

AD-A085 630

OGDEN AIR LOGISTICS CENTER HILL AFB UT PROPELLANT LAB--ETC F/G 21/8.2
PROPELLANT SURVEILLANCE REPORT LGM-30 F & G STAGE I. PHASE G. S--ETC(U)
APR 80 J A THOMPSON
MANCP-438(80)

UNCLASSIFIED

NL

10P %
AD-5691

LEVEL

HEADQUARTERS

OGDEN AIR LOGISTICS CENTER

UNITED STATES AIR FORCE

HILL AIR FORCE BASE, UTAH 84056

ADA 085630
330

PROPELLANT
SURVEILLANCE REPORT
LGM-30 F&G STAGE 1
PHASE G, SERIES I
TP-H1011

DTIC
SELECTED
JUN 1 8 1980
S D C

PROPELLANT ANALYSIS LABORATORY

MAKPH REPORT

438(80)

April 1980

DDC FILE COPY

APPROVED FOR PUBLIC RELEASE, DISTRIBUTION UNLIMITED

80 6 16 171

MAKPH REPORT NO 438(80)
MMWRM PROJECT M04046C-WNL0529

PROPELLANT SURVEILLANCE REPORT
LGM-30 F & G STAGE 1 (TP-H1011)

AUTHOR

John A. Thompson
JOHN A. THOMPSON, Chemist
Component & Combustion Test Unit

Engineering & Statistical Review By

John K Scambia
JOHN K. SCAMBIA, Project Engineer
Service Engineering

Edward J. Erickson
EDWARD J. ERICKSON, Math/Stat
Data Analysis Unit

Recommended Approval By

Leonidas A. Brown
LEONIDAS A. BROWN, Chief
Component & Combustion Test Unit

Ronald F. Larsen
RONALD F. LARSEN, Chief
Physical & Mechanical Test Unit

Approved By

Anthony J. Inverso
ANTHONY J. INVERSO, Chief
Propellant Analysis Laboratory

April 1980

Directorate of Maintenance
Ogden Air Logistics Center
United States Air Force
Hill Air Force Base, Utah 84056

ABSTRACT

This report contains propellant test results from cartons of TP-H1011 bulk propellant representing LGM-30 F and G First Stage Minuteman Motors. This report uses a statistical approach to analyze the bulk carton propellant data. Testing was accomplished in accordance with MMWRM Project M04046C-WNL01529.

The data from this test period are combined with data from previous testing and entered into the GO85 Computer for storage, analysis and regression analysis. From the statistical analysis of all data tested to date (fourteen years for F and G), significant degradation of the propellant does not appear likely for at least two years past the oldest data point.

Each point on the regression plot represents the mean of all samples at that particular age. The number of samples at each point is indicated on the sample size summary sheet on the page accompanying each regression plot or group of regression plots. The data range at any age can be found by suitable inquiry of the GO85 system.

Accession For	
MTIS	<input checked="" type="checkbox"/>
DDC TAB	<input type="checkbox"/>
Unannounced	<input type="checkbox"/>
Justification _____	
By _____	
Distribution/ _____	
Availability Codes _____	
Dist	Available and/or special
A	

TABLE OF CONTENTS

	<u>Page</u>
Abstract	ii
List of Figures	iv
List of References	viii
Glossary of Terms and Abbreviations	xiii
Introduction	1
Table 1 - Test Program	3
Statistical Approach	4
Test Results	6
Conclusions	10
Distribution List	117
DD 1473	118

LIST OF FIGURES

<u>Figure Nr</u>		<u>Page</u>
Regression Plot, Very Low Rate Tensile		
1	Strain at Maximum Stress	12
2	Maximum Stress	13
3	Strain at Rupture	14
4	Stress at Rupture	16
5	Modulus	18
Regression Plot, Low Rate Biaxial Tensile		
6	Strain at Maximum Stress	20
7	Maximum Stress	21
8	Strain at Rupture	22
9	Stress at Rupture	23
10	Modulus	24
Regression Plot, Low Rate Tensile		
11	Strain at Maximum Stress	26
12	Maximum Stress	27
13	Strain at Rupture	28
14	Stress at Rupture	29
15	Modulus	30
Regression Plot, High Rate Triaxial Tensile		
16	Strain at Maximum Stress	32
17	Maximum Stress	33
18	Strain at Rupture	34
19	Stress at Rupture	35
20	Modulus	36

LIST OF FIGURES (cont)

<u>Figure Nr</u>		<u>Page</u>
Regression Plot, High Rate Hydrostatic Tensile		
21	Strain at Maximum Stress	38
22	Maximum Stress	39
23	Strain at Rupture	40
24	Stress at Rupture	41
25	Modulus	42
26	Regression Plot, Tear Energy	44
Regression Plot, Stress Relaxation, .5% Strain, -65°F		
27	Modulus at 10 sec	46
28	Modulus at 50 sec	47
29	Modulus at 100 sec	49
30	Modulus at 1000 sec	50
Regression Plot, Stress Relaxation, .5% Strain, -40°F		
31	Modulus at 10 sec	52
32	Modulus at 50 sec	53
33	Modulus at 100 sec	54
34	Modulus at 1000 sec	55
Regression Plot, Stress Relaxation, 3% Strain, 20°F		
35	Modulus at 10 sec	57
36	Modulus at 50 sec	58
37	Modulus at 100 sec	59
38	Modulus at 1000 sec	60
Regression Plot, Stress Relaxation, 3% Strain, 77°F		
39	Modulus at 10 sec	62

LIST OF FIGURES (cont)

<u>Figure Nr</u>		<u>Page</u>
Regression Plot, Stress Relaxation, 3% Strain 77°F		
40	Modulus at 50 sec	63
41	Modulus at 100 sec	64
42	Modulus at 1000 sec	65
Regression Plot, Stress Relaxation, 3% Strain, 100°F		
43	Modulus at 10 sec	67
44	Modulus at 50 sec	68
45	Modulus at 100 sec	69
46	Modulus at 1000 sec	70
Regression Plot, Stress Relaxation, 3% Strain 140°F		
47	Modulus at 10 sec	72
48	Modulus at 50 sec	73
49	Modulus at 100 sec	74
50	Modulus at 1000 sec	75
Regression Plot, Stress Relaxation, 3% Strain, 180°F		
51	Modulus at 10 sec	77
52	Modulus at 50 sec	78
53	Modulus at 100 sec	79
54	Modulus at 100 sec	80
Regression Plot, Sol Gel		
55	Density	82
56	Percent Extractables	83
57	Gel Swell Ratio	84
58	Crosslink Density	86

LIST OF FIGURES (cont)

<u>Figure</u>		<u>Page</u>
59	Regression Plot, Constant Strain	88
60	Regression Plot, Hardness	90
	Regression Plot, Pressure Time	
61	Maximum Pressure	92
62	Time to Maximum Pressure	93
	Regression Plot, TCLE	
63	TCLE Above T _g	95
64	TCLE Below T _g	96
	Regression Plot, TGA, 9°C rise/min	
65	Ignition Temperature	98
66	Percent Weight Loss at 250° Hold	100
67	Percent Weight Loss at Ignition	102
	Regression Plot, DTA, 12°C rise/min	
68	Endotherm	104
69	Exotherm 1	105
70	Exotherm 2	107
71	Exotherm 3	109
72	Ignition Temperature	111
73	Regression Plot, Burning Rate, 1000 psi	113
	Regression Plot, DSC	
74	Endotherm	115
75	Exotherm 1	116
76	Exotherm 2	117

LIST OF REFERENCES

<u>Report Nr</u>	<u>Title</u>	<u>Report Date</u>
LGM-30 First Stage, Wing I Test Reports		
29A	Test Report (Missile in silo)	13 Jan 64
29B	Zero Time Test Results	29 Jan 64
29C	Zero Time Test Results (Supplement 1)	30 Mar 64
29D	Zero Time Test Results (Aft Closure)	9 Jun 64
29E	Zero Time (Aft Closure Supplement 1)	24 Jun 64
29F	ATP Phase I Test Results	30 Mar 65
29G	ATP Phase I Test Results	19 Aug 65
29H	ATP Phase I Test Results	10 Sep 65
32A	Zero Time, Wings II-V Test Results	17 Mar 65
32B	Zero Time, Wings II-V Test Results (Aft Closure)	18 Mar 65
32C	ATP Phase I, Wings II-V Test Results	3 Nov 65
49	ATP Phase I, Wings II-V (First Group)	18 Mar 66
53	ATP Phase I, Wings II-V (Second Group)	22 Apr 66
55	ATP Phase I, Wings II-V (Third Group)	29 Apr 66
58	ATP Phase I, Wings II-V (Fourth Group)	6 May 66
61	ATP Phase I, Wings II-V (Fifth Group)	10 Jun 66
66	ATP Phase I, Wings II-V (Sixth Group)	22 Jul 66
76	ATP Phase II, Wing I Test Results	24 Jan 67
78	Zero Time, Wing VI Test Results	3 Feb 67
104	ATP Phase I, Wing VI (First Group)	12 Oct 67
118	ATP Phase II, Wings II-V (First Group)	5 Mar 68

LIST OF REFERENCES (CONT)

<u>Report Nr</u>	<u>Title</u>	<u>Report Date</u>
126	ATP Phase II, Wings II-V (Second Group)	11 Apr 68
130	ATP Phase II, Wings II-V (Third Group)	3 May 68
162	ATP Phase I, Wing VI (Second Group)	30 Sep 69
176	ATP Phase II, Wing VI (First Group)	15 Apr 70
181	ATP Phase III, Wing I	7 May 70
185	ATP Phase I, Wing VI (Third Group)	22 Jun 70
195	ATP Phase III, Wings II-V (Retest)	29 Oct 70
223	Surveillance Report LGM-30 Stage I (TP-H1011)	Sep 71
239	Surveillance Report LGM-30 Stage I (TP-H1011 and TP-H1043)	Apr 72
258	Surveillance Report LGM-30 A & B Stage I (TP-H1011)	Nov 72
268	Surveillance Report LGM-30 A & B Stage I (TP-H1011)	May 73
271	Surveillance Report LGM-30 F & G Stage I Phase A Series II, (TP-H1011)	Jul 73
277	Surveillance Report LGM-30 F & G Stage I Phase A Series III, (TP-H1011)	Oct 73
280	Surveillance Report LGM-30 A & B Stage I (TP-H1011)	Nov 73
288	Propellant Surveillance Report LGM-30 A & B, Stage I, TP-H1043	Mar 74
290	Propellant Surveillance Report LGM-30 F & G, Stage I, Phase B, Series I TP-H1011	Mar 74
300	Minuteman Stage I Motor Reliability Improvement Program Surveillance	May 74

LIST OF REFERENCES (CONT)

<u>Report Nr</u>	<u>Title</u>	<u>Report Date</u>
302	Propellant Surveillance Report LGM-30 A & B Stage 1, TP-H1011	Nov 74
313	Stage 1 Propellant Surveillance Report, Propellant Containing Glacial Acrylic Acid	Oct 74
315	Propellant Surveillance Report LGM-30 F & G Stage 1, TP-H1011	Jan 75
316	Propellant Surveillance Report LGM-30 A & B Stage 1, TP-H1011	Feb 75
319	Propellant Surveillance Report LGM-30 Dissected Motors, Phase VI, TP-H1011	Apr 75
321	Propellant Surveillance Report LGM-30 F & G Stage 1, Phase B, Series II, TP-H1011	Apr 75
325	Propellant Surveillance Report LGM-30 A & B Stage 1, TP-H1011	Jun 75
328	Propellant Surveillance Report LGM-30 A & B Stage 1, TP-H1011	Sep 75
330	Propellant Surveillance Report LGM-30 F & G Stage 1, TP-H1011	Oct 75
335	Stage 1 Motor Reliability Improvement Program	Dec 75
337	Propellant Surveillance Report LGM-30 A & B, Stage 1, TP-H1043	Feb 76
339	Stage 1, New MAPO & ERL-510 Qualification	Mar 76
341	Propellant Surveillance Report LGM-30 Dissected Motors, Phase VII, TP-H1011	Mar 76

LIST OF REFERENCES (CONT)

<u>Report Nr</u>	<u>Title</u>	<u>Report Date</u>
343	Propellant Surveillance Report LGM-30 A & B, Stage 1, TP-H1011	Jun 76
345	Propellant Surveillance Report LGM-30 F & G, Stage 1 Phase B, Series III, TP-H1011	Jun 76
350	Qualification of a New MAPO Source and ERL-510 Curing Agent for Minuteman, Stage 1, UF-2121 Liner	Sep 76
351	Propellant Surveillance Report LGM-30 A & B, Stage 1, TP-H1011	Sep 76
354	Minuteman Stage 1 Motor Reliability Improvement Program Surveillance	Sep 76
358	Propellant Surveillance Report LGM-30 Dissected Motors, Phase VIII, TP-H1011	Oct 76
360	Propellant Surveillance Report LGM-30 F & G, Stage 1 Phase E, Series III, TP-H1011	Nov 76
367	Propellant Surveillance Report LGM-30 A & B, Stage 1, TP-H1011	Apr 77
370	Propellant Surveillance Report LGM-30 F & G, Stage 1, Phase E, Series II, TP-H1011	Apr 77
377	Qualification of a New MAPO Source and ERL-510 Curing Agent for Minuteman Stage 1, UF-2121 Liner	Oct 77
379	Final RIP Report, Minuteman Stage 1 Motor Reliability Improvement Program Surveillance	Oct 77
385	Propellant Surveillance Report LGM-30 A, B, F, & G, Stage 1, TP-H1043	Dec 77
388	Propellant Surveillance Report LGM-30 A & B Stage 1, TP-H1011	Jan 78
390	Propellant Surveillance Report LGM-30 F & G Stage 1, Phase E, Series IV, TP-H1011	Feb 78
392	Propellant Surveillance Report LGM-30 Dissected Motors, Phase IX, TP-H1011	Mar 78
393	Propellant Surveillance Report LGM-30 A & B Stage I, TP-H1011	May 78

LIST OF REFERENCES (CONT)

<u>Report Nr</u>	<u>Title</u>	<u>Report Date</u>
396	Propellant Surveillance Report LGM-30 F & G Stage I, TP-H1011	Jun 78
405	Propellant Surveillance Report LGM-30 F & G Stage I, TP-H1011	Oct 78
406	Propellant Surveillance Report LGM-30 Dissected Motors, Phase X, TP-H1011	Nov 78
416	Propellant Surveillance Report LGM-30 F and G Stage I, TP-H1011	Apr 79
423	Propellant Surveillance Report LGM-30 F and G Stage I, TP-H1011	Oct 79
424	Propellant Surveillance Report LGM-30 Stage I, TP-H1043	Nov 79
425	Propellant Surveillance Report LGM-30 A and B Stage I, TP-H1011	Nov 79
427	Propellant Surveillance Report LGM-30 Dissected Motors, Phase XI, TP-H1011	Nov 79

GLOSSARY OF TERMS AND ABBREVIATIONS

Aging Trend	A change in properties or performance resulting from aging of material or component
CSA	Cross Sectional Area
DB	Dogbone
Degradation	Gradual deterioration of properties or performance
E	Modulus (psi), defined as stress divided by strain along the initial linear portion of the curve.
EB	End Bonded
EGL	Effective Gage Length
em	Strain at maximum stress
er	Strain at rupture
"F" ratio	The ratio of the variance accounted for by the regression function to the random unexplained variance. The regression function having the most significant "F" ratio is used for plotting data. The ratio is also used in detecting significant changes in random variation between succeeding time points
JANNAF	Joint Army, Navy, NASA, Air Force Committee
MANCP	Propellant Lab Section at Ogden Air Logistics Center
Ogden ALC	Ogden Air Logistics Center, Air Force Logistics Command
r or R	The Correlation Coefficient is a measure of the degree of closeness of the linear relationship between two variables
Linear Regression Equation	The general form of the linear regression equation is $Y = a + bx$
Regression Line	Line representing mean test values with respect to time
S_b	Standard error of estimate of the regression coefficient

GLOSSARY OF TERMS AND ABBREVIATIONS (cont)

S_e or $S_{Y.X}$	Standard deviation of the data about the regression line
S_m	Maximum Stress
S_r	Stress at rupture
Standard Deviation (S_y)	Square root of variance
Strain Rate	Crosshead speed divided by the EGL
"t" test	A statistical test used to detect significant differences between a measured parameter and an expected value of the parameter (determines if regression slope differs from zero at the 95% confidence level)
Variance	The sum of squares of deviations of the test results from the mean of the series after division by one less than the total number of test results
3 Sigma Band	The area between the upper and lower 3 sigma limit. It can be expected that 99.73% of the inventory represented by the test samples would fall within this range assuming that the population is normally distributed.
90-90 Band	It can be stated with 90% confidence that 90% of the inventory represented by the test samples would fall within this range assuming that the population is normally distributed
Significant	As used in the statistical sense, means a difference unlikely to have been the result of random sampling from some specified population.

