DG MOTORS

Compact DC Motors

Japan Servo's DC Miniature Motors are widely used in a variety of application fields, from copiers and other office equipment, to remote-controlled equipment, medical equipment, vending machines, and game machines.

These motors may be combined with Japan Servo's full line of gearheads to meet a wide range of torque and output speed specifications.

Japan Servo provides a practical and economic choice as drive actuators. Strict quality control ensure reliable performance as well as prompt delivery at reasonable price. Japan Servo provides a full variation line-up of stock model and customized design motors to best meet your specific application needs.

1

DMNSeries

Long life
High quality
High output
Low noise

RoHS-compliant

Features

Long-life:
 Intermittent operation
 over 1 million cycles with
 optimized brush design*1

 Continuous operating life of 3000 hours*1

 High output: High heat dissipation and heat resistance achieves higher output

 High strength: High radial load capacity due to robust construction, large diameter output shaft and ball bearings

 Low noise and increased insulation due to new resin brush holders

 Large selection of gear heads and reduction ratios are available to meet all needs

• Also available with magnetic revolution sensor and noise filter*2

*1 Differs depending on environment and application. Contact us for details. *2 Scheduled for release April 2006.

Life time

DME Series	DME25	DME33	DME37 DME44							
DIVIL Oches		1000Hours 2000Hours								
DMN Series		DMN29		DM	N37					
Divily Selles		3000Hours		3000	Hours					

[■]Continuous Operation :

Brush Wear Rate

■Brush Length

Comparison of Noise

■ DME25/33/34 ⇒ DMN29 ■

By adoption of Resin Brush Holder, Noise reduced by 8dB compared to DME25, 33, 34

■ DME37 🖈 DMN37 🔳

By adoption of Resin Brush Holder, Noise reduced by 8dB compared to DME37

^{*}The motor life-time is dependent upon actual application conditions. Please consult us for more information.

DMN29

●DIMENSIONS Unit mm(inch)

●CURRENT, SPEED-TORQUE CURVE DMN29

●CONNECTION

•STANDARD SPECIFICATIONS

			Rate	d			No load		Stall torque		Moight	
Model	Output	Voltage	Tor	que	Current	Speed	Current	Speed	mN-m	oz∙in	Weight	
	W	V	mN-m	oz∙in	Α	r/min	Α	r/min	111114-111	02.111	g	lb
DMN29BA	3.0	12	7.8	1.11	0.42	3700	0.07	5000	30	4.17	90	0.20
DMN29BB	3.0	24	7.8	1.11	0.21	3700	0.05	5000	30	4.17	90	0.20

DMN37

● DIMENSIONS Unit mm(inch)

JB	24	V 14.	7W (D.94A
Model	L	.1	L	.2
Model	(mm)	(inch)	(mm)	(inch)
DMN37S	45.2	1.780	39.5	1.555
DMN37B	53.2	2.094	47.5	1.870
DMN37K	58.2	2.291	52.5	2.067
DMN37J	63.2	2.488	57.5	2.264

MODEL CODE VOLTAGE OUTPUT CURRENT

12V

24V

12V

24V

12V

24V

4.6W

4.6W

7.2W

7.2W

9.2W

9.2W

0.78A

0.37A

1.01A

0.53A

1.20A

0.60A

3-M3 DEPTH 4MAX. (3-M3 DEPTH 0.157MAX.) P=120° P.C.D.=128±0.2 P.C.D.=1.102DIA.±0.00787	(1.572DA) (1.591DA, -8.003e) (0.591DA, -8.003e) (0.197DA, -8.00072) (0.197DA, -8.00072)	17 (0.669)	L1 L2 NAME PLATE	(5.7) (0.224) (0.224) (0.224) (0.224) (0.224)
		1	Back YOKE Only for	DME37J

SA

SB

BA

BB

KA

KB

OCURRENT, SPEED-TORQUE CURVE

●CONNECTION

•STANDARD SPECIFICATIONS

			Rate	d			No load		Stall t	torque	Weight	
Model	Output	Voltage	Tore	Torque		Speed	Current	Speed	mN-m	oz∙in	vve	ignt
	W	V	mN-m	oz∙in	Α	r/min	Α	r/min	111114-111	02.111	g	lb
DMN37SA	4.6	12	9.8	1.39	0.78	4500	0.26	5500	54	7.64	130	0.29
DMN37SB	4.6	24	9.8	1.39	0.37	4500	0.12	5500	54	7.64	130	0.29
DMN37BA	7.2	12	14.7	2.08	1.01	4700	0.25	5500	98	13.89	180	0.40
DMN37BB	7.2	24	14.7	2.08	0.53	4700	0.13	5500	98	13.89	180	0.40
DMN37KA	9.2	12	24.5	3.47	1.20	3600	0.27	4300	160	23.61	210	0.46
DMN37KB	9.2	24	24.5	3.47	0.60	3600	0.14	4300	160	23.61	210	0.46
DMN37JB	14.7	24	39.2	5.55	0.94	3600	0.16	4300	240	34.72	240	0.53

≯Intermittent ratings are given for DMN37JB. (Duty 50%)

Structure

Brushes

The brush is an important part that serves as a commutating mechanism. The brush's service life (in accordance with wear) will be the service life of the direct-current motor.

Commutator

In general, copper is the material used, but to counteract how it softens at high temperatures, a small amount of silver is mixed with it.

Armature coil

In general, electric wire known as magnet wire is used. Wire diameter is selected in accordance with the motor's specifications, and the wire is connected to the commutator bar by means of welding, soldering or other such methods.

Armature

For the armature, magnetic steel sheet is used to increase magnetic flux density.

Magnets

Broadly speaking, the magnets used in the motor can be classified in terms of whether they are ferrite, alnico, rare earth, etc. Magnets are selected in accordance with usage purpose, based on their features.

Bearing

There are ball bearings and sleeve bearings, and they are used in accordance with purpose.

The ball bearing is the type that is appropriate for uses involving large bending loads.

Current and rotating torque characteristics

The magnet DC motor has dropping characteristics (rotation speed) and rising characteristics, as shown in Figure 2. When applied voltage V is changed, as shown in Figure 2, torque rotating speed characteristics will be proportional to the value for V, but current torque characteristics will only change very slightly. (For details, please refer to the relational expression for current and torque rotating speed.)

How to view characteristics

As shown in Figure 2, at applied voltage V, when load torque T_L is added to the motor, rotating speed and current will be N_L and I_L , respectively. When V has been changed to V'V", the result can be similarly sought. Noload rotating speed, No, and stalling (starting) torque, Ts, will be proportional to the applied voltage; thus, the values for when a 24V motor, for example, is used at 20V

Fig. 2

or 18V will be on the order of those shown in Table 1. (No-load current Io will be sufficiently small compared with the stalling current and can thus be disregarded.)

When changing the rated voltage substantially (from 24V to 6V, for example), it will be necessary to depend on actual measurement.

However, use at something other than the rated voltage could cause abnormal brush wear and startup malfunctions. Thus, we ask that you confirm the usage conditions.

Voltage	No-load rotating speed No	Stalling torque Ts	Stalling current Is		
24V	5000r/min	40mN-m	1.0A		
20V	$\frac{20}{24} \times 5000$ 4166	$\frac{20}{24}$ ×40 33	$\frac{20}{24} \times 1 = 0.83$		
18V	$\frac{18}{24} \times 5000 3750$	$\frac{18}{24}$ ×40 30	$\frac{18}{24} \times 1 = 0.75$		

Table 1

Explanation of Terminology

Term/Symbol	Content
No-load rotating speed No	Rotating speed with no load
No-load current Io	Input current with no load
Stalling torque Ts	Max. value for motor-generated torque. In general, a DC motor's stalling torque is equal to its starting torque.
Load torque Tı	As shown in Figure 3, when a pulley with radius R is attached to the motor and force of F is applied to the pulley's circumference, the torque generated, T _L , can be derived by multiplying F and R (F×R= T _L). T _L =F×R Fig. 3 Note: Using the lock with voltage applied could cause burnout.

Relational expressions for torque, rotating speed and current

Relational expressions are as follows.

If the no-load rotating speed from formula 1 is taken to be No, when load torque T_L is zero, there will be no load; thus, if $T_L = 0$, the following will be the case.

No-load rotating speed No will be determined from the size of the motor's friction torque, To. If To is low, the no-load rotating speed from formula 3 will be roughly proportional to the applied voltage. In addition, stalling (starting) torque will equal the load torque when rotating speed N from formula 1 is zero, resulting in the following:

Starting torque will be roughly proportional to the applied voltage. Current will be as follows.

From this formula, when load torque T_L and friction torque are constant, the current will be constant with no relation to applied voltage. The no-load current will be the value that makes the load torque zero in formula 5, but friction torque T_0 will change slightly, in accordance with rotating speed; thus, there will be some change caused by the applied voltage.

If motor output is designated as P (W) , torque as T $(N\cdot m)$ and rotating speed as N (r/min) , motor output P (W) will be as follows.

 $P = 0.105 \times T \times N$Formula 6 N: Rotating speed To: Motor's friction torque

V: Applied voltage TL: Load torque

r: Armature-circuit resistance K1 and K2: Motor-specific constant

Technical Description:

Operating Precautions

DC motors are compact and display high output, and their speed is easy to control. They may be driven by battery or any other power supply and are therefore also easy to use. However, inappropriate power supply may lead to burnout or abnormal brush wear.

Problems with power supply, installation, and general precautions and problems with a motor installed in-circuit will be described.

· Overload and lock-up

An excessive amount of load torque is applied during overloaded driving or when locked up, causing an excessive current flow with heat damage being incurred by the motor. Therefore, overloaded or locked-up use is to be avoided. (Locking up for 5 or more seconds results in damage to a motor. Do not lock up a motor for 5 or more seconds.)

Applied voltage

Be sure to use a motor at its rated voltage (+IUVI), and avoid any surge voltage. We can specially manufacture motors designed with an electrical path protecting the motor from surges and reversed polarity. Please contact us for details.

· Applying non-rated supply voltages

Applying a voltage higher than the motor's rating results in a temperature increase, leading to heat damage or lowered service life. Scoring of the commutator surface by sparks and mechanical brush wear arising from vibration may also occur.

Applying a voltage lower than the motors rating may eventually result in the motor failing to start. This is due to the build up of carbon powder on the commutator.

Motors are manufactured for use within +HOVo of their rated specifica-

Please contact us if you need to use motors outside their ratings.

• Brush wear promoted by power supply ripples

Brush wear may be mechanical wear due to brush and commutator abrasion or electrical wear due to sparking between the brush and commutator, the latter being the most common. Brush wear is therefore greatly affected by ripples in the power supply voltage, and use of general regulated DC is recommended. However, when rectifying AC for use by a motor, be sure to use full-wave rectification with a capacitor or similar element in a smoothing circuit.

Ambient conditions

The service life of a DC motor is dependant upon its rectifying action. Care must be taken to ensure good commutation, as dust, oil, gas, water, etc. Water, etc, on the commutator surface results in poor rectification and increases brush wear.

• Changing the brush position

The brushes are generally fixed in position such that rotational speed and current characteristics are maintained equivalent in both clockwise and counter-clockwise directions. These are basically determined based on the position of the magnetic poles. Rotating the motor after not carefully relocating parts such as the brush holder (for fixing the brushes) or rear cover results in misalignment of the brushes and magnets. This will produce change in the above characteristics in the rotational direction or cause poor rectification, leading to abnormal brush wear. Therefore, changing of the brush positioning is to be avoided.

• Installed orientation

Motors are generally designed for use with a horizontal output shaft. Special consideration must be given to components including bearings and grease washers when intended for an upward- or downward-facing output shaft. Please contact us for details.

Further, avoid installing a motor in a manner in which grease from the gear head would tend to enter the motor (e.g., with an upward-facing output shaft).

Noise generation

Electrical noise is generated as a result of sparks from commutation between the brushes and commutator. Please contact us for assistance with lowering noise.

• Gear heads for intermittent drive

Fig. 5

The gearhead is assembled with a fixed shaft about which a gear revolves and transmits power. It is not suited to continuous drive. You should maintain the duty ratio between ON and OFF states at no more than 50%, with the maximum ON state not exceeding 5 seconds.

• Motor and gear head combination

When combining a gear head with a pinion shaft, gently fit the gear head on turning it right and left, being careful that the pinion and the gear in the gear head do not strongly clash with each other.

Using force will cause noise-producing scratches in the pinion and the gear. Scratches are Failures by a decreased service life and are the cause of unforcesen accidents

Load variation

Even with torque below the rated load, a motor will incur more damage than might be imagined if there is frequent load variation. Exercise caution with operating conditions and load restrictions.

• Insulation resistance

The insulation resistance of a brush motor will naturally continue to decrease as its running time increases. The figures for resistance given in the catalog are for a new motor.

• Service life

Service life depends greatly on operating conditions and environment. Please contact us for details.

• Other aspects

Oil may seep out of the grease in the gear head depending on operating conditions, storage environment, etc.

This does not present any problems in the use of the gear head. However, contamination of the machine or equipment to which the geared motor is fitted may occur.

Motors with pulse generators:

There are two types of pulse generators that are featured in DME series motors: the magnetic and optical revolution sensor. (Note, the optical revolution sensor is available only in the DME34 model.) Both are incremental revolution sensor. And all the above generators can output Single Phase pulse signal only. When TWO Phase signal is required, contact our sales agent near you or directly to us. We may quote on case by case basis.

