```
Cosimo Perini Brogi DiMa - Università degli Studi di Genova
ca Categoriale ed Elementi di Teoria dei Topos
                20 Sept. 2019
```

Outline

- 1 Basics of Homotopy Type Theory Introduction Martin-Löf Type Theory Homotopical Interpretation
- 2 Idempotent Monads Monads and Algebras Reflective Subcategories
- Monadic Idempotent Modalities Reflective Subuniverses Uniquely Eliminating Operators Higher Modalities

Table of Contents

- Basics of Homotopy Type Theory Introduction
 Martin-Löf Type Theory
 Homotopical Interpretation
- 2 Idempotent Monads Monads and Algebras Reflective Subcategories
- Monadic Idempotent Modalities Reflective Subuniverses Uniquely Eliminating Operators Higher Modalities

HoTT - Univalent Foundations

Foundations of mathematics (according to V. Voevodsky):

- Syntax for mathematical objects;
- Logic (i.e. notions of proposition and proof);
- Interpretation of the syntax in the context of mathematical objects.

HoTT - Univalent Foundations

Foundations of mathematics (according to V. Voevodsky):

- Logic (i.e. notions of proposition and proof) → h-Props;
- Interpretation of the syntax in the context of mathematical objects → Types as Kan complexes.

Dependent Type Theory

Functional programming language of types and terms, mainly used in mechanized mathematics (proof-assistants, proof theory,...).

Syntax

 Γ list of variable declaration

 $\Gamma \vdash A : \mathscr{U}$ A is a well-formed type in context Γ

 $\Gamma \vdash a : A$ a is a well-formed term of type A

 $\Gamma \vdash A \equiv B : \mathcal{U}$ A and B are judgementally equal (convertible)

 $\Gamma \vdash a \equiv a' : A$ a is judgementally equal (convertible) to a' in A

Dependent Type Theory

Dependent Types

The judgement $x: A \vdash B(x): \mathcal{U}$ defines a dependent type, thought of as family B of types indexed by A.

Dependent Type Theory

Inference Rules

An inference rule is an entailment of judgements

$$\frac{J_1 \quad \cdots \quad J_n}{J}$$

Well-typing

A term a is well-typed of type A in a context Γ , if there is a derivation of the judgement $\Gamma \vdash a : A$

The System

In dependent type theory there are

Structural rules: substitution, exchange, weakening;

"Logical" rules: to handle types and terms:

Formation: how to build a type;

Introduction: how to construct canonical terms of that type;

Elimination: how to use a term of the introduced type to build

other terms;

Computation: how to "rewrite" an introduction followed by an

elimination.

Universe Type(s)

Here we assume a type ${\mathscr U}$ is given. It corresponds to the type of all types.

In fact, in order to avoid paradoxes, one needs a hierarchy of universes which is cumulative and infinite.

$$\frac{\Gamma \vdash \mathcal{U}_i : \mathcal{U}_{i+1}}{\Gamma \vdash A : \mathcal{U}_{i+1}} \qquad \frac{\Gamma \vdash A : \mathcal{U}_i}{\Gamma \vdash A : \mathcal{U}_{i+1}}$$

Unit Type


```
Formation: 1:\mathcal{U}; Introduction: \star:1;
```

introduction. x.1,

Elimination: If $\Gamma, x: 1 \vdash C: \mathcal{U}$ and $c: C(\star)$, and a: 1, then

 $\operatorname{ind}_1(x.C, c, a) : C(a);$

Computation: $ind_1(x.C, c, \star) \equiv c : C(\star)$.

Empty Type


```
Formation: 0:\mathcal{U};
```

Introduction:

Elimination: If $\Gamma, x: 0 \vdash C: \mathcal{U}$ and a: 0, then $ind_0(x.C, a): C(a)$;

Computation:

Dependent Pair Types

Formation: If $x: A \vdash B: \mathcal{U}$, then $\sum_{x:A} B(x): \mathcal{U}$;

Introduction: If a: A and b: B(a), then $(a, b): \sum_{x:A} B(x)$;

Elimination: If $t: \sum_{x:A} B$, then fst(t): A and snd(t): B(fst(t));

Computation: $fst(a, b) \equiv a$ and $snd(a, b) \equiv b$.

Note that ordinary product type $A \times B$ is just a special case where B does not depend on A.