INTRODUCTION

A. PURPOSE:

Laboratory testing has been performed for fourteen years on First Stage LGM-30 F and G Minuteman Motor propellant blocks to evaluate the effects of aging on TP-H1011 propellant. This report contains those tests conducted on propellant as instructed in MMWRM Test Directive GTD-1C, Amendment 2, LGM-30 First Stage Operational Propellant Laboratory Testing.

Statistical analysis of the data from tests performed will provide early warning if serious degradation trends develop. Annual evaluation of the propellant provides data for input into engineering reliability analysis for service life predictions.

B. BACKGROUND:

LGM-30 F and G testing was started in 1966 with phase testing at 24 month intervals (Report Numbers 78 - zero time; 104, 162, 185-Phase I; 176, 239, 257-Phase II; 271-Phase III). Report Number 257 was the first time that LGM-30 F and G data were statistically analyzed separately from LGM-30A and B data. The present report is a continuation of testing and statistical analysis.

Zero time testing for LGM-30A, B, F and G was started as soon as possible after receipt of the propellant by MAKPH. Data from these tests were used to establish a base line for each test parameter.

The LGM-30F and G propellant test matrix (Table 1) is used to determine the number of specimens to be taken from each propellant loaf and the specific test or tests to which these specimens are to be subjected. Very low rate and low rate tensile specimens are taken on all LGM-30F and G blocks. Specimens for other physical and combustion tests are taken from every third (LGM-30F and G) block.

TABLE 1

SAMPLE PLAN

The Procedure for determining tests to be performed on propellant batch samples of IGM-30 F & G First Stage Motors are as follows:

1. Divide the USAF motor serial numbers into three groups by dividing the last three digits of each serial number by three to determine the remainder integer, e.g., $154 \div 3 = 51$ with a remainder integer of 1.
2. Use the remainder integer to enter the following matrix to determine the group of tests to be performed on the forward, middle, and aft batch samples associated with a particular motor serial number.

TP-H101 PROPELLANT BATCH SAMPLE	GROUP MATRIX		
	GROUP I	GROUP II	GROUP III
Forward	1	2	0
Middle	0	1	2
Aft	2	0	1

Each group will receive the following tests:

TEST MATRIX	GROUP III		
	GROUP II	GROUP I	GROUP III
Dynamic Response	High Rate	Hydrostatic	
Stress Relaxation		Sol Gel	
Burning Rate		DSC	
Heat of Explosion		TGA	
Pressure Time		DTA	
Impact			

NOTE: Low Rate and Very Low Rate Tensile tests are performed on all blocks.

STATISTICAL APPROACH

In order to determine aging trends for shelf/service life predictions, as directed by Service Engineering, First Stage LGM-30 F and G Minuteman TP-H1011 propellant blocks have been undergoing testing since 1966, statistically analyzed and reported on a regular test cycle by this laboratory.

The primary reason for performing statistical analysis on test data is for the detection of propellant changes due to aging that would affect motor reliability. Regression analysis was the method used to examine data and to aid in drawing conclusions about dependency relationships that may exist i.e., relationship between age versus test results.

In selecting the best fit model for the regression equation, the linear model $Y = a + bX$ was found to be the best fit model for the regression plots.

Individual data points from different time periods were used to establish a least squares trend line for the data. The variance about the regression line, obtained using individual values of the dependent variable, was used to compute a tolerance interval such that at the 90% confidence level 90% of the sample distribution falls within this interval. This tolerance interval was extrapolated to a maximum of 24 months into the future from age of the oldest motor tested. The 't' value and the significance of this statistic, which are reported for each regression model, give an indication of the "statistical significance" of the slope of the trend line as compared to a line of zero slope. When a regression slope is indicated to be significant, it should be noted that the slope of the regression line is significant from a statistical standpoint and it is an indication that a change over time is occurring, but does not necessarily mean that the indicated change in the

value obtained during testing is significant in regards to motor operational performance. In a few cases, this small change has become the apparent trend in data variance and regression line trends. However, the changes are gradual and no operational problems are expected at this time.

The data were plotted by computer. The 'y' axis is computed so that the values at one inch intervals are peculiar to the data spread of the parameter tested. Plotted data points represent means at the particular ages at which testing occurred. The number of specimens at each age point is indicated on the sample size summary sheet accompanying the regression plot. Variance at each test age can be determined by consulting the G085 data storage system.

TEST RESULTS

VERY LOW RATE TENSILE:

Very low rate regressions show a statistically significant decrease for strain at maximum stress and strain at rupture. The stresses and modulus show a statistically significant increase (Figures 1 thru 5). The trends are gradual for the respective regressions and no operational problems from the propellant are expected for at least two years beyond the last test data.

LOW RATE BIAXIAL TENSILE:

The strain at maximum stress regression shows a statistically significant gradual increase with the strain at rupture showing no statistically significant change. The stresses and modulus show a statistically significant increase (Figures 6 thru 10).

LOW RATE TENSILE:

Low rate tensile data regressions show a statistically significant gradual decrease for strains and a statistically significant increase for stresses and modulus (Figures 11 thru 15).

HIGH RATE TRIAXIAL TENSILE:

The strain at maximum stress, strain at rupture and modulus regressions show a statistically significant decrease. Maximum stress shows a statistically significant increase. Stress at rupture does not show a significant change (Figures 16 thru 20).

HIGH RATE HYDROSTATIC TENSILE:

The strains show a statistically significant decrease. The stresses and modulus show a statistically significant increase (Figures 21 thru 25).

TEAR ENERGY:

The cohesive energy shows a statistically significant decrease (Figure 26).

TENSILE SUMMARY:

The test data regressions show that the strain is gradually decreasing and the stress and modulus gradually increasing.

Based on the analysis of test data regressions, it does not appear that meaningful degradation is occurring at this time and no operational problems are expected in the propellant for at least two years beyond the last data point.

STRESS RELAXATION MODULUS:

For the 0.5% strain at -65°F, the regressions for data at 10, 50, 100, and 1000 seconds show a statistically significant gradual increase. (Figures 27 thru 30).

At -40°F, the 10, 50, and 100 second regressions show a statistically significant increase. The 1000 second regression shows no statistically significant change. (Figures 31 thru 34).

The 3% strain regressions at 20°F, 77°F, 100°F, and 180°F show a statistically significant gradual increase. (Figures 35 thru 54).

SOL GEL:

The percent extractables, density and gel swell ratio do not show a significant change. The crosslink density regression shows a statistically significant increase (Figures 55 thru 58).

CONSTANT STRAIN:

A statistically significant gradual decrease is shown for constant strain (Figure 59).

HARDNESS:

Shore A ten second hardness shows a statistically significant increase (Figure 60).

SUMMARY OF SOL GEL, TENSILE AND HARDNESS DATA:

The crosslink density, constant strain and hardness data regressions correlate with the tensile data. As the polymer continues to crosslink, the strains decrease and the stresses increases.

PRESSURE TIME:

Maximum pressure shows no significant change while time to maximum pressure shows a statistically significant gradual decrease (Figures 61 and 62).

TCLE (Thermal Coefficient of Linear Expansion):

The thermal coefficient of linear expansion for both above and below the glass transition point (T_g) shows a statistically significant gradual increase (Figures 63 and 64).

TGA (Thermal Gravimetric Analysis):

A statistically significant increase is shows for the ignition temperature (9°C rise/min), the percent weight loss at 250°C hold (12°C rise/min to hold) and the weight loss at ignition (Figures 65 thru 67).

DTA (Differential Thermal Analysis):

The endotherm and first and second exotherms show a statistically significant decrease. The third exotherm shows a statistically significant increase and the ignition temperature with no significant change (Figures 68 thru 72).

BURNING RATE:

The burning rate shows a statistically significant gradual increase (Figure 73).

DIFFERENTIAL SCANNING CALORIMETER:

The endotherm and first and second exotherms shows a statistically significant decrease. (Figures 74 thru 76).

THERMAL AND COMBUSTION SUMMARY:

The time to maximum pressure from the pressure time data and burning rate data show a correlation. In both cases, the regressions show a gradual increase in rate of reaction. The maximum pressure and DSC regressions also correlate well with each other. In both cases, a gradual decrease in energy is shown.

The ignition temperatures for TGA shows a gradual increase.

From the analyses of the regressions, no combustion problems are expected for at least two years beyond the oldest data point.

CONCLUSIONS

Fourteen years of aging at ambient temperature (77°F) has not greatly changed the properties of the propellant. Some test parameters indicate slight aging trends, but nothing that would adversely affect the operational characteristics of the rocket motor propellant.

From the statistical analysis, it does not appear that a significant propellant degradation is occurring. Based on fourteen years of accumulated data, there is no reason to suspect that properties will show much change for at least two years past the last data point. Therefore, propellant reliability should not change appreciably over that time period. Since failure limits are not available for the parameters tested, this statement is based on the fact that the slope of the regression curves where statistically significant are, with few exceptions, relatively flat or close to the line of zero slope and have not changed appreciably from the last test period.

* * * * * SAVIOUR SUPPLY CO. LTD.

ΔG° (kJ/mol)	ΔH° (kJ/mol)	ΔS° (J/mol K)	ΔG° (kJ/mol)	ΔH° (kJ/mol)	ΔS° (J/mol K)	ΔG° (kJ/mol)	ΔH° (kJ/mol)	ΔS° (J/mol K)	ΔG° (kJ/mol)	ΔH° (kJ/mol)	ΔS° (J/mol K)	ΔG° (kJ/mol)	ΔH° (kJ/mol)	ΔS° (J/mol K)
-1	-4	3.5	15.2	5.6	35.2	8.3	6.2	12.8	1.28	4.33	7.6	1.28	4.33	7.6
-1	-1.9	1.4	15.4	6.7	31.7	8.4	5.0	12.9	1.25	4.54	11.7	1.25	4.54	11.7
-1.2	-1.1	3.5	11.3	6.9	41.3	8.5	7.6	11.0	5.7	13.5	6.5	11.0	5.7	13.5
-1.1	-1.5	3.6	22.6	7.1	2.65	8.6	6.2	11.1	4.2	13.6	5.1	11.1	4.2	13.6
-1.2	-1.7	3.7	14.7	6.2	33.7	8.7	12.2	11.2	1.30	1.37	9.3	1.30	1.37	9.3
-1.3	-4.3	3.8	12.0	6.3	24.1	8.8	13.9	11.3	2.97	1.33	2.56	1.33	2.97	2.56
-1.4	-2.2	3.9	11.9	6.4	16.0	8.9	1.77	11.4	1.69	1.39	1.54	1.69	1.39	1.54
-1.5	-3.4	4.1	12.2	6.5	1.63	9.0	1.55	11.5	1.30	1.40	7.2	1.30	1.40	7.2
-1.6	-4.5	4.1	15.6	7.6	7.9	9.1	1.87	11.6	3.15	14.1	3.4	3.15	14.1	3.4
-1.7	-5.5	4.2	12.3	7.7	4.6	9.2	6.2	11.7	2.47	14.2	4.2	2.47	14.2	4.2
-1.8	-2.4	4.3	14.2	6.8	17.0	9.3	1.08	11.8	1.49	14.3	19.7	1.49	14.3	19.7
-1.9	-4.4	4.4	15.6	6.9	2.34	9.4	6.9	11.9	1.22	14.4	9.2	1.22	14.4	9.2
-2.0	-2.4	4.5	13.5	7.0	28.7	9.5	1.46	12.6	2.16	14.5	6	2.16	14.5	6
-2.1	-5.6	4.6	12.2	7.1	1.35	9.6	1.85	12.1	1.17	14.6	21	1.17	14.6	21
-2.2	-2.7	4.7	16.6	7.2	1.24	9.7	1.50	12.2	4.1	14.7	21	4.1	14.7	21
-2.3	-4.7	4.7	17.7	7.3	9.3	9.8	1.56	12.3	4.2	14.8	4.9	4.2	14.8	4.9
-2.4	-5.6	4.9	19.9	7.4	1.43	9.9	1.91	12.4	4.5	14.9	1.2	4.5	14.9	1.2
-2.5	-6.3	5.0	18.8	7.5	1.77	1.05	1.63	12.5	6.4	15.0	24	6.4	15.0	24
-2.6	-4.7	5.1	24.7	7.6	1.35	1.01	1.36	12.6	5.3	15.1	4.5	5.3	15.1	4.5
-2.7	-5.2	5.2	31.4	7.7	1.61	1.22	5.1	12.7	1.21	15.2	3	1.21	15.2	3
-2.8	-5.1	5.3	26.5	7.8	1.03	1.03	6.6	1.48	6.5	15.3	5	6.5	15.3	5
-2.9	-4.3	5.4	23.2	7.9	1.17	1.04	8.4	1.29	7.5	15.4	15	7.5	15.4	15
-3.0	-7.3	5.5	47.4	8.0	1.13	1.05	3.3	1.55	1.51	15.5	15	1.51	15.5	15
-3.1	-6.3	5.6	46.1	8.1	1.53	1.26	1.1	1.31	2.6	15.6	15	2.6	15.6	15
-3.2	-5.7	5.7	39.2	8.2	1.73	1.07	2.6	1.32	1.57	15.7	15.2	1.57	15.7	15.2

WING 6, VOLTERRA INSIL - SIGNAL AT MAX STORE SS, CHS = .002 IN/IN T=0.011

This sample size summary is applicable to figures 1 thru 3

$R = +4.0076015E+00$ $t = (1.00 + 2.0530037E-01) + (-7.0511282E-05)$ $\sigma_x = +1.6570709E-02$
 $R = 1.4713433E+02$ SIGNIFICANCE OF F = SIGNIFICANT
 $t = +2.00013994E+00$ SIGNIFICANCE OF R = SIGNIFICANT
 $N = 18510$ SIGNIFICANCE OF t^2 = SIGNIFICANT
 STRAIN CONDITIONS = AMB TEMP/RH DEGREES OF FREEDOM = 18508 TEST CONDITIONS = AMB TEMP/RH

WING 6, V.L.R. TENSILE, STRAIN AT MAX STRESS, CHS=0.002 IN/MIN TP-H1011

Figure 1

$F = +1.448603E+03$ SIGNIFICANCE OF $F = 1.5751760E+01$ $t = (+5.6202468E-02)$ * (X)
 $R = +2.694492E-01$ SIGNIFICANCE OF $R = 1.694492E-01$
 $t = +3.8060519E+01$ SIGNIFICANCE OF $t = 1.8511$
 $N = 18509$ DEGREES OF FREEDOM = 18509
 STORGE CONDITIONS = AVERAGE TEMP/RH TEST CONDITIONS = AVERAGE TEMP/RH

UNIT GF MEASURE = PSI
 PRESSURE = MAXIMUM STRESS

- 13 -

WING 6, V.L.R. TENSILE, MAXIMUM STRESS, CHS=0.002 IN/MIN TP-H1011

Figure 2

$F = 16.8801816E+01$ $\gamma = ((+2.2222657E-01) + (-3.2085772E-05)) * X$
 $R = -6.0855914E-02$ SIGNIFICANCE OF F = SIGNIFICANT
 $t = +3.2946860E+00$ SIGNIFICANCE OF R = SIGNIFICANT
 $N = 18511$ SIGNIFICANCE OF L = SIGNIFICANT
 DEGREES OF FREEDOM = 18509
 STORAGE CONDITIONS = AMB TEMP/RH TEST CONDITIONS = AMB TEMP/RH

FIG. 6. V.L.R. TENSILE, STRAIN AT RUPTURE, CHS=0.002 IN/MIN TP-H1011

Figure 3

*** SAMPLE SIZE SUMMARY ***

NU. (NOS)	SAMP NO.	AGF (NOS)	NP SAMP	NR SAMP								
5	4	33	140	54	276	83	80	108	93	133	79	
2	15	34	139	50	257	84	56	109	120	134	117	
10	11	35	116	62	330	85	76	110	57	135	60	
11	15	36	216	61	246	86	91	111	42	136	51	
11	20	37	138	62	307	87	122	112	139	137	93	
12	12	38	111	63	220	88	139	113	297	136	256	
12	43	38	111	64	156	89	177	114	160	139	154	
14	28	35	116	65	108	90	156	115	130	140	72	
15	32	40	116	65	79	91	107	116	315	141	34	
15	41	41	149	66	79	92	82	117	247	142	42	
15	42	115	67	48	79	93	168	118	149	143	197	
17	55	42	120	68	179	93	94	99	119	133	144	
13	24	43	103	69	234	94	95	146	120	210	92	
13	49	44	103	70	288	95	146	120	210	145	6	
20	24	45	135	70	135	96	188	121	117	146	21	
21	36	46	122	71	124	97	152	122	41	147	21	
22	27	47	166	72	124	97	156	123	42	148	40	
25	67	48	177	73	98	98	156	123	45	149	12	
25	-	49	199	74	143	99	191	124	210	145	24	
26	53	50	188	75	177	102	163	125	84	150	45	
26	53	51	347	76	135	101	136	126	53	151	45	
26	47	51	314	77	161	102	51	127	101	152	3	
27	50	52	295	78	91	103	65	128	60	153	5	
24	56	53	232	79	117	104	84	129	75	154	15	
24	47	54	474	80	113	105	33	130	181	155	15	
30	73	55	461	81	155	106	11	131	200	156	15	
31	62	56	462	82	178	107	28	132	153	157	9	
22	143	57	282						158	15		
									159	18		
									160	3		
									161	18		
									162	6		
									169	6		

