ANSWERS

EXERCISE 1.1

- 1. (i) Neither reflexive nor symmetric nor transitive.
 - (ii) Neither reflexive nor symmetric but transitive.
 - (iii) Reflexive and transitive but not symmetric.
 - (iv) Reflexive, symmetric and transitive.
 - (v) (a) Reflexive, symmetric and transitive.
 - (b) Reflexive, symmetric and transitive.
 - (c) Neither reflexive nor symmetric nor transitive.
 - (d) Neither reflexive nor symmetric but transitive.
 - (e) Neither reflexive nor symmetric nor transitive.
- 3. Neither reflexive nor symmetric nor transitive.
- 5. Neither reflexive nor symmetric nor transitive.
- 0 () (1.7.0) () (1)
- **9.** (i) $\{1, 5, 9\}$, (ii) $\{1\}$ **12.** T_1 is related to T_3 .
- 13. The set of all triangles 14. The set of all lines y = 2x + c, $c \in \mathbb{R}$
- **15.** B **16.** C

EXERCISE 1.2

- 1. No
- 2. (i) Injective but not surjective (ii) Neither injective nor surjective
 - (iii) Neither injective nor surjective (iv) Injective but not surjective
 - (v) Injective but not surjective
- 7. (i) One-one and onto
- (ii) Neither one-one nor onto.
- 9. No 10. Yes 11. D 12. A

Miscellaneous Exercise on Chapter 1

3. No 4. n! 5. Yes 6. A 7. B

EXERCISE 2.1

1.
$$\frac{-\pi}{6}$$

4.
$$\frac{-3}{3}$$

5.
$$\frac{2\pi}{3}$$

9.
$$\frac{3\pi}{4}$$

11. $\frac{3\pi}{4}$

EXERCISE 2.2

3.
$$\frac{1}{2} \tan^{-1} x$$

4.
$$\frac{x}{2}$$

$$5. \quad \frac{\pi}{4} - x$$

6.
$$\sin^{-1}\frac{x}{a}$$

7.
$$3 \tan^{-1} \frac{x}{a}$$

8.
$$\frac{\pi}{4}$$

$$9. \quad \frac{x+y}{1-xy}$$

10.
$$\frac{7}{3}$$

11.
$$\frac{-\pi}{4}$$

$$\frac{17}{6}$$
 13.

15. B

Miscellaneous Exercise on Chapter 2

1.
$$\frac{\pi}{6}$$

$$2. \quad \frac{\pi}{6}$$

11.
$$x = n\pi + \frac{\pi}{4}, n \in \mathbb{Z}$$
 12. $x = \frac{1}{\sqrt{3}}$

EXERCISE 3.1

1. (i)
$$3 \times 4$$

(iii) 19, 35,
$$-5$$
, 12, $\frac{5}{2}$

2.
$$1 \times 24$$
, 2×12 , 3×8 , 4×6 , 6×4 , 8×3 , 12×2 , 24×1 ; 1×13 , 13×1

3.
$$1 \times 18, 2 \times 9, 3 \times 6, 6 \times 3, 9 \times 2, 18 \times 1; 1 \times 5, 5 \times 1$$

4. (i)
$$\begin{bmatrix} 2 & \frac{9}{2} \\ \frac{9}{2} & 8 \end{bmatrix}$$
 (ii) $\begin{bmatrix} 1 & \frac{1}{2} \\ 2 & 1 \end{bmatrix}$ (iii) $\begin{bmatrix} \frac{9}{2} & \frac{25}{2} \\ 8 & 18 \end{bmatrix}$

(ii)
$$\begin{bmatrix} 1 & \frac{1}{2} \\ 2 & 1 \end{bmatrix}$$

(iii)
$$\begin{bmatrix} \frac{9}{2} & \frac{25}{2} \\ 8 & 18 \end{bmatrix}$$

5. (i)
$$\begin{bmatrix} 1 & \frac{1}{2} & 0 & \frac{1}{2} \\ \frac{5}{2} & 2 & \frac{3}{2} & 1 \\ 4 & \frac{7}{2} & 3 & \frac{5}{2} \end{bmatrix}$$
 (ii)
$$\begin{bmatrix} 1 & 0 & -1 & -2 \\ 3 & 2 & 1 & 0 \\ 5 & 4 & 3 & 2 \end{bmatrix}$$

