

<210> 7
<211> 22
<212> DNA
<213> Homo sapiens

<400> 7
gcaagggtgc atcagtgtaa ga

22

<210> 8
<211> 20
<212> DNA
<213> Homo sapiens

<400> 8
tcccaccatc attcaacaaa

20

<210> 9
<211> 26
<212> DNA
<213> Homo sapiens

<400> 9
tccaataatt caccgggatc tgaagg

26

- 1/5 -

Fig. 1

atgaagaagt	tctctcgat	gccccaaatcg	gaggggcggca	gcgggcgggg	agccggcggt	60
ggcggggctg	gcggggccgg	ggccggggcc	ggctcgccgt	ccggcggtc	gtccgtgggg	120
gtccgggtgt	tcgcggtcgg	ccgccaccag	gtcacccctgg	aagagtcgt	ggccgaagg	180
ggatttcca	cagttttct	cgtgcgtact	cacgggtggaa	tccgatgtgc	atgtaaagcga	240
atgtatgtca	ataaacatgcc	agacctcaat	gtttgtaaaa	ggaaattac	aattatgaaa	300
gagctatctg	gtcacaaaaa	tattgtggc	tatttgact	gtgctttaa	ttcaattagt	360
gataatgtat	ggaaagtcc	tatcttaatg	gaatattgtc	gagctggaca	ggtagtgaat	420
caaataatgaa	agaagctaca	gacgggtttt	acagaaccag	aagtgttaca	gatattctgt	480
gatacctgt	aagctgttc	aagggttgc	cagtgttaga	ctccaaataat	tcacccggat	540
ctgaaggtag	aaaatattt	gttgaatgt	ggtgggaaact	atgtacttt	tgactttggc	600
atgccacta	ataaaattct	taatcttcaa	aaagatggag	ttaatgttagt	agaagaagaa	660
ataaaaaagt	atacaactct	gtcatacaga	gcccctgaaa	tgtcaacct	ttatggaggg	720
aaacccatca	ccaccaaggc	tgatatctgg	gcactgggat	gtctactcta	taaactttgt	780
ttcttcactc	ttccttttgg	tgagagtcc	gttgcatact	gtgatggca	cttcaccatc	840
ccagacaatt	ctcggtactc	ccgtaacata	cattgcttaa	taaggttcat	gcttgaacca	900
gatccggaac	atagacctga	tatatttca	gtgtcatatt	ttgcatttaa	atttgccaaa	960
aaggattgtc	cagtctccaa	catcaataat	tcttcttattc	cttcagctt	tcctgaaccc	1020
atgactgcta	gtgaagcagc	tgcttagaaaa	agccaaataa	aagccagaat	aacagatacc	1080
atggaccaa	cagaaacactc	aattgtccca	agacaaagac	caaaggccaa	ctctgtact	1140
actgccactc	ccagtggtct	gaccattaa	agttcagca	cacctgtttaa	agtccttgc	1200
cctggtaaat	tcggtaacca	tagacaaaa	ggggactaa	gacctggaaa	tggccctgaa	1260
attttattgg	gtcaggggacc	tcctcagcag	ccggccacagc	agcatagagt	actccagcaa	1320
ctacagcagg	gagattggag	attacagca	ctccatttac	agcatogtca	tcctcaccag	1380
cagcagcagc	agcagcagca	gcaacagca	cagcagcagc	agcaacagca	acagcagcag	1440
cagcagcagc	agcagcagca	ccaccaccc	caccaccacc	acctaotca	agatgcttat	1500
atgcagcagt	atcaacatgc	aacacagcag	caacagatgc	ttcaacaaca	atttttaatg	1560
cattcggtat	atcaaccaca	accttctgca	tcacagtatc	ctacaatgat	gccgcagtat	1620
