Short workshop on Co-Expression Network Analysis

Katja Nowick Freie Universität Berlin Katja.nowick@fu-berlin.de

Goals for today

- Analysis of co-expression networks, more specifically weighted topological overlap (wTO) networks
- Comparison of networks (CoDiNA)
- Using R

Biological systems are complex \rightarrow can well be understood as networks

Networks in cells (molecular networks):

- Metabolic Networks
- Gene regulatory networks
- Protein-Protein-Interaction networks

Networks between cells:

- Neural networks
- Immune system

Networks in ecosystems:

- Food networks
- Cooperation/Symbiosis

- Friendships
- Epidemiology

Biological systems are complex \rightarrow can well be understood as networks

Networks in cells (molecular networks):

- Metabolic Networks
- Gene regulatory networks
- Protein-Protein-Interaction networks

Networks between cells:

- Neural networks
- Immune system

Networks in ecosystems:

- Food networks
- Cooperation/Symbiosis

- Friendships
- Epidemiology

Biological systems are complex \rightarrow can well be understood as networks

Networks in cells (molecular networks):

- Metabolic Networks
- Gene regulatory networks
- Protein-Protein-Interaction networks

Networks between cells:

- Neural networks
- Immune system

Networks in ecosystems:

- Food networks
- Cooperation/Symbiosis

- Friendships
- Epidemiology

Biological systems are complex \rightarrow can well be understood as networks

Networks in cells (molecular networks):

- Metabolic Networks
- Gene regulatory networks
- Protein-Protein-Interaction networks

Networks between cells:

- Neural networks
- Immune system

Networks in ecosystems:

- Food networks
- Cooperation/Symbiosis

- Friendships
- Epidemiology

- Identity of nodes and links depends on the investigated network
- Links can be directed or undirected

PS: node = vertex; link = edge

Gene regulatory networks

Protein-Protein-Interaction networks

Social networks

Nodes: Gene und gene regulatory factors

Links: Activation or repression

directed

Nodes: Proteins

Links: Binding; activation or inactivation

undirected; directed

Nodes: Individuals

Links: e.g. friendships

usually undirected

Which nodes are the most important nodes?

Which nodes are the most important nodes? - Degree-

Degree = number of links a node has Hub = node with high degree

Directed network

In-degree of a node = its number of incoming links
Out-degree of a node = its number of outgoing links

Undirected network

Degree of a node = its number of links

Which nodes are the most important nodes? - Betweenness Centrality-

Betweenness Centrality (BC) = number of shortest paths going through that node

"Gatekeeper"

Labeled are the four nodes with highest BC
They tend to connect the two modules/communities

Which nodes are the most important nodes?

Interaction networks: Game of Thrones

Node size proportional to the number of chapters in which the characters interact Link thicknesses represent the numbers of times that corresponding pair of characters interact

Who is important?

Degree	Betweenness centrality
Full network	
1. Jon Snow (214)	1. Jon Snow (0.0889)
2. Jaime Lannister (212)	2. Barristan Selmy (0.0831)
3. Tyrion Lannister (209)	3. Arya Stark (0.0777)
4. Catelyn Stark (204)	4. Tyrion Lannister (0.0700)
5. Arya Stark (192)	5. Theon Greyjoy (0.0671)
6. Theon Greyjoy (175)	6. Jaime Lannister (0.0606)
7. Cersei Lannister (161)	7. Catelyn Stark (0.0568)
8. Robb Stark (158)	8. Stannis Baratheon (0.0519)
9. Sansa Stark (156)	9. Tywin Lannister (0.0356)
10. Barristan Selmy (156)	10. Eddard Stark (0.0351)
12. Eddard Stark (140)	12. Sansa Stark (0.0275)
16. Brienne of Tarth (108)	13. Cersei Lannister (0.0250)
17. Bran Stark (106)	14. Brienne of Tarth (0.0236)
19. Daenerys Targaryen (104)	17. Samwell Tarly (0.0207)
20. Samwell Tarly (103)	18. Bran Stark (0.0202)
51. Davos Seaworth (72)	21. Daenerys Targaryen (0.018
	25. Davos Seaworth (0.0167)

Degree = number of links→ Numbers of interaction partners

BC = number of shortest paths going through that node "Gatekeeper"

Build a network

Which nodes are most important?

- Remove* one of the least important nodes
- Remove* one of the most important nodes
 How big is the impact on structure and function?

