Tema 2 Aplicaciones entre espacios topológicos

Definición

Una aplicación $f:(X,\tau)\to (Y,\tau')$ es **continua** en $x_0\in X$ si:

$$\forall U' \in U^{\tau'}_{f(x_0)} \, \exists U \in U^\tau_{x_0} : f(U) \subset U' \Longleftrightarrow U \subset f^{-1}(U') \Longleftrightarrow f^{-1}(U') \in U_{x_0}$$

Se dice que f es **continua** en X si es continua para todo $x_0 \in X$.

Consecuencia

Si $f:(X,\tau)\to (Y,\tau')$ es un aplicación y B'es una base de τ' entonces:

(a)
$$f$$
 es continua en $x_0 \in X \Leftrightarrow f^{-1}(O') \in U_{x_0} \ \forall O' \in B' : f(x_0) \in O'$

(b)
$$f$$
 es continua en $X \Leftrightarrow f^{-1}(O') \in \tau \ \forall O' \in B' \subset \tau'$

Teorema

Si $f:(X,\tau)\to (Y,\tau')$ es un aplicación entonces son equivalentes:

(i) f es continua en X

(ii)
$$f^{-1}(O') \in \tau \ \forall O' \in \tau'$$

$$(iii) \ f^{-1}(F') \in \mathcal{F} \ \forall F' \in \mathcal{F}'$$

$$(iv) f(\bar{A}) \subset \overline{f(A)} \ \forall A \subset X$$

Definición

Una aplicación $f:(X,\tau)\to (Y,\tau')$ es un **homeomorfismo** si es continua y tiene inversa f^{-1} continua.

Consecuencia

Si $f:(X,\tau)\to (Y,\tau')$ es un aplicación biyectiva entonces son equivalentes:

(a) f es un homeomorfismo

(b)
$$f y f^{-1}$$
 son abiertas (o cerradas)

(c) f es continua y abierta (o cerrada)

$$(d)\,f(\bar A)=\overline{f(A)}\ \forall A\subset X$$

$$(e) f(A^{\circ}) = f(A)^{\circ} \ \forall A \subset X$$

Ejercicio -1-

Probar que
$$\mathit{S}^2 - \{\mathit{N}\} \cong \pi \equiv \mathit{z} = 0 \cong \mathit{R}^2$$

Ejercicio -2-

Probar que la esfera S^2 es homeomorfa a cualquier elipsoide de \mathbb{R}^3 .

Ejercicio -3-

Probar que el cono $\{(x,y,z)\in R^3\colon x^2+y^2=z^2\ z>0\}$ es homeomorfo al cilindro S^1xR .

Ejercicio -4-

Probar que el toro $T=\left\{(x,y,z)\in R^3:\left(\sqrt{x^2+y^2}-3\right)^2+z^2=1\right\}$ es homeomorfo a S^1xS^1 de R^4 .

Ejercicio -5-

Probar que el paraboloide $P=\{(x,y,z)\in R^3\colon x^2+y^2=z\}$ es homeomorfo al plano R^2 .

Ejercicio -6-

Se considera N con la topología τ de los divisores, esto es, $\mathfrak{B}=\{U_n\colon n\in N\}$ es base de τ , con U_n el conjunto de los divisores de $n\in N$. Probar que una aplicación $f\colon N\to N$ es continua si y solo si f respeta la divisibilidad (esto, es si m divide a n entonces f(m) divide a f(n)).

Ejercicio -7-

Encontrar una aplicación $g\colon (X_1,\tau_1) \to (X_2,\tau_2)$ y un denso $A \subset X_1$ tal que $g_{/A}$ es continua, aunque g no sea continua en ningún punto de A.

Ejercicio -8-

Probar que las aplicaciones continuas y sobreyectivas aplican conjuntos densos en conjuntos densos. Comprobar que la parte entera $E\colon (R,\tau_u) \to (Z,\tau_{uZ})$ conserva los conjuntos densos, aunque no es continua.

Caracterización de identificación

Sea $f:(X,\tau) \to (Y,\tau')$ equivalen:

- (i) f es una identificación
- (ii) f es continua, abierta y sobreyectiva
- (iii) f es continua, cerrada y sobreyectiva

Resultado interesante para los ejercicios

Sean $X \subset R^n$ $Y \subset R^m$ dotados de la topología usual. Se tiene que X es cerrado y sea $f: X \to Y$ continua y sobreyectiva.