WING, C., V. S. L. R. TINSLEY, STATUS AT SURVIVAL, CHS=0.002 IN MIN TP-H1011

This sample size summary is applicable to figure 4

$t = +1.7485913E+01$ $y = 1(+7.0397339E+01) + (+7.3586983E-02) t$
 R = $+1.9666185E+01$ SIGNIFICANCE OF t = SIGNIFICANT
 R = $+2.9666185E-01$ SIGNIFICANCE OF R = SIGNIFICANT
 t = $+4.1720395E+01$ SIGNIFICANCE OF t = SIGNIFICANT
 N = 18039 DEGREES OF FREEDOM = 18037
 STORAGE CONDITIONS = AMB TEMP/RH TEST CONDITIONS = AMB TEMP/RH

WING S, V.L.R. TENSILE, STRESS AT RUPTURE, CH₃-O-CH₃ IN/MIN IP-HI011

Figure 4

*** SAMPLE SIZE SUMMARY ***

AGF (MOS)	N ₀ SAMP						
3	3	32	152	58	352	83	80
4	16	34	154	59	344	84	56
5	11	35	113	65	442	85	76
6	15	36	226	61	294	86	91
7	13	37	147	62	342	87	122
8	38	38	126	63	259	88	138
9	29	39	119	64	160	89	177
10	15	40	122	65	105	90	156
11	46	41	156	66	79	91	107
12	55	42	123	67	47	92	82
13	28	43	142	68	174	93	108
14	39	44	106	69	234	94	99
15	24	45	135	70	287	95	145
16	50	46	122	71	138	96	188
17	21	27	47	166	72	121	121
18	22	37	177	73	99	97	157
19	48	48	177	73	99	98	156
20	53	49	159	74	143	99	191
21	63	52	188	75	177	100	163
22	47	51	347	76	135	101	136
23	57	52	314	77	161	102	51
24	52	53	295	78	89	103	65
25	62	54	232	79	117	104	84
26	47	55	474	80	113	105	33
27	50	52	314	77	161	102	51
28	57	53	295	78	89	103	65
29	46	54	232	79	117	104	84
30	73	55	474	80	113	105	33
31	42	56	463	81	155	106	11
32	163	57	366	82	178	107	28

FIGURE 6. VERSATILE TRNSLTS, CONVOLUS.CHS=0.02 IN/MIN TR-H1011

This sample size summary is applicable to figure 5

169

6

6

18

6

162

6

160

3

18

161

18

162

6

158

15

159

18

$F = 79.1245162E+02$
 $F_1 = +3.2594013E+02$
 $F_2 = -1.1245162E+02$
 $F_3 = +2.1660755E+01$
 $F_4 = +3.0206815E+01$
 $t = 18537$
 STORAGE CONDITIONS = AMB TEMP/RH
 $\sigma_F = +5.4949313E-01$
 $\sigma_{F_1} = +5.4949313E-01$
 $\sigma_{F_2} = +5.4949313E-01$
 $\sigma_{F_3} = +5.4949313E-01$
 $\sigma_t = +8.5489476E+01$
 $Degrees of Freedom = 18535$
 TEST CONDITIONS = AMB TEMP/RH

Figure 5

*** SAMPLE SIZE SUMMARY ***

AGF (in.)	No. SAMP	AGF (in.)	NP SAMP								
1	1	1.3	22	5.8	40	2.3	16	10.8	14	13.5	18
3	2	3.4	26	5.9	31	8.4	17	10.9	22	13.6	2
6	4	3.6	26	6.1	45	8.5	6	11.0	25	13.7	17
11	6	3.6	34	6.1	35	8.6	7	11.1	17	13.8	6
12	11	3.7	1.4	6.2	57	8.7	8	11.2	10	13.9	36
13	22	3.8	1.1	6.3	54	8.8	10	11.3	15	14.0	8
14	4	3.9	28	6.4	42	8.9	8	11.4	66	14.1	8
15	16	4.0	1.6	6.5	18	9.0	6	11.5	19	14.2	6
16	12	4.1	1.4	6.6	27	9.1	15	11.6	48	14.3	24
17	14	4.2	8	6.7	32	9.2	10	11.7	68	14.4	41
19	19	4.3	2	6.8	32	9.3	10	11.8	32	14.5	4
19	14	4.4	6	6.9	34	9.4	29	11.9	32	14.6	8
20	16	4.5	4	7.0	43	9.5	27	12.0	44	14.7	2
21	12	4.6	10	7.1	17	9.6	30	121	32	14.8	4
22	10	4.7	16	7.2	16	9.7	37	122	8	14.9	6
23	14	4.8	24	7.3	24	9.8	53	123	4	15.0	6
24	16	4.9	24	7.4	20	9.9	40	125	10	15.1	4
25	12	5.0	24	75	35	10.0	18	127	10	15.2	5
26	21	5.1	34	76	14	10.1	14	128	5	15.3	2
27	14	5.2	49	77	19	10.2	8	129	6	15.4	2
28	16	5.3	41	78	22	10.3	5	130	24	15.5	2
29	23	5.4	26	79	20	10.4	14	131	78	15.6	2
30	24	5.5	32	80	17	10.5	4	132	24	15.7	10
31	26	5.6	36	81	29	10.6	6	133	12	15.9	4
32	27	5.7	46	82	24	107	2	134	19	160	4
								161	2	166	2
										168	

FIG. 6.1.0.0. TENSILE STRENGTH AT MAX STRESS. CHS=0.2 IN/MIN THICKNESS

This sample size summary is applicable to figures 6 thru 10

$\gamma = 3.1272192E+01$
 $R = 41.0087336E-01$
 $A = +5.5921545E+00$
 $N = 3044$
 STORAGE CONDITIONS = AMB TEMP/RH

Y = ((+2.1233708E-01) + (+7.2633296E-05) * X)
 F = SIGNIFICANCE OF TEST CONDITIONS
 R = SIGNIFICANCE OF AMB TEMP/RH
 A = SIGNIFICANCE OF TEST CONDITIONS = AMB TEMP/RH

Degrees of Freedom = 3042

STRAIN AT MAX STRESS = TEST CONDITIONS = AMB TEMP/RH

C.00 C.03 C.06 C.09 C.12 C.15 C.18 C.21 C.24 C.27 C.30 C.33 C.36 C.39 C.42

- 20 -

WING 6, L.R. BIAXIAL TENSILE, STRAIN AT MAX STRESS, CHS=0.2 IN/MIN TPH-1011

Figure 6

$F = +1.5910709 \times 10^2$ $t = +1.462033921 \times 10^{-2}$ $\gamma = +C.8449007F + 00$
 $F = +1.2724082 \times 10^2$ SIGNIFICANCE OF F = SIGNIFICANT
 $F = +3.5093215 \times 10^1$ SIGNIFICANCE OF R = SIGNIFICANT
 $F = +2.0670022 \times 10^1$ SIGNIFICANCE OF γ = SIGNIFICANT
 $N = 3014$ DEGREES OF FREEDOM = 3012
 CIRCLE CONDITIONS = fMB TEMP/RH TFCr CONDITIONS = fMB TEMP/RH

FIGURE 6.1. P. BIAXIAL TENSILE MAXIMUM STRESS, CHS=0.2 IN/MIN TR1-1011

Figure 7

WING C.L. 13.619 X 10⁻³ TENSILE STRAIN 0.11 BULK CURE, CH₃S=O₂ IN/MIN TPH-1011

Figure 8

Figure 9

Figure 10

*** SAMPLE SITE SUMMARY ***

Alt. (ft.)	NR SAMP	AGF (MOS)	NR SAMP	AGF (MOS)	NR SAMP	AGF (MOS)	NR SAMP	NR SAMP	Age (MOS)	NR SAMP
7	2	2.8	6.2	5.3	9.7	7.8	17.7	10.3	5.3	12.8
1	4.7	2.9	5.5	5.4	8.3	7.9	12.9	10.4	8.1	12.9
2	15.1	3.0	5.2	5.5	14.3	8.0	13.2	10.5	1.6	13.0
3	1.01	3.1	5.2	5.6	1.08	8.1	17.9	10.6	1.5	13.1
4	7	17.1	3.2	12.4	5.7	1.72	8.2	6.4	10.7	27
5	14.3	3.3	5.3	8.5	5.8	1.58	8.3	10.0	10.8	11.1
6	19.4	3.4	7.8	5.9	1.34	8.4	7.5	10.9	10.9	1.4
7	1.09	3.5	4.4	6.0	1.59	8.5	8.2	11.2	6.2	1.
8	11	15.2	3.6	1.54	6.1	1.89	8.6	6.0	11.1	33
9	22.6	3.7	8.2	6.2	2.18	8.7	15.3	11.2	9.6	13.7
10	21.3	3.8	3.9	6.3	2.63	8.8	14.3	11.3	12.0	12.0
11	22.2	3.9	9.3	6.4	1.34	8.9	15.0	11.4	7.3	1.39
12	22.3	4.0	6.5	7.5	9.0	11.7	11.5	7.7	14.0	4.0
13	24.2	4.1	3.0	6.6	6.1	9.1	9.4	11.6	27.0	14.1
14	12.1	4.2	6.9	6.7	1.24	9.2	8.0	11.7	26.1	14.2
15	2.6	4.3	7.5	6.9	1.10	9.3	8.1	11.8	16.1	14.3
16	7.0	4.4	2.1	6.6	1.54	9.4	13.1	11.9	11.7	14.4
17	1.6	4.5	2.0	7.7	1.53	9.5	15.6	12.0	25.3	14.5
18	7.4	4.6	5.8	7.1	1.32	9.6	22.0	12.1	11.5	14.6
19	4.2	4.7	1.00	7.2	1.45	9.7	24.2	12.2	3.8	14.7
20	3.0	4.8	2.1	6.9	1.54	9.4	13.1	11.9	11.7	14.4
21	4.5	4.9	2.0	7.7	1.53	9.5	15.6	12.0	25.3	14.5
22	7.4	4.6	5.8	7.1	1.32	9.6	22.0	12.1	11.5	14.6
23	4.2	4.7	1.00	7.2	1.45	9.7	24.2	12.2	3.8	14.7
24	3.0	4.8	2.1	6.9	1.54	9.4	13.1	11.9	11.7	14.4
25	4.5	4.9	2.0	7.7	1.53	9.5	15.6	12.0	25.3	14.5
26	7.4	4.6	5.8	7.1	1.32	9.6	22.0	12.1	11.5	14.6
27	4.2	4.7	1.00	7.2	1.45	9.7	24.2	12.2	3.8	14.7
28	3.0	4.8	2.1	6.9	1.54	9.4	13.1	11.9	11.7	14.4
29	4.5	4.9	2.0	7.7	1.53	9.5	15.6	12.0	25.3	14.5
30	7.4	4.6	5.8	7.1	1.32	9.6	22.0	12.1	11.5	14.6
31	4.2	4.7	1.00	7.2	1.45	9.7	24.2	12.2	3.8	14.7
32	3.0	4.8	2.1	6.9	1.54	9.4	13.1	11.9	11.7	14.4
33	4.5	4.9	2.0	7.7	1.53	9.5	15.6	12.0	25.3	14.5
34	7.4	4.6	5.8	7.1	1.32	9.6	22.0	12.1	11.5	14.6
35	4.2	4.7	1.00	7.2	1.45	9.7	24.2	12.2	3.8	14.7
36	3.0	4.8	2.1	6.9	1.54	9.4	13.1	11.9	11.7	14.4
37	4.5	4.9	2.0	7.7	1.53	9.5	15.6	12.0	25.3	14.5
38	7.4	4.6	5.8	7.1	1.32	9.6	22.0	12.1	11.5	14.6
39	4.2	4.7	1.00	7.2	1.45	9.7	24.2	12.2	3.8	14.7
40	3.0	4.8	2.1	6.9	1.54	9.4	13.1	11.9	11.7	14.4
41	4.5	4.9	2.0	7.7	1.53	9.5	15.6	12.0	25.3	14.5
42	7.4	4.6	5.8	7.1	1.32	9.6	22.0	12.1	11.5	14.6
43	4.2	4.7	1.00	7.2	1.45	9.7	24.2	12.2	3.8	14.7
44	3.0	4.8	2.1	6.9	1.54	9.4	13.1	11.9	11.7	14.4
45	4.5	4.9	2.0	7.7	1.53	9.5	15.6	12.0	25.3	14.5
46	7.4	4.6	5.8	7.1	1.32	9.6	22.0	12.1	11.5	14.6
47	4.2	4.7	1.00	7.2	1.45	9.7	24.2	12.2	3.8	14.7
48	3.0	4.8	2.1	6.9	1.54	9.4	13.1	11.9	11.7	14.4
49	4.5	4.9	2.0	7.7	1.53	9.5	15.6	12.0	25.3	14.5
50	7.4	4.6	5.8	7.1	1.32	9.6	22.0	12.1	11.5	14.6
51	4.2	4.7	1.00	7.2	1.45	9.7	24.2	12.2	3.8	14.7
52	3.0	4.8	2.1	6.9	1.54	9.4	13.1	11.9	11.7	14.4
53	4.5	4.9	2.0	7.7	1.53	9.5	15.6	12.0	25.3	14.5
54	7.4	4.6	5.8	7.1	1.32	9.6	22.0	12.1	11.5	14.6
55	4.2	4.7	1.00	7.2	1.45	9.7	24.2	12.2	3.8	14.7
56	3.0	4.8	2.1	6.9	1.54	9.4	13.1	11.9	11.7	14.4
57	4.5	4.9	2.0	7.7	1.53	9.5	15.6	12.0	25.3	14.5
58	7.4	4.6	5.8	7.1	1.32	9.6	22.0	12.1	11.5	14.6
59	4.2	4.7	1.00	7.2	1.45	9.7	24.2	12.2	3.8	14.7
60	3.0	4.8	2.1	6.9	1.54	9.4	13.1	11.9	11.7	14.4
61	4.5	4.9	2.0	7.7	1.53	9.5	15.6	12.0	25.3	14.5
62	7.4	4.6	5.8	7.1	1.32	9.6	22.0	12.1	11.5	14.6
63	4.2	4.7	1.00	7.2	1.45	9.7	24.2	12.2	3.8	14.7
64	3.0	4.8	2.1	6.9	1.54	9.4	13.1	11.9	11.7	14.4
65	4.5	4.9	2.0	7.7	1.53	9.5	15.6	12.0	25.3	14.5
66	7.4	4.6	5.8	7.1	1.32	9.6	22.0	12.1	11.5	14.6
67	4.2	4.7	1.00	7.2	1.45	9.7	24.2	12.2	3.8	14.7
68	3.0	4.8	2.1	6.9	1.54	9.4	13.1	11.9	11.7	14.4
69	4.5	4.9	2.0	7.7	1.53	9.5	15.6	12.0	25.3	14.5
70	7.4	4.6	5.8	7.1	1.32	9.6	22.0	12.1	11.5	14.6
71	4.2	4.7	1.00	7.2	1.45	9.7	24.2	12.2	3.8	14.7
72	3.0	4.8	2.1	6.9	1.54	9.4	13.1	11.9	11.7	14.4
73	4.5	4.9	2.0	7.7	1.53	9.5	15.6	12.0	25.3	14.5
74	7.4	4.6	5.8	7.1	1.32	9.6	22.0	12.1	11.5	14.6
75	4.2	4.7	1.00	7.2	1.45	9.7	24.2	12.2	3.8	14.7
76	3.0	4.8	2.1	6.9	1.54	9.4	13.1	11.9	11.7	14.4
77	4.5	4.9	2.0	7.7	1.53	9.5	15.6	12.0	25.3	14.5
78	7.4	4.6	5.8	7.1	1.32	9.6	22.0	12.1	11.5	14.6
79	4.2	4.7	1.00	7.2	1.45	9.7	24.2	12.2	3.8	14.7
80	3.0	4.8	2.1	6.9	1.54	9.4	13.1	11.9	11.7	14.4
81	4.5	4.9	2.0	7.7	1.53	9.5	15.6	12.0	25.3	14.5
82	7.4	4.6	5.8	7.1	1.32	9.6	22.0	12.1	11.5	14.6
83	4.2	4.7	1.00	7.2	1.45	9.7	24.2	12.2	3.8	14.7
84	3.0	4.8	2.1	6.9	1.54	9.4	13.1	11.9	11.7	14.4
85	4.5	4.9	2.0	7.7	1.53	9.5	15.6	12.0	25.3	14.5
86	7.4	4.6	5.8	7.1	1.32	9.6	22.0	12.1	11.5	14.6
87	4.2	4.7	1.00	7.2	1.45	9.7	24.2	12.2	3.8	14.7
88	3.0	4.8	2.1	6.9	1.54	9.4	13.1	11.9	11.7	14.4
89	4.5	4.9	2.0	7.7	1.53	9.5	15.6	12.0	25.3	14.5
90	7.4	4.6	5.8	7.1	1.32	9.6	22.0	12.1	11.5	14.6
91	4.2	4.7	1.00	7.2	1.45	9.7	24.2	12.2	3.8	14.7
92	3.0	4.8	2.1	6.9	1.54	9.4	13.1	11.9	11.7	14.4
93	4.5	4.9	2.0	7.7	1.53	9.5	15.6	12.0	25.3	14.5
94	7.4	4.6	5.8	7.1	1.32	9.6	22.0	12.1	11.5	14.6
95	4.2	4.7	1.00	7.2	1.45	9.7	24.2	12.2	3.8	14.7
96	3.0	4.8	2.1	6.9	1.54	9.4	13.1	11.9	11.7	14.4
97	4.5	4.9	2.0	7.7	1.53	9.5	15.6	12.0	25.3	14.5
98	7.4	4.6	5.8	7.1	1.32	9.6	22.0	12.1	11.5	14.6
99	4.2	4.7	1.00	7.2	1.45	9.7	24.2	12.2	3.8	14.7
100	3.0	4.8	2.1	6.9	1.54	9.4	13.1	11.9	11.7	14.4
101	4.5	4.9	2.0	7.7	1.53	9.5	15.6	12.0	25.3	14.5
102	7.4	4.6	5.8	7.1	1.32	9.6	22.0	12.1	11.5	14.6
103	4.2	4.7	1.00	7.2	1.45	9.7	24.2	12.2	3.8	14.7
104	3.0	4.8	2.1	6.9	1.54	9.4	13.1	11.9	11.7	14.4
105	4.5	4.9	2.0	7.7	1.53	9.5	15.6	12.0	25.3	14.5
106	7.4	4.6	5.8	7.1	1.32	9.6	22.0	12.1	11.5	14.6
107	4.2	4.7	1.00	7.2	1.45	9.7	24.2	12.2	3.8	14.7
108	3.0	4.8	2.1	6.9	1.54	9.4	13.1	11.9	11.7	14.4
109	4.5	4.9	2.0	7.7	1.53	9.5	15.6	12.0	25.3	14.5
110	7.4	4.6	5.8	7.1	1.32	9.6	22.0	12.1	11.5	14.6
111	4.2	4.7	1.00	7.2	1.45	9.7	24.2	12.2	3.8	14.7
112	3.0	4.8	2.1	6.9	1.54	9.4	13.1</			