cagcaggctt	tcttcaaca	gcagatgcta	gctcaacatc	agccgtctca	acaacaggca	1680
tcacctgat	atcttacctc	ccctcaagag	ttctcaccag	ccttagtttc	ctacacttca	1740
tcacttccag	ctcaggttgg	aaccataatg	gactcctcct	atagtgc当地	taggcaagta	1800
tttttccagt	cagttgtca	taaagagggcc	attgcaaaatt	tcacaatca	gaagaacatc	1860
agcaatccac	ctgatatgtc	agggtggaaat	ccttttggag	aggataattt	ctctaagtt	1920
acagaagagg	aactatttgg	cagagaattt	gaccttctaa	gatcaaataat	gctcgaggag	1980
agagcatct	cagataagaa	tgttagactca	ttttctgtct	cacataacca	tcctccagaa	2040
gatccctttt	gttctgttcc	tttcattttt	cattcaggca	agggttctcc	tggaaaagaaa	2100
gctgaacatt	catctataaa	tcaagaaaaat	ggcactgca	accctatcaa	gaacggtaaa	2160
acaagtccag	catctaaaga	tcagcggtact	ggaaagaaaa	cctcagttaca	gggtcaagtg	2220
caaaaggggg	atgatgaatc	tgaaagtgtat	tttgaatcag	atcccccttc	tcctaagagc	2280
agtgaagagg	aagagcaaga	tgtgaagaa	gttcttcagg	gggaacaagg	agattttat	2340
gatgatgata	ctgaaccaga	aaatctgggt	cataggcctc	tcctcatgga	ttctgaagat	2400
gaggaagaaag	aggagaaaca	tagctctgt	tctgattatg	agcaggctaa	agcaaagtac	2460
agtgacatga	gctctgtcta	cagagacaga	tctggcagtg	gaccaaccca	agatcttaat	2520
acaataactcc	tcacccctc	ccaattatcc	tctgtatgtt	cagtggagac	tcccaaacag	2580
gagtttgat	tattggcgc	tgtcccttc	tttgcagtgc	gtgctcaaca	gccccagcaa	2640
gaaaagaatg	aaaagaacct	ccctcaacac	aggtttcctg	ctgcaggact	ggagcaggag	2700
gaatttgat	tattcacaaa	ggcgcccttt	agcaagaagg	tgaatgtaca	agaatgccat	2760
gcagtgggggc	ctgaggcaca	tactatccat	ggtatccca	aaagtgttata	tgtatttggc	2820
tccactccat	ttcagccctt	cctcacatca	acaagtaaaa	gtgaaagcaa	tgaggaccc	2880
tttgggcttg	tgcccttta	tgaatataacg	gggagccagc	agcaaaaaat	caaacagcgc	2940
agtttacaga	aacttgcctc	tcgccaaagg	cgcacaaaagc	aggatatgtc	caaaagtaat	3000
gggaagcggc	atcatggc	gccaacttagc	acaaagaaga	tttgaagcc	tacctatgc	3060
actccagaga	gggctcgac	gcacaaaaaa	gtggccgc	gagactctca	aagtagcaat	3120
gaattttaa	ccatctcaga	ctccaaggag	aacatttagt	ttgcactgac	tgtatgggaaa	3180
gataggggga	atgtttaca	acctgaggag	agctgttgg	acccttcgg	tgccaagccc	3240
ttccatttctc	cagacccat	atggcaccc	ccacatcagg	gcctgagcga	catccgtct	3300
gatcacaata	ctgttctg	agggcgccca	agacaaaatt	cactacatgg	gtcattccat	3360
agtgcagat	tattgaaaat	ggatgat	tttgcgtgc	cctttacaga	acttgggtt	3420
caaagcatca	ctccacatca	gtcccaacag	tcccaaccag	tgcatttgc	cccatttgg	3480
gctgtccat	ttccttctaa	acagtag				3507

