PROJECT REPORT - CONTAINMENT ZONE ALERTING APPLICATION

TEAM ID - **PNT2022TMID35281**

DATE - 26/11/2022

TEAM MEMBERS

NO.	ROLL NO.	NAME
1.	2019103545	NANDA KUMAR R
2.	2019103536	KAUSHIK NARAYAN R
3.	2019103068	SUDHARSAN K
4.	2019103029	KIRAN GEORGE GAURDIAN

ABSTRACT

The World Health Organization has declared the outbreak of the novel coronavirus, Covid-19 as pandemic across the world. With its alarming surge of affected cases throughout the world, lockdown, and awareness (social distancing, use of masks etc.) among people are found to be the only means for restricting the community transmission.

In a densely populated country like India, it is very difficult to prevent the community transmission even during lockdown without social awareness and precautionary measures taken by the people.

This project mainly focuses on development of an Android application which can inform people of the Covid-19 containment zones and prevent trespassing into these zones. This Android application updates the locations of the areas in a Google map which are identified to be the containment zones. The application also notifies the users if they have entered a containment zone.

To implement this application, multiple APIs such as the Sendgrid API for email notifications, Google Maps API for location tracking, and also Google's geofencing client for creating geofences on the map for containment zones are used.

Table of Contents

ABSTRACT	2
1. INTRODUCTION	4
1.2. Project Purpose:	5
2. LITERATURE SURVEY	6
3. IDEATION AND BRAINSTORMING	9
3.1. Brainstorming process:	9
3.2. Empathy Map	9
3.3. Proposed Solution:	10
3.4. Problem Solution Fit:	12
3.5. Solution Architecture:	13
4. REQUIREMENTS ANALYSIS	14
4.1. Functional Requirements:	14
4.2. Non Functional Requirements:	15
5. PROJECT DESIGN	16
5.1. Data Flow Diagram(DFD):	16
5.2. Technology Architecture:	17
5.2.1. Table-1: Components and Technologies:	18
5.2.2. Table-2: Application Characteristics:	19
5.3. Customer Journey Map	20
6. PROJECT PLANNING	21
6.1. Milestones and Activity List	22
6.2. Sprint Delivery Plan	24
6.2.1. Product Backlog, Sprint Schedule, and Delivery Plan:	24
6.2.2. Project Tracker, Velocity and Burndown Chart:	26
7. CODING AND SOLUTIONING	28
7.1. Feature 1 (Android App)	28
7.2. Feature 2 (Web App)	30

8. TESTING	33
8.1 User Acceptance Testing	33
8.1.1. Purpose:	33
8.1.2. Defect Analysis:	33
8.2. Performance Testing	34
9. RESULTS	
9.1. Screenshots (Android App)	37
9.2. Screenshots (Web App)	37
10. ADVANTAGES AND DISADVANTAGES	39
10.1. Advantages	39
10.2. Disadvantages	40
11. CONCLUSION	4(
12. FUTURE SCOPE	41
13. APPENDIX	41

1. INTRODUCTION

1.1. Project Overview:

To stop the country from seeing an increase in Covid-19 instances, numerous research projects are now being conducted. In the past, our nation had to import medical supplies and masks, but it has recently been successful in producing these supplies. Our nation has taken steps to raise awareness of the disease as well as initiatives to combat it. By educating the public about the preventive steps that can shield them against infection, the news and media play an important role in fostering this knowledge. Increasing public awareness of the need to take all necessary precautions can significantly aid in limiting virus spread. To stop the virus from spreading

further, the nation has established containment zones throughout the cities where Covid-19 cases have been reported. To prevent contamination outside, these containment areas have been maintained closed off from the general public. The government has loosened several lockdown regulations after more than two months and allowed the reopening of government buildings, bus and other road transit facilities, and shopping centers.

People can travel around the city for several reasons, including work. However, the containment zones are still maintained in isolation, and new containment zones are being established in all areas where Covid-19 cases have been reported. These areas are extremely contagious because virus droplets spat out by an unscreened, asymptomatic patient can travel great distances. Despite the fact that police officers are stationed in these containment zones, it is still possible for anyone to wander inside without realizing it. These containment zones present an infectious danger to city residents in this scenario where people freely roam about the metropolis. Because of this, letting people know where the containment zones are can help them get around and avoid them, lowering the likelihood of community transmission.