Si $f^{-1}(A) \subset X$ es acotado para cada $A \subset Y$ acotado, entonces f es una identificación. En particular, si X es también acotado, entonces f es una identificación.

Ejercicio -9-

Demostrar que la aplicación $f\colon\! \left(S^1, au_{u/S^1}
ight) o \left(S^1, au_{u/S^1}
ight)$ dada por:

$$f(x,y) = (x^2 - y^2, 2xy)$$

está bien definida y es una identificación. Deducir que $RP^1\cong \left(S^1, au_{u/S^1}
ight)$.

Ejercicio -10-

En R se considera la relación de equivalencia

 $tRs \Leftrightarrow s-t=2\pi m \ para \ alg\'un \ m \in Z$

Demostrar que el cociente $\left({\mathcal R}/_{R} , { au_{u}}/_{R} \right) \cong \left(S^{1}, { au_{u/S^{1}}} \right)$

Ejercicio -11-

Probar que $f \colon (R^3, au_u) \longrightarrow \left(S^1, au_{u/S^1}
ight)$ dada por

$$f(x, y, z) = (cos(2\pi z), sen(2\pi z))$$

es una identificación. Deducir que

$$\left(R^3/_{R}, { au_u}/_{R}\right) \cong \left(S^1, { au_{u/S^1}}\right)$$

donde R es la relación de equivalencia en R^3 dada por

$$(x, y, z)R(x', y', z') \Leftrightarrow z - z' \in Z$$

Ejercicio -12-

Un conjunto no vacío $U\subseteq R$ es simétrico si para cada $x\in U$ se cumple $-x\in U$. Sea la topología:

$$\tau = \{U \subseteq R : U \; es \; sim\'etrico\} \cup \{\emptyset\}$$

Demostrar que si $f:(R,\tau)\to (R,\tau)$ es una función impar (es decir, $f(-x)=-f(x) \forall x\in R$) entonces es continua y abierta.

Ejercicio -13-

En X=[-2,2] con la topología usual inducida, $au= au_{u/X}$ se define la relación de equivalencia

$$xRy \Leftrightarrow x = y \circ x, y \in [-2, -1] \cup [1, 2]$$

Demostrar que el cociente $\, \left({}^{X}\!/_{R} \, , {}^{ au}\!/_{R} \right) \cong \left({}^{S^{1}}\!, { au_{u/S^{1}}} \right) \,$

Ejercicio -14-

En $X = Rx\{-1, 1\}$ se define la relación de equivalencia

$$(x_1, x_2) R(y_1, y_2) \Leftrightarrow (x_1, x_2) = (y_1, y_2) \circ x_1, y_1 \leq -2 \circ x_1, y_1 \geq 2$$

- (a) Estudiar si la proyección $p: (X, \tau_{u/X}) \to (X/_R, \tau_{u/X}/_R)$ es abierta o cerrada.
- (b) Probar que $\left(X/_{R}, { au_{u/X}}/_{R}\right) \cong \left(S^{1}, { au_{u/S^{1}}}\right)$.

Ejercicio -15-

Sea au_0 la topología del punto incluido en R asociada a 0. Decidir razonadamente si $au_0 x au_0$ coincide con la topología del punto incluido $au_{(0,0)}$ en R^2 asociada al punto (0,0).

Ejercicio -16-

Estudiar en qué puntos es continua la aplicación $f\colon (R,\tau_0) \to (R,\tau_u)$ $f(x)=x^2$, donde

 au_0 es la topología del punto incluido para p=0.

Ejercicio -17-

Se considera en R la topología τ que tiene como base $\beta=\{[a,b[:a< b,a,b\in R\}.$ Estudiar la continuidad de la aplicación $f\colon (R,\tau)\to (R,\tau)$ dada por f(x)=0 si x<0 y f(x)=1 si $x\geq 0$.

Ejercicio -18-

Estudiar la continuidad de la aplicación $f:(R,\tau_S) \to (R^2,\tau_u x \tau_S) \ f(x) = (x,x+1).$

Ejercicio -19-

Sea (R, au_{inc}) para p=0, (R, au_{exc}) para q=1 y la aplicación $f:(R, au_{inc}) o (R, au_{exc})$, dada por $f(x)=x^2$. Estudiar si f es o no continua y probar que f es continua en x=1.

Ejercicio -20-

Estudiar en qué puntos es continua la aplicación $f:(R,\tau_u) \to (R,\tau_d)$, dada por f(x) = senx.