Magnetic Type

Magnetic Revolution Sensor:

Compared to the optical revolution sensor, the magnetic revolution sensor is more resistant to high temperatures, dust contaminations, vibrations and impact shocks. The design of the magnetic revolution sensor type motor is also more simple. In incremental type revolution sensor, pulse output signals are sent to a counter wherein the incremented value is displayed. Signal noise, here, lead to performance errors. Magnetic type revolution sensors are especially vulnerable to signal noise since the signal levels are usually very low (20mA to 30mA). Thus, make sure magnetic revolution sensor type motors are provided proper magnetic shielding, and signal lines are as short as possible (ideally within 5m).

OSTANDARD SPECIFICATION OF REVOLUTION SENSOR

REVOLUTION SENSOR TYPE	MAGNETIC	OPTICAL
PULSE PER REVOLUTION	12P/rev.	24P/rev.
INPUT VOLTAGE	DC5V±10%	DC5V±10%
CURRENT CONSUMPTION	5mA nominal	25mA nominal
DUTY (B/A)	50±20%	50±10%
OUTPUT WAVEFORM (COMMON)	DC5V	

Optical Type

Optical Revolution Sensor:

Long-life LED is used as the light emitter, and a phototransistor is used as the light detector. When using optical revolution sensor type motors, special considerations are needed to protect against dust and extreme temperatures. The most frequent causes of trouble in optical revolution sensors are: dust build-ups impairing proper optical properties; and extreme leading to deterioration in light emission performance. Japan Servo can thus ensure full rated performance only in ambient temperatures between 0 to 40 degrees centigrade, and in dust-free conditions.

• CONNECTION

DC SMALL MOTORS

The DME Series motor is a feasible and practical DC motor that is used popularly in many applications.

According to user demands, Japan Servo combines the DME motor with a wide variation of high-performance gear-boxes to further increase the application possibilities for the DME Series.

Also, in response to demands for a simple, low-cost motor that has a certain amount of controllability, Japan Servo provides DME models that feature pulse generators (magnetic or optical PG).

For certain models of the DME Series, the motor and gearboxes can be ordered separately, allowing for much greater versatility by combining various type motors with a wide range of reduction gears. Please refer to the product line-up chart to select the DME Series motor that is just right for your specific needs.

•DME SERIES MOTOR'S CONSTRUCTION AND CHARACTERISTICS.

MODEL	BRUSH HOLDING	CODE SLOTS	BEARING	MAGNET	LIFE*				Ol	JTPUT	POWE	R (W)		PAGE
WODEL	BRUSH HOLDING	CONE SLOTS	BEANING	MAGNET	(hrs)	S	В	K	J	į	5 1	0 1	5	PAGE
DME 25	Holder	3 slots	Sintered sleeve bearing	Anisotropic	1000		0			⊚3				12
DME 33	Caring plata	3 slots	Sintered sleeve bearing	Isotropic	1000	0				⊚0.7				15
DIVIE 33	Spring plate	3 51015	Sintered sieeve bearing	Anisotropic	1000		\circ			⊚3				15
						0				©1.3				
DME 34	Spring plate	3 slots	Sintered sleeve bearing	Isotropic Anisotropic	1000 (500)		\circ			0	4.5			21
								0			⊚7			
						0				0	4.6			
DME 37	Holder	7 slots	Cintered along to be aring	Anicotronia	2000		\circ				◎7.2]
DIVIE 37	Holder	7 SIOTS	Sintered sleeve bearing	Anisotropic	2000			0			0	9.2		29
									0				©17.2	
DME 44	Holder	10 alaka	Dall bearing	A .e.i.e. a tura .e.i.e.	2000	0					0	9.2		34
DIVIE 44	noider	10 slots	Ball bearing	Anisotropic	2000		\circ					0	14.8	34
DME 60	Holder	12 slots	Sint. sleeve/Ball bearing	Isotropic	2000	\circ						0	13	- 38
DIVIE OU	rioidei	12 51015	Sini. Sieeve/Daii Deaning	Anisotropic	2000		\circ						26©	

	BRUSH HOLDE	R	BEARING		MAGNET		
FEATURE	Holder:Long-life (1000 hours only for DME25	2000hours due to its	Ball bearing	:Long-life	Anisotropic	:High output	
	high-speed operation) Spring plate:Standard	1000hours	Sintered sleeve bearing	:Standard	Isotropic	:Standard	

^{*}Operated in motor alone, and single direction.

OSELECTION CHART

			MOTO	R SPE	CIFICA	TION		MOTORS WI	TH SENSOR	GEARED	MOTORS	
			PUT VER CODE		ED FAGE	RATED CURRENT A	MOTOR ONLY	MAGNETIC REVOLUTION SENSOR	OPTICAL REVOLUTION SENSOR	36G	Q 43G	
DME25		3	В	12 24	A B	0.47 0.23	DME25BA DME25BB			DME25B36G A	DME25B43G A	
DME33		0.7	S	12 24	A B	0.12 0.06	DME33SB	DME33SMA DME33SMB		DME33S36G B	DME33S43G_A DME33S43G_B	
שמים וואוו ש		3	В	12 24	A B	0.42 0.22	DME33BB	DME33BMA DME33BMB		DME33B36G_B	DME33B43G A DME33B43G B	
DME94		1.3	S	12 24	A B	0.20 0.10	DME34SB	DME34SMB	DME34SEB	DME34S36G B	DME34S43G A DME34S43G B	
DME34		4.5	В	12 24	A B	0.65 0.31	DME34BB	DME34BMB	DME34BEB		DME34B43G A DME34B43G B	
		7	K	24	В	0.41		DME34KMB	DIME34KEB			
	\sim	4.6	S	12 24	A B	0.78 0.37	DME37SB	DME37SMA DME37SMB				
DME37		7.2	В	12 24	A B	1.01 0.53	DME37BB	DME37BMA DME37BMB DME37KMA				
		9.2	K	12 24	A B B	1.20 0.60	DME37KB	DME37KMA DME37KMB				
		17.2	J	24		1.07	1					
DME44		9.2	S	12 24	A B	1.31 0.65		DME44SMA DME44SMB				
		14.8	В	24	В	0.94	DME44BB	DME44BMB				
DME60		13	S	12 24	A B	2.07 1.00	DME60SA DME60SB					
		26	В	24	В	2.2	DME60BB					
								12	24			
								PULSES PER	REVOLUTION			

•MOTOR DESIGNATIONS

[1] MOTORS ONLY

[2] MOTORS WITH SENSOR

<u>DME 34 B M A</u>

[3] GEARED MOTORS

DME 34 B 36G 10 A

GEARBOX MODEL
36G, 43G, 50G, 5C, L

[4] MOTOR AND GEARBOX SUPPLIED SEPARATELY

<u>37</u> 6H DME В LTYPE OF PINION SHAFT PINION SHAFT MATCHING GEARBOX 6HP 6DG 6HFP 6DGF 8HP 8DG 6DG 15 8HFP 8DGF

GEARBOX TYPE

6DG, 6DGF, 8DG, 8DGF

GEAR RATIO

		MOTOF	AND GEARBOX	SUPPLIED SEPER	RATELY	
500		6DG	6DGF	SDG SDG	8DGF	PAGE
	DME25BL_A DME25BL_B	DME25B6HPA DME25B6HPB				12~14
DME33S5C A DME33S5C E DME33B50G A DME33B50G B DME33B50C B	DME33SL_B DME33BL_A	DME33S6HPA DME33S6HPB DME33B6HPA DME33B6HPB				15~20
DME34S5C A DME34S5C E DME34B50G B DME34B5C E DME34B5C E DME34B5C E DME34K5C E DME3	DME34BL A DME34BL B	DME34S6HPA DME34S6HPB DME34B6HPA DME34B6HPB		DME34B8HPA DME34B8HPB DME34K8HPB		21~28
DME37850G A DME37850G B DME37B50G A DME37B50G B	DINEOTRE_D	DME37S6HPA DME37S6HPB DME37B6HPA DME37B6HPB	DME37B6HFPA DME37B6HFPB	DME37B8HPA DME37B8HPB		29~33
DME37K50G A DME37K50G B		DME37K6HPA DME37K6HPB	DME37K6HFPA DME37K6HFPB DME37J6HFPB	DME37K8HPA DME37K8HPB DME37J8HPB	DME37J8HFPB	
DME44S50G_A DME44S50G_B		DME44S6HPA DME44S6HPB	DME44S6HFPA DME44S6HFPB DME44B6HFPB	DME44S8HPA DME44S8HPB DME44B8HPB	DME44B8HFPB	34~37
		DME60S6HPA DME60S6HPB	DME60S6HFPA DME60S6HFPB	DME60S8HPA DME60S8HPB	DME60S8HFPA DME60S8HFPB	38~40
		6DG	DME60B6HFPB 6DG F	DME60B8HPB 8DG	DME60B8HFPB 8DG_F	
NOTE: DENOMINATOR OF RED	UCTION RATIO	MODE	L NAMES OF M	ATCHING GEAR		

●GEAR-HEAD DESIGN

GEAR RATIO Denominator)	36G	43G	50G	5C	L	6DG	6DGF	8DG	8DGF
E STOTIMATOR						0	0	0	0
5 9 10			0			} [⊻]	Y		t
9									+
						l	<u>-</u>		
12.5						<u> </u>		<u> </u>	I
15						0		<u>_</u>	
18			0			l <u>-</u> 9	<u>-</u>	0	I
20									
25						<u>•</u>	•	<u>•</u>	↓•
27			<u> </u>						1
30	•	•		•	0	•	<u> </u>	<u>•</u>	│
25 27 30 36	L		•			•	•	•	•
40				•					
50	0	0		•	0	•		•	0
54			•						T
60				-		•	ō	•	
72									† <u>-</u> -
75						•		•	† <u>-</u> -
80	<u>-</u>					-	<u>*</u>		† <u>-</u> -
72 75 80 96									†
100						-			t
120	<u>\</u>	+		-	0		ĕ		0
144	"					├ -		-	t
150			~			 			 -
180	X					0	0		0
192						} [∨]	Y		ŧ
192	<u>-</u>					 			
200					0	<u>-</u>	-		
250						0		0	ļ
255					0	l			ļ
256			0			l			1
300	<u>•</u>	•						0	ļ
400		•		0 [1
450						0	J	0	1
500	0	0		0		•		•	T
600								•	T
750						•		•	T
900						-			†
1800									+

Output shaft rotates in the same direction with motor shaft.
 Output shaft rotates reversed direction to motor shaft.

● DIMENSIONS Unit mm(inch) DME25BA, DME25BB

●CURRENT, SPEED-TORQUE CURVE DME25BA, DME25BB

● CONNECTION

•STANDARD SPECIFICATIONS

			Rate	d			No I	oad	Stall t	orque	We	iaht
Model	Output	Voltage	Tord	que	Current	Speed	Current	Speed	mN-m	oz∙in	VVE	igrit
	W	V	mN-m	oz∙in	Α	r/min	Α	r/min	111114-111	02.111	g	lb
DME25BA	3	12	4.9	0.69	0.47	5800	0.07	8000	17.7	2.50	55	0.12
DME25BB	3	24	4.9	0.69	0.23	5800	0.04	8000	17.7	2.50	55	0.12

WITH GEARBOX

36G

Gear heads for intermittent drive

● DIMENSIONS Unit mm(inch) DME25B36G

OF AD DATIO	L	.1	L	.2	WEIGHT		
GEAR RATIO	(mm)	(inch)	(mm)	(inch)	g	lb	
10	52.3	2.059	19.8	0.78			
18~30	54.8	2.157	22.3	0.878	160	0.35	
50~100	57.3	2.256	24.8	0.976			
120~300	59.8	2.354	27.3	1.075	180	0.40	
400~600	62.3	2.453	29.8	1.173	180	0.40	

•with 36G TYPE GEARBOX

•	0,	٠,٠											
Model	Gear ra	atio	10	*18	*20	*30	50	60	75	+	*120	*150	*180
iviodei	Rated speed	r/min	580	322	290	193	116	96.6	77.3	58	48.3	40.1	35.2
DME25B36G ☆	Rated torque	N⋅m	0.04	0.068	0.071	0.1	0.15	0.18	0.23	0.32	0.34	0.39	0.39
DIVILEGEDOUG	Trated torque	oz∙in	5.55	9.03	10.14	15.28	22.22	26.39	33.33	45.83	48.61	55.55	55.55
Madal	Gear ra	atio	*200	*250	*300	400	500	600					

Model	Gear ra Rated speed Rated torque	ıtio	*200	*250	*300	400	500	600
Wodel	Rated speed	r/min	32.5	27.2	23.3	17.9	14.6	12.4
DME25B36C ->-	Pated torque	N⋅m	0.39	0.39	0.39	0.39	0.39	0.39
DIVILEJUJUUX	nateu torque	oz∙in	55.55	55.55	55.55	55.55	55.55	55.55

- 1: Enter the required reduction ratio in the
- 2: *Rotation of gearbox shaft is in reverse of rotation of motor.
- 3: Enter the required voltage A or B in the \dot{x} .

