

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date
27 December 2001 (27.12.2001)

PCT

(10) International Publication Number
WO 01/98454 A2

- (51) International Patent Classification⁷: C12N [DE/DE]; Grosse Lachstrasse 30a, 69207 Sandhausen (DE).
- (21) International Application Number: PCT/IB01/02050
- (22) International Filing Date: 25 April 2001 (25.04.2001)
- (25) Filing Language: English
- (26) Publication Language: English
- (30) Priority Data:
60/199,380 25 April 2000 (25.04.2000) US
- (63) Related by continuation (CON) or continuation-in-part (CIP) to earlier application:
US 60/199,380 (CIP)
Filed on 25 April 2000 (25.04.2000)
- (71) Applicant (for all designated States except US): GERMAN HUMAN GENOME PROJECT [DE/DE]; Fraunhofer Patentstelle, Leonrodstrasse 68, 80636 Munich (DE).
- (72) Inventor; and
- (75) Inventor/Applicant (for US only): WIEMANN, Stefan
- (81) Designated States (national): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CR, CU, CZ, DE, DK, DM, DZ, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZW.
- (84) Designated States (regional): ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, TR), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

Published:

- without international search report and to be republished upon receipt of that report

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

WO 01/98454 A2

(54) Title: HUMAN DNA SEQUENCES

(57) Abstract: Novel human cDNA sequence of a clones, the encoded protein sequence of a clones, antibodies and variants thereof are provided. The disclosed sequence of a clones find application in a number of ways, including use in profiling assays. In this regard, various assemblages of nucleic acids or proteins are provided that are useful in providing large arrays of human material for implementing large-scale screening strategies. The disclosed sequence of a clones may also be used in formulating medicaments, treating various disorders and in certain diagnostic applications.

Applicants: Paz Einat et al.
Serial No.: 10/618,408
Filed: July 11, 2003
Exhibit 5

HUMAN DNA SEQUENCES

Background of the Invention

Current methods for testing pharmacological substances rely
5 on a three-stage testing approach to drug development. First,
candidate compounds are typically screened in some sort of *in*
vitro system, like inhibition of cancer cell growth. Candidates
are then tested in an animal model, as a first approximation of
systemic effects, including efficacy and toxicity. Compounds
10 that still show promise after these initial *in vivo* screens,
finally are tested in humans. Again, human testing typically
occurs in three phases: toxicity; preliminary efficacy; and
efficacy. The entire process can take more than a decade and
cost hundreds of millions of dollars. Aside from the monetary
15 costs and protracted time scale, moreover, current testing
regimes waste the lives of countless laboratory animals and
needlessly endanger the lives of human subjects.

A need exists, therefore, for more sophisticated drug
screening techniques that can be done rapidly *in vitro*. These
20 screening techniques ideally will be reflective of systemic
and/or organ-specific responses, so that they provide a reliable
indicator of action in a human body. Current techniques,
however, tend to utilize only a single or limited number of
markers, thus answering only very simple questions that are of
25 questionable medical import. For example, a typical *in vitro*
assay may ask whether a lead compound binds a particular
receptor, which has been implicated in a certain disorder. It is
presumed that such binding is indicative of therapeutic
usefulness, but it does not even purport to address systemic
30 effects.

Not only are screening techniques for efficacy inadequate,
the available toxicity screens likewise are inadequate.
Toxicity, on a first level, is usually measured by animal
testing. Aside from the complications related to *in vivo* versus
35 *in vitro* testing, such screens are insufficient because of
differences in metabolism, uptake, etc., relative to humans.

Thus, improved methods would be not only be *in vitro*-based, they would also be more "human."

With the increasing miniaturization of screening assays and the growing availability of targets for pharmaceutical

- 5 intervention, there is increasing interest in developing arrays containing large numbers of these targets that can be assayed simultaneously. If such an array contains a large enough population of targets, it can be used to essentially mimic the systemic response. In other words, the array becomes an *in vitro*
- 10 surrogate for the human body. The more refined the array, the more accurate the predictive capability. In theory, an array could be constructed that can detect all of the known human expression products simultaneously, thereby, providing a very reliable indicator of the human response to a given compound.
- 15 These arrays offer advantages over the present *in vitro* screening systems in that they can assay large numbers of responses simultaneously. They are superior to animal testing because they are more "human" and, thus, more predictive of human responses.

In order to construct such arrays, however, the field is in need of further human targets. Advantageously, such targets will be provided with additional physiologically relevant information, such as whether the target is expressed in a particular tissue and whether it is related to a known functional class of targets. In this way, the artisan can focus as needed, for example, on tissue-specific effects or target class-specific effects, thereby providing information useful in evaluating efficacy and/or toxicity.

In addition to a need for pharmacological screening targets, there is a need for further pharmacological substances. These

- 30 substances can be used in the formulation of medicinal compositions and in treating a wide variety of disorders.

The present invention responds to the aforementioned and other needs in the field by providing a population of novel targets useful, *inter alia*, in the profiling and medicinal

- 35 contexts described above.

Summary of the Invention

It is an object of the invention, therefore, to provide a set of human cDNA clones. Further to this object, the invention provides sequences of human cDNA clones that were isolated from libraries generated from different human tissues.

5 It is another object of the invention to provide assemblages of targets useful in profiling matrices for screening pharmacological test compounds. According to this object, assemblages comprising different populations of human nucleic acids, proteins and antibodies are provided. In different
10 embodiments, cDNA library-specific assemblages and target-family-specific targets are provided.

It is a further object of the invention to provide a database of human nucleotide and protein sequences. Further to this object, novel human nucleotide and protein sequences are
15 provided in electronic form. In one embodiment, one or more of these sequences is provided in a searchable database.

It is still another object of the invention to provide biologically active target molecules useful in treating or detecting human disorders. Further to this object, the invention
20 provides nucleic acid and protein molecules that have the capacity to affect disease etiology or symptoms or correlate with known disease states. Also further to this object, a database is provided which comprises the disclosed molecules in electronic form.

25 Detailed Description

The invention results from a need in the art for new human nucleic acids and proteins. This need arises in several contexts. First, there is a need to identify targets for therapeutic intervention. Second, there is a need to identify molecules that
30 may be adversely affected in a therapeutic context, thereby resulting in toxicity. Knowledge of these molecules will aid in the design of new medicaments with enhanced efficacy and decreased toxicity. Finally, the need encompasses human nucleic acids and proteins that have medicinal applicability in their own right.

35 In view of these needs, the present inventors set out to isolate and sequence human cDNAs from tissue-specific libraries.

In this way, they represent subsets of molecules likely to be targets for therapeutic intervention or for avoiding toxicity. In addition, the inventors divided the molecules into various sub-categories, based on suspected functionality, structural 5 similarity etc, which are of interest from a pharmacological perspective.

GENERAL DESCRIPTION OF THE INVENTIVE MOLECULES

The present invention provides novel polynucleotide molecules that, in some instances, have similarities with known molecules. 10 The inventive DNAs were cloned from five different human cDNA libraries. In addition to these DNA molecules, the invention provides their protein translations and antibodies derived from them. The inventive DNA and protein sequences are shown individually in the Description of the Sequences. The inventive 15 nucleic acids also include the complements of the DNA sequences provided in the Description of the Sequences as well as their RNA counterparts. Methods of producing the molecules also are provided. Further, the invention provides methods for detecting all or part of the molecules and of detecting polynucleotides 20 encoding all or part of the molecules.

The inventive molecules derive from five cDNA libraries: human fetal brain; human fetal kidney; human melanoma; human testis; and human amygdala. For convenience, each sequence bears a designation that indicates from which library it is derived. In 25 particular, these designations are: "hfpbr" for human fetal brain; "hfkd" for human fetal kidney; "hmel" for human melanoma; "htes" for human testis; and "hamy" for human amygdala. The individual libraries were constructed and screened as described below in the examples.

30 The protein and DNA molecules of the invention are variously described herein as "target" molecules or "inventive" molecules. The sequences and other information pertinent to the nucleic acid and protein molecules of the invention are shown below in the Description of the Sequences.

35

Description of the Sequences

Key to the Description of the Sequences

The descriptions below provide the coding sequences of the inventive cDNAs, as well as the protein sequences and other useful information, as set out herein.

5 Grouping

The clones were assigned to the following sixteen functional and/or tissue-derived groups:

- 10 1. Amygdala derived
2. Cell Cycle
3. Cell Structure and Motility
4. Differentiation/Development
5. Intracellular Transport and Trafficking
6. Melanoma derived
- 15 7. Metabolism
8. Nucleic Acid Management
9. Signal Transduction
10. Transmembrane Protein
11. Transcription Factors
- 20 12. Brain derived
13. Kidney derived
14. Mammary Carcinoma derived
15. Testes derived
16. Uterus derived

25 Description of Clone Files

The individual clone files are structured in the same pattern. The Sections are separated by paragraphs.

30 1. **Clone Name**

The clone names are deciphered with reference to the following example:

DKFZphfkD2_3kl, wherein the code represents:

- 35 • producer of library ("DKFZ") (for convenience, this reference may be eliminated)
- a "p" for "plasmid cDNA library" (for convenience, this reference may be eliminated)
- library name (e.g. hfbr = human fetal brain; hfkd = human fetal kidney; hmel = human melanoma; htes = human testis; hamy = human amygdala)
- 40 • an underscore ("_") to separate library information from plate information
- plate number (e.g. "3")
- plate coordinates (letter first; e.g. "kl2")

45 2. **Group**

3. Introduction

short review of the similarities, function of the protein and possible applications

5 4. Short Information

specifications about the cDNA (who sequenced, completeness of the cDNA, similarity, who sequenced, chromosomal localisation, length of cDNA, localisation of poly A tail and polyadenylation signal)

10 5. cDNA-Sequence**6. BLASTn Results**

search results of blasting the cDNA sequence against all public databases

15 7. Medline Entries

information about genes/proteins similar to the novel cDNA (if available)

20 8. Putative Encoded Protein Information

specifications about the encoded protein (ORF: length and localisation of the reading frame)

9. Protein Sequence**25 10. BLASTp Results**

search results of blasting the protein sequence against all public databases

30 11. Pedant Information

output of fully automated annotation: summarises peptide information, homologies, patterns as follows:

【Length】

35 - length of the protein = number of amino acid residues

【MW】

- molecular weight of the protein

【pI】

- isoelectric point

5 [**HOMOL**]

- shows protein with closest similarity to the cDNA-encoded protein

5 [**FUNCAT**]

- functional information according to a catalogue developed by Munich Information center for Protein Sequences (MIPS)

10 [**BLOCKS**]

- Blocks are multiply aligned ungapped segments corresponding to the most highly conserved regions of proteins. The blocks for the Blocks Database are made automatically by looking for the most highly conserved regions in groups of proteins documented in the Prosise Database. The Prosise pattern for a protein group is not used in any way to make the Blocks Database and the pattern may or may not be contained in one of the blocks representing a group. These blocks are then calibrated against the SWISS-PROT database to obtain a measure of the chance distribution of matches. It is these calibrated blocks that make up the Blocks Database. The WWW versions of the Prosise and SWISS-PROT Databases that are used on this server are located at the ExPASy World Wide Web (WWW) Molecular Biology Server of the Geneva University Hospital and the University of Geneva. World Wide Web URL http://blocks.fhcrc.org/blocks/about_blocks.html is the entry point to the database.

- here Blocks segments found in the analysed protein sequences are displayed

30 [**SCOP**]

Nearly all proteins have structural similarities with other proteins and, in some of these cases, share a common evolutionary origin. The scop database provides a detailed and comprehensive description of the structural and evolutionary relationships between all proteins whose structure is known, including all entries in Brookhaven National Laboratory's Protein Data Bank (PDB). It is available as a set of tightly linked hypertext documents which make the large database comprehensible and accessible.

In addition, the hypertext pages offer a panoply of representations of proteins, including links to PDB entries, sequences, references, images and interactive display systems. World Wide Web URL <http://scop.mrc-lmb.cam.ac.uk/scop/> is the entry point to the database.

5 Existing automatic sequence and structure comparison tools cannot identify all structural and evolutionary relationships between proteins. The scop classification of proteins has been constructed manually by visual inspection

10 and comparison of structures, but with the assistance of tools to make the task manageable and help provide generality. Proteins are classified to reflect both structural and evolutionary relatedness. Many levels exist in the hierarchy, but the principal levels are family,

15 superfamily and fold. The exact position of boundaries between these levels are to some degree subjective. Scop evolutionary classification is generally conservative: where any doubt about relatedness exists, we made new divisions at the family and superfamily levels.

20 - here SCOPE segments found in the analysed protein sequences are displayed

[EC]

ENZYME is a repository of information relative to the nomenclature of enzymes. It is primarily based on the recommendations of the Nomenclature Committee of the International Union of Biochemistry and Molecular Biology (IUBMB) and it describes each type of characterized enzyme for which an EC (Enzyme Commission) number has been provided. World Wide Web URL <http://www-expasy.ch/enzyme/> is the entry point to the database.

30 - here EC-number and name of enzymes with similarity to the analysed protein sequences are displayed

[PIRKW]

35 - functional information according to the Protein Information Resource (PIR) database catalogue developed by Munich Information Center for Protein Sequences (MIPS), the National Biomedical Research Foundation (NBRF) and the International Protein Information Database in Japan (JIPID).

[SUPFAM]

5 - information according to the Protein Information Resource (PIR) database catalogue of protein superfamilies developed by Munich Information Center for Protein Sequences (MIPS), the National Biomedical Research Foundation (NBRF) and the International Protein Information Database in Japan (JIPID).

[PROSITE]

please refer to 12. PROSITE Motifs

[PFAM]

10 please refer to 13. PFAM Motifs

[KW]

- overall 2dimensional folding information

- 3D indicates that the proteins is similar to a protein of which a 3 dimensional structure is known

15 - overall structural information

[]

The last PEDANT-block depicts information about the folding structure of the protein generated by PREDATOR. PREDATOR is a secondary structure prediction program. It takes as input a single protein sequence to be predicted and can optimally use a set of unaligned sequences as additional information to predict the query sequence. The mean prediction accuracy of PREDATOR is 68% for a single sequence and 75% for a set of related sequences. PREDATOR does not use multiple sequence alignment. Instead, it relies on careful pairwise local alignments of the sequences in the set with the query sequence to be predicted.

World Wide Web URL http://www.embl-heidelberg.de/argos/predator/predator_info.html is the entry point to the database.

- H = helix, E = extended or sheet, _ = coil, T = transmembrane, B = beta

- x indicates a low-complexity region with repeat-like structure which is omitted in all BLAST searches

35

12. PROSITE Motifs

PROSITE is a database of protein families and domains. It consists of biologically significant sites, patterns and profiles that help to reliably identify to which known protein family (if

any) a new sequence belongs. World Wide Web URL
<http://www-expasy.ch/prosite/> is the entry point to the database.
A description of the prosite consensus patterns is provided
herein, after the description of the individual sequences.

5

13. PFAM Motifs

PFAM (protein families) is a large collection of multiple
sequence alignments and hidden Markov models covering many common
protein domains. World Wide Web URL <http://www.sanger.ac.uk/Pfam/>
is the entry point to the database.

10 In the charts below, the groups of sequences are listed, and
the description of the individual clones follows.

Group Amygdala derived

CloneID DKFZD... .	Homology	Function	Group
amy2_12g7	without similarity to known proteins	No informative BLAST results; No predictive prosite, pfam or SCOP motifs.	amygdala derived
amy2_12i1	weak similarity to F11E6_3 of <i>Caenorhabditis elegans</i>	No informative BLAST results; No predictive prosite, pfam or SCOP motifs	amygdala derived
amy2_13g19	without similarity to known proteins	The novel protein contains a PROSITE ASP_PROTEASE motif and seem to be expressed ubiquitously.	amygdala derived
amy2_16e14	similar to carbonic anhydrase-related proteins	No informative BLAST results; No predictive prosite, pfam or SCOP motifs. A similar cDNA encoding a protein of the same length was identified in sheep. This protein shows a strong signal sequence, which indicates that it is a secreted protein. The new protein belongs to a protein family, which was designated carbonic anhydrase-related protein XI (CA-RP XI), encoded by CA11 (human) and Cariu (mouse, rat). Despite potentially inactivating changes in the active-site residues, CA-RP XI is evolving very slowly in mammals, a property indicative of an important function, which has also been observed in the two other "macrocatalytic" CA isoforms, CA-RP VIII and CA-RP X. No informative BLAST results; No predictive prosite, pfam or SCOP motifs.	amygdala derived
amy2_24k15	weak similarity to Pecanex of <i>Drosophila melanogaster</i> .	Pecanex is a maternal-effect neurogenic gene, involved in differentiation processes in the developing central nervous system. DKFZphamy2_24k15 seems to be expressed ubiquitously.	amygdala derived
amy2_2a13	without similarity to known proteins	No informative BLAST results; No predictive prosite, pfam or SCOP motifs	amygdala derived
amy2_2i17	without similarity to known proteins	No most ESTs are derived from brain and pancreas No informative BLAST results; No predictive prosite, pfam or SCOP motifs.	amygdala derived

Group Brain derived

Cloned ID	Homology	Function	Group
fbref_27dd1b	weak similarity to a human putative mitogen-activated protein kinase kinase kinase	No informative BLAST results; No predictive prosite, pfam or SCOP motifs.	brain derived
fbref_76e18	without similarity to known proteins	The mRNA is differentially polyadenylated. No informative BLAST results; No predictive prosite, pfam or SCOP motifs.	brain derived

Group cell cycle

CloneID	Homology	Description	Function	Group
DRZph... amy2_121m2	Similarity to human PA26-T2 protein.	PA26-T2 is a p53 responsive gene. The protein is predominantly expressed in brain, breast and kidney and may represent a potential novel regulator of cellular growth. Isoforms are differentially induced by genotoxic stress (UV, gamma-irradiation and cytotoxic drugs) in a p53-dependent manner.		cell cycle
amy2_24b4	Similarity to human STIM1	The Stromal Interaction Molecular 1 gene (STIM1) encodes a type I trans-membrane protein of unknown function, which induces growth arrest and degeneration of the human tumor cell lines G401 and RD but not HL60 and Calu-6, suggesting a role in the pathogenesis of rhabdomyosarcomas and rhabdoid tumors. There is also strong similarity to a Mus musculus stromal cell protein, which selectively increases interleukin 7-dependent proliferation of pre-B cells. The novel protein contains 1 transmembrane domain.		cell cycle

Group Cell structure and motility

CloneID	Homology	Function	Group
DRFZph... any2_121f19	high similarity to a Rat ankyrin binding glycoprotein-1 related mRNA.	Ankyrin binding glycoproteins play a role in neural cell adhesion and in prostate tumor cell transformation. DRFZphany2_121f19 is expressed in brain, uterus and prostate above average.	cell structure and motility
tes3_jbb5	similarity to various tropomyosins.	Tropomyosins play regulatory roles in cellular structure and transport.	cell structure and motility

Group Differentiation/Development

CloneID DREZgh...	Homology	Function	Group
amy2_1124	partial similarity to <i>rattus norvegicus Notch2</i> protein	Notch family molecules are thought to be negative regulators of neuronal differentiation in early brain development. Notch2 is expressed not only by neuronal cells in the embryonic brain, but also by glial cells in the postnatal brain.	differentiation/development
amy2_1119	high similarity to the allograft inflammatory factor-1 of <i>Cyprinus carpio</i> .	Allograft inflammatory factor-1 (AIF-1) is a protein involved in allograft rejection. In experimental autoimmune encephalomyelitis (EAE), neuritis(EAN) and uveitis (EAU) it is produced by macrophages and microglia cells.	differentiation/development
amy2_2b19	Originates from TXBP151 mRNA by alternative splicing	It is ubiquitously expressed. The mRNA is also subject to alternative polyadenylation. Overexpression of TXBP151 in NIH3T3 cells causes inhibition of apoptosis induced by tumour necrosis factor (TNF). It binds to A2B, which is also an inhibitor of cell death by a yet unknown mechanism.	differentiation/development
amy2_7j5	similarity to Tspyl testis-specific Y-encoded-like protein of <i>Mus musculus</i>	TSPY genes are arranged in clusters on the Y chromosome of many mammalian species. TSPY is believed to function in early spermatogenesis and is a candidate for GBY; the putative gonadoblastoma-inducing gene on the Y. The TSPY family forms part of a superfamily, TTSN, with autosomal representatives, highly conserved in mammals and beyond.	differentiation/development

Group Intracellular Transport and Trafficking

CloneID DKFZph... amy2_3405	Homology	Function	Group
amy2_2013	high similarity to murine synaptotagmin 3.	Both proteins show similarity to Sect7 of <i>Saccharomyces cerevisiae</i> , which takes function in vesicular trafficking. The new protein shows also significant similarity to human ARNO3, which is involved in the control of Golgi structure and function. DKFZphamy2_2013 is predominantly expressed in the CNS and germ cells.	intracellular transport and trafficking
fkd2_3k1	very similar to rat testicular dynamin	The novel protein contains two C2 domains. The C2 domain is thought to be involved in calcium-dependent phospholipid binding. Synaptotagmins are essential for Ca(2+)-regulated exocytosis of neurosecretory vesicles	intracellular transport and trafficking
me12_7914	Similarity to the dor (deep orange) protein of <i>drosophila melanogaster</i> .	Dynamin is a microtubule-associated force-producing protein, which is involved in the production of microtubule bundles and which is able to bind and hydrolyze GTP and provides the motor for vesicular transport during endocytosis. The protein is ubiquitously expressed, but in brain and testis above average.	intracellular transport and trafficking
		The novel protein is also similar to the vacuolar membrane protein pep3 of <i>Saccharomyces cerevisiae</i> , which is involved in protein sorting mechanisms. The expression profile is ubiquitous and a role in protein transport/targeting is likely.	intracellular transport and trafficking

Group Melanoma derived

CloneID	Homology	Function	Group
DKZpg...	Similarity to integrin I of Saccharomyces cerevisiae	The novel protein contains a leucin zipper. No informative BLAST results; No predictive prosite, pfam or SCOP motifs.	melanoma derived
me12_7k19	without similarity to known proteins	Transcripts can be found in almost any tissue, but are most abundant in kidney and retina No informative BLAST results; No predictive prosite, pfam or SCOP motifs.	melanoma derived

Group Metabolism

CloneID DkZaph:	Homology	Function	Group
amy2_2c22	similarity to the L-acetyl-glycerol-3-phosphate acyltransferase of Zea mays.	It contains one leucine zipper. The protein is believed to play a role in fatty acid metabolism. It is ubiquitous expressed, with a slight predominance in uterus, placenta and foreskin.	metabolism
fbr2_7b121	similarity to beta-aspartate methyltransferases.	The L-isoadipyl methyltransferase (Pimt), as an example, is a highly conserved enzyme utilising S-adenosylmethionine (AdoMet) to methylate aspartate residues of proteins damaged by age-related isomerisation and deamidation.	metabolism

Group Nucleic acid management

CloneID	Homology	Punction	Group
DKFZph... amy2_llny	similarity to RAD18 of Schizosaccharomyces pombe and YLR363w of <i>Saccharomyces cerevisiae</i> .	The novel protein contains a ATP/GTP-binding site motif A (P-loop). It has similarity to RAD18 acts in a DNA repair pathway for removal of UV-induced DNA damage. YLR363w of <i>Saccharomyces cerevisiae</i> is a recombination repair protein	nucleic acid management
amy2_jil1	similarity to the murine hemin-sensitive initiation factor e2.	The hemin-sensitive initiation factor 2 is expressed predominantly in liver, spleen, colon and uterus and contains 2 protein kinase motifs. The mouse homologue of eif-2-alpha. Inhibits protein synthesis in stress conditions by phosphorylation of eif-2-alpha.	nucleic acid management
amy2_2912	similarity to NVL-2 of <i>Rattus norvegicus</i> .	The novel protein contains 3 EF-hand Calcium-binding domains. The related human VILIP Ca-dependent protein specifically binds the 3'-untranslated region of the neurotrophin receptor, trkB, an mRNA localized to hippocampal dendrites in an activity-dependent manner. The new protein exhibits elevated expression in brain and testis.	nucleic acid management
fbr2_7bcj2	high csimilarity to glutamyl-tRNA (Gin) amidotransferase subunit A of the hyperthermophilic bacterium Aquifex aeolicus.	The novel protein contains one ATP/GTP-binding site motif A (P-loop). This loop interacts with one of the phosphate groups of a A or G nucleotide. It is found in numerous ATP- or GTP-binding proteins, such as ATP synthase alpha and beta subunits, Myosin heavy chains, Kinesin heavy chains and kinesin-like proteins, Dynamin and dynamin-like proteins, several kinases, DNA and RNA helicases, GTP-binding elongation factors and the Ras family of GTP-binding proteins. The protein seems to be expressed ubiquitously.	nucleic acid management
tes3_j011b	similarity to human ZKI.	The ZKI gene is one of early response genes by exposure to ionizing radiation, and plays a role in radiation-induced apoptotic cell death on hematopoietic cells. The novel protein contains 18 zinc finger domains, a RGD cell attachment and a ATP GTP A domain.	nucleic acid management
tes3_j11a0	similarity to histone H1 of <i>Drosophila hydei</i> .	Histone H1 variants are known to act as specific regulators of genes via the differential condensation of DNA.	nucleic acid management

Group Signal transduction

clonedID DZEP... amy2_10hl7	Homology weak similarity to murine hac1	Function	Group
amy2_20p7	similarity to Na+/Ca2+ exchange proteins	The transport of Ca2+ from the sarcoplasm into the sarcoplasmic reticulum is an essential process in the initiation of muscle relaxation. In addition, the novel protein contains a PROSITE multicopper oxidase signature. Multicopper oxidases are enzymes that possess three spectroscopically different copper centers.	signal transduction
amy2_32d7	a so far unknown alternative spliced form of disks large homolog DLG2.	It seems to be predominantly expressed in the retina, germ cells and brain. It contains a SH3-domain and a guanylate kinase domain. These conserved regions are shared among members of the discs-large family of proteins that include human P55, a membrane protein expressed in erythrocytes, rat PSD-95/SAP90, a synapse protein expressed in brain, Drosophila dIg-A, a septate junction protein expressed in various epithelia, and human and mouse ZO-1 and canine ZO-2, two tight junction proteins. The Homologue of Drosophila dIg-A, acts as a tumor suppressor. All members of this family may be involved in signal transduction.	signal transduction
amy2_2718	Similarity to sodium channel protein beta1 of Rattus norvegicus.	The sodium channel protein beta1 of Rattus norvegicus is crucial in the assembly, signal expression, and functional modulation of the heterotrimeric complex of the rat brain sodium channel. The expression of the new protein seems to be restricted to brain, all matching ESTs isolated so far, derive from there.	signal transduction
tes3_11c22	Partial similarity to mouse P332b	The novel protein contains WD-repeats. WD-repeat proteins are known as regulatory elements in a large variety of pathways. The repeats form a propeller like structure, which serves as a platform for protein/protein interaction. The new protein is ubiquitously expressed, indicating that it takes an essential regulatory function in the cell.	signal transduction
tes3_31d21	Contains the full coding sequence of the human Nedd-4-like ubiquitin-protein ligase.	The novel protein contains four WW domains. The WW/rsp5/WWP domain has been shown to bind proteins with particular proline-motifs, and thus resembles somewhat SH3 domains. It is frequently associated with other domains typical for proteins in signal transduction processes. There is also a ubiquitin-protein ligase activity reported. The protein is believed to play an important role in protein-degradation pathways.	signal transduction
tes3_29f24	Similarity to murine net1.	The closely related mNET1 activates signalling pathways in addition to those directly controlled by activated RhoA. The novel protein is expressed ubiquitously.	signal transduction
tes3_31j20	contains a Protein phosphatase 2C motif.	The novel protein shares 55% identity with the rat protein phosphatase 2C and is expressed ubiquitously. PP2C is a structurally diversified protein phosphatase family with a wide range of functions in cellular signal transduction. The transcription of the pp2C delta gene was activated in response to stress, like alcohol or UV irradiation. PP2C plays a role in cell cycle control.	signal transduction
tes3_5k22	similarity to human paraneoplastic neuronal antigen MA1	Antibodies against MA1 were found in patients with paraneoplastic neurological disorders. The protein is predominantly expressed in testis and brain, but ESTs are also found in liver, lung uterus and kidney.	signal transduction

Group Testis derived

CloneID DKRP... Tes3_10n10	Homology without similarity to known proteins.	Function The mRNA is differentially polyadenylated and the novel protein is ubiquitously expressed.	Group testis derived
Tes3_11n17	without similarity to known proteins.	No informative BLAST results; No predictive prosite, pfam or SCOP motifs.	testis derived
Tes3_12d16	without similarity to known proteins.	No informative BLAST results; No predictive prosite, pfam or SCOP motifs.	testis derived
Tes3_14i17	without similarity to known proteins.	The EST-distribution signifies an ubiquitous expression pattern. The mRNA is transcribed ubiquitously.	testis derived
Tes3_15n14	weak similarity to the neurofilament triplet n protein of the rat.	No informative BLAST results; No predictive prosite, pfam or SCOP motifs. Neurofilaments are the intermediate filaments specific to nervous tissue. They are probably essential to the tensile strength of the neuron, as well as to transport of molecules and organelles within the axon. Until now, ESTs of the novel mRNA could only be isolated from testes, germ cells and uterus.	testis derived
Tes3_16p3	without similarity to known proteins	No informative BLAST results; No predictive prosite, pfam or SCOP motifs. The novel protein is glutamine rich and contains a cell attachment RGD motif. According to the low number of ESTs and their origin the protein seems to be expressed ubiquitously at low levels.	testis derived
Tes3_18p12	without similarity to known proteins	No informative BLAST results; No predictive prosite, pfam or SCOP motifs.	testis derived
Tes3_21i14	without similarity to known proteins	No informative BLAST results; No predictive prosite, pfam or SCOP motifs.	testis derived
Tes3_22i11	Weak similarity to RCC1-like G-exchanging factor RLG, UVR8 (UVB-resistance protein) of Arabidopsis thaliana and to the murine retinitis pigmentosa GTPase regulator.	No informative BLAST results; No predictive prosite, pfam or SCOP motifs.	testis derived
Tes3_22i24	Similarity to the F-box protein FB2 of the rat.	No informative BLAST results; No predictive prosite, pfam or SCOP motifs.	testis derived
tes3_26g3	Without similarity to known proteins.	No informative BLAST results; No predictive prosite, pfam or SCOP motifs.	testis derived
tes3_30p6	without similarity to known proteins.	No informative BLAST results; No predictive prosite, pfam or SCOP motifs.	testis derived

Group Transmembrane proteins

CloneID DKRP... amy2_11n2	1. Homology	Function	Group
amy2_12i1017	Without similarity to known proteins.	The novel protein contains 2 transmembrane regions. No informative BLAST results; no predictive prosite, pfam or SCOP motifs.	transmembrane proteins
amy2_11i14	Similarity to the human 1(3)mbt protein homolog.	The novel protein contains 1 transmembrane region. No informative BLAST results; No predictive prosite, pfam or SCOP motifs.	transmembrane proteins
amy2_24c6	without similarity to known proteins	Mutations of the Drosophila 1(3)mbt gene lead to malignant brain tumors. The protein contains one transmembrane domain. No informative BLAST results; No predictive prosite, pfam or SCOP motifs.	transmembrane proteins
		The novel protein contains 1 transmembrane region. No informative BLAST results; No predictive prosite, pfam or SCOP motifs.	transmembrane proteins

<i>fbr2_76dy</i>	without similarity to known proteins.	The novel protein contains 1 transmembrane region and a cytochrome c family heme-binding site. No informative BLAST results; No predictive prosite, pfam or SCOP motifs.	Transmembrane proteins
<i>tes3_17a17</i>	without similarity to known proteins	The novel protein contains 2 transmembrane regions and one leucine zipper. The protein is ubiquitously expressed with higher abundance in stomach, brain and testis. No informative BLAST results; No predictive prosite, pfam or SCOP motifs.	Transmembrane proteins
<i>tes3_17i21</i>	without similarity to known proteins	The novel protein contains 2 transmembrane regions. ESTs can be found in testis, retina and brain. No informative BLAST results; No predictive prosite, pfam or SCOP motifs.	Transmembrane proteins
<i>tes3_20h12</i>	without similarity to known proteins	The novel protein contains 1 transmembrane region and two leucine zippers. No informative BLAST results; No predictive prosite, pfam or SCOP motifs.	Transmembrane proteins
<i>tes3_7n12</i>	without similarity to known proteins	The novel protein contains 1 transmembrane domain No informative BLAST results; No predictive prosite, pfam or SCOP motifs.	Transmembrane proteins
<i>tes3_9e16</i>	without similarity to known proteins	The novel protein contains 1 transmembrane region. The only EST described so far is from testis. No informative BLAST results; No predictive prosite, pfam or SCOP motifs.	Transmembrane proteins

Group Transcription factors

CloneID DREZP... any2_4m1b	Homology	Function	Group
any2_4m1b	similarity to the homeotic protein emx2 of man, mouse and zebra fish as well as to the gene "empty spiracles" of <i>Drosophila melanogaster</i> .	Homeobox genes are known to play important roles in developmental processes. In zebrafish emx2 mRNAs are found in the dorsal telencephalon, parts of the diencephalon and the otocyst. The human homologue Emx2 appears to be already expressed in 6.5 day embryos. It is also expressed in the presumptive cerebral cortex, olfactory bulbs, in some neuroectodermal areas in embryonic head including olfactory placodes in earlier stages and olfactory epithelia later in development. Mutants of the <i>D. melanogaster</i> gene "empty spiracles" display spiracles devoid of filzkörper, no antenna and an open head.	transcription factors
any2_1c12	partial identity to I-kappa-B-related protein and to BCLAI.	I-kappa-B-related protein interacts with transcription factors and BCLAI has a function in DNA damage response. I-kappa-B-alphai mutations contribute to constitutive NF-kappaB activity in cultured and primary HRS (Hodgkin/Reed-Sternberg) cells and are therefore involved in the pathogenesis of Hodgkin's disease (HD) patients	transcription factors
any2_2f22	similarity to YDL159C of <i>Saccharomyces cerevisiae</i>	The novel protein is ubiquitously expressed. YDL159C is involved in transcriptional silencing.	transcription factors
tes3_1a114	similarity to human giantin.	Giantin is discussed as an autoantigen in rheumatoid arthritis. The novel protein contains a leucine zipper and a putative Helix-loop-helix DNA-binding domain. Therefore it might be a novel transcription factor. Most EST hits are from testis and germ cells.	transcription factors

DKFZphamy2_10h17

5

group: signal transduction

10 DKFZphamy2_10h17 encodes a novel 180 amino acid protein which shows weak similarity to murine hacl.

15 The novel protein contains a Zinc finger motif of the C3HC4 type (RING finger). The RING-finger domain is involved in mediating protein-protein interactions. Proteins containing a RING-finger are: mammalian V(D)J recombination activating protein (RAG1), mouse rpt-1, human rfp, human 52 Kd Ro/SS-A protein and others. The family of RING finger proteins contains a number of oncogenes. For example PML, a probable transcription factor, 20 BRCA1, the mammalian cbl- and bmi-1 proto-oncogenes.

25 The new protein can find application in modulating protein-protein-interaction and in studying the expression profile of amygdala-specific genes.

25

weak similarity to hacl (*Mus musculus*)

30

Sequenced by LMU

30

Locus: unknown

35

Insert length: 835 bp

Poly A stretch at pos. 751, polyadenylation signal at pos. 729

35

1 CACAGAGATC ATTGTCAACC AGGCCTGTGG GGGGGACATG CCTGCCCTGG
51 AAGGGGGCACCC CCATACCCCCG CCACTGCCAC GGCGGGCCCCG TAAGGGAAAGC
101 TCGGAGCTGG GCTTTCCCCG CGTGGCCCCA GAGGAATGAGG TCATTGTGAA
151 TCAGTACGTG ATTGGGCCCTG GCCCCTCGGG CTCGGCGGCT TCTTCGGCGG
201 CGGCAGGCAGA GCCCCCTGGAG TGCCCCCACCT GTGGGCACTC CTACAATGTC
251 ACCCAGCGGA GGCCCCCGCGT GCTGTCTTGCT CTGCACTCTG TGTGTGAGCA
301 GTGCCCTGCAG ATTCTCTAACG AGTCCTGCCCA CAAGTACAAAG TTCACTCTCCT
351 GCCCCACCTG CGGCCGTGAG ACTGTGCTCT TCACCGACTA CGGCCCTGGCC
401 GCGCTGGCTG TCAACACGTC CATCCTGAGC CGCCTGCCGC CTGAGGGCGCT
451 GACGGCCCCA TCCGGGGGGTC AGTGGGGGGGC TGAGCCCCGAG GGCAGCTGCT
501 ACCAGACCTT CGGGCAGTAC TGTGGGGCCG CGTGCACCTG CCACGTGCGG
551 AACCCACTGT CGGCCCTGCTC CATCATGTAG TAGGCCCTGC CTGCCCGCCA
601 CTGCCCGCTG AGCCTCGCTC GCTGCTTCTT CAGGGACCCG GCCCTGCCCT
651 GCGCCCCGCT GACCCCTTCCCT TCCCCACCAT GGCTTCCGGC CCCACCCCGA
701 GTGGCATTGT CGCTGCAGCC AACTTTGCCA TTAAAAACTCT TTGCCAAAGT
751 TAAAAAAAAA AAAAAAAAAA AAAAAAAAAA AAAAAAAAAA AAAAAAAAAA AAAAAAAAAA
801 AAAAAAAAAA AAAAGAAAAA AAAAAAAAAG AAAAG

55

BLAST Results

No BLAST result

Medline entries

5

No Medline entry

10

Peptide information for frame 2

15 ORF from 38 bp to 577 bp; peptide length: 180

Category: similarity to unknown protein

Classification: Cellular transport and traffic

Prosite motifs: PRENYLATION (177-180)

ZINC_FINGER_C3HC4 (81-90)

20

1 MPALEGAPHT PPLPRRPRKG SSELGFPRAV PEDEVIVNQY VIRPGPSASA
51 ASSAAAGEPL ECPTCGHSYN VTQRRPRVLS CLHSVCEQCL QILYESCPKY
101 KFISCPTCRR ETVLFTDYGL AALAVNTSIL SRLPPEALTA PSGGQWGAEP
151 EGSCYQTFRQ YCGAACTCHV RNPLSACSIM

25

BLASTP hits

30 No BLASTP hits available

Alert BLASTP hits for DKFZphamy2_10h17, frame 2

No Alert BLASTP hits found

35

Pedant information for DKFZphamy2_10h17, frame 2

40

Report for DKFZphamy2_10h17.2

[LENGTH] 180
[MW] 19400.27
[pI] 7.95
45 [HOMOL] TREMBL:AC007727_7 gene: "F8K7.7"; Arabidopsis thaliana chromosome 1 BAC F8K7 sequence, complete sequence. 3e-06
[BLOCKS] BL00839C
[BLOCKS] PF01462A
50 [BLOCKS] PR00763H
[BLOCKS] BL00518 Zinc finger, C3HC4 type, proteins
[PROSITE] PRENYLATION 1
[PROSITE] ZINC_FINGER_C3HC4 1
[PFAM] Zinc finger, C3HC4 type (RING finger)
55 [KW] Alpha_Beta
[KW] LOW_COMPLEXITY 5.56 %

SEQ MPALEGAPHTPPLPRRPRKGSSSELGFP RVAPEDEVIVNQYVIRPGPSASAASSAAAGEPL
 SEGxxxxxxxxxxxxxx.....
 PRD ccc
 5 SEQ ECPTCGHSYNVTQRRPRVLSCLHSVCEQCLQILYESCPKYKFISCPTCRRETVLFTDYGL
 SEG
 PRD ccc
 10 SEQ AALAVNTSILSRLPPEALTAPSQQWGAEP EGSCYQTFRQYCGAACTCHVRNPLSACSIM
 SEG
 PRD ccc

15 Prosite for DKFZphamy2_10h17.2

PS00294	177->181	PRENYLATION	PDOC00266
PS00518	81->91	ZINC_FINGER_C3HC4	PDOC00449

20

Pfam for DKFZphamy2_10h17.2

25 HMM_NAME Zinc finger, C3HC4 type (RING finger)

HMM
 *CPICFcTFQ1DyPWPFdePmM1PCgHsFCypCIrrW.....C
 CP C Y+ +P+ L C+HS C+ C+ ++
 30 C
 Query 62 CPTC----GHSYNVTQRRPRVLSCLHSVCEQCL-
 QILYESCPKYKFISC 105
 HMM PmC*
 35 P C
 Query 106 PTC 108

DKFZphamy2_10p7

5 group: signal transduction

DKFZphamy2_10p7 encodes a novel 1615 amino acid protein with similarity to Na+/Ca²⁺ exchange proteins.

10 The Transport of Ca²⁺ from the sarcoplasm into the sarcoplasmic reticulum is an essential process in the initiation of muscle relaxation.

In addition, the novel protein contains a PROSITE multicopper oxidase signature. Multicopper oxidases are enzymes that possess 15 three spectroscopically different copper centers.

The new protein can find application in modulation of NA+/Ca²⁺-exchange and voltage-dependend processes.

20 similarity to Na+/Ca²⁺ exchange proteins

ATG in frame 3 is first in clone.

25 Sequenced by LMU

Locus: unknown

Insert length: 5236 bp

30 Poly A stretch at pos. 5216, no polyadenylation signal found

	1	CGGACGCGTG	GGCGGACGCG	TGGGCCCTGT	ATACCTGTGC	CACTTTGTGC
	51	CTTAAGGAAC	AAGCTTGCTC	AGCGTTTCA	TTTTTCAGTG	CTTCTGAGGG
35	101	TCCCCAGTGT	TTCTGGATGA	CATCATGGAT	CAGCCCAGCT	GTCAACAATT
	151	CAGACTTCTG	GACCTACAGG	AAAAAACATGA	CCAGGGTAGC	ATCTCTTTT
	201	AGTGGTCAGG	CTGTGGCTGG	GAGTGACTAT	GAGCCTGTGA	CAAGGCAATG
	251	GGCCATAATG	CAGGAAGGTG	ATGAATTCGC	AAATCTCACA	GTGTCTATT
	301	TTCCTGATGA	TTTCCCAGAG	ATGGATGAGA	GTTTTCTAAT	TTCTCTCCTT
40	351	GAAGTTCAC	TCATGAACAT	TTCAGCCAGT	TTGAAAAATC	AGCCAACCAT
	401	AGGACAGCCA	AATATTTCTA	CAGTTGTCTA	AGCACTAAAT	GGTGATGCCT
	451	TTGGAGTGT	TGTGATCTAC	AGTATTAGTC	CCAATACTTC	CGAAGATGGC
	501	TTATTTGTTG	AAGTTCAAGGA	GCAGCCCCAA	ACCTTGGTGG	AGCTGATGAT
	551	ACACAGGACA	GGGGGCAGCT	TAGGTCAAGT	GGCAGTCGAA	TGGCGTGTG
45	601	TTGGTGAAC	AGCTACTGAA	GGTTTAGATT	TTATAGGTGC	TGGAGAGATT
	651	CTGACCTTTG	CTGAAGGTGA	AACCAAAAAG	ACAGTCATT	TAACCATCTT
	701	GGATGACTCT	GAACCAGAGG	ATGACGAAAG	TATCATAGTT	AGTTGGTGT
	751	ACACTGAAGG	TGGAAGTACA	ATTTGCCAA	GCTCCGACAC	TGTTAGAGTG
	801	AACATTTGG	CCAATGACAA	TGTGGCAGGA	ATTGTTAGCT	TTCAGACAGC
50	851	TTCCAGATCT	GTCATAGGTC	ATGAAGGAGA	AATTTACAA	TTCCATGTGA
	901	TAAGAACTTT	CCCTGGTGA	GGAAATGTTA	CTGTTAACTG	AAAAATTATT
	951	GGGCAAATC	TAGAACTCAA	TTTGCTAAC	TTTAGCGGAC	AACTTTCTT
	1001	TCCTGAGGGG	TCGTTGAATA	CAACATTGTT	TGTGCATTG	TTGGATGACA
	1051	ACATT CCTGA	GGAGAAAGAA	GTATACCAAG	TCATTCTGTA	TGATGTCAGG
55	1101	ACACAAAGGAG	TTCCACCCAGC	CGAAATCGCC	CTGCTTGATG	CTCAAGGATA
	1151	TGCAGCTGTC	CTCACAGTAG	AAGCCAGTGA	TGAACCACAT	GGAGTTTAA
	1201	ATTTTGCTCT	TTCATCAAGA	TTTGTGTTAC	TACAAGAGGC	TAACATAACA
	1251	ATTCAAGCTT	TCATCAACAG	AGAATTGGA	TCTCTAGGAG	CTATCAATGT

1301	CACATATAACC	ACGGTTCCCTG	GAATGCTGAG	TCTGAAGAAC	CAAACAGTAG	
1351	GAAACCTAGC	AGAGCCAGAA	GTTGATTTCG	TCCCTATCAT	TGGCTTCTG	
1401	ATTTAGAAG	AAGGGGAAAC	AGCAGCAGCC	ATCAACATTA	CCATTCTTGA	
1451	GGATGATGTA	CCAGAGCTAG	AAGAATATT	CCTGGTGAAT	TTAACTTACG	
5	1501	TTGGACTTAC	CATGGCTGCT	TCAACTTCAT	TTCTCTCCAG	ACTAGATTCA
1551	GAAGGTTGA	CTGCACAAGT	TATTATTGAT	GCCAATGATG	GGGCCCGAGG	
1601	TGTAATTGAA	TGGCACACAA	GCAGGTTTG	AGTAAATGAA	ACCCATGGAA	
1651	GTAAACATT	GGTAGCCCAG	AGGAGCAGAG	AACCTCTTGG	CCATGTTCC	
1701	TTATTGTGT	ATGCTCAGAA	TTTGGAGAGCA	CAAGTGGGGC	TGGATTATAT	
10	1751	CTTCACCCCCA	ATGATTCTTC	ATTTTGCTGA	TGGAGAAAGG	TATAAAAATG
1801	TCAATATCAT	GATTCTGAT	GATGACATTC	CAGAAGGGAGA	TGAAAAAATTT	
1851	CAGCTGATT	TAACAAATCC	TTCTCCTGGA	CTAGAGCTAG	GGAAAAAATAC	
1901	AATAGCCTTA	ATTATTGTCC	TTGCTAATGA	TGACGGGCCC	GGAGTTCTAT	
1951	CATTTAACAA	CAGTGAGCAC	TTTTTCCCTAA	GAGAGCCAAC	AGCTCTCTAC	
15	2001	GTCCAGGAGA	GTGTTGAGT	ATTGTACATT	GTTGGGGAAC	CTGCACAAAGG
2051	ATTGTTGGA	ACAGTGCAG	TTCAAGTTCAT	TGTGACAGAA	GTGAATTCC	
2101	CAAATGAATC	TAAAGATCTG	ACTCCTTCCA	AAGGCTATAT	TGTTTTAGAA	
2151	GAAGGGTGTTC	GATTCAAGGC	CCTACAAATA	TCTGCCATAT	TAGACACGGA	
2201	ACCAGAAATG	GATGAGTATT	TTGTTTGAC	CTTGTAAAT	CCAACGGAG	
20	2251	GTGCTAGACT	AGGGGTGCAT	GTTCAAACCC	TGATAACAGT	TTTGCAAAAC
2301	CAGGCCCTT	TGGGGCTATT	CAGTATCTCT	GCAGTTGAAA	ATAGAGCCAC	
2351	CTCCATAGAC	ATCGAAGAAG	CCAATAGGAC	C GTGTATTTA	AATGTATCTC	
2401	GAACAAATGG	CATTGATTTG	GCTGTGAGTG	TGCACTGGGA	GACAGTATCT	
2451	GAAACAGCCT	TTGGCATGAG	GGGAATGGAT	GTTGTGTTT	CCGTATTTCA	
25	2501	AAGTTTTTG	GATGAATCAG	CTTCTGGCTG	GTGTTTCTT	ACTTTGGAAA
2551	ATTTAATATA	TGGTATAATG	TTAAGAAAAT	CATCTGTTAC	TGTTTACCGA	
2601	TGGCAGGGGA	TTTTTATTC	AGTTGAGGAT	TTAAATATAG	AAAATCCTAA	
2651	AACTTGAG	GCCTTTAATA	TTGGTTTTTC	TCCCTACTTT	GTGATTACTC	
2701	ATGAAGAAAG	AAATGAAGAA	AAGCCTTCTC	TTAACAGTGT	GTTTACATT	
30	2751	ACATCTGGAT	TTAAATTATT	CCTGGTACAA	ACAATCATT	TTCTGGAAAG
2801	TTCTCAAGTA	AGATATTTC	CTTCAGACAG	CCAAGATTAT	TTAATCATTG	
2851	CAAGTCAAAG	AGATGATTCC	GAATTAACTC	AGGTCTTCAG	GTGGAATGGA	
2901	GGAAGCTTCG	TGTTGCATCA	AAAACCCCT	GTCCGAGGTG	TGCTGACCGT	
2951	GGCCTGTT	AACAAGGGAG	GCTCTGTGTT	CTTAGCCATT	TCCCAGGCTA	
35	3001	ATGCCAGGCT	AAACCTCCCTT	TTATTGAGT	GGTCTGGCAG	TGGGTTTATT
3051	AACTTCAAG	AGGTGCCTGT	CAGTGGGACA	ACAGAAGTTG	AGGCTTGT	
3101	TTCAGCCAAT	GATATTTCAC	TAATATTTC	CAAAAATGTC	TTTCTAGGAG	
3151	ATCAGAATT	AATTGATATT	TTCATCTGGG	AGATGGGACA	GTCTTCCCTC	
3201	AGGTATTTTC	AGTCTGTAGA	TTTGCTGCT	GTTAACAGAA	TCCACTCC	
40	3251	CACACCAAGCC	TCAGGAATAG	CCCACATACT	TCTTATTGGC	CAAGATATGT
3301	CTGCTTTA	CTGCTGGAA	TCGGAGCGTA	ATCAATTCTC	TTTTGTTCTG	
3351	GAAGTACCTT	CTGCTTATGA	TGTGGCTTCT	GTTACAGTAA	AGTCCCTTAA	
3401	TTCAAGCAAG	AATTAAATAG	CTCTAGTGGG	AGCTCATTCA	CATATATAT	
3451	AGCTAGCTA	CATTCCAGC	CATTCTGACT	TTATTCTAG	TTCAGGTGAA	
45	3501	CTGATATTG	AACCTGGTGA	GAGAGAAGCT	ACAATAGCAG	TAAATATCCT
3551	TGATGATACA	GTTCCAGAAA	AAGAAGAAC	CTTCAAAGTT	CAACTTAA	
3601	ATCCCAGG	AGGAGCAGAG	ATTGGCATTA	ATGATTCTGT	AACAAATAACC	
3651	ATTCTGTCTA	ATGATGATGC	CTATGGAAATT	GTTGCATTG	CTCAGAAC	
3701	ATTATATAAG	CAAGTGGAAAG	AAATGGAGCA	AGATAGCTA	GTAACCTTGA	
50	3751	ACGTTGAACG	CTTAAAGGA	ACATATGGCC	GTATAACCAT	AGCATGGGAA
3801	GCTGATGGAA	GTATTAGTGA	TATATTTC	ACCTCAGGAG	TGATTTTATT	
3851	TACTGAAGGC	CAGGTACTGT	CAACAATCAC	TCTAACTATT	CTTGCTGATA	
3901	ATATACCAGA	GTTATCAGAG	GTTGTGATTG	TAACCCCTCAC	CCGTATCACC	
3951	ACAGAAGGGG	TTGAGGACTC	ATACAAAGGT	GCTACTATTG	ATCAGGACAG	
55	4001	AAGCAAGTCT	GTTATAACAA	CTTGCCCCAA	TGACTCACCT	TTTGGCTTGG
4051	TGGGCTGGCG	TGCTGCGTCT	GTCTTCATTA	GAGTAGCAGA	GCCTAAAGAA	
4101	AACACCAACCA	CTCTTCAGTT	ACAAATAGCT	CGAGATAAAG	GACTACTTGG	
4151	GGATATTGCC	ATTCACTTGA	GAGCTCAACC	CAATTCTTA	CTGCATGTCG	

4201 ATAATCAAGC TACTGAGAAT GAAGATTATG TATTGCAAGA AACAAATAATA
 4251 ATAATGAAAG AAAACATAAA AGAAGCTCAT GCCGAAGTTT CCATTTGCC
 4301 GGATGACCTT CCTGAATTGG AGGAAGGATT TATTGTCACT ATCACTGAGG
 4351 TGAACCTGGT GAACTCTGAC TTCTCTACAG GACAGCCAAG TGTGCGGAGG
 5 4401 CCCGGAATGG AAATAGCTGA GATAATGATA GAAGAAAATG ACGATCCCAG
 4451 AGGAATTTCATG TTACTAGAGG CGCTGGGAA GTTATTACTG
 4501 CCTATGAGGT GCCTCCACCC TTGAACGTT C TTCAAGTTCC TGTAAGTCCGG
 4551 CTGGCTGGAA GCTTGGGGC AGTAAATGTT TATTGAAAG CATCACCAAGA
 4601 CAGTGCTGGC CTGGAAGACT TAAACCACAT TCATGGGATT CTTGAATTG
 10 4651 CAGATAAACAA GGTTACTGCA ATGATAGAAA TCACCATAAT TGATGATGCT
 4701 GAATTGAAAT TGACAGAGAC GTTCAATATT TCCTTGATCA GTGTTGCTGG
 4751 AGGTGGCAGA CTTGGTGATG ATGTTGTGGT AACTGTTGTT ATTCCACAAA
 4801 ATGATTCTCC ATTTGGAGTA TTTGGATTG AAGAAAAGAC TGTAAGTTAA
 4851 ACATATCAGG GGAAAGCCTT GTTTCAGGCT AGCGTTTCAT GTAATTGAA
 15 4901 GTAGAAAAGTG TCTCACATT TTGTTTTGGA AGTCTTGGCC AGGCATGGTG
 4951 GCTCATGCCA GTAATCCCAG CACTTGGGA GGCGCAGCG GGCAGATCAC
 5001 GAGGTCAAGA GATTGACACC ATCCTGGCCA ATATGGTTGA ATTCCCGTCT
 5051 CTACTGAAAG TACAAAAAATT AGCTGGGCGT GGTGGCACAT GCCTGTATTG
 5101 CCAGATACTT GGGAGGCTGA GGCAGGAGAC TCGCTTGAAC CCAGGAGGCA
 20 5151 GAGGTTGCAG TGAGCTGAGA TCACGCCATT GCACTCCAGC CTGGCGACAT
 5201 AGAGAGACTC CATCTCAAAA AAAAAAAAAA AAAAAG

BLAST Results

25

No BLAST result

30

Medline entries

No Medline entry

35

Peptide information for frame 3

40 ORF from 0 bp to 4847 bp; peptide length: 1616
 Category: putative protein
 Classification: Cell signaling/communication
 Prosite motifs: MULTICOPPER_OXIDASE1 (151-171)

45

1 DAWADAWALY TCATLCLKEQ ACSAFSFFSA SEGPQCFWMT SWISPAVNNS
 51 DFWTYRKNMT RVASLFSGQA VAGSDYEPVT RQWAIMQEGD EFANLTVSIL
 101 PDDFPEMDES FLISLLEVHL MNISASLKNQ PTIGQPNISt VVIALNGDAF
 151 GVFVIYSISP NTSEDGLFVE VQEQPQTLVE LMIHRTGGSL GQVAEWRVV
 201 GGTATEGLDF IGAGEILTFA EGETKKTIVL TILDSEPED DESIIVSLVY
 251 TEGGSRILPS SDTVRVNILA NDNVAGIVSF QTASRSVIGH EGEILQFHVI
 301 RTFPGRGNVT VNWKIIGQNL ELNFANFSQ LFFPEGSLNT TLFVHLLDDN
 351 IPEEKEVYQV ILYDVRTQGV PPAGIALLDA QGYAAVLTV ASDEPHGVLN
 401 FALSSRFVLL QEANITIQLF INREFGSLGA INVTYTTVPG MLSLKNQTVG
 451 NLAEPREVDFV PIIGFLILEE GETAAAINIT ILEDDVPELE EYFLVNLTYV
 501 GLTMAASTSF PPRLDSEGLT AQVIIDANDG ARGVIEWQQS RFEVNETHGS
 551 LTLVAQRSRE PLGHVSLFVY AQNLEAQVGL DYIFTPMILH FADGERYKNV
 601 NIMILDDDIP EGDEKFQLIL TNPSPLGLELG KNTIALIIVL ANDDGPGVLS

5 651 FNNSEHFFLR EPTALYVQES VAVLYIVREP AQGLFGTVTV QFIVTEVNSS
 701 NESKDLTPSK GYIVLEEGVR FKALQISAIL DTEPEMDEYY VCTLFNPTGG
 751 ARLGVHVQTL ITVLQNQAPL GLFSISAVEN RATSIDIEEA NRTVYLNVS
 801 TNGIDLAVSV QWETVSETAF GMRGMDVVFS VFQSFLDESA SGWCFFTLEN
 851 LIYGIMLRKS SVTVYRWQGI FIPVEDLNIE NPKTCEAFNI GFSPYFVITH
 901 EERNEEKPSL NSVFTFTSGF KLFLVQTIII LESSQVRYFT SDSQDYLIIA
 951 SQRDDSELTQ VFRWNGGSFV LHQKLPVVRGV LTVALFNKG SVFLAISQAN
 1001 ARLNSLLFRW SGSGFINFQE VPVSGTTEVE ALSSANDIYL IFAKNVFLGD
 1051 QNSIDIFIWE MGQSSFRYFQ SVDFAAVNRI HSFTPASGIA HILLIGQDMS
 1101 ALYCWNNSERN QFSFVLEVPS AYDVASVTVK SLNNSKNLIA LVGAHSHIYE
 1151 LAYISSHSDF IPSSGELIFE PGEREATIAV NIIDDVTPEK EESFKVQLKN
 1201 PKGGAEIGIN DSVTITLSN DDAYGIVAFQ QNSLYKQVEE MEQDSLVTLN
 1251 VERLKGTYGR ITIAWEADGS ISDIFPTSGV ILFTEGQVLS TITLTILADN
 1301 IPELSEVVIV TLTRITTEGV EDSYKGATID QDRSKSVITT LPNDSPFGLV
 1351 GWRAASVFIR VAEPKENTTT LQLQIARDKG LLGDIAIHLR AQPNFLLHVD
 1401 NQATEINEDYV LQETIIIMKE NIKEAHAEVS ILPDDLPELE EGFIVTITEV
 1451 NLVNSDFSTG QPSVRRPGME IAEIMIEEND DPRGIFMFHV TRGAGEVITA
 1501 YEVPPPLNVL QVPVVRLAGS FGAVNVYWKA SPDSAGLEDF KPSHGILEFA
 1551 DKQVTAMIEI TIIDDAEFEL TETFNISLIS VAGGGRLGDD VVVTVVIPQN
 20 1601 DSPFGVFGFE EKTVS

BLASTP hits

25 No BLASTP hits available

Alert BLASTP hits for DKFZphamy2_10p7, frame 3

30 TREMBL:AF055084_1 gene: "VLGR1"; product: "very large G-protein
 coupled receptor-1"; Homo sapiens very large G-protein coupled receptor-
 1 (VLGR1) mRNA, complete cds., N = 3, Score = 284, P = 1.2e-33
 35 TREMBL:DMAF9897_1 gene: "Calx"; product: "CALX"; Drosophila
 melanogaster 3Na(+) - 1Ca(2+) exchanger (Calx) mRNA, complete cds.,
 N = 1, Score = 178, P = 3.3e-09

40 >TREMBL:AF055084_1 gene: "VLGR1"; product: "very large G-protein
 coupled receptor-1"; Homo sapiens very large G-protein coupled
 receptor-1 (VLGR1)
 mRNA, complete cds.
 Length = 1,967

HSPs:

50 Score = 284 (42.6 bits), Expect = 1.2e-33, Sum P(3) = 1.2e-33
 Identities = 192/738 (26%), Positives = 314/738 (42%)

55 Query: b7
 SGQAVAGSDYEPVTRQWAIMQEGDEFANLTWSILPDDFPEMDESFLISLLEVHLMNISAS 126
 S + G DY + Q G + + +SI+ D+ E +E +E+
 L +

Sbjct: 102 SSASPGGVVDYI-LHGSTVTFQHGQNLSFINISIIDDNESEFEEP-----
IEILLTGATGG 155

Query: 127

5 LKNQPTIGQPNISTVVIALNGDAFGVFVIYSISPNNTSEDGLFVEVQEQPQLV-ELMIHR 185
+G+ +S ++IA + FGV N S+ + +
T++ L++ R

Sbjct: 156 A----VLGRHLVSRIIIAKSDSPFGVIRFL---NQSK---
ISIANPNSTMILSLVLER 203

10

Query: 186 TGGSLGQVAVEWWRVVGGLATEGL----DFIG-AGEILTFAEGETK-
KTVILTXXXXXXX 238
TGG LG++ V W VG + E L D + F EGE

+T+ILT

15

Sbjct: 204
TGGLLGEIQQVNWETVGPNSQEAALLPQNRDIADPVSGLFYFGEGEGGVRTIILTIYPHEEI 263

Query: 239 XXXXXXXXXXXLVYTEGGSRILPSSDTVRVNILANDNVAGIVSF--
QTASRSVIGH---EG 292

20

L +G +++ + V + I + G+v F +T S+

EG

Sbjct: 264

EVEETFIIKLHLVKGEAKLDRAKDVTLTIQEFGDPNGVVQFAPETLSKKTYSEPLALEG 323

25

Query: 293 EILQFHVIRTFFPGR-GNVTVNWKIIGQ-
NLELNFAFNFSGQLFFPEGSLNTTLFVHLLDDN 350
+L +R G G+ V W++ + ++ +F + SG +G +
VHLL D

Sbjct: 324

30 PLLITFFVRRVKGTGEIMVYWELSSEFDITEDFLSTSGFFTIADESEASFDVHLLPDE 383

Query: 351

IPEEKEVYQVILYDVRTQGVPPAGIALLDAQGYAAVLTVVASDEPHGVNFAL-SSRFVL 409
+PE +E Y + L V G A LD + +V A+D+PHGV

35

FAL S R +
Sbjct: 384 VPEIEEDYVIQLVSVE-----GGAELDLEKSITWFSVYANDDPHGV--
FALYSDRQSI 434

45

Query: 410 LQEANI--TIQLFINREFGSLGAINVTYTTVPGMLS LKNQT-
40 VGNLAEPEVDFVPIIGFL 466

L N+ +IQ+ I R G+ G + V K Q V AE +
L

Sbjct: 435 LIGQNLIRSIQINITRLAGTFGDVAVGLRISSDH---KEQPIVTENAERQ--
-----L 482

Query: 467

ILEEGETAAA INITILEDVPELEEYFLVNLTYVGLTMAASTSFPPRLDSEGLTAQVIID 526
++++G T + I L F + L V L P L E
+A V+

50

Sbjct: 483 VVKDGATYKVDDVPIKNQVFLSLGSNFTLQLVTVMLVGGRFYGMPTILQ-
EAKSA-VLPV 540

Query: 527 ANDGARGVIEWQQSRFEV-NETHGSLTLVAQRSREPLGHVSLFV---
YAQNLEAQVGLDY 582

55

+ A + ++ + F++ N T G+ ++ R R G +S+ YA
LE +

Sbjct: 541 SEKAANSQVGFESTAFQLMNITAGTSHVMISR-
RGTYGALSAWTGYAPGLEIPEFIIVV 599

Query: 583 -IFTPMI--
LHFADGERYKNVNIMILDDDIPEGDEKFQLILTNPSPGLELGKNTIALIIV 639
TP + L F+ GE+ K V + P E F L L+ G
5 + IV
Sbjct: 600 GNMTPTLGSLSFSHGEGRKGVFLWTFPS--
PGWPEAFVLHLISGVQSSAPGGAQLRSGFIV 657

Query: 640 LANDDGPGLSFN-
10 NSEHFFLREPTALYVQESVAVLYIVREPAQGLFGTVTVQFIVTEVN 698
A + GV F+.+S + + E T + ++ V L+ G +
T
Sbjct: 658 -AEIEPMGVFQFSTSSRNIIIVSEDTQM-IRLHVQRLF-----
GFHSDLIKVSYQTTAG 708

Query: 699 SSNESKDLTP-SKYIVLEEGVRFKALQISAILDTEPEMDEYFVCTL----
----FNP 747
S+ +D P G + ++ +I+ I D E++E+F L
F+

20 Sbjct: 709
SAKPLEDFEPVQNGELFFQKFQTEVDFEITIINDQLEIEEFFYINLTSVEIRGLQKFDV 768

Query: 748 TGGARLGHVHQ-T-LITVLQNQAPLGLFSISAVENR-ATSIDIE---
EANRTVYLNVSRT 801
25 RL + +IT+L N G+ IS E A ++D E T
YL+ S+T
Sbjct: 769 NWSPRLNLDFSVAVITILDNDLLAGM-
DISFPETTVAVAVDTTLIPVETESTTYLSTSCT 827

30 Query: 802 NGI 804
I
Sbjct: 828 TTI 830

Score = 266 (39.9 bits), Expect = 4.0e-25, Sum P(3) = 4.0e-25
35 Identities = 175/708 (24%), Positives = 306/708 (43%)

Query: 131
PTIGQPNISTVVIALNGDAFGVFIYSISPNTEGDLFVEVQEQPQTLVELMIHRTGGSL 190
P IG +I ++I N +A G+ P + EV+E L+ +
40 + R G+
Sbjct: 39 PEIGNISIVRIIIMKNDNAEGII---EFDPKYTA---FEVEEDVVG-
LIMIPVVRLHGTY 90

Query: 191 GQVAVEWRVVGVTATEG-
45 LDFIGAGEILTFAEGETKKTVILXXXXXXXXXXXXXXLV 249
G V ++ +A+ G +D+I G +TF G+ + ++
L
Sbjct: 91
GYVTADFISQSSSASPGGVDYILHGSTVTFQHGQNLSPNISIIDDNESEFEEPIEILLT 150

50 Query: 250 YTEGGSRILPSSDTVRVNILANDNVAGIVSFQASRSVIGHGE--
ILQFHVIRTFPGRG 307
GG+ +L R+ I +D+ G++ F S+ I + IL +
RT G
55 Sbjct: 151 GATGGA-
VLGRHLVSRIIIAKSDSPFGVIRFLNQSKISIANPNSTMILSLVLERTGGLLG 209

Query: 308 NVTVNWKIIGQN----LELN--FAN-FSGQLFFPEGSLNT-

TLFVHLLDDNIPEEKEVY 358

+ VNW+ +G N L N A+ SG +F EG T+ + +

E +E +

5 Sbjct: 210

EIQVNWETVGPNQREALLPQRDIADPVSGLFYFGEGEGGVRTIILTIYPHEEIEVEETF 269

Query: 359 QVILYDVRTQGVPPAGIALLDAQGYAAVLTVESDEPHGVNFA---
LSSRFV---LLQE 412

10 + L+ V+ G A LD++ LT++ +P+GV+ FA LS +
L E

Sbjct: 270 IIKLHLVK-----

GEAKLDSRAKDVTLTIQEFGDPNGVVQFAPETLSKKTYSEPLALE 322

15 Query: 413
ANITIQLFINREFGSLGAINVTYTTVPGMLSLKNQTVGNLAEPFVPIIGFLILEEGE 472
+ I F+ R G+ G I V + L ++ ++ E DF+

GF + +GE

20 Sbjct: 323 GPLLITFFVRRVKGTGEIMVYW-----ELSSEF--DITE---
DFLSTSGFFTIAJGE 370

Query: 473
TAAAINITILEDVPELEEYFLVNLTYVGLTMAASTSFPPRLDSEGLTAQVIIDANDGAR 532
+ A+ ++ +L D+VPE+EE +++ L S LD E

25 + AND

Sbjct: 371 SEASFDVHLLPDEVPEIEEDYVIQLV-----
SVEGGAELDLEKSITWFSVYANDDPH 422

30 Query: 533 GVIEWQQSRFEV---NETHGSLTLVAQRSREPLGHVS--
LFVYAQNLQAQVGLDYIFTPM 587
GV R + S+ + R G V+ L + + + E +

+ + +

Sbjct: 423

GVFALYSDRQSILIGQNLIRSIQINITLAGTFGDVAVGLRISSDHKEQPIVTENAERQL 482

35 Query: 588 ILHFADGERYKNVNIMILDDDI--PEGDE-KFQLILTNPSPGLELGKNTI--
-ALIIVLA 641
++ DG YK V+++ + + + G QL+ G G TI

A VL

40 Sbjct: 483 VVK--DGATYK-
VDVVPIKNQVFLSLGSNFTLQLTVMLVGGRFYGMPTILQEAKSALP 539

Query: 642

NDDGPGVLSFNNSEHFFLREPTALYVQESAVLYIVREPAQGLFGTVTVQFIV----TE 696
+ NS+ F E TA + A' V +G +G ++V +

E

Sbjct: 540 VSEKAA----NSQVGF--

ESTAFQLMNITAGTSHVMISRRGTYGALSVAUTTGYPGLE 592

50 Query: 697

VNSSNESKDLTPSKGYIVLEEGVRFKALQISAILDTEPEMDEYFVCTLFNPTGGARLGVH 756
+ ++TP+ G + G + K + + P E FV L

A G

Sbjct: 593 IPEFIIVVGNMPTLGSLSFSHGEQRKGVFLWTF--

55 PSPGWPEAFVLHLSGVQSSAPGGAQ 650

Query: 757 VQTLITVLQNQAPLGLFSISAVENRATSIDIEEANRTVYLNVSRTNGI--
DLAVSVQWET 814

+++ V + + P+G+F S +R +I + E + + L+V R G DL

+ V ++T
 Sbjct: 651 LRSGFIVAEIE-PMGVFQFST-SSR--
 NIIVSEDTQMIRLHVQRLFGFHSDL-IKVSYQT 705

5 Query: 815 VSETAFGMRGMDVVFS---VFQSLDE 838
 + +A + + V + FQ F E
 Sbjct: 706 TAGSAKPLEDFEPVQNGELFFQKFQTE 732

10 Score = 246 (36.9 bits), Expect = 4.1e-32, Sum P(3) = 4.1e-32
 Identities = 92/338 (27%), Positives = 157/338 (46%)

Query: 511 PPRLDSEGLTAQVIIDANDGARGVIEW--
 QQSREVNETHGSLTVAQRSREPLGHVSLF 568

15 PP + + + ++II ND A G+IE+ + + FEV E G + + R
 G+V+
 Sbjct: 38 PPEIGNISIV-
 RIIIMKNDNAEGIIIEFDPKYTAFEVEEDVGLIMIPVVRLHGTGYVTAD 96

20 Query: 569 VYAQNLEAQVG-
 LDYIFTPMILHFADGERYKNVNIMILDDEDPEGDEKFQLILTNPSPGL 627
 +Q+ A G +DYI + F G+ +NI I+DD+ E +E
 +++LT + G
 Sbjct: 97

25 FISQSSSASPQGVDYILHGSTVTFAQHGQNLFINISIIDNESEFEPIEILLTGATGGA 156

Query: 628
 ELGKNTIALIIVLANDDGPQVLSFNNSEHFFLREPTALYVQESVAVLYIVREPAQGLFGT 687
 LG++ ++ II+ +D GV+ F N + P S +L +V E

30 GL G
 Sbjct: 157 VLGRHLVSRIIIAKSDSPFGVIRFLNQSKISIANPN-----
 STMILSLVLERTGGLLGE 210

Query: 688 VTVQFIVTEVNSSN---ESKDLT-PSKGYIVLEEGVR-
 FKALQISAILDTEPEMDEYFY 741
 + V + NS + + +D+ P G EG + + ++ E
 E++E F+

35 Sbjct: 211
 IQVNUETVGPNSQEALLPQNRDIADPVSGLFYFGEGEGGVRTIILTYPHEEIEVEETFI 270

40 Query: 742 CTLFNPTGGARLGHVQTL-ITVLQNPAPLGL--FSISAVENRATSIDIE-
 EANRTVYLN 797
 L G A+L + + +T+ + P G+ F+ + + S + E
 +

45 Sbjct: 271
 IKLHLVKGEAKLDSRAKDVTLTIQEFQDPNGVVQFAPETLSKKTYSEPLALEGPLLITFF 330

Query: 798 VSRTNGIDLAQSVQWETVSETAFGMRGMDVVFSVQFQSLDESASGWCFITL
 848
 V R G + V WE SE F + + FL S SG FFT+
 Sbjct: 331 VRRVKGTGEIMVYWELSS-----FDITEDFL--STSG--FFT
 366

Score = 246 (36.9 bits), Expect = 1.9e-19, Sum P(3) = 1.9e-19
 Identities = 87/303 (28%), Positives = 138/303 (45%)

Query: 1162 PSSEGELIFEPGEREA-TIAVNILDVTPEKEESFKVQLKNPKGGAEIGIN-
 DSVTITILS 1219

P SG F GE TI + I E EE+F ++L KG A++
 VT+TI
 Sbjct: 236
 PVSGLFYFGEGEGGVRTIILTYPHEEIEVEETFIIKLHLVKGEAKLDSRAKDVTLTIQE 295
 5
 Query: 1220 NDDAYGIVAFQAQNSL----
 YKQVEEMEQDSDLVTLNVERLKGTYGRITIAWEADGSIS--- 1272
 D G+V FA +L Y + +E L+T V R+KGT+G I + WE
 Sbjct: 296
 10 FGDPNGVVQFAPETLSKKTYSEPLALEGPLLITFFVRRVKGTGEIMVYWELSSEFDITE 355
 Query: 1273
 DIFPTSGVILFTEGQVLSTITLTILADNIPELSEVVIVTLTRITTEGVEDSYKGATIDQD 1332
 D TSG +G+ ++ + +L D +PE+ E ++ L ++ EG
 15 GA +D +
 Sbjct: 356 DFLSTSGFFTIAEDGESEASFDVHLLPDEVPEIEEDYVIQL--VSVEG----
 -GAELDLE 407
 Query: 1333
 20 RSKSVITTLPNDSFGLVGWRRAASVFIRVAEPKENTTLQLQIARDKGLLGDIAIHLRAQ 1392
 +S + + ND P G+ + I + + ++Q+ I R G
 GD+A+ LR
 Sbjct: 408 KSITWFSVYANDDPHGVFALYSDRQSILIGQ--
 NLIRSIQINITRLAGTFGDVAVGLRIS 465
 25 Query: 1393 PNFLHHVDNQ-
 ATENEDYVLQETIIIMKENIKEAHAEVSILPDLPELEEGFIVTITEVN 1451
 + H + TEN E +++K+ VI L F
 + + V
 30 Sbjct: 466 SD---HKEQPIVTENA----
 ERQLVVVKDGATYKVDDVPIKNQVFLSLGSNFTLQLVTVM 517
 Query: 1452 LVNSDFSTGQPSV 1464
 LV F G P++
 35 Sbjct: 518 LVGGRFY-GMPTI 529
 Score = 246 (36.9 bits), Expect = 1.9e-19, Sum P(3) = 1.9e-19
 Identities = 89/334 (26%), Positives = 150/334 (44%)
 40 Query: 1159
 DFIPSSGELIFEPGEREATIAVNILDVTPEKEESFKVQLKNPKGGAEIGINDSVTITIL 1218
 D+I + F+ G+ + I ++I+DD E EE ++ L GGA +G +
 I I
 Sbjct: 110
 45 DYILHGSTVTFQHGQNLSFINISIIDNESEFEPIEILLTGATGGAVLGRHLVSRIIIA 169
 Query: 1219
 SNDDAYGIVAFQAQNSLYKQVEEMEQDSDLVTLNVERLKGTYGRITIAWEADGSIS----- 1272
 +D +G++ F S + +++L +ER G G I + WE G
 50 S
 Sbjct: 170 KSDSPFGVIRFLNQSKIS-
 IANPNSTMILSLVLERTGGLGEIQVNWETVGPNQREALLP 228
 Query: 1273 ---DIF-PTSGVILFTEGQV-
 55 LSTITLTILADNIPELSEVVIVTLTRITTEGVEDSYKG 1327
 DI P SG+ F EG+ + TI LTI E+ E I+ L + E
 DS

Sbjct: 229

QNRDIADPVSGLFYFGEGEGGVRTIILTIYPHEEIEVEETFIKLHLVKGEAKLDS--- 284

Query: 1328 TIDQDRSKSVITTLPN-DSPFGLVGWRAASVFIRV-AEPK--
5 ENTTTLQLQIARDKGLLG 1383

R+K V T+ P G+V + ++ + +EP E + +

R KG G

Sbjct: 285 ----

RAKDVTLTIQEFGDPNGVVQFAPETLSKKTYSEPLALEGPLLITFFVRRVKGTFG 339

10

Query: 1384

DIAIHRLRAQPNFLLVHDNQATENEDYVLQETIIIMKENIKEAHAEVSILPDDLPLEEGF 1443
+I ++ F + ED++ + + EA +V

+LPD++PE+EE +

15

Sbjct: 340 EIMVYVWELSSEFDI-----

TEDFLSTSGFFTIADESEASFDVHLLPDEVPEIEEDY 391

Query: 1444 IVTITEVNLVNSDFSTGQPSVRRPGMEIAEIMIEENDDPRGIFMFHVTR
1492

20

++ + V + + + I + NDDP G+F + R

Sbjct: 392 VIQLVSVE-----GGAELDLEK---SITWFSVYANDDPHGVFALYSDR
431

25

Score = 237 (35.6 bits), Expect = 9.4e-34, Sum P(3) = 9.4e-34

Identities = 101/367 (27%), Positives = 165/367 (44%)

Query: 67

SGQAVAGSDYEPVTRQWAIMQEGDEFANLTWSILPDDFPEMDESFLISLLEVHLMNISAS 126
S + G DY + Q G + + +SI+ D+ E +E +E+

30

Sbjct: 302 SSASPGGVDYI-LHGSTVTFQHGQNLSFINISIIDNESEFEEP-----
IEILLTGATGG 155

Query: 127

55 LKNQPTIGQPNISTVVIALNGDAFGVFWIYSISPNTSEDGLFVEVQEQQPQTLVELMIHRT 186
+G+ +S ++IA + FGV N S+ +

++ L++ RT

Sbjct: 156 A----VLGRHLVSRIIIAKSDSPFGVIRFL----NQSKISI---
ANPNSTMILSLVLERT 204

40

Query: 187 GGSLGQVAVEWRVVGGTATEGL----DFIG-AGEILTFAEGETK-
KTVILTXXXXXXXX 239

GG LG++ V W VG + E L D + F EGE +T+ILT

Sbjct: 205

45 GGLLGEIqvNWETVGPNSQEALLPQNRDIADPVSGLFYFGEGEGGVRTIILTIYPHEEIE 264

Query: 240 XXXXXXXXLVYTEGGSRILPSSDTVRVNILANDNVAGIVSF--
QTASRSVIGH---EGE 293

L +G +++ + V + I + G+V F +T S+

50 EG

Sbjct: 265

VEETFIKLHLVKGEAKLDSRAKDVTLTIQEFGDPNGVVQFAPETLSKKTYSEPLALEGP 324

Query: 294 ILQFHVIRTFFPGR-GNVTVNWKIIGQ-

55 NLELNFAFNFSGQLFFPEGSLNTLFVHLLDDNI 351

+L +R G G + V W++ + ++ +F + SG +G +

VHLL D +

Sbjct: 325
 LLITFFVRRVKGTFGEIMVYWELSSEFDITEDFLSTSGFFTIADESEASFDVHLLPDEV 384

Query: 352

5 PEEKEVYQVILYDVRTQGVPPAGIALLDAQGYAAVLTVEASDEPHGVLFAL-SSRFVLL 410
 PE +E Y + L V G A LD + +V A+D+PHGV FAL

S R +L

Sbjct: 385 PEIEEDYVIQLVSVE-----GGAELDLEKSITWFSVYANDDPHGV--
 FALYSDRQSIL 435

10

Query: 411 QEANI--TIQLFINREFGSLGAINV 433
 N+ +I+ I R G+ G + V

Sbjct: 436 IGQNLIRSIQINITRLAGTFGDVAV 460

15

Score = 230 (34.5 bits), Expect = 2.3e-14, Sum P(3) = 2.3e-14
 Identities = 98/368 (26%), Positives = 164/368 (44%)

Query: 1240 EMEQD-

20 SLVTLNVERLKGTYGRITIAWEADGSISDIFPTSGVILFTEGQVLSTITLTILA 1298
 E+E+D L+ + V RL GTYG +T + + S + P GV G

ST+T

Sbjct: 71 EVEEDVGLIMIPVVRHLGTYGYVTADFISQSSSAS--P-GGVDYILHG--
 STVTFQH-G 123

25

Query: 1299 DNIPELSEVVIVTLTRITTEGVEDSYKGATIDQDRSKSVITL--
 PNDSPLVGLVGWRRAA 1355

N+ ++ +I E +E GAT + +++ +
 +DSPFG++ +

Sbjct: 124

30

QNLSFINISIIDNESEFEEPIEILLTGATGGAVLGRHLVSRIIIAKSDSPFGVIRFLNQ 183

Query: 1356 SVFIRVAEPKENTTLQLQIARDKGLLGDIAIHLRAQ-
 PNFLLVHDNQATEINEDYVLQET 1414

35

S I +A P +T L L + R GLLG+I ++ PN + Q +

D V

Sbjct: 184 SK-ISSIANPN-

STMILSLVLERTGGLLGEIQVNWETVGPNQEAALLPQRNDIADPV--SG 239

45

Query: 1435 IIIMKENIKEAHAEV-

40

SILPDDLPELEEGFIVTITEVNLVNSDFSTGQPSVRRPGMEIAE 1473
 + E + +I P + E+EE FI+ +++LV G+ +

++

Sbjct: 240 LFYFGEGEGGVRTIILTIYPHEEIEVEETFII---KLHLVK----
 GEAKLDSRAKDVT- 290

Query: 1474

IMIEENDDPRGIFMFHVTRGAGEVITAYXXXXXXXXXXXXAGSGFGAVNVYWKASPD 1533
 + I+E DP G+ F + + + G+FG +

VYW+ S +

50

Sbjct: 291

LTIQEFGDPNGVVQFAPETLSKKTYSEPLALEGPLLITFFVRRVKGTFGEIMVYWELSSE 350

Query: 1534

55

SAGLEDFKPSHGILEFADKQVTAMIEITIIDDAAEFELTETFNISLISVAGGGRLGDDVVV 1593
 EDF + G AD + A ++ ++ D E+ E + I L+SV GG

L + +

Sbjct: 351

FIDITEDFLSTSGFFTIADESEASFDVHLLPDEVPEIEEDYVIQLVSVEGGAELDLEKSI 410

Query: 1594 T-VVIPQNDSPFGVF 1607

T + ND P GVF

Sbjct: 411 TWFSVYANDDPHGVF 425

5

Score = 190 (28.5 bits), Expect = 7.5e-11, Sum P(3) = 7.5e-11
Identities = 136/591 (23%), Positives = 247/591 (41%)

Query: 67

SGQAVAGSDYEPVTRQWAIMQEGDEFANLTWSILPDDPEMDESFLISLLEVHLMNISAS 126
+G A D+EPV Q+ + ++I+ D E++E F I+L V
+ +

Sbjct: 707

AGSAKPLEDFEPVQNGELFFQKFQTEVDFEITIINDQLEIEEFFYINLTSVEIRGLQKF 766

15

Query: 127 LKN-QPTIGQP-NISTVVIALNGDAFGVVFVIY-
SISPNTSEDGLFVEVQEQQPLVELMI 183

N P + +++ + I N D G+ + + + + + D + V+ +

T L

Sbjct: 767

DVNUSPRLNLDPSVAVITILDNDLAGMDISFPETTVAVAVD TTLIPVETESTTY--LST 824

Query: 184 HRTGGSLGQVAVEWRVVGSTATEGLDFIGAGEILTTF--
AEGETKKTVILTXXXXXXXXXX 241

+T L V +V T G+ I +++T ++K + T

Sbjct: 825 SKTTTILQPTNVV-AIV--TEATGVSAIPE-
KLVTLHGTPAVSEKPDVATVTANVSIHGT 880

Query: 242 XXXXXXLVYTEGGSRILPSSDTVRVNILANDNVAGIVSF--
QTASRSVIGHEGEILQFHV 299

+VY E + + +T V I G VS +T E

L F

Sbjct: 881 FSLGPSIVYIEEEMKN-
GTFNTAEVLIIRRGGFTGNVSITVKTFGERCAQMEPNALPF-- 937

35

Query: 300

IRTFPGRGNVTVNWKIIGQNLELNFAFSGQLFFPEGSLNTLFVHLLDDNIPEEKEVYQ 359
R G N+T W + E +F + L F +G + V +LDD+

PE +E +

Sbjct: 938 -RGIYGISNLT--WAVE----

EEDFEEQTLTLIFLDGERERKVSVQILDDDEPEGQEFFY 990

Query: 360 VILYDVRTQGVPPAGIALLDAQ---GYAA--
VLTVEASDEPHGVNLNALSSRFVL-LQEA 413

V L + P G +++ + G+AA ++ + SD +G++ F+ S+
L L+E

Sbjct: 991 VFLTN-----

PQGGARIVEGKDDTGFAAFAMVIITGSIDLHNGIIGFSEESQSGLELREG 1044

Query: 414 NITIQLFI-----NREFGSLGAI-
NVTYTTVPGMLSLKNQTVGNLAEPEVDFVPIIGFL 466
+ +L + NR F + VT ++ L+ V NL E E+
V G

Sbjct: 1045 AVMRRHLHIVTRQPNRAFEDVKVFWRTLNKT--VVVLQKDGV-NLME-
ELQSVS--GTT 1098

Query: 467 ILEEGETAAAINITILEDVPELEEFYFLVNL--
TYVGLTMAASTSFPPRLDSEGLTAQVI 524

G+T I+I + + VP++E YF V L G + S F

E +Q +

Sbjct: 1099

TCTMGQTCKCFISIELKPEKVPQVEVYFFVELYEATAGAAINNSARFAQIKILESDESQSL 1158

5

Query: 525 IDANDGARGVIEWQQSRF---EVNETHGS-
LTLVAQRSREPLGHVSLFVYAQNLEAQVGL 580

+ + G+R + +++ +V G+ L + S + L

A G

10

Sbjct: 1159

VYFSVGSRLAVAHKKATLISLQVARDSGTGLMMSVNFSQELRSAETIGRTIISPAISGK 1218

Query: 581 DYIFTPMILHFADGERYKNVNIMILD--
DIPEGDEKFQLILTNPSPGLELGKNTIALII 638

15

D++ T L F G+R +++++ + + ++FQ++L +P G +

K I

Sbjct: 1219

DFVITEGTLVFEPGQRSTVLDVILTPETGSLNSFPKRFQIVLFDPKGARIDKVYGTANI 1278

20

Query: 639 VLAND-DGPGVLSFNNSEH 656
L +D D + + H

Sbjct: 1279 TLVSDADSQAIWGLADQLH 1297

25

Score = 188 (28.2 bits), Expect = 1.2e-33, Sum P(3) = 1.2e-33

Identities = 84/329 (25%), Positives = 146/329 (44%)

Query: 1126 SVTVKSLNS----

SKNLIALVGAHSIYELAYISSHSDFIPSSGELIFEPEGEREATIAV 1180

S+TVK+ N + G + I L + DF + LIF

30

GERE ++V

Sbjct: 917 SITVKTFGERCAQMEPNALPFRGIY-

ISNLTWAVEEEEDFEEQTLTLIFLDGERERKVSV 975

35

Query: 1181 NILDDTVPEKEESFKVQLKNPKGGAEI--GINDS---VTITLSNDAY-
GIVAFAQNS 1233

ILDD PE +E F V L NP+GGA+I G +D+ + I++ D +

GI+ F++ S

Sbjct: 976

QILDDDEPEGQEFFYVFLTNPQGGAQIVEGKDGTGFAAFAMVIITGSDLHNGIIGFSEES 1035

40

Query: 1234 LYKQVEEMEQDSLVT---LNVERLKG-TYGRITIAWEAD-
GSISDIFPTSGVILFTEGQV 1288

+ E+ + +++ L V R + + + W + GV

L E Q

45

Sbjct: 1036 --

QSGLELREGAVMRRLHLIVTRQPNRAFEDVKVFWRVTLNKTVVVLQKDGVNLMEELQS 1093

Query: 1289 LSTITLTILADNIPELS-EVVIVTLTRITTEGVEDSYK---
GATIDQDRSKSVITTLPNQ 1344

50

+S T + +S E+ + ++ + Y+ GA I+ +

I L +D

Sbjct: 1094

VSGTTTCTMGQTCKCFISIELKPEKVPQVEVYFFVELYEATAGAAINNSARFAQIKILESD 1153

55

Query: 1345 SPFGLVGWRAASVFIRVAEPKENTTTLQLQIARDKG--LLGDIAI---
HLRAQPNFLLHV 1399

LV + S R+A + T + LQ+ARD G L+ + LR+

+

Sbjct: 1154 ESQSLVYFSVGS---
RLAVAHKKATLISLQVARDSGTGLMMSVNFTQELRSAETIGRTI 1210

Query: 1400 DNQATEVEDYVLQETIIIMKENIKEAHAEVSIPLD 1434
+ A +D+V+ E ++ + +V + P+
Sbjct: 1211 ISPAISGKDFVITEGTLVFEPGQRSTVLDVILTPE 1245

Score = 186 (27.9 bits), Expect = 2.5e-13, Sum P(3) = 2.5e-13
Identities = 75/242 (30%), Positives = 113/242 (46%)

Query: 1206
EIGINDSVTITLSNDDAYGIVAFQAQNSLYKQVEEMEQDSLVTLNVERLKGTYGRITIAW 1265
EIG V I I+ ND+A GI+ F + Y E E L+ + V RL
GTYG +T +

Sbjct: 40 EIGNISIVRIIIMKNDNAEGIIEF--
DPKYTAFEVEEDVGLIMIPVVRHLGTYGYVTADF 97

Query: 1266 EADGSIS----
DIFPTSGVILFTEGQVLSTITLTILADNIPELSEVVIVTLTRITTEGV 1320
+ S + D + F GQ LS I ++I+ DN E E + +

LT T G

Sbjct: 98
ISQSSSASPQGVDYILHGSTVTFQHGQNLSFINISIIDDNESEFEEPIEILLTGAT--G- 154

Query: 1321
EDSYKGATIDQDRSKSVITTLPNDSPFGLVGWRAASVIRVAEPKENTTLQLQIARDKG 1380
GA + + +I +DSPFG++ + S I +A P +T L
L + R G

Sbjct: 155 -----GAVLGRHLVSRIIIA-KSDSPFGVIRFLNQSK-ISIANPN-
STMILSLVLERTGG 206

Query: 1381 LLGDIAIHLRAQ-PNFLHVVDNQATEVEDYVLQETIIIMKENIKEAHAEV-
SILPDDLPE 1438
LLG+I ++ PN + Q + D V + E +

+I P + E
Sbjct: 207 LLGEIQVNWETVGPNQREALLPQNRDIADPV--
SGLFYFGEGEVVRTIILTIYPHEEIE 264

Query: 1439 LEFGFIVTI 1447

+EE FI+ +
Sbjct: 265 VEETFIIKL 273

Score = 179 (26.9 bits), Expect = 9.4e-34, Sum P(3) = 9.4e-34
Identities = 65/244 (26%), Positives = 114/244 (46%)

Query: 581 DYIFTPMILHFADGERYKNVNIMILDDDIPPEGDEKFQLILTNPSPGLEL--
GKN-----T 633
D+ . . + L F DGER + V++ ILDDD PEG E F + LTNP G ++

GK+

Sbjct: 954
DFEEQTLTLIFLDGERERKVSVQILDDEPEGQEFFFYVFLTNPQGGAQIVEGKDDTGFAA 1013

Query: 634 IALIIVLANDDGPGLSFNNSEHFFLREPTALYVQESVAVLYIVREPAQG--
---LFGT 688

A++I+ +D G++ F+ L ++ L + R+P +
+F V
Sbjct: 1014 FAMVIITGSDLHNGIIGFSEESQSGLELREGAVMRR--
LHLIVTRQPNRAFEDVKVFWRV 1071

Query: 689 TVQ--
 FIVTEVNSSNESKDLTPSKGYIVLEEGVRFKALQISAILDTEPEMDEYFVCLFN 746
 T+ +V + + N ++L G G + I + P+++
 5 YF L+
 Sbjct: 3072
 TLNKTVVVLQKDGVLMEELQSVSGBTCTMGQTKCFISIELKPEKVPQVEVYFFVELYE 1131

Query: 747 PTGGARLGVHVQ-
 10 TLITVLQNQAPLGLFSISAENRATSIDIEEANRTVYLNVSRTNGID 805
 T GA + + I +L++ L S V +R ++ ++A + L
 V+R +G.
 Sbjct: 1132 ATAGAAINNSARFAQIKILESDESQSLVYFS-VGSRL-AVAHKKAT-
 LISLQVARDSGTG 1188

15 Query: 806 LAVSVQWET 814
 L +SV + T
 Sbjct: 1189 LMMSVNFST 1197

20 Score = 174 (26.1 bits), Expect = 4.1e-32, Sum P(3) = 4.1e-32
 Identities = 58/200 (29%), Positives = 102/200 (51%)

Query: 1159
 DFIPSSGELIFEPEGEREATIAVNILDVTPEKEESFKVQLKNPKGGAEIGINDSVT-ITI 1217
 25 DF+ +SG GE EA+ V++L D VPE EE + +QL + +GGAE+ +
 S+T ++
 Sbjct: 356
 DFLSTSGFFTIAIDGESEASFDVHLLPDEVPEIEEDYVIQLVSVEGGAELDLEKSITWF SV 415

30 Query: 1218 LSNDAYGIVAFQAQNSLYKQVEEMEQDSL--
 VTLNVERLKGTYGRITIAWEADGSISDIF 1275
 +NDD +G+ A + +Q + Q+ + + +N+ RL GT+G + +
 SD
 Sbjct: 416 YANDDPHGVFALYS---
 35 RQSILIGQNLIRSIQINITLAGTFGDVAVGLRIS---SDHK 469

Query: 1276 PTSGVILFTEGQVLSTITLTILADNIPELSEVVI-----
 VTLTRITTEGVEDSYKGA-TI 1329
 V E Q++ T D +P ++V + TL +T V
 40 + G TI
 Sbjct: 470
 EQPIVTENAERQLVVKDGATYKVDVVPIKNQVFLSLGSNFTLQLVTVMLVGGRFYGMPTI 529

Query: 1330 DQDRSKSVITTLPNDSPFGLVGWRAAS 1356
 45 Q+ +KS + + + VG+ ++
 Sbjct: 530 LQE-AKSAVLPVSEKAANSQVGESTA 555

Score = 145 (21.8 bits), Expect = 4.3e-24, Sum P(3) = 4.3e-24
 Identities = 104/396 (26%), Positives = 170/396 (42%)

50 Query: 88
 EGDEFANLTVSILPDDFPEMDESFLISLLEVHLMNISASLKNQPTIGQPNISTVVIALNG 147
 +G+ A+ V +LPD+ PE++E ++I L+ V A L + +I +
 + N
 55 Sbjct: 368 DGESEASFDVHLLPDEVPEIEEDYVIQLVSVEG---GAELDLEKSI----
 TWFSVYAND 419

Query: 148

DAFGVFIYSISPNTEGLFVEVQEQPQTLVELMIHRTGGSLGQVAVEWRVVGGTATEG 207
D GVF +YS D + + + + + I R G+ G VAV R+

+

5 Sbjct: 420 DPHGVFALYS-----

DRQSILIGQNLIIRSIQINITRLAGTFGDVAVGLRISSDHKEQP 472

Query: 208 LDFIGAGEILTFAEGETKKTVILTXXXXXXXXXXXXXLVYTE-GGSRI-
-LPSS-DT 263

10 + A L +G T K ++ LV G R

+P+

Sbjct: 473

IVTENAERQLVVKDGATYKVDVVPPIKNQVFLSLGSNFTLQLVTVMLVGGRFYGMPTILQE 532

15 Query: 264 VRVNIL-ANDNVAGI-VSFQTASRSRVIGHEGEILQFHVIRTFPGR-
GNVTVNWKI-IGQN 319
+ + L + + A V F++ + ++ HV+ + G G ++V

W

20 Sbjct: 533 AKSAVLVSEKAANSQVGFEASTAFQLMNITAGTS--
HVMISRRTGYGALSVAWTGTYAPG 590

Query: 320 LEL-----

NFANFSGQLFFPEGSLNTLFVHLLDDNIPEEKEVYQVILYDVRTQGVPP 372
LE+ N G L F G +F+ P E + + L

25 V++ P

Sbjct: 591 LEIPEFIVVGNMTPTLGSLSFHGEQRKGVFLWTFPS--
PGWPEAFVLHLSGVQSSA--P 646

Query: 373

30 AGIALLDAQGYAAVL TVEASDEPHGVLNFAASSRFVLLQEANITIQLFINREFG-SLGAI 431
G L G+ + A EP GV F+ SSR +++ E I+L + R

FG I

Sbjct: 647 GGAQL--RSGF-----

IVAEIEPMGVQFSTSSRNIIIVSEDTQMIRLHVQRLFGFHSLDI 699

35

Query: 432 NVTYTTPGMLS-LKN-QTV--GNLA---EPEVDF-
VPIIGFLILEEGETAAAINITIL 482

V+Y T G L++ + V G L + EVDF + II L E E

IN+T +

40 Sbjct: 700 KVSYQTTAGSAKPLEDFEPVQNGELFFQKFQTEVDFEITIINDQ-
LSEIEEFFYINLTSV 758

Query: 483 E 483

E

45 Sbjct: 759 E 759

Score = 142 (21.3 bits), Expect = 5.6e-05, Sum P(3) = 5.6e-05
Identities = 54/175 (30%), Positives = 76/175 (43%)

50 Query: 1435

DLPELEEGFIVTITEVNVLVNSDFSTGQPSVRRPGMEIAEIMIEENDPRGIFMFHVTRGA 1494
DL + G+ TI E N + D QP + I I+I +ND+ GI

F

Sbjct: 16 DLYDFGRGYDFTIQUE-NGLQID----QPP-

55 EIGNISIVRIIIMKNDNAEGIIEFDPK--- 66

Query: 1495 GEVITAYXXXXXXXXXXXXXXAGSGFGAVNVYW--
KASPDSAGLEDFKPSHGILEFADK 1552

TA+E

G++G V + ++S S G D+

+ F

Sbjct: b7 ---

YTAFEVEEDVGLIMIPVVRHLGTYGYVTADFISQSSSAQPGGVDYILHGSTVTFQHG 123

5

Query: 1553

QVTAMIEITIIDDAAEFELTETFNISLISVAGGGRLGDDVVVTVVIPQNDSPFGVFGF 1609
Q + I I+IID E E E I L GG LG +V ++I

++DSPFGV F

10

Sbjct: 124

QNLSEFINISIIDDNESEEFEEPIEILLTGATGGAVLGRHLVSRIIIAKSDSPFGVIRF 180

Score = 125 (18.8 bits), Expect = 4.0e-25, Sum P(3) = 4.0e-25
Identities = 77/308 (25%), Positives = 134/308 (43%)

15

Query: 1141 LVGAHSHIYELAYISSHS-----DFIP-

SSGELIFEPGEREATIAVNILDVTPEKEES 1193

L G HS + +++Y ++ DF P +GEL F+ + E + I++D

+ E EE

20

Sbjct: 691

LFGFHSDLIKVSYQTTAGSAKPLEDFEPVQNGELFFQKFQTEVDFEITIINDQLSEIEEF 750

Query: 1194 FKVQLKNP--

KGGAEGINGDSVTITILSNDDAYGIVAFQAQNSLYKQVEEMEQDSLVTLN 1251

25

F + L + +G + +N S + + D + ++ N

D L +++

Sbjct: 751 FYINLTSVEIRGLQKFDVNWSPRLNL---DFSVAVITILDN-----
DDLAGMDI 796

30

Query: 1252

ERLKGTYGRITIAWEADGSISDIFPTSGVILFTEGQVLSTITLTILADNIPELSEVVIVT 1311
++ T+A D ++ + S L T + + + T + + E

+ V +

35

Sbjct: 797 -----SFPETTVAVAVDTTLIPVETESTTYLSTS-

KTTTILQPTNVVAIVTEATGVSAIP 850

Query: 1312

LTRITTEGVEDSYKGATIDQDRSKSVITTLPNDSPEGLVGWRAASVFIRVAEPKENT-TT 1370
+T G T V T N S G + V+I E

40 K T T

Sbjct: 851 EKLVTLHG-----TPAVSEKPDVATVTANVSIHGTFSLGPSIVYIE-
EEMKNGTFNT 901

Query: 1371 LQLQIARDKGLLGDIAIHLRA-----QPNFL----LHVDNQ--

45 ATENEDYVLQETI 1415

++ I R G G++I ++ +PN L + N A E

ED+ Q

Sbjct: 902

AEVLIRRTGGFTGNVSITVKTFGERCAQMEPNALPFRGIYGISNLTWAVEEEDEEEQTLT 961

50

Query: 1416 IIMKENIKEAHAEVSIPLDDLPELEEGFIVTIT 1448

+I + +E V IL DD PE +E F V +T

Sbjct: 962 LIFLDGERERKVSVQILDDDEPEGQEFFFYVFLT 994

55

Score = 123 (18.5 bits), Expect = 6.0e-28, Sum P(3) = 6.0e-28
Identities = 91/372 (24%), Positives = 150/372 (40%)

Query: 386 VLTVEASDEPHGVLFNFA LSSRFVLLQEA--NITI---
 QLFINREFGSLGAINVTYTTV-- 438

V TV A+ HG F+L V ++E N T ++ I R G G
 +++T T

5 Sbjct: 868 VATVTANVSIHGT--
 FSLGPSIVYIEEEMKNGTFNTAEVLIRRTGGFTGNVSITVKTFGE 925

Query: 439 -----PGMLS LKN-QTVGNL--
 AEPEVDFVPIIGFLILEEEGETAAAINITILEDVPEL 489

10 P L + + NL A E DF LI +GE +++
 IL+DD PE

Sbjct: 926
 RCAQM EPN ALPFRGIYGISNL TWAVEEEDFEE@TLTLIFLDGERERKVSVQILDDDEPEG 985

15 Query: 490 E EYFLVNL TYVGLTMAASTSFPPRL DSEGLTA--QVIIDANDGARGVI--
 EWQQSRFEV 544

+E+F V LT D G A VII +D G+I E
 QS E+

20 Sbjct: 986 QEFFYYVFLT----
 NPQGGAQIVEGKDDTGFAAFAMVIITGSDLHNGIIGFSEES@SGLEL 1041

Query: 545 NE--THGSLTLVAQRS-REPLGHVSLF--
 VYAQNLEAQVGLDYIFTPMILHFADGERYKN 599

25 E L L+ R V +F V + D + L
 G

Sbjct: 1042
 REGAVMRRLLHLIVTR@PNRAFDVKVFWRVTLNKTVVVL@KDGVLMEEL@SVSGTTCT 1101

30 Query: 600 -----VNIMILD DDIPEGDEKFQLILTNPSPGLELGKNT-
 IALIIVL ANDDPGVLSF 651
 ++I + + +P+ + F + L + G + + A I +L
 +D+ ++ F

Sbjct: 1102
 MGQTKCFISIELKPEKVPQVEVYFFVELYEATAGAAINNSARFAQIKILESDESQSLVYF 1161

35 Query: 652 NNSEHFFLREPTALYVQESVAVLYIVREPAQGLFGTVTVQFIVTEVNSSNE-
 -SKDLTPS 709
 + + A + L + R+ GL ++V F E+ S+
 ++P+

40 Sbjct: 1162 SVGSRLAVAHKKATLIS----LQVARDSGTGLM--
 MSVNFSTQELRSAETIGRTIISPA 1214

Query: 710 ---KGYIVLEEGVRFKALQISAILD 731
 K +++ E + F+ Q S +LD

45 Sbjct: 1215 ISGKDFVITEGTLVFEPGQRSTVLD 1239

Score = 120 (18.0 bits), Expect = 1.8e-22, Sum P(3) = 1.8e-22
 Identities = 77/316 (24%), Positives = 127/316 (40%)

50 Query: 1255 KGT YGRITIAWE---ADGS-----
 ISDIFPTSGVILFTEG@VLSTITL TILADNIPEL 1304
 + GTYG +++AW A G + ++ PT G + F+ G+ + L
 P

Sbjct: 573
 RGTYGALSVAUTTGAYAPGLEIPEFIVVGNMTPTLGSLSF SHGEQRKGVFLWTFPS--PGW 630

Query: 1305
 SEVVIVTLTRITTEGVEDSYKGATIDQDRSKSVITL PNDSPFGLVGWRAASVFIRVAEP 1364

E ++ L+ GV+ S G Q RS ++ + P G+ + +S
I V+E
Sbjct: 631 PEAFVLHLS-----GVQSSAPGGA--QLRSGFIVAEI---
EPMGVFQFSTSSRNIIIVSE- 679

5 Query: 1365 KENTTTLQLQIARDKGLLGDIAIHLRAQPNFLHVVDNQATENEDYV-
LQETIIIMKENIK 1423
+T ++L + R G D+ I + Q A ED+ +Q
+ ++

10 Sbjct: 680 --DTQMIRLHVQRLFGFHSDL-IKVSYQTTA-----
GSAKPLEDFEPVQNGELFFQKFQT 731

Query: 1424 EAHAEVSVILPDDLPPELEEGFIVTITEVNLVN-
SDFSTGQPSVRRPGMEIAEIMIEENDDP 1482
15 E E++I+ D L E+EE F + +T V + F +A I
I +NDD
Sbjct: 732
EVDFEITIINDQLEIEEFFYINLT SVEIRGLQKFDVNWSPLNLDFSVAVITILDNDL 791

20 Query: 1483 RGI-FMFHVTRGAGEVITAY---
XXXXXXXXXXXXXXAGSGFAGNVYWKASPDASGLE 1538
G+ F T A V T E V +
+A+ SA E
Sbjct: 792
25 AGMDISFPETTVAVAVDTTLIPVETESTTYLSTS KTTTILQPTNVVAIVTEATGVSAIPE 851

Query: 1539 DFKPShGILEFADKQVTAMIEITIIDAEFEL 1570
HG ++K A + + ' F L
Sbjct: 852 KLVTLHGTPAVSEKPDVATVTANVSIHGTFSL 883

30 Score = 113 (17.0 bits), Expect = 9.4e-34, Sum P(3) = 9.4e-34
Identities = 28/87 (32%), Positives = 50/87 (57%)

Query: 1156 SHSDFIPSSGELIFEPGEREATIAVNILDDT--
35 VPEKEESFKVQLKNPKGGAEIG-INDS 1212
S D�+ + G L+FEPG+R + V + +T + + F++ L +PKGGA
I + +
Sbjct: 1216
SGKDFVITEGTLVFEPGQRSTVLDVILTPETGSLSFPKRFQIVLFDPKGARIDKVYGT 1275

40 Query: 1213 VTITILSNDDAYGIVAFQAQNSLYKQVEE 1240
IT++S+ D+ I A + L++ V +
Sbjct: 1276 ANITLVS DADSQAIWGLA-DQLHQPVND 1302

45 Score = 93 (14.0 bits), Expect = 4.1e-32, Sum P(3) = 4.1e-32
Identities = 57/222 (25%), Positives = 90/222 (40%)

Query: 1404 TENEDYVL--QETIIIMKENIKEAHAE---VSILPDDLP EEL-----
EEGFIVTITEVN 1451
50 TE+ Y+ + T I+ N+ E VS +P+ L L E+
+ T+T
Sbjct: 816
TESTTYLSTS KTTTILQPTNVVAIVTEATGVSAIPEKLVTLHGTPAVSEKPDVATVTANV 875

55 Query: 1452 LVNSDFSTGQPSVRRPGMEIAEIMIEENDDPRGIFMFHVTRGAGEV-
ITAYXXXXXXXXX 1510
++ FS G PS+ + I E M + + + G V IT

Sbjct: 876 SIHGTFSLG-PSI----
VYIEEEMKNGTFNTAEVLIRRTGGFTGNVSITVKTFGERCAQM 930

Query: 1511

5 XXXXXXXAGSGAVNVYWKASPD SAGLEDFKPSHGILEFADKQVTAMIEITIIDD AEFEL 1570
G + G N+ W EDF+ L F D + + +

I+DD E E

Sbjct: 931 EPNALPFRGIYGISNL TWAVEE----
EDFEEQTTLIFLDGERERKVSVQILDDEPEG 985

10 Query: 1571 TETFNISLISVAGGGRL--GDD----VVVTVVVIPQNDSPFGVFGFEETV
1615 E F + L + GG ++ G D V+I +D G+ GF E++ S

15 Sbjct: 986 QEFFYYVFLTNPQGGAQIVEGKDDTGFAAFAMVIITGSDLHNGIIGFSEESQS
1037

Score = 93 (14.0 bits), Expect = 1.0e-18, Sum P(3) = 1.0e-18
Identities = 51/238 (21%), Positives = 107/238 (44%)

20 Query: 600 VNIMILD DDIPEGDEKFQLIL TNPS PGLELGKNT-
IALIIVLANDDGPGVLSFNNSEHFF 658
++I + + +P+ + F + L + G + + A I +L +D+ ++

F+

Sbjct: 1109

25 ISIELKPEKVPQVEVYFFVELYEATAGAAINNSARFAQIKILESDESQSLVYFSVGSRLA 1168

Query: 659 LREPTALYVQESVAVLYIVREPAQGLFGTVTVQFIVTEVNSSNE--
SKDLTPS---KGYI 713

+ A + L + R+ GL ++V F E+ S+

30 ++P+ K ++ Sbjct: 1169 VAHKKATLIS----LQVAR DSGTGLM--
MSVNFS TQELRSAETIGRTIISPAISGKDFV 1221

Query: 714 VLEEGVRFKALQISAILDT--EPE---MDEY---FVCTL FNPTGGARLG-
35 VHVAQLTIVL 764 + E + F+ Q S +LD PE ++ + F LF+P GGAR+ V+
IT++

Sbjct: 1222

40 ITEGTLVFE PGQRSTVLDVILTPETGSLNSFPKRFQIVLFDPKGARIDKVYGTANITLV 1281

Query: 765 QNQAPLGLFSISAVENRATSIDI-
EEANRTVYLNVSRTNGIDLA VSVQWETVSETAFGMR 823

+ ++ ++ ++ + DI T+ + V+ T D +S +

+

45 Sbjct: 1282 SDADSQAIWGLADQLHQPVNDDILNRVLHTISMKVA-
TENTDEQLSAMMHIEKIT--TE 1338

Query: 824 GMDVVFSV 831
G FSV

50 Sbjct: 1339 GKIQAFSV 1346

Score = 92 (13.8 bits), Expect = 9.5e-25, Sum P(3) = 9.5e-25
Identities = 44/177 (24%), Positives = 82/177 (46%)

55 Query: 680 PAQGLFGTVTVQFIVTEVNSSNESKDLTPSKGYIVLEEGVRFKALQISAILDT EPEMDEY 739

P +G++G + + V E + E + LT ++ +G R + + + + D

EPE E+

Sbjct: 936 PFRGIYGISNLTWAVEEEEDF--EEQTLT-----
LIFLDGERERKVSVQILDDEPEGQEF 988

Query: 740 FVCTLFNPTGGARL-----
5 GVHVQTLITVLQNQAPLGLFSISAVENRATSIDIEEAN- 791
F L NP GGA++ G ++ + + G+ S E +
+++ E

Sbjct: 989 FYVFLTNPQGGAQIVEGKDDTGFAAFAMVIITGSDLHNGIIGFS--
EESQSGLELREGAV 1046

10 Query: 792 -RTVYLNVSRT-NGIDLAVSVQWE-TVSETAF-----
GMRGMDVVFSVFQSFLDESASGW 843
R ++L V+R N V V W T+++T G+ M+ + SV +
Sbjct: 1047

15 MRRLHLIVTRQPNRAFEDVKVFWRVTLNKTVVVLQKDGVNLMEELQSVSGTTCTMGQTK 1106

Query: 844 CFFTLE 849
CF ++E

Sbjct: 1107 CFISIE 1112

20 Score = 91 (13.7 bits), Expect = 6.6e-32, Sum P(3) = 6.6e-32
Identities = 49/153 (32%), Positives = 70/153 (45%)

Query: 1466
25 RPGMEIAEIMIEENDPRGIFMFHVTRGAGEVITAYXXXXXXXXXXXXAGSFAGVN 1525
R G +AEI +P G+F F + + +I + +
+ +

Sbjct: 652 RSGFIVAEI-----EPMGVFQFSTS--
SRNIIIVSEDTQMIRLHVQRLFGFHSD---LIK 700

30 Query: 1526 VYWKASPDAG-LEDFKP-
SHGILEFADKQVTAMIEITIIDAEFELTEFNISLISVAG 1583
V ++ + SA LEDF+P +G L F Q EITII+D E+ E F
I+L SV

35 Sbjct: 701
VSYQTTAGSAKPLEDFEPVQNGELFFQKFQTEVDFEITIINDQLSEIEFFYINLTSVEI 760

Query: 1584 GG-----RLGDDVVVTVV-IPQNDSPFGV-FGFEEKTVS 1615
G RL D V V+ I ND G+ F E TV+
40 Sbjct: 761 RGLQKFDVNWSPRLNLDFSVAVITILDNDLADGMDISFPETTVA 804

Score = 65 (9.8 bits), Expect = 8.8e-29, Sum P(3) = 8.8e-29
Identities = 26/99 (26%), Positives = 50/99 (50%)

45 Query: 1232 NSLYKQVEEMEQDSLVTLNVERLKGTYGRITIAWEADGS---ISDIF--
PTSGVILFTE 1285
NS K+ + + D ++++ GT IT+ +AD ++D P
+ IL

Sbjct: 1250 NSFPKRFQIVLFDPKGARIDKVGTY-
50 ANITLVSDADSQAIWGLADQLHQPVNDDIL--- 1305

Query: 1286 GQVLSTITLTILADNIPELSEVVIVTLTRITTEGVEDSYKGAT 1328
+VL TI++ + +N E ++ + +ITTEG ++ A+
Sbjct: 1306 NRVLHTISMKVATENTDEQLSAMMHIEKITTEGKIQAFVAS 1348

55 Score = 48 (7.2 bits), Expect = 1.9e-27, Sum P(3) = 1.9e-27
Identities = 23/115 (20%), Positives = 44/115 (38%)

Query: 1499 TAYXXXXXXXXXXXXAGSFGAVNVYWKAS-----

PDSAGLEDFKPSHGLEFAD 1551

TA++

G++GA++V W

P+ + + P+

G L F+

5 Sbjct: 554

TAFQLMNITAGTSHVMISRRGTYGALSAVTTGYAPGLEIPEFIVVGNMTPLGSLSFSH 613

Query: 1552 KQVTAMIEITIIDAEFELTETFNISLI--

SVAGGGRLGDDVVVTVVVIPQNDSPFGVFGF 1609

10 P GVF F

Sbjct: 614 GEQRKGVFLWTFPSPGWPEAFVLHLSGVQSSAPGGAQLRSGFIVAEI-----
EPMGVFQF 668

15

Pedant information for DKFZphamy2_10p7, frame 3

Report for DKFZphamy2_10p7.3

20

[LENGTH] 1615

[MW] 177600.58

[pI] 4.37

25 [HOMOL] TREMBL:AF055084_1 gene: "VLGR1"; product: "very large G-protein coupled receptor-1"; Homo sapiens very large G-protein coupled receptor-1 (VLGR1) mRNA, complete cds. 5e-24

[BLOCKS] BP01493A

[BLOCKS] BL00713B Sodium:dicarboxylate symporter family proteins

30

[BLOCKS] PROJ003A

[BLOCKS] PRO0412C

[BLOCKS] BL00824E

[PIRKW] heart 1e-08

35 [PIRKW] ion transport 1e-08

[PIRKW] transmembrane protein 3e-08

[PIRKW] phosphoprotein 2e-08

[PIRKW] membrane protein 1e-08

[PROSITE] MULTICOPPER_OXIDASE1

40 [KW] All_Beta

[KW] LOW_COMPLEXITY 2.60 %

45 SEQ DAWADAWALYTCA TLCLKEQACSAFSFFSASSEGPAFCWMTSWISPAVNNSDFWTYRKNM

SEGxxxxxxxxxxxxx.....

PRD ccchhhhhhhhhchhhhhhhheeeeeccccccceeeeecccccccccceeecccc

50 SEQ RVASLFSGQAVAGSDYEPVTRQWAIMREGDEFANLTVSILPDDFPEMDESFLISLEVHL

SEG

PRD eeeeecccccccccceeecccccccccccccccccccccccccccccccccccc

55 SEQ MNISASLKNQPTIGQPNI STVVI ALNGDAFGVFVIYSISPNTSEDGLFVEVQEQPQTLVE

SEG

PRD hcc

SEQ LMIHRTGGSLGQVA VEWRVVGGTATEGLDFIGAGEILTFAEGETKKTVILTI LDSEPED

SEG

PRD eeeeeccccccceeeeecc

	SEQ	DESIIVSLVYTEGGSRILPSSDTVRVNILANDNVAGIVSFQTAASRSVIGHEGEILQFHVI
	SEG	xxxxxxxx.....
	PRD	cccceeeeeeeecc
5	SEQ	RTFPGRGNVTVNWKIIGQNLELNFANFSGQLFFPEGSLNTLFVHLLDDNIPEEKEVYQV
	SEG
	PRD	cc
10	SEQ	ILYDVRTQGVPPAGIALLDQGYAAVLTVVASDEPHGVLFNALSSRFVLLQEANITIQLF
	SEG
	PRD	eeeeccceeeccchhhhhhhcc
15	SEQ	INREFGSLGAINVTYTTVPGMLS LKNQTVGNLAEPEVDVPIIGFLILEEGETAAINIT
	SEG
	PRD	cc
20	SEQ	ILEDVPELEEYFLVNLTYVGLTMAASTSFPPRLDSEGLTAQVIIDANDGARGVIEWQQS
	SEG
	PRD	ccccccchhhhheeeeeeeeccccccccccccccccccccccccccccccccccccccc
	SEQ	RFEVNETHGSLTVAQRSREPLGHVS LFVYAQNLEAQVGLDYIFTPMILHFADGERYKNV
	SEG
	PRD	eeeecc
25	SEQ	NIMILD DDIPEGDEKFQLILTNPSPGLELGKNTIALIIVLANDDGPVLSFNNSEHFFLR
	SEG
	PRD	eeeecc
30	SEQ	EPTALYVQESVAVLYIVREPAQGLFGTVTVQFIVTEVNSNESKDLTPSKGYIVLEEGVR
	SEG
	PRD	cccceeeeccchhhhhhhcc
35	SEQ	FKALQISAILDTEPEMDEYFVCTLFNPTGGARLGHVQTLITVLQNQAPLGLFSISAVEN
	SEG
	PRD	eeeeeeeeccccchhhhheeeeecccccccccccccccccccccccccccccccccccc
40	SEQ	RATSIDIEEANRTVYLNVSRTNGIDLA SVQWETVSETAFGMRGMDVVFSVFQSFLDESA
	SEG
	PRD	hhhhhccccccccccccccccchhhhheeeeecccccccccccccccccccccccccccc
	SEQ	SGWCFFTLENLIYGIMLRKSSVTVYRWQGIFIPVEDLNIENPKTCEAFNIGFSFYFVITH
	SEG
	PRD	cc
45	SEQ	EERNEEKPSLNSVFTFTSGFKLFLVQTIIILESSQVRYFTSDSQDYLIIASQRDDSELTA
	SEG
	PRD	hhhhhcc
50	SEQ	VFRWNGGSFVLHQKLPVRGVLTVALFNKGGSVFLAISQANARLNSLLFRWSGSGFINFQE
	SEG
	PRD	eeeecc
55	SEQ	VPVSGTTEVA LSSANDIYLIFAKNVFLGDQNSIDIFIWEMGQSSFRYFQSVDFAAVNRI
	SEG
	PRD	cc
	SEQ	HSFTPASGIAHILLIGQDM S A LYCWN SERN QFSFV LEVPSAYDVASVTVKSLN S SKNLIA

Prosite for DKFZphamy2_10p7-3

40 PS000079 151->172 MULTICOPPER_OXIDASE1 PDOC00076

(No Pfam data available for DKFZphamy2_10p7.3)

DKFZphamy2_11d2

5 group: transmembrane protein

DKFZphamy2_11d2 encodes a novel 552 amino acid protein without similarity to known proteins.

10 The novel protein contains 2 transmembrane regions.
No informative Blast results; no predictive prosite, pfam or scope motif.

15 The new protein can find application in studying the expression profile of amygdala-specific genes and as a new marker for amygdala cells.

unknown protein

20 Pedant: TRANSMEMBRANE 2

Sequenced by EMBL

25 Locus: /map="16p13.3"

Insert length: 2939 bp

Poly A stretch at pos. 2920, polyadenylation signal at pos. 2869

30 1 GGCGGGTGAG AGGCCGCGGC GGCAGGTCCA CCTGGGCTTG CGAAGGCACA
 51 GATTCCCCGT CCACAGCTCA CGACCAGATG CACCAAGCAGG AGTCCACATC
 101 GAGGACGTCC TCCGGGCACT CCCACGACCA GTGACCAGGA GTTAAACTTT
 151 GGGATGTGCC CGTGATGTTG GACCACAAGG ACTTAGAGGC CGAAATCCAC
 201 CCCTGAAAAA ATGAAGAAAAG AAAATCGCAG GAAAATCTGG GAAATCCATC
 251 AAAAAATGAG GATAACGTGA AAAGCGCGCC TCCACAGTCC CGGCTCTCCC
 301 GGTGCCGAGC GGCGGCGTTT TTTCTTCAT TGTTTCTCTG CCTTTTTGTG
 351 GTTTCGTCG TCTCATTCGT CATCCCGTGT CCAGACCGGC CGGCCTCAC
 401 GCGAATGTGG AGGATAGACT ACAGTGCCG TGTTATCTAT GACTTTCTGG
 451 CTGTGGATGA TATAAACGGG GACAGGATCC AAGATGTTCT TTTTCTTTAT
 501 AAAAACACCA ACAGCAGCAA CAATTTCAGC CGATCCTGTG TGGACGAAGG
 551 CTTTTCTCTC CCCTGCACCT TTGCACTGC TGTTGCGGGG GCCAACGGCA
 601 GCACGCTCTG GGAGAGACCT GTGGCCCCAAG ACGTGGCCCT CGTGGAGTGT
 651 GCTGTCCCCC AGCCAAGAGG CAGTGAGGCA CCTTCTGCCT GCATCCTGGT
 701 GGGCAGACCC AGTTCTTCA TTGCACTCAA TTGTTTCACA GGGGAAACCC
 751 TGTGGAACCA CAGCAGCAGC TTCAAGCTGG ATGCGTCCAT CCTGAGCCCT
 801 CTGCTGCAGG TGCCCTGATGT GGACGGCGAT GGGGCCCTCAG ACCTGCTGGT
 851 TCTCACCCAG GAGCAGGGAGG AGGTTAGTGG CCACCTCTAC TCCGGCAGCA
 901 CCGGGCACCA GATTGGCCTC AGAGGCAGCC TTGGTGTGGA CGGGGAAAGT
 951 GGCTTCTCTCC TTCACGTAC CAGGACAGGT GCCCCACTACA TCCTCTTTCC
 1001 CTGCGCAAGC TCCCTCTGCG GCTGCTCTGT GAAGGGTCTC TACGAGAAGG
 1051 TGACCGGGAG CGGCAGGCCG TTCAAGAGTG ACCCGCACTG GGAGAGCATG
 1101 CTCATGCCA CCACCCCGCAG GATGCTTTC CACAGCTCTG GAGCAGTGC
 1151 CTACCTGATG CATGTCAGG GGAACGCCGG TGCAAGATGTG CTTCTTGTGG
 1201 GCTCAGAGGC CTTCTGCTG CTGGACGGGC AGGAGCTGAC GCCTCGCTGG
 1251 ACACCCAAGG CAGCCCCATGT CCTGAGAAAA CCCATCTTCG GCCGCTACAA
 1301 ACCAGACACC TTGGCTGTAG CGTGTGAAAA CGGAACCTGGC ACCGACAGAC
 1351 AGATCCTGTT TCTGGACCTT GGCACCTGGAG CGTCCCTGTG TAGCCTAGCC

1401 CTCCCAGGCC TCCCTGGGGG TCCACTGTCC GCCAGCCTGC CGACCGCAGA
 1451 CCACCGCTCA GCCTTCTTCT TCTGGGGCCT CCACGAGCTG GGGAGCACCA
 1501 GCGAGACGGA GACCAGGGAG GCCCGGGACA GCCTGTACAT GTTCCACCCC
 1551 ACCCTGCCGC GCGTGTGCT GGAGCTGGCC AATGTCTCTA CCCACATTGT
 1601 CGCCTTGAC GCCGTCCTGT TTGAGCCAAG CGGCCACGCC GCCTACATCC
 1651 TTCTGACAGG CCCGGCAGAC TCAGAGGCCAC CGGGCCTGGT CTCTGTGATC
 1701 AAGCACAAAGG TGCGGGACCT TGTCCCAAGC AGCAGGGTGG TCGGCTGGG
 1751 TGAGGGTGGG CCAGACAGTG ACCAAGCCAT CAGGGACCGG TTCTCCCGGC
 1801 TGCGGTACCA GAGTGAGGCC TAGAGGCCAG CCAGCCAGAG CCTGTGGAGA
 1851 GACTCCGCCT GCTGACACTA AACGTCTGG GAAGTGGGCC CTTCCCTGGG
 1901 TCTCTGCACT GACTCCCCA CTCTGACCC TGGTGTGATGGT CGCCACTGGG
 1951 CAGCAGCAGC CTTACCAAGTC CTCCATGATC ACACCCAGGG ACCTGCACTGG
 2001 GTGAGGGGGAC ACCCTGGGCC TCTCTCCCGC CCAGCATCC CCGTGAATGCC
 2051 CCACACAGGG CCTCACTCTG CACCCCCACCA GGGTCCCAGG CACACCAGGC
 2101 AGCCTTCATA GTGGTCTCCC TGCCACCTT GGGCAGAGCT GGGTCATGCA
 2151 GCACCCCATC CTTACCCGGT GCCCTCTCCT TGCCAGCTTC TCCCCCAGGCC
 2201 AGAGCGGCCA TCGCGTAGAA AGAACCCAGGG TGTCCTGGG ACAGGGCGTC
 2251 CCCCCACCCCCA TCCTGTAGAG TCCATTCCCC TTTTCCCCCTC TGTGCTCTGT
 2301 CCCCCAAGGA GTCATGGAAC TCAGGGTACT GGGCCTCAAC GGGAACCTGA
 2351 GACAGCTTCC AGCTTCGAG CCCTTCCCG AGCTACAGGG GGATCCTCTA
 2401 GCATGGGGGG TGTGACTTGG TTCTTTGAC CAGGTCTGT GAGGAAGCCT
 2451 GGAGCAAGGG TCTCCCCCAG CAGGATGGGT GGGCCTGCT CTGGAGCTGA
 2501 GCGCGTGGCC GCTCACAGGT GTCTTAGTG GTGTTGCAGC TGTCTACTGG
 2551 CTGCATGTGC TGTGAATATC CCAAGGAACCT GGCTGTGGAA TGCCTGTTTG
 2601 GGTCACTCTG TGCCCTCTCA GTAGACACTG GAGCTGCTCT GTCCCCCTGAAG
 2651 AGGCCCCGTG CCCCCAGGGCAT GGCAAGCGCC TGCCCTCTCCC CTTCCGGTGC
 2701 TCACACGCC ACGCCGTGCC ACCCGATGCA GGACTCACCT CTGTGCCTTG
 2751 CTGCTCCTGA GGCCCCAAGGG CAGCCATGGT GCTCTGTACT GCTCGGGCCG
 2801 CCCAGGTACAGAGCCTGAG CTTCTGTAGCC AAAGCAGCCT GATGACCCAC
 2851 CCACCAAGGA AGAAAGCAGA ATAAACATTT TTGCACTGCC TGAAAAACCC
 2901 CGGTGGTCAG CGCTGAGCCT AAAAAAAAAA AAAAAAAAAA

BLAST Results

35

No BLAST result

40

Medline entries

No Medline entry

45

Peptide information for frame 2

50 ORF from 2555 bp to 2839 bp; peptide length: 95

Category: questionable ORF

Classification: unclassified

1 MCCEYPKELA VECVFGSVCA LSVDTGAALS LKRPRAPGMA SACLSPSGAH
 55 51 TPTPCHPMQD SPLCLAAPEA QGQPWUCSPLL GPPRSQSLSF VAKAA

BLASTP hits

No BLASTP hits available

5 Alert BLASTP hits for DKFZphamy2_11d2, frame 2

TREMBL:MMIGCF_2 Mouse ig gamma α a-b(c57bl/b allele) c gene and secreted tail., N = 1, Score = 73, P = 0.1

10

>TREMBL:MMIGCF_2 Mouse ig gamma α a-b(c57bl/b allele) c gene and secreted tail.

15 Length = 334

HSPs:

Score = 73 (11.0 bits), Expect = 1.1e-01, P = 1.0e-01
20 Identities = 16/49 (32%), Positives = 27/49 (55%)

Query: 44 LSPSGAHTPTPCHPMQDSPLCLAAPEAQGQPWCSVLLGPPRSQSLSFVA 92
+ P T PC P+++ P C AAP+ G P SV + PP+ + + ++

Sbjct: 96 IEPRVPITQNPCPPLKECPPC-AAPDLLGGP--SVFIFPPKIKDVLMISS
25 141

Peptide information for frame 3

30

ORF from 165 bp to 1820 bp; peptide length: 552

Category: putative protein

Classification: Transmembrane proteins unclassified

35

1 MLDHKDLEAE IHPLKNEERK SQENLGNPSK NEDNVKSAPP QSRLSRCRAA
51 AFFLSLFLCL FVVVFVVSFVI PCPDRPASQR MWRIDYSAAV IYDFLAVDDI
101 NGDRIQDVLF LYKNTNSSNN FSRSCTVDEGF SSPECTFAAAV SGANGSTLWE
151 RPVAQDVALV ECAVPQPRGS EAPSACILVG RPSSTFIAVNL FTGETLWNHS
201 SSFSGNASIL SPPLLQVPDVD GDGAPDLLVL TQEEREEVSGH LYSGSTGHQI
251 GLRGSLGVDG ESGFLLHVTR TGAHYILFPC ASSLCGCSVK GLYEKVTGSG
301 GPFKSDPHWE SMLNATTRRM LSHSSGAVRY LMHVPGNAGA DVLLVGSEAF
351 VLLDGQELTP RWTPKAAHVL RKPIFGRYKP DTLAVAVENG TGTDQILFL
401 DLGTGAVLCS LALPSLPGGP LSASLPTADH RSAFFFWGHL ELGSTSETET
451 GEARHSLYMF HPTLPRVLL LANVSTHIVA FDAVLFEPSR HAAYILLTGP
501 ADSEAPGLVS VIKHKVRDLV PSSRRVVRGE GGPDSDQAIR DRFSRLRYQS
551 EA

50

BLASTP hits

No BLASTP hits available

55 Alert BLASTP hits for DKFZphamy2_11d2, frame 3

No Alert BLASTP hits found

Pedant information for DKFZphamy2_11d2, frame 2

Report for DKFZphamy2_11d2.2

5

[LENGTH] 95
 [MW] 9757.38
 [pI] 6.68
 10 [BLOCKS] PR00521E
 [KW] Alpha_Beta

15 SEQ MCCEYPKELAVECVFGSVCALSVDTGAALSLKRPRAPGMASACLSPSGAHTPTPCHPMQD
 PRD ccccchhhhhhhhhhccceeeeeeccchhhhhcccccccccccccccccccccccccccc

SEQ SPLCLAAPEAQGQPWCSVLLGPPRSQSLSFVAKAA
 PRD ccc

20 (No Prosite data available for DKFZphamy2_11d2.2)
 (No Pfam data available for DKFZphamy2_11d2.2)

25

Pedant information for DKFZphamy2_11d2, frame 3

30

Report for DKFZphamy2_11d2.3

[LENGTH] 552
 [MW] 59659.68
 [pI] 5.84
 35 [BLOCKS] PR00211G
 [BLOCKS] BL00288C Tissue inhibitors of metalloproteinases
 proteins
 [BLOCKS] PRO0436A
 [KW] TRANSMEMBRANE 2
 40 [KW] LOW_COMPLEXITY 8.15 %

SEQ MLDHKDLEAEIHPLKNEERKSQENLGNPSKNEDNVKSAPPQSRLSRCRAAFFLSLFLCL
 SEGxxxxxxxxxxxxxx
 45 PRD ccc
 MEMMMMMMMMM

SEQ FVVVFVVSFVIPCPDRPASQRMWRIDYSAAVIYDFLAVIDINGDRIQDVLFYKNTNNSNN
 SEG xxxxxxxx.....
 50 PRD hhhhhhccccccccccccchhhhhhhchhhhhhhcccccccccccccccccccccccc
 MEM MMMMMMMMMM.....

SEQ FSRSCVDEGFSSPCTFAAAVGANGSTLWERPVAQDVALVECAVPQPRGSEAPSACILVG
 SEG
 55 PRD ccc
 MEM

SEQ RPSSFIAVNLFTGETLWNHSSSFSGNASILSPLLQVPDVGDGAPDLLVLTQEREEVSGH

DKFZphamy2_1ln4

5 group: nucleic acid management

DKFZphamy2_1ln4 encodes a novel 1091 amino acid protein with similarity to RAD18 of *Schizosaccharomyces pombe* and YLR383w of *Saccharomyces cerevisiae*.

10 The novel protein contains a ATP/GTP-binding site motif A (P-loop). It has similarity to RAD18 acts in a DNA repair pathway for removal of UV-induced DNA damage. YLR383w of *Saccharomyces cerevisiae* is a recombination repair protein.

15 The new protein can find application in modulation of DNA-repair and as a new tool for manipulation of nucleic acids.

similarity to RAD18 (*Schizosaccharomyces pombe*)

20 comment on P53692:
FUNCTION: ACTS IN A DNA REPAIR PATHWAY FOR REMOVAL OF UV-INDUCED DNA DAMAGE THAT IS DISTINCT FROM CLASSICAL NUCLEOTIDE EXCISION REPAIR AND IN REPAIR OF IONIZING RADIATION DAMAGE.

25 Sequenced by EMBL

Locus: /map="2"

30 Insert length: 3679 bp
Poly A stretch at pos. 3646, polyadenylation signal at pos. 3620

	1	ACCGCGGGTGG	GCGCCGGGGC	TCCCAGGAAT	CTACCTTCTC	CTGCGGCCGG
35	51	CACGCGGTTC	CCAGGGGGCC	AGCGGCGGT	AGCCGAGGTC	GAGACGCCCG
	101	CAGGGTGGCC	TTAGCGGCCG	GTCGTACAC	GGCAGCCCCG	CCGATCAGGT
	151	TCCTTGAAA	GACTTCGACT	TGTTGGCGAA	ATGAACCGGA	GAAGAATCCC
	201	AATTGGGAAT	TGCGGAAAAC	AGGACTCTAG	GGTAGAGAAA	GGTTGTAGAA
	251	CCAATAGGGT	TTGAGACCTG	ATGGCCAAAA	GAAAGGAAGA	AAATTTTCC
40	301	TCTCCTAAAA	ATGCCAAAG	GCCAAGACAA	GAAGAATTGG	AGGATTTCGA
	351	TAAAGATGGT	GACGAAGACG	AATGTAAGG	TACTACTTG	ACTGCAGCAG
	401	AAGTTGGAAT	AATTGAGAGT	ATTCACCTAA	AAAACCTCAT	GTGTCATTCA
	451	ATGCTTGGAC	CTTTAACGTT	TGGTTCTAAT	GTCAACTTTG	TTGTTGGCAA
	501	CAATGGAAGT	GGGAAGAGTG	CAGTACTCAC	AGCTCTCATA	GTCGGTCTTG
45	551	GTGGAAGAGC	AGTTGCTACT	AATAGAGGAT	CCTCTTAAA	AGGTTTGTG
	601	AAAGATGGAC	AGAACTCTGC	AGATATCTCA	ATAACATTGA	GGAACAGAGG
	651	AGATGATGCC	TTTAAAGCCA	GTGTGTATGG	TAACTCTATA	CTTATACAGC
	701	AACACATCAG	CATAGATGGA	AGTCGATCTT	ATAAACTTAA	AAGTGCAACA
	751	GGCTCGTGG	TTTCCACGAG	GAAAGAAGAG	CTGATTGCAA	TTCTTGATCA
50	801	TTTAAACATC	CAGGTGGATA	ATCCAGTTTC	TGTTTTAAC	CAAGAAATGA
	851	GCAAGCAGTT	CTTACAGTCT	AAAAATGAAG	GAGACAAATA	CAAATTCTTC
	901	ATGAAAGCAA	CGCAACTTGA	ACAGATGAAG	GAAGATTATT	CATACATTAT
	951	GGAAACGAAA	GAAAGAACAA	AGGAGCGAGAT	ACATCAAGGA	GAAGAGCGGC
	1001	TTACTGAAC	AAAGCGCCAG	TGTGTAGAGA	AAGAGGAACG	TTTCAAAGT
55	1051	ATTGCTGGT	TAAGTACAAT	GAAGACTAAT	TTAGAGTCCT	TGAAACATGA
	1101	ATGGCTGG	GCAGTGGTCA	ATGAAATTGA	AAAACAATTG	AATGCCATCA
	1151	GAGATAATAT	CAAAATTGGA	GAAGATCGTG	CTGCTAGACT	TGACAGGAAA
	1201	ATGGAAGAAC	AGCAGGTCAG	ACTTAATGAG	GCAGAACAAA	AGTACAAGGA

1251	TATTCAAGAC	AAACTAGAAA	AGATTAGTGA	AGAGACAAAT	GCACGAGCAC	
1301	CAGAATGTAT	GGCATTGAAA	GCAGATGTTG	TTGCTAAGAA	AAGGGCTAT	
1351	AATGAAGCTG	AGGTTTTATA	TAACCAGATCC	TTAACCGAAT	ATAAAGCATT	
1401	AAAGAAAGAT	GATGAGCAGC	TTTGTAACAG	AATTGAAGAG	CTGAAAAAAA	
5	1451	GTACTGACCA	ATCTTTGGAA	CCTGAACGGT	TGGAAGACA	AAAAAAAATA
	1501	TCTTGGTTAA	AAGAGAGAGT	AAAGGCCCTT	CAAAATCAAG	AAAATTCACT
	1551	CAATCAAGAG	ATCGAACAGT	TTCAGCAAGC	CATAGAAAAG	GACAAAGAAG
	1601	AACATGGCAA	AATTAAGAGA	GAAGAATTAG	ATGTGAAGCA	TGCACTGAGC
	1651	TACAATCAGA	GGCAACTGAA	AGAATTGAAA	GATAGAAAAA	CTGATCGACT
10	1701	CAAAAGATT	GGCCCCTAATG	TTCCAGCTCT	TCTTGAAGCC	ATAGATGATG
	1751	CTTATAGACA	AGGACATT	ACCTATAAAC	CTGTAAGCCC	TTTAGGAGCT
	1801	TGCATTCATC	TTGGGGACCC	AGAACTTGCT	TTGGCTATTG	AATCTTGCTT
	1851	AAAAGGGCTT	CTGCAGGCTT	ATTGTTGCCA	TAATCATGCT	GATGAAAGGG
	1901	TCCTTCAGGC	ACTCATGAAA	AGGTTTTATT	TACCAAGGGAC	CTCACGGCCA
15	1951	CCGATAATAG	TTTCTGAGTT	TCGGAATGAG	ATATATGATG	TAAGACACAG
	2001	AGCTGCTTAT	CATCCAGACT	TTCCAACAGT	TCTGACAGCT	TTAGAAATAG
	2051	ATAATGCGGT	TGTGGCAAT	AGCCTAATTG	ACATGAGAGG	CATAGAGACA
	2101	GTGCTACTAA	TCAAAAAATAA	TTCTGTAGCT	CGTGCAGTAA	TGCACTCCCA
	2151	AAAGCCACCC	AAAAATTGTA	GAGAAGCTTT	TACTGCTGAT	GGTGATCAAG
20	2201	TTTTTGCAAGG	ACGTTATTAT	TCATCTGAAA	ATACAAGACC	TAAGTTCTA
	2251	AGCAGAGATG	TGGATTCTGA	AATAAGTGAC	TTGGAGAATG	AGGTTGAAAAA
	2301	TAAGACGGCC	CAGATATTAA	ATCTTCAGCA	ACATTATCT	GCCCTTGAAA
	2351	AAGATATTAA	ACACAATGAG	GAACTTCTTA	AAAGGTGCCA	ACTACATTAT
	2401	AAAGAACTAA	AGATGAAAAT	AAGAAAAAAAT	ATTTCTGAAA	TTCGGGAACT
25	2451	TGAGAACATA	GAAGAACACC	AGTCTGTAGA	TATTGCAACT	TTGGAAGATG
	2501	AAGCTCAGGA	AAATAAAAAGC	AAAATGAAAA	TGGTTGAGGA	ACATATGGAG
	2551	CAACAAAAAG	AAAATATGGA	GCATCTAAA	AGTCTGAAA	TAGAACGAGA
	2601	AAATAAGTAT	GATGCAATT	AATTCAAAAT	TAATCAACTA	TCGGAGCTAG
	2651	CAGACCCACT	TAAGGATGAA	TTAACCTTG	CTGATTCTGA	AGTGGATAAC
30	2701	CAAAAACGAG	GAAAACGACA	TTATGAAGAA	AAACAAAAAG	AAACACTTGA
	2751	TACCTTAAT	AAAAAGAAC	GAGAACTGGA	TATGAAAGAG	AAAGAACTAG
	2801	AGGAGAAAAT	GTCACAAGCA	AGACAAATCT	GCCCCAGAGCG	TATAGAAGTA
	2851	GAAAAATCTG	CATCAATTCT	GGACAAAGAA	ATTAATCGAT	TAAGGCAGAA
	2901	GATACAGGCA	GAACATGCTA	GTCATGGAGA	TGAGAGGAA	ATAATGAGGC
35	2951	AGTACCAAGA	AGCAAGAGAG	ACCTATCTG	ATCTGGATAG	TAAAGTGAGG
	3001	ACTTTAAAAA	AGTTTATTAA	ATTACTGGGA	GAAATCATGG	AGCACAGATT
	3051	CAAGACATAT	CAACAATT	GAAGGTGTTT	GACTTTACGA	TGCAAATTAT
	3101	ACTTTGACAA	CTTACTATCT	CAGCGGGCCT	ATTGTGGAAA	AATGAATT
	3151	GACCACAAAGA	ATGAAACTCT	AAGTATATCA	GTTCACTCTG	GAGAAGGAAA
40	3201	TAAAGCTGCT	TTCAATGACA	TGAGAGCCTT	GTCTGGAGGT	GAACGTTCTT
	3251	TCTCCACAGT	GTGTTTATT	CTTCCCTGT	GGTCCATCGC	AGAATCTCCT
	3301	TTCAGATGCC	TGGATGAATT	TGATGTCTAC	ATGGATATGG	TTAATAGGAG
	3351	AATTGCCATG	GACTTGATAC	TGAAGATGGC	AGATTCCCAG	CGTTTTAGAC
	3401	AGTTTATCTT	GCTCACACCT	CAAAGCATGA	GTTCACCTCC	ATCCAGTAA
45	3451	CTGATAAGAA	TTCTCCGAAT	GTCTGATCCT	GAAAGAGGAC	AAACTACATT
	3501	GCCTTCAGA	CCTGTGACTC	AAGAAGAAGA	TGATGACCAA	AGGTGATTTG
	3551	TAACTTAAC	TGCCCTGTCC	TGATGTTGAA	GGATTGTTGA	AGGGAAAAAA
	3601	AATTCTGGAC	TCTTGTAT	AATAAAATGA	GACTGGAGGC	ATTCTGAAAA
	3651	AAAAAAAAAA	AAAAA	AAAAA	AAAAA	AAAAA

50

BLAST Results

55 No BLAST result

Medline entries

9606941?:

Lehmann AR, Walicka M, Griffiths DJ, Murray JM, Watts FZ,
 5 McCready S,

Carr AM.; The rad18 gene of *Schizosaccharomyces pombe* defines a new subgroup of the SMC superfamily involved in DNA repair. *Mol Cell Biol* 1995 Dec;15(12):7067-80

10 9938016?:

Mengiste T, Revenkova E, Bechtold N, Paszkowski J.; An SMC-like protein
 is required for efficient homologous recombination in *Arabidopsis*. *EMBO J* 1999 Aug 16;18(16):4505-12

15

Peptide information for frame 1

20

ORF from 271 bp to 3543 bp; peptide length: 1091

Category: similarity to known protein

Classification: Nucleic acid management

25

Prosite motifs: RGD (126-128)

ATP_GTP_A (76-83)

30

1 MAKRKEENFS SPKNAKRPRQ EELEDFDKDG DEDECKGTTL TAAEVGIIES
 51 IHLKNFMCHS MLGPFKFGSN VNFFVGNNGS GKSAVLTALI VGLGGRAVAT
 101 NRGSSLKGKV KDGQNSADIS ITLRLNRGDDA FKASVYGNST LIQQHISIDG
 151 SRSYKLKSAT GSVVSTRKEE LIAILDHFNI QVDNPVSVLT QEMSKQFLQS
 201 KNEGDKYKFF MKATQLEQMK EDYSYIMETK ERTKEQIHQG EERLTELKRQ
 251 CVEKEERFQS IAGLSTMKTN LESLKHEMAM AVVNEIEKQL NAIRDNIKIG
 301 EDRAARLDRK MEEQQRVLNE AEQKYKDIQD KLEKISEETN ARAPECMALK
 351 ADVVAKKRAY NEAEVLYNRS LNEYKALKKD DEQLCKRIEE LKKSTDQSLE
 401 PERLERQKKI SWLKERVKAF QNQENSVNQE IEQFQQIAEK DKEEHGKIKR
 451 EELDVKHALS YNQRQQLKELK DSKTDRLKRF GPNVPALLEA IDDAYRQGHF
 501 TYKPGVGPLGA CIHLRDPELA LAIESCLKGL LQAYCCHNHA DERVHQALMK
 551 RFYLPGTSPR PIIVSEFRNE IYDVRHRAAY HPDFPTVLTA LEIDNAVVAN
 601 SLIDMRGIET VLLIKNNNSVA RAVMQSQKPP KNCREAFTAD GDQVFAGRYYY
 651 SSENTRPKFL SRDVDSEISD LENEVENKTA QILNLQQHLS ALEKDIKHNE
 701 ELLKRCQLHY KELKMKIRKN ISEIRELENI EEHQSVDIAT LEDEAQENKS
 751 KMKMVEEHME QQKENMEHLK SLKIEAENKY DAIKFKINQL SELADPLKDE
 801 LNLADSEVDN QKRGKRHYEE KQKEHLDTLN KKKRELDLMKE KELEEKMSQA
 851 RQICPERIEV EKSASILDKE INRLRQKIQA EHASHGDRREE IMRQYQEARE
 901 TYLDLDSKVR TLKKFIKLLG EIMEHFRFTY QQFRRCLTLR CKLYFDNLLS
 951 QRAYCGKMF DHKNETLSIS VQPGEGNKAA FNDMRALSGG ERSFSTVCFI
 1001 LSLWSIAESP FRCLDEFDVY MDMVNRRIAM DLILKMAADSG RFRQFILLTP
 1051 QSMSSLPSSK LIRILRMSDP ERGQTTLPFR PVTQEEDDDQ R

BLASTP hits

55

No BLASTP hits available

Alert BLASTP hits for DKFZphamy2_11n4, frame 1

SWISSPROT:RA18_SCHPO DNA REPAIR PROTEIN RAD18., N = 1, Score = 1021, P = 5.2e-103

5

PIR:S51470 hypothetical protein YLR383w - yeast (Saccharomyces cerevisiae), N = 1, Score = 823, P = 5e-82

10 >SWISSPROT:RA18_SCHPO DNA REPAIR PROTEIN RAD18.
Length = 1,140

HSPs:

15 Score = 1021 (153.2 bits), Expect = 5.2e-103, P = 5.2e-103
Identities = 315/1091 (28%), Positives = 540/1091 (49%)

Query: 2 AKRKEENFSSPKNAKRPRQEELEDF--DKDGDDECKGTTLTAAE----
VGIIIESIHLKN 55

20 A R ++N ++ + +E ++DG+ D T T +

VG+IE IHL N

Sbjct: 45

ASRNQDNRPERQSRLQRSSSLIEQVRGNEDGENDVLNQTRTNSNFNRVGVIECIHLVN 104

25 Query: 56

FMCHSMLGPXXXXXXXXXXXXXXXXXXXXAVLTALIVGLGGRAVATNRGSSLKGFKDGQN 115
FMCH L A+LT L + LG +A TNR ++K

VK G+N

Sbjct: 105 FMCHDSL-

30 KINFGPRINFVIGHNGSGKSAILTGLTICLGAKA\$NTNRAPNMKSLVKQGKN 163

Query: 116

SADISITLRNRGDDAFKASVYGNISILIQQHISIDGSRSYKLKSATGSVVSTRKEELIAIL 175
A IS+T+ NRG +A++ +YG SI I++ I +GS Y+L+S

35 G+V+ST+++EL I

Sbjct: 164

YARISVTISNRGFEAYQPEIYGKSITIERTIRREGSSEYRLRSFNGTVISTKRDELDNIC 223

Query: 176

40 DHFNIQVDNPVSVLTQEMSKQFLQSKNEGDKYKFFMKATQLEQMKEDYSYIMETKERTKE 235
DH +Q+DNP+++LTQ+ ++QFL + + +KY+ FMK QL+Q++E+YS I

++ TK

Sbjct: 224

DHMGLQIDNPMNILTQDTARQFLGNSSPKEKYQLFMKGIGQLKQLEENYSLIEQSLINTKN 283

45

Query: 236

QIHQGEERLTELKRQCVEKEERFQSIAGLSTMKTNLESLKHEMAWAVVNEIEKQLNAIRD 295
+ + ++ L ++ E + ++ + LE K EM WA V

E+EK+L

50 Sbjct: 284

VLGNKKTGVSYLAKEEYKLLWEQSRETNLHNLLERKKGEMVWAQVVEVEKEL---- 338

Query: 296 NIKIGEDRAARLDRKMEEQQVRLNEAEQKYKDIQDKLEKISEETNARAP-
ECMALKADEV 354

55

+ E + K+ E + L DI K+ EE RA E

K+

Sbjct: 339 --LLAEKEFQHAEVKLSEAKENLESIVTNQSDIDGKISS-
KEEVIGRAKGETDTTKSKFE 395

Query: 355

AKKRAYNEAEVLYNRSLEYKALKDDEQLCKRIEELKKSTDQSLEPERLERQKKISWLK 414
+ ++ Y +N+ K+D + I K D E ER

5

Sbjct: 396 DIVKTFDG----YRSEMNDVDIQRKDQIQN---
SINAACKSCLDVYREQLNTERARENLLGG 448

Query: 415 ERVKAFQNQENSVNQEIEQF-QQAIEKDKE-----EHG----

10 KIKREELDVKHALS 460
+++ N+ N++ +EI +Q+E + + E G + ++

+ + +S

Sbjct: 449

SQIEKRANESNNLQREIADLSEQIVELESKRNDLHSALLEMGGNLTSLLTKDSIANKIS 508

15

Query: 461

YNQRQLKELKDSKTDRLKRFGPNVPALLEAIDDAYRQGHFTYKPGPLGACIHLRDPELA 520
LK L+D + D++ FG N+P LL+ I R+ F + P GP+G +
+++ +

20

Sbjct: 509 DQSEHLKVLEDVQRDKVSAFGKNMPQLLKLIT---
RETRFQHPPKGPMGKYMTVKEQKWH 565

Query: 521

25 LAIESCLKGLLQAYCCHNHADERVLQALMKRFYLPGTSRPPIVSEFRNEIYDVRHRAAY 580
L IE L ++ + +H D+ +L+ LM++ T ++V +
YD ++Sbjct: 566 LIIERILGNVINGFIVRSHHDQLILKELMRQSNCHAT---VVVGK----
YDPFDYSSG 566

30

Query: 581 HPD--

FPTVLTALEIDNAVANSIDMRGIETVLLIKNNSVARAVMQSQKPPKNCREAFT 638
PD +PTVL ++ D+ V ++LI+ GIE +LLI++ A A M+ +

N + +

35

Sbjct: 617 EPDSQYPTVLIKFIKFDDDEVLHTLINHLGIEKMLLIEDRREAEAYMK--
RGIANVTQCYA 674Query: 639 ADG-DQVFAGRYYSSENTR--PKFLSRDVSEI---
SDLENEVENKTAQILNLQQHLSAL 692

40

D ++ + R S++ + K + I S E E K L

Sbjct: 675

LDPRNRGYGFRIIVSTQRSSGISKVTPWNRPPRIGFSSSTSIEAEKKILDDLKKQYNFASN 734

45

Query: 693 E-KDIKHNEELLKRCQLHYKELKMKIRKNIS-EIRELENIEHQ-SV-D---
IATLEDEA 745

+ + K + KR + E I+K I + RE+ ++E + SV D

I TLE

Sbjct: 735

QLNEAKIEQAKFKRDEQLLVEKIEGIKKRILLKRREVNSLESQELSVDTEKIQTLLERRI 794

50

Query: 746 QENKSKMVMVEEHMEQQKENMEH-

LKSLKIEAENKYDAIKFKINQLSELADPLKDELN-L 803

E + +++ ++ K N EH ++ + + + KI ++

L+ EL+ L

55

Sbjct: 795 SETEKELESYAGQLQDAK-
NEEHRIRDNQRPVIEEIRIYREKIQTELRLSSLQTELSRL 853

Query: 804

ADSEVDNQKRGKRHYEEKQKEHLDTLNXXXXXXXXXXXXXXSQRQICPERIEVEKS 863
D + +++ +RH + + + L ++A C

ER+ V+ S

5 Sbjct: 854 RDEKRNSEVDIERH-RQTVESCTNLREKEAKKVQCAQVVADYTAKANRC-
ERVPVQLS 911Query: 864 ASILDKEINRLRQKIQAEEHASHG-
DREEIMRQYQEARETYLDLDSKVRTLKKFIKLGEI 92210 + LD EI RL+ +I G E+ Y A+E + V L +
++ L E

Sbjct: 912

PAELDNEIERLQMIAEWRNRTGVSVEQAAEDYLNAKEKHDQAKVLVARLTQLLQALEET 971

15 Query: 923

MEHRFKTYQQFRRCLTLRCKLYFDNLLSQRAYCGKMNFDHKNETLSISVQPGEGNKA-AF 981
+ R + + +FR+ +TLR K F+ LSQR + GK+ H+ E L V P

N A A

Sbjct: 972

20 LRRRNEMWTKFRKLITLRTKELFELYLSQRNFTGKLVIKHQEEFLEPRVYPANRNATAH 1031

Query: 982 N-----

DMRALSGGERSFSTVCFILSLWSIAESPFRCLDEFDVYMDMVNRRIAMDLIL 1034
N + + LSGGE+SF+T+C +LS+W P RCLDEFDV+MD VNR

25 +++ +++

Sbjct: 1032

NRHEKSKVSVQGLSGGEKSFATICMLLSIWEAMSCPLRCLDEFDVFMDAVNRLVSIKMMV 1091

Query: 1035 KMADSQRFRQFILLTPQSMSSLPPSSKLIRILRMSDPERGQTTLP 1078

30 A +QFI +TPQ M + K + + R+SDP + LP

Sbjct: 1092 DSAKDSSDKQFIFITPQDMGQIGLDKDVVVFRLSDPVVSSALP 1135

35 Pedant information for DKFZphamy2_1ln4, frame 1

Report for DKFZphamy2_1ln4.1

40 [LENGTH] 1091
 [MW] 126326.13
 [pI] 6.57
 [HOMOL] SWISSPROT:RA18_SCHPO DNA REPAIR PROTEIN RAD18. le-
 109
 45 [FUNCAT] 03.19 recombination and dna repair [S. cerevisiae,
 YLR383w] 1e-88
 [FUNCAT] 08.07 vesicular transport (golgi network, etc.) [S.
 cerevisiae, YDL058w] 3e-16
 [FUNCAT] 30.03 organization of cytoplasm [S. cerevisiae,
 50 YDL058w] 3e-16
 [FUNCAT] 09.13 biogenesis of chromosome structure [S.
 cerevisiae, YLR086w] 2e-14
 [FUNCAT] 1 genome replication, transcription, recombination and
 repair [M. jannaschii, MJ1643] 3e-14
 55 [FUNCAT] 30.04 organization of cytoskeleton [S. cerevisiae,
 YIL149c] 1e-12
 [FUNCAT] 03.22 cell cycle control and mitosis [S. cerevisiae,
 YDR356w] 8e-12

[FUNCAT] 09.10 nuclear biogenesis [S. cerevisiae, YDR356w] 8e-12
 [FUNCAT] 30.10 nuclear organization [S. cerevisiae, YFL008w] 3e-11
 - 5 [FUNCAT] 11.04 dna repair (direct repair, base excision repair and nucleotide excision repair) [S. cerevisiae, YKR095w] 2e-09
 [FUNCAT] 99 unclassified proteins [S. cerevisiae, Y0R216c] 5e-09
 [FUNCAT] 03.25 cytokinesis [S. cerevisiae, YHR023w MY01] -
 10 myosin-1 isoform] 8e-08
 [FUNCAT] 03.04 budding, cell polarity and filament formation [S. cerevisiae, YHR023w MY01 - myosin-1 isoform] 8e-08
 [FUNCAT] 08.22 cytoskeleton-dependent transport [S. cerevisiae, YHR023w MY01 - myosin-1 isoform] 8e-08
 15 [FUNCAT] 06.07 protein modification (glycosylation, acylation, myristylation, palmitylation, farnesylation and processing) [S. cerevisiae, YKL201c] 2e-07
 [FUNCAT] 03.13 meiosis [S. cerevisiae, YDR285w] 4e-07
 [FUNCAT] 30.13 organization of chromosome structure [S. cerevisiae, YDR285w] 4e-07
 20 [FUNCAT] 98 classification not yet clear-cut [S. cerevisiae, YJR134c] 7e-07
 [FUNCAT] 06.10 assembly of protein complexes [S. cerevisiae, YPR141c] 7e-07
 25 [FUNCAT] 30.05 organization of centrosome [S. cerevisiae, YPR141c] 7e-07
 [FUNCAT] 11.01 stress response [S. cerevisiae, YPR141c] 7e-07
 [FUNCAT] 03.07 pheromone response, mating-type determination, sex-specific proteins [S. cerevisiae, YPR141c] 7e-07
 30 [FUNCAT] r general function prediction [H. influenzae, HIO756] 1e-06
 [FUNCAT] 10.05.99 other pheromone response activities [S. cerevisiae, YHR158c] 2e-06
 [FUNCAT] 05.04 translation (initiation, elongation and termination) [S. cerevisiae, YAL035w] 3e-04
 35 [FUNCAT] 30.02 organization of plasma membrane [S. cerevisiae, YER008c] 4e-04
 [FUNCAT] 08.16 extracellular transport [S. cerevisiae, YER008c] 4e-04
 40 [FUNCAT] 09.04 biogenesis of cytoskeleton [S. cerevisiae, YKL179c] 7e-04
 [FUNCAT] 03.22.01 cell cycle check point proteins [S. cerevisiae, YGL086w] 7e-04
 [FUNCAT] 08.01 nuclear transport [S. cerevisiae, YDL207w] 0.001
 45 [FUNCAT] 04.07 rna transport [S. cerevisiae, YDL207w] 0.001
 [BLOCKS] BL00326C Tropomyosins proteins
 [BLOCKS] PRO1004B
 [BLOCKS] BL00121A Colipase proteins
 [BLOCKS] PF00580A
 50 [SCOP] d2tmab_ 1.105.4.1.1 Tropomyosin [rabbit (Oryctolagus cuniculus)] 3e-06
 [EC] 3.6.1.32 Myosin ATPase 9e-20
 [PIRKW] phosphotransferase 9e-16
 [PIRKW] nucleus 2e-10
 55 [PIRKW] blocked amino end 2e-07
 [PIRKW] citrulline 2e-10
 [PIRKW] tandem repeat 9e-20
 [PIRKW] heterodimer 3e-11

	[PIRKW]	endocytosis 2e-13
	[PIRKW]	heart 9e-20
	[PIRKW]	polymorphism 1e-10
5	[PIRKW]	serine/threonine-specific protein kinase 9e-16
	[PIRKW]	transmembrane protein 8e-15
	[PIRKW]	zinc finger 2e-13
	[PIRKW]	metal binding 2e-13
	[PIRKW]	DNA binding 2e-06
	[PIRKW]	muscle contraction 9e-20
10	[PIRKW]	acetylated amino end 3e-13
	[PIRKW]	actin binding 9e-20
	[PIRKW]	mitosis 8e-10
	[PIRKW]	microtubule binding 3e-09
	[PIRKW]	chromosomal protein 3e-11
15	[PIRKW]	ATP 9e-20
	[PIRKW]	receptor 2e-06
	[PIRKW]	thick filament 9e-20
	[PIRKW]	phosphoprotein 2e-14
	[PIRKW]	glycoprotein 1e-10
20	[PIRKW]	skeletal muscle 1e-18
	[PIRKW]	calcium binding 2e-10
	[PIRKW]	alternative splicing 3e-12
	[PIRKW]	DNA condensation 3e-11
	[PIRKW]	P-loop 9e-20
25	[PIRKW]	coiled coil 9e-20
	[PIRKW]	heptad repeat 1e-10
	[PIRKW]	methylated amino acid 9e-20
	[PIRKW]	basement membrane 1e-10
	[PIRKW]	immunoglobulin receptor 4e-09
30	[PIRKW]	peripheral membrane protein 2e-13
	[PIRKW]	cardiac muscle 9e-20
	[PIRKW]	extracellular matrix 1e-10
	[PIRKW]	hydrolase 9e-20
	[PIRKW]	microtubule 2e-10
35	[PIRKW]	muscle 2e-14
	[PIRKW]	membrane protein 1e-10
	[PIRKW]	EF hand 2e-10
	[PIRKW]	cell division 8e-10
	[PIRKW]	cytoskeleton 1e-13
40	[PIRKW]	hair 2e-10
	[PIRKW]	calmodulin binding 2e-13
	[PIRKW]	Golgi apparatus 6e-08
	[PIRKW]	smooth muscle 2e-07
45	[SUPFAM]	conserved hypothetical P115 protein 4e-26
	[SUPFAM]	myosin heavy chain 9e-20
	[SUPFAM]	unassigned Ser/Thr or Tyr-specific protein kinases 9e-16
	[SUPFAM]	centromere protein E 3e-09
	[SUPFAM]	calmodulin repeat homology 2e-10
50	[SUPFAM]	alpha-actinin actin-binding domain homology 7e-07
	[SUPFAM]	myosin motor domain homology 9e-20
	[SUPFAM]	tropomyosin 5e-08
	[SUPFAM]	plectin 7e-07
	[SUPFAM]	pleckstrin repeat homology 3e-09
55	[SUPFAM]	trichohyalin 2e-10
	[SUPFAM]	hypothetical protein MJ1322 2e-06
	[SUPFAM]	ribosomal protein S10 homology 7e-07
	[SUPFAM]	protein kinase C zinc-binding repeat homology 3e-09

COILS

5 SEQ GPNVPALLEAIDDAYRQGHFTYKPGPLGACIHLRDPELALAIESTCLKGLLQAYCCHNHA
SEG
PRD hhhhhhhhhhhhhhhhhhhccccccchhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh
COILS

10 SEQ DERVLQALMKRFYLPGTSRPPIVSEFRNEIYDVRHRAAYHPDFPTVLTALIEDNAVAN
SEG
PRD hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhccccccchhhhhhhhhhhhhhh
COILS

15 SEQ SLIDMRGIETVLLIKNNSVARAVMQSQKPPKNCREAFTADGDQVFAGRYYSSENTRPKFL
SEG
PRD hhhchhhhhhhhhhhhhhh
COILS

20

25 SEQ SRDVDSEISDLENEVENKTAQILNLQQQLSALEKDICKHNEELLKRCQLHYKELKMKIRKN
SEG
PRD hhh
COILS

30

35 SEQ ISEIRELENIEEHQSVDIATLEDEAQENKSCKMKMVEEHMEQQKENMEHLKSLKIEAENKY
SEG
PRD hhh
COILS

40

45 SEQ DAIKFKINQLSELADPLKDELNLADSEVDNQKRGKRHYEEKQKEHLDTLNKKRELDMKE
SEG
PRD hhh
COILS

50

55 SEQ TYLDLDSKVRTLKKFIKLLGEIMEHRFKTYQQFRRCLTLRCKLYFDNLLSQRAYCGKMNF
SEG
PRD hhh
COILS

60

65 SEQ DHKNETLSISVQPGEGNKAFFNDMRALSGGERSFSTVCFILSLWSIAESPFRCLDEFDVY
SEG
PRD eeeeeeeeeeeeeccccchhhhhccccccccchhhhhhhhhhhhhhhhhccccchhhhh
COILS

70

75 SEQ MDMVNRRIAMDLILKMAADSQRFRQFILLTPQSMSSLPSSKLIRILRMSDPERGQTTLPFR

WO 01/98454

PCT/IB01/02050

SEG
PRD hhhhhhhhhhhhhhhhhhhcccccccccccccccccccccccc
COILS

5

SEQ PVTQEEEDDQR
SEG
PRD chhhhhhccc
COILS

10

Prosite for DKFZphamy2_11n4.1

15 PS000016 126->129 RGD PD0C00016
PS000017 76->84 ATP_GTP_A PD0C00017

(No Pfam data available for DKFZphamy2_11n4.1)

20

DKFZphamy2_121f19

5 group: cell structure and motility

DKFZphamy2_121f19 encodes a novel 251 amino acid protein with high similarity to a Rat ankyrin binding glycoprotein-1 related mRNA.

10 Ankyrin binding glycoproteins play a role in neural cell adhesion and in prostate tumor cell transformation. DKFZphamy2_121f19.p3 is expressed in brain, uterus and prostate above average.

15 The new protein can find application modulation of cyto skeleton-membrane interactions.

20 similarity to ankyrin binding glycoprotein-1 related mRNA (*Rattus norvegicus*)

Sequenced by DKFZ

Locus: /map="1"

25 Insert length: 1498 bp
Poly A stretch at pos. 1479, polyadenylation signal at pos. 1460

30	1	CGGCACCTTC	GCCGGCGCCC	TCGCCCCACCC	CAGCCCCGCC	CCAGAAAGGAG
	51	CAGCCCCCG	CGGAGACCCC	TACAGACGCT	GCTGTCTTGA	CCTCACCCCC
	101	AGCCCCCTGCT	CCCCCGGTGA	CCCTCTAGCAA	ACCAATGGCC	GGCACCAACAG
	151	ACCGAGAAAGA	AGCCACTCGG	CTCTTGGCTG	AGAACGGCG	CCAGGGCCGG
	201	GAGCAGCGGG	AGCGCGAGGA	GCAGGAGCGG	AGGCTGCAGG	CAGAAAGGGA
	251	CAAGCGAATG	CGAGAGGGAGC	AGCTGGCACC	GGAGGCCGAG	GCCCAGGGCGG
	301	AGCGGGAGGC	GGAGGCCCGG	AGGCGGGAGG	AGCAGGGAGGC	ACGAGAGAAAG
	351	GCGCAGGCCG	AGCAGGGAGGA	GCAGGAGCGG	CTGAGAACG	AGAAAGAGGA
	401	GGCCGAAGCT	CGGTGCGGGG	AAGAGGCCGA	GCGGCAGCGT	CTGGAGCGGG
	451	AAAAGCACTT	CCAGCAGCAG	GAGCAAGAGC	GGCAAGAGCG	CAGAAAGCGT
	501	CTGGAGGGAGA	TCATGAAGAG	GAECTCGGAAG	TCAGAAAGTTT	CTGAAACCAA
	551	GAAGCAGGAC	AGCAAGGGAGG	CCAACGCCAA	CGGTTCCAGC	CCAGAGCCTG
	601	TGAAAGCTGT	GGAGGCTCGG	TCCCCAGGGC	TGCAAGAGGA	GGCTGTGCAG
	651	AAAGAGGAGC	CCATCCCACA	GGAGCCTCAG	TGGAGTCTCC	CAAGCAAGGA
	701	GTTGCCAGCG	TCCCTGGTGA	ATGGCCTGCA	GCCTCTCCCA	GCACACCAGG
	751	AGAATGGCTT	CTCCACCAAC	GGACCCCTCTG	GGGACAAGAG	TCTGAGCCGA
	801	ACACCAGAGA	CACTCCCTGCC	CTTTGCAGAG	GCAGAACGCT	TCCTCAAGAA
	851	AGCTGTGGTG	CAGTCCCCCGC	AGGTACAGAGA	AGTCCTTAA	GAGGGTTTGC
	901	CTTGGATCCG	GGCACAGTTG	TGAGGGCTCC	TCTGCATCAC	CTACCAGGAT
	951	GTCTGGAGGA	AAAAAAAGACA	GAACAAAGAT	GGAAAGTGGCC	TGGGCCCTG
	1001	GGGGTGGGTC	CTCTCTGTTG	TTTTTAATCT	GCACCTTATA	GAATGATGTC
	1051	TCTTGGCCG	GAGCCAGATC	TGCCCTCTAG	TGCATTGCTG	TGCTCGCACG
	1101	CGCAGACATC	CCTTCTCCCC	CATACACACA	TATACACTCA	CAGCCTCTCT
	1151	GGCCTCTTCC	CTTGGGGAGG	GGCCACCTGT	AGTATTTGCC	TTGATTGGT
	1201	GGGGTACAGT	GGATGTGAAT	ACTGTAAATA	GCTTGTGCTC	AGACTCCTCT
	1251	GGGTGGAGAG	GGTGGGTGCA	GGAGGGCAGAC	CCTCCCCCA	AAGCCCCCTG
	1301	GGGAGATCTT	CCTCTCTCTA	TTTAACTGTA	ACTGAGGGGG	ATCCCAGGTC
	1351	TGGGGATGGG	GGACACCTTG	GGCCACAGGA	TACTGGTTGC	TTCAGGGGTA
	1401	CCCATGCC	CTGCCCTCGC	CTGGAATCAG	TGTTACTGCA	TCTGATTAAA

1451 TGTCTCCAGA AATAAAGAAT AATTCTGCCA AAAAAAAA AAAAAAAA

BLAST Results

5

No BLAST result

10

Medline entries

No Medline entry

15

Peptide information for frame 3

20 ORF from 135 bp to 887 bp; peptide length: 251

Category: putative protein

Classification: Cell signaling/communication

1 MAGTTDREEA TRLLAEKRRQ AREQREREEQ ERLLQAERDK RMREEQLARE
 5 AEARAEREAE ARRREEQEAR EKAQAEQEEQ ERLQKQKEEA EARSREEAER
 10 QRLEREKHFQ QQEGERQERR KRLEEIMKRT RKSEVSETKK QDSKEANANG
 15 SSPEPVKAVE ARSPGLQKEA VQKEEPPIPQE PQWSLPSKEL PASLVNGLQP
 20 LPAHQENGFS TNGPSGDKSL SRTPETLLPF AEAEAFLKKA VVQSPQVTEV
 25 L

30

BLASTP hits

35 No BLASTP hits available

Alert BLASTP hits for DKFZphamy2_121f19, frame 3

No Alert BLASTP hits found

40

Pedant information for DKFZphamy2_121f19, frame 3

Report for DKFZphamy2_121f19.3

45

[LENGTH] 295

[MW] 33517.96

[pI] 5.61

50 [HOMOL] TREMBLNEW:AB033013_1 gene: "KIAA1187"; product: "KIAA1187 protein"; Homo sapiens mRNA for KIAA1187 protein, partial cds. 1e-64

[BLOCKS] PF01140D

[BLOCKS] BL00412D Neuromodulin (GAP-43) proteins

[BLOCKS] BL00826C

[BLOCKS] BL00422C Granins proteins

[BLOCKS] PR00167C

[BLOCKS] PF00992A

[BLOCKS] BL00224B Clathrin light chain proteins

[BLOCKS] PR00049D

[BLOCKS] PR00910A

[KW] All_Alpha

5 [KW] LOW_COMPLEXITY 51.19 %
[KW] COILED_COIL 10.51 %

10 SEQ APSPAPSPTPAPPQKEQPPAETPTDAAVLTSPPAPAPPVTPSKPMAGTTDREEATRLLAE

SEG xxxxxxxxxxxxxxxxxxxxxxxxx...xxxxxxxxxxxxxxxxxxxxx.....xx

PRD ccchhhhhhhhhh
COILS

15 SEQ KRRQAREQREREERERRLQAERDKRMREEQLAREAEARAEREAEARRREEQAREKAQAE

SEG xxxxxxxxxxxxxxxxxxxxxxxx...xxxxxxxxxxxxxxxxxxx.....xxxxxx

PRD hhh
COILS

CCCCCCCCCCCC

20 SEQ QEEQERLQKQKEEAEARSREEAERQRLEREKFQQQEGERQERRKRLEEMKRTRKSEVS

SEG xxxxxxxxxxxxxxxxxxxxxxxx...xxxxxxxxxxxxxxxxxxx.....xxxxxx

PRD hhh
COILS

CCCCCCCCCCCCCCCC.

25 SEQ ETKKQDSKEANANGSSPEPVKAVERSPGLQKEAVQKEEPIPQEPQWSLPSKELPASLVN

SEG

PRD chhhhhhhhhcc
COILS

30 SEQ GLQPLPAHQENGFSTNGPSGDKSLSRTPETLLPFAEAEAFKKAVVQSPQVTEVL

SEG

35 PRD eee
COILS

40 (No Prosite data available for DKFZphamy2_121f19-3)

(No Pfam data available for DKFZphamy2_121f19-3)

DKFZphamy2_121m2

5 group: cell cycle

DKFZphamy2_121m2 encodes a novel 480 amino acid protein with similarity to human PA2b-T2 protein.

10 PA2b-T2 is a p53 responsive gene. The protein is predominantly expressed in brain, breast and kidney and may represent a potential novel regulator of cellular growth. Isoforms are differentially induced by genotoxic stress (UV, gamma-irradiation and cytotoxic drugs) in a p53-dependent manner.

15 The new protein can find application in modulating cell division and apoptosis pathways.

20 similarity to PA2b nuclear protein isoforms (*Homo sapiens*)

probably differential polyadenylation

Sequenced by DKFZ

25

Locus: unknown

Insert length: 3327 bp

Poly A stretch at pos. 3306, polyadenylation signal at pos. 3279

30

35

1	TCCAGCACCA	AAGCGGCCGT	TCTCGGATTC	CGGAGCGTTC	TGGAGCCCCG
51	AGAGACGCCC	CGGGGTTCTA	GAAGCTCCCC	GGCGGCGCC	AGTCCC GGCT
101	TCATTGGGC	GTCCCTCCGA	AACCCACTCG	GGTGCACGGG	TCGTCGGCGA
151	GCCGCGACCG	GGTCTCTGGCG	CGCACCATGA	TCGTGGCGGA	CTCCGAGTGC
201	CGCGCAGAGC	TCAAGGACTA	CCTGCGGTT	GCCCCGGGCG	GCGTCGGCGA
251	CTCGGGCCCC	GGAGAGGAGC	AGAGGGAGAG	CCGGGCTCGG	CGAGGCCCTC
301	GAGGGGCCAG	CGCCTTCATC	CCCGTGGAGG	AGGTCCCTTCG	GGAGGGGGCT
351	GAGAGCCTCG	AGCAGCACCT	GGGGCTGGAG	GCACTGATGT	CCTCTGGGCG
401	AGTAGACAAC	CTGGCAGTGG	TGATGGGCCT	GCACCCCTGAC	TACTTTACCA
451	GCTTCTGGCG	CCTGCACTAC	CTGCTGCTGC	ACACGGATGG	TCCCTTGGCC
501	AGCTCCTGGC	GCCACTACAT	TGCCATCATG	GCTGCCGCC	GCCATCAGTG
551	TTCTTACCTG	GTAGGCTCCC	ACATGGCCGA	GTTTCTGCAG	ACTGGTGGTG
601	ACCTGAGTG	GCTGCTGGGC	CTCCACCGGG	CCCCCGAGAA	GCTGCGCAAA
651	CTCAGCGAGA	TCAACAAGTT	GCTGGCGCAT	CGGCCATGGC	TCATCACCAA
701	GGAACACATC	CAGGCCCTTG	TGAAGACCGG	CGAGCACACT	TGGTCCCTGG
751	CCGAGCTCAT	TCAGGCTCTG	GTCCTGCTCA	CCCACTGCCA	CTCGCTCTCC
801	TCCTTCGTGT	TTGGCTGTGG	CATCCTCCCT	GAGGGGGATG	CAGATGGCAG
851	CCCTGCCCCC	CAGGCACCTA	CACCCCCCTAG	TGAACAGAGC	AGCCCCCAA
901	GCAGGGACCC	GTTAACAAAC	TCTGGGGGCT	TTGAGTCTGC	CCGCGACGTG
951	GAGGCCTGTA	TGGAGCGCAT	GCAAGCAGCTG	CAGGAGAGCC	TGCTGCGGGA
1001	TGAGGGGACG	TCCCAGGGAGG	AGATGGAGAG	CCGCTTTGAG	CTGGAGAAGT
1051	CAGAGAGCCT	GCTGGTGACC	CCCTCAGCTG	ACATCCTGGA	GCCCTCTCCA
1101	CACCCAGACA	TGCTGTGCTT	TGTGGAAGAC	CCTACTTCG	GATATGAGGA
1151	CTTCACTCGG	AGAGGGGCTC	AGGCACCCCC	TACCTTCCGG	GCCCAGGATT
1201	ATACCTGGGA	AGACCATGGC	TACTCGCTGA	TCCAGCGGCT	TTACCCCTGAG
1251	GGTGGGCAGC	TGCTGGATGA	GAAGTTCCAG	GCAGCCTATA	GCCTCACCTA
1301	CAATACCATC	GCCATGCACA	GTGGTGTGGA	CACCTCCGTG	CTCCGCGAGGG

1351 CCATCTGGAA CTATATCCAC TGCCTTTG GCATCAGATA TGATGACTAT
 1401 GATTATGGGG AGGTGAACCA GCTCCTGGAG CGAACCTCA AGGTCTATAT
 1451 CAAGACAGTG GCCTGCTACC CAGAGAAGAC CACCGAAGA ATGTACAACC
 1501 TCTTCTGGAG GCACCTCCGC CACTCAGAGA AGGTCCACGT GAACTTGCTG
 5 1551 CTCCTGGAGG CGCGCATGCA AGCCGCTCTG CTGTACGCC TCCGTGCCAT
 1601 CACCCGCTAC ATGACCTGAC TCCTGAGCAG GACCTGGGCC CGGTTCAGCT
 1651 CCCCACAAAG ACTTCTCTGT CTGGAGACAG CCCCAGACCC TTTTGTGTCC
 1701 CATGCCACC CTCCCCACGC TGCACTGGGC TTGTGTGTGA TGTGAGTCC
 1751 CGAAGCCACA CCCTCCCCCTT TCCTCACTGG AATGGACAGT TCATTGCACT
 10 1801 GACTCTGGGA TCTCAGCCCT GCTCCTGGGA GCTGGAAGAG CACTTGGAGA
 1851 TCCTAAGGGG CAACACCCCTT CCTCCCTTCCC CTGCCCACAG AGGCAGAGGG
 1901 CACAGGAAAG AAGCCGGGCC AAGCTGGAA TTAATGTGCC ACAAGTGTG
 1951 TGGCCTTCCT GAACTGGGAA GTCCCTGGCT GGCCCCGGG GGAGAGGGGC
 2001 AAATGCCTCC GGGACTGACA CTCCAGGCAG CTTGCTTCTC TCTCCCTGT
 15 2051 CATTCCAGA TTTCAATTAC TCCCTACTTGC CATTCAACCA TCAATGTGAA
 2101 AGTCAGGGTC ACAGCTGGTC TGTTGTGTC GTTCCCTAAA AGCCTGTTCT
 2151 GTTGGGCAGC CTGAGGCTGT TGCCCAGATC CTAGTTCACT TTTTGACTT
 2201 CCTTTGCCCT TTTTCCCTT TCTCCATGCT TAATGGTGTG AGGCAGTCAGG
 2251 AGAGAGGCCA AGTACATAAA AAAAAAAAAGCAGATTAT CTCTAGAGAG
 2301 TTTGAGCCTT TGCTGGTCAC ATTGCCTTCT GAAGAGGAGG GAGTATTAGA
 2351 TTATAAATCC TCTTATTTT GGTCCCTTAT GCTTGAGGTT CCAACCTGGA
 2401 GCCACAGTGT GTGAGAGGAG GAGGAGAGGG AGAATTCTGT TCTCCAGAG
 2451 CTGCACCTGC CTCGCAGAGG CCAGCACCCC ACTCTCTTGC CTCCAGTGGC
 2501 CCTGCGCAG ATGTCTCCA AAAAGTTGAG CTTTCTAGA TGGCTTAGGT
 25 2551 GGCACCATGG CTCAGCAGGA GGGGCGGGAG GCACCAAGGGT TCTGTTTGG
 2601 ACCCTGCCCT TGGGCCATGG CCAGGTGACC ATGGCTACAT TGCCAAACCT
 2651 CTGACTGCCA CAGCTGCAGA CTGAGAGGGT GGGTCTGAGT CCCCCACAATG
 2701 TCTGAAGCTG CCCCTGGGAT TCTCAGGCCA ACCTGCCAAC AGCAAGCGGA
 2751 TTTTCTTGCA AGATCAGGGG CCCCATTCT GCAGCCAGTG TCTCCTGGGT
 30 2801 GCCTCTGAG GACTCCCACC CCCATCCCAG TATCTCATCT GTCCCCCTCTC
 2851 CTGGGGCTTA AGTGGGTGTC TTCCAGGCCA AAGCAGCCAA GGACCGATTG
 2901 CAGGCACTTT CTGTAGCAAA TGACTGTGAA TTACGACTTC TCTGCCCTT
 2951 CTTCTAGCAG TCTGTGCCCT CTCTCTGACC AGTTTGGAGG GCACTGAAGA
 3001 AAGGCAAGGG CGTGTGCTGCT GCTGGCGGG GCAGGAGAGG AGCCTGGCCA
 35 3051 GTGTGCCACA TTAAATACCC GTGCAGGGCGC GGAGAAGCAA CGGGCACCCC
 3101 CTTCCGGCCT GAAAGCCCTC CCTGCAAGAA GGTGTGCAGG AGAGAAGAGG
 3151 CCCCGGCATG GGGATCTGGG TTCTAGAGGG CATGTGATGA CTGAAATGT
 3201 TCACTGGGTG GGTAGGGAGT GGTATCCAGT GTTCAAGTGC AGAAATCTT
 3251 GGCTTGCTA CCAGTTCCAT ATGATGAGAA ATAAACGTTT GCTGAGGTTT
 40 3301 TGTTTCATAA AAAAAAAAAG AAAAAAAAG

BLAST Results

45

No BLAST result

Medline entries

50

95024170:

Buckbinder L., Talbott R., Seizinger B.R., Kley N.; Gene regulation by

55 temperature-sensitive p53 mutants: identification of p53 response genes. Proc. Natl. Acad. Sci. U.S.A. 91(22):10640-10644(1994).

9124117:

Velasco-Miguel S, Buckbinder L, Jean P, Gelbert L, Talbott R, Laidlaw
 J, Seizinger B, Kley N.; PA2b, a novel target of the p53 tumor suppressor and member of the GADD
 5 family of DNA damage and growth arrest inducible genes. Oncogene 1999
 Jan 7;18(1):127-37

10

Peptide information for frame 3

15 ORF from 177 bp to 1616 bp; peptide length: 480
 Category: strong similarity to known protein
 Classification: Cell division

20 1 MIVADSECRA ELKDYLRFAP GGVGDSGPGE EQRRESRARRG PRGPSAFIPV
 51 EEVLREGAES LEQHLGLEAL MSSGRVDNLA VVMGLHPDYF TSFWRLHYLL
 101 LHTDGPLASS WRHYIAIMAA ARHQCSYLVG SHMAEFLQTG GDPEWLLGLH
 151 RAPEKLRKLS EINKLLAHRP WLITKEHIQA LLKTGEHTWS LAELIQLALVL
 201 LTHCHSLSLF VFGCGILPEG DADGSPAPQA PTTPSEQSSP PSRDPLNNSG
 251 GFESARDVEA LMERMQQQLQE SLLRDEGTSQ EEMESRFELE KSESLLVTPS
 25 301 ADILEPSPHP DMLCFVEDPT FGYEDFTRRG AQAPPTFRAQ DYTWEHGYS
 351 LIQRLYPEGG QLLDEKFQAA YSLTYNTIAM HSGVDTSVLR RAIWNYIHCV
 401 FGIRYDDYDY GEVNQLLERN LKVYIKTVAC YPEKTTTRMY NLFWRHFRHS
 451 EKVHVNLALL EARMQALLY ALRAITRYMT

30

BLASTP hits

No BLASTP hits available

35 Alert BLASTP hits for DKFZphamy2_121m2, frame 3

40 TREMBL:AF033120_1 gene: "PA2b"; product: "p53 regulated PA2b-T2 nuclear protein"; Homo sapiens p53 regulated PA2b-T2 nuclear protein (PA2b) mRNA, complete cds., N = 1, Score = 1377, P = 9.7e-141

45 TREMBL:AF033122_1 gene: "PA2b"; product: "non-p53 regulated PA2b-T1 nuclear protein"; Homo sapiens non-p53 regulated PA2b-T1 nuclear protein (PA2b) mRNA, complete cds., N = 1, Score = 1363, P = 3e-139

50 TREMBL:AF033121_1 gene: "PA2b"; product: "p53 regulated PA2b-T3 nuclear protein"; Homo sapiens p53 regulated PA2b-T3 nuclear protein (PA2b) mRNA, complete cds., N = 1, Score = 1307, P = 2.5e-133

55 >TREMBL:AF033120_1 gene: "PA2b"; product: "p53 regulated PA2b-T2 nuclear

protein"; Homo sapiens p53 regulated PA2b-T2 nuclear protein (PA2b) mRNA,
complete cds.

Length = 492

5

HSPs:

Score = 1377 (206.6 bits), Expect = 9.7e-141, P = 9.7e-141
Identities = 277/471 (58%), Positives = 334/471 (70%)

10

Query: 22 GVGDSGPGEERESRARRGPR---GPSAFIPVEEVLRGAESLEQH-
LGLEALMSSGRV 76
G G +Q E R PR GPS FIP +E+L+ G+E + H L
++ + GR+

15

Sbjct: 22 GCKQCGGGGRDQDEELGIRIPRPLGQGPSRFIPEKEILQVGSEDAQMHALFADSFAALGRL 81

20

Query: 77 DNLA VVMGLHPDYFTSFWR LH YLLLHTDGPLASSURHYIAIMAAARHQCSYLVGSHMAEF 136
DN+ +VM HP Y SF + + LL DGPL +RHYI
IMAAARHQCSYLV H+ +F

Sbjct: 82

DNITLVMVFH P QYLESFLKTQHYLLQMDGPLPLHYRH YIGIMAAARHQCSYLVNLHVND 141

25

Query: 137 LQTGGDPEWLLGLHRAPEKLRKLSEINKLLAHRPWLTKEHIQALLKTGEHTWSLAELIQ 196
L GGDP+WL GL AP+KL+ L E+NK+LAHRPWLTKEHI+ LLK
EH+WSLAEL+

Sbjct: 142

LHVGGDPKWLNGLENAPQKLQNLGELNKVL AHRPWLTKEHIEGLLKAEEHSWSLAELVH 201

Query: 197 ALVLLTHCHSLSSFVFGCGILPEGDADGX XXXXXXXXX-----
XXXXXXXXRDPLNN 249
A+VLLTH HSL+SF FGCGI PE DG

35

P+N++
Sbjct: 202 AVVLLTHYHSLASFTFGCGISPEIHC DGGHTFRPPSVSNYCICDITNGNHSVDEMPVNSA 261

40

Query: 250 GGF---ESARDVEALMERMAQLQESLLRDEG-
TSQEEMESRFELEKSESLLVTPSADILE 305
+S +VEALME+M+QLQE RDE SQEEM SRFE+EK ES+ V
S+D E

Sbjct: 262 ENVSVSDSFFEVEALMEKMRQLQEC--
RDEEEASQEEMASRFEIEKRESMFVF-SSDDEE 318

45

Query: 306 PSPHPDMLCFVEDPTFGYEDFTRRGQAQAPPTFRAQDYTWEDHGYSLIQRLYPEGQLLDE 365
+P + ED ++GY+DF+R G P TFR QDY WEDHGYSL+
RLYP+ GQL+DE

50

Sbjct: 319 VTPARAVSRHFEDTSYGYKD FS RHM HV P-
TFRVQDYCWEDHGYSLVNRLYPDVGQLIDE 377

55

Query: 366 KFQAAYSLTYNTIAMHSGVDT S VL RRAI WNYIHC VFGIRYDDYDYGEVNQLLERNLK VYI 425
KF AY+LTYNT+AMH
VDT S+LRR A I WNYIHC+F G I RYDDYDYGE+NQLL+R+ K VYI
Sbjct: 378 KFHIA YNL TYNT MAMHK DVDT SML RR A I WNYIHC MFGIRYDDYDYGEINQLLDRSF K VYI 437

Query: 426
 KTVACYPEKTTTRMYNLFWRHFRHSEKVHVNLLEARMQAALLYALRAITRYMT 480
 KTV C PEK T+RMY+ FWR F+HSEKVHVNLLEARMQAALLYALRAITRYMT
 5 LLYALRAITRYMT
 Sbjct: 438
 KTVVCTPEKVTKRMYDSFWRQFKHSEKVHVNLLEARMQAELLYALRAITRYMT 492

10 Pedant information for DKFZphamy2_121m2, frame 3

Report for DKFZphamy2_121m2.3

15 [LENGTH] 480
 [MW] 54493.92
 [pI] 5.57
 [HOMOL] TREMBL:AF033120_1 gene: "PA26"; product: "p53
 20 regulated PA26-T2 nuclear protein"; Homo sapiens p53 regulated
 PA26-T2 nuclear protein (PA26) mRNA, complete cds. le-151
 [BLOCKS] PR000049D
 [KW] All_Alpha
 [KW] LOW_COMPLEXITY 3.75 %
 25

SEQ MIVADSECRAELKDYLRFAPGGVGDSGPGEERRESRARRGPRGPSAFIPVEEVLRGAES
 SEG
 PRD cccchhhhhhhhhhhccccccccccccchhhhhhhccccccccccccchhhhhhhh
 30 SEQ LEQHLGLEALMSSGRVDNLAVVMGLHPDYFTSFWRLYHLLLHTDGPLASSWRHYIAIMAA
 SEG
 PRD hhhhhhhhhhhhhcc
 35 SEQ ARHQCSYLVGSHMAEFLQTGGDPEWLLGLHRAPEKLRLSEINKLLAHRPWLITKEHIQA
 SEG
 PRD hhhhhheeecc
 40 SEQ LLKTGEHTWSLAELIQALVLLTHCHSLSSFVFGCGILPEGDADGSPAPQAPTPPSEQSSP
 SEG
 PRD hhhhhccchhhhhhhhhhhcccccccccccccccccccccccccccccccccccc
 45 SEQ PSRDPLNNSGGFESARDVEALMERMQQLQESLLRDEGTSQEEMESRFELEKSESLLVTPS
 SEG xx.....
 PRD ccc
 50 SEQ ADILEPSPHDMLCFVEDPTFGYEDFTRRGQAQAPPTFRAQDYTWEDHGYSLIQRLYPEGG
 SEG
 PRD ccc
 55 SEQ QLLDEKFQAAYSLTYNTIAMHSGVDTSVLRAIWNYIHCVFGIRYDDYDYGEVNQLERN
 SEG
 PRD hhhhhhhhhhhhhcc
 SEQ LKVIYIKTVACYPEKTTTRMYNLFWRHFRHSEKVHVNLLEARMQAALLYALRAITRYMT
 SEG
 PRD hheeeeeeeeeccccchhhhhhhhhhhhhcccccccccccccccccccccccc

(No Prosite data available for DKFZphamy2_121m2-3)

(No Pfam data available for DKFZphamy2_121m2-3)

DKFZphamy2_121017

5 group: transmembrane protein

DKFZphamy2_121017 encodes a novel 212 amino acid protein without similarity to known proteins.

10 The novel protein contains 1 transmembrane region.
No informative BLAST results; No predictive prosite, pfam or SCOP motif.

15 The new protein can find application in studying the expression profile of amygdala-specific genes and as a new marker for amygdala cells.

unknown protein

20 Pedant: TRANSMEMBRANE 1

Sequenced by DKFZ

25 Locus: /map="186.6 cR from top of Chr22 linkage group"

Insert length: 2690 bp

Poly A stretch at pos. 2661, polyadenylation signal at pos. 2634

30 1 TGCTGGGAAA AGTGACTGCG ATTCTGAAGA ACCGCTGCCCT TGCAAGGTCA
 51 AGGACATTCA GTGGTTGCTG GGGTCCGCAG ACTACTGCCA CCCACTCACC
 101 ATCAACTCTG TTAGCCCCAT TGCCCTGCTG AACAACTGCCC TGAATACAGG
 151 CTTTAGGTTTC CCCTGGACTC CAGCCAAGGC TGTTCAAGGTG GGACCATGGT
 201 GCTCTTAAG CGTGATCGGA GGGAAAGACAC ACAGCAGGGC CACCATTCCA
 251 TGAATGGGAG GTGTACAGAT CACTTTCTCT TTGTGCTCAG TTCTCTTCTG
 301 TCTCCAGCAG CTATATTGGT AAGACTAGTA CCTGCCAGGG AGAGGTGCC
 351 CCAAGTGAAG GGGTACAGTG GCACCTGGGA AAAGGCACCT GGAAGGTTTC
 401 CATGTGGCCC AGCCCCAGCAT GGAAGCAGGG TGGGAACCTCT GCTGTGTGCC
 451 CAGCCCTCAC TCTACTCAAG TGGCTTTTG AGAGCCCTGC CATGTCTGTG
 501 TCAGGCCCTGT GCTGCTTCAC ACCCTACAGC TGCCCTGGGAA AGGCCGGCCA
 551 CGCTCCCTGT CCACACACTC CCTGTCCACA CACTCCCTGT CCACAACCTGC
 601 AGCCGGGCCC TCTGCTTATG GGCACCAAT CCAAGCAGCT GCTCCACCTT
 651 TGTGGGCAT GGTGATTTGT GTTTTTCTC TTGGTGTCTTA TGTGTGTGGG
 701 CTTGGGACGA GTGCTGGTAT GCACTTAGGA CCTTCTTGAT AGCTCCCTGC
 751 ACTTTGGAAC ACGGAGCAGA TGAGAGAGGG TCAGGGGCTT GCCCTCCACC
 801 TTGGACTTGG AAGAAGCCCA CATTGGAGAG GTGAGGGACCC CATGGTGGCT
 851 CTAGTGGAAAG ATACGTTAGT CTCCAGCTAA GGAGGATGAG GCGCAGCCCC
 901 AGAGGGAGAC CTCAGTGATA GGGGATCAGG CTACGAAAGT GGGGAAAGGG
 951 AGATGCTTTG TACATATTTT GGGGTTATAA TTTCTCTAAA TTTTAGGAGA
 1001 ACGGGTATTG ATTGATAAAA GGGACAGGCA GTAGTGTCTA ACAGTGCATG
 1051 TGAAGGAAAG TTCTGTTTC CATGGTTTTG ACATTCTTG GACTGTATTG
 1101 TGAATGCTGT CTGGTCCACA TGGTACCTT TTGGTAAGTA GGCTTCAGTG
 1151 CATAACCAGGG TATCACTGGA GATGGGAGTT AGTGAAGGGG TGACTCCCTG
 1201 GCCTAGTATA GTGTGACCCCT GGGACAACTT AATGTCTAA AGCATTGG
 1251 TGAATGCTGT GGAATAGCAA AGACCTATT CATTGTCCCC AGGTAAGTAT
 1301 GTGATGAGCA ATGAGGGAGGA GTGGAAAACA AAACCCAGAA AGTGCAGGCAG
 1351 GACCAGCCTG ACGCACACGC TCCTGTTGTC ATGGCAGACAA GCCGCCTTGG

1401 GTGGGCACCA CCCTGGCAGT TCCAGCCTGT AGGGGAGTGA AGGGACATGG
 1451 CTGAGCTGGG CATGTGCTGA GGTTGACTTA GGGAAACAAGC CCTGGGATTG
 1501 GACAAAAGGG CCCATGCTGC AGCCACTGAC TGGGGGCAGA GCTCTGGGTG
 1551 GAAGAGGGAA GAGATCTAA TGGAGGCAGC TCCATCTGCA ACCACAGTTG
 5 1601 TAAGGCTCAT GGCACCTCTG CTTGGAAAGC ACTGGTTAG GGACTTAGAG
 1651 AGGTAGGCAC AAGGTGGGTC TCCTGGGTAA GGGAAAGCAAG AGCAGACTGT
 1701 TGGGCCAACA GGAGAAGCTC CCCAGAGTAG GGGAGAAGGT TGGGTGTTAG
 1751 GGCCTTCCAC GTGGAACAGA CAGCCCCGT GTCTCTGTCT CTTGGGACC
 1801 TGAGTTTGGG TGGGTGGCA GTTGGCACAG CGCAGATGCG GTAGAGATGG
 10 1851 GAGGAAACCC AGCTCCTCAC TTCCGTGTGC CTCATGCCCT TGCAACACA
 1901 AGCACCAAAC CTACTAGGTC TTCTCATTAC CCATGTAAC CACATGTTAG
 1951 ATAAATTTTT GCAAGTAGAG GAAAGAAGGA AATAAAACAT CACATTTGG
 2001 TGTCCTCTAG GCTTCCCCC CCAACTATGG TTTCTTTGCT TTTGTTTA
 2051 ACATAGTTT GTTGTGTCT TCTGTAATGA TACAGTTTG TGAGCTGTT
 15 2101 TTCACCTTACG ATATCGTGGG CATCTCCCCT TATGATTACT AAATATTTA
 2151 TTTTGGAGTG GCTGTGTACT CTCCCATTGA CTAGATGGAC CATTGTGCCA
 2201 GTTGCCTAAC ACTAATGCTG TTACTAACTT TTCAGTTATA AATTGATGAA
 2251 TATCTTGTG CACAGGCTGT TTCCCAATGT CAAGTTATTA GGGTAGACTC
 2301 CAGGAGGTGG GATTCTTCAA CTAAGAATA TGAAAACCTT TGAGGCTTT
 20 2351 ACTACATATT GACAAAATGG TTTCCGGAAA TATTTGTATC CCCTTACACT
 2401 GCCACCAGCA AGGATAAAACA TGTCCTACTT GCGCGTATTG GGAATTATCA
 2451 TCTGGCTAAA TATTTGCTAA TTTGATAATG AAAAAAATAGC ATCGTGTTC
 2501 AGTTGGCATT TCACTGACTT CTAGCACGGT TGAACATCTT TCATGTGGAG
 2551 CGATTGTATT TCCTCCTTTG TGGATTGTCA GTGTCCTTG CTCTATCTC
 2601 TGGGTCAAGA TAAATTTGTA TGAGCTCGGT ATATATTAAA GATATTAACC
 2651 TGGTGTGTGT CAAAAAAA AAAAAAAA AAAAAAAA

BLAST Results

30

Entry HS1033E15 from database EMBL:
 Human DNA sequence from clone 1033E15 on chromosome 22q13.1-13.2.
 Contains part of a novel gene, ESTs and a GSS.
 35 Score = 5919, P = 5.1e-262, identities = 1187/1195

Entry HSN128A12 from database EMBL:
 Human DNA sequence from cosmid N128A12 on chromosome 22q12-qter.
 contains ESTs, CpG island.
 40 Score = 5038, P = 0.0e+00, identities = 1014/1019

Entry HS690346 from database EMBL:
 human STS WI-14034.
 Score = 1800, P = 1.4e-76, identities = 392/417
 45

Medline entries

50

No Medline entry

55

Peptide information for frame 1

ORF from 196 bp to 831 bp; peptide length: 212

Category: putative protein
Classification: no clue

1 MVLFKRDRRE DTQRQHHSMN GRCTDHFLFV LSSLLSPAII LVRLVPARER
 5 51 CPQVKGYSGT WEKAPGRFPC GPAQHGSRVG TLLCRQPSLY SSGFLRALPC
 101 LCQACAAASHP TAAWERPATL PVHTLPVHTL PVHNCSRALC LWAPNPSSCS
 151 TFVWHGDLCF FSWCLCVWAW DECWYALRTF LIAPCTLEHG ADERGSGACP
 201 PPWTWKPKTL ER

10

BLASTP hits

No BLASTP hits available

15 Alert BLASTP hits for DKFZphamy2_121o1?, frame 1

No Alert BLASTP hits found

20 Pedant information for DKFZphamy2_121o17, frame 1

Report for DKFZphamv2_121017.1

25 [LENGTH] 212
 [MW] 23727.55
 [PI] 8.73
 [KWD] TRANSMEMBRANE

35 SEQ WEKAPGRFPCGPAQHGSRVGTLLCRQPSLYSSGFLRALPCLCQACAASHPTAAWERPATL
PRD CCCCCCCCCCCCCCCCCCCCCeeeeeeeeCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
MEM

45 SEQ LIAPCTLEHGADERGSGACPPPWTKKPTLER
PRD eeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee
MFM .

(No Prosite data available for DKFZphamv2_121017-1)

50

DKFZphamy2_12d7

5 group: signal transduction

DKFZphamy2_12d7 encodes a novel 552 amino acid protein, which is a so far unknown alternative spliced form of disks large homolog DLG2.

10 It seems to be predominantly expressed in the retina, germ cells and brain. It contains a SH3-domain and a guanylate kinase domain. These conserved regions are shared among members of the discs-large family of proteins that include human p55, a membrane 15 protein expressed in erythrocytes, rat PSD-95/SAP90, a synapse protein expressed in brain, Drosophila dIg-A, a septate junction protein expressed in various epithelia, and human and mouse ZO-1 and canine ZO-2, two tight junction proteins. The Homologue of Drosophila, dIg-A, acts as a tumor suppressor. All members of 20 this family may be involved in signal transduction.

The new protein can find application in modulating/blocking intracellular signal transduction pathways.

25 similarity to disks large homolog DLG2 (Homo sapiens)

alternative splicing: see DLG2
complete cds.

