

Analysis of Variance

Agenda

- Analysis of variance
 - One way ANOVA
 - Total Variation
 - Variation within treatment
 - Variation between treatment
 - Post-Hoc Test for ANOVA

Question

Ryan is a production manager at an industry manufacturing alloy wires. They have 4 machines - A, B, C and D.

Ryan wants to study whether all the machines have equal efficiency based on the tensile strength of the alloy wire.

Is it possible to test his claim?

The trivial solution is conducting multiple t tests. However performing multiple t tests has an effect on the type I error.

As the number of t-tests increases the probability of at least one type I error increases.

However, it is possible to test Ryans claim by using one way analysis of variance (one way ANOVA) where the probability of type I error does not change

Multiple t tests and type I error

• For a true null hypothesis, the probability of not obtaining a significant result is 0.95 if the α = 0.05

 Say you conduct the t-test twice, the probability of not obtaining one or more significant result is 0.95 x 0.95 = 0.9025

Thus the probability of at least one type error is 1-0.9025 = 0.0975 (for two t-tests)

Number of t tests	Probability of not obtaining one or more significant result	Probability of at least one type I error	
3 t tests	0.95 x 0.95 x 0.95 = 0.857	0.143	
4 t tests	0.95 x 0.95 x 0.95 x 0.95 = 0.815	0.185	
5 t tests	0.95 x 0.95 x 0.95 x 0.95 x 0.95 = 0.774	0.226	

As the number of tests increase the probability of at least one type error also increases

ANOVA - History

ANOVA was first introduced by Prof R. A. Fisher in 1920's

He developed ANOVA while dealing with agronomic data

A t-test is used when two unpaired data are compared

 To test the equality of population means for two or more unrelated samples ANOVA technique is used

• Each group is considered to be a treatment

It is based on the F-distribution

F distribution

Let X be χ^2_m distribution and let Y be χ^2_n

Then the ratio $\frac{X/m}{Y/\hbar}$ ollows F distribution with (m,n) df

Sharing or publishing the contents in part or full is liable for legal action.

F distribution

As n₁ and n₂ become large the F distribution becomes symmetric

One way ANOVA - assumption

- The samples should be independent
- Each sample should be from normally distributed population
- The population variance of the samples should be equal (homoscedastic)

• The null hypothesis to be tested is

H₀: The averages of all treatments are same.

i.e.
$$\mu_1 = \mu_2 = ... = \mu_n$$

H₁: At the least one treatment has a different average

Failing to reject H₀, implies that all treatments have the same average

- Suppose Ryan collects data for tensile strength of wires produced by each machine
- It is said there are 4 treatments (t = 4)
- Each treatment has 5 observations (n_i = 5) where i = 1, 2, ..., t
- Total number of observations is given by N

$$N = \sum_{i}^{t} n_i$$

А	В	С	D
68.7	62.7	55.9	80.7
75.4	68.5	56.1	70.3
70.9	63.1	57.3	80.9
79.1	62.2	59.2	85.4
78.2	60.3	50.1	82.3

• Let μ_i (i=1, 2, ..., t) denote the average strength due to each machine

• For our example, t = 4

• The test hypothesis can be written as

 H_0 : $\mu_1 = \mu_2 = \mu_3 = \mu_4$ Against H_1 : At least μ_i is different

А	В	С	D
68.7	62.7	55.9	80.7
75.4	68.5	56.1	70.3
70.9	63.1	57.3	80.9
79.1	62.2	59.2	85.4
78.2	60.3	50.1	82.3

This file is meant for personal use by nbilagi@gmail.com only.

Sharing or publishing the contents in part or full is liable for legal action.

- In one way ANOVA, the entire population variance is split into two component
 - Variation within treatment
 - Variation between treatment

Total variation = Within treatment variation + Between treatment variation

Total variation

- It is the total sum of squares (TSS)
- Let x_{ij} be the observations in the ith treatment and jth row
- $\bar{x}_{..}$ is the grand mean, i.e. the mean of all observations
- The total variation is given by

$$TSS = \sum_i^t \sum_j^{n_i} (x_{ij} - \bar{x}_{..})^2$$
 Summation over all Summation over all observation treatmenthis file is meant for personal use by noting grant component.