In this project, we focus on developing a mobile based application to provide information regarding the Covid-19 containment zones. The application further tracks the user's location and provides notification alert if the user has entered a containment zone. The application also provides daily Covid-19 case statistics to the users to keep them updated. The application is developed using React Native and Flask, and connects to a DB2 database provided by IBM Cloud. Google's geofencing client is used to create geofences around the containment zones and notification manager is used to provide notifications. We have tested our application with different users in different locations and it works efficiently and is able to attain our target.

1.2. Project Purpose:

The purpose of this project is to monitor the locations of the users through the app by using

Google Maps API and notify them of surrounding containment zones, and also to warn them if they are approaching or are inside said containment zonesrom the admin side, the admin can create new geofences(containment zones) and/or update said containment zones on the web application.

2. LITERATURE SURVEY

COVID-19 is an infectious disease caused by the SARS-CoV-2 virus. The novel virus was first identified from an outbreak in Wuhan, China, in December 2019. Since its emergence, it has led to the deaths of more than 6 million people and more than 600 million reported cases worldwide. It is mainly transmitted as airborne droplets or from the transfer of the virus through contact with an infected person or object.

The World Health Organisation (WHO) has declared the outbreak of Covid-19 as a pandemic and recommends maintaining physical contact of at least 1 metre from others, avoiding crowded areas and close contact with infected people. Hence, it would be beneficial to develop an application that can alert people when they enter a quarantined zone or have been in close proximity with someone that tested positive for COVID-19 or any other infectious disease.

When it comes to existing solutions, Aarogya Setu is the most widely used application in India. It is a mobile application developed by the Government of India to connect essential health services with the people. Its key features include automatic contact tracing using Bluetooth, risk status of users, geo-location based COVID-19 statistics and much more. It makes use of Bluetooth and GPS technology to keep track of the movement of an infected person and alerts citizens about areas that person has been to and marks them as vulnerable spots. In the absence of GPS technology, it uses cellular triangulation to estimate the location of a person.

While Aarogya Setu can perform contact tracing and notify people that have been exposed to someone infected with COVID-19, it does actively maintain a list of quarantine or containment zones and warn users that enter these zones. Many applications have been developed in the last two years to tackle COVID-19. Most of these apps deal with broadcasting COVID statistics, precautionary measures against COVID and ensuring that people get the healthcare they need. But there aren't many applications that are capable of identifying containment zones and alerting people in real-time. The difficulty of acquiring the data that is both accurate and real-time is one of the main challenges in creating such an application. A solution to this might be to obtain or make use of containment zone data from the state governments.

Ranajoy Mallik et al. 2020 have developed an android application that performs exactly this. It uses Google APIs like Firebase and Geofencing to achieve this. It is capable of updating locations of containment zones in Google maps and notifies people that are trespassing into it. They have created a real-time database in Cloud Firestore which contains all the data related to the containment zones like coordinates, radius and zone names. The android application can retrieve information from the database.

As the app receives the location data, geofences are created and displayed using Google maps in the application. The user's location is also shown and updated constantly in the map. The main disadvantage of the method proposed by Ranajoy Mallik et al. 2020 is the origin of the

containment zone data. The data that they've used is dependent on the State government regularly updating containment zone data.

If the government decides to stop doing so or does not release it for public use, it risks the app displaying inaccurate information or even no information. One solution to this problem might be to make use of data from multiple sources. Allowing people to update the map with newly infected persons might be one stream of data.

MoveInSync, a software development company based out of Bangalore has also developed a COVID containment zone tracker. It is mainly a dashboard that can tell users if a particular locality lies in a containment zone. It can display containment zone information for 15 cities. The containment zone boundary data was maintained with the help of geoIQ, a geolocation data specialist. The data is crowdsourced and updated every hour.

For the tracker, it utilized Amazon Aurora PostgreSQL, Cloudwatch, Micrometer + Prometheus and Raygun Crash Monitoring to help scaling up.

However, one disadvantage is that geoIQ is proprietary, and comes with its own set of limitations. Akira Suyama et al. 2016 proposed a disaster information system using geofencing technology to detect movement of users and inform them of any risks that they may face. This method can be repurposed for the containment zone application since the underlying use-case is the same. This method makes use of a client-server architecture.