30 frame shift: around position 1437 one C too many

Sequenced by EMBL

Locus: /map="338.6 cR from top of Chr17 linkage group"

35 Insert length: 4220 bp
Poly A stretch at pos. 4180, polyadenylation signal at pos. 4165

40	1 CCCGGCTGCG	CTGGAGCCGC	CCGGAGCTAG	GGGCTTCCCC	GGGCGCAGGA
	51 GAGACGTTTC	AGAGGCCCTG	CCTCCTTCAC	CATGCCGGTT	GCCGCCACCA
	101 ACTCTGAAAC	TGCCATGCGAG	CAAGTCCTGG	ACAACTTGGG	ATCCCCTCCCC
	151 AGTGCCACGG	GGGCTGCGAGA	GCTGGACCTG	ATCTCCCTTC	GAGGCATTAT
	201 GGAAAGTCCC	ATAGTAAGAT	CCCTGGCCAA	GGCCCATGAG	AGGCTGGAGG
	251 AGACGAAGCT	GGAGGGCGTG	AGAGACAACA	ACCTGGAGCT	GGTGCAGGAG
	301 ATCCTGCGGG	ACCTGGCGCA	GCTGGCTGAG	CAGAGCAGCA	CAGCCGCCGA
	351 GCTGGCCCAC	ATCCTCCAGG	AGCCCCACTT	CCAGTCCCTC	CTGGAGACGC
	401 ACGACTCTGT	GGCCTCAAAG	ACCTATGAGA	CACCACCCCC	CAGCCCTGGC
	451 CTGGACCTA	CGTTCAGCAA	CCAGCCTGTA	CCTCCCAGATG	CTGTGCGCAT
	501 GGTGGGCATC	CGCAAGACAG	CCGGAGAACAA	TCTGGGTGTA	ACGTTCCGCG
	551 TGGAGGGCGG	CGAGCTGGTG	ATCGCGCGCA	TTCTGCATGG	GGGCATGGTG
	601 GCTCAGCAAG	GCCTGCTGCA	TGTGGGTGAC	ATCATCAAGG	AGGTGAACGG
	651 GCAGCCAGTG	GGCAGTGACC	CCCGCGCACT	GCAGGAGCTC	CTGCGCAATG
	701 CCAGTGGCAG	TGTCACTCTC	AAGATCCTGC	CCAGCTACCA	GGAGCCCCAT
	751 CTGCCCCGCC	AGGTATTTGT	GAAATGTAC	TTTGAATATG	ACCCGGCCCC
	801 AGACAGCCTC	ATCCCCCTGCA	AGGAAGCAGG	CCTGCGCTTC	AACGCCGGGG
	851 ACTTGCTCCA	GATCGTAAAC	CAGGATGATG	CCAACTGGTG	GCAGGGCATGC
	901 CATGTCGAAG	GGGGCAGTGC	TGGGCTCAT	CCCAGCCAGC	TGCTGGAGGA

	951	GAAGCGGAAA	GCATTTGTCA	AGAGGGACCT	GGAGGCTGACA	CCAAACTCAG
	1001	GGACCCCTATG	CGGCAGCCTT	TCAGGAAAGA	AAAAGAAGCG	AATGATGTAT
	1051	TTGACCACCA	AGAACATGCAGA	GTTTGACCGT	CATGAGCTGC	TCATTATGA
5	1101	GGAGGTGGCC	CGCATGCC	CGTCCGCC	GAAAACCCTG	GTACTGATTG
	1151	GGGCTCAGGG	CGTGGGACGG	CGCAGCCTGA	AGAACAAAGCT	CATCATGTGG
	1201	GATCCAGATC	GCTATGGCAC	CACGGTGCCC	TACACCTCCC	GGCGGCCGAA
	1251	AGACTCAGAG	CGGGAAAGTC	AGGGTTACAG	CTTTGTGTCC	CGTGGGGAGA
	1301	TGGAGGCTGA	CGTCCGTGCT	GGGCCTACCC	TGGAGCATGG	CGAACATCAG
	1351	GGCAACCTGT	ATGGCACACG	TATTGACTCC	ATCCGGGCG	TGGTCGCTGC
10	1401	TGGGAAGGTG	TGCCTGCTGG	ATGTCACCC	CCAGGCCGGT	GAAGGTGCTA
	1451	CGAACGGCCG	AGTTTGCTCC	TTACGTGGTG	TTCATCGAGG	CCCCAGACTT
	1501	CGAGACCTG	CGGGCCATGA	ACAGGGCTGC	GCTGGAGAGT	GGAATATCCA
	1551	CCAAGCAGCT	CACGGAGGC	GACCTGAGAC	GGACAGTGGA	GGAGAGCAGC
	1601	CGCATCCAGC	GGGGCTACGG	GCACACTTT	GACCTCTGCC	TGGTCAATAG
15	1651	CAACCTGGAG	AGGACCTTCC	GCGAGCTCCA	GACAGCCATG	GAGAACCTAC
	1701	GGACAGAGCC	CCAGTGGGTG	CCTGTCAGCT	GGGTGTACTG	AGCCTGTTCA
	1751	CCTGGTCTT	GGCTCACTCT	GTGTTGAAAC	CCAGAACCTG	AATCCATCCC
	1801	CCTCTGACC	TGTGACCCCC	TGCCACAATC	CTTAGCCCCC	ATATCTGGCT
	1851	GTCTTGGGT	AACAGCTCCC	AGCAGGCCCT	AAGTCTGGCT	TCAGCACAGA
20	1901	GGCGTGCACT	GCCAGGGAGG	TGGGCATTCA	TGGGGTACCT	TGTGCCCAGG
	1951	TGCTGCCCCAC	TCCTGATGCC	CATTGGTCAC	CAGATATCTC	TGAGGGCCAA
	2001	GCTATGCCCA	GAATGTGTC	AGAGTCACCT	CCATAATGGT	CAGTACAGAG
	2051	AAGAGAAAAG	CTGCTTTGGG	ACCACATGGT	CAGTAGGCAC	ACTGCCCCCTG
	2101	CCACCCCTCC	CCAGTCACCA	GTTCTCCTCT	GGACTGGCCA	CACCCACCCCC
25	2151	ATTCTGGAC	TCCTCCACC	TCTCACCCCT	GTGTCGGAGG	AACAGGCCCT
	2201	GGGCTGTTTC	CGTGTGACCA	GGGAAATGTG	TGGCCCGCTG	GCAGCCAGGC
	2251	AGGCCCCGGGT	GGTGGTGCCTA	GCCTGGTGCCT	ATCTGAAGG	CTGGAGGAGT
	2301	CAGAGTGAGA	GCCAGTGGCC	ACAGCTGCAG	AGCACTGCAG	CTCCCAGCTC
	2351	CTTTGGAAAG	GGACAGGGTC	GAAGGGCAGA	TGCTGCTCGG	TCCTCCCTC
30	2401	ATCCACAGCT	TCTCACTGCC	GAAGTTCTC	CAGATTTCTC	CAATGTGTCC
	2451	TGACAGGTCA	GCCCTGCTCC	CCACAGGGCC	AGGCTGGCAG	GGGCCATTGG
	2501	GCTCAGCCCCA	GGTAGGGGCA	GGATGGAGGG	CTGAGCCCTG	TGACAACCTG
	2551	CTGTTACCAA	CTGAAGAGCC	CCAAGCTCTC	CATGCCAAC	AGCAGGCACA
	2601	GGTCTGAGCT	CTATGTCCTT	GACCTTGGTC	CATTGGTTT	TCTGTCTAGC
35	2651	CAGGTCCAGG	TAGCCCACTT	GCATCAGGGC	TGCTGGGTTG	GAGGGCTAA
	2701	GGAGGAGTGC	AGAGGGGACC	TTGGGAGCCT	GGGCTTGAAG	GACAGTTGCC
	2751	CTCCAGGAGG	TTCTCACAC	ACAACCTCAG	AGGCGCCATT	TACACTGTAG
	2801	TCTGTACAAC	CTGTGGTTCC	ACGTGATGT	TGGCACCTG	TCTGTGCCTC
	2851	TGGCACCAAGG	TTGTGTGTGT	GTGCGTGTGC	ACGTGCGTGT	GTGTGTGTGT
40	2901	GTGTCAAGGTT	TAGTTGGGG	AGGAAGCAA	GGGTTTTGTT	TTGGAGGTCA
	2951	CTCTTGGGG	CCCCCTTCTG	GGGGTTCCCC	ATCAGCCCTC	ATTCTTATA
	3001	ATACCCCTGAT	CCCAGACTCC	AAAGCCCTGG	TCCTTCTG	ATGTCTCCTC
	3051	CCTTGTCTTA	TTGTCCCCCT	ACCTAAATG	CCCCCTGCC	ATAACTTGGG
	3101	GAGGGCAGTT	TTGTAAAATA	GGAGACTCCC	TTAAGAAAG	AATGCTGTCC
45	3151	TAGATGTACT	TGGGCATCTC	ATCCTTCATT	ATTCTCTGCA	TTCCTTCCGG
	3201	GGGGAGCCTG	TCCTCAGAGG	GGACAACCTG	TGACACCCCTG	AGTCCAAACC
	3251	CTTGTGCCTC	CCAGTTCTC	CAAGTGTCTA	ACTAGTCTTC	GCTGCAGCGT
	3301	CAGCCAAAGC	TGGCCCCCTGA	ACCACTGTGT	GCCCATTTCC	TAGGGAAGGG
	3351	GAAGGAGAAT	AAACAGAATA	TTTATTACAA	ATGTTAGAAT	ATATTCTTA
50	3401	TAATAGGAAT	CTCATTTGCA	TTTGATAGA	CTATACACAT	GGGGTGGAAA
	3451	GGCCAGGGCCT	GCCCCCATCT	CGTGGGTGTG	GCTCTGCCTA	TACTACACAC
	3501	TCATTCTCCT	GCTCCTCTT	TCCCTTAGTC	AGTGTCTTT	CATCCTGATT
	3551	CAGCTCTGCC	TTGCATCACC	CTCAGCCTAA	GGGAGTGGGA	AGGAAATGGG
	3601	GTGTTTCTT	GCTGACCTGA	GGCTATAGGG	TCACTTGCCA	TTTCCCTACCT
55	3651	TCTCTGGGG	ATTGAGGGT	AGAGGCAGGG	GAAGATCTGT	TGTTGCAGTT
	3701	GCTTCTGCC	CCTTGATCCA	AATGACCAC	ATCTCTGATG	GAGATGGGTT
	3751	GGGTACCTGG	CCTTCATGCC	ACCTTCACTG	CTAGGGATGC	TCAAGGGGCA
	3801	GGCCTGGGGC	CCTTCCCTCC	TGTCTCTTCT	CGGTCTTCC	TCTCTGAGCA

3851 GCCTCCTACC TCCCCCTGCCCT GAGCCCTCAC TCCACAGCCC TCCCAGGTAC
 3901 CTAGCAGAGG CTGTCAGTCC TTGGCTCACCC TGAAACAGGG CTGGGGCTGG
 3951 GTTGGAACAG GTGTGTGCCCT CCACCAACAGC TCTATGACTC TGTTCTCCCT
 4001 CCCTGCCATT GTGGACTCTT GTATTTGAGG GACCTCAAGA GAGTGAGGAC
 5 4051 CCTACCACATCC ACTGTCCATA TTCAGTCCCA GCCCCAGTGC GCTTCCCTCG
 4101 TTCCCTCCCT CAGCCATCCA ATTCTTGAGT TTTCTCACTG ATTGGTTTC
 4151 TTTCTTTTTC CTTGGATTAA ATGTGAAAGC AAAGAAAAAA AAAAAAAA
 4201 AAAAAAAA AAAAAAAA

10

BLAST Results

No BLAST result

15

Medline entries

20 96070428:
 Mazoyer S, Gayther SA, Nagai MA, Smith SA, Dunning A, van
 Rensburg EJ,
 Albertsen H, White R,
 Ponder BA.; A gene (DLG2) located at 17q12-q21 encodes a new
 25 homologue
 of
 the Drosophila tumor suppressor dIg-A. Genomics 1995 Jul
 1;28(1):25-31

30

Peptide information for frame 1

35 ORF from 82 bp to 1437 bp; peptide length: 452
 Category: strong similarity to known protein
 Classification: Cell signaling/communication
 Prosite motifs: GUANYLATE_KINASE_1 (385-402)

40

1 MPVAATNSET AMQQVLDNLG SLPSATGAAE LDLIFLRGIM ESPIVRSLAK
 51 AHERLEETKL EAVERDNNLEL VQEILRDLAQ LAEQQSSTAAE LAHILQEPHF
 101 QSLLETHDSV ASKTYETPPP SPGLDPTFSN QPVPPDAVRM VGIRKTAGEH
 45 151 LGVTFRVEGG ELVIARIHLG GMVAQQGLLH VGDIIKEVNG QPVGSDPRAL
 201 QELLRNASGS VILKILPSYQ EPHLPRQVFV KCHFDYDPAR DSLIPCKEAG
 251 LRFNAGDLLQ IVNQDDANWW QACHVEGGSA GLIPSQQLLEE KRKAFAVKRD
 301 ELTPNSGTLG GSLSGKKKKR MMYLTTKNAE FDRHELLIYE EVARMPPFRR
 351 KTLVLIQAG VGRRLSKNKL IMWDPDRYGT TVPYTSRRPK DSEREGQGYS
 50 401 FVSRGEMEAD VRAGRYLEHG EYEGNLYGTR IDSIRGVVAA GKVCVLVDVNP
 451 QA

55

BLASTP hits

No BLASTP hits available

Alert BLASTP hits for DKFZphamy2_12d7, frame 1

No Alert BLASTP hits found

5

Peptide information for frame 2

10 ORF from 1439 bp to 1738 bp; peptide length: 100

Category: strong similarity to known protein

Classification: Cell signaling/communication

Prosite motifs: LEUCINE_ZIPPER (66-87)

15 1 VKVLRTAEFV PYVVVFIEAPD FETLRAMNRA ALESGISTKQ LTEADLRRTV
51 EESSRIQRGY GHYFDLCLVN SNLERTFREL QTAMEKLRT PQQWVPVSWVY

20

BLASTP hits

No BLASTP hits available

Alert BLASTP hits for DKFZphamy2_12d7, frame 2

25

No Alert BLASTP hits found

Pedant information for DKFZphamy2_12d7, frame 1

30

Report for DKFZphamy2_12d7.1

[LENGTH] 516

35 [MW] 56458.36
[PI] 6.21
[HOMOL] PIR:A57653 disks large homolog DLG2 - human 0.0
[FUNCAT] 01.03.99 other nucleotide-metabolism activities [S.
cerevisiae, YDR454c] 7e-15
40 [FUNCAT] f nucleotide metabolism and transport [H. influenzae,
Hil743] 3e-07
[BLOCKS] PRO0834F
[BLOCKS] BL00856C
[BLOCKS] BL00856B Guanylate kinase proteins
45 [BLOCKS] BL00856A Guanylate kinase proteins
[SCOP] dlgky_ 3.29.1.1.1 Guanylate kinase [baker's
yeast (Saccharomyce) 8e-45
[SCOP] dlkwab_ 2.26.1.1.2 Cask/Lin-2 [Human (Homo
sapiens) 4e-34
50 [EC] 2.7.4.8 Guanylate kinase 8e-17
[PIRKW] blocked amino end 8e-17
[PIRKW] phosphotransferase 8e-17
[PIRKW] monomer 8e-17
55 [PIRKW] duplication 5e-29
[PIRKW] signal transduction 3e-24
[PIRKW] alternative splicing 5e-29
[PIRKW] P-loop 8e-17
[PIRKW] acetylated amino end 1e-16

[PIRKW] membrane protein 9e-74
 [PIRKW] magnesium 8e-17
 [PIRKW] ATP 8e-17
 5 [SUPFAM] SH3 homology 9e-74
 [SUPFAM] discs-large tumor suppressor 3e-24
 [SUPFAM] unassigned Ser/Thr or Tyr-specific protein kinases 5e-11
 [SUPFAM] protein kinase homology 5e-11
 [SUPFAM] GLGF domain homology 9e-74
 10 [SUPFAM] guanylate kinase 8e-17
 [SUPFAM] guanylate kinase homology 9e-74
 [PROSITE] GUANYLATE_KINASE_1 1
 [PFAM] Src homology domain 3
 [KW] Irregular
 15 [KW] 3D

SEQ MPVAATNSETAMQQVLDNLGSLPSATGAAELDLIFLRGIMESPIVRSLAKAHERLEETKL
lgky-

20

SEQ EAVERDNNLELVQEILRDLAQLAQSSTAAELAHILQEPHFQSLLETHDSVASKTYETPPP
lgky-

25

SEQ SPGLDPTFSNQPVPPDAVRMVGIRKTAGEHLGVTFRVEGGELVIARILHGGMVAQQGLLH
lgky-

.

30 SEQ VGDIIKEVNGQPVGSDPRALQELLRNASGSVILKILPSYQEPHLPRQVFVKCHFDYDPAR
lgky-

.

35 SEQ D\$LIPCKEAGLRFNAGDLLQIVNQDDANWWQACHVEGGSAGLIPSQQLLEEKRAFKVKRD
lgky-

.

40 SEQ ELTPNSGTLGSLSGKKKKRMMYLTTKNAEFDRHELLIYEEVARMPPFRRKTLVLIGAQG
lgky- CEEEEECTTT

.

45 SEQ VGRRLSKNKLIMWDPMTRYGTTVPYTSRRPKDSEREGQQGYSFVSRGEMEADVRAGRYLEHG
lgky- TCHHHHHHHHHHHHTTTEEECCEEECCCCTTTTTTTTEECCHHHHHHHHCCEEEEEE

.

50 SEQ EYEGNLYGTRIDSIRGVVAAGKVCVLDVNPQAGEGATNGRVCPLRGVHRGPRLRDPAGHE
lgky- EETTEEEEEEEHHHHHHHHHHCCEEEEEECHH

.

55

Prosite for DKFZphammy2_12d7.1

PS00856

385->403 GUANYLATE_KINASE_1

PDOC00670

Pfam for DKFZphamy2_12d7.1

5 HMM_NAME Src homology domain 3
 HMM
 *pyVIALYDYqAqd.....pDELSFKEGDIIIIIEdsDD.WWrgRnnn
 10 +V+ +DY++ + + L F GD ++I++++D+ WW +
 Query 228
 VFVKCHFDYDPARDSLIPCKEAGLRFNAGDLLQIVNQDDANWWQACHVE 276
 HMM TNGQEGWIPSNYVEPi*
 15 ++ G+IPS +E+
 Query 277 GG-SAGLIPSQLLEEK 291

20 Pedant information for DKFZphamv2_12d7, frame 2

Report for DKFZphamv2_12d7.2

Prosite for DKFZphamy2_12d7.2

PS000029 141->163 LEUCINE ZIPPER PROCD00029

(No Pfam data available for DKFZphamv2_12d7_2)

DKFZphamy2_12g7

5 group: amygdala derived

DKFZphamy2_12g7 encodes a novel 254 amino acid protein without similarity to known proteins.

10 No informative BLAST results; No predictive prosite, pfam or SCOP motif.

The new protein can find application in studying the expression profile of amygdala-specific genes.

15

putative protein

Sequenced by EMBL

20

Locus: unknown

Insert length: 1257 bp

No poly A stretch found, no polyadenylation signal found

25

1 CTCCAAGACT TCCTTGCTGT GAGGGCTCGTG TGGACCCAG AGCATGCACA
 51 GGCTGTTTAC TCCACAGAGT GGCTTGAGA ATCAGATGAG ACTGTGCTGG
 101 CGAAGGCCCT GTGGGAATGA GGAACGCTGT AGTGTGTTGCT GGTCCCTGTT
 151 TCTGCCCTCA GGAAAGCAGC TGTGTGAGGA GGAGCGCCGG GCCATGCAGG
 201 CTGCCCTGGA CTCCGTCGTC TGCCACACGC CCCTCAACAA CCTTGGCTTT
 251 TCCCAGGAAGG GCAGCGCGCT CACCTTCAGT GTGGCCTTCC AGGCTCTGAG
 301 GACGGGGCTC TTGAGCTAA GCCAGCACAT GAAACTGAAG CTGAGTTCA
 351 CCGCCAGCGT GTCCCCACCT CCACCCGAGG CCCGGCCCCCT CTCCCGCAAG
 401 AGCAGCCCCA GAAGCCCTGC TGTCGGGAC TTGGTGGAGA GGCATCAGGC
 451 TAGCCTGGGC CGCTCCCAAGT CCTTCTCCCA CCAGCAGCCT TCCCAGGCC
 501 ACCTCATGAG GTCGGGCAAGT GTGATGGAGC GCAGAGCATT ACGCCCTG
 551 TGGCCTCTCC TGTTGGCCGC CCCCTCTACC TGCCCCCGGA CAAGGCTGTG
 601 TTGTCTCTGG ACAAGATTGC CAAGCGCGAG TGCAAGGTCC TGGTGGTGG
 651 ACCCGTCAAG TAGCACCGTG CCAGCTCTGT TCCCTCTTAC ACTCCAGAGA
 701 CCCAACGCC CCAGAGGGTA TCCTTGCTCC CGGGCTGTGC CTCCCTGGG
 751 ATGCCTCCCA GACGGGGGTG AAGAGGCCCTG GCAGAGCTGC CTGTCTGTG
 801 TCTGCTGATG AGGGATGGGG GAAGAAGCTG TGAAGTGGGC GGGCATGGCT
 851 GGGACTAAGC CACCAAGTATT CCCCGACGTT CCTGTGGGGG GGGCTGGCCC
 901 ACCCCTAGGC CAGGGCAAGG GTTCCCAGAG CTCCCTTGTC CCCGGCCCTT
 951 TACCCCTGGTT CTGAGTTTAC AAAGTCTCTT CCTCATTCCC GTTGAGTTCT
 1001 TTCCCCACCTC TGACATTCCC TCCCTCCCTC CGCAGGCTG AGATTAGAGG
 1051 GTGGGTGATGG CTAAGGGCCC CTGACAGTGA CCTTCCCTGTC TCAGGGGTTG
 1101 GGGACAGGGC CAGGTAGCCT CCTGCCCCCTT ATGTTTACGT TTGCAAGCCTG
 1151 AAGCACTTTA ATTTTTTTT TTTTGGTCT GTCCCTGTAA CTAATTTC
 1201 AACTATTGCT TCCAACGTAA ATAAGACTAT TAAATGCCTG TTCAGAGGG
 1251 AAAAAAA

55

BLAST Results

No BLAST result

Medline entries

5

No Medline entry

10

Peptide information for frame 2

ORF from 44 bp to 805 bpi peptide length: 254

Category: putative protein

15 Classification: no clue

1 MHRLFTPQSG FENQMRLCWR RPCGNEERCS VCWSLFLPPG KQLCEEERRA
51 MQAALDSVVC HTPLNNLGFS RKGSALTFSV AFQALRTGLF ELSQHMKLKL
101 QFTASVSHPP PEARPLSRKS SPRSPAVRDL VERHQASLGR SQSFSHQQPS
151 RSHLMRSGSV MERRASRPLW PLLLAAPSTC PRTRLCCWT RLPSASARSW
201 WWWPSSSTVP ALFPLTLQRP NAPRGYPCSR AVPPLGCLPD GGEEAWQSCL
251 SCYC

25

BLASTP hits

No BLASTP hits available

30 Alert BLASTP hits for DKFZphamy2_1297, frame 2

No Alert BLASTP hits found

Pedant information for DKFZphamy2_12g?, frame 2

Report for DKFZphamy2_12g7.2

40 [LENGTH] 254
[MW] 28479.91
[pI] 10.00
[BLOCKS] BL01013C Oxysterol-binding protein family proteins
[KW] Alpha_Beta
45 [KW] LOW_COMPLEXITY 4.72 %

SEQ PRTRLCCLWTRLPSASARSWWNPSSSTVPLTLQRPNAPRGYPCSRAVPPLGCLPD
SEG
PRD cc

5

SEQ GGEEAWQSCLSCVC
SEG
PRD cchhhhhhhhhccc

10

(No Prosite data available for DKFZphamy2_12g7.2)

(No Pfam data available for DKFZphamy2_12g7.2)

DKFZphamy2_12i1

5 group: amygdala derived

DKFZphamy2_12i1 encodes a novel 283 amino acid protein with weak similarity to F41E6.3 of *Caenorhabditis elegans*.

10 No informative BLAST results; No predictive prosite, pfam or SCOP motif.

The new protein can find application in studying the expression profile of amygdala-specific genes.

15

putative protein

Sequenced by EMBL

20

Locus: /map="3"

Insert length: 2528 bp

Poly A stretch at pos. 2515, polyadenylation signal at pos. 2491

25

```

1 ATATAAGTTGG ATCAAACAAA ACAAACACAA TTTGTCCCAG TAATTATCAA
51 ACAGCACACAGC TACTTGCTT AATTTTAGAG TTACTCACAT TTTGTGTGGA
101 ACATCACACA TATCACATAA AAAACTATAT TATGAACAAG GACTTGCTAA
151 GAAGAGTCCTT GGTCTTGATG AATTCAAAGC ACACCTTTCTT GGCCTTGTGT
201 GCCCTTCGCT TTATGAGGCG GATAATTGGA CTTAAAGATG AATTTTATAA
251 TCGTTACATC ACCAAGGGAA ATCTTTTGA GCCAGTTATA AATGCACTTC
301 TGGATAATGG AACTCGGTAT AATCTGTTGA ATTCAAGCTGT TATTGAGTTG
351 TTTGAATTAA TAAGAGTGGAG AGATATCAAG TCTCTTACTG CCCATATAGT
401 TGAAAACCTT TATAAAGCAC TTGAATCGAT TGAATATGTT CAGACATTCA
451 AAGGATTGAA GACTAAATAT GAGCAAGAAA AAGACAGACA AAATCAGAAA
501 CTGAACAGTG TACCATCTAT ATTGCGTAGT AACAGATTTC GCAGAGATGC
551 AAAAGCCTTG GAAGAGGAGATG AAGAAATGTG GTTTAATGAA GATGAAGAAG
601 AGGAAGGAAA AGCAGTTGTG GCACCACTGG AAAAACCTAA GCCAGAAGAT
651 GATTTTCCAG ATAATTATGA AAAGTTTATG GAGACTAAAA AAGCAAAAGA
701 AAGTGAAGAC AAGGAAAACC TTCCCAAAAG GACATCTCCT GGTGGCTTCA
751 AATTTCACCTT CTCCCCACTCT GCCAGTGCTG CTAATGGAAC AAACAGTAAA
801 TCTGTAGTGG CTCAGATAACC ACCAGCAACT TCTAATGGAT CCTCTTCCAA
851 AACCCACAAAC TTGCCCTACGT CAGTAACAGC CACCAAGGGAG TTTGGTTG
901 GCTTAGTGGAA TTATCCAGAT GATGAAGAGG AAGATGAAGA AGAAGAATCG
951 TCCCCCAGGA AAAGACCTCG TCTTGGCTCA TAAAATATTT ATTAGGGGAC
1001 CCTCAACATG TGGTCTTACA ATGCTGCAAC TGTTCACTG GCTGAAAATC
1051 TGAATCAGAA AGCTTTCTCA ATTGAACCTTA TAAAATATAC AAGGAGTAGC
1101 AAAAGACAGT ATATCAGCTA AGAGAGTTA GTTCTAATAA AAATCAGGCT
1151 TCCCAGGAAC TTGATTGCTT GCTAGTAATT AAGGGGTTTG CCTTTAGGC
1201 TGTCAAAACA AACATTAGTA ACCAGAACCT GGGAGATAGC TTCTCAGCAA
1251 GGAAAAGTCA CAGGTTTGGG GACGGTTTAG GGGAGGGGAA AAGGTTGATA
1301 TAATAATGCA GGGTTGCTCC TCAGGGGTGTC GATCTAGAAA CAATTTACA
1351 GAACTTCAGT TGTAAACTCA ATAACATTAC TTGTATAATG GTGCTGGCCA
1401 TGTGTTGTT TTAATCAGTT GCCTCTTTT AAAAGAAATT TTTATGGAAA
1451 ACACATTCAA CTATCATTAA AAAAATGAAG TTAAGCTGTT GGGACCATTT
1501 CTTTAAGATT TAACAAAAGT TCAGCCTTTT AGGTAGTTGA AGGGAAGTAC
1551 ACCCGTATT CAGCACATGT TGAGTTTCT ACACCCAGGAA TTTTCAATAT

```

1601 GTATATTGAT GAAAACAAGC TCAATTCAA 1 CTGGACAGTT TTAAGATAA
 1651 GTTAAAATCA GCACTTTAG AGACAAACGAA GGCCAAGAAT CAGTACAGTA
 1701 GTATTCCAAA ATGATTTCT CTAGAAATT GAAAGTAGAT CGAACAGAAT
 1751 GTTGTCAACC GCCTACCAAGT ACAATCTTT GTGGAAGATA CTTTGAAATC
 5 1801 ACTTTCTACT TTGTTAGTAA AGTTCTGTCT TTCCAGAGCT GCAAGTTTA
 1851 AAGTGTACT TATACAGACC AACCAAGAAT AGTGTGAAT TAAGTGGCAT
 1901 TTAGTATCTA GAAGCCATT TGATCCAAGA AGCTACTTAA GTGTCAAAGT
 1951 CAGCATGCAG CACATGTAGC TTTCTGTAA ACAAGGGTGT GATATGAAAG
 2001 CTGCTTTTT AAGAAGAGTA AAAGCACATT CCATATACGT AAGTGAATT
 10 2051 TAAAAATAAA TTGAGGCCAA CAGTTAAGTT TTATTTTAG AGCAACAAGT
 2101 TAACTGTAAA TATTTTAATG TTAGTTTGCT CATCTATGAT CTGAGATCAT
 2151 GCCGAAGTGA GAAAAATCTC CCCAAAATAC AATTAAATGC ATTGGAAAAA
 2201 AAAAACCTTA ACAGTAATT CAGCCACAAT CTTTAGATCA CCCTTGTAAAT
 2251 GTGTTACGGG TCCATTTTC CTGGAATCGT TTAATCTAAA GCAGTTCCC
 15 2301 CTGTTTTGGA GATTTTGTAG TTAATTTAA TTTGGCTAT TGTTGGAAA
 2351 AGATGAGCTG TCTGTGTAGA TATGAAGTAT AGTTTTTCC ATAAAACAGA
 2401 TGTTTATTTT GTATTAAGAA ATACCACTGT ACTTGTTTA CACCATTGT
 2451 ATACATGTGG TGATATTAAT GCTAAACTGT AAAATTCAAGG AATTAAAATG
 2501 TGACCCCTGTA ATTCCAAAAA AAAAAAAA

20

BLAST Results

25 Entry AF01b448_8 from database TREMBL:
 gene: "F41E6.3"; *Caenorhabditis elegans* cosmid F41E6.
 Score = 390, P = 5.0e-32, identities = 73/184, positives =
 118/184,
 frame +3

30 Entry HS211256 from database EMBL:
 human STS SHGC-15844.
 Score = 977, P = 5.5e-38, identities = 199/202

35

Medline entries

40 No Medline entry

Peptide information for frame 3

45

ORF from 132 bp to 980 bp; peptide length: 283
 Category: putative protein
 Classification: no clue

50

1 MNKDLLRRVL VLMNSKHTFL ALCALRFMRR IIIGLKDEFYN RYITKGNLFE
 51 PVINALLDNG TRYNLLNSAV IELFEFIRVE DIKSLTAHIV ENFYKALESI
 101 EYVQTFKGLK TKYEQEKRDRQ NQKLNSVPSI LRSNRFRDA KALEEDEEMW
 151 FNEDEEEEGK AVVAPVEKPK PEDDFPDNYE KFMETKKAKE SEDKENLPKR
 55 201 TSPGGFKFTF SHSASAANGT NSKSVVVAQIP PATSNGSSSK TTNLPTSVTA
 251 TKGSLVGLVD YPDDEEEDEE EESSPRKRPRR LGS

BLASTP hits

No BLASTP hits available

5

Alert BLASTP hits for DKFZphamy2_12i1, frame 3

No Alert BLASTP hits found

10 Pedant information for DKFZphamy2_12i1, frame 3

Report for DKFZphamy2_12i1.3

15

[LENGTH] 326
 [MW] 37261.10
 [pI] 5.60
 [HOMOL] TREMBL:AF016448_8 gene: "F41E6.3"; *Caenorhabditis elegans* cosmid F41E6. 1e-36
 [FUNCAT] 01-05-04 regulation of carbohydrate utilization [S. cerevisiae, YNL201c] 2e-08
 [BLOCKS] BL00357 Histone H2B proteins
 [BLOCKS] BP02232B
 25 [BLOCKS] PRO1073C
 [BLOCKS] BP03050C
 [BLOCKS] BP03580F
 [BLOCKS] PRO0893F
 [KW] All_Alpha
 30 [KW] LOW_COMPLEXITY 10.43 %

SEQ IVGSNKNNTICPDNYQTAQLLALILELLTFCVEHHHTYHIKNYIMNKDLLRRVLVLMNSKH
 SEGxxxxxx.....
 35 PRD cccccccccccchhhhhhhhhhhhhhhhhccchhhhhhhhhhhhhhhccch

 SEQ TFLALCALRFMRRRIIGLKDEFYNRYITKGNLFEPVINALLDNGLTRYNLLNSAVIELFEFI
 SEG
 PRD hhhhhhhhhhhhhhhccchhhhhccchhhhhccchhhhhccchhhhhccchhhhhccch

 40 SEQ RVEDIKSLTAHIVENFYKALESIEYVQTFKGLKTKEYQEKDQRQNQKLNSVPSILRSNRFR
 SEG
 PRD hheeehhhhhhhhhhhhccchhhccchhhccchhhccchhhccchhhccchhhccch

 45 SEQ RDAKALEEDEEMWFNEDEEEEGKAVVAPVEKPKPEDDFPDNYEKFMETKKAKESEDKENL
 SEGxxxxxx.....
 PRD hhhhhhhhhhhhhccchhhccchhhccchhhccchhhccchhhccchhhccchhhccch

 50 SEQ PKRTSPGGFKFTFSHSASAANGTNSKSVVAQIPPATSGSSSKTTNLPTSVTAKGSLVG
 SEG
 PRD ccccccccccccccceeeeecc

 55 SEQ LVDYPDDEEEDEEEESSPRKRPRRLGS
 SEGxxxxxx.....
 PRD eeeeeccccchhhcc

(No Prosite data available for DKFZphamy2_12i1.3)

(No Pfam data available for DKFZphamy2_12i1.3)

DKFZphamy2_13g19

5 group: amygdala derived

DKFZphamy2_13g19 encodes a novel 281 amino acid protein without similarity to known proteins.

10 The novel protein contains a PROSITE ASP_PROTEASE motif and seem to be expressed Ubiquitously.
No informative BLAST results; No predictive prosite, pfam or SCOP motifs.

15 The new protein can find application in studying the expression profile of amygdala-specific genes.

20 unknown protein

perhaps complete cds.
Pedant: SIGNAL_PEPTIDE

25 Sequenced by EMBL

Locus: /chromosome="12p13.3"

30 Insert length: 2754 bp
Poly A stretch at pos. 2743, polyadenylation signal at pos. 2724

1	GCAATCTCGG	GAAATTGGAG	ACTGACGCGG	CTGCTCCCTGC	ATGTTATT
51	TTTTTCCCTCT	TTCCCTCCCC	TGGAGACCCT	CCTGTTGGAA	AGAGAGCTGC
101	AGCACGGGAC	AGAGACAGGC	AGGAAGAACG	AGAGAGGACT	CGGTGACGCC
151	CCCACCGAGC	AGCCCCCTGGC	CCACTCCTCC	AGCAGGGGCC	ATGAGCACCA
201	AGCAGGAGGC	CAGGAGAGAT	GAGGGAGAAG	CCAGGACGAG	GGGGCAGGAG
251	GCACAGCTTC	GAGACCGAGC	CCACCTGAGC	CAGCAGCGCC	GGCTCAAACA
301	GGCCACCCAG	TTCTTGACAA	AGGACTCGGC	CGACCTGCTC	CCGCTGGACA
351	GCCTCAAGAG	GCTCGGCACC	TCCAAGGACT	TGCAGCCGCG	CAGTGTGATC
401	CAAAGACGCC	TGGTGGAGGG	AAACCCGAAT	TGGCTTCAGG	GGGAGCTCC
451	CCGGATGCAG	GACCTGATTG	ATGGCCAGGA	GAGCAGGAGG	AAGACCAGCA
501	GGACAGAGAT	TCCAGCTCTT	CTGGTCACT	GCAAGTGCCA	GGACCAAGCTG
551	CTTAGAGTGG	CCGTTGACAC	AGGCACCCAA	TACAATCGGA	TCTCTGCTGG
601	ATGTCTCAGC	CGGCTGGGGT	TAGAGAAAAG	GGTCCTAAAA	GCCTCAGCTG
651	GGGACCTGGC	CCCTGGGGCC	CCAACCCAGG	TGGAGCAGTT	GGAGCTACAG
701	CTGGGGCAGG	AGACTGTGGT	GTGCTCGGC	CAGGTGGTGG	ATECTGAGAG
751	TCCTGAATT	TGCTGGGGCC	TGCAGACTCT	GCTTCTCTC	AAGTGTGCA
801	TCGACCTGGA	GCACGGAGTG	CTGCGGCTGA	AAGCCCCGTT	CTCAGAGCTA
851	CCCTTCCCTG	CTTGTAACCA	AGAGCCTGGC	CAGTGA	TGTCTCAGTC
901	AGTCCCCAGA	GGGAAAGACC	TTGCCTTAGA	AGAAGAGGCG	TGTGGGAAC
951	GGGGGCTCTT	GAAGCCAGGT	AGCTGGGGAC	TATGGTGTCT	GCCCTTCCAA
1001	TCACCTCCCT	GACCCCTGCT	GTCCCATT	CCCCAGCTGG	CCGCATTCCCT
1051	CTCTGCTTCT	CAGCAGCTGT	CCTACTCCCC	AGGACGAGTT	TTCACTAGAG
1101	GGCCCCACGAT	GCCAGGATT	TGATTCATCT	TCCTCCCAAG	AAAAGCAAAG
1151	CCAAATCAAG	ACCACAGATA	GGAACCTAAG	CACAATGGGG	TGCCTGCTTG
1201	GGCTGGGTG	AAGGCTCTGC	TGACTGCTGT	CCTTGCCAT	CACCCAAATAC
1251	CACCCCAAAC	ACAACTCAAC	TTCCCACACC	ACCATGTCTC	TCACCCACACC

1301 TTCTGGGCCT CATTATCTCC CACAACTAGA CCGCCATGCC TCACCAACCT
 1351 ATGTCCCCTGG ACCTCCTGGT GTCTGCCTCT CGGAGTCTGT GCACATCTGC
 1401 TCACAGTTGA GTGGGGGAAG AAACAGCCAG AATTCAATAAC AACAAAGAGC
 1451 GGGAGTTAGT ATAGGAATGT CCATCTCATA AGGCTGAGAG CTATTTTTC
 5 1501 CTGTGGCTGC AAATGTCTGA AGCCAGTTAG TTTGATTACC CTGTGCAAAA
 1551 CCTTGGACAT ACTTCTGCTA TTAACGCTAT AGGTATTAT CCGTTTCCAC
 1601 TGGCTTTTG TACCCACCGA GCCCTGAGC CTTGCGTGTG TGTGTGTGGA
 1651 AGAGCCTTGT AGAGAACCTGC TCCTGTGAGG CAGACAGGAC AGTGAGGTTG
 1701 TCACCACTCA GACTTCACCT ATTCAAGCATT CTTCTGATT TCTAGAACTA
 10 1751 TCCACCTCAT TAGGCCTTCT TCCTATCCCC ATCTCTGCC TCTTGAGCTT
 1801 AAGCTTGTAT TGCTCTGGAA TCAGTGGCTT TCTAACCCCC TGCCAGGCTT
 1851 TGCCAAAGCA AAAAGACAGA GGCTTTTTT TTTTTTTAA AGTTTGGGGT
 1901 CTGTCAGGAG ACAGAGGCTT TTTGAATTG ACTGTGAAGA GAAGAACCCG
 1951 AACCTTAAGA CGCCAGATCC CTGAGAGTCT TTCTGGCTGG TTTGAGTCTC
 15 2001 TCAAATCATG GATTAGGAGT AAAGAAAGAG GCAGGGCGAA TGGCTCATGC
 2051 CTGTAATCCC AGCACTTGG GAGGCTGAGG TGGGTGGATC ACTTGAGGTC
 2101 AGGAGTTGA GACCAGCCTG GGTAAATATGG CAAACCCCCA TCTCTACTAA
 2151 AAAATACAAA AATTAGCCAG GTATGGTGGT GAACACCTGT AATCCCAGCT
 2201 ACTTGGAAAGG CTGAGGCATA GGAGTGGCTT GAACCTGGGA GATGGGGGTT
 20 2251 GTAGTGAGCC AGTTCTGTGC CATGGACTC CAGCTGGGT GAAGGAGTGA
 2301 GACCCCTGTCT CCAAAAACAA ACAAAAAAGG AGCAGAGAAA GACAGTGGTA
 2351 CAGCTAACCT GAACAAGGGA ACTGGGACCG TTGGGTGAA ACAGTCTTGA
 2401 GCCTGGGGTT GACTGGGTTA GAGAAGAAC GGGATGCAAG GAGCTGCCTG
 2451 TGACACCTGG CCTGCCCTT CTCAGCTGCC TCCCCCTGCC TTTCTCAGCT
 25 2501 GCCTCCCCCTG CCCTCAGAAG GAAAGGAGAG GGCTCACTTA TCACTTGTGC
 2551 CATAGCACCT GGTCTCAAAA TCCTAAAAGC TTTCCCTCGCC CTCACTGCCT
 2601 TGCTCCACAA GGTCCACTTT CCTGGGTCTT GTGCTGTGCC TTTCCTTGTG
 2651 TGCCCTCTGC TGCTTCTGTA ACTGCAGACC CCAGGCCAA TTGCAAGCCC
 2701 TCGGCTCAGC TGCTTCTCCA TTGGAATAAA CTCTTGTGTT TCTAAAAAAA
 30 2751 AAAA

BLAST Results

35 -----
 No BLAST result

Medline entries

40 -----
 No Medline entry

Peptide information for frame 2

45 ORF from 41 bp to 883 bp; peptide length: 281
 50 Category: putative protein
 Classification: no clue
 Prosite motifs: ASP_PROTEASE (173-184)

55 1 MLFIFPLSLP WRPSCWKESC STGQRQAGRS REDSVTPPPS SPWPTPPAGA
 51 MSTKQEARRD EGEARTRGQE AQLRDRAHLS QQRRRLKQATQ FLHKDSADLL
 101 PLDSLKRLGT SKDLQPRSVI QRRLVEGNPN WLQGEPPRMQ DLIHGQESRR
 151 KTSRTEIPAL LVNCKCQDQL LRVAVDTGTQ YNRISAGCLS RLGLEKRVLK

201 ASAGDLAPGP PTQVEQLELQ LGQETVVCSA QVVDAESPEF CLGLQTLLSL
 251 KCCIDLEHGV LRLKAPFSEL PFLPLYQEPG Q

5

BLASTP hits

No BLASTP hits available

10 Alert BLASTP hits for DKFZphamy2_13g19, frame 2

PIR:S50646 hypothetical protein YER143w - yeast (*Saccharomyces cerevisiae*), N = 1, Score = 90, P = 0.26

15 TREMBL:RND060_1 product: "DNA (cytosine-5)-methyltransferase";
Rattus norvegicus mRNA for DNA (cytosine-5) -methyltransferase, partial
 cds., N = 1, Score = 81, P = 0.89

20

>PIR:S50646 hypothetical protein YER143w - yeast (*Saccharomyces cerevisiae*)

Length = 428

25

HSPs:

Score = 90 (13.5 bits), Expect = 3.0e-01, P = 2.6e-01
 Identities = 28/112 (25%), Positives = 48/112 (42%)

30

Query: 155 TEIPALLVNCKCQDQLLRVAVDTGTQYNRISAGCLSRLGLEKRVLKASAGD--LAPGPP 211
 T++P L +N + + ++ VDTG Q +S + GL + + K G+

+ G

35

Sbjct: 199 TQVPMLYINIEINNYPVKAFVDTGAQTTIMSTRLAGKTGLSRMIDKRFIGEARGVGTGKI 258

Query: 212 XXXXXXXXXXXXXXXX-CSA&VVDAESPEFCLGLQTLLSLKCCIDLEHGVRL 263

CS V+D + + +GL L C+DL+

40

VLR+

Sbjct: 259 IGRIHQAAQVKIETQYIPCSFTVLTDI-DVLIGLDMLKRHLACVDLKENVLRI 310

45

Pedant information for DKFZphamy2_13g19, frame 2

50

[LENGTH] 281
 [MW] 31330.97
 [pI] 8.75
 55 [BLOCKS] PRO0049D
 [BLOCKS] BP01921G
 [PROSITE] ASP_PROTEASE 1
 [KW] All_Alpha

[KWD] SIGNAL_PEPTIDE 17
[KWD] LOW_COMPLEXITY 9.96 %

Prosite for DKFZphamy2_13g19.2

PS000141 173->185 ASP_PROTEASE PDOC00128

(No Pfam data available for DKFZphamy2_13g19.2)

DKFZphamy2_14b5

5 group: intracellular transport and trafficking

DKFZphamy2_14b5 encodes a novel 771 amino acid protein which shows 61% identity to the human TYL protein and 48% identity to the human Tic protein.

10 Both proteins show similarity to Sec7 of *Saccharomyces cerevisiae*, which takes function in vesicular trafficking. The new protein shows also significant similarity to human ARNO3, which is involved in the control of Golgi structure and function.

15 DKFZphamy2_14b5 is predominantly expressed in the cns and germ cells.

The new protein can find application in diagnosis/therapy of diseases related to vesicular trafficking e.g. in synapses of the 20 central nervous system and in studying expression profiles.

similarity to TYL protein (*Homo sapiens*)

25 Sequenced by EMBL

Locus: /map="445.7 cR from top of Chr5 linkage group"

30 Insert length: 4528 bp
Poly A stretch at pos. 4511, polyadenylation signal at pos. 4489

1	CTCGCTCAGC	CTCTCCACAT	CGCGGCTCCG	GCACCTGAAG	GGACGCGGGC
51	GGGCGCGGGC	AGCTCCGACC	GGCGGCGGCG	GGGCGGGACA	GGCAGCCCGG
101	CGGCCCTCCG	TGGCCCCGCC	GTGAGAGGCC	GGACCCCGCG	CGGGGACCAAG
151	CAGCGGTCT	AGGAGTCCC	AGGAGCAGCC	AGGACAGGCG	GAAGCAGTGG
201	CTGCCATGG	AGGACAAG	CTCTTATCTG	CAGTGCCTGA	GGAAAGGCGAT
251	GCCACCCCGT	CCCCGGTCC	AGAGCCTGAA	GAGGAGCCAG	GGGTCCGGAA
301	TGGGATGG	TGAGGGGCC	TGAAACAGCAG	CCTCTGCAGC	CCAGGGCACG
351	AGCGAAGGG	ACCCCCAGCG	GACACTGAGG	AACCCACGAA	GGACCCAGAT
401	GTGGCCTTCC	GGCCCTCA	CCTTGGCCTC	TCTCTCACCA	ATGGCCTAGC
451	CCTGGGGCCA	ACTTGAAACA	TTCTGGAAGA	TTCAGCGGAG	TCCAGGCCCT
501	GGAGGGCTGG	CGTGCTGGCA	GAGGGGGACA	ATGCTCCAG	GAGCCTCTAC
551	CCAGATGCTG	AGGACCCCTCA	GCTGGGTTG	GATGGTCCCAG	GGGAGCCAGA
601	TGTGCGGGAT	GGCTTCAGCG	CCACGTTGA	GAAGATTCTG	GAGTCAGAGC
651	TGCTGCGGG	CACCCAGTAC	AGCAGCCTCG	ACTCCCTAGA	CGGGCTGAGC
701	CTCACGGATG	AGAGCGACAG	CTGCGTCAGC	TTCGAGGCC	CCCTCACACC
751	CCTCATCCAG	CAGCGGGCCC	GTGACAGCCC	TGAGCCAGGG	GCTGGGTTGG
801	GCATTGGGGA	CATGGCGTT	GAGGGGGACA	TGGGGGCAGC	TGGTGGTGAT
851	GGGGAGCTGG	GCAGCCCCCT	CGGGCGCTCC	ATCTCCAGCA	GCCGCTCTGA
901	GAATGTCCTG	AGCCGCCCTGT	CTCTCATGGC	CATGCCCAAT	GGATTCCATG
951	AAGATGGCCC	TCAGGGCCCA	GGGGGGGATG	AGGATGATGA	TGAGGAGGAC
1001	ACGGACAAGT	TGCTGAACTC	AGCCAGTGA	CCCAGCCTGA	AGGATGGCCT
1051	GTCAGACTCA	GAATCTGAGC	TCAGCAGCTC	GGAGGGGTTG	GAGCCTGGTA
1101	GTGCAGACCC	TCTGGCCAAC	GGGTGCCAGG	GGGTCACTGA	AGCTGCTCAT
1151	CGGCTGGCAC	GCCGTCTCTA	CCACCTCGAG	GGCTTCCAGC	GCTGTGATGT
1201	GGCCCGGGCAG	CTGGGCAAGA	ACAAAGAGTT	TAGCAGGCTG	GTGGCCGGGG

1251	AGTACCTCAG	TTTCTTCGAC	TTCTCGGGCT	TGACTCTGGA	CGGAGCACTC	
1301	AGAACATTCT	TGAAGGCCCT	CCCGCTGATG	GGGGAGACAC	AAGAGCGTGA	
1351	GCGGGTCTC	ACACACTTCT	CCCGCCGGTA	CTGCCAGTGC	AACCCTGATG	
1401	ACAGCACTTC	GGAAGATGGG	ATCCACACGC	TCACCTGTGC	CCTGATGCTG	
5	1451	CTCAACACGG	ACCTGCACGG	CCACAACATT	GGCAAAAAGA	TGTCCCTGTCA
1501	GCAATTCTT	GCCAACTTGG	ACCAGCTGAA	TGATGGCCAA	GACTTTGCCA	
1551	AAGACCTGCT	GAAGACCCCT	TACAACTCCA	TCAAGAATGA	AAAGCTGGAA	
1601	TGGGCCATTG	ATGAGGATGA	GCTGAGGAAA	TCCCTGTCTG	AGCTGGTGGG	
1651	TGACAAGTTC	GGGACAGGGCA	CGAAGAAGGT	GACGCGAAC	CTGGATGGTG	
10	1701	GCAACCCCTT	CCTGGATGTC	CCACAGGCGC	TCAGTGCCAC	CACCTACAAG
1751	CAAGGCCTCC	TGACCCGGAA	GACTCACGCT	GACATGGATG	GCAAGAGGAC	
1801	GCCCCGTGGG	AGGCGTGGCT	GGAGGAAATT	CTACGCGAGT	CTCAAAGGGA	
1851	CCATCCTGTA	CCTGCAGAAC	GATGAGTACA	GGCCTGACAA	AGCTCTATCG	
1901	GAGGGTGACC	TGAAGAACGC	CATTGCGTGT	CATCACGCTC	TGGCCACCAG	
15	1951	GGCCTCTGAC	TACAGCAAGA	AGTCAACG	GCTGAAGCTT	AAGACAGCCG
2001	ACTGGAGGGT	ATTCCCTCTTC	CAGGCACCGA	GCAAGGAAGA	AATGCTGTCC	
2051	TGGATCCTCA	GGATCACAC	GGTGGCAGCC	ATCTTCTCTG	CCCCGGCCCTT	
2101	CCCAGCCGCT	GTCAGCTCCA	TGAAGAAGTT	CTGTCGGCCC	CTGCTGCCCT	
2151	CCTGCACCAAC	CCGCCTCTGC	CAGGAGGAGC	AACTGCGGTC	TCATGAGAAT	
20	2201	AAGTTGAGGC	AGCTGACTGC	GGAGCTGGCC	GAACACAGGT	GTCACCCAGT
2251	CGAGAGGGGC	ATCAAGTCCA	AGGAGGCCGA	GGAGTACCGG	TTGAAGGAGC	
2301	ACTATCTCAC	CTTCGAGAAA	AGCCGTTATG	AGACCTATAT	CCACCTCCTG	
2351	GCTATGAAAAA	TCAAAGTGGG	CTCAGATGAT	CTGGAGCGGA	TTGAGGCCCC	
2401	GCTGGCCACT	CTGGAAGGGG	ATGACCTTC	TCTCCCGAAG	ACACATTCAA	
25	2451	GCCCTGCCCT	CAGCCAGGGC	CATGTGACTG	GCAGCAAAAC	CACAAAGGAT
2501	GCCACTGGGC	CTGATACTTA	GCTGACATGG	ATTTCGAGAC	CCCAGGGTGG	
2551	GCAGATGTCT	CCAGTGGGGT	CAGTGAGCAC	AATTCCAGCC	AGGGGCCACT	
2601	TGGACCAAGC	TCCAGTCAGT	TGATGGGCAG	CTAGAGGGGT	GCAGAAAGCC	
2651	TGTGGGCCCA	GGAGATGGAG	ATGCCGTTG	TTGGCGTTGAT	CTCCTTGCCT	
30	2701	CCTTGGGCAT	CTCCGGGCAT	CAGACCCCTC	CCCTGGCCCT	TGTTTCCCTC
2751	TCCACCATGG	AGCCTCATTT	TGTAGGCCAG	TTGTGTCAT	GCTCTAGACA	
2801	CCACCTCGCT	GGAGAAGCTG	GAAGGGCTGT	TGTCTTCCCA	GGTCTTCTC	
2851	TTCTCATCAA	GCTCCTCTCC	TCATCTTTT	TGTGTGTGAG	GGCAGGTCTT	
2901	GACTCTAGGT	CTCAGCTGGA	ACCCCCACCC	TTCTCCTCCT	CCTTCCTCTG	
35	2951	AGTTGACCAAG	CAGCAGGTCT	GCCGACCAC	AGCACCATCC	TCTCCTCCCC
3001	GCAGCCTCCA	GAACCATGCC	CAGGTCTCCT	GCCTCACATC	ACAATAATCT	
3051	GGGACCCAGG	CTTGTGCCCT	TTCAGTGTAA	AGCTGACTCC	ATCACATGTG	
3101	CATCCACTTC	TTTCATCCA	TTGAGATCAC	ACTGCCTCCT	TTTTATACAG	
3151	ACACAAATAT	ACATCTATAA	GAATAATATA	TACATAAGGA	ACCCCTGAAA	
40	3201	GATGGTTTG	GAACCTGAAAT	CAGTTAGAGG	ATGAAATCAG	ATAAAGGAAA
3251	AGCCTATTTT	GGAGCTTCCC	CTGTTAGGAA	GGATGGCTGC	ACCTGGCCCC	
3301	CTGGCATTCC	TGACGCTCTA	GGAGGGAAAG	GGGAGGCAGT	GCTGGCCTCC	
3351	CTTGCCTCTG	TTTCCTCTC	TCCAGCTGAC	CTGTGACTTA	TACTGCTCTT	
3401	ACCGATGATA	CTTTGGAAA	AAATAGAGCG	TGTATGCACC	GCCCCGTTTG	
45	3451	TCCCATGGAT	ATCCTGGGGT	GTGAGTCGGA	TGGGACCACG	GCCCTGTTTA
3501	TATTTGGGTC	TTTATGTTGG	TGCTGCCAGG	TCTCTGAGCT	CCAGAGGTGG	
3551	CCTCTTGAC	AGATCTACTG	CTATAGGAAT	AAAAGACACT	CTGTCTCGCA	
3601	AATGGCTGCT	TGTCAACAAAG	CCCAAAGATG	CTTGTGGAG	GACGGTTATG	
3651	GAAGCCCTTA	ATTCTTGGTT	GTGGGAAAAG	GTGGAATGAC	AAGTTATTGA	
50	3701	TTGTTTTCT	GTCGCTATT	CTTCATTG	TCTAGTGAAT	CAGAAAGGCT
3751	TAGCCAAGGC	CACATCTGGG	AAGAGTGGAG	AAATTGCCA	CTTGACGATC	
3801	ACGGATTAGC	TAGCACCTT	AAGCCCTGCA	TTTCTCCAAC	TGACAAGTGG	
3851	GTGGGGGTGA	TGGCACATT	AGTGTGGCTA	TGAAGAGCGA	ATCCTCTCTA	
3901	TTGTTTAAT	AGATTACTGT	AGTTTGGCC	GGAATTGGC	GTCAGTGGTA	
55	3951	ACACACTTAG	TTAATAAAAAAT	AAGCCAGGCT	TGCAACTAAG	TATCTAACTT
4001	TACAGGCCA	CTCACATTG	AGGCAAGGGG	CTATTGAGTA	TGTGGAGAGA	
4051	TGTAGTGATT	TAATTCAAGA	TTATTAAAGT	TGGATCAGCT	GAAGTGTGTT	
4101	TTAGACCCAA	ACCATCTGGC	CCCTTCGTTT	TGCTCAGAGG	AAGTAAATGT	

4151 TCACTTAAAT GAAATTGAAA ACGCCATGTG GCACCCACAAA AGAGCTCTCT
 4201 GTACTTCCC CATGCTGCCT CAAAAGTTCT GTGAGTTTCG GGGTCAGTGT
 4251 CCCACCCCTTC ACTTCCCAGAG GGCGGGTGAG TGGAGAGCAG AGCCAGGAGC
 4301 TCTGGCAGCT GTGGACAGAT GTGCTTCCTG AGCATGGGTT GTGCCTCCCA
 5 4351 TCAGTAAAAAA AATGTTTAGT TCACCTCCTT AATTGTATAA TTATTTATTT
 4401 GTAAATTATA TACATGTACT ACTGTACTAA AATATTATGT ACATTATAAA
 4451 ACATACACAA AAATAGAAAT TTAAGGAGA TGAGATGAAA ATAAATCTAA
 4501 GTCAAAGTTC CAAAAAAA AAAAAAAA

10

BLAST Results

No BLAST result

15

Medline entries

20 98086482:

Perletti L, Talarico D, Trecca D, Ronchetti D, Fracchiolla NS,
 Maiolo AT, Neri A.; Identification of a novel gene, PSD, adjacent
 to
 NFKB2/lyt-10, which contains Sec7 and pleckstrin-homology
 25 domains.
 Genomics 46:251-259(1997)

30

Peptide information for frame 2

35 ORF from 206 bp to 2518 bpi peptide length: 771

Category: similarity to known protein

Classification: Cell signaling/communication

1 MEEDKLLSAV PEEGDATRDP GPEPEEEPGV RNGMASEGLN SSLCSPGHER
 51 RGTPADTEEP TKDPDVAFHG LSLGLSLTNG LALGPDLNL EDSAESRPWR
 101 AGVLAEGDNA SRSLYPDAED PQLGLDPGE PDVRDGFSAT FEKILESELL
 151 RGTQYSSLDS LDGLSLTDES DSCVSFEAPL TPLIQQQRARD SPEPGAGLGI
 201 GDMAFEGDMG AAGGDGEGLS PLRRSISSSSR SENVLSRLSL MAMPNGFHED
 251 GPQGPGGDED DDEEDTDKLL NSASDPSLKD GLSDSDSELS SSEGLEPGSA
 301 DPLANGCQGV SEA AHLARR LYHLEGFQRC DVARQLGKNN EFSRLVAGEY
 351 LSFFDFSGLT LDGALRTFLK AFPLMGETQE RERVLTHFSR RYCQCNPDDS
 401 TSEDGIHTLT CALMLLNLDL HGHNIGKKMS CQQFIANLDQ LNDGQDFAKD
 451 LLKTLYNNSIK NEKLEWAIDE DELRKSLSEL VDDKFGTGTK KVTRILDGGN
 501 PFLDVVPQALS ATTYKHGVLT RKTHADMKGK RTPRGRRGWK KFYAVLKGTI
 551 LYLQKDEYRP DKALSEGDLK NAIRVHHALA TRASDYSKKS NVLKLKTADW
 50 601 RVFLFQAPSK EEMLSWILRI NLVAAIFsap AFPAAVSSMK KFCRPLLPSC
 651 TTRLQEEQL RSHENKLRLQ TAELAEHRCH PVERGIKSKE AEEYRLKEHY
 701 LTFEKSRYET YIHLLAMKIK VGSDDLERIE ARLATLEGDD PSLRKTHSSP
 751 ALSQGHVTGS KTTKDATGPD T

55

BLASTP hits

No BLASTP hits available

Alert BLASTP hits for DKFZphamy2_14b5, frame 2

- 5 PIR:G01205 TYL protein - human, N = 2, Score = 1421, P = 8.6e-150
 TREMBL:AB023159_1 gene: "KIAA0942"; product: "KIAA0942 protein";
 Homo sapiens mRNA for KIAA0942 protein, partial cds., N = 1, Score =
 10 1251, P = 2.3e-127
- TREMBL:UB3127_1 gene: "TIC"; product: "Tic"; Human SEC7 homolog Tic
 15 (TIC) mRNA, complete cds., N = 1, Score = 1050, P = 4.6e-106

>PIR:G01205 TYL protein - human
 Length = 645

20 HSPs:

Score = 1421 (213.2 bits), Expect = 8.6e-150, Sum P(2) = 8.6e-150

25 Identities = 280/452 (61%), Positives = 336/452 (74%)

Query: 301

DPLANGCQGVSEAAHRLARRLYHLEGFQRCDFVARQLGKNEFSRLVAGEYLSFFDFSGLT 360
 30 FF F+G+T
 Sbjct: 166
 DTLNGQKADLEAAQRLAKRLYRLDGFRKADVARHLGKNNDFSKLVAGEYLKFFVFTGMT 225

Query: 361

LDGALRTFLKAFPLMGETQERERVLTHFSRRYCQCNPDDSTSEDGIHTLTCALMLNTDL 420
 35 LD ALR FLK LMGETQERERVL HFS+RY QCNP+ +SEDG
 HTLTCALMLNTDL

Sbjct: 226

LDQALRVFLKELALMGETQERERVLAHFSQRYFQCNPEALSSEDGAHTLTCALMLNTDL 285

Query: 421

HGHNIGKKMScQQFIANLDQLNDGQDFAKDLLKTLYSIKNEKLEWAIDEDELRKSLSEL 480
 HGHNIGK+M+C FI NL+ LNDG DF ++LLK
 LY+SIKNEKL+WAIDE+ELR+SLSEL

45 Sbjct: 286

HGHNIGKRMTCGDFIGNLEGNDGGDFPRELLKALYSSIKNEKLQWAIDEELRRSLSEL 345

Query: 481 VDDKFGTGTKKVTRIL----

DGGNPFLDVPQALSATTYKHGVLTRKTHADMKGKTPRGR 536
 50 D K + RI G +PFLD+ A YKHG L RK HAD D
 ++TPRG+

Sbjct: 346 ADPN----

PKVIKRISGGSGSASPFLDLTPEPGAAYVKGALVRKVADPDCRKTPRGK 401

55 Query: 537

RGWKKFYAVLKGTILYLQKDEYRPDKALSEGDLKNAIRVHHALATRASDYSKKSNVLKLK 596
 RGWK F+ +LKG ILYLQK+EY+P KALSE +LKNAI
 +HHALATRASDYSK+ +V L+

Sbjct: 402
 RGWKSFHGILKGMILYLQKEEYKPGKALSETELNAISIHHALATRASDYSKRPHVFYLR 461

Query: 597

5 TADWRVFLFQAPSKEEMLSWILRINLXXXXXXXXXXXXXXSMKKFCRPLLPSCTRLCQ 656
 TADWRVFLFQAPS E+M SWI RIN+ S KKF

RPLLPs TRL Q

Sbjct: 462

10 TADWRVFLFQAPSLEQMQSITRINVVAAMFSAPPFPAAVSSQKKFSRPLLPAAATRLSQ 521

Query: 657

EEQLRSHENKLRLTAELAEHRCHPVERGIKSKEAEEYRLKEHYLTFEKSRYETYIHLA 716
 EEQ+R+HE KL+ + +EL EHR + + + KEAEE R KE YL FEKSRY

TY LL

15 Sbjct: 522

EEQVRTHAEKLKAMASELREHRAAQLGKKGRGKEAEEQRQKEAYLEFEKSRYSTYAALLR 581

Query: 717 MKIKVGSDDLERIEARLATLEGDDPSLRKTHSSPAL 752

+K+K GS++L+ +EA LA + L +HSSP+L

20 Sbjct: 582 VKLKAGSEELDAVEAALAQAGSTEDGLPPSHSSPSL 617

Score = 63 (9.5 bits), Expect = 8.6e-150, Sum P(2) = 8.6e-150
 Identities = 19/64 (29%), Positives = 23/64 (35%)

25 Query: 132 D VRDGFSATFEKILESELLRGTQYXXXXXXXXXXXXX-
 CVSFEAPLTPLIQQRARD 190

D D FS FE ILES +GT Y +FE P P

+

Sbjct: 18

30 DGPDSFSCVFEAILESHRAKGTSYTSLASLEALASP GPTQSPFFT FELPPQPPAPRPDP 77

Query: 191 SPEP 194

+P P

Sbjct: 78 APAP 81

35

Pedant information for DKFZphamy2_14b5, frame 2

40 Report for DKFZphamy2_14b5.2

[LENGTH] 771

[MW] 84660.55

45 [pI] 5.04

[HOMOL] PIR:GO1205 TYL protein - human 1e-158

[FUNCAT] 30.09 organization of intracellular transport vesicles
 [S. cerevisiae, YDR170c] 5e-22

50 [FUNCAT] 30.08 organization of golgi [S. cerevisiae, YDR170c]
 5e-22

[FUNCAT] 30.03 organization of cytoplasm [S. cerevisiae,
 YDR170c] 5e-22[FUNCAT] 08.07 vesicular transport (golgi network, etc.) [S.
 cerevisiae, YDR170c] 5e-22

55 [FUNCAT] 99 unclassified proteins [S. cerevisiae, YPR095c]
 4e-04

[BLOCKS] BL01277B

[BLOCKS] BP02373F

[BLOCKS] PRO0655C
 [BLOCKS] PRO1088F
 [BLOCKS] PRO0229B
 [BLOCKS] BP02646D
 5 [BLOCKS] PRO0391A
 [BLOCKS] DM01354M
 [BLOCKS] PF01369B
 [BLOCKS] PF01369A
 [SCOP] dbltn_ 2.41.1.1.2 beta-spectrin [mouse (Mus
 10 musculus) brain 1e-39
 [PIRKW] transmembrane protein 1e-20
 [SUPFAM] Caenorhabditis elegans K06H7.4 protein 7e-24
 [SUPFAM] pleckstrin repeat homology 7e-24
 [PFAM] PH (pleckstrin homology) domain
 15 [KW] Irregular
 [KW] 3D
 [KW] LOW_COMPLEXITY 18.42 %

20 SEQ MEEDKLLSAVPEEGDATRDPGPEPEEEPGVRNGMASEGLNSSLCSPGHERRGTPADTEEP
 SEGXXXXXXXXXXXXXX.....
 dbltn-

25 SEQ TKDPDVAFHGLSLGLSLTNGLALGPDLNILEDSEAESRPWRAGVLAEGDNASRSLYPDAED
 SEGXXXXXXXXXXXXXX.....
 dbltn-

30 SEQ PQLGLDGPGEPDVRDGFSATFEKILESELLRGTQYSSLDSDLGLSLTDESDCSVSFAPL
 SEGXXXXXXXXXXXXXX.....
 dbltn-

35 SEQ TPLIQQRARDSPEPGAGLGIGDMAFEGDMGAAGGDGELGSPLRRSISSSRSENVLSRLSL
 SEGXXXXXXXXXXXXXX.....
 dbltn-

40 SEQ MAMPNGFHEDGPQGPGGDEDDEEDTDKLLNSASDPSLKDGLSDSSELSSSEGLEPGSA
 SEGXXXXXXXXXXXXXX.....
 dbltn-

45 SEQ DPLANGCQGVSEAAHRLARRLYHLEGFQRCVARQLGKNNEFSRLVAGEYLSFFDFSGLT
 SEG
 dbltn-

50 SEQ LDGALRTFLKAFLMGETQERERVLTHFSRRYCQCNPDDSTSEDGIHTLTCALMLLNTDL
 SEG
 dbltn-

55 SEQ HGHNIKKMSQQFIANLDQNDGQDFAKDLLKTLYNISKNEKLEWAIDEDELRKSLSLSEL
 SEG
 dbltn-

(No Prosite data available for DKFZphamy2_14b5.2)

30 Pfam for DKFZphamy2_14b5.2

```

HMM_NAME PH (pleckstrin homology) domain

35 HMM
*dvIREGWMyKWgswrkstg.....nWqrRWFvLrndpnrLiYYkddk
          + ++G + +++ + ++           W++ ++VL++ + L++
          KD+
Query      512 TTYKHGVLRKTHADMDGKRTPRGRRGWKKFYAVLKG--
40 TILYLQKDE- 557

HMM
dekPr.....YM1Id1d.cWrMidVEidWmmmdndHCFiIWtrq.rtYYF
          +P+       +++++ + ++D ++ +++ +++T +
45 R+++F
Query      558 -YRPDKALSEGDLKNAIRVHHALTRASDYSKK-
SNVLKLKTADWRVFLF 605

HMM
          QAENeEEMmeWMsaIrRaIw*
          QA+++EEM +W+ I+ + +
50 Query     606 QAPSKEEMLSWILRINLVAA    625

```

DKFZphamy2_14m1b

5 group: transcription factors

DKFZphamy2_14m1b.p1 encodes a novel 252 amino acid protein with similarity to the homeotic protein emx2 of man, mouse and zebra fish as well as to the gene "empty spiracles" of Drosophila melanogaster.

Homoeobox genes are known to play important roles in developmental processes. In zebrafish emx2 mRNAs are found in the dorsal telencephalon, parts of the diencephalon and the otocyst.

15 The human homologue Emx2 appears to be already expressed in 8.5 day embryos. It is also expressed in the presumptive cerebral cortex, olfactory bulbs, in some neuroectodermal areas in embryonic head including olfactory placodes in earlier stages and olfactory epithelia later in development. Mutants of the D. melanogaster gene "empty spiracles" display spiracles devoid of filzkörper, no antenna and an open head.

20 The new protein can find application in modulating the expression of genes controlled by this transcription factor and modulation of neuronal development.

25 strong similarity to homeotic protein emx2 (Homo sapiens).

perhaps differential splicing

30 Sequenced by EMBL

Locus: /chromosome="10"

35 Insert length: 2416 bp

Poly A stretch at pos. 2398, polyadenylation signal at pos. 2373

40	1 GAAAAAAAGA GAAAAAAAT TACCCCAATC CACGCCTGCA
	51 AATTCTCTG GAAGGATTT CCCCCCTCTC TTCAAGGTTGG GCGCGTTTGG
101	TGCAAGATT CCGGGATCCT CGGCTTGCC TCTCCCTCTC CCTCCCCCT
151	CCTTCCTTT TTCCCTTCTT TCCCTCTTC TCTCCCTTTC CTTCCCCCA
201	CCCCCACCCC CACCCCAAAC AAACGAGTCC CCAATTCTCG TCCGTCTCTG
251	CCGCGGGCAG CGGGCGGGGG AGGCAGCGTG CGGGCGGTGCG CAGGAGCTGG
301	GAGCCCAGGG CGCCCGCTCC TCGGCGCAGC ATGTTCCAGC CGGCGCCCAA
351	GCGCTGCTTC ACCATCGAGT CGCTGGTGGC CAAGGACAGT CCCCTGCCCG
401	CCTCGCGCTC CGAGGACCCC ATCCGTCCCG CGGCACTCAG CTACGCTAAC
451	TCCAGCCCCA TAAATCCGTT CCTAACCGGC TTCCACTCGG CGGCCGCCGC
501	CGCCGCCGGT AGGGGCGTCT ACTCCAACCC GGACTTGGTG TTCGCCGAGG
551	GGTCTCGCA CCCGCCAAC CCCGCCGTGC CAGTGCACCC GGTGCCGCCG
601	CCGCACGCC TGGCCGCCCA CCCCCCTACCC TCCTCGCACT CGCCACACCC
651	CCTATTGCGCC TCGCAGCAGC GGGATCCGTC CACCTTCTAC CCCTGGCTCA
701	TCCACCGCTA CCGATATCTG GGTCATCGCT TCCAAGGGAA CGACACTAGC
751	CCCGAGAGTT TCCTTTTGCA CAAAGCGCTG GCCCGAAAGC CCAAGCGGAT
801	CCGAACCGCC TTCTCCCCGT CCCAGCTTCT AAGGCTGGAA CACGCCTTG
851	AGAAGAATCA CTACGTGGTG GGCGCCGAAA GGAAGCAGCT GGCACACAGC
901	CTCAGCCTCA CGGAAACTCA GTAAAGTA TGGTTTCAGA ACCGAAGAAC
951	AAAGTTCAAAGGAGAAGC TGGAGGAAGA AGGCTCAGAT TCGCAACAAA

1001 AGAAAAAAAGG GACGCACCAT ATTAACC CGGT GGAGAATCGC CACCAAGCAG
 1051 GCGAGTCCGG AGGAAATAGA CGTGACCTCA GATGATTAAA AACATAAAC
 1101 TAACCCCACA GAAACGGGACA ACATGGAGCA AAAGAGACAG GGAGAGGTGG
 1151 AGAAGGGAAA AACCCCTACAA AACAAAAACA AACCGCATAAC ACGTTCACCG
 5 1201 AGAAAGGGAG AGGGAAATCGG AGGGAGCAGC GGAATGC CGGC GAAGACTCTG
 1251 GACAGCGAGG GCACAGGGTC CCAAACCGAG GCCGCCAA GATGGCAGAG
 1301 GATGGAGGCT CCTTCATCAA CAAGCGACCC TCGTCTAAAG AGGCAGCTGA
 1351 GTGAGAGACA CAGAGAGAAG GAGAAAGAGG GAGGGAGAGA GAGAAAGAGA
 1401 GAGAAAGAGA GAGAGAGAGA GAGAGAAAGC TGAACGTGCA CTCTGACAAG
 10 1451 GGGAGCTGTC AATCAAACAC CAAACCGGGG AGACAAGATG ATTGGCAGGT
 1501 ATTCGGTTA TCACAGTCA CTTAAAAAAT GATGATGATG ATAAAACCA
 1551 CGACCCAAACC AGGCACAGGA CTTTTTGTT TTTGCAC TTGCTGTGTT
 1601 CCCCCCCCACATC TTAAAAAATA ATTAGTAATA AAAAACAAAA ATTCCATATC
 1651 TAGCCCCATC CCACACCTGT TTCAAATCCT TGAAATGCAT GTAGCAGTTG
 15 1701 TTGGGCGAAT GGTGTTAAA GACCGAAAAT GAATTGTAAT TTTCTTTCC
 1751 TTTTAAAGAC AGGTTCTGTG TGCTTTTAT TTTGATTTT TTTCCAAGA
 1801 AATGTGCACT GTGAAACAC TTTTGATAAC CTTCTGATGT CAAAGTGATT
 1851 GTGCAAGCTA AATGAAGTAG GCTCAGCGAT AGTGGTCCTC TTACAGAGAA
 1901 ACAGGGGAGCA GGACGACGGG GGGGCTGGGG GTGGCGGGGG AGGGTGCCA
 20 1951 CAAAAAGAAT CAGGACTTGT ACTGGGAAAA AAACCCCTAA ATTAATTATA
 2001 TTTCTTGAC ATTCCCTTC CTAACATCCT GAGGCTTAAA ACCCTGATGC
 2051 AAACCTCTCC TTCAGTGGT TGGAGAAATT GGCGGAGTTT AACCATTAC
 2101 TGCAATGCCT ATTCCAAACT TAAATCTAT CTATTGCAAA ACCTGAAGGA
 2151 CTGTAGTTAG CGGGGATGAT GTTAAGTGTG GCCAAGCGCA CGGCAGCAAG
 2201 TTTTCAAGCA CTGAGTTCT ATTCCAAAGAT CATAGACTTA CTAAAGAGAG
 2251 TGACAAATGC TTCTTAATG TCTTCTATAC CAGAATGTAA ATATTTTGT
 2301 GTTTTGTGTT AATTGTTAG AATTCTAACCA CACTATATAC TTCCAAGAAG
 2351 TATGTCAATG TCAATATTT GTCAATAAAG ATTTATCAAT ATGCCCTCAC
 2401 AAAAAAAA AAAAAA
 30

BLAST alert EMBL/EMBLNEW

35 EMBLNEW:AL133353 Human DNA sequence *** SEQUENCING IN PROGRESS
 *** from
 clone RP11-483F11; N = 2, Score = 3108, P = 5.3e-134

40 EMBL:HSEMXX H.sapiens EMX2 mRNA; N = 1, Score = 2385, P = 5.1e-
 101

Medline entries

45 92331606:
 Simeone A, Gulisano M, Acampora D, Stornaiuolo A, Rambaldi M,
 Boncinelli E.;
 Two vertebrate homeobox genes related to the *Drosophila* empty
 spiracles gene are expressed in the embryonic cerebral cortex.
 50 EMBO J
 1992 Jul;11(7):2541-50

55 Peptide information for frame 1

ORF from 331 bp to 1086 bp; peptide length: 252
 Category: questionable ORF
 Classification: unset
 Prosite motifs: HOMEobox_1 (187-210)

5

1 MFQPAPKRCF TIESLVAKDS PLPASRSEDP IRPAALSYAN SSPINPFLNG
 51 FHSAAAAAAG RGVYSNPDLV FAEAVSHPPN PAVPVHPVPP PHALAAPHPLP
 101 SSSHSPHPLFA SQQQRDPSTFY PWLIHRYRYL GHRFQGNDTS PESFLHNAL
 151 ARKPKRIRTA FSPSQLLRL HAFEKNHYVV GAERKQLAHS LSLTETQVKV
 201 WFQNRRRTKFK RQKLEEEGSD SQQKKKGTHH INRWRIATKQ ASPEEIDVTS
 251 DD

15

Alert BLASTP hits for DKFZphamy2_14m1b, frame 1

PIR:IS11737 homeotic protein emx2 - zebra fish; N = 2, Score =
 753, P =
 1e-105

20

PIR:S22722 homeotic protein emx2 - human (fragment); N = 1, Score =
 =
 763, P = 1.3e-75

25

TREMBL:0LA132403_1 gene: "emx2"; product: "Emx2 protein";
Oryzias
latipes mRNA for Emx2 protein, partial; N = 2, Score = 513, P =
 4.5e-72

30

>PIR:S22722 homeotic protein emx2 - human (fragment)
 Length = 158

HSPs:

35

Score = 763 (114.5 bits), Expect = 1.3e-75, P = 1.3e-75
 Identities = 144/144 (100%), Positives = 144/144 (100%)

Query: 109

40 FASQQQRDPSTFYWPWLIHRYRYLGHRFQGNDTSPESFLLHNALARKPKRIRTAFSPSQLLR 168

FASQQQRDPSTFYWPWLIHRYRYLGHRFQGNDTSPESFLLHNALARKPKRIRTAFSPSQLLR

Sbjct: 15

FASQQQRDPSTFYWPWLIHRYRYLGHRFQGNDTSPESFLLHNALARKPKRIRTAFSPSQLLR 74

45

Query: 169

LEHAFEKNHYVVGAERKQLAHSLSLTETQVKVWFQNRRRTKFKRQKLEEEGSDSQQKKKG 228

LEHAFEKNHYVVGAERKQLAHSLSLTETQVKVWFQNRRRTKFKRQKLEEEGSDSQQKKKG

50

Sbjct: 75

LEHAFEKNHYVVGAERKQLAHSLSLTETQVKVWFQNRRRTKFKRQKLEEEGSDSQQKKKG 134

Query: 229 HHINRWRIATKQASPEEIDVTSDD 252

HHINRWRIATKQASPEEIDVTSDD

55

Sbjct: 135 HHINRWRIATKQASPEEIDVTSDD 158

Pedant information for DKFZphamy2_14m1b, frame 1

Report for DKFZphamy2_14m1b.1

5 [LENGTH] 362
 [MW] 40749.28
 [pI] 10.51
 [HOMOL] PIR:I51737 homeotic protein emx2 - zebra fish le-
 113
 10 [FUNCAT] 30.10 nuclear organization [S. cerevisiae-
 YML027w] 5e-05
 [FUNCAT] 04.99 other transcription activities [S.
 cerevisiae, YML027w] 5e-05
 [FUNCAT] 03.07 pheromone response, mating-type
 15 determination, sex-specific proteins [S.
 cerevisiae, YCR097w] 5e-04
 [FUNCAT] 04.05.01.04 transcriptional control [S.
 cerevisiae, YDL106c] 7e-04
 [FUNCAT] 01.04.04 regulation of phosphate utilization
 20 [S. cerevisiae, YDL106c] 7e-04
 [FUNCAT] 01.03.13 regulation of nucleotide metabolism
 [S. cerevisiae, YDL106c] 7e-04
 [BLOCKS] PR00049D
 [BLOCKS] PR00909H
 25 [BLOCKS] PR00487F
 [BLOCKS] PR00796G
 [BLOCKS] BL00035C
 [BLOCKS] BL00027 'Homeobox' domain proteins
 [BLOCKS] PR00026A
 30 [BLOCKS] BL00032C
 [BLOCKS] BL00032B 'Homeobox' antennapedia-type protein
 [SCOP] dlau7bl 1.4.1.1.6 Pit-1 POU homeodomain Pit-1
 Pit-1 [Rat (Rattus) 5e-1b
 [SCOP] dlyrna_ 1.4.1.1.2 mating type protein A1
 35 Homeodomain mat alpha 2e-15
 [SCOP] dlenh_ 1.4.1.1.1 engrailed Homeodomain
 [(Drosophila melanogaster 2e-13
 [PIRKW] nucleus 1e-67
 [PIRKW] heart 3e-10
 40 [PIRKW] DNA binding 1e-67
 [PIRKW] leukemia 3e-15
 [PIRKW] alternative splicing 1e-10
 [PIRKW] proto-oncogene 3e-15
 [PIRKW] transcription factor 1e-11
 45 [PIRKW] embryo 9e-12
 [PIRKW] transcription regulation 1e-67
 [PIRKW] homeobox 1e-67
 [SUPFAM] homeobox homology 1e-67
 50 [SUPFAM] homeotic protein Hox A5 7e-10
 [SUPFAM] homeotic protein Hox B3 3e-10
 [SUPFAM] homeotic protein Hox B2 3e-11
 [SUPFAM] homeotic protein Hox B1 7e-11
 [SUPFAM] unassigned homeobox proteins 1e-67
 [SUPFAM] homeotic protein goosecoid 4e-10
 55 [SUPFAM] homeotic protein Hox D4 9e-12
 [PROSITE] HOMEBOX_1 1
 [PFAM] Homeobox domain
 [KW] Irregular

[[Kw]] 3D
[[Kw]] LOW_COMPLEXITY 25.69 %

Prosite for DKFZphamy2_14m16.1

PS00002? 297->321 HOME BOX 1 PROG0002?

55

Pfam for DKFZphamy2_14m16:1

HMM_NAME Homeobox domain

HMM

5 *RRRpRTtFTreQLdELEREFHfNrYPTRqRREELAQMNLTERQVKIWF
+R RT+F+ +QL++LE +F+ N+Y+ ++R

+LA++L+LTE+QVK+WF

Query 264

PKRIRTAFSPSALLRLEHAFEKNHYVVGAERKQLAHSLSLTETQVKVWF 312

10

HMM QNRRMKWKRMH*

QNRR+K KR+

Query 313 QNRRTKFKRQK 323

15

DKFZphamy2_16e14

5 group: amygdala derived

DKFZphamy2_16e14.p3 encodes a novel 328 amino acid protein, similar to carbonic anhydrase-related proteins.

- 10 A similar cDNA encoding a protein of the same length was identified in sheep. This protein shows a strong signal sequence, which indicates that it is a secreted protein. The new protein belongs to a protein family, which was designated carbonic anhydrase-related protein XI (CA-RP XI), encoded by C111 (human) and C111 (mouse, rat). Despite potentially inactivating changes in the active-site residues, CA-RP XI is evolving very slowly in mammals, a property indicative of an important function, which has also been observed in the two other "acatalytic" CA isoforms, CA-RP VIII and CA-RP X.
- 15 20 No informative BLAST results; No predictive prosite, pfam or SCOP motif.

The new protein can find application in studying the expression profile of amygdala-specific genes.

25 similarity to carbonic anhydrase-related protein (*Homo sapiens*)

ESTs ending at appr. 1800 have polyA-signal

30 Sequenced by EMBL

Locus: /map="17q24; 5.13cR from GATA41C05"

35 Insert length: 2267 bp
Poly A stretch at pos. 2252, polyadenylation signal at pos. 2231

1	GGATGGAAAT	AGTCTGGGAG	GTGCTTTTC	TTCTTCAAGC	CAATTTCATC
51	GTCTGCATAT	CAGCTCAACA	GAATTCACCA	AAAATCCATG	AAGGCTGGTG
101	GGCATACAAAG	GAGGTGGTCC	AGGGAAGCTT	TGTTCCAGTT	CCTTCTTCT
151	GGGGATTGGT	GAACTCAGCT	TGGAATCTT	GCTCTGTGGG	GAAACGGCAG
201	TCGCCAGTCA	ACATAGAGAC	CAGTCACATG	ATCTTCGACC	CCTTTCTGAC
251	ACCTCTTCGC	ATCAACACGG	GGGGCAGGAA	GGTCAGTGGG	ACCATGTACA
301	ACACTGGAAG	ACACGTATCC	CTTCGCTGG	ACAAGGAGCA	CTTGGTCAAC
351	ATATCTGGAG	GGCCCAGTGAC	ATACAGCCAC	CGGCTGGAGG	AGATCCGACT
401	ACACTTTGGG	AGTGAGGACA	GCCAAGGGTC	GGAGCACCTC	CTCAATGGAC
451	AGGCCTTCTC	TGGGGAGGTG	CAGCTCATCC	ACTATAACCA	TGAGCTATAT
501	ACGAATGTCA	CAGAACGCTGC	AAAGAGTCCA	AATGGATTGG	TGGTAGTTTC
551	TATATTATA	AAAGTTCTG	ATTCACTAAA	CCCATTCTT	AATCGAATGC
601	TCAACAGAGA	TACTATCACA	AGAATAACAT	ATAAAAATGA	TGCATATTTA
651	CTACAGGGGC	TTAATATAGA	GGAACTATAT	CCAGAGACCT	CTAGTTTCAT
701	CACTTATGAT	GGGTGATGA	CTATCCCACC	CTGCTATGAG	ACAGCAAGTT
751	GGATCATAAT	GAACAAACCT	GTCTATATAA	CCAGGATGCA	GATGCATTCC
801	TTGCGCCTGC	TCAGCCAGAA	CCAGCCATCT	CAGATCTTC	TGAGCATGAG
851	TGACAACCTC	AGGCCTGTCC	AGCCACTCAA	CAACCGCTGC	ATCCGCACCA
901	ATATCAACTT	CAGTTTACAG	GGGAAGGACT	GTCCAAACAA	CCGAGCCCAG
951	AAGCTTCAGT	ATAGAGTAAA	TGAATGGCTC	CTCAAGTAGG	GAACAAAGCC

1001 AAGAAGAAATC CCACCTCACT GAAATGCTAC AACTGTGAAT TGACGTAACC
 1051 TAGAATGTCC CCCTTCTTGC TTCTCTCTCC TTCTTCCCC CAAGCCTCAT
 1101 TCATTCTTGG GATTGGCCCT TTCTTCATGA AAAGTGTCTG CAAAACCATG
 1151 GCAGAGGAAT ACATCTCTCA CACATACTCA CAAACACACA CACAAGCACT
 5 1201 TGCACATACA TACAAACACA TGCAAACATA CCTACACACA CACACACTCT
 1251 TACAACCTCC ATCATGGGAA GTCAAGTTTC AGAAAACAAAA GTCTCATTCA
 1301 TAAGAGGGTCT TAGAAGAAAA TAACCAGTTA ACCTGATTTC AATTTGATA
 1351 CGGTTTCCT GAACTAATAA ATCTACCCAA TGAGACTTT CAGCCTTTGT
 1401 ACATACAAAA TTCTTCCAA AGAGAGAGGA GAAAATACAG CTCTGATGGC
 10 1451 ATCAAACGGA CTTTGATCA AGTAATTCA GATAGTGTCC TAGGATCCTT
 1501 TGAGGGTGCT GGTAGCAGGT GAGCAGGACA AAGTTGACCA AGGACACTTA
 1551 TTTCTAGATT ATGATTCTC TGTTTACTCA ACAATTTACA AAGAAAAAAA
 1601 GGACAGACAT TGAAGAGCTA CACATTGTAT ATATATCACC ACAGACTATA
 1651 AGGAAATGGA ATTATTCCC TCTTGTAC TATCTGTAG TAGGATTTGC
 1701 CAAGATCAGA AATGATCCAT TTGCTGTTT TTGTTTCCA AAGGTACATAC
 1751 ATTGTGTTTG GTTATTGTTA CCAGCTCAAT AAATGTGTTT AACGAGTTAA
 1801 TTTCATTTT CTGGCTTGG TCTGTTCTCC TTCCCTTACAG GCTAAGCCCT
 1851 GGCTCCATGC AACTGCATTC TTTGATTCA CTTGTTCCCT CATCTACATG
 20 1901 TTTGTTCAT TTGCAGCCAG TTTTACTGA GTTTGTGGCA ATCAGGAATG
 1951 CATTGCTAA GCAAGTATGA CTTAATTCC ACTCCATGGC TCAATCATT
 2001 ACATGAGGTG AGCTTCAGCC TGAGATAGCA GGCAGACAGAC TTCTTGCCTT
 2051 TCAAAACTGC CATGCCCCC TGTGATGCTC CGTGAAGGA ATGCACTTG
 2101 CCTTGTAAGT TCCTGGGAA GGGGTATGTT TTCTCTCCAG GTGCAGCCAG
 2151 ATCTCACAAA GTACAAAACG AATGCCTTTC TTTCTTGTT TATAATGGTC
 2201 ACTCACTGTG TTGGTTACT GTCAAGAAAT CAATAATGT GTTAACAAG
 2251 TCAAAAAAAA AAAAAAAA

BLAST alert EMBL/EMBLNEW

30 -----
 EMBL:AF064854 Homo sapiens map 17q24; 5.13cR from GATA41C05
 repeat
 region, complete sequence.; N = 2, Score = 8784, P = 0
 35 EMBLNEW:AC005883 Homo sapiens chromosome 17 clone RP11-958E11 map
 17,
 WORKING DRAFT SEQUENCE, 2 ordered pieces.; N = 3, Score = 6260, P
 = 0

40 Medline entries

45 9097349:
 Lovejoy DA, Hewett-Emmett D, Porter CA, Cepoi D, Sheffield A,
 Vale WW,
 Tashian RE-; Evolutionarily conserved, "acatalytic" carbonic
 anhydrase-related protein XI
 contains a sequence motif present in the neuropeptide sauvagine:
 50 the
 human
 CA-RP XI gene (CA11) is embedded between the secretor gene
 cluster and
 the
 55 DBP gene at 19q13.3. Genomics 1998 Dec 15;54(3):484-9

Peptide information for frame 3

5 ORF from 0 bp to 986 bp; peptide length: 329
 Category: similarity to known protein
 Classification: unclassified

10 1 MEIVWEVLFL LQANFIVCIS AQQNSPKIHE GWWAYKEVVQ GSFVVPVSFW
 51 51 GLVNSAWNLC SVGKRQSPVN IETSHMIFDP FLTPLRINTG GRKVSGTMYN
 101 101 TGRHVSLRLD KEHLVNVISGG PMTYSHRLEE IRLHFGSEDS QGSEHLLNGQ
 151 151 AFSGEVQLIH YNHELYTNVT EAAKSPNGLV VVSIFIKVSD SSNPFLNRML
 201 201 NRDITITRITY KNDAYLLQGL NIEELYPETS SFITYDGSMT IPPCYETASW
 251 251 IIMNKPVYIT RMQMHSLLRL SQNQPSQIFL SMSDNFRPVQ PLNNRCIRTN
 301 301 INFSLQGKDC PNNRAQKLQY RVNEWLLK

Alert BLASTP hits for DKFZphamy2_1be14, frame 3

20 PIR:JE0375 carbonic anhydrase-related protein - human; N = 1,
 Score =
 937, P = 4.6e-94

25 SWISSNEW:CAHB_SHEEP CARBONIC ANHYDRASE-RELATED PROTEIN 2
 PRECURSOR
 (CARP 2) (CA-RP II) (CA-XI).; N = 1, Score = 935, P = 7.5e-94

30 >PIR:JE0375 carbonic anhydrase-related protein - human
 Length = 328

HSPs:

35 Score = 937 (140.6 bits), Expect = 4.6e-94, P = 4.6e-94
 Identities = 169/287 (58%), Positives = 223/287 (77%)

40 Query: 30
 EGWWAYKEVVQGSFVVPVSFWGLVNSAWNLCVGKRQSPVNIEETSHMIFDPFLTPLRINT 89
 E WW+YK+ +QG+FVP P FWGLVN+AW+LC+VGKRQSPV++E
 +++DPFL PLR++T
 Sbjct: 32
 EDWWSYKDNLQGNFVPGPPFWGLVNAAWSLCAVGKRQSPVDVEVKRVLYDPFLPPLRLST 91

45 Query: 90
 GGRKVSGTMNTGRHVSLRLDKEHLVNVISGGPMTYSHRLEEIRLHFGSEDSQGSEHLLNG 149
 GG K+ GT+YNTGRHVS +VN+SGGP+ YSHRL E+RL FG+ D
 GSEH +N
 Sbjct: 92
 GGEKLRGTLNTGRHVSFLPAPRPVVNVSGGPLLYSHRLSELRLLGARDGAGSEHQINH 151

50 Query: 150
 QAFSGEVQLIHYNHELYTNVTEAAKSPNGLVVVSIFIKVSDSSNPFLNRMLNRDTITRIT 209
 Q FS EVQLIH+N ELY N + A++ PNGL ++S+F+ V+
 +SNPFL+R+LNRDITRI+
 55 Sbjct: 152
 QGFSAEVQLIHFNQELYGNFSAASRGPNGLAILSLFVNASTSNPFLSRLLNRDITRIS 211

Query: 210
 YKNDAYLLQGLNIEELYPETSSFITYDGSMTIPPCYETASWIIMNKPVYITRMQMHSRL 269
 YKNDAY LQ L+E L+PE+ FITY GS++ PPC ET +WI+++ + IT
 +QMHSRL

5 Sbjct: 212
 YKNDAYFLQDLSLELLFPESFGFITYQGSLSTPPCSETVTWILIDRALNITSLQMHSRL 271

Query: 270 LSQNQPSQIFLSMSDNFRPVQPLNNRCIRTNINFSLQGKDC--PNNR 314
 LSQN PSQIF S+S N RP+QPL +R +R N + + C PN R
 10 Sbjct: 272 LSQNPPSQIFQSLSGNSRPLQPLAHRALRGNRDPRHPERRCRGPNYR 318

Pedant information for DKFZphamy2_1be14, frame 3

15 Report for DKFZphamy2_1be14-3

16	LENTH]	328
17	[MW]	37563.19
20	[pI]	8.22
	[HOMOL]	PIR:JE0375 carbonic anhydrase-related protein -
	human 1e-101	
	[BLOCKS]	DM01109B
25	[BLOCKS]	BL00162F
	[BLOCKS]	BL00162E
	[BLOCKS]	BL00162D
	[BLOCKS]	BL00162C Eukaryotic-type carbonic anhydrases
	proteins	
30	[BLOCKS]	BL00162A Eukaryotic-type carbonic anhydrases
	proteins	
	[SCOP]	d1znca_ 2.5b.1.1.3 Carbonic anhydrase [human
	(Homo sapiens 1e-103	
	[SCOP]	d2cba_ 2.5b.1.1.2 Carbonic anhydrase [human
	(Homo sapiens 9e-97	
35	[EC]	4.2.1.1 Carbonate dehydratase 1e-3b
	[EC]	3.1.3.48 Protein-tyrosine-phosphatase 2e-20
	[PIRKW]	blocked amino end 8e-29
	[PIRKW]	carbon-oxygen lyase 1e-3b
	[PIRKW]	zinc 1e-3b
40	[PIRKW]	polymorphism 2e-20
	[PIRKW]	hydro-lyase 1e-3b
	[PIRKW]	transmembrane protein 3e-23
	[PIRKW]	tyrosine-specific phosphatase 2e-20
	[PIRKW]	brain 6e-1b
45	[PIRKW]	acetylated amino end 1e-3b
	[PIRKW]	phosphatidylinositol linkage 2e-19
	[PIRKW]	receptor 2e-20
	[PIRKW]	liver 3e-29
	[PIRKW]	phosphoprotein 2e-20
50	[PIRKW]	saliva 2e-21
	[PIRKW]	glycoprotein 2e-22
	[PIRKW]	mitochondrion 1e-32
	[PIRKW]	monomer 3e-32
	[PIRKW]	alternative splicing 6e-1b
55	[PIRKW]	lipoprotein 2e-19
	[PIRKW]	pyroglutamic acid 2e-21
	[PIRKW]	metalloprotein 6e-35
	[PIRKW]	muscle 4e-31

5 [PIRKW] membrane protein 2e-19
 [PIRKW] phosphoric monoester hydrolase 2e-20
 [PIRKW] homodimer 3e-23
 [SUPFAM] fibronectin type III repeat homology 2e-20
 5 [SUPFAM] carbonic anhydrase homology 1e-3b
 [SUPFAM] protein-tyrosine-phosphatase, receptor type zeta
 6e-1b
 [SUPFAM] carbonate dehydratase 1e-3b
 [SUPFAM] protein-tyrosine-phosphatase, receptor type gamma
 10 2e-20
 [SUPFAM] protein-tyrosine-phosphatase homology 2e-20
 [SUPFAM] leukocyte common antigen cytosolic domain
 homology 2e-20
 [PFAM]
 15 [KW] Eukaryotic-type carbonic anhydrases
 [KW] All_Beta
 [KW] 3D
 [KW] SIGNAL_PEPTIDE 22

 20 SEQ
 MEIVWEVLFLQANFIVCISAQQNSPKIHEGWWAYKEVVQGSFVPVPSFWGLVNSAWNLC
 Iugc-

 25 SEQ
 SVGKRQSPVNIEETSHMIFDPFLTPLRINTGGRKVSGTMYNTGRHVSRLDKEHLVNISGG
 Iugc- ..TTTCCCEETTTTEETTTCEEEEETT-
 TTCEEEEEEETTTTEEEEEECTTTTEEEEEE

 30 SEQ
 PMTYSHRLEEIRLHFGSEDSQGSEHLLNGQAFSGEVQLIHYNHELYTNVTEAKSPNGLV
 Iugc- TTCCCCEEEEEEETTTTCTTTEETTBCCCEEEEEEEGG-
 GTTHHHHHCTTTEE

 35 SEQ
 VVSIFIKVSDSSNPFLNRMLNRDTITRITYKNDAYLLQGLNIEELYPETSSFITYDGSMY
 Iugc- EEEEEEEEC-CCCGGGHHHH--
 HHGGGCCCTTTEEEETTTGGGGCCCCCEEEEEECCC

 40 SEQ
 IPPCYETASWIIMNKPVYITRMQMHSRLLSQNQPSQIFLSMSDNFRPVQPLNNRCIRTN
 Iugc-
 TTTTCCCEEEEEECCCEECHHHHHHHCCBCCTTTCCCBTTTCCCCCTTTCCCEEC

 45 SEQ INFSLQGKDPCPNNAQKLQYRVNEWLLK
 Iugc-

 (No Prosite data available for DKFZphamy2_1be14-3)
 50 Pfam for DKFZphamy2_1be14-3

 55 HMM_NAME Eukaryotic-type carbonic anhydrases
 HMM
 *WCYgeHWGPEHH.....WHkhYPIAW....GDRQSPINIQUkearYDPS

W Y E + W+++ + + G R Q S P + N I + +

+DP

Query

33

WAYKEVVQGSFVPVPSFWGLVNSAWNLCSVGKRQSPVNIEETSHMIFDPF 81

5

HMM

LKPWrv . SYYpaWCrEWeIWNNGHSFQVeFDDSMDSVLSGGPLPgHPYR
L P+R+ ++ ++++ ++ N+G+ + +D +SGGP++

++R

Query

82 LTPLRINTGGRKVSG--TMYNTGRHVSLRLDK-
EHLVNISGGPMTY-SHR 127

HMM

LKQFHFWGGASSNDWGSEHTVDGmKYPMEHLHLVHWNStKYnNYdEAQdq
L + ++H G S++ +GSEH ++G +++ E+ L+H+N +Y N+
EA++

Query

128 LEEIRLHFG--
SEDSQGSEHLLNGQAFSGEVQLIHYNHELYTNVTEAAKS 175

20 HMM

PDGLAVIGVFMKVGNYqENPyLQKVv . DALdnIKYKGKratMTNFDPsC
P+GL V+ +F+KV NP L++ + D + I YK +
+++++

Query

176 PNGLVVVSIFIKVS-

25

DSSNPFLNRMLNRDTITRITYKNDAYLLQGLNIEE 224

HMM

LLPpPnCRDYWTYPGSLTTPPCheCVTWIVCKEPIsISsEQMWKFRsLLF
L P+ + TY GS+T+PPC+E WI+ P+ I + QM +R

30 L

Query

225 LYPE--

TSSFITDGSMTIPPCYETASWIIMNKPVYITRMQMHSLLSQ 272

HMM

NhEGEeeVpMVDNWRPPQPLKhRvVRASF*

N +M DN+RP QPL++R +R +

35

Query

273 NQPSQIFLSMSDNFRPVQPLNNRCIRTNI

301

DKFZphamy2_1c12

5 group: nucleic acid management

DKFZphamy2_1c12 encodes a novel 422 amino acid protein with partial identity to I-kappa-B-related protein and to BRCA1.

10 I-kappa-B-related protein interacts with transcription factors and BRCA1 has a function in DNA damage response. I-kappa-B-alpha mutations contribute to constitutive NF-kappaB activity in cultured and primary HRS (Hodgkin/Reed-Sternberg) cells and are therefore involved in the pathogenesis of Hodgkin's disease (HD)

15 patients.

The new protein can find application in modulating DNA repair and mutagenesis and also in expression profiling in HD related syndroms.

20

similarity to I-kappa-B-related protein

Sequenced by MediGenomix

25

Locus: unknown

Insert length: 1645 bp

Poly A stretch at pos. 1626, polyadenylation signal at pos. 1605

30

1	GGATTTCCCT	TGGTCTTAAG	ATGGGTAGAA	ATGTGATGCG	ACACATGTCT
51	GATGACTTAG	GAAGTTATGT	TTCTCTTCG	TGTGATGACT	TTTCTTCACA
101	GGAATTAGAG	ATTTTCATT	GCTCCTTTTC	CTCCTCCTGG	CTTCAAATGT
151	TTGTTGCAGA	GGCAGTCTT	AAAAAGTTGT	GTCTACAGAG	CTCTGGCAGT
201	GTTCCTTCTG	AGCCACTCTC	TCTTCAGAAA	ATGGTATATT	CCTATTACC
251	AGCCTTGGGG	AAAACTGGTG	TGCTTGGGTC	TGGAAAGATT	CAGGTGTCAA
301	AGAAAATAGG	ACAGCGGCCT	TGTTTTGACT	CTCAGAGAAC	CTTACTAATG
351	CTGAATGGTA	CTAAACAAAA	ACAAGTCGAA	GGGCTGCCAG	AGTTACTAGA
401	CCTGAACCTT	GCTAAATGTT	CCTCATCATT	AAAAAAAATTG	AAAAAGAACG
451	CAGAAGGGAGA	ATTGTCATGT	TCCAAGGAGA	ATTGCCCTC	TGTAGTTAAA
501	AAGATGAATT	TTCACAAGAC	TAATCTAAAA	GGAGAAACAG	CCCTGCATAG
551	AGCTTGCATA	AATAACCAAG	TGGAGAAATT	GATTCTTCTT	CTCTCTTGC
601	CAGGAATAGA	CATCAATGTT	AAAGACAATG	CTGGCTGGAC	GCCTTTGCAT
651	GAAGCCTGTA	ACTATGGCAA	CACAGTGTGT	GTCCAGGAAA	TTTGCAACG
701	TTGTCCAGAG	GTAGATCTGC	TCACTCAAGT	GGACGGGGTG	ACTCCTTTGC
751	ATGATGCACT	GTCAAACGGA	CATGTAGAAA	TTGGCAAGCT	GCTACTACAG
801	CATGGGGGCC	CAGTGCTTT	ACAACAGAGG	AATGCTAAGG	GAGAATTGCC
851	CTTGGATTAT	GTGGTTTCAC	CTCAAATCAA	AGAAGAACTG	TTTGCTATTA
901	CAAAAATAGA	AGATACAGTG	GAGAACTTTC	ATGCACAAGC	AGAGAAACAT
951	TTTCATTAC	AGCAACTTGA	ATTGGCTCC	TTTTTACTTA	GTAGGATGTT
1001	GCTAAATT	TGTTCAATT	TTGATTTC	TTCAGAGTTC	ATTTTAGCTT
1051	CCAAAGGGTT	AACTCATCTA	AATGAACTGC	TTATGGCTTG	TAAAAGTCAT
1101	AAAGAAACCA	CCAGTGTCA	TACTGACTGG	TTACTGGATC	TTTATGCTGG
1151	AAATATAAAG	ACATTGCAGA	AACTCCCACA	CATTCTTAAG	GAACGGCTG
1201	AGAATTGAA	AGTGTGTCCT	GGGGTACACA	CTGAGGCCCT	GATGATAACA
1251	TTGGAAATGA	TGTGTGGTC	AGTCATGGAG	TTTCATGAT	GATGCTAGAA
1301	AGTATGGATT	GACTTCTAA	ATCTGTTCA	TTTGCATTGG	TACTTACTGT

1351 GGACTTCATA GCCTACTGAC AGATAGTAAT TTGATTATT TATTGACAGA
 1401 CTTTGCAGCC TTGCTAAATT TTAAAAGCAT TTTTAAAAAA ACTTCTACAA
 1451 AACTCTAGTA TGGGCTTC TG ACTTTTCCA GGGTAGAA TTTGACTCAA
 5 1501 AAGTAAAAAT AATTTTGTT TAGTATATT TACTTCATT AATGTTTTT
 1551 TGTTCTGAAA GTGATATTAT ATTGTACATG TAAAATTAAT TTAAATATTT
 1601 TTCAAAATAA AAATGTAATG TCCTGTAAAA AAAAAAAA AAAAA

BLAST Results

10

No BLAST result

15

Medline entries

20

No Medline entry

Peptide information for frame 3

25 ORF from 21 bp to 1286 bp; peptide length: 422
 Category: similarity to known protein
 Classification: Cell signaling/communication

30 1 MGRNVMRHMS DDLGSYVSL S CDDFSSQELE IFICSFSSSW LQMFVAEAVF
 51 KKLCLQSSGS VSSEPLSLQK MVYSYLPALG KTGVLGSGKI QVSKKIGQRP
 101 CFDSQRTLLM LNGTKQKQVE GLPELLDLNL AKCSSLKKL KKKSEGELSC
 151 SKENCPSSVK KMNFHKTNLK GETALHRACI NNQVEKLILL LSLPGIDINV
 201 KDNAGWTPLH EACNYGNTVC VQEILQRCPE VDLLTQVDGV TPLHDALSNG
 251 HVEIGKLLQ HGGPVLLQQR NAKGELPLDY VVSPQIKEEL FAITKIEDTV
 301 ENFHQAQAEKH FHYQQLEFGS FLLSRMLLNF CSIFDLSSEF ILASKGLTHL
 351 NELLMACKSH KETTSVHTDW LLDLYAGNIK TLQKLPHILK ELPENLKVP
 401 GVHTEALMIT LEMMCRSVME FS

40

BLASTP hits

No BLASTP hits available

45 Alert BLASTP hits for DKFZphamy2_1c12, frame 3

PIR:A56429 I-kappa-B-related protein - human, N = 1, Score = 242,

P =

4.6e-18

50

TREMBLNEW:AF038042_1 gene: "BARD1"; product: "BRCA1-associated RING

domain protein"; Homo sapiens BRCA1-associated RING domain protein

55 (BARD1) gene, exons 10, 11 and complete cds., N = 1, Score = 236,

P =

6.9e-17

>PIR:A5B429 I-kappa-B-related protein - human
Length = 481

5 HSPs:

Score = 242 (36.3 bits), Expect = 4.6e-18, P = 4.6e-18
Identities = 52/118 (44%), Positives = 71/118 (60%)

10 Query: 156 PSVVKKMFHKTNLKGETALHRACINNQVEKLILLLSLPGIDINVKDAGWTPLHEACNY 215
P K +++ N GET LHRACI Q+ ++ L+ G +N +D
GWTPPLHEACNY
Sbjct: 354 PGAAGGSKWNRRNDMGETLLHRACIEGQLRRVQDLVR-
15 QGHPLNPRDYCGWTPLHEACNY 412

Query: 216 GNTVCVQEILQRCPEVDLL--
TQVTDGVVTPLHDALSGHVEIGKLLLQHGGPVLLQQRNA 272
20 G+ V+ +L VD +G+TPLHDAL+ GH E+ +LLL+ G V
L+ R A
Sbjct: 413 GHLEIVRFLLDHGAADVDPGGQGC EGITPLHDALNCGHFEVAELLLERGASVTLRTRKA 471

25 Pedant information for DKFZphamy2_1c12, frame 3

Report for DKFZphamy2_1c12.3

30 [LENGTH] 422
[MW] 47071.18
[pI] 6.57
[HOMOL] PIR:A5B429 I-kappa-B-related protein - human 3e-19
35 [FUNCAT] 99 unclassified proteins [S. cerevisiae, YIL112w]
3e-11
[FUNCAT] 06.13.01 cytoplasmic degradation [S. cerevisiae,
YGR232w] 4e-06
40 [FUNCAT] 30.10 nuclear organization [S. cerevisiae, YIRO33w]
2e-04
[FUNCAT] 04.05.01.07 chromatin modification [S. cerevisiae,
YIRO33w] 2e-04
[SCOP] dlawcb_ 1.91.3.1.2 GA binding protein (GABP) alpha
45 GA bindini 6e-24
[EC] 3.1.3.53 Myosin-light-chain-phosphatase 9e-06
[PIRKW] phosphotransferase 3e-07
[PIRKW] tandem repeat 9e-06
[PIRKW] transmembrane protein 7e-10
50 [PIRKW] serine/threonine-specific protein kinase 3e-07
[PIRKW] phosphoprotein 3e-10
[PIRKW] integrin binding 3e-07
[PIRKW] alternative splicing 3e-11
[PIRKW] peripheral membrane protein 2e-09
55 [PIRKW] transcription regulation 3e-06
[PIRKW] phosphoric monoester hydrolase 9e-06
[PIRKW] cytoskeleton 4e-10
[PIRKW] smooth muscle 9e-06

[SFAM] ankyrin 3e-11
 [SFAM] ankyrin repeat homology 3e-11
 [SFAM] unassigned ankyrin repeat proteins 7e-10
 [PFAM] Ank repeat
 5 [KW] Irregular
 [KW] 3D
 [KW] LOW_COMPLEXITY 8.53 %

10 SEQ MGRNVMRHMSDDLGSYVSLSCDDFSSQELEIFICSFSSSWLQMFVAEAVFKKLCLQSSGS
 SEG
 lawcB

 15 SEQ VSSEPLSLQKMVSYLPALGKTGVLGSGKIQVSKKIGQRPCFDQRTLLMLNGTKQKQVE
 SEG xxxxxxxx
 lawcB

 20 SEQ GLPELLDLNLAKCSSLKKLKKKSEGELSCSKENCPVVKKMNFHKTNLKGETALHRACI
 SEG
 lawcB

 25 SEQ NNQVEKLILLLSLPGIDINVKDAGWTPLHEACNYGNTVCVQEILQRCPEVDLLTQVDGV
 SEG
 lawcB

 30 SEQ TPLHDALSNGHVEIGKLLLQHGGPVLLQQRNAKGELPLDYVVSPQIKEELFAITKIEDTV
 SEG
 lawcB

 35 SEQ ENFHQAQAEKFHYQQLEFGSFLLSRMLLNFCISIFDLSSEFILASKGLTHLNELLMACKSH
 SEG
 lawcB

 40 SEQ KETTSVHTDWLLDLYAGNIKTLQKLPHILKELPENLKVC PGVHTEALMITLEMCRSVMEM
 SEG
 lawcB

 45 SEQ FS
 SEG ..
 lawcB ..

50 (No Prosite data available for DKFZphamv2_1c12.3)

Pfam for DKFZphamy2_1c12-3

55 HMM NAME Ank repeat

HMM *GvTPLHTAARvNNvEMVr1LLQH:GADIN*

Query 171 G+T+LH A+++N+VE LLL+ G DIN
 171 GETALHRACINNNQVEKLILLLSLPGIDIN 199

34.48 (bits) f: 205 t: 232 Target: dkfzphamy2_1c12.3
 5 similarity to I-kappa-B-related protein

Alignment to HMM consensus:

Query *GyTPLHIAARyNNvEMVr1LLQHGADIN*
 G+TPLH A+ Y+N+ +V+ LQ+ + ++
 dkfzphamy2 205 GWTPLHEACNYGNTVCVQEILQRCPEVD 232

10 Query f: 239 t: 266 Target: dkfzphamy2_1c12.3
 similarity to I-kappa-B-related protein

Alignment to HMM consensus:

HMM *GyTPLHIAARyNNvEMVr1LLQHGADIN*
 G TPLH A +++VE+ +LLLQHG +

15 Query 239 GVTPHLHDALSNGHVEIGKLLLQHGGPVL 266

DKFZphamy2_lil

20

group: nucleic acid management

25 DKFZphamy2_lil encodes a novel b29 amino acidprotein with
 similarity to the murine hemin-sensitive initiation factor 2.

30 The hemin-sensitive initiation factor 2 is expressed
 predominantly in liver, spleen, colon and uterus and contains 2
 protein kinase motifs. The mouse homologue inhibits protein
 synthesis in stress conditions by phosphorylation of eif-2-alpha.
 Four different eIF2alpha kinases have been identified in
 mammalian cells, the heme-regulated inhibitor (HRI), the
 interferon-inducible RNA-dependent kinase (PKR), the endoplasmic
 reticulum-resident kinase (PERK) and MGCN2. The new protein
 35 represents a new member of this family

The new protein can find application in modulating/blocking of
 translation.

40

similarity to hemin-sensitive initiation factor 2 (*Mus musculus*),
 complete cds-alpha kinase

complete cds.

45 probably complete in genomic clone DJ0042M02

Sequenced by MediGenomix

Locus: /map="37.2 cR from top of Chr? linkage group"

50

Insert length: 2863 bp

Poly A stretch at pos. 2844, polyadenylation signal at pos. 2824

55

1 GCAGTGCTGG GCTGGCCGGC GGGCTGGGCT GC GGCCC CGCG CGCGCCGGC
 51 GATGCAGGGGG GGCAACTCCG GGGTCCGCAA GCGCGAAGAG GAGGGCGACG
 101 GGGCTGGGGC TGTGGCTGCG CCGCCGGCCA TCGACTTTCC CGCCGAGGGC
 151 CGGGACCCCCG AATATGACGA ATCTGATGTT CCAGCAGAAA TCCAGGTGTT

201 AAAAGAACCC CTACAACAGC CAACCTTCCC TTTTGAGTT GCAAACCAAC
 251 TCTTGTGGT TTCTTGCTG GAGCACTTGA GCCACGTGCA TGAAACAAAC
 301 CCACTCGTT CAAGACAGGT GTTAAGCTA CTTTGCCAGA CGTTTATCAA
 351 AATGGGGCTG CTGTCTTCTT TCACTTGTAG TGACGAGTTT AGCTCATTGA
 401 GACTACATCA CAACAGAGCT ATTACTCACT TAATGAGGTC TGCTAAAGAG
 451 AGAGTCGTC AGGATCCTTG TGAGGATATT TCTCGTATCC AGAAAATCAG
 501 ATCAAGGGAA GTAGCCTTGG AAGCACAAAC TTCACGTTAC TTAAATGAAT
 551 TTGAAGAACT TGCCATCTT AGGAAAGGTG GATACTGGAG AGTATACAAG
 601 GTCAGGAATA ATTAGATGG TCAGTATTAT GCAATAAAA AAATCCTGAT
 651 TAAGGGTGCA ACTAAAACAG TTTGCATGAA GGTCTACGG GAAGTGAAGG
 701 TGCTGGCAGG TCTTCAGCAC CCCAATATTG TTGGCTATCA CACCGCGTGG
 751 ATAGAACATG TTCATGTGAT TCAGCCACGA GACAGAGCTG CCATTGAGTT
 801 GCCATCTCTG GAAGTGCCTC CCGACCAGGA AGAGGACAGA GAGCAATGTG
 851 GTGTTAAAAA TGATGAAAGT AGCAGCTCAT CCATTATCTT TGCTGAGCCC
 901 ACCCCAGAAA AAGAAAAAAG CTTGGAGAA TCTGACACTG AAAATCAGAA
 951 TAACAAGTCG GTGAAGTACA CCACCAATT AGTCATAAGA GAATCTGGTG
 1001 AACTTGAGTC GACCCCTGGAG CTCAGGAAA ATGGCTTGGC TGTTTGTCT
 1051 GCCAGTTCAA TTGTGGAAACA GCAGCTGCCA CTCAGGCGTA ATTCCCACCT
 1101 AGAGGAGAGT TTCACATCCA CCGAAGAACAT TTCCGAAGAA AATGTCAACT
 1151 TTTGGGTCA GACAGAGGCA CAGTACCA TGATGCTGCA CATCCAGATG
 1201 CAGCTGTGTG AGCTCTCGCT GTGGGATTGG ATAGTCGAGA GAAACAAGCG
 1251 GGGCCGGGAG TATGTGGACG AGTCTGCCTG TCCTTATGTT ATGGCCAATG
 1301 TTGCAACAAA ATTTCCTCAA GAATTGGTAG AAGGTGTGTT TTACATACAT
 1351 AACATGGGAA TTGTGCACCG AGATCTGAAG CCAAGAAAATA TTTTCTTCA
 1401 TGGCCCTGAT CGCAAGTAA AAATAGGAGA CTTTGGCTG GCCTGCACAG
 1451 ACATCCTACA GAAGAACACA GACTGGACCA ACAGAAACGG GAAGAGAAC
 1501 CCAACACATA CGTCCAGAGT GGGTACTTGT CTGTACGCTT CACCGAAC
 1551 GTTGGAAAGGA TCTGAGTATG ATGCCAAGTC AGATATGTAC AGCTGGGTG
 1601 TGGTCTGCT AGAGCTCTT CAGCCGTTG GAACAGAAAAT GGAGCGAGCA
 1651 GAAGTTCTAA CAGGTTAACG AACTGGTCAG TTGCGGAAAT CCCTCCGTAA
 1701 AAGGTGTCCA GTGCAAGGCA AGTATATCCA GCACTTAACG AGAAGGAAC
 1751 CATCGCAGAG ACCATCTGCC ATTCACTGTC TGCAAGGTGA ACTTTTCAA
 1801 AATTCTGGAA ATGTTAACCT CACCCCTACAG ATGAAGATAA TAGAGCAAGA
 1851 AAAAGAAATT GCAGAACTAA AGAACGAGCT AAACCTCCTT TCTCAAGACA
 1901 AAGGGGTGAG GGATGACGGA AAGGATGGGG GCGTGGGATG AAAGTGGACT
 1951 TAACTTTAA GGTAGTTAAC TGGAAATGTAAT ATTGTTAATC TTTATTAGGG
 2001 TATAGTTGGT ACAATGCTTC GTTGTATTTA GTAAGCCTT ACAAGACTTG
 2051 TTAAAGATGT CAGAGTGCC CAAAGCTGCC TTCCCTCCCT TCCTGCCCA
 2101 CAAGCTCCTT TTCTGATTAC TTCTACCTAA ATATTAACCA TATGCCCTAGT
 2151 CTCTGAAACT AAAAACTTGG ACCTCATCCT CAATTATTT CTCCCTTCAA
 2201 CTCTGTGAC CCTCTGCTG GTCTTCTCT AGAAGGTTCT ACCGCAGAAA
 2251 TTGATGTGTG CTCCCTGCC TCGTCACTGC CCAAGCCGG GCCTGCACAT
 2301 ACTCACTGGA CTGTTCCAGT TTTGACAGCT GCCAGTCTTC CTGCCCCCTT
 2351 CACACTGCAG CTGAAGTCA TTACCTGAAG GACGCCCTAT CATTTCATT
 2401 CTTGGCTCCA AACCTTCTGC TGCCCTAAG ATAAAAGCTC AACTTCTTAA
 2451 CAGTGTACAG TGTGCAACTT CCAACCTTT TATCTGTTCT CTCCACCTTC
 2501 AGTTTAGCGT CATTCCAAAA CCACACCTT GCAAAGCTTT GTACTCCGCA
 2551 CCCCAGATGA TCTCCAGGCA GCTCAGATCT CTTTCTGCC TTTGCCCTGC
 2601 ACTGTTCCCC GGTACTTCT CTTTATTGT AGCACTCAGC TCCCCAGCCA
 2651 ATCTGTACAT CCCTCAGAGG CAGCGATCTG ATGAATTGGT TTTGAATCC
 2701 CAGAAAGGGT CTGCCATGG A GTTGGCAGTC ATCACGGTAG ATGGCGTATG
 2751 ATTTTGTGA ATTTAAATA AAATGAAAAC CATAAATTAC ATGATGCTTT
 2801 TATTGACACT TGACAACCTGG CCTAAATAAA AAGACTCTGA CTCCAAAAAA
 2851 AAAAAAAAAA AAA

55

BLAST Results

Entry AF028808 from database EMBL:
 Mus musculus hemin-sensitive initiation factor 2 alpha kinase mRNA.

5 complete cds.
 Score = 6688, P = 2.7e-296, identities = 1922/2534

Entry AC005995 from database EMBL:
 Homo sapiens clone DJ0042M02, WORKING DRAFT SEQUENCE, 13
 10 unordered pieces.
 Score = 5116, P = 0.0e+00, identities = 1090/1148

15 **Medline entries**

99042009:
 20 Berlanga J.J., Herrero S., de Haro C.; Characterization of the
 hemin-sensitive eukaryotic initiation factor 2alpha kinase from
 mouse nonerythroid cells; J. Biol. Chem. 273(48):32340-32346 (1998).

25

Peptide information for frame 1

30 ORF from 52 bp to 1938 bp; peptide length: 629
 Category: similarity to known protein
 Classification: Protein management
 Prosite motifs: PROTEIN_KINASE_ATP (173-196)
 35 PROTEIN_KINASE_ATP (173-197)
 PROTEIN_KINASE_ST (437-449)

40	I MGGGNNSGVRK REEEGDGAGA VAAPPAIDFP AEGPDPEYDE SDVPAEIQVL
	51 KEPLQQPTFP FAVANQLLLV SLLEHLSHVH EPNPLRSRQV FKLLCQTFIK
	101 MGLLSSFTCS DEFSSLRLHH NRAITHLMRS AKERVRQDPC EDISRIQKIR
	151 SREVALEAQ T SRYLNEFEEL AILGKGGYGR VYKVRNKLDG QYYAIKKILI
	201 KGATKTVCMK VLREVVKVLAG LQHPNIVGYH TAWIEHVHVI QPRDRAAIEL
	251 PSLEVLSDQE EDREQCGVKN DESSSSSIIF AEPTPEKEKR FGESDTENQN
45	301 NKSVKYTTLN VIRESGELES TLELQENGLA GLSASSIVEQ QLPLRRNSHL
	351 EESFTSTEE S SEENVNFLGQ TEAQYHMLH IQMQLCELSL WDWIVERNKR
	401 GREYVDESAC PYVMANVATK IFQELVEGVF YIHNMGIVHR DLKPRNIFLH
	451 GPDQQVKIGD FGLACTDILQ KNTDWTRNRNG KRTPTHTSRV GTCLYASPEQ
	501 LEGSEYDAKS DMYSLGVVLL ELFQPFGETM ERAEVLTGLR TGQLPESLRK
55	551 RCPVQAKYI Q HLTRRNSSQR PSAIQLLQSE LFQNSGNVNL TLQMKIIEQE
	601 KEIAELKKQL NLLSQDKGVR DDGKDGGVG

55 **BLASTP hits**

No BLASTP hits available

Alert BLASTP hits for DKFZphamy2_lil, frame 1

No Alert BLASTP hits found

5 Pedant information for DKFZphamy2_lil, frame 1

Report for DKFZphamy2_lil.1

10 [[LENGTH]] 646
 [[MW]] 72738.78
 [[pI]] 5.80
 [[HOMOL]] SWISSNEP:HRI_MOUSE HEME-REGULATED EUKARYOTIC
 15 INITIATION FACTOR EIF-2-ALPHA KINASE (EC 2.7.1.-) (HEME-REGULATED
 INHIBITOR) (HRI) (HEME-CONTROLLED REPRESSOR) (HCR) (HEMIN-
 SENSITIVE INITIATION FACTOR-2 ALPHA KINASE). 0.0
 [[FUNCAT]] 05.07 translational control [[S. cerevisiae, YDR283c]]
 2e-43
 20 [[FUNCAT]] 30.03 organization of cytoplasm [[S. cerevisiae,
 YDR283c]] 2e-43
 [[FUNCAT]] 10.02.11 key kinases [[S. cerevisiae, YOR231w]] 8e-14
 [[FUNCAT]] 03.04 budding, cell polarity and filament formation
 [[S. cerevisiae, YOR231w]] 8e-14
 25 [[FUNCAT]] 03.01 cell growth [[S. cerevisiae, YOR231w]] 8e-14
 [[FUNCAT]] 11.01 stress response [[S. cerevisiae, YOR231w]] 8e-14
 [[FUNCAT]] 03.22 cell cycle control and mitosis [[S. cerevisiae,
 YOR231w]] 8e-14
 [[FUNCAT]] 30.10 nuclear organization [[S. cerevisiae, YKL101w]]
 30 8e-12
 [[FUNCAT]] 99 unclassified proteins [[S. cerevisiae, YPL150w]]
 8e-12
 [[FUNCAT]] 03.13 meiosis [[S. cerevisiae, YDR523c]] 2e-11
 [[FUNCAT]] 03.10 sporulation and germination [[S. cerevisiae,
 YDR523c]] 2e-11
 [[FUNCAT]] 09.01 biogenesis of cell wall [[S. cerevisiae,
 YPL140c]] 4e-11
 [[FUNCAT]] 10.03.11 key kinases [[S. cerevisiae, YCR073c]] 9e-11
 [[FUNCAT]] 98 classification not yet clear-cut [[S. cerevisiae,
 YHR082c]] 1e-10
 [[FUNCAT]] 03.07 pheromone response, mating-type determination,
 sex-specific proteins [[S. cerevisiae, YLR362w]] 2e-10
 [[FUNCAT]] 10.05.11 key kinases [[S. cerevisiae, YLR362w]] 2e-10
 [[FUNCAT]] 10.04.11 key kinases [[S. cerevisiae, YLR362w]] 2e-10
 45 [[FUNCAT]] 10.99 other signal-transduction activities [[S.
 cerevisiae, YDL101c]] 3e-10
 [[FUNCAT]] 11.04 dna repair (direct repair, base excision repair
 and nucleotide excision repair) [[S. cerevisiae, YDL101c]] 3e-10
 [[FUNCAT]] 03.25 cytokinesis [[S. cerevisiae, YDR507c]] 3e-10
 50 [[FUNCAT]] 04.05.01 general transcription activities [[S.
 cerevisiae, YDL108w]] 1e-09
 [[FUNCAT]] 03.16 dna synthesis and replication [[S. cerevisiae,
 YBR160w]] 1e-09
 [[FUNCAT]] 01.05.04 regulation of carbohydrate utilization [[S.
 cerevisiae, YLR113w]] 4e-09
 [[FUNCAT]] 02.19 metabolism of energy reserves (glycogen,
 trehalose) [[S. cerevisiae, YPL031c]] 1e-08

[[FUNCAT]] 04.05.01.04 transcriptional control [[S. cerevisiae,
 YPL031c]] 1e-08
 [[FUNCAT]] 01.04.04 regulation of phosphate utilization [[S.
 cerevisiae, YPL031c]] 1e-08
 5 [[FUNCAT]] c-energy conversion [[M. genitalium, MG109]] 2e-08
 [[FUNCAT]] 03.19 recombination and dna repair [[S. cerevisiae,
 YOR351c]] 1e-07
 [[FUNCAT]] 03.22.01 cell cycle check point proteins [[S.
 cerevisiae, YPL153c]] 1e-07
 10 [[FUNCAT]] 10.05.09 regulation of g-protein activity [[S.
 cerevisiae, YBL016w]] 7e-07
 [[FUNCAT]] 04.03.99 other tRNA-transcription activities [[S.
 cerevisiae, YIL035c]] 1e-06
 [[FUNCAT]] 08.13 vacuolar transport [[S. cerevisiae, YGL180w]]
 15 1e-06
 [[FUNCAT]] 06.13.04 lysosomal and vacuolar degradation [[S.
 cerevisiae, YGL180w]] 1e-06
 [[FUNCAT]] 04.99 other transcription activities [[S. cerevisiae,
 YER129w]] 2e-06
 20 [[FUNCAT]] 30.02 organization of plasma membrane [[S. cerevisiae,
 YDR122w]] 2e-06
 [[FUNCAT]] 30.07 organization of endoplasmatic reticulum [[S.
 cerevisiae, YHR079c]] 3e-06
 [[FUNCAT]] 01.06.10 regulation of lipid, fatty-acid and sterol
 25 biosynthesis [[S. cerevisiae, YHR079c]] 3e-06
 [[FUNCAT]] 08.99 other intracellular-transport activities [[S.
 cerevisiae, YKL198c]] 1e-05
 [[FUNCAT]] 10.04.99 other nutritional-response activities [[S.
 cerevisiae, YKL198c]] 1e-05
 30 [[FUNCAT]] 09.04 biogenesis of cytoskeleton [[S. cerevisiae,
 YNL020c]] 9e-05
 [[FUNCAT]] 06.07 protein modification (glycosylation, acylation,
 myristylation, palmitylation, farnesylation and processing)
 [[S. cerevisiae, YFL033c]] 4e-04
 35 [[FUNCAT]] 01.02.04 regulation of nitrogen and sulphur utilization
 [[S. cerevisiae, YNL183c]] 7e-04
 [[BLOCKS]] BL000107A Protein kinases ATP-binding region proteins
 [[SCOP]] dlir3a_ 5.1.1.2.6 insulin receptor Complex
 (transferase/substrate) 1e-22
 40 [[SCOP]] dlfgb_ 5.1.1.2.5 Fibroblast growth factor
 receptor 1 [Human] 9e-27
 [[SCOP]] dlphk_ 5.1.1.1.6 gamma-subunit of glycogen
 phosphorylase kinase 2e-23
 [[SCOP]] dlabo_ 5.1.1.1.14 Protein kinase CK2, alpha
 45 subunit [Maize] (Zea mays) 1e-23
 [[SCOP]] d3lck_ 5.1.1.2.2 Lymphocyte kinase (lck) [Human
 (Homo sapiens)] 3e-22
 [[SCOP]] d2erk_ 5.1.1.1.11 MAP kinase Erk2 [rat (Rattus
 norvegicus)] 7e-20
 50 [[SCOP]] dlcdb_ 5.1.1.1.2 cAMP-dependent PK, catalytic
 subunit Complex 6e-19
 [[SCOP]] dlhcl_ 5.1.1.1.1 Cyclin-dependent PK [Human
 (Homo sapiens)] 5e-21
 [[EC]] 2.7.1.112 Protein-tyrosine kinase 1e-08
 55 [[EC]] 2.7.1.126 beta-Adrenergic-receptor kinase 2e-08
 [[EC]] 2.7.1.117 Myosin-light-chain kinase 1e-09
 [[EC]] 2.7.1.37 Protein kinase 5e-12

[EC] 2.7.1.123 Ca²⁺/calmodulin-dependent protein kinase 4e-09
 [PIRKW] phosphotransferase 0.0
 [PIRKW] nucleus 9e-09
 5 [PIRKW] RNA binding 2e-21
 [PIRKW] duplication 8e-10
 [PIRKW] tandem repeat 4e-09
 [PIRKW] zinc 5e-12
 [PIRKW] cell cycle control 2e-09
 10 [PIRKW] serine/threonine-specific protein kinase 0.0
 [PIRKW] transmembrane protein 2e-09
 [PIRKW] zinc finger 8e-10
 [PIRKW] oncogene 6e-12
 [PIRKW] autophosphorylation 0.0
 15 [PIRKW] coat protein 1e-11
 [PIRKW] magnesium 9e-09
 [PIRKW] ATP 0.0
 [PIRKW] polyprotein 6e-12
 [PIRKW] receptor 9e-09
 20 [PIRKW] phosphoprotein 0.0
 [PIRKW] sporulation 2e-09
 [PIRKW] glycoprotein 9e-09
 [PIRKW] growth factor receptor 9e-11
 [PIRKW] signal transduction 2e-12
 25 [PIRKW] serine/threonine/tyrosine-specific protein kinase
 8e-10
 [PIRKW] protein kinase 8e-10
 [PIRKW] transforming protein 2e-12
 [PIRKW] heme binding 0.0
 30 [PIRKW] purine nucleotide binding 2e-10
 [PIRKW] calcium binding 4e-09
 [PIRKW] meiosis 1e-08
 [PIRKW] alternative splicing 1e-11
 [PIRKW] P-loop 2e-10
 35 [PIRKW] proto-oncogene 2e-12
 [PIRKW] segmentation 4e-10
 [PIRKW] stress-induced protein 1e-09
 [PIRKW] EF hand 4e-09
 [PIRKW] cell division 1e-09
 40 [PIRKW] calmodulin binding 4e-09
 [SUPFAM] LIM protein kinase 8e-10
 [SUPFAM] calcium-dependent protein kinase 4e-09
 [SUPFAM] rat protein kinase raf 5e-12
 [SUPFAM] AMP-activated protein kinase 2e-08
 45 [SUPFAM] protein kinase byr2 5e-09
 [SUPFAM] SH2 homology 1e-08
 [SUPFAM] unassigned Ser/Thr or Tyr-specific protein kinases 0.0
 [SUPFAM] leucine-rich alpha-2-glycoprotein repeat homology 9e-09
 50 [SUPFAM] double-stranded RNA-binding repeat homology 2e-21
 [SUPFAM] histidine-tRNA ligase homology 6e-42
 [SUPFAM] SAM homology 5e-09
 [SUPFAM] avian retrovirus ICL gag-Rmil-env polyprotein 1e-11
 [SUPFAM] LIM metal-binding repeat homology 8e-10
 55 [SUPFAM] GCN2 protein 6e-42
 [SUPFAM] protein kinase homology 0.0
 [SUPFAM] protein kinase C zinc-binding repeat homology 2e-12
 [SUPFAM] Ca²⁺/calmodulin-dependent protein kinase II 4e-08

[SUPFAM] beta-adrenergic-receptor kinase 2e-08
 [SUPFAM] kinase-related transforming protein 6e-12
 [SUPFAM] protein kinase A-raf 2e-12
 [SUPFAM] SH3 homology 1e-08
 5 [SUPFAM] Ca²⁺/calmodulin-dependent protein kinase 4e-09
 [SUPFAM] protein kinase Xa21 9e-09
 [SUPFAM] calmodulin repeat homology 4e-09
 [SUPFAM] protein kinase DUN1 9e-09
 [SUPFAM] pleckstrin repeat homology 9e-09
 10 [SUPFAM] protein kinase TIK 2e-21
 [SUPFAM] protein-tyrosine kinase tec 1e-08
 [SUPFAM] kinase interaction domain homology 9e-09
 [PROSITE] PROTEIN_KINASE_ATP 2
 [PROSITE] PROTEIN_KINASE_ST 1
 15 [PFAM] Eukaryotic protein kinase domain
 [KW] Irregular
 [KW] 3D
 [KW] LOW_COMPLEXITY 10.99 %
 [KW] COILED_COIL 5.26 %
 20
 SEQ AVLGWPAGWAAARARPAMQGGNSGVRKREEEGDGAGAVAAPPAIDFPAEGPDPEYDESDV
 SEG ...XXXXXXXXXXXX...XXXXXXXXXXXX...XXXXXXXXXXXX...
 COILS
 25 1jstA
 ...
 SEQ PAEIQLKEPLQQPTFPFAVANQLLLVSLLEHLSHVHEPNPLRSRQVFKLLCQTFIKMGL
 SEG ...XXXXXXXXXXXX...XXXXXXXXXXXX...
 COILS
 30 1jstA
 ...
 SEQ LSSFTCSDEFSSLRLHHNRAITHLMRSAKERVRQDPCEDISRIQKIRSREVALEAQTSRY
 SEG ...
 COILS
 35 1jstA
 ...
 SEQ LNEFEELAILGKGGYGRVYKVRNKLDGQYYAIKKILIKGATKTCMKVLREVKVLAGLQH
 SEG ...
 COILS
 40 1jstA
 ...
 SEQ TTTEEEEEECCCBTTBCEEEEEETTTCEEEEEEECCTTTTTTHHHHHHHHHHTTB
 SEG ...
 COILS
 45 1jstA
 ...
 SEQ PNIVGYHTAWIEHVHVIQPRDRAAIELPSLEVLSQEEDREQCGVKNDESSSSIIFAEP
 SEG ...
 COILS
 50 1jstA
 ...
 SEQ TTBC...
 SEG ...
 SEQ TPEKEKRGESDTENQNNKSVKYTTNLVIRESGELESTLELQENGLAGLSASSIVEQQLP
 SEG ...

COILS

ljsta

5

SEQ LRRNSHLEESFTSTEESSEENVNFLGQTEAQYHMLHIQMQLCELSLWDWIVERNKRGRE
 SEGXXXXXXXXXXXXX.....
 COILS

10 ljsta

SEQ YVDESACPYVMANVATKIFQELVEGVFYIHNMGIVHRDLKPRNIFLHGPDQQVKIGDFGL
 SEG

15 COILS

ljsta

20 SEQ ACTDILQKNTDWTNRNGKRTPTHTSRVGTCLYASPEQLEGSEYDAKSDMYSLGVVLLELF

SEG

COILS

ljsta

25

SEQ QPFGETEMERAEVLTGLRTGQLPESLRKRCPVQAKYIQLHLTRRNSSQRPSAIQLLQSELFQ
 SEG

COILS

30 ljsta

SEQ NSGNVNLTQMKIIIEQEKEIAELKKQLNLLSQDKGVRDDGKDGGVG

35 SEG

COILS ..CCCCCCCCCC.....XXXXXXXXXXXXX..

ljsta

40

Prosite for DKFZphamy2_lil.1

PS00107

190->214 PROTEIN_KINASE_ATP

PDOC00100

PS00107

190->215 PROTEIN_KINASE_ATP

PDOC00100

45 PS00108

454->467 PROTEIN_KINASE_ST

PDOC00100

Pfam for DKFZphamy2_lil.1

50

HMM_NAME Eukaryotic protein kinase domain

HMM

55 *YeigRiIGeGsFGtVYkCiWr.TGeIVAIKIIk.krsms.....FIREI
 +E + I+G+G++G+VYK+++ +G+ +AIK+I K ++ -
 +LRE+

Query 184
FEELAILGKGGYGRVYKVRNKLDGQYYAIKKILIKGATKTVCMKVLREV 232

5 HMM qIMRrLnHPNIIRFYDwFedddDHI*
++++ L+HPNI+ + +++ ++ H+
Query 233 KVLAGLQHPNIVGYHTAWI-EHVHV 256

HMM *IYMIMEYMeGGDLFDYIrng.....pMsEweIrfIMyQIL
10 +--+ M+++E +L+D+I+++ + + + + +I+
+++
Query 396 LHIQMQLCEL-
SLWDWIVERNKRGREYVDESACPYVMANVATKIFQELV 443

15 HMM rGMeYLHSMgIIHRDLKPENILIDeN.gqIKICDFGLARqMn.....
+G+ Y+H+MGI+HRDLKP+NI++ + Q+KI+DFGLA+
Query 444 EGVFYIHNMGIVHRDLKPRNIFLHGPDQQVKIGDFGLACTDILQKNTDWT 493

20 HMMnYerMttfCGTPWYMMMAPEVIImgnyYttkVDMWSFGCILWEMMT
+ T+++GT Y +PE ++G++Y+ K+DM+S+G++L
E++
25 Query 494 NRNGKRTPTHTSRVGTCLYA-SPEQ-
LEGSEYDAKSDMYSLGVVLLELF- 540

HMM GepPFyd..dnMemImrIiqr.frrpfWpnCSeElyDFMrwCWnyDPekR
30 +PF ++ E + ++ + ++ ++ +C+ +++ + + +++
++R
Query 541 --QPGTEMERAEVLTGLRTGQLPESLRKRCPVQAKYIQR-
HLTRRNSSQR 587

35 HMM PTFrQILnHPWF*
P++ Q+L++ F
Query 588 PSAIQLLQSELF 599

DKFZphamy2_lil4

5 group: transmembrane proteins

DKFZphamy2_lil4 encodes a novel 617 amino acid protein with similarity to the human l(3)mbt protein homolog.

10 Mutations of the Drosophila l(3)mbt gene lead to malignant brain tumors. The novel protein contains 1 transmembrane domain. No informative BLAST results; No predictive prosite, pfam or SCOP motife

15 The new protein can find application in studying the expression profile of oncogenes and amygdala-specific genes and as a new marker for amygdala cells.

20 similarity to Human l(3)mbt protein homolog mRNA

> 14 exons (HS756G23 (EMBLNEW))

Pedant: TRANSMEMBRANE 1

25 Sequenced by MediGenomix

Locus: /map="22q13.31-13.33"

Insert length: 3071 bp

30 Poly A stretch at pos. 3052, no polyadenylation signal found

	1	GGCAGGCCAA	TATGGCTTCC	TGCACCTGGT	GACGCTTGGC	GAAACTGAGG
	51	TCTCATGGAG	AAGCCCCGGA	GTATTGAGGA	GACCCCATCT	TCAGAACCAA
35	101	TGGAGGAAGA	GGAAAGATGAC	GACTTGGAGC	TGTTTGGTGG	CTATGATAGT
	151	TTCCGGAGTT	ATAACAGCAG	TGTGGGCAGT	GAGAGCAGCT	CCTATCTGGA
	201	GGAGTCAGT	GAAGCAGAAA	ATGAGGATCG	GGAAAGCAGGG	GAACTGCCGA
	251	CCTCCCCGCT	GCATTTGCTC	AGCCTGGGA	CTCCTCGCTC	CTTGGATGGC
	301	AGTGGTTCTG	AGCCAGCTGT	CTGTGAGATG	TGTGGTATCG	TGGGTACAAG
40	351	GGAAGCCTTC	TTCTCCAAGA	CCAAGAGGTT	CTGCAGCGTC	TCCTGCTCCA
	401	GGAGCTACTC	CTCCAACCTCC	AAGAAAAGCCA	GTATCTTGGC	TAGATTACAG
	451	GGAAAACCAC	CGACCAAAAAA	AGCCAAAGTC	CTGCACAAAGG	CTGCCTGGTC
	501	TGCCAAAATT	GGAGCCTTCC	TCCACTCTCA	AGGGACAGGA	CAGCTGGCAG
	551	ATGGGACACC	AACAGGACAA	GACGCTCTGG	TCTTGGGCTT	CGACTGGGGG
45	601	AAGTTCCCTGA	AGGATCACAG	TTACAAGGCT	GCTCCCGTCA	GCTGTTCAA
	651	GCACGTCCCA	CTCTATGACC	AGTGGGAGGA	TGTGATGAAA	GGGATGAAGG
	701	TGGAGGTGCT	CAACAGTGT	GCTGTGCTCC	CCAGCCGGGT	GTACTGGATC
	751	GCCTCTGTCA	TCCAGACAGC	AGGGTATCGG	GTGCTGCTTC	GGTATGAAGG
	801	CTTGAAAAT	GACGCCAGCC	ATGACTTCTG	GTGCAACCTG	GGAACAGTGG
50	851	ATGTCCACCC	CATTGGCTGG	TGTGCCATCA	ACAGCAAGAT	CCTAGTGGCC
	901	CCACGGACCA	TCCATGCCAA	GTTCACCGAC	TGGAAGGGCT	ACCTCATGAA
	951	ACGGCTGGTG	GGCTCCAGGA	CGCTTCCCGT	GGATTCCAC	ATCAAGATGG
	1001	TGGAGAGCAT	GAAGTACCCC	TTTAGGCAGG	GCATGCGGCT	GGAAAGTGGTG
	1051	GACAAGTCCC	AGGTGTACAG	CACTCGCATG	GCTGTGGTGG	ACACAGTAAT
55	1101	CGGGGGTGC	CTACGGCTCC	TCTACGAGGA	TGGTGACAGT	GACGACGACT
	1151	TCTGGTGCCA	CATGTGGAGC	CCCCCTGATCC	ACCCAGTGGG	TTGGTCACGA
	1201	CGTGTGGGCC	ACGGCATCAA	GATGTCAGAG	AGGCAGAAGTG	ACATGGCCC
	1251	TCACCCCAACC	TTCCGGAAAGA	TCTACTGTGA	TGCCGTTCCCT	TACCTCTTCA

1301 AGAAGGTACG AGCAGTCTAC ACAGAAGGCG GTTGGTTTG A GGAAGGGATG
 1351 AAGCTGGAGG CCATTGACCC CCTGAATCTG GGCAACATCT GCGTGGCAAC
 1401 TGTCTGTAAG GTTCTCCTGG ATGGATAACCT GATGATCTGT GTGGACGGGG
 1451 GGCCCTCCAC AGATGGCTG GACTGGTTCT GCTACCATGC CTCTTCCCAC
 5 1501 GCCATCTTCC CGGCCACCTT CTGTCAGAAG AATGACATTG AGCTCACACC
 1551 GCCAAAGGT TATGAGGCAC AGACTTCAA CTGGGAGAAC TACTTGAGA
 1601 AGACCAAGTC GAAAGCCGCT CCATCGAGAC TCTTTAACAT GGATTGCCA
 1651 AACCATGGCT TCAAGGTGGG CATGAAGCTG GAGGCCGTGG ACCTGATGGA
 1701 GCCCCGGCTC ATCTGTGTGG CCACGGTGAA ACGAGTGGTG CATCGGCTCC
 10 1751 TCAGCATCCA CTTTGACGGC TGGGACAGCG AGTACGACCA GTGGGTGGAC
 1801 TGCGAGTCCC CAGACATCTA CCCCGTCGGC TGGTGTGAGC TCACCGGCTA
 1851 CCAGCTCCAG CCTCCTGTGG CCGCAGGTGT GGGCTCTCGT GGCCCTAAGA
 1901 GGCTCTGACT TTCTTTCTC TTCTTTTTTC CTTCTTCCCC CGCCCTGTG
 1951 CCCATCTCCG TTCTTTGGCA TGAGGTGGAG ATGTCATG GACCACTTA
 2001 AGTAGAGAGT GAGCCCCGTC ACCCAGCCCC TCCTCCTGAC TTCTCTGTCT
 2051 CCCTTCCCT CTGGCCTGCA GAGCTCCCTC TTTCATCTTG CCCACTCTGT
 2101 CATATGTTCG TGCCCTTGTG CACCCAGGTA AACTACCCAG GTCCCTCTGA
 2151 GCAGCCCTGG TAACAAGGGT GGGAAAGAAGG GACAGCTGTT CTCCGGCCCC
 2201 TCCTCCAGCC CGCCCTCTC CTCAATTGCC AGGTTTGGCT TCCTGTCTTG
 2251 GGGTGTCTCG TGTGGGAGGG TGGATGGGGT CTCGGGATGC GCCTGTGCC
 2301 TGTGTCTCC CAGGGACCCCT CTTCTCATCT CTTTACCCCT TGTCTTCAA
 2351 CAACAGAACCC GGCCACACCG CTGAAGGCCA AAGAGGCCAC AAAGAAGAAA
 2401 AAGAAACAGT TTGGGAAGAA AAGAAAAAGA ATCCCCCCTA CTAAGACGCG
 2451 ACCCCTCAGA CAGGGGTCCA AGAAGCCCCCT GCTGGAGGAC GACCCCTCAGG
 2501 GTGCCAGGAA GATCTGTCG GAGCCTGTT CTGGCGAGAT CATTGCTGTG
 2551 CGTGTGAAGG AAGAGCATCT AGACGTGGCC TCGCCCGACA AGGCTTCAG
 2601 TCCAGAGCTG CCTGTCCTCG TCGAGAACAT CAAGCAGGAA ACAGACGACT
 2651 GAGCCTTCCCT GCCTCCAGCC TGGCTTCTAG CTGGAAGGCCA GCCCAGCGTT
 2701 TCTCTACAC CACCAACATG CCTCCACCTG ACTTTGGCTT GGAGACTGAT
 30 2751 CCTCTCTGTG TAAATTCTGC CCGGTGTCTGT GAAGGCTGGA CGGTGGAGGA
 2801 CCTGCTGGGG TCTCTGGGA CCCGCCTGT GTTCTGCCCC TCCCCCTGTGG
 2851 AAAGGTCTAT ATGACGGGGC GCCTGAGGCC CCAGAACTCG TCTGTGAACC
 2901 ACCTTTCCA GCCAGAGTTC CCAAAGCTGG AACGCTAGCT GCCTGCTCTT
 2951 CCTTAAGATG GCCTCCCCCCC GACCCGCCAC GGCCCTCAGT TGCCAGGGAT
 35 3001 GGGGCCACCA CTGTACACT GTGGAATACA AGACAGTGAA CTCTGTCTGC
 3051 CTAAAAAAAAA AAAAAAAAAA A

BLAST Results

40

Entry HS75bG23 from database EMBLNEW:
 Human DNA sequence from clone 75bG23 on chromosome 22q13.31-13.33
 Score = 3939, P = 0.0e+00, identities = 875/954

45

Entry U89358_1 from database TREMBL:
 product: "1(3)mbt protein homolog"; Human 1(3)mbt protein
 homolog
 mRNA, complete cds.
 Score = 505, P = 7.2e-45, identities = 123/320, positives =
 170/320,
 frame +1

55 Entry AB014581_1 from database TREMBL:
 gene: "KIAA0b81"; product: "KIAA0b81 protein"; Homo sapiens
 mRNA for
 KIAA0b81 protein, partial cds.

Score = 503, P = 1.4e-46, identities = 122/307, positives = 163/307,
frame +1

5

Medline entries

10 No Medline entry

15

Peptide information for frame 1

ORF from 55 bp to 1905 bp; peptide length: 617
Category: similarity to known protein
Classification: unclassified

20

```

1 MEKPRSIETT PSSEPMEEEE DDDLELFGGY DSFRSYNSSV GSESSSSYLEE
51 SSEAENEDRE AGELPTSPFH LLSPGTPRSL DGSGSEPAVC EMCIGIVGTR
101 AFFSKTKRFC SVSCSRSYSS NSKASILAR LQGKPPTKKA KVLHKAAWSA
151 KIGAFLHSQG TGQLADGTPG QDATALVLFWD WGKFLKDHSY KAAPVSCFKH
201 VPLYDQWEDV MKGMKVEVLN SDAVLPSRVY WIASVIQTAG YRVLLRYEGF
251 ENDASHDFWC NLGTVDVHPI GWCAINSKIL VPPRTIHAKF TDWKGYLMKR
301 LVGSRTLPLVD FHIKMVESMK YPFRQGMRLE VVDKSQVSRT RMAAVVDTVIG
351 GRLRLLYEDG DSDDDFWCHM WSPLIHPVGW SRRVGHGIKM SERRSDMAHH
401 PTFRKIYICDA VPYLFKKVRA VYTEGGWFEE GMKLEAIDPL NLGNICVATV
451 CKVLLDGYLM ICVDDGGPSTD GLDWFCYHAS SHAIFPATFC QKNDIELTPP
501 KGYEAQTFNW ENYLEKTFSK AAPSRLFNMID CPNHGFKVGM KLEAVDLMEP
551 RLICVATVKR VVHRLLSIHF DGWDSEYDQW VDCESPDYIP VGWCELTGYQ
601 LQPPVAAGVG SRGPKRL

```

35

BLASTP hits

No BLASTP hits available

40

Alert BLASTP hits for DKFZphamy2_1i14, frame 1

TREMBL:AB014581_1 gene: "KIAAD681"; product: "KIAAD681 protein";
Homo

45 sapiens mRNA for KIAAD681 protein, partial cds., N = 1, Score =
503, P = 3.9e-48

50 TREMBL:U89358_1 product: "l(3)mbt protein homolog"; Human
l(3)mbt
protein homolog mRNA, complete cds., N = 1, Score = 505, P =
6.2e-48

55 >TREMBL:U89358_1 product: "l(3)mbt protein homolog"; Human
l(3)mbt protein
homolog mRNA, complete cds.
Length = 772

HSPs:

Score = 505 (75.8 bits), Expect = 6.2e-48, P = 6.2e-48
 5 Identities = 123/313 (39%), Positives = 170/313 (54%)

Query: 293 WKGYLMKRLVGSRTLPPVDFH--
 IKMVESMKYPFRQGMRLEVVDKSQVSRTMAVVDTVIG 350
 W+ YL ++ + T PV + V K F+ GM+LE +D S +
 10 V V G
 Sbjct: 208 WESYLEEQRK--
 AITAPVSLFQDSQAVTHNKNGFKLGMKLEGIDPQHPSMYFILTVAEVCG 265

Query: 351 GRLRLLYEDGDSD-DDFWCHMWSPPLIHPVGWSRRVGHGIKMSE--
 15 RRSDMAHHPTFRKIY 407
 RLRL + DG S+ DFW + SP IHP GW + GH +++ + + + +
 Sbjct: 266 YRLRLHF-
 DGYSECHDFWVNANSPIHAGWFECTGHKLQLPKGYKEEEFSWSQYMCSTR 324

Query: 408 CDAVP-
 YLFKKVRAVYTEGGWFEEGMKLEAIDPLNLGNICVATVKVLLDGYLMICVDGG 466
 A P ++F G F+ GMKLEA+D +N +CVA+V V+ D
 ++ D
 Sbjct: 325 AQAAPKHMVFVSQSHSPPPPLG-FQVGMKLEAVDRMNPSLVCVASVTDVV-
 25 DSRLVHFDNW 382

Query: 467 PSTDGLDWFCYHASSHAIFPATFCQKNDIELTPPKGY-
 EAQTFNWE NYLEKTKSKAAPSR 525
 T D++C SS I P +CQK LTPP+ Y + F WE YLE+T
 30 + A P+
 Sbjct: 383 DDT--YDYWC-
 DPSSPYIHPVGWCQKQGKPLTPPQDYPDPDNFCWEKYLEETGASAVPTW 439

Query: 526
 35 LFNMDCPNHGFVGMKLEAVDLMEPRLICVATVKRVVHRLLSIHFDGWDSEYDQWVDCES 585
 F + P H F V MKLEAVD P LI VA+V+ V + IHFDGW
 YD W+D +
 Sbjct: 440 AFKVR-
 PPHSFLVNMKLEAVDRRNPALIRVASVEDVEDHRIKIHF DGW SHGYDFWIADAH 498

Query: 586 PDIYPVGWCETGYQLQPPV 605
 PDI+P GWC TG+ LQPP+
 Sbjct: 499 PDIHPAGWCSTGHPLQPP 518

Score = 333 (50.0 bits), Expect = 4.1e-27, P = 4.1e-27
 45 Identities = 103/324 (31%), Positives = 151/324 (46%)

Query: 179 FDWGKFLKDHSYKAAPVSCFKHVPLYDQWEDVMK-
 GMKVEVLNSDAVLP SRVYWI ASVIQ 237
 50 + W +L++ APVS F+ ++ K GMK+E + D PS
 +Y+I +V +
 Sbjct: 206 WSWE SYLEEQR KAITAPVSLFQDSQAVTHNKNGFKLGMKLEGI--DPQHPS-
 MYFILTVAE 262

Query: 238
 TAGYRVLLRYEGFENDASHDFWCNLGTVDVHPIGWCAINS KILVPPRTIHAKFTDWKGYL 297
 GYR+ L ++G+ HDFW N + D+HP GW L P+ +
 W Y+

Sbjct: 263 VCGYRLRLHFDGYSE--
CHDFWVNANSQSPDIHPAGWFEKTGHKLQLPKGYKEEEFSWSQYM 320

Query: 298 MKRLVGSRTLPPDFHIKMVESMKYP---
5 FRQGMRLEVVDKSQVSRTMAVVDTVIGGRLR 354

+R H+ + +S P F+ GM+LE VD+ S +A V

V+ R

Sbjct: 321 CS----

TRAQAAPKHMFVSQSHSPPPLGFQVGMKLEAVDRMNPSLVCVASVTDVVDSRFL 376

10

Query: 355 LLYEDGDSDDDWFWCHMWSPLIHPVGWSRRVGHGIKMSERRSD---
MAHHPTFRKIYCDAV 411

+ +++ D D+WC SP IHPVGW ++ G + + D

+ AV

15

Sbjct: 377
VHFDNWDDTYDYWCOPSSPYIHPVGWCQKRGKPLTPPQDYPDPDNFCWEKYLEETGASAV 436

Query: 412

PYLFKKVRAVYTEGGWFEEGMKLEAIDPLNLGNICVATVCKVLLDGYLMICVDDGPSTDG 471
20 P KVR ++ F MKLEA+D N I VA+V V D + I

DG + G

Sbjct: 437 PTWAFKVRPPHS----FLVNMKLEAVDRRNPALIRVASVEDVE-
DHRIKIHFIDGW--SHG 489

25

Query: 472 LDWFCYHASSHAIFPATFCQKNDIELTPPKG 502

D F A I PA +C K L PP G

Sbjct: 490 YD-FWIDADHPDIHPAGWCSKTGHPLQPPLG 519

30

Score = 236 (35.4 bits), Expect = 2.5e-16, P = 2.5e-16

Identities = 47/110 (42%), Positives = 66/110 (60%)

Query: 499 PPKGYEAQTFNWE NYLEKTKSKAAPSRLF-NMDCPNH---
GFKVGMKLEAVDLMEPRLIC 554

P G + + ++WE+YLE+ K+ AP LF + H GFK+GMKLE + D

35

Sbjct: 197

PATGEKKECWESYLEEQA ITAPVSLFQDSQAVTHNKNGFKLGMKLEGIDPQHPSMYF 256

40

Query: 555 VATVKRVVHRLLSIHFDGDSEYDQWVDCESPDIYPVGWCETGYQLQPP

604

+ TV V L +HFDG+ +D WV+ SPDI+P GW E TG++LQ P

Sbjct: 257 ILTVAEVCGYRLRLHFDGYSECHDFWVNANSQSPDIHPAGWFEKTGHKLQLP
306

45

Pedant information for DKFZphamy2_1i14, frame 1

Report for DKFZphamy2_1i14.1

50

[LENGTH] 617

[MW] 69264.11

[pI] 6.05

55

[HOMOL] TREMBL:U89358_1 product: "1(3)mbt protein homolog"; Human 1(3)mbt protein homolog mRNA, complete cds. 1e-47

[BLOCKS] BL01206A Amiloride-sensitive sodium channels proteins

[KW] TRANSMEMBRANE 1
 [KW] LOW_COMPLEXITY 9.40 %

5	SEQ	MEKPRSIEETPSSEPMEEEEDDLEFGGYDSFRSYNSSVGSESSSYLEESSEAENEDRE
	SEGxxxxxxxxxxxxxxxxxxxxx.....xxxxxxxxxxxxxxxxxxxxx
	PRD	cc
	MEM
10	SEQ	AGELPTSPHLSPGTPLRSLDGSGSEPAVCCEMCIGIVGTREAFFSKTKRFCSVSCSRSYSS
	SEGxxxxxxxxxxxxxx
	PRD	cc
	MEM
15	SEQ	NSKKASILARLQGKPPTKKAKVLHKAWSAKIGAFLHSQGTGQLADGPTGQDALVLGFD
	SEG	xxxxxx.....
	PRD	ccchhhhhhhhhcc
	MEM
20	SEQ	WGKFLKDHSYKAAPVSCFKHVPLYDQWEDVMKGKVEVLNSDAVLPSRVYWIASVIQTAG
	SEG
	PRD	chhhhhhcc
	MEM
25	SEQ	YRVLLRYEGFENDASHDFWCNLGTVDVPIGCAINSILVPPRTIHAKFTDWKGYLMKR
	SEG
	PRD	eeeeeecc
	MEM
30	SEQ	LVGSRTLPPDFHIKMVESMKYPFRQGMRLEVVDKSQVSRTMAVVDTVIGGRLRLLYEDG
	SEG
	PRD	hcc
	MEM
35	SEQ	DSDDDFWCHMWSPITHPGWSRRVGHGIKMSERRSDMAHHPTFRKIYCDAVPYLFKKVRA
	SEG
	PRD	cc
	MEM
40	SEQ	VYTEGGWFEEGMKLEAIDPLNLGNICVATVKVLLDGYLMICVDPGPSTDGLDWFCYHAS
	SEG
	PRD	cccccccchhhhhheeeeecccccccccccccccccccccccccccccccc
	MEM
45	SEQ	SHAIFPATFCQKNDELTTPPKGYEATFNWENYLEKTKSKAAPSRLFNMDCPNHGFKVGM
	SEG
	PRD	cc
	MEM
50	SEQ	KLEAVDLMEPRLICVATVKRVVHRLLSIHFDGWDSSEYDQWVDCESPDIYPVGWCELTGYQ
	SEG
	PRD	eeeecc
	MEM
55	SEQ	LQPPVAAGVGSRGPKRL
	SEG
	PRD	cccccccccccccccc
	MEM

(No Prosite data available for DKFZphamy2_lil4.1)

5 (No Pfam data available for DKFZphamy2_lil4.1)

DKFZphamy2_li24

5 group: differentiation/development

DKFZphamy2_li24 encodes a novel 835 amino acid protein without partial similarity to *rattus norvegicus* Notch2 protein.

10 Notch family molecules are thought to be negative regulators of neuronal differentiation in early brain development. Notch2 is expressed not only by neuronal cells in the embryonic brain, but also by glial cells in the postnatal brain. The new protein represents a new member of this family and may be involved in
 15 specific differentiation or developmental pathways of the nervous system.

The new protein can find application in modulating development and differentiation of amygdala cells.

20

putative protein

probably complete cds.

25

Sequenced by MediGenomix

Locus: unknown

30 Insert length: 2768 bp

Poly A stretch at pos. 2714, polyadenylation signal at pos. 2697

35	1 AGAAATCTTC AGCCAAACAG CTGCAGGAAG TAGAGAAGGT TAAACCCCAG 51 AGTGAGAAAG TTCACTCAGAC TCTGATTCTG GACCCAGCAC AGAGGAAGAG 101 ACTCCAGCAG CAGATGCAGC AGCACGTTCA GCTCTTGACC CAAATCCACC 151 TTCTTGCAC CTGCAACCCC AACCTCAATC CGGAGGCCAC TACCACCAAGG 201 ATATTTCTTA AAGAGCTGGG AACCTTTGCT CAAAGCTCCA TCGCCCTTCA 251 CCATCAGTAC AACCCCCAAGT TTCAGACCCCT GTTCCAACCC TGTAACTTGA 301 TGGGAGCTAT GCAGCTGATT GAAGACTTCA GCACACATGT CAGCATTGAC 351 TGCGCCCTC ATAAAACGT CAAGAAGACT GCGAATGAAT TTCCCTGTTT 401 GCCAAAGCAA GTGGCTTGA TTCTGGCCAC AAGCAAGGTT TTCATGTATC 451 CAGAGTTACT TCCAGTGTGT TCCCTGAAGG CAAAGAATCC CCAGGATAAG 501 ATCGTCTTCA CCAAGGCTGA GGACAATTG TTAGCTTCTAG GACTGAAGCA 551 TTTTGAAGGA ACTGAGTTTC CTAATCCTCT AATCAGCAAG TACCTTCTAA 601 CCTGCAAAAC TGCCCACCAA CTGACAGTGA GAATCAAGAA CCTCAACATG 651 AACAGAGCTC CTGACAAACAT CATTAAATT TATAAGAAGA CCAAACAGCT 701 GCGAGTCTTA GGAAAATGCT GTGAAGAGAT CCAGGCCACAT CAGTGGAAAGC 751 CACCTATAGA GAGAGAAGAA CACCGGCTCC CATTCTGGTT AAAGGCCAGT 801 CTGCCATCCA TCCAGGAAGA ACTGCGGCAC ATGGCTGATG GTGCTAGAGA 851 GGTAGGAAT ATGACTGGAA CCACTGAGAT CAACTCAGAT CGAACGCTAG 901 AAAAAGACAA TTTGGAGTTG GGGAGTGAAT CTCGGTACCC ACTGCTATTG 951 CCTAAGGGTG TAGTCTGAA ACTGAAGCCA GTTGCCACCC GTTTCCCCAG 1001 GAAGGCTTGG AGACAGAAGC GTTCATCAGT CCTGAAGCCC CTCCCTTATCC 1051 AACCCAGCCC CTCTCTCCAG CCCAGCTTCA ACCCTGGAA AACACCAGCC 1101 CGATCAACTC ATTCAAGAC CCCTCCGAGC AAAATGGTGC TCCGGATTCC 1151 TCACCCAATA CAGCCAGCCA CTGTTTTACA GACAGTTCCA GGTGTCCCTC 1201 CACTGGGGGT CAGTGGAGGT GAGAGTTTG AGTCTCTGC AGCACTGCCT
----	---

1251 GCTGTGCCCG CTGAGGCCAG GACAAGCTTC CCTCTGTCTG AGTCCCAGAC
 1301 TTTGCTCTCT TCTGCCCCCTG TGCCCAAGGT AATGCTGCCC TCCCTTGCCC
 1351 CTTCTAAGTT TCGAAAGCCA TATGTGAGAC GGAGACCCTC AAAGAGAAGA
 1401 GGAGTCAAGG CCTCTCCCTG TATGAAACCT GCCCCCTGTTA TCCACCACCC
 5 1451 TGCACTGTGTT ATCTTCACTG TTCTGCTAC CACTGTGAAG ATTGTGAGCC
 1501 TTGGCGGTGG CTGTAACATG ATCCAGCCTG TCAATGCGGC TGTGGCCAG
 1551 AGTCCCCAGA CTATTCCCAT CACTACCCCTC TTGGTTAACCT ACTTCCCTT
 1601 CCCCTGTCCA TTGAACCAGT CCCTGTGGC CTCTCTGTCTC TCACCCCTAA
 1651 TTGTTTCTGG CAATTCTGTG AATCTTCCCTA TACCATCCAC CCCTGAAGAT
 10 1701 AAGGCCACG TGAATGTGGA CATTGTTGT GCTGTGGCTG ATGGGGAAAA
 1751 TGCCCTTCAG GCCCTAGAAC CCAAATTAGA GCCCCAGGAA CTATCTCCTC
 1801 TCTCTGCTAC TGTGTTCCCG AAAGTGGAAC ATAGCCCAGG GCCTCCACTA
 1851 GCAGATGCAG AGTGCCAAGA AGGATTGTCA GAGAATAGTG CCTGTCGCTG
 1901 GACC GTTGTG AAAACAGAGG AGGGGAGGCA AGCTCTGGAG CCGCTCCCTC
 15 1951 AGGGCATCCA GGAGTCTCTA AACAAACCCCTA CCCCTGGGAA TTTAGAGGAA
 2001 ATTGTCAAGA TGGAACCTGA AGAAGCTAGA GAGGAAATCA GTGGATCCCC
 2051 TGAGCGTGAT ATTGTGATG ACATCAAAGT GGAACATGCT GTGGAATTGG
 2101 ACACTGGTGC CCCAAGCGAG GAGTTGAGCA GTGCTGGAGA AGTAACGAAA
 2151 CAGACAGTCT TACAGAAGGA AGAGGGAGAGG AGTCAGCCAA CTAAAACCCC
 20 2201 TTCATCTTCT CAAGAGCCCC CTGATGAAGG AACCTCAGGG ACAGATGTGA
 2251 ACAAAAGGATC ATCAAAGAAT GCTTTGTCTT CAATGGATCC TGAAGTGAGG
 2301 CTTAGTAGCC CCCCAGGGAA GCCAGAAGAT TCATCCAGTG TTGATGGTCA
 2351 GTCAGTGGGG ACTCCAGTG GGCCAGAAAC TGGAGGAGAG AAGAATGGGC
 2401 CAGAAGAAGA GGAAGAAGAG GACTTTGATG ACCTCACCCCA AGATGAGGAA
 2451 GATGAAATGT CATCAGCTC TGAGGAATCT GTGCTTCTG TCCCAGAACT
 2501 CCAGGTGAGA GCTGGAGAAT ATTCTCAAGT ATTTCTGTGGA CTCAGTAATA
 2551 TGTATCACTT ATTGTATATGC CACCTGCTTG CTTGCTGCAC TATGGATAGT
 2601 CCTAAAATCA TTGATATTG ATTTGTGAAT GCATTATGGG ACATGATTGT
 2651 GGAGTTGAGG TGAATGAGA TGGAAAGGAT GAAATTTAC TTATTATATT
 30 2701 AAACCTGTTT ACACATTAAC AAAAAAAAAA AAAAAAAAAA AAAAAAAAAAAGA
 2751 AAAAAAAAAA AAAAAAAAA

BLAST Results

35

Entry RNNOTCHX from database EMBL:
 Rat notch 2 mRNA.
 Score = 818, P = 1.6e-26, identities = 216/277

40

Medline entries

45

No Medline entry

50

Peptide information for frame 3

ORF from 114 bp to 2618 bp; peptide length: 835
 Category: putative protein
 55 Classification: Differentiation/Development

1 MQQHVQLLTQ IHLLATCNPN LNPEATTTRI FLKELGTFAQ SSIALHHQYN
 51 PKFQTLFQPC NLMGAMQLIE DFSTHVSIDC SPHKTVKKTA NEFPCLPKQV

	101	AWILATSKVF	MYPPELLPVCS	LKAKNPQDKI	VFTKAEDNLL	ALGLKHFEQT
	151	EFPNPLISKY	LLTCKTAHQL	TVRIKLNLMN	RAPDNIKFY	KTKQLPVLG
	201	KCCEEIQPHQ	WKPPPIEREEH	RLPFWLKASL	PSIQEELRHM	ADGAREVGNM
	251	TGTTEINSDR	SLEKDNLLELG	SESRYPLLIP	KGVVLKLKPV	ATRFPRKAWR
5	301	QKRSSVLPKPL	LIQPSPSLQP	SFNPGKTPAR	STHSEAPPSK	MVLRIPHPIQ
	351	PATVLTQTVPG	VPPLGVSGGE	SFESPAALPA	VPPEARTSFP	LSESQTLLSS
	401	APVPVKVMLPS	LAPSKFRKPY	VRRRPSKRRG	VKASPCMKA	PVIHHPASVI
	451	FTVPAATTVKI	VSLGGGCNMI	QPVNAAVAQS	PQTIPITLL	VNPTSFPCPL
	501	NQSLVASSVS	PLIVSGNSVN	LPIPSTPEDK	AHVNDIACA	VADGENAFQG
10	551	LEPKLEPQEL	SPLSATVFPK	VEHSPPGPPLA	DAECQEGLSE	NSACRWTVVK
	601	TEEGRQALEP	LPQGIQESLN	NPTPGDLEEI	VKMEPEEARE	EISGSPERDI
	651	CDDIKVHEAV	ELDTGAPSEE	LSSAGEVTQ	TVLQKEEERS	QPTKTPSSSQ
	701	EPPDEGTSGT	DVNKGSSKNA	LSSMDPEVRL	SSPPGKPEDS	SSVDGQSIVGT
	751	PVGPETGGEK	NGPEEEEEED	FDDLTQDEED	EMSSASEESV	LSVPELQVRA
15	801	GEYSQVFRGL	SNMYHLLICH	LLACCTMDSP	KTICT	

BLASTP hits

20 No BLASTP hits available

Alert BLASTP hits for DKFZphamv2_1i24, frame 3

25 No Alert BLASTP hits found

Pedant information for DKFZphamy2_1i24, frame 3

Report for DKFZphamv2_1124-3

SEQ	KTVKKTANEFPCLPKQVAWILATSKVFMYPPELLPVCSLAKNPQDKIVFTKAEDNLLALG
SEG	-----
PRD	eeeeeecccccccccccchhhhhhhhccccceeeecccccccccccccccccccccccccccc
5	
SEQ	LKHFEGTEFPNPLISKYLLTCKTAHQLTVRIKNLNMRAPDNIIKFYKKTQLPVLGKCC
SEG	-----
PRD	hheeeecccccccccccceeeeeeeehhhhhhhhheeecccccccccccccccccccccccc
10	
SEQ	EEIQRPHQWKPIEREEHRLPFWLKASLPSIQEELRHMAKGAREVGNMTGTTEINSDRSLE
SEG	-----
PRD	eeeecc
15	
SEQ	KDNLELGSESRYPLLLPKGVLKLKPVATRFPRAWRQKRSSVLKPLLIQPSPLQPSFN
SEG	-----xxxxxx-----
PRD	cc
20	
SEQ	PGKTPARSTHSEAPPSKMVLRIPHIQPATVLQTVPGVPPLGVSGGESFESPAALPAVPP
SEG	-----
PRD	cc
25	
SEQ	EARTSFPLSESQTLLSSAPVPKVMLPSLAPSFKFRKYVRRRPSKRRGVKASPCMKPAPVI
SEG	-----
PRD	cc
30	
SEQ	LVASSVSPLIVSGNSVNLPPIPSTPEDKAHVNVDIACAVADGENAFQGLEPKLEPQELSPL
SEG	-----
PRD	cc
35	
SEQ	SATVFPKVEHSPGPLADAECQEGLSSENSACRWTVVKTEEGRQALEPLPQGIQESLNNT
SEG	-----
PRD	cc
40	
SEQ	PGDLEEIVKMEPEEAREEISGSPERDICDDIKVEHAVELDTGAPSEELSSAGEVTKQTVL
SEG	-----
PRD	cchh
45	
SEQ	QKEEERSQPTKTPSSSQEPPDEGTSGTDVNKGSSKNALSSMDPEVRLSSPPGKPEDSSV
SEG	-----
PRD	hhhhhhcc
50	
SEQ	SQVFRGLSNMYHLLICHLLACCTMDSPKIICI
SEG	-----
PRD	eeeeeehhhhhhhhhhhhhhhhcccccccccccc
55	(No Prosite data available for DKFZphamy2_li24.3)
	(No Pfam data available for DKFZphamy2_li24.3)

DKFZphamy2_1j19

5 -----

group: differentiation/development

10 DKFZphamy2_1j19 encodes a novel 150 amino acid protein with high similarity to the allograft inflammatory factor-1 of *Cyprinus carpio*.

15 Allograft inflammatory factor-1 (AIF-19 is a protein involved in allograft rejection. In experimental autoimmune encephalomyelitis (EAE), neuritis(EAN) and uveitis (EAU) it is produced by macrophages and microglia cells.

20 The new protein can find clinical application in the development of tools to enhance the compatibility of transplanted tissues as well as in expression profiling of autoimmune diseases and infections.

25 strong similarity to allograft inflammatory factor-1 (*Cyprinus carpio*)

identical to DKFZphamy2_1n1

30 Sequenced by MediGenomix

Locus: /map="504.9 cR from top of Chr9 linkage group"

Insert length: 3381 bp

35 Poly A stretch at pos. 3362, polyadenylation signal at pos. 3344

1	GCCGGAGCCC	GGACCAGGGCG	CCTGTGCCTC	CTCCTCGTCC	CTCGCCGCGT
51	CCGCGAACGCC	TGGAGCCGGC	GGGAGCCCCG	CGCTCGCCAT	GTCGGGCGAG
101	CTCAGCAACA	GGTTCCAAGG	AGGGAAAGCG	TTCGGCTTG	TCAAAGCCCG
151	GCAGGGAGAGG	AGGCTGGCCG	AGATCAACCG	GGAGTTTCTG	TGTGACCAGA
201	AGTACAGTGA	TGAAGAGAAC	CTTCCAGAAA	AGCTCACAGC	CTTCAAAGAG
251	AAGTACATGG	AGTTTGACCT	GAACAATGAA	GGCGAGATTG	ACCTGATGTC
301	TTTAAAGAGGG	ATGATGGAGA	AGCTTGGTGT	CCCCAAGACC	CACCTGGAGA
351	TGAAGAAAGAT	GATCTCAGAG	GTGACAGGGAG	GGGTCACTGA	CACTATATCC
401	TACCGAGACT	TTGTGAACAT	GATGCTGGGG	AAACGGTCGG	CTGTCTCAA
451	GTTAGTCATG	ATGTTTGAAG	GAAAAGCCAA	CGAGAGCAGC	CCCAAGCCAG
501	TTGGCCCCCCC	TCCAGAGAGA	GACATTGCTA	GCCTGCCCTG	AGGACCCCAG
551	CTGGACTCCCC	CAGCCTTCCC	ACCCCATACC	TCCCTCCCGA	TCTTGCTGCC
601	CTTCTTGACA	CACTGTGATC	TCTCTCTCTC	TCATTTGTTT	GGTCATTGAG
651	GGTTTGTGTTG	TGTTTTCATC	AATGTCCTTG	TAAAGCACAA	ATTATCTGCC
701	TTAAAGGGGC	TCTGGGTCGG	GGAAATCCTGA	GCCTTGGGTC	CCCTCCCTCT
751	CTTCTTCCCT	CCTTCCCCGC	TCCCTGTGCA	GAAGGGCTGA	TATCAAACCA
801	AAAATAGAG	GGGGCAGGGC	CAGGGCAGGG	AGGCTTCCAG	CCTGTGTTCC
851	CCTCACCTGG	AGGAACCAAGC	ACTCTCCATC	CTTTCAGAAA	GTCTCCAAGC
901	CAAGTTCAAGG	CTCACTGACC	TGGCTCTGAC	GAGGACCCCA	GGCCACTCTG
951	AGAAGACCTT	GGAGTAGGGA	CAAGGCTGCA	GGGCCTCTTT	CGGGTTCCCT
1001	TGGACAGTGC	CATGGTTCCA	GTGCTCTGGT	GTCACCCAGG	ACACAGCCAC

1051	TCGGGGCCCC	GCTGCCCAAG	CTGATCCCCA	CTCATTCCAC	ACCTCTCTC	
1101	ATCCTCAGTG	ATGTGAAGGT	GGAAAGGAAA	GGAGCTTGGC	ATTGGGAGCC	
1151	CTTCAGAAG	GTACCAGAAG	GAACCCCTCCA	GTCCCTGCTCT	CTGGCACAC	
5	1201	CTGTGCAGGC	AGCTGAGAGG	CAGCGTGCAG	CCCTACTGTC	CCTTAUTGGG
	1251	GCAGCAGAGG	GCTTCGGAGG	CAGAAGTGAG	GCCTGGGGTT	TGGGGGAAA
	1301	GGTCAGCTCA	GTGCTGTTCC	ACCTTTAGG	GAGGATACTG	AGGGGACCAAG
	1351	GATGGGAGAA	TGAGGAGTAA	AATGCTCACG	GCAAAGTCAG	CAGCACTGGT
10	1401	AAGCCAAGAC	TGAGAAATAC	AAGGTTGCTT	GTCTGACCCC	AATCTGCTTG
	1451	AAACCTGACT	CTGCTTCTCT	CATTGTCCTT	CCTACCCCTAC	TCACATAATT
	1501	CACTCATTGA	CTCACTCATT	CACCAAGATAT	TTATTGACCT	GCTATTATAA
	1551	GCTTACATC	CTCCCATGTT	GTCTGGCAT	GTGCACTATA	CACGGTCTAA
15	1601	CTCATCTCTC	CCCAGATCTC	TCAGAACCTT	GAGCTTGGGA	ATTGAACCTGG
	1651	GGTCACCTGT	GTCTTTCTT	ATGGAACCTG	AGGATTTAG	AACCTTAATG
	1701	CACCCGGAG	GGTAGCTGGG	CCAGACTTCT	CATTCACAG	GTGAGGAGAC
20	1751	TGGTGCCCCA	CAGGGATTAA	GTGCCCTGCC	CAAGGTCAGG	CTTATCTCCA
	1801	GAGGGAGGTG	CCCTGGACTG	GGGCCAGAT	TTTCAGGGAC	CCTGCCTACA
	1851	CCTCATTTCC	AGTGTGGCT	GCCTTAGTTA	GTTATGAGAA	CAGGGAAAGGG
	1901	CTGGGAAGAG	ACAGCCTCCA	AGGTCAACAC	TTGGAGAGGG	TTTCACTTGC
	1951	TCTGAAGACC	CTGGTCCAGG	ATTGCCCCCTC	TCCCATGCCT	TCAAGTCAGC
25	2001	ATCAGGCTTA	GGGCAAAGAC	CAGGCCCTTG	AAGCTGCCCTC	TTGTAATTCA
	2051	TGCAGGAAGA	TGTCAAAGTC	AGCCCCATCT	TGGCTGATCA	GGGTGTTCAAG
	2101	CCTTAACCCC	ACCTGTGTT	TGAAGTCTCT	TACCCCTACCT	GCTCAGGACT
	2151	GAGACAGTTA	TTCACTGAAC	ATATTATTAA	AGCACCTGCT	GTAGGCCAAC
	2201	AGTTAAGAAT	CCAATAATGA	AATGGACAGA	TTCATGGAAC	TTAGAGTCCA
30	2251	ATAGGAAAGT	GAGACCCAGA	CAATGACAAT	GAGATAATG	TTAGGAAGGG
	2301	GGAGGTATGG	GGTGACTTCC	CTGCAGTCCT	GGGGGCCTAC	ATGGGCCAA
	2351	GAATGGGTGA	GAGTCTTGGC	AGAGCCTTTG	CAACACCTTA	AGTGGACAGG
	2401	ACTGGGAGGT	CTTGGTGGTT	GGAGCCAACG	TGGGTTCCCT	GCAGCTCCCT
	2451	AGTCACCTCT	GATAGCAGAT	TGAGGGAGGA	AAACAGGTA	GGCATGAGGA
35	2501	AATGGCCAGG	TTGGGTTAAC	CCACTGGTTT	CAACCAGTTC	AGGAATGAGG
	2551	TTATTTGGCC	ATGACTGGCT	GATCTTGAGC	TCAAGGATCT	GCTTCAATG
	2601	CACACAGGCC	TAGTTGAAGT	TTAAACCCCCA	GCAAAACATT	CCTCCCTGTA
	2651	AATGGAAAAT	CCTACTTCTA	CCCCCACCCCT	GCCCTGTTT	TTGTTTTTT
	2701	TTTCCCCAAG	ATCATTAGAT	GTCTCACCC	CTCCTCACTG	CCTCTCCTCT
40	2751	CTGGGACAGG	CTGGGACCTT	TGAGGAAGAT	AAAGCCTTCC	TTGACTACCC
	2801	ATCATATTCA	GTGTCCTCTG	TCCTCACTCA	GAGAGGAAGG	CAGAACCACT
	2851	CAGGCTTATT	TCAGTAAGTT	CCACAGTTCT	ACAAGACTGC	AGGAATTCTC
	2901	CTTAAGGGAG	GAGAGCAAGC	AGGTGTGGCC	CCAGCTTCTG	GAAATGGCAG
	2951	AAGAGAGGGT	TTTCTCATTG	AATGGGGGTG	GGGGCTCGTG	TGTCTGGGA
45	3001	AACCCCATCA	GTCCCTTCAT	TTCTTGAGAC	TCAACTCCTG	GGAGGAGAGG
	3051	GTCTCAAGAG	TTGTCCTCTG	AAGGAGGGCG	GGGGCAGTCT	GCATCTATT
	3101	CAGGTTGTGG	CTCTTGGTTC	TAGGACTCTT	ACTTCTCTGG	CTAAGGGCTC
	3151	AGCTTCTTGG	GACTTCACCC	ATCTTCTTTC	TGAAAGACCA	AATCTAATGT
	3201	AACCAGTAAC	GTGAGGACTG	CCAAGTATGG	CTTTGCCCC	ATGACTCAGA
	3251	GGAGGGTTG	TCGGGCAAAT	TCAGGTGGAT	GAAGTATGTG	TGTGCGTGTG
	3301	CATGGGAGTG	TGCGTGGACT	GGGATATCAT	CTCTACAGCC	TGCAAATAAA
	3351	CCAGACAAAC	TTAAAAAA	AAAAAAAAA A		

50

BLAST Results

Entry AB012309_1 from database TREMBL:
 product: "allograft inflammatory factor-1"; Cyprinus carpio mRNA
 for
 allograft inflammatory factor-1, complete cds.
 Score = 575, P = 3.7e-54, identities = 113/146, positives =
 128/146.

frame +2

5

Medline entries

No Medline entry

10

Peptide information for frame 2

15 ORF from 89 bp to 538 bp; peptide length: 150

Category: strong similarity to known protein

Classification: unclassified

1 MSGELSNRFQ GGKAFGLLKA RQERRLAEIN REFLCDQKYS DEENLPEKLT
20 51 AFKEKYMЕFD LNNEGEIDLM SLKRMMMEKLG VPКTHLEMKK MISEVTGGVS
101 DTISYRDFVN MMLGKRSAVL KLVMMFEGKA NESSPKPVGP PPERDIASLP

25

BLASTP hits

No BLASTP hits available

30 Alert BLASTP hits for DKFZphamy2_1j19, frame 2
No Alert BLASTP hits found

Pedant information for DKFZphamy2_1j19, frame 2

35

Report for DKFZphamy2_1j19.2

40 [LENGTH] 150
[MW] 17067.86
[pI] 6.63
[HOMOL] TREMBL:AB012309_1 product: "allograft inflammatory factor-1"; Cyprinus carpio mRNA for allograft inflammatory factor-1, complete cds. 2e-59
45 [FUNCAT] 30.04 organization of cytoskeleton [S. cerevisiae, YBR109c] 5e-04
[FUNCAT] 03.07 pheromone response, mating-type determination, sex-specific proteins [S. cerevisiae, YBR109c] 5e-04
[FUNCAT] 08.19 cellular import [S. cerevisiae, YBR109c] 5e-04
50 [FUNCAT] 10.02.99 other morphogenetic activities [S. cerevisiae, YBR109c] 5e-04
[FUNCAT] 03.22 cell cycle control and mitosis [S. cerevisiae, YBR109c] 5e-04
[FUNCAT] 03.04 budding, cell polarity and filament formation [S. cerevisiae, YBR109c] 5e-04
55 [FUNCAT] 03.01 cell growth [S. cerevisiae, YBR109c] 5e-04
[FUNCAT] 30.05 organization of centrosome [S. cerevisiae, YBR109c] 5e-04

[SCOP] d2mysb_ 1.37.1.5.15 Myosin Essential Chain Myosin
Regulatory Chain 5e-20
[SCOP] d1wdcb_ 1.37.1.5.14 Myosin Essential Chain Myosin
Regulatory Chain 3e-05
5 [SCOP] d1osa_ 1.37.1.5.13 Calmodulin [(Paramecium
tetraurelia) 3e-1b
[SCOP] d1auib_ 1.37.1.5.19 Calcineurin regulatory subunit
(B-chain 2e-1b.
[PIRKW] duplication 7e-0b
10 [PIRKW] mitosis 7e-0b
[PIRKW] calcium binding 7e-0b
[PIRKW] EF hand 7e-0b
[PIRKW] cell division 7e-0b
15 [SUPFAM] unassigned calmodulin-related proteins 3e-47
[SUPFAM] calmodulin 7e-0b
[SUPFAM] calmodulin repeat homology 3e-47
[KW] All_Alpha
[KW] 3D

20 SEQ MSGELSNRFQGGKAFGLLKARQERRLAEINREFLCDQKYSDEENLPEKLTA
lctr- FKEKYMED
.....HHHHHHHHHHHHHHHT

25 SEQ LNNEGEIDLMSLKRMMEKLGVPKTHLEMKKMISEVTGGVSDTISYRDFVN
lctr- MMLGKRSAVL
TTTTTCBCHHHHHHHHHHHTTCCCHHHHHHHHHCTTTCCCBCHHHHHHHHC

30 SEQ KLVMMFEGKANESSPKPVGPPPERDIASLP
lctr- HHHHHHTTTC.....

(No Prosite data available for DKFZphamy2_1j19.2)
35 (No Pfam data available for DKFZphamy2_1j19.2)

DKFZphamy2_24b4

5 group: cell cycle

DKFZphamy2_24b4 encodes a novel 698 amino acid protein with similarity to human STIM1.

10 The stromal interaction molecular 1 gene (STIM1) encodes a type I trans-membrane protein of unknown function, which induces growth arrest and degeneration of the human tumor cell lines G401 and RD but not HBL100 and CaLu-6, suggesting a role in the pathogenesis of rhabdomyosarcomas and rhabdoid tumors. There is also strong
 15 similarity to a Mus musculus stromal cell protein, which selectively increases interleukin 7-dependent proliferation of pre-B cells. The novel protein contains 1 transmembrane domain.

20 The new protein can find application in modulation of tumour growth.

similarity to STIM1 (Homo sapiens)

25 probably differential polyadenylation: cf. EST-BLAST file.
 perhaps complete cds.
 Pedant: SIGNAL_PEPTIDE and TRANSMEMBRANE 1

Sequenced by GBF

30 Locus: /map="139.2 cR from top of Chr4 linkage group"

Insert length: 3305 bp

35 Poly A stretch at pos. 3274, polyadenylation signal at pos. 3260

	1	GGCGCCTTCA	TCCC GCCCTCG	ACT CCTGGCC	CAG CGTGGGG	CTGGCTGCTG
	51	CGGCGGCCGGC	GCTGGGCTGC	GTT GCTGGTG	CTCGGGCTGC	TGGTACCCGG
	101	AGCGGGCGGAC	GGAT GCGAGC	TTGTGCCCCG	GCACCTCCGC	GGGC GGGCGGG
	151	CGACTGGCTC	TGCCGCACT	GCCGCCCTCCT	CTCCC GCCGC	GGCGGCCGGC
	201	GATAGCCCGG	CGCTCATGAC	AGATCCCTGC	ATGTC ACTGA	GTCCACCATG
	251	CTT TACAGAA	GAAGACAGAT	TTAGTCTGGA	AGCTCTTCAA	ACAATA CATA
	301	AACAAATGGA	TGATGACAAA	GATGGTGGAA	TTGAAGTAGA	GGAAAGTGAT
	351	GAATT CATCA	GAGAAGATAT	GAAATATAAA	GATGCTACTA	ATAAACACAG
	401	CCATCTGCAC	AGAGAAGATA	AACATATAAC	GATTGAGGAT	TTATGAAAC
	451	GATGGAAAAC	ATCAGAAGTT	CATAATTGGA	CCCTTGAAGA	CACTCTTCAG
	501	TGGTTGATAG	AGTTT GTTGA	ACTACCCCAA	TATGAGAAGA	ATTTTAGAGA
	551	CAACAAATGTC	AAAGGAACGA	CACTTCCCAG	GATAGCAGTG	CACGAACCTT
	601	CATTTATGAT	CTCCCAGTTG	AAAATCAGTG	ACCGGAGTCA	CAGACAAAAA
	651	CTTCAGCTCA	AGGCATTGGA	TGTGGTTTTG	TTTGGACCTC	TAACACGCC
	701	ACCTCTAAC	TGGATGAAAG	ATTTTATCCT	CACAGTTCT	ATAGTAATTG
	751	GTGTTGGAGG	CTGCTGGTT	GCTTATACGC	AGAATAAGAC	ATCAAAGAA
	801	CATGTTGCAA	AAATGATGAA	AGATTTAGAG	AGCTTACAAA	CTGCAGAGCA
	851	AAGTCTAATG	GACTTACAAG	AGAGGCTTGA	AAAGGCACAG	GAAGAAAACA
	901	GAAATGTTGC	TGTAGAAAAG	CAAAATTTAG	AGCGCAAAAT	GATGGATGAA
	951	ATCAATTATG	CAAAGGAGGA	GGCTTGTGG	CTGAGAGAGC	TAAGGGAGGG
	1001	AGCTGAATGT	GAATTGAGTA	GACGTCAGTA	TGCAGAACAG	GAATTGGAAC
	1051	AGGTTCGCAT	GGCTCTGAAA	AAGGCCGAAA	AAGAATTGTA	ACTGAGAAGC

1101	AGTTGGTCTG	TTCCAGATGC	ACTTCAGAAA	TGGCTTCAGT	TAACACATGA	
1151	AGTAGAAAGTG	CAATACTACA	ATATTAAAAG	ACAAAACGCT	GAAATGCAGC	
1201	TAGCTATTGC	TAAAGATGAG	GCAGAAAAAA	TTAAAAAAGAA	GAGAACACA	
1251	GTCTTGGGA	CTCTGCACGT	TGCACACAGC	TCCTCCCTAG	ATGAGGTAGA	
5	1301	CCACAAAATT	CTGGAAGCAA	AGAAAGCTCT	CTCTGAGTTG	ACAACCTGTT
	1351	TACGAGAACG	ACTTTTCGCG	TGGCAACAAA	TTGAGAAGAT	CTGTGGCTTT
	1401	CAGATAGCCC	ATAACTCAGG	ACTCCCCAGC	CTGACCTCTT	CCCTTTATTG
	1451	TGATCACAGC	TGGGTGGTGA	TGCCAGAGT	CTCCATTCCA	CCCTATCCAA
10	1501	TTGCTGGAGG	AGTTGATGAC	TTAGATGAAG	ACACACCCCC	AATAGTGTCA
	1551	CAATTCCCG	GGACCATGGC	TAACACCTCCT	GGATCATTAG	CCAGAACAG
	1601	CAGCCTGTGC	CGTTCACGCC	GCAGCATTGT	GCGTCCCTCG	CCTCAGCCTC
	1651	AGCGAGCTCA	GCTTGCTCCA	CACGCCCCCC	ACCCGTACA	CCCTCGGCAC
	1701	CCTCACCAACC	CGCAACACAC	ACCACACTCC	TTGCCTTCCC	CTGATCCAGA
15	1751	TATCCTCTCA	GTGTCAAGTT	GCCCTGCCT	TTATCGAAAT	GAAGAGGAGG
	1801	AAGAGGCCAT	TTACTTCTCT	GCTGAAAAGC	AATGGGAAGT	GCCAGACACA
	1851	GCTTCAGAAT	GTGACTCCTT	AAATTCTTCC	ATTGGAAGGA	AACAGTCTCC
	1901	TCCTTTAACG	CTCGAGATAT	ACCAAACATT	ATCTCCGCGA	AAGATATCAA
	1951	GAGATGAGGT	GTCCCTAGAG	GATTCCTCCC	GAGGGGATTG	GCCTGTAACT
20	2001	GTGGATGTGT	CTTGGGGTTC	TCCCGACTGT	GTAGGGTCTGA	CAGAAACTAA
	2051	GAGTATGATC	TTCACTCCTG	CAAGCAAAGT	GTACAATGGC	ATTTTGGAGA
	2101	AATCCTGTAG	CATGAACCAAG	CTTCCAGTG	GCATCCCGGT	GCCTAACCT
	2151	CGCCACACAT	CATGTTCCCTC	AGCTGGCAAC	GACAGTAAAC	CAGTTCAAGA
	2201	AGCCCCAAGT	GTGCCAGAA	TAAGCAGCAT	CCCACATGAC	CTTTGTCTATA
	2251	ATGGAGAGAA	AAGCAAAAG	CCATCAAAAA	TCAAAAGCCT	TTTTAAGAAG
25	2301	AAATCTAAGT	GAACGGCTG	ACTTGATGGA	ATCATGTTCA	AGTGGCATCT
	2351	GTAAACTATT	ATCCCCCACC	CTCCACTCCC	CACCTTTTT	TTGGTTTAAT
	2401	TTTAGGAATG	TAACTCCATT	GGGGCTTTCC	AGGCCGGATG	CCATAGTGGA
	2451	ACATCCAGAA	GGGCAACTGT	CTACTGTCTG	CTTATTAAAG	TGACTATATA
30	2501	TAATCAATTG	ATCAAGCCAG	TTATTACTGA	AAAATCATTG	AAATGAGACA
	2551	GTTTACAGTC	ATTCTGCTT	ATTATTCT	GCTTGTTCCT	CAGTGATGTA
	2601	TATGCAACAT	TTTGTGAAA	GCCACGATGG	ACTTACAAGC	TTAATGGAC
	2651	TCGTAAGCCA	GCATGGGCTT	GCAAAATTT	CTTGTTCACC	AGAGCATCTT
	2701	CTTATCTTTC	CACAGAGCTA	TTTACATCCT	GGACTATATA	ACTTAAAGA
	2751	AGTAAAACGT	AATTGCACTA	CTGTTTCCA	GACTGGAAAA	AAAAAAAAT
35	2801	CTCTGCAAGT	GAAACTGTAT	AGAGTTTATA	AAATGACTAT	GGATAGGGGA
	2851	CTGTTTCAC	TTTAGATCA	AAATGGGTTT	TTAAGTAGAA	CCTAGGGTTT
	2901	CTAATTGACT	TGATTTCGG	AAATGAAAAC	CCGCGCTTT	ATTATGGGAA
	2951	GCTTCTTGAA	CTGCATTTAC	TATTGTGAAG	TTTCAAGTCC	CGCTGTAAAG
40	3001	ATCATGTTGT	TTTGTTCCTC	CCAGGGCTTT	CACTGTGATT	TACTGCATTG
	3051	CAGGCTGTAT	GATAAAACAC	ACATAATTG	AAGAGAGAAG	GCTCTTGATT
	3101	CCTTATGCAA	GTGGAAGAGT	TGAAACTTGA	TTGAAGGACT	AAAAACATTG
	3151	ACAACCTTAA	GCCGAGGTGG	GGGGATATGG	GGATTCAAGGC	AGTTGTAAAC
	3201	ACACTTTGAA	TAACTGCAAA	GGATTACGG	TTTGTGAAAA	ATGTGTACTG
	3251	TGGAAAAGAT	AATAAATTGA	AGACATTAAA	AAAAAGAAAA	AAAAAAAAGA
45	3301	AAAAA				

BLAST Results

50 Entry HS5242610_1 from database TREMBL:
 gene: "STIM1"; product: "GOK"; Homo sapiens GOK (STIM1) mRNA,
 complete
 cds.
 55 Score = 1397, P = 4.2e-142, identities = 275/447, positives =
 336/447,
 frame +3

Entry MMU47323_1 from database TREMBL:

product: "stromal cell protein"; Mus musculus stromal cell protein

mRNA, complete cds.

5 Score = 1394, P = 8.8e-142, identities = 274/447, positives =
336/447,
frame +3

Entry HS917349 from database EMBL:

10 human STS EST167479.

Score = 1390, P = 9.1e-57, identities = 284/287

15

Medline entries

97079692:

20 Parker NJ, Begley CG, Smith PJ, Fox RM.; Molecular cloning of a novel human gene (D11S4896E) at chromosomal region 11p15.5. Genomics 1996 Oct 15;37(2):253-6

96326680:

25 Oritani K, Kincade PW.; Identification of stromal cell products that interact with pre-B cells. J Cell Biol 1996 Aug;134(3):771-82

30

Peptide information for frame 3

35

ORF from 216 bp to 2309 bp; peptide length: 698

Category: similarity to known protein

Classification: Cell signaling/communication

Prosite motifs: RGD (589-591)

40

1	MTDPCMSLSP PCFTEEDRFS LEALQTIHKQ MDDDKDGGIE VEESDEFIRE
51	DMKYKDATNK HSHLHREDKH ITIEDLWKRW KTSEVHNWTL EDTLQWLIEF
101	VELPQYEKNF RDNNVKGTTL PRIAVHEPSF MISQLKISDR SHRQKLQLKA
151	LDVVLFGPLT RPPhNWUMKDF ILTVSIVIGV GGCWFAYTQN KTSKEHVAKM
201	MKDLESLQTA EQSLMDLQER LEKAQEEENRN VAVEKQNLER KMMDEINYAK
251	EEACRLRELRL EGAECELRR QYAEQELEAQV RMALKKAEKE FELRSSWSVP
301	DALQKWLQLT HEVEVQYYNI KRQNAEMQLA IAKDEAEKIK KKRSTVFGL
351	HVAHSSSLDE VDHKILEAKK ALSELTTCLR ERLFRWQQIE KICGFQIAHN
401	SGLPSLTSSL YSDHSWVVMP RVSIPPYPIA GGVDDLDEDT PPIVSQFPGT
451	MAKPPGSLAR SSSLCRSRRS IVPSSPQPQR AQLAPHAPHP SHPRHPHHPQ
501	HTPHSLPSPD PDILSVSSCP ALYRNEEEE AIYFSAEKQW EVPDTASECD
551	SLNSSIGRKQ SPPLSLEIYQ TLSPRKISRD EVSLEDSSRG DSPVTVDVSW
601	GSPDCVGLTE TKSMIFSPAS KVYNGILEKS CSMNQLSSGI PVPKPRHTSC
651	SSAGNDSKPV QEAPSVARIS SIPHDLCNG EKSKKKPSKIK SLFKKKSK

BLASTP hits

No BLASTP hits available

5 Alert BLASTP hits for DKFZphamy2_24b4, frame 3

No Alert BLASTP hits found

10 Pedant information for DKFZphamy2_24b4, frame 3

Report for DKFZphamy2_24b4.3

15 [LENGTH] 769
 [MW] 86673.49
 [pI] 6.69
 [HOMOL] TREMBL:HS5242610_1 gene: "STIM1"; product: "GOK";
 Homo sapiens GOK (STIM1) mRNA, complete cds. Le-154
 20 [BLOCKS] BL00886C Dihydroxy-acid and b-phosphogluconate
 dehydratases proteins
 [BLOCKS] PRO00021D
 [BLOCKS] PRO1053F
 [BLOCKS] BL00726B AP endonucleases family 1 proteins
 25 [PROSITE] RGD 1
 [KW] SIGNAL_PEPTIDE 38
 [KW] TRANSMEMBRANE 1
 [KW] LOW_COMPLEXITY 15.86 %
 [KW] COILED_COIL 8.45 %
 30

SEQ RLHPASTPGPAWGWLRLRRRWAALLVLGLLVPGAADGCELVPRHLRGRRATGSAATAASS
 SEGxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx.....xxxxxxxxxxxxx
 PRD cccccccccccchhhhhhhhhhhhhhhccccccccccccchhhhhhhcccccccccccc
 35 COILS
 MEM
 SEQ PAAAAGDSPALMTDPCMSSLSPPCFTEEDRFSLEALQTIHKQMDDDKDGGIEVEESDEFIR
 SEG xxxxxxxxxx.....
 PRD cccccccccccccccccccccccccchhhhhhhhhhhhhcccccccccccccccc
 COILS
 MEM
 40 45 SEQ EDMKYKDATNKHSHLHREDKHITIEDLWKRWKTSEVHNWTLEDTLQWLIEFVELPQYEKN
 SEG
 PRD hhcc
 COILS
 MEM
 50 55 SEQ FRDNNVKGTTLPRIAVHEPSFMISQLKISDRSHRQKLQLKALDVVLGPLTRPPHNUMKD
 SEG
 PRD hhhhhccccccceeeeccccceeeecccccchhhhhhhhhhhheeecccccccccccc
 COILS
 MEM

SEQ FILTVSIVIGVGGCWFAYTRNKTSEHVAKMMKDLESLQTAEQSLMDLQERLEKAQEENR
 SEG
 PRD hhheeeeecccccccccgg
 5 COILS
 MEM MMMMMMMMMMMMMMMMM.....
 CCC
 SEQ NVAVEKQNLERKMMDEINYAKEEACRLRELREGAECELSRRQYAEQELEQVRMALKKAEK
 SEG
 PRD ceeeehh
 10 COILS
 CCC
 MEM
 SEQ EFELRSSWSVPDALQKWLQLTHEVEVQYYNIKRQNAEMQLAIAKDEAEKIKKKRSTVFGT
 SEG
 PRD hhhhhcccccchhh
 15 COILS
 MEM
 SEQ LHVAHSSSLDEVDHKILEAKKALSELTTCLRERLFRWQQIEKICGFQIAHNSGLPSLTSS
 SEG
 PRD eeeeeccccchhh
 20 COILS
 MEM
 SEQ LYSDHSSWVVMRVSIPPYPIAGGVDDLDTPPIVSQFPGTMAKPPGSLARSSSLCRSRR
 SEG
 PRD ccc
 25 COILS
 MEM
 SEQ SIVPSSPQPQRAQLAPHAPHPSPHRPHHPQHTPHSLPSPDILSVSSCPALYRNEEE
 SEG x.....xxxxxx.....xxxxxx.....xxxxxx.....xxxxxx.....xxxx
 PRD eeeeecc
 30 COILS
 MEM
 SEQ EAIYFSAEKQWEVPDTASECDLNSSIGRKQSPPLSLEIYQTLSPRKISRDEVSLEDSSR
 SEG x.....
 PRD hhhhhhhhhhhcc
 35 COILS
 MEM
 SEQ GDSPVTVDVSWGSPDCVGLTETKSMIFSPASKVYNGILEKSCSMNQLSSGIPVPKPRHTS
 SEG
 PRD ccc
 40 COILS
 MEM
 SEQ CSSAGNDSKPVQEAPSVARISSIIPHDLCHNGEKSKKPSKIKSLFKKKSK

SEGxxxxxxxxxxxxxx
PRD cccccccccceeeecceeeeccccc
COILS
MEM

5

Prosite for DKFZphamy2_24b4.3

10 PS00016 660->663 RGD PDOC00016

(No Pfam data available for DKFZphamy2_24b4.3)

DKFZphamy2_24c8

5 group: transmembrane protein

DKFZphamy2_24c8 encodes a novel 454 amino acid protein without similarity to known proteins.

10 The novel protein contains 1 transmembrane region.
No informative BLAST results; No predictive prosite, pfam or SCOP motif.

15 The new protein can find application in studying the expression profile of amygdala-specific genes and as a new marker for amygdala cells.

20 putative protein

EST of GEN-42bH07 is 141 Bp longer at 5'-end
perhaps complete cds.

