```
In [ ]: import pandas as pd
import matplotlib.pyplot as plt
```

Import the dataset

```
In [20]: # Load your dataset
    file_path = "data_orginal.xlsx"
    df = pd.read_excel(file_path, sheet_name='Sheet1')
    df.head()
```

Out[20]:

	Brand	Manufacturer	Therapeutic Area	Region	Sales Units	Unit Price
0	Abarcafil	Cascade Therapeutics	ARV	East	30245	260
1	Abarcafil	Cascade Therapeutics	ARV	Mid- West	23333	260
2	Abarcafil	Cascade Therapeutics	ARV	South	18432	260
3	Abarcafil	Cascade Therapeutics	ARV	West	34134	260
4	Alistuzumab	Matterhorn Pharma	Oncology	East	6831	950

```
In []: # Step 1: Calculate Revenue
    df['Total Sales'] = df['Sales Units'] * df['Unit Price']

In []: # Step 2: Group by Brand and summarize
    brand_summary = df.groupby('Brand').agg({
        'Sales Units': 'sum',
        'Total Sales': 'sum'
    })
    brand_summary
```

_			-	-	
\cap	ı	14		- 1	=

Sales Units Total Sales

Brand		
Abarcafil	106144	27597440
Alistuzumab	20976	19927200
Astoridone	10600	1855000
Bertigrevir	89709	8522355
Empigrevir	117037	46814800
Fortinib	16684	21272100
Janogrevir	111517	39030950
Krastuzumab	15455	10818500
Orestidone	12702	1270200
Pluvitinib	17448	13958400
Sparitonin	9698	824330
Treatinib	11584	19403200
Ventrofil	132936	19940400
Vizidone	10967	1645050

```
In [63]: # Rename columns for clarity
brand_summary = brand_summary.rename(columns={'Sales Units': 'Units Sold'})
brand_summary = brand_summary.rename(columns={'Total Sales': 'Revenue'})

# Add Unit Price column to brand_summary
# brand_summary['Unit Price'] = brand_summary['Revenue'] / brand_summary['Unit Drand_summary['Unit Drand_summary['Unit Drand_summary]'Unit Drand_summary]
```

Out[63]:

Brand			
Abarcafil	106144	27597440	260.0
Alistuzumab	20976	19927200	950.0
Astoridone	10600	1855000	175.0
Bertigrevir	89709	8522355	95.0
Empigrevir	117037	46814800	400.0
Fortinib	16684	21272100	1275.0
Janogrevir	111517	39030950	350.0
Krastuzumab	15455	10818500	700.0
Orestidone	12702	1270200	100.0
Pluvitinib	17448	13958400	800.0
Sparitonin	9698	824330	85.0
Treatinib	11584	19403200	1675.0
Ventrofil	132936	19940400	150.0
Vizidone	10967	1645050	150.0

Units Sold Revenue Unit Price

```
In [66]: # Step 3: Calculate Market Share
brand_summary['Market Share (%)'] = (brand_summary['Revenue'] / brand_summary
brand_summary = brand_summary.round({'Market Share (%)': 2})

brand_summary = brand_summary[['Market Share (%)', 'Units Sold', 'Revenue',
brand_summary = brand_summary.sort_values(by='Market Share (%)', ascending=F
brand_summary
```

Out [66]: Market Share (%)	Units Sold	Revenue	Unit Price
----------------------------	-------------------	---------	-------------------

Brand				
Empigrevir	20.10	117037	46814800	400.0
Janogrevir	16.76	111517	39030950	350.0
Abarcafil	11.85	106144	27597440	260.0
Fortinib	9.13	16684	21272100	1275.0
Alistuzumab	8.56	20976	19927200	950.0
Ventrofil	8.56	132936	19940400	150.0
Treatinib	8.33	11584	19403200	1675.0
Pluvitinib	5.99	17448	13958400	800.0
Krastuzumab	4.65	15455	10818500	700.0
Bertigrevir	3.66	89709	8522355	95.0
Astoridone	0.80	10600	1855000	175.0
Vizidone	0.71	10967	1645050	150.0
Orestidone	0.55	12702	1270200	100.0
Sparitonin	0.35	9698	824330	85.0

```
In [45]: units_sold_grand_total = brand_summary['Units Sold'].sum()
units_sold_grand_total
```