Gear heads for intermittent drive

● DIMENSIONS Unit mm(inch) DME25B43G

CEAD DATIO	L	.1	L	2	WEIGHT		
GEAR RATIO	(mm)	(inch)	(mm)	(inch)	g	lb	
10	50.8	2.000	18.3	0.720			
18~30	53.3	2.098	20.8	0.819			
50~100	55.8	2.197	23.3	0.917	160	0.35	
120~300	58.3	2.295	25.8	1.016			
400~600	60.8	2.394	28.3	1.114			

●with 43G TYPE GEARBOX

Model	Model Gear r		10	*18	*20	*30	50	60	75	100	*120	*150
iviodei	Rated speed	r/min	580	322	290	193	116	96.6	77.3	58	48.3	40.1
DME25B43G ☆	Rated torque	N⋅m	0.04	0.068	0.071	0.1	0.15	0.18	0.23	0.32	0.34	0.39
DIVIEZ3D43U\X	nated torque	oz∙in	5.55	9.03	10.14	15.28	22.22	26.39	33.33	45.83	48.61	55.55

Model	Gear ra	atio	*180	*200	*250	*300	400	500	600
iviodei	Rated speed	r/min	35.2	32.5	27.2	23.3	17.9	14.6	12.4
DME25B43G ☆	Pated torque	N⋅m	0.39	0.39	0.39	0.39	0.39	0.39	0.39
DIVILZJD43Q N	nateu torque	oz∙in	55.55	55.55	55.55	55.55	55.55	55.55	55.55

WITH GEARBOX

Gear heads for intermittent drive

● DIMENSIONS Unit mm(inch)

DME25BL

●with L TYPE GEARBOX

(WEIGHT 225 g 0.5 lb)

Model	Gear ra	atio	30	50	120	150	200	255
Model	Rated speed	r/min	193	116	48.3	38.6	29	22.7
DME25BL □☆	Rated torque	N⋅m	0.09	0.14	0.34	0.43	0.58	0.74
DIVILZUDL	nateu torque	oz∙in	12.22	19.44	48.61	61.10	81.93	104.15

- Enter the required reduction ratio in the
 .
 *Rotation of gearbox shaft is in reverse of rotation of motor.
- 3: Enter the required voltage A or B in the ☆.

 MODEL CODE
 VOLTAGE
 OUTPUT
 CURRENT

 BA
 12V
 3W
 0.47A

 BB
 24V
 3W
 0.23A

6DG

●DIMENSIONS Unit mm(inch)

DME25B6DG

NOTE:

6DG gearbox are available with either 4.5mm diameter mounting holes or M4 x 6mm tapped holes.

Gearboxes with 4.5mm diameter mounting holes are available from stock. When ordering, please write the motor model and gearbox model numbers separately, as in the following example:
 DME25B6HPB (Pinion shaft motor)
 Gearbox)

● Gearboxes with M4 x 6mm tapped mounting holes are available on request. When ordering, please write the combine motor and gearbox model, as in the following example:

DME2586H□B

(WEIGHT 355 g 0.78 lb)

Model	Gear ra	atio	5	12.5	15	*25	*30	*50	*75	*100	150	180	250
Model	Rated speed	r/min	1160	464	386	232	193	116	77.3	58	38.6	32.2	23.2
DME25B6HP□☆	Rated torque	N⋅m	0.02	0.05	0.06	0.1	0.11	0.18	0.27	0.36	0.49	0.59	0.82
&6DG	nated torque	oz∙in	2.78	6.94	8.33	12.64	15.28	25.00	37.50	49.99	68.05	81.93	113.87
Model	Gear ra	atio	300	450	*500	*750	*900	*1800					
Model	Rated speed	r/min	19.3	14.4	13	9.3	7.9	4.2					
DME25B6HP□☆	Rated torque	N⋅m	0.96	0.98	0.98	0.98	0.98	0.98					
&6DG	nateu torque	oz∙in	136.09	138.87	138.87	138.87	138.87	138.87					

NOTE

1: Enter the required reduction ratio in the \Box

2: *Rotation of gearbox shaft is in reverse of rotation of motor.

3: Enter the required voltage A or B in the $\, \dot{\mathbb{D}} \,$.

OCURRENT, SPEED-TORQUE CURVE

DME33SA, DME33SB OZ•In ≥ 0.8 ≥ 0.4 ._ 5000 € € CURRENT (A 300 gf•cm 00 200 TORQUE 10 20 30 mN-m

CONNECTION

•STANDARD SPECIFICATIONS

			Rate	d			No I	oad	Stall 1	orque	14/-	: aula 4
Model	Output	Voltage	Tor	que	Current	Speed	Current	Speed	mN-m	oz∙in	vve	ight
	W	V	mN-m	oz∙in	Α	r/min	Α	r/min	111111-111	02.111	g	lb
DME33SA	0.7	12	1.5	0.21	0.12	4500	0.05	5500	7.8	1.11	70	0.15
DME33SB	0.7	24	1.5	0.21	0.06	4500	0.02	5500	7.8	1.11	70	0.15
DME33BA	3	12	7.8	1.11	0.42	3700	0.06	5000	29	4.17	100	0.22
DME33BB	3	24	7.8	1.11	0.22	3700	0.04	5000	29	4.17	100	0.22

• REVOLUTION SENSOR MAGNET TYPE DME33SMA, DME33SMB

LEAD WIRES MOTOR LEAD : UL1007 AWG22 PGIFAD : UL1007 AWG24 12(0.472) 45.8 (1.803) 300 (0.0787) NAME PLATE (0.0787DIA. 3-M2.6 DEPTH 3MAX (3-M2.6 DEPTH 0.118MAX) P=120° P.C.D= φ 26 ±0.2 (P.C.D=1.024DIA, ±0.00787) (WEIGHT 85 g 0.19 lb)

DME33BMA, DME33BMB

CONECTION OF REVOLUTION SENSOR

• SPECIFICATION OF REVOLUTION SENSOR SHOWN ON PAGE 8.

MODEL CODE VOLTAGE OUTPUT CURRENT SA **12V** 0.7W 0.12A SB **24V** 0.7W 0.06A BA **12V** 3.0W 0.42A **24V** 3.0W 0.22A BB

WITH GEARBOX

36G

Gear heads for intermittent drive

36G

● DIMENSIONS Unit mm(inch) DME33\$36G

OF AD DATIO	L	.1	L	2	WEIGHT		
GEAR RATIO	(mm)	(inch)	(mm)	(inch)	g	lb	
10	51.0	2.008	19.8	0.78			
18~30	53.5	2.106	22.3	0.878	170	0.37	
50~100	56.0	2.204	24.8	0.976			
120~300	58.5	2.303	27.3	1.075	190	0.42	
400~600	61.0	2.402	29.8	1.173	190	0.42	

OEAD DATIO	L	.1	L	2	WEIGHT		
GEAR RATIO	GEAR RATIO (mm) (inch) (mm)		(inch)	g	lb		
10	63.5	2.5	19.8	0.78			
18~30	66.0	2.598	22.3	0.878	200	0.44	
50~100	68.5	2.697	24.8	0.976			
120~300	71.0	2.795	27.3	1.075	220	0.49	
400~600	73.5	2.894	29.8	1.173	220	0.49	

●with 36G TYPE GEARBOX

• mar ood r	II L GL/IIID	5 /\											
Model	Gear ra	atio	10	*18	*20	*30	50	60	75	100	*120	*150	*180
iviouei	Rated speed	r/min	450	250	225	150	90	75	60	45	37.5	30	25
DME33S36G ☆	Rated torque	N⋅m	0.011	0.018	0.021	0.032	0.048	0.058	0.072	0.096	0.098	0.12	0.15
DIVILUUUUUU K	nateu torque	oz∙in	1.67	2.64	3.06	4.58	6.80	8.19	10.28	13.61	13.89	18.05	22.22
	Rated speed	r/min	370	205	185	123	74	61.6	49.3	40	34	28.4	24.4
DME33B36G□☆	Potod torque	N⋅m	0.063	0.1	0.11	0.16	0.25	0.3	0.38	0.39	0.39	0.39	0.39
	Rated torque	oz∙in	9.03	13.89	15.28	23.61	36.11	43.05	54.16	55.55	55.55	55.55	55.55
Model	Gear ra	atio	*200	*250	*300	400	500	600					
iviouei	Rated speed	r/min	22.5	18	15	11.2	9	7.7					
DME33S36G ☆	Rated torque	N⋅m	0.16	0.21	0.25	0.31	0.39	0.39					
DIME333300 X	nated torque	oz∙in	23.61	30.55	36.11	44.44	55.55	55.55					
	Rated speed	r/min	22.2	18.2	15.4	11.7	9.5	8					
DME33B36G□☆	Pated torque	N⋅m	0.39	0.39	0.39	0.39	0.39	0.39					
_ F	Rated torque	oz∙in	55.55	55.55	55.55	55.55	55.55	55.55					

- 1: Enter the required reduction ratio in the
- 2: *Rotation of gearbox shaft is in reverse of rotation of motor.
- 3: Enter the required voltage A or B in the \dot{x} .

Gear heads for intermittent drive

43G

● DIMENSIONS Unit mm(inch) DME33S43G

OF AD DATIO	L	.1	L	2	WEIGHT		
GEAR RATIO	GEAR RATIO (mm) (inch) (mm)		(inch)	g	lb		
10	49.5	1.949	18.3	0.720			
18~30	52	2.047	20.8	0.819			
50~100	54.5	2.146	23.3	0.917	200	0.44	
120~300	57	2.244	25.8	1.016			
400~600	600 59.5 2.343 28.3		1.114				

DME33B43G

	L	1	L	2	WEIGHT		
GEAR RATIO	(mm)	(inch)	(mm)	(inch)	g	lb	
10	62	2.441	18.3	0.720			
18~30	64.5	2.539	20.8	0.819			
50~100	67	2.638	23.3	0.917	220	0.49	
120~300	69.5	2.736	25.8	1.016			
400~600	72	2.835	28.3	1.114			

●with 43G T	YPE GEARBO	ΟX										
Model	Gear ra	atio	10	*18	*20	*30	50	60	75	100	*120	*150
Model	Rated speed	r/min	450	250	225	150	90	75	60	45	37.5	30
DME33S43G ☆	Rated torque	N⋅m	0.011	0.018	0.021	0.032	0.048	0.058	0.072	0.096	0.098	0.12
DIVILOJO4JU N	nateu torque	oz∙in	1.67	2.64	3.06	4.58	6.80	8.19	10.28	13.61	13.89	18.05
	Rated speed	r/min	370	205	185	123	74	61.6	49.3	40	34	28.4
DME33B43G□☆	Rated torque	N⋅m	0.064	0.1	0.11	0.16	0.25	0.3	0.38	0.39	0.39	0.39
	nateu torque	oz∙in	9.03	13.89	15.28	23.61	36.11	43.05	54.16	55.55	55.55	55.55
Madal	Gear ra	atio	*180	*200	*250	*300	400	500	600			
Model	Rated speed	r/min	25	22.5	18	15	11.2	9	7.7			
DMF33S43G →	Rated torque	N⋅m	0.15	0.16	0.21	0.25	0.31	0.39	0.39			

d speed r/n	nin	25	22.5	18	15	11.2	9	7.7
N-	m	0.15	0.16	0.21	0.25	0.31	0.39	0.39
OZ	.in	22.22	23.61	30.55	36.11	44.44	55.55	55.55
d speed r/n	nin	24.4	22.2	18.2	15.4	11.7	9.5	8
N-	m	0.39	0.39	0.39	0.39	0.39	0.39	0.39
oz lorque Oz	.in	55.55	55.55	55.55	55.55	55.55	55.55	55.55
	d torque Note	d torque N·m oz·in r/min N·m	d torque N·m 0.15 0z·in 22.22 d speed r/min 24.4 N·m 0.39	N·m 0.15 0.16	N·m 0.15 0.16 0.21 0z-in 22.22 23.61 30.55 0.55 0.55 0.55 0.55 0.55 0.39	N·m 0.15 0.16 0.21 0.25 oz·in 22.22 23.61 30.55 36.11 d speed r/min 24.4 22.2 18.2 15.4 d torque N·m 0.39 0.39 0.39 0.39	N·m 0.15 0.16 0.21 0.25 0.31 d torque 0z·in 22.22 23.61 30.55 36.11 44.44 d speed r/min 24.4 22.2 18.2 15.4 11.7 d torque N·m 0.39 0.39 0.39 0.39 0.39	d torque N·m oz·in 0.15 oz.16 oz.16 oz.1 oz.25 oz.31 oz.39 0.39 oz.31 oz.39 d speed r/min 24.4 oz.2 oz.2 oz.361 oz.39 oz

- Enter the required reduction ratio in the
 .
 *Rotation of gearbox shaft is in reverse of rotation of motor.
- 3: Enter the required voltage A or B in the \dot{x} .

