Selecione uma opção de resposta: \blacksquare a. {ana} \subseteq $A_{joao} \cap A_{margarida} \checkmark$

b. Não respondo.
 c. ana ∈ A_{joao} ∪ $A_{margarida}$

Data de início Terça, 13 Dezembro 2016, 17:06 Estado Teste enviado Data de submissão: Terça, 13 Dezembro 2016, 19:06 Tempo gasto 2 horas Nota 11,03 de um máximo de 20,00 (55%) Informação P Destacar pergunta A descrição de uma dada situação assenta nos seguintes conjuntos. $P = \{x \mid x \in uma \text{ pessoa}\}$ $F = \{x \mid x \in do sexo feminino\}$ $M = \{x \mid x \in do sexo masculino\}$ $C = \{x \mid x \in uma \ criança\}$ $U = \{x \mid x \in um \text{ utente}\}\$ $A = \{x \mid x \in um \text{ acompanhante}\}\$ $A_{II} = \{x \mid x \in acompanhante do utente u\}$ $Med = \{x \mid x \in médico\}$ Enf = $\{x \mid x \in enfermeiro\}$ $Aux = \{x \mid x \in auxiliar\}$ Staff = {x | x pertence ao staff} Para cada uma das seguintes expressões, escolha a tradução mais adequada: Pergunta 1 Correto Pontuou 0,500 de 0,500 P Destacar pergunta Cada pessoa é do sexo masculino ou feminino. Selecione uma opção de resposta: $\quad \ \ \, \text{a. P}\subseteq M\cap F$ o b. Não respondo. c. P ⊆ M ∪ F
 ✓ \bigcirc d. M \cup F \subseteq P \bigcirc e. P \in M \cup F Pergunta 2 Correto Pontuou 0,500 de 0,500 Postacar pergunta O Pedro e o Luis são acompanhantes. Selecione uma opção de resposta: a. Não respondo. c. {pedro, luis} = A ○ d. (pedro Λ luis) \in A \bigcirc e. {pedro, luis} \in A Pergunta 3 Correto Pontuou 0,500 de 0,500 P Destacar pergunta A Ana é acompanhante tanto do João como da Margarida.

Pergunta 4 Correto Pontuou 0,500 de 0,500 P Destacar pergunta
As crianças não podem ser médicos.
Selecione uma opção de resposta:
a. Med \ C ⊆ Med
• b. Med \cap C = \emptyset \checkmark
○ c. C ⊈ Med
○ d. Não respondo.
⊝ e. Med ⊈ C
Pergunta 5 Correto Pontuou 0,500 de 0,500 Postacar pergunta
Existe pelo menos um enfermeiro que também é acompanhante.
Selecione uma opção de resposta:
a. Enf \cap A = Ø b. Não respondo
b. Não respondo. c. Enf ∪ A ≠ Ø
(a) d. $\exists x (x \in \text{Enf} \cap A) \checkmark$
\odot e. $\exists x A_x = \text{Enf}$
Pergunta 6
Pergunta 6 Correto Pontuou 0,500 de 0,500 P Destacar pergunta
$\mathrm{Enf}\subseteq (\mathrm{P}\setminus \mathrm{C})\cap \mathrm{M}$
Selecione uma opção de resposta:
 a. Não há enfermeiros adultos do sexo masculino.
b. Há enfermeiros adultos do sexo masculino.

od. Só os enfermeiros são adultos do sexo masculino.
e. Não respondo.
Pergunta 7 Correto Pontuou 0,500 de 0,500 P Destacar pergunta
$\forall x (x \in U) \rightarrow (A_x \le 10)$
Selecione uma opção de resposta: a. Só os utentes têm no máximo 10 acompanhantes.
 b. O número máximo de acompanhantes da totalidade dos utentes é 10.
c. Se alguém tiver menos que 10 acompanhantes, então é um utente.
 ol. Cada utente tem no máximo 10 acompanhantes. √
e. Não respondo.
Pergunta 8 Correto Pontuou 0,500 de 0,500 Postacar pergunta
$\forall x (x \in U \cap C) \rightarrow (A_x \cap (P \setminus C) \neq \emptyset)$
Selecione uma opção de resposta:
a. Não respondo.
 b. As crianças utentes não podem ter acompanhantes crianças.
o. Só os acompanhantes de adultos são crianças.
 d. Todas as crianças utentes são acompanhantes de um adulto.
 e. As crianças utentes têm de ter pelo menos um acompanhante adulto. √

