VERSUCH 701

Reichweite von Alpha-Strahlung

Lars Kolk Julia Sobolewski lars.kolk@tu-dortmund.de julia.sobolewski@tu-dortmund.de

Durchführung: 12.06.2018 Abgabe: 19.06.2018

TU Dortmund – Fakultät Physik

Inhaltsverzeichnis

1	Zielsetzung	3
2	Theorie 2.1 Entstehung von alpha-Strahlung 2.2 Alpha-Strahlung im Medium 2.3 Der Halbleiterrsperschichtzähler	. 3
3	Durchführung3.1Aufbau3.2Bestimmung der Reichweite von Alpha-Strahlung3.3Statistik des radioaktiven Zerfalls	. 5
4	Auswertung4.1Bestimmung der Reichweite und des Energieverlustes von Alpha-Strahlun4.1.1Messung $1 - d = 23 \mathrm{mm}$ 4.1.2Messung $2 - d = 24 \mathrm{mm}$ 4.2Statistik des radioaktiven Zerfalls	. 5 . 8
5	Diskussion	12
Lit	iteratur	13

1 Zielsetzung

In diesem Versuch soll die Reichweite von α -Strahlung in Luft bestimmt werden.

2 Theorie

2.1 Entstehung von alpha-Strahlung

Bei α -Strahlung handelt es sich Heliumkerne, die durch radioaktiven Zerfall entstehen. In diesem Versuch wird dies durch den Zerfall von Americium realisiert. Die dazugehörige Zerfallsgleichung lautet:

$$^{241}_{95}\text{Am} \rightarrow ^{237}_{95}\text{Np} + ^{4}_{2}\text{He}^{++}$$
 (1)

2.2 Alpha-Strahlung im Medium

Wenn sich α -Strahlung im Medium fortbewegt, kann diese durch elastische Stöße Energie abgeben. Die so abgegebene Energie für die weiteren Betrachtungen legiglich eine untergeordnete Rolle spielen. Jedoch kommt es durch Ionisations- und Anregungsprozesse zu nicht vernachlässligbaren Energieverlusten $\frac{-\mathrm{d}E_{\alpha}}{\mathrm{d}x}$, die durch die Bethe-Bloch-Gleichung gegeben sind:

$$-\frac{\mathrm{d}E}{\mathrm{d}x} = \frac{z^2 e^4 nZ}{4\pi\epsilon_0 m_e v^2} \ln\left(\frac{2m_e v^2}{I}\right) \tag{2}$$

 $(z = \text{Ladungen}, Z = \text{Ordnungszahl}, n = \text{Teilchendichte}, v = \text{Geschwindigkeit der } \alpha\text{-Strahlung})$

Jedoch verliert Gleichung (2) bei sehr kleinen Energien ihre Gültigkeit, da es bei diesen Energien zu Ladungsaustauschprozessen kommt. Die Reichweite der α -Strahlung lässt sich dabei durch

$$R = \int_0^E \frac{\mathrm{d}E}{-\frac{\mathrm{d}E}{\mathrm{d}x}}.$$
 (3)

berechnen. Da nicht alle α -Teilchen mit Anfangsenergie E gleich viele Stöße pro Weglänge dx ausführen, wird die mittlere Weglänge definiert. Als diese wird die Weglänge verstanden, die 50% der ausgesendeten α -Teilchen noch erreichen. Für Strahlungsenergien $E \leq 2.5 \cdot 10^6 \,\mathrm{eV}$ kann die mittlere Weglänge beschrieben werden durch:

$$R_m = 3, 1 \cdot \sqrt{E^3}. \tag{4}$$

Bei konstanten Druck und konstanter Temperatur lässt sich mit

$$x = x_0 \cdot \frac{p}{p_0},\tag{5}$$

 $(p \stackrel{.}{=} \text{Druck}, \ x_0 \stackrel{.}{=} \text{effektive Länge})$

ein Zusammenhang zwischen dem herrschenden Druck und der effektiven Weglänge x aufstellen. Somit kann die Reichweite von α -Strahlung mithilfe einer Absorptionsmessung bestimmt werden, indem der Druck p variiert wird.

2.3 Der Halbleiterrsperschichtzähler

Ein Halbleitersperrschichtzähler besteht aus einer Diode, die entgegen der Stromrichtung geschaltet ist. Zwischen den beiden Schichten bildet sich eine ladungsträgerfreie Zone aus, da die Elektronen des n-Leiters zu den positiven Ionen des p-Leiters wandern. Einstreffende α -Strahlung erzeugt in dieser Zone Elektronen-Loch-Paare. Diese werden einem elektrischen Feld getrennt und können mit Detektoren erfasst werden.

