Empirical-evidence Equilibria in Stochastic Games

Nicolas Dudebout

Georgia Institute of Technology

At Nash equilibrium in a stochastic game, each agent is playing an optimal strategy for a POMDP

At Nash equilibrium in a stochastic game, each agent is playing an optimal strategy for a POMDP

EEE approach:

- 0. Pick arbitrary strategies
- 1. Formulate simple but consistent models
- 2. Design strategies optimal w.r.t. models, then, back to 1.

The fixed points are EEEs

At Nash equilibrium in a stochastic game, each agent is playing an optimal strategy for a POMDP

EEE approach:

- 0. Pick arbitrary strategies
- 1. Formulate simple but consistent models
- 2. Design strategies optimal w.r.t. models, then, back to 1.

The fixed points are EEEs

Example

Asset management on the stock market

At Nash equilibrium in a stochastic game, each agent is playing an optimal strategy for a POMDP

EEE approach:

- 0. Pick arbitrary strategies
- 1. Formulate simple but consistent models
- 2. Design strategies optimal w.r.t. models, then, back to 1.

The fixed points are EEEs

Example

Asset management on the stock market

Agent

Nature

$$x^+ \sim f(x, a, s)$$

$$a \sim \sigma(h)$$
Nature

$$\max_{\sigma} \mathbb{E}_{\sigma} \left[\sum_{t=0}^{\infty} \delta^{t} u(x^{t}, a^{t}, s^{t}) \right]$$

$$x^{+} \sim f(x, a, s)$$

$$a \sim \sigma(h)$$

$$s \sim v(w)$$

$$\max_{\sigma} \mathbb{E}_{\sigma} \left[\sum_{t=0}^{\infty} \delta^{t} u(x^{t}, a^{t}, s^{t}) \right]$$

- μ consistent with σ
- σ optimal w.r.t. μ

Depth-*k* Consistency

Binary stochastic process *s* 010001001001011011011111010000111010101...

- 0 characteristic: $\mathbb{P}[s=0], \mathbb{P}[s=1]$ • 1 characteristic: $\mathbb{P}[ss^+=00], \mathbb{P}[ss^+=10],$ $\mathbb{P}[ss^+=01], \mathbb{P}[ss^+=11]$
- ...
- k characteristic: probability of strings of length k+1

Definition

Two processes s and \hat{s} are depth-k consistent if they have the same k characteristic

Complete Picture

$$\mu(z = (s_1, s_2, \dots, s_k))[s_{k+1}] = \mathbb{P}_{\sigma}[s^{t+1} = s_{k+1} \mid s^t = s_k, \dots, s^{t-k+1} = s_1]$$

Empirical-evidence Optimality

Definition

 (σ, μ) is an empirical-evidence optimum (EEO) for k iff

- σ is optimal w.r.t. μ
- μ is depth-k consistent with σ

Empirical-evidence Optimality

Definition

 (σ, μ) is an empirical-evidence optimum (EEO) for k iff

- σ is optimal w.r.t. μ
- μ is depth-k consistent with σ

Definition

 (σ,μ) is an ϵ empirical-evidence optimum (ϵ EEO) for k iff

- σ is ϵ optimal w.r.t. μ
- μ is depth-k consistent with σ

Existence Result

Theorem

For all k and ϵ , there exists an ϵ EEO for k

Existence Result

Theorem

For all k and ϵ , there exists an ϵ EEO for k

Proof sketch

- Technical assumption insures ergodicity of s
- $T: \sigma \xrightarrow{consistency} \mu \xrightarrow{\epsilon \ optimality} \sigma$ is continuous
- $\sigma: \mathcal{X} \times \mathcal{Z} \to \Delta(\mathcal{A})$ is parametrized over a simplex
- Apply Brouwer's fixed point theorem to T

Multiagent Setup

Empirical-evidence Equilibrium

Strategies
$$\sigma = (\sigma_1, \sigma_2, \dots, \sigma_N)$$

Models $\mu = (\mu_1, \mu_2, \dots, \mu_N)$
Depths $k = (k_1, k_2, \dots, k_N)$

Definition

 (σ, μ) is an empirical-evidence equilibrium (EEE) for k iff

- for all i, σ_i is optimal w.r.t. μ_i
- for all i, μ_i is depth- k_i consistent with σ

Theorem

For all k and ϵ , there exists an ϵ EEE for k

Learning Setup

```
State holdings x_i \in \{0..M\}

Action sell one, hold, or buy one a_i \in \{-1,0,1\}

Signal price p \in \{\text{Low}, \text{High}\}

Dynamic x_i^+ = x_i + a_i

Stage cost p \cdot a_i

Nature market trend b \in \{\text{Bull}, \text{Bear}\}

w = (b, p)
```

- 0. Pick arbitrary depth-0 models μ
- 1. Design strategies σ optimal w.r.t. models μ
- 2. Formulate consistent models $\mu_{\rm upd}$, then, back to 1.

$$\mu_i^{t+1} = (1 - \alpha)\mu_i^t + \alpha \left(\mu_{i, \text{upd}}^t - \mu_i^t\right)$$

Learning Results: Offline

Learning Results: Online

Concluding Remarks

Comparison with mean-field equilibria

- Identical agents with a specific signal
- Depth-0 model
- Large number of agents to recover Nash equilibrium

Concluding Remarks

Comparison with mean-field equilibria

- Identical agents with a specific signal
- Depth-0 model
- Large number of agents to recover Nash equilibrium

Future directions

- Endogenous model $(z^+ \sim m(z, x, a))$
- Quality of EEEs
- Learning EEEs