MODEL CODE VOLTAGE OUTPUT CURRENT SA **12V** 0.7W 0.12A SB **24V** 0.7W 0.06A BA **12V** 3.0W 0.42A **24V** 3.0W 0.22A BB

WITH GEARBOX

50G

● DIMENSIONS Unit mm(inch) DME33B50G

(WEIGHT 300g 0.66 lb)

with 50G TYPE GEARBOX

Model	Gear ratio Rated speed r/min		9	18	*27	*36	*54	*72	96	144	192	256
iviouei			411	205	137	102	68.5	51.3	38.5	25.7	19.3	15.7
DME33B50G ☆	ME33B50G ☆ Rated torque	N⋅m	0.057	0.11	0.15	0.21	0.3	0.41	0.49	0.74	0.98	0.98
DIVIESSESUG	nateu torque	oz∙in	8.05	15.28	20.83	29.16	43.05	58.33	69.44	104.15	138.87	138.87

WITH GEARBOX

Gear heads for intermittent drive

●DIMENSIONS Unit mm(inch) DME33SL

(WEIGHT 240 g 0.53 lb)

(WEIGHT 270 g 0.6 lb)

with L TYPE GEARBOX

• w.a. =	o war E i ii E de ii i Box										
Model	Gear ra	atio	30	50	120	150	200	255			
Model	Rated speed	r/min	150	90	37.5	30	22.5	17.6			
DME33SL ☆	Rated torque	N⋅m	0.025	0.043	0.098	0.13	0.17	0.22			
DIVILOUGE	nated torque	oz∙in	3.61	6.11	13.89	18.05	23.61	30.55			
	Rated speed	r/min	139	83.7	34.9	27.9	20.9	16.4			
DME33BL□☆	Pated torque	N⋅m	0.086	0.14	0.34	0.43	0.58	0.74			
Rated torque		oz∙in	12.22	19.44	48.61	61.10	81.93	104.15			

NOTE

- 1: Enter the required reduction ratio in the \square .
- 2: *Rotation of gearbox shaft is in reverse of rotation of motor.

^{3:} Enter the required voltage A or B in the ☆.

Gear heads for intermittent drive

5C

● DIMENSIONS Unit mm(inch) DME33S5C

●with 5C TYPE GEARBOX

Model	Gear ra	atio	*20	*30	*40	*50	*60	*80	*100	*150	200	250
Model	Rated speed	r/min	225	150	112	90	75	56.2	45	30	22.5	18
DME33S5C ☆	Datad targua	N⋅m	0.022	0.032	0.043	0.053	0.064	0.085	0.11	0.16	0.19	0.24
DIME0000C M		oz∙in	3.06	4.58	6.11	7.50	9.03	12.08	15.28	22.22	26.39	33.33
	Rated speed	r/min	185	123	92.5	74	61.6	46.2	37	24.6	18.8	16
DME33B5C□☆	Dated targue	N⋅m	0.11	0.17	0.23	0.28	0.34	0.46	0.57	0.85	0.98	0.98
	Rated torque	oz∙in	15.28	23.61	31.94	40.27	48.61	63.88	80.55	120.82	138.87	138.87

Model	Gear ra	atio	300	400	500
Model	Rated speed	r/min	15	11.2	9
DME33S5C □ ☆	Rated torque	N⋅m	0.28	0.38	0.48
DIVILUUUUU M	nated torque	oz∙in	40.27	54.16	68.05
	Rated speed	r/min	13.9	10.9	9
DME33B5C ☆ Rated torque		N⋅m	0.98	0.98	0.98
	oz.in		138.87	138.87	138.87

^{1:} Enter the required reduction ratio in the \square . 2: *Rotation of gearbox shaft is in reverse of rotation of motor. 3: Enter the required voltage A or B in the \diamondsuit .

MODEL CODE VOLTAGE OUTPUT CURRENT SA **12V** 0.7W 0.12ASB **24V** 0.7W 0.06A **12V** 3.0W 0.42A BA 0.22A BB **24V** 3.0W

WITH GEARBOX

6DG

●DIMENSIONS Unit mm(inch) DME33S6DG

(WEIGHT 370 g 0.82 lb)

6DG gearbox are available with either 4.5mm diameter mounting holes or M4 x 6mm tapped holes.

• Gearboxes with 4.5mm diameter mounting holes are

- available from stock. When ordering, please write the motor model and gearbox model numbers separately,
- as in the following example:

 DME33B6HPB (Pinion shaft motor)

 6DG (Gearbox)
- Gearboxes with M4 x 6mm tapped mounting holes are available on request. When ordering, please write the combine motor and gearbox model, as in the following example : DME33B6H B

DME33B6DG

●with 6DG TYPE GEARBOX MOTOR MODEL DME3386HP☆ or DME3386HP☆ & GEARBOX MODEL 6DG□

Model	Gear ra	atio	5	12.5	15	*25	*30	*50	*75	*100	150	180	250
iviouei	Rated speed	r/min	900	360	300	180	150	90	60	45	30	25	18
DME33S6HP☆	Rated torque	N⋅m	0.006	0.015	0.018	0.026	0.032	0.053	0.08	0.11	0.14	0.17	0.24
& 6DG	nateu torque	oz∙in	0.83	2.08	2.50	3.75	4.58	7.50	11.39	15.28	19.44	23.61	33.33
DME33B6HP☆	Rated speed	r/min	740	296	246	148	123	74	49.3	37	24.6	20.5	16
& 6DG	Rated torque	N⋅m	0.031	0.079	0.095	0.14	0.17	0.28	0.42	0.57	0.77	0.92	0.98
α υυ α	hateu torque	oz∙in	4.44	11.25	13.47	19.44	23.61	40.27	59.71	80.55	108.32	130.54	138.87
Model	Gear ra	Gear ratio		450	*500	*750	*900	*1800					
Model	Rated speed	r/min	15	10	9	6	5	2.4					
DME33S6HP☆	Rated torque	N⋅m	0.28	0.43	0.43	0.65	0.77	0.98					
& 6DG	nated torque	oz∙in	40.27	61.10	61.10	91.66	109.71	138.87					
DME33B6HP☆	Rated speed	r/min	13.9	9.9	8.9	6.1	5.2	2.7					
DIVIESSBURF ¥ & 6DG	Rated torque	N⋅m	0.98	0.98	0.98	0.98	0.98	0.98					
α ου ι	nateu torque	oz∙in	138.87	138.87	138.87	138.87	138.87	138.87					

- 1: Enter the required reduction ratio in the
- 2: *Rotation of gearbox shaft is in reverse of rotation of motor.
- 3: Enter the required voltage A or B in the \$\phi\$.

●DIMENSIONS Unit mm(inch)

Model		We	ight
iviodei	L	g	lb
DME34SA	29.5	100	0.22
DME34SB	29.5	100	0.22
DME34BA	35.0	110	0.24
DME34BB	55.0	110	0.24
DME34KB	45	140	0.31

●CONNECTION

OCURRENT, SPEED-TORQUE CURVE

•STANDARD SPECIFICATIONS

			Rate	d			No	oad	Stall torque		
Model	Output	Voltage	Tord	que	Current	Speed	Current	Speed	mN-m	oz∙in	
	W	V	mN-m	oz∙in	Α	r/min	Α	r/min	111111-111	02.111	
DME34SA	1.3	12	3.9	0.56	0.2	3300	0.04	4300	17	2.36	
DME34SB	1.3	24	3.9	0.56	0.1	3300	0.02	4300	17	2.36	
DME34BA	4.5	12	11.8	1.67	0.65	3700	0.07	5000	45	6.39	
DME34BB	4.5	24	11.8	1.67	0.31	3700	0.04	5000	45	6.39	
DME34KB	7	24	14.7	2.08	0.41	4300	0.06	5100	92	13.03	

• REVOLUTION SENSOR MAGNET TYPE

Model		We	ight
iviodei	L	g	lb
DME34SMA	43.1	110	0.24
DME34SMB	43.1	110	0.24
DME34BMA	48.6	120	0.26
DME34BMB	40.0	120	0.20
DME34KMB	34KMB 58.6		0.33

•REVOLUTION SENSOR OPTICAL TYPE

MODEL CODE	VOLTAGE	OUTPUT	CURRENT
SA	12V	1.3W	0.2A
SB	24V	1.3W	0.1A
BA	12V	4.5W	0.65A
BB	24V	4.5W	0.31A
KB	24V	7W	0.41A

Model	47.1 52.6	We	ight
Model		g	lb
DME34SEA	47.1	120	0.26
DME34SEB	47.1	120	0.26
DME34BEA	52.6	130	0.29
DME34BEB	52.0	130	0.29
DME34KEB	62.6	160	0.35

● CONNECTION OF REVOLUTION SENSOR DME34SMA, DME34SMB, DME34BMA, DME34BMB DME34SEA, DME34SEB, DME34BEB

•SPECIFICATION OF REVOLUTION SENSOR ARE SHOWN ON PAGE 8.

WITH GEARBOX

36G

Gear heads for intermittent drive

● DIMENSIONS Unit mm(inch)
DME34\$36G

OEAD DATIO	L	.1	L	2	WEI	GHT
GEAR RATIO	(mm)	(inch)	(mm)	(inch)	g	lb
10	49.3	1.941	19.8	0.78		
18~30	51.8	2.039	22.3	0.878	200	0.44
50~100	54.3	2.138	24.8	0.976		
120~300	56.8	2.236	27.3	1.075	220	0.49
400~600	59.3	2.335	29.8	1.173	220	0.49

Gear heads for intermittent drive

DME34B36G

OF AD DATIO	L	.1	L	2	WEIGHT		
GEAR RATIO	(mm)	(inch)	(mm)	(inch)	g	lb	
10	54.8 2.157		19.8	0.78			
18~30	57.3	2.256	22.3	0.878	210	0.46	
50~100	59.8	2.354	24.8	0.976			
120~300	62.6 2.465		27.3	1.075	230	0.51	
400~600	64.8	2.551	29.8	1.173	230	0.51	

●with 36G TYPE GEARBOX

• Willi boa i	IFE GEAND												
Model	Gear ra	atio	10	*18	*20	*30	50	60	75	100	*120	*150	*180
Model	Rated speed	r/min	330	183	165	110	66	55	44	33	27.5	22	18.6
DME34S36G ☆	Rated torque	N⋅m	0.031	0.052	0.06	0.09	0.12	0.14	0.18	0.25	0.27	0.34	0.39
DIVILO-1000U	rialed lorque	oz∙in	4.44	7.22	8.33	12.50	18.05	20.83	26.39	36.11	38.88	48.61	55.55
	Rated speed	r/min	370	205	185	123	74	65	54.9	43.4	36.5	30	25.5
DME34B36G□☆	Rated torque	N⋅m	0.095	0.14	0.16	0.25	0.38	0.39	0.39	0.39	0.39	0.39	0.39
	rialed lorque	oz∙in	13.47	20.83	23.61	36.11	54.16	55.55	55.55	55.55	55.55	55.55	55.55
Model	Gear ra	atio	*200	*250	*300	400	500	600					
Model	Rated speed	r/min	17.2	14.5	12.4	9.5	7.8	6.6					
DME34S36G ☆	Rated torque	N⋅m	0.39	0.39	0.39	0.39	0.39	0.39					
DIVILU43JUU N	nated torque	oz∙in	55.55	55.55	55.55	55.55	55.55	55.55					
	Rated speed	r/min	23.1	18.8	15.8	12	9.6	8.1					
DME34B36G□☆	Rated torque	N⋅m	0.39	0.39	0.39	0.39	0.39	0.39					
	Tialed lorque	oz∙in	55.55	55.55	55.55	55.55	55.55	55.55					

NOTE

1: Enter the required reduction ratio in the \square . 2: *Rotation of gearbox shaft is in reverse of rotation of motor. 3: Enter the required voltage A or B in the \diamondsuit .

with GEARBOX 43G

Gear heads for intermittent drive

43G

● DIMENSIONS Unit mm(inch) DME34\$43G

MODEL CODE VOLTAGE OUTPUT CURRENT

1.3W

1.3W

4.5W

4.5W

7W

0.2A

0.1A

0.65A

0.31A

0.41A

12V

24V

12V

24V

24V

SA

SB

BA

BB KB

OF AD DATIO	L	.1	L	2	WEI	GHT
GEAR RATIO	(mm)	(inch)	(mm)	(inch)	g	lb
10	47.8	1.882	18.3	0.720		
18~30	50.3	1.980	20.8	0.819		
50~100	52.8	2.079	23.3	0.917	200	0.44
120~300	55.3	2.177	25.8	1.016		
400~600	57.8	2.276	28.3	1.114		

DME34B43G

OEAD DATIO	L	.1	L	2	WEIGHT		
GEAR RATIO	(mm)	(inch)	(mm)	(inch)	g	lb	
10	53.3	2.098	18.3	0.720			
18~30	55.8	2.197	20.8	0.819			
50~100	58.3	2.295	23.3	0.917	210	0.46	
120~300	60.8	2.394	25.8	1.016			
400~600	63.3	2.492	28.3	1.114			

●with 43G TYPE GEARBOX

Model	Gear ra	itio	10	*18	*20	*30	50	60	75	100	*120	*150
F	Rated speed	r/min	330	183	165	110	66	55	44	33	27.5	22
DME34\$43G ☆ F	Datad targus	N⋅m	0.031	0.052	0.06	0.09	0.12	0.14	0.18	0.25	0.27	0.34
DIVIES4843U_ × F	Rated torque	oz∙in	4.44	7.22	8.33	12.50	18.05	20.83	26.39	36.11	38.88	48.61
F	Rated speed	r/min	370	205	185	123	74	65	54.9	43.4	36.5	30
DME34B43G□☆	Datad targus	N⋅m	0.095	0.14	0.16	0.25	0.38	0.39	0.39	0.39	0.39	0.39
	Rated torque	oz∙in	13.47	20.83	23.61	36.11	54.16	55.55	55.55	55.55	55.55	55.55
	Gear ra	tio	*180	*200	*250	*300	400	500	600			

Model	Gear ra	atio	*180	*200	*250	*300	400	500	600
Model	Rated speed	r/min	18.6	17.2	14.5	12.4	9.5	7.8	6.6
DME34S43G ☆	Pated torque	N⋅m	0.39	0.39	0.39	0.39	0.39	0.39	0.39
DIVILU4040U N	nateu torque	oz∙in	55.55	55.55	55.55	55.55	55.55	55.55	55.55
	Rated speed	r/min	25.5	23.1	18.8	15.8	12	9.6	8.1
DME34B43G□☆	Rated torque	N⋅m	0.39	0.39	0.39	0.39	0.39	0.39	0.39
	nateu torque	oz∙in	55.55	55.55	55.55	55.55	55.55	55.55	55.55

WITH GEARBOX

● DIMENSIONS Unit mm(inch) DME34B50G

•with 50G TYPE GEARBOX

(WEIGHT 310g 0.68lb)

Model	Model Gear ra Rated speed		9	18	*27	*36	*54	*72	96	144	192	256
IVIOGEI	Rated speed	r/min	411	205	137	102	68.5	51.4	38.5	26.7	21.5	17
DME34B50G ☆ Rated tor	Rated torque	N⋅m	0.085	0.17	0.23	0.3	0.46	0.62	0.74	0.98	0.98	0.98
DIVILU4DJUG N	Hated torque	oz∙in	12.08	23.61	31.94	43.05	65.27	87.49	104.15	138.87	138.87	138.87

WITH GEARBOX

Gear heads for intermittent drive

●DIMENSIONS Unit mm(inch)

Model		We	ight
iviodei	L	g	lb
DME34SL	44.3	270	0.6
DME34BL	49.8	280	0.62
DME34KL	59.8	310	0.68

- Enter the required reduction ratio in the
 .
 *Rotation of gearbox shaft is in reverse of rotation of motor.
- 3: Enter the required voltage A or B in the ☆.