Out[45]: 683457

```
In [46]: revenue_grand_total = brand_summary['Revenue'].sum()
revenue_grand_total
```

Out[46]: 232879925

```
In [53]: # 8. Create Pie Chart
   plt.figure(figsize=(10, 8))
   plt.pie(brand_summary["Market Share (%)"], labels=brand_summary.index, autor
   plt.title("% Market Share by Brand")
   # plt.axis('equal')
   plt.show()
```

% Market Share by Brand

1. Is Empigrevir a high-priced drug, or does it just sell a lot?

```
In [54]: empigrevir = df[df['Brand'] == 'Empigrevir']
emp_units = empigrevir['Sales Units'].sum()
emp_revenue = empigrevir['Revenue'].sum()
emp_price = emp_revenue / emp_units

print(f"Empigrevir sold {emp_units:,} units and made ${emp_revenue:,} - that
```

Empigrevir sold 117,037 units and made \$46,814,800 -that's \$400.00 per unit.

- Insight: Empigrevir drives the most revenue because it's widely used (always in top 3 Units Sold in each Region), not because it's expensive.
- Strategy: Find out what's helping it reach so many patients like coverage, prescriber habits, or distribution, and use the same approach for similar ARV products.

2. What explains Fortinib's high revenue with few units?

```
In [55]: fortinib = df[df['Brand'] == 'Fortinib']
    fort_units = fortinib['Sales Units'].sum()
    fort_revenue = fortinib['Revenue'].sum()
    fort_price = fort_revenue / fort_units

print(f"Fortinib sold {fort_units:,} units and made ${fort_revenue:,} - that
```

Fortinib sold 16,684 units and made \$21,272,100 - that's \$1275.00 per unit.

- Insight: Fortinib makes a lot of money from a small number of sales, it's priced high likely due to its cancer use.
- Strategy: Focus on keeping that premium justified, build clinical trust, highlight outcomes, and work with payers where needed.

3. Which brands are high volume but low revenue (possible underpriced)?

Top 5 high-volume brands (check their pricing):

	Units Sold	Revenue	Avg Price
Brand			
Ventrofil	132936	19940400	150.0
Empigrevir	117037	46814800	400.0
Janogrevir	111517	39030950	350.0
Abarcafil	106144	27597440	260.0
Bertigrevir	89709	8522355	95.0

Ventrofil sold 132,936 units but made 19.9M(150 per unit).

- Insight: Ventrofil sells the most units but earns less per unit it might be underpriced or heavily discounted.
- Strategy: Review its pricing and see if there's room to adjust without losing market share.

4. Are top market share brands from the same Therapeutic Area?

```
In [57]: df_total_rev = df.groupby('Brand')['Revenue'].sum().reset_index()
# Merge with therapeutic area
```

```
top_brands = df_total_rev.sort_values(by='Revenue', ascending=False).head(3)
top_with_area = pd.merge(top_brands, df[['Brand', 'Therapeutic Area']].drop_
print("\nTop 3 brands by revenue and their therapeutic area:")
print(top_with_area)
```

Top 3 brands by revenue and their therapeutic area:

```
Brand Revenue Therapeutic Area

0 Empigrevir 46814800 ARV

1 Janogrevir 39030950 ARV

2 Abarcafil 27597440 ARV
```

- Insight: The ARV market is the dominant driver of revenue, both in high volume and consistent adoption.
- Strategy: If we're already in ARVs, we should keep investing. If not, we may want to consider entering or partnering in this space.

5. What about low performers?

```
In [60]: low_performers = brand_summary.sort_values(by=['Units Sold', 'Revenue']).hea
         print("\nBottom 3 brands by both units sold and revenue:")
         print(low_performers)
        Bottom 3 brands by both units sold and revenue:
                   Units Sold Revenue Avg Price Market Share (%)
       Brand
                                                           0.353972
        Sparitonin
                         9698
                                824330
                                             85.0
                                            175.0
       Astoridone
                        10600 1855000
                                                           0.796548
       Vizidone
                        10967 1645050
                                            150.0
                                                           0.706394
```

- Insight: These drugs are struggling on both fronts, low reach and low pricing.
- Strategy: Reassess their position. Do they need marketing help, better access, or is it time to pull back?