Index

S.N.	Title of Experiment	Date	Page No.	Signature
1	Write a python script to print a statement.			
2	Write a python Program to check that the			
	given number is even or odd.			
3	Write a python program for swapping two			
	numbers.			
4	Write a python script to Explore iris data			
	set.			
5	Reading different types of datasets			
	(.txt,csv) from web and disk and save file			
	in specific disk location.			
6	Python Program to implement recursion			
	by using user defined function.			
7	Python Program to print the table of any			
	number			
8	Python Program to implement list and it			
	operations.			
9	Python Program to implement CSR			
	Matrix using Scipy.			
10	Install and perform a numerical array			
	processing using Numpy.			
11	Write an Python Program script to find all			
	basic descriptive statistics using			
	summary,str,quartile functions on mtcars			
	datasets.			
12	Program to find the correlation matrix.			
13	Plot the correlation plot on dataset and			
	visualize giving an overview of			
	relationships among data on iris dataset.			
14	Write a python program to explore a			
	simple dataset using pandas.			
15	Install ,import scikit learn and explore Iris			
	dataset with pandas for ML modelling.			
16	Python Program to find the outliers using			
	plot.			
17	Find the data distribution using box and			
	scatterplot.			
18	Write a python Program for Line Chart.			
19	Write a python Program for Pie Chart.			
20	Write a python Program for Bar Graph.			
21	Write a python Program for customizing			
	plot.			

Aim: Write a python script to print a statement.

Program:

This is a Python script that prints a statement print("I am a student of SRMIST")

Output:

print("I am a student of SRMIST")

Program: Write a python Program to check that the given number is even or odd.

Program:

```
number = int(input("Enter a number: "))
if number % 2 == 0:
    print("The number is even")
else:
    print("The number is odd")
```

Output:

Enter a number: 5

The number is odd

Aim: Write a python program for swapping two numbers.

```
x = int( input("Please enter value for Ist No: "))
y = int( input("Please enter value for IInd No: "))
# To swap the value of two variables
# we will user third variable which is a temporary variable
temp = x
x = y
y = temp
print ("The Value of Ist No. after swapping: ", x)
print ("The Value of IInd No. after swapping: ", y)
```

Output:

Please enter value for Ist No: 2 Please enter value for IInd No: 3 The Value of Ist No. after swapping: 3 The Value of IInd No. after swapping: 2

Aim: Write a python script to Explore iris data set.

```
Program:
```

```
import pandas as pd
```

import seaborn as sns

import matplotlib.pyplot as plt

from sklearn.datasets import load_iris

```
# Load the Iris dataset
```

```
iris = load_iris()
```

data = pd.DataFrame(data=iris.data, columns=iris.feature_names)

data['target'] = iris.target

Basic exploration

print("First 5 rows of the dataset:")

print(data.head())

print("\nSummary statistics of the dataset:")

print(data.describe())

Output:

First 5 rows of the dataset:

sepal length (cm) sepal width (cm) petal length (cm) petal width (cm) \

0	5.1	3.5	1.4	0.2
1	4.9	3.0	1.4	0.2
2	4.7	3.2	1.3	0.2
3	4.6	3.1	1.5	0.2
4	5.0	3.6	1.4	0.2

target

- 0 0
- 1 0
- 2 0

3 0 4 0

Summary statistics of the dataset:

sepa	l length (cm) se	pal width (cm)	petal length (cm) \
count	150.000000	150.000000	150.000000
mean	5.843333	3.057333	3.758000
std	0.828066	0.435866	1.765298
min	4.300000	2.000000	1.000000
25%	5.100000	2.800000	1.600000
50%	5.800000	3.000000	4.350000
75%	6.400000	3.300000	5.100000
max	7.900000	4.400000	6.900000

petal	width (cm) target	
count	150.000000 150.000000	
mean	1.199333 1.000000	
std	0.762238 0.819232	
min	0.100000 0.000000	
25%	0.300000 0.000000	
50%	1.300000 1.000000	
75%	1.800000 2.000000	
max	2.500000 2.000000	

Aim: Reading different types of datasets (.txt,csv) from web and disk and save file in specific disk location.

