### 0. Загрузка данных

Нумерация ячеек с кодом начинается с 1, потому что я сделал [cell -> all output -> clear], т.к. файл со всеми попытками весил очень много и открывался медленно

```
In [1]: # Импортируем базовые пакеты
         import numpy as np
         import pandas as pd
         import matplotlib.pyplot as plt
         import seaborn as sns
In [2]: # Загрузим датасет
         df = pd.read_csv('HW1_var_12.csv', sep=';')
         # Номер варианта - бесполезная информация для анализа
         df.drop('Номер варианта', axis=1, inplace=True)
         df.head()
Out[2]:
                 ID INCOME_BASE_TYPE CREDIT_PURPOSE INSURANCE_FLAG
                                                                                 SEX FULL_A
                        Форма банка (без
          0 1000012
                                                Ремонт
                                                                    1.0 0.59 мужской
                     печати работодателя)
          1 1000032
                                2НДФЛ
                                                Ремонт
                                                                    1.0 0.55 мужской
          2 1000052
                                2НДФЛ
                                                Ремонт
                                                                    1.0 0.23 женский
                      Свободная форма с
          3 1000072
                               печатью
                                           Покупка земли
                                                                    0.0 0.32 мужской
                           работодателя
                           Поступление
            1000092
                                                Ремонт
                                                                    0.0 0.31 мужской
                        зарплаты на счет
         5 rows × 43 columns
In [3]:
         df.shape
```

## 1. Исследование и предобработка данных

#### 1.0. Разделим переменные по типам данных

Out[3]: (10242, 43)

```
In [20]: # Вытащим ID переменных по группам – числовые, категориальные, все кроме ID
         # Может пригодиться в дальнейших исследованиях
         cat var = []
         num_var = []
         for i in range(len(df.dtypes)):
             if df.dtypes[i] == object:
                 cat var.append(df.columns.values[i])
             else:
                 if df.columns.values[i] != 'ID':
                     num var.append(df.columns.values[i])
         all_var = cat_var + num_var
         print('num cols: ', num var)
         print('')
         print('cat_cols: ', cat_var)
         print('')
         print('all_cols: ', all_var)
         num_cols: ['INSURANCE_FLAG', 'DTI', 'FULL_AGE_CHILD_NUMBER', 'DEPENDAN
         T_NUMBER', 'BANKACCOUNT_FLAG', 'Period_at_work', 'age', 'max90days', 'm
         ax60days', 'max30days', 'max21days', 'max14days', 'avg_num_delay', 'if_
         zalog', 'num AccountActive180', 'num AccountActive90', 'num AccountActi
         ve60', 'Active to All prc', 'numAccountActiveAll', 'numAccountClosed',
         'sum of paym months', 'all credits', 'Active not cc', 'own closed', 'mi
         n_MnthAfterLoan', 'max_MnthAfterLoan', 'dlq_exist', 'thirty_in_a_year',
         'sixty in a year', 'ninety in a year', 'thirty vintage', 'sixty vintage'
         e', 'ninety vintage']
         cat cols: ['INCOME BASE TYPE', 'CREDIT PURPOSE', 'SEX', 'EDUCATION',
         'EMPL TYPE', 'EMPL SIZE', 'EMPL PROPERTY', 'EMPL FORM', 'FAMILY STATU
         S']
         all_cols: ['INCOME_BASE_TYPE', 'CREDIT_PURPOSE', 'SEX', 'EDUCATION',
         'EMPL TYPE', 'EMPL SIZE', 'EMPL PROPERTY', 'EMPL FORM', 'FAMILY STATU
         S', 'INSURANCE FLAG', 'DTI', 'FULL AGE CHILD NUMBER', 'DEPENDANT NUMBE
            'BANKACCOUNT FLAG', 'Period at work', 'age', 'max90days', 'max60day
         s', 'max30days', 'max21days', 'max14days', 'avg num delay', 'if zalog',
         'num_AccountActive180', 'num_AccountActive90', 'num_AccountActive60',
         'Active to All prc', 'numAccountActiveAll', 'numAccountClosed', 'sum_of
         _paym_months', 'all_credits', 'Active_not_cc', 'own_closed', 'min_MnthA
```

# 1.1.1. Количество уникальных значений, нулевых и пустых значений доля в % от общего количества

fterLoan', 'max\_MnthAfterLoan', 'dlq\_exist', 'thirty\_in\_a\_year', 'sixty
 in a year', 'ninety in a year', 'thirty vintage', 'sixty vintage', 'ni

nety vintage']

**Вывод:** примерно по половине переменных доля пропущенных значений составляет около 63.96%. Это говорит нам о том, что выкидывать строки с пропущенными значениями из датасета не стоит, иначе мы потеряем большую часть всей выборки!

**Анализ пропущенных значений** показал, что общие данные доступны практически по всем потенциальным заемщикам, при этом более специфические банковские данные отсуствуют более, чем у половины потенциальных заемщиков.

Нам доступны некоторые общие данные о заемщиках (судя по переменным, это данные о заемщиках), например, по возрасту, полу, образованию, цели кредитования. В этих данных пропуски практически отсутствуют, при этом значительная доля пропусков есть в таких переменных, как, например, данные о кредитах, счетах, просрочках, платежах за определенный период. Данная ситуация реалистична, ведь банку впонле могут быть недоступны данные о счетах и кредитах, если человек не брал кредиты/не открывал счета или обслуживался в другом банке, или вообще не пользовался банковскими услугами до этого.

**Анализ нулевых значений** продемонстрировал, что у приблизительно 60% заемщиков нет совершеннолетних детей, вероятно, эти данные могут вносить некоторые проблемы при построении линейных моделей, так как, по моей гипотезе, будут сильно коррелировать с возрастом. Это не причина удалять эту перменную, но неплохо было бы держать этот факт в голове при построении моделей. Другой интересный вывод из анализа нулевых значений можно сделать по переменным, которые начинаются на "max" и несут в себе информацию о том, делали ли запросы в бюро кредитных историй по ним или нет. Нулевых значений за последние 90 дней всего 1000, а это значит, что заемщики обращаются сразу в несколько банков в поисках лучших условий.

Третий вывод заключается в том, что все заемщики, по которым есть такие данные, ранее брали кредиты - 0 нулевых значений в переменной all\_credits. Это частично соотносится с моей гипотезой в пункте про пропущенные значения о том, что много пропусков, так как не использовал кредиты. Интересная идея бы была ввести еще одну переменную "есть ли данные о кредитах по заемщику или нет"

**Анализ уникальных значений** Один заемщик встречается в датасете только один раз Есть некоторые переменные, которые принимают очень небольшое количество значений (до 10), большинство из них - категориальные

```
In [5]: # Посчитаем уникальные значения по каждому столбцу
         # Количество уникальных значений как доля от общего числа значений !не учитывая пус
        тые!
        uniques_share = []
        uniques = []
         for col in df:
                 uniques.append(len(df[col].unique()))
                 uniques_share.append(len(df[col].unique()) / (df[col]).count())
         # Количество пустных(nan) и нулевых (zero) значений по столбцам как доля от общег
        о числа
         # Также добавил абсолютные количества уникальных, нулевых и пустых значений
        null nan df = pd.DataFrame()
         null_nan_df['nan'] = (max(df.isnull().count()) - df.count())
         null_nan_df['zero'] = (df == 0).sum()
         null_nan_df['unique'] = uniques
         null_nan_df['nan_share'] = (max(df.isnull().count()) - df.count()) / max
         (df.isnull().count())
         null nan df['zero share'] = (df == 0).sum() / max(df.count())
         null_nan_df['unique_share'] = uniques_share
         null_nan_df
```

Out[5]:

|                       | nan  | zero  | unique | nan_share | zero_share | unique_share |
|-----------------------|------|-------|--------|-----------|------------|--------------|
| ID                    | 0    | 0     | 10242  | 0.000000  | 0.000000   | 1.000000     |
| INCOME_BASE_TYPE      | 81   | 0     | 6      | 0.007909  | 0.000000   | 0.000590     |
| CREDIT_PURPOSE        | 0    | 0     | 10     | 0.000000  | 0.000000   | 0.000976     |
| INSURANCE_FLAG        | 1    | 4082  | 3      | 0.000098  | 0.398555   | 0.000293     |
| DTI                   | 140  | 0     | 59     | 0.013669  | 0.000000   | 0.005840     |
| SEX                   | 0    | 0     | 2      | 0.000000  | 0.000000   | 0.000195     |
| FULL_AGE_CHILD_NUMBER | 0    | 6111  | 6      | 0.000000  | 0.596661   | 0.000586     |
| DEPENDANT_NUMBER      | 0    | 10208 | 3      | 0.000000  | 0.996680   | 0.000293     |
| EDUCATION             | 0    | 0     | 9      | 0.000000  | 0.000000   | 0.000879     |
| EMPL_TYPE             | 12   | 0     | 10     | 0.001172  | 0.000000   | 0.000978     |
| EMPL_SIZE             | 138  | 0     | 9      | 0.013474  | 0.000000   | 0.000891     |
| BANKACCOUNT_FLAG      | 2234 | 6326  | 5      | 0.218121  | 0.617653   | 0.000624     |
| Period_at_work        | 2234 | 0     | 357    | 0.218121  | 0.000000   | 0.044580     |
| age                   | 2234 | 0     | 42     | 0.218121  | 0.000000   | 0.005245     |
| EMPL_PROPERTY         | 2235 | 0     | 13     | 0.218219  | 0.000000   | 0.001624     |
| EMPL_FORM             | 6231 | 0     | 7      | 0.608377  | 0.000000   | 0.001745     |
| FAMILY_STATUS         | 6232 | 0     | 7      | 0.608475  | 0.000000   | 0.001746     |
| max90days             | 6287 | 1107  | 20     | 0.613845  | 0.108084   | 0.005057     |
| max60days             | 6287 | 1529  | 16     | 0.613845  | 0.149287   | 0.004046     |
| max30days             | 6287 | 1980  | 16     | 0.613845  | 0.193322   | 0.004046     |
| max21days             | 6287 | 2371  | 15     | 0.613845  | 0.231498   | 0.003793     |
| max14days             | 6287 | 2578  | 15     | 0.613845  | 0.251709   | 0.003793     |
| avg_num_delay         | 6560 | 1522  | 1147   | 0.640500  | 0.148604   | 0.311515     |
| if_zalog              | 6551 | 2460  | 3      | 0.639621  | 0.240187   | 0.000813     |
| num_AccountActive180  | 6551 | 2603  | 7      | 0.639621  | 0.254150   | 0.001897     |
| num_AccountActive90   | 6551 | 3142  | 6      | 0.639621  | 0.306776   | 0.001626     |
| num_AccountActive60   | 6551 | 3341  | 5      | 0.639621  | 0.326206   | 0.001355     |
| Active_to_All_prc     | 6551 | 499   | 90     | 0.639621  | 0.048721   | 0.024384     |
| numAccountActiveAll   | 6551 | 481   | 15     | 0.639621  | 0.046963   | 0.004064     |
| numAccountClosed      | 6551 | 423   | 23     | 0.639621  | 0.041301   | 0.006231     |
| sum_of_paym_months    | 6551 | 9     | 316    | 0.639621  | 0.000879   | 0.085614     |
| all_credits           | 6551 | 0     | 29     | 0.639621  | 0.000000   | 0.007857     |
| Active_not_cc         | 6551 | 1258  | 10     | 0.639621  | 0.122828   | 0.002709     |
| own_closed            | 6551 | 2100  | 10     | 0.639621  | 0.205038   | 0.002709     |

