Optikai Alapmérések

Mérést végezte: Bódy Lőrinc András 2020. február 25.

1. Bevezetés

A labor során öt különböző mérést végeztem el, a geometriai és fizikai optika néhány alapvető összefüggésének igazolására.

2. Műanyag-levegő határfelület törésmutatójának meghatározása a törési törvény alapján

2.1. A mérés célja

A célom a közeghatáron végbemenő fénytörés törvényének (Snellius-Descartes törvény) ellenőrzése volt, amely a beesési és a kilépési szögre a következő összefüggést adja meg: $\sin(\alpha) = n_{2,1}\sin(\beta)$, ahol α a felület normálisától mért beesési szög, β a kilépési szög, és $n_{2,1}$ a két közeg törésmutatójának aránya. Egyben pedig a méréshez használt műanyagdarab törésmutatóját is meg kellett határoznom, majd megkeresnem a teljes visszaverődés határszögét, és megállapítanom, konzisztens-e ez a törésmutatóra kapott eredménnyel.

2.2. Mérőeszközök

- Optikai pad mágneses rögzítőkkel
- Optikai korong (forgatható szögmérő)
- Félkör alakú műanyag "laposlencse"
- Lézer

2.3. A mérés rövid leírása

A lencsét az optikai korong közepére helyeztem, úgy, hogy a lézerfény a lapos oldalán lépjen be, pontosan a félkör középpontjánál, és így akármilyen irányban is törik meg, mindig merőlegesen érkezzen a félkör alakú határfelületre, nem szenvedve további törést. Kezdetben úgy állítottam be az optikai korongot, hogy a lézerfény a 0° jelnél lépjen be, és merőlegesen haladva át a lencse lapos oldalán,

a szemben lévő 0° jelnél lépjen ki. Ezután az optikai korongot a lencsével együtt elforgatva, a szögskáláról α_i és β_i közvetlenül leolvasható.

Majd ugyanezt a mérést a lencse megfordításával is elvégeztem, úgyhogy a törés a műanyagból levegőbe való átlépésnél következett be, egészen addig forgatva a korongot, amíg a fény már nem lépet ki a lencséből. (Így leolvashattam a határszöget)

2.4. Mérési adatok

Levegőből műanyagba:

$\alpha_i[^{\circ}]$	0.0	10.0	20.0	30.0	40.0	50.0	60.0	70.0	80.0
$\beta_i[^{\circ}]$	0.0	6.5	13.0	19.0	25.0	31.0	35.0	39.0	41.0

Műanyagból levegőbe:

$\alpha_i[^{\circ}]$	0.0	10.0	15.0	20.0	25.0	30.0	35.0	40.0
$\beta_i[^{\circ}]$	0.0	14.5	23.0	30.0	38.5	48.0	58.5	73.0

A teljes visszaverődés határszögét 43.5°-nak találtam.

2.5. Számítások

Amennyiben a törési törvény érvényes, a beesési szögek színusza lineáris függvénye a kilépési szögek színuszának. Ezért ábrázoltam $a=\sin(\alpha_i)$ -t $b=\sin(\beta_i)$ függvényében, és a legkisebb négyzetek módszerével egyenest (A(b)) illesztettem. Ennek meredeksége adja meg a törésmutatót, amely $n_{m,l}=1.494$ -nek és $n_{l,m}=0.671$ -nek adódott.

2.6. Hibaszámítás

A hiba legfontosabb forrásai ebben a mérésben a lencse esetleges pontatlan elhelyezése, illetve az 1° beosztású optikai korong leolvasási hibája. (0.5°) Az eredmények hibáját a szimmetrikus téglalapmódszerrel becsültem meg. A képlet szerint $\Delta n = 2 \frac{\max(|\Delta a_i|)}{\max(b_i) - \min(b_i)}$. Ez alapján $\Delta n_{m,l} = 0.0261$ és $\Delta n_{l,m} = 0.0115$.

A határszög mérési hibáját nehezebb megbecsülni, mivel a majdnem merőlegesen törő sugár meglehetősen diffúzzá válik, ezért úgy vélem, legalább 1° hibával kell számolni.