6. (i)
$$x = 1$$
, $y = 4$, $z = 3$

(ii)
$$x = 4$$
, $y = 2$, $z = 0$ or $x = 2$, $y = 4$, $z = 0$

(iii)
$$x = 2$$
, $y = 4$, $z = 3$

7.
$$a = 1, b = 2, c = 3, d = 4$$

10. D

EXERCISE 3.2

1. (i)
$$A + B = \begin{bmatrix} 3 & 7 \\ 1 & 7 \end{bmatrix}$$
 (ii) $A - B = \begin{bmatrix} 1 & 1 \\ 5 & -3 \end{bmatrix}$

(iii)
$$3A - C = \begin{bmatrix} 8 & 7 \\ 6 & 2 \end{bmatrix}$$
 (iv) $AB = \begin{bmatrix} -6 & 26 \\ -1 & 19 \end{bmatrix}$ (v) $BA = \begin{bmatrix} 11 & 10 \\ 11 & 2 \end{bmatrix}$

2. (i)
$$\begin{bmatrix} 2a & 2b \\ 0 & 2a \end{bmatrix}$$
 (ii) $\begin{bmatrix} (a+b)^2 & (b+c)^2 \\ (a-c)^2 & (a-b)^2 \end{bmatrix}$

(iii)
$$\begin{bmatrix} 11 & 11 & 0 \\ 16 & 5 & 21 \\ 5 & 10 & 9 \end{bmatrix}$$
 (iv)
$$\begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$$

3.(i)
$$\begin{bmatrix} a^2 + b^2 & 0 \\ 0 & a^2 + b^2 \end{bmatrix}$$
 (ii) $\begin{bmatrix} 2 & 3 & 4 \\ 4 & 6 & 8 \\ 6 & 9 & 12 \end{bmatrix}$ (iii) $\begin{bmatrix} -3 & -4 & 1 \\ 8 & 13 & 9 \end{bmatrix}$

(iv)
$$\begin{bmatrix} 14 & 0 & 42 \\ 18 & -1 & 56 \\ 22 & -2 & 70 \end{bmatrix}$$
 (v)
$$\begin{bmatrix} 1 & 2 & 3 \\ 1 & 4 & 5 \\ -2 & 2 & 0 \end{bmatrix}$$
 (vi)
$$\begin{bmatrix} 14 & -6 \\ 4 & 5 \end{bmatrix}$$

4.
$$A+B = \begin{bmatrix} 4 & 1 & -1 \\ 9 & 2 & 7 \\ 3 & -1 & 4 \end{bmatrix}, B-C = \begin{bmatrix} -1 & -2 & 0 \\ 4 & -1 & 3 \\ 1 & 2 & 0 \end{bmatrix}$$

5.
$$\begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$
 6.
$$\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

$$6. \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

7. (i)
$$X = \begin{bmatrix} 5 & 0 \\ 1 & 4 \end{bmatrix}$$
, $Y = \begin{bmatrix} 2 & 0 \\ 1 & 1 \end{bmatrix}$

7. (i)
$$X = \begin{bmatrix} 5 & 0 \\ 1 & 4 \end{bmatrix}$$
, $Y = \begin{bmatrix} 2 & 0 \\ 1 & 1 \end{bmatrix}$ (ii) $X = \begin{bmatrix} \frac{2}{5} & \frac{-12}{5} \\ \frac{-11}{5} & 3 \end{bmatrix}$, $Y = \begin{bmatrix} \frac{2}{5} & \frac{13}{5} \\ \frac{14}{5} & -2 \end{bmatrix}$

8.
$$X = \begin{bmatrix} -1 & -1 \\ -2 & -1 \end{bmatrix}$$
 9. $x = 3, y = 3$ **10.** $x = 3, y = 6, z = 9, t = 6$