Dependent Pair Types

а

Dependent Function Types


```
Formation: If x: A \vdash B: \mathcal{U}, then \prod_{x:A} B(x): \mathcal{U};
```

Introduction: If $a: A \vdash b: B$, then $\lambda x: A.b: \prod_{x:A} B(x)$;

Elimination: If $f: \prod_{x \in A} B$ and a: A, then f(a): B(a);

Computation: $(\lambda x : A.b)a \equiv b[a/x]$.

Note that ordinary arrow type $A \rightarrow B$ is just a special case where B does not depend on A.

Dependent Function Types

$$\frac{\bullet}{a}$$
 $\frac{\bullet}{a'}$

Coproduct Types

Formation: If $A: \mathcal{U}$ and $B: \mathcal{U}$, then $A+B: \mathcal{U}$;

Introduction: If a: A, then inl(a): A+B, and if b: B, then

inr(b): A+B;

Elimination: If $z: A + B \vdash C: \mathcal{U}$, $x: A \vdash c: C(\text{inl}(x))$,

 $y: B \vdash c': C(\operatorname{inr}(y))$, and e: A+B, then

 $\operatorname{ind}_{A+B}(z.C, x.c, y.c', e) : C(e);$

Computation: $\operatorname{ind}_{A+B}(z.C, x.c, y.c', \operatorname{inl}(a)) \equiv c[a/x] : C(\operatorname{inl}(a)), \text{ and}$

 $\operatorname{ind}_{A+B}(z.C, x.c, y.c', \operatorname{inr}(b)) \equiv c'[b/y] : C(\operatorname{inr}(b)).$

Natural Numbers Type

Formation: $\mathbb{N}: \mathcal{U}$;

Introduction: If $0:\mathbb{N}$, and if $n:\mathbb{N}$ succ $(n):\mathbb{N}$;

Elimination: If $x: \mathbb{N} \vdash C: \mathcal{U}$, $c_0: C(0)$, $x: \mathbb{N}$, $y: C \vdash c_s: C(\operatorname{succ}(x))$,

and $n:\mathbb{N}$, then $\operatorname{ind}_{\mathbb{N}}(x.C, c_0, x.y.c_s, n):C(n)$;

Computation: $\operatorname{ind}_{\mathbb{N}}(x.C, c_0, x.y.c_s, 0) \equiv c_0 : C(0)$, and

 $\operatorname{ind}_{\mathbb{N}}(x.C, c_0, x.y.c_s, \operatorname{succ}(n)) \equiv$

 $c_s[n,\mathsf{ind}_{\mathbb{N}}(x.C,c_0,x.y.c_s,n)/x,y]:C(\mathsf{succ}(n)).$

Note that elimination and computation rules allow to define functions by primitive recursion: we can define $f:\prod\limits_{x:\mathbb{N}}C(x)$ whenever we have $c_0:C(0)$ and $c_s:\prod\limits_{x:\mathbb{N}}(C(x)\to C(\operatorname{succ}(x)))$ with the defining equations

$$f(0)$$
 := c_0

$$f(\operatorname{succ}(x)) := c_s(x, f(x))$$

Identity Types

Formation: If a: A and a': A, then $a = a': \mathcal{U}$;

Introduction: If a:A, then refl(a): a = a;

Elimination: If $(x, y : A)(p : x = y) \vdash C(x, y, p)$ and

 $(x:A) \vdash t(x): C(x, x, refl(x))$, then

 $(x, y : A)(p : x = y) \vdash \text{ind}_{A}(x.t(x), x, y, p) : C(x, y, p);$

Computation: $ind_{\frac{1}{A}}(x.t(x), x, x, refl(x)) \equiv t(x)$.

Identity Types?

Terms in x = y behave like equality

- refl: $\prod_{x:A} x = x$
- $(-)^{-1}: \prod_{x,y:A} x = y \to y = x$
- $(-\cdot-): \prod_{x,y,z:A} x = y \times y = z \rightarrow x = z$
- leib: $\prod_{x,y:A} x = y \rightarrow B(x) \rightarrow B(y)$

BUT

Terms in x = y behave unlike equality

- x = y, p = q, ...
- Map \cdot is associative at any level
- UIP: $\prod_{x,y:A} \prod_{p,q:x=y} p = q$ is independent of type theory.

Terms in x = y are then thought of as paths from x to y in A.

