Introdução:

Esta é a décima segunda parte do Tutorial de TCP/IP. Na Parte 1 tratei dos aspectos básicos do protocolo TCP/IP. Na Parte 2falei sobre cálculos binários, um importante tópico para entender sobre redes, máscara de sub-rede e roteamento. Na Parte 3 falei sobre Classes de endereços, na Parte 4 fiz uma introdução ao roteamento e na Parte 5apresentei mais alguns exemplos e análises de como funciona o roteamento. Na Parte 6 falei sobre a Tabela de Roteamento. Na <u>Parte 7</u> tratei sobre a divisão de uma rede em sub-redes, conceito conhecido como subnetting. Na<u>Parte 8</u> fiz uma apresentação de um dos serviços mais utilizados pelo TCP/IP, que é o Domain Name System: DNS. O DNS é o serviço de resolução de nomes usado em todas as redes TCP/IP, inclusive pela Internet que, sem dúvidas, é a maior rede TCP/IP existente. Na <u>Parte 9</u> fiz uma introdução ao serviço Dynamic Host Configuration Protocol - DHCP. Na Parte 10 fiz uma introdução ao serviço Windows Internet Name Services - WINS. Na Parte 11 falei sobre os protocolos TCP, UDP e sobre portas de comunicação. Nesta décima segunda parte, mostrarei como são efetuadas as configurações de portas em diversos aplicativos que você utiliza e os comandos do Windows 2000/XP/2003 utilizados para exibir informações sobre portas de comunicação.

Exemplos de utilização de portas

Embora provavelmente você nunca tenha notado, você utiliza portas de comunicação diversas vezes, como por exemplo ao acessar o seu email, ao fazer um download de um arquivo ou ao acessar uma página na Internet.

Quando você acessa um site na Internet, como por exemplowww.juliobattisti.com.br ouwww.certificacoes.com.br ouwww.uol.com.br, o navegador que você está utilizando se comunica com a porta 80 no servidor HTTP, do site que está sendo acessado. Você nem fica sabendo que está sendo utilizada a porta 80, pois esta é a porta padrão de comunicação, para o protocolo HTTP (Hypertext Transfer Protocol). Um detalhe interessante é que não é obrigatório que seja utilizada a porta padrão número 80, para a comunicação do HTTP. Por exemplo, o Administrador do IIS – Internet Information Services, que é o servidor Web da Microsoft, pode configurar um site para "responder" em uma porta diferente da Porta 80, conforme exemplo da Figura a seguir, onde o site foi configurado para responder na porta 470:

Quando for utilizada uma porta diferente da porta padrão 80, o número da porta deve ser informada após o endereço, colocando o sinal de dois pontos (:) após o endereço e o número da porta após o sinal de dois pontos, como no exemplo a seguir:

http://www.abc.com.br:470

Um outro exemplo do dia-a-dia, onde utilizamos o conceito de portas de comunicação, é quando você utiliza um cliente de FTP para se conectar a um servidor de FTP e fazer

Outro uso muito comum nas redes da sua empresa é a criação de sessões de programas emuladores de terminal com sistemas que rodam no Mainframe da empresa. Apesar de terem anunciado a morte do Mainframe há algum tempo atrás, o fato é que o Mainframe continua mais vivo do que nunca e com grande parte dos sistemas empresariais ainda rodando no Mainframe.

A próxima figura descreve, resumidamente, como funciona a criação de seções, usando um software emulador de terminal, para acessar sistemas no Mainframe. Nas estações de trabalho da rede da empresa, é instalado um programa emulador de terminal. Estes progrmas, na maioria das vezes, emulam terminais no padrão **TN23270**. Este é um padrão da IBM muito utilizado para acesso à aplicações que estão no Mainframe. O programa emulador de terminal faz a conexão com o Mainframe, o usuário informa o seu logon e senha e, de acordo com as permissões atribuídas ao logon do usuário, são disponibilizados um ou mais sistemas. Quando o usuário vai criar uma sessão com o Mainframe, ele precisa informar o nome ou o número IP do Mainframe. Normalmente estas seções são feitas com base no serviço de Telnet (Terminal Emulator Link Over Network), o qual é baseado na porta de comunicação 23.

