Advanced Algorithm Assignment 4 Center Selection Problem

12032189

Yuxi Liu

context

• Exercise 3-1

• Exercise 3-2

Optimal condition:

Create an example where the obtained value r(C) by the algorithm is close to $2r(C^*)$. Create another example where the obtain value r(C) by the algorithm is close $r(C^*)$.

$$r(C^*) = \sqrt{2}$$

Center Selection Algorithm:

$$r(C)=2\sqrt{2}$$

$$r(C)=2r(C^*)$$

Start point

Optimal condition:

$$r(C)=\sqrt{2}$$

$$r(C) = r(C^*)$$

We assume that we have N points and we need to select K centers.

First, we caculate the distance between any two points, and then we calculate the sum of the distances from the nearest $\left\lceil \frac{N}{K} \right\rceil - 1$ points of each point. Finally, we choose the one with the smallest

value as the first site.

$\lceil N \rceil$		1		2
\overline{K}	_	1	=	Z

Site	Sum_distances	The nearest sites	
1	$3\sqrt{2}$	2、3	
2	$2\sqrt{2}$	1、3	
3	$3\sqrt{2}$	2、1	
4	$3\sqrt{2}$	5、6	
5	$2\sqrt{2}$	4、6	
6	$3\sqrt{2}$	4、5	
7	$3\sqrt{2}$	8、9	
8	$2\sqrt{2}$	7、9	
9 $3\sqrt{2}$		7、8	

$$r(C)=2\sqrt{2}$$

Nearest Center Selection Algorithm:

Totdistance = $7\sqrt{2}$

Random Center Selection Algorithm:

Start point

Totdistance = $8\sqrt{2}$

Thank you