Pedant: TRANSMEMBRANE 1

25 Sequenced by GBF

Locus: /map="609.7 cR from top of Chr3 linkage group"

30 Insert length: 3200 bp
Poly A stretch at pos. 3177, polyadenylation signal at pos. 3156

35	1 CCTGTCCACA GGGCCCGCTC CAGCAGCCAT GGCAACCACA TCCTCCAAGC
	51 CAGAGGGCCG CCCTCGAGGG CAGGCTGCC CCACCATCCT GCTGACAAAG
	101 CCACCGGGGG CCACCAAGCCG CCCACCCACA GCGCCCCCCC GCACTACAC
	151 ACGCAGGCCG CCCAGGCCG CAGGCTCTTC CGAAAAGGG GCTGGTAATT
	201 CATCACGCCG TGTCCCGCT GCACCTGGTG GCCACTCCAG GAGTAAAGAA
	251 GGACAGCGAG GACGAAATCC AAGCTCCACA CCTCTGGGGC AGAACGGGC
40	301 CCTGGGAAA ATCTTTAGA TCTACAAAGGG CAACTTCACA GGGTCTGTGG
	351 AACCGGAGCC CTCTACCCCTC ACCCCCCAGGA CCCCACCTTG GGGCTACTCC
	401 TCTTCACCCAC AGCCCCAGAC AGTGGCTGCG ACCACAGTGC CCAGCAATAC
	451 CTCATGGGCA CCCACCCACA CCTCCCTGGG GCCTGCAAAG GACAAGCCAG
	501 GCCTTCGCGAG AGCAGCCAG GGGGGTGGTT CTACCTTCAC CAGCCAAGGA
45	551 GGGACACCAG ATGCCACAGC AGCCTCAGGT GCCCCCTGTCA GTCCACAAGC
	601 TGCCCCAGTG CCTTCTCAGC GCCCCCACCA CGGTGACCCA CAGGATGGCC
	651 CCAGCCATAG TGACTCTTGG CTTACTGTTA CCCCTGGCAC CAGCAGACCT
	701 CTGTCCTACCA GCTCTGGGT CTTACGGCT GCCACGGGC CCACCCAGC
	751 TGCTTCGAT ACCAGTGTCT CAGCCCCCTTC CCAGGGGATT CCTCAGGGAG
50	801 CATCCACAAAC CCCACAAAGCT CCAACCCATC CCTCCAGGGT CTCAGAAAGC
	851 ACTATTTCTG GAGCCAAGGA GGAGACTGTG GCCACCCCTCA CCATGACCGA
	901 CCGGGTGCCC AGTCCTCTCT CCACAGTGGT ATCCACAGCC ACAGGCAATT
	951 TCCTCAACCG CCTGGTCCCC GCCGGGACCT GGAAGCCTGG GACAGCAGGG
55	1001 AACATCTCCC ATGTGGCCGA GGGGGACAAA CGCAGCACA GAGCCACCAT
	1051 CTGCTGAGC AAGATGGATA TCGCCTGGGT GATCCCTGGCC ATCAGCGTGC
	1101 CCATCTCTC CTGCTCTGTC CTGCTGACGG TGTGCTGCAT GAAGAGGAAG
	1151 AAGAAGACCG CCAACCCGGA GAACAAACCTG AGCTACTGGA ACAACACCAT
	1201 CACCATGGAC TACTTCAACA GGCATGCTGT GGAGCTGCC AGGGAGATCC

1251 AGTCCCTTGA AACCTCTGAG GACCAGCTCT CAGAGCCCCG CTCCCCAGCC
 1301 AATGGCGACT ATAGAGACAC TGGGATGGTC CTTGTTAACCC CTTCTGTCA
 1351 AGAAACACTG TTTGTGGAA ACGATCAAGT ATCTGAGATC TAACTACAGC
 1401 AGGCATCACT TTGCCATTCC GTATTTTCG TCTCTAAATT ATAAATATAC
 5 1451 AAATATATAT ATTATAAATA TAACCTTTGT GTAACCCTGA CTTAATGAGA
 1501 AACATTTCA GCTTTTTTC CTATGAATTG TCAACATCTT TTTTACAAGT
 1551 GTGGTTAAA AAAAAAAA CTTTACAGAA TGATCTGTGG CTTTATAAAA
 1601 TAAAGGTATT TCTAAGAAA GCAGTTGCAT TGATTGCTTC TCTTAATAAC
 1651 TATTCTTGAG CACCTGGGG A TCCCAGGAAC CCTGGTCAGG TGAGGTAAGA
 10 1701 GACTGACCTC CTGTAGAAC TGAATGTTAC AGTGGTCAAG CGCACGATT
 1751 TTTGAGTGAT TCTTAAAGCT CTGGTTCTC TTGATTGTT GTGACCCCAT
 1801 TTCCCTCCCTT CTCATACGCA CACCTGTAAA GGGAACTGGA CGGCCTCAGG
 1851 GGAAGACGGC AGACTCATGC ACAGAGAAGG AAAAGGGAAC ATCTCATCAC
 1901 CTCTGAGGAT GAGTACCCCTG GAGCCTTATG ACGGCACCAT TGGATGTCAT
 1951 GTTTAATTCC ATCCAAGTTG TGATGGCAG GCAGGAGCAT GGAGCCCTCA
 2001 GGAATCCATG GAGGACATCA AGGCATCCC AGGCCATATT CCCCTAACAT
 2051 TACTTCCACT GCTAACAAACA GGACTGCTT TCCCTGGTGG GAAAATGCTC
 2101 CTTTATGCC CATTCTGTG TCCCCTCAA CACCCACATC TGCATTAAC
 2151 ACCCGTGCCT TTCTCTTGAG GAGGGTTTAG ATGCAGATCC CGGCCCCGGA
 20 2201 GCTTAAAT GCTTGCCCCCT CTTCTTCAA GGATCAAATG TTTATTGGGG
 2251 TTCAGCTTTG TTTTCTAAA AGGCCATGGT ATCGTGCCTC TGAGGAACAT
 2301 GTTTATCTAA GAAGCTTGA GGTAGTAGAG CGATAATT TGAAACCTTC
 2351 CTCCGTCAAT CTTTAAAAAA GAAAAAAAG ATTGCCAAA CAAATCATT
 2401 GGGAGAAGAC ATCATTATAC TCCTACTTGG CACTGCAAAC CTGCTCGCAG
 2451 CACCAGCCGG TGGACTTGCC ATCCAGCTCT CAGCTTCCAC TGCTCCCC
 2501 GTTCCCGGGCC GGCTGGCTGC CTCCCCGTGC TGTGTCCAGC ACGGCCAACA
 2551 ACGTCAGACC CTCAGAGACG CCCAAGGGGC TTCCAGAGGT GGCCGCTTCT
 2601 CTATTTTTC CTGATTGTGG CTGAGAGAGA TGATTACTGC TTTGACACTT
 2651 CCTTCTCTAA AAAGAAAAAT AGTTGTAG TATATTTGA ATATAGATGC
 30 2701 TCTTATAGTC AGATTGGAA TTGAACCTGA ATATTTGGTC ATATGTTGT
 2751 GTTGTGCTG TAGTCTATCA TGACTTTTT CTTTCTGCAT TTTCTTAA
 2801 AAAAAAAA AGATGGCCTT CAAAAGTGTG TTCTCAATGT TGTATGAACC
 2851 TCCTTCACAT GAGTCGGGT GTTGTCTCTC TTCAAAGACT CTTCAACCCA
 2901 CAAAGAAGCA ACTAAATGTT TCTCTAAGTT TAATTTCTA GCGTGTGTT
 35 2951 GTCTTACCTT TTAACCTTA CCATAATATT TCTGTTAACT GTTACATT
 3001 ATATACCAAT GTGTGTAAGT ATACAGAGAA AAATCTGTT GTAAAGTAAA
 3051 ATTTATATAT AATATATGTA ATCAAAGATA CATATGTTAT ATATACATAT
 3101 GTGGATGTAT GACTTATTT TCCTTATCCA CAGATTCAG CTACCATGTA
 3151 TATATAAATA AACTTATTT ATTAGCCAGA GAAAAAAA AAAAAAAA
 40

BLAST Results

45 No BLAST result

Medline entries

50 No Medline entry

Peptide information for frame 2

ORF from 29 bp to 1390 bp; peptide length: 454

Category: putative protein

Classification: Transmembrane proteins unclassified

5 1 MATTSSKPEG RPRGQAAPTI LLTKPPGATS RPTTAPPRTT TRRPPRPPGS
 51 SRKGAGNSSR PVPPAPGGHS RSKEGQRGRN PSSTPLGQKR PLGKIFQIYK
 101 GNFTGSVEPE PSTLTPRTPL WGYSSSPQPQ TVAATTVPSN TSWAPTTSL
 151 GPKAKDGPGLR RAAQGGGSTF TSQGGTPDAT AASGAPVSPQ AAPVPSQRPH
 201 HGDPQDGPSH SDSWLTVTPG TSRLPLSTSSG VFTAATGPTP AAFDTSVSAP
 251 SQGIPQGAST TPQAPTHPSR VSESTISGAK EETVATLTMT DRVPSPPLSTV
 10 301 VSTATGNFLN RLVPAGTWKP GTAGNISHVA EGDKPQHRAT ICLSKMDIAW
 351 VILAIISVPIS SCSVLLTVCC MKRKKKKTANP ENNL SYWNNT ITMDYFNRHA
 401 VELPREIQSL ETSEDQLSEP RSPANGDYRD TGMLVLPFC QETLFVGNDQ
 451 VSEI

15

BLASTP hits

20 No BLASTP hits available

25 Alert BLASTP hits for DKFZphamy2_24c8, frame 2

No Alert BLASTP hits found

25 Pedant information for DKFZphamy2_24c8, frame 2

Report for DKFZphamy2_24c8.2

30 [LENGTH] 463
 [MW] 48277.84
 [EPI] 9.80
 [FUNCAT] 98 classification not yet clear-cut [S. cerevisiae,
 35 YJR151c] 2e-04
 [BLOCKS] PRO0912F
 [BLOCKS] BP03696F
 [KW] TRANSMEMBRANE 1
 [EKW] LOW_COMPLEXITY 15.55 %

40 SEQ LSTGPAPAAMATTSSKPEGRPRGQAAPTI LLTKPPGATS RPTTAPPRTT TRRPPRPPGS
 SEGXXXXXXXXXXXXXXXXXXXXXX
 PRD cccccchhhhhhcccccceeecccccccccccccccccccccccccccccccc
 45 MEM

50 SEQ RKGAGNSSRPVPPAPGGHS RSKEGQRGRN PSSTPLGQKR PLGKIFQIYK GNFTGSVEPEP
 SEG x.....
 PRD ccc
 MEM

55 SEQ STLTPRTPL WGYSSSPQPQ TVAATTVPSN TSWAPTTSL GPKA
 SEGXXXXXXX
 PRD ccc
 MEM

SEQ SQGGTPDATAASGAPVSPQ AAPVPSQRPH HGDPQDGPSH SDWLTVTPGTSRPLSTSSGV
 SEG XXXX...XXXXXXXXXXXXX.....

DKFZphamy2_24k15

5 group: amygdala derived

DKFZphamy2_24k15 encodes a novel 279 amino acid protein with weak similarity to pecanex of *Drosophila melanogaster*.

10 Pecanex is a maternal-effect neurogenic gene, involved in differentiation processes in the developing central nervous system. DKFZphamy2_24k15.p3 seems to be expressed ubiquitiously.

15 The new protein can find application in studying the expression profile of amygdala-specific genes and as a new marker for amygdala cells.

20 similarity to pecanex (*Drosophila melanogaster*)

probably complete cds.

Sequenced by GBF

25 Locus: unknown

Insert length: 1464 bp

Poly A stretch at pos. 1445, polyadenylation signal at pos. 1421

30	1	AAGGAAAAACA	AGAGGGACATG	CCATATATTG	CTCTCATGG	GTTCAAGTTGT
	51	TCACATTCTC	ACTTAGTATG	CTTACCCGCA	GAGTGGAGGA	CTAGCTGTAT
	101	GCCCAGTTCC	AAAATGAAGG	AGATGAGCTC	GTTATTTCCA	GAAGACTGGT
	151	ACCAATTGTC	TCTAAGGCAG	TTGGAATGTT	ATCATTCAAGA	AGAGAAGGCC
35	201	TCAAATGTAC	TGGAAGAAAT	TGCCAAGGGAC	AAAGTTTAA	AAGACTTTA
	251	TGTTCATACA	GTAATGACTT	GTTATTTAG	TTTATTTGGA	ATAGACAATA
	301	TGGCTCTAG	TCCTGGTCA	ATATTGAGAG	TTTACGGTGG	TGTTTGCCT
	351	TGGTCTGTTG	CTTGGACTG	GCTCACAGAA	AAGCCAGAAC	TGTTTCAACT
40	401	AGCACTGAAA	GCATTCAAGGT	ATACTCTGAA	ACTAATGATT	GATAAAGCAA
	451	GTTTAGGTCC	AATAGAAGAC	TTTAGAGAAC	TGATTAAGTA	CCTTGAAGAA
	501	TATGAACGTG	ACTGGTACAT	TGGTTGGTA	TCTGATGAAA	AGTGGAAAGGA
	551	AGCAATTGAA	CAAGAAAAGC	CATACTGTT	TTCTCTGGGG	TATGATTCTA
	601	ATATGGGAAT	TTACACTGGG	AGAGTGCTTA	GCCTTCAAGA	ATTATTGATC
	651	CAAGTGGGAA	AGTTAAATCC	TGAAGCTGTT	AGAGGTCACT	GGGCCAATCT
45	701	TTCATGGGAA	TTACTTTATG	CCACAAACGA	TGATGAAGAA	CGTTATAGTA
	751	TACAAGCTCA	TCCACTACTT	TTAAGAAATC	TTACGGTACA	AGCAGCAGAA
	801	CCTCCCCCTGG	GATATCCGAT	TTATTCTTCA	AAACCTCTCC	ACATACATT
	851	GTATTAGAGC	TCATTTGAC	TGTAATGTCA	TCAAATGCAA	TGTTTTATT
50	901	TTTCATCCT	AAAAAAAGTAA	CTGTGATTCT	TGTAACATTG	GGACTTCTCC
	951	ACACCCCCAT	TCAGATGCT	GAGAACAGCT	AAGCTCCGA	AAGTTGGTTC
	1001	TCTTAGCCAT	CTTAATGGTT	CTAAAAAAACA	GCAAAACAT	CTTTATGTCT
	1051	AAGATAAAAG	AACTATTTGG	CCAATATTTG	TGCCCTCTGG	ACTTTAGTAG
	1101	GCTTTGGTAA	ATGTGAGAAA	ACTTTGTTAG	AATTATCATA	TAATGAATT
	1151	TGTAATGCTT	TCTTAAATGT	GTTATAGGTG	AATTGCCATA	CAAAGTTAAC
55	1201	AGCTATGTAA	TTTTTACATA	CTTAAGAGAT	AAACATATCA	GTGTTCTAAG
	1251	TAGTGTAAAT	GGATCCTGTT	GAAGGTTAAC	ATAATGTGTA	TATATTGTT
	1301	TGAAATATAA	TTTATAGTAT	TTTCAAATGT	GCTGATTAT	TTTGACATCT
	1351	AATATCTGAA	TGTTTTGTA	TCAAGTAGTT	TGTTTCATA	GACTTCAATT

1401 CATAAAACTTT AAAAAGCTTT TAATAAAAATA TTTTCCCTTCC TTTTCAAAAAA
1451 AAAAAAAAAA AAAA

5

BLAST Results

Entry AC007939 from database EMBLNEW:
10 Homo sapiens clone 422_H_5, WORKING DRAFT SEQUENCE, 5 unordered
pieces.
Score = 4116, P = 0.0e+00, identities = 840/858
3 exons

15

Medline entries

No Medline entry
20

Peptide information for frame 3

25 ORF from 18 bp to 854 bp; peptide length: 279
Category: similarity to known protein
Classification: unclassified

30 1 MPYIPLMEFS CSHSHLVCLP AEWRTSCMPS SKMKEMSSLF PEDWYQFVLR
51 QLECYHSEEK ASNVLEEIAK DKVLKDVFVH TVMTCYFSLF GIDNMAPSPG
101 HILRVYGGVL PWSVALDWLT EKPELFQLAL KAFRYTLKLM IDKASLGPIE
151 DFRELIKYLE EYERDWFYIGL VSDEKWKEAI LQEKPYLFSL GYDSNMGIYT
201 GRVLSLQELL IQVGKLNPEA VRGQWANLSW ELLYATNDDE ERYSIQAHPL
35 251 LLRNLTQAA EPPLGYPIYS SKPLHIHLY

BLASTP hits

40 No BLASTP hits available

Alert BLASTP hits for DKFZphamy2_24k15, frame 3

45 No Alert BLASTP hits found

Pedant information for DKFZphamy2_24k15, frame 3

50 Report for DKFZphamy2_24k15.3

55 [LENGTH] 284
[MW] 33066.31
[pI] 5.37
[HOMOL] TREMBL:AF067608_11 gene: "B0511.12";
Caenorhabditis elegans cosmid B0511. 2e-13
[KW] Alpha_Beta

SEQ GKQEDMPYIPLMEFSCSHSHLVCLPAEWRTSCMPSSKMEMSSLFPEDWYQFVLRQALECY
PRD ccccccccccccccbeeecchhhhhhhhhhhhhh

5

10 SEQ LDWLTEKPELFQLALKAFRYTLKLMDKASLGPIEDFRELILKYLEEYERDWYIGLVSDEK
PRD cchhhhhchhhhhhhhhhhhhhhhhccccccchhhhhhhhhhhheeeeecccccc

SEQ WKEAILQEKPYLFSLGYDSNMGIFTGRVLSLQELLIQVGKLNPEAVRGQWANLSWELLYA
PRD hhhhhhhhhcchhhhhhhccccccchhhhhhhhhheeeeechhhhhhhhhhhheeee

15 SEQ TNDDEERYSIQAHPLLLRNLTVQAAEPPLGYPPIYSSKPLHIHLY
PRD CCC

(No Prosite data available for DKFZphamy2_24k15.3)

20

(No Pfam data available for DKFZphamy2_24k15.3)

DKFZphamy2_2a13

5 group: amygdala derived

DKFZphamy2_2a13 encodes a novel 440 amino acid protein without similarity to known proteins.

10 No informative BLAST results; No predictive prosite, pfam or SCOP motif.

The new protein can find application in studying the expression profile of amygdala-specific genes.

15

putative protein

20 perhaps complete cds.

Sequenced by MediGenomix

Locus: /map="1bpl3.3"

25 Insert length: 2584 bp

Poly A stretch at pos. 2562, polyadenylation signal at pos. 2545

30	1 GTTCCGTGAGG ACGTGCTACG GGGGCAGCTT CCTGGTACAC GAGTCGTTCC
	51 TCTACAAGCG GGAGAAGGCT GTCGGGGACA AGGTGTATTG GACCTGCCGG
	101 GACCACGCGC TGACACGGCTG CGGGAGCCGG GCCATCACCC AGGGACAGCG
	151 GGTGACTGTG ATGCGTGGGC ACTGCCACCA GCCCAGATATG GAGGGCCTGG
	201 AAGCCCAGCG GCAGCAGGAG AAGGCCGTGG AGACGCTGCA GGCTGGCAG
	251 GACGGCCCTG GGAGCCAAGT GGACACGCTG CTCCGAGGCG TGGATAGTTT
35	301 GCTCTACCGC AGGGGTCCGG GTCCCCCTGAC TCTCACCAAGG CCTCGGGCCA
	351 GAAAGCGAGC AAAGGTGAA GACCAGGAGC TGCCAACCCA GCCCAGGCC
	401 CCAGACGAGC ACCAGGACAT GGACGCGAGAC CGGGGAGGCC CTGAGTCCCT
	451 GAAGACGCCC CTGGGGGGCA GCTTCCCTGGT GTACGAGTCC TTCCCTCTACC
	501 GGCAGGGAGAA GGCAGCTGGG GAGAAGGTGT ATTGGACCTG CGGGGACCAAG
40	551 GCCCGCATGG GCTGCCGCAG CGCGGCCATC ACCCAAGGCC GACGGGTGAC
	601 TGTCACTGCGT GGTCACTGCC ACCCGCCCGA CCTGGGAGGC CTGGAGGCC
	651 TGAGGCAGCG GGAGAACAGC CCCAACACGG CGCAGCGGGG GAGCCCAGGC
	701 GCTGGCCCTCT CTTTCCAGTG GCTCTTCCGG ATCCCTGCAGC TTTTGGGTCA
	751 TGCTCCCTGTG CTGCTGTGCC CCTCAGGGTC CTCCCTGCC CCGAGCTCC
45	801 CTGCTCCACA TGCCCCCTGC CCAGCCCTCT CCATCCCTCT TGAAGGAGGC
	851 CCCGAGTTCC TGAAGACGCC CCTGGGGGGC AGCTTCCCTGG TGTACGAGTC
	901 CTTCCCTCTAC CGGCAGGGAGA AGGCAGGCCGG GGAGAAGGTG TATTGGACCT
	951 GCCGGGACCA GGCCCCGCATG GGCTGCCGCA GCGCGGCCAT CACCCAGGGC
	1001 CGGGGGGTCA TGGTCATGCG CAGGCAGTC CACCCACCGG ACCTGGGCC
50	1051 CCTGGAGGCC CTGCGGCAGC GGGAGCACTT CCCCCAACCTG GCGCAGTGGG
	1101 ACAGCCCAGA TCCTCTCCGG CCCCTGGAGT TCCTGAGGAC TTCCCTGGGG
	1151 GGCAGGGTCC TGGTCACGA GTCTTCTC TACAGGAAGG AGAAGGCC
	1201 TGGGGAGAAG GTGTACTGGA TGTGCCGGGA CCAGGCTCGG CTGGGCTGCC
	1251 GCAGCCGCGC CATAACCCAG GGCCACCGCA TCATGGTCAT GCGCAGCCAC
55	1301 TGCCATCAGC CTGACCTGGC AGGCCTGGAG GCCTTGAGGC AACGGGAGCG
	1351 GCTCCCCACC ACGGCCCAGC AGGAGGACCC AGAAAAGATT CAAGTTCAGC
	1401 TGTGCTTCAA GACGTGTTCT CCTGAAAGCC AGCAGATT TA TGGGGACATC
	1451 AAAGACGTCA GACTGGATGG CGAGTCCCAG TGAGGCGATG TGGGCAGAGG

1501 AGCTCCGAGC CGCCCACCCA AGGTGGCTTC ACATCCACAC AGGCACATTCC
 1551 CATCCACCTA GGTGGCTT AGCAGAAACT TCTTTCATC CTTCAAAGC
 1601 ATCGATGGTC TTGCGGTCTC CTCAGGAGGT CTCCCAGGAG GAATTCTTGG
 1651 ATGGTGTCTC CATGTCGGCG GAGAACAGTG CTCAGAGCTG GCGCTTGCAG
 5 1701 ACGCAGCTGT CGTGGGGCAG GGCAGGTGGCG CCTTCCCTGAC CTTTGGAAAGA
 1751 CATGACAAAG CTGCTGGAC ACGGACGCC C TGCTGTACG GCCACAGCAC
 1801 CCCCTGGGTTT GCAGAGCACG CAGCCTTCCT AGGGCTTCTC ACCTGGCGAG
 1851 GCCCCGCTCT GCTCAGCACG GTGCAAAGTG AATGCTGCTG TCTTGGAGCC
 1901 TGGGCACGTT TGGGGAAAGTT CCTGCTTCAA ACTGAGCTGC CCCGCATAGG
 10 1951 CCAGGTCAAC CCACACCAAT CTTTCTGGA CAGGTGCTGG GTAGGCCTTC
 2001 CTGGTCTCTG GCCGCCTGCT GCCAGGGTGT GGCCATCCCC AGCAACCGGA
 2051 GCCGGCCAAA CCAGAGGCCT CGCTCCGCAC TCCACACTT CCTTCTGTG
 2101 CTCCCTTCAA GTAAATTAA ACCCCCTCTC CACGATTCCC ACGGCAGGCG
 2151 TCATTCCCGA GATGGGAGCC AGTCCAGGGG TCAGCAGGAG CCAGCGCTGG
 15 2201 GCACACGTGC CCTGGCTGAG GCCAGCGGCA TCCTGGGTGG CCCAGGTCCA
 2251 TCCTGGGCAG CAAAGGCCTG TCCCCCTCTG TCAGACAGCT TCACAGAGTG
 2301 TGGCTTCACC AGTCAGAGGG AGCAGTCCGG AGAGGCAAGA TGACCCCCACC
 2351 GGGACTGCAG AGCCTCCCTC TTACTAACAA GGACCTGTCC GCAGCCGCAG
 2401 GGTCTTCAC TCCCACCCCTG TAATTGTGGG GGGAGTGCCA GCAACAGGCC
 2451 TGTCCCCCTGG CAAGTTGGCC ACGGAACCCA CCATGCACTG CAAGGCTGTG
 2501 ACAGCCTGGG CACCCCTGCT TCTCCTCTGC TTGTACGGTT CCCCCAATAA
 2551 ATCCTATTTT CCATCAAAAAA AAAAAAAA AAAA

25 BLAST Results

No BLAST result

30 Medline entries

No Medline entry

35

Peptide information for frame 2

40 ORF from 161 bp to 1480 bp; peptide length: 440
 Category: putative protein
 Classification: no clue

45 1 MRGHCHQPDM EGLEARRQQE KAVETLQAGQ DGPGSQVDTL LRGVDSSLRYR
 51 RGPGPLTLTR PPRPKRAKVE DQELPTQPEA PDEHQDMDAD PGGPEFLKTP
 101 LGGSFLVYES FLYRREKAAG EKVYWTCRDQ ARMGRSRRAI TQGRRVTVMR
 151 GHCHPPDLGG LEALRQREKR PNTAQRGSPG AGLSFQWLFR ILQLLGHAPV
 201 LLCPSGSSCL PSLPAPHGPC PALSIPLEGG PEFLKTPLGG SFLVYESFLY
 250 251 RREKAAGEKV YWTCRDQARM GCRSRAITQG RRVMVMRRHC HPPDLGGLEA
 301 LRQREHFPNL AQWDSPDPLR PLEFLRTSLG GRFLVHESFL YRKEKAAGEK
 351 VYWMCRDQAR LGCRSRAITQ GHRIIMVMRSW CHQPDLAGLE ALRQRERLPT
 401 TAQQEDPEKI QVQLCFKTCG PESQQIYGDI KDVRLDGESQ

55

BLASTP hits

No BLASTP hits available

Alert BLASTP hits for DKFZphamy2_2a13, frame 2

5 No Alert BLASTP hits found

Pedant information for DKFZphamy2_2a13, frame 2

10

Report for DKFZphamy2_2a13.2

	[[LENGTH]]	493
	[[MW]]	55840.13
15	[[pI]]	9.33
	[[KW]]	Alpha_Beta
	[[KW]]	LOW_COMPLEXITY 6.29 %
20	SEQ	FLRTCYGGSLVHESFLYKREKAVGDKVYWTCRDHALHGCRSRAITQGQRVTVMRGHCHQ
	SEG
	PRD	cccccccccccccchhhhhhhhhcccccccccccccccccccccccccccccccccccc
25	SEQ	PDMEGLEARRQQEKAVETLQAGQDGPGSQVDTLLRGVDSSLYRRGPGPLTLTRPRPRKRA
	SEG
	PRD	ccccchhhhhhhhhhhhhhhccccccccccccccccccccccccccccccccccccchhh
30	SEQ	KVEDQELPTQPEAPDEHQDMADPGGPEFLKTPLGGSLVYESFLYRREKAAGEKVYWT
	SEG
	PRD	hhhhhcc
35	SEQ	RDQARMGCRSRAITQGRRVTVMRGHCHPPDLGGLEALRQREKRPNTAQRGSPGAGLSFQW
	SEG
	PRD	cchhhhhccchhhh
40	SEQ	LFRILQLLGHAPVLLCPGSSCLPSLPAPHGPCPALSIPLEGGPEFLKTPLGGSLVYES
	SEG
	PRD	hhhhhhhhhhcc
45	SEQ	PNLAQWDSPDPLRPLEFLRTSLGGRFLVHESFLYRKEKAAGEKVYWMCRDQARLGCRSRA
	SEG
	PRD	ccccccccccccchhhhhhhcc
50	SEQ	ITQGHrimVMRSRSHCHQPDLAGLEALRQRELPTTAQQEDPEKIQVQLCFKTCSPESQRIY
	SEG
	PRD	ccccccccccccccccchhhhhhhhhcccccccccccccccccccccccccccccccc
55	SEQ	GDIKVRLDGESQ
	SEG
	PRD	cccccccccccccccc

(No Prosite data available for DKFZphamy2_2a13.2)

WO 01/98454

PCT/IB01/02050

(No Pfam data available for DKFZphamy2_2a13.2)

DKFZphamy2_2b19

5 group: differentiation/development

DKFZphamy2_2b19 encodes a novel 789 amino acid protein which originates from TXBP151 mRNA by alternative splicing.

10 It is ubiquitously expressed. The mRNA is also subject to alternative polyadenylation. Overexpression of TXBP151 in NIH3T3 cells causes inhibition of apoptosis induced by tumour necrosis factor (TNF). It binds to
 15 A20, which is also an inhibitor of cell death by a yet unknown mechanism.

The new protein can find application in modifying/blocking apoptotic pathways and therefore serve as a tool in diagnosis of
 20 cancer predisposition and as a tool in cell culture.

TXBPI51, differentially spliced

25 differential splicing
 differential polyadenylation

Sequenced by MediGenomix

30 Locus: /map="7p15"

Insert length: 3028 bp

Poly A stretch at pos. 2885, polyadenylation signal at pos. 2868

35	1 GAAGAGGTTTC GGC GGCTGAT GGCGGATCAG GATCGGAAGC CTGCGTAAC
	51 TTCTCCCTTG ATCCGGGAGT CTTCCACTG GATTACAAT GACATCCTT
	101 CAAGAAGTCC CATTGCAGAC TTCCAACCTT GCCCATGTCA TCTTCAAAAA
	151 TG TGGCCAAG AGTTACCTTC CTAATGCACA CCTGGAATGT CATTACACCT
40	201 TAACTCCATA TATT CATCCA CATCCAAAAG ATTGGGTTGG TATATTCAAG
	251 GTTGGATGGA GTACTGCTCG TGATTATTAC AC GTTTTTAT GGTCCCCAT
	301 GCCTGAACAT TATGTGGAAG GATCAACAGT CAATTGTGTA CTAGCATTCC
	351 AAGGATATTA CCTTCCAAAT GATGATGGAG AATTTTATCA GTTCTGTTAC
	401 GTTACCCATA AGGGTGAAT TC GTGGAGCA AGTACACCTT TCCAGTTTG
45	451 AGCTTCTTCT CCAGTTGAAG AGCTGCTTAC TATGGAAGAT GAAGGAAATT
	501 CTGACATGTT AGTGGTGACC ACAAAAGCAG GCCTTCTTGA GTT GAAAATT
	551 GAGAAAACCA T GAAAGAAAA AGAAGAACTG TTAAAGTTAA TTGCGTTCT
	601 GGAAAAAGAA ACAGCACAAC TTCGAGAACAG AGTTGGGAGA ATGGAAGAG
	651 AACTTAACCA TGAGAAAGAA AGATGTGACC AACTGCAAGC AGAACAAAAG
50	701 GGTCTTACTG AAGTAACACA AAGCTTAAAA ATGGAAAATG AAGAGTTAA
	751 GAAGAGGTTTC AGTGATGCTA CATCCAAAGC CCATCAGCTT GAGGAAGATA
	801 TTGTGTCAGT AACACATAAA GCAATTGAAA AAGAAACCGA ATTAGACAGT
	851 TTAAAGGACA AACTCAAGAA GGCACAAACAT GAAAGAGAAC AACTTGAATG
	901 TCAGTTGAAG ACAGAGAAGG ATGAAAAGGA ACTTTATAAG GTACATTG
55	951 AGAATACAGA AATAGAAAAT ACCAAGCTTA TGT CAGAGGT CCAGACTTA
	1001 AAAAATTAG ATGGGAACAA AGAAAGCGTG ATTACTCATT TCAAAGAAGA
	1051 GATTGGCAGG CTGCAGTTAT GTTGGCTGA AAAGGAAAAT CTGCAAAGAA
	1101 CTTCCCTGCT TACAACCTCA AGTAAAGAAG ATACTTGTGTT TTTAAAGGAG

1151	CAACTTCGTA	AAGCAGAGGA	ACAGGTTCA	GCAACTCGGC	AAGAAGTTGT
1201	CTTTCTGGCT	AAAGAACTCA	GTGATGCTGT	CAACGTACGA	GACAGAACGA
1251	TGGCAGACCT	GCATACTGCA	CGCTTGGAAA	ACGAGAAAGT	GAAAAAGCAG
1301	TTAGCTGATG	CAGTGGCAGA	ACTTAAACTA	AATGCTATGA	AAAAAGATCA
1351	GGACAAGACT	GATACACTGG	AACACGA	AAGAAGAGAA	GTTGAAGATC
1401	TGAAACTCCG	TCTTCAGATG	GCTGCAGACC	ATTATAAAGA	AAAATTAAAG
1451	GAATGCCAAA	GGCTCCAAAA	ACAAATAAAC	AAACTTTCA	ATCAATCAGC
1501	TAATAATAAT	AATGTCTTC	CAAAGAAAAC	GGGGAATCAG	CAGAAAGTGA
1551	ATGATGCTTC	AGTAAACACA	GACCCAGCCA	CTTCTGCCTC	TACTGTAGAT
1601	GTAAAGCCAT	CACCTCTGC	AGCAGAGGCA	GATTTTGACA	TAGTAACAAA
1651	GGGGCAAGTC	TGTGAAATGA	CCAAAGAAAT	TGCTGACAAA	ACAGAAAAGT
1701	ATAATAAATG	TAACAAACTC	TTGCAGGATG	AGAAAGCAA	ATGCAATAAA
1751	TATGCTGATG	AACTTGCAAA	AATGGAGCTG	AAATGGAAAG	AACAAGTGAA
1801	AATTGCTGAA	AATGTAAAAC	TTGAACTAGC	TGAAGTACAG	GACAATTATA
1851	AAGAACTTAA	AAGGAGTCTA	AAAATCCAG	CAGAAAGGAA	AATGGAAGGT
1901	CAGAATTCCC	AGAGTCCTCA	ATGTTCAAA	ACATGCTCAG	AGCAAATGG
1951	TTATGTTCTC	ACATTGTCAA	ATGCACAACC	AGTTCTGCAA	TATGGTAATC
2001	CTTATGCATC	TCAGGAAACA	AGAGATGGAG	CAGATGGTGC	TTTTTACCCA
2051	GATGAAATAC	AAAGGCCACC	TGTCAGAGTC	CCCTCTTGGG	GACTGGAAGA
2101	CAATGTTGTC	TGCAGCCAGC	CTGTCGAAA	CTTCTAGTCGG	CCTGATGGCT
2151	TAGAGGACTC	TGAGGATAGC	AAAGAAGATG	AGAATGTGCC	TACTGCTCCT
2201	GATCCTCCAA	GTCAACATT	ACGTGGGCAT	GGGACAGGCT	TTTGCTTTGA
2251	TTCCAGCTTT	GATGTTCAC	AGAAGTGTCC	CCCTCTGTGAG	TTAATGTTTC
2301	CTCCTAACTA	TGATCAGAGC	AAATTGAAAG	AACATGTTGA	AAGTCACTGG
2351	AAGGTGTGCC	CGATGTGCAG	CGAGCAGTTC	CCTCCTGACT	ATGACCAGCA
2401	GGTGTGAA	AGGCATGTGC	AGACCCATT	TGATCAGAAT	GTTCTAAATT
2451	TTGACTAGTT	ACTTTTATT	ATGAGTTAAT	ATAGTTAGC	AGTAAAAAAA
2501	AAAAAAAAAA	ACACACCTA	AAATAGACCA	CTGAGGAGAC	CATAGAGCGG
2551	ATGCTTCAT	GCACCCCTTA	CTGCACTTTC	TGACCCAGGAG	CTACTTTGAG
2601	TTTGGTGT	CTAGGATCAG	GGTCAGTCTT	TGGCTTATCA	ATAAATTAA
2651	ATCTCTGT	ATCTTACCTG	CTTAAAAAAA	AAGTCTTGT	GTGTTCTGTAT
2701	CTTTATT	TCCCTAGTT	GCAGAACTGT	CTGAATAAAG	GATACAAGGA
2751	TTATTTCAAT	GTACTGCAC	TGAAAAAACGT	GTATGTATTA	GTGTGCTAGA
2801	TTATTTAGCA	GAATATTCAC	AAGTTCTGT	TGACCTTGTT	GATTGAGCAT
2851	GACTACTAAA	TATTATGTA	AAAAAGCAT	TTGTCTACAC	AAAAAAAAAA
2901	AAAAAAAAAA	AAAAA	AAAAA	AAAAA	AAAAA
2951	AAAAAAAAAA	AAAAA	AAAAA	AAAAA	AAAAA
3001	AAAAAAAAAA	AAAAA	AAAAA	AAAAA	AAAAA

40

BLAST Results

45

No BLAST result

50

Medline entries

99361984:
 De Valck D, Jin DY, Heyninck K, Van de Craen M, Contreras R,
 Fiers W,
 Jeang KT, Beyaert R.; The zinc finger protein A20 interacts with
 a
 novel
 anti-apoptotic protein which is cleaved by specific caspases.
 Oncogene
 1999 Jul 22;18(29):4182-90

5

Peptide information for frame 2

ORF from 89 bp to 2455 bp; peptide length: 789

Category: known protein

10 Classification: Cell division

1 MTSFQEVPLQ TSNFAHVIFQ NVAKSYLPNA HLECHYTLTP YIHPHPKDWW
 51 GIFKVGVWSTA RDYYTFLWSP MPEHYVEGST VNCVLAFAQGY YLPNDDGEFY
 101 QFCYVVTWKGE IRGASTPFQF RASSPVEELL TMEDEGNSDM LVVTTKAGLL
 151 ELKIEKTMKE KEELLKLIAV LEKETAQLRE QVGRMEREELN HEKERCDQLQ
 201 AEQKGLTEVT QSLKMNEEF KKRFSDATSK AHQLEEDIVS VTHKAIEKET
 251 ELDLSLKDKLK KAQHEREQLE CQLKTEKDEK ELYKVHLKNT EIENTKLMSE
 301 VQTLKNLDGN KESVITHFKE EIGRLQLCLA EKENLQRTFL LTTSSKEDTC
 351 FLKEQLRKAE EQVQATRQEV VFLAKELSVA VNVRDRTMAD LHTARLENK
 401 VKKQLADAVA ELKLNAMKKD QDKTDLEHE LRREVEDLKL RLQMAADHYK
 451 EKFKECQRLQ KQINKLSDQS ANNNNVFTKK TGNQQKVNDL SVNTDPATSA
 501 STVDVKPSPS AAEADFDIVT KGQVCETKKE IADKTEKYNK CKQLLQDEKA
 551 KCNKYADELA KMELKWKEQV KIAENVKLEL AEVQDNYKEL KRSLENPAER
 601 KMEGQNSQSP QCFKTCSEQN GYVLTLSNAQ PVLQYGNPYA SQETRDGADG
 651 AFYPDEIQRP PVRVPSWGLE DNVVCSQPAR NFSRPDGLED SEDSKEDENV
 701 PTAPDPPSQH LRGHGTGFCC DSSFDVHKKC PLCELMFPPN YDQSKFEEHV
 751 ESHWKVCPMC SEQFPPDYDQ QVFERHVQTH FDQNVLNFD

30

BLASTP hits

No BLASTP hits available

35

Alert BLASTP hits for DKFZphamy2_2b19, frame 2

TREMBL:HS338211_1 product: "tax1-binding protein TXBP151"; Homo sapiens tax1-binding protein TXBP151 mRNA, complete cds., N = 2,

Score

40 = 2948, P = 0

>TREMBL:HS338211_1 product: "tax1-binding protein TXBP151"; Homo sapiens tax1-binding protein TXBP151 mRNA, complete cds.
 Length = 747

HSPs:

50

Score = 2948 (442.3 bits), Expect = 0.0e+00, Sum P(2) = 0.0e+00
 Identities = 575/603 (95%), Positives = 576/603 (95%)

Query: 1

MTSFQEVPLQTSNFAHVIFQNVAKSYLPNAHLECHYTLTPYIHPHPKDWWVGIFKVGVWSTA 60

55

MTSFQEVPLQTSNFAHVIFQNVAKSYLPNAHLECHYTLTPYIHPHPKDWWVGIFKVGVWSTA

Sbjct: 1

MTSFQEVPLQTSNFAHVIFQNVAKSYLPNAHLECHYTLTPYIHPHPKDWWVGIFKVGVWSTA 60

Query: 61
RDYYTFLWSPMPEHYVEGSTVNCVLAFQGYYLPNDDGEFYQFCYVTHKGEIRGASTPFQF 120

5 Sbjct: 61
RDYYTFLWSPMPEHYVEGSTVNCVLAFQGYYLPNDDGEFYQFCYVTHKGEIRGASTPFQF
RDYYTFLWSPMPEHYVEGSTVNCVLAFQGYYLPNDDGEFYQFCYVTHKGEIRGASTPFQF 120

Query: 121
10 RASSPVEELLTMEDEGNSDMLVVTTKAGXXXXXXXXXXXXXXXXXXXXXXAQLRE 180
RASSPVEELLTMEDEGNSDMLVVTTKAG
TAQLRE
Sbjct: 121
RASSPVEELLTMEDEGNSDMLVVTTKAGLLELKIEKTMKEKEELLKLIAVLEKETAQLRE 180

15 Query: 181
QVGRMERELNHEKERCDQLQAEQKGLTEVTQSLKMENEFFKKRFSDATSKAHQLEEDIVS 240
QVGRMERELNHEKERCDQLQAEQKGLTEVTQSLKMENEFFKKRFSDATSKAH
+EEDIVS

20 Sbjct: 181
QVGRMERELNHEKERCDQLQAEQKGLTEVTQSLKMENEFFKKRFSDATSKAHHVEEDIVS 240

Query: 241
25 VTHKAIEKETELDSLKDKLKAQHEREQLECQLKTEKDEKELYKVHLKNTEIENTKLMSE 300
VTHKAIEKETELDSLKDKLKAQHEREQLECQLKTEKDEKELYKVHLKNTEIENTKLMSE
Sbjct: 241
VTHKAIEKETELDSLKDKLKAQHEREQLECQLKTEKDEKELYKVHLKNTEIENTKLMSE 300

30 Query: 301
VQTLKNLDGNKESVITHFKEEIGRLQLCLAENLQRTFLLTTSSKEDTCFLKEQLRKAЕ 360
VQTLKNLDGNKESVITHFKEEIGRLQLCLAENLQRTFLLTTSSKEDTCFLKEQLRKAЕ
Sbjct: 301
VQTLKNLDGNKESVITHFKEEIGRLQLCLAENLQRTFLLTTSSKEDTCFLKEQLRKAЕ 360

Query: 361
40 EQVQATRQEVVFLAKELSDAVNRDRTMADLHTARLENEEKKKQLADAVAEKLNAKKD 420
Sbjct: 361
EQVQATRQEVVFLAKELSDAVNRDRTMADLHTARLENEEKKKQLADAVAEKLNAKKD 420

Query: 421
45 QDKTDTLEHELREVEDLKLRLQMAADHYKEKFKECQRLQKQINKLSDQSANNNVFTKK 480
QDKTDTLEHELREVEDLKLRLQMAADHYKEKFKECQRLQKQINKLSDQSANNNVFTKK
Sbjct: 421
QDKTDTLEHELREVEDLKLRLQMAADHYKEKFKECQRLQKQINKLSDQSANNNVFTKK 480

50 Query: 481
55 TGNQQKVNDASVNTDPATSASTVDVKPSPSAAEADFIVTKGQVCEMTKEIADKTEKYNK 540
TGNQQKVNDASVNTDPATSASTVDVKPSPSAAEADFIVTKGQVCEMTKEIADKTEKYNK
Sbjct: 481
TGNQQKVNDASVNTDPATSASTVDVKPSPSAAEADFIVTKGQVCEMTKEIADKTEKYNK 540

Query: 541
 CKQLLQDEKAKCNKYADELAKMELKWKE&VKIAENVKLELAEVQDNYKELKRSLENPAER 600

5 Sbjct: 541
 CKQLLQDEKAKCNKYADELAKMELKWKE&VKIAENVKLELAEVQDNYKELKRSLENPAER
 CKQLLQDEKAKCNKYADELAKMELKWKE&VKIAENVKLELAEVQDNYKELKRSLENPAER 600

Query: 601 KME 603
 KME
 10 Sbjct: 601 KME 603

Score = 831 (124.7 bits), Expect = 0.0e+00, Sum P(2) = 0.0e+00
 Identities = 147/153 (96%), Positives = 149/153 (97%)

15 Query: 637
 NPYASQETRDGADGAFYPDEIQRPPVRVPSWGLEDNVVCSPARNFSRPDGLEDSEDSKE 696
 NP A ++
 DGADGAFYPDEIQRPPVRVPSWGLEDNVVCSPARNFSRPDGLEDSEDSKE
 Sbjct: 596 NP-
 20 AERKMEDGADGAFYPDEIQRPPVRVPSWGLEDNVVCSPARNFSRPDGLEDSEDSKE 654

Query: 697
 DENVPPTAPDPPSQHLRGHGTGCFDSSFDVHKKCPLCELMFPPNYDQSKFEEHVESHWKV 756

25 Sbjct: 655
 DENVPPTAPDPPSQHLRGHGTGCFDSSFDVHKKCPLCELMFPPNYDQSKFEEHVESHWKV
 DENVPPTAPDPPSQHLRGHGTGCFDSSFDVHKKCPLCELMFPPNYDQSKFEEHVESHWKV 714

Query: 757 CPMCSEQFPPDYDQQVFERHVQTHFDQNVLNFD 789
 30 CPMCSEQFPPDYDQQVFERHVQTHFDQNVLNFD
 Sbjct: 715 CPMCSEQFPPDYDQQVFERHVQTHFDQNVLNFD 747

Score = 104 (15.6 bits), Expect = 9.2e-02, Sum P(2) = 8.8e-02
 Identities = 80/351 (22%), Positives = 157/351 (44%)

35 Query: 177 QLR---EQVGRMEREELNH-
 EKERCDQLQAEQKGLTEVTQSLKMENEFKKRFSDATSKAH 232
 QLR EQV +E+ KE D + + + + + +ENE+ KK+
 +DA
 40 Sbjct: 355 QLRKAEEQVQATR&EVVFLAKELSDAVNVRDRTMA DL-
 HTARLENEKVKKQLADA---- 408

Query: 233 QLEEDIVSVTHKAIEKETE-
 LDSLKDKLKAQHERE&LECKTEKDEKELYKVHLKNT 291

45 Sbjct: 409 ----VAELKLNAKKDQDKTDLEHELRR---EVEDLKLRLQMAADH---
 YKEKFKECQ 457

50 Query: 292
 IENTKLMSEVQTLKNLDGNKESVITHFKEEIGRLQLCLAEKENLQRTFLLTSSKEDTCF 351
 +L ++ L + N +V T ++ G Q N T
 T++S D
 Sbjct: 458 ----RLQKQINKLSDQSANNNNVFT---KKTGNQQKVNDASVN---
 55 TD PATSASTVD--- 504

Query: 352 LKEQLRKAAEEQVQ-
 ATR&EVVFLAKELSDAVNVRDRTMA DLHTARLENEKVKKQLADAVA 410

+K AE T+ +V + KE++D ++ L + + K
 +LA
 Sbjct: 505 VKPSPSAAEADF DIVTKGQVC EMTKEIADKTEKYNKCKQLLQDEKA KCNK YADELAKMEL 564
 5 Query: 411 ELKLNAMKKD QDKTD TLE----HELRREVED-LKLRLQMAAD--
 HYKEKFKECQ-RLQK 461
 + K + K + E EL+R +E+ + +++ AD Y ++ +
 R+
 10 Sbjct: 565 KWKEQVKIAENVKLELAEVQDN YKELKRSLENPAERK MEDGADGAFYPDEIQRPPVRVPS 624
 Query: 462 ---QINKLSDQSANNNNVFTKKTG---
 NQQKVNDASVNTDPATSASTVDVKPSPSAAEAD 515
 15 + N + Q A N F++ G ++ D +V T P + +
 + ++
 Sbjct: 625 WGLEDNVVCSQPARN---
 FSRPDGLEDSEDSKEDENVPTAPDPPSQHLRGHGTGFCFDSS 681
 20 Query: 516 FDIVTKGQVC EMTKEIADKTEKYNKCKQLLQDEKA KCNK YADELAKMEL 527
 FD+ K +CE+
 Sbjct: 682 FDVHKKCP LCEL 693

25 Pedant information for DKFZphamy2_2b19, frame 2

Report for DKFZphamy2_2b19.2

30 [LENGTH] 789
 [MW] 90877.47
 [pI] 5.30
 [HOMOL] TREMBL:HS338211_1 product: "tax1-binding protein
 TXBP151"; Homo sapiens tax1-binding protein TXBP151 mRNA,
 complete cds. 0.0
 [FUNCAT] 99 unclassified proteins [S. cerevisiae, YOR216c]
 3e-14
 [FUNCAT] 08.07 vesicular transport (golgi network, etc.) [S.
 cerevisiae, YDL058w] 2e-13
 [FUNCAT] 30.03 organization of cytoplasm [S. cerevisiae,
 YDL058w] 2e-13
 [FUNCAT] 09.10 nuclear biogenesis [S. cerevisiae, YDR356w]
 4e-13
 45 [FUNCAT] 30.04 organization of cytoskeleton [S. cerevisiae,
 YDR356w] 4e-13
 [FUNCAT] 03.22 cell cycle control and mitosis [S. cerevisiae,
 YDR356w] 4e-13
 [FUNCAT] 11.04 dna repair (direct repair, base excision repair
 and nucleotide excision repair) [S. cerevisiae, YKR095w] 7e-12
 [FUNCAT] 30.10 nuclear organization [S. cerevisiae, YKR095w]
 7e-12
 [FUNCAT] 03.25 cytokinesis [S. cerevisiae, YHR023w MY01 -
 myosin-1 isoform] 6e-11
 55 [FUNCAT] 08.22 cytoskeleton-dependent transport [S. cerevisiae,
 YHR023w MY01 - myosin-1 isoform] 6e-11
 [FUNCAT] 03.04 budding, cell polarity and filament formation
 [S. cerevisiae, YHR023w MY01 - myosin-1 isoform] 6e-11

[FUNCAT] 1 genome replication, transcription, recombination and repair [M. jannaschii, MJ1322] 3e-08
 [FUNCAT] 98 classification not yet clear-cut [S. cerevisiae, YJR134c] 4e-08
 5 [FUNCAT] 03.19 recombination and dna repair [S. cerevisiae, YNL250w] 2e-07
 [FUNCAT] 03.13 meiosis [S. cerevisiae, YNL250w] 2e-07
 [FUNCAT] 03.01 cell growth [S. cerevisiae, YNL079c] 2e-06
 [FUNCAT] 03.07 pheromone response, mating-type determination,
 10 sex-specific proteins [S. cerevisiae, YNL079c] 2e-06
 [FUNCAT] 08.99 other intracellular-transport activities [S. cerevisiae, YNL079c] 2e-06
 [FUNCAT] 09.13 biogenesis of chromosome structure [S. cerevisiae, YLR086w] 5e-06
 15 [FUNCAT] 11.01 stress response [S. cerevisiae, YPR141c] 2e-05
 [FUNCAT] 06.10 assembly of protein complexes [S. cerevisiae, YPR141c] 2e-05
 [FUNCAT] 03.22.01 cell cycle check point proteins [S. cerevisiae, YGL086w] 2e-05
 20 [FUNCAT] 30.05 organization of centrosome [S. cerevisiae, YPR141c] 2e-05
 [FUNCAT] 08.16 extracellular transport [S. cerevisiae, YOR326w] 1e-04
 [FUNCAT] 09.25 vacuolar and lysosomal biogenesis [S.
 25 cerevisiae, YOR326w] 1e-04
 [FUNCAT] 30.16 mitochondrial organization [S. cerevisiae, YAL011w] 2e-04
 [FUNCAT] 06.07 protein modification (glycosylation, acylation,
 myristylation, palmitylation, farnesylation and processing)
 30 [S. cerevisiae, YKL201c] 2e-04
 [FUNCAT] e amino acid metabolism and transport [M. genitalium, MG042] 4e-04
 [FUNCAT] 30.13 organization of chromosome structure [S. cerevisiae, YDR285w] 7e-04
 35 [FUNCAT] n secretion and adhesion [M. jannaschii, MJ029] 0.001
 [FUNCAT] 05.04 translation (initiation, elongation and termination) [S. cerevisiae, YAL035w] 0.001
 [BLOCKS] BL00326 Tropomyosins proteins
 40 [BLOCKS] PR00545E
 [BLOCKS] PR00041F
 [SCOP] d2tmab_ 1.105.4.1.1 Tropomyosin [rabbit (Oryctolagus cuniculus)] 5e-05
 [EC] 3.6.1.32 Myosin ATPase 5e-16
 45 [PIRKW] nucleus 2e-35
 [PIRKW] phosphotransferase 5e-10
 [PIRKW] duplication 2e-09
 [PIRKW] citrulline 7e-09
 [PIRKW] tandem repeat 2e-13
 50 [PIRKW] heterodimer 2e-08
 [PIRKW] heart 2e-11
 [PIRKW] endocytosis 3e-10
 [PIRKW] polymorphism 1e-09
 [PIRKW] transmembrane protein 6e-12
 55 [PIRKW] serine/threonine-specific protein kinase 5e-10
 [PIRKW] cell wall 7e-09
 [PIRKW] zinc finger 3e-10
 [PIRKW] surface antigen 6e-08

	[[PIRKW]]	DNA binding 6e-12
	[[PIRKW]]	metal binding 3e-10
	[[PIRKW]]	muscle contraction 2e-13
	[[PIRKW]]	brain 8e-08
5	[[PIRKW]]	acetylated amino end 4e-09
	[[PIRKW]]	actin binding 5e-16
	[[PIRKW]]	endoplasmic reticulum 4e-09
	[[PIRKW]]	mitosis 3e-15
	[[PIRKW]]	microtubule binding 3e-15
10	[[PIRKW]]	ATP 5e-16
	[[PIRKW]]	chromosomal protein 2e-08
	[[PIRKW]]	receptor 4e-10
	[[PIRKW]]	thick filament 2e-13
	[[PIRKW]]	phosphoprotein 5e-16
15	[[PIRKW]]	glycoprotein 4e-10
	[[PIRKW]]	skeletal muscle 7e-11
	[[PIRKW]]	calcium binding 7e-09
	[[PIRKW]]	alternative splicing 3e-13
	[[PIRKW]]	DNA condensation 2e-08
20	[[PIRKW]]	coiled coil 5e-16
	[[PIRKW]]	P-loop 5e-16
	[[PIRKW]]	heptad repeat 3e-13
	[[PIRKW]]	methylated amino acid 2e-13
	[[PIRKW]]	basement membrane 1e-09
25	[[PIRKW]]	immunoglobulin receptor 2e-09
	[[PIRKW]]	peripheral membrane protein 3e-10
	[[PIRKW]]	cardiac muscle 2e-11
	[[PIRKW]]	extracellular matrix 1e-09
	[[PIRKW]]	hydrolase 5e-16
30	[[PIRKW]]	microtubule 1e-11
	[[PIRKW]]	muscle 1e-09
	[[PIRKW]]	membrane protein 1e-09
	[[PIRKW]]	EF hand 7e-09
	[[PIRKW]]	protein biosynthesis 4e-09
35	[[PIRKW]]	cytoskeleton 3e-13
	[[PIRKW]]	hair 7e-09
	[[PIRKW]]	Golgi apparatus 1e-11
	[[PIRKW]]	calmodulin binding 3e-10
	[[SUPFAM]]	myosin heavy chain 5e-16
40	[[SUPFAM]]	conserved hypothetical P115 protein 4e-10
	[[SUPFAM]]	IgA Fc receptor 7e-09
	[[SUPFAM]]	centromere protein E 3e-15
	[[SUPFAM]]	unassigned Ser/Thr or Tyr-specific protein kinases 5e-10
45	[[SUPFAM]]	calmodulin repeat homology 7e-09
	[[SUPFAM]]	myosin motor domain homology 5e-16
	[[SUPFAM]]	alpha-actinin actin-binding domain homology 5e-10
	[[SUPFAM]]	hypothetical protein MJ0914 4e-08
	[[SUPFAM]]	tropomyosin 6e-09
50	[[SUPFAM]]	plectin 5e-10
	[[SUPFAM]]	trichohyalin 7e-09
	[[SUPFAM]]	pleckstrin repeat homology 1e-08
	[[SUPFAM]]	ribosomal protein S10 homology 5e-10
	[[SUPFAM]]	giantin 4e-13
55	[[SUPFAM]]	protein kinase homology 5e-10
	[[SUPFAM]]	protein kinase C zinc-binding repeat homology 1e-08
	[[SUPFAM]]	kinesin motor domain homology 3e-15
	[[SUPFAM]]	human early endosome antigen 1 3e-10

[SUPFAM] myosin MY02 8e-08
 [SUPFAM] unassigned kinesin-related proteins 1e-10
 [SUPFAM] M5 protein 3e-10
 [SUPFAM] cytoskeletal keratin 4e-07
 5 [KW] A11_Alpha
 [KW] LOW_COMPLEXITY 3.30 %
 [KW] COILED_COIL 22.18 %

10 SEQ MTSFQEVPLQTSNFAHVIFQNVAKSYLPNAHLECHYTLTPYIHPHPKDWVGIFKVGWSTA
 SEG
 PRD ccdeeeeecc
 COILS

 15 SEQ RDYYTFLWSPMPPEHYVEGSTVNCVLAFQGYYLPNDGEFYQFCYVTHKGEIRGASTPFQF
 SEG
 PRD eeeeeeeeecc
 COILS
 20
 SEQ RASSPVVEELLTMEDEGNSDMLVVTTKAGLLELKIEKTMKEKEELLKLIAVLEKETAQLRE
 SEGxxxxxx.....
 PRD hhh
 25 COILSCC
 SEQ QVGRMEREELNHEKERCDQLQAEQKGLTEVTQSLKMENEFKKRFSDATSKAHQLEEDIVS
 SEG
 PRD hhh
 COILSCC
 30
 SEQ VTHKAIEKETELDSLKDCLKKAQHEREQLECAQLKTEKDEKELYKVHLKNTEIENTKLMSE
 SEG
 PRD hhh
 COILSCC
 35
 SEQ VQTLKNLDGNKESVITHFKEEIGRLQLCLAEKENLQRTFLLTSSKEDTCFLKEQLRKAE
 SEG
 PRD hhh
 COILSCCCCCCCCCCCCCCCCCCCCCCCC
 40
 SEQ EQVQATRQEVVFLAKELSDAVNVRDRTMADLHTARLENEEKKKQLADAVAEKLNAMEKKD
 SEG
 PRD hhh
 COILSCCCCCCCCCCCCCCCCCCCC
 45
 SEQ QDKTDTLEHELRRREVEDLKLRLQMAADHYKEKFKECQRLQKQINKLSDQSANNNNVFTKK
 SEG
 PRD hhh
 COILSCCCCCCCCCCCCCCCCCCCC
 50
 SEQ TGNQQKVNDASVNTDPATSASTVDVKPSPSAAEADFIDIVTKGQVCEMTKEIADKTEKYNK

DKFZphamy2_2c22

5 group: metabolism

DKFZphamy2_2c22 encodes a novel 364 amino acid protein with similarity to the 1-acyl-glycerol-3-phosphate acyltransferase of Zea mays.

10 It contains one leucine zipper. The protein is believed to play a role in fatty acid metabolism. It is ubiquitous expressed, with a slight predominance in uterus, placenta and foreskin.

15 The new protein can find application in modulation of fatty acid metabolism and as a new enzyme for biotechnological production processes.

20 weak similarity to 1-acyl-glycerol-3-phosphate acyltransferase (Zea mays)

25 perhaps complete cds.

Sequenced by MediGenomix

Locus: /map="8"

30 Insert length: 3403 bp
Poly A stretch at pos. 3373, polyadenylation signal at pos. 3351

35	1 AGATGCTGCT GTCCCTGGTG CTCCACACGT ACTCCATGCG CTACCTGCTG
	51 CCCAGCGTCG TGCTCCTGGG CACGGCGCCC ACCTACGTGT TGGCCTGGGG
	101 GGTCTGGCGG CTGCTCTCCG CCTTCTGCC CGCCCCGCTTC TACCAAGCGC
	151 TGGACGACCG GCTCTACTGC GTCTACCAGA GCATGGTGCT CTTCTTCTTC
	201 GAGAATTACA CCGGGGGTCCA GATATTGCTA TATGGAGATT TGCCAAAAAA
	251 TAAAGAAAAT ATAATATATT TAGCAAATCA TCAAAGCACA GTTGAUTGGA
40	301 TTGTTGCTGA CATCTTGGCC ATCAGGCAGA ATGCGCTAGG ACATGTGCGC
	351 TACGTGCTGA AAGAAGGGTT AAAATGGCTG CCATTGTATG GGTGTTACTT
	401 TGCTCAGCAT GGAGGAATCT ATGTAAGCG CAGTGCCAAA TTTAACGAGA
	451 AAGAGATGCG AAACAAGTTG CAGAGCTACG TGGACGCAGG AACTCCAATG
	501 TATCTTGCTGA TTTTCCAGA AGGTACAAGG TATAATCCAG AGCAAACAAA
45	551 AGTCCTTCAG GCTAGTCAGG CATTGCTGC CCAACGTGGC CTTGCAGTAT
	601 TAAAACATGT GCTAACACCA CGAATAAAGG CAACTCACGT TGCTTTGAT
	651 TGCATGAAGA ATTATTTAGA TGCAATTAT GATGTTACGG TGGTTTATGA
	701 AGGGAAAGAC GATGGAGGGC AGCGAAGAGA GTCACCGGACC ATGACGGAAT
	751 TTCTCTGCAA AGAATGTCCA AAAATTCTATA TTCACATTGA TCGTATCGAC
50	801 AAAAAAGATG TCCCAGAAGA ACAAGAACAT ATGAGAAGAT GGCTGCATGA
	851 ACGTTTCGAA ATCAAAGATA AGATGCTTAT AGAATTCTTAT GAGTCACCAAG
	901 ATCCAGAAAG AAGAAAAAGA TTCCCTGGGA AAAGTGTAA TTCCAAATTA
	951 AGTATCAAGA AGACTTACCC ATCAATGTTG ATCTTAAGTG GTTTGACTGC
55	1001 AGGCATGCTT ATGACCGATG CTGGAAGGAA GCTGTATGTG AACACCTGGA
	1051 TATATGGAAC CCTACTTGGC TGCTGTGGG TTACTATTAA AGCATAGACA
	1101 AGTAGCTGTC TCCAGACAGT GGGATGTGCT ACATTGTCTA TTTTTGGCGG
	1151 CTGCACATGA CATCAAATTG TTCCCTGAAT TTATTAAGGA GTGTAATAA
	1201 AGCCTTGTGTT ATTGAAGATT GGATAATAGA ATTTGTGACG AAAGCTGATA

1251	TGCAATGGTC	TTGGGCAAAC	ATACCTGGTT	GTACAACCTT	AGCATCGGGG
1301	CTGCTGGAAG	GGTAAAAGCT	AAATGGAGTT	TCTCCGTGTC	TGTCCATTTC
1351	CTATGAACTA	ATGACAACTT	GAGAAGGCTG	GGAGGATTGT	GTATTTGCA
1401	AGTCAGATGG	CTGCATTTT	GAGCATTAAAT	TTGCAGCGTA	TTTCACCTTT
5	1451	TCTGTTATT	TCAATTATT	ACAACCTGAC	AGCTCCAAGC
1501	AAAGTATTTA	GTATCTTGCA	GCTAGTTAAT	ATTTCATCTT	TTGCTTATTT
1551	CTACAAGTCA	GTGAAATAAA	TTGTATTTAG	GAAGTGTCA	GATGTTCAAA
1601	GGAAAGGGTA	AAAAGTGTTC	ATGGGGAAAAA	AGCTCTGTT	AGCACATGAT
1651	TTTATTGTAT	TGCGTTATTA	GCTGATTTA	CTCATTAT	ATTTGCAAAA
10	1701	TAAATTTCTA	ATATTATTG	AAATTGCTTA	ATTTGCACAC
1751	CAGAAAATGG	TATAAAATAT	GAGAACGAAAG	TTTAAAATTG	TGACTCTGAT
1801	TCATTATAGC	AGAAACTTTAA	ATTTCCCAGC	TTTTTGAAGA	TTTAAGCTAC
1851	GCTATTAGTA	CTTCCCTTGT	TCTGTGCCAT	AAGTGTGTTGA	AAACGTTAAG
1901	GTGTTCTGTT	TTGTTTTGTT	TTTTTAATAT	CAAAAGAGTC	GGTGTGAACC
15	1951	TTGGTTGGAC	CCCAAGTTCA	CAAGATTTT	AAGGTGATGA
2001	ACATTCTGCC	TAGATTTACT	AGCGTGTGCC	TTTGCCTGC	TTCTCTTGA
2051	TTTCACAGAA	TATTCAATTCA	GAAGTCGCGT	TTCTGTAGTG	TGGTGGATTG
2101	CCACTGGGCT	CTGGTCTTC	CCTTGGATCC	CGTCAGTGGT	GCTGCTCAGC
2151	GGCTTGCACG	CAGACTTGT	AGGAAGAAAT	GCAGAGCCAG	CCTGTGCTGC
20	2201	CCACTTTCA	AGTTGAAC	TTAAGCCCT	TGTGAGTGGG
2251	TAATGCAAGAG	GCATTTGCA	TTTGTCTGTG	TCAAGAAGT	CACCTTCTCA
2301	AGCCAGTGA	ATACAGACTT	AATTGTCA	GACTGAACGA	ATTTGTTTAT
2351	TTCCCATTTAG	GTAGTGTGA	GCTACACATT	AATATGTATC	GCCTTAGAGC
2401	AAGAGCTGTG	TTCCAGGAAC	CAGATCACGA	TTTTTAGCCA	TGGAACAATA
25	2451	TATCCCATGG	GAGAAGACCT	TTCAGTGTGA	ACTGTTCTAT
2501	TAATTTAAC	TTCGATTTCC	TCATAGTCCT	TTAAGTTGAC	ATTTCTGCTT
2551	ACTGCTACTG	GATTTTGCT	GCAGAAATAT	ATCAGTGGCC	CACATTAAC
2601	ATACCAGTTG	GATCATGATA	AGCAAAATGA	AAGAAATAAT	GATTAAGGGA
2651	AAATTAAGTG	ACTGTGTTAC	ACTGCTTCTC	CCATGCCAGA	GAATAAACTC
30	2701	TTTCAAGCAT	CATCTTGAA	GAGTCGTGTG	GTGTGAATTG
2751	ATTAGAAATGT	ATGCACACAT	CCATGGACAC	TCAGGATATA	GTTGGCTAA
2801	TAATCGGGGC	ATGGGTAAAAA	CTTATGAAAAA	TTTCCCTCATG	CTGAATTGTA
2851	ATTTTCTCTT	ACCTGTAAAG	AAAATTTAG	ATCAATTCCA	TGTCTTTGTT
2901	AAGTACAGGG	ATTAATATA	TTTGAATAT	AATGGGTATG	TTCTAAATTT
35	2951	GAACCTTGAG	AGGCAAACT	GTTGGAATT	TGTGGATTCT
3001	AAACAAAGGTAG	CCTGACCTGC	ATAAGATCAC	TTGAATGTTA	GGTTTCATAG
3051	AACTATACTA	ATCTTCTCAC	AAAAGGTCTA	AAAATACAG	TCGTTGAAAAA
3101	AAATTTGTA	TCAAAATGTT	TGGAAAATTA	GAAGCTTCTC	CTTAACCTGT
3151	ATTGATACTG	ACTTGAATT	TTTCTAAAA	TTAAGAGCCG	TATACCTACC
40	3201	TGTAAGTCTT	TTCACATATC	ATTTAAACTT	TTGTTGTAT
3251	TTACAGCTTA	GTATTAAATT	TTTCTTATA	AGAATGCCGT	CGATGTGCAT
3301	GCTTTATGT	TTTCAGAAA	AGGGTGTGTT	TGGATGAAAG	AAAAAAAAAA
3351	AAATAAAATC	TTCACTGTC	TCTAAAAAAA	AAAGAAAAAA	AAAAAAAAAA
3401	AAA				

45

BLAST Results

50 No BLAST result

Medline entries

55

No Medline entry

Peptide information for frame 3

5 ORF from 3 bp to 1094 bp; peptide length: 364
Category: similarity to known protein
Classification: Metabolism
Prosite motifs: LEUCINE_ZIPPER (105-126)

10	MLLSLVLHTY SMRYLLPSVV LLGTAPTYVL AWGVWRLLSA FLPARFYQAL 51 DDRILYCVYQS MVLFFFENYT GVQILLYGDL PKNKENIIYL ANHQSTVDWI 101 VADILAIRQN ALGHVRYVLK EGLKWLPLYG CYFAQHGGIY VKRSAKFNEK 151 EMRNKLQSYV DAGTPMYLVI FPEGTRYNPE QTKVLSASQA FAAQRGLAVL 201 KHVLTTPRIKA THVAFDCMKN YLDAIYDVTV VYEGKDDGGQ RRESPTMTEF 251 LCKECPKIHI HIDRIDKKDV PEEQEHMRRW LHERFEIKDK MLIEFYESP 301 PERRKRFPKG SVNSKLSIKK TLPSMLILSG LTAGMLMTDA GRKLYVNTWI 351 YGTLLGCLWV TIKA
----	---

20

BLASTP hits

No BLASTP hits available

25 Alert BLASTP hits for DKFZphamy2_2c22, frame 3

No Alert BLASTP hits found

Pedant information for DKFZphamy2_2c22, frame 30

Report for DKFZphamv2 2c22.3

```

35  [[LENGTH]] 364
    [[MW]] 42072.47
    [[pI]] 9.18
    [[HOMOL]] TREMBL:CEAF3136_1 gene: "F28B3.5"; Caenorhabditis
40 elegans cosmid F28B3. 2e-36
    [[FUNCAT]] 99 unclassified proteins [[S. cerevisiae, YDR018c]]
?e-13
    [[FUNCAT]] 01.06.01 lipid, fatty-acid and sterol biosynthesis
[[S. cerevisiae, YDL052c]] 4e-05
45 [[FUNCAT]] 30.99 other cellular organization [[S. cerevisiae,
YDL052c]] 4e-05
    [[BLOCKS]] BL01263A
    [[BLOCKS]] BP00989A
    [[PIRKW]] transmembrane protein 2e-11
    [[SUPFAM]] probable membrane protein YBR042c 2e-11
    [[PROSITE]] LEUCINE_ZIPPER 1
    [[KW]] Alpha_Beta
    [[KW]] LOW_COMPLEXITY 3.57 %

```

SEQ MVLFFFENYTGVQILLYGDLPKNKENIIYLANHQSTVDWIVADILAIRQNALGHVRYVLK
SEG
PRD hhhhhhhceeeeeeeecc
5
SEQ EGLKWLPLYGCYFAQHGGIYVKRSAKFNEKEMRNKLQSYVDAGTPMYLVIFPEGTRYNPE
SEG
PRD hhhccccccceeecccceeeeecccccccccccccccccccccccccccccccc
10 SEQ QTKVLSASQAFAAQRGLAVLKHVLTPRIKATHVAFDCMKNYLDAYDVTVVYEGKDDGGQ
SEG
PRD hhhhhhhhhhhhhhhcc
15 SEQ RRESPTMTEFLCKECPKIHIHIDRIDKKDVPEEDEHMRRWLHERFEIKDKMLIEFYESPD
SEGxxxxxx.....
PRD cccccchhhhcc
20 SEQ PERRKRFPGKSVNSKLSIKKTLPSMLILSGLTAGMLMTDAGRKLYVNTWIYGTLLGCLWV
SEG
PRD cccccccccccccchhhhhhhchhhhhchhhhhcccccccccccccccccccc
25 SEQ TIKA
SEG
PRD hccc

Prosite for DKFZphamy2_2c22.3

30 PS00029 105->127 LEUCINE_ZIPPER PD0C00029

(No Pfam data available for DKFZphamy2_2c22.3)

DKFZphamy2_2f18

5 group: signal transduction

DKFZphamy2_2f18 encodes a novel 215 amino acid protein with similarity to sodium channel protein betal of *Rattus norvegicus*.

10 The sodium channel protein beta 1 of *Rattus norvegicus* is crucial in the assembly, expression, and functional modulation of the heterotrimeric complex of the rat brain sodium channel. The expression of the new protein seems to be restricted to brain, all matching ESTs isolated so far, derive from there.

15 The new protein can find application in modulating the sodium channel beta 1, studying the expression profile in neurodegenerative diseases and of amygdala -specific genes.

20 similarity to sodium channel protein betal (*Rattus norvegicus*)

Pedant: SIGNAL_PEPTIDE

25 Sequenced by MediGenomix

Locus: unknown

30 Insert length: 4052 bp
Poly A stretch at pos. 4035, no polyadenylation signal found

35	1 CAGGGCTGAC AGCACACACG GCCTGGGGGC CTAGAGAAGG ATTGCTGATC
	51 ACCTGCCACC CAGGGTCGGG GCCCCGCACC ATCCGGGGGC GAGCTCCCGG
	101 GAAGGGGCTC CCCCTCTACA CCCACCCCCC AACCTCTGAC ATGCCGGGCC
	151 GAACGGGAGC TGCCGCTTCC TTCCCAGGCC CGCTGCACCT CCCCAGGGAG
	201 CCGAGGGCGG GCGTGGACGG GACCGACGTG GAACGCATTG TGTAGCCCAG
	251 ACGGGCGGCC CCGGCAGGCTT CGGGAGTGGG GTCACTGCCA GCTGGAGAAC
40	301 CAGTTAGGGC GGACGAAGCA GGAGCCGCGG GGCTGGGAGG ATTCCAGTCG
	351 GAACGCAACC GATCCTGGGG AGGGAGAGG TGAATCAACC TGGACCTTTC
	401 CACAGCCTGG CTGCTAGGCC AGCAGTGCAG CTCCCTTCCG AGCTGAGCTT
	451 ACCCTGGGCG CAAACGAGCG AGGCAGGGGC GCGAGTGGAA GCTGGAGTTC
	501 CGGGGTGGGC GGGGAGGCGA CTGTCGGTGG TGCTGAGCGC CGGCAGAGC
45	551 GGGCGCGGAG CGGCTGATCA GCTCCCTCGA ACTGGGGAGG TCCAGTGGGG
	601 TCGCTTAGGG CCCAAAGCCC CGCCCCGGCT CCAAAGCTC CCAGGGCCTC
	651 CCCAGGCACC GGTGCTCGGC CCTTCCTTCG GTCAAGAAAGT CGCCCCCTGG
	701 GGGCAGTTCG TCCCCAAAGGG TTTCTCGAA AGAATCTGAG AGGGCGCAGT
	751 CCTTGACCGA GGGAACTCTT CTGTCAGCC TTGGAAGCCG CCAGCCCCAG
50	801 AAGATGCCTG CCTTCAATAG ATTGTTTCCC CTGGCTTCTC TCGTGCTTAT
	851 CTACTGGGTC AGTGTCTGCT TCCCTGTGTG TGTTGGAAAGTG CCCTCGGAGA
	901 CGGAGGCCGT GCAGGGCAAC CCCATGAAGC TGCCTGCAT CTCCTGCATG
	951 AAGAGAGAGG AGGTGGAGGC CACCAAGGTG GTGGAATGGT TCTACAGGCC
55	1001 CGAGGGCGGT AAAGATTTCC TTATTTACGA GTATCGGAAT GGCCACCAAGG
	1051 AGGTGGAGAG CCCCTTTCAAG GGGCGCTGC AGTGGAAATGG CAGCAAGGAC
	1101 CTGCAGGACG TGTCCATCAC TGTGCTCAAC GTCACTCTGA ACGACTCTGG
	1151 CCTCTACACC TGCAATGTGT CCCGGGAGTT TGAGTTTGAG GCGCATCGGC
	1201 CCTTGTCGAA GACGACGCGG CTGATCCCCC TAAGAGTCAC CGAGGAGGCT

	1251	GGAGAGGACT	TCACCTCTGT	GGTCTCAGAA	ATCATGATGT	ACATCCTTCT
	1301	GGTCTTCCTC	ACCTTGTGGC	TGCTCATCGA	GATGATATAT	TGCTACAGAA
	1351	AGGTCTAAA	AGCCGAAGAG	GCAGCCCAAG	AAAACGCGTC	TGACTACCTT
5	1401	GCCATCCCAT	CTGAGAACAA	GGAGAACTCT	GCGGTACCAAG	TGGAGGAATA
	1451	GAACAGGAGC	AGTGTGACAT	GAGGTGGCCT	GAACACCTGA	GGGACTGGAC
	1501	ATCCCATGTT	CAGCAATGTC	AATGGCATCA	GGAGGGCGCC	CCAAGGGCCC
	1551	CATCGCTTCC	CTTCATGCA	CCATTGTTCT	GTTCATTCA	TCATCCATAC
	1601	ATCCACCTGC	CTCTGAGCTT	TCACCTCTGA	CTCCCTAACT	CCATCAGACC
	1651	TCTACGCACC	ATAAGACTCT	GCCAGAACTG	AGAAGCCAAC	ATTTCTACAT
10	1701	AGACTCAACC	TCACCCCTTC	CTAGTTTCC	AACAAGACAC	TCCAAAGCCA
	1751	ACTGGATTTC	TCCCCGTGTC	TCCAAATGAC	TTTGTACAAG	TGCTGGAGTT
	1801	AGCACCTCCC	TCTGCCCTTA	ACTGGCTGGA	ACTGGTTCAT	TCTCCATTAC
	1851	TGCAAGAGAA	TGGAAGTCTT	AATAGAAGGA	AGCAGGAGTG	ATTAGTTCGG
15	1901	GTAAAGCAA	AAAGTGTGTC	TGAACTTGGA	TTCCCTGAAG	TCAGTTTGT
	1951	CAGGTTCATG	GCCCCACTTG	CTACAGCATC	AGAGTGAAGC	ACGCCCTGTCT
	2001	AGGTTCTCCA	GTGACAGAAA	GATCCTGAAG	CATGGACTAA	CATGCTCTCT
	2051	GGAGCTTAGT	ACTCCAGAGC	TAGATCCTGA	TGGGTCTCTA	AGGTTCCCTC
	2101	CAAGAAGACA	AGGACAGGGAG	ACTTGGGAAG	GACCAATGGT	AATTTAAGTG
	2151	GCTCTTAAAA	AGTCATGCAA	CATGTTTCTG	GACACGTTCC	TGATCCATT
20	2201	GCGATAATGT	ATGTGTGCC	TCCCCGTGGG	CACACCACCT	GGGCATTAGG
	2251	ACTGAAATTTC	CTGAGTTCTT	CCTCTCAAAA	TTTCTGTGCA	CCAGTATTAT
	2301	TCCTCATTTC	ACATACAGGA	GGCAACTAAG	ACTCATAACAG	GGCTCAACTG
	2351	AATAAGAGGC	TTAAGAGGAT	AAACTGGAGC	AGAAAATAAGC	CTTAGGTTGCT
	2401	GCCCCAGTTA	CACTTCCTGG	GATGGATGTT	TTTGTGTTGTT	TTGTTTTTG
25	2451	TTTTTTTTGT	TTGAGATGGA	GTCTCACTCT	GTACACCTAGG	CTAGAGTGCA
	2501	GTGGTGTGAT	CTCGGCTCAC	TGCAACCTCT	GCCTCTTGGG	TTCAAGCAAT
	2551	TCTCATGCCT	CGGCCCTCTCC	AGTAGCTGGG	ATTACAGGTG	TGCACCAACCA
	2601	CGCCTGGCTA	AATTTGTAT	TTTTAGTACA	GACAGGGTTT	GACTATGTTG
	2651	GCCAGGCTAG	TCTTGAACTC	CTGACCTCAA	ATGACCCACC	CACCTCAGCC
30	2701	TCCCCAAAGTG	CTGAGATTAC	AGGCGTGAGG	CACTGCGCCC	GGTGGATAAC
	2751	TTTGTGTTCTG	AAAAGACTGA	CATTGAACCT	GTCTATGGCA	ATGCTCTTT
	2801	CACAAGCACG	GAATGGGCTG	AGGTCAACTC	TGATAGATT	AGATGACTAG
	2851	AAATTGGCCA	AAAAAGCAGG	GAGAAGAACAA	TGAGGTAGAC	TTAAAGAAACT
	2901	TCCTTTATGT	AAAGATCTGT	GACTCTGAAA	TATCCTCCAA	AAGGAGAGTG
35	2951	CATCTGAGAC	TGATATTTAA	ACTAAGAAAA	ATGTTTAGTC	TGAGATGGAT
	3001	CATAAGTAAA	TGAGCAGTGT	GAGAGGGGAG	GGATGGGTAG	GTGCTTCCA
	3051	AATACTTCGC	CTATGAATGC	ATAATTTCA	GATTTTTTC	CCCTAGATTT
	3101	TGAGGGAGCA	GAGAAACTGG	AAAAAAACTTT	AGTCAATATC	TCGTGTTCA
	3151	TTTAATTAA	GTGACAGGT	CAAGTGTGAC	ATCCTTCAGC	ACCCAGGGAC
40	3201	AAGAGAGGGG	AAAGATGCTT	TATGGAATGT	AAGAAGATGA	AGGTGACTGG
	3251	GATTCAAGCGA	GAGAGAGGTC	CCTCAGACCT	GGGACCTCCC	TTTATAGGGA
	3301	AAGACCATAT	TCCATAGGTT	TAGGGCTTTA	CCTTAAAGC	TCATTTTTT
	3351	CATTCTTCCA	TCCCTAGGAA	AGTACTTAAA	ACCAGACTTT	TAAATTTTA
	3401	TTTATTTATT	ATTATTTTT	TGAGACAGAT	TCTCACTCTG	TCTCCCAGGC
45	3451	TAGAGTGCAG	TGGTGAATC	TCAGCTCACT	GCAGCCTCAA	CTGCCAGG
	3501	TTTAAGCAAT	CCTCCCACCT	CAGCCCCCAG	GTAACGGGA	CTACAGGCAT
	3551	GCACCACCAT	GCCTGGCTAA	TTTTTGTATT	TTATGTAGAG	ACAGGGGTCT
	3601	TGCCATGTCG	CCCAGGCTGA	TCTTGAACTC	CTGGGCTCAA	GCAATCTGCC
	3651	AGCCTCAGCC	TCTCAAAGTG	CTGGGATTAC	AGGCCTGAGC	AACTGTGCCT
50	3701	GGCCCAAAAC	CAGACCGTTA	ACACATTAAA	GAGTGTGATT	TTGTTGAAGA
	3751	AAATATTTC	AATAAATTCA	AGACTCTTCT	TATTGGTAAT	TTTCCACACA
	3801	ATCCCCTCTGA	AATAAGGGAG	AGGATATAGA	CCTTTTTAAC	TTTATAGTTA
	3851	AAAAAAATTGG	CCTCAGTGTG	AAATTTTTCC	AGTCCCATAG	CTCATGGATG
	3901	CCACCAAGCTT	GCAGGTAGTAG	CAAGATGCTT	ACTACCACAC	CGTTTCCCTC
55	3951	GGTGGCCCAA	TAGCTCGTGT	ATCTAAGTTG	AACCCGGCAG	TATGCATGAT
	4001	TGCCTTTTTC	TCTTCTTTT	AAAAAAACCC	AACTCAAAAA	AAAAAAAAAA
	4051	AA				

BLAST Results

5 No BLAST result

Medline entries

- 10 92271207:
Isom LL, De Jongh KS, Patton DE, Reber BF, Offord J, Charbonneau
H,
Walsh K, Goldin AL, Catterall
15 WA.; Primary structure and functional expression of the beta 1
subunit
of
the rat brain sodium channel. Science 1992 May 8;256(5058):839-42
- 20 96235151:
Belcher SM, Howe JR.; Cloning of the cDNA encoding the sodium
channel
beta 1 subunit from rabbit. Gene 1996 May 8;170(2):285-6
- 25 93357746:
McClatchey AI, Cannon SC, Slaugenhaupt SA, Gusella JF.; The
cloning and
expression of a sodium channel beta
1-subunit cDNA from human brain. Hum Mol Genet 1993 Jun;2(6):745-
- 30 9

Peptide information for frame 3

35 ORF from 804 bp to 1448 bp; peptide length: 215
Category: similarity to known protein
40 Classification: Transmembrane proteins unclassified
1 MPAFNRLFPL ASLVLIYWVS VCFPVCVEVP SETEAVQGNP MKLRCISCMK
51 REEVEATTVV EWFYRPEGGK DFLIYEYRNG HQEVESPFQG RLQWNGSKDL
101 QDVSITVLNV TLNDSGLYTC NVSREFEFEA HRPFVKTRL IPLRVTEEAG
151 EDFTSVVSEI MMYILLVFLT LWLLIEMIYC YRKVSKAEEA AQENASDYL
201 IPSENKENSA VPVEE

BLASTP hits

50

No BLASTP hits available

Alert BLASTP hits for DKFZphamyc2_2f18, frame 3

55 PIR:JC4788 sodium channel protein betal chain - rabbit, N = 1,
Score =
434, P = 8.3e-41

PIR:A55734 sodium channel, voltage-gated, beta-1 chain precursor
 -
 human, N = 1, Score = 428, P = 3.6e-40

5 PIR:A42737 sodium channel beta 1 subunit - rat, N = 1, Score =
 429, P =
 2.8e-40

10 >PIR:JC4788 sodium channel protein beta1 chain - rabbit
 Length = 218

HSPs:

15 Score = 434 (65.1 bits), Expect = 8.3e-41, P = 8.3e-41
 Identities = 100/214 (46%), Positives = 129/214 (60%)

20 Query: 10
 LA SLV L I Y W V S V C F P V C V E V P S E T E A V Q G N P M K L R C I S C M K R E E V E A T T V V E W F Y R P E G G 69
 LA + V VS + CVEV SETEAV G K+ CIS C + R E A T
 EW + R + G

Sbjct: 5
 L A F V V G A A L V S S A W G G C V E V D S E T E A V Y G M T F K I L C I S C K R R S E T T A E T F T E W T F R Q K G T 64

25 Query: 70 K D F L - I Y E Y R N G H Q E V E S P -- F Q G R L Q W N G S ---
 K D L Q D V S I T V L N V T L N D S G L Y T C N V S 123
 +-+F+ I Y N +-+E F+GR+ WNGS KDLQD+SI + NVT N
 SG Y C+V

30 Sbjct: 65
 E E F V K I L R Y E N E V L Q L E E D E R F E G R V V W N G S R G T K D L Q D L S I F I T N V T Y N H S G D Y Q C H V Y 124

Query: 124
 R E F E F E A H R P F V K T T R L I P L R V T E E A G E D F T S V V S E I M M Y I X X X X X X X X I E M I Y C Y R K 183
 R FE + - + I L V ++A D S+V S E I M M Y +

EM+YCY+K
 Sbjct: 125
 R L L S F E N Y E H N T S V V K K I H L E V V D K A N R D M A S I V S E I M M Y V L I V V L T I W L V A E M V Y C Y K K 184

40 Query: 184 V S K A E E A A - Q E N A S D Y L A I P S E N K E N - S A V P V E E 215
 +-+ A E A A Q E N A S + Y L A I S E + K E N + V V E
 Sbjct: 185 I A A A T E A A A Q E N A S E Y L A I T S E S K E N C T G V Q V A E 218

45 Pedant information for DKFZphamy2_2f18, frame 3

Report for DKFZphamy2_2f18.3

50 [LENGTH] 215
 [MW] 24702.40
 [pI] 4.69
 [HOMOL] PIR:JC4788 sodium channel protein beta1 chain -
 55 rabbit 3e-41
 [BLOCKS] BL00401D Prokaryotic sulfate-binding proteins
 [BLOCKS] BP00570

45 [[SCOP]] dlneu_ 2.1.1.1.1 Myelin membrane adhesion
 molecule PO [[ra 2e-43]]
 [[PIRKW]] Schwann cell 2e-07
 [[PIRKW]] transmembrane protein 1e-40
 5 [[PIRKW]] myelin 2e-07
 [[PIRKW]] phosphoprotein 5e-07
 [[PIRKW]] glycoprotein 1e-40
 [[PIRKW]] structural protein 2e-07
 [[PIRKW]] muscle 1e-40
 10 [[PIRKW]] membrane protein 5e-07
 [[SUPFAM]] immunoglobulin homology 2e-07
 [[SUPFAM]] myelin PO protein 2e-07
 [[PFAM]] IG (immunoglobulin) superfamily
 [[KW]] All_Beta
 15 [[KW]] 3D
 [[KW]] SIGNAL_PEPTIDE 23
 [[KW]] LOW_COMPLEXITY 4.65 %

 20 SEQ MPAFNRLFPLASLVLIYWWSVCFPVCV EVPSETEAVQGNPMKLRCISCMKREEVEATTVV
 SEG -----
 dlneu-CEEEECCEEEETTTbCEEECE-
 EEECCCCCCCCCEE

 25 SEQ EWFYRPEGGKDFLIYEYRNGHQEVESPFQGRLQWNGSKDLQDVSVITVLNVTLNDGLYTC
 SEG -----
 dlneu-EEEEEEETTCCCEEEEEEETTEEEETTTTTTEECCBGGGCBCEEECCbTTTTTEEEEE

 30 SEQ NVSREFEFAHRPFVKTRLIPRLRVTEEEAGEDFTSVVSEIMMYILLVFLTLWLLIEMIYC
 SEG -----XXXXXXXXXXXXXX-----
 dlneu-EE-----

 35 SEQ YRKVSKAEEAAQENASDYLAIPSENKENSAVPVEE
 SEG -----
 dlneu-

 40 (No Prosite data available for DKFZphamy2_2f18.3)

Pfam for DKFZphamy2_2f18.3

45 HMM_NAME IG (immunoglobulin) superfamily

 HMM
 yrNgqpipssegyWytRweqqgRYsisifqltIisWepeDsGtYWCmV
 50 YRNG ++ E+ ++ R++++G ++ ++++T+ +++ +DSG
 Y+C+V
 Query ?? YRNHGQEVA--
 ESPFQGRLQWNGSKDLQDVSVITVLNVTLNDGLYTCNV J22

55

DKFZphamy2_2f22

5 group: nucleic acid management

DKFZphamy2_2f22 encodes a novel 479 amino acid protein with similarity to YDL153c of *Saccharomyces cerevisiae*.

10 The novel protein is ubiquitously expressed. YDL153c is involved in transcriptional silencing.

15 The new protein can find application in modulation of transcription, e.g. transcriptional silencing.

15

putative protein

probably complete cds.

20 perhaps differential polyadenylation
YDL153c is involved in transcriptional silencing

Sequenced by MediGenomix

25 Locus: /map="4"

Insert length: 2019 bp

Poly A stretch at pos. 2000, polyadenylation signal at pos. 1981

30

1	GGAGTCTGCA	AACTCCGGTG	GTAAGGGGAGC	GCGCTGCTGT	TTAGAGCCAC
51	GAGTTACCGG	AGCGCCTGAT	TCCTGCGCCG	AAGTCAGTGG	TGGCCGAAAG
101	TCCGGAGTCG	CTGTAAAACC	TGAGATTGTTG	AGCCATGGTG	GGGAGATCCC
151	GGCGGCCGCG	AGCAGCTAAG	TGGGCAGCTG	TGCGAGCCAA	GGCAGGTCCC
201	ACGCTCACCG	ACGAAAATGG	AGATGATTAA	GGATTGCCAC	CCTCACCCAGG
251	GGACACCAAGC	TACTACCAAG	ATCAGGTAGA	TGACTTTCAT	GAGGCACGAT
301	CCCGGGCCGC	CTTAGCTAAG	GGCTGGAATG	AAGTACAGAG	TGGAGACGAG
351	GAGGATGGCG	AGGAGGAGGA	GGAGGGAGGTG	CTAGCCCTAG	ATATGGACGA
401	TGAGGACGAC	GAAGATGGAG	GGAAATGCGGG	GGAGGGAGGAG	GAGGAGGGAGA
451	ATGCCGATGA	TGATGGTGGG	AGCTCCGTGC	AAAGTGAAGC	TGAGGCCTCT
501	GTGGATCCCA	GTTTGTCTGT	GGGTCAAGAGG	AAAAAAACTTT	ACTATGACAC
551	GGACTATGGT	TCCAAGTCCC	GAGGCCGGCA	GAGTCAACAG	GAGGCAGAGG
601	AGGAGGAAAG	AGAGGAGGGAG	GAGGAGGCAC	AGATCATTCA	GCGGCGCTA
651	GCCCAAGCGC	TGCAAGAGGA	TGATTTGGT	GTCGCCCTGGG	TTGAGGCCTT
701	TGCAAAACCA	GTGCCTCAGG	TAGATGAGGC	TGAGACACGG	GTCGTGAAGG
751	ATTGGCTAA	AGTTTCAGTG	AAAGAGAAGC	TGAAAATGTT	GCGAAAGGAA
801	TCACCAGAAC	TCTTGGAGCT	GATAGAAGAC	CTGAAAGTCA	AGTTGACAGA
851	GGTTAAGGAT	GAGCTGGAGC	CATTGTTAGA	GTTGGTGGAA	CAAGGGATCA
901	TTCCACCCGG	AAAAGGAAGC	CAATACTTGA	GGACCAAGTA	CAACCTCTAC
951	TTGAATTATT	GCTCGAACAT	CAGTTTTAT	TTGATCCTGA	AAGCTAGGAG
1001	AGTCCCAGCA	CATGGACATC	CTGTCATAGA	AAGGCTTGT	ACCTACCGAA
1051	ATTGATCAA	CAAGCTGTCC	GTTGTGGATC	AGAAGCTGTC	CTCAGAAATT
1101	CGTCATCTGT	TGACACTTAA	GGATGATGCT	GTAAAGAAAG	AACTGATTCC
1151	AAAAGCAAAA	TCCACCAAGC	CCAAACAAA	GTCTGTTCA	AAGACTTCTG
1201	CTGCTGCCTG	TGCTGTTACA	GATCTTCTG	ATGATTCTGA	TTTGATGAA
1251	AAAGCAAAAC	TGAAGTACTA	TAAGAGAAATA	GAAGACAGGC	AAAAGCTAAA
1301	GAGAAAGAAA	GAAGAAAATA	GCAC TGAGA	ACAGGCTCTT	GAAGATCAA
1351	ATGCAAAGAG	AGCTATTACC	TATCAAATTG	CTAAAAATAG	GGGACTTACT

1401 CCTAGGAGAA AGAAGATTGA TCGCAATCCC AGAGTGAAC ACAGAGAGAA
 1451 GTTCAGAAGA GCCAAAATTA GAAGAAGAGG CCAGGTTCGT GAAGTTCGTA
 1501 AAGAAGAGCA ACGTTATACT GGTGAATTAT CTGGCATTG TGAGGAGTT
 1551 AAAAAGAGCA TTAAGCTTAA ATGAAGTTTG TGCTTAGCAT AAGGTTTTG
 5 1601 GCAGTTTGG ATCAATAAAT TTTACTTT AACTAAAGTC ATTGTATTAA
 1651 TATATAATAC TTTAAATTCTT AAAAATTCTT GTCCACAAGG AAATTTGTCT
 1701 GGGTTATTGG ACAATTATA AGAACTATGG GAGCAATATG AAGGTGCTTG
 1751 AGAAAAGAGA TGATGTTGAA GTTTCCAAT ATTCTGTTGA AGTTTCCAA
 1801 TATTAAGTAT TAGCTTAGGG AAATTTACA GTTCATTGTG GAGTGTAAA
 10 1851 CTTAGAACAT GTGTAACCTT TCACATAAAG AGAATGCATC TTTGACAGTT
 1901 ATCTTATTG TAAGGCAGCC TATAAAATAG TTCTGAAGTA TTTTATTAC
 1951 CTAACTATAA TTATTGGGCC AGATACTTGT TAATAAATGG GCTTAATGTC
 2001 AAAAAAAA AAAAAAAA

15

BLAST Results

No BLAST result

20

Medline entries

25 No Medline entry

30

Peptide information for frame 3

ORF from 135 bp to 1571 bp; peptide length: 479

Category: similarity to unknown protein

Classification: Nucleic acid management

35

1 MVGRSRRRGÁ AKWAAVRAKA GPTLTDENGD DLGLPPSPGD TSYYQDQVDD
 51 FHEARSRAAL AKGWNEVQSG DEEDGEEEEE EVLALDMDE DDEDGGNAGE
 101 EEEEEEADDD GGSSVQSEAE ASVDPSSLWSW QRKKLYYDTD YGSKSRSRQS
 151 QQEAEEERE EEEEAQIIQR RLAQALQEDD FGVAWVEAFA KPVPQVDEAE
 201 TRVVVKDLAKV SVKEKLKMLR KESPELLELI EDLKVKLTEV KDELEPLLEL
 251 VEQGIIPPGK GSQYLRTKYN LYLNYSNIS FYLILKARRV PAHGHPIER
 301 LVTYRNLINK LSVVVDQKLSS EIRHLLTLKD DAVKKELIPK AKSTKPKPKS
 351 VSKTSAAACA VTDLSDDSDF DEKAKLKYKK EIEDRQKLKR KKEENSTEEQ
 401 ALEDQNAKRA ITYQIAKNRG LTPRRKKIDR NPrVKhREKF RRRAKIRRRGQ
 451 VREVRKEEQR YSGELSGIRA GVKKSIKLK

40

45

BLASTP hits

50

No BLASTP hits available

Alert BLASTP hits for DKFZphamy2_2f22, frame 3

55 PIR:SB7701 hypothetical protein YDL153c - yeast (*Saccharomyces cerevisiae*), N = 4, Score = 134, P = 1.8e-08

PIR:T08694 hypothetical protein DKFZp5b40092.1 - human
(fragment), N =
1, Score = 141, P = 5.8e-07

5 TREMBL:SPBC3B8_9 gene: "SPBC3B8.09"; product: "hypothetical
protein";
S.pombe chromosome II cosmid c3B8., N = 2, Score = 164, P = 6.2e-
13

10 >TREMBL:SPBC3B8_9 gene: "SPBC3B8.09"; product: "hypothetical
protein";
S.pombe chromosome II cosmid c3B8.
Length = 597

15 HSPs:

Score = 164 (24.6 bits), Expect = 6.2e-13, Sum P(2) = 6.2e-13
Identities = 44/126 (34%), Positives = 68/126 (53%)

20 Query: 367 DSDFDEKAKLKYYKEIEDRQKLKRK-KEEN-----STEEQALE-
DQNAKRAITYQ 414
D + +++ L YY+ ++ + K+ +K ++EN S + +E +
KR IT

25 Sbjct: 472
DREVEDQDDLDYYESLDKKSKMAKKLRKENHDLERDLIRASRHPELIELGEGDKRGITLD 531

Query: 415 IAKNRGLTPRRKKIDRNPRVKHXXXXXXXXXXXXXGQVREVRKEEQR-
YSGELSGIRAGVK 473
IAKNRGLTPRRPKENRNPRLKKRMRYEKAKKKLASKKAIYKGAPQQGYAGEQTGIKAGLV 591
30 +GI+AG+
Sbjct: 532

35 Query: 474 KSIKLK 479
KSIKL+
Sbjct: 592 KSIKLQ 597

40 Score = 80 (12.0 bits), Expect = 6.2e-13, Sum P(2) = 6.2e-13
Identities = 29/129 (22%), Positives = 66/129 (51%)

45 Query: 197 DEAEETRVVK-DLAKVSVKEKLKMLRKESP--ELLELIE----
DLKVKLTTEVKDELEPLLE 249
D ++ + +K D + +++E ++ + + P ELL+++E + ++ L E+
++L+P L
Sbjct: 173 DNSDLKSIIKQDSSAAIEELVQQISPDLPRTELLKILEAKHPEFQLFLDEL-
NQLKPQLN 231

50 Query: 250 LVEQGIIPPGKGSQYLRTKYNLYLNYSNISFYL-
ILKARRVPAHGPVIERLVTYRNLI 308
+++ + SQ L+ + Y S ++FY +LK HP++
LV +
Sbjct: 232 EIKEKL-
KTYPSSQLLQAQCTALSTYISFLTIFYFALLKDGEEDLKNHPIMVVDLVRCKQTW 290

55 Query: 309 NKLSVVQKLS 319
+D+ L+
Sbjct: 291 ESYCGLDEVLT 301

Score = 59 (8.9 bits), Expect = 9.2e-11, Sum P(2) = 9.2e-11
 Identities = 18/59 (30%), Positives = 35/59 (59%)

5 Query: 196 VDEAETRVVKDLAKVSVKEKLKMLRKESPEL---
 LELIEDLKVKLTEVKDELE--PLLEL 250
 ++E ++ DL + E LK+L + PE L+ + LK +L
 E+K++L+ P +L
 Sbjct: 189 IEELVQQISPDLPRT---
 10 ELLKILEAKHPEFQLFLDELNQLKPQLNEIKEKLKTYPSQL 245

 Query: 251 VE 252
 ++
 Sbjct: 246 LQ 247
 15 Score = 57 (8.6 bits), Expect = 3.0e-01, Sum P(2) = 2.6e-01
 Identities = 13/58 (22%), Positives = 26/58 (44%)

 Query: 367 DSDFDEKAKLKYKEIEDRQKLKRK--
 20 KEENSTEEQALEDQNAKRAITYQIAKNRGLT 422
 D + +++ L YY+ ++ + K+ +K KE + E + I
 RG+T
 Sbjct: 472
 DREVEDQDDLDYYESLDKKSMAKKLRKENHDLERDLIRASRHPELIELGEGDKRGIT 529
 25 Score = 42 (6.3 bits), Expect = 5.2e-09, Sum P(2) = 5.2e-09
 Identities = 13/51 (25%), Positives = 29/51 (56%)

 Query: 199 AETRVVKDLAKVSVKEKLKMLRKESPE--
 30 LLELIEDLKVKLTEVKDELEPLLE 249
 +ET + D+++ + LK +++++S + EL++ + L + EL
 +LE
 Sbjct: 160 SETDAIDDISQWADNSDLKSIKDSSAAAIEELVQQISPDLP--
 RTELLKILE 210
 35 Score = 39 (5.9 bits), Expect = 1.1e-08, Sum P(2) = 1.1e-08
 Identities = 8/18 (44%), Positives = 11/18 (61%)

 Query: 43 YYQDQVDDFHEARSRAAL 60
 40 +Y +Q+D RSRA L
 Sbjct: 402 FYANQIDQKAAKRSRAVL 419

Pedant information for DKFZphamy2_2f22, frame 3

45 -----

 Report for DKFZphamy2_2f22.3

 50 [LENGTH] 479
 [MW] 54,558.00
 [pI] 5.50
 [HOMOL] TREMBL:SPBC3B8_9 gene: "SPBC3B8.09"; product:
 "hypothetical protein"; S.pombe chromosome II cosmid c3B8. 1e-10
 55 [FUNCAT] 04-05-01-04 transcriptional control [S. cerevisiae,
 YDL153c] 1e-08
 [BLOCKS] PR00528D
 [BLOCKS] BL00360C Ribosomal protein S9 proteins

[BLOCKS] BL00964A Syndecans proteins
 [BLOCKS] PRO0624G
 [BLOCKS] PRO0828H
 [BLOCKS] BL00824B Elongation factor 1 beta/beta'/delta chain
 5 proteins
 [KW] All_Alpha
 [KW] LOW_COMPLEXITY 24.63 %
 [KW] COILED_COIL 7.10 %

 10 SEQ MVGRSRRRGAAKWAAVRAKAGPTLTENGDDLGLPPSPGDTSYYQDQVDDFHEARSRAAL
 SEGxxxxxxxxxxxxxx.....
 PRD cccccchhhhhhhhhhhhhccccccccccccccccccccccccchhhhhhhhhhhhh
 COILS
 15

 SEQ AKGWNEVQSGDEEDEGEEEEEEVLAldMDDEDDEDGGNAGEEEEEEADDGGSSVQSEAE
 SEGxxxxxxxxxxxxxxxxxxxxx.....
 PRD hhccccccccccchhhhhhhhhhhhhccccccccchhhhhhhhhhhccccccccchhhhh
 20 COILS

 SEQ ASVDPSLSUGQRKKLYYDTDYGSKSRGRQSQEAEEEEREAAAQIIQRLAQALQEDD
 SEGxxxxxxxxxxxxxxxxxxxxx.....
 PRD hccccccccccccccccccccchhhhhhhhhhhhhccccccccchhhhhhhhhhhhhhhcc
 COILS

 SEQ FGVAWVEAFAKPVPQVDEAETRVVKDLAKVSKEKLKMLRKESPELIELIEDLKVKLTEV
 30 SEG
 PRD chhhhhhhhhhhccccchhhhhhhhhhhhhhhhhhhhhhhhhccccchhhhhhhhhhhhh
 COILScc

 35 SEQ KDELEPLLELVEQGIIPPGKGSQYLRTKYNLYLNYSNISFYLIKARRVPAHGPVIER
 SEG
 PRD hhhhhhhhhhhhhccccchhhhhhhhhhhhhhhhhhhhhhhcccccccccccc
 COILS CCCCCC.....
 40 SEQ LVTYRNLINKLSVVDQKLSSEIRHLLTLKDDAVKKELIPKAKSTKPKPKSVSKTSAAACA
 SEGxxxxxxxxxxxxxx.....
 PRD hhhhhhhhhhhhhhhhhhhhhhhhhhhhhccccchhhhhhhccccccccchhhhhhh
 COILS
 45

 SEQ VTDLSDDSDFDEKAALKYYKEIEDRQKLKRKEENSTEEQALEDQNAKRAITYQIAKNRG
 SEG
 PRD hhhhccccchhh
 COILS

 SEQ LTPRRKKIDRNPRVKHREKFRRAKIRRGQVREVRKEEQRYSGELSGIRAGVKKSILK
 SEGxxxxxxxxxxxxx.....
 PRD cccccccccccccchhhhhhhhhhhhhhhhhhhhhhhhhccccccccchhhhhhhhh
 COILS

(No Prosite data available for DKFZphamy2_2f22.3)

(No Pfam data available for DKFZphamy2_2f22.3)

DKFZphamy2_2g12

5 group: nucleic acid management

DKFZphamy2_2g12 encodes a novel 191 amino acid protein with similarity to NVL-2 of *Rattus norvegicus*.

10 The novel protein contains 3 EF-hand calcium-binding domains. The related human VILIP Ca-dependent protein specifically binds the 3'-untranslated region of the neurotrophin receptor, trkB, an mRNA localized to hippocampal dendrites in an activity-dependent manner. The new protein exhibits elevated expression in brain
15 and testis.

The new protein can find application in studying the expression profile of brain-specific genes and as a new marker for neuronal cells.

20

strong similarity to NVL-2 (*Rattus norvegicus*)

Comment for P35332:

25 FUNCTION: MAY BE INVOLVED IN THE CALCIUM-DEPENDENT REGULATION OF RHODOPSIN PHOSPHORYLATION.
TISSUE SPECIFICITY: NEURON-SPECIFIC IN THE CENTRAL AND PERIPHERAL NERVOUS SYSTEM.
MISCELLANEOUS: PROBABLY BINDS TWO OR THREE CALCIUM IONS (BY
30 SIMILARITY)
SIMILARITY: TO OTHER EF-HAND CALCIUM BINDING PROTEINS, BELONGS TO THE RECOVERIN SUBFAMILY.

35 Sequenced by MediGenomix

Locus: /chromosome="1"

Insert length: 4285 bp

40 Poly A stretch at pos. 4258, polyadenylation signal at pos. 4247

	1	GGCGGGCTCCG	GCGCAGACCT	TGGAGAGCAC	AGCTGCCGGC	CCGCAGGCCA
	51	GCCTCGGTTC	CCGCAGGCCG	CCGAGGCTCG	GAGCCATCCA	GCGACCCGGC
45	101	GACCGGGCCTC	AGGCCCCGCC	ATGGGGAAAGA	CCAACAGCAA	GCTGGCCCCC
	151	GAGGTGCTGG	AGGACCTTGT	TCAGAACACT	GAGTTCAAGC	AGCAGGAGCT
	201	GAAGCAGTGG	TACAAGGGCT	TCCTGAAGGA	CTGCCCGAGC	GGCATCCTCA
	251	ACCTGGAGGA	GTTTCAGCAG	CTCTACATCA	AGTTCTTCCC	CTACGGCGAC
	301	GCCTCCAAGT	TCGCGCAGCA	CGCTTCCGC	ACCTTCGACA	AGAACGGCGA
50	351	CGGCACCATC	GACTTCCGGG	AGTTCATCTG	CGCCCTGTCG	GTCACCTCCC
	401	CGGGCAGCTT	CGAGCAGAAG	CTCAACTGGG	CCTTGAGAT	GTACGACCTG
	451	GACGGCGACG	GGCGAATCAC	GCCTGGAG	ATGCTGGAGA	TCATCGAGGC
	501	AATCTACAAG	ATGGTGGGCA	CCGTGATCAT	GATGCGCATG	AACCAGGACG
	551	GGCTCACGCC	CCAGCAGCGT	GTGGACAAAGA	TCTTCAGGAA	GATGGACCGAG
	601	GATAAGGACG	ACCAGATTAC	ATTGGAGGGAG	TTCAAGGAGG	CAGCCAAGAG
	651	TGACCCATCC	ATTGTGTTGC	TGCTGCAGTG	TGACATGCAG	AAGTAGAAGC
	701	TGGTGAGGGG	CAGGGTCCCT	GGCCAGAAGG	GGCATGGCCA	CCTCCCAACC
	751	TGATGACCTC	TCTGGCTGGC	CTCCCAGGAG	GAGGGACACT	CCAGCCCCCC

801	TCTCTGGCCC	ACCCAGTCCT	CTGCCCAAGC	CCTTCCTCCC	CTCCATCAAG
851	ATCTTGAGG	GACCACCTCA	CCCTGCAAAA	GAGACAGGTC	CTCCAGTACC
901	CTGTCTTCTA	GCCCCACCTC	CCACTTGGCC	AGAACCAATG	TCCATTGGGC
951	ATAGGGGAGT	TGGCTTTGC	CCCAGGAGGT	GAGGTTAAGG	AGTTGGGGC
5	1001	CTGGGGTTCT	GGTTAGGAAT	TCTCTTGATC	CTGGGATTAT
	1051	ATGTGGTCCC	ACAGGCCCTG	CACAGGGCCA	AATTGGGTCT
	1101	GAGGCTCCAG	ATCCCATAAA	GGGGGTCTCT	TCCCCATCCC
	1151	CCTGGCCCTT	CCAGCCCCAG	CCTTGGAGC	GTTCATTCAG
10	1201	AGCTAATGAT	TACTGAGCAC	CTGTTTGGTG	CTAAGGATAT
	1251	AAGACACATC	TTGTGCCCTC	TGGAAGCTCA	TAGGGTTGTG
	1301	CCAGCCGTCA	GGGTCTCAGC	TAAGCAGAAG	GTGCTGGAAG
	1351	CTGGGAGGAG	CTATTCATC	TTCCAGCTCA	GCTCCACACA
	1401	AGGACGAAAT	GAAAAGCATT	TGGAAGTTA	GGAGCCACGT
	1451	TTTAAGAAAAA	ATGAAATTAA	TGTCATACTT	ATTTTTTAG
15	1501	AGGAGCTACA	GTCATTTAT	TATTCAGGA	GGTTAAAATA
	1551	TACTTGGTTT	ATTATAAAAT	GATTAATGAA	ATAGAGAAAAA
	1601	CAAGGGGAAA	AAACCTGAGA	AGAAAGGGAG	AAAAGACCAT
	1651	AGATAACACT	TTTTAAGACT	AAGTCCCTGAG	CTGCCACTCT
20	1701	TGCTGCTTCA	GCTCTTCCCT	TTTATTACCT	TTTCAATT
	1751	TTCTGCTAC	ATACTTACTC	CGGTTGGTG	CTGACTTCAG
	1801	AAGCAAGGTT	TGCAAAGAGT	GAAACTAGTG	TATATTCCGT
	1851	TTCGTTTCTG	GATTGGGT	AGTTTCAGAA	CTGGACTTGT
	1901	CCACAGAATC	AGAAAGAGCT	AGAAGAAAAG	GCTCACCTGG
25	1951	GGCACCCAGA	CATAATTAT	GGACGAAATG	CCTAAAGATG
	2001	GCTCTGTTG	AGAGGCTTTT	TCTAACCCCA	AATCTTAGAT
	2051	GTTCAACATC	TTCCAAGTGT	GCTGGTTCTG	CTTCCAATG
	2101	AATTGGAT	CCATGAGCTA	TACAGCTGCA	TGCTTGA
	2151	TTAATCTTGC	TTCTTCATCA	GGTCTTCTC	CTGTA
30	2201	TACCTTGAC	GTGAGTGTAC	AGTTGATTT	CTCTTGA
	2251	ACAGTCTAGT	ACACAGGTG	TGTCAGCCC	GGGTGGGAGC
	2301	TGCTGAGCCC	GGGGCAGGGG	AATTGCA	GCAGGAAAGA
	2351	GCTCCTCACT	CCTGAGTGGC	ACCTGTCCT	GCTCTCTGC
	2401	TCTGGGGGAT	GCTGATCAAT	AGAGCTTGGT	CCCAAGCTCT
	2451	TGGAGGTAGC	AAGGCCACTG	GGTTGCTATC	CTCTTGA
35	2501	CACTGGTTG	CAACCACTG	GTTGCTATC	TTTGCTATC
	2551	TGACCAAGCCA	TATGGTAGG	CTGGGGAGTT	CACATCCTCA
	2601	AGCAGTTGTT	TATCCAGCAA	TGCTCTCAAGG	ATGTTGCATT
	2651	GCTGGCTATT	AGGTATGCT	TGTGCGGTCA	GTCAGCATCA
40	2701	GATGCTCACC	AGCCTGGCTT	AGCTGGGACC	TAATCTTCT
	2751	TTTCACTAA	GTGAGGTTCC	TTCCCTGCAA	ATGCTGAATC
	2801	CGCAACCACA	CAGAATTCA	TGGCTTCAA	AGGCTTGC
	2851	CTCATTCTAT	ACTCACATCC	CATGGAGGTG	AGGATTTC
	2901	CTAGACTTGG	AAGCTGAGAT	TCAGAGAGGA	AGCATCC
45	2951	ACATAGTCAG	GAGGTGACAC	AGGGCTAAGA	CTTGAACCAA
	3001	GGATTTCTTC	TTTCAGAGT	CTCTCCCTG	TCCATTCTG
	3051	GTGAGGAGT	TGACAGCAGG	GCAAGTTACA	TTGATATTCA
	3101	GCTTCTGCT	AAAAAGCTC	TGAGATTGTG	GTCTTCAA
	3151	GCTTGGTTGA	AGTCCCACA	TTTCAAGCA	CTCAGTGT
50	3201	AGCTGTGCTA	ACAGCTAGT	GCTGTCCTGG	GAGTCCTCTG
	3251	CTCGAACGAT	CTTGCAATTG	CTTACCCAC	CATCATCGTC
	3301	ACATGCCCTAC	CCATGAAGGC	GTGTTGATT	ACTCCAGGCT
	3351	CATACCCATG	GGTGATTTT	GCTCTCTCAGG	CCCAATATT
	3401	CAGCAGTGTG	AACACACAAT	GCCAGGCCAG	GAACGGGAC
	3451	CTGATGGAAG	GAACAAACAGG	TGGCCAGGAGA	CATGCTCCTG
55	3501	GGTGTCCAG	GGACTGTGTG	CTCAGGAGCA	CTGTGGTAGA
	3551	TGCCTTGAGA	AGAGACACAG	GTCTCCCGTC	CCTGCACCA
	3601	CTTGCCACAA	AGCACAAAGG	TGGCAGAGAT	TTATGTATGA
	3651	CACAAAAATA	TACAGACAAT	CAAACATTG	ATATATTCAA
					ACTCTCCTT

3701 AAATTCCAAT CTTATTGCAA CAACTCTGTG AATTGCAAGG TCCCCAGAATC
3751 TGCCCTCTCA CATACTCTAC CCTCATTCAT CCTTTGGGC TAATTGATGA
3801 GCATCTTATT TCTTATCTCT AAAAATTATC AGCAAAGGCT ACTTCAGATG
3851 GCCACTTAG TCCTTCAGC TGAGTCAGG ATTATTTAAC TTACCTGTAT
5 3901 ATCAAAAGTG AAGAAAAAGT TAGTTCATAA GTAAAGGCAC TAAATCCTT
3951 CCTGACAATG GCAGAGTCTC TAGAGGTAGA AATTGCGCTT GCTGCAGAGA
4001 GAGAAGGAAT GGCAGGGAT GGGGGAAAGA AAAGAAAGAG AAGAAGAGAA
4051 GAAGCTGGGG TCTCCAGGCA GGGTAGTAAG CTGACACTAA ATATTTTTA
4101 CACAAAATG TATTGAAGCA ACAAAATATT CCTGAAGATC CACCCCTGGGT
10 4151 GAGGCTTGA GCTGACTTTA GAGATCACTG TGGGGTCAAG AATGTCTTAC
4201 ATGTTTATT CATCATTCTT GAAAAAAGAA ATAATTCAAA CCTTGGAAATT
4251 AAAAAGTCAG AAAAACAAAAA AAAAAAAA AAAAAA

15 BLAST Results

No BLAST result

20 Medline entries

93367470:
25 Kajimoto Y, Shirai Y, Mukai H, Kuno T, Tanaka C.; Molecular cloning of two additional members of the neural visinin-like $\text{Ca}^{(2+)}$ -binding protein gene family. J Neurochem 1993 Sep;61(3):1091-6
30 96079121:
Polymeropoulos M.H., Ide S., Soares M.B., Lennon G.G.; Sequence characterization and genetic mapping of the human VSNL1 gene, a homologue of the rat visinin-like peptide RNVP1. Genomics 35 29(1):273-275(1995).

40 Peptide information for frame 1

45 ORF from 121 bp to 693 bp; peptide length: 191
Category: strong similarity to known protein
Classification: Protein management
Prosite motifs: EF_HAND (73-85)
EF_HAND (109-121)
EF_HAND (159-171)

50 1 MGKTN SKLAP EVLEDLVQNT EFSEQELKQW YKGFLKD CPS GILNLEEFQQ
51 L YIKFFPYGD ASKFAQHAFR TFDKNGDGTI DFREFICALS VTSRGSFEQK
101 LNWFEMYDL DGDGRITRLE MLEIIIEAIYK MVGTVIMMRM NQDGLTPQQR
151 VDKIFKKMDQ DKDDQITLEE FKEAKSDPS IVLLLQCDMQ K
55

BLASTP hits

No BLASTP hits available

Alert BLASTP hits for DKFZphamy2_2g12, frame 1

5 No Alert BLASTP hits found

Pedant information for DKFZphamy2_2g12, frame 1

10 Report for DKFZphamy2_2g12.1

15	[[LENGTH]]	231
	[[MW]]	26277.92
	[[pI]]	5.26
	[[HOMOL]]	PIR:JH0815 neural visinin-like Ca ²⁺ -binding protein-type 2 - rat 1e-107
20	[[FUNCAT]]	98 classification not yet clear-cut [[S. cerevisiae, YDR373w]] 3e-52
	[[FUNCAT]]	03.01 cell growth [[S. cerevisiae, YKL190w]] 3e-18
	[[FUNCAT]]	03.07 pheromone response, mating-type determination, sex-specific proteins [[S. cerevisiae, YKL190w]] 3e-18
25	[[FUNCAT]]	13.04 homeostasis of other ions [[S. cerevisiae, YKL190w]] 3e-18
	[[FUNCAT]]	04.05.01.04 transcriptional control [[S. cerevisiae, YKL190w]] 3e-18
	[[FUNCAT]]	30.03 organization of cytoplasm [[S. cerevisiae, YKL190w]] 3e-18
30	[[FUNCAT]]	11.01 stress response [[S. cerevisiae, YGR100w]] 7e-04
	[[BLOCKS]]	BLO00303B S-100/ICaBP type calcium binding protein
	[[BLOCKS]]	BLO0018
	[[BLOCKS]]	PRO00450G
	[[BLOCKS]]	PRO00450F
35	[[BLOCKS]]	PRO00450E
	[[BLOCKS]]	PRO00450D
	[[BLOCKS]]	PRO00450C
	[[BLOCKS]]	PRO00450B
	[[BLOCKS]]	PRO00450A
40	[[SCOP]]	dlosa_ 1.37.1.5.13 Calmodulin ((Paramecium tetraurelia) 8e-25
	[[SCOP]]	dlrec_ 1.37.1.5.21 Recoverin [[bovine (Bos taurus) 1e-72
45	[[SCOP]]	dla4pa_ 1.37.1.2.5 Calcyclin (S100) [[Human (Homo sapiens), P1 7e-05
	[[SCOP]]	d1rro_ 1.37.1.4.1 Oncomodulin [[rat (Rattus norvegicus) 2e-17
	[[SCOP]]	dlsyma_ 1.37.1.2.2 Calcyclin (S100) [[rat (Rattus norvegicus) 9e-14
50	[[SCOP]]	d4icb_ 1.37.1.1.1 Calbindin D9K [[bovine (Bos taurus) 2e-18
	[[SCOP]]	dlauib_ 1.37.1.5.19 Calcineurin regulatory subunit (B-chain 1e-45
	[[PIRKW]]	blocked amino end 1e-99
55	[[PIRKW]]	phosphotransferase 3e-08
	[[PIRKW]]	duplication 7e-17
	[[PIRKW]]	tandem repeat 7e-06
	[[PIRKW]]	heterodimer 7e-17

Prosite for PKFZphamv2 2912.1

45 PS00018 113->126 EF_HAND PDOC00018
PS00018 149->162 EF_HAND PDOC00018
PS00018 199->212 EF_HAND PDOC00018

Pfam for DKFZphamy2_2g12.1

55 HMM_NAME EF hand

HMM *EIqEMFrmMDkDGDGyIDFEFFmEMMkem*
Q +FR +DK+GDG+IDF EF+ +++

Query 104 FAQHAFRTFDKNGDGTIDREFICALSVT 132

27-15 140 168 1 29 dkfzphamy2_2g12.1 strong
similarity to NVL-2 (Rattus norvegicus)

5 Alignment to HMM consensus:

Query *EIqEMFrmMDkDGDGyIDFEEFmeMMkem*
dkfzphamy2 140 KLNWAFEMYDLDDGRITRLEMLEIIIAI 168

10 Query 218 1 29 dkfzphamy2_2g12.1 strong
similarity to NVL-2 (Rattus norvegicus)

Alignment to HMM consensus:

HMM *EIqEMFrmMDkDGDGyIDFEEFmeMMkem*
++++F++MD+D+D +I+ EEF+E+ K+

15 Query 190 RVDKIFKKMDQDKDDQITLEEFKEAKSD 218

DKFZphamy2_2i17

5 group: amygdala derived

DKFZphamy2_2i17 encodes a novel 462 amino acid protein without similarity to known proteins.

10 Most ESTs are derived from brain and pancreas.

No informative BLAST results; No predictive prosite, pfam or SCOP motif.

15 The new protein can find application in studying the expression profile of amygdala-specific genes.

unknown protein

20 perhaps complete cds.

Sequenced by MediGenomix

25 Locus: unknown

25 Insert length: 3473 bp
Poly A stretch at pos. 3454, polyadenylation signal at pos. 3436

30	1 GATATCCCAA TCTTTGGACT GCATCCTGGT TGCCTCTACT GTGGTCACCT
	51 TTGGGAAGAA ATGTCTTCTG TAAAAAAGAAG TCTGAAGCAA GAAATAGTTA
101	CTCAGTTCA CTGTCAGCT GCTGAAGGAG ATATTGCCAA GTTAACAGGA
151	ATACTCAGTC ATTCTCCATC TCTTCTCAAT GAAACTTCTG AAAATGGCTG
201	GACTGCTTTA ATGTATGCGG CAAGGAATGG GCACCCAGAG ATAGTCCAAT
251	TTCTGCTTGA GAAAGGGTGT GACAGATCAA TTGTCAATAA ATCAAGGCAG
301	ACTGCACTGG ATATTGCTGT ATTTTGGGGT TATAAGCATA TAGCTAATT
351	ACTAGCTACT GCTAAAGGTG GGAAGAACCC TTGGTTCTA ACGAATGAAG
401	TGGAAGAAATG TGAAAATTAT TTTAGCAAAA CACTACTGGA CGGGAAAAGT
451	GAAAAGAGGA ATAATTCTGA CTGGCTGCTA GCTAAAGAAA GCCATCCAGC
501	CACAGTTTTT ATTCTTTCT CAGATTAAA TCCCTTGGTT ACTCTAGGTG
551	GCAATAAAAGA AAGTTTCCAA CAGCCAGAAG TTAGGCTTTG TCAGCTGAAC
601	TACACAGATA TAAAGGATTA TTTGGCCCAG CCTGAGAAGA TCACCTTGAT
651	TTTTCTTGGGA GTAGAACTTG AAATAAAAGA CAAACTACTT AATTATGCTG
701	GTGAAGTCCC GAGAGAGGAG GAAGATGGAT TGGTTGCCTG GTTGCTCTA
751	GGTATAGATC CTATTGCTGC TGAAGAATTG AAGCAAAGAC ATGAAAATTG
801	TTACTTTCTT CATCCTCCCTA TGCCAGCCCT TCTGCAATTG AAAGAAAAAG
851	AAGCTGGGGT TGTAGCTCAA GCAAGATCTG TTCTTGCCTG GCACAGTCGA
901	TACAAGTTT GCCCAACCTG TGGAAATGCA ACTAAAATTG AAGAAGGTGG
951	CTATAAGAGA CTATGTTAA AAGAAGACTG TCCTAGTCTC AATGGCGTCC
1001	ATAATACCTC ATACCCAAAGA GTTGATCCAG TAGTAATCAT GCAAGTTATT
1051	CATCCAGATG GGACCAAATG CCTTTAGGC AGGCAGAAAA GATTTCCCCC
1101	AGGCATGTTT ACTTGCCCTG CTGGATTAT TGAGCCTGGA GAGACAATAG
1151	AAGATGCTGT TAGGAGAGAA GTAGAAGAGG AAAGTGGAGT CAAAGTTGGC
1201	CATGTTCACT ATGTTGCTTG TCAACCAGG CCAATGCCTT CCTCCTTAAT
1251	GATTGGTTGC TTAGCTCTAG CAGTGTCTAC AGAAATTAAA GTTGACAAGA
1301	ATGAAATAGA GGATGCCCGC TGTTCACTA GAGAACAGGT CCTGGATGTT
1351	CTGACCAAAG GGAAGCAGCA GGCATTCTTT GTGCCACCAA GCCGAGCTAT
1401	TGCACATCAA TTAATCAAAC ACTGGATTAG AATAAATCCT AATCTCTAAA

1451 TCTAAGAACT AAGCTTTGAG TATTATTTAA TAATTCTAA TAACACTCAT
 1501 TCCTCAAGTG ATATTAGAGA TTATTCAAGTA CTCTTGAGAG TGTCACAACA
 1551 CAAAATAACGA TGGTGGGTTT TCAGAAATATT TTCAAAGTGT TCTGTCTTAA
 1601 TCACAAATTC ATATTTTAC ACATTTTAC AATATTGCCT CAGATTATGT
 1651 TAAATTTGGG TCAGTCTTCT CTGAACCTTT TCTCTCTCGG TTTCTTTCT
 1701 TCCTTCACAG TTTTATCTCA CAAAACCATT TTTCTAATAA GAGACATCAT
 1751 GTTGGAAAGA TGGTGTAGAA ATGTGCATAA ATTCAGTGC CTCTTGTAAG
 1801 CATTAAACTG ATGATGAAGA AAGTTCTGA TTTGAGAAAT GAATCAAAGT
 1851 AATTTTAATG AATTTTTAGC TTGTATTAGC TTGAGTTAGC TGGCATTGAT
 1901 TTTTTAGTCC TTTTGTACCC TTTAAGTTGT CAATATATGG TTTTTGTTCA
 1951 TCTCCCCATT GTAGTCCCCAC TTGCTCTTTC CTGGGGGTTC CATTGTTCTA
 2001 GCAGTGGAGG TGTTACAGTG TCGCCACTCG TCTAATTGAA CCAGTGTAA
 2051 GAATTTTCTA ATTAAATAAT TTAATAGTGA TCTCAATACC ACACCCCTCAT
 2101 GGAAGGAGAA AAGCATACTA TTATATCTGG GACCTCTCTT TTAGACCTAA
 2151 AATTAATTAA CATATCTACT TATATGTTAC TTATACCTAA AGCTGTTATT
 2201 AAGACAAACC AAGATTCTCT GCTTTGCAC TGAAATTAAA CTTGAAAGGA
 2251 ATTCTCCTCA AAGGTCGGAT ATTTAAATAAG TCCCAGGCAG ATTTACATAT
 2301 TTAATTTAAA ACATTGGCTT TATTCTATT TGTGATGAGT GATGTATCTG
 2351 TGTTAACAAA AAATTGTATA ATCATTACCA ATACTATTTA TTATGCTCAA
 2401 ATATATCTTG GCTTTGACCT TATTCAACA CATTCTAAGA AGCCTTGACA
 2451 AAGTAAGTAT ATTTTAGAGC TGAATCAGTA AGATTCTAGA GAAAGCAAAA
 2501 CATAGTAGTT CACAATTGGT CAACATAGAA AGTCACATT TGAAAGGCTA
 2551 TTTTGAATT GATTAAATAG CTATTAGT TTATGAAAT CAAAATTGTT
 2601 ATAATTTGCA TCTTTACTAA TGTATGCTAG AGCTACAAGA GACCTTAAGG
 2651 ATAATATATG AAATTAGCTT TCCTTATTTT ATAGATAAGG AAAAAGAAAT
 2701 TGTGAAAGGT GAATTACCTT AATTAGTGAAG AGTTACATAA CTAATTACAA
 2751 CAGTCTGTAC TATATAATGC AGAGGACGAT TCTCCCTGTA AAAGGAACTA
 2801 GAAGCTATTA CTAAAAATAT ATATAGACAA AATTAAAAGA AGGAATGATA
 2851 AGAATAAAATT TAATTTACCA AATATTGTTA ATTAAAATT TAGACTTA
 2901 ACATTTTACCA AACTTAAATA AAAGATAACT GTCAGATAAA ACTTTATTTT
 2951 ACTAATGAGC AGTGATTTTC TTAGGAATTG ATGAAGGCTT ATTGGTATCA
 3001 AGAATTAAAC CCAAATTAAA ACTGACAGAG GACATTAGA TACATAATAA
 3051 AATTGAGCT ACATAAGTAT ATGGAAAATA ATGTACCTTG ATTATTATGA
 3101 AATAGAGCAT CTGAAATTC AGTTTACTC TAAATGACT TTTAATACTT
 3151 GCAGATTCTA AGATTACATT GTGAAATTCC AGGTTTCTAT AATGTTAAAA
 3201 TAGGAAAGTA GAATATAAAG TATCAACAAG TGTAGTTATA CATTGGTCTT
 3251 TGGATATTAA ATCCTTACTT GGGAAAAAAAT CAGCATCTAG GTAAATTATT
 3301 ATTTAAATAA GAACTCTTAA ATTGCCAACC TCTGAGAGGT GAAAAGCTAT
 3351 GTAAATAGAA GGAAATGGCCA GTTCAAAAGA ATAGTAGAAG TGATAGTGCC
 3401 GTGAATGTAT TCTACTGGAA ATGAATGTAA TAATACATTA AATTTTAAA
 3451 ATCGAAAAAA AAAAAAAAAA AAA

BLAST Results

45

No BLAST result

50

Medline entries

No Medline entry

55

Peptide information for frame 1

ORF from 61 bp to 1446 bp; peptide length: 462
 Category: putative protein
 Classification: unclassified
 5 Prosite motifs: MUTT (355-374)

1 MSSVKRSLKQ EIVTQFHCSA AEGDIAKLTG ILSHSPSLLN ETSENGWTAL
 51 MYAARNGHPE IVQFLLEKGC DRSIVNKSRAQ TALDIAVFWG YKHIANLLAT
 10 1D1 AKGGKKPWFL TNEVEECENY FSKTLLDRKS EKRNNNSDWLL AKESHPATVF
 151 ILFSDLNPLV TLGGNKESFQ QPEVRLCQLN YTDLIKDYLAQ PEKITLIFLG
 201 VELEIKDKLL NYAGEVPREE EDGLVAWFAL GIDPIAAEEF KQRHENCYFL
 251 HPPMPALLQL KEKEAGVVAQ ARSVLAWSR YKFCPTCGNA TKIEEGGYKR
 301 LCLKEDCPSL NGVHNTSYPR VDPVVIMQVI HPDGTKCLLG RQKRFPPGMF
 351 TCLAGFIEPG ETIEDAVRRE VEEESGVKVG HVQYVACQPW PMPSSLMIGC
 401 LALAVSTEIK VDKNEIEDAR WFTREQVLDV LTKGKQQAFF VPPSRAIAHQ
 451 LIKHWIRINP NL

20

BLASTP hits

No BLASTP hits available

25

Alert BLASTP hits for DKFZphamy2_2i17, frame 1

No Alert BLASTP hits found

30

Pedant information for DKFZphamy2_2i17, frame 1

Report for DKFZphamy2_2i17.1

35 [LENGTH] 462
 [MW] 52076.25
 [pI] 6.38
 [HOMOLI] TREMBL:SPBC177B_3 gene: "SPBC177B.03c"; product:
 "conserved hypothetical protein"; S.pombe chromosome II cosmid
 40 c177B. 1e-45
 [FUNCAT] 99 unclassified proteins [E. cerevisiae, YGL067w]
 4e-34
 [FUNCAT] r general function prediction [E. influenzae,
 H10432 pyrophosphohydrolase] 4e-24
 45 [FUNCAT] l genome replication, transcription, recombination and
 repair [E. jannaschii, MJ1149 nucleotide pyrophosphohydrolase]
 1e-04
 [BLOCKS] BL00219F Anion exchangers family proteins
 [BLOCKS] BL01293B
 50 [BLOCKS] DM01909
 [BLOCKS] PF00023A
 [BLOCKS] BL00893 mutT domain proteins
 [SCOP] dlawcb_ 1.91.3.1.2 GA binding protein (GABP) alpha
 GA bindini 2e-35
 55 [SUPFAM] hypothetical protein H10432 1e-22
 [PROSITE] MUTT 1
 [PFAM] Bacterial mutT protein
 [PFAM] Ank repeat

[KW] Irregular
[KW] 3D

5 SEQ MSSVKRSLKQEIVTQFHCSAAEGDIAKLTGILSHSPSLLNETSENGWTALMYAARNGHPE
lawcB .CCCTTTCTTCCHHHHHHHHTTHHHHHHHCCCTT-
TTEETTTEEEHHHHHHHHCCHH

10 SEQ IVQFLLEKGCDRSIVNKSRTALDIAVFWGYKHIANLLATAKGGKKPWFLTNEVEECENY
lawcB HHHHHHHHHCCTTTCBTTTBCHHHHHHHHHCCHHHHHHH.....

15 SEQ FSKTLDRKSEKRNNSDWLLAKESHPATVFILEFSDLNPLVTLGGNKESFQQPEVRLCQLN
lawcB

20 SEQ YTDIKDYLAQPEKITLIFLGVELEIKDKLLNYAGEVPREEEDGLVAWFALGIDPIAAEEF
lawcB

25 SEQ KQRHENCYFLHPPMPALLQLKEKEAGVVAQARSVLAWSRYKFCPTCGNATKIEEGGYKR
lawcB

30 SEQ LCLKEDCPSLNGVHNTSYPRVDPVVIMQVIHPDGTKCLLGRQKRFPPGMFTLAGFIEPG
lawcB

35 SEQ ETIEDAVRREVEEESGVKVGHVQYVACQPWPMPSSLMIGCLALAVSTEIKVDKNEIEDAR
lawcB

40 SEQ WFTREQVLTVLTKGKQQAFFVPPSRAIAHQLIKHWIRINPNL
lawcB

Prosite for DKFZphamv2 2117-1

40 PS000893 355-375 MHT PROS000895

Pfam for DKEZphamv2 2112.1

```

45          HMM_NAME Ank repeat
50          HMM          *GyTPLHIAARyNNvEMVr1LLQHGADIN*
                           G+T+L++AAR+++ E+V++LL++G D
          Query        4b   GWTALMYAARNNGHPEIVQFLLEKGCDRS    ???

```

55 HMM NAME Bacterial mutT protein

HMM
TLMiaRedppnHYdtHhdWTEPGGkTEeGETPEaCacRETWEETGT

L++++++ +++ +
++G+IE+GET+E+++RRE++EE+G+
Query 337 CLLGR@KRF--PPG---
MFTCLAGFIEPGETIEDAVRREVEESGV 377

5

DKFZphamy2_2013

5 group: intracellular transport and trafficking

DKFZphamy2_2013 encodes a novel 590 amino acid protein with high similarity to murine synaptotagmin 3.

10 The novel protein contains two C2 domains. The C2 domain is thought to be involved in calcium-dependent phospholipid binding. Synaptotagmins are essential for Ca(2+)-regulated exocytosis of neurosecretory vesicles.

15 The new protein can find application in modulating/blocking synaptic activity.

similarity to synaptotagmin 3 (*Mus musculus*)

20 Sequenced by MediGenomix

Locus: unknown

25 Insert length: 2931 bp

Poly A stretch at pos. 2912, polyadenylation signal at pos. 2884

30	1 ACTCTATGTC TCCTCTCGTT GGATTGTGAC ACCGGGAGGT CAGGGAACTC
	51 CAGGACCTTG TTCTCTGCTG GATTGCGAGC AACCAAGCACA GCACGTAGGG
	101 CGTAGTTGGT GCTGGATGGA TGTTTGTGAA ATGAATGAAT GATGAATGGC
	151 TGGCACCTTG TCTGCTCATC CCTAACTCCT GTTCCCTTCAT CTGTGCAGCC
	201 CTAATCTTTG TTTCTCTCATC TGTCATCCC TTTATTTGTG CATCCTCATT
	251 CTTAGCCCCCT TCACTGCCCT TCTCCATCTC TTCCCTCCTTG TTCATTGTC
35	301 CCTGTTCTCT GTCTCTACT CCACTCATGC CCATCTCTGT CCCCTTGACT
	351 TACCCAGTCC CTGCTACTAT CTCCATCCCT AATTCTGCC CTCTTGTCTG
	401 TCTACTCCTA ATTCTTTTC CTTGTCCATC CCTAAATACCT GTCACCTTGT
	451 CCTTCTTCCT CGAACATCTCCA TCCCCATATCC ATCTGCCCT AATCTCTGTC
	501 CCTTTGCCCT ATCCTTCCTT TTCTCGGTGT CTCTTCCAC CCTTATCTCC
40	551 ACACCTGCCCT ACCCTGCACT CCCATTCTGT TTCCCCTATCTG CACCCTTGCC
	601 CCATCCCTCC CACACACAGG ACCAGACGGC CACCATGTCA GGAGACTACG
	651 AGGATGACCT CTGCCGGCGG GCACTCATCC TGGTCTCGGA CCTCTGTGCG
	701 CGGGTCCGAG ATGCTGACAC CAACGACAGG TGCCAGGAGT TCAATGACCG
	751 AATCCGAGGC TATCCCCGGG GTCCAGATGC AGACATCTCC GTGAGCCTGC
45	801 TGTCGGTCAT CGTGACATTG TGTGGCATTG TCCTTCTGGG TGTCTCTCTC
	851 TTCTGTCTCT GGAAGTTGTG CTGGGTGCCCT TGGCGGGGACA AGGGAGGCTC
	901 GGCAGTGGGC GGTGGCCCCC TGCGCAAAGA CCTAGGCCCC GGTGTGGGC
	951 TGGCAGGGCCT GGTAGGCAGGA GGCAGGGCACC ACCTGGCGGC TGGCCTGGGT
	1001 GGCCATCCTC TGCTGGGCGG CCCACACCAAC CATGCCATG CCGCCCCACCA
50	1051 TCCACCCCTT GCTGAGCTGC TGGAGCCAGG CAGCCTGGGG GGTTCTGACA
	1101 CCCCTGAGCC CTCTACTTG GACATGGACT CGTATCCAGA GGCTGAGCA
	1151 GCAGCAGTGG CCGCTGGGGT CAAACCGAGC CAAACATCCC CTGAGCTGCC
	1201 CTCTGAGGGG GGAGCAGGCT CTGGGTGCT CCTGCTGCC CCCAGTGGTG
	1251 GGGGCTTGCC CAGTGCCAG TCACATCAGC AGGTACAAG CCTGGCACCC
55	1301 ACTACCAAGT ACCCAGCCCT GCCCCGACCC CTCACCCAGC AGACTCTGAC
	1351 CTCCCAGCCG GACCCCCAGCA GTGAGGGAGCG CCCACCTGCC CTGCCCTTAC
	1401 CCCTGCCTGG AGGCAGGGAA AAAGCCAAAC TCATTGGGCA GATTAAGCCA
	1451 GAGCTGTACC AGGGGACTGG CCCTGGTGGC CGGCAGGAGCG GTGGGGGCC

1501 AGGCTCTGGA GAGGCAGGCA CAGGGGCACC CTGTGGCCGT ATCAGCTTCG
 1551 CCCTGCGGTA CCTCTATGGC TCGGACCAGC TGGTGGTGAG GATCCTGCAG
 1601 GCCCTGGACC TCCCTGCCAA GGACTCCAAC GGCTTCTCAG ACCCCATACGT
 1651 CAAGATCTAC CTGCTGCCTG ACCGCAAGAA AAAGTTTCAG ACCAAGGTGC
 5 1701 ACAGGAAGAC CCTGAACCCC GTCTTCAATG AGACGTTCA ATTCTCGGTG
 1751 CCCCTGGCCG AGCTGGCCCA ACGCAAACGT CACTTCAGCG TCTATGACTT
 1801 TGACCGCTTC TCGCGGCACG ACCTCATCGG CCAGGTGGTG CTGGACAACC
 1851 TCCTGGAGCT GGCGAGACAG CCCCCTGACC GCCCGCTCTG GAGGGACATC
 1901 GTGGAGGGCG GCTCGGAAAA AGCAGATCTT GGGGAGCTCA ACTTCTCACT
 10 1951 CTGCTACCTC CCCACGGCCG GGCCTCTCAC CGTGACCATC ATCAAAGCCT
 2001 CTAACCTCAA AGCGATGGAC CTCACTGGCT TCTCAGACCC CTACGTGAAG
 2051 GCCTCCCTGA TCAGCGAGGG GCGCGTCTG AAGAACGCGA AAACCTCCAT
 2101 CAAGAAGAAC ACGCTGAACC CCACCTATAA TGAGGCCTG TGTTTGACG
 2151 TGGCCCCCGA GAGCGTGGAG AACGTGGGGC TCAGCATCGC CGTGGTGGAC
 15 2201 TACGACTGCA TCGGGCACAA CGAGGTGATC GGCCTGTGCC GTGTGGGCC
 2251 CGACGCTGCC GACCCGCACG GCCCGAGCA CTGGGCAGAG ATGCTGGCCA
 2301 ATCCCCGCAA GCCCGTGGAG CACTGGCATC AGCTAGTGGA GGAAAAGACT
 2351 GTGACCAGCT TCACAAAAGG CAGCAAAGGA CTATCAGAGA AAGAGAACTC
 2401 CGAGTGAGGG GTCTGGCTA GGGCGGGAT CGGACCAAGGC TCCCTCAGGA
 20 2451 CCCCATCCTT TCCTGCCCCG ACCGTGAATT CATCTCTTG AAGCCATAAC
 2501 GTCCGAGCTG CTGGTGGGG GCAGCCCTGG CCCTAGGCTT CCTAACCCCTG
 2551 GAAGCGAGAG GATGAGAGGA GGGCGGCCA GCTCCTTCTT TCAGGGTGGG
 2601 GGTATTCAAG CCTCCACTGT GTCTGTCTT TCTTCCCTGG GGCTCCCCCT
 2651 CGAGGGGAGG GCCATGCAT GTCTGGGGGA CCCCTGCC CCAAACCCCT
 25 2701 CTGTCTGTCT CTGTCTCTT GCTGTTTGTG CAAGACTCAG TGTCCTGACC
 2751 CTTGTTCTG CCGTGAATGT CAATGGGCCA ATCCTCTCTG TCCTTTAGA
 2801 CACACACACA CCTGTGTCCA CCCCTCTGT TCGCCACACC CTGCGTCTGG
 2851 CCGGTCCCCCC CACTGCTGCT GCTATCAACG CCAGAATAAA CACACTCTGT
 2901 GGGTCTCACT CCAAAAAAAA AAAAAAAA A
 30

BLAST Results

35 Entry MMAB893_1 from database TREMBL:
 product: "synaptotagmin 3"; Mus musculus mRNA for synaptotagmin
 3,
 complete cds.
 Score = 1814, P = 5.7e-239, identities = 362/450, positives =
 40 369/450,
 frame +2

45 Medline entries

96064733:
 Fukuda M, Kojima T, Aruga J, Niinobe M, Mikoshiba K.; Functional
 50 diversity of C2 domains of synaptotagmin family.
 Mutational analysis of inositol high polyphosphate binding
 domain. J
 Biol Chem 1995 Nov 3;270(44):26523-7

55

Peptide information for frame 2

ORF from 635 bp to 2404 bp; peptide length: 590
Category: strong similarity to known protein
Classification: Cell signalling/communication
Prosite motifs: C2_DOMAIN_1 (323-338)
C2 DOMAIN_1 (455-470)

10	1	MSGDYEDDLC	RRALILVSDL	CARVRDADTN	DRCQEFNDRI	RGYPRGPDAD
	51	ISVSLLSVIV	TFCGIVLLGV	SLFVSWKLCW	VPWRDKGGSA	VGGGPLRKDL
	101	GPGVGLAGLV	GGGGHHHLAAG	LGGHPLLGGP	HHHAHAHHHP	PFAELLEPGS
	151	LGGSDTPEPS	YLDMDSYPEA	AAAAAAVAGVK	PSQTSPELPS	EGGAGSGLLL
	201	LPPSGGGGLPS	AQSHQRQVTSL	APTRTRYPALP	RPLTQQT LTS	QPDPSSEERP
15	251	PALPLPLPGG	EEKAKLIGQI	KPELYQGTGP	GGRRSGGGPG	SGEAGTGPAC
	301	GRISFALRYL	YGSDQLVVRI	LQALDLPAKD	SNGFSDPYVK	IYLLPDRKKK
	351	FQTKVHRKTL	NPVFNETFQF	SVPLAELAQR	KLHF SVYDFD	RFSRHDLIGQ
	401	VVLDNLLELA	EQQPDRPLWR	DIVEGGSEKA	DLGELNFSLC	YLPTAGRLTV
	451	TIIKASNLKA	MDLTGFSDPY	VKASLISEGR	RLKKRKTSIK	KNTLNPTYNE
20	501	ALVFDVAPES	VENVGLSIAV	VDYDCIGHNE	VIGVCRVGPD	AADPHGREHW
	551	AEMLANPRKP	VEHWHQLVEE	KTVTSFTKGS	KGLSEKENSE	

25 BLASTP hits

No BLASTP hits available

Alert BLASTP hits for DKFZphamy2_2013, frame 2

30 TREMBL:MMAB893_1 product: "synaptotagmin 3"; Mus musculus mRNA
for
synaptotagmin 3, complete cds., N = 2, Score = 1814, P = 1.1e-239

35 >TREMBL:MMAB893_1 product: "synaptotagmin 3"; Mus musculus mRNA
for
synaptotagmin 3, complete cds.
Length = 582

40 Length = 381
HSPs:

45 Identification = 212/248 (85%) Positive = 212/248 (85%)

45 Identities = 362/444 (80%), Positives = 364/444 (82%)

Query: 142 FAEELLEPGSLGGSDTPEPSYLDMDSYYPEXXXXXX-
XXGVKPSQTXXXXXXXXXXXXXXXXXXXXX 200
FAEELLEPGSLGGSDTPEPSYLDMDSYYPEXXXXXX-
XXGVKPSQTXXXXXXXXXXXXXXXXXXXXX 200

50 Sbjct: 143 FAELLEPG EGGS+ PEPSYLDMDSYPE GVKPSQT
FAELLEPGCLGCGSELPEPSYLDMDSYPEAAVASHWIAAGHCKRSTESPELRSFGCTGSCLLI 202

55 Query: 201
XXXXXXXXXXXXQSHQQVTS LAPTTRYPALPRPLTQQTLTSQPDXXXXXXXXXXXXXX 260
 QSHQQVTS LAPTTRYPALPRPLTQQTLT+Q D
Sbjct: 203
LPPSGGGLPSAQSHQQVTS LAPTTRYPALPRPLTQQTLTTQADPSTEERPPALPLPLPGG 262

Query: 261
 XXKAKLIGQIKPELYQXXXXXXXXXXXXXXXXXXXXPCGRISFALRYLYGSDQLVVRI 320
 KAKLIGQIKPELYQ
 PCGRISFALRYLYGSDQLVVRI

5 Sbjct: 263 EEKAKLIGQIKPELYQGTGPGRGGGSGEAGA-----
 PCGRISFALRYLYGSDQLVVRI 317

Query: 321
 LQALDLPAKDNGFSDPYVKIYLLPDRKKFQTKVHRKTLNPVFNFTQFSVPLAELAQR 380
 10 LQALDLPAKDNGFSDPYVKIYLLPDRKKFQTKVHRKTLNP+FNETFQFSVPLAELAQR
 Sbjct: 318 LQALDLPAKDNGFSDPYVKIYLLPDRKKFQTKVHRKTLNP+NETFQFSVPLAELAQR 377

15 Query: 381
 KLHFSVYDFDRFSRHDLIGQVVLDNLELAEQPPDRPLWRDIVEGGSEKADLGELNFSLC 440
 KLHFSVYDFDRFSRHDLIGQVVLDNLELAEQPPDRPLWRDI+EGGSEKADLGELNFSLC
 Sbjct: 378 20 KLHFSVYDFDRFSRHDLIGQVVLDNLELAEQPPDRPLWRDILEGGSEKADLGELNFSLC 437

Query: 441
 YLPTAGRLTVTIKASNLKAMDLTGFSDPYVKASLISEGRRLKKRKTSIKKNTLNPTYNE 500

25 YLPTAGRLTVTIKASNLKAMDLTGFSDPYVKASLISEGRRLKKRKTSIKKNTLNPTYNE
 Sbjct: 438 YLPTAGRLTVTIKASNLKAMDLTGFSDPYVKASLISEGRRLKKRKTSIKKNTLNPTYNE 497

Query: 501
 30 ALVFDVAPESVENVGLSIAVVVDYDCIGHNEVIGVCRVGPDAADPHGREHWAEMLANPRKP 560
 ALVFDVAPESVENVGLSIAVVVDYDCIGHNEVIGVCRVGP+AADPHGREHWAEMLANPRKP
 Sbjct: 498 ALVFDVAPESVENVGLSIAVVVDYDCIGHNEVIGVCRVGPEAADPHGREHWAEMLANPRKP 557

35 Query: 561 VEHWHLVEEKTVTSFTKGSKGLSEKENSE 590
 VEHWHLVEEKT++SFTKG KGLSEKENSE
 Sbjct: 558 VEHWHLVEEKTSSFTKGKGKLSEKENSE 587

40 Score = 520 (78.0 bits), Expect = 1.1e-239, Sum P(2) = 1.1e-239
 Identities = 98/100 (98%), Positives = 99/100 (99%)

Query: 1 MSGDYEDDLCRRALILVSDLCARVRDADTNDRCAEFND-
 RIRGYPRGPDAVISVSLLSVI 59
 45 MSGDYEDDLCRRALILVSDLCARVRDADTNDRCAEFN+
 RIRGYPRGPDAVISVSLLSVI
 Sbjct: 1 MSGDYEDDLCRRALILVSDLCARVRDADTNDRCAEFNELRIRGYPRGPDAVISVSLLSVI 60

50 Query: 60 VTFCGIVLLGVSLFVSWKLCWVPWRDKGGSAVGGGPLRKD 99
 VTFCGIVLLGVSLFVSWKLCWVPWRDKGGSAVGGGPLRKD
 Sbjct: 61 VTFCGIVLLGVSLFVSWKLCWVPWRDKGGSAVGGGPLRKD 100

55 Pedant information for DKFZphamy2_2013, frame 2

Report for DKFZphamy2_2013.2

[LENGTH] 590
 [MW] 63304.02
 [pI] 6.36
 [HOMOLI] TREMBL:MMAB893_1 product: "synaptotagmin 3"; Mus
 musculus mRNA for synaptotagmin 3, complete cds. 0.0
 [FUNCAT] 99 unclassified proteins [S. cerevisiae, YML072c]
 be-10
 [FUNCAT] 01.06.01 lipid, fatty-acid and sterol biosynthesis
 [S. cerevisiae, YGR170w] ?e-06
 [FUNCAT] 30.08 organization of golgi [S. cerevisiae, YGR170w]
 ?e-06
 [BLOCKS] BL01224A N-acetyl-gamma-glutamyl-phosphate reductase
 15 proteins
 [BLOCKS] BL01013B Oxysterol-binding protein family proteins
 [BLOCKS] PF01368B
 [SCOP] d1a25a_ 2.6.1.2.2 C2 domain from protein kinase c
 (beta) [Ra 2e-27]
 [SCOP] d1rsy_ 2.6.1.2.1 Synaptogamin I, first C2 domain
 [Rat (Rattus 4e-43
 [SCOP] d1rlw_ 2.6.1.1.2 A domain from cytosolic
 phospholipase A2 [Huma 5e-12
 [SCOP] d1qasb2 2.6.1.1.1 Phosphoinositide-specific
 25 phospholipase C 4e-27
 [PIRKW] phosphotransferase ?e-15
 [PIRKW] duplication be-7b
 [PIRKW] synaptic vesicle le-1b7
 [PIRKW] phorbol ester binding 2e-14
 30 [PIRKW] zinc 2e-14
 [PIRKW] transmembrane protein 0.0
 [PIRKW] serine/threonine-specific protein kinase 7e-15
 [PIRKW] membrane trafficking 0.0
 [PIRKW] phospholipid binding be-7b
 35 [PIRKW] autophosphorylation 7e-15
 [PIRKW] ATP 7e-15
 [PIRKW] phosphoprotein ?e-15
 [PIRKW] glycoprotein le-1b7
 [PIRKW] calcium binding 5e-34
 40 [PIRKW] alternative splicing le-10
 [PIRKW] dimer le-75
 [PIRKW] membrane protein le-1b7
 [PIRKW] calmodulin binding 2e-74
 [SUPFAM] ras-specific GAP catalytic domain homology le-08
 45 [SUPFAM] protein kinase C zinc-binding repeat homology 7e-15
 [SUPFAM] protein kinase homology 7e-15
 [SUPFAM] protein kinase C alpha 7e-15
 [SUPFAM] Hsc2 phosphatidylinositol 3-kinase le-09
 [SUPFAM] synaptotagmin 0.0
 50 [SUPFAM] PX domain homology le-09
 [SUPFAM] pleckstrin repeat homology le-08
 [SUPFAM] protein kinase C C2 region homology 0.0
 [PROSITE] C2_DOMAIN_1 2
 [PFAM] C2 domain
 55 [KW] Irregular
 [KW] 3D
 [KW] LOW_COMPLEXITY 20.00 %

SEQ MSGDYEDDLCKRALILVSDLCARVRDADTNDRQEFNDRIRGYPRGPDAISVSLLSIV
 SEG
 lrsy-
 5

 SEQ TFCGIVLLGVSLFVSWKLCWVPWRDKGGSAVGGGPLRKDLGPGVGLAGLVGGGGHHLAAG
 SEGxxxxxxxxxxxxxxxxxxxxx
 lrsy-
 10

 SEQ LGGHPLLGGPHHHAAAHPPFAELLEPGSLGGSDTPEPSYLDMDSYPEAAAAAVAAGVK
 SEG xxxxxxxxxxxxxxxxxxxxxxxx.....xxxxxxxxxxxxx
 lrsy-
 15

 SEQ PSQTSPELPSEGGAGSGLLLPPSGGGLPSAQSHQQVTSLAPTTTRYPALPRPLTQQTLTS
 SEGxxxxxxxxxxxxxxxxxxxxx.....xxxxxxxxxxxxx
 lrsy-
 20

 SEQ QPDPSSEERPPALPLPLPGGEEKAKLIGQIKPELYQGTGPGGRRSGGGPGSSEAGTGAPC
 SEGxxxxxxxxxxxxxxxxxxxxx.....xxxxxxxxxxxxxxxxxxxxx
 lrsy-
 25

 SEQ GRISFALRYLYGSDQLVVRILQALDLPAKDNGFSDPYVKIYLLPDRKKKFQTKVHRKTL
 SEG
 lrsy-
 30 CEEEEEEETTTTEEEEEEECCCCBTTBCEEEEEETTTTEECCCTTB

 SEQ NPVFNETFQFSVPLAELAQRKLHFSVYDFDRFSRHDLIGQVVLNDNLLELAQPPDRPLWR
 SEG
 lrsy-
 35 TTEEEEEEECCCHHHHCCEEEEEEECTTTCCEEEE.....

 SEQ DIVEGGSEKADLGELNFSLCYLPTAGRLLTVTIKASNLKAMDLTGFSDPYVKASLISEGR
 SEG
 lrsy-
 40

 SEQ RLKKRKTSIKKNTLNPTYNEALVFDVAPESVENVGLSIAVVVDYDCIGHNEVIGVCRVGPD
 SEG
 lrsy-
 45

 SEQ AADPHGREHWAEMLANPRKPVEHWHQLVEEKTVTSFTKGSKGLSEKENSE
 SEG
 lrsy-
 50

Prosite for DKFZphamy2_2013.2

55	PS00499	323->339	C2_DOMAIN_1	PDOC00380
	PS00499	455->471	C2_DOMAIN_1	PDOC00380

Pfam for DKFZphamy2_2013-2

5 HMM_NAME C2 domain

HMM
 *LtVrIIeARNLWkMDMnGfSDPYVKVdMdPdpkDtKKWKTkTiWNNGLN
 L+VRI++A +L+++D+NGFSDPYVK++++PD+K

10 KK++TK+++++ LN
 Query 316 LVVRILQALDLPAKDNGFSDPYVKIYLLPDRK--
 KKFQTKVHRKT-LN 361

HMM
 15 PVWNEEEFvFedIPyPdlqrkMLRFaVWDWDRFSRBDFIGHCi*
 PV+N E+F+F +P+ +L+ + L+F+V+D+DRFSR+D+IG++
 Query 362 PVFN-ETFQFS-VPLAELAQRKLHFSVYDFDRFSRHDLIGQVV
 402

HMM
 20 *LtVrIIeARNLWkMDMnGfSDPYVKVdMdPdpkDtKKWKTkTiWNNGLN
 LTV+II+A NL++MD +GFSDPYVK +++ +
 +++KK+KT++++N+ LN
 Query 448
 LTVTIKASNLKAMDLTGFSDPYVKASLISEGRRLKKRKTSIKKNT-LN 495

25 HMM
 PVWNEEEFvFedIPyPdlqrkMLRFaVWDWDRFSRBDFIGHCi*
 P++N E +VF+ ++ ++ +++ L +AV D+D++++++IG+C+
 Query 496 PTYN-EALVFD-VAPESVENVGLSIAVVVDYDCIGHNEVIGVCR
 536

30

DKFZphamy2_7j5

group: differentiation/development

5

DKFZphamy2_7j5 encodes a novel 693 amino acid protein with similarity to Tspyl1 testis-specific Y-encoded-like protein of *Mus musculus*.

10 TSPY genes are arranged in clusters on the Y chromosome of many mammalian species. TSPY is believed to function in early spermatogenesis and is a candidate for GBY, the putative gonadoblastoma-inducing gene on the Y. The TSPY family forms part of a superfamily, TTSN, with autosomal representatives, highly conserved in mammals and beyond.

15 The new protein can find application in studying the expression profile of testis- and brain-specific genes and diagnosis/therapy of malfunctioning male fertility.

20

HRIHFB221b

similarity to Y-linked Gene of *Mus musculus*

25

Sequenced by BMFZ

Locus: unknown

30 Insert length: 2819 bp
 Poly A stretch at pos. 2800, polyadenylation signal at pos. 2779

```

 1 AGGAGAGCTG GTTGCCTGAG TCTCCTCAGC TCTGCTTACC GGTGCGACTA
 51 GCGGCAGCGA CGGGGCTAAA AGCGAAGGGG CGAGTGCAG TCCCCCTGAGC
 101 TGTACGAACG CGGTGCCAT GGACCGCCCA GATGAGGGGC CTCCGGCCAA
 151 GACCCGCCGC CTGAGCAGCT CCGAGTCTCC ACAGCGCGAC CGGCCCCCGC
 201 CGCCGCCGCC GCCGCCGCTC CTCCGACTGC CGCTGCCCTC ACCCCAGCAG
 251 CGCCCGAGGC TCCAGGAGGA AACGGAGGCC GCACAGGTGC TGGCCGATAT
 301 GAGGGGGGTG GGACTGGGCC CGCGCCTGCC CCCGCCGCCT CCCTATGTCA
 351 TTCTCGAGGA GGGGGGGATC CGCGCATACT TCACGCTCGG TGCTGAGTGT
 401 CCCGGCTGGG ATTCTACCAT CGAGTCGGGG TATGGGGAGG CGGCCCCGCC
 451 CACGGAGAGC CTGGAAGCAC TCCCCACTCC TGAGGCCCTCG GGGGGGAGCC
 501 TGGAAATCGA TTTTCAGGTT GTACAGTCGA GCAGTTTGG TGGAGAGGGG
 551 GCCCTAGAAA CCTGTAGCGC AGTGGGGTGG GCGCCCCAGA GGTTAGTTGA
 601 CCCGAAGAGC AAGGAAGAGG CGATCATCAT AGTGGAGGAT GAGGATGAGG
 651 ATGAGCAGGA GAGTATGAGG AGCAGCAGGA GGCAGGGCG GCGCCGGAGG
 701 AGGAAGCAGA GGAAGGTGAA GAGGGAAAGC AGAGAGAGAA ATGCCGAGAG
 751 GATGGAGAGC ATCCTGCAGG CACTGGAGGA TATTCACTG GATCTGGAGG
 801 CAGTGAACAT CAAGGCAGGC AAAGCCTTC TGCGTCTCAA GCGCAAGTTC
 851 ATCCAGATGC GAAGACCCCT CCTGGAGCGC AGAGACCTCA TCATCCAGCA
 901 TATCCCAGGC TTCTGGGTCA AAGCATTCTT CAACCACCCC AGAATTCAA
 951 TTTTGATCAA CCGACGTGAT GAAGACATT TCCGCTACTT GACCAATCTG
 1001 CAGGTACAGG ATCTCAGACA TATCTCCATG GGCTACAAAA TGAAGCTGTA
 1051 CTTCCAGACT AACCCCTACT TCACAAACAT GGTGATTGTC AAGGAGTTCC
 1101 AGCGCAACCG CTCAGGCCGG CTGGTGTCTC ACTCAACCCC AATCCGCTGG
 1151 CACCGGGGCC AGGAACCCCA GGCCCGTCGT CACGGGAACC AGGATGCGAG
 1201 CCACAGCTTT TTCAGCTGGT TCTCAAACCA TAGCCTCCCA GAGGCTGACA

```


1251 GGATTGCTGA GATTATCAAG AATGATCTGT GGGTTAACCC TCTACGCTAC
 1301 TACCTGAGAG AAAGGGGCTC CAGGATAAAG AGAAAAGAAGC AAGAAATGAA
 1351 GAAACGTAAA ACCAGGGGCA GATGTGAGGT GGTGATCATG GAAGACGCC
 1401 CTGACTATTA TGCACTGGAA GACATTTCA GCGAGATCTC AGACATTGAT
 1451 GAGACAATTG ATGACATCAA GATCTCTGAC TTCACTGGAGA CCACCGACTA
 1501 CTTCGAGACC ACTGACAATG AGATAACTGA CATCAATGAG AACATCTGCG
 1551 ACAGCGAGAA TCCTGACAC AATGAGGTCC CCAACAAACGA GACCACTGAT
 1601 AACAAACGAGA GTGCTGATGA CCACGAAACC ACTGACAACA ATGAGAGTGC
 1651 AGATGACAAC AACGAGAATC CTGAAGACAA TAACAAGAAC ACTGATGACA
 1701 ACGAAGAGAA CCTTAACAAAC AACGAGAACAA CTTACGGCAA CAACTCTTC
 1751 AAAGGTGGCT TCTGGGGCAG CCATGGCAAC AACCAAGGACA GCAGCGACAG
 1801 TGACAATGAA GCAGATGAGG CCAGTGTGATGA TGAAGATAAT GATGGCAACG
 1851 AAGGGTGACAA TGAGGGCAGT GATGATGATG GCAATGAAGG TGACAATGAA
 1901 GGCAGCGATG ATGACGACAG AGACATTGAG TACTATGAG AAGTTATTGA
 1951 AGACTTTGAC AAGGATCAGG CTGACTACGA GGACGTGATA GAGATCATCT
 2001 CAGACGAATC AGTGGAAAGAA GAGGGCATTG AGGAAGGCAT CCAGCAAGAT
 2051 GAGGACATCT ATGAGGAAGG AAACATATGAG GAGGAAGGAA GTGAAGATGT
 2101 CTGGGAAGAA GGGGAAGATT CGGACGACTC TGACCTAGAG GATGTGCTTC
 2151 AGGTCCCCAA CGGTTGGGGC AATCCGGGGA AGAGGGGGAA AACCGGATAA
 2201 GGGTTTCCCCTTTGGGGTA TCACCTCTCT GTATCCCCCA CCCACTATCC
 2251 CATTGCCCCCTCTCTCAGC TAGGGCCACG CGGCCCCACA TTGCACTTCT
 2301 GGGGGGTGAC CGACTTCGTA CACGGGTTTA AAGTTTATT TTATGGTTTA
 2351 GTCAATTGCAAG AGTTCTTATT TTGGGGGGAG GGAAAGGGGG CTAGTCCCC
 2401 TCTTTGGCC CTCCGCCCTC GCAGGCTTCT GTGTGCTGCT AACTGTATT
 2451 ATTGTGATGC CTTGGTCAGG GCCCTCTAC CCACCTCTCC CAGTCAGTTG
 2501 TGGCCCCAGC CCCTCTCCCT GTGCTGTGTG GAGTGGACAC CCTGACCCCC
 2551 GAAGCGGGGA GGCCCGCTGT GGCTTCGTC ACAGCCGCAC AGTGCCCATG
 2601 GAGGCCTGTC TGCCACCTTC CTCTCCCAAG TTCTTCTCC ATCCCTCTCC
 2651 TCTTCCCCGCC GCGCCGCTAG CCCGCCCTGG TGTCTATGCA AGGCCGCTTC
 2701 GCCATTGCGG TATTCTTGC GGTATTCTTG TCCCCGTCCC CCAGAAGGCT
 2751 CGCCTCTCCC CGTGGACCT GTTAATCCCA ATAAAATTCT GAGCAAGTTT
 2801 AAAAAAAAAA AAAAAAAAAA

35 BLAST Results

No BLAST result

40 Medline entries

98399864:
 45 Vogel T, Dittrich O, Mehraein Y, Dechend F, Schnieders F,
 Schmidtke J.; Murine and human TSPYL genes: novel members of the
 TSPY-SET-NAP1L1 family. Cytogenet Cell Genet 1998;81(3-4):265-70

50 Peptide information for frame 2

55 ORF from 119 bp to 2197 bp; peptide length: 693
 Category: similarity to known protein
 Classification: unclassified

1 MDRPDEGPPA KTRRLSSSES PQRDPooooo PPPLLRLPLP PPQQRPRLQE
 5 ETEAAQVLAD MRGVGLGPAL PPPPPYVILE EGGIRAYFTL GAECPGWDST
 10 IESGYGEAPP PTESLEALPT PEASGGSLEI DFQVVQSSSF GGEGALETCS
 15 AVGWAPQRLV DPKSKEEAI^I IVEDED^EDER ESMRSSRRRR RRRRKQRKV
 20 KRESRERNAE RMESILQALE DIQLDLEAVN IKAGKAFLRL KRKFIQMRRP
 25 FLERRDLIIQ HIPGFUWKAF LNHPRISILI NRRDEDIFRY LTNLQVQDLR
 30 HISMGYKMKL YFQTNPYFTN MVIVKEFQRN RSGLRVSHST PIRWHRGQEP
 35 QARRHGNQDA SHSFFSWFSN HSLPEADRIA EIIKNDLWVN PLRYYLRERG
 40 SRIKRKKQEM KKRKTRGRCE VVIMEDAPDY YAVEDIFSEI SDIDETIHDI
 45 KISDFMETTD YFETTDNEIT DINENICDSE NPDHNEVPNN ETTDNNESAD
 50 DHETTDNNES ADDNNENPED NNKNTDDNEE NPNNNNENTYG NNFFKGGFWG
 55 SHGNNQDSSD SDNEADEASD DEDNDGNEG^D NEGSDDDGNE GDNEGSDDDD
 60 RDIEYYEKVI EDFDKDQADY EDVIEIISDE SVEEEGIEEG IQQDEDIYEE
 65 GNYEEEGSED VWEEGEDSDD SDLEDVLQVP NGWANPGKRG KTG

BLASTP hits

20 No BLASTP hits available

Alert BLASTP hits for DKFZphamy2_7j5, frame 2

25 TREMBL:AB015345_1 gene: "HRIHFB221b"; Homo sapiens HRIHFB221b
 mRNA,
 partial cds., N = 4, Score = 1393, P = 2.1e-165

30 TREMBL:HSDJ486I3_2 gene: "dJ486I3.2"; product: "dJ486I3.2
 (KIAA0721
 (NAP (Nucleosome Assembly Protein) domain containing protein))";
 Human
 DNA sequence from clone 486I3 on chromosome 6q22.1-22.3. Contains
 the

35 part of a gene for a novel protein, the gene for KIAA0721 (NAP
 (Nucleosome Assembly Protein) domain containing protein), the TSPYL
 gene
 for TSPY-like (testis specific protein, Y-linked like), and an
 RPSS5

40 (40S Ribosomal Protein S5) pseudogene. Contains ESTs, STSs, GSSs
 and
 two putative CpG islands., N = 1, Score = 570, P = 3.4e-55

45 >TREMBL:AB015345_1 gene: "HRIHFB221b"; Homo sapiens HRIHFB221b
 mRNA,
 partial cds.
 Length = 486

50 HSPs:

Score = 1393 (209.0 bits), Expect = 2.1e-165, Sum P(4) = 2.1e-165
 Identities = 268/295 (90%), Positives = 268/295 (90%)

55 Query: 208
 NAERMESILQALEDIQLDLEAVNIKAGKAFLRLKRKFIQMRRPFLERRDLIIQHIPGFUWV 267

NAERMESILQALEDIQLDLEAVNIKAGKAFLRLKRKFQMRPFLEERRDLIIQHIPGFV
Sbjct: 1
NAERMESILQALEDIQLDLEAVNIKAGKAFLRLKRKFQMRPFLEERRDLIIQHIPGFV 60
5
Query: 268
KAFLNHPRISILINRRDEDIFRYLTNLQVQDLRHISMGYKMKLYFQTNPYFTNMVIVKEF 327
KAFLNHPRISILINRRDEDIFRYLTNLQVQDLRHISMGYKMKLYFQTNPYFTNMVIVKEF
10 Sbjct: 61
KAFLNHPRISILINRRDEDIFRYLTNLQVQDLRHISMGYKMKLYFQTNPYFTNMVIVKEF 120
Query: 328
QRNRSGRLVSHSTPIRHGRQEPQARRHGNQDAXXXXXXXXXXLPEADRIAEIFKNDL 387
15 QRNRSGRLVSHSTPIRHGRQEPQARRHGNQDA
LPEADRIAEIFKNDL
Sbjct: 121
QRNRSGRLVSHSTPIRHGRQEPQARRHGNQDASHSFFSWFSNHSLPEADRIAEIFKNDL 180
20 Query: 388
WVNPLRYYLRERGSXXXXXXXXXXXXXGRCEVVIMEDAPDYYAVEDIFSEISIDETI 447
WVNPLRYYLRERGS
GRCEVVIMEDAPDYYAVEDIFSEISIDETI
Sbjct: 181
25 WVNPLRYYLRERGSRIKRKKQEMKKRKTRGRCEVVIMEDAPDYYAVEDIFSEISIDETI 240
Query: 448
HDIKISDFMETTDYFETTDNEITDINENICDSENPDHNEVPNNETTDNNESADDH 502
30 HDIKISDFMETTDYFETTDNEITDINENICDSENPDHNEVPNNETTDNNESADDH
Sbjct: 241
HDIKISDFMETTDYFETTDNEITDINENICDSENPDHNEVPNNETTDNNESADDH 295
Score = 117 (17.6 bits), Expect = 9.0e-19, Sum P(4) = 9.0e-19
35 Identities = 32/77 (41%), Positives = 44/77 (57%)
Query: 426
DAPDYYAVEDIFSEISIDETIHDIKISDFMETTDYFETTDNEITDINENICDSENPDHN 485
+ DY+ D +EI+DI+E I D E D+ E +NE TD NE+
40 D E D+N
Sbjct: 250 ETTDYFETTD--NEITDINENICD-----
SENPDHNEVPNNETTDNNESADDHETTDNN 301
Query: 486 EVP--NNETTDNNESADDH 502
45 E NNE DNN++ DD+
Sbjct: 302 ESADDNNENPEDNNKNTDDN 321
Score = 94 (14.1 bits), Expect = 2.1e-165, Sum P(4) = 2.1e-165
Identities = 16/16 (100%), Positives = 16/16 (100%)
50 Query: 678 QVPNGWANPGKRGKTG 693
QVPNGWANPGKRGKTG
Sbjct: 471 QVPNGWANPGKRGKTG 486
Score = 90 (13.5 bits), Expect = 9.9e-16, Sum P(4) = 9.9e-16
Identities = 34/85 (40%), Positives = 45/85 (52%)

Query: 426 DAPDYYAVEDIFSEISDIDETIHDIKISDFME----TTDYFETTDN-EITDINENICDS 479
 + DY+ D +EI+DI+E I D + D E TTD E+ D+ E TD
 NE+ D+

5 Sbjct: 250 ETTDYFETTD--
 NEITDINENICDSENPDHNEVPNNETTDNNESADDHETTDNNESADDN 307

Query: 480 -ENPDHN-----EVPNN-ETTDNN 496
 ENP+ N E PNN E T N

10 Sbjct: 308 NENPEDNNKNTDDNEENPNNNENTYGN 334

Score = 87 (13.1 bits), Expect = 2.1e-165, Sum P(4) = 2.1e-165
 Identities = 14/14 (100%), Positives = 14/14 (100%)

15 Query: 543 FFKGGFWGSHGNNQ 556
 FFKGGFWGSHGNNQ

Sbjct: 336 FFKGGFWGSHGNNQ 349

Score = 85 (12.8 bits), Expect = 2.1e-165, Sum P(4) = 2.1e-165
 20 Identities = 16/18 (88%), Positives = 17/18 (94%)

Query: 601 RDIEYYEKVIEDFDKDQA 618
 RDIEYYEK IEDFD+DQA

Sbjct: 394 RDIEYYEKGIEDFDRDQA 411

25 Score = 60 (9.0 bits), Expect = 5.3e-03, Sum P(4) = 5.3e-03
 Identities = 21/66 (31%), Positives = 33/66 (50%)

Query: 426 DAPDYYAVEDIFSEISDIDETIHD-IKIS-
 30 DFMETTDYFETTDNEITDINENICDSENPD 483
 D DY V +I S+ S +E I + I+ D E +Y E ++ + E+
 DS+ D

Sbjct: 409 DQADYEDVIEIIISDESVEEEGIEEGIQQQDEDIYEEGNYEEGSEDVWEEGEDSDSLED 468

35 Query: 484 HNEVPN 489
 +VPN

Sbjct: 469 VLQVPN 474

40 Score = 49 (7.4 bits), Expect = 1.4e-06, Sum P(4) = 1.4e-06
 Identities = 12/35 (34%), Positives = 21/35 (60%)

Query: 463 ETTDNEITDINENICDSENPDHNEVPNNETTDNN 497
 E +D+E D NE + + D NE +NE +D+++

45 Sbjct: 360 EASDDEDNDNEGDNNEGSDDDGNE-GDNEGSDDD 393

Score = 42 (6.3 bits), Expect = 7.2e-06, Sum P(4) = 7.2e-06
 Identities = 11/37 (29%), Positives = 18/37 (48%)

50 Query: 465 TDNEITDINENICDSENPDHNEVPNNETTDNNESADD 501
 +DNE + + D E+ D NE N + D+ D+
 Sbjct: 354 SDNEADEAS---DDEDNDNEGDNNEGSDDDGNEGDN 386

55 Pedant information for DKFZphamy2_7j5, frame 2

Report for DKFZphamy2_7j5-2

[LENGTH] 693
 [MW] 79435.07
 5 [pI] 4.45
 [HOMOL] TREMBL:AB015345_1 gene: "HRIHFB221b"; Homo sapiens
 HRIHFB221b mRNA, partial cds. 1e-171
 [FUNCAT] 06.10 assembly of protein complexes [S. cerevisiae,
 YKR048c] 4e-05
 10 [FUNCAT] 03.22 cell cycle control and mitosis [S. cerevisiae,
 YKR048c] 4e-05
 [FUNCAT] 03.04 budding, cell polarity and filament formation
 [S. cerevisiae, YKR048c] 4e-05
 [FUNCAT] 09.13 biogenesis of chromosome structure [S.
 15 cerevisiae, YKR048c] 4e-05
 [FUNCAT] 30.10 nuclear organization [S. cerevisiae, YKR048c]
 4e-05
 [BLOCKS] BP02646H
 [BLOCKS] BP02646E
 20 [BLOCKS] PF00424A
 [BLOCKS] BL00415N Synapsins proteins
 [BLOCKS] BP02799E
 [BLOCKS] BL00048 Protamine P1 proteins
 [BLOCKS] PR00049D
 25 [BLOCKS] PF00956D
 [BLOCKS] PF00956C
 [BLOCKS] PF00956B
 [PIRKW] nucleus 8e-33
 [PIRKW] phosphoprotein 8e-33
 30 [PIRKW] alternative splicing 8e-33
 [KW] Alpha_Beta
 [KW] Low_COMPLEXITY 35.35 %

-35 SEQ - MDRPDEGPPAKTRRLSSSES PQRDP PPPPPPPLRLPLPPPQQRPRLQEETEAQVLA D
 SEG xx.....
 PRD cchhhhhhhhhhhh
 40 SEQ MRGVGLGPALPPPPPYVILEEGGIRAYFTLGAEC PGWDSTIESGYGEAPPPTESLEALPT
 SEG xxxxxxxxx.....
 PRD cchhhhhhhhhh
 45 SEQ PEASGGSL EIDFQVVQSSSF GGEG ALETCSAVGWAPQRLVDPKSKEEAIIIVEDEDEDER
 SEG
 PRD hccccccccccccc eeeeeccccccccccccccccccccccccccccchhhhhhhhhh
 50 SEQ ESMR SRRRRRRRRKQRKV KRESR RNAER MESIL QALE DIA LDLE AVNI KAGKAFLRL
 SEG xxxxxxxx.....
 PRD hh cc ch hh hh hh hh hh hh hh hh hh
 55 SEQ KRKF IQMRRPFLERRDLTIQHIPGF WVK AFLN HPRISI L IN RR DEDIF RYL TNL QV QDLR
 SEG
 PRD hh hh hh hh hh hh hh hh cc ee
 SEQ HISMGYKMKLYFQTNPYFTNMVIVKEFQRNRSGRLVSHSTPIRWHRGQEPAARRHGNQDA
 SEG
 PRD ccc

SEQ SHSFFSWFSNHSLPEADRIAEIFKNDLWVNPLRYYLREGRGSRRIKRKKQEMKKRKTRGRCE
 SEG xxxxxxxxxxxx.....
 PRD ccccccccccccccchhhhhhhhhhhhhccccchhhhhhhhhhhhhcceeeeccccccc

5 SEQ VVIMEDAPDYYAVEDIFSEISDIDETIHDIKISDFMETTDYFETTDNEITDINENICDSE
 SEG
 PRD eeeeecccccccccchhhhhhhhhhhcccccccccccccccccccccccccccccccc

10 SEQ NPDHNEVPNNETTDNNESADDHETTDNNESADDNNENPEDNNKNTDDNEENPNNNENTYG
 SEGxxxxxx.....
 PRD ccc

15 SEQ NNFFKGGFWGSHGNNDSSSDNEADEASDDEDNDNEGDNEGSDDDNEGDSDD
 SEG xx.....
 PRD ccc

20 SEQ RDIEYYEKVIEDFDKDQADYEDVIEIISDESVEEKGIEEGIQQQDEDIYEENYEEEGSED
 SEGxxxxxx.....
 PRD cchhhhhhhhhhhccccchhhhhheeecccccccccccccccccccccccccccccccc

25 SEQ VWEEGEDSDSDLEDVLQVPNGWANPGKRGKTG
 SEG xxxxxxxx.....
 PRD eeeeecccccccccccccccccccccccccccc

30 30 Pedant information for DKFZphamy2_7j5, frame 3

Report for DKFZphamy2_7j5-3

35 [LENGTH] 150
 [MW] 16810.69
 [pI] 12.88
 40 [BLOCKS] PRO0308A
 [KW] All_Alpha
 [KW] LOW_COMPLEXITY 61.33 %

45 SEQ MRTSATARILTTMRSPTTRPLITTRVLMTTKPLTTMRVQMTTTRILKTITRTLMTTKRTL
 SEG
 PRD ccc

50 SEQ TTTRTLTTSSKVASGAAMATTRATAATVTMKQMRPVMMKIMMATKVTMRAVMMMAKVT
 SEG xxxxxxxx.....
 PRD ccc

55 SEQ MKAAMMTTELSTMRLKLKTLTRIRLTTRT
 SEG xxxxxxxx.....
 PRD hhhhhhhhhhhhhhhhhhhhhhhhhhhhhcccc

(No Prosite data available for DKFZphamy2_7j5-3)

(No Pfam data available for DKFZphfbr2_78c12)

DKFZphfbr2_78c12

group: nucleic acid management

DKFZphfbr2_78c12 encodes a novel 528 amino acid protein with high similarity to glutamyl-tRNA (Gln) amidotransferase subunit A of the hyperthermophilic bacterium *Aquifex aeolicus*.

The novel protein contains one ATP/GTP-binding site motif A (P-loop). This loop interacts with one of the phosphate groups of a A or G nucleotide. It is found in numerous ATP- or GTP-binding proteins, such as ATP synthase alpha and beta subunits, Myosin heavy chains, Kinesin heavy chains and kinesin-like proteins, Dynamin and dynamin-like proteins, several kinases, DNA and RNA helicases, GTP-binding elongation factors and the Ras family of GTP-binding proteins. The protein seems to be expressed ubiquitously.

The new protein can find application in the modulation of translational pathways.

similarity to glutamyl-tRNA (Gln) amidotransferase subunit A
(*Aquifex aeolicus*)

Sequenced by MediGenomix

Locus: /map="b8b.3 cR from top of ChrB linkage group"

Insert length: 3244 bp
Poly A stretch at pos. 3222, polyadenylation signal at pos. 3204

40	1	AGTGACAATT	AAAGATGGCT	GCGCCCATGT	AACATCACTA	GCGACCGGTG
	51	ACCTCTTTT	CCCCCTTGGC	TGGCTCTGT	GGTGGCAGGC	TGGGCACGAG
	101	GACCATGCTG	GGCCGGAGCC	TCCGAGAACG	TTCTGCGGCA	CTGAAACAAG
	151	GCCAAATTAC	ACCAACAGAG	CTCTGTAAA	AATGTCCTCT	TCTTATCAAG
	201	AAGGCCAAGT	TTCTAAATGC	CTACATTACT	GTGTCAAGAAG	AGGTGGCCTT
	251	AAAACAAGCT	GAAGAACATG	AAAAGAGATA	TAAGAATGGA	CAGTCACTTG
	301	GGGATTAGA	TGGAATTCT	ATTGCAGTAA	AAGACAATT	CAGCACTTCT
	351	GGCATTGAGA	CAACATGTGC	ATCAAATATG	CTGAAAGGTT	ATATACCAAC
	401	TTATAATGCT	ACAGTAGTTC	AGAAAGTTGTT	GGATCAGGGA	GCTCTACTAA
	451	TGGGAAAAAC	AAATTTAGAT	GAGTTGCTA	TGGGATCTGG	GAGCACAGAT
	501	GGTGTATTTG	GACCAGTTAA	AAACCCCTGG	AGTTATTCAA	AACGATATAG
	551	AGAAAAGAGG	AAGCAGAAC	CCCACAGCGA	GAATGAAGAT	TCAGACTGGC
	601	TGATAACTGG	AGGAAGGCCA	GGTGGGAGTG	CAGCTGCTGT	ATCGGGCGTTC
	651	ACATGCTACG	CGGCTTCTGG	ATCAGATACA	GGAGGATCGA	CCAGAAATCC
	701	TGCTGCCAC	TGTGGGCTTG	TTGGTTCAA	ACCAAGCTAT	GGCTTAGTTT
	751	CCCGTCATGG	TCTCATTCCC	CTGGTGAATT	CGATGGATGT	GCCAGGAATC
	801	TTAACCAAGAT	GTGTGGATGA	TGCAGCAATT	GTGTTGGGTG	CACTGGCCGG
	851	ACCTGACCCC	AGGGACTCTA	CCACAGTACA	TGAACCTATT	AATAAACCAT
	901	TCATGCTTCC	CAGTTGGCA	GATGTGAGCA	AACTATGTAT	AGGAATTCCA

951	AAGGAATATC	TTGTACCGGA	ATTATCAAGT	GAAGTACAGT	CTCTTTGGTC
1001	CAAAGCTGCT	GACCTCTTG	AGTCTGAGGG	GGCCAAAGTA	ATTGAAGTAT
1051	CCCTTCCCTCA	CACCAGTTAT	TCAATTGTCT	GCTACCATGT	ATTGTGCACA
1101	TCAGAAGTGG	CATCGAATAT	GGCAAGATT	GATGGGCTAC	AATATGGTCA
1151	CAGATGTGAC	ATTGATGTGT	CCACTGAAGC	CATGTATGCT	GCAACCAGAC
1201	GAGAAGGATT	TAATGATGTG	GTGAGAGGAA	GAATTCTCTC	AGGAAACTTT
1251	TTCTTATTAA	AAGAAAACTA	TGAAAATTAT	TTTGTCAAAG	CACAGAAAGT
1301	GAGACGCCCTC	ATTGCTAATG	ACTTTGTAAA	TGCTTTAAC	TCTGGAGTAG
1351	ATGTCTTGCT	AACTCCCACC	ACCTTGAGTG	AGGCAGTACC	ATACTTGGAG
1401	TTCATCAAAG	AGGACAACAG	AACCCGAAGT	GCCCCAGGATG	ATATTTTAC
1451	ACAAGCTGTA	AATATGCCAG	GATTGCCAGC	AGTGAGTATC	CCTGTTGCAC
1501	TCTCAAACCA	AGGGTTGCCA	ATAGGACTGC	AGTTTATTGG	ACGTGCGTTT
1551	TGTGACCAGC	AGCTTCTTAC	AGTAGCCAAA	TGGTTGAAA	AACAAGTACA
1601	TTTCCCTGTT	ATTCAACTTC	AAGAACTCAT	GGATGATTGT	TCAGCAGTCC
1651	TTGAAAATGA	AAAGTTAGCC	TCTGTCCTC	TAAAACAGTA	AACATATCTT
1701	ACAAATTAAA	ATGACTTTA	GGCTGGGTGC	AGTGGCTCAC	ACCTGTAATC
1751	CCAGCACTTT	GGGAGGCCAA	GGCGAGCGGA	TCATGAGGTC	AGAAGATCTA
1801	GAACAGCCTG	GTCAACATGG	TGAAAACCCG	TCTCTACTAA	AAATACAAAA
1851	ATTAGCCAGG	CTTAGTGGCG	GGCATCTGTA	GTCCCAGCTA	CTCAGGAGGC
1901	TGAGGCAGGA	GAATCACTTG	AACCCCTGGAG	GTGGAGGTTG	CAGTGAGCCG
1951	AGATCATGCC	ACTGCACTGC	ACTCCAGCCT	GGGTGACAAA	GCAAGACTGT
2001	GTCTCAAAT	AAATAAATAA	AAATAAATAA	AATGACGTAC	AGAGATTCTA
2051	TATTCTAGAG	AGTCAAATGG	TCTTGCTCAA	TTCTTGTAAAT	TAGGTTCTTG
2101	TTAATACAGT	CATTCCATGG	AATTACTTTT	TAAAATTCT	GTGACAATTA
2151	ATAATAAATA	ACGTGTCA	ATTAGTAAG	CATCCACTAA	GTGTACAATA
2201	CTTCTACAAT	AACACAAGAT	ACCTGTTCTC	CAAAGACAAT	GCATTCTGCC
2251	ATAATGTTCA	TTAAAGAGGT	TACAGTAAAAA	ATAAGATTAG	GGATAAACTT
2301	CTCAAAAATT	GTACATCTGT	GTAACTAAAG	CACTAACAAA	ACATGAATA
2351	GTCTTCTAG	AGGTAACCTG	GATAGCCTAG	GCAGGGCAACT	TATCATGTGG
2401	TGAAGGCCGC	CTCAGGGGGT	GTAAAAAATG	CACAGAAACA	ATTGAGTGC
2451	ATTATTGGCT	TC TGAGCCT	GAGCAGAGCA	GGTGGAGAG	GAACTTTGAG
2501	CACAGGAGGA	AATGCAACCA	GTCAGGGCCC	AGAATCATGC	AAATCTCAGG
2551	GGTATGCCCTC	TCTGGGGAGG	AGCTCCACTT	GCAGGGACTC	CTTTTATTTC
2601	CCTAAGAAAAG	AGCTGAAATG	ACTGAGAACT	TTCTTTCT	CCTTAGAGTT
2651	ACAATTTCAC	TTCTGCTATT	CCGGAGCCCCA	TGCCTAGAAG	CCAGAACAC
2701	TCCATGTTAC	ACTGAGTTCA	TGCTCTTATT	TACTGATCAC	AAATGAGCTC
2751	ATTAATGTC	TCGAAACATT	TATTGTAACC	TAACAGACCA	TCACAGATTG
2801	GAAAATTGGT	AGATAGCAGA	GCATGGTATT	AGTAAAAAAG	GTTCAAAATA
2851	CACAAGTAAC	ATACACTCTG	AAAAACATGC	AGATAATTG	CTGATGAAGC
2901	AGAAGAGGGG	ATGCGCATGG	CAAGAACCTG	CCTTACCCCA	GATTCTCTAT
2951	ATCTCATGGT	TTCTTTTCC	TCTTGACTGT	CTTTACGAGT	GTTTTTATT
3001	TGGGACCCCTC	GAGCCCAGAG	ATATTAAATGG	ATATCTGTAT	TCAATATTTG
3051	ACAAAATCTA	ATGGAAACCA	TCCATTTACT	CATGATAAGG	CTTCATCACT
3101	GGATTTCTGT	GTCTTCACTA	GAACACCATT	GTCATCTCAT	ATTGATCAGG
3151	TATTTTAATC	TAGCACTTAC	ATATTGTTGA	TAATGAAAG	CTGAATTGTT
3201	ACTTAATAAA	TTCACTTTGT	TTAGCAAAAAA	AAAAAAAAAA	AAAA

BLAST Results

50

No BLAST result

Medline entries

55

No Medline entry

Peptide information for frame 3

5

ORF from 105 bp to 1688 bp; peptide length: 528

Category: Similarity to known protein

Classification: Protein management

10 Prosite motifs: ATP_GTP_A (112-119)

1 MLGRSLREVS AALKQGQITP TELCQKCLSL IKKAKFLNAY ITVSEEVALK
 51 QAEEESEKRYK NGQSLGDLDG IPIAVKDNEFS TSGIETTCAS NMLKGYIPPP
 101 NATVVQKLLD QGALLMGKTN LDEFAMGSGS TDGVFGPVKN PWSYSKRYRE
 151 KRKQNPHESEN EDSDWLITGG SPGGSAAAVS AFTCYAALGS DTGGSTRNPA
 201 AHCGLVGFKP SYGLVSRHGL IPLVNSMDVP GILTRCVDDA AIVLGALAGP
 251 DPRDSTTVHE PINKPFMLPS LADVKLICIG IPKEYLVPTEL SSEVQSLWSK
 301 AADLFSEEGA KVIEVSLPHT SYSIVCYHVL CTSEVASNMA RFDGLQYGHRS
 351 CDIDVSTEAM YAATRREGFN DVVRGRILSG NFFLLKENYE NYFVKAQKVR
 401 RLIANDFVNA FNSGVDVLLT PTTLSEAVPY LEFIKEEDNRT RSAQDDIFTQ
 451 AVNMAGLPAV SIPVALSNQG LPIGLQFIGR AFCDQQLLTV AKWFEKQVQF
 501 PVIQLQELMD DCSAVLENK LASVSLKQ

25

BLASTP hits

No BLASTP hits available

30

Alert BLASTP hits for DKFZphfbr2_78c12, frame 3

PIR:F70322 glutamyl-tRNA (Gln) amidotransferase subunit A -
Aquifex

35 aeolicus, N = 2, Score = 620, P = 4.3e-89

>PIR:F70322 glutamyl-tRNA (Gln) amidotransferase subunit A -
Aquifex40 aeolicus
Length = 478

HSPs:

45 Score = 620 (93.0 bits), Expect = 4.3e-89, Sum P(2) = 4.3e-89
Identities = 135/319 (42%), Positives = 195/319 (61%)

Query: 187

50 ALGSDTGGSTRNPAAHCGLVGFKP SYGLVSRHGLIPLVNSMDVPGILTRCVDDAAIVLGA 246
+LGSDTGGS R PA+ CG++G KP+YG VSR+GL+ +S+D G+ R

+D A+VL

Sbjct: 163

SLGSDTGGSIRQPASFCGVIGIKPTYGRVSRYGLVAFASSLDQIGVFGRRTEDVALVLEV 222

55 Query: 247

LAGPDPRDSTTVHEPINKPFMLPSLADVKLICIGIPKEYLVPTEL SSEVQSLWSKAADLFE 306
++G D +DST+ P+ + + +V L IG+PKE+ EL +V+ +E

Sbjct: 223 ISGWDEKDSTS A K V P V P E -
W S E E V K K E V K G L K I G L P K E F F E Y E L Q P Q V K E A F E N F I K E L E 281

Query: 307

5 SEGAKVIEVSLPHTSYSIVCYHVLCTSEVASNMARFDGLQYGHRC DIDVSTEAMYAATRR 366
EG ++ EVSLPH YSI Y+++ SE +SN+AR+DG++YG+R

MYA TR

Sbjct: 282

10 KEGFEIKEVSLPHVKYSIPTYYYIIAPSEASSNLARYDGVRYGYRAKEYKDIFEMYARTRD 341

Query: 367

EGFNDVVVRGRILSGNFFLLKENYENYFVKAQKVRLI ANDFVN AFNSGVDVLLPTTLSE 426
EGF V+ RI+ G F L Y+ Y++KAQKVRLI NDF+ AF VDV+
+PTT

15 Sbjct: 342 EFGFPEVKRRIMLGTFA LSAGYYDAYYLKAQKVRLITNDFLKAFEE-
VDVIASPTT--P 398

Query: 427

20 AVPYLEFIKE DNR TRSA QDDIFT QAVN MAGLPAV SIPVAL S N QGLPIGLQFIGRAF CDQQ 486
IG+ + + +P+ + +N DI T N+AGLPA+SIP+A + GLP+G Q

Sbjct: 399 TLPFKFGERLENPIEMYLS DILTVPANLAGLPAISIPIAWKD-
GLPVGGQLIGKHWD ETT 457

25 Query: 487 LLTVAK-WFEKQVQFPVQL 505

LL ++ W +K + I L

Sbjct: 458 LLQISYLV E QKF KHYE KIPL 477

30 Score = 289 (43.4 bits), Expect = 4.3e-89, Sum P(2) = 4.3e-89
Identities = 64/143 (44%), Positives = 90/143 (62%)

Query: 4 RSLREVSAALKQGQITPTELCQKCLSLIKKAKF-
LNAYITVSEEVALKQAESEKRYKNG 62

+SL E+ LK+G++P E+ + + + + AYIT ALKQAE

35 ++R

Sbjct: 5

KSLSELRELLKRGEVSPKEVVESFYDRYNQTEEKVKAYITPLYGKALKQAESLKER---- 60

Query: 63

40 QSLGDLDGIPIAVKDNFSTSGIETTCASNMLKGYIPPPYNATVVQKLLDQGALLMGKTNLD 122
L L GIPIAVKDN G +TTCAS +L+ ++ PY+ATV+++L

GAL++GKTNLD

Sbjct: 61 -EL-

PLFGIPIAVKDNILVEGEKTTCA SKILENFVAPYDATVIERLKKAGALIVGKTNLD 118

45

Query: 123 EFAMGSGSTDGVFGPVKNPWSYSK 146

EFAMGS + F P KNPW +

Sbjct: 119 EFAMGSSTEYSAFFPTKNPWDLER 142

50

Pedant information for DKFZphfbr2_78c12, frame 3

Report for DKFZphfbr2_78c12.3

55

[LENGTH] 528
[MW] 57468.78

15 Prosite for DKFZphfbr2_78c12-3

PS00017 112->120 ATP_GTP_A PDOC00017

20 (No Pfam data available for DKFZphfbr2_78c12.3)

DKFZphfbr2_78d18

25 group: brain derived

DKFZphfbr2_78d18 encodes a novel 535 amino acid protein with weak similarity to a human putative mitogen-activated protein kinase kinase kinase.

No informative BLAST results; No predictive prosite, pfam or SCOP motifs.

35 The new protein can find application in studying the expression profile of brain-specific genes.

similarity to putative mitogen-activated protein kinase kinase

40 (*Homo sapiens*)

Sequenced by MediGenomix

Locus: unknown

45 Insert length: 2158 bp
Poly A stretch at pos. 2138, polyadenylation signal at pos. 2117

50	1 ATCCGGGGCC CGGAACCG AGCTGGAGCT GAAGGCCAGG CTGGGGGCG 51 CGGAGTCGGG AGTCAGGCC TGAGTGTTC TTCCAGCATG TCGGAGGGGG 101 AGTCCCAGAC AGTACTTAGC AGTGGCTCAG ACCCAAAGGT AGAATCCTCA 151 TCCTCAGCCC CTGGCCCTGAC ATCAGTGTCA CCTCCTGTGA CCTCCACAAC 201 CTCAGCTGCT TCCCCAGAGG AAGAAGAAGA AAGTGAAGAT GAGTCTGAGA 251 TTTTGGAAAGA GTGCCCTGT GGGCGCTGGC AGAAGAGGCAG AGAAGAGGTG 301 AATCAACGGA ATGTACCAGG TATTGACAGT GCATAACCTGG CCATGGATAAC 351 AGAGGAAGGT GTAGAGGTTG TGTGGAATGA GGTACAGTTC TCTGAACGCA 401 AGAAACTACAAA GCTGCAGGAG GAAAAGGTTG GTGCTGTGTT TGATAATCTG
----	--

451 ATTCAATTGG AGCATCTTAA CATTGTTAAG TTTCACAAAT ATTGGGCTGA
 501 CATTAAAGAG AACAAGGCCA GGGTCATTT TATCACAGAA TACATGTCAT
 551 CTGGGAGTCT GAAGCAATT CTGAAGAAGA CAAAAAAGAA CCACAAGACG
 601 ATGAATGAAA AGGCATGGAA GCCTTGTC ACACAAATCC TCTCTGCCCT
 651 AAGCTACCTG CACTCCTGTG ACCCCCCCAT CATCCATGGG AACCTGACCT
 701 GTGACACCAT CTTCATCCAG CACAACGGAC TCATCAAGAT TGGCTCTGTG
 751 GCTCTGACA CTATCAACAA TCATGTGAAG ACTTGTGAG AAGAGCAGAA
 801 GAATCTACAC TTCTTGAC CAGAGTATGG AGAAGTCACT AATGTGACAA
 851 CAGCAGTGGA CATCTACTCC TTTGGCATGT GTGCACTGGA GATGGCAGTG
 901 CTGGAGATT AGGGCAATGG AGAGTCCTCA TATGTGCCAC AGGAAGCCAT
 951 CAGCAGTGCC ATCCAGCTTC TAGAAGACCC ATTACAGAGG GAGTTCATTC
 1001 AAAAGTGCCT GCAGTCTGAG CCTGCTCGCA GACCAACAGC CAGAGAACTC
 1051 CTGTTCCACC CAGCATTGTT TGAAGTGCC CTCGCTCAAAC TCCTTGCGGC
 1101 CCACTGCATT GTGGGACACC AACACATGAT CCCAGAGAAC GCTCTAGAGG
 1151 AGATCACCAA AAACATGGAT ACTAGTGCCTG TACTGGCTGA AATCCCTGCA
 1201 GGACCAGGAA GAGAACCACT TCAGACTTTG TACTCTCAGT CACCAGCTCT
 1251 GGAATTAGAT AAATTCTTG AAGATGTCA GAAATGGGATC TATCCTCTGA
 1301 CAGCCTTGG GCTGCTCGG CCCCAGCAGC CACAGCAGGA GGAGGTGACA
 1351 TCACCTGTG TGCCCCCTC TGTCAGACT CCGACACCTG AACCAAGCTGA
 1401 GGTGGAGACT CGCAAGGGTGG TGCTGATGCA GTGCAACATT GAGTCGGTGG
 1451 AGGAGGGAGT CAAACACCAAC CTGACACTTC TGCTGAAGTT GGAGGACAAA
 1501 CTGAACCGGC ACCTGAGCTG TGACCTGTG CCAAATGAGA ATATCCCCGA
 1551 GTTGGGGCT GAGCTGGTC AGCTGGGCTT CATTAGTGAG GCTGACAGA
 1601 GCCGGTTGAC TTCTCTGCTA GAAGAGACCT TGAACAAGTT CAATTGCGC
 1651 AGGAACAGTA CCCTCAACTC AGCCGCTGTC ACCGCTCTCT CTTAGAGCTC
 1701 ACTCGGGCCA GGCCCTGATC TGCGCTGTGG CTGTCCTGTG ACgtGCTGCA
 1751 GCCCTCTGT CCCTTCCCC CAGTCAGTAT TACCTGTGA AGCCCCCTTCC
 1801 CTCTTTATT ATTCAAGGAGG GCTGGGGGGG CTCCCTGGTT CTGAGCATCA
 1851 TCCCTTCCCC TCCCCTCTCT TCCCTCCCCC TGCACTTTGT TTACTTGT
 1901 TGACAGACG TGGGCTGGG CCTTCTCAGC AGCCGCCCTC TAGTTGGGG
 1951 CTAGTCGCTG ATCTGCCGC TCCCGCCCAAG CCTGTGTGGA AAGGAGGCCC
 2001 ACGGGCACTA GGGGAGCCGA ATTCTACAAT CCCGCTGGGG CGGCCGGGGC
 2051 GGGAGAGAAA GGTGGTGCTG CAGTGGTGGC CCTGGGGGGC CATTGATT
 2101 GCCTCAGTTG CTGCTGTAAT AAAAGTCTAC TTTTGCCAA AAAAAAAAAA
 2151 AAAAAAAA -

BLAST Results

40

No BLAST result

Medline entries

45

No Medline entry

50

Peptide information for frame 1

55 ORF from 88 bp to 1692 bp; peptide length: 535
 Category: similarity to unknown protein
 Classification: Protein management

1 MSEGESQTVL SSGSDPKVES SSSAPGLTSV SPPVTSTTSA ASPEEEEESE

5 51 DESEILEEESP CGRWQKRREE VNQRNVPGID SAYLAMDTEE GVEVVWNEVQ
 101 FSERKNYKLQ EEKVRAVFDN LIQLEHLNIV KFHKYWADIK ENKARVIFIT
 151 EYMSGGSLKQ FLKKTKKNHK TMNEKAWKRW CTQILSALSY LHSCDPPIH
 201 GNLTCDTIFI QHNGLIKIGS VAPDTINNHV KTCREEQKNL HFFAPEYGEV
 251 TNVTTAVDIY SFGMCALEMA VLEIQQNGES SYVPQEAISS AIQLEEDPLQ
 301 REFIQKCLQS EPARRPTARE LLFHPALFEV PSLKLLAAHC IVGHQHMIPE
 351 NALEEITKNM DTSAVLAELIP AGPGRPVQT LYSQSPAEL DKFLEDVRNG
 401 IYPLTAFGLP RPQQPQQEEV TSPVVPPSVK TPTPEPAEVE TRKVVLMQCN
 451 IESVEEGVKH HLTLKKLED KLNRLHLSCL MPNENIPELA AELVQLGFIS
 10 501 EADQSRLTLS LEETLNKFNF ARNSTLNSAA VTVSS

BLASTP hits

15 No BLASTP hits available

Alert BLASTP hits for DKFZphfbr2_78d18, frame 1

20 TREMBL:AC009465_14 gene: "T9J14.14"; product: "putative mitogen activated protein kinase kinase"; *Arabidopsis thaliana* chromosome III
 BAC T9J14 genomic sequence, complete sequence., N = 1, Score = 372, P =
 25 1.9e-33

TREMBL:AF145690_1 gene: "BcDNA.LD28657"; product:
 "BcDNA.LD28657";
 30 Drosophila melanogaster clone LD28657 BcDNA.LD28657
 (BcDNA.LD28657)
 mRNA, complete cds., N = 1, Score = 1140, P = 1.3e-115
 PIR:T02951 probable mitogen activated protein kinase - rice, N = 1,
 35 Score = 391, P = 1.4e-35

>TREMBL:AF145690_1 gene: "BcDNA.LD28657"; product:
 "BcDNA.LD28657";
 40 Drosophila melanogaster clone LD28657 BcDNA.LD28657
 (BcDNA.LD28657) mRNA,
 complete cds.
 Length = 63?

