LA DÉRIVATION E02C

EXERCICE N°2 Preuve de la deuxième ligne du tableau de la propriété n°5

Soit u une fonction définie sur un intervalle I de $\mathbb R$. Soit $k \in \mathbb R$, soit $x \in I$ et soit $h \in \mathbb R$ tel que $x+h \in I$.

1) Pourquoi impose-t-on $x+h \in I$?

La fonction u est définie sur I.

Si $x+h \notin I$ alors on ne peut pas calculer son image par u.

2) Simplifier l'expression $\frac{f(x+h)-f(x)}{h}$

$$\frac{f(x+h)-f(x)}{h} = \frac{k u(x+h)-k u(x)}{h} = k \times \frac{u(x+h)-u(x)}{h}$$

3) En déduire le nombre dérivé en x de la fonction $f: x \mapsto k \times u(x)$.

Pour tout $x \in I$,

quand h tend vers zéro, $k \times \frac{u(x+h)-u(x)}{h}$ tend vers $k \times u'(x)$