The server collects risk information from various sources and the client monitors the user to notify them of necessary information. Geofencing is a mechanism that makes a virtual fence in a specific area. The application sets a geofence at a dangerous area and gives risk information to the user. In this proposed method, geofencing was implemented using the Core Location framework of iOS which provides a detection of the entries and exits of the user within a

specific geographic region. However, the Core Location framework is available only for iOS devices.

3. IDEATION AND BRAINSTORMING

3.1. Brainstorming process:

3.2. Empathy Map

An empathy map is used to gain insight into a user's perspective.

3.3. Proposed Solution:

S.NO.	Paramater	Description
1.	Problem Statement (Problem	To Provide information about
	to be solved)	the containment zones in a
		particular region by alerting
		the people trespassing the
		region through continuous
		monitoring of their location.
2.	Idea / Solution description	The project aims at building
		an application that provides
		information about the
		containment zones of a
		particular region by
		continuously monitoring an
		individual's location. Location
		of the individual must be
		stored in the Database. Alerts
		are sent using the notification
		service.
3.	Novelty / Uniqueness	The uniqueness of
		containment zone alerting app
		is it shows the particular area
		of the district before the 100

		meter, and the user's location
		history is stored in database
		and this app provides the
		precautions measurements,
		list of immunity boosters,
		location of the vaccination
		providing places it also gives
		the list of the affected and
		admitted patients and
		discharged patients
		, percentage of affecting by
		covid19
4.	Social Impact / Customer	Social Stigma is
	Satisfaction	discrimination against a
		particular group of people, a
		place, or a nation in the form
		of a negative attitude. Public
		health emergencies
		are stressful situations for
		people and communities. Fear
		and anxiety with a lack of
		knowledge about the disease
		can leads to social stigma.
		The containment zone
		alerting app users are 100%
		satisfied because of its
		immediate notification of a
		particular area, it provides the

		precautions and awareness
		about COVID-19.
5.	Business Model (Revenue	When User enters some other
	Model)	region which is not the user's
		home region, user has to
		subscribe in order to view the
		containment zones in the new
		region, in addition,
		subscribing to personal health
		tracker allows the user to
		manage his health efficiently.
6.	Scalability of the Solution	In this modern world even
		though the covid pandemic
		threat is about to end there are
		high chance of pandemic or
		endemic. So, this application
		is very useful in that situation
		and we can use this
		application in seasonal
		diseases

3.4. Problem Solution Fit:

3.5. Solution Architecture:

Solution architecture is the process of developing solutions based on predefined processes, guidelines and best practices with the objective that the developed solution fits within the enterprise architecture in terms of information architecture, system portfolios, integration requirements and many more.

It can then be viewed as a combination of roles, processes and documentation that are intended to address specific business needs, requirements or problems through the design and development of applications and information systems

4. REQUIREMENTS ANALYSIS

4.1. Functional Requirements:

Requirement ID	Requirement Statement	Sub Requirement
FR001	User Registration and Login	Users can register using
		their email or phone
		number
FR002	App permissions	Enabling location access
FR003	User Location Tracking	Track user location using

		Google map API and
		update their location
FR004	Admin App for Updating	Admin can update the
	Containment Zones	containment zone
		information
FR005	Containment Zones Display	Containment zones are
		marked using zone colours
FR006	Alert Notification	An alert notification will
		be sent to the user if they
		enter a containment zone

4.2. Non Functional Requirements:

Requirement ID	Requirement Statement	Sub Requirement
NFR001	Usability	User interface must be
		intuitive and effectively
		convey information about
		containment zones
NFR002	Reliability	Users can trust the
		containment zone
		information and expect it
		to be accurate
NFR003	Performance	The app is highly
		responsive and functions
		as intended
NFR004	Availability	Anyone from anywhere can

		access it on the Internet
NFR005	Scalability	The application can
		handle rapid growth of the
		user base and track
		increasing number of
		containment zones without
		affecting app performance

5. PROJECT DESIGN

5.1. Data Flow Diagram(DFD):

A data flow diagram (DFD) is a graphical or visual representation using a standardized set of symbols and notations to describe a business's operations through data movement.

5.2. Technology Architecture:

Technology architecture associates application components from application architecture with technology components representing software and hardware components.

