T.D. IV - Variables aléatoires discrètes

I - Lois usuelles finies

Exercice 1. (X_i) Soit $(X_i)_{i \in [1,n]}$ une famille de variables aléatoires indépendantes et identiquement distribuées de loi de Bernoulli de moyenne p. On note $Y_n = \prod_{i=1}^n X_i$. Déterminer la loi de Y_n .

Exercice 2. (**) Soient X_1, \ldots, X_n des variables aléatoires indépendantes suivant une loi de Bernoulli de paramètres respectifs $1, \frac{1}{2}, \ldots, \frac{1}{n}$. On note N la variable aléatoire qui vaut 0 si $X_1 = \cdots = X_n = 1$ et $\min \{k \in [\![1,n]\!] \; ; \; X_k = 0\}$ sinon. Déterminer la loi de N.

II - Variables aléatoires finies

Exercice 3. (a) Un dé à 4 faces numérotées de 1 à 4 est lancé une fois. La probabilité d'apparition de chacune des faces est proportionnelle au numéro qu'elle porte. On note X la variable aléatoire égale au nombre obtenu.

- 1. Déterminer la loi de X.
- 2. Déterminer l'espérance et la variance de X.
- **3.** Déterminer $\mathbf{E}\left[\frac{1}{X}\right]$.

Exercice 4. (\mathfrak{A}) Une urne contient 7 boules rouges et 3 boules noires. On effectue des tirages successifs sans remise jusqu'à vider l'urne. On note X la variable aléatoire égale au rang d'apparition de la première boule rouge.

- 1. Déterminer la loi de X.
- **2.** Calculer $\mathbf{E}[X]$ et $\mathbf{V}(X)$.

Exercice 5. (\mathscr{D}) On tire sans remise 2n boules numérotées de 1 à 2n.

1. Calculer la probabilité d'obtenir $1, 3, \ldots, 2n-1$ dans cet ordre et consécutivement.

2. Déterminer la probabilité de tirer $1, 3, \ldots, 2n-1$ dans cet ordre mais pas forcément consécutivement.

3. On note X la variable aléatoire associée au rang de la dernière boule impaire tirée. Calculer $\mathbf{E}[X]$.

On pourra utiliser la formule $\sum_{k=n}^{2n} {k \choose n} = {2n+1 \choose n+1}$.

Exercice 6. (**)

- **1.** Soient $p, q \in \mathbb{N}$. En utilisant la formule du triangle de Pascal et une somme télescopique, montrer que $\sum_{k=p}^{q} {k \choose p} = {q+1 \choose p+1}$.
- **2.** Une urne contient b boules blanches et n boules noires. On retire une à une et sans remise les boules de l'urne. Soit X la variable aléatoire indiquant le nombre de tirages effectués jusqu'au retrait de toutes les boules blanches. Déterminer la loi de X. Calculer $\mathbf{E}[X]$ et $\mathbf{V}(X)$.

III - Lois usuelles infinies

Exercice 7. (\bigcirc) Une urne contient 7 boules rouges et 3 boules noires. On effectue des tirages successifs avec remise jusqu'à l'obtention d'une boule rouge. On note X la variable aléatoire égale au rang d'apparition de la première boule rouge.

- **1.** Déterminer la loi de X.
- **2.** Calculer $\mathbf{E}[X]$ et $\mathbf{V}(X)$.

Exercice 8. (\clubsuit) Un dé équilibré à 6 faces est lancé successivement 2 fois. On note S la variable aléatoire égale à la somme des résultats obtenus au cours de ces deux lancers.

1. Quelle est la loi de S?

On appelle manche l'expérience réalisée précédemment. Un joueur décide de jouer jusqu'à obtenir un 7 lors d'une manche. On note T la

variable aléatoire égale au nombre de manches jouées quand le joueur s'arrête.

2. Quelle est la loi de T? Préciser l'espérance et la variance de T.

Exercice 9. Soit Y une variable aléatoire telle que,

$$\forall k \in \mathbb{N}, \mathbf{P}(Y = k) = e^{-k} - e^{-(k+1)}.$$

On pose Z = Y + 1.

- 1. Vérifier que $\lim_{n\to+\infty}\sum_{k=0}^{n}\mathbf{P}\left(Y=k\right)=1$.
- $\mathbf{2}$. Reconnaître la loi de Z puis en déduire son espérance et sa variance.
- **3.** En déduire l'espérance et la variance de Y.
- **4.** On considère la matrice $M=\begin{pmatrix} 1 & 0 \\ 1 & Y \end{pmatrix}$. Calculer la probabilité que M soit inversible.

