Chapter 2

Bayes Formula

•
$$\mathbb{P}(A|B) = \frac{\mathbb{P}(B|A)\mathbb{P}(A)}{\mathbb{P}(B)}$$
.

Figure: Thomas Bayes

Bayes Formula

- $\mathbb{P}(A|B) = \frac{\mathbb{P}(B|A)\mathbb{P}(A)}{\mathbb{P}(B)}$.
- $\mathbb{P}(A|B) \propto \mathbb{P}(B|A)\mathbb{P}(A)$, (this is often hard to grasp)

Figure: Thomas Bayes

The setup

A priori five possibilities, all equally likely:

The prior

A priori five possibilities, all equally likely:

Possible content	prior count
	1
	1
	1
	1
	1

The likelihood

Which unique marble correspond to a white marble?

The likelihood

Which unique marble correspond to a white marble?

Possible content	ways to produce a white marble
	0
	1
	2
	3
	4

The likelihood

Possible content	white	blue
	0	4
	1	3
	2	2
	3	1
	4	0

Prior again

A priori five possibilities, all equally likely:

Possible content	$\mathbb{P}(\cdot)$
	$\frac{1}{5}$

Likelihood again

Possible content	$\mathbb{P}(\textit{white} \textit{content})$	$\mathbb{P}(\mathit{blue} \mathit{content})$
	<u>0</u> 4	$\frac{4}{4}$
	$\frac{1}{4}$	3/4
	<u>2</u> 4	<u>2</u> 4
	$\frac{3}{4}$	$\frac{1}{4}$
	$\frac{4}{4}$	<u>0</u> 4

Likelihood again

Possible content	$\mathbb{P}(\textit{white} \textit{content})$	$\mathbb{P}(\mathit{blue} \mathit{content})$
	<u>0</u> 4	$\frac{4}{4}$
	$\frac{1}{4}$	3/4
	<u>2</u> 4	<u>2</u> 4
	$\frac{3}{4}$	$\frac{1}{4}$
	$\frac{4}{4}$	<u>0</u> 4

Placenta praevia

Placenta praevia Grade IV

 Placenta praevia, is a condition occurring in 0.4 — 0.5% of all labors.
 It is due to that the placenta is in the lower part uterus.

Placenta praevia

Placenta praevia Grade IV

- Placenta praevia, is a condition occurring in 0.4 — 0.5% of all labors.
 It is due to that the placenta is in the lower part uterus.
- We study the probability, p, of a female baby given the mother had Placenta praevia.

Placenta praevia

Placenta praevia Grade IV

- Placenta praevia, is a condition occurring in 0.4 — 0.5% of all labors.
 It is due to that the placenta is in the lower part uterus.
- We study the probability, p, of a female baby given the mother had Placenta praevia.
- What is a reasonable prior for p?

Figure: $p(p|\hat{x}_1,\ldots,x_n)$

Proportional to, \propto

• A function is proportional to an other function if it is equal up to a constant independent on the argument of the function.

Proportional to, \propto

- A function is proportional to an other function if it is equal up to a constant independent on the argument of the function.
- For f(x) = x:

$$f(x) \propto 2x$$
,
 $f(x) \propto 4x$,
 $f(x) \propto cx$, if $c > 0$.

Proportional to, \propto

- A function is proportional to an other function if it is equal up to a constant independent on the argument of the function.
- For f(x) = x:

$$f(x) \propto 2x$$
,
 $f(x) \propto 4x$,
 $f(x) \propto cx$, if $c > 0$.

• For f(x) = x:

$$f(x) \not\propto x^2$$
,
 $f(x) \not\propto x(x+1)$,
 $f(x) \not\propto -x$.

In Bayesian statistics important since it preserve ratios (odds).

Producing the Figure in R, grid approximation

```
n grid <- 10 # how fine grid
p = grid \leftarrow seq(from = 0, to = 1, length.out = n grid)
#prior
prior <- rep(1, n grid)
#posterior
likelihood \leftarrow dbinom(x =3, size= 9, prob = p grid)
# unnormalized posterior
unstd.posterior <- likelhiood * prior
# normalized posterior
porsterior <- unstd.posterior / sum(unstd.posterior)
plot(p grid, posterior, type='b', ylab='posterior Probabilility', xlab='p',
     main = paste("number, of, grid, points, =, ", n grid, sep = ""))
```

number of grid points = 10

Producing the Figure in R, grid approximation

```
n grid <- 20 # how fine grid
p = grid \leftarrow seq(from = 0, to = 1, length.out = n grid)
#prior
prior \leftarrow rep(1, n grid)
#posterior
likelihood \leftarrow dbinom(x =3, size= 9, prob = p grid)
# unnormalized posterior
unstd.posterior <- likelhiood * prior
# normalized posterior
porsterior <- unstd.posterior / sum(unstd.posterior)
plot(p grid, posterior, type='b', ylab='posterior Probabilility
                                                                        xlab
main = paste("number_1 of_1 grid_1 points_1 = 1", n grid_1 sep = ""))
```

number of grid points = 20

Producing the Figure in R, grid approximation

```
n grid <- 100 # how fine grid
p = grid \leftarrow seq(from = 0, to = 1, length.out = n grid)
#prior
prior \leftarrow rep(1, n grid)
#posterior
likelihood \leftarrow dbinom(x =3, size= 9, prob = p grid)
# unnormalized posterior
unstd.posterior <- likelhiood * prior
# normalized posterior
porsterior <- unstd.posterior / sum(unstd.posterior)
plot(p grid, posterior, type='l', ylab='posterior∟Probabilility
                                                                        xlab
main = paste("number_1 of_1 grid_1 points_1 = 1", n grid_1 sep = ""))
```