3 Durchführung

3.1 Aufbau

Abbildung 1: Aufbau zur Bestimmung der Reichweite von α -Strahlung[1, S. 3]

Der in Abbildung 1 zu sehende Aufbau besteht aus einem Glaszylinder, in dem sich ein Halbleiter-Detektor und das Am-Präparat befinden, einer Vakuumpumpe sowie einem Vorverstärker und einem Vielkanalanalysator. Die einzelnen Komponenten werden gemäß Abbildung 1 verbunden und wird für die im folgendem erläuterten Versuchsteile verwendet.

3.2 Bestimmung der Reichweite von Alpha-Strahlung

Zunächst wird der Glaszylinder evakuiert, sodass ein Druck von ungefähr 0 mbar herrscht. Der Abstand zwischen Präparat und Halbleiter-Detektor wird auf 23 mm eingestellt. Die Zählraten N werden bei einer Messzeit von $\Delta t = 120\,\mathrm{s}$ gemessen und der Druck in $50\cdot10^{-3}$ bar-Schritten erhöht. Dies wird für einen Abstand von 24 mm wiederholt.

3.3 Statistik des radioaktiven Zerfalls

Der Abstand zwischen Präperat und Halbleiter-Detektor wird auf $20,5\,\mathrm{cm}$ eingestellt. Der Glaszylinder wird evakuiert und die Zählrate N in einem Zeitintervall von $10\,\mathrm{s}$ $100\,\mathrm{mal}$ gemessen.

4 Auswertung

4.1 Bestimmung der Reichweite und des Energieverlustes von Alpha-Strahlung

4.1.1 Messung 1 - $d = 23 \,\mathrm{mm}$

In Tabelle 1 befinden sich die aufgenommenen Messwerte.

Tabelle 1: Aufgenommene Messwerte im Abstand $d=23\,\mathrm{mm}$

p / mbar	N	Channel		
0	82567	1127		
50	58847	1088		
100	57532	1045		
150	57965	1022		
200	56132	970		
250	56827	934		
300	56955	932		
350	53724	857		
400	54801	858		
450	53282	819		
500	47913	747		
550	43768	699		
600	39368	666		
650	35751	625		
700	37637	614		

Der effektive Abstand x zwischen Strahler und Detektor ergibt sich aus Gleichung (6).

$$x = x_0 \cdot \frac{p}{p_0} \tag{6}$$

In Abbildung 2 sind die Zählraten in Abhängigkeit vom effektiven Abstand aufgetragen. Dabei wird der Messwert bei p=0 mbar weggelassen, da er so stark von den restlichen Werten abweicht, dass er die nachfolgende Auswertung verfälschen würde.

Abbildung 2: N-x-Diagramm zur Bestimmung der mittleren Reichweite von $\alpha\text{-Strahlung}$

Eine lineare Regression $f(x) = -a \cdot x + b$ ergibt

$$a = (4.0 \pm 0.2) \cdot 10^3 \frac{1}{\text{mm}}$$
$$b = (9.4 \pm 0.2) \cdot 10^4$$

Die mittlere Reichweite ergibt sich aus

$$R_m = \frac{N_{\text{max}}/2 - b}{a}. (7)$$

Die maximale Zählrate beträgt hier ungefähr $N_{\rm max}=57\,376.$ Für die mittlere Reichweite ergibt sich nach Gleichung (7) somit

$$R_m = (16.2 \pm 0.8) \, \mathrm{mm}.$$

Der Fehler ergibt sich aus der Gauß'schen Fehlerfortpflanzung (8)

$$\sigma_{R_m} = \sqrt{\left(-\frac{1}{a} \cdot \sigma_b\right)^2 + \left(\frac{b}{a^2} \cdot \sigma_a\right)^2}.$$
 (8)

Der mittleren Reichweite entspricht eine Energie von

$$E_{\alpha} = \left(\frac{R_m}{3,1}\right)^{2/3}.\tag{9}$$

Nach Gleichung (9) ergibt sich somit

$$E_{\alpha} = (3.0 \pm 0.1) \,\text{MeV}.$$

Der Fehler ergibt sich aus der Gauß'schen Fehlerfortpflanzung (10).

$$\sigma_{E_{\alpha}} = \sqrt{\left(\frac{2}{3} \cdot \frac{1}{\left(3, 1 \cdot R_m^2\right)^{1/3}} \cdot \sigma_{R_m}\right)^2} \tag{10}$$

In Abbildung 3 ist die Energie gegen den effektiven Abstand aufgetragen.