Program:

```
import pandas as pd
csv_url = "https://raw.githubusercontent.com/cs109/2014_data/master/countries.csv"
df = pd.read_csv(csv_url)
    # Now, 'df' is a DataFrame containing the data from the CSV file
    # You can perform various operations and analysis on this DataFrame
print(df)
# Save the DataFrame to a local CSV file
df.to_csv("local_dataset.csv", index=False) # Specify the desired file name
```

Output:

Cou	ntry	Region
0	Algeria	AFRICA
1	Angola	AFRICA
2	Benin	AFRICA
3	Botswana	a AFRICA
4	Burkina	AFRICA
189	Paragua	y SOUTH AMERICA
190	Peru	SOUTH AMERICA
191	Surinam	ne SOUTH AMERICA
192	Urugua	y SOUTH AMERICA
193	Venezue	la SOUTH AMERICA

[194 rows x 2 columns]

Aim: Python Program to implement recursion by using user defined function.

Program:

The factorial of 3 is 6

```
# Function to calculate the factorial of a number using recursion
def factorial(n):
  if n == 0:
     return 1
  else:
     return n * factorial(n - 1)
# Input from the user
num = int(input("Enter a non-negative integer: "))
# Check if the input is non-negative
if num < 0:
  print("Factorial is undefined for negative numbers.")
else:
  result = factorial(num)
  print(f"The factorial of {num} is {result}")
Output:
Enter a non-negative integer: 3
```

Aim: Python Program to print the table of any number

```
# Multiplication table (from 1 to 10) in Python
num = int(input("Multiplication table of= "))
# Iterate 10 times from i = 1 to 10
for i in range(1, 11):
    print(num, 'x', i, '=', num*i)

Output:

Multiplication table of= 5
5 x 1 = 5
5 x 1 = 5
```

```
Multiplication table of 5 x 1 = 5 

5 x 2 = 10 

5 x 3 = 15 

5 x 4 = 20 

5 x 5 = 25 

5 x 6 = 30 

5 x 7 = 35 

5 x 8 = 40 

5 x 9 = 45 

5 x 10 = 50
```

Aim: Python Program to implement list and it operations.

```
# Create a list of fruits
fruits = ['apple', 'banana', 'cherry', 'date']
# print List
print(fruits)
# Access and print elements in the list
print("First fruit:", fruits[0])
print("Third fruit:", fruits[2])
# Modify the second element
fruits[1] = 'kiwi'
# Append an element to the end of the list
fruits.append('grape')
# Remove an element from the list
fruits.remove('cherry')
# Find the length of the list
num_fruits = len(fruits)
print("Number of fruits:", num_fruits)
Output:
['apple', 'banana', 'cherry', 'date']
```

```
['apple', 'banana', 'cherry', 'date']
First fruit: apple
Third fruit: cherry
Number of fruits: 4
```

Aim: Python Program to implement CSR Matrix using Scipy.

Program:

import numpy as np from scipy.sparse import csr_matrix arr = np.array([0, 0, 0, 0, 0, 1, 1, 0, 2])

print(csr_matrix(arr))