- 2/5 -

Fig. 2

Met Lys Lys Phe Ser Arg Met Pro Lys Ser Glu Gly Gly Ser Gly Gly
 1 5 10 15
 Gly Ala Ala Gly Gly Ala Gly Gly Ala Gly Ala Gly Ala Gly Cys
 20 25 30
 Gly Ser Gly Gly Ser Ser Val Gly Val Arg Val Phe Ala Val Gly Arg
 35 40 45
 His Gln Val Thr Leu Glu Glu Ser Leu Ala Glu Gly Gly Phe Ser Thr
 50 55 60
 Val Phe Leu Val Arg Thr His Gly Gly Ile Arg Cys Ala Leu Lys Arg
 65 70 75 80
 Met Tyr Val Asn Asn Met Pro Asp Leu Asn Val Cys Lys Arg Glu Ile
 85 90 95
 Thr Ile Met Lys Glu Leu Ser Gly His Lys Asn Ile Val Gly Tyr Leu
 100 105 110
 Asp Cys Ala Val Asn Ser Ile Ser Asp Asn Val Trp Glu Val Leu Ile
 115 120 125
 Leu Met Glu Tyr Cys Arg Ala Gly Gln Val Val Asn Gln Met Asn Lys
 130 135 140
 Lys Leu Gln Thr Gly Phe Thr Glu Pro Glu Val Leu Gln Ile Phe Cys
 145 150 155 160
 Asp Thr Cys Glu Ala Val Ala Arg Leu His Gln Cys Lys Thr Pro Ile
 165 170 175
 Ile His Arg Asp Leu Lys Val Glu Asn Ile Leu Leu Asn Asp Gly Gly
 180 185 190
 Asn Tyr Val Leu Cys Asp Phe Gly Ser Ala Thr Asn Lys Phe Leu Asn
 195 200 205
 Pro Gln Lys Asp Gly Val Asn Val Val Glu Glu Ile Lys Tyr
 210 215 220
 Thr Thr Leu Ser Tyr Arg Ala Pro Glu Met Ile Asn Leu Tyr Gly Gly
 225 230 235 240
 Lys Pro Ile Thr Thr Lys Ala Asp Ile Trp Ala Leu Gly Cys Leu Leu
 245 250 255
 Tyr Lys Leu Cys Phe Phe Thr Leu Pro Phe Gly Glu Ser Gln Val Ala
 260 265 270
 Ile Cys Asp Gly Asn Phe Thr Ile Pro Asp Asn Ser Arg Tyr Ser Arg
 275 280 285
 Asn Ile His Cys Leu Ile Arg Phe Met Leu Glu Pro Asp Pro Glu His
 290 295 300
 Arg Pro Asp Ile Phe Gln Val Ser Tyr Phe Ala Phe Lys Phe Ala Lys
 305 310 315 320
 Lys Asp Cys Pro Val Ser Asn Ile Asn Asn Ser Ser Ile Pro Ser Ala
 325 330 335
 Leu Pro Glu Pro Met Thr Ala Ser Glu Ala Ala Arg Lys Ser Gln
 340 345 350
 Ile Lys Ala Arg Ile Thr Asp Thr Ile Gly Pro Thr Glu Thr Ser Ile
 355 360 365
 Ala Pro Arg Gln Arg Pro Lys Ala Asn Ser Ala Thr Thr Ala Thr Pro
 370 375 380
 Ser Val Leu Thr Ile Gln Ser Ser Ala Thr Pro Val Lys Val Leu Ala
 385 390 395 400
 Pro Gly Glu Phe Gly Asn His Arg Pro Lys Gly Ala Leu Arg Pro Gly
 405 410 415
 Asn Gly Pro Glu Ile Leu Leu Gly Gln Gly Pro Pro Gln Gln Pro Pro
 420 425 430
 Gln Gln His Arg Val Leu Gln Gln Leu Gln Gln Gly Asp Trp Arg Leu
 435 440 445
 Gln Gln Leu His Leu Gln His Arg His Pro His Gln Gln Gln Gln Gln
 450 455 460
 Gln
 465 470 475 480

- 3/5 -

Fig. 2 (continued)

