Package 'clubpro'

June 7, 2024

```
Type Package
Title Classification Using Binary Procrustes Rotation
Version 0.6.2
Description
      Implements a classification method described by Grice (2011, ISBN:978-0-12-385194-9) using
      binary procrustes rotation; a simplified version of procrustes rotation.
License GPL (>= 3)
URL https://timbeechey.github.io/clubpro/
BugReports https://github.com/timbeechey/clubpro/issues
Encoding UTF-8
LazyData true
RoxygenNote 7.3.1
LinkingTo Rcpp, RcppArmadillo, RcppProgress
Imports Rcpp, lattice, stats, graphics
Suggests knitr, rmarkdown, tinytest
SystemRequirements C++17
Depends R (>= 2.10)
VignetteBuilder knitr
NeedsCompilation yes
Author Timothy Beechey [aut, cre] (<a href="https://orcid.org/0000-0001-8858-946X">https://orcid.org/0000-0001-8858-946X</a>)
Maintainer Timothy Beechey <tim.beechey@proton.me>
Repository CRAN
Date/Publication 2024-06-07 15:50:02 UTC
```

2 accuracy

Contents

	21
threshold	20
summary.clubprofit	
summary.clubprocomparison	
predict.clubprofit	
plot.clubprothreshold	
plot.clubprorand	
plot.clubpropredictions	
plot.clubprofit	
plot.clubprocsi	
plot.clubprocomparison	
plot.clubproaccuracy	
pcc_replicates	
pcc	
n_incorrect	
n_correct	
n_ambiguous	
median_csi	
jellyfish	
individual_results	
cval	
csi	
compare	6
club	5
caffeine	4
as.data.frame.clubprorand	4
as.data.frame.clubprocsi	3
accuracy	2

Description

Classification accuracy for each observation.

Usage

accuracy(m)

Arguments

m an object of class "clubprofit" produced by club()

Details

Returns a character vector containing a string corresponding to each observation indicating whether classification of that observation was "correct", "incorrect", or "ambigous".

Value

a table

Examples

```
mod <- club(rate ~ dose, data = caffeine)
accuracy(mod)</pre>
```

```
as.data.frame.clubprocsi
```

Convert the output of csi() to a data.frame.

Description

Convert the output of csi() to a data.frame.

Usage

```
## S3 method for class 'clubprocsi'
as.data.frame(x, row.names = NULL, optional = FALSE, ...)
```

Arguments

```
x an object of class "clubprocsi"
row.names ignored
optional ignored
... ignored
```

Details

This function is useful to format pcc replicates data for plotting.

```
mod <- club(rate ~ dose, data = caffeine)
z <- csi(mod)
as.data.frame(z)</pre>
```

4 caffeine

```
as.data.frame.clubprorand
```

Convert the output of pcc_replicates() to a data.frame.

Description

Convert the output of pcc_replicates() to a data.frame.

Usage

```
## S3 method for class 'clubprorand'
as.data.frame(x, row.names = NULL, optional = FALSE, ...)
```

Arguments

```
x an object of class "clubprorand"
row.names ignored
optional ignored
... ignored
```

Details

This function is useful to format pcc replicates data for plotting.

Examples

```
mod <- club(rate ~ dose, data = caffeine)
z <- pcc_replicates(mod)
as.data.frame(z)</pre>
```

caffeine

Caffeine data

Description

Effect of three different doses of caffeine on finger tapping rate.

Usage

caffeine

Format

A data frame with 30 rows and 2 columns:

```
dose dose of caffeine in mgrate finger taps per minute
```

club 5

Source

Hand D.J., Daly F., Lunn A.D., McConway K.J., Ostrowski E. (1994) A Handbook of Small Data Sets. London: Chapman & Hall. Data set 50.

club

Classify observations.

Description

club() is used to classify obervations using binary procrustes rotation.

