Examen parcial, 23 d'abril de 2010

- **1.** Corbes. Sigui $\alpha(t)$ una hèlix amb eix donat pel vector unitari \vec{v} , angle amb l'eix igual a θ i paràmetre arc s (mesurat des de t=0). Considerem la corba γ tal que $\alpha(t) = \gamma(t) + s(t) \cos \theta \ \vec{v}$. Proveu
 - a) γ està en el pla que passa per $\alpha(0)$ i és ortogonal a \vec{v}
 - b) La curvatura de γ és $\kappa/\sin^2\theta$ on κ és la curvatura de α .
 - c) Trobeu $\vec{v}, \theta, \gamma, \kappa$ i τ per la corba $x = 3t t^3, y = 3t^2, z = 3t + t^3$. Comproveu la propietat de l'apartat anterior.

Solució: Al primer apartat volem veure que $\langle \gamma(t) - \alpha(0), v \rangle = 0$ per a qualsevol t. Derivem i tenim

$$\langle \gamma'(t), v \rangle = \langle \alpha'(t) - s'(t) \cos \theta v, v \rangle = |\alpha'| \cos \theta - |\alpha'| \cos \theta = 0.$$

Com que $\langle \gamma(t) - \alpha(0), v \rangle = 0$ hem acabat. La curvatura de γ és $|\gamma' \times \gamma''|/|\gamma'|^3$. Tenim que $\gamma' = \alpha' - s' \cos \theta v$. Per simplificar els càlculs suposem α unitària, llavors s' = 1 i $\gamma' \times \gamma'' = \alpha' \times \alpha'' - \cos \theta v \times \alpha'' = t \times \kappa n - \kappa \cos \theta v \times n$. Deduïm que la curvatura de γ és el que es demana. La corba que ens donen te com a vector tangent unitari

$$\frac{1}{\sqrt{2}} \left(\frac{1-t^2}{1+t^2}, \frac{2t}{1+t^2}, 1 \right).$$

Com que la darrera component val $1/\sqrt{2}$, amb la direcció (0,0,1) forma una angle constant de $\pi/4$. La projecció és la corba plana $\gamma(t)=(3t-t^3,3t^2)$ en el pla z=0. La curvatura d'aquesta corba plana és $2/3(1+t^2)^2$ llavors, fent servir la formula de l'apartat b) tenim que la curvatura de la corba original és $1/3(1+t^2)^2$. Com que l'angle am l'eix és $\pi/4$ resulta que $\kappa/\tau=-1$ llavors la torsió val el mateix que la curvatura canviada de signe.

2.- Superficies.

- a) Definiu curvatures i direccions principals, curvatura de Gauss K i curvatura mitjana H d'una superfície regular.
- b) Proveu que es compleix la relació $H^2 \geq K$.
- c) Calculeu els radis principals de curvatura en els punts de la superfície donada per l'equació $y = x \tan\left(\frac{z}{a}\right)$ amb a > 0 i veieu que són $\pm \frac{x^2 + y^2 + a^2}{a}$. Amb aquest resultat podeu dir fàcilment què val H i K? (aquesta darrera pregunta la podeu respondre encara que no feu els càlculs que es demanen abans!).

Solució: Les curvatures principals són els valors mínim i màxim de les curvatures normals en un punt. També són els valors propis de l'aplicació de Weingarten -dN. Les direccions principals són les direccions en les quals es dona la curvatura normal màxima i mínima, també les podem pensar com les direccions pròpies de l'endormorfisme de Weingarten. Si k_1, k_2 són les curvatures principals aleshores $K = k_1k_2$ i $H = (k_1 + k_2)/2$. Són el determinant i la traça de l'aplicació de Weingarten. $H^2 \geq K$ es dedueix del fet que la mitjana aritmètica sempre és més gran que la geomètrica. També ho podem veure del fet que k_1, k_2 són les arrels reals d'un polinomi de segon grau $(t^2 - (k_1 + k_2)t + k_1k_2)$. Per veure que els radis de curvatura tenen l'expressió que s'indica fem un càlcul en coordenades i ja està. D'aquesta expressió deduïm

$$H = 0, \quad K = -\left(\frac{x^2 + y^2 + a^2}{a}\right)^2.$$