Trabalho Computacional 1

Linguagem utilizada: Python

Questão 1. Análise espectral do ECG

(a) O sinal foi carregado a partir do arquivo signal.txt. A frequência de amostragem $f_s = 500Hz$ foi utilizada para calcular o tamanho do passo temporal: $dt = 1/f_s = 0.002$ segundos. A partir de dt e do número de amostras N = 1000, foi criado um vetor tempo, indo de 0.000 a 19.998 segundos. O sinal no tempo pode ser visto na figura 1, abaixo.

Figura 1: Sinal de ECG em função do tempo.

(b) Foi utilizado o comando np.fft.rfft para obter a FFT do sinal (figura 2). Outra maneira seria utilizar a FFT complexa (np.fft.fft) e utilizar a apenas a parte real da resposta. O comando np.fft.rfftfreq fornece as frequências de amostragem, porém em unidade adimensional. Para calibrar o eixo das abscissas em Hertz foi calculada a resolução espectral como o inverso do tempo se amostragem, isto é, df = 1/(dt * N) = 0.05Hz, e utilizado o número de amostras N.

$$f_{Hz} = f_{adim} * df * N = \frac{f_{adim}}{dt * N} * N = \frac{f_{adim}}{dt}$$

Figura 2: Espectro do sinal de ECG.

(c) O espectro possui componentes próximas a 50Hz, possivelmente devido à interferência da rede elétrica do local. São observadas, também, componentes em baixas frequências que podem estar relacionadas à respiração ou outros movimentos do indivíduo durante a aquisição do sinal e componentes em alta frequência, que podem estar relacionadas à detecção de sinais de EMG e ruídos causados pelos fios e pela interface entre a pele e os eletrodos.

Questão 2. Filtragem digital

Para criar os filtros foram utilizadas funções da biblioteca scipy.signal.

(a) Filtro passa-baixas.

(a.1)(a.2) O filtro passa-baixas foi projetado com as seguintes restrições: atenuação em 50Hz de 40dB (ou seja, faixa de rejeição iniciando em 50Hz), ordem máxima do filtro igual a 10 (para evitar instabilidade do filtro) e atenuação máxima de 3dB na faixa de passagem. Com estas restrições a faixa de passagem foi um resultado do projeto do filtro. Iterativamente, foi utilizada a função buttord fixando-se a frequência da faixa de rejeição (f_{stop}) em 50Hz, a atenuação na faixa de passagem em 3dB e a atenuação na faixa de rejeição em 40dB. Desta maneira a frequência de corte máxima para obter um filtro de ordem máxima igual a 10 foi de $f_{pass} = 32Hz$.

Então, foi utilizada a função butter para gerar o filtro ButterWorth passa-baixas de ordem 10 e frequência de corte de 32Hz.

(a.3) Função de transferência do filtro passa-baixas:

$$\frac{Y(z)}{X(z)} = H(z) = \frac{\sum_{k=0}^{10} b_k z^{-k}}{\sum_{l=1}^{10} a_l z^{-l}}$$

Com os valores dos coeficientes b_k e a_l abaixo:

```
b_0
     3.39e-08
                         1.00
                    a_0
     3.39e-07
                         -7.43
b_1
                    a_1
     1.53e-06
                         25.10
b_2
                    a_2
b_3
     4.07e-06
                         -50.73
                    a_3
b_4
     7.12e-06
                         67.86
                    a_4
b_5
     8.54e-06
                         -62.73
                    a_5
b_6
     7.12e-06
                         40.57
                    a_6
                         -18.12
     4.07e-06
b_7
                    a_7
b_8
                         5.34
     1.53e-06
                         -0.94
     3.39e-07
b_9
                    a_9
```

Abaixo, a resposta em frequência do filtro:

Figura 3: Resposta em frequência do filtro passa-baixas.

Abaixo estão apresentados o espectro do sinal após o filtro passa-baixas (figura 4) e um comparativo do sinal antes e depois do filtro (figura 5), mostrando a atenuação das oscilações próximas a 50Hz.

Figura 4: Espectro do sinal de ECG após filtro passa-baixas (freq. corte = 32Hz.

Figura 5: Sinal ECG antes e depois do filtro passa-baixas (freq. corte = 32Hz.

(a.4) Caso a frequência de corte escolhida para o filtro seja muito grande, as componentes perto de 50Hz serão menos atenuadas e para frequências de corte ainda menores que 32Hz, aumenta-se a quantidade de informação que está sendo atenuada mas que poderia ser desejada para caracterizar o sinal de ECG.

Abaixo, na figura 6, mostra-se o sinal filtrado em três frequências de corte: 22Hz, 32Hz (do filtro original) e 42Hz.

Figura 6: Sinais filtrado em três frequências de corte distintas.

(b) Filtro passa-altas.

(b.1)(b.2) Para o filtro passa-altas foi escolhida a frequência de corte de 0.5Hz para filtrar as flutuações da linha de base que possam estar relacionadas a respiração ou movimentações do sujeito durante a aquisição do sinal. O filtro foi projetado com atenuação mínima de 40dB na faixa de rejeição e de no máximo 3dB na faixa de passagem (acima de 0.5Hz). A ordem do filtro foi definida como 4, pois, com ordens a partir de 5 o filtro apresentava descontinuidades na resposta em frequência abaixo de 0.1Hz.