Pergunta 9 Correto Pontuou 2,000 de 2,000 Destacar pergunta Diz-se que dois inteiros são próximos se o valor absoluto da sua diferença for 2 ou menos. Por exemplo, 3 está próximo de 5 e 10 está próximo de 9, mas 8 não está próximo de 4. $Proximo = \{(x, y)|x, y \in Z \land |x - y| \le 2\}$ Assinale as propriedades desta relação. Selecione uma ou mais opções de resposta: a. Transitiva D. Não simétrica e não antissimétrica 🕜 c. Simétrica 🧹 🗹 d. Não ordem parcial 🧹 🗹 e. Não relação de equivalência 🧹 f. Reflexiva g. Relação de equivalência h. Antissimétrica i. Não reflexiva j. Ordem parcial 📝 k. Não transitiva 🇸 Informação Destacar pergunta Considere os cpo $A^* = (A, \leq_A) = (\{1, 2\}, \leq)$ e $B^* = (B, \leq_B) = (\{2, 3, 6\}, I)$, em que $I \in A$ relação de divisibilidade. Define-se o operador sobre cpo $A^* \odot B^* = (A \times B, \leq)$ em que $(a,b) \leq (c,d) \leftrightarrow a \prec_A c \lor (a=c \land b \leq_B d)$. Note-se que $x \prec_A y \leftrightarrow x \leq_A y \land x \neq y$.

Pergunta 10 Respondida Pontuou 1,750 de 2,000 P Destacar pergunta

Esboce os diagramas de Hasse de $A^* \odot B^*$ e de $B^* \odot A^*$. O operador \odot é comutativo?

 $\begin{aligned} &\mathsf{AxB=}\{(1,2),(1,3),(1,6),(2,2),(2,3),(2,6)\}\\ &\mathsf{BxA=}\{(2,1),(2,2),(3,1),(3,2),(6,1),(6,2)\} \end{aligned}$

Como os diagramas de Hasse para A∗ ⊙ B e B∗ ⊙ A são diferentes, o operador ⊙ não é comutativo. ∗

up201603846P10.png

Pergunta 11 Respondida Pontuou 0,250 de 2,000 P Destacar pergunta

Mostre que $A^* \odot B^*$ é um cpo.

 $A* \odot B* \text{ \'e um cpo (} (A \times B, \leq))$

se ≤ for uma relação de ordem parcial. Portanto, terá que ser, obrigatoriamente: reflexiva, antissimétrica e transitiva.

Sabe-se que \leq expressa que $(a,b) \leq (c,d) \leftrightarrow a \prec_A c \lor (a=c \land b \leq_B d)$, onde $\prec_A \prec_A e \leq_B s$ ão ambas ordens parciais.

≤B≤B≤B≤B≤B≤B≤BBA ≺A≺A

Isto pode-se traduzir como -> a<c v (a=c Λ b|d), logo podemos assumir que no mínimo, uma destas condições se verifica.

Reflexiva sse: $\forall a \in AxB$, $(a,a) \in R$

Antissimétrica sse: $\forall a, b \in AxB, (a,b) \in R \land (b,a) \in R \rightarrow a=b$

Transitiva sse: $\forall a$, b, c \in AxB, $(a,b) \in R \land (b,c) \in R \rightarrow (a,c) \in R$

Pergunta 12 Respondida Pontuou 2,000 de 2,000 P Destacar pergunta

Seja A={1,2,3,4} e B={5,6,7}. Seja f a relação f={(1,5), (2,5), (3,6), (?,?)}, onde os pontos de interrogação são preenchidos por si, em cada alínea, de molde a tornar a afirmação respetiva verdadeira. Só pode usar elementos de AxB.

- a) A relação não é uma função.
- b) A relação f é uma função de A para B, mas não é sobrejetiva.
- c) A relação f é uma função de A para B e é sobrejetiva.
- a) f={(1,5), (2,5), (3,6), (3,5)}

b)f={(1,5), (2,5), (3,6), (4,6)}

c) f={(1,5), (2,5), (3,6), (4,7)}

Pergunta 13

Respondida Pontuou 1,600 de 2,000 Postacar pergunta

Define-se a função f: $\mathbb{R} \to \mathbb{R}$ pela fórmula $f(x) = \sin(x)$.

- a) A função f é injetiva? E sobrejetiva?
- b) Obtenha rng f.
- c) Indique qual o domínio e conjunto de chegada que f deve ter para que a sua inversa, cuja fórmula é $f^{-1}(x)$ = arcsin(x), faça sentido.

Verificar se f é injetiva:

 $f(x1)=f(x2) \rightarrow x1=x2 \text{ verdadeiro?}$

Assumindo que x1=/x2

f(x1)=f(x2)

- \leftrightarrow sin(x1)=sin(x2)
- ↔ x1=x2+2kpi v x1=-x2+2kpi, k pertencente a Z (numeros inteiros)

como, para qualquer k, o ângulo resultante é o mesmo no círculo trigonométrico pode-se escrever:

↔ x1=x2 v x1=-x2

Ora, como x1=/2, para esta disjunção ser verdadeira, x1=-x2 tem quer ser verdadeira

O que significa que a função é não injetiva.

b) Lembrando o círculo trigonométrico, conclui-se que o seno de um angulo definido entre [0,2pi] é igual ao seno do ângulo simétrico, ou ao seno do mesmo ângulo ou do simétrico, somando 2kpi. Ou seja, o seno é uma função periódica. O que significa que terá um máximo e um mínimo que se repetem periodicamente, até ao infinito.