Gln Gln Gln Gln Gln His His His His His His His His His Leu Leu
 485 490 495
 Gln Asp Ala Tyr Met Gln Gln Tyr Gln His Ala Thr Gln Gln Gln
 500 505 510
 Met Leu Gln Gln Gln Phe Leu Met His Ser Val Tyr Gln Pro Gln Pro
 515 520 525
 Ser Ala Ser Gln Tyr Pro Thr Met Met Pro Gln Tyr Gln Gln Ala Phe
 530 535 540
 Phe Gln Gln Gln Met Leu Ala Gln His Gln Pro Ser Gln Gln Ala
 545 550 555 560
 Ser Pro Glu Tyr Leu Thr Ser Pro Gln Glu Phe Ser Pro Ala Leu Val
 565 570 575
 Ser Tyr Thr Ser Ser Leu Pro Ala Gln Val Gly Thr Ile Met Asp Ser
 580 585 590
 Ser Tyr Ser Ala Asn Arg Gln Val Phe Phe Gln Ser Val Ala Asp Lys
 595 600 605
 Glu Ala Ile Ala Asn Phe Thr Asn Gln Lys Asn Ile Ser Asn Pro Pro
 610 615 620
 Asp Met Ser Gly Trp Asn Pro Phe Gly Glu Asp Asn Phe Ser Lys Leu
 625 630 635 640
 Thr Glu Glu Glu Leu Leu Asp Arg Glu Phe Asp Leu Leu Arg Ser Asn
 645 650 655
 Arg Leu Glu Glu Arg Ala Ser Ser Asp Lys Asn Val Asp Ser Leu Ser
 660 665 670
 Ala Pro His Asn His Pro Pro Glu Asp Pro Phe Gly Ser Val Pro Phe
 675 680 685
 Ile Ser His Ser Gly Lys Gly Ser Pro Glu Lys Lys Ala Glu His Ser
 690 695 700
 Ser Ile Asn Gln Glu Asn Gly Thr Ala Asn Pro Ile Lys Asn Gly Lys
 705 710 715 720
 Thr Ser Pro Ala Ser Lys Asp Gln Arg Thr Gly Lys Lys Thr Ser Val
 725 730 735
 Gln Gly Gln Val Gln Lys Gly Asn Asp Glu Ser Glu Ser Asp Phe Glu
 740 745 750
 Ser Asp Pro Pro Ser Pro Lys Ser Ser Glu Glu Glu Gln Asp Asp
 755 760 765
 Glu Glu Val Leu Gln Gly Glu Gln Gly Asp Phe Asn Asp Asp Asp Thr
 770 775 780
 Glu Pro Glu Asn Leu Gly His Arg Pro Leu Leu Met Asp Ser Glu Asp
 785 790 795 800
 Glu Glu Glu Glu Lys His Ser Ser Asp Ser Asp Tyr Glu Gln Ala
 805 810 815
 Lys Ala Lys Tyr Ser Asp Met Ser Ser Val Tyr Arg Asp Arg Ser Gly
 820 825 830
 Ser Gly Pro Thr Gln Asp Leu Asn Thr Ile Leu Leu Thr Ser Ala Gln
 835 840 845
 Leu Ser Ser Asp Val Ala Val Glu Thr Pro Lys Gln Glu Phe Asp Val
 850 855 860
 Phe Gly Ala Val Pro Phe Phe Ala Val Arg Ala Gln Gln Pro Gln Gln
 865 870 875 880
 Glu Lys Asn Glu Lys Asn Leu Pro Gln His Arg Phe Pro Ala Ala Gly
 885 890 895
 Leu Glu Gln Glu Glu Phe Asp Val Phe Thr Lys Ala Pro Phe Ser Lys
 900 905 910
 Lys Val Asn Val Gln Glu Cys His Ala Val Gly Pro Glu Ala His Thr
 915 920 925
 Ile Pro Gly Tyr Pro Lys Ser Val Asp Val Phe Gly Ser Thr Pro Phe
 930 935 940
 Gln Pro Phe Leu Thr Ser Thr Ser Lys Ser Glu Ser Asn Glu Asp Leu
 945 950 955 960

- 4/5 -

Fig. 2 (continued)