5.2.1. Table-1: Components and Technologies:

S.NO.	Component	Description	Technology
1.	User Interface	How user interacts	HTML, CSS,
		with application e.g.	JavaScript etc.
		Web	
		UI, Mobile App, etc.	
2.	Application Logic-1	Logic for a process in	Java / Python
		the application	
3.	Application Logic-2	Logic for a process in	IBM Watson STT

		the application	service
4.	Application Logic-3	Logic for a process in	IBM Watson
		the application	Assistant
5.	Database	Data Type,	MySQL, NoSQL, etc.
		Configurations etc.	
6.	Cloud Database	Database Service on	IBM DB2, IBM etc.
		Cloud	
7.	File Storage	File storage	IBM Block Storage or
		requirements	Other Storage
			Service or Local
			Filesystem
8.	External API-1	Purpose of External	IBM Weather API,
		API used in the	etc.
		application	
9.	External API-2	Purpose of External	Aadhar API, etc.
		API used in the	
		application	
10.	Infrastructure(Server/	Application	Local, Cloud
	Cloud)	Deployment on Local	Foundry, Kubernetes,
		System / Cloud Local	etc.
		Server Configuration:	
		Cloud Server	
		Configuration:	

<u>5.2.2. Table-2: Application Characteristics:</u>

S.NO.	Characteristics	Description	Technology
1.	Open-Source	List the open-source	Fire Wall
	Frameworks	frameworks used	
2.	Security	List all the security /	Encryptions, IAM
	Implementations	access controls	Controls, etc.
		implemented,	
		use of firewalls etc.	
3.	Scalable Architecture	Justify the scalability	IBM DB2
		of architecture	
4.	Availablity	Justify the scalability	Google Map Services
		of application	
5.	Performance	Design consideration	IBM Cloud
		for the performance	
		of the	
		application (number	
		of requests per sec,	
		use of Cache, use of	
		CDN's) etc.	

5.3. Customer Journey Map

Customer Journey Map creation is the process of creating a customer journey map, a visual

story of the customers' interactions with your brand. This exercise helps businesses step into a customer's shoes and see one's business from the customer's perspective. It allows one to gain insights into common customer pain points and how to improve those.

Project Design Phase - II Containment Zone Alerting Application Team ID - PNT2022TMID35281

6. PROJECT PLANNING

6.1. Milestones and Activity List

A milestone/activity list is a project management document that identifies all project milestones. A milestone is a significant event or a point in a project. It represents nothing more than a moment in time; hence, when scheduling, milestones should be assigned zero duration.

TITLE	DESCRIPTION	DATE
Literature Survey and	Comprehensive summary	10 October 2022
Information Gathering	of the previous works and	
	research on the topic is	
	done by referring to	
	different research and	
	technical publications.	
Empathy Map	Prepare an Empathy Map	10 October 2022
Preparation	which is used to gain a	
	deeper insight into	
	customers or users by	
	trying to understand how	
	customers think and feel,	
	followed by measurement	
	of user pains and gains.	
Brainstorm and Ideation	Hold a group brainstorming	12 October 2022
	where each member puts	
	forth their ideas, by	
	leveraging the collective	
	thinking of the group,	
	followed by three core	
	ideas to be implemented.	

Proposed Solution	Propose a solution that	14 October 2022
	evaluates multiple	
	parameters of the project	
	such as novelty, business	
	model, scalability, etc.	
Problem Solution Fit	Prepare Problem-Solution	16 October 2022
	Fit document.	
Solution Architecture	Prepare Solution	16 October 2022
	Architecture document.	
Customer Journey	Prepare Customer Journey	5 November 2022
	to understand use cases	
	with the application.	
Functional Requirement	Prepare Functional	6 November 2022
	Requirements Document	
	which may contain	
	functional and	
	non-functional	
	requirements.	
Data Flow Diagrams	Prepare the Data Flow	8 November 2022
	Diagram document which	
	entails the flow of data	
	between different modules	
	of the application.	
Technology Architecture	Prepare Technology	8 November 2022
	Architecture Document.	
Prepare Milestone and	Prepare Milestone and	15 November 2022
Activity List	Activity List of the project.	
Project Development and	Complete development of	25 November 2022

Sprint Delivery	the project and submit	
	according to Sprint	
	Deliveries.	

