Problem 1. Magnetic Fields due to Moving Charges

Calculate the magnetic field at the origin given two particles, one of charge $q_1 = +2.5$ C at $\mathbf{r}_1 = (2.0\,\hat{i} + 3.5\,\hat{j} - 1.0\,\hat{k})$ m moving at a speed $\mathbf{v}_1 = (7.0\,\hat{i} + 24.0\,\hat{j})$ m/s and the other of charge $q_2 = -2.5$ C at $\mathbf{r}_2 = (1.0\,\hat{i} - 4.0\,\hat{j} + 7.5\,\hat{k})$ m moving at a speed $\mathbf{v}_2 = (4.0\,\hat{i} - 12.0\,\hat{j} - 3.0\,\hat{k})$ m/s.

$$r_1 = \sqrt{2.0^2 + 3.5^2 + 1.0^2} = \sqrt{17.25}$$
 w

$$r_2 = \sqrt{1.0^2 + 4.0^2 + 7.5^2} = \sqrt{73.25}$$
 m

$$\vec{B}_{1} = \frac{\mu_{0}}{4\pi} q_{1} \frac{\vec{v}_{1} \times \vec{r}_{1}^{2}}{r_{1}^{3}} = \frac{2.5 \,\mu_{0}}{4\pi} \frac{\begin{vmatrix} \hat{i} & \hat{i} & \hat{k} \\ 7.0 & 0.24.0 \\ 2.0 & 5.5 & -1.0 \end{vmatrix}}{r_{3}^{3}} = \frac{2.5 \,\mu_{0}}{4\pi} \frac{\left(-84 \,\hat{i} + 55 \,\hat{j} + 24.5 \,\hat{k}\right)}{14.25 \,\sqrt{17.25}}$$

$$\vec{\beta}_{2}^{2} = \frac{\mu_{o}}{4\pi} q_{2} \frac{\vec{v}_{2} \times \vec{r}_{2}^{2}}{r_{2}^{3}} = \frac{-2.5 \,\mu_{o}}{4\pi} \frac{\begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 4 & -12 & -3 \\ 1 & -4 & 7.5 \end{vmatrix}}{r_{2}^{3}} = \frac{-2.5 \,\mu_{o}}{4\pi} \frac{\left(-102 \,\hat{i} - 33 \,\hat{j} - 4 \,\hat{k}\right)}{73.25 \sqrt{73.25}}$$

$$\vec{\vec{\beta}} = \vec{\vec{\beta}}_1 + \vec{\vec{\beta}}_2 \approx \frac{2.5 \,\mu_0}{4 \,\pi} \left(-1.00975 \,\hat{i} + 0.82032 \,\hat{j} + 0.34835 \,\hat{\kappa} \right) \, [T]$$

Problem 2. Current-carrying conductors

In order to conduct an experiment, Walter sets up three straight conductors carrying currents of I_1 , I_2 , and I_3 . The currents are arranged as shown in Fig. 1. Here, I_1 , I_2 , and I_3 are pointing orthogonal to the plane of the page, with I_1 and I_2 pointing into the page (in the -z direction) and I_3 pointing out of the page (in the +z direction). Let us place the current I_1 at the origin, current I_2 at $-d_1 \hat{y}$, current I_3 at $-d_2 \hat{x}$ and point P at $-d_1 \hat{y} + -d_2 \hat{x}$.

Suppose that the current values of I_1 and I_2 were tuned such that $I_1 = I\sqrt{d_1^2 + d_2^2}$, $I_2 = Id_2$, and I_3 was a free parameter. Here, I is a convenient constant with units of A/m so that I_1 and I_2 have the correct units of amperes.

Figure 1: Current-carrying conductors

If the experiment requires a magnetic field with magnitude $|\mathbf{B}| = B_0$ at point P, what should be the magnitude of I_3 need to be?

be the magnitude of
$$I_3$$
 need to be?