* This could happen due to a mutation in a gene

Networks change over time

Interaction networks: Game of Thrones

Shown is the survivor network, i.e., the characters still alive at the end of the fifth book

Table 1. Characters ranked by various network attributes	
Degree	Betweenness centrality
Full network	
1. Jon Snow (214)	1. Jon Snow (0.0889)
2. Jaime Lannister (212)	2. Barristan Selmy (0.0831)
3. Tyrion Lannister (209)	3. Arya Stark (0.0777)
4. Catelyn Stark (204)	4. Tyrion Lannister (0.0700)
5. Arya Stark (192)	5. Theon Greyjoy (0.0671)
6. Theon Greyjoy (175)	6. Jaime Lannister (0.0606)
7. Cersei Lannister (161)	7. Catelyn Stark (0.0568)
8. Robb Stark (158)	8. Stannis Baratheon (0.0519)
9. Sansa Stark (156)	9. Tywin Lannister (0.0356)
10. Barristan Selmy (156)	10. Eddard Stark (0.0351)
12. Eddard Stark (140)	12. Sansa Stark (0.0275)
16. Brienne of Tarth (108)	13. Cersei Lannister (0.0250)
17. Bran Stark (106)	14. Brienne of Tarth (0.0236)
19. Daenerys Targaryen (104)	17. Samwell Tarly (0.0207)
20. Samwell Tarly (103)	18. Bran Stark (0.0202)
51. Davos Seaworth (72)	21. Daenerys Targaryen (0.0185
	25. Davos Seaworth (0.0167)
Survivor network	
1. Tyrion Lannister (162)	1. Tyrion Lannister (0.0972)
2. Jon Snow (150)	2. Barristan Selmy (0.0952)
3. Jaime Lannister (149)	3. Arya Stark (0.0923)
4. Arya Stark (135)	4. Theon Greyjoy (0.0909)
5. Sansa Stark (122)	5. Jon Snow (0.0871)
6. Cersei Lannister (120)	6. Stannis Baratheon (0.0812)
7. Theon Greyjoy (115)	7. Jaime Lannister (0.0805)
8. Barristan Selmy (103)	8. Sansa Stark (0.0408)
9. Stannis Baratheon (86)	9. Samwell Tarly (0.0320)
10. Brienne of Tarth (83)	10. Cersei Lannister (0.0310)
12. Samwell Tarly (79)	12. Brienne of Tarth (0.0274)
18. Daenerys Targaryen (69)	13. Bran Stark (0.0248)
20. Bran Stark (68)	17. Davos Seaworth (0.0184)
38. Davos Seaworth (54)	33. Daenerys Targaryen (0.0093

How do networks evolve?

→TFs have key role in evolution and species differences

Fate of duplicates

Genomes grow by duplication → Addition of nodes to the molecular networks

"Original network"

Single Gene Duplication (SGD)

Whole Genome Duplication (WGD)

Divergence of Single Gene Duplications

Very rapid, within a few million years!

One copy diverges: neo-functionalization Both copies diverge: sub-functionalization

Often asymmetric divergence: one duplicate retains much more links than the other (although both will have more links in common than expected by chance)

Evolve your network

Duplicate node A
What does the network look like after

- Neo-functionalization?
- Sub-functionalization?

Create either the triangle or square What does the network look like

- Immediately after whole genome duplication?
- Some million years later?

Co-expression Networks

Can be built from gene expression data

Are based on gene expression correlation (\rightarrow undirected, no causation!)

Can represent regulatory relationships or protein-protein interactions, and indirect relationships

Transcription factors (TFs) are often hubs)

Needs multiple related samples (e.g. individuals, experimental conditions)

with gene expression profiles (e.g. RNA-Seq data)

TRAC JAK3 CORO1A HCST SELL UCP2

TRAC ITGAL JPSM3 CD7

TRBV28 CCL19
CD52 CYTIP DEF6

SH2D3CARHGAP30 SASH3 CD48

STK17B EZI2B HCLS1 CD53 IRF8 - LSP1

PTK2B

PTK2B

MPEG1 CD83 WAS CD3E NCF4 TRBC2

CXCR4 FERMT3 E-SEP TRBJ2-7

SMAP2 CCL21 NAPSB

Nodes: Genes

Links: positive or negative correlation of expression values

undirected

Correlation of gene expression patterns

Expression profiles

Co-expression patterns

Significant Spearman correlations

→ Co-expression network

"Guilt by association"

Co-expression networks

Nodes = genes/proteins TFs and targets

Links = relationship between the genes correlated in expression positive or negative undirected!

Co-expressed genes of a TF

- TFs are often hubs
- Potential target genes

Potential interaction partners

Prediction of targets and interaction partners

Genes correlated with the TFs (Spearman Rank correlation)

Assumption: Genes that are expressed together, function in the same molecular pathways

Putative target genes

Putative interaction partners

TFs Form Interaction Networks

→ Representation of TFs and their co-expressed genes

→ Many TFs share correlated genes

Weighted Topological Overlap (wTO) network for capturing TF interactions

i, j TFs, nodes in the network $\omega_{ij} = \frac{\sum_{u} a_{iu} a_{uj} + a_{ij}}{\min(K_i, K_j) + 1 - |a_{ij}|}$

genes correlated with the TFs a_{ij} rho of the Spearman rank correlation between expression values of TFs i and j a_{iu} rho of the Spearman rank correlation between expression values of TF i and gene u a_{ij} connectivity of TF i, $\sum_i a_{ij}$

wTO Network Representation

Nodes = TFs links = commonality of TFs in correlated genes

Other weighted correlation network methods

WGCNA (weighted gene co-expression network analysis) developed by Steve Horvath and colleagues