|                   | nan  | zero | unique | nan_share | zero_share | unique_share |
|-------------------|------|------|--------|-----------|------------|--------------|
| min_MnthAfterLoan | 6551 | 152  | 98     | 0.639621  | 0.014841   | 0.026551     |
| max_MnthAfterLoan | 6551 | 9    | 134    | 0.639621  | 0.000879   | 0.036305     |
| dlq_exist         | 6551 | 1531 | 3      | 0.639621  | 0.149483   | 0.000813     |
| thirty_in_a_year  | 6551 | 3152 | 3      | 0.639621  | 0.307752   | 0.000813     |
| sixty_in_a_year   | 6551 | 3378 | 3      | 0.639621  | 0.329818   | 0.000813     |
| ninety_in_a_year  | 6551 | 3443 | 3      | 0.639621  | 0.336165   | 0.000813     |
| thirty_vintage    | 6551 | 3566 | 3      | 0.639621  | 0.348174   | 0.000813     |
| sixty_vintage     | 6551 | 3628 | 3      | 0.639621  | 0.354228   | 0.000813     |
| ninety_vintage    | 6551 | 3626 | 3      | 0.639621  | 0.354032   | 0.000813     |

### 1.1.2. Среднее значение, медиана, стандартное отклонение, минимум, максимум

```
In [6]: # Посмотрим основные статистики по переменным # Код для медианы: https://stackoverflow.com/questions/38545828/pandas-des cribe-by-additional-parameters

def describe(df, stats):
    d = df.describe()
    return d.append(df.reindex(d.columns, axis=1).agg(stats))

describe(df,['median']).T
```

Out[6]:

|                       | count   | mean         | std          | min        | 25%          |      |
|-----------------------|---------|--------------|--------------|------------|--------------|------|
| ID                    | 10242.0 | 1.102422e+06 | 59135.101251 | 1000012.00 | 1.051217e+06 | 1.10 |
| INSURANCE_FLAG        | 10241.0 | 6.014061e-01 | 0.489633     | 0.00       | 0.000000e+00 | 1.00 |
| DTI                   | 10102.0 | 3.843239e-01 | 0.137268     | 0.02       | 2.800000e-01 | 4.00 |
| FULL_AGE_CHILD_NUMBER | 10242.0 | 5.508690e-01 | 0.765683     | 0.00       | 0.000000e+00 | 0.00 |
| DEPENDANT_NUMBER      | 10242.0 | 4.393673e-03 | 0.080765     | 0.00       | 0.000000e+00 | 0.00 |
| BANKACCOUNT_FLAG      | 8008.0  | 3.882368e-01 | 0.878960     | 0.00       | 0.000000e+00 | 0.00 |
| Period_at_work        | 8008.0  | 6.549476e+01 | 66.605621    | 6.00       | 2.000000e+01 | 4.40 |
| age                   | 8008.0  | 3.624525e+01 | 8.557874     | 23.00      | 2.900000e+01 | 3.50 |
| max90days             | 3955.0  | 1.588875e+00 | 1.872620     | 0.00       | 0.000000e+00 | 1.00 |
| max60days             | 3955.0  | 1.149937e+00 | 1.533976     | 0.00       | 0.000000e+00 | 1.00 |
| max30days             | 3955.0  | 8.541087e-01 | 1.314756     | 0.00       | 0.000000e+00 | 0.00 |
| max21days             | 3955.0  | 6.356511e-01 | 1.134145     | 0.00       | 0.000000e+00 | 0.00 |
| max14days             | 3955.0  | 5.340076e-01 | 1.041401     | 0.00       | 0.000000e+00 | 0.00 |
| avg_num_delay         | 3682.0  | 6.398852e-02 | 0.113813     | 0.00       | 0.000000e+00 | 1.66 |
| if_zalog              | 3691.0  | 3.335140e-01 | 0.471532     | 0.00       | 0.000000e+00 | 0.00 |
| num_AccountActive180  | 3691.0  | 3.993498e-01 | 0.717825     | 0.00       | 0.000000e+00 | 0.00 |
| num_AccountActive90   | 3691.0  | 1.766459e-01 | 0.461771     | 0.00       | 0.000000e+00 | 0.00 |
| num_AccountActive60   | 3691.0  | 1.083717e-01 | 0.354855     | 0.00       | 0.000000e+00 | 0.00 |
| Active_to_All_prc     | 3691.0  | 4.199447e-01 | 0.290623     | 0.00       | 2.198068e-01 | 3.84 |
| numAccountActiveAll   | 3691.0  | 2.201300e+00 | 1.707106     | 0.00       | 1.000000e+00 | 2.00 |
| numAccountClosed      | 3691.0  | 3.554050e+00 | 3.166558     | 0.00       | 1.000000e+00 | 3.00 |
| sum_of_paym_months    | 3691.0  | 8.035221e+01 | 67.576567    | 0.00       | 3.000000e+01 | 6.20 |
| all_credits           | 3691.0  | 5.755351e+00 | 4.022568     | 1.00       | 3.000000e+00 | 5.00 |
| Active_not_cc         | 3691.0  | 1.090219e+00 | 1.093087     | 0.00       | 0.000000e+00 | 1.00 |
| own_closed            | 3691.0  | 7.233812e-01 | 1.063381     | 0.00       | 0.000000e+00 | 0.00 |
| min_MnthAfterLoan     | 3691.0  | 1.408236e+01 | 15.448796    | -1.00      | 4.000000e+00 | 9.00 |
| max_MnthAfterLoan     | 3691.0  | 6.149092e+01 | 30.197832    | -1.00      | 3.500000e+01 | 6.70 |
| dlq_exist             | 3691.0  | 5.852073e-01 | 0.492753     | 0.00       | 0.000000e+00 | 1.00 |
| thirty_in_a_year      | 3691.0  | 1.460309e-01 | 0.353185     | 0.00       | 0.000000e+00 | 0.00 |
| sixty_in_a_year       | 3691.0  | 8.480087e-02 | 0.278623     | 0.00       | 0.000000e+00 | 0.00 |
| ninety_in_a_year      | 3691.0  | 6.719046e-02 | 0.250385     | 0.00       | 0.000000e+00 | 0.00 |
| thirty_vintage        | 3691.0  | 3.386616e-02 | 0.180909     | 0.00       | 0.000000e+00 | 0.00 |
| sixty_vintage         | 3691.0  | 1.706855e-02 | 0.129544     | 0.00       | 0.000000e+00 | 0.00 |
| ninety_vintage        | 3691.0  | 1.761040e-02 | 0.131548     | 0.00       | 0.000000e+00 | 0.00 |

**Выводы:** можно заметить, что размерности у величин разные, например, возраст в годах, а период на работе скорее всего в месяцах, какие-то переменные вообще в днях, это может оказаться важным, если бы мы создавали какие-то дополнительные фичи для модели, но я не планирую такого делать, поэтому в целом можно сказать, что данный анализ не выявил никаких существенных выводов

### 1.1.2. Тип данных по каждому показателю

In [7]: # Посмотрим основные данные о датасете и переменных df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 10242 entries, 0 to 10241
Data columns (total 43 columns):

|          | columns (total 43 colu  |                |         |
|----------|-------------------------|----------------|---------|
| #        | Column                  | Non-Null Count | Dtype   |
|          |                         |                |         |
| 0        | ID                      | 10242 non-null | int64   |
| 1        | INCOME BASE TYPE        | 10161 non-null | object  |
| 2        | CREDIT PURPOSE          | 10242 non-null | object  |
| 3        | INSURANCE FLAG          | 10241 non-null | float64 |
| 4        | <del>-</del>            |                |         |
|          | DTI                     | 10102 non-null | float64 |
| 5        | SEX                     | 10242 non-null | object  |
| 6        | FULL_AGE_CHILD_NUMBER   | 10242 non-null | int64   |
| 7        | DEPENDANT_NUMBER        | 10242 non-null | int64   |
| 8        | EDUCATION               | 10242 non-null | object  |
| 9        | EMPL_TYPE               | 10230 non-null | object  |
| 10       | EMPL_SIZE               | 10104 non-null | object  |
| 11       | BANKACCOUNT FLAG        | 8008 non-null  | float64 |
| 12       | Period at work          | 8008 non-null  | float64 |
| 13       | age                     | 8008 non-null  | float64 |
| 14       | EMPL PROPERTY           | 8007 non-null  | object  |
| 15       | EMPL FORM               | 4011 non-null  | object  |
|          | <del>_</del>            |                | _       |
| 16       | FAMILY_STATUS           | 4010 non-null  | object  |
| 17       | max90days               | 3955 non-null  | float64 |
| 18       | max60days               | 3955 non-null  | float64 |
| 19       | max30days               | 3955 non-null  | float64 |
| 20       | max21days               | 3955 non-null  | float64 |
| 21       | max14days               | 3955 non-null  | float64 |
| 22       | avg num delay           | 3682 non-null  | float64 |
| 23       | if zalog                | 3691 non-null  | float64 |
| 24       | num AccountActive180    | 3691 non-null  | float64 |
| 25       | num AccountActive90     | 3691 non-null  | float64 |
| 26       | num AccountActive60     | 3691 non-null  | float64 |
| 27       | Active_to_All_prc       | 3691 non-null  | float64 |
|          | numAccountActiveAll     |                |         |
| 28       |                         | 3691 non-null  | float64 |
| 29       | numAccountClosed        | 3691 non-null  |         |
| 30       | sum_of_paym_months      | 3691 non-null  |         |
| 31       | all_credits             | 3691 non-null  |         |
| 32       | Active_not_cc           | 3691 non-null  | float64 |
| 33       | own_closed              | 3691 non-null  | float64 |
| 34       | min_MnthAfterLoan       | 3691 non-null  | float64 |
| 35       | max MnthAfterLoan       | 3691 non-null  | float64 |
| 36       | _<br>dlq exist          | 3691 non-null  | float64 |
| 37       | thirty_in_a_year        | 3691 non-null  | float64 |
| 38       | sixty_in_a_year         | 3691 non-null  | float64 |
|          |                         |                |         |
| 39<br>40 | ninety_in_a_year        | 3691 non-null  | float64 |
| 40       | thirty_vintage          | 3691 non-null  | float64 |
| 41       | sixty_vintage           | 3691 non-null  | float64 |
| 42       | ninety_vintage          | 3691 non-null  | float64 |
|          | es: float64(31), int64( | 3), object(9)  |         |
| memoi    | ry usage: 3.4+ MB       |                |         |
|          |                         |                |         |

file:///Users/alexeysek/Downloads/HW\_1 SAS.html

**Выводы:** все переменные делятся на два типа: текстовые и числовые (нецелые), при этом целочисленными являются только ID и номер варианта

