Special Matrices

Diagonally Dominant

A matrix is diagonally dominant when

$$|a_{ii}| \ge \sum_{j=1, j \ne i}^{n} |a_{ij}|$$

holes for each i = 1, 2, ..., n.

It is strictly diagonally dominant when,

$$|a_{ii}| > \sum_{j=1, j \neq i}^{n} |a_{ij}|$$

Symmetric Positive Definite Matrices (SPD)

A matrix A is symmetric positive definite if it is symmetric and if $x^t Ax > 0$ for every n-dimensional vector $x \neq 0$.

If A is an $n \times n$ SPD matrix, then

- A has an inverse
- $a_{ii} > 0$ for each i = 1, 2, ..., n
- $max_{1 \le k, j \le n} |a_{kj}| \le max_{1 \le i \le n} |a_{ii}|$
- $(a_{ij})^2 < a_{ii}a_{jj}$, for each $i \leq j$

The matrix A is positive definite if and only if A can be factored in the form LDL^t , where L is lower triangular with 1s on its diagonal and D is a diagonal matrix with positive diagonal entries. The matrix A is positive definite if and only if A can be factored in the form LL^t , where L is lower triangular with nonzero diagonal entries.

Cholesky (LL^T)

Tridiagonal

O(n) time multiplication

Vector Norms

A vector norm on \mathbb{R}^n is a function, $||\cdot||$, from \mathbb{R}^n into \mathbb{R} with the following properties:

- ||x|| > 0 for all $x \in \mathbb{R}^n$
- ||x|| = 0 if and only if x = 0
- $||\alpha x|| = |\alpha|||x||$ for all $\alpha \in R$, $x \in R^n$
- $||x + y|| \le ||x|| + ||y||$ for all $x, y \in \mathbb{R}^n$

The l_2 norm is defined as such:

$$||x||_2 = \left\{\sum_{i=1}^n x_i^2\right\}^{\frac{1}{2}}$$

The l_{∞} norm is defined as such:

$$||x||_{\infty} = max_{1 \le i \le n} |x_i|$$

The distance between two vectors is defined as the norm of the difference of the vectors.

A sequence $\{x^{(k)}\}_{k=1}^{\infty}$ of vectors in \mathbb{R}^n is said to converge to x with respect to the norm $||\cdot||$ if, given any $\epsilon > 0$, there exists an integer $N(\epsilon)$ such that

$$||x^{(\epsilon)} - x|| < \epsilon$$
, for all $k \ge N(\epsilon)$

The sequence of vectors $\{x^{(k)}\}$ converges to x in \mathbb{R}^n with respect to the l_{∞} norm if and only if $\lim_{k\to\infty}x^{(k)}=x_i$, for each i=1,2,...,n.

Matrix Norms

A matrix norm on the set of all $n \times n$ matrices is a real-valued function, $||\cdot||$, defined on this set, satisfying for all $n \times n$ matrices A and B and all real numbers α :

- $||A|| \ge 0$
- ||A|| = 0 if and only if A is 0, the matrix with all 0 entries
- $||\alpha A|| = |\alpha|||A||$
- $||A + B|| \le ||A|| + ||B||$
- $||AB|| \le ||A||||B||$

The distance between $n \times n$ matrices A and B with respect to this matrix norm is ||AB||. If $||\cdot||$ is a vector norm on \mathbb{R}^n , then

$$||A|| = max_{||x||=1} ||Ax||$$

is a matrix norm.

For any vector $z \neq 0$, matrix A, and any natural norm $||\cdot||$, we have

$$||Az|| \leq ||A|| \cdot ||z||$$

If A = (aij) is an $n \times n$ matrix, then

$$||A||_{\infty} = \max_{1 \le i \le n} \sum_{i=1}^{n} |a_{ij}|$$

(max row sum).

Spectral Radius

The spectral radius $\rho(A)$ of a matrix A is defined by

$$\rho(A) = \max |\lambda|$$
, where λ is an eigenvalue of A

Jacobi Method

The Jacobi method can be written in the form $x^{(k)} = Tx^{(k-1)} + c$ by splitting A into its diagonal and off-diagonal parts.

$$A = D - L - U$$

So we have,

$$x^{(k)} = D^{-1}(L+U)x^{(k-1)} + D^{-1}b, k = 1, 2, \dots$$

To shorten,

$$T_j = D^{-1}(L+U)$$
 and $c_j = D^{-1}b$

So we have

$$x^{(k)} = T_j x^{(k-1)} + c_j$$

Gauss-Siedel Method

We have

$$x^{(k)} = (D-L)^{-1}Ux^{(k-1)} + (D-L)^{-1}b$$

Letting

$$T_q = (D - L)^{-1}U$$
 and $c_q = (D - L)^{-1}b$

We get

$$x^{(k)} = T_g x_{(k-1)} + c_g$$

Note: for D-L to be nonsingular, it is necessary and sufficient that $a_{ii} \neq 0$.

Conjugate Gradient Method

Matrix must be positive definite.