WITH GEARBOX

Gear heads for intermittent drive

●with L TYP	E GEARBOX					KB			
Model	Gear ra	atio	30	50	120	150	200	255	
iviodei	Rated speed	r/min	110	66	27	22	16	13	
DME34SL ☆	Rated torque	N⋅m	0.07	0.11	0.28	0.34	0.46	0.59	
DIVIE343L W	nateu torque	oz∙in	9.72	15.28	38.88	48.61	65.27	83.32	
	Rated speed	r/min	123	74	30.8	25.1	20.4	16.8	
DME34BL □☆	Rated torque	N⋅m	0.21	0.34	0.83	0.98	0.98	0.98	
	nateu torque	oz∙in	29.16	48.61	118.04	138.87	138.87	138.87	
	Rated speed	r/min	143	86.0	36.2	30.0	23.2	18.6	
DME34KL B	ME34KL B Rated torque		0.26	0.43	0.98	0.98	0.98	0.98	
	nated torque	oz∙in	36.81	60.88	138.87	138.87	138.87	138.87	

NOTE

- 1: Enter the required reduction ratio in the
- 2: *Rotation of gearbox shaft is in reverse of rotation of motor.
- 3: Enter the required voltage A or B in the \diamondsuit .

WITH GEARBOX

Gear heads for intermittent drive

●DIMENSIONS Unit mm(inch)

Weight Model L DME34S5C 55.7 310 0.68 DME34B5C 61.2 320 0.71 DME34K5C 71.2 350 0.77

MODEL CODE VOLTAGE OUTPUT CURRENT

1.3W

1.3W

4.5W

4.5W

7W

0.1A

0.65A

0.31A

0.41A

12V

24V

12V

24V

24V

SA

SB

BA

BB

●with 5C TYPE GEARBOX

Model	Gear ra	atio	*20	*30	*40	*50	*60	*80	*100	*150	200	250
Model	Rated speed	r/min	165	110	82.5	66	55	41.2	33	22	16.5	13.2
DME34S5C ☆	Rated torque	N⋅m	0.057	0.085	0.11	0.14	0.17	0.23	0.28	0.42	0.51	0.64
DIVILO4000 A	rialed lorque	oz∙in	8.05	12.08	15.28	19.44	23.61	31.94	40.27	59.71	72.21	90.27
	Rated speed	r/min	185	123	92.5	74	61.6	46.2	37	26.7	20.8	17.3
DME34B5C □☆	Rated torque	N⋅m	0.17	0.25	0.34	0.42	0.51	0.69	0.85	0.98	0.98	0.98
	nateu torque	oz∙in	23.61	36.11	48.61	59.71	72.21	97.21	120.82	138.87	138.87	138.87
	Rated speed	r/min	215	143	107	86.0	71.6	53.7	43.7	30.7	23.4	19.1
DME34K5C_B	Pated torque	N⋅m	0.21	0.32	0.43	0.53	0.64	0.85	0.98	0.98	0.98	0.98
	Rated torque	oz∙in	29.73	45.31	60.88	75.04	90.62	120.35	138.87	138.87	138.87	138.87

Model	Gear ra	ıtio	300	400	500
Model	Rated speed	r/min	11	8.3	7
DME34S5C□☆	Rated torque	N⋅m	0.77	0.98	0.98
DIVILU40JU ¤	nateu torque	oz∙in	108.32	138.87	138.87
	Rated speed	r/min	14.8	11.4	9.3
DME34B5C□☆	Rated torque	N⋅m	0.98	0.98	0.98
	nateu torque	oz∙in	138.87	138.87	138.87
	Rated speed	r/min	16.1	12.2	9.87
DME34K5C B	E34K5C B Rated torque		0.98	0.98	0.98
	nateu torque	oz∙in	138.87	138.87	138.87

- 1: Enter the required reduction ratio in the
- 2: *Rotation of gearbox shaft is in reverse of rotation of motor.
- 3: Enter the required voltage A or B in the ☆.

● DIMENSIONS Unit mm(inch)

NOTE: 6DG gearbox are available with either 4.5mm diameter mounting holes or M4 x 6mm tapped holes.

• Gearboxes with 4.5mm diameter mounting holes are available from stock. When ordering, please write the motor model and gearbox model numbers separately, as in the following example:

DME34B6HPB (Pinion shaft motor)

UNIC3490HPB (Pliniot Shartt motor)

● Gearboxes with M4 x 6mm tapped mounting holes are available on request. When ordering, please write the combine motor and gearbox model, as in the following example: DME3486H_B

● with 6DG TYPE GEARBOX MOTOR MODEL DME34S6HP☆, DME34B6HP☆ & GEARBOX MODEL 6DG□

0,	•••				, ,							
Gear ra	atio	5	12.5	15	*25	*30	*50	*75	*100	150	180	250
Rated speed	r/min	660	264	220	132	110	66	44	33	22	18.3	13.2
Dated targue	N⋅m	0.016	0.04	0.048	0.072	0.085	0.14	0.22	0.28	0.38	0.46	0.64
nateu torque	oz∙in	2.22	5.55	6.67	10.14	12.08	19.44	30.55	40.27	54.16	65.27	90.27
Rated speed	r/min	740	296	246	148	123	74	49.3	37	26	22.7	17.3
Poted torque	N⋅m	0.047	0.12	0.14	0.22	0.26	0.42	0.64	0.85	0.98	0.98	0.98
naleu lorque	oz∙in	6.67	16.66	19.44	30.55	36.11	59.71	90.27	120.82	138.87	138.87	138.87
Gear ra	atio	300	450	*500	*750	*900	*1800					
Rated speed	r/min	11	7.6	6.9	5	4.2	2.2					
Dated targue	N⋅m	0.76	0.98	0.98	0.98	0.98	0.98					
nateu torque	oz∙in	108.32	138.87	138.87	138.87	138.87	138.87					
Rated speed	r/min	14.8	10.3	9.2	6.3	5.3	2.7					
Pated torque	N⋅m	0.98	0.98	0.98	0.98	0.98	0.98					
nateu torque	oz∙in	138.87	138.87	138.87	138.87	138.87	138.87					
	Gear ra Rated speed Rated torque Rated speed Rated torque Gear ra Rated speed Rated torque	Gear ratio Rated speed r/min Rated torque N·m oz·in N·m Rated speed r/min Rated torque N·m Rated speed r/min Rated speed r/min Rated speed r/min Rated torque N·m	Gear ratio 5 Rated speed r/min 660 Rated torque N⋅m 0.016 oz⋅in 2.22 Rated speed r/min 740 Rated torque N⋅m 0.047 oz⋅in 6.67 Gear ratio 300 Rated speed r/min 11 Rated torque N⋅m 0.76 oz⋅in 108.32 Rated speed r/min 14.8 Rated torque N⋅m 0.98	Gear ratio 5 12.5 Rated speed r/min 660 264 Rated torque N·m 0.016 0.04 oz·in 2.22 5.55 Rated speed r/min 740 296 Rated torque N·m 0.047 0.12 oz·in 6.67 16.66 Gear ratio 300 450 Rated speed r/min 11 7.6 N·m 0.76 0.98 oz-in 108.32 138.87 Rated speed r/min 14.8 10.3 Rated torque N·m 0.98 0.98	Gear ratio 5 12.5 15 Rated speed r/min 660 264 220 Rated torque N·m 0.016 0.04 0.048 oz·in 2.22 5.55 6.67 Rated speed r/min 740 296 246 Rated torque N·m 0.047 0.12 0.14 Gear ratio 300 450 *500 Rated speed r/min 11 7.6 6.9 Rated torque N·m 0.76 0.98 0.98 Rated speed r/min 14.8 10.3 9.2 Rated torque N·m 0.98 0.98 0.98	Gear ratio 5 12.5 15 *25 Rated speed r/min 660 264 220 132 Rated torque N·m 0.016 0.04 0.048 0.072 oz·in 2.22 5.55 6.67 10.14 Rated speed r/min 740 296 246 148 Rated torque N·m 0.047 0.12 0.14 0.22 Gear ratio 300 450 *500 *750 Rated speed r/min 11 7.6 6.9 5 Rated torque N·m 0.76 0.98 0.98 0.98 Rated speed r/min 14.8 10.3 9.2 6.3 Rated torque N·m 0.98 0.98 0.98 0.98	Gear ratio 5 12.5 15 *25 *30 Rated speed r/min 660 264 220 132 110 Rated torque N·m 0.016 0.04 0.048 0.072 0.085 Rated speed r/min 740 296 246 148 123 Rated torque N·m 0.047 0.12 0.14 0.22 0.26 oz·in 6.67 16.66 19.44 30.55 36.11 Gear ratio 300 450 *500 *750 *900 Rated speed r/min 11 7.6 6.9 5 4.2 Rated torque N·m 0.76 0.98 0.98 0.98 0.98 Rated speed r/min 14.8 10.3 9.2 6.3 5.3 Rated torque N·m 0.98 0.98 0.98 0.98 0.98	Gear ratio 5 12.5 15 *25 *30 *50 Rated speed r/min 660 264 220 132 110 66 Rated torque N·m 0.016 0.04 0.048 0.072 0.085 0.14 Rated torque 0.2·in 2.22 5.55 6.67 10.14 12.08 19.44 Rated speed r/min 740 296 246 148 123 74 Rated torque N·m 0.047 0.12 0.14 0.22 0.26 0.42 Oz-in 6.67 16.66 19.44 30.55 36.11 59.71 Gear ratio 300 450 *500 *750 *900 *1800 Rated speed r/min 11 7.6 6.9 5 4.2 2.2 Rated torque N·m 0.76 0.98 0.98 0.98 0.98 0.98 Rated speed r/min 14.8 10.3	Rated speed r/min 660 264 220 132 110 66 44 Rated torque N·m 0.016 0.04 0.048 0.072 0.085 0.14 0.22 0z·in 2.22 5.55 6.67 10.14 12.08 19.44 30.55 Rated speed r/min 740 296 246 148 123 74 49.3 Rated torque N·m 0.047 0.12 0.14 0.22 0.26 0.42 0.64 oz·in 6.67 16.66 19.44 30.55 36.11 59.71 90.27 Gear ratio 300 450 *500 *750 *900 *1800 Rated speed r/min 11 7.6 6.9 5 4.2 2.2 Rated torque N·m 0.76 0.98 0.98 0.98 0.98 0.98 Rated speed r/min 14.8 10.3 9.2 6.3 5.3 2	Gear ratio 5 12.5 15 *25 *30 *50 *75 *100 Rated speed r/min 660 264 220 132 110 66 44 33 Rated torque N·m 0.016 0.04 0.048 0.072 0.085 0.14 0.22 0.28 0z-in 2.22 5.55 6.67 10.14 12.08 19.44 30.55 40.27 Rated speed r/min 740 296 246 148 123 74 49.3 37 Rated torque N·m 0.047 0.12 0.14 0.22 0.26 0.42 0.64 0.85 Gear ratio 300 450 *500 *750 *900 *1800 Rated speed r/min 11 7.6 6.9 5 4.2 2.2 Rated torque N·m 0.76 0.98 0.98 0.98 0.98 0.98 Rated speed r/min	Gear ratio 5 12.5 15 *25 *30 *50 *75 *100 150 Rated speed r/min 660 264 220 132 110 66 44 33 22 Rated torque N·m 0.016 0.04 0.048 0.072 0.085 0.14 0.22 0.28 0.38 Oz-in 2.22 5.55 6.67 10.14 12.08 19.44 30.55 40.27 54.16 Rated speed r/min 740 296 246 148 123 74 49.3 37 26 Rated torque N·m 0.047 0.12 0.14 0.22 0.26 0.42 0.64 0.85 0.98 Oz-in 6.67 16.66 19.44 30.55 36.11 59.71 90.27 120.82 138.87 Rated speed r/min 11 7.6 6.9 5 4.2 2.2 Rated speed r/min	Gear ratio 5 12.5 15 *25 *30 *50 *75 *100 150 180 Rated speed r/min 660 264 220 132 110 66 44 33 22 18.3 Rated torque N·m 0.016 0.04 0.048 0.072 0.085 0.14 0.22 0.28 0.38 0.46 oz-in 2.22 5.55 6.67 10.14 12.08 19.44 30.55 40.27 54.16 65.27 Rated speed r/min 740 296 246 148 123 74 49.3 37 26 22.7 Rated torque N·m 0.047 0.12 0.14 0.22 0.26 0.42 0.64 0.85 0.98 0.98 Gear ratio 300 450 *500 *750 *900 *1800 Rated speed r/min 11 7.6 6.9 5 4.2 2.2