#### 1.1.3. Распределение данных по полу, возрасту и другим категориальным показателям

#### Выводы:

В датасете 9 категориальных признаков

- INCOME\_BASE\_TYPE
- CREDIT\_PURPOSE
- SEX
- EDUCATION
- EMPL\_TYPE
- EMPL SIZE
- EMPL\_PROPERTY
- EMPL\_FORM
- FAMILY\_STATUS

```
In [10]: # Ποςπρούμα εραφάκα
fig, ax = plt.subplots(len(cat_var), figsize=(25, 70))
sns.set_style()

for i in range(len(cat_var)):
    sns.countplot(x=str(cat_var[i]), data=df, ax = ax[i])
    ax[i].title.set_text(str(cat_var[i]))
```





#### Выводы:

• Большинство людей подтверждают доходы через 2НДФЛ, второй по попоулярности вариант - поступлениие зарплаты на счет (думаю, этот вариант доступен только для клиентов банка, в котором хотят взять кредит), далее идут бланк без печати работодателя (не знаком с такой формой, но, возможно, такие заявки стоило бы проверять тщательнее), меньше всего - в свободной форме с печатью работодателя (также стоит обратить внимание).

- Основная цель кредита это ремонт, покупка авто и недвижимости, остальные категории имеют очень низкие доли
- Большая часть потенциальных заемщиков мужчины
- У большинства потенциальных заемщиков есть как минимум среднее специальное образование. Второе высшее дублируется в двух вариантах ответа, что кажется мне странным
- Большая доля потенциальных заемщиков это специалисты, менеджеры среднего звена, вспомогательный персонал и рабочие. Есть две категории (торговый представитель и страховой агент, которые на самом деле стоило бы отнести к какому-то из других типов (например, страховой агент скорее всего является специалистом, как и торговый представитель)
- Большая доля потенциальных заемщиков работает в крупных компаниях (более 250 сотрудников)
- Большая доля потенциальных заемщиков работает в торговле и производстве, велика доля категории "Другое"
- Большая доля потенциальных заемщиков работает в компаниях организационно-правовой формы ООО
- Большая доля потенциальных заемщиков женаты, при этом, как мне кажется, многие предпочитают выбирать категорию "не замужем" вместо "гражданский брак" не думаю, что все готовы раскрывать свой семейный статус. "Повторный брак" является подкатегорией "женат/замужем" классификация, как бы сказали консультанты не МЕСЕ)

#### 1.2.1. Проверка на полноту данных по клиентам

```
In [11]: # Количество пропущенных полей по клиентам, включая ID
plt.hist(df.isnull().sum(axis=1))

# Количество полей всего, включая ID
len(df.columns.values)
```

#### Out[11]: 43



**Выводы:** у большой доли клиентов более 25 пропущенных полей, поэтому, как упомяналось ранее - нет целесообразности в том, чтобы удалять наблюдения (клиентов), чтобы не потерять большую долю всех данных

#### 1.2.2. Проверка на наличие некорректных знаков

```
In [21]: # Некоторые переменные имеют слишком большие значения и из-за них масштаб графика не дает проанализировать остальные num_var_list = num_var

num_var_list.remove('Period_at_work')
num_var_list.remove('sum_of_paym_months')
num_var_list.remove('min_MnthAfterLoan')
num_var_list.remove('max_MnthAfterLoan')
num_var_list.remove('age')

additional_num_var_list = ['Period_at_work', 'sum_of_paym_months', 'min_MnthAfterLoan', 'max_MnthAfterLoan', 'age']
```

```
In [16]: # Построем boxplot для числовых признаков
fig, axes = plt.subplots(figsize=(20,10))

sns.set(style="whitegrid")
sns.boxplot(data=df.loc[:,num_var_list], ax = axes, orient ='h')
```

#### Out[16]: <matplotlib.axes. subplots.AxesSubplot at 0x7fcff41368b0>



```
In [22]: # Возраст и 4 других показателя несколько выбивались по размерности от других показа
    meneй, искажая график выше, поэтому сделал их отдельно
    fig, axes = plt.subplots()

sns.set(style="whitegrid")
sns.boxplot(data=df[additional_num_var_list], ax = axes, orient ='h')
```

Out[22]: <matplotlib.axes. subplots.AxesSubplot at 0x7fcff58b41c0>



Выводы: отклонений в знаках не обнаружено

#### 1.2.3. Проверка на пропущенные значения в полях

```
In [23]: # Этот код уже использовался выше, так как я смотрел количство пропущенных значен ий по столбцам

null_nan_df = pd.DataFrame()

null_nan_df['nan'] = (max(df.isnull().count()) - df.count())

null_nan_df['nan_share'] = (max(df.isnull().count()) - df.count()) / max

(df.isnull().count())

null_nan_df
```

### Out[23]:

|                       | nan  | nan_share |
|-----------------------|------|-----------|
| ID                    | 0    | 0.000000  |
| INCOME_BASE_TYPE      | 81   | 0.007909  |
| CREDIT_PURPOSE        | 0    | 0.000000  |
| INSURANCE_FLAG        | 1    | 0.000098  |
| DTI                   | 140  | 0.013669  |
| SEX                   | 0    | 0.000000  |
| FULL_AGE_CHILD_NUMBER | 0    | 0.000000  |
| DEPENDANT_NUMBER      | 0    | 0.000000  |
| EDUCATION             | 0    | 0.000000  |
| EMPL_TYPE             | 12   | 0.001172  |
| EMPL_SIZE             | 138  | 0.013474  |
| BANKACCOUNT_FLAG      | 2234 | 0.218121  |
| Period_at_work        | 2234 | 0.218121  |
| age                   | 2234 | 0.218121  |
| EMPL_PROPERTY         | 2235 | 0.218219  |
| EMPL_FORM             | 6231 | 0.608377  |
| FAMILY_STATUS         | 6232 | 0.608475  |
| max90days             | 6287 | 0.613845  |
| max60days             | 6287 | 0.613845  |
| max30days             | 6287 | 0.613845  |
| max21days             | 6287 | 0.613845  |
| max14days             | 6287 | 0.613845  |
| avg_num_delay         | 6560 | 0.640500  |
| if_zalog              | 6551 | 0.639621  |
| num_AccountActive180  | 6551 | 0.639621  |
| num_AccountActive90   | 6551 | 0.639621  |
| num_AccountActive60   | 6551 | 0.639621  |
| Active_to_All_prc     | 6551 | 0.639621  |
| numAccountActiveAll   | 6551 | 0.639621  |
| numAccountClosed      | 6551 | 0.639621  |
| sum_of_paym_months    | 6551 | 0.639621  |
| all_credits           | 6551 | 0.639621  |
| Active_not_cc         | 6551 | 0.639621  |
| own_closed            | 6551 | 0.639621  |

|                   | nan  | nan_share |
|-------------------|------|-----------|
| min_MnthAfterLoan | 6551 | 0.639621  |
| max_MnthAfterLoan | 6551 | 0.639621  |
| dlq_exist         | 6551 | 0.639621  |
| thirty_in_a_year  | 6551 | 0.639621  |
| sixty_in_a_year   | 6551 | 0.639621  |
| ninety_in_a_year  | 6551 | 0.639621  |
| thirty_vintage    | 6551 | 0.639621  |
| sixty_vintage     | 6551 | 0.639621  |
| ninety_vintage    | 6551 | 0.639621  |

Выводы: уже упоминались подробно в предыдущих частях анализа

### 1.3.1.Корректировка данных – исправление ошибок

| In [25]:            | <pre>df[num_var] = df[num_var].fillna(-10000)</pre> |           |                                              |                |                |      |         |        |  |  |  |
|---------------------|-----------------------------------------------------|-----------|----------------------------------------------|----------------|----------------|------|---------|--------|--|--|--|
| In [26]:            | df                                                  | df.head() |                                              |                |                |      |         |        |  |  |  |
| Out[26]:            |                                                     | ID        | INCOME_BASE_TYPE                             | CREDIT_PURPOSE | INSURANCE_FLAG | DTI  | SEX     | FULL_A |  |  |  |
|                     | 0                                                   | 1000012   | Форма банка (без<br>печати работодателя)     | Ремонт         | 1.0            | 0.59 | мужской |        |  |  |  |
|                     | 1                                                   | 1000032   | 2НДФЛ                                        | Ремонт         | 1.0            | 0.55 | мужской |        |  |  |  |
|                     | 2                                                   | 1000052   | 2НДФЛ                                        | Ремонт         | 1.0            | 0.23 | женский |        |  |  |  |
|                     | 3                                                   | 1000072   | Свободная форма с<br>печатью<br>работодателя | Покупка земли  | 0.0            | 0.32 | мужской |        |  |  |  |
|                     | 4                                                   | 1000092   | Поступление<br>зарплаты на счет              | Ремонт         | 0.0            | 0.31 | мужской |        |  |  |  |
| 5 rows × 43 columns |                                                     |           |                                              |                |                |      |         |        |  |  |  |

**Выводы:** существенных ошибок нет, кроме пропусков, я предлагаю заменить их каким-то отрицальным числом (-10000), большим по модулю, чтобы модели легко различали такие наблюдения, но при этом не пропускали бы такие наблюдения, также это удобно для графиков

Стоит отметить, что мы заполняли пропуски здесь только для числовых переменных

# 1.3.2.Исключение клиентов с большим числом пропусков или восстанавление пропущенных значений

**Выводы:** не будем исключать клиентов с большим числом пропусков, так как они составляют около 60% выборки, пропущенные значения заполнили методом, описанным в предыдущем пункте