Transporting paths

transport:
$$\prod_{x,y:A} x = y \rightarrow \prod_{B:A \rightarrow \mathcal{U}} (B(x) \leftrightarrow B(y))$$

Mapping paths

ap:
$$\prod_{f:A\to B} \prod_{x,y:A} (x = y) \to (f(x) = f(y))$$
 which is functorial.

apd:
$$\prod_{f:\prod_{x:A}B}\prod_{x,y:Ap:(x=y)}(\mathsf{transport}^B(p,f(x)) \underset{B(y)}{=} f(y))$$

$$\mathsf{transportconst}: \prod_{B:\mathcal{U}} \prod_{p: x=1 \atop A} \prod_{b:B} \mathsf{transport}^B(p,b) = b$$

$$e : \prod_{f:A \rightarrow B} \prod_{p:x = y} \mathsf{apd}_f(p) = \mathsf{transportconst}_p^B(f(x)) \cdot \mathsf{ap}_f(p)$$

Voevodsky's Model

Syntax	Interpretation
$A, x = y, p = q, \dots$	$Kan\;complex\;A$
x:A	$a \in A_0$
$A \rightarrow B$	Space of maps
$A \times B$	Product Space
A + B	Coproduct Space
$B:A\to\mathscr{U}$	Fibration $B \rightarrow A$ with fibers $B(x)$
$\sum B(x)$	Total space of fibration $B \rightarrow A$
$\prod_{x:A}^{x:A} B(x)$	Space of sections of fibration $B \rightarrow A$

Nota Bene

In set theory, a function $f: A \rightarrow B$ is a bijection iff

- **1** There exists $g: B \to A$ such that $g \circ f = id_A$ and $f \circ g = id_B$; iff
- **2** For any $b \in B$ there exists a unique $a \in A$ such that f(a) = b; iff
- 3 There exist $g: B \to A$ such that $g \circ f = id_A$, and $h: B \to A$ such that $f \circ h = id_B$.

Type Equivalences

Definition (Voevodsky)

A type A is contractible iff the following type is inhabited

$$isContr(A) := \sum_{x:A} \prod_{y:A} x = y.$$

Definition (Voevodsky)

An $f: A \rightarrow B$ is an equivalence iff the following type is inhabited

$$isequiv(f) := \prod_{b:B} isContr(\sum_{x:A} f(x) = b).$$

Here the type of equivalences is

$$A \simeq B :\equiv \sum_{f:A \to B} \mathsf{isequiv}(f).$$

Type Equivalences

Note that the types corresponding to set-theoretic 1,2,3 are not equivalent.

However the following is equivalent to the type of equivalences:

Definition (Joyal)

 $f: A \rightarrow B$ is an h-isomorphism iff the following type is inhabited

isHiso
$$(f)$$
: $\equiv (\sum_{g:B \to A} \prod_{a:A} g(f(a)) = a) \times (\sum_{h:B \to A} \prod_{b:B} f(h(b)) = b)$.

Paths in Types

It is now easy to prove that

$$(a,b) = \sum_{\substack{\Sigma B \ x:A}} (a',b') \simeq \sum_{p:a=a'} \mathsf{transport}^B(p,b) = b'$$

and, as a special case,

$$(a,b) \underset{A\times B}{=} (a',b') \simeq (a=a') \times (b=b').$$

Remark

In dependent type theory one can also construct a map

happly:
$$f = \underset{x:A}{=} g \rightarrow f \sim g := \prod_{x:A} f(x) = g(x),$$

but the system does not suffice to build an equivalence.

Function Extensionality

Axiom

The map

happly:
$$f = \underset{x:A}{=} g \rightarrow f \sim g$$

is an equivalence for any $f,g:\prod_{y\in A}B$.

Recovering Logic

Curry-Howard Correspondence

Every type is a proposition; every (well-)typed term is a proof of the corresponding proposition.

Univalent Reasoning

Some types are propositions; terms of those types are proofs.