Exercice 10. On considère une variable aléatoire X à valeurs dans \mathbb{N}^* telle que

$$\forall n \ge 1, \mathbf{P}_{[X > n-1]}([X = n]) = \frac{2}{3}.$$

Pour tout $n \in \mathbb{N}^*$, on pose $u_n = \mathbf{P}([X > n])$.

- **1.** Justifier que $[X > n 1] = [X = n] \cup [X > n]$.
- **2.** En déduire que $u_{n-1} u_n = \mathbf{P}([X = n])$.
- **3.** Montrer que, pour tout n entier naturel non nul,

$$\mathbf{P}_{[X>n-1]}([X>n]) = 1 - \mathbf{P}_{[X>n-1]}([X=n]).$$

- **4.** En déduire que pour tout n entier naturel non nul, $u_n = \frac{1}{3}u_{n-1}$.
- **5.** Exprimer, pour tout n entier naturel la valeur de u_n en fonction de n puis reconnaître la loi de X.
- **6.** Exprimer $P([X \le n])$ en fonction de n.

Exercice 11. (**) Soient n un entier naturel supérieur ou égal à 2 et $(U_p)_{p \in \mathbb{N}^*}$ une suite de variables aléatoires indépendantes et de même loi uniforme sur $[\![1,n]\!]$. Pour tout $m \in \mathbb{N}^*$ et tout $i \in [\![1,n]\!]$, on pose $X_{i,m} = |\{k \in [\![1,m]\!]; U_k = i\}|$.

- 1. Déterminer la loi de $X_{i,m}$.
- **2.** Soit N une variable aléatoire suivant une loi de Poisson de paramètre $\lambda > 0$ indépendante de la famille $(U_p)_{p \in \mathbb{N}^*}$. Pour tout $i \in [\![1,n]\!]$, on pose $Y_i = X_{i,N}$. Déterminer la loi de Y_i .

Exercice 12. (\clubsuit) Un serveur téléphonique ouvre sa ligne chaque minute. Chaque minute, la probabilité qu'il prenne un client est constante et égale à $\frac{1}{12}$. On note X le nombre d'appels auxquels le serveur a répondu en 1 heure.

1. Déterminer la loi de X, son espérance $\mathbf{E}\left[X\right]$ et sa variance $\mathbf{V}\left(X\right)$. On suppose qu'on peut approcher la loi de la variable aléatoire X par la loi d'une variable aléatoire Z suivant une loi de Poisson de même espérance que X. On considère l'extrait de la table de la loi de Poisson de paramètre S suivant :

2. Déterminer des valeurs approchées de $P(X \le 3)$ puis $P(X \ge 4)$.

IV - Variables aléatoires infinies

Exercice 13. Un sauteur tente de franchir successivement les hauteurs numérotées $1, 2, 3, \ldots, n, \ldots$ On suppose que les sauts sont mutuellement indépendants et que la probabilité de franchir la hauteur numéro n vaut $\frac{1}{n}$. Le sauteur est éliminé à son premier échec et on note X la variable aléatoire égale au numéro du dernier saut réussi.

- **1.** Calculer la loi de X et vérifier que $\sum_{n=1}^{+\infty} \mathbf{P}(X=n) = 1$.
- **2.** Soit Y une variable aléatoire telle que $Y \hookrightarrow \mathcal{P}(1)$.
 - a) Exprimer $\mathbf{V}(Y)$ sous forme d'une somme.
 - **b)** En déduire la valeur de $\sum_{k=0}^{+\infty} \frac{(k-1)^2}{k!}$.
- **3.** Calculer l'espérance de X.

Exercice 14. Soit X une variable aléatoire à valeurs dans \mathbb{N} telle que,

$$\forall k \in \mathbb{N}^*, \mathbf{P}(X = k) = \frac{1}{k(k+1)}.$$

- 1. Simplifier $\frac{1}{k} \frac{1}{k+1}$.
- **2.** Vérifier que $\sum_{k=1}^{+\infty} \mathbf{P}(X=k) = 1$.
- **3.** En déduire la valeur de $\mathbf{P}(X=0)$.
- **4.** Montrer que, pour tout $n \in \mathbb{N}^*$, $\mathbf{P}(X > n) = \frac{1}{n+1}$.