6.2. Sprint Delivery Plan

<u>6.2.1. Product Backlog, Sprint Schedule, and Delivery Plan:</u>

Sprint	Functional	User	User	Story	Priority	Team
	Requirement	Story	Story/Task	Points		Members
		Number				
Sprint-1	Registration	USN-1	User can register	4	High	Kaushik,
	(Android and		in the			Sudharshan
	Web)		application by			
			entering email			
			and password			
	IBM DB2	USN-2	User details	4	High	Kaushik,
			have to be stored			Sudharshan
			in the database			
	SendGrid	USN-3	User will receive	4	High	Kiran,
			confirmation			NandaKumar
			email after			
			registration			
	Login (Android	USN-4	User can login			
	and Web)		to the			
			application by	4	High	Kaushik,
			entering email			Sudharshan
			and password			

	Dashboard	USN-5	User can view	4	High	Kiran,
			the dashboard			NandaKumar
			which contains			
			all the			
			information			
Sprint-2	Access	USN-6	Permission	3	High	Kiran,
			needs to be			NandaKumar
			granted in order			
			to access the			
			user location			
	IBM DB2	USN-7	Admin has to	3	High	Kiran,
			collect			NandaKumar
			information			
			regarding			
			COVID-19			
			cases from			
			verified sources			
			and store in			
			Database			
	IBM DB2	USN-8	Admin needs to	4	High	Kaushik,
			update the			Sudharshan
			Containment			
			Zones			
		USN-9	Admin needs to			
			differentiate the			
	IBM DB2		containment	4	Medium	Kiran,
			zones on the			NandaKumar
			basis of degree			

			of infections			
	SendGrid	USN-10	User has to be	3	High	Kaushik,
			alerted through a			Sudharshan
			notification			
			when they enter			
			a containment			
			zone			
	IBM DB2	USN-11	User travel	3	Medium	Kiran,
			history details			NandaKumar
			has to be stored			
			in the Database			
Sprint-4	Integration	USN-12	Frontend and	5	High	Kaushik,
			Backend			Sudharshan
			Integration			
	Docker	USN-13	Creation of	5	High	Kiran,
			Docker Image			NandaKumar
	Cloud Registry	USN-14	Uploading	5	High	Kaushik,
			Docker image to			Sudharshan
			IBM Cloud			
			Registry			
	Kubernetes	USN-15	Creating docker	5	High	Kiran,
			container and			NandaKumar
			hosting			

6.2.2. Project Tracker, Velocity and Burndown Chart:

Sprint	Total	Duration	Sprint Start	Sprint End	Story	Sprint
	Story		Date	Date	Points	Release Date
	Points			(Planned)	Completed	(Actual)

					(as on	
					planned	
					end date)	
Sprint-1	20	3 Days	15 Oct 2022	17 Oct 2022	20	15 Oct 2022
Sprint-2	20	3 Days	17 Oct 2022	19 Nov 2022	20	17 Oct 2022
Sprint-3	20	3 Days	20 Nov 2022	22 Nov 2022	20	19 Nov 2022
Sprint-4	20	3 Days	23 Nov 2022	25 Nov 2022	20	25 Nov 2022

Velocity: Imagine we have a 10-day sprint duration, and the velocity of the team is 20 (points per sprint). Let's calculate the team's average velocity (AV) per iteration unit (story points per day)

AV = Sprint Duration / Velocity = 20 / 3 = 6.66

7. CODING AND SOLUTIONING

This section includes source code snippets and explanation of the basic functionalities of the code on both the admin(web app) and user(mobile app) side.

7.1. Feature 1 (Android App)

Functionality for obtaining containment zone location information from the database:

Functionality for adding Geofences:

Functionality for adding markers and circles on containment zones:

```
private void addMarker(LatLng latLng) {
    MarkerOptions markerOptions = new MarkerOptions().position(latLng);
    mMap.addMarker(markerOptions);
}

private void addCircle(LatLng latLng, float radius) {
    CircleOptions circleOptions = new CircleOptions();
    circleOptions.center(latLng);
    circleOptions.radius(radius);
    circleOptions.strokeColor(Color.argb(255, 255, 0,0));
    circleOptions.fillColor(Color.argb(64, 255, 0,0));
    circleOptions.strokeWidth(4);
    mMap.addCircle(circleOptions);
}
```

Login and Registration layouts:

