

Shenzhen Zhongjian Nanfang Testing Co., Ltd.

Report No: CCIS15050034302

FCC REPORT (BLE)

Applicant: Shenzhen Wanchuangbo Industry Development Co., Ltd.

Address of Applicant: FLOOR 3-4, BUILDING 4, NO.7 LIPU STREET, BANTIAN

AREA, LONGGANG DISTRICT, SHENZHEN CHINA

Equipment Under Test (EUT)

Product Name: Tablet PC

Model No.: CT740, CT740K, CT7+, iDeaPLAY, V740H, K7, K7+

Trade mark: iDeaUSA, VENSTAR

FCC ID: 2AAGR15M-02

Applicable standards: FCC CFR Title 47 Part 15 Subpart C Section 15.247

Date of sample receipt: 20 May., 2015

Date of Test: 20 May., 2015 to 08 Jun., 2015

Date of report issued: 10 Jun., 2015

Test Result: PASS *

Authorized Signature:

Bruce Zhang Laboratory Manager

This report details the results of the testing carried out on one sample. The results contained in this test report do not relate to other samples of the same product and does not permit the use of the CCIS product certification mark. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report.

This report may only be reproduced and distributed in full. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards.

This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only.

^{*} In the configuration tested, the EUT complied with the standards specified above.

2 Version

Version No.	Date	Description
00	10 Jun., 2015	Original

Prepared by: Date: 10 Jun., 2015

Report Clerk

Reviewed by: 10 Jun., 2015

Project Engineer

3 Contents

			Page					
1	cov	ER PAGE	1					
2	VER	VERSION2						
3		TENTS						
4	TES ⁻	Γ SUMMARY	4					
5		ERAL INFORMATION						
	5.1	CLIENT INFORMATION						
	5.1	GENERAL DESCRIPTION OF E.U.T						
	5.2	TEST ENVIRONMENT AND MODE						
	5.4	DESCRIPTION OF SUPPORT UNITS						
	5.5	LABORATORY FACILITY						
	5.6	LABORATORY LOCATION						
	5.7	TEST INSTRUMENTS LIST						
6	TEG	Γ RESULTS AND MEASUREMENT DATA						
U								
	6.1	ANTENNA REQUIREMENT:						
	6.2	CONDUCTED EMISSION						
	6.3	CONDUCTED OUTPUT POWER						
	6.4	OCCUPY BANDWIDTH						
	6.5	Power Spectral Density						
	6.6	BAND EDGE						
	6.6.1							
	6.6.2							
	6.7	SPURIOUS EMISSION						
	6.7.1	Conadoted Emission Metrodam						
	6.7.2							
7	TEST	SETUP PHOTO	35					
8	EUT	CONSTRUCTIONAL DETAILS	36					

4 Test Summary

Test Item	Section in CFR 47	Result
Antenna requirement	15.203/15.247 (c)	Pass
AC Power Line Conducted Emission	15.207	Pass
Conducted Peak Output Power	15.247 (b)(3)	Pass
6dB Emission Bandwidth	15.247 (a)(2)	Pass
Power Spectral Density	15.247 (e)	Pass
Band Edge	15.247(d)	Pass
Spurious Emission	15.205/15.209	Pass

Pass: The EUT complies with the essential requirements in the standard.

5 General Information

5.1 Client Information

Applicant:	Shenzhen Wanchuangbo Industry Development Co., Ltd.
Address of Applicant:	FLOOR 3-4, BUILDING 4, NO.7 LIPU STREET, BANTIAN AREA, LONGGANG DISTRICT, SHENZHEN CHINA
Manufacturer:	Shenzhen Wanchuangbo Industry Development Co., Ltd.
Address of Manufacturer:	FLOOR 3-4, BUILDING 4, NO.7 LIPU STREET, BANTIAN AREA, LONGGANG DISTRICT, SHENZHEN CHINA

5.2 General Description of E.U.T.

Product Name:	Tablet PC
Model No.:	CT740, CT740K, CT7+, iDeaPLAY, V740H, K7, K7+
Operation Frequency:	2402-2480 MHz
Channel numbers:	40
Channel separation:	2 MHz
Modulation technology:	GFSK
Data speed :	1Mbps
Antenna Type:	Internal Antenna
Antenna gain:	1.2dBi
Power supply:	Rechargeable Li-ion Battery DC3.7V-2800mAh
AC adapter:	Model: AW010WR-0500200UU Input:100-240V AC,50/60Hz 0.4A Output:5V DC MAX 2.0A
Remark:	Model No.CT740, CT740K, CT7+, iDeaPLAY, V740H, K7, K7+ were identical inside, the electrical circuit design, layout, components used and internal wiring, with only difference being color and label.