$b = -2.6481562E+02$
 $\beta = +1.2582072E+02$
 $\gamma = +1.6273156E+01$
 $N = 13435$
 STORGE CONDITIONS = AMB TEMP/RH

$y = ((+2.6076270E-01)^{-1} + (-5.8534151E-05)^{-1}) * X$
 SIGNIFICANCE OF F = SIGNIFICANT
 SIGNIFICANCE OF R = SIGNIFICANT
 SIGNIFICANCE OF t = SIGNIFICANT
 DEGREES OF FREEDOM = 16463
 TEST CONDITIONS = AMB TEMP/RH

FIGURE 11
WING G, L.R. TENSILE, STRAIN AT MAX STRESS, CHS-2.0 IN/MIN TP-H1011

Figure 11

Figure 12

$F = +1.3574417E+03$
 $R = -2.7601932E-01$
 $t = +3.6843475E+01$
 $N = 16452$
 STORAGE CONDITIONS = AMB TEMP/RH TEST CONDITIONS = AMB TEMP/RH

WING S,L,R,TENSILE, STRAIN AT RUPTURE, CHS-2, 0 IN/MIN TP-H1011

$F = +5.2849252E+02$ $\gamma = ((+1.1912500E+02) + (+5.4097209E-02)) * X$
 $R = +1.7638221E-01$ SIGNIFICANT OF F
 $t = +2.2988965E+01$ SIGNIFICANT OF R
 $N = 16461$ SIGNIFICANT OF t
 DEGREES OF FREEDOM = 16459 TEST CONDITIONS = AMB TEMP/RH
 STORAGE CONDITIONS = HMB TEMP/RH

WINC G.L.R. TENSILE STRESS AT RUPTURE, CHS-2.0 IN/MIN TP-H1011

Figure 1b

$F = +1.2460971E+03$ SIGNIFICANCE OF F = SIGNIFICANT
 $R = +2.6532358E-01$ SIGNIFICANCE OF R = SIGNIFICANT
 $t = +3.5300101E+01$ SIGNIFICANCE OF t = SIGNIFICANT
 $N = 16457$ DEGREES OF FREEDOM = 16455
 STORAGE CONDITIONS = AMB TEMP/RH TEST CONDITIONS = AMB TEMP/RH

WING 6, L.R. TENSILE, MODULUS, CHS=2.0 IN/MIN TP-H1011

Figure 15

*** SAMPLE SIZE SUMMARY ***

Aug	Age (MOS)	NP SAMP	NR SAMP	AGF (MOS)													
1	2	33	23	33	33	30	30	83	9	108	8	134	14	14	14	14	14
4	2	34	22	59	27	84	8	109	19	135	19	135	14	14	14	14	14
9	4	35	24	60	22	85	14	110	32	136	8	137	10	10	4	4	4
11	4	36	26	61	36	86	8	111	8	137	8	138	25	25	10	10	10
12	14	37	16	62	38	87	10	112	8	138	8	139	14	14	14	14	14
13	17	38	11	63	41	88	16	113	18	139	18	140	4	4	4	4	4
14	6	39	25	64	42	89	19	114	49	140	53	141	9	9	9	9	9
15	6	40	15	65	28	90	15	115	53	141	57	142	8	8	8	8	8
16	3	41	8	66	27	91	27	116	42	143	42	143	4	4	4	4	4
17	4	42	7	67	24	92	6	117	21	144	21	145	25	25	6	6	6
18	14	43	2	68	29	93	12	118	21	144	21	145	41	41	4	4	4
19	11	44	4	69	24	94	16	119	21	145	21	146	6	6	6	6	6
20	29	45	2	70	59	95	16	120	39	146	39	147	4	4	4	4	4
21	4	46	6	71	38	96	13	121	8	147	8	148	2	2	2	2	2
22	17	47	18	72	21	97	23	122	12	148	12	149	6	6	6	6	6
23	6	48	9	73	32	98	22	123	11	149	11	150	2	2	2	2	2
24	8	49	34	74	27	99	26	124	2	150	2	151	6	6	6	6	6
25	23	50	34	75	22	100	18	125	6	151	6	152	4	4	4	4	4
26	13	51	24	76	20	101	15	127	6	152	6	153	2	2	2	2	2
27	11	52	42	77	13	102	8	128	6	153	6	154	2	2	2	2	2
28	17	53	42	78	14	103	6	129	4	154	4	155	2	2	2	2	2
29	14	54	14	79	27	104	11	130	19	155	19	156	2	2	2	2	2
30	19	55	32	80	14	105	8	131	16	156	16	157	2	2	2	2	2
31	16	56	22	81	15	106	6	132	22	157	22	158	2	2	2	2	2
32	23	57	30	82	22	107	22	158	37	159	37	159	10	10	10	10	10

- 31 -

W R I G G S , H . R . T R A X I A L T E N S I L E , S T R A I N AT MAX STRESS, CHS=1750 IN./MIN. 8000 PSI

This sample size summary is applicable to figures 16 thru 20

Figure 16

$F = +7.0513944E+00$
 $R = +5.2472089E-02$
 $t = +2.6554461E+00$
 $N = 2556$
 STORAGE CONDITIONS = AMB TEMP/RH

$\Sigma F = +6.6636864E+02$
 $\Sigma R = +8.9971123E-02$
 $\Sigma t = +8.9971123E-02$
 $\Sigma N = +6.3838060E+01$
 $S_F = +3.3881734E-02$
 $S_t = +6.3762596E+01$
 $S_N = +6.3762596E+01$

$\bar{X} = +6.3838060E+01$
 $S_{\bar{X}} = +3.3881734E-02$
 $S_{\bar{t}} = +6.3762596E+01$

TEST CONDITIONS = AMB TEMP/RH

Figure 17

$F = +1.3534188E+02$
 $R = -2.2375133E-01$
 $t = +1.1633653E+01$
 $N = 2570$
 STORAGE CONDITIONS = AMB TEMP/RH TEST CONDITIONS = AMB TEMP/RH
 $\gamma = ((+3.4855676E-01) + (-1.7879952E-04) \times X_1 + 2.9692513E-02 X_2 + 1.5369163E-05 X_3 + 2.8945331E-02 X_4)$
 DEGREES OF FREEDOM = 2568

FIGURE 6, H.R. TRIAXIAL TENSILE, STRAIN AT RUPTURE, CHS=1750 IN/MIN, 600 PSI

Figure 18

Figure 19

$F = +3.7808830E+01$
 $R = -1.2054770E-01$
 $t = +6.1488885E+00$
 $N = 2566$
 STORAGE CONDITIONS = AMB TEMP/RH TEST CONDITIONS = AMB TEMP/RH

$F = (+4.9076799E+03) + (-3.1027591E+00) \times X$
 SIGNIFICANCE OF F = SIGNIFICANT
 SIGNIFICANCE OF R = SIGNIFICANT
 SIGNIFICANCE OF t = SIGNIFICANT
 DEGREES OF FREEDOM = 2564

Figure 20

*** SAMPLE SIZE SUMMARY ***

AGE (YRS)	AMP (MM)	AUT (MOS)	NO SAMPLE	AGE (MOS)	NP SAMPLE	AGE (MOS)	NP SAMPLE	AGE (MOS)	NP SAMPLE	AGE (MOS)	NP SAMPLE
1	2	35	7	60	35	65	15	110	40	135	13
11	12	36	26	61	45	66	11	111	17	136	10
12	12	37	26	62	63	87	27	112	12	137	21
13	13	38	24	63	126	88	23	113	81	138	51
14	4	39	74	64	43	99	46	114	57	139	65
15	12	40	11	65	41	90	50	115	29	140	6
16	3	41	21	66	16	61	36	116	32	141	12
17	12	42	7	67	22	92	18	117	126	162	18
19	11	43	7	68	48	93	28	118	31	143	8
17	4	44	12	69	47	94	31	119	34	144	19
20	4	45	5	70	49	95	21	120	48	145	14
21	24	46	9	71	40	96	29	121	25	146	38
22	4	47	16	72	58	97	34	122	6	147	18
23	2	48	4	73	73	98	29	123	19	148	7
24	16	49	28	74	49	99	17	124	14	149	9
25	24	50	26	75	41	100	16	125	34	150	8
26	12	51	57	76	29	101	23	126	16	151	2
27	31	52	100	77	19	102	9	127	24	152	2
28	20	53	49	78	30	103	7	128	28	153	4
29	37	54	16	79	63	104	24	129	12	154	4
30	28	55	43	80	20	105	9	130	23	155	5
31	29	56	52	81	17	106	11	131	28	156	2
32	42	57	52	82	24	107	12	132	32	157	5
33	24	58	54	83	23	108	12	133	11	158	8
34	21	59	24	84	3	109	23	134	34	161	6
									168		2

WING 6 • H • 7 • HYDROSTATIC STRAIN AT MAX STRESS, 1750 IN/MIN, 800 PSI

This sample size summary is applicable to figures 21 thru 25

$F = +3.4828417E+02$ $Y = ((+3.5563392E-01) + (-2.7020832E-04) * X)$
 $R = -2.8843802E-01$ $F = \text{SIGNIFICANT}$ $\sigma_F = +3.3710426E-02$
 $t = +1.86662373E+01$ $R = \text{SIGNIFICANT}$ $S_R = +1.4478776E-05$
 $N = 3840$ $t = \text{SIGNIFICANT}$ $S_t = +3.2281690E-02$
DEGREES OF FREEDOM = 3838 TEST CONDITIONS = AMB TEMP/RH

Figure 2]

$F = +1.4289494E+02$
 $R = +1.8946023E-01$
 $t = +1.1953867E+01$
 $N = 3840$
 STORAGE CONDITIONS = AMB TEMP/RH

$Y = ((+4.8412235E+02) + (+5.2665051E-01) \times X)$
 SIGNIFICANCE OF R = SIGNIFICANT
 SIGNIFICANCE OF t = SIGNIFICANT
 DEGREES OF FREEDOM = 3838
 TEST CONDITIONS = AMB TEMP/RH

WING 6, H.R. HYDROSTATIC, MAXIMUM STRESS, 1750 IN/MIN, 800 PSI

Figure 22

$F = +3.4061363E+02$
 $R = -2.8557413E-01$
 $t = +1.8455720E+01$
 $N = 3838$
 STORAGE CONDITIONS = AMB TEMP/RH

$Y = ((+4.2495602E-01) + (-2.9814843E-04) \times X)$
 SIGNIFICANT OF F = SIGNIFICANT
 SIGNIFICANT OF R = SIGNIFICANT
 SIGNIFICANT OF t = SIGNIFICANT
 DEGREES OF FREEDOM = 3836
 TEST CONDITIONS = AMB TEMP/RH

$\sigma_F = +3.7561331E-02$
 $S_F = +1.6154797E-05$
 $S_t = +3.6001842E-02$

Figure 23

$\gamma = ((+4.5305291E+02) + (+4.9960702E-01) * X)$
 $F = +1.4926585E+02$ SIGNIFICANCE OF F = SIGNIFICANT
 $R = +1.9348292E-01$ SIGNIFICANCE OF R = SIGNIFICANT
 $t = +1.2217440E+01$ SIGNIFICANCE OF t = SIGNIFICANT
 $N = 3840$ DEGREES OF FREEDOM = 3838
 STORAGE CONDITIONS = AMB TEMP/RH TEST CONDITIONS = AMB TEMP/RH

WING 6. H.R. HYDROSTATIC, STRESS AT RUPTURE, 1750IN/MIN, 800 PSI

Figure 2l

$\gamma = ((+3.4180922E+03) + (+2.3131462E+00)) \times 10^2$
 $F = +1.3604335E+01$ SIGNIFICANCE OF F = SIGNIFICANT
 $R = +5.9439373E-02$ SIGNIFICANCE OF R = SIGNIFICANT
 $t = +3.6884056E+00$ SIGNIFICANCE OF t = SIGNIFICANT
 $N = 3839$ DEGREES OF FREEDOM = 3837
N = STORAGE CONDITIONS = AMB TEMP/RH TEST CONDITIONS = AMB TEMP/RH

Figure 25

*** SAMPLE SIZE SUMMARY ***

AGE (MOS)	N ₂ SAVED
26	12
31	12
36	11
56	5
57	13
59	14
65	12
61	7
24	14
120	12
121	12

STAGE I WITH ϵ TRUNCATE ENERGY TEST=NP=77 DFG F

This sample size summary is applicable to figure 26

$F = +7.3959993E+00$
 $R = -2.3815861E-01$
 $t^1 = +2.7195586E+00$
 $N = 125$
 $Y = ((+1.2718053E+00) + (-2.9404487E-03) * X)$
 $F = \text{SIGNIFICANCE OF }$
 $R = \text{SIGNIFICANCE OF }$
 $t^1 = \text{SIGNIFICANCE OF }$
 $\text{DEGREES OF FREEDOM} = 123$
 $\text{STORAGE CONDITIONS} = \text{AMB TEMP/RH}$
 $\text{TEST CONDITIONS} = 77 \text{ DEG/F AMB-RH}$

PARAMETER = COHESIVE ENERGY
 UNIT OF MEASURE = IN-LB/INXIN
 3.20
 0.80
 0.00
 0.80
 1.60
 2.40

STAGE I WING 6 TP-H1011 TEAR ENERGY TEST/TEMP=77 DEG F

Figure 26

*** SAMPLE: S17F SUMMARY ***

AGF (MOS)	N ^D SAMP										
1.2	2	4.2	6	6.7	9	9.2	9	11.7	27	14.2	18
1.3	3	4.3	12	6.8	9	9.3	25	11.8	21	14.3	38
1.5	1	4.4	3	6.9	20	9.4	26	11.9	19	14.4	9
1.6	4	4.5	6	7.0	35	9.5	26	12.0	36	14.5	3
1.7	4	4.6	3	7.1	41	9.6	51	12.1	21	14.6	6
1.9	3	4.7	0	7.2	39	9.7	54	12.2	6	14.7	9
2.1	4	4.8	6	7.3	39	9.8	55	12.3	6	14.8	3
2.2	3	4.9	2	7.4	32	9.9	41	12.4	27	14.9	12
2.4	6	5.0	26	7.5	32	10.0	23	12.5	20	15.0	3
2.5	0	5.1	4.9	7.6	17	10.1	27	12.6	21	15.1	12
2.6	0	5.2	4.6	7.7	40	10.2	8	12.7	12	15.2	3
2.7	3	5.2	1.8	7.8	29	10.3	18	12.8	23	15.3	32
2.9	3	5.4	27	7.9	15	10.4	12	12.9	2	15.4	6
3.0	3	5.5	27	8.0	17	10.5	9	13.0	36	15.5	6
3.1	3	5.6	21	8.1	23	10.6	3	13.1	36	15.6	6
3.2	6	5.7	24	6.2	35	10.7	9	13.2	8	15.7	6
3.3	6	5.8	20	8.3	12	10.8	15	13.3	18	15.8	3
3.4	3	5.9	9	8.4	17	10.9	15	13.4	28	15.9	3
3.5	6	6.0	9	8.5	10	11.0	9	13.5	18	16.0	3
3.6	6.1	21	6.6	9	11.1	6	13.6	2	16.1	9	
3.7	6.2	46	8.7	3.3	11.2	17	13.7	9			
3.8	6.3	22	8.8	19	11.3	45	13.8	34			
3.9	6.4	30	8.9	21	11.4	35	13.9	45			
4.0	6.5	9	9.0	30	11.5	46	14.0	6			
4.1	6.6	2	9.1	14	11.6	36	14.1	12			