Functionality for Toast notifications

```
switch (transitionType) {
   case Geofence.GEOFENCE_TRANSITION_ENTER:
        Toast.makeText(context, text: "GEOFENCE_TRANSITION_ENTER", Toast.LENGTH_SHORT).show();
        notificationHelper.sendHighPriorityNotification( title: "GEOFENCE_TRANSITION_ENTER", body: "", MapsActivity.class);
        break;
   case Geofence.GEOFENCE_TRANSITION_DWELL:
        Toast.makeText(context, text: "GEOFENCE_TRANSITION_DWELL", Toast.LENGTH_SHORT).show();
        notificationHelper.sendHighPriorityNotification( title: "GEOFENCE_TRANSITION_DWELL", body: "", MapsActivity.class);
        break;
   case Geofence.GEOFENCE_TRANSITION_EXIT:
        Toast.makeText(context, text: "GEOFENCE_TRANSITION_EXIT", Toast.LENGTH_SHORT).show();
        notificationHelper.sendHighPriorityNotification( title: "GEOFENCE_TRANSITION_EXIT", body: "", MapsActivity.class);
        break;
```

API for getting containment zone information:

```
public interface ZoneAPI {
    //http://127.0.0.1:5000/

    @GET("getZonesApp")
    Call<ArrayList<ZoneModel>> getAllZones();
}
```

7.2. Feature 2 (Web App)

Flask application database connection:

```
hostname = "54a2f15b-5c0f-46df-8954-7e38e612c2bd.c1ogj3sd0tgtu0lqde00.databases.appdomain.cloud"
uid = "zsv28701"
pwd = "tf@qA5FpWEJHSoLF"
database = "bludb"
driver = "{IBM DB2 ODBC DRIVER}"
port = "32733"
protocol = "TCPIP"
security = "SSL"
certificate = "DigiCertGlobalRootCA.crt"
    url = (
        "HOSTNAME = \{\emptyset\};"
        "PWD = \{2\};"
        "DATABASE = \{3\};"
        "PORT = \{4\};"
        "PROTOCOL = {5};"
        "SECURITY = {6};"
        "SSLServerCertificate = {7};"
    ).format(
        hostname, uid, pwd, database, port, protocol, security, certificate, driver
    conn = ibm db.connect(url, "", "")
    print(" * Connected to IBM DB")
except:
    print(" * Unable to connect to IBM DB")
```

Route for sending containment zone information to the app:

```
@app.route("/getZonesApp")
def returnZonesApp():
    sql = "SELECT * FROM ZONES"
    stmt = ibm_db.prepare(conn, sql)
    ibm_db.execute(stmt)
    zoneList = []
    while ibm_db.fetch_row(stmt) != False:
        zones = {}
        zones["ZID"] = ibm_db.result(stmt, 0)
        zones["Latitude"] = ibm_db.result(stmt, 1)
        zones["Longitude"] = ibm_db.result(stmt, 2)
        zones["Name"] = ibm_db.result(stmt, 3)
        zoneList.append(zones)

print(zoneList)
    return jsonify(zoneList)
```

Dockerfile for web application:

```
FROM python:3.6
# switch working directory
WORKDIR /app

COPY . /app

RUN pip install -r requirements.txt
RUN pip install flask
RUN pip install ibm_db
RUN pip install sendgrid

EXPOSE 5000

ENTRYPOINT [ "python" ]
CMD ["app.py" ]
```

covidtracker.yaml for kubernetes deployment:

```
apiVersion: v1
kind: Service
metadata:
    name: covidtracker2
spec:
    selector:
        app: covidtracker2
ports:
        - port: 5000
        type: NodePort
---
apiVersion: apps/v1
kind: Deployment
metadata:
        name: covidtracker2
labels:
        app: covidtracker2
spec:
    selector:
        matchLabels:
        app: covidtracker2
replicas: 1
template:
        metadata:
        labels:
        app: covidtracker2
spec:
    containers:
        - name: covidtracker2
image: de.icr.io/covidtracker_ns2/new_repo2:latest
ports:
        - containerPort: 5000
env:
        - name: DISABLE_WEB_APP
        value: "false"
```

SendGrid notification:

8. TESTING

8.1 User Acceptance Testing

8.1.1. Purpose:

The purpose of this document is to briefly explain the test coverage and open issues of the Containment Zone Alerting Application project at the time of the release to User Acceptance Testing (UAT).

8.1.2. Defect Analysis:

This report shows the number of resolved or closed bugs at each severity level, and how they were resolved.