- (0, 5) 1 (0, 6) 1 (0, 8) 2

Aim: Install and perform a numerical array processing using Numpy

```
import numpy as np
# Creating NumPy arrays
arr1 = np.array([1, 2, 3, 4, 5])
arr2 = np.array([6, 7, 8, 9, 10])
# Element-wise operations
addition = arr1 + arr2
subtraction = arr1 - arr2
multiplication = arr1 * arr2
division = arr1 / arr2
print("Array 1:", arr1)
print("Array 2:", arr2)
print("Addition:", addition)
print("Subtraction:", subtraction)
print("Multiplication:", multiplication)
print("Division:", division)
# Creating a NumPy array using arange
arr3 = np.arange(1, 11) # Creates an array from 1 to 10
print("Array 3 (using arange):", arr3)
# Reshaping arrays
reshaped_arr = arr3.reshape(2, 5)
```

```
print("Reshaped Array:")
print(reshaped_arr)
# Transposing an array
transposed\_arr = reshaped\_arr.T
print("Transposed Array:")
print(transposed_arr)
# Basic array statistics
mean_value = np.mean(arr3)
max_value = np.max(arr3)
min_value = np.min(arr3)
sum_value = np.sum(arr3)
print("Mean:", mean_value)
print("Max:", max_value)
print("Min:", min_value)
print("Sum:", sum_value)
Output:
Array 1: [1 2 3 4 5]
Array 2: [6 7 8 9 10]
Addition: [ 7 9 11 13 15]
Subtraction: [-5 -5 -5 -5 -5]
Multiplication: [ 6 14 24 36 50]
Division: [0.16666667 0.28571429 0.375
                                         0.44444444 0.5
                                                           1
Array 3 (using arange): [ 1 2 3 4 5 6 7 8 9 10]
Reshaped Array:
[[1 2 3 4 5]
[678910]]
Transposed Array:
[[ 1 6]
[27]
[3 8]
[4 9]
[5 10]]
Mean: 5.5
Max: 10
Min: 1
Sum: 55
```

Aim: Write an Python Program script to find all basic descriptive statistics using summary,str,quartile functions on mtcars datasets.

```
import pandas as pd
# Load the mtcars dataset
mtcars_data=pd.read_csv("https://vincentarelbundock.github.io/Rdatasets/csv/datasets/mtcars
.csv")
# Display basic descriptive statistics
def display_basic_stats(data):
  print("Basic Descriptive Statistics for mtcars Dataset:")
 # Describe() function provides summary statistics
  summary_stats = data.describe()
  print(summary_stats)
  # Standard Deviation
  std = data.std()
  print("\nStandard Deviation:")
  print(std)
  # Mean
  mean = data.mean()
  print("\nMean:")
  print(mean)
  # Median (50th percentile)
  median = data.median()
```

```
print("\nMedian (50th Percentile):")
  print(median)
  # Quartiles (25th, 50th, and 75th percentiles)
  quartiles = data.quantile([0.25, 0.5, 0.75])
  print("\nQuartiles (25th, 50th, and 75th Percentiles):")
  print(quartiles)
  # Variance
  var = data.var()
  print("\nVariance:")
  print(var)
  # Count of non-null values for each column
  count = data.count()
  print("\nCount of Non-null Values:")
  print(count)
# Display all basic statistics for the mtcars dataset
display_basic_stats(mtcars_data)
```

Aim: Program to find the correlation matrix.

```
Program:
import pandas as pd
# collect data
data = {
       'x': [45, 37, 42, 35, 39],
       'y': [38, 31, 26, 28, 33],
       'z': [10, 15, 17, 21, 12]
}
# form dataframe
dataframe = pd.DataFrame(data, columns=['x', 'y', 'z'])
print("Dataframe is : ")
print(dataframe)
# form correlation matrix
matrix = dataframe.corr()
print("Correlation matrix is : ")
print(matrix)
Output:
Dataframe is:
  x y z
0 45 38 10
1 37 31 15
2 42 26 17
3 35 28 21
4 39 33 12
Correlation matrix is:
x 1.000000 0.518457 -0.701886
y 0.518457 1.000000 -0.860941
```

z -0.701886 -0.860941 1.000000

Aim: Plot the correlation plot on dataset and visualize giving an overview of relationships among data on iris dataset.

Program:

import pandas as pd

import seaborn as sns

import matplotlib.pyplot as plt

Load the Iris dataset

iris_data = sns.load_dataset("iris")

Compute the correlation matrix

correlation_matrix = iris_data.corr()

Create a heatmap to visualize the correlation matrix

plt.figure(figsize=(8, 6))

sns.heatmap(correlation_matrix, annot=True, cmap="coolwarm", fmt=".2f", linewidths=0.5)

plt.title("Correlation Matrix - Iris Dataset")

plt.show()