45 HSPs:

Score = 1140 (171.0 bits), Expect = 1.3e-115, P = 1.3e-115
 Identities = 230/465 (49%), Positives = 304/465 (65%)

50 Query: 61
 CGRWQKRREEVNQRNVPGIDSAYLAMDTEEGVEVVWNEVQFSERKNYKLQEEKVRAVFDN 120
 CGRW KRREEV+QR+VPGID +LAMDTEEGVEVVWNEVQ++ + K
 QEEK+R VFDN
 Sbjct: 102
 55 CGRWLKREEVDQRDVPGIDCVHLAMDTEEGVEVVWNEVQYASLQELKSQEEKMRQVFDN 161

Query: 121 LIQLEHLNIVKFHKYWADIKE-
 NKARVIFITEYMSGGSLKQFLKKTKKNHKTMNEKAWK 179

+ ++W+R L+QL+H NIVKFH+YW D ++ + RV+FITEYMSGSLKQFLK+TK+N K
 Sbjct: 362 LLQLDHQNIVKFHRYWTDTQQAERPRVVFITEYMSGSLKQFLKRTKRNAKRLPLESWRR 221
 5 Query: 180 WCTQILSALSYLHSCDPPIIHGNLTCDTIFIQHNGLIKIGSVAPDTINNHVKTCREEQKN 239
 WCTQILSALSYLHSC PPIIHGNLTC+IFIQHNGL+KIGSV PD ++ V+
 RE ++
 10 Sbjct: 222 WCTQILSALSYLHSCSPPPIIHGNLTCDSIFIQHNGLVKIGSVVPDAVHYSVRRGRERERE 281
 Query: 240 ----LHFF-APEYGEVTNVTTAVDIYSFGMCALEMAVLEIQ-
 GNGESSYYVPQEAISSAIQ 293
 15 H+F APEYG +T A+DIY+FGMCALEMA LEIQ N ES+ +
 +E I I
 Sbjct: 282 RERGAHYFQAPEYGAADQLTAALDIYAFGMCALEMAALEIQPSNSESTAINETIQRSTIF 341
 20 Query: 294 LLEDPLQREFIQQKCLQSEPARPTARELLFHPALFEVPSLKLLAAHCIV---
 GHQHMIPE 350 LE+ LQR+ I+KCL +P RP+A +LLFHP LFEV SLKLL AHC+V
 ++ M E
 Sbjct: 342 SLENDLQRDLIRKCLNPQPQDRPSANDLLFHPLLFEVHSLKLLTAHCLVFSANRTMFSE 401
 Query: 351 NALEEITKNM-
 DTSAVLAEIPAGPGREPVQTLYSQSPALEDKFLEDVRNGIYPLTAFGL 409
 30 G+YPL + A + + + V+A++ G+E L S A +L+KF+EDV+
 Sbjct: 402 TAFDGLMQRYYQPVVMAQLRLAGGQERQYRLADVSGADKLEKFVEDVKYGVYPLITYS- 460
 Query: 410
 35 PRXXXXXXXXXXXXXXXXXXXXXXAEVETRKVVLMQCNIESVEEGVXXXXXXXXX 469
 + + E+R++V M C++ E+
 Sbjct: 461 GKKPPNFRSRAASPERADSVKSATPEPVDTESRRIVNMMSCSVKIKEDSNDITMTILLRMD 520
 40 Query: 470 XXXXXXXSCDLMPNENIPELAELVQLGFISEADQSRLTSLLEETL 515
 +C + N+ +L +ELV+LGF+ DQ ++ LLEETL
 Sbjct: 521 DKMNRQLTCQVNENDTAADLTSELVRLGFVHLDQDKIQLVLEETL 566
 45 Pedant information for DKFZphfbr2_78d18, frame 1

 Report for DKFZphfbr2_78d18.1
 50 [LENGTH] 564
 [MW] 62464.87
 [pI] 5.10
 [HOMOLI] TREMBL:AF145690_1 gene: "BcDNA-LD28657"; product:
 55 "BcDNA-LD28657"; Drosophila melanogaster clone LD28657
 BcDNA-LD28657 (BcDNA-LD28657) mRNA, complete cds. 1e-123
 [FUNCATI] 03-22 cell cycle control and mitosis [S. cerevisiae,
 YJL095w] 1e-15

[FUNCAT] 30.03 organization of cytoplasm [S. cerevisiae,
 YJL095w] 6e-15
 [FUNCAT] 11.01 stress response [S. cerevisiae, YJL095w] 6e-15
 [FUNCAT] 03.01 cell growth [S. cerevisiae, YJL095w] 6e-15
 5 [FUNCAT] 10.02.11 key kinases [S. cerevisiae, YJL095w] 6e-15
 [FUNCAT] 03.04 budding, cell polarity and filament formation
 [S. cerevisiae, YJL095w] 6e-15
 [FUNCAT] 98 classification not yet clear-cut [S. cerevisiae,
 YLR096w] 2e-09
 10 [FUNCAT] 30.02 organization of plasma membrane [S. cerevisiae,
 YLR096w] 2e-09
 [FUNCAT] 10.03.11 key kinases [S. cerevisiae, YNR031c] 3e-09
 [FUNCAT] 09.01 biogenesis of cell wall [S. cerevisiae,
 YNR031c] 3e-09
 15 [FUNCAT] 03.07 pheromone response, mating-type determination,
 sex-specific proteins [S. cerevisiae, YLR362w] 4e-08
 [FUNCAT] 10.05.11 key kinases [S. cerevisiae, YLR362w] 4e-08
 [FUNCAT] 10.04.11 key kinases [S. cerevisiae, YLR362w] 4e-08
 [FUNCAT] 11.04 dna repair (direct repair, base excision repair
 20 and nucleotide excision repair) [S. cerevisiae, YPL153c] 1e-07
 [FUNCAT] 03.19 recombination and dna repair [S. cerevisiae,
 YPL153c] 1e-07
 [FUNCAT] 03.22.01 cell cycle check point proteins [S.
 cerevisiae, YPL153c] 1e-07
 25 [FUNCAT] 30.10 nuclear organization [S. cerevisiae, YPL153c]
 1e-07
 [FUNCAT] 03.25 cytokinesis [S. cerevisiae, YDR507c] 1e-07
 [FUNCAT] 10.99 other signal-transduction activities [S.
 cerevisiae, YPL153c] 1e-07
 30 [FUNCAT] 03.13 meiosis [S. cerevisiae, YDR523c] 3e-07
 [FUNCAT] 03.10 sporulation and germination [S. cerevisiae,
 YDR523c] 3e-07
 [FUNCAT] 03.16 dna synthesis and replication [S. cerevisiae,
 YMRO01c] 2e-06
 35 [FUNCAT] 99 unclassified proteins [S. cerevisiae, YDR490c]
 3e-05
 [FUNCAT] 05.07 translational control [S. cerevisiae, YDR283c]
 1e-04
 [FUNCAT] 01.05.04 regulation of carbohydrate utilization [S.
 cerevisiae, YDR477w] 1e-04
 [BLOCKS] PF00637A
 [BLOCKS] BP03191J
 [BLOCKS] PF013317B
 45 [SCOP] dlir3a_ 5.1.1.2.6 insulin receptor Complex
 (transferase/substrate) 2e-53
 [SCOP] dlphk_ 5.1.1.1.6 gamma-subunit of glycogen
 phosphorylase kinas 3e-68
 [SCOP] dlfgkb_ 5.1.1.2.5 Fibroblast growth factor
 receptor 1 [Human (Hom) 1e-55
 50 [SCOP] dlabo_ 5.1.1.1.14 Protein kiase CK2, alpha
 subunit [Maize (Zea) 2e-55
 [SCOP] d3lck_ 5.1.1.2.2 Lymphocyte kinase (lck) [Human
 (Homo sapiens) 7e-54
 [SCOP] d2erk_ 5.1.1.1.11 MAP kinase Erk2 [rat (Rattus
 55 norvegicus) 9e-71
 [SCOP] d1cdkb_ 5.1.1.1.2 cAMP-dependent PK, catalytic
 subunit Complex 1e-55

[SCOP] d1hc1_ 5.1.1.1.1 Cyclin-dependent PK [Human
 (Homo sapiens) 4e-67
 [EC] 2.7.1.112 Protein-tyrosine kinase 4e-06
 [EC] 2.7.1.37 Protein kinase 3e-09
 5 [PIRKW] phosphotransferase 2e-28
 [PIRKW] nucleus 3e-06
 [PIRKW] RNA binding 3e-10
 [PIRKW] tandem repeat 4e-07
 [PIRKW] cell cycle control 3e-06
 10 [PIRKW] serine/threonine-specific protein kinase 2e-13
 [PIRKW] transmembrane protein 4e-07
 [PIRKW] autophosphorylation 3e-10
 [PIRKW] tyrosine-specific protein kinase 4e-06
 [PIRKW] magnesium 4e-07
 15 [PIRKW] ATP 2e-13
 [PIRKW] receptor 4e-07
 [PIRKW] phosphoprotein 2e-13
 [PIRKW] apoptosis 3e-06
 [PIRKW] glycoprotein 4e-07
 20 [PIRKW] protein kinase 2e-28
 [PIRKW] signal transduction 2e-08
 [PIRKW] cell division 1e-11
 [PIRKW] calmodulin binding 3e-06
 [SUPFAM] protein kinase byr2 1e-06
 25 [SUPFAM] unassigned Ser/Thr or Tyr-specific protein kinases 2e-13
 [SUPFAM] leucine-rich alpha-2-glycoprotein repeat homology 4e-07
 [SUPFAM] double-stranded RNA-binding repeat homology 3e-10
 30 [SUPFAM] SAM homology 1e-06
 [SUPFAM] death-associated protein kinase 3e-06
 [SUPFAM] ankyrin repeat homology 3e-06
 [SUPFAM] protein kinase homology 2e-28
 [SUPFAM] kinase-related transforming protein 2e-06
 35 [SUPFAM] protein kinase SPK1 3e-06
 [SUPFAM] protein kinase Xa21 4e-07
 [SUPFAM] protein kinase TIK 3e-10
 [SUPFAM] kinase interaction domain homology 3e-06
 [PFAM] Eukaryotic protein kinase domain
 40 [KW] All_Alpha
 [KW] 3D
 [KW] LOW_COMPLEXITY 16.49 %
 45 SEQ IRGPGTRAGAEAQAAGRGVGSAGLSVPSSMSEGESQTVLSSGSDPKVESSSSAPGLTWS
 SEGxxxxxxxxxxxxxx.....xxxxx
 1koba

 50 SEQ PPVTSTTSAAASPEEESEDESEIILEESPCGRWQKRREEVNQRNVPGIDSAYLAMDTEEG
 SEG xxxxxxxxxxxxxxxxxxxxxxxxx.....
 1koba

 55 SEQ VEVVWNEVQFSERKNYKLQEEKVRAVDNLIALEHLNIVKFHKYWADIKENKARVIFITE
 SEG
 1kobaCHHHHHHHHHHHHHHHHTTBTCCEE----
 EEEETTTEEEEEEC

(No Prosite data available for PKEZphfbr2_28d18-1)

Pfam for RKEZphfbc2_7ad18-1

```

HMM_NAME Eukaryotic protein kinase domain
45 HMM
* rLnHPNIIRFYDwFed...ddDHIMIMEYMeGGDLFDYIrrng....p
          +L H NI++F  ++ D      + ++ +I+EYM  G+L +++++ +
Query      152
QLEHLNIVKFHKYWADIKENKARVIFITEYMSGSLSKQFLKKTKKNHKT  200
50 HMM
MsEweIrfIMyQILrGMeYLHS Mg..IIHRDLKPENILIDeNgqIKIcDF
          M+E+  +++ +QIL++++YLHS    IIH   L  + I+I +NG
IKI+
Query      201
MNEKAWKRWCTQILSALSYLYHSCDPPIIHGNLTCDTIFIRHNGLIKIGSV  250

```

HMM

GLARqMnnYerMttfCGTPWYMMMAPEVIImgnyYttkVDMWSFGCILWEM
++ N+ + + + + APE + ++ TT+VD++SFG+

EM

5 Query 251 APDTINNHVKTCREEQKNLHFF-APEY-
GEVTNVTTAVDIYSFGMCALEM 298

HMM

MTGepPFyddnMemImrIiqrfrppfWpnCSeElyDFMrwCWnyDPekRP
10 + + + N E + ++ + ++ + + ++F+ +C++

P++RP

Query 299 A--VLEIQ-
GNGESSYYVPQEAISSAIQLLEDPLQREFIQQKCLQSEPARP 345

15 HMM TFrQILnHPWF*

T+R++L HP +

Query 346 TARELLFHPAL 356

DKFZphfbr2_78d4

group: transmembrane protein

5

DKFZphfbr2_78d4 encodes a novel 188 amino acid protein without similarity to known proteins.

10 The novel protein contains 1 transmembrane region and a Cytochrome c family heme-binding site.

No informative BLAST results; No predictive prosite, pfam or SCOP motif.

15 The new protein can find application in studying the expression profile of brain-specific genes and as a new marker for amygdala cells.

20 weak similarity to hypothetical protein of *Arabidopsis thaliana*

perhaps complete cds.

Pedant: TRANSMEMBRANE 1

25 Sequenced by MediGenomix

Locus: unknown

Insert length: 1547 bp

Poly A stretch at pos. 1527, polyadenylation signal at pos. 1508

30

1	TTGCCGCCGC CGCCACCCCC CCCAGGATG GCGGAAGTGG AGGCGCCGAC
51	GGCGGCCGAG ACGGACATGA AGCAATATCA AGGCTCCGGC GGCGTCGCCA
101	TGGATGTGGA ACGGAGTCGC TTCCCCTACT GCGTGGTGTG GACGCCCATC
151	CCGGTGCCTCA CGTGGTTTTT CCCCATCATC GGCACACATGG GCATCTGCAC
201	ATCCACAGGA GTCAATTGGG ACTTCGCGGG CCCCTACTTT GTCTCAGAGG
251	ACAACATGGC CTTTGGAAAG CCTGCCAAGT ACTGGAAGTT GGACCCCTGCT
301	CAGGTCTATG CTAGCGGGCC CAACGCATGG GACACGGCTG TGCACGACGC
351	CTCTGAGGAG TACAAGCACCC GCATGCACAA TCTCTGCTGT GACAACTGCC
401	ACTCGCACGT GGCATTGGCC CTGAATCTGA TGCCTACAA CAACAGCACC
451	AACTGGAAATA TGTTGACGCT CTGCTTCTTC TGCCTGCTCT ACGGGAAAGTA
501	CGTCAGCGTT GGGGCCTTCG TGAAGACCTG GCTGCCCTTC ATCCTTCTCC
551	TGGGCATCAT CCTCACCGTC AGCCTGGTCT TTAACCTCCG GTGATGGCTG
601	CTCGGTGGCC CCACACCCAC CAGGGTCCCG AGGAAACAGC CGCCATCCCT
651	TTTGGTTCCA GATTTTTTC TCCTCACCCCC AAAAGGCAGG GTTGGGCCCTG
701	CTGTTGTGGA CCGGGGGTCG GGGCTGGCAG GATGGAAGGA CTGAGGACCA
751	GCATGAAGTG GGGGTTTGT GTCTCCCTGC CTCTCAGAAC CACCCGTCTCC
801	CCTCCTCCCC AGGCCTGTGA CTCCGGCCCT GGAAGCCCCCT TTGTTCTTCT
851	GTTGAAAGGC TTTGGCTTCC CTCTGTAGAG CTGCTCCCAGC CACCACTGC
901	TGGGGTCCCTG CCTCAGCCCA GTGCCAGTA TGGGGAGAGG AGGACATTTG
951	GGCTCACCTG TCAAGGTGGC CCTGGGACCA GAGCTGGTCC CAGCATGGGG
1001	TGCACCGGGT ACACCTAACG TGTCTCTATA AGCCAAGTTG CTTCAGGACC
1051	TTCACCACTG GCCTCTAGAA TGGTCCAGAG GGGCTGGCTG GGTCCCTTTG
1101	TCAGACTCCT GCCGGCAGCT GCCCTGGGGG ACATGTGTGC CCATCTGGCA
1151	TCCTCCAGCC CGTGCAGTCC GCTCTTCACT GTTCCACGGC CTCCCAGTGC
1201	CTCCCAGCAT TGGACCCATC TCCCCCTGCA GTTGAGGGCC AGAGAGGTGA
1251	GTGGACCTGA CAAGTGCCAG AGTAACCGTG TAGACAGAGC AGTGTAGACA
1301	GCGCTCAGCC CCAGCCCCAG GTGTGGACCT CATGCTGGTG ATGGCTCCCC

1351 TGGGTGGCCT GCCAGCACAG CCAGTGCAT CAGGGAGCTG AAGGGGCTGT
1401 CCCCCACCTA ACTCCAGCTC CCCCTTCACG TTGTCACCAA GGCCCTGTGC
1451 CGCCCGCCTC GCCCCCTGC TCTGTGGATT CCTTTGGAA GGGCTCCCTG
1501 GGCAGGACAA TAAAGAGTTT TGACTCCAAA AAAAAAAA AAAAAAA

5

BLAST Results

10 Entry T02b1b from database PIR:
hypothetical protein T19L18.12 - Arabidopsis thaliana
Score = 229, P = 1.3e-17, identities = 57/161, positives =
78/161,
frame +1

15

Medline entries

20 No Medline entry

25 Peptide information for frame 1

ORF from 28 bp to 591 bp; peptide length: 188
Category: similarity to unknown protein
30 Classification: no clue
Prosite motifs: CYTOCHROME_C (121-119)

35 1 MAEVEAPTA ETDMKQYQGS GGVAMDVERS RFPYCVVWTP IPVLTWFFPI
51 51 IGHMGICTST GVIRDFAFPY FVSEDNMAFG KPAKYWKLDP AQVYASGPNA
101 101 WDTAVHDASE EYKHRMHNL C DNCHSHVAL ALNLMRYNN S TNWNMVTLCF
151 151 FCLLYGKYVS VGFVKTWLP FILLLGIILT VSLVFNLR

40 BLASTP hits

No BLASTP hits available

45 Alert BLASTP hits for DKFZphfbr2_78d4, frame 1

PIR:T02b1b hypothetical protein T19L18.12 - Arabidopsis thaliana,
N =
2, Score = 226, P = 4.5e-21

50

>PIR:T02b1b hypothetical protein T19L18.12 - Arabidopsis thaliana
Length = 267

55 HSPs:

Score = 226 (33.9 bits), Expect = 4.5e-21, Sum P(2) = 4.5e-21
Identities = 52/132 (39%), Positives = 71/132 (53%)

15

Prosite for DKFZphfbr2_78d4.1

PS00190 121->127 CYTOCHROME_C PDOC00369

(No Pfam data available for DKFZphfbr2_78d4.1)

DKFZphfbr2_78e18

5 group: brain derived

DKFZphfbr2_78e18 encodes a novel 307 amino acid protein without similarity to known proteins.

10 The mRNA is differentially polyadenylated.
No informative BLAST results; No predictive prosite, pfam or SCOP motifs.

15 The new protein can find application in studying the expression profile of brain-specific genes.

similarity to hypothetical protein of *Arabidopsis thaliana*

20 differential polyadenylation

> 7 exons
complete on human genomic clone 451B21ap.
perhaps complete cds.

25 Sequenced by MediGenomix

Locus: /map="144.50 cR from top of ChrB linkage group"

Insert length: 3096 bp

30 Poly A stretch at pos. 3075, polyadenylation signal at pos. 3047

```

1 TGGTGAGTTC GGAGTAGAGA TGGCCGCGCT TGCACCGCTG CCCCCGCTCC
51 CCGCACAGCT CAAGAGCATA CAGCATCATC TGAGGACGGC TCAGGAGCAT
35 101 GACAAGCGAG ACCCTGTGGT GGCTTATTAC TGTCGTTAT ACGCAATGCA
151 GACTGGAATG AAGATCGATA GTAAAACTCC TGAATGTCGC AAATTTTTAT
201 CAAAGTTAAC GGATCAGTTA GAAGCTCTAA AGAAGCAGTT GGGTGATAAT
251 GAAGCTATTAA CTCAAGAACAT AGTGGGCTGT GCCCATTGAGA AGAATTATGC
301 TTTGAAAATG TTTTGATG CAGACAATGA AGATCGTGCT GGACGATTC
351 ACAAAACAT GATCAAGTCC TTCTATACTG CAAGTCTTT GATAGATGTC
40 401 ATAACAGTAT TTGGAGAACT CACTGATGAA AATGTGAAAC ACAGGAAGTA
451 TGCCAGATGG AAGGCAACAT ACATCCATAA TTGTTTAAAG AATGGGGAGA
501 CTCCTCAAGC AGGCCCTGTT GGAATTGAAAG AAGATAATGA TATTGAAGAA
551 AATGAAGATG CTGGAGCAGC CTCTCTGCC ACTCAGCCAA CTCAGCCATC
45 601 ATCATCTTCA ACTTATGACC CAAGCAACAT GCCATCAGGC AACTATACTG
651 GAATACAGAT TCCTCCGGGT GCACACGCTC CAGCTAATAC ACCAGCAGAA
701 GTGCCCTACA GCACAGGGT AGCAAGTAAT ACTATCCAAC CTACTCCACA
751 GACTATACCT GCCATTGATC CGCACTTTT CAATACAATT TCCCAGGGGG
801 ATGTTGCTCT AACCCCAGAA GACTTGCTA GAGCTCAGAA GTACTGCAA
851 TATGCTGGCA GTGCTTGCA GTATGAAGAT GTAAGCACTG CTGTCCAGAA
901 TCTACAAAAG GCTCTCAAGT TACTGACGAC AGGCAGAGAA TGAAGCCTTT
951 GTATGACAGA CCCATGTATT TTTGGCATGA GGAACATAACA GTCCATTACT
1001 CTATCTTCAG CCTATCAGGA TCACAGTTT AAGGAAGACT TGGTTTGT
1051 GAATATGACA ATGAAATCTG TGTGTATCAG ATTTTTATTG AAGCATTCT
55 1101 CAGCAGCTC AACCGAGTTT CATTGTCCAT TTACTAGATT CAATCGTCTC
1151 TGAGTATATA GGGCTGATGT TAGCAAGACC CTAAAAATGT CCATTGAACC
1201 CTGCTTCAAA AAATGAAAAC ACACCTCTAT AAAATGTGTA CTGGGAATAA
1251 GCTTTGTATT TACATACATT AGGGGAATT TTTAAAATCT GTAATGTTG

```

1301	GACAAACAGA	TGATATTACT	TTGCTATAAA	ATTATAAATG	TAACCTTTAA
1351	TAAAGATAGC	CAGAATATTG	AAATTAGAA	ATTACGTTT	TGTTTCCCTC
1401	AAGACATAAA	ACAAATATAA	ACATTCTAA	CTGCTGGATG	AATCTGAAAA
1451	GACATTAAGT	TCAAATTTA	ATTATTCTC	ATATTAAATA	TAACCTCATT
5 1501	AAAAGTTAA	AATTCATGG	GAGAAAATAT	AATAAGGTAA	AGAGGTAGAA
1551	TCACTTTCAG	ACTTAAGAAT	AATGTTGATT	TCCCAGTGC	TTTACCTTAT
1601	CTGTTAAAGC	GTAAGATGAA	TTGGTATTG	CTTCATAGGC	AGTTTGACTG
1651	CATGTATTAG	AGAATGAAA	GAAGATATT	GTAGTAATGC	CTGGAACACTT
1701	GGTGCTTTAA	ATTAAGGTAC	TCCTCTGCTG	CTGTAGAATG	GATTCCACAC
10 1751	AGTGGATAGC	TATGGGTGAT	TCAGAATATT	ATGTTTAGAT	TCCCATTTGT
1801	TAAGTTATA	AGTTTGTTG	GGAATTATGA	ACTTACTGTG	TACTACCTGC
1851	ATTTGTGCTG	TGTGAAAAT	AAATACAAGG	ATTCGTTTAG	CTAATTCAAC
1901	TTACTACAAA	GACAAATGTC	TGTTTTATT	TGCCCTGCTAG	GATTGTCTT
1951	TTTAAAGTC	ATTTTATT	ATAGGAATAT	GGGTGTTTCT	ATAGGAAGAA
15 2001	ACAGGTTTTT	TGTTTTTGT	TTTTTAAGAT	AAATTGACA	AAGTTAACTG
2051	AAATTATCT	GGTCCATT	ATTATGCTA	CTAACATGGG	AATCTTAAA
2101	CACAAGGGTC	AGCAAGCTT	GGCCCATGGA	TTGGCCACCT	GTTACGTAAA
2151	TAAAGTTCT	TTGAAACAAG	CCTACACTCA	TTCATTTATG	TTTGTCTGT
2201	GGTTGCTTT	CACAACGTCA	GAGTTGTATG	GCTTGCAAGT	CTAAAACAT
20 2251	TTACTATTTG	GCCCTCTAAG	AAAAAGTTAA	GACACCTAGT	CTAATGGCCT
2301	TTTGGGAAAA	AAACAAATCAC	TAACCTATAA	TCATTATAT	CCATTATTT
2351	CTGCATAAAAT	GTAATGCTAT	TGTACAGGGT	TTGGTAGAAT	AAATATTCA
2401	ACTGACTAAA	CTGTTCTAAA	TTCTCACAAA	AAAGTCCCCA	AACAAACATGC
2451	CTCCTAAAAAA	ACATTTCT	ATCTTTACA	AGAGGTATGA	ACATTGTTAG
25 2501	GGTCCACAT	TTGCATCTAG	AAATCCAATG	CTCTTAGAA	TGTTATTACG
2551	AATAGAAAGA	TGGCCAGGAT	GACCTTTAGT	GTTACATGAT	GTTCAGCAAA
2601	TTTAATTCA	AACCTTGATA	TGCCTGGACA	CTGAAAAGTA	AACGCATCAC
2651	CTCCTATTT	ATACCCTTAC	TTCTGGTTCC	CAATTGGGAG	AGCACATAGA
30 2701	GGGAAGGAGA	CAATATAGAA	ACTACGGAGT	CCGCTGGTAG	TGGGCTGCAT
2751	GGTGTGACAG	AGCCCTTCTC	TGTAATGG	AAATGACACC	ACTAGCCATC
2801	TCAATAGTTA	CAAGAATTAA	AAGAGATACA	GTACCTGAAG	TGCTTAGCGC
2851	ATGGTAGCAT	TTCATAAATG	TTTAGTGTCA	ATACTAATGC	TCTAATAATG
2901	TAAATTGTTA	ATAATTATT	TCCCTAATAT	CAGGAAATCC	CAGTTGTCTA
2951	TGTGGCCCAAG	TGCTAAAAAA	CGCCTTCTG	CATGAGGGGA	TTGAACATATA
35 3001	CAATGTTGT	TAACTTTGT	TTTGTATTT	TTCCTATAAA	ATCTTAAAAT
3051	AAAATTAGGA	GATGTGTTCT	GATGTAAAAA	AAAAAAAAAA	AAAAAAA

BLAST Results

40

Entry HS451B21 from database EMBL:

Human DNA sequence *** SEQUENCING IN PROGRESS *** from clone
451B21

45 Score = 11219, P = 0.0e+00, identities = 2287/2343

Medline entries

50

No Medline entry

55

Peptide information for frame 2

ORF from 20 bp to 940 bpi peptide length: 307

Category: similarity to unknown protein

Classification: no clue

5	1 MAALAPLPPP PAQLKSIQHH LRTAQEHDKR DPVVAYYCR L YAMQTGMKID
	51 SKTPECRKF L SKLMDQLEAL KKQLGDNEAI TQEIVGCAHL ENYALKMFLY
	101 ADNEDRAGR F HKNM I KSFYT ASLLIDVITV FGE L TDENVK HRKYARWKAT
	151 YIH N CLKN G TPQAGPVGIE EDNDIEENED AGAASLPTQP TQPSSSSSTYD
	201 PSNMPSGNYT GIQIPPGGAHA PANTPAEVPH STGVASNTI Q PTPQTIPAI D
10	251 PALFNTISQG DVRLTPEDFA RAQKYCKYAG SALQYEDVST AVQNLQKALK
	301 LLTTGRE

15 BLASTP hits

No BLASTP hits available

Alert BLASTP hits for DKFZphfbr2_78el8, frame 2

20 No Alert BLASTP hits found

Pedant information for DKFZphfbr2_78el8, frame 2

Report for RKFZphfbr2 2018-2

30 [LENGTH] 313
[MW] 34463.95
[PI] 5.64
[HOMOL] PIR:T04798 hypothetical protein F10M23.90 -
Arabidopsis thaliana 3e-22
[KW] All_Alpha
35 [KWT] LOW COMPLEXITY 16.61 %

	SEQ	GEFGVEMAALAPLPPPLPAQLKSIQHHLRTAQEHDKRDPVVAYYCRLYAMQTGMKIDSKTP
	SEGxxxxxxxxxxxxx.....
40	PRD	ccchhhhhheeeccccchhhhhhhhhhhhhccccceeehhhhhhhhcccccccccc
	SEQ	ECRKFLSKLMDQLEALKKQLGDNEAITQEIVGCAHLENYALKMFLYADNEDRAGRFHKNM
	SEG
45	PRD	chhhhhhhhhhhhhhhhhhhccccccccchhhhhhhhhhhhhhhhhccccccccccccchh
	SEQ	IKSFYTASLLIDVITVFGELTDENVKHRKYARWKATYIHNCNLNGETPQAGPVGIEEDND
	SEG
	PRD	hhhhhhhhhhhhhhccccccccchhhhhhhhhhhhhhhhhcccccccccccccccccc
50	SEQ	IEENEDAGAASLPTQPTQPSSSSTYDPSNMPSGNYTGIQIPPGAHAPANTPAEVPHSTGV
	SEG	xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx.....
	PRD	cc
55	SEQ	ASNTIQPTPQTIPAIIDPALFNTISQGDVRLTPEDFARAQKYCKYAGSALQYEDVSTAVQN
	SEG
	PRD	ccccccccccccccccccccccccccccccccchhhhhhhhhhhcccccccccccc
	SEQ	LQKALKLLTTGRE

SEG
PRD hhhhhhhcccc

5 (No Prosite data available for DKFZphfbr2_78e18.2)

(No Pfam data available for DKFZphfbr2_78e18.2)

DKFZphfbr2_78i21

5 group: metabolism

DKFZphfbr2_78i21 encodes a novel 477 amino acid protein with similarity to beta-aspartate methyltransferases.

- 10 The L-isoaspartyl methyltransferase (Pimt), as an example, is a highly conserved enzyme utilising S-adenosylmethionine (AdoMet) to methylate aspartate residues of proteins damaged by age-related isomerisation and deamidation.
- 15 The new protein can find application in diagnosis/modulation of protein damage and age-related degenerative processes.

unknown protein

20 weak similarity to beta-aspartate methyltransferase pimT of *Mycobacterium leprae*
perhaps complete cds.

25 Sequenced by MediGenomix

Locus: unknown

30 Insert length: 1842 bp
Poly A stretch at pos. 1819, polyadenylation signal at pos. 1802

35	1 CCTTCGCGAA ACACATATGCT AATGGCATGG TGCCGCGGTC CTGTCTTGCT 51 GTGCCTGCGG CAGGGGCTCG GAACCAATTG ATTCCCTGCAC GGCCTGGGGC 101 AGGAGCCCTT CGAGGGAGCT CGGTCACTGT GTTGCAGGTC CTCGCCCTAGA 151 GACCTGCGAG ATGGAGAAAAG AGAGCACGAG GCAGGACACAA GGAAAGCCCC 201 AGGAGCAGAG TCTTGCCCCAT CTCTCCCCTCT GAGCATCTCG GACATTGGGA 251 CTGGATGTCT TTGTCGACTG GAAAACCTCA GACTGCCGAC GCTGCGGGAA 301 GAGTCATCCC CTCGAGAGCT CGAGGACTCG AGCGGAGAAC AGGGCCGGTG 351 CGGTCCCACA CACCAAGGGAT CCGAGGATCC TTCGATGCTC TCGCAGGCC 401 AGTCGCTAC CGAGGTCGAA GAGCGTCACG TCTCCCCCTTC TTGTTCAACT 451 TCCAGAGAGA GACCCCTTCA GGCTGGGGAA CTGATTTTAG CTGAGACTGG 501 GGAGGGAGAA ACAAAATTAA AGAAATTATT TAGGTTGAAC AACTTGGGAC 551 TCTTAAATAG TAACTGGGG GCAGTCCCCTG TCAGGCAAGAT CGTGGGGAAG 601 TTCCCCGGCC AGATACTGAG GAGTTCCCTTC GGTAAGCAGT ACATGCTGAG 651 GAGGCCAGCC TTGGAAGACT ATGTTAGTATT GATGAAAAGA GGGACTGCCA 701 TAACATTCCC AAAGGATATT AATATGATTTC TCTCAATGAT GGATATCAAC 751 CCAGGTGATA CTGTTTGGG AGCTGGCTCA GGCTCTGGTG GAATGAGCTT 801 ATTTTATCC AAAGCAGTTG GATCACAAAGG ACGAGTCATA AGTTTGAGG 851 TACGAAAAGA CCACCATGAT CTGGCTAAGA AGAATTACAA ACACGGCGT 901 GATTCACTGGA AATTAAGTCA TGTAGAAGAG TGGCCAGACAA ATGTGGATT 951 TATTCTATAAG GACATTTCAAG GAGCAACCGGA AGACATAAAAA TCTTTAACAT 1001 TTGACGCAGT AGCTTTGGAT ATGTTAAATC CTCATGTTAC TTTGCCTGTT 1051 TTTTACCCAC ATCTTAAGCA TGGTGGGTGTA TGTGCTGTAT ATGTAGTAAA 1101 CATCACACAG GTTATTGAAC TTTAGATGG AATTGGCACC TGTGAACCTG 1151 CTCTTTCATG TGAAAAGATA AGCGAGGTCA TTGTCAGAGA TTGGTTGGTT 1201 TGCCCTGCAA AACAGAAAAA TGGAATTGTA GCTCAAAAAG TAGAATCTAA 1251 AATCAACACA GATGTACAAC TAGATTCTCA AGAGAAAATT GGAGTTAAAG
----	--

1301 GTGAGCTGTT TCAAGAGGAT GACCATGAAG AATCGCATTG TGATTTCCA
 1351 TATGGATCAT TTCCCTATGT TGCTAGACCA GTACACTGGC AACCTGGTCA
 1401 TACAGCTTT CTTGTCAAGT TGAGGAAGGT CAAACCACAA CTTAACTGAG
 1451 TACTCCAGAT GACAGTAACT GACTTGAAGA TGAAAAATA TCAAAATAGA
 5 1501 ACTTTATATT GAAAATCACT GCTTCCATAG ATTGGCATTG TTAGCTATTA
 1551 CTATGACTTA TATAACTTAT ACATATAATT TTGAAAATAA CAACTAAAAG
 1601 ATGTATAACA TAGCAAAACT GCTTAAACAT CCCATTTGA CACTTGTCTT
 1651 GCAGTTAGTT TGACATTTG TAGTTAATGA TTCCAAATTG GTTAGTTGG
 1701 ~GCCATCTCAT TCTTCACTTC CTGTAAACCA CTCCATAGAT TTGTCTTCT
 10 1751 TCAAGAAATT AGTTTTCTTT CCTTTATTG ATTGATGGTC ATTGACTACT
 1801 GAAATAAAAT ATGCATTTA AGAAAAAAAAA AAAAAAAAAA AA

BLAST Results

15

No BLAST result

20

Medline entries

No Medline entry

25

Peptide information for frame 1

30 ORF from 16 bp to 1446 bp; peptide length: 477
 Category: putative protein
 Classification: no clue

35 1 MLMWCRCGPV LLCLRQGLGT NSFLHGLGQE PFEGRSLCC RSSPRDLRDG
 51 EREHEAAQRK APGAESCPNL PLISIDIGTG CLSSLENLRL PTLREESSPR
 101 ELEDSSGDQG RCGPTHQGSE DPSMLSQAQD ATEVEERHVS PSCSTSRRP
 151 FQAGELILAE TGEGETKFKK LFLRNNGFGLL NSNWGAVPFG KIVGKFPQI
 201 LRSSFGKQYM LRRPALEDDYV VLMKRGTAIT FPKDINMILS MMDINPGDTV
 251 LEAGSGSGGM SLFLSKAVGS QGRVISFEVR KDHHDLAKKN YKHWRDSWKL
 40 301 SHVEEWPDNV DFIHKDISGA TEDIKSLTFD AVALDMLNPH VTLPVFYPHL
 351 KHGGVCAYVV VNITQVIELL DGIRTCELAL SCEKISEEVIV RDWLVCLAKQ
 401 KNGILAQKVE SKINTDVQLD SKEKIGVKGE LFQEDDHEES HSDFPYGSFP
 451 YVARPVHWQP GHTAFLVKLR KVKPQLN

45

BLASTP hits

50

No BLASTP hits available

Alert BLASTP hits for DKFZphfbr2_78i21, frame 1

No Alert BLASTP hits found

55

Pedant information for DKFZphfbr2_78i21, frame 1

Report for DKFZphfbr2_78i21.1

DKFZphmeli2_12j1

5

group: melanoma derived

DKFZphmeli2_12j1 encodes a novel 905 amino acid protein, which has similarity to integrin I of *Saccharomyces cerevisiae*.

10

The novel protein contains a leucin zipper.
No informative BLAST results; No predictive prosite, pfam or SCOP motife.

15

The new protein can find application in studying the expression profile of melanoma-specific genes.

weak similarity to integrin I (*Saccharomyces cerevisiae*)

20

Sequenced by EMBL

Locus: unknown

25

Insert length: 2942 bp

Poly A stretch at pos. 2926, no polyadenylation signal found

30

1	CGAAAGCTAA	AGGCCGGCGC	ACGCTGGGCG	GTGGTGGTCC	CTAAGCCGGG
51	CCGCGGCCGG	TGCAATGGAC	TCCACTGCCT	GCTTGAAGTC	CTTGCTCCTG
101	ACTGTCAAGTC	AGTACAAAGC	CGTGAAGTCA	GAGGCGAACG	CCACTCAGCT
151	TTTGCAGCAC	TTGGAGGTA	TTCTGGACA	GAAACTCACA	CGACTATTAA
201	CATCAAATCA	GATATTAACA	AGTGAATGCT	TGAGTTGCCT	TGTAGAGCTA
251	CTTGAAGACC	CCAACATAAG	TGCTTCACTG	ATCTTAAGTA	TTATCGGTTT
301	GCTGTCTCAA	CTAGCAGTAG	ACATTGAAAC	CAGAGATTGT	CTTCAGAATA
351	CATATAATCT	GAATAGTGTG	CTGGCGGGAG	TGGTTTGTG	GAGCAGCCAC
401	ACTGATTCGG	TGTTTTGCA	GTGCATTCAA	CTTCTACAGA	AGTTAACATA
451	TAATGTCAA	ATTTCTATT	CTGGTGCCAA	TATAGATGAA	TTAATTACGT
501	TCCTGATAGA	TCACATTCAA	TCTTCTGAAG	ATGAGTTAAA	AATGCCTTGT
551	CTAGGATTAT	TGGCAAATCT	TTGTCGGCAC	AATCTTCTG	TTCAAACGCA
601	CATAAAGACA	TTGAGTAATG	TGAAATCTT	TTATCGAACT	CTTATCACCT
651	TGTTGGCCCA	TAGTAGTTA	ACTGTGGTTG	TGTTTGCACT	TTCAATATTAA
701	TCCAGTTGA	CATTAATATG	AGAGGTGGGG	GAAAAGCTAT	TCCATGCTCG
751	AAACATTCTAT	CAGACTTTTC	AACTAATATT	TAATATTCTC	ATAAACGGTG
801	ATGGCACTCT	AACTAGAAAG	TATTCAAGTTG	ACCTACTGAT	GGATCTCCTT
851	AAGAATCCTA	AAATTGCTGA	TTATCTCACC	AGATATGAGC	ACTTTTCTTC
901	ATGTCTTCAC	CAAGTATTAG	GTCTTCTAA	TGAAAGGAT	CCTGATTCCCT
951	CTTCAAAGGT	TTAGAATTA	CTTCTTGCCCT	TCTGTTCACT	GACTCAGCTG
1001	CGCCATATGC	TCACTCAGAT	GATGTTGAA	CAGTCTCCAC	CTGGCAGCGC
1051	CACTCTGGGA	AGCCATACTA	AATGTTAGA	ACCTACTGTG	GCTCTACTGC
1101	GCTGGTTAAG	CCAAACCTTTG	GACGGATCAG	AAAACGTTC	TGTTTTAGCA
1151	TTGGAGTTGT	TCAAGGAAAT	ATTTGAGGAT	GTCATAGATG	CTGCTAACTG
1201	TTCCCTCGGCT	GATCGTTTG	TGACCCCTCT	GCTGCTACA	ATCCTTGATC
1251	AACTTCAGTT	CACAGAACAA	AATCTAGATG	AGGCTTAAC	AAGAAAAAAT
1301	GTGAAAGGGA	TTGCCAAGGC	CATTGAAGTT	TTGTTAACTC	TCTGTGGAGA
1351	TGATACACTA	AAAATGCATA	TTGCAAAAT	CTTGACAAC	GTCAAGTGT
1401	CCACTCTTAT	AGAACAAACAA	TTTACATATG	GCAAGATTGA	CCTGGGATTT
1451	GGAAACAAAGG	TTGCAGATTG	TGAATTATGC	AAACTGCTG	CTGATGTAAT

1501 TTTGAAAACT CTTGATTTGA TTAACAAACT TAAACCATTG GTTCCTGGTA
 1551 TGGAAGTAAG CTTCTACAAA ATACTTCAGG ACCCACGTT GATTACTCCT
 1601 TTGGCTTTG CTTAACGTC AGATAATAGA GAACAAGTAC AGTCTGGACT
 1651 GAGAATATT A TTGGAGGCTG CTCCACTGCC AGATTTCCCT GCTTAGTAC
 5 1701 TTGGAGAAAG TATAGCAGCA AACAAATGCC ATAGACAACA GGAAACAGAA
 1751 CATATACCA GAAAATGCC CTGGCAATCA TCAAATCACA GTTTCCAAC
 1801 ATCAATAAAG TGTTAACTC CTCATTGAA AGATGGTGT CCTGGATTGA
 1851 ATATTGAAGA ATTAATAGAG AAACATTCACT CTGGAATGGT GGTAAAGGAT
 1901 CAGATTGTG ATGTGAGAAT ATCTGACATA ATGGATGTAT ATGAAATGAA
 10 1951 ACTATCCACA TTAGCTTCA AAGAAAGCAG GCTACAAGAT CTTTGAAA
 2001 CAAAAGCTCT AGCCCTTCA CAGGCTGATA GACTGATTGC TCAGCATCGC
 2051 TGTCAAAGAA CTCAAGCTGA AACAGAGGCA CGGACACTTG CTAGTATGTT
 2101 GAGAGAAGTT GAGAGAAAAA ATGAAGAGCT TAGTGTGTT CTGAAGGC
 2151 AGCAAGTTGA ATCAGAAAAGA GCGCAGAGTG ATATTGAGCA TCTCTTCAA
 15 2201 CATAATAGGA AGTTAGAGTC TGTGGCTGAA GAACATGAAA TACTGACAAA
 2251 ATCCTACATG GAACTTCTTC AGAGAAATGA AAGTACTGAA AAGAAGAATA
 2301 AAGATTTACA GATCACATGT GATTCTCTGA ATAAACAAAT TGAGACAGTG
 2351 AAAAGTTGA ATGAGTCACT CAAGGAACAA AATGAAAAAA GTATTGCCA
 2401 ATTAATAGAG AAAGAAGAAC AGAGAAAAGA AGTACAGAAT CAGCTAGTAG
 20 2451 ACAGAGAAC TAAGCTAGCA ATTTCATC AAAAAACAAA AGTACAAGAA
 2501 GAAAAGATTA AAACCTTACA AAAGGAAAGG GAAGATAAGG AAGAAACCAT
 2551 TGATATCCTT AGAAAAGAAT TAAGCAGAAC AGAACAGATA AGAAAAGAGT
 2601 TGAGCATTAA GGCTTCCCTC CTAGAGGTTA AAAAGGCACA ATTAGAAGGT
 2651 CGTTTGGAAAG AGAAAGAGTC CTTGGTGAAGA CTTCAGCAAG AGGAATTGAA
 2701 CAAACACTCC CACATGATAG CAATGATCCA CAGTTAAGT GGTGGAAAAA
 2751 TAAATCCAGA AACTGTGAAT CTCAGTATAT AGACATTATG GCATTTGGA
 2801 ATTTGTAATC TCATGATATT TTTGATGTAT TTATCTATTG GAGGGGGGGT
 2851 GGGTAGGGGA GTTAATTGT GACTTCGTAA CAATAAGAAG TTATTATCTA
 2901 ATTTAGTAAA GACCTGTATC TGTTGAAAAA AAAAAAAAAA AA

30

BLAST Results

35 No BLAST result

Medline entries

40

96039111:

Hostetter MK, Tao NJ, Gale C, Herman DJ, McClellan M, Sharp RL,
 Kendrick KE.; Antigenic and functional conservation of an
 integrin

45 I-domain in

Saccharomyces cerevisiae. Biochem Mol Med 1995 Aug;55(2):122-30

99458454:

Bertoni G, Lowell CA.; Integrin signalling in neutrophils and
 macrophages. Cell Signal 1999 Sep;11(9):621-35

55

Peptide information for frame 2

ORF from 65 bp to 2779 bp; peptide length: 905

Category: putative protein
 Classification: Cellular transport and traffic
 Prosite motifs: LEUCINE_ZIPPER (331-352)

5 1 MDSTACLKSL LLTVSQYKAV KSEANATQLL RHLEVISGQK LTRLFTSNQI
 51 LTSECLSCLV ELLEDPNISA SLISIIGLL SQLAVDIETR DCLQNTYNLN
 101 SVLAGVVCRS SHTDSVFLQC IQLLQKLTYN VKIFYSGANI DELITFLIDH
 151 IQSSEDELKM PCLGLLANLC RHNLSVQTHI KTLSNVKSFY RTLITLLAHS
 10 201 SLTVVVFALS ILSSLTLNNE VGEKLFHARN IHQTFQLIFN ILINGDGTLT
 251 RKYSVDLLMD LLKNPKIADY LTRYEHFSSC LHQVLGLLNG KDPDSSSKVL
 301 ELLLAFCSVT QLRHMLTQMM FEQSPPGSAT GSHTKCLEP TVALLRWLSQ
 351 PLDGSENCVS LALELFKEIF EDVIDAANCS SADRFVTLLL PTILDQQLQFT
 401 EANLDEALTR KNVKGIAKAI EVLLTLCGDD TLKMHIAKIL TTVKCTTLIE
 15 451 QQFTYKGKIDL GF GTKVADSE LCKLAADVIL KTLINKLK PLVPGMEVSF
 501 YKILQDPRLI TPLAFALTSD NREQVQSGLR ILLEAAPLPD FPALVLGESI
 551 AANNAYRQAE TEHIPRKMPW QSSNHSFPTS IKCLTPHLKD GVPGLNIEEL
 601 IEKLQSGMVV KDQICDVRIIS DIMDVYEMKL STLASKESRL QDLLETKALA
 651 LAQADRLIAQ HRCQRTQAET EARTASMLR EVERKNEELS VLLKAQQVES
 20 701 ERAQSDIEHL FQHNRKLESV AEEHEILTKS YMELLQRNES TEKKNKDLQI
 751 TCDSLNNQIE TVKKLNESLK EQNEKSIQQL IEKEEQRKEV QNQLVDREHK
 801 LANLHQKTKV QEEKIKTQLK EREDKEETID ILRKELSRT E QIRKELSIKA
 851 SSLEVQKAQL EGRLEEKESL VKLQQEELNK HSHMIAMIHS LSGGKINPET
 901 VNLSI

25

BLASTP hits

30 No BLASTP hits available

Alert BLASTP hits for DKFZphme12_12j1, frame 2

35 TREMBL:SCINTANA_1 Saccharomyces cerevisiae integrin analogue
 gene,
 complete cds., N = 1, Score = 216, P = 1.3e-13

40 >TREMBL:SCINTANA_1 Saccharomyces cerevisiae integrin analogue
 gene, complete
 cds.

Length = 1,015

HSPs:

45 Score = 216 (32.4 bits), Expect = 1.3e-13, P = 1.3e-13
 Identities = 80/302 (26%), Positives = 155/302 (51%)

50 Query: 597 IEELIEKLQSGMVVKDQICDVRIISDIM---
 DVYEMKLSTLASKESRLQDLLETKALALAQ 653
 I L EKL++ D+ + +IS++ + E +L+ + ++ L+
 LET AL +
 Sbjct: 275 ISLLKEKLETATTANDENVN-
 KISELTKTREELEAELAAYKNLKNELTKLETSEKALKE 333

55 Query: 654 A---DRLIAQHRCQRTQAETEAR---TLASMLREVERKNEELSVLLKA--
 QQVESERAQ 704

+Q+ ++ Q + TE + +L + L +E+++E+L+ LK
 Sbjct: 334
 VKNEEHHLKEEKIQLKEATEKQQLNLSRANLESLEKEHEDLAAQLKKYEEQIANKERQ 393
 5 Query: 705 SDIEHLFQHNRKLESVAEEHEILTKSYMEL---LQRNESTEKKNKDLQIT-
 CDSLNUKQIE 760 + E + Q N ++ S +E+E + K EL ++ +ST ++ +L+ +
 D+LN QI+
 10 Sbjct: 394 YN-
 EEISQLNDEITSTQQENESIKKKNDELEGEVKAMKSTSEEQSNLKKSEIDALNLQIK 452
 Query: 761
 TVKKLNESLKEQNEKSIAQKIEKEEQRKEVQNQLVDREHKLANLHQKTKVQEEKIKT--- 817
 15 +KK NE+ + +SI + + + KE+Q++ +E +++ L K K
 E+K
 Sbjct: 453
 ELKKKNETNEASLLESIKSIESETVKIKELQDECNFKEKEVSELEDKLKASEDKNSKYLE 512
 20 Query: 818 LQKEREDEKEETIDI---LRKELSRTQIRKELSIKASSLE-
 VQKAQLEGRLEEKESLVK 872 LQKE E +E +D L+ +L + + K S L + +K E R
 +E L K
 Sbjct: 513
 25 LQKESEKIKEELDAKTTELKIQLEKVTNLSKAKEKSESELRLKTSSEERKNAEEQLEK 572
 Query: 873 LQRE 876
 L+ E
 Sbjct: 573 LKNE 576
 30 Score = 186 (27.9 bits), Expect = 2.0e-10, P = 2.0e-10
 Identities = 82/301 (27%), Positives = 155/301 (51%)
 Query: 598 EELIEKLQSGMVVKDQICDVRISDIMDVYEMKLSTLASKESR---LQD-
 35 LLETKALALAQ 653 +ELI +LQ+ +K + D S++ V L K++ LQD +L
 K
 Sbjct: 611 DELI-
 RLQNENELKAKEDNTRELEKVSLNSDELLEEKQNTIKSLQDEILSYKDKitRN 669
 40 Query: 654
 ADRLIAQHRCQRTQAETEARTLASMLREVERKNEELSVLLKAQQVESERAQSDIEHLFQH 713
 ++L++ R + E+ L LR + ++ LK + ES +
 +++++E +
 45 Sbjct: 670 DEKLLSIERDSKRDLES---
 LKEQLRAAQESKAKVEEGLKKLEEESSEKAELEKSSEM 725
 Query: 714 NRKLESVAEEHEILTKSYMELLQRN-ESTEKKNKDLQITCDSL-
 50 NKQIETVKKLNESLKE 771 +KLES E +E KS ME +++++ E E+ K + +L + + + +
 ++NES K+
 Sbjct: 726
 MKKLESTIESNETELKSSMETIRKSDEKLEQSKSAEEDIKNLQHEKSDLISRINESEKD 785
 55 Query: 772 QNE-KSIAQLIEKEEQRKE-VQNQLVDREHKL-
 ANLHQKTKVQEEKIKTLQKEREDEKEET 828 E KS ++ K E V+ +L + + K+ N + T V + K++
 +++++E +DK+

Sbjct: 786 IEELSKSLRIEAKSSSELETVKQELNNAQEKIRVNAEENT-VLKSKLEDIERELKDQAE 844

- Query: 829 IDILR--KEL--SRTEQIRKEL-----SIKASSLEVQKAQLE-
 5 GRLEEKESLVKLQ 874
 I + KEL SR +++ +EL S + S EV+K Q+E
 +L+EK L++ +
 Sbjct: 845
 IKSNQEEKELLTSRLKELEQELDSTQQKAQKSEEEESRAEVRFQVEKSQQLDEKAMLLETK 904
- 10 Query: 875 QEEL-NK 880
 +L NK
 Sbjct: 905 YNDLVNK 911
- 15 Score = 173 (26.0 bits), Expect = 5.7e-09, P = 5.7e-09
 Identities = 77/287 (26%), Positives = 146/287 (50%)
- Query: 601 IEKLQSGMVVVKDQICDVRISDIMDVYEMKLSTLASKES--
 RLQDLLETKALALAQADRLI 658
 20 ++K + + K++ + IS + D E+ ST ES + D LE +
 A+
 Sbjct: 380 LKKYEEQIANKERQYNEEISQLND--EIT-
 STQQENESIKKKNDELEGEVKAMKST--- 432
- 25 Query: 659 AQHRCQRTQAETEARTLASMLREVERKNE--
 ELSVLLKAQQVESERAQS DIEHLFQH-NR 715
 ++ + ++E +A L ++E+++KNE E S+L + +ESE + I+
 L N
 Sbjct: 433 SEEQSNLKKSEIDALNL--QIKELKKNETNEASLLESIKSIESETVK--
 30 IKELQDECNF 488
- Query: 716 KLESVAEEHEILTGSY--
 MELLQRNESTEKKNKDLQITCDSLNUQIETVKKLNESLKEQ 772
 35 K + V+E + L S + L+ + +EK ++L L Q+E V
 L+++ KE+
 Sbjct: 489
 KEKEVSELEDKLKASEDKNSKYLELQKESEKIKEELDAKTTELKIQLEKVTNLSKA-KEK 547
- Query: 773 NEKSIARLIE-KEEQRKEVQNQL--VDREHKLAN--
 40 LHQKTKVQEEKIKTLQKEREDEKEE 827
 +E +++L + E+RK + QL + E ++ N ++ K+ E T+
 +E +K
 Sbjct: 548
 SESELSSRLKKTSSSEERKNAEEQLEKLKNEIQIKNQAFERKLLNEGSSSTITQEYSEKIN 607
- 45 Query: 828 TI-
 DILRKELSRTQIRKELSIKASSLEVQKAQLEGRLEEKESLVKLQEELNKHSHMI 885
 T+ D L + + E KE+ S LE + LEEK++ +K Q+E+
 + I
 50 Sbjct: 608
 TLEDELIRLQENENELKAKEIDNTRSELEKVSLSDLEEKQNTIKSLQDEILSYKDQI 666
- Score = 171 (25.7 bits), Expect = 9.3e-09, P = 9.3e-09
 Identities = 76/311 (24%), Positives = 152/311 (48%)
- 55 Query: 596 NIEELIEKLQSGMVVVKDQ-----
 ICDVRISDIMDVYEMKLSTLASKESRLQDLLETKA 648

N EE +EKL++ + +K+Q + + S I Y K++TL +
 RLQ+ E KA
 Sbjct: 565
 NAEELQLEKLKNEIQLIKNQAFERKLLNEGSSTITQEYSEKINTLEDELIRLQNEELKA 624
 5
 Query: 649 LALAQADRLIAQHRCQRTQA-ETEARTLASMLREVERKNEELSVL-
 LKAQQVESERAQSD 706
 + + + + E + T+ S+ E+ +++++ K
 +E + ++ D
 10 Sbjct: 625
 KEIDNTRSELEKVSLNSDELLEEKQNTIKSLQDEILSYKDKitRNDEKLLSIERD-SKRD 683
 Query: 707 IEHLFQHNRKL-ESVAEEHEILTKSYMELLQRNESTEKKN--
 KDLQITCDS---LNKQ 758
 15 +E L + R ES A+ E L K E + EK K L+ T +S
 L
 Sbjct: 684
 LESLKEQLRAAQQESKAKVEEGLKKLEEESSEKAELEKSKEMMKKLESTIESNETELKSS 743
 20 Query: 759 IETVKKLNESLKEQNEKSIAQLEK-
 EEQRKEVQNQLVDRREHKLNLHQKTKVQEE---K 814
 +ET++K +E L EQ++KS + I+ + ++ ++ +++ + E + L K
 + + + +
 Sbjct: 744 METIRKSDEKL-
 25 EQSKKSAEEDIKNLQHEKSDLISRINESEKDIEELKSKLRIEAKSSSE 802
 Query: 815 IKTLQKEREDEETIDILRKE---LSRTEQIRKELSIASSL---
 EVQKAQLEGRLEEK 867
 30 + +T+++E + +E I + +E S+ E I +EL K + + + +K
 L RL+E
 Sbjct: 803
 LETVKQELNNAAEKIRVNAEENTVLKSKLEDIERELKDQAEIKSNQEEKELLTSRLKEL 862
 35 Query: 868 ESLVKLQQEELNK 880
 E + Q++ K
 Sbjct: 863 EQELDSTQQKAQK 875
 Score = 165 (24.8 bits), Expect = 4.1e-08, P = 4.1e-08
 Identities = 65/286 (22%), Positives = 149/286 (52%)
 40 Query: 595 LNIEELIEKLQSGMVVKDQICDVR-ISDIMDVYEMKLSTLASKESRL-
 QDLLETKALALA 652
 +N ++ + L+ + K I +++ I++ ++ +++ + L+ ++ +
 ++L+E K+
 45 Sbjct: 114 VNHQKETKSLKEDIAAK--
 ITEIKAINENLEKMKIQCNNLSKEKEHISKEVELVEYKS-RFQ 170
 Query: 653 QADRLIAQHRCQRTQAETEARTLASMLREVERKNEELSVLLKAQQVESE---
 -RAQSDIE 708
 50 D L+A+ T+ + ++LA+ +++++ +NE L ++ + ES
 Q+ I+
 Sbjct: 171 SHDNLVAK---LTE---
 KLKSLANNYKDMQAENESLIKAVEESENNESSIQLSNLQNKID 223
 55 Query: 709 HLFQH--NRKLE--
 SVAEEHEILTKSYMELLQRNESTEKKNQDLQITCDSLNUKQIETVKK 764
 + Q N ++E S+ + E L K+ +L Q E K+ + D
 QI +K+

Sbjct: 224 SMSQEKENFQIERGSIEKNIEQLKKTISDLEQTKEEIIISKSDSLSSK---
DEYESQISLLKE 280

Query: 765

5 LNESLKEQNEKSIAQLIEKEEQRKEVQNQLVDREHKLNLHQKTKVQEEKIKTLQKERED 824
E+ N++++ ++ E + R+E++ +L ++ L K + E+ +K
+++ E

Sbjct: 281

KLETATTANDENVNKISELTKTREELEAELAAYKNLKNELTAKLETSEKALKEVKENEH 340

10

Query: 825 -

KEETIDILRKELSRTQIRKELSIKASSLEVQKAQLEGRLLEEKESSLVKLQQEELNK 880
KEE I L KE + T+Q L SLE + L +L++ E + ++
+ N+

15

Sbjct: 341 LKEEKIQ-

LEKEATETKQQLNSLRANLESLEKEHEDLAAQLKKYEEQIANKERQYNE 396

Score = 158 (23.7 bits), Expect = 1.9e-07, P = 1.9e-07

Identities = 74/268 (27%), Positives = 136/268 (50%)

20

Query: 598 EELIEKLQSGMVVKDQICDVRISDIMDVYEM--KL-

STLASKESRLQDLLET--KALALA 652

+E -K++ G+ ++ +++ EM KL ST+ S E+ L+ +ET
K+

25

Sbjct: 695

QESKAKVEEGLKLEEESSEKAELEKSKEMMKKLESTIESNETELKSSMETIRKSDEKL 754

Query: 653

QADRLIAQHRCQRTQAETEARTLASMLREVERKNEELSVLLKAQQVESERAQSDIEHLFQ 712
+ + A+ + Q E L S + E E+ EEL L+ + S

++ + L

Sbjct: 755 EQSKKSAEEDIKNLQHEKS--

DLISRINESEKDIEELKSKLRIEAKSSSELETVKQELNN 812

35

Query: 713 HNRKLESVAEEHEILTKSYMELLQRNESTEKKNKDLQITCDLSNKQIET--
VKKLNESLK 770

K+ AEE+ +L KS +E ++R E K+K +I + K++ T
+K+L + L

40

Sbjct: 813 AQEKIRVNAEENTVL-KSKLEDIER----

ELKDKQAEIKSNQEEKELLTSRLKELEQELD 867

Query: 771 EQNEKSIAQLIEKEEQRKEVQNQLVDR---
EHKLNLHQKTKVQEEKIKTLQKEREDKEE 827

+K AQ E EE R EV+ V++ + K L K K +

45

+++ + ++

Sbjct: 868 STQQK--AQKSE-

EESRAEVRFQVEKSQQLDEKAMLLETKYNDLVNKEQAWKRDEDIVKK 924

50

Query: 828 TIDILRKELSRTQIRKEL-SIKASSLEVQKAQLEGRL 865

T D R+E+ E++ KEL ++KA + +++++A E R E

Sbjct: 925 TTDSQRQEI---EKLAKELDNLKAENSKLKEAN-EDRSE 959

Score = 155 (23.3 bits), Expect = 3.9e-07, P = 3.9e-07

Identities = 73/269 (27%), Positives = 133/269 (49%)

55

Query: 624 DVYEMKLSTLASKESRLQD-LLETKALALAQADRLIAQHRCQRTQAET---
EARTLASML 679

R ++ E K +T+ S L Q D +L K ++L++ R + E+ +

5 Sbjct: 643 ELLEEKQNTIKS----
 LQDEILSYKDKitRNDEKLLSIERDSKRDLESLKEQLRAAQESK 698

10 Query: 680 REVE---
 RKNEELSVLLKAQQVESERAQS DIEHLFQHNRKLESVAEEHEILT KSYMELLQ 736
 +VE +K EE S KA+ +S+ +E + N + E +

KS +L Q
 15 Sbjct: 699 AKVEEGLKKLEEESSEKAELEKSKEMMKKLESTIESNET--
 ELKSSMETIRKSDEKLEQ 756

20 Query: 737 RNESTEKKNKDLQITCDLSNKQIETVKKLNESLKEQ---
 NEKSIAQLIEKEEQRKEVQNNQ 793
 +S E+ K+LQ L +I +K E LK + KS ++L
 +++ Q +

Sbjct: 757
 SKKSAEEDIKNLQHEKSDLISRINESEKDIEELSKLRIEAKSSSELETVKQELNNAQEK 816

25 Query: 794 L-VDREH-----
 KLANLHQKTKVQEEKIKTLQKEREDKEETIDILRKELSRTQIRKEL 846
 + V+ E KL ++ ++ K ++ +IK+ Q+E+E + L +EL
 T+Q ++

Sbjct: 817
 30 IRVNAEENTVLKSKLEDIERELKDQAEIKSNQEKEELLTSRLKELEQELDSTQQ-KAQK 875

Query: 847 SIKASSELEVQKAQLE-GRLEEKESLVKLQQEEL-NK 880
 S + S EV+K Q+E +L+EK L++ + +L NK

Sbjct: 876 SEEESRAEVRFQVEKSQQLDEKAMLLETKYNDLVNK 911

Score = 146 (21.9 bits), Expect = 3.5e-06, P = 3.5e-06
 Identities = 73/311 (23%), Positives = 152/311 (48%)

35 Query: 520 DNREQVQSGLRIL----LEAAPLPDFPALV--
 LGESIAANNAYRQQETEHIPRK-MPWQ 571
 + + + +V+ GL+ L E A L ++ L +I +N + E I

Sbjct: 696
 ESKAKVEEGLKKLEEESSEKAELEKSKEMMKKLESTIESNETELKSSMETIRKSDEKLE 755

40 Query: 572 SSNHSFPTSIKCLTPHLKDGVPGLNIEEL-
 IEKLQSGMVVKDQICDVRISDIMDVYEMKL 630
 S S IK L D + +N E IE+L+S + + + + S
 ++ + +L

45 Sbjct: 756 QSKKSAEEDIKNLQHEKSDLISRINESEKDIEELSKLRI----
 EAKSSSELETVKQEL 810

Query: 631 STLASK---
 ESRLQDLLETKALALAQADRLIAQHRCQRTQAETEARTLASMLREVERKNE 687
 + K + +L++K L +R + + + + E L S
 L+E+E++ +

Sbjct: 811 NNAQEKEIRVNAEENTVLKSK---
 LEDIERELKDQAEIKSNQEKEELLTSRLKELEQELD 867

55 Query: 688
 ELSVLLKAQQVESERAQS DIEHLFQHNRKLESVAEEHEILT KSYMELLQ RNESTEKKNKD 747
 S KAQ+ E E +++++ FQ + + E+ +L Y +L+ +
 ++ ++

Sbjct: 868 --STQQKAQKSEEE-SRAEVRK-FQVEKS--
QLDEKAMLLETKYNDLVNKEQAWKRDEDT 921

- 5 Query: 748 LQITCDLSLNKQIETVKKLNESLKEQNEKSIAQLEKEEQRKEVQNQLV---
DREHKLALN 804
++ T DS ++IE + K ++LK +N K L E E R E + + ++ D
+ K N
- Sbjct: 922 VKTTDSQRQEIEKLAKELDNLKAENSK----
LKEANEDRSEIDDMLLVTDLDEK--NA 975
- 10 Query: 805 HQKTKVQEEKIKTLQKEREDKEETID 830
++K+++ ++ E +D+EE D
- Sbjct: 976 KYRSKLKDGLGVEISSDEEDDEEEEDD 1003
- 15 Score = 146 (21.9 bits), Expect = 4.6e-06, P = 4.6e-06
Identities = 82/313 (26%), Positives = 145/313 (46%)
- Query: 598
EELIEKLQSGMVVKDQICDVRISDIMDVYEMKLSTLASKESRLQDLLETKALALAQAQADRL 657
20 EEL +L + +K+++ + + E+K + KE ++Q LE +A
Q
- Sbjct: 304 EEELEAELAAFKNLKNELETKLETSEKALKEVKENEEHLKEEKIQQ--
LEKEATETKQQ--- 358
- 25 Query: 658 IAQHRCQRTQAETEARTLASMLREVERK-----NEELSVL---
LKAQQVESERAQSD 706
+ R E E LA+ L++ E + NEE+S L + + Q
E+E +
- Sbjct: 359
- 30 LNSLRANLESLEKEHEDLAAQLKKYEEQIANKERQYNEEISQLNDEITSTQQENESIKKK 418
- Query: 707 IEHLFQHNRKLESVAEEHEILTKSYMELLQRN-
ESTEKKNKDLQITCDLSLNKQIET-VKK 764
+ L + ++S +EE L KS ++ L + +KKN+ + + K
- 35 IE+ K
- Sbjct: 419
NDELEGEVKAMKSTSEEQSNLKKSEIDALNLQIKELKKNETNEASLLESIKSIESETVK 478
- Query: 765 LNESLKEQN--EKSIQLEIEK---EEQRKEVQNQLVDREHKLAN-LHQKT--
40 -KVQEEKI 815
+ E E N EK +++L +K E + +L K+ L KT
K+Q EK+
Sbjct: 479
IKELQDECNFKEKEVSELEDKLKASEDKNSKYLELQKESEKIKEELDAKTTTELKIQLEKV 538
- 45 Query: 816
KTLQKEREDKEETIDILRKELSRTQIRKELSIKASSLEVQKAQLEGRLEEKESLVKLQQ 875
L K +E E ELSR ++K S + + E Q +L+ ++ K
+ ++
- 50 Sbjct: 539 TNLSKAKEKSES-----ELSR---
LKKTSSEERKNAEEQLEKLKNEI@IKNQAFEKER 588
- Query: 876 EELNKHSHMIAMIHSLSGGKINPETVNL 903
+ LN+ S I +S + E + L
- 55 Sbjct: 589 KLLNEGSSSTITQYEYSEKINTLEDELIRL 616
- Score = 145 (21.8 bits), Expect = 5.9e-06, P = 5.9e-06
Identities = 59/246 (23%), Positives = 115/246 (46%)

Query: 634 ASKESRLQ-
 DLLETKALALAQAQADRLIAQHRCQRTQAETEARTLASMLREVERKNEELSVL 692
 + ES +Q L+ K +++Q + +R E L + ++E+
 5 EE ++
 Sbjct: 207 SKNESSIQLSNLQNKNIDSMSQEKE---
 NFQIERGSIEKNIEQLKKTISDLEQTKEE--II 261

Query: 693 LKAQQVESERAQSDIEHLFQHNRKLESVAEEHEI-----
 10 LTKSYMELLQRNESTEKKND 747
 K+ + E +S I L + + + A + + LTK+ EL
 + + +
 Sbjct: 262 SKSDSSKDEY-ESQIS-
 LLKEKLETATTANDENVNKISELTKTREELEAELAAVKNLKNE 319
 15 Query: 748
 LQITCDSLNKQIETVKKLNESLKEQNEKSIAQLIEKEEQRKEVQNLVDREHKLANLHQK 807
 L+ ++ K ++ VK+ E LKE+ + + E ++Q ++ L E
 + +L +
 20 Sbjct: 320
 LETKLETSEKALKEVKENEELKEEKIQLEKEATETKQQLNSLRANLESLEKEHEDLAAQ 379

Query: 808
 TKVQEEKIKTLQKEREDKEETIDILRKELSRTQIRKELSIKASSLEVQKAQLEGRLEEK 867
 25 K EE+I KER+ EE I L E++ T+Q + + K LE +
 ++ EE+
 Sbjct: 380 LKKYEEQIAN--KERQYNEE-
 ISQLNDEITSTQGENESIKKKNDELEGEVKAMKSTSEEQ 436

30 Query: 868 ESLVKLQQEELN 879
 +L K + + LN
 Sbjct: 437 SNLKKSEIDALN 448

Score = 137 (20.6 bits), Expect = 4.2e-05, P = 4.2e-05
 35 Identities = 81/312 (25%), Positives = 140/312 (44%)

Query: 598 EELIEKLQSGMVVKDQICDVRISDIMDVYEMKLSTLASK-ESRLQDLLET-
 KALALAQAQAD 655
 40 +EL ++++ ++ +++ S+I D +++ L K E+ LLE+
 K++
 Sbjct: 420 DELEGEVKAMKSTSEEQSNLKKSEI-
 DALNLQIKEKKNETNEASLLESIKSIESETVK 478

Query: 656
 45 RLIAQHRCQRTQAETEARTLASMLREVERKNEELSVLLKAQQVESERAQSDIEHLFQHNR 715
 Q C E E L L+ E KN + L K + E +
 L
 Sbjct: 479 IKELQDECNFK--
 EKEVSELEDKLKASEDKNSKYLELQKESEKIKEELDAKTTELKIQLE 536

50 Query: 716
 KLESVAEEHEILTTSYMEPLLQRNESTEKKNDLQITCDSLNKQIETVKKLNESLKEQNEK 775
 K+ ++++ E ++S + L++ S E+KN + Q+ QI+ + +
 K NE
 55 Sbjct: 537 KVTNLSKAKE-KSESELRLKKTSSEERKNAEEQLEKLKNEIQIKN-
 QAFEKERKLLNEG 594

Query: 776 SIAQLIEKEEQRKEVQNQLV--DREHKL-ANLHQKTKVQEEKIKTLQKER-
EDKEETIDI 831
 S E E+ ++++++L+ E++L A T+ + EK+ E
 E+K+ TI
 5 Sbjct: 595
 SSTITQEYSEKINTLEDELIRLNENELKAKEIDNTRSELEKVSLSNDELLEEKQNTIKS 654

Query: 832 LRKE-LSRTEQI---RKELSIKASS---LEVQKAQLEGRLEEK---
ESLVKLQQE--- 876
 10 L+ E LS ++I K LSI+ S LE K QL E K E L
 KL++E
 Sbjct: 655
 LQDEILSYKDKitRNDekLLSierdskrdleslKEqlRAAqEsKaKveeGLKKLeeessk 714

15 Query: 877 ---ELNKHSHMIAMIHS 890
 EL K M+ + S
 Sbjct: 715 EKAELSKEMMKLES 731

Score = 128 (19.2 bits), Expect = 3.9e-04, P = 3.9e-04
 20 Identities = 80/356 (22%), Positives = 148/356 (41%)

Query: 546 LGESIAANNAAYRQQETEHIPRKMPWQSSNHSFPTSIKCLTPHL-----
KGVPGLN-I 597
 25 G+N + L E + ++ E+ + ++S+ H SIK L L K
 Sbjct: 25
 LDEMTRLRDVLETKDKENQTALLEYKSTIHKQEDSIKTLEKELETILSQKKKAEDGINKM 84

Query: 598 EELIEKLQSGMVVKDQICD--
 30 VRISDIMDVYEMKLSTLASKECSRQLDLLETKALALAQAD 655
 + + L M + + C + D + V K T + KE + E
 KA+ +
 Sbjct: 85 GKDLFALSREMQAVEENCKNLQKEKDKSNVNHQK-
 ETKSLKEDIAAKITEIKAIN-ENLE 142

35 Query: 656
 RLIAQHRCQRTQAETEARTLASMLREVERKNEELSVLLKAQQVESERAQSDIEHLFQHNR 715
 + + Q C E E + + L E + + + L+ + + ++
 + + N
 40 Sbjct: 143 KMKIQ--CNNLSKEKEH--
 ISKELVEYKSRFQSHDNLVAKLTEKLKSLANNYKDMQAENE 198

Query: 736 KLESVAEEHEILTYSYMEELLQRN-
 ESTEKKNKDLQITCDSLNUQIETVKKLNESLKEQNE 774
 45 L++ E S+ K IE +KK
 Sbjct: 199
 SLIKAVEESENNSIQLSNLQNKIDSMSQEKENFQIERGSIEKNIEQLKKTISDLEQTKE 258

50 Query: 775
 KSIAQLIEKEEQRKEVQNQLVDREHKLANLHQKTKVQEEKIKTLQKEREDKEETI---- 829
 + I++ + + E ++Q+ + KL KI L K RE+ E
 +
 Sbjct: 259 EIISK--
 55 SDSSKDEYESQISLLKEKLETATTANDENVNKISELTKTREELEAELAAYKN 315

Query: 830 --DILRKELSRTEQIRKELSIKASSLEVQKAQLEGRLEE-KESLVKLQQ--
 EELNK-HSH 883

+ L +L +E+ KE+ L+ +K QLE E K+ L L+ E

L K H

Sbjct: 316

LKNELETKLETSEKALKEVKENEEHLKEEKIQLKEATETKQQQLNSLRANLESLEKEHED 375

5

Query: 884 MIAMI 888

+ A +

Sbjct: 376 LAAQL 380

10 Score = 117 (17.6 bits), Expect = 3.8e-03, P = 3.8e-03
 Identities = 50/240 (20%), Positives = 111/240 (46%)

Query: 634

ASKESRLQDLLETAKALALAQADRLIAQHRCQRTQAETEARTLASMLREVERKNEELSVLL 693
 A E L+ L E + A+ ++ + + E+ L S + + +

+E+L

Sbjct: 699

AKVEEGLKKLEEESSEKAELEKSKEMMKKLESTIESNETELKSSMETIRKSDEKLEQSK 758

20 Query: 694 KAQQVESERAQ---SD-
 IEHLFQHNRKLESVAEEHEILTKSYMELLQRNESTEKKKNKDLQ 749
 K+ + + + Q SD I + + + + E+ + + I KS EL + + ++

Sbjct: 759

25 KSAEEDIKNLQHEKSDLISRINESEKDIEELKSKLRIEAKSSSELETVKQELNNAQEKIR 818

Query: 750

ITCDSLNKQIETVKKLNESLKEQNEKSIAQLIEKEEQRKEVQNQLVDREHKLANLHQKTK 809
 + + N + + + KL + + E + K A++ +E+++ + ++L + E + L

30 + QK +

Sbjct: 819 VNAEE-NTVLKS--KLEDIERELKDQ-
 AEIKSNQEEKELLTSRLKELEQELDSTQQKAQ 874

Query: 810 VQEEK----

35 IKTLQKEREDKEETIDILRKELSRTAIRKELSIKASSLEVQKAQLEGRLE 865
 EE+ ++ Q E+ +E +L E + + KE + K V+K
 + + +Sbjct: 875 KSEEEESRAEVRKFQVEKSQQLDEKAMLL--
 ETKYNDLVNKEQAWKRDEDTVKTTT-DSQRQ 931

40

Query: 866 EKESLVK 872

E E L K

Sbjct: 932 EIEKLAK 938

45 Score = 109 (16.4 bits), Expect = 2.6e-02, P = 2.5e-02
 Identities = 64/284 (22%), Positives = 135/284 (47%)

Query: 598

50 EELIEKLQSGMVVKDQICDVRISDIMDVYEMKLSTLASKESRLQDLLETAKALALA---QA 654
 +E+++KL+S + + + I E + S E +++L K+
 ++ ++

Sbjct: 723

KEMMKKLESTIESNETELKSSMETIRKSDEKLEQSKSAEEDIKNLQHEKSDLISRINES 782

55 Query: 655 DRLIAQHRCQ-

RTQAETEARTLASMLREVERKNEELSVLLKAQQVESERAQSDIEH-LFQ 712
 ++ I + + + R +A++ + L ++ +E+ E++ V + V + +

DIE L

Sbjct: 783 EKDIEELKSKLRIEAKSSSE-LETVKQELNNAQEKIRVNAEENTVLKSKLE-DIERELKD 840

Query: 713 HNRKLESVAEEHEILTKSYMELLQRNESTEKK-NKDLQITCDLSLNK-QIETVKKLNES-- 768
5 +++S EE E+LT EL Q +ST++K K + + + K Q+E
+L+E

Sbjct: 841 KQAEIKSNQEEKELLTSRLKELEQELDSTQQKAQKSEEEESRAEVRFQVEK-SQLDEKAM 899

10 Query: 769 LKEQNEKSIA---QLIEKEEQ--
RKEVQNQLVDREHKLNLHQKTKVQEEKIKTLQKERE 823
L E + Q ++E +K +Q + E KLA K +
K+K ++R

15 Sbjct: 900 LLETKYNDLVNKEQAWKRDEDVTKKTTDSQRQEIE-KLAKELDNLKAENSKLKEANE DR 958

Query: 824 DKEETI----DILRKELSRTQIRKELSIKASSLEVQKAQLEGRLEEKE
20 868 + + + + D+ K ++ K+L ++ SS E + E E+ E

Sbjct: 959 EIDDLMLLVTDLDEKNAYRSKL-KDLGVEISSDEEDDEEEEDDEEDDE
1006

25 Score = 96 (14.4 bits), Expect = 1.1e+00, P = 6.6e-01
Identities = 40/210 (19%), Positives = 101/210 (48%)

Query: 681 EVERKN--
EELSVLLKAQQVESERAQS DIEHLFQHNRKLESVAEEHEILTKSYMELLQRN 738
30 E E KN + L + + + V + + + L ++ + + + + L K
+L +

Sbjct: 15 ETELKNVRDSLDEMTQLRDVLETKDKENQTALLEYKSTIHKQEDSIKTLEKELETILS QK 74

Query: 739 ESTE----
35 KKNKDLQITCDLSNKQIETVKKLNESLKEQNEKSIAQLIEKEEQRKEVQNQL 794
+ E K KDL +L+++++ V++ ++L+++ +KS + +++
K ++ +

Sbjct: 75 KKAEDGINKMGKDLF----ALSREMQAVEENCKNLQKEKDQSN---VNHQKETKSLKEDI 127

40 Query: 795 VDREHKLNLHQKTKVQEEKIKTLQKERED-
KEETIDILRKELSRTQIRKELSIKASSL 853
+ + + + + + + L KE+E +E ++ + S + K
L+ K SL

45 Sbjct: 128 AAKITEIKAINENLEKMKIQCNNLSKEKEHISKELVEYKSRFQSHDNLVAK-LTEKLKSL 186

Query: 854 EVQKAQLEGRLEEKESLVQLQEEELNKHSHMIAMIHS 890
50 ++ E ESL+K +E N+ S ++ + +
Sbjct: 187 ANNYKDMQA---ENESLIKAVEESENNESSIQLSNLQN 220

Score = 52 (7.8 bits), Expect = 2.0e-10, P = 2.0e-10
Identities = 39/167 (23%), Positives = 74/167 (44%)

55 Query: 99 LNSVLAGVVCRSSHTDSVFLQCIQLLQKLTYNVKIFYSGANIDEL-
ITFLIDHIQSSEDE 157
LN + + ++ ++ L+ I+ ++ T +K N E ++ L D
+++SED+

Sbjct: 447
 LNLQIKELKKNETNEASLLESIKSIESETVKIKELQDECNFKEKEVSELEDKLKASEDK 506

Query: 158 -
 5 LKMPCLGLLANLCRHNL SVQTHIKTLSNVKSFYRTLITLLAHSSLTVVVFAISILSSLT 216
 K L + + L +T T ++ T ++ S + +
 S
 Sbjct: 507 NSKYLELQKESEKIKEELDAKT---
 TELKIQLEKVTNLSKAKEKSESELRLKKTSSEER 563
 10 Query: 217 LN-EEVGEKLFHARNI-HQTFQLIFNILINGDGTLTRKYS--VDLLMDLL
 262 N EE EKL + I +Q F+ +L G T+T++YS ++ L D L
 Sbjct: 564 KNAEEQLEKLKNEIQIKNQAFEKERKLLNEGSSITQEYSEKINTLEDEL
 15 b13

Pedant information for DKFZphmeli2_12j1, frame 2

20 Report for DKFZphmeli2_12j1.2

25 [LENGTH] 905
 [MW] 102067.81
 [pI] 5.85
 [HOMOL] TREMBL:SCINTANA_3 Saccharomyces cerevisiae
 integrin analogue gene, complete cds. 1e-14
 [FUNCAT] 08.07 vesicular transport (golgi network, etc.) [S.
 cerevisiae, YDL058w] 5e-16
 [FUNCAT] 30.03 organization of cytoplasm [S. cerevisiae,
 YDL058w] 5e-16
 [FUNCAT] 1 genome replication, transcription, recombination and
 repair [M. jannaschii, MJ1322] 1e-10
 35 [FUNCAT] 09.10 nuclear biogenesis [S. cerevisiae, YDR356w]
 2e-10
 [FUNCAT] 30.04 organization of cytoskeleton [S. cerevisiae,
 YDR356w] 2e-10
 [FUNCAT] 03.22 cell cycle control and mitosis [S. cerevisiae,
 40 YDR356w] 2e-10
 [FUNCAT] 30.10 nuclear organization [S. cerevisiae, YKR095w]
 1e-09
 [FUNCAT] 11.04 dna repair (direct repair, base excision repair
 and nucleotide excision repair) [S. cerevisiae, YKR095w] 1e-09
 45 [FUNCAT] 08.22 cytoskeleton-dependent transport [S. cerevisiae,
 YHR023w MY01 - myosin-1 isoform] 4e-09
 [FUNCAT] 03.04 budding, cell polarity and filament formation
 [S. cerevisiae, YHR023w MY01 - myosin-1 isoform] 4e-09
 [FUNCAT] 03.25 cytokinesis [S. cerevisiae, YHR023w MY01 -
 50 myosin-1 isoform] 4e-09
 [FUNCAT] 99 unclassified proteins [S. cerevisiae, YNL091w]
 3e-08
 [FUNCAT] 09.25 vacuolar and lysosomal biogenesis [S.
 cerevisiae, YOR326w] 6e-08
 55 [FUNCAT] 08.16 extracellular transport [S. cerevisiae,
 YOR326w] 6e-08
 [FUNCAT] 09.13 biogenesis of chromosome structure [S.
 cerevisiae, YLR086w] 8e-08

[[FUNCAT]] 98 classification not yet clear-cut [[S. cerevisiae, YJR134c]] 1e-07
 [[FUNCAT]] 06-07 protein modification (glycosylation, acylation, myristylation, palmitylation, farnesylation and processing) 5 [[S. cerevisiae, YKL201c]] 4e-07
 5 [[FUNCAT]] 30-05 organization of centrosome [[S. cerevisiae, YIL144w]] 4e-06
 [[FUNCAT]] 03-07 pheromone response, mating-type determination, sex-specific proteins [[S. cerevisiae, YNL079c]] 5e-06
 10 [[FUNCAT]] 03-01 cell growth [[S. cerevisiae, YNL079c]] 5e-06
 [[FUNCAT]] 08-99 other intracellular-transport activities [[S. cerevisiae, YNL079c]] 5e-06
 [[FUNCAT]] 09-04 biogenesis of cytoskeleton [[S. cerevisiae, YKL179c]] 6e-06
 15 [[FUNCAT]] 30-02 organization of plasma membrane [[S. cerevisiae, YER008c]] 8e-06
 [[FUNCAT]] 03-19 recombination and dna repair [[S. cerevisiae, YNL250w]] 1e-05
 [[FUNCAT]] 03-13 meiosis [[S. cerevisiae, YDR285w]] 1e-05
 20 [[FUNCAT]] 30-13 organization of chromosome structure [[S. cerevisiae, YDR285w]] 1e-05
 [[FUNCAT]] 11-01 stress response [[S. cerevisiae, YPR141c]] 2e-05
 [[FUNCAT]] 06-10 assembly of protein complexes [[S. cerevisiae, YPR141c]] 2e-05
 25 [[FUNCAT]] 06-01 protein folding and stabilization [[S. cerevisiae, YNL227c]] 9e-05
 [[FUNCAT]] 05-04 translation (initiation, elongation and termination) [[S. cerevisiae, YAL035w]] 1e-04
 [[FUNCAT]] 10-05-99 other pheromone response activities [[S. cerevisiae, YHR158c]] 1e-04
 30 [[FUNCAT]] o chaperones [[M. genitalium, MG355]] 2e-04
 [[FUNCAT]] 03-22-01 cell cycle check point proteins [[S. cerevisiae, YGL086w]] 2e-04
 [[FUNCAT]] 03-10 sporulation and germination [[S. cerevisiae, YNL225c]] 3e-04
 35 [[FUNCAT]] r general function prediction [[M. jannaschii, MJ1254]] 4e-04
 [[FUNCAT]] 08-01 nuclear transport [[S. cerevisiae, YPL174c]] 4e-04
 [[FUNCAT]] 04-05-01-01 general transcription activities [[S. cerevisiae, YMR227c TAFb7 - TFIID subunit]] 6e-04
 40 [[BLOCKS]] PRO1002E
 [[BLOCKS]] BL01160B Kinesin light chain repeat proteins
 [[BLOCKS]] BL00326D Tropomyosins proteins
 [[SCOP]] d2tmab_ 1.105.4.1.1 Tropomyosin [rabbit (Oryctolagus cuniculus)] 3e-23
 45 [[EC]] 3.6.1.32 Myosin ATPase 4e-10
 [[PIRKW]] nucleus 5e-09
 [[PIRKW]] phosphotransferase 2e-07
 [[PIRKW]] blocked amino end 1e-06
 50 [[PIRKW]] duplication 2e-07
 [[PIRKW]] citrulline 3e-08
 [[PIRKW]] tandem repeat 4e-10
 [[PIRKW]] heterodimer 1e-07
 [[PIRKW]] heart 4e-08
 55 [[PIRKW]] endocytosis 7e-08
 [[PIRKW]] transmembrane protein 1e-14
 [[PIRKW]] serine/threonine-specific protein kinase 2e-07
 [[PIRKW]] cell wall 2e-06

	[PIRKW]	zinc finger 7e-08
	[PIRKW]	DNA binding 3e-09
	[PIRKW]	metal binding 7e-08
5	[PIRKW]	muscle contraction 4e-10
	[PIRKW]	brain 2e-06
	[PIRKW]	acetylated amino end 2e-07
	[PIRKW]	heterotetramer 5e-07
	[PIRKW]	actin binding 4e-10
	[PIRKW]	mitosis 1e-08
10	[PIRKW]	microtubule binding 1e-08
	[PIRKW]	ATP 4e-10
	[PIRKW]	chromosomal protein 1e-07
	[PIRKW]	thick filament 9e-10
	[PIRKW]	phosphoprotein 1e-09
15	[PIRKW]	skeletal muscle 1e-08
	[PIRKW]	calcium binding 3e-08
	[PIRKW]	alternative splicing 9e-10
	[PIRKW]	DNA condensation 1e-07
	[PIRKW]	coiled coil 1e-14
20	[PIRKW]	P-loop 2e-10
	[PIRKW]	heptad repeat 5e-09
	[PIRKW]	methylated amino acid 4e-10
	[PIRKW]	immunoglobulin receptor 2e-07
	[PIRKW]	peripheral membrane protein 7e-08
25	[PIRKW]	cardiac muscle 4e-08
	[PIRKW]	hydrolase 4e-10
	[PIRKW]	microtubule 5e-09
	[PIRKW]	muscle 4e-08
30	[PIRKW]	membrane protein 5e-09
	[PIRKW]	EF hand 3e-08
	[PIRKW]	cell division 1e-06
	[PIRKW]	cytoskeleton 6e-09
	[PIRKW]	hair 3e-08
	[PIRKW]	calmodulin binding 7e-08
35	[PIRKW]	Golgi apparatus 2e-07
	[SUPFAM]	hypothetical protein YJL074c 5e-09
	[SUPFAM]	unassigned Ser/Thr or Tyr-specific protein kinases 2e-07
	[SUPFAM]	myosin motor domain homology 2e-10
40	[SUPFAM]	alpha-actinin actin-binding domain homology 6e-09
	[SUPFAM]	tropomyosin 2e-08
	[SUPFAM]	kinesin heavy chain 5e-07
	[SUPFAM]	plectin 6e-09
	[SUPFAM]	SAM homology 1e-06
45	[SUPFAM]	trichohyalin 3e-08
	[SUPFAM]	ribosomal protein S10 homology 6e-09
	[SUPFAM]	protein kinase C zinc-binding repeat homology 5e-09
	[SUPFAM]	giantin 7e-08
	[SUPFAM]	protein kinase homology 2e-07
50	[SUPFAM]	protein 4.1 membrane-binding domain homology 9e-08
	[SUPFAM]	human early endosome antigen 1 7e-08
	[SUPFAM]	myosin MY02 2e-06
	[SUPFAM]	M5 protein 3e-09
	[SUPFAM]	Mycoplasma genitalium hypothetical protein MG218 5e-09
55	[SUPFAM]	myosin heavy chain 2e-10
	[SUPFAM]	conserved hypothetical P115 protein 3e-09
	[SUPFAM]	centromere protein E 1e-08
	[SUPFAM]	calmodulin repeat homology 3e-08

[[SUPFAM]] hypothetical protein MJ0914 2e-07
 [[SUPFAM]] hypothetical protein MJ1322 3e-09
 [[SUPFAM]] pleckstrin repeat homology 5e-09
 [[SUPFAM]] kinesin motor domain homology 1e-08
 5 [[SUPFAM]] ezrin 7e-08
 [[PROSITE]] LEUCINE_ZIPPER 1
 [[KW]] TRANSMEMBRANE 2
 [[KW]] LOW_COMPLEXITY 3.09 %
 [[KW]] COILED_COIL 18.34 %
 10

SEQ MDSTACLKSLLLTVSQYKAVKSEANATQLLRHLEVISGQKLTRLFTSNQILTSECLSCLV
 SEGxxxxxxxxxxxxxx
 PRD ccchhhhhhhhhhhhhhhhhhhhhhhhhhhhccccceeeeeecceeeeeehhhhhh
 15 COILS
 MEM
 MEM
 SEQ ELLEDPNISASLILSIIGLLSQLAVDIETRDCLANTYNLNNSLAGVVCRSSHTDSVFLQC
 SEG xxxx...xxxxxxxxxxxxxx.....
 PRD hhhhhccccchhhhhhhchhhhhhhcccccccccccccccccccccccccccccccc
 COILS
 MEM
 25 MEM
 SEQ IQLLQKLTYNVKIFYSGANIDELITFLIDHIQSSEDELKMPCLGLLANLCRHNLSVQTHI
 SEG
 PRD hhhhhhhcceeeeccccchhhhhhhcccccccccccccccccccccccccccccccc
 COILS
 30 MEM
 MEM
 SEQ KTLSNVKSFYRTLITLLAHSSLTVVFALSLSSLTNEEVGEKLFHARNIHQTFQLIFN
 SEG
 PRD eeeeehhhhhhhhhhhhhhcc
 COILS
 MEM
 35 MEM
 SEQ ILINGDGTLTRKYSVDLLMDLLKNPKIADYLTRYEHFSCLHQVLGLLNGKDPSKKVL
 SEG
 PRD hhccccccceeeehhhhhhhhhcccccccccccccccccccccccccccccccccccc
 COILS
 40 MEM
 45 MEM
 SEQ ELLLAFCSVTQLRHMLTQMMFEQSPPGSATLGSHTKCLEPTVALLRWLSQPLDGSENCV
 SEG
 PRD hhhhhchhhhhhhhhhhcc
 COILS
 MEM
 50 MEM
 SEQ LALELFKEIFEDVIDAACSSADRFTLLPTILDQLQFTEQNLDEALTRKNVKGIAKAI
 SEG
 PRD hhhhhhhhhhhhhcc
 COILS

MEM
 SEQ EVLLTLCGDDTLKMHIAKILTTVKCTTLIEQQFTYKIDLGFGTKVADSELCKLAADVIL
 SEG
 5 PRD hhhhhhcccccchhhhhhhhhheeeeeeeecccccccccccccccccccccccccccc
 COILS
 MEM
 10 SEQ KTLDLINKLKPVLPGMEVSFYKILQDPRALITPLAFALTSDNREQVQSGLRILLEAALPD
 SEG
 PRD hhhhhhhcc
 COILS
 15 MEM
 SEQ FPALVLGESIAANNAYRQQETEHIPRKMPWQSSNHSFPTSIKCLTPHLKDGVPGLNIEEL
 SEG
 PRD ceeeeeehh
 20 COILS
 MEM
 SEQ IEKLQSGMVVKDQICDVRISDIMDVYEMKLSTLASKESRLQDLLETKALALAQADRLIAQ
 SEG
 PRD hhh
 COILS
 MEM
 30 SEQ HRCQRTQAETEARTLASMLREVERKNEELSVLLKAQQVESERAQSDIEHLFQHNRKLESV
 SEG
 PRD hhh
 COILS
 35 MEM
 SEQ AEEHEILTKSYMELLQRNESTEKKKNKDLQITCDSLNKQIETVKKLNESLKEQNEKSIAQL
 SEG
 40 PRD hhh
 COILS
 MEM
 45 SEQ IEKEEQRKEVQNQLVDREHKLANLHQKTKVQEEKIKTLQKEREDKEETIDILRKELSRT
 SEG
 PRD hhh
 COILS
 50 MEM
 SEQ QIRKELSIKASSLEVQKAQLEGRLEEKESLVKLQQEELNKHSHMIAMIHSLSGGKINPET
 SEG
 PRD hhh
 55 COILS
 MEM

WO 01/98454

PCT/IB01/02050

SEQ VNLSI
SEG

PRD ccccc

COILS

5 MEM

10 Prosite for DKFZphmeli2_12j1.2

PS000029

331->353 LEUCINE_ZIPPER

PDOC000029

(No Pfam data available for DKFZphmeli2_12j1.2)

15

DKFZphmeli2_7g14

5 group: intracellular transport and trafficking

DKFZphmeli2_7g14 encodes a novel 973 amino acid protein with similarity to the dor (deep orange) protein of *Drosophila melanogaster*.

10 The novel protein is also similar to the vakuolar membrane protein pep3 of *Saccharomyces cerevisiae*, which is involved in protein sorting mechanisms. The expression profile is ubiquitous and a role in protein transport/targeting is likely.

15 The new protein can find application in modulation of the sorting of proteins into different compartments.

20 similarity to DEEP ORANGE (*Drosophila melanogaster*)

perhaps complete cds- and full length

Sequenced by MediGenomix

25 Locus: unknown

Insert length: 3951 bp

Poly A stretch at pos. 3893, polyadenylation signal at pos. 3874

30

1	GCCCCGCGTCA	CGGGGGCGGG	AGTCAGCTGA	GCTGCCGGGG	CGAGGTTGGG
51	ATCACCTGGC	ACCGGCTGAA	GGGAGCCTGT	GATTTTTTTG	TAGCGGGGGC
101	GGGGAGTAAG	GTGCAAGACT	GCGCCAGATT	CAAGGACGAG	GGCTGCCGA
151	TTATCTCGCT	GCATAAGGCA	AGAGCAAGAG	GATCCCTAGG	ATTTTAAAGA
201	GGAGGCAGC	GCTGCAGGTT	CCCAGGATCT	GTCAGAGGCT	GGGGAGTTAC
251	AGCTTCCATT	CTGGGGCGAC	GGGGACCCCCG	GGGGGGTAGC	CCTTTTGTA
301	TCCCCAGGCC	CCGGACAAAG	AGCCCAGAGG	CCGGGCACCA	TGGCGTCCAT
351	CCTGGATGAG	TACGAGAACT	CGCTGTCCC	CTCGGGCGTC	TTGCAGCCCG
401	GCTGCCCTAG	CGTGGGCATC	CCCCACTCGG	GGTATGTGAA	TGCCCAAGCTG
451	GAGAAGGAAG	TGCCCATCTT	CACAAAGCAG	CGCATTGACT	TCACCCCTTC
501	CGAGCGCATT	ACCAGTCTG	TCGTCCTCAG	CAATCAGCTG	TGCAATGAGCC
551	TGGGCAAGGA	TACACTGCTC	CGCATTGACT	TGGGCAAGGC	AAATGAGCCC
601	AACCACGTGG	AGCTGGGACG	TAAGGATGAC	GCAAAAGTTC	ACAAGATGTT
651	CCTTGACCAT	ACTGGCTCTC	ACCTGCTGAT	TGCCCTGAGC	AGCACGGAGG
701	TCCTCTACGT	GAACCGAAAT	GGACAGAAGG	TACGGCCACT	AGCACGCTGG
751	AAGGGGCAGC	TGGTGGAGAG	TGTGGGTG	AACAAAGGCAC	TGGGCACGGA
801	GAGCAGCACA	GGCCCCATCC	TGGTCGGGAC	TGCCCAAGGC	CACATCTTG
851	AAGCAGAGCT	CTCAGCCAGC	GAAGGTGGGC	TTTCGGCCC	TGCTCCGGAT
901	CTCTACTTCC	GCCCATTGTA	CGTGTAAAT	GAAGAAGGGG	GTCCAGCACC
951	TGTGTGCTCC	CTTGAGGCCG	AGCGGGGCC	TGATGGGCCT	AGCTTTGTTA
1001	TTGCCACCAAC	TCGGCAGCGC	CTCTTCCAGT	TCATAGGCCG	AGCAGCAGAG
1051	GGGGCTGAGG	CCCAGGGTTT	CTCAGGGCTC	TTTGCAGCTT	ACACGGACCA
1101	CCCCACCCCA	TTCCGTGAGT	TTCCCAGCAA	CCTGGCTAC	AGTGAGTTGG
1151	CCTTCTACAC	CCCCAAGCTG	CGCTCCGCAC	CCCAGGGCCTT	CGCCTGGATG
1201	ATGGGGGATG	GTGTGTTGTA	TGGGGCATTG	GAUTGTGGGC	GCCCTGACTC
1251	TCTGCTGAGC	GAGGAGCGAG	TCTGGGAGTA	CCCAGAGGGG	GTAGGGCCTG
1301	GGGCCAGCCC	ACCCCTAGCC	ATCGTCTTGA	CCCAGTTCCA	CTTCCCTGCTG

1351	CTACTGGCAG	ACCGGGTGGG	GGCAGTGTGC	ACACTGACCG	GGCAGGTGGT	
1401	GCTGCGGGAT	CACTTCCTGG	AGAAATTGG	GCCGCTGAAG	CACATGGTGA	
1451	AGGACTCCTC	CACAGGCCAG	CTGTGGGCCT	ACACTGAGCG	GGCTGTCCTC	
5	1501	CGCTACCACG	TGCAACGGGA	GGCCCGAGAT	GTCTGGCGCA	CCTATCTGGA
	1551	CATGAACCAGC	TTCGATCTGG	CCAAAGAGTA	TTGTCGAGAG	CGGCCCAGCT
	1601	GCCTGGACAC	GGTCTGGCC	CGGGGAGGCCG	ATTTCTGCTT	TCGCCAGCGT
	1651	CGCTACCTGG	AGAGCGCACG	CTGCTATGCC	CTGACCCAGA	GCTACTTGA
	1701	GGAGATTGCC	CTCAAGTTCC	TGGAGGCCCG	ACAGGAGGAG	GCTCTGGCTG
10	1751	AGTTCCCTGCA	GCAGAAAATG	GCCAGTTGA	AGCCAGCCGA	ACGTACCCAG
	1801	GCCACACTGC	TGACCACCTG	GCTGACAGAG	CTCTACCTGA	GCCGGCTTGG
	1851	GGCTCTGCAG	GGCGACCCAG	AGGCCCTGAC	TCTCTACCGA	GAAACCAAGG
	1901	AATGCTTCG	AACCTTCCTC	AGCAGCCCCC	GCCACAAAGA	GTGGCTCTT
	1951	GCCAGCCGGG	CCTCTATCCA	TGAGCTGCTC	GCCAGTCATG	GGGACACAGA
15	2001	ACACATGGTG	TACTTGCA	TGATCATGCA	GGACTATGAG	GGGGTGGTGG
	2051	CTTACCACTG	TCAGCACGAG	GCCTACGAGG	AGGCCCTGGC	CGTGCCTGCC
	2101	CGCCACCGTG	ACCCCCAGCT	CTTCTACAAG	TTCTCACCCA	TCCTCATCCG
	2151	TCACATCCCC	CGCCAGCTTG	TAGATGCCG	GATTGAGATG	GGCAGCCGGC
	2201	TGGATGCTG	TCAGCTCATT	CCTGCCCTGG	TGAACCTACAG	CCAGGGTGGT
	2251	GAGGTCCAGC	AGGTGAGCCA	GGCCATCCGC	TACATGGAGT	TCTGCCTGAA
20	2301	CGTGCTGGGG	GAGACTGAGC	AGGCCATCCA	CAACTACCTG	CTGTCACCTG
	2351	ATGCCCGTGG	CCGGCCGGAC	TCACTACTGG	CCTATCTGGA	GCAGGCTGGG
	2401	GCCAGCCCCC	ACCGGGTGCA	TTACGACCTC	AAGTATGCSC	TGCGGCTCTG
	2451	CGCCGAGCAT	GGCCACCAACC	GCCTTGTGT	CCATGTCTAC	AAGGTCTTAG
25	2501	AGCTGTATGA	GGAGGCCGTG	GACCTGGCCC	TGCAAGGTGGA	TGTGGACCTG
	2551	GCCAAGCAGT	GTGCAAGACCT	GCCTGAGGAG	GATGAGGAAT	TGCGCAAGAA
	2601	GCTGTGGCTG	AAGATCGCAC	GGCACGTGGT	GCAGGAAGAG	GAAGATGTAC
	2651	AGACAGCCAT	GGCTTGCCTG	GCTAGCTGCC	CCTTGCTCAA	GATTGAGGAT
	2701	GTGCTGCCCT	TCTTCTCTGA	TTTCGTCACC	ATCGACCACT	TCAAGGAGGC
	2751	GATCTGCAGC	TCACTTAAGG	CCTACAAACCA	CCACATCCAG	GAGCTGCAGC
30	2801	GGGAGATGGA	AGAGGCTACA	GCCAGTGCCC	AGCGCATCCG	GCGAGACCTG
	2851	CAGGAGCTGC	GGGGCCGCTA	CGGCACTGTG	GAGCCCCAGG	ACAAATGTGC
	2901	CACCTGCGAC	TTCCCCCTGC	TCAACGCC	TTTTTACCTC	TTCTCTGTG
	2951	GCCATATGTT	CCATGCTGAC	TGCTCTGCTG	AGGCTGTGCG	ACCTGGCCTG
35	3001	CCAGCCTACA	AGCAGGCCCG	GCTGGAGGAG	CTGCAGAGGA	AGCTGGGGC
	3051	TGCTCCACCC	CCAGCCAAGG	GCTCTGCCG	GGCCAAGGAG	GCGAGGGTG
	3101	GGGCTGCCAC	GGCAGGGCCC	AGCCGGGAAC	AGCTCAAGGC	TGACCTGGAT
	3151	GAGTTGGTGG	CCGCTGAGTG	TGTGTACTGT	GGGGAGCTGA	TGATCCGCTC
	3201	TATCGACCGG	CCGTTCATCG	ACCCCCAGCG	CTACGAGGAG	GAGCAGCTCA
	3251	GTTGGCTGTA	GGAGGGTGTG	ACCTTGATG	GGGGTGGCA	ATGGGGAGCA
40	3301	GTGGCTTGAA	CCCACTTGAG	AAGGCTGCCT	CCTAGGCTCT	GCTCAGTCAT
	3351	CTTGCATTG	CCACACTGTG	ACCACTTGA	CGGGAGTAGA	GTAGCCTGT
	3401	TGGCCAGGAG	GTGTCAAGGTG	TGAGTGTATT	CTGCCAGCTT	TTCATGCTGT
	3451	TCTTCAGAGC	TGCAGTTATG	CCAGACCATC	AGCCTGCCTC	CCAGTAGAGG
	3501	CCCTCACCT	GGAGAAGTCA	GAAATCTGAC	CCAATCCAC	CCCCTGCC
45	3551	TAGCACCTCT	TCTGTCCCTG	TCATTCCCCA	CACACGTCTT	GTTCACCTCG
	3601	AGAGAGAGAG	AGAGAGAGCA	CCTTCTTCC	GTCTGTTCAC	TCTGCGGCCT
	3651	CTGGAATCCC	AGCTCTTCTC	TCTCAGAAGA	AGCCTCTCT	TCTCCTGCC
	3701	TGTAGGTGTC	CCAGAAGTGA	GAAGGCAGCC	TTCGAAGTCC	TGGGCATTGG
	3751	GTGAGAAAGT	GATGCTAGTT	GGGGCATGCT	TTTGTGACA	CTCTCTGGGG
50	3801	CTCCAGTGTG	AAGGGTGCC	TGGGGCTGAG	GGCCTGTG	AGGATGGTCG
	3851	GTGGTGGTGA	TGGAGGTGGA	GAGCATTAAA	CTGTCAC	TGCAAAAAAA
	3901	AAAAAAAAAA	AAAAAAAAAA	AAAAAAAAAA	AAAGAAAAAA	AAAAAAA
	3951	A				

No BLAST result

Medline entries

5

97218037:

Shestopal SA, Makunin IV, Belyaeva ES, Ashburner M, Zhimulev IF.; Mol

10 Gen Genet 1997 Feb 20;253(5):642-8

92049306:

Robinson JS, Graham TR, Emr SD.; A putative zinc finger protein, *Saccharomyces cerevisiae*

15 Vps18p, affects late Golgi functions required for vacuolar protein sorting and efficient alpha-factor prohormone maturation. Mol Cell Biol 1991 Dec;11(12):5813-24

92049305:

20 Preston RA, Manolson MF, Becherer K, Weidenhammer E, Kirkpatrick D,

Wright R,

Jones EW.; Isolation and characterization of PEP3, a gene required

25 for vacuolar biogenesis in *Saccharomyces cerevisiae*. Mol Cell Biol 1991 Dec;11(12):5801-12

30

Peptide information for frame 1

35 ORF from 340 bp to 3258 bp; peptide length: 973

Category: similarity to known protein

Classification: Cellular transport and traffic

40	1 MASILDEYEN SLSRSAVLQP GCPSVGIPH GYVNAQLEKE VPIFTKQRID 51 FTPSERITSL VVSSNQLCMS LGKDTLLRID LGKANEPMHV ELGRKDDAKV 101 HKMFLDHTGS HLLIALSSTE VLYVN RNGQK VRPLARWKGQ LVEVGUNKA 151 LGTESSSTGPI LVGTAQGHIF EAELSASEGG LFGPAPDLYF RPLYVLNEEG 201 GPAPVCSEL A ERGPDGRSFV IATTRQRLFQ FIGRAEAGAE A QGFSGLFAA 251 YTDHPPPFRE FPSNLGYSEL AFYTPKLRSA PRAFAWMMD GVLYGALDCG
45	301 RPDSSLSEER VWEYP EG VGP GASPLAIVL TQFHFLLLL DRVEAVCTLT 351 GQVVLRDHFL EKFGPLKHMV KDSSTGQLWA YTERAVFRYH VQREARDVWR 401 TYLDNMNRFDL AKEYCRERPD CLDTVLAREA DFCFRQRRYL ESARCYALTQ 451 SYFEEIAALKF LEARQEEALA EFLQRKLASL KPAERTQATL LTTWLTELYL
50	501 SRLGALQGD P EALTLYRET K ECFRTFLSSP RHKEWLFA SR ASIHELLASH 551 GDTEHMVYFA VIMQDYERVV AYHCQHEAYE EALAVLARHR DPQLFYKFSP 601 ILIRHIPRQL VDAWIEMGSR LDARQLIPAL VNYSQGGEVQ QVSQAIRYME
55	651 FCVNVLGETE QAIHN YLLSL YARGRPDSL AYLEQAGASP HRVHYDLKYA 701 LRLCAEHGHH RACVH VYKVL ELYEEAVDLA LQVDVDLAKQ CADLPEEDEE 751 LRKKLWLKIA RHVVQEEEDV QTAMACLASC PLLKIEDVLP FFPDFVTIDH 801 FKEAICSSLK AYNHHI QELQ REMEEATASA QRIRRDLQEL RGRYGTVEPQ 851 DKCATCDFPL LNRPFYLF LC GHMFHADCLL QAVRPGPLPAY KQARLEELQR 901 KLGAAPPPAK GSARAKEAEG GAATAGPSRE QLKADLDELV AAECVYC GEL 951 MIRSIDRPF I DPQRYEEEQL SWL

BLASTP hits

5

No BLASTP hits available

Alert BLASTP hits for DKFZphmef12_7g14, frame 1

10 SWISSPROT:DOR_DROME DEEP ORANGE PROTEIN., N = 1, Score = 1279, P
 =
 2.4e-130

15 PIR:A41943 vacuolar membrane protein PEP3 - yeast (Saccharomyces cerevisiae), N = 3, Score = 266, P = 5.1e-27

>SWISSPROT:DOR_DROME DEEP ORANGE PROTEIN.
 Length = 1,002

20

HSPs:

Score = 1279 (191.9 bits), Expect = 2.4e-130, P = 2.4e-130
 Identities = 303/847 (35%), Positives = 463/847 (54%)

25

Query: 130
 KVRPLARWKGQLVESVGWNKALGTESSSTGPILVGTAQGHIFEAEELSASEGGGLFGPAPDLY 189
 KVR + ++K + +V +N G ESSTGPIL+GT++G IFE EL+ + G

30

Sbjct: 155 KVRRIEKFKDHEITAVAFNPYHGNESSSTGPILLGTSRGLIFETELNPAADG-
 -----HVQ 208

Query: 190 FRPLYVLNEEGGPA-PVCSLEAERGPDG-
 RSFVIATTRQRLFQFIGRAEAEGAEAQGFSGL 247

35

+ LY L G P P+ L+ R P+ R ++ T+ + ++ F +
 Sbjct: 209 RKQLYDLGL-GRPKYPITGLKLLRVPNSSRYIIIVVTSPECIYTF--
 QETLKAEERSLQAI 265

40

Query: 248 FAAYTD--
 HPPPFREFPSNLGYSELAFYTPKLRSAPRAFAWMMGDGVLYGAL--DCGRPD 303
 FA Y P E ++L +S+L F+ P P+ +AW+ G+G+ G L

+
 Sbjct: 266

45

FAGYVSGVQEPHCEERKTDLTFSQLRFFAPPNSKYPKQWAWLCGEGIRVGELSIEANSAA 325

Query: 304 SLLSEERV---WEYPPEGVGPGA---
 SPPLAIVLTQFHFLLLLADRVEAVCTLTGQVVLRD 357

50

+L+ + +E + G + P A VLT++H +LL AD V A+C L
 Sbjct: 326

TLIGNTLINLDFEKTMHLSYGERRLNTPKAFVLTEYHAVLLYADHVRACLLNQEQVYQE 385

55

Query: 358 HFLE-
 KFGPLKHMVKDSSTGQLWAYTERAVFRYHVQREARDVWRDYLDMNRFDLAKEYCR 416
 F E + G + +D TG ++ YT + VF V RE R+VWR YLD
 +++LA +

Sbjct: 386
AFDEARVGKPLSIERDELTSIYVYTVKTVFNLRVTRERNVWRIYLDKGQYELATAHAA 445

Query: 417
5 ERPDCLDTV LAREADFCFRQRRYLESARCYALTQS Y FEEIAALKFLEARQEEALAEFLQRK 476
E P+ L VL + AD F Y + A YA T FEE+ LKF+ +
+ +++++

Sbjct: 446
EDPEHLQLVLCQRADAFAFGSYQVAADYYAETDKSFEEVCLKFMVLPDKRPIINYVKKR 505

10 Query: 477 LASL--KPAERXXXXXXXXXXXXXXSRLGALQ----
GDPEALTLRYRETKEC-FRTFLSS 529
L+ + KP E L L P+ +R + +
+ F+

15 Sbjct: 506
LSRVTTKPMETDELDEDKMNIIKALVIWLIDLYLIQINMPDKDEEWRSWQTEYDEFMME 565

Query: 530
PRHKEWLFA\$RASIHELLASHGDTEHMVYFAVIMQDYERVVAYHCQHEAYEEALAVLARH 589
20 +R ++ +L+A H D +M FA+ + DY+ VVA + E Y
EAL L

Sbjct: 566
AHVLSCTRQNRETVRQLIAEHADPRNMAQFAIAIGDYDEVVAQQLKAECYAEALQTLINQ 625

25 Query: 590
RDPQLFYKFSPILRHIPRQLVDWIEMGSRLDARQLIPALVNYSQGGEVQQVSQAIRYM 649
R+P+LFYK++P LI +P+ VDA + GSRL+ +L+P L+ + E ++
+Q RY+

Sbjct: 626 RNPELFYKYAPELITRLPKPTVDALMAQGSRLEVEKLVPTLI-
30 IMENREQREQTQ--RYL 682

Query: 650
EFCVNVLGETEQAIIHNYLLSLYARGRPDSLLAYLEQAGASPHRVHYDLKYALRLCAEHGH 709
EF + L T AIHN+LL LYA P L+ YLE G VHYD+ YA
35 ++C +

Sbjct: 683
EFAIYKLNTTNDAIHNFLHLYAEHEPKLLMKYLEIQRDDES LVHYDIYYAHKVCTDLDV 742

Query: 710
40 HRACVHVYKVLELYEEAVDLALQVDVLDLAKQCADLPEEDEELRKKLWLKIARHVVQEEED 769
A V + +L + AVDLAL D+ LAK+ A P D ++R+KLWL+IA
H ++ D

Sbjct: 743 KEARVFLECMRKWISAVDLALTDFDMKLAKETA\$RPS-
DSKIRRKWLRIAYHDIKGTND 801

45 Query: 770
VQTAMACLASCPPLKIEDVLPFFPDFVTIDHFKEAICSSLKAYNHHIQELQREMEEATAS 829
V+ A+ L C LL+IED+LPFF DF ID+FKEAIC +L+ YN
IQELQREM E T

Sbjct: 802
50 VKKALNLLKECDLLRIEDLLPFFADFEKIDNFKEAICDALRDYNQRIQELQREMAETTEQ 861

Query: 830
AQRIRRDLQELRGRYGTVEPQDKCATCDFPLLNRPFYFLCGHMFHADCLLQAVRPGPA 889
R +LQ+LR TVE QD C C+ LL +PF++F+CGH FH+DCL +
V P L

Sbjct: 862
55 TDRATAELQQLRQHSLTVESQDTCEICEMMLLVKPFFIFICGHKFHSDCLEKHVVPLLTK 921

Query: 890
 YKQARLEELQRKLGAAPPPXXXXXXXXXXXXXXXXXXXXPSREQLKADLDELVAAECVYCGE 949
 + RL L+++L A R LK

5 Sbjct: 922
 EQCRRRLGTLKQQLEAEVQTQAQPQSGALSKQQAMELQRKRAALKTEIEDILAADCFCG- 980

Query: 950 LMIRSIDRPFIDPQRYEEEQLSW 972
 10 L+I +ID+PF+D +E+ + W
 Sbjct: 983 LLISTIDQPFVDD--WEQVNVEW 1001

Score = 268 (40.2 bits), Expect = 3.6e-19, P = 3.6e-19
 Identities = 91/281 (32%), Positives = 146/281 (51%)

15 Query: 36 QLEKEVPIFTKQRIDF-TPSE---RITSVVSSNQLCMSLG---
 KDTLLRIDLGKANEPE 88
 + ++E IF++ ++ PS + L VS N L LG + TLLR
 L +A P

20 Sbjct: 37
 ETDEEDEIFSRHKMVLRVPSNCTGDLMHAVSRNWLVCLLGTPERTTLLRFFLPRAIPPG 96

Query: 89 HVELGRK---DDAKVHKMFLDHTGSHLLIAL---SST-----EVLYVN--
 RNGQ---KV 131

25 Sbjct: 97
 EAVLEKYLSGSGYKITRMFLDPTGHIIIALVPKSATAGVSPDFLYIHCLESQAAQLKV 156

30 Query: 132
 RPLARWKGQLVESVGWNKALGTESSSTGPILVGTAQGHIFEAEELSASEGGLFGPAPDLYFR 191
 R + ++K + +V +N G ESSTGPIL+GT++G IFE EL+ + G
 + +

35 Sbjct: 157 RRRIEKFKDHEITAVAFNPYHGNESSTGPILLGTSRGGLIFETELNPAADG---
 ---HVQRK 210

Query: 192 PLYVLNEEGGPA-PVCSLEAERGPDG-
 RSFVIATTRQRLFQFIGRAEAEAQGFSGLFA 249
 LY L G P P+ L+ R P+ R ++ T+ + ++ F + AE

40 Sbjct: 211 QLYDLGL-GRPKYPIGLKLLRVPNSSRYIIVVTSPECIYTF--
 QETLKAEERSLQAIFA 267

Query: 250 AYTD--HPPPFREFPSNLGYSELAFYTPKLRSAPRAFAWMMGDGVLYGAL
 45 297 Y P E ++L +S+L F+ P P+ +AW+ G+G+ G L
 Sbjct: 268 GYVSGVQEPHCEERKTDLTFSQLRFFFAPPNSKYPKQWAWLGEIGIRVGE
 317

50 Pedant information for DKFZphm12_7g14, frame 1

55 Report for DKFZphm12_7g14.1

[LENGTH] 973
 [MW] 110186.09

[pI] 5.72
 [HOMOL] SWISSPROT:DOR_DROME DEEP ORANGE PROTEIN. 1e-145
 [FUNCAT] 30.25 vacuolar and lysosomal organization [S.
 cerevisiae, YLR148w] 5e-41
 5 [FUNCAT] 06.04 protein targeting, sorting and translocation
 [S. cerevisiae, YLR148w] 5e-41
 [FUNCAT] 08.07 vesicular transport (golgi network, etc.) [S.
 cerevisiae, YLR148w] 5e-41
 [BLOCKS] BL00106F Galactokinase proteins
 10 [BLOCKS] PR01094B
 [BLOCKS] BP03306B
 [BLOCKS] PF006008
 [PIRKW] yeast vacuole 1e-39
 [PIRKW] transmembrane protein 1e-39
 15 [KW] Alpha_Beta
 [KW] LOW_COMPLEXITY 3.39 %
 [KW] COILED_COIL 4.83 %

 20 SEQ MASILDEYENSLSRSAVLQPQCPSPVGIPHSGYVNAQLEKEVPIFTKQRIDFTPSERITSL
 SEG
 PRD ccceeecccccccccceeeeecccccccccceeeeeccccchhhhhhhhhhhhhhhhhccccccceeee
 COILS

 25 SEQ VVSSNQLCMSLGKDILLRIDLGKANEPEPNHVELGRKDDAKVHKMFLDHTGSHLLIALSSTE
 SEG
 PRD ecc
 COILS
 30

 SEQ VLIVNRNGQKVRPLARWKKGQLVESVGWNKALGTESSSTGPILVGTQGHIFEAEELSASEGG
 SEG
 PRD eeeeeccccccchhhhhcc
 COILS

 35 SEQ LFGPAPDLYFRPLYVLNEEGGPAPVCSELAEERGPDRSFVIATTRQRLFQFIGRAAEGAE
 SEG
 PRD ccc
 COILS

 40 SEQ AQQFSGLFAAYTDHPPPREFPSNLGYSELAFYTPKLRSAPRAFAWMMDGVLYGALDCG
 SEG
 PRD hhchhhhhhhcc
 COILS

 45 SEQ EKFGPLKHMVKDSSTGQLWAYTERAVFRYHVQREARDVWRTYLDMNRFDLKEYCRERP
 SEG
 PRD hcc
 COILS

 50 SEQ RPDSLLSEERVWEYPEGVGPGASPPPLAIVLTQFHFLLLADRVEAVCTLTGQVVLRDHFL
 SEG
 PRD cccccchhhhhcc
 COILS

 55 SEQ EKFGPLKHMVKDSSTGQLWAYTERAVFRYHVQREARDVWRTYLDMNRFDLKEYCRERP
 SEG
 PRD hcc
 COILS

COILS

5 SEQ CLDTVLAREADFCFRQRRYLESARCYALTQSYYFEEIALKFLEARQEELAEFLQRKLA
 SEG
 PRD ccc
 COILS

10 SEQ KPAERTQATLLTTWLTTELVLSRLGALQGDPEALTYRETKECFRTFLSSPRHKEWLFA
 SEG xxxxxx.....
 PRD ccc
 COILS

15 SEQ ASIHELLASHGDTEHMVYFAVIMQDYERVVAYHCQHEAYEEALAVLARHRDPQLFYKFSP
 SEG
 PRD hhhhhhhhhccchhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhccchhhhh
 COILS

20
 SEQ ILIRHIPRQLVDAWIEMGSRLDARQLIPALVNYSQGGEVQQVSQAIRYMEFCVNVLGETE
 SEG
 PRD eeeeeccccchhhhhhhcccccchhhhhccccccccchhhhhhhhhhhhhhhccchhh
 COILS

25
 SEQ QAIHNYLLSLYARGRPDSLLAYLEQAGASPHRVHYDLKYALRLCAEHGHHRACVHVVKVL
 SEG
 PRD hhhhhhhhhhhhhccchhhhhhhcccccchhhhhccccccccchhhhhhhhhccccc
 COILS

30
 SEQ ELYEEAVDLALQVDVLDLAKQCADLPEEDEELRKKLWLKIARHVVQEEDVQTAMACLASC
 SEG
 PRD hhhhhhhhhhhccchhhhhhhcccccchhhhhccccccccchhhhhhhhhccchhh
 COILS

35
 SEQ PLLKIEDVLPFFPDFVTIDHFKEAICSSLKAYNHHIQELQREMEEATASAQRIRRDLQEL
 SEG
 PRD ccc
 COILS

40 cc
 SEQ RGRYGTVEPQDKCATCDFPLLNRPFYLFCLGHMFHADCLLQAVRPGPAYKQARLEELQR
 SEG
 PRD hhhheeeecc
 COILS

45 cc
 SEQ KLGAAPPPAKGSARAKEAEGGAATAGPSREQLKADLDELVAACVYCGELMIRSIDRPF
 SEG xxxxxx.....
 PRD hhhhhccchhhhhhhccchhhhhhhhhhhhhhhhhhhhhcccccccccccc
 COILS

50 cc
 SEQ DPQRYEEEQLSWL

SEG
PRD chhhhhhhhhhcc
COILS

5

(No Prosite data available for DKFZphmeli2_7g14.1)

(No Pfam data available for DKFZphmeli2_7g14.1)

DKFZphmeli2_7k19

5 group: melanoma derived

DKFZphmeli2_7k19 encodes a novel 234 amino acid protein without similarity to known proteins.

10 Transcripts can be found in almost any tissue, but are most abundant in kidney and retina.
No informative BLAST results; No predictive prosite, pfam or SCOP motif.

15 The new protein can find application in studying the expression profile of melanoma-specific genes.

unknown protein

20 first ATG in frame 1

Sequenced by MediGenomix

25 Locus: /map="3"

Insert length: 2386 bp

Poly A stretch at pos. 2343, polyadenylation signal at pos. 2323

```

30
1  GGCAAAAGTC CAGGAATTAT CTTCATCCCT GGCTATCTTT CTTATATGAA
51  TGGTACAAAAA CGCTTGGCGA TTGAGGAGTT TTGCAAATCT CTAGGTCACG
101 CCTGCATAAG GTTGTATTAC TCAGGGAGTTG GAAGTCAGA TGTTAACTCA
151 GAGGAAAGCA CACTGGGGAA ATGGAGAAAA GATGTTCTTT CTATAATTGA
201 TGACTTAGCT GATGGGCCAC AGATTCTTGT TGGATCTAGC CTTGGAGGGT
251 GGCTTATGCT TCATGCTGCA ATTGCACGAC CAGAGAAGGT TGTGGCTCTT
301 ATTGGTGTAG CTACAGCTGC AGATACCTTA GTGACAAAAGT TTAATCAGCT
351 TCCTGTTGAG CTAAGAAAGG AAGTAGAGAT GAAAGGTGTG TGGAGCATGC
401 CATCAAAATA CTCTGAAGAA GGAGTTATA ACAGTTCTAGA CAGTTCTATT
451 AAAGAAGCTG AACATCACTG CTTGTTACAT AGCCCAATTG CTGTGAACCTG
501 CCCCATAAGA TTGCTCCATG GCATGAAGGA TGACATTGTA CCTTGGCATA
551 CATCAATGCA GGTTGCCGAT CGAGTACTCA GCACAGATGT GGATGTCATC
601 CTCCGAAAAC ACAGTGATCA CCGAATGAGG GAAAAGCAG ACATTCAACT
651 TCTTGTTTAC ACTATTGATG ACTTAATTGA TAAGCTCTCA ACTATAGTTA
701 ACTAGTATCA CATGTTTAGT TGGTATGTA ACTAATGTAT CCAGAAGATT
751 GGAAGAGGGGA TAAGAAATGA AAGATCCTGA TACTTTAGGT TTTTCCCTTT
801 CCTCTATTAA GTAAATATAA GATGAGTATT ATTTAATGAT GTATTGCT
851 AAGTAATGCA AATTGTGAAG AAGGACCAGC TGCTGTTAG AAAATTTCT
901 CCTTCCTTCT GTCCCTGATT TTTTTTCAAAAGTATTTCT CTTTTTTAA
951 TTCAAGAAAA GTTACCTTT CTTATGCTTA TGTTAGCTAT GCCAGCTCTT
1001 AATTGCATCC TTTTCTAATT AGGATTATA ATAAGCGTG AATATTTGTT
1051 TTTTTATTAT AGACAGAAAT TTGTAACATT ACTTCTGATT TGAAAATGCA
1101 ATTCAACAAA TATAGGGAAA TTTTTATTGA AGTAAATTTG AAATGATGGA
1151 GAAATTTCAG AAGCATAATA AAGTCACAA TAAGGATAAT ACTTTATATA
1201 ATGTATAAAAG TATATATAAT ATAATATATA TGTTATATAA ACTGCACATT
1251 ATATTCAAAC TTAAAATTGA GCTTTTTTT TAAAGGCCCA AAATTGTACA
1301 GTGATACAAG GAGCTATTTC TAAAATTGG CTTATGTATA ATATATTAA
1351 ATGGGAAATT TCATCTAAAA CAATGATGTA GTATTTTAA TATTCTGATT

```

1401 GGTAAAATTA AAGAGGAAAT TAATCTTAT ATATTATTC TTGCAGAAAAC
 1451 ATTCACTTATT TTATTAATAT TGCCCTAAGT ACAACTAGGC AAGTGATTGC
 1501 CACCTAAATC AGAACGACGTT CTAAGTCAG TAAGAAAGTG TGAAATGCTA
 1551 GTATAAAGGT TATTTTTTT CTTTCCTAAA TAACTAAAGT GAGGTGTAGA
 5 1601 TTGAGCCTTG ATATTATTA GTTAATGTTT TTTATTAATT AATTTGGCT
 1651 GGACTTTATT TAGCTTGATT AGGTTATTAT CTGTCAAACC TTTTAAGTTG
 1701 ACAACATGAC TCATATATAT ACATGTGTAT AAGATGAGCA TGTGTCGAAG
 1751 ACTTATTGCA CTCATTAATG AGGAAACCGAG CAGATAGTAA ACCTGGTTCA
 1801 AAGTACAATT CAAGAAAATG AGTATTTATG GGCATTGAAG AAAAATGTT
 10 1851 GAGATAAAAT TGCTGTGCAAG AAAAAGTGT TAATGAAGCC GACCTGACTA
 1901 CTTAACCTTA GAGACCTGCT TTACAAGGTT GGCCCTTGAT TGGCATCTGG
 1951 GAACCTGGAG TTCAGGGGGC TTCCACCATC CCCAGAACTG ATCAAAGTAG
 2001 CTTACTATAT CTAACACTGTA AAACAATATA GTTCTCCTG AACACCTGCT
 2051 TTCCCTCTGG GAGTCTGGAA TTTGGTATG TGCCAGGCAG AGACTACCTT
 15 2101 TGTGACCAGC TCCCAGTAAA AACCCAGGC ACTCAGTCTC TAACAAGCTT
 2151 TTCTGGTTGA CAGTGTTCAGA CAAGTGTGT TACAACCTGGT TGCTGGGAGA
 2201 ATTAAGCTCA TCCTCTGTGA TTCCACTGGC GGAGGATTCT TGGAAGCTTG
 2251 CACTTAGTTT CCCCTGACTT CACCCCATGT GTCTTTTTC CTTTGCTGAT
 2301 TTTGTTTGT ATCCTTCAC TGTAATAAT CATGGCCGTG AGCAGAAAAAA
 20 2351 AAAAAAAAAA AAAAAAAAAA AAAAAAAAAA AAAAAA

BLAST Results

25 No BLAST result

Medline entries

30 No Medline entry

Peptide information for frame 1

35 40 ORF from 46 bp to 702 bp; peptide length: 219
 Category: similarity to unknown protein
 Classification: unclassified

1 MNGTKALAI EFCKSLGHAC IRFDYSVGVS SDGNSEESTL GKWRKDVLSI
 51 IDDLADGPQI LVGSSLGGWL MLHAAIARPE KVVALIGVAT AADTLVTKFN
 45 101 QLPVELKEV EMKGVVWSMPS KYSEEGVYNV QYSFIKEAEH HCLLHSPIPV
 151 NCPIRLLHGM KDDIVPWHTS MQVADRVLST DWDVILRKHS DHRMREKADI
 201 QLLVYTIDDL IDKLSTIVN

BLASTP hits

No BLASTP hits available

55 Alert BLASTP hits for DKFZphm12_7k19, frame 1

No Alert BLASTP hits found

Pedant information for DKFZphmeli2_7k19, frame 1

Report for DKFZphmeli2_7k19.1

5

[LENGTH] 219
 [MW] 24309.18
 [pI] 5.69
 [HOMOL] PIR:A71b91 hypothetical protein RP343 - Rickettsia prowazekii 3e-29
 [BLOCKS] BP04352K
 [BLOCKS] PR00828E
 [KW] Alpha_Beta

15

SEQ MN GTKAL AIEEFCKSLGHACIRFDYSGVGSSDGNSEESTLGKWRKDVL SIIDDLADGPQI
 PRD ccchhhhhhhhhhhhhhccceeeeeccccccccccccccccchhhhhhhhhhhhhccccc

20 SEQ LVGSSLGGWLMLHAAIARPEKVVALIGVATAADTLVTKFNQLPVELKKEVEMKGWWSMPS
 PRD eeeeeccchhhhhhhhhhhccceeeeeeeeeehhhhhhhcccccchhhhhhhhhhhheeeccc

SEQ KYSEEGVYNVQYSFIKEAEHHCLLHSPIPVNCPIRLLHGMKDDIVPWHTSMQVADRLST
 PRD cccccccceeeeuhhhhhhhhhhhhhcccccceeeccccccccccccchhhhhhhhhhhhh

25

SEQ DVDVILRKHS DHRMREKADIQLLVYTIDD LIDKLSTIVN
 PRD hheeeeeccccchhhhhhhheeeeeuhhhhhhhcccccc

30 (No Prosite data available for DKFZphmeli2_7k19.1)

(No Pfam data available for DKFZphmeli2_7k19.1)

35 DKFZphtes3_10ilb

group: nucleic acid management

40 DKFZphtes3_10ilb encodes a novel 742 amino acid protein with similarity to human ZK1.

45 The ZK1 gene is one of early response genes by exposure to ionizing radiation, and plays a role in radiation-induced apoptotic cell death on hematopoietic cells. The novel protein contains 18 zinc finger domains, a RGD cell attachment and a ATP GTP A domain.

50 The new protein can find application in diagnosis/therapy in leukemia predisposition/disease in the modulation of DNA repair.

55 similarity to ZK1 (*Homo sapiens*), complete cds.

Sequenced by Qiagen

Locus: unknown

Insert length: 2884 bp
 Poly A stretch at pos. 2861, polyadenylation signal at pos. 2835

5	1	CGGAAATGGA	GGGGGGTCGCT	TTCCTCACCT	TCCTCGCTGC	GCGGGGCGGC
	51	GTTGGTAACC	GGTCAGACCA	GCCCCGAGAGG	GACCTGGTGC	CTGTACCCAG
	101	GCTTCTGTCG	CTCTGTCGCC	TGCGCTATGC	CCTGCTGTAG	TCACAGGAGC
	151	TGTAGAGAGG	ACCCCGGTAC	ATCTGAAAGC	CGGGAAATGG	ACCCAGTGGC
10	201	CTTTGAGGAT	GTGGCTGTGA	ACTTCACCCA	GGAAAGAGTGG	ACATTGCTGG
	251	ATATTTCCA	GAAGAATCTC	TTCAGGGAAG	TGATGCTGGA	AACTTTCAAGG
	301	AACCTGACCT	CTATAGGAAA	AAAATGGAGT	GACCAGAAC	TTGAATATGA
	351	GTACCAAAAC	CCCAGAAGAA	GCTTCAGGAG	TCTCATAGAA	GAGAAAGTCA
15	401	ATGAAATTAA	AGAAGACAGT	CATTGTGGAG	AAACCTTTAC	CCAGGTTCCA
	451	GATGACAGAC	TGAACCTTCA	GGAGAAGAAA	GCTTCTCTG	AAGTAAAATC
	501	ATGTGACAGC	TTTGTGTGTG	CAGAAGTGG	CATAGGTAAC	TCATCTTTA
	551	ATATGAGCAT	CAGAGGTGAC	ACTGGACACA	AGGCATATGA	GTATCAGGAA
	601	TATGGACCAA	AGCCATATAA	GTGTCAACAA	CCTAAAAATA	AGAAAGCCTT
20	651	CAGGTATCGC	CCATCCATTA	GAACACAAGA	AAGGGATCAC	ACTGGAGAGA
	701	AACCCATATGC	TTGTAAAGTC	TGTGGAAAAA	CCTTATTTC	CCATTCAAGC
	751	ATTCGAAGAC	ACATGGTAAT	GCACAGTGG	GATGGAACCT	ATAAATGTAA
	801	ATTTTGTTGG	AAAGCCTTCC	ATTCTTCAG	TTTATATCTT	ATCCATGAAA
	851	GAACTCACAC	TGGAGAGAAA	CCATATGAAT	GTAAACAATG	TGGTAAATCC
25	901	TTTACTTATT	CTGCTACCT	TCAAATACAT	GAAGAAACTC	ACACTGGGGA
	951	GAAGCCTAT	GAATGTAGCA	AATGTGATAA	AGCATTTCAT	AGTTCTAGTT
	1001	CCTATCATAG	ACATGAAAGA	AGTCACATGG	GAGAGAACCC	TTATCAATGC
	1051	AAAGAATGTG	AAAAAGCATT	TGCAATATACC	AGTTCTCTTC	GTAGACATGA
	1101	AAGGACCCAC	TCTGGGAAAA	AACCGTATGA	ATGTAAGCAA	TATGGGGAAG
30	1151	GCTTATCCTA	TCTTATAAGT	TTTCAAACAC	ACATAAGAAT	GAACCTGGA
	1201	GAAAGACCTT	ATAATGTAA	GATATGTGGG	AAAGGCTTT	ATTCTGCCAA
	1251	GTCATTCAA	ACACATGAAA	AAACTCACAC	TGGAGAGAAA	CGCTATAAAT
	1301	GCAAGCAATG	TGGTAAAGCC	TTCAATCTT	CCAGTTCTT	TCGATATCAT
	1351	GAAAGGATT	ACACTGGAGA	GAAACCTAT	GAGTGTAAAGC	AGTGTGGGAA
35	1401	AGCCTTCAGA	TCTGCCTCAC	AGCTTGAGT	GCACGGTGGG	ACTCACACTG
	1451	GAGAGAAACC	CTATGAATGT	AAGGAATGTG	GGAAAGCCTT	CAGATCTACC
	1501	TCACACCTTC	GAGTGCATGG	TAGGACTCAT	ACTGGAGAGA	AAACCTATGA
	1551	ATGTAAGGAA	TGTGGGAAAG	CCTTCAGATA	TGTGAAGCAC	CTTCAAATTC
	1601	ATGAAAGGAC	AGAAAAAACAC	ATAAGAATGC	CCTCTGGAGA	AAGACCTTAT
40	1651	AAATGTAGTA	TATGTGAGAA	AGGCTTTAT	TCTGCCAAGT	CATTCAAAC
	1701	ACATGAAAAA	ACTCACACTG	GAGAGAAACC	CTATGAATGC	AACCAATGTG
	1751	GTAAAGCCTT	CAGATGTTGC	AATTCCCTTC	GATATCATGA	AAGGACTCAC
	1801	ACTGGAGAGA	AACCCATATGA	GTGTAAGCAA	TGTGGGAAAG	CCTTCAGATC
	1851	TGCCCTCACAC	CTTCGAATGC	ATGAAAGGAC	TCACACTGG	GAGAAACCC
45	1901	ATGAGTGTAA	GCAATGTGGG	AAAGCCTTCA	GTTGTGCCCTC	AAACCTTCGA
	1951	AAGCATGGTA	GGACTCACAC	TGGAGAGAAA	CCCTATGAGT	GTAAGCAATG
	2001	TGGGAAAGCC	TTCAGATCTG	CCTCAAACCT	TCAGATGCAT	GAAAGGACTC
	2051	ACACTGGAGA	GAAACCTAT	GAATGTAAAG	AATGCGAAAAA	AGCATTCTGT
	2101	AAATTCTCTT	CTTTTCAAAT	ACATGAAAGG	AAGCACAGAG	GAGAGAACCC
50	2151	CTATGAATGT	AAGCATTGTG	GGAATGGATT	CACATCTGCC	AAGATTCTTC
	2201	AAATACATGC	AAGAACACAC	ATTGGAGAGA	AACACTATGA	ATGTAAGGAA
	2251	TGCGGAAAAG	CATTCAATT	TTTTCTTC	TTGCATATAC	ACGCAAGGAC
	2301	TCATATGGGA	GAGAAGCCAT	ATGAATGTAA	GGATTGTGGG	AAAGCATTCA
	2351	GCTAGCTGG	TTCCCTTTAT	GGACATGAAT	AGACTCACAC	TGGAAGGAAG
	2401	CACTATGAAT	GCAAGCAATG	TGGCAAAACT	TTCACATTT	CCAGTTCTT
55	2451	TCGATATCAT	GAAAGGACTC	ACACTGGGGA	GAACCCCTAT	CAATGTAAAGC
	2501	AGTGTGGGAA	AGCCTTCATT	CCTTTACTT	CTTTCAATG	TCATGAAAGG
	2551	ACTCACACGG	GAGAGAAACC	CTATGAGTGT	ATTCTAGTTC	CGTTTGATAT
	2601	CATGAAAGGA	CTTACACTGG	AGTGAACCC	TATGAATGTA	AGCAATGTGG

2651 GAAAGCCTTC AGATGTGCC CGCACCTTCA ACGGCATGGA AGGGTTAC
2701 CTTGGGAGAA ACTCTATGAA TGTAAGCAGT ATGGGAAAGC CTTCAGATCT
2751 GCCAAGATTG TTTGAATACA GATAATTAAT GTAAACAATT ATCATAAGTA
2801 TACTAACATG TTATTCTTT TAAATAAGAA GGTATAATAA AATATCCCAT
5 2851 TGGTTTTATG TATTAAAAAA AAAAAAAA AAAA

BLAST Results

10 15 No BLAST result

Medline entries

15 98401134:
Katoch O, Oguri T, Takahashi T, Takai S, Fujiwara Y, Watanabe H.;
ZK1, a
20 novel Kruppel-type zinc finger gene, is induced following
exposure to ionizing radiation and enhances apoptotic cell death
on hematopoietic cells. Biochem Biophys Res Commun 1998 Aug
28;249(3):595-600

25 95137393:
Wick MJ, Ann DK, Lee NM, Loh HH.; Isolation of a cDNA encoding a
novel
zinc-finger protein from
neuroblastoma x glioma NG108-15 cells. Gene 1995 Jan
30 23;152(2):227-32

35 Peptide information for frame 1

0RF from 127 bp to 2352 bp; peptide length: 742
Category: similarity to known protein
40 Classification: Nucleic acid management
Prosite motifs: RGD (146-148)
ATP_GTP_A (195-202)
ZINC_FINGER_C2H2 (196-216)
ZINC_FINGER_C2H2 (224-244)
45 ZINC_FINGER_C2H2 (252-272)
ZINC_FINGER_C2H2 (280-300)
ZINC_FINGER_C2H2 (308-328)
ZINC_FINGER_C2H2 (364-384)
50 ZINC_FINGER_C2H2 (392-412)
ZINC_FINGER_C2H2 (420-440)
ZINC_FINGER_C2H2 (448-468)
ZINC_FINGER_C2H2 (510-530)
ZINC_FINGER_C2H2 (538-558)
55 ZINC_FINGER_C2H2 (566-586)
ZINC_FINGER_C2H2 (594-614)
ZINC_FINGER_C2H2 (622-642)
ZINC_FINGER_C2H2 (650-670)
ZINC_FINGER_C2H2 (678-698)

ZINC_FINGER_C2H2 (706-726)
 ZINC_FINGER_C2H2 (476-498)

5 1 MPCCSHRSCR EDPGTSESRE MDPVAFEDVA VNFTQEEWTL LDISQKNLFR
 51 EVMLETFRNL TSIKKWSDQ NIEYEYQNPR RSFRSLIEEK VNEIKEDSHC
 101 GETFTQVPDD RLNFQEKKAS PEVKSCDSFV CAEVGIGNSS FNMSIRGDTG
 151 HKAYEYQEYG PKPYKCQQPK NKKAFRYRPS IRTQERDHTG EKPYACKVCG
 201 KTFIFHSSIR RHMVMHSGDG TYKCKFCGKA FHSFSLYLIH ERTHTGEKPY
 251 ECKQCGKSFT YSATLQIHER THTGEKPYEC SKCDKAFHSS SSYHRHERSH
 301 MGEKPYQCKE CGKAFAYTSS LRRHERTHSG KKPYECKQYG EGLSYLISFQ
 351 THIRMNSGER PYKCKICGKG FYSAKSFQTH EKTHTGEKRY KCKQCGKAFN
 401 LSSSFRYHER IHTGEKPYEC KQCGKAFRSA SQLRVHGGTH TGEKPYECKE
 451 CGKAFRSTSH LRVHGRHTHG EKPYECKEKG KAFRYVKHLQ IHERTEKHIR
 501 MPSGERPYKC SICEKGFYSA KSFQTHEKTH TGEKPYECNQ CGKAFRCCNS
 551 LRYHERHTHG EKPYECKQCG KAFRSASHLR MHERTHTGEK PYECKQCGKA
 601 FSCASNLRKH GRHTGEKPY ECKQCGKAFR SASNLQMHER THTGEKPYEC
 651 KECEKAFCFKF SSFQIHERKH RGEKPYECKH CGNGFTSAKI LQIHARTHIG
 701 EKHYECKEKG KAFNYFSSLH IHARTHMGKEK PYECKDCGKA FS

20

BLASTP hits

25 No BLASTP hits available

Alert BLASTP hits for DKFZphtes3_10i1b, frame 1

No Alert BLASTP hits found

30

Peptide information for frame 2

35 ORF from 1703 bp to 2584 bp; peptide length: 294
 Category: questionable ORF
 Classification: no clue

40 1 MKKLTLERNP MNATNVVKPS DVAIPFDIMK GLTLERNPMS VSNVGKPSDL
 51 PHTFECMKGL TLERNPMSVS NVGKPSVVPQ TFESMVGLTL ERNPMSVSNV
 101 GKPSDLPQTF RCMKGLTLER NPMNVRNAKK HSVNSLLFKY MKGSTEERSP
 151 MNVSIVGMDS HLPRFFFKYMQ EHTLERNTMN VRNAEKHSII FLPCIYTQGL
 201 IWERSHMNVR IVGKHSASLV PFMDMNRLTL EGSTMNASNV AKLSHFPVLF
 251 DIMKGLTLGR NPINVSSVGK PSFLLLLNFNV MKGLTRERNP MSVF

45

BLASTP hits

50 No BLASTP hits available

Alert BLASTP hits for DKFZphtes3_10i1b, frame 2

55 TREMBL:AF153201_1 product: "zinc finger protein dp"; Homo sapiens zinc finger protein dp mRNA, complete cds., N = 1, Score = 225, P = 4.1e-18

>TREMBL:AF153201_1 product: "zinc finger protein dp"; Homo sapiens zinc finger protein dp mRNA, complete cds.
Length = 423

5 HSPs:

Score = 225 (33.8 bits), Expect = 4.1e-18, P = 4.1e-18
10 Identities = 84/246 (34%), Positives = 122/246 (49%)

Query: 1b VVKPSDVA-
IPFDIMKGLTLERNPMSVSNVGKPSDLPTFECMKGLTLERNPMSVSNVGK 74
V KPS A I F I + + L RN + V +V K S T ++G

15 TLERNP++V +VGK

Sbjct: 3 VGKPSVRAQILFCIRESI-
LGRNHIHVISVAKVSVRIQTLLNIEGSTLERNPINVMSVGK 61

Query: 75

20 PSVVPQTTFESMVGLTLERNPMSVSNVGKPSDLPTFRCMKGLTLERNPMNVRNAKKHSVN 134
+ Q+ + G LERNP+ V NV KPS Q + TLERN+ +V
+A K V

Sbjct: 62

LLIRAQSLFYIRGFILERNPPIPVINVAKPSVGFQILLIINEFTLERSLTHVISAIKCLVE 121

25

Query: 135 SLLFKYMKGSTEERSPMNVSVGMDS-

HLPRFFKYMQEHTLERNNTMNVRNAEKHSIIFLP 193
+ + + R+PMNV VG P F +++E TLERN M+V
K +

30 Sbjct: 122 DEILLNITEFIQVRNPMNVVMNVGKPLVRAPTLF-
FIRESTLERNLMHVVIVLKALVAVQI 180

Query: 194

35 CIYTQGLIWERSHMNVRIVGKHSASLVPFMDMNRLTLEGSTMNASNVAKLSHFPVLFIDM 253
+ + ER+HM+V V K +++ TL S + A V K S
+ +

Sbjct: 181

LLSIKEYTLERNHMHVISVIKVLVKQAQTSLNIREYTLVKSLIIIAIVVRKPSVRVLTFFI 240

40 Query: 254 KGLTLGRN 261

+ TL +N

Sbjct: 241 REFTLEKN 248

Score = 215 (32.3 bits), Expect = 1.1e-16, P = 1.1e-16

45 Identities = 82/246 (33%), Positives = 124/246 (50%)

Query: 44

VGKPSDLPTFECMKGLTLERNPMSVSNVGKPSVVPQTTFESMVGLTLERNPMSVSNVGKP 103
VGKPS C++ L RN + V +V K SV QT ++G

50 TLERNP++V +VGK

Sbjct: 3

VGKPSVRAQILFCIRESI LGRNHIHVISVAKVSVRIQTLLNIEGSTLERNPINVMSVGKL 62

55 Query: 104 SDLPQTFRCKGLTLERNPMNVRNAKKHSVN SLLFKYMKGSTEERSPMNV-
SIVGM---D 159

Q+ ++G LERNP+ V N K SV + + T ERS +V S
+ D

Sbjct: 63
LIRAQSLFYIRGFILERNPPIPVINAKPSVGFQILLIINEFTLERSLTHVISAICLVED 122

Query: 160 SHLPRFFKYMQEHTLERNTMNVRNAEKHSIIIFLPCIY-
5 TQGLIWERSHMNVRIVGKHSAS 218
L +++Q RN MNV N K ++ P ++ + ER+ M+V
IV K +

Sbjct: 123 EILLNITEFIQV---RNPMNVMMNVGK-
PLVRAPTLFFIRESTLERNLMHVVIVLKALVA 177

10 Query: 219 LVPFMMDMNRLTLEGSTMNASNVAK-
LSHFPVLFDIMKGTLGRNPINVSSVGKPSFLLL 277
+ + + TLE + M+ +V K L +I + TL ++ I V
KPS +L

15 Sbjct: 178 VQILLSIKEYTLERNHMHVISVIKVLVKAQTSLNIRE-
YTLVKSLIIIAIVVRKPSVRVLT 236

Query: 278 FNVMKGLTRRN 289
++ T E+N

20 Sbjct: 237 LFFIREFTLEKN 248

Score = 207 (31.1 bits), Expect = 5.2e-15, P = 5.2e-15
Identities = 80/270 (29%), Positives = 129/270 (47%)

25 Query: 1 MKKLTLERNPMNATNVVKPSDVAIPFDI-
MKGLTLERNPMVSNVGKPSDLPTFECMKG 59
+++ L RN ++ +V K S V I + ++G TLERNP++V +VGK
+ ++G

Sbjct: 16 IRESILGRNHIHVISVAKVS-
30 VRIQTLLNIEGSTLERNPINVMSVGKLLIRASLIFYIRG 74

Query: 60
LTLERNPMSVSNVGKPSVVPQTFESMVGLTLERNPMVSNVGKPSDLPQTFRCMKGTLLE 119
LERNP+ V NV KPSV Q + TLER+ V + K +

35 +

Sbjct: 75
FILERNPPIPVINAKPSVGFQILLIINEFTLERSLTHVISAICLVEDEILLNITEFIQV 134

Query: 120
40 RNPMNVRNAKKHSVNSLLFKYMKGSTEERSPMNVSVIGMDSHLPRFFKYMQEHTLERNTM 179
RNPMNV N K V + +++ ST ER+ M+V IV +
++E+TLERN M

Sbjct: 135
RNPMNVNVGKPLVRAPTLFFIRESTLERNLMHVVIVLKALVAVQILLSIKEYTLERNHM 194

45 Query: 180
NVRNAEKHSIIIFLPCIYTQGLIWERSHMNVRIVGKHSASLVPFMMDMNRLTLEGSTMASN 239
+V + K + + + +S + +V K S ++ + TLE
+ +

50 Sbjct: 195
HVISVIKVLVKAQTSLNIREYTLVKSLIIIAIVVRKPSVRVLTFFIREFTLEKNYYLCTQ 254

Query: 240 VAKLSHFPVLFDIMKGTL--GRNPINVSSVGK 270
+K F + D++K + G P S K

55 Sbjct: 255 CSK--SFSQISDLIKHQRINTGEKPYKCSECRK 285

Score = 181 (27.2 bits), Expect = 1.4e-11, P = 1.4e-11
Identities = 74/269 (27%), Positives = 116/269 (43%)

Query: 5
 TLERNPMNATNVVKPSDVAIPFDIMKGLTLERNPMVSNVGKPSDLPHFECMKGTLER 64
 TLERNP+N +V K A ++G LERNP+ V NV KPS

5 + TLER
 Sbjct: 48
 TLERNPINVMSVGKLLIRASLFIYIRGFILERNPPIPVINAKPSVGFGILLIINEFTLER 107

Query: 65
 10 NPMSVSNVGKPSVVPQTFESMVGLTLERNPMVSNVGKPSDLPQTFRCMKGLTLERNPMN 124
 + V + K V + ++ RNPM+V NVGKP T ++
 TLERN M+
 Sbjct: 108
 SLTHVISAIKCLVEDEILLNITEFIQVRNPMNMNVGKPLVRAPTLFFIRESTLERNLMH 167

15 Query: 125 VRNAKKHSVNSLLFKYMKGSTERSPMNV-
 SIVGMDSHLPFFKYMQEHTLERNTMNVRN 183
 V K V + +K T ER+ M+V S++ + ++E+TL
 ++ +
 20 Sbjct: 168 VVIVLKALVAVQILLSIKEYTLERNHMHVISVIKVLVKAQTSLN-
 IREYTLVKSLIIIAIV 226

Query: 184
 25 AEKHSIIIFLPCIYTQGLIWERSHMNRIVGKHSASLVPFMDMNRLTLEGSTMNASNVAKL 243
 K S+ L + + E+++ K + + + R+
 S K
 Sbjct: 227
 VRKPSVRVLTLFFIREFTLEKNYYLCTQCSKSFSQISDLIKHQRIHTGEKPYKCSECRKA 286

30 Query: 244 SHFPVLFDIMKGLTLGRNPINVSSVGKPSF 273
 L + + + G+ P GK SF
 Sbjct: 287 FSQCSLLALHQRIHTGKKPNPCDECGK-SF 315

Score = 166 (24.9 bits), Expect = 8.4e-10, P = 8.4e-10
 35 Identities = 63/194 (32%), Positives = 89/194 (45%)

Query: 100
 VGKPSDLQTFRCMKGLTLERNPMNVRNAKKHSVNSLLFKYMKGSTERSPMNVSIVGMD 159
 VGKPS Q C++ L RN ++V + K SV ++GST
 40 ER+P+NV VG
 Sbjct: 3
 VGKPSVRAQILFCIRESILGRNHIHVISVAKSVRIQTLNIEGSTLERNPINVMVGKL 62

Query: 160
 45 SHLPRFFKYMQEHTLERNTMNVRNAEKHSIIIFLPCIYTQGLIWERSHMNRIVGKHSASL 219
 + Y++ LERN + V N K S+ F + ERS +V
 K
 Sbjct: 63
 LIRAQSLFYIRGFILERNPPIPVINAKPSVGFGILLIINEFTLERSLTHVISAIKCLVED 122

50 Query: 220 VPFDMMNRLTLEGSTMNASNVAK-
 LSHFPVLFDIMKGLTLGRNPINVSSVGKPSFLFFF 278
 +++ + MN NV K L P LF I + TL RN ++V V K
 + +
 55 Sbjct: 123 EILLNITEFIQVRNPMNMNVGKPLVRAPTLFFIRESTLERNLMHVVIVLKALVAVQIL 181

Query: 279 NVMKGLTRERNPMVS 293

+K T ERN M V
 Sbjct: 182 LSIKEYTLERNHMHV 196

5

Pedant information for DKFZphtes3_10ilb, frame 1

Report for DKFZphtes3_10ilb.1

10

[LENGTH] 784
 [MW] 90857.05
 [pI] 9.24

[HOMOL] TREMBL:AB011414_1 gene: "ZK1"; product: "Kruppel-type zinc finger protein"; Homo sapiens ZK1 mRNA for Kruppel-type zinc finger protein, complete cds. 0.0

[FUNCAT] 30.10 nuclear organization [S. cerevisiae, YJL056c] 6e-33

[FUNCAT] 04.05.01.04 transcriptional control [S. cerevisiae, YJL056c] 6e-33

[FUNCAT] 04.99 other transcription activities [S. cerevisiae, YOR113W] 5e-24

[FUNCAT] 04.01.01 rrna synthesis [S. cerevisiae, YPR186c PZF1 - TFIIIA] 1e-20

[FUNCAT] 04.03.01 trna synthesis [S. cerevisiae, YPR186c PZF1 - TFIIIA] 1e-20

[FUNCAT] 13.04 homeostasis of other ions [S. cerevisiae, YNL027W] 1e-13

[FUNCAT] 11.07 detoxification [S. cerevisiae, YGL254W] 2e-12

[FUNCAT] 01.02.04 regulation of nitrogen and sulphur utilization [S. cerevisiae, YGL254W] 2e-12

[FUNCAT] 01.05.04 regulation of carbohydrate utilization [S. cerevisiae, YGL209W] 2e-11

[FUNCAT] 04.05.99 other mrna-transcription activities [S. cerevisiae, YER028c] 3e-10

[FUNCAT] 11.01 stress response [S. cerevisiae, YKL062W] 1e-09

[FUNCAT] 01.01.04 regulation of amino-acid metabolism [S. cerevisiae, YDR253c] 5e-09

[FUNCAT] 99 unclassified proteins [S. cerevisiae, YBR066c]

3e-08

[FUNCAT] 03.07 pheromone response, mating-type determination, sex-specific proteins [S. cerevisiae, YDR146c] 1e-07

[FUNCAT] 03.25 cytokinesis [S. cerevisiae, YLR131c] 2e-06

[BLOCKS] BL00466 TFIIS zinc ribbon domain proteins

[BLOCKS] BL00245A Phytochrome chromophore attachment site

proteins

[BLOCKS] DM01951B

[BLOCKS] PF01363B

[BLOCKS] BL01030

[BLOCKS] PF00096B

[BLOCKS] BL00028 Zinc finger, C2H2 type, domain proteins

[BLOCKS] BP04213E

[BLOCKS] BP04213C

[BLOCKS] BP04213B

[SCOP] d2adr_ 7.31.1.1.4 ADR1 [synthetic based on yeast (Saccharomyce 2e-05

[PIRKW] nucleus 1e-53

[PIRKW] RNA binding 2e-58

[PIRKW] duplication le-34
 [PIRKW] tandem repeat le-171
 [PIRKW] spermatogenesis 5e-62
 [PIRKW] zinc le-1b9
 5 [PIRKW] zinc finger 0.0
 [PIRKW] DNA binding 0.0
 [PIRKW] metal binding le-120
 [PIRKW] phosphoprotein 2e-58
 [PIRKW] leucine zipper le-53
 10 [PIRKW] alternative splicing 2e-58
 [PIRKW] eye lens le-111
 [PIRKW] oocyte le-106
 [PIRKW] transcription factor le-111
 [PIRKW] embryo le-106
 15 [PIRKW] segmentation le-34
 [PIRKW] transcription regulation le-152
 [SUPFAM] POZ domain homology 7e-83
 [SUPFAM] transcription factor Krueppel le-34
 [SUPFAM] zinc finger protein ZFP-36 le-173
 20 [SUPFAM] transcription factor IIIA 8e-31
 [PROSITE] ATP_GTP_A 1
 [PROSITE] RGD 1
 [PROSITE] ZINC_FINGER_C2H2 18
 [PFAM] Zinc finger, C2H2 type
 25 [PFAM] TNFR/NGFR cysteine-rich region
 [KW] Irregular
 [KW] 3D
 [KW] LOW_COMPLEXITY 3.57 %
 30 SEQ RKWRGSLSSPSSLRGRRRLVTGQTSPRGTWCLYPGFCRSVACAMPCCSHRSCREDPGTSES
 SEGxxxxxxxxxxxxx.....
 1meyF

 35 SEQ REMDPVAFEDVAVNFTQEEWTLLDISAKNLREVMLETFRNLTSIGKKWSDQNIEYEQN
 SEG
 1meyF

 40 SEQ PRRSFRSLIEEKVNNEIKEDSHCGETFTQVPDDRLNFQEKKASPEVKSCDSFVCAEVGIGN
 SEG
 1meyF

 45 SEQ SSFNMSIRGDTGHKAYEYQEYGPKPYKCQQPKNKKAFRYRPSIRTQERDHTGEKPYACKV
 SEG
 1meyF

 50 SEQ CGKTFIFHSSIRRHMVMHSGDGTYKCKFCGKAFHSFSLYLIHERHTGEKPYECKQCGKS
 SEG
 1meyF

 55 SEQ FTYSATLQIHERHTGEKPYECSKCDKAFAHSSSSSYHRHERSHMGEKPYQCKECGKAFAYT
 SEGxxxxxxxxxxxxx.....

ImeyF

Prosite for DKFZphes3_101b.1

	PS00016	188->191	RGD	PD0C00016
	PS00017	237->245	ATP_GTP_A	PD0C00017
	PS00028	238->259	ZINC_FINGER_C2H2	PD0C00028
50	PS00028	266->287	ZINC_FINGER_C2H2	PD0C00028
	PS00028	294->315	ZINC_FINGER_C2H2	PD0C00028
	PS00028	322->343	ZINC_FINGER_C2H2	PD0C00028
	PS00028	350->371	ZINC_FINGER_C2H2	PD0C00028
	PS00028	406->427	ZINC_FINGER_C2H2	PD0C00028
55	PS00028	434->455	ZINC_FINGER_C2H2	PD0C00028
	PS00028	462->483	ZINC_FINGER_C2H2	PD0C00028
	PS00028	490->511	ZINC_FINGER_C2H2	PD0C00028
	PS00028	552->573	ZINC_FINGER_C2H2	PD0C00028

	PS00028	580->601	ZINC_FINGER_C2H2	PDOC00028
	PS00028	608->629	ZINC_FINGER_C2H2	PDOC00028
	PS00028	636->657	ZINC_FINGER_C2H2	PDOC00028
	PS00028	664->685	ZINC_FINGER_C2H2	PDOC00028
5	PS00028	692->713	ZINC_FINGER_C2H2	PDOC00028
	PS00028	720->741	ZINC_FINGER_C2H2	PDOC00028
	PS00028	748->769	ZINC_FINGER_C2H2	PDOC00028
	PS00028	518->541	ZINC_FINGER_C2H2	PDOC00028

10

Pfam for dkfzphes3_10i1b.1

15 HMM_NAME TNFR/NGFR cysteine-rich region

HMM	*CpeGtYtD-WNHvpqClpC..trCePEMGQYMvqPCTwTQNTVC*			
	C +	+++	+++++C	C ++C+++ G++++++ ++ V
Query	30	CLYPGFCRSVACAMPC--CSHRSCREDPGTSESREMDP----VA		
67				

25 HMM_NAME Zinc finger, C2H2 type

HMM	*CpwPDCgKtFrrwsNLrRHMRTTH*			
	C++	CGKTF	S+	RRHM +H
Query	238	CKV--CGKTFIFHSSIRRHVMVH		258

30 32.15 (bits) f: 266 t: 286 Target: dkfzphes3_10i1b.1
similarity to ZK1 (Homo sapiens), complete cds.

Alignment to HMM consensus:

Query	*CpwPDCgKtFrrwsNLrRHMRTTH*			
	C++	CGK+F	+ S +	+H RTH

35 dkfzphes3 266 CKF--CGKAHSFSLYLIHERTH 286

Query	f: 294	t: 314	Target: dkfzphes3_10i1b.1	
	similarity to ZK1 (Homo sapiens), complete cds.			

Alignment to HMM consensus:

40 HMM	*CpwPDCgKtFrrwsNLrRHMRTTH*			
	C+	CGK+F+++	+L++H	RTH

Query	294	CKQ--CGKSFTYSATLQIHERTH		314
-------	-----	-------------------------	--	-----

45 34.22 (bits) f: 322 t: 342 Target: dkfzphes3_10i1b.1
similarity to ZK1 (Homo sapiens), complete cds.

Alignment to HMM consensus:

Query	*CpwPDCgKtFrrwsNLrRHMRTTH*			
	C++	C+K+F	++S++	RH R+H

50 dkfzphes3 322 CSK--CDKAHSFSLYLIHERTH 342

Query	f: 350	t: 370	Target: dkfzphes3_10i1b.1	
	similarity to ZK1 (Homo sapiens), complete cds.			

Alignment to HMM consensus:

55 HMM	*CpwPDCgKtFrrwsNLrRHMRTTH*			
	C++	CGK+F	+ S+LRRH	RTH

Query	350	CKE--CGKAFTSSLRRHERTH		370
-------	-----	-----------------------	--	-----

32.09 (bits) f: 406 t: 426 Target: dkfzphtes3_10i1b.1
 similarity to ZK1 (Homo sapiens), complete cds.
 Alignment to HMM consensus:
 Query *CpwPDCgKtFrrwsNLrRHMRTH*
 5 HMM C++ CGK F ++ +++++H +TH
 dkfzphtes3 406 CKI--CGKGFYSAKSFQTHEKTH 426

Query f: 434 t: 454 Target: dkfzphtes3_10i1b.1
 similarity to ZK1 (Homo sapiens), complete cds.
 10 Alignment to HMM consensus:
 HMM *CpwPDCgKtFrrwsNLrRHMRTH*
 C+ CGK+F+ +S++R H R+H
 Query 434 CKQ--CGKAFLSSSFRYHERIH 454

15 32.94 (bits) f: 462 t: 482 Target: dkfzphtes3_10i1b.1
 similarity to ZK1 (Homo sapiens), complete cds.
 Alignment to HMM consensus:
 Query *CpwPDCgKtFrrwsNLrRHMRTH*
 20 C+ CGK+FR++S+LR H TH
 dkfzphtes3 462 CKQ--CGKAFRSASQLRVHGGTH 482

Query f: 490 t: 510 Target: dkfzphtes3_10i1b.1
 similarity to ZK1 (Homo sapiens), complete cds.
 Alignment to HMM consensus:
 25 HMM *CpwPDCgKtFrrwsNLrRHMRTH*
 C++ CGK+FR+ S+LR H RTH
 Query 490 CKE--CGKAFRSTSHLRVHGRTH 510

30 30.69 (bits) f: 518 t: 540 Target: dkfzphtes3_10i1b.1
 similarity to ZK1 (Homo sapiens), complete cds.
 Alignment to HMM consensus:
 Query *CpwPDCgKtFrrwsNLrRHMR..T.H*
 35 C+ CGK+FR+ +L++H R H
 dkfzphtes3 518 CKE--CGKAFRYVKHLQIHERTE-KH 540

HMM *CpwPDCgKtFrrwsNLrRHMRTH*
 40 C++ C+K F ++ +++++H +TH
 Query 552 CSI--CEKGFYSAKSFQTHEKTH 572

31.33 (bits) f: 580 t: 600 Target: dkfzphtes3_10i1b.1
 similarity to ZK1 (Homo sapiens), complete cds.
 45 Alignment to HMM consensus:
 Query *CpwPDCgKtFrrwsNLrRHMRTH*
 C+ CGK+FR +LR H RTH
 dkfzphtes3 580 CNQ--CGKAFRCCNSLRYHERTH 600

50 Query f: 608 t: 628 Target: dkfzphtes3_10i1b.1
 similarity to ZK1 (Homo sapiens), complete cds.
 Alignment to HMM consensus:
 HMM *CpwPDCgKtFrrwsNLrRHMRTH*
 55 C+ CGK+FR++S+LR+H RTH
 Query 608 CKQ--CGKAFRSASHLRMHERTH 628

35.30 (bits) f: 636 t: 656 Target: dkfzphtes3_10i1b.1
 similarity to ZK1 (Homo sapiens), complete cds.

Alignment to HMM consensus:

Query *CpwPDCgKtFrrwsNLrRHMRTH*
 C+ CGK+F+ +SNLR+H RTH
 dkfzphtes3 636 CKQ--CGKAFCASNLRKHGRTH 656

5

Query f: 664 t: 684 Target: dkfzphtes3_10i1b.1
 similarity to ZK1 (Homo sapiens), complete cds.

Alignment to HMM consensus:

HMM *CpwPDCgKtFrrwsNLrRHMRTH*
 C+ CGK+FR++SNL++H RTH

10

Query 664 CKQ--CGKAFRSASNLQHERTH 684

31.74 (bits) f: 692 t: 712 Target: dkfzphtes3_10i1b.1
 similarity to ZK1 (Homo sapiens), complete cds.

15

Alignment to HMM consensus:

Query *CpwPDCgKtFrrwsNLrRHMRTH*
 C++ C+K+F+ S++++H R H
 dkfzphtes3 692 CKE--CEKAFCFKSSFQIHERKH 712

20

Query f: 720 t: 740 Target: dkfzphtes3_10i1b.1
 similarity to ZK1 (Homo sapiens), complete cds.

Alignment to HMM consensus:

HMM *CpwPDCgKtFrrwsNLrRHMRTH*
 C++ CG F+++ L++H RTH

25

Query 720 CKH--CGNGFTSAKILQIHARTH 740

34.88 (bits) f: 748 t: 768 Target: dkfzphtes3_10i1b.1
 similarity to ZK1 (Homo sapiens), complete cds.

Alignment to HMM consensus:

30

Query *CpwPDCgKtFrrwsNLrRHMRTH*
 C++ CGK+F++ S+L +H RTH

dkfzphtes3 748 CKE--CGKAFCNYFSSLHIHARTH 768

35

Pedant information for DKFZphtes3_10i1b, frame 2

40

Report for DKFZphtes3_10i1b.2

【LENGTH】 294
 【MW】 33083.98
 【pI】 9.97

45

【HOMOL】 TREMBL:AF153201_1 product: "zinc finger protein
 dp"; Homo sapiens zinc finger protein dp mRNA, complete cds. 7e-
 17
 【KW】 All_Alpha

50

SEQ MKKLTLERNPMNATNVVKPSDVAIPFDIMKGLTLERNPMVSNVGKPSDLPHTFECMKGL
 PRD cccccccccccccceeeeccccccchhhhhccccccccccccccccccccccccchhhhhhee

55

SEQ TLERNPMVSNVGKPSVVPQTFESMVGLTLERNPMVSNVGKPSDLPQTFRCMKGLTLER
 PRD eccccccccccccccccchhhhhhhhhhhccccccccccccccccchhhhhhhhhhhccc

SEQ NPMNVRNAKKHSVNSLLFKYMKGSTEERSPMNVSVGMDSHLPRFFKYMQEHTLERNTMN
 PRD cchhhhhhhhhhhcccc

SEQ VRNAEKHSIIFLPCIYTQGLIWERSHMNVRIVGKHSASLVPFMDMNRLTLEGSTMNASNV
PRD chhhhhhheeecccccchhhhhcccccccccccccccccccccccccccccccccccc

5 SEQ AKLSHFPVLFDIMKGLTLGRNPINVSSVGKPSFLLLFNVMKGLTRERNPMSVF
PRD cccccccchhhhhcc

(No Prosite data available for DKFZphtes3_10i1b.2)

10

(No Pfam data available for DKFZphtes3_10i1b.2)

DKFZphtes3_10n10

5 group: testis derived

DKFZphtes3_10n10 encodes a novel 502 amino acid protein without similarity to known proteins.

- 10 The mRNA is differentially polyadenylated and the novel protein is ubiquitously expressed.
 No informative BLAST results; No predictive prosite, pfam or SCOP motifs.
- 15 The new protein can find application in studying the expression profile of testis-specific genes.

20 unknown protein

20 differentially polyadenylated

Sequenced by Qiagen

25 Locus: unknown

Insert length: 2551 bp

Poly A stretch at pos. 2531, polyadenylation signal at pos. 2513

30 1 CTCAGCCTCC CAAGTGGCTG GGACTGCAGG TTCTAAATGG CTTCTAAGAA
 51 GTTGGGTGCA GATTTTCATG GGACTTTCAg TTACCTTGAT GATGTCCCATT
 101 TTAAGACAGG AGACAAATTC AAAACACCAg CTAAAGTTGG TCTACCTATT
 151 GGCTTCTCCT TGCTGATG TTTGCAGGTT GTCAGAGAAG TACAGTATGA
 201 CTTCTCTTTG GAAAAGAAAA CCATTGAGTG GGCTGAAGAG ATTAAGAAAA
 251 TCGAAGAACG CGAGCGGGAA GCAGAGTGCA AAATTGCGGA AGCAGAACGCT
 301 AAAAGTGAATT CTAAGAGTGG CCCAGAGGGC GATAGCAAAA TGAGCTTCTC
 351 CAAGACTCAC AGTACAGCCA CAATGCCACC TCCTATTAAAC CCCATCCTCG
 401 CCAGCTTGCA GCACAACAGC ATCCTCACAC CAACTCGGGT CAGCAGTAGT
 451 GCCACGAAAC AGAAAGTTCT CAGCCCACCT CACATAAAGG CGGATTCAA
 501 TCTTGCTGAC TTTGAGTGTG AAGAAGACCC ATTTGATAAT CTGGAGTTAA
 551 AAACTATTGA TGAGAAGGAA GAGCTGAGAA ATATTCTGGT AGGAACCACT
 601 GGACCCATTA TGCTCAGTT ATTGGACAAAT AACTTGGCCA GGGGAGGCTC
 651 TGGGTCTGTG TTACAGGATG AGGAGGTCTT GGCATCCTTG GAACGGGCAA
 701 CCCTAGATT CAAGCCTCTT CATAAACCCA ATGGCTTAT AACCTTACCA
 751 CAGTTGGGCA ACTGTGAAAA GATGTCACTG TCTTCCAAAG TGTCCCTCCC
 801 CCCTATAACCT GCAGTAAGCA ATATCAAATC CCTGCTTTT CCAAACATTG
 851 ACTCTGATGA CAGCAATCAG AAGACAGCCA AGCTGGCGAG CACTTCCAT
 901 AGCACATCCT GCCTCCGCAA TGGCACGTTT CAGAATTCCC TAAAGCCTTC
 951 CACCCAAAGC AGTGCCAGTG AGCTCAATGG GCATCACACT CTTGGGCTTT
 1001 CAGCTTGAA CTTGGACAGT GGCACAGAGA TGCCAGCCCT GACATCCTCC
 1051 CAGATGCCTT CCCTCTCTGT TTTGTCTGTG TGCAAGAGG AATCATCACC
 1101 TCCAAATACT GGTCCCACGG TCACCCCTCC TAATTCTCA GTGTACAAG
 1151 TGCCCAACAT GCCCAGCTGT CCCCAGGCCT ATTCTGAACG GCAGATGCTG
 1201 TCCCCCAGCG AGCGGCAGTG TGTTGGAGACG GTGGTCAACA TGGGCTACTC
 1251 GTACGAGTGT GTCCCTCAGAG CCATGAAGAA GAAAGGAGAG AATATTGAGC
 1301 AGATTCTCGA CTATCTCTT GCACATGGAC AGCTTGTGA GAAGGGCTTC
 1351 GACCCCTCTT TAGTGGAAAGA GGCTCTGGAA ATGCACCAAGT GTTCAGAAGA

1401 AAAGATGATG GAGTTTCTTC AGTTAATGAG CAAATTAAAG GAGATGGGCT
 1451 TTGAGCTGAA AGACATTAAG GAAGTTTGC TATTACACAA CAATGACCAG
 1501 GACAATGCTT TGGAAGACCT CATGGCTCGG GCAGGAGCCA GCTGAGACCA
 1551 GGCCCTGCCT AGGCCCTGCC GCAGAACAC CATCCCTGGG AGGCCCTGCA
 5 1601 GAGCCCACCT GTGGGGAAAG AGAAGGGGCA GCTTCGGAT TTTCTTTGG
 1651 GGGTTAGAAG GTCAGGTGTG GAGACTGCTC GCCAGTCTCT GTGAGCTAG
 1701 GCCCCGAGCT GGGGAGGGTGG GGAAGATTG GGCATGTGAG TGCCCCAGA
 1751 ACTGTCTGG CTCCCTCCGT ATTAAACGCA TTTGCATTTT GAGAAGTGT
 1801 CTTCCCACCT CAGCCCTCCG GAGAGACTAC CCTAGTCTTT CTGGGGTGT
 10 1851 TATGTCCTCA GCTGAAGCCT GGCTAGTTG CTGAGAGGGG CTGGGGAGAT
 1901 GGGGGGGGAG GGCCAGACTC AGTGCTGCTG TGGAGCTAGG TGCTTCCCC
 1951 TTCCCCCTGAG ACTGGTTGAC TGAACCTCAG TCAAGTTGAG TTCAAGTGAA
 2001 AGATTCTTCC AGGGTTTTAT TTTTCTCCCT CCTAACAAAG TCTCATAGTG
 2051 TTAACACTGG TTCTGCAATA TCTCTGAGGT GCAAAGAATG CACTTTCCC
 2101 TATGGGGCCC AGAGTTTGC TTTCTGCCA GGCAGTCACC ACGCTTCCC
 2151 ACCCCAGCCT GTTTCTTTG GCTTGGTTG GACCACAGTC CTCTGCTACC
 2201 CAGGGTTTA GAGCCCTGC TCTAGGAAAC AGTTTAAGAA ATCATTGGCC
 2251 CCTTCCCAGC ACATTGAATG GGTAAAGCAGA CAGGCCATGA TTTAGTTGGC
 2301 CAGCACTAAC TCCACCTCTG TTCTCCTTGA ACAGCTTCCC CTCCAGCCCA
 2351 CTGCTTTAGG ATGACACAAT GAATAACACCC TAGTCATAGA AATCAGTCTC
 2401 TCTGGTTTGT TTTGTATTAT GTTGTACATC ATTAAGATC TAAATACAAA
 2451 GGATATACAG TCTTGAATCT AAAATAATTG GCTAACTATT TTGATTCTC
 2501 AGAGAGAACT ACTAATAAAA ATCTAAAAGG TAAAAAAA AAAAAAAA
 2551 A

25

BLAST Results

30 No BLAST result

Medline entries

35 No Medline entry

40

Peptide information for frame 1

ORF from 37 bp to 1542 bp; peptide length: 502

Category: putative protein

45 Classification: unclassified

1 MASKKLGADF HGTFSYLDV PFKTGDKFKT PAKVGLPIGF SLPDCLQVVR
 51 EVQYDFSLEK KTIEWAEIHK KIEEAEREAE CKIAEAEAKV NSKSGPEGDS
 101 KMSFSKTHST ATMPPPINPI LASLQHNSIL TPTRVSSSAT KQKVLSPPHI
 151 KADFNLADE CEEDPFDNLE LKTIDEKEEL RNILVGTTGP IMAQLLDNNL
 201 PRGGSGSVLQ DEEVLASLER ATLDFKPLHK PNGFITLPQL GNCEKMSLSS
 251 KVSLPPPIP AV SNIKSLSPK LDSDDSNQKT AKLASTFHST SCLRNGTFQN
 301 SLKPSTQSSA SELNGHHTLG LSALNLDSGT EMPALTSSQM PSLSVLSVCT
 351 EESSPPNNTGP TVTPPNFSVS QVPNMPSCPQ AYSELQMLSP SERQCVCETVV
 401 NMGYSYECVL RAMKKKGENI EQILDYLFQH GQLCEKGFD P LLVEEALEMH
 451 QCSEEKMMEF LQLMSKFKEM GFELKDIKEV LLLHNNDQDN ALEDLMARAG
 501 AS

BLASTP hits

5 No BLASTP hits available

Alert BLASTP hits for DKFZphtes3_10n10, frame 1

No Alert BLASTP hits found

10 Pedant information for DKFZphtes3_10n10, frame 1

Report for DKFZphtes3_10n10.1

15

【LENGTH】	502
【MW】	55083.78
【pI】	5.02
【BLOCKS】	PRO1083D
【BLOCKS】	BLO1306B
【KW】	All_Alpha
【KW】	LOW_COMPLEXITY 8.57 %

25

SEQ MASKKLGADFHGTFSYLDDVPFKTGDKFKTPAKVGLPIGFSLPDCLQVVREVQYDFSLER
 SEG
 PRD cchhhhhhhhhccchh

30

SEQ KTIEWAEEIKKIEEAEREAECKIAEAEAKVNSKSGPEGDSKMSFSKTHSTATMPPPINPI
 SEG xxxxxxxxxxxxxxxxxxxxxxxxx.....
 PRD hhhhhhhhhhhhhhhhhhhhhhhhhhhccccccccccccccccccccccccchhh

35

SEQ LASLQHNSILTPTRVSSSATKQKVLSPPHIKADFNLADECEEDPFDNLELKTIKEEL
 SEG
 PRD hhhhhccccccccccccchhhhhccccccccchhhhhccccccccccccccccchhhh

40

SEQ RNILVGTTGPIMAQLLDNNLPRGGSGSVLQDEEVLASLERATLDFKPLHKPNGFITLPQL
 SEG
 PRD hhhhhccccchhhhhccccccccccccchhhhhhhhhhhcccccccccccccccc

45

SEQ GNCEKMSLSSKVSLPPIPAVSNIKSLSPKLDSDDSNQKTA LASTFHSTSCLRNGTFQN
 SEG
 PRD cccccccccccccccccccccccccccccccccccccchhhhhhhhhcccccccccccc

50

SEQ SLKPSTQSSASELNGHHTLGLSALNLDSGTEMPALTSSQMPSSLVLSVCTEESPPNTGP
 SEG
 PRD ccc

55

SEQ TVTPPNFSVSQVPNMPSCPQAYSELQMLSPSERQCVETVVMGYSYECVLRAMKKGENI
 SEG
 PRD cccccccccccccccccccccchhhhhhhccccccccchhhhhhhccccchhhhhhhccchh

SEQ EQLDYLFAHGQLCEKGFDPLLVEEALEMHQCSEEKMMEFLQLMSKFEMGFELKDIKEV
 SEG
 PRD hhhhhhhhhhhccccccccchhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

SEQ LLLHNNDQDNALEDLMARAGAS

SEG
 PRD hhcccccchhhhhhhhhhccc

5 (No Prosite data available for DKFZphtes3_1On10.1)

(No Pfam data available for DKFZphtes3_1On10.1)
 DKFZphtes3_1lal7

10

group: transmembrane protein

15 DKFZphtes3_1lal7 encodes a novel 428 amino acid protein without similarity to known proteins.

The novel protein contains 2 transmembrane regions and one leucine zipper. The protein is ubiquitously expressed with higher abundance in stomach, brain and testis.

20 No informative BLAST results; No predictive prosite, pfam or SCOP motifs.

25 The new protein can find application in studying the expression profile of testis-specific genes and as a new marker for testicular cells.

unknown protein

30 Pedant: TRANSMEMBRANE 2
 perhaps differential polyadenylation

Sequenced by Qiagen

35 Locus: unknown

Insert length: 2591 bp
 Poly A stretch at pos. 2570, polyadenylation signal at pos. 2548

40

1	CTCTCCTGCG	CCCTCTGGAG	GAAGTGAGAA	GAGTCAGTCC	CACCCAGCTG
51	CCGCCTGGTA	TCTGGGCTCC	AGGCCACCGA	GTATTGAGCC	CCCAGCCACG
101	GAGCCCTTAG	CACACACCTC	CCCCACAGGT	CCTGGAGATG	TGGCTGAGCT
151	ACCTGCAGCC	GTGGCGGTAC	GCGCCTGACA	AGCAGGCTCC	GGGCAGCGAC
201	TCCCAGCCCC	GGTGTGTGTC	GGAGAAATGG	GCACCCCTTG	TCCAGGAGAA
251	CCTGCTGATG	TACACCAAGT	TGTTTGTGGG	CTTCTGAAC	CGCGCGCTCC
301	GCACAGACCT	GGTCAGCCCC	AAGCACGCGC	TCATGGTGT	CCGAGTGGCC
351	AAAGTCTTG	CCCAAGCCAA	CCTGGCTGAG	ATGATTGAGA	AAGGTGAGCA
401	GCTATTCTG	GAGCCAGAGC	TGGTCATCCC	CCACCGCCAG	CACCGACTCT
451	TCACGGCCCC	CACATTCACT	GGGAGCTTCC	TGTCACCCCTG	GCCACCAAGCG
501	GTCACTGATG	CCTCCTTCAA	GGTGAAGAGC	CACGTTCTACA	GCCTGGAGGG
551	CCAGGACTGC	AAGTACACCC	CGATGTTGG	GCCCCGAGGCC	CGCACCCCTGG
601	TCCTGCGCCT	CGCTCAGCTC	ATCACACAGG	CCAAACACAC	AGCCAAGTCC
651	ATCTCCGACC	AGTGTGCGGA	GAGCCCCGGCT	GGCCACTCCT	TCCTCTCATG
701	GCTGGGCTTT	AGCTCCATGG	ACACCAATGG	CTCCTACACA	GCCAACGACC
751	TGGACGAGAT	GGGGCAAGAC	AGTGTCCGGA	AGACAGATGA	ATACCTGGAG
801	AAGGCCCTGG	AGTACCTGCG	CCAGATATTC	CGGCTCAGCG	AAGCGCAGCT
851	CAGGCAGTTC	ACACTCGCCT	TGGGCACCAAC	CCAGGATGAG	AATGGAAAAAA

901 AGCAACTCCC CGACTGCATC GTGGGTGAGG ACGGACTCAT CCTTACGCC
 951 CTGGGGCGGT ACCAGATCAT CAATGGGCTG CGAAGGTTTG AAATTGAGTA
 1001 CCAGGGGGAC CCGGAGCTGC AGCCCATCCG GAGCTATGAG ATGCCAGCT
 1051 TGGTCCGCAC ACTCTTTAGG CTGTCGTCTG CCATCAACCA CAGATTGCA
 5 1101 GGACAGATGG CGGCTCTGTG TTCCCGGGAT GACTTCCTCG GCAGCTTCTG
 1151 TCGCTACAC CTCACAGAAC CTGGGCTGGC CAGCAGGCAC CTGCTGAGCC
 1201 CTGTGGGGCG GAGGCAGGTG GCCGGCCACA CCCGGGGCCC CAGGCTCAGC
 1251 CTGCGCTTCC TGGGCAGTTA CGGACGCTG GTCTCGCTGC TGCTGGCCTT
 1301 CTTCGTGGCC TCTCTGTTCT GCCTGGGCC CCTCCCATGC ACGCTGCTGC
 10 1351 TCACCCCTGGG CTATGTCCTC TAGGCCCTCTG CCATGACACT GCTGACCGAG
 1401 CGGGGGAAGC TGCACCAGCC CTGAAGGGTGT CAGCTGCCCT CAGAGCAGGC
 1451 TGGAGGGATT TGCCACACAG CCCCACCCCTT GGGCTGAGAG GACCTGGGAA
 1501 GCCCCCTCCAG GAGGGAACAC GGTACATCCTC GGGCTTCTGG AGCBBBBB
 1551 CTGAGCCGC AGAGGCATCT GGAGGAAACG CAACCAAGAA AGGAAGGCAG
 15 1601 GTGGGCCCCA GCAAAGGAGT AGCTGCCAGG GCTAACACAGC TACGCTCTGT
 1651 GACAGCGCAG AGCTCAGCGC CGGCCCTTCC CTCCCTCCGC CAAGGACTCA
 1701 CGGCAAGCC AGCTCTCGGG GCCTTTTTTC CAGTGCCCAT TTGGCTACTC
 1751 TGCTGCACCA AGCTTGGGAG CCAGCCTGCC AACAGCCACC TGGGCCCTGGC
 20 1801 CTCCCCACTG GCTGGCCTTG AGGTTGGCAG AGTGGGTTGT GGCGCTTCCT
 1851 CTCTCTGTGT GGGACCAGGA CAGTGGCTTA AGTCTCCACT CCAGGAAAGA
 1901 ATCAAAGTTT CTAGAGTTGT GAGAAAACCA GAGAGTGGCT GTCCTGATTC
 1951 TTCACTGTGA GGGGCCTTCT TCATGTTCTC CCAGCTGTT CAAAGACTGGG
 2001 CCGTAGAATT CCATGTTCA GGAGCCTAAG ACCCTCCCAG AGCCCAGGGG
 25 2051 CTTCACCGCA GACCCCAAGC CATTGAGCAC ATCACCCAAA GCAGTGGCCA
 2101 ACATCGCGGA CCCCTGTGCC TTGTCACAGA TGGGTGCTGG TCCTCAGGCG
 2151 TTGGGGACAC TGCTGGGTGCG ATGGGGTCGG ATTCTGCCAG TTTCTGCTCT
 2201 GCAGCCAAG ATGGTCAGAA GCATTGTACAC TTCAGTAACA TCAAGTGCTC
 2251 AAAGACATGG CAACCCTTCA GTGGTACTTA AGTATTCAAA ATATAACACT
 2301 ACAGATTCTC TGACAGAAAC CAGCACGGGG TCTTCACCTT CATTACCCCC
 30 2351 ACAGGGGACA TGCGAGGGAG AACAGCATCT CAGTGGTGAT TTCCAAACCA
 2401 AGCCTTTGTT TTGGGTGTTG GGTGGGGGG GTTTGCTTTA ATGTTTTGAA
 2451 AATTGAAAT GTTGGGCTTT TTATTTTGAT GTAAACTGAG AATAATGGCA
 2501 TTTAGGGCC TGTGACCAAA AATGAAGCTT GTAACGACCA TGGATCTGAA
 2551 TAAACATGTC CTTGCTTCTG AAAAAAAA AAAAAAAA A
 35

BLAST Results

40 Entry AF052134 from database EMBLNEW:
 Homo sapiens clone 23585 mRNA sequence.
 Score = 5765, P = 2.9e-254, identities = 1155/1156
 3' UTR

45

Medline entries

50 No Medline entry

Peptide information for frame 3

55

ORF from 138 bp to 1421 bp; peptide length: 428
 Category: putative protein

Classification: Transmembrane proteins unclassified
Prosite motifs: LEUCINE_ZIPPER (404-425)

5	1	MWLSYLPQWRY	YAPDKQAPGSDS	DSQPRCVSEKWW	WAPFVQENLL	MYTKLFGVGL
	51	NRALRTDVLSS	PKHALMVFRV	AKVFAQPMLA	EMIQQGEQLF	LEPELVIPHR
	101	QHRLFTAPTF	TGSFLSPWP	AVTDASFKV	SHVYSLEGQD	CKYTPMFGE
	151	ARTLVLVRLAQ	LITQAKHTAK	SISDQCAESP	AGHSFLSWLG	FSSMDTNGSY
10	201	TANDLDEMGQ	DSVRKTDEYL	EKALEYLRQI	FRLSEAQLRQ	FTLALGTTQD
	251	ENGKKQLPDC	IVGEDGLILT	PLGRYQIING	LRRFEIEYQG	DPELQPIRSY
	301	EIASLVRTLF	RLSSAINHRF	AGQMAALCSR	DDFLGSFCRY	HLETEPGLASR
	351	HLLSPVGRRQ	VAGHTRGPRL	SLRFLGSYRT	LYSLLL AFFV	ASLFCVGPLP
	401	CTLLLTLGYY	LYASAMTLLT	ERGKLHQP		

15

BLASTP hits

No BLASTP hits available

Alert BLASTP hits for DKFZphes3_llal7, frame 3

No Alert BLASTP hits found

25 Pedant information for DKFZphtes3_11a17, frame 3

Report for DKFZphes3 11a17.3

```

30      [LENGTH] 428
      [MW]    48274.93
      [pI]    8.92
35      [PROSITE] LEUCINE_ZIPPER 1
      [KW]    TRANSMEMBRANE 2
      [KW]    LOW_COMPLEXITY    7.48 %

```

SEQ FTLALGTTQDENKKQLPDCIVGEDGLILTPLGRYQIINGLRRFEIEYQGDPELQPIRSY
SEG
PRD hhhhhhhcc
MEM
5
SEQ EIASLVRTLFRLLSSAINHRFAGQMAALCSRDDFLGSFCRYHLTEPGLASRHLSPVGRRQ
SEG
PRD hhhhhhhhhhhhhhhhhhhhhhhhhhhhhcccccccccccccccccccccccccccc
MEM
10
SEQ VAGHTRGPRLSLRFLGSYRTLVSLLL AFFVASLFCVGPLPCTLLLTLGYVLYASAMTLLT
SEGxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx.....
PRD ccc
MEMMM
15
SEQ ERGKLHQEP
SEG
PRD hhhcccccc
MEM
20

Prosite for DKFZphtes3_11a17.3

25 PS000029 404->426 LEUCINE_ZIPPER P00C000029

(No Pfam data available for DKFZphtes3_11a17.3)

DKFZphes3_llc22

5 group: signal transduction

DKFZphes3_llc22 encodes a novel 482 amino acid protein with partial similarity to mouse PC32b.

10 The novel protein contains WD-repeats. WD-repeat proteins are known as regulatory elements in a large variety of pathways. The repeats form a propeller like structure, which serves as a platform for protein/protein interaction. The new protein is ubiquitously expressed, indicating that it takes an essential
 15 regulatory function in the cell.

The new protein can find application in modulating/blocking of regulatory pathways.

20 similarity to mouse PC32b

perhaps complete cds.

contains WD-Repeats: cf. BLASTX-S37b94

25 perhaps differential polyadenylation

Sequenced by Qiagen

Locus: /map="1q23.2-24.3"

30 Insert length: 1952 bp
 Poly A stretch at pos. 1932, polyadenylation signal at pos. 1912

35	1	GAAGCAAGTG	AGGTTGCACA	AAGCAATAGA	GGACCGAGGAA	GATCTCGACC
	51	CAGAGGTGGA	ACAAGTCAAT	CAGATATTTC	AACTCTTCCT	ACGGTCCCCAT
	101	CAAGTCCTGA	TTTGGAAAGTG	AGTGAAGACTG	CAATGGAAGT	AGATACTCCA
	151	GCTGAACAAT	TTCTTCAGCC	TTCTACATCC	TCTACAATGT	CAGCTCAGGC
	201	TCATTGACA	TCATCTCCC	CAGAAAGCCC	TCATTTCTACT	CCTTGCTAT
40	251	CTTCTCCAGA	TAGTGAACAA	AGGCAGTCTG	TTGAGGCATC	TGGACACCAAC
	301	ACACATCATC	AGTCTGATTC	TCCTTCTTCT	GTGGTTAACAA	AACAGCTCGG
	351	ATCCATGTCA	CTTGACGAGC	AACAGGATAA	CAATAATGAA	AAGCTGAGCC
	401	CCAAACCCAGG	GACAGGTGAA	CCAGTTTTAA	GTTTGCACTA	CAGCACAGAA
	451	GGAACAACTA	CAAGCACAAT	AAAAGTGAAC	TTTACAGATG	AATGGAGCAG
	501	TATAGCATCA	AGTTCTAGAG	GAATTGGGAG	CCATTGCAAA	TCTGAGGGTC
	551	AGGAGGAATC	TTTCGTCCC	CAGAGCTCAG	TGCAACCAAC	AGAAGGGAGAC
	601	AGTGAACCAA	AAGCTCTGA	AGAATCATCA	GAGGATGTGA	CAAATATCA
	651	GGAAGGAGTA	TCTGCAGAAA	ACCCAGTTGA	GAACCATATC	AATATAACAC
	701	AATCAGATAA	GTTCACAGCC	AAGCCATTGG	ATTCCAACTC	AGGAGAAAGA
50	751	AATGACCTCA	ATCTTGATCG	CTCTTGTGGG	GTTCCAGAAG	AATCTGCTTC
	801	ATCTGAAAAAA	GCCAAGGAAC	CAGAAACTTC	AGATCAGACT	AGCACTGAGA
	851	GTGCTACCAA	TGAAAATAAC	ACCAATCTG	AGCCTCAGTT	CCAAACAGAA
	901	GCCACTGGGC	CTTCAGCTCA	TGAAGAAACA	TCCACCCAGGG	ACTCTGCTCT
	951	TCAGGACACA	GATGACAGTG	ATGATGACCC	AGTCTGTATC	CCAGGTGCAA
55	1001	GGTATCGAGC	AGGACCTGGT	GATAGACGCT	CTGCTGTTGC	CCGTATTCA
	1051	GAGTTCTTCA	GACGGAGAAA	AGAAAGGAAA	GAAATGGAAG	AATTGGATAC
	1101	TTTGAACATT	AGAAGGCCGC	TAGAAAAAT	GGTTTATAAA	GGCCATCGCA
	1151	ACTCCAGGAC	AATGATAAAA	GAAGCCAATT	TCTGGGGTGC	TAACCTTGTA

1201 ATGAGTGGTT CTGACTGTGG CCACATTTTC ATCTGGGATC GGCACACTGC
 1251 TGAGCATTG ATGCTTCTGG AAGCTGATAA TCATGTGGTA AACTGCCTGC
 1301 AGCCACATCC GTTGACCCA ATTTAGCCT CATCTGGCAT AGATTATGAC
 1351 ATAAAGATCT GGTCAACCATT AGAAGAGTCA AGGATTTTA ACCGAAAAGT
 5 1401 TGCTGATGAA GTTATAACTC GAAACGAACt CATGCTGGAA GAAACTAGAA
 1451 ACACCATTAC AGTTCCAGCC TCTTCATGT TGAGGATGTT GGCTTCACTT
 1501 AATCATATCC GAGCTGACCG GTTGGAGGGT GACAGATCAG AAGGCTCTGG
 1551 TCAAGAGAAT GAAAATGAGG ATGAGGAATA ATAAACTCTT TTTGGCAAGC
 1601 ACTTAAATGT TCTGAAATT GTATAAGACA TTTATTATAT TTTTTCTTT
 10 1651 ACAGAGCTT AGTCAATT TAAGGTTATG GTTTTTGGAG TTTTTCCCTT
 1701 TTTTTGGAT AACCTAACAT TGGTTGGAA TGATTGTGTG CATGATTG
 1751 GGAGATTGTA TAAAACAAA CTAGCAGAAT GTTTTTAAAAA CTTTTGCCG
 1801 TGTATGAGGA GTGCTAGAAA ATGCAAAGTG CAATATTTTC CCTAACCTTC
 1851 AAATGTGGGA GCTTGGATCA ATGTTGAAGA ATAATTTCA TCATAGTGA
 1901 AATGTTGGTT CAAATAAATT TCTACACTTG CCAAAAAAAA AAAAAAAA
 1951 AA

BLAST Results

20

Entry HS702J19 from database EMBL:
 Human DNA sequence *** SEQUENCING IN PROGRESS *** from clone
 702J19
 25 Score = 2043, P = 5.8e-252, identities = 425/445
 10 exons matching Bp 316-1932

Entry HS536148 from database EMBL:
 human STS WI-6347.
 30 Score = 1203, P = 1.5e-47, identities = 247/252

Entry HS703H14 from database EMBLNEW:
 Human DNA sequence from clone 703H14 on chromosome 1q23.2-24.3
 35 Score = 1307, P = 1.1e-51, identities = 263/265
 2 exons matching Bp 1-316

Medline entries

40

93026383:
 Bergsagel PL, Timblin CR, Eckhardt L, Laskov R, Kuehl WM.;
 Sequence and
 45 expression of a murine cDNA encoding PC32b, a novel
 gene expressed in plasmacytomas but not normal plasma cells.
 Oncogene
 1992 Oct;7(10):2059-64

50

Peptide information for frame 1

55

ORF from 133 bp to 1578 bp; peptide length: 482
 Category: similarity to known protein
 Classification: Protein management

Prosite motifs: MYB_1 (410-418)

5 1 MEVDTPAEGQF LQPSTSSSMS AQAHSTSSPT ESPHSTPLLS SPDSEQRQSV
 51 EASGHHTHHQ SDSPSSVVNK QLGMSLDEQ QDNNNEKLSP KPGTGEPVLS
 101 LHystEGTTT STIKLNFTDE WSSIASSSRG IGSHCKSEGQ EESFVPQSSV
 151 QPPEGDSETK APEESEEDVT KYQEGVSAEN PVENHINITQ SDKFTAKPLD
 201 SNSGERNDLN LDRSCGVPEE SASSEKAKEP ETSDDQTSTES ATNENNTNPE
 251 PQFQTEATGP SAHEETSTRD SALQDTDDSD DDPVLIPGAR YRAGPGDRRS
 10 301 AVARIQEFFF RRKERKEMEE LDTLNIRRPL VKMVYKGHRN SRTMIKEANF
 351 WGAFVMSGSG DCGHIFIWDR HTAEHMLLE ADNHVVNCLQ PHPFDPILAS
 401 SGIDYDIKIW SPLEESRIFN RKLADEVITR NELMLEETRN TITVPASFML
 451 RMLASLNHIR ADRLEGDRSE GSGQENENED EE

15

BLASTP hits

No BLASTP hits available

20 Alert BLASTP hits for DKFZphtes3_11c22, frame 1
 TREMBLNEW:HS06631_1 gene: "H32b"; Human (H32b) mRNA, complete
 cds., N
 25 = 1, Score = 278, P = 4e-22
 PIR:S37694 gene PC32b protein - mouse, N = 1, Score = 265, P =
 2.9e-20
 30 PIR:T05b7b hypothetical protein F20M13.40 - Arabidopsis thaliana,
 N =
 1, Score = 240, P = 6.3e-18
 35 >TREMBLNEW:HS06631_1 gene: "H32b"; Human (H32b) mRNA, complete
 cds.
 Length = 597
 HSPs:
 40 Score = 278 (41.7 bits), Expect = 4.0e-22, P = 4.0e-22
 Identities = 63/148 (42%), Positives = 94/148 (63%)
 Query: 335 YKGHRNSRTMIKEANFWG--
 45 ANFVMSGSDCGHIFIWDRHTAEHMLLEADNH-VVNCLQP 391
 YKGHRN+ T +K NF+G + FV+SGSDCGHIF+W++ + + + +E D
 VVNCL+P
 Sbjct: 428 YKGHRNNAT-
 VKGVNFYGPKSEFVVSGSDCGHIFLUWEKSSCQIIQFMEGDKGGVVNCLEP 486
 50 Query: 392 HPFDPILASSGIDYDIKIWSPLEESRIFNRKLADEVITRNELLEE-
 TRNTITVPASFML 450
 HP P+LA+SG+D+D+KIW+P E+ L D VI +N+ +E + +
 + S ML
 55 Sbjct: 487 HPHLPVLATSGLDHDVKIWAAPTAEASTELTGLKD-
 VIKKNKRERDEDSDLHQTDLFDSHML 545
 Query: 451 RMLASLNHIRADRLEGD-RSEGSGQENENEDE 481

L ++H+R R R G G + + DE
Sbjct: 546 WFL--MHHLRQRRHHRRWREPGVGATDADSDE 575

5 Pedant information for DKFZphtes3_llc22, frame 1

Report for DKFZphes3_llc22.l

```

10  [LENGTH] 482
    [MW] 53470.92
    [pI] 4.72
15  [CHOMOL] PIR:T04961 hypothetical protein T12J5.10 -
    Arabidopsis thaliana 2e-22
    [FUNCAT] 30.09 organization of intracellular transport vesicles
              [S. cerevisiae, YDL145c] 4e-05
    [FUNCAT] 08.07 vesicular transport (golgi network, etc.)  [S.
    cerevisiae, YDL145c] 4e-05
20  [FUNCAT] 99 unclassified proteins      [S. cerevisiae, YCL039w]
    2e-04
    [SUPFAM] WD repeat homology 4e-21
    [PROSITE] MYB_1 1
    [KW] Alpha_Beta
25  [KW] LOW_COMPLEXITY 17.01 %

```

SEQ EE
SEG ..
PRD CC

5

Prosite for DKFZphtes3_11c22.1

10 PS00037 410->419 MYB_1 PDOC00037

(No Pfam data available for DKFZphtes3_11c22.1)

DKFZphtes3_11d21

5 group: signal transduction

DKFZphtes3_11d21 encodes a novel 922 acid protein and contains the full coding sequence of the human Nedd-4-like ubiquitin-protein ligase.

10 The novel protein contains four WW domains. The WW/rsp5/WWP domain has been shown to bind proteins with particular proline-motifs, and thus resembles somewhat SH3 domains. It is frequently associated with other domains typical for proteins in 15 signal transduction processes. There is also a ubiquitin-protein ligase activity reported. The protein is believed to play an important role in protein-degradation pathways.

20 The new protein can find application in diagnosis of diseases due to unnormal protein degradation like muscular dystrophy or multiple sclerosis as well as in modulating the half life of specific proteins and in expression profiling.

