

HiCOO: A Hierarchical Sparse Tensor Format for Tensor Decompositions

Jiajia Li, Jimeng Sun, Richard Vuduc Georgia Institute of Technology, Georgia, USA jiajiali@gatech.edu

Background

Tensor decompositions is a set of unsupervised methods to analyze and extract knowledge from tensors, which is widely used in healthcare analytics, image processing, machine learning, and social network analytics.

Sparse tensors

A tensor of order N is an N-way array, which provides a natural input representation of a multiway dataset. Many real-world tensors are sparse and have specific features. To discover useful knowledge, an efficient sparse format are critical to algorithm performance and scalability.

Fig.1: A third-order sparse tensor

Matricized Tensor Times Khatri-Rao Product (MTTKRP)

MTTKRP operation is the most expensive computational kernel of CANDECOMP/PARAFAC decomposition (CPD), a popular tensor decomposition algorithm.

Contributions

- We compare and summarize COO, CSF, and F-COO formats from storage space, the number of floating-point operations, memory traffic aspects, to motivate this work.
- We propose a new sparse tensor format, Hierarchical COOrdinate (HiCOO), which largely compresses tensor indices in units of sparse tensor blocks under Z-Morton order for tensors with appropriate block locality. Since HiCOO format preserves all information of a sparse tensor, only one HiCOO representation is needed in tensor algorithms.
- We further accelerate the Matriced Tensor Times Khatri-Rao Product
 (MTTKRP) operation using HiCOO format on multicore CPU architecture. With
 a bulk scheduler and two parallel strategies for irregular shaped tensors,
 parallel MTTKRP exhibits better thread scalability.
- Overall, parallel MTTKRP in a single mode using HiCOO format achieves up to 3.5× (2.0× on average) speedup over COO format and up to 4.3× (2.2× on average) speedup over CSF format.

HiCOO Format

HiCOO format blocks sparse sub-tensors and is represented by two-level indices with less bits. It is an extension of Compressed Sparse Blocks (CSB) format [1]. However, we store blocks in a sparse pattern instead of a dense long array, thus block indices also use less bits.

i	j	k	val	l	optr	bi	bj	bk	ei	ej	ek	val
0	0	0	1		0	0	0	0	0	0	0	1
0	1	0	2	ВО					0	1	0	2
1	0	0	3						1	0	0	3
1	0	2	4	B1	3	0	0	1	1	0	0	4
2	1	0	5	B2	4	1	0	0	0	1	0	5
3	0	1	6	DZ					1	0	1	6
2	2	2	7	סס	6	1	1	1	0	0	0	7
3	3	2	8	B3					1	1	0	8
(a) COO				(b) HiCOO								

	$_{coo} < S_{coo}$ ck density)
	$\alpha < 0.53$	when N=
•		

			MTTKRP					
Format	Index	Update	Work	Memory	Arithmetic			
Tomat	Space (Bits) Time		(Flops)	Access (Bytes)	Intensity (AI)			
COO	96nnz	0	3Rnnz	12Rnnz	1/4			
F-COO	65nnz	$\Omega(nnz)$	3Rnnz	12Rnnz	1/4			
CSF	32-128nnz	$\Omega(nnz)$	2Rnnz-4Rnnz	8Rnnz-16Rnnz	1/4			
HICOO	24-184nnz	0	3Rnnz	$12Rmin\{rac{1}{c_B},1\}nnz$	$max\{rac{1}{4},rac{c_B}{4}\}$			
				_				

Average Fiber Size per Tensor Block $c_B = \frac{nnz_B}{B}$

MTTKRP Algorithms

Algorithm 1 COO-MTTKRP algorithm([29]).						
Input: A third-order sparse tensor $\mathcal{X} \in \mathbb{R}^{I \times J \times K}$, dense factors $\mathbf{B} \in \mathbb{R}^{J \times R}$, $\mathbf{C} \in \mathbb{R}^{K \times R}$;						
Output: Updated dense factor matrix $\tilde{\mathbf{A}} \in R^{I \times R}$;						
$ hd ilde{\mathbf{A}} \leftarrow \mathcal{X}_{(1)}(\mathbf{C} \odot \mathbf{B})$						
1: for $x = 1,, nnz$ do						
2: $i = inds(x, 1), j = inds(x, 2), k = inds(x, 3);$						
3: for $r = 1,, R$ do						
4: $\tilde{A}(i,r) + = val(x)C(k,r)B(j,r)$						