9.
$$x = 3, y = 3$$

10.
$$x = 3, y = 6, z = 9, t = 6$$

11.
$$x = 3, y = -4$$

11.
$$x = 3, y = -4$$
 12. $x = 2, y = 4, w = 3, z = 1$

15.
$$\begin{bmatrix} 1 & -1 & -3 \\ -1 & -1 & -10 \\ -5 & 4 & 4 \end{bmatrix}$$
 17. $k = 1$

17.
$$k = 1$$

1. (i)
$$\left[5 \ \frac{1}{2} \ -1\right]$$

(ii)
$$\begin{bmatrix} 1 & 2 \\ -1 & 3 \end{bmatrix}$$

1. (i)
$$\begin{bmatrix} 5 & \frac{1}{2} & -1 \end{bmatrix}$$
 (ii) $\begin{bmatrix} 1 & 2 \\ -1 & 3 \end{bmatrix}$ (iii) $\begin{bmatrix} -1 & \sqrt{3} & 2 \\ 5 & 5 & 3 \\ 6 & 6 & -1 \end{bmatrix}$

$$4. \begin{bmatrix} -4 & 5 \\ 1 & 6 \end{bmatrix}$$

4.
$$\begin{bmatrix} -4 & 5 \\ 1 & 6 \end{bmatrix}$$
 9.
$$\begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & a & b \\ -a & 0 & c \\ -b & -c & 0 \end{bmatrix}$$

10. (i)
$$A = \begin{bmatrix} 3 & 3 \\ 3 & -1 \end{bmatrix} + \begin{bmatrix} 0 & 2 \\ -2 & 0 \end{bmatrix}$$

(ii)
$$A = \begin{bmatrix} 6 & -2 & 2 \\ -2 & 3 & -1 \\ 2 & -1 & 3 \end{bmatrix} + \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

(iii)
$$A = \begin{bmatrix} 3 & \frac{1}{2} & \frac{-5}{2} \\ \frac{1}{2} & -2 & -2 \\ \frac{-5}{2} & -2 & 2 \end{bmatrix} + \begin{bmatrix} 0 & \frac{5}{2} & \frac{3}{2} \\ \frac{-5}{2} & 0 & 3 \\ \frac{-3}{2} & -3 & 0 \end{bmatrix}$$
 (iv)
$$A = \begin{bmatrix} 1 & 2 \\ 2 & 2 \end{bmatrix} + \begin{bmatrix} 0 & 3 \\ -3 & 0 \end{bmatrix}$$

(iv)
$$A = \begin{bmatrix} 1 & 2 \\ 2 & 2 \end{bmatrix} + \begin{bmatrix} 0 & 3 \\ -3 & 0 \end{bmatrix}$$

11. A

12. B

EXERCISE 3.4

1. D

Miscellaneous Exercise on Chapter

3.
$$x = \pm \frac{1}{\sqrt{2}}, y = \pm \frac{1}{\sqrt{6}}, z = \pm \frac{1}{\sqrt{3}}$$

4
$$y = -1$$

6.
$$x = \pm 4\sqrt{3}$$

- 7. (a) Total revenue in the market I = 346000Total revenue in the market - II = ₹53000
 - (b) ₹15000, ₹17000

$$\mathbf{8.} \quad \mathbf{X} = \begin{bmatrix} 1 & -2 \\ 2 & 0 \end{bmatrix}$$

11. C

2. (i) 1, (ii)
$$x^3 - x^2 + 2$$

7. (i)
$$x = \pm \sqrt{3}$$
, (ii) $x = 2$

EXERCISE 4.2

1. (i)
$$\frac{15}{2}$$
, (ii) $\frac{47}{2}$, (iii) 15

3. (i) 0, 8, (ii) 0, 8 4. (i)
$$y = 2x$$
, (ii) $x - 3y = 0$ 5. (D)

EXERCISE 4.3

1. (i)
$$M_{11} = 3$$
, $M_{12} = 0$, $M_{21} = -4$, $M_{22} = 2$, $A_{11} = 3$, $A_{12} = 0$, $A_{21} = 4$, $A_{22} = 2$

(ii)
$$M_{11} = d$$
, $M_{12} = b$, $M_{21} = c$, $M_{22} = a$
 $A_{11} = d$, $A_{12} = -b$, $A_{21} = -c$, $A_{22} = a$