Abaixo, a resposta em frequência do filtro passa-altas.

Figura 7: Resposta em frequência do filtro passa-altas (freq. corte = 0.5Hz).

(b.3) Função de transferência do filtro passa-altas:

$$\frac{Y(z)}{X(z)} = H(z) = \frac{\sum_{k=0}^{4} b_k z^{-k}}{\sum_{l=1}^{4} a_l z^{-l}}$$

Com os valores dos coeficientes b_k e a_l abaixo:

Nas figuras 8 e 9, abaixo, estão apresentados o espectro do sinal após o filtro passa-altas e um comparativo do sinal antes e depois do filtro. É possível observar a atenuação em baixíssimas frequências e o ajuste das flutuações na linha-base.

Figura 8: Espectro do sinal de ECG após filtro passa-altas (freq. corte=0.5Hz.

Figura 9: Comparativo do sinal ECG antes e depois do filtro passa-altas (freq. corte = 0.5Hz.

(b.4) Caso a frequência de corte fosse menor, parte da flutuação da linha de base não seria removida, porém, caso a frequência de corte fosse mais que 0.5, haveria uma distorção ainda maior no espectro de baixas frequências, podendo haver perda significativa de informação.

Abaixo, mostra-se o sinal filtrado em três frequências de corte: 0.1Hz, 0.5Hz (do filtro original) e 5.0Hz. Observa-se que um filtro com frequência de corte muito baixa como 0.1Hz ainda deixa presente algumas flutuações de baixa frequência. O sinal filtrado com passa-altas a 5HZ, por sua vez, causa uma deformação no sinal, o que não é observado no sinal filtrado a 0.5Hz.

Figura 10: Sinais filtrado em três frequências de corte distintas. Os sinais filtrados a 0.5Hz (linha verde) e a 0.1Hz (linha vermelha) estão deslocados em 1V e 2V, respectivamente, para melhor observação de seus efeitos.

(c) Filtro Notch.

Para implementar o filtro Notch foi utilizada a função iirnotch, também da biblioteca scipy.signal.

Para utilizar esta função entra-se com a frequência de filtragem e o fator de qualidade. Um favor de qualidade de 25 foi suficiente para ter atenuação de 40dB na frequência de 50.3Hz.

Abaixo, a resposta em frequência do filtro Notch projetado.

Figura 11: Resposta em frequência do filtro Notch.

Na figura 12, abaixo, é possível verificar o efeito do filtro Notch no sinal original.

Figura 12: Sinal original comparado com o sinal após filtragem do tipo Notch.

(d) Combinação de filtros.

Foi decidido manter o filtro passa-altas para remover as flutuações em baixa frequência. Para eliminar as componentes excessivas próximas de 50Hz sem perder informações do sinal em frequências altas, foi utilizado o filtro Notch em 50.3Hz. Então, foi incluído um filtro passa-baixas com faixa de transição entre 80Hz e 120Hz, para filtrar componentes de frequências muito altas.

Abaixo, nas figuras 13, 14 e 15 é possível observar o efeito do filtro sobre o sinal no tempo e na frequência. Houve diminuição da flutuação da linha de base, remoção das frequências próximas a 50Hz e atenuação de frequências altíssimas.

Figura 13: Sinal original comparado com o sinal após filtragem combinada.

Figura 14: Sinal original comparado com o sinal após filtragem combinada, entre 1 e 5 segundos.

Figura 15: Espectro do sinal original comparado com o do sinal após filtragem combinada.

Questão 3. Estimar frequência instantânea.

(a) Para identificar os picos do sinal de ECG filtrado foram verificados os pontos no sinal maiores que 0.3V que fossem, simultaneamente, maiores que o ponto imediatamente antes e maiores que o ponto imediatamente depois. Isto é: signal[n] 'e um pico se signal[n-1] < signal[n] > signal[n+1], n=2,3,..,N-1

Com N sendo o número de amostras do sinal. Abaixo, o sinal com os picos identificados.

Figura 16: Sinal filtrado com os picos identificados (triângulos vermelhos).

(b) O trem de impulsos foi criado a partir de um vetor de zeros de mesmo tamanho que o sinal para que a frequência de amostragem seja igual à do sinal. Então, nos instantes onde ocorrem os picos, os zeros foram substituídos pelo valor 1/dt, representando o impulso discreto.

Figura 17: Trem de impulsos.

(c) A janela foi criada como um vetor com w valores iguais a 1/w. A convolução foi feita usando a função np.convolve.

Para uma janela muito pequena, a convolução irá mostrar pulsos nos instantes dos impulsos, como é o caso de w=100, visto na figura 18. Por outro lado, caso a janela seja muito grande, como w=5000, a convolução irá apresentar um perfil quase triangular, como pode ser visto na figura 19. No entanto, uma janela bem ajustada resulta em um convolução que com poucos pontos passa a oscilar em torno do que seria a frequência média estimada, como pode ser visto na figura 20, com w=1200.

Figura 18: Estimação de frequência instantânea por convolução com janela muito pequena.

Figura 19: Estimação de frequência instantânea por convolução com janela muito grande.

Figura 20: Estimação de frequência instantânea por convolução com janela adequada.