Na Figura a seguir, mostro o uso de um software emulador de terminal, no momento emque está sendo configurada uma nova seção, a qual será estabelecida via Telnet, utilizando a porta 23:

Estas são apenas três situações bastante comuns – acessar a Internet, fazer download de arquivos a partir de um servidor FTP e criar uma sessão com o Mainframe, - utilizados diariamente por usuários das redes de empresas de todo o mundo, onde são utilizados, na prática, o conceito de Portas de Comunicação, do TCP/IP, conceito este que foi discutido na Parte 11 deste tutorial. A seguir apresentarei alguns comandos do Windows 2000/XP/2003, os quais exibem informações sobre as portas de comunicação que estão sendo utilizadas no seu computador. Se você não está conectado à rede de uma empresa, poderá utilizar estes comandos quando você estiver conectado á Internet, situação onde, certamente, estarão sendo utilizadas portas de comunicação.

O comando netstat – exibindo informações sobre portas

O comando netstat está disponível no Windows 2000, Windows XP e Windows Server

2003. Este comando exibe estatísticas do protocolo TCP/IP e as conexões atuais da rede TCP/IP. O comando netstat somente está disponível se o protocolo TCP/IP estiver instalado. A seguir apresento alguns exemplos de utilização do comando netstat e das opções de linha de comando disponíveis.

netstat –a: O comando netstat com a opção –a Exibe todas as portas de conexões e de escuta. Conexões de servidor normalmente não são mostradas. Ou seja, o comando mostra as portas de comunicação que estão na escuta, isto é, que estão aptas a se comunicar. Na listagem a seguir mostro um exemplo do resultado da execução do comando netstat –a, em um computador com o nome micro01. O estado LISTENING significa, esperando, na escuta, ou seja, aceitando conexões na referida porta. O estado ESTABLISHED significa que existe uma conexão ativa na respectiva porta:

Conexões ativas

Proto	Endere‡o local	Endere‡o extern	no Estado
TCP	MICRO01:epmap	MICRO01.abc.com:0	
TCP	MICRO01:microsoft-ds		
TCP	MICRO01:1046	MICRO01.abc.com:0	LISTENING
TCP	MICRO01:1051	MICRO01.abc.com:0	LISTENING
TCP	MICRO01:1058	MICRO01.abc.com:0	LISTENING
TCP	MICRO01:1097	MICRO01.abc.com:0	LISTENING
TCP	MICRO01:1595	MICRO01.abc.com:0	LISTENING
TCP	MICRO01:2176	MICRO01.abc.com:0	LISTENING
TCP	MICRO01:2178	MICRO01.abc.com:0	LISTENING
TCP	MICRO01:2216	MICRO01.abc.com:0	LISTENING
TCP	MICRO01:2694	MICRO01.abc.com:0	LISTENING
TCP	MICRO01:2706	MICRO01.abc.com:0	LISTENING
TCP	MICRO01:3236	MICRO01.abc.com:0	LISTENING
TCP	MICRO01:3279	MICRO01.abc.com:0	LISTENING
TCP	MICRO01:3282	MICRO01.abc.com:0	LISTENING
TCP	MICRO01:3285	MICRO01.abc.com:0	LISTENING
TCP	MICRO01:3302	MICRO01.abc.com:0	LISTENING
TCP	MICRO01:3322	MICRO01.abc.com:0	LISTENING
TCP	MICRO01:3335	MICRO01.abc.com:0	LISTENING
TCP	MICRO01:3336	MICRO01.abc.com:0	LISTENING
TCP	MICRO01:3691	MICRO01.abc.com:0	LISTENING
TCP	MICRO01:4818	MICRO01.abc.com:0	LISTENING
TCP	MICRO01:4820	MICRO01.abc.com:0	LISTENING
TCP	MICRO01:4824	MICRO01.abc.com:0	LISTENING
TCP	MICRO01:4829	MICRO01.abc.com:0	LISTENING
TCP	MICRO01:6780	MICRO01.abc.com:0	LISTENING
TCP	MICRO01:6787	MICRO01.abc.com:0	LISTENING
TCP	MICRO01:9495	MICRO01.abc.com:0	LISTENING
TCP	MICRO01:42510	MICRO01.abc.com:0	LISTENING
TCP	MICRO01:netbios-ssn	MICRO01.abc.com:) LISTENING
TCP	MICRO01:microsoft-da	s MICRO02:1352	ESTABLISHED
TCP	MICRO01:1595	SERVIDOR02:microso	oft-ds ESTABLISHED
TCP	MICRO01:2694	SERVIDOR02:microso	oft-ds ESTABLISHED
TCP	MICRO01:2706	SERVIDOR03:1352	ESTABLISHED
TCP	MICRO01:3236	SERVFILES01:micros	soft-ds ESTABLISHED
TCP	MICRO01:3279	EMAILSERVER: micros	soft-ds ESTABLISHED
TCP	MICRO01:3282	EMAILSERVER: micros	
TCP	MICRO01:3285	EMAILSERVER: micros	soft-ds ESTABLISHED
TCP	MICRO01:3323	DRFSTMSRV22:1352	TIME_WAIT
TCP	MICRO01:3335	66.139.77.16:http	CLOSE_WAIT
TCP	MICRO01:3336	66.139.77.16:http	CLOSE_WAIT
TCP	MICRO01:3691	SRV01:microsoft-ds	ESTABLISHED