Operation Frequency each of channel								
Channel Frequency Channel Frequency Channel Frequency Channel Frequency								
0	2402MHz	10	2422MHz	20	2442MHz	30	2462MHz	
1	2404MHz	11	2424MHz	21	2444MHz	31	2464MHz	
2	2406MHz	12	2426MHz	22	2446MHz	32	2466MHz	
3	2408MHz	13	2428MHz	23	2448MHz	33	2468MHz	
4	2410MHz	14	2430MHz	24	2450MHz	34	2470MHz	
5	2412MHz	15	2432MHz	25	2452MHz	35	2472MHz	
6	2414MHz	16	2434MHz	26	2454MHz	36	2474MHz	
7	2416MHz	17	2436MHz	27	2456MHz	37	2476MHz	
8	2418MHz	18	2438MHz	28	2458MHz	38	2478MHz	
9	2420MHz	19	2440MHz	29	2460MHz	39	2480MHz	

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

Channel	Frequency		
The lowest channel	2402MHz		
The middle channel	2442MHz		
The Highest channel	2480MHz		

Report No: CCIS15050034302

5.3 Test environment and mode

Operating Environment:					
Temperature:	24.0 °C				
Humidity:	54 % RH				
Atmospheric Pressure:	1010 mbar				
Test mode:					
Operation mode	Keep the EUT in continuous transmitting with modulation				

The sample was placed 0.8m above the ground plane of 3m chamber. Measurements in both horizontal and vertical polarities were performed. During the test, each emission was maximized by: having the EUT continuously working, investigated all operating modes, rotated about all 3 axis (X, Y & Z) and considered typical configuration to obtain worst position, manipulating interconnecting cables, rotating the turntable, varying antenna height from 1m to 4m in both horizontal and vertical polarizations. The emissions worst-case are shown in Test Results of the following pages. Duty cycle setting during the transmission is 100% with maximum power setting for all modulations.

5.4 Description of Support Units

N/A

5.5 Laboratory Facility

The test facility is recognized, certified, or accredited by the following organizations:

• FCC - Registration No.: 817957

Shenzhen Zhongjian Nanfang Testing Co., Ltd. EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in out files. Registration 817957, February 27, 2012.

• IC - Registration No.: 10106A-1

The 3m Semi-anechoic chamber of Shenzhen Zhongjian Nanfang Testing Co., Ltd. has been Registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 10106A-1.

• CNAS - Registration No.: CNAS L6048

Shenzhen Zhongjian Nanfang Testing Co., Ltd. is accredited to ISO/IEC 17025:2005 General Requirements for the Competence of Testing and Calibration laboratories for the competence of testing. The Registration No. is CNAS L6048.

5.6 Laboratory Location

Shenzhen Zhongjian Nanfang Testing Co., Ltd.

Address: No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road,

Bao'an District, Shenzhen, Guangdong, China

Tel: +86-755-23118282 Fax: +86-755-23116366

Shenzhen Zhongjian Nanfang Testing Co., Ltd. No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road, Bao'an District, Shenzhen, Guangdong, China Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