#### 1.3.3. Перевод категориальных признаков в целочисленные

```
In [27]: # Закодируем категориальные переменные с помощью onehot-encoding df = pd.get_dummies(df, columns=cat_var) df = df.fillna(-10000) df.head(10)
```

Out[27]:

|   | ID      | INSURANCE_FLAG | DTI  | FULL_AGE_CHILD_NUMBER | DEPENDANT_NUMBER | BANKA |
|---|---------|----------------|------|-----------------------|------------------|-------|
| 0 | 1000012 | 1.0            | 0.59 | 0                     | 0                |       |
| 1 | 1000032 | 1.0            | 0.55 | 0                     | 0                |       |
| 2 | 1000052 | 1.0            | 0.23 | 1                     | 0                |       |
| 3 | 1000072 | 0.0            | 0.32 | 0                     | 0                |       |
| 4 | 1000092 | 0.0            | 0.31 | 2                     | 0                |       |
| 5 | 1000112 | 0.0            | 0.22 | 1                     | 0                |       |
| 6 | 1000132 | 1.0            | 0.12 | 0                     | 0                |       |
| 7 | 1000152 | 0.0            | 0.44 | 0                     | 0                |       |
| 8 | 1000172 | 0.0            | 0.42 | 0                     | 0                |       |
| 9 | 1000192 | 0.0            | 0.58 | 0                     | 0                |       |
|   |         |                |      |                       |                  |       |

10 rows × 101 columns

**Выводы:** используя one-hot-encoder, мы закодировали категориальные переменные для дальнейшего использования в построении моделей сегментации

<sup>\*</sup> корреляционная матрица

```
In [28]: # Форма немного странная, потому что здесь также включены и категориальные переме нные, которые я перевел в dummies fig, axes = plt.subplots(figsize=(30,30)) sns.heatmap(df.corr())
```

Out[28]: <matplotlib.axes.\_subplots.AxesSubplot at 0x7fcff5a45700>



#### Выводы:

- У большинства переменных корреляция с другими низкая по модулю (близка к 0)
- Переменные с приставкой тах (количество запросов в кредитное бюро) очень сильно коррелируют друг с другом, что соотносится со здравым смыслом. Их стоит как-то сгруппировать или оставить лишь одну из этой группы
- Такой же вывод про переменные ninety..., sixty...,thirty\_... Их стоит как-то сгруппировать или оставить лишь одну из этой группы
- Некоторые выводы, которые, как я предполагаю, не очень полезны, например: Чем ближе к текущему моменту дали последний кредит тем больше открытых счетов

### 1.4.1. Выводы по исследованию данных

# Выводы ниже будут основаны на выводах, которые делались в каждой из подчастей выше

### 1.1.1. Количество уникальных значений, нулевых и пустых значений доля в % от общего количества

Вывод: примерно по половине переменных доля пропущенных значений составляет около 63.96%. Это говорит нам о том, что выкидывать строки с пропущенными значениями из датасета не стоит, иначе мы потеряем большую часть всей выборки!

**Анализ пропущенных значений** показал, что общие данные доступны практически по всем потенциальным заемщикам, при этом более специфические банковские данные отсуствуют более, чем у половины потенциальных заемщиков.

Нам доступны некоторые общие данные о заемщиках (судя по переменным, это данные о заемщиках), например, по возрасту, полу, образованию, цели кредитования. В этих данных пропуски практически отсутствуют, при этом значительная доля пропусков есть в таких переменных, как, например, данные о кредитах, счетах, просрочках, платежах за определенный период. Данная ситуация реалистична, ведь банку впонле могут быть недоступны данные о счетах и кредитах, если человек не брал кредиты/не открывал счета или обслуживался в другом банке, или вообще не пользовался банковскими услугами до этого.

Анализ нулевых значений продемонстрировал, что у приблизительно 60% заемщиков нет совершеннолетних детей, вероятно, эти данные могут вносить некоторые проблемы при построении линейных моделей, так как, по моей гипотезе, будут сильно коррелировать с возрастом. Это не причина удалять эту перменную, но неплохо было бы держать этот факт в голове при построении моделей. Другой интересный вывод из анализа нулевых значений можно сделать по переменным, которые начинаются на "max" и несут в себе информацию о том, делали ли запросы в бюро кредитных историй по ним или нет. Нулевых значений за последние 90 дней всего 1000, а это значит, что заемщики обращаются сразу в несколько банков в поисках лучших условий.

Третий вывод заключается в том, что все заемщики, по которым есть такие данные, ранее брали кредиты - 0 нулевых значений в переменной all\_credits. Это частично соотносится с моей гипотезой в пункте про пропущенные значения о том, что много пропусков, так как не использовал кредиты. Интересная идея бы была ввести еще одну переменную "есть ли данные о кредитах по заемщику или нет"

**Анализ уникальных значений** Один заемщик встречается в датасете только один раз Есть некоторые переменные, которые принимают очень небольшое количество значений (до 10), большинство из них - категориальные

## 1.1.2. Среднее значение, медиана, стандартное отклонение, минимум, максимум + Типы данных по переменным

**Выводы:** можно заметить, что размерности у величин разные, например, возраст в годах, а период на работе скорее всего в месяцах, какие-то переменные вообще в днях, это может оказаться важным, если бы мы создавали какие-то дополнительные фичи для модели, но я не планирую такого делать, поэтому в целом можно сказать, что данный анализ не выявил никаких существенных выводов

**Выводы:** все переменные делятся на два типа: текстовые и числовые (нецелые), при этом целочисленными являются только ID и номер варианта

#### 1.1.3. Распределение данных по полу, возрасту и другим категориальным показателям

#### Выводы:

- Большинство людей подтверждают доходы через 2НДФЛ, второй по попоулярности вариант поступлениие зарплаты на счет (думаю, этот вариант доступен только для клиентов банка, в котором хотят взять кредит), далее идут бланк без печати работодателя (не знаком с такой формой, но, возможно, такие заявки стоило бы проверять тщательнее), меньше всего в свободной форме с печатью работодателя (также стоит обратить внимание).
- Основная цель кредита это ремонт, покупка авто и недвижимости, остальные категории имеют очень низкие доли
- Большая часть потенциальных заемщиков мужчины
- У большинства потенциальных заемщиков есть как минимум среднее специальное образование. Второе высшее дублируется в двух вариантах ответа, что кажется мне странным
- Большая доля потенциальных заемщиков это специалисты, менеджеры среднего звена, вспомогательный персонал и рабочие. Есть две категории (торговый представитель и страховой агент, которые на самом деле стоило бы отнести к какому-то из других типов (например, страховой агент скорее всего является специалистом, как и торговый представитель)
- Большая доля потенциальных заемщиков работает в крупных компаниях (более 250 сотрудников)
- Большая доля потенциальных заемщиков работает в торговле и производстве, велика доля категории "Другое"
- Большая доля потенциальных заемщиков работает в компаниях организационно-правовой формы ООО
- Большая доля потенциальных заемщиков женаты, при этом, как мне кажется, многие предпочитают выбирать категорию "не замужем" вместо "гражданский брак" не думаю, что все готовы раскрывать свой семейный статус. "Повторный брак" является подкатегорией "женат/замужем" классификация, как бы сказали консультанты не МЕСЕ)

#### 1.2. Полнота и корректность данных

**Выводы:** у большой доли клиентов более 25 пропущенных полей, поэтому, как упомяналось ранее - нет целесообразности в том, чтобы удалять наблюдения (клиентов), чтобы не потерять большую долю всех данных

Выводы: отклонений в знаках не обнаружено

# 1.3. Корректировка данных – исправление ошибок / Удаление пропущенных наблюдений / Перевод категориальных признаков в целочисленные

**Выводы:** существенных ошибок нет, кроме пропусков, я предлагаю заменить их каким-то отрицальным числом (-1000), большим по модулю, чтобы модели легко различали такие наблюдения, но при этом не пропускали бы такие наблюдения

Стоит отметить, что мы заполняли пропуски здесь только для числовых переменных

**Выводы:** не будем исключать клиентов с большим числом пропусков, так как они составляют около 60% выборки, пропущенные значения заполнили методом, описанным в предыдущем пункте

**Выводы:** используя one-hot-encoder, мы закодировали категориальные переменные для дальнейшего использования в построении моделей сегментации

#### Корреляционная матрица признаков

Выводы:

• У большинства переменных корреляция с другими низкая по модулю (близка к 0)

- Переменные с приставкой тах (количество запросов в кредитное бюро) очень сильно коррелируют друг с другом, что соотносится со здравым смыслом. Их стоит как-то сгруппировать или оставить лишь одну из этой группы
- Такой же вывод про переменные ninety..., sixty...,thirty\_... Их стоит как-то сгруппировать или оставить лишь одну из этой группы
- Некоторые выводы, которые, как я предполагаю, не очень полезны, например: Чем ближе к текущему моменту дали последний кредит тем больше открытых счетов

EMPL\_SIZE в файле был отмечен, как зарплата, но даже по распределению понятно, что это не так

# 2. Сегментация клиентов

### Для выполнения данной части я выбрал два способа сегментации:

#### 1. RFM сегментация (квантили)

• Описание метода: выделяются три важных характеристики покупателей (Recency - давность последней покупки, Frequency - частота покупок, Monetary - общая сумма трат). Далее по каждому фактору строятся квантили (я использовал разделение на 3 равных по количеству наблюдений части). Таким образом, каждому покупателю присваивается значение от 1 до 3 включительно для каждого из показателей (R,F,M). Далее можно просто разбить на 333 = 27 сегментов - можно немного углубиться и попытаться сгруппировать эти сегменты в более крупные, которые будут максимально похожи внутри такого крупного сегмента

#### • Преимущества данного метода:

- Прост и легко интерпетируем не только для аналитиков, но и для "людей из бизнеса"
- Быстрота реализации гораздо быстрее для больших датасетов, чем, например, градиентный бустинг, в целом нет процесса обучения модели, поэтому результаты можно увидеть почти мгновенно
- Отличный вариант для предварительного анализа можно понять основные закономерности и особенности клиентов, а дальше уже углубляться с более сложными моделями

#### • Недостатки данного метода:

- Данные по какому-то из показателей (R / F / M) может быть недоступен для большой доли выборки, тогда сегментацию не построить
- Учитывает только 3 характеристики клиентов, а на деле их гораздо больше
- Скорее направлен на сегментацию текущей базы клиентов, но не помогает в привлечении новых клиентов (неприменимость к прогнозному сегментированию)

#### 2. Кластеризация без учителя (k-means)

• Описание метода: Очень важным моментом является необходимость в нормализации данных данных (я использлвал вычитание среднего и деление на стандартное отклонение), так как метод основан на вычислении евклидова расстояния. Основываясь на лекции, я выбрал 4 кластера, чтобы сегментация была одновременно устойчивой и детальной, при этом не чувствительной к изначальному выбору центроид. Идея алгоритма в следующем: расставляются к центроид, каждое наблюдение относится к ближайшему классу, пересчитывается центр кластеров, предыдущие два шага повторяются, пока кластеры не перестанут меняться.

