Announcements

- Happy Birthday Griffiths (and Ricky!)
- Homework
 - Homework 12 due tonight!
- Final
 - Coming at you Friday!
 - Due the 14th at 5pm
 - Probably looking at around 5-6 problems
 - Chapters 6 and 7 will be weighted a bit heavier, but it is comprehensive
 - Come the moment I send it out, my solutions sets will be locked down (figuratively)
 - Total learning objectives posted on Campuswire
- On Friday
 - Talking Maxwell's Laws
 - Class picture
 - And my evaluations!
 - I'm particularly interested how you felt about the way lectures were done this semester
- Read rest of Ch 7 for Friday

The current in an infinite solenoid with uniform magnetic field is increasing such that $B=B_0+kt$. If you calculate the potential between points A and B along the two different paths shown, do you get the same answer?

- A. Yes
- B. No
- C. Can't tell with current info
- D. Only at certain times

The current in an infinite solenoid with uniform magnetic field is increasing such that $B=B_0+kt$. If you calculate the potential between points A and B along the two different paths shown, do you get the same answer?

- A. Yes
- B. No
- C. Can't tell with current info
- D. Only at certain times

A.
$$\frac{\mathrm{d}B}{\mathrm{d}t} > 0$$

$$3. \ \frac{\mathrm{d}B}{\mathrm{d}t} < 0$$

C.
$$\frac{\mathrm{d}B}{\mathrm{d}t} = 0$$

D. Impossible to say

$$\vec{\mathbf{E}}(s,\phi,z) = \frac{c}{s}\hat{\boldsymbol{\phi}}$$

A.
$$\frac{\mathrm{d}B}{\mathrm{d}t} > 0$$

B.
$$\frac{\mathrm{d}B}{\mathrm{d}t} < 0$$

C.
$$\frac{\mathrm{d}B}{\mathrm{d}t} = 0$$

D. Impossible to say

$$\vec{\mathsf{E}}(s,\phi,z) = \frac{c}{s}\hat{\boldsymbol{\phi}}$$

$$\vec{\mathsf{E}}(s,\phi,z)=c\hat{\phi}$$

- A. $\frac{\mathrm{d}B}{\mathrm{d}t} > 0$
- B. $\frac{\mathrm{d}B}{\mathrm{d}t} < 0$
- C. $\frac{\mathrm{d}B}{\mathrm{d}t} = 0$
- D. Impossible to say

$$\vec{\mathsf{E}}(s,\phi,z)=c\hat{\phi}$$

A.
$$\frac{\mathrm{d}B}{\mathrm{d}t} > 0$$

B.
$$\frac{\mathrm{d}B}{\mathrm{d}t} < 0$$

C.
$$\frac{\mathrm{d}B}{\mathrm{d}t} = 0$$

D. Impossible to say

The current \mathcal{I}_1 in loop 1 is increasing. What is the direction of the induced current in loop 2, which is coaxial with loop 1?

- A. Same direction as $\vec{\mathcal{I}}_1$
- B. Opposite direction of $\vec{\mathcal{I}}_1$
- C. There is no induced current
- D. It depends on the distance between the loops

- A. Same direction as $\vec{\mathcal{I}}_1$
- B. Opposite direction of $\vec{\mathcal{I}}_1$
- C. There is no induced current
- D. It depends on the distance between the loops

The current \mathcal{I}_1 in loop 1 is increasing. What is the direction of the induced current in loop 2, which is coaxial with loop 1?

- A. Same direction as $\vec{\mathcal{I}}_1$
- B. Opposite direction of $\vec{\mathcal{I}}_1$
- C. There is no induced current
- D. It depends on the distance between the loops

The current \mathcal{I}_1 in loop 1 is increasing. What is the direction of the induced current in loop 2, which is coaxial with loop 1?

- A. Same direction as $\vec{\mathcal{I}}_1$
- B. Opposite direction of $\vec{\mathcal{I}}_1$
- C. There is no induced current
- D. It depends on the distance between the loops

A wire (1) is looped around a very long solenoid (2).

 $\Phi_1 = M_{12}\mathcal{I}_2 = \text{ flux through loop 1 due to current in 2}$

 $\Phi_2 = \mathit{M}_{21}\mathcal{I}_1 = ext{ flux through solenoid due to current in } 1$

Which M is easier to compute?

- A. M_{12}
- B. M_{21}
- C. They are equally difficult to compute
- D. Can't say with this information

A wire (1) is looped around a very long solenoid (2).

 $\Phi_1 = M_{12}\mathcal{I}_2 = \text{ flux through loop 1 due to current in 2}$

 $\Phi_2 = extit{M}_{21} \mathcal{I}_1 = ext{ flux through solenoid due to current in } 1$

Which M is easier to compute?

- A. M_{12}
- B. M_{21}
- C. They are equally difficult to compute
- D. Can't say with this information

