Система массового обсуживания

Shoe Shine Shop

Ботинки чистили (Выполняли работу)

Блох Александр

Миронов Сергей

Харчиков Игорь Гмыря Михаил

Наша система состоит из двух серверов, интенсивность обслуживания первого сервера – μ1, интенсивность обслуживания второго – μ2. Требования поступают в систему с интенсивностью λ.

Каждое требование обслуживается по следующей логике: сначала требование обслуживается на сервере 1, затем, если сервер 2 свободен, требование обслуживается на нем. В противном же случае, если сервер 2 занят, требование «ждет», пока другое требование обслужится на сервере 2, причем сервер 1 в это время считается занятым, и другие требования поступать на него не могут.

О системе

Вид системы

- Xi ∈ S ∀i, где S состоит из следующих состояний:
- (0, 0) состояние, когда оба сервера никого не обслуживают
- (1, 0) состояние, когда первый сервер обслуживает требование, второй свободен
- (0, 1) состояние, когда первый сервер свободен, второй обслуживает
- (1, 1) состояние, когда оба сервера обслуживают требования
- (b, 1) состояние, когда второй сервер обслуживает, а первый закончил обслуживание. Однако первый "заблокирован" для поступления нового требования

Множество состояний

Диаграмма цепи Маркова для процесса

•
$$(0,0)$$
: $\lambda * \pi 00 = \mu 2 * \pi 01$

•
$$(1,0)$$
: $\mu 1 * \pi 10 = \lambda * \pi 00 + \mu 2 * \pi 11$

•
$$(0,1)$$
: $(\mu 2 + \lambda) * \pi 01 = \mu 1 * \pi 10 + \mu 2 * \pi b1$

•
$$(1,1)$$
: $(\mu 1 + \mu 2) * \pi 11 = \lambda * \pi 01$

• (b,1) :
$$\mu$$
1 * π 11 = μ 2 * π b1

Предельные вероятности

$$\pi^* = \pi_{00} * \left(1, \frac{\lambda}{\mu_1} + \frac{\lambda^2}{(\mu_1 + \mu_2) * \mu_1}, \frac{\lambda}{\mu_2}, \frac{\lambda^2}{(\mu_1 + \mu_2) * \mu_2}, \frac{\mu_1 * \lambda^2}{\mu_2^2 * (\mu_1 + \mu_2)} \right)$$

$$\pi_{00} = \frac{(\mu_1 + \mu_2) * \mu_2^2 * \mu_1}{\mu_1 * \mu_2^2 (\mu_1 + \mu_2) + \lambda * (\mu_1 + \mu_2) * \mu_2^2 + \lambda^2 * \mu_2^2 + \lambda * (\mu_1 + \mu_2) * \mu_1 * \mu_2 + \lambda * \mu_1 * \mu_2 + \mu_1^2 * \lambda^2}$$
(2)

Количество человек:

$$L = P_{01} + P_{10} + 2(P_{11} + P_{b1})$$

Время ожидания:

$$W = \frac{P_{01} + P_{10} + 2(P_{11} + P_{b1})}{\lambda * (P_{00} + P_{01})}$$

Время Ожидания и Количество человек в системе

Эксперимент 1

Lambda: 1 mu1: 2.5 mu2: 2

График вероятностей

Эксперимент 2

average amount of clients lambda: 2 mu1: 1 mu2: 1.5

Эксперимент 3

Lambda: 2.5

mu1: 2

mu2: 1

График вероятностей

average amount of clients lambda: 2.5 mu1: 2 mu2: 1 1.4 1.2 average amount of people in system 0.2 ---- Выборочное среднее 0.0 Мат. ожидание 100 50 150 200 250 300 350 400 time in secs

0.5 experimental probabilities theoretical probabilities 0.4 0.3 0.2 0.1 0.0 01 11 b1 10 00

Эксперимент 4

Lambda: 1 mu1: 2 mu2: 3

График вероятностей

Спасибо за внимание!