Phe Gly Leu Val Pro Phe Asp Glu Ile Thr Gly Ser Gln Gln Lys
 965 970 975
 Val Lys Gln Arg Ser Leu Gln Lys Leu Ser Ser Arg Gln Arg Arg Thr
 980 985 990
 Lys Gln Asp Met Ser Lys Ser Asn Gly Lys Arg His His Gly Thr Pro
 995 1000 1005
 Thr Ser Thr Lys Lys Thr Leu Lys Pro Thr Tyr Arg Thr Pro Glu Arg
 1010 1015 1020
 Ala Arg Arg His Lys Lys Val Gly Arg Arg Asp Ser Gln Ser Ser Asn
 1025 1030 1035 1040
 Glu Phe Leu Thr Ile Ser Asp Ser Lys Glu Asn Ile Ser Val Ala Leu
 1045 1050 1055
 Thr Asp Gly Lys Asp Arg Gly Asn Val Leu Gln Pro Glu Glu Ser Leu
 1060 1065 1070
 Leu Asp Pro Phe Gly Ala Lys Pro Phe His Ser Pro Asp Leu Ser Trp
 1075 1080 1085
 His Pro Pro His Gln Gly Leu Ser Asp Ile Arg Ala Asp His Asn Thr
 1090 1095 1100
 Val Leu Pro Gly Arg Pro Arg Gln Asn Ser Leu His Gly Ser Phe His
 1105 1110 1115 1120
 Ser Ala Asp Val Leu Lys Met Asp Asp Phe Gly Ala Val Pro Phe Thr
 1125 1130 1135
 Glu Leu Val Val Gln Ser Ile Thr Pro His Gln Ser Gln Gln Ser Gln
 1140 1145 1150
 Pro Val Glu Leu Asp Pro Phe Gly Ala Ala Pro Phe Pro Ser Lys Gln
 1155 1160 1165

Fig.

cgggccaggg	gcggcgaccc	ctcgccgacg	cccggtcg	cgccggccg	gggacttgc	60
cttcacgt	ccctcgccc	tccagctc	cgccgggacc	atgaagaagt	tctctcgat	120
gccccaaatcg	gaggcgcc	cgccggccgg	agccggccgg	ggcggggctg	gcggggccgg	180
ggccggggcc	ggctcgcc	ccggcgctc	gtccgtgggg	gtccgggtgt	tccgggtcgg	240
ccggccacca	gtcacccctgg	aagagtctc	ggccgaaggt	ggatttccca	cagtttctc	300
cgtgcgtact	cacgtggaa	tccatgtgc	attgaagcga	atgtatgtca	ataacatgcc	360
agacctaata	gttttaaaa	ggaaattac	aattatgaaa	gagctatctg	gtcacaaaaaa	420
tattgtggc	tattggact	gtgtgttta	ttaaatttagt	gataatgtat	ggaaagtctt	480
tatcttaatg	gaatattgtc	gagctggaca	ggttgtaat	caaataaata	agaagctaca	540
gacgggtttt	acagaaccag	aagtgttaca	gataattctgt	gatactgtg	aagctgtgc	600
aaagggttgc	catgttaaga	ctccaataat	tcaccggat	ctgaaggttg	aaaatatttt	660
gttgaatgt	ggtggaaact	atgtacttt	tgactttggc	agtccacta	ataaaatttct	720
taatcctcaa	aaagatggag	ttaatgtat	agaagaagaa	attaaaaatg	atacaactct	780
gtcatacaga	gcccctgaaa	tgatcaacct	ttatggaggg	aaaccatca	ccaccaaggc	840
tgatatctgg	gcactggat	gtctactcta	taaactttgt	ttcttcactc	ttccttttgg	900
ttagagtcag	gttgcatact	gtgtatggca	cttcaccatc	ccagacaatt	ctcgttactc	960
ccgttaacata	cattgcttaa	taaggttcat	gcttgaacca	gatccggAAC	atagacactga	1020
tatatttcaa	gtgtcatatt	ttgcatttaa	tttgcacaa	aaggatgtc	cagtctccaa	1080
catcaataat	tcttcttac	cttcagctc	tcctgaaccg	atgactgtca	gtgaagcagc	1140
tgcttagaaaa	agccaaataa	aagccagaat	aacagatacc	attggaccaa	cagaaacctc	1200
aattgcacca	agacaaagac	caaaggccaa	ctctgtact	actgcccactc	ccagtgtgt	1260
gaccattcaa	agttcagcaa	cacctgttaa	agtcttgc	cctggtaat	tccgttaacca	1320
tagaccaaaa	ggggcactaa	gacctggaaa	tggccctgaa	attttattgg	gtcaggggacc	1380
tcctcagcag	ccgccccac	agcatagagt	actccagcaa	ctacagcagg	gagattggag	1440
attacagcaa	ctccatttac	agcatcgta	tcctcaccag	cagcagcagc	agcagcagca	1500
gcaacagcaa	cagcagcagc	agcaacagca	acagcagcag	cagcagcagc	agcagcagca	1560
ccaccaccac	caccaccacc	acctacttca	agatgcttat	atgcagcagt	atcaacatgc	1620
aacacagcag	caacagatgc	ttcaacaaca	attttaatg	cattcggtat	atcaaccaca	1680
accttctgca	tcacagtatc	ctacaatgtat	gcccagtt	cagcaggctt	tctttcaaca	1740
gcagatgcta	gctcaacatc	agccgtctca	acaacaggca	tcacctgaat	atcttacctc	1800

