1.

9

9-1.

1.

1.1

);

$$D = (12, 1 \pm 0, 2) \tag{1}$$

$$L = \pi D$$
 : $L = (33.1 \pm 0.6)$ (2)

 $\varepsilon = 1\%$ 1.2 - 1.3 n –

1.

n	L _n ,	\mathcal{E} , %
3	31,4	-17,3
4	34,2	-10,0
6	36,3	-4,5
8	37,0	-2,6
9	37,2	-2,0
12	37,6	-1,1
24	37,9	-0,3

1.4 1.5 5%

2.)

)

) n). m

> nD = md. (3)

1 IX 1.

D, d -

, n,m 48 .(

n,m.

3-5 .

n,m.

2.1

2

2.2 m = 4n.

4 . 4-6 .

 $n = \frac{48}{4 \cdot 4} = 4$, m = 16.

12,5 , 50 .

1. IX .

3. ()

$$\frac{D}{d} = \frac{3}{2}.$$

3

,

. 22 , 66 .

IX . 1. 3

IX .

4

2020-2021

9-2.

1. .

1.

1.

n	R,
1	2,90
2	3,10
3	3,00
4	3,10
5	2,90
6	3,10
7	3,00
8	2,80
9	3,10
10	2,90

$$R = (2.99 \pm 0.07) \tag{1}$$

2.

2.1

 $U_0 = 1,45$

2.3 - 2.6 , 2.

r = 5.98

 $U = U_0 \frac{R}{R+r};$

 $P = \frac{U^2}{R}.$

IX . 1.

2020-2021

						Т
	R	U,	Ρ,	R	U,	Ρ,
	0	0,0	0,0	0,2	8	0,3
1	1	208,5	43,5	0,9	158	27,7
2	2	364,7	66,5	1,5	249	41,3
3	3	486,1	78,8	2,1	327	50,9
4	4	583,2	85,0	3,3	478	69,2
5	5	662,6	87,8	4,3	553	71,1
6	6	728,7	88,5	5,4	646	77,3
7	7	784,7	88,0	6	680	77,1
8	8	832,6	86,7	7,3	756	78,3
9	9	874,2	84,9	8,2	797	77,5
10	10	910,5	82,9	9,3	847	77,1
11	11	942,6	80,8	10,2	880	75,9
12	12	971,1	78,6	11,9	928	72,4
13	13	996,6	76,4	12,8	956	71,4
14	14	1 019,5	74,2	14	982	68,9
15	15	1 040,3	72,1	14,6	1001	68,6
				15,4	1014	66,8

2.

IX . 1. 5

3.

r.

3.

	3.			
			P1,	P2,
R1,	U1,	U2,		
0,2	17	35	1,4	0,3
0,8	228	145	65,0	5,3
1,0	280	171	78,4	7,3
1,9	467	271	114,8	18,4
2,8	582	332	121,0	27,6
3,7	662	374	118,4	35,0
4,8	733	413	111,9	42,6
5,6	770	432	105,9	46,7
6,9	814	455	96,0	51,8
7,8	838	468	90,0	54,8
8,6	856	477	85,2	56,9
9,8	876	488	78,3	59,5
10,8	895	499	74,2	62,3
11,7	907	505	70,3	63,8
12,6	919	512	67,0	65,5
13,4	926	515	64,0	66,3
14,6	939	522	 60,4	68,1
15,3	943	524	58,1	68,6

IX 6

1.

.

IX . 1. 7

$$R_1 = \frac{R_2}{(r_2 + R_2)^2} ,$$

IX . . . 1. 8

« 2020-2021

. 10

10-1.

1.

$$\mu_1 = 0.19$$
5%

2.

2.1. (L

 $\mu L = h \implies h = \frac{L}{\mu}$.

$$\mu L = h \implies h = \frac{L}{\mu}$$
 (1)

1. 2.2

1.

						0,273	
L1,		L2	L3	L4	L5	L,	h,
7	7,7	7,9	8,1	8,0	8,3	8,0	2,0
13	3,0	13,5	13,2	13,7	13,6	13,4	3,1
17	7,7	18,0	18,5	18,5	18,5	18,2	4,3
23	3,0	23,3	23,4	23,6	23,2	23,3	5,4
27	7,5	26,9	27,5	27,6	27,9	27,5	6,5
31	1,6	32,4	32,5	32,0	32,0	32,1	7,6
36	3,0	36,9	36,5	36,9	36,5	36,6	8,7
41	1,7	41,1	42,5	41,2	42,4	41,8	9,8
45	5,6	45,5	45,5	45,4	45,5	45,5	10,8
51	1,4	50,5	51,0	51,2	50,9	51,0	11,8
55	5,7	55,6	55,4	55,5	56,4	55,7	12,9

5

1. 1

X .