Ejercicio -21-

Probar que los espacios de cada pareja son homeomorfos entre sí:

(a)
$$A = \{(x,y) \in \mathbb{R}^2 : x^2 + y^2 = 1 \ x \ge 0\} \ B = [0,1]$$

(b)
$$A = \{(x,y) \in \mathbb{R}^2 : x > 0 \ y > 0\} \ B = \{(x,y) \in \mathbb{R}^2 : x^2 + y^2 < 1 \ \}$$

$$(c) A =]0,1[\cup [2,3] B =]5,7[\cup [10,12]$$

Ejercicio -22-

Se considera el conjunto $\emph{X} = [-2,0[\ \cup \ [1,9[\ \mathsf{y} \ \mathsf{la} \ \mathsf{circunferencia} \ \mathsf{unidad} \]$

$$S^1 = \{(x, y) \in R^2 : x^2 + y^2 = 1\}$$

- (a) Encontrar una aplicación biyectiva $f: X \to S^1$.
- (b) Describir los entornos (básicos) de la topología au tal que

$$f:(X,\tau)\to \left(S^1,\tau_{u/S^1}\right)$$

es un homeomorfismo.

(c) Estudiar si la aplicación identidad

$$I:(X,\tau)\to (X,\tau_{u/X})$$

es continua, abierta o cerrada.

Ejercicio -23-

Sea (R, τ_S) la recta de Sorgenfrey. Definamos $f: (RxR, \tau_S x \tau_S) \to (RxR, \tau_S x \tau_S)$ como $f(x,y) = (x,-y^3)$. Analizar si f es continua, abierta o cerrada.

Ejercicio -24-

Un aplicación $f:(X,\tau)\to (Y,\tau')$ es propia si para cada C' compacto de (Y,τ') se verifica que $f^{-1}(C')$ es compacto en (X,τ) . Probar que si f es propia, (X,τ) es de Hausdorff e (Y,τ') es compacto, entonces f es continua.

Ejercicio -25-

Sea $f:(X,\tau) \to (Y,\tau')$ una aplicación entre espacios topológicos continua y sobreyectiva. Supongamos que R y R' son relaciones de equivalencia en X y en Y, respectivamente, tales que

$$xRy \Leftrightarrow f(x)R'f(y) \ \forall x,y \in X$$

Consideremos la aplicación: $\tilde{f}: (X/_R, \tau/_R) \to (Y/_{R'}, \tau'/_{R'})$ dada por $\tilde{f}([x]) = [f(x)]$

- a.- Probad que \tilde{f} está bien definida, es continua y biyectiva.
- b.- Demostrar que, si f es una identificación, entonces \tilde{f} es una identificación. En tal caso, $\mbox{\'e}$ s \tilde{f} un homeomorfismo?

Ejercicio -26-

Sea $A=\{(x,y)\in R^2\colon xy=0\}$. Entonces para cada aplicación continua y sobreyectiva $f\colon (R,\tau_u)\to \left(A,\tau_{u/A}\right)$ se verifica que $f^{-1}(\{(0,0)\})$ contiene al menos 3 puntos.

Ejercicio -27-

Se considera $f:\left([0,1], au_{/[0,1]}
ight) o (\{0,1\}, au) \quad \text{donde } au = \left\{\emptyset, \{1\}, \{0,1\}\right\}$ y se define como f=1 en $\left[0, \frac{1}{2}\right[$ y f=0 en $\left[\frac{1}{2}, 1\right]$. Probad que f es una identificación pero no es abierta ni cerrada.

Ejercicio -28-

Sea (R^2, au) el espacio topológico producto de (R, au_u) y (R, au_{CF}) .

a.- Estudiar si la aplicación $f\colon (R^2,\tau_u)\to (R^2,\tau)$ dada por $f(x_1,x_2)=(x_2,x_1)\ \ \forall (x_1,x_2)\in R^2$ es continua, abierta o cerrada.

b.- Lo mismo para $p_1 \circ f$, con $p_1 \colon (R^2, au) o (R, au_u)$ proyección.

c.- Razonar si algún cociente de (R^2, au) puede ser homeomorfo a (R, au_{CF}) .

Ejercicio -29-

Sea (R^2, au) el espacio topológico producto de (R, au_u) y (R, au_{CF}) .

a.- Estudiar si la aplicación $f\colon (R^2, au_u) o (R^2, au)$ dada por

$$f(x_1,x_2)=(x_1,-x_2) \ \ \forall (x_1,x_2)\in R^2$$
 es continua, abierta o cerrada.