Definition

A type $A:\mathcal{U}$ is a (h-)proposition if the following type is inhabited

$$isProp(A) := \prod_{x,y:A} x = y.$$

Recovering Logic

- 0 and 1 are propositions $\rightsquigarrow \top, \bot$
- if A and B are propositions, so is $A \times B \rightsquigarrow \Lambda$
- if *B* is a proposition, so is $A \rightarrow B \rightsquigarrow \supset, \neg$
- if B(a) is a proposition for any a:A, so is $\prod_{x:A} B(x) \rightsquigarrow \forall x:A$

Propositional Truncation

Formation: If $A: \mathcal{U}$, then $||A|| : \mathcal{U}$;

Introduction: If a: A, then |a|: ||A|| and $p(A): \prod_{x,y: ||A||} x = y$;

Elimination: If $f: A \rightarrow B$, and B: Prop, then $|f|: ||A|| \rightarrow B$;

Computation: $|f|(|a|) \equiv f(a)$.

$$A \lor B :\equiv ||A + B||$$

$$\exists x : A, B(x) :\equiv \| \sum_{x : A} B(x) \|$$

Homotopy Levels

0. A is contractible iff the following type is inhabited

$$isContr(A) :\equiv \sum_{x:A} \prod_{y:A} y = x$$

1. A is a proposition iff the following type is inhabited

$$isProp(A) := \prod_{x,y:A} x = y$$

2. A is a set iff the following type is inhabited

$$isSet(A) := \prod_{x,y:A} isProp(x = y)$$

Homotopy Levels

0. A is contractible iff the following type is inhabited

$$isContr(A) :\equiv \sum_{x:A} \prod_{y:A} y = x$$

1. A is a proposition iff the following type is inhabited

$$isProp(A) := \prod_{x,y:A} isContr(x = y)$$

2. A is a set iff the following type is inhabited

$$isSet(A) :\equiv \prod_{x,y:A} isProp(x = y)$$

Homotopy *n*-Types

Definition

Define a map λn .is-n-Type: $\mathbb{N} \to \mathcal{U} \to \mathsf{Prop}$ by natural induction:

$$is-0-Type(X) :\equiv isContr(X)$$

is-succ(n)-Type :=
$$\prod_{x,x' \in X}$$
 is-n-Type(x = x')

Homotopy *n*-Types

Note that:

- If A and B are n-types, so is $A \times B$
- If B is an n-type, so is $A \rightarrow B$
- If B(a) is an n-type for any a:A, so is $\prod_{x:A} B(x)$
- If A is an n-type and B(a) is also an n-type for any a:A, so is $\sum_{x:A} B(x)$
- If A is an n-type, and $A \simeq B$, then B is an n-type.
- If A is an n-type, it is also an n+1-type.

Paths between Types

The type theory developed so far allows to build a map

idtoequiv:
$$(A = B) \rightarrow (A \simeq B)$$
.

Univalence Axiom

univalence: $\prod_{A,B:\mathscr{U}}$ isequiv(idtoequiv(A,B)).

Univalent Type Theory

- If W is univalent, it is not a set.
- Function extensionality holds in any ${\mathscr U}$ which is univalent.
- $\mathscr U$ is univalent iff the type $\sum\limits_{B:\mathscr U} A\simeq B$ is contractible for any $A:\mathscr U$.
- \mathscr{U} is univalent iff for any $A:\mathscr{U}$ and every type family $P: \prod_{B:\mathscr{U}} (A \simeq B) \to \mathscr{U}$ the map:

$$\lambda f. f(A, id_A) : \left(\prod_{B:\mathcal{U}} \prod_{e:A \simeq B} P(B, e) \right) \to P(A, id_A)$$

has a section.

• For any P,Q: Prop in $\mathscr U$ univalent, $(P \simeq Q) \simeq (P \leftrightarrow Q)$

Table of Contents

- Basics of Homotopy Type Theory Introduction
 Martin-Löf Type Theory
 Homotopical Interpretation
- 2 Idempotent Monads Monads and Algebras Reflective Subcategories
- Monadic Idempotent Modalities Reflective Subuniverses Uniquely Eliminating Operators Higher Modalities

Monads

A monad over a category $\mathscr C$ is given by an endofunctor $T:\mathscr C\to\mathscr C$ along with:

- A natural transformation $\eta_A: A \to T(A)$, called the unit;
- A natural transformation $\mu_A : T^2(A) \to T(A)$, called the join; such that the following commute:

When μ is a natural isomorphism, T is called idempotent.