5.7 Test Instruments list

Rad	Radiated Emission:							
Item	m Test Equipment Manufacturer		Model No.	Inventory No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)		
1	3m Semi- Anechoic Chamber	SAEMC	9(L)*6(W)* 6(H)	CCIS0001	08-23-2014	08-22-2017		
2	BiConiLog Antenna	SCHWARZBECK MESS-ELEKTRONIK	VULB9163	CCIS0005	03-28-2015	03-28-2016		
3	Double -ridged waveguide horn	SCHWARZBECK MESS-ELEKTRONIK	BBHA9120D	CCIS0006	03-28-2015	03-28-2016		
4	EMI Test Software	AUDIX	E3	N/A	N/A	N/A		
5	Amplifier (10kHz-1.3GHz)	HP	8447D	CCIS0003	04-01-2015	03-31-2016		
6	Amplifier (1GHz-18GHz)	Compliance Direction Systems Inc.	PAP-1G18	CCIS0011	04-01-2015	03-31-2016		
7	Pre-amplifier (18-26GHz)	Rohde & Schwarz	AFS33-18002 650-30-8P-44	GTS218	04-01-2015	03-31-2016		
8	Horn Antenna	ETS-LINDGREN	3160	GTS217	04-01-2015	03-31-2016		
9	Printer	HP	HP LaserJet P1007	N/A	N/A	N/A		
10	Positioning Controller	UC	UC3000	CCIS0015	N/A	N/A		
11	Spectrum analyzer 9k-30GHz	Rohde & Schwarz	FSP	CCIS0023	03-28-2015	03-28-2016		
12	EMI Test Receiver	Rohde & Schwarz	ESCI	CCIS0002	03-28-2015	03-28-2016		
13	Loop antenna	Laplace instrument	RF300	EMC0701	04-01-2015	03-31-2016		
14	Universal radio communication tester	Rhode & Schwarz	CMU200	CCIS0069	03-28-2015	03-28-2016		
15	Signal Analyzer	Rohde & Schwarz	FSIQ3	CCIS0088	04-08-2015	04-08-2016		

Con	Conducted Emission:									
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)				
1	Shielding Room	ZhongShuo Electron	11.0(L)x4.0(W)x3.0(H)	CCIS0061	11-10-2012	11-09-2015				
2	EMI Test Receiver	Rohde & Schwarz	ESCI	CCIS0002	03-28-2015	03-28-2016				
3	LISN	CHASE	MN2050D	CCIS0074	03-28-2015	03-28-2016				
4	Coaxial Cable	CCIS	N/A	CCIS0086	04-01-2015	03-31-2016				
5	EMI Test Software	AUDIX	E3	N/A	N/A	N/A				

6 Test results and Measurement Data

6.1 Antenna requirement:

Standard requirement: FC

FCC Part 15 C Section 15.203 /247(c)

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(c) (1)(i) requirement:

(i) Systems operating in the 2400-2483.5 MHz band that is used exclusively for fixed. Point-to-point operations may employ transmitting antennas with directional gain greater than 6dBi provided the maximum conducted output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6dBi.

E.U.T Antenna:

The BLE antenna is an internal antenna which cannot replace by end-user, the best case gain of the antenna is 1.2 dBi.

