Binary Search Trees: Splay Trees: Operations

Daniel Kane

Department of Computer Science and Engineering University of California, San Diego

Data Structures Fundamentals Algorithms and Data Structures

Learning Objectives

■ Implement a splay tree.

Last Time

- Idea: bring each query node to the root.
- Introduced splay operation to bring node to root.

Sometimes Slow

Splay operation is sometimes slow:

Amortized Analysis

Need to amortize.

Theorem

The amortized cost of doing O(D) work and then splaying a node of depth D is $O(\log(n))$ where n is the total number of nodes.

Amortized Analysis

Need to amortize.

Theorem

The amortized cost of doing O(D) work and then splaying a node of depth D is $O(\log(n))$ where n is the total number of nodes.

We will prove this later, but using it we can implement all our operations.

Find

```
STFind(k, R)
```

```
N \leftarrow \text{Find}(k, R)
Splay(N)
```

return N

Runtime

Suppose node at depth *D*.

- O(D) time to find N.
- Splay *N*.
- Amortized cost $O(\log(n))$.

Runtime

Suppose node at depth D.

- O(D) time to find N.
- Splay *N*.
- Amortized cost $O(\log(n))$.

You pay for the work of finding *N* by splaying to rebalance the tree.

Important Point

Even if you fail to find k, you must still splay the closest node you found. Otherwise your operation did O(D) work with nothing to amortize against.

Insert

Insert, then splay

STInsert(k, R)

Insert(k, R)

STFind(k, R)

Delete

Bring N and successor to top. Deletes easily.

Delete

STDelete(N)

```
Splay(Next(N))
Splay(N)
I \leftarrow N.Left
```

$$R \leftarrow N.\text{Right}$$

 $R.\text{Left} \leftarrow L$

$$L.\mathtt{Parent} \leftarrow R$$

Root
$$\leftarrow R$$

$$R.\mathtt{Parent} \leftarrow \mathtt{null}$$

Split

Splay and Cut.

Split

STSplit(R, x)

```
N \leftarrow \text{Find}(x, R)
Splay(N)
if N. Key > x:
  return CutLeft(R)
else if N. Key < x:
  return CutRight(R)
else
  return N.Left, N.Right
```

CutLeft

CutLeft(N)

```
L \leftarrow N.\text{Left}
N.\text{Left} \leftarrow \text{null}
L.\text{Parent} \leftarrow \text{null}
\text{return } L, N.
```

Merge

Splay largest element of first tree, and stick second tree as child of the root.

Note after splay, root has no right child.

Merge

$STMerge(R_1, R_2)$

$$N \leftarrow ext{Find}(\infty, R_1)$$

 $ext{Splay}(N)$
 $N. ext{Right} \leftarrow R_2$

 R_2 .Parent $\leftarrow N$

Summary

Splay trees perform all operations simply in $O(\log(n))$ amortized time.