Eilenberg-Moore Categories

Let T be a monad over \mathscr{C} . A T-algebra in \mathscr{C} is given by a \mathscr{C} -object A along with an arrow $v:TA\to A$ such that the following commute:

$$T^{2}(A) \xrightarrow{Tv} T(A) \qquad A \xrightarrow{\eta_{A}} T(A)$$

$$\downarrow^{\mu_{A}} \qquad \downarrow^{\nu} \qquad \downarrow^{\nu}$$

$$T(A) \xrightarrow{\nu} A \qquad id_{A} \qquad \downarrow^{\nu}$$

Then \mathscr{C}^T is the category having T-algebras as objects, and a morphism between T-algebras $(A, v_A), (B, v_B)$ is given by a \mathscr{C} -arrow $f: A \to B$ such that

$$v_b \circ T(f) = f \circ v_A.$$

Reflective Subcategories

A reflective subcategory of $\mathscr B$ is a full subcategory $\mathscr A$ of $\mathscr B$ closed under object-isomorphism with $\mathscr B$ -object and such that the inclusion functor $I:\mathscr A\hookrightarrow\mathscr B$ has a left adjoint $R:\mathscr B\to\mathscr A$ called the reflector.

Note that $\mathscr A$ is a reflective subcategory of $\mathscr B$ iff

• there exists a functor $R: \mathcal{B} \to \mathcal{B}$ with values in the full subcategory \mathcal{A} such that

$$\mathscr{A}(R(B), A) \cong \mathscr{B}(B, A)$$

natural in B and A; iff

• for any \mathscr{B} -object B there is an \mathscr{A} -object RB and an arrow $\eta_B: B \to RB$ such that for every \mathscr{A} -arrow $g: B \to A$, there exists a unique \mathscr{A} -arrow $f: RB \to A$ such that $g = f \circ \eta_B$.

Key Equivalence

Theorem

Let ${\mathscr C}$ be a category. There is a coincidence, modulo equivalences of categories, between

- 1. the reflective subcategories of \mathscr{C} ;
- 2. the Eilenberg-Moore categories \mathscr{C}^T for the idempotent monads T over \mathscr{C} .

Proof.

Let $\mathscr D$ be a reflective subcategory of $\mathscr C$ with reflector R and canonical natural transformations $\alpha:Id_{\mathscr C}\Rightarrow I\circ R$ and $\beta:R\circ I\Rightarrow Id_{\mathscr D}$. Since I is fully faithful, β is a natural isomorphism. Then the monad $(I\circ R,\alpha,1_I\beta 1_R)$ has an isomorphism as join, and it is thus idempotent. But note that giving a $\mathscr D$ -arrow $f:X\to Y$ is equivalent to giving a $\mathscr C^{IR}$ -arrow $f:(X,\beta_X)\to (Y,\beta_Y)$ just by naturality of β . Moreover, if a monad is idempotent, then the action v of any of its algebras is an isomorphism, thus for every $\mathscr C^{IR}$ -object (C,v), C is indeed in $\mathscr D$ (by the closure condition on reflective subcategories). This means that the functor $\mathscr D\to\mathscr C^{IR}$ defined by $X\mapsto (X,\beta_X)$ and $(f:X\to Y)\mapsto f$ is indeed an equivalence of categories.

The converse is immediate, by noting that if T is an idempotent monad, then the forgetful functor $\mathscr{C}^T \to \mathscr{C}$ is fully faithful and has $F : \mathscr{C} \to \mathscr{C}^T$ as left adjoint.

Table of Contents

- Basics of Homotopy Type Theory Introduction
 Martin-Löf Type Theory
 Homotopical Interpretation
- 2 Idempotent Monads Monads and Algebras Reflective Subcategories
- Monadic Idempotent Modalities Reflective Subuniverses Uniquely Eliminating Operators Higher Modalities

Introducing Modalities

We consider types as objects of \mathscr{U} , and typed terms as arrows between them.

In this perspective, a modal operator \bigcirc is just an endofunctor on $\mathscr U$ satisfying specific conditions which characterize its values as a reflective subcategory.

Reflective Subuniverses

A reflective subuniverse is given by a predicate isModal: $\mathscr{U} \to \mathsf{Prop}$ such that for any $A : \mathscr{U}$ there exist a type $\bigcirc A$ and a map $\eta_A : A \to \bigcirc A$ such that isModal($\bigcirc A$), and for any $B : \mathscr{U}$ such that isModal(B) the map

$$\lambda f. f \circ \eta_A : (\bigcirc A \to B) \to (A \to B)$$

is an equivalence.

Lemma (1)

A type $X: \mathcal{U}$ is modal iff η_X is an equivalence.

Proof.

If $\eta_X: X \simeq \bigcirc X$, then isModal $(X) \simeq$ isModal $(\bigcirc X)$, hence X is modal, since $\bigcirc X$ is so by definition. Conversely, if X is modal, then $id_X: X \to X$ is such that $\lambda f. f \circ id_X: (X \to Z) \to (X \to Z)$ is an equivalence for any $Z: \mathscr{U}$. Now, since it is easy to see that the type of triples (Y, f, I) satisfying the defining conditions of reflective subuniverses is an h-prop, η_X is indeed an equivalence.

Every reflective subuniverse is closed under retracts. In particular, $X:\mathcal{U}$ is modal if η_X has a retraction.

Proof.

Let $f \circ \eta_X = id_X$. Then $\eta_X \circ f \circ \eta_X = \eta_X$, and by the defining condition on η_X we have $\eta_X \circ f = id_{\bigcirc X}$. Therefore η_X is an equivalence, and so X is modal.

Lemma (3)

Every reflective subuniverse is given by a functor \bigcirc up to homotopy.

Proof.

Define, for $f: A \rightarrow B$, $\bigcirc f$ as the unique map such that $\bigcirc f \circ \eta_A = \eta_B \circ f$.

Lemma (4)

For any reflective subuniverse, if P(x) is modal for any x: X, then so is $\prod_{x \in Y} P(x)$.

Proof.

Let P(x) be modal for any x:X. For x:X, define $\operatorname{ev}_x:\prod_{x:X}P(x)\to P(x)$ by $\operatorname{ev}_x(g):\equiv gx$. Then we have $\psi:\equiv \lambda f.\lambda x.\eta_{P(x)}fx:\prod_{x:X}P(x)\to\prod_{x:X}\bigcirc P(x)$. In order to find a retraction f of $\eta\prod_{x:X}P(x)$, note that following extensions are equivalent

Define then $f := \lambda m.\lambda x. \bigcirc (\operatorname{ev}_x) m$ as solution of the first diagram. Since P(x) is modal by assumption, ψ is an equivalence, and we are done.

Corollary (4.1)

The reflector () preserves finite products.

Proof.

It suffices to show that $\bigcirc X \times \bigcirc Y$ behaves just like $\bigcirc (X \times Y)$:

t suffices to show that
$$\bigcirc X \times \bigcirc Y$$
 behaves just like $\bigcirc (X \times Y)$:
$$(X \times Y \to Z) \simeq X \to (Y \to Z)$$

$$\simeq X \to (\bigcirc Y \to Z)$$

$$\simeq \bigcirc X \to (\bigcirc Y \to Z)$$
for any Z modal.
$$\simeq \bigcirc X \times \bigcirc Y \to Z$$

Corollary (4.2)

The reflector \(\) preserves propositions.

Proof.

P is a proposition iff $\delta: P \to P \times P$ is an equivalence.

Uniquely Eliminating Operators

The extension condition given on η for any reflective subuniverse is like a recursion principle. If we want to "eliminate" to dependent types, we need to relax that condition.

Definition

Given $\bigcirc : \mathscr{U} \to \mathscr{U}$ and $\eta : \prod_{A:\mathscr{U}} A \to \bigcirc A$, we have a uniquely eliminating operator when

$$\lambda f. f \circ \eta_A : (\prod_{x: \bigcirc A} \bigcirc (P(x))) \to (\prod_{a:A} \bigcirc (P(\eta_A(a))))$$

is an equivalence for any $A:\mathcal{U}$ and any $P:\bigcirc A\to\mathcal{U}$. $X:\mathcal{U}$ is said to be \bigcirc -modal when $X\simeq\bigcirc X$.

Reflective Subuniverse from U.E.Operator

Lemma (5)

Any uniquely eliminating operator defines a reflective subuniverse.

Proof.

Let $f:A\to B$ for B modal. Then, by uniquely elimination, there exists only one $\tilde f:\bigcirc A\to B$ such that

$$\begin{array}{ccc}
A & \xrightarrow{f} & B \\
\eta & & \swarrow & f \\
\bigcirc A & & & & \\
\end{array}$$

It remains to show that $\bigcirc A$ is modal: By the universal condition on η we have $f:\bigcirc\bigcirc A \rightarrow \bigcirc A$ such that $f\circ \eta_{\bigcirc A}=id_{\bigcirc A}$. But the same condition assures that the type

$$\sum_{g:\bigcirc \triangle A \to \bigcirc \triangle A} g \circ \eta_{\bigcirc A} = \eta_{\bigcirc A}$$

is contractible. Then $id_{\bigcirc\bigcirc A} = \eta_{\bigcirc A} \circ f$, so $\eta_{\bigcirc A} : \bigcirc A \simeq \bigcirc \bigcirc A$ as desired.