2.7. Konklúzió

A törés törvénye jó pontossággal igaznak bizonyult a mérés során. A levegőböl műanyagba lépő sugárral a törésmutatót $n_{m,l}=1.494\pm0.026$ -nak mértem, amely hibán belül megegyezik a másik irányú törésmutató reciprokaként kapható $\frac{1}{n_{l,m}}=\frac{1}{0.671\pm0.012}=1.491\pm0.027$ -es értékkel. A teljes visszaverődés határszöge a törésmutatóból számítva $\alpha_{hat}=\arcsin(n_{l,m})=42.1\pm0.9^\circ$, amely hibán beül egyezik a $43.5\pm1.0^\circ$ -nek mért értékkel.

$\alpha_i[^{\circ}]$	0.0	10.0	20.0	30.0	40.0	50.0	60.0	70.0	80.0
$\beta_i[^{\circ}]$	0.0	6.5	13.0	19.0	25.0	31.0	35.0	39.0	41.0
$a_i = \sin(\alpha_i)$	0.0000	0.1736	0.3420	0.5000	0.6428	0.7660	0.8660	0.9397	0.9848
$b_i = \sin(\beta_i)$	0.0000	0.1132	0.2250	0.3256	0.4226	0.5150	0.5736	0.6293	0.6561
$A(b_i)$	0.0051	0.1742	0.3412	0.4914	0.6364	0.7745	0.8619	0.9452	0.9851
$\Delta a_i = A(b_i) - a_i$	0.005	0.001	-0.001	-0.009	-0.006	0.008	-0.004	0.005	0.000

$\alpha_i[^{\circ}]$	0.0	10.0	15.0	20.0	25.0	30.0	35.0	40.0
$eta_i [^{\circ}]$	0.0	14.5	23.0	30.0	38.5	48.0	58.5	73.0
$a_i = \sin(\alpha_i)$	0.0000	0.1736	0.2588	0.3420	0.4226	0.5000	0.5736	0.6428
$b_i = \sin(\beta_i)$	0.0000	0.2504	0.3907	0.5000	0.6225	0.7431	0.8526	0.9563
$A(b_i)$	0.0020	0.1701	0.2643	0.3377	0.4199	0.5009	0.5744	0.6440
$\Delta a_i = A(b_i) - a_i$	0.002	-0.004	0.006	-0.004	-0.003	0.001	0.001	0.001

3. Közeghatáron történő visszaverődés és törés vizsgálata 60 fokos prizma segítségével

3.1. A mérés célja

Az előzőhöz kapcsolódó mérésben, ahol most az ugyanabból az anyagból készült prizmán több fénytörés és visszaverődés is végbemegy, tovább ellenőrizhettem a törési törvénnyel kapcsolatos megfigyeléseket, illetve megfigyelhettem a diszperzió jelenségét.

3.2. Mérőeszközök

- Optikai pad mágneses rögzítőkkel
- Optikai korong (forgatható szögmérő)

- Szabályos háromszög alakú prizma
- Soksugaras fényforrás (fehér fény, nem lézer)

3.3. A mérés rövid leírása, adatok

A prizmát úgy helyeztem ez az optikai korongon, hogy egyik oldala párhuzamos legyen a beeső fénysugarakkal. Fényképen (lásd 1. ábra) rögzítettem a sugarak útját, majd elfordítottam egészen addig, amíg azok már nem léptek ki a túloldalon, és feljegyeztem ennek szögét, 4.5°-ot.

3.4. Diszkusszió

Az előző mérési feladat eredménye alapján $n_{m,l}=1.494\pm0.026$. A törési törvényt az 1a ábrán látható pozícióra alkalmazva a következőket kapjuk:

$$\sin(\alpha) = n\sin(\beta) = \sin(30^\circ) = 0.5 = 1.494\sin(\beta) \implies \beta = 19.5^\circ$$

ahol $\alpha=30^\circ$ a jobbról (a képen "vizszintesen") beérkező sugarak a prizma jobboldalálának normálisával bezárt szöge, míg $\beta=19.5^\circ$ a kilépési szög. Tehát a prizma belsejében a sugarak a "vízszintessel" $30^\circ-19.5^\circ=11.5^\circ$ szöget zárnak be. A prizma túlsó oldalára így $\gamma=30^\circ+11.5^\circ=41.5^\circ$ beesési szöggel érkeznek meg, amely valóban kisebb az előző mérés szerinti határszögnél, és ennek megfelelően újabb törést szenvedve ki és lépnek a prizmából.

