This weeks problem set focuses on the concept of a change of basis matrix. A question marked with a † is difficult and probably too hard for an exam (though still illustrates a useful point). A question marked with a * is especially important.

Homework 2: due Friday May 8: questions 2, 5 and 6 below.

- 1. From section 2.5, problems 1, 2a, c, 3a, c, 5, 7, 10*, 13*.
- 2.* Let V be a finite dimensional vector space and W a subspace. Show that V and $W \times V/W$ are isomorphic by finding an explicit isomorphism (rather than simply computing the dimensions).

Solution: Let $B = \{v_1, \dots, v_n\}$ be a basis of V so that $\{v_1, \dots, v_k\}$ is a basis for W. Now define a map $\phi: V \longrightarrow W \times V/W$ by

$$\phi(v_i) = \begin{cases} (v_i, 0) & \text{if } 0 \le i \le k \\ (0, v_i + W) & \text{otherwise.} \end{cases}$$

We claim this is an isomorphism. Indeed, for every element $(w, v + W) \in W \times V/W$ we can express this as

$$(w, v + W) = \lambda_1(v_1, 0) + \ldots + \lambda_k(v_k, 0) + \mu_{k+1}(0, v_{k+1}) + \ldots + \mu_n(0, v_n + W)$$

where $w = \lambda_1 v_1 + \ldots + \lambda_k v_k$ and $v = \mu_1 v_1 + \ldots + \mu_n v_n$. So ϕ is surjective.

Now if

$$\lambda_1(v_1,0) + \ldots + \lambda_k(v_k,0) + \lambda_{k+1}(0,v_{k+1}) + \ldots + \lambda_n(0,v_n+W) = 0$$

then $\lambda_1 v_1 + \ldots + \lambda_k v_k = 0$ and $\lambda_{k+1} v_{k+1} + \ldots + \lambda_n v_n \in W$. Thus $\lambda_i = 0$ for all i and ϕ is injective and thus an isomorphism.

3* Let V be a finite dimensional vector space and W a subspace. Show that $\dim(V/W) = \dim V - \dim W$. Hint: consider a basis of W and extend it to V. Now find a basis for V/W. You can also prove it using the dimension theorem.

Solution: Let $B = \{v_1, \dots, v_n\}$ be a basis of V so that $\{v_1, \dots, v_k\}$ is a basis for W. Then $\{v_{k+1} + W, \dots, v_n + W\}$ is a basis for V/W. Hence

$$\dim(V/W) = n - k = \dim V - \dim W.$$

- 4^* Let $T:V\longrightarrow W$ be a linear map.
 - (a) Show that im T and $V/\ker T$ are isomorphic.

Solution: Define a map $\phi: V/\ker T \longrightarrow \operatorname{im} T$ by $\phi(v+\ker T)=T(v)$. We must first check that this is well defined. I.e. if $v+\ker T=v'+\ker T$ then we should check that $\phi(v+\ker T)=\phi(v'+\ker T)$. This translates to checking that T(v)=T(v') if $v-v'\in\ker T$. In this situation, T(v-v')=0 so T(v)-T(v')=0 by linearity, so ϕ is well defined.

To check this is an isomorphism, note first of all that it is surjective. Now suppose that $\phi(v + \ker T) = \phi(v' + \ker T)$. This means T(v - v') = 0 so $v - v' \in \ker T$, i.e $v + \ker T = v' + \ker T$ so ϕ is injective and thus an isomorphism.

(b) Use this (and the previous exercise) to give an alternative proof of the dimension theorem.

Solution: Note first that $\dim(V/\ker T) = \dim V - \dim \ker T$. Thus, using the previous part, we see that $\dim V - \dim \ker T = \dim \operatorname{im} T$ which is the dimension theorem.

- 5. A differential operator on $\mathbb{R}_n[x]$ is a linear combination of expressions of the form $x^a \frac{d^b}{dx^b}$ where $a b \leq 0$ (otherwise the degree would potentially increase!) and $b \leq n$. We can consider a differential operator as a linear map $\mathbb{R}_n[x] \longrightarrow \mathbb{R}_n[x]$.
 - (a) Let $D: \mathbb{R}_2[x] \longrightarrow \mathbb{R}_2[x]$ be the differential operator given by $2 4\frac{d}{dx} + 2x\frac{d^2}{dx^2}$. Find the matrix of D relative to the basis $\{x^2, (x-1)^2, (x+1)^2\}$. Note: the 2 in D means multiply by 2, so D(1) = 2 and D(x) = 2x 4.