- 15 -

WING 6. JITTER RELAXATION VARIANCE, 0.5% STRAIN, 10 SFC, -65 DFG = TPH-1011

This sample size summary is applicable to figure 27 and 28

$F = +1.3451316E+02$ $Y = ((+3.5477401E+04) + (+7.7215016E+01) * X)$
 $R = +2.2712719E-01$ SIGNIFICANCE OF F = SIGNIFICANT
 $t = +1.1597980E+01$ SIGNIFICANCE OF R = SIGNIFICANT
 $N = 2475$ SIGNIFICANCE OF I = SIGNIFICANT
DEGREES OF FREEDOM = 2473 TEST CONDITIONS = -065 DEG AMB RH
STORAGE CONDITIONS = AMB TEMP/RH

WING 6. STRESS RELAXATION MODULUS, 0.5% STRAIN, 10 SEC, -65 DEG F, TPH-1011

Figure 37

$F = +1.5881618E+02$
 $R = +2.4565160E-01$
 $t = +1.2602229E+01$
 $N = 2475$
 SIGNIFICANCE OF F = SIGNIFICANT
 SIGNIFICANCE OF R = SIGNIFICANT
 SIGNIFICANCE OF t = SIGNIFICANT
 DEGREES OF FREEDOM = 2473
 STORAGE CONDITIONS = AMB TEMP/RH TEST CONDITIONS = -065 DEG/RH

PARAMEETER = RELAXATION MODULUS
 UNIT OF MEASURE = PSI
 $\times 10^3$
 0.00 2.00 4.00 6.00 8.00 10.00 12.00 14.00 16.00

WING 6, STRESS RELAXATION MODULUS, 0.5% STRAIN, 50 SEC, -65 DEG F, TPH-1011

Figure 28

*** SAMPLE SIZE SUMMARY ***

TEST NO. (NO.)	NO. SAMPLE	AGE (MOS.)	ND SAMPLE	AGE (MOS.)	NR SAMPLE	AGE (MOS.)	NR SAMPLE	NP SAMPLE
66	2	74	32	59	41	124	27	149
67	26	75	32	153	23	125	26	150
68	19	76	17	101	27	126	21	151
69	51	76	46	102	3	127	12	152
70	52	77	46	102	3	127	12	152
71	14	78	28	163	18	128	23	153
72	37	79	15	104	12	129	2	154
73	64	80	17	105	9	130	36	155
74	55	81	23	106	3	131	36	156
75	66	82	35	107	9	132	8	157
76	67	84	12	108	15	133	18	158
77	58	83	17	109	15	134	28	159
78	59	84	18	110	9	135	18	160
79	60	85	9	111	6	136	2	161
80	61	21	9	112	17	137	9	
81	62	46	97	19	113	45	138	34
82	63	23	38	21	114	35	139	45
83	64	30	89	30	115	45	140	6
84	65	9	90	14	116	39	141	12
85	66	2	91	14	117	27	142	18
86	67	5	92	9	118	21	143	38
87	68	9	93	25	119	19	144	9
88	69	25	94	26	120	36	145	3
89	70	70	95	26	121	21	146	6
90	71	41	96	51	122	6	147	9
91	72	36	97	54	123	6	148	3
92	73	39	98	55	124	6		

1 FED -

WING STRESS RELAXATION MODULUS, 0.5% STRAIN, 1000 SEC, -65 DFG &, TPH-1711

This sample size summary is applicable to figures 29 and 30

$\gamma = ((+3.0357516E+04) + (+3.9383466E+01) \times X)$
 SIGNIFICANCE OF F = SIGNIFICANT
 SIGNIFICANCE OF R = SIGNIFICANT
 SIGNIFICANCE OF V = SIGNIFICANT
 DEGREES OF FREEDOM = 2300
 STORAGE CONDITIONS = AMB TEMP/RH TEST CONDITIONS = -065 DEG/RH

UNIT OF MEASURE = PSI
 $\times 10^3$
 PARAMETER = RELAXATION MODULUS

WING 6, STRESS RELAXATION MODULUS, 0.5% STRAIN, 100 SEC, -65 DEG F, TPH-1011

Figure 29

$F = +1.0635816E+01$
 $R = +6.7845285E-02$
 $t = +3.2612600E+00$
 $N = 2302$
 STORAGE CONDITIONS = AMB TEMP/RH

$\gamma = ((+2.4005239E+04) + (+1.6667028E+01) * X) / (\sigma_f = +7.2722039E+03)$
 SIGNIFICANCE OF F = SIGNIFICANT
 SIGNIFICANCE OF R = SIGNIFICANT
 SIGNIFICANCE OF t = SIGNIFICANT
 DEGREES OF FREEDOM = 2300
 TEST CONDITIONS = -065 DEG/RH

PARAMETER = RELAXATION MODULUS

UNIT OF MEASURE = PSI
 $\times 10^3$

WING 6, STRESS RELAXATION MODULUS, 0.5% STRAIN, 1000 SEC, -65 DEG F, TPH-1011

Figure 30

*** SAMPLE SIZE SUMMARY ***

AGF (MNS)	NQ SAMP	AGF (MNS)	NQ SAMP	AGF (MNS)	NP SAMP	AGF (MNS)	NP SAMP	AGF (MNS)	NP SAMP	AGF (MNS)	NP SAMP
1.2	2	4.1	2	6	91	1.8	116	4.3	141	1.2	12
1.3	3	4.2	9	6.7	6	92	24	117	21	142	36
1.5	2	4.3	9	6.8	12	93	18	118	21	143	37
1.6	3	4.4	3	6.9	21	94	22	119	15	144	9
1.7	7	4.5	6	7.0	30	95	21	120	29	145	3
1.8	3	4.6	3	7.1	44	96	57	121	21	146	3
1.9	3	4.7	5	7.2	36	97	68	122	6	147	9
2.0	3	4.8	3	7.3	35	98	54	123	8	148	3
2.1	6	4.9	6	7.4	34	99	42	124	16	149	12
2.4	2	4.5	6	27	75	29	100	21	125	16	151
2.5	6	5.1	61	76	29	101	24	126	19	151	12
2.6	7	5.2	47	77	36	102	6	127	44	152	3
2.7	2	5.3	14	78	35	103	21	128	20	153	6
2.8	6	5.4	30	79	15	104	15	129	1	154	6
2.9	3	5.5	18	80	10	105	5	130	33	155	6
3.1	6	5.6	12	81	24	106	3	131	45	156	6
3.2	3	5.7	27	82	33	107	9	132	9	157	6
3.4	6	5.8	19	83	9	108	18	133	12	158	3
3.5	6	5.9	9	84	24	109	12	134	40	159	3
3.6	2	6.0	12	85	21	110	9	135	15	160	3
3.9	14	6.1	20	86	15	111	6	136	3	161	9
3.7	9	6.2	48	67	30	112	21	137	15		
3.8	5	6.3	24	68	23	113	53	138	41		
3.9	6	6.4	24	69	21	114	37	139	51		
4.0	12	6.5	9	99	29	115	57	140	6		

$F = +1.9518587F+01$ $t = ((+1.6530380E+04) + (+1.1915452L+01) * X)$
 $R = +8.6835718F-02$ SIGNIFICANCE OF F = SIGNIFICANT
 $\alpha = +4.4179845F+00$ SIGNIFICANCE OF R = SIGNIFICANT
 $D = 25.71$ SIGNIFICANCE OF t = SIGNIFICANT
 $D_{DF} = 2569$ DEGREES OF FREEDOM = 2569
 $COST = 0.05465$ TEST CONDITIONS = -0.010 DEG/FH

Figure 31

$F = +1.0062210E+01$
 $R = +3.2523790E-02$
 $t = +3.1752497E+00$
 $N = 2571$
 SERVICE CONDITIONS = RMB TEMP/RH TEST CONDITIONS = -040 DEG F/RH

FIGURE 32. STRESS RELAXATION MODULUS, 0.5% STRAIN, 50 SEC., -40 DEG F, TPH-1011

Figure 32

FIGURE 33. STRESS RELAXATION MODULUS, 0.5% STRAIN, 100 SEC, -40 DEG F, TPH-1011

Figure 33

$F = 5.3180318E-01$
 $R = +1.4386346E-02$
 $t = +7.2925180E-01$
 $N = 2571$
 $\text{TEST CONDITIONS : HMB TEMP/RH}$
 $\text{SIGNIFICANCE OF } F = \text{NOT SIGNIFICANT}$
 $\text{SIGNIFICANCE OF } R = \text{NOT SIGNIFICANT}$
 $\text{SIGNIFICANCE OF } t = \text{NOT SIGNIFICANT}$
 $\text{DEGREES OF FREEDOM} = 2569$
 $\text{TEST CONDITIONS} = -040 \text{ DEG/RH}$

Figure 34

WING 6, STRESS RELAXATION MODULUS, 0.5% STRAIN, 1000 SEC, -40 DEG F, TPH-1011

*** SAMPLE SIZE SUMMARY ***

AGE (MOS)	AMP	AGE (MOS)	NE SAMP	AGE (MOS)	NE SAMP	NP SAMP	AGE (MOS)	NP SAMP	AGE (MOS)	NP SAMP	NP SAMO
12	2	4.1	3	6.6	9	91	21	116	45	142	27
13	3	4.2	15	6.7	10	92	21	117	21	143	23
14	6	4.3	9	6.8	9	93	21	118	21	144	9
15	7	4.4	3	6.9	29	94	21	119	27	145	3
16	4	4.5	6	7.0	24	95	32	120	27	146	6
17	9	4.6	6	7.1	46	96	57	121	21	147	9
18	5	4.7	9	7.2	42	97	57	122	9	148	3
21	6	4.8	3	7.3	24	98	54	123	9	149	12
22	6	4.9	6	7.4	39	99	42	124	23	151	12
23	6	5.0	27	7.5	38	100	21	125	18	152	3
24	6	5.1	55	7.6	26	101	27	126	20	153	6
25	6	5.2	46	7.7	37	102	8	127	11	154	6
26	6	5.3	15	7.8	36	103	21	128	24	155	6
27	6	5.4	32	7.9	18	104	6	129	3	156	6
28	5	5.5	18	80	24	105	9	130	33	157	6
29	5	5.6	12	81	35	106	3	131	48	158	3
30	5	5.7	30	82	27	107	12	132	15	159	3
31	9	5.8	14	83	15	108	18	133	6	160	9
32	2	5.9	6	84	27	109	9	134	39	161	-
33	12	6.0	22	85	12	110	9	135	15	-	-
34	6	6.1	21	86	21	111	6	137	15	-	-
35	6	6.2	49	87	26	112	36	138	26	-	-
36	6	6.3	24	88	24	113	47	139	66	-	-
37	9	6.4	27	89	24	114	41	140	6	-	-
38	12	6.4	12	90	36	115	45	141	12	-	-
39	4	6.5	-	-	-	-	-	-	-	-	-

- 56 -

FIG. 6. Stress Relaxation Modulus. 3. % STEADY STATE SFC. 20 DFG F.TPH-1011

This sample size summary is applicable to figures 35 thru 38

$F = +1.0012545E+02$
 $R = +1.3946902E-01$
 $t = +1.00006270E+01$
 $N = 2691$
 STORAGE CONDITIONS = AMB TEMP/RH
 DEGREES OF FREEDOM = 2689
 TEST CONDITIONS = +020 DEG/RH

INITIAL MEASURE	RELAXATION MODULUS	TEST
100.00	100.00	100.00
150.00	150.00	150.00
200.00	200.00	200.00
250.00	250.00	250.00
300.00	300.00	300.00
350.00	350.00	350.00
400.00	400.00	400.00

WING 6, STRESS RELAXATION MODULUS, 3.0% STRAIN, 10 SEC., 20 DEG F, TPH-1011

Figure 35

$F = +1.8812387E+02$
 $R = +2.5570703E-01$
 $t = +1.3715825E+01$
 $N = 2691$
 SURFACE CONDITIONS = RMB TEMP/RH
 DEGREES OF FREEDOM = 2689
 TEST CONDITIONS = +020 DEG/RH

$\gamma = ((+9.3734557E+02) + (+1.1880253E+00) * x)$
 $S_f = +1.5396854E+02$
 $S_b = +8.6617117E-02$
 $S_r = +1.4887742E+02$

TEST AGE (YEARS)	TEST MODULUS
0.00	150.00
2.00	150.00
4.00	150.00
6.00	150.00
8.00	150.00
10.00	150.00
12.00	150.00
14.00	150.00
16.00	150.00

WING 6, STRESS RELAXATION MODULUS, 3.0% STRAIN, 50 SEC., 20 DEG F, TPH-1011

Figure 36

Figure 37

Figure 38

*** SAMPLE SIZE SUMMARY ***

Age (hrs.)	No. Sample	Age (hrs.)	No. Samp	Age (hrs.)	No. Samp	Age (hrs.)	No. Samp	Age (hrs.)	No. Samp
2	3	27	24	52	72	77	33	102	15
3	6	28	27	53	18	78	39	103	26
4	14	25	48	54	39	79	21	104	12
5	22	30	43	55	22	80	21	105	6
6	21	31	30	56	36	81	45	106	3
7	36	32	60	57	51	82	21	107	10
8	30	33	29	58	45	83	15	108	24
9	45	34	51	59	39	84	21	109	9
10	39	35	36	60	74	85	15	110	9
11	47	36	58	61	66	86	21	111	9
12	65	37	18	62	82	87	36	112	30
13	51	38	24	63	63	88	21	113	56
14	46	39	42	64	51	89	39	114	44
15	67	40	18	65	36	90	42	115	27
16	36	41	24	66	39	91	14	116	65
17	46	42	12	67	33	92	23	117	18
18	13	43	9	68	51	93	19	118	21
19	10	44	9	69	75	94	18	119	21
20	4	45	6	70	99	95	33	120	33
21	27	46	18	71	62	96	57	121	15
22	5	47	30	72	51	97	69	122	9
23	6	48	36	73	33	98	66	123	9
24	34	49	42	74	48	99	39	124	24
25	27	50	30	75	39	100	20	125	18
26	30	51	81	76	27	101	34	126	22

WING 6, STRESS RELAXATION MODULUS, 3.0% STRAIN, 1000 SFC, 77 DEG F, TPH-1011

158
160
161

This sample size summary is applicable to figures 39 thru 42

157
6
3

$F = +1.6641246E+02$
 $R = +1.8779973E-01$
 $t = +1.2900095E+01$
 $N = 4554$
 STORAGE CONDITIONS = AMB TEMP/RH
 DEGREES OF FREEDOM = 4552
 TEST CONDITIONS = +077 DEG RH

Figure 39

Figure 40

Figure 41

$F = +1.3937949E+02$
 $R = +1.7238340E-01$
 $t = +1.1805909E+01$
 $N = 4553$
 $\text{STORAGE CONDITIONS} = \text{AMB TEMP/RH}$
 $\text{DEGREES OF FREEDOM} = 4551$
 $\text{TEST CONDITIONS} = +077 \text{ DEG/RH}$