Usage

```
club(
   f,
   data,
   imprecision,
   nreps,
   normalise_cols,
   reorder_obs,
   display_progress
)
```

Arguments

f a formula. data a data.frame.

imprecision a number indicting the margin of imprecision allowed in classification.

nreps the number of replicates to use in the randomisation test.

normalise_cols a boolean indicating whether to normalise matrix columns.

reorder_obs a string indicating the method for reordering observations to

reorder_obs a string indicating the method for reordering observations to calculate c-values.

display_progress

a boolean indictaing whether a progress bar should be displayed.

Value

an object of class "clubprofit" is a list containing the following components:

prediction a character vector of predicted classifications.

accuracy a character vector indicating whether each classification is "correct", "incorrect", or "ambiguous".

pcc the percentage of correct classifications.

cval the chance of randomly reordered data producing a PCC >= the observed PCC.

 $pcc_replicates$ a vector of PCCs generated from randomly reordered data used to calculate cval.

call the matched call.

6 csi

Examples

```
mod <- club(rate ~ dose, data = caffeine)</pre>
```

compare

Compare models.

Description

Compare models.

Usage

```
compare(m1, m2)
```

Arguments

```
m1 an object of class "clubprofit" produced by club()
m2 an object of class "clubprofit" produced by club()
```

Details

Compare the PCC of two clubprofit models and compute the chance-value of the difference.

Value

```
an object of type "clubprocomparison"
```

Examples

```
m1 <- club(width ~ location, jellyfish)
m2 <- club(length ~ location, jellyfish)
compare(m1, m2)</pre>
```

csi

Classification strength indices.

Description

Classification strength indices.

Usage

csi(m)

Arguments

m an object of class "clubprofit" produced by club()

cval 7

Details

Returns a vector containing the classification strength index for each observation.

Value

a numeric vector.

Examples

```
mod <- club(rate ~ dose, data = caffeine)
csi(mod)</pre>
```

cval

Chance value.

Description

Chance value.

Usage

cval(m)

Arguments

m

an object of class "clubprofit" produced by club()

Details

Compute the chance that randomly reordered data results in a percentage of correctly classified observations at least as high as the observed data.

Value

a numeric value.

```
mod <- club(rate ~ dose, data = caffeine)
cval(mod)</pre>
```

§ jellyfish

individual_results

Individual level classification results.

Description

Individual level classification results.

Usage

```
individual_results(m, digits)
```

Arguments

```
m an object of class "clubprofit" produced by club() digits an integer
```

Details

Returns a data.frame containing predicted classifications and classification accuracy for each individual observation.

Value

a data.frame containing a columns of predictions and prediction accuracy

Examples

```
mod <- club(rate ~ dose, data = caffeine)
individual_results(mod)</pre>
```

jellyfish

Jellyfish dimension data

Description

Sizes of jellyfish from two locations in the Hawkesbury River, New South Wales, Australia.

Usage

```
jellyfish
```

Format

A data frame with 46 rows and 3 columns:

location location where jellyfish was caught width jellyfish width in mm length jellyfish length in mm

median_csi 9

Source

Hand D.J., Daly F., Lunn A.D., McConway K.J., Ostrowski E. (1994) A Handbook of Small Data Sets. London: Chapman & Hall. Data set 225.

median_csi

Median classification strength index.

Description

Median classification strength index.

Usage

```
median_csi(m)
```

Arguments

m

an object of class "clubprofit" produced by club()

Details

Returns the median classification strength index.

Value

a numeric vector.

Examples

```
mod <- club(rate ~ dose, data = caffeine)
median_csi(mod)</pre>
```

 $n_ambiguous$

Number of ambiguous classifications.

Description

Number of ambiguous classifications.

Usage

```
n_ambiguous(m)
```

Arguments

m

an object of class "clubprofit" produced by club()

n_correct

Details

Returns the number of observations which were classified ambiguously by the model.

Value

an integer.

Examples

```
mod <- club(rate ~ dose, data = caffeine)
n_ambiguous(mod)</pre>
```

n_correct

Number of correct classifications.