- b.- Lo mismo para $p_1 \circ f$, con $p_1 \colon (R^2, au) o (R, au_u)$ proyección.
- c.- Razonar si algún cociente de (R^2, au) puede ser homeomorfo a (R, au_{CF}) .

Ejercicio -30-

Un conjunto no vacío $U\subseteq R$ es simétrico si para cada $x\in U$ se cumple $-x\in U$. Consideremos la topología:

$$\tau = \{U \subseteq R : U \text{ es simétrico}\} \cup \{\emptyset\}$$

Demostrar que si $f:(R,\tau) \to (R,\tau)$ es una función impar entonces es continua y abierta.

Ejercicio -31-

Sea au_0 la topología del punto incluido en R asociada a 0. Decidir razonadamente si $au_0x au_0$ coincide con la topología del punto incluido $au_{(0,0)}$ en R^2 asociada al punto (0,0).

Ejercicio -32-

Establecer un homeomorfismo entre los siguientes subconjuntos de R:

$$A =]0,1[\cup[2,3] \quad B =]-1,0[\cup[3,4]]$$

Ejercicio -33-

Sean en R las topologías τ_1 y τ_2 del punto excluido para p=1 y q=2, respectivamente. En $(R^2,\tau_1x\tau_2)$, hallar el interior y la adherencia de la diagonal principal.

Ejercicio -34-

Se considera R la topología τ_S que tiene por base $\beta_S=\{[a,b[:a< b,a,b\in R\}\ y\ \tau_d$ la de base $\beta_d=\{[a,+\infty[:a\in R\}.$ En el producto $(RxR,\tau_Sx\tau_d)$ probar que el conjunto $D=\{(x,x):x\in R\}$ es homeomorfo a (R,τ_S) y $A=\{(x,-x):x\in R\}$ tiene la topología discreta.

Ejercicio -35-

Construir explícitamente un homeomorfismo entre el conjunto $X = \{(0,y): y \in R\}$ y el dado por $Y = \{(x,x^2): -1 < x < 1\}$.

Ejercicio -36-

Sea un espacio topológico (X,τ) y $A=\{(x,x)\in XxX:x\in X\}$. Establecer un homeomorfismo entre (X,τ) y $\left(A,(\tau x\tau)_{/A}\right)$. Estudiar cuándo A es abierto en $(XxX,\tau x\tau)$.

Ejercicio -37-

Sea X=[-1,2] y $A=[-1,0]\cup[1,2]$. En X se define la relación de equivalencia:

$$xRy si \begin{cases} x = y \\ 6 \\ x, y \in A \end{cases}$$

Probar que $^{X}/_{R}$ es homeomorfo a S^{1} .

Ejercicio -38-

Se considera (R,τ) donde τ es la topología del punto incluido para p=1. Estudiar la continuidad global de la aplicación $f\colon (RxR,\tau x\tau)\to (R,\tau), f(x,y)=y-x$. Hallar el interior del conjunto $A=\{(x,y)\in R^2\colon y>x\}$ en $(RxR,\tau x\tau)$.

Ejercicio -39-

En $X=([0,1]x\{0\})\cup([0,1]x\{1\})\subset R^2$ se define la relación

$$(x,y)R(x',y') \Leftrightarrow \begin{cases} (x,y) = (x',y') \\ (0,0)R(0,1) \\ (1,0)R(1,1) \end{cases}$$

Hallar y probar a qué subconjunto de R^2 es homeomorfo $^{X}\!/_{R}$.

Ejercicio -40-

Se considera el conjunto $\emph{X} = [-2,0[\; \cup \; [1,9] \; ext{y} \; ext{la circunferencia unidad}$

$$S^1 = \{(x, y) \in R^2 : x^2 + y^2 = 1\}$$

- a.- Encontrar una aplicación biyectiva $f\colon X o S^1$.
- b.- Describir los entornos (básicos) de la topología au, tal que $f:(X, au) o \left(S^1, au u_{/S^1}\right)$ es un homeomorfismo.
- c.- Estudiar si la aplicación identidad: $I\colon f\colon (X,\tau) o \left(X, \tau u_{/X}\right)$ es continua, abierta o cerrada.

Ejercicio -41-

Establecer explícitamente un homeomorfismo entre el cilindro S^1xR y el cono

$$X = \{(x, y, z) \in R^3: x^2 + y^2 = z^2, z > 0\}$$

Ejercicio -42-

En R^3 se considera el cilindro $X=\{(x,y,z)\in R^3\colon x^2+y^2=1\}$ y el hiperboloide reglado $Y=\{(x,y,z)\in R^3\colon x^2+y^2-z^2=1\}$. Hallar explícitamente un homeomorfismo entre ambos conjuntos.