Az optikai korongot 4.5° -al óramutató járásval ellentétesen ("balra") elforgatva nyerjük a az 1b ábrán látható állapotot, amikor a sugarak már éppen nem lépnek ki a prizma bal oldalán. Ilyenkor:

$$\sin(90^{\circ} - (4.5^{\circ} + 60^{\circ})) = 0.431 = 1.494\sin(\beta) \implies \beta = 16.7^{\circ}$$

A prizma két alsó szára és a fénysugár alkotta háromszög alsó szöge 60° (a prizma csúcsa), a fénysugár belépésénél a belső szög $90^\circ - \beta = 73.3^\circ$, így amikor a fénysugár a prizma bal oldalához ér, a prizma oldalával $180^\circ - 60^\circ - 73.3^\circ = 46.7^\circ$ szöget zár be, beesési szöge tehát $\gamma = 90^\circ - 46.7^\circ = 43.3^\circ$. Ez hibán belül egyezik az előző mérésben megállapított 43.5° -os határszöggel.

Bár az 1a ábrán ez nem látszik jól (különösen fekete-fehérben :)), az éles szögen megtörő fehér fénysugarak több szynre bomlottak. Mivel a törésmutató a frekvenciával növekszik a látható tartományban, a kék fény térült el legerősebben, és a piros legkevésbé.

4. Gyűjtőlencse fókusztávolságának meghatározása

4.1. A mérés célja

Célom egy gyűjtőlencse fókusztávolságának meghatározása, és egyben (ennek a gyártó által megadott értékkel való összevetésével) az $\frac{1}{f}=\frac{1}{k}+\frac{1}{t}$ leképezési

(a) Az eredeti állapot

(b) A teljes visszeverődés esete

1. ábra. A sugármenetek fényképen

tövény implicit ellenőrzése. (Aholfa fókusztáv, ka képtávolság és ta tárgytávolság.)

4.2. Mérőeszközök

- Optikai pad beépített vonalzóval
- Fényforrással ellátott tárgy
- Gyűjtőlencse
- Ernyő

4.3. A mérés rövid leírása

A tárgy és az ernyő távolságát rögzítve, a középen elhelyezett gyűjtőlencsét addig kell mozgatni, amíg az éles képet ad tárgyról az ernyőn. Ez minden tárgy-ernyő távolság mellett kétszer történik meg, egyszer nagyított (k_1) , és egyszer kicsinyített képpel (k_2) .

4.4. Mérési adatok

 ${\bf A}$ nagyító éles hely:

k_{1i} (m)						
t_{1i} (m)	0.120	0.123	0.126	0.131	0.137	0.151

A kicsinyitő éles hely:

k_{2i} (m)	0.120	0.123	0.125	0.129	0.140	0.154
t_{2i} (m)						

4.5. Számítások

A mérési leírásnak megfelelően kiszámtottam a nagyítást ($N_i = \frac{k_i}{t_i}$) minden mérési ponthoz, majd a kép és a tárgytávolság reciprokát ábrázoltam grafikonon. Erre egyenest illesztettem, amelynek tengelymetszete adja meg f reciprokát. Az illesztett egyenes meredeksége -1-nek jött ki, így két tengelymetszete megegyezik, $\frac{1}{f} = 9.438 \, \frac{1}{\mathrm{m}}$. Ez alapján f = 0.106m a lencse fókusztávolsága.

4.6. Mérési hiba

A mérési hiba egyik forrása a vonalzó leolvasási hibája, ennél azonban jóval jelentősebb az élesség konzisztens megítélésének hibája, amely nehezen ellenőrizhető szisztematikus hibát okoz.