L(h) .

L = ah + b. ,

$$a = 4.31 \pm 0.04$$

 $b = -0.4 \pm 0.3$ (2)

, (1),

$$\mu = \frac{1}{a} = (0,238 \pm 0,002)$$

;),

. ,

. , , , ,

•

2.3 ,

, ,

, :

X . 1. 2

$$\Delta E = \frac{mv^2}{R} \cdot R\alpha = \alpha mv^2$$
 (3)

 $\frac{mv^2}{2} = mgh - \frac{\mu mgh}{\cos \alpha}$ (4)

L(h), α.

α (3) $\alpha \rightarrow 0$. L(h)

X . 1. 3

	1		1		1	,
		2				
					0,357	
L1,	L2	L3	L4	L5	L,	h,
9,7	10,0	10,0	10,1	10,1	10,0	2,3
15,7	15,8	15,7	15,9	15,9	15,8	3,8
21,4	21,4	21,8	21,6	21,5	21,5	5,3
27,6	27,6	27,6	27,4	27,7	27,6	6,7
32,2	32,9	32,4	32,5	32,6	32,5	8,2
37,6	37,5	37,2	37,3	37,5	37,4	9,6
43,5	43,2	43,4	43,5	43,6	43,4	11
48,2	48,5	48,0	48,2	48,2	48,2	12,4
53,5	53,5	54,5	54,6	54,0	54,0	13,8
58,6	58,7	58,0	58,4	58,0	58,3	15,1
62,9	63,4	63,2	63,4	63,3	63,2	16,5
		3				
					0,450	
L1,	L2	L3	L4	L5	L,	h,
10,4	10,5	10,5	11,0	10,9	10,7	2,7
17,1	17,4	17,5	17,5	17,6	17,4	4,5
24,4	24,5	24,5	24,5	24,6	24,5	6,3
29,9	30,2	30,2	30,3	30,8	30,3	8,1
36,0	36,2	36,5	36,5	37,2	36,5	10
43,1	42,6	43,5	43,5	44,0	43,3	11,8
50,1	50,7	50,2	49,0	48,5	49,7	13,5
56,5	56,2	57,5	56,2	57,0	56,7	15,3
62,3	62,4	62,6	62,6	62,5	62,5	17,1
66,9	66,8	67,0	66,9	67,2	67,0	18,8
73,0	73,8	73,2	73,5	73,6	73,4	20,6

« •

2020-2021

 $\mu = 0.18$.

2020-2021 10-2.

· · · · · ·

5-7 φ
...

3. ,

20 .

X . 1. 6

. 11

11.1

1. .

1.1

$$R = (2.99 \pm 0.05) \tag{1}$$

1.2

1 ().

1.

R,	U,	I,
2,9	1292	445,5
6,0	1365	227,5
9,0	1393	154,8
12,1	1412	116,7
15,0	1421	94,7
18,1	1430	79,0
21,1	1435	68,0
23,9	1439	60,2
27,0	1443	53,4
29,9	1446	48,4

$$U = \varepsilon - \operatorname{Ir}, \qquad ()$$

$$\varepsilon = (1460 \pm 4)$$

r = (0,39 \pm 0,02)

2.

$$\varphi_{n} = \begin{cases} \varphi_{4} \frac{n}{4} & n = 0,1,...4 \\ \varphi_{4} \frac{10-n}{6} & n = 4,5,...10 \end{cases}$$

 ${m arphi}_4$.

1

$$Z_n = \frac{\varphi_n}{\varphi_4}.$$

2

2.

	2.		
	Z_n	$oldsymbol{arphi}_{ m n}$,	Z_n
n	()	$\varphi_{\rm n}$,	Z _n
0	0,00	5,0	0,00
1	0,25	343,0	0,25
2	0,50	697,0	0,51
3	0,75	1030,0	0,75
4	1,00	1368,0	1,00
5	0,83	1140,0	0,83
6	0,67	910,0	0,67
7	0,50	679,0	0,50
8	0,33	463,0	0,34
9	0,17	230,0	0,17
10	0,00	6,0	0,00

- , - .

