藝術風格探索:利用特徵提取與機器學習進行圖像分類

高崇哲1, 黃翊瑄2, 李佳芬2, 鄭家晏2, 林青欣3, 陳彥竹4

1 Department of Statistics, National Chengchi University 2 Department of Computer Science, National Chengchi University 3 Department of Education, National Chengchi University 4 Department of Management Information Systems, National Chengchi University

資料科學Data Science

介紹/前言

傳統的藝術風格辨識主要依賴人類專家的經驗和直覺,不僅耗時且具主觀性。隨著計算機視覺技術的進步, 提供了探索藝術風格的新視角。本研究旨在從圖像中提取出多種圖像特徵,利用機器學習技術進行分析,除了 比較不同模型之間的分類表現,也比較不同特徵組合下的分類效果。借助機器學習技術,實現對藝術風格的自 動化分類,從而提高辨識效率,為藝術研究提供新的工具和方法。

方法

• 資料集

此次研究採用kaggle上的Art Images:Drawing/Painting/Sculptures/Engravings資料集,當中含有約9000張、五種不同類型的圖片,分別為drawing(素描)、engraving(雕刻)、icongraphy(圖像學)、painting(繪畫)以及sculpture(雕塑)。

- 資料預處理
 - (1) 圖片篩選:由於此資料集含有jpeg、jpg、png的圖片,為了統一格式,採用數量最多的 jpeg 格式,但painting無jpeg格式的圖片,因此將此類別去除,取其餘四個類別之圖片
 - (2) 手動刪除不合適之資料(例如:多張圖片集於一張、不屬於該類別)
 - (3) 隨機將各類別之訓練集調整至500張、測試集調整至50張
 - (4) 裁切圖片:將所有圖片resize至128*128

特徵提取

drawing

engraving

icongraphy

sculpture

由於本研究所使用之資料集為圖片資料,因此需自行對圖像做特徵提取。以下是本研究所提取之特徵:

1	特徵類型	特徵數	特徵名稱		
	顏色	9 RGB平均數(Mean)、RGB變異數(Variance)、RGB一階差分值(Diff)			
	結構	3	分層結構(Layers)、對稱性(Symmetry)、對齊度(Alignment)		
	紋理	4	對比度(Contrast)、能量(Energy)、同質性(Homogeneity)、異質性(Dissimilarity)		
	形狀	6	面積(Area)、重心(Centroid[X,Y])、凸包面積(Convex Hull Area)、方向(Orientation)、圓度(Circularity)		

• 特徵選取

在紋理特徵中,從公式可以得知對比度為異質性的平方,因此將異質性欄位刪除。此外,也將所有特徵做正規化後,透過EDA觀察所有特徵的關係與分布,無發現任何異樣,因此保留其餘所有特徵。

實驗結果

	特徵數	SVM	Random Forest	GBM
RGB平均數、RGB變異數	6	0.610	0.605	0.605
顏色特徵值	9	0.705	0.685	0.68
顏色特徵值、結構特徵值	12	0.750	0.68	0.715
顏色特徵值、結構特徵值、 紋理特徵值	15	0.770	0.69	0.715
顏色特徵值、結構特徵值、 紋理特徵值、形狀特徵值	21	0.590	0.7	0.69

結論

- 1. 本研究透過R語言實現畫作識別,並利用SVM模型在四分類畫作達到77%的準確率。
- 2. 根據實驗結果,在大多數特徵組合下,SVM皆取得較好的模型表現。
- 3. 同時考慮顏色特徵、結構特徵、紋理特徵效果更好,且只用15個關鍵變數也能有良好的分類效果。

