RANGKAIAN ELEKTRONIKA II

Penguat Operasional

Mifta Nur Farid, S.T., M.T. miftanurfarid@lecturer.itk.ac.id

Teknik Elektro Institut Teknologi Kalimantan Balikpapan, Indonesia

Maret 3, 2021

Sub-CPMK

Mahasiswa mampu menganalisis rangkaian penguat operasional (C4, P3, A3)

Bahan Kajian

- 1. Konsep dasar penguat operasional;
- 2. Inverting amplifier;
- 3. Noninverting amplifier;
- 4. The Summing Amplifier;
- 5. Voltage Follower.

Gambar. 1: Blok diagram sebuah op amp

- Gambar 1 adalah diagram blok dari sebuah op amp.
- Input stage-nya adalah diff amp, kemudian diikuti dengan lebih banyak tahapan-tahapan penguat dan sebuah Class-B push-pull emitter follower.
- Karena diff amp adalah tahapan pertamanya maka hal ini yang menentukan karakteristik input dari op amp.
- Sebagian besar op amp adalah single-ended output, seperti pada Gambar 1.
- Dengan supply positif dan negatif, single-ended output dirancang untuk memiliki nilai quiescent/ nilai diam sebesar nol.

- Tidak semua op amp dirancang seperti Gambar 1.
- Beberapa op amp tidak menggunakan Class-B push-pull output, dan ada juga yang memiliki double-ended output.
- Op amp juga tidak sesederhana seperti pada Gambar 1.
- Rancangan internal dari monolithic op amp sangat rumit, menggunakan ribuan transistor sebagai current mirrors, active load, dan inovasi lainnya yang tidak mungkin di dalam rancangan diskret.
- Gambar 1 hanya menunjukkan 2 fitur penting yang umumnya digunakan di op amp, yaitu differential input dan single-ended output.

Gambar. 2: (a) Simbol dari op amp dan (b) rangkaian ekivalen dari op amp

- Gambar 2a adalah simbol skematik dari sebuah op amp.
- Memiliki noninverting dan inverting input dan single-ended output.
- Idealnya, simbol ini menunjukkan amplifier memiliki voltage gain tak hingga, impedansi input tak hingga, dan nol impedansi input.
- Op amp ideal merepresentasikan voltage amplifier yang sempurna dan sering disebut sebagai voltage-controlled voltage source (VCVS).
- VCVS ditunjukkan oleh Gambar 2b, dimana R_{in} bernilai tak hingga dan R_{out} bernilai nol.

Summary Table 16-1 Typical Op-Amp Characteristics				
Quantity	Symbol	Ideal	LM741C	LF157A
Open-loop voltage gain	A _{VOL}	Infinite	100,000	200,000
Unity-gain frequency	$f_{ m unity}$	Infinite	1 MHz	20 MHz
Input resistance	R _{in}	Infinite	2 M Ω	10 12 Ω
Output resistance	R _{out}	Zero	75 Ω	100 Ω
Input bias current	I _{in(bias)}	Zero	80 nA	30 pA
Input offset current	I _{in(off)}	Zero	20 nA	3 рА
Input offset voltage	$V_{in(off)}$	Zero	2 mV	1 mV
Common-mode rejection ratio	CMRR	Infinite	90 dB	100 dB

Gambar. 3: Perbandingan karakteristik op amp ideal dan op amp standar

- Tabel yang ditunjukkan oleh Gambar 3 adalah ringkasan dari karakteristik op amp ideal.
- Memiliki voltage gain, unity-gain frekuensi, input impedansi, dan CMRR yang bernilai tak hingga.
- Memiliki resistor ouput, arus bias, offset yang bernilai nol.
- Seperti itulah seharusnya manufaktur membuat op amp, jika mereka mampu.
- Namun kenyataannya mereka hanya mampu membuat yang mendekati nilai idealnya saja.