Ejercicio -43-

Se considera en N la topología $\tau=\{A_n:n\in N\}\cup\{\emptyset\}$, con $A_n=\{n,n+1,...\}$. Estudiar la continuidad de las aplicaciones $f\colon (N,\tau)\to (NxN,\tau x\tau)$, $g\colon (NxN,\tau x\tau)\to (N,\tau)$ dadas por

$$f(n) = (n^2, n+1)$$
 $g(n, m) = n + m$

Ejercicio -44-

Se considera $D=\{(x,y)\in R^2: x^2+y^2\leq 1\}$ y se define la relación de equivalencia R que identifica todos los puntos de $S^1=\{(x,y)\in R^2: x^2+y^2=1\}$. Probar que

$$D/R \cong S^2$$

Ejercicio -45-

Sea $m \in R$ un número fijo y la relación Rde R^2 dada por

$$(x,y)R(x',y') \Leftrightarrow y'-mx'=y-mx$$

Probar que
$${R^2}/_{I\!\!R}\cong R$$
 .

Ejercicio -46-

Sea (X,τ) un espacio topológico Haussdorf $f\colon X\to X$ un homeomorfismo tal que $f\circ f=1_X$. Se define en X la relación xRx' si son iguales o x'=f(x). Estudiar si X/R es Haussdorf.

Ejercicio -47-

Sea f:(X, au) o (Y, au') una aplicación biyectiva. Probar que son equivalentes:

- a.- f es continua y abierta.
- $\mathsf{b.-}\, f(\overline{A}) = \overline{f(A)} \ \forall A \subseteq X.$

Ejercicio -48-

Sea R con la topología $au_p = \{U \subset R \colon p \in U\} \cup \{\emptyset\}$ para $p \in R$.

a.- Caracterizar los entornos de $x \in R$,

b.- Probar que $f:(R, au_p) o(R, au_q)$ es continua si y solo si f es constante o $f(p)=q\in R$.

c.- Deducir que $\left(R, au_p
ight)$, $\left(R, au_q
ight)$ son homeomorfos.

Ejercicio -49-

Probad que $f\colon R^3\to S^1$ dada por $f(x,y,x)=\left(\cos(2\pi z), \sec n(2\pi z)\right)$ es una identificación, Deducid que $\left(R^3/_R, {}^{\tau_u}/_R\right)\cong S^1$ donde R es la relación de equivalencia en R^3 dada por

$$(x, y, x)R(x', y', x') \Leftrightarrow z - z' \in Z$$

Ejercicio -50-

Hallar un homeomorfismo entre $B_1(0,0)=\{(x,y)\in R^2: x^2+y^2<1\}$ y $R^2.$

Ejercicio -51-

Se considera $(RxR, \tau_u x \tau_D)$, hallar la adherencia de $A = \{(x,y) \in R^2: x^2 + y^2 < 1\}$. Probar que la diagonal, con la topología relativa, es homeomorfa a (R, τ_D) .

Ejercicio -52-

En X=[-1,2] se define la relación de equivalencia

$$xRy \Leftrightarrow \begin{cases} x = y \\ 6 \\ x, y \in [-1, 0] \\ 6 \\ x, y \in [1, 2] \end{cases}$$

Probar que $^{X}\!/_{R}$ es homeomorfo a [0,1].

Ejercicio -53-

Estudiar en qué puntos es continua la aplicación $f\colon (R, au_u) o (R, au_D)$, f(x) = senx.

Ejercicio -54-

Se considera (R,τ) donde τ es la topología del punto incluido para p=1. Estudiar la continuidad global de la aplicación $f\colon (RxR,\tau x\tau)\to (R,\tau), f(x,y)=y-x$. Hallar el interior del conjunto $A=\{(x,y)\in R^2\colon y>x\}$ en $(RxR,\tau x\tau)$.

Ejercicio -55-

En $X = ([0,1]x\{0\}) \cup ([0,1]x\{1\})$ se define la relación de equivalencia

$$(x,y)R(x',y') \Leftrightarrow \begin{cases} (x,y) = (x',y') & 6 \\ (0,0)R(0,1) & 6 \\ (1,0)R(1,1) & \end{cases}$$

Hallar y probara $\operatorname{\mathsf{qu\acute{e}}}$ subconjunto de R^2 es homeomorfo $^{X}\!/_{R}$.