25 similarity to Nedd-4-like ubiquitin-protein ligase (Homo sapiens)

Sequenced by Qiagen

Locus: unknown

30 Insert length: 3382 bp
Poly A stretch at pos. 3362, polyadenylation signal at pos. 3345

35	1 ATTTTGGGAC ATGGCCACTG CTTCACCAAG GTCTGATACT AGTAATAACC
	51 ACAGTGGAAAG GTTCAGTTA CAGGTAACGT TTTCTAGTGC CAAACTAAAG
	101 AGAAAAAAAGA ACTGGTTCGG AACAGCAATA TATACAGAAG TAGTTGTAGA
	151 TGGAGAAATT ACGAAAACAG CAAAATCCAG TAGTTCTTCT AATCCAAAAT
	201 GGGATGAACA GCTAACTGTA AATGTTACGC CACAGACTAC ATTGGAAATT
	251 CAAGTTTGGGAA GCATCGCAC TTTAAAAGCA GATGCTTTAT TAGGAAAAGC
	301 AACGATAGAT TTGAAACAAG CTCTGTTGAT ACACAATAGA AAATTGGAAA
	351 GAGTGAAAGA ACAATTAAAA CTTTCCTTGG AAAACAAGAA TGGCATAGCA
	401 CAAACTGGTG AATTGACAGT TGTGCTTGAT GGATTGGTGA TTGAGCAAGA
	451 AAATATAACA AACTGCAGCT CATCTCCAAC CATAGAAATA CAGGAAAATG
	501 GTGATGCCTT ACATGAAAAT GGAGAGCCTT CAGCAAGGAC AACTGCCAGG
	551 TTGGCTGTTG AAGGCACGAA TGGAAATAGAT AATCATGTAC CTACAAGCAC
	601 TCTAGTCCAA AACTCATGCT GCTCGTATGT AGTTAATGGAA GACAACACAC
	651 CTTCATCTCC GTCTCAGGTT GCTGCCAGAC CCAAAAATAC ACCAGCTCCA
	701 AAACCACCTCG CATCTGAGCC TGCCGATGAC ACTGTTAATG GAGAACATC
	751 CTCATTTGCA CCAACTGATA ATGCGTCTGT CACGGGTACT CCAGTAGTGT
	801 CTGAAGAAAA TGCCCTGTC CCAAATTGCA CTAGTACTAC TGTTGAAGAT
	851 CCTCCAGTTC AAGAAATACT GACTTCCTCA GAAAACAATG AATGTATTCC
	901 TTCTACCAAGT GCAGAATTGG AATCTGAAGC TAGAAGTATA TTAGAGCCTG
	951 ACACCTCTAA TTCTAGAAGT AGTTCTGCTT TTGAAGCAGC CAAATCAAGA
55	1001 CAGCCAGATG GGTGTATGGA TCCTGTACGG CAGCAGTCTG GGAATGCCAA
	1051 CACAGAAACC TTGCCATCAG GGTGGGAACA AAGAAAAGAT CCTCATGGTA
	1101 GAACCTATTA TGTGGATCAT AATACTCGAA CTACCACATG GGAGAGACCA
	1151 CAACCTTTAC CTCCAGGTTG GGAAAGAAGA GTTGATGATC GTAGAAGAGT

1201 TTATTATGTG GATCATAACA CCAGAACAAAC AACGTGGCAG CGGCCTACCA
 1251 TGGAACTGTG CCGAAATTG GAACAGTGGC AATCTCAGCG GAACCAATTG
 1301 CAGGGAGCTA TGCAACAGTT TAACCAACGA TACCTCTATT CGGCTTCAT
 1351 GTTAGCTGCA GAAAATGACC CTTATGGACC TTTGCCACCA GGCTGGAAA
 5 1401 AAAGAGTGGG TTCACAGAC AGGGTTTACT TTGTGAATCA TAACACAAAAA
 1451 ACAACCCAGT GGGAAAGATCC AAGAACTCAA GGCTTACAGA ATGAAGAAC
 1501 CCTGCCAGAA GGCTGGGAAA TTAGATATAC TCAGTAAGGT GTAAGGTACT
 1551 TTGTTGATCA TAACACAAGA ACAACAAACAT TCAAAAGATCC TCGCAATGGG
 1601 AAGTCATCTG TAACTAAAGG TGGTCCACAA ATTGCTTATG AACGCGGCTT
 10 1651 TAGGTGGAAG CTTGCTCACT TCCGTTATTT GTGCCAGTCT AATGCACTAC
 1701 CTAGTCATGT AAAGATCAAT GTGTCGGC AGACATGTT TGAAGATTCC
 1751 TTCCAACAGA TTATGGCATT AAAACCCAT GACTTGAGGA GGCCTTATA
 1801 TGTAATATTT AGAGGAGAG AAGGACTTGA TTATGGTGGC CTAGCGAGAG
 1851 AATGGTTTTT CTTGCTTCA CATGAAGTT TGAACCCAAT GTATTGCTTA
 15 1901 TTTGAGTATG CGGGCAAGAA CAACTATTGT CTGCAGATAA ATCCAGCATC
 1951 AACCATTAAT CCAGACCATC TTTCTACTT CTGTTTCTT GGTGTTTTA
 2001 TTGCCATGGC ACTATTTCAT GGAAAGTTTA TCGATACTGG TTTCTCTTTA
 2051 CCATTCTACA AGCGTATGTT AAGTAAAAAA CTTACTATTA AGGATTGG
 2101 ATCTATTGAT ACTGAATT TAACTCCCT TATCTGGATA AGAGATAACA
 20 2151 ACATTGAAGA ATGTGGCTTA GAAATGTA TTTCTGTTGA CATGGAGATT
 2201 TTGGGAAAAG TTACTTCACA TGACCTGAAG TTGGGAGGTT CCAATATTCT
 2251 GGTGACTGAG GAGAACAAAG ATGAATATAT TGGTTTAATG ACAGAATGGC
 2301 GTTTTCTCG AGGAGTACAA GAACAGACCA AAGCTTCCCT TGATGGTTTT
 2351 AATGAAGTTG TTCTCTTCA GTGGCTACAG TACTTCGATG AAAAAGAATT
 25 2401 AGAGGTTATG TTGTGTGGCA TGCAAGGAGGT TGACTTGGCA GATTGGCAGA
 2451 GAAATACTGT TTATCGACAT TATACAAGAA ACAGCAAGCA AATCATTGG
 2501 TTTGGCAGT TTGTGAAAGA GACAGACAAAT GAAGTAAGAA TGCGACTATT
 2551 GCAGTTGTC ACTGGAACCT GCCGTTTAC TCTAGGAGGA TTTGCTGAGC
 2601 TCATGGGAAG TAATGGGCCT CAAAAGTTT GCATTGAAAA AGTTGGCAA
 30 2651 GACACTTGGT TACCAAGAAC CCATACATGT TTTAATCGCT TGGATCTACC
 2701 ACCATATAAG AGTATGAAAC AACTAAAGGA AAAACCTCTT TTTGCAATAG
 2751 AAGAGACAGA GGGATTGGA CAAGAATGAA TGTGGCTTCT TATTTGGAG
 2801 GAGCTCTTGC ATTTAAATAC CCCAGCCAAG AAAAATTGCA CAGATAGTGT
 2851 ATATAAGCTG TTCATTCTGT ACAGTGAATT TCCGAACCT CTCAAAGTAT
 35 2901 GTTTCCGTT CTCCACAGA AATATGCAAA ACAGTCTCATC CTTTCTACT
 2951 TTATTTATG TTCCCTTGAA ATGACTGACC AGGAAAAAGA TCATCCTTAA
 3001 ATTTTGAAGC AAGTGAGAGA CTTTATTAAA AATACATATA TATCTATATA
 3051 AACATATATG ATAGTGGCTC TAGTTTATA GAGCTCCAAG TGTATTAAC
 3101 ATGACAGCCA TTCATTCTA AAGATCTGGA TTTGCTTAC CTTGTTAATA
 40 3151 TTATCTAGGG GAAAAGTGC AAATTGCTCC ATGTTCTTCT CTCCCTTATG
 3201 TAACATCTCC TGAGGGTGT TAGTTGCATG GCTGTTCAGA AAGGTATTAA
 3251 GGGCTTAGGC CAAATCTTAC TTTGAGTATG TTAAAAAAA AAAAATGCTG
 3301 CTGGCTTTTC TGAAGACAGG TGCTTGAAC TGTCAAGTTG TTTAAATAA
 3351 ATACAATAGT TGAAAAAAAAA AAAA A A
 45

BLAST Results

50 No BLAST result

Medline entries

55

97313427:
 Pirozzi G, McConnell SJ, Uveges AJ, Carter JM, Sparks AB, Kay BK,
 Fowlkes DM; Identification of novel human WW domain-containing

proteins

by cloning of ligand targets. J Biol Chem 1997 Jun
272(23):14611-6

5

Peptide information for frame 2

10 ORF from 11 bp to 277b bp; peptide length: 922
 Category: known protein
 Classification: Protein management
 Prosite motifs: WW_DOMAIN_1 (355-380)

15 WW_DOMAIN_1 (387-412)
 WW_DOMAIN_1 (462-487)
 WW_DOMAIN_1 (502-527)

20 1 MATASPRSDT SNNHSGRLQL QVTVSSAKLK RKKNWFGTAI YTEVVVDGEI
 51 TKTAKSSSSS NPKWDEQLTV NVTPQTTLEF QVWSHRTLKA DALLGKATID
 101 LKQALLIHN R KLERVKEQLK LSLENKNGIA QTGELTVVLD GLVIEQENIT
 151 NCSSSPTIEI QENGDALHEN GEPSARTTAR LAVEGTNGID NHVPTSTLVQ
 201 NSCCSYVVNG DNTPSSPSQV AARPKNTPAP KPLASEPADD TVNGESSFA

25 251 PTDNASVTGT PVVSEENALS PNCTSTTVED PPVQEILTSS ENNECIPSTS
 301 AELESEARSI LEPDTNSRS SSAFEAAKS R QPDGCMDPVR QSGNANTET
 351 LPSGW EQRKD PHGRTYYVDH NTRTTTWERP QPLPPGWERR VDDRRRVYYV
 401 DHNTRTTTWQ RPTMESVRNF EQWQSQRNQL QGAMQQFNQR YLYSASMLAA

30 451 ENDPYGPLPP GWEKRVDSTD RVYFVNHNTR TTTFKDPRNG KSSVTKGGPQ IAYERGFRWK
 501 GWEIRYTYREG VRYFVDHNTR VS RQTLFEDS FQQIMALKPY DLRRRLYVIF
 551 LAHFRYLCQS NALPSHVKIN VS RQTLFEDS FQQIMALKPY DLRRRLYVIF
 601 RGEEGLDYGG LAREWFFLLS HEVLNPAMYCL FEYAGKNNYC LQINPASTIN
 651 PDHLSYFCFI GRFIAMALFH GKFDITGFSL PFYKRMLSKK LTIKDLIESID
 701 TEFYNSLIWI RDNNIEECGL EMYFSVDMEI LGKVTS HDLK LGGSNILVTE

35 751 ENKDEYIGLM TEWRFSSRGVQ EQTKAFLDGF NEVVPLQWLQ YFDEKELEV M
 801 LCGM QEV DLA DWQRNTVYRH YTRNSKQIIW FWQFVKETDN EVRMRLLQFV
 851 TGTCRPLPLGG FAELMGSNGP QKFCIEKVGK DTWLPRSHTC FNRLDLPPYK
 901 SYEQLKEKLL FAIEETEGFG QE

40

BLASTP hits

No BLASTP hits available

45 Alert BLASTP hits for DKFZphtes3_11d21, frame 2

No Alert BLASTP hits found

50 Pedant information for DKFZphtes3_11d21, frame 2

Report for DKFZphtes3_11d21.2

55 [LENGTH] 925
 [MW] 105650.58
 [PI] 5.60

[[HOMOL]] TREMBL:HSU96113_1 product: "WWP1"; Homo sapiens
 Nedd-4-like ubiquitin-protein ligase WWP1 mRNA, partial cds. 0.0
 [[FUNCAT]] 30.02 organization of plasma membrane [[S. cerevisiae,
 YER125w]] 1e-149
 5 [[FUNCAT]] 11.01 stress response [[S. cerevisiae, YER125w]] 1e-
 149
 [[FUNCAT]] 06.13.01 cytoplasmic degradation [[S. cerevisiae,
 YER125w]] 1e-149
 10 [[FUNCAT]] 03.10 sporulation and germination [[S. cerevisiae,
 YER125w]] 1e-149
 [[FUNCAT]] 06.07 protein modification (glycosylation, acylation,
 myristylation, palmitylation, farnesylation and processing)
 [[S. cerevisiae, YER125w]] 1e-149
 [[FUNCAT]] 03.22 cell cycle control and mitosis [[S. cerevisiae,
 15 YDR457w]] 1e-78
 [[FUNCAT]] 99 unclassified proteins [[S. cerevisiae, YJR036c]]
 7e-39
 [[FUNCAT]] 30.03 organization of cytoplasm [[S. cerevisiae,
 YKL010c]] 8e-21
 20 [[FUNCAT]] 30.10 nuclear organization [[S. cerevisiae, YKL012w]]
 6e-05
 [[FUNCAT]] 04.05.03 mrna processing (splicing) [[S. cerevisiae,
 YKL012w]] 6e-05
 [[FUNCAT]] 30.01 organization of cell wall [[S. cerevisiae,
 25 YIRO19c]] 3e-04
 [[FUNCAT]] 30.90 extracellular/secretion proteins [[S. cerevisiae,
 YIRO19c]] 3e-04
 [[FUNCAT]] 01.05.01 carbohydrate utilization [[S. cerevisiae,
 YIRO19c]] 3e-04
 30 [[BLOCKS]] BP03746E
 [[BLOCKS]] BP03761G
 [[BLOCKS]] BL00514E Fibrinogen beta and gamma chains C-terminal
 domain proteins
 [[BLOCKS]] PR00731B
 35 [[BLOCKS]] BP01566C
 [[BLOCKS]] BL01159 WW/rsp5/WWP domain proteins
 [[BLOCKS]] PR00403B
 [[BLOCKS]] PR00403A
 [[BLOCKS]] PF00632B
 40 [[BLOCKS]] PF00632A
 [[EC]] 6.3.2.19 Ubiquitin--protein ligase 1e-151
 [[PIRKW]] ligase 1e-151
 [[PIRKW]] transmembrane protein 2e-37
 [[PIRKW]] leucine zipper 2e-28
 45 [[SUPFAM]] WW repeat homology 1e-151
 [[SUPFAM]] WD repeat homology 2e-28
 [[SUPFAM]] ubiquitin ligase homolog 1e-151
 [[PROSITE]] WW_DOMAIN_1 4
 50 [[PFAM]] WW/rsp5/WWP domain containing proteins
 [[PFAM]] C2 domain
 [[KW]] Alpha_Beta
 [[KW]] LOW_COMPLEXITY 1.41 %

 55 SEQ FWDMATASPRSDTSNNHSGRLQLQVTVSSAKLKRKKNWFGTAIYTEVVVDGEITKTAKSS
 SEG
 PRD ccccccccccccccccccccceeeeeehhhhhhhhccccceeeeeeecccccccc

PRD ccccchhhhhhhhhhhhhhccccccc

5

Prosite for dkfzphes3_11d21.2

PS01159	358->384	WW_DOMAIN_1	PDOC50020
PS01159	390->416	WW_DOMAIN_1	PDOC50020
PS01159	465->491	WW_DOMAIN_1	PDOC50020
10 PS01159	505->531	WW_DOMAIN_1	PDOC50020

15

Pfam for dkfzphes3_11d21.2

HMM_NAME	C2 domain
HMM	
20 *LtVrIIeARNLWkMDMnGfSDPYVKVdMdPdpkDtkKWKTKTiWNN.GL	L V++ +A+ +K++++G+ Y +V +D++ TKT
+++ +	
Query ITKTAKSssss	23 LQVTVSSAKLKRKKNWFGTA-IYTEVVVDGE-----
25 HMM	NPVWNEEeFvFedIPyPdlqrkMLRFaVWDWDRFSRBDFIGHCi*
Query 101	NP W+ E+++ + + + L+F+VW + ++ + ++G ++
26 NPKWD-EQLTVN--VTPQTT--LEFQVWSHRTLKADALLGKAT	
30	

HMM_NAME WW/rsp5/WWP domain containing proteins

35 HMM	*LPGWEeHWDpsGRpWYYWNHETKTTQWEpp*
Query	LPSGWE+++DP GR+ YY++H+T+TT+WE+p
354	LPSGWEQRKDPHGRT-YYVDHNTRTTWERP 383
40 50-09 386 415 1 31 dkfzphes3_11d21.2 similarity to	Nedd-4-like ubiquitin-protein ligase (Homo sapiens)
Alignment to HMM consensus:	
Query	*LPGWEeHWDpsGRpWYYWNHETKTTQWEpp*
dkfzphes3	LP+GWE++ D+ R YY++H+T+TT+W++P 415
45 Query 490 1 31 dkfzphes3_11d21.2 similarity to	Nedd-4-like ubiquitin-protein ligase (Homo sapiens)
Alignment to HMM consensus:	
HMM	*LPGWEeHWDpsGRpWYYWNHETKTTQWEpp*
50 Query 481	LP+GWE++ D + R Y++NH+TKTTQWE+p 490
38-62 501 530 1 31 dkfzphes3_11d21.2 similarity to	Nedd-4-like ubiquitin-protein ligase (Homo sapiens)
Alignment to HMM consensus:	
Query	*LPGWEeHWDpsGRpWYYWNHETKTTQWEpp*
dkfzphes3	LP GWE +++ +G + Y+++H+T+TT+ ++P 530

PAGE INTENTIONALLY LEFT BLANK

DKFZphtes3_1le1?

5 group: testis derived

DKFZphtes3_1le1? encodes a novel 573 amino acid protein without similarity to known proteins.

10 No informative BLAST results; No predictive prosite, pfam or SCOP motif.

15 The new protein can find application in studying the expression profile of testis-specific genes.

15

unknown protein

20

Sequenced by Qiagen

20

Locus: unknown

25

Insert length: 2102 bp
Poly A stretch at pos. 2080, polyadenylation signal at pos. 2059

30

1 GGCCTGGGGG GCTTCCCTGG GGGGCTTGTG C GCCGGGGCCG CCTGGGCTTT
 51 CAGGTCTTCC GAGGCTGACA TTCACTGTTTC ATTCTGCCAC ACTCGGGAAC
 101 GGTGATCAGGG GAAGCATGGG GATCCGGGAG AAGCACCCAC AAAACTAGCA
 151 TCCTCCTGGG GGAGCTCGGG AATAGGATGA GTGATAATCC ACCCAGAATG
 201 GAAAGTGTGTC CTTACTGTAA GAAGCATTAA AAACGATTAA AATCCCACTT
 251 GCCATACTGT AAGATGATAG GATCAACCAT ACCTACTGAT CAAAAAGTTT
 301 ATCAGTCAA GCCAGCTACA CTCCCACGTG CTAAAAAGAT GAAAGGACCA
 351 ATCAAAGATT TAATTAAAGC TAAAGGGAAA GAGTTAGAGA CAGAGAATGA
 401 AGAAAGAAAAT TCTAAAGTTGG TGGTGGACAA ACCAGAACAG ACAGTGAAAGA
 451 CCTTTCCACT GCCAGCTGTT GGTTTGGAAA GAGCAGCTAC TACAAAGGCA
 501 GATAAAGACA TCAAGAACATC AATCCAACCA TCCTTCAAAA TGTTAAAAAA
 551 TACTAAACCA ATGACTACTT TCCAAGAAGA AACCAAGGCT CAGTTTACG
 601 CATCAGAGAA AACCTCTCTT AAAAGAGAAC TTGCCAAAGA TTTGCCCTAAA
 651 TCAGGAGAAA GTCGATGTAA TCCTTCAGAA GCTGGAGCGT CTTTACTGGT
 701 TGGCTCAATA GAAACCTTCTT TGTCAAATCA AGATAGAAAA TATTCCCAA
 751 CTCTACCTAA TGATGTACAA ACTACCTCTG GTGATCTCAA ATTGGACAAA
 801 ATTGATCCCC AAAGACAGGA ACTTCTAGTA AAATTACTAG ATGTGCTAC
 851 TGGTGATTGT CATATTTCTC CAAAGAATGT CAGTGATGGG GTTAAAAGGG
 901 TAAGAACATT ATTAAGCAAT GAGAGAGATT CCAAAGGCAG GGATCACCTC
 951 TCAGGAGTCC CTACTGATGT TACAGTTACT GAGACTCCAG AAAAGAACAC
 1001 AGAATCCCTC ATTTAACGCC TAAAGAATGAG CTCATTAGGT AAAATCAAG
 1051 TCATGGAGAA ACAAGAGAAA GGACTTACCC TGGGAGTAGA GACGTGTGGG
 1101 AGCAAAGGAA ATGCAGAGAA AAGTATGTCT GCAACAGAAA AGCAGGAACG
 1151 GACTGTCATG AGCCATGGCT GTGAGAACTT CAACACCAGG GATTCACTCA
 1201 CAGGAAAGGA GTCTCAAGGG GAAAGACCAC ATTTAAGTTT GTTCATTCG
 1251 AGGGAGACGA CTTACCAAGTT TCATTCTGTA TCGCAGTCAA GTAGTCAAAG
 1301 TCTTGCCTCT CTAGCTACAA CATTCTTCA AGAAAAGAAA GCAGAAGCCC
 1351 AGAATCATAA TTGTGTCCCT GATGTAAGG CATTAAATGGA GAGTCCCAG
 1401 GGACAGTTAT CTCTGGAGCC CAAATCTGAT AGTCAGTTCC AAGCATCACA
 1451 CACTGGGTGC CAGAGCCCTT TATGTTCAAGC CCAGCGTCAC ACTCCTCAGA
 1501 GCCCCTTCAC CAATCATGCT GCAGCTGCTG GCAGGAAGAC TCTTCGAGC
 1551 TGCAATGGGGC TGGAGTGGTT TCCAGAGCTC TATCCTGGTT ACCTTGGACT

1601 AGGGGTGTTG CCAGGGAAAGC CTCAGTGTG GAATGCAATG ACCCAGAAGC
 1651 CACAACTTAT CAGTCCCCAG GGGGAAAGAC TCTCACAAAGG CTGGATCAGG
 1701 TGCAACACCA CCATAAGGAA GAGTGGATTG GGTGGCATCA CTATGCTCTT
 1751 CACAGGATAAC TTCTGTCTGT GTTGTAGCTG GAGTTTCAGA CGTCTGAAAA
 5 1801 AATTGTGCCG ACCCCCTGCCG TGGAAGAGCA CAGTACCTCC ATGCATTGGT
 1851 GTGGCGAAGA CGACTGGGGA TTGCCGCTCT AAAACATGTT TGGATTAGGA
 1901 AGCACGTTA AGTAGGAGAA GCCTTCGTGA CTTCTCTCTA GTGCCTTCGT
 1951 GCCCTGTGTT GCCCACTGAA TTGCCCTGTA ACACCTAAGT GTAGTGGTAG
 2001 CATTAAGGGA TAGCTTTCA GCCCTCAAGG TTATCAGGAG CATTGTATC
 10 2051 ACTGCTATAA ATAAAGTAGT ATCACTTGTC ATAAAAAAAAA AAAAAAAAAA
 2101 AA

BLAST Results

15

No BLAST result

20

Medline entries

25 No Medline entry

Peptide information for frame 3

30 ORF from 177 bp to 1895 bp; peptide length: 573

Category: putative protein

Classification: no clue

1 1 MSDNPPRMEV CPYCKKPFKR LKSHLPYCKM IGSTIPTDQK VYQSKPATLP
 51 51 RAKKMKGPIK DLIKAKGKEL ETENEERN SK LVVDKPEQTV KTFPLPAVGL
 101 ERAATTKADK DIKNPIQPSF KMLKNTKPMT TFQEETKAQF YASEKTSPKR
 151 ELAKDLPKSG ESRCPNPSEAG ASLLVGSIEP SLSNQDRKYS STLPNDVQTT
 201 SGDLKLDKID PQRQELLVKL LDVPTGDCHI SPKNVSDGVK RVRTLLSNER
 251 DSKGRDHLSG VPTDVTVTET PEKNTESLIL SLKMSSLGKI QVMEKQEKG
 301 301 TLGVETCGSK GNAEKSMSAT EKQERTVMSH GCENFNTRDS VTGKESQGER
 351 PHLSLFIPRE TTQFHSVSQ SSSQSLASLA TTFLQEKKAE AQNHNCVPDV
 401 KALMESPSEGQ LSLEPKSDSQ FQASHTGCQS PLCSAQRHTP QSPFTNHAAA
 451 AGRKTLRSCM GLEWFPELYP GYLGLGVLPG KPQCWNAMTQ KPQLISPQGE
 501 RLSQGWIRCN TTIRKSGFGG ITMLFTGYFV LCCSWSFRRRL KKLCRPLPWK
 45 551 STVPPCIGVA KTTGDCRSKT CLD

BLASTP hits

50

No BLASTP hits available

Alert BLASTP hits for DKFZphtes3_1lel7, frame 3

55 No Alert BLASTP hits found

Pedant information for DKFZphtes3_1lel7, frame 3

Report for DKFZphes3_1le17.3

(No Prosite data available for DKFZphtes3_1le17.3)

55 {No Pfam data available for PKEZnhtes3_1le12_3}

5 group: testis derived

DKFZphtes3_12d18 encodes a novel 1170 amino acid protein without similarity to known proteins.

10 The EST-distribution signifies an ubiquitous expression pattern. No informative BLAST results; No predictive prosite, pfam or SCOP motifs.

15 The new protein can find application in studying the expression profile of testis-specific genes.

unknown protein

20 perhaps complete cds.

Sequenced by Qiagen

Locus: /map="13b-9 cR from top of Chr13 linkage group"

25 Insert length: 5469 bp
Poly A stretch at pos. 5449, polyadenylation signal at pos. 5420

30	1	AAGGACAGAG	GACGAGATT	TGAACGACAA	AGAGAAAAGA	GAGACAAGCC
	51	AAGGTCTACT	TCCCCAGCAG	GACAGCATCA	TTCTCCTATA	TCTTCTAGAC
	101	ATCACTCATC	TTCCTCACAA	TCAGGATCAT	CTATTCAAAG	ACATTCTCCT
	151	TCTCCTCGTC	AAAAAAAGAAC	TCCTTCACCA	TCTTATCAGC	GGACACAAAC
	201	TCCACCTTTA	CGACGCTCTG	CCTCTCCTTA	TCCTTCACAT	TCTTTGTCGT
35	251	CTCCCCAGAG	AAAGCAGAGT	CCTCCAAGAC	ATCGCTCTCC	AATGCAGAG
	301	AAAGGGAGAC	ATGATCATGA	ACGAACATTCA	CAGTCTCATG	ATCGACGCCA
	351	CGAAAGGAGG	GAAGATACTA	GGGGCAAACG	AGACAGAGAA	AAGGACTCAA
	401	GAGAAGAACG	AGAATATGAA	CAGGATCAGA	GCTCTTCTAG	AGACCACAGA
	451	GATGACAGAG	AACCTCGAGA	TGGTCGGGAT	CGGAGAGATG	CCAGAGATAC
40	501	TAGGGACCAGA	AGGGAACTAA	GAGACTCCAG	AGACATGCGG	GACTCAAGGG
	551	AGATGAGAGA	TTATAGCAGA	GATACCAAAG	AGAGCCGTGA	TCCCAGAGAT
	601	TCTCGGTCCA	CTCGTGATGC	CCATGACTAC	AGGGACCCTG	AAGGTCGAGA
	651	TACTCATCGA	AAGGAGGATA	CATATCCAGA	AGAATCCCAG	AGTTATGGCC
	701	GAAACCATT	GAGAGAAGAA	AGTCTCGTA	CGGAAATAAG	GAATGAGTCC
45	751	AGAAATGAGT	CTCGAAGTGA	AATTAGAAAT	GACCGAATGG	GCCGAAGTAG
	801	GGGGAGGGTT	CCTGAGTTAC	CTGAAAAGGG	AAGTCGAGGC	TCAAGAGGTT
	851	CTCAAATTGA	TAGTCACAGT	AGTAATAGCA	ACTATCATGA	CAGCTGGAA
	901	ACTCGAAGTA	GCTATCCTGA	AAGAGATAGA	TATCCTGAAA	GAGACAACAG
	951	AGATCAAGCA	AGGGATTCTT	CCTTGAGAG	AAGACATGGA	GAGCGAGACC
50	1001	GTCGTGACAA	CAGAGAGAGA	GATCAAAGAC	CAAGCTCACC	AATTGACAT
	1051	CAGGGAAAGGA	ATGACGAGCT	TGAGCGTGAT	GAAAGAAGAG	AGGAACGAAG
	1101	AGTAGACAGA	GTGGATGATA	GGAGAGATGA	AAGGGCTAGA	GAGAGAGATC
	1151	GGGAACGAGA	ACGAGACAGG	GAGCGGGAGA	GAGAGAGGG	ACGTGACCG
	1201	GATCGGGAAA	GAGAAAAAGA	GAGAGAACTA	GAAAGAGAGC	GTGCTAGGGA
55	1251	ACGGGAGAGA	GAAAGAGAAA	AAGAGAGAGA	TCGTGAAAGG	GATAGAGACC
	1301	GAGACCACGA	TCGAGAGCGG	GAAAGAGAGA	GGGAACGAGA	CAGGGAAAAAA
	1351	GAACGGGAAC	GAGAAAGAGA	AGAGAGAGAG	AGGGAGAGAG	AGCGAGAACG
	1401	GGAGAGAGAG	CGAGAGCGAG	AACGGGAACG	AGAAAGAGCG	AGAGAAAGGG

	1451	ATAAAGAACG	AGAACGCCAA	AGGGATTGGG	AAGACAAAGA	CAAAGGACGA
	1501	GATGACCGCA	GAGAAAAGCG	AGAAGAGATC	CGAGAAGATA	GGAATCCAAG
	1551	AGATGGACAT	GATGAAAGAA	AATCAAAGAA	GCGCTATAGA	AATGAAGGGA
5	1601	GTCCCAGCCC	TAGACAGTCC	CCGAAGCGCC	GGCGTGAACA	TTCTCCGGAC
	1651	AGTGATGCCT	ACAAACAGTGG	AGATGATAAA	AATGAAAAAC	ACAGACTCTT
	1701	GAGCCAAGTT	GTACGACCTC	AAGAATCTCG	TTCTCTTAGT	CCCTCGCACC
	1751	TCACAGAAGA	CAGACAGGGT	AGATGGAAAG	AGGAGGATCG	TAAACCAGAA
	1801	AGGAAAGAGA	GTTCAAGGCG	CTACGAAGAA	CAGGAACCTCA	AGGAGAAAGT
10	1851	TTCTTCTGTA	GATAAACAGA	GAGAACAGAC	AGAAATCTG	GAAAGCTCAA
	1901	GAATGCGTGC	ACAGGACATT	ATAGGACACC	ACCAGTCTGA	AGATCGAGAG
	1951	ACATCTGATC	GAGCTCATGA	TGAAAACAAG	AAGAAAGCAA	AAATTCAAAA
	2001	GAAACCAATT	AAGAAAAAGA	AAGAGGATGA	TGTTGGAATA	GAGAGGGTA
	2051	ACATAGAGAC	AACATCTGAA	GATGGTCAAG	TATTTTCACC	AAAAAAAGGA
15	2101	CAGAAAAAGA	AAAGCATTGA	AAAAAAACGT	AAAAAAATCCA	AAGGTGATT
	2151	TGAATTCT	GATGAAAGAAG	CAGCCAGCA	AAAGTAAGAAG	AAAAGAGGCC
	2201	CACGGACTCC	CCCTATAACA	ACTAAAAGAGG	AATTGGTTGA	AATGTGCAAT
	2251	GGTAAGAATG	GTATTCTAGA	GGACTCCCAG	AAAAAAAGAAAG	ATACAGCATT
	2301	CAGTGACTION	TCTGATGAGG	ATGTCCTGTA	CCGTACAGAG	GTGACAGAAG
20	2351	CAGAGCATAAC	TGCCACCGCC	ACGACTCCTG	GTAGTACCCCC	TTCTCCCTTA
	2401	TCTTCTCTTC	TTCCCTCTCC	ACCGCCTGTG	GCTACTGCCA	CTGCTACAAAC
	2451	TGTGCCTGCA	ACTCTTGCTG	CCACTACTGC	TGCTGCCGCC	ACCTCTTCA
	2501	GCACATCTGC	CATCACTATT	TCCACCTCTG	CCACCCCCAC	CAATACCACC
	2551	AATAATACTT	TTGCCAATGA	AGACTCACAC	AGAAAATGCC	ACAGAACACG
25	2601	AGTAGAAAAAA	GTAGAGACGC	CTCACGTGAC	TATAGAAGAT	GCACAGCATC
	2651	GCAAGCCTAT	GGATCAAAG	AGGAGCAGCA	GCCTCGGGAG	CAATCGGAGT
	2701	AACCGTAGTC	ATACGTCTGG	TCGTCTTCGC	TCCCCATCCA	ATGATTCAAG
	2751	CCATCGAAGT	GGAGATGACC	AAAGTGGTCG	AAAGAGAGTA	CTGCACAGTG
	2801	GCTCAAGAGA	TAGAGAAAAAA	ACAAAAAAGCC	TGAAATCAC	AGGAGAGAGA
30	2851	AAATCTAGGA	TTGATCAGTT	AAAGCGTGG	GAACCCAGTC	GAAGTACTTC
	2901	TTCAGATCGC	CAGGATTCAA	GAAGCCATAG	TTCAAGAAGA	AGTTCTCCAG
	2951	AGTCAGATCG	ACAGGTCCAT	TCAAGATCTG	GGTCATTTGA	TAGCAGAGAC
	3001	AGGCTTCAG	AACGAGATCG	ATATGAACAC	GACAGAGAGC	GCGAGAGAGA
	3051	GAGGAGAGAT	ACGAGGCAGA	GAGAATGGGA	CCGAGATGCT	GATAAAGATT
35	3101	GGCCACGCAA	CAGGGATCGA	GATAGATTGC	GAGAACGAGA	ACGAGAGAGA
	3151	GAACGAGACA	AAAGGAGAGA	CTTGGATAGG	GAAAGAGAGA	GACTAATTTC
	3201	TGATTCTGTT	GAAAGGGACA	GGGACAGAGA	CAGAGACAGA	ACTTTGAGA
	3251	GTTCTCAAAT	AGAGTCTGTG	AAACGCTGTG	AAGCAAAACT	GGAAGGTGAA
	3301	CATGAAAGGG	ATCTAGAAAG	CACTTCCCAG	GACTCTCTAG	CCTTGGATAA
40	3351	AGAGAGAATG	GATAAAAGATC	TGGGATCTGT	GCAGGGATT	GAAGATACAA
	3401	ATAAAATCCGA	GAGAACTGAG	AGTCTGGAAAG	CAGGAGATGA	CGAGTCAG
	3451	TTAGATGATG	CACATTCTT	AGGCTCTGGT	GCTGGAGAAG	GATACGAGCC
	3501	AATCAGTGAT	GACGAACTAG	ATGAAATTCT	GGCAGGTGAT	GCAGAAAAGA
	3551	GGGAGGACCA	ACAGGATGAG	GAGAAGATGC	CAGATCCCTT	AGATGTGATA
45	3601	GATGTGGATT	GGTCTGGTCT	TATGCCAAAG	CATCCAAAG	AACCACGAGA
	3651	GCCTGGGGCT	GCACCTTAA	AATTACACCC	TGGAGCTGTT	ATGCTAAGAG
	3701	TTGGGATTT	AAAAAAGTTG	GCAGGTTCTG	AACTCTTGC	CAAAGTCAAA
	3751	GAAACATGTC	AGAGACTTT	AGAAAAACCC	AAAGGTAGTT	TCATTTACT
	3801	TTAACTATAT	AATGTCTGTT	AACCATTTAA	GATGCCATCT	GAAGGGATT
50	3851	CTGATCTGTT	CTTATGTAGC	ACTAACACT	GTGTAGAAC	TATTTTTGAA
	3901	GAAATCATT	TATAATCATT	ATTTAACCC	CATGGTCAA	GTTTCTCTT
	3951	AAAAATTATT	TTGAGAAGAA	GAGTTATCCC	ACAGAAAAGT	TGGGAAAAGA
	4001	GTACAATGAC	CTTTTGAT	GAAAATTACT	TATTAACAGG	CCAGGGCGTGG
	4051	TGTTGCATGT	CTGTAGTCAC	AGCTACTCAG	GGAGGTTGAG	GCAGCAGGAT
55	4101	TGCTGGAGCC	CAGGAAATTG	AGGCTGCAGT	GAGCCATGAT	TGAGCCACCA
	4151	CACTCCAACC	TAGGTGACAG	AGCAAGACCC	TGTCTAAAAA	AAAAAAAAAC
	4201	AAATTAAACCA	ATAAGTTCTA	ATATCAAAGT	GCTCAGTGGT	TTGCCCTTGG
	4251	CTAAATGAAG	CAGAGCCAGG	AAAAACAGAC	TACATATTTT	TCATGTCTAA
	4301	AGAAATTGGG	TATTTGGCA	GCCCTTCCC	CTAGACATCT	ACCCAAATGC

4351 AGGTGTGTAG GTTGAGTCTT TAACAAAGTG ATTAAGAGCT TGGTCTGTA
 4401 GGCCGGATGA TCTGGATTTC AGTAGGCACA CCACTTACTG GCTATTACTT
 4451 AATCTGTGTG TTAGTGTCAT CATCTGTAAG TCAGGAATAA TCATACACC
 5 4501 AACTTCCAT GGTAATTAGG AGCAAATGAG TTATTACAGG CAAAACACTT
 4551 AGAACAGTTC CTGGCATATA GTAAATACCCA ATAAATATTA ACTGCTACTT
 4601 TGAAAATATC CTATCACGCT GATTTTGAC CTCACTGCAG CAATTTCA
 4651 TTATTCCAGA TTATCTAGCT TATGGATTCT GGTGGTAGGG GTTGTGTT
 4701 TTTGGTTTTC ACTGTCTCG TCTCATCTAG TACCTACCTT AGTTTATTT
 4751 GCAACTTACT AATACTTTAT TAATGGGGAG GGACGAGTAG ATGGTAAAAA
 10 4801 GAAGGAAAAG GAGGTAAAAG GTGAAAGGAA CAACATTAAT TAACAATTT
 4851 ACgtCATGTC CCTGGACATA AAAGTTAGT TAGTATTAAT TTTTCACTA
 4901 ATACAAAATA AAAAATATT GTTTATGAG TTTTATGAAT TCATGCCCTT
 4951 CCTTTACTCT ATTAGCATAA GCAGTAAATT TTTTATTTT AATATAGCCC
 5001 AATAAACCTA GAGTATACAT GTACAAAATA CATATAATTG TTAACGTGTA
 15 5051 TTAACCGAAA AATGACCCAA GACTTAGTTC TTGCCCTACT GTATCTGCCT
 5101 TGTTTGGTTG GTTCTGTGAC CTTAAGCAA TAACCTCTGT GAGCCTCAAT
 5151 TTTATTGTA AAGTGATGGA ATAAAACCCC TAAAATCTTA CCCACCTCTA
 5201 AAGATATTTG TTTCTGTGAC CTTTGCTAG TAGCATTCA AGTTAAAATC
 5251 TGGTTTGATT TTGCTACCCA TGAATACAG TTCGGCCCTT ACTTATTGAT
 20 5301 GACTTAACCT AAACAGTGAA AATATGCACT GTAAAGGGTG GGGTGATGTG
 5351 GCTTAACAAT CAGACTTCTT CTATTTTGC TGCTATGGTG GTTGTATTAG
 5401 AGAACTGATG TATTATCTG AATAAAGACT TTGTCTTGTG TACTGCCCTA
 5451 AAAAAAAAAA AAAAAAAAAA

25

BLAST Results

30 No BLAST result

Medline entries

35 No Medline entry

Peptide information for frame 1

40

ORF from 292 bp to 3801 bp; peptide length: 1170
 Category: similarity to unknown protein
 Classification: no clue

45

1 MREKGRHDHE RTSQSHDRRH ERREDTRGKR DREKDSEER EYEQDQSSSR
 51 DHRDDREPRD GRDRRDARDT RDRRELRSR DMRDSEMRD YSRDTKESRD
 101 PRDSRSTRDA HDYRDREGRD THRKEDETYPE ESRSYGRNHL REESSRTEIR
 151 NESRNESRSE IRNDRMGRSR GRVPELPEKG SRGSRGSQID SHSSNSNYHD
 201 SWETRSSYPE RDRYPERDNR DQARDSSFER RHGERDRDN RERDQRSPSSP
 251 IRHQGRNDEL ERDERREERR VDRVDDRDE RARERDRERE RDRERERERE
 301 RERDREREKE RELERERARE REREREKERD RERDRDRHD RERERERERD
 351 REKERERERE ERERERERER ERERERERER ERARERDKER ERQRDWEDKD
 401 KGRDDRREKR EEIREDRNPR DGHDERKSKK RYRNEGSPSP RQSPKRRREH
 451 SPDSDAYNSG DDKNEKHRL SQVVRPQESR SLSPSHLTED RQGRWKEEDR
 501 KPERKESSRR YEEQELKEKV SSVDKQREQT EILESSRMRA QDIIGHHQSE
 551 DRETSdrahd ENKKKAKIqk KPIKKKKEDD VGIERGNIET TSEDGQVFSP
 601 KKGQKKKSIE KKRKKSKGDS DISDEEAQQ SKKKRGPRTP PITTKEELVE

651 MCNGKNGILE DSQKKEDTAF SDWSDEDVPD RTEVTEAEHT ATATTPGSTP
 701 SPLSSLLPPP PPVATATATT VPATLAATTA AAATSFSTSA ITISTSATPT
 751 NTTNNNTFANE DSHRKCHRTR VEKVETPHVT IEDAQHRKPM DQKRSSLGS
 801 NRSNRSHTSG RLRSPSNDSA HRSGDDQSGR KRVLHSGSRD REKTKSLEIT
 5 851 GERKSRIDQL KRGEPSRSTS SDRQDSRSHS SRRSSPESDR QVHSRSGSF
 901 SRDRLQERDR YEHDRERERE RRDTRQREW RDADKDWPWN RDRDRLRERE
 951 RERERDKRRD LDREERERLIS DSVERDRDRD RDRTFESSIONI ESVKRCEAKL
 1001 EGEHERDLES TSRDSLALDK ERMDKDLGSV QGFEDTNKSE RTESELAGDD
 1051 ESKLDDAHL GSGAGEGYEP ISDDELDEIL AGDAEKREDQ QDEEKMPDPL
 1101 DVIDVDWSGL MPKHPKEPRE PGAALLKFTP GAVMLRVGIS KKLKAGSEFLA
 1151 KVKECTCQRLL EKPKGSFILL

15

BLASTP hits

No BLASTP hits available

Alert BLASTP hits for DKFZphes3_12d18, frame 1

20

No Alert BLASTP hits found

Pedant information for DKFZphes3_12d18, frame 1

25

Report for DKFZphes3_12d18.1

[LENGTH] 1267
 30 [MW] 150593.45
 [pI] 9.22
 [HOMOL] TREMBL:AB020660_1 gene: "KIAA0853"; product:
 "KIAA0853 protein"; Homo sapiens mRNA for KIAA0853 protein,
 partial cds. 0.0
 35 [BLOCKS] BL00422C Granins proteins
 [BLOCKS] BL00803F
 [BLOCKS] PRO0308C
 [BLOCKS] PRO1089B
 [BLOCKS] PRO0049D
 40 [BLOCKS] PRO1083A
 [BLOCKS] PRO0545A
 [BLOCKS] BL00048 Protamine P1 proteins
 [BLOCKS] PF01140D
 [BLOCKS] PRO0833H
 45 [KW] All_Alpha
 [KW] LOW_COMPLEXITY 44.12 %

SEQ KDRGRDFERQREKRDPRSTSPAGQHHSPISSRHHSQQSGSSIQRHSPSPRRKRTGPS
 50 SEGxxxxxxxxxxxxxx.....
 PRD cccccchhhhhhhcc

SEQ SYQRTLTPPLRRSASPYPHSLSLSSPQRKQSPPRHSRSPMREKGRHDHERTSQSHDRRHERR
 55 SEG x.....xxxxxxxxxxxxx.....
 PRD ccc

SEQ EDTRGKRDREKDSREEREYEQDQSSSRDHRDDREPRDGRDRRDARDTRDRRELRDSDMR
 SEG xx.xxxxxxxxxxxxxxx.xxxxxxxxxxxxxxx.xxxxxxxxxxxxxxx.xxxxxxxxxxxxxxx

SEQ TRQREWDRDADKDWPVNDRDRRLRERERERDKRRDLDRERERLISDSVERDRDRDR
SEG xxxxxxxx.....xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx.....xxxxxxx
PRD hhhhhhhhccce

5 SEQ TFESSQIESVKRCEAKLEGEGEHRDLESTS RD SLALDKERMDKDLGSVQGFEDTNKSERTE
SEG
PRD eechhhhhhhhhhhhhhhhhcccccccccccccccccccccccccccccccccccc

10 SEQ SLEAGDDESKLDDAHSLGSGAGEGYEPISDDDELDEILAGDAEKREDQQDEEKMPDPLDVI
SEG
PRD ccc

15 SEQ DVDWSGLMPKHPKEPREPGAALLKFTPGAVMLRVGISKLAGSELFAKVKETCQLLKEP
SEG
PRD ecc

20 SEQ KGSFILL
SEG
PRD cccccccc

(No Prosite data available for DKFZphtes3_12d18.1)

(No Pfam data available for DKFZphtes3_12d18.1)

25 ..

DKFZphes3_1417

5. group: testis derived

DKFZphes3_1417 encodes a novel 815 amino acid protein without similarity to known proteins.

10 The mRNA is transcribed ubiquitously.

No informative BLAST results; No predictive prosite, pfam or SCOP motif.

15 The new protein can find application in studying the expression profile of testis-specific genes.

similarity to *C.elegans* B0412.3

20 see also DKFZphes3_17n3
perhaps complete cds.

Sequenced by BMFZ

25 Locus: unknown

Insert length: 3522 bp

Poly A stretch at pos. 3456, polyadenylation signal at pos. 3437

30 1 AACACATCGA CTTGTGTAAG AAAAAGATTG GAAGTGCAGA GCTGTCTTT
 51 GAGCATGATG CATGGATGTC TAAACAATTG CAGGCCCTTG GAGATTATT
 101 TGATGAAGCT ATTAAGTTAG GGTTAACAGC TATTCAAACG CAGAACCTG
 151 GTTTCTATTA CCAGCAGGCA GCATACTATG CCCAGGAGCG GAAACAGCTT
 201 GCAAAAAACCC TCTGTAACCA CGAACGCTTCT GTAATGTATC CCAATCCTGA
 251 TCCCTTAGAA ACACAAACAG GCCTTCTTGA CTTTTATGGA CAAAGATCAT
 301 GGCAGACAAGG AATACTAAGT TTGATCTTT CTGATCCTGA AAAAGAAAAG
 351 GTGGGAATTG TTGCCATTCA GCTGAAGGAG AGAAATGTTG TTCACTCTGA
 401 GATAATCATA ACTCTTCTGA GCAATGCTGT TGCACAGTTT AAGAAGTATA
 451 AGTGCCTCGC AATGAAAAGT CACCTAATGG TTCAGATGGG AGAGGAATAT
 501 TATTACGCAA AGGATTATAC CAAAGCTTTG AAGTTGCTGG ATTATGTGAT
 551 GTGTGATTAT CGGAGTGAAG GATGGTGGAC TCTGCTCACT TCTGTATTAA
 601 CTACAGCTCT GAAGTGCCTC TACCTCATGG CCCAATTAAA GGATTACATT
 651 ACTTACTCCC TAGAACTCCT TGGTAGAGCT TCAACTCTGA AAGATGACCA
 701 GAAGTCTCGG ATAGAAAAGA ACCTCATAAA TGTTTTAATG AATGAAAGTC
 751 CTGATCCAGA ACCCGACTGT GATATCTTAG CTGTGAAAAC TGCTCAGAAG
 801 CTGTGGGCAG ACCGAATTTC TCTGGCTGGC AGCAATATT TCACAATAGG
 851 AGTACAGGAC TTTGTGCCAT TTGTCAGTG CAAAGCCAAG TTTCATGCC
 901 CAAGTTTCA TGTTGATGTT CCTGTTCACT TTGATATTAA TCTGAAGGCT
 951 GATTGTCCAC ATCCCATTAG GTTTCCAAG CTCTGTC GCTTTAATAA
 1001 TCAGGAATAAC AACCAAGTTCT GTGTAATAGA AGAACATCC AAAGCAAATG
 1051 AAGTTTTAGA AAATCTGACT CAAGGAAAGA TGTGCCTAGT TCCTGGCAA
 1101 ACAAGAAAAC TGTTATTAA GTTTGTTGCA AAAACTGAAG ATGTGGGAAA
 1151 GAAAATTGAG ATTACTTCAG TGGATCTTGC TCTGGCAAT GAGACGGGAA
 1201 GATGTGTGGT TTAAATTGG CAGGGAGGAG GAGGAGATGC TGCTTCTCC
 1251 CAAGAAGCCT TACAGGCAGC TCGGTCTTTC AAAAGGGCAC CTAAGCTACC
 1301 TGACAATGAA GTTCACTGGG ACAGCATTAT AATTCAAGGCA AGCACAATGA
 1351 TCATATCCAG AGTCCCCAAC ATTTCTGTCAC ATCTGCTACA TGAACCCCCCT

1401	GCACTGACTA	ATGAAATGTA	TTGTTTGGTT	GTGACTGTT	AGTCCCATTGA
1451	AAAGACCCAA	ATCAGAGATG	TGAAGCTCAC	TGCTGGCTTA	AAACCAGGAC
1501	AGGATGCCAA	TTTAACTCAG	AAGACTCACG	TGACTCTTCA	TGGACCAAGAA
1551	CTGTGTGATG	AATCCTACCC	GGCTTACTC	ACTGACATT	CTGTTGGAGA
5	1601	CTTACATCCA	GGGGAACAGC	TGGAAAAAAT	GTTGTATGTT
	1651	CAGTGGGTT	CAGAATGTTT	CTTGTATATG	TTTCTTACCT
	1701	ACCGTTGAAG	AAAAAGAAAT	TGTTTGCAG	TGTACAAGG
	1751	AACAATTGAA	ACAGTCTTC	CATTGATGT	TGCGGTTAAA
10	1801	CCAAGTTGA	GCACCTGGAA	AGGGTTATG	CTGACATCCC
	1851	ATGACGGGAC	TCTTAAGTGC	CTCACCCCTG	TTGTTTCCAG
	1901	TGAGCTCCAG	CTTGCTCCAT	CCATGACCC	AGTGGACCA
	1951	AAGTGGACAA	TGTTATCTTA	CAGACTGGAG	AGAGTGCTAG
15	2001	TGTCTTCAAT	GCCCCATCTCT	TGGAAATATT	GAAGGTTGGAG
	2051	GCATTATATT	ATCTCTTGG	AAAGGACCTC	AGCAATGGAG
	2101	TCATCACAAAC	TGTCATCACT	CTGGCGCACG	TGATTGTGGA
	2151	CTCCATGTGA	ATGCAGATCT	GCCGTCA	GGCGTGTCA
	2201	ACCTGTCAAG	TATCACCTAC	AGAATAAGAC	CGACTTAGTT
	2251	AAATTTCTGT	GGAGCCCCAGT	GATGCCCTCA	TGTTCTCAGG
20	2301	ATTCGATTAC	GTATCCTCCC	TGGCACGGAG	CAGGAATGC
	2351	CTATCCTCTG	ATGGCTGGAT	ACCAGCAGCT	GCCATCTCTC
	2401	TGCTTAGATT	TCCTAACCTTC	ACAAATCAGC	TGCTCAGGCG
	2451	ACCAGTATT	TTGTCAAGCC	ACAGGGTCGA	CTCATGGATG
	2501	TGCTGCTGCA	TGATGTTCAA	GACCGGCCCC	TGGCTGTTGT
25	2551	TTGGGCAGAG	CTATGCAGGT	GTTCATTTG	GAACCTAGC
	2601	GTAAAAAGTT	AACCTTTCT	ATTTTTTAAT	GGATGTTATA
	2651	AGAGGAACCTC	ATACTTCAAA	AATATTAGGA	AAATCTGTCT
	2701	CTAATAAATA	TCTGAAATCT	CAGTACGACA	TGAAAAGATG
	2751	GTTATTGTTG	AAAGTCATT	GATGAATGGT	AAATTCTATG
30	2801	GATTGCGATG	TATAATATCA	GGAAAATTAA	GCATCCCAAG
	2851	CAAAGAGAGC	AGATGCACCA	GTGCGTGTG	CATAAAGTTC
	2901	ATGTGTCTCT	TTCAGAGCTG	GCCAGACCGG	AAATAAATCA
	2951	TTCAGTGTGT	ACTCAGAAC	CATACACAAAC	AACATAGGGA
	3001	TGATACGGAA	AACTTCCAGA	AAGTTTAAAT	CAAAGCAGTT
35	3051	ATCAAAAATA	TCTTGTCTA	CTATCAAGAA	GTGTCAAATA
	3101	GCTGCCAAAA	TATGGATCAT	TTATGAAGCA	GGTCATATT
	3151	TAATAAAATC	CTCATGGAA	AAGATCCAAA	GTGCAAGGAT
	3201	ACATAATTTC	CTAGACTGAA	AGTTTTGG	AAAGATGCAG
	3251	AGGCCTTCTG	GTATATTGT	GCAGTTCAA	AAGAACTATT
40	3301	GAAAACATCAT	GTAATAAAA	ATCATAGGGT	GGTTCAAGCTT
	3351	TACCTTAATA	ATTAAAATG	ACCTGATTTC	TTTGTAAAAA
	3401	AAAGGTGGAG	GCATTGTAAA	AAGGAAATAG	TTATTATTCA
	3451	TCTTCAAAA	AAAAAAAAAA	AAAAAAAAAA	AAACATGTT
	3501	AAAAAAAAAA	AAAAAAAAAA	AA	AAAAAAAAAA

45

BLAST Results

50

No BLAST result

Medline entries

55 No Medline entry

Peptide information for frame 3

ORF from 66 bp to 2510 bp; peptide length: 815

5 Category: similarity to unknown protein
Classification: no clue

```

1  MSKQFQAFGD LFDEAIKLGL TAIQTQNPGF YYQQAAAYYAQ ERKQLAKTLC
51 NHEASVMPN PDPLETQTGV LDFYGQRSWR QGILSFSDLSD PEKEKVGILA
10 101 IQLKERNVVH SEIIITLLSN AVAQFKKYKC PRMKSHLMVQ MGEEYYYAKD
151 YTKALKL LDY VMCDYRSEGW WTLTTSVLTT ALKCSYLMAR LKDYITYSLE
201 LLGRASTLKD DQKSRIEKNL INVLMNESPD PEPDCDILAV KTAQKLWADR
251 ISLAGSNIFT IGVQDFVPFV QCKAKFHAPS FHVDVPVQFD IYLKADC PHP
301 IRFSKLCVSF NNQEYNQFCV IEEASKANEV LENLTQGKMC LVPGKTRKLL
15 351 FKFVAKTEDV GKKIEITSVD LALGNETGRC VVLNWQGGGG DAASSQREALQ
401 AARSFKRRPK LPDNEVHWDS IIIQASTMII SRVPNISVHL LHEPPALTNE
451 MYCLVVTVQS HEKTQIRDVK LTAGLKPGQD ANLTQKTHVT LHGPELCDES
501 YPALLTDIPV GDLHPGEQLE KMLYVRCGTV GSRMFLVYVS YLINTTVEEK
551 EIVCKCHKDE TVTIETVFPF DVAVKFVSTK FEHLERVYAD IPFLLMTDLL
20 601 SASPWALTIV SSELQLAPSM TTVDQLESQV DNVLQGTGES ASECFCLQCP
651 SLGNIEGGVA TGHYIISWKR TSAMENIPII TTIVTLPHVII VENIPLHVNA
701 DLPSFGRVRE SLPVKYHLQN KTDLVQDVII SVEPSDAFMF SGLKQIRLRRI
751 LPGTEQEMLY NFYPLMAGYQ QLPSLNINLL RFPNFTNQLL RRFIPTSIFV
801 KPQGRLMDDT SIAAA

```

25

BLASTP hits

30 No BLASTP hits available

Alert BLASTP hits for DKFZphes3_1417, frame 3

No Alert BLASTP hits found

35 Pedant information for DKFZphes3_1417, frame 3

Report for DKFZphes3_1417.3

40

[LENGTH]	836
[MW]	94249.30
[pI]	5.84

45 [HOMOL] TREMBL:CEUB0412_2 gene: "B0412.3"; *Caenorhabditis elegans* cosmid B0412. 6e-30
[KW] Alpha_Beta
[KW] LOW_COMPLEXITY 1.20 %

50

SEQ	HIDLCKKKIGSAELSFEHD	AWMSKQFQAFGDLFDEAIKLGL	TAIQTQNPGFYYQQAAAYA
SEG	xxxxxx
PRD	ccceeeeehhhhhhhhhhhhhhhhhhhhhhhhhhhhcc	eeccccchhhh	hhhhhhhh

55

SEQ	QERKQLAKTLC	NHEASVMPNP	DPLETQTGVLD	FYGQRSWRQGILSF	DLSDPEKEKVGIL
SEG	x.....
PRD	hhhhhhhhhhhh	cceeeccccccc	eeeeeeeecccc	eeeeeccccch	hhhhhhh

SEQ	AIQLKERNVVHSEIIITLLSNAVAQFKKYKCPRMKSHLMVQMGEYYYYAKDYTKALKLLD
SEG
PRD	hhccceeehhhhhhhhhhhh
5 SEQ	YVMCDYRSEGWWTLTSVLTTALKCSYLMAQLKDYITYSLELLGRASTLKDDQKSRIEKN
SEG
PRD	hhhhccccccceeehhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhchhhhhccccchhhh
10 SEQ	LINVLMNESPDPEPDCDILAVKTAQKLWADRISLAGSNIFTIGVQDFVPFVQCKAKFHAP
SEG
PRD	hheeeeccccccccccccchhhhhhhhhhhhhhhhhhhhhhhhhhhcccceeeeeehhhhhhcccc
15 SEQ	SFHVDVPVQFDIYLKADCPHPIRFSKLCVSFNNQEYNQFCVIEASKANEVLENLTQGKM
SEG
PRD	eeeeeeecc
20 SEQ	CLVPGKTRKLLFKFVAKTEDVGKKIEITSVDLALGNETGRCVVLNWQGGGGDAASSQREAL
SEG
PRD	ccccccccccchhhhhhhhhccccccccccccccccccccccccccccccccccccchhhh
25 SEQ	QAARSFKRRPKLPDNEVHWDIIIQASTMIISRVPNISVHLHEPPALTNE MYCLVVTVQ:
SEG
PRD	hhhhhhhhcc
30 SEQ	EKMLYVRCGTVGSRMFLVYVSYLINTTVEEKEIVCKCHKDETVTIETVFPFDVAVKFVST
SEG
PRD	hhhhhhccccccchhhhhcchhhhhcccccccccccccccccccccccccccccccc
35 SEQ	KFEHLERVYADIPFLLMTDLLSASPWALTIVSSELQLAPSMTVDQLESQVDNVILQTGE
SEG
PRD	hhhhhhhhhhccceeehhhhcccccccccccccccccccccccccccccccccccc
40 SEQ	SASECFCLQPSLGNIEGGVATGHYIISWKRTSAMENIPIITTVITLPHVIVENIPLHVN
SEG
PRD	cc
45 SEQ	ADLPSFGRVRESLPVKYHLQNKTDLVQDVIEISVEPSDAFMFSGLKQIRLRILPGTEQEML
SEG
PRD	cc
50 SEQ	YNFYPLMAGYQQLPSLNINLLRFPNFTNQLLRRFIPTSIFVKPQGRLMDTSIAAA
SEG
PRD	cc
50 (No Prosite data available for DKFZphtes3_1417.3)	
(No Pfam data available for DKFZphtes3_1417.3)	

DKFZphtes3_15n14

5 group: testis derived

DKFZphtes3_15n14 encodes a novel 713 amino acid protein with weak similarity to the neurofilament triplet M protein of the rat.

10 Neurofilaments are the intermediate filaments specific to nervous tissue. They are probably essential to the tensile strength of the neuron, as well as to transport of molecules and organelles within the axon. Until now, ESTs of the novel mRNA could only be isolated from testes, germ cells and uterus.

15 No informative BLAST results; No predictive prosite, pfam or SCOP motife.

The new protein can find application in studying the expression profile of testis-specific genes.

20

similarity to neurofilament triplet M protein - rat

25 few EST hits (6 of 9 hits from testis)
perhaps complete cds.

Sequenced by GBF

30 Locus: unknown

30

Insert length: 2389 bp
Poly A stretch at pos. 2328, polyadenylation signal at pos. 2306

35	1 TGGGCCAC CTCCTCAGCA CAACTTTCTG AAAAAGTGGC AGCGTAACAC
	51 AGCCCTCGGG AAGAACGAGC AGGAAGCCCT CAGCGAACAC CTAAAGAACG
	101 CAGTGAGTGA GCTGCTCATG CACACGGGG AGACCTACAG ACGGATCCAG
	151 GAGGAGCGGG AGCTCATTGA CTGCACACTT CCAACCCGGC GTGATAGGAA
	201 AAGCTGGGAG AACAGTGGGT TCTGGAGTCG ACTGGAATAC TTGGGAGATG
40	251 AGATGACAGG TCTGGTCATG ACCAAGACAA AAACCTACAGC TGGCCTCATG
	301 GAGCCCCATCA CTCATATCAG GAAGCCCCAC TCCATCCGGG TGGAGACAGG
	351 ATTACCAGCC CAGAGGGACG CTTCATACCG CTACACCTGG GATCGGAGTC
	401 TGTTTCTGAT CTACCGACGC AAGGAGCTGC AGAGAATCAT GGAAGAGCTG
	45 451 GATTTCAGCC AGCAGGGATAT TGATGGCCTG GAGGTGGTGG GCAAAGGGTG
	501 GCCCTTCTCG GCTGTTACTG TGGAAAGACTA CACAGTGTGTT GAAAGAACGTC
	551 AGGGAAAGCTC CTCTGAAGAC ACAACATACT TAGGCACATT GGCCAGTTCC
	601 TCTGATGTCT CCATGCCTAT TCTCGGCCCT TCTCTGCTGT TCTGTGGAA
	651 GCCAGCTTGC TGGATCAGAG GCAGTAATCC ACAGGACAAG AGGCAGGTTG
	701 GGATTGCTGC TCACTTGACCC TTTGAAACCC TAGAAGGCAGA GAAAACCTCC
50	751 TCAGAACTGA CTGTGGTCAA TAATGGCACCC GTGGCCATTG GGTATGACTG
	801 GCGACGGCAG CACCAAGCCGG ACACCTTCCA AGACCTTAAG AAAAACAGGA
	851 TGCAGCGATT TTACTTTGAC AACCGGGGAAG GTGTGATTCT GCCTGGAGAA
	901 ATTAAAACAT TTACCTTCTT CTTCAAGTCT TTGACTGCTG GGGTCTTCAG
	951 GGAATTTGG GAGTTTCAAA CCCATCCTAC TCTATTAGGA GGTGCTATAC
55	1001 TGCAGGTCAA TCTCCACGCG GTCTCCCTGA CCCAGGACGT TTTTGAGGAT
	1051 GAGAGGAAAG TACTGGAGAG CAAGCTGACT GCCCCATGAGG CAGTCACCGT
	1101 CGTTCGCGAA GTGCTGCGAG AGCTGCTGAT GGGGGTCTTG ACCCCGGAGC
	1151 GCACACCACAC ACCTGTGGAT GCCTATCTCA CCGAGGAAGA CTTGTTCCGG

1201 CACAGAAATC CTCCGCTGCA TTATGAGCAC CAAGTGGTGC AAAGCCTGCA
 1251 CCAACTGTGG CGCCAGTACA TGACCCCTGCC CGCCAAGGCT GAGGAGGCCA
 1301 GGCCAGGGGA CAAGGAGCAC GTCAGCCCCA TAGCCACAGA GAAGGCCTCT
 1351 GTGAATGCTG AGCTGTTACC ACGCTTTAGG AGCCCCATCT CCGAAACTCA
 5 1401 AGTCCCCGG CCTGAGAACG AGGCCCTCAG GGAATCCGGG TCCCAGAAGG
 1451 CCAGAGTGGG GACCAAGAGT CCTCAGCGGA AGAGCATCAT GGAGGAGATC
 1501 CTGGTGGAGG AAAGCCCAGA TGTGGACAGC ACCAAGAGCC CCTGGGAGCC
 1551 GGATGGCTT CCCCTGCTGG AGTGGAACCT CTGCTTGGAG GACTTCAGAA
 1601 AGGCAGTGAT GGTGCTCCCT GATGAGAACC ACAGAGAGGA TGCCTTGATG
 10 1651 AGGCTCAACA AAGCAGCCCT GGAGCTGTGC CAGAACCAA GCCATTGCA
 1701 GTCCAACCTC CTGCACCAAGA TGTGTTGCA GCTGTGGCA GATGTGATTG
 1751 ACAGCCTGGT GGGCCATTCC ATGTGGCTGA GGTCTGTGCT GGGCCTGCCT
 1801 GAGAAGGAGA CCATCTATT GAATGTGCCT GAAGAGCAAG ATCAAAAATC
 1851 ACCTCCTATC ATGGAAGTGA AGGTACCTGT GGGGAAAGCT GGGAAAGGAGG
 1901 AGCGGAAAGG AGCAGCCAG GAAAAGAACG AACTGGGGAT CAAAGACAAA
 1951 GAAGACAAGA AAGGAGCCAA GCTGCTCGG AAAGAGGACC GTCCCAACAG
 2001 CAAGAACAC AAGGCAAAGG ATGACAAGAA AGTCATAAAA TCTGCAAGTC
 2051 AGGACAGGTT TTCTTGAA GACCCCTACCC CTGACATCAT CCTCTCTTCT
 2101 CAAGAACCCA TAGACCCCT GGTATGGGG AAATACACCC AGAGGCTGCA
 2151 CAGTGAGGTC CGTGGGCTGC TGGACACCCCT GGTGACCGAC CTGATGGTCC
 2201 TGGCTGATGA GCTCAGCCCC ATAAAGAATG TCGAGGAGGC TTTGCGCCTC
 2251 TGCAAGGTGAC TCTCGGGCCC AAGCAACCTT CTGGAAAACG GTTAAATAAA
 2301 TAAATCAATA AAGAACCTC AAGTTTCTAC TAAAAAAA AAAAAGGGCG
 2351 AAAAAAAAAA AAAAAAAAAA AAAAAAAAAA GGGCGGCG
 25

BLAST Results

30 No BLAST result

Medline entries

35 No Medline entry

40 Peptide information for frame 1

ORF from 118 bp to 2256 bps; peptide length: 713

Category: putative protein

45 Classification: Cell structure/motility

1 MHTGETYRRI QEERELIDCT LPTRRDRKSWS ENSGFWSRLE YLGDEMTGLV
 51 MTKTKTQRGL MEPITHIRKP HSIRVETGLP AQRDASYRT WDRSLFLIYR
 101 RKELQRIMEE LDFSQQDIDG LEVVGKGWPF SAVTVEDYTV FERSQGSSSE
 151 DTTYLGTLAS SSDVSMPILG PSLLFCGKPA CWIRGSNPQD KRQVGIAAHL
 201 TFETLEGEKT SSELTVVNG TVAIWYDWRR QHQPDTFQDL KKNRMQRFYF
 251 DNREGVILPG EIKTFTFFFK SLTAGVFREF WEFRTHPTLL GGAILQVNLL
 301 AVSLTQDVFE DERKVLESKL TAHEAVTVVR EVLQELLMGV LTPERTPPSPV
 351 DAYLTEEDLF RHRRNPLHYE HQVVQSLHQL WRQYMTLPK AEEARPGDKE
 401 HVSPIATEKA SVNAELLPFR RSPISETQVP RPENEALRES GSQKARVGTK
 451 SPQRKSIIMEE ILVEESPVD STKSPWEVDG LPLLEWNLC EDFRKAVMVL
 501 PDENHREDAL MRLNKAALEL CQKPRPLQSN LLHQMQCLQLW RDVIDSLVGH
 551 SMWLRSVGL PEKETIYLN PEEQDQKSPP IMEVKVPVGK AGKEERKGAA

601 QEKKQQLGIKD KEDKKGAKLL GKEDRPNSKK HKAKDDKKVI KSASQDRFSL
651 EDPTPDIILS SQEPIDPLVM GKYTQRLHSE VRGLLDLVT DLMVLADELS
701 PIKNVEEALR LCR

5

BLASTP hits

No BLASTP hits available

10 Alert BLASTP hits for DKFZphtes3_15n14, frame 1.

No Alert BLASTP hits found

Pedant information for DKEZphates3_15n14, frame 1.

Report for DKFZphes3 15n14.1

SEQ RSPISETQVPRPENEALRESGSQKARVGTKSPQRKSIMEEILVEESPVDSTKSPWEPDG
SEG
PRD ccc

5 SEQ LPLLEWNLCLEDFRKAVMVLPDENHREDALMRLNKAALELCQKPRPLQSNLHQMCLQLW
SEG
PRD ccc

10 SEQ RDVIDSLVGHSMWLRSVLGLPEKETIYLNVPEEQQDKSPPIMEVKVPVGKAGKEERKGAA
SEG
PRD hhhhhhhhhccchhhhhcccccccccccccccccccccccccccccccccccc

15 SEQ QEKKQLGIKDKEDKKGAKKLLGKEDRPNSKKAKDDKKVIKSASQDRFSLEDPTPDIILS
SEG
PRD hhhhhhhcccccchhhhhcccccccccccccccccccccccccccccccccccc

20 SEQ SQEPIDPLVMGKYTQRLHSEVRGLLDTLVTDLMLVADELSPIKNVVEALRLCR
SEG
PRD ccccccccccchhhhhhhhhhhhhhhhhhhhhhhhhccccchhhhhcccc

(No Prosite data available for DKFZphtes3_15n14.1)

(No Pfam data available for DKFZphtes3_15n14.1)

25

DKFZphtes3_1bb5

5 group: cell structure and motility

DKFZphtes3_1bb5 encodes a novel 268 amino acid protein with similarity to various tropomyosins.

10 Tropomyosins play regulatory roles in cellular structure and transport.

The new protein can find application in modulating cell structure and motility as well as modulationg cellular transport.

15

weak similarity to KIAA0774

20 perhaps complete cds.

Sequenced by BMFZ

Locus: unknown

25 Insert length: 1316 bp

Poly A stretch at pos. 1247, polyadenylation signal at pos. 1232

30	1	TGCTAAAATG	GAATTAGAGA	GAAGCATAGA	CATCAGCAGA	AGACAGAGTA
	51	AGGAGCACAT	ATGTAGAATT	ACAGATCTAC	AAGAGGAATT	AAGACACAGA
	101	GAGCATCACCA	TCTCTGAATT	GGATAAGGAG	GTTCAGCACC	TTCATGAGAA
	151	TATAAGTGCC	CTAACCAAAG	AACTGGAATT	TAAGGGGAAA	GAAATTCTCA
	201	GAATACGAAG	TGAATCTAAC	CAACAGATAA	GGTTGCATGA	ACAAGATTAA
	251	AAACAAGAGAC	TTGAAAAAGA	GTGGGATGTC	ATGACAGCAG	ACCACCTCAG
35	301	AGAGAAAAAAAT	ATCATGCGGG	CAGATTTAA	TAAGACTAAC	GAGCTACTCA
	351	AGGAAATAAA	TGCCGCTTTA	CAAGTGTCA	TAGAAGAAAT	GGAAGAAAAA
	401	TATCTAATGA	GAGAAATCAA	ACCAGAAAGAT	ATACAGATGA	TTACAGAATT
	451	AAAAGCCATG	CTTACAGAAA	GAGACCAGAT	CATAAAGAAA	CTAATTGAGG
40	501	ATAATAAGTT	TTATCAGCTG	GAATTAGTCA	ATCGAGAAC	TAACCTAAC
	551	AAAGTGTTTA	ACTCAAGTCC	TACTGTTGGT	GTTATTAATC	CATTGGCTAA
	601	GCAAAAGAAG	AAGAATGATA	AATCACCAAC	AAACAGGTTT	GTGAGTGTTC
	651	CCAATCTAAG	TGCTCTGGAA	TCTGGTGGAG	TGGGCAATGG	ACATCCTAAC
	701	CGCCTGGATC	CCATTCTAA	TTCTCCAGTC	CACGATAATTG	AGTTCAACAG
45	751	CAGCAAACCA	CTTCCACAGC	CAGTGCCACC	TAAAGGGCCC	AAGACATTAA
	801	TGAGGTATCA	GTAAGATGCA	TGTGCATGAG	CTCAAGGAAC	ATGACTACTG
	851	GAGTTTCAT	TACACATTGT	TGCGTGCCTT	GTAATTTCC	CCAAAGACGT
	901	CCTGCTCAGA	GTGAAGCTTC	TCCAGTGGCT	TCTCCAGATC	CCCAGCGCCA
	951	GGAGTGGTTT	GCCCCGGTACT	TCACATTCTG	AAAGAATTGT	GTTGGCACAG
50	1001	CTCTGTATAG	ACTGTTACTA	AGAGCATGAC	TTTATACAGA	TTGTTATGTA
	1051	AATAGGCCTT	CCTATGTCAA	ACACTGTGAA	TGAGAAAGTA	TTTGTCTCTC
	1101	CAACTTGAAA	ATGCACTGTA	TTTCTGTGA	TATTTATTGG	AATCATTCTA
	1151	TAAGGTACTA	TATTATGTGT	GTAATTATAA	CTGTTATTAA	TATTTGAGAT
	1201	GGAAGAGTCT	TTAACCTTG	TAATTACTGC	ATAATAAATT	TTGTTAGAAT
	1251	CAAAAAAAAAA	AAAAAAAAAA	AAAAAAAAAA	AAAAAAAAAA	AAAAAAAAAA
55	1301	AAAAAAAAAA	AAAAAA			

BLAST Results

No BLAST result

5

Medline entries

No Medline entry

10

Peptide information for frame 2

15

ORF from 8 bp to 811 bp; peptide length: 268

Category: similarity to known protein

Classification: Cellular transport and traffic

20

1 MELERSIDIS RRQSKEHICR ITDLQEELRH REHHISELDK EVQHLHENIS
51 ALTKELEFKG KEILRIRSES NQQIRLHEQD LNKRLEKELD VMTADHLREK
101 NIMRADFNKT NELLKEINAA LQVSLEEMEE KYLMRESKPE DIQMITEKA
151 MLTERDQIIK KLIEDNKFYQ LELVNRETNF NKVFNSSPTV GVINPLAKQK
201 KKNDKSPTNR FVSVPNL SAL ESGGVGNHGP NRLDPIPNSP VHDIEFNSSK
25 251 PLPQPVPPKG PKTFLRYQ

25

BLASTP hits

30

No BLASTP hits available

Alert BLASTP hits for DKFZphtes3_1bb5, frame 2

35

No Alert BLASTP hits found

Pedant information for DKFZphtes3_1bb5, frame 2

40

Report for DKFZphtes3_1bb5.2

[LENGTH] 270
[MW] 31493.09

45

[pI] 6.90
[HOMOL] PIR:A57013 early endosome antigen 1 - human 1e-05
[FUNCAT] 03.19 recombination and dna repair [S. cerevisiae,
YOL034w] 1e-05
[FUNCAT] 03.22 cell cycle control and mitosis [S. cerevisiae,
50 YFR031c] 2e-05
[FUNCAT] 30.10 nuclear organization [S. cerevisiae, YFR031c]
2e-05
[FUNCAT] 11.04 dna repair (direct repair, base excision repair
and nucleotide excision repair) [S. cerevisiae, YKR095w] 5e-05
55 [FUNCAT] 30.04 organization of cytoskeleton [S. cerevisiae,
YDR356w] 7e-05
[FUNCAT] 09.10 nuclear biogenesis [S. cerevisiae, YDR356w]
7e-05

5 [[FUNCAT]] 08.07 vesicular transport (golgi network, etc.) [[S. cerevisiae, YDL058w]] 1e-04
[[FUNCAT]] 30.03 organization of cytoplasm [[S. cerevisiae, YDL058w]] 1e-04
[[FUNCAT]] 1 genome replication, transcription, recombination and repair [[M. jannaschii, MJ1b43]] 2e-04
[[FUNCAT]] 99 unclassified proteins [[S. cerevisiae, YLR309c]] 3e-04
10 [[FUNCAT]] 08.1b extracellular transport [[S. cerevisiae, YNL272c]] 5e-04
[[FUNCAT]] 30.09 organization of intracellular transport vesicles [[S. cerevisiae, YNL272c]] 5e-04
[[KW]] All_Alpha
[[KW]] LOW_COMPLEXITY 4.81 %
15 [[KW]] COILED_COIL 10.74 %

50 (No Pfam data available for DKFZphtes3_1bb5.2)

DKFZphtes3_16p3

group: testis derived

DKFZphates3_1bp3 encodes a novel 1663 amino acid protein without similarity to known proteins.

5 The novel protein is glutamine rich and contains a cell attachment RGD motif. According to the low number of ESTs and their origin the protein seems to be expressed ubiquitously at low levels.

No informative BLAST results; No predictive prosite, pfam or SCOP motifs.

10 The new protein can find application in studying the expression profile of testis-specific genes.

15 putative protein

perhaps complete cds.

Sequenced by BMFZ

20 Locus: unknown

Insert length: 5411 bp -

Poly A stretch at pos. 5354, polyadenylation signal at pos. 5340

25

1	GGCGGCCAGG	TGGAGGACCT	GAGCAAGCAG	CTCAAGCGTG	TGGACGGCCA
51	GGTCAGGGC	ATGCCACGC	ACGTGCAGCA	CTTCTCCCAG	GCCAGCGGGC
101	TTGACCTGGC	CGCGCTAGAG	TGGCCGGAGG	AGCAGGAGGT	GGGCGTGC GG
151	GCCTTCGATA	GGGTGCGGAC	TGGGAGTATC	ATGAAGGACG	CCGCCGAGGA
201	GCTCAGCTTT	GCCAGGGTAC	TTTACAGCG	GGTTGATGAA	CTAGAGAAC
251	TATTCAAAGA	TCGGGAGCAA	TTCTCTGGAAC	TAGTCAGCCG	GAAGCTGAGT
301	TTGGTTCTGT	GTGCAGAAGA	AGTCACCATG	GTCACCTGGG	AAGAGCTGGA
351	GCAGGCGATT	ACGGACGGCT	GGAGAGCCTC	ACAAGCGGGC	TCAGAAAACAC
401	TTATGGGATT	TTCTAAGCAC	GGAGGGTTCA	CTTCTTAAC	ATCACCTGAA
451	GGGACTCTAA	GCGGAGACTC	TACCAAGCAA	CCAAGTATTG	AGCAGGCTCT
501	GGATTCTGCC	AGTGGTCTTG	GCCCCGATCG	GACTGCATCA	GGATCTGGTG
551	GCACAGCAC	CCCCCTGTAT	GGGGTTTCCA	GTAGGGAAACA	AAGCAAGGTC
601	CCCTCTGGTA	CTGGGAGACA	GCAGCAGCCG	AGGGCCCCGTG	ATGAAGCTGG
651	CGTGCCACGA	CTCCATCAGT	CTTCTACATT	CCAATTCAA	TCAGACTCAG
701	ATCGTCACAG	GAGTAGAGAG	AAGCTTACCT	CGACACAAACC	AAGAAGAAAT
751	GCACGTCTG	GTCCAGTTCA	ACAGGACTTA	CCCTTGGCCA	GAGACCAGCC
801	CAGTAGTGTG	CCCGCTAGCC	AGAGTCAGGT	CCATCTAAGG	CCAGATCGTC
851	GTGGGTTAGA	ACCAACTGGC	ATGAATCAGC	CTGGATTAGT	GCCTGCTAGC
901	ACTTACCCAC	ATGGGTGTGGT	ACCCCTCAGC	ATGGGTCA GC	TTGGTGTGCC
951	ACCACCTGAA	ATGGATGATC	GGGAATTGAT	ACCATTGTC	GTGGATGAGC
1001	AACGTATGTT	GCCACCATCA	GTACCTGGCA	GAGACCAGCA	AGGATTGGAA
1051	CTACCTAGCA	CAGACCAACA	TGGTCTGGTT	TCAGTCAGTG	CATATCAGCA
1101	TGGTATGACA	TTTCTGGCA	CAGACCAACG	CAGTATGGAA	CCACTTGGCA
1151	TGGATCAGCG	TGGATGTGTA	ATATCAGGCA	TGGGTCA GCA	AGGACTAGTA
1201	CCCCCTGGTA	TAGACCAAGCA	AGGATTGACA	TTGCCCTGTG	TCGATCAACA
1251	TGGCCTGGTT	CTACCTTTA	CAGACCAAGCA	TGGTTTGGTA	TCACCTGGTT
1301	TGATGCCAAT	TAGTGCAGAT	CAGCAAGGTT	TTGTGCAGCC	CAGTTGGAA
1351	GCAACTGGCT	TCATACAACC	TGGCACAGAG	CAGCATGATT	TGATCCAGTC
1401	TGGCAGATT	CAGCGTGCTT	TGGTGCAGCG	TGGTGCATAT	CAGCCTGGCT
1451	TGGTCCAACC	TGGTGCAGAT	CAGCGTGGTT	TGGTCCGGCC	TGGAATGGAT
1501	CAGTCTGGTT	TGGCCCAACC	TGGTGCAGAT	CAGCGTGGTT	TGGTCTGGCC
1551	TGGAATGGAT	CAGTCTGGTT	TGGCCCAACC	TGGTAGAGAT	CAGCATGGTT

1601	TGATCCAGCC	TGGCACAGGT	CAGCATGATT	TGGTCCAATC	TGGCACAGGT	
1651	CAGGGTGTCT	TGGTACAGCC	TGGTGTAGAT	CAGCCTGGCA	TGGTCCAACC	
1701	TGGCAGATT	CAGCGTGCTT	TGGTGCAGCC	TGGTGCATAT	CAGCCTGGCT	
1751	TGGTCCAACC	TGGTGCAGAT	CAGATTGATG	TGGTGCAAACC	TGGTGCAGAT	
5	1801	CAGCATGGTT	TGGTACAATC	TGGTGCAGAT	CAGAGTGATT	TGGCTCAACC
	1851	TGGTGCAGTT	CAGCATGGTT	TGGTCCAACC	TGGAGTAGAT	CAGCGTGGTT
	1901	TGGCACAAACC	TGGTGCAGAT	CATCAGCGTG	GTTTGGTCCC	ACCTGGTGCA
	1951	GATCAGCGTG	GTTTGGTCCA	ACCTGGTGCA	GATCAGCATG	GTTTGGTCCA
10	2001	ACCTGGAGTG	GATCAGCATG	GTTTGGCACA	ACCTGGTGA	GTTCAGCGTA
	2051	GTTTGGTGCA	ACCTGGTATA	GTTCAGCGTG	GTTTGGTGCA	ACCTGGTGCA
	2101	GTTCAGCGTG	GTTTGGTGCA	ACCTGGTGCA	GTTCAGCGTG	GTTTGGTCCA
	2151	ACCTGGAGTG	GATCAGCGTG	GTTTGGTCA	ACCTGGTGCA	GTTCAGCGTG
	2201	GTTTGGTCCA	ACCTGGTGCA	GTTCAGCATG	GTTTGGTCCA	ACCTGGTGCA
15	2251	GATCAGCGTG	GTTTGGTCCA	ACCTGGAGTG	GATCAGCGTG	GTTTGGTGCA
	2301	ACCTGGAGTG	GATCAGCGTG	GTTTGGTCCA	ACCTGGAATG	GACCAGCGTG
	2351	GTTTGTCCA	ACCTGGTGCA	GATCAGCCTG	GTTTGGTCCA	GCCTGGTGCA
	2401	GGTCAGCTGG	GTATGGTGCA	GCCTGGAATA	GGTCAGCAAG	GTATGGTGCA
	2451	ACCTCAGGCA	GATCCACATG	GCCTGGTACA	ACCTGGTGCC	TATCCTCTTG
20	2501	GTTTGGTACA	ACCTGGTGCA	TATTGTCATG	ATTTATCTCA	ATCTGGGACA
	2551	TATCCACGTG	GTCTGGTGCA	GCCAGGAATG	GATCAGTATG	GTTTGGAGACA
	2601	ACCTGGTGCA	TATCAGCCAG	GCTTGATAGC	ACCAGGCACA	AAGCTTCGTG
	2651	GCTCTTCAAC	ATTCCAGGCA	GATTCTACAG	GTTTATATC	AGTACGTCCA
	2701	TATCAACATG	GTATGGTAC	TCCTGGCAGA	GAACAATACG	GCCAGGTGTC
25	2751	ACCAACTCTA	GCCAGTCAAG	GTTTGGCATC	ACCTGGTATA	GATCGAAGGA
	2801	GTTTGGTACC	ACCAGAAACT	TATCAGCAAG	GTTTGTGCA	TCCTGGCACA
	2851	GACCAGCACA	GCCCCAATACC	ACTGAGTACA	GGTTTGGGAT	CTACACACCC
	2901	AGATCAACAG	CATGTGGCAT	CACTGGCCC	AGGTGAGCAT	GACCAGGTAT
	2951	ACCCAGATGC	AGCTCAGCAT	GGCCATGCTT	TCTCTCTCTT	TGACAGTCAT
30	3001	GATTCAATGT	ATCCTGGTTA	TCGTGGCCA	GGGTATCTAA	GTGCTGATCA
	3051	GCATGGCCAG	GAAGGTTTGG	ATCCAAATAG	AACACGAGCC	TCGGACCGAC
	3101	ATGGAAATCC	TGCCCAGAAG	GCCCCAGGCC	AAGATGTCAC	TCTTTTCAGG
	3151	AGTCCAGACT	CCGTCGACCG	AGTCTTATCA	GAAGGGAGCG	AAGTCTCGAG
	3201	TGAAGTCTG	AGTGAGCGAC	GCAATTCACT	CGTAGAATG	AGTTCTAGTT
	3251	TCCCCACGGC	AGTGGAGACA	TTTCATCTGA	TGGGAGAGCT	CAGTAGCCTC
35	3301	TATGTGGGGC	TAAAGGAGAG	TATGAAGGAT	CTGGATGAGG	AGCAGGCCGG
	3351	CCAAACCGAC	TTGGAGAAGA	TCCAGTTCT	GCTGGCACAG	ATGGTCAAAA
	3401	GGACCATACC	TCCTGAACTG	CAGGAGCAGC	TGAAGACCGT	AAAGACGCTA
	3451	GCCAAAGAAG	TTTGGCAGGA	GAAAGCAAAA	GTGGAAAGGC	TGCAGAGGAT
40	3501	CCTGGAAGGG	GAAGGGAAATC	AAGAAGCAGG	GAAGGAACTG	AAAGCTGGAG
	3551	AGCTGAGATT	GCAGCTGGGT	GTCTCTAGAG	TCACCGTGGC	TGACATAGAA
	3601	AAGGAGCTGG	CCGAGTTGAG	GGAGAGCCAA	GACAGGGGCA	AGGCTGCCAT
	3651	GGAAAATTCT	GTCTCTGAAG	CCTCCCTTTA	CCTGAGGAC	CAGTTGGACCA
	3701	AGCTCAGGAT	GATCATTGAG	AGCATGCTGA	CCTCCCTCTC	CACGCTCCTG
45	3751	TCCATGAGCA	TGGCCCCGCA	CAAGGCCCAC	ACCTTGGCTC	CTGGCCAGAT
	3801	CGACCCCTGAG	GCCACCTGTC	CAGGCTGCA	CCTGGATGTG	AGCCATCAGG
	3851	TCAGCACGCT	GGTGCAGGCG	TATGAGCAAC	TCCAAGACAT	GGTCAACAGC
	3901	CTGGCCGTCT	CCCGACCCCT	CAAGAAGGCC	AAGCTCCAGA	GACAGGAGCA
	3951	GGAGCTGCTG	GGCCGTGTGC	AGAGTGCCAT	CCTGAGGATG	CAGGGTGA
50	4001	GCGAGAAAGCT	CAACATCACC	ACCAGCAACC	TCATCGAGGA	CCATCGGCAG
	4051	AAACAGAAGG	ACATTGCTAT	GCTGTACCG	GGTCTGGAGA	AGCTCGAAAA
	4101	GGAAAAGGCC	AACAGGGAGC	ACCTGGAGAT	GGAGATCGAT	GTGAAAGCCG
	4151	ACAAGAGATGC	TCTGGCCACC	AAAGTGAAGCC	GTGTCCAGTT	TGATGCCACC
	4201	ACGGAGCAGC	TGAACACAT	GATGCAGGAG	CTGGTGGCCA	AGATGAGCGG
55	4251	GCAGGAGCAG	GACTGGCAGA	AGATGCTGGA	CAGGCTGCTC	ACAGAGATGG
	4301	ACAACAAGCT	GGACCGCCCTG	GAGCTGGACC	CACTGAAGCA	GTTGCTGGAG
	4351	GATCGGTGGA	AATCGCTGCG	ACAGCAGCTC	AGGGAGCGCC	CCCCACTCTA
	4401	CCAGGCAGAC	GAGGCAGGCTG	CCATGCAGGAG	GCAGCTCCTG	GCACATTTCC
	4451	ACTGCCCTCTC	ATGTGACCGG	CCCTTGGAGA	CACCTGTGAC	TGGACATGCC

4501 ATCCCCGTGA CCCCCGCGGG TCCAGGCCTA CCTGGGCACC ATTCCATCCG
 4551 CCCCTACACG GTGTTTGAAC TGGAGCAGGT CGGGCAGCAT AGCCGCAACC
 4601 TCAAGCTGGG CAGCGCCTTC CCTCGGGGTG ACCTGGCGCA GATGGAGCAG
 4651 AGCGTGGGGC GCCTGCGCTC CATGCACTCC AAGATGCTGA TGAACATTGA
 5 4701 GAAGGTGCAG ATCCACTTCG GGGGCTCCAC CAAGGCCAGC AGCCAGATAA
 4751 TCCGCAGCT GCTGCACGCC CAGTGCCTGG GCTCCCCCTG CTACAAACGG
 4801 GTGACAGATA TGGCTGATTA CACCTACTCA ACTGTGCCCC GGCGCTGCAG
 4851 GGGCAGCCAC ACCCTCACCT ACCCTTACCA CGCAGCCGC CGCAGCACC
 4901 TTCCCCGGGG CCTGTATCCT ACTGAAGAGA TCCAGATTGC CATGAAGCAT
 10 4951 GATGAGGGTGG ACATCTTGGG CCTGGATGGC CACATTACA AGGGACGGAT
 5001 GGACACAAGG CTGCCAGGCA TCCCTCGAAA AGACAGCTCA GGGACCTCAA
 5051 AGCGCAAGTC CCAGCAGCCC AGGCCCCACG TGCACAGGCC GCCATCCCTC
 5101 AGCAGCAATG GCCAGCTGCC CTCTCGGCCA CAGAGCGCCC AGATTCGGC
 5151 TGGCAACACC TCAGAAAGAT AGACCTTCCT CGGAGGGCCG TCTCTCCCAG
 15 5201 CCGAACACACAG CCCACCCGCC CAGCTCCGCC TCGGTGGCAA ACAGGGGGCT
 5251 GGAGAGGCAC GTGGACATGC CTCTGGGGA GGGGCTCGAG GAGCCCACGC
 5301 GGGGGCCGCG GTCCAGCACC GCTCAGTGAG CGGAGGTGTA AATAAACATT
 5351 CAGGAGGAAA AAAAAAAA AAAAAAAA AAAAAAAA AAAAAAAA
 5401 AAAAAAAAAA A

20

BLAST Results

25 No BLAST result

Medline entries

30 No Medline entry

35 Peptide information for frame 1

ORF from 181 bp to 5169 bp; peptide length: 1663
 Category: putative protein
 40 Classification: no clue
 Prosite motifs: RGD (1482-1484)

1 MKDAAEELSF ARVLLQRVDE LEKLFKDREQ FLELVSRKLS LVPGAEEVTM
 45 51 VTWEELQAI TDGWRASQAG SETLMGFSKH GGFTSLTSPE GTLSGDSTKQ
 101 PSIEQALDSA SGLGPDRRTAS GSGGTAHPSD GVSSREQSKV PSGTGRQQQP
 151 RARDEAGVPR LHQSSTFQFK SDSDRHRSRE KLTSTQPRRN ARPGPVQQDL
 201 PLARDQPSST PASQSQVHLR PDRRGLEPTG MNQPGLVVAS TYPHGVVPLS
 251 MGQLGVPPPE MDDRELIPFV VDEQRMLPPS VPGRDQQGLE LPSTDQHGLV
 301 SVSAYQHGMT FPGTDQRSME PLGMDQRGCV ISGMGQQGLV PPGIDQQGLT
 351 LPVVDQHGLV LPFTDQHGLV SPGLMPISAD QQGFVQPSLE ATGFIQPGTE
 401 QHDLIQSGRF QRALVQRGAY QPGLVQPGAD QRGLVRPGMD QSGLAQPGAD
 451 QRGLVWPGMD QSGLAQPGRD QHGLIQPGTG QHDLVQSGTG QGVLVQPGVD
 501 QPGMVQPGRF QRALVQPGAY QPGLVQPGAD QIDVVQPGAD QHGLVQSGAD
 551 QSDLAQPGAV QHGLVQPGVD QRGLAQPRAD HQRGLVPPGA DQRGLVQPGA
 601 DQHGLVQPGV DQHGLAQPGE VQRSLVQPGI VQRGLVQPGA VQRGLVQPGV
 651 VQRGLVQPGV DQRGLVQPGV VQRGLVQPGV VQHGLVQPGV DQRGLVQPGV
 701 DQRGLVQPGV DQRGLVQPGM DQRGLIQPGV DQPGGLVQPGV QQLGMVQPGV

751 GQQGMVQPGQ DPHGLVQPGQ YPLGLVQPGQ YLHDLSQSGT YPRGLVQPGM
 801 DQYGLRQPGQ YQPGLIAPGT KLRGSSTFQA DSTGFISVRP YQHGMVPPGR
 851 EQYGQVSPLL ASQGLASPGI DRRSLVPPET YQQGLMHPGT DQHSPILST
 901 GLGSTHPDQQ HVASPGPGEH DQVYPDAAQH GHAFSLFDSH DSMYPGYRGP
 5 951 GYLSDADQHGQ EGLDPNRTRA SDRHGIPAQK APGQDVTLFR SPDSVDRVLS
 1001 EGSEVSSEVL SERRNSLRRM SSSFPTAVET FHLMGELSSL YVGLKESMKD
 1051 LDEEQAGQTD LEKIQFLLAQ MVKRTIPPEL QEQLKTVKTL AKEVWQEAK
 1101 VERLQRILEG EGNQEAGKEL KAGELRLQLG VLRVTVADIE KELAELRESQ
 1151 DRGKAAMENS VSEASLYLQD QLDKLRMIIE SMLTSSSTLL SMSMAPHKAH
 1201 TLAPGQIDPE ATCPACSLDV SHQVSTLVRR YEQLQDMVNS LAVSRPSKKA
 1251 KLQRQDEELL GRVQSAILQV QGDCEKLNIT TSNLIEDHRQ KQKDIAMLYQ
 1301 GLEKLEKEKA NREHLEMEID VKADKSALAT KVSRVQFDAT TEQLNHMMQE
 1351 LVAKMSGQEQQ DWQKMLDRLL TEMDNKLDRL ELDPVKQLL DRWKSLRQQL
 1401 RERPPLYQAD EAAAMRRQLL AHFHCLSCDR PLETPVTGHA IPVTPAGPGL
 1451 PGHHSIRPYT VFELQVVRQH SRNLKLGSQF PRGDLAQMEQ SVGRLRSMHS
 1501 KMLMNIEKVQ IHFGGSTKAS SQIRELLHA QCLGSPCYKR VTDMADYTYS
 1551 TVPRRCGGSH TLTYPYHRSR PQHLPRGLYP TEEIQIAMKH DEVVDILGLDG
 1601 HIYKGRMDTR LPGILRKDSS GTSKRKSQQP RPHVHRPPSL SSNGQLPSRP
 1651 QSAQISAGNT SER

20

BLASTP hits

25 No BLASTP hits available

Alert BLASTP hits for DKFZphtes3_1bp3, frame 1

No Alert BLASTP hits found

30

Pedant information for DKFZphtes3_1bp3, frame 1

Report for DKFZphtes3_1bp3.1

35

[LENGTH] 1723
 [MW] 187354.98
 [pI] 6.19
 40 [HOMOL] TREMBL:AF025461_4 gene: "MO1D1.5"; *Caenorhabditis elegans* cosmid MO1D1. 1e-47
 [FUNCAT] 30.03 organization of cytoplasm [S. cerevisiae, YDL058w] 8e-07
 [FUNCAT] 08.07 vesicular transport (golgi network, etc.) [S. cerevisiae, YDL058w] 8e-07
 45 [FUNCAT] 99 unclassified proteins [S. cerevisiae, YOR21bc] 2e-04
 [FUNCAT] 11.04 dna repair (direct repair, base excision repair and nucleotide excision repair) [S. cerevisiae, YKR095w] 0.001
 50 [FUNCAT] 30.10 nuclear organization [S. cerevisiae, YKR095w] 0.001
 [BLOCKS] PRO109&C
 [BLOCKS] BP0230&D
 [BLOCKS] PR00543H
 55 [BLOCKS] PR00210G
 [BLOCKS] PR00210E
 [BLOCKS] BP04236A
 [PIRKW] RNA binding 3e-06

[PIRKW] hydroxylysine 2e-10
 [PIRKW] endoplasmic reticulum 7e-18
 [PIRKW] ATP 2e-06
 [PIRKW] phosphoprotein 3e-06
 5 [PIRKW] seed 4e-34
 [PIRKW] saliva 2e-10
 [PIRKW] glycoprotein 2e-10
 [PIRKW] heterotrimer 3e-06
 [PIRKW] alternative splicing 2e-10
 10 [PIRKW] P-loop 2e-06
 [PIRKW] storage protein 4e-34
 [PIRKW] extracellular matrix 2e-10
 [PIRKW] membrane protein 7e-18
 [PIRKW] protein biosynthesis 7e-18
 15 [SUPFAM] myosin motor domain homology 2e-06
 [SUPFAM] elastin 2e-10
 [SUPFAM] glutenin 2e-37
 [SUPFAM] myosin heavy chain 2e-06
 [SUPFAM] unassigned ribonucleoprotein repeat-containing proteins
 20 3e-06
 [SUPFAM] proline-rich protein 2e-10
 [SUPFAM] ribonucleoprotein repeat homology 3e-06
 [PROSITED] RGD]
 25 [KW] All_Alpha
 [KW] LOW_COMPLEXITY 2.84 %
 [KW] COILED_COIL 1.80 %

 30 SEQ GGQVEDLSKQLKRVDGQVQGIATHVQHFSQASGLDLAALEWPEEAEVGVRADFVRTGSI
 SEG
 PRD cccchhhhhhhhhhhhhheeeeeeeeecccccccccccccccccccccccccccccccccccc
 COILS

 35 SEQ MKDAAEELS FARVLL QRVDE LEKL FKDR EQL FEL VSR KLS LVP GAE EVTM VTWE ELE QAI
 SEG
 PRD chhhcccccccccccccccccccc
 COILS

 40 SEQ TDGWRASQAGSETLMGFSKHGGFTSL TSPEGTLS GDSTKQPSIE QALDSASGLGP DRTAS
 SEG
 PRD hh hhcc
 COILS

 45 SEQ GSGGTAHPSDG VSSRE QSKVPSGT GRQQQPRAR DEAGV PRL HQSSTF QFKSD SDR HRS RE
 SEG
 PRD cccccccccccc ee ecc
 COILS

 50 SEQ KLTSTQPRRNARPGPVQQDPLPLARDQPSV PASQS QVHLRP DR RGLEPTGMN QPGL VPAS
 SEG xxxxxxxxx
 PRD ccc
 COILS

SEQ TYPHGVVPLSMGQLGVPPPEMDDRELIPVVDEQRMLPPSVPGRDQQGLELPSTDQHGLV
 SEG
 PRD CCC
 COILS
 5

 SEQ SVSAYQHGMTFPGTDQRSMEPLGMDQRGCVISGMGQQGLVPPGIDQQGLTPVVDQHGLV
 SEG
 PRD CCC
 10 COILS

 SEQ LPFTDQHGLVSPGLMPISADQQGFVQPSLEATGFIQPGTEQHDLIQSGRFQRALVQRGAY
 SEG
 PRD CCC
 COILS

 15

 SEQ QPGLVQPGADQRGLVRPGMDQSGLAQPGADQRGLVWPGMDQSGLAQPGRDQHGLIQPGTG
 SEG
 PRD CCC
 COILS

 20

 25 SEQ QHDLVQSGTQRGVLVQPGVDQPGMVQPGRFQRALVQPGAYQPGLVQPGADQIDVVQPGAD
 SEG
 PRD CCC
 COILS

 30

 SEQ QHGLVQSGADRSDLAQPGAVRHGLVQPGVDQRGLAQPRAHDQRGLVPPGADQRGLVQPGA
 SEG
 PRD CCC
 COILS

 35

 SEQ DQHGLVQPGVDQHGLAQPGEVQRSLVQPGIVQRGLVQPGAVQRGLVQPGAVQRGLVQPGV
 SEG
 PRD CCC
 COILS

 40

 SEQ DQRGLVQPGAVQRGLVQPGAVQRHGLVQPGADQRGLVQPGVDQRGLVQPGVDQRGLVQPGM
 SEG
 PRD CCC
 COILS

 45

 SEQ DQRGLIQPGADQPGLVQPGAGQLGMVQPGIGQRGMVQPQADPHGLVQPGAYPLGLVQPGA
 SEG
 PRD CCC
 COILS

 50

 55 SEQ YLHDLSQSGTYPRGLVQPGMDQYGLRQPGAYQPGLIAPGTLRGSTFQADSTGFISVRP
 SEG
 PRD CCC

COILS

5 SEQ YQHGMVPPGREQYGQVSPLLASQGLASPGIDRRSLVPPETYQQGLMHPGTDQHSPIPLST
 SEG
 PRD CCC
 COILS

10 SEQ GLGSTHPDQQHVASPQGPGEHDQVYPDAAQHGHAFLFDSDMSYMPGYRGPGYLSADQHGQ
 SEG
 PRD CCC
 COILS

15 SEQ EGLDPNRTRASDRHGIPAQKAPGQDVTLFRSPDSVDRVLSEGSEVSSEVLSERRNSLRRM
 SEG xxxxxxxxxxxxxxxxxxxxxx
 PRD CCCCCCCCCCCCCCCCCCCCCCCCCeeeeccccccccccccchhhhhhhhhhhcccc
 COILS

20
 SEQ SSSFPTAVETFHLMGELSSLYVGLKESMKDLDEEQAGQTDLERKIQFLLAQMVKRTIPPEL
 SEG
 PRD cccccceeeeeeeeeeccceeehhhhhhhhhhhhccccchhhhhhhhhhhcccc
 COILS

25
 SEQ QEQLKTVKTLAKEWUQEAKVERLQRILEGEQNQEAGKELKAGELRLQLGVLRVTVADIE
 SEG
 PRD hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhcccccccccccccccccccccccc
 COILS

30
 SEQ KELAELRESQDRGKAAMENSVSEASLYLQDQLDKLRLMIIESMLTSSSTLLSMSMAPKAH
 SEG xxxxxxxxxxxxxx
 PRD hhhhhhhhhhhhhccccchhhhhhhhhhhhhcccccccccccccccccccccccc
 COILS

35
 SEQ TLAPGQIDPEATCPACSLDVSHQVSTLVRRYEQLQDMVNSLAWSRPSKKAKLQRQDEELL
 SEG
 PRD hhccccccccccccccccccccchhhhhhhhhhhhhhhccccchhhhhhhhhhh
 COILS

40
 SEQ GRVQSAILQVQGDCEKLNITTSNLIEDHRQKQKDIAMLYQGLEKLEKEKANREHLEMEID
 SEG
 PRD hhhhhhhhhhhhhccccchhhhhhhhhhhhhhhcccccccccccccccccccc
 COILS

45
 SEQ VKADKSALATKVSRVQFDATTEQLNHMMQELVAKMSGQEWDWQKMLDRLLTEMDNKLDRL
 SEG
 PRD hhhhhhhhhhhhhhhhhccccchhhhhhhhhcccccccccccccccccccc
 COILS

50
 SEQ ELDPVKQLLEDRWKSLRQQLRERPPLYQADEAAAMRRQLLAHFHCLSCDRPLETPVTGHA

30

Prosite for DKFZphes3_1bp3.1

PS000016 1542-1545 RGD PRO000016

35

(No Pfam data available for DKFZphtes3_1bp3.]

DKFZphes3_17i21

5 group: transmembrane protein

DKFZphes3_17i21 encodes a novel 224 amino acid protein without similarity to known proteins.

10 The novel protein contains 2 transmembrane regions. ESTs can be found in testis, retina and brain.

No informative BLAST results; No predictive prosite, pfam or SCOP motife.

15 The new protein can find application in studying the expression profile of testis-specific genes and as a new marker for testicular cells.

20 unknown protein

Pedant: contains signal peptide(frame 1) and TRANSMEMBRANE 2
(frame
2)

25 perhaps complete cds.

Sequenced by GBF

Locus: unknown

30 Insert length: 1518 bp

Poly A stretch at pos. 1480, polyadenylation signal at pos. 1454

35	1	GCCAGACAGC	TAGGTGTCAT	TCAGGGCTGG	TGTCCTCTGT	CCAGGCCATC
	51	ATGGCCTCCA	CTGCCGGCTA	CATCGTCTCC	ACCTCTGCA	AGCACATCAT
	101	TGATGACCAA	CACTGGCTGT	CCTCTGCCTA	CACGCAATT	GCTGTGCCCT
	151	ACTTCATCTA	CGACATCTAC	GCCATGTTCC	TCTGTCACTG	GCACAAGCAC
	201	CAGGTAAAG	GGCATGGAGG	GGACGACGGA	GGGGCCAGAG	CCCCGGGCAG
40	251	CACGTGGGCC	ATAGCGCGTG	GCTACCTGCA	CAAGGAGTTC	CTCATGGTGC
	301	TCCACCATGC	CGGCATGGTG	CTGGTGTGCT	TCCCACCTCTC	AGTGGTGTGG
	351	CGACAGGGTA	AGGGAGACTT	CTTTCTGGGT	TGCATGTTGA	TGGCAGAGGT
	401	CAGCACGCC	TTCGTCTGCC	TTGGCAAGAT	CCTCATCCAG	TACAAGCAGC
	451	AGCACACACT	GCTGCACAAG	GTGAACGGGG	CCCTGATGCT	GCTCAGCTTC
	501	CTCTGCTGCC	GGGTGCTGCT	CTTTCCTAC	CTGTACTGGG	CCTACGGGCG
	551	CCATGCCGGC	CTGCCCTCTG	TGGCCGTGCC	CCTGGCCATC	CCTGCCAACG
	601	TCAACCTGGG	CGCTGCGCTG	CTCCTGGCCC	CTCAGCTCTA	CTGGTTCTTC
	651	CTCATCTGCC	GTGGGGCCTG	CCGCCTCTTC	TGGCCCCGCT	CCCGGCCGCC
	701	CCC GG CCTGC	CAGGCCCAAG	ACTGAGGCCG	GGGGCCGGGA	CCCTCCCCCT
	751	CCCCACCCCC	ACCCCCGTGG	AGACAGGGCT	CTGGGGCTGA	TGGCTGGGGT
	801	TGGGAGCCAG	GGT CCTCTTG	CCC GGAC AAC	CCCAGGACTG	ACGATGACCC
	851	CGAAAGGGAA	GAGGCCCAT	CTCTCGGGGA	CTGAGGGGGT	GGAGAGAGGG
	901	GACCTCTTCC	CCCTACTCTG	CCCCCTTCCT	GCACACCCCTT	GCGCTGGAGG
	951	AGGGGAGGGG	GCACCGCCTC	CCACCCACTG	AGGGCAGGAG	GGCTTGTGGG
55	1001	GAGGGACACC	AACAGGGTTT	CAAGGGGACC	AGGAGTCAGA	ATGTGGGGAG
	1051	ACGCCCTCTGC	CAAGGCCATC	CCAGCCCCTA	TGCTGCCATC	CCCCAGGGCT
	1101	CCCCATCACC	CGAGAGGAGA	GGACGCCCCA	ACTAACCCCC	GCTGGCCCTC
	1151	GGGCCTCCCG	AGTGGCCGGC	TGCAACCACG	GCTCCTCTCC	AGGGTAGGCC

1201 AGCTTGAGGA ATCTTATTTA TTTTATTTAT TTACCCAAAT TTGAACTAGT
1251 CTGTTGGGTT GGGGGAAGGA GGTGGCTGCT ACCCCCAGC CTTCCCAGTG
1301 CTGACAACCC CGGGGGCAGG CGAGGGCGCC CAGTCCCTCA CCATCGGCTG
5 1351 CACATCGCGC CCTCGGGCCC TGCCATGTCC CTGGTGCTAC TGACCTCTCA
1401 AGGCTTCCTC CAATCTGGGG TCGGGGGACC CTGGGAGGTG CTTTACAGAC
1451 CGCTAATAAA AGACGATCTG CGTGAACGCC AAAAAAAA AAAAAAAA
1501 AAAAAAAA AAAAAAAA

10

BLAST Results

No BLAST result

15

Medline entries

No Medline entry

20

Peptide information for frame 3

25

ORF from 51 bp to 722 bp; peptide length: 224

Category: putative protein

Classification: Transmembrane proteins unclassified

30

1 MASTAGYIVS TSCKHIIDQ HWLSSAYTQF AVPYFIYDIY AMFLCHWHKH
51 QVKGHGGDDG AARAPGSTWA IARGYLHKEF LMVLHHAAMV LVCFPLSVVW
101 RQGKGDFFLG CMLMAEVSTP FVCLGKILIQ YKQQHTLLHK VNGALMLLSF
151 LCCRVLLFPY LYWAYGRHAG LPLLAVPLAI PAHVNLGAAL LLAPQLYWFF
201 LICRGACRLF WPRSRPPPAC QAQD

35

BLASTP hits

40 No BLASTP hits available

Alert BLASTP hits for DKFZphtes3_17i21, frame 3

45

No Alert BLASTP hits found

Pedant information for DKFZphtes3_17i21, frame 3

50

Report for DKFZphtes3_17i21.3

[LENGTH] 224
[MW] 25224.11
[pI] 9.03
55 [HOMOL] TREMBLNEW:AF181646_1 gene: "BcDNA.GH12326";
product: "BcDNA.GH12326"; Drosophila melanogaster BcDNA.GH02340
(BcDNA.GH02340) mRNA, complete cds. 9e-20
[BLOCKS] PR00632H

[BLOCKS] PRO0904A
[BLOCKS] BL01243C
[KW] TRANSMEMBRANE 2
[KW] LOW_COMPLEXITY 6.25 %

5

SEQ MASTAGYIVSTSCKHIIDDQHWLSSAYTQFAVPYFIYDIYAMFLCHWHKHQVKGHGGDDG
SEG

10 PRD cccceeeeecc
MEM

SEQ AARAPGSTWAIARGYLHKEFLMVLHHAAMVLVCFPLSVWRQGKGDFFLGMLMAEVSTP
SEG

15 PRD cccccccceeeeecc
MEM

SEQ FVCLGKILIQYKQQHTLLHKVNGALMLLSFLCCRVLFPYLYWAYGRHAGLPLLAVPLAI
SEG

20 PRD ccchhhhhhhhhhhhhhhhhcccccccccccccccccccccccccccccccc
MEM

SEQ PAHVNLGAALLLAPQLYWFFLICRGACRLFWPRSRPPPACQAQD
SEG xx.....

25 PRD cchhhhhhhhhhhcccccccccccccccccccccccccccc
MEM

(No Prosite data available for DKFZphtes3_17i21.3)

30 (No Pfam data available for DKFZphtes3_17i21.3)

DKFZphtes3_18n14

5 group: transcription factors

DKFZphtes3_18n14 encodes a novel 377 amino acid protein with similarity to human giantin.

10 Giantin is discussed as an autoantigen in rheumatoid arthritis. The novel protein contains a leucine zipper and a putative Helix-loop-helix DNA-binding domain. Therefore it might be a novel transcription factor. Most EST hits are from testis and germ cells.

15 The new protein can find application in modulation of gene expression and in expression profiling.

20 unknown protein

see DKFZphtes3_30i23
wrong orientation
perhaps complete cds.

25 Sequenced by MediGenomix

Locus: /chromosome="1b"

30 Insert length: 5282 bp
Poly A stretch at pos. 5242, polyadenylation signal at pos. 5227

	1	CCGGCACCCG	GAGCTCCTGG	GCACACGGCA	TTGGCAGGGG	CCGCTTCGGC
35	51	AGAGTGATGA	CTGATGATGA	GTCGAGAGC	GTCCTCTCCG	ACTCCCAGTA
	101	AGGGTCGGAG	CTGGAGCTGC	CTGTTATCCA	GCTGTGCGGG	CTGGTGGAGG
	151	AGCTCAGCTA	TGTAAACTCT	GCTCTCAAAA	CTGAGACTGA	GATGTTGAG
	201	AAATATTACG	CTAAACTGGA	GCCCAGGGAT	CAGCAGCTC	CACGATTATC
	251	AGAAATTAAA	ATATCAGCAG	CAGATTATGC	ACAGTTTCGA	GGCAGGGCGTA
40	301	GATCCAAATC	CCGGACAGGT	ATGGACCGTG	GGGTAGGCCT	GACTGCCGAC
	351	AAAAAACTTG	AGCTGGTACA	AAAAGAGGTT	GCGGACATGA	AGGATGACTT
	401	ACGACACACA	AGGGCAAATG	CGGAACGCGA	CCTGCAGCAT	CACGAGGGCGA
	451	TCATTGAGGA	GGCTGAAATT	CGATGGAGTG	AAGTTTCGAG	AGAAGTGCAT
	501	GAGTTGAAA	AAGATATTCT	AAAAGCCATA	TCCAAGAAGA	AAGGGAGTAT
45	551	TTTGGCCACT	CAGAAAGTGA	TGAAATACAT	TGAGGACATG	AACCGCCGGA
	601	GGGATAATAT	GAAGGGAGAAA	TTACGTTTGA	AAAATGTTTC	TCTCAAAGTT
	651	CAGAGGAAAAA	AAATGCTTT	ACAATTGAGG	CAGAAGGAAG	AGGTGAGTGA
	701	GGCCCTTCAC	GATGTTGATT	TTCAGCAGTT	GAAGATAGAG	AACGCTCAAT
	751	TTCTTGAGAC	AATTGAAGCA	AGGAATCAAG	AACTGACCCA	GCTAAAGCTG
50	801	TCATCTGGAA	ACACTCTGCA	GGTCTCAAT	GCCTACAAA	GCAAGCTTCA
	851	CAAGGCAATG	GAATATACC	TCAATCTGGA	CAAGGAGATC	TTGCTGAGAA
	901	AAGAGCTACT	TGAAAAAATT	GAAGAAAGAAA	CACTACAAGT	AGAGGAGGAC
	951	CGGGCCAAAG	CCGAGGCAGT	GAATAAGAGG	CTCCGGAAGC	AGCTGGCCGA
	1001	GTTCCGGGCA	CCACAGGTGA	TGACTTACGT	CCGGGAGAAG	ATCTTAAATG
55	1051	CGGACCTGGA	GAAGAGCATC	AGGATGTGGG	AAAGGAAAGT	GGAGATAGCA
	1101	GAGATGTCT	TAAAAGGCCA	TCGTAAGGCT	TGGAATCGAA	TGAAAATAAC
	1151	CAATGAGCAG	TTGCAGGCAG	ATTACCTTGC	TGGGAAGTAG	CCAGAGGCAG
	1201	GCCACGGCTT	ACAGACCACT	ACATGACCTA	AAAAAGTAAT	CAGCTCCTT

1251	CTAGTCACGG	GCTCCTCTCA	CTGTTCCCTG	TCTGCCTGGT	GTTCCAACC	
1301	CCCCACCCAG	GCTGAGTATC	ATCTCCTGGG	CCACATCTGC	CCATGGGGAG	
1351	TGTTTCACA	GCCTGGCCCC	TGGAACGTGTT	ACCACTGAAA	GAACCACAGG	
5	1401	GCACCTCAAT	GGTTTGACAC	TTGTTAGCCA	GCATTAGTT	CACAAGCATA
	1451	GTGAAAGTGA	CCTTCCCACA	CCTGGGAGAG	GGATAGAGGA	GGGAGAGCCA
	1501	GCCCCAGTGT	TGCCATGGGC	TTATCCGTGG	CAGCCCCAGT	GTGCAACTAT
	1551	CAAAACAGA	CATCAAAACA	GCATGGTGAA	TGCCTGGCAC	TCAGCATTCT
10	1601	CAGTTTACTC	TTCAGTTGG	TGGGGTAGCT	CCTGGACTAG	ATACTGCTGC
	1651	AAAAGAAAAC	AAGCACGAAG	GAAACCAAGA	TGATTCTTC	GGGCTGATAAC
	1701	AACCTGTTCT	GACCTGCAA	AATCCTACCT	TCCCCCACCT	CCCCACCGTA
	1751	ATAGTCATAG	TATAAGGGTT	GTACAGACGC	CTCAGGAGAC	CTGCCTGATT
	1801	CCTTACATC	CTTCTCCCTA	ACATCTAGAC	TATCTCTAGA	GCTGTTCCCT
15	1851	AGTCGTGAAT	GGGTGATGGT	CCTTCTTTGT	CCCTGCAAGT	ATGATCCAAC
	1901	ATGGCCCCAGT	TCAGAACATAG	AATATGTCTT	CTGTGTATG	GTGGCATTG
	1951	GTCCATGGTG	GGAGAAAGAA	ATCAACTTTT	CCCAGGGTG	GAGTGAAGGAC
	2001	AGGGGAGGGC	CGGCCCTCTC	AGCCTTGGAT	GTGATCCATT	TGCTGTAGTC
	2051	TTCCACCTTG	GTGTACAGAA	ACAGGCCAGG	GCACGTCTCA	CCACCGAAGT
	2101	TCAGGACTCC	TCTCAGAAC	CACAGATCGA	ACTGCTGTAG	CTGGCACATC
20	2151	ATTGGGCTTC	CTGGGTCCCC	CTGTGATAAA	AGACAGAAGG	CTTCAAGTCT
	2201	TAGAAAAACT	AGTTTTTGT	GTAATCTAT	CCTTGTGCAA	TATACTGTTT
	2251	GTTCTAGAAA	TGTTTACGC	TGGTTCTCAC	TGAAATGGG	GCAAATTATA
	2301	GGATACAATT	TCAAATCTAG	GCAGCCACCA	CCACAAATT	CAACAAGATG
	2351	ACTTTTCCCT	TTATTATGCA	AATTAGCTGT	GGACTTCTGC	TGATTGCCTA
25	2401	TAGCTTCCCTG	GTTCATATTT	CATTTCTTG	CCCCTTCCA	GTCCCTTGGC
	2451	CAAAACCTTCC	CTCTCTTCTG	GCTTCTCATT	CCTGAAATGT	TGGTGTGTTGT
	2501	TTCTGTTTGT	TCCTGAAATG	CTCACATTT	CCCTTCTCTG	CCTTGCTTCA
	2551	ACCCCTTAGTG	TAAGCCACCT	CCTGCCACCT	GGCAACTGCT	TACCAAGCCTG
	2601	GCTGGCCGTG	CTCTGGGTCT	TCCCTACTCC	CAATGGAGCA	GTCCCTGTTGG
30	2651	ACTTGGGAAT	TCTGCCACAT	ACACTTTATC	TAACTTAAAG	TGACGGAGTA
	2701	GAAGCTTGGC	ATCATTAGCT	AGATATGGGA	CCCTGGCAAG	TGACCAAATC
	2751	CTCTCTGAGC	CAAGGTGGG	ACACAGTTAA	TGCCTGTAAC	ACGTGCTGAG
	2801	CACAGCACAG	TGCCCTGGCAC	ACAGCAAACA	CTCAATAGAA	TATTAGCTAC
	2851	CATCATCCTG	ATGTCGCTAT	AAAGGCCAGC	ATTTTCTGA	AAAGTTGGGG
35	2901	AAAATGGGAA	AAGCAACAAAG	GCAACTAGTA	GGTATCACTT	ACCTTACCTG
	2951	CCCAGACCCC	ACACCCCTAG	GTCTCCCTC	AAAGGAATT	CTGCCCTCTCC
	3001	CATGGCCCAT	CTTGGTCCGA	GAAGGGGGTG	GTCATCCCCA	GGCTAGCCAG
	3051	CCACTTCTGA	CCTGTGTGGC	CTGCTGGCT	GGAAAGGCCA	GGCAATGACA
	3101	TGTTGCTCTC	GCAGTTTGGA	CTGAGACATG	GAATGGGGCC	GCAATTAAAC
40	3151	ACAGGAAACA	ATCTGAACAG	ACTGAACAC	GAGCAGCAGA	AAGGCAGAAG
	3201	AGCAGCCGCT	TCAGCCCCCT	ACCATCCGAG	ACCTGGGTGT	GTGGTCTGTC
	3251	TTGGTCATC	TCTCTGTCTC	TCTTCTCTC	TTTCTTCTC	TGCTCCCAAG
	3301	GCTGGAGTGC	AGTGGTGCAA	TCTTGGCTCA	CTGCAACCTC	CACCTCTGGG
	3351	ATTCAAGCAA	TTCTCCCACC	TCAGCCTCTC	GAGTAGCTGG	GGCTACAGCT
45	3401	ATGCGCCACC	ATGCCCCAGT	AATTTTTTT	TTTTTTTTT	GAGATGGAGT
	3451	CTTGCTCTGT	CCCCCATGCT	GGAGTGCAGT	GGCATGATCT	GGGCTCGCTG
	3501	CAACCTCCTC	CTCTGGGTT	CAAGCGATT	TCCTACCTCA	GCCTCCCCAG
	3551	TAGCTGGGAT	TACAGGGGCC	CACCAACACA	CCTGGCTAAT	TTTTATTTTT
	3601	AGTAGAGATG	GGGTTTCA	ATGTTGGCCA	GGCTGGTCTC	GAACCTCTGA
50	3651	CCTCATGATC	CACCCGGCCTC	GGCCTCCCCA	AGTGTGTTGG	TTACAGGCCT
	3701	GAGCCACTGC	ACCCGGCCTA	ATTCTGTAT	TTTTAGTAGA	GATGGGGTTT
	3751	CACGATGTTG	GCCAGGGCTGG	TCTTAATCTA	ACTTCAAGT	ATCTGCCCGC
	3801	CTCGCCCTCT	CAAAGTGCTG	GGATTAGGCA	TGAACCTACCA	TGCCCAGTGG
	3851	GGTATTCTCT	TTCAATAAAAG	CTCCTCTTTT	CCAAGGAAGC	CACACCAGAA
55	3901	CAGAGATGAA	GACCAGTGGG	AAAACATGGG	AGCAACTCCG	TGGGCAGGCC
	3951	AGCGGGGAGG	CCATGCTGCA	AAGCTGCCGT	GATTCCCTGG	TGATCTCTCA
	4001	GCAGGCCAAG	GCCAGACATG	TGAGGAAGGC	CTTGAGGACT	TCATTCTGTG
	4051	CCTCTCCCTG	GATGGAAGGG	GGTGTCTTAG	TGTGGCACTC	CTGACTTTTC
	4101	AATTGACTGG	TGAAGAGGCC	CTTGTGTGCA	CCTCACTATG	TCTGCCTAGG

4151 TCATGGGGGC TCCCTGGCCA AGAATGACGT GGTTCCCCCT TTTCATCAGTC
 4201 CGATTCGCAG TTTGTCTTAA CTGTAGTGGT ATAGCCAGAG CAAGAAAAAG
 4251 AATGTGATTT AGGACAAATG ATTGGATGAG TGATTGGTAG ATGTCCTCAG
 4301 CTATGGCGTG GTTTGCAGG TCACTGTTCC ACCCACCTGG GCACAGCATA
 5 4351 TACGCTTTT CTCTTCCCCA TAATCCC GTA GGGGCTGCAG CTTCTGAAGC
 4401 ACAAGAGGCA GAGGCAGAAC GCTCCAGGTG CCCCTCTGG A GCTACCTAC
 4451 CTCATCTCCC AAGGGAGCGG CCACAGCCC GAGTGGGTC TTTCATTTG
 4501 TGATCTTTT CCTTGACATT CAGCAAAAGC CCTGACAGTG GTAGAATAAA
 4551 GGCAGGATGG GTGAGTGCAG AGTGATTCTG CTTTTGTTGG GTTTCAGGGA
 10 4601 AACCCATAGG CAGATTCTGA ACCTGGTGGT TGATTCTACA TGTGGGAATT
 4651 GTGGCTTGA AGACCTCTGG ACATGAGAAC ATATTCTCAA GACAGAGGAT
 4701 TCTATGGGGA CGGGTCAACCA TAAATGGTG TGCAAGCATA ATTCTGTTCA
 4751 AAAATGAAGG CATGTTTAGA GGTGTGTCA AGTTAAAAC CAACCTGAAC
 4801 TTTGCAGTTA GATTTAAAAA GATGGTCAGT TAGAGTAGAA ATAGCTTAGA
 15 4851 ATATTCCATT GAGTCTAAGA TACAGTTAGA AATCAACATC TTTGAATTAA
 4901 GGGTGTGTCT TTTAATCAGT TGATGTAGA GTTTAACGGG CAGCATTNTT
 4951 TTCTTCTTG GGATTACAAA AAATGATGGT GCATTCTATA ATTGGCAGCA
 5001 TCTTAGATCT GAGGAAGTAT GATACTTGTG TGACGGAATG GTTGACGGCA
 5051 GAATTTGTT AAAAGCTAT ATCTTCACTG TATTTAACCA CATTATCTAA
 20 5101 TTTAAGAAAT TGTTAAGATC CCCCACCTGG CAGAGGACCC AGTACAAAAT
 5151 AGGCACTCAA TAGATGTTAC ACCAACTTTG GAAGGGCAAA CATATTCTT
 5201 AATGAGAGGC AGTCCTTCAT GTTTGCAAT AAAATGACTT TTAAAAAAAAA
 5251 AAAAAAAAAA AAAAAAAAAA AAAAAAAAAA AA

25

BLAST Results

30 No BLAST result

Medline entries

35 No Medline entry

Peptide information for frame 3

40

ORF from 57 bp to 1187 bp; peptide length: 377
 Category: putative protein
 Classification: no clue
 45 Prosite motifs: LEUCINE_ZIPPER (19-40)

1 MTDDDESESVL SDSHEGSELE LPVIQLCGLV EELSYVNSAL KTETEMFEKY
 51 YAKLEPRDQR PPRLSEIKIS AADYAQFRGR RRSSKSRTGMD RGVGLTADQK
 50 101 LELVQKEVAD MKDDLRLHTRA NAERDLQHHE AIIIEEAEIRW SEVSREVHEF
 151 EKDILKAISK KKGSLATQK VMKYIEDMNR RRDNMKEKLR LKNVSLKVQR
 201 KKMLLQLRQK EEVSEALHDV DFQQLKIENA QFLETIEARN QELTQLKLSS
 251 GNTLQVLNAY KSKLHKAMEI YLNLDKEILL RKELLEKIEK ETLQVEEDRA
 301 KAEAVNKRLR KQLAEFRAPQ VMTYVREKIL NADLEKSIRM WERKVEIAEM
 55 351 SLKGHRKAQN RMKITNEQLQ ADYLAGK

BLASTP hits

No BLASTP hits available

5 Alert BLASTP hits for DKFZphtes3_18n14, frame 3

No Alert BLASTP hits found

Pedant information for DKFZphes3_18n14, frame 3

Report for DKFZphes3_18n14.3

COILS

15

Prosite for DKFZphtes3_18n14.3

PS00029 37->59 LEUCINE_ZIPPER PDOC00029

Pfam for DKFZphtes3_18n14.E

25 HMM_NAME Helix-loop-helix DNA-binding domain

HMM												
	*RRRNHNMRERRRRndINNUFeaLRDHIPHhnV...PNEKPLSKVEILRM											
30	RRR	NM	E+	R++++	+	+	++++			+E	L	V+
	++											
Query	198	RRR-DNMKEKLRLKNVSLKVQRKKMLLQL-RQKEEVSEA-										
LHDVDFQQL	243											
35 HMM	AIEYIrsLQ*											
	IE	++L+										
Query	244	KIENAQFILE	252									

DKFZphtes3_19p12

5 group: testis derived

DKFZphtes3_19p12 encodes a novel 664 amino acid protein without similarity to known proteins.

10 No informative BLAST results; No predictive prosite, pfam or SCOP motif.

The new protein can find application in studying the expression profile of testis-specific genes.

15

unknown protein

20 Sequenced by MediGenomix

Locus: unknown

Insert length: 2161 bp

Poly A stretch at pos. 2086, no polyadenylation signal found

25

```

1 CCCGAGCCAG CAACCCCTGAG GGGCGGCCGG GCAGCGCCGC CACCATGTTTC
51 CTGGGCACCG GGGAGCCGGC CTTGGACACG AGTCACCTTA TCTCTCTAAG
101 CCGAGCGTCC CTGACCCCCG AGAACGCTGTG GCTGGGAACC GCAAAGCCAG
151 GAAGTCTGAC CCAGGCCCTG AACTCACCCCC TCACCTGGGA GCATGCGTGG
201 ACTGGCGTCC CCGGCCGAC TCCTGACTGT CTGACAGACA CCTTCAGAGT
251 GAAGAGGCCA CATCTCAGGC GCTCTGCCAG CAACGGTCAT GTCCCTGGGA
301 CTCCTGTCTA CAGAGAAAAAA GAAGATATGT ATGACGAGAT TATTGAGTTA
351 AAGAACGTCA TGCACGTGCA GAAGAGCGAC GTGGACCTGA TGAGAACGAA
401 GCTCCGGCGC CTGGAGGAGG AAAACACGGAG GAAGGACCGG CAGATAAGAGC
451 AGCTCCTGGA TCCCAGCCGC GGCA CGGGATT TTGTTCTGGAC TCTGGCAGAG
501 AAAAGGCCCG ATGCCAGTTG GGTCTATTAAC GGGCTGAAGC AGAGGATCCT
551 GAAGCTGGAA CAGCAGTGCA AGGAGAAGGA CGGCACCATC AGCAAACCTCC
601 AGACCGATAT GAAGACTTAC AACCTGGAAAG AGATGCGGAT CGCCATGGAG
651 ACATACTACG AGGAGGTGCA TCGTCTCCAG ACCCTCTTGG CAAGTTCTGA
701 ACCCACCGGA AAGAACCCCC TGGGGGAGAA GAAGACGGGC GCCAAAAGGC
751 AGAAGAAGAT GGGCAGTGCC CTCTTGAGCT TGTCCTGGAG TGTCCAGGAG
801 CTCACGGAAAG AAACCCAGAG CCTGAAGGAG GACCTGGACC GCGTGCTGAG
851 CACCTCCCCA ACCATCTCCA AGACACAGGG TTATGTGGAG TGGAGCAAGC
901 CCCGGCTGCT GAGGCGCATT GTGGAGCTGG AGAACAAACT AAGTGTGATG
951 GAGAGCTCAA AATCACACGC CGCAGAGCCA GTCA GATCAC ACCCGCCAGC
1001 CTGCCTTGCA TCCAGCTCTG CGCTGCACAG ACAGCACCGA GGGGACCGCA
1051 ACAAGGACCA CGAGCGTCTC CGAGGGGCTG TGAGAGACCT GAAGGAAGAG
1101 CGGACCGCGC TGCA GGAGAGCA GCTGCTGCAG AGAGATTGAG AGGTGAAGCA
1151 GCTCCTGCAG GCGAAGGCCG ACCTGGAGAA GGAGCTGGAG TGCAGCAGGG
1201 AGGGCGAGGA GGAGAGGAGA GAGCGAGAGG AGGTTTGAG AGAGGAGATT
1251 CAGACACTTA CCAGCAAGCT CCAAGAAATTG CAAGAAATGA AGAAAGAAGA
1301 GAAAGAGGAT TGCCCGGAAG TTCTCTATAA GGCCCAAGAG CTCCCAGCTC
1351 CCACTCCAG CAGCAGGCAC TGCGAGCAAG ACTGGCGCC GGATTCCAGC
1401 GAGGAGGGC TCCCGGGCC CCGCTCCCCC TGCTCTGATG GGAGAACAGA
1451 CGCCGCGGCC AGAGTCTCTGC AGGCCAGTG GAAGGTGTAC AAGCACAAGA
1501 AAAAAAAGGC TGTCTGGAT GAGGGCGCTG TGTTGCTTCA GGCAGCTTC
1551 AGGGGACATC TCACCGGGAC AAAGCTCTTA GCAAGCAAAG CACATGGCTC

```

1601 AGAGCCACCC AGCGTGCAG GCCTCCCAGA CCAGAGCTCT CCTGTGCCCC
 1651 GCGTTCGAG CCCCCATGCC CAGGCCACGG GCAGCCCTGT GCAGGAGGAG
 1701 GCCATCGTCA TCATCCAGTC CGCTCTGCAG GCACACCTGG CCCGGGCCAG
 1751 GCACAGTGCT ACCGGTAAAAA GAACCACAC CGCAGCTTCT ACCAGGAGGA
 1801 GATCGGCTTC AGCCACACAC GGGGACGCCT CCTCCCCACC CTTCTCGCA
 1851 GCTCTTCTG ACCCCCTCTCC CTCAGGGCCA CAGGCCTTGG CACCTCTACC
 1901 TGGGGATGAC GTCAAATCCG ATGATTCCGA CGATATTGTC ATTGCACCGT
 1951 CTCTGCCCAC GAAGAACTTT CCAGTTTAGG TCCCCGTAC TGTCTCACG
 2001 CCGTGATGGC AGCGCTGCCG AGGACATAGG AACACGACT GGAAAGATAA
 2051 TTTATCGTGT TAGGAGAAGA ACGATGATAC CTACTAAAAA AAAAAAAAAA
 2101 AAAAAAAAAA AAAAAAAAAA AAAAAAAAAA AAAAAAAAAA AAAAAAAAAA
 2151 AAAAAAAAAA A

15 **BLAST Results**

No BLAST result

20 **Medline entries**

No Medline entry

25 **Peptide information for frame 3**

30 ORF from 45 bp to 1976 bp; peptide length: 644
 Category: similarity to unknown protein
 Classification: unclassified
 Prosite motifs: RGD (332-334)

35

1	MFLGTGEPAL	DTSHLISLSR	ASLTPQKLWL	GTAKPGSLTQ	ALNSPLTW
51	AUTGVPGGTP	DCLTDTFRVK	RPHLRRSASN	GHVPGTPVYR	EKEDMYDEII
101	ELKKSLHVQK	SDVDLMRTKL	RRLEEEENSRK	DRQIEQLLDP	SRGTDVFRTL
151	AEKRPDASWV	INGLKQRILK	LEQQCKEKDQ	TISKLQTDMDK	TTNLEEMRIA
201	METYYEEVHRL	LQTLLASSET	TGKPLGEKK	TGAKRQQKKMG	SALLSLSRSV
251	QELTEENQSL	KEDLDRVLS	SPTISKRTQGY	VEWSKPRLLR	RIVELEKKLS
301	VMESSKSHAA	EPVRSHPPAC	LASSSALHRQ	PRGDRNKDHE	RLRGAVRDLK
351	EERTALQEQL	LQRDLEVKQL	LQAKADEKE	LECAREGEEE	RRREEEVLRE
401	EIQTLTSKLNQ	ELQWEMKKEEK	EDCPPEVPHKA	QELPAPTPSS	RHCEQDWPPD
451	SSEEGLPRPR	SPCSDGRRDA	AARVLQAQWK	VYKHKKKKAV	LDEAAVVLQA
501	AFRGHLTRTK	LLASKAHGSE	PPSVPGLPDQ	SSPVPRVPSP	IAQATGSPVQ
551	EEAIVIIQSA	LRAHLARARH	SATGKRTTTA	ASTRRRSASA	THGDASSPPF
601	LAALPDPSPS	GPQALAPLPG	DDVNSDDSD	IVIAPSLPTK	NFPV

50 **BLASTP hits**

55 No BLASTP hits available

Alert BLASTP hits for DKFZphes3_19pl2, frame 3

No Alert BLASTP hits found

Pedant information for DKFZphtes3_19p12, frame 3

5

Report for DKFZphtes3_19p12.3

[[LENGTH]] 644
 10 [[MW]] 71810.41
 [[pI]] 8.80
 [[HOMOL]] TREMBL:ABD28946_1 gene: "KIAA1023"; product:
 "KIAA1023 protein"; Homo sapiens mRNA for KIAA1023 protein,
 partial cds. 0.0
 15 [[FUNCAT]] 30.03 organization of cytoplasm [[S. cerevisiae,
 YDL058w]] 2e-07
 [[FUNCAT]] 08.07 vesicular transport (golgi network, etc.) [[S.
 cerevisiae, YDL058w]] 2e-07
 [[FUNCAT]] 99 unclassified proteins [[S. cerevisiae, YLR309c]]
 20 3e-06
 [[FUNCAT]] 30.04 organization of cytoskeleton [[S. cerevisiae,
 YDR356w]] 2e-05
 [[FUNCAT]] 09.10 nuclear biogenesis [[S. cerevisiae, YDR356w]]
 2e-05
 25 [[FUNCAT]] 03.22 cell cycle control and mitosis [[S. cerevisiae,
 YDR356w]] 2e-05
 [[FUNCAT]] 98 classification not yet clear-cut [[S. cerevisiae,
 YJR134c]] 4e-05
 [[BLOCKS]] DMD1354I
 30 [[BLOCKS]] BL00627B GHMP kinases ATP-binding domain proteins
 [[BLOCKS]] BL00326C Tropomyosins proteins
 [[BLOCKS]] BL01160B Kinesin light chain repeat proteins
 [[BLOCKS]] BL00820D Glucoamylase proteins region proteins
 [[BLOCKS]] BP04417C
 35 [[BLOCKS]] BL00412B Neuromodulin (GAP-43) proteins
 [[EC]] 3.6.1.-32 Myosin ATPase 3e-08
 tandem repeat 3e-08
 transmembrane protein 2e-07
 muscle contraction 3e-08
 40 [[PIRKW]] actin binding 3e-08
 [[PIRKW]] ATP 3e-08
 [[PIRKW]] thick filament 3e-08
 [[PIRKW]] alternative splicing 7e-07
 [[PIRKW]] coiled coil 3e-08
 45 [[PIRKW]] P-loop 3e-08
 [[PIRKW]] heptad repeat 2e-07
 [[PIRKW]] methylated amino acid 3e-08
 [[PIRKW]] hydrolase 3e-08
 [[PIRKW]] Golgi apparatus 2e-07
 50 [[SUPFAM]] myosin heavy chain 3e-08
 [[SUPFAM]] myosin motor domain homology 3e-08
 [[SUPFAM]] alpha-actinin actin-binding domain homology 8e-08
 [[SUPFAM]] plectin 8e-08
 55 [[SUPFAM]] ribosomal protein S10 homology 8e-08
 [[SUPFAM]] giantin 2e-07
 [[PROSITE]] RGD 1
 [[KW]] All_Alpha
 [[KW]] LOW_COMPLEXITY 14.60 %

[KW] COILED_COIL

15.22 %

5 SEQ MFLGTGEPALDTSHLISLSRASLTPQKLWLGTAKPGSLTQALNSPLTWEHAWTGVPGGTP
 SEG
 PRD cccccccccccccceeeeeeeecccccccccccccccccccccccccccccccccccc
 COILS

10 SEQ DCLTDTFRVKRPHLRRSASNNGHVPGTPVYREKEDMYDEIIIELKKSLHVQKSVDLMLRTKL
 SEG
 PRD cccccchhhhhhhhhhhhhccccchhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh
 COILS CCCCCCCCCCCCCCCCCCCCCCCC

15 SEQ RRLEEENSRKDRQIEQLLDPSPRGTDVRTLAEKRPDASWINGLKQRILKLEQQCKEKG
 SEG
 PRD hhh
 COILS

20 SEQ TISKLQTDMKTTNLEEMRIAMETYYEEVHRLQTLLASSETTGKKPLGEKKTGAKRQKKMG
 SEG
 PRD hhh
 COILS ,CCCC

25 SEQ SALLSLSRSVQELTEENQSLKEDLDRVLSTSPTISKTQGYVEWSKPRLLRRIVELEKKLS
 SEG
 PRD hhh
 COILS ,CCCCCCCCCCCCCCCCCCCCCCCCCCCC

30 SEQ VMESSKSHAAEPVRSHPPACASSSALHRQPRGDRNKDHHERLRGAVRDLKEERTALQEQL
 SEG
 PRD hhh
 COILS

35 SEQ LQRDLEVKAQKADLEKELECAREGEEERREREELVREEIQTLTSKLQELQEMKKEEK
 SEG xxxxxx.....
 PRD hhh
 COILS ,CCCCCCCCCCCCCCCCCCCCCCCCCCCC

40 SEQ EDCPEVPHKAQELPAPTPSSRHCEQDWPPDSSEEGLPRPRSPCSDGRRDAARVLQAQWK
 SEG x.....x
 PRD hhh
 COILS

45 SEQ VYKHKKKKAVLDEAAVVLQAAFRGHLTRTKLLASKAHGSEPPSVGLPDQSSPVPRVPSP
 SEG xxxxxxxx.....
 PRD hhh
 COILS

50 SEQ IAQATGSPVQEEAIVIIQSALRAHLARARHSATGKRTTAASTRRRSASATHGDASSPPF
 SEG
 PRD

55 SEQ

SEGxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
PRD cccccccccccceeehhhhhhhhhhccccceeehhhhhhhhccccccccce
COILS
5
SEG LAALPDPSGPQALAPLPGDDVNSDDSDIVIAPSPTKNFPV
SEGxxxxxxxxxxxxx.....
PRD eeeeecc
COILS
10

Prosite for DKFZphtes3_19p12.3

15 PS00016 332->335 RGD P00C00016

(No Pfam data available for DKFZphtes3_19p12.3)

DKFZphtes3_20h12

5 group: transmembrane protein

DKFZphtes3_20h12 encodes a novel 1204 amino acid protein without similarity to known proteins.

10 The novel protein contains 1 transmembrane region and two leucine zippers.

No informative BLAST results; No predictive prosite, pfam or SCOP motifs.

15 The new protein can find application in studying the expression profile of testis-specific genes and as a new marker for testicular cells.

20 putative protein

perhaps complete cds.

Pedant: TRANSMEMBRANE 1

25 Sequenced by MediGenomix

Locus: unknown

Insert length: 5894 bp

30 Poly A stretch at pos. 5874, no polyadenylation signal found

	1	CTCTGCCCTT	CCTCTCGCAG	CCACCCCTTCC	TCTCAGACCA	GTACGGTGGC
	51	CGACGGGAGT	CAGACGCTGG	GGATGAATGA	AGGATCAACA	AACAGTAATA
35	101	ATGACTGAAT	GTACAAGTCT	TCAGTTTGTG	AGCCCCTTTG	CTTTTGAGGC
	151	AATGCAGAAG	GTGGATGTTG	TTTGCCCTGGC	ATCTTAAAGT	GATCCAGAAC
	201	TAAGACTTCT	TCTGCCCTGT	TTGGTACCGGA	TGGCACTTTG	TGCACCTGCT
	251	GACCAGAGCC	AAAGCTGGGC	TCAGGATAAG	AAACTCATCC	TTCGCCTTCT
40	301	TTCTGGAGTG	GAAGCTGTCA	ACTCCATTGT	TGCATTGTTG	TCCGTGGA
	351	TTCATGCTTT	AGAACAAAGAT	GCCAGCAAAG	AACAGCAGCT	TAGGCATAAA
	401	CTTGGAGGAG	GCAGTGGAGA	GAGCATCCTG	GTATCACAGC	TTCAAGCATGG
	451	ACTGACGTTA	GAGTTTGAAC	ACAGTGATTG	ACCTCGTCGA	TTGCCTCTTG
	501	TGCTTAGTGA	ACTGTTGGCA	ATTATGAACA	AGGTGTCTGA	GTCCAACGGA
45	551	GAATTTTTTT	TCAAGTCTTC	TGAACCTTTT	GAGAGTCCAG	TATATTGGA
	601	GGAAGCTGCA	GATGTACTTT	GTATTTACA	AGCAGAGCTC	CCTTCCTTGC
	651	TCCCTATAGT	TGATGTAGCT	GAAGCTTTGC	TACATGTTAG	AAATGGTGCC
	701	TGGTTCTTGT	GTCTCTTGGT	GGCCAATGTT	CCTGATAGTT	TTAATGAAGT
	751	TTGTAGGGGC	CTGATAAAAAA	ATGGAGAACG	ACAAGATGAA	GAAAGTCTTG
50	801	GAGGAAGGCG	CAGGACAGAT	GCCTTACGCT	TCTTGTGTAA	AATGAATCCT
	851	TCTCAGGGCCC	TCAAGGTCCG	AGGCATGGTG	GTGGAAGAAT	GTCACCTGCC
	901	AGGCCTTGGT	GTGGCTTGTG	CATTGGATCA	TACTAAAAAT	GAAGCTTGTG
	951	AGGATGGAGT	GAGTGAETTG	GTTTGTGTTG	TAAGTGGTTT	GCTTCTTGG
	1001	ACAAATGCGA	AAGTCCGGAC	TTGGTTTGGG	ACTTTTATCC	GAAATGGACA
55	1051	GCAGAGAAAAA	AGAGAGACCA	GCAGTTCTGT	CCTTGGCAG	ATGAGAAGGC
	1101	AGCTTCTTCT	GGAGTTGATG	GGCATTCTTC	CCACAGTAAG	AAGCACCCGA
	1151	ATTGTGGAAG	AAGCTGATGT	GGATATGGAG	CCCAATGTGT	CTGTGTATTG
	1201	GGGGCTGAAA	GAAGAGCATG	TTGTGAAAGC	CAGTGCACTC	TTACGTCTGT
	1251	ACTGTGCTTT	GATGGGGATC	GCTGGACTCA	AACCAACTGA	AGAAGAAGCT

1301	GAGCAATTAC	TGCAGTTGAT	GACGAGCCGT	CCTCCCTGCTA	CGCCAGCTGG	
1351	GGTCGCCTT	GTTCACTTT	CCTTTGTAT	GCTACTGGCC	TTTTCTACAC	
1401	TTGTCAGTAC	ACCTGAACAG	GAGCAGCTGA	TGGTGGTGTG	GCTAAGTTGG	
1451	ATGATAAAAG	AAGAACCGTA	TTTGAGAGT	ACTTCAGGCG	TCTCTGCTTC	
5	1501	TTTTGGGGAG	ATGTTATTAT	TGGTGGCTAT	GTACTTTCAC	AGCAACCAGC
	1551	TTAGTGTAT	CATTGACTTG	GTCTGTTCCA	CTTTGGGGAT	GAAGATTGTA
	1601	ATTAAGCCAA	GCTCCTTGAG	CAGGATGAAG	ACAATTTCA	CACAGGAAAT
	1651	TTTTACTGAG	CAGGTTGTCA	CAGCTCATGC	AGTTGGGTC	CCTGTCACCA
	1701	GCAACCTGAG	TGCCAACATT	ACTGGATTTT	TGCCTATTCA	TTGTATTAC
10	1751	CAGCTCTCA	GGAGCCGTT	CTTTACCAAG	CACAAAGTGT	CAATAAAGA
	1801	TTGGATTAT	AGACAGCTG	GTGAAAACCTC	TACTCCACTT	CATCCTCAAT
	1851	TACTCCCTT	GATTGATGTG	TACATAAATT	CTATACTTAC	TCCTGCGTCG
	1901	AAATCTAATC	CAGAACCCAC	AAATCAGCCA	GTCACAGAAC	AGGAGATACT
	1951	CAATATTTTC	CAAGGAGTCA	TTGGGGGTGA	CAACATCCGC	CTTAATCAGC
15	2001	TTTCAGTAT	CACAGCACAG	CTTTGGTGC	TCTACTATAT	ACTGTCTTAT
	2051	GAAGAGGCTC	TTCTAGCAA	CACGAAGACT	TTAGCTGCCA	TGCAAAGAAA
	2101	GCCCCAAATCA	TATTCTTCTT	CTTTAATGGA	TCAGATTCCCT	ATCAAATTCC
	2151	TTATTGACA	GGCTCAAGGG	CTGAGCAGG	AGTTGGGAGG	GTTGCATTCA
	2201	GCTTACTAC	GTCCTTGC	TACTAACTAC	CCACATTAT	GTATTGTGGA
20	2251	TGACTGGATT	TGTGAAGAAG	AAATCACAGG	GACTGATGCC	CTGCTACGGC
	2301	GAATGCTCCT	GACTAATAAT	GCTAAAAAATC	ATTCTCCCAA	ACAACCTCAA
	2351	GAAGCATTTC	CAGCTGTCCC	AGTAAATCAC	ACACAAAGTGA	TGCAAGATTAT
	2401	AGAACACTTG	ACTCTACTCT	CTGCCAGTGA	ACTTATACCA	TATGCGGAAG
	2451	TGTTAACATC	CAATATGAGC	CAGCTATTGA	ATTCAAGGGT	TCCACGGAGA
25	2501	ATTCTGCAA	CAGTCAATAA	ACTATGGATG	GTTCTTAATA	CTGTGATGCC
	2551	TAGAAGGCTA	TGGTAATGTA	CGGTTAATGC	ACTTCAGCCT	TCAATAAAGT
	2601	TTGTACGACA	ACAAAAGTAT	ACTCAGAATG	ACCTGATGAT	AGATCCTCTC
	2651	ATTGCTCTAA	GGTGTGATCA	GAGGGTTCAC	AGATGCCCTC	CACTGATGGA
	2701	TATTACCCCTA	CACATGTTGA	ATGGATATCT	TCTTGATCT	AAAGCCTACC
30	2751	TTAGTGTCA	TCTGAAGGAA	ACAGAGCAAG	ATAGGCCCTC	CCAGAATAAT
	2801	ACAATTGGTT	TAGTTGGACA	AACTGATGCT	CCGGAAGTTA	CCAGGGAAAGA
	2851	ATTGAAAAAT	GCATTACTGG	CCGCTCAGGA	TAGTGCAGCT	GTCCAGATT
	2901	TCTTAGAGAT	TTGCCTACCT	ACTGAAGAGG	AGAAAGCAA	TGGTGTCAAT
	2951	CCAGATAGCT	TGTTAAGAAA	TGTTCAAAGT	GTTATTACCA	CCAGCGCTCC
35	3001	AAATAAGGGA	ATGGAGGAAG	GAGAAGACAA	TTTGCTCTGT	AACCTTCGAG
	3051	AAGTTCACTG	CCTTATCTGT	TGTCCTTGC	ACCAAATGTA	CATTGCAAGAT
	3101	CCCAACATTG	CTAACGTTGT	TCACCTTCAG	GGTTATCCAT	GTGAACCTTT
	3151	GCCTCTGACG	GTCGCAGGTA	TTCCATCTAT	GCACATCTGT	CTAGATTTC
	3201	TACCTGAGCT	TATTGACAG	CCAGAACTTG	AGAAACAGAT	ATTTGCTATC
40	3251	CAGTTGCTT	CTCACTTGTG	TATACAATAT	GCATTACCA	AGTCACCTAG
	3301	TGTGGCTCGT	TTAGCTGTCA	ATGTCATGGG	AACTTTGTTA	ACAGTTTAA
	3351	CACAGGCTAA	GCGGTATGCT	TTTTTTATGC	CAACTCTGCC	AAGTTGGTC
	3401	TCTTTTGTC	GAGCATTTC	TCCATTGAT	GAGGATATTA	TGTCTTGCT
	3451	GATCCAATA	GGGCAAGTTT	GTGCCTCTGA	TGTTGCCACT	CAGACAAGAG
45	3501	ACATTGATCC	AATTATTACA	CGTCTTCAC	AAATAAAGGA	GAAACCAAGT
	3551	GGATGGTCTC	AAATCTGTAA	AGATTCATCT	TATAAAAATG	GATCCAGGGA
	3601	CACTGGAAAC	ATGGATCCTG	ATGTACAGCT	CTGTCACTGT	ATTGAAAGAA
	3651	CAGTAATTGA	AATAATAAT	ATGAGTGTAA	GTGGAATTAA	AAACAAAATT
	3701	AAAAACAAACA	AAAAGTTGTT	TGCTGCATAT	ACCCAAACATG	AATCTGCATA
50	3751	TTAGTAACAA	CTCTAAACTG	AATGGGAACA	GTAAAGTATT	GTCTTGGAAAT
	3801	CACTAAAACA	ATTCAATTCA	ACATGAGTAT	AGTTTAAAC	TTTATGAGAA
	3851	TTATGCTTGC	TTGTTTCTGA	TTGGCACATC	TTTGGATCTA	CTTTGCTGAT
	3901	ATGTTTCTAT	TGAGCAGCT	GAGCTTTTTT	TTTTTCCACT	GGGAACACAT
	3951	GTAAGAAACT	CATTATTGGA	AAGGGAATT	GGCCTGTAT	TTAGCTTTG
55	4001	AAGTGAAGAC	TGCCATGCC	TTAATTCTT	ATAAAAATGA	GTCTGTGGGT
	4051	AGCCCTAGTG	TTTATTTAA	CTGTGAGCTT	GTAACAGAA	GTGACAAAGA
	4101	TGCAAAGATG	GGAGAGGAAA	AAAGGGTAAA	GGGAAAGGAG	AATTAAGGAA
	4151	ATAATAGGAG	TTAAAAACAC	AAGTAGAAAT	CTCAAAGATT	TGCAAGTGC

4201 GTAATAGTAA TGCAAGTTGG AATTCTAGTT CTCAGGAAAG AGTATTGAGA
 4251 AGACTTTAA AAAGGCAGT AGCTTTGTA AATGATTCT GTGGAATAC
 4301 AGATGAGGAT TAAAGATT CACATATTG CTTCAATT TTAAATATA
 4351 TGAAGCCATA TGTTTAAAGA GATACTGAA TAATTGGAA TTTAAGATA
 4401 CTGGTGTAAA AGTGTAACTA GAAACATCTT TGTTCAAAGA AGAACCTGAG
 4451 AGATCTCATT TAGTTTATG TTTAAATT ATTAAATATA TGCTTATTA
 4501 ACTTACCTAA TGCTCAGAGG GGGGAAATAT GTATCAAATT AAATGAAGGT
 4551 AGAGCAATAA AACCCACTGG ATAAAGAGC TCTGGTTG TCATCAGGAT
 4601 TATAATTCTAT ATCTTACTTT GAGAAGATCT TTGAGTAAGA AAATGCAGTG
 4651 TTTGAACCTG AGGAAAAGTT AAAGTGTAGA AAATATTGTC TTGCCGAAGG
 4701 ATTTTGCAGT CCTCTGTCA GAACTTCCAT TGATTAGGCA GACATATTCA
 4751 GGTAAACCCCT AATCATTAAA AAAAATTAT CAATGTAGAA AGTAATTCCC
 4801 TTTTTCTCT CTGAGATATA CCTCAATCAC ACACCTCCCC ACCCCCACCTT
 4851 GAAACAGACC TCTTCACTTG TGTTTTTTT TTTTTTTCC TGAGGTGGAG
 4901 TCTTCCCTG TTGCCAGGC TGGAGTGCAG TGGGATGATC TTGGCTCACT
 4951 GCAACTCTG CCACCTGGGT TCAAGGGATT CTCGTGCCTC AACCTCCTGA
 5001 GTAGCTGGGA CTGCAGGCAC GC GCCCACCTG TATTTTGTA TTTTAGTAG
 5051 AGACGGGGGT TTGCCATGTT GCCCAGACTG GTTTGAAC CCTGGCCTCA
 5101 GGTGATCTGC CCACCTTGGC CTCCCAAAGT GCTGGGATTA CAGGTGTGAG
 5151 CCACCGCACC TGGCCAGACC GCTTCACTTG TAAAAGAAAT TAGGCTAATA
 5201 AGAAGGTGTA GTTTTGAGA AATGAAATT AACTTAGCC TTTTCACTAG
 5251 TAAATAGTCA CATCTCATT TCTTCCTTIG TAAAATGGGG TTACTACTGG
 5301 CCCTACCTCA TATTCTATGA GAATGAGTTT GTAGCTGTTT CAAATCATGA
 5351 AGTGCATAGT ATCACATGTG ATAGAATATT TATAACTTTT TATTAGATGC
 5401 TTAATGTTCA ATTAAGTAAT TTGATGTGA AAAATAAAAG TAATAAAAGT
 5451 ATCTAAAAAA TAGCATAAGA ATTTCATAT TTTAAACAA GGCAGTTTG
 5501 TAGTCCCTTA AGATTAATAA CAACTGCTCC TTTTTTTT AAACTGAGGC
 5551 CTTGCGATAT TTGATGTGAA TAGATATGCC CTAGGAGTTG AGAAAAGTT
 5601 AAAAGTATGT TTTCTAATTA AATGCACTGC ACATTCTGG ATCAATATTC
 5651 AAAGACTGGT CATAACCTGC TGTGTTAAA TAATCACATA TGCTCTTTT
 5701 CATCAGATTG GTTGTGATG TAAATAAAAT GTGAAATAT ATTAGTAAAT
 5751 GTTAATATTC ATGTATTTA AGTTAAGGTT ATAAAATTG TCACAATGTG
 5801 TTTTTTATT CAAGTAAAAA CAGATGTGTG CAGCTATTTT GAATATTGGT
 5851 TTATAAACAT TCATATTCTT TATCAAACAA AAAAAAAA AAAA

BLAST Results

40 No BLAST result

Medline entries

45 No Medline entry

Peptide information for frame 2

ORF from 77 bp to 3688 bp; peptide length: 1204
 Category: putative protein
 55 Classification: unclassified
 Prosite motifs: LEUCINE_ZIPPER (167-184)
 LEUCINE_ZIPPER (692-709)

1 MKDQQTVIMT ECTSLQFVSP FAFEAQKVD VVCLASLSDP ELRLLLPCLV
 51 RMALCAPADQ SQSWARDKLG ILRLLSGVVA VNSIVALLSV DFHALEQDAS
 101 KEQQLRHKLG GGSGESILVS QLQHGLTLEF EHSDSPRRLR LVLSELLAIM
 151 NKVSESNGEF FFKSSELFEF PVYLEEAADV LCILQAEELPS LLPIVDVAEA
 201 LLHVRNGAWF LCLLVANVPD SFNEVCRLGI KNGERQDEES LGGRRTDAL
 251 RFLCKMNPSQ ALKVGRGMVVE ECHLPGLGVA LTLDHTKNEA CEDGVSDLVC
 301 FVSGLLLGTN AKVRTWFGTF IRNGQQRKRE TSSSVLUQMR RQLLLELMGI
 351 LPTVSTRIV EEADVDMEPN VSVYSGLKEE HVVKASALLR LYCALMGIAG
 401 LKPTEEEAEQ LLQLMTSRPP ATPAGVRFVS LSFCMLLAFS TLVSTPEQEQQ
 451 LMVWLSWMI KEEAYFESTS GVSASFGEML LLVAMYFHSN QLSAIIDLVC
 501 STLGMKIVIK PSSLSRMKTI FTQEIEFTEQV VTAHAVRVPV TSNLSANITG
 551 FLPIHCIYQL LRSRSFTKHK VSIKDWIYRQ LCETSTPLHP QLLPLIDVYI
 601 NSILTPASKS NPEATNQPV ETQEILNIFQG VIGGDNIRLN QRFSITAQLL
 651 VLYYILSYEE ALLANTKTIA AMQRKPKSYS SSLMDQIPIK FLIRQAQGLQ
 701 QELGGLHSAL LRLLATNYPH LCIVDDWICE EEITGTDALL RRMLLTNNAK
 751 NHSPKQLQEA FSAVPVNHTQ VMQIIEHHTL LSASELIPYA EVLTSNMSQL
 801 LNSGVPRRIL QTVNKLUWMVL NTVMPRRLWV MTVNALQPSI KFVRQQKYTQ
 851 NDLMIDPLIV LRCDDQRVHRC PPLMDITLHM LNGYLLASKA YLSAHLKETE
 901 QDRPSQNNTI GLVGQTDAPV VTREELKNAL LAAQDSAAVQ ILLEICLPTE
 951 EEKANGVNPD SLLRNVQSVI TTSAPNKGME EGEDNLLCNL REVQCLICCL
 1001 LHQMYIADPN IAKLVHFQGY PCELLPLTV A GIPSMHICLD FIPELIAQPE
 1051 LEKQIFAIQL LSHLCIQLPKSLSVARLA VNVMGTLTV LTQAKRYAFF
 1101 MPTLPSLVSF CRAFPPLYED IMSLLIQIGQ VCASDVATQT RDIDPIITRL
 1151 QRIKEKPSGW SQICKDSSYK NGSRDTGSMD PDVQLCHCIE RTVIEINMS
 1201 VSGI

30

BLASTP hits

No BLASTP hits available

Alert BLASTP hits for DKFZphtes3_20h12, frame 2

35

No Alert BLASTP hits found

Pedant information for DKFZphtes3_20h12, frame 2

40

Report for DKFZphtes3_20h12.2

[LENGTH] 1204
 45 [MW] 134347.53
 [pI] 5.75
 [HOMOL] TREMBL:CEZC376_3 gene: "ZC376.6"; *Caenorhabditis elegans* cosmid ZC376 2e-22
 [PROSITE] LEUCINE_ZIPPER 2
 50 [KW] TRANSMEMBRANE 1
 [KW] LOW_COMPLEXITY 2.57 %
 [KW] COILED_COIL 2.33 %

55 SEQ MKDQQTVIMTECTSLQFVSPFAFEAMQKVDVVCLASLSDPELRLLPCLVRMALCAPADQ
 SEG
 PRD cccceeeeeeeecccccccchhhhhhhheeeeeeeccccchhhhhhhchhhhhcccc

MEM
 SEQ TSNLSANITGFLPIHCIYQLLRSRSFTKHKVSIKDWIYRQLCETSTPLHPQLLPLIDVYI
 SEG
 5 PRD ccccccceeeeehhhhhhhhhhhcccccccccccccccccccccccccccccccccccc
 COILS
 MEM
 10 SEQ NSILTPASKSNPEATNQPVTEQEILNIFQGVIGGDNIRLNQRFSSITAQLLVLYYILSYEE
 SEG
 PRD eeeeecc
 COILS
 15 MEM
 SEQ ALLANTKTLAAMQRKPKSYSSSLMDQIPIKFLIRQAQGLQQELGGLHSALLRLLATNYPH
 SEGxxxxxxxxxxxxxxxxxxxxx.....
 20 PRD hhhhhhhhhhhhhhhcc
 COILSCC
 MEM
 25 SEQ LCIVDDWICEEEEITGTDALLRRMLLTNNAKNHSPKQLQEAFSAVPVNHTQVMQIIEHLTL
 SEG
 PRD eeeeecc
 COILS
 MEM
 30 SEQ LSASELIPYAEVLTSNMSQLLNSGVPRRIQTVNKLWMVLNTVMPPRLWVMTVNALQPSI
 SEG
 PRD hhhhhhhhhhhcc
 COILS
 35 MEM
 SEQ KFVRQQKYTQNNDLMIDPLIVLRCQRVHRCPPMDITLHMLNGYLLASKAYLSAHLKETE
 SEG
 40 PRD hhhhhhhcc
 COILS
 MEM
 45 SEQ QDRPSQNNТИGLVGQTDAPEVTREELKNALLAAQDSAAVQILLEICLPTEEEKANGVNPD
 SEG
 PRD ccc
 COILS
 50 MEM
 SEQ SLLRNVQSVITTSAPNKGMEEGEDNLLCNLREVQCLICCLLHQMYIADPNIAKLVHFQGY
 SEG
 55 PRD ccc
 COILS
 MEM

SEQ PCELLPLTVAGIPSMSHICLDFIPELIAQPELEKQIFAIQLLSHLCIQtyALPKSLSVARLA
SEG
PRD ccceeeeeeecccceeeehhhhhhhhhhhhhhhhhhhhhhhhhccchhhhhh
COILS
5 MEM

SEQ VNVMGTLLTVLTQAKRYAFFMPTLPSLVSFCRAFPPLYEDIMSLLIQIGQVCASDVATQT
SEG
10 PRD hhhhhhhhhhhhhhhhhhhcccccccccccccccccccccccccccccccccccc
COILS
MEM

15 SEQ RDIDPIITRLQQIKEKPSGWSRICKDSSYKNGSRDTGSMDPDVQLCHCIERTVIEIINMS
SEG
PRD cccchhhhhhhhhhhcc
COILS
20 MEM

SEQ VSGI
SEG
PRD eccc
25 COILS
MEM

30

Prosite for DKFZphtes3_20h12.2

PS000029	167->189	LEUCINE_ZIPPER	PDOC00029
PS000029	692->714	LEUCINE_ZIPPER	PDOC00029

35

(No Pfam data available for DKFZphtes3_20h12.2)

DKFZphes3_21k14

5 group: testis derived

DKFZphes3_21k14 encodes a novel 558 amino acid protein without similarity to known proteins.

10 No informative BLAST results; No predictive prosite, pfam or SCOP motif.

The new protein can find application in studying the expression profile of testis-specific genes.

15

unknown protein

perhaps complete cds.

20

Sequenced by LMU

Locus: unknown

25 Insert length: 2547 bp

Poly A stretch at pos. 2506, polyadenylation signal at pos. 2479

30	1 GGCCACGTTC AGCGGACACG GGAGCAAGAT GGCGATTCCG GGCAGGGCAGT 51 ATGGGCTTAT TTTGCCAAAG AAAACACAGC AGTTGCACCC TGTTTGCAA 101 AAACCATCAG TGTTTGGGAA TGATTCTGAT GATGATGATG AGACCTCTGT 151 GAGTGAAGC CTTCAGAGGG AAGCTGCTAA GAAGCAGGCC ATGAAACAGA 201 CCAAACCTGGA AATCCAGAAG GCCCTTGCAG AAGATGCTAC TGTGTATGAA 251 TATGACAGTA TTTATGATGA AATGCAGAAA AAAAGGAGG AAAATAATCC
35	301 CAAATTGCTT TTGGGGAAAG ACAGAAAGCC CAAGTATATT CACAACCTTGC 351 TAAAAGCAGT TGAGATCAGA AAAAAGGAAC AGGAAAAAAAG AATGGAAAAG 401 AAAATACAGA GAGAACAGAG AATGGAAAAG GGGGAGTTTG ATGATAAAGA 451 AGCATTTGTG ACATCTGCAT ATAAGAAAAA ACTGCAAGAG AGAGCTGAAG 501 AAGAAGAAAG AGAAAAGAGG GCTGCTGCAC TGGAAAGCATG TTTGGATGTA
40	551 ACCAAGCAGA AAGATCTCAG TGGATTTTAT AGGCACCTAT TAAATCAAGC 601 AGTTGGTGAA GAGGAAGTAC CTAATGCAG CTTTCGTGAA GCCAGATCTG 651 GTATAAAGGA AGAAAAATCA AGGGGCTTCT CCAATGAAGT AAGTTCAAAA 701 AACAGAATAC CACAAGAGAA ATGCATTCTT CAAACTGATG TGAAAGTAGA 751 GGAAAACCCA GATGCAGACA GTGACTTCGA TGCTAAGAGC AGTGCGGATG
45	801 ATGAAATAGA AGAAACTAGA GTGAAC TGCA GAAGGGAAAA GGTCA TAGAG 851 ACCCTGAGA ATGACTTCAA GCACCAAGG AGTCAAAACC ACTCTCGGTG 901 ACCTAGTGAA GAAAGAGGGC ACAGTACCAAG GCACCAACAG AAAGGATCAC 951 GAACGTCGAG AGGACATGAG AAAAGGGAAG ATCAGCACCA GCAGAAGCAA
50	1001 TCCAGAGACC AAGAGAACCA TTACACTGAC CGTGATTACC GGAAAGAAAG 1051 GGATTCTCAT AGGCACAGAG AGGCCAGTCA TAGAGATTCC CATTGGAAAGA 1101 GGCATGAACA GGAAGATAAA CCAAGGGCGA GGGACCAAAG AGAAAGAAGT 1151 GACAGAGTAT GGAAGAGGGG GAAAGATAGG GAGAAATATT CCCAAAGAGA 1201 ACAAGAAAGA GATAGACAAC AAAATGATCA GAACCGACCC AGTGAGAAAG 1251 GAGAGAAGGA AGAGAAAAGC AAAGCAAAGG AAGAGCATAT GAAAGTAAGG
55	1301 AAGGAAAGAT ATGAAATAC TGATAATAC AGAGATAGAG AAAAACGAGA 1351 GGTAGGTGTT CAGTCTTCAG AAAGAAATCA AGACAGAAAG GAAAGCAGCC 1401 CAAATTCTAG GGCAGAAAGGAT AAATTCTTG ACCAAGAAAG ATCCAACAAA 1451 ATGAGAAACA TGGCAAAGGA CAAAGAAAGA AACCAAGAGA AACCCCTCTAA

1501 TTCTGAATCA TCACTGGGAG CAAAACACAG ACTCACAGAG GAAGGGCAAG
 1551 AGAAGGGTAA AGAACAAAGAG AGACCACCTG AGGCAGTGAG CAAGTTGCA
 1601 AAGCGGAACA ATGAAGAAC TGTAATGTCA GCTAGAGACA GGTACTTGGC
 1651 CAGGCAGATG GCGCGGGTTA ATGCAAAGAC CTATATTGAG AAAGAAGATG
 5 1701 ATTGATGGCT ACCCCAAAGAG AAAGATTAA GGAAGCACAG AAAACTGTA
 1751 TTCCTGGAAC CTGCTGCGTA AAACCATAAA GGAGTGTGTT ACCAGTAGTT
 1801 TGGAGGGCAT TTTAAATT ATTTCAAAA TTTTAAGTTA AAAGTCAGTC
 1851 TTACAGCTTG GATGTTTCCA TGTGGATGTT TGGCTGAATT TATATATAGT
 1901 GTGTACTCAT CAATACCACA TTCTTGTGTT TATTCAAGAA CCGTTAAGAG
 10 1951 TGTGCTAATT CCCTGTAGGT ACATAATGAG GAAAATTGTC TCCACTACAA
 2001 CCATTAAGAA ATAATTGGG CCAGATACGG TAGCTCGTGC CTGTAATACC
 2051 AACATTTGG GAGGCCAAGG CAGAAGGATA TTGAGGCTAG GCATTCAAGA
 2101 CCAGCCTAGG CAGGATAATA AGACCTTGTC TCTATTAAA AAACAAAAAG
 2151 CCTAGCATGG TAGTCCATGTC CTGTAGTCCC AGCTGTCGA GAGGCTGAGG
 15 2201 CAAGAAGATC ACTTGAGCCT AGGAATTGAG TGTTACAGTG AGGTATGATC
 2251 ATGCCACTGC ACTCCAACCT GGGCAACAGA ATGAGACCCCT GTCTCTAAAA
 2301 AATTTTTTTT AAATAAATAA TTTAACTCTT CTAATAATGT TTTGTTGCAG
 2351 GAAATGTATT TCAGATAAAA TATGGATTTG AAAAACAGAA AATATACTTT
 2401 ATGTTCTGAA ATTGTATT AAGTATAAAA TGTGAATCAT CTTGTCTAAA
 2451 TAGCTTACAG CATAGTTGCC TTAAATGAAA ATAAAATGAT ATGCTTATAC
 2501 ATTTGGAAAA AAAAAAAAAA AAAAAAAAAA AAAAAAAAAA AAAAAAAG

BLAST Results

25

No BLAST result

30

Medline entries

No Medline entry

35

Peptide information for frame 2

40 ORF from 29 bp to 1702 bp; peptide length: 558

Category: similarity to unknown protein

Classification: Nucleic acid management

45 1 MAIPGRQYGL ILPKKTQQLH PVLQKPSVFG NDSDDDDETS VSESLQREAA
 51 KKQAMKQTKL EIQQKALAEAD TVYEYDSIYD EMQKKKEENN PKLLLGKDRK
 101 PKYIHNLKA VEIRKKEQEK RMEKKIQRER EMEKGEFDDK EAFVTSAYKK
 151 KLGQERAEEEEE REKRAAAALEA CLDVTKQKDL SGFYRHLLNQ AVGEEEVPKC
 201 SFREARSGIK EEKSRGFSNE VSSKNRIPQE KCILQTDVKV EENPDADSDF
 251 DAKSSADDEI EETRVNCRRE KVIETPENDF KHHRSQNHSR SPSEERGHST
 301 RHHTKGSRRTS RGHEKREDQH QQKQSRDQEN HYTDRDYRKE RDShRHREAS
 351 HRDShWKRHE QEDKPRARDQ RERSDRVWKR EKDREKYSQR EGERDRQND
 401 QNRPSEKGEK EEKSKAKEEH MKVRKERYEN NDKYRDREKR EVGVQSSERN
 451 QDRKESSPNS RAKDKFLDQE RSNKMRNMAK DKERNQEKP SNESSLGAKH
 501 RLTEEGQEKG KEQERPPPEAV SKFAKRNNNEE TVMSARDRYL ARQMARVNAK
 55 551 TYIEKEDD

BLASTP hits

No BLASTP hits available

5 Alert BLASTP hits for DKFZphtes3_21k14, frame 2

No Alert BLASTP hits found

10 Pedant information for DKFZphtes3_21k14, frame 2

Report for DKFZphtes3_21k14.2.

15 [LENGTH] 567
[MW] 67262.89
[pI] 8.96
[HOMOL] TREMBL:AC006233_14 gene: "F12K2.14"; Arabidopsis thaliana chromosome II BAC F12K2 genomic sequence, complete
20 sequence. 3e-11
[FUNCAT] 04.99 other transcription activities [S. cerevisiae, YKR092c] 1e-05
[FUNCAT] 30.10 nuclear organization [S. cerevisiae, YKR092c] 1e-05
25 [FUNCAT] 06.07 protein modification (glycosylation, acylation, myristylation, palmitylation, farnesylation and processing) [S. cerevisiae, YKL201c] 1e-04
[BLOCKS] PF00748F
[BLOCKS] BL01182E Glycosyl hydrolases family 35 proteins
30 [EC] 2.7.1.37 Protein kinase 7e-06
[EC] 5.99.1.2 DNA topoisomerase 4e-06
[PIRKW] phosphotransferase 7e-06
[PIRKW] pre-mRNA splicing 1e-06
[PIRKW] citrulline 3e-06
35 [PIRKW] tandem repeat 3e-06
[PIRKW] DNA binding 4e-06
[PIRKW] DNA replication 4e-06
[PIRKW] isomerase 4e-06
[PIRKW] ATP 3e-06
40 [PIRKW] phosphoprotein 1e-06
[PIRKW] calcium binding 3e-06
[PIRKW] alternative splicing 7e-06
[PIRKW] P-loop 3e-06
[PIRKW] EF hand 3e-06
45 [PIRKW] hair 3e-06
[SUPFAM] DEAD/H box helicase homology 3e-06
[SUPFAM] unassigned Ser/Thr or Tyr-specific protein kinases 4e-06
50 [SUPFAM] calmodulin repeat homology 3e-06
[SUPFAM] unassigned ribonucleoprotein repeat-containing proteins 1e-06
[SUPFAM] unassigned DEAD/H box helicases 3e-06
[SUPFAM] trichohyalin 3e-06
[SUPFAM] protein kinase homology 4e-06
55 [SUPFAM] eukaryotic type I DNA topoisomerase 4e-06
[SUPFAM] ribonucleoprotein repeat homology 1e-06
[KW] All_Alpha
[KW] LOW_COMPLEXITY 22.75 %

(No Prosite data available for DKFZphes3_21k14.2)

45 (No Rfem data available for NKE5nhtoc7 2014-07-20)

DKFZphtes3_22ill

5 group: testis derived

DKFZphtes3_22ill encodes a novel 580 amino acid protein with similarity to RCC1-like G exchanging factor RLG, UVR8 (UVB-resistance protein) of *Arabidopsis thaliana* and to the murine retinitis pigmentosa GTPase regulator.

No informative BLAST results; No predictive prosite, pfam or SCOP motif.

15 The new protein can find application in studying the expression profile of testis-specific genes.

20 Homo sapiens chromosome 7q22 sequence, ORF4, extension

differences to genmodel of ORF4,
differential splicing

25 Sequenced by LMU

Locus: /map="7q22"

Insert length: 2236 bp

Poly A stretch at pos. 2197, polyadenylation signal at pos. 2180

30

1	ACAATGCTCA	GATCGGGAGG	TGGAGCCAAT	CAGGTCCAAC	CAAGAGGAGG
51	GGACACCGGC	ACTCCACTAG	CAGGAAAACG	GGCCGAGGGG	CCGCAAGCAG
101	GGGGTGCCTA	GTCCTCGTCC	CCCAAAGACC	AATCGTAAGC	CAGATAACAGG
151	CGAGTGAATG	TCAAGAACGG	CAATTAGAGC	CTCCGAAGGG	AATCTGGACC
201	TGCCCTTTCT	CTGAGGGACG	GCTCTACCTA	CCAATAGCAT	GGCGAGAAAG
251	GCGGTCCCCCTT	TGCTAAGGAG	GAGGCGGGTG	AAGAGAACGCT	GCCCTTCTTG
301	TGGCTCGGAG	CTTGGGGTTG	AAGAGAACGAG	GGGGAAAGGA	AATCCGATTT
351	CCATCCAGTT	GTTCCCCCCA	GAGCTGGTGG	AGCATATCAT	CTCATTCTC
401	CCAGTCAGAG	ACCTTGTTC	CCTCGGCCAG	ACCTGCCGCT	ACTTCCACGA
451	AGTGTGCGAT	GGGGAAAGGCG	TGTGGAGACG	CATCTGTCGC	AGACTCAGTC
501	CGCGCCTCCA	AGATCAGGGT	TCTGGAGTCC	GGCCCTGGAA	GAGAGCTGCC
551	ATTCTGAAC	ACACGAAGGG	CCTGTATTT	CAGGCATTTG	GAGGCCGCCG
601	CCGATGTCTC	AGCAAGAGCG	TGGCCCCCTT	GCTAGCCCAC	GGCTACCGCC
651	GCTTCTTGCC	CACCAAGGAT	CACGTCTTCA	TTCTTGACTA	CGTGGGGACC
701	CTCTTCTTCC	TCAAAAATGC	CCTGGTCTCC	ACCCCTGGCC	AGATGCACTG
751	GAAGCGGGCC	TGTCGCTATG	TTGTGTTGTG	TCGTGGAGCC	AAGGATTTG
801	CCTCGGACCC	AAGGTGTGAC	ACAGTTTACC	GTAAATACCT	CTACGCTTTG
851	GCCACTCGGG	AGCCGCAGGA	AGTGGTGGGT	ACCACCAAGCA	GCCGGGCCTG
901	TGACTGTGTT	GAGGTCTATC	TGCAGTCTAG	TGGGCAGCGG	GTCTTCAAGA
951	TGACATTCCA	CCACTCAATG	ACCTTCAAGC	AGATCGTGCT	GGTTGGTCAG
1001	GAGACCCAGC	GGGCTCTACT	GCTCCTCACCA	GAGGAAGGAA	AGATCTACTC
1051	TTTGGTAGTG	AATGAGACCC	AGCTTGACCA	GCCACGCTCC	TACACGGTTC
1101	AGCTGGCCCT	GAGGAAGGTG	TCCCACCTACC	TGCCTCACCT	GCGCGTGGCC
1151	TGCATGACTT	CCAAACCGAG	CAGCACCCCTC	TACGTACAG	ACCAGGGGGG
1201	AGTGTATTT	GAGGTGCATA	CCCCAGGGGT	GTATCGCGAT	CTCTTGGGA
1251	CCCTTCAAGC	CTTGACCCC	CTGGACCCAGC	AGATGCCGCT	TGCTCTCTCA
1301	CTGCCTGCCA	AGATCCTATT	CTGTGCTTT	GGCTACAACC	ACCTTGGCCT

1351 GGTGGATGAA TTTGGCCGAA TCTTCATGCA AGGAAATAAC AGATAACGGGC
 1401 AGCTAGGAAC AGGGGGACAAA ATGGACCGAG GGGAAACCCAC ACAGGTTTGT
 1451 TACCTGCAGC GGCCCACATCAC CCTGTGGTGC GGCCTCAACC ACTCCCTGGT
 1501 GCTGAGCCAG AGCTCAGAGT TCAGCAAGGA GCTGCTGGGC TGCGGCTGTG
 5 1551 GGGCTGGGGG CGCGCTCCCA GGCTGGCCA AGGGGAGTGC CTCCCTCGTC
 1601 AAGCTCCAAG TCAAGGTCCC TCTGTGTGCC TGTGCCCTCT GTGCCACCAAG
 1651 GGAGTGCCTA TACATCCTGT CCAGCCACGA CATTGAGCAG CACGCCCT
 1701 ATGCCACCT GCCAGCCAGC AGGGTGGTGG GGACTCCCTGA GCCCAGCCTG
 1751 GGGGCCAGAG CACCCAGGA CCCCGGGGGG ATGGGCCAGG CCTGCAGAGA
 10 1801 GTACCTCAGC CAGATCCACA GTTGCACAAAC GTTGCAGGAC CGCACGGAGA
 1851 AGATGAAGGA GATCGTAGGG TGGATGCCCT TGATGGCCGC ACAGAAGGAC
 1901 TTCTTCTGGG AGGCCCTGGA CATGCTGCAG AGGGCTGAAG GAGGCAGGGG
 1951 TGGTGTAGGG CCCCCAGCCC CTGAGACCTA ATCCCCCTCA TGCTAGCCTA
 2001 GTCCCTGGAG GAGGGAGTCC GGCCCCAGGC CAGGGACTAA GGAGCAATGA
 15 2051 CCATTGTGCA CATGCGTGTG GGAAGGGGTT GCTAGGGGTT GGGGACGGCT
 2101 AACCAAGGGTA AGAATGTTCA GGGGGCTGCC CAGGAGGGGC CCCCCAACCTG
 2151 ACTATCATGG ACAAGAGATT TGATGGATAG AATAAAAGGC TGCAGCGAAA
 2201 AAAAAAAAAA AAAAAAAAAA AAAAAAAA AAAAAAG

20

BLAST Results

25 Entry AF05335b from database EMBL:
 Homo sapiens chromosome 7q22 sequence, complete sequence.
 Score = 2952, P = 0.0e+00, identities = 666/729
 10 exons

30

Medline entries

35 No Medline entry

Peptide information for frame 2

40 ORF from 239 bp to 1978 bp; peptide length: 580
 Category: similarity to unknown protein
 Classification: no clue

45 1 MGEKAVPLLR RRRVKRSCPS CGSELGVEEK RGKGNPISI Q LFPPELV
 51 ISFLPVRDLV ALGQTCRYFH EVCDGEGVWR RICRRLSPRL QDQGSV
 101 KRAAILNYTK GLYFQAFGGR RRCLSKSVAP LLAHGYRRFL PTKDHVFILD
 151 YVGTLFFFLKN ALVSTLGQM Q WKRACRYVVL CRGAKDFASD PRC
 201 LYVLATREPQ EVVGTTSR A CDCVEVYLQS SGQRVFKMTF HHS
 251 LVGQETQRAL LLLTEEGKIY SLVVNETQLD QPRS YTVQLA LRKVSHY
 301 LRVACMTSNQ SSTLYVTDQG GYVFEVHTPG VYRDLFGTLQ AFDP
 351 LALSLPAKIL FCALGYNHLG LVDEFGRIFM QGN
 401 TQVCYLQRPI TLWCGLNHSV VLSQSSEFSK ELLGC
 451 ASFVKLQVKV PLCACALCAT RECLYILSSH DIEQH
 501 EPSL GARAPQ DPGGMAQACE EYLSQIHSCQ TLQDRTE
 551 A QKDFFWEAL DMLQRAEGGG GGVGPPAPET

BLASTP hits

No BLASTP hits available

5

Alert BLASTP hits for DKFZphtes3_22ill, frame 2

TREMBL:AF05335b_11 product: "ORF4"; Homo sapiens chromosome 7q22 sequence, complete sequence., N = 1, Score = 1554, P = 1.6e-159

10

TREMBL:AF130441_1 gene: "UVR8"; product: "UVB-resistance protein UVR8"; Arabidopsis thaliana UVB-resistance protein UVR8 (UVR8) mRNA, complete

15

cds., N = 1, Score = 109, P = 0.0082

TREMBL:AF044b77_1 gene: "Rpgr"; product: "retinitis pigmentosa GTPase regulator"; Mus musculus retinitis pigmentosa GTPase regulator (Rpgr) mRNA, complete cds., N = 1, Score = 106, P = 0.035

20

>TREMBL:AF05335b_11 product: "ORF4"; Homo sapiens chromosome 7q22 sequence, complete sequence.

Length = 318

HSPs:

30

Score = 1554 (233.2 bits), Expect = 1.6e-159, P = 1.6e-159
Identities = 303/318 (95%), Positives = 303/318 (95%)

35

Query: 1
MGEKAVPLLRRRRVKRSCPSCGSELGVEEKRGKGNPISIQLFPPELVEHIISFLPVRLDV 60MGEKAVPLLRRRRVKRSCPSCGSELGVEEKRGKGNPISIQLFPPELVEHIISFLPVRLDV
Sbjct: 1

40

MGEKAVPLLRRRRVKRSCPSCGSELGVEEKRGKGNPISIQLFPPELVEHIISFLPVRLDV
Query: 61
ALGQTCRYFHEVC~~D~~GEGVWRRIC~~R~~RLSPRLQDQGSGVRPWKR~~A~~ILNYTKGLYFQAFGGR 120
ALGQTCRYFHEVC~~D~~GEGVWRRIC~~R~~RLSPRLQDQ

45

TKGLYFQAFGGR
Sbjct: 61 ALGQTCRYFHEVC~~D~~GEGVWRRIC~~R~~RLSPRLQDQ-----
TKGLYFQAFGGR 106

50

Query: 121
RRCLSKSVAPLLAHGYRRFLPTKDHFILDYVGTLFFLKNALVSTLGQM~~Q~~WKACRYVVL 180RRCLSKSVAPLLAHGYRRFLPTKDHFILDYVGTLFFLKNALVSTLGQM~~Q~~WKACRYVVL
Sbjct: 107RRCLSKSVAPLLAHGYRRFLPTKDHFILDYVGTLFFLKNALVSTLGQM~~Q~~WKACRYVVL 166

55

Query: 181
CRGAKDFASDPRCDTVYRKYL~~Y~~VLATREPQE~~V~~VGTSSRACDCVEVYLQSSGQRVF~~K~~MTF 240
CRGAKDFASDPRCDTVYRKYL~~Y~~VLATREPQE~~V~~VGTSSRACDCVEVYLQSSGQRVF~~K~~MTF

Sbjct: 167
CRGAKDFASDPRCDTVRKLYVLATREPQEVVGTSSRACDCVEVYLQSSGQRVFKMTF 226

Query: 241

5 HHSMTFKQIVLVGQETQRALLL TEEGKIYSLVVNETQLDQPRSYTVQLALRKVSHYLPH 300

HHSMTFKQIVLVGQETQRALLL TEEGKIYSLVNETQLDQPRSYTVQLALRKVSHYLP

Sbjct: 227

HHSMTFKQIVLVGQETQRALLLTELGGKIYSLVVNETQLDQPRSYTVQLALRKVSHYLPH 286

10

Query: 301 LRVACMTSNQSSTLYVTD 318
LRVACMTSNQSSTLYVTD

Subj: 287 LRVACMTSNQSSTLYVTD 304

15

Pedant information for DKFZphes3_22ill, frame 2

Report for DKFZphes3_22111.2

20

[LENGTH] 580
[MW] 64889.49
[PIT] 9.01

25 [[HOMOL]] TREMBL:AF053356_11 product: "ORF4"; Homo sapiens
chromosome 7q22 sequence, complete sequence. 1e-174
[[BLOCKS]] BL00625B Regulator of chromosome condensation (RCC1)
proteins
[[BLOCKS]] BL00625A Regulator of chromosome condensation (RCC1)
proteins
[[KW]] Alpha_Beta
[[KW]] LOW COMPLEXITY 3.62 %

35 SEQ MGEKAVPLLRRRRVKRSCPSCGSELGVEEKRGKGNPISIQLFPPPELV
SEG
PRD SCC

10. The following table shows the number of hours worked by 1000 employees in a company.

SEQ FCALGYNHLGLVDEFGRIFMAGNNRYGQLGTGDKMDRGEPTQVCYLQRPI TLWCGLNHSL
SEG
PRD eeeeecc

5 SEQ VLSQSSEFSKELLGCAGGRLPGWPKGSASFVKLQVKVPLCACALCATRECLYILSSH
SEGxxxxxx.....
PRD eeeeecc

10 SEQ DIEQHAPYRHL PASRVVGTPEP SLGARAPQDPGGMAQACEEYLSQIHS CQTLQDRTEKMK
SEG
PRD ccc

15 SEQ EIVGWMPLMAAQKDFFWEALDMLQRAEGGGGGVGPPAPET
SEGxxxxxx.....
PRD hhhhcchhhhhhhhhhhhhhhhhhhhhcccccccccccccccc

(No Prosite data available for DKFZphtes3_22i11.2)

20 (No Pfam data available for DKFZphtes3_22i11.2)

DKFZphtes3_22124

5 group: testis derived

DKFZphtes3_22124 encodes a novel 451 amino acid protein with similarity to the F-box protein FBL2 of the rat.

10 No informative BLAST results; No predictive prosite, pfam or SCOP motifs.

The new protein can find application in studying the expression profile of testis-specific genes.

15

similarity to p37NB (Homo sapiens)

Sequenced by LMU

20

Locus: /map="7q22-q31.1"

Insert length: 1537 bp

Poly A stretch at pos. 1459, no polyadenylation signal found

25

1	CAACAGGACG	ATGCGACTCC	TGCCGAGGCA	CTTCCACAAC	TTACAGAATC
51	TTAGTTGGC	TTATTGCAGA	CGGTTCACAG	ACAAAGGCTT	ACAGTACCTG
101	AACTTGGGGA	ATGGATGCCA	CAAGCTCATC	TATCTGGACC	TCTCTGGCTG
151	CACCCAGATT	TCAGTCCAAG	GCTTCAGGTA	CATTGCAAAC	AGCTGCACTG
201	GAATTATGCA	TCTTACCAATT	AATGACATGC	CAACTCTGAC	GGACAACGTG
251	GTAAAAGCTT	TAGTTGAAAA	ATGCTCTCGT	ATTACATCGC	TGGTTTCAC
301	TGGTGACCCG	CATATCTCCG	ATTGTACTTT	CAGAGCTCTT	TCTGCTGTGTA
351	AACTCAGAAA	GATCCGATT	GAAGGAAATA	AAAGGGTTAC	TGATGCATCC
401	TTCAAATTAA	TAGACAAGAA	TTATCCAAAT	CTCAGTCACA	TTTATATGGC
451	TGACTGCAAG	GGAATAACAG	ACAGCAGCCT	CAGATCCCTT	TCACCTTGA
501	AGCAACTGAC	TGTGTTGAAT	TTGGCAAATT	GTGTAAGAAT	TGGTGATATG
551	GGACTAAAGC	AATTTCTTGA	TGGTCTGCA	AGCATGAGGA	TAAGAGAGCT
601	AAATTAAAGC	AACTGTGTGC	GGCTAAGTGA	TGCCTTTGTT	ATGAAACTAT
651	CTGAGCGCTG	CCCTAATTAA	AACTACTTGA	GTTTACGAAA	TTGTGAACAT
701	TTGACTGCC	AAGGAATTGG	ATATATTGTA	AACATCTTTT	CCTTGGTATC
751	AATAGATCTC	TCTGGAACAG	ACATCTCTAA	TGAGGGTTTG	AATGTGCTTT
801	CCAGACATAA	AAAATTGAAG	GAACCTTCTG	TATCTGAATG	TTATAGAATC
851	ACTGATGATG	GAATTCAAGGC	ATTCTGCAAA	AGCTCACTGA	TCTTGGAAACA
901	TTTGGATGTC	TCTTATTGCT	CCCAGCTGTC	AGATATGATT	ATCAAAGCAC
951	TGGCCATTAA	CTGCATTAAC	CTCACATCTC	TCAGCATTGC	TGGCTGTCCA
1001	AAGATTACTG	ACTCAGCAAT	GGAGATGTTA	TCGGCAAAT	GCCATTACCT
1051	GCACATTTC	GATATCTCTG	GTTGTGTCTT	GCTTACTGAC	CAAATCCTG
1101	AGGACCTTCA	GATAGGCTGC	AAACAACCTC	GGATCCTTAA	GATGCAATAC
1151	TGCACAAATA	TTTCCAAGAA	GGCAGCTCAA	AGAATGTCAT	CTAAAGTTCA
1201	GCAGCAGGAA	TACAACACTA	ATGACCCCTCC	ACGTTGGTTT	GGCTATGATA
1251	GGGAAGGAAA	CCCTGTTACA	GAGCTTGACA	ACATAACATC	ATCTAAAGGA
1301	GCCTTAGAAT	TAACAGTGA	AAAGTCAACA	TACAGCAGTG	AAGACCAAGC
1351	AGCGTGACCT	TCAGCCTCAA	GCAGGAAGAA	CAAAAAATCA	AGAACTTGGC
1401	AAGTTTCTC	CATTTGTTGC	AAGTATGTTT	ACTAGCTGAA	TCTCAATAAC
1451	AATGTAACA	AGCAAAAAAA	AAAAA	AAAAA	AAAAA
1501	AAAAAAAAAA	AAAAA	AAAAA	AAAAAAG	

BLAST Results

- 5 Entry AC005250 from database EMBL:
Homo sapiens BAC clone RG318M05 from 7q22-q31.1, complete
sequence.
Score = 830, P = 1.8e-124, identities = 180/193
- 10 Entry HS32907 from database EMBL:
Human p37NB mRNA, complete cds.
Score = 318, P = 4.6e-04, identities = 70/78

15

Medline entries

- 97136875:
- 20 Kim D, LaQuaglia MP, Yang SY.; A cDNA encoding a putative 37 kDa
leucine-rich repeat
(LRR) protein, p37NB, isolated from S-type neuroblastoma
cell has a differential tissue distribution. Biochim Biophys Acta
1996.
- 25 Dec 11;1309(3):183-8

30

Peptide information for frame 2

ORF from 11 bp to 1354 bp; peptide length: 448

Category: similarity to known protein

35 Classification: unclassified

1 MRLLPRHFHN LQNLSLAYCR RFTDKGLQYL NLGNGCHKLI YLDLSGCTQI
51 SVQGFYRIAN SCTGIMHLTI NDMPTLTDNC VKALVEKCSR ITSLVFTGAP
101 HISDCTFRAL SACKLRKIRF EGNKRVTDAS FKFIDKNYPN LSHIYMADCK
151 GITDSSLRSL SPLKQLTVLN LANCVRIGDM GLKQFLDGPA SMRIRELNLS
201 NCVRLSDAFV MKLSERCPNL NYLSLRNCEH LTAQGIGYIV NIFSLVSIIDL
251 SGTDISNEGL NVLSRHKKLK ELSVSECYRI TDDGIQAFCK SSLILEHLDV
301 SYCSQLSDMI IKALAIYCIN LTSLSIAGCP KITDSAMEML SAKCHYLHIL
351 DISGCVLLTD QILEDLQIGC KQLRILKMQY CTNISKKAAQ RMSSKVQQQE
401 YNTNDPPRWL GYDREGNPVT ELDNITSSKG ALELTVKKST YSSEDQAA

BLASTP hits

50

No BLASTP hits available

Alert BLASTP hits for DKFZphtes3_22124, frame 2

55 No Alert BLASTP hits found

Pedant information for DKFZphtes3_22124, frame 2

Report for DKFZphes3_22124.2

5 [LENGTH] 451
 [MW] 50545.95
 [pI] 8.68
 [HOMOL] TREMBLNEW:AF186273_1 product: "leucine-rich
 repeats containing F-box protein FBL3"; Homo sapiens leucine-rich
 10 repeats containing F-box protein FBL3 mRNA, complete cds. 8e-31
 [FUNCAT] 11-01 stress response [S. cerevisiae, YJR090c] 8e-20
 [FUNCAT] 03-01 cell growth [S. cerevisiae, YJR090c] 8e-20
 [FUNCAT] 08-19 cellular import [S. cerevisiae, YJR090c] 8e-20
 [FUNCAT] 03-22 cell cycle control and mitosis [S. cerevisiae,
 15 YJR090c] 8e-20
 [FUNCAT] 03-04 budding, cell polarity and filament formation
 [S. cerevisiae, YJR090c] 8e-20
 [FUNCAT] 01-05-04 regulation of carbohydrate utilization [S.
 cerevisiae, YJR090c] 8e-20
 20 [FUNCAT] 11-04 dna repair (direct repair, base excision repair
 and nucleotide excision repair) [S. cerevisiae, YJR052w] 3e-07
 [FUNCAT] 30-10 nuclear organization [S. cerevisiae, YJR052w]
 3e-07
 [BLOCKS] PR00019B
 25 [BLOCKS] PR00364D
 [BLOCKS] BP01921A
 [BLOCKS] BP03743B
 [PIRKW] tandem repeat 2e-18
 [PIRKW] zinc finger 1e-07
 30 [PIRKW] DNA binding 1e-07
 [SUPFAM] leucine-rich alpha-2-glycoprotein repeat homology 2e-18
 [SUPFAM] regulatory protein ESAG8c 1e-07
 [KW] Alpha_Beta
 35
 SEQ NRTMRLLPRHFHNLQNLSLAYCRRFTDKGLQYLNLGNGCHKLIYLDLSGCTQISVQGFRY
 PRD ccc
 40 SEQ IANSCTGIMHLTINDMPTLTNDNCVKALVEKCSRITSLVFTGAPHISDCTFRALSACKLRK
 PRD cccccccccceeeecc
 SEQ IRFEGNKRVTDASFKFIDKNYPNLSHIYMADCKGITDSSLRSLSPLKQLTVNLANCVRI
 PRD eeeeecc
 45 SEQ GDMGLKQFLDGPAASMRIRELNLSNCVRLSDAFVMKLSERCPNLNYLSLRNCEHLTAQGIG
 PRD ccc
 SEQ YIVNIFSLVSIDLSGTDISNEGLNVLSRHKKLKELSVSECYRITDDGIQAFCKSSLILEH
 PRD eeeeecc
 SEQ LDVSYCSQLSDMIIKALAIYCINLTSLSIAGCPKITDSAMEMLSACKHYLHILDISGCVL
 PRD ccc
 55 SEQ LTDQILEDLQIGCKQLRILKMQYCTNISKAAQRMSKVQQQEYNTNDPPRWFGYDREGN
 PRD chhhhhhhhhhhccchhhhhcc
 SEQ PVTELDNITSSKGCALELTVKKSTYSSEDQAA

PRD ccccccccccccccccccccccccccccccccc

(No Prosite data available for DKFZphtes3_22124.2)

5

(No Pfam data available for DKFZphtes3_22124.2)

DKFZphtes3_2bg3

5 group: testis derived

DKFZphtes3_2bg3 encodes a novel 1090 amino acid protein without similarity to known proteins.

10 No informative BLAST results; No predictive prosite, pfam or SCOP motif.

The new protein can find application in studying the expression profile of testis-specific genes.

15

similarity to C.elegans CO9D4.4

20 on genomic level encoded by HSDDJ19B19
perhaps complete cds.

Sequenced by EMBL

Locus: /map="b"

25

Insert length: 4562 bp

Poly A stretch at pos. 4550, polyadenylation signal at pos. 4515

30	1 GATTCA GTTA CTGAAGACTT AGATGCACCC TGGATGGGAA TTCAGAACATCT
	51 TCAGAGATCA GAGTCAGTA AAATGGATAA ATATGAGACT GAAGAAAGCT
	101 CTGTAGCAGG ACTTTCTAGC CCAGAGTTGA AAGTCAGACC TGCTGGTGCC
	151 TCCAGTATTT GGTATACAGA AGGTAAAAG CAGCTAACAA AATCTCTAAA
	201 AGGAAAGAAT GAAGAACCAA ATAATCCAA AGTTAAGGTT ACTAACGTTA
35	251 TGAAAACAAT GAAATCTGAA AACACAAAAA AATTAATAAA ACAGAACCTCT
	301 AAGGATTCTG TGGTTTTGGT AGGCTACAAA TGTTTAAAAA GTACAGCATC
	351 AAATGATCTC ATTAAATGCT TTGAAGGCAA TCCTTCACAT AGTCAGAAGG
	401 AAGGTCTGGA TCCCACAATA TGTGGATATA ATTTTGACCC AAAGACCTAC
	451 ATGAGACAGA CAAGTCAAA GGAAGCTAGC TGTTTGCCAA CTAATACAGA
40	501 GAGAACTGAA CAAAGTCTC CAGATATTGA AAATGTTCAA CCAGACCACT
	551 TTGATCCTTT GAACTCTGGC AACCTAAATC TTTGTGCAAA TTTGTCCATT
	601 TCAGGTAAAC TTGATATCTC CCAGGACGAT AGTGAAATTAA CACAAATGGA
	651 ACACAATCTG GCATCCAGAA GGTATCAGA CGATTGCCAT GATCATCAAA
	701 CAACCCCATC TTTGGGAGTT AGAACAAATTG AAATAAAAGCC CAGTAATAAA
45	751 GATCCTTCA GTGGAGAGAA TATAACTGTC AAACTAGGAC CTTGGACAGA
	801 GCTTCGACAA GAGGAAATAC TTGTGGATAA TTTACTACCC AACTTTGAGT
	851 CCTTAGAATC TAATGGTAA TCTAAATCTA TAGAAATAAC ATTTGAAAAG
	901 GAAGCTTGC AAGAAGCAA GTGTCTTCT ATTGGAGAAT CATTAACAA
	951 ATTACGAAGT AATCTACCTG CCCCTTCTAC AAAAGAATAT CATGTTGTAG
50	1001 TAAGTGGAGA TACAATTAAAG TTACCGATA TTAGTGCCAC ATATGCCTCA
	1051 TCTAGATTTT CAGATTCAAG TGTGAAAGT GAACCGAGTT CTTTGCGAC
	1101 ACATCCAAAC ACTGATTAG TCTTGAAAC TGTGCAAGGG CAAGGTCCCTT
	1151 GCAATAGTGA AAGATTATT CCTCAGCTT TGATGAAACC TGATTATAAT
	1201 GTAAAATTT CATTAGGAAA TCATTGACT GAGAGTACAA GTGCTATAAG
55	1251 TGAAATACAG TCATCTTGA CATCCATAAA CTCTCTACCC TCCGATGATG
	1301 AACTGTCACC TGATGAAAT TCTAAGAAAT CTGTTGTACC TGAATGCCAT
	1351 CTAATGATA GCAAAACTGT ATTTAAATCTA GGAACGACTG ATTTGCCAAA
	1401 ATGTGATGAT ACTAAAAAGT CAAGTATCAC TTTGCAACAG CAGAGTGTG

1451	TATTTTCAGG	GAACCTGGAC	AATGAAACTG	TAGCAATACA	TTCCCTTAAAT	
1501	TCAAGCATT	AAGACCCTT	ACAATTTGTT	TTTCAGATG	AAGAGACTTC	
1551	CAGTGATGTG	AAAAGTAGTT	GCAGCTCCAA	ACCTAATTG	GATACTATGT	
1601	GTAAAGGCTT	CCAGAGTCCT	GATAAATCTA	ATAACTCTAC	AGGGACAGCA	
5	1651	ATTACATTAA	ATTCAAAACT	GATTGTTTA	GGCACTCCTT	GTGTCAATTTC
1701	AGGTTCCATT	TCTAGTAATA	CAGATGTTAG	TGAAGATAGA	ACTATGAAAAA	
1751	AAAATAGTGA	TGTATTAAAT	CTCACACAGA	TGTATTCAA	AATCCCCTACA	
1801	GTTGAAAGTG	AAACTCATCT	GGGTACAAGT	GATCCCTTTT	CAGCCAGTAC	
1851	TGATATAGTA	AAGCAAGGGC	TTGTGGAAAA	TTATTTGGT	TCTCAAAGCA	
10	1901	GTACGGATAT	TTCTGACACA	TGTGCTGTTA	GCTACAGCAA	TGCACTTAGC
1951	CCTCAGAAGG	AAACTCTGA	AAAAGAAATT	AGTAATCTTC	AGCAGGAACA	
2001	GGATAAAGAG	GATGAGGGAGG	AAGAGCAGGA	TCAACAAATG	GTTCAAAATG	
2051	GGTACTATGA	AGAAACAGAT	TATTCAAGCTT	TGGATGGAAC	AATAAATGCT	
15	2101	CACTATACAA	GCAGAGATGA	ACTAATGGAA	GAAAGACTTA	CAAAACTCTGA
2151	AAAAATAAAC	AGTGAATCTC	TGAGAGATGG	TATAAACATG	CCTACTGTCT	
2201	GTACTTCCTGG	TTGTTTGTCC	TTCCCGTCTG	CACCAAGGAGA	GTCTCCTTGT	
2251	AATGTTAAAT	ATTCTTCCAA	AAGTAAATT	GATGCCATT	CAAAGCAGCC	
2301	AAGCAGTACT	TCTTACAAC	TCACCTCTTC	GATTTCTGG	TATGAAAGTT	
20	2351	CAACAAACC	TCAAATACAA	GCCTTCCTTC	AGGCAAAAGA	AGAACTGAAG
2401	CTACTAAAAC	TTCTGGGTT	CATGTACAGT	GAAGTTCCTC	TGCTGGCATC	
2451	CTCAGTACCT	TATTTTAGTG	TAGAAGAAGA	GGGTGGTTCT	GAAGATGGAG	
2501	TACATCTGAT	TGTCTGTG	CACGGTTTAG	ATGAAACAG	TGCAGATCTC	
2551	CGATTAGTAA	AAACTTACAT	TGAACCTGG	TTGCCCTGGGG	GAAGAATTGA	
2601	TTTCTTATG	TCTGAGAGAA	ATCAGAATGA	TACTTTGCT	GATTTGATA	
25	2651	GCATGACTGA	TCGTCTTTG	GATGAGATAA	TACAGTATAT	TCAGATATAT
2701	AGTCTAACAG	TCTCAAAAT	AAGCTTATT	GGACATTCTG	TGGGCAATT	
2751	AAATATTCTG	TCACTGCTTA	CAAGGCCAAG	GTTAAATAT	TACCTCAACA	
2801	AACTTCATAC	CTTCTGTCT	CTTCTGGAC	CTCACCTTGG	TACACTCTAC	
2851	AACAGCAGT	CTCTGTTAA	TACAGGTCTC	TGGTTATGC	AGAAATGGAA	
30	2901	AAAATCAGGT	TCGCTTTTG	AGCTGACATG	TCGAGATCAC	TCAGACCCCTC
2951	GCCAAACTT	TTTATATAAG	CTTAGTAACA	AAGCAGGGCT	TCATTATTT	
3001	AAAAATGTTG	TGCTAGTGGG	ATCCTACAG	GATCGCTATG	TTCCATTATCA	
3051	CTCTGCCGC	ATTGAAATGT	GTAAAACAGC	TTTAAAGGAC	AAACAGTCAG	
3101	GACAGATCTA	TTCAGAAATG	ATCCACAACT	TGCTCGACC	CGTTCTGCAA	
35	3151	AGCAAGGACT	GTAATTG	TCGCTATAAT	GTCATCAATG	CATTGCCAA
3201	TACAGCTGAT	TCACTCATG	GGAGAGCTGC	ACATATAGCT	GTTCTTGATT	
3251	CGGAAATATT	TTTAGAGAAA	TTCTTCTGG	TTGCTGCCCT	CAAATATTT	
3301	CAATAGTATA	AAAGCATTG	TAGCGACTGG	ACAATTACCT	CATTCAACAA	
3351	TGTTCAAAT	AATGTATTAT	ATTTAAATGT	AGATGCTGAT	AAGTTCTAAG	
40	3401	AAATATTAT	ACCTTTTAT	ATGGAAGATA	ATTTATATCA	TCCATGTTA
3451	GTGCTTTTA	AACATCAACT	TTACTTTCTA	GGTAATGTGG	CTGTGCAATA	
3501	TTTTTTAAT	TTTATCTTT	TACTTTCTA	TTACTTTCT	ATATATTTG	
3551	CTACCTAAGT	ATTTCAGTGA	AACTTTAACG	CCATACCTGT	GTCTGATTGT	
45	3601	TTATTATTGG	CTTCCACAA	TTCTTACATC	AGACTACATT	ATATTAGAGA
3651	CCATTATTGC	TAGAATAGCA	TGGGATTAA	ATTTCTAAT	ACTGGGGGTA	
3701	TTATTAGTT	AATTATAAAT	TTTCTTTTC	ACATTTTACT	GTGTTTAAC	
3751	TGGAAATAAA	ATTATGGCTG	CTACAATATA	TTTTTGAAA	TCAACTCTG	
3801	TAGTTCTAAA	ATACAACTT	ATCATAACAAT	CAAACCAGGT	AGTTCATATA	
3851	AAACAGTGT	ATACAAGTT	TCTATAAAAGT	CATTACTGTT	GCTTAAACAT	
50	3901	ATTTCATGCC	TATTAACATA	TATTTCTAC	TGGTGATTTC	AACATTATTT
3951	CTCATACTGA	CTTTTATTAC	TGGAAATGTT	CCTGTACATG	TTGGCAGCAG	
4001	ATAAAAGATT	TTGAATGTT	GAATGCCCTC	TGCCTGATT	TGGTTGGATT	
4051	TTGCTAATTG	GTATGTTGCT	TGAACCTTAT	GACTACATT	TCTTTAACT	
4101	TTTTCATGG	ACTTCCTTAT	ATGTACATAA	TAATTAATG	TTGAAATT	
55	4151	TGAAATACTT	TTATGAATT	AGATAATT	TAAATATTGT	TAAAATT
4201	TGAACAAAAA	AGTAATGTAA	ATAAAATAAT	TCATGTTAA	GATGAAACAA	
4251	AATAATTAAAC	TTTACATGTT	TGGTGATACA	GATGCAAATG	TTTTGATAT	
4301	ATGGAGATGT	TGAGTCTTT	GACTTTACTA	AAGGTGCTGA	ATAGCATTAA	

4351 ATTCACTATT TTCCTTTCT GTTTACTTG TGAAAATAAA AATGCACTAA
 4401 GGTTGGGTAG AAGTTCTGTT TGCACACT AATTGTGACA GACAGAGGTT
 4451 TTTGTAAGTA TTATTGTAC AATTGATGCA TGTTTATTT TAGCGTTGTT
 5 4501 ATTGCCTCTG GTGTTAATAA ATGAACAAAT GGCTATCTGG AGGAACAGCT
 4551 AAAAAAAA AA

BLAST Results

10 Entry HS0J198I9 from database EMBLNEW:
 Human DNA sequence *** SEQUENCING IN PROGRESS *** from clone
 DJ198I9
 Score = 7221, P = 0.0e+00, identities = 1455/1461
 15

Medline entries

20 No Medline entry

Peptide information for frame 1

25 ORF from 34 bp to 3303 bps; peptide length: 1090
 Category: similarity to unknown protein
 30 Classification: no clue

1 MGIQNLQRSE SSKMDKYETE ESSVAGLSSP ELKVRPAGAS SIWYTEGEKQ
 51 LTKSLKGKNE ESNKSKVKT KLMKTMKSEN TKKLIKQNSK DSVVLVGYKC
 101 LKSTASNDLI KCFEGNPSHS QKEGLDPTIC GYNFDPKTYM RQTSQKEASC
 151 LPTNTTERTEQ KSPDIENVQP DQFDPLNSGN LNLCANLSIS GKLDISQDD
 201 EITQMEHNLA SRRSSDDCHD HQTPPSLGVR TIEIKPSNKD PFSGENITVK
 251 LGPWTELRLQE EILVDNLLPN FESLESNGKS KSIEITFEKE ALQEAKLSI
 301 GESLTKLRSN LPAPSTKEYH VVVSGDTIKL PDISATYASS RFSDSGVESE
 351 PSSFAHPNT DLVFETVQQQ GPCNSERLFP QLLMKPDYNV KFSLGNHCTE
 401 STSAISEIQS SLTSINSLPS DDELSPDENS KKSVVPECHL NDSKTVLNIG
 451 TTDLPKCDDT KKSSITLQQQ SVVFSGNLDN ETVAIHSLSN SIKDPLQFVF
 501 SDEETSSDVK SSCSSKPNLD TMCKGFQSPD KSNNSTGTAI TLNSKLICLG
 551 TPCVISGSIS SNTDVSEDRT MKKNSDVNLN TQMYSEIPTV ESETHLGTSD
 601 PFSASTDIVK QGLVENYFGS QSSTDISDTC AVSYSNALSP QKETSEKEIS
 651 NLQQEQDKED EEEEQDQQMV QNGYYEETDY SALDGTINAH YTSRDELMEE
 701 RLTKEKINS DYLRDGINMP TVCTSGLSF PSAPRESPCN VKYSSSKSKFD
 751 AITKQPSSTS YNFTSSISUW ESSPKPQIQA FLQAKEELKL LKLPGFMYSE
 801 VPLLASSVPY FSVEEEGGSE DGVHLIVCVH GLDGNNSADLR LVKTYIELGL
 851 PGGRIDFLMS ERNQNNDTFAD FDSTMTRLLD EIIQYIQIYS LTVSKISFIG
 901 HSLGNLIIRS VLTRPRFKYY LNKLHTFLSL SGPHLGTLYN SSALVNTGLW
 951 FMQKWKKSGS LLQLTCRDHS DPRQTFLYKL SNKAGLHYFK NVVVLVGSQD
 1001 RYVVPYHSARI EMCKTALKDK QSGQIYSEMI HNLLRPVLQS KDCNLVRYNV
 1051 INALPNTADS LIGRAAHIAV LDSEIFLEKF FLVAALKYFQ

55

BLASTP hits

No BLASTP hits available

Alert BLASTP hits for DKFZphtes3_26g3, frame 1

5 No Alert BLASTP hits found

Pedant information for DKFZphtes3_26g3, frame 1

10 Report for DKFZphtes3_26g3.1

[LENGTH] 1101
 [MW] 122245.22
 15 [pI] 5.12
 [HOMOL] TREMBL:CEAF219b_1 gene: "C09D4.4"; *Caenorhabditis elegans* cosmid C09D4. 2e-38
 [FUNCAT] 99 unclassified proteins [S. cerevisiae, YOR059c]
 2e-06
 20 [BLOCKS] BL00120B
 [KW] Alpha_Beta
 [KW] LOW_COMPLEXITY 6.72 %

 25 SEQ DSVTEDLDAPWMGIQNLQRSESSKMDKYETEESSVAGLSSPELKVRPAGASSIWYTEGEK
 SEG
 PRD cccccccccccceeeeechhhhhhhhhcccccccccccccccccccccccccccccccc

 30 SEQ QLTKS LKGKNEESNKS KVKVT KLMKTMKSEN TKLIKQNSKDS VVLVG YKCL KSTA ND
 SEGxxxxxx.....
 PRD hhhhhhccccc.....cc

 35 SEQ IKCFEGNPSHSQKEGLDP TICGYNFDPKTYMRQTSQKEASCLPTNTERT E QKSPD IENVQ
 SEG
 PRD eeeeecc

 40 SEQ PDQFDPLNSGNLNLCANLSISGKLDISQDDSEITQMEHNLASRRSSDDCHDHQTTPSLGV
 SEG
 PRD cccccccccccceeeeecccccccccccccccccccccccccccccccccccc

 45 SEQ RTIEIKPSNKDPFSGENITVKLG PWTEL RQEEILVDNLLPNFESLESNGKSKSIEITFEK
 SEG
 PRD eeeeecc

 50 SEQ EALQEAKCLSIGESLT KLRSNLPAPSTKEYHVVVSGDTIKLPDISATYASSRFS DSGVES
 SEG
 PRD hhhhhhhhhhhhhhhhhhhcccccccccccccccccccccccccccccccc

 55 SEQ EPSSFATHPNTDLVFETVQGQGPCNSERLFPQLLMKP DYNVKFSLGNHCTESTSAISEI Q
 SEG
 PRD cccccccccccceeeeecccccccccccccccccccccccccccccccccccc

 SEQ SSLTSINSLPSDDELSPDENSKKS VVPECHLNDSKTVLNLGTT DLPKCDT KKSSITLQQ
 SEG
 PRD ccc

 SEQ QSVVFSGNLDNETVAIHSN SSIKDPLQFVFSDEETSSDVKSSCSSKPNLDTMCKGFQSP
 SEGxxxxxxxxx.....