WING 6, STRESS RELAXATION MODULUS, 3.0% STRAIN, 1000 SEC, 77 DEG F, TPH-1011

Figure 42

*** SAMPLE SIZE SUMMARY ***

AGE (MOS)	HT. SAMP	AGE (MOS)	NP SAMP	AGE (MOS)	NP SAMP	AGE (MOS)	NP SAMP	AGE (MOS)	NP SAMP
1.2	3	4.3	9	6.8	12	9.3	21	11.8	21
1.3	4	4.4	3	6.9	24	9.4	21	11.9	21
1.5	6	4.5	9	7.0	27	9.5	27	12.0	33
1.7	1.5	4.6	6	7.1	4.8	9.6	6.0	12.1	18
1.9	6	4.7	9	7.2	4.2	9.7	5.7	12.2	9
2.0	4	4.8	3	7.3	24	9.8	6.0	12.3	12
2.1	9	4.9	6	7.4	4.2	9.9	3.9	12.4	21
2.2	6	5.0	27	7.5	3.6	10.0	21	12.5	15
2.3	2	5.1	57	7.6	2.9	10.1	24	12.6	24
2.4	6	5.2	45	7.7	3.3	10.2	5	12.7	14
2.5	6	5.3	12	7.8	3.0	10.3	21	12.8	21
2.6	6	5.4	28	7.9	1.4	10.4	9	12.9	3
2.7	3	5.5	27	8.0	24	10.5	5	13.0	42
2.9	9	5.6	27	8.1	39	10.6	3	13.1	42
3.0	9	5.7	31	8.2	27	10.7	8	13.2	9
3.1	3	5.8	24	8.3	18	10.8	21	13.3	9
3.2	5	5.9	12	8.4	21	10.9	9	13.4	36
3.3	5	6.0	15	8.5	12	11.0	5	13.5	12
3.5	1.5	6.1	20	8.6	1.8	11.1	5	13.6	6
3.6	1.5	6.2	43	8.7	1.8	11.2	3.3	13.7	18
3.7	6	6.3	21	8.8	1.4	11.3	4.5	13.8	51
3.8	6	6.4	34	8.9	1.5	11.4	4.4	13.9	51
3.9	9	6.5	5	9.0	3.2	11.5	2.7	14.0	15
4.0	3	6.6	12	9.1	24	11.6	3.0	14.1	18
4.1	14	6.7	6	9.2	24	11.7	2.1	14.2	27
4.2	6								

Figure 43

Figure 44

$F = +8.6514820E+01$ $Y = ((+3.4166181E+02) + (+2.9349332E-01)) * X_1$
 $R = +1.7699930E-01$ $F = \text{SIGNIFICANT}$ $G_r = +5.5868507E+01$
 $t = +9.3013343E+00$ $R = \text{SIGNIFICANT}$ $S_b = +3.1553894E-02$
 $N = 2677$ $t = \text{SIGNIFICANT}$ $S_t = +5.4996675E+01$
 $\text{STORAGE CONDITIONS} = \text{AMB TEMP/RH}$ $\text{TEST CONDITIONS} = +100 \text{ DEG/RH}$

UNIT OF MEASURE = PSI
 PARAMETER = RELAXATION MODULUS
 300.00 260.00 340.00 420.00 500.00 580.00

Figure 45

$F = +8.0292771E+01$
 $R = +1.7089435E-01$
 $t = +8.9606233E+00$
 $N = 2671$
 STORAGE CONDITIONS - AMB TEMP/RH

$F = (+2.7232574E+02) + (+2.2354248E-01)$
 SIGNIFICANCE OF F = SIGNIFICANT
 SIGNIFICANCE OF R = SIGNIFICANT
 SIGNIFICANCE OF t = SIGNIFICANT
 DEGREES OF FREEDOM = 2669

$\bar{\sigma}_t = +4.4084184E+01$
 $S_a = +2.4947202E-02$
 $S_t = +4.3443814E+01$

TEST CONDITIONS $\approx +100$ DEG/RH

Figure 46

*** SAMPLE SIZE SUMMARY ***

AGE (MOS)	N ₂ SAMPLE	NP (MOS)	SAMP	AGE (MOS)	N ₂ SAMPLE	NP (MOS)	SAMP	NR SAMPLE							
3	3	3.4	57	5.9	42	84	21	109	9	134	36	36	36	36	36
5	9	35	36	60	65	85	12	110	12	135	12	12	12	12	12
10	6	36	51	61	75	86	18	111	9	136	6	6	6	6	6
12	24	37	21	62	72	87	24	112	30	137	18	18	18	18	18
13	27	39	18	63	69	88	15	113	45	138	42	42	42	42	42
14	9	39	48	64	57	89	21	114	44	139	54	54	54	54	54
15	27	40	18	65	33	90	24	115	24	140	6	6	6	6	6
16	15	41	21	66	45	91	27	116	33	141	15	15	15	15	15
17	39	42	15	67	30	92	18	117	21	142	27	27	27	27	27
18	15	43	9	68	48	93	24	118	27	143	31	31	31	31	31
19	6	44	9	69	79	94	24	119	21	144	9	9	9	9	9
20	6	45	3	70	84	95	26	120	30	145	3	3	3	3	3
21	18	46	12	71	69	96	60	121	21	146	6	6	6	6	6
22	6	47	30	72	54	97	54	122	9	147	9	9	9	9	9
23	9	48	39	73	53	98	58	123	12	148	3	3	3	3	3
24	13	49	39	74	44	99	39	124	21	149	9	9	9	9	9
25	36	50	36	75	33	100	21	125	15	150	6	6	6	6	6
26	30	51	66	76	36	101	21	126	24	151	12	12	12	12	12
27	21	52	65	77	36	102	8	127	14	152	3	3	3	3	3
28	27	53	27	78	36	103	21	128	18	154	9	9	9	9	9
29	43	54	30	79	17	104	5	129	2	155	3	3	3	3	3
30	45	55	33	80	23	105	9	130	36	156	6	6	6	6	6
31	33	56	42	81	33	106	3	131	48	157	6	6	6	6	6
32	57	57	51	82	27	107	6	132	9	158	6	6	6	6	6
33	27	58	57	83	13	108	24	133	12	161	12	12	12	12	12

WING 6, STRESS RELAXATION MODULUS, 3.0% STRAIN, 10 SEC, 140 DEG F, TPH-1011

Figure 47

$\gamma = ((+2.4677747E+02) + (+3.4089701E-01) * x)$
 $F = 3.6899062E+02$ SIGNIFICANCE OF F = $S_f = +4.2786890E+01$
 $R = +2.8962173E-01$ SIGNIFICANCE OF R = $S_R = +1.7746615E-02$
 $t = +1.9209128E+01$ SIGNIFICANCE OF t = $S_t = +4.0958175E+01$
 $N = 4032$ DEGREES OF FREEDOM = 4030
 STORAGE CONDITIONS = AMB TEMP/RH TEST CONDITIONS = +140 DEG/RH

PARAMETER = RELAXATION MODULUS
 UNIT OF MEASURE = PSI
 50.00 150.00 250.00 350.00 400.00 430.00

WING 6, STRESS RELAXATION MODULUS, 3.0% STRAIN, 50 SEC, 140 DEG F, TPH-1011

Figure 48

$F = +3.1245927E+02$ $\gamma = ((+2.3173528E+02) + (+3.1871884E-01) * X)$
 $R = +2.9086517E-01$ $F = \text{SIGNIFICANT}$
 $t = +1.9299203E+01$ $R = \text{SIGNIFICANT}$
 $N = 4032$ $t = \text{SIGNIFICANT}$
 DEGREES OF FREEDOM = 4030 TEST CONDITIONS = +140 DEG/RH
 STORAGE CONDITIONS = AMB TEMP/RH

Figure 49

WING 6, STRESS RELAXATION MODULUS, 3.0% STRAIN, 100 SEC, 140 DEG F, TPH-1011

$F = +3.3057272E+02$
 $R = +2.7549319E-01$
 $t = +1.8181659E+01$
 $N = 4027$
 SIGNIFICANCE OF F = SIGNIFICANT
 SIGNIFICANCE OF R = SIGNIFICANT
 SIGNIFICANCE OF t = SIGNIFICANT
 DEGREES OF FREEDOM = 4025
 TEST CONDITIONS = +140 DEG/RH
 STORAGE CONDITIONS = AMB TEMP/RH

WING 6, STRESS RELAXATION MODULUS, 3.0% STRAIN, 1000 SEC, 140 DEG F, TPH-1011

Figure 50

*** SAMPLE SIZE SUMMARY ***									
Age (MOS)	NP SAMP	AGF (MOS)	NP SAMP	AGF (MOS)	NP SAMP	NP SAMP	AGE (MOS)	NP SAMP	AGF (MOS)
4	3	4	51	55	42	84	24	169	9
9	9	35	33	60	63	85	9	110	9
10	6	36	57	61	69	86	21	111	6
12	24	37	21	62	73	87	27	112	36
13	24	38	18	63	66	88	30	113	48
14	17	36	48	64	51	89	30	114	41
15	24	46	18	65	36	90	36	115	21
16	19	41	21	66	45	91	27	116	33
17	32	42	18	67	30	92	18	117	21
18	13	43	9	68	51	93	24	118	20
19	9	44	6	69	78	94	23	119	15
20	6	45	6	75	81	95	24	120	29
21	14	46	6	71	45	96	63	121	12
22	5	47	30	72	60	97	57	122	9
23	9	48	42	73	38	98	63	123	12
24	10	49	42	74	36	99	39	124	21
25	25	50	36	75	36	100	20	125	15
26	24	51	57	76	39	101	15	126	24
27	24	52	68	77	27	102	9	127	14
28	20	53	27	78	42	103	21	128	15
29	50	54	33	79	18	104	6	129	6
30	42	55	33	80	24	105	12	130	30
31	34	56	42	61	36	106	3	131	48
32	54	57	54	62	27	107	6	132	12
33	50	58	57	63	18	108	27	133	12

FIG. 6. STRESS RELAXATION MODULUS, 3.0% STRAIN, 1000 SEC, 180 DEG F, TPI-1711

This sample size summary is applicable to figures 51 thru 54

$F = +4.0173013E+02$
 $R = +3.0036824E-01$
 $t = +2.0043206E+01$
 $N = 4053$
 STORAGE CONDITIONS = AMB TEMP/RH

$\gamma = ((+2.3579932E+02) + (+3.1860582E-01) * X) / (+3.8602699E+01)$
 SIGNIFICANCE OF F = SIGNIFICANT
 SIGNIFICANCE OF R = SIGNIFICANT
 SIGNIFICANCE OF t = SIGNIFICANT
 DEGREES OF FREEDOM = 4051

TEST CONDITIONS = +180 DEG/RH

FIGURE 51
WING 6, STRESS RELAXATION MODULUS, 3.0% STRAIN, 10 SEC, 180 DEG F, TPH-1011

Figure 51

$F = +3.9292546E+02$ SIGNIFICANCE OF F = $+2.5830044E-01$ \times
 $R = +2.9735257E-01$ SIGNIFICANCE OF R = $+3.1613416E+01$ $\sigma_t = +3.1613416E+01$
 $t = +1.9822347E+01$ SIGNIFICANCE OF t = $+1.3030769E-02$
 $N = 4053$ DEGREES OF FREEDOM = 4051 $S_a = +3.0187195E+01$
 STORAGE CONDITIONS = HMB TEMP/RH TEST CONDITIONS = +180 DEG/RH

Figure 52

$F = +3.8606779E+02$ $\gamma = ((+1.8587963E+02) + (+2.3726310E-01) \times x)$
 $R = +2.9497401E-01$ SIGNIFICANT
 $t = +1.9648607E+01$ SIGNIFICANT
 $N = 4053$ SIGNIFICANT
 DEGREES OF FREEDOM = 4051
 STORAGE CONDITIONS = HMB TEMP/RH TEST CONDITIONS = +180 DEG/RH

Figure 53

WING 6, STRESS RELAXATION MODULUS, 3.0% STRAIN, 100 SEC, 180 DEG F, TPH-101

$F = +3.1835652E+02$ $\gamma = (+1.4273172E+02)$ $(+1.7620239E-01) \times X$
 $R = +2.6992812E-01$ SIGNIFICANCE OF F = SIGNIFICANT
 $t = +1.7842548E+01$ SIGNIFICANCE OF R = SIGNIFICANT
 $N = 4053$ SIGNIFICANCE OF t = SIGNIFICANT
 STORAGE CONDITIONS = AMB TEMP/RH DEGREES OF FREEDOM = 4051
 TEST CONDITIONS = +180 DEG/RH

WING 6, STRESS RELAXATION MODULUS, 3.0% STRAIN, 1000 SEC, 180 DEG F, TPH-1011

Figure 5b

*** SAMPLE SIZE SUMMARY ***

Age (yr.)	Age (MOS)	NC SAMP	AGF (MOS)	NQ SAMP	AGF (MOS)	NP SAMP	AGF (MOS)	NR SAMP
1	3	34	48	59	44	84	16	110
3	4	35	64	66	73	85	13	111
10	14	36	47	61	64	86	16	112
12	12	37	56	62	74	87	16	113
13	12	38	47	63	74	88	28	114
14	36	39	64	80	89	44	115	76
15	26	40	45	65	90	92	44	116
16	20	41	56	66	39	91	48	117
17	18	42	26	67	52	92	32	118
18	22	43	21	68	64	93	23	119
19	22	44	4	69	67	94	32	120
20	12	45	12	70	50	95	39	121
21	42	46	19	71	84	96	36	122
22	24	47	36	72	100	97	44	123
23	24	48	36	73	69	98	36	124
24	4	45	44	74	107	99	80	126
25	9	52	24	75	64	100	82	127
26	56	51	60	76	42	101	56	128
27	52	52	103	77	44	102	32	129
28	44	53	112	78	54	103	36	130
29	43	54	78	79	38	104	12	131
30	44	55	42	80	50	105	4	132
31	47	66	70	81	40	106	28	133
32	47	47	43	82	27	107	16	134
33	47	58	86	83	40	108	12	135
34	47	58	86	83	40	109	12	135

SUMMARY 1 • WING 6, T2-H1011, SCL GRL, DENSITY

This sample size summary is applicable to figures 55 thru 57

AD-A085 630

OGDEN AIR LOGISTICS CENTER HILL AFB UT PROPELLANT LAB--ETC F/G 21/8.2
PROPELLANT SURVEILLANCE REPORT LGM-30 F & G STAGE I, PHASE G, S--ETC(U)
APR 80 J A THOMPSON
MANCP-438(80)

UNCLASSIFIED

202
44
401000

NL

END
DATE FILMED
8-80
DTIC

$F = +1.3444083E+00$ SIGNIFICANCE OF $F = \text{NOT SIGNIFICANT}$ $\sigma_F = +1.4187460E-02$
 $R = -1.4910192E-02$ SIGNIFICANCE OF $R = \text{NOT SIGNIFICANT}$ $S_R = +4.8888725E-06$
 $t = +1.1594862E+00$ SIGNIFICANCE OF $t = \text{NOT SIGNIFICANT}$ $S_t = +1.4187056E-02$
 $N = 6048$ DEGREES OF FREEDOM = 6046 TEST CONDITIONS = AMB TEMP/RH

UNIT OF MEASURE = GRAMS/CC
 PARAMETER = DENSITY

STAGE 1, WING 6, TP-H1011, SOL GEL, DENSITY

Figure 55

$F = +1.4810776E+00$
 $R = +1.5659904E-02$
 $t = +1.2169953E+00$
 $N = 6040$
 SIGNIFICANCE OF F = NOT SIGNIFICANT
 SIGNIFICANCE OF R = NOT SIGNIFICANT
 SIGNIFICANCE OF t = NOT SIGNIFICANT
 DEGREES OF FREEDOM = 6038
 STORAGE CONDITIONS = AMB TEMP/RH TEST CONDITIONS = AMB TEMP/RH

STAGE 1, WING 6 TP-H1011, SOL GEL, PERCENT EXTRACTABLES

Figure 56

$\gamma = ((+4.0198191E+00) + (+6.7271838E-05) \times X)$
 $F = +7.1798500E-01$ SIGNIFICANT $F = \text{NOT SIGNIFICANT}$ $\sigma^2 = +2.3033705E-01$
 $R = +1.0901279E-02$ SIGNIFICANT $R = \text{NOT SIGNIFICANT}$ $S_0 = +7.9391793E-05$
 $t = +6.4733995E-01$ SIGNIFICANT $t = \text{NOT SIGNIFICANT}$ $S_t = +2.3034243E-01$
 $N = 6043$ DEGREES OF FREEDOM = 6041 TEST CONDITIONS = AMB TEMP/RH
 STORAGE CONDITIONS = AMB TEMP/RH

Figure 57

*** SAMPLE SIZE SUMMARY ***

AGE (MOS)	NR SAMP										
1	3	34	48	59	44	84	16	110	24	136	24
3	4	35	64	60	73	85	13	111	60	137	15
10	24	36	47	61	64	86	16	112	27	138	30
12	12	37	56	62	74	87	16	113	29	139	62
13	32	38	47	63	74	88	28	114	76	140	29
14	36	39	36	64	70	89	44	115	76	141	4
15	29	40	45	65	90	90	44	116	71	142	4
16	27	41	36	66	39	91	48	117	32	143	12
17	28	42	26	67	52	92	32	118	120	144	15
18	32	43	27	68	64	93	23	119	98	145	4
19	52	44	4	69	67	94	32	120	104	147	4
20	12	45	12	70	56	95	39	121	76	148	12
21	32	46	19	71	84	96	36	122	60	149	4
22	28	47	36	72	100	97	43	123	8	157	12
23	24	48	36	73	60	98	36	124	12	151	11
24	3	49	44	74	107	99	80	126	7	152	12
25	42	50	24	75	64	100	81	127	28	154	4
26	56	51	60	76	40	101	56	128	20	155	4
27	32	52	103	77	44	102	32	129	48	156	12
28	44	53	112	78	54	103	36	130	24	158	4
29	43	54	14	79	38	104	12	131	74	159	7
30	44	55	42	80	50	105	4	132	128	160	4
31	72	56	70	81	40	106	28	133	79	163	4
32	64	57	43	82	20	107	16	134	40		
33	52	58	86	83	39	108	12	135	28		