2. (i)
$$M_{11} = 1$$
, $M_{12} = 0$, $M_{13} = 0$, $M_{21} = 0$, $M_{22} = 1$, $M_{23} = 0$, $M_{31} = 0$, $M_{32} = 0$, $M_{33} = 1$, $M_{11} = 1$, $M_{12} = 0$, $M_{13} = 0$, $M_{21} = 0$, $M_{22} = 1$, $M_{23} = 0$, $M_{31} = 0$, $M_{32} = 0$, $M_{33} = 1$

(ii)
$$M_{11} = 11, M_{12} = 6, M_{13} = 3, M_{21} = -4, M_{22} = 2, M_{23} = 1, M_{31} = -20, M_{32} = -13, M_{33} = 5$$

 $A_{11} = 11, A_{12} = -6, A_{13} = 3, A_{21} = 4, A_{22} = 2, A_{23} = -1, A_{31} = -20, A_{32} = 13, A_{33} = 5$

3. 7 4.
$$(x-y)(y-z)(z-x)$$
 5. (D

EXERCISE 4.4

1.
$$\begin{pmatrix} 4 & -2 \\ -3 & 1 \end{pmatrix}$$
 2. $\begin{pmatrix} 3 & 1 & -11 \\ -12 & 5 & -1 \\ 6 & 2 & 5 \end{pmatrix}$ 5. $\frac{1}{14} \begin{bmatrix} 3 & 2 \\ -4 & 2 \end{bmatrix}$

9.
$$\frac{-1}{3}\begin{bmatrix} -1 & 5 & 3 \\ -4 & 23 & 12 \\ 1 & -11 & -6 \end{bmatrix}$$
 10. 9 2 -3 11. 0 $\cos \alpha = \sin \alpha$ 0 $\sin \alpha = -\cos \alpha$

13.
$$\frac{1}{7}\begin{bmatrix} 2 & -1 \\ 1 & 3 \end{bmatrix}$$
 14. $a = -4, b = 1$ **15.** $A^{-1} = \frac{1}{11}\begin{bmatrix} -3 & 4 & 5 \\ 9 & -1 & -4 \\ 5 & -3 & -1 \end{bmatrix}$

16.
$$\frac{1}{4} \begin{vmatrix} 3 & 1 & -1 \\ 1 & 3 & 1 \\ -1 & 1 & 3 \end{vmatrix}$$
 17. B 18. B

EXERCISE 4.5

1. Consistent

2. Consistent

3. Inconsistent

4. Consistent

5. Inconsistent

6. Consistent

7. x = 2, y = -3 8. $x = \frac{-5}{11}, y = \frac{12}{11}$ 9. $x = \frac{-6}{11}, y = \frac{-19}{11}$

10. x = -1, y = 4 **11.** $x = 1, y = \frac{1}{2}, z = \frac{-3}{2}$

12. x = 2, y = -1, z = 1

13. x = 1, y = 2, z = -1

14. x = 2, v = 1, z = 3

15. $\begin{array}{ccc} -2 & 9 & -23 \\ -1 & 5 & -13 \end{array}$, x = 1, y = 2, z = 3

16. cost of onions per kg = ₹ 5 cost of wheat per kg = ₹ 8 cost of rice per kg = ₹ 8

Miscellaneous Exercise on Chapter 4

7. x = 2, y = 3, z = 5

EXERCISE 5.1

2. f is continuous at x = 3

3. (a), (b), (c) and (d) are all continuous functions

5. f is continuous at x = 0 and x = 2; Not continuous at x = 1

6. Discontinuous at x = 2

7. Discontinuous at x = 3

- 8. Discontinuous at x = 0
- 9. No point of discontinuity
- 10. No point of discontinuity
- 11. No point of discontinuity
- 12. f is discontinuous at x = 1
- 13. f is not continuous at x = 1
- 14. f is not continuous at x = 1 and x = 3
- 15. x = 1 is the only point of discontinuity
- 16. Continuous

