

UNIVERSIDADE FEDERAL DE MINAS GERAIS ESCOLA DE ENGENHARIA DEPARTAMENTO DE ENGENHARIA MECÂNICA

ENG033 TF3 – Projetos de Sistemas de Automóveis I

Relatório da Modelagem do Sistema de Arrefecimento

Rodrigo Teixeira Aguiar 2010017751 Bruno Silva de Lima 2010017093

Belo Horizonte, Junho de 2016

1- Objetivo

O objetivo deste trabalho é modelar o sistema de arrefecimento do veículo para que o motor não sobreaqueça. Dois sistemas foram testados em cinco diferentes situações para cada.

2- Metodologia

Os cinco testes simulados são os descritos a seguir:

- 1- Em primeira marcha com o veículo em standard C e mais 500kg de reboque a 22km/h e aclive de 9%
- 2- Em segunda marcha com o veículo em standard C a 43 km/h e aclive de 6%
- 3- Em segunda marcha com o veículo em standard C com mais 200kg de reboque a 43 km/h e aclive de 9%
- 4- Na penúltima marcha em standard C a 140 km/h
- 5- Em última marcha com o veículo em standard C em velocidade máxima

A massa do veículo em standard C foi considerada 1695 kg.

Um modelo de veículo foi implementado em simulink para se calcular a potência útil do veículo como também a rotação do motor. Ilustrado na Figura 1.

Figura 1 – Modelo em Simulink para cálculo de potência e rotação

Com a rotação do motor foi possível interpolar de uma tabela a vazão em L/min dos dois radiadores. A Tabela 1 mostra os dados obtidos em laboratório.

Tabela 1 – Dados obtidos em laboratório para a vazão da bomba em função da rotação do motor

Rotação do motor	Sistema 1	Sistema 2
1000	50	100
2000	80	140
3000	110	165
4000	125	180
5000	150	210
6000	170	225
7000	180	240

A Tabela 2 mostra mais dados do sistema 1 e a Tabela 3 mostra mais dados do sistema 2. As dimensões estão no SI, ou seja m e m².

Tabela 2 - Dados do sistema 1

	Parametros trabalho de arrefecimento - trocador de calor 1													
largur	a altura	espessura	num aletas	esp. Aleta	h aleta	num. Tubos	esp. Parede tubo	largura do tubo	esp do tubo	coeficiente global	Area passag ar			
0	,5 0,3	0,04	11400	0,0007	0,002	16	0,003	0,35	0,012	40	0,08876			

Tabela 3 – Dados do sistema 2

	Parametros trabalho de arrefecimento - trocador de calor 2													
largura	altura	espessura	num aletas	esp. Aleta	h aleta	num. Tubos	esp. Parede tubo	largura do tubo	esp do tubo	coeficiente global	Area passag ar			
0,8	0,7	0,012	10000	0,0007	0,008	36	0,003	0,01	0,01	40	0,252			

A Tabela 4 mostra dados comuns aos dois sistemas.

Cp do liquido Kg/KJ	Cond Liq W/mK	Prandt da agua	Dens agua kg/m³	Cp ar	kJ/kg.K	prandt ar	Dens ar kg/m ³	Tent agua (Celsius)
4,232	0,677	1,03	961,664		1,012	0,703	1,1644	125

Tabela 4 – Dados comuns aos dois sistemas

Com a potência do motor obtida na simulação é possível então inferir o valor da potência que deve ser dissipada pelo trocador de calor, que varia de 0,8 a 1,2 vezes a potência útil que chega nas rodas, dependendo da condição de trabalho do veículo. Através de um balanço de energia obtem-se a variação de temperatura da água e consequentemente a temperatura de saída da água do radiador.

Considerando-se a velocidade de entrada do ar no sistema como sendo a velocidade do carro pode-se calcular a vazão de ar, e novamente utilizando-se um balanço de energia obtem-se a velocidade de saída do ar do radiador.

Por fim, através de cálculos iterativos obtem-se o ΔTML e a área de troca de calor do radiador.

3- Resultados

Neste relatório serão mostrados os resultados somente da última iteração para cada um dos sistemas. A Tabela 5 mostra os resultados para o sistema 1 e a Tabela 6 para o sistema 2.

Tabela 5 – Memorial de cálculo sistema 1

situação	Potencia (cv)	Constante	Pot arref	ref (cv) Rotçao (rpm)		Vazao (I/mir) m³/s	Vmassica(kg/s)		Delta t liq (gra	us) T saida ag	ua (Celsius)	
1	17,83	1,2	21	,396	3386	115,	8 0		1,86	2	,72	122,28	
2	22,46	5 1	2	2,46	4356	133,	9 0		2,15	2	,47	122,53	
3	32	0,9		28,8	4356	133,	9 0	2,15		3	,17	121,83	
4	82,15	0,8	6	5,72	5732	164,	6 0		2,64	5	,89	119,11	
5	93,5	1		93,5	5990	169,8 0			2,72	8	,12	116,88	
	Var(m/s)	vazao ar ((m³/s) vma		ss ar kg/s	T ent ar	delta [.]	t ar	T saida ar	DTML	A (dtml)		
	6,11	0,41 0,80			0,48	40	4	4,40	84,40	59,01	0,0091		
	11,94				0,93	54	2:	3,84	77,84	57,18	0,0098		
	·		0,93	54	30	0,57	84,57	52,95	0,0136				
			3,03	54	2:	1,43	75,43	56,99	0,0288				
			65	2	9,85	94,85	40,04	0,0584					

Tabela 6 – Memorial de cálculo sistema 2

situação	Pote	encia (cv)	Constante	Pot arref (cv)	Rotçao (rpm)	Vazao	(I/min)	m³/s	Vmassica(I	(g/s)	Delta t l	iq (graus)	T sa	ida agua (Ce	lsius)
1	17,83 1,2 21,396		3386	3386 170,8			0	2,74	1,85		12		23,15		
2		22,46		22,46	4356		190,7		0	3,06		1,74		1	23,26
3		32 0,9		28,8	4356		190,7		0 3,06		2,23		122		.22,77
4	82,15 0,8		65,72	5732	221			3,54		4,38		120,		20,62	
5		93,5 1		93,5	5990		224,8		3,60		6,13		118,		18,87
		Var(m	/s) vaza	o ar (m³/s)	vmass ar k	g/s	Tent	ar	delta t ar	Tsa	ida ar	DTML		A (dtml)	
		6,11 0,47 11,94 0,92 11,94 0,92		0,55			40	38,37		78,37	63,	14	0,0085		
						54	20,61		74,61	59,	33	0,0095			
				0,92		1,08		54	26,43	80,4		3 55,80		0,0129	
	38,89		3,01	-	3,51		54	18,52		72,52	59,	27	0,0277		
		39	9,72	3,08	3	3,58		65	25,80		90,80	43,	29	0,0540	

4- Conclusão

Conclui-se que o trocador de calor 1 é melhor, já que a área já está adequada, mesmo com as situações extremas, e não está superdimensionado, já que com 3 iterações sobre a área a diferença não foi tao grande (menos de 25%), ao passo que para o trocador de calor 2, com 3 iterações a diferença foi de 70%.