A1 - '41 - A C - - - 1 - '41

end for

6: end for

7: return $\tilde{\mathbf{A}}$;

```
Algorithm 2 Sequential HICOO-MTTKRP algorithm.
Input: A third-order HICOO sparse tensor \mathcal{X} \in \mathbb{R}^{I \times J \times K}, dense factors
     \mathbf{B} \in \mathbb{R}^{J \times R}, \mathbf{C} \in \mathbb{R}^{K \times R}, \text{ block size } B \times B \times B;
Output: Updated dense factor matrix \tilde{\mathbf{A}} \in R^{I \times R};
                                                                       \triangleright \tilde{\mathbf{A}} \leftarrow \mathcal{X}_{(1)}(\mathbf{C} \odot \mathbf{B})
  1: for b = 0, \ldots, n_b do
          bi = binds(b, 1), bj = binds(b, 2), bk = binds(b, 3);
          \mathbf{A}_b = \mathbf{A} + bi * B * R; \mathbf{B}_b = \mathbf{B} + bj * B * R; \mathbf{C}_b = \mathbf{C} + bk * B * R;
          for x = bptr[b], \ldots, bptr[b+1] - 1 do
               ei = einds(x, 1), ej = einds(x, 2), ek = einds(x, 3)
              for r=1,\ldots,R do
                    \tilde{A}_b(ei,r) \leftarrow val(x)C_b(ek,r)B_b(ej,r)
               end for
          end for
10: end for
11: return A;
```

- Sequential HiCOO MTTKRP
- Smaller memory footprints
- Better data locality
- Matrix tiling
- Parallel HiCOO MTTKRP
 - Schedule larger blocks for irregular shaped tensors.
 - Two strategies: direct parallelization and privatization

Bulk Scheduler

Results

We test our algorithms on a Intel Xeon CPU E5-2650 platform with 24 physical cores. The sparse tensors are from FROSTT dataset [4]. We use 32-bit integers for indices, 64-bit integers for nonzero pointers, and 32-bit single-precision floating points for values. The block size is set to 128.

Dataset	Order	Dimensions	NNZ	Density
nell2	3	$12K \times 9K \times 29K$	77 M	2.4×10^{-5}
choa	3	$712K \times 10K \times 767$	27M	5.0×10^{-6}
darpa	3	$22K \times 22K \times 24M$	28M	2.4×10^{-9}
deli	3	$533K \times 17M \times 2.5M$	140M	6.1×10^{-12}
nell1	3	$3M \times 2M \times 25M$	144 M	9.1×10^{-13}

Fig.2: MTTKRP performance comparison

Table 2: Sparse tensor space comparison.

ĺ	tensors		COO (MB)		CSF (MB)		HiCOO (MB)
-	choa	Ī	411	I	666	I	192
	1998DARPA	ı	434	1	958	ı	308
	nell2	ı	1150	1	1850	ı	546
	nell1	ı	2140	1	4430	ı	3620
	delicious		2090		4120		3490

Fig. 3: The bandwidth of MTTKRPs

Fig. 4: Thread scalability on tensor "nell2"

Conclusion

Future, we will implement Tensor-Times-Matrix (TTM) operation using HiCOO and also accelerate HiCOO-MTTKRP and HiCOO-TTM algorithms on GPUs.

References

- [1] Aydin Buluc, et al. 2009. Parallel Sparse Matrix-vector and Matrix-transpose-vector Multiplication Using Compressed Sparse Blocks. SPAA '09. ACM, New York, NY, USA, 233–244.
- [2] Shaden Smith, et al. 2015. SPLATT: Efficient and Parallel Sparse Tensor-Matrix Multiplication. IPDPS'15.
- [3] Brett W. Bader and Tamara G. Kolda. 2007. Efficient MATLAB computations with sparse and factored tensors. SIAM Journal on Scientific Computing 30, 1 (December 2007), 205–231.
- [4] Shaden Smith, Jee W. Choi, Jiajia Li, Richard Vuduc, Jongsoo Park, Xing Liu, and George Karypis. 2017. FROSTT: The For- midable Repository of Open Sparse Tensors and Tools. (2017). http://frostt.io/