Sharing or publishing the contents in part or full is liable for legal action.

Within treatment variation

- It is the treatment sum of squares (TrSS)
- Let x_i be the observations in the ith treatment with n_i in observation in each treatment and is the mean over ith treatment
- ullet $ar{x}_{..}$ is the grand mean, i.e. the mean of all observations
- The treatment variation is given by

$$TrSS = \sum_{i}^{t} \sum_{j}^{n_i} n_i (\overline{x}_{i.} - \overline{x}_{..})^2$$

Summation over all Summation over all observation treatments

Sharing or publishing the contents in part or full is liable for legal action.

Between treatment variation

- It is the error sum of squares (ESS)
- Let x_i be the observations in the ith treatment and is the mean over jth row
- ullet $ar{x}_{..}$ is the grand mean, i.e. the mean of all observations
- The error sum of squares is given by

$$ESS = \sum_i^t \sum_j^{n_i} (x_{ij} - \bar{x}_{i.})^2$$
 Summation over all $\frac{1}{2}$ Summation over all observation in the treatment treatment file is meant for personal use by nbilagi@gmail.com only. Sharing or publishing the contents in part or full is liable for legal action.

Error sum of squares

During problem solving, the error sum of squares is obtained as:

$$ESS = TSS - TrSS$$

The test statistic is given by

$$\text{F-ratio} = \begin{array}{c} \frac{TrSS}{df_{Tr}} \\ \hline \underline{ESS} \\ \hline df_{e} \end{array} = \begin{array}{c} \text{MTrSS} \\ \hline \text{MESS} \\ \hline \end{array}$$
 Mean Treatment Sum of Squares

Under H₀, the test statistic follows F-distribution with (df_{Tr}, df_e) degrees of freedom

Decision Rule: If $F_{cal} \ge F_{(t-1,N-t),\alpha}$ or p-value $\le \alpha$, then we reject H_0 at $\alpha\%$ level of significance

Sharing or publishing the contents in part or full is liable for legal action.

To ease the entire computational process, an ANOVA table is prepared as follows:

Source of variation	Degrees of freedom	Sum of Squares	Mean Sum of Squares	F-ratio
Treatment	t-1	TrSS	s² _t	$\frac{s_t^2}{s_e^2}$
Error	N-t	ESS	s² _e	$\overline{s_e^2}$
Total	N-1	TSS		

One way ANOVA - procedure

- 1. State the hypothesis to be tested
- 2. Compute the sum of squares
 - a. The total sum of squares, TSS = $\sum_{i=1}^{t} \sum_{i=1}^{n_i} (x_{ij} \bar{x}_{..})^2$
 - b. The treatment sum of squares TrSS = $\sum_{j=1}^{t} \sum_{i=1}^{n_i} n_i (x_{ij} \bar{x}_{i.})^2$
 - c. The Error sum of squares, ESS = TSS TrSS
- 3. Compute mean sum of squares
 - a. $s_t^2 = Mean group sum of squares (MTrSS) = TrSS/(t-1)$
 - b. s_e^2 = Mean error sum of squares (MESS) = ESS/(N-t)

One way ANOVA - procedure

4. Compute the F-ratio

F-ratio =
$$\frac{\text{MTrSS}}{\text{MESS}} = \frac{s_t^2}{s_e^2}$$

- 4. Prepare the ANOVA table
- Write the decision and conclusion accordingly

91

One way ANOVA

Question:

Ryan is a production manager at an industry manufacturing alloy seals. They have 4 machines - A, B, C and D. Ryan wants to study whether all the machines have equal efficiency.

Ryan collects data of tensile strength (in N/m²) from all the 4 machines as given.

Test at 5% level of significance.