STAGE 1, WING 6, TP-H1011, SNL GEL, CROSSLINK DENSITY

This sample size summary is applicable to figure 58

$F = +6.0859487E+01$
 $R = +1.0099299E-01$
 $t^1 = +7.8012490E+00$
 $N = 5908$
 SIGNIFICANCE OF F = SIGNIFICANT
 SIGNIFICANCE OF R = SIGNIFICANT
 SIGNIFICANCE OF t^1 = SIGNIFICANT
 DEGREES OF FREEDOM = 5906

TEST CONDITIONS = AMB TEMP/RH
STORAGE CONDITIONS = AMB TEMP/RH

Figure 58

*** SAMPLE SIZE SUMMARY ***

AGE (MOS)	N ^o SAMP										
2	3	27	29	53	72	78	75	103	12	129	9
3	15	28	34	54	42	79	29	104	12	130	69
4	10	25	59	55	34	83	54	105	3	131	96
5	11	30	31	56	74	81	51	106	3	132	18
6	23	31	51	57	84	82	32	107	15	133	21
7	14	32	67	58	62	83	38	108	6	134	36
8	24	32	56	59	40	84	25	109	36	135	18
9	24	34	61	60	53	85	33	110	33	136	12
10	40	35	39	61	72	86	27	111	18	137	27
11	24	36	32	62	99	87	39	112	22	138	87
12	40	37	43	63	94	88	32	113	17	139	60
13	51	38	29	64	92	89	55	114	47	140	23
14	52	35	48	65	37	97	57	115	57	141	15
15	52	40	36	66	37	91	39	116	45	142	24
16	63	41	12	67	62	92	32	117	107	143	66
17	15	42	24	68	82	93	19	118	37	144	3
18	65	43	24	69	65	94	37	119	63	145	9
19	33	44	16	70	83	95	42	120	81	146	15
20	28	46	31	71	49	96	59	121	48	147	3
21	17	47	30	72	27	97	95	122	12	148	6
22	32	48	37	73	78	98	79	123	3	149	14
23	11	49	64	74	60	99	44	124	3	150	3
24	19	50	17	75	63	100	39	125	9	151	6
25	64	51	60	76	55	101	24	126	3	153	3
	22	52	50	77	43	102	14	128	12	154	6
	26									155	3
										156	3

STAGE 1 WING 6 TP-H 1011

CONSTANT STRAIN

This sample size summary is applicable to figure 59

157 6
159 3
161 3
166 3

$F = +3.8489694E+02$ $\gamma = ((+2.5953240E+01) + (-1.7918979E-02) \times X)$
 $R = -2.4930173E-01$ SIGNIFICANCE OF F = SIGNIFICANT
 $t = +1.9618790E+01$ SIGNIFICANCE OF R = SIGNIFICANT
 $N = 5810$ SIGNIFICANCE OF t = SIGNIFICANT
 DEGREES OF FREEDOM = 5808
 STORAGE CONDITIONS = AMB TEMP/RH TEST CONDITIONS = AMB TEMP/RH

*** SAMPLE SIZE SUMMARY ***

AGE (MOS)	N ^a SAMP	AGE (MOS)	NP SAMP								
1	3	32	30	58	54	83	12	109	6	134	21
6	3	33	24	59	33	84	12	110	21	135	21
7	3	34	27	60	51	85	27	111	15	136	33
8	3	35	27	61	57	86	9	112	21	137	18
9	12	36	45	62	57	87	24	113	51	138	64
10	6	37	18	63	81	88	36	114	21	139	45
11	13	38	21	64	42	89	36	115	9	140	27
12	15	39	45	65	9	90	51	116	39	141	18
13	6	40	15	66	36	91	24	117	36	142	9
14	21	41	21	67	42	92	33	118	9	144	21
15	19	42	6	68	61	93	18	119	12	145	3
16	15	43	6	69	66	94	27	120	30	146	12
17	15	44	9	70	105	95	27	121	6	147	3
18	15	44	9	71	36	96	15	122	6	148	3
19	6	46	12	71	39	97	72	123	21	149	9
20	2	47	9	72	42	98	60	124	18	150	12
21	15	48	51	73	42	98	51	125	27	151	3
22	3	49	45	74	31	99	51	126	21	152	3
23	27	50	51	75	33	100	51	127	33	154	6
24	21	51	57	76	30	101	9	128	36	155	3
25	39	52	72	77	27	102	15	129	27	156	9
26	12	53	27	73	27	103	12	130	42	157	6
27	21	54	24	79	21	104	18	131	41	158	3
28	24	55	39	80	15	106	3	132	21	159	3
29	21	56	61	81	41	107	18	133	24	160	6
30	39	57	69	82	19	108	3	134	161	3	168

STAGE 1 WING 6 SH-1811 SH-1811 HARDNESS

This sample size summary is applicable to figure 60

Figure 60

*** SAMPLE SIZE SUMMARY ***

AGE (MOS)	NP SAMP	AGE (MOS)	NP SAMP	AGE (MOS)	NP SAMP	AGE (MOS)	NP SAMP
2	3	34	39	59	57	84	9
10	15	35	52	60	43	85	3
11	1	36	39	61	34	86	3
12	6	37	13	62	79	87	3
13	15	38	11	63	46	88	12
14	13	39	16	64	85	89	24
15	16	40	11	65	72	90	36
16	17	41	13	66	38	91	24
17	18	42	36	67	59	92	9
18	19	43	4	68	38	93	17
19	22	44	10	69	49	94	15
20	35	45	7	70	46	95	16
21	16	46	12	71	11	96	18
22	15	47	16	72	12	97	13.3
23	21	48	4	73	8	98	4.0
24	19	49	36	74	4	99	26
25	25	51	13	75	36	100	23
26	27	51	38	76	26	101	21
27	36	52	25	77	22	102	3
28	43	52	47	78	13	103	6
29	43	54	37	79	7	105	9
30	24	55	25	80	21	106	6
31	51	56	21	81	24	108	3
32	42	57	25	82	7	113	3
33	54	58	22	83	9	114	11

STAGE 1 WINC 6 TPI=11 TIME TO MAXIMUM PRESSURE

This sample size summary is applicable to figures 61 and 62

Figure 61

Figure 62

*** SAMPLE SIZE SUMMARY ***

AGE (YRS)	NO. SAMP	AGE (MOS)	NO. SAMP								
8	3	34	48	59	33	84	17	179	8	134	33
9	10	35	39	60	42	95	19	110	22	135	12
10	7	36	30	61	44	86	11	111	7	136	13
11	22	37	53	62	33	87	12	112	7	137	11
12	22	38	18	63	34	88	9	113	18	138	62
13	26	39	32	64	33	89	22	114	22	139	45
14	15	40	27	65	50	90	17	115	22	140	12
15	21	41	21	66	32	91	17	116	17	141	6
16	24	41	15	67	31	92	7	117	110	142	24
17	9	42	15	68	49	93	27	118	65	143	47
18	13	43	12	69	49	94	27	119	15	144	2
19	4	44	19	69	97	94	27	119	15	144	2
20	3	45	9	70	61	95	35	120	17	146	6
21	25	46	3	71	29	96	22	121	11	147	4
22	24	47	56	72	19	97	34	122	28	148	2
23	12	48	32	73	26	98	72	123	6	149	8
24	18	49	42	74	5	99	38	124	23	150	6
25	42	50	25	75	26	100	23	125	31	151	2
26	15	51	64	76	25	101	8	126	9	152	2
27	27	52	66	77	20	102	14	127	29	154	2
28	24	53	80	78	37	103	11	128	26	155	4
29	19	54	15	79	16	104	9	129	10	156	2
30	42	55	39	80	32	105	9	130	41	157	2
31	43	56	51	81	55	106	11	131	54	158	2
32	54	57	45	82	16	107	8	132	20	159	2
33	59	60	66	83	22	108	8	133	14	161	2

STAGE 1, WING 6, TF-HINII, THERMAL COEFFICIENT OF LINEAR EXPANSION ABOVE TG

This sample size summary is applicable to figures 63 and 64

$F = +9.3906591E+01$ $\gamma = ((+8.6827809E-05) + (+4.7928594E-08) * x)$
 $R = +1.5521451E-01$ SIGNIFICANCE OF F = SIGNIFICANT
 $t = +9.6905413E+00$ SIGNIFICANCE OF R = SIGNIFICANT
 $N = 3306$ SIGNIFICANCE OF t = SIGNIFICANT
 DEGREES OF FREEDOM = 3804
 STORAGE CONDITIONS = AMB TEMP/RH TEST CONDITIONS = 5 DEGREES C/MIN

$$DRAFTMETAL = TCELL REGRD T (C) \\ COUNT OF MEASURE = INVERSE C \\ 0.00 2.00 4.00 6.00 8.00 10.00 12.00 14.00 16.00$$

STAGE 1, WING 6, TP-H1011, THERMAL COEFFICIENT OF LINEAR EXPANSION ABOVE TG

Figure 63

$F = +9.6588486E+01$
 $R = +1.5736119E-01$
 $t^1 = -5.3279441E+00$
 $N = 3806$
 STORAGE CONDITIONS = AMB TEMP/RH
 DEGREES OF FREEDOM = 3304
 TEST CONDITIONS = 5 DEGREES C/MIN

STAGE 1, WING 6, TP-H1011 THERMAL COEFFICIENT OF LINEAR EXPANSION BELOW TG

Figure 61

*** SAMPLE SIZE SUMMARY ***

AGF (MOS)	NR SAMP								
1	3	37	13	65	14	95	7	125	2
15	1	38	4	66	23	96	4	126	2
11	1	35	7	67	34	97	6	127	2
12	1	42	5	68	20	98	4	130	4
15	1	41	17	69	16	99	5	131	6
16	1	42	8	70	31	100	2	132	8
13	7	43	2	71	10	101	2	133	5
12	2	44	2	72	8	102	5	134	4
20	4	45	3	73	12	103	8	135	4
21	4	46	3	75	2	104	11	136	4
22	20	47	1	76	1	105	4	138	2
23	4	48	4	79	6	106	4	139	4
24	4	49	3	81	8	108	2	140	2
25	6	50	3	82	2	109	2	142	8
26	14	51	3	84	2	110	2	143	2
27	2	52	3	85	4	111	2	145	2
28	4	56	3	86	3	114	2	146	6
29	14	57	9	87	3	115	4	147	6
30	12	58	4	88	6	117	2	149	6
31	10	59	10	89	2	118	4	150	4
32	2	60	18	90	4	120	8	151	6
33	6	61	23	91	3	121	14	153	2
34	10	62	21	92	2	122	16	154	2
35	9	63	32	93	2	123	4	155	6
36	22	64	23	94	4	124	2	156	2

TGA IGNITION TEMPERATURE, 9 DEGREE C RISE/MINUTE

This sample size summary is applicable to figure 65.

$F = +7.6989976E+01$
 $R = +2.8834601E-01$
 $t = +8.7743932E+00$
 $N = 851$
 SIGNIFICANCE OF F = SIGNIFICANT
 SIGNIFICANCE OF R = SIGNIFICANT
 SIGNIFICANCE OF t = SIGNIFICANT
 DEGREES OF FREEDOM = 849
 STORAGE CONDITIONS = AMB TEMP/RH TEST CONDITIONS = AMB TEMP/RH

Figure 65

*** SAMPLE SIZE SUMMARY ***

AGE (MOS)	NP SAMP	AGR (MOS)	NG SAMP	NIR SAMP	AGR (MOS)	NP SAMP	AGE (MOS)	NP SAMP	AGR (MOS)	NP SAMP	AGR (MOS)	NP SAMP
1	3	37	3	65	8	95	3	125	1	157	1	
10	1	38	4	66	12	96	2	126	1	158	2	
11	1	39	5	67	17	97	2	127	1	161	1	
12	1	40	3	68	19	98	2	130	2			
13	1	41	16	69	8	99	2	131	3			
15	1	42	3	70	16	100	1	132	4			
16	1	43	2	71	6	101	1	133	3			
18	4	44	2	72	5	102	2	134	2			
19	1	45	1	73	6	103	3	135	2			
20	2	46	3	75	1	104	5	136	2			
21	2	47	1	76	1	105	2	138	1			
22	10	48	4	79	2	106	2	139	2			
23	2	49	3	81	4	108	1	140	1			
24	2	50	1	82	1	109	1	142	4			
25	3	51	3	84	1	110	1	143	1			
26	7	52	1	85	2	111	1	145	1			
27	1	53	2	86	4	114	1	146	3			
28	2	54	4	87	2	115	2	147	3			
29	2	55	3	89	3	117	1	149	3			
30	6	56	1	90	1	118	2	150	2			
31	5	57	11	91	2	120	4	151	3			
32	1	58	12	90	2	121	7	153	1			
33	3	59	12	91	2	122	8	154	1			
34	4	60	11	92	1	123	2	155	3			
35	2	61	17	93	1	124	1	156	1			
36	7	62	11	94	2							

AGE = WING C TGA % WT LOSS AT 250 °F G C HOLD, 12 °F/G RISE/MIN TO HOLD

This sample size summary is applicable to figure 66

$F = +2.1354060E+01$ $\gamma = (+2.0990458E+01)$ * $(+2.4800693E-02)$ * X
 SIGNIFICANCE OF F = SIGNIFICANT $S_f = +4.3071753E+00$
 $R = +2.1307268E-01$ SIGNIFICANCE OF R = SIGNIFICANT $S_b = +5.3669010E-03$
 $t = +4.6210454E+00$ SIGNIFICANCE OF t = SIGNIFICANT $S_e = +4.2129505E+00$
 $N = 451$ DEGREES OF FREEDOM = 449
 STORAGE CONDITIONS = AMB TEMP/RH TEST CONDITIONS = 12 DEG R/M TO HOLD

SAGE 1 WING 6 TGA % WT LOSS AT 250 DEG C HOLD, 12 DEG RISE/MIN TO HOLD

Figure 66

*** SAMPLE SIZE SUMMARY ***

AGE (MOS)	No. SAMP										
1	3	37	12	65	14	95	7	125	2	157	2
10	1	38	4	66	23	96	4	126	2	158	4
11	1	39	5	67	34	97	5	127	2	161	2
13	1	40	4	68	20	98	4	130	4	162	1
15	1	41	17	69	16	99	4	131	6		
16	1	42	5	70	31	100	2	132	8		
17	7	43	2	71	10	101	2	133	5		
19	2	44	2	72	8	102	5	134	4		
20	4	45	2	73	12	103	7	135	4		
21	4	46	3	75	2	104	9	136	4		
22	21	47	1	76	1	105	4	138	2		
23	4	48	4	79	6	106	4	139	4		
24	4	49	3	81	8	108	2	140	2		
25	6	50	2	82	2	109	2	142	8		
26	14	51	3	84	2	110	2	143	2		
27	2	53	3	85	4	111	2	145	2		
28	4	56	3	86	8	114	2	146	6		
29	14	57	9	87	3	115	4	147	6		
30	12	58	4	88	6	117	2	149	6		
31	10	59	13	89	2	118	4	150	4		
32	2	60	18	90	4	120	8	151	6		
33	6	61	23	91	3	121	14	153	2		
34	10	62	21	92	2	122	16	154	2		
35	9	63	32	93	2	123	4	155	6		
36	22	64	23	94	4	124	2	156	2		

STAGE I WING C

TGA PERCENT WEIGHT LOSS AT IGNITION, 9 DEG C RISE/MIN

This sample size summary is applicable to figure 67

Figure 67

*** SAMPLE SIZE SUMMARY ***						
AGE (MOS)	NP SAMP	AGE (MOS)	NP SAMP	AGE (MOS)	NP SAMP	AGE (MOS)
5	9	30	26	55	15	80
6	27	31	28	56	32	81
7	11	32	23	57	27	82
8	14	33	19	58	41	83
9	12	34	33	59	33	84
10	3	35	24	60	43	85
11	3	36	35	61	41	86
12	24	37	24	62	35	87
13	15	38	9	63	46	88
14	16	39	22	64	24	89
15	8	40	21	65	30	90
16	29	41	5	66	30	91
17	14	42	11	67	59	92
18	36	43	12	68	30	93
19	16	44	6	69	49	94
20	11	45	9	70	68	95
21	24	46	15	71	48	96
22	16	47	47	72	18	97
23	14	48	41	73	22	98
24	9	49	38	74	15	99
25	27	50	27	75	21	100
26	21	51	22	76	18	101
27	20	52	27	77	9	102
28	25	53	33	78	22	103
29	20	54	10	79	26	104
						10
					11	129
						161
						2