Aim: Write a python program to explore a simple dataset using pandas.

```
import pandas as pd
# Create a sample dataset (you can replace this with your own dataset)
data = {
  'Name': ['Amit', 'Boby', 'Chetan', 'Davesh', 'Isha'],
  'Age': [28, 24, 30, 22, 35],
  'Salary': [50000, 45000, 60000, 40000, 75000]
}
# Convert the dictionary into a Pandas DataFrame
df = pd.DataFrame(data)
# Display the first few rows of the dataset
print("First 5 rows of the dataset:")
print(df.head())
# Basic information about the dataset
print("\nDataset Information:")
print(df.info())
# Summary statistics
print("\nSummary Statistics:")
print(df.describe())
# Check for missing values
print("\nMissing Values:")
print(df.isnull().sum())
# Unique values in a column
unique_names = df['Name'].unique()
print("\nUnique Names:")
print(unique_names)
```

```
# Value counts for a categorical column
age_counts = df['Age'].value_counts()
print("\nAge Value Counts:")
print(age_counts)
Output:
First 5 rows of the dataset:
     Name Age Salary
      Amit 28 50000
Boby 24 45000
0
1
2 Chetan 30 60000
3 Davesh 22 40000
     Isha 35 75000
Dataset Information:
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 5 entries, 0 to 4
Data columns (total 3 columns):
 # Column Non-Null Count Dtype
     -----
    Name 5 non-null
Age 5 non-null
 0
                                   object
 1
                                    int64
    Salary 5 non-null
                                     int64
dtypes: int64(2), object(1)
memory usage: 248.0+ bytes
None
Summary Statistics:
                Age
                             Salary
Age Salary count 5.000000 5.000000
mean 27.800000 54000.000000
        5.118594 13874.436926
std

      std
      5.118594
      13874.436926

      min
      22.000000
      40000.000000

      25%
      24.000000
      45000.00000

      50%
      28.000000
      50000.000000

      75%
      30.000000
      60000.000000

max 35.000000 75000.000000
Missing Values:
Name
           0
Age
             0
Salary
             0
dtype: int64
Unique Names:
['Amit' 'Boby' 'Chetan' 'Davesh' 'Isha']
Age Value Counts:
28
      1
24
        1
30
        1
22
        1
35
        1
Name: Age, dtype: int64
```

Aim: Install, import scikit learn and explore Iris dataset with pandas for ML modelling.

```
import pandas as pd
from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split
from sklearn.svm import SVC
from sklearn.metrics import accuracy_score, classification_report, confusion_matrix
# Step 1: Load the Iris dataset
iris = load_iris()
# Step 2: Create a DataFrame from the dataset for exploration
iris_df = pd.DataFrame(data=iris.data, columns=iris.feature_names)
iris_df['target'] = iris.target
# Step 3: Explore the dataset (optional)
# Display the first few rows of the dataset
print("First few rows of the Iris dataset:")
print(iris_df.head())
# Check the number of rows and columns
print("\nNumber of rows and columns:")
print(iris_df.shape)
# Check for missing values (Iris dataset typically doesn't have missing values)
print("\nMissing values:")
print(iris_df.isnull().sum())
# Step 4: Prepare data for machine learning
# Split the data into features (X) and target labels (y)
X = iris_df.drop('target', axis=1)
y = iris_df['target']
```

```
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
# Step 5: Train a machine learning model (SVM classifier in this case)
svm_classifier = SVC(kernel='linear', C=1) # You can adjust the model hyperparameters
# Fit the model on the training data
svm_classifier.fit(X_train, y_train)
# Step 6: Evaluate the model
# Make predictions on the test set
y_pred = svm_classifier.predict(X_test)
# Calculate accuracy
accuracy = accuracy_score(y_test, y_pred)
print("\nAccuracy:", accuracy)
# Display classification report
classification_rep = classification_report(y_test, y_pred, target_names=iris.target_names)
print("\nClassification Report:\n", classification_rep)
# Display confusion matrix
conf_matrix = confusion_matrix(y_test, y_pred)
print("\nConfusion Matrix:\n", conf_matrix)
Output:
First few rows of the Iris dataset:
sepal length (cm) sepal width (cm) petal length (cm) petal width (cm) \
                      3.5
                                   1.4
                                               0.2
0
          5.1
1
          4.9
                      3.0
                                   1.4
                                               0.2
                      3.2
                                   1.3
                                               0.2
2
          4.7
                                               0.2
3
                      3.1
                                   1.5
          4.6
4
                      3.6
                                   1.4
                                               0.2
          5.0
 target
1
2
     0
3
     0
Number of rows and columns:
(150, 5)
```

