

T6 dây cung - pp dây cung ppt

Phương pháp tính (Trường Đại học Bách khoa Hà Nội)

PHƯƠNG PHÁP DÂY CUNG GIẢI PT f(x)=0

Ý tưởng phương pháp

- Thay thế đường cong $y=f\left(x\right)$ trên [a,b] bằng dây cung nối hai đầu mút.
- Tìm giao điểm của dây cung với trục hoành thay cho giao điểm đường cong với trục hoành.

Ý tưởng phương pháp

Xây dựng công thức

Trường hợp 1: f'.f'' < 0

$$f^{i} > 0; f^{ij} < 0$$

$$x_{n+1} = x_n - \frac{f(x_n)(x_n - a)}{f(x_n) - f(a)}, n = 0, 1, 2, ...$$

$$x_0 = b$$

Xây dựng công thức

Trường hợp 2: f'.f'' > 0

$$f' < 0$$
; $f'' < 0$

$$x_{n+1} = x_n - \frac{f(x_n)(x_n - b)}{f(x_n) - f(b)}, n = 0, 1, 2, \dots$$

$$x_0 = a$$

Phương pháp dây cung

- Chọn xấp xỉ đầu $x_0 = a$ hoặc $x_0 = b$ sao cho $f(x_0).f'' < 0$
- Tính theo công thức

$$x_{n+1} = x_n - \frac{f(x_n)(x_n - d)}{f(x_n) - f(d)}, n = 0,1,2,...$$

trong đó d=a nếu $x_0=b$ và d=b nếu $x_0=a$

Điều kiện hội tụ

- (a,b) là khoảng phân ly nghiệm của phương trình f(x)=0
- f và f' liên tục trên [a,b]
- f' và f" không đổi dấu trên [a,b]
- Chọn đúng điểm x_0, d

$$x_0: f(x_0)f''(x_0) < 0$$

Đánh giá sai số

$$|x_{n} - x^{*}| \le \frac{|f(x_{n})|}{m_{1}}$$
 (1)

$$|x_{n} - x^{*}| \le \frac{M_{1} - m_{1}}{m_{1}} |x_{n} - x_{n-1}|$$
 (2)

$$m_1 = \min_{x \in [a,b]} |f'(x)|; M_1 = \max_{x \in [a,b]} |f'(x)|$$

Nhận xét

- Để tính x_{n+1} theo x_n chỉ cần tính một giá trị của hàm f là $f(x_n)$
- Tốc độ hội tụ chậm (bậc 1: $O(|x_{n+1}-x_n|)$)

Ví dụ

Cho phương trình

$$f(x) = \ln(x) - 1 = 0$$

- 1.Kiểm tra điều kiện hội tụ của phương pháp dây cung trên khoảng (2,3).
- 2. Tính đến x_5 và đánh giá sai số.

- a. Kiểm tra (2,3) là khoảng cách li nghiệm
- b. Kiểm tra tính liên tục của f và f' trên [2,3]
- c. Kiểm tra tính xác định dấu không đổi trên [2,3] của f' và f'
- d. Chọn x_0 , d

•
$$f(2) = -0.306852 < 0$$
 $f(3) = 0.0986122 > 0$.
 $f'(x) = \frac{1}{x} > 0$ $\forall x \in [2,3]$ nên f đơn điệu trên $[2,3]$.

Vậy (2,3) là một khoảng cách li nghiệm của phương trình

- *f*, *f*' liên tục trên [2,3]
- $f''(x) = \frac{1}{x^2} < 0 \ \forall x \in [2,3]$

Do đó, f luôn dương, f 'luôn âm trên [2,3]

• Do f'' < 0, f(2) < 0 nên ta chọn d = 2, $x_0 = 3$.

Với d và x_0 đã lựa chọn, dãy lặp của phương pháp dây cung hội tụ tới nghiệm đúng của phương trình. (Các điều kiện hội tụ của phương pháp dây cung được thỏa mãn)

$$x_{k+1} = x_k - \frac{f(x_k)(x_k - d)}{f(x_k) - f(d)}, f(x) = \ln x - 1$$

$$x_0 = 3;$$
 $d = 2;$ $f(d) = -0.306852$

$$x_1 = 2.7567917$$

$$x_3 = 2.7190226$$

$$x_5 = 2.7182961$$

$$x_2 = 2.7236177$$

$$x_4 = 2.7183847$$

$$\left| x_5 - x * \right| \le \frac{M_1 - m_1}{m_1} \left| x_5 - x_4 \right|$$

$$= \frac{1/2 - 1/3}{1/3} 0.886 \times 10^{-4} = 0.443 \times 10^{-4}$$
This document is available free of charge on studocu

Bài tập

- Cho phương trình $x^4 + x^2 4x 12 = 0$
- 1.Kiểm tra điều kiện hội tụ của phương pháp dây cung đối với khoảng (1.85, 2.1)
- 2. Tính đến nghiệm gần đúng x_2 bằng phương pháp dây cung.
- 3. Đánh giá sai số của x_2 theo 2 CT sai số
- 4.Tìm nghiệm gần đúng với sai số tuyệt đối không quá 0,5.10⁻³