#### • Преимущества данного метода:

- Простота для понимания в том числе и бизнес аудиторией
- Результаты ориентированы на данные кластеры более естественные

#### • Недостатки данного метода:

- Непонятно, какое количество кластеров оптимально можно выявить, только вручную анализируя результаты
- Зависимость от случайности с первого раза может не полчуиться хорошей сегментации

Результаты сегментации и описание сегментов - ниже в каждом из подразделов, посвященных определенному методу

In [29]: # Еще раз посмотрим на описание параметров, чтобы названия переменных были на виду pd.read\_csv("/Users/alexeysek/Downloads/Описание параметров\_Description of p arameters\_sas\_2022\_hwl (1).csv", encoding="cp1251", delimiter=';')

### Out[29]:

|    | Атрибуты              | Описание                                          | Description                                    |
|----|-----------------------|---------------------------------------------------|------------------------------------------------|
| 0  | Номер варианта        | Номер варианта                                    | Variant number                                 |
| 1  | ID                    | Идентификатор клиента                             | Client ID                                      |
| 2  | INCOME_BASE_TYPE      | Подтверждение дохода                              | Income verification                            |
| 3  | CREDIT_PURPOSE        | Цель получения кредита                            | Purpose of the loan                            |
| 4  | INSURANCE_FLAG        | Страхование заемщика при<br>получении кредита     | Borrower's insurance when receiving a loan     |
| 5  | DTI                   | debt-to-income ratio — отношение долга к доходам  | debt-to-income ratio - the ratio of debt to in |
| 6  | SEX                   | Пол                                               | Floor                                          |
| 7  | FULL_AGE_CHILD_NUMBER | Кол-во лет ребенку                                | Number of years of the child                   |
| 8  | DEPENDANT_NUMBER      | Кол-во иждивенцев                                 | Number of dependents                           |
| 9  | EDUCATION             | Образование                                       | Education                                      |
| 10 | EMPL_TYPE             | Должность                                         | Position                                       |
| 11 | EMPL_SIZE             | Зарплата                                          | Salary                                         |
| 12 | BANKACCOUNT_FLAG      | Кол-во аккаунтов у клиента. ( 0 -<br>нет онлайн   | The number of accounts the client has. (0 - no |
| 13 | Period_at_work        | Время работы (кол-во дней)                        | Working time (number of days)                  |
| 14 | age                   | Возраст                                           | Age                                            |
| 15 | EMPL_PROPERTY         | Сфера бизнеса работодателя                        | Employer business area                         |
| 16 | EMPL_FORM             | Организационно - правовая<br>форма                | Organizational and legal form                  |
| 17 | FAMILY_STATUS         | Семейный статус                                   | Family status                                  |
| 18 | max90days             | кол-во запросов в бюро кредитных историй за по    | number of requests to credit bureaus in the la |
| 19 | max60days             | кол-во запросов в бюро кредитных историй за по    | number of requests to credit bureaus in the la |
| 20 | max30days             | кол-во запросов в бюро кредитных историй за по    | number of requests to credit bureaus in the la |
| 21 | max21days             | кол-во запросов в бюро кредитных историй за по    | number of requests to credit bureaus in the la |
| 22 | max14days             | кол-во запросов в бюро кредитных историй за по    | number of requests to credit bureaus in the la |
| 23 | avg_num_delay         | Среднее кол-во задержки оплаты                    | Average number of payment delays               |
| 24 | if_zalog              | Наличие залога<br>(квартира,машина)               | Presence of collateral (apartment, car)        |
| 25 | num_AccountActive180  | кол-во активных счетов счетов за<br>последние 180 | number of active accounts accounts for the las |
| 26 | num_AccountActive90   | кол-во активных счетов счетов за последние 90     | number of active accounts accounts in the last |

|    | Атрибуты            | Описание                                           | Description                                      |
|----|---------------------|----------------------------------------------------|--------------------------------------------------|
| 27 | num_AccountActive60 | кол-во активных счетов счетов за<br>последние 60   | number of active accounts accounts in the last   |
| 28 | Active_to_All_prc   | отношение активных счетов ко<br>всем счетам        | ratio of active accounts to all accounts         |
| 29 | numAccountActiveAll | кол-во открытых счетоа                             | number of open accounts                          |
| 30 | numAccountClosed    | кол-во закрытых счетов                             | number of closed accounts                        |
| 31 | sum_of_paym_months  | сумма платежей за последний<br>месяц (тыс.)        | amount of payments for the last month (thousand) |
| 32 | all_credits         | Кол-во кредитов                                    | Number of credits                                |
| 33 | Active_not_cc       | Активные кредитные счета, но не<br>кредитная карта | Active credit accounts but no credit card        |
| 34 | own_closed          | Кол-во закрытых кредитов                           | Number of closed loans                           |
| 35 | min_MnthAfterLoan   | минимальное кол-во месяцев, которое прошло с м     | the minimum number of months that have passed    |
| 36 | max_MnthAfterLoan   | кол-во месяцев прошеднее с<br>момента выдачи перв  | number of months past since the date of the fi   |
| 37 | dlq_exist           | наличие просрочки на данный<br>момент              | currently in arrears                             |
| 38 | thirty_in_a_year    | просрочка больше 30 дней за<br>последний год       | overdue more than 30 days in the last year       |
| 39 | sixty_in_a_year     | просрочка больше 60 дней за<br>последний год       | overdue more than 60 days in the last year       |
| 40 | ninety_in_a_year    | просрочка больше 90 дней за<br>последний год       | overdue more than 90 days in the last year       |
| 41 | thirty_vintage      | просрочка больше 30 дней,<br>когда-либо            | overdue more than 30 days, ever                  |
| 42 | sixty_vintage       | просрочка больше 60 дней,<br>когда-либо            | overdue more than 60 days, ever                  |
| 43 | ninety_vintage      | просрочка больше 90 дней,<br>когда-либо            | overdue more than 90 days, ever                  |

### 2.1.Способ\_1 - RFM (Recency, Frequency, Monetary)

- Выделить сегменты клиентов
- Сформировать портреты клиентов на основе полученных данных + дать интерпретацию полученным сегментам
- Обосновать выбор метода + плюсы и минусы на анализируемых данных и на теории из лекций и семинаров

Вне зависимости от метода необходимо следующее:

- 1. Внутри сегмента однородность максимальная
- 2. Между сегментами однородность минимальна

# Я считаю, что переменные ниже отлично описывают переменные для RFM анализа - сделаем из них отдельный датафрейм

- Recency = 'min\_MnthAfterLoan', так как это количество месяцев с последнего кредита как раз подходит под то, насколько недавно клиент использовал кредитование
- Frequency = 'all\_credits', так как это показывает общее количество кредитов (в моем понимании, это во многом отражает частоту)
- Monetary = 'sum\_of\_paym\_months', так как эта переменная показывает ценность клиента с точки зрения размера его кредитных выплат

Так как по некоторым из R,F,M переменным данные отсутствуют - сегментация таких наблюдений RFM методом невозможна. Удалим такие наблюдения для применения данного метода

На самом деле можно было заменить их средними значениями из выборки, но тогда у меня возникала ошибка (квантили не разбивались, так как значения попадали в граничные значения квантилей)

```
In [62]: recency = 'min_MnthAfterLoan'
frequency = 'all_credits'
monetary = 'sum_of_paym_months'

# В этом методе мы удалим все наблюдения, в которых были пропущенные значения, т
ак как по ним мы не сможем сделать RFM сегментацию
# Только для этого метода!

df = pd.read_csv('HW1_var_12.csv', sep=';')
# df.fillna(df.mean(), inplace=True) # почему-то возникли проблемы в дальнейш
ем при исполнении этой строки - подробнее есть в комментарии выше
df.dropna(inplace=True)

df_rfm = df.loc[:,['ID', recency, frequency, monetary]]
df_rfm.columns = ['ID', 'recency', 'frequency', 'monetary']

df_rfm
```

#### Out[62]:

|       | ID      | recency | frequency | monetary |
|-------|---------|---------|-----------|----------|
| 1     | 1000032 | 7.0     | 7.0       | 87.0     |
| 4     | 1000092 | 13.0    | 6.0       | 134.0    |
| 5     | 1000112 | 19.0    | 11.0      | 194.0    |
| 8     | 1000172 | 12.0    | 11.0      | 161.0    |
| 10    | 1000212 | 33.0    | 2.0       | 87.0     |
|       |         |         |           |          |
| 10234 | 1204692 | 13.0    | 12.0      | 240.0    |
| 10235 | 1204712 | 1.0     | 13.0      | 207.0    |
| 10237 | 1204752 | 21.0    | 5.0       | 52.0     |
| 10238 | 1204772 | 6.0     | 3.0       | 39.0     |
| 10241 | 1204832 | 7.0     | 5.0       | 58.0     |

3677 rows × 4 columns

```
In [63]: # Идею для кода для сегментации брал здесь: https://www.geeksforgeeks.org/rfm-analysis-analysis-using-python/

# Отсортируем, а потом отранжируем
df_rfm['rank_recency'] = df_rfm['recency'].rank(ascending=False) # так ка
к чем больше дней прошло - тем меньше recency
df_rfm['rank_frequency'] = df_rfm['frequency'].rank(ascending=True)
df_rfm['rank_monetary'] = df_rfm['monetary'].rank(ascending=True)

# нормализуем данные путем деления номера по возрастанию / убыванию на общее колич ество наблюдений
cols_rfm = ['rank_recency', 'rank_frequency', 'rank_monetary']

for col in cols_rfm:
    df_rfm[col] = (df_rfm[col]/df_rfm[col].max())*100

df_rfm.head(10)
```