Julio Battisti 24/1/2014

```
MICRO01:4200
                                MICRO01.abc.com:0
  TCP
                                                    LISTENING
         MICRO01:4829
                                a209-249-123-
  TCP
216.deploy.akamaitechnologies.com:https CLOSE WAIT
         MICRO01:microsoft-ds *:*
  UDP
         MICRO01:1027
  UDP
                                * • *
  UDP
         MICRO01:1042
                                * • *
         MICRO01:1403
  UDP
         MICRO01:3632
  UDP
         MICRO01:3636
                                * : *
 UDP
         MICRO01:38037
                                * • *
 UDP
         MTCRO01:38293
                                * • *
  UDP
         MICRO01:netbios-ns
                                * • *
  UDP
  UDP
         MICRO01:netbios-dgm
                                 * • *
         MICRO01:isakmp
                                *:*
  UDP
         MICRO01:42508
  UDP
         MICRO01:1186
                                *:*
  UDP
         MICRO01:3212
                                * • *
 UDP
  UDP
         MICRO01:3221
                                * • *
  UDP
         MICRO01:3555
                                * • *
```

netstat -e: Esta opção exibe estatísticas sobre a interface Ethernet do computador. A interface Ethernet é, normalmente, a placa de rede local, que conecta o computador a rede da empresa. Esta opção pode ser combinada com a opção -s, que será descrita mais adiante. A seguir um exemplo da execução do comando netstat -e:

C:∖>netstat −e Estatísticas de interfa	ace	
	Recebido	Enviado
Bytes	418376586	3178900324
Pacotes unicast	1801720	2703889
Pacotes não unicast	170291	5018
Descartados	0	Q.
Erros	0	Ø
Prot. desconhecidos	21303	

netstat -n: Exibe endereços e números de porta em forma numérica (em vez de tentar pesquisar o nome). A seguir um exemplo da execução do comando netstat -n:

Conexões ativas

Proto	Endereço local	Endereço externo	Estado
TCP	100.200.50.50:1595	100.200.50.60:445	ESTABLISHED
TCP	100.200.50.50:2694	100.200.50.45:445	ESTABLISHED
TCP	100.200.50.50:2706	100.200.50.45:1352	ESTABLISHED
TCP	100.200.50.50:3236	100.200.50.102:445	TIME_WAIT
TCP	100.200.50.50:3381	100.200.50.45:1352	TIME WAIT
TCP	100.200.50.50:3399	100.200.50.40:445	ESTÄBLISHED
TCP	100.200.50.50:3691	100.200.50.222:445	ESTABLISHED
TCP	100.200.50.50:4829	135.200.240.133:443	CLOSE_WAIT

netstat -s: Exibe estatística por protocolo. Por padrão, são mostradas estatísticas para TCP, UDP, ICMP (Internet Control Message Protocol, protocolo de acesso às mensagens de Internet) e IP. A opção -p pode ser utilizada para especificar um ou mais protocolos para os quais devem ser exibidas estatísticas. A seguir um exemplo da execução do comando netstat -n:

Estat; sticas de IP

```
Pacotes recebidos
                                    = 1847793
Erros de cabeçalho recebidos
                                    = 0
                                    = 772
```

Erros de endereço recebidos

Datagramas encaminhados = 0Protocolos desconhecidos recebidos = 0 Pacotes recebidos descartados = 0Pacotes recebidos entregues = 1847244Solicitações de sa;da = 2702298Descartes de roteamento = 0Pacotes de sa; da descartados = 0Pacote de sa; da sem rota = 0Reagrupamento necess rio = 82 Reagrupamento bem-sucedido = 41= 0Falhas de reagrupamento Datagramas fragmentados c/êxito = 15Falhas/ fragmentação de datagramas = 0 Fragmentos criados = 30

Estat; sticas de ICMP

	Recebidos	Enviados
Mensagens	2767	4037
Erros	0	0
Destino inating; vel	18	1280
Tempo excedido	0	0
Problemas de parâmetro	0	0
Retardamentos de origem	4	0
Redirecionamentos	0	0
Echos	1134	1623
Respostas de eco	1611	1134
Carimbos de data/hora	0	0
Respostas de carimbos de data/hora	0	0
M scaras de endere‡o	0	0
Respostas m scaras end.	0	0

Estat; sticas de TCP

Abertos ativos = 14052 Abertos passivos = 175 Falha em tentativas de conexão = 493 Conexões redefinidas = 3563 Conexões atuais = 5

Segmentos recebidos = 1679289 Segmentos enviados = 2576364 Segmentos retransmitidos = 2841

Estat; sticas de UDP

Datagramas recebidos = Nenhuma porta = Erros de recebimento = Datagramas enviados =

netstat –**p**: Mostra conexões para o protocolo especificado por protocolo, que pode ser tcp ou udp. Se utilizado com a opção -s para exibir estatísticas por protocolo, protocolo pode ser tcp, udp, icmp ou ip. . A seguir um exemplo da execução do comando netstat –p, onde são exibidas informações somente sobre o protocolo ip: netstat –s –p ip:

```
C:\>netstat -s -p ip
Estatísticas de IP
  Pacotes recebidos
                                                      1848228
  Erros de cabeçalho recebidos
                                                      И
                                                      773
  Erros de endereço recebidos
  Datagramas encaminhados
Protocolos desconhecidos recebidos
Pacotes recebidos descartados
                                                      Ø
                                                      1847678
2702690
  Pacotes recebidos entregues
  Solicitações de saída
Descartes de roteamento
Pacotes de saída descartados
                                                      Ø
                                                     000
  Pacote de saída sem rota
                                                      82
  Reagrupamento necessário
Reagrupamento bem-sucedido
                                                      41
                                                     0
  Falhas de reagrupamento
  Datagramas fragmentados c/ êxito
                                                      15
  Falhas/ fragmentação de datagramas
                                                      Ø
  Fragmentos criados
                                                      30
```

netstat – **r**: Exibe o conteúdo da tabela de roteamento do computador. Exibe os mesmos resultados do comando route print, discutido em uma das primeiras partes deste tutorial.

A opção intervalo: Você pode definir um intervalo, dentro do qual as estatísticas geradas pelo comando netstat serão atualizadas. Por exemplo, você pode definir que sejam exibidas as estatísticas do protocolo ICMP e que estas sejam atualizadas de cinco em cinco segundos. Ao especificar um intervalo, o comando ficará executando, indefinidamente e atualizando as estatísticas, dentro do intervalo definido. Para suspender a execução do comando, basta pressionar Ctrl+C. O comando a seguir irá exibir as estatísticas do protocolo IP e irá atualizá-las a cada 10 segundos:

netstat -s -p ip 10

Conclusão

Na <u>Parte 11</u> do tutorial fiz uma apresentação dos protocolos TCP e UDP, os quais são responsáveis pelo transporte de pacotes em redes baseadas no TCP/IP. Você também aprendeu sobre as diferenças entre os protocolos TCP e UDP e sobre o conceito de porta de comunicação.

Nesta parte do tutorial mostrei como o conceito de portas é utilizado, na prática, em diversas atividades do dia-a-dia, tais como o acesso a sites da Internet, conexão com um servidor de FTP e conexão com um servidor de Telnet. Na segunda parte do tutorial, você aprendeu sobre o comando netstat.