Class 5: Data Vis with ggplot

Dylan Mullaney

Intro to ggplot

There are many graphics systems in R (ways to make plots and figures). These include "base" R plots. Today we will focus mostly on the **ggplot2** package.

Let's start with a plot of a simple in-built dataset called 'cars'.

cars

	speed	dist
1	4	2
2	4	10
3	7	4
4	7	22
5	8	16
6	9	10
7	10	18
8	10	26
9	10	34
10	11	17
11	11	28
12	12	14
13	12	20
14	12	24
15	12	28
16	13	26
17	13	34
18	13	34
19	13	46
20	14	26
21	14	36
22	14	60

```
23
      14
           80
24
      15
           20
25
      15
           26
26
      15
           54
27
      16
           32
28
      16
           40
29
      17
           32
30
      17
           40
      17
31
           50
32
      18
           42
33
      18
           56
34
      18
           76
35
      18
           84
           36
36
      19
37
      19
           46
38
      19
           68
39
      20
           32
40
      20
           48
41
      20
           52
42
      20
           56
43
      20
           64
44
      22
           66
45
      23
           54
46
      24
           70
47
      24
           92
48
      24
           93
49
      24 120
           85
50
      25
```

plot(cars)

Let's see how we can make this figure using **ggplot**. First I need to install this package on my computer. To install any R package I use thfunction install.packages()

I will run install.packages() im my R console, not this Quarto so I don't have to reinstall every time that I render.

Before I can use any functions from add-on packages I need to load the package from my "library()" with the "library(ggplot2)" call.

library(ggplot2)
ggplot(cars)

All ggplot figures have at least 3 things (called layers). These include:

- data (the imput dataset I want to plot from)
- aes (the aesthetic mapping of the data to my plot)
- **geoms** (the geom_point(), geom_line(), etc that I want to draw from)

```
ggplot(cars) +
aes(x= speed, y= dist) +
geom_point()
```


Use base R plots for data that you want to see but don't need a nice, polished graph. ggplot is more work, but more editable for nicer representations.

Let's add a line to show the relationship here:

```
ggplot(cars) +
  aes(x= speed, y= dist) +
  geom_point() +
  geom_smooth (method="lm") +
  theme_bw() +
  labs(title= "My first GGPLOT")
```

[`]geom_smooth()` using formula = 'y ~ x'

1. Which geometric layer should be used to create scatter plots in ggplot2? geom_point()

Gene expression figure

The code to read the dataset, retrieving online from class dataset

```
url <- "https://bioboot.github.io/bimm143_S20/class-material/up_down_expression.txt"
genes <- read.delim(url)
head(genes)</pre>
```

```
Gene Condition1 Condition2 State
1 A4GNT -3.6808610 -3.4401355 unchanging
2 AAAS 4.5479580 4.3864126 unchanging
3 AASDH 3.7190695 3.4787276 unchanging
4 AATF 5.0784720 5.0151916 unchanging
5 AATK 0.4711421 0.5598642 unchanging
6 AB015752.4 -3.6808610 -3.5921390 unchanging
```

How many genes are in this dataset?

```
nrow(genes)
[1] 5196
A first plot of this dataset
p <- ggplot(genes) +</pre>
  aes(x=Condition1, y=Condition2, col= State) +
  geom_point()
colnames(genes)
[1] "Gene"
                  "Condition1" "Condition2" "State"
ncol(genes)
[1] 4
## Graphical representation of the State values
table(genes$State)
      down unchanging
                              up
        72
                 4997
                              127
## Graphical representation of the State values div by total # of genes
round(table(genes$State)/nrow(genes) *100, 2)
      down unchanging
                               up
      1.39
                96.17
                             2.44
## Default color scheme
```

p

Personalized color scheme
p + scale_color_manual(values= c("blue", "gray", "red"))

Lets add some labels and a title

Gene Expression changes upon drug treatment

Defining the graph as an object makes it easier to edit or have multiple versions without having to rewrite the entire code again

```
p + labs(title="Hello")
```


7. Going further

```
# File location online
url <- "https://raw.githubusercontent.com/jennybc/gapminder/master/inst/extdata/gapminder.ts
gapminder <- read.delim(url)</pre>
head(gapminder)
```

```
country continent year lifeExp
                                        pop gdpPercap
1 Afghanistan
                  Asia 1952 28.801 8425333 779.4453
2 Afghanistan
                  Asia 1957 30.332 9240934 820.8530
3 Afghanistan
                 Asia 1962 31.997 10267083 853.1007
4 Afghanistan
                  Asia 1967 34.020 11537966 836.1971
                  Asia 1972 36.088 13079460 739.9811
5 Afghanistan
6 Afghanistan
                  Asia 1977 38.438 14880372 786.1134
```

```
#install.packages("dplyr") ## un-comment to install if needed
#library(dplyr)
## alpha function edits transparency of points, on a scale for 0 - transparent, to 1 - full
```

ggplot (gapminder) +

```
aes(x=gdpPercap, y=lifeExp) +
geom_point(alpha= 0.2) +
labs (title= "Life Expectancy in relation to GDP per capita", x= "GDP per capita", y= "Life")
```

Life Expectancy in relation to GDP per capita

More specific, one year only

even though we installed dplyr in the brain below, we need to pull it from the library to library(dplyr)

```
Attaching package: 'dplyr'

The following objects are masked from 'package:stats':

filter, lag

The following objects are masked from 'package:base':

intersect, setdiff, setequal, union
```

```
gapminder_2007 <- gapminder %>% filter(year==2007)
```

There are a few new functions that have the same name as other ones in R, replacing it wi

Now we can see values only from 2007

head(gapminder_2007)

```
country continent year lifeExp
                                         pop gdpPercap
1 Afghanistan
                  Asia 2007 43.828 31889923
                                               974.5803
2
     Albania
                Europe 2007 76.423 3600523 5937.0295
3
     Algeria
                Africa 2007 72.301 33333216 6223.3675
4
      Angola
                Africa 2007 42.731 12420476 4797.2313
5
    Argentina Americas 2007 75.320 40301927 12779.3796
6
    Australia
               Oceania 2007 81.235 20434176 34435.3674
```

```
ggplot(gapminder_2007) +
aes(x=gdpPercap, y=lifeExp) +
geom_point(alpha=0.4)
```


Adding more variables to aes()

```
ggplot(gapminder_2007) +
  aes(x=gdpPercap, y=lifeExp, color=continent, size=pop) +
  geom_point(alpha=0.4) +
  labs(title= "2007 Life Exp vs GDP/capita")
```