4.7. Konklúzió

A leképezési törvény igaznak bizonyult a vizsgált lencsére, és annak fókusztávolsága közel van a rajta jelzett 0.1 m-es adathoz.

k_i (m)	0.880	0.777	0.674	0.569	0.463	0.349	0.120	0.123	0.125	0.129	0.140	0.154
t_i (m)	0.120	0.123	0.126	0.131	0.137	0.151	0.880	0.777	0.675	0.571	0.460	0.346
N_i	7.333	6.317	5.349	4.344	3.380	2.311	0.136	0.158	0.185	0.226	0.304	0.445
$\frac{1}{k_i}(\frac{1}{m})$	1.136	1.287	1.484	1.757	2.160	2.865	8.333	8.130	8.000	7.752	7.143	6.494
$\frac{1}{t_i}(\frac{1}{\mathrm{m}})$	8.333	8.130	7.937	7.634	7.299	6.623	1.136	1.287	1.481	1.751	2.174	2.890
$T(k_i)(\frac{1}{\mathrm{m}})$	8.298	8.148	7.951	7.677	7.275	6.569	1.101	1.305	1.435	1.683	2.292	2.941

5. Szórólencse képalkotása

5.1. A mérés célja

Ebben a mérési feladatban egy szórólencse képtávolságát kell meghatározni. Mivel a szórólencsén áthaladó fénysugarak széttartóak, nem alakul ki valódi, ernyőn felfogható kép, hanem a széttartó fénysugarakat a szemünk értelmezi úgy, hogy a meghosszabításuk metszéspontjában lévő tárgyról érkeznek. Ezt a virtuális képet viszont egy gyűjtőlencsével valódi képpé lehet leképezni.

5.2. Mérőeszközök

- Optikai pad beépített vonalzóval
- Fényforrással ellátott tárgy
- Gyűjtólencse
- Szórólencse
- Ernyő

5.3. A mérés rövid leírása, adatok

A mérési leírásnak megfelelően a fényforrással egybeépített tárgyat a 0.1 m jelnél helyeztem el az optikai padon, a szórólencsét pedig 0.3 m-nél. (tárgytávolság: 0.2 m) A lencsén keresztülnézve a tárgy kicsinyített, egyenes állású látszólagos képét figyeltem meg a lencse mögött. Ezután a gyűjtőlencsét (0.2 m fokusztáv) 0.55 m-hez tettem, az ernyőt pedig az optikai pad végére. Úgy találtam, hogy az ernyőt a 1.0 m jelhez csúsztatva, rajta éles kép jelenik meg.

Miután a szórólencsét eltávolítottam, a kép homályossá vált, a tárgyat a 0.21 m jelhez csúsztatva pedig ismét kiélesedett. Ilyenkor a tárgyról kilépő fény pontosan azt az utat teszi meg a gyűjtőlencsén át az ernyőre, mint a szórólencséről érkező fény az előző elrendezésben. Tehát a szórólencse képtávolsága 0.3 m -0.21 m =0.09 m volt.

5.4. Mérési hiba

A mérési hiba egyik forrása a vonalzó leolvasási hibája, ennél azonban jóval jelentősebb az élesség konzisztens megítélésének hibája, amely nehezen ellenőrizhető szisztematikus hibát okoz.

5.5. Konklúzió

Ebben a rövid mérésben meghatároztam egy szórólencse képtávolságát. A leképezési törvényt használva $\frac{1}{f}=\frac{1}{k}+\frac{1}{t}=-\frac{1}{0.09\,\mathrm{m}}+\frac{1}{0.2\,\mathrm{m}}=-6.11\,\frac{1}{\mathrm{m}}\implies f=-0.164\,\mathrm{m}.$ A lencsén megadott érték -0.15 m.

6. Résen való elhajlás vizsgálata

6.1. A mérés célja

Ebben a mérésben a Frauenhoffer-diffrakció egy egyszerű esetét, az egy résen áthaladó fény elhajlását kellett vizsgálnom. Ezzel megmértem a rések szélességét, majd az eredményt a rések készítője által megadott adatokkal összevetve, ellenőriztem az elhajlás képletét, amely szerint a diffrakciós minimumok iránya a következő: $a\sin\Theta=n\lambda$. Ahol a a rés szélessége, Θ az irány amerre minimális az intenzitás, λ a fény hullámhossza, és n pozitív egész szám.

6.2. Mérőeszközök

- Optikai pad beépített vonalzóval
- Vonalzó
- Lézer
- Ernyő
- Korong különféle alakú és méretű résekkel

6.3. A mérés rövid leírása

A lézert az optikai padra helyeztem, és a résen keresztül az ernyőre irányítottam. Feljegyeztem az ernyő és a rés távolságát, majd a korongot forgatva különböző réseket hoztam a lézer útjába. A kör, négyzet és szabályos hatszög alakú réseknél kvalitatív megfigyeléseket végeztem a diffrakciós képen, a keskeny, hosszú réseknél pedig a vonalzóval megmértem az két első minimum és a két második minimum egymástól való távolságát $(m_1$ és m_2), miközben feljegyzetem a réskorongon megadott névleges résszélességeket $(a_{nominal})$.

