Robotics II - Planning

Lecture 2/3

M.Sc. Oscar Lima

November, 21th 2019

Task Planning Representations

Task Planning representations

- Solution to the planning problem is performed via search
- · How does the graph look like?

	Nodes	Edges
State Space	World states	State transition
Plan Space	Partial plans	Plan refinement operation
Task Networks	Primitive operator or Methods	Ordering constraints

• NOTE: HTN requires (additionally) a state space representation

State Space search

- Idea: Apply standard search algorithms (e.g. BFS, DFS, A*) to planning problem
- Nodes correspond to world states
- Arcs correspond to state transitions
- Path in the search space corresponds to plan

Planning representations | PDDL | Task Planning Formalisms | Plan execution | Trends in task planning | Task Planning Scientific Venue | References | References | PDDL | Task Planning Scientific Venue | References | PDDL | Task Planning Scientific Venue | References | PDDL | Task Planning Scientific Venue | References | PDDL | Task Planning Scientific Venue | PDDL | PDDL | Task Planning Scientific Venue | PDDL | PDDL

Forward-search
$$(O, s_0, g)$$

 $s \leftarrow s_0$
 $\pi \leftarrow$ the empty plan
loop
if s satisfies g then return π
 $applicable \leftarrow \{a \mid a \text{ is a ground instance of an operator in } O,$
and $\operatorname{precond}(a)$ is true in $s\}$
if $applicable = \emptyset$ then return failure
nondeterministically choose an action $a \in applicable$
 $s \leftarrow \gamma(s, a)$

¹Chapter 4, p 70 Dana Nau et al, Automated Planning: Theory & practice book

 $\pi \leftarrow \pi . a$

General idea:

- Start (backwards) from the goal state, $S \leftarrow g$
- Apply inverse of the planning operator (regression) to produce subgoals: $\gamma^- 1(g,a)$
- Termination condition: $s_0 \subset S$, (goal is s_0)

Relevance:

- An action a ∈ A is relevant iff:
 - $g \cap effects(a) \neq \{\}$
 - $g^+ \cap effects^-(a) = \{\}$
 - $g^- \cap effects^+(a) = \{\}$

Regression:

• $\gamma^- 1(g, a) = (g - effects(a) \cup precond(a))$

Backward Search pseudocode²


```
Backward-search(O, s_0, g)
    \pi \leftarrow the empty plan
    loop
        if s_0 satisfies g then return \pi
        relevant \leftarrow \{a \mid a \text{ is a ground instance of an operator in } O
                             that is relevant for g}
        if relevant = \emptyset then return failure
        nondeterministically choose an action a \in applicable
        \pi \leftarrow a.\pi
        g \leftarrow \gamma^{-1}(g, a)
```

²Chapter 4, p 73 Dana Nau et al, Automated Planning: Theory & practice book

Assume:

•
$$g = S_4$$
, $s_0 = s_0$

Provide:

- The set of applicable actions in s₀ (Fwd search) (Too easy!)
- The set of relevant actions in g (Backward search)
- Output of the regression function for g (choose one action randomly from previous step)

Plan Space

 Planning representations
 PDDL
 Task Planning Formalisms
 Plan execution
 Trends in task planning
 Task Planning Scientific Venues
 References

 00000000
 00000000
 000000
 000000
 000000
 0000000
 0000000
 0000000

- Nodes in graph represent partial plans
- Edges represent plan refinement operations
- $\pi \leftarrow \emptyset$, then we add 2 dummy actions (start, end)
- Start action has no preconditions and has s_0 as effects
- End action has goal state as precondition and no effects
- Goal: remove flaws from the plan while preventing threats

PDDL - Planning Domain Definition Language

Motivation and Introduction

- Do not write C++ code, just describe your domain!
- Standardize planners input \rightarrow benchmark
- Created in 1998 by Drew McDermott and colleagues
- Inspired by STRIPS and ADL (Action Description Language)
- ullet Used in International Planning Competition (IPC) 1998 / 2000

Syntax - Domain 3 (1/2)

³Source code: https://github.com/oscar-lima/pddl_problems/tree/master/cleaning_robot

Syntax - Domain (2/2)

Planning representations PDDL Task Planning Formalisms Plan execution O0000000 Task Planning Formalisms Plan execution Trends in task planning Task Planning Scientific Venues References O0000000 O0000 O0000 O0000 O0000

Syntax - Problem


```
(define (problem p01)
(:domain cleaning_robot)
(: objects
          ghost - robot
          locA locB - location
(:init
          (at ghost locA)
(not(clean locA))
          (not(clean locB))
(:goal
             and (at ghost locA)
(clean locB)
(clean locA)
```


Elements

- domain.pddl
- problem.pddl
- try it! :
- http://editor.planning.domains

Modeling

- · Exercise: Model the transfit scenario
- Storyline: The robot has to bring a solar panel autonomously from the packing box
- Define your types
- Draw your scenario
- Bring actions
- · make preconditions and effects
- e.g.