$$A_{\text{mpore's}} \text{ Lon } : |\vec{B}| = \frac{\mu_o \, \text{L}}{2 \, \text{tr} \, |\vec{A}_1^2 + \vec{A}_2^2|} \quad |\vec{B}_2| = \frac{\mu_o \, \text{L}_c}{2 \, \text{tr} \, |\vec{A}_2|} \quad |\vec{B}_3| = \frac{\mu_o \, \text{L}_c}{2 \, \text{tr} \, |\vec{A}_1|^2 + \vec{A}_2^2|} \quad |\vec{B}_3| = \frac{\mu_o \, \text{L}_c}{2 \, \text{tr} \, |\vec{A}_1|^2 + \vec{A}_2^2|} \quad |\vec{B}_3| = \frac{\mu_o \, \text{L}_c}{2 \, \text{tr} \, |\vec{A}_1|^2 + \vec{A}_2^2|} \quad |\vec{B}_3| = \frac{\mu_o \, \text{L}_c}{2 \, \text{tr} \, |\vec{A}_1|^2 + \vec{A}_2^2|} \quad |\vec{B}_3| = \frac{\mu_o \, \text{L}_c}{2 \, \text{tr} \, |\vec{A}_1|^2 + \vec{A}_2^2|} \quad |\vec{B}_3| = \frac{\mu_o \, \text{L}_c}{2 \, \text{tr} \, |\vec{A}_1|^2 + \vec{A}_2^2|} \quad |\vec{B}_3| = \frac{\mu_o \, \text{L}_c}{2 \, \text{tr} \, |\vec{A}_1|^2 + \vec{A}_2^2|} \quad |\vec{B}_3| = \frac{\mu_o \, \text{L}_c}{2 \, \text{tr} \, |\vec{A}_1|^2 + \vec{A}_2^2|} \quad |\vec{B}_3| = \frac{\mu_o \, \text{L}_c}{2 \, \text{tr} \, |\vec{A}_1|^2 + \vec{A}_2^2|} \quad |\vec{B}_3| = \frac{\mu_o \, \text{L}_c}{2 \, \text{tr} \, |\vec{A}_1|^2 + \vec{A}_2^2|} \quad |\vec{B}_3| = \frac{\mu_o \, \text{L}_c}{2 \, \text{tr} \, |\vec{A}_1|^2 + \vec{A}_2^2|} \quad |\vec{B}_3| = \frac{\mu_o \, \text{L}_c}{2 \, \text{tr} \, |\vec{A}_1|^2 + \vec{A}_2^2|} \quad |\vec{B}_3| = \frac{\mu_o \, \text{L}_c}{2 \, \text{tr} \, |\vec{A}_1|^2 + \vec{A}_2^2|} \quad |\vec{B}_3| = \frac{\mu_o \, \text{L}_c}{2 \, \text{tr} \, |\vec{A}_1|^2 + \vec{A}_2^2|} \quad |\vec{B}_3| = \frac{\mu_o \, \text{L}_c}{2 \, \text{tr} \, |\vec{A}_1|^2 + \vec{A}_2^2|} \quad |\vec{B}_3| = \frac{\mu_o \, \text{L}_c}{2 \, \text{tr} \, |\vec{A}_1|^2 + \vec{A}_2^2|} \quad |\vec{B}_3| = \frac{\mu_o \, \text{L}_c}{2 \, \text{tr} \, |\vec{A}_1|^2 + \vec{A}_2^2|} \quad |\vec{B}_3| = \frac{\mu_o \, \text{L}_c}{2 \, \text{tr} \, |\vec{A}_1|^2 + \vec{A}_2^2|} \quad |\vec{B}_3| = \frac{\mu_o \, \text{L}_c}{2 \, \text{tr} \, |\vec{A}_1|^2 + \vec{A}_2^2|} \quad |\vec{B}_3| = \frac{\mu_o \, \text{L}_c}{2 \, \text{tr} \, |\vec{A}_1|^2 + \vec{A}_2^2|} \quad |\vec{B}_3| = \frac{\mu_o \, \text{L}_c}{2 \, \text{tr} \, |\vec{A}_1|^2 + \vec{A}_2^2|} \quad |\vec{B}_3| = \frac{\mu_o \, \text{L}_c}{2 \, \text{tr} \, |\vec{A}_1|^2 + \vec{A}_2^2|} \quad |\vec{B}_3| = \frac{\mu_o \, \text{L}_c}{2 \, \text{tr} \, |\vec{A}_1|^2 + \vec{A}_2^2|} \quad |\vec{A}_1|^2 + \vec{A}_2^2|^2 + \vec{A}_2^2|^$$

$$|\vec{\beta}'| = |\vec{\beta}'_1 + \vec{\beta}'_2 + \vec{\beta}'_3| = \sqrt{|\beta_1|^2 + |\beta_2|^2 + |\beta_3|^2} = |\beta_0| = \sqrt{|\beta_0|^2 + |\beta_2|^2 + |\beta_3|^2}$$

$$=) \quad I_{3} = \frac{2\pi d_{1}}{\mu_{0}} \int \beta_{0}^{2} - \beta_{1}^{2} - \beta_{2}^{2} \qquad \text{S.t. } \beta_{0} \text{ is a given constant, } \beta_{1} = \frac{\mu_{0} I_{1}}{2\pi \sqrt{d_{1}^{2} + d_{2}^{2}}}, \ \beta_{2} = \frac{\mu_{0} I_{2}}{2\pi d_{2}}$$

Problem 3. (Challenge Problem) Current-carrying conical loop

Consider the conical loop in the following image. Assuming the second configuration for simplicity of calculation, calculate the magnetic field at the four points P_1 , P_2 , P_3 (at a distance r from P_1), and P_4 (at a distance r from P_2). Let the current flowing through each ring be I and assume $r \gg L$ and $r \gg a, b$.

Figure 2: Current-carrying conical loop

P.S.: It will suffice to represent net magnetic field as a summation of terms for points P_1 and P_2 . Show entire calculation for points P_3 and P_4

Assuring
$$\overline{L}$$
 word Counter-clockwise up the
$$\beta_{R} = \frac{M \cdot \mathbb{I} R^{2}}{2 \left(R^{2} + h^{2}\right)^{5/2}}$$

$$= \sum_{N=0}^{N} \frac{\mu_{0} \overline{L}}{2 \left[\alpha + \frac{(N-n)(b-a)}{N}\right]}$$

$$= \sum_{N=0}^{N} \frac{\mu_{0} \overline{L} \left[\alpha + \frac{(N-n)(b-a)}{N}\right]^{2}}{2 \left(\left[\alpha + \frac{nL}{N}\right]^{2} + \left[\alpha + \frac{(N-n)(b-a)}{N}\right]^{2}\right)^{3/2}}$$

$$\beta_{L} = \sum_{N=0}^{N} \frac{\mu_{0} \overline{L} \left[\alpha + \frac{(N-n)(b-a)}{N}\right]^{2}}{2 \left(\left[b + \frac{nL}{N}\right]^{2} + \left[\alpha + \frac{(N-n)(b-a)}{N}\right]^{2}\right)^{3/2}}$$

$$\beta_{L} = \sum_{N=0}^{N} \frac{\mu_{0} \overline{L} \left[\alpha + \frac{(N-n)(b-a)}{N}\right]^{2}}{2 \left(\left[b + \frac{nL}{N}\right]^{2} + \left[\alpha + \frac{(N-n)(b-a)}{N}\right]^{2}\right)^{3/2}}$$