Abbildung 3: E-x-Diagramm zur Bestimmung des Energieverlustes von α -Strahlung

Eine lineare Regression $f(x) = -c \cdot x + d$ ergibt

$$c = (0.118 \pm 0.003) \, \frac{\text{MeV}}{\text{mm}} = \frac{\text{d}E}{\text{d}x}$$

$$d = (4.01 \pm 0.03) \, \text{MeV}.$$

4.1.2 Messung 2 - $d = 24 \,\mathrm{mm}$

In Tabelle 2 befinden sich die aufgenommenen Messwerte.

Tabelle 2: Aufgenommene Messwerte im Abstand $d=24\,\mathrm{mm}$

p / mbar	N	Channel	
0	83766	680	
50	83186	664	
100	83169	645	
150	83080	631	
200	82514	614	
250	81196	602	
300	82750	595	
350	81462	579	
400	80743	563	
450	80088	548	
500	80631	535	
550	79327	512	
600	78630	489	
650	76208	471	
700	74374	443	
750	69713	415	
800	62077	372	
850	48412	333	
900	31279	329	
950	15255	328	
1000	4785	330	

Der effektive Abstand x zwischen Strahler und Detektor ergibt sich wieder aus Gleichung (6). In Abbildung 4 sind die Zählraten in Abhängigkeit vom effektiven Abstand aufgetragen.

Abbildung 4: N-x-Diagramm zur Bestimmung der mittleren Reichweite von α -Strahlung

Eine lineare Regression $f(x) = -a \cdot x + b$ ergibt

$$a = (1.16 \pm 0.06) \cdot 10^4 \frac{1}{\text{mm}}$$
$$b = (2.8 \pm 0.1) \cdot 10^5$$

Die maximale Zählrate beträgt hier ungefähr $N_{\rm max}=81\,826.$ Für die mittlere Reichweite ergibt sich nach Gleichung (7) und (8) zu

$$R_m = (20.5 \pm 1.5) \, \mathrm{mm}.$$

Der mittleren Reichweite entspricht nach Gleichung (9) und (10) einer Energie von

$$E_{\alpha}=(3.5\pm0.2)\,\mathrm{MeV}.$$

In Abbildung 5 ist die Energie gegen den effektiven Abstand aufgetragen.

Abbildung 5: E-x-Diagramm zur Bestimmung des Energieverlustes von α-Strahlung

Eine lineare Regression $f(x) = -c \cdot x + d$ ergibt

$$c = (0.087 \pm 0.004) \frac{\text{MeV}}{\text{mm}} = \frac{\text{d}E}{\text{d}x}$$

 $d = (4.06 \pm 0.04) \text{ MeV}.$

4.2 Statistik des radioaktiven Zerfalls

In Tabelle 3 befinden sich aufgenommenen Messwerte. Das Messintervall beträgt $10\,\mathrm{s}.$

Tabelle 3: Aufgenommene Messwerte zur Bestimmung der statistischen Verteilung

N								
51	38	37	52					
44	57	51	37					
42	41	56	45					
53	57	40	44					
63	56	51	50					

Tabelle 3: Aufgenommene Messwerte zur Bestimmung der statistischen Verteilung (Fortsetzung)

N								
48	57	46	50					
52	44	32	47					
40	53	53	35					
39	44	49	53					
44	37	54	36					
44	47	37	47					
34	44	45	51					
53	45	47	43					
58	46	45	49					
49	44	45	42					
37	47	59	37					
32	60	33	42					
61	48	46	65					
57	36	57	50					
40	50	46	47					
38	60	50	39					
50	50	57	38					
39	51	49	51					
48	42	45	40					
51	49	51	38					

In Abbildung 6 sind die Zerfallsraten als Histogramm aufgetragen. Zum Vergleich sind die Gauß- und Poissonverteilung ebenfalls aufgetragen.

Abbildung 6: Histogramm zum Vergleich der gemessenen Zerfallsraten mit der Gaußund Poissonverteilung

Der Mittelwert und die Standardabweichung der Werte aus Tabelle 3 ergeben sich aus Gleichung (11) und (12)

$$\bar{N} = \frac{1}{100} \sum_{i=1}^{100} N_i \tag{11}$$

$$\sigma_{\bar{N}} = \sqrt{\frac{1}{100(100-1)} \sum_{i=1}^{100} (N_i - \bar{N})^2}.$$
 (12)

Somit beträgt der Mittelwert

$$\bar{N} = (4.68 \pm 0.07) \,\mathrm{Bg}.$$

5 Diskussion

Die in Kapitel 4.1.1 bestimmte mittlere Reichweite weicht um 20,98 % von der mittleren Reichweite aus Kapitel 4.1.2 ab. Die Abweichung des Energieverlustes von dem Wert aus Kapitel 4.1.1 zu dem Wert aus Kapitel 4.1.2 beträgt 35,29 %. In Abbildung 6 ist aber zu

erkennen, dass die statistische Verteilung der Zerfallsraten der α -Strahlung wie erwartet eher der Poisson- statt der Gaußverteilung entspricht.

