

Dokumentation Arduino Pager

Autoren: Thilo Drehlmann, Gerrit Koppe

Ausbildungsberuf: Fachinformatiker für Anwendungsentwicklung

7. Januar 2023

Inhaltsverzeichnis

T	Einleitung				
2	Formulierung des Themas 2.1 Beschreibung des Projektes				
3	Ressourcen und Ablaufplanung	1			
	3.1 Ressourcen 3.1.1 Benötigte Hardware 3.1.2 Benötigte Software	1			
	3.2 Planung der Umsetzung	2			
4	Durchführung				
5	Projektergebnis				
6	Anlagen	3			
7		4			
8	Quellenverzeichnis 8.1 Internetquellen	5			

1 Einleitung

In dieser Dokumentation wird die Umsetzung eines bidirektionalen Pagers auf Basis der Arduino Plattform beschrieben. Zunächst werden Thema und Ziel des Projekts formuliert. Anschließend werden wir auf die Planung der Ressourcen und des Ablaufs, sowie auf die benötigten Komponenten eingehen. Im Anschluss wird das Vorgehen während des Projektes dokumentiert und abschließend das Ergebnis der Durchführung präsentiert.

2 Formulierung des Themas

2.1 Beschreibung des Projektes

Das Thema des Projektes ist es, eine bidirektionale Kommunikation zwischen zwei Geräten auf Arduino-Basis zu gewährleisten. Es soll die Möglichkeit bestehen, Nachrichten zu verfassen, zu versenden und ebenso Nachrichten zu empfangen, die von einem anderen Arduino Gerät versendet wurden.

2.2 Definition der Ziele, erwartetes Ergebnis

Im Folgenden werden die allgemein Ziele des Projektes näher definiert.

- 1. Es soll möglich sein, mittels eines Touchscreens und einer virtuellen Tastatur, Zeichenketten auf einem, an den Arduino angeschlossenen Touchscreen, zu schreiben.
- 2. Die eingegebenen Zeichenketten sollen, mittels Funkwellen, an ein anderes Gerät übertragen werden können.
- 3. Das Gerät soll in der Lage sein, Funkwellen zu empfangen.
- 4. Das Gerät soll außerdem in der Lage sein, die empfangenen Funkwellen wieder zu einer Zeichenkette zu übersetzen und auf einem Touchscreen anzuzeigen.
- 5. Es soll ein graphisches User Interface auf dem Touchscreen geben.
- 6. Es soll möglich sein, empfangene Nachrichten zwischenzuspeichern, damit neu empfangene Nachrichten nicht die vorherigen Nachrichten überschreiben.
- 7. Es soll möglich sein, den Zwischenspeicher der Nachrichten über einen eigenen Menüpunkt abzurufen und die empfangenen Nachrichten zu verwalten.

Außerdem gibt es folgende, optionale Ziele:

- a. Das User Interface soll farblich angepasst werden können.
- b. Es soll möglich sein, zu überprüfen, ob empfangsbereite Geräte in der Nähe sind.

3 Ressourcen und Ablaufplanung

3.1 Ressourcen

3.1.1 Benötigte Hardware

In Anhang Tabelle 1 findet sich eine detaillierte, tabellarische Auflistung aller Komponenten, ihrer Aufgaben und ihrer Preise. Alle Komponenten werden zwei mal benötigt, da eine Kommunikation zwischen zwei identischen Geräten hergestellt werden soll.

3.1.2 Benötigte Software

Zur Umsetzung des Projekts wird, um die Programmierung zu vereinfachen und den Quellcode schlanker zu halten, auf verschiedene externe Bibliotheken zurückgegriffen. Eine detaillierte Auflistung dieser Bibliotheken findet sich im Anhang Tabelle 2.

3.2 Planung der Umsetzung

3.2.1 Teilziele

Folgende Teilziele wurden für das Projekt definiert:

Vordefinierte Nachricht unidirektional übertragen: Zunächst soll eine statisch eingestellte Nachricht zwischen zwei Arduino Mega mittels nRF24L01+ Transceiver Übertragen werden können, um zu prüfen, ob die Verbindung hergestellt werden kann.

