Unsupervised Learning

Foundations of Neural Computation

Edited by

Geoffrey Hinton Terrence J. Sejnowski

Unsupervised Learning

Computational Neuroscience

Terrence J. Sejnowski and Tomaso A. Poggio, editors

Methods in Neuronal Modeling: From Synapses to Networks edited by Christof Koch and Idan Segev, 1989

Neural Nets in Electric Fish Walter Heiligenberg, 1991

The Computational Brain

Patricia S. Churchland and Terrence J. Sejnowski, 1992

Dynamic Biological Networks: The Stomatogastric Nervous System edited by Ronald M. Harris-Warrick, Eve Marder, Allen I. Selverston, and Maurice Moulins, 1992

The Neurobiology of Neural Networks edited by Daniel Gardner, 1993

Large-Scale Neuronal Theories of the Brain edited by Christof Koch and Joel L. Davis, 1994

The Theoretical Foundation of Dendritic Function: Selected Papers of Wilfrid Rall with Commentaries

edited by Idan Segev, John Rinzel, and Gordon M. Shepherd, 1995

Models of Information Processing in the Basal Ganglia edited by James C. Houk, Joel L. Davis, and David G. Beiser, 1995

Spikes: Exploring the Neural Code

Fred Rieke, David Warland, Rob de Ruyter van Steveninck, and William Bialek, 1997

Neurons, Networks, and Motor Behavior edited by Paul S.G. Stein, Sten Grillner, Allen I. Selverston, and Douglas G. Stuart, 1997

Methods in Neuronal Modeling: From Ions to Networks second edition, edited by Christof Koch and Idan Segev, 1998

Fundamentals of Neural Network Modeling: Neuropsychology and Cognitive Neuroscience

edited by Randolph W. Parks, Daniel S. Levine, and Debra L. Long, 1998

Neural Codes and Distributed Representations: Foundations of Neural Computation edited by Laurence Abbott and Terrence J. Sejnowski, 1998

Unsupervised Learning: Foundations of Neural Computation edited by Geoffrey Hinton and Terrence J. Sejnowski, 1998

Unsupervised Learning: Foundations of Neural Computation edited by Geoffrey Hinton and Terrence J. Sejnowski

A Bradford Book The MIT Press Cambridge, Massachusetts London, England

© 1999 Massachusetts Institute of Technology

All rights reserved. No part of this book may be reproduced in any form by any electronic or mechanical means (including photocopying, recording, or information storage and retrieval) without permission in writing from the publisher.

Library of Congress Cataloging-in-Publication Data

Unsupervised learning: foundations of neural computation / edited by Geoffrey Hinton and Terrence J. Sejnowski.

p. cm.—(Computational neuroscience)

"A Bradford book."

Includes bibliographical references and index.

ISBN 0-262-58168-X (pbk.: alk. paper)

1. Learning—Physiological aspects. 2. Neural networks.

3. Learning—Computer simulation. 4. Neural computers. I. Hinton, Geoffrey E. II. Sejnowski, Terrence J. (Terrence Joseph) III. Series.

OP408.U57 1998

612.8'2—dc21

98-14784

CIP

This book was printed and bound in the United States of America.

CONTENTS

Introduction	vii
1 Unsupervised Learning H. B. Barlow	1
2 Local Synaptic Learning Rules Suffice to Maximize Mutual Information in a Linear Network Ralph Linsker	19
3 Convergent Algorithm for Sensory Receptive Field Development Joseph J. Atick and A. Norman Redlich	31
4 Emergence of Position-Independent Detectors of Sense of Rotation and Dilation with Hebbian Learning: An Analysis Kechen Zhang, Martin I. Sereno, and Margaret E. Sereno	47
5 Learning Invariance from Transformation Sequences Peter Földiák	63
6 Learning Perceptually Salient Visual Parameters Using Spatiotemporal Smoothness Constraints James V. Stone	<i>7</i> 1
7 What Is the Goal of Sensory Coding? David J. Field	101
8 An Information-Maximization Approach to Blind Separation and Blind Deconvolution	
Anthony J. Bell and Terrence J. Sejnowski	145
9 Natural Gradient Works Efficiently in Learning Shun-ichi Amari	177
10 A Fast Fixed-Point Algorithm for Independent Component Analysis Aapo Hyvärinen and Erkki Oja	203
11 Feature Extraction Using an Unsupervised Neural Network Nathan Intrator	213
12 Learning Mixture Models of Spatial Coherence Suzanna Becker and Geoffrey E. Hinton	223
13 Bayesian Self-Organization Driven by Prior Probability Distributions Alan L. Yuille, Stelios M. Smirnakis, and Lei Xu	235
14 Finding Minimum Entropy Codes H. B. Barlow, T.P. Kaushal, and G. J. Mitchison	249
15 Learning Population Codes by Minimizing Description Length Richard S. Zemel and Geoffrey E. Hinton	261

16 The Helmholtz Machine Peter Dayan, Geoffrey E. Hinton, Radford M. Neal,	277
and Richard S. Zemel	2//
17 Factor Analysis Using Delta-Rule Wake-Sleep Learning Radford M. Neal and Peter Dayan	293
18 Dimension Reduction by Local Principal Component Analysis Nandakishore Kambhatla and Todd K. Leen	317
19 A Resource-Allocating Network for Function Interpolation <i>John Platt</i>	341
20 Learning with Preknowledge: Clustering with Point and Graph Matching Distance Measures	
Steven Gold, Anand Rangarajan, and Eric Mjolsness	355
21 Learning to Generalize from Single Examples in the Dynamic L. Architecture	ink
Wolfgang Konen and Christoph von der Malsburg	373
Index	391

Unsupervised Learning

Foundations of Neural Computation edited by Geoffrey Hinton and Terrence J. Sejnowski

Since its founding in 1989 by Terrence J. Sejnowski, *Neural Computation* has become the leading journal in the field. *Foundations of Neural Computation* collects, by topic, the most significant papers that have appeared in the journal over the past ten years.

This volume, on unsupervised learning algorithms, focuses on neural network learning algorithms that do not require an explicit teacher. The goal of unsupervised learning is to extract an efficient internal representation of the statistical structure implicit in the inputs. These algorithms provide insights into the development of the cerebral cortex and implicit learning in humans. They are also of interest to engineers working in areas such as computer vision and speech recognition who seek efficient representations of raw input data.

Geoffrey Hinton is Director of the Gatsby Computational Neuroscience Unit at University College, London. Terrence J. Sejnowski is a Howard Hughes Medical Institute Investigator and directs the Computational Neurobiology Laboratory at the Salk Institute for Biological Studies. He is Professor of Biology at the University of California, San Diego.

Computational Neuroscience series A Bradford Book

The MIT Press
Massachusetts Institute of Technology
Cambridge, Massachusetts 02142
http://mitpress.mit.edu

jacket design by Jim McWethy

HINUP 0-262-58168-X