(No Prosite data available for DKFZphes3_26q3.1)

45 (No Pfam data available for DKFZphtes3_26q3.1)

DKFZphtes3_29f24

5 group: signal transduction

DKFZphtes3_29f24 encodes a novel 526 amino acid protein with similarity to murine netla.

10 The closely related mNET1 activates signalling pathways in addition to those directly controlled by activated RhoA. The novel protein is expressed ubiquitously.

15 The new protein can find application in modulation/blocking signalling pathways.

similarity to netla (*Mus musculus*)

20 perhaps complete cds.

Sequenced by BMFZ

Locus: /map="72.40 cR from top of Chr3 linkage group"

25 Insert length: 3559 bp
Poly A stretch at pos. 3534, polyadenylation signal at pos. 3513

30	1 CGCCGCCGCC CGGCATCGTG GAGCTGGGGC CCCCTTTGC CTGGGAGTTT
	51 TGTAGTCGCC TAGGGTCAGC GGTGACATCC CAAAGGGCAG GCCCGGCAGC
101	CGCCATGGTG GCCAAGGATT ACCCCTTCTA CCTCACGGTC AAGAGAGCGA
151	ACTGCAGCCT GGAGCTACCC CGGGCCAGCG GTCCGGCCAA GGACGCTGAG
201	GAGCCTAGTA ATAAACGGGT CAAACCCCTT TCCCGAGTCA CGTCGCTAGC
251	AAACCTCATC CGGCCCGTGA AGGCCACGCC ATTAAAGCGC TTCAAGTCAA
301	CCCTGCAGCG CTCCATTAGC TTCCGAGTG AGAGCCGCC TGACATCCTC
351	GCCCCCGGAC CCTGGTCCAG AAATGCCGC CCCTCGAGCA CGAACCGGAG
401	AGATAGCAAG CTGTGGAGTG AGACCTTCGA TGTGTGCGTC AATCAGATGC
451	TTACATCCTAA GAAAATCAA CGTCAGGAGG CGATCTTGA GCTTCCCAA
501	GGAGAAGAAG ACTTGATAGA AGACTTGAAA TTAGCAAAA AGGCCTATCA
551	TGACCCCAGT CTGAAACTCT CCATAATGAC AGAACAAAGAG TTGAATCAA
601	TTTTTGGAAC ACTGGACTCT CTAATTCTC TACATGAAGA GCTCCTTAGT
651	CAGCTTCGAG ATGTTAGGAA GCCTGATGGC TCGACTGAAC ATGTTGGTCC
701	CATCTCGTG GGCTGGCTCC CTTGCCTCAG CTCCTATGAT AGCTACTGCA
751	GCAATCAAGT AGCCGCCAAA GCTCTGCTGG ACCACAAAAA GCAAGATCAC
801	CGAGTCCAGG ATTCCTACA GCGATGTTA GAATCCCCCT TTAGCCGCAA
851	ACTAGATCTC TGGAATTCCC TCGATATTCC AAGAAGCCGC CTGGTAAAAT
901	ACCCCTCTGCT TCTCCGAGAA ATCTTGAGGC ACACACCAAA TGATAATCCA
951	GATCAGCAGC ACTTGGAAAGA AGCTATAAT ATCATTCAAGG GAATTGTGGC
1001	AGAAATCAAC ACCAAGACTG GTGAATCTGA ATGCCGCTAT TATAAAGAGC
1051	GGCTTCTTA CTGGAAAGAA GGCCAGAAAG ACTCCCTGAT CGACAGCTCT
1101	CGAGTCTTGT GTTGTATGG TGAAGTGAAG AACAAATCGGG GCGTGAAC
1151	GCATGTTTC CTGTTCCAAG AAGTGCTTGT GATCACTCGA GCCGTCACCC
1201	ACAATGAGCA GCTTGCTAC CAGCTGTACC GTCAGCCAAT CCCCCTGAAA
1251	GACCTCCTGC TGGAAGACCT CCAGGATGGA GAAGTGGAGGC TGGGTGGCTC
1301	CCTGCGAGGG GCATTCAAGCA ACAATGAGAG AATTAACAC TTCTTCAGAG
1351	TCAGTTCAA AAATGGATCC CAAAGTCAGA CCCACTCGCT ACAAGCCAAT
1401	GACACTTCA ACAAAACAGCA GTGGCTTAAC TGTATTGTC AAGCCAAGA

1451 AACAGTTTG TGTGCTGCCG GGCAAGCTGG GGTGCTTGAC TCCGAGGGAT
 1501 CGTTCCTAAA TCCCACCACC GGGAGCAGAG AGCTACAGGG AGAAACAAAA
 1551 CTTGAGCAGA TGACCAATC GGACAGTGAG TCAGACTGTA GTATGGACAC
 1601 GAGTGAGGTC AGCCTCGACT GTGAGCGCAT GGAACAGACA GACTCTTCT
 5 1651 GTGGAACACAG CAGGCACGGT GAAAGTAACG TCTGACAGAA GCATGTGCAC
 1701 TTCGGGAAGC AGGCCTGCAT CTTACCTGTA CAGTATTGCA ATTCCACAGA
 1751 TGGAACGGTT TGAGAGAAGCA CTTTTCTATA CTTTTGTGAA AGTATAACATG
 1801 TTGGCCCAGT CTCCTGTATC TGACCTTTG TCCCTAGTAC TGTAACGTGCC
 1851 AATCTGTCG TGAAAGCTGG AATCTGTGGC AACTATTACC CTGTGTTGTA
 10 1901 TTTCCAAGT GTCGTGGATGG ATGGAGAGGT ACTCAACAA GTTACTTTCA
 1951 GTTGTCTGC TGATTTAA AAAAATAGAA AAAGAATCTC AAAACTACTG
 2001 TTTTACATAG ATTGTTGAA GAGTCTTCC TCTTGTGCTT CTGTACCACT
 2051 TTCCAGCTC TTAGATGTGG TAGCTAAAGG CACGGAATTG AGACGGCCTT
 2101 GTAAATAGGG CATGAGGAAC TCATCTGTGT ATTGGATGG TATTAGAGAG
 15 2151 AGAATCAGGA AAGACCAAAT CATGAAGTGA ACTTGGTTG ATCTTACTCA
 2201 ACTAGAAAGC TTGAAAACAT CCCTGGGGAT TCTGAAGGCT TAATTTGCA
 2251 AAGGAGGATG CATTGTCTGA ACTTGCAAC TTCATCCAGT GCAAGTTGAA
 2301 TGCAAGAATG TATTAGGACA TAAAATAGAG GCTGACCTTA AAAGGGCCAG
 2351 GACAGAAGCG GCTGCCAGCT CTGAATCTT AACTGAAATG CACATGGCAC
 20 2401 CAGGAGGTGT CTCTCATAGT TGTTGCTAG CCTAAACAT CAGAATAGAA
 2451 CCCAAAGGGC TTAGGAAGGC CTGCCAGGAT ACAAGAAGG CCCTGTATTG
 2501 ATTGTGTTTC ATCTGCCTAG GCCTACTCAT TATTTAGAG AATGAATGAA
 2551 GCAACAAGGA AGAGAGACCA TGACTCTATC GATGACACTG TTTATAGAAA
 2601 CACAGGAGAG GAAGAATTG GAATGAAAAG CACTTCGTCA GAACCTTCTG
 25 2651 TGGGAGCCAT TGAGAGAAAA GCATGGTCCA GTGCCCTCTG AGAAAGGCCA
 2701 GAGCTTGGG CTTTCTGCT CTGCTTTGG GTGTCATT TGCCATCTCT
 2751 GGTTCTGTGC TATAATCAGA ATTGTAATT TGTTCTCCAG AGGCCAATT
 2801 CATTAACTCT GATTAAATTAG AATCAGCTAG CCAGATTAGT AACCTCTTG
 2851 TCCAGCCTTG ATTACAGTG CAGGGTAAAG TGCGACCTT AAAAACAGCT
 30 2901 AAGTACCTAG AAGAGCTCCC TGCAAGTGTAA AATATTAAGG ATGACCTGTG
 2951 CAAAATTATA CCCACACCAAG CACTAGTGGT AATTATTCTA AATTATTGCC
 3001 AAAAAGTTT TTTTAATCTG TCTTCAAGT TTACAGAAAA GAAAGCAGTA
 3051 AATGCATTGA TGTCATTAA TTATGTACAT ATATCATGTG CATTCAAGCT
 3101 GTGTGACAAG ATATATCAAT ATAAAAACAA GGTATATACT TTATTATTT
 35 3151 TTGAAAACAA GGATATTGTG ATCAATTAA CCCTGTAAAA CATATTCTG
 3201 TATTTATAGG TCTTAAACAT GATGAATTAA TTCTATTACA AGTTTATTAA
 3251 AACTGCTT CTCAGTCGT TATTGATACA GCAAGTGAAC CTGCTGCAGA
 3301 CAGAAGCAGA GGAAGGCCAA GAACAGCCTT TATTGGTGAAG GAAAAGAATG
 3351 AATGATTCTT TGAGGCCACT ATCAGCCACT TTTAGAAGCC ATCAGCCAGT
 40 3401 GTGTTGGAA AAGAGGTTG TCAAGTGTG GCCTATGGGA AGGTGGTCAA
 3451 TGAATGTTT GATGAAATGA ATGTTTTGT ATAATGGCCT TAAACTTTTCA
 3501 TGGAAGTATT TCAAATAAT TACATTATTA AGTCAAAAAA AAAAAAAAAA
 3551 AAAAAAAAAA

45

BLAST Results

50

No BLAST result

Medline entries

55

98336196:
 Alberts AS, Treisman R.; Activation of RhoA and SAPK/JNK
 signalling
 pathways by the

RhoA-specific exchange factor mNET1. EMBO J 1998 Jul
15;17(14):4075-85

5

Peptide information for frame 3

10 ORF from 105 bp to 3682 bp; peptide length: 526

Category: strong similarity to known protein

Classification: Cell signaling/communication

1 MVAKDYPFYL TVKRANCSLE LPPASGPAKD AEEPSNKRVK PLSRVTSLAN
 5 IIPPVKATPL KRFSTQTLQRS ISFRSESRPD ILAPRWPWSRN AAPSSTKRRD
 10 SKLWSETFDV CVNQMLTSKE IKRQEAIIFEL SQGEEDLIED LKLAKKAYHD
 15 PMLKLSIMTE QELNQIFGTL DSLIPLHEEL LSQLRDVRKP DGSTEHVGP
 20 LVGWLPCLSS YDSYCSNQVA AKALLDHKKQ DHRVQDFLQR CLESPFSRKL
 25 DLWNFLDIPR SRLVKYPLL REILRHTPND NPDQQHLEEA INIIQQGIVAE
 30 INTKTGESEC RYYKERLLYL EEGQKDSLID SSRVLCCCHGE LKNNRGVKLH
 35 VFLFQEVLVI TRAVTHNEQL CYQLYRQPIP VKDLLLEDLQ DGEVRLGGSL
 40 RGAFSNNERI KNFFRVSFKN GSQSQTHSLQ ANDTFNKQFW LNCIRQAKET
 45 VLCAAGQAGV LDSEGSFLNP TTGSRELQGE TKLEQMDQSD SESDCSMQTS
 50 EVSLDCERME QTDSSCGNR HGESNV

25

BLASTP hits

30 No BLASTP hits available

Alert BLASTP hits for DKFZphtes3_29f24, frame 3

No Alert BLASTP hits found

Pedant information for DKFZphtes3_29f24, frame 3

Report for DKFZphtes3_29f24.3

40

[LENGTH] 560
 [MW] 63202.85
 [pI] 6.04

45 [HOMOLI] TREMBL:AF094520_1 gene: "Net1"; product: "NET1 homolog"; Mus musculus NET1 homolog (Net1) mRNA, complete cds. 1e-1b2
 [FUNCAT] 09.01 biogenesis of cell wall [S. cerevisiae, YLR371w] 3e-1b
 50 [FUNCAT] 03.07 pheromone response, mating-type determination, sex-specific proteins [S. cerevisiae, YLR371w] 3e-1b
 [FUNCAT] 10.02.09 regulation of g-protein activity [S. cerevisiae, YLR371w] 3e-1b
 [FUNCAT] 09.04 biogenesis of cytoskeleton [S. cerevisiae, YLR371w] 3e-1b
 55 [FUNCAT] 03.04 budding, cell polarity and filament formation [S. cerevisiae, YLR371w] 3e-1b

[[FUNCAT]] 01.05.04 regulation of carbohydrate utilization ES.
 cerevisiae, YLR371w] 3e-1b
 [[FUNCAT]] 30.03 organization of cytoplasm ES. cerevisiae,
 YAL041w] 3e-11
 5 [[FUNCAT]] 03.22 cell cycle control and mitosis ES. cerevisiae,
 YAL041w] 3e-11
 [[FUNCAT]] 10.05.09 regulation of g-protein activity ES.
 cerevisiae, YAL041w] 3e-11
 [[BLOCKS]] PRO00510E
 10 [[BLOCKS]] PRO00041E
 [[BLOCKS]] BL00741B
 [[PIRKW]] breakpoint cluster region 1e-0b
 [[PIRKW]] transmembrane protein 5e-13
 [[PIRKW]] brain 3e-0b
 15 [[PIRKW]] signal transduction 5e-13
 [[PIRKW]] alternative splicing 1e-0b
 [[SUPFAM]] CDC24 homology 9e-15
 [[SUPFAM]] SH2 homology 1e-11
 [[SUPFAM]] CDC25-type guanine nucleotide exchange activator
 20 homology 2e-08
 [[SUPFAM]] dbl transforming protein 9e-08
 [[SUPFAM]] protein kinase C zinc-binding repeat homology 1e-11
 [[SUPFAM]] SH3 homology 1e-11
 [[SUPFAM]] bcr protein 1e-0b
 25 [[SUPFAM]] pleckstrin repeat homology 2e-11
 [[SUPFAM]] vav transforming protein 1e-11
 [[KW]] All_Alpha

 30 SEQ PPPGIVELGPPFAWEFC SRLGS AVTSQRAGPAAAMVAKDYPFYLTVKRANC SLELPPASG
 PRD cccceeeeccccccccchhhhhhhhhhhhhcccccccccccccccccccccccccccc

 SEQ PAKDAEEPSNKRVKPLSRV TS LANLIPPV KATPLKRF S QTLQRSISFRSE SRPD ILAPRP
 PRD ccc

 35 SEQ WS RNAAPSS T KRRDSKLWSETFDVCVNQMLTSKEIKRQEAI FELS QGEEDLIEDLKLA KK
 PRD ccc

 SEQ AYHDPM LKLSIMTEQELNQIFGTLD S LIPLHELLSQLRDVRKP D GSTE HVGPILVGWLP
 40 PRD hhhchhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhcccccccccccccccccccccccc

 SEQ CLSSYDSYCSNQVAAKALLDHKKQDH RVQDFLQRCLES PFSRKLDLWNFLDIPRSRLV KY
 PRD cccceeeecc

 45 SEQ PLLREILRHTPNNDNPDQQHLEEAINIIQGIVAEINTKTGESEC RYYKERLLYLEEGQKD
 PRD hhhhhhhhhcc

 SEQ SLIDSSRVLCCHGELKNNRGVKLHVFLFQEVLVITRAVTHNEQLCYQLYRQPIPVKD LLL
 50 PRD hhhhhhheeecc

 SEQ EDLQDG EVRLGGSLRGAFSNNERIKNFFRVSFKNGSQS QTHSLQANDTFNKQ QWLNCIR Q
 PRD ccc

 55 SEQ AKETVLCAAGQAGVLDSEG SFLNPTTGSRELQGETKLEQMDQSDSES DCMDTSEVSLDC
 PRD hhhhhhccccc eeeeecc

 SEQ ERMEQT DSSCGNSRHGESNV

(No Prosite data available for DKFZphtes3_29f24.3)

5 (No Pfam data available for DKFZphtes3_29f24.3)

DKFZphtes3_30pb

5 group: testis derived

DKFZphtes3_30pb encodes a novel 461 amino acid protein without similarity to known proteins.

10 No informative BLAST results; No predictive prosite, pfam or SCOP motif.

The new protein can find application in studying the expression profile of testis-specific genes.

15

similarity to C.elegans F41H10.4

perhaps complete cds.

20

Sequenced by LMU

Locus: unknown

25 Insert length: 1944 bp

Poly A stretch at pos. 1911, no polyadenylation signal found

30	1	GGAACAGACC	ACTGGGCTGG	CAGCTGAGTT	GCAGCAGCAC	CAGGCTGAGT
	51	ACGAGGACCT	TATGGGACAG	AAAGATGACC	TCAACTCCCA	GCTCCAGGAG
	101	TCATTACGGG	CCAATAGTCG	ACTGCTGGAA	CAACTTCAAG	AAATAGGGCA
	151	GGAGAAGGGAG	CAGTTGACCC	AGGAATTACA	GGAGGCTCGG	AAGAGTGCAG
	201	AGAACGGAA	GGCCATGCTG	GATGAGCTAG	CAATGGAAAC	GCTGCAAGAG
	251	AAGTCCCAGC	ACAAGGAAGA	GCTGGGAGCA	GTTCGTCTAC	GGCATGAGAA
35	301	GGAGGTGCTG	GGGGTGCCTG	CCCGCTATGA	GCCTGAGCTC	CGAGAGCTGC
	351	ATGAAGACAA	GAAGCGTCAG	GAGGAGGAGC	TCCGTGGGCA	GATCCGGGAG
	401	GAGAAGGCC	GGACACGGGA	GCTGGAGACT	CTCCAGCAGA	CAGTGGAAAGA
	451	ACTTCAAGCT	CAGGTACATT	CCATGGATGG	AGCCAAGGGC	TGGTTTGAAC
40	501	GGCGCTTGAA	GGAAAGCCGAG	GAATCCCTGC	AGCAGCAGCA	GCAGGAACAA
	551	GAGGAAGCCC	TCAAGCAGTG	TCGGGAGCAG	CACGCTGCCG	AGCTGAAGGG
	601	CAAGGAGGGAG	GAGCTACAGG	ATGTACGGGA	TCAGCTCGAG	CAGGCCAGG
	651	AGGAGCAGGG	CTGCCACCTG	AAGACCATT	GCAGCCTGAA	GCAGGAGGTG
	701	AAGGACACAG	TGGATGGGCA	GAGGATCCTG	GAGAAGAAGG	GCAGTGCTGC
	751	GCTCAAGGAC	CTCAAGCGGC	AGCTGCATT	GGAGCAGAAA	CGGGCAGATA
45	801	AGCTGCAGGA	GCGACTGCA	GACATCCTCA	CTAACAGCAA	GAGCCGCTCA
	851	GGCCTTGAGG	AGCTGGTTCT	CTCAGAGATG	AACTCACCAA	GCGGGACCCA
	901	GACAGGGGAC	AGCACTAGCA	TCTCCTCCT	CAGCTACCGG	GAGATCTTGC
	951	GGGAAAAGGA	GAGCTCGGCT	GTTCCAGCCA	GGTCCTTATC	CAGCAGCCCT
50	1001	CAAGCCCAGC	CCCCCTCGGCC	AGCAGAGCTG	TCAGATGAGG	AAAGTGGCTGA
	1051	GCTCTTCAG	CGGCTGGCAG	AGACACAGCA	GGAGAAATGG	ATGCTGGAGG
	1101	AGAAGGTGAA	GCACCTGGAA	GTGAGCAGTG	CTTCCATGGC	AGAGGACCTC
	1151	TGCCGGAAGA	GCGCCATCAT	TGAGACCTAC	GTCATGGACA	GCCGGATCGA
	1201	TGTGTCTGTG	GCAGCAGGCC	ACACAGACCG	CAGCGGGCTG	GGCAGCGTCC
	1251	TGAGAGACCT	AGTGAAGCCA	GGCGACGAGA	ACCTTCGGGA	GATGAACAAG
55	1301	AAGCTGCAGA	ACATGCTGGA	GGAGCAGCTC	ACCAAGAATA	TGCACTTGCA
	1351	CAAGGATATG	GAAGTTCTGT	CCCAGGAAT	TGTGCAGCTC	AGCAAGGAGT
	1401	GCCTGGGGCC	TCCTGACCCA	GACCTAGAGC	CAGGAGAAAC	CAGCTAAAGA
	1451	CCTGCAGGCT	GCACCCACCT	CCTCCCTTC	CTACCCCCCTA	GGATGCTATT

1501 CCCTTGGGCT GTGGTGGAAA AATGAGGGCT GGAGCCAAAA TCAAATAGCT
1551 TGGGAGACTG GACATTAAGA GGGCTAGAGG CCTGATGGTT AGTGTAAATG
1601 ATCCTGTCTT AGGGCAGAGG CCACCAGGG A GTGGGATCC TGAGGGAAGG
1651 GGCAGGGATT TCTCCTTCTT CTTGGTCCTG GCTCCCAAGG GCTTCTGTCT
5 1701 TCATCTCTGC ATGAGCTCTC CTTCCCAGAG ACCAACTCTT TTTTATTTA
1751 TTTTATTTT TAATTATGT CTGGAGCCTG GCTACTCTGC ATTTGGGATT
1801 GGGGATGCTG GGTGGGTGTG TGTTCCATGT TCAGCGTTCT AGCAACACGT
1851 GTGTGTGTGT GTGTGTAAAG GCTATGCAGC CAAAATACCA TCTGGCCAGA
1901 CGGGCCCACC CACAAAAAAA AAAAAAAA AAAAAAAA AAAG

10

BLAST Results

15 No BLAST result

Medline entries

20 No Medline entry

25 Peptide information for frame 2

ORF from 62 bp to 1444 bp; peptide length: 461

Category: similarity to unknown protein

30 Classification: no clue

1 MGQKDDLN SQ LQESLRANSR LLEQLQEI GQ EKEQLTQELQ EARKSAEKRK
51 AMLDELAMET LQEKSQHKEE LGAVRLRHEK EVLGVRARYE RELRELHEDK
101 KRQEEELRGQ IREEEKARTRE LETLQQTVEE LQAQVHSM DG AKGWFER RLK
151 EAEESLQWQQ QEQEEALKQ C REQHAAELKG KEEELQDV RD QLEQAEERD
201 CHLKTISSLK QEVKDTVDGQ RILEKKGSAA LKDLKRQLHL ERKRADKLQE
251 RLQDILTSNK SRSGLEELVL SEMNSPSRTQ TGDS SSISSF SYREILREKE
301 SSAVPARSLS SSPQAQPPRP AELSDEEV AE LFQRLAETQQ EKWMLEEKVK
351 HLEVSSASMA EDLCRKS AII ETYVMDSRID VSVAAGHTDR SGLGSVLRDL
401 VKPGDENLRE MNKKLQNMLE EQLTKNMHLH KDMEVLSQEI VRLSKECVGP
451 PDPDLEPGET S

45 BLASTP hits

No BLASTP hits available

Alert BLASTP hits for DKFZphtes3_30pb, frame 2

50 No Alert BLASTP hits found

Pedant information for DKFZphtes3_30pb, frame 2

55 Report for DKFZphtes3_30pb.2

[LENGTH] 481
 [MW] 55398.10
 [pI] 5.07
 [HOMOL] TREMBL:CEF41H10_4 gene: "F41H10.4"; *Caenorhabditis elegans* cosmid F41H10. 2e-12
 [FUNCAT] 30.03 organization of cytoplasm [S. cerevisiae, YDL058w] 5e-04
 [FUNCAT] 08.07 vesicular transport (golgi network, etc.) [S. cerevisiae, YDL058w] 5e-04
 [BLOCKS] BL01100D NNMT/PNMT/TEMPT family of methyltransferases proteins
 [KW] All_Alpha
 [KW] Low_Complexity 19.13 %
 [KW] Coiled_Coil 40.96 %
 15

SEQ EQTTGLAAELQQQQAEYEDLMGQKDDLNSQLQESLRANSRLLEQLQEIGQEKEQLTQELQ
 SEGxxxxxxxxxxxxxx.....xxxxxxxxxxxxxx
 PRD ccccchh
 20 COILS ...CC
 SEQ EARKSAEKRKAMLDELAMETLQEKSQHKEELGAVRLRHEKEVLGVRARYERELRELHEDK
 SEG x.....
 PRD hhh
 25 COILS CCCCCCCC.....
 SEQ KRQEEELRGQIREEKARTRELETLQQTVEELQAQVHSMDGAKGWFERRLKEAEESLQQQQ
 SEGxxxxxxxxxxxxxx.....xxxxxxxxxxxxxx
 PRD hhhcccccccccccccccc
 30 COILSCC
 35 SEQ QEQQEALKQCREQHAAELKGKEEELQDVRDQLEQAQERDCHLKTSSLKQEVKDVTVDGR
 SEG xxxxxxxx.....
 PRD hhhcccccccc
 COILS CCCCCCCCCCCCC.....CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC.....
 40

SEQ RILEKKGSAAALKDLKRQLHLERKRADKLQERLQDILTSKSRSGLEELVLSEMNPSRTQ
 SEG
 PRD cccccccchhhhhhhhhhhhhhhhhhhhhcccccccccccccccccccccccc
 COILSCC.....
 45

SEQ TGDSSSISSLFSYREILREKESSAVPARSLSSSPQAQPPRPAELSDEEVAELFQRLAETQQ
 SEG ...xxxxxxx.....xxxxxxxxxxxxxxxxxxxxxx.....
 PRD cccccccchhhhhhhhhhhcccccccccccccccccccccccccccccccc
 50 COILS
 55

SEQ EKWMLEEKVKHLEVSSASMAEDLCRKSAILETYVMDSRIDVSVAAGHTDRSGLGSVLRDL
 SEG
 PRD hhhhhhhhhhhhhhhchhhhhhhhhhhhhcccccccccccccccccccccccc
 COILS

SEQ S
SEG .
PRD C
10 COILS

(No Prosite data available for DKFZphtes3_30pb.2)

15 (No Pfam data available for DKFZphtes3_30pb.2)

DKFZphes3_3la10

5 group: nucleic acid management

DKFZphes3_3la10 encodes a novel 542 amino acid protein with similarity to histone H1 of *Drosophila hydei*.

10 Histone H1 variants are known to act as specific regulators of genes via the differential condensation of DNA.

The new protein can find application in modulating/blocking the transcriptional activity and in expression profiling.

15

weak similarity to *Drosophila* histone H1

perhaps complete cds.

20

Sequenced by LMU

Locus: /map="13"

25 Insert length: 2887 bp

Poly A stretch at pos. 2855, polyadenylation signal at pos. 2839

30	1	AGATGATCCC	CAAAGTCAAC	ATATGACATT	AAGCCAGGCA	TTTCACCTTA
	51	AAAACAATAG	TAAAAAAGAAA	CAAATGACTA	CAGAAAAACA	AAAGCAAGAT
	101	GCTAACATGC	CCAAGAAACC	TGTGCTTGG	TCTTATCGTG	GCCAGATTGT
	151	TCAGTCTAAG	ATTAATTCTAT	TTAGAAAACC	TCTACAAGTC	AAAGATGAGA
	201	GTTCTGCAGC	ACAAAGAAA	CTTCAGGCC	CTATACCTAA	AGCCACAAAA
	251	CCTCAGCCTG	TAACACCCAG	CAGTGTAAAC	GTGAAAAGTA	ATAGATCCTC
35	301	CAATATGACT	GCCTACTACTA	AATTGTGAG	CACTACATCT	CAGAACACAC
	351	AACTTGTGCG	ACCTCCTATT	AGAAGTCATC	ACAGTAATAAC	CCGGGACACT
	401	GTGAAACAAG	GCATCAGTAG	AACCTCTGCC	AATGTTACAA	TCCGGAAAGG
	451	GCCTCATGAA	AAAGAACTAT	TACAATCAA	AACAGCTTTA	TCTAGTGTCA
	501	AAACCAGTTC	TTCTCAAGGT	ATAATAAGAA	ATAAGACTCT	ATCAAGATCC
40	551	ATAGCATCTG	AGTTGTAGC	CAGGCCTGCT	TCATTGTCTA	ATGATAAACT
	601	GATGGAAAAG	TCAGAGCCC	TTGACCAGCG	AAGACATACT	GCAGGAAAAG
	651	CAATTGTTGA	TAGTAGATCA	GCTCAGCCC	AAGAAACCTC	GGAAGAGAGA
	701	AAAGCTCGTC	TGAGTGAGTG	GAAAGCTGGC	AAAGGAAGAG	TGCTAAAAAG
	751	CCCCCTTAAT	TCAGTAGTTA	CTCAGCATGA	GCCTGCAGGA	CAAATGAAA
45	801	AACTAGTTGG	GTCTTTTGG	ACTACCATGG	CAGAAGAAGA	TGAACAAAGA
	851	TTATTTACTG	AAAAAGTAAA	CAACACATT	TCTGAATGCC	TGAACTTGAT
	901	TAATGAGGGA	TGTCCAAAAG	AAGATATACT	GGTCACACTG	AATGACCTGA
	951	TTAAAAATAT	TCCAGATGCC	AAAAAGCTTG	TTAAGTATTG	GATATGTCTT
	1001	GCACATTATTG	ACCAATCAC	AAGTCTTATT	GAAAATATTA	TTGCAATCTA
50	1051	TGAGAAAGCC	ATTCTGGCAG	GGGCTCAGCC	TATTGAAGAG	ATGCGACACA
	1101	CGATTGTAGA	TATTCTAAC	ATGAAGAGTC	AAGAAAAAGC	TAATTAGGA
	1151	GAAAATATGG	AGAAGTCTTG	TGCAAGCAAG	GAAGAAGTC	AAGAAGTCAG
	1201	TATTGAAGAT	ACAGGGTGTG	ATGTAGATCC	AGAAAAACTG	GAAATGGAGA
	1251	GTAAAACCTA	TAGAAATTG	CTATTCAG	ATTGTGAAAA	AGAGCAAGAC
55	1301	ACAAAAACAA	AAGATCCAAC	CCATGATGTT	AAAACCCCCA	ATACAGAAAC
	1351	GAGGACAAGT	TGCTTAATTA	AATATAATGT	GTCTACTACG	CCATACTTGC
	1401	AAAGTGTGAA	AAAAAAGGTG	CAGTTTGATG	GAACAAATT	CGCATTTAAA
	1451	GAGCTGAAGT	TTTTAACACC	AGTGAGACGT	TCTCGACGTC	TTCAAGAGAA

1501 AACTTCTAAA TTGCCAGATA TGTTAAAAGA TCATTATCCT TGTGTGTCTT
 1551 CATTGGAACA GCTAACGGAG TTGGGAAGAG AAACGTGATGC TTTTGTATGC
 1601 CGCCCTAATG CAGCACTGTG CCGGGTGTAC TATGAGGCTG ATACAAACATA
 1651 AGAGAAATAA AGCTCTGTTA GGGAAATGGGG TTTTTATTAT TTGTGGGTG
 5 1701 TTTTGTGTTG AGTAGCTTA TATTGCTCTT AGGTCTGGAG TTGCCATGT
 1751 ACCTATGTAT CCTAAGCATT CACGGCAGTG AGCTCCTTA CTAACATTCA
 1801 TGTTATGGCA AGAGTTGTCC TCTACATTGG AAAGCTAATC CTACCTTGTG
 1851 AGTTTCAACC AACTGAGTT TTTCTTAAG AAAGGTAAT TTTGTCAAGCT
 1901 AGTTTACTAT GTTCCTTGAA TATAAACAGG TTATAAATCT ACCCTGTTCA
 10 1951 CTTTACTAAA TATAAGTACA GTAATGATGC ATAATTAGAA AATGAGGTAT
 2001 TCTAGGTTAA ATGTATGTT GCCTTGACAT GTTTTAAAAA GTTATGATGT
 2051 ACCTCCCCTGC CTTTAAACAG AATACTTTT TCTTTTTTT GCCCTTCTC
 2101 AGATTAGTCA AAAATTCTAT AGAATGACTC ACTTCGAATA CTAAGACACA
 2151 GGAGGTTTAG CCTGCTTTCT TACCAAATTG ATGTTACCCA GACTTGTGTT
 15 2201 CTCTTGCCTGC CTTGGACTG CCTGTTGATT GATGGAAAGT GTCTGCACTG
 2251 ACACCTTTCG TCAGTAGTCT GTAGTTTCGT GGCCTCTTTT GATTATAACT
 2301 GGGGTCAACCA AGAAGGTTA CTTAATTAAA TACCGCATTT CTAAGAGAAG
 2351 ATACTTTGTG TAAGAAAAGA TGCCACATTT AGTGGTTAA CTTTTGTAAC
 2401 TTCACTTGAT AGTTTTTAAG CAATTAGAAT GGAGTTAGGG AAAGAACATA
 2451 TCATACTGAA CAAATGTCAT TCTAGTTTAG ATAGCATTTC TAAGATAACT
 2501 GATACTAATA CTTGTTTTCT TCCCTATAAC ATAAAAAAACT TCACTGTTAA
 2551 GTCATGTCCC TTGAAACATG ATAGTTACAT ACACAGTTT CTCTCCACAC
 2601 ATAATAAACCA CCACTAAAGT TGTTTTGAA GTTCCAAAC TAATATGGCA
 2651 TATATCAACT CTACAGTTTC AAATAATGA CTTTTTAATT GTAAAAGATT
 2701 AGTTGAAAAA CTGTATGAAT GTGAAGATCA CATGCTTAGT CATTGTTATG
 2751 TTCATTCCAC TTGTATGATC TTTCTATT ATTGACTTCT CATGTTCTAG
 2801 AGAGTAGGAC TTTTATTCCG TGTACCTGAT ATATATAACAA TTAAAATATC
 2851 TGTATAATTA AAAAAAAAAA AAAAAAAAAA AAAAAAG

30

BLAST Results

35 No BLAST result

Medline entries

40 No Medline entry

Peptide information for frame 2

45 ORF from 23 bp to 1648 bp; peptide length: 542

Category: similarity to known protein

Classification: unclassified

1 MTLSQAFHLK NNSKKKQMTT EKQKQDANMP KKPVLGSYRG QIVQSKINSF
 51 RKPLQVKDES SAATKKLSAT IPKATKPQPV NTSSVTVKSN RSSNMTATTK
 101 FVSTTSQNTQ LVRPPIRSHH SNTRDTVKQG ISRTSANVTI RKGPHHEKELL
 151 QSKTALSSVK TSSSQGIIRN KTLSRSIASE VVARPASLSN DKLMEKSEPV
 201 DQRRTHTAGKA IVDSRSAQPK ETSEERKARL SEWKAGKGRV LKRPPNSVVT
 251 QHEPAGQNEK LVGSFWTTMA EEDEQRLFTE KVNNNTFSECL NLNEGCPKE
 301 DILVTLNDLI KNIPDAKKLV KYWICLALIE PITSPIENII AIYEKAILAG
 351 AQPIEEMRHT IVDILTMKSQ EKANLGENME KSCASKEEVK EVSIEDTGVD

401 VDPEKLEMES KLHRNLLFQD CEKEQDNKTK DPTHDVKTPN TETRTSCLIK
 451 YNVSTTPYLQ SVKKKVQFDG TNSAFKELKF LTPVRRSRRL QEKTSKLPM
 501 LKDHYPCVSS LEQLTELGRE TDAFVCRPNA ALCRVYYEAD TT

5

BLASTP hits

No BLASTP hits available

10 Alert BLASTP hits for DKFZphtes3_3la10, frame 2

No Alert BLASTP hits found

15 Pedant information for DKFZphtes3_3la10, frame 2

Report for DKFZphtes3_3la10.2

20 [LENGTH] 549
 [MW] 61677.36
 [pI] 9.33
 [KW] Alpha_Beta
 25 [KW] LOW_COMPLEXITY 2.19 %

SEQ DDPQSQHMTLSQAFHLKNNSKKKQMTTEKQKQDANMPKKPVLGSYRGQIVQSKINSFRKP
 SEGxxxxxx.....
 PRD cccccccchhhhheeeecccccccchhhhhhhhhcccccccccccccccccccccccc

30 SEQ LQVKDESSAATKKLSATIPKATKPQPVNTSSVTVKSNRSSNMTATTKFVSTTSQNTQLVR
 SEG
 PRD cccccccchhhhhhhhhcc

35 SEQ PPIRSHHSNTRDTVKQGISRTSANVTIRKGPHKEKELLQSKTALSSVKTSSQGIIRNKT
 SEG
 PRD ccc

40 SEQ SRSIASEVVVARPASLSNDKLMEKSEPVQRRHTAGKAIVDRSAQPKETSEERKARLSEW
 SEG
 PRD hhhhhheeeeccccccchhhhhhhccchhhhhcccccccccccccccccccccccc

45 SEQ KAGKGRVLKRPPNSVVTQHEPAGQNEKLVGSFWTTMAEEDEQRLFTEKVNNNTFSECLNLI
 SEG
 PRD hcc

50 SEQ NEGCPKEDILVTLNDLIKNIPIAKLVKYWICLALIEPITSPIENIIAIYEKAILAGAQ
 SEG
 PRD ccc

55 SEQ IEEMRHTIVDILTMKSQEKANLGENMEKSCASKEEVKEVSIEDTGVVDPEKLEMESKLH
 SEG
 PRD hhhhhhhhhhhhhhhhhcccccccccccccccccccccccccccccccccccc

SEQ RNLLFQDCEKEQDNKTKDPTHDVKTPNTETRTSCLIKYNVSTTPYLQSVKKVQFDGTNS
 SEG
 PRD ccc

SEQ AFKELKFLTPVRRSRRLQEKTSLPDMLKDHYPNVSSLEQLTELGRETDAFVCRPNAALC
SEG
PRD hhhhhhhchhhhhhhhhhhhhcccccccccccccccccccccccccccccccc
5 SEQ RVYYEADTT
SEG
PRD eeeeecccccc

10 (No Prosite data available for DKFZphtes3_E1a10.2)
(No Pfam data available for DKFZphtes3_E1a10.2)

DKFZphtes3_31j20

5 group: signal transduction

DKFZphtes3_31j20 encodes a novel 392 amino acid protein that contains a Protein phosphatase 2C motif.

10 The novel protein shares 95% identity with the rat protein phosphatase 2C and is expressed ubiquitously. PP2C is a structurally diversified protein phosphatase family with a wide range of functions in cellular signal transduction. The transcription of the PP2C δ gene was activated in response to 15 stress, like alcohol or UV irradiation. PP2C plays a role in cell cycle control.

The new protein can find application in and the diagnosis/therapy of stress related diseases and cancer, as well as a for 20 modulation of cell cycle and signal transduction.

strong similarity to protein phosphatase 2C (*Rattus norvegicus*)

25 Sequenced by LMU

Locus: unknown

Insert length: 1436 bp

30 Poly A stretch at pos. 1367, polyadenylation signal at pos. 1341

	1	CGCTGCTCGC	GGGCTGAGTG	TCTGTCGCTG	CTGCCGCCTC	CACCCAGCCT
	51	CCGCCATGGA	CCTCTTCGGG	GACCTGCCGG	AGCCCCGAGCG	CTGCCGC
35	101	CCGGCTGCCG	GGAAAGAAC	TCAGAAAGGA	CCCCCTGCTCT	TTGATGACCT
	151	CCCTCCGGCC	AGCAGTACTG	ACTCAGGATC	AGGGGGACCT	TTGCTTTTG
	201	ATGATCTCCC	ACCCGCTAGC	AGTGGCGATT	CAGGTTCTCT	TGCCACATCA
	251	ATATCCCAGA	TGGTAAGAC	TGAAGGGAAA	GGAGCAAAGA	GAAAAACCTC
	301	CGAGGAAGAG	AAGAATGGCA	GTGAAGAGCT	TGTGAAAAG	AAAGTTTGT
40	351	AAGCCTCTTC	GGTGTATCTT	GGTCTGAAGG	GCTATGTGGC	TGAGCGGAAG
	401	GGTGAGAGGG	AGGAGATGCA	GGATGCCAC	GTCATCCTGA	ACGACATCAC
	451	CGAGGAGTGT	AGGCCCCCAT	CGTCCCTCAT	TACTCGGGTT	TCATATTTG
	501	CTGTTTTGA	TGGACATGGA	GGAAATTGAG	CCTCAAAATT	TGCTGCACAG
	551	AATTTCGATC	AAAACCTAAT	CAGAAAATT	CCTAAAGGAG	ATGTAATCAG
45	601	TGTAGAGAAA	ACCCTGAAAGA	GATGCC	GGACACTTT	AAGCATACTG
	651	ATGAAGAGTT	CCTTAACCAA	GCTTCCAGCC	AGAAGCCTGC	CTGGAAAGAT
	701	GGGTCCACTG	CCACGTGTGT	TCTGGCTGTA	GACAACATTC	TTTATATTG
	751	CAACCTCGGA	GATAGTCGGG	CAATCTTG	TGTTATAAT	GAGGAGAGTC
	801	AAAAACATGC	AGCCTTAAGC	CTCAGCAAAG	AGCATAATCC	AACTCAGTAT
50	851	GAAGAGCGGA	TGAGGATACA	GAAGGCTGGA	GGAAACGTCA	GGGATGGGCG
	901	TGTTTGGGC	GTGCTAGAGG	TGTACGCTC	CATTGGGGAC	GGGCAGTACA
	951	AGCGCTGCCG	TGTACCTCT	GTGCCCGACA	TCAGACGCTG	CCAGCTGACC
	1001	CCCAATGACA	GGTTCATTTT	GTTGGCTGT	GATGGGCTCT	TCAAGGTCTT
	1051	TACCCAGAA	GAAGCCGTGA	ACTTCATCTT	GTCCTGTCTC	GAGGATGAAA
55	1101	AGATCCAGAC	CCGGGAAGGG	AAGTCCGCAG	CCGACGCCCG	CTACGAAGCA
	1151	GCCTGCAACA	GGCTGGCCAA	CAAGGCGGTG	CAGCAGGGCT	CGGCCGACAA
	1201	CGTCACTGTG	ATGGTGGTGC	GGATAGGGCA	CTGAGGGGTG	GCAGCGCGGCC
	1251	AGGAGCACGC	ATGGTATTGA	CTTAAAAGGT	TCATTTGTG	TGTGTGCACA

1301 TTGTGTGTTT TGTGTACTCC TGTTGGACTC CCATGGTTGT AAATAAAGGT
1351 TTCTCTTTTT TTTTCCTAAA AAAAAAAA AAAAAAAA AAAAAAAA
1401 AAAAAAAA AAAAAAAA AAAAAAAA AAAAAAG

5

BLAST Results

No BLAST result

10

Medline entries

15 99074314:

Tong Y, Quirion R, Shen SH.; Cloning and characterization of a novel mammalian PP2C isozyme. J Biol Chem 1998 Dec 25;273(52):35282-90

20

Peptide information for frame 2

25

ORF from 5b bp to 1231 bp; peptide length: 392

Category: strong similarity to known protein

Classification: Protein management

30 Prosite motifs: PP2C (147-155)

1 MDLFGDLPEP ERSPRPAAGK EAQKGPLLFD DLPPASSTD SGGGPLLFDD
51 LPPASSGDSG SLATSISQMV KTEGKGAKRK TSEEEKNGSE ELVEKKVCKA
101 SSVIFGLKGY VAERKGeree MQDAHVLND ITEECRPPSS LITRVSYFAV
151 FDGHGGIRAS KFAAQNLHQN LIRKFPKGDV ISVEKTVKRC LLDTFKHTDE
201 EFLKQASSQK PAWKDGSTAT CVLAVDNILY IANLGDSRAI LCRYNEESQK
251 HAALSLSKEH NPTQYEERRMR IQKAGGNVRD GRVLGVLEVS RSIGDGQYKR
301 CGVTSVPDIR RCQLTPNDRF ILLACDGLFK VFTPEEAVNF ILSCLEDEKI
40 351 QTREGKSAAD ARYEAACNRN ANKAVQRGSA DNVTVMVVRI GH

BLASTP hits

45

No BLASTP hits available

Alert BLASTP hits for DKFZphtes3_31j20, frame 2

50 No Alert BLASTP hits found

Pedant information for DKFZphtes3_31j20, frame 2

55

Report for DKFZphtes3_31j20.2

【LENGTH】 410

[MW] 44759.85
 [pI] 7.95
 [HOMOL] TREMBL:AFD95927_1 product: "protein phosphatase 2C"; Rattus norvegicus protein phosphatase 2C mRNA, complete cds.
 5 0.0
 [FUNCAT] 03.01 cell growth [*S. cerevisiae*, YDL006w] 6e-25
 [FUNCAT] 30.03.13 key phosphatases [*S. cerevisiae*, YDL006w] 6e-25
 [FUNCAT] 09.16 mitochondrial biogenesis [*S. cerevisiae*,
 10 YDL006w] 6e-25
 [FUNCAT] 31.01 stress response [*S. cerevisiae*, YDL006w] 6e-25
 [FUNCAT] 03.04 budding, cell polarity and filament formation [*S. cerevisiae*, YDL006w] 6e-25
 15 [FUNCAT] 01.05.04 regulation of carbohydrate utilization [*S. cerevisiae*, YDL006w] 6e-25
 [FUNCAT] 98 classification not yet clear-cut [*S. cerevisiae*, YER089c] 1e-23
 [FUNCAT] 99 unclassified proteins [*S. cerevisiae*, YOR090c] 1e-12
 20 [FUNCAT] 03.22 cell cycle control and mitosis [*S. cerevisiae*, YJL005w] 3e-10
 [FUNCAT] 03.10 sporulation and germination [*S. cerevisiae*, YJL005w] 3e-10
 [FUNCAT] 30.02 organization of plasma membrane [*S. cerevisiae*,
 25 YJL005w] 3e-10
 [FUNCAT] 01.03.10 metabolism of cyclic and unusual nucleotides [*S. cerevisiae*, YJL005w] 3e-10
 [FUNCAT] 10.04.03 second messenger formation [*S. cerevisiae*, YJL005w] 3e-10
 30 [BLOCKS] PRO1023F
 [BLOCKS] PRO0677D
 [BLOCKS] BL01032I
 [BLOCKS] BL01032H
 [BLOCKS] BL01032G
 35 [BLOCKS] BL01032C Protein phosphatase 2C proteins
 [BLOCKS] BL01032B Protein phosphatase 2C proteins
 [SCOP] dlabq_ 4.98.1.1.1 Protein serine/threonine phosphatase 2C [Huma] 1e-107
 [EC] 3.1.3.43 [Pyruvate dehydrogenase (lipoamide)]-
 40 phosphatase 3e-09
 [EC] 3.1.3.16 Phosphoprotein phosphatase 7e-35
 [EC] 4.6.1.1 Adenylate cyclase 2e-11
 [PIRKW] duplication 5e-11
 [PIRKW] tandem repeat 8e-09
 45 [PIRKW] serine/threonine-specific phosphatase 2e-27
 [PIRKW] magnesium 6e-26
 [PIRKW] cAMP biosynthesis 5e-11
 [PIRKW] liver 2e-27
 [PIRKW] leucine zipper 1e-08
 50 [PIRKW] mitochondrion 3e-09
 [PIRKW] phosphoric monoester hydrolase 7e-35
 [PIRKW] phosphorus-oxygen lyase 2e-11
 [SUPFAM] leucine-rich alpha-2-glycoprotein repeat homology 2e-11
 55 [SUPFAM] yeast adenylate cyclase catalytic domain homology 2e-11
 [SUPFAM] kinase interaction domain homology 3e-11
 [SUPFAM] yeast adenylate cyclase 5e-11

[PROSITE] PP2C_1

[PFAM] Protein phosphatase 2C
[KW] Alpha_Beta

5

SEQ AARGLSVCRCRCLHPASAMDLFGLPEPERSPRPAAGKEAQKGPLLFDDLPPASSTDGS
PRD ccc10 SEQ GGPLLFDLPPASSGDSGLATSISQMVKTGKAKRKTSEEEKNNGSEELVEKKVCKASS
PRD cccSEQ VIFGLKGYYVAERKGEREEMQDAHVLNDITEECRPPSSLITRVSYFAVFDGHGGIRASKF
PRD eeecc15 SEQ AAQNLHQNLIRKFPKGDVISVEKTVKRCLLDTFKHTDEEFLKQASSQKPAWKDGSTATCV
PRD hhhhhhhhhhhcccccchhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhcccccceeeeSEQ LAVDNILYIANLGDSRAILCRYNEESQKHAALSLSKEHNPQTQEERMRIQKAGGNVRDGR
PRD ecc20 SEQ VLGVLEVSRSIGDGQYKRCGVTSVPDIRRCQLTPNDRFILLACGLFKVFTPEEAVNFIL
PRD ccc25 SEQ SCLEDEKIQTREGKSAADARYAACNRANKAVQRGSADNVTVMVVRIGH
PRD hhhhhhhhhhhccchhhhhhhhhhhhhhhhhhhcccccceeeeecccc

Prosite for DKFZphtes3_31j20.2

30

PS01032 165->174 PP2C

PDOC00792

35 Pfam-for_DKFZphtes3_31j20.2

HMM_NAME Protein phosphatase 2C

40 HMM

*G1CcMQGPRWRMsMEDaHiay1NF.....pcn1DWWhiMFFGVFDGHg
+++ +G R++M+DAH+ + ++ P++L +++++F+VFDGHG45 Query 128 YVAERKG--EREEMQDAHVLNDITEECRPPSSLITR-
VSYFAVFDGHG 173

HMM

GDQCSQWCgeHWHdII*

G+++S++ +++H+ +

Query

174 GIRASKFAAQNHLQNL 189

50

DKFZphtes3_5k22

5. group: signal transduction

DKFZphtes3_5k22 encodes a novel 455 amino acid protein with similarity to human paraneoplastic neuronal antigen MA1.

- 10 Antibodies against MA1 were found in patients with paraneoplastic neurological disorders. The protein is predominantly expressed in testis and brain, but ESTs are also found in liver, lung uterus and kidney.
- 15 The new protein can find application in studying/therapy of paraneoplastic neurological disorders.

strong similarity to paraneoplastic neuronal antigen MA1

20 Sequenced by Qiagen

Locus: unknown

25 Insert length: 3534 bp
Poly A stretch at pos. 3514, polyadenylation signal at pos. 3494

30	1	GAACGTCCGC	GCTGGGAGCC	AGGGGTGCC	GACCCCCGTC	CGCCGCCGCC
	51	GCCGCCGCCG	CGCATAGCCC	CGGGAGAGCC	CTCTGGGGAC	CCCGACCCAGA
	101	AGGGACCTTG	CCCTGGGAGA	AGGCTGTGGA	GACCTGGGCC	TTCTGCGATC
	151	ACCCTAGGAG	TTGATCCAGA	TATGTGCTC	ACGCCCTGAT	CACTCCCCCC
	201	AAATTAGTAT	CCGCAGAGAT	TCGAGGACAT	GCCGTTGACC	TTGTTACAGG
	251	ACTGGTGTG	GGGGGAACAC	CTGAACACCC	GGAGGTGCAT	GCTCATCCTG
35	301	GGGATCCCCG	AGGACTGTGG	CGAGGGATGAG	TTTGAGGAGA	CACTCCAGGA
	351	GGCTTGCAGG	CACCTGGGCA	GATA CAGGGT	GATTGGCAGG	ATGTTTAGGA
	401	GGGAGGAGAA	CGCCCAGGGG	ATTCTACTGG	AGCTGGCACA	AGATATCGAC
	451	TATGCTTTGC	TCCCAAGGGG	AATACCAGGA	AAGGGGGGGC	CCTGGGAAGT
40	501	GATTGTAAAA	CCCCGTAACT	CAGATGGGA	ATTTCTCAAC	AGACTGAACC
	551	GCTTCTTACA	GGAGGAGAGG	CGGACCGTGT	CAGATATGAA	CCGAGTCCCTC
	601	GGGTGGGACA	CCAATTGTT	GGCTCCAAGA	GTGACTATAT	CACCAAGAGTT
	651	CTGGACCTGG	GCCCAGACTC	TGGGGGCAGC	AGTGCAGCCT	CTGCTAGAAC
	701	AAATGTTGTA	CCGAGAACTA	AGAGTGT	CTGGGAACAC	CATATCCATC
	751	CCAGGTGCAC	TGGCCTTTGA	TGCCTGGCTT	GAGCACACCA	CTGAGATGCT
45	801	ACAGATGTGG	CAGGTGCCG	AGGGGGAAAA	GAGGGGGAGG	CTGATGGAAT
	851	GCTTACGGGG	CCCTGCTCTC	CAGGTGGTCA	GTGGGCTCCG	GGCCAGCAAT
	901	GCTTCCATAA	CTGTGGAGGA	GTGCCCTGGCT	GCCTTGCAGC	AGGTETTCGG
	951	ACCTGTGGAG	AGCCATAAAA	TTGCCCAAGGT	GAAGTTGTGT	AAAGCCTATC
50	1001	AGGAGGCAGG	AGAGAAAGTA	TCTAGCTTTG	TGTTACGTT	GGAAACCCCTG
	1051	CTCCAAAGAG	CTGTAGAAAA	CAATGTGGTA	TCACGTAGAA	ACGTGAATCA
	1101	GACTCGCCTG	AAACGAGCT	TAAGTGGGGC	CACCCCTCCT	GACAAACTCC
	1151	GAGATAAGCT	TAAGCTGATG	AAACAGCGAA	GGAAGCCTCC	TGGTTTCCCTG
	1201	GCCCTGGTGA	AGCTCCTGCG	TGAGGGAGGAG	GAATGGGAGG	CCACTTTAGG
	1251	TCCAGATAGG	GAGAGTCTGG	AGGGGCTGG	AGTAGCCCCA	AGGCCACCTG
55	1301	CCAGGATCAC	TGGGGTTGGG	GCAGTACCTC	TCCCTGCCTC	TGGCAACAGT
	1351	TTTGATGCGA	GGCCTTCCCA	GGGCTACCGG	CGCCGGAGGG	GCAGAGGCCA
	1401	ACACCGAAGG	GGTGGTGTGG	CAAGGGCTGG	CTCTCGAGGC	TCAAGAAAAC
	1451	GGAAACGCCA	CACATTCTGC	TATAGCTGTG	GGGAAGACGG	CCACATCAGG

1501 GTACAGTGCA TCAACCCCTC CAACCTGCTC TTGGCCAAGG AGACAAAAGA
 1551 GATATTGGAA GGAGGGGAAA GAGAAGCCC AACAACAGC AGATGAGTTG
 1601 AGTGGGGCAG AGGGACAGGG CAGCCAGACC AAGGCCAAGC CTTCTCACCC
 1651 TTGGCCAGCT GGAAGGGACT TCAGCAACCA AGACCACCTG GCAACAGGCT
 5 1701 CAGTGGGGGT CAGGTCCAGG TCCCCGAAGA GGTGCTGGAG AGGAAAGCAG
 1751 GGAGCCACTG CATCCAGCAC ATGGGGTGCC TGGGCCTCAG ATGGGGACCC
 1801 CAAAGAAGCA GAAGCTGAAG AAGGTACGGC TGGGGTTCT GTCTGCTCA
 1851 TCCAACCACC CCTAAATACC CACCCCTGTGG ACTTTGAGCT GAACATGCC
 1901 ACTGGCCCCC AGGCCACATG GGACCTGTGGAG GAGCCTACCT GGGGCCTGCC
 10 1951 CCTGCCAGCA GGTGCCAGGG CTGGTGAGGA AGAGCTGGGG GGCAGAGGTA
 2001 AAGCCCTGCA GGGGAGGCCA CAGGGTCCAT CCCGTCTTCA GGATCATCTA
 2051 CACTGCACTA GGGGAGCCC AGGAAGGCAG CACCCCTGGAG GCCCTGTGCC
 2101 AGTGAGGACCA GGAGACCCCTA AGGCCCCGGG AGCCCAGTGC CAGCCAGAGG
 2151 TTGTGCAGGC AAGGAGACCA AAGATTGATG AGAAGACCCC CAGCAGGGGT
 15 2201 ACTGGGTACC CGGCAGGCCA GTGCCCTCAC AGTTGACTTG GACCAGGGTG
 2251 GCTGTGAAGG GAAGTCTTG TTGCAAAGGA GGAGGAGGAA AAGGGAGGAC
 2301 TTGGTAGGGT TTGTTTCTT CTGCTTGTGTT CTGTACAGGG CCACCAAGACT
 2351 CCTGGAGAGA TCAAGCAAGG AGAACCTGGG GCTGCCATGG CCAAAGCAAC
 2401 TCAACAGATG CCAATGCCAA TTCCAAGGCC AGCCACAACC CTGCCACCTT
 20 2451 GGGGAATCCA GCCTGGAGGC ATCCCCTAAG CAGCCAGCCA TGGCCTGGGT
 2501 GGAGGCACCT GAAGACGTCT GTCCCAAACCT CCCCCAGCCC TGAGCTGGGA
 2551 GATGACAGGG GAAAGAGGCC CCTCTCAAGG GTGCCAGATG CCTGGGTCTC
 2601 CCAAGAGGGG TCCCCCAACT CACCGTTCCC GGGACAGGCT GCCCCCTGTT
 2651 CCAGGAAGCT CATCCTCACC TGTGTAGGCC CCTGTAGTGA CCCACGCGTC
 25 2701 CAGCAGACGC CCACCCACCG CTAGCCGTTG TTCCTGTGCA AAGTAGTGTG
 2751 CTATGCACCC ACCCAGGTGG CGCCTCTGG GCCCAAGGCA CATGCTGTGA
 2801 GCTTCTGTG AGCCCAGGCT CTGCTCACTG CTGTCGGCG TCATGAGCAC
 2851 CACCTCTGCT TTCCCTGTGT AGATCTAGGC CAGTGGCTGC TTGTTCTTGT
 2901 GGAGCTGTGT GTGTTCTTCT CTGAGCAGCT CCTCCCCGGA GTCCCCCAGC
 30 2951 ACAGTCCCAG GAGATGACAG GAAGGAAGCA CCAGGGCAAG GCGGACGCTC
 3001 ACCCTGTGAC CACGATGGTG ACCGTGGCTG TGGGAGGAAG AACCTGGACCC
 3051 AGGACGGAGC GGGGCTGCC TGCTTGAGGC TCCCAGGGAG CTTTGTGCTT
 3101 TGGTGTCTCA CCCCTGTTGT TACTCATGAC TCAGTTCTCT TGACCTGGTA
 3151 GGGTGTCTCC TGCTGTGTT TCCAGTGTCC TGTGACTGTC CTGTGCGGGC
 35 3201 CATAGGGCAG GGGCCTGCC CAGCAGATGG GCTTGGGAGG GGGCTCCCTA
 3251 AAGCCAGTGG ACACTGCCAG AGTCTACCTT CCTGGCAAGA GGCAGACCCC
 3301 GGGGCCCTCA GGAAGGAGGG AGTTGGCAGC GGGGGCTGCA GCAGGAGTAG
 3351 GAGCAGATGA GGCCTTGC CAGGAACCTC AGGAGGAGGG GGCCCCGGAC
 3401 CTGTGTGGGA CCTGTGTCT GTGGTGGCG TTTGCACTTT CTCTCTGTGT
 40 3451 TGTGATTCCTT TTCTCTTCAA TGTTTCAGT ACGTGTCTCT CTTCAATAAA
 3501 CTTCATTCAAG TGTAAAAAAA AAAAAAAA AAAA

BLAST Results

45

No BLAST result

50

Medline entries

99158179:
 Mal, a novel neuron- and testis-specific protein, is recognized
 55 by
 the serum of patients with paraneoplastic neurological disorders.

Peptide information for frame 1

5

ORF from 229 bp to 1593 bp; peptide length: 455

Category: strong similarity to known protein

Classification: unclassified

10 1 MPLTLLQDWCRGEHLNTRRCMLILGIPEDCGEDEFETLQEACRHLGRYRVIGRMFRREE
 51 VIGRMFRREE NAQAILLELA QDIDYALLPR EIPGKGGPWE VIVKPRNSDG
 101 EFLNRLNRFL EEERRTVSDM NRVLGSDTNC SAPRVTISPE FWTWAQTLGA
 151 AVQPLLEQML YRELRVFSGN TISIPGALAF DAWLEHTTEM LQMWMQVPEGE
 201 KRRRLMECLR GPALQVVSGL RASNASITVE ECLAALQQVF GPVESHKIAQ
 251 VKLCKAYQEA GEKVSSFVLR LEPLLQRAVE NNVVSRRNVN QTRLKRVLSG
 301 ATLPDKLRDK LKLMKQRRKP PGFLALVKLL REEEEWEATL GPDRESLEGL
 351 EVAPRPPARI TGVGAVPLPA SGNSFDARPS QGYRRRRGRG QHRRGGVARA
 401 GSRGSRKRKRT HTFCYSCGED GHIRVQCINP SNLLLAKETK EILEGGERE
 451 QTNSR

20

BLASTP hits

25 No BLASTP hits available

Alert BLASTP hits for DKFZphes3_5k22, frame 1

30 TREMBLNEW:AB020690_1 gene: "KIAAD883"; product: "KIAAD883
protein";Homo sapiens mRNA for KIAAD883 protein, complete cds., N = 1,
Score =
722, P = 2.4e-7135 TREMBL:AF037364_1 gene: "MA1"; product: "paraneoplastic neuronal
antigen MA1"; Homo sapiens paraneoplastic neuronal antigen MA1
(MA1)
mRNA, complete cds., N = 1, Score = 665, P = 2.6e-6540 >TREMBLNEW:AB020690_1 gene: "KIAAD883"; product: "KIAAD883
protein"; Homo
sapiens mRNA for KIAAD883 protein, complete cds.
Length = 364

45

HSPs:

Score = 722 (108.3 bits), Expect = 2.4e-71, P = 2.4e-71
Identities = 156/348 (44%), Positives = 215/348 (61%)

50

Query: 1
MPLTLLQDWCRGEHLNTRRCMLILGIPEDCGEDEFETLQEACRHLGRYRVIGRMFRREE 60
M L LL+DWCR ++ ++ +++ GIP D E E +E LQE +
LGRYR++G++FR++E

55

Sbjct: 1
MALALLEDWCRIMSVDEQKSLMVTGIPADFEEAEIQEVLQETLKSLGRYRLLGKIFRKQE 60

Query: 61
 NAQAILLELAQDIDYALLPREIPGKGGPWEVIVKPRNSDGXXXXXXXXXXXXXTVS DM 120
 NA A+LLEL +D D + +P E+ GKGG W+VI K N D

TVS M

5 Sbjct: 61
 NANAVLLELLEDTDVSAIPSEVQGKGGVWKVIFKTPNQDTEFLERLNLFLEKEGQT VSGM 120

Query: 121 NRVLGSDTNCAPRVTISPEFWTW--
 AQLGAAVQPLLEQMLYRELRVFSGNTISIPGAL 178

10 R LG + A ISPE Q + A QPLL M YR+LRVFSG+
 + P

Sbjct: 121 FRALGREGVSPATVPCISPELLAHLLGQAMAHAAPQPLLP-
 MRYRKLRVFSGSAPAPEEE 179

15 Query: 179
 AFDAWLEHTTEMLQMWWQVPEGEKRRRLMECLRGPALQVSGLRASNASITVEECLAALQQ 238
 +F+ WLE TE+++ W V E EK+R L E LRGPAL ++ ++A N

SI+VEECL A +Q

Sbjct: 180

20 SFEVWLEQATEIVKEWPVTEAEKKRWLAESLRGPALDLMHIVQADNPSISVEECLEAFKQ 239

Query: 239
 VFGPVESHKIAQVKLCKAYQEAGEKVSSFVLRLPEPLLQXXXXXXXXXXXXXLKRL 298
 VFG +ES + AQV+ K YQE GEKVS++VLRLE LL+

25 L++V+

Sbjct: 240

VFGSLESRRTAQVRYLKTYQEEGEKVSAVRLLETLLRAVEKRAIPRRIADQVRLEQVM 299

30 Query: 299 SGATLPDKLRDKLKLMKQRRKPPGFLALVKLLREEEEWEATLGPDR E SLE
 348 +GATL L +L+ +K + PP FL L+K++REEEE EA+ + ES+E

Sbjct: 300 AGATLNQMLWCRLRELKDQGPPPSFLELMKVIREEEEEASF--ENESIE
 347

35 Pedant information for DKFZphes3_5k22, frame 1

Report for DKFZphes3_5k22.1

40

【LENGTH】 455
 【MW】 51514.34
 【pI】 9.27

45 【HOMOL】 TREMBLNEW:AB020690_1 gene: "KIAA0883"; product:
 "KIAA0883 protein"; Homo sapiens mRNA for KIAA0883 protein,
 complete cds. 3e-75

【BLOCKS】 BL00876B Indoleamine 2,3-dioxygenase proteins

【PFAM】 Zinc finger, CCHC class

50 【KW】 Alpha_Beta

【KW】 LOW_COMPLEXITY 13.41 %

55 SEQ MPLTLLQDWCRGEHLNTRRCMLILGIPEDCGEDEFEETLQEACRHLGRYRVIGRMFRREE
 SEG
 PRD ccchhhhhccccccccceeeeeeccccccchhhhhhhhhhhccceeehhhhhhh

SEQ NAQAILLELAQDIDYALLPREIPGKGGPWEVIVKPRNSDGFLNRNFLEEERRTVSDM

(No Prosite data available for DKFZphtes3_5k22.1)

Pfam for DKFZphtes3_5k22.1

35 HMM_NAME Zinc finger, CCHC-class

HMM *QkCWNCGKPGHMMRDCPE*

C++CG+ GH+ +C +

18

DKFZphtes3_?n12

5 group: transmembrane protein

DKFZphtes3_?n12 encodes a novel 703 amino acid protein without similarity to known proteins.

10 The novel protein contains 1 transmembrane domain
No informative BLAST results; No predictive prosite, pfam or SCOP motif.

15 The new protein can find application in studying the expression profile of testis-specific genes and as a new marker for testicular cells.

20 putative protein

contains transmembrane domain
perhaps complete cds.

25 Sequenced by BMFZ

Locus: unknown

Insert length: 2347 bp

Poly A stretch at pos. 2271, polyadenylation signal at pos. 2253

30

1	CGGCTGCAGT	CTGGGCCGGG	GCCCTGTGCC	GCTGAAGACA	TGGAGTTTGT
51	GTCTGGATAC	CGGGATGAGT	TCCTTGATT	CACTGCCCTT	CTCTTCGGCT
101	GGTTCGGAAA	GTGGTGGCA	GAGCGTGGAG	CTGTAGGGAC	TAGCCTTGAG
151	GGCCGCTGCC	GGCAGCTGGA	GGCCCAGATC	AGAAGGCTAC	CCCAGGACCC
201	TGCCCTTG	GTGCTCCATG	TCCTGCCAA	CCATAGTGTG	GGCATCAGCC
251	TGGGGCAAGG	GGCAGAACCA	GGTCTGGAC	CAGGCCCTGGG	GACTGCCTGG
301	CTCCTGGGAG	ACAACCTCC	ACTCCACCTG	CGAGACCTGA	GCCCCATACAT
351	CAGCTTTGTC	AGCCTAGAGG	ATGGGGAGGA	AGGGGAGGAG	GAAGAGGAGG
401	AAGATGAAGA	AGAAGAGAAG	AGAGAGGACG	GGGGTGCAGG	CAGCACAGAG
451	AAGGTGGAAC	CAGAGGAGGA	CGGGGAGCTA	GCCCCCTACCA	GCAGGGAGTC
501	CCCCCAGGAA	ACAAACCCCTC	CAGGAGAGTC	AGAGGAGGCT	GCCCAGGAGG
551	CAGGAGGTGG	CAAGGATGGC	TGCCGAGAGG	ACAGGGGTGGA	GAACGAAACA
601	AGACCCCAGA	AGAGGAAGGG	ACAGAGGAGT	GAGGCTGCC	CCCTGCACGT
651	TTCTGTCTC	TTACTTGTGA	CGGATGAGCA	TGGCACCATC	TTGGGCATTG
701	ATCTGCTAGT	GGATGGAGCC	CAGGGAACCG	CAAGCTGGGG	CTCAGGGACC
751	AAGGACCTGG	CTCTTGGGC	CTATGCTCTC	CTCTGTCACA	GCATGGCCTG
801	TCCCATGGGC	TCTGGGATC	CCCGAAAGCC	CCGACAGCTT	ACTGTGGGAG
851	ATGCCCGGCT	GCATCGAGAG	CTGGAGAGCT	TGGTCCAAG	GCTAGGTGTG
901	AAGTTAGCCA	AAACCCCAAT	GC GGACATGG	GGTCCCCGGC	CAGGCTTCAC
951	CTTGCTTCC	CTCGTGCTC	GAACCTGCCA	TGTGTGTCAC	AGGCACAGCT
1001	TTGAAGCGAA	GCTGACACCT	TGCCCCCAGT	GTAGTGTGT	CTTGTATTGT
1051	GGAGAGGCTT	GTCTCCGGC	TGACTGGCAG	CGGTGCCAG	ATGATGTGAG
1101	TCACCGATT	TGGTGCCCAA	GGCTTGAGC	CTTCATGGAG	CGGGCAGGAG
1151	AACTGGCAAC	CCTACCTTT	ACCTACACCG	CAGAGGTGAC	CAGTGAACCC
1201	TTCAACAAAG	AGGCCTTCT	GGCCTCTCGG	GGCCTCACTC	GTGGCTATTG
1251	GACCCAGCTC	AGCATGCTGA	TTCCAGGGCC	GGGCTTCTCC	AGACACCCCC
1301	GAGGCAACAC	GCCATCCCTC	AGCCTTCTTC	GCGGTGGAGA	CCCCCTACCAAG

1351 CTTCTCCAGG GAGACGGGAC TGCCCTGATG CCTCCCTGTGC CCCCCACATCC
 1401 ACCCCGGGGT GTTTTGTCCT CTGAGCTCAA CATCCAAAAC AAACAGTCAC
 1451 TGAAGATCCA CGTGGTGGAG GCCGGGAAGG AGTTTGACCT TGTCACTGGT
 1501 TTTGGGAGC TTTGGTCCT GCTCCCCCAT GTGGCCCTGG AGCTGCAGTT
 5 1551 TGTAGGTGAT GGCGTGCCTT CGAAAGCGA CGAGCAGCAT TTTACCTGC
 1601 AGAGGGACAG CCTGGAGGTG TCTGTCCGG CTGGTCCGG CATATCAGCA
 1651 CGGCCAGCT CTGGCACTAA GGAGAAAGGG GGCGCAGGG ACCTGCAGAT
 1701 CAAGGTGTCA GCAAGGCCCT ACCACCTGTT CCAGGGGCC AAGCCTGACC
 1751 TGGTTATTGG ATTTAACCTC GGGTTGCTC TCAAGGATAAC GTGGCTGAGG
 10 1801 TCTCTGCCCT GGTTACAGTC CCTCGAGTG CCAGCCTTCT TCACCGAGAG
 1851 CAGCGAGTAC AGCTGTGTA TGGACGGCCA GACCATGGCG GTGGCCACTG
 1901 GAGGGGGCAC CAGCCCTCCC CAGCCCAACC CCTTCGCTC CCCCTTCGC
 1951 CTCAGAGCGG CCGACAACGT CATGTCCTGG TACTGCAATG CTTCATCTT
 2001 CCACCTGGTT TACAAGCCTG CTCAAGGGAG CGGGGCCGC CGGGCGCCCG
 15 2051 GGCCCCCACC CCCATCCCCA ACTCCCCTGT CTCTCTCTGC CCCCACCCGA
 2101 AGGCGCCGAG GAGAAAAGAA ACCTGGGCGG GGGGCCGC GCGGAAATG
 2151 AATGCTGATA CCTAGTAGT CCCAGCTCC CAAACACTGA AAGGAAAACG
 2201 TGAAAACACT CAAGGCCTAG GGGGAGGACA GTTGGTAAA ACATGAAAAG
 2251 GTAAATAAAA TTACTTGTTT GAAAAAAA AAAA AAAAAAAA AAAAAAAA
 20 2301 AAAAAAAAAA AAAAAAAAAA AAAAAAAAAA AAAAAAAAAA AAAAAAAA

BLAST Results

25 No BLAST result

Medline entries

30 No Medline entry

Peptide information for frame 1

35 ORF from 40 bp to 2148 bp; peptide length: 703
 40 Category: putative protein
 Classification: Transmembrane proteins unclassified

1 MEFVSGYRDE FLDFTALLFG WFRKFVAERG AVGTSLEGRC RQLEAQIRRL
 51 PQDPALWVLH VLPNHSVGIS LGQGAEPGPG PGLGTAWLLG DNPPLHLRDL
 45 101 SPYISFVSLE DGEEGEEEE EDEEEEKRED GGAGSTEKVE PEEDRELAP
 151 SRESPQETNP PGSEEEAARE AGGGKDGCRE DRVENETRPQ KRKGQRSEAA
 201 PLHVSCLLLV TDEHGTILGI DLLVDGAQGT ASWGSGTKDL APWAYALLCH
 251 SMACPMSGD PRKPRQLTVG DARLHRELES LVPRLGVKLA KTPMRTWGPR
 301 PGFTFASLRA RTCHVCHRHS FEAKLTPCPQ CSAVLYCGEA CLRADWQRCP
 50 351 DDVSHRFWCP RLAAFMERAG ELATLPFTYT AEVTSETFNK EAFLASRGLT
 401 RGYUTQLSML IPGPGFSRHP RGNTPSLSLL RGGDPYQLLQ GDGTALMPPV
 451 PPHPPRGVVFV PELNIQNKS LKIHVVVEAGK EFDLVMVFWE LLVLLPHVAL
 501 ELQFVGDGLP PESDEQHFTL QRDSLEVSVR PGSGISARPS SGTKEKGRR
 551 DLQIKVSARP YHLFQGPKPQD LVIGFNNSGFA LKDTWLRSVP RLQSLRVPAF
 601 FTESSEYSCV MDGQTMAVAT GGGTSPQPQPN PFRSPFRLRA ADNCMSWYCN
 651 AFIFHLVYKP AQGSGARPAP GPPPPSPTPS APPAPTRRRR GEKKPGRGAR
 701 RRK

BLASTP hits

5 No BLASTP hits available

Alert BLASTP hits for DKFZphtes3_?n12, frame 1

No Alert BLASTP hits found

10 Pedant information for DKFZphtes3_?n12, frame 1

Report for DKFZphtes3_?n12.1

15

【LENGTH】	703
【MW】	77312.72
【pI】	6.45
20 【KW】	TRANSMEMBRANE 1
【KW】	LOW_COMPLEXITY 15.22 %

25 SEQ	MEFVSGYRDEFLDFTALLFGWFRKFVAERGAVGTSLEGRCRQLEAQIRRLPQDPALWVLH
SEG
PRD	ccceeeccchhhhhhhhhhhhhhhccccccccchhhhhhhhhhhccccccccccc
MEM
30 SEQ	VLPNHSVGISLGQGAEPGPGLGTAWLLGDNPPLHLRDLSPYISFVSLEDGEEGEEEEEE
SEG
PRD	ccchhhhhh
MEM
35 SEQ	EDEEEEKREDGGAGSSTEKVEPEEDRELAPTSRESPQETNPPGESEEEAAREAGGGKDGCREE
SEG	xxxxxxxxxxxxx.....
PRD	hhhhhhhhccccccccccccccccccccccccccccccccccccchhhhhhhccccccccce
MEM
40 SEQ	DRVENETRPQKRKGQRSEAAPLHVSCLLVTDEHGTILGIDLLVDGAQGTASWGSGTKDL
SEG
PRD	eeeeccccccccccccccccccccchhhhhheeeeccccccccchhhhhcccccccccccc
MEM
45 SEQ	APWAYALLCHSMACPMGSGDPRKPRQLTVGDARLHRELESVPRLGVKLAKTPMRTWGPR
SEG
PRD	hhhhhhhhhhccccccccccccccccccccccccchhhhhhhhhccccccccccccccc
MEM
50 SEQ	PGFTFASLRARTCHVCHRHSFEAKLTPCPQCSAVLYCGEACLRADWQRCPDVSHRFWCP
SEG
PRD	ccccchhhhhhhccccccccccccccccccccccccchhhhhhhhhccccccccccccch
MEM
55 SEQ	RLAAFMERAGELATLPFTYTAEVTFNKEAFLASRGLTRGYWTQLSMLIPPGFCSRHP
SEG
PRD	hhhhhhhhhhhhccccccccccccchhhhhhhhhhhccccccccchhhhhcccccccccc
MEM

SEQ RGNTPSLSSLRGGDPYQLLQGDGTALMPPVPPHPPRGVFVPELNIQNQSLKIHVVEAGK
SEGxxxxxxxxxxxxx.....
PRD ccc
MEM
5 SEQ EFDLVMVF WELLVLLPHVALELQFVGDG LPPESDEQHFTLQRDSLEVSVRPGSGISARPS
SEGxxxxxxxxxxxxx.....
PRD cccchhhhhhhhhhhchhhhhhhhhcccccccccccccccccccccccccccccccc
MEM ...MMMMMMMMMMMMMMMMMM.....
10 SEQ SGTKEKGRRDLQIKVSARPYHLFQGPKPDLVIGFNSGFALKDTWLRLSPRLQSLRVPAF
SEG
PRD ccc
MEM
15 SEQ FTESSEYSCVMDGQTMAVATGGGTSPPPQPNPFRSPFRLRAADNCMSWYCNAFIFHLVYKP
SEG
PRD ccc
MEM
20 SEQ AQQSGARPAPGPPPPSPTPSAPPAPTRRRRGEKKPGRGARRRK
SEG xxx
PRD ccc
MEM
25

(No Prosite data available for DKFZphtes3_7n12.1)

(No Pfam data available for DKFZphtes3_7n12.1)

30 DKFZphtes3_9elb

35 group: transmembrane protein

DKFZphtes3_9elb encodes a novel 539 amino acid protein without similarity to known proteins.

40 The novel protein contains 1 transmembrane region. The only EST described so far is from testis.
No informative BLAST results; No predictive prosite, pfam or SCOP motifs.

45 The new protein can find application in studying the expression profile of testis-specific genes and as a new marker for testicular cells.

50 putative protein

1 EST hit
perhaps complete cds.

55 Sequenced by DKFZ

Locus: unknown

Insert length: 2011 bp

Poly A stretch at pos. 1986, no polyadenylation signal found

5	1	CATGGCAACA	TGAGCAGTGC	TGAGATAATT	GGTTCTACAA	ATCTTATAAT
	51	TCTGCTAGAG	GATGAAGTCT	TTGCCGATTT	TTTCAACACA	TTTCTTCCC
	101	TCCCCGGTTTT	TGGTCAGACA	CCATTTATA	CTGTTGAAAAA	TTCACAGTGG
	151	AGCTTGTGGC	CAGAAATACC	TTGTAACCTG	ATTGCCAAAT	ACAAAGGGTT
10	201	ATTGACCTGG	TTGGAAAAAT	GCCGATTACC	TTTCTCTGT	AAAACAAACT
	251	TGTGTTTCCA	TTACATTCTC	TGTCAGGAGT	TCATCAGTTT	CATTAAGTCC
	301	CCAGAAGGAG	CCAAGATGAT	GAGATGGAAA	AAGGCAGACC	AGTGGCTACT
	351	CCAGAAATGC	ATTGGCGGGG	TCAGAGGGAT	GTGGCGCTTC	TATTCCTTAC
	401	TCACAGGCAG	TGCAGGTGAA	GAATTGGTGG	ATTTCTGGAT	CCTTGCTGAG
15	451	AACATCCTGA	GCATAGATGA	GATGGACCTG	GAAGTGGAGAG	ACTACTACCT
	501	GTCCCTCCTC	CTCATGCTGA	GGGCCACTCA	TCTGCAGGAG	GGCTCCAGGG
	551	TGGTAACCCCT	CTGTAACATG	AACATCAAGT	CCCTCCTGAA	CCTCTCCATC
	601	TGGCATCCCA	ACCAATCAAC	CACTAGGAGG	GAGATCCTGA	GCCACATGCA
	651	GAAAATGGCT	CTGTTCAAAC	TCCAGAGCTA	TTGGCTTCCC	AACTTTTACA
20	701	CCACACCAA	GATGACCATG	GCCAAAGGAGG	AAGCATGCCA	TGGTCTGATG
	751	CAAGAGTACG	AGACTCGCTT	ATACAGCGTT	TGCTACACCC	ACATAGGAGG
	801	GCTCCCTCTG	AACATGAGCA	TCAAGAAAGTG	CCACCACTTT	CAGAAACGGT
	851	ACTCAAGCAG	GAAAGCCAAG	AGGAAGATGT	GGCAATTGGT	AGATCCTGAC
	901	TCTTGGTCTC	TGAAATGGA	TCTCAAGCCA	GATGCTATTG	GTATGCCCT
	951	ACAGGAGACA	TGTCCCTCAAG	AGAAGGTGGT	TATAACAAATG	CCTTCCCTGA
25	1001	AAATGGCTTC	TTCAAAGGAA	ACAAGAATCA	GTTCCTGGA	AAAGGATATG
	1051	CATTATGCAA	AAATATCCAG	CATGGAGAA	AAAGCCAAGA	GCCACCTCCA
	1101	CATGGAAGCC	CCTTTGAGA	CAAAGGTCTC	TACCCACCTG	AGGACTGTCA
	1151	TCCCCATGTC	CAATCACTCC	TCCAAGATGA	CAATTAGAA	GGCCATCAAG
30	1201	CAAAGCTCT	CCTTAGGATA	CATCCACTTG	GCCTTGTTG	CTGATGCCCTG
	1251	TGCAGGGAAC	CCTTCGGGG	ACCACCTGAA	GAAGCTGAAT	TTGAAAGTGG
	1301	AGATCCAATC	TCTTGACCTC	TGGCAGGACT	TGCAGCATT	CCTCAGTGT
	1351	CTTCTGAATA	ACAAAAAGAA	TGGGAATGCA	ATCTTCGTC	ACTTGCTGGG
	1401	TGACAGAATC	TGCGAGCTCT	ACCTGAATGA	GCAGATTGGT	CCGTGCTTAC
	1451	CACTCAAATC	CCAAACCATT	CAGGGCTGA	AGGAACATT	GCCCTCTGGG
35	1501	GATGTGATCC	CCTGGATTCC	CAAAGCCCAG	AAGGAGATT	GCAAGATGCT
	1551	CAGTCCCTGG	TATGATGAGT	TTCTAGATGA	AGAGGACTAC	TGGTTCTCC
	1601	TTTTTACGGT	AGGAAGGACT	TTGGGTTAGG	AAGGAATCAT	GAGGATGAGG
	1651	GAAGAAGAAA	GAGTAATTAC	TGTTTTAAAA	GGGTTATGTG	TTAAAGTAAA
40	1701	TGAAATTGTT	ATTTTCCTA	GAGTCACCA	AAGATCAGCA	TGGTCCCTGT
	1751	TGTTCTAAAG	CTAACCTCT	CAAGGAAAG	GAATCAGTC	ATAAGATGAC
	1801	TTTGGTGAAGA	CCCCGTCTCT	ACTAAAAATA	CAAAAATTA	GCCGGGGCGTA
	1851	GTGGCGGGCG	CCTGTAGTCC	CAGCTACTTG	GGAGGCTGAG	GCAGGAGAAT
	1901	GGTGTGAACC	CGGGAGGCGG	AGCTTGAGT	GAGCCGAGAT	CCCGCCACTG
45	1951	CACGCCAGCC	TGGGCGACAG	AGCGAGACTC	CGTCTAAAAA	AAAAAAAAAA
	2001	AAAAAAAAAA	G			

BLAST Results

50

No BLAST result

Medline entries

55

No Medline entry

Peptide information for frame 1

5

ORF from 10 bp to 1626 bp; peptide length: 539
Category: putative protein
Classification: no clue

10	1	MSSAEIIGST	NLIILLEDEV	FADFFNTFLS	LPVFGQTPFY	TVENSQWSLW
	51	PEIPCNLIAK	YKGLLTWLEK	CRLPFFCKTN	LCFHYILCQE	FISFIKSPEG
	101	AKMMRWKKAD	QWLLQKCIGG	VRGMWRFYSY	LTGSAGEELV	DFWILAENIL
	151	SIDEMDLEVR	DYYLSLLLML	RATHLQECSR	VVTLCNMNIK	SLLNLSIWHP
	201	NQSTTRREIL	SHMQKVALFK	LQSYULPNFY	THTKMTMAKE	EACHGLMQEY
15	251	ETRLYSVCYT	HIGGLPLNMS	IKKCHHFQKR	YSSRKAKRKM	WQLVDPDSWS
	301	LEMDLKPDAI	GPLQETCPQ	EKVVIQMPSL	KMASSKETRI	SSLEKDMDHYA
	351	KISSMENKAK	SHLHMEAPFE	TKVSTHLRTV	IPIVNHSSKM	TIQKAIIQSFS
	401	SLGYIHLALC	ADACAGNPFR	DHLKKLNLK	EIQLLDLWQD	LQHFLSVLLN
	451	NKKNGNAIFR	HLLGDRICEL	YLNEQIGPCL	PLKSQTIQGL	KELLPSGDVI
20	501	PWIPKAQKEI	CKMLSPWYDE	FLDEEEDYWFL	LFTVGRTEL	

BLASTP hits

25

No BLASTP hits available

Alert BLASTP hits for DKFZphes3_9elb, frame 1

30: No Alert BLASTP hits found

Pedant information for DKFZphtes3_9elb, frame 1

35

Report for DKFZphes3 Tel6-1

	LENGTH]	542
	[MW]	62906.06
40	[PI]	8.35
	[KW]	Alpha_Beta
	SEQ	HGNMSSAEIIGSTNLIIILDEVFADFFNTFLSLPVFGQTPFYTVENSQWSLWPEIPCNL
45	PRD	ccccccceeeeecccccccceeöhhhhhhhhhccccccccccccccccccccccccccccchh
	SEQ	IAKYKGLLTWLEKCRLPFFCKTNLCFHYILCQEFIGSPEGAKMMRWKKAQWLLQKC
	PRD	hhhhccceeeeecccccccccccccccceeöhhhhhhhhhhhccccchhhhhhhhhccchhhhhhhhh
50	SEQ	IGGVVRGMWRFYSYLTGSAGEELVDFWILAENILSIDEMDLEVRDYYLSLLLMLRATHLQE
	PRD	ccccccceeeeeccccccccchhhhhhhhhhhccccchhhhhhhhhhhhhhhhhhhcc
	SEQ	GSRVVTLCNMNIKSLLNLSIWHPNQSTTRREILSHMQKVALFKLQSYPNFTHTKMTM
	PRD	cceeeeeccccchhhhhhhhhccccccccchhhhhhhhhhhhhhhccccccccchhhhhhh
55	SEQ	AKEEACHGLMQEYETRLYSVCYTHIGGLPLNMSIKKCHHFQKRYSSRKAKRKMWQLVDPD
	PRD	hhhhhhhhhhhhhhhhheeeeeccccccccccccccccchhhhhhhhhhhhhheeeccc

SEQ SWSLMDLKPDAIGMPLQETCPQEKKVVIQMPSLKMASSKETRISSLEKDMDHYAKISSMEN
 PRD ccc

5 SEQ KAKSHLHMEAPFETKVSTHLRTVPIVNHSKMTIQQKAIKQSFSLGVIHLALCADACAGN
 PRD hhhhhhhcc

SEQ PFRDHLKKLNKVEIQLLDLWQDLQHFLSVLLNNKKNGNAIFRHLLGDRICELYLNEQIG
 PRD ccc

10 SEQ PCLPLKSQTIQGLKELLPSGDVIPWIPKAQKEICKMLSPWYDEFLDEEDYWFLFTVGRT
 PRD ccc

15 SEQ LG
 PRD cc

15

(No Prosite data available for DKFZphtes3_9elb.1)

20

(No Pfam data available for DKFZphtes3_9elb.1)

20

The PROSITE is a database of protein families and domains. It consists of biologically significant sites, patterns and profiles that help to reliably identify to which known protein family (if any) a new sequence belongs. World Wide Web URL <http://www.expasy.ch/prosite/> is the entry point to the database. A description of the prosite consensus patterns follows.

30

NAME: N-glycosylation site.
 CONSENSUS: N-[P]-[EST]-[P].

35

NAME: Glycosaminoglycan attachment site.
 CONSENSUS: S-G-x-G.

40

NAME: cAMP- and cGMP-dependent protein kinase phosphorylation site.
 CONSENSUS: [RK](2)-x-[ST].

45

NAME: Protein kinase C phosphorylation site.
 CONSENSUS: [ST]-x-[RK].

50

NAME: Casein kinase II phosphorylation site.
 CONSENSUS: [ST]-x(2)-[DE].

55

NAME: Tyrosine kinase phosphorylation site.
 CONSENSUS: [RK]-x(2,3)-[DE]-x(2,3)-Y.

NAME: N-myristoylation site.
 CONSENSUS: G-[EDRKHPFYW]-x(2)-[STAGCN]-[P].

60

NAME: Amidation site.
 CONSENSUS: x-G-[RK]-[RK].

NAME: Aspartic acid and asparagine hydroxylation site.

CONSENSUS: C-x-[DN]-x(4)-[FY]-x-C-x-C.

NAME: Vitamin K-dependent carboxylation domain.

CONSENSUS: x(12)-E-x(3)-E-x-C-x(6)-[DEN]-x-[LIVMFY]-x(9)-
5 [FYW].

NAME: Phosphopantetheine attachment site.

CONSENSUS: [DEQGSTALMKRH]-[LIVMFYSTAC]-[GNQ]-[LIVMFYAG]-
10 [DNEKHS]-S-[LIVMST]-

CONSENSUS: [PCFY]-[STAGCPQLIVMF]-[LIVMATN]-[DENQGTAKRHLMI]-
[LIVMWSTA]-[LIVGSTACR]-
CONSENSUS: x(2)-[LIVMFA].

15 NAME: Acyl carrier protein phosphopantetheine domain profile.

NAME: Prokaryotic membrane lipoprotein lipid attachment site.

CONSENSUS: [DERK](6)-[LIVMFWSSTAG](2)-[LIVMFYSTAGCQ]-[AGS]-C.
20

NAME: Prokaryotic N-terminal methylation site.

CONSENSUS: [KRHEQSTAG]-G-[FYLIVM]-[ST]-[LT]-[LIVP]-E-
[LIVMFWSSTAG](14).

25 NAME: Prenyl group binding site (CAAX box).
CONSENSUS: C-[DENQ]-[LIVM]-x>.

NAME: Protein splicing signature.

CONSENSUS: [DNEG]-x-[LIVFA]-[LIVMY]-[LVAST]-H-N-[STC].
30

NAME: Endoplasmic reticulum targeting sequence.
CONSENSUS: [KRHQSA]-[DENQ]-E-L>.

35 NAME: Microbodies C-terminal targeting signal.
CONSENSUS: [STAGCN]-[RKH]-[LIVMAFY]>.

NAME: Gram-positive coccidi surface proteins 'anchoring' hexapeptide.

CONSENSUS: L-P-x-T-G-[STGAVDE].
40

NAME: Bipartite nuclear targeting sequence.

NAME: Cell attachment sequence.
CONSENSUS: R-G-D.
45

NAME: ATP/GTP-binding site motif A (P-loop).
CONSENSUS: [AG]-x(4)-G-K-[ST].

50 NAME: Cyclic nucleotide-binding domain signature 1.
CONSENSUS: [LIVM]-[VIC]-x(2)-G-[DENQTA]-x-[GAC]-x(2)-
[LIVMFY](4)-x(2)-G.

NAME: Cyclic nucleotide-binding domain signature 2.
CONSENSUS: [LIVMF]-G-E-x-[GAS]-[LIVM]-x(5,11)-R-[STAQ]-A-x-
[LIVMA]-x-[STACV].
55

NAME: cAMP/cGMP binding motif.

NAME: EF-hand calcium-binding domain.
 CONSENSUS: D-x-[DNS]-[ILVFYW]-[DENSTG]-[DNQGHRK]-[GP]-
 [LIVM]-[DENQSTAGC]-x(2)-
 CONSENSUS: [DE]-[LIVMFYW].

5 NAME: Actinin-type actin-binding domain signature 1.
 CONSENSUS: [EQ]-x(2)-[ATV]-[FY]-x(2)-W-x-N.

10 NAME: Actinin-type actin-binding domain signature 2.
 CONSENSUS: [LIVM]-x-[SGN]-[LIVM]-[DAGHE]-[SAG]-x-[DNEAG]-
 [LIVM]-x-[DEAG]-x(4)-
 CONSENSUS: [LIVM]-x-[LM]-[SAG]-[LIVM]-[LIVMT]-W-x-[LIVM](2).

15 NAME: Anaphylatoxin domain signature.
 CONSENSUS: [CSH]-C-x(2)-[GAP]-x(7,8)-[GASTDEQR]-C-[GASTDEQL]-
 x(3,9)-[GASTDEQN]-x(2)-
 CONSENSUS: [CE]-x(6,7)-C-C.

20 NAME: Anaphylatoxin domain profile.

NAME: Apple domain.
 CONSENSUS: C-x(3)-[LIVMFY]-x(5)-[LIVMFY]-x(3)-[DENQ]-
 [LIVMFY]-x(10)-C-x(3)-C-T
 CONSENSUS: x(4)-C-x-[LIVMFY]-F-x-[FY]-x(13,14)-C-x-[LIVMFY]-
 [RK]-x-[ST]-x(14,15)-
 CONSENSUS: S-G-x-[ST]-[LIVMFY]-x(2)-C.

30 NAME: Band 4.1 family domain signature 1.
 CONSENSUS: W-[LIV]-x(3)-[KRQ]-x-[LIVM]-x(2)-[QH]-x(0,2)-
 [LIVMF]-x(6,8)-[LIVMF]-
 CONSENSUS: x(3,5)-F-[FY]-x(2)-[DENQ].

35 NAME: Band 4.1 family domain signature 2.
 CONSENSUS: [HYW]-x(9)-[DENQSTV]-[SA]-x(3)-[FY]-[LIVM]-x(2)-
 [ACV]-x(2)-[LM]-x(2)-
 CONSENSUS: [FY]-G-x-[DENQST]-[LIVMFYS].

NAME: Band 4.1 family domain profile.

40 NAME: C1q domain signature.
 CONSENSUS: F-x(5)-[ND]-x(4)-[FYWL]-x(6)-F-x(5)-G-x-Y-x-F-x-[FY].

45 NAME: C-terminal cystine knot signature.
 CONSENSUS: C-C-x(13)-C-x(2)-[GN]-x(12)-C-x-C-x(2,4)-C.

NAME: C-terminal cystine knot profile.

50 NAME: CUB domain profile.

NAME: Death domain profile.

55 NAME: EGF-like domain signature 1.
 CONSENSUS: C-C-x(5)-G-x(2)-C.

NAME: EGF-like domain signature 2.
 CONSENSUS: C-x-C-x(2)-[GP]-[FYW]-x(4,8)-C.

NAME: Calcium-binding EGF-like domain pattern signature.
 CONSENSUS: [[DEQN]]-x-[[DEQN]](2)-C-x(3,14)-C-x(3,7)-C-x-[[DN]]-
 x(4)-[[FY]]-x-C.

5 NAME: Laminin-type EGF-like (LE) domain signature.
 CONSENSUS: C-x(1,2)-C-x(5)-G-x(2)-C-x(2)-C-x(3,4)-[[FYW]]-
 x(3,15)-C.

10 NAME: Coagulation factors 5/8 type C domain (FA58C)
 signature 1.
 CONSENSUS: [[GAS]]-W-x(7,15)-[[FYW]]-[[LIV]]-x-[[LIVFA]]-[[GSTDEN]]-
 x(6)-[[LIVF]]-x(2)-[[IV]]-x-
 CONSENSUS: [[LIVT]]-[[QKM]]-G.

15 NAME: Coagulation factors 5/8 type C domain (FA58C)
 signature 2.
 CONSENSUS: P-x(8,10)-[[LM]]-R-x-[[GE]]-[[LIVP]]-x-G-C.

20 NAME: Forkhead-associated (FHA) domain profile.

NAME: Fibrinogen beta and gamma chains C-terminal domain
 signature.
 CONSENSUS: W-W-[[LIVMFYW]]-x(2)-C-x(2)-[[GSA]]-x(2)-N-G.

25 NAME: Type I fibronectin domain.
 CONSENSUS: C-x(6,8)-[[LFY]]-x(5)-[[FYW]]-x-[[RK]]-x(8,10)-C-x-C-
 x(6,9)-C.

30 NAME: Type II fibronectin collagen-binding domain.
 CONSENSUS: C-x(2)-P-F-x-[[FYWI]]-x(?) -C-x(8,10)-W-C-x(4)-
 [[DNSR]]-[[FYW]]-x(3,5)-[[FYW]]-x-
 CONSENSUS: [[FYWI]]-C.

35 NAME: Hemopexin domain signature.
 CONSENSUS: [[LIFAT]]-x(3)-W-x(2,3)-[[PE]]-x(2)-[[LIVMFY]]-[[DENQS]]-
 [[STA]]-[[AV]]-[[LIVMFY]].

40 NAME: Kringle domain signature.
 CONSENSUS: [[FYI]]-C-R-N-P-[[DNR]].

45 NAME: Kringle domain profile.

NAME: LDL-receptor class A (LDLRA) domain signature.
 CONSENSUS: C-[[VILMA]]-x(5)-C-[[DNH]]-x(3)-[[DENQHT]]-C-x(3,4)-
 [[STADE]]-[[DEH]]-[[DE]]-x(1,5)-
 CONSENSUS: C.

NAME: LDL-receptor class A (LDLRA) domain profile.

50 NAME: C-type lectin domain signature.
 CONSENSUS: C-[[LIVMFYATG]]-x(5,12)-[[WL]]-x-[[DNSR]]-x(2)-C-x(5,6)-
 [[FYWLIVSTA]]-[[LIVMSTA]]-
 CONSENSUS: C.

55 NAME: C-type lectin domain profile.

NAME: Link domain signature.
 CONSENSUS: C-x(15)-A-x(3,4)-G-x(3)-C-x(2)-G-x(8,9)-P-x(7)-C.

NAME: Osteonectin domain signature 1.
 CONSENSUS: C-x-[DN]-x(2)-C-x(2)-G-[KRH]-x-C-x(6,7)-P-x-C-x-C-x(3,5)-C-P.

5 NAME: Osteonectin domain signature 2.
 CONSENSUS: F-P-x-R-[IM]-x-D-W-L-x-[NQ].

10 NAME: Somatomedin B domain signature.
 CONSENSUS: C-x-C-x(3)-C-x(5)-C-C-x-[DN]-[FY]-x(3)-C.

NAME: Thyroglobulin type-1 repeat signature.
 CONSENSUS: [FYWHP]-x-P-x-C-x(3,4)-G-x-[FYW]-x(3)-Q-C-x(4,10)-
 C-[FYW]-C-V-x(3,4)-
 15 CONSENSUS: [SG].

NAME: P-type 'Trefoil' domain signature.
 CONSENSUS: R-x(2)-C-x-[FYPST]-x(3,4)-[ST]-x(3)-C-x(4)-C-C-[FYWH].

20 NAME: Cellulose-binding domain, bacterial type.
 CONSENSUS: W-N-[STAGR]-[STDN]-[LIVM]-x(2)-[GST]-x-[GST]-x(2)-
 [LIVMFT]-[GA].

25 NAME: Cellulose-binding domain, fungal type.
 CONSENSUS: C-G-G-x(4,7)-G-x(3)-C-x(5)-C-x(3,5)-[NHG]-x-[FYWM]-x(2)-Q-C.

30 NAME: Chitin recognition or binding domain signature.
 CONSENSUS: C-x(4,5)-C-C-S-x(2)-G-x-C-G-x(4)-[FYW]-C.

NAME: Barwin domain signature 1.
 CONSENSUS: C-G-[KR]-C-L-x-V-x-N.

35 NAME: Barwin domain signature 2.
 CONSENSUS: V-[DN]-Y-[EQ]-F-V-[DN]-C.

NAME: BIR repeat.
 CONSENSUS: [HKEPILVY]-x(2)-R-x(3,7)-[FYW]-x(11,14)-[STAN]-G-
 40 [LMF]-X-[FYHDA]-X(4)-
 CONSENSUS: [DESL]-X(2,3)-C-X(2)-C-X(6)-[WA]-X(9)-H-X(4)-
 [PRSD]-X-C-X(2)-[LIVMA].

45 NAME: WAP-type 'four-disulfide core' domain signature.
 CONSENSUS: C-x-{C}-[DN]-x(2)-C-x(5)-C-C.

NAME: Phorbol esters / diacylglycerol binding domain.
 CONSENSUS: H-x-[LIVMFYW]-x(8,11)-C-x(2)-C-x(3)-[LIVMFC]-
 x(5,10)-C-x(2)-C-x(4)-[HD]-
 50 CONSENSUS: x(2)-C-x(5,9)-C.

NAME: C2 domain signature.
 CONSENSUS: [ACG]-x(2)-L-x(2,3)-D-x(1,2)-[NGSTLIF]-[GTMR]-x-[STAP]-D-[PA]-[FY].

55 NAME: C2-domain profile.

NAME: CAP-Gly domain signature.

CONSENSUS: G-x(8,10)-[FYW]-x-G-[LIVM]-x-[LIVMFY]-x(4)-G-K-
 [NH]-x-G-[STAR]-x(2)-G-
 CONSENSUS: x(2)-[LY]-F.

- 5 NAME: Ly-b / u-PAR domain signature.
 CONSENSUS: [EQR]-C-[LIVMFYAH]-x-C-x(5,8)-C-x(3,8)-[EDNQSTV]-
 C-{C}-x(5)-C-
 CONSENSUS: x(12,24)-C.
- 10 NAME: MAM domain signature.
 CONSENSUS: G-x-[LIVMFY](2)-x(3)-[STA]-x(10,11)-[LV]-x(4)-
 [LIVMF]-x(6,7)-C-[LIVM]-x-
 CONSENSUS: F-x-[LIVMFY]-x(3)-[GSC].
- 15 NAME: MAM domain profile.
 NAME: PH domain profile.
 NAME: Phosphotyrosine interaction domain (PID) profile.
- 20 NAME: Src homology 2 (SH2) domain profile.
 NAME: Src homology 3 (SH3) domain profile.
- 25 NAME: VWFC domain signature.
 CONSENSUS: C-x(2,3)-C-x-C-x(6,14)-C-x(3,4)-C-x(2,10)-C-
 x(9,16)-C-C-x(2,4)-C.
 NAME: WW/rsp5/WWP domain signature.
 CONSENSUS: W-x(9,11)-[VFY]-[FYW]-x(6,7)-[GSTNE]-[GSTQCR]-
 [FYW]-x(2)-P.
- 30 NAME: WW/rsp5/WWP domain profile.
- 35 NAME: ZP domain signature.
 CONSENSUS: [LIVMFYW]-x(7)-[STAPDNL]-x(3)-[LIVMFYW]-x-
 [LIVMFYW]-x-[LIVMFYW]-x(2)-C-
 CONSENSUS: [LIVMFYW]-x-[EST]-[PSL]-x(2,4)-[DENSI]-x-[STADNQLF]-
 x(6)-[LIVM](2)-x(3,4)-
 40 CONSENSUS: C.
- NAME: S-layer homology domain signature.
 CONSENSUS: [LVFT]-x-[DA]-x(2,5)-[DNGSATPHY]-[WYFPDA]-x(4)-
 [LIV]-x(2)-[GTALV]-
 45 CONSENSUS: x(4,6)-[LIVFYC]-x(2)-G-x-[PGSTA]-x(2,3)-[MFYA]-x-
 [PGAV]-x(3,10)-[LIVMA]-
 CONSENSUS: [ESTKR]-[RY]-x-[EQ]-x-[STALIVM].
- NAME: 'Homeobox' domain signature.
 50 CONSENSUS: [LIVMFYG]-[ASLVR]-x(2)-[LIVMSTACN]-x-[LIVM]-x(4)-
 [LIV]-[RKNAESTAIY]-
 CONSENSUS: [LIVFSTNKH]-W-[FYVC]-x-[NDQTAH]-x(5)-[RKNAIMW].
- 55 NAME: 'Homeobox' domain profile.
 NAME: 'Homeobox' antennapedia-type protein signature.
 CONSENSUS: [LIVMFE]-[FY]-P-W-M-[KRQTA].

NAME: 'Homeobox' engrailed-type protein signature.
 CONSENSUS: L-M-A-Q-G-L-Y-N.

5 NAME: 'Paired box' domain signature.
 CONSENSUS: R-P-C-x(11)-C-V-S.

NAME: 'POU' domain signature 1.
 CONSENSUS: E-R-K-Q]-R-[L-I-M]-x-[L-F]-G-[L-I-V-M-F-Y]-x-Q-x-[D-N-Q]-V-G.

10 NAME: 'POU' domain signature 2.
 CONSENSUS: S-Q-[E-S-T]-[T-A]-I-[S-C]-R-F-E-x-[L-S-Q]-x-[L-I]-[S-T].

15 NAME: Zinc finger, C2H2 type, domain.
 CONSENSUS: C-x(2,4)-C-x(3)-[L-I-V-M-F-Y-W-C]-x(8)-H-x(3,5)-H.

NAME: Zinc finger, C3HC4 type (RING finger), signature.
 CONSENSUS: C-x-H-x-[L-I-V-M-F-Y]-C-x(2)-C-[L-I-V-M-Y-A].

20 NAME: Nuclear hormones receptors DNA-binding region
 signature.
 CONSENSUS: C-x(2)-C-x-[D-E]-x(5)-[H-N]-[F-Y]-x(4)-C-x(2)-C-x(2)-
 F-F-x-R.

NAME: GATA-type zinc finger domain.
 CONSENSUS: C-x-[D-N]-C-x(4,5)-[S-T]-x(2)-W-[H-R]-[R-K]-x(3)-[G-N]-
 x(3,4)-C-N-[A-S]-C.

25 NAME: Poly(ADP-ribose) polymerase zinc finger domain
 signature.
 CONSENSUS: C-[K-R]-x-C-x(3)-I-x-K-x(3)-[R-G]-x(16,18)-W-[F-Y-H]-
 H-x(2)-C.

30 NAME: Poly(ADP-ribose) polymerase zinc finger domain
 profile.
 CONSENSUS: C-[K-R]-x-C-x(3)-I-x-K-x(3)-[R-G]-x(16,18)-W-[F-Y-H]-
 H-x(2)-C.

35 NAME: Fungal Zn(2)-Cys(6) binuclear cluster domain
 signature.
 CONSENSUS: [G-A-S-T-P-V]-C-x(2)-C-[R-K-H-S-T-A-C-W]-x(2)-[R-K-H-Q]-x(2)-C-
 x(5,12)-C-x(2)-C-x(6,8)-

40 CONSENSUS: C.

NAME: Fungal Zn(2)-Cys(6) binuclear cluster domain profile.

45 NAME: Prokaryotic dksA/traR C4-type zinc finger.
 CONSENSUS: C-[D-E-S]-x-C-x(3)-I-x(3)-R-x(4)-P-x(4)-C-x(2)-C.

50 NAME: Copper-fist domain signature.
 CONSENSUS: M-[L-I-V-M-F](3)-x(3)-K-[M-Y]-A-C-x(2)-C-I-[K-R]-x-H-
 [K-R]-x(3)-C-x-H-x(8)-
 CONSENSUS: [K-R]-x-[K-R]-G-R-P.

NAME: Copper fist DNA binding domain profile.

55 NAME: Leucine zipper pattern.
 CONSENSUS: L-x(6)-L-x(6)-L-x(6)-L.

NAME: bZIP transcription factors basic domain signature.

CONSENSUS: [[KR]]-x(1,3)-[[RKSAQ]]-N-x(2)-[[SAQ]](2)-x-[[RKTAEHQ]]-x-R-x-[[RK]].

- 5 NAME: Myb DNA-binding domain repeat signature 1.
 CONSENSUS: W-[[ST]]-x(2)-E-[[DE]]-x(2)-[[LIV]].
- NAME: Myb DNA-binding domain repeat signature 2.
 CONSENSUS: W-x(2)-[[LI]]-[[SAG]]-x(4,5)-R-x(8)-[[YW]]-x(3)-[[LIVM]].
- 10 NAME: Myc-type, 'helix-loop-helix' dimerization domain
 signature.
 CONSENSUS: [[DENSTAP]]-K-[[LIVMWAGSN]]-[FYWCPHKR]-[[LIVT]]-[[LIV]]-
 x(2)-[[STAV]]-[[LIVMSTAC]]-x-
 CONSENSUS: [[VMFYH]]-[[LIVMTA]]-[P]-[P]-[[LIVMSR]].
- 15 NAME: p53 tumor antigen signature.
 CONSENSUS: M-C-N-S-S-C-M-G-G-M-N-R-R.
- NAME: CBF-A/NF-YB subunit signature.
 20 CONSENSUS: C-V-S-E-x-I-S-F-[[LIVM]]-T-[[SG]]-E-A-[SC]-[[DE]]-[[KRQ]]-C.
- NAME: CBF-B/NF-YA subunit signature.
 CONSENSUS: Y-V-N-A-K-Q-Y-x-R-I-L-K-R-R-x-A-R-A-K-L-E.
- 25 NAME: 'Cold-shock' DNA-binding domain signature.
 CONSENSUS: [[FY]]-G-F-I-x(6,7)-[[DER]]-[[LIVM]]-F-x-H-x-[[STKR]]-x-
 [[LIVMFY]].
- 30 NAME: CTF/NF-I signature.
 CONSENSUS: R-K-R-K-Y-F-K-K-H-E-K-R.
- NAME: Ets-domain signature 1.
 CONSENSUS: L-[[FYW]]-[[QEDH]]-F-[[LI]]-[[LVQK]]-x-[[LI]]-L.
- 35 NAME: Ets-domain signature 2.
 CONSENSUS: [[RKH]]-x(2)-M-x-Y-[[DENQ]]-x-[[LIVM]]-[[STAG]]-R-[[STAG]]-
 [[LI]]-R-x-Y.
- 40 NAME: Ets-domain profile.
- NAME: Fork head domain signature 1.
 CONSENSUS: [[KR]]-P-[[PTQ]]-[[FYLVQH]]-S-[[FY]]-x(2)-[[LIVM]]-x(3,4)-
 [[AC]]-[[LIM]].
- 45 NAME: Fork head domain signature 2.
 CONSENSUS: W-[[QKR]]-[[NS]]-S-[[LIV]]-R-H.
- NAME: Fork head domain profile.
- 50 NAME: HSF-type DNA-binding domain signature.
 CONSENSUS: L-x(3)-[[FY]]-K-H-x-N-x-[[STAN]]-S-F-[[LIVM]]-R-Q-L-
 [[NH]]-x-Y-x-[[FYW]]-[[RKH]]-K-
 CONSENSUS: [[LIVM]].
- 55 NAME: Tryptophan pentad repeat (IRF family) signature.
 CONSENSUS: W-x-[[DNH]]-x(5)-[[LIVF]]-x-[[IV]]-P-W-x-H-x(9,10)-[[DE]]-
 x(2)-[[LIVF]]-F-[[KRQ]]-x-

CONSENSUS: [WR]-A.

NAME: LIM domain signature.

CONSENSUS: C-x(2)-C-x(15,21)-[FYWH]-H-x(2)-[CH]-x(2)-C-x(2)-
5 C-x(3)-[LIVMF].

NAME: LIM domain profile.

NAME: NF-kappa-B/Rel/dorsal domain signature.

10 CONSENSUS: F-R-Y-x-C-E-G.

NAME: MADS-box domain signature.

CONSENSUS: R-x-[RK]-x(5)-I-x-[DN]-x(3)-[KR]-x(2)-T-[FY]-x-
[RK](3)-x(2)-[LIVM]-x-

15 CONSENSUS: K(2)-A-x-E-[LIVM]-[ST]-x-L-x(4)-[LIVM]-x-
[LIVM](3)-x(6)-[LIVMF]-x(2)-

CONSENSUS: [FY].

NAME: MADS-box domain profile.

20 NAME: T-box domain signature 1.

CONSENSUS: L-W-x(2)-[FC]-x(3,4)-[NT]-E-M-[LIV](2)-T-x(2)-G-
[RG]-[KRQ].

25 NAME: T-box domain signature 2.

CONSENSUS: [LIVMYW]-H-[PADH]-[DEN]-[GS]-x(3)-G-x(2)-W-M-x(3)-
[IVA]-x-F.

NAME: TEA domain signature.

30 CONSENSUS: G-R-N-E-L-I-x(2)-Y-I-x(3)-[TC]-x(3)-R-T-[RK](2)-Q-
[LIVM]-S-S-H-[LIVM]-
CONSENSUS: Q-V.

NAME: Transcription factor TFIIB repeat signature.

35 CONSENSUS: G-[KR]-x(3)-[STAGN]-x-[LIVMYA]-[GSTA](2)-[CSAV]-
[LIVM]-[LIVMFY]-[LIVMA]-
CONSENSUS: [GSA]-[STAC].

NAME: Transcription factor TFIID repeat signature.

40 CONSENSUS: Y-x-P-x(2)-[IF]-x(2)-[LIVM](2)-x-[KRH]-x(3)-P-
[RKQ]-x(3)-L-[LIVM]-F-x-

CONSENSUS: [STN]-G-[KR]-[LIVM]-x(3)-G-[TAGL]-[KR]-x(?)-[AGC]-
x(?)-[LIVM].

45 NAME: TFIIS zinc ribbon domain signature.

CONSENSUS: C-x(2)-C-x(9)-[LIVMQSAR]-[QH]-[STQL]-[RA]-[SACR]-
x-[DE]-[DET]-[PGSEA]-
CONSENSUS: x(6)-C-x(2,5)-C-x(3)-[FW].

50 NAME: TSC-22 / dip / bun family signature.

CONSENSUS: M-D-L-V-K-x-H-L-x(2)-A-V-R-E-E-V-E.

NAME: Prokaryotic transcription elongation factors signature
1.

55 CONSENSUS: [ST]-x(2)-[GS]-x(3)-[LI]-x(2)-E-L-x(2)-L-x(3,4)-R-
x(2)-[IV]-x(3)-[LIV]-

CONSENSUS: x(6)-G-D-x(2)-E-N-[GSA]-x-Y.

NAME: Prokaryotic transcription elongation factors signature
2.
CONSENSUS: S-x(2)-S-P-[LIVM]-[AG]-x-[SAG]-[LIVM]-[LIVMY]-
x(4)-[DGI]-[DE].

5 NAME: DEAD-box subfamily ATP-dependent helicases signature.
CONSENSUS: [LIVMF](2)-D-E-A-D-[RKEN]-x-[LIVMFYGSTN].

10 NAME: DEAH-box subfamily ATP-dependent helicases signature.
CONSENSUS: [GSAH]-x-[LIVMF](3)-D-E-[ALIV]-H-[NECR].

15 NAME: Eukaryotic putative RNA-binding region RNP-1
signature.
CONSENSUS: [RK]-G-[EDRKHPCG]-[AGSCI]-[FY]-[LIVAI]-x-[FYLMI].

20 NAME: Fibrillarin signature.
CONSENSUS: [GST]-[LIVMAP]-V-Y-A-[IV]-E-[FY]-[SA]-x-R-x(2)-R-
[DE].

25 NAME: MCM family signature.
CONSENSUS: G-[IVT]-[LVAC](2)-[IVT]-D-[DE]-[FL]-[DNST].

NAME: MCM family domain.

30 NAME: XPA protein signature 1.
CONSENSUS: C-x-[DE]-C-x(3)-[LIVMF]-x(1,2)-D-x(2)-L-x(3)-F-
x(4)-C-x(2)-C.

35 NAME: XPA protein signature 2.
CONSENSUS: [LIVM](2)-T-[KR]-T-E-x-K-x-[DE]-Y-[LIVMF](2)-x-D-
x-[DE].

NAME: XPG protein signature 1.
CONSENSUS: [VI]-[KRE]-P-x-[FYIL]-V-F-D-G-x(2)-[PIL]-x-[LVC]-
K.

40 NAME: XPG protein signature 2.
CONSENSUS: [GS]-[LIVM]-[PER]-[FYS]-[LIVM]-x-A-P-x-E-A-[DE]-
[PAS]-[QS]-[CLM].

45 NAME: Bacterial regulatory proteins, araC family signature.
CONSENSUS: [KRQ]-[LIVMA]-x(2)-[GSTALIV]-[FYWPGDN]-x(2)-
[LIVMSA]-x(4,9)-[LIVMF]-
CONSENSUS: x(2)-[LIVMSTA]-[GSTACIL]-x(3)-[GANQRF]-[LIVMFY]-
x(4,5)-[LFY]-x(3)-
CONSENSUS: [FYIVA]-[FYWHCM]-x(3)-[GSADENQKR]-x-[NSTAPKL]-
[PARL].

50 NAME: Bacterial regulatory proteins, araC family DNA-binding
domain profile.

NAME: Bacterial regulatory proteins, arsR family signature.
CONSENSUS: C-x(2)-D-[LIVM]-x(6)-[ST]-x(4)-S-[HYR]-[HQ].

55 NAME: Bacterial regulatory proteins, asnC family signature.
CONSENSUS: [GSTAP]-x(2)-[DNEA]-[LIVM]-[GSA]-x(2)-[LIVMFY]-
[GN]-[LIVMST]-[ST]-x(6)-R-
CONSENSUS: [LVT]-x(2)-[LIVM]-x(3)-G.

NAME: Bacterial regulatory proteins, crp family signature.
 CONSENSUS: [[LIVM]]-[[STAG]]-[[RHNU]]-x(2)-[[LIM]]-[[GA]]-x-[[LIVMFY]]-
 5 [[LIVSCL]]-[[GA]]-x-[[STACN]]-
 CONSENSUS: x(2)-[[MST]]-x-[[GSTN]]-R-x-[[LIVMF]]-x(2)-[[LIVMF]].

NAME: Bacterial regulatory proteins, deoR family signature.
 CONSENSUS: R-x(3)-[[LIVM]]-x(3)-[[LIVM]]-x(1b,1?)-[[STA]]-x(2)-T-
 10 [[LIVMA]]-[[RH]]-[[KRNA]]-D-
 CONSENSUS: [[LIVMF]].

NAME: Bacterial regulatory proteins, gntR family signature.
 CONSENSUS: [[LIVAPKR]]-[[PILV]]-x-[[EQTIVMR]]-x(2)-[[LIVM]]-x(3)-
 15 [[LIVMFYK]]-x-[[LIVFT]]-
 CONSENSUS: [[DNNGSTK]]-[[RGTLV]]-x-[[STAIVP]]-[[LIVA]]-x(2)-[[STAGV]]-
 [[LIVMFYH]]-x(2)-[[LMA]].

NAME: Bacterial regulatory proteins, iclR family signature.
 CONSENSUS: [[GA]]-x(3)-[[DS]]-x(2)-E-x(6)-[[CSA]]-[[LIVM]]-[[GSA]]-
 20 x(2)-[[LIVM]]-[[FYH]]-[[DN]].

NAME: Bacterial regulatory proteins, lacI family signature.
 CONSENSUS: [[LIVM]]-x-[[DE]]-[[LIVM]]-A-x(2)-[[STAGV]]-x-V-[[GSTP]]-
 25 x(2)-[[STAG]]-[[LIVMA]]-x(2)-
 CONSENSUS: [[LIVMFYAN]]-[[LIVMC]].

NAME: Bacterial regulatory proteins, luxR family signature.
 CONSENSUS: [[GDC]]-x(2)-[[NSTAVY]]-x(2)-[[IV]]-[[GSTA]]-x(2)-
 30 [[LIVMFYWCT]]-x-[[LIVMFYWCR]]-x(3)-
 CONSENSUS: [[NST]]-[[LIVM]]-x(5)-[[NRHS]]-[[LIVMSTA]]-x(2)-[[KR]].

NAME: Bacterial regulatory proteins, lysR family signature.
 CONSENSUS: [[NQKRHSTAG]]-[[LIVMFYTA]]-x(2)-[[STAGLV]]-[[STAG]]-x(4)-
 35 [[LIVMYCTQR]]-[[PSTANLVER]]-
 CONSENSUS: x-[[PSTAGQV]]-[[PSTAGNVMF]]-[[LIVMFA]]-[[STAGH]]-x(2)-
 [[LIVMF]]-x(2)-[[LIVMFW]]-
 CONSENSUS: [[RKEAV]]-x(2)-[[LIVMFYNTAE]]-x(3)-[[LIMVT]].

NAME: Bacterial regulatory proteins, marR family signature.
 40 CONSENSUS: [[STNA]]-[[LIA]]-x-[[RNGS]]-x(4)-[[LM]]-[[EIV]]-x(2)-[[GES]]-
 [[LFYW]]-[[LIVC]]-x(?)-
 CONSENSUS: [[DN]]-[[RKQG]]-[[RK]]-x(6)-T-x(2)-[[GA]].

NAME: Bacterial regulatory proteins, merR family signature.
 45 CONSENSUS: [[GSA]]-x-[[LIVMFA]]-[[ASM]]-x(2)-[[STACLIV]]-[[GSDENQR]]-
 [[LIVC]]-[[STANHK]]-x(3)-
 CONSENSUS: [[LIVM]]-[[RHF]]-x-[[YW]]-[[DEQ]]-x(2,3)-[[GHDNA]]-
 [[LIVMF]](2).

50 NAME: Bacterial regulatory proteins, tetR family signature.
 CONSENSUS: G-[[LIVMFYS]]-x(2,3)-[[TS]]-[[LIVMT]]-x(2)-[[LIVM]]-x(5)-
 [[LIVQS]]-[[STAGENQH]]-x-
 CONSENSUS: [[GPARI]]-x-[[LIVMF]]-[[FYST]]-x-[[HFY]]-[[FV]]-x-[[DNST]]-K-
 x(2)-[[LIVM]].

55 NAME: Transcriptional antiterminators bg1G family signature.
 CONSENSUS: [[ST]]-x-H-x(2)-[[FA]](2)-[[LIVM]]-[[EQK]]-R-x(2)-[[QNK]].

NAME: Sigma-54 factors family signature 1.
CONSENSUS: P-[LIVM]-x-[LIVM]-x(2)-[LIVM]-A-x(2)-[LIVMF]-x(2)-
[HS]-x-S-T-[LIVM]-S-R.

5 NAME: Sigma-54 factors family signature 2.
CONSENSUS: R-R-T-[IV]-[AT]-K-Y-R.

NAME: Sigma-54 factors family profile.

10 NAME: Sigma-70 factors family signature 1.
CONSENSUS: [DE]-[LIVMF](2)-[HEQS]-x-G-x-[LIVMFA]-G-L-
[LIVMFYE]-x-[GSAM]-[LIVMAP].

NAME: Sigma-70 factors family signature 2.
15 CONSENSUS: [STN]-x(2)-[DEQ]-[LIVM]-[GAS]-x(4)-[LIVMF]-[PSTG]-
x(3)-[LIVMA]-x-[NQR]-
CONSENSUS: [LIVMA]-[EQH]-x(3)-[LIVMFW]-x(2)-[LIVM].

NAME: Sigma-70 factors ECF subfamily signature.
20 CONSENSUS: [STAIV]-[PQDEL]-[DE]-[LIV]-[LIVTA]-Q-x-[STAV]-
[LIVMFYC]-[LIVMAK]-x-
CONSENSUS: [GSTAIV]-[LIMFYWQ]-x(12,14)-[STAP]-[FYW]-[LIF]-
x(2)-[IV].

25 NAME: Sigma-54 interaction domain ATP-binding region A
signature.
CONSENSUS: [LIVMFY](3)-x-G-[DEQ]-[STE]-G-[STAV]-G-K-x(2)-
[LIVMFY].

30 NAME: Sigma-54 interaction domain ATP-binding region B
signature.
CONSENSUS: [GS]-x-[LIVMF]-x(2)-A-[DN_EQASH]-[GNEK]-G-[STIM]-
[LIVMFY](3)-[DE]-[EK]-
CONSENSUS: [LIVM].

35 NAME: Sigma-54 interaction domain C-terminal part signature.
CONSENSUS: [FYW]-P-[GS]-N-[LIVM]-R-[EQ]-L-x-[NHAT].

NAME: Sigma-54 interaction domain profile.

40 NAME: Single-strand binding protein family signature 1.
CONSENSUS: [LIVMF]-[NST]-[KRT]-[LIVM]-x-[LIVMF](2)-G-[NHRK]-
[LIVM]-[GST]-x-[DET].

45 NAME: Single-strand binding protein family signature 2.
CONSENSUS: T-x-W-[HY]-[RNS]-[LIVM]-x-[LIVMF]-[FY]-[NGKR].

NAME: Bacterial histone-like DNA-binding proteins signature.
CONSENSUS: [GSK]-F-x(2)-[LIVMF]-x(4)-[RKEQA]-x(2)-[RST]-x-
50 [GA]-x-[KN]-P-x-T.

NAME: Dps protein family signature 1.
CONSENSUS: H-[FW]-x-[LIVM]-x-G-x(5)-[LV]-H-x(3)-[DE].

55 NAME: Dps protein family signature 2.
CONSENSUS: [LIVMFY]-[DH]-x-[LIVM]-[GA]-E-R-x(3)-[LIF]-[GDN]-
x(2)-[PA].

NAME: DNA repair protein radC family signature.
 CONSENSUS: H-N-H-P-S-G.

5 NAME: recA signature.
 CONSENSUS: A-L-[KR]-[IF]-[FY]-[STA]-[STAD]-[LIVMQ]-R.

NAME: RecF protein signature 1.
 CONSENSUS: P-[ED]-x(3)-[LIVM](2)-x-G-[GSAD]-P-x(2)-R-R-x-
 [FY]-[LIVM]-D.

10 NAME: RecF protein signature 2.
 CONSENSUS: [LIVMFY](2)-x-D-x(2,3)-[SA]-[EH]-L-D-x(2)-[KRH]-
 x(3)-L.

15 NAME: RecR protein signature.
 CONSENSUS: C-x(2)-C-x(3)-[ST]-x(4)-C-x-I-C-x(4)-R.

20 NAME: Histone H2A signature.
 CONSENSUS: [AC]-G-L-x-F-P-V.

25 NAME: Histone H2B signature.
 CONSENSUS: [KR]-E-[LIVM]-[EQ]-T-x(2)-[KR]-x-[LIVM](2)-x-
 [PAG]-[DE]-L-x-[KR]-H-A-
 CONSENSUS: [LIVM]-[STA]-E-G.

30 NAME: Histone H3 signature 1.
 CONSENSUS: K-A-P-R-K-Q-L.

NAME: Histone H3 signature 2.
 CONSENSUS: P-F-x-[RA]-L-[VA]-[KRQ]-[DEG]-[IV].

NAME: Histone H4 signature.
 CONSENSUS: G-A-K-R-H.

35 NAME: HMG1/2 signature.
 CONSENSUS: [FI]-S-[KR]-K-C-S-[EK]-R-W-K-T-M.

NAME: HMG-I and HMG-Y DNA-binding domain (A+T-hook).
 CONSENSUS: [AT]-x(1,2)-[RK](2)-[GP]-R-G-R-P-[RK]-x.

40 NAME: HMG14 and HMG17 signature.
 CONSENSUS: R-R-S-A-R-L-S-A-[RK]-P.

45 NAME: Bromodomain signature.
 CONSENSUS: [STANVF]-x(2)-F-x(4)-[DNS]-x(5,7)-[DENQTF]-Y-
 [HFY]-x(2)-[LIVMFY]-x(3)-
 CONSENSUS: [LIVM]-x(4)-[LIVM]-x(6,8)-Y-x(12,13)-[LIVM]-x(2)-
 N-[SACF]-x(2)-[FY].

50 NAME: Bromodomain profile.

NAME: Chromo domain signature.
 CONSENSUS: [FYL]-x-[LIVMC]-[KR]-W-x-[GDNR]-[FYWLE]-x(5,6)-
 [ST]-W-[ES]-[PSTDN]-x(3)-
 55 CONSENSUS: [LIVMC].

NAME: Chromo and chromo shadow domain profile.

NAME: Regulator of chromosome condensation (RCC1) signature
 1.
 CONSENSUS: G-x-N-D-x(2)-[AV]-L-G-R-x-T.

5 NAME: Regulator of chromosome condensation (RCC1) signature
 2.
 CONSENSUS: [LIVMFA]-[STAGC](2)-G-x(2)-H-[STAGLI]-[LIVMFA]-x-[LIVM].

10 NAME: Protamine P1 signature.
 CONSENSUS: [AV]-R-[NFY]-R-x(2,3)-[ST]-x-S-x-S.

NAME: Nuclear transition protein 1 signature.
 CONSENSUS: S-K-R-K-Y-R-K.

15 NAME: Nuclear transition protein 2 signature 1.
 CONSENSUS: H-x(3)-H-S-[NS]-S-x-P-Q-S.

20 NAME: Nuclear transition protein 2 signature 2.
 CONSENSUS: K-x-R-K-x(2)-E-G-K-x(2)-K-[KR]-K.

NAME: Ribosomal protein L1 signature.
 CONSENSUS: [IM]-x(2)-[LIVA]-x(2,3)-[LIVM]-G-x(2)-[LMSE]-
 [GSNH]-[PTKRI]-[KRAV]-G-x-
 25 CONSENSUS: [LMF]-P-[DENSTK].

NAME: Ribosomal protein L2 signature.
 CONSENSUS: P-x(2)-R-G-[STAIV](2)-x-N-[APK]-x-[DE].

30 NAME: Ribosomal protein L3 signature.
 CONSENSUS: [FL]-x(6)-[DN]-x(2)-[AGS]-x-[ST]-x-G-[KRH]-G-x(2)-
 G-x(3)-R.

NAME: Ribosomal protein L5 signature.
 CONSENSUS: [LIVM]-x(2)-[LIVM]-[STAC]-[GED]-[QV]-x(2)-[LIVMA]-
 x-[STC]-x-[STAG]-[KR]-
 CONSENSUS: x-[STA].

40 NAME: Ribosomal protein L6 signature 1.
 CONSENSUS: [PS]-[DENS]-x-Y-K-[GA]-K-G-[LIVM].

NAME: Ribosomal protein L6 signature 2.
 CONSENSUS: Q-x(3)-[LIVM]-x(2)-[KRI]-x(2)-R-x-F-x-D-G-[LIVM]-Y-
 [LIVM]-x(2)-[KR].

45 NAME: Ribosomal protein L9 signature.
 CONSENSUS: G-x(2)-[GN]-x(4)-V-x(2)-G-[FY]-x(2)-N-[FY]-L-x(5)-
 [GA]-x(3)-[STN].

50 NAME: Ribosomal protein L10 signature.
 CONSENSUS: [DEHI]-x(2)-[GS]-[LIVMF]-[STN]-[VA]-x-[DEQK]-
 [LIVMA]-x(2)-[LIM]-R.

55 NAME: Ribosomal protein L11 signature.
 CONSENSUS: [RKNI]-x-[LIVM]-x-G-[ST]-x(2)-[SNQ]-[LIVM]-G-x(2)-
 [LIVM]-x(0,1)-[DENG].

NAME: Ribosomal protein L13 signature.

CONSENSUS: [[LIVM]]-[[KRV]]-[[GK]]-M-[[LIV]]-[[PS]]-x(4,5)-[[GS]]-
[[NQEKRA]]-x(5)-[[LIVM]]-x-[[AIV]]-
CONSENSUS: [[LFY]]-x-[[GDN]].

5 NAME: Ribosomal protein L14 signature.
CONSENSUS: [[GA]]-[[LIV]](3)-x(9,10)-[[DNS]]-G-x(4)-[[FY]]-x(2)-[[NT]]-
x(2)-V-[[LIV]].

10 NAME: Ribosomal protein L15 signature.
CONSENSUS: K-[[LIVM]](2)-[[GAL]]-x-[[GT]]-x-[[LIVMA]]-x(2,5)-[[LIVM]]-
x-[[LIVMF]]-x(3,4)-
CONSENSUS: [[LIVMFC]]-[[ST]]-x(2)-A-x(3)-[[LIVM]]-x(3)-G.

15 NAME: Ribosomal protein L16 signature 1.
CONSENSUS: [[KR]]-R-x-[[GSAC]]-[[KQVA]]-[[LIVM]]-W-[[LIVM]]-[[KR]]-
[[LIVM]]-[[LFY]]-[[AP]].

20 NAME: Ribosomal protein L16 signature 2.
CONSENSUS: R-M-G-x-[[GR]]-K-G-x(4)-[[FWKR]].

NAME: Ribosomal protein L17 signature.
CONSENSUS: I-x-[[ST]]-[[GT]]-x(2)-[[KR]]-x-K-x(6)-[[DE]]-x-[[LIMV]]-
[[LIVMT]]-T-x-[[STAG]]-[[KR]].

25 NAME: Ribosomal protein L19 signature.
CONSENSUS: [[RT]]-[[KRSVY]]-[[GSA]]-x-V-[[RS]]-[[KR]]-[[SA]]-K-L-Y-Y-L-R.

NAME: Ribosomal protein L20 signature.
CONSENSUS: K-x(3)-[[KRC]]-x-[[LIVM]]-W-[[IV]]-[[STNALV]]-R-[[LIVM]]-N-
x(3)-[[RKH]].

NAME: Ribosomal protein L21 signature.
CONSENSUS: [[IVT]]-x(3)-[[KR]]-x(3)-[[KRQ]]-K-x(6)-G-[[HF]]-R-[[RQ]]-
x(2)-T.

35 NAME: Ribosomal protein L22 signature.
CONSENSUS: [[RKQN]]-x(4)-[[RH]]-[[GAS]]-x-G-[[KRQS]]-x(9)-[[HDN]]-
[[LIVM]]-x-[[LIVMS]]-x-[[LIVM]].

40 NAME: Ribosomal protein L23 signature.
CONSENSUS: [[RK]](2)-[[AM]]-[[IVFYT]]-[[IV]]-[[RKT]]-L-[[STANQK]]-x(7)-
[[LIVMFT]].

45 NAME: Ribosomal protein L24 signature.
CONSENSUS: [[GDEN]]-D-x-V-x-[[IV]]-[[LIVMA]]-x-G-x(2)-[[KA]]-[[GN]]-
x(2,3)-[[GA]]-x-[[IV]].

50 NAME: Ribosomal protein L27 signature.
CONSENSUS: G-x-[[LIVM]](2)-x-R-Q-R-G-x(5)-G.

NAME: Ribosomal protein L29 signature.
CONSENSUS: [[KNQS]]-[[PSTL]]-x(2)-[[LIMFA]]-[[KRGSAN]]-x-[[LIVYSTA]]-
[[KR]]-[[KRH]]-[[DESTANRL]]-
CONSENSUS: [[LIV]]-A-[[KRCQVT]]-[[LIVMA]].

55 NAME: Ribosomal protein L30 signature.
CONSENSUS: [[IVT]]-[[LIVM]]-x(2)-[[LF]]-x-[[LI]]-x-[[KRHQEG]]-x(2)-
[[STNQH]]-x-[[IVT]]-

CONSENSUS: x(10)-[LMS]-[LIV]-x(2)-[LIVA]-x(2)-[LMFY]-[IVT].

NAME: Ribosomal protein L31 signature.

CONSENSUS: H-P-F-[FY]-[TI]-x(9)-G-R-[AV]-x-[KR].

5 NAME: Ribosomal protein L33 signature.

CONSENSUS: Y-x-[ST]-x-[KR]-[NS]-x(4)-[PAT]-x(1,2)-[LIVM]-
[EA]-x(2)-K-[FY]-[CSD].

10 NAME: Ribosomal protein L34 signature.

CONSENSUS: K-[RG]-T-[FYWL]-[EQS]-x(5)-[KRHS]-x(4,5)-G-F-x(2)-
R.

NAME: Ribosomal protein L35 signature.

15 CONSENSUS: [LIVM]-K-[TV]-x(2)-[GSA]-[SAIL]-x-K-R-[LIVMFY]-
[KRL].

NAME: Ribosomal protein L36 signature.

CONSENSUS: C-x(2)-C-x(2)-[LIVM]-x-R-x(3)-[LIVMN]-x-[LIVM]-x-
20 C-x(3,4)-[KR]-H-x-Q-x-Q.

NAME: Ribosomal protein L1e signature.

CONSENSUS: N-x(3)-[KR]-x(2)-A-[LIVT]-x-S-A-[LIV]-x-A-[ST]-
[SGA]-x(7)-[RK]-G-H.

25 NAME: Ribosomal protein L6e signature.

CONSENSUS: N-x(2)-P-L-R-R-x(4)-[FY]-V-I-A-T-S-x-K.

NAME: Ribosomal protein L7Ae signature.

30 CONSENSUS: [CA]-x(4)-[IV]-P-[FY]-x(2)-[LIVM]-x-[GSQ]-[KRQ]-
x(2)-L-G.

NAME: Ribosomal protein L10e signature.

CONSENSUS: R-x-A-[FYW]-G-K-[PA]-x-G-x(2)-A-R-V.

35 NAME: Ribosomal protein L13e signature.

CONSENSUS: [KR]-Y-x(2)-K-[LIVM]-R-[STA]-G-[KR]-G-F-[ST]-L-x-
E.

40 NAME: Ribosomal protein L15e signature.

CONSENSUS: [DE]-[KR]-A-R-x-L-G-[FY]-x-[SAP]-x(2)-G-
[LIVMFY](4)-R-x-R-V-x-R-G.

NAME: Ribosomal protein L18e signature.

45 CONSENSUS: [KRE]-x-L-x(2)-[PS]-[KR]-x(2)-[RH]-[PSA]-x-[LIVM]-
[NS]-[LIVM]-x-[RK]-
CONSENSUS: [LIVM].

NAME: Ribosomal protein L19e signature.

50 CONSENSUS: R-x-[KR]-x(5)-[KR]-x(3)-[KRH]-x(2)-G-x-G-x-R-x-G-
x(3)-A-R-x(3)-[KQ]-
CONSENSUS: x(2)-W-x(7)-R-x(2)-L-x(3)-R.

NAME: Ribosomal protein L21e signature.

55 CONSENSUS: G-[DE]-x-V-x(10)-[GV]-x(2)-[FYH]-x(2)-[FY]-x-G-x-
T-G.

NAME: Ribosomal protein L24e signature.

CONSENSUS: **[FY]-x-[GS]-x(2)-[IV]-x-P-G-x-G-x(2)-[FYV]-x-[KRHE]-x-D.**

NAME: Ribosomal protein L27e signature.
5 CONSENSUS: G-K-N-x-W-F-F-x-K-L-R-F>.

NAME: Ribosomal protein L30e signature 1.
CONSENSUS: [STA]-x(5)-G-x-[QKR]-x(2)-[LIVM]-[KQT]-x(2)-[KR]-x-G-x(2)-K-x-[LIVM](3).

10 NAME: Ribosomal protein L30e signature 2.
CONSENSUS: [DE]-L-G-[STA]-x(2)-G-[KR]-x(6)-[LIVM]-x-[LIVM]-x-[DEN]-x-G.

15 NAME: Ribosomal protein L31e signature.
CONSENSUS: V-[KR]-[LIVM]-x(3)-[LIVM]-N-x-[AK]-x-W-x-[KR]-G.

NAME: Ribosomal protein L32e signature.
CONSENSUS: F-x-R-x(4)-[KR]-x(2)-[KR]-[LIVM]-x(3)-W-R-[KR]-x(2)-G.

NAME: Ribosomal protein L34e signature.
CONSENSUS: Y-x-[ST]-x-S-[NY]-x(5)-[KR]-T-P-G.

25 NAME: Ribosomal protein L35Ae signature.
CONSENSUS: G-K-[LIVM]-x-R-x-H-G-x(2)-G-x-V-x-A-x-F-x(3)-[LI]-P.

30 NAME: Ribosomal protein L36e signature.
CONSENSUS: P-Y-E-[KR]-R-x-[LIVM]-[DE]-[LIVM](2)-[KR].

NAME: Ribosomal protein L37e signature.
CONSENSUS: G-T-x-[SA]-x-G-x-[KR]-x(3)-[ST]-x(0,1)-H-x(2)-C-x-R-C-G.

35 NAME: Ribosomal protein L39e signature.
CONSENSUS: [KRA]-T-x(3)-[LIVM]-[KRQF]-x-[NHS]-x(3)-R-[NHY]-W-R-R.

40 NAME: Ribosomal protein L44e signature.
CONSENSUS: K-x-[TV]-K-K-x(2)-L-[KR]-x(2)-C.

NAME: Ribosomal protein S2 signature 1.
CONSENSUS: [LIVMFA]-x(2)-[LIVMFYC](2)-x-[STAC]-[GSTANQEKR]-[STALV]-[HY]-[LIVMF]-G.

NAME: Ribosomal protein S2 signature 2.
CONSENSUS: P-x(2)-[LIVMF](2)-[LIVMS]-x-[GDN]-x(3)-[DENL]-x(3)-[LIVM]-x-E-x(4)-
50 CONSENSUS: [GNQKRH]-[LIVM]-[AP].

NAME: Ribosomal protein S3 signature.
CONSENSUS: [GSTA]-[KR]-x(6)-G-x-[LIVMT]-x(2)-[NQSCH]-x(1,3)-[LIVFC]-x(3)-[LIV]-
55 CONSENSUS: [DENQ]-x(?)-[LMT]-x(2)-G-x(2)-G.

NAME: Ribosomal protein S4 signature.

CONSENSUS: [LIVM]-[DE]-x-R-L-x(3)-[LIVMC]-[VMFYHQ]-[KRT]-
x(3)-[STAGCF]-x-[ST]-x(3)-
CONSENSUS: [SAI]-[KRD]-x-[LIVMF](2).

5 NAME: Ribosomal protein S5 signature.
CONSENSUS: G-[KRD]-x(3)-[FY]-x-[ACV]-x(2)-[LIVMA]-[LIVM]-
[AG]-[DN]-x(2)-G-x-
CONSENSUS: [LIVM]-G-x-[SAG]-x(5,6)-[DEQ]-[LIVM]-x(2)-A-
[LIVMF].

10 NAME: Ribosomal protein S6 signature.
CONSENSUS: G-x-[KRC]-[DENQRH]-L-[SA]-Y-x-I-[KRNSA].

NAME: Ribosomal protein S7 signature.
15 CONSENSUS: [DENSK]-x-[LIVMET]-x(3)-[LIVMFT](2)-x(6)-G-K-[KRD]-
x(5)-[LIVMF]-[LIVMFC]-
CONSENSUS: x(2)-[STA].

20 NAME: Ribosomal protein S8 signature.
CONSENSUS: [GE]-x(2)-[LIV](2)-[ESTY]-T-x(2)-G-[LIVM](2)-x(4)-
[AG]-[KRHAYI].

NAME: Ribosomal protein S9 signature.
25 CONSENSUS: G-G-G-x(2)-[GSA]-Q-x(2)-[SA]-x(3)-[GSA]-x-[GSTAV]-
[KRD]-[GSAL]-[LIF].

NAME: Ribosomal protein S10 signature.
30 CONSENSUS: [AV]-x(3)-[GDNSR]-[LIVMSTA]-x(3)-G-P-[LIVM]-x-
[LIVM]-P-T.

NAME: Ribosomal protein S11 signature.
35 CONSENSUS: [LIVMF]-x-[GSTAC]-[LIVMF]-x(2)-[GSTAL]-x(0,1)-
[GSN]-[LIVMF]-x-[LIVM]-
CONSENSUS: x(4)-[DEN]-x-T-P-x-[PA]-[STCH]-[DN].

NAME: Ribosomal protein S12 signature.
40 CONSENSUS: [RK]-x-P-N-S-[AR]-x-R.

NAME: Ribosomal protein S13 signature.
45 CONSENSUS: [KRQS]-G-x-R-H-x(2)-[GSNH]-x(2)-[LIVMC]-R-G-Q.

NAME: Ribosomal protein S14 signature.
CONSENSUS: [RP]-x(0,1)-<-x(11,12)-[LIVMF]-x-[LIVMF]-[SC]-
[RG]-x(3)-[RN].

50 NAME: Ribosomal protein S15 signature.
CONSENSUS: [LIVM]-x(2)-H-[LIVMFY]-x(5)-D-x(2)-[SAGN]-x(3)-
[LF]-x(9)-[LIVM]-x(2)-
CONSENSUS: [FY].

NAME: Ribosomal protein S16 signature.
55 CONSENSUS: [LIVMT]-x-[LIVM]-[KRD]-L-[STAK]-R-x-G-[AKRD].

NAME: Ribosomal protein S17 signature.
CONSENSUS: G-D-x-[LIV]-x-[LIVA]-x-[QEK]-x-[RK]-P-[LIV]-S.

NAME: Ribosomal protein S18 signature.

CONSENSUS: [IIV]-[DY]-Y-x(2)-[LIVMT]-x(2)-[LIVM]-x(2)-[FYT]-
 [LIVM]-[ST]-[DERP]-x-
 CONSENSUS: [GY]-K-[LIVM]-x(3)-R-[LIVMAS].

5 NAME: Ribosomal protein S19 signature.
 CONSENSUS: [STDNQ]-G-[KRQM]-x(b)-[LIVM]-x(4)-[LIVM]-[GS]-
 x(2)-[LF]-[GAS]-[DE]-F-
 CONSENSUS: x(2)-[ST].

10 NAME: Ribosomal protein S21 signature.
 CONSENSUS: [DE]-x-A-[LY]-[KR]-R-F-K-[KR]-x(3)-[KR].

NAME: Ribosomal protein S3Ae signature.
 CONSENSUS: [LIV]-x-[GH]-R-[IV]-x-E-x-[SC]-L-x-D-L.

15 NAME: Ribosomal protein S4e signature.
 CONSENSUS: H-x-K-R-[LIVM]-[SAN]-x-P-x(2)-W-x-[LIVM]-x-[KR].

NAME: Ribosomal protein S6e signature.
 CONSENSUS: [LIVM]-[STAMR]-G-G-x-D-x(2)-G-x-P-M.

NAME: Ribosomal protein S7e signature.
 CONSENSUS: [KR]-L-x-R-E-L-E-K-K-F-[SAP]-x-[KR]-H.

25 NAME: Ribosomal protein S8e signature.
 CONSENSUS: R-x(2)-T-G-[GA]-x(5)-[HR]-K-[KR]-x-K-x-E-[LM]-G.

NAME: Ribosomal protein S12e signature.
 CONSENSUS: A-L-[KRQP]-x-V-L-x(2)-[SA]-x(3)-[DN]-G-L.

30 NAME: Ribosomal protein S17e signature.
 CONSENSUS: A-x-I-x-[ST]-K-x-L-R-N-[KR]-I-A-G-[FY]-x-T-H.

NAME: Ribosomal protein S19e signature.
 CONSENSUS: P-x(b)-[SAN]-x(2)-[LIVMA]-x-R-x-[ALIV]-[LV]-Q-x-L-
 [EQ].

NAME: Ribosomal protein S21e signature.
 CONSENSUS: L-Y-V-P-R-K-C-S-[SA].

40 NAME: Ribosomal protein S24e signature.
 CONSENSUS: [FA]-G-x(2)-[KR]-[STA]-x-G-[FY]-[GA]-x-[LIVM]-Y-
 [DN]-[SN].

45 NAME: Ribosomal protein S26e signature.
 CONSENSUS: [YH]-C-V-S-C-A-I-H.

NAME: Ribosomal protein S27e signature.
 CONSENSUS: [QK]-C-x(2)-C-x(b)-F-[GS]-x-[PSA]-x(5)-C-x(2)-C-
 [GS]-x(2)-L-x(2)-P-x-G.

NAME: Ribosomal protein S28e signature.
 CONSENSUS: E-[ST]-E-R-E-A-R-x-L.

55 NAME: DNA mismatch repair proteins mutL / hexB / PMS1
 signature.
 CONSENSUS: G-F-R-G-E-A-L.

NAME: DNA mismatch repair proteins mutS family signature.
 CONSENSUS: [GST]-[LIVM]-x-[LIVM]-x-D-E-[LIVMY]-[GC]-[RKH]-G-[GST]-x(4)-G.

5 NAME: mutT domain signature.
 CONSENSUS: G-x(5)-E-x(4)-[STAGC]-[LIVMAC]-x-R-E-[LIVMFT]-x-E-E.

10 NAME: DnaA protein signature.
 CONSENSUS: I-[GA]-x(2)-[LIVMF]-[SGDNK]-x(0,1)-[KR]-x-H-[STP]-[STV]-[LIVM](2)-x-
 CONSENSUS: [SA]-x(2)-[KRE]-[LIVM].

15 NAME: Small, acid-soluble spore proteins, alpha/beta type,
 signature 1.
 CONSENSUS: K-x-E-[LIV]-A-x-[DE]-[LIVMF]-G-[LIVMF].

20 NAME: Small, acid-soluble spore proteins, alpha/beta type,
 signature 2.
 CONSENSUS: [KR]-[SAQ]-x-G-x-V-G-G-x-[LIVM]-x-[KR](2)-
 [LIVM](2).

25 NAME: Zinc-containing alcohol dehydrogenases signature.
 CONSENSUS: G-H-E-x(2)-G-x(5)-[GA]-x(2)-[IVSAC].

30 NAME: Quinone oxidoreductase / zeta-crystallin signature.
 CONSENSUS: [GSQ]-[DEQH]-x(2)-L-x(3)-[SA](2)-G-G-x-G-x(4)-Q-
 x(2)-[KR].

35 NAME: Iron-containing alcohol dehydrogenases signature 1.
 CONSENSUS: [STALIV]-[LIVF]-x-[DE]-x(b,?)-P-x(4)-[ALIV]-x-[GST]-x(2)-D-[TAIVM]-
 CONSENSUS: [LIVMF]-x(4)-E.

40 NAME: Iron-containing alcohol dehydrogenases signature 2.
 CONSENSUS: [GSW]-x-[LIVTSACD]-[GH]-x(2)-[GSAE]-[GSHYQ]-x-[LIVTP]-[GAST]-[GAS]-x(3)-
 CONSENSUS: [LIVMT]-x-[HNS]-[GA]-x-[GTAC].

45 NAME: Short-chain dehydrogenases/reductases family
 signature.
 CONSENSUS: [LIVSPADNK]-x(12)-Y-[PSTAGNCV]-[STAGNQCIVM]-
 [STAGC]-K-[PC]-[SAGFR]-
 CONSENSUS: [LIVMSTAGD]-x(2)-[LIVMFYW]-x(3)-[LIVMFYWGAPTHQ]-
 [GSACQRHM].

50 NAME: Aldo/keto reductase family signature 1.
 CONSENSUS: G-[FY]-R-[HSAL]-[LIVMF]-D-[STAGC]-[AS]-x(5)-E-
 x(2)-[LIVM]-G.

NAME: Aldo/keto reductase family signature 2.
 CONSENSUS: [LIVMFY]-x(9)-[KREQ]-x-[LIVM]-G-[LIVM]-[SC]-N-[FY].

55 NAME: Aldo/keto reductase family putative active site
 signature.
 CONSENSUS: [LIVM]-[PAIV]-[KRD]-[ST]-x(4)-R-x(2)-[GSTAEQK]-
 [NSL]-x(2)-[LIVMFA].

NAME: Homoserine dehydrogenase signature.
 CONSENSUS: A-x(3)-G-[LIVMFY]-[STAG]-x(2,3)-[DNS]-P-x(2)-D-[LIVM]-x-G-x-D-x(3)-K.

5 NAME: NAD-dependent glycerol-3-phosphate dehydrogenase signature.
 CONSENSUS: G-[AT]-[LIVM]-K-[DN]-[LIVM](2)-A-x-[GA]-x-G-[LIVMF]-x-[DE]-G-[LIVM]-x-

10 CONSENSUS: [LIVMFYW]-G-x-N.

NAME: FAD-dependent glycerol-3-phosphate dehydrogenase signature 1.
 CONSENSUS: [IV]-G-G-G-x(2)-G-[STACV]-G-x-A-x-D-x(3)-R-G.

15 NAME: FAD-dependent glycerol-3-phosphate dehydrogenase signature 2.
 CONSENSUS: G-G-K-x(2)-[GSTE]-Y-R-x(2)-A.

20 NAME: Mannitol dehydrogenases signature.
 CONSENSUS: [LIVMY]-x-[FS]-x(2)-[STAGCV]-x-V-D-R-[IV]-x-[PS].

NAME: Histidinol dehydrogenase signature.
 CONSENSUS: I-D-x(2)-A-G-P-[ST]-E-[LIVS]-[LIVMA](3)-[AC]-x(3)-
 25 A-x(4)-[LIVM]-[AV]-
 CONSENSUS: [SACL]-[DE]-[LIVMFC]-[LIVM]-[SA]-x(2)-E-H.

NAME: L-lactate dehydrogenase active site.
 CONSENSUS: [LIVMA]-G-[EQ]-H-G-[DN]-[ST].

30 NAME: D-isomer specific 2-hydroxyacid dehydrogenases NAD-binding signature.
 CONSENSUS: [LIVMA]-[AG]-[IVT]-[LIVMFY]-[AG]-x-G-[NHKRQGSAC]-
 [LIV]-G-x(13,14)-
 35 CONSENSUS: [LIVfMT]-x(2)-[FYwCTH]-[DNSTK].

NAME: D-isomer specific 2-hydroxyacid dehydrogenases signature 2.
 CONSENSUS: [LIVMFYW]-[LIVFYWC]-x(2)-[SAC]-[DNQHR]-[IVFA]-
 40 [LIVF]-x-[LIVF]-[HN]-x-
 CONSENSUS: P-x(4)-[STN]-x(2)-[LIVMF]-x-[GSDN].

NAME: D-isomer specific 2-hydroxyacid dehydrogenases signature 3.
 CONSENSUS: [LMFATC]-[KPQ]-x-[GSTDN]-x-[LIVMFYWR]-
 [LIVMFYW](2)-N-x-[STAG]-R-[GP]-x-
 CONSENSUS: [LIVH]-[LIVMC]-[DNV].

50 NAME: 3-hydroxyisobutyrate dehydrogenase signature.
 CONSENSUS: [LIVMFY](2)-G-L-G-x-[MQ]-G-x-[PGS]-[MA]-[SA].

NAME: Hydroxymethylglutaryl-coenzyme A reductases signature 1.
 CONSENSUS: [RKH]-x(b)-D-x-M-G-x-N-x-[LIVMA].

55 NAME: Hydroxymethylglutaryl-coenzyme A reductases signature 2.
 CONSENSUS: [LIVM]-G-x-[LIVM]-G-G-[AG]-T.

NAME: Hydroxymethylglutaryl-coenzyme A reductases signature
3.
CONSENSUS: A-[LIVM]-x-[STAN]-x(2)-[LI]-x-[KRNQ]-[GSA]-H-[LM]-
5 x-[FYLH].

NAME: Hydroxymethylglutaryl-coenzyme A reductases profile.

NAME: 3-hydroxyacyl-CoA dehydrogenase signature.
10 CONSENSUS: [DNE]-x(2)-[GA]-F-[LIVMFY]-x-[NT]-R-x(3)-[PA]-
[LIVMFY](2)-x(5)-
CONSENSUS: [LIVMFYCT]-[LIVMFY]-x(2)-[GV].

NAME: Malate dehydrogenase active site signature.
15 CONSENSUS: [LIVM]-T-[TRKMN]-L-D-x(2)-R-[STA]-x(3)-[LIVMFY].

NAME: Malic enzymes signature.
CONSENSUS: F-x-[DV]-D-x(2)-G-T-[GSA]-x-[IV]-x-[LIVMA]-
20 [GAST](2)-[LIVMF](2).

NAME: Isocitrate and isopropylmalate dehydrogenases
signature.
CONSENSUS: [NS]-[LIMYT]-[FYDN]-G-[DNT]-[IMVY]-x-[STGDN]-[DN]-
25 x(2)-[SGAP]-x(3,4)-G-
CONSENSUS: [STG]-[LIVMPA]-G-[LIVMF].

NAME: L-phosphogluconate dehydrogenase signature.
CONSENSUS: [LIVM]-x-D-x(2)-[GA]-[NQS]-K-G-T-G-x-W.

30 NAME: Glucose-L-phosphate dehydrogenase active site.
CONSENSUS: D-H-Y-L-G-K-[EOK].

NAME: IMP dehydrogenase / GMP reductase signature.
CONSENSUS: [LIVM]-[RK]-[LIVM]-G-[LIVM]-G-x-G-S-[LIVM]-C-x-T.

35 NAME: Bacterial quinoprotein dehydrogenases signature 1.
CONSENSUS: [DEN]-W-x(3)-G-[RK]-x(L)-[FYW]-S-x(4)-[LIVM]-N-
x(2)-N-V-x(2)-L-[RK].

40 NAME: Bacterial quinoprotein dehydrogenases signature 2.
CONSENSUS: W-x(4)-Y-D-x(3)-[DN]-[LIVMFY](4)-x(2)-G-x(2)-
[STA]-P.

45 NAME: FMN-dependent alpha-hydroxy acid dehydrogenases active
site.
CONSENSUS: S-N-H-G-[AG]-R-Q.

NAME: GMC oxidoreductases signature 1.
CONSENSUS: [GA]-[RKN]-x-[LIV]-G(2)-[GST](2)-x-[LIVM]-N-x(3)-
50 [FYWA]-x(2)-[PAG]-x(5)-
CONSENSUS: [DNESH].

NAME: GMC oxidoreductases signature 2.
CONSENSUS: [GS]-[PSTA]-x(2)-[ST]-P-x-[LIVM](2)-x(2)-S-G-
55 [LIVM]-G.

NAME: Eukaryotic molybdopterin oxidoreductases signature.

CONSENSUS: [EGL]-x-(3)-[KRNQHT]-x-(11,14)-[LIVMFYW]-x-(8)-
 [LIVMF]-x-C-x(2)-[DEN]-R-
 CONSENSUS: x(2)-[DE].

5 NAME: Prokaryotic molybdopterin oxidoreductases signature 1.
 CONSENSUS: [SSTAN]-x-[CH]-x-(2,3)-C-[STAG]-[GSTVMF]-x-C-x-
 [LIVMFYW]-x-[LIVMA]-x-(3,4)-
 CONSENSUS: [DENQKHT].

10 NAME: Prokaryotic molybdopterin oxidoreductases signature 2.
 CONSENSUS: [SSTA]-x-[STAC](2)-x(2)-[STA]-D-[LIVMY](2)-L-P-x-
 [STAC](2)-x(2)-E.

15 NAME: Prokaryotic molybdopterin oxidoreductases signature 3.
 CONSENSUS: A-x(3)-[GDT]-I-x-[DNQTK]-x-[DEA]-x-[LIVM]-x-
 [LIVMC]-x-[NS]-x(2)-[GS]-
 CONSENSUS: x(5)-A-x-[LIVM]-[ST].

20 NAME: Aldehyde dehydrogenases glutamic acid active site.
 CONSENSUS: [LIVMFGA]-E-[LIMSTAC]-[GS]-G-[KNLM]-[SADN]-
 [TAPFV].

25 NAME: Aldehyde dehydrogenases cysteine active site.
 CONSENSUS: [FYLVAA]-x(3)-G-[QE]-x-C-[LIVMGSTANC]-[AGCN]-x-
 [GSTADNEKR].

30 NAME: Aspartate-semialdehyde dehydrogenase signature.
 CONSENSUS: [LIVM]-[SADN]-x(2)-C-x-R-[LIVM]-x(4)-[GSC]-H-
 [STA].

35 NAME: Glyceraldehyde 3-phosphate dehydrogenase active site.
 CONSENSUS: [EASV]-S-C-[NT]-T-x(2)-[LIM].

40 NAME: N-acetyl-gamma-glutamyl-phosphate reductase active
 site.
 CONSENSUS: [LIVM]-[GSA]-x-P-G-C-[FY]-[AVP]-T-[GA]-x(3)-
 [GTAC]-[LIVM]-x-P.

45 NAME: Gamma-glutamyl phosphate reductase signature.
 CONSENSUS: V-x(5)-A-[LIV]-x-H-I-x(2)-[HY]-[GS]-[ST]-x-H-[ST]-
 [DE]-x-I.

50 NAME: Dihydrodipicolinate reductase signature.
 CONSENSUS: E-[IV]-x-E-x-H-x(3)-K-x-D-x-P-S-G-T-A.

55 NAME: Dihydroorotate dehydrogenase signature 1.
 CONSENSUS: [GS]-x(4)-[GK]-[STA]-[IVSTA]-[GT]-x(3)-[NQR]-x-G-
 [NH]-x(2)-P-[ERT].

55 NAME: Dihydroorotate dehydrogenase signature 2.
 CONSENSUS: [LIV](2)-[GSA]-x-G-G-[IV]-x-[STGN]-x(3)-[ACV]-
 x(6)-G-A.

55 NAME: Coproporphyrinogen III oxidase signature.
 CONSENSUS: K-x-W-C-x(2)-[FYH](3)-[LIVM]-x-H-R-x-E-x-R-G-
 [LIVM]-G-G-[LIVM]-F-F-D.

NAME: Fumarate reductase / succinate dehydrogenase FAD-binding site.

CONSENSUS: R-[ST]-H-[ST]-x(2)-A-x-G-G.

5 NAME: Acyl-CoA dehydrogenases signature 1.

CONSENSUS: [GAC]-[LIVM]-[ST]-E-x(2)-[GSAN]-G-[ST]-D-x(2)-[GSA].

NAME: Acyl-CoA dehydrogenases signature 2.

10 CONSENSUS: [QDE]-x(2)-G-[GS]-x-G-[LIVMFY]-x(2)-[DEN]-x(4)-[KR]-x(3)-[DEN].

NAME: Alanine dehydrogenase & pyridine nucleotide transhydrogenase signature 1.

15 CONSENSUS: G-[LIVM]-P-x-E-x(3)-N-E-x(1,3)-R-V-A-x-[ST]-P-x-[GST]-V-x(2)-L-x-[KRH]-

CONSENSUS: x-G.

20 NAME: Alanine dehydrogenase & pyridine nucleotide transhydrogenase signature 2.

CONSENSUS: [LIVM](2)-G-[GA]-G-x-A-G-x(2)-[SA]-x(3)-[GA]-x-[SG]-[LIVM]-G-A-x-V-

CONSENSUS: x(3)-D.

25 NAME: Glu / Leu / Phe / Val dehydrogenases active site.

CONSENSUS: [LIV]-x(2)-G-G-[SAG]-K-x-[GV]-x(3)-[DNST]-[PL].

NAME: D-amino acid oxidases signature.

CONSENSUS: [LIVM](2)-H-[NHA]-Y-G-x-[GSA](2)-x-G-x(5)-G-x-A-

30 NAME: Pyridoxamine 5'-phosphate oxidase signature.

CONSENSUS: [LIVF]-E-F-W-[QHG]-x(4)-R-[LIVM]-H-[DNE]-R.

NAME: Copper amine oxidase topaquinone signature.

35 CONSENSUS: [LIVM]-[LIVMA]-[LIVM]-x(4)-T-x(2)-N-Y-[DE]-[YN].

NAME: Copper amine oxidase copper-binding site signature.

CONSENSUS: T-x-G-x(2)-H-[LIVMF]-x(3)-E-[DE]-x-P.

40 NAME: Lysyl oxidase putative copper-binding region signature.

CONSENSUS: W-E-W-H-S-C-H-Q-H-Y-H.

NAME: Delta 1-pyrroline-5-carboxylate reductase signature.

45 CONSENSUS: [PALF]-x(2,3)-[LIV]-x(3)-[LIVM]-[STAC]-[STV]-x-[GAN]-G-x-T-x(2)-[AG]-

CONSENSUS: [LIV]-x(2)-[LMF]-[DENQK].

NAME: Dihydrofolate reductase signature.

50 CONSENSUS: [LVAGC]-[LIF]-G-x(4)-[LIVMF]-P-W-x(4,5)-[DE]-x(3)-[FYIV]-x(3)-[STIQ].

NAME: Tetrahydrofolate dehydrogenase/cyclohydrolase signature 1.

55 CONSENSUS: [EQ]-x-[EQK]-[LIVM](2)-x(2)-[LIVM]-x(2)-[LIVMY]-N-

CONSENSUS: x-[DN]-x(5)-[LIVMF](3)-

CONSENSUS: Q-L-P-[LV].

NAME: Tetrahydrofolate dehydrogenase/cyclohydrolase
 signature 2.
 CONSENSUS: P-G-G-V-G-P-[MF]-T-[IV].

5 NAME: Oxygen oxidoreductases covalent FAD-binding site.
 CONSENSUS: P-x(10)-[DE]-[LIVM]-x(3)-[LIVM]-x(9)-[LIVM]-x(3)-
 [GSA]-[GST]-G-H.

10 NAME: Pyridine nucleotide-disulphide oxidoreductases class-I
 active site.
 CONSENSUS: G-G-x-C-[LIVA]-x(2)-G-C-[LIVM]-P.

15 NAME: Pyridine nucleotide-disulphide oxidoreductases class-II active site.
 CONSENSUS: C-x(2)-C-D-[GA]-x(2-4)-[FY]-x(4)-[LIVM]-x-[LIVM](2)-G(3)-[DN].

20 NAME: Respiratory-chain NADH dehydrogenase subunit 1
 signature 1.
 CONSENSUS: G-[LIVMFYKRS]-[LIVMAGP]-Q-x-[LIVMFY]-x-D-[AGIM]-
 [LIVMFTA]-K-[LVMYST]-
 CONSENSUS: [LIVMFYG]-x-[KR]-[EQG].

25 NAME: Respiratory-chain NADH dehydrogenase subunit 1
 signature 2.
 CONSENSUS: P-F-D-[LIVMFYQ]-[STAGPVM]-E-[GAC]-E-x-[EQ]-
 [LIVMS]-x(2)-G.

30 NAME: Respiratory-chain NADH dehydrogenase 20 Kd subunit
 signature.
 CONSENSUS: [GN]-x-D-[KRST]-[LIVMF](2)-P-[IV]-D-[LIVMFYW](2)-
 x-P-x-C-P-[PT].

35 NAME: Respiratory-chain NADH dehydrogenase 24 Kd subunit
 signature.
 CONSENSUS: D-x(2)-F-[ST]-x(5)-C-L-G-x-C-x(2)-[GA]-P.

40 NAME: Respiratory chain NADH dehydrogenase 30 Kd subunit
 signature.
 CONSENSUS: E-R-E-x(2)-[DE]-[LIVMF](2)-x(6)-[HK]-x(3)-[KRP]-x-[LIVM]-[LIVMS].

45 NAME: Respiratory chain NADH dehydrogenase 49 Kd subunit
 signature.
 CONSENSUS: [LIVMH]-H-[RT]-[GA]-x-E-K-[LIVMT]-x-E-x-[KRQ].

50 NAME: Respiratory-chain NADH dehydrogenase 51 Kd subunit
 signature 1.
 CONSENSUS: G-[AM]-G-[AR]-Y-[LIVM]-C-G-[DE](2)-[STA](2)-
 [LIM](2)-[EN]-S.

55 NAME: Respiratory-chain NADH dehydrogenase 51 Kd subunit
 signature 2.
 CONSENSUS: E-S-C-G-x-C-x-P-C-R-x-G.

NAME: Respiratory-chain NADH dehydrogenase 75 Kd subunit
 signature 1.
 CONSENSUS: P-x(2)-C-[YW]-x(7)-G-x-C-R-x-C.

- NAME: Respiratory-chain NADH dehydrogenase 75 Kd subunit
signature 2.
CONSENSUS: C-P-x-C-[DE]-x-[GS](2)-x-C-x-L-Q.
- 5 NAME: Respiratory-chain NADH dehydrogenase 75 Kd subunit
signature 3.
CONSENSUS: R-C-[LIVM]-x-C-x-R-C-[LIVM]-x-[FY].
- 10 NAME: Nitrite and sulfite reductases iron-sulfur/siroheme-
binding site.
CONSENSUS: [STV]-G-C-x(3)-C-x(b)-[DE]-[LIVMF]-[GAT]-[LIVMF].
- 15 NAME: Uricase signature.
CONSENSUS: L-x-[LV]-L-K-[ST]-T-x-S-x-F-x(2)-[FY]-x(4)-[FY].
- 20 NAME: Heme-copper oxidase catalytic subunit, copper B
binding region signature.
CONSENSUS: [YWG]-[LIVFYWTB](2)-[VGS]-H-[LNP]-x-V-x(44,47)-H-
H.
- 25 NAME: CO II and nitrous oxide reductase dinuclear copper
centers signature.
CONSENSUS: V-x-H-x(33,40)-C-x(3)-C-x(3)-H-x(2)-M.
- 30 NAME: Cytochrome c oxidase subunit Vb, zinc binding region
signature.
CONSENSUS: [LIVM](2)-[FYW]-x(10)-C-x(2)-C-G-x(2)-[FY]-K-L.
- 35 NAME: Multicopper oxidases signature 1.
CONSENSUS: G-x-[FYW]-x-[LIVMFYW]-x-[CST]-x(8)-G-[LM]-x(3)-
[LIVMFYW].
- 40 NAME: Multicopper oxidases signature 2.
CONSENSUS: H-C-H-x(3)-H-x(3)-[AG]-[LM].
- 45 NAME: Peroxidases proximal heme-ligand signature.
CONSENSUS: [DET]-[LIVMTA]-x(2)-[LIVM]-[LIVMSTAG]-[SAG]-
[LIVMSTAG]-H-[STA]-[LIVMFY].
- 50 NAME: Peroxidases active site signature.
CONSENSUS: [SGATV]-x(3)-[LIVMA]-R-[LIVMA]-x-[FW]-H-x-[SAC].
- 55 NAME: Catalase proximal heme-ligand signature.
CONSENSUS: R-[LIVMFSTAN]-F-[GASTNP]-Y-x-D-[AST]-[QEH].
- NAME: Catalase proximal active site signature.
CONSENSUS: [IF]-x-[RH]-x(4)-[EQ]-R-x(2)-H-x(2)-[GAS]-[GASTF]-
[GAST].
- NAME: Glutathione peroxidases selenocysteine active site.
CONSENSUS: [GN]-[RKHNFYC]-x-[LIVMFC]-[LIVMF](2)-x-N-[VT]-x-
[STC]-x-C-[GA]-x-T.
- NAME: Glutathione peroxidases signature 2.
CONSENSUS: [LIV]-[AGD]-F-P-[CS]-[NG]-Q-F.
- NAME: Lipoxygenases iron-binding region signature 1.

CONSENSUS: H-[EQ]-x(3)-H-x-[LM]-[NQRC]-[GST]-H-[LIVMSTAC](3)-E.

NAME: Lipoxygenases iron-binding region signature 2.
5 CONSENSUS: [LIVMA]-H-P-[LIVM]-x-[KRQ]-[LIVMF](2)-x-[AP]-H.

NAME: Extradiol ring-cleavage dioxygenases signature-
CONSENSUS: [GNTIV]-x-H-x(5,7)-[LIVMF]-Y-x(2)-[DENTA]-P-x-
[GP]-x(2,3)-E.

10 NAME: Intradiol ring-cleavage dioxygenases signature-
CONSENSUS: [LIVM]-x-G-x-[LIVM]-x(4)-[GS]-x(2)-[LIVM]-x(4)-
[LIVM]-[DE]-[LIVMFY]-
CONSENSUS: x(b)-G-x-[FY].

15 NAME: Indoleamine 2,3-dioxygenase signature 1.
CONSENSUS: G-G-S-[AN]-[GA]-Q-S-S-x(2)-Q.

NAME: Indoleamine 2,3-dioxygenase signature 2.
20 CONSENSUS: [FY]-L-[DQ]-[DE]-[LIVM]-x(2)-Y-M-x(3)-H-[KR].

NAME: Bacterial ring hydroxylating dioxygenases alpha-
subunit signature.
CONSENSUS: C-x-H-R-[GA]-x(8)-G-N-x(5)-C-x-[FY]-H.

25 NAME: Bacterial luciferase subunits signature.
CONSENSUS: [GA]-[LIVM]-P-[LIVM]-x-[LIVMFY]-x-W-x(b)-[RK]-
x(b)-Y-x(3)-[AR].

30 NAME: ubiH/C0Qb monooxygenase family signature.
CONSENSUS: H-P-[LIV]-[AG]-G-Q-G-x-N-x-G-x(2)-D.

NAME: Biopterin-dependent aromatic amino acid hydroxylases
signature.
35 CONSENSUS: P-D-x(2)-H-[DE]-[LI]-[LIVMF]-G-H-[LIVMC]-P.

NAME: Copper type II, ascorbate-dependent monooxygenases
signature 1.
CONSENSUS: H-H-M-x(2)-F-x-C.

40 NAME: Copper type II, ascorbate-dependent monooxygenases
signature 2.
CONSENSUS: H-x-F-x(4)-H-T-H-x(2)-G.

45 NAME: Tyrosinase CuA-binding region signature.
CONSENSUS: H-x(4,5)-F-[LIVMFTP]-x-[FW]-H-R-x(2)-[LM]-x(3)-E.

NAME: Tyrosinase and hemocyanins CuB-binding region
signature.
50 CONSENSUS: D-P-x-F-[LIVMFYW]-x(2)-H-x(3)-D.

NAME: Fatty acid desaturases family 1 signature.
CONSENSUS: G-E-x-[FY]-H-N-[FY]-H-H-x-F-P-x-D-Y.

55 NAME: Fatty acid desaturases family 2 signature.
CONSENSUS: [ST]-[SA]-x(3)-[QR]-[LI]-x(5,b)-D-Y-x(2)-
[LIVMFYW]-[LIVM]-[DE].

NAME: Cytochrome P450 cysteine heme-iron ligand signature.
 CONSENSUS: $\text{[FW]}-\text{[SGNH]}-\text{x}-\text{[GD]}-\text{x}-\text{[RHPT]}-\text{x}-\text{C}-\text{[LIVMFAP]}-\text{[GAD]}$.

5 NAME: Heme oxygenase signature.
 CONSENSUS: L-L-V-A-H-A-Y-T-R .

NAME: Copper/Zinc superoxide dismutase signature 1.
 CONSENSUS: $\text{[GA]}-\text{[IFAT]}-\text{H}-\text{[LIVF]}-\text{H-x(2)}-\text{[GP]}-\text{[SDG]}-\text{x}-\text{[STAGD]}$.

10 NAME: Copper/Zinc superoxide dismutase signature 2.
 CONSENSUS: $\text{G}-\text{[GN]}-\text{[ESGA]}-\text{G-x-R-x}-\text{[SGA]}-\text{-x(2)}-\text{[IV]}$.

NAME: Manganese and iron superoxide dismutases signature.
 CONSENSUS: $\text{D-x-W-E-H-[STA]-[FY](2)}$.

15 NAME: Ribonucleotide reductase large subunit signature.
 CONSENSUS: $\text{W-x(2)}-\text{[LF]}-\text{x(6,7)}-\text{G}-\text{[LIVM]}-\text{[FYRA]}-\text{[NH]}-\text{x(3)}-\text{[STAQLIVM]}-\text{[ASC]}-\text{x(2)}-\text{[PA]}$.
 CONSENSUS: [PA] .

20 NAME: Ribonucleotide reductase small subunit signature.
 CONSENSUS: $\text{[IVMSEQ]}-\text{E-x(1,2)}-\text{[LIVTA]}-\text{[HY]}-\text{[GSQ]}-\text{x}-\text{[STAVM]}-\text{Y}-\text{x(2)}-\text{[LIVMQ]}-\text{x(3)}-\text{[LIFY]}-\text{[IVFYCSA]}$.
 CONSENSUS: $\text{[LIFY]}-\text{[IVFYCSA]}$.

25 NAME: Nitrogenases component 1 alpha and beta subunits signature 1.
 CONSENSUS: $\text{[LIVMFYH]}-\text{[LIVMFST]}-\text{H}-\text{[AG]}-\text{[AGSP]}-\text{[LIVMNQA]}-\text{[AG]}-\text{C}$.

30 NAME: Nitrogenases component 1 alpha and beta subunits signature 2.
 CONSENSUS: $\text{[STANQ]}-\text{[ET]}-\text{C-x(5)-G-D-[DN]}-\text{[LIVMT]}-\text{x-[STAGR]}-\text{[LIVMFYST]}$.

35 NAME: NifH/frxC family signature 1.
 CONSENSUS: $\text{E-x-G-G-P-x(2)}-\text{[GA]}-\text{x-G-C-[AG]}-\text{G}$.

40 NAME: NifH/frxC family signature 2.
 CONSENSUS: $\text{D-x-L-G-D-V-V-C-G-G-F-[AG]}-\text{x-P}$.

NAME: Nickel-dependent hydrogenases large subunit signature 1.
 CONSENSUS: $\text{R-G-[LIVMF]}-\text{E-x(15)}-\text{[QESM]}-\text{R-x-C-G-[LIVM]}-\text{C}$.

45 NAME: Nickel-dependent hydrogenases large subunit signature 2.
 CONSENSUS: $\text{[FY]}-\text{D-P-C-[LIM]}-\text{[ASG]}-\text{C-x(2,3)-H}$.

50 NAME: Glutamyl-tRNA reductase signature.
 CONSENSUS: $\text{H-[LIVM]}-\text{x(2)}-\text{[LIVM]}-\text{[GSTAC]}-\text{(3)}-\text{[LIVM]}-\text{[DEQ]}-\text{S}-\text{[LIVMA]}-\text{[LIVM]}-\text{(2)}-\text{[GF]}-\text{E}$.
 CONSENSUS: $\text{x-[QR]}-\text{[IV]}-\text{[LIT]}-\text{[STAG]}-\text{Q-[LIVM]}-\text{[KR]}$.

55 NAME: Bacterial-type phytoene dehydrogenase signature.
 CONSENSUS: $\text{[NG]}-\text{x-[FYWV]}-\text{[LIVMF]}-\text{x-G-[AGC]}-\text{[GS]}-\text{[TA]}-\text{[HQQT]}-\text{P-G-[STAV]}-\text{G-[LIVM]}-$
 CONSENSUS: x(5)-[GS] .

- NAME: Glycine radical signature.
 CONSENSUS: [[STIV]]-x-R-[[IVT]]-[[CSA]]-G-Y-x-[[GACV]].
- 5 NAME: Ergosterol biosynthesis ERG4/ERG24 family signature 1.
 CONSENSUS: G-x(2)-[[LIVM]]-Y-D-x-[[FY]]-x-G-x(2)-L-N-P-R.
- NAME: Ergosterol biosynthesis ERG4/ERG24 family signature 2.
 CONSENSUS: [[LIVM]](2)-H-R-x(2)-R-D-x(3)-C-x(2)-K-Y-G.
- 10 NAME: NNMT/PNMT/TEMT family of methyltransferases signature.
 CONSENSUS: L-I-D-I-G-S-G-P-T-[[IV]]-Y-Q-L-L-S-A-C.
- NAME: RNA methyltransferase trmA family signature 1.
 CONSENSUS: [[DN]]-P-[[PA]]-R-x-G-x(14,16)-[[LIVM]](2)-Y-x-S-C-N-x(2)-T.
- 15 NAME: RNA methyltransferase trmA family signature 2.
 CONSENSUS: [[LIVMF]]-D-x-F-P-[[QHY]]-[[ST]]-x-H-[[LIVMFY]]-E.
- 20 NAME: Thymidylate synthase active site.
 CONSENSUS: R-x(2)-[[LIVM]]-x(3)-[[FW]]-[[QN]]-x(8,9)-[[LV]]-x-P-C-
 [[HAVM]]-x(3)-[[QMT]]-[[FYW]]-
 CONSENSUS: x-[[LV]].
- 25 NAME: Ribosomal RNA adenine dimethylases signature.
 CONSENSUS: [[LIVM]]-[[LIVMFY]]-[[DE]]-x-G-[[STAPV]]-G-x-[[GA]]-x-
 [[LIVMF]]-[[ST]]-x(2)-[[LIVM]]-
 CONSENSUS: x(6)-[[LIVMY]]-x-[[STAGV]]-[[LIVMFYHC]]-E-x-D.
- 30 NAME: Methylated-DNA--protein-cysteine methyltransferase
 active site.
 CONSENSUS: [[LIVMF]]-P-C-H-R-[[LIVMF]](2).
- 35 NAME: N-6 Adenine-specific DNA methylases signature.
 CONSENSUS: [[LIVMAC]]-[[LIVFYWA]]-x-[[DN]]-P-P-[[FYW]].
- NAME: N-4 cytosine-specific DNA methylases signature.
 CONSENSUS: [[LIVMF]]-T-S-P-P-[[FY]].
- 40 NAME: C-5 cytosine-specific DNA methylases active site.
 CONSENSUS: [[DENKS]]-x-[[FLIV]]-x(2)-[[GSTC]]-x-P-C-x(2)-[[FYWLIM]]-
 S.
- 45 NAME: C-5 cytosine-specific DNA methylases C-terminal
 signature.
 CONSENSUS: [[RKQGTF]]-x(2)-G-N-[[STAG]]-[[LIVMF]]-x(3)-[[LIVMT]]-
 x(3)-[[LIVM]]-x(3)-[[LIVM]].
- 50 NAME: Protein-L-isoaspartate(D-aspartate) O-
 methyltransferase signature.
 CONSENSUS: [[GSA]]-D-G-x(2)-G-[[FYWV]]-x(3)-[[AS]]-P-[[FY]]-[[DN]]-x-I.
- 55 NAME: Uroporphyrin-III C-methyltransferase signature 1.
 CONSENSUS: [[LIVM]]-[[GS]]-[[STAL]]-G-P-G-x(3)-[[LIVMFY]]-[[LIVM]]-T-
 [[LIVM]]-[[KRHQG]]-[[AG]].
- NAME: Uroporphyrin-III C-methyltransferase signature 2.

CONSENSUS: V-x(2)-[LI]-x(2)-G-D-x(3)-[FYW]-[GS]-x(8)-[LIVF]-
x(5,b)-[LIVMFYWPAC]-
CONSENSUS: x-[LIVMY]-x-P-G.

5 NAME: ubiE/C0Q5 methyltransferase family signature 1.
CONSENSUS: Y-D-x-M-N-x(2)-[LIVM]-S-x(3)-H-x(2)-W.

NAME: ubiE/C0Q5 methyltransferase family signature 2.
CONSENSUS: R-V-[LIVM]-K-[PV]-G-G-x-[LIVMF]-x(2)-[LIVM]-E-x-S.

10 NAME: Serine hydroxymethyltransferase pyridoxal-phosphate
attachment site.
CONSENSUS: [DEH]-[LIVMFY]-x-[STMVI]-[GST]-[ST](2)-H-K-[ST]-
[LF]-x-G-[PAC]-[RQ]-
15 CONSENSUS: [GSA]-[GA].

NAME: Phosphoribosylglycinamide formyltransferase active
site.
CONSENSUS: G-x-[STM]-[IVT]-x-[FYWVQ]-[VMAT]-x-[DEVMI]-x-
20 [LIVMY]-D-x-G-x(2)-[LIVT]-
CONSENSUS: x(b)-[LIVM].

NAME: Aspartate and ornithine carbamoyltransferases
signature.
25 CONSENSUS: F-x-[EK]-x-S-[GT]-R-T.

NAME: Transketolase signature 1.
CONSENSUS: R-x(3)-[LIVMTA]-[DENQSTHKF]-x(5,b)-[GSN]-G-H-
[PLIVMF]-[GSTA]-x(2)-
30 CONSENSUS: [LIMC]-[GS].

NAME: Transketolase signature 2.
CONSENSUS: G-[DEQGSA]-[DN]-G-[PAEQ]-[ST]-[HQ]-x-[PAGM]-
[LIVMYAC]-[DEFYW]-x(2)-
35 CONSENSUS: [STAP]-x(2)-[RGA].

NAME: Transaldolase signature 1.
CONSENSUS: [DG]-[IVSA]-T-[ST]-N-P-[STA]-[LIVMF](2).

40 NAME: Transaldolase active site.
CONSENSUS: [LIVM]-x-[LIVM]-K-[LIVM]-[PAS]-x-[ST]-x-[DENQPAS]-
G-[LIVM]-x-[AGV]-x-
CONSENSUS: [QEKRST]-x-[LIVM].

45 NAME: Acyltransferases ChoActase / COT / CPT family
signature 1.
CONSENSUS: [LI]-P-x-[LVP]-P-[IVTA]-P-x-[LIVM]-x-[DENQAS]-
[ST]-[LIVM]-x(2)-[LY].

50 NAME: Acyltransferases ChoActase / COT / CPT family
signature 2.
CONSENSUS: R-[FYW]-x-[DA]-[KA]-x(0,1)-[LIVMFY]-x-[LIVMFY](2)-
x(3)-[DNS]-[GSA]-x(b)-
CONSENSUS: [DE]-[HS]-x(3)-[DE]-[GA].

55 NAME: Thiolases acyl-enzyme intermediate signature.
CONSENSUS: [LIVM]-[NST]-x(2)-C-[SAGLI]-[ST]-[SAG]-[LIVMFYNS]-
x-[STAG]-[LIVM]-x(b)-

CONSENSUS: [LIVM].

NAME: Thiolases signature 2.
 CONSENSUS: N-x(2)-G-G-x-[LIVM]-[SA]-x-G-H-P-x-G-x-[ST]-G.

5 NAME: Thiolases active site.
 CONSENSUS: [AG]-[LIVMA]-[STAGLIVM]-[STAG]-[LIVMA]-C-x-[AG]-x-[AG]-x-[AG]-x-[SAG].

10 NAME: Chloramphenicol acetyltransferase active site.
 CONSENSUS: Q-[LIV]-H-H-[SA]-x(2)-D-G-[FY]-H.

 NAME: Hexapeptide-repeat containing-transferases signature.
 CONSENSUS: [LIV]-[GAED]-x(2)-[STAV]-x-[LIV]-x(3)-[LIVAC]-x-[LIV]-[GAED]-x(2)-
 15 CONSENSUS: [STAVR]-x-[LIV]-[GAED]-x(2)-[STAV]-x-[LIV]-x(3)-[LIV].

20 NAME: Beta-ketoacyl synthases active site.
 CONSENSUS: G-x(4)-[LIVMFAP]-x(2)-[AGC]-C-[STA](2)-[STAG]-x(3)-[LIVMF].

 NAME: Chalcone and stilbene synthases active site.
 CONSENSUS: R-[LIVMFYS]-x-[LIVM]-x-[QHG]-x-G-C-[FYNA]-[GA]-G-[GA]-[STAV]-x-[LIVMF]-
 25 CONSENSUS: [RA].

30 NAME: Myristoyl-CoA:protein N-myristoyltransferase signature 1.
 CONSENSUS: E-I-N-F-L-C-x-H-K.

 NAME: Myristoyl-CoA:protein N-myristoyltransferase signature 2.
 CONSENSUS: K-F-G-x-G-D-G.

35 NAME: Gamma-glutamyltranspeptidase signature.
 CONSENSUS: T-[STA]-H-x-[ST]-[LIVMA]-x(4)-G-[SN]-x-V-[STA]-x-T-x-T-[LIVM]-[NE]-
 CONSENSUS: x(1,2)-[FY]-G.

40 NAME: Transglutaminases active site.
 CONSENSUS: [GT]-Q-[CA]-W-V-x-[SA]-[GA]-[IVT]-x(2)-T-x-[LMSC]-R-[CSA]-[LV]-G.

45 NAME: Phosphorylase pyridoxal-phosphate attachment site.
 CONSENSUS: E-A-[SC]-G-x-[GS]-x-M-K-x(2)-[LM]-N.

 NAME: UDP-glycosyltransferases signature.
 CONSENSUS: [FW]-x(2)-Q-x(2)-[LIVMYA]-[LIMV]-x(4,6)-[LVGAC]-
 50 [LVFYA]-[LIVMF]-[STAGCM]-
 CONSENSUS: [HNQ]-[STAGC]-G-x(2)-[STAG]-x(3)-[STAGL]-[LIVMFA]-
 x(4)-[PQR]-[LIVMT]-
 CONSENSUS: x(3)-[PA]-x(3)-[DES]-[QEHN].

55 NAME: Purine/pyrimidine phosphoribosyl transferases signature.
 CONSENSUS: [LIVMFYWCTA]-[LIVM]-[LIVMA]-[LIVMFC]-[DE]-D-[LIVMSI]-[LIVM]-[STAVD]-

CONSENSUS: [[STAR]]-[[GAC]]-x-[[STAR]].

NAME: Glutamine amidotransferases class-I active site.

CONSENSUS: [[PAS]]-[[LIVMFYT]]-[[LIVMFY]]-G-[[LIVMFY]]-C-[[LIVMFYN]]-G-
5 x-[[QEH]]-x-[[LIVMFA]].

NAME: Glutamine amidotransferases class-II active site.

CONSENSUS: <x(0,1])-C-[[GS]]-[[IV]]-[[LIVMFYW]]-[[AG]].

10 NAME: Purine and other phosphorylases family 1 signature.
CONSENSUS: [[GST]]-x-G-[[LIVM]]-G-x-[[PA]]-S-x-[[GSTA]]-I-x(3)-E-L.

NAME: Purine and other phosphorylases family 2 signature.

CONSENSUS: [[LIV]]-x(3)-G-x(2)-H-x-[[LIVMFY]]-x(4)-[[LIVMF]]-x(3)-
15 [[ATV]]-x(1,2)-[[LIVM]]-x-

CONSENSUS: [[ATV]]-x(4)-[[GN]]-x(3,4)-[[LIVMF]](2)-x(2)-[[STN]]-[[SA]]-
x-G-[[GS]]-[[LIVM]].

20 NAME: Thymidine and pyrimidine-nucleoside phosphorylases
signature.
CONSENSUS: S-[[GS]]-R-[[GA]]-[[LIV]]-x(2)-[[TA]]-[[GA]]-G-T-x-D-x-
[[LIV]]-E.

25 NAME: ATP phosphoribosyltransferase signature.
CONSENSUS: E-x(5)-G-x-[[SAG]]-x(2)-[[IV]]-x-D-[[LIV]]-x(2)-[[ST]]-G-
x-T-[[LM]].

30 NAME: NAD:arginine ADP-ribosyltransferases signature.
CONSENSUS: [[FY]]-x-[[FY]]-K-x(2)-H-[[FY]]-x-L-[[ST]]-x-A.

NAME: Prolipoprotein diacylglycerol transferase signature.
CONSENSUS: G-R-x-[[GA]]-N-F-[[LIVMF]]-N-x-E-x(2)-G.

35 NAME: S-adenosylmethionine synthetase signature 1.
CONSENSUS: G-A-G-D-Q-G-x(3)-G-Y.

NAME: S-adenosylmethionine synthetase signature 2.
CONSENSUS: G-[[GA]]-G-[[ASC]]-F-S-x-K-[[DE]].

40 NAME: Polyprenyl synthetases signature 1.
CONSENSUS: [[LIVM]](2)-x-D-D-x(2,4)-D-x(4)-R-R-[[GH]].

NAME: Polyprenyl synthetases signature 2.
CONSENSUS: [[LIVMFY]]-G-x(2)-[[FYL]]-Q-[[LIVM]]-x-D-D-[[LIVMFY]]-x-
45 [[DNG]].

NAME: Squalene and phytoene synthases signature 1.
CONSENSUS: Y-[[CSAM]]-x(2)-[[VSG]]-A-[[GSA]]-[[LIVAT]]-[[IV]]-G-x(2)-
[[LMSC]]-x(2)-[[LIV]].

50 NAME: Squalene and phytoene synthases signature 2.
CONSENSUS: [[LIVM]]-G-x(3)-Q-x(2,3)-N-[[IFI]]-x-R-D-[[LIVMFY]]-x(2)-
[[DE]]-x(4,7)-R-x-[[FY]]-
CONSENSUS: x-P.

55 NAME: Protein prenyltransferases alpha subunit repeat
signature.

CONSENSUS: [PSIAV]-x-[NDFV]-[NEQIY]-x-[LIVMAGP]-W-[NQSTHF]-
[FYHQ]-[LIVMR].

- NAME: Riboflavin synthase alpha chain family signature.
5 CONSENSUS: [LIVMF]-x(5)-G-[STADNQ]-[KREQIYW]-V-N-[LIVM]-E.
- NAME: Dihydropteroate synthase signature 1.
CONSENSUS: [LIVM]-x-[AG]-[LIVMF](2)-N-x-T-x-D-S-F-x-D-x-[SG].
- 10 NAME: Dihydropteroate synthase signature 2.
CONSENSUS: [GE]-[SA]-x-[LIVM](2)-D-[LIVM]-G-[GP]-x(2)-[STA]-
x-P.
- NAME: EPSP synthase signature 1.
15 CONSENSUS: [LIVM]-x(2)-[GN]-N-[SA]-G-T-[STA]-x-R-x-[LIVMY]-x-
[GSTA].
- NAME: EPSP synthase signature 2.
CONSENSUS: [KR]-x-[KH]-E-[CST]-[DNE]-R-[LIVM]-x-[STA]-
20 [LIVMC]-x(2)-[EN]-[LIVMF]-x-
CONSENSUS: [KRA]-[LIVMF]-G.
- NAME: FLAP/GST2/LTC4S family signature.
CONSENSUS: G-x(3)-F-E-R-V-[FY]-x-A-[NQ]-x-N-C.
25
- NAME: Aminotransferases class-I pyridoxal-phosphate
attachment site.
CONSENSUS: [GS]-[LIVMFYTAC]-[GSTA]-K-x(2)-[GSALVN]-[LIVMFA]-
x-[GNAR]-x-R-[LIVMA]-
30 CONSENSUS: [GA].
- NAME: Aminotransferases class-II pyridoxal-phosphate
attachment site.
CONSENSUS: T-[LIVMFYW]-[STAG]-K-[SAG]-[LIVMFYWR]-[SAG]-x(2)-
35 [SAG].
- NAME: Aminotransferases class-III pyridoxal-phosphate
attachment site.
CONSENSUS: [LIVMFYWC](2)-x-D-E-[LIVMA]-x(2)-[GP]-x(0,1)-
40 [LIVMFYWAG]-x(0,1)-[SACR]-x-
CONSENSUS: [GSAD]-x(12,16)-D-[LIVMFYWC]-x(2,3)-[GSAD]-K-x(3)-
[GSTADN]-[GSAD].
- NAME: Aminotransferases class-IV signature.
45 CONSENSUS: E-x-[STAGCI]-x(2)-N-[LIVMFAC]-[FY]-x(b,12)-
[LIVMF]-x-T-x(b,8)-[LIVM]-x-
CONSENSUS: [GS]-[LIVM]-x-[KR].
- NAME: Aminotransferases class-V pyridoxal-phosphate
50 attachment site.
CONSENSUS: [LIVFYCHT]-[DGH]-[LIVMFYAC]-[LIVMFYA]-x(2)-
[GSTAC]-[GSTA]-[HQR]-K-
CONSENSUS: x(4,b)-G-x-[GSAT]-x-[LIVMFYSAC].
- 55 NAME: Hexokinases signature.
CONSENSUS: [LIVM]-G-F-[TN]-F-S-[FY]-P-x(5)-[LIVM]-[DNST]-
x(3)-[LIVM]-x(2)-W-T-K-x-
CONSENSUS: [LF].

NAME: Galactokinase signature.
CONSENSUS: G-R-x-N-[LIV]-I-G-E-H-x-D-Y.

5 NAME: GHMP kinases putative ATP-binding domain.
CONSENSUS: [LIVM]-[PK]-x-[GSTA]-x(0,1)-G-L-[GS]-S-S-[GSA]-
[GSTAC].

10 NAME: Phosphofructokinase signature.
CONSENSUS: [RK]-x(4)-G-H-x-Q-[QR]-G-G-x(5)-D-R.

NAME: pfkB family of carbohydrate kinases signature 1.
CONSENSUS: [AG]-G-x(0,1)-[GAP]-x-N-x-[STA]-x(6)-[GS]-x(7)-G.

15 NAME: pfkB family of carbohydrate kinases signature 2.
CONSENSUS: [DNSK]-[PSTV]-x-[SAG](2)-[GD]-D-x(3)-[SAGV]-[AG]-
[LIVMFY]-[LIVMSTAP].

20 NAME: ROK family signature.
CONSENSUS: [LIVM]-x(2)-G-[LIVMFCT]-G-x-[GA]-[LIVMFA]-x(8)-G-
x(3,5)-[GATP]-x(2)-
CONSENSUS: G-[RKH].

25 NAME: Phosphoribulokinase signature.
CONSENSUS: K-[LIVM]-x-R-D-x(3)-R-G-x-[ST]-x-E.

NAME: Thymidine kinase cellular-type signature.
CONSENSUS: [GA]-x(1,2)-[DE]-x-Y-x-[STAP]-x-C-[NKR]-x-[CH]-
[LIVMFYWH].

30 NAME: FGGY family of carbohydrate kinases signature 1.
CONSENSUS: [MFYGS]-x-[PST]-x(2)-K-[LIVMFYW]-x-W-[LIVMF]-x-
[DENQTKR]-[ENQH].

35 NAME: FGGY family of carbohydrate kinases signature 2.
CONSENSUS: [GSA]-x-[LIVMFYW]-x-G-[LIVM]-x(7,8)-[HDENQ]-
[LIVMF]-x(2)-[AS]-[STAIVM]-
CONSENSUS: [LIVMFY]-[DEQ].

40 NAME: Protein kinases ATP-binding region signature.
CONSENSUS: [LIV]-G-[P]-G-[P]-[FYWMGSTNH]-[SGA]-[PW]-[LIVCAT]-
[PD]-x-[GSTACLIVMFY]-
CONSENSUS: x(5,18)-[LIVMFYWSTAR]-[AIVP]-[LIVMFAGCKR]-K.

45 NAME: Serine/Threonine protein kinases active-site
signature.
CONSENSUS: [LIVMFYC]-x-[HY]-x-D-[LIVMFY]-K-x(2)-N-
[LIVMFYCT](3).

50 NAME: Tyrosine protein kinases specific active-site
signature.
CONSENSUS: [LIVMFYC]-x-[HY]-x-D-[LIVMFY]-[RSTAC]-x(2)-N-
[LIVMFYC](3).

55 NAME: Protein kinase domain profile.
NAME: Casein kinase II regulatory subunit signature.

CONSENSUS: C-P-x-[LIVMY]-x-C-x(5)-L-P-[LIVMC]-G-x(9)-V-[KR]-x(2)-C-P-x-C.

NAME: Pyruvate kinase active site signature.

5 CONSENSUS: [LIVAC]-x-[LIVM](2)-[SAPCV]-K-[LIV]-E-[NKRST]-x-[DEQH]-[GSTA]-[LIVM].

NAME: Shikimate kinase signature.

CONSENSUS: [KR]-x(2)-E-x(3)-[LIVMF]-x(8,12)-[LIVMF](2)-[SA]-x-G(3)-x-[LIVMF].

NAME: Prokaryotic diacylglycerol kinase signature.

CONSENSUS: E-x-[LIVM]-N-[ST]-[SA]-[LIV]-E-x(2)-V-D.

15 NAME: Phosphatidylinositol 3- and 4-kinases signature 1.

CONSENSUS: [LIVMFAC]-K-x(1,3)-[DEA]-[DE]-[LIVMC]-R-Q-[DE]-x(4)-Q.

NAME: Phosphatidylinositol 3- and 4-kinases signature 2.

20 CONSENSUS: [GS]-x-[AV]-x(3)-[LIVM]-x(2)-[FYH]-[LIVM](2)-x-[LIVMF]-x-D-R-H-x(2)-N.

NAME: Acetate and butyrate kinases family signature 1.

CONSENSUS: [LIVM](2)-x-[LIVM]-N-x-G-S-[ST]-S-x-[KE].

25 NAME: Acetate and butyrate kinases family signature 2.

CONSENSUS: [LIVMA](2)-x(2)-H-x-G-x-G-x-[ST]-[LIVM]-x-[AV]-x(3)-G.

30 NAME: Phosphoglycerate kinase signature.

CONSENSUS: [KRHGTCV]-[VT]-[LIVMF]-[LIVMC]-R-x-D-x-N-[SACV]-P.

NAME: Aspartokinase signature.

CONSENSUS: [LIVM]-x-K-[FY]-G-G-[ST]-[SC]-[LIVM].

35 NAME: Glutamate 5-kinase signature.

CONSENSUS: [GSTN]-x(2)-G-x-G-[GC]-[IM]-x-[STA]-K-[LIVM]-x-[SA]-[TCIA]-x(2)-[GALV]-

CONSENSUS: x(3)-G.

40 NAME: ATP:guanido phosphotransferases active site.

CONSENSUS: C-P-x(0,1)-[ST]-N-[IL]-G-T.

45 NAME: PTS HPR component histidine phosphorylation site
signature.

CONSENSUS: G-[LIVM]-H-[STA]-R-[PA]-[GSTA]-[STAM].

NAME: PTS HPR component serine phosphorylation site
signature.

50 CONSENSUS: [GSADE]-[KREQTV]-x(4)-[KRN]-S-[LIVMF](2)-x-[LIVM]-x(2)-[LIVM]-[GAD].

NAME: PTS EIIA domains phosphorylation site signature 1.

CONSENSUS: G-x(2)-[LIVMF](3)-H-[LIVMF]-G-[LIVMF]-x-T-[ALV].

55 NAME: PTS EIIA domains phosphorylation site signature 2.

CONSENSUS: [DENQ]-x(6)-[LIVMF]-[GA]-x(2)-[LIVM]-A-[LIVM]-P-H-[GAC].

NAME: PTS EIIB domains cysteine phosphorylation site
signature.
CONSENSUS: N-[LIVMFY]-x(5)-C-x-T-R-[LIVMF]-x-[LIVMF]-x-[LIVMF]-x-[DQ].

5 NAME: Adenylate kinase signature.
CONSENSUS: [LIVMFYW](3)-D-G-[FYI]-P-R-x(3)-[NQ].

10 NAME: Nucleoside diphosphate kinases active site.
CONSENSUS: N-x(2)-H-[GA]-S-D-[SA]-[LIVMPKNE].

15 NAME: Guanylate kinase signature.
CONSENSUS: T-[ST]-R-x(2)-[KR]-x(2)-[DE]-x(2)-G-x(2)-Y-x-[FY]-[LIVMK].

NAME: Guanylate kinase domain profile.

20 NAME: Phosphoribosyl pyrophosphate synthetase signature.
CONSENSUS: D-[LI]-H-[SA]-x-Q-[IMST]-[QM]-G-[FY]-F-x(2)-P-[LIVMFC]-D.

25 NAME: 7,8-dihydro- δ -hydroxymethylpterin-pyrophosphokinase
signature.
CONSENSUS: G-[PE]-R-x(2)-D-L-D-[LIVM](2).

30 NAME: Bacteriophage-type RNA polymerase family active site
signature 1.
CONSENSUS: P-[LIVM]-x(2)-D-[GA]-[ST]-[AC]-[SN]-[GA]-[LIVMFY]-Q.

NAME: Bacteriophage-type RNA polymerase family active site
signature 2.
CONSENSUS: [LIVMF]-x-R-x(3)-K-x(2)-[LIVMF]-M-[PT]-x(2)-Y.

35 NAME: Eukaryotic RNA polymerase II heptapeptide repeat.
CONSENSUS: Y-[ST]-P-[ST]-S-P-[STANK].

40 NAME: RNA polymerases beta chain signature.
CONSENSUS: G-x-K-[LIVMFA]-[STAC]-[GSTN]-x-[HSTA]-[GS]-[QNH]-K-G-[IVT].

NAME: RNA polymerases M / 15 Kd subunits signature.
CONSENSUS: F-C-x-[DEKST]-C-[GNK]-[DNA]-[LIVMH]-[LIVM]-
45 x(8,14)-C-x(2)-C.

NAME: RNA polymerases D / 30 to 40 Kd subunits signature.
CONSENSUS: N-[SGA]-[LIVMF]-R-R-x(9)-[SA]-x(3)-V-x(4)-N-x-[STA]-x(3)-[DN]-E-x-[LI]-
50 CONSENSUS: [GA]-x-R-[LI]-[GA]-[LIVM](2)-P.

NAME: RNA polymerases H / 23 Kd subunits signature.
CONSENSUS: H-[NEI]-[LIVM]-V-P-x-H-x(2)-[LIVM]-x(2)-[DE].

55 NAME: RNA polymerases K / 14 to 18 Kd subunits signature.
CONSENSUS: [ST]-x-[FY]-E-x-[AT]-R-x-[LIVM]-[GSA]-x-R-[SA]-x-Q.