Solution:

$$\begin{pmatrix} 2 & -8 & 8 \\ 1 & 7 & -3 \\ -1 & 3 & -3 \end{pmatrix}$$

- (b) Does the differential equation $2f 4\frac{df}{dx} + 2x\frac{df^2}{dx^2} = 0$ have any solutions $f \in \mathbb{R}_2[x]$? Hint: what is a solution in terms of the linear map D?
- (c) Suppose $E: \mathbb{R}_2[x] \longrightarrow \mathbb{R}_2[x]$ is a differential operator and that the matrix of E, relative to the basis $\{1, x, x^2\}$ is

$$\begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}.$$

Find E.

Solution:

$$E = \frac{d}{dx} - \frac{1}{2}x\frac{d^2}{dx^2}$$

6. Consider the linear map $X: \mathbb{R}_n[x] \longrightarrow \mathbb{R}_n[x]$ given by $X(p) = \frac{dp}{dx} + \frac{x^n}{n!}p(0)$. Calculate the dimension of $C(X) = \{ T \in \text{Hom}(\mathbb{R}_n[x], \mathbb{R}_n[x]) \mid T \circ X = X \circ T \}$.

Hint: this will be quite tricky without involving matrices. It is also a very good idea to try n = 1, 2, 3 before moving on to the general statement.

Solution: First we pick a useful choice of ordered basis $u_k = \frac{x^k}{k!}$ for $0 \le k \le n$. This means

$$X(u_k) = \begin{cases} u_{k-1} & \text{if } k \neq 0 \\ u_n & \text{if } k = 0. \end{cases}$$

This lets us define the matrix $Y = [X]_B^B = (y_{ij})$. We can see from the above formula that

$$y_{ij} = \begin{cases} 1 & \text{if } j = i+1\\ 1 & \text{if } i = n+1, j = 1\\ 0 & \text{otherwise.} \end{cases}$$

That is,

$$Y = \begin{pmatrix} 0 & 1 & 0 & \cdots & 0 \\ 0 & 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & 1 \\ 1 & 0 & 0 & \cdots & 0 \end{pmatrix}.$$

Now suppose that $T \in C(X)$, i.e. that $T \circ X = X \circ T$. If $A = [T]_B^B$ then this is equivalent to AY = YA. Let $A = (a_{ij})$. We have, using the formulas above,

$$(AY)_{ij} = \sum_{k=1}^{n+1} a_{ik} y_{kj} = \begin{cases} a_{i,n+1} & \text{if } j = 1, \\ a_{i,j-i} & \text{if } j > 1, \end{cases}$$
$$(YA)_{ij} = \sum_{k=1}^{n+1} y_{ik} a_{kj} = \begin{cases} a_{i+1,j} & \text{if } i < n+1, \\ a_{1j} & \text{if } i = n+1. \end{cases}$$

Equating these we get four cases. Case one: i < n+1, j > 1

$$a_{i,j-1} = a_{i+1,j}$$

Case two: i < n+1, j=1

$$a_{i,n+1} = a_{i+1,1}$$

Case three: i = n + 1, j > 1

$$a_{n+1,j-1} = a_{1j}$$

Case four: i = n + 1, j = 1

$$a_{n+1,n+1} = a_{11}.$$

This means that our matrix looks something like this:

$$A = \begin{pmatrix} c_1 & c_2 & c_3 & \cdots & c_{n+1} \\ c_{n+1} & c_1 & c_2 & \cdots & c_n \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ c_3 & c_4 & c_5 & \cdots & c_2 \\ c_2 & c_3 & c_4 & \cdots & c_1 \end{pmatrix}.$$

So the rows of A are determined from the top row by cyclically permuting one step every row we go down. Thus A is determined by it's top row. We have an isomorphism

$$\Phi^B_B:C(X)\longrightarrow C(Y)=\{\;A\in \operatorname{Mat}_{n+1\times n+1}(\mathbb{R})\,|\, AY=YX\circ T\;\}$$

so we simply compute the dimension of C(Y). Let $U_k = (u_{ij})$ be the matrix where

$$u_{ij} = \begin{cases} 1 & \text{if } j - i = k \text{ or } i - j = n + 1 - k \\ 0 & \text{otherwise.} \end{cases}$$

i.e. the first row of U_k has a 1 in the position u_{1k} and zeros everywhere else, and the other rows are determined from the first by cyclically permuting. It is then clear that $\{U_k|0 \le k \le n\}$ is linearly independent and spanning in C(Y). Thus dim $C(X) = \dim C(Y) = n + 1$.