17.
$$a=b+\frac{2}{3}$$

- For no value of λ , f is continuous at x = 0 but f is continuous at x = 1 for any value of λ .
- **20.** f is continuous at $x = \pi$
- 21. (a), (b) and (c) are all continuous
- 22. Cosine function is continuous for all $x \in \mathbb{R}$; cosecant is continuous except for $x = n\pi$, $n \in \mathbb{Z}$; secant is continuous except for $x = (2n+1)\frac{\pi}{2}$, $n \in \mathbb{Z}$ and cotangent function is continuous except for $x = n\pi$, $n \in \mathbb{Z}$
- 23. There is no point of discontinuity.
- 24. Yes, f is continuous for all $x \in \mathbb{R}$
- **25.** *f* is continuous for all $x \in \mathbf{R}$

- **26.** k = 6

- **34.** There is no point of discontinuity.

EXERCISE 5.2

- 1. $2x \cos(x^2 + 5)$ 2. $-\cos x \sin(\sin x)$ 3. $a \cos(ax + b)$
- $\frac{\sec(\tan\sqrt{x}).\tan(\tan\sqrt{x}).\sec^2\sqrt{x}}{2\sqrt{x}}$
- 5. $a\cos(ax+b)\sec(cx+d)+c\sin(ax+b)\tan(cx+d)\sec(cx+d)$
- 6. $10x^4 \sin x^5 \cos x^5 \cos x^3 3x^2 \sin x^3 \sin^2 x^5$
- 7. $\frac{-2\sqrt{2} x}{\sin x^2 \sqrt{\sin 2x^2}}$ 8. $-\frac{\sin \sqrt{x}}{2\sqrt{x}}$

1.
$$\frac{\cos x - 2}{3}$$

2.
$$\frac{2}{\cos y - 3}$$

1.
$$\frac{\cos x - 2}{3}$$
 2. $\frac{2}{\cos y - 3}$ 3. $-\frac{a}{2by + \sin y}$

$$4. \quad \frac{\sec^2 x - y}{x + 2y - 1}$$

5.
$$-\frac{(2x+y)}{(x+2y)}$$

4.
$$\frac{\sec^2 x - y}{x + 2y - 1}$$
 5. $-\frac{(2x + y)}{(x + 2y)}$ 6. $-\frac{(3x^2 + 2xy + y^2)}{(x^2 + 2xy + 3y^2)}$

7.
$$\frac{y \sin xy}{\sin 2y - x \sin xy}$$
 8. $\frac{\sin 2x}{\sin 2y}$ 9. $\frac{2}{1+x^2}$

8.
$$\frac{\sin 2x}{\sin 2y}$$

9.
$$\frac{2}{1+x^2}$$

10.
$$\frac{3}{1+x^2}$$

11.
$$\frac{2}{1+x^2}$$
 12. $\frac{-2}{1+x^2}$ 13. $\frac{-2}{1+x^2}$

12.
$$\frac{-2}{1+x^2}$$

13.
$$\frac{-2}{1+x^2}$$

14.
$$\frac{2}{\sqrt{1-x^2}}$$

15.
$$-\frac{2}{\sqrt{1-x^2}}$$

1.
$$\frac{e^{x}(\sin x - \cos x)}{\sin^{2} x}, x \neq n\pi, n \in \mathbb{Z}$$
 2. $\frac{e^{\sin -1}x}{\sqrt{1 - x^{2}}}, x \in (-1, 1)$

3.
$$3x^2e^{x^3}$$

4.
$$-\frac{e^{-x}\cos(\tan^{-1}e^{-x})}{1+e^{-2x}}$$

5.
$$-e^{x} \tan e^{x}$$
, $e^{x} \neq (2n+1)\frac{\pi}{2}$, $n \in \mathbb{N}$ 6. $e^{x} + 2x^{e^{x^{2}}} + 3x^{2}e^{x^{3}} + 4x^{3}e^{x^{4}} + 5x^{4}e^{x^{5}}$

7.
$$\frac{e^{\sqrt{x}}}{4\sqrt{x}e^{\sqrt{x}}}, x > 0$$

$$8. \quad \frac{1}{x \log x}, x > 1$$

9.
$$-\frac{(x\sin x \cdot \log x + \cos x)}{x(\log x)^2}$$
, $x > 0$ 10. $-\frac{1}{x} + e^x \sin(\log x + e^x)$, $x > 0$