- 5/5 -

Fig. 3 (continued)

ccctcaagag ttctcaccag	ccttagtttc ctacacttca tcacttccag ctcagggtgg	1860
aaccataatg gactcctcct	atagtccaa taggcaagta tttttccagt cagttgctga	1920
taaaagaggcc attgcaaatt	tcacaaatca gaagaacatc agcaatccac ctgatatgtc	1980
agggtggaat cctttggag	aggataattt ctctaagttt acagaagagg aactattgta	2040
cagagaattt gacccctaa	gatcaaataag gctcgaggag agagcatctt cagataagaa	2100
tgttagactca ctttctgtc	cacataacca tcctccagaa gatcctttt gttctgttcc	2160
tttcatttctt cattcaggca	agggttctcc tgaaaagaaaa gctgaacatt catctataaa	2220
tcaagaaaaat ggcactgca	accctatcaa gaacggtaaa acaagttccag catctaaaga	2280
tcagcggact gaaaaagaaaa	cctcagtaca gggcaagtg caaaaggaaa atgatgaatc	2340
tgaaaagtat tttgaatcag	atcccccttc tcctaagagc agtgaagagg aagagcaaga	2400
tgatgaagaa gtttttcagg	gggacaagg agattttaat gatgatgata ctgaaccaga	2460
aaatctgggt cataggcctc	tcctcatgga ttctgaagat gaggaagaag aggagaaaaca	2520
tagctctgtat tctgattatg	agcaggctaa agcaaagtac agtgacatga gctctgtcta	2580
cagagacaga tctggcagtg	gaccaaccca agatcttaat acaatactcc tcacctcagc	2640
ccaattatcc tctgatgtt	cagtggagac tcaccaaacag gagtttgc tatttggcgc	2700
tgtcccttc tttgcagtgc	gtgctcaaca gcccagcaa gaaaagaatg aaaagaaacct	2760
ccctcaacac aggttccctg	ctgcaggact ggagcaggag gaattttgc tattcacaaa	2820
ggccctttt agcaagaagg	tgaatgtaca agaatgccc gcagtggggc ctgaggcaca	2880
tactatccct gtttatccca	aaagtgtaga tgtattttgc tccactccat ttccagccctt	2940
cctcacatca acaagtaaaa	gtgaaagcaa tgaggacctt tttggcctt tgccctttaa	3000
tgaaaataacg gggagccagc	agcaaaaagt caaacagcgc agttacaga aactgtcc	3060
tcgccaaagg cgccaaaagc	aggatatgtc caaaagtaat gggagcggc atcatggcac	3120
gccaacttagc acaaaagaaga	cttgaagcc tacctatcgc actccagaga gggctcgac	3180
gcacaaaaaa gtggccgcc	gagactctca aagttagcaat gaattttaa ccatctcaga	3240
ctccaaggag aacatttagt	ttgcactgac tgatggaaa gataggggaa atgtcttaca	3300
acctgaggag agccttgtgg	accccttcgg tgccaagccc ttccattctc cagacctgtc	3360
atggcaccct ccacatcagg	gcctgagcga catccgtct gatcacaata ctgtcctgcc	3420
agggcggcca agacaaaatt	caactacatgg gtcattccat agtgcagatg tattgaaaat	3480
ggatgatttt ggtggcgtgc	ccttacaga acttgtgtg caaagcatca ctccacatca	3540
gtcccaacag tcccaaccag	tgcatttaga cccattttggt gctgctccat ttcccttcaa	3600
acagtagata cttctgtatgg	attctcgca ttaactccctg tttcaaaaaaa gtgtgaacag	3660
ttttatgaat ttgaaagaaa	atttggtagc tctttatagc attc	3704