Literatur

[1] TU Dortmund. Versuch V701: Reichweite von -Strahlung. 2018. URL: http://129. 217.224.2/HOMEPAGE/PHYSIKER/BACHELOR/AP/SKRIPT/Alpha.pdf.

JUS2 -	Scanverf	hren in	der U	trachall	techni	ben (-				
	422						Nume	rieung			
Breite:			01.	0		land	ers als i	n Anlei	tung)		
Tiefe:			0								
ttohe: 1		oben	1.5 9		At / p						
1. 0,6 cu	(Hand)		/ ps 3.		46,34	•					
2.			14		40,63						
3.0,40		23	194		35, 23						
4. 0,3			29,73		29,84						
5. 0, 2cm			5.55		23,70						
6. 0, 2 cu			28		18,09						
7, 11			13		12,17						
8. # 0			49			12,22					
9, 00	2004	33	33	-	6,35						
14052.	A = 4 =	2,54	Diasto	e	P	اد دارسوه	ser Hor	2: 05	111		
400	1 = 34	1,49 µs	Sychol	e			.,0				
		7	73			my.					
					1	CO-C					
					1						
		11									
		weite vo	n ox -	Strahlu	ng						
	3 000			02 1	- 1	200	250	2-	20-	1 400	
P/mba	5	50		00 1	.50	200	200	300	350	160	
Counts	92'5	567 58.81	47 57 5	32 57-5	165 5	6.132	56 827	56.95	5 53.72	4 54.801	
									3 33.12	1 54.00	
Channe	1 1127	108	8 40	45 10	22	970	934	932	857	358	
450	5€	55	0 6	00 6	50	700	320	800	850	900	950
	1.00										
53-2	82 47-3	13 43 70	8 39 3	368 35 7	7SA 3	7 637					
819	747	699	66		25	614					
023	747	1 633	1 66	6	-	DAY					
0= 1,	Sau										
plubar	0	50	Los	120	20	0	250	300	350	400 45	07
											_
Counts	173.412	109.025	177. 61	4 14.5	48 108.	798 40	9.449	106.614	108.744	103.038 102.	803
				56				964 (20)			_
Channel	1431	1094	1086	100	102	2 1 40	200	CO	353	329 893	3
			600	650	1 70	2	250	200	60	900 (0	070
	220		(Dec)	000	70	O	750	800	850	900	
	200	220									
				101°25h	39-4	709 40	402	5-22V	35 245	93. 222 91.4	206
	266 205.50r	703.4 2 2A	108.763	101.25%	39-5	709 98	. 402 9	5-224	35.74 S	93. 222 94.4	206
				101, 25%	39.5	+	. 402 9	5-224 683	3 5. 745	93. 222 91.2	-
-	702.50V	403: 3 54	108.763		+	+				642	-
d= 20	266 87-4	403: 3 54	108.763		76)	+			666	642	-
	205-266 87-1	103°4504	697.301	786	76)	7	28	6 \$3	666	645	-
	205-266 87-1	403: 3 54	697.301	786	76)	7	28	6 \$3	666	645	-
52/44/42	205-266 87-1 8-04 8-04 8-04	333 352 40 29	108.769 807 408 1	₹86 84 53 5 8 4	19 37 8	2 61/57	40 38 5	C \$3	513857	47 22 221	-
52/44/42 52/44/42	266 871 8 can 53 63 46	333 352 40 28	807 807 144144/3	286 84 53 5 8 4	19 27 8 80 60 S	2 61/57	40 38 5	683 50/28/45/	51/46/32	53 169 541 53 169 541	-
52/44/42 52/44/63 37/45/47	205-266 87-1 8 com 53 63 48	233 40 29 144 45 46 13 33 16 57	807 44 44 8 44 44 8	286 84 53 5 8 4	19 27 8 80 60 S	2 61/57	40 38 5	683 50/28/45/	51/46/32	53 169 541 53 169 541	-
52/44/42 52/44/63 37/45/47	205-266 87-1 8 com 53 63 48	333 352 40 28	807 44 44 8 44 44 8	286 84 53 5 8 4	19 27 8 80 60 S	2 61/57	40 38 5	683 50/28/45/	51/46/32	53 169 541 53 169 541	-