Resolution	Severity 1	Severity 2	Severity 3	Severity 4	Sub-Total
By Design	5	2	1	2	10
Duplicate	0	0	2	2	4
External	2	3	0	0	5

Fixed	7	5	3	4	19
Not	0	0	0	0	0
Reproduced					
Skipped	0	0	0	1	1
Won't Fix	0	0	2	1	3
Total	14	10	8	10	42

8.2. Performance Testing

NFT – Risk Assessment

S.	Project	Scope/	Function	Hardware	Software	Impact	Load/	Risk	Justificati
No.	Name	feature	alChanges	Changes	Changes		Volume changes	Score	on
1	Containment	New	Low	No Changes	Moderate	NA	>10 to	GREEN	
	Zone						30%		
	Alerting								
	Application								

NFT – Detailed Test Plan

S. No	Project Overvi ew	NFTTest approach	Assumptions/ Dependencie s/Risks	Approvals/ SignOff	
1	LoginPage	 Open the Containment ZoneAlerting Application Login with userCredentials 	No Risks	N/A	
2	Signup Page	 Open the Containment Zone Alerting Application Enter the Details and Create a newUser 	No Risks	N/A	
3	Dashboard	 Log in to Containment Zone Alerting Application User location is obtained automatically 	No Risks	N/A	
4	User Data	 Log in to Containment ZoneAlerting Application Location data and visited peoplewill be shown 	No Risks	N/A	

5	ZoneAddition	 Log in to Admin portal Admin declares the containmentzone. 	NoRisks	N/A
6	Email Notification	Mails areSent to the Registered user if the user enters the containment zone	NoRisks	N/A

End of Test Report

S.N	Project	NFT test	N	Test	GO/N	Recommendatio	Identified	Approval
0.	overview	approach	FR	Outco	O-GO	ns	defects	s/ Sign off
			_	me	decision		(Detecte	
			Met				d/	
							Closed/	
							Open)	
1	Containme	1) Log in to	YES	Test	GO	N/A	None	N/A
	nt zone	Containme		passed				
	alerting	nt Zone						
		Alerting						
		Application						
		2) Test for						
		all						
		Testcases						
		3) Log out						
		of						
		Containme						
		nt Zone						
		Alerting						
		Application						

9. RESULTS

9.1. Screenshots (Android App)

Login and containment zone page

9.2. Screenshots (Web App)

Login page:

Home page:

Containment Zone Alert System

Home Users Containment Zones Logout

Welcome,

User information page:

Containment zone pages:

Add containment zone page:

10. ADVANTAGES AND DISADVANTAGES

10.1. Advantages

- App is deployable on a majority of android devices as well as operating systems, which means the general user base will be large.
- The application receives updates on the containment zones which ensures that the user gets the latest information on the location of containment zones, eliminating problems related to reliability of information.
- The web application provides a simple, accessible user interface which results in easier web page navigation for admins.

- Both the android app and web app use the same backend, thus eliminating the need for multi-level communication from the android app to the database and also reducing latency for information retrieval.
- User privacy is maintained as very little user information is stored.
- The android application, while displaying the user's current real-time location, also sends notifications/alerts to the user in case they are approaching a containment zone, which improves convenience for users.

10.2. Disadvantages

- The mobile app is limited to android users only.
- Containment zones might become outdated and may require manual change from the admin's end. Live updates from a health data service application would provide better info.
- Too many active containment zones might slow down the application.
- Constant location monitoring may be a privacy concern.

11. CONCLUSION

The application provides an efficient way of showing the identified Covid-19 containment zones to the users in a Google map.

With the alarming increase of Covid-19 affected cases throughout the world, this developed application can be employed as a tool for creating further social awareness among the people.

The application further tracks the user's location and checks whether it is present in the list of identified containment zones, and sends separate notification alerts to the user on entering.

12. FUTURE SCOPE

- The application can be further used for many purposes like maritime and forest safety to prevent users from entering restricted areas.
- The application would also benefit if there were a number of distributed servers that would each store regional information about containment zones, thus distributing workload across various servers which would result in a smoother application experience.
- It would also be better to expand the user base by deploying the application on IoS devices as well.
- The application can also be extended to a variety of other use cases, like maritime and forest safety in order to prevent users from entering restricted forest areas.

13. APPENDIX

Source Code:

The source code can be found in the following GitHub Repository, under Final Deliverables: https://github.com/IBM-EPBL/IBM-Project-13586-1659522696

Demo Video:

The project demo can be found in the same repository, under Final Deliverables:

https://github.com/IBM-EPBL/IBM-Project-13586-

1659522696/blob/main/Final%20Deliverables/IBM-Project-Demo-PNT2022TMID35281.mp4