Fig. 4

>SEQDB|205286|38772 LBRI_1047 AA
MKKFSRMPKSEGGSGGGAAAGGGAGGGAGAGAGCGSGGSSGVVRVFAVGRHQ
VTLEESLAEGGFSTVFLVRTHGGIRCALKRMYVNNMPDLNVCKREITIMK
ELSGHKNIVGYLDCAVNSISDNVWEVLILMEYCRAGQVNVQMNNKKLQTGF
TEPEVLQIFCDTCEAVARLHQCKTPIIHRLKVENILLNDGGNYVLCDFG
SATNKFLNPQKDGVNVVEEEIKKYTTLSYRAPEMINLYGGKPITTKADIW
ALGCLLLYKLCCFTLPGESQVAICDGNFTIPDNSRYSRNIHLIRFMLEP
DPEHRPDIFQVSYFAFKFAKKDCPVSNNINNSSIPSALPEPMTASEAAARK
SQIKARITDTIGPTETSIAPRQRPKANSATTATPSVLTIQSSATPVKVL
PGEFGNHRPKGALRPGNGPEILLGQGPPQQPPQQHRLQQLQQGDWRLQQ
LHLQHRPHQQQQQQQQQQQQQQQQQQQQQQQQQQQQHHHHHHHHLLQDAY
MQOYQHATQQQQMLQQQFLMHSVYQPQPSASQYPTMMPQYQQAFFFQQQML
AQHQPSQQQASPEYLSPQEFSPALVSYTSSLPAQVGTIMDSSYSANRQV
FFQSVADKEAIANTQNQKNISNPNDMSGWNPFGEDNFSKLTEEELLDREF
DLLRSNRLEERASSDKNDSDLsapnhppedPFGSVPFISHSGKGSPEKK
AEHSSINQEENGTAAPIKNGKTSPASKDQRTGKKTsvQGQVQKGNDDESED
FESDPPSPKSSEEEEQDDEEVLQGEQGDFNDDDEPENLGHRRPLLMSED
EEEEEKHSSDSDYEQAKAKYSDMSSVYRDRSGSGPTQDLNTILLTSQLS
SDVAETPKQEFDVFGAVPFFAVRAQQPQQEKNLPQHRFPAAGLEQE
EFDVFTKAPFSKKVNVQECHAVGPEAHTIPGYPKSVDVFGSTPFQPLTS
TSKSESNEDLFGLVPFDEITGSQQQKVQRSLQKLSSRQRRTKQDMMSKN
GKRHHGTPSTKKTLKPTYRTPERARRHKKVGRDQSNSNEFLTISDSKE
NISVALTDGKDRGNVLQPEEESLLDPFGAKPFHSPDLSWHPPHQGLSDIRA
DHNTVLPGRPRQNSLHGSFHSADVLMDDFGAVPFTELVVQSITPHQSQQ
SQPVELDPFGAAPFPSKQ