- LM741C memiliki voltage gain sebesar 100000, unity-gain frekuensi sebesar 1 MHz, dan impedansi input sebesar 2 M Ω , dan seterusnya.
- Karena voltage gain yang sangat besar, input offset dapat dengan mudahnya memenuhi op amp.
- Sehingga diperlukan komponen eksternal antara input dan output op amp untuk menstabilkan voltage gain.
- Contohnya, menggunakan negative feedback untuk menyesuaikan voltage gain keseluruhan menjadi ke nilai yang lebih kecil sebagai ganti operasi linier yang stabil.

- Ketika tidak ada jalur feedback yang digunakan, voltage gain bernilai maksimum yang disebut sebagai open-loop voltage gain, A_{VOL}
- Pada Gambar 3, A_{VOL} dari LM741C bernilai 100000.
- Meskipun bukan bernilai tak hingga, open-loop voltage gain ini sangat tinggi.
- lacktriangle Contohnya, sebuah input sekecil 10 μV akan menghasilkan output sebesar 1 V.
- Karena open-loop voltage gain sangat besar, kita dapat menggunakan heavy negative feedback untuk meningkatkan performa keseluruhan rangkaian.

- 741C memiliki unity-gain frequency sebesar 1 MHz, artinya kita memperolah voltage gain hingga 1 MHz.
- 741C memiliki input resistance sebesar 2 $M\Omega$, output resistance sebesar 75 Ω , arus bias input sebesar 80 nA, arus offset input sebsar 20 nA, tegangan offset input sebesar 2 mV, dan CMRR sebesar 90 dB.
- Saat resistor yang lebih tinggi dibutuhkan, seorang designer dapat menggunakan op amp BIFET.
- JFET digunakan di input stage untuk mendapatkan input bias dan arus offset yang lebih kecil.
- Bipolar transistor digunakan pada stage selanjutnya untuk mendapatkan lebih banyak voltage gain.

- LF571A adalah contoh dari op amp BIFET.
- Seperti yang ditunjukkan oleh Gambar 3, arus bias inputnya hanya 30 pA dan input resistance adalah $10^{12}~\Omega$.
- Memiliki voltage gain 200000 dan unity-gain frequency sebesar 20 MHz.
- Dengan menggunakan op amp ini kita bisa mendapatkan voltage gain hingga 20 MHz.

- Monolitic amp μ A709 dibuat tahun 1965 oleh Fairchild Semiconductor
- \blacksquare Meskipun tergolong sukses, generasi pertama op amp ini memiliki kekurangan maka dibuatlah μ A741
- lacktriangle Karena harganya yang tidak mahal dan mudah digunakan, μ A741 sangatlah sukses.
- Banyak manufaktur yang membuat μ A741:
 - □ ON Semiconductor: MC1741
 - □ Texas Instruments: LM741
 - □ Analog Devices: AD741.
- Istilah umumnya op amp 741

Standar Industri

- Tipe 741 memiliki beberapa versi: 741, 741A, 741C, 741E, dan 741N
- Bergantung pada karakteristiknya (voltage gain, temp. range, noise level, dll)
- 741C ($C = Commercial\ grade$) \rightarrow sedikit lebih murah dan paling banyak digunakan
- $A_{VOL} = 100000$, $z_{in} = 2 \text{ M}\Omega$, $z_{o}ut = 75 \Omega$
- Gambar 4 menunjukkan 3 package yang terkenal beserta pinoutnya

Standar Industri

Gambar. 4: Op amp 741 pinouts (a) dual-in-line, (b) ceramic flatpak, (c) metal can

Diagram skematik yang disederhanakan dari 741

Gambar. 5: Rangkaian ekivalen dari op amp 741

Input Diff Amp

- Gambar 5 adalah diagram skematik yang disederhanakan dari 741.
- Rangkaian ini merupakan ekivalen dari 741 dan op amp generasi-generasi selanjutnya.
- Tidak perlu memahami secara detail rangkaian tersebut, cukup pahami ide dasarnya saja.

Input Diff Amp

- Input stage yang digunakan adalah diff amp $(Q_1 \text{ dan } Q_2)$.
- Q_{14} adalah sumber arus yang menggantikan tail resistor.
- R_2 , Q_{13} , Q_{14} adalah current mirror yang menghasilkan tail current untuk Q_1 dan Q_2 .
- Daripada menggunakan resistor biasa sebagai resistor kolektor, 741 ini menggunakan active-load resistor.
- Active-load Q_4 bertindak sebagai seperti sumber arus dengan impedansi yang sangat tinggi.
- Akibatnya, voltage gain dari diff amp menjadi jauh lebih besar daripada menggunakan passive-load resistor.

Input Diff Amp

- Sinyal yang dikuatkan dari diff amp akan mendrive base dari Q_5 , sebuah emitter follower.
- Stage ini akan menaikkan level impedansi untuk menghindari loading down dari diff amp.
- Sinyal yang keluar dari Q_5 menuju ke Q_6 .
- Dioda Q_7 dan Q_8 adalah bagian dari bias untuk final stage.
- Q_{11} adalah active-load resistor untuk Q_6 , sehingga Q_6 dan Q_{11} seperti CE driver stage dengan voltage gain yang sangat besar.
- Simbol dioda digunakan ketika transistor memiliki base yang terhubung singkat dengan collector, seperti Q_3 .

Final Stage

- Sinyal yang dikuatkan yang keluar dari CE driver stage (Q_6) menuju ke final stage, yang merupakan Class-B push-pull emitter follower (Q_9 dan Q_{10}).
- Karena supply tegangan yang terbagi menjadi 2 (Positif V_CC dan negatif V_EE), quiescent output idealnya adalah 0 V ketika tegangan inputnya nol.
- Deviasi berapapun dari 0 V disebut tegangan error output (output error voltage).
- Jika $v_1 > v_2$, tegangan input v_{in} akan menghasilkan tegangan output v_{out} positif. Sebaliknya, jika $v_2 > v_1$, tegangan input v_{in} akan menghasilkan tegangan output v_{out} negatif.
- Idealnya , v_{out} bisa sama positifnya dengan $+V_{CC}$ dan sama negatifnya dengan $-V_{EE}$ sebelum clipping terjadi.
- Output swing normalnya dalam 1 hingga 2 V dari tiap tegangan supply karena tegangan drop di dalam 741.

Active Loading

- Pada Gambar 5, terdapat 2 active-loading (menggunakan transistor daripada resistor sebagai load atau bebannya).
- Pertama, ada active-load Q₄ di input diff.
- Kedua, ada active-load Q_{11} do CE driver stage.
- Karena sumber arus memiliki impedansi output yang besar, active-load menghasilkan voltage gain yang lebih besar daripada jika menggunakan resistor.
- Active-load ini umumnya menghasilkan voltage gain sebesar 100000 untuk 741C.
- Active-load sangat populer di dalam IC karena lebih mudah dan lebih murah untuk membuat transistor di dalam chip daripada membuat resistor.

Frequency Compensation

- Pada Gambar 5, C_c adalah compensating capacitor.
- Karena efek Miller, kapasitor kecil ini (umumnya 30 pF) dikalikan dengan voltage gain dari Q_5 dan Q_6 untuk mendapatkan kapasitansi ekivalen yang lebih besar yaitu

$$C_{in(M)} = (A_v + 1)C_c$$

di mana A_v adalah voltage gain dari stage Q_5 dan Q_6 .

- Resistansi yang berhadapan dengan kapasitansi Miller adalah impedansi output dari diff amp sehingga kita memiliki rangkaian lag.
- Rangkaian lag menghasilkan cut off frequency 10 Hz di 741C.
- Open-loop gain dari op amp adalah di bawah 3 dB di cut off frequency ini.
- Kemudian, A_{VOL} menurun sekitar 20 dB/decade hingga mencapai unity-gain frequency.

Gambar. 6: Bode plot A_{VOL} 741C ideal

Frequency Compensation

- Gambar 6 menunjukkan Bode plot ideal dari open-loop voltage gain terhadap frequency.
- 741C memiliki open-loop voltage gain sebesar 100000, ekivalen dengan 100 dB.
- Karena open-loop cut off frequency adalah 10 Hz, voltage gain akan berhenti di 10 Hz dan turun sebesar 20 dB/decade hingga 0 dB di 1 MHz.

- Telah dijelaskan sebelumnya bahwa diff amp memiliki input bias dan offset yang menghasikan error output ketika tidak ada input sinyal.
- Dalam beberapa aplikasi, output error adalah cukup kecil untuk diabaikan.
- Tapi ketika output error tidak bisa diabaikan, designer dapat mereduksinya dengan menggunakan base resistor yang bernilai sama.
- Cara ini dapat menghilangkan permasalahan dari arus bias tapi tidak unutk arus offset dan tegangan offset.

- Sehingga cara terbaik untuk menghilangkan error output adalah dengan menggunakan nulling circuit yang diberikan di datasheet.
- Nulling circuit dapat menghilangkan output error dan meminimalkan thermal drift, perubahan yang pelan di tegangan output yang disebabkan oleh perubahan temperatur pada parameter op amp.
- Terkadang datasheet tidak menyertakan nulling circuit, sehingga kita berikan tegangan input yang kecil untuk me-null-kan output.

Gambar. 7: Penggunaan compensation dan nulling 741C

- Gambar 7 menunjukkan metode nulling yang disarankan oleh datasheet 741C.
- Sumber AC men-drive inverting input yang memiliki resistansi Thevenin R_B .
- Untuk menetralkan efek dari arus bias input (80 nA) yang mengalir melalui resistor ini, resistor diskret yang bernilai sama ditambahkan ke noninverting input seperti di gambar tersebut.

- Untuk menghilangkan efek dari arus offset input 20 nA dan tegangan offset input 2 mV, datasheet 741C merekomendasikan untuk menggunakan 10 k Ω potentiometer antara pon 1 dan pin 5.
- Dengan meng-adjust potensiometer ini dengan tanpa sinyal input, kita dapat membuat tegangan output menjadi nol.

 f_{unity}

MHz

Gambar. 8: Grafik (a) Common-Mode Rejection Ratio (CMRR), (b) Maximum Peak-to-Peak Output (MPP), dan (c) Open-Loop Voltage Gain A_{VOL} dari 741C

- Untuk 741C, CMRRnya adalah 90 dB di frekuensi rendah.
- Jika diberikan 2 sinyal yang sama, sinyal yang diinginkan dan yang tidak, sinyal yang diinginkan akan bernilai 90 dB lebih besar di output daripada common-mode signal-nya.
- Atau sinyal yang diinginkan 30000 kali lebih besar daripada common-mode signal.
- Pada frekuensi tinggi, efek reaktif menurunkan CMRR seperti yang ditunjukkan oleh Gambar 8a.

Maximum Peak-to-Peak Output

- Nilai MPP dari amplifier adalah output peak-to-peak maksimum yang amplifier dapat hasilkan tanpa clipping.
- Karena quiescent output dari op amp idealnya bernilai nol, tegangan output ac dapat berayun secara positif atau negatif.
- Untuk resistansi beban yang lebih besar daripada R_{out} , tegangan output dapat berayun hampir ke tegangan supply.
- Contoh, jika $V_{CC}=+15$ V dan $V_{EE}=-15$ V, nilai MPP dengan resistansi beban sebesar 10 k Ω idealnya adalah 30 V.

Maximum Peak-to-Peak Output

- Dengan op amp yang tidak ideal, output tidak dapat berayun ke tegangan supply karena ada tegangan drop yang kecil di final stage op amp.
- Ketika resistansi beban tidak besar dibandingkan dengan R_{out} , beberapa tegangan yang dikuatkan akan drop di R_{out} , artinya tegangan output final lebih kecil.
- \blacksquare Gambar 8b menunjukkan MPP vs resistansi beban untuk 741C dengan tegangan supply +15 V dan -15 V
- Perhatikan bahwa MPP sekitar 27 V untuk R_L 10 kΩ.
- Artinya, output saturasi secara positif +13.5 V dan secara negatif -13.5 V.
- Ketika resistansi beban menurun, MPP juga menurun.
- Contohnya, jika resistansi beban 275 Ω , MPP menurun hingga 16 V, yang artinya output saturasi secara positif +8 V dan secara negatif -8 V.

Short-Circuit Current

- Di beberapa aplikasi, op amp mungkin men-drive resistansi beban sekitar nol.
- Pada kasus seperti ini, kita perlu mengetahui nilai dari short-circuit output current.
- Datasheet dari 741C menyatakan short-circuit output current sebesar 25 mA.
- Ini adalah arus output maksimum yang op amp hasilkan.
- lacktriangle Jika kita menggunakan resistor beban yang lebih kecil (kurang dari 75 Ω), jangan harap untuk mendapatkan tegangan output yang besar karena tegangannya tidak akan lebih besar daripada 25 mA dikali dengan resistansi beban tadi.

Frequency Response

- Gambar 8c menunjukkan respon frekuensi dari sinyal yang kecil dari 741C.
- Pada frekuensi tengah, voltage gain sebesar 100000. 741C memiliki cutoff frequency f_c di 10 Hz.
- Seperti yang ditampilkan, voltage gain sebesar 70700 (menurun 3 dB) di 10 Hz.
- Di atas cutoff frequency, voltage gain akan menurun sebesar 20 dB/decade.

Frequency Response

- Unity-gain frequency adalah frekuensi dimana voltage gain bernilai 1.
- Pada Gambar 8c, f_{unity} adalah 1 MHz.
- Datasheet biasanya menspesifikkan nilai dari f_{unity} karena ini merepresentasikan batas atas pada gain yang dapat digunakan di op amp.
- Contoh, datasheet 741C menyatakan f_{unity} sebesar 1 MHz. Artinya 741C dapat menguatkan sinyal hingga 1 MHz.
- Di atas 1 MHz, voltage gain kurang dari 1 dan 741C tidak berguna.
- Jika menginginkan f_{unity} yang lebih tinggi, gunakan LM318 yang memiliki f_{unity} 15 Hz.

- Compensating capacitor di dalam 741C memberikan fungsi yang sangat penting.
- Yaitu mencegah osilasi yang dapat menginterferensi sinyal yang diinginkan.
- Namun ada kekurangan, compensating capacitor perlu di-charge dan di-discharge.
- Hal ini membuat batasan pada seberapa cepat output op amp dapat berubah.

- Tegangan input ke op amp adalah tegangan step positif, transisi tegangan yang mendadak dari satu level dc ke level dc yang lebih tinggi.
- Jika op amp nya sempurna, maka kita memperoleh respons ideal seperti pada Gambar 9a.
- Namun, output yang terjadi adalah sinyal eksponensial positif.
- Hal ini terjadi karena compensating capacitor harus di-charge terlebih dahulu sebelum tegangan output dapat berubah ke level yang lebih tinggi.

Gambar. 9: (a) Respon ideal dan aktual terhadap tegangan step input, (b) ilustrasi definisi slew rate, (c) $S_R = 0.5 \text{ V}/\mu\text{s}$

- Initial slope dari bentuk sinyal eksponensial disebut slew rate, S_R .
- Persamaan slew rate, S_R .

$$S_R = \frac{\Delta v_{out}}{\Delta t} \tag{1}$$

- Gambar 9b mengilustrasikan makna dari slew rate.
- Initial slope = perubahan vertikal dibagi dengan perubahan hoorizontal di antara 2 titik di bagian awal gelombang eksponensial.
- Exponential wave meningkat 0.5 V selama 1 mikrodetik pertama, maka

$$S_R = \frac{\Delta v_{out}}{\Delta t} = \frac{0.5 \text{ V}}{1 \mu \text{s}}$$
$$= 0.5 \text{ V}/\mu \text{s}$$

- Slew rate merepresentasikan respon tercepat yang dimiliki oleh op amp.
- Contoh, slew rate dari 741C adalah 0.5 V/ μ s.
- Artinya adalah output dari 741C dapat berubah tidak lebih cepat dari 0.5 V dalam 1 mikrodetik.
- Dengan kata lain, jika 741C di-drive oleh tegangan inpun step, maka kita tidak mendapatkan tegangan output step tapi kita mendapatkan gelombang output exponensial.

- Slew rate dapat dibatasi dengan sinyal sinusoidal.
- Gambar 10a, op amp dapat menghasilkan gelombang sinus output hanya jika initial slope dari gelombang sinus kurang dari slew rate.
- Contoh, jika gelombang sinus output memiliki initial slope $0.1 \text{ V}/\mu\text{s}$, 741C dapat menghasilkan gelombang sinus tanpa masalah sama sekali karena slew rate 741C adalah $0.5 \text{ V}/\mu\text{s}$.
- Di lain sisi, jika gelombang sinus memiliki initial slope $0.1~{\rm V}/\mu{\rm s}$, output lebih kecil dari pada initial slope gelombang sinus maka output akan terlihat triangular daripada sinusoidal seperti yang ditambilkan pada Gambar 10b.

Gambar. 10: (a) Initial slope dari gelombang sinus, (b) distorsi terjadi jika initial slope melebihi slew rate

- Datasheet op amp selalu menentukan slew rate karena nilai ini membatasi respon sinyal yang besar dari op amp.
- Jika gelombang sinus output sangat kecil atau frekuensinya sangat kecil maka slew rate bukan masalah.
- Namun jika sinyal output besar dan frekuensinya sangat besar maka slew rate akan mendistorsi sinyal output

• Kita akan turunkan persamaan berikut ini:

$$S_S = 2\pi f V_p$$

- S_s : initial slope dari gelombang sinus, f: frekuensi, V_p : nilai peak.
- Untuk menghindari slew-rate distortion dari gelombang sinus, S_S harus lebih kecil atau sama dengan S_R , maka

$$S_{S} \leq S_{R}$$

$$2\pi f V_{p} \leq S_{R}$$

$$f \leq \frac{S_{R}}{2\pi V_{p}}$$

Sehingga

$$f_{max} = \frac{S_R}{2\pi V_p} \tag{2}$$

- f_{max} adalah frekuensi tertinggi yang dapat dikuatkan tanpa slew-rate distortion.
- f_{max} disebut juga power bandwidth.
- lacktriangle Gambar 11 menunjukkan grafik dari tiga slew rate. $S_R=0.5~{
 m V/\mu S}$ untuk 741C dan

Gambar. 11: Grafik power bandwidth vs. peak voltage

- Misalkan kita menggunakan 741C.
- Agar kita bisa mendapatkan tegangan peaak output sebesar 8 V tanpa distorsi, frekuensi tidak boleh lebih besar daripada 10 kHz.
- Untuk meningkatkan f_{max} , kecilkan tegangan output.
- Misalkan, tegangan peak output 1 V maka f_{max} meningkat menjadi 80 kHz.

■ Pertanyaan:

□ Berapa tegangan inverting input yang dibutuhkan untuk men-drive op amp 741C hingga saturasi negatif?

Jawaban:

- □ Berdasarkan Gambar 8 (b), MPP = 27 V untuk $R_L = kΩ$
- \square Sehingga tegangan output negatif saturasinya = 13.5 V
- □ Karena $A_{VOL} = 100000$, maka tegangan input yang dibutuhkan:

$$v_2 = \frac{v_{out}}{A_{VOL}}$$

= $\frac{13.5 \text{ V}}{100000} = 135 \ \mu\text{V}$

Latihan Soal 2.1

■ Pertanyaan:

□ Berapa tegangan inverting input yang dibutuhkan untuk men-drive op amp 741C hingga saturasi negatif jika $A_{VOL} = 200000$?

- Pertanyaan:
 - □ Berapa common-mode rejection ratio (CMRR) dari 741C ketika frekuensi input-nya adalah 100 kHz?
- Jawaban:
 - $\ \square$ Berdasarkan Gambar 8 (a), CMRR_{dB} \approx 40 dB di 100 kHz.

$$\mathsf{CMRR} = 10^{(\mathsf{CMRR}_{\mathsf{dB}}/20)} = 10^{(40~\mathsf{dB}/20)} = 100$$

Latihan Soal 2.2

■ Pertanyaan:

□ Berapa common-mode rejection ratio (CMRR) dari 741C ketika frekuensi input-nya adalah 10 kHz?

■ Pertanyaan:

Berapa open-loop voltage gain dari 741C jika frekuensi input-nya adalah 1 kHz ? 10 kHz ? 100 kHz ?

■ Jawaban:

□ Berdasarkan Gambar 8 (c), voltage gain-nya adalah 1000 untuk 1 kHz, 100 untuk 10 kHz, dan 10 untuk 100 kHz.

■ Pertanyaan:

 \Box Tegangan input ke op amp adalah tegangan fungsi step. Output-nya adalah sebuah waveform eksponensial yang berubah ke 0.25 V dalam 0.1 μ s. Berapa slew rate dari op amp tersebut?

Jawaban:

□ Berdasarkan Persamaan 1

$$S_R = \frac{\Delta v_{out}}{\Delta t} = \frac{0.25 \text{ V}}{0.1 \text{ } \mu\text{s}} = 2.5 \text{ V}/\mu\text{s}$$

Latihan Soal 2.4

Pertanyaan:

 \Box Tegangan input ke op amp adalah tegangan fungsi step. Output-nya adalah sebuah waveform eksponensial yang berubah ke 0.8 V dalam 0.2 μ s. Berapa slew rate dari op amp tersebut?

- Pertanyaan:
 - \Box Op amp LF411A dengan slew rate 15 V/ $\mu s.$ Berapa power bandwidth dari tegangan peak output 10 V ?
- Jawaban:
 - □ Berdasarkan Persamaan 2

$$f_{max} = \frac{S_R}{2\pi V_p} = \frac{15 \text{ V}/\mu\text{s}}{2\pi (10 \text{ V})} = 239 \text{ kHz}$$

Latihan Soal 2.5

Pertanyaan:

 $\ \Box$ Op amp LF411A dengan slew rate 15 V/ $\mu s.$ Berapa power bandwidth dari tegangan peak output 200 mV ?

■ Pertanyaan:

- □ Berapa power bandwidth dari:
 - $S_R = 0.5 \text{ V}/\mu\text{s dan } V_p = 8 \text{ V}$
 - $S_R = 5 \text{ V}/\mu\text{s} \text{ dan } V_p = 8 \text{ V}$
 - lacksquare $S_R=50~{
 m V}/\mu{
 m s}~{
 m dan}~V_{
 ho}=8~{
 m V}$

■ Jawaban:

- □ Berdasarkan Gambar 11
 - $f_{max} = 10 \text{ kHz}$
 - $f_{max} = 100 \text{ kHz}$
 - $f_{max} = 1 \text{ MHz}$

Latihan Soal 2.6

- Pertanyaan:
 - □ Berapa power bandwidth dari:

•
$$S_R = 0.5 \text{ V}/\mu\text{s dan } V_p = 1 \text{ V}$$

$$S_R = 5 \text{ V}/\mu\text{s dan } V_p = 1 \text{ V}$$

•
$$S_R = 50 \text{ V}/\mu\text{s dan } V_p = 1 \text{ V}$$

Pengantar Inverting Amplifier

- Inverting amplifier: rangkaian op amp paling dasar.
- Menggunakan negative feedback untuk menstabilkan keseluruhan voltage gain.
- Keseluruhan voltage gain perlu distabilkan karena A_{VOL} sangat besar dan tidak stabil untuk digunakan tanpa feedback.
- Contohnya, 741C memiliki A_{VOL} minimum sebesar 20.000 dan A_{VOL} maksimum lebih dari 200.000.
- Voltage gain yang tidak dapat dipredisksi dari magnitude dan variasi ini tidak berguna tanpa feedback.

Gambar. 12: Inverting amplifier

Inverting Negative Feedback

- Gambar 12 menunjukkan sebuah inverting amplifier.
- Tegangan power-supply tidak ditampilkan agar gambar lebih sederhana.
- Tegangan input v_{in} men-drive inverting input melalui resistor R_1 .
- Menghasilkan tegangan inverting output v_2 .
- Tegangan input dikuatkan oleh open-loop voltage gain untuk menghasilkan tegangan inverted output.
- \blacksquare Tegangan output diumpanbalik ke input melalui resistor feedback R_f .
- Menghasilkan negative feedback karena output memiliki beda fasa sebesar 180° dengan input.
- Dengan kata lain, setiap perubahan di v_2 yang dihasilkan oleh tegangan input berkebalikan dengan sinyal output.

- Bagaimana negative feedback dapat menstabilkan overall voltage gain?
- Jika open-loop voltage gain A_{VOL} meningkat dengan alasan apa pun, tegangan output akan meningkat dan memberikan tegangan feedback yang lebih banyak ke inverting input.
- Tegangan feedback yang berkebalikan ini akan mereduksi tegangan v_2 .
- Karena itu, meskipun A_{VOL} meningkat, v_2 menurun, dan output akhir meningkat jauh lebih sedikit daripada tanpa negative feedback.

Virtual Ground

- Jika kita menghubungkan kabel antara suatu titik di dalam rangkaian ke ground, tegangan pada titik tersebut menjadi nol.
- Kabel tersebut memberikan jalur untuk arus mengalir ke ground.
- Mechanical ground (kabel yang menghubungkan titik ke ground) adalah ground untuk tegangan dan arus.
- Lain halnya dengan Virtual Ground, salah satu jenis ground yang digunakan untuk menganalisis inverting amplifier dengan lebih mudah.

Virtual Ground

- Konsep dari virtual ground berdasarkan op amp ideal.
- Op amp ideal memiliki open-loop voltage gain yang tak berhingga dan resistansi input tak berhingga.
- Karenanya, kita dapat menyimpulkan sebagai berikut (Gambar 13):
 - \square Karena I_{in} adalah tak berhingga maka i_2 adalah nol.
 - \Box Karena A_{VOL} adalah tak berhingga, maka v_2 adalah nol.

Gambar. 13: Konsep virtual ground

Virtual Ground

- Karena i_2 = nol, arus yang melalui R_f pasti sama dengan arus input yang melalui R_1 .
- Karena v_2 = nol, virtual ground yang ditunjukkan pada Gambar 13 menunjukkan bahwa inverting input bertindak seperti ground untuk tegangan dan open untuk arus.

Voltage Gain

- Gambar 14 menunjukkan virtual ground pada inverting input.
- Sisi kanan dari R₁ adalah ground tegangan, maka dapat kita tulis:

$$v_{in} = i_{in}R_1$$

■ Begitