

Predicting Customer Satisfaction for Airlines

and a female of

Des Administration (participal Appelle (DASO)

Theries a right photomer, black

Introduction

- Customer satisfaction is always top of mind for the aviation industry.
- Unhappy or disengaged customers naturally mean fewer passengers and less revenue.
- It's important that customers have an excellent experience every time they travel.
- The objective of this project is to predict whether a future customer would be satisfied with their service given the details of the other parameters values.
- ➤ What factors affect customer satisfaction with the Airlines?
- > Can we predict the likelihood of a customer being satisfied with the Airline service?

Data

- The data for this project is provided by Kaggle dataset.
- This data is given by an airline organization. The actual name of the company is not given due to various purposes that's why the name Invistico Airlines.
- The dataset consists of the details of customers who have already flown with them.
- This data shows whether a customer is satisfied with the airlines or not after travelling with them.
- There are several other measurement or to say feedback taken from the customers as well as their demographic data is also recorded.
- The variable 'Satisfaction' is the target variable where satisfaction=1 means the customer is satisfied with the airline service and satisfaction=0 means the customer is not satisfied with the airline service.
- The exercise is focused on implementing classification Machine learning algorithms to perform the analysis.

Data Wrangling

In the data wrangling section, I have cleaned and prepared the data.

Data Cleaning involved the process of dealing with missing values, looking for outliers in the data, checking class imbalance and labelling accordingly.

Since, only one attribute contained 3% missing values, those missing records were dropped from the dataset.

The outliers in the variables 'Arrival Delay in Minutes', 'Departure Delay in Minutes' and 'Flight Distance' contains important information about the airlines. Hence, I didn't drop these outliers from the data.

In addition, while checking for any class imbalance, I found that the data is almost class balanced.

Outliers in the data

Missing Values

	column_name	percent_missing
satisfaction	satisfaction	0.000000
Gender	Gender	0.000000
Customer Type	Customer Type	0.000000
Age	Age	0.000000
Type of Travel	Type of Travel	0.000000
Class	Class	0.000000
Flight Distance	Flight Distance	0.000000
Seat comfort	Seat comfort	0.000000
Departure/Arrival time convenient	Departure/Arrival time convenient	0.000000
Food and drink	Food and drink	0.000000
Gate location	Gate location	0.000000
Inflight wifi service	Inflight wifi service	0.000000
Inflight entertainment	Inflight entertainment	0.000000
Online support	Online support	0.000000
Ease of Online booking	Ease of Online booking	0.000000
On-board service	On-board service	0.000000
Leg room service	Leg room service	0.000000
Baggage handling	Baggage handling	0.000000
Checkin service	Checkin service	0.000000
Cleanliness	Cleanliness	0.000000
Online boarding	Online boarding	0.000000
Departure Delay in Minutes	Departure Delay in Minutes	0.000000
Arrival Delay in Minutes	Arrival Delay in Minutes	0.302587

Correlations

Departure_Delay_in_Minutes	Arrival_Delay_in_Minutes	0.740284
Seat_comfort	Food_and_drink	0.705452
Ease_of_Online_booking	Online_boarding	0.662621
Online_support	Online_boarding	0.650395
Baggage_handling	Cleanliness	0.641254
Inflight_wifi_service	Online_boarding	0.616602
Online_support	Ease_of_Online_booking	0.603637
Inflight_wifi_service	Ease_of_Online_booking	0.579588
On_board_service	Cleanliness	0.578680
satisfaction	Inflight_entertainment	0.577601
On_board_service	Baggage_handling	0.555065
Departure/Arrival_time_convenient	Gate_location	0.554920
	Food_and_drink	0.538209
Inflight_wifi_service	Online_support	0.534364
Food_and_drink	Gate_location	0.533950
Eco	Personal_Travel	0.501048
Ease_of_Online_booking	On_board_service	0.464856
Inflight_entertainment	Online_support	0.460996
Ease_of_Online_booking	Cleanliness	0.452210
Seat_comfort	Departure/Arrival_time_convenient	0.438744
Ease_of_Online_booking	Baggage_handling	0.431395
satisfaction	Ease_of_Online_booking	0.429579
On_board_service	Leg_room_service	0.426280
Leg_room_service	Cleanliness	0.423042
	Baggage_handling	0.420031
Seat_comfort	Gate_location	0.410114
satisfaction	Online_support	0.402107
Seat_comfort	Inflight_entertainment	0.399236
Ease_of_Online_booking	Leg_room_service	0.377119
Inflight_entertainment	Online_boarding	0.369503

54.7% people are satisfied with the Airlines and 45.3% are not satisfied with the Airlines.

Most satisfied customers lie in the age group of 41 years approx. and most dissatisfied customers lie in the age group of 38 years (approx).

Average age by satisfaction

Most satisfied customers flew a flight distance of 1944.47 miles with the airlines and dissatisfied customers flew around 2025.203 miles with the airlines.

Average Flight_Distance by satisfaction

Most dissatisfied customers had an average delay of 18 minutes (approx) and satisfied customers had an average delay of 12 minutes (approx) with the airlines.

Average Departure Delay in Minutes by satisfaction

Females are more satisfied than males. Males are more dissatisfied with the airlines.

Disloyal customers of the airlines are less satisfied compared to loyal customer.

Customers doing business travel are more satisfied compared to personal travel customers

A cleanliness level of 4 and 5 yields higher satisfaction among customers.

A seat comfort level of 4 and 5 yields higher satisfaction among customers.

An Inflight_entertainment level of 4 and 5 yields higher satisfaction among customers.

A better ease_of_online_booking service will yield more satisfaction among customers as suggested by the ratings of 4 and 5 for ease_of_Online_booking service.

Inflight wifi service doesn't hold much importance for satisfaction because we can see that even if inflight wifi service has a got a rating of 2, the number of customers satisfied is more than no of customers dissatisfied.

Better onboard service will yield better satisfaction among customers as suggested by the ratings of 4 and 5 for onboard service.

Better leg room service will yield better satisfaction among customers as suggested by the ratings of 4 and 5 for leg room service.

 Better food and drink will yield better satisfaction among customers as suggested by the ratings of 4 and 5 for Food and drink.

satisfaction	0	1	All
Food_and_drink			
0	1305	4617	5922
1	10326	10682	21008
2	15361	11717	27078
3	16036	12029	28065
4	11116	16013	27129
5	4461	15824	20285
All	58605	70882	129487

Data Pre-processing

- In the data preprocessing section, I have prepared the data where dummies have been created for the categorical data.
- I split the dataset into training and test dataset in the ratio of 80:20.
- Standardization have been done for only the numerical attributes.
- ❖ The next slide shows the distribution of the data before standardization

Modelling

In the modelling section, to predict whether a future customer would be satisfied with the Airlines service, I fit a Logistic Regression model, a Gradient Boost Classifier model and a Decision Tree model to check which is a better model to perform the task.

To evaluate a better model, I look at the accuracy, AUC scores for both training and test datasets for all the algorithms.

I also look at VIF (Variance Influence Factor) to look for any multicollinear variables. Any explanatory variable having a VIF>10 is a indication of multicollinearity present in the model. The variables having a VIF>10 were dropped and the model was re-estimated again. Hence, multicollinearity issues have been taken care of before finalzing the model.

Logistic Regression

G							
	Generalized Linear Model Regression Results						
Dep. Variable:	satisfaction	No. Ok	servations:		103589		
Model:	GLM	Df Res	siduals:		103575		
Model Family:	Binomial	Df Mod	del:		13		
Link Function:	logit	Scale	1		1.0000		
Method:	IRLS	Log-Li	kelihood:		-47668.		
Date:	Fri, 06 Jan 2023	Deviar	nce:		95336.		
Time:	16:29:22	Pearso	on chi2:		1.18e+05		
No. Iterations:	5						
Covariance Type:	nonrobust						
		coef	std err	z	P> z	[0.025	0.975]
Age		0.0943	0.009	-10.874	0.000	-0.111	-0.077
Flight Distance	-	0.1423	0.009	-16.100	0.000	-0.160	-0.125
Arrival_Delay_in_M	inutes -	0.2062	0.009	-23.527	0.000	-0.223	-0.189

coef	std err	Z	P> z	[0.025	0.975]
-0.0943	0.009	-10.874	0.000	-0.111	-0.077
-0.1423	0.009	-16.100	0.000	-0.160	-0.125
-0.2062	0.009	-23.527	0.000	-0.223	-0.189
0.4537	0.007	66.297	0.000	0.440	0.467
-0.2794	0.007	-42.035	0.000	-0.292	-0.266
-0.2086	0.007	-29.366	0.000	-0.223	-0.195
0.1999	0.006	34.584	0.000	0.189	0.211
0.2326	0.006	37.384	0.000	0.220	0.245
0.3023	0.006	50.821	0.000	0.291	0.314
-1.4370	0.021	-68.314	0.000	-1.478	-1.396
-1.5837	0.032	-49.271	0.000	-1.647	-1.521
-2.3923	0.025	-95.741	0.000	-2.441	-2.343
-0.4737	0.023	-20.583	0.000	-0.519	-0.429
-1.2875	0.016	-78.765	0.000	-1.319	-1.255
		-0.0943	-0.0943	-0.0943	-0.0943

Feature importances obtained from coefficients

Logistic Regression Results

Some key findings that most likely explains the relationship between each of the independent and dependent variable.

- ➤ In the Logistic Regression output, we find all our explanatory variables are highly significant.
- The negative coefficient signs of the features namely, more disloyal customer, Eco, Ecoplus, male customers, personal travel, customers travelling longer flight distance are more likely to generate dissatisfied customers for the Airlines.
- ➤ The positive coefficient signs suggest that better seat comfort, Inflight_entertainment, On_board_service, Leg_room_service, Checkin_service and Online_boarding are more likely to generate more satisfied customers for the Airlines.

Logistic Regression (AUC scores)

Training

Test

Performance Evaluation (Logistic Regression)

To evaluate the model, I look at the accuracy score and AUC scores for both training and test datasets.

The AUC score for Logistic Regression model is 0.803 approx. for both training and test data sets. The accuracy score is 0.81 (approx.)

To achieve a better AUC score, I decided to refit the model using Decision Tree and Gradient Boost Classifier and check the model performance again.

Decision Tree Model (AUC scores)

Important features to predict customer satisfaction

Performance Evaluation (Decision Tree model)

To evaluate the model, I look at the accuracy score and AUC scores for both training and test datasets.

The AUC score for the model is 0.84 approx. for training data and test data set. The accuracy score is 0.84 (approx.)

Gradient Boost Classifier (AUC scores)

Training

Test

Performance Evaluation (Gradient Boost Classifier)

To evaluate the Gradient Boost Classifier model, I look at the accuracy score and AUC scores.

The AUC score for the model is 0.87 approx. for both training and test data sets. The accuracy score is 0.87 (approx.)

Modelling

Looking at the accuracy score and AUC scores for all the models, we can conclude that Gradient Boost Classifier is a better model to analyze the given task.

Both AUC scores of training and test dataset are 0.87 (approx.) for Gradient Boost Classifier suggesting there is no form of overfitting in the model.

Conclusion

- The dataset contributed to the predictive power of the model.
- Out of the different ML models, Gradient Boost Classifier provided the best results.
- With 80%-20% splitting, for both the training and test data AUC is 0.87 (approx.) with the Gradient Boost Classifier algorithm.
- The five most important features that plays an important role in predicting customer satisfaction are: Seat comfort, Eco, Online Boarding, Disloyal customer and Leg room service.
- With more ideas, the model can be improved in the future.
- In the future I would like to spend more time gathering some additional data, if available, and also trying out different other classification algorithms as further robustness checks.

THANK YOU!