А	В	С	D
68.7	62.7	55.9	80.7
75.4	68.5	56.1	70.3
70.9	63.1	57.3	80.9
79.1	62.2	59.2	85.4
78.2	60.3	50.1	82.3

gl

One way ANOVA

Solution:

Ryan is a production manager at an industry manufacturing alloy seals. They have 4 machines - A, B, C and D

Let μ_1 be the average tensile strength due to machine A

 μ_2 be the average tensile strength due to machine B

 μ_3 be the average tensile strength due to machine C

 μ_4 be the average tensile strength due to machine D

To test,
$$H_0$$
: $\mu_1 = \mu_2 = \mu_3 = \mu_4$

Against

 H_1 : At least one μ_i is different (i=1, 2, 3, 4)

91

The plot shows the difference between the average efficiency for each machine, which indicates the rejection of H_0 .

Sharing or publishing the contents in part or full is liable for legal action.

Solution:

The grand mean:

$$\overline{x}_{\cdot \cdot} = \frac{68.7 + 62.7 + ... + 50.1 + 82.3}{20} = 68.365 \text{ N/m}^2$$

The total sum of squares:

$$egin{align} TSS &= \sum_i^t \sum_j^{n_i} (x_{ij} - ar{x}_{..})^2 \ &= (68.7 - 69.115)^2 + \ldots + (81.12 - 69.115)^2 \ \end{gathered}$$

Α	В	С	D
68.7	62.7	55.9	80.7
75.4	68.5	56.1	70.3
70.9	63.1	57.3	80.9
79.1	62.2	59.2	85.4
78.2	60.3	50.1	82.3

^{=2074.1255} (N/m 2 T) is file is meant for personal use by nbilagi@gmail.com only. Sharing or publishing the contents in part or full is liable for legal action.

91

One way ANOVA

Solution:

The treatment sum of squares is

$$TrSS = \sum_{i}^{t} \sum_{j}^{n_{i}} n_{i} (\overline{x}_{i.} - \overline{x}_{..})^{2}$$

$$= 5(74.46 - 68.365)^2 + \ldots + 5(79.92 - 68.365)^2$$

$$= 1778.0655 (N/m^2)^2$$

А	В	С	D
68.7	62.7	55.9	80.7
75.4	68.5	56.1	70.3
70.9	63.1	57.3	80.9
79.1	62.2	59.2	85.4
78.2	60.3	50.1	82.3
372.3	316.8	278.6	399.6
74.46	63.36	55.72	79.92

This file is meant for personal use by nbilagi@gmail.com only.

Sharing or publishing the contents in part or full is liable for legal action.

 $\sum X_i$

 \bar{x}_i

Solution:

The error sum of squares can also be calculated as

$$egin{align} ESS &= \sum_i^t \sum_j^{n_i} (x_{ij} - ar{x}_{i.})^2 \ &= (68.7 - 74.46)^2 + \ldots + (82.3 - 79.92)^2 \ &= 296.06 \ \end{array}$$

А	В	С	D
68.7	62.7	55.9	80.7
75.4	64.5	56.1	80.3
70.9	63.1	57.3	80.9
79.1	59.2	55.2	81.4
78.2	60.3	50.1	82.3
74.46	63.36	55.72	79.92

Or can be obtained as

 \bar{x}_{i}

gl

,

Solution:

Source of variation	Degrees of freedom	Sum of Squares	Mean Sum of Squares	F-ratio
Treatment	t-1 = 4-1 =3	TrSS = 1778.0655	$s_t^2 = rac{21778.0655}{3} = 592.6885$	$rac{s_t^2}{2} = 32.031$
Error	N-t = 20-4 =16	ESS = 296.06	$s_e^2 = rac{269.06}{16} = 18.50375$	s_e^2 — 02.001
Total	N-1 = 20 -1 =19	TSS = 2241.5255		

91

One way ANOVA

Solution:

From the F-table we have $F_{(3,16),0.05} = 3.24$

Since 3.24 < 32.03, we reject H_0 .

This file is meant for personal use by nbilagi@gmail.com only. Sharing or publishing the contents in part or full is liable for legal action.

gl

Python solution:

As p-value < 0.05, we reject H_0 .