#### Out[63]:

|    | ID      | recency | frequency | monetary | rank_recency | rank_frequency | rank_monetary |
|----|---------|---------|-----------|----------|--------------|----------------|---------------|
| 1  | 1000032 | 7.0     | 7.0       | 87.0     | 60.870748    | 69.404406      | 63.788414     |
| 4  | 1000092 | 13.0    | 6.0       | 134.0    | 37.632653    | 61.612728      | 81.819418     |
| 5  | 1000112 | 19.0    | 11.0      | 194.0    | 23.306122    | 88.795213      | 92.983410     |
| 8  | 1000172 | 12.0    | 11.0      | 161.0    | 40.789116    | 88.795213      | 88.428066     |
| 10 | 1000212 | 33.0    | 2.0       | 87.0     | 9.047619     | 15.515366      | 63.788414     |
| 12 | 1000252 | 9.0     | 10.0      | 97.0     | 51.945578    | 85.531683      | 68.942072     |
| 15 | 1000312 | 5.0     | 6.0       | 114.0    | 70.503401    | 61.612728      | 75.278760     |
| 16 | 1000332 | 8.0     | 6.0       | 33.0     | 56.285714    | 61.612728      | 27.495241     |
| 17 | 1000352 | 21.0    | 3.0       | 32.0     | 19.891156    | 28.243133      | 26.679358     |
| 18 | 1000372 | 16.0    | 5.0       | 88.0     | 29.414966    | 51.944520      | 64.277944     |

In [64]: # Основываясь на примере с сайта: https://towardsdatascience.com/recency-fre quency-monetary-model-with-python-and-how-sephora-uses-it-to-optimize-th eir-google-d6a0707c5f17

# Будем присваивать номер группы от 1 до 5 каждой из 5 частей для каждой переменн ой r\_labels = range(1,4) f\_labels = range(1,4) m\_labels = range(1,4)

r\_groups = pd.qcut(df\_rfm['rank\_recency'], q=3, labels=r\_labels) f\_groups = pd.qcut(df\_rfm['rank\_frequency'], q=3, labels=r\_labels) m\_groups = pd.qcut(df\_rfm['rank\_monetary'], q=3, labels=r\_labels)

# Добавим в общий датафрейм df\_rfm = df\_rfm.assign(R = r\_groups.values, F = f\_groups.values, M = m\_g roups.values) df\_rfm.head()

#### Out[64]:

|    | ID      | recency | frequency | monetary | rank_recency | rank_frequency | rank_monetary | R  | F |
|----|---------|---------|-----------|----------|--------------|----------------|---------------|----|---|
| 1  | 1000032 | 7.0     | 7.0       | 87.0     | 60.870748    | 69.404406      | 63.788414     | 2  | 2 |
| 4  | 1000092 | 13.0    | 6.0       | 134.0    | 37.632653    | 61.612728      | 81.819418     | 2  | 2 |
| 5  | 1000112 | 19.0    | 11.0      | 194.0    | 23.306122    | 88.795213      | 92.983410     | 1  | 3 |
| 8  | 1000172 | 12.0    | 11.0      | 161.0    | 40.789116    | 88.795213      | 88.428066     | 2  | 3 |
| 10 | 1000212 | 33.0    | 2.0       | 87.0     | 9.047619     | 15.515366      | 63.788414     | _1 | 1 |

```
In [65]: df = df.merge(df_rfm, how='left', on='ID')
df
```

Out[65]:

|      | Номер<br>варианта | ID      | INCOME_BASE_TYPE                         | CREDIT_PURPOSE                      | INSURANCE_FLAG | DTI  |     |
|------|-------------------|---------|------------------------------------------|-------------------------------------|----------------|------|-----|
| 0    | 12                | 1000032 | 2НДФЛ                                    | Ремонт                              | 1.0            | 0.55 | мух |
| 1    | 12                | 1000092 | Поступление<br>зарплаты на счет          | Ремонт                              | 0.0            | 0.31 | мух |
| 2    | 12                | 1000112 | Форма банка (без<br>печати работодателя) | Покупка<br>автомобиля               | 0.0            | 0.22 | мух |
| 3    | 12                | 1000172 | 2НДФЛ                                    | Покупка недвижимости/ строительство | 0.0            | 0.42 | мух |
| 4    | 12                | 1000212 | Поступление<br>зарплаты на счет          | Ремонт                              | 0.0            | 0.25 | мух |
|      |                   |         |                                          |                                     |                |      |     |
| 3672 | 12                | 1204692 | Форма банка (без<br>печати работодателя) | Ремонт                              | 0.0            | 0.49 | же  |
| 3673 | 12                | 1204712 | 2НДФЛ                                    | Ремонт                              | 1.0            | 0.39 | мух |
| 3674 | 12                | 1204752 | Поступление<br>зарплаты на счет          | Другое                              | 0.0            | 0.41 | мух |
| 3675 | 12                | 1204772 | Поступление<br>зарплаты на счет          | Ремонт                              | 1.0            | 0.56 | мух |
| 3676 | 12                | 1204832 | Форма банка (без<br>печати работодателя) | Ремонт                              | 0.0            | 0.38 | мух |

3677 rows × 53 columns

df.columns.values In [66]: Out[66]: array(['Hoмep варианта', 'ID', 'INCOME\_BASE\_TYPE', 'CREDIT\_PURPOSE', 'INSURANCE\_FLAG', 'DTI', 'SEX', 'FULL\_AGE\_CHILD\_NUMBER', 'DEPENDANT\_NUMBER', 'EDUCATION', 'EMPL\_TYPE', 'EMPL\_SIZE', 'BANKACCOUNT\_FLAG', 'Period\_at\_work', 'age', 'EMPL\_PROPERTY', 'EMPL\_FORM', 'FAMILY\_STATUS', 'max90days', 'max60days', 'max30days', 'max21days', 'max14days', 'avg\_num\_delay', 'if\_zalo g', 'num\_AccountActive180', 'num\_AccountActive90', 'num\_AccountActive60', 'Active\_to\_All\_prc', 'numAccountActiveAl 1', 'numAccountClosed', 'sum of paym months', 'all credits', 'Active\_not\_cc', 'own\_closed', 'min\_MnthAfterLoan', 'max MnthAfterLoan', 'dlq exist', 'thirty in a year', 'sixty\_in\_a\_year', 'ninety\_in\_a\_year', 'thirty\_vintage', 'sixty\_vintage', 'ninety\_vintage', 'recency', 'frequency', 'monetary', 'rank\_recency', 'rank\_frequency', 'rank\_monetary', 'R', 'F', 'M'], dtype=object)

```
In [67]: # Сгруппируем данные по сегментам RFM
        pd.set option('display.max columns', None)
        'DEPENDANT_NUMBER', 'EDUCATION', 'EMPL_TYPE', 'EMPL_SIZE',
               'BANKACCOUNT_FLAG', 'Period_at_work', 'age', 'EMPL_PROPERTY',
               'EMPL_FORM', 'FAMILY_STATUS', 'max90days', 'max60days',
               'max30days', 'max21days', 'max14days', 'avg_num_delay', 'if_zalo
        g',
               'num_AccountActive180', 'num_AccountActive90',
               'num_AccountActive60', 'Active_to_All_prc', 'numAccountActiveAll'
               'numAccountClosed', 'sum_of_paym_months', 'all_credits',
               'Active_not_cc', 'own_closed', 'min_MnthAfterLoan',
               'max_MnthAfterLoan', 'dlq_exist', 'thirty_in_a_year',
               'sixty_in_a_year', 'ninety_in_a_year', 'thirty_vintage',
               'sixty_vintage', 'ninety_vintage']
        cols group = ['R', 'F', 'M']
         df_new = df.groupby(cols_group)[colsall].mean()
         df new
```

Out[67]:

|   |   |   | INSURANCE_FLAG | DTI      | FULL_AGE_CHILD_NUMBER | DEPENDANT_NUMBER | BAN |
|---|---|---|----------------|----------|-----------------------|------------------|-----|
| R | F | М |                |          |                       |                  |     |
| 1 | 1 | 1 | 0.604494       | 0.330337 | 0.514607              | 0.006742         |     |
|   |   | 2 | 0.554502       | 0.333128 | 0.549763              | 0.000000         |     |
|   |   | 3 | 0.464286       | 0.335357 | 0.642857              | 0.000000         |     |
|   | 2 | 1 | 0.653061       | 0.357551 | 0.387755              | 0.040816         |     |
|   |   | 2 | 0.611814       | 0.360084 | 0.493671              | 0.004219         |     |
|   |   | 3 | 0.572864       | 0.394121 | 0.683417              | 0.010050         |     |
|   | 3 | 1 | 0.500000       | 0.330000 | 0.000000              | 0.000000         |     |
|   |   | 2 | 0.764706       | 0.364118 | 0.647059              | 0.000000         |     |
|   |   | 3 | 0.647887       | 0.387535 | 0.704225              | 0.007042         |     |
| 2 | 1 | 1 | 0.655290       | 0.375734 | 0.433447              | 0.000000         |     |
|   |   | 2 | 0.576271       | 0.379153 | 0.525424              | 0.000000         |     |
|   |   | 3 | 0.000000       | 0.336667 | 0.333333              | 0.000000         |     |
|   | 2 | 1 | 0.629213       | 0.390112 | 0.584270              | 0.011236         |     |
|   |   | 2 | 0.616788       | 0.388358 | 0.448905              | 0.000000         |     |
|   |   | 3 | 0.558559       | 0.392523 | 0.585586              | 0.000000         |     |
|   | 3 | 1 | 1.000000       | 0.430000 | 1.000000              | 0.000000         |     |
|   |   | 2 | 0.722222       | 0.409630 | 0.55556               | 0.000000         |     |
|   |   | 3 | 0.620567       | 0.432163 | 0.606383              | 0.007092         |     |
| 3 | 1 | 1 | 0.608491       | 0.378962 | 0.377358              | 0.000000         |     |
|   |   | 2 | 0.692308       | 0.370769 | 0.461538              | 0.000000         |     |
|   |   | 3 | 0.000000       | 0.280000 | 0.000000              | 0.000000         |     |
|   | 2 | 1 | 0.664430       | 0.417987 | 0.463087              | 0.006711         |     |
|   |   | 2 | 0.598174       | 0.403516 | 0.538813              | 0.018265         |     |
|   |   | 3 | 0.493151       | 0.378630 | 0.589041              | 0.000000         |     |
|   | 3 | 1 | 0.666667       | 0.380000 | 1.000000              | 0.000000         |     |
|   |   | 2 | 0.655172       | 0.410862 | 0.551724              | 0.000000         |     |
|   |   | 3 | 0.607330       | 0.445942 | 0.646597              | 0.005236         |     |

```
In [60]: # Γραφικ ποκαзывает просто медианные значения по сегментам fig, ax = plt.subplots(figsize=(100,70)) df_new.plot(ax=ax) plt.plot()
```