6.2 Conducted Emission

through a LISN that provides a 50ohm/50uH coupling impedance with 50ohm termination. (Please refer to the block diagram of the test setup and photographs). 3. Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be									
Test Frequency Range: 150 kHz to 30 MHz Class / Severity: Class B Receiver setup: RBW=9kHz, VBW=30kHz Limit: Frequency range (MHz) Quasi-peak Average 0.15-0.5 66 to 56* 56 to 46* 0.5-5 56 46 5-30 60 50 * Decreases with the logarithm of the frequency. Test procedure 1. The E.U.T and simulators are connected to the main power through a line impedance stabilization network (L.I.S.N.), which provides a 500hm/50uH coupling impedance for the measuring equipment. 2. The peripheral devices are also connected to the main power through a LISN that provides a 500hm/50uH coupling impedance with 500hm termination. (Please refer to the block diagram of the test setup and photographs). 3. Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.4: 2009 on conducted measurement. Test setup: Reference Plane Reference Plane Reference Plane Test Instruments: Refer to section 5.7 for details Test mode: Refer to section 5.3 for details	Test Requirement:	FCC Part 15 C Section 15.207							
Class / Severity: Receiver setup: RBW=9kHz, VBW=30kHz Limit: Frequency range (MHz) Ouasi-peak Average 0.15-0.5 66 to 56* 56 to 46* 0.5-5 56 46 5-30 60 50 * Decreases with the logarithm of the frequency. 1. The E.U.T and simulators are connected to the main power through a line impedance stabilization network (L.I.S.N.), which provides a 50ohm/50uH coupling impedance for the measuring equipment. 2. The peripheral devices are also connected to the main power through a LISN that provides a 50ohm/50uH coupling impedance with 50ohm termination. (Please refer to the block diagram of the test setup and photographs). 3. Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.4: 2009 on conducted measurement. Test setup: Reference Plane LISN	Test Method:	ANSI C63.4: 2009							
Receiver setup: RBW=9kHz, VBW=30kHz Limit: Frequency range (MHz) Quasi-peak Average 0.15-0.5 66 to 56* 56 to 46* 0.5-5 56 46 5-30 60 50 *Decreases with the logarithm of the frequency. 1. The E.U.T and simulators are connected to the main power through a line impedance stabilization network (L.I.S.N.), which provides a 50ohm/50uH coupling impedance for the measuring equipment. 2. The peripheral devices are also connected to the main power through a LISN that provides a 50ohm/50uH coupling impedance with 50ohm termination. (Please refer to the block diagram of the test setup and photographs). 3. Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.4: 2009 on conducted measurement. Test setup: Reference Plane LISN Line impedence Stabilization Network Test table legist=0 im the rest table legist=0 im table legist=0 im the rest table legist=0 im table legist=0 i	Test Frequency Range:	150 kHz to 30 MHz							
Limit: Frequency range (MHz)	Class / Severity:	Class B							
Test procedure Prequency range (WHI2)	Receiver setup:	RBW=9kHz, VBW=30kHz	RBW=9kHz, VBW=30kHz						
O.15-0.5 66 to 56* 56 to 46*	Limit:	Eraguanay ranga (MUZ) Limit (dBuV)							
Test procedure 1. The E.U.T and simulators are connected to the main power through a line impedance stabilization network (L.I.S.N.), which provides a 500hm/50uH coupling impedance for the measuring equipment. 2. The peripheral devices are also connected to the main power through a LISN that provides a 500hm/50uH coupling impedance with 500hm termination. (Please refer to the block diagram of the test setup and photographs). 3. Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.4: 2009 on conducted measurement. Test setup: Reference Plane									
Test procedure Test procedure 1. The E.U.T and simulators are connected to the main power through a line impedance stabilization network (L.I.S.N.), which provides a 50ohm/50uH coupling impedance for the measuring equipment. 2. The peripheral devices are also connected to the main power through a LISN that provides a 50ohm/50uH coupling impedance with 50ohm termination. (Please refer to the block diagram of the test setup and photographs). 3. Both sides of A.C. line are checked for maximum conducter interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.4: 2009 on conducted measurement. Test setup: Reference Plane Reference Plane Reference Plane LISN AUX EUT Equipment Under Test LISN Line impedence Stabilization Network Test table height-0.8m Test Instruments: Refer to section 5.7 for details Test mode: Refer to section 5.3 for details									
* Decreases with the logarithm of the frequency. 1. The E.U.T and simulators are connected to the main power through a line impedance stabilization network (L.I.S.N.), which provides a 500hm/50uH coupling impedance for the measuring equipment. 2. The peripheral devices are also connected to the main power through a LISN that provides a 500hm/50uH coupling impedance with 500hm termination. (Please refer to the block diagram of the test setup and photographs). 3. Both sides of A.C. line are checked for maximum conducter interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.4: 2009 on conducted measurement. Test setup: Reference Plane Reference Plane Reference Plane Reference Plane Refull Insulation plane Remark E.U.T. Equipment Under Test LISN Line impedence Stabilization Network Test table height-0 8m Test Instruments: Refer to section 5.7 for details Test mode: Refer to section 5.3 for details									
1. The E.U.T and simulators are connected to the main power through a line impedance stabilization network (L.I.S.N.), which provides a 500hm/50uH coupling impedance for the measuring equipment. 2. The peripheral devices are also connected to the main power through a LISN that provides a 500hm/50uH coupling impedance with 500hm termination. (Please refer to the block diagram of the test setup and photographs). 3. Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.4: 2009 on conducted measurement. Test setup: Reference Plane Reference Plane Reference Plane Remark EUT Equipment Under Test LUSN Line Impedence Stabilization Network Test table height=0.8m Test Instruments: Refer to section 5.7 for details Refer to section 5.3 for details				50					
a line impedance stabilization network (L.I.S.N.), which provides a 50ohm/50uH coupling impedance for the measuring equipment. 2. The peripheral devices are also connected to the main powe through a LISN that provides a 50ohm/50uH coupling impedance with 50ohm termination. (Please refer to the block diagram of the test setup and photographs). 3. Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.4: 2009 on conducted measurement. Test setup: Reference Plane Remark EUT Equipment Under Test LISN Line Impedence Stabilization Network Test table height=0.8m Test Instruments: Refer to section 5.7 for details Test mode: Refer to section 5.3 for details									
Remark E.U.T Remark EU.T Equipment Under Test LISN: Line Impedence Stabilization Network Test table height=0.8m Test Instruments: Refer to section 5.7 for details Test mode: Refer to section 5.3 for details		 50ohm/50uH coupling impedance for the measuring equipment. The peripheral devices are also connected to the main power through a LISN that provides a 50ohm/50uH coupling impedance with 50ohm termination. (Please refer to the block diagram of the test setup and photographs). Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.4: 2009 on conducted 							
Remark E.U.T Receiver Remark E.U.T: Equipment Under Test LISN Line Impedence Stabilization Network Test table height=0.8m Test Instruments: Refer to section 5.7 for details Refer to section 5.3 for details	Test setup:	Refere	ence Plane						
Test mode: Refer to section 5.3 for details		AUX Equipment Test table/Insulation pla Remark: E.U.T. Equipment Under Test LISN: Line Impedence Stabilization	U.T EMI Receiver	er — AC power					
	Test Instruments:	Refer to section 5.7 for details	i						
Test results: Passed	Test mode:	Refer to section 5.3 for details	;						
	Test results:	Passed							

Measurement Data

Neutral:

Trace: 39

Site

: CCIS Shielding Room : FCC CLASS-B QP LISN NEUTRAL : Tablet PC Condition

EUT Model : CT740 Test Mode : BLE mode
Power Rating : AC120/60Hz
Environment : Temp: 23 °C Huni:56% Atmos:101KPa

Test Engineer: Garen

Remark

ROMAIR	Freq	Read Level	LISN Factor	Cable Loss	Level	Limit Line	Over Limit	Remark
	MHz	dBu∀	₫B	₫B	dBu₹	dBu∜	₫B	
1	0.154	32.36	0.25	10.78	43.39	65.78	-22.39	QP
2	0.174	14.62	0.25	10.77	25.64	54.77	-29.13	Average
3	0.299	14.81	0.26	10.74	25.81	50.28	-24.47	Average
4	0.310	24.76	0.26	10.74	35.76	59.97	-24.21	QP
1 2 3 4 5 6 7 8	0.549	27.56	0.26	10.77	38.59	56.00	-17.41	QP
6	0.555	14.85	0.26	10.77	25.88	46.00	-20.12	Average
7	0.611	30.04	0.22	10.77	41.03	56.00	-14.97	QP
8	0.611	16.96	0.22	10.77	27.95	46.00	-18.05	Average
9	0.968	9.41	0.22	10.86	20.49	46.00	-25.51	Average
10	1.160	24.29	0.23	10.89	35.41	56.00	-20.59	QP
11	1.191	9.72	0.24	10.89	20.85	46.00	-25.15	Average
12	1.396	24.40	0.25	10.91	35.56	56.00	-20.44	QP

Site : CCIS Shielding Room Condition : FCC CLASS-B QP LISN LINE

EUT : Tablet PC
Model : CT740
Test Mode : BLE mode
Power Rating : AC120/60Hz

Power Rating: AC120/60Hz Environment: Temp: 23 °C Huni:56% Atmos:101KPa

Test Engineer: Garen

Remark

	Freq	Read Level	LISN Factor	Cable Loss	Level	Limit Line	Over Limit	Remark
	MHz	dBu∜	₫B	<u>ab</u>	dBu₹	dBu∜	<u>ab</u>	
1	0.150	39.42	0.27	10.78	50.47	66.00	-15.53	QP
2	0.170	39.25	0.27	10.77	50.29	64.94	-14.65	QP
3	0.170	20.15	0.27	10.77	31.19	54.94	-23.75	Average
2 3 4 5 6 7	0.253	35.52	0.27	10.75	46.54	61.64	-15.10	QP
5	0.595	24.02	0.25	10.77	35.04	46.00	-10.96	Average
6	0.598	30.48	0.25	10.77	41.50	56.00	-14.50	QP
7	0.690	21.67	0.22	10.77	32.66	46.00	-13.34	Average
8	1.242	27.13	0.25	10.90	38.28	56.00	-17.72	QP
9	1.249	21.52	0.25	10.90	32.67	46.00	-13.33	Average
10	1.762	26.13	0.26	10.94	37.33	56.00	-18.67	QP
11	2.581	15.96	0.27	10.93	27.16	46.00	-18.84	Average
12	3.140	15.54	0.27	10.91	26.72	46.00	-19.28	Average

Notes:

- 1. An initial pre-scan was performed on the live and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level =Receiver Read level + LISN Factor + Cable Loss

6.3 Conducted Output Power

Test Requirement:	FCC Part 15 C Section 15.247 (b)(3)				
Test Method:	ANSI C63.4:2009 and KDB558074				
Limit:	30dBm				
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane				
Test Instruments:	Refer to section 5.7 for details				
Test mode:	Refer to section 5.3 for details				
Test results:	Passed				
Remark:	Test method refer to KDB558074 v03r01 (DTS Measure Guidance) section 9.2.2.2				

Measurement Data

Test CH	Maximum Conducted Output Power (dBm)	Limit(dBm)	Result
Lowest	-3.83		
Middle	-3.77	30.00	Pass
Highest	-4.20		

Test plot as follows:

Highest channel

6.4 Occupy Bandwidth

Test Requirement:	FCC Part 15 C Section 15.247 (a)(2)
Test Method:	ANSI C63.4:2009 and KDB558074
Limit:	>500kHz
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane
Test Instruments:	Refer to section 5.7 for details
Test mode:	Refer to section 5.3 for details
Test results:	Passed

Measurement Data

Test CH	6dB Emission Bandwidth (MHz)	Limit(kHz)	Result
Lowest	0.72		
Middle	0.76	>500	Pass
Highest	0.76		

Test CH	99% Occupy Bandwidth (MHz)	Limit(kHz)	Result
Lowest	1.04		
Middle	1.04	N/A	N/A
Highest	1.04		

Test plot as follows:

6dB EBW

Date: 4.JUN.2015 21:13:45

Highest channel 99% OBW

Highest channel

6.5 Power Spectral Density

Test Requirement:	FCC Part 15 C Section 15.247 (e)
Test Method:	ANSI C63.4:2009 and KDB558074
Limit:	8 dBm
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane
Test Instruments:	Refer to section 5.7 for details
Test mode:	Refer to section 5.3 for details
Test results:	Passed

Measurement Data

Test CH	Power Spectral Density (dBm)	Limit(dBm)	Result
Lowest	-5.28		
Middle	-5.30	8.00	Pass
Highest	-5.85		

Test plots as follow:

Highest channel

6.6 Band Edge

6.6.1 Conducted Emission Method

Test Requirement:	FCC Part 15 C Section 15.247 (d)				
Test Method:	ANSI C63.4:2009 and KDB558074				
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.				
Test setup:					
	Spectrum Analyzer				
	E.U.T				
	Non-Conducted Table				
	Consul Defense a Diago				
	Ground Reference Plane				
Test Instruments:	Refer to section 5.7 for details				
Test mode:	Refer to section 5.3 for details				
Test results:	Passed				

Test plots as follow:

Highest channel

6.6.2 Radiated Emission Method

Test Requirement:	FCC Part 15 C	Section 15.209	and 15.205			
Test Method:	ANSI C63.4: 20					
Test Frequency Range:	2.3GHz to 2.5G	Hz				
Test site:	Measurement D					
Receiver setup:	Frequency Above 1GHz	Detector Peak RMS	RBW 1MHz 1MHz	VBW 3MHz 3MHz	Rem Peak	nark Value Value
Limit:	Freque Above 1	ency	Limit (dBuV/ 54.0	/m @3m) 0	Rem Average	nark e Value
Test Procedure:	 The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter camber. The table was rotated 360 degrees to determine the position of the highest radiation. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rota table was turned from 0 degrees to 360 degrees to find the maximum reading. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode. If the emission level of the EUT in peak mode was 10 dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10 dB margin would be re-tested one by one using peak, quasipeak or average method as specified and then reported in a data 					degrees ving antenna above ngth. set to worst er to 4 degrees nd wer than ak values did not ak, quasi-
Test setup:	sheet. Lurn Turn Table A A	4m	Antenna Horn Ante Spectrum Analyzer	enna		
Test Instruments:	Refer to section	5.7 for details				
Test mode:	Refer to section	5.3 for details				
Test results:	Passed					

Test channel: Lowest

Horizontal:

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) HORIZONTAL : Tablet PC Condition

EUT : CT740 Model Test mode : BLE-L Mode Power Rating : AC 120V/60Hz

Environment: Temp: 25.5°C Huni: 55%

Test Engineer: REMARK :

		Read	Antenna	Cable	Preamp		Limit	Over	
	Freq	Level	Factor	Loss	Factor	Level	Line	Limit	Remark
	MHz	dBu∜	$-\overline{dB}/\overline{m}$	<u>ab</u>	<u>dB</u>	dBuV/m	dBuV/m	dB	
1	2390.000					50.22			
2	2390.000	7.36	27.58	5.67	0.00	40.61	54.00	-13.39	Average

Test channel: Lowest

Vertical:

: Site

3m chamber FCC PART 15 (PK) 3m BBHA9120(1G18) VERTICAL Condition

EUT : Tablet PC Model : CT740 : BLE-L Mode Test mode Power Rating : AC 120V/60Hz

Environment : Temp: 25.5°C Huni: 55% Test Engineer: REMARK :

1 2

	Freq		Antenna Factor					
	MHz	dBu₹		 <u>d</u> B	dBuV/m	dBuV/m	dB	 -
1	2390.000 2390.000			0.00				

Test channel: Highest

Horizontal:

Frequency (MHz)

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) HORIZONTAL : Tablet PC Condition

EUT : CT740 Model : BLE-H Mode Test mode

Power Rating: AC 120V/60Hz Environment: Temp:25.5°C Huni:55%

Test Engineer: REMARK :

JILLI	200	Read	Antenna	Cable	Preamp		Limit	Over	
	Freq	Level	Factor	Loss	Factor	Level	Line	Limit	Remark
-	MHz	dBu₹		<u>d</u> B	<u>d</u> B	$\overline{dBuV/m}$	$\overline{dBuV/m}$	<u>db</u>	
	2483.500 2483.500								

Test channel: Highest

Vertical:

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) VERTICAL : Tablet PC Condition

EUT : CT740 Model Test mode : BLE-H Mode Power Rating : AC 120V/60Hz Environment : Temp:25.5°C Huni:55%

Test Engineer: REMARK :

	9 999		Antenna Factor						
-	MHz	dBuV	dB/m	dB	dB	dBuV/m	dBuV/m	dB	
	2483.500 2483.500								

6.7 Spurious Emission

6.7.1 Conducted Emission Method

Test Requirement:	FCC Part 15 C Section 15.247 (d)						
Test Method:	ANSI C63.4:2009 and KDB558074						
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.						
Test setup:	radiated medearement.						
	Spectrum Analyzer E.U.T Non-Conducted Table						
Test Instruments:	Refer to section 5.7 for details						
Test mode:	Refer to section 5.3 for details						
Test results:	Passed						

Test plot as follows:

Lowest channel

Date: 4.JUN.2015 21:41:19

30MHz~25GHz

Middle channel

Date: 4.JUN.2015 21:43:00

30MHz~25GHz

Highest channel

Date: 4.JUN.2015 21:43:47

30MHz~25GHz

6.7.2 Radiated Emission Method

Test Requirement:	FCC Part 15 C Section 15.209 and 15.205								
Test Method:	ANSI C63.4:200	9							
Test Frequency Range:	9KHz to 25GHz								
Test site:	Measurement D	istance: 3m							
Receiver setup:									
·	Frequency	Detector	RBW	VBW	Rem	nark			
	30MHz-1GHz	Quasi-peak	120KHz	300KHz	Quasi-pe	1			
	Above 1GHz	Peak	1MHz	3MHz	Peak				
1. "	RMS 1MHz 3MHz Peak					Value			
Limit:	Frequency Limit (dBuV/m @3m) Remark								
	30MHz-88MHz		40.0	<u>(</u> ((3111)	Quasi-pea	k Value			
	88MHz-216MHz		43.5		Quasi-pea				
	216MHz-960MH		46.0		Quasi-pea				
	960MHz-1GHz		54.0		Quasi-pea	k Value			
	Above 1GHz	_	54.0		Average V	1			
			74.0		Peak Valu				
Test Procedure:	the ground to determin 2. The EUT of antenna, we tower. 3. The antenre the ground Both horizon make the make the make the make the make to find the meters and to find the make the limit specified B for the EUT have 10 dB	ras placed on at a 3 meter e the position was set 3 m hich was mount a height is voto determine ontal and vertue assurement. Suspected emperate the rota table maximum reaction level of the colified, then to would be reparage method	camber. The of the highes eters away funted on the taried from one the maximulical polarizations, the Ena was turned ding. In Maximum Hore EUT in peresting could be ported. Other did be re-tested.	table was at radiation. From the interpretation op of a variance meter to the meter	rotated 360 aterference-iable-height of four meter of the field antenna arranged to a from 1 m rees to 360 at the permissions the e using permissions the permissions that are to 360 at the permissions that e using permissions that the permission that the	degrees receiving t antenna ers above strength. are set to its worst neter to 4 degrees etion and ower than ak values at did not ak, quasi-			

Below 1GHz

Horizontal:

Site

: 3m chamber : FCC PART15 CLASS B 3m VULB9163(30M1G) HORIZONTAL : Tablet PC Condition

EUT : CT740
Test mode : BLE mode
Power Rating : AC120V/60Hz
Environment : Temp:25.5°C Huni:55%
Test Engineer: Garen
REMARK :

MARK										
	700		Antenna				Limit		100 Vi	
	Freq	Level	Factor	Loss	Factor	Level	Line	Limit	Remark	
-	MHz	dBu∜	$\overline{-dB}/\overline{m}$		dB	$\overline{dBuV/m}$	dBuV/m	<u>d</u> B		
1	71.832	39.06	8.32	0.80	29.71	18.47	40.00	-21.53	QP	
1 2 3 4 5	96.099	34.86	12.90	0.94	29.55	19.15	43.50	-24.35	QP	
3	166.068	42.61	8.85	1.34	29.08	23.72	43.50	-19.78	QP	
4	210.048	46.61	10.87	1.43	28.77	30.14	43.50	-13.36	QP	
5	330.195	43.67	13.79	1.87	28.52	30.81	46.00	-15.19	QP	
6	661.151	42.95	18.67	2.82	28.75	35.69	46.00	-10.31	QP	

Vertical:

Site

: 3m chamber : FCC PART15 CLASS B 3m VULB9163(30M1G) VERTICAL Condition

EUT : Tablet PC : CT740 Model Test mode : BLE mode
Power Rating : AC120V/60Hz
Environment : Temp:25.5°C Huni:55%

Test Engineer: Garen

REMARK

	Freq		Antenna Factor						
-	MHz	dBu∇				dBuV/m			
1	93.768	42.37	12.58	0.93	29.56	26.32	43.50	-17. 18	QP
1 2 3 4	146.888	100000000000000000000000000000000000000							
3	175.037	39.73	9.29	1.35	29.01	21.36	43.50	-22.14	QP
4	247.682	36.70	12.07	1.61	28.55	21.83	46.00	-24.17	QP
5 6		42.92	13.79	1.87	28.52	30.06	46.00	-15.94	QP
6	661.151	40.54	18.67	2.82	28.75	33.28	46.00	-12.72	QP

Above 1GHz

Test channel:			Lowest		Le	vel:	Peak	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4804.00	45.52	31.53	8.90	40.24	45.71	74.00	-28.29	Vertical
4804.00	45.57	31.53	8.90	40.24	45.76	74.00	-28.24	Horizontal

Т	Test channel:			Lowest		vel:	Average	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4804.00	36.22	31.53	8.90	40.24	36.41	54.00	-17.59	Vertical
4804.00	36.36	31.53	8.90	40.24	36.55	54.00	-17.45	Horizontal

Test channel:			Middle		Le	vel:	Peak	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4882.00	46.01	31.58	8.98	40.15	46.42	74.00	-27.58	Vertical
4882.00	45.57	31.58	8.98	40.15	45.98	74.00	-28.02	Horizontal

Т	Test channel:			Middle		vel:	Average	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4882.00	37.56	31.58	8.98	40.15	37.97	54.00	-16.03	Vertical
4882.00	36.69	31.58	8.98	40.15	37.10	54.00	-16.90	Horizontal

Test channel:			Highest		Le	vel:	Peak	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4960.00	46.33	31.69	9.08	40.03	47.07	74.00	-26.93	Vertical
4960.00	45.65	31.69	9.08	40.03	46.39	74.00	-27.61	Horizontal

Test channel:			Highest		Le	vel:	Average	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4960.00	37.99	31.69	9.08	40.03	38.73	54.00	-15.27	Vertical
4960.00	36.57	31.69	9.08	40.03	37.31	54.00	-16.69	Horizontal

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Shenzhen Zhongjian Nanfang Testing Co., Ltd.
No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road, Bao'an District, Shenzhen, Guangdong, China
Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366