Split the dataset into training and testing sets

Missing values:

sepal length (cm) 0 sepal width (cm) 0 petal length (cm) 0 petal width (cm) 0 target dtype: int64

Accuracy: 1.0

Classification Report:

precision recall f1-score support

setosa	1.00	1.00	1.00	10
versicolor	1.00	1.00	1.00	9
virginica	1.00	1.00	1.00	11

accuracy 1.00 30 macro avg 30 1.00 1.00 1.00 weighted avg 1.00 30 1.00 1.00

Confusion Matrix:

[[10 0 0]

[0 9 0] [0 0 11]]

Aim: Python Program to find the outliers using plot. import numpy as np from scipy import stats # Sample data (replace with your dataset) data = [15, 18, 20, 22, 24, 30, 45, 50, 65, 800, 120, 130, 140] # Calculate the Z-scores for each data point z_scores = np.abs(stats.zscore(data)) # Set a Z-score threshold for identifying outliers (e.g., threshold of 2.0) threshold = 2.0# Find and print outliers outliers = [data[i] for i in range(len(z_scores)) if z_scores[i] > threshold] print("Outliers:", outliers) **Output:** Outliers: [800]

Aim: Find the data distribution using box and scatterplot.

Program:

import matplotlib.pyplot as plt

import numpy as np

Sample data for the box plot

box_data = np.random.normal(0, 1, 100) # Generating 100 random data points with a normal distribution

Sample data for the scatter plot

 $scatter_x = np.arange(1, 101) # Generate x values (1 to 100)$

scatter_y = np.random.rand(100) # Generate random y values

Create a figure with subplots

plt.figure(figsize=(12, 4))

Box Plot

plt.subplot(1, 2, 1)

plt.boxplot(box_data)

plt.title('Box Plot')

Scatter Plot

plt.subplot(1, 2, 2)

plt.scatter(scatter_x, scatter_y, color='skyblue', alpha=0.6)

plt.title('Scatter Plot')

plt.tight_layout()

plt.show()

Aim: Write a python Program for Line Chart.

Program:

import matplotlib.pyplot as plt

Sample data

$$x = [1, 2, 3, 4, 5]$$

$$y = [10, 15, 13, 18, 12]$$

Create a line chart

plt.plot(x, y, marker='o', linestyle='-')

Add labels and a title

plt.xlabel('X-axis Label')

plt.ylabel('Y-axis Label')

plt.title('Simple Line Chart')

Show the chart

plt.show()

Aim: Write a python Program for Pie Chart.

Program:

Pie Chart

import matplotlib.pyplot as plt

import numpy as np

y = np.array([35, 25, 25, 15])

plt.pie(y)

plt.show()

Aim: Write a python Program for Bar Graph.

Program:

Bar Graph

import matplotlib.pyplot as plt

import numpy as np

$$x = np.array(["A", "B", "C", "D"])$$

y = np.array([3, 8, 1, 10])

plt.bar(x,y)

plt.show()

Aim: Python program for customizing plots.

Program:

import matplotlib.pyplot as plt

import numpy as np

Sample data

x = np.random.rand(50) # 50 random x-values

y = np.random.rand(50) # 50 random y-values

colors = np.random.rand(50) # Random colors for each point

sizes = np.random.randint(10, 100, 50) # Random sizes for each point

Create the scatter plot

plt.scatter(x, y, c=colors, s=sizes, alpha=0.7, cmap='viridis')

Customize the plot

plt.title('Customized Scatter Plot')

plt.xlabel('X-axis')

plt.ylabel('Y-axis')

plt.colorbar(label='Color Intensity')

plt.grid(True)

Show the plot

plt.show()