Both are based on gene expression correlations and weighting the topological overlap

→ More robust representation of gene relationships by not focusing on individual correlations

wTO explicitly considers negative correlations provides p-values for links option to focus on a set of genes (e.g. TFs, cell cycle genes, inversion genes, positively selected genes ...) allows for Spearmen rank correlations

wTO Network Representation

Structural organization of the network

Comparison of links in the network

Nodes = TFs links = commonality of TFs in correlated genes

TF Network Evolution – changes of links

wTO > 0.5 Berto & Nowick 2018

Network Evolution – changes of links

Network of ancestor of humans, chimpanzees, and rhesus macaques:
Links present in the networks of all species

Network of human-chimpanzee ancestor Links present in the networks of humans and chimpanzees

→ Many species-specific links

wTO > 0.5 Berto & Nowick 2018

Network Evolution – changes of links

Network of ancestor of humans, chimpanzees, and rhesus macaques: Links present in the networks of all species

Network of human-chimpanzee ancestor Links present in the networks of humans and chimpanzees

- Many species-specific links
- Most links gained on human lineage
- Highest connectivity in humans (Wilcoxon test, p=2.2*10⁻¹⁶)

wTO > 0.5 Berto & Nowick 2018

Network Evolution – changes of links

BBX

Development of neocortex and hippocampus

CC2D1A

Non-syndromic intellectual disability

Network of ancestor of humans, chimpanzees, and rhesus macaques: Links present in the networks of all species

Network of human-chimpanzee ancestor Links present in the networks of humans and chimpanzees

- Many species-specific links
- Most links gained on human lineage
- Highest connectivity in humans (Wilcoxon test, p=2.2*10⁻¹⁶)

Functions of the Network

Gene Ontology enrichment among genes correlated with the TFs in the network

Nervous system development

Synaptic transmission

→ TF network involved in brain development and functions experienced increase in connectivity and rewiring during human evolution

Two R packages: wTO and CoDiNA

wTO

(Weighted Topological Overlap)

In CRAN and published:

Gysi et al. BMC Bioinformatics (2018)

https://cran.r-project.org/web/packages/wTO/index.html

Focal gene (nodes):

- TFs
- Cell cycle genes
- Inversion genes

• ...

Two R packages: wTO and CoDiNA

CoDiNA

(Co-expression Differential Network Analysis)

In CRAN and arXiv:

Gysi et al. PLoS One (2020)

https://cran.r-project.org/web/packages/CoDiNA/index.html

For as many networks as desired

- Differences between tissues
- Differences between diseases
- Differences between species
- Differences between treatments

- ..

Package downloads: CoDiNA: 15363 times

wTO: 28575 times

Correlations

e.g. between the physical statures of parents and their offspring between the demand for a product and its price

Correlation does not imply causation!

e.g. one may observe a correlation between an ordinary alarm clock ringing and daybreak, though there is no direct causal relationship between these events

Direction often not clear

e.g. correlation between mood and health in people: Does improved mood lead to improved health, or does good health lead to good mood?

Dataset for Network part

Social status alters immune regulation and response to infection in macaques

Noah Snyder-Mackler,^{1,2*} Joaquín Sanz,^{3,4*} Jordan N. Kohn,⁵ Jessica F. Brinkworth,^{3,6} Shauna Morrow,¹ Amanda O. Shaver,¹† Jean-Christophe Grenier,⁴ Roger Pique-Regi,^{7,8} Zachary P. Johnson,^{5,9}‡ Mark E. Wilson,^{5,10} Luis B. Barreiro,^{4,11}§|| Jenny Tung^{1,12,13,14}§||

Dataset for Network part

Social status alters immune regulation and response to infection in macaques

- Lower ranking individuals suffer more stress
- Isolated blood cells from each individual
- Treated cells with LPS to activate the immune system

Dataset for the exercise

Tutorial on Gene Expression and Network Analysis

Let's run some network analyses

CoDiNA: Representation of a comparison of three networks as a cube

Fig 2. Visual representation of the CoDiNA method for a 3-network comparison: Categories definition. 2a represents where the α links lie in the 3D space. 2b and 2c represent the locations of β and γ links, respectively. The complete set of Φ and $\bar{\Phi}$ positions is shown in 2d.

CoDiNA: Selecting the "best" links

Strength score

Internal score

Euclidian distance from the center of the cube
The longer, the stronger (positive or negative) the link

Distance of the link's weight to the categorical weight of α , β , and γ . The smaller, the better defined is a link

Pick links that are strong and well defined in a category High ratio of strength score/internal score

Any Questions further Interests?

Katja Nowick Freie Universität Berlin Katja.nowick@fu-berlin.de