EXERCISE 5.5

1. $-\cos x \cos 2x \cos 3x \left[\tan x + 2 \tan 2x + 3 \tan 3x\right]$

2.
$$\frac{1}{2}\sqrt{\frac{(x-1)(x-2)}{(x-3)(x-4)(x-5)}}\left[\frac{1}{x-1} + \frac{1}{x-2} - \frac{1}{x-3} - \frac{1}{x-4} - \frac{1}{x-5}\right]$$

3.
$$(\log x)^{\cos x} \left[\frac{\cos x}{x \log x} - \sin x \log(\log x) \right]$$

4.
$$x^x (1 + \log x) - 2^{\sin x} \cos x \log 2$$

5.
$$(x+3)(x+4)^2(x+5)^3(9x^2+70x+133)$$

6.
$$\left(x+\frac{1}{x}\right)^x \left[\frac{x^2-1}{x^2+1} + \log\left(x+\frac{1}{x}\right)\right] + x^{1+\frac{1}{x}} \left(\frac{x+1-\log x}{x^2}\right)$$

7.
$$(\log x)^{x-1} [1 + \log x \cdot \log (\log x)] + 2x^{\log x-1} \cdot \log x$$

8.
$$(\sin x)^x (x \cot x + \log \sin x) + \frac{1}{2} \frac{1}{\sqrt{x - x^2}}$$

9.
$$x^{\sin x} \left[\frac{\sin x}{x} + \cos x \log x \right] + (\sin x)^{\cos x} \left[\cos x \cot x - \sin x \log \sin x \right]$$

10.
$$x^{x \cos x} [\cos x \cdot (1 + \log x) - x \sin x \log x] - \frac{4x}{(x^2 - 1)^2}$$

11.
$$(x \cos x)^x [1 - x \tan x + \log (x \cos x)] + (x \sin x)^{-\frac{1}{x}} \left[\frac{x \cot x + 1 - \log (x \sin x)}{x^2} \right]$$

12.
$$-\frac{yx^{y-1} + y^x \log y}{x^y \log x + xy^{x-1}}$$
13.
$$\frac{y}{x} \left(\frac{y - x \log y}{x - y \log x} \right)$$
14.
$$\frac{y \tan x + \log \cos y}{x \tan y + \log \cos x}$$
15.
$$\frac{y(x-1)}{x(y+1)}$$

13.
$$\frac{y}{x} \left(\frac{y - x \log y}{x - y \log x} \right)$$

14.
$$\frac{y \tan x + \log \cos y}{x \tan y + \log \cos x}$$

15.
$$\frac{y(x-1)}{x(y+1)}$$

16.
$$(1+x)(1+x^2)(1+x^4)(1+x^8)\left[\frac{1}{1+x}+\frac{2x}{1+x^2}+\frac{4x^3}{1+x^4}+\frac{8x^7}{1+x^8}\right]$$
; $f'(1)=120$

17.
$$5x^4 - 20x^3 + 45x^2 - 52x + 11$$

1.
$$t^2$$
 2. $\frac{b}{a}$ 3. $-4 \sin t$ 4. $-$

5.
$$\frac{\cos\theta - 2\cos 2\theta}{2\sin 2\theta - \sin \theta}$$
 6.
$$-\cot \frac{\theta}{2}$$
 7.
$$-\cot 3t$$
 8.
$$\tan t$$

9.
$$\frac{b}{a} \csc \theta$$
 10. $\tan \theta$

EXERCISE 5.7

1. 2

2. $380 x^{18}$

3. $-x \cos x - 2 \sin x$

4. $-\frac{1}{x^2}$

5. $x(5+6\log x)$ 6. $2e^x(5\cos 5x - 12\sin 5x)$

7. $9 e^{6x} (3 \cos 3x - 4 \sin 3x)$

8. $-\frac{2x}{(1+x^2)^2}$

9. $-\frac{(1+\log x)}{(x\log x)^2}$ 10. $-\frac{\sin(\log x)+\cos(\log x)}{x^2}$