L

Σ -closure

Remark

Every reflective subuniverse derived from a uniquely eliminating operator is Σ -closed.

Proof.

Let A be modal and $P:A\to \mathscr{U}$ be such that each P(x) is modal. Define h by composing

$$\bigcirc(\sum_{x:A} P(x))_{\bigcirc \mathsf{pr1}} \to \bigcirc A \xrightarrow[(\eta_A)^{-1}]{} A$$

$$h(\eta(z)) = \eta^{-1}(\bigcirc \mathrm{pr}1(\eta z)) \quad \text{def. of } h$$
 Then, for $z \colon \sum_{\cdot} P(x)$ we have
$$= \eta^{-1}(\eta(\mathrm{pr}1z)) \quad \text{nat. of } \eta$$

Let
$$p_z$$
 be this path. Let $C: \bigcirc \sum_{i} P(x) \to \mathscr{U}$ such that $C(w) :\equiv P(h(w))$.

Then we have

$$g := \lambda z. \text{transport}(p_z, \text{pr2}(z)) : \prod_{z: \sum_{z \in P(x)} P(x)} C(\eta(z))$$

Σ -closure

Proof (continued).

By unique elimination this yields

$$f: \prod_{w: \bigcirc \sum_{x:A} P(x)} C(w)$$
 such that $f(\eta z) = g(z)$.

Define then $k: \bigcap_{x:A} P(x) \to \sum_{x:A} P(x)$ by

$$k(w) :\equiv (h(w), f(w)).$$

Finally, the paths p_z : $h(\eta(z)) = \text{pr}1z$ and $f(\eta z) = g(z) = \text{transport}(p_z, \text{pr}2(z))$ show that $k \circ \eta = id_{\sum\limits_{x:A} P(x)}$. Lemma 2 gives the result.

U.E.Operator from Σ -closed reflective subuniverse

Lemma (6)

Every \sum -closed reflective subuniverse defines a uniquely eliminating operator.

Proof.

Let \bigcirc be the reflector of a Σ -closed reflective subuniverse, A be a type and $P: \bigcirc A \to \mathscr{U}$ be such that each P(a) is modal. I need to show that for any $g: \prod_{x:A} P(\eta x)$ there exists an $f: \prod_{z:\bigcirc A} P(z)$ such that $f(\eta a) = ga$ for any a:A.

Note that $\sum_{z: \bigcirc A} P(z)$ is modal, therefore, by defining $g': A \to \sum_{z: \bigcirc A} P(z)$ such that $g'(a) :\equiv (\eta a, ga)$ we have $\bigcirc g': \bigcirc A \to \sum_{z: \bigcirc A} P(z)$ such that $\bigcirc g'(\eta a) = (\eta a, ga)$.

Therefore $\operatorname{prl} \circ \bigcirc g' \circ \eta_A = id_{\bigcirc A} \circ \eta_A = \eta_A$ which yields $\operatorname{prl} \circ \bigcirc g' = id_{\bigcirc A}$. Then we have $p_z : \operatorname{prl} (\bigcirc g'(z)) = z$ for any $z : \bigcirc A$, so we can define $f(z) :\equiv \operatorname{transport} (p_z, \operatorname{pr2} (\bigcirc g'(z)))$. Since $p_{\eta a} : \operatorname{prl} (\bigcirc g'(\eta a)) = \eta a$, we have

 $f(\eta a) = ga$, as desired.

Identity Types

Lemma (7)

If A is modal, so is x = y for any x, y : A.

Proof.

For $f:A\to C$ and $g:B\to C$ let $A\underset{C}{\times}B:\equiv\sum\limits_{a:A}\sum\limits_{b:B}\left(f(a)=g(b)\right)$ be the type-theoretic pullback of f and g. It is easy to see that $x=y\simeq 1\underset{A}{\times}1$. Then we have

Since A is modal by assumption, the outer rectangle commutes, for the extensions of $x = y \to A$ are unique. Then we have $x \circ ! \circ f = y \circ ! \circ f$ by which $x \circ ! \circ f \circ \eta = y \circ ! \circ f \circ \eta$, so that $f \circ \eta = id_{x=y}$, and we are done.

Language for modal types

Remark

The basic properties of types and terms in HoTT are built from identity types, Σ - and Π -types. This means that a Σ -closed reflective subuniverse is closed under them as well.

Higher Modalities

Lemma (8)

Every Σ -closed reflective subuniverse defines a higher modality given by

- (i) $\eta: \prod_{A:\mathscr{U}} A \to \bigcirc A$;
- (ii) for any $A: \mathcal{U}$ and any $P: \bigcirc A \rightarrow \mathcal{U}$ a map

$$\operatorname{ind}_A: \prod_{a:A} \bigcirc P(\eta a) \to \prod_{z:\bigcirc A} \bigcirc P(z)$$

such that $\operatorname{ind}_A(f)(\eta(a)) = f a$ for any $f: \prod_{a:A} \bigcirc P(\eta a)$;

(iii) for any $x, y: \bigcirc A$, $\eta_{x=y}$ is an equivalence.

Higher Inductive Types

Any HIT has:

- term formation and path formation rules
- elimination rules which consider path formation rules
- computation rules given by a path (not ≡)

HITs extends the system considered so far, but here higher modalities are defined within UniTT.

Higher Modalities

Lemma (8)

Every Σ -closed reflective subuniverse defines a higher modality given by

- (i) $\eta: \prod_{A:\mathscr{Y}} A \to \bigcirc A;$
- (ii) for any $A:\mathcal{U}$ and any $P:\bigcirc A \to \mathcal{U}$ a map

$$\operatorname{ind}_A : \prod_{a:A} \bigcirc P(\eta a) \to \prod_{z:\bigcirc A} \bigcirc P(z)$$

such that $\operatorname{ind}_A(f)(\eta(a)) = fa$ for any $f: \prod_{a:A} \bigcirc P(\eta a)$;

(iii) for any $x, y: \bigcirc A$, $\eta_{x=y}$ is an equivalence.

Proof.

- (iii) is given by Lemma 7.
- (ii) follows by Lemma 6 and remark 2.
- (i) follows by definition of subuniverse.

Σ -closed reflective subuniverse from H.Modality

Lemma (9)

Every higher modality defines a Σ -closed reflective subuniverse.

Proof.

Assume a higher modality is given. It suffices to construct a uniquely eliminating operator, i.e. to prove that

$$\lambda g.g\circ\eta_A\colon \prod_{x:\bigcirc A}\bigcirc P(x)\to \prod_{a:A}\bigcirc P(\eta a)$$

is an equivalence. Lemma 8 gives ind_A as right inverse of $\lambda g.g \circ \eta_A$. Given $s\colon \prod_{x:\bigcirc A}\bigcirc P(x)$, we need a homotopy

$$\prod_{x:\bigcirc A} (sx = \operatorname{ind}_A (s \circ \eta_A) x).$$

Since $\bigcirc P(x)$ is modal for any $x:\bigcirc A$, so is $sx=\operatorname{ind}_A(s\circ \eta_A)x$, therefore it suffices to find, by Lemma 8(ii), a homotopy $\prod_{a:A}\bigcirc (s(\eta a)=\operatorname{ind}_A(s\circ \eta_A)(\eta a))$ i.e. a homotopy

$$\prod_{a:A} (s(\eta a) = \operatorname{ind}_A (s \circ \eta_A)(\eta a)), \text{ which is given by Lemma 8(ii)}.$$

A unique family of types

Lemma (10)

The types of Σ -closed reflective subuniverses, uniquely eliminating operators, and higher modalities are all equivalent.

Proof.

Note first that:

- The defining conditions for a reflective subuniverse define a type which is a proposition;
- The defining conditions for a uniquely eliminating operator define a type which is a proposition;
- The defining conditions for a higher modality define a type which is a proposition.

Therefore, Lemmas 6, 8, 9, and remark 2 give the result.

Thank you for listening!

References I

U. Buchholz.

Proof Theory of Homotopy Type Theory. FOMUS 2016. https://youtu.be/ZQyBLXJQs2w.

P. Dybjer, E. Palmgren.

Intuitionistic Type Theory. SEP (Winter 2016 Edition) https://plato.stanford.edu/archives/win2016/entries/type-theory-intuitionistic/.

E. Rijke. Introduction to Homotopy Type Theory. https://hott.github.io/HoTT-2019/images/hott-intro-rijke.pdf.

E. Rijke, M. Shulman, B. Spitters.

Modalities in Homotopy Type Theory.

https://arxiv.org/pdf/1706.07526v4.pdf.

The HoTT Library

https://github.com/HoTT/HoTT.