2.

3.2.2 Erwartete Schwierigkeiten

Im Folgenden werden alle Schwierigkeiten aufgelistet und erklärt, die während der Umsetzung des Projekts erwartet werden.

- 1. Fehlersuche bei fehlerhafter Übertragung: Da dieses Projekt darauf basiert, Funksignale zu versenden und zu empfangen und wir keine Gerätschaft besitzen, Funkwellen und Signalstärken dieser zu messen, wird es schwierig, den Fehler zu identifizieren, sollte eine Übertragung fehlschlagen.
- 2. Distanzregulierung: Die nRF24L01+ Transceiver können in verschiedenen Signalstärken senden, die programmatisch eingestellt werden müssen. Wird eine zu hohe Signalstärke konfiguriert, leidet darunter allerdings die Übertragungsqualität bei niedrigen Distanzen. Hier muss ein gutes Mittelmaß gefunden werden.
- 3. Wechsel zwischen Empfang und Senden: Da die Nachrichten bidirektional versendet werden sollen, die nRF24L01+ Transceiver aber nur halbduplex arbeiten, müssen wir einen rechtzeitigen Wechsel der Antenne zwischen Senden und Empfang garantieren. Sollten beide Geräte gleichzeitig Senden, werden beide Nachrichten verloren gehen.
- 4. Empfang garantieren: Da die Möglichkeit bestehen soll, gleich
- 5. Kein Multithreading: Da Arduinos nicht Multithreading-fähig¹ sind

3.2.3 Zeitliche Planung

4 Durchführung

5 Projektergebnis

¹vgl. Glossar 7.1: Multithreading

6 Anlagen

Tabelle 1: Benötigte Hardware

Hardware	Aufgabe	Kosten
Arduino Mega 2560	 Zentrale Schnittstelle aller Komponenten Verwaltung der Logik / Programmierbarkeit 	21,99€
Elegoo Uno TFT Touchscreen 2,8"	Anzeige von NachrichtenEingabe von NachrichtenUser Interface	19,99€
nRF24L01+ Wireless Transceiver Modul	Nachrichten Übertragen und EmpfangenÜberprüfung Verfügbarkeit anderer Geräte	5,-€

Tabelle 2: Benötigte Software

Bibliothek	Aufgabe	Quelle
Elegoo_GFX.h	Kern Grafikbibliothek des Elegoo Uno TFT Touch-	Mitgeliefert auf CD
	screens. Ermöglicht das Drucken von Zeichen /	bei TFT Touchs-
	Formen auf TFT Display.	creen
Elegoo_TFTLCD.h	Hardware-Bibliothek des Elegoo Uno TFT Touchs-	Mitgeliefert auf CD
	creens. Verantwortlich für die Kommunikation des	bei TFT Touchs-
	Programms mit der Hardware.	creen
TouchScreen.h	Bibliothek des Touchscreens des Elegoo Uno	Mitgeliefert auf CD
	TFT Touchscreens. Erlaubt das erkennen von	bei TFT Touchs-
	Berührungen des Touchscreens und die Lokalisie-	creen
	rung der Berührung.	
SPI.h	Erlaubt die Kommunikation des Programms mit	In Arduino IDE in-
	dem SPI Bus des Arduino Board	kludiert
nRF24L01.h	Hardware Bibliothek der nRF24L01+ Transceiver.	Github
	Erlaubt Kommunikation des Moduls mit dem Ar-	
	duino Board	
RF24.h	Programmierbare Schnittstelle der nRF24L01+	Github
	Transceiver.	
Arduino.h	Liefert Kernfunktionen der Arduino Boards.	In Arduino IDE in-
		kludiert

7 Glossar

7.1 Technische Begriffe

Multithreading

Unter Multithreading versteht man in der Informatik den Prozess, ein Programm in mehrere Teilstränge aufzuteilen, die parallel ausgeführt werden.²

²Vgl. Quelle 1

8 Quellenverzeichnis

8.1 Internetquellen

1. Storage Insider: Was ist Multithreading - Online unter https://www.storage-insider.de/was-ist-multithreading-a-1017586/ [07.01.2023]