12. $-\cot v \csc^2 v$

Miscellaneous Exercise on Chapter 5

1. $27(3x^2-9x+5)^8(2x-3)$

2. $3\sin x \cos x (\sin x - 2 \cos^4 x)$

3. $(5x)^{3\cos 2x} \left| \frac{3\cos 2x}{x} - 6\sin 2x \log 5x \right|$

 $(\log x)^{\log x} \left[\frac{1}{x} + \frac{\log(\log x)}{x} \right], x > 1$

8. $(a \sin x - b \cos x) \sin (a \cos x + b \sin x)$

9. $(\sin x - \cos x)^{\sin x - \cos x} (\cos x + \sin x) (1 + \log (\sin x - \cos x)), \sin x > \cos x$

10. $x^x (1 + \log x) + ax^{a-1} + a^x \log a$

11. $x^{x^2-3} \left| \frac{x^2-3}{x} + 2x \log x \right| + (x-3)^{x^2} \left| \frac{x^2}{x-3} + 2x \log(x-3) \right|$

12. $\frac{6}{5} \cot \frac{t}{2}$

17. $\frac{\sec^3 t}{at}$, $0 < t < \frac{\pi}{2}$

EXERCISE 6.1

1. (a) $6\pi \text{ cm}^2/\text{cm}$

(b) 8π cm²/cm

2. $\frac{8}{3}$ cm²/s

3. 60π cm²/s

4. $900 \text{ cm}^3/\text{s}$

5. $80\pi \text{ cm}^2/\text{s}$

6. 1.4π cm/s

7. (a) -2 cm/min

(b) $2 \text{ cm}^2/\text{min}$

8. $\frac{1}{\pi}$ cm/s

9. $400\pi \text{ cm}^3/\text{cm}$ 10. $\frac{8}{3} \text{ cm/s}$

11. (4, 11) and $\left(-4, \frac{-31}{3}\right)$

 2π cm³/s

13. $\frac{27}{8}\pi (2x+1)^2$ 14. $\frac{1}{48\pi}$ cm/s

16. ₹208

17. B

18. D

EXERCISE 6.2

4. (a)
$$\left(\frac{3}{4},\infty\right)$$

(b)
$$\left(-\infty, \frac{3}{4}\right)$$

- 5. (a) $(-\infty, -2)$ and $(3, \infty)$ (b) (-2, 3)
- **6.** (a) decreasing for x < -1 and increasing for x > -1
 - (b) decreasing for $x > -\frac{3}{2}$ and increasing for $x < -\frac{3}{2}$
 - (c) increasing for -2 < x < -1 and decreasing for x < -2 and x > -1
 - increasing for $x < -\frac{9}{2}$ and decreasing for $x > -\frac{9}{2}$
 - (e) increasing in (1, 3) and $(3, \infty)$, decreasing in $(-\infty, -1)$ and (-1, 1).
- 8. 0 < x < 1 and x > 2

12. A, B

13. D

14. a > -2

19. D

EXERCISE 6.3

- 1. (i) Minimum Value = 3 (ii) Minimum Value = -2
 - (iii) Maximum Value = 10 (iv) Neither minimum nor maximum value
- 2. (i) Minimum Value = -1; No maximum value
 - (ii) Maximum Value = 3; No minimum value
 - (iii) Minimum Value = 4; Maximum Value = 6
 - (iv) Minimum Value = 2; Maximum Value = 4
 - (v) Neither minimum nor Maximum Value
- 3. (i) local minimum at x = 0, local minimum value = 0
 - (ii) local minimum at x = 1, local minimum value = -2 local maximum at x = -1, local maximum value = 2
 - (iii) local maximum at $x = \frac{\pi}{4}$, local maximum value = $\sqrt{2}$
 - (iv) local maximum at $x = \frac{3\pi}{4}$, local maximum value = $\sqrt{2}$
 - local minimum at $x = \frac{7\pi}{4}$, local minimum value = $-\sqrt{2}$
 - (v) local maximum at x = 1, local maximum value = 19 local minimum at x = 3, local minimum value = 15
 - (vi) local minimum at x = 2, local minimum value = 2
 - (vii) local maximum at x = 0, local maximum value = $\frac{1}{2}$
 - (viii) local maximum at $x = \frac{2}{3}$, local maximum value = $\frac{2\sqrt{3}}{9}$