● DIMENSIONS Unit mm(inch) DME34B8DG

MODEL CODE VOLTAGE OUTPUT CURRENT

1.3W

1.3W

4.5W

4.5W

7W

0.2A

0.1A

0.65A

0.31A

0.41A

12V

24V

12V

24V

24V

SA

SB

BA

BB

KB

OF AD DATIO	L	.1	L2		BC	DLT	WEIGHT	
GEAR RATIO	(mm)	(inch)	(mm)	(inch)	(mm)	(inch)	kg	lb
30~150	68.5	2.697	32	1.26	M5X50	M5X1.969	0.61	1.34
250~1800	78.5	3.090	42	1.65	M5X60	M5X2.362	0.71	1.56

BOLT

● DIMENSIONS Unit mm(inch) DME34K8H

OF AD DATIO	L	.1	L2		BOLT		WEIGHT	
GEAR RATIO	(mm)	(inch)	(mm)	(inch)	(mm)	(inch)	kg	lb
30~150	78.5	3.090	32	1.26	M5X50	M5X1.969	0.75	1.65
250~1800	88.5	3.484	42	1.65	M5X60	M5X2.362	0.85	1.87

●with 8DG TYPE GEARBOX MOTOR MODEL DME34B8HP☆ & GEARBOX MODEL 8DG□

Model	Gear ra	atio	*30	*50	*75	*100	*150	250	300	*500	*750	*1800
iviodei	Rated speed	r/min	123	74	49.3	37	24.6	14.8	12.3	7.4	5.3	2.5
DME34B8HP☆	Rated torque	N⋅m	0.25	0.42	0.64	0.85	1.3	1.9	2.3	3.4	3.9	3.9
& 8DG	nated torque	oz∙in	36.11	59.71	90.27	120.82	180.53	263.86	319.40	486.05	555.49	555.49
DME24KOUD A	Rated speed	r/min	143	86.0	57.3	43.0	28.6	17.2	14.3	8.7	6.1	2.7
DME34K8HP☆ & 8DG	Rated torque	N⋅m	0.32	0.53	0.80	1.0	1.6	2.4	2.9	3.9	3.9	3.9
α ουυ	rialed lorque	oz∙in	45.31	75.04	113.27	141.59	226.54	339.82	410.61	555.49	555.49	555.49

- 1: Enter the required reduction ratio in the
- 2: *Rotation of gearbox shaft is in reverse of rotation of motor.

● DIMENSIONS Unit mm(inch)

Model	L	-	We	ight
Model	(mm)	(inch)	g	lb
DME37SA DME37SB	45.7	1.8	130	0.28
DME37BA DME37BB	53.7	2.11	180	0.40
DME37KA DME37KB	58.7	2.31	210	0.46
DME37JB	63.7	2.51	240	0.53

OCURRENT, SPEED-TORQUE CURVE

● CONNECTION

•STANDARD SPECIFICATIONS

			Rate	d			No I	oad	Stall torque	
Model	Output	Voltage	Tord	que	Current	Speed	Current	Speed	mN-m	oz∙in
	W	V	mN-m	oz∙in	Α	r/min	Α	r/min	111114-111	02.111
DME37SA	4.6	12	10	1.42	0.78	4500	0.26	5500	54	7.64
DME37SB	4.6	24	10	1.42	0.37	4500	0.12	5500	54	7.64
DME37BA	7.2	12	15	2.12	1.01	4700	0.25	5500	98	13.88
DME37BB	7.2	24	15	2.12	0.53	4700	0.13	5500	98	13.88
DME37KA	9.2	12	24.5	3.5	1.20	3600	0.27	4300	160	22.66
DME37KB	9.2	24	24.5	3.5	0.60	3600	0.14	4300	160	22.66
DME37JB	17.2	24	39	5.52	1.07	4200	0.18	5000	240	34

•REVOLUTION SENSOR MAGNET TYPE

Model	L	_	We	ight
Model	mm	inch	g	lb
DME37SMA DME37SMB	53.7	2.11	140	0.31
DME37BMA DME37BMB	61.7	2.43	190	0.42
DME37KMA DME37KMB	66.7	2.63	220	0.49
DME37JMB	71.7	2.82	250	0.55

ORANGE STUDY ORANGE STUDY OPENION OP

•SPECIFICATION OF REVOLUTION SENSOR ARE SHOWN ON PAGE 8.

WITH GEARBOX 50G

● DIMENSIONS Unit mm(inch)

Model	I	-	We	ight		
Model	(mm)	(inch)	g	lb		
DME37S50G	75.3	2.96	280	0.62		
DME37B50G	83.3	3.28	330	0.73		
DME37K50G	88.3	3.48	360	0.79		

●with 50G TYPE GEARBOX

•		J/ (
Model	Gear ra	atio	9	18	*27	*36	*54	*72	96	144	192	256
Model	Rated speed	r/min	500	250	166	125	83.3	62.5	46.8	31.2	24.5	19.1
DME37S50G ☆	Pated torque	N⋅m	0.072	0.14	0.19	0.25	0.38	0.51	0.62	0.93	0.98	0.98
DIVILO7 SJUG K	nateu torque	oz∙in	10.14	19.44	26.39	36.11	54.16	72.21	87.49	130.54	138.87	138.87
	Rated speed	r/min	522	261	174	130	87	65.2	48.9	34.2	26.4	20.2
DME37B50G□☆	Rated torque	N⋅m	0.11	0.22	0.28	0.38	0.58	0.76	0.92	0.98	0.98	0.98
	nateu torque	oz∙in	15.28	30.55	40.27	54.16	81.93	108.32	130.54	138.87	138.87	138.87
	Rated speed	r/min	400	200	133	100	66.6	52.3	40.1	27.8	21.2	16.1
DME37K50G□☆	Permission	N⋅m	0.17	0.35	0.48	0.63	0.96	0.98	0.98	0.98	0.98	0.98
	torque	oz∙in	25	50	68.05	90.27	136.09	138.87	138.87	138.87	138.87	138.87

MODEL CODE	VOLTAGE	OUTPUT	CURRENT
MODEL CODE	VULIAUL	0011 01	COLLILLIAI
SA	12V	4.6W	0.78A
SB	24V	4.6W	0.37A
BA	12V	7.2W	1.01A
BB	24V	7.2W	0.53A
KA	12V	9.2W	1.20A
KB	24V	9.2W	0.60A
JB	24V	17.2W	1.07A

WITH GEARBOX

● DIMENSIONS Unit mm(inch)

Weight Model (mm) (inch) lb g DME37S6H 76.2 3.0 430 0.95 DME37B6H 84.2 3.31 480 1.06

3.51

510

1.12

89.2

DME37K6H

NOTE:

6DG gearbox are available with either 4.5mm diameter mounting holes or M4 x 6mm tapped holes.

●Gearboxes with 4.5mm diameter mounting holes are available from stock. When ordering, please write the motor model and gearbox model numbers separately,

as in the following example:

DME3786HPB (Pinion shaft motor)

6DG (Gearbox)

 Gearboxes with M4 x 6mm tapped mounting holes are available on request. When ordering, please write the combine motor and gearbox model, as in the following example : DME37B6H

● with 6DG TYPE GEARBOX MOTOR MODEL DME3786HP☆, DME3786HP☆, DME37K6HP☆ & GEARBOX MODEL 6DG

Model	Gear ra	atio	5	12.5	15	*25	*30	*50	*75	*100	150	180	250
Model	Rated speed	r/min	900	360	300	180	150	90	60	45	30	25.8	19.5
DME37S6HP☆	Rated torque	N⋅m	0.039	0.098	0.12	0.18	0.22	0.35	0.53	0.72	0.96	0.98	0.98
& 6DG	nated torque	oz∙in	5.55	13.89	16.66	25.00	30.55	49.99	74.99	101.38	136.09	138.87	138.87
DME37B6HP☆	Rated speed	r/min	940	376	313	188	156	94	62.6	47.7	33	28	20.7
& 6DG	Rated torque	N⋅m	0.059	0.15	0.18	0.26	0.32	0.53	8.0	0.98	0.98	0.98	0.98
& 0DG	nated torque	oz∙in	8.33	20.83	25.00	37.50	45.83	74.99	113.87	138.87	138.87	138.87	138.87
DME37K6HP☆	Rated speed	r/min	720	288	240	144	120	72	50.5	39.1	26.7	22.5	16.5
& 6DG	Permission	N⋅m	0.098	0.24	0.29	0.44	0.53	0.89	0.98	0.98	0.98	0.98	0.98
a obd_	torque	oz∙in	13.89	34.72	41.66	62.49	74.99	126.37	138.87	138.87	138.87	138.87	138.87
	C00# #	atio.	200	450	*500	*750	*000	*1000					

Model	Gear ra	atio	300	450	*500	*750	*900	*1800
Wodei	Rated speed	r/min	16.6	11.4	10.3	7	5.9	3
DME37S6HP☆	Rated torque	N⋅m	0.98	0.98	0.98	0.98	0.98	0.98
& 6DG	nateu torque	oz∙in	138.87	138.87	138.87	138.87	138.87	138.87
DME37B6HP☆	Rated speed	r/min	17.4	11.8	10.6	7.1	6	3
& 6DG	Rated torque	N⋅m	0.98	0.98	0.98	0.98	0.98	0.98
α սոս	nateu torque	oz∙in	138.87	138.87	138.87	138.87	138.87	138.87
DME37K6HP☆	Rated speed	r/min	13.8	9.3	8.4	5.6	4.7	2.3
& 6DG	Permission	N⋅m	0.98	0.98	0.98	0.98	0.98	0.98
զ Որն_	torque	oz∙in	138.87	138.87	138.87	138.87	138.87	138.87

NOTE

1: Enter the required reduction ratio in the

2: *Rotation of gearbox shaft is in reverse of rotation of motor.

3: Enter the required voltage A or B in the \$\phi\$.

● DIMENSIONS Unit mm(inch)

6DGF

(WEIGHT 0.53kg 1.17lb)

NOTE:
6DGF gearbox are available with either 4.5mm diameter mounting holes or M4 x 6mm tapped holes.

Gearboxes with 4.5mm diameter mounting holes are available from stock. When ordering, please write the motor model and gearbox model numbers separately, as in the following avaporate:

motor model and gearbox model numbers separately, as in the following example:

DME37B6HFPB (Pinion shaft motor)

6D6□F (Gearbox)

● Gearboxes with M4 x 6mm tapped mounting holes are available on request. When ordering, please write the combine motor and gearbox model, as in the following example: DME37B6HF□B

● with 6DGF TYPE GEARBOX MOTOR MODEL DME37B6HFP☆ , DME37K6HFP☆ , DME37J6HFPB & GEARBOX MODEL 6DG□F

Model	Gear ra	atio	5	*12.5	*15	*25	*30	50	75	100	150	180
Model	Rated speed	r/min	940	376	313	188	156	94	62.6	47	31.3	26.1
DME37B6HFP☆	Rated torque	N⋅m	0.059	0.13	0.16	0.26	0.32	0.48	0.73	0.96	1.4	1.7
& 6DG□F	nateu torque	oz∙in	8.33	18.05	22.22	37.50	45.83	68.05	102.76	136.09	194.42	236.08
	Rated speed	r/min	720	288	240	144	120	72	48	36	24	20.6
DME37K6HFP☆	Permission	N⋅m	0.098	0.21	0.26	0.44	0.53	0.8	1.1	1.5	2.3	2.4
	torque	oz∙in	13.89	30.55	37.5	62.49	74.99	113.88	166.65	222.19	333.29	347.18
DME37J6HFPB	Rated speed	r/min	840	336	280	168	140	84	56	42.3	29.9	25.4
& 6DG F	Permission	N⋅m	0.15	0.35	0.42	0.71	0.85	1.2	1.8	2.4	2.4	2.4
α υυα <u></u> Γ	torque	oz∙in	22.22	49.99	59.71	101.38	120.82	180.53	263.86	347.18	347.18	347.18

- Enter the required reduction ratio in the □.
 *Rotation of gearbox shaft is in reverse of rotation of motor.
- 3: Enter the required voltage A or B in the ☆.