Tools

 $\bullet \ \, https://github.com/nergmada/planning-wiki$

Examples

- Multiple examples available under:
- $\bullet \ \, https://github.com/oscar-lima/pddl_problems$
- $\bullet \ \, \text{https://github.com/primaryobjects/strips}\\$

Evolution

- PDDL 1.2 : Classical planning
- $\bullet \ \mathsf{PDDL} \ 2.1 : \mathsf{Temporal} \ \mathsf{planning}, \ \mathsf{numeric} \ \mathsf{fluents}, \ \mathsf{plan} \ \mathsf{metrics}, \ \mathsf{durative/continuous} \ \mathsf{actions}$
- \bullet PDDL +: Allows modeling of mixed discrete-continuous domains (hybrid), allows processes, events, timed initial literals (TIL)

(some...) Task planning formalisms

 \bullet STRIPS is both a formalism and a planner

⁴Stanford Research Institute Problem Solver

PPDDL⁷

- Official language of IPC probabilistic track 2004 and 2006
- Extends PDDL 2.1 with probabilistic effects, rewards and goal rewards
- \bullet MDP^5 planning that allows uncertainty between state transitions
- Environment remained fully observable (no POMDP⁶)

⁷Probabilistic Planning Domain Definition Language

⁵Markov Decision Process

⁶Partially Observable Markov Decision Process

- A language to describe hierarchical planning problems [Höller et al. 2019]
- Recently proposed by researchers from Ulm University (2019)
- Will be used for the first time in IPC⁸ 2020 [Behnke et al. 2019]
- Will allow to benchmark HTN planners
- Previously the HTN planning community lacked a common input language
- Built as an extension to PDDL
- e.g.

⁹Hierarchical Domain Definition Language

⁸International Planning Competition

- Used in last IPC probabilistic track (2018)
- Unlike PPDDL, RDDL can model partial observability (POMDP)
- Significantly different to PPDDL (syntactically and semantically)
- A grounded RDDL corresponds to a DBN¹⁰
- RDDL domain example code available here¹¹

¹²Relational Dynamic influence Diagram Language

¹⁰Dynamic Bayesian Network

 $^{^{11} {\}tt https://github.com/KCL-Planning/rosplan_demos/blob/master/rosplan_demos/common/turtlebot_domain.rddl}$

Plan execution

Classic execution architecture

Scheduling

- Dispatch actions
- · Encode plan as an STN
- e.g. Esterel dispatch (ROSPlan)

Environment representation

- · Sense environment
- Transform into symbols
- Maintain KB (useful for re-planning)

ROSPlan

- · Execution framework for Robotics
- Based on Robot Operating System (ROS)
- Maintained by KCL University
- Open source:
- $\bullet \ https://github.com/kcl-planning/ROSPlan\\$

Trends in Task planning

Trends

- Temporal planning
- Plan with deadlines
- TIL (Timed Initial Literals)
- Hybrid planning

Explainable planning

- Critical for interaction with humans to enable cooperation
- Motivation: Trust, interaction, transparency [fox2017explainable]
- ICAPS Workshop in 2018¹³
- Relevant questions:
 - "How can the PS system explain particular steps, ordering decisions, or resource choices?" (XAIP)
 - "How can a PS system explain that no solution is possible, or what relaxations of the constraints would allow a solution?" (XAIP)
 - "why is taking so long to plan?"
- Potentially hypothetical reasoning could be used...

¹³http://icaps18.icaps-conference.org/xaip/

Others

- Risk-aware planning (bounded) [santana2016risk]
- Collaborate, HRI revise goals
- Long term autonomy
- · Combine motion and task planning

Task Planning Venues

- Largest Task Planning scientific conference
- Forum for researchers and practitioners in Planning and Scheduling
- Resulted from the merging of:
 - International Conference on Artificial Intelligence Planning and Scheduling (AIPS)
 - The European Conference on Planning (ECP)
- Robotics track available!
- Next ICAPS 2020: Nancy, France
- Website: http://www.icaps-conference.org/

¹⁴International Conference on Automated Planning and Scheduling

- Organized as part of ICAPS conference
- Empirically evaluates state-of-the-art planning systems on a number of benchmark problems
- All planners that participate need to be open source after competition
- · Last IPC was in 2018 and considered:
 - Deterministic track
 - Probabilistic track
 - Temporal track
- $\bullet \ \ Website: \ http://www.icaps-conference.org/index.php/Main/Competitions$

¹⁵International Planning Competition

PlanRob Workshop

- · Organized as part of ICAPS conference
- Intersection between Task Planning & Scheduling and Robotics
- Usually co-organized by Dr. Michael Cashmore (ROSPlan creator)
- Concerned among other topics with real-world planning applications for autonomous and intelligent robots
- Last PlanRob website: https://icaps19.icaps-conference.org/workshops/PlanRob

Some planning research groups

This slide contains clickable links:

- MIT CSAIL MERS (Prof. Brian Williams)
- KCL (Andrew & Amanda Coles, previously Derek Long and Maria Fox)
- DFKI Niedersachsen PBR Osnabrück (Prof. Dr. Joachim Hertzberg)
- Orebro AASS (Prof. Alessandro Saffiotti, Prof. Federico Pecora)
- Saarland FAI (Joerg Hoffmann)
- LAAS CNRS RIS (Malik Ghallab)
- Uni Freiburg (Prof. Dr. Bernhard Nebel)

Next lecture contents

- Motion Planning
 - Path planning (navigation 2D)
 - Motion planning (robot manipulators)
 - Grasp planning (robot end effector)

Thank You for Your Attention. Do You Have Questions?

References I

 $[\mbox{H\"ol}+19]$ Daniel H\"oller et al. "HDDL-A Language to Describe Hierarchical Planning Problems". In: (2019).

[Beh+19] G Behnke et al. "Hierarchical Planning in the IPC". In: Proc. of the Workshop on the IPC (WIPC). 2019.