Description

Number of correct classifications.

Usage

```
n_correct(m)
```

Arguments

m

an object of class "clubprofit" produced by club()

Details

Returns the number of observations which were classified correctly by the model.

Value

an integer.

```
mod <- club(rate ~ dose, data = caffeine)
n_correct(mod)</pre>
```

n_incorrect 11

n_incorrect

Number of incorrect classifications.

Description

Number of incorrect classifications.

Usage

```
n_incorrect(m)
```

Arguments

m

an object of class "clubprofit" produced by club()

Details

Returns the number of observations which were classified incorrectly by the model.

Value

an integer.

Examples

```
mod <- club(rate ~ dose, data = caffeine)
n_incorrect(mod)</pre>
```

рсс

Percentage of correct classifications.

Description

Percentage of correct classifications.

Usage

```
pcc(m)
```

Arguments

m

an object of class "clubprofit" produced by club()

Details

Returns the percentage of correctly classified observations.

pcc_replicates

Value

a numeric value.

Examples

```
mod <- club(rate ~ dose, data = caffeine)
pcc(mod)</pre>
```

pcc_replicates

PCC replicates.

Description

PCC replicates.

Usage

```
pcc_replicates(m)
```

Arguments

m

an object of class "clubprofit" produced by club()

Details

Returns an object containing a vector of PCC replicates used to calculate the chance-value.

Value

an object of class clubprorand.

```
mod <- club(rate ~ dose, data = caffeine)
head(pcc_replicates(mod))</pre>
```

plot.clubproaccuracy 13

```
plot.clubproaccuracy Plot accuracy.
```

Description

Plot accuracy.

Usage

```
## S3 method for class 'clubproaccuracy' plot(x, ...)
```

Arguments

```
x an object of class "clubproaccuracy"
... ignored
```

Details

Produces a mosaic plot of predictio naccuracy by category

Value

called for side-effects only

Examples

```
mod <- club(rate ~ dose, data = caffeine)
z <- accuracy(mod)
plot(z)</pre>
```

```
plot.clubprocomparison
```

Plot model comparison.

Description

Plot model comparison.

Usage

```
## S3 method for class 'clubprocomparison' plot(x, ...)
```

14 plot.clubprocsi

Arguments

```
x an object of class "clubprocomparison".... ignored
```

Details

Plot a distribution of PCCs computed from randomly reordered data used to calculate the chance-value for a model comparison.

Value

no return value, called for side effects only.

Examples

```
m1 <- club(width ~ location, jellyfish)
m2 <- club(length ~ location, jellyfish)
z <- compare(m1, m2)
plot(z)</pre>
```

plot.clubprocsi

Plot classification strength indices.

Description

Plot classification strength indices.

Usage

```
## S3 method for class 'clubprocsi' plot(x, ...)
```

Arguments

```
x an object of class "clubprocsi"
... ignored
```

Details

Produces dotplot showing classification strength for each individual.

Value

```
called for side-effects only
```

plot.clubprofit 15

Examples

```
mod <- club(rate ~ dose, data = caffeine)
z <- csi(mod)
plot(z)</pre>
```

plot.clubprofit

Plot classification accuracy.

Description

Plot classification accuracy.

Usage

```
## S3 method for class 'clubprofit' plot(x, ...)
```

Arguments

```
x an object of class "clubprofit" produced by club()... ignored
```

Details

Produces bar plot showing counts of individuals against observed values within each target grouping. Fill colours indicate whether each individual was classified correctly, incorrectly or ambiguously.

Value

```
called for side-effects only
```

```
mod <- club(rate ~ dose, data = caffeine)
plot(mod)</pre>
```

16 plot.clubprorand

```
plot.clubpropredictions
```

Plot predictions.

Description

Plot predictions.