O máximo de sen(x) é sen(pi/2)=1 e o mínimo é sen(3pi/2)=-1

Portanto, rng f = [-1,1]

c) Para que a sua inversa faça sentido, é necessário que f seja bijetiva, ou seja, que seja injetiva e sobrejetiva.

Para tal, dom f = [0,2pi]

e conjunto de chegada de f =[-1,1]

Pergunta 14

Respondida

Pontuou 0,000 de 2,000

▼ Destacar pergunta

Qual a dimensão mínima que um grupo de pessoas deve ter para ser garantido que três pessoas do grupo têm as mesmas iniciais (primeira, meio e fim)? Exemplo de iniciais: GTD. Considera-se apenas o alfabeto português com 26 letras.

Pergunta 15

Incorreto

Pontuou -0,667 de 2,000

Destacar pergunta

Considere a relação quaternária R ⊆ NCC × Nomes × CodF × NomeF, em que NCC é o conjunto dos números de cartão de cidadão, Nomes é o conjunto dos nomes, CodF é o conjunto dos códigos das freguesias e NomeF é o conjunto dos nomes das freguesias. R contém uma sequência por cada estudante matriculado na faculdade. De cada vez que um estudante se matricula, é acrescentada uma sequência (ncc, nome, codF, nomeF) com a respetiva informação, significando que o estudante com o número de cartão de cidadão ncc se chama nome e mora na freguesia nomeF com o código codF.

Existe uma restrição, designada unique(ncc), que impede de acrescentar uma nova sequência em que o primeiro elemento, ncc, coincida com o ncc de qualquer outra sequência existente. Desta forma garante-se que não é possível incluir na relação duas sequências para o mesmo ncc, por exemplo, com nomes diferentes.

Se, por análise dos regulamentos em vigor, se concluir que o nome de uma freguesia é função do seu código NomeF= f(CodF), isto é, que o seu nome deve ser único e identificado pelo seu código, qual das situações de representação da informação seguintes garante que essa restrição é respeitada, ao acrescentar informação sobre os novos matriculados. No caso de existirem várias relações, a uma matrícula podem corresponder inserções de sequências apropriadas nas várias relações.

Selecione uma opção de resposta:

 R={(ncc,nome) | ncc ∈ NCC Λ nome ∈ Nomes Λ unique(ncc)} $S=\{(ncc,cf) \mid ncc \in NCC \land cf \in CodF \land unique(ncc)\}$ $T=\{(ncc, nf) \mid ncc \in NCC \land nf \in NomeF \land unique(ncc)\} \times$

- R={(ncc,nome,cf) | ncc ∈ NCC nome ∈ Nomes cf ∈ CodF unique(ncc)} $S=\{(cf,nf) \mid cf \in CodF \land nf \in NomeF \land unique(cf)\}$
- R={(ncc,nome, nf) | ncc ∈ NCC Λ nome ∈ Nomes Λ nf ∈ NomeF Λ unique(ncc)}, $S=\{(cf,nf) \mid cf \in CodF \land nf \in NomeF \land unique(cf)\}$
- Não respondo
- R={(ncc,nome,cf,nf) | ncc ∈ NCC nome ∈ Nomes cf ∈ CodF nf ∈ NomeF unique(ncc)}

Pergunta **16**

Respondida Pontuou 0,100 de 2,000 P Destacar pergunta

Apresente uma prova directa do facto de a função definida por $f(x)=rac{x-rac{1}{2}}{x(x-1)}$ definir uma correspondência bi-unívoca entre]0,1[e \mathbb{R} .

A função deve ser bijetiva, ou seja, injetiva ou sobrejetiva. Tem domínio R e contradominio R, e sabe-se que qualquer subconjuntp de R tem a mesma cardinalidade que qualquer outro, ou o propripo R.

Terminar revisão

NAVEGAÇÃO NO TESTE

Pedro Miguel Sousa Fernandes

i 1 2 3 4 5 6 7 8 9 i 10 11 12 13 14 15 16

Mostrar uma página de cada vez

Terminar revisão

© 2017 UPdigital - Tecnologias Educativas

Nome de utilizador: Pedro Miguel Sousa Fernandes (Sair)

Gestão e manutenção da plataforma Moodle U.PORTO da responsabilidade da unidade de Tecnologias Educativas da UPdigital. Mais informações: apoio.elearning@uporto.pt | +351 22 040 81 91 | http://elearning.up.pt

in You

Based on an original theme created by Shaun Daubney | moodle.org