Precalculus Final Exam Review: Part 2 (Solutions)

1.
$$x \in (-\infty, -5) \cup (-3, 1) \cup (7, \infty)$$

2.
$$f^{-1}(x) = \frac{x}{1-x}$$

3.
$$x = 1$$

4.
$$x \in (-\infty, -3) \cup (2, \infty)$$

5.
$$\ln(x-2)$$

6.
$$x = \frac{e^2 - 63}{9}$$

7.
$$x = \frac{\ln 4}{2 \ln 4 - \ln 7}$$

8.
$$r = 9.4 \text{ km}$$

9.
$$\theta = 5.6 \text{ rad}$$

10. (a) 70π rad/min; (b) about 30 mi/hr

11. (a)
$$\frac{\sqrt{3}}{2}$$

(e)
$$\frac{\sqrt{3}}{2}$$

(b)
$$-\frac{\sqrt{3}}{2}$$

(f)
$$\frac{\sqrt{3}}{2}$$

(c)
$$-\frac{\sqrt{3}}{2}$$

$$(g) -\frac{\sqrt{3}}{2}$$

(d)
$$\frac{\sqrt{3}}{2}$$

$$(h) \ \frac{\sqrt{3}}{2}$$

$$12. \ \sin t = -\frac{\sqrt{7}}{3}, \, \cos t = \frac{\sqrt{2}}{3}, \, \tan t = -\frac{\sqrt{14}}{2}, \, \csc t = -\frac{3\sqrt{7}}{7}, \, \sec t = \frac{3\sqrt{2}}{2}, \, \cot t = -\frac{\sqrt{14}}{7}$$

$$A = 90^{\circ}; a = 9.9\sqrt{2} \text{ mm}$$

$$B = 45^{\circ}; b = 9.9 \text{ mm}$$

$$C=45^\circ;\,c=9.9~\mathrm{mm}$$

14.
$$\sin \theta = -\frac{1}{2}$$
; $\cos \theta = -\frac{\sqrt{3}}{2}$; $\tan \theta = \frac{\sqrt{3}}{3}$

15. Angles — Sides

$$A = 37^{\circ}; a = 16.6 \text{ cm}$$

$$B = 47^{\circ}; b = 20.2 \text{ cm}$$

$$C = 96^{\circ}; c = 27.5 \text{ cm}$$

16. Angles — Sides

$$A = 120.4^{\circ}; a = 75 \text{ cm}$$

$$B=21.6^\circ;\,b=32~\mathrm{cm}$$

$$C = 38^{\circ}; c = 53.5 \text{ cm}$$

17. (graph in textbook)

18. (graph in textbook)

19.

20.

21. -3

22. Amplitude: 4, Period: 16, VS: 2 down, HS: 2 left, PI: [-2, 14)

24. (a)
$$f(t) = -6.4\cos\left(\frac{\pi}{6}t\right) + 12.4;$$

27.
$$\frac{\sqrt{6} - \sqrt{2}}{4}$$

28.
$$\sin \theta = \frac{4}{5}, \cos \theta = \frac{3}{5}, \tan \theta = \frac{4}{3}$$

29.
$$\frac{1}{16} - \frac{1}{16}\cos(2x) - \frac{1}{16}\cos(4x) + \frac{1}{16}\cos(2x)\cos(4x) \text{ or}$$
$$\frac{1}{16} - \frac{1}{32}\cos(2x) - \frac{1}{16}\cos(4x) + \frac{1}{32}\cos(6x)$$

$$30. \, \sin\!\left(\frac{\theta}{2}\right) = \frac{3}{\sqrt{13}}, \, \cos\!\left(\frac{\theta}{2}\right) = \frac{2}{\sqrt{13}}, \, \tan\!\left(\frac{\theta}{2}\right) = \frac{3}{2}$$

31.
$$-\frac{\pi}{4}$$

32.
$$-\frac{\pi}{6}$$

33.
$$\sqrt{\frac{12}{12+x^2}}$$

34.
$$x = \frac{\pi}{6}, \frac{5\pi}{6}, \frac{7\pi}{6}, \frac{11\pi}{6}$$

35. P.R.:
$$x = 0, \frac{\pi}{12}$$
; $[0, 2\pi)$: $x = 0, \pi, \frac{\pi}{12}, \frac{7\pi}{12}, \frac{13\pi}{12}, \frac{19\pi}{12}$; all: $x = 0 + \pi k, \frac{\pi}{12} + \frac{\pi}{2}k$

36. P.R.:
$$x = \frac{2\pi}{9}$$
; $[0, 2\pi)$: $x = \frac{2\pi}{9}$, $\frac{10\pi}{9}$, $\frac{14\pi}{9}$; all: $x = \frac{2\pi}{9} + \frac{4\pi}{3}k$, $\frac{10\pi}{9} + \frac{4\pi}{3}k$

37. P.R.:
$$x = \frac{\pi}{2}, \frac{3\pi}{2}$$
; $[0, 2\pi)$: $x = \frac{\pi}{2}, \frac{3\pi}{2}$; all: $x = \frac{\pi}{2} + 6\pi k, \frac{3\pi}{2} + 6\pi k, \frac{5\pi}{2} + 6\pi k$

38. The height of the Eiffel Tower is 984 ft and the height of the CN Tower is 1815 ft.

39.
$$(-5, -4, 1)$$

40.
$$(p-4, -2p+8, p)$$

42.
$$(-5,9)$$

43. 12, 5, 1,
$$\frac{1}{8}$$

$$46. -10920$$

48.
$$16x^4 - 96x^3 + 216x^2 - 216x + 81$$