Bayesian Clinical Trials

Informative vs. non-informative beta priors

Updatindg with Data

```
library(LearnBayes)
```

Suppose we are interested in the response p of a drug.

- The function bayes.select allow for specifying a beta prior based on knowledge of two prior quantiles.
- ► Suppose the prior median for the response rate is 0.2 and the 75th percentile is 0.3.

```
beta.prior = beta.select(list(p=0.5, x=0.2),
list(p=0.75, x=.3))
print(beta.prior)
## [1] 2.04 7.19
```

A beta(2.04, 7.19) prior matches this prior information

Updating with data

- ► Next, suppose to observe for 3 successive patients no adverse events
 - ▶ 3 successes and 0 failures

The posterior distribution is...

Triplot

The triplot function shows the prior, likelihood, and posterior on the same display

Inference by sampling from the posterior

Inference about the response rate can be carried out by simulating a large number of draws from the posterior and summarizing the simulated sample.

Predictive distribution

Suppose we want to predict the number of no adverse events (successes) in the next cohort of 3 patients.

```
beta.prior = beta.select(list(p=0.5, x=0.2),
                 list(p=0.75, x=.3))
n = 3
s = 0:n
pred.probs = pbetap(beta.prior, n, s)
discint(cbind(s, pred.probs), 0.95)
## $prob
## [1] 0.9763719
##
## $set
## [1] 0 1 2
```

Predictive distribution

