

EE 521/ECE 582 - Analysis of Power systems

Class #1 – August 23, 2022

Dr. Noel N. Schulz

Edmund O. Schweitzer III Chair in

Power Apparatus and Systems

Chief Scientist Joint Appointment, PNNL

Co-Director, PNNL/WSU Advanced Grid Institute (AGI)

Washington State University Pullman

Noel.Schulz@wsu.edu EME 35

509-335-0980 (o) and 509-336-5522 (c)

Outline

- Introductions
 - Professor
 - Class participants
- Syllabus Discussions
 - University Policies
 - Class Policies
 - Assignments
- Why do we care about analysis of power systems?

My parents

Dad – EE Professor Mom – Elementary School Teacher

My Family

Career Timelines - Dual Career Advancement an Tech. Dean **Asst Prof Assoc Prof** Professor **MSU** President President **MTU Asst Prof** Dept. Chair Dept. Head **VPR** WSU K-State UND **MTU MSU MSU** PhD BS 1985 2000 05 15 90 10 95 **Empty** Met **Andrew** Married Timothy Nest BS MS PhD Schweitzer Prof Prof Assoc. **Assoc Prof** Chair Instructor **MSU** K-State Dean Prof **MSU Asst Prof TVA** WSU MTU **Professorship** PhD Student, **Michigan Tech**. Minnesota **IEEE PES Pres** ('12-'13)Sabbatical F'08 CARDIFF UNIVERSIT

PRIFYSGOL

CAERDY₽

Power & Energy Society®

Dr. Schulz's Research Areas

- Integration of DER into distribution systems including storage and electric vehicles
- Intelligent system applications in power system design, contol and operation
- Outage and Storm Management including smart metering and resilience efforts
- Rural electrification and Microgrids
- Shipboard Power Systems

IEEE Power & Energy Society President Experiences -2012-2013

- Technical Society within IEEE (over 450,000 members worldwide)
- Over 37,000 members worldwide
- Traveled over 240k air miles over 2 years including 6 continents, interacting with students and engineering professionals from all around the world
- Two initiatives pipeline support and women in power

Women in Power

Learning through Travel

- In United States
 - -Traveled within 48 states
 - -Lived in seven states
- Traveled across seven continents
 - -Sabbatical in Wales 2008 4 months
 - -Visited 37 countries outside of US
- Spent 4 weeks in India in 2019

Introduce yourself

- Name
- Campus Location
- Program (MS or PhD)
- Research Area if known
- Fun thing you did this summer

Longer introduction on Canvas discussion

Syllabus Information
Canvas

Power Systems Analysis

- 2000 National Academies of Engineering (NAE) called "Electrification- Vast networks of electricity provide power for the developed world." to engineering achievement of 1900s <u>link</u>
- Generation often located away from loads
- Interconnection of the Power Grid Electrical Highways – Transmission
- Substation to customers Distribution

Power Systems Analysis

According to the <u>U.S. Energy Information Administration (EIA) EPA WEBSITE</u>, the U.S. power grid is made up of over 7,300 power plants, nearly 160,000 miles of high-voltage power lines, and millions of miles of low-voltage power lines and distribution transformers, connecting 145 million customers throughout the country (EIA, 2016).

Power Systems Analysis - Lots of Questions

Make sure no overloads on the equipment

How do I restore after a fault?

How do I protect the power system?

How do I run system to minimize costs?

How do I run the system to minimize environmental impact?

Which generation plants should be on?

When to turn on which generator?

What happens if a certain switch is opened?

How do I create a model of power systems and answer some of these questions?

Converting Physical System into Computer Models

Questions to ask

- How do I model different parts of the system?
- How do I convert that into equations that can be used to find answers to questions?
- How much accuracy do I need?
- How long does it take to solve the equations?
- Can I get quick results for operations?

Converting Physical System into Computer Models

Matrices

$$\begin{bmatrix} 1 & 3 & 4 & 8 \\ 2 & 1 & 2 & 3 \\ 4 & 3 & 5 & 8 \\ 9 & 2 & 7 & 4 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \end{bmatrix}$$

$$V = IR$$
 $P = I^2R = V^2/R$
 $[Y][V] = [I]$

Challenges:

- Complex Numbers many early programs in Fortran
- Large matrices where you need to take the inverse of the matrix
- Took lots of computational time to get results
- Changes to system, change the matrix so have to redo all the calculations

Utilities were one of the largest users of computers before the personal computer – mainframes.

Converting Physical System into Computer Models

Unique Features of Power Systems

New techniques to do computations faster with sparse matrices

Sparse Matrices

1138 x 1138 and has 4058 hon-zero elements in 1295044 elements

Analysis of Power Systems Class

- Understand the mathematical principles behind the different algorithms used for power systems analysis for transmission systems
- Think about the algorithms that are used and how to make them faster using different techniques such as sparsity, simplifications and assumptions
- Write programs to implement these algorithms to better understand the fundamental models and equations.

Organization of Course

Announcements

Office hours this week upon request

 No face to face class on Thursday - I will post a video for your review

AGI Day 2021 - August 31 - In-person and virtual

- Remember to do introduction on Canvas discussion
- Read Chapter 1 and start on Chapter 2 (through at least 2.3)
- Pull out your power systems book and review power flow modeling