6.4. Kvalitatív megfigyelések

A diffrakciós kép minden esetben ismétlődő maximumokból és minimumok váltakozásából áll, szerkezete azonban megfelel a rés szimmetriájának. Kör alakú rés esetén példáula központi, kör alakú fényes foltot egyre csökkenő intenzítású karikák veszik körül (A nevezetes Airy-korong), míg a négyzetes résen áthaldó fény a rés oldalaival párhuzamos oldalú négyzetrácsos szerkezet hoz létre (a rácspontok fényesek), ahol a rés szimmetriasíkjaiba eső pontsorok a legfényesebbek. A hatszög alakú rés diffrakciós képe is 60° -os forgatási szimmetriával bír, és itt is a rés szimmetriasíkjaiba eső pontsorok a legfényesebbek.

A keskeny, vízszintesen hosszú rés pedig függőlegesen hajlítja el a fényt, egy egyenesben hozva létre maximumok sorát, amelyek annál közelebb vannak egymáshoz, minél szélesebb a rés.

6.5. Mérési adatok

a(m)	$m_1(m)$	$\Delta m_1(\mathrm{m})$	$m_2(\mathrm{m})$	$\Delta m_2(\mathrm{m})$
4×10^{-5}	0.042	0.002	0.078	0.004
8×10^{-5}	0.019	0.001	0.038	0.002
1.6×10^{-4}	0.009	0.0005	0.019	0.0005

A lézeren megadott hullámhosz $\lambda=670\,\mathrm{nm}=6.7\times10^{-7}\,\mathrm{m},$ a rés és az ernyő távolsága $L=1.089\pm0.003\mathrm{m}$

6.6. Számítások

A diffrakciós minimumokra megadott egyenletet átrendezve, a $\sin \Theta = \tan \Theta$ közelítést használva, és kihasználva, hogy a diffrakciós kép szimmetrikus a résre, és így $\tan \Theta = \frac{m_n}{2L}$:

$$a = 2\frac{n\lambda L}{m_n}$$

6.7. Hibaszámítás

A mérési hibák a távolságmérések pontatlanságából erednek. A mérésekhez 1 mm beosztású vonalzókat használtam, de a a következő hibaforrások jelentősen felülmúlják ezek leolvasási hibáját: A rés-ernyő távolság pontos mérését a rés-korongot tartó pylon kialakítása teszi nehézzé, mivel a rés síkja nem esik egybe a pylon közepével, ahol a vonalzóra mutató jelölő van.

Az intenzitásminimumok méréskor is a mérőeszközénél nagyobb hibákra számítok, mivel, különösen a legszétkenődöttebb diffraciós kép esetében, a minimumok hollétének vizuális megítélése nehéz volt, a mérést ezért sötétben kellett végrehajtani, ami viszont megnehezítette a leolvasást. A hibák becslését a mérési adatok táblázatába jegyeztem fel.

A hibaterjedés szabályai szerint $\delta a = \delta(2n\lambda L) + \delta m_n = \frac{\Delta L}{L} + \frac{\Delta m_n}{m_n}$

6.8. Konklúzió

Az eredmények táblázatos formában, külön megadva az első és másodrendű elhajlási minimumokból nyert értékeket:

$a_{nominal}(\mathbf{m})$	$a_{found1}(m)$	$a_{found2}(m)$
4×10^{-5}	$3.47 \pm 0.17 \times 10^{-5}$	$3.74 \pm 0.2 \times 10^{-5}$
8×10^{-5}	$7.68 \pm 0.42 \times 10^{-5}$	$7.68 \pm 0.43 \times 10^{-5}$
1.6×10^{-4}	$1.62 \pm 0.094 \times 10^{-4}$	$1.53 \pm 0.04 \times 10^{-4}$

A fényelhajlás törvénye igazolást nyert a vizsgált elrendezésben, a mért résszélességek azonban néhány esetben nem egyeznek hibán belül a névlegesekkel. Úgy vélem, hogy alábecsültem a távolságmérés során elkövetett hibát.