STAGE 1 WING 6, TEF-H 1011, DIA, "XOTHFORM 1, 12 ODFGRFF CENTIGRADF RISF/MIN

This sample size summary is applicable to figures 68 and 69

$F = +1.2411636E+02$ $\frac{1}{N} = ((+2.4227392E+02) - (-1.829114E-02)) \times X$
 $R = -1.9709299E-01$ SIGNIFICANT OF F = SIGNIFICANT
 $t = +1.1140752E+01$ SIGNIFICANT OF R = SIGNIFICANT
 $N = 3073$ SIGNIFICANT OF t = SIGNIFICANT
 $Degrees\ of\ freedom = 3071$
 $Storage\ conditions = HMB\ Temp/RH$ TEST CONDITIONS = 12 DEG. RISE/MIN

Figure 68

$F = 2.8391341E+02$ SIGNIFICANCE OF $F =$ SIGNIFICANT
 $R = -2.9138382E-01$ SIGNIFICANCE OF $R =$ SIGNIFICANT
 $t = +1.6849730E+01$ SIGNIFICANCE OF $t =$ SIGNIFICANT
 $N = 3062$ DEGREES OF FREEDOM = 3060
 STORAGE CONDITIONS = AHB TEMP/RH TEST CONDITIONS = 12 DEG. RISE/MIN

PHRAMETER = EXOTHERM I
 UNIT OF MEASURE = DEGREES C.
 250.00 260.00 280.00 300.00 320.00 340.00

STAGE 1 KING 3, RP-H 1011, DTA, EXOTHERM I, 12 DEGREE CENTIGRADE RISE/MIN

Figure 69

*** SAMPLE SIZE SUMMARY ***

AGE (MOS)	NO. SAMPLE	AGE (MOS)	NP SAMPLE	AGE (MOS)	NR SAMPLE	AGE (MOS)	NP SAMPLE	AGE (MOS)	NP SAMPLE	AGE (MOS)	NP SAMPLE
2	4	34	26	59	29	84	16	109	13	134	5
3	5	35	21	67	42	85	16	110	4	135	9
10	3	36	29	61	34	86	15	111	6	136	8
12	17	37	19	62	23	87	17	112	9	137	7
13	16	38	7	63	30	88	18	113	35	138	7
14	9	39	18	64	16	89	32	114	57	139	6
15	5	40	19	65	22	90	31	115	29	140	6
16	22	41	5	66	24	91	13	116	7	141	7
17	14	42	11	67	48	92	13	117	20	142	16
18	18	43	10	68	26	93	14	118	41	143	35
19	4	44	4	69	29	94	14	119	2	144	12
20	11	45	9	70	56	95	9	120	10	146	8
21	22	46	9	71	47	96	28	121	12	147	5
22	13	47	42	72	15	97	33	122	13	149	13
23	19	48	31	73	16	98	32	123	3	151	3
24	9	49	36	74	14	99	25	124	9	153	2
25	20	50	17	75	17	100	16	125	17	154	2
26	16	51	14	76	16	101	14	126	16	155	6
27	12	52	18	77	9	102	10	127	3	156	2
28	16	53	25	78	21	103	17	128	19	157	4
29	14	54	9	79	26	104	9	129	10	159	2
30	22	55	15	80	34	105	7	130	50	161	2
31	21	56	30	81	33	106	15	131	37		
32	22	57	25	82	32	107	2	132	22		
33	11	58	27	83	26	108	12	133	14		

Figure 70

*** SAMPLE SIZE SUMMARY ***

AGE (MONTHS)	N ^a SAMP						
3	3	36	4	64	4	96	6
9	7	37	5	65	7	97	4
11	3	38	2	66	4	98	1
12	4	40	5	67	9	99	1
13	5	42	3	68	4	100	1
14	3	44	2	69	7	104	1
15	1	45	1	70	3	108	3
16	4	46	5	71	2	109	4
17	5	47	7	75	1	117	1
18	5	48	8	77	1	113	11
19	6	49	2	78	3	114	21
21	2	57	2	79	18	115	7
22	4	51	1	80	12	116	2
23	1	52	3	81	10	117	3
24	1	53	4	82	8	118	3
25	1	54	1	83	8	123	2
26	2	55	1	84	7	130	9
27	4	56	3	86	1	131	4
28	3	57	7	87	8	135	2
29	5	58	5	88	8	140	1
30	9	59	7	89	16	142	2
31	4	60	4	90	12	143	4
33	4	61	7	91	6	144	1
34	5	62	6	92	2	149	1
35	4	63	5	94	2	155	1

- 108 -

STAGE I WING C, TEE-H 1011, FTA, EXOTHERM 3, 12 DEGREE COUNTERGRADE RISE/MIN

This sample size summary is applicable to figure 71

$F = +4.4164824E+01$
 $R = +2.9834946E-01$
 $t = +6.6456620E+00$
 $N = 454$
 STORAGE CONDITIONS = AMB TEMP/RH

$\gamma = ((+3.6099975E+02) + (+7.0857652E-02) * x) / (+8.1316084E+00)$
 SIGNIFICANCE OF F = SIGNIFICANT
 SIGNIFICANCE OF R = SIGNIFICANT
 SIGNIFICANCE OF t = SIGNIFICANT
 DEGREES OF FREEDOM = 452
 TEST CONDITIONS = 12 DEG. RISE/MIN

EXOTHERM 3, EXOTHERM 3, 12 DEGREE CENTIGRADE RISE/MIN

Figure 71

*** SAMPLE SIZE SUMMARY ***

AGE (YRS)	NR SAMP	AGE (YRS)	NR SAMP	AGE (YRS)	NR SAMP	AGE (MOS)	NR SAMP	AGE (MOS)	NR SAMP	AGE (MOS)	NR SAMP	AGE (MOS)	NR SAMP
3	9	31	25	56	29	81	25	106	12	131	33		
6	27	32	23	57	27	82	22	107	4	132	24		
7	11	33	15	58	36	63	22	108	11	133	16		
8	11	34	28	59	26	84	13	179	9	134	6		
9	5	35	21	60	39	85	20	110	3	135	6		
10	2	36	61	33	86	15	111	6	136	6			
12	20	37	18	62	27	87	13	112	10	137	8		
13	19	38	9	63	42	88	13	113	29	138	8		
14	17	39	26	64	20	89	16	114	37	139	6		
15	7	40	16	65	23	90	23	115	27	140	5		
16	23	41	5	66	26	91	9	116	8	141	4		
17	10	42	8	67	42	92	12	117	19	142	16		
18	25	43	11	68	25	93	15	118	39	143	38		
19	6	44	5	69	34	94	13	119	2	144	14		
20	2	45	7	70	67	95	10	120	14	146	8		
21	12	46	10	71	46	96	25	121	12	147	6		
22	7	47	40	72	18	97	33	122	13	149	14		
23	12	48	31	73	27	98	32	123	3	151	4		
24	8	49	35	74	15	99	20	124	10	153	2		
25	26	50	23	75	20	100	19	125	17	154	2		
26	18	51	23	76	18	101	15	126	17	155	6		
27	18	52	24	77	3	102	8	127	3	156	2		
28	22	53	31	78	19	103	17	128	21	157	5		
29	15	54	11	79	9	104	8	129	11	159	2		
30	20	55	15	80	23	105	5	130	58	161	2		

STAGE 1 WING C, TP-H 1011, CTA, IGNITION TEMPERATURE, 12 DEGREES CFNT. RIISF/MIN

This sample size summary is applicable to figure 72

$F = +5.6024702E-01$
 $R = +1.4723004E-02$
 $t = +7.4849650E-01$
 $N = 2566$
 STORAGE CONDITIONS = AMB TEMP/RH

$\sigma_F = +3.7013405E+02$
 $\sigma_R = NOT SIGNIFICANT$
 $\sigma_t = NOT SIGNIFICANT$
 $\sigma_N = NOT SIGNIFICANT$
 DEGREES OF FREEDOM = 2584

TEST CONDITIONS = 12 DEG. RISE/MIN

UNIT OF MEASURE = DEGREE C.
 FRAME METER = IGNITION TEMPERATURE

Figure 72

*** SAMPLE SIZE SUMMARY ***

Age (MOS)	No SAMP	Age (MOS)	NR SAMP								
1	2	4.0	33	7.0	34	9.5	20	12.1	27	14.6	36
1.5	3	4.1	6	7.1	25	9.6	24	12.2	21	14.7	12
1.6	9	4.2	19	7.2	54	9.7	24	12.3	9	14.9	9
1.7	15	4.5	3	7.3	50	9.8	35	124	5	15.0	9
1.8	12	4.7	9	74	74	49	35	125	6	15.1	9
1.9	12	5.0	12	75	69	100	22	126	12	15.2	6
2.0	18	5.1	12	76	36	101	8	127	22	15.4	6
2.1	3	5.2	22	77	21	102	18	128	12	15.5	3
2.2	3	5.3	24	78	8	103	6	129	39	156	3
2.4	3	5.4	26	79	39	104	9	130	54	157	3
2.5	3	5.5	24	80	15	105	9	131	86	158	6
2.6	8	5.6	17	81	34	107	6	132	24	159	3
2.7	24	5.7	27	82	24	108	6	133	17	162	2
2.8	27	5.8	45	83	15	109	5	134	15		
2.9	46	5.9	42	84	9	110	3	135	24		
3.0	18	6.0	44	85	18	111	15	136	15		
3.1	42	6.1	32	86	12	112	14	137	9		
3.2	31	6.2	67	87	6	113	18	138	9		
3.3	63	6.3	51	88	15	114	54	139	50		
3.4	29	6.4	50	89	16	115	55	140	24		
3.5	43	6.5	37	90	23	116	22	141	27		
3.6	50	6.6	15	91	19	117	24	142	18		
3.7	24	6.7	24	92	26	118	28	143	12		
3.8	19	6.8	30	93	5	119	27	144	30		
3.9	21	6.9	27	94	6	120	79	145	27		

$F = +7.9890602E+00$
 $R = +5.0400898E-02$
 $t = +2.8264925E+00$
 $N = 3139$
 STORAGE CONDITIONS = AMB TEMP/RH

$\gamma = ((+2.9426397E-01) + (+1.9660798E-05)) * X$
 SIGNIFICANCE OF F = SIGNIFICANT
 SIGNIFICANCE OF R = SIGNIFICANT
 SIGNIFICANCE OF t = SIGNIFICANT
 DEGREES OF FREEDOM = 3137
 TEST CONDITIONS = 1000 PSI

Figure 73

*** SAMPLE SIZE SUMMARY ***

AG (MIS)	No SAMP	AGF (MIS)	NR SAMP	AGF (MIS)	NR SAMP	AGF (MIS)	NR SAMP
28	6	71	17	98	14	128	2
30	3	72	16	99	18	131	8
32	2	73	21	100	8	132	54
34	2	74	11	101	5	133	5
35	3	75	14	102	6	136	2
36	7	76	20	103	3	142	2
37	3	78	39	104	7	141	2
39	6	79	42	105	8	144	2
41	3	80	56	106	4	145	2
42	3	81	42	107	7	146	2
43	3	82	32	108	3	147	2
52	3	83	53	110	3	148	2
53	3	84	3	111	34	149	2
54	3	86	5	112	13	150	2
55	3	87	2	113	6	152	2
56	10	88	6	114	13	154	2
60	18	89	2	115	23	155	2
61	21	90	3	116	14	156	5
62	15	91	15	117	6	157	2
63	5	92	5	118	44	159	2
64	3	93	6	119	22		
66	14	94	2	120	8		
67	54	95	5	122	6		
68	78	96	12	123	2		
69	36	97	6	125	2		

- 114 -

STAGER 1 WING C DIFFERENTIAL SCANNING CALORIMETER EXOTHERM 2 PEAK TEMP

This sample size summary is applicable to figures 74 thru 76

$F = +8.9936583E+01$
 $R = -2.7354414E-01$
 $t^* = +9.4834900E+00$
 $N = 1114$
 STORAGE CONDITIONS = AMB TEMP/RH

$Y = ((+5.2045459E+02) + (-2.1667973E-02) * X)$
 SIGNIFICANCE OF F = SIGNIFICANT
 SIGNIFICANCE OF R = SIGNIFICANT
 SIGNIFICANCE OF t^* = SIGNIFICANT
 DEGREES OF FREEDOM = 1112

TEST CONDITIONS = AMB TEMP/RH

Figure 74

$F = +5.9128705E+00$
 $R = -7.2726922E-02$
 $t = +2.4316394E+00$
 $N = 1114$
 STORAGE CONDITIONS = AMB TEMP/RH

$F = (+5.6008078E+02)$
 $R = SIGNIFICANT$
 $t = SIGNIFICANT$
 $N = DEGREES OF FREEDOM = 1112$

$G_f = +1.1058653E+01$
 $S_u = +1.2950691E-02$
 $S_e = +1.1034326E+01$

TEST CONDITIONS = AMB TEMP/RH

Figure 75

$F = +2.8729222E+01$
 $R = -1.5869770E-01$
 $t = +5.3599647E+00$
 $N = 1114$
 STORAGE CONDITIONS = AMB TEMP/RH

$Y = ((+6.1417125E+02) + (-9.4056431E-02) * X)$
 SIGNIFICANCE OF F = SIGNIFICANT
 SIGNIFICANCE OF R. = SIGNIFICANT
 SIGNIFICANCE OF t = SIGNIFICANT
 DEGREES OF FREEDOM = 1112

TEST CONDITIONS = AMB TEMP/RH

COUNT GE MEASURE = DEC 1
 520.00 560.00 600.00 640.00 680.00 720.00
 PARAMETER = EXOTHERM 2 PEAK TEMP

STAGE I WING 6 DIFFERENTIAL SCANNING CALORIMETER EXOTHERM 2 PEAK TEMP

Figure 76

DISTRIBUTION

	<u>NR COPIES</u>
OOALC	
MMWRME	1
MMWRMT	1
DDC (TISIR) Cameron Station, Alexandria, VA 22314	2
AFFPRO, Thiokol Chemical Corporation Wasatch Division P.O. Box 524 Brigham City, UT 84302 (Cy to R. E. Keating)	2
AFRPL (MKPB) Edwards AFB, CA 93523	1
SAC (LGMB) Offutt AFB, NB 68113	1
U. S. Naval Ordnance Station, Indian Head, MD 20640 Attn: Dr. James H. Wiegand Fleet Support Dept., Propulsion System Development Division, Code FS7	1
CPIA, Johns Hopkins University Attn: Dr. P. L. Nichols Applied Physics Laboratory Johns Hopkins Road Laurel, MD 20810	1
Naval Plant Branch Representative Attn: Mr. David W. Pratt P. O. Box 157, Bacchus Works Magna, UT 84044	1

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

14) REPORT DOCUMENTATION PAGE		READ INSTRUCTIONS BEFORE COMPLETING FORM
1. REPORT NUMBER MANCP Report No. 438(80)	2. GOVT ACCESSION NO. AD-A085 638	3. RECIPIENT'S CATALOG NUMBER
4. TITLE (and Subtitle) Propellant Surveillance Report LGM-30 F & G Stage I, Phase G. Series VIII, TP-H1011		5. TYPE OF REPORT & PERIOD COVERED Test Results - semi annual
6. PERFORMING ORG. REPORT NUMBER		7. AUTHOR(s) John A. Thompson
8. CONTRACT OR GRANT NUMBER(s)		9. PERFORMING ORGANIZATION NAME AND ADDRESS Propellant Analysis Laboratory Directorate of Maintenance OO-ALC Hill AFB, Utah 84056
10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS MMWRM Project M04046C- WNL01529		11. CONTROLLING OFFICE NAME AND ADDRESS Service Engineering Division Directorate of Materiel Management OO-ALC Hill AFB, Utah 84056
12. REPORT DATE Apr 1980		13. NUMBER OF PAGES 136
14. MONITORING AGENCY NAME & ADDRESS (if different from Controlling Office)		15. SECURITY CLASS. (of this report)
(12) 134		15a. DECLASSIFICATION/DOWNGRADING SCHEDULE
16. DISTRIBUTION STATEMENT (of this Report) Approved for Public Release, Distribution Unlimited		
17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from Report)		
18. SUPPLEMENTARY NOTES		
19. KEY WORDS (Continue on reverse side if necessary and identify by block number) Solid Propellant Minuteman		
20. ABSTRACT (Continue on reverse side if necessary and identify by block number) This report contains propellant test results from cartons of TP-H1011 bulk propellant representing LGM-30 F and G First Stage Minuteman Motors. This report uses a statistical approach to analyze the bulk carton propellant data. Testing was accomplished in accordance with MMWRM Project M04046-WNL01529. The data from this test period are combined with data from previous testing and entered into the GO85 computer for storage, analysis and regression analysis. From the statistical analysis of all data tested to date (fourteen years for		

407387

P.B.

F and G), significant degradation of the propellant does not appear linely for at least two years past the oldest data point.

Each point on the regression plot represents the mean of all samples at that particular age. The number of samples at each point is indicated on the sample size summary sheet on the page accompanying each regression plot or group of regression plots. The data range at any age can be found by suitable inquiry of the GO85 system.