NAME: RNA polymerases L / 13 to 16 Kd subunits signature.
 CONSENSUS: [[DE]](2)-H-[ST]-[LIVM]-[GAP]-N-x(11)-V-x-[FM]-x(2)-
 Y-x(3)-H-P.

5 NAME: RNA polymerases N / 8 Kd subunits signature.
 CONSENSUS: [LIVMF](2)-P-[LIVM]-x-C-F-[ST]-C-G.

NAME: DNA polymerase family A signature.
 CONSENSUS: R-x(2)-[GSAV]-K-x(3)-[LIVMFY]-[AGQ]-x(2)-Y-x(2)-
 10 [GS]-x(3)-[LIVMA].

NAME: DNA polymerase family B signature.
 CONSENSUS: [[YA]-[GLIVMSTAC]-D-T-D-[SG]-[LIVMFTC]-x-[LIVMSTAC].

15 NAME: DNA polymerase family X signature.
 CONSENSUS: G-[SG]-[LFY]-x-R-[GE]-x(3)-[SGCL]-x-D-[LIVM]-D-[LIVMFY](3)-x(2)-[SAP].

20 NAME: Galactose-1-phosphate uridyl transferase family 1
 active site signature.
 CONSENSUS: F-E-N-[RK]-G-x(3)-G-x(4)-H-P-H-x-Q.

25 NAME: Galactose-1-phosphate uridyl transferase family 2
 signature.
 CONSENSUS: D-L-P-I-V-G-G-[ST]-[LIVM](2)-[SA]-H-[DEN]-H-[FY]-
 Q-G-G.

30 NAME: ADP-glucose pyrophosphorylase signature 1.
 CONSENSUS: [[AG]-G-G-x-G-[STK]-x-L-x(2)-L-[TA]-x(3)-A-x-P-A-[LV].

NAME: ADP-glucose pyrophosphorylase signature 2.
 CONSENSUS: W-[FY]-x-G-[ST]-A-[DNSH]-[AS]-[LIVMFYW].

35 NAME: ADP-glucose pyrophosphorylase signature 3.
 CONSENSUS: [[APV]-[GS]-M-G-[LIVMN]-Y-[IVC]-[LIVMFY]-x(2)-
 [DENPHK].

40 NAME: Phosphatidate cytidylyltransferase signature.
 CONSENSUS: S-x-[LIVMF]-K-R-x(4)-K-D-x-[GSA]-x(2)-[LI]-[PG]-x-
 H-G-G-[LIVM]-x-D-R-
 CONSENSUS: [LIVMFT]-D.

45 NAME: Ribonuclease PH signature.
 CONSENSUS: C-[DE]-[LIVM](2)-Q-[GTA]-D-G-[SG]-x(2)-[TA]-A.

NAME: 2'-5'-oligoadenylyl synthetases signature 1.
 CONSENSUS: G-G-S-x-[AG]-[KR]-x-T-x-L-[KRI]-[GST]-x-S-D-[AG].

50 NAME: 2'-5'-oligoadenylyl synthetases signature 2.
 CONSENSUS: R-P-V-I-L-D-P-x-[DE]-P-T.

55 NAME: CDP-alcohol phosphatidyltransferases signature.
 CONSENSUS: D-G-x(2)-A-R-x(8)-G-x(3)-D-x(3)-D.

NAME: PEP-utilizing enzymes phosphorylation site signature.

CONSENSUS: G-[GA]-x-[TN]-x-H-[STA]-[STAV]-[LIVM](2)-[STAV]-[RG].

NAME: PEP-utilizing enzymes signature 2.

5 CONSENSUS: [DEQS]-x-[LIVMF]-S-[LIVMF]-G-[ST]-N-D-[LIVM]-x-Q-[LIVMFYGT]-[STALIV]-
CONSENSUS: [LIVMF]-[GAS]-x(2)-R.

NAME: Rhodanese signature 1.

10 CONSENSUS: [FY]-x(3)-H-[LIV]-P-G-A-x(2)-[LIVF].

NAME: Rhodanese C-terminal signature.

CONSENSUS: [AV]-x(2)-[FY]-[DEAP]-G-[GSA]-[WF]-x-E-[FYW].

15 NAME: CoA transferases signature 1.

CONSENSUS: [DN]-[GN]-x(2)-[LIVMFAD](3)-G-G-F-x(3)-G-x-P.

NAME: CoA transferases signature 2.

CONSENSUS: [LF]-[HQ]-S-E-N-G-[LIVF](2)-[GA].

20 NAME: Phospholipase A2 histidine active site.
CONSENSUS: C-C-x(2)-H-x(2)-C-.

NAME: Phospholipase A2 aspartic acid active site.

25 CONSENSUS: [LIVMA]-C-[LIVMFYWPCST]-C-D-x(5)-C.

NAME: Lipases, serine active site.

CONSENSUS: [LIV]-x-[LIVFY]-[LIVMST]-G-[HYWV]-S-x-G-[GSTAC].

30 NAME: Colipase signature.
CONSENSUS: Y-x(2)-Y-Y-x-C-x-C.

NAME: Lipolytic enzymes "G-D-S-L" family, serine active site.

35 CONSENSUS: [LIVMFYAG](4)-G-D-S-[LIVM]-x(1,2)-[TAG]-G.

NAME: Lipolytic enzymes "G-D-X-G" family, putative histidine active site.

CONSENSUS: [LIVMF](2)-x-[LIVMF]-H-G-G-[SAG]-[FY]-x(3)-[STDNE]-
40 x(2)-[ST]-H.

NAME: Lipolytic enzymes "G-D-X-G" family, putative serine active site.

CONSENSUS: [LIVM]-x-[LIVMF]-[SA]-G-D-S-[CA]-G-[GA]-x-L-[CA].

45 NAME: Carboxylesterases type-B serine active site.
CONSENSUS: F-[GR]-G-x(4)-[LIVM]-x-[LIV]-x-G-x-S-[STAG]-G.

NAME: Carboxylesterases type-B signature 2.

50 CONSENSUS: [ED]-D-C-L-[YT]-[LIV]-[DNS]-[LIV]-[LIVFYW]-x-[PQR].

NAME: Pectinesterase signature 1.

CONSENSUS: [GSTN]-x(5)-[LIVM]-x-[LIVM]-x(2)-G-x-Y-[DNK]-E-x-
55 [LIVM]-x-[LIVM].

NAME: Pectinesterase signature 2.

CONSENSUS: G-[STAD]-[LIVMT]-D-F-I-F-G.

NAME: Peptidyl-tRNA hydrolase signature 1.
 CONSENSUS: [[FY]]-x(2)-T-R-H-N-x-G-x(2)-[[LIVMFA]](2)-[[DE]].

5 NAME: Peptidyl-tRNA hydrolase signature 2.
 CONSENSUS: [[GS]]-x(3)-H-N-G-[[LIVM]]-[[KR]]-[[DN]]-[[LIVMT]].

10 NAME: Alkaline phosphatase active site.
 CONSENSUS: [[IV]]-x-D-S-[[GAS]]-[[GASC]]-[[GAST]]-[[GA]]-T.

15 NAME: Histidine acid phosphatases phosphohistidine
 signature.
 CONSENSUS: [[LIVM]]-x(2)-[[LIVMA]]-x(2)-[[LIVM]]-x-R-H-[[GN]]-x-R-x-
 [[PAS]].

20 NAME: Histidine acid phosphatases active site signature.
 CONSENSUS: [[LIVMF]]-x-[[LIVMFAG]]-x(2)-[[STAGI]]-H-D-[[STANQ]]-x-
 [[LIVM]]-x(2)-[[LIVMFY]]-x(2)-
 CONSENSUS: [[STA]].

25 NAME: Class A bacterial acid phosphatases signature.
 CONSENSUS: G-S-Y-P-S-G-H-T.

30 NAME: 5'-nucleotidase signature 1.
 CONSENSUS: [[LIVM]]-x-[[LIVM]](2)-[[HEAD]]-[[TI]]-x-D-x-H-[[GSA]]-x-
 [[LIVMF]].

NAME: 5'-nucleotidase signature 2.
 CONSENSUS: [[FYP]]-x(4)-[[LIVM]]-G-N-H-E-F-[[DN]].

35 NAME: Fructose-1,6-bisphosphatase active site.
 CONSENSUS: [[AGI]]-[[RK]]-L-x(1,2)-[[LIV]]-[[FY]]-E-x(2)-P-[[LIVM]]-
 [[GSA]].

40 NAME: Serine/threonine specific protein phosphatases
 signature.
 CONSENSUS: [[LIVM]]-R-G-N-H-E.

NAME: Protein phosphatase 2A regulatory subunit PR55
 signature 1.
 CONSENSUS: E-F-D-Y-L-K-S-L-E-I-E-E-K-I-N.

NAME: Protein phosphatase 2A regulatory subunit PR55
 signature 2.
 CONSENSUS: N-[[AGI]]-H-[[TA]]-Y-H-I-N-S-I-S-[[LIVM]]-N-S-D.

50 NAME: Protein phosphatase 2C signature.
 CONSENSUS: [[LIVMFY]]-[[LIVMFYA]]-[[GSAC]]-[[LIVM]]-[[FYC]]-D-G-H-
 [[GAV]].

NAME: Tyrosine specific protein phosphatases active site.
 CONSENSUS: [[LIVMF]]-H-C-x(2)-G-x(3)-[[STC]]-[[STAGP]]-x-[[LIVMFY]].

55 NAME: Tyrosine specific protein phosphatases profile.
 NAME: Dual specificity protein phosphatase profile.
 NAME: PTP type protein phosphatase profile.

- NAME: Inositol monophosphatase family signature 1.
 CONSENSUS: [[FWV]]-x(0,1)-[[LIVM]]-D-P-[[LIVM]]-D-[[SG]]-[[ST]]-x(2)-
 [[FY]]-x-[[HKRNSTY]].
- 5 NAME: Inositol monophosphatase family signature 2.
 CONSENSUS: [[WV]]-D-x-[[AC]]-[[GSA]]-[[GSAPV]]-x-[[LIVACP]]-[[LIV]]-
 [[LIVAC]]-x(3)-[[GH]]-[[GA]].
- 10 NAME: Prokaryotic zinc-dependent phospholipase C signature.
 CONSENSUS: H-Y-x-[[GT]]-D-[[LIVM]]-[[DNS]]-x-P-x-H-[[PA]]-x-N.
- NAME: Phosphatidylinositol-specific phospholipase X-box
 domain profile.
- 15 NAME: Phosphatidylinositol-specific phospholipase Y-box
 domain profile.
- 20 NAME: 3'5'-cyclic nucleotide phosphodiesterases signature.
 CONSENSUS: H-D-[[LIVMFY]]-x-H-x-[[AG]]-x(2)-[[NQ]]-x-[[LIVMFY]].
- NAME: cAMP phosphodiesterases class-II signature.
 CONSENSUS: H-x-H-L-D-H-[[LIVM]]-x-[[GS]]-[[LIVMA]]-[[LIVM]](2)-x-S-
 [[AP]].
- 25 NAME: Sulfatases signature 1.
 CONSENSUS: [[SAP]]-[[LIVMST]]-[[S]]-[[STAC]]-P-[[STA]]-R-x(2)-
 [[LIVMFW]](2)-[[TR]]-G.
- 30 NAME: Sulfatases signature 2.
 CONSENSUS: G-[[YV]]-x-[[ST]]-x(2)-[[IVA]]-G-K-x(0,1)-[[FYWK]]-[[HL]].
- NAME: AP endonucleases family 1 signature 1.
 CONSENSUS: [[APF]]-D-[[LIVMF]](2)-x-[[LIVM]]-Q-E-x-K.
- 35 NAME: AP endonucleases family 1 signature 2.
 CONSENSUS: D-[[ST]]-[[FY]]-R-[[KH]]-x(7,8)-[[FYW]]-[[ST]]-[[FYW]](2).
- NAME: AP endonucleases family 1 signature 3.
 CONSENSUS: N-x-G-x-R-[[LIVM]]-D-[[LIVMFYH]]-x-[[LV]]-x-S.
- 40 NAME: AP endonucleases family 2 signature 1.
 CONSENSUS: H-x(2)-Y-[[LIVMF]]-[[IM]]-N-[[LIVMCA]]-[[AG]].
- 45 NAME: AP endonucleases family 2 signature 2.
 CONSENSUS: [[GR]]-[[LIVMF]]-C-[[LIVM]]-D-T-C-H.
- NAME: AP endonucleases family 2 signature 3.
 CONSENSUS: [[LIVMW]]-H-x-N-[[DE]]-[[SA]]-K-x(3)-G-[[SA]]-x(2)-D.
- 50 NAME: Deoxyribonuclease I signature 1.
 CONSENSUS: [[LIVM]](2)-[[AP]]-L-H-[[STA]](2)-P-x(5)-E-[[LIVM]]-[[DN]]-
 x-L-x-[[DE]]-V.
- 55 NAME: Deoxyribonuclease I signature 2.
 CONSENSUS: G-D-F-N-A-x-C-[[SA]].
- NAME: Endonuclease III iron-sulfur binding region signature.

CONSENSUS: C-x(3)-[KRS]-P-[KRAGL]-C-x(2)-C-x(5)-C.

NAME: Endonuclease III family signature.

CONSENSUS: [GST]-x-[LIVMF]-P-x(5)-[LIVMW]-x(2,3)-[LI]-[PAS]-

5 G-V-[GA]-x(3)-[GAC]-

CONSENSUS: x(3)-[LIVM]-x(2)-[SALV]-[LIVMFYW]-[GANK].

NAME: Ribonuclease II family signature.

CONSENSUS: [HI]-[FYE]-[GSTAM]-[LIVM]-x(4,5)-Y-[STAL]-x-

10 [FWVAC]-[TV]-[SA]-P-[LIVMA]-

CONSENSUS: [RQ]-[KR]-[FY]-x-D-x(3)-[HQ].

NAME: Ribonuclease III family signature.

CONSENSUS: [DEQ]-[RQ]-[LM]-E-[FYW]-[LV]-G-D-[SAR].

15 NAME: Bacterial Ribonuclease P protein component signature.
CONSENSUS: [LIVMFYS]-x(2)-A-x(2)-R-[NH]-[KRQL]-[LIVM]-[KRA]-
R-x-[LIVMTA]-[KR].

20 NAME: Ribonuclease T2 family histidine active site 1.
CONSENSUS: [FYWL]-x-[LIVM]-H-G-L-W-P.

NAME: Ribonuclease T2 family histidine active site 2.

CONSENSUS: [LIVMF]-x(2)-[HDGTY]-[EQ]-[FYW]-x-[KR]-H-G-x-C.

25 NAME: Pancreatic ribonuclease family signature.
CONSENSUS: C-K-x(2)-N-T-F.

30 NAME: DNA/RNA non-specific endonucleases active site.
CONSENSUS: D-R-G-H-[QIL]-x(3)-A.

NAME: Thermonuclease family signature 1.

CONSENSUS: D-G-D-T-[LIVM]-x-[LIVMC]-x(9,10)-R-[LIVM]-x(2)-
[LIVM]-D-x-P-E.

35 NAME: Thermonuclease family signature 2.
CONSENSUS: D-[KR]-Y-[GQ]-R-x-[LV]-[GA]-x-[IV]-[FYW].

40 NAME: Beta-amylase active site 1.
CONSENSUS: H-x-C-G-G-N-V-G-D.

NAME: Beta-amylase active site 2.

CONSENSUS: G-x-[SA]-G-E-[LIVM]-R-Y-P-S-Y.

45 NAME: Glucoamylase active site region signature.
CONSENSUS: [STN]-[GP]-x(1,2)-[DE]-x-W-E-x(2)-[GS].

NAME: Polygalacturonase active site.

CONSENSUS: [GSDENKRH]-x(2)-[VMFC]-x(2)-[GS]-H-G-[LIVMAG]-
50 x(1,2)-[LIVM]-G-S.

NAME: Clostridium cellulosome enzymes repeated domain
signature.
CONSENSUS: D-[LIVMFY]-[DNV]-x-[DNS]-x(2)-[LIVM]-[DN]-[SALM]-
x-D-x(3)-[LIVMF]-x-
CONSENSUS: [RKSI]-x-[LIVMF].

NAME: Chitinases family 1B active site.

CONSENSUS: [LIVMFY]-[DN]-G-[LIVMF]-[DN]-[LIVMF]-[DN]-x-E.

NAME: Chitinases family 19 signature 1.

CONSENSUS: C-x(4,5)-F-Y-[ST]-x(3)-[FY]-[LIVMF]-x-A-x(3)-[YF]-
5 x(2)-F-[GSA].

NAME: Chitinases family 19 signature 2.

CONSENSUS: [LIVM]-[GSA]-F-x-[STAG](2)-[LIVMFY]-W-[FY]-W-
10 [LIVM].

NAME: Alpha-lactalbumin / lysozyme C signature.

CONSENSUS: C-x(3)-C-x(2)-[LMF]-x(3)-[DEN]-[LI]-x(5)-C.

NAME: Alpha-galactosidase signature.

CONSENSUS: G-[LIVMFY]-x(2)-[LIVMFY]-x-[LIVM]-D-D-x-W-x(3,4)-
15 R-[DNSF].

NAME: Trehalase signature 1.

CONSENSUS: P-G-G-R-F-x-E-x-Y-x-W-D-x-Y.

NAME: Trehalase signature 2.

CONSENSUS: Q-W-D-x-P-x-[GA]-W-[PA]-P.

NAME: Alpha-L-fucosidase putative active site.

CONSENSUS: P-x(2)-L-x(3)-K-W-E-x-C.

NAME: Glycosyl hydrolases family 1 active site.

CONSENSUS: [LIVMFSTC]-[LIVFYS]-[LIV]-[LIVMST]-E-N-G-
30 [LIVMFAR]-[CSAGN].

NAME: Glycosyl hydrolases family 1 N-terminal signature.

CONSENSUS: F-x-[FYWM]-[GSTA]-x-[GSTA]-x-[GSTA](2)-[FYNH]-
[NQ]-x-E-x-[GSTA].

NAME: Glycosyl hydrolases family 2 signature 1.

CONSENSUS: N-x-[LIVMFYWD]-R-[STACN](2)-H-Y-P-x(4)-
[LIVMFYW](2)-x(3)-[DN]-x(2)-

CONSENSUS: G-[LIVMFYW](4).

NAME: Glycosyl hydrolases family 2 acid/base catalyst.

CONSENSUS: [DENQF]-[KRVW]-N-H-[AP]-[SAC]-[LIVMF](3)-W-[GS]-
x(2,3)-N-E.

NAME: Glycosyl hydrolases family 3 active site.

CONSENSUS: [LIVM](2)-[KR]-x-[EQK]-x(4)-G-[LIVMFT]-[LIVT]-
[LIVMF]-[ST]-D-x(2)-

CONSENSUS: [SGADNI].

NAME: Glycosyl hydrolases family 5 signature.

CONSENSUS: [LIV]-[LIVMFYWGAI](2)-[DNEQG]-[LIVMGST]-x-N-E-[PV]-
50 [RHDNSTLIVFY].

NAME: Glycosyl hydrolases family 6 signature 1.

CONSENSUS: V-x-Y-x(2)-P-x-R-D-C-[GSAF]-x(2)-[GSA](2)-x-G.

NAME: Glycosyl hydrolases family 6 signature 2.

CONSENSUS: [LIVMYA]-[LIVA]-[LIVT]-[LIV]-E-P-D-[SAL]-[LI]-
55 [PSAG].

NAME: Glycosyl hydrolases family 8 signature.
 CONSENSUS: A-[EST]-D-[AG]-D-x(2)-[IM]-A-x-[SA]-[LIVM]-[LIVMG]-
 x-A-x(3)-[FW].

5 NAME: Glycosyl hydrolases family 9 active sites signature 1.
 CONSENSUS: [STV]-x-[LIVMFY]-[STV]-x(2)-G-x-[NKR]-x(4)-
 [PLIVM]-H-x-R.

10 NAME: Glycosyl hydrolases family 9 active sites signature 2.
 CONSENSUS: [FYW]-x-D-x(4)-[FYW]-x(3)-E-x-[STA]-x(3)-N-[STA].

15 NAME: Glycosyl hydrolases family 10 active site.
 CONSENSUS: [GTA]-x(2)-[LIVN]-x-[IVMF]-[ST]-E-[LIY]-[DN]-
 [LIVMF].

NAME: Glycosyl hydrolases family 11 active site signature 1.
 CONSENSUS: [PSA]-[LQ]-x-E-Y-Y-[LIVM](2)-[DE]-x-[FYWHN].

20 NAME: Glycosyl hydrolases family 11 active site signature 2.
 CONSENSUS: [LIVMF]-x(2)-E-[AG]-[YWG]-[QRFGS]-[SG]-[STAN]-G-x-
 [SAF].

25 NAME: Glycosyl hydrolases family 16 active sites.
 CONSENSUS: E-[LIV]-D-[LIV]-x(0,1)-E-x(2)-[GQ]-[KRNF]-x-
 [PSTA].

NAME: Glycosyl hydrolases family 17 signature.
 CONSENSUS: [LIVM]-x-[LIVMFYWA](3)-[STAG]-E-[STA]-G-W-P-[STN]-
 x-[SAGQ].

30 NAME: Glycosyl hydrolases family 25 active sites signature.
 CONSENSUS: D-[LIVM]-x(3)-[NQ]-[PG]-x(9,10)-G-x(4)-
 [LIVMFY](2)-K-x-[ST]-E-[GS]-x(2)-
 35 CONSENSUS: Y-x-[DN].

NAME: Glycosyl hydrolases family 31 active site.
 CONSENSUS: [GF]-[LIVMF]-W-x-D-M-[NSA]-E.

40 NAME: Glycosyl hydrolases family 31 signature 2.
 CONSENSUS: G-[AV]-D-[LIVMT]-C-G-[FY]-x(3)-[ST]-x(3)-L-C-x-R-
 W-x(2)-[LV]-[GS]-[SA]-
 CONSENSUS: F-x-P-F-x-R-[DN].

45 NAME: Glycosyl hydrolases family 32 active site.
 CONSENSUS: H-x(2)-P-x(4)-[LIVM]-N-D-P-N-G.

NAME: Glycosyl hydrolases family 35 putative active site.
 CONSENSUS: G-G-P-[LIVM](2)-x(2)-Q-x-E-N-E-[FY].

50 NAME: Glycosyl hydrolases family 39 active site.
 CONSENSUS: W-x-F-E-x-W-N-E-P-[DN].

NAME: Glycosyl hydrolases family 45 active site.
 CONSENSUS: [STA]-T-R-Y-[FYW]-D-x(5)-[CA].

NAME: Prokaryotic transglycosylases signature.

CONSENSUS: [[LIVM]]-x(3)-E-S-x(3)-[GA]-x(3)-S-x(5)-G-[LIVM]-
 [[LIVMFY]]-x-[LIVMFY]-
 CONSENSUS: x(4)-[SAG].

5 NAME: Inosine-uridine preferring nucleoside hydrolase family
 signature.
 CONSENSUS: D-x-D-[PT]-[GA]-x-D-D-[TAV]-[VI]-A.

NAME: Alkylbase DNA glycosidases alkA family signature.
 10 CONSENSUS: G-I-G-x-W-[ST]-[AV]-x-[LIVMFY](2)-x-[LIVM]-x(8)-
 [MF]-x(2)-[ED]-D.

NAME: Formamidopyrimidine-DNA glycosylase signature.
 CONSENSUS: C-x(2,4)-C-x-[GTAQ]-x-[IV]-x(?) -R-[GSTAN]-[STA]-x-
 15 [FYI]-C-x(2)-C-Q.

NAME: Uracil-DNA glycosylase signature.
 CONSENSUS: [KR]-[LIV]-[LIVC]-[LIVM]-x-G-[QI]-D-P-Y.

20 NAME: S-adenosyl-L-homocysteine hydrolase signature 1.
 CONSENSUS: [[CS]-N-x-[FYL]-S-[ST]-[QA]-[DEN]-x-[AV](2)-A-A-[LIV]-[SAV].

25 NAME: S-adenosyl-L-homocysteine hydrolase signature 2.
 CONSENSUS: G-K-x(3)-[LIV]-x-G-Y-G-x-V-G-[KR]-G-x-A.

NAME: Cytosol aminopeptidase signature.
 CONSENSUS: N-T-D-A-E-G-R-L.

30 NAME: Aminopeptidase P and proline dipeptidase signature.
 CONSENSUS: [HAI]-[GSYR]-[LIVMT]-[SG]-H-x-[LIV]-G-[LIVM]-x-[IV]-H-[DE].

NAME: Methionine aminopeptidase subfamily 1 signature.
 CONSENSUS: [MFY]-x-G-H-G-[LIVMC]-[GSH]-x(3)-H-x(4)-[LIVM]-x-[HN]-[YWV].

NAME: Methionine aminopeptidase subfamily 2 signature.
 CONSENSUS: [DA]-[LIVMY]-x-K-[LIVM]-D-x-G-x-[HQ]-[LIVM]-[DNS]-
 40 G-x(3)-[DN].

NAME: Renal dipeptidase active site.
 CONSENSUS: [LIVM]-E-G-[GA]-x(2)-[LIVMF]-x(6)-L-x(3)-Y-x(2)-G-[LIVM]-R.

45 NAME: Serine carboxypeptidases, serine active site.
 CONSENSUS: [LIVM]-x-[GTA]-E-S-Y-[AG]-[GS].

NAME: Serine carboxypeptidases, histidine active site.
 CONSENSUS: [LIVF]-x(2)-[LIVSTA]-x-[IVPST]-x-[GSQNL]-[SAGV]-
 50 [SG]-H-x-[IVAQ]-P-x(3)-
 CONSENSUS: [PSA].

NAME: Zinc carboxypeptidases, zinc-binding region 1
 55 signature.
 CONSENSUS: [PK]-x-[LIVMFY]-x-[LIVMFY]-x(4)-H-[STAG]-x-E-x-[LIVM]-[STAG]-x(6)-
 CONSENSUS: [LIVMFYTA].

NAME: Zinc carboxypeptidases, zinc-binding region 2
 signature.
 CONSENSUS: H-[STAG]-x(3)-[LIVME]-x(2)-[LIVMFYW]-P-[FYW].

5 NAME: Serine proteases, trypsin family, histidine active site.
 CONSENSUS: [LIVM]-[ST]-A-[STAG]-H-C.

10 NAME: Serine proteases, trypsin family, serine active site.
 CONSENSUS: [DNSTAGC]-[GSTAPIMVQH]-x(2)-G-[DE]-S-G-[GS]-
 [SAPHV]-[LIVMFYWH]-
 CONSENSUS: [LIVMFYSTANQH].

15 NAME: Serine proteases, subtilase family, aspartic acid active site.
 CONSENSUS: [STAIV]-x-[LIVMF]-[LIVM]-D-[DSTA]-G-[LIVMFC]-
 x(2,3)-[DNH].

20 NAME: Serine proteases, subtilase family, histidine active site.
 CONSENSUS: H-G-[STM]-x-[VIC]-[STAGC]-[GS]-x-[LIVMA]-
 [STAGCLV]-[SAGM].

25 NAME: Serine proteases, subtilase family, serine active site.
 CONSENSUS: G-T-S-x-[SA]-x-P-x(2)-[STAVC]-[AG].

30 NAME: Serine proteases, V8 family, histidine active site.
 CONSENSUS: [ST]-G-[LIVMFYW](3)-[GN]-x(2)-T-[LIVM]-x-T-x(2)-H.

NAME: Serine proteases, V8 family, serine active site.
 CONSENSUS: T-x(2)-[GC]-[NQ]-S-G-S-x-[LIVM]-[FY].

35 NAME: Serine proteases, omptin family signature 1.
 CONSENSUS: W-T-D-x-S-x-H-P-x-T.

NAME: Serine proteases, omptin family signature 2.
 CONSENSUS: A-G-Y-Q-E-[ST]-R-[FYW]-S-[FYW]-[TN]-A-x-G-G-[ST]-
 40 Y.

NAME: Prolyl endopeptidase family serine active site.
 CONSENSUS: D-x(3)-A-x(3)-[LIVMFYW]-x(14)-G-x-S-x-G-G-[LIVMFYW](2).

45 NAME: Endopeptidase Clp serine active site.
 CONSENSUS: T-x(2)-[LIVMF]-G-x-A-[SAC]-S-[MSA]-[PAG]-[STA].

50 NAME: Endopeptidase Clp histidine active site.
 CONSENSUS: R-x(3)-[EAP]-x(3)-[LIVMFYT]-M-[LIVM]-H-Q-P.

NAME: ATP-dependent serine proteases, Ion family, serine active site.
 CONSENSUS: D-G-[PD]-S-A-[GS]-[LIVMCA]-[TA]-[LIVM].

55 NAME: Eukaryotic thiol (cysteine) proteases cysteine active site.
 CONSENSUS: Q-x(3)-[GE]-x-C-[YW]-x(2)-[STAGC]-[STAGCV].

NAME: Eukaryotic thiol (cysteine) proteases histidine active site.
 CONSENSUS: [[LIVMGSTAN]-x-H-[GSACE]-[LIVM]-x-[LIVMAT](2)-G-x-[GSADNH].

5
 NAME: Eukaryotic thiol (cysteine) proteases asparagine active site.
 CONSENSUS: [[FYCH]-[WI]-[LIVT]-x-[KRQAG]-N-[ST]-W-x(3)-[FYW]-
 G-x(2)-G-[LFYW]-
 CONSENSUS: [[LIVMFYG]-x-[LIVMF].

10
 NAME: Ubiquitin carboxyl-terminal hydrolase family 1 cysteine active-site.
 CONSENSUS: Q-x(3)-N-[SA]-C-G-x(3)-[LIVM](2)-H-[SA]-[LIVM]-[SA].

15
 NAME: Ubiquitin carboxyl-terminal hydrolases family 2 signature 1.
 CONSENSUS: G-[LIVMFY]-x(1,3)-[AGC]-[NASM]-x-C-[FYW]-[LIVMC]-
 [NST]-[SACV]-x-[LIVMS]-
 CONSENSUS: Q.

20
 NAME: Ubiquitin carboxyl-terminal hydrolases family 2 signature 2.
 CONSENSUS: Y-x-L-x-[SAG]-[LIVMFT]-x(2)-H-x-G-x(4,5)-G-H-Y.

25
 NAME: Caspase family histidine active site.
 CONSENSUS: H-x(2,4)-[SC]-x(4)-[LIVMF](2)-[ST]-H-G.

30
 NAME: Caspase family cysteine active site.
 CONSENSUS: K-P-K-[LIVMF](4)-Q-A-C-[RQG]-G.

35
 NAME: Eukaryotic and viral aspartyl proteases active site.
 CONSENSUS: [[LIVMFGAC]-[LIVMTADN]-[LIVFSA]-D-[ST]-G-[STAV]-
 [STAPDENQ]-x-[LIVMFSTNC]-
 CONSENSUS: x-[LIVMFGTA].

40
 NAME: Neutral zinc metallopeptidases, zinc-binding region signature.
 CONSENSUS: [[GSTALIVN]-x(2)-H-E-[LIVMFYW]-{DEHRKP}-H-x-[LIVMFYWGPQ].

45
 NAME: Matrixins cysteine switch.
 CONSENSUS: P-R-C-[GN]-x-P-[DR]-[LIVSAPKQ].

50
 NAME: Insulinase family, zinc-binding region signature.
 CONSENSUS: G-x(8,9)-G-x-[STA]-H-[LIVMFY]-[LIVMC]-[DERN]-
 [HRKL]-[LMFAT]-x-[LFSTH]-x-
 CONSENSUS: [[GSTAN]-[GST]].

//

55
 AC PS01016;
 DE Glycoprotease family signature.
 CONSENSUS: [[KR]-[GSAT]-x(4)-[FYWHL]-[DQNGK]-x-P-x-[LIVMFY]-
 x(3)-H-x(2)-[AG]-H-
 CONSENSUS: [[LIVM]].

NAME: Proteasome A-type subunits signature.
 CONSENSUS: [[FY]]-x(4)-[[STNV]]-x-[[FYW]]-S-P-x-G-[[RKH]]-x(2)-Q-
 [[LIVM]]-[[DE]]-Y-[[SAD]]-x(2)-
 5 CONSENSUS: [[SAG]].

NAME: Proteasome B-type subunits signature.
 CONSENSUS: [[LIVM]]-[[GSA]]-[[LIVMF]]-x-[[FYLVGAC]]-x(2)-[[GSACFY]]-
 [[LIVMSTAC]](3)-[[GAC]]-
 10 CONSENSUS: [[GSTACV]]-[[DES]]-x(15)-[[RK]]-x(12,13)-G-x(2)-[[GSTA]]-D.

NAME: Signal peptidases I serine active site.
 CONSENSUS: [[GS]]-x-S-M-x-[[PS]]-[[AT]]-[[LF]].
 15 NAME: Signal peptidases I lysine active site.
 CONSENSUS: K-R-[[LIVMSTA]](2)-G-x-[[PG]]-G-[[DE]]-x-[[LIVM]]-x-
 [[LIVMFY]].

20 NAME: Signal peptidases I signature 3.
 CONSENSUS: [[LIVMFYW]](2)-x(2)-G-D-[[NH]]-x(3)-[[SND]]-x(2)-[[SG]].

NAME: Signal peptidases II signature.
 CONSENSUS: [[GAF]]-[[GA]]-[[GAS]]-[[LIVM]]-[[GAS]]-N-[[LVMFG]]-[[LIVMFY]]-
 25 D-R-[[LIMFA]].

NAME: Peptidase family U32 signature.
 CONSENSUS: E-x-F-x(2)-G-[[SA]]-[[LIVM]]-C-x(4)-G-x-C-x-[[LIVM]]-S.

30 NAME: Amidases signature.
 CONSENSUS: G-[[GA]]-S-S-[[GS]]-G-x-[[GSA]]-[[GSAVY]]-x-[[LIVM]]-[[GSA]]-
 x(6)-[[GSA]]-x-[[GA]]-x-D-
 CONSENSUS: x-[[GA]]-x-S-[[LIVM]]-R-x-P-[[GSAC]].

35 NAME: Asparaginase / glutaminase active site signature 1.
 CONSENSUS: [[LIVM]]-x(2)-T-G-G-T-[[IV]]-[[AGS]].

NAME: Asparaginase / glutaminase active site signature 2.
 CONSENSUS: G-x-[[LIVM]]-x(2)-H-G-T-D-T-[[LIVM]].
 40 NAME: Urease nickel ligands signature.
 CONSENSUS: T-[[AY]]-[[GA]]-[[GAT]]-[[LIVM]]-D-x-H-[[LIVM]]-H-x(3)-P.

NAME: Urease active site.
 CONSENSUS: [[LIVM]](2)-[[CT]]-H-[[HN]]-L-x(3)-[[LIVM]]-x(2)-D-[[LIVM]]-
 x-F-A.
 45

NAME: ArgE / dapE / ACY] / CPG2 / yscS family signature 1.
 CONSENSUS: [[LIV]]-[[GALMY]]-[[LIVMF]]-x-[[GSA]]-H-x-D-[[TV]]-[[STAV]].

50 NAME: ArgE / dapE / ACY] / CPG2 / yscS family signature 2.
 CONSENSUS: [[GSTAI]]-[[SANQ]]-D-x-K-[[GSACN]]-x(2)-[[LIVMA]]-x(2)-
 [[LIVMFY]]-x(14,17)-[[LIVM]]-
 CONSENSUS: x-[[LIVMF]]-[[LIVMSTAG]]-[[LIVMFA]]-x(2)-[[DNG]]-E-E-x-
 55 [[GSTN]].

NAME: Dihydroorotate signature 1.
 CONSENSUS: D-[[LIVMFYSAP]]-H-[[LIVA]]-H-[[LIVF]]-[[RN]]-x-[[PGN]].

NAME: Dihydroorotate signature 2.
 CONSENSUS: [[GA]]-[[ST]]-D-x-A-P-H-x(4)-K.

5 NAME: Beta-lactamase class-A active site.
 CONSENSUS: [[FY]]-x-[[LIVMFY]]-x-S-[[TV]]-x-K-x(4)-[[AGLM]]-x(2)-
 [[LC]].

10 NAME: Beta-lactamase class-C active site.
 CONSENSUS: F-E-[[LIVM]]-G-S-[[LIVMG]]-[[SA]]-K.

NAME: Beta-lactamase class-D active site.
 CONSENSUS: [[PA]]-x-S-[[ST]]-F-K-[[LIV]]-[[PAL]]-x-[[STA]]-[[LI]].

15 NAME: Beta-lactamases class B signature 1.
 CONSENSUS: [[LI]]-x-[[STN]]-[[HN]]-x-H-[[GSTA]]-D-x(2)-G-[[GP]]-x(7,8)-
 [[GS]].

20 NAME: Beta-lactamases class B signature 2.
 CONSENSUS: P-x(3)-[[LIVM]](2)-x-G-x-C-[[LIVMF]](2)-K.

NAME: Arginase family signature 1.
 CONSENSUS: [[LIVMF]]-G-G-x-H-x-[[LIVMT]]-[[STAV]]-x-[[PAG]]-x(3)-
 [[GSTA]].

25 NAME: Arginase family signature 2.
 CONSENSUS: [[LIVM]](2)-x-[[LIVMFY]]-D-[[AS]]-H-x-D.

30 NAME: Arginase family signature 3.
 CONSENSUS: [[ST]]-[[LIVMFY]]-D-[[LIVM]]-D-x(3)-[[PAQ]]-x(3)-P-[[GSA]]-
 x(7)-G.

NAME: Adenosine and AMP deaminase signature.
 CONSENSUS: [[SA]]-[[LIVM]]-[[NGS]]-[[STA]]-D-D-P.

35 NAME: Cytidine and deoxycytidylate deaminases zinc-binding
 region signature.
 CONSENSUS: [[CH]]-[[AGV]]-E-x(2)-[[LIVMFGAT]]-[[LIVM]]-x(17,33)-P-C-
 x(2,8)-C-x(3)-[[LIVM]].

40 NAME: GTP cyclohydrolase I signature 1.
 CONSENSUS: [[EN]]-[[LIVM]](2)-x(2)-[[KRQN]]-[[DN]]-[[LIVM]]-x(3)-[[ST]]-
 x-C-E-H-H.

45 NAME: GTP cyclohydrolase I signature 2.
 CONSENSUS: [[SA]]-x-[[RK]]-x-Q-[[LIVM]]-Q-E-[[RN]]-[[LI]]-[[TSN]].

NAME: Nitrilases / cyanide hydratase signature 1.
 CONSENSUS: G-x(2)-[[LIVMFY]](2)-x-[[IF]]-x-E-x(2)-[[LIVM]]-x-G-Y-P.

50 NAME: Nitrilases / cyanide hydratase active site signature.
 CONSENSUS: G-[[GAQ]]-x(2)-C-[[WA]]-E-[[NH]]-x(2)-[[PST]]-[[LIVMFYS]]-x-
 [[KR]].

55 NAME: Inorganic pyrophosphatase signature.
 CONSENSUS: D-[[SGDN]]-D-[[PE]]-[[LIVMF]]-D-[[LIVMGAC]].

NAME: Acylphosphatase signature 1.

CONSENSUS: [LIV]-x-G-x-V-Q-G-V-x-[FM]-R.

NAME: Acylphosphatase signature 2.
 CONSENSUS: G-[FYW]-[AVC]-[KRQAM]-N-x(3)-G-x-V-x(5)-G.

5 NAME: ATP synthase alpha and beta subunits signature.
 CONSENSUS: P-[SAP]-[LIV]-[DNH]-x(3)-S-x-S.

10 NAME: ATP synthase gamma subunit signature.
 CONSENSUS: [IV]-T-x-E-x(2)-[DE]-x(3)-G-A-x-[SAKR].

NAME: ATP synthase delta (OSCP) subunit signature.
 CONSENSUS: [LIVM]-x-[LIVMFYI]-x(3)-[LIVMT]-[DENQK]-x(2)-
 [LIVM]-x-[GSA]-G-[LIVMFYGA]-
 15 CONSENSUS: x-[LIVM]-[KRHENQ]-x-[GSEN].

NAME: ATP synthase a subunit signature.
 CONSENSUS: [STAGN]-x-[STAG]-[LIVMF]-R-L-x-[SAGV]-N-[LIVMT].

20 NAME: ATP synthase c subunit signature.
 CONSENSUS: [GSTA]-R-[NQ]-P-x(10)-[LIVMFYW](2)-x(3)-[LIVMFYW]-
 x-[DE].

NAME: El-E2 ATPases phosphorylation site.
 25 CONSENSUS: D-K-T-G-T-[LI]-[TI].

NAME: Sodium and potassium ATPases beta subunits signature
 1.
 CONSENSUS: [FYW]-x(2)-[FYW]-x-[FYW]-[DN]-x(6)-[LIVM]-G-R-T-
 30 x(3)-W.

NAME: Sodium and potassium ATPases beta subunits signature
 2.
 CONSENSUS: [RK]-x(2)-C-[RKQWI]-x(5)-L-x(2)-C-[SA]-G.

35 NAME: GDAL/CD39 family of nucleoside phosphatases signature.
 CONSENSUS: [LIVM]-x-G-x(2)-E-G-x-[FY]-x-[FW]-[LIVA]-[TAG]-x-
 N-[HY].

40 NAME: Iodothyronine deiodinases active site.
 CONSENSUS: R-P-L-V-x-N-F-G-S-[CA]-T-C-P-x-F.

NAME: Cutinase, serine active site.
 CONSENSUS: P-x-[STA]-x-[LIV]-[IVT]-x-[GS]-G-Y-S-[QL]-G.

45 NAME: Cutinase, aspartate and histidine active sites.
 CONSENSUS: C-x(3)-D-x-[IV]-C-x-G-[GST]-x(2)-[LIVM]-x(2,3)-H.

NAME: DDC / GAD / HDC / TyrDC pyridoxal-phosphate attachment
 50 site.
 CONSENSUS: S-[LIVMFYW]-x(5)-K-[LIVMFYWG](2)-x(3)-[LIVMFYW]-x-
 [CA]-x(2)-[LIVMFYWQ]-
 CONSENSUS: x(2)-[RK].

55 NAME: Orn/Lys/Arg decarboxylases family 1 pyridoxal-P
 attachment site.
 CONSENSUS: [STAV]-x-S-x-H-K-x(2)-[GSTAN](2)-x-[STA]-Q-
 [STA](2).

NAME: Orn/DAP/Arg decarboxylases family 2 pyridoxal-P attachment site.

5 CONSENSUS: [[FY]]-[[PA]]-x-K-[[SACV]]-[[NHCLFW]]-x(4)-[[LIVMF]]-
[[LIVMTA]]-x(2)-[[LIVMA]]-x(3)-
CONSENSUS: [[GTE]].

NAME: Orn/DAP/Arg decarboxylases family 2 signature 2.

10 CONSENSUS: [[GS]]-x(2,b)-[[LIVMSP]]-x(2)-[[LIVMF]]-[[DNS]]-[[LIVMCA]]-
G-G-G-[[LIVMFY]]-
CONSENSUS: [[GSTPCEQ]].

NAME: Orotidine 5'-phosphate decarboxylase active site.

15 CONSENSUS: [[LIVMFTA]]-[[LIVMF]]-x-D-x-K-x(2)-D-I-[[GP]]-x-T-
[[LIVMTA]].

NAME: Phosphoenolpyruvate carboxylase active site 1.

CONSENSUS: [[VT]]-x-T-A-H-P-T-[[EQ]]-x(2)-R-[[KRH]].

20 NAME: Phosphoenolpyruvate carboxylase active site 2.
CONSENSUS: [[IV]]-M-[[LIVM]]-G-Y-S-D-S-x-K-D-[[STAG]]-G.

NAME: Phosphoenolpyruvate carboxykinase (GTP) signature.

CONSENSUS: F-P-S-A-C-G-K-T-N.

25 NAME: Phosphoenolpyruvate carboxykinase (ATP) signature.
CONSENSUS: L-I-G-D-D-E-H-x-W-x-[[DE]]-x-G-[[IV]]-x-N.

NAME: Uroporphyrinogen decarboxylase signature 1.

30 CONSENSUS: P-x-W-x-M-R-Q-A-G-R.

NAME: Uroporphyrinogen decarboxylase signature 2.

CONSENSUS: G-F-[[STAGCV]]-[[STAGC]]-x-P-[[FYW]]-T-[[LV]]-x(2)-Y-x(2)-
[[AE]]-[[GK]].

35 NAME: Indole-3-glycerol phosphate synthase signature.
CONSENSUS: [[LIVMFY]]-[[LIVMC]]-x-E-[[LIVMFYC]]-K-[[KRSP]]-[[STAK]]-S-
P-[[ST]]-x(3)-[[LIVMFYST]].

40 NAME: Ribulose bisphosphate carboxylase large chain active site.
CONSENSUS: G-x-[[DN]]-F-x-K-x-D-E.

45 NAME: Fructose-bisphosphate aldolase class-I active site.
CONSENSUS: [[LIVM]]-x-[[LIVMFYW]]-E-G-x-[[LS]]-L-K-P-[[SN]].

NAME: Fructose-bisphosphate aldolase class-II signature 1.
CONSENSUS: [[FYVM]]-x(1,3)-[[LIVMH]]-[[APN]]-[[LIVM]]-x(1,2)-[[LIVM]]-
H-x-D-H-[[GACH]].

50 NAME: Fructose-bisphosphate aldolase class-II signature 2.
CONSENSUS: [[LIVM]]-E-x-E-[[LIVM]]-G-x(2)-[[GM]]-[[GSTA]]-x-E.

NAME: Malate synthase signature.
55 CONSENSUS: [[KRI]]-[[DENQ]]-H-x(2)-G-L-N-x-G-x-W-D-Y-[[LIVM]]-F.

NAME: Hydroxymethylglutaryl-coenzyme A lyase active site.
CONSENSUS: S-V-A-G-L-G-G-C-P-Y.

NAME: Hydroxymethylglutaryl-coenzyme A synthase active site.
 CONSENSUS: N-x-[DN]-[IV]-E-G-[IV]-D-x(2)-N-A-C-[FY]-x-G.

5 NAME: Citrate synthase signature.
 CONSENSUS: G-[FYA]-[GA]-H-x-[IV]-x(1,2)-[RKT]-x(2)-D-[PS]-R.

NAME: Alpha-isopropylmalate and homocitrate synthases
 signature 1.
 10 CONSENSUS: L-R-[DE]-G-x-Q-x(10)-K.

NAME: Alpha-isopropylmalate and homocitrate synthases
 signature 2.
 CONSENSUS: [LIVMFW]-x(2)-H-x-H-[DN]-D-x-G-x-[GAS]-x-[GASLI].

15 NAME: KDPG and KHG aldolases active site.
 CONSENSUS: G-[LIVM]-x(3)-E-[LIV]-T-[LF]-R.

NAME: KDPG and KHG aldolases Schiff-base forming residue.
 20 CONSENSUS: G-x(3)-[LIVMF]-K-[LF]-F-P-[SA]-x(3)-G.

NAME: Isocitrate lyase signature.
 CONSENSUS: K-[KR]-C-G-H-[LMQ].

25 NAME: Beta-eliminating lyases pyridoxal-phosphate attachment
 site.
 CONSENSUS: Y-x-D-x(3)-M-S-[GA]-K-K-D-x-[LIVM](2)-x-[LIVM]-G-

G.

30 NAME: DNA photolyases class 1 signature 1.
 CONSENSUS: T-G-x-P-[LIVM](2)-D-A-x-M-[RA]-x-[LIVM].

NAME: DNA photolyases class 1 signature 2.
 CONSENSUS: [DN]-R-x-R-[LIVM](2)-x-[STA](2)-F-[LIVMFA]-x-K-x-

35 L-x(2,3)-W-[KRQ].

NAME: DNA photolyases class 2 signature 1.
 CONSENSUS: F-x-E-E-x-[LIVM](2)-R-R-E-L-x(2)-N-F.

40 NAME: DNA photolyases class 2 signature 2.
 CONSENSUS: G-x-H-D-x(2)-W-x-E-R-x-[LIVM]-F-G-K-[LIVM]-R-[FY]-
 M-N.

NAME: Eukaryotic-type carbonic anhydrases signature.
 45 CONSENSUS: S-E-H-x-[LIVM]-x(4)-[FYH]-x(2)-E-[LIVM]-H-[LIVMFA](2).

NAME: Prokaryotic-type carbonic anhydrases signature 1.
 CONSENSUS: C-[SA]-D-S-R-[LIVM]-x-[AP].

50 NAME: Prokaryotic-type carbonic anhydrases signature 2.
 CONSENSUS: [EQ]-Y-A-[LIVM]-x(2)-[LIVM]-x(4)-[LIVMF](3)-x-G-H-
 x(2)-C-G.

55 NAME: Fumarate lyases signature.
 CONSENSUS: G-S-x(2)-M-x(2)-K-x-N.

NAME: Aconitase family signature 1.

CONSENSUS: [[LIVM]]-x(2)-[[GSACIVM]]-x-[[LIV]]-[[GTIV]]-[[STP]]-C-x(D,L)-T-N-[[GSTANI]]-x(4)-
CONSENSUS: [[LIVMA]].

- 5 NAME: Aconitase family signature 2.
CONSENSUS: G-x(2)-[[LIVWPQ]]-x(3)-[[GAC]]-C-[[GSTAM]]-[[LIMPTA]]-C-
[[LIMV]]-[[GA]].
- 10 NAME: Dihydroxy-acid and L-phosphogluconate dehydratases
signature 1.
CONSENSUS: C-D-K-x(2)-P-[[GA]]-x(3)-[[GA]].
- 15 NAME: Dihydroxy-acid and L-phosphogluconate dehydratases
signature 2.
CONSENSUS: [[SA]]-L-[[LIVM]]-T-D-[[GA]]-R-[[LIVMF]]-S-[[GA]]-[[GAV]]-
[[ST]].
- 20 NAME: Dehydroquinase class I active site.
CONSENSUS: D-[[LIVM]]-[[DE]]-[[LIVN]]-x(18,20)-[[LIVM]](2)-x-[[SC]]-
[[NHY]]-H-[[DN]].
- 25 NAME: Dehydroquinase class II signature.
CONSENSUS: [[LIVM]]-[[NQ]]-G-P-N-[[LV]]-x(2)-L-G-x-R-[[QED]]-P-x(2)-
[[FYD]]-G.
- 30 NAME: Enolase signature.
CONSENSUS: [[LIV]](3)-K-x-N-Q-I-G-[[ST]]-[[LIV]]-[[ST]]-[[DE]]-[[STA]].
- NAME: Serine/threonine dehydratases pyridoxal-phosphate
attachment site.
CONSENSUS: [[DESH]]-x(4,5)-[[STVG]]-x-[[AS]]-[[FYI]]-K-[[DLIFSA]]-
[[RVMF]]-[[GA]]-[[LIVMGA]].
- 35 NAME: Enoyl-CoA hydratase/isomerase signature.
CONSENSUS: [[LIVM]]-[[STA]]-x-[[LIVM]]-[[DENQRHSTA]]-G-x(3)-[[AG]](3)-
x(4)-[[LIVMST]]-x-[[CSTA]]-
CONSENSUS: [[DQHP]]-[[LIVMFY]].
- 40 NAME: Imidazoleglycerol-phosphate dehydratase signature 1.
CONSENSUS: [[LIVMY]]-[[DE]]-x-H-H-x(2)-E-x(2)-[[GCA]]-[[LIVM]]-
[[STAC]]-[[LIVM]].
- 45 NAME: Imidazoleglycerol-phosphate dehydratase signature 2.
CONSENSUS: G-x-[[DN]]-x-H-H-x(2)-E-[[STAGC]]-x-[[FY]]-K.
- NAME: Tryptophan synthase alpha chain signature.
CONSENSUS: [[LIVM]]-E-[[LIVM]]-G-x(2)-[[FYC]]-[[ST]]-[[DE]]-[[PA]]-
[[LIVMY]]-[[AGLI]]-[[DE]]-G.
- 50 NAME: Tryptophan synthase beta chain pyridoxal-phosphate
attachment site.
CONSENSUS: [[LIVM]]-x-H-x-G-[[STA]]-H-K-x-N.
- 55 NAME: Delta-aminolevulinic acid dehydratase active site.
CONSENSUS: G-x-D-x-[[LIVM]](2)-[[IV]]-K-P-[[GSA]]-x(2)-Y.
- NAME: Urocanase active site.
CONSENSUS: F-Q-G-L-P-x-R-I-C-W.

NAME: Prephenate dehydratase signature 1.
 CONSENSUS: [FY]-x-[LIVM]-x(2)-[LIVM]-x(5)-[DN]-x(5)-T-R-F-[LIVMW]-x-[LIVM].

5 NAME: Prephenate dehydratase signature 2.
 CONSENSUS: [LIVM]-[ST]-[KR]-[LIVM]-E-[ST]-R-P.

NAME: Dihydrodipicolinate synthetase signature 1.
 CONSENSUS: [GSA]-[LIVM]-[LIVMFY]-x(2)-G-[ST]-[TG]-G-E-[GASNFI]-x(6)-[EQ].

10 NAME: Dihydrodipicolinate synthetase signature 2.
 CONSENSUS: Y-[DNS]-[LIVMF]-P-x(2)-[ST]-x(3)-[LIVM]-x(13,14)-
 [LIVM]-x-[SGA]-[LIVMF]-
 CONSENSUS: K-[DEQAF]-[STAC].

NAME: RsuA family of pseudouridine synthase signature.
 CONSENSUS: G-R-L-D-x(2)-[ST]-x-G-[LIVMF](4)-[ST]-[DNT].

20 NAME: Cysteine synthase/cystathionine beta-synthase P-phosphate attachment site.
 CONSENSUS: K-x-E-x(3)-[PA]-[STAGC]-x-S-[IVAP]-K-x-R-x-[STAG]-x(2)-[LIVM].

25 NAME: Phenylalanine and histidine ammonia-lyases signature.
 CONSENSUS: G-[STG]-[LIVM]-[STG]-[AC]-S-G-[DH]-L-x-P-L-[SA]-x(2)-[SA].

30 NAME: Porphobilinogen deaminase cofactor-binding site.
 CONSENSUS: E-R-x-[LIVMFA]-x(3)-[LIVMF]-x-G-[GSA]-C-x-[IVT]-P-[LIVMF]-[GSA].

35 NAME: Cys/Met metabolism enzymes pyridoxal-phosphate attachment site.
 CONSENSUS: [DQ]-[LIVMF]-x(3)-[STAGC]-[STAGC]-T-K-[FYWQ]-[LIVMF]-x-G-[HQ]-[SGNH].

40 NAME: Glyoxalase I signature 1.
 CONSENSUS: [HQ]-[IVT]-x-[LIVFY]-x-[IV]-x(5)-[STA]-x(2)-F-[YM]-x(2,3)-[LMF]-G-[LMF].

45 NAME: Glyoxalase I signature 2.
 CONSENSUS: G-[NTKQ]-x(0,5)-[GA]-[LVFY]-[GH]-H-[IVF]-[CGA]-x-[STAGL]-x(2)-[DNC].

NAME: Cytochrome c and c1 heme lyases signature 1.
 CONSENSUS: H-N-x(2)-N-E-x(2)-W-[NQKR]-x(4)-W-E.

50 NAME: Cytochrome c and c1 heme lyases signature 2.
 CONSENSUS: P-F-D-R-H-D-W.

NAME: Adenylate cyclases class-I signature 1.
 CONSENSUS: E-Y-F-G-[SA](2)-L-W-x-L-Y-K.

55 NAME: Adenylate cyclases class-I signature 2.
 CONSENSUS: Y-R-N-x-W-[NS]-E-[LIVM]-R-T-L-H-F-x-G.

NAME: Guanylate cyclases signature.
 CONSENSUS: G-V-[LIVM]-x(0,1)-G-x(5)-[FY]-x-[LIVM]-[FYW]-[GS]-
 [DNTHKW]-[DNT]-[IV]-
 CONSENSUS: [DNTA]-x(5)-[DE].

5 NAME: Chorismate synthase signature 1.
 CONSENSUS: G-E-S-H-[GC]-x(2)-[LIVM]-[GTV]-x-[LIVM](2)-[DE]-G-
 x-[PV].

10 NAME: Chorismate synthase signature 2.
 CONSENSUS: [GE]-R-[SA](2)-[SAG]-R-[EV]-[ST]-x(2)-[RH]-V-x(2)-
 G.

15 NAME: Chorismate synthase signature 3.
 CONSENSUS: R-[SH]-D-[PSV]-[CSAV]-x(4)-[GAI]-x-[IVGSP]-[LIVM]-
 x-E-[STAHA]-[LIVM].

20 NAME: 6-pyruvoyl tetrahydropterin synthase signature 1.
 CONSENSUS: C-N-N-x(2)-G-H-G-H-N-Y.

NAME: 6-pyruvoyl tetrahydropterin synthase signature 2.
 CONSENSUS: D-H-K-N-L-D-x-D.

25 NAME: Ferrochelatase signature.
 CONSENSUS: [LIVMF](2)-x-S-x-H-[GS]-[LIVM]-P-x(4,5)-[DENQKR]-
 x-G-D-x-Y.

NAME: Alanine racemase pyridoxal-phosphate attachment site.
 CONSENSUS: V-x-K-A-[DN]-[GA]-Y-G-H-G.

30 NAME: Aspartate and glutamate racemases signature 1.
 CONSENSUS: [IVA]-[LIVM]-x-C-x(0,1)-N-[ST]-[MSA]-[STH]-
 [LIVFYSTANK].

35 NAME: Aspartate and glutamate racemases signature 2.
 CONSENSUS: [LIVM](2)-x-[AG]-C-T-[DEH]-[LIVMFY]-[PNGRS]-x-
 [LIVM].

40 NAME: Mandelate racemase / muconate lactonizing enzyme
 family signature 1.
 CONSENSUS: A-x-[SAG](2)-[LIVM]-[DE]-x-A-x(2)-D-x(2)-[GA]-
 [KR].

45 NAME: Mandelate racemase / muconate lactonizing enzyme
 family signature 2.
 CONSENSUS: G-x(?) -D-x(9)-A-x(14)-[LIVM]-E-[DENQ]-P-x(4)-
 [DENQ].

50 NAME: Ribulose-phosphate 3-epimerase family signature 1.
 CONSENSUS: [LIVMF]-H-[LIVMFY]-D-[LIVM]-x-D-x(1,2)-[FY]-
 [LIVM]-x-N-x-[STAV].

55 NAME: Ribulose-phosphate 3-epimerase family signature 2.
 CONSENSUS: [LIVMA]-x-[LIVM]-M-[ST]-[VS]-x-P-x(3)-G-Q-x-F-
 x(b)-[NK]-[LIVMC].

NAME: Aldose 1-epimerase putative active site.
 CONSENSUS: [NS]-x-T-N-H-x-Y-[FW]-N-[LI].

NAME: Cyclophilin-type peptidyl-prolyl cis-trans isomerase
signature.
CONSENSUS: [[FY]]-x(2)-[[STCNLV]]-x-F-H-[[RH]]-[[LIVMN]]-[[LIVM]]-x(2)-
5 F-[[LIVM]]-x-Q-[[AG]]-G.

NAME: Cyclophilin-type peptidyl-prolyl cis-trans isomerase
profile.

10 NAME: FKBP-type peptidyl-prolyl cis-trans isomerase
signature 1.
CONSENSUS: [[LIVMC]]-x-[[YF]]-x-[[GVL]]-x(1,2)-[[LFT]]-x(2)-G-x(3)-
[[DEI]]-[[STAEQK]]-[[STAN]].

15 NAME: FKBP-type peptidyl-prolyl cis-trans isomerase
signature 2.
CONSENSUS: [[LIVMFY]]-x(2)-[[GA]]-x(3,4)-[[LIVMF]]-x(2)-[[LIVMFHK]]-
x(2)-G-x(4)-[[LIVMF]]-
CONSENSUS: x(3)-[[PSGAQ]]-x(2)-[[AG]]-[[FY]]-G.
20

NAME: FKBP-type peptidyl-prolyl cis-trans isomerase domain
profile.

25 NAME: PpiC-type peptidyl-prolyl cis-trans isomerase
signature.
CONSENSUS: F-[[GSADEI]]-x-[[LVAQ]]-A-x(3)-[[ST]]-x(3,4)-[[STQ]]-
x(3,5)-[[GER]]-G-x-[[LIVM]]-
CONSENSUS: [[GS]].

30 NAME: Triosephosphate isomerase active site.
CONSENSUS: [[AV]]-Y-E-P-[[LIVM]]-W-[[SA]]-I-G-T-[[GK]].

NAME: Xylose isomerase signature 1.
CONSENSUS: [[LI]]-E-P-K-P-x(2)-P.
35

NAME: Xylose isomerase signature 2.
CONSENSUS: [[FL]]-H-D-x-D-[[LIV]]-x-[[PD]]-x-[[GDE]].

NAME: Phosphomannose isomerase type I signature 1.
40 CONSENSUS: Y-x-D-x-N-H-K-P-E.

NAME: Phosphomannose isomerase type I signature 2.
CONSENSUS: H-A-Y-[[LIVM]]-x-G-x(2)-[[LIVM]]-E-x-M-A-x-S-D-N-x-
[[LIVM]]-R-A-G-x-T-P-K.
45

NAME: Phosphoglucose isomerase signature 1.
CONSENSUS: [[DENS]]-x-[[LIVM]]-G-G-R-[[FY]]-S-[[LIVMT]]-x-[[STA]]-
[[PSAC]]-[[LIVMA]]-G.

50 NAME: Phosphoglucose isomerase signature 2.
CONSENSUS: [[GS]]-x-[[LIVM]]-[[LIVMFYW]]-x(4)-[[FY]]-[[DN]]-Q-x-G-V-E-
x(2)-K.

55 NAME: Glucosamine/galactosamine- β -phosphate isomerases
signature.
CONSENSUS: [[LIVM]]-x(3)-G-x-[[LIT]]-x-[[LIV]]-x-[[LIVM]]-x-G-[[LIVM]]-
G-x-[[DEN]]-G-H.

NAME: Phosphoglycerate mutase family phosphohistidine
 signature.
 CONSENSUS: [LIVM]-x-R-H-G-[EQ]-x(3)-N.

5 NAME: Phosphoglucomutase and phosphomannomutase
 phosphoserine signature.
 CONSENSUS: [GSA]-[LIVM]-x-[LIVM]-[ST]-[PGA]-S-H-x-P-x(4)-
 [GNHE].

10 NAME: Methylmalonyl-CoA mutase signature.
 CONSENSUS: R-I-A-R-N-[TQ]-x(2)-[LIVMFY](2)-x-[EQ]-E-x(4)-
 [KRN]-x(2)-D-P-x-[GSA]-
 CONSENSUS: G-S.

15 NAME: Terpene synthases signature.
 CONSENSUS: [DE]-G-S-W-x-G-x-W-[GA]-[LIVM]-x-[FY]-x-Y-[GA].

NAME: Eukaryotic DNA topoisomerase I active site.
 CONSENSUS: [DEN]-x(6)-[GS]-[IT]-S-K-x(2)-Y-[LIVM]-x(3)-
 20 [LIVM].

NAME: Prokaryotic DNA topoisomerase I active site.
 CONSENSUS: [EQ]-x-L-Y-[DEQT]-x(3,12)-[LI]-[ST]-Y-x-R-[ST]-
 [DEQS].

25 NAME: DNA topoisomerase II signature.
 CONSENSUS: [LIVMA]-x-E-G-[DN]-S-A-x-[STAG].

NAME: Aminoacyl-transfer RNA synthetases class-I signature.
 CONSENSUS: P-x(0,2)-[GSTAN]-[DENQGAPK]-x-[LIVMFP]-[HT]-
 [LIVMYAC]-G-[HNTG]-
 CONSENSUS: [LIVMFYSTAGPC].

35 NAME: Aminoacyl-transfer RNA synthetases class-II signature
 1.
 CONSENSUS: [FYH]-R-x-[DE]-x(4,12)-[RH]-x(3)-F-x(3)-[DE].

NAME: Aminoacyl-transfer RNA synthetases class-II signature
 2.
 40 CONSENSUS: [GSTALVF]-[DENQHRKP]-[GSTA]-[LIVMF]-[DE]-R-
 [LIVMF]-x-[LIVMSTAG]-[LIVMFY].

NAME: WHEP-TRS domain signature.
 CONSENSUS: [QY]-G-[DNEA]-x-[LIV]-[KR]-x(2)-K-x(2)-[KRNG]-
 45 [AS]-x(4)-[LIV]-[DENK]-
 CONSENSUS: x(2)-[IV]-x(2)-L-x(3)-K.

NAME: ATP-citrate lyase / succinyl-CoA ligases family
 signature 1.
 50 CONSENSUS: S-[KR]-S-G-[GT]-[LIVM]-[GST]-x-[EQ]-x(8,10)-G-
 x(4)-[LIVM]-[GA]-[LIVM]-G-
 CONSENSUS: G-D.

55 NAME: ATP-citrate lyase / succinyl-CoA ligases family active
 site.
 CONSENSUS: G-x(2)-A-x(4,7)-[RQT]-[LIVMF]-G-H-[AS]-[GH].

NAME: ATP-citrate lyase / succinyl-CoA ligases family
signature 3.

CONSENSUS: G-x-[IV]-x(2)-[LIVMF]-x-[NA]-G-[GA]-G-[LA]-[STAV]-
x(4)-D-x-[LIVM]-x(3)-

5 CONSENSUS: G-[GRE].

NAME: Glutamine synthetase signature 1.

CONSENSUS: [FYWL]-D-G-S-S-x(b,b)-[DENQSTAK]-[SA]-[DE]-x(2)-
[LIVMFY].

10 NAME: Glutamine synthetase putative ATP-binding region
signature.

CONSENSUS: K-P-[LIVMFYA]-x(3,5)-[NPAT]-G-[GSTAN]-G-x-H-x(3)-
S.

15 NAME: Glutamine synthetase class-I adenylation site.

CONSENSUS: K-[LIVM]-x(5)-[LIVMA]-D-[RK]-[DN]-[LI]-Y.

NAME: D-alanine--D-alanine ligase signature 1.

20 CONSENSUS: H-G-x(2)-G-E-D-G-x-[LIVMA]-[QSA]-[GSA].

NAME: D-alanine--D-alanine ligase signature 2.

CONSENSUS: [LIV]-x(3)-[GA]-x-[GSAIV]-R-[LIVCA]-D-[LIVMF](2)-
x(7,9)-[LI]-x-E-

25 CONSENSUS: [LIVAI]-N-[STP]-x-P-[GA].

NAME: SAICAR synthetase signature 1.

CONSENSUS: [LIVMF](2)-P-[LIVM]-E-x-[LIVM]-[LIVMCA]-R-x(3)-
[TA]-G-S.

30 NAME: SAICAR synthetase signature 2.

CONSENSUS: [LIVM]-[LIVMA]-D-x-K-[LIVMFY]-E-F-G.

NAME: Folylpolyglutamate synthase signature 1.

35 CONSENSUS: [LIVMFY]-x-[LIVM]-[STAG]-G-T-[NK]-G-K-x-[ST]-x(7)-
[LIVM](2)-x(3)-[GSK].

NAME: Folylpolyglutamate synthase signature 2.

CONSENSUS: [LIVMFY](2)-E-x-G-[LIVM]-[GA]-G-x(2)-D-x-[GST]-x-
40 [LIVM](2).

NAME: Ubiquitin-activating enzyme signature 1.

CONSENSUS: K-A-C-S-G-K-F-x-P.

45 NAME: Ubiquitin-activating enzyme active site.

CONSENSUS: P-[LIVM]-C-T-[LIVM]-[KRH]-x-[FT]-P.

NAME: Ubiquitin-conjugating enzymes active site.

CONSENSUS: [FYWLSP]-H-[PC]-[NH]-[LIV]-x(3,4)-G-x-[LIV]-C-
50 [LIV]-x-[LIV].

NAME: Formate--tetrahydrofolate ligase signature 1.

CONSENSUS: G-[LIVM]-K-G-G-A-A-G-G-G-Y.

55 NAME: Formate--tetrahydrofolate ligase signature 2.

CONSENSUS: V-A-T-[IV]-R-A-L-K-x-[HN]-G-G.

NAME: Adenylosuccinate synthetase GTP-binding site.

CONSENSUS: Q-W-G-D-E-G-K-G.

NAME: Adenylosuccinate synthetase active site.
 CONSENSUS: G-I-[GR]-P-x-Y-x(2)-K-x(2)-R.

5 NAME: Argininosuccinate synthase signature 1.
 CONSENSUS: A-[FY]-S-G-G-L-D-T-S.

10 NAME: Argininosuccinate synthase signature 2.
 CONSENSUS: G-x-T-x-K-G-N-D-x(2)-R-F.

NAME: Phosphoribosylglycinamide synthetase signature.
 CONSENSUS: R-F-G-D-P-E-x-[QM].

15 NAME: Carbamoyl-phosphate synthase subdomain signature 1.
 CONSENSUS: [FYV]-[PS]-[LIVMC]-[LIVMA]-[LIVM]-[KR]-[PSA]-
 [STA]-x(3)-[SG]-G-x-[AG].

20 NAME: Carbamoyl-phosphate synthase subdomain signature 2.
 CONSENSUS: [LIVMF]-[LIMN]-E-[LIVMCA]-N-[PATLIVM]-[KR]-
 [LIVMSTAC].

NAME: ATP-dependent DNA ligase AMP-binding site.
 CONSENSUS: [EDQH]-x-K-x-[DN]-G-x-R-[GACIVM].

25 NAME: ATP-dependent DNA ligase signature 2.
 CONSENSUS: E-G-[LIVMA]-[LIVM](2)-[KR]-x(5,8)-[YW]-[ANEK]-
 x(2,6)-[KRH]-x(3,5)-K-
 CONSENSUS: [LIVMFY]-K.

30 NAME: NAD-dependent DNA ligase signature 1.
 CONSENSUS: K-[LIVM]-D-G-[LIVM]-[SA]-x(4)-Y-x(2)-G-x-L-x(4)-
 [ST]-R-G-[DN]-G-x(2)-G-
 CONSENSUS: [DE]-[DENL].

35 NAME: NAD-dependent DNA ligase signature 2.
 CONSENSUS: [IV]-G-[KR]-[ST]-G-x-[LIVM]-[STNK]-x-[VT]-x(2)-L-
 x-[PS]-V.

40 NAME: RNA 3'-terminal phosphate cyclase signature.
 CONSENSUS: [RH]-G-x(2)-P-x-G(3)-x-[LIV].

NAME: Lipoate-protein ligase B signature.
 CONSENSUS: R-G-G-x(2)-T-[FYW]-H-x(2)-[GH]-Q-x-[LIV]-x-Y.

45 NAME: Isopenicillin N synthetase signature 1.
 CONSENSUS: [RK]-x-[STA]-x(2)-S-x-C-Y-[SL].

50 NAME: Isopenicillin N synthetase signature 2.
 CONSENSUS: [LIVM](2)-x-C-G-[STA]-x(2)-[STAG]-x(2)-T-x-[DNG].

NAME: Site-specific recombinases active site.
 CONSENSUS: Y-[LIVAC]-R-[VA]-S-[ST]-x(2)-Q.

55 NAME: Site-specific recombinases signature 2.
 CONSENSUS: G-[DE]-x(2)-[LIVM]-x(3)-[LIVM]-[DT]-R-[LIVM]-
 [GSA].

NAME: Transposases, Mutator family, signature.
 CONSENSUS: D-x(3)-G-[LIVMF]-x(b)-[STAV]-[LIVMFYW]-[PT]-x-
 [STAV]-x(2)-[QR]-x-C-x(2)-
 CONSENSUS: H.

5 NAME: Transposases, IS30 family, signature.
 CONSENSUS: R-G-x(2)-E-N-x-N-G-[LIVM](2)-R-[QE]-[LIVMFY](2)-P-K.

10 NAME: Autoinducers synthetases family signature.
 CONSENSUS: [LMFY]-R-x(3)-F-x(2)-[KR]-x(2)-W-x-[LIVM]-x(b,q)-
 E-x-D-x-[FY]-D.

15 NAME: Thiamine pyrophosphate enzymes signature.
 CONSENSUS: [LIVMF]-[GSA]-x(5)-P-x(4)-[LIVMFY]-x-[LIVMF]-x-G-
 D-[GSA]-[GSAC].

20 NAME: Biotin-requiring enzymes attachment site.
 CONSENSUS: [GN]-[DEQTR]-x-[LIVMFY]-x(2)-[LIVM]-x-[AIV]-M-K-
 [LMAT]-x(3)-[LIVM]-x-
 CONSENSUS: [SAV].

25 NAME: 2-oxo acid dehydrogenases acyltransferase component
 lipoyl binding site.
 CONSENSUS: [GN]-x(2)-[LIVF]-x(5)-[LIVFC]-x(2)-[LIVFA]-x(3)-K-
 [STAIV]-[STAVQDN]-
 CONSENSUS: x(2)-[LIVMFS]-x(5)-[GCN]-x-[LIVMFY].

30 NAME: Putative AMP-binding domain signature.
 CONSENSUS: [LIVMFY]-x(2)-[STG]-[STAG]-G-[ST]-[STEI]-[SG]-x-
 [PASLIVM]-[KR].

35 NAME: Molybdenum cofactor biosynthesis proteins signature 1.
 CONSENSUS: [LIVM](3)-[LIT](2)-G-G-T-G-x(4)-D.

NAME: Molybdenum cofactor biosynthesis proteins signature 2.
 CONSENSUS: S-x-[GS]-x(2)-D-x(5)-[LIVW]-x(10,12)-[LIV]-x(2)-
 [KR]-P-G-[KRL]-P-x(2)-
 CONSENSUS: [LIVMF]-[GA].

40 NAME: moaA / nifB / pqqE family signature.
 CONSENSUS: [LIV]-x(3)-C-[NP]-[LIVMF]-[QRS]-C-x-[FYM]-C.

45 NAME: Radical activating enzymes signature.
 CONSENSUS: [GV]-x-G-x-[KR]-x(3)-F-x(2)-G-x(0,1)-C-x(3)-C-
 x(2)-C-x-[NL].

50 NAME: Tpx family signature.
 CONSENSUS: S-x-D-L-P-F-A-x(2)-[KR]-[FW]-C.

NAME: Cytochrome c family heme-binding site signature.
 CONSENSUS: C-[CPWHF]-[CPWR]-C-H-[CFYW].

55 NAME: Cytochrome b5 family, heme-binding domain signature.
 CONSENSUS: [FY]-[LIVMK]-x(2)-H-P-[GA]-G.

NAME: Cytochrome b/bb heme-ligand signature.
 CONSENSUS: [DENQ]-x(3)-G-[FYWMQ]-x-[LIVMF]-R-x(2)-H.

NAME: Cytochrome b/b_b Qo site signature.
 CONSENSUS: P-[DDE]-W-[FY]-[LFY](2).

5 NAME: Cytochrome b559 subunits heme-binding site signature.
 CONSENSUS: [LIV]-x-[ST]-[LIVF]-R-[FYW]-x(2)-[IV]-H-[STGA]-
 [LIV]-[STGA]-[IV]-P.

10 NAME: Nickel-dependent hydrogenases b-type cytochrome
 subunit signature 1.
 CONSENSUS: R-[LIVMFYW]-x-H-W-[LIVM]-x(2)-[LIVMF]-[STA]-
 [LIVM]-x(2)-L-x-[LIVM]-T-G.

15 NAME: Nickel-dependent hydrogenases b-type cytochrome
 subunit signature 2.
 CONSENSUS: [RH]-[STA]-[LIVMFYW]-H-[RH]-[LIVM]-x(2)-W-x-
 [LIVMF]-x(2)-F-x(3)-H.

20 NAME: Succinate dehydrogenase cytochrome b subunit signature
 1.
 CONSENSUS: R-P-[LIVMT]-x(3)-[LIVM]-x(b)-[LIVMWPK]-x(4)-S-
 x(2)-H-R-x-[ST].

25 NAME: Succinate dehydrogenase cytochrome b subunit signature
 2.
 CONSENSUS: H-x(3)-[GA]-[LIVMT]-R-[HF]-[LIVMF]-x-[FYWM]-D-x-
 [GVA].

30 NAME: Thioredoxin family active site.
 CONSENSUS: [LIVMF]-[LIVMSTA]-x-[LIVMFYC]-[FYWSTHE]-x(2)-
 [FYWGTN]-C-[GATPLVE]-
 CONSENSUS: [PHYWSTA]-C-x(b)-[LIVMFYWT].

35 NAME: Glutaredoxin active site.
 CONSENSUS: [LIVD]-[FYSA]-x(4)-C-[PV]-[FYW]-C-x(2)-[TAV]-
 x(2,3)-[LIV].

40 NAME: Type-1 copper (blue) proteins signature.
 CONSENSUS: [GA]-x(0,2)-[YSA]-x(0,1)-[VFY]-x-C-x(1,2)-[PG]-
 x(0,1)-H-x(2,4)-[MQ].

45 NAME: 2Fe-2S ferredoxins, iron-sulfur binding region
 signature.
 CONSENSUS: C-[C]-[C]-[GA]-[C]-C-[GAST]-[CPDEKRHFYW]-C.

NAME: Adrenodoxin family, iron-sulfur binding region
 signature.
 CONSENSUS: C-x(2)-[STAQ]-x-[STAMV]-C-[STA]-T-C-[HR].

50 NAME: 4Fe-4S ferredoxins, iron-sulfur binding region
 signature.
 CONSENSUS: C-x(2)-C-x(2)-C-x(3)-C-[PEG].

55 NAME: High potential iron-sulfur proteins signature.
 CONSENSUS: C-x(b,q)-[LIVM]-x(3)-G-[YW]-C-x(2)-[FYW].

NAME: Rieske iron-sulfur protein signature 1.
 CONSENSUS: C-[TK]-H-L-G-C-[LIVT].

NAME: Rieske iron-sulfur protein signature 2.
 CONSENSUS: C-P-C-H-x-[GSA].

5 NAME: Flavodoxin signature.
 CONSENSUS: [LIV]-[LIVFY]-[FY]-x-[ST]-x(2)-[AGC]-x-T-x(3)-A-x(2)-[LIV].

10 NAME: Rubredoxin signature.
 CONSENSUS: [LIVM]-x(3)-W-x-C-P-x-C-[AGD].

NAME: Electron transfer flavoprotein alpha-subunit
 signature.
 CONSENSUS: [LI]-Y-[LIVM]-[AT]-x-G-[IV]-[SD]-G-x-[IV]-Q-H-
 15 x(2)-G-x(6)-[IV]-x-A-
 CONSENSUS: [IV]-N.

NAME: Electron transfer flavoprotein beta-subunit signature.
 CONSENSUS: [IVA]-x-[KR]-x(2)-[DE]-[GD]-[GDE]-x(1,2)-[EQ]-x-
 20 [LIV]-x(4)-P-x-[LIVM](2)-
 CONSENSUS: [TAC].

NAME: Vertebrate metallothioneins signature.
 CONSENSUS: C-x-C-[GSTAP]-x(2)-C-x-C-x(2)-C-x-C-x(2)-C-x-K.
 25 NAME: Ferritin iron-binding regions signature 1.
 CONSENSUS: E-x-[KR]-E-x(2)-E-[KR]-[LF]-[LIVMA]-x(2)-Q-N-x-R-x-G-R.

30 NAME: Ferritin iron-binding regions signature 2.
 CONSENSUS: D-x(2)-[LIVMF]-[STAC]-[DH]-F-[LI]-[EN]-x(2)-[FY]-
 L-x(6)-[LIVM]-[KND].

NAME: Bacterioferritin signature.
 CONSENSUS: <M-x-G-x(3)-V-[LIV]-x(2)-[LM]-x(3)-L-x(3)-L.
 35 NAME: Transferrins signature 1.
 CONSENSUS: Y-x(0,1)-[VAS]-V-[IVAC]-[IVA]-[IVA]-[RKH]-[RKS]-
 [GDENSA].

40 NAME: Transferrins signature 2.
 CONSENSUS: Y-x-G-A-[FL]-[KRHNQ]-C-L-x(3,4)-G-[DENQ]-V-[GA]-
 [FYW].

45 NAME: Transferrins signature 3.
 CONSENSUS: [DENQ]-[YF]-x-[LY]-L-C-x-[DN]-x(5,8)-[LIV]-x(4,5)-
 C-x(2)-A-x(4)-[HQH]-x-
 CONSENSUS: [LIVMFYW]-[LIVM].

50 NAME: Globins profile.

NAME: Protozoan/cyanobacterial globins signature.
 CONSENSUS: F-[LF]-x(5)-G-[PA]-x(4)-G-[KRA]-x-[LIVM]-x(3)-H.

55 NAME: Plant hemoglobins signature.
 CONSENSUS: [SN]-P-x-L-x(2)-H-A-x(3)-F.

NAME: Hemerythrins signature.

CONSENSUS: W-L-x-[NQ]-H-I-x(3)-D-F.

NAME: Arthropod hemocyanins / insect LSPs signature 1.
 CONSENSUS: Y-[FYW]-x-E-D-[LIVM]-x(2)-N-x(b)-H-x(3)-P.

5 NAME: Arthropod hemocyanins / insect LSPs signature 2.
 CONSENSUS: T-x(2)-R-D-P-x-[FY]-[FYW].

NAME: Heavy-metal-associated domain.

10 CONSENSUS: [LIVN]-x(2)-[LIVMFA]-x-C-x-[STAGCDNH]-C-x(3)-
 [LIVFG]-x(3)-[LIV]-x(9,11)-
 CONSENSUS: [IVA]-x-[LVFYS].

NAME: ABC transporters family signature.

15 CONSENSUS: [LIVMFYC]-[SA]-[SAPGLVFYKQH]-G-[DENQMW]-
 [KRQASPCLIMFW]-[KRNQSTAVM]-
 CONSENSUS: [KRACLVM]-[LIVMFYPAN]-[PHY]-[LIVMFW]-[SAGCLIVP]-
 [FYWHP]-[KRHP]-
 CONSENSUS: [LIVMFYWSTA].

20 NAME: Binding-protein-dependent transport systems inner
 membrane comp. sign.

CONSENSUS: [LIVMFY]-x(8)-[EQR]-[STAGV]-[STAG]-x(3)-G-
 [LIVMFYSTAC]-x(5)-[LIVMFYSTA]-

25 CONSENSUS: x(4)-[LIVMFY]-[PKR].

NAME: ABC-2 type transport system integral membrane proteins
 signature.

30 CONSENSUS: [LIMST]-x(2)-[LIMW]-x(2)-[LIMCA]-[GSTC]-x-[GSAIV]-
 x(b)-[LIMGA]-[PGSNQ]-
 CONSENSUS: x(9,12)-P-[LIMFT]-x-[HRSY]-x(5)-[RQ].

NAME: Bacterial extracellular solute-binding proteins,
 family 1 signature.

35 CONSENSUS: [GAP]-[LIVMFA]-[STAVDN]-x(4)-[GSAV]-[LIVMFY](2)-Y-
 [ND]-x(3)-[LIVMF]-x-
 CONSENSUS: [KNDE].

40 NAME: Bacterial extracellular solute-binding proteins,
 family 3 signature.

CONSENSUS: G-[FYIL]-[DE]-[LIVMT]-[DE]-[LIVMF]-x(3)-[LIVMA]-
 [VAGC]-x(2)-[LIVMAGN].

45 NAME: Bacterial extracellular solute-binding proteins,
 family 5 signature.

CONSENSUS: [AG]-x(b,7)-[DNEG]-x(2)-[STAVE]-[LIVMFYWA]-x-
 [LIVMFY]-x-[LIVM]-[KRD]-
 CONSENSUS: [KRHDE]-[GDN]-[LIVMA]-[KNGSP]-[FW].

50 NAME: Serum albumin family signature.

CONSENSUS: [FY]-x(b)-C-C-x(?) -C-[LFY]-x(b)-[LIVMFYW].

NAME: Transthyretin signature 1.

CONSENSUS: S-K-C-P-L-M-V-K-V-L-D-[AS]-V-R-G.

55 NAME: Transthyretin signature 2.

CONSENSUS: S-P-[FY]-S-[FY]-S-T-T-A-[LIVM]-V-[ST]-x-P.

NAME: Avidin / Streptavidin family signature.
 CONSENSUS: $\text{[DEN]}-\text{x(2)}-\text{[KR]}-\text{[STA]}-\text{x(2)}-\text{V-G-x-[DN]}-\text{x-[FW]}-\text{T-[KR]}.$

5 NAME: Eukaryotic cobalamin-binding proteins signature.
 CONSENSUS: $\text{[SN]}-\text{V-D-T-[GA]}-\text{A-x-L-A-[LIVMF]}-\text{T-C}.$

10 NAME: Lipocalin signature.
 CONSENSUS: $\text{[DENG]}-\text{x-[DENQGSTARK]}-\text{x(0,2)}-\text{[DENQARK]}-\text{[LIVFY]}-$
 CONSENSUS: $\text{[CP]}-\text{G-[C]}-\text{W-[FYWLRH]}-\text{x-[LIVMTA]}.$

15 NAME: Cytosolic fatty-acid binding proteins signature.
 CONSENSUS: $\text{[GSAIVK]}-\text{x-[FYW]}-\text{x-[LIVMF]}-\text{x(4)}-\text{[NHG]}-\text{[FY]}-\text{[DE]}-\text{x-[LIVMFY]}-\text{[LIVM]}-\text{x(2)}-$
 CONSENSUS: $\text{[LIVMAKR]}.$

20 NAME: Acyl-CoA-binding protein signature.
 CONSENSUS: $\text{P-[STA]}-\text{x-[DEN]}-\text{x-[LIVMF]}-\text{x(2)}-\text{[LIVMFY]}-\text{Y-[GSTA]}-$
 $\text{x-[FY]}-\text{K-Q-[STA]}(2)-\text{x-G}.$

25 NAME: LBP / BPI / CETP family signature.
 CONSENSUS: $\text{[PA]}-\text{[GA]}-\text{[LIVMC]}-\text{x(2)}-\text{R-[IV]}-\text{[ST]}-\text{x(3)}-\text{L-x(5)}-\text{[EQ]}-\text{x(4)}-\text{[LIVM]}-\text{[EQK]}-$
 CONSENSUS: $\text{x(8)-P}.$

30 NAME: Phosphatidylethanolamine-binding protein family
 signature.
 CONSENSUS: $\text{[FY]}-\text{x-[LIVMF]}(3)-\text{x-[DC]}-\text{P-D-x-P-[SN]}-\text{x(10)-H}.$

35 NAME: Plant lipid transfer proteins signature.
 CONSENSUS: $\text{[LIVM]}-\text{[PA]}-\text{x(2)-C-x-[LIVM]}-\text{x-[LIVM]}-\text{x-[LIVMFY]}-\text{x-[LIVM]}-\text{[ST]}-\text{x(3)}-$
 CONSENSUS: $\text{[DN]}-\text{C-x(2)-[LIVM]}.$

40 NAME: Uteroglobin family signature 1.
 CONSENSUS: $\text{[GA]}-\text{x(3)-I-C-P-x-[LIVMF]}-\text{x(3)-[LIVM]}-\text{[DE]}-\text{x-[LIVMF]}(2).$

45 NAME: Uteroglobin family signature 2.
 CONSENSUS: $\text{[DEQ]}-\text{x(4)-[SN]}-\text{x(5)-[DEQ]}-\text{x-I-x(2)-S-[PSE]}-\text{[LS]}-\text{C}.$

50 NAME: Mitochondrial energy transfer proteins signature.
 CONSENSUS: $\text{P-x-[DE]}-\text{x-[LIVAT]}-\text{[RK]}-\text{x-[LRH]}-\text{[LIVMFY]}-\text{[QMAIGV]}.$

NAME: Sugar transport proteins signature 1.
 CONSENSUS: $\text{[LIVMSTAG]}-\text{[LIVMFSAG]}-\text{x(2)-[LIVMSA]}-\text{[DE]}-\text{x-[LIVMFYWA]}-\text{G-R-[RK]}-\text{x(4,6)-[GSTA]}.$

55 NAME: Sugar transport proteins signature 2.
 CONSENSUS: $\text{[LIVMF]}-\text{x-G-[LIVMFA]}-\text{x(2)-G-x(8)-[LIFY]}-\text{x(2)-[EQ]}-\text{x(6)-[RK]}.$

NAME: LacY family proton/sugar symporters signature 1.
 CONSENSUS: $\text{G-[LIVM]}(2)-\text{x-D-[RK]}-\text{L-G-L-[RK]}(2)-\text{x-[LIVM]}(2)-\text{W}.$

NAME: LacY family proton/sugar symporters signature 2.
 CONSENSUS: P-x-[LIVMF](2)-N-R-[LIVM]-G-x-K-N-[STA]-[LIVM](3).

NAME: PTR2 family proton/oligopeptide symporters signature
 5 1.
 CONSENSUS: [GA]-[GAS]-[LIVMFYWA]-[LIVM]-[GAS]-D-x-[LIVMFYWT]-
 [LIVMFYW]-G-x(3)-[TAV]-
 CONSENSUS: [IV]-x(3)-[GSTAV]-x-[LIVMF]-x(3)-[GA].

10 NAME: PTR2 family proton/oligopeptide symporters signature
 2.
 CONSENSUS: [FYT]-x(2)-[LMFY]-[FYV]-[LIVMFYWA]-x-[IVG]-N-
 [LIVMAG]-G-[GSA]-[LIMF].

15 NAME: Amiloride-sensitive sodium channels signature.
 CONSENSUS: Y-x(2)-[EQTF]-x-C-x(2)-[GSTDNL]-C-x-[QT]-x(2)-
 [LIVMT]-[LIVMS]-x(2)-C-x-C.

20 NAME: Sodium:alanine symporter family signature.
 CONSENSUS: G-G-x-[GA](2)-[LIVM]-F-W-M-W-[LIVM]-x-[STAV]-
 [LIVMFA](2)-G.

25 NAME: Sodium:dicarboxylate symporter family signature 1.
 CONSENSUS: P-x(0,1)-G-[DE]-x-[LIVMF](2)-x-[LIVM](2)-[KREQ]-
 [LIVM](3)-x-P.

NAME: Sodium:dicarboxylate symporter family signature 2.
 CONSENSUS: P-x-G-x-[STA]-x-[NT]-[LIVMC]-D-G-[STAN]-x-[LIVM]-
 [FY]-x(2)-[LIVM]-x(2)-
 30 CONSENSUS: [LIVM]-[FY]-[LI]-[SA]-Q.

NAME: Sodium:galactoside symporter family signature.
 CONSENSUS: D-x(3)-G-x(3)-[DN]-x(6,8)-G-[KH]-F-[KR]-P-[FYW]-
 [LIVM](2)-x-[GSTA](2).

35 NAME: Sodium:neurotransmitter symporter family signature 1.
 CONSENSUS: W-R-F-[GP]-Y-x(4)-N-G-G-x-[FY].

NAME: Sodium:neurotransmitter symporter family signature 2.
 40 CONSENSUS: Y-[LIVMFY]-x(2)-[SC]-[LIVMFY]-[STQ]-x(2)-L-P-W-
 x(2)-C-x(4)-N-[GST].

NAME: Sodium:solute symporter family signature 1.
 CONSENSUS: [GS]-x(2)-[LIY]-x(3)-[LIVMFYWSTAG](10)-[LIY]-
 45 [TAV]-x(2)-G-G-[LMF]-x-
 CONSENSUS: [SAP].

NAME: Sodium:solute symporter family signature 2.
 CONSENSUS: [GAST]-[LIVM]-x(3)-[KR]-x(4)-G-A-x(2)-[GAS]-
 50 [LIVMGS]-[LIVMW]-[LIVMGAT]-G-
 CONSENSUS: x-[LIVMG].

NAME: Sodium:sulfate symporter family signature.
 CONSENSUS: [STACP]-S-x(2)-F-x(2)-P-[LIVM]-[GSA]-x(3)-N-x-
 55 [LIVM]-V.

NAME: glpT family of transporters signature.
 CONSENSUS: R-G-x(5)-W-N-x(2)-H-N-x-G-G.

NAME: Ammonium transporters signature.
 CONSENSUS: D-[FYWS]-A-G-[GSC]-x(2)-[IV]-x(3)-[SAG](2)-x(2)-
 [SAG]-[LIVMF]-x(3)-

5 CONSENSUS: [LIVMFYWA](2)-x-[GK]-x-R.

NAME: BCCT family of transporters signature.
 CONSENSUS: [GSNDN]-W-T-[LIVM]-x-[FY]-W-x-W-W.

10 NAME: Flagellar motor protein motA family signature.
 CONSENSUS: A-[LMF]-x-[GAT]-T-[LIVF]-x-G-x-[LIVMF]-x(?)-P.

NAME: Formate and nitrite transporters signature 1.
 CONSENSUS: [LIVMA]-[LIVMY]-x-G-[GSTA]-[DES]-L-[FI]-[TN]-[GS].

15 15 NAME: Formate and nitrite transporters signature 2.
 CONSENSUS: [GA]-x(2)-[CA]-N-[LIVMFYW](2)-V-C-[LV]-A.

20 NAME: Prokaryotic sulfate-binding proteins signature 1.
 CONSENSUS: K-x-[NQEK]-[GT]-G-[DQ]-x-[LIVM]-x(3)-Q-S.

NAME: Prokaryotic sulfate-binding proteins signature 2.
 CONSENSUS: N-P-K-[ST]-S-G-x-A-R.

25 NAME: Sulfate transporters signature.
 CONSENSUS: P-x-Y-[GS]-L-Y-[STAG](2)-x(4)-[LIVMFY](3)-x(3)-
 [GSTA](2)-S-[KR].

30 NAME: Amino acid permeases signature.
 CONSENSUS: [STAGC]-G-[PAG]-x(2,3)-[LIVMFYW](2)-x-[LIVMFYW]-
 x-[LIVMFYSTAGC](2)-
 CONSENSUS: [STAGC]-x(3)-[LIVMFYW]-x-[LIVMST]-x(3)-[LIMCTA]-
 [GA]-E-x(5)-[PSAL].

35 NAME: Aromatic amino acids permeases signature.
 CONSENSUS: I-G-[GA]-G-M-[LF]-[SA]-x-P-x(3)-[SA]-G-x(2)-F.

NAME: Xanthine/uracil permeases family signature.
 CONSENSUS: [LIVM]-P-x-[PASIF]-V-[LIVM]-G-G-x(4)-[LIVM]-[FY]-
 40 [GSA]-x-[LIVM]-x(3)-G.

NAME: Anion exchangers family signature 1.
 CONSENSUS: F-G-G-[LIVM](2)-[KRI]-D-[LIVM]-[RK]-R-R-Y.

45 NAME: Anion exchangers family signature 2.
 CONSENSUS: [FI]-L-I-S-L-I-F-I-Y-E-T-F-x-K-L.

NAME: MIP family signature.
 CONSENSUS: [HNQA]-x-N-P-[STA]-[LIVMF]-[ST]-[LIVMF]-[GSTAFY].

50 NAME: General diffusion Gram-negative porins signature.
 CONSENSUS: [LIVMFY]-x(2)-G-x(2)-Y-x-F-x-K-x(2)-[SN]-[STAV]-
 [LIVMFYW]-V.

55 NAME: OmpA-like domain.
 CONSENSUS: [LIVMA]-x-[GT]-x-[TA]-[DA]-x(2)-[DG]-[GSTP]-x(2)-
 [LFYDE]-[NQS]-x(2)-

CONSENSUS: [LID]-[SG]-[QE]-[KRQE]-R-A-x(2)-[LV]-x(3)-[LIVMF]-
x(4,5)-[LIVM]-x(4)-
CONSENSUS: [LIVM]-x(3)-[SG]-x-G.

5 NAME: Eukaryotic mitochondrial porin signature.
CONSENSUS: [YH]-x(2)-D-[SPA]-x-[STA]-x(3)-[TAG]-[KR]-[LIVMF]-
[DNSTA]-[DNS]-x(4)-
CONSENSUS: [GSTAN]-[LIVMA]-x-[LIVMY].

10 NAME: Insulin-like growth factor binding proteins signature.
CONSENSUS: G-C-[GS]-C-C-x(2)-C-A-x(b)-C.

NAME: GPR1/FUN34/yaaH family signature.
CONSENSUS: N-P-[AV]-P-[LF]-G-L-x-[GSA]-F.

15 NAME: GNS1/SUR4 family signature.
CONSENSUS: L-x-F-L-H-x-Y-H-H.

NAME: 43 Kd postsynaptic protein signature.
20 CONSENSUS: G-Q-D-Q-T-K-Q-Q-I.

NAME: Actins signature 1.
CONSENSUS: [FY]-[LIV]-G-[DE]-E-A-Q-x-[RKQ](2)-G.

25 NAME: Actins signature 2.
CONSENSUS: W-[IV]-[STA]-[RK]-x-[DE]-Y-[DNE]-[DE].

NAME: Actins and actin-related proteins signature.
CONSENSUS: [LM]-[LIVM]-T-E-[GAPQ]-x-[LIVMFYWHQ]-N-[PSTAQ]-
30 x(2)-N-[KR].

NAME: Annexins repeated domain signature.
CONSENSUS: [TG]-[STV]-x(8)-[LIVMF]-x(2)-R-x(3)-[DEQNH]-x(7)-
[IFY]-x(7)-[LIVMF]-
35 CONSENSUS: x(3)-[LIVMF]-x(1)-[LIVMFA]-x(2)-[LIVMF].

NAME: Caveolins signature.
CONSENSUS: F-E-D-V-I-A-E-P.

40 NAME: Clathrin light chain signature 1.
CONSENSUS: F-L-A-Q-Q-E-S.

NAME: Clathrin light chain signature 2.
CONSENSUS: [KR]-D-x-S-[KR]-[LIVM]-[KR]-x-[LIVM](3)-x-L-K.

45 NAME: Clusterin signature 1.
CONSENSUS: C-K-P-C-L-K-x-T-C.

NAME: Clusterin signature 2.
50 CONSENSUS: C-L-[RK]-M-[RK]-x-[EQ]-C-[ED]-K-C.

NAME: Connexins signature 1.
CONSENSUS: C-[DN]-T-x-Q-P-G-C-x(2)-V-C-Y-D.

55 NAME: Connexins signature 2.
CONSENSUS: C-x(3,4)-P-C-x(3)-[LIVM]-[DEN]-C-[FY]-[LIVM]-[SA]-
[KR]-P.

NAME: Crystallins beta and gamma 'Greek key' motif signature.
 CONSENSUS: [[LIVMFYWA]-x-[DEHRKSTP]-[FY]-[DEQHKY]-x(3)-[FY]-x-G-x(4)-[LIVMFCST]].

5 NAME: Dynamin family signature.
 CONSENSUS: L-P-[RK]-G-[STN]-[GN]-[LIVM]-V-T-R.

10 NAME: Dynein light chain type 1 signature.
 CONSENSUS: H-x-I-x-G-[KRI]-x-F-[GA]-S-x-V-[ST]-[HY]-E.

15 NAME: FtsZ protein signature 1.
 CONSENSUS: N-[ST]-D-x-Q-x-L-x(16,18)-G-x-G-[ATV]-G-[GSAN]-x-P-x(2)-G.

20 NAME: FtsZ protein signature 2.
 CONSENSUS: [DNHKR]-[LIVMF]-x-[LIVMF](2)-[VSTAC]-[STAC]-G-x-G-[GK]-G-T-G-[ST]-G-
 CONSENSUS: [GSAR]-[STA]-P-[LIVMFT]-[LIVMF]-[SGAV].

25 NAME: Fungal hydrophobins signature.
 CONSENSUS: [GN]-[DNQPSA]-x-C-[GSTANK]-[GSTADNQ]-[STNQI]-[PTIV]-x-C-C-[DENQKPST].

30 NAME: Intermediate filaments signature.
 CONSENSUS: [IV]-x-[TACI]-Y-[RKH]-x-[LM]-L-[DE].

NAME: Involucrin signature.
 CONSENSUS: <M-S-[QH]-Q-x-T-[LV]-P-V-T-[LV].

35 NAME: Kinesin motor domain signature.
 CONSENSUS: [GSA]-[KRHPSTQVM]-[LIVMF]-x-[LIVMF]-[IVC]-D-L-[AH]-G-[SAN]-E.

NAME: Kinesin motor domain profile.

NAME: Kinesin light chain repeat.
 CONSENSUS: [DEQR]-A-L-x(3)-[GEQ]-x(3)-G-x-[DNS]-x-P-x-V-A-x(3)-N-x-L-[AS]-
 40 CONSENSUS: x(5)-[QR]-x-[KR]-[FY]-x(2)-[AV]-x(4)-[HKNQ].

NAME: Myelin basic protein signature.
 CONSENSUS: V-V-H-F-F-K-N.

45 NAME: Myelin P0 protein signature.
 CONSENSUS: S-[KRI]-S-x-K-[AG]-x-[SA]-E-K-K-[STA]-K.

NAME: Myelin proteolipid protein signature 1.
 CONSENSUS: G-[MV]-A-L-F-C-G-C-G-H.

50 NAME: Myelin proteolipid protein signature 2.
 CONSENSUS: C-x-[ST]-x-[DE]-x(3)-[ST]-[FY]-x-L-[FY]-I-x(4)-G-A.

55 NAME: Neuromodulin (GAP-43) signature 1.
 CONSENSUS: <M-L-C-C-[LIVM]-R-R.

NAME: Neuromodulin (GAP-43) signature 2.

CONSENSUS: S-F-R-G-H-I-x-R-K-K-[LIVM].

NAME: Osteopontin signature.

CONSENSUS: [KQ]-x-[TA]-x(2)-[GA]-S-S-E-E-K.

5

NAME: Peripherin / rom-1 signature.

CONSENSUS: D-[GS]-V-P-F-[ST]-C-C-N-P-x-S-P-R-P-C.

10 NAME: Profilin signature.

CONSENSUS: <x(0,1)-[STA]-x(0,1)-W-[DENQH]-x-[YI]-x-[DEQ].

NAME: Surfactant associated polypeptide SP-C palmitoylation sites.

CONSENSUS: I-P-C-C-P-V.

15

NAME: Synapsins signature 1.

CONSENSUS: L-R-R-R-L-S-D-S.

20

NAME: Synapsins signature 2.

CONSENSUS: G-H-A-H-S-G-M-G-K-V-K.

NAME: Synaptobrevin signature.

CONSENSUS: N-[LIVM]-[DENS]-[KL]-V-x-[DEQ]-R-x(2)-[KR]-[LIVM]-[STDE]-x-[LIVM]-x-[DE]-

25 CONSENSUS: [KR]-[TA]-[DE].

NAME: Synaptophysin / synaptoporin signature.

CONSENSUS: L-S-V-[DE]-C-x-N-K-T.

30

NAME: Tropomyosins signature.

CONSENSUS: L-K-E-A-E-x-R-A-E.

NAME: Tubulin subunits alpha, beta, and gamma signature.

CONSENSUS: [SAG]-G-G-T-G-[SA]-G.

35

NAME: Tubulin-beta mRNA autoregulation signal.

CONSENSUS: <M-R-[DE]-[IL].

40

NAME: Tau and MAP proteins tubulin-binding domain signature.

CONSENSUS: G-S-x(2)-N-x(2)-H-x-[PA]-[AG]-G(2).

NAME: Neuraxin and MAP1B proteins repeated region signature.

CONSENSUS: [STAGDN]-Y-x-Y-E-x(2)-[DE]-[KR]-[STAGCI].

45

NAME: F-actin capping protein alpha subunit signature 1.

CONSENSUS: V-H-[FY](2)-E-D-G-N-V.

NAME: F-actin capping protein alpha subunit signature 2.

CONSENSUS: F-K-[AE]-L-R-R-x-L-P.

50

NAME: F-actin capping protein beta subunit signature.

CONSENSUS: C-D-Y-N-R-D.

55

NAME: Vinculin family talin-binding region signature.

CONSENSUS: [KR]-x-[LIVMF]-x(3)-[LIVMA]-x(2)-[LIVM]-x(6)-R-Q-Q-E-L.

NAME: Vinculin repeated domain signature.

CONSENSUS: [[LIVM]]-x-[[QA]]-A-x(2)-W-[[IL]]-x-[[DN]]-P.

NAME: Amyloidogenic glycoprotein extracellular domain
signature.

5 CONSENSUS: G-[[VT]]-E-[[FY]]-V-C-C-P.

NAME: Amyloidogenic glycoprotein intracellular domain
signature.

10 CONSENSUS: G-Y-E-N-P-T-Y-[[KR]].

NAME: Cadherins extracellular repeated domain signature.
CONSENSUS: [[LIV]]-x-[[LIV]]-x-D-x-N-D-[[NH]]-x-P.

15 NAME: Insect cuticle proteins signature.

CONSENSUS: G-x(?)-[DEN]-G-x(b)-Y-x-A-[[DNG]]-x(2,3)-G-[[FY]]-x-
[[AP]].

NAME: Gas vesicles protein GVP_a signature 1.

CONSENSUS: [[LIVM]]-x-[[DE]]-[[LIVMFYT]]-[[LIVM]]-[[DE]]-x-[[LIVM]](2)-
[[DKR]](2)-G-x-[[LIVM]](2).

NAME: Gas vesicles protein GVP_a signature 2.

CONSENSUS: R-[[LIVA]](3)-A-[[GS]]-[[LIVMFY]]-x-T-x(3)-Y-[[AG]].

25 NAME: Gas vesicles protein GVP_c repeated domain signature.
CONSENSUS: F-L-x(2)-T-x(3)-R-x(3)-A-x(2)-Q-x(3)-L-x(2)-F.

NAME: Bacterial microcompartments proteins signature.

CONSENSUS: D-x(0,1)-M-x-K-[[SAG]](2)-x-[[IV]]-x-[[LIVM]]-[[LIVMA]]-
[[GCS]]-x(4)-[[GD]]-[[SGP]]-
CONSENSUS: [[GA]].

NAME: Flagella basal body rod proteins signature.

CONSENSUS: [[GTARYQ]]-x(9)-[[LIVMYSTA]](2)-[[GSTA]]-[[STADEN]]-N-
[[LIVM]]-[[SAN]]-N-x-[[SADNFR]]-
CONSENSUS: [[STV]].

NAME: Flagella transport protein fliP family signature 1.

CONSENSUS: [[PA]]-A-[[FY]]-x-[[LIVT]]-[[STH]]-[[EQ]]-[[LI]]-x(2)-[[GA]]-F-
[[KREQ]]-[[IM]]-G-[[LIF]].

NAME: Flagella transport protein fliP family signature 2.

CONSENSUS: P-[[LIVMF]]-K-[[LIVMF]](5)-x-[[LIVMA]]-[[DNGS]]-G-W.

45 NAME: Plant viruses icosahedral capsid proteins 'S' region
signature.

CONSENSUS: [[FYW]]-x-[[PSTA]]-x(7)-G-x-[[LIVM]]-x-[[LIVM]]-x-[[FYWI]]-
x(2)-D-x(5)-P.

50 NAME: Potexviruses and carlaviruses coat protein signature.
CONSENSUS: [[RK]]-[[FYW]]-A-[[GAPI]]-F-D-x-F-x(2)-[[LV]]-x(3)-
[[GAST]](2).

NAME: Neurotransmitter-gated ion-channels signature.

55 CONSENSUS: C-x-[[LIVMFQ]]-x-[[LIVMF]]-x(2)-[[FY]]-P-x-D-x(3)-C.

NAME: ATP P2X receptors signature.

CONSENSUS: G-G-x-[LIVM]-G-[LIVM]-x-[IV]-x-W-x-C-[DN]-L-D-x(5)-C-x-P-x-Y-x-F.

NAME: G-protein coupled receptors signature.

5 CONSENSUS: [GSTALIVMFYWC]-[GSTANCPDE]-[EDPKRH]-x(2)-[LIVMNQGA]-x(2)-[LIVMFT]-

- CONSENSUS: [GSTANC]-[LIVMFYWSTAC]-[DENH]-R-[FYWCSH]-x(2)-[LIVM].

10 NAME: G-protein coupled receptors family 2 signature 1.

CONSENSUS: C-x(3)-[FYWLIV]-D-x(3+4)-C-[FW]-x(2)-[STAGV]-x(8+9)-C-[PF].

NAME: G-protein coupled receptors family 2 signature 2.

15 CONSENSUS: Q-G-[LMFCA]-[LIVMFT]-[LIV]-x-[LIVFST]-[LIF]-[VFYH]-C-[LFY]-x-N-x(2)-V.

NAME: G-protein coupled receptors family 3 signature 1.

CONSENSUS: [LV]-x-N-[LIVM](2)-x-L-F-x-I-[PA]-Q-[LIVM]-[STA]-x-[STA](3)-[STAN].

NAME: G-protein coupled receptors family 3 signature 2.

CONSENSUS: C-C-[FYW]-x-C-x(2)-C-x(4)-[FYW]-x(2+4)-[DN]-x(2)-[STAH]-C-x(2)-C.

25 NAME: G-protein coupled receptors family 3 signature 3.

CONSENSUS: F-N-E-[STA]-K-x-I-[STAG]-F-[ST]-M.

NAME: Visual pigments (opsins) retinal binding site.

30 CONSENSUS: [LIVMWAC]-[PGAC]-x(3)-[SAC]-K-[STALIMR]-[GSACPNV]-[STACPI]-x(2)-[DENF]-

CONSENSUS: [AP]-x(2)-[IY].

NAME: Bacterial rhodopsins signature 1.

35 CONSENSUS: R-Y-x-[DT]-W-x-[LIVMF]-[ST]-T-P-[LIVM](3).

NAME: Bacterial rhodopsins retinal binding site.

CONSENSUS: [FYIV]-x-[FYVG]-[LIVM]-D-[LIVMF]-x-[STA]-K-x(2)-[FY].

40 NAME: Receptor tyrosine kinase class II signature.

CONSENSUS: [DN]-[LIV]-Y-x(3)-Y-Y-R.

NAME: Receptor tyrosine kinase class III signature.

45 CONSENSUS: G-x-H-x-N-[LIVM]-V-N-L-L-G-A-C-T.

NAME: Receptor tyrosine kinase class V signature 1.

CONSENSUS: F-x-[DN]-x-[GAW]-[GA]-C-[LIVM]-[SA]-[LIVM](2)-[SA]-[LV]-[KRHQ]-[LIVA]-

50 CONSENSUS: x(3)-[KR]-C-[PSAW].

NAME: Receptor tyrosine kinase class V signature 2.

CONSENSUS: C-x(2)-[DE]-G-[DEQ]-W-x(2,3)-[PAQ]-[LIVMT]-[GT]-x-C-x-C-x(2)-G-[HFY]-

55 CONSENSUS: [EQ].

NAME: Growth factor and cytokines receptors family signature 1.

CONSENSUS: C-[LVFYR]-x(7,8)-[STIVDN]-C-x-W.

NAME: Growth factor and cytokines receptors family signature
2.

5 CONSENSUS: [STGL]-x-W-[SG]-x-W-S.

NAME: TNFR/NGFR family cysteine-rich region signature.

CONSENSUS: C-x(4,b)-[FYH]-x(5,10)-C-x(0-2)-C-x(2,3)-C-
x(7,11)-C-x(4,b)-[DNEQSKP]-

10 CONSENSUS: x(2)-C.

NAME: TNFR/NGFR family cysteine-rich region domain.

NAME: Integrins alpha chain signature.

15 CONSENSUS: [FYWS]-[RK]-x-G-F-F-x-R.

NAME: Integrins beta chain cysteine-rich domain signature.

CONSENSUS: C-x-[GNQ]-x(1,3)-G-x-C-x-C-x(2)-C-x-C.

20 NAME: Natriuretic peptides receptors signature.
CONSENSUS: G-P-x-C-x-Y-x-A-A-x-V-x-R-x(3)-H-W.

NAME: Photosynthetic reaction center proteins signature.

CONSENSUS: [NH]-x(4)-P-x-H-x(2)-[SAG]-x(11)-[SAGC]-x-H-
25 [SAG](2).

NAME: Antenna complexes alpha subunits signature.

CONSENSUS: [LIVFAG]-x-[GASV]-[LIVFA]-x-[IV]-H-x(3)-[LIVM]-
[GSTAE]-[STANH]-x(1,3)-

30 CONSENSUS: [STN]-W-[LIVMFYW].

NAME: Antenna complexes beta subunits signature.

CONSENSUS: [EQ]-x(4)-H-x(5)-[GSTA]-x(3)-[FY]-x(3)-[AG]-x(2)-
[AV]-H-x(7)-P.

35 NAME: Photosystem I psaA and psaB proteins signature.
CONSENSUS: C-D-G-P-G-R-G-G-T-C.

NAME: Photosystem I psaG and psaK proteins signature.

40 CONSENSUS: G-F-x-[LIVM]-x-[DEA]-x(2)-[GA]-x-[GTA]-[SA]-x-G-H-
x-[LIVM]-[GA].

NAME: Phytochrome chromophore attachment site signature.

CONSENSUS: [RGSI]-[GSA]-[PV]-H-x-C-H-x(2)-Y.

45 NAME: Phytochrome chromophore attachment site domain
profile.

NAME: Speract receptor repeated domain signature.

50 CONSENSUS: G-x(5)-G-x(2)-E-x(6)-W-G-x(2)-C-x(3)-[FYW]-x(8)-C-
x(3)-G.

NAME: TonB-dependent receptor proteins signature 1.

CONSENSUS: <x(10,115)-[DENF]-[ST]-[LIVMF]-[LIVSTEQ]-V-x-
55 [AGP]-[STANEQPK].

NAME: TonB-dependent receptor proteins signature 2.

CONSENSUS: [[LYGSTANE]]-x(3)-[[GSTAENQ]]-x-[[PGE]]-R-x-[[LIVFYWA]]-x-
 [[LIVMFTA]]-[[STAGNQ]]-
 CONSENSUS: [[LIVMFYGT]]-x-[[LIVMFYWTADQ]]-x-F>.

- 5 NAME: Transmembrane 4 family signature.
 CONSENSUS: G-x(3)-[[LIVMF]]-x(2)-[[GSA]]-[[LIVMF]](2)-G-C-x-[[GA]]-
 [[STA]]-x(2)-[[EG]]-x(2)-
 CONSENSUS: [[CWN]]-[[LIVM]](2).
- 10 NAME: Bacterial chemotaxis sensory transducers signature.
 CONSENSUS: R-T-E-[[EQ]]-Q-x(2)-[[SA]]-[[LIVM]]-x-[[EQ]]-T-A-A-S-M-E-
 Q-L-T-A-T-V.
- 15 NAME: ER lumen protein retaining receptor signature 1.
 CONSENSUS: G-I-S-x-[[KRI]]-x-Q-x-L-[[FY]]-x-[[LIV]](2)-F-x(2)-R-Y.
- NAME: ER lumen protein retaining receptor signature 2.
 CONSENSUS: L-E-[[SA]]-V-A-I-[[LM]]-P-Q-L.
- 20 NAME: Ephrins signature.
 CONSENSUS: [[KRQ]]-[[LF]]-[[CST]]-x-K-[[IF]]-Q-x-[[FY]]-[[ST]]-[[PA]]-x(3)-
 G-x-E-F-x(5)-[[FY]](2)-
 CONSENSUS: x(2)-[[SA]].
- 25 NAME: Granulins signature.
 CONSENSUS: C-x-D-x(2)-H-C-C-P-x(4)-C.
- NAME: HBGF/FGF family signature.
 CONSENSUS: G-x-L-x-[[STAGP]]-x(6,7)-[[DE]]-C-x-[[FM]]-x-E-x(6)-Y.
- 30 NAME: PTN/MK heparin-binding protein family signature 1.
 CONSENSUS: S-[[DE]]-C-x-[[DE]]-W-x-W-x(2)-C-x-P-x-[[SN]]-x-D-C-G-
 [[LIVMA]]-G-x-R-E-G.
- 35 NAME: PTN/MK heparin-binding protein family signature 2.
 CONSENSUS: C-[[KR]]-[[LIVM]]-P-C-N-W-K-K-x-F-G-A-[[DE]]-C-K-Y-x-F-
 [[EQ]]-x-W-G-x-C.
- 40 NAME: Nerve growth factor family signature.
 CONSENSUS: G-C-[[KR]]-G-[[LIV]]-[[DE]]-x(3)-[[YW]]-x-S-x-C.
- NAME: Platelet-derived growth factor (PDGF) family
 signature.
 CONSENSUS: P-[[PS]]-C-V-x(3)-R-C-[[GSTA]]-G-C-C.
- 45 NAME: Small cytokines (intercrine/chemokine) C-x-C subfamily
 signature.
 CONSENSUS: C-x-C-[[LIVM]]-x(5,6)-[[LIVMFY]]-x(2)-[[RKSEQ]]-x-
 [[LIVM]]-x(2)-[[LIVM]]-x(5)-
 CONSENSUS: [[SAG]]-x(2)-C-x(3)-[[EQ]]-[[LIVM]](2)-x(9,10)-C-L-[[DN]].
- 55 NAME: Small cytokines (intercrine/chemokine) C-C subfamily
 signature.
 CONSENSUS: C-C-[[LIFYT]]-x(5,6)-[[LI]]-x(4)-[[LIVMF]]-x(2)-[[FYW]]-
 x(6,8)-C-x(3,4)-[[SAG]]-
 CONSENSUS: [[LIVM]](2)-[[FL]]-x(8)-C-[[STA]].
- NAME: TGF-beta family signature.

CONSENSUS: [[LIVM]]-x(2)-P-x(2)-[[FY]]-x(4)-C-x-G-x-C.

NAME: TNF family signature.

CONSENSUS: [[LV]]-x-[[LIVM]]-x(3)-G-[[LIVMF]]-Y-[[LIVMFY]](2)-x(2)-

5 [[QEKHL]]-[[LIVMGT]]-x-

CONSENSUS: [[LIVMFY]].

NAME: TNF family profile.

10 NAME: Wnt-1 family signature.

CONSENSUS: C-K-C-H-G-[[LIVMT]]-S-G-x-C.

NAME: Interferon alpha, beta and delta family signature.

CONSENSUS: [[FYH]]-[[FY]]-x-[[GNRC]]-[[LIVM]]-x(2)-[[FY]]-L-x(?)-[[CY]]-
15 A-W.

NAME: Granulocyte-macrophage colony-stimulating factor
signature.

CONSENSUS: C-P-[[LP]]-T-x-E-[[ST]]-x-C.

20 NAME: Interleukin-1 signature.

CONSENSUS: [[FC]]-x-S-[[ASLV]]-x(2)-P-x(2)-[[FYLIV]]-[[LI]]-[[SCAD]]-T-
x(?)-[[LIVM]].

25 NAME: Interleukin-2 signature.

CONSENSUS: T-E-[[LF]]-x(2)-L-x-C-L-x(2)-E-L.

NAME: Interleukins -4 and -13 signature.

CONSENSUS: L-x-E-[[LIVM]](2)-x(4,5)-[[LIVM]]-[[TL]]-x(5,7)-C-x(4)-
30 [[IVA]]-x-[[DNS]]-[[LIVMA]].

NAME: Interleukin-6 / G-CSF / MGF signature.

CONSENSUS: C-x(9)-C-x(6)-G-L-x(2)-[[FY]]-x(3)-L.

35 NAME: Interleukin-7 and -9 signature.

CONSENSUS: N-x-[[LAP]]-[[SCT]]-F-L-K-x-L-L.

NAME: Interleukin-10 family signature.

CONSENSUS: [[GS]]-C-x(2)-[[LV]]-x(2)-[[LIVM]](2)-x-F-Y-L-x(2)-V.

40 NAME: LIF / OSM family signature.

CONSENSUS: [[PST]]-x(4)-F-[[NQ]]-x-K-x(3)-C-x-[[LF]]-L-x(2)-Y-[[HK]].

45 NAME: Macrophage migration inhibitory factor family
signature.

CONSENSUS: [[DE]]-P-C-A-x(3)-[[LIVM]]-x-S-I-G-x-[[LIVM]]-G.

NAME: Adipokinetic hormone family signature.

CONSENSUS: Q-[[LV]]-[[NT]]-[[FY]]-[[ST]]-x(2)-W.

50 NAME: Bombesin-like peptides family signature.

CONSENSUS: W-A-x-G-[[SH]]-[[LF]]-M.

NAME: Calcitonin / CGRP / IAPP family signature.

55 CONSENSUS: C-[[SAGDN]]-[[STN]]-x(0,1)-[[SA]]-T-C-[[VMA]]-x(3)-[[LYF]]-
x(3)-[[LYF]].

NAME: Corticotropin-releasing factor family signature.

CONSENSUS: [PQ]-x-[LIVM]-S-[LIVM]-x(2)-[PST]-[LIVMF]-x-[LIVM]-L-R-x(2)-[LIVM].

- 5 NAME: Crustacean CHH/MIH/GIH neurohormones family signature.
 CONSENSUS: C-[DENK]-D-C-x-N-[LIV]-[FY]-R-x(7)-C-[KR]-x(2)-C.
- NAME: Erythropoietin / thrombopoietin signature.
 CONSENSUS: P-x(4)-C-D-x-R-[LIVM](2)-x-[KR]-x(14)-C.
- 10 NAME: Granins signature 1.
 CONSENSUS: [DE]-[SN]-L-[SAN]-x(2)-[DE]-x-E-L.
- NAME: Granins signature 2.
 CONSENSUS: C-[LIVM](2)-E-[LIVM](2)-S-[DN]-[STA]-L-x-K-x-S-
 15 x(3)-[LIVM]-[STA]-x-E-C.
- NAME: Galanin signature.
 CONSENSUS: G-W-T-L-N-S-A-G-Y-L-L-G-P-H.
- 20 NAME: Gastrin / cholecystokinin family signature.
 CONSENSUS: Y-x(0,1)-[GD]-[WH]-M-[DR]-F.
- NAME: Glucagon / GIP / secretin / VIP family signature.
 CONSENSUS: [YH]-[STAIVGD]-[DEQ]-[AGF]-[LIVMSTE]-[FYLR]-x-
 25 [DENSTAK]-[DENSTA]-
 CONSENSUS: [LIVMFYG]-x(9)-[KREQL]-[KRDENQL]-[LVFYWG]-[LIVQ].
- NAME: Glycoprotein hormones alpha chain signature 1.
 CONSENSUS: C-x-G-C-C-[FY]-S-R-A-[FY]-P-T-P.
- 30 NAME: Glycoprotein hormones alpha chain signature 2.
 CONSENSUS: N-H-T-x-C-x-C-x-T-C-x(2)-H-K.
- NAME: Glycoprotein hormones beta chain signature 1.
 CONSENSUS: C-[STAGM]-G-[HFYL]-C-x-[ST].
- NAME: Glycoprotein hormones beta chain signature 2.
 CONSENSUS: [PA]-V-A-x(2)-C-x-C-x(2)-C-x(4)-[STD]-[DEY]-C-
 x(6,8)-[PGSTAVM]-x(2)-C.
- 40 NAME: Gonadotropin-releasing hormones signature.
 CONSENSUS: Q-H-[FYW]-S-x(4)-P-G.
- NAME: Insulin family signature.
 CONSENSUS: C-C-{P}-x(2)-C-[STDNEKPI]-x(3)-[LIVMFS]-x(3)-C.
- 45 NAME: Natriuretic peptides signature.
 CONSENSUS: C-F-G-x(3)-D-R-I-x(3)-S-x(2)-G-C.
- 50 NAME: Neurohypophyseal hormones signature.
 CONSENSUS: C-[LIFY](2)-x-N-[CS]-P-x-G.
- NAME: Neuromedin U signature.
 CONSENSUS: F-[LIVMF]-F-R-P-R-N.
- 55 NAME: Endogenous opioids neuropeptides precursors signature.
 CONSENSUS: C-x(3)-C-x(2)-C-x(2)-[KRH]-x(6,7)-[LIF]-[DN]-x(3)-
 C-x-[LIVM]-[EQ]-C-

CONSENSUS: **[EQ]-x(8)-W-x(2)-C.**

NAME: Pancreatic hormone family signature.

CONSENSUS: **[FY]-x(3)-[LIVM]-x(2)-Y-x(3)-[LIVMFY]-x-R-x-R-[YF].**

NAME: Parathyroid hormone family signature.

CONSENSUS: **V-S-E-x-Q-x(2)-H-x(2)-G.**

10 NAME: Pyrokinins signature.

CONSENSUS: **F-[GSTV]-P-R-L-[G>].**

NAME: Somatotropin, prolactin and related hormones signature 1.

15 CONSENSUS: **C-x-[ST]-x(2)-[LIVMFY]-x-[LIVMSTA]-P-x(5)-[TALIV]-x(7)-[LIVMFY]-x(b)-[LIVMFY]-x(2)-[STA]-W.**

NAME: Somatotropin, prolactin and related hormones signature 2.

20 CONSENSUS: **C-[LIVMFY]-x(2)-D-[LIVMFYSTA]-x(5)-[LIVMFY]-x(2)-[LIVMFYT]-x(2)-C.**

NAME: Tachykinin family signature.

25 CONSENSUS: **F-[IVFY]-G-[LM]-M-[G>].**

NAME: Thymosin beta-4 family signature.

CONSENSUS: **K-L-K-K-T-E-T-Q-E-K-N.**

30 NAME: Urotensin II signature.

CONSENSUS: **C-F-W-K-Y-C.**

NAME: Cecropin family signature.

CONSENSUS: **W-x(0,2)-[KDN]-x(2)-K-[KRE]-[LI]-E-[RKN].**

35 NAME: Mammalian defensins signature.

CONSENSUS: **C-x-C-x(3,5)-C-x(7)-G-x-C-x(9)-C-C.**

NAME: Arthropod defensins signature.

40 CONSENSUS: **C-x(2,3)-[HN]-C-x(3,4)-[GR]-x(2)-G-G-x-C-x(4,7)-C-x-C.**

NAME: Cathelicidins signature 1.

CONSENSUS: **Y-x-[ED]-x-V-x-[RQ]-A-[LIVMA]-[DQG]-x-[LIVMFY]-N-[EQ].**

NAME: Cathelicidins signature 2.

CONSENSUS: **F-x-[LIVM]-K-E-T-x-C-x(10)-C-x-F-[KR]-[KE].**

50 NAME: Endothelin family signature.

CONSENSUS: **C-x-C-x(4)-D-x(2)-C-x(2)-[FY]-C.**

NAME: Plant thionins signature.

CONSENSUS: **C-C-x(5)-R-x(2)-[FY]-x(2)-C.**

55 NAME: Gamma-thionins family signature.

CONSENSUS: **[KR]-x-C-x(3)-[SV]-x(2)-[FYWH]-x-[GF]-x-C-x(5)-C-x(3)-C.**

NAME: Snake toxins signature.
 CONSENSUS: G-C-x(1,3)-C-P-x(8,10)-C-C-x(2)-[PDEN].

5 NAME: Myotoxins signature.
 CONSENSUS: K-x-C-H-x-K-x(2)-H-C-x(2)-K-x(3)-C-x(8)-K-x(2)-C-x(2)-[RK]-x-K-C-C-K-K.

10 NAME: Scorpion short toxins signature.
 CONSENSUS: C-x(3)-C-x(6,9)-[GAS]-K-C-[IMQT]-x(3)-C-x-C.

NAME: Heat-stable enterotoxins signature.
 CONSENSUS: C-C-x(2)-C-C-x-P-A-C-x-G-C.

15 NAME: Aerolysin type toxins signature.
 CONSENSUS: [KT]-x(2)-N-W-x(2)-T-[DN]-T.

NAME: Shiga/ricin ribosomal inactivating toxins active site
 signature.
 CONSENSUS: [LIVMA]-x-[LIVMSTA](2)-x-E-[SAGV]-[STAL]-R-[FY]-
 [RKNQS]-x-[LIVM]-[EQS]-
 CONSENSUS: ...x(2)-[LIVMF].

25 NAME: Channel forming colicins signature.
 CONSENSUS: T-x(2)-W-x-P-[LIVMFY](3)-x(2)-E.

NAME: Hok/gef family cell toxic proteins signature.
 CONSENSUS: [LIVMA](4)-C-[LIVMFA]-T-[LIVMA](2)-x(4)-[LIVM]-x-
 [RG]-x(2)-L-[CY].

30 NAME: Staphylococcal enterotoxin/Streptococcal pyrogenic
 exotoxin signature 1.
 CONSENSUS: Y-G-G-[LIV]-T-x(4)-N.

35 NAME: Staphylococcal enterotoxin/Streptococcal pyrogenic
 exotoxin signature 2.
 CONSENSUS: K-x(2)-[LIV]-x(4)-[LIV]-D-x(3)-R-x(2)-L-x(5)-
 [LIV]-Y.

40 NAME: Thiol-activated cytolsins signature.
 CONSENSUS: [RK]-E-C-T-G-L-x-W-E-W-[RK].

NAME: Membrane attack complex components / perforin
 signature.
 CONSENSUS: Y-x(6)-[FY]-G-T-H-[FY].

45 NAME: Pancreatic trypsin inhibitor (Kunitz) family
 signature.
 CONSENSUS: F-x(3)-G-C-x(6)-[FY]-x(5)-C.

50 NAME: Bowman-Birk serine protease inhibitors family
 signature.
 CONSENSUS: C-x(5,6)-[DENQKRHSTA]-C-[PASTDH]-[PASTDK]-[ASTDV]-
 C-[NDKS]-[DEKRHSTA]-C.

55 NAME: Kazal serine protease inhibitors family signature.
 CONSENSUS: C-x(7)-C-x(6)-Y-x(3)-C-x(2,3)-C.

NAME: Soybean trypsin inhibitor (Kunitz) protease inhibitors family signature.

CONSENSUS: [LIVM]-x-D-x-[EDNTY]-[DG]-[RKHDENQ]-x-[LIVM]-x(5)-Y-x-[LIVM].

5

NAME: Serpins signature.

CONSENSUS: [LIVMFY]-x-[LIVMFYAC]-[DNQ]-[RKHQ]-[PST]-F-[LIVMFY]-[LIVMFYC]-x-

CONSENSUS: [LIVMFAH].

10

NAME: Potato inhibitor I family signature.

CONSENSUS: [FYW]-P-[EQH]-[LIV](2)-G-x(2)-[STAGV]-x(2)-A.

NAME: Squash family of serine protease inhibitors signature.

15

CONSENSUS: C-P-x(5)-C-x(2)-D-x-D-C-x(3)-C-x-C.

NAME: Streptomyces subtilisin-type inhibitors signature.

CONSENSUS: C-x-P-x(2,3)-G-x-H-P-x(4)-A-C-[ATD]-x-L.

20

NAME: Cysteine proteases inhibitors signature.

CONSENSUS: [GSTE]Q[KRV]-Q-[LIVT]-[VAF]-[SAGQ]-G-x-[LIVMNK]-x(2)-[LIVMFY]-x-[LIVMFYA]-

CONSENSUS: [DENQKRHSIV].

25

NAME: Tissue inhibitors of metalloproteinases signature.

CONSENSUS: C-x-C-x-P-x-H-P-Q-x-A-F-C.

NAME: Cereal trypsin/alpha-amylase inhibitors family signature.

30

CONSENSUS: C-x(4)-[SAGD]-x(4)-[SPAL]-[LF]-x(2)-C-[RH]-x-[LIVMFY](2)-x(3,4)-C.

NAME: Alpha-2-macroglobulin family thiolester region signature.

35

CONSENSUS: [PG]-x-[GS]-C-[GA]-E-[EQ]-x-[LIVM].

NAME: Disintegrins signature.

CONSENSUS: C-x(2)-G-x-C-C-x-[NQRS]-C-x-[FM]-x(6)-C-[RK].

40

NAME: Lambda phage regulatory protein CIII signature.

CONSENSUS: E-S-x-L-x-R-x(2)-[KR]-x-L-x(4)-[KR](2)-x(2)-[DE]-x-L.

NAME: Chaperonins cpn60 signature.

45

CONSENSUS: A-[AS]-x-[DEQ]-E-x(4)-G-G-[GA].

NAME: Chaperonins cpn10 signature.

CONSENSUS: [LIVMFY]-x-P-[ILT]-x-[DEN]-[KR]-[LIVMFA](3)-[KREQ]-x(8,9)-[SG]-x-

50

CONSENSUS: [LIVMFY](3).

NAME: Chaperonins TCP-1 signature 1.

CONSENSUS: [RKEL]-[ST]-x-[LMFY]-G-P-x-[GSA]-x-x-K-[LIVMF](2).

55

NAME: Chaperonins TCP-1 signature 2.

CONSENSUS: [LIVM]-[TS]-[NK]-D-[GA]-[AVNHK]-[TAV]-[LIVM](2)-x(2)-[LIVM]-x-[LIVM]-x-

CONSENSUS: [SNH]-[PQH].

NAME: Chaperonins TCP-1 signature 3.
 CONSENSUS: Q-[DEK]-x-x-[LIVMGTA]-[GA]-D-G-T.

5 NAME: Heat shock hsp20 proteins family profile.

NAME: Heat shock hsp70 proteins family signature 1.
 CONSENSUS: [IV]-D-L-G-T-[ST]-x-[SC].

10 NAME: Heat shock hsp70 proteins family signature 2.
 CONSENSUS: [LIVMF]-[LIVMFY]-[DN]-[LIVMFS]-G-[GSH]-[GS]-[AST]-
 x(3)-[ST]-[LIVM]-
 CONSENSUS: [LIVMFC].

15 NAME: Heat shock hsp70 proteins family signature 3.
 CONSENSUS: [LIVMY]-x-[LIVMF]-x-G-G-x-[ST]-x-[LIVM]-P-x-
 [LIVM]-x-[DEQKRSTA].

20 NAME: Heat shock hsp90 proteins family signature.
 CONSENSUS: Y-x-[NQH]-K-[DE]-[IVA]-F-L-R-[ED].

NAME: Chaperonins clpA/B signature 1.
 CONSENSUS: D-[AI]-[SGA]-N-[LIVMF](2)-K-[PT]-x-L-x(2)-G.

25 NAME: Chaperonins clpA/B signature 2.
 CONSENSUS: R-[LIVMFY]-D-x-S-E-[LIVMFY]-x-E-[KRQ]-x-[STA]-x-
 [STA]-[KR]-[LIVM]-x-G-
 CONSENSUS: [STA].

30 NAME: Nt-dnaj domain signature.
 CONSENSUS: [FY]-x(2)-[LIVMA]-x(3)-[FYWHNT]-[DENQSA]-x-L-x-
 [DN]-x(3)-[KR]-x(2)-[FYI].

NAME: dnaj domain profile.

35 NAME: CXXCXGXG dnaj domain signature.
 CONSENSUS: C-[DEGSTHKR]-x-C-x-G-x-[GK]-[AGSDM]-x(2)-[GSNKRI]-
 x(4,6)-C-x(2,3)-C-x-G-x-G.

40 NAME: grpE protein signature.
 CONSENSUS: [FL]-[DN]-[PHEA]-x(2)-[HM]-x-A-[LIVMTN]-x(16,20)-
 G-[FY]-x(3)-[DEG]-x(2)-
 CONSENSUS: [LIVM]-[RI]-x-[SA]-x-V-x-[IV].

45 NAME: Bacterial type II secretion system protein C
 signature.
 CONSENSUS: P-x(6)-F-x(4)-L-x(3)-D-[LIVM]-A-[LIVM]-x-[LIVM]-N-
 x-[LIVM]-x-L.

50 NAME: Bacterial type II secretion system protein D
 signature.
 CONSENSUS: [GR]-[DEQKG]-[STVM]-[LIVMA](3)-[GA]-G-[LIVMFY]-
 x(1)-[LIVM]-P-
 CONSENSUS: [LIVMFYWGS]-[LIVMF]-[GSAE]-x-[LIVM]-P-
 [LIVMFYW](2)-x(2)-[LV]-F.

NAME: Bacterial type II secretion system protein E
 signature.

CONSENSUS: [LIVM]-R-x(2)-P-D-x-[LIVM](3)-G-E-[LIVM]-R-D.

NAME: Bacterial type II secretion system protein F
signature.

5 CONSENSUS: [KRQ]-[LIVMA]-x(2)-[SAIV]-[LIVM]-x-[TY]-P-x(2)-
[LIVM]-x(3)-[STAGV]-x(6)-
CONSENSUS: [LMY]-x(3)-[LIVMF](2)-P.

10 NAME: Bacterial type II secretion system protein N
signature.
CONSENSUS: G-T-L-W-x-G-x(1))-L-x(4)-W.

15 NAME: Bacterial export FHIPEP family signature.
CONSENSUS: R-[LIVM]-[GSA]-E-V-[GSA]-A-R-F-[STV]-L-D-[GSA]-M-
P-G-K-Q-M-[GSA]-I-D-
CONSENSUS: [GSA]-D..

20 NAME: Protein secA signatures.
CONSENSUS: [IV]-x-[IV]-[SA]-T-[NQ]-M-A-G-R-G-x-D-I-x-L.

25 NAME: Protein secY signature 1.
CONSENSUS: [GST]-[LIVMF](2)-x-[LIVM]-G-[LIVM]-x-P-
[LIVMFY](2)-x-[AS]-[GST]-
CONSENSUS: [LIVMFAT](3)-Q-[LIVMFA](2).

30 NAME: Protein secY signature 2.
CONSENSUS: [LIVMFYW](2)-x-[DE]-x-[LIVMF]-[STN]-x(2)-G-
[LIVMF]-[GST]-[NST]-G-x-[GST]-
CONSENSUS: [LIVMF](3).

35 NAME: Protein secE/secB-gamma signature.
CONSENSUS: [LIVMFY]-x(2)-[DENQGA]-x(4)-[LIVMTA]-x-[KRV]-x(2)-
[KW]-P-x(3)-[SEQ]-x(7)-
CONSENSUS: [LIVT]-[LIVGA]-[LIVFGAST].

40 NAME: Gram-negative pili assembly chaperone signature.
CONSENSUS: [LIVMFY]-[APN]-x-[DNS]-[KREQ]-E-[STR]-[LIVMAR]-x-
[FYWT]-x-[NC]-[LIVM]-
CONSENSUS: x(2)-[LIVM]-P-[PAS].

45 NAME: Fimbrial biogenesis outer membrane usher protein
signature.
CONSENSUS: [VLI]-[PASQ]-[PAS]-G-[PAD]-[FY]-x-[LI]-[DNQSTAP]-
[DNH]-[LIVMFY].

50 NAME: SRP54-type proteins GTP-binding domain signature.
CONSENSUS: P-[LIVM]-x-[FYL]-[LIVMAT]-[GS]-x-[GS]-[EQ]-x(4)-
[LIVMF].

55 NAME: Cytochrome c oxidase assembly factor COX10/ctaB/cyoE
signature.
CONSENSUS: [ED]-x-D-x(2)-M-x-R-T-x(2)-R-x(4)-G.

NAME: Cyclin-dependent kinases regulatory subunits signature
1.
CONSENSUS: Y-S-x-[KR]-Y-x-[DE](2)-x-[FY]-E-Y-R-H-V-x-[LV]-
[PT]-[KRP].

NAME: Cyclin-dependent kinases regulatory subunits signature
2.
CONSENSUS: H-x-P-E-x-H-[IV]-L-L-F-[KR].

5 NAME: Pentaxin family signature.
CONSENSUS: H-x-C-x-[ST]-W-x-[ST].

NAME: Immunoglobulins and major histocompatibility complex
proteins signature.
10 CONSENSUS: [FY]-x-C-x-[VA]-x-H.

NAME: Prion protein signature 1.
CONSENSUS: A-G-A-A-A-G-A-V-V-G-G-L-G-G-Y.

15 NAME: Prion protein signature 2.
CONSENSUS: E-x-[ED]-x-K-[LIVM](2)-x-[KR]-[LIVM](2)-x-[QE]-M-
C-x(2)-Q-Y.

NAME: Cyclins signature.
20 CONSENSUS: R-x(2)-[LIVMSA]-x(2)-[FYWS]-[LIVM]-x(8)-[LIVMFC]-
x(4)-[LIVMFYA]-x(2)-
CONSENSUS: [STAGC]-[LIVMFYQ]-x-[LIVMFYC]-[LIVMFY]-D-[RKH]-
[LIVMFYW].

25 NAME: Proliferating cell nuclear antigen signature 1.
CONSENSUS: [GA]-[LIVMF]-x-[LIVMA]-x-[SAV]-[LIVM]-D-x-[NSAE]-
[HKR]-[VI]-x-[LY]-
CONSENSUS: [VGA]-x-[LIVM]-x-[LIVM]-x(4)-F.

30 NAME: Proliferating cell nuclear antigen signature 2.
CONSENSUS: [RKAI]-C-[DE]-[RH]-x(3)-[LIVMF]-x(3)-[LIVM]-x-
[SGAN]-[LIVMF]-x-K-
CONSENSUS: [LIVMF](2).

35 NAME: Actin-depolymerizing proteins signature.
CONSENSUS: P-[DE]-x-[SA]-x-[LIVMT]-[KR]-x-[KR]-M-[LIVM]-[YA]-
[STA](3)-x(3)-[LIVMF]-
CONSENSUS: [KR].

40 NAME: BCL2-like apoptosis inhibitors (spans part of BH3, BH1
and BH2).

NAME: Apoptosis regulator, Bcl-2 family BH1 domain
signature.
45 CONSENSUS: [LVME]-[FT]-x-[GSD]-[GL]-x(1,2)-[NS]-[YW]-G-R-
[LIV]-[LIVC]-[GAT]-
CONSENSUS: [LIVMF](2)-x-F-[GSAE]-[GSARY].

50 NAME: Apoptosis regulator, Bcl-2 family BH2 domain
signature.
CONSENSUS: W-[LIM]-x(3)-[GR]-G-[WQ]-[DENSAV]-x-[FLGA]-
[LIVFTC].

55 NAME: Apoptosis regulator, Bcl-2 family BH3 domain
signature.
CONSENSUS: [LIVAT]-x(3)-L-[KARQ]-x-[IVAL]-G-D-[DESG]-[LIMFV]-
[DENSHQ]-[LVSHRQ]-
CONSENSUS: [NSR].

NAME: Apoptosis regulator, Bcl-2 family BH4 domain
signature.
 CONSENSUS: [DS]-[NT]-R-[AE]-[LI]-V-x-[KD]-[FY]-[LIV]-[GHS]-Y-
 5 K-L-[SR]-Q-[RK]-G-
 CONSENSUS: [HY]-x-[CW].

NAME: Apoptosis regulator, Bcl-2 family BH4 domain profile.

10 NAME: Arrestins signature.
 CONSENSUS: [FY]-R-Y-G-x-[DE](2)-x-[DE]-[LIVM](2)-G-[LIVM]-x-
 F-x-[RK]-[DEQ]-[LIVM].

15 NAME: AAA-protein family signature.
 CONSENSUS: [LIVMT]-x-[LIVMT]-[LIVMF]-x-[GATMC]-[ST]-[NS]-
 x(4)-[LIVM]-D-x-A-[LIFAD]-
 CONSENSUS: x-R.

20 NAME: Ubiquitin domain signature.
 CONSENSUS: K-x(2)-[LIVM]-x-[DESAK]-x(3)-[LIVM]-[PA]-x(3)-Q-x-
 [LIVM]-[LIVMC]-
 CONSENSUS: [LIVMFY]-x-G-x(4)-[DE].

25 NAME: Ubiquitin domain profile.

NAME: ADP-ribosylation factors family signature.
 CONSENSUS: [HRQT]-x-[FYWI]-x-[LIVM]-x(4)-A-x(2)-G-x(2)-
 [LIVM]-x(2)-[GSA]-[LIVMF]-x-
 CONSENSUS: [WK]-[LIVM].

30 NAME: GTP-binding nuclear protein ran signature.
 CONSENSUS: D-T-A-G-Q-E-K-[LF]-G-G-L-R-[DE]-G-Y-Y.

NAME: SAR1 family signature.
 CONSENSUS: R-x-[LIVM]-E-V-F-M-C-S-[LIVM](2)-x-[KRQ]-x-G-Y-x-
 E-[AG]-[FI]-x-W-[LIVM]-
 CONSENSUS: x-Q-Y.

40 NAME: Band 7 protein family signature.
 CONSENSUS: R-x(2)-[LIV]-[SAN]-x(b)-[LIV]-D-x(2)-T-x(2)-W-G-
 [LIV]-[KRH]-[LIV]-x-
 CONSENSUS: [KR]-[LIV]-E-[LIV]-[KR].

45 NAME: Trp-Asp (WD) repeats signature.
 CONSENSUS: [LIVMSTAC]-[LIVMFYWSTAGC]-[LIMSTAG]-[LIVMSTAGC]-
 x(2)-[DN]-x(2)-
 CONSENSUS: [LIVMWSTAC]-x-[LIVMFSTAG]-W-[DEN]-[LIVMFSTAGCN].

50 NAME: G-protein gamma subunit profile.

NAME: Ras GTPase-activating proteins signature.
 CONSENSUS: [GSN]-x-[LIVMF]-[FY]-[LIVMFY]-R-[LIVMFY](2)-
 [GACN]-P-[AV]-[LIV](2)-
 CONSENSUS: [SGAN]-P.

55 NAME: Ras GTPase-activating proteins profile.

NAME: Guanine-nucleotide dissociation stimulators CDC24
family signature.
CONSENSUS: L-x(2)-[LIVMFYW]-L-x(2)-P-[LIVM]-x(2)-[LIVM]-x-
[KRS]-x(2)-L-x-[LIVM]-x-
5 CONSENSUS: [DEQ]-[LIVM]-x(3)-[ST].

NAME: Guanine-nucleotide dissociation stimulators CDC25
family signature.
CONSENSUS: [GAP]-[CT]-V-P-[FY]-x(4)-[LIVMFY]-x-[DN]-[LIVM].
10 NAME: MARCKS family signature 1.
CONSENSUS: G-Q-E-N-G-H-V-[KR].

NAME: MARCKS family phosphorylation site domain.
15 CONSENSUS: E-T-P-K(5)-x(0,1)-F-S-F-K-K-x-F-K-L-S-G-x-S-F-K-
[KR]-[NS]-[KR]-K-E.

NAME: Stathmin family signature 1.
CONSENSUS: P-[KQ]-[KR](2)-[DE]-x-S-L-[EG]-E.
20 NAME: Stathmin family signature 2.
CONSENSUS: A-E-K-R-E-H-E-[KR]-E-V.

NAME: GTP-binding elongation factors signature.
25 CONSENSUS: D-[KRSTGANQFYW]-x(3)-E-[KRAQ]-x-[RKQD]-[GC]-
[IVMK]-[ST]-[IV]-x(2)-
CONSENSUS: [GSTACKRNQ].

NAME: Elongation factor 1 beta/beta'/delta chain signature
30 1.
CONSENSUS: [DE]-[DEG]-[DE](2)-[LIVMF]-D-L-F-G.

NAME: Elongation factor 1 beta/beta'/delta chain signature
2.
35 CONSENSUS: V-Q-S-x-D-[LIVM]-x-A-[FWM]-[NQ]-K-[LIVM].

NAME: Elongation factor 1 gamma chain profile.

NAME: Elongation factor Ts signature 1.
40 CONSENSUS: L-R-x(2)-T-[GDQ]-x-[GS]-[LIVMF]-x(0,1)-[DENKAC]-x-
K-[KRNEQS]-[AV]-L.

NAME: Elongation factor Ts signature 2.
CONSENSUS: E-[LIVM]-N-[SCV]-[QE]-T-D-F-V-[SA]-[KRN].
45 NAME: Elongation factor P signature.
CONSENSUS: K-x-A-x(4)-G-x(2)-[LIV]-x-V-P-x(2)-[LIV]-x(2)-G.

NAME: Eukaryotic initiation factor 1A signature.
50 CONSENSUS: [IM]-x-G-x-[GS]-[KRH]-x(4)-[CL]-x-D-G-x(2)-R-x(2)-
[RH]-I-x-G.

NAME: Eukaryotic initiation factor 4E signature.
CONSENSUS: [DE]-[IFY]-x(2)-F-[KR]-x(2)-[LIVM]-x-P-x-W-E-[DV]-
55 x(5)-G-G-[KR]-W.

NAME: Eukaryotic initiation factor 5A hypusine signature.
CONSENSUS: [PT]-G-K-H-G-x-A-K.

NAME: Initiation factor 2 signature.
 CONSENSUS: G-x-[LIVM]-x(2)-L-[KRI]-[KRHNS]-x-K-x(5)-[LIVM]-
 x(2)-G-x-[DEN]-C-G.

5

NAME: Initiation factor 3 signature.
 CONSENSUS: [KRI]-[LIVM](2)-[DN]-[FY]-[GSN]-[KRI]-[LIVMFYS]-x-
 [FY]-[DEQT]-x(2)-[KR].

10 NAME: Translation initiation factor SUII signature.
 CONSENSUS: [LIVM]-[EQ]-[LIVM]-Q-G-[DEN]-[KHQ]-[KRV].

15 NAME: Prokaryotic-type class I peptide chain release factors
 signature.
 CONSENSUS: [AR]-[STA]-x-G-x-G-G-Q-[HNGCS]-V-N-x(3)-[ST]-A-
 [IV].

20 NAME: Transcription termination factor nusG signature.
 CONSENSUS: [LIVM]-F-G-[KRW]-x-T-P-[IV]-x-[LIVM].

25 NAME: Calponin family repeat.
 CONSENSUS: [LIVM]-x-[LS]-Q-[MAS]-G-[STY]-[NT]-[KRQ]-x(2)-
 [STN]-Q-x-G-x(3-4)-G.

30 NAME: CAP protein signature 1.
 CONSENSUS: [LIVM](2)-x-R-L-[DE]-x(4)-R-L-E.

NAME: CAP protein signature 2.
 CONSENSUS: D-[LIVMFY]-x-E-x-[PA]-x-P-E-Q-[LIVMFY]-K.

35 NAME: Calreticulin family signature 1.
 CONSENSUS: [KRHN]-x-[DEQN]-[DEQNK]-x(3)-C-G-G-[AG]-[FY]-
 [LIVM]-[KN]-[LIVMFY](2).

40 NAME: Calreticulin family signature 2.
 CONSENSUS: [LIVM](2)-F-G-P-D-x-C-[AG].

NAME: Calreticulin family repeated motif signature.
 CONSENSUS: [IV]-x-D-x-[DENST]-x(2)-K-P-[DEH]-D-W-[DEN].

45 NAME: Calsequestrin signature 1.
 CONSENSUS: [EQ]-[DE]-G-L-[DN]-F-P-x-Y-D-G-x-D-R-V.

NAME: Calsequestrin signature 2.
 CONSENSUS: [DE]-L-E-D-W-[LIVM]-E-D-V-L-x-G-x-[LIVM]-N-T-E-D-
 D-D.

50 NAME: S-100/ICaBP type calcium binding protein signature.
 CONSENSUS: [LIVMFYW](2)-x(2)-[LK]-D-x(3)-[DN]-x(3)-[DNSG]-
 [FY]-x-[ES]-[FYVC]-x(2)-
 CONSENSUS: [LIVMFS]-[LIVMF].

55 NAME: Hemolysin-type calcium-binding region signature.
 CONSENSUS: D-x-[LI]-x(4)-G-x-D-x-[LI]-x-G-G-x(3)-D.

NAME: HlyD family secretion proteins signature.
 CONSENSUS: [LIVM]-x(2)-G-[LM]-x(3)-[STGAV]-x-[LIVMT]-x-
 [LIVMT]-[GE]-x-[KR]-x-

CONSENSUS: [[LIVMFYW]](2)-x-[[LIVMFYW]](3).

NAME: P-II protein urydylation site.
 CONSENSUS: Y-[[KR]]-G-[[AS]]-[[AE]]-Y.

5 NAME: P-II protein C-terminal region signature.
 CONSENSUS: [[ST]]-x(3)-G-[[DY]]-G-[[KR]]-[[IV]]-[[FW]]-[[LIVM]]-x(2)-
 [[LIVM]].

10 NAME: 14-3-3 proteins signature 1.
 CONSENSUS: R-N-L-[[LIV]]-S-[[VG]]-[[GA]]-Y-[[KN]]-N-[[IVA]].

NAME: 14-3-3 proteins signature 2.
 CONSENSUS: Y-K-[[DE]]-S-T-L-I-[[IM]]-Q-L-[[LF]]-[[RHG]]-D-N-[[LF]]-T-
 15 [[LS]]-W-[[TAN]]-[[SAD]].

NAME: ATP161 / PLM / MATB family signature.
 CONSENSUS: [[DNS]]-x-F-x-Y-D-x(2)-[[ST]]-[[LIVM]]-[[RQ]]-x(2)-G.

20 NAME: BTG1 family signature 1.
 CONSENSUS: Y-x(2)-[[HP]]-W-[[FY]]-[[AP]]-E-x-P-x-K-G-x-[[GA]]-[[FY]]-R-
 C-[[IV]]-[[RH]]-[[IV]].

25 NAME: BTG1 family signature 2.
 CONSENSUS: [[LV]]-P-x-[[DE]]-[[LM]]-[[ST]]-[[LIVM]]-W-[[IV]]-D-P-x-E-V-
 [[SC]]-x-[[RQ]]-x-G-E.

30 NAME: Cullin family signature.
 CONSENSUS: [[LIV]]-K-x(2)-[[LIV]]-x(2)-L-I-[[DEQ]]-[[KRHNQ]]-x-Y-
 [[LIVM]]-x-R-x(6,7)-[[FY]]-x-
 CONSENSUS: Y-x-[[SA]]>.

NAME: Cullin family profile.

35 NAME: Enhancer of rudimentary signature.
 CONSENSUS: Y-D-I-[[SA]]-x-L-[[FY]]-x-F-[[IV]]-D-x(3)-D-[[LIV]]-S.

40 NAME: G10 protein signature 1.
 CONSENSUS: L-C-C-x-[[KR]]-C-x(4)-[[DE]]-x-N-x(4)-C-x-C-R-V-P.

NAME: G10 protein signature 2.
 CONSENSUS: C-x-H-C-G-C-[[KRH]]-G-C-[[SA]].

45 NAME: Glucokinase regulatory protein family signature.
 CONSENSUS: G-[[PA]]-E-x-[[LIV]]-[[STA]]-G-S-[[ST]]-R-[[LIVM]]-K-
 [[STGA]](3)-x(2)-K.

50 NAME: GTP1/OBG family signature.
 CONSENSUS: D-[[LIVM]]-P-G-[[LIVM]](2)-[[DEY]]-[[GN]]-A-x(2)-G-x-G.

55 NAME: HIT family signature.
 CONSENSUS: [[NQA]]-x(4)-[[GAV]]-x-[[QF]]-x-[[LIVM]]-x-H-[[LIVMFYT]]-H-
 [[LIVMFT]]-H-[[LIVMF]](2)-
 CONSENSUS: [[PSGA]].

NAME: Caseins alpha/beta signature.
 CONSENSUS: C-L-[[LV]]-A-x-A-[[LVF]]-A.

NAME: Clathrin adaptor complexes medium chain signature 1.
 CONSENSUS: [[IVT]]-[[GSP]]-W-R-x(2,3)-[[GAD]]-x(2)-[[HY]]-x(2)-N-x-
 [[LIVMAFY]](3)-D-[[LIVM]]-
 CONSENSUS: [[LIVMT]]-E.

5 NAME: Clathrin adaptor complexes medium chain signature 2.
 CONSENSUS: [[LIV]]-x-F-I-P-P-x-G-x-[[LIVMFY]]-x-L-x(2)-Y.

10 NAME: Clathrin adaptor complexes small chain signature.
 CONSENSUS: [[LIVM]](2)-Y-[[KR]]-x(4)-L-Y-F.

15 NAME: Ependymins signature 1.
 CONSENSUS: F-E-E-G-x-[[LIVMF]]-Y-[[ED]]-I-D-x(2)-N-[[QE]]-S-C-
 [[RKH]](2).

20 NAME: Ependymins signature 2.
 CONSENSUS: [[QE]]-[[LIVMA]]-F-x(2)-P-[[STA]]-[[FY]]-C-[[DE]]-[[GA]]-
 [[LIVM]]-x(2)-[[DE]](2).

25 NAME: Syntaxin / epimorphin family signature.
 CONSENSUS: [[RQ]]-x(3)-[[LIVMA]]-x(2)-[[LIVM]]-[[ESH]]-x(2)-[[LIVMT]]-
 x-[[DEVMI]]-[[LIVM]]-x(2)-
 CONSENSUS: [[LIVM]]-[[FS]]-x(2)-[[LIVM]]-x(3)-[[LIVT]]-x(2)-Q-
 [[GADEQ]]-x(2)-[[LIVM]]-[[DNQQT]]-x-
 25 CONSENSUS: [[LIVMF]]-[[DESV]]-x(2)-[[LIVM]].

30 NAME: Extracellular proteins SCP/Tpx-1/Ag5/PR-1/Sc7
 signature 1.
 CONSENSUS: [[GDER]]-H-[[FYWH]]-T-Q-[[LIVM]](2)-W-x(2)-[[STN]].

35 NAME: Extracellular proteins SCP/Tpx-1/Ag5/PR-1/Sc7
 signature 2.
 CONSENSUS: [[LIVMFYH]]-[[LIVMFY]]-x-C-[[NQRHS]]-Y-x-[[PARH]]-x-[[GL]]-
 N-[[LIVMFYWDN]].

40 NAME: Fetuin family signature 1.
 CONSENSUS: C-x(5b)-C-x(10)-C-x(13)-C-x(17,18)-C-x(13)-C-x(2)-
 C-x(5b)-C-x(10,11)-
 CONSENSUS: C-x(10,12)-C-x(16,22)-C.

45 NAME: Fetuin family signature 2.
 CONSENSUS: L-E-T-x-C-H-x-L-D-P-T-P.

50 NAME: Legume lectins beta-chain signature.
 CONSENSUS: [[LIV]]-[[STAG]]-V-[[DEQV]]-[[FLI]]-D-[[ST]].

NAME: Legume lectins alpha-chain signature.
 CONSENSUS: [[LIV]]-x-[[EDQ]]-[[FYWKR]]-V-x-[[LIV]]-G-[[LF]]-[[ST]].

55 NAME: Vertebrate galactoside-binding lectin signature.
 CONSENSUS: W-[[GEK]]-x-[[EQ]]-x-[[KRE]]-x(3,6)-[[PCTF]]-[[LIVMF]]-
 [[NQEGSKV]]-x-[[GH]]-x(3)-
 CONSENSUS: [[DENKHS]]-[[LIVMFC]].

NAME: Lysosome-associated membrane glycoproteins duplicated domain signature.
 CONSENSUS: [[STA]]-C-[[LIVM]]-[[LIVMFYW]]-A-x-[[LIVMFYW]]-x(3)-
 [[LIVMFYW]]-x(3)-Y.

NAME: LAMP glycoproteins transmembrane and cytoplasmic domain signature.
 CONSENSUS: C-x(2)-D-x(3,4)-[LIVM](2)-P-[LIVM]-x-[LIVM]-G-
 5 x(2)-[LIVM]-x-G-[LIVM](2)-
 CONSENSUS: x-[LIVM](4)-A-[FY]-x-[LIVM]-x(2)-[KR]-[RH]-x(1,2)-
 [STAG](2)-Y-[EQ].

NAME: Glycophorin A signature.
 10 CONSENSUS: I-I-x-[GAC]-V-M-A-G-[LIVM](2).

NAME: PMP-22 / EMP / MP20 family signature 1.
 CONSENSUS: [LIVMF](4)-[SA]-T-x(2)-[DNKS]-x-W-x(9,13)-[LIV]-W-
 x(2)-C.

15 NAME: PMP-22 / EMP / MP20 family signature 2.
 CONSENSUS: [RQ]-[AV]-x-M-[IV]-L-S-x-[LI]-x(4)-[GSA]-
 [LIVMF](3).

20 NAME: Oxysterol-binding protein family signature.
 CONSENSUS: E-[KQ]-x-S-H-[HR]-P-P-x-[STACF]-A.

NAME: Yeast PIR proteins repeats signature.
 CONSENSUS: S-Q-[IV]-[STGNH]-D-G-Q-[LIV]-Q-[AIV]-[STA].

25 NAME: Seminal vesicle protein I repeats signature.
 CONSENSUS: [IVM]-x-G-Q-D-x-V-K-x(5)-[KN]-G-x(3)-[STLV].

NAME: Seminal vesicle protein II repeats signature.
 30 CONSENSUS: [GSA]-Q-x-K-S-[FY]-x-Q-x-K-[SA].

NAME: Serum amyloid A proteins signature.
 CONSENSUS: A-R-G-N-Y-[ED]-A-x-[QKR]-R-G-x-G-G-x-W-A.

35 NAME: Spermadhesins family signature 1.
 CONSENSUS: C-G-x(2)-[LI]-x(4)-G-x-I-x(9)-C-x-W-T.

NAME: Spermadhesins family signature 2.
 CONSENSUS: C-x-K-E-x-[LIVM]-E-[LIVM]-x-[DE]-x(3)-[GS]-x(5)-K-
 40 x-C.

NAME: Stress-induced proteins SRP1/TIP1 family signature.
 CONSENSUS: P-W-Y-[EST](2)-R-L.

45 NAME: Glypicans signature.
 CONSENSUS: C-x(2)-C-x-G-[LIVM]-x(4)-P-C-x(2)-[FY]-C-x(2)-
 [LIVM]-x(2)-G-C.

NAME: Syndecans signature.
 50 CONSENSUS: [FY]-R-[IM]-[KR]-K(2)-D-E-G-S-Y.

NAME: Tissue factor signature.
 CONSENSUS: W-K-x-K-C-x(2)-T-x-[DEN]-T-E-C-D-[LIVM]-T-D-E.

55 NAME: Translationally controlled tumor protein signature 1.
 CONSENSUS: [IA]-G-[GAS]-N-[PA]-S-A-E-[GDE]-[PAGE]-x(0,1)-
 [DEG]-x-[DEN]-x(2)-[DE].

NAME: Translationally controlled tumor protein signature 2.
 CONSENSUS: [[FL]]-[[FY]]-[[IVT]]-G-E-x-[[MA]]-x(2,5)-[[DEN]]-[[GAS]]-x-
 [[LV]]-[[AV]]-x(3)-[[FY]]-[[KR]]-
 CONSENSUS: [[DE]].

5 NAME: Tub family signature 1.
 CONSENSUS: F-[[KHQ]]-G-R-V-[[ST]]-x-A-S-V-K-N-F-Q.

10 NAME: Tub family signature 2.
 CONSENSUS: A-F-[[AG]]-I-[[SAC]]-[[LIVM]]-[[ST]]-S-F-x-[[GST]]-K-x-A-C-
 E.

15 NAME: HCP repeats signature.
 CONSENSUS: H-R-H-R-G-H-x(2)-[[DE]](?).

20 NAME: Bacterial ice-nucleation proteins octamer repeat.
 CONSENSUS: A-G-Y-G-S-T-x-T.

25 NAME: Cell cycle proteins ftsW / rodA / spoVE signature.
 CONSENSUS: [[NV]]-x(5)-[[GTR]]-[[LIVMA]]-x-P-[[PTLIVM]]-x-G-[[LIVM]]-
 x(3)-[[LIVMFW]](2)-S-[[YSA]]-
 CONSENSUS: G-G-[[STN]]-[[SA]].

30 NAME: Enterobacterial virulence outer membrane protein
 signature 1.
 CONSENSUS: G-[[LIVMFY]]-N-[[LIVM]]-K-Y-R-Y-E.

35 NAME: Enterobacterial virulence outer membrane protein
 signature 2.
 CONSENSUS: [[FYW]]-x(2)-G-x-G-Y-[[KR]]-F>.

40 NAME: Hydrogenases expression/synthesis hypA family
 signature.
 CONSENSUS: F-[[CSA]]-[[FY]]-[[DE]]-[[LIVA]](2)-x(3)-[[ST]]-[[LIVM]]-
 x(1b)-C-x(2)-C-x(12,15)-
 CONSENSUS: C-P-x-C.

45 NAME: Hydrogenases expression/synthesis hupF/hypC family
 signature.
 CONSENSUS: <M-C-[[LIV]]-[[GA]]-[[LIV]]-P-x-[[QKR]]-[[LIV]].

50 NAME: Staphylocoagulase repeat signature.
 CONSENSUS: A-R-P-x(3)-K-x-S-x-T-N-A-Y-N-V-T-T-x(2)-[[DN]]-G-
 x(3)-Y-G.

55 NAME: 11-S plant seed storage proteins signature.
 CONSENSUS: N-G-x-[[DE]](2)-x-[[LIVMF]]-C-[[ST]]-x(11,12)-[[PAG]]-D.

60 NAME: Dehydrins signature 1.
 CONSENSUS: S(5)-[[DE]]-x-[[DE]]-G-x(1,2)-G-x(0,1)-[[KR]](4).

65 NAME: Dehydrins signature 2.
 CONSENSUS: [[KR]]-[[LIM]]-K-[[DE]]-K-[[LIM]]-P-G.

70 NAME: Germin family signature.
 CONSENSUS: G-x(4)-H-x-H-P-x-A-x-E-[[LIVM]].

75 NAME: Oleosins signature.

CONSENSUS: [AG]-[ST]-x(2)-[AG]-x(2)-[LIVM]-[SAD]-T-P-
 [LIVMF](4)-F-S-P-[LIVM](3)-
 CONSENSUS: P-A.

5 NAME: Small hydrophilic plant seed proteins signature.
 CONSENSUS: G-[EQ]-T-V-V-P-G-G-T.

NAME: Pathogenesis-related proteins BetvI family signature.
 CONSENSUS: G-x(2)-[LIVMF]-x(4)-E-x(2)-[CSTAENI]-x(8,9)-[GND]-
 10 G-[GS]-[CS]-x(2)-K-x(4)-
 CONSENSUS: [FY].

NAME: Pollen proteins Ole e I family signature.
 CONSENSUS: [EQ]-G-x-V-Y-C-D-T-C-R.

15 NAME: Thaumatin family signature.
 CONSENSUS: G-x-[GF]-x-C-x-T-[GA]-D-C-x(1,2)-G-x(2,3)-C.

20 NAME: Mrp family signature.
 CONSENSUS: W-x(2)-[LIVM]-D-[LIVMY](4)-D-x-P-P-G-T-[GS]-D.

NAME: Glucose inhibited division protein A family signature
 1.

CONSENSUS: [GS]-P-x-Y-C-P-S-[LIVM]-E-x-K-[LIVM]-x-[KR]-F.

25 NAME: Glucose inhibited division protein A family signature
 2.

CONSENSUS: A-G-Q-x-[NT]-G-x(2)-G-Y-x-E-[SAG](3)-[QS]-G-

[LIVM](2)-A-G-[LIVMT]-N-A.

30 NAME: NOL1/NOP2/sun family signature.
 CONSENSUS: [FV]-D-[KRA]-[LIVMA]-L-x-D-[AV]-P-C-[ST]-[GA].

NAME: PET112 family signature.
 CONSENSUS: [DN]-x-[DN]-R-x(3)-P-L-[LIV]-E-[LIV]-x-[ST]-x-P.

NAME: Protein smpB signature.
 CONSENSUS: [TA]-G-[LIVM]-x-L-x-G-x-E-[LIVM]-[KQ]-[SA]-[LIVM].

40 NAME: Hypothetical cof family signature 1.
 CONSENSUS: [LIVFYAN]-[LIVMFA]-x(2)-D-[LIVMF]-[ND]-G-T-[LIV]-
 [LVY]-[STANLM].

45 NAME: Hypothetical cof family signature 2.
 CONSENSUS: [LIVMFC]-G-D-[GSANQ]-x-N-D-x(3)-[LIMFY]-x(2)-[AV]-
 x(2)-[GSCP]-x(2)-
 CONSENSUS: [LMP]-x(2)-[GAS].

50 NAME: RIO1/ZKB32-3/MJ0444 family signature.
 CONSENSUS: [LIVM]-V-H-[GA]-D-L-S-E-[FY]-N-x-[LIVM].

NAME: SUA5/yci0/yrdC family signature.
 CONSENSUS: [LIVMTA](3)-[LIVMFYC]-[PG]-T-[DE]-[STA]-x-[FY]-
 [GA]-[LIVM]-[GS].

55 NAME: Uncharacterized protein family UPF0001 signature.
 CONSENSUS: [FW]-H-[FM]-[IV]-G-x-[LIV]-Q-x-[NKR]-K-x(3)-[LIV].

NAME: Uncharacterized protein family UPF0003 signature.
 CONSENSUS: G-x-V-x(2)-[LIV]-x(3)-[SA]-x(6)-D-x(3)-[LIVT](3)-
 P-N-x(2)-[LIVMF](2)-
 CONSENSUS: x(5)-N.

5 NAME: Uncharacterized protein family UPF0004 signature.
 CONSENSUS: [LIVM]-x-[LIVMT]-x(2)-G-C-x(3)-C-[STAN]-[FY]-C-x-[LIVM]-x(4)-G.

10 NAME: Uncharacterized protein family UPF0005 signature.
 CONSENSUS: G-[LIVM](2)-[SA]-x(5,8)-G-x(2)-[LIVM]-G-P-x-L-
 x(4)-[SAG]-x(4,6)-
 CONSENSUS: [LIVM](2)-x(2)-A-x(3)-T-A-[LIVM](2)-F.

15 NAME: Uncharacterized protein family UPF0006 signature 1.
 CONSENSUS: [LIVMFY](2)-D-[STA]-H-x-H-[LIVMF]-[DN].

NAME: Uncharacterized protein family UPF0006 signature 2.
 CONSENSUS: P-[LIVM]-x-[LIVM]-H-x-R-x-[TA]-x-[DE].

20 NAME: Uncharacterized protein family UPF0006 signature 3.
 CONSENSUS: [LVSA]-[LIVA]-x(2)-[LIVM]-[PS]-x(3)-L-[LIVM]-
 [LIVMS]-E-T-D-x-P.

25 NAME: Uncharacterized protein family UPF0007 signature.
 CONSENSUS: V-L-[IV]-H-D-[GA]-A-R.

NAME: Uncharacterized protein family UPF0011 signature.
 CONSENSUS: S-D-A-G-x-P-x-[LIV]-[SN]-D-P-G.

30 NAME: Uncharacterized protein family UPF0012 signature.
 CONSENSUS: [GTA]-x(2)-[IVT]-C-Y-D-[LIVM]-x-F-P-x(9)-G.

NAME: Uncharacterized protein family UPF0015 signature.
 CONSENSUS: [DE]-[LIVMF](3)-R-T-[SG]-G-x(2)-R-x-S-x-[FY]-
 [LIVM](2)-W-Q.

NAME: Uncharacterized protein family UPF0016 signature.
 CONSENSUS: E-[LIVM]-G-D-K-T-F-[LIVMF](2)-A.

40 NAME: Uncharacterized protein family UPF0017 signature.
 CONSENSUS: D-x(8)-[GN]-[LFY]-x(4)-[DET]-[LY]-Y-x(3)-[ST]-
 x(?)-[IV]-x(2)-[PS]-x-
 CONSENSUS: [LIVM]-x-[LIVM]-x(3)-[DN]-D.

45 NAME: Uncharacterized protein family UPF0019 signature.
 CONSENSUS: L-P-V-[VT]-[NQL]-F-[AT]-A-G-G-[LIV]-A-T-P-A-D-A-A-[LM].

50 NAME: Uncharacterized protein family UPF0020 signature.
 CONSENSUS: D-P-[LIVMF]-C-G-[ST]-G-x(3)-[LI]-E.

NAME: Uncharacterized protein family UPF0021 signature.
 CONSENSUS: C-K-x(2)-F-x(4)-E-x(22,23)-S-G-G-K-D.

55 NAME: Uncharacterized protein family UPF0023 signature.
 CONSENSUS: D-x-D-E-[LIV]-L-x(4)-V-F-x(3)-S-K-G.

NAME: Uncharacterized protein family UPF0024 signature.
 CONSENSUS: G-x-K-D-[KR]-x-A-[LV]-T-x-Q-x-[LIVF]-[SGC].

5 NAME: Uncharacterized protein family UPF0025 signature.
 CONSENSUS: D-V-[LIV]-x(2)-G-H-[ST]-H-x(12)-[LIVMF]-N-P-G.

NAME: Uncharacterized protein family UPF0027 signature.
 CONSENSUS: Q-[LIVM]-x-N-x-A-x-[LIVM]-P-x-I-x(b)-[LIVM]-P-D-x-
 H-x-G-x-G-x(2)-[IV]-G.

10 NAME: Uncharacterized protein family UPF0028 signature.
 CONSENSUS: [GA]-[GS]-G-[GA]-A-R-G-x-[SA]-H-x-G-x(9)-[IV]-x-
 [IV]-D-x(2)-[GA]-G-x-S-
 CONSENSUS: x-G.

15 NAME: Uncharacterized protein family UPF0029 signature.
 CONSENSUS: G-x(2)-[LIVM](2)-x(2)-[LIVM]-x(4)-[LIVM]-x(5)-
 [LIVM](2)-x-R-[FYW](2)-G-
 CONSENSUS: G-x(2)-[LIVM]-G.

20 NAME: Uncharacterized protein family UPF0030 signature.
 CONSENSUS: [GA]-L-I-[LIV]-P-G-G-E-S-T-[STA].

25 NAME: Uncharacterized protein family UPF0031 signature 1.
 CONSENSUS: [SAV]-[IVW]-[LVA]-[LIV]-G-[PNS]-G-L-[GP]-x-
 [DENQT].

NAME: Uncharacterized protein family UPF0031 signature 2.
 CONSENSUS: [GA]-G-x-G-D-[TV]-[LT]-[STA]-G-x-[LIVM].

30 NAME: Uncharacterized protein family UPF0032 signature.
 CONSENSUS: Y-x(2)-F-[LIVMA](2)-x-L-x(4)-G-x(2)-F-[EQ]-
 [LIVMF]-P-[LIVM].

35 NAME: Uncharacterized protein family UPF0033 signature.
 CONSENSUS: L-[DN]-x(2)-[TAG]-x(2)-C-P-x-P-x-[LIVM].

NAME: Uncharacterized protein family UPF0034 signature.
 CONSENSUS: [LIVM]-[DNG]-[LIVM]-N-x-G-C-P-x(3)-[LIVMASQ]-x(5)-
 40 G-[SAC].

NAME: Uncharacterized protein family UPF0035 signature.
 CONSENSUS: L-L-T-x-R-[SA]-x(3)-R-x(3)-G-x(3)-F-P-G-G.

45 NAME: Uncharacterized protein family UPF0036 signature.
 CONSENSUS: H-x-S-G-H-[GA]-x(3)-[DE]-x(3)-[LM]-x(5)-P-x(3)-
 [LIVM]-P-x-H-G-[DE].

50 NAME: Uncharacterized protein family UPF0038 signature.
 CONSENSUS: G-x-[LI]-x-R-x(2)-L-x(4)-F-x(8)-[LIV]-x(5)-P-x-
 [LIV].

NAME: Uncharacterized protein family UPF0044 signature.
 CONSENSUS: L-[ST]-x(3)-K-x(3)-[KR]-[SGA]-x-[GA]-H-x-L-x-P-
 [LIV]-x(2)-[LIV]-[GA]-
 CONSENSUS: x(2)-G.

55 NAME: Uncharacterized protein family UPF0047 signature.

CONSENSUS: S-X(2)-[LIV]-x-[LIV]-x(2)-G-x(4)-G-T-W-Q-x-[LIV].

NAME: Uncharacterized protein family UPF0054 signature.
 CONSENSUS: H-[GS]-x-L-H-L-[LI]-G-[FYW]-D-H.

5 NAME: Uncharacterized protein family UPF0057 signature.
 CONSENSUS: [LIV]-x-[STA]-[LIVF](3)-P-P-[LIVA]-[GA]-[IV]-x(4)-
 [GKN].

10 NAME: Hypothetical YER057c/yjjv family signature.
 CONSENSUS: P-[AT]-R-[SA]-x-[LIVMY]-x(2)-[AK]-x-L-P-x(4)-
 [LIVM]-E.

15 NAME: Hypothetical hesB/yadR/yfhhF family signature.
 CONSENSUS: F-x-[LIVMFY]-x-N-[PGI]-[NSK]-x(4)-C-x-C-[GS]-x-S-F.

NAME: Hypothetical yab0/yceC/sfhB family signature.
 CONSENSUS: [NHY]-R-[LI]-D-x(2)-T-[ST]-G-[LIVMA]-[LIVMF](2)-
 [LIVMFG]-[SGAC].

20

Deposit of Clones

25 Each clone has been transfected into separate bacterial cells (*E. coli*) in the composite deposit.

The clones are located and publically available from the Resource Center of the German Human Genome Project (Heubner Weg 6, 14059 Berlin, GERMANY), from which each clone comprising a 30 particular polynucleotide is obtainable. The Resource Center library numbers are slightly different than those presented here, but may be readily obtained by the following key or with the assistance of Resource Center personnel.

The library name becomes a number: brain (hfbr2) becomes 35 564; kidney (hfkd2) becomes 566; mammary carcinoma (hmcfl) becomes 727; testis (htes3) becomes 434; amygdala (hamy2) becomes 761, melanoma (hmel2) becomes 762 and uterus (hutel) becomes 586. Next, the plate number is converted to two digits (e.g., "2" becomes "02") and is moved behind the plate coordinate, and the 40 underscore is dropped. The following examples are helpful:

	<u>Listed Number</u>	<u>Resource Center Number</u>
	DKFZphamy2_10h17	DKFZp761H1710
	DKFZphfbr2_78i21	DKFZp564I2178
	DKFZphfkd2_3k1	DKFZp566K013
	DKFZphmcfl_1c23	DKFZp727C231
	DKFZhmel2_12j1	DKFZp762J0112
	DKFZphtes3_1bb5	DKFZp434B0516
	DKFZphutel_17k7	DKFZp586K0717

The libraries were constructed using two commercially available vectors. The brain (hfbr2 designations) and kidney (hfkd2 designations) libraries utilize pAMP 1 from Life Technologies and are maintained in XL-2Blue (Stratagene); the amygdala (hamy2), testes (htes3) and melanoma (hmel2) libraries are constructed in pSPORT1, also from Life Technologies, and are maintained in DH10B (LifeTechnologies). In addition to the following techniques, consultation with the commercial literature available on these clones will make evident all of the housekeeping techniques needed to propagate and isolate the individual constructs. All inserts may be excised with a NotI/SalI digestion. Alternatively, universal primers, flanking the cloning region, may be used to amplify the inserts using PCR methods.

Bacterial cells containing a particular clone can be obtained from the composite deposit as follows:

An oligonucleotide probe or probes should be designed to the sequence that is known for that particular clone. This sequence can be derived from the sequences provided herein, or from a combination of those sequences. Methods of probe design are presented below.

Oligonucleotide probes may be labeled with $-^{32}\text{P}$ ATP (specific activity 6000 Ci/mmol) and T4 polynucleotide kinase using commonly employed techniques for labeling oligonucleotides. Other, non-radioactive labeling techniques can also be used. Unincorporated label typically is removed by gel filtration chromatography or other established methods. The amount of radioactivity incorporated into the probe can be quantified by measurement in a scintillation counter. Preferably, specific activity of the resulting probe generally should be approximately 4×10^6 dmp/pmole.

The bacterial culture containing the pool of full-length clones should preferably be thawed and 100 μl of the stock used to inoculate a sterile culture flask containing 25 ml of sterile L-broth containing ampicillin at 50 - 100 g/ml (for XL-2Blue strains 25 g/ml tetracycline should also be used). The culture should preferably be grown to saturation at 37°C., and the saturated culture should preferably be diluted in fresh L-broth.

Aliquots of these dilutions should preferably be plated to determine the dilution and volume which will yield approximately 5000 distinct and well-separated colonies on solid bacteriological media containing L-broth containing ampicillin at 5 100 g/ml (for XL-2Blue strains 25 g/ml tetracycline should also be used) and agar at 1.5% in a 150 mm petri dish when grown overnight at 37°C. Other known methods of obtaining distinct, well-separated colonies can also be employed.

Standard colony hybridization procedures should then be used 10 to transfer the colonies to nitrocellulose filters and lyse, denature and bake them. The filter is then preferably incubated at 65°C. for 1 hour with gentle agitation in 6 x SSC (20 x stock is 175.3 g NaCl/liter, 88.2 g Na citrate/liter, adjusted to pH 7.0 with NaOH) containing 0.5% SDS, 100 g/ml of yeast RNA, and 15 10 mM EDTA (approximately 10 mL per 150 mm filter). Preferably, the probe is then added to the hybridization mix at a concentration greater than or equal to 1×10^6 dpm/mL. The filter is then preferably incubated at 65°C. with gentle agitation overnight. The filter is then preferably washed in 500 mL of 2 x 20 SSC/0.5% SDS at room temperature without agitation, preferably followed by 500 mL of 2 x SSC/0.1% SDS at room temperature with gentle shaking for 15 minutes. A third wash with 0.1 x SSC/0.5% SDS at 65°C. for 30 minutes to 1 hour is optional. The filter is then preferably dried and subjected to autoradiography for 25 sufficient time to visualize the positives on the X-ray film. Other known hybridization methods can also be employed.

The positive colonies are picked, grown in culture, and 30 plasmid DNA isolated using standard procedures. The clones can then be verified by restriction analysis, hybridization analysis, or DNA sequencing.

Alternatively, clones may be grown as described above, and PCR used to isolate the insert DNAs. Methods of PCR are described below and are otherwise well known .

ERROR SCREENING

35 The DNA sequences found herein derive from individual clones, which are publicly available, as noted above. Thus, the skilled artisan will recognize that any specific sequence disclosed herein

readily can be screened for errors by resequencing a particular fragment, in both directions (i.e., by sequencing both strands). Alternatively, error screening can be performed by amplifying and/or cloning any of the inventive DNAs, using for example RT-
5 PCR, and sequencing the resulting amplified product. In the event that there is a sequencing error, reference should be made to the deposited clone as the correct sequence.

USES AND BIOLOGICAL ACTIVITIES OF THE INVENTIVE MOLECULES

The inventive molecules and their derivatives are susceptible
10 to a wide variety of uses, based on functional and/or structural properties. The skilled worker will appreciate, based on the biological activities detailed below, and discussed with regard to the individual sequences herein, that the inventive molecules will find usefulness in numerous therapeutic and diagnostic
15 applications.

The DNA molecules, especially the potassium salts thereof, can be used as fertilizer supplements due to their high nitrogen and phosphorus contents. Since the DNAs are of defined length, they are also useful in gel electrophoresis as molecular weight
20 markers. Due to their similarity with known molecules, certain of the DNA molecules and their variants and derivatives may be used in any number of different diagnostic procedures and therapeutic applications. They may also be used to make the encoded proteins.

The proteins themselves have many possible uses. They may be
25 used as a nutritional supplement for humans, animals and even for laboratory use as, for example, medium for bacterial cultures. Moreover, since the proteins are of defined, known sizes, they may be used as molecular weight markers for gel electrophoresis and gel filtration. Because they are of defined sequences, they also
30 have use in microsequencing and protein fingerprinting applications.

Expression Profiling Applications

Given their known tissue expression and functional associations, assemblages of the inventive proteins (or corresponding antibodies) and nucleic acids are particularly suited to expression profiling applications. Expression profiling generally entails constructing an array of indicators that signal
35

the presence of a particular RNA or protein expression product. Such arrays can be used to evaluate, for example, pharmacological effectiveness and toxicity. In particular, expression profiles from such arrays can be generated from cells treated with known compounds, having known properties, and these profiles can be compared to profiles of unknowns to evaluate similarities and differences, which can be correlated with efficacy or toxicity.

Additional uses of profiling include diagnosis, tracking development, and ascertaining signaling and metabolic pathways.

For examples of references describing profiling and its uses, see Farr et al., U.S. Patent 5,811,231 (1998); Seilhamer et al., U.S. Patent 5,840,484 (1998); Rine et al., U.S. Patent No. 5,777,888 (1998); WO 97/27317; WO 99/05323; WO 99/09218; and WO 99/14369. For a device for implementing such techniques, see Lipshutz et al., U.S. Patent No. 5,856,174 (1999) and Anderson et al., U.S. Patent No. 5,922,591 (1999).

In one embodiment, a subset of the inventive DNAs will be arrayed on a substrate, like a gene chip, a filter or a 96-well plate. Test samples containing cells are maintained in the presence of a label capable of incorporation into nascent mRNA. Samples are treated with test and control compounds, which will induce mRNA expression in the sample, resulting in incorporation of label. Whole mRNA is isolated and applied to the array such that it hybridizes with the DNAs contained therein. After washing, the amount of hybridization is quantified and a profile is generated. These steps are repeated with various control and test compounds, thereby generating a library of profiles, which can be used to ascertain the relationships relevant to pharmacological efficacy or toxicity.

The matrices used in such profiling, however, need not be limited to those utilizing DNAs. Rather, other nucleic acids, like RNAs and protein nucleic acids (PNAs), as well as the inventive proteins and antibodies corresponding to the inventive proteins may also be employed. Hence, for example, antibodies could form the array and the samples could be treated in order to label nascent proteins. Whole proteins then would be isolated and applied to the antibody matrix. Developing the resulting signal would result in a protein expression profile, which is useful in

essentially the same manner as the nucleic acid profile. A protein matrix could be used, for example, in evaluating antibody responses to pharmaceutical agents in order to eliminate possible cross-reactivity.

5 Moreover, where nucleic acids are used in the matrix, it is often beneficial to use variants (as defined below) of the molecules described herein. This can be used to account for genetic variations that are of little or no consequence to the function of the resultant gene product. Hence, they can account
10 for wobble or conservative amino acid variations that do not perturb function, like variations in some of the protein motifs elucidated below. Thus, each position in the matrix can employ multiple nucleic acid probes that account for a series of variants.

15 Expression profiling may also be done, in another embodiment, using two-dimensional protein gels in which the inventive proteins are detected. The resultant profiles can be used in the same way as described.

Matrices useful for profiling may be constructed based on
20 different criteria. Of course, the more relevant profiles will take into account expression of most human genes, preferably all of them. In certain situations, however, it is advantageous to look at a smaller subset. For example, if one were concerned
25 about fetal neural toxicity, a fetal brain-specific matrix might be chosen. On the other hand, if one were interested in targeting mammary carcinoma tissue, a corresponding matrix could be used. Thus, matrices may be constructed using all of the sequences available from a tissue-specific library.

* * *

30 The following discussion relates to some of the various functional and structural groupings that would be of interest to the artisan wishing to construct profiling matrices. Of course, the artisan will also recognize that these functional descriptions may find additional applicability in the therapeutic
35 and diagnostic applications discussed below.

Cell Cycle

A proliferating cell must coordinate replication and chromosomal separation to ensure that the genome is replicated

completely, and that a single copy is correctly inherited by each daughter cell. The cell cycle is the coordinated series of events that achieves these aims. Many of the key events are initiated by a family of conserved Seiren/threonine protein kinases, the cyclin-dependent kinases (CDKs), that are activated by the cyclin family of proteins (cyclins A-H). In turn, the cyclin-CDK complexes are modulated by other protein kinases or phosphatases, and by binding specific inhibitor proteins. The enormous variety of ways in which CDK activity can be regulated allows the cell to respond to internal signals generated by preceding events in the cell cycle and to external growth signals.

The somatic cell cycle is divided into four phases: DNA replication (S phase) and chromosome separation (M phase) are separated by gap phases (G₁ and G₂). At specific control points the decision to begin the next stage (DNA synthesis or mitosis) is carefully regulated.

Cdc2, the primary kinase, is especially required for the G₁-S transition and S phase. Cdc4 and Cdc25 are involved at the restriction point, where the cell can decide to proliferate or arrest (G₁<->G₀) and Cdc7 is a CDK activating kinase (CAK) as well as a subunit of TFIIDH.

The Cyclin-CDK complexes are regulated in various ways. One is through phosphorylation by CDK activating kinases (CAK), like the Y15 kinase (Wee1) and dephosphorylation by CDK associated phosphatases (CAP), like Cdc25A a member of the Cdc25 family (Cdc25A, B and C).

An other way of regulation occurs through two classes of CDK inhibitors (CKI), the INK4 proteins p15, p16, p18, and p19, who negatively regulates the cyclin D CDK complexes and second the p21 family with p21, p27, and p57.

The cell cycle is also regulated through ubiquitin-mediated proteolysis involving the destruction of both cyclins and CDK inhibitors by the 26S proteasome, that requires an ubiquitin conjugating enzyme (UBC) and an ubiquitin ligase. The instability is conferred by PEST regions (cyclin D and E) or a ten amino acid

region in the amino terminus (degradation box) in the A- and B-type cyclins.

All these modifications play an important role for the cellular localization, because only the nuclear CDK-cyclin

5 complexes are functional for cell cycle. During G1 phase of the cell cycle, cyclins A, E and D are synthesized and bind to their cyclin-dependent kinase (CDK) partners. CDK complexes containing cyclins A, E and D1 are then imported into and concentrated within nuclei. Cdkb-cyclin D3 has been localized to both
10 cytoplasmic and nuclear compartments, although only the nuclear complex is active. As cells enter S phase, cyclin A and cyclin E complexes remain within the nucleus, whereas cyclin D1 relocalizes to the cytoplasm for proteolysis at the onset of S phase. Like Cdk2-cyclin A, Cdc2-cyclin A is nuclear and remains
15 so until it is degraded during mitosis. By contrast, as a result of ongoing nuclear import and more rapid re-export, cyclin B1, which binds to Cdc2 upon synthesis during S phase, is predominantly cytoplasmic. Cdc2-cyclin B2 is also cytoplasmic, although this might occur through anchoring of the complex to
20 some cytoplasmic constituent. At prophase, phosphorylation of cyclin B1 promotes accumulation of Cdc2-cyclin B1 in the nucleus, whereas cyclin B2 remains in the cytoplasm until nuclear envelope breakdown.

Two crucial regulators of Cdc2-cyclin B-Wee1 and Cdc25C

25 exist and are responsible for the G2 to M control point. Wee1 is a nuclear protein throughout the cell cycle, whereas Cdc25C binds to 14-3-3 proteins during interphase and remains predominantly cytoplasmic. In some systems Cdc25C, like cyclin B1, rushes precipitously into the nucleus just before entry into mitosis.

30 The 110-kDa retinoblastoma (tumor suppressor) protein (RB), a pRB-family member is an important regulator of cell-cycle progression and differentiation. Like the E2F family (E2F1-5) or DP family (DP1-3) of transcription activators, RB suppresses inappropriate proliferation by arresting cells in G1 by
35 repressing the transcription of genes required for the transition into S phase. Before the cell proceeds into S phase, RB becomes phosphorylated at multiple sites by the cyclin dependent protein

kinases (CDKs) and loses its transcriptional repressing activity. Phosphorylation of RB during late G1 phase results in the dissociation of the E2F-RB repressor complex which allows S-phase specific genes to be transcribed. Cyclin E is the evolutionary 5 conserved target for E2F and interacts together with CDK2 in late G1.

For a proliferating cell it is vital that only undamaged DNA is replicated because if DNA damage is substantial, its replication can lead to chromosome loss or rearrangement. Thus, 10 we find a G1<->S checkpoint in late G1 that requires tumor suppressor p53. A p53-dependent G1 arrest is effected by the cyclin dependent kinase inhibitor p21 through higher expression levels that inhibits almost all cyclin CDK complexes.

The kinase responsible for phosphorylating the unidentified 15 kinetochore component in metaphase may be a member of the MAP kinase family and appears to be the proto oncogene c-MOS, a cytostatic factor (CSF) in meiosis.

Several categories of proteins are coded for by clones of 20 the invention within the overall group of "Cell cycle" and include, among others, the following:

PA2b-T2 protein: PA2b-T2 is a p53 responsive gene. The protein is predominantly expressed in brain, breast and kidney and represents a novel regulator of cellular growth. Isoforms are 25 differentially induced by genotoxic stress (UV, gamma-irradiation and cytotoxic drugs) in a p53-dependent manner. The p53 tumor antigen is found in increased amounts in a wide variety of transformed cells. The protein is also detectable in many actively proliferating, nontransformed cells, but it is 30 undetectable or present at low levels in resting cells. P53 is postulated to bind as a tetramer to a p53-binding site (PBS) and to activate the expression of adjacent genes that inhibit growth and/or invasion. Deletion or inactivation of one or both p53 alleles reduces the expression of tetramers, resulting in 35 decreased expression of the growth inhibitory genes. This mechanism is found in tumors of several types. (OMIN *191170) Clones in this category include: amy2_121m2

Cell structure and motility

One of the major differences between prokaryotes and eukaryotes is the ability of the eukaryotic cell to adopt very different shapes dependent on its function during the differentiation process. Animal cells vary from being round to extended cylindric forms like motorneurons or muscle cells. In humans, more than 100 different cell types can be distinguished, each having a characteristic shape. The form of a cell often is closely related to its capacity to move. Some completely differentiated cells like fibroblasts can still change their form actively, thereby migrating. Other cell types serve as motor elements - "macroscopically" like muscle cells or "microscopically" like ciliated epithelia. Such tasks are fulfilled by a big class of proteins; on the one hand responsible for maintenance of cell structure and contacting neighbor cells or the intercellular matrix and on the other hand for cell motility. These topics cannot be regarded separately: The motility apparatus e.g. must be fixed in the cytoskeleton. Three different types of filaments can be distinguished: Actin filaments, tubulin filaments and intermediate filaments, each present in almost all types of cells.

Actin filaments (F-actin) are built up of monomers (G-Actin). In muscle cells, actin, myosin, for both of which several paralogous genes are known, as well as many more proteins are constituents of the contractile apparatus.

The "thin" and "thick filaments" in a muscle cell consist mainly of actin and myosin, respectively.

Several different proteins are responsible for the anchoring of the actin filaments in the Z-disks (e.g. alpha-actinin and desmin) or at the end of the myofibers in the cell membrane.

Troponin I, -C, -T and Tropomyosin - associated with actin - confer the Ca⁺⁺- dependent triggering of contraction.

Length of the sarcomere is controlled by the giant protein titin.

In smooth muscle, there is no troponin. Contraction activity is controlled by phosphorylation / dephosphorylation of myosin by 5 a specialized kinase instead. Contractile fibers are not organized in sarcomeres.

Apart from contributing to muscle contraction, the actomyosin system is responsible for many other motions at cellular level, e.g. the amoeboid movement of pseudopodia or the 10 fission of cells at the end of mitosis by a contractile ring.

Besides this, actin fibers fulfill structural tasks like maintenance of the shape of stereocilia or microvilli. Here, actin filaments are connected by proteins like fimbrin. But not only specialized structures like the mentioned ones contain actin 15 fibers. There is a network covering the complete cell volume with F-actin as a major constituent. Whereas the actin filaments in the structures mentioned above are relatively stable, this F-actin is highly dynamic. Management of the network structure and turnover is achieved by connecting proteins like alpha-actinin, 20 fimbrin or fill-in; turnover is regulated by gelsolin, villin, and different capping- and fragmentation-proteins.

Microtubules are built up of alpha-beta tubulin heterodimers. Turnover of filaments is achieved by building-in and releasing of monomers with different time constant rates at 25 both ends. The resulting cycle is called "treadmilling". Thirteen strings of tubulin duplets build up one subfiber, whereas one fiber contains two or three of those. A complete axoneme consists of 9 radial and 2 central fibers. This "9+2" - structure is the basis both of flagella, their basal bodies and centrioles. In 30 flagella, several additional structures like radial elements exist. Nixin connects the fibers and dyneine is the motor ATPase which shifts the fibers relative to each other. Several genetic diseases like the Cartageneric syndrome are caused by deficiencies of distinct proteins in cilia.

35 Besides this, microtubules are abundant in all types of cells. They are part of a delivery system for organelles, e.g. in

the golgi apparatus. A further very important system based on microtubules is the mitotic spindle, it is organized by the centrosomes. Besides many other components, the major part of a centrosome are two centrioles which are built up of nine
5 microtubule-triplets. Most remarkably, new centrioles are not synthesized de novo but generated by duplication of old ones.

Cytoplasmic microtubules are associated with many different proteins. Two major classes are known: The MAPs ("microtubule-associated proteins", with molecular masses between 200 and 300
10 kD) and the much smaller tau-Proteins with a MW between 60 and 70 kD. These proteins regulate the treadmill-process and the interaction with other structures in the cell.

Besides actin and myosin the so-called intermediate filaments constitute a third class of filaments. In contrast to
15 the former two groups, they do not participate in motility, nor are they dynamic structures subject to a vivid turnover. The most important ones are neurofilaments (in neurons), keratin filaments (mainly in epithelial cells), and vimentin filaments (in many sorts different cell types).

20 The biological function of both the cytoskeleton as well as contractile apparatus of a cell does not end at the cell membrane. Cells must be embedded in the extracellular matrix, all cells of a muscle must act as one single mechanical unit and epithelia must resist macroscopic mechanical forces. Hence, cell
25 adhesion and the extracellular matrix are closely connected to the cytoskeleton. Vinculin is one of the proteins which serve as an anchor for intracellular fibers (actin). Different types of desmosomes and tight junctions connect neighbor cells with intercellular fibers. On the inside, cytoplasmic plaques connect them to the cytoskeleton. These structures, on the one hand, serve as mechanical elements whereas gap junctions, on the other hand, connect cells metabolically.

30 The extracellular matrix consists of a network of proteins, glycoproteins and polysaccharides. Different proteins are present in relation to different mechanical demands: Elastin is found in tissues with high elasticity (lungs, heart) whereas collagen,

a more hard-wearing protein, is found in tendons and ligaments. Fibronectin is an extracellular protein highly important for cell adhesion.

Reference: Murray J et al (1992): Cell Motil Cytoskeleton
5 22: 211-223.

Within the overall group of Cell Structure and Motility several categories of proteins are coded for by clones of the invention:

Ankyrins: Ankyrins are peripheral membrane proteins which 10 interconnect integral proteins with the spectrin-based membrane skeleton. Thus these proteins are involved in coupling of cyto skeleton and cell membrane. OMIM reports that Ankyrins have associations (as potentially diagnostic, therapeutic, causative, and/or related, etc...) with the following diseases: 1) Hereditary 15 Spherocytosis (OMIM #182900); 2) Hemolytic Poikilocytic Anemia due to reduced ankyrin binding sites (OMIM 141700); 3) Atypical Elliptocytosis (OMIM 225450); 4) Autosomal recessive spherocytosis (OMIM #270970); 5) Werner Syndrome (OMIM *277700); and b) Rhesus-unlinked type Elliptocytosis (OMIM #130600). 20 Ankyrin binding glycoprotein proteins mediate Ankyrin effects, especially in neuronal adhesion and prostate tumour cell transformation: Clones in this category include: amy2_121f19.

Tropomyosins are ubiquitous proteins of 35 to 45 kD associated with the actin filaments of myofibrils and stress 25 fibers. They are involved in cardiomyopathies (OMIM *191030, *191010, *190990, *600317). Clones in this category include: tes3_16b5.

Differentiation/Development

30 Almost every multicellular organism originates from meiotic cell divisions and the recombination of a paternal and a maternal set of chromosomes. After fertilization of the egg, all cells of a body originate from this one cell. Thus the cells of the developing body are initially genetically alike. But 35 phenotypically they become very different. They are specialized to a certain cell type and arranged in an organized pattern to a certain type of tissue and the whole structure has the well-

defined shape of an organ. All these features are determined by the DNA sequence of the genome, which is reproduced in every cell. Each cell acts on the genetic instructions given to a certain time and at a certain place of development and plays its individual part in the multicellular organism. Cell differentiation may be divided into three general steps: cell cycle exit, apoptosis protection and tissue specific gene expression. These processes are coordinated to provide the final and unique tissue characteristics.

An animal cell that has achieved a certain level of development is said to be determined. This differentiation of a cell may be irreversible and in that case the cell may be renewed only by simple duplication. Other cells are renewed by means of stem cells which are immortal (e.g. stem cells of the bone marrow, epidermal stem cells). The genetic control of development is extensively studied in non-vertebrates and vertebrates. The classical animal model is the fruit fly Drosophila and the modern model is the transgenic mouse. Animal transgenesis has proven to be useful for physiological as well as physiopathological studies. Besides the approach based on the random integration of a DNA construct in the mouse genome, gene targeting can be achieved using totipotent embryonic stem cells for targeted transgenesis. Transgenic mice are then derived from the embryonic stem cells. This allows the introduction of null mutations in the genome (so-called knock-out) or the control of the transgene expression by the endogenous regulatory sequence of the gene of interest (so-called knock-in). Mice can be created that express wild-type genes, mutant genes, marker genes or cell lethal genes in a tissue specific manner. These animal models allow to follow changes in tissue and organ development and lead to a better understanding of the cellular function of many genes or to the generation of animal models for human diseases. Fundamental problems in immunology, onset and development of cancer, regulation in fatty acid metabolism, aspects of cardiovascular function, control of the central nervous system development, analysis of reproductive development and function are only some examples of research interests.

The final stage of cell differentiation is growth arrest. In animal tissues with rapid cell turnover terminally differentiated cells undergo programmed cell death. The cells have the ability to kill themselves by activating an intrinsic cell suicide program when they are no longer needed or have become seriously damaged. The execution of this program is termed apoptosis. Apoptosis is of importance for development and homeostasis of animals. The key components of this program have been conserved in evolution from worms (*C. elegans*) to insects (*Drosophila*) to humans. The roles of apoptosis include the sculpting of structures during development, deletion of unneeded cells and tissues, regulation of growth and cell number, and the elimination of abnormal and potentially dangerous cells. In this way apoptosis provides "quality control mechanism" that limits the accumulation of harmful cells, such as virus-infected cells and tumor cells. On the other hand inappropriate apoptosis is associated with a wide variety of diseases, including AIDS, neuro-degenerative disorders and ischemic stroke. Because it is now clear that apoptosis is a result of an active, gene-directed process, it should be eventually possible to manipulate this form of cell death by developing drugs that interact with its recently identified mechanisms of action. Inducers of cell differentiation, cell cycle arrest and apoptosis might be the novel molecular targets for new anticancer agents in addition to the signaling pathways for growth factors and cytokines.

Proteins, factors, receptors and genes of importance in apoptosis:

Proteases:

- Calpain, an intracellular cysteine protease, exact role unknown.
- Caspase-1 to Caspase-11, a family of proteases synthesized as an inactive proenzyme. Targets of the activated enzymes include: poly(ADP-ribose) polymerase, DNA-dependent protein kinase, Ul ribonucleoprotein, nuclear laminins and cytoskeleton components (actin).

- Granzyme B, a serine protease released by cytotoxic T-cells.

Receptors:

5 - CD 95 (synonyms: Fas, APO-1), a receptor protein of the TNF-receptor family which includes TNF-R1 and TNF-R2 with the common characteristic of a 70 amino acid cytoplasmic domain.

- FADD (synonym: MORT-1), a cytoplasmic protein

- DR-3 (synonym: APO-3) a member of the TNF-receptor-family

- DR-4 and DR-5

10 Genes:

- ced-3, ced-4 and ced-9 encode the general apoptotic and antiapoptotic program in *Caenorhabditis elegans*. Apaf-3 is the mammalian homologue of ced-3.

15 - Bcl-2 / Bcl-xL / Bax / Bcl-xS / Bak: a large gene family that can either inhibit or promote apoptosis.

- Cytokine response modifier A, a cowpox virus gene whose gene product inhibits caspases.

Others:

20 - Caspase-activated DNase (CAD) and its inhibitor (ICAD). causes DNA fragmentation in the nucleus

- Ceramide, a complex lipid that acts as a second messenger.

- c-Jun N-terminal kinase (JNK) is a proline-directed kinase

- p53 protein, is essential for the induction of apoptosis as a response to chromosomal damage.

25 - RAIDD, a death signal-transducing protein.

- Receptor interacting protein (RIP) is an accessory protein with a death domain and a serine/threonine kinase activity.

- Sphingomyelinase, an enzyme that hydrolyzes the complex lipid sphingomyelin to ceramide.
- Tumor necrosis factor (TNF) is a type -II membrane protein
- TNF-receptor associated factor (TRAF2), is an accessory protein that can bind to both TNF-R1 and TNF-R2.

5 Within the overall group of Differentiation/Development, several categories of proteins are coded for by clones of the invention:

10 Notch family proteins: Notch family molecules are negative regulators of neuronal differentiation in early brain development. Clones in this category include: amy2_1i24.

15 Testis-specific Y-encoded proteins: The TSPY genes are arranged in clusters on the Y chromosome of many mammalian species. TSPY is believed to function in early spermatogenesis and is a candidate for GBY, the putative gonadoblastoma-inducing gene on the Y. These proteins are involved in early spermatogenesis. Clones in this category include: amy2_7j5.

20 Inflammation-mediating proteins: Inflammation is a basic mechanism responsible for recruiting and activation of immunocompetent cells. By various mediators, cells are activated and triggered to differentiate. Hyperactivation of these pathways leads to various disease states: In neuronal tissues, in 25 inflammatory diseases such as experimental autoimmune encephalomyelitis (EAE), neuritis(EAN) and uveitis (EAU) allograft inflammatory factor-1 is produced by macrophages and microglia cells. Clones in this category include: amy2_2b19.

Intracellular transport and trafficking

30 Eukaryotic cells rely for their viability on the partitioning of many basic cellular processes into membrane-bounded organelles. These are the nucleus, endoplasmic reticulum (ER), Golgi apparatus, endosomes, lysosomal compartments, mitochondria and peroxisomes. Most molecules destined for the 35 lysosome, cell surface and outside the cell are routed through

the ER and Golgi, which together with the vesicular intermediates between them, comprise the secretory pathway (Palade 1975). In the ER and Golgi compartments proteins are sorted, modified and often assembled into complexes *en route* to their final destination. Incorrectly assembled proteins are retained in the ER until they fold correctly or are targeted for degradation. Additional proteins are translocated into and function within the luminal spaces of organelles or are secreted. Thus a large proportion of proteins synthesized require targeting to membranes either for insertion into or transport across them. A major purpose of this is growth. The secretory pathway is dependent on an intact cytoskeleton and also closely linked to general metabolism by affecting ribosome biogenesis (Mizuta and Warner, 1994). A huge number of proteins is required for targeting, translocation and sorting of newly synthesized proteins.

The first step in sorting is the recognition of *cis*-acting targeting or signal sequences that organelle-targeted proteins contain. This is carried out by cytosolic targeting factors and/or receptors on the membrane to which the protein is targeted. In some cases the primary sequences are extremely degenerate, with only the overall character being conserved (hydrophobicity for an ER signal sequence, helical amphiphilicity for mitochondrial targeting sequence (Kaiser et al., 1987; Lemire et al., 1989). Following the targeting step, proteins are either inserted into or transported across the membrane (translocated) through a proteinaceous apparatus (termed the translocon). The translocon include or recruit motors to drive the translocation process in the correct direction (Schatz and Dobberstein, 1996).