3. .

3 .

3.

	Z_n		
n	()	$\boldsymbol{\varphi}_{\!\scriptscriptstyle \mathrm{n}}$,	Z_n
0	0,00	5	0,00
1	0,21	289	0,22
2	0,43	583	0,44
3	0,71	958	0,72
4	1,00	1333	1,00
5	0,86	1140	0,86
6	0,71	952	0,71
7	0,57	758	0,57
8	0,43	575	0,43
9	0,21	285	0,21
10	0,00	6	0,00

2020-2021

4.

 $(\boldsymbol{\varphi}_4 - \boldsymbol{\varphi}_0) \qquad .$

4.

n	U_{2n} ,	Z_{2n}
0	-315	-0,508
1	-186	-0,300
2	0	0,000
3	152	0,245
4	305	0,492
5	137	0,221
6	58	0,094
7	0	0,000
8	-57	-0,092
9	-140	-0,226
10	-307	-0,495

,

; ·

- 2 7.

11-2.

1.

 $T_0 = (1,58 \pm 0,03)$

$$T_0 = (1,58 \pm 0,03) \tag{1}$$

2. T(n)

2.1

$$\frac{K}{K_0} = \frac{m_0 + nm}{m_0} = 1 + n\frac{m}{m_0} . {2}$$

$$z = \frac{T}{T_0} = \sqrt{\frac{1}{1 + n\frac{m}{m_0}}}.$$
 (3)

 $\frac{1}{T^2} = f(n).$

1. (3).

1.

n	t1	t2	t3	Т	Z	1/z2
0	7,89	7,93	7,91	1,582	1,000	1,000
1	5,33	5,37	5,34	1,069	0,676	2,189
2	4,31	4,32	4,27	0,860	0,544	3,384
3	3,75	3,81	3,74	0,753	0,476	4,410
4	3,38	3,39	3,34	0,674	0,426	5,509
5	3,10	3,07	3,08	0,617	0,390	6,581
6	2,88	2,90	2,87	0,577	0,365	7,526
7	2,72	2,80	2,74	0,551	0,348	8,253
8	2,59	2,61	2,58	0,519	0,328	9,303
9	2,52	2,49	2,51	0,501	0,317	9,958
10	2,45	2,40	2,38	0,482	0,305	10,773

5 (

XI 2. 4

, , M

•

T(r)

;

$$E_{K} = (A + mr^{2}) \frac{\omega^{2}}{2}$$
M.

$$\frac{1}{T_0} = \sqrt{\frac{1}{A}}.$$

$$Z^2 = f(r^2)$$

2

2020-2021

2.

r,	t1	t2	t3	T	T^2	r^2
12	8,43	8,35	8,39	1,678	2,816	144
11	8,21	8,27	8,18	1,644	2,703	121
10	8,05	8,03	8,02	1,607	2,581	100
9	7,86	7,87	7,84	1,571	2,469	81
8	7,72	7,72	7,69	1,542	2,378	64
7	7,60	7,56	7,61	1,518	2,304	49
6	7,48	7,42	7,47	1,491	2,224	36
5	7,28	7,33	7,29	1,460	2,132	25

2020-2021

$$\eta = \frac{L}{a}.$$

a :

$$Y = \ln(T\sqrt{L})$$

$$X = \ln\left(\frac{a}{L}\right)$$

3 3.

a,	L,	t1	t2	t3	T	a/L	X	Y
5	30	8,43	8,35	8,39	1,678	0,167	-1,792	2,218
5	27,5	7,78	7,75	7,78	1,554	0,182	-1,705	2,098
5	24,5	7,47	7,48	7,41	1,491	0,204	-1,589	1,999
5	21,3	6,73	6,67	6,70	1,340	0,235	-1,449	1,822
5	18,5	6,00	6,42	6,39	1,254	0,270	-1,308	1,685
4	30	10,48	10,47	10,42	2,091	0,133	-2,015	2,438
3	30	14,09	13,97	13,99	2,803	0,100	-2,303	2,731
2	30	19,53	19,50	19,71	3,921	0,102	-2,708	3,067

$$(\ . \ . \)$$

$$\gamma = -1 \ .$$