobre trançado, etc). Dada pela relação entre a distância total do enlace d e a velocidade de propagação do enlace d.

Atraso nodal total: Resultado da soma de todos os atrasos anteriores. Referente à análise em um roteador.

Intensidade de tráfego: Razão entre a taxa média a que pacotes chegam à uma fila, quantidade de bits L de um pacote e taxa de transmissão R do roteador, dada por La/R. Se La/R > 1 a velocidade média que os bits chegam à fila excede a que eles são transmitidos para fora da fila. Nesse caso, a fila tende a aumentar sem limite, cujo atraso de fila tenderá ao infinito.

Atraso fim a fim: Resultado pelo atraso de processamento, propagação e transmissão de N-1 roteadores entre a máquina de origem e a de destino. Dado por d=N(dproc+dtrans+dprop). Vazão instantânea: Dada pela taxa (em bits/s) em que um hospedeiro está recebendo um arquivo. Vazão média: Dada pela taxa média (em bits/s) em que um hospedeiro recebe um arquivo com F bits em um intervalo T de tempo, cujo valor é F/T bits/s.

Vazão servidor-cliente: Taxa em que um cliente recebe dados (em bits) de um servidor. Depende dos valores das taxas de transmissões R dos enlaces entre os dois. Se há apenas dois enlaces com taxas Rc e Rs, enlace do cliente e do servidor, a vazão é dada por $min\{Rc, Rs\}$.

Enlace de gargalo: Referente ao processo de análise da menor taxa de transmissão para a vazão servidor-cliente, como visto acima.

Camadas de protocolo e seus modelos de serviço:

Camadas de protocolo: Estrutura de design de redes que organiza diferentes protocolos em estruturas modulares em camadas que executam processos e oferecem serviços às camadas superiores da estrutura. Cada protocolo pertence a uma camada. Uma camada de protocolo pode ser executada em software, hardware ou uma combinação dos dois.

Pilha de protocolos: Organização de vários protocolos de várias camadas. Formada por camadas *física, de enlace, de rede, de transporte* e *de aplicação*.

Aplicação
Transporte
Rede
Enlace
Físico

Pilha de protocolos
 da Internet de
 cinco camadas

Camada de aplicação: Onde residem as aplicações de rede e seus protocolos. Inclui os protocolos *HTTP*, *FTP*, *SMT*, *P2P* e *DNS*. Pacote denominado *mensagem*.

Camada de transporte: Carrega mensagens da camada de aplicação entre os lados cliente e servidor de uma aplicação. Inclui os protocolos *TCP* (orientado a conexão, entrega garantida de mensagens, controle de fluxo, conrole de congestionamento) e *UDP* (não orientado a conexão, econômico e sem controle de fluxo e congestionamento). Pacote denominado *segmento*.

Camada de rede: Responsável pela movimentação, de um host a outro, de pacotes da camada de rede. O protocolo da camada de transporte em um host de origem passa um *segmento* da camada de transporte e um endereço de destino à camada de rede. A camada de rede então provê o serviço de entrega do *segmento* à camada de transporte no host destino. Inclui o protocolo *IP*. Pacote denominado *datagrama*.

Camada de enlace: Roteia um *datagrama* por meio de uma série de roteadores entre a origem e destino. Em cada nó, a camada de rede passa o *datagrama* para a de enlace, que o entraga, ao longo da rota, ao nó seguinte, no qual o *datagrama* é passado na camada de enlace para a de rede. Inclui os protocolos *Ethernet, Wi-Fi* e *DOCSIS*. Pacote denominado *quadro*.

Camada física: Movimenta os bits individualmente que estão dentro de um *quadro* de um nó ao nó seguinte. Inclui os protocolos *par de fibra trançado, cabo coaxial, fibta ótica,* etc. Em cad caso, o bit é transmitido pelo enlace de forma diferente.

Encapsulamento: Processo de adição de informações (cabeçalho) de um pacote de uma camada em uma camada inferior, que será usada para a execução do serviço prestado pela camada. Uma *mensagem* quando transmitida da camada de aplicação para transporte recebe um header e se transforma em um *segmento*. Esse processo ocorre em todas as camadas, atravessando a rede de roteadores onde em cada nó de uma respectiva camada o pacote será desencapsulado e o header referente à camada que o recebe será lido.

.Comutadores da camada de enlace são utilizados em redes de acesso, enquanto os roteadores são utilizados principalmente no núcleo da rede.

Capítulo 2: