§ 4 Opix GUVAPTYGEWV

0 0: 1 E67w $f=A o IR, X_{0}$ 6-6- tou A ker $l \in IR$. $N \notin p_{\xi}$ δu l = lim f(x) dv $Y \notin Y_{0}$, $\exists S \ni 0$ t.w. $\forall x \in A$ p_{ξ} $0 < |x-x_{0}| < S$

(160 SÚVLMA +XEAN (X-5, X0+5) ME X + X0) EXOUNE OTI (f(X)- l) (E.

NEPE ou lunf(x)=+ ∞ , dv +M>0, $\exists 5>0$ r.w. +xEA ME D< (x- \times 0/ \times 5 EXOUME f(x)>M

Λέμε όυ lum f(x)=-00, αν ΥΜΟΟ, ∃5>0 τ.ω. ΥΧΕΑ με 0< |x-x0|< δ × -> x0 έχουμε f(x)<-M.

- Magatippy6η: Δεν χρειάζεται να ορίζεται η f στο x_0 χια να μιλήσουμε χια το όριο θια f(x). Το όριο περιγράζει τη συμπεριζορά της f χύρω από το x_0 και δεν λαμβάνει καθόλου υπόζη το x_0
- Mapa Feigration 1) $f = 1R \setminus \{0\}$ $\longrightarrow 1R$ $\mu \in f(x) = x^3$, $\{x \in 1R \setminus \{0\}\}$ Tota lum $\{x\} = 0$.
 - 2) $f = |R| |f_0| \rightarrow |R| |\mu_E| |f(x)| = \frac{1}{x^2} |$
 - 3) f= IR -> IR ME f(x) = \(\frac{1}{2} \text{ dv } \text{ X} \dot 0 \). Tork lun f(x) = 0, svw f(0) = 2.

\$5 NAEUPIKA GYMEIA GUGGWPENGYS KAI NAEUPIKA ÓPIA

- 0 ρ: 'Ε6τω Α ⊆ IR μη κενό και X₆ ∈ IR.

 Το χο καθείται 6.6 του Α από τα θεξιά αν +5>0, ∃χεΑΛ (χο, Χο+δ).

 από τα αριστερά αν +δ>0; ∃χεΑΛ (χο-δ, χο).
- Of (MEUPING opid): 'EGTW $A \subseteq IR$ my Kevo, Xo E IR 6.6 Tou A and J_{E} Z_{I} Z_{I} (dvt. d Z_{I} $Z_{$
 - i) 'EGW le IR, $\Delta \epsilon \mu \epsilon$ ott hun $f(x) = \ell$ avv $\chi \to \chi_0^+$ $\forall \epsilon \neq 0$, $\exists \delta \Rightarrow 0$ $\tau \cdot \omega$. $\forall \chi \in A \cap (\chi_0, \chi_0 + \delta)$ $\epsilon \chi_0 \mu \epsilon$ $|f(\chi) \ell| < \epsilon$.

 (Avigority, $\Delta \epsilon \mu \epsilon$ or him $f(\chi) = \ell$ avv $\chi \to \chi_0^ \forall \epsilon \neq 0$, $\exists \delta \Rightarrow 0$ $\tau \cdot \omega$. $\forall \chi \in A \cap (\chi_0 \delta, \chi_0)$ $\epsilon \chi_0 \mu \epsilon$ $|f(\chi) \ell| < \epsilon$).
- ii) $\Lambda \xi \mu \xi = 0.01$ $\lim_{X \to X_0^+} f(X) = +\infty$ $(AVT. \lim_{X \to X_0^-} f(X) = +\infty) AVV$ 4M > 0, 35 > 0 $1.\omega$. $4x \in A \cap (X_6, X_0 + 5) \in \chi \text{ ourse} \quad f(X) > M$ $(AVT.) \forall X \in A \cap (X_0 - J_1(X_0))$
- iii) Népre ou lun $f(x) = -\infty$ (dvt. lun $f(x) = -\infty$) dvv $x \to x_0^+$ $f(x) = -\infty$) $f(x) = -\infty$)

- 6 Apotaby: Ettw $A \subseteq \mathbb{R}$, $f:A \to \mathbb{R}$ Kal $X_0 \in \mathbb{R}$ 6.6. Tou Aand apotaby xal and $f \in \mathbb{R}$ To open lum f(x) uniques and unique unique tax lim f(x) kal f(x) = f(x) =
 - \$ 6 Enpréid 6066 mp EU 675 670 00 KZI àpril 670 00
- 0 Op: 'E6τω A⊆IR nou EXEL TO +00 (dVT. TO -00) WS 6-6- Kd1 f=A→IR.
- ii) Népue 671 lun $f(x) = +\infty$ (drt. lun $f(x) = +\infty$) drr $x \to +\infty$ $\forall M_1 > 0$ $i \exists M_2 > 0$ $\forall x \in A$ $\mu \in X > M_2$, $i \in X = X > M_1$ (drt. $\mu \in X < -M_2$)
- iii) Népre on lim $f(x) = -\infty$ (dvt. $\lim_{X \to -\infty} f(x) = -\infty$) dvv $\lim_{X \to +\infty} f(x) = -\infty$) $\lim_{X \to +\infty} f(x) = -\infty$)

\$7 APX9 META POPAS YIN TO OPIO / MPAZEIS KAI GUNDEGY

- $\frac{\partial \text{ Dεωρημα}}{\partial \text{ Pεωρημα}}$ $\frac{\partial \text{ Pεωρημα}}{\partial \text{ Pεωρ$
- Magazipenen: Για v. S. o. $f(x) \xrightarrow{X \to X_0} l$ αρκεί να βρούμε μία ακολουθία $(X_N)_N$ 670 Α τ.ω. $X_N \xrightarrow{N \to \infty} X_0$, $X_N \neq X_0$, $Y_N \neq X_0$, $Y_N \in IN$, και $f(X_N) \xrightarrow{N \to \infty} l$.
- 6 Apôth69: !E6TW Xo 6.6. TOU $A \subseteq \mathbb{R}$, $f_{ig} = A \rightarrow \mathbb{R}$ Ku $l_{im} \in \mathbb{R}$ $1 \cdot w \cdot l_{im} f(x) = l$, $l_{im} g(x) = m \cdot l_{ote}$, $x \rightarrow x_{6}$

lim (f(x) + g(x)) = l + m, lim (f(x), g(x)) = l. m $x \to x_0$

YtEIR, lin (t f(x)) = t l

Av $g(x) \neq 0$, $\forall x \in A$, $kai m \neq 0$, $\hat{\xi}_{X} = \lim_{X \to X_0} \left(\frac{f(x)}{g(x)} \right) = \frac{l}{m}$.

• Mporday: IEAW $A \subseteq IR$ my kero, $X_0 \in IR$ 6.6. too A kat $f = A \longrightarrow IR$.

Vno Détorme ou lun fixi = $l \in IR$. IEAW $B \subseteq IR$ me $f(A) \subseteq B$ kat $l \in B$.

Tote ar $n = g = B \longrightarrow IR$ eiral Gwexis 6 to l, Exoupe line g(f(x)) = g(l). $X \to X_0$

- Depote $f = \frac{1}{2} G_{TW} A ≤ 1R$ py Kero, $x_0 ∈ 1R$ 6-6. Too A Kal $f : g : h : A \rightarrow 1R$ Gwapty GEIS T. w.
 - (i) $f(x) \leq g(x) \leq h(x)$, $\forall x \in A$, (ii) $\lim_{X \to x_0} f(x) = \lim_{X \to x_0} h(x) \in \mathbb{R} \cup \{-\infty, +\infty\}$ The $\lim_{X \to x_0} g(x) = \lim_{X \to x_0} f(x) = \lim_{X \to x_0} h(x)$ $\chi \to \chi_0$ $\chi \to \chi_0$ $\chi \to \chi_0$
- Mapaseix ματα: 1) θ, δ, ο, lim $\frac{\sin x}{x} = 1$. Energy η συλίρτηση $x \mapsto \frac{\sin x}{x}$ είνχι αρτια, αρχεί ν. δ. δ. $\frac{\sin x}{x} = 1$. And τις ανισότητες $\frac{\sin x}{x} < x < t$ han $x = \frac{\sin x}{\cos x}$, $\frac{\sin x}{x} = 1$. And τις ανισότητες $\frac{\sin x}{x} < x < t$ han $\frac{\sin x}{\cos x} = \frac{\sin x}{\cos x}$, $\frac{\sin x}{\cos x} = \frac{\sin x}{\cos x} = \frac{\sin x}{\cos x} = \frac{\cos x}{\cos x}$. The configuration in $\frac{\cos x}{x} = \cos x = \cos x$ is the drift to $\frac{\sin x}{x} = 1$.
 - 2) To opio lim sin $\frac{1}{x}$ Sev unapxer. And the the paix metallopaix $x \to 0$ lim sin $\frac{1}{x}$ Sev unapxer. And the apx $\frac{1}{x}$ $\frac{$

 $y_n = \frac{1}{2\pi n + \frac{n}{2}}$, Euroda Enada Devorpe ou sin $\frac{1}{x_n} = \sin \pi n = 0$ $\xrightarrow{n \to \infty}$

$$\leq r \omega \leq \sin \frac{1}{y_n} = \sin \left(2\pi n + \frac{\hbar}{2}\right) = 1 \xrightarrow{n \to \infty} 1$$

§ 8 Zuvéxend Kan ópla

- @ Norden: 1E6τω A⊆IR, xo ∈ A xou f= A → IR.
 - (2) AV TO XO ETVAI MEMOVIMENO GYMENO TOU AT TOTE M F ETVAI GWEXYS 6TO XO.
 - $|\tilde{u}|$ Av x_0 6.6. Tou A tote η f silver Givex $\tilde{\eta}$ 6 to x_0 div $\lim_{x \to x_0} f(x) = f(x_0)$

[don to n'empira ópid unappour kai 16ourtai pe f(xo)].

- ο Παρατήρηση (Είξη διωέχειας): Έστω $A \subseteq IR$ μη κενό, $X_0 \in A$ 6.6. Του A σινό αριστερά και δεξιά, και $f = A \rightarrow IR$ αδωεχής στο X_0 . Τότε υπάρχουν τρία ενδεχόμενα:
 - (i) iAperpuy abwexed: To nderpika open undexou kan him $f(x) = \lim_{x \to x_0^+} f(x) = l \in \mathbb{R}$ opens of timing the few Xo Sev eval o l.
 - (ii) AGNEXER d'EISONS: To n'A EUPING DEN lunf(X) Kor lin f(X) undexon X > X0 X X > X0 X X > X0

H Stayopá lim f(x) - lim f(x) Ervar to "á/ya" Tus f 670 Xo.

- THE AGWEXEND B' EISONS: KANON AND THE MARPING OPIN THS & KARWES X -> XO

 SEV UNIXPXEL.
- Θεωρημα (αντίστρουλης σωαρτησης): Έστω $I \subseteq IR$ διώστημα και $f = I \rightarrow IR$ 1-1 και σωεχής. Τότε η f είναι γνησίως μονότονη. Επιπλέον, η $f^{-1} = f(I) \rightarrow IR$ (με f(I) διάστημα) είναι σωεχής και έχει την ίδια μονοτονία με την f.

AZIN 'E6W $f=[0,1] \rightarrow \mathbb{R}$ $\mu \in f[x] = \int_{\frac{\pi}{q}}^{0} dv \ x \neq \mathbb{Q} \quad \frac{1}{7} x = 0$ $\Delta \cdot 0 \cdot \lim_{x \to x_0} f(x) = 0 \quad \text{, } \forall x_0 \in [0,1].$ $Mi_{x_0} \in \mathcal{E}_{x_0}$ $Mi_{x_0} \in \mathcal{E}_{x_0}$ $Mi_{x_0} \in \mathcal{E}_{x_0} \in \mathcal{E}_{x_0}$

To nAgbos during two delegion since to notion to notion to nAgbos two surfly line (Pig) $\in \mathbb{N}^2$ onow $g \leq M_{\mathcal{E}}$ kan $p \leq g$. Enopselves $\mathbb{E}_{\mathcal{E}}$ $\mathbb{E}_{\mathcal{E}}$

Enspérus $\gamma l x \times \epsilon [011]$, $0 \times |x - x_0| \times \delta$ 16 $\chi \acute{\nu} \acute{\nu} x \notin A_{\epsilon}$ Ku $0 \leq f(x) \leq \epsilon$. Euphrepairoupe doinor ou lim f(x) = 0. $x \to x_0$

AZK: 'E6TW $A \subseteq IR$, $A \neq \emptyset$, $\delta.0.$ to two ever 6.6. Tou A arr undexe anodov θ (Nn) 6 to A μ \in Nn $n \to \infty$ + ∞ .