PRIMEIRA LISTA DE EXERCÍCIOS

Criptografia e Segurança de redes – 01-2017

Disponibilizada em 24/03/2016 - A ser entregue em 26/04/2016

- 1. Write a program that implements the symmetric block cipher and decipher algorithm DES (Data Encryption Standard).
- 2. Write a program that implements the Extended Euclidean algorithm. Using this program find the multiplicative inverse of:
 - a) 3041 mod 17331
 - b) 213 mod 21753
 - c) 548 mod 9571
 - d) 24573 mod 68432
- 3. Write a program that implements a simple four-function calculator in GF(2⁸) using modular polynomial arithmetic with the (irreducible) modulus polynomial given by $m(x) = x^8 + x^4 + x^3 + x + 1$. This is the same modulus polynomial used in the AES (Advanced Encryption Standard) algorithm. The four functions should be addition, subtraction, multiplication and division (all in GF(2⁸)).

Remember that
$$\frac{a}{b} = a * b^{-1}$$
 and $b * b^{-1} \equiv 1 \mod m(x)$

You must implement the calculator using modular polynomial arithmetic. The inputs and outputs should be integer numbers between 0 and 255 (inclusive). Examples:

$$56_{10} = 00111000_2$$
 corresponds to $x^5 + x^4 + x^3$
 $253_{10} = 11111101_2$ corresponds to $x^7 + x^6 + x^5 + x^4 + x^3 + x^2 + 1$

You should use the internal binary representation to execute operations on polynomials.