V - Fonctions de répartition

Exercice 15. (\Leftrightarrow) Soient X (resp. Y) une variable aléatoire de fonction de répartition F (resp. G) et $p \in]0,1[$. On suppose que X et Y sont indépendantes.

1. Soit $x \in \mathbb{R}$. Montrer que

$$[\max \{X, Y\} \leqslant x] = [X \leqslant x] \cap [Y \leqslant x].$$

- **2.** On suppose que $X \hookrightarrow \mathscr{G}(p).$ Déterminer la fonction de répartition de X.
- **3.** On pose $Z = \max\{X, Y\}$. Exprimer la fonction de répartition F_Z de Z en fonction de celles de X et de Y.
- **4.** En supposant que $X \hookrightarrow \mathcal{G}(p)$ et $Y \hookrightarrow \mathcal{G}(p)$, déterminer la fonction de répartition puis la loi de Z.
- **5.** On pose $W = \min \{X, Y\}$. Exprimer la fonction de répartition F_W de W en fonction de celles de X et de Y.
- **6.** En supposant que $X \hookrightarrow \mathcal{G}(p)$ et $Y \hookrightarrow \mathcal{G}(p)$, déterminer la fonction de répartition puis la loi de W.

Exercice 16. ($\mathfrak{A}_{\mathfrak{b}}^{\mathfrak{s}}$) Soient X une variable aléatoire réelle et F sa fonction de répartition. On suppose que $X(\Omega) = \{x_1, \ldots, x_p\}$ est un ensemble fini et que $x_1 < \cdots < x_p$.

- **1.** Montrer que F est à valeurs dans [0,1].
- **2.** Montrer que F est croissante.
- **3.** Déterminer F(x) pour tout $x < x_1$, puis pour tout $x \ge x_p$. En déduire les limites de F en $-\infty$ et en $+\infty$.
- **4.** Soient $i \in [1, p-1]$ et $x \in [x_i, x_{i+1}]$. Déterminer F(x) et en déduire la valeur de $F(x_i^+) F(x_i^-)$.
- **5.** En déduire les points de discontinuité de F.

VI - Lois jointes

x	1	2	3	4
0	$\frac{1}{2}$	$\frac{1}{8}$	$\frac{1}{8}$	0
1	p	0	$\frac{1}{8}$	$\frac{1}{8}$

- **1.** Déterminer la valeur de p.
- 2. Déterminer les lois marginales du couple (X,Y) puis les espérances de X et de Y.
- **3.** Déterminer la loi conditionnelle de Y sachant [X = 1].
- **4.** Les variables aléatoires X et Y sont-elles indépendantes?
- **5.** Calculer $P([X = 0] \cup [Y = 1])$.
- **6.** Calculer la covariance de X et de Y.
- 7. Calculer $\mathbf{V}(X)$ et $\mathbf{V}(Y)$. En déduire $\rho(X,Y)$.
- **8.** Calculer Cov (X + Y, X), Cov (X, X + Y), Cov (2X, X) et $\mathbf{V}(X + Y)$.

Exercice 18. (\clubsuit) On lance 2 fois un dé équilibré à 6 faces. On note X le plus grand des résultats obtenus et Y le plus petit.

- 1. Décrire l'ensemble des valeurs prises par (X, Y).
- **2.** Décrire l'événement [X = 1] puis calculer $\mathbf{P}([X = 1])$.

T.D. IV - Variables aléatoires discrètes

- **3.** Décrire l'événement [Y = 1] puis calculer $\mathbf{P}([Y = 1])$.
- **4.** Décrire puis calculer la probabilité de l'événement $[X=1] \cap [Y=1]$.
- 5. Les variables aléatoires X et Y sont-elles indépendantes?

Exercice 19. (***) Une pièce biaisée dont face apparaît avec probabilité p est lancée n fois. Une excursion est une série de lancers qui renvoient le même résultat. Par exemple, dans la séquence FFPFPPF, il y a 5 excursions : FF, P, F, PP, F. On note R le nombre d'excursions. Montrer que $\mathbf{E}[R] = 1 + 2(n-1)p(1-p)$ puis calculer $\mathbf{V}(R)$. Indication : Exprimer R en fonction des événements I_j : « le (j+1)-ème lancer est différent du j-ème ».