● DIMENSIONS Unit mm(inch) DME37B8DG

NOTE:

When ordering, please write the motor model and gearbox model numbers separately, as in the

Model	OF AD DATIO	L	1	L	2	BC	DLT	WEIGHT		
Model	GEAR RATIO	(mm)	(inch)	(mm)	(inch)	(mm)	(inch)	g	lb	
DME37B8HP	30~150	87.2	3.433	32	1.26	M5X50	M5X1.969	680	1.5	
DIMES! DOUL	250~1800	97.2	3.826	42	1.654	M5X60	M5X2.362	780	1.72	
DME37K8HP	30~150	92.2	3.63	32	1.26	M5X50	M5X1.969	710	1.57	
DIVIES/ KORP	250~1800	102.2	4.024	42	1.654	M5X60	M5X2.362	810	1.79	
DME37J8HP	30~150	97.2	3.827	32	1.26	M5X50	M5X1.969	740	1.63	
DIVIES/JOHP	250~1800	107.2	4.22	42	1.654	M5X60	M5X2.362	840	1.85	

● with 8DG TYPE GEARBOX MOTOR MODEL DME37B8HP☆ , DME37K8HP☆ , DME37J8HPB & GEARBOX MODEL 8DG□

Model	Gear ra	atio	*30	*50	*75	*100	*150	250	300	*500	*750	*1800
iviodei	Rated speed	r/min	156	94	62.6	47	31.3	18.8	15.6	9.5	6.7	2.9
DME37B8HP☆	Rated torque	N⋅m	0.32	0.53	0.8	1.1	1.6	2.4	2.8	3.9	3.9	3.9
& 8DG	nated torque	oz∙in	45.83	74.99	113.87	152.76	222.19	333.29	402.73	555.49	555.49	555.49
DME37K8HP☆	Rated speed	r/min	120	72	48	36	24	14.4	12.4	7.8	5.4	2.3
& 8DG	Permission	N⋅m	0.53	0.89	1.2	1.7	2.6	3.9	3.9	3.9	3.9	3.9
Q 0DU_	torque	oz∙in	74.99	126.37	180.53	249.97	374.95	555.49	555.49	555.49	555.49	555.49
DME37J8HPB	Rated speed	r/min	140	84	56	42	28.4	18	15.3	9.4	6.4	2.7
& 8DG	Permission	N⋅m	0.85	1.3	2.1	2.8	3.9	3.9	3.9	3.9	3.9	3.9
& 0DG	torque	oz∙in	120.82	194.42	305.52	402.73	555.49	555.49	555.49	555.49	555.49	555.49

WITH GEARBOX

● DIMENSIONS Unit mm(inch) DME37J8DGF

●with 8DGF TYPE GEARBOX MOTOR MODEL DME37J8HFPB & GEARBOX MODEL 8DG□F

Model	Gear ra	atio	*25	*30	50	75	100	180
Model	Rated speed	r/min	168	140	84	56	42	23.3
DME37J8HFPB	Permission	N⋅m	0.71	0.85	1.3	1.8	2.5	4.6
& 8DG□F	torque	oz∙in	101.38	120.82	194.42	263.86	361.07	652.7

- 1: Enter the required reduction ratio in the \square
- 2: *Rotation of gearbox shaft is in reverse of rotation of motor. 3: Enter the required voltage A or B in the ☆.

● DIMENSIONS Unit mm(inch) DME44SA, DME44SB

MODEL CODE	VOLTAGE	OUTPUT	CURRENT
SA	12V	9.2W	1.31A
SB	24V	9.2W	0.65A
ВВ	24V	14.8W	0.94A

DME44BA, DME44BB

OURRENT, SPEED-TORQUE CURVE

DME44BA, DME44BB

●CONNECTION

OSTANDARD SPECIFICATIONS

			Rate	d			No I	oad	Stall t	orque	1/1/0	iaht
Model	Output	Voltage	Toro	que	Current	Speed	Current	Speed	mN-m	oz∙in	vve	ight
	W	V	mN-m	oz∙in	Α	r/min	Α	r/min	111114-111	02.111	g	lb
DME44SA	9.2	12	24	3.47	1.31	3600	0.31	4300	150	22.22	300	0.66
DME44SB	9.2	24	24	3.47	0.65	3600	0.15	4300	150	22.22	300	0.66
DME44BB	14.8	24	39	5.55	0.94	3600	0.16	4300	250	36.11	400	0.88

• REVOLUTION SENSOR MAGNET TYPE DME44SMA, DME44SMB

● CONNECTION OF REVOLUTION SENSOR DME44SMA, DME44SMB, DME44BMB

(WEIGHT 400 g 0.88 lb)

•SPECIFICATION OF REVOLUTION SENSOR ARE SHOWN ON PAGE 8.

MODEL CODE VOLTAGE OUTPUT CURRENT SA **12V** 9.2W 1.31A SB **24V** 9.2W 0.65A BB **24V** 14.8W 0.94A

WITH GEARBOX

● DIMENSIONS Unit mm(inch) DME44S50G

(WEIGHT 400 g 0.88lb)

with 50G TYPE GEARBOX

NAI - I	Gear ra	atio	9	18	*27	*36	*54	*72
Model	Rated speed	r/min	400	200	133	100	66.6	52.3
DME448E0C	☆ Rated torque	N⋅m	0.18	0.35	0.48	0.64	0.96	0.98
DIVIE44330G	A haled lorque	oz∙in	25.00	49.99	68.05	90.27	136.09	138.87

WITH GEARBOX

● DIMENSIONS Unit mm(inch)

(WEIGHT 600 g 1.32 lb)

6DG gearbox are available with either 4.5mm diameter mounting holes or M4 x 6mm tapped holes.

• Gearboxes with 4.5mm diameter mounting holes are available from stock. When ordering, please write the motor model and gearbox model numbers separately, as in the following example:

DME44S6HPB (Pinion shaft motor)

(Gearbox) 6DG

●Gearboxes with M4 x 6mm tapped mounting holes are available on request. When ordering, please write the combine motor and gearbox model, as in the following example : DME44S6H B

●with 6DG TYPE GEARBOX MOTOR MODEL DME44S6HP☆ & GEARBOX MODEL 6DG□

Model	Gear ra	atio	5	12.5	15	*25	*30	*50	*75	*100	150	180	250
Model	Rated speed	r/min	720	288	240	144	120	72	50.5	39.1	26.7	22.5	16.5
DME44S6HP☆	Rated torque	N⋅m	0.1	0.25	0.29	0.44	0.53	0.89	0.98	0.98	0.98	0.98	0.98
& 6DG	nated torque	oz∙in	13.89	34.72	41.66	62.49	74.99	126.37	138.87	138.87	138.87	138.87	138.87
Model	Gear ra	atio	300	450	*500	*750	*900	*1800					
Model	Rated speed	r/min	13.8	9.3	8.4	5.6	4.7	2.3					
DME44S6HP☆	Rated torque	N⋅m	0.98	0.98	0.98	0.98	0.98	0.98					
& 6DG□	nateu torque	oz∙in	138.87	138.87	138.87	138.87	138.87	138.87					

NOTE

3: Enter the required voltage A or B in the \$\phi\$.

^{1:} Enter the required reduction ratio in the

^{2: *}Rotation of gearbox shaft is in reverse of rotation of motor.

●DIMENSIONS Unit mm(inch)

DME44S6DGF 61 (2,402SQ.) 44 (1.732) (0.197) NAME PLATE 13(0.512) NAME PLATE BOLTS 4-M4×60(4-M4×2.36) Standard type
4-M4 DEPTH 6MAX.(4-M4 DEPTH 0.236MAX.) Order made type LEAD WIRES (RED, BLACK UL1007 AWG22

(WEIGHT 0.7 kg 1.54 lb)

NOTE:

6DGF gearbox are available with either 4.5mm diameter mounting holes or M4 x 6mm tapped holes.

Gearboxes with 4.5mm diameter mounting holes are

available from stock. When ordering, please write the motor model and gearbox model numbers separately, as in the following example:

DME44B6HFPB (Pinion shaft motor)

6DG☐F (Gearbox)

●Gearboxes with M4 x 6mm tapped mounting holes are available on request. When ordering, please write the combine motor and gearbox model, as in the following example: DME44B6HF_B

(WEIGHT 0.8 kg 1.76 lb)

●with 6DGF TYPE GEARBOX MOTOR MODEL DME4486HFP\$, DME44B6HFPB & GEARBOX MODEL 6DG□F

Model	Gear ra	atio	5	*12.5	*15	*25	*30	50	75	100	150	180
Wiodei	Rated speed	r/min	720	288	240	144	120	72	48	36	24	20.6
DME44S6HFP☆	Rated torque	N⋅m	0.1	0.22	0.27	0.44	0.53	0.80	1.2	1.6	2.4	2.4
& 6DG□F	nated torque	oz∙in	13.89	30.55	37.50	62.49	74.99	113.87	166.65	222.19	333.29	347.18
DME44B6HFPB	Rated speed	r/min	720	288	240	144	120	72	48	36.3	25.7	21.8
& 6DG F	Rated torque	N⋅m	0.16	0.35	0.43	0.72	0.85	1.3	1.9	2.4	2.4	2.4
α υμα_Γ	rialed lorque	oz∙in	22.22	49.99	59.71	101.38	120.82	180.53	263.86	347.18	347.18	347.18

WITH GEARBOX

● DIMENSIONS Unit mm(inch) DME44S8DG

NOTE:

When ordering, please write the motor model and gearbox model numbers separately, as in the following example:

DME44B8HPB (Pinion shaft motor)

8DG (Gearbox)

OF AD DATIO	L	.1	L	2	BOLT		WEIGHT	
GEAR RATIO	(mm)	(inch)	(mm)	(inch)	(mm)	(inch)	kg	lb
30~150	90.1	3.547	32	1.26	M5X50	M5X1.969	0.8	1.76
250~1800	100.1	3.941	42	1.654	M5X60	M5X2.362	0.9	1.98

- 1: Enter the required reduction ratio in the
- 2: *Rotation of gearbox shaft is in reverse of rotation of motor.
- 3: Enter the required voltage A or B in the ☆.

WITH GEARBOX

DME44B8DG

CEAD DATIO	L	.1	L	2	BC	DLT	WE	IGHT
GEAR RATIO	(mm)	(inch)	(mm)	(inch)	(mm)	(inch)	kg	lb
30~150	101.1	3.98	32	1.26	M5X50	M5X1.969	0.9	1.98
250~1800	111.1	4.374	42	1.654	M5X60	M5X2.362	1.0	2.2

● with 8DG TYPE GEARBOX MOTOR MODEL DME44S8HP☆, DME44B8HPB & GEARBOX MODEL 8DG□

Model	Gear ra	atio	*30	*50	*75	*90	*100	*150	250
Model	Rated speed	r/min	120	72	48	40	36	24	14.4
DME44S8HP☆	Rated torque	N⋅m	0.53	0.89	1.3	1.6	1.8	2.7	3.9
& 8DG	nateu torque	oz∙in	74.99	126.37	180.53	222.19	249.97	374.95	555.49
DME44B8HPB	Rated speed	r/min	120	72	48	40	36	24.4	15.5
& 8DG	Rated torque	N⋅m	0.85	1.4	2.1	2.5	2.8	3.9	3.9
& ODG	nateu torque	oz∙in	120.82	194.42	305.52	361.07	402.73	555.49	555.49

Model	Gear ra	ntio	300	*500	*750	*1800
Model	Rated speed	r/min	12.4	7.8	5.4	2.3
DME44S8HP☆	Rated torque	N⋅m	3.9	3.9	3.9	3.9
& 8DG	nateu torque	oz∙in	555.49	555.49	555.49	555.49
DME44B8HPB	Rated speed	r/min	13.1	8	5.5	2.3
	& 8DG Rated torque	N⋅m	3.9	3.9	3.9	3.9
מ סטט	nateu torque	oz∙in	555.49	555.49	555.49	555.49

WITH GEARBOX

● DIMENSIONS Unit mm(inch)

NOTE:

When ordering, please write the motor model and gearbox model numbers separately, as in the following example:

DME44B8HFPB (Pinion shaft motor)
8DG F (Gearbox) (Gearbox)

MODEL CODE VOLTAGE OUTPUT CURRENT

9.2W

9.2W

14.8W

1.31A

0.65A

0.94A

12V

24V

24V

SA

SB

BB

GEAR RATIO	BC	DLT	WEI	GHT
GEAR RATIO	(mm)	(inch)	kg	lb
25~150	M5X60	M5X2.36	1.0	2.2

● with 8DGF TYPE GEARBOX MOTOR MODEL DME44B8HFPB & GEARBOX MODEL 8DG F

Model	Gear ra	atio	*25	*30	50	75	100	150
Model	Rated speed	r/min	144	120	72	48	36	24
DME44B8HPB	Rated torque	N⋅m	0.71	0.85	1.3	1.9	2.5	3.8
& 8DG_F	nateu torque	oz∙in	101.38	120.82	194.42	263.86	361.07	541.60

- 1: Enter the required reduction ratio in the
- 2: *Rotation of gearbox shaft is in reverse of rotation of motor.
 3: Enter the required voltage A or B in the ☆.

● DIMENSIONS Unit mm(inch)

●CURRENT, SPEED-TORQUE CURVE

DME60SA, DME60SB

DME60BB

CONNECTION

OSTANDARD SPECIFICATIONS

			Rate	d			No I	oad	Stall t	orque	Weight	
Model	Output	Voltage	Tord			Speed	Current	Speed	mN-m	oz∙in	vve	igni
	W	V	mN-m	oz∙in	Α	r/min	Α	r/min	111111-111	02:111	g	lb
DME60SA	13	12	29	4.17	2.07	4300	0.6	5000	196	16.66	600	1.32
DME60SB	13	24	29	4.17	1.00	4300	0.33	5000	196	16.66	600	1.32
DME60BB	26	24	59	8.33	1.79	4300	0.42	5000	392	55.55	650	1.43

WITH GEARBOX

6DG

● DIMENSIONS Unit mm(inch)

NOTE

6DG gearbox are available with either 4.5mm diameter mounting holes or M4 x 6mm tapped holes.