- 5. (i) Absolute minimum value = -8, absolute maximum value = 8
 - (ii) Absolute minimum value = -1, absolute maximum value = $\sqrt{2}$
 - (iii) Absolute minimum value = -10, absolute maximum value = 8
 - (iv) Absolute minimum value = 19, absolute maximum value = 3
- **6.** Maximum profit = 113 unit.
- 7. Minima at x = 2, minimum value = -39, Maxima at x = 0, maximum value = 25.
- 8. At $x = \frac{\pi}{4}$ and $\frac{5\pi}{4}$

- 9. Maximum value = $\sqrt{2}$
- 10. Maximum at x = 3, maximum value 89; maximum at x = -2, maximum value = 139
- 11. a = 120
- 12. Maximum at $x = 2\pi$, maximum value $= 2\pi$; Minimum at x = 0, minimum value = 0
- **13.** 12, 12
- **14.** 45, 15
- **15.** 25, 10
- **16.** 8, 8

- 17. 3 cm
- 18. x = 5 cm
- 21. radius = $\left(\frac{50}{\pi}\right)^{\frac{1}{3}}$ cm and height = $2\left(\frac{50}{\pi}\right)^{\frac{1}{3}}$ cm
- 22. $\frac{112}{\pi+4}$ cm, $\frac{28\pi}{\pi+4}$ cm 27. A
- **28.** D

29. C

Miscellaneous Exercise on Chapter 6

- 2. $b\sqrt{3}$ cm²/s
- 3. (i) $0 \le x \le \frac{\pi}{2}$ and $\frac{3\pi}{2} < x < 2\pi$
- (ii) $\frac{\pi}{2} < x < \frac{3\pi}{2}$
- **4.** (i) x < -1 and x > 1 (ii) -1 < x < 1

5. $\frac{3\sqrt{3}}{4}ab$

6. Rs 1000

- 8. length = $\frac{20}{\pi + 4}$ m, breadth = $\frac{10}{\pi + 4}$ m
- 10. (i) local maxima at $x = \frac{2}{7}$ (ii) local minima at x = 2
 - (iii) point of inflection at x = -1
- 11. Absolute maximum = $\frac{5}{4}$, Absolute minimum = 1
- 14. $\frac{4\pi R^3}{3\sqrt{3}}$

16. A

SUPPLEMENTARY MATERIAL

CHAPTER 5

Theorem 5 (To be on page 129 under the heading Theorem 5)

(i) Derivative of Exponential Function $f(x) = e^x$.

If
$$f(x) = e^x$$
, then

$$f'(x) = \lim_{\Delta x \to 0} \frac{f(x + \Delta x) - f(x)}{\Delta x}$$

$$= \lim_{\Delta x \to 0} \frac{e^{x + \Delta x} - e^{x}}{\Delta x}$$

$$= e^{x} \cdot \lim_{\Delta x \to 0} \frac{e^{\Delta x} - 1}{\Delta x}$$

$$= e^{x} \cdot 1 \text{ [since } \lim_{h \to 0} \frac{e^{h} - 1}{h} = 1 \text{]}$$
Thus,
$$\frac{d}{dx}(e^{x}) = e^{x}.$$

(ii) Derivative of logarithmic function $f(x) = \log_a x$.

If
$$f(x) = \log_e x$$
, then
$$f'(x) = \lim_{\Delta x \to 0} \frac{\log_e (x + \Delta x) - \log_e x}{\Delta x}$$

$$= \lim_{\Delta x \to 0} \frac{\log_e \left(1 + \frac{\Delta x}{x}\right)}{\Delta x}$$

$$= \lim_{\Delta x \to 0} \frac{1}{x} \frac{\log_e \left(1 + \frac{\Delta x}{x}\right)}{\frac{\Delta x}{x}}$$

$$= \frac{1}{x} \left[\text{since } \lim_{h \to 0} \frac{\log_e (1 + h)}{h} = 1\right]$$
Thus, $\frac{d}{dx} \log_e x = \frac{1}{x}$.