Defined intracellular protein transport steps:

- 30 • ER
 - targeting to the ER
 - translocation into the lumen of the ER, and, depending on the presence of certain signals in the peptide sequence transport through the golgi complex
- 35 • Mitochondria
 - targeting
 - translocation
- Peroxisomes

- The general secretory pathway
 - protein modification, assembly and quality control in the ER
 - vesicle-mediated trafficking
 - vesicle docking and fusion
 - transport through the golgi apparatus and sorting at the trans-golgi
 - transport to the cell surface
 - transport routes to the lysosome
- 5
- Endocytosis
 - Specialized protein transport routes
 - Protein export from the cytoplasm
- 10 References: Palade, G (1975) Science 189:347-358; Mizuta et al. (1994) Mol Cell Biol 14: 2493-2502; Kaiser et al. (1987) Science 235: 312-317; Lemire et al. (1989) J Biol Chem 264: 20206-20215; Schatz et al. (1996) Science 271: 1519-1526.
- 15

Rab proteins

In eukaryotic cells the compartmentalisation of processes is a prerequisite for a tight regulation of processes and activities. The cells contain a highly dynamic set of membrane compartments that are responsible for packaging, sorting, secreting, and recycling proteins and other molecules. Trafficking between organelles within the secretory pathway occurs as vesicles derived from a donor compartment fuse with specific acceptor membranes, resulting in the directional transfer of cargo molecules. This process is tightly controlled by the Rab/Ypt family of proteins (reviewed by Novick and Zerial, 1997), a branch of the superfamily of small GTPases. Rab proteins regulate a variety of functions, including vesicle translocation and docking at specific fusion sites. Rabs may also play critical roles in higher order processes such as modulating the levels of neurotransmitter release in neurons, a likely mechanism in synaptic plasticity that underlies learning and memory (Geppert and Südhof, 1998).

30 Small GTPases share a common three-dimensional fold that, in the GTP bound state, can bind a variety of downstream effector proteins. GTP hydrolysis leads to a conformational change in the "switch" regions that renders the GTPase unrecognizable to its

effectors. In this way, by localizing and activating a select set of effectors, a common structural motif is used to control a wide array of distinct cellular processes.

The final steps in membrane fusion are likely to be driven by a set of proteins known as SNAREs. After a vesicle becomes docked, the cytoplasmic domains of VAMP (also termed synaptobrevin) and syntaxin on opposing membranes, in combination with a SNAP-25 molecule, coalesce into an elongated -helical bundle (Poirier et al., 1998; Sutton et al., 1998), which may lead to fusion. Because numerous SNARE isoforms have been identified that localize to distinct membrane compartments, it was originally proposed that the specificity of interaction between the SNARE proteins accounted for the specificity in membrane trafficking. Recent results, however, suggest that SNAREs are not specific in their ability to form complexes *in vitro*, suggesting that trafficking specificity requires additional factors (Yang et al., 1999). In this regard, Rab proteins are strong candidates for governing the specificity of vesicle trafficking. Like the SNAREs, many isoforms (40) of the Rab family have been identified that localize to specific membrane compartments (reviewed by Novick and Zerial, 1997).

Concomitant with the SNARE cycle, Rab proteins undergo a intricate cycle of membrane and protein interactions. Rabs are posttranslationally modified at C-terminal cysteines by the addition of two geranylgeranyl groups, which mediate membrane association when the Rab is in the GTP-bound state. After guanine nucleotide hydrolysis occurs, the Rab is extracted from the membrane upon forming a complex with a cytosolic GDP-dissociation inhibitor (GDI). This cytosolic intermediate is then recycled onto a newly forming vesicle, most likely through a secondary factor termed a GDI dissociation factor (GDF), which displaces GDI. After the Rab becomes membrane bound, a guanidine nucleotide exchange factor (GEF) promotes release of GDP and the subsequent loading of GTP. In its GTP-bound conformation, the Rab is then free to associate with its specific set of effectors, which can in turn trigger events leading to the eventual fusion of the vesicle with a target membrane. To complete the cycle, perhaps after or concurrent with membrane fusion, a GTPase activating protein (GAP) accelerates nucleotide hydrolysis, switching off

the GTPase. The remaining GDP-bound Rab can then participate in a new round of fusion.

Rab interactions with effectors are likely to regulate vesicle targeting and membrane fusion in three ways. First, a Rab 5 may specifically facilitate vectorial vesicle transport. Vesicles are transported from their site of origin to acceptor compartments likely through associations with cytoskeletal elements and transport motors. A protein has been identified with 10 a domain structure that suggests a connection between the cytoskeleton and the Rabs. This protein, called Rabkinesin- β , contains a kinesin-like ATPase motor domain followed by a coiled-coil stalk region and a RBD that specifically binds Rab β (Echard et al., 1998). An additional link with the cytoskeleton is provided by the Rab effector, Rabphilin-3A. Rabphilin-3A has been 15 shown in vitro to interact with α -actinin, an actin-bundling protein, but only when not bound to Rab3A (Kato et al., 1996). These results raise the intriguing possibility that Rab proteins regulate vesicle interactions with the cytoskeleton and thereby play an active role in targeting vesicles to their appropriate 20 destinations.

Second, Rab proteins may regulate membrane trafficking at the vesicle docking step. A number of Rab effectors, including Rabaptin-5, EE1478, Rabphilin-3A, and Rim, may serve as molecular tethers. Each effector protein contains a RBD, followed by a 25 linker region (some having the potential to form elongated coiled-coil structures), and a domain capable of interacting with a second Rab or the target membrane. Rabaptin-5, for example, contains two RBDs, one near the N terminus that specifically recognizes Rab4 and a second near the C terminus that binds Rab5 30 (Vitale et al., 1998). Both Rim, which is localized to the target membrane, and Rabphilin-3A, which is localized to the vesicle, contain N-terminal RBDs and C-terminal Ca $^{2+}$ -binding C2 domains, implicating these effectors in synaptic vesicle localization or docking in response to Ca $^{2+}$ influx (Wang et al., 35 1997). Tethering effectors may also recognize protein complexes on the acceptor membrane. Sec4p, a yeast Rab3A homolog, interacts with the exocyst (Guo et al., 1999), a complex of seven or more subunits that is assembled at sites of vesicle fusion along the

plasma membrane. The exocyst complex may therefore function as a landmark for Rab/effectort-mediated vesicle docking.

Third, once a vesicle has become tethered to its fusion site, Rab proteins may selectively activate the SNARE fusion machinery. The mechanism of this activation is unknown but may involve direct interactions of Rabs or, more likely, their effectors with SNAREs. For example, Hrs-2 is a protein that binds to SNAP-25 and contains a Zn²⁺-finger motif characteristic of Rab-binding proteins such as Rabphilin-3A, Rim, EE1, and Noc2, suggesting that Hrs-2 may form a physical link between Rabs and SNAREs (Bean et al., 1997). In addition, certain mutations in the syntaxin-binding protein Slylp, the Sec1p homolog utilized in ER to Golgi trafficking, eliminate the requirement for Ypt1p, a Rab protein that functions at this trafficking step (Dascher et al., 1991). Rabs may therefore regulate SNARE associations through Sec1 family members. In support of this idea, a Rab effector was recently found to interact with a vacuole Rab, a Sec1p homolog, and a SNARE protein (Peterson et al., 1999), which suggests that this effector serves to connect Rab and SNARE function. In this way, Rabs and their effectors may facilitate the correct pairing of SNAREs.

References: Dascher et al. (1991) Mol. Cell. Biol. 11, 872-885; Echard et al. (1998) Science. 279, 580-585; Geppert et al. (1998) Annu. Rev. Neurosci. 21, 75-95; Guo et al. (1999) EMBO J. 18, 1071-1080; Kato et al. (1996) J. Biol. Chem. 271, 31775-31778; Novick et al. (1997) Curr. Opin. Cell Biol. 9, 496-504; Peterson (1999) Curr. Biol. 9, 159-162; Poirier et al. (1998) Nat. Struct. Biol. 5, 765-769; Vitale et al. (1998) EMBO J. 17, 1941-1951; Wang et al. (1997) Nature. 388, 593-598; Yang et al. (1999) J. Biol. Chem. 274, 5649-5653.

Within the overall group of Intracellular Transport and Trafficking several categories of proteins are coded for by clones of the invention.

Vesicular trafficking: Various proteins are involved in trafficking of vesicles inside the cell and for the exocytotic pathway. For example, Sec7 of *Saccharomyces cerevisiae* takes function in vesicular trafficking. Synaptotagmins are essential for Ca(2+)-regulated exocytosis of neurosecretory vesicles. Other proteins such as Dynamin are microtubule-associated force-

producing proteins, which are involved in the production of microtubule bundles. By binding and subsequent hydrolysis of GTP such proteins provide the motor for vesicular transport during endocytosis. Clones in this category include: amy2_14b5, 5 amy_2o13 and fkd2_3kl.

Protein sorting: Protein sorting is a process essential for the maintenance of a cell's functionality and structural integrity. Most proteins perform their biological function in special compartments in the cell. The process of sorting is 10 complex and highly regulated. Clones in this category include: mel2_7gl4.

Metabolism

This group includes proteins which are involved in the uptake and consumption of nutrients, and enzymes which are part of the biochemical pathways for energy metabolism or which are involved in the supply of building blocks of nucleic acids, 15 proteins (NTPs, dNTPs, amino acids) for DNA/RNA and protein synthesis, and fatty acids (membranes), to allow for the generation of higher order structures. This group constitutes the most important and largest group in prokaryotes and lower 20 eukaryotes. The higher the evolutionary level of an organism is, however, the more other protein classes like 'signal transduction', 'cell cycle' and 'differentiation and development' 25 increase in importance and number of representatives.

Proteins involved in the metabolism of energy and compounds (here: other than nucleic acids or proteins) are usually the products of house keeping genes, they are often constitutively and/or ubiquitously expressed.

30 Several categories of proteins are coded for by clones of the invention within the overall group of Metabolism:

Fatty acid metabolism: OMIM lists more than 50 diseases caused by pathologic altered fatty acid metabolism. L-acyl- 35 glycerol-3-phosphate acyltransferase is involved in fatty acid metabolism and is ubiquitous expressed, with a slight predominance in uterus, placenta and foreskin. Clones in this category include: amy2_2c22

Repair and surveillance of protein damage: Several classes of protein are involved in reparation and surveillance of protein damage. L-isoaspartyl methyltransferase (Pimt), as an example, is a highly conserved enzyme utilising S-adenosylmethionine (AdoMet)

5 to methylate aspartate residues of proteins damaged by age-related isomerisation and deamidation. Clones in this category include: fbr2_78i21.

Nucleic acid management

The genetic information is stored in the form of nucleic acids in all organisms. Two kinds of nucleic acids exist, DNA and RNA. Whereas the more stable DNA in most organisms constitutes the storage form of the genetic information, the labile RNA and in particular mRNA is an intermediate used for the temporal expression of specific genes.

15 In eukaryotes, DNA is usually a double stranded linear molecule consisting of two antiparallel strands and made up of a deoxyribose, a phosphorus backbone and the four bases A, C, G, and T. The DNA of some organisms has a ring structure. The structure of DNA was unraveled years ago by Watson and Crick. DNA is a directional molecule determined by the C-atoms of the sugar.

20 The most important processes dealing with nucleic acids are:

- replication (e.g. DNA polymerases, Telomerase)
- transcription (RNA polymerases)
- RNA processing (maturation - splicing and degradation)
- 25 • in addition, enzymes and proteins exist which require a nucleic acid (mostly RNA) in the active center to be functional (ribozymes - e.g. RNase, Ribosomal proteins)

30 The DNA of a cell is replicated in the S-phase of the cell cycle. Several enzymes carry out the task of doubling this nucleic acid. As all steps of the cell cycle, also the process of replication is tightly regulated. The enzyme DNA polymerase and several other proteins are involved in this process. Whereas many prokaryotes do have only one origin of replication (i.e., the starting point of the replication cycle), in eukaryotic DNAs 35 (chromosomes) multiple such start points exist. The switch from the synthesis (S) phase to the subsequent G2 or M phases of the cell cycle are dependent on the completion of the replication.

This makes clear, that a number of proteins are involved in the replication itself as well as in the control of the process. Since most eukaryotic chromosomes are linear structures, additional proteins and enzymes are necessary to make sure that 5 the structure is maintained through successive generations. This includes those proteins necessary to build the three dimensional structure of chromosomes (e.g. histones) and the structural network of the nucleus and nucleolus (including the defined localization of transcriptionally active genes in the vicinity of 10 nucleoli) but also such enzymes as telomerase which guarantees the integrity of the chromosomal ends.

The expression of genes is usually performed in two steps. First a messenger RNA (mRNA) is produced (transcribed) in one to many copies and second this mRNA is translated into the protein 15 product. The regulation of transcription is discussed under the separate heading 'transcription factors', but also the classes 'signal transduction', 'development', 'cell cycle' and others are affected as the expression of certain genes determines the fate of a cell or organism.

20 The primary transcript (hnRNA - heterogeneous nuclear RNA) is a single stranded one-to-one copy of the gene as it is located on the chromosome. Before a protein can be translated, already during transcription the process of maturation is initiated. Firstly, a 5' cap structure is enzymatically and covalently added 25 to the RNA, blocking the 5' end of the RNA. Second, when the RNA polymerase has terminated polymerization, the enzyme poly A polymerase adds varying numbers of adenine residues to the 3' end of the transcript. This enzyme recognizes the sequence AAUAAA or AUUAAA (+ some minor variations), cuts the RNA 10 - 30 30 nucleotides downstream and adds the A residues. The size of the poly A sequence affects the stability of the RNA. Finally, in the process of splicing, the introns present on the genomic level and also present in the hnRNA are spliced out by a multi-protein complex consisting of several proteins and RNAs. The finally 35 matured mRNA is exported to the cytoplasm where it is translated with help of the ribozymes.

The half life of RNA is usually much shorter than that of DNA. Usually, the mRNA is degraded shortly after synthesis, to guarantee a very defined window of expression of a given gene.

This regulation is necessary to specifically maintain or change the set of proteins present at any time in a cell. Specific regions in the 3'UTR (untranslated region) determine the stability of the mRNA in the cytoplasm before it is degraded by

- 5 RNases, enzymes consisting both of protein and RNA.

References: Watson and Crick (1953) Nature 171: 737-738.

Several categories of proteins are coded for by clones of the invention within the overall group of "Nucleic acid management" and include, among others, the following:

10

Proteins induced by DNA-Damage: There are several distinct pathways responsible for repair of DNA. Nucleotide excision repair is the most versatile DNA repair pathway and is the main defense of mammalian cells against UV-induced DNA damage. Defects 15 in proteins involved in this pathway can lead to inherited disorders (such as xeroderma pigmentosum OMIN *278700, *278720, *278740 and *194400; Cockayne's syndrome OMIN *216400 and trichothiodystrophy OMIN #601675). Study of UV-sensitive yeast RAD mutants has greatly aided this process and has revealed 20 strong conservation of the components of nucleotide excision repair in eukaryotes. Clones in this category include: amy2_11n4 and tes3_10il6.

Proteins involved in Loading of transferRNAs: transfer RNAs must be coupled to an aminoacid, which then is transported to the 25 peptidyl-transferase centre of the ribosome. Clones in this category include: fbr2_78c12.

Cytosolic ribosomal proteins: Several proteins are part of the eukaryotic ribosomal peptidyl transferase center or modulate the activity of this centre. Such proteins can find application 30 in modulation of ribosome assembly, maintenance and activity. Clones in this category include: amy2l1l

Histones: Histones are DNA-binding protein responsible not only for DNA structure and folding and packing, but also are discussed to be involved in activation and silencing of large 35 chromosomal regions. Clones in this category include: tes3_3la10.

mRNA-binding proteins: mRNA-binding are involved in regulation of mRNA folding, translation and stability. For example, the VILIP protein binds specifically to the

3'-untranslated region of the neurotropin receptor mRNA. Clones in this group include amy2_2g12.

Signal transduction

Cells in higher order organisms need to continuously communicate with its environment especially with other cells of the same organism in order to maintain the function and specialization of the whole system these cells are part of. This important task of communication is performed with help of cell-surface receptors which receive and transmit signals from outside into the cell.

G-proteins

The largest known family of cell-surface receptors is that of the G-protein-coupled receptors, which mediate the transmission of diverse stimuli such as neurotransmitters, glycopeptides, hormones, peptides, odorant molecules, and photons. The functional unit of these receptors is composed of the receptor molecule itself (GPCR) which is anchored in the cytoplasma membrane with seven membrane spanning domains, the heterotrimeric G-protein which is composed of α and β -subunits (G_{α} and G_{β}), and the effectors that interact with G_{α} and / or G_{β} . In particular, the dissociated G_{α} and G_{β} can regulate the activities of a number of effector molecules such as adenylate cyclases, phospholipase C isoforms, ion channels, and tyrosine kinases, resulting in a variety of cellular functions. The process of signal transduction must be tightly regulated and reversible in order to avoid overstimulation, to achieve signal termination, and render the receptor responsive to subsequent stimuli [Iacovelly L. et al., (1999) FASEB J. 13, 1-8, Hamm, H.E. (1998) J. Biol. Chem. 273, 669-672].

G-proteins are GTPases that, upon binding of GTP change their conformation which in return unmasks structural motives, in particular the so called effector loop, which can mediate the interactions to target proteins, or effectors, for the GTPases. This ability enables the GTPases to cycle between active, GTP-bound and inactive, GDP bound conformations and in the process to function as molecular traffic lights in a multitude of signal transduction pathways. The most important of these signal transduction pathways that are regulated with help of G-proteins

are that of the phospholipase C / protein kinase C and that of the adenylate cyclase / protein kinase A.

The cycling of GTPases is tightly regulated by three main classes of proteins: The exchange of hydrolyzed GDP for a fresh GTP is facilitated by guanosine nucleotide exchange factors (GEFs), the hydrolysis of GTP to GDP is sped up by GTPase-activating proteins (GAPs), and the dissociation of GDP from the GTPases is inhibited by GDP dissociation inhibitors (GDIs) [Tapon and Hall (1997) *Curr. Opin. Cell. Biol.* 9, 86-92, Van Aelst and D-

10 Souza-Schorey (1997) *Genes Dev.* 11, 2295-2322].

SOC-family

A conserved motif that was originally identified in proteins that negatively regulate the signaling action of cytokines was termed SOCS box, the Suppressor Of Cytokine Signaling. Based on homology, five distinct structural protein classes have been identified since that carry this motif. The function of most of these proteins is presently not known. Common to the proteins is only the SOCS box which is located near the C-terminus of the respective peptides. Recently, the SOCS box has been demonstrated to induce binding of proteins to elongins B and C which could target the proteins (and bound substrates) to the proteasomal protein degradation pathway (Kamura, T. et al. (1998) *Genes Dev.* 12, 3872-3881; Zhang, J.-G. et al. (1999) *Proc. Natl. Acad. Sci. USA* 96, 2071-2076).

The class where the SOCS box was originally described contains several members (SOCS-1-SOCS-7 and CIS). In addition to the SOCS box, these proteins also contain a SH2 (Src-homology 2) domain and a variable N-terminus. These SOCS proteins appear to form part of a classical negative feedback loop that regulates cytokine signal transduction. Upon cytokine stimulation, expression of SOCS proteins is rapidly induced and the proteins inhibit further cytokine action. The mode of action of the SOCS proteins is variable. While SOCS-1 binds and inhibits the JAK (Janus kinases) family of cytoplasmic protein kinases [Narahzaki M. et al. (1998) *Proc. Natl. Acad. Sci. USA* 95, 13130-13134, Nicholson, S.E. et al. (1999) *EMBO. J.* 18, 375-385], CIS appears to act by competing with signaling molecules such as the STATs (Transducers and Activators of Transcription) family for binding

to phosphorylated receptor cytoplasmic domains [Yoshimura, A. et al. (1995) *EMBO J.* 14, 2816-2826; Matsumoto, A. et al. (1997) *Blood* 89, 3148-3154].

A second class of SOCS box protein contains additionally WD-
5 40 repeats which were initially identified in the mouse WSB-1 and
-2 proteins. The functions of WD-40 proteins are not completely
understood but seem to be rather divergent. In Cdc4p the WD-40
repeats probably are necessary for binding the substrate for
Cdc34p [Mathias, N. et al. (1999) *Mol. Cell Biol.* 19, 1759-1767].
10 Cdc4p is a component of a ubiquitin ligase that tethers the
ubiquitin-conjugating enzyme Cdc34p to its substrates. The
posttranslational modification of a protein by ubiquitin usually
results in rapid degradation of the ubiquitinated protein by the
proteasome. The transfer of ubiquitin to substrate is a multistep
15 process where WD-40 repeats might play an important function.

Other WD-40 containing proteins (e.g. the retino blastoma
binding protein RbAp48) have been shown to bind metal ions (Zinc)
and that this metal binding might mediate and/or regulate
protein-protein interactions which are functionally important in
20 chromatin metabolism [Kenzior, A.L. and Folk, W.R. (1998) *FEBS Lett.* 440, 425-429]. These proteins are involved in the RAS-cAMP
pathway that regulates cellular growth [Ach R.A. et al. (1997)
Plant Cell 9, 1595-1606].

The SPRY domain has been identified in pyrin or marenostrin,
25 a protein which is mutated in patients with Mediterranean fever
and which is similar to the butyrophilin family. While
butyrophilins seem to be involved in the lactation process in
mammals, the function pyrin is unknown. Three proteins (SSB-1 to
-3) have been identified to contain both SPRY and SOCS box
30 motifs. The function of these proteins is also not known.

Ankyrin repeat containing proteins share a 33-residue
repeating motif, an L-shaped structure with protruding -hairpin
tips which mediate specific macromolecular interactions with
cytoskeletal, membrane, and regulatory proteins. These proteins
35 play fundamental roles in diverse biological activities including
growth and development, intracellular protein trafficking, the
establishment and maintenance of cellular polarity, cell adhesion
signal transduction, and mRNA transcription. Three proteins that

contain ankyrin repeats (ASB-1 to -3) have been identified to contain a C-terminal SOCS box additionally to the ankyrin repeats. The function of these proteins or the individual domains remains to be discovered [Hilton, D.J. et al. (1998) Proc. Natl.

5 Acad. Sci. USA 95, 114-119].

A few small GTPases (RAR and RAR like) do also contain a SOCS box. GTPases are involved in signal transduction during cellular communication. The function of the SOCS box in this type of proteins is currently unclear [Hilton, D.J. et al. (1998)

10 Proc. Natl. Acad. Sci. USA 95, 114-119].

Ca²⁺ as second messenger

The bivalent cation Ca²⁺ is, besides cAMP, one of the two major second messengers in eukaryotic cells. Its intracellular concentration is tightly regulated and usually kept very low compared to the cell's environment. Ca²⁺ binding proteins and transporters (Gap junction, Voltage-gated, second messenger-gated) help to sequester huge amounts of the ion in various organelles from where Ca²⁺ can be released upon extracellular stimuli. E.g. the contraction of the muscle is dependent on the presence of Ca²⁺ ions which are readily transported back into the organelles in order for the muscle to relax. In signal transduction, Ca²⁺ functions as a second messenger that activates Ca²⁺ dependent processes through the activation of Ca²⁺/calmodulin dependent protein kinases (CaM kinases) which are the major effector molecules of Ca²⁺. In the signaling cascades, the CaM dependent kinases activate phospholipases (e.g. phospholipase C) that in return activate other protein kinases such as protein kinase C.

cAMP

30 The cyclic AMP is produced by the enzyme adenylate cyclase in response to extracellular signals. Certain G-proteins stimulate the activity of adenylate cyclase which converts ATP to cAMP and PPi. Two molecules of cAMP bind to each of two regulatory subunits of cAMP dependent protein kinase which in 35 turn dissociate from the two catalytic subunits of the heterotetramer R₂C₂. Upon release of the C-subunits, they become active and phosphorylate substrate proteins at Ser and Thr residues. The process leading from binding of extracellular

molecules to their receptors, the transmission of the stimuli into the cell, the activation of adenylate cyclase and the subsequent activation of cAMP dependent protein kinase is one of two major signal transduction pathways in eukaryotic cells. Since 5 the phosphorylation of proteins is a posttranslational modification of proteins, the kinases are described in the class "signal transduction."

SARA

Members of the transforming growth factor β (TGF β) superfamily signal through a family of cell-surface transmembrane serine/threonine kinases, known as type I and type II receptors (Heldin et al., 1997 ; Attisano and Wrana, 1998 ; Kretzschmar and Massagué, 1998). Ligand induces formation of heteromeric complexes of these receptors, and signaling is initiated when 15 receptor I is phosphorylated and activated by the constitutively active kinase of receptor II (Wrana et al., 1994). The activated type I receptor kinase then propagates the signal to a family of intracellular signaling mediators known as Smads (contraction of the *C-elegans* Sma and *Drosophila* Mad genes which were the first 20 identified members of this class of signaling effectors).

Three classes of Smads with distinct functions have been defined: the receptor-regulated Smads, which include Smad1, 2, 3, 5, and 8; the common mediator Smad, Smad4; and the antagonistic Smads, which include Smad6 and 7 (Heldin et al., 1997; Attisano 25 and Wrana, 1998 ; Kretzschmar and Massagué, 1998). Receptor-regulated Smads (R-Smads) act as direct substrates of specific type I receptors, and the proteins are phosphorylated on the last two serines at the carboxyl terminus within a highly conserved SSXS motif (Macías-Silva et al., 1996 ; Abdollah et al., 1997 ; 30 Kretzschmar et al., 1997 ; Liu et al., 1997b ; Souchelnytskyi et al., 1997). Regulation of R-Smads by the receptor kinase provides an important level of specificity in this system. Thus, Smad2 and Smad3 are substrates of TGF β or activin receptors and mediate signaling by these ligands (Macías-Silva et al., 1996 ; 35 Liu et al., 1997b ; Nakao et al., 1997), whereas Smad1, 5, and 8 are targets of BMP receptors and propagate BMP signals (Hoodless et al., 1996 ; Chen et al., 1997b ; Kretzschmar et al., 1997 ; Nishimura et al., 1998). Once phosphorylated, R-Smads associate with the common Smad, Smad4 (Lagna et al., 1996 ; Zhang et al.,

1997), and mediate nuclear translocation of the heteromeric complex. In the nucleus, Smad complexes then activate specific genes through cooperative interactions with DNA and other DNA-binding proteins such as FAST1, FAST2, and Fos/Jun (Chen et al., 1996; Chen et al., 1997a; Liu et al., 1997a; Labbé et al., 1998; Zhang et al., 1998; Zhou et al., 1998). In contrast to R-Smads and Smad4, the antagonistic Smads, Smad6 and 7, appear to function by blocking ligand-dependent signaling (reviewed in Heldin et al., 1997).

Phosphorylation of R-Smads by the type I receptor is essential for activating the TGF β signaling pathway (Heldin et al., 1997; Attisano and Wrana, 1998; Kretzschmar and Massagué, 1998). However, little is known of how Smad interaction with receptors is controlled. A novel Smad2/Smad3 interacting protein has been described (Tsukazaki T. et al., 1998) that contains a double zinc finger, or FYVE domain, and which has been called SARA (Smad Anchor for Receptor activation). The SARA motif recruits Smad2 into distinct subcellular domains and co-localizes and interacts with TGF β receptors. TGF β signaling induces dissociation of Smad2 from SARA with concomitant formation of Smad2/Smad4 complexes and nuclear translocation. Moreover, deletion of the FYVE domain in SARA causes mislocalization of Smad2 and inhibits TGF β -dependent transcriptional responses. Thus, SARA defines a component of TGF β signaling that functions to recruit Smad2 to the receptor by controlling the subcellular localization of Smad.

References: Abdollah et al. (1997) J. Biol. Chem. 272, 27678-27685; Attisano et al. (1998) Curr. Opin. Cell Biol. 10, 188-194; Chen et al. (1996) Nature 383, 691-696; Chen et al. (1997a) Nature 389, 85-89; Chen et al. (1997b) Proc. Natl. Acad. Sci. USA 94, 12938-12943; Heldin et al. (1997) Nature 390, 465-471; Hoodless et al. (1996) Cell 85, 489-500; Kretzschmar et al. (1998) Curr. Opin. Genet. Dev. 8, 103-111; Kretzschmar et al. (1997) Genes Dev. 11, 984-995; Labbé et al. (1998) Mol. Cell 2, 109-120; Lagna et al. (1996) Nature 383, 832-836; Liu et al. (1997a) Genes Dev. 11, 3157-3167; Liu et al. (1997b) Proc. Natl. Acad. Sci. USA 94, 10669-10764; Macías-Silva et al. (1996) Cell 87, 1215-1224; Nakao et al. (1997) EMBO J. 16, 5353-5362; Nishimura et al. (1998) J. Biol. Chem.

273, 1872-1879; Souchelnytskyi et al. (1997) J. Biol. Chem.
272, 28107-28115; Tsukazaki et al. (1998) Cell 95, 779-791;
Wrana et al. (1994) Nature 370, 341-347; Zhang et al. (1997)
Curr. Biol. 7, 270-276; Zhang et al. (1998) Nature 394, 909-
913; Zhou et al. (1998) Mol. Cell 2, 121-127.

5 **Calcium**

The bivalent cation Ca^{2+} is, along with cAMP, one of the two major second messengers in eukaryotic cells. Its intracellular concentration is tightly regulated and usually kept very low compared to the cell's environment. Ca^{2+} binding proteins and transporters (Gap junction, Voltage-gated, second messenger-gated) help to sequester huge amounts of the ion in various organelles from where Ca^{2+} can be released upon extracellular stimuli. E.g. the contraction of the muscle is dependent on the presence of Ca^{2+} ions which are readily transported back into the organelles in order for the muscle to relax. In signal transduction, Ca^{2+} functions as a second messenger that activates Ca^{2+} dependent processes through the activation of Ca^{2+} /calmodulin-dependent protein kinases (CaM kinases) which are the major effector molecules of Ca^{2+} . In the signaling cascades, the CaM dependent kinases activate phospholipases (e.g. phospholipase C) that in return activate other protein kinases such as protein kinase C.

25 **Rab proteins**

In eukaryotic cells the compartmentalization of processes is a prerequisite for a tight regulation of processes and activities. The cells contain a highly dynamic set of membrane compartments that are responsible for packaging, sorting, secreting, and recycling proteins and other molecules. Trafficking between organelles within the secretory pathway occurs as vesicles derived from a donor compartment fuse with specific acceptor membranes, resulting in the directional transfer of cargo molecules. This process is tightly controlled by the Rab/Ypt family of proteins (reviewed by Novick and Zerial, 1997), a branch of the superfamily of small GTPases. Rab proteins regulate a variety of functions, including vesicle translocation and docking at specific fusion sites. Rabs may also play critical roles in higher order processes such as modulating

the levels of neurotransmitter release in neurons, a likely mechanism in synaptic plasticity that underlies learning and memory (Geppert and Südhof, 1998).

Small GTPases share a common three-dimensional fold that, in the GTP bound state, can bind a variety of downstream effector proteins. GTP hydrolysis leads to a conformational change in the "switch" regions that renders the GTPase unrecognizable to its effectors. In this way, by localizing and activating a select set of effectors, a common structural motif is used to control a wide array of distinct cellular processes.

The final steps in membrane fusion are likely to be driven by a set of proteins known as SNAREs. After a vesicle becomes docked, the cytoplasmic domains of VAMP (also termed synaptobrevin) and syntaxin on opposing membranes, in combination with a SNAP-25 molecule, coalesce into an elongated -helical bundle (Poirier et al., 1998 ; Sutton et al., 1998), which may lead to fusion. Because numerous SNARE isoforms have been identified that localize to distinct membrane compartments, it was originally proposed that the specificity of interaction between the SNARE proteins accounted for the specificity in membrane trafficking. Recent results, however, suggest that SNAREs are not specific in their ability to form complexes *in vitro*, suggesting that trafficking specificity requires additional factors (Yang et al., 1999). In this regard, Rab proteins are strong candidates for governing the specificity of vesicle trafficking. Like the SNAREs, many isoforms (40) of the Rab family have been identified that localize to specific membrane compartments (reviewed by Novick and Zerial, 1997).

Concomitant with the SNARE cycle, Rab proteins undergo a intricate cycle of membrane and protein interactions. Rabs are posttranslationally modified at C-terminal cysteines by the addition of two geranylgeranyl groups, which mediate membrane association when the Rab is in the GTP-bound state. After guanine nucleotide hydrolysis occurs, the Rab is extracted from the membrane upon forming a complex with a cytosolic GDP-dissociation inhibitor (GDI). This cytosolic intermediate is then recycled onto a newly forming vesicle, most likely through a secondary factor termed a GDI dissociation factor (GDF), which displaces GDI. After the Rab becomes membrane bound, a guanidine nucleotide

exchange factor (GEF) promotes release of GDP and the subsequent loading of GTP. In its GTP-bound conformation, the Rab is then free to associate with its specific set of effectors, which can in turn trigger events leading to the eventual fusion of the vesicle with a target membrane. To complete the cycle, perhaps after or concurrent with membrane fusion, a GTPase activating protein (GAP) accelerates nucleotide hydrolysis, switching off the GTPase. The remaining GDP-bound Rab can then participate in a new round of fusion.

Rab interactions with effectors are likely to regulate vesicle targeting and membrane fusion in three ways. First, a Rab may specifically facilitate vectorial vesicle transport. Vesicles are transported from their site of origin to acceptor compartments likely through associations with cytoskeletal elements and transport motors. A protein has been identified with a domain structure that suggests a connection between the cytoskeleton and the Rabs. This protein, called Rabkinesin- β , contains a kinesin-like ATPase motor domain followed by a coiled-coil stalk region and a RBD that specifically binds Rab β (Echard et al., 1998). An additional link with the cytoskeleton is provided by the Rab effector, Rabphilin-3A. Rabphilin-3A has been shown in vitro to interact with -actinin, an actin-bundling protein, but only when not bound to Rab3A (Kato et al., 1996). These results raise the intriguing possibility that Rab proteins regulate vesicle interactions with the cytoskeleton and thereby play an active role in targeting vesicles to their appropriate destinations.

Second, Rab proteins may regulate membrane trafficking at the vesicle docking step. A number of Rab effectors, including Rabaptin-5, EE1478, Rabphilin-3A, and Rim, may serve as molecular tethers. Each effector protein contains a RBD, followed by a linker region (some having the potential to form elongated coiled-coil structures), and a domain capable of interacting with a second Rab or the target membrane. Rabaptin-5, for example, contains two RBDs, one near the N terminus that specifically recognizes Rab4 and a second near the C terminus that binds Rab5 (Vitale et al., 1998). Both Rim, which is localized to the target membrane, and Rabphilin-3A, which is localized to the vesicle, contain N-terminal RBDs and C-terminal Ca²⁺-binding C2

domains, implicating these effectors in synaptic vesicle localization or docking in response to Ca²⁺ influx (Wang et al., 1997). Tethering effectors may also recognize protein complexes on the acceptor membrane. Sec4p, a yeast Rab3A homolog, interacts 5 with the exocyst (Guo et al., 1999), a complex of seven or more subunits that is assembled at sites of vesicle fusion along the plasma membrane. The exocyst complex may therefore function as a landmark for Rab/effectort-mediated vesicle docking.

Third, once a vesicle has become tethered to its fusion site, Rab proteins may selectively activate the SNARE fusion machinery. The mechanism of this activation is unknown but may involve direct interactions of Rabs or, more likely, their effectors with SNAREs. For example, Hrs-2 is a protein that binds to SNAP-25 and contains a Zn²⁺-finger motif characteristic of 10 Rab-binding proteins such as Rabphilin-3A, Rim, EE11, and Noc2, suggesting that Hrs-2 may form a physical link between Rabs and SNAREs (Bean et al., 1997). In addition, certain mutations in the syntaxin-binding protein Slylp, the Sec1p homolog utilized in ER to Golgi trafficking, eliminate the requirement for Ypt1p, a Rab 15 protein that functions at this trafficking step (Dascher et al., 1991). Rabs may therefore regulate SNARE associations through Sec1 family members. In support of this idea, a Rab effector was recently found to interact with a vacuole Rab, a Sec1p homolog, and a SNARE protein (Peterson et al., 1999), which suggests that 20 this effector serves to connect Rab and SNARE function. In this way, Rabs and their effectors may facilitate the correct pairing of SNAREs.

References: Dascher et al. (1991). Mol. Cell. Biol. 11, 872-885; Echard et al. (1998). Science. 279, 580-585; Geppert et al. 30 (1998). Annu. Rev. Neurosci. 21, 75-95; Guo et al. (1999). EMBO J. 18, 1071-1080; Kato et al. (1996). J. Biol. Chem. 271, 31775-31778; Novick et al. (1997). Curr. Opin. Cell Biol. 9, 496-504; Peterson et al. (1999). Curr. Biol. 9, 159-162; Poirier et al. (1998). Nat. Struct. Biol. 5, 765-769; Vitale et al. (1998). EMBO J. 17, 1941-1951; Wang et al. (1997). Nature. 388, 593-598; Yang 35 et al. (1999). J. Biol. Chem. 274, 5649-5653.

Kinases

Reversible posttranslational modifications of proteins are major means of regulating cellular activities. Among the various modifications that are carried out by the cells, the addition of phosphoryl groups to Ser/Thr or Tyr residues is the most important and widely used. The phosphorylation of proteins is accomplished by protein kinases, while the reverse reaction, the removal of phosphoryl groups, is carried out by phosphatases. Kinases / Phosphatases regulate key positions e.g. in the processes of cell proliferation, differentiation and communication/signaling. These processes must be tightly regulated in order to maintain a steady state level of cellular fate. Mis-regulation of kinase activities (or that of phosphatases) is made responsible for a multitude of disease processes such as oncogenesis, inflammatory processes, arteriosclerosis, and psoriasis.

Protein kinases constitute the largest protein family that is currently known. Several hundred kinases have been identified already. Classically, kinases are subdivided into two classes based on the amino acid residues in their substrates that are phosphorylated by the particular enzymes. The kinases specifically add phosphoryl groups from adenosine triphosphate (ATP) or, less frequently, guanosine triphosphate (GTP), either to serine and/or threonine or to tyrosine residues of substrate proteins. An estimated 1,000 to 10,000 proteins present in a typical mammalian cell are believed to be regulated also by the action of protein kinases.

Protein kinases are frequently integral parts of signaling cascades that transmit extracellular stimuli (e.g. hormones, neurotransmitters, growth- or differentiation factors) into the cell and result in various responses by the cells. The kinases play key roles in these cascades as they constitute a sort of 'molecular switches' turning on or off the activities of other enzymes and proteins, e.g. metabolic, regulatory, channels and pumps, receptors, cytoskeletal, transcription factors.

The regulation of kinase activities is accomplished by various means:

The best characterized example for the regulation via regulatory subunits is the cAMP-dependent protein kinase (PKA) which is also a prototype for second messenger activated protein

kinases. This enzyme consists of a heterotetramer of two catalytic (C) and two regulatory (R) subunits. Upon binding of two molecules of second messenger (cAMP) in each R subunit, the catalytic subunits are released and active. Both of the catalytic 5 and the regulatory subunits several isoforms exist. The combination of catalytic and regulatory subunits determines the localization of the holoenzyme and also the substrate spectrum that is available for phosphorylation. The consensus pattern necessary to be present in the substrate for PKA action is RRXS/T 10 where X can be any amino acid.

The casein kinase II comprises another examples for holoenzymes that consist of catalytic and regulatory subunits. Other kinases that are activated by second messengers are cGMP-dependent protein kinase and Protein kinase C (PKC) which is 15 activated by diacylglycerol, which in-turn is produced by phospholipases by cleavage of phosphatidylcholine.

Receptor kinases usually consists of an extracellular domain which can bind effector molecules (e.g. growth factors and hormones) and transfer the stimulus to the intracellular domain 20 of these proteins which usually is a protein tyrosine kinase. Other tyrosine kinases lack an extracellular domain but are associated with receptors which transfer the signal after effector binding by activating the associated protein kinase enzyme (e.g. Src kinase family; Src, Blk, Fgr, Fyn, Lck Lyn, Yes 25 and Janus kinase family; Jak1-3, Tyk2).

Dysfunction of kinases, e.g. caused by non-functioning regulation, can be the cause of inflammatory diseases and uncontrolled proliferation. v-Src which is a truncated version of the C-Src protooncogene tyrosine kinase is a classical example 30 for this process as v-Src does not contain the regulatory domain of the cellular gene and is thus constitutively active.

Several categories of proteins are coded for by clones of the invention within the overall group of "Signal transduction" and include, among others, the following:

35

Discs-large family: In Drosophila more than 50 genes are described, in which mutation leads to loss of cell proliferation control indicating that they are tumor suppressor genes. Most of

these genes have mammalian homologs. The *Drosophila* 'discs large' tumor suppressor protein, Dlg, is the prototype of a family of proteins termed MAGUKs (membrane-associated guanylate kinase homologs). MAGUKs are localized at the membrane-cytoskeleton interface, usually at cell-cell junction, where they appear to have both structural and signaling roles. They contain several distinct domains, including a modified guanylate kinase domain, an SH3 motif, and 1 or 3 copies of the DHR (GLGF/PDZ) domain. Recessive lethal mutations in the 'discs large' tumor suppressor gene interfere with the formation of septate junctions (thought to be the arthropod equivalent of tight junctions) between epithelial cells, and they also cause neoplastic overgrowth of imaginal discs, suggesting a role for cell junctions in proliferation control. These proteins can find application in modulating/blocking the guanylate cyclase-pathway. Clones in this category include: amy2_12d7.

Proteins with a WW Domain: Proteins that contain a WW domain which has been originally described as a short conserved region in a number of unrelated proteins, among them dystrophin, the gene responsible for Duchenne muscular dystrophy. The domain, which spans about 35 residues, is repeated up to 4 times in some proteins. It has been shown to bind proteins with particular proline-motifs, [AP]—P—P—[AP]—Y, and thus resembles somewhat SH3 domains. This domain is frequently associated with other domains typical for proteins in signal transduction processes. Examples of proteins containing the WW domain are Dystrophin, Utrophin, vertebrate YAP protein (binds the SH3 domain of the Yes oncogene), murine NEDD-4 (embryonic development and differentiation of the central nervous system), IQGAP (human GTPase activating protein acting on ras). Therefore these proteins should be involved in intracellular signal transduction. Diseases associated (as potentially diagnostic, therapeutic, causative, and/or related, etc...) with these proteins include as reported by OMIM 1) Muscular Dystrophy, Pseudohypertrophic Progressive Duchenne and Becker Types (OMIM *310200). Clones in this category include: tes3_11d21.

Ion-Transporters: For signalling stringent control of ion fluxes over biological membranes is of the essence. Several trans-membrane ion-channel-proteins key elements of signal transduction pathways. Clones in this category include: amy2_10p7
5 and amy2_2f18.

RING-finger proteins: A Zinc finger motif of the C3HC4 type (the so-called RING finger domain) is involved in mediating protein-protein interactions. Proteins containing a RING-finger are: mammalian V(D)J recombination activating protein (RAG1),
10 mouse rpt-1, human rfp, human 52 Kd Ro/SS-A protein and others. The family of RING finger proteins contains a number of oncogenes. For example PML, a probable transcription factor, BRCA1, the mammalian cbl- and bmi-1 proto-oncogenes. Clones in this category include: amy2_10h17.

15 Phosphatases: Proper targeting of PTPs is essential for many cellular signalling events including antigen induced proliferative responses of B and T cells. The physiological significance of PTPs is further unveiled through mice gene knockout studies and human genome sequencing and mapping
20 projects. Several PTPs are shown to be critical in the pathogenesis of human diseases, as shown by over 290 entries in OMIN. Clones in this category include: tes3_31j20.

25 Phosphoproteins: Some paraneoplastic syndromes affecting the nervous system are associated with antibodies that react with neuronal proteins and the causal tumor (onconeural antigens). Several of these antibodies are markers of specific neurologic syndromes associated with distinct types of cancer. One of the antigens recognised by such antibodies is Ma-1, the neuron- and testis-specific protein 1. The expression of Ma1 mRNA is highly
30 restricted to the brain and testis. Subsequent analysis suggested that Ma1 is likely to be a phosphoprotein (see OMIN *604010). Clones in this category include: tes3_5k22.

Transmembrane proteins

Membrane region prediction was effected using the AL0M2
35 software (Klein et al., 1985; version 2 by K. Nakai). Similar to

many other methods, the Kyte & Doolittle (1982) amino acid hydrophobicity scale is used in AL0M2 as the primary variable for classifying sequences in terms of their localization. High prediction accuracy is achieved through the system of intelligent decision rules and the utilization of a carefully selected training data set. The method also generates reliability estimates which makes it possible to distinguish between membrane-spanning proteins (I, intrinsic) and globular proteins with regions of high hydrophobicity buried in the core.

10 For a protein of length L , the block of length l with maximum hydrophobicity is found:

$$\max H = \max(l/L) \sum_{\substack{i=k \\ k=1, \dots, L-l+1}}^{k+l-1} H_i$$

where H_i represents the hydrophobicity of an individual residue.

15 Let $P(I/\max H)$ and $P(E/\max H)$ be the conditional probabilities that a protein is integral or peripheral, respectively, given its value of maximal hydrophobicity $\max H$, and let $P(I)$ and $P(E)$ be the prior probabilities of intrinsic and extrinsic membrane proteins estimated from the training set. Then a sequence is
20 assigned to E if

$$P(E/\max H) > P(I/\max H)$$

or, after applying the Bayes rule,

$$P(E)P(\max H/E) > P(I)P(\max H/I),$$

25 where the conditional probabilities $P(\max H/E)$ and $P(\max H/I)$ can be determined based on the estimates of probability distributions of $\max H$ in both groups.

Discriminant analysis allows to simplify this task by calculating the odds $P(E/\max H):P(I/\max H)$ as e^b , where b is the left-hand side of a linear or quadratic inequality. For example,
30 for the window of length 17, the protein is allocated to the

peripheral category E based on the empirically derived quadratic inequality:

$$1.05(\max H)^2 + 12.30\max H + 17.49 > 0,$$

whereas the optimal inequality for assigning membrane

5 proteins (category I) is linear:

$$-9.02\max H + 14.27 > 0$$

The odds parameter can be made more or less stringent. For example, one can require odds at least 1:10 for a protein to be classified as integral. This leads to higher selectivity but less
10 sensitivity.

The boundaries of membrane-spanning regions in putative membrane proteins are detected by means of an iterative procedure whereby the most hydrophobic region corresponding to the value maxH is considered to be membrane and removed from the sequence.

15 The classification procedure is then repeated again for the remaining sequence, and, if such a protein is again classified as integral, the next most hydrophobic region is considered.

Reference: Klein, P., Kanehisa, M., DeLisi, C. (1985) The detection and classification of membrane-spanning proteins.

20 *Biochem Biophys Acta* 815: 468-476

Transcription factors

Purified eukaryotic RNA polymerase II is unable to initiate promoter-specific transcription. A family of factors that collectively confer RNAPII promoter specificity is known as the
25 general transcription factors (GTFs). They include the TATA-binding Protein (TBP) TFIIIB, TFIIIE, TFIIIF and TFI IH. These factors are conserved among all eukaryotes.

RNAPII complexes containing the entire set of GTFs or a subset of GTFs together with other proteins have been isolated
30 from mammalian and yeast cells. Although purified RNAPII and GTFs are sufficient for promoter-specific initiation, this system fails to respond to activators. This is mediated by a further complex termed mediator complex which associates with the

carboxy-terminal heptapeptide domain (CTD) of the largest subunit of RNAPII.

Purification of human RNAPII complexes resulted in two distinct forms of human RNAPII after analysis of functional properties. One complex contained chromatin remodeling activities but was devoid of GTFs. The other complex did not contain factors that modify chromatin but contained a subset of SRB/mediator subunits and GTFs and other polypeptides that mediate transcriptional activation, a scenario similar to that reported for yeast.

A complex designated NAT (~20 SU) for negative regulator of transcription contains RNAPII, Cdk8, homologs of the yeast mediator complex as well as Rgr1 and Srb10/11 known as negative regulators of transcription.

A complex with striking similar structural and functional properties to NAT has been identified designated SMCC (~15 SU) (SRB/mediator coactivator complex), that can also mediate transcriptional activation.

The SMCC complex includes all reported NAT subunits including subunits of the TRAP complex. TRAP is a coactivator complex isolated on the basis of its interaction with the thyroid hormone receptor. Another coactivator complex DRIP, isolated on the basis of its ability to interact with the vitamin D3 receptor, contains novel subunits as well as subunits of NAT/SMCC and TRAP complexes.

The effects of each of these coactivator complexes is dependent on the TFIID complex. It is not known if the T AF subunits of TFIID are required. It is likely that new coactivator complexes will be uncovered containing both novel and previously defined components.

Beside the huge amount of transcription factors which can be part of the RNAIIP holoenzyme or the coactivator complexes there is an even larger quantity of specific transcription factors binding to promoter elements within the DNA sequences of a given gene leading to activation or repression of transcription. A

broad range of cellular responses like differentiation, proliferation, cell death and others are elicited through activating or repressing the transcription of target genes.

There are at least five superclasses of transcription factors:

1. Superclass contains members with characteristic basic domains:

Members are:

Leucine zipper factors, where the basic domain is followed by a leucine zipper of repeated leucine residues at every seventh position. The zipper mediates protein dimerization as a prerequisite for DNA-binding.

Helix-loop-helix factors (bHLH) contain a DNA-binding basic region followed by a motif of two potential amphipathic alpha-helices connected by a loop of variable length also mediating dimerization.

Factors with a combination of Helix-loop-helix and leucine zipper.

Further members of this superclass are NF-1, RF-X, and bHSH like proteins.

2. Superclass comprises factors containing zinc-coordinating DNA-binding domains.

Members are:

Proteins with Cys4 zinc finger of nuclear receptor type, where two such motifs differing in size, composition and function are present in each receptor molecule. Each finger comprises 4 cysteine residues coordinating one zinc ion. The second half including the second cysteine pair has alpha-helix conformation and the helix of the first finger binds to the DNA through the major groove. The sequence between the first two cysteines of the second finger mediates dimerization upon DNA-binding. This class includes the steroid hormone receptors and the thyroid hormone

receptor-like factors. Other diverse cys⁴ zinc fingers have a motif of GATA-type.

Proteins with Cys²His² zinc finger domain(s). Each finger comprises 2 cysteine and 2 histidine residues coordinating one zinc ion, and in some cases one histidine is replaced by another cysteine. The zinc ion is essential for DNA-binding.

5 Proteins with Cys₆ cysteine-zinc cluster(s). Six cysteine residues coordinate two zinc ions, i. e. two of the thiol groups are coordinating two zinc ions each. Present in many fungal

10 regulators.

Zinc fingers of alternating composition.

3. Superclass contains factors of helix-turn-helix type.

Members are:

Proteins with homeo domains. Homeo domains are three consecutive alpha-helix structures. Helix 3 contacts mainly the major groove of the DNA, some contacts at the minor groove are observed as well. Helix 2 and 3 resemble the helix-turn-helix structure of prokaryotic regulators.

15 Proteins with Paired box domain(s). This is a DNA-binding domain of approximately 130 amino acid residues. Its N-terminal half is basic, its C-terminal half is highly charged in general. It probably comprises 3 alpha-helices.

20 Proteins with Fork head / winged helix domain(s). This domain was identified by homology between HNF-3A and fkh. The domain comprises approx. 110 AA. Analysis of the crystal structure has revealed a compact structure of three alpha-helices, the third alpha-helix being exposed towards the major groove of the DNA. The domain also exerts minor groove contacts. Upon binding to DNA, it induces a bend of 13 degree.

25 30 Heat shock factors

Proteins with Tryptophan clusters. The tryptophan clusters comprise several tryptophan residues with a spacing of 12-21

amino acid residues; the subclass of myb-type DNA-binding domains typically exhibit a spacing of 19-21 amino acid residues.

Proteins with TEA domain(s). The TEA domain has been identified as a region which is conserved among the transcription factors TEF-1, TEC1 and abaA. This domain in TEF-1 has been shown to interact with DNA, although two additional regions may also contribute to DNA-binding. It is predicted to fold into three alpha-helices, with a randomly coiled region of 16-18 amino acid residues between helices 1 and 2, and a short stretch between helices 2 and 3 of 3-8 residues.

4. Superclass contains beta-Scaffold Factors with Minor Groove Contacts

Members are:

Proteins with RHR (Rel homology) region.

The structure of the Rel-type DBD exhibits a bipartite subdomain structure, each subdomain comprising a beta-barrel with five loops that form an extensive contact surface to the major groove of the DNA. Particularly, the first loop of the N-terminal subdomain (the highly conserved recognition loop) performs contacts with the recognition element on the DNA, but other loops are involved. The fact that the main DNA-contacts are made through loops has been suggested to provide a high degree of flexibility in binding to a range of different target sequences. Augmenting interactions are achieved by two alpha-helices within the N-terminal part that form strong minor groove contacts to the A/T-rich center of the B-element. In p65, the sequence between both alpha-helices is much shorter and even helix 2 is truncated. The second, C-terminal domain is necessary mainly for protein dimerization.

p53 proteins

MADS (MCM1-agamous-deficiens-SRF) box proteins. Proteins of this class comprise a region of homology. The DNA-binding domain also comprises the dimerization capability. In the DNA-bound dimer (shown for SRF), two antiparallel amphipathic alpha-helices

(alpha-I), form a coiled coil and are oriented approximately parallel on the minor groove. These helices make minor and major groove contacts, the N-terminal extensions form minor groove contacts. The bound DNA is bent and wrapped around the protein.

- 5 It exhibits a compressed minor groove in the center and widened minor groove in the flanks.

Beta-Barrel alpha-helix transcription factors.

TATA-binding proteins

HMG proteins

- 10 Proteins of this class comprise a region of homology with the chromosomal non-histone HMG proteins such as HMGI. This region comprises the DNA-binding domain which in some instances such as HMGI mediates sequence-unspecific, in other cases such LEF-1 sequence-specific binding to DNA. This domain exhibits a
15 typical L-shaped conformation made up of 3 alpha-helices and an extended N-terminal extension of the first helix. The latter together with helix 1, which contains a kink, form the long arm of the L, whereas helices 1 and 2 form the short arm. Binding to the minor groove induces a sharp bending of the DNA by more than
20 90 degree, away from the bound protein. The overall topology of the DNA-protein complexes resembles somewhat that of the TBP-TATA box complex.

Heteromeric CCAAT factors

Proteins with Grainyhead domain(s)

- 25 Cold-shock domain factors. Cold-shock domain proteins are characterized by a highly conserved region first found in prokaryotic cold-shock proteins. This domain is a single-stranded nucleic acid-binding structure interacting with DNA or RNA. It consists of an antiparallel five-stranded beta-barrel, the
30 strands of which are connected by turns and loops. Within this structure, a three-stranded beta-strand contains a conserved RNA-binding motif, RNPI. Not all CSD proteins are transcription factors. Those which specifically bind to a certain sequence are termed Y-box proteins. Proteins of this class were previously

called protamine-like domain proteins because of having a highly positively charged domain with interspersed proline residues.

Proteins with Runt homology domain

The members of this transcription factor class have been
5 identified on the basis of their homology to a defined region
within the Drosophila protein Runt. The runt domain is part of
the DNA-binding domain of these factors. It consists mainly of
beta-strands, does not contain alpha-helical regions and seems to
be most similar to the palm domain found in DNA polymerase beta
10 (rat).

5. Superclass contains other transcription factors like Copper fist proteins, HMGI(Y), STAT, Pocket domain proteins and Ap2/EREBP-related factors.

The classification of transcription factors originates from
15 TRANSFAC database:

<http://transfac.gbf.de/TRANSFAC/>

Reference: Heinemeyer

Several categories of proteins are coded for by clones of
the invention within the overall group of "Transcription Factors"
20 and include, among others, the following:

Homeobox-proteins: Homeodomain-containing transcription factors are essential for a variety of processes in vertebrate development, including organogenesis. They have been shown to
25 regulate cell proliferation, pattern segmental identity and determine cell fate decisions during embryogenesis. For example, In zebrafish emx2 mRNAs are found in the dorsal telencephalon, parts of the diencephalon and the otocyst. The human homologue Emx2 appears to be already expressed in 8.5 day
30 embryos. It is also expressed in the presumptive cerebral cortex, olfactory bulbs, in some neuroectodermal areas in embryonic head including olfactory placodes in earlier stages and olfactory epithelia later in development. Mutants of the *D. melanogaster* gene "empty spiracles" display spiracles devoid of filzkörper,

no antenna and an open head. Clones in this category include:
amy2_14m1b.

Proteins with myc-type, helix-loop-helix dimerization domain signature(s). This helix-loop-helix domain mediates protein dimerization has been found in various multimeric transcription factors. Clones in this category include: tes3_18n14.

Transcriptional silencers: In addition to transcription factors, other proteins, such as YDL153c of *Saccharomyces cerevisiae* are responsible for silencing of genes. Clones in this category include: amy2_2f22.

Proteins regulating transcription factors: The activity of several transcription factor is regulated by the binding or dissociation of other proteins or by phosphorylation or dephosphorylation of the transcription factor. For example, I-kappa-B-related protein interacts with the transcription factor NF-kB. I-kappa-B-alpha mutations contribute to constitutive NF-kappaB activity in cultured and primary HRS (Hodgkin/Reed-Sternberg) cells and are therefore involved in the pathogenesis of Hodgkin's disease (HD) patients. Clones in this category include: amy2_1c12.

Signal transducing proteins: Beta-transducin subunits of G-proteins contain WD-40 repeats. The beta subunits seem to be required for the replacement of GDP by GTP as well as for membrane anchoring and receptor recognition. Due to the zinc finger the novel protein seems to be a new molecule involved in signal transduction and transcription. These proteins have been reported by OMIM to be associated (as potentially diagnostic, therapeutic, causative, and/or related, etc...) with the following diseases: 1) essential hypertension (OMIM *139130). Clones in this category include: tes3_11c22.

* * *

The invention, therefore, specifically contemplates the following assemblages of materials, which track the above-identified fourteen functional groupings, that are useful in practicing the profiling aspects of the invention. One type of assemblage is nucleic acid-based and can include the following groupings of sequences and their derivatives: all sequences; human fetal brain sequences; brain derived sequences; human fetal

kidney library sequences; kidney derived sequences; human mammary carcinoma library sequences; mammary carcinoma derived sequences; human testis library sequences; testes derived sequences; cell cycle genes; cell structure and motility genes; differentiation and development genes; intracellular transport and trafficking genes; metabolism genes; nucleic acid management genes; signal transduction genes; transmembrane protein genes; and transcription factor genes. Other assemblages contain proteins or their corresponding antibodies or antibody fragments, divided along the same groupings.

Database Applications

Because they are human genes and gene products, the inventive molecules are useful as members of a database. Such a database may be used, for example, in drug discovery and rationale drug design or in testing the novelty and non-obviousness of newly sequenced materials. In addition, they are particularly suited in designing variants for the profiling (and other) applications described herein. Hence, the following discussion of electronic embodiments applies equally to such variants, which, naturally, will be generated and stored using a computer using known methodologies.

Accordingly, one aspect of the invention contemplates a database of at least one of the inventive sequences stored on computer readable media. Again, the individual sequences may be grouped with regard to the individual functional and structural groups mentioned above. While the individual sequences of a database may exist in printed form, they are preferably in electronic form, as in an ascii or a text file. They may also exist as word processing files or they may be stored in database applications like DB2, Sybase, Oracle, GCG and GenBank. One skilled in the art will understand the range of applications suitable for using and storing the electronic embodiments of the invention.

"Computer readable media" refers to any medium which can be read and accessed by a computer. These include: magnetic storage media, like floppy discs, hard drives and magnetic tape; optical storage media, like CD-ROM; electrical storage media, like RAM and ROM; and hybrids of these categories, like magnetic/optical

storage media. One skilled in the art will readily understand the scope of computer readable media and how to implement them.

Biological Activities and Assays for Implementing Therapeutic and Diagnostic Applications

5 This section provides assays for biological activity that are useful in characterizing and quantifying the biological activity of the inventive molecules and their derivatives, which is relevant to the pharmacological effects of the inventive molecules. As used in this section, it will be understood that
10 "protein" may also refer to the inventive antibodies (including fragments).

Cytokine and Cell Proliferation/Differentiation Activity

A protein of the present invention may exhibit cytokine, cell proliferation (either inducing or inhibiting) or cell differentiation (either inducing or inhibiting) activity or may induce production of other cytokines in certain cell populations. Many protein factors discovered to date, including all known cytokines, have exhibited activity in one or more factor dependent cell proliferation assays, and hence the assays serve 20 as a convenient confirmation of cytokine activity. The activity of a protein of the present invention is evidenced by any one of a number of routine factor dependent cell proliferation assays for cell lines including, without limitation, 32D, DA2, DA1G, T10, B9, B9/11, BaF3, MC9/G, M + (preB M +), 2E8, RBS, DA1, 123, 25 T11b5, HT2, CTLL2, TF-1, Mo7e and CMK.

The activity of a protein of the invention may, among other means, be measured by the following methods:

Assays for T-cell or thymocyte proliferation include without limitation those described in: Current Protocols in Immunology, 30 Ed by J. E. Coligan, A. M. Kruisbeek, D. H. Margulies, E. M. Shevach, W. Strober, Pub. Greene Publishing Associates and Wiley-Interscience (Chapter 3, In Vitro assays for Mouse Lymphocyte Function 3.1-3.19; Chapter 7, Immunologic studies in Humans); Takai et al., J. Immunol. 137:3494-3500, 1986; Bertagnolli et 35 al., J. Immunol. 145:1706-1712, 1990; Bertagnolli et al., Cellular Immunology 133:327-341, 1991; Bertagnolli, et al., I. Immunol. 149:3778-3783, 1992; Bowman et al., I. Immunol. 152:1756-1761, 1994.

- Assays for cytokine production and/or proliferation of spleen cells, lymph node cells or thymocytes include, without limitation, those described in: Polyclonal T cell stimulation, Kruisbeek, A. M. and Shevach, E. M. In Current Protocols in Immunology. J. E. e.a. Coligan eds. Vol 1 pp. 3.12.1-3.12.14, John Wiley and Sons, Toronto. 1994; and Measurement of mouse and human interleukin gamma , Schreiber, R. D. In Current Protocols in Immunology. J. E. e.a. Coligan eds. Vol 1 pp. 6.8.1-6.8.8, John Wiley and Sons, Toronto. 1994.
- Assays for proliferation and differentiation of hematopoietic and lymphopoietic cells include, without limitation, those described in: Measurement of Human and Murine Interleukin 2 and Interleukin 4, Bottomly, K., Davis, L. S. and Lipsky, P. E. In Current Protocols in Immunology. J. E. e.a. Coligan eds. Vol 1 pp. 6.3.1-6.3.12, John Wiley and Sons, Toronto. 1991; deVries et al., J. Exp. Med. 173:1205-1211, 1991; Moreau et al., Nature 336:690-692, 1988; Greenberger et al., Proc. Natl. Acad. Sci. U.S.A. 80:2931-2938, 1983; Measurement of mouse and human interleukin b-Nordan, R. In Current Protocols in Immunology. J. E. e.a. Coligan eds. Vol 1 pp. 6.6.1-6.6.5, John Wiley and Sons, Toronto. 1991; Smith et al., Proc. Natl. Acad. Sci. U.S.A. 83:1857-1861, 1986; Measurement of human Interleukin 11-Bennett, F., Giannotti, J., Clark, S. C. and Turner, K. J. In Current Protocols in Immunology. J. E. e.a. Coligan eds. Vol 1 pp. 6.15.1 John Wiley and Sons, Toronto. 1991; Measurement of mouse and human Interleukin 9-Ciarletta, A., Giannotti, J., Clark, S. C. and Turner, K. J. In Current Protocols in Immunology. J. E. e.a. Coligan eds. Vol 1 pp. 6.13.1, John Wiley and Sons, Toronto. 1991.
- Assays for T-cell clone responses to antigens (which will identify, among others, proteins that affect APC-T cell interactions as well as direct T-cell effects by measuring proliferation and cytokine production) include, without limitation, those described in: Current Protocols in Immunology, Ed by J. E. Coligan, A. M. Kruisbeek, D. H. Margulies, E. M. Shevach, W Strober, Pub. Greene Publishing Associates and Wiley-Interscience (Chapter 3, In Vitro assays for Mouse Lymphocyte Function; Chapter 6, Cytokines and their cellular receptors; Chapter 7, Immunologic studies in Humans); Weinberger et al.,

Proc. Natl. Acad. Sci. USA 77:6091-6095, 1980; Weinberger et al.,
Eur. J. Immun. 11:405-411, 1981; Takai et al., J. Immunol.
137:3494-3500, 1986; Takai et al., J. Immunol. 140:508-512, 1988.

Immune Stimulating or Suppressing Activity

5 A protein of the present invention may also exhibit immune stimulating or immune suppressing activity, including without limitation the activities for which assays are described herein. A protein may be useful in the treatment of various immune deficiencies and disorders (including severe combined
10 immunodeficiency (SCID)), e.g., in regulating (up or down) growth and proliferation of T and/or B lymphocytes, as well as effecting the cytolytic activity of NK cells and other cell populations. These immune deficiencies may be genetic or be caused by viral (e.g., HIV) as well as bacterial or fungal infections, or may
15 result from autoimmune disorders. More specifically, infectious diseases causes by viral, bacterial, fungal or other infection may be treatable using a protein of the present invention, including infections by HIV, hepatitis viruses, herpesviruses, mycobacteria, Leishmania spp., malaria spp. and various fungal
20 infections such as candidiasis. Of course, in this regard, a protein of the present invention may also be useful where a boost to the immune system generally may be desirable, i.e., in the treatment of cancer.

Autoimmune disorders which may be treated using a protein of
25 the present invention include, for example, connective tissue disease, multiple sclerosis, systemic lupus erythematosus, rheumatoid arthritis, autoimmune pulmonary inflammation, Guillain-Barre syndrome, autoimmune thyroiditis, insulin dependent diabetes mellitus, myasthenia gravis, graft-versus-host disease and autoimmune inflammatory eye disease. Such a protein of the present invention may also be useful in the treatment of allergic reactions and conditions, such as asthma (particularly allergic asthma) or other respiratory problems. Other conditions, in which immune suppression is desired
30 (including, for example, organ transplantation), may also be treatable using a protein of the present invention.

Using the proteins of the invention it may also be possible to modify immune responses, in a number of ways. Down regulation

may be in the form of inhibiting or blocking an immune response already in progress or may involve preventing the induction of an immune response. The functions of activated T cells may be inhibited by suppressing T cell responses or by inducing specific tolerance in T cells, or both. Immunosuppression of T cell responses is generally an active, non-antigen-specific, process which requires continuous exposure of the T cells to the suppressive agent. Tolerance, which involves inducing non-responsiveness or anergy in T cells, is distinguishable from immunosuppression in that it is generally antigen-specific and persists after exposure to the tolerizing agent has ceased. Operationally, tolerance can be demonstrated by the lack of a T cell response upon reexposure to specific antigen in the absence of the tolerizing agent.

Down regulating or preventing one or more antigen functions (including without limitation B lymphocyte antigen functions (such as, for example, B7)), e.g., preventing high level lymphokine synthesis by activated T cells, will be useful in situations of tissue, skin and organ transplantation and in graft-versus-host disease (GVHD). For example, blockage of T cell function should result in reduced tissue destruction in tissue transplantation. Typically, in tissue transplants, rejection of the transplant is initiated through its recognition as foreign by T cells, followed by an immune reaction that destroys the transplant. The administration of a molecule which inhibits or blocks interaction of a B7 lymphocyte antigen with its natural ligand(s) on immune cells (such as a soluble, monomeric form of a peptide having B7-2 activity alone or in conjunction with a monomeric form of a peptide having an activity of another B lymphocyte antigen (e.g., B7-1, B7-3) or blocking antibody), prior to transplantation can lead to the binding of the molecule to the natural ligand(s) on the immune cells without transmitting the corresponding costimulatory signal. Blocking B lymphocyte antigen function in this manner prevents cytokine synthesis by immune cells, such as T cells, and thus acts as an immunosuppressant. Moreover, the lack of costimulation may also be sufficient to anergize the T cells, thereby inducing tolerance in a subject. Induction of long-term tolerance by B lymphocyte antigen-blocking reagents may avoid the necessity of repeated

administration of these blocking reagents. To achieve sufficient immunosuppression or tolerance in a subject, it may also be necessary to block the function of a combination of B lymphocyte antigens.

5 The efficacy of particular blocking reagents in preventing organ transplant rejection or GVHD can be assessed using animal models that are predictive of efficacy in humans. Examples of appropriate systems which can be used include allogeneic cardiac grafts in rats and xenogeneic pancreatic islet cell grafts in
10 mice, both of which have been used to examine the immunosuppressive effects of CTLA4Ig fusion proteins *in vivo* as described in Lenschow et al., *Science* 257:789-792 (1992) and Turka et al., *Proc. Natl. Acad. Sci USA*, 89:11102-11105 (1992). In addition, murine models of GVHD (see Paul ed., *Fundamental
15 Immunology*, Raven Press, New York, 1989, pp. 846-847) can be used to determine the effect of blocking B lymphocyte antigen function *in vivo* on the development of that disease.

Blocking antigen function may also be therapeutically useful for treating autoimmune diseases. Many autoimmune disorders are
20 the result of inappropriate activation of T cells that are reactive against self tissue and which promote the production of cytokines and autoantibodies involved in the pathology of the diseases. Preventing the activation of autoreactive T cells may reduce or eliminate disease symptoms. Administration of reagents
25 which block costimulation of T cells by disrupting receptor:ligand interactions of B lymphocyte antigens can be used to inhibit T cell activation and prevent production of autoantibodies or T cell-derived cytokines which may be involved in the disease process. Additionally, blocking reagents may
30 induce antigen-specific tolerance of autoreactive T cells which could lead to long-term relief from the disease. The efficacy of blocking reagents in preventing or alleviating autoimmune disorders can be determined using a number of well-characterized animal models of human autoimmune diseases. Examples include
35 murine experimental autoimmune encephalitis, systemic lupus erythematosis in MRL/lpr/lpr mice or NZB hybrid mice, murine autoimmune collagen arthritis, diabetes mellitus in NOD mice and BB rats, and murine experimental myasthenia gravis (see Paul ed.,

Fundamental Immunology, Raven Press, New York, 1989, pp. 840-856).

Upregulation of an antigen function (preferably a B lymphocyte antigen function), as a means of up regulating immune responses, may also be useful in therapy. Upregulation of immune responses may be in the form of enhancing an existing immune response or eliciting an initial immune response. For example, enhancing an immune response through stimulating B lymphocyte antigen function may be useful in cases of viral infection. In addition, systemic viral diseases such as influenza, the common cold, and encephalitis might be alleviated by the administration of stimulatory forms of B lymphocyte antigens systemically.

Alternatively, anti-viral immune responses may be enhanced in an infected patient by removing T cells from the patient, costimulating the T cells in vitro with viral antigen-pulsed APCs either expressing a peptide of the present invention or together with a stimulatory form of a soluble peptide of the present invention and reintroducing the in vitro activated T cells into the patient. Another method of enhancing anti-viral immune responses would be to isolate infected cells from a patient, transfect them with a nucleic acid encoding a protein of the present invention as described herein such that the cells express all or a portion of the protein on their surface, and reintroduce the transfected cells into the patient. The infected cells would now be capable of delivering a costimulatory signal to, and thereby activate, T cells in vivo.

In another application, up regulation or enhancement of antigen function (preferably B lymphocyte antigen function) may be useful in the induction of tumor immunity. Tumor cells (e.g., sarcoma, melanoma, lymphoma, leukemia, neuroblastoma, carcinoma) transfected with a nucleic acid encoding at least one peptide of the present invention can be administered to a subject to overcome tumor-specific tolerance in the subject. If desired, the tumor cell can be transfected to express a combination of peptides. For example, tumor cells obtained from a patient can be transfected ex vivo with an expression vector directing the expression of a peptide having B7-2-like activity alone, or in conjunction with a peptide having B7-1-like activity and/or B7-3-like activity. The transfected tumor cells are returned to the

patient to result in expression of the peptides on the surface of the transfected cell. Alternatively, gene therapy techniques can be used to target a tumor cell for transfection *in vivo*.

The presence of the peptide of the present invention having the activity of a B lymphocyte antigen(s) on the surface of the tumor cell provides the necessary costimulation signal to T cells to induce a T cell mediated immune response against the transfected tumor cells. In addition, tumor cells which lack MHC class I or MHC class II molecules, or which fail to reexpress sufficient mounts of MHC class I or MHC class II molecules, can be transfected with nucleic acid encoding all or a portion of (e.g., a cytoplasmic-domain truncated portion) of an MHC class I alpha chain protein and beta 2 microglobulin protein or an MHC class II alpha chain protein and an MHC class II beta chain protein to thereby express MHC class I or MHC class II proteins on the cell surface. Expression of the appropriate class I or class II MHC in conjunction with a peptide having the activity of a B lymphocyte antigen (e.g., B7-1, B7-2, B7-3) induces a T cell mediated immune response against the transfected tumor cell.

Optionally, a gene encoding an antisense construct which blocks expression of an MHC class II associated protein, such as the invariant chain, can also be cotransfected with a DNA encoding a peptide having the activity of a B lymphocyte antigen to promote presentation of tumor associated antigens and induce tumor specific immunity. Thus, the induction of a T cell mediated immune response in a human subject may be sufficient to overcome tumor-specific tolerance in the subject.

The activity of a protein of the invention may, among other means, be measured by the following methods:

Suitable assays for thymocyte or splenocyte cytotoxicity include, without limitation, those described in: Current Protocols in Immunology, Ed by J. E. Coligan, A. M. Kruisbeek, D. H. Margulies, E. M. Shevach, W. Strober, Pub. Greene Publishing Associates and Wiley-Interscience (Chapter 3, *In Vitro assays for Mouse Lymphocyte Function 3.1-3.19*; Chapter 7, *Immunologic studies in Humans*); Herrmann et al., Proc. Natl. Acad. Sci. USA 78:2488-2492, 1981; Herrmann et al., J. Immunol. 128:1968-1974, 1982; Handa et al., J. Immunol. 135:1564-1572, 1985; Takai et al., J. Immunol. 137:3494-3500, 1986; Takai et al., J. Immunol.

140:508-512, 1988; Herrmann et al., Proc. Natl. Acad. Sci. USA
78:2488-2492, 1981; Herrmann et al., J. Immunol. 128:1968-1974,
1982; Handa et al., J. Immunol. 135:1564-1572, 1985; Takai et
al., J. Immunol. 137:3494-3500, 1986; Bowman et al., J. Virology
56:1992-1998; Takai et al., J. Immunol. 140:508-512, 1988;
Bertagnolli et al., Cellular Immunology 133:327-341, 1991; Brown
et al., J. Immunol. 153:3079-3092, 1994.

Assays for T-cell-dependent immunoglobulin responses and
isotype switching (which will identify, among others, proteins
10 that modulate T-cell dependent antibody responses and that affect
Th1/Th2 profiles) include, without limitation, those described
in: Maliszewski, J. Immunol. 144:3028-3033, 1990; and Assays for
B cell function: In vitro antibody production, Mond, J. J. and
Brunswick, M. In Current Protocols in Immunology. J. E. e.a.
15 Coligan eds. Vol 3-pp. 3.8.1-3.8.16, John Wiley and Sons,
Toronto. 1994.

Mixed lymphocyte reaction (MLR) assays (which will identify,
among others, proteins that generate predominantly Th1 and CTL
responses) include, without limitation, those described in:
20 Current Protocols in Immunology, Ed by J. E. Coligan, A. M.
Kruisbeek, D. H. Margulies, E. M. Shevach, W. Strober, Pub.
Greene Publishing Associates and Wiley-Interscience (Chapter 3,
In Vitro assays for Mouse Lymphocyte Function 3.1-3.19; Chapter
7, Immunologic studies in Humans); Takai et al., J. Immunol.
25 137:3494-3500, 1986; Takai et al., J. Immunol. 140:508-512, 1988;
Bertagnolli et al., J. Immunol. 149:3778-3783, 1992.

Dendritic cell-dependent assays (which will identify, among
others, proteins expressed by dendritic cells that activate naive
T-cells) include, without limitation, those described in: Guery
30 et al., J. Immunol. 134:536-544, 1995; Inaba et al., Journal of
Experimental Medicine 173:549-559, 1991; Macatonia et al.,
Journal of Immunology 154:5071-5079, 1995; Porgador et al.,
Journal of Experimental Medicine 182:255-260, 1995; Nair et al.,
Journal of Virology 67:4062-4069, 1993; Huang et al., Science
35 264:961-965, 1994; Macatonia et al., Journal of Experimental
Medicine 169:1255-1264, 1989; Bhardwaj et al., Journal of
Clinical Investigation 94:797-807, 1994; and Inaba et al.,
Journal of Experimental Medicine 172:631-640, 1990.

Assays for lymphocyte survival/apoptosis (which will identify, among others, proteins that prevent apoptosis after superantigen induction and proteins that regulate lymphocyte homeostasis) include, without limitation, those described in:

5 Darzynkiewicz et al., Cytometry 13:795-808, 1992; Gorczyca et al., Leukemia 7:659-670, 1993; Gorczyca et al., Cancer Research 53:1945-1951, 1993; Itoh et al., Cell 66:233-243, 1991; Zacharchuk, Journal of Immunology 145:4037-4045, 1990; Zamai et al., Cytometry 14:891-897, 1993; Gorczyca et al., International 10 Journal of Oncology 1:639-648, 1992.

Assays for proteins that influence early steps of T-cell commitment and development include, without limitation, those described in: Antica et al., Blood 84:111-117, 1994; Fine et al., Cellular Immunology 155:111-122, 1994; Galy et al., Blood 15 85:2770-2778, 1995; Toki et al., Proc. Nat. Acad. Sci. USA 88:7548-7551, 1991.

Hematopoiesis Regulating Activity

A protein of the present invention may be useful in regulation of hematopoiesis and, consequently, in the treatment of myeloid or lymphoid cell deficiencies. Even marginal biological activity in support of colony forming cells or of factor-dependent cell lines indicates involvement in regulating hematopoiesis, e.g. in supporting the growth and proliferation of erythroid progenitor cells alone or in combination with other cytokines, thereby indicating utility, for example, in treating various anemias or for use in conjunction with irradiation/chemotherapy to stimulate the production of erythroid precursors and/or erythroid cells; in supporting the growth and proliferation of myeloid cells such as granulocytes and monocytes/macrophages (i.e., traditional CSF activity) useful, for example, in conjunction with chemotherapy to prevent or treat consequent myelo-suppression; in supporting the growth and proliferation of megakaryocytes and consequently of platelets thereby allowing prevention or treatment of various platelet disorders such as thrombocytopenia, and generally for use in place of or complimentary to platelet transfusions; and/or in supporting the growth and proliferation of hematopoietic stem cells which are capable of maturing to any and all of the above-mentioned hematopoietic cells and therefore find therapeutic utility in various stem cell disorders (such as those usually treated with transplantation, including, without limitation, aplastic anemia and paroxysmal nocturnal hemoglobinuria), as well as in repopulating the stem cell compartment post irradiation/chemotherapy, either in-vivo or ex-vivo (i.e., in conjunction with bone marrow transplantation or with peripheral progenitor cell transplantation (homologous or heterologous)) as normal cells or genetically manipulated for gene therapy.

The activity of a protein of the invention may, among other means, be measured by the following methods:

Suitable assays for proliferation and differentiation of various hematopoietic lines are cited above.

Assays for embryonic stem cell differentiation (which will identify, among others, proteins that influence embryonic differentiation hematopoiesis) include, without limitation, those described in: Johansson et al. *Cellular Biology* 15:141-151, 1995;

Keller et al., Molecular and Cellular Biology 13:473-486, 1993;
McClanahan et al., Blood 81:2903-2915, 1993.

Assays for stem cell survival and differentiation (which will identify, among others, proteins that regulate lympho-hematopoiesis) include, without limitation, those described in:

5 Methylcellulose colony forming assays, Freshney, M. G. In Culture of Hematopoietic Cells. R. I. Freshney, et al. eds. Vol pp. 265-268, Wiley-Liss, Inc., New York, N.Y. 1994; Hirayama et al., Proc. Natl. Acad. Sci. USA 89:5907-5911, 1992; Primitive

10 hematopoietic colony forming cells with high proliferative potential, McNiece, I. K. and Briddell, R. A. In Culture of Hematopoietic Cells. R. I. Freshney, et al. eds. Vol pp. 23-39, Wiley-Liss, Inc., New York, N.Y. 1994; Neben et al., Experimental Hematology 22:353-359, 1994; Cobblestone area forming cell assay,

15 Ploemacher, R. E. In Culture of Hematopoietic Cells. R. I. Freshney, et al. eds. Vol pp. 1-21, Wiley-Liss, Inc., New York, N.Y. 1994; Long term bone marrow cultures in the presence of stromal cells, Spooncer, E., Dexter, M. and Allen, T. In Culture of Hematopoietic Cells. R. I. Freshney, et al. eds. Vol pp. 163-

20 179, Wiley-Liss, Inc., New York, N.Y. 1994; Long term culture initiating cell assay, Sutherland, H. J. In Culture of Hematopoietic Cells. R. I. Freshney, et al. eds. Vol pp. 139-162, Wiley-Liss, Inc., New York, N.Y. 1994.

Tissue Growth Activity

25 A protein of the present invention also may have utility in compositions used for bone, cartilage, tendon, ligament and/or nerve tissue growth or regeneration, as well as for wound healing and tissue repair and replacement, and in the treatment of burns, incisions and ulcers.

30 A protein of the present invention, which induces cartilage and/or bone growth in circumstances where bone is not normally formed, has application in the healing of bone fractures and cartilage damage or defects in humans and other animals. Such a preparation employing a protein of the invention may have

35 prophylactic use in closed as well as open fracture reduction and also in the improved fixation of artificial joints. De novo bone formation induced by an osteogenic agent contributes to the repair of congenital, trauma induced, or oncologic resection

induced craniofacial defects, and also is useful in cosmetic plastic surgery.

A protein of this invention may also be used in the treatment of periodontal disease, and in other tooth repair processes. Such agents may provide an environment to attract bone-forming cells, stimulate growth of bone-forming cells or induce differentiation of progenitors of bone-forming cells. A protein of the invention may also be useful in the treatment of osteoporosis or osteoarthritis, such as through stimulation of bone and/or cartilage repair or by blocking inflammation or processes of tissue destruction (collagenase activity, osteoclast activity, etc.) mediated by inflammatory processes.

Another category of tissue regeneration activity that may be attributable to the protein of the present invention is tendon/ligament formation. A protein of the present invention, which induces tendon/ligament-like tissue or other tissue formation in circumstances where such tissue is not normally formed, has application in the healing of tendon or ligament tears, deformities and other tendon or ligament defects in humans and other animals. Such a preparation employing a tendon/ligament-like tissue inducing protein may have prophylactic use in preventing damage to tendon or ligament tissue, as well as use in the improved fixation of tendon or ligament to bone or other tissues, and in repairing defects to tendon or ligament tissue. De novo tendon/ligament-like tissue formation induced by a composition of the present invention contributes to the repair of congenital, trauma induced, or other tendon or ligament defects of other origin, and is also useful in cosmetic plastic surgery for attachment or repair of tendons or ligaments. The compositions of the present invention may provide environment to attract tendon- or ligament-forming cells, stimulate growth of tendon- or ligament-forming cells, induce differentiation of progenitors of tendon- or ligament-forming cells, or induce growth of tendon/ligament cells or progenitors ex vivo for return in vivo to effect tissue repair. The compositions of the invention may also be useful in the treatment of tendonitis, carpal tunnel syndrome and other tendon or ligament defects. The compositions may also include an

appropriate matrix and/or sequestering agent as a carrier as is well known in the art.

The protein of the present invention may also be useful for proliferation of neural cells and for regeneration of nerve and brain tissue, i.e. for the treatment of central and peripheral nervous system diseases and neuropathies, as well as mechanical and traumatic disorders, which involve degeneration, death or trauma to neural cells or nerve tissue. More specifically, a protein may be used in the treatment of diseases of the peripheral nervous system, such as peripheral nerve injuries, peripheral neuropathy and localized neuropathies, and central nervous system diseases, such as Alzheimer's, Parkinson's disease, Huntington's disease, amyotrophic lateral sclerosis, and Shy-Drager syndrome. Further conditions which may be treated in accordance with the present invention include mechanical and traumatic disorders, such as spinal cord disorders, head trauma and cerebrovascular diseases such as stroke. Peripheral neuropathies resulting from chemotherapy or other medical therapies may also be treatable using a protein of the invention.

Proteins of the invention may also be useful to promote better or faster closure of non-healing wounds, including without limitation pressure ulcers, ulcers associated with vascular insufficiency, surgical and traumatic wounds, and the like.

It is expected that a protein of the present invention may also exhibit activity for generation or regeneration of other tissues, such as organs (including, for example, pancreas, liver, intestine, kidney, skin, endothelium), muscle (smooth, skeletal or cardiac) and vascular (including vascular endothelium) tissue, or for promoting the growth of cells comprising such tissues. Part of the desired effects may be by inhibition or modulation of fibrotic scarring to allow normal tissue to regenerate. A protein of the invention may also exhibit angiogenic activity.

A protein of the present invention may also be useful for gut protection or regeneration and treatment of lung or liver fibrosis, reperfusion injury in various tissues, and conditions resulting from systemic cytokine damage.

A protein of the present invention may also be useful for promoting or inhibiting differentiation of tissues described

above from precursor tissues or cells; or for inhibiting the growth of tissues described above.

The activity of a protein of the invention may, among other means, be measured by the following methods:

5 Assays for tissue generation activity include, without limitation, those described in: International Patent Publication No. W095/16035 (bone, cartilage, tendon); International Patent Publication No. W095/05846 (nerve, neuronal); International Patent Publication No. W091/07491 (skin, endothelium).

10 Assays for wound healing activity include, without limitation, those described in: Winter, Epidermal Wound Healing, pps. 71-112 (Maibach, H. I. and Rovee, D. T., eds.), Year Book Medical Publishers, Inc., Chicago, as modified by Eaglstein and Mertz, J. Invest. Dermatol 71:382-84 (1978).

15 Activin/Inhibin Activity

A protein of the present invention may also exhibit activin- or inhibin-related activities. Inhibins are characterized by their ability to inhibit the release of follicle stimulating hormone (FSH), while activins and are characterized by their 20 ability to stimulate the release of follicle stimulating hormone (FSH). Thus, a protein of the present invention, alone or in heterodimers with a member of the inhibin alpha family, may be useful as a contraceptive based on the ability of inhibins to decrease fertility in female mammals and decrease spermatogenesis 25 in male mammals. Administration of sufficient amounts of other inhibins can induce infertility in these mammals. Alternatively, the protein of the invention, as a homodimer or as a heterodimer with other protein subunits of the inhibin- beta group, may be useful as a fertility inducing therapeutic, based upon the 30 ability of activin molecules in stimulating FSH release from cells of the anterior pituitary. See, for example, U.S. Pat. No. 4,798,885. A protein of the invention may also be useful for advancement of the onset of fertility in sexually immature mammals, so as to increase the lifetime reproductive performance 35 of domestic animals such as cows, sheep and pigs.

The activity of a protein of the invention may, among other means, be measured by the following methods:

Assays for activin/inhibin activity include, without limitation, those described in: Vale et al., Endocrinology 91:562-572, 1972; Ling et al., Nature 321:779-782, 1986; Vale et al., Nature 321:776-779, 1986; Mason et al., Nature 318:659-663, 1985; Forage et al., Proc. Natl. Acad. Sci. USA 83:3091-3095, 1986.

Chemotactic/Chemokinetic Activity

A protein of the present invention may have chemotactic or chemokinetic activity (e.g., act as a chemokine) for mammalian cells, including, for example, monocytes, fibroblasts, neutrophils, T-cells, mast cells, eosinophils, epithelial and/or endothelial cells. Chemotactic and chemokinetic proteins can be used to mobilize or attract a desired cell population to a desired site of action. Chemotactic or chemokinetic proteins provide particular advantages in treatment of wounds and other trauma to tissues, as well as in treatment of localized infections. For example, attraction of lymphocytes, monocytes or neutrophils to tumors or sites of infection may result in improved immune responses against the tumor or infecting agent.

A protein or peptide has chemotactic activity for a particular cell population if it can stimulate, directly or indirectly, the directed orientation or movement of such cell population. Preferably, the protein or peptide has the ability to directly stimulate directed movement of cells. Whether a particular protein has chemotactic activity for a population of cells can be readily determined by employing such protein or peptide in any known assay for cell chemotaxis.

The activity of a protein of the invention may, among other means, be measured by the following methods:

Assays for chemotactic activity (which will identify proteins that induce or prevent chemotaxis) consist of assays that measure the ability of a protein to induce the migration of cells across a membrane as well as the ability of a protein to induce the adhesion of one cell population to another cell population. Suitable assays for movement and adhesion include, without limitation, those described in: Current Protocols in Immunology, Ed by J. E. Coligan, A. M. Kruisbeek, D. H. Marguiles, E. M. Shevach, W. Strober, Pub. Greene Publishing

Associates and Wiley-Interscience (Chapter 6.12, Measurement of alpha and beta Chemokines 6.12.1-6.12.28; Taub et al. J. Clin. Invest. 95:1370-1376, 1995; Lind et al. APMIS 103:140-146, 1995; Muller et al Eur. J. Immunol. 25:1744-1748; Gruber et al. J. of Immunol. 152:5860-5867, 1994; Johnston et al. J. of Immunol. 153:1762-1768, 1994.

Hemostatic and Thrombolytic Activity

A protein of the invention may also exhibit hemostatic or thrombolytic activity. As a result, such a protein is expected to 10 be useful in treatment of various coagulation disorders (including hereditary disorders, such as hemophilias) or to enhance coagulation and other hemostatic events in treating wounds resulting from trauma, surgery or other causes. A protein of the invention may also be useful for dissolving or inhibiting 15 formation of thromboses and for treatment and prevention of conditions resulting therefrom (such as, for example, infarction of cardiac and central nervous system vessels (e.g., stroke).

The activity of a protein of the invention may, among other means, be measured by the following methods:

Assay for hemostatic and thrombolytic activity include, without limitation, those described in: Linet et al., J. Clin. Pharmacol. 26:131-140, 1986; Burdick et al., Thrombosis Res. 45:413-419, 1987; Humphrey et al., Fibrinolysis 5:71-79 (1991); Schaub, Prostaglandins 35:467-474, 1988.

Receptor/Ligand Activity

A protein of the present invention may also demonstrate activity as receptors, receptor ligands or inhibitors or agonists of receptor/ligand interactions. Examples of such receptors and ligands include, without limitation, cytokine receptors and their 30 ligands, receptor kinases and their ligands, receptor phosphatases and their ligands, receptors involved in cell-cell interactions and their ligands (including without limitation, cellular adhesion molecules (such as selectins, integrins and their ligands) and receptor/ligand pairs involved in antigen 35 presentation, antigen recognition and development of cellular and humoral immune responses). Receptors and ligands are also useful for screening of potential peptide or small molecule inhibitors

of the relevant receptor/ligand interaction. A protein of the present invention (including, without limitation, fragments of receptors and ligands) may themselves be useful as inhibitors of receptor/ligand interactions.

5 The activity of a protein of the invention may, among other means, be measured by the following methods:

Suitable assays for receptor-ligand activity include without limitation those described in: Current Protocols in Immunology, Ed by J. E. Coligan, A. M. Kruisbeek, D. H. Margulies, E. M.

- 10 Shevach, W. Strober, Pub. Greene Publishing Associates and Wiley-Interscience (Chapter 7.28, Measurement of Cellular Adhesion under static conditions 7.28.1-7.28.22), Takai et al., Proc. Natl. Acad. Sci. USA 84:6864-6868, 1987; Bierer et al., J. Exp. Med. 168:1145-1156, 1988; Rosenstein et al., J. Exp. Med. 169:149-160 1994; Stoltenborg et al., J. Immunol. Methods 175:59-68, 1994; Stitt et al., Cell 80:661-670, 1995.

Anti-Inflammatory Activity

Proteins of the present invention may also exhibit anti-inflammatory activity. The anti-inflammatory activity may be achieved by providing a stimulus to cells involved in the inflammatory response, by inhibiting or promoting cell-cell interactions (such as, for example, cell adhesion), by inhibiting or promoting chemotaxis of cells involved in the inflammatory process, inhibiting or promoting cell extravasation, or by stimulating or suppressing production of other factors which more directly inhibit or promote an inflammatory response. Proteins exhibiting such activities can be used to treat inflammatory conditions including chronic or acute conditions), including without limitation intimation associated with infection (such as septic shock, sepsis or systemic inflammatory response syndrome (SIRS)), ischemia-reperfusion injury, endotoxin lethality, arthritis, complement-mediated hyperacute rejection, nephritis, cytokine or chemokine-induced lung injury, inflammatory bowel disease, Crohn's disease or resulting from over production of cytokines such as TNF or IL-1. Proteins of the invention may also be useful to treat anaphylaxis and hypersensitivity to an antigenic substance or material.

Tumor Inhibition Activity

In addition to the activities described above for immunological treatment or prevention of tumors, a protein of the invention may exhibit other anti-tumor activities. A protein may 5 inhibit tumor growth directly or indirectly (such as, for example, via ADCC). A protein may exhibit its tumor inhibitory activity by acting on tumor tissue or tumor precursor tissue, by inhibiting formation of tissues necessary to support tumor growth (such as, for example, by inhibiting angiogenesis), by causing 10 production of other factors, agents or cell types which inhibit tumor growth, or by suppressing, eliminating or inhibiting factors, agents or cell types which promote tumor growth.

Other Activities

A protein of the invention may also exhibit one or more of 15 the following additional activities or effects: inhibiting the growth, infection or function of, or killing, infectious agents, including, without limitation, bacteria, viruses, fungi and other parasites; effecting (suppressing or enhancing) bodily characteristics, including, without limitation, height, weight, 20 hair color, eye color, skin, fat to lean ratio or other tissue pigmentation, or organ or body part size or shape (such as, for example, breast augmentation or diminution, change in bone form or shape); effecting biorhythms or circadian cycles or rhythms; effecting the fertility of male or female subjects; effecting the 25 metabolism, catabolism, anabolism, processing, utilization, storage or elimination of dietary fat, lipid, protein, carbohydrate, vitamins, minerals, cofactors or other nutritional factors or component(s); effecting behavioral characteristics, including, without limitation, appetite, libido, stress, 30 cognition (including cognitive disorders), depression (including depressive disorders) and violent behaviors; providing analgesic effects or other pain reducing effects; promoting differentiation and growth of embryonic stem cells in lineages other than hematopoietic lineages; hormonal or endocrine activity; in the 35 case of enzymes, correcting deficiencies of the enzyme and treating deficiency-related diseases; treatment of hyperproliferative disorders (such as, for example, psoriasis); immunoglobulin-like activity (such as, for example, the ability

to bind antigens or complement); and the ability to act as an antigen in a vaccine composition to raise an immune response against such protein or another material or entity which is cross-reactive with such protein.

5 Particular Applications for Certain Clones

The following sets out a non-exclusive list of applications for certain embodiments of the invention. In the interest of economy, applications relevant to multiple embodiments are not duplicated in this list. Other embodiments described herein have 10 similar characteristics, as described there. The artisan is directed, therefore, to the Description of the Sequences for similar descriptions of the functions of other embodiment.

Testes

15 htes3_10ilb: The new protein can find application in diagnosis/therapy in leukemia predisposition/disease in the modulation of DNA repair.

20 htes3_10nl0: The new protein can find application in studying the expression profile of testis-specific genes.

htes3_llal7: The new protein can find application in studying the expression profile of testis-specific genes and as a new marker for testicular cells.

25 htes3_llc22: The new protein can find application in modulating/blocking of regulatory pathways.

30 htes3_lld21: The new protein can find application in diagnosis of diseases due to unnormal protein degradation like muscular dystrophy or multiple sclerosis as well as in modulating the half life of specific proteins and in expression profiling.

35 Kidney

hfkd2_3kl The new protein can find application in modulation of endocytosis. strong similarity to testicular dynamin (*Rattus norvegicus*).

Amygdala:

5 hamy2_10h17: The new protein can find application in modulating protein-protein-interaction and in studying the expression profile of amygdala-specific genes.

10 hamy2_10p7: The new protein can find application in modulation of NA+/Ca2+-exchange and voltage-dependend processes.

15 hamy2_11d2: The new protein can find application in studying the expression profile of amygdala-specific genes and as a new marker for amygdala cells.

20 hamy2_11n4: The new protein can find application in modulation of DNA-repair and a as a new tool for manipulation of nucleic acids.

25 hamy2_12lfl9: The new protein can find application modulation of cyto skeleton-membrane interactions.

Fetal Brain:

25 hfbr2_78c12: The new protein can find application in the modulation of translational pathways.

30 hfbr2_78d18: The new protein can find application in studying the expression profile of brain-specific genes.

35 hfbr2_78d4: The new protein can find application in studying the expression profile of brain-specific genes and as a new marker for amygdala cells.

40 hfbr2_78e18: The new protein can find application in studying the expression profile of brain-specific genes.

45 hfbr2_78i21: The new protein can find application in diagnosis/modulation of protein damage and age-related degenerative processes.

Melanoma:

hmel2_12j1: The new protein can find application in studying the expression profile of melanoma-specific genes.

5 hmel2_7gl4: The new protein can find application in modulation of the sorting of proteins into different compartments.

hmel2_7kl9: The new protein can find application in studying the expression profile of melanoma-specific genes.

10

VARIANTS OF THE INVENTIVE DNA MOLECULES

Variants in General

15 "Variants," according to the invention, include DNA and/or protein molecules that resemble, structurally and/or functionally, those set forth herein. Variants may be isolated from natural sources ("homologs"), may be entirely synthetic or may be based in part on both natural and synthetic approaches.

20 The section set forth below presents various structural and functional characteristics of molecules within the invention. Preferred molecules are characterized by a combination of one or more of these characteristics. For instance, some preferred molecules are described with reference to at least two structural characteristics, while others may be described with reference to 25 at least one structural and at least one functional characteristic.

It will be recognized by the skilled artisan that structure ultimately defines function, i.e. the functions of the molecules described herein derives from the structures of those molecules. 30 Accordingly, the structural variants described below that bear the closest structural relationship (as variously defined below) to the inventive molecules are the variants that most likely will preserve biological function. This relationship between structure and function will guide the skilled artisan in identifying the 35 preferred embodiments of the invention.

Splicing Variants

It is well-known that eukaryotic structural genes are comprised of both protein coding and non-coding portions. When the messenger RNA is transcribed from the DNA template, it 5 contains introns, which are non-coding, and exons, which are coding. In order to form a translation competent mRNA, the introns must be "spliced" out of this initial pre mRNA.

Specific sequences within the pre mRNA represent "splice junctions" that direct the cellular splicing machinery to the 10 appropriate position. The splice junctions are loosely conserved sequence regions of the pre mRNA, which almost invariably begin with GT and end with AG (DNA perspective). The 5' end of the splice junction typically contains about nine somewhat conserved residues, for example, C/AAGTA/GAGT. The 3' end usually contains 15 a pyrimidine rich stretch of at least about 11 nucleotides, followed by NC/TAGG. Splicing occurs before the GT and after the AG. Mount, *Nucleic Acids Res.* 10:459-72 (1982).

Interestingly, exons often correspond to discrete functional domains of the protein product. The intron/exon arrangement thus 20 creates a linear array of nucleotides which can be correlated to discrete, and often interchangeable, functional protein fragments. Go, *Nature* 291:90-92 (1981); Branden et al., *EMBO J.* 3:1307-10 (1984). This linear arrangement creates the possibility of generating multiple different full length proteins by rearranging 25 the order of the different functional portions in the array. For example, if a set of exons are arranged 1-2-3-4, where (-) represents the introns separating the exons, a splicing event need not simply produce 1234, but may produce 123, 134, 124 and so on. Production of different mRNA products in this way is commonly 30 called "alternative splicing." Andreadis et al., *Ann. Rev. Cell Biol.* 3:207-42 (1987).

Some of the present DNA molecules can be represented in modular fashion in terms of their coding regions. Essentially, these modules are exons (though each "exon" may in fact be made up 35 of several exons), which may be combined in different ways to form a variety of different DNA molecules, each encoding a different functional protein. Splicing variants are indicated in the Description of the Sequences.

Degenerate Variants

One aspect of the present invention provides "degenerate variants" of the nucleic acid fragments of the present invention. A "degenerate variant" is a nucleotide fragment which differs from 5 those of inventive molecules by nucleotide sequence, but due to the degeneracy of the genetic code, encodes an identical polypeptide sequence.

Given the known relationship between DNA sequences and the proteins they encode, degenerate variants typically are described 10 by reference to this relationship. It is well known that the degeneracy of the genetic code results in many possible DNA sequences which encode a particular protein. Indeed, of the three bases which comprise an amino acid-encoding triplet, the third position, and often the second, almost always may vary. This fact 15 alone allows for a class of variant DNA molecules which encode protein sequences identical to those disclosed herein, yet have about 30% sequence variation. In other words, the variant DNA molecules are about 70% identical to the inventive DNAs, having no additional or deleted sequences. Thus, one aspect of the 20 invention provides degenerate variant DNA molecules encoding the inventive protein sequences.

In one embodiment, these variants have at least about 70% sequence identity with the DNA molecules described herein. In a preferred embodiment, these variants have at least about 80% 25 sequence identity to the inventive molecules. In a more preferred embodiment these variants have at least about 90% sequence identity with the inventive molecules.

Conservative Amino Acid Variants

Variants according to the invention also may be made that 30 conserve the overall molecular structure of the encoded proteins. Given the properties of the individual amino acids comprising the disclosed protein products, some rational substitutions will be recognized by the skilled worker. Amino acid substitutions, i.e. 35 "conservative substitutions," may be made, for instance, on the basis of similarity in polarity, charge, solubility, hydrophobicity, hydrophilicity, and/or the amphipathic nature of the residues involved.

For example: (a) nonpolar (hydrophobic) amino acids include alanine, leucine, isoleucine, valine, proline, phenylalanine, tryptophan, and methionine; (b) polar neutral amino acids include glycine, serine, threonine, cysteine, tyrosine, asparagine, and 5 glutamine; (c) positively charged (basic) amino acids include arginine, lysine, and histidine; and (d) negatively charged (acidic) amino acids include aspartic acid and glutamic acid. Substitutions typically may be made within groups (a)-(d). In addition, glycine and proline may be substituted for one another 10 based on their ability to disrupt α -helices. Similarly, certain amino acids, such as alanine, cysteine, leucine, methionine, glutamic acid, glutamine, histidine and lysine are more commonly found in α -helices, while valine, isoleucine, phenylalanine, tyrosine, tryptophan and threonine are more commonly found in β -pleated sheets. Glycine, serine, aspartic acid, asparagine, and 15 proline are commonly found in turns. Some preferred substitutions may be made among the following groups: (i) S and T; (ii) P and G; and (iii) A, V, L and I. Given the known genetic code, and recombinant and synthetic DNA techniques, the skilled scientist 20 readily can construct DNAs encoding the conservative amino acid variants.

As used herein, "sequence identity" between two polypeptide sequences indicates the percentage of amino acids that are identical between the sequences. "Sequence similarity" indicates 25 the percentage of amino acids that either are identical or that represent conservative amino acid substitutions.

Functionally Equivalent Variants

Yet another class of DNA variants within the scope of the invention may be described with reference to the product they 30 encode. As shown in the Description of the Sequences, some of the inventive DNA molecules encode a protein having a degree of homology with known proteins, or protein domains. It is expected, therefore, that they will have some or all of the requisite functional features of such molecules. These "functionally 35 equivalent variants" products are characterized by the fact that they are functionally equivalent, with respect to biological activity, to certain known molecules.

Also provided herein is information on common structural motifs, including consensus sequences that will guide the artisan in constructing functionally equivalent variants. It will be understood that the motifs, identified in the Description of the Sequences for each inventive protein, may be modified within the identified consensus sequences. Thus, the invention contemplates the proteins in the Description of the Sequences that contain variability in the consensus sequences identified, and the invention further contemplates the full range of nucleic acids encoding them, and the complements of those nucleic acids.

Hybridizing Variants

DNA variants within the invention also may be described by reference to their physical properties in hybridization. One skilled in the field will recognize that DNA can be used to identify its complement and, since DNA is double stranded, its equivalent or homolog, using nucleic acid hybridization techniques. It will also be recognized that hybridization can occur with less than 100% complementarity. However, given appropriate choice of conditions, hybridization techniques can be used to differentiate among DNA sequences based on their structural relatedness to a particular probe. For guidance regarding such conditions see, for example, Sambrook et al., 1989, MOLECULAR CLONING, A LABORATORY MANUAL, Cold Spring Harbor Press, N.Y.; and Ausubel et al., 1989, CURRENT PROTOCOLS IN MOLECULAR BIOLOGY, Green Publishing Associates and Wiley Interscience, N.Y.

Structural relatedness between two polynucleotide sequences can be expressed as a function of "stringency" of the conditions under which the two sequences will hybridize with one another. As used herein, the term "stringency" refers to the extent that the conditions disfavor hybridization. Stringent conditions strongly disfavor hybridization, and only the most structurally related molecules will hybridize to one another under such conditions. Conversely, non-stringent conditions favor hybridization of molecules displaying a lesser degree of structural relatedness. Hybridization stringency, therefore, directly correlates with the structural relationships of two nucleic acid sequences. The following relationships are useful in correlating hybridization

and relatedness (where T_m is the melting temperature of a nucleic acid duplex):

- 5 a. $T_m = 69.3 + 0.41(G+C)\%$
- b. The T_m of a duplex DNA decreases by 1°C with every increase of 1% in the number of mismatched base pairs.
- 10 c. $(T_m)_{\mu 2} - (T_m)_{\mu 1} = 18.5 \log_{10} \mu 2 / \mu 1$
 where $\mu 1$ and $\mu 2$ are the ionic strengths of two solutions.

Hybridization stringency is a function of many factors, including overall DNA concentration, ionic strength, temperature, 15 probe size and the presence of agents which disrupt hydrogen bonding. Factors promoting hybridization include high DNA concentrations, high ionic strengths, low temperatures, longer probe size and the absence of agents that disrupt hydrogen bonding.

20 Hybridization usually is done in two stages. First, in the "binding" stage, the probe is bound to the target under conditions favoring hybridization. Stringency is usually controlled at this stage by altering the temperature. For high stringency, the temperature is usually between 65°C and 70°C , unless short (<20 nt) oligonucleotide probes are used. A representative hybridization solution comprises 6X SSC, 0.5% SDS, 5X Denhardt's solution and 100 μg of non-specific carrier DNA. See Ausubel et al., *supra*, section 2.9, supplement 27 (1994). Of course many different, yet functionally equivalent, buffer conditions are 30 known. Where the degree of relatedness is lower, a lower temperature may be chosen. Low stringency binding temperatures are between about 25°C and 40°C . Medium stringency is between at least about 40°C to less than about 65°C . High stringency is at least about 65°C .

35 Second, the excess probe is removed by washing. It is at this stage that more stringent conditions usually are applied. Hence, it is this "washing" stage that is most important in determining relatedness via hybridization. Washing solutions typically contain lower salt concentrations. One exemplary medium 40 stringency solution contains 2X SSC and 0.1% SDS. A high stringency wash solution contains the equivalent (in ionic

strength) of less than about 0.2X SSC, with a preferred stringent solution containing about 0.1X SSC. The temperatures associated with various stringencies are the same as discussed above for "binding." The washing solution also typically is replaced a 5 number of times during washing. For example, typical high stringency washing conditions comprise washing twice for 30 minutes at 55° C. and three times for 15 minutes at 60° C.

The present invention includes nucleic acid molecules that hybridize to the inventive molecules under high stringency binding 10 and washing conditions. More preferred molecules (from an mRNA perspective) are those that are at least 50 % of the length of any one of those depicted in the Description of the Sequences. Particularly preferred molecules are at least 75 % of the length of those molecules.

15 ***Substitutions, Insertions, Additions and Deletions***

In a general sense, the preferred DNA variants of the invention are those that retain the closest relationship, as described by "sequence identity" to the inventive DNA molecules. According to another aspect of the invention, therefore, 20 substitutions, insertions, additions and deletions of defined properties are contemplated. It will be recognized that sequence identity between two polynucleotide sequences, as defined herein, generally is determined with reference to the protein coding region of the sequences. Thus, this definition does not at all 25 limit the amount of DNA, such as vector DNA, that may be attached to the molecules described herein. Preferred DNA sequence variants include molecules encoding proteins sharing some or all of any relevant biological activity of the native molecule.

In creating these variants, the skilled worker will be guided 30 by reference to the protein structure. First, insertions and deletions in any recognized functional domain above generally should be avoided, except as noted below in the section entitled "Proteins," where this domain is discussed in detail. Alterations in such domains usually will be limited to conservative amino acid 35 substitutions. In addition, where insertions and deletions are desired, this may be accomplished at the N- and/or C-terminus of the protein molecule (or the corresponding coding regions of the DNA). If insertions or deletions are made within the protein,

deletions of major structural features usually should be avoided. Thus, a preferred place to make insertion or deletion variants is in non-structural regions, such as linker regions between two alpha helices.

5 "Substitutions" generally refer to alterations in the DNA sequence which do not change its overall length, but only alter one or more nucleotide positions, substituting one for another in the common sense of the word. One class of preferred substitutions, "degenerate substitutions," are those that do not
10 alter the encoded amino acid sequence. Some substitutions retains 50%, 55%, 60% or 65% identity. Preferred substitutions retain at least about 70% identity, more preferably at least 70% or 75% identity, with the inventive DNAs. Some more preferred molecules have at least about 80% identity, more preferably at least 80% or
15 - 85% identity. Particularly preferred DNAs share at least about 90% identity, more preferably at least 90% or 95% identity.

"Insertions," unlike substitutions, alter the overall length of the DNA molecule, and thus sometimes the encoded protein. Insertions add extra nucleotides to the interior (not the 5' or 3' ends) of the subject DNAs. Preferred insertions are made with reference to the protein sequence encoded by the DNA. Thus, it is most preferred to provide an insertion in the DNA at a location that corresponds to an area of the encoded protein which lacks structure. For instance, it typically would not be beneficial, if
20 the preservation of biological activity is desired, to provide an insertion within an alpha-helical region or a beta-pleated sheet. Accordingly, non-structural areas, such as those containing helix-breaking glycines and proline residues, are most preferred sites of insertion. Other preferred sites of insertion are the splice
25 sites, which are indicated above in the description of the inventive DNA molecules.

While the optimal size of insertions will vary depending upon the site of insertion and its effect on the overall conformation of the encoded protein, some general guides are useful.
30 Generally, the total insertions (irrespective of their number) should not add more than about 30% (or preferably not more than 30%) to the overall size of the encoded protein. More preferably, the insertion adds less than about 10-20% (yet more preferably 10-20%) in size, with less than about 10% being most preferred. The

number of insertions is limited only by the number of suitable insertions sites, and secondarily by the foregoing size preferences.

"Additions," like insertions, also add to the overall size of the DNA molecule, and usually the encoded protein. However, instead of being made within the molecule, they are made on the 5' or 3' end, usually corresponding to the N- or C- terminus of the encoded protein. Unlike deletions, additions are not very size-dependent. Indeed, additions may be of virtually any size. Preferred additions, however, do not exceed about 100% of the size of the native molecule. More preferably, they add less than about 60 to 30% to the overall size, with less than about 30% being most preferred.

"Deletions" diminish the overall size of the DNA and, therefore, also reduce the size of the protein encoded by that DNA. Deletions may be made from either end of the molecule or internal to it. Typical preferred deletions remove discrete structural features of the encoded protein. For example, some deletions will comprise the deletion of one or more exons which may define a structural feature. Preferred deletions remove less than about 30% of the size of the subject molecule. More preferred deletions remove less than about 20% and most preferred deletions remove less than about 10%.

Computer-Defined Variants and Definition of "Sequence Identity"

In general, both the DNA and protein molecules of the invention can be defined with reference to "sequence identity." As used herein, "sequence identity" refers to a comparison made between two molecules using, for example, the standard Smith-Waterman algorithm that is well known in the art.

Some molecules have at least about 50%, 55% or 60% identity. Preferred molecules are those having at least about 65% sequence identity, more preferably at least 65% or 70% sequence identity. Other preferred molecules have at least about 80%, more preferably at least 80% or 85%, sequence identity. Particularly preferred molecules have at least about 90% sequence identity, more preferably at least 90% sequence identity. Most preferred molecules have at least about 95%, more preferably at least 95%, sequence identity. As used herein, two nucleic acid molecules or

proteins are said to "share significant sequence identity" if the two contain regions which possess greater than 85% sequence (amino acid or nucleic acid) identity.

"Sequence identity" is defined herein with reference to the

- 5 Blast 2 algorithm, which is available at the NCBI (<http://www.ncbi.nlm.nih.gov/BLAST>), using default parameters. References pertaining to this algorithm include: those found at http://www.ncbi.nlm.nih.gov/BLAST/blast_references.html; Altschul, S.F., Gish, W., Miller, W., Myers, E.W. & Lipman, D.J. 10 (1990) "Basic local alignment search tool." *J. Mol. Biol.* 215:403-410; Gish, W. & States, D.J. (1993) "Identification of protein coding regions by database similarity search." *Nature Genet.* 3:266-272; Madden, T.L., Tatusov, R.L. & Zhang, J. (1996) "Applications of network BLAST server" *Meth. Enzymol.* 266:131-151; Altschul, S.F., Madden, T.L., Schäffer, A.A., Zhang, J., Zhang, Z., Miller, W. & Lipman, D.J. (1997) "Gapped BLAST and PSI-BLAST: a new generation of protein database search programs." *Nucleic Acids Res.* 25:3389-3402; and Zhang, J. & Madden, T.L. 15 (1997) "PowerBLAST: A new network BLAST application for interactive or automated sequence analysis and annotation." *Genome Res.* 7:649-656.

METHODS OF MAKING VARIANTS

It will be recognized that variants of the inventive molecules can be constructed in several different ways. For 25 example, they may be constructed as completely synthetic DNAs. Methods of efficiently synthesizing oligonucleotides in the range of 20 to about 150 nucleotides are widely available. See Ausubel et al., *supra*, section 2.11, Supplement 21 (1993). Overlapping oligonucleotides may be synthesized and assembled in a fashion 30 first reported by Khorana et al., *J. Mol. Biol.* 72:209-217 (1971); see also Ausubel et al., Section 8.2. The synthetic DNAs are designed with convenient restriction sites engineered at the 5' and 3' ends of the gene to facilitate cloning into an appropriate vector.

35 An alternative method of generating variants is to start with one of the inventive DNAs and then to conduct site-directed mutagenesis. See Ausubel et al., *supra*, chapter 8, Supplement 37

(1997). In a typical method, a target DNA is cloned into a single-stranded DNA bacteriophage vehicle. Single-stranded DNA is isolated and hybridized with a oligonucleotide containing the desired nucleotide alteration(s). The complementary strand is synthesized and the double stranded phage is introduced into a host. Some of the resulting progeny will contain the desired mutant, which can be confirmed using DNA sequencing. In addition, various methods are available that increase the probability that the progeny phage will be the desired mutant. These methods are well known to those in the field and kits are commercially available for generating such mutants.

ISOLATING HOMOLOGS

Methods

By using the sequences disclosed herein as probes or as primers, and techniques such as PCR cloning and colony/plaque hybridization, one skilled in the art can obtain homologs. "Homologs" are essentially naturally-occurring variants and include allelic, species-specific and tissue-specific variants.

Region-specific primers or probes derived from the nucleotide sequence(s) provided can be used to prime DNA synthesis and PCR amplification, as well as to identify colonies containing cloned DNA encoding a homolog using known methods (Innis et al., *PCR Protocols*, Academic Press, San Diego, CA (1990)). Such an application is useful in diagnostic methods, as described in more detail below, as well as in preparing full-length DNAs from various sources. The PCR primers are preferably at least 15 bases, and more preferably at least 18 bases in length. When selecting a primer sequence, it is preferred that the primer pairs have approximately the same G/C ratio, so that melting temperatures are approximately the same. As a general guide, the formula $3(G+C) + 2(A+T) = ^\circ C$, is useful.

When using primers derived from the inventive sequences, one skilled in the art will recognize that by employing high stringency conditions (e.g., annealing at 50-60°C), only sequences with greater than 75% sequence identity to the primer will be amplified. By employing lower stringency conditions (e.g.,

annealing at 35-37°C), sequences which have greater than 40-50% sequence identity to the primer & also will be amplified.

The PCR product may be subcloned and sequenced to confirm that it indeed displays the expected sequence identity. The PCR fragment may then be used to isolate a full length cDNA clone by a variety of methods. For example, the amplified fragment may be labeled and used to screen a bacteriophage cDNA library. Alternatively, the labeled fragment may be used to screen a genomic library.

PCR technology may also be utilized to isolate full length cDNA sequences. For example, RNA may be isolated, following standard procedures, from an appropriate cellular or tissue source. A reverse transcription reaction may be performed on the RNA using an oligonucleotide primer specific for the most 5' end of the amplified fragment for the priming of first strand synthesis. The resulting RNA/DNA hybrid may then be "tailed" with guanines using a standard terminal transferase reaction, the hybrid may be digested with RNase H, and second strand synthesis may then be primed with a poly-C primer. Thus, cDNA sequences upstream of the amplified fragment may easily be isolated. For a review of cloning strategies which may be used, see e.g., Sambrook et al., 1989, *supra*.

When using DNA probes derived from the inventive sequences for colony/plaque hybridization, one skilled in the art will recognize that by employing medium to high stringency conditions (e.g., hybridizing at 50-65°C in 5X SSC and 50% formamide, and washing at 50-65°C in 0.5X SSC), sequences having regions with greater than 90% sequence identity to the probe can be obtained, and that by employing lower stringency conditions (e.g., hybridizing at 35-37°C in 5X SSC and 40-45% formamide, and washing at 42°C in SSC), sequences having regions with greater than 35-45% sequence identity to the probe will be obtained.

Suitably, genomic or cDNA libraries can be constructed and screened in accord with the previous paragraph. The libraries should be derived from a tissue or organism that is known to express the gene of interest, or that is suspected of expressing the gene. The clone containing the homolog may then be purified

through methods routinely practiced in the art, and subjected to sequence analysis.

Additionally, an expression library can be constructed utilizing DNA isolated from or cDNA synthesized from a tissue or 5 organism that is known to express the gene of interest, or that is suspected of expressing the gene. In this manner, clones may be induced and screened using standard antibody screening techniques in conjunction with antibodies raised against the normal gene product, as described herein. (For screening techniques, see, for 10 example, Harlow, E. and Lane, eds., 1988, ANTIBODIES: A LABORATORY MANUAL, Cold Spring Harbor Press, Cold Spring Harbor Press.)

Human Homologs

Any organism or tissue can be used as the source for homologs 15 of the present invention so long as the organism or tissue naturally expresses such a protein or contains genes encoding the same. The most preferred organism for isolating homologs is human.

PROTEINS OF THE INVENTION

One class of proteins included within the invention is 20 encoded by the inventive DNA molecules presented. Other proteins according to the invention are those encoded by the DNA variants described above. As noted, these variants are designed with the encoded proteins in mind.

A preferred class of protein fragments includes those 25 fragments which retain any biological activity. These molecules share functional features common the family of proteins, although these characteristics may vary in degree.

According to one aspect of the invention fragments of the 30 inventive proteins are contemplated. Some preferred fragments are those which are capable of eliciting an immune response. Generally these "antigenic" fragments will be from about five amino acids in length to about fifty amino acids in length. Some preferred antigenic fragments are from five to about twenty amino 35 acids long. "Antigenic" response may refer to a T cell response, a B cell response or a response by cells of the macrophage/monocyte lineages. In most cases, however, it will

refer to the immune response involved in the generation of antibodies. In other words, the relevant immune response is that of helper T cells and/or B cells. These preferred molecules comprise one or more T cell and /or B cell epitopes.

5 ANTIBODIES OF THE INVENTION

Antibodies raised against the proteins and protein fragments of the invention also are contemplated by the invention. Described below are antibody products and methods for producing antibodies capable of specifically recognizing one or more epitopes of the presently described proteins and their derivatives.

10 Antibodies include, but are not limited to polyclonal antibodies, monoclonal antibodies (mAbs), humanized or chimeric antibodies, single chain antibodies including single chain Fv (scFv) fragments, Fab fragments, F(ab')₂ fragments, fragments produced by a Fab expression library, anti-idiotypic (anti-Id) antibodies, epitope-binding fragments, and humanized forms of any of the above.

15 As known to one in the art, these antibodies may be used, for example, in the detection of a target protein in a biological sample. They also may be utilized as part of treatment methods, and/or may be used as part of diagnostic techniques whereby patients may be tested for abnormal levels or for the presence of abnormal forms of the such proteins.

20 25 In general, techniques for preparing polyclonal and monoclonal antibodies as well as hybridomas capable of producing the desired antibody are well known in the art (Campbell, A.M., *Monoclonal Antibody Technology: Laboratory Techniques in Biochemistry and Molecular Biology*, Elsevier Science Publishers, Amsterdam, The Netherlands (1984); St. Groth et al., *J. Immunol. Methods* 35:1-21 (1980); Kohler and Milstein, *Nature* 256:495-497 (1975)), the trioma technique, the human B-cell hybridoma technique (Kozbor et al., *Immunology Today* 4:72 (1983); Cole et al., in *Monoclonal Antibodies and Cancer Therapy*, Alan R. Liss, Inc. (1985), pp. 77-96). Antibodies may also be generated by the known techniques of phage display and *in vitro* immunization.

Polyclonal Antibodies

5 Polyclonal antibodies are heterogeneous populations of antibody molecules derived from the sera of animals immunized with an antigen, such as an inventive protein or an antigenic derivative thereof.

10 Polyclonal antiserum, containing antibodies to heterogeneous epitopes of a single protein, can be prepared by immunizing suitable animals with the expressed protein described above, which can be unmodified or modified, as known in the art, to enhance 15 immunogenicity. Immunization methods include subcutaneous or intraperitoneal injection of the polypeptide.

15 Effective polyclonal antibody production is affected by many factors related both to the antigen and to the host species. For example, small molecules tend to be less immunogenic than other 20 and may require the use of carriers and/or adjuvant. In addition, host animal response may vary with site of inoculation. Both inadequate or excessive doses of antigen may result in low titer antisera. In general, however, small doses (high ng to low µg levels) of antigen administered at multiple intradermal sites 25 appears to be most reliable. Host animals may include but are not limited to rabbits, mice, chickens and rats, to name but a few. An effective immunization protocol for rabbits can be found in Vaitukaitis, J. et al., *J. Clin. Endocrinol. Metab.* 33:988-991 (1971).

25 The protein immunogen may be modified or administered in an adjuvant in order to increase the protein's antigenicity. Methods 30 of increasing the antigenicity of a protein are well known in the art and include, but are not limited to coupling the antigen with a heterologous protein (such as globulin β -galactosidase) or through the inclusion of an adjuvant during immunization. Adjuvants include Freund's (complete and incomplete), mineral gels such as aluminum hydroxide, surface active substances such as 35 lysolecithin, pluronic polyols, polyanions, peptides, oil emulsions, keyhole limpet hemocyanin, dinitrophenol, and potentially useful human adjuvants such as BCG (bacille Calmette-Guerin) and *Corynebacterium parvum*.

Booster injections can be given at regular intervals, with at least one usually being required for optimal antibody production.

The antiserum may be harvested when the antibody titer begins to fall. Titer may be determined semi-quantitatively, for example, by double immunodiffusion in agar against known concentrations of the antigen. See, for example, Ouchterlony et al., Chap. 19 in: 5 *Handbook of Experimental Immunology*, Wier, ed, Blackwell (1973). Plateau concentration of antibody is usually in the range of 0.1 to 0.2 mg/ml of serum (about 12 μ M). The antiserum may be purified by affinity chromatography using the immobilized immunogen carried on a solid support. Such methods of affinity 10 chromatography are well known in the art.

Affinity of the antisera for the antigen may be determined by preparing competitive binding curves, as described, for example, by Fisher, Chap. 42 in: *Manual of Clinical Immunology*, second edition, Rose and Friedman, eds., Amer. Soc. For Microbiology, 15 Washington, D.C. (1980).

In addition to using protein as the immunogen, DNA molecules may be used directly. In this manner, a DNA encoding the protein immunogen is administered. Boosting and harvesting is done in a manner analogous to that detailed above. Yet another method of 20 producing antibodies entails immunizing chickens and harvesting the antibodies from their eggs.

Monoclonal Antibodies

Monoclonal antibodies (MAbs), are homogeneous populations of antibodies to a particular antigen. They may be obtained by any 25 technique which provides for the production of antibody molecules by continuous cell lines in culture or in vivo. MAbs may be produced by making hybridomas which are immortalized cells capable of secreting a specific monoclonal antibody.

Monoclonal antibodies to any of the proteins, peptides and epitopes thereof described herein can be prepared from murine hybridomas according to the classical method of Kohler, G. and Milstein, C., *Nature* 256:495-497 (1975) (and U.S. Patent No. 5 4,376,110) or modifications of the methods thereof, such as the human B-cell hybridoma technique (Kosbor et al., 1983, *Immunology Today* 4:72; Cole et al., 1983, *Proc. Natl. Acad. Sci. USA* 80: 2026-2030), and the EBV-hybridoma technique (Cole et al., 1985, MONOCLONAL ANTIBODIES AND CANCER THERAPY, Alan R. Liss, Inc., pp. 10 77-96).

In one method a mouse is repetitively inoculated with a few micrograms of the selected protein over a period of a few weeks. The mouse is then sacrificed, and the antibody producing cells of the spleen are isolated.

The spleen cells are fused, typically using polyethylene glycol, with mouse myeloma cells, such as SP2/0-Ag14 myeloma cells. The excess, unfused cells are destroyed by growth of the system on selective media comprising aminopterin (HAT media). The successfully fused cells are diluted, and aliquots are plated to microliter plates where growth is continued. Antibody-producing clones (hybridomas) are identified by detection of antibody in the supernatant fluid of the wells by immunoassay procedures. These include ELISA, as originally described by Engvall, *Meth. Enzymol.* 70:419 (1980), western blot analysis, 25 radioimmunoassay (Lutz et al., *Exp. Cell Res.* 175:109-124 (1988)) and modified methods thereof.

Selected positive clones can be expanded and their monoclonal antibody product harvested for use. Detailed procedures for monoclonal antibody production are described in Davis, L. et al. 30 *BASIC METHODS IN MOLECULAR BIOLOGY*, Elsevier, New York. Section 21-2 (1989). The hybridoma clones may be cultivated *in vitro* or *in vivo*, for instance as ascites. Production of high titers of mAbs *in vivo* makes this the presently preferred method of production. Alternatively, hybridoma culture in hollow fiber 35 bioreactors provides a continuous high yield source of monoclonal antibodies.

The antibody class and subclass may be determined using procedures known in the art (Campbell, A.M., *Monoclonal Antibody*

Technology: Laboratory Techniques in Biochemistry and Molecular Biology, Elsevier Science Publishers, Amsterdam, The Netherlands (1984)). Mabs may be of any immunoglobulin class including IgG, IgM, IgE, IgA, IgD and any subclass thereof. Methods of purifying 5 monoclonal antibodies are well known in the art.

Antibody Derivatives and Fragments

Fragments or derivatives of antibodies include any portion of the antibody which is capable of binding the target antigen, or a specific portion thereof. Antibody derivatives include poly-specific (e.g., bi-specific) antibodies, which contain binding sites specific for two or more different epitopes. These epitopes may be from the same or different inventive molecules or one or more epitope may be from a molecule not specifically disclosed here. 10

Antibody fragments specifically include $F(ab')_2$, Fab, Fab' and Fv fragments. These can be generated from any class of antibody, but typically are made from IgG or IgM. They may be made by conventional recombinant DNA techniques or, using the classical method, by proteolytic digestion with papain or pepsin. 15 See CURRENT PROTOCOLS IN IMMUNOLOGY, chapter 2, Coligan et al., eds., (John Wiley & Sons 1991-92).

20

$F(ab')_2$ fragments are typically about 110 kDa (IgG) or about 150 kDa (IgM) and contain two antigen-binding regions, joined at the hinge by disulfide bond(s). Virtually all, if not all, of the 25 Fc is absent in these fragments. Fab' fragments are typically about 55 kDa (IgG) or about 75 kDa (IgM) and can be formed, for example, by reducing the disulfide bond(s) of an $F(ab')_2$ fragment. The resulting free sulfhydryl group(s) may be used to conveniently conjugate Fab' fragments to other molecules, such as detection 30 reagents (e.g., enzymes).

Fab fragments are monovalent and usually are about 50 kDa (from any source). Fab fragments include the light (L) and heavy (H) chain, variable (V_L and V_H , respectively) and constant (C_L , C_H , respectively) regions of the antigen-binding portion of the 35 antibody. The H and L portions are linked by an intramolecular disulfide bridge.

Fv fragments are typically about 25 kDa (regardless of source) and contain the variable regions of both the light and

heavy chains (V_L and V_H , respectively). Usually, the V_L and V_H chains are held together only by non-covalent interacts and, thus, they readily dissociate. They do, however, have the advantage of small size and they retain the same binding properties of the larger Fab fragments. Accordingly, methods have been developed to crosslink the V_L and V_H chains, using, for example, glutaraldehyde (or other chemical crosslinkers), intermolecular disulfide bonds (by incorporation of cysteines) and peptide linkers. The resulting Fv is now a single chain (i.e., SCFv).

Other antibody derivatives include single chain antibodies (U.S. Patent 4,946,778; Bird, Science 242:423-426 (1988); Huston et al., Proc. Natl. Acad. Sci. USA 85:5879-5883 (1988); and Ward et al., Nature 334:544-546 (1989)). Single chain antibodies are formed by linking the heavy and light chain fragments of the Fv region via an amino-acid bridge, resulting in a single chain Fv (SCFv).

One preferred method involves the generation of scFvs by recombinant methods, which allows the generation of Fvs with new specificities by mixing and matching variable chains from different antibody sources. In a typical method, a recombinant vector would be provided which comprises the appropriate regulatory elements driving expression of a cassette region. The cassette region would contain a DNA encoding a peptide linker, with convenient sites at both the 5' and 3' ends of the linker for generating fusion proteins. The DNA encoding a variable region(s) of interest may be cloned in the vector to form fusion proteins with the linker, thus generating an scFv.

In an exemplary alternative approach, DNAs encoding two Fvs may be ligated to the DNA encoding the linker, and the resulting tripartite fusion may be ligated directly into a conventional expression vector. The scFv DNAs generated any of these methods may be expressed in prokaryotic or eukaryotic cells, depending on the vector chosen.

Antibody fragments which recognize specific epitopes may be generated by known techniques. For example, such fragments include but are not limited to: the $F(ab')_2$ fragments which can be produced by pepsin digestion of the antibody molecule and the Fab fragments which can be generated by reducing the disulfide bridges

of the F(ab)₂ fragments. Alternatively, Fab expression libraries may be constructed (Huse et al., 1989, *Science*, 246:1275-1281) to allow rapid and easy identification of monoclonal Fab fragments with the desired specificity.

5 Derivatives also include "chimeric antibodies" (Morrison et al., *Proc. Natl. Acad. Sci.*, 81:6851-6855 (1984); Neuberger et al., *Nature*, 312:604-608 (1984); Takeda et al., *Nature*, 314:452-454 (1985)). These chimeras are made by splicing the DNA encoding a mouse antibody molecule of appropriate specificity with, for 10 instance, DNA encoding a human antibody molecule of appropriate specificity. Thus, a chimeric antibody is a molecule in which different portions are derived from different animal species, such as those having a variable region derived from a murine mAb and a human immunoglobulin constant region. These are also known 15 sometimes as "humanized" antibodies and they offer the added advantage of at least partial shielding from the human immune system. They are, therefore, particularly useful in therapeutic *in vivo* applications.

Labeled Antibodies

20 The present invention further provides the above-described antibodies in detectably labeled form. Antibodies can be detectably labelled through the use of radioisotopes, affinity labels (such as biotin, avidin, etc.), enzymatic labels (such as horseradish peroxidase, alkaline phosphatase, etc.) fluorescent 25 labels (such as FITC or rhodamine, etc.), paramagnetic atoms, etc. Procedures for accomplishing such labeling are well-known in the art, for example see (Sternberger et al., *J. Histochem. Cytochem.* 18:315 (1970); Bayer et al., *Meth. Enzym.* 62:308 (1979); Engval et al., *Immunol.* 109:129 (1972); Goding, *J. Immunol. Meth.* 13:215 30 (1976)). The labeled antibodies of the present invention can be used for *in vitro*, *in vivo*, and *in situ* diagnostic assays.

Immobilized Antibodies

The foregoing antibodies also may be immobilized on a solid support. Examples of such solid supports include plastics such as 35 polycarbonate, complex carbohydrates such as agarose and sepharose, acrylic resins and such as polyacrylamide and latex beads. Techniques for coupling antibodies to such solid supports

are well known in the art (Weir et al., "Handbook of Experimental Immunology" 4th Ed., Blackwell Scientific Publications, Oxford, England, Chapter 10 (1986); Jacoby et al., Meth. Enzym. 34 Academic Press, N.Y. (1974)). The immobilized antibodies of the 5 present invention can be used for *in vitro*, *in vivo*, and *in situ* assays as well as for immunoaffinity purification of the proteins of the present invention.

THERAPEUTIC AND DIAGNOSTIC COMPOSITIONS

The proteins, antibodies and polynucleotides of the present 10 invention can be formulated according to known methods to prepare pharmaceutically useful compositions, whereby these materials, or their functional derivatives, are combined in admixture with a pharmaceutically acceptable carrier vehicle. Suitable vehicles and their formulation, inclusive of other human proteins, e.g., 15 human serum albumin, are described, for example, in Remington's Pharmaceutical Sciences (16th ed., Osol, A., Ed., Mack, Easton PA (1980)). In order to form a pharmaceutically acceptable composition suitable for effective administration, such compositions will contain an effective amount of one or more of 20 the agents of the present invention, together with a suitable amount of carrier vehicle.

Pharmaceutical compositions for use in accordance with the present invention may be formulated in conventional manner using one or more physiologically acceptable carriers or excipients. 25 Thus, the compounds and their physiologically acceptable salts and solvate may be formulated for administration by inhalation or insufflation (either through the mouth or the nose) or oral, buccal, parenteral or rectal administration.

For oral administration, the pharmaceutical compositions may 30 take the form of, for example, tablets or capsules prepared by conventional means with pharmaceutically acceptable excipients such as binding agents (e.g., pregelatinised maize starch, polyvinylpyrrolidone or hydroxypropyl methylcellulose); fillers (e.g., lactose, microcrystalline cellulose or calcium hydrogen 35 phosphate); lubricants (e.g., magnesium stearate, talc or silica); disintegrants (e.g., potato starch or sodium starch glycolate); or

wetting agents (e.g., sodium lauryl sulphate). The tablets may be coated by methods well known in the art. Liquid preparations for oral administration may take the form of, for example, solutions, syrups or suspensions, or they maybe presented as a dry product
5 for constitution with water or other suitable vehicle before use. Such liquid preparations may be prepared by conventional means with pharmaceutically acceptable additives such as suspending agents (e.g., sorbitol syrup, cellulose derivatives or hydrogenated edible fats); emulsifying agents (e.g., lecithin or
10 acacia); non-aqueous vehicles (e.g., almond oil, oily esters, ethyl alcohol or fractionated vegetable oils); and preservatives (e.g., methyl or propyl-p-hydroxybenzoates or sorbic acid).. The preparations may also contain buffer salts, flavoring, coloring and sweetening agents as appropriate.

15 Preparations for oral administration may be suitably formulated to give controlled release of the active compound. For buccal administration the composition may take the form of tablets or lozenges formulated in conventional manner.

For administration by inhalation, the compounds for use
20 according to the present invention are conveniently delivered in the form of an aerosol spray presentation from pressurized packs or a nebuliser, with the use of a suitable propellant, e.g., dichlorodifluoromethane, trichlorofluoromethane,
dichlorotetrafluoroethane, carbon dioxide or other suitable gas.

25 In the case of a pressurized aerosol the dosage unit may be determined by providing a valve to deliver a metered amount. Capsules and cartridges of, e.g. gelatin for use in an inhaler or insufflator may be formulated containing a powder mix of the compound and a suitable powder base such as lactose or starch.

30 The compounds may be formulated for parenteral administration by injection, e.g., by bolus injection or continuous infusion. Formulations for injection may be presented in unit dosage form, e.g., in ampules or in multi-dose containers, with an added preservative. The compositions may take such forms as
35 suspensions, solutions or emulsions in oily or aqueous vehicles, and may contain formulatory agents such as suspending, stabilizing and/or dispersing agents. Alternatively, the active ingredient

may be in powder form for constitution with a suitable vehicle, e.g., sterile pyrogen-free water, before use.

The compounds may also be formulated in rectal compositions such as suppositories or retention enemas, e.g., containing 5 conventional suppository bases such as cocoa butter or other glycerides.

In addition to the formulations described previously, the compounds may also be formulated as a depot preparation. Such long acting formulations may be administered by implantation (for 10 example subcutaneously or intramuscularly) or by intramuscular injection. Thus, for example, the compounds may be formulated with suitable polymeric or hydrophobic materials (for example as an emulsion in an acceptable oil) or ion exchange resins, or as sparingly soluble derivatives, for example, as a sparingly soluble 15 salt.

The compositions may, if desired, be presented in a pack or dispenser device which may contain one or more unit dosage forms containing the active ingredient. The pack may for example comprise metal or plastic foil, such as a blister pack. The pack 20 or dispenser device may be accompanied by instructions for administration.

RECOMBINANT CONSTRUCTS AND EXPRESSION

The present invention further provides recombinant DNA constructs comprising one or more of the nucleotide sequences of 25 the present invention. The recombinant constructs of the present invention comprise a vector, such as a plasmid or viral vector, into which a DNA or DNA fragment, typically bearing an open reading frame, is inserted, in either orientation. The gene products encoded by the subject DNAs may be produced by 30 recombinant DNA technology using techniques well known in the art. See, for example, the techniques described in Sambrook et al., 1989, *supra*, and Ausubel et al., 1989, *supra*. Alternatively, the DNA sequences may be chemically synthesized using, for example, synthesizers. See, for example, the techniques described in 35 OLIGONUCLEOTIDE SYNTHESIS, 1984, Gait, ed., IRL Press, Oxford, which is incorporated by reference herein in its entirety. They may be assembled from fragments and short oligonucleotide linkers,

or from a series of oligonucleotides. They are preferably made by RT-PCR methods. The resulting synthetic gene is capable of being expressed in a recombinant vector.

In some cases the recombinant constructs will be expression vectors, which are capable of expressing the RNA and/or protein products of the encoded DNA(s). Thus, the vector may further comprise regulatory sequences, including for example, a promoter, operably linked to the open reading frame (ORF). The vector may further comprise a selectable marker sequence.

Specific initiation signals may also be required for efficient translation of inserted target gene coding sequences. These signals include the ATG initiation codon and adjacent sequences. In cases where a target DNA includes its own initiation codon and adjacent sequences is inserted into the appropriate expression vector, no additional translation control signals may be needed. However, in cases where only a portion of an ORF is used, exogenous translational control signals, including, perhaps, the ATG initiation codon, must be provided. Furthermore, the initiation codon must be in phase with the reading frame of the desired coding sequence to ensure translation of the entire target. These exogenous translational control signals and initiation codons can be of a variety of origins, both natural and synthetic. The efficiency of expression may be enhanced by the inclusion of appropriate transcription enhancer elements, transcription terminators, etc. (see Bittner et al., *Methods in Enzymol.* 153:516-544 (1987)). Some appropriate cloning and expression vectors for use with prokaryotic and eukaryotic hosts are described by Sambrook, et al., in *Molecular Cloning: A Laboratory Manual*, Second Edition, Cold Spring Harbor, New York (1989), the disclosure of which is hereby incorporated by reference.

If desired, to enhance expression and facilitate proper protein folding, the codon context and codon pairing of the sequence may be optimized for the particular expression organism, as explained by Hatfield et al., U.S. Patent No. 5,082,767.

The present invention further provides host cells containing at least one of the DNAs of the present invention. The host cell can be virtually any cell for which expression vectors are

available. It may be, for example, a higher eukaryotic host cell, such as a mammalian cell, a lower eukaryotic host cell, such as a yeast cell, or the host cell can be a prokaryotic cell, such as a bacterial cell. Introduction of the recombinant construct into 5 the host cell can be effected by calcium phosphate transfection, DEAE, dextran mediated transfection, or electroporation (Davis et al., *Basic Methods in Molecular Biology* (1986)).

A wide variety of expression systems are available, such as: yeast (e.g. *Saccharomyces*, *Pichia*) transformed with recombinant 10 yeast expression vectors containing the target DNA; insect cell systems infected with recombinant virus expression vectors (e.g., baculovirus) containing the target DNA sequences; plant cell systems infected with recombinant virus expression vectors (e.g., cauliflower mosaic virus, CaMV; tobacco mosaic virus, TMV) or 15 transformed with recombinant plasmid expression vectors (e.g. Ti plasmid) containing target DNA coding sequences; or mammalian cell systems (e.g. COS, CHO, BHK, 293, 3T3) harboring recombinant expression constructs containing promoters derived from the genome of mammalian cells (e.g., metallothionein promoter) or from 20 mammalian viruses (e.g., the adenovirus late promoter; the vaccinia virus 7.5K promoter).

Depending on the system chosen, the resulting product may differ. For example, proteins expressed in most bacterial cultures, e.g., *E. coli*, will be free of glycosylation 25 modifications; polypeptides or proteins expressed in yeast will have a glycosylation pattern different from that expressed in mammalian cells.

Vectors

Generally, recombinant expression vectors will include 30 origins of replication and selectable markers permitting selection of the host cell, e.g., the ampicillin resistance gene of *E. coli* and *S. cerevisiae* TRP1 gene, and a promoter derived from a highly-expressed gene to direct transcription of a downstream structural sequence. Such promoters can be derived from operons encoding 35 glycolytic enzymes such as 3-phosphoglycerate kinase (PGK), α -factor, acid phosphatase, or heat shock proteins, among others. The heterologous structural sequence is assembled in appropriate

phase with translation initiation and termination sequence, and in one aspect of the invention, a leader sequence capable of directing secretion of translated protein into the periplasmic space or extracellular medium. Optionally, the heterologous 5 sequence can encode a fusion protein including an N-terminal or C-terminal identification peptide imparting desired characteristics, e.g., stabilization or simplified purification of expressed recombinant product.

Bacterial Expression

10 Useful expression vectors for bacterial use are constructed by inserting a structural DNA sequence encoding a desired protein together with suitable translation initiation and termination signals in operable reading phase with a functional promoter. The vector will comprise one or more phenotypic selectable markers and 15 an origin of replication to ensure maintenance of the vector and, if desirable, to provide amplification within the host. Suitable prokaryotic hosts for transformation include *E. coli*, *Bacillus subtilis*, *Salmonella typhimurium* and various species within the genera *Pseudomonas*, *Streptomyces*, and *Staphylococcus*, although 20 others may, also be employed as a matter of choice.

Bacterial vectors may be, for example, bacteriophage-, plasmid- or cosmid-based. These vectors can comprise a selectable marker and bacterial origin of replication derived from commercially available plasmids typically containing elements of 25 the well known cloning vector pBR322 (ATCC 37017). Such commercial vectors include, for example, GEM 1 (Promega Biotech, Madison, WI, USA), pBs, phagescript, PsiX174, pBluescript SK, pBs KS, pNH8a, pNH18a, pNH18a, pNH4Ba (Stratagene); pTrc99A, pKK223-3, pKK233-3, pKK232-8, pDR540, and pRIT5 (Pharmacia).

30 These "backbone" sections are combined with an appropriate promoter and the structural sequence to be expressed. Bacterial promoters include lac, T3, T7, lambda P_R or P_L, trp, and ara.

Following transformation of a suitable host strain and growth of the host strain to an appropriate cell density, the selected 35 promoter is derepressed/induced by appropriate means (e.g., temperature shift or chemical induction) and cells are cultured for an additional period. Cells are typically harvested by

centrifugation, disrupted by physical or chemical means, and the resulting crude extract retained for further purification.

In bacterial systems, a number of expression vectors may be advantageously selected depending upon the use intended for the 5 protein being expressed. For example, when a large quantity of such a protein is to be produced, for the generation of antibodies or to screen peptide libraries, for example, vectors which direct the expression of high levels of fusion protein products that are readily purified may be desirable. Such vectors include, but are 10 not limited, to the *E. coli* expression vector pUR278 (Ruther et al., 1983, *EMBO J.* 2:1791), in which the coding sequence may be ligated into the vector in frame with the lac Z coding region so that a fusion protein is produced; pIN vectors (Inouye et al. 1985, *Nucleic Acids Res.* 13:3101-3109; Van Heeke et al., 1989, *J. 15 Biol. Chem.* 264:5503-5509); pET vectors, Studier et al., *Methods in Enzymology* 185: 60-89 (Academic Press 1990); and the like.

Moreover, pGEX vectors may be used to express foreign polypeptides as fusion proteins with glutathione S-transferase (GST). In general, such fusion proteins are soluble and easily 20 can be purified from lysed cells by adsorption to glutathione-agarose beads followed by elution in the presence of free glutathione. The pGEX vectors are designed to include thrombin or factor Xa protease cleavage sites so that the cloned target gene protein can be released from the GST moiety.

25 In a one embodiment, full length cDNA sequences are appended with in-frame BamHI sites at the amino terminus and EcoRI sites at the carboxyl terminus using standard PCR methodologies (Innis et al., 1990, *supra*) and ligated into the pGEX-2TK vector (Pharmacia, Uppsala, Sweden). The resulting cDNA construct contains a kinase 30 recognition site at the amino terminus for radioactive labeling and glutathione S-transferase sequences at the carboxyl terminus for affinity purification (Nilsson, et al. 1985, *EMBO J.* 4: 1075; Zabeau and Stanley, 1982, *EMBO J.* 1:1217.

Eukaryotic Expression

35 Various mammalian cell culture systems can also be employed to express recombinant protein. Examples of mammalian expression systems include the COS-7 lines of monkey kidney fibroblasts,

described by Gluzman, *Cell* 23:175 (1981), and other cell lines capable of expressing a compatible vector, for example, the C127, BT3, CHO, HeLa and BHK cell lines. Mammalian expression vectors will comprise an origin of replication, a suitable promoter and 5 enhancer, and also any necessary ribosome binding sites, polyadenylation site, splice donor and acceptor sites, transcriptional termination sequences, and 5' flanking nontranscribed sequences. DNA sequences derived from the SV40 viral genome, for example, SV40 origin, early promoter, enhancer, 10 splice, and polyadenylation sites may be used to provide the required nontranscribed genetic elements.

Mammalian promoters include CMV immediate early, HSV thymidine kinase, early and late SV40, LTRs from retrovirus, and mouse metallothionein-I. Exemplary mammalian vectors include 15 pWLneo, pSV2cat, pOG44, pXT1, pSG (Stratagene) pSVK3, pBPV, pMSG, and pSVL (Pharmacia). Selectable markers include CAT (chloramphenicol transferase).

In mammalian host cells, a number of viral-based expression systems may be utilized. In cases where an adenovirus is used as 20 an expression vector, the coding sequence of interest may be ligated to an adenovirus transcription/translation control complex, e.g., the late promoter and tripartite leader sequence. This chimeric gene may then be inserted in the adenovirus genome by *in vitro* or *in vivo* recombination. Insertion in a non- 25 essential region of the viral genome (e.g., region E1 or E3) will result in a recombinant virus that is viable and capable of expressing a target protein in infected hosts. (E.g., See Logan et al., 1984, *Proc. Natl. Acad. Sci. USA* 81:3655-3659).

In one embodiment, cDNA sequences encoding the full-length 30 open reading frames are ligated into pCMVB replacing the β -galactosidase gene such that cDNA expression is driven by the CMV promoter (Alam, 1990, *Anal. Biochem.* 188: 245-254; MacGregor et al., 1989, *Nucl. Acids Res.* 17: 2365; Norton et al. 1985, *Mol. Cell. Biol.* 5: 281).

35 In addition, a host cell strain may be chosen which modulates the expression of the inserted sequences, or modifies and processes the gene product in the specific fashion desired. Such modifications (e.g., glycosylation) and processing (e.g.,

cleavage) of protein products may be important for the function of the protein. Different host cells have characteristic and specific mechanisms for the post-translational processing and modification of proteins.

5 Appropriate cell lines or host systems can be chosen to ensure the correct modification and processing of the foreign protein expressed. To this end, eukaryotic host cells which possess the cellular machinery for proper processing of the primary transcript, glycosylation, and phosphorylation of the gene 10 product may be used. Such mammalian host cells include but are not limited to CHO, VERO, BHK, HeLa, COS, MDCK, 293, 3T3, WI38, etc.

For long-term, high-yield production of recombinant proteins in eukaryotic cells, stable expression is preferred. Rather than 15 using expression vectors which contain viral origins of replication, host cells can be transformed with DNA controlled by appropriate expression control elements (e.g., promoter, enhancer, sequences, transcription terminators, polyadenylation sites, etc.), and a selectable marker.

20 Following the introduction of the foreign DNA, engineered cells may be allowed to grow for 1-2 days in an enriched media, and then are switched to a selective media. The selectable marker in the recombinant plasmid confers resistance to the selection and allows cells to stably integrate the plasmid into their 25 chromosomes and grow to form foci which in turn can be cloned and expanded into cell lines. This method may advantageously be used to engineer cell lines which express the target protein. Such engineered cell lines may be particularly useful in screening and evaluation of compounds that affect the endogenous activity of the 30 protein.

A number of selection systems may be used, including but not limited to the herpes simplex virus thymidine kinase (Wigler, et al., Cell 11:223 (1977)), hypoxanthine-guanine phosphoribosyltransferase (Szybalska et al., Proc. Natl. Acad. 35 Sci. USA 48:2026 (1962)), and adenine phosphoribosyltransferase (Lowy, et al., Cell 22:817 (1980)) genes can be employed in tk-, hgprt⁻ or aprt⁻ cells, respectively. Also, antimetabolite resistance can be used as the basis of selection for dhfr, which

confers resistance to methotrexate (Wigler, et al., Proc. Natl. Acad. Sci. USA 77:3567 (1980)); O'Hare, et al., 1981, Proc. Natl. Acad. Sci. USA 78:1527); gpt, which confers resistance to mycophenolic acid (Mulligan et al., Proc. Natl. Acad. Sci. USA 78:2072 (1981)); neo, which confers resistance to the aminoglycoside G-418 (Colberre-Garapin, et al., 1981, J. Mol. Biol. 150:1); and hydro, which confers resistance to hygromycin (Santerre, et al., 1984, Gene 30:147) genes.

An alternative fusion protein system allows for the ready purification of non-denatured fusion proteins expressed in human cell lines (Janknecht, et al., Proc. Natl. Acad. Sci. USA 88: 8972-8976 (1991)). In this system, the gene of interest is subcloned into a vaccinia-based plasmid such that the gene's open reading frame is translationally fused to an amino-terminal tag consisting of six histidine residues. Extracts from cells infected with recombinant vaccinia virus are loaded onto Ni²⁺ nitriloacetic acid-agarose columns and histidine-tagged proteins are selectively eluted with imidazole-containing buffers.

In an insect system, *Autographa californica* nuclear polyhedrosis virus (AcNPV) is used as a vector to express foreign genes. The virus grows in *Spodoptera frugiperda* cells. The target coding sequence may be cloned individually into non-essential regions (for example the polyhedrin gene) of the virus and placed under control of an AcNPV promoter (for example the polyhedrin promoter). Successful insertion of a target gene coding sequence will result in inactivation of the polyhedrin gene and production of non-occluded recombinant virus (i.e., virus lacking the proteinaceous coat coded for by the polyhedrin gene). These recombinant viruses are then used to infect *Spodoptera frugiperda* cells in which the inserted gene is expressed. (E.g., see Smith et al., 1983, J. Virol. 46: 584; Smith, U.S. Patent No. 4,215,051).

While the present proteins can be expressed in recombinant systems, as described above, cell-free translation systems can also be employed to produce such proteins using RNAs derived from the DNA constructs of the present invention.

Purification of Recombinant Proteins

Recombinant proteins produced may be isolated by host cell lysis. This may be followed by one or more salting-out, aqueous ion exchange or size exclusion chromatography steps. Finally, 5 high performance liquid chromatography (HPLC) can be employed for final purification steps. Microbial cells employed in expression of proteins can be disrupted by any convenient method, including freeze-thaw cycling, sonication, mechanical disruption, or use of cell lysing agents, like lysozyme and chelators.

10 If inclusion bodies are formed in bacterial systems, they may be extracted from cell pellets using, for example, detergents, reducing agents, salts, urea, guanidinium chloride and extremes of pH (e.g. <4 or >10). If denaturation occurs, protein refolding steps (e.g., dialysis) can be used, as necessary, in completing 15 configuration of the mature protein. If disulfide bridges are present in the native protein, they may be reoxidized using known methods.

By way of specific non-limiting example, the recombinant bacterial cells, for example *E. coli*, are grown in any of a number 20 of suitable media, for example LB, and the expression of the recombinant protein induced by adding IPTG (e.g., lac operator-promoter) to the media or switching incubation to a higher temperature (e.g., λ cI⁸⁵⁷). After culturing the bacteria for a further period of between 2 and 24 hours, the cells are collected 25 by centrifugation and washed to remove residual media. The bacterial cells are then lysed, for example, by disruption in a cell homogenizer and centrifuged to separate the cell membranes from the soluble cell components. If the protein aggregates into inclusion bodies, this centrifugation can be performed under 30 conditions whereby the dense inclusion bodies are selectively enriched by incorporation of sugars such as sucrose into the buffer and centrifugation at a selective speed. The inclusion bodies can then be washed in any of several solutions to remove some of the contaminating host proteins, then solubilized in 35 solutions containing high concentrations of urea (e.g. 8M) or chaotropic agents such as guanidinium hydrochloride in the presence of reducing agents such as β -mercaptoethanol or DTT (dithiothreitol).

At this stage it may be advantageous to incubate the protein for several hours under conditions suitable for the protein to undergo a refolding process into a conformation which more closely resembles that of the native protein. Such conditions generally 5 include low protein concentrations less than 500 µg/ml), low levels of reducing agent, concentrations of urea less than 2 M and often the presence of reagents such as a mixture of reduced and oxidized glutathione which facilitate the interchange of disulphide bonds within the protein molecule. The refolding 10 process can be monitored, for example, by SDS-PAGE or with antibodies which are specific for the native molecule. Following refolding, the protein can then be purified further and separated from the refolding mixture by chromatography on any of several supports including ion exchange resins, gel permeation resins or 15 on a variety of affinity columns.

Labeling Proteins

When used as a component in assay systems such as those described, below, the target protein may be labeled, either directly or indirectly, to facilitate detection of the present 20 res-like molecules either *in vitro* or *in vivo*. Any of a variety of suitable labeling systems may be used including but not limited to radioisotopes such as ^{125}I ; enzyme labeling systems that generate a detectable colorimetric signal or light when exposed to substrate; and fluorescent labels.

Where recombinant DNA technology is used for protein production the, it may be advantageous to engineer fusion proteins that can facilitate labeling, immobilization and/or detection. These fusion proteins may, for example, add amino acids which facilitate further chemical modification. They also may add a 30 functional moiety, such as an enzyme, which directly facilitates detection.

TRANSGENIC ANIMALS

The invention further contemplates animal models for studying the function of the present molecules and for overproducing the protein products. The disclosed DNA sequences may be used in 5 conjunction with techniques for producing transgenic animals that are well known to those of skill in the art.

To prepare transgenic animals, target gene sequences may for example be introduced into, and overexpressed in, the genome of the animal of interest, or, if endogenous target gene sequences 10 are present, they may either be overexpressed or, alternatively, be disrupted in order to underexpress or inactivate target gene expression, such as described for the disruption of apoE in mice (Plum et al., *Cell* 71: 343-353 (1992)).

In order to overexpress a target gene sequence, the coding 15 portion of the target gene sequence may be ligated to a regulatory sequence which is capable of driving gene expression in the animal and cell type of interest. Such regulatory regions will be well known to those of skill in the art, and may be utilized in the absence of undue experimentation.

For underexpression of an endogenous target gene sequence, such a sequence may be isolated and engineered such that when reintroduced into the genome of the animal of interest, the 20 endogenous target gene alleles will be inactivated. Preferably, the engineered target gene sequence is introduced via gene targeting such that the endogenous target sequence is disrupted upon integration of the engineered target gene sequence into the animal's genome. Animals of any species, including, but not limited to, mice, rats, rabbits, guinea pigs, pigs, micro-pigs, 25 goats, and non-human primates, e.g., baboons, monkeys, and chimpanzees may be used to generate cardiovascular disease animal 30 models. Goats, cows and sheep are particularly preferred for producing protein *in vivo*.

Any technique known in the art may be used to introduce a target gene transgene into animals to produce the founder lines of 35 transgenic animals. Such techniques include, but are not limited to pronuclear microinjection (Hoppe et al., U.S. Pat. No. 4,873,191 (1989)); retrovirus mediated gene transfer into germ lines (Van der Putten et al., *Proc. Natl. Acad. Sci., USA* 82:6148-

b152 (1985)); gene targeting in embryonic stem cells (Thompson et al., *Cell* 56:313-321 (1989)); electroporation of embryos (Lo, *Mol. Cell. Biol.* 3:1803-1814 (1983)); and sperm-mediated gene transfer (Lavitrano et al., *Cell* 57:717-723 (1989)); etc. For a review of such techniques, see Gordon, *Transgenic Animals, Intl. Rev. Cytol.*, 115:171-229 (1989).

The present invention provides for transgenic animals that carry the transgene in all their cells, as well as animals which carry the transgene in some, but not all their cells, i.e., mosaic animals. The transgene may be integrated as a single transgene or in concatamers, e.g., head-to-head tandems or head-to-tail tandems. The transgene may also be selectively introduced into and activated in a particular cell type by following, for example, the teaching of Lasko et al. (Lasko et al., *Proc. Natl. Acad. Sci. USA* 89:3232-3236 (1992)). The regulatory sequences required for such a cell-type specific activation will depend upon the particular cell type of interest, and will be apparent to those of skill in the art. When it is desired that the target gene be integrated into the chromosomal site of the endogenous target gene, gene targeting is preferred. Briefly, when such a technique is to be utilized, vectors containing some nucleotide sequences homologous to the endogenous target gene of interest are designed for the purpose of integrating, via homologous recombination with chromosomal sequences, into and disrupting the function of the nucleotide sequence of the endogenous target gene.

The transgene may also be selectively introduced into a particular cell type, thus inactivating the endogenous gene of interest in only that cell type, by following, for example, the teaching of Gu et al. *Science* 265: 103-106 (1994)). The regulatory sequences required for such a cell-type specific inactivation will depend upon the particular cell type of interest, and will be apparent to those of skill in the art.

Once transgenic animals have been generated, the expression of the recombinant target gene and protein may be assayed utilizing standard techniques. Initial screening may be accomplished by Southern blot analysis or PCR techniques to analyze animal tissues to assay whether integration of the transgene has taken place. The level of mRNA expression of the

transgene in the tissues of the transgenic animals may also be assessed using techniques which include but are not limited to Northern blot analysis of tissue samples obtained from the animal, in situ hybridization analysis, and RT-PCR. Samples of target gene-expressing tissue, may also be evaluated immunocytochemically using antibodies specific for the target gene transgene gene product of interest.

The transgenic animals that express target gene mRNA or target gene transgene peptide (detected immunocytochemically, using antibodies directed against the target gene product's epitopes) at easily detectable levels should then be further evaluated to identify those animals which display characteristic increased susceptibility to carcinogenesis. Additionally, specific cell types within the transgenic animals may be analyzed and assayed *in vitro* for cellular phenotypes characteristic of mutant phenotype.

Once target gene transgenic founder animals are produced, they may be bred, inbred, outbred, or crossbred to produce colonies of the particular animal. Examples of such breeding strategies include but are not limited to: outbreeding of founder animals with more than one integration site in order to establish separate lines; inbreeding of separate lines in order to produce compound target gene transgenics that express the target gene transgene of interest at higher levels because of the effects of additive expression of each target gene transgene; crossing of heterozygous transgenic animals to produce animals homozygous for a given integration site in order both to augment expression and eliminate the possible need for screening of animals by DNA analysis; crossing of separate homozygous lines to produce compound heterozygous or homozygous lines; breeding animals to different inbred genetic backgrounds so as to examine effects of modifying alleles on expression of the target gene transgene and the possible development of carcinogenesis. One such approach is to cross the target gene transgenic founder animals with a wild type strain to produce an F1 generation that exhibits increased susceptibility to carcinogenesis. The F1 generation may then be inbred in order to develop a homozygous line, if it is found that homozygous target gene transgenic animals are viable.

Methods of generating "knockout" mice using homologous recombination in embryonic stem cells are well known in the art. Suitable methods are described, for example, in Mansour et al., *Nature*, 336:348 (1988); Zijlstra et al., *Nature*, 342:435 (1989) and 344:742 (1990); and Hasty et al., *Nature*, 350:243 (1991). This genomic DNA can be obtained by conventional methods using the cDNA sequence as a probe in a commercially-available genomic DNA library.

Briefly, a genomic fragment is cleaved with a restriction endonuclease and a heterologous cassette containing a neomycin-resistance gene is inserted at the cleavage site. A suitable cassette is the GTI-II neo cassette described by Lufkin et al., *Cell* 66:1105 (1991). The modified genomic fragment is cloned into a suitable targeting vector that is introduced into murine embryonic stem cells by electroporation. Cells that have undergone homologous recombination (and hence disruption of the gene) are selected by resistance to G418, and used to generate chimeric mice using well known methods. See Lufkin et al., *supra*. Traditional breeding methods then can be used to generate mice that are homozygous for the disrupted gene.

The phenotype of mice that are homozygous for the mutation then can be studied to provide insights into the role of the protein in, for example, carcinogenesis. These mice also can be used as models for developing new treatments for cancers. If this mutation is lethal in homozygous mice (for example during embryogenesis) heterozygous mice, which express only half the amount of the protein can also be studied.

GENE THERAPY APPLICATIONS

When mutations in the inventive protein, or in the elements controlling expression of that protein, are found to be associated with a malignant phenotype, control of cellular proliferation can be restored by gene therapy methods. For example, overexpression of the protein can be counteracted by concurrent expression of an antisense molecule that binds to and inhibits expression of the mRNA encoding the protein. Alternatively, overexpression can be inhibited in an analogous manner using a ribozyme that cleaves the mRNA. In another embodiment, where expression of a mutated

protein induces the malignant phenotype, concomitant expression of the non-mutated molecule via introduction of an exogenous gene may be used. Methods of using antisense and ribozyme technology to control gene expression, or of gene therapy methods for expression of an exogenous gene in this manner are well known in the art.

Each of these methods requires a system for introducing a vector into the cells containing the mutated gene. The vector encodes either an antisense or ribozyme transcript of the inventive protein. The construction of a suitable vector can be achieved by any of the methods well-known in the art for the insertion of exogenous DNA into a vector. See, e.g., Sambrook et al., *Molecular Cloning* (Cold Spring Harbor Press 2d ed. 1989), which is incorporated herein by reference. In addition, the prior art teaches various methods of introducing exogenous genes into cells *in vivo*. See Rosenberg et al., *Science* 242:1575-1578 (1988) and Wolff et al., *PNAS* 86:9011-9014 (1989), which are incorporated herein by reference. The routes of delivery include systemic administration and administration *in situ*. Well-known techniques include systemic administration with cationic liposomes, and administration *in situ* with viral vectors. Any one of the gene delivery methodologies described in the prior art is suitable for the introduction of a recombinant vector containing an inventive gene according to the invention into a MTX-resistant, transport-deficient cancer cell. A listing of present-day vectors suitable for the purpose of this invention is set forth in Hodgson, *Bio/Technology* 13: 222 (1995), which is incorporated by reference.

For example, liposome-mediated gene transfer is a suitable method for the introduction of a recombinant vector containing an inventive gene according to the invention into a MTX-resistant, transport-deficient cancer cell. The use of a cationic liposome, such as DC-Chol/DOPE liposome, has been widely documented as an appropriate vehicle to deliver DNA to a wide range of tissues through intravenous injection of DNA/cationic liposome complexes. See Caplen et al., *Nature Med.* 1:39-46 (1995) and Zhu et al., *Science* 261:209-211 (1993), which are herein incorporated by reference. Liposomes transfer genes to the target cells by fusing with the plasma membrane. The entry process is relatively efficient, but once inside the cell, the liposome-DNA complex has

no inherent mechanism to deliver the DNA to the nucleus. As such, the most of the lipid and DNA gets shunted to cytoplasmic waste systems and destroyed. The obvious advantage of liposomes as a gene therapy vector is that liposomes contain no proteins, which 5 thus minimizes the potential of host immune responses.

As another example, viral vector-mediated gene transfer is also a suitable method for the introduction of the vector into a target cell. Appropriate viral vectors include adenovirus vectors and adeno-associated virus vectors, retrovirus vectors and 10 herpesvirus vectors.

Adenoviruses are linear, double stranded DNA viruses complexed with core proteins and surrounded by capsid proteins. The common serotypes 2 and 5, which are not associated with any 15 human malignancies, are typically the base vectors. By deleting parts of the virus genome and inserting the desired gene under the control of a constitutive viral promoter, the virus becomes a replication deficient vector capable of transferring the exogenous DNA to differentiated, non-proliferating cells. To enter cells, the adenovirus fibre interacts with specific receptors on the cell 20 surface, and the adenovirus surface proteins interact with the cell surface integrins. The virus penton-cell integrin interaction provides the signal that brings the exogenous gene-containing virus into a cytoplasmic endosome. The adenovirus breaks out of the endosome and moves to the nucleus, the viral 25 capsid falls apart, and the exogenous DNA enters the cell nucleus where it functions, in an epichromosomal fashion, to express the exogenous gene. Detailed discussions of the use of adenoviral vectors for gene therapy can be found in Berkner, *Biotechniques* 6:616-629 (1988) and Trapnell, *Advanced Drug Delivery Rev.* 12:185- 30 199 (1993), which are herein incorporated by reference. Adenovirus-derived vectors, particularly non-replicative adenovirus vectors, are characterized by their ability to accommodate exogenous DNA of 7.5 kB, relative stability, wide host range, low pathogenicity in man, and high titers (10^4 to 10^5 35 plaque forming units per cell). See Stratford-Perricaudet et al., *PNAS* 89:2581 (1992).

Adeno-associated virus (AAV) vectors also can be used for the present invention. AAV is a linear single-stranded DNA parvovirus

that is endogenous to many mammalian species. AAV has a broad host range despite the limitation that AAV is a defective parvovirus which is dependent totally on either adenovirus or herpesvirus for its reproduction *in vivo*. The use of AAV as a 5 vector for the introduction into target cells of exogenous DNA is well-known in the art. See, e.g., Lebkowski et al., *Mole. & Cell. Biol.* 8:3988 (1988), which is incorporated herein by reference. In these vectors, the capsid gene of AAV is replaced by a desired DNA fragment, and transcomplementation of the deleted capsid 10 function is used to create a recombinant virus stock. Upon infection the recombinant virus uncoats in the nucleus and integrates into the host genome.

Another suitable virus-based gene delivery mechanism is retroviral vector-mediated gene transfer. In general, retroviral 15 vectors are well-known in the art. See Breakfield et al., *Mole. Neuro. Biol.* 1:339 (1987) and Shih et al., in *Vaccines* 85: 177 (Cold Spring Harbor Press 1985). A variety of retroviral vectors and retroviral vector-producing cell lines can be used for the present invention. Appropriate retroviral vectors include Moloney 20 Murine Leukemia Virus, spleen necrosis virus, and vectors derived from retroviruses such as Rous Sarcoma Virus, Harvey Sarcoma Virus, avian leukosis virus, human immunodeficiency virus, myeloproliferative sarcoma virus, and mammary tumor virus. These vectors include replication-competent and replication-defective 25 retroviral vectors. In addition, amphotropic and xenotropic retroviral vectors can be used. In carrying out the invention, retroviral vectors can be introduced to a tumor directly or in the form of free retroviral vector producing-cell lines. Suitable producer cells include fibroblasts, neurons, glial cells, 30 keratinocytes, hepatocytes, connective tissue cells, ependymal cells, chromaffin cells. See Wolff et al., *PNAS* 84:3344 (1987).

Retroviral vectors generally are constructed such that the majority of its structural genes are deleted or replaced by exogenous DNA of interest, and such that the likelihood is reduced 35 that viral proteins will be expressed. See Bender et al., *J. Virol.* 61:1639 (1987) and Armento et al., *J. Virol.* 61:1647 (1987), which are herein incorporated by reference. To facilitate expression of the antisense or ribozyme molecule, of the inventive

protein, a retroviral vector employed in the present invention must integrate into the genome of the host cell genome, an event which occurs only in mitotically active cells. The necessity for host cell replication effectively limits retroviral gene expression to tumor cells, which are highly replicative, and to a few normal tissues. The normal tissue cells theoretically most likely to be transduced by a retroviral vector, therefore, are the endothelial cells that line the blood vessels that supply blood to the tumor. In addition, it is also possible that a retroviral vector would integrate into white blood cells both in the tumor or in the blood circulating through the tumor.

The spread of retroviral vector to normal tissues, however, is limited. The local administration to a tumor of a retroviral vector or retroviral vector producing cells will restrict vector propagation to the local region of the tumor, minimizing transduction, integration, expression and subsequent cytotoxic effect on surrounding cells that are mitotically active.

Both replicatively deficient and replicatively competent retroviral vectors can be used in the invention, subject to their respective advantages and disadvantages. For instance, for tumors that have spread regionally, such as lung cancers, the direct injection of cell lines that produce replication-deficient vectors may not deliver the vector to a large enough area to completely eradicate the tumor, since the vector will be released only from the original producer cells and their progeny, and diffusion is limited. Similar constraints apply to the application of replication deficient vectors to tumors that grow slowly, such as human breast cancers which typically have doubling times of 30 days versus the 24 hours common among human gliomas. The much shortened survival-time of the producer cells, probably no more than 7-14 days in the absence of immunosuppression, limits to only a portion of their replicative cycle the exposure of the tumor cells to the retroviral vector.

The use of replication-defective retroviruses for treating tumors requires producer cells and is limited because each replication-defective retrovirus particle can enter only a single cell and cannot productively infect others thereafter. Because these replication-defective retroviruses cannot spread to other tumor cells, they would be unable to completely penetrate a deep,

multilayered tumor *in vivo*. See Markert et al., *Neurosurg.* 77: 590 (1992). The injection of replication-competent retroviral vector particles or a cell line that produces a replication-competent retroviral vector virus may prove to be a more effective therapeutic because a replication competent retroviral vector will establish a productive infection that will transduce cells as long as it persists. Moreover, replicatively competent retroviral vectors may follow the tumor as it metastasizes, carried along and propagated by transduced tumor cells. The risks for complications are greater, with replicatively competent vectors, however. Such vectors may pose a greater risk than replicatively deficient vectors of transducing normal tissues, for instance. The risks of undesired vector propagation for each type of cancer and affected body area can be weighed against the advantages in the situation of replicatively competent verses replicatively deficient retroviral vector to determine an optimum treatment.

Both amphotropic and xenotropic retroviral vectors may be used in the invention. Amphotropic viruses have a very broad host range that includes most or all mammalian cells, as is well known to the art. Xenotropic viruses can infect all mammalian cell cells except mouse cells. Thus, amphotropic and xenotropic retroviruses from many species, including cows, sheep, pigs, dogs, cats, rats, and mice, *inter alia* can be used to provide retroviral vectors in accordance with the invention, provided the vectors can transfer genes into proliferating human cells *in vivo*.

Clinical trials employing retroviral vector therapy treatment of cancer have been approved in the United States. See Culver, *Clin. Chem.* 40: 510 (1994). Retroviral vector-containing cells have been implanted into brain tumors growing in human patients. See Oldfield et al., *Hum. Gene Ther.* 4: 39 (1993). These retroviral vectors carried the HSV-1 thymidine kinase (HSV-tk) gene into the surrounding brain tumor cells, which conferred sensitivity of the tumor cells to the antiviral drug ganciclovir. Some of the limitations of current retroviral based cancer therapy, as described by Oldfield are: (1) the low titer of virus produced, (2) virus spread is limited to the region surrounding the producer cell implant, (3) possible immune response to the producer cell line, (4) possible insertional mutagenesis and

transformation of retroviral infected cells, (5) only a single treatment regimen of pro-drug, ganciclovir, is possible because the "suicide" product kills retrovirally infected cells and producer cells and (6) the bystander effect is limited to cells in direct contact with retrovirally transformed cells. See Bi et al., *Human Gene Therapy* 4: 725 (1993).

Yet another suitable virus-based gene delivery mechanism is herpesvirus vector-mediated gene transfer. While much less is known about the use of herpesvirus vectors, replication-competent HSV-1 viral vectors have been described in the context of antitumor therapy. See Martuza et al., *Science* 252: 854 (1991), which is incorporated herein by reference.

DIAGNOSTIC METHODS

The present invention also contemplates, for certain molecules described below, methods for diagnosis of human disease. In particular, patients can be screened for the occurrence of cancers, or likelihood of occurrence of cancers, associated with mutations in the encoded protein. DNA from tumor tissue obtained from patients suffering from cancer can be isolated and the gene encoding the protein can be sequenced. By examining a number of patients in this manner, mutations in the gene that are associated with a malignant cellular phenotype can be identified. In addition, correlation of the nature of the observed mutations with subsequent observed clinical outcomes allows development of prognostic model for the predicted outcome in a particular patient.

Screening for mutations conveniently can be carried out at the DNA level by use of PCR, although the skilled artisan will be aware that many other well known methods are available for the screening. PCR primers can be selected that flank known mutation sites, and the PCR products can be sequenced to detect the occurrence of the mutation. Alternatively, the 3' residue of one PCR primer can be selected to be a match only for the residue found in the unmutated gene. If the gene is mutated, there will be a mismatch at the 3' end of the primer, and primer extension cannot occur, and no PCR product will be obtained. Alternatively, primer mixtures can be used where the 3' residue of one primer is

any nucleotide other than the nonmutated residue. Observation of a PCR product then indicates that a mutation has occurred. Other methods of using, for example, oligonucleotide probes to screen for mutations are described, or example, in U.S. Patent No. 5 4,871,838, which is herein incorporated by reference in its entirety.

Alternatively, antibodies can be generated that selectively bind either mutated or non-mutated protein. The antibodies then can be used to screen tissue samples for occurrence of mutations 10 in a manner analogous to the DNA-based methods described *supra*.

The diagnostic methods described above can be used not only for diagnosis and for prognosis of existing disease, but may also be used to predict the likelihood of the future occurrence of disease. For example, clinically healthy patients can be screened 15 for mutations in the inventive molecule that correlate with later disease onset. Such mutations may be observed in the heterozygous state in healthy individuals. In such cases a single mutation event can effectively disable proper functioning of the gene and induce a transformed or malignant phenotype. This screening also 20 may be carried out prenatally or neonatally.

DNA molecules according to the invention also are well suited for use in so-called "gene chip" diagnostic applications. Such applications have been developed by, *inter alia*, Synteni and Affymetrix. Briefly, all or part of the DNA molecules of the 25 invention can be used either as a probe to screen a polynucleotide array on a "gene chip," or they may be immobilized on the chip itself and used to identify other polynucleotides via hybridization to the surface of the chip. In this manner, for example, related genes can be identified, or expression patterns 30 of the gene in various tissues can be simultaneously studied. Such gene chips have particular application for diagnosis of disease, or in forensic analysis to detect the presence or absence of an analyte. Suitable chip technology is described for example, in Wodicka et al., *Nature Biotechnology*, 15:1359 (1997) which is 35 hereby incorporated by reference in its entirety, and references cited therein.

PROTEIN-PROTEIN INTERACTIONS

Due to their similarity to certain known proteins, it is anticipated that some of the inventive protein molecules will interact with another class of cellular proteins. This is particularly true of those molecule containing leucine zipper motifs.

Any method suitable for detecting protein-protein interactions can be employed for identifying interacting targets. Among the traditional methods which can be employed are co-immunoprecipitation, crosslinking and co-purification through gradients or chromatographic columns. Utilizing procedures such as these allows for the identification of GAP gene products. Once identified, a GAP protein can be used, in conjunction with standard techniques, to identify its corresponding pathway gene. For example, at least a portion of the amino acid sequence of the pathway gene product can be ascertained using techniques well known to those of skill in the art, such as via the Edman degradation technique (see, e.g., Creighton, 1983, PROTEINS: STRUCTURES AND MOLECULAR PRINCIPLES, W.H. Freeman & Co., N.Y., pp.34-49). The amino acid sequence obtained can be used as a guide for the generation of oligonucleotide mixtures that can be used to screen for pathway gene sequences. Screening can be accomplished, for example, by standard hybridization or PCR techniques. Techniques for the generation of oligonucleotide mixtures and for screening are well-known. (See e.g., Ausubel, supra, and PCR PROTOCOLS: A GUIDE TO METHODS AND APPLICATIONS, 1990, Innis et al., eds. Academic Press, Inc., New York).

Additionally, methods can be employed which result in the simultaneous identification of interacting target genes. One method which detects protein interactions *in vivo*, the two-hybrid system, is described in detail for illustration purposes only and not by way of limitation. One version of this system has been described (Chien et al., Proc. Natl. Acad. Sci. USA, 88: 9578-9582 (1991)) and is commercially available from Clontech (Palo Alto, CA).

Briefly, utilizing such a system, plasmids are constructed that encode two hybrid proteins: one consists of the DNA-binding domain of a transcription activator protein fused to a known protein, in this case an inventive protein, and the other contains

the activator protein's activation domain fused to an unknown protein (a putative GAP, for instance) that is encoded by a cDNA which has been recombined into this plasmid as part of a cDNA library. The plasmids are transformed into a strain of the yeast 5 *Saccharomyces cerevisiae* that contains a reporter gene (e.g., *lacZ*) whose regulatory region contains the transcription activator's binding sites. Either hybrid protein alone cannot activate transcription of the reporter gene, the DNA-binding domain hybrid cannot because it does not provide activation 10 function, and the activation domain hybrid cannot because it cannot localize to the activator's binding sites. Interaction of the two hybrid proteins reconstitutes the functional activator protein and results in expression of the reporter gene, which is detected by an assay for the reporter gene product.

15 The two-hybrid system or related methodology can be used to screen activation domain libraries for proteins that interact with a known "bait" gene product. By way of example, and not by way of limitation, gene products known to be involved in TH cell subpopulation-related disorders and/or differentiation, 20 maintenance, and/or effector function of the subpopulations can be used as the bait gene products. Total genomic or cDNA sequences are fused to the DNA encoding an activation domain. This library and a plasmid encoding a hybrid of the bait gene product fused to the DNA-binding domain are cotransformed into a yeast reporter 25 strain, and the resulting transformants are screened for those that express the reporter gene. For example, and not by way of limitation, the bait gene can be cloned into a vector such that it is translationally fused to the DNA encoding the DNA-binding domain of the *GAL4* protein. These colonies are purified and the 30 library plasmids responsible for reporter gene expression are isolated. DNA sequencing is then used to identify the proteins encoded by the library plasmids.

35 The present invention, thus generally described, will be understood more readily by reference to the following examples, which are provided by way of illustration and are not intended to be limiting of the present invention.

The examples below are provided to illustrate the subject invention. These examples are provided by way of illustration and are not included for the purpose of limiting the invention.

EXAMPLES

5 EXAMPLE I: cDNA Library Construction

cDNA library plates and clones originated from five cDNA libraries that were constructed by directional cloning. These are available through the Resource Center (<http://www.rzpd.de>) of the German Genome Project. In particular, the hfbr2 (human fetal brain; RZPD number DKFZp5b4) and hfkd2 (human fetal kidney; DKFZp5b6) libraries were generated using the Smart kit (Clontech), except that PCR was carried out with primers that contained uracil residues to permit directional cloning without restriction digestion and ligation, and were complementary with the pAMPl (LifeTechnologies) cloning sites for directional cloning. The htes3 (human testes; DKFZp434), hutel (human uterus; DKFZp5b6) and hmcf1 (human mammary carcinoma; DKFZp727) libraries are conventional (Gubler, U., Hoffman, B.J., (1983). A simple and very efficient method for generating cDNA libraries. Gene 25, 263-269), size-selected cDNA libraries. They are cloned into pSPORT1 (LifeTechnologies) via a NotI site which is introduced during reverse transcription downstream of the oligo dT primer and a SalI site that is introduced by the ligation of a adapters. The human mammary carcinoma library was constructed from MCF7 cells.

In a similar fashion, the hamy2 (human amygdala nucleus (inside the brain); RZPD number DKFZp7b1) and hmel2 (human melanoma; RZPD number DKFZp7b2) libraries have been generated using conventional approaches, employing a NotI -dT V primer for first strand synthesis (GAGCGGCCGC(T)19V). After second strand synthesis, SalI adapters were ligated to the blunted cDNA. Then the cDNA was cut with NotI to generate SalI-NotI compatible ends at the 5' and 3' ends of the cDNA, respectively, to allow directional cloning. The cDNAs were then size selected on agarose gels in two dimensions and cloned into the pSPORT1 plasmid vector which had been pre-cut with SalI and NotI (LifeTechnologies). The

- DNA was transformed into the DH10B bacterial strain and single colonies were picked into 384well microtiter plates from the non-amplified library. The human melanoma library was constructed from MeWo cells, published by Kern, M.A., Helmbach, H., Artuc, 5 M., Karmann, D., Jurgovsky, K. and Schadendorf, D. (1997) Human melanoma cell lines selected *in vitro* displaying various levels of drug resistance against cisplatin, fotemustine, vindesine or etoposide: modulation of proto-oncogene expression. *Anticancer Res.* 17, 4359-4370.
- 10 The cDNA sequences of this application were first identified among the sequences comprising various libraries. Technology has advanced considerably since the first cDNA libraries were made. Many small variations in both chemicals and machinery have been instituted over time, and these have improved both the efficiency 15 and safety of the process. Although the cDNAs could be obtained using an older procedure, the procedure presented in this application is exemplary of one currently being used by persons skilled in the art. For the purpose of providing an exemplary method, the mRNA isolation and cDNA library construction 20 described here is for the MCF-7 library (DKFZp727) from which the clones named DKFZphmcfl_xxxyyxx were obtained.

The human cell line MCF-7 was grown in DMEM supplemented with 10% fetal calf serum until confluency. 3 X 10⁸ cells were harvested with a cell scraper in PBS. Cells were lysed in buffer 25 containing 0.5 % NP-40 to leave the nuclei intact. The debris was pelleted by centrifugation at 15 000 x g for 10 minutes at 4 degrees Celsius. Proteins in the supernatant were degraded in presence of SDS and Proteinase K (30 minutes at 56 degrees Celsius). Precipitation of proteins was done in a 30 Phenol/Chloroform extraction. RNA was precipitated from the aqueous phase with Na-acetate and Ethanol. Polyadenylated messages were isolated using Qiagen Oligotex (QIAGEN, Hilden Germany).

First strand cDNA synthesis was accomplished using an oligo 35 (dT) primer which also contained an NotI restriction site. Second strand synthesis was performed using a combination of DNA polymerase I, *E. coli* ligase and RNase H, followed by the

addition of a SalI adaptor to the blunt ended cDNA. The SalI adapted, double-stranded cDNA was then digested with NotI restriction enzyme, and fractionated by size on an agarose gel. DNA of the appropriate size was cut from the gel and cast into a second gel in a 90° angle. After electrophoresis in the second dimension, cDNA of the appropriate size was cut from the gel. The agarose block was broken down with help of gelase. The cDNA was purified with help of two phenol extractions and an ethanol precipitation. The cDNA was ligated into SalI/NotI pre-digested pSport1 vector (LifeTechnologies) and transformed into DH10B bacteria.

The libraries were arrayed into 384-well microtiter plates and spotted on high density nylon membranes for hybridization analysis. All libraries have been arrayed into 384well microtiter plates and spotted on high density nylon membranes for hybridization analysis. The hamy2 Library consists of 121 384well plates comprising 46464 clones. The hmel2 library consists of 72 384well plates comprising 27648 clones. Filters and clones are available through the Resource Center of German Genome Project (<http://www.RZPD.de>). Whole library plates were distributed to the sequencing partners of the consortium for systematic sequencing.

25 EXAMPLE II: Sequencing of cDNA Clones

All clones in the 384-well microtiter plates were sequenced from the 5' end. Sequencing was done preferentially using dye terminator chemistry (ABD or Amersham) on ABI automated DNA sequencers (ABI 377, Applied Biosystems), one partner used EMBL prototype instruments (Arakis) mainly with dye primer chemistry.

The resulting expressed sequence tag (EST) sequences ("rl ESTs" = sequenced from 5'-end) were analysed for:

a) the lack of identical matches with known genes.

For this, the EST-sequence was blasted against the cDNA consortium's own database and after that against public databases

and (with BLASTn and BLASTx against EMBL/EMBLNEW and assembled ESTs, please refer to EXAMPLE III: Bioinformatics analysis of full length cDNAs, for description and parameter settings). ESTs which were identical to known genes in more than 100 bp, with 5 less than 2 mismatches, were excluded from further analysis.

b) the presence of an open reading frame

Open reading frames (ORFs) were detected with a tool developed by Munich Information Center for Protein Sequences (MIPS) called ORF-map. ORF-map visualises potential start and 10 stop-codons. If an ORF without a stop codon was detected in a rl-EST, the sequence was processed further.

c) the presence of GC rich sequences

A script developed by MIPS computed the GC-content of the rl-sequence, which should be >40%. Writing similar scripts is 15 within the ordinary skill of one in bioinformatics.

d) the lack of repeat structures

Repeats such as Alu, Line or CA-repeats were detected by blasting (BLASTn and BLASTx, please refer to EXAMPLE III: Bioinformatics analysis of full length cDNAs, for description and 20 parameter settings) against a repeat-database compiled by MIPS. If a repeat was present within the rl-sequence, the sequence were not processed further.

Novel clones that met all criteria were identified to the sequencers, who then performed 3'-end sequencing of these clones. 25 The resulting 3' ESTs ("sl ESTs" = sequenced from 3'-end) were checked for

a) the lack of matches with known genes in public databases, and sequences already generated by us.

This was done by blasting against EMBL/EMBLNEW and assembled 30 EST (BLASTn and BLASTx, please refer to EXAMPLE III: Bioinformatics analysis of full length cDNAs, for description and parameter settings).

b) the presence of polyadenylation signals.

Again only clones matching the selection criteria were chosen to be sequenced completely by the sequencers. Clones were selected after the following criteria:

- 5 A very good ORF had at least one BLASTx match to other proteins. A "good ORF" should extend to the 3' end and be longer than ~40 codons. If the ORF started in the r1 sequence, in front of the potential start codon, there should not exist too many competing start codons in frame with the ORF start codon and the
10 start should match the Kozak consensus ATG. If the EST sequence was too short to decide according to the potential ORF, and there were only a few or no start codons in the sequence the GC content of the Sequence should be greater than 40%. The r1 sequences needed not contain an polyA-tail at the 3' end. In addition, the
15 results of the blasting against the assembled human ESTs could help in questionable cases to decide whether to stop or to continue. A hit against these ESTs was an indication to go further.

- Clones passing the above-described screening were sequenced
20 in full. Sequencing was done preferentially using dye terminator chemistry (ABD or Amersham) on ABI automated DNA sequencers (ABI 377, Applied Biosystems), one partner used EMBL prototype instruments (Arakis) mainly with dye primer chemistry. Primer walking (Strauss et al., 1986, Specific-primer-directed DNA
25 sequencing. Anal Biochem. 154, 353-360) was the preferred sequencing strategy because of the lower redundancy possible compared to random shotgun (Messing, J., Crea, R., Seburg, H.P. (1981) A system for shotgun DNA sequencing. Nucleic Acids Res. 9, 32-39) methods. Walking primers were generally designed using
30 software (e.g. Haas, S., Vingron, M., Poustka, A., Wiemann, S. (1998) Primer design in large-scale sequencing. Nucleic Acids Res. 26, 3006-3012, Schwager, C., Wiemann, S., Ansorge, W. (1995) GeneSkipper: integrated software environment for DNA sequence assembly and alignment. HUGO Genome Digest 2, 8-9) that permitted
35 complete automation of this usually time consuming process and helped in the parallel processing of large numbers of clones.

EXAMPLE III: Bioinformatics analysis of full length cDNAs

Each sequence obtained was compared on nucleotide level in a stepwise manner to sequences in EMBL/EMBLNEW, EMBL-EST, EMBL-STS using the BLASTn algorithm. Basic Local Alignment Search Tool (BLAST, Altschul S. F. (1993) J Mol Evol 36:290-300; Altschul, S. F. et al (1990) J Mol Biol 215:403-10) is used to search for local sequence alignments. BLAST produces alignments of both nucleotide (BLASTn) and amino acid sequences (BLASTp or BLASTx) to determine sequence similarity. BLAST is especially useful in determining exact matches or in identifying homologs, because of the local nature of the alignments. While it is useful for matches which do not contain gaps, it is inappropriate for performing motif-style searching. The fundamental unit of BLAST algorithm output is the High-scoring Segment Pair (HSP).

An HSP consists of two sequence fragments of arbitrary but equal lengths whose alignment is locally maximal and for which the alignment BLAST approach is to look threshold or cut off score set by the user. BLAST looks for HSPs between a query sequence and a database sequence, to evaluate the statistical significance of any matches found, and to report only those matches which satisfy the user-selected threshold of significance. The parameter E establishes the statistically significant threshold for reporting database sequence matches. E is interpreted as the upper bound of the expected frequency of chance occurrence of an HSP (or set of HSPs) within the context of the entire database search. Any database sequence whose match satisfies E is reported in the program output. Parameter settings for the BLAST-operations (BLASTN 2.0al9MP-WashU) described were: EMBL-EMBLNEW: H=0 V=5 B=5 -filter seg; EMBL-EST: H=0 E=1e-10 B=500 V=500 -filter seg; EMBL-STS: H=0 V=5 B=5.

Search against EMBL/EMBLNEW was done to determine whether the cDNAs are already known, and also to find out whether the cDNAs are encoded by genomic sequences already sequenced and published/submitted to these databases.

Search against EMBL-EST was performed to get a first impression how abundant a particular cDNA would be and to get

information on tissue specificity (so-called "electronic Northern-Blot", e.g. some of the cDNAs derived of the testis library show only hits to ESTs also derived of testis libraries).

5 The cDNA-sequences were blasted against EMBL-STS to determine STS-sequence-match to the cDNA, thus providing a mapping information to the new cDNA.

The potential protein-sequences were generated automatically by a script searching for the longest open reading frame (ORF) in each of the three forward frames with a minimum length of 90 10 codons. Next, the automatically generated ORFs were translated into protein sequences. These protein sequences were searched against the non redundant protein data set of PIR/SwissProt/Trembel/Tremblnew (BLASTP 2.0al9MP-WashU, parameter setting: V=7 B=7 H=0 -filter seg). If the script generated more 15 than one ORF, one ORF was chosen manually by the annotater according to the degree of similarity to known proteins, the location of the ORF in the cDNA, the length, the amino acid composition and the content of Prosite-Motifs.

Additionally there was a BLASTx (BLASTX 2.0al9MP-WashU 20 against non redundant protein database comprising PIR/SWISSPROT/TREMBL/TREMBLNEW; parameter-settings were: -matrix/home/data/blast/matrix/aa/BLOSUM62 -H=0 -V=5 -B=5 -filter seg) search to find potential frame shift in the complementary 25 cds of the cDNAs and to identify unspliced or partly spliced cDNAs. The protein sequence was then transferred to the PEDANT system, in order to generate additional information on the new proteins. PEDANT (Protein Extraction, Description, and ANalysis Tool, Frishman, D. & Mewes, H.-W. (1997) PEDANTic, genome analysis. Trends in Genetics , 13, 415-416) is a platform 30 developed at the Munich Information Center for Protein Sequences (MIPS, Munich, Germany), which incorporates practically all bioinformatics methods important for the functional and structural characterisation of protein sequences. Computational methods used by PEDANT are:

FASTA

Very sensitive protein sequence database searches with estimates of statistical significance. Pearson W.R. (1990) Rapid and sensitive sequence comparison with FASTP and FASTA. Methods

5 Enzymol. 183, 63-98.

BLAST2

Very sensitive protein sequence database searches with estimates of statistical significance. Altschul S.F., Gish W., Miller W., Myers E.W., and Lipman D.J. Basic local alignment

10 search tool. Journal of Molecular Biology 215, 403-10.

PREDATOR

High-accuracy secondary structure prediction from single and multiple sequences. Frishman, D. and Argos, P. (1997) 75% accuracy in protein secondary structure prediction. Proteins, 27, 15 329-335. Frishman, D. and Argos, P. (1996) Incorporation of long-distance interactions in a secondary structure prediction algorithm. Prot. Eng. 9, 133-142.

STRIDE

Secondary structure assignment from atomic coordinates.

20 Frishman, D. and Argos, P. (1995) Knowledge-based secondary structure assignment. Proteins 23, 566-579.

CLUSTALW

Multiple sequence alignment. Thompson, J.D., Higgins, D.G. and Gibson, T.J. (1994) CLUSTAL W: improving the sensitivity of 25 progressive multiple sequence alignment through sequence weighting, positions-specific gap penalties and weight matrix choice. Nucleic Acids Research, 22:4673-4680.

TMAP

Transmembrane region prediction from multiply aligned 30 sequences. Persson, B. and Argos, P. (1994) Prediction of transmembrane segments in proteins utilising multiple sequence alignments. J. Mol. Biol. 237, 182-192.

ALOM2

Transmembrane region prediction from single sequences.
Klein, P., Kanehisa, M., and DeLisi, C. Prediction of protein
function from sequence properties: A discriminant analysis of a
5 database. *Biochim. Biophys. Acta* 787, 221-226 (1984). Version 2
by Dr. K. Nakai.

SIGNALP

Signal peptide prediction Nielsen, H., Engelbrecht, J.,
Brunak, S., and von Heijne, G (1997). Identification of
10 prokaryotic and eukaryotic signal peptides and prediction of
their cleavage sites. *Protein Engineering* 10, 1-6.

SEG

Detection of low complexity regions in protein sequences.
Wootton, J.C., Federhen, S. (1993) Statistics of local complexity
15 in amino acid sequences and sequence databases. *Computers &*
Chemistry 17, 149-163.

COILS

Detection of coiled coils. Lupas, A., M. Van Dyke, and J.
Stock, "Predicting Coiled Coils from Protein Sequences." *Science*
20 (1991) 252, 1162-1164.

PROSEARCH

Detection of PROSITE protein sequence patterns. Kolakowski
L.F. Jr., Leunissen-J.A.M., Smith-J.E. (1992) ProSearch: fast
searching of protein sequences with regular expression patterns
25 related to protein structure and function. *Biotechniques* 13, 919-
921.

BLIMPS

Similarity searches against a database of ungapped blocks.
J.C. Wallace and Henikoff S., (1992) PATMAT: a searching and
30 extraction program for sequence, pattern and block queries and
databases. *CABIOS* 8, 249-254. Written by Bill Alford.

HMMER

Hidden Markov model software . Sonnhammer E.L.L., Eddy S.R., Durbin R. (1997) Pfam: A Comprehensive Database of Protein Families Based on Seed Alignments. Proteins 28, 405-420.

5 pI

Perl script that returns the amino acid composition, molecular weight, theoretical pI, and expected extinction coefficient of an amino acid sequence. By Fred Lindberg. The parameter-settings were as follows: known3d: score > 100; BLAST: E-value < 10; SCOP: 10 <= 50 Alignments, E-Value < 0.0001; signalp: Y=0.7; untersucht vom N-Terminus her: 50 aa; funcat: E-value < 0.001; BLOCKS: <= 10 hits; BLIMPS: threshold 1100.0; COILS: threshold 0.95; SEG: threshold 20.0; BLAST in report: E-value < 0.001; PIR-KW, superfamilies, EC-Nummern in report: E-value < 0.00001; known3d 15 in report: score > 120

The results of PEDANT analysis together with the results of the similarity searches constitute the basis for the structural and functional annotation of the cDNAs and the encoded proteins, as specified herein.

We claim:

1. An assemblage, comprising at least one nucleic acid molecule having the sequence of a clone selected from the group consisting of: amy2_12g7; amy2_12i1; amy2_13g19; amy2_1be14; 5 amy2_24k15; amy2_2a13; amy2_2i17; fbr2_78d18; fbr2_78e18; amy2_121m2; amy2_24b4; amy2_121f19; tes3_1bb5; amy2_1i24; amy2_1j19; amy2_2b19; amy2_7j5; amy2_14b5; amy2_2o13; fkd2_3k1; mel2_7g14; mel2_12j1; mel2_7k19; amy2_2c22; fbr2_78i21; amy2_1ln4; amy2_1c12; amy2_1i1; amy2_2f22; amy2_2g12; fbr2_78c12; 10 tes3_10i1b; tes3_3la10; amy2_10h17; amy2_10p7; amy2_12d7; amy2_2f18; tes3_11c22; tes3_11d21; tes3_29f24; tes3_31j20; tes3_5k22; Tes3_10n10; Tes3_11e17; Tes3_12d18; Tes3_1417; Tes3_15n14; Tes3_16p3; Tes3_19p12; Tes3_21k14; Tes3_22i11; Tes3_22124; tes3_2bg3; tes3_30pb; amy2_11d2; amy2_12l017; 15 amy2_1i14; amy2_24c8; fbr2_78d4; tes3_11a17; tes3_17i21; tes3_20h12; tes3_7n12; tes3_9e16; amy2_14m1b; tes3_18n14; their complements; and variants thereof.

2. An assemblage, comprising at least one nucleic acid 20 molecule having the sequence of a clone selected from the group consisting of: amy2_12g7; amy2_12i1; amy2_13g19; amy2_1be14; amy2_24k15; amy2_2a13; amy2_2i17; amy2_121m2; amy2_24b4; amy2_121f19; amy2_1i24; amy2_1j19; amy2_2b19; amy2_7j5; amy2_14b5; amy2_2o13; amy2_2c22; amy2_1ln4; amy2_1c12; amy2_1i1; 25 amy2_2f22; amy2_2g12; amy2_10h17; amy2_10p7; amy2_12d7; amy2_2f18; amy2_11d2; amy2_12l017; amy2_1i14; amy2_24c8; their complements; and variants thereof.

3. An assemblage, comprising at least one nucleic acid 30 molecule having the sequence of a clone selected from the group consisting of: fbr2_78d18; fbr2_78e18; fbr2_78i21; fbr2_78c12; fbr2_78d4; their complements; and variants thereof.

4. An assemblage, comprising at least one nucleic acid 35 molecule having the sequence of a clone selected from the group consisting of: amy2_121m2; amy2_24b4; their complements; and variants thereof.

5. An assemblage, comprising at least one nucleic acid molecule having the sequence of a clone selected from the group consisting of: amy2_121f19; tes3_1bb5; their complements; and variants thereof.

5 6. An assemblage, comprising at least one nucleic acid molecule having the sequence of a clone selected from the group consisting of: amy2_1i24; amy2_1j19; amy2_2b19; amy2_7j5; their complements; and variants thereof.

10 7. An assemblage, comprising at least one nucleic acid molecule having the sequence of a clone selected from the group consisting of: amy2_14b5; amy2_2o13; fkd2_3kl; mel2_7g14; their complements; and variants thereof.

15 8. An assemblage, comprising at least one nucleic acid molecule having the sequence of a clone selected from the group consisting of mel2_7g14; mel2_12jl ; mel2_7k19; their complements; and variants thereof.

20 9. An assemblage, comprising at least one nucleic acid molecule having the sequence of a clone selected from the group consisting of: amy2_2c22; fbr2_78i21; their complements; and variants thereof.

10. An assemblage, comprising at least one nucleic acid molecule having the sequence of a clone selected from the group consisting of: amy2_1ln4; amy2_1i1; amy2_2g12; fbr2_78c12; tes3_10ilb; tes3_3la10; their complements; and variants thereof.

25 11. An assemblage, comprising at least one nucleic acid molecule having the sequence of a clone selected from the group consisting of: amy2_10h17; amy2_10p7; amy2_12d7; amy2_2f18; tes3_11c22; tes3_11d21; tes3_29f24; tes3_31j20; tes3_5k22; their complements; and variants thereof.

30 12. An assemblage, comprising at least one nucleic acid molecule having the sequence of a clone selected from the group consisting of: tes3_1bb5; tes3_10ilb; tes3_3la10; tes3_11c22; tes3_11d21; tes3_29f24; tes3_31j20; tes3_5k22; Tes3_10n10; Tes3_11e17; Tes3_12d18 ; Tes3_1417; Tes3_15n14; Tes3_16p3;

Tes3_19p12; Tes3_21k14; Tes3_22i11; Tes3_22i24; tes3_26g3;
tes3_30pb; tes3_11a17; tes3_17i21; tes3_20h12; tes3_7n12;
tes3_9el6; their complements; and variants thereof.

5 13. An assemblage, comprising at least one nucleic acid
molecule having the sequence of a clone selected from the group
consisting of: amy2_11d2; amy2_12l017; amy2_1i14; amy2_24c8;
fbr2_78d4; tes3_11a17; tes3_17i21; tes3_20h12; tes3_7n12;
tes3_9el6; their complements; and variants thereof.

10 14. An assemblage, comprising at least one nucleic acid
molecule having the sequence of a clone selected from the group
consisting of: amy2_14m16; tes3_18n14; amy2_1c12; amy2_2f22;
their complements; and variants thereof.

15 15. A nucleic acid molecule comprising a nucleotide
sequence of the clone fkd2_3k1.

16. A computer readable medium, comprising in electronic
form at least one nucleic acid or protein sequence of a clone
selected from the group consisting of: amy2_12g7; amy2_12i1;
amy2_13g19; amy2_16e14; amy2_24k15; amy2_2a13; amy2_2i17;
20 fbr2_78d18; fbr2_78e18; amy2_12l1m2; amy2_24b4; amy2_12l19;
tes3_16b5; amy2_1i24; amy2_1j19; amy2_2b19; amy2_7j5; amy2_14b5;
amy2_20l3; fkd2_3k1; mel2_7g14; mel2_12j1; mel2_7k19; amy2_2c22;
fbr2_78i21; amy2_11n4; amy2_1c12; amy2_1i1; amy2_2f22; amy2_2g12;
fbr2_78c12; tes3_10i16; tes3_31a10; amy2_10h17; amy2_10p7;
25 amy2_12d7; amy2_2f18; tes3_11c22; tes3_11d21; tes3_29f24;
tes3_31j20; tes3_5k22; Tes3_10n10; Tes3_11e17; Tes3_12d18;
Tes3_14l7; Tes3_15n14; Tes3_16p3; Tes3_19p12; Tes3_21k14;
Tes3_22i11; Tes3_22i24; tes3_26g3; tes3_30pb; amy2_11d2;
amy2_12l017; amy2_1i14; amy2_24c8; fbr2_78d4; tes3_11a17;
30 tes3_17i21; tes3_20h12; tes3_7n12; tes3_9el6; amy2_14m16;
tes3_18n14; their complements; and variants thereof.

17. A computer readable medium, comprising in electronic
form at least one nucleic acid or protein sequence of a clone
selected from the group consisting of: amy2_12g7; amy2_12i1;
amy2_13g19; amy2_16e14; amy2_24k15; amy2_2a13; amy2_2i17;

amy2_121m2; amy2_24b4; amy2_121f19; amy2_1i24; amy2_1j19;
amy2_2b19; amy2_7j5; amy2_14b5; amy2_2013; amy2_2c22; amy2_1ln4;
amy2_1c12; amy2_lil; amy2_2f22; amy2_2g12; amy2_10h17; amy2_10p7;
amy2_12d7; amy2_2f18; amy2_11d2; amy2_121o17; amy2_1l14;
5 amy2_24c8; their complements; and variants thereof.

18. A computer readable medium, comprising in electronic form at least one nucleic acid or protein sequence of a clone selected from the group consisting of: fbr2_78d18; fbr2_78e18; fbr2_78i21; fbr2_78c12; fbr2_78d4; their complements; and
10 variants thereof.

19. A computer readable medium, comprising in electronic form at least one nucleic acid or protein sequence of a clone selected from the group consisting of: amy2_121m2; amy2_24b4; their complements; and variants thereof.

15 20. A computer readable medium, comprising in electronic form at least one nucleic acid or protein sequence of a clone selected from the group consisting of: amy2_121f19; tes3_1bb5; their complements; and variants thereof.

21. A computer readable medium, comprising in electronic 20 form at least one nucleic acid or protein sequence of a clone selected from the group consisting of: amy2_1i24; amy2_1j19; amy2_2b19; amy2_7j5; their complements; and variants thereof.

22. A computer readable medium, comprising in electronic 25 form at least one nucleic acid or protein sequence of a clone selected from the group consisting of: amy2_14b5; amy2_2013; fkd2_3k1; mel2_7g14; their complements; and variants thereof.

23. A computer readable medium, comprising in electronic 30 form at least one nucleic acid or protein sequence of a clone selected from the group consisting of: mel2_12j1 ; mel2_7k19; their complements; and variants thereof.

24. A computer readable medium, comprising in electronic form at least one nucleic acid or protein sequence of a clone selected from the group consisting of: amy2_2c22; fbr2_78i21; their complements; and variants thereof.

25. A computer readable medium, comprising in electronic form at least one nucleic acid or protein sequence of a clone selected from the group consisting of: amy2_1ln4; amy2_lil; amy2_2gl2; fbr2_78c12; tes3_10ilb; tes3_3la10; their complements; and variants thereof.

26. A computer readable medium, comprising in electronic form at least one nucleic acid or protein sequence of a clone selected from the group consisting of: amy2_10h17; amy2_10p7; amy2_12d7; amy2_2fl8; tes3_1lc22; tes3_1ld21; tes3_29f24; tes3_3lj20; tes3_5k22; their complements; and variants thereof.

27. A computer readable medium, comprising in electronic form at least one nucleic acid or protein sequence of a clone selected from the group consisting of: tes3_1bb5; tes3_10ilb; tes3_3la10; tes3_1lc22; tes3_1ld21; tes3_29f24; tes3_3lj20; tes3_5k22; Tes3_10n10; Tes3_1le17; Tes3_12d18 ; Tes3_1417; Tes3_15n14; Tes3_1bp3; Tes3_19p12; Tes3_21k14; Tes3_22i11; Tes3_22l24; tes3_2bg3; tes3_30pb; tes3_3la17; tes3_17i21; tes3_20h12; tes3_7n12; tes3_9elb; their complements; and variants thereof.

28. A computer readable medium, comprising in electronic form at least one nucleic acid or protein sequence of a clone selected from the group consisting of: amy2_1ld2; amy2_12l017; amy2_1il4; amy2_24c8; fbr2_78d4; tes3_1la17; tes3_17i21; tes3_20h12; tes3_7n12; tes3_9elb; their complements; and variants thereof.

29. A computer readable medium, comprising in electronic form at least one nucleic acid or protein sequence of a clone selected from the group consisting of: amy2_14mlb; tes3_18n14; amy2_1c12; amy2_2f22; their complements; and variants thereof.

30. A computer readable medium, comprising in electronic form a nucleic acid or protein sequence of the clone fkd2_3kl.