 Gearboxes with 4.5mm diameter mounting holes are available from stock. When ordering, please write the motor model and gearbox model numbers separately, as in the following example:

as in the following example:

DME60S6HPB (Pinion shaft motor)

6DG (Gearbox)

● Gearboxes with M4 x 6mm tapped mounting holes are available on request. When ordering, please write the combine motor and gearbox model, as in the following example: DME60S6H_B

●with 6DG TYPE GEARBOX MOTOR MODEL DME60S6HP☆ & GEARBOX MODEL 6DG□

Model	Gear ra	atio	5	12.5	15	*25	*30	*50	*75	*100	150	180	250
iviouei	Rated speed	r/min	860	344	286	172	143	87.2	60.9	46.8	35	30	21
DME60S6HP☆	Rated torque	N⋅m	0.12	0.29	0.35	0.53	0.64	0.98	0.98	0.98	0.98	0.98	0.98
& 6DG	rialed lorque	oz∙in	16.66	41.66	49.99	74.99	90.27	138.87	138.87	138.87	138.87	138.87	138.87
Model	Gear ra	atio	300	450	*500	*750	*900	*1800					
IVIOGEI	Rated speed	r/min	17	12	9.8	6.6	5.5	2.7					
DME60S6HP☆	Data ditaman	N⋅m	0.98	0.98	0.98	0.98	0.98	0.98					

138.87 | 138.87 | 138.87 | 138.87 | 138.87 | 138.87

NOTE

& 6DG

1: Enter the required reduction ratio in the \square .

Rated torque

2: *Rotation of gearbox shaft is in reverse of rotation of motor.

oz·in

3: Enter the required voltage A or B in the \$\phi\$.

MODEL CODE VOLTAGE OUTPUT CURRENT SA 12V 13W 2.07A SB 24V 13W 1A BB 24V 26W 1.79A

6DGF

● DIMENSIONS Unit mm(inch)

(2.529MAX)
(2.4025CQ)
(3.501)
(4.502)
(4.502)
(4.502)
(4.502)
(4.502)
(4.502)
(4.502)
(4.502)
(4.502)
(4.502)
(4.502)
(4.502)
(4.502)
(4.502)
(4.502)
(4.502)
(4.502)
(4.502)
(4.502)
(4.502)
(4.502)
(4.502)
(4.502)
(4.502)
(4.502)
(4.502)
(4.502)
(4.502)
(4.502)
(4.502)
(4.502)
(4.502)
(4.502)
(4.502)
(4.502)
(4.502)
(4.502)
(4.502)
(4.502)
(4.502)
(4.502)
(4.502)
(4.502)
(4.502)
(4.502)
(4.502)
(4.502)
(4.502)
(4.502)
(4.502)
(4.502)
(4.502)
(4.502)
(4.502)
(4.502)
(4.502)
(4.502)
(4.502)
(4.502)
(4.502)
(4.502)
(4.502)
(4.502)
(4.502)
(4.502)
(4.502)
(4.502)
(4.502)
(4.502)
(4.502)
(4.502)
(4.502)
(4.502)
(4.502)
(4.502)
(4.502)
(4.502)
(4.502)
(4.502)
(4.502)
(4.502)
(4.502)
(4.502)
(4.502)
(4.502)
(4.502)
(4.502)
(4.502)
(4.502)
(4.502)
(4.502)
(4.502)
(4.502)
(4.502)
(4.502)
(4.502)
(4.502)
(4.502)
(4.502)
(4.502)
(4.502)
(4.502)
(4.502)
(4.502)
(4.502)
(4.502)
(4.502)
(4.502)
(4.502)
(4.502)
(4.502)
(4.502)
(4.502)
(4.502)
(4.502)
(4.502)
(4.502)
(4.502)
(4.502)
(4.502)
(4.502)
(4.502)
(4.502)
(4.502)
(4.502)
(4.502)
(4.502)
(4.502)
(4.502)
(4.502)
(4.502)
(4.502)
(4.502)
(4.502)
(4.502)
(4.502)
(4.502)
(4.502)
(4.502)
(4.502)
(4.502)
(4.502)
(4.502)
(4.502)
(4.502)
(4.502)
(4.502)
(4.502)
(4.502)
(4.502)
(4.502)
(4.502)
(4.502)
(4.502)
(4.502)
(4.502)
(4.502)
(4.502)
(4.502)
(4.502)
(4.502)
(4.502)
(4.502)
(4.502)
(4.502)
(4.502)
(4.502)
(4.502)
(4.502)
(4.502)
(4.502)
(4.502)
(4.502)
(4.502)
(4.502)
(4.502)
(4.502)
(4.502)
(4.502)
(4.502)
(4.502)
(4.502)
(4.502)
(4.502)
(4.502)
(4.502)
(4.502)
(4.502)
(4.502)
(4.502)
(4.502)
(4.502)
(4.502)
(4.502)
(4.502)
(4.502)
(4.502)
(4.502)
(4.502)
(4.502)
(4.502)
(4.502)
(4.502)
(4.502)
(4.502)
(4.502)
(4.502)
(4.502)
(4.502)
(4.502)
(4.502)
(4.502)
(4.502)
(4.502)
(4.502)
(4.502)
(4.502)
(4.502)
(4.502)
(4.502)
(4.502)
(4.502)
(4.502)
(4.502)
(4.502)
(4.502)
(4.502)
(4.502)
(4.502)
(4.502)
(4.502)
(4.502)
(4.502)
(4.502)
(4.502)
(4.502)
(4.502)
(4.502)
(4.502)
(4.502)
(4.502)
(4.502)
(4.502)
(4.502)
(4.502)
(4.502)
(4.502)
(4.502)
(4.502)
(4.502)
(4.502)
(4.502)

(WEIGHT 1.0 kg 2.2 lb)

(WEIGHT 1.05 kg 2.3 lb)

NOTE:

DME60B6DGF

6DGF gearbox are available with either 4.5mm diameter mounting holes or M4 x 6mm tapped holes.

- Gearboxes with 4.5mm diameter mounting holes are available from stock. When ordering, please write the motor model and gearbox model numbers separately, as in the following example:
 - as in the following example:

 DME60S6HFPB (Pinion shaft motor)

 6DG F (Gearbox)
- ●Gearboxes with M4 x 6mm tapped mounting holes are available on request. When ordering, please write the combine motor and gearbox model, as in the following example: DME60S6HF

 B

●with 6DGF TYPE GEARBOX MOTOR MODEL DME60S6HFP☆, DME60B6HFPB & GEARBOX MODEL 6DG□F

Model	Model Gear ra		5	*12.5	*15	*25	*30	50	75	100	150	180
iviouei	Rated speed	r/min	860	344	286	172	143	86	57.3	43	29.4	25
DME60S6HFP☆	Rated torque	N⋅m	0.12	0.27	0.32	0.53	0.64	0.96	1.4	1.9	2.4	2.4
& 6DG	nateu torque	oz∙in	16.66	37.50	45.83	74.99	48.61	136.09	194.42	263.86	347.18	347.18
DME60B6HFPB	Rated speed	r/min	860	344	286	172	143	86	58.7	45	31.3	26.4
& 6DG	Rated torque	N⋅m	0.24	0.53	0.64	1.0	1.3	1.9	2.4	2.4	2.4	2.4
& 0DG	nateu torque	oz∙in	33.33	74.99	90.27	152.76	180.53	263.86	347.18	347.18	347.18	347.18

8DG

● DIMENSIONS Unit mm(inch) DME60S8DG

DME60B8DG

NOTE:

When ordering, please write the motor model and gearbox model numbers separately, as in the following example:

DME60B8HPB (Pinion shaft motor) 8DG (Gearbox)

GEAR RATIO		L1		L2		BOLT		WEIGHT	
GEAR RAI	U	(mm)	(inch)	(mm)	(inch)	(mm)	(inch)	kg	lb
30~150		101	3.98	32	1.26	M5X50	M5X1.969	1.1	2.4
250~1800		111	4.37	42	1.654	M5X60	M5X2.362	1.2	2.6

OF AD DATIO	L	1	L	2	BC	DLT	WEI	GHT
GEAR RATIO	(mm)	(inch)	(mm)	(inch)	(mm)	(inch)	kg	lb
30~150	106.5	4.193	32	1.26	M5X50	M5X1.969	1.15	2.5
250~1800	116.5	4.587	42	1.654	M5X60	M5X2.362	1.25	2.8

- 1: Enter the required reduction ratio in the
- 2: *Rotation of gearbox shaft is in reverse of rotation of motor.
- 3: Enter the required voltage A or B in the $\, \Leftrightarrow \,$.

●with 8DG TYPE GEARBOX MOTOR MODEL DME60S8HP☆, DME60B8HPB & GEARBOX MODEL 8DG□

Model	Gear ratio		*30	*50	*75	*100	*150	250	300	*500	*750	*1800
	Rated speed	r/min	143	86	57.3	43	28.6	17.7	15.1	9.3	6.4	2.7
DME60S8HP☆	Rated torque	N⋅m	0.64	1.0	1.6	2.1	3.2	3.9	3.9	3.9	3.9	3.9
& 8DG		oz∙in	90.27	152.76	222.19	305.52	458.28	555.49	555.49	555.49	555.49	555.49
DMEGUBOUDD	Rated speed & 8DG Rated torque	r/min	143	86	57.3	43.6	30.5	18.8	15.8	9.7	6.5	2.7
		N⋅m	1.3	2.1	3.2	3.9	3.9	3.9	3.9	3.9	3.9	3.9
Q ODG_		oz∙in	180.53	305.52	458.28	555.49	555.49	555.49	555.49	555.49	555.49	555.49

NOTE:

8DG_F

When ordering, please write the motor model and gearbox model numbers separately, as in the

(Gearbox)

following example:

DME60B8HFPB (Pinion shaft motor)

WITH GEARBOX

● DIMENSIONS Unit mm(inch) DME60S8DGF

OF AD DATIO	BC	DLT	WEIGHT			
GEAR RATIO	(mm)	(inch)	kg	lb		
25~150	M5X60	M5X2.36	1.20	2.6		

DME60B8DGF

OF AD DATIO	BC	DLT	WEIGHT			
GEAR RATIO	(mm)	(inch)	kg	lb		
25~150	M5X60	M5X2.36	1.25	2.8		

●with 8DGF TYPE GEARBOX MOTOR MODEL DME60S8HFP\$, DME60B8HFPB & GEARBOX MODEL 8DG□F

Model	Gear ratio		*25	*30	50	75	100	150
	Rated speed	r/min	172	143	86	57.3	43	28.6
DME60S8HPF☆	Rated torque	N⋅m	0.53	0.64	0.96	1.4	1.9	2.9
& 8DG□F		oz∙in	74.99	90.27	152.76	194.42	263.86	402.73
DME60B8HFPB & 8DG F	Rated speed	r/min	172	143	86	57.3	43	28.6
	Rated torque	N⋅m	1.0	1.3	1.9	2.9	3.8	5.8
	rialed lorque	oz∙in	152.76	180.53	305.52	402.73	541.60	819.34

- 1: Enter the required reduction ratio in the
 2: *Rotation of gearbox shaft is in reverse of rotation of motor.
- 3: Enter the required voltage A or B in the ☆.

www.nidec-servo.com NIDEC SERVO CORPORATION INTERNATIONAL SALES OFFICE

Osaki MT Building 2F, 5-9-11 Kita-Shinagawa,Shinagawa-ku, Tokyo, 141-0001 Tel:+81-(0)3-6756-5304 Fax:+81-(0)3-6702-0507

NIDEC SERVO AMERICA CORPORATION

2050 Center Ave. Suite 318 Fort Lee, NJ 07024 Tel: +1-(0) 201-585-0720

Fax: +1- (0) 201-585-0670

NIDEC SERVO EUROPE B.V.

PO Box 1099, 3840 BB Harderwijk The Netherlands

Tel: +31-(0)3414-27575 Fax: +31-(0)3414-23388

PO Box 7084, Hook, Hampshire, RG27 9XL, UK

Tel: +44-(0) 1256-767712 Fax: +44-(0) 1256-767715

NIDEC SERVO CORPORATION SINGAPORE BRANCH

No. 50, kallang Avenue #05-01,

Noel Corporate Buildings, Singapore 339505

Tel: +65-(0)6743-7655 Fax: +65-(0)6842-7839

NIDEC SERVO (HONG KONG) CO., LIMITED

Unit 1008-09, Saxon Tower, 7 Cheung Shun Street,

Lai Chi Kok, Kowloon, HONG KONG

Tel: +852-(0) 2314-0037 Fax: +852-(0) 2314-4768

NIDEC SERVO (HONG KONG) CO.,LIMITED TAIWAN REPRESENTATIVE OFFICE

Rm.1001, No.88, Sec.2, Chung Shan N.Rd., Taipei 104 Taiwan

Nidec Taiwan Corporation. FAX +852-(0) 3007-8924

WARNING

- Please do not exceed the specifications noted in this catalogue, otherwise there is a chance of electric shock, injury, or other damage.
- Any modifications made to this motor are beyond the limits of our guarantee NIDEC SERVO cannot take responsibility for any customer modifications.
- Please ensure that a thorough evaluation has been done before using this motor in medical equipment or other devices related to human lives.
- Please ensure that a thorough evaluation has been done before using this motor in applications that have a serious effect on the public.

- Figures in this catalogue are average measured values. Please request the product delivery specification when preparing a purchase specification.
- The dimensions, specifications, and components contained in this catalogue are subject to change without prior notice due to further product improvements.