## Out[60]: []



```
In [70]: # Age
fig, ax = plt.subplots(figsize=(50,20))
df_new['age'].plot()
plt.plot()
```

## Out[70]: []



```
In [71]: # DTI
fig, ax = plt.subplots(figsize=(50,20))
df_new['DTI'].plot()
plt.plot()
```

## Out[71]: []



```
In [72]: # if_zalog
fig, ax = plt.subplots(figsize=(50,20))
df_new['if_zalog'].plot()
plt.plot()
```

## Out[72]: []



```
In [73]: # dlq_exist
fig, ax = plt.subplots(figsize=(50,20))
df_new['dlq_exist'].plot()
plt.plot()
```

# Out[73]: []



```
In [74]: # Обрезанная табличка
df_new[['DTI', 'age', 'avg_num_delay', 'if_zalog', 'dlq_exist']]
```

Out[74]:

|   |   |   | DTI      | age       | avg_num_delay | if_zalog | dlq_exist |
|---|---|---|----------|-----------|---------------|----------|-----------|
| R | F | М |          |           |               |          |           |
| 1 | 1 | 1 | 0.330337 | 35.262921 | 0.064809      | 0.215730 | 0.325843  |
|   |   | 2 | 0.333128 | 37.507109 | 0.044398      | 0.355450 | 0.507109  |
|   |   | 3 | 0.335357 | 41.071429 | 0.038040      | 0.500000 | 0.785714  |
|   | 2 | 1 | 0.357551 | 36.938776 | 0.116987      | 0.244898 | 0.530612  |
|   |   | 2 | 0.360084 | 36.135021 | 0.081741      | 0.320675 | 0.649789  |
|   |   | 3 | 0.394121 | 38.763819 | 0.055975      | 0.482412 | 0.728643  |
|   | 3 | 1 | 0.330000 | 39.000000 | 0.395161      | 0.000000 | 0.500000  |
|   |   | 2 | 0.364118 | 38.000000 | 0.056776      | 0.235294 | 0.705882  |
|   |   | 3 | 0.387535 | 37.288732 | 0.072560      | 0.457746 | 0.859155  |
| 2 | 1 | 1 | 0.375734 | 33.313993 | 0.064295      | 0.167235 | 0.375427  |
|   |   | 2 | 0.379153 | 35.084746 | 0.037097      | 0.372881 | 0.457627  |
|   |   | 3 | 0.336667 | 34.333333 | 0.050445      | 0.666667 | 1.000000  |
|   | 2 | 1 | 0.390112 | 33.595506 | 0.093318      | 0.224719 | 0.516854  |
|   |   | 2 | 0.388358 | 34.430657 | 0.077330      | 0.321168 | 0.678832  |
|   |   | 3 | 0.392523 | 38.153153 | 0.057600      | 0.459459 | 0.702703  |
|   | 3 | 1 | 0.430000 | 28.000000 | 0.025000      | 0.000000 | 1.000000  |
|   |   | 2 | 0.409630 | 34.685185 | 0.063078      | 0.351852 | 0.666667  |
|   |   | 3 | 0.432163 | 38.347518 | 0.062502      | 0.457447 | 0.851064  |
| 3 | 1 | 1 | 0.378962 | 32.033019 | 0.045709      | 0.216981 | 0.198113  |
|   |   | 2 | 0.370769 | 35.961538 | 0.021785      | 0.269231 | 0.423077  |
|   |   | 3 | 0.280000 | 51.000000 | 0.056604      | 0.000000 | 1.000000  |
|   | 2 | 1 | 0.417987 | 33.852349 | 0.072982      | 0.208054 | 0.463087  |
|   |   | 2 | 0.403516 | 34.858447 | 0.063046      | 0.296804 | 0.607306  |
|   |   | 3 | 0.378630 | 37.643836 | 0.052930      | 0.493151 | 0.671233  |
|   | 3 | 1 | 0.380000 | 38.000000 | 0.053216      | 0.333333 | 0.666667  |
|   |   | 2 | 0.410862 | 34.146552 | 0.073038      | 0.327586 | 0.698276  |
|   |   | 3 | 0.445942 | 38.130890 | 0.057523      | 0.494764 | 0.806283  |

#### Выводы:

Описывать каждый сегмент по каждой переменной, как я считаю, слишком ресурсоемко и не оправдывает вложенных усилий, поэтому я буду смотреть лишь на некоторые показатели: 'DTI' (долг к доходам), 'age' (возраст), 'avg\_num\_delay' (средне количество задержек до оплаты на кредит), 'if\_zalog' (наличие залога), 'dlq\_exist' (наличие просрочки)

#### Сегменты будут коротко называться по индексу R.F.M.

- 1.1.1 DTI около 35%, аде около 35, задержек оплат относительно других групп средне, залог имеют меньше 25%, просрочек текущих чаще нет
- 1.1.2 DTI около 35%, аде около 40, задержек оплат относительно других групп мало, залог имеют меньше 50%, просрочек текущих чаще есть
- 1.1.3 DTI около 35%, age около 40, задержек оплат относительно других групп мало, залог имеют больше 50%, просрочек текущих чаще есть
- 1.2.1 DTI около 35%, аде около 35, задержек оплат относительно других групп много, залог имеют меньше 25%, просрочек текущих чаще есть
- 1.2.2 DTI около 35%, аде около 35, задержек оплат относительно других групп много, залог имеют меньше 50%, просрочек текущих чаще есть
- 1.2.3 DTI около 40%, аде около 40, задержек оплат относительно других групп средне, залог имеют меньше 50%, просрочек текущих чаще есть
- Red Flag 1.3.1 DTI около 35%, аде около 40, **задержек оплат относительно других групп критически много**, **залог имеют около 0**%, просрочек текущих чаще есть
- 1.3.2 DTI около 35%, аде около 40, задержек оплат относительно других групп средне, залог имеют меньше 25%, просрочек текущих чаще есть
- 1.3.3 DTI около 40%, аде около 40, задержек оплат относительно других групп много, залог имеют меньше 50%, просрочек текущих чаще есть
- 2.1.1 DTI около 40%, аде около 35, задержек оплат относительно других групп средне, залог имеют меньше 25%, просрочек текущих чаще нет
- 2.1.2 DTI около 40%, аде около 35, задержек оплат относительно других групп мало, залог имеют меньше 50%, просрочек текущих чаще нет
- 2.1.3 DTI около 35%, аде около 35, задержек оплат относительно других групп средне, залог имеют более 50%, просрочек текущих чаще есть
- 2.2.1 DTI около 40%, age около 35, задержек оплат относительно других групп много, залог имеют меньше 25%, просрочек текущих чаще есть
- 2.2.2 DTI около 40%, age около 35, задержек оплат относительно других групп много, залог имеют меньше 50%, просрочек текущих чаще есть
- 2.2.3 DTI около 40%, аде около 40, задержек оплат относительно других групп средне, залог имеют меньше 50%, просрочек текущих чаще есть
- 2.3.1 DTI около 45%, аде около 30, задержек оплат относительно других групп мало, **залог имеют около 0**%, просрочек текущих чаще есть
- 2.3.2 DTI около 40%, аде около 35, задержек оплат относительно других групп средне, залог имеют меньше 50%, просрочек текущих чаще есть
- 2.3.3 DTI около 45%, аде около 40, задержек оплат относительно других групп средне, залог имеют меньше 50%, просрочек текущих чаще есть
- 3.1.1 DTI около 40%, age около 35, задержек оплат относительно других групп средне, залог имеют меньше 25%, просрочек текущих чаще нет

• 3.1.2 DTI около 35%, аде около 35, задержек оплат относительно других групп мало, залог имеют меньше 50%, просрочек текущих чаще нет

- 3.1.3 DTI около 30%, **age около 50**, задержек оплат относительно других групп средне, **залог имеют около 0**%, просрочек текущих чаще есть
- 3.2.1 DTI около 40%, аде около 35, задержек оплат относительно других групп много, залог имеют меньше 25%, просрочек текущих чаще нет
- 3.2.2 DTI около 40%, аде около 35, задержек оплат относительно других групп средне, залог имеют меньше 50%, просрочек текущих чаще есть
- 3.2.3 DTI около 40%, аде около 40, задержек оплат относительно других групп средне, залог имеют меньше 50%, просрочек текущих чаще есть
- 3.3.1 DTI около 40%, аде около 40, задержек оплат относительно других групп средне, залог имеют меньше 50%, просрочек текущих чаще есть
- 3.3.2 DTI около 40%, аде около 35, задержек оплат относительно других групп много, залог имеют меньше 50%, просрочек текущих чаще есть
- 3.3.3 DTI около 45%, аде около 40, задержек оплат относительно других групп средне, залог имеют меньше 50%, просрочек текущих чаще есть

Важно, что есть сегмент, в котором есть текущие просрочки и нет залога - на такую категорию стоит обратить внимание

Важно, что во многих сегментах есть текущие просрочки - потенциальный риск

Таким образом, мы с помощью RFM анализа выявили и описали сегменты, заметив при этом некоторые закономерности, которые требуют дополнительного внимания

# 2.2.Способ 2 - K-means

- Выделить сегменты клиентов
- Сформировать портреты клиентов на основе полученных данных + дать интерпретацию полученным сегментам
- Обосновать выбор метода + плюсы и минусы на анализируемых данных и на теории из лекций и семинаров

Вне зависимости от метода необходимо следующее:

