# Random Forest Algorithm

- Random Forest is a supervised machine learning algorithm that can be used for both classification and regression tasks.
- It utilizes ensemble learning, combining multiple decision trees to improve predictive accuracy.
- **Second Second S**
- ❖ The final prediction is determined by majority vote among the decision trees.
- ❖ More trees in the forest generally lead to higher accuracy.



# Why use Random Forest?

- ✓ It takes less training time as compared to other algorithms.
- ✓ It predicts output with high accuracy, even for the large dataset it runs efficiently.
- ✓ It can also maintain accuracy when a large proportion of data is missing.

# How does Random Forest algorithm work?

- Step-1: Select random K data points from the training set.
- **Step-2:** Build the decision trees associated with the selected data points (Subsets).
- **Step-3:** Choose the number N for decision trees that you want to build.
- Step-4: Repeat Step 1 & 2.
- **Step-5:** For new data points, find the predictions of each decision tree, and assign the new data points to the category that wins the majority votes.

# **Applications of Random Forest**

- 1. **Banking:** Banking sector mostly uses this algorithm for the identification of loan risk.
- 2. **Medicine:** With the help of this algorithm, disease trends and risks of the disease can be identified.
- 3. **Land Use:** We can identify the areas of similar land use by this algorithm.
- 4. Marketing: Marketing trends can be identified using this algorithm.

# **Advantages of Random Forest**

- o It reduces overfitting in decision trees and helps to improve the accuracy
- o It is flexible to both classification and regression problems
- o It works well with both categorical and continuous values
- o It automates missing values present in the data
- o Normalising of data is not required as it uses a rule-based approach.

# **Disadvantages of Random Forest**

- It requires much computational power as well as resources as it builds numerous trees to combine their outputs.
- It also requires much time for training as it combines a lot of decision trees to determine the class.
- Due to the ensemble of decision trees, it also suffers interpretability and fails to determine the significance of each variable.

# Difference Between Decision Tree and Random Forest

| Comparison basis | Decision Tree                                             | Random Forest                                                         |  |
|------------------|-----------------------------------------------------------|-----------------------------------------------------------------------|--|
| Speed            | It is fast                                                | It is slow                                                            |  |
| Interpretation   | It is easy to interpret                                   | It is quite complex to interpret                                      |  |
| Time             | Takes less time                                           | Takes more time                                                       |  |
| Linear problems  | It is best to build solutions for linear patterns of data | It cannot handle data with linear<br>patterns                         |  |
| Overfitting      | There is a possibility of overfitting of data             | There is a reduced risk of overfitting, because of the multiple trees |  |
| Computation      | It has less computation                                   | It has more computation                                               |  |
| Visualization    | Visualization is quite simple                             | Visualization is quite complex                                        |  |
| Outliers         | Highly prone to being affected by outliers                | Much less likely to be affected by outliers                           |  |

# **Ensemble Methods**

- \* Ensemble methods help minimize error in learning by reducing noise, bias, and variance.
- They improve the stability and accuracy of machine learning algorithms.
- Combining multiple classifiers reduces variance, especially for unstable classifiers.
- ❖ Bagging and Boosting use a pool of base learner algorithms, such as classification trees.

# **Ensemble Methods**

# Simple Ensemble Methods

- Max Voting
- Averaging
- Weighted Averaging

# Advanced Ensemble Methods

- Stacking
- Blending
- Bagging
- Boosting

### 1) Max Voting:

- Commonly used for classification problems.
- Each model makes predictions for individual data points.
- Predictions are considered as "votes".
- Final prediction is the outcome with the majority of votes.

### 2) Averaging:

- Multiple predictions are made for each data point.
- The average of all predictions is calculated.
- This average is used as the final prediction.

### 3) Weighted Average:

- ❖ An extension of the averaging method.
- Weights are assigned to each model based on its prediction.
- ❖ The weighted average of predictions is used as the final prediction.



# 1. Bagging (bootstrap aggregating)

- It is a technique used to improve the accuracy of machine learning models.
- It is used for classification and regression task.
- It reduces variance by averaging the predictions of multiple base learners, which are typically decision trees.
- Bagging is effective in reducing overfitting and improving the stability of models.
- it can be computationally expensive and may introduce bias if not implemented correctly.

### Bagging consists of two steps:

- **bootstrapping:** Bootstrapping involves creating multiple training sets by randomly sampling with replacement from the original dataset.
- ➤ **Aggregation:** Aggregation involves combining the predictions of the base learners, typically by averaging them.

## The Process of Bagging (Bootstrap Aggregation)



# 2. Boosting

- Boosting is an ensemble technique.
- it improves the accuracy of machine learning models by combining weak learners into a strong learner.
- It works by arranging weak learners in a sequence, where each learner learns from the mistakes of the previous learner.

### **Boosting takes various forms including:**

- ➤ **Gradient boosting:** Gradient boosting adds predictors sequentially, where each predictor corrects the errors of the previous predictor, using gradient descent to identify and counter errors.
- AdaBoost: AdaBoost uses decision trees with a single split, known as decision stumps, and focuses on observations with similar weights.
- > **XGBoost**: XGBoost utilizes decision trees with boosted gradient for enhanced speed and performance, relying heavily on computational speed and target model performance.

Model training in gradient boosted machines follows a sequence, making implementation slower compared to other methods.

The Process of Boosting

# Steps of Boosting

# Training Subset 2 Weak testing False prediction Subset 2 Weak False prediction Subset 2 Subset Weak 7 Overall

# 3. Stacking

- Stacking is an ensemble method that aims to improve prediction accuracy by combining multiple strong learners into a single robust model.
- It differs from bagging and boosting in that it combines strong learners, heterogeneous models, and involves creating a metamodel.
- ❖ The process involves training individual heterogeneous models on an initial dataset.
- These models make predictions, forming a new dataset based on those predictions.
- ❖ This new dataset is used to train a metamodel, which makes the final prediction.
- The prediction is combined using weighted averaging.
- Stacking's ability to combine strong learners allows it to incorporate bagged or boosted models.

### Steps of Stacking

### The Process of Stacking



# When to use Bagging vs Boosting vs Stacking?

|                       | Bagging                  | Boosting           | Stacking           |
|-----------------------|--------------------------|--------------------|--------------------|
| Purpose               | Reduce Variance          | Reduce Bias        | Improve Accuracy   |
| Base Learner Types    | Homogeneous              | Homogeneous        | Heterogeneous      |
| Base Learner Training | Parallel                 | Sequential         | Meta Model         |
| Aggregation           | Max Voting,<br>Averaging | Weighted Averaging | Weighted Averaging |