Usage

```
## S3 method for class 'clubpropredictions' plot(x, \ldots)
```

Arguments

```
x an object of class "clubpropredictions"
... ignored
```

Details

Produces a mosaic plot of observed versus predicted categories

Value

```
called for side-effects only
```

Examples

```
mod <- club(rate ~ dose, data = caffeine)
z <- predict(mod)
plot(z)</pre>
```

plot.clubprorand

Plot PCC replicates.

Description

Plot PCC replicates.

Usage

```
## S3 method for class 'clubprorand' plot(x, ...)
```

plot.clubprothreshold 17

Arguments

```
x an object of class "clubprofit" produced by club()
... ignored
```

Details

Plot the distribution of PCCs computed from randomly reordered data used to calculate the chance-value.

Value

no return value, called for side effects only.

Examples

```
mod <- club(rate ~ dose, data = caffeine)
plot(pcc_replicates(mod))</pre>
```

plot.clubprothreshold Plot PCC as a function of binary category boundary location.

Description

Plot PCC as a function of binary category boundary location.

Usage

```
## S3 method for class 'clubprothreshold' plot(x, ...)
```

Arguments

```
x an object of class "clubprothreshold"
... ignored
```

Details

Produces an xyplot showing the PCC returned for each possible category boundary.

Value

```
called for side-effects only
```

```
mod <- club(rate ~ dose, data = caffeine)
z <- threshold(mod)
plot(z)</pre>
```

predict.clubprofit

Predicted category for each observation.

Description

Predicted category for each observation.

Usage

```
## S3 method for class 'clubprofit'
predict(object, ...)
```

Arguments

```
object an object of class "clubprofit" produced by club()
... ignored
```

Details

Returns a character vector containing the name of the predicted category for each observed value.

Value

a table

Examples

```
mod <- club(rate ~ dose, data = caffeine)
predict(mod)</pre>
```

```
summary.clubprocomparison
```

Generate a summary of a comparison of clubprofit models.

Description

Generate a summary of a comparison of clubprofit models.

Usage

```
## S3 method for class 'clubprocomparison'
summary(object, ...)
```

Arguments

```
object an object of class "clubprocomparison". . . . ignored
```

summary.clubprofit 19

Value

No return value, called for side effects.

Examples

```
m1 <- club(width ~ location, jellyfish)
m2 <- club(length ~ location, jellyfish)
z <- compare(m1, m2)
summary(z)</pre>
```

summary.clubprofit

Generate a summary of results from a fitted clubpro model.

Description

Generate a summary of results from a fitted clubpro model.

Usage

```
## S3 method for class 'clubprofit'
summary(object, ...)
```

Arguments

```
object an object of class "clubprofit". . . . ignored
```

Value

No return value, called for side effects.

```
mod <- club(rate ~ dose, data = caffeine)
summary(mod)</pre>
```

20 threshold

threshold

Classification strength indices.

Description

Classification strength indices.

Usage

```
threshold(m)
```

Arguments

m

an object of class "clubprofit" produced by club()

Details

Returns a vector containing the classification strength index for each observation.

Value

an object of class clubprothreshold

```
mod <- club(width ~ location, data = jellyfish)
threshold(mod)</pre>
```

Index

```
* datasets
    caffeine, 4
    jellyfish, 8
accuracy, 2
as.data.frame.clubprocsi, 3
as.data.frame.clubprorand,4
caffeine, 4
club, 5
compare, 6
csi, 6
cval, 7
individual_results,8
jellyfish, 8
median\_csi, 9
n\_ambiguous, 9
n_correct, 10
n_incorrect, 11
pcc, 11
pcc_replicates, 12
plot.clubproaccuracy, 13
plot.clubprocomparison, 13
plot.clubprocsi, 14
plot.clubprofit, 15
plot.clubpropredictions, 16
plot.clubprorand, 16
plot.clubprothreshold, 17
predict.clubprofit, 18
summary.clubprocomparison, 18
\verb|summary.clubprofit|, 19
threshold, 20
```