This file is meant for personal use by nbilagi@gmail.com only. Sharing or publishing the contents in part or full is liable for legal action.

One way ANOVA can be said to check the effect of a nominal variable over a numerical variable.

- In the example, Ryan has tested for strength of materials due to 4 machines
- The null hypothesis for ANOVA was rejected
- Now it is of Ryan's interest to know which machine(s) has a different outcome

How would he find out?

- If we fail to reject the null hypothesis, it implies that all the treatments have the same effect
- However, if the null hypothesis is rejected, it implies that at least one treatment has a different average
- To know which treatment(s) has/have different outcome
- Can be found out using the post hoc tests

Post-Hoc Tests

- A post hoc is conducted after the null hypothesis of ANOVA is rejected to determine the different treatments(s)
- There are various post hoc tests available such as:
 - Tukey's HSD test (Tukey's Honest(ly) Significant Difference test)
 - Scheffe test
 - Duncan's Multiple Range test
 - Fisher's' LSD test (Fisher's Least Significant Difference test)
 - o Bonferroni test

We will study the Tukey's HSD test in detail
 This file is meant for personal in the study of the stud

- Consider our example where Ryan wants to find out the which machines had different result
- Each pair of machines is tested for the statistical difference

This file is meant for personal use by nbilagi@gmail.com only.

Sharing or publishing the contents in part or full is liable for legal action.

Thus the test hypothesis are

$$H_{01}: \mu_{machine_A} = \mu_{machine_B} \qquad \text{Against} \qquad H_{11}: \mu_{machine_A} \neq$$

$$\mu_{machine_B} \qquad \qquad H_{02}: \mu_{machine_A} = \mu_{machine_C} \qquad \qquad \text{Against} \qquad H_{12}: \mu_{machine_A} \neq$$

$$\mu_{machine_C}$$

 $\mu_{\text{machine_D}}$

 H_{03} : $\mu_{\text{machine}_A} = \mu_{\text{machine}_D}$

This file is meant for personal use by nbilagi@gmail.com only.

Against

 H_{04} : $\mu_{\text{machine}_B} = \mu_{\text{machine}_C}^{\text{haring or publishing the contents in part or full is liable for legal action.}$

 H_{13} : $\mu_{\text{machine A}} \neq$

Machine C → Machine D

The test statistic is:

t: total treatments

f: error degrees of freedom

MSE: Mean error sum of squares (from ANOVA table)

n: number of observations in a group

- Consider the absolute difference between two treatments $|\bar{x}_i \bar{x}_i|$
- The decision rule: Reject H_0 , if the absolute difference $\geq T_{\alpha}$
- The python code:
 First create the DataFrame df_machine then use the following function

```
# perform tukey's HSD test to compare the mean efficiency for pair of machines
# pass the tensile strength to the parameter, 'data'
# pass the name of the machine to the parameter, 'groups'
comp = mc.MultiComparison(data = df_machine['strength'], groups = df_machine['machine'])
# tukey's HSD test
post_hoc = comp.tukeyhsd()
# print the summary table
post_hoc.summary()
This file is meant for personal use by nbilagi@gmail.com only.
```

Sharing or publishing the contents in part or full is liable for legal action.

The output is as follows:

Multiple Comparison of Means - Tukey HSD, FWER=0.05						
group1	group2	meandiff	p-adj	lower	upper	reject
_	machine_B			-18.8842		True
_	machine_C machine_D			-26.5242 -2.3242	-10.9558 13.2442	True False
_	machine_C machine D			-15.4242 8.7758	0.1442 24.3442	False True
machine_C	machine_D	24.2	0.001	16.4158	31.9842	True

True: reject H₀

False: fail to reject H₀ (accept H₀)

It can been seen that there is statistical difference between pairs of machines (A,B), (A,C), (B,D), and (C,D).

This file is meant for personal use by nbilagi@gmail.com only. Sharing or publishing the contents in part or full is liable for legal action.

- For equal number of observations in each treatment, tukey HSD test can be used
- However when the data is unequal it is not efficient
- In such a scenario, one may use the Scheffe test