При гетерогенно каталитическом дегидрировании бутенов (бутен-1 28%, цис-бутен-2 32%, транс-бутен-2 40%) в дивинил в присутствии водяного пара протекают реакции:

$$\mathsf{H_2C}\text{-}\mathsf{CH}\text{-}\mathsf{CH_2}\text{-}\mathsf{CH_3} \longleftrightarrow \mathsf{H_2C}\text{-}\mathsf{CH}\text{-}\mathsf{CH}\text{-}\mathsf{CH_2} + \mathsf{H_2}$$

цис- H_3C -CH=CH-C $H_3 \leftrightarrow H_2C$ =CH-CH=C $H_2 + H_2$

транс- H_3C -CH=CH-C $H_3 \leftrightarrow H_2C$ =CH-CH=C $H_2 + H_2$

Реакция проводится:

- а) При атмосферном давлении, при молярном соотношении водяной пар:сырье 20:1 в температурном интервале 750-950 К. Определить оптимальную температуру выхода дивинила
- б) При атмосферном давлении и температуре 900 К. Определить молярное соотношение водяной пар:олефин в исходной смеси, соответствующее максимальному равновесному выходу дивинила.
- а) Составим матрицу стехиометрических коэффициентов:

Таблица 1. Матрица стехиометрических коэффициентов

	бутен-1	дивинил	дивинил водород		транс- бутен-2
реакция 1	-1	1	1	0	0
реакция 2	0	1	1	-1	0
реакция 3	0	1	1	0	-1

Зададимся начальными значениями количеств веществ и определим количества веществ в произвольный момент времени:

Таблица 2. Количества веществ

	бутен-1	дивинил	водород	цис-бутен-2	транс-бутен-2	водяной пар			
m0	0.013	0	0	0 0.015		0.952			
m	0.013-x ₁	x ₁ +x ₂ +x ₃	x ₁ +x ₂ +x ₃	0.015-x ₂	0.019-x₃	0.952			
Σm	$x_1+x_2+x_3+1$								
Z	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		$\frac{x_1 + x_2 + x_3}{x_1 + x_2 + x_3 + 1}$	$\frac{0.015 - x_2}{x_1 + x_2 + x_3 + 1}$	$\frac{0.019 - x_3}{x_1 + x_2 + x_3 + 1}$	$\frac{0.952}{x_1 + x_2 + x_3 + 1}$			

Константы равновесия реакций найдем через константы равновесия образования индивидуальных веществ.

Таблица 3. Константы равновесия образования веществ и константы равновесия реакций дегидрирования

Т, К	lg(kp _f)				kp			
	бутен-1	дивинил	водород	цис- бутен-2	транс- бутен-2	реакция 1	реакция 2	реакция 3
700	-13.293	-15.8	0	-13.129	-12.943	3.112×10 ⁻³	2.133×10 ⁻³	1.39×10 ⁻³
800	-13.479	-14.88	0	-13.404	-13.235	0.040	0.033	0.023
900	-13.644	-14.18	0	-13.641	-13.482	0.291	0.289	0.200
1000	-13.786	-13.63	0	-13.843	-13.692	1.432	1.633	1.153

Расчет констант равновесия реакций в интервале температур производится по формуле:

$$kp = 10^{\nu \cdot \lg (kp_f)},\tag{1}$$

где v – матрица стехиометрических коэффициентов,

 $\lg{(kp_f)}$ – матрица логарифмов констант равновесия образования веществ в температурном интервале из таблицы 3.

Составив для каждой реакции уравнение:

$$\prod_{i} Z_{i}^{\nu_{i}} := kp, \tag{2}$$

Получим:

$$\begin{cases} \frac{(x_1 + x_2 + x_3)^2}{(0.013 - x_1) \cdot (x_1 + x_2 + x_3 + 1)} = kp_1\\ \frac{(x_1 + x_2 + x_3)^2}{(0.015 - x_2) \cdot (x_1 + x_2 + x_3 + 1)} = kp_2\\ \frac{(x_1 + x_2 + x_3)^2}{(0.019 - x_3) \cdot (x_1 + x_2 + x_3 + 1)} = kp_3 \end{cases}$$

Решив данную систему уравнений при различных температурах, можно найти зависимость равновесного выхода дивинила от температуры.

Равновесный выход дивинила можно рассчитать по формуле:

$$X = \frac{m(\text{дивинил})}{m0(\text{бутен} - 1) + m0(\text{цис} - \text{бутен} - 2) + m0(\text{транс} - \text{бутен} - 2)}$$
 (3)

Завсимость равновесного выхода дивинила от температуры будет выглядеть следующим образом:

Рисунок 1. Зависимость конверсии по дивинилу от температуры

Таким образом, в интервале температур 750-950 К оптимальной температурой для получения дивинила является 950 К.

б) Для решения задачи выбора соотношения водяной пар:олефин для максимального равновесного выхода дивинила воспользуемся той же логикой, что и в пункте (а).

Анализ следует начать с рассмотрения реакций. Реакции дегидрирования идут с увеличением числа молей газов, поэтому увеличение содержание инертного компонента (водяной пар) должно приводить к смещению равновесия в сторону продуктов реакции. Убедимся в этом, построив график зависимости равновесного выхода дивинила от количества водяного пара при атмосферном давлении и температуре 900 К.

Рисунок 2. График зависимости равновесного выхода дивинила от соотношения водяной пар:олефин

Из графика зависимости равновесного выхода дивинила от соотношения водяной пар:олефин можно сделать вывод, что равновесный выход дивинила непрерывно увеличивается с увеличением количества водного пара в системе. Выберем оптимальным соотношение водяной пар:олефин = 40:1, так как дальнейшее увеличение количества водяного пара не приведет к значительному увеличению выхода дивинила.