- 1. Внутри сегмента однородность максимальная
- 2. Между сегментами однородность минимальна

```
In [92]: df = pd.read_csv('HW1_var_12.csv', sep=';')
    df = pd.get_dummies(df, columns=cat_var)
    df.fillna(df.mean(), inplace=True)
```

```
In [93]: # Нормализация данных
from sklearn import preprocessing

scaler = preprocessing.StandardScaler()
df = pd.DataFrame(scaler.fit_transform(df.values), columns=df.columns, i
ndex=df.index)

# df = scaler.fit_transform(df)

In [94]: # Сделаем простую ктеаль кластеризацию на 10 групп
from sklearn.cluster import KMeans
km = KMeans(n_clusters=4)

km_pred = km.fit_predict(df.iloc[:,1:])
df['kmeans'] = km_pred
```

```
In [95]: df.columns.values[2:]
Out[95]: array(['INSURANCE FLAG', 'DTI', 'FULL AGE CHILD NUMBER',
                  'DEPENDANT NUMBER', 'BANKACCOUNT FLAG', 'Period at work', 'age',
                  'max90days', 'max60days', 'max30days', 'max21days', 'max14days',
                 'avg num delay', 'if_zalog', 'num_AccountActive180',
                  'num AccountActive90', 'num AccountActive60', 'Active to All pr
          c',
                  'numAccountActiveAll', 'numAccountClosed', 'sum_of_paym_months',
                  'all credits', 'Active not cc', 'own closed', 'min MnthAfterLoa
          n',
                 'max MnthAfterLoan', 'dlq exist', 'thirty in a year',
                  'sixty_in_a_year', 'ninety_in_a_year', 'thirty vintage',
                  'sixty_vintage', 'ninety_vintage', 'INCOME_BASE_TYPE_2HДФЛ',
                  'INCOME_BASE_TYPE_3HДФЛ',
                  'INCOME_BASE_TYPE Поступление зарплаты на счет',
                  'INCOME BASE TYPE Свободная форма с печатью работодателя',
                  'INCOME BASE ТҮРЕ Форма банка (без печати работодателя)',
                  'CREDIT PURPOSE Другое', 'CREDIT PURPOSE Лечение',
                  'CREDIT PURPOSE Обучение', 'CREDIT PURPOSE Отпуск',
                  'CREDIT PURPOSE Покупка автомобиля',
                  'CREDIT PURPOSE Покупка бытовой техники',
                  'CREDIT PURPOSE Покупка земли', 'CREDIT PURPOSE Покупка мебели',
                  'CREDIT PURPOSE Покупка недвижимости/ строительство',
                  'CREDIT PURPOSE Ремонт', 'SEX женский', 'SEX мужской',
                  'EDUCATION *n.a.*',
                  'EDUCATION Высшее/Второе высшее/Ученая степень',
                  'EDUCATION Неполное среднее', 'EDUCATION второе высшее',
                  'EDUCATION_высшее', 'EDUCATION_незаконченное высшее',
                 'EDUCATION_cpeднее', 'EDUCATION_cpeднее-специальное',
                  'EDUCATION ученая степень', 'EMPL TYPE вспомогательный персонал',
                  'EMPL TYPE другое', 'EMPL TYPE менеджер высшего звена',
                  'ЕМРЬ ТҮРЕ менеджер по продажам',
                  'EMPL TYPE менеджер среднего звена', 'EMPL TYPE рабочий',
                  'EMPL TYPE специалист', 'EMPL TYPE страховой агент',
                  'EMPL TYPE торговый представитель', 'EMPL SIZE *n.a.*',
                 'EMPL_SIZE_< 50', 'EMPL_SIZE_>100', 'EMPL_SIZE_>250',
                  'EMPL_SIZE_>=100', 'EMPL_SIZE_>=150', 'EMPL SIZE >=200',
                  'EMPL SIZE >=50', 'EMPL PROPERTY Государственная служба',
                  'EMPL_PROPERTY_Другое', 'EMPL_PROPERTY_Информационные технологии',
                  'EMPL PROPERTY Наука', 'EMPL PROPERTY Производство',
                  'EMPL PROPERTY Сельское и лесное хозяйство',
                  'EMPL PROPERTY Строительство', 'EMPL PROPERTY Торговля',
                  'EMPL PROPERTY Транспорт', 'EMPL PROPERTY Туризм',
                  'EMPL PROPERTY Финансы', 'EMPL PROPERTY Юридические услуги',
                  'EMPL FORM Государственное предприятие', 'EMPL FORM ЗАО',
                  'EMPL FORM Иная форма', 'EMPL FORM Индивидуальный предприниматель',
                  'EMPL_FORM_OAO', 'EMPL_FORM_OOO', 'FAMILY_STATUS вдовец / вдова',
                  'FAMILY STATUS гражданский брак', 'FAMILY STATUS женат / замужем',
                  'FAMILY STATUS повторный брак',
                  'FAMILY STATUS passegen / passegena',
                  'FAMILY STATUS XOJOCT / He Замужем', 'kmeans'], dtype=object)
```

```
Іп [96]: # Посмотрим среднии по кластерам по всем показателям
          pd.set_option("display.max_rows", None, "display.max_columns", None)
          colsall = ['INSURANCE_FLAG', 'DTI', 'FULL_AGE_CHILD_NUMBER',
                  'DEPENDANT_NUMBER', 'BANKACCOUNT_FLAG', 'Period_at_work', 'age',
                 'max90days', 'max60days', 'max30days', 'max21days', 'max14days',
                  'avg_num_delay', 'if_zalog', 'num_AccountActive180',
                  'num AccountActive90', 'num AccountActive60', 'Active to All prc'
                  'numAccountActiveAll', 'numAccountClosed', 'sum of paym months',
                  'all credits', 'Active not cc', 'own closed', 'min MnthAfterLoan'
                  'max MnthAfterLoan', 'dlq exist', 'thirty in a year',
                  'sixty_in_a_year', 'ninety_in_a_year', 'thirty_vintage',
                  'sixty_vintage', 'ninety_vintage', 'INCOME_BASE_TYPE_2HДФЛ',
                  'INCOME_BASE_TYPE_3HДФЛ',
                  'INCOME BASE TYPE Поступление зарплаты на счет',
                  'INCOME BASE TYPE Свободная форма с печатью работодателя',
                  'INCOME BASE TYPE Форма банка (без печати работодателя)',
                  'CREDIT_PURPOSE_Другое', 'CREDIT_PURPOSE Лечение',
                  'CREDIT PURPOSE Обучение', 'CREDIT PURPOSE Отпуск',
                  'CREDIT_PURPOSE_Покупка автомобиля',
                  'CREDIT_PURPOSE_Покупка бытовой техники',
                  'CREDIT_PURPOSE_Покупка земли', 'CREDIT_PURPOSE_Покупка мебели',
                  'CREDIT PURPOSE Покупка недвижимости/ строительство',
                  'CREDIT PURPOSE Ремонт', 'SEX женский', 'SEX мужской',
                  'EDUCATION *n.a.*',
                  'EDUCATION Высшее/Второе высшее/Ученая степень',
                  'EDUCATION Hеполное среднее', 'EDUCATION второе высшее',
                  'EDUCATION Bысшее', 'EDUCATION незаконченное высшее',
                  'EDUCATION_cpeднее', 'EDUCATION_cpeднее-специальное',
                  'EDUCATION ученая степень', 'EMPL TYPE вспомогательный персонал',
                  'EMPL_TYPE_другое', 'EMPL_TYPE_менеджер высшего звена',
                  'ЕМРЬ ТҮРЕ менеджер по продажам',
                  'EMPL_TYPE_менеджер среднего звена', 'EMPL_TYPE_рабочий',
                  'EMPL_TYPE_специалист', 'EMPL_TYPE_страховой агент',
                  'EMPL TYPE торговый представитель', 'EMPL SIZE *n.a.*',
                  'EMPL_SIZE_< 50', 'EMPL_SIZE_>100', 'EMPL_SIZE_>250',
                  'EMPL SIZE >=100', 'EMPL SIZE >=150', 'EMPL SIZE >=200',
                  'EMPL_SIZE_>=50', 'EMPL_PROPERTY_Государственная служба',
                  'EMPL_PROPERTY_Другое', 'EMPL_PROPERTY_Информационные технологии',
                  'EMPL_PROPERTY_Hayka', 'EMPL_PROPERTY Производство',
                  'EMPL PROPERTY Сельское и лесное хозяйство',
                  'EMPL PROPERTY Строительство', 'EMPL PROPERTY Торговля',
                  'EMPL PROPERTY Транспорт', 'EMPL PROPERTY Туризм',
                  'EMPL_PROPERTY_Финансы', 'EMPL_PROPERTY_Юридические услуги',
                  'EMPL_FORM_Государственное предприятие', 'EMPL_FORM_ЗАО',
                  'EMPL FORM Иная форма', 'EMPL FORM Индивидуальный предприниматель',
                  'EMPL FORM OAO', 'EMPL FORM OOO', 'FAMILY STATUS вдовец / вдова',
                  'FAMILY STATUS гражданский брак', 'FAMILY STATUS женат / замужем',
                  'FAMILY STATUS повторный брак',
                  'FAMILY STATUS passegen / passegena',
                  'FAMILY STATUS XOJOCT / HE Замужем']
          # df.drop(df.loc[(df['num AccountActive180'] == -10000) * (df['kmeans']
           != 3) ].index, inplace=True)
```

```
df_km = df.groupby('kmeans')[colsall].mean()
df km
```

Out[96]:

INSURANCE FLAG DTI FULL AGE CHILD NUMBER DEPENDANT NUMBER BANI

| kmea | ans |           |           |           |           |  |  |
|------|-----|-----------|-----------|-----------|-----------|--|--|
|      | 0   | 0.142346  | -0.035618 | 0.018174  | 0.027870  |  |  |
|      | 1   | -0.018667 | 0.012233  | 0.022143  | -0.002967 |  |  |
|      | 2   | 0.090363  | 0.310029  | 0.095562  | -0.013448 |  |  |
|      | 3   | -0.002872 | -0.125061 | -0.083148 | 0.008065  |  |  |

### Выводы:

Описывать каждый сегмент по каждой переменной, как я считаю, слишком ресурсоемко и не оправдывает вложенных усилий, поэтому я буду смотреть лишь на некоторые показатели: 'DTI' (долг к доходам), 'age' (возраст), 'avg\_num\_delay' (средне количество задержек до оплаты на кредит), 'if\_zalog' (наличие залога), 'dlq\_exist' (наличие просрочки)

- В группу 0 попали потенциальные заемщики с средним DTI, средних лет, часто задерживают выплаты, чаще без залога, много кредитов брали за все время, часто есть текущая просрочка
- В группу 1 попали потенциальные заемщики с средним DTI, средних лет, средне задерживают выплаты, чаще без залога, средне кредитов брали за все время, редко есть текущая просрочка
- В группу 2 попали потенциальные заемщики с высоким DTI, старшего поколения, редко задерживают выплаты, чаще с залогом, много кредитов брали за все время, часто есть текущая просрочка
- В группу 3 попали потенциальные заемщики с низким DTI, молодые, редко задерживают выплаты, чаще без залога, мало кредитов брали за все время, редко есть текущая просрочка
- Важно, что в группу 0 попали клиенты, которым нужно очень аккуратно выдавать кредиты уже были просрочки, часто задерживают выплаты, DTI средний
- Важно, что в группу 1 довольно надежные клиенты, редко задерживают выплаты, DTI средний
- Важно, что в группу 2 попали взрослые люди, у которых уже есть много кредитов, но при этом они редко задерживали выплаты и у них есть залог, стоит уделить внимание, но не такое пристальное, как группе 0
- Важно, что в группу 3 попали очень перспективные молодые клиенты, у которых сейчас мало долгов и которые редко задерживали выплаты до этого, но и кредитов у них мало

Таким образом, мы с помощью k-means метода выявили и описали сегменты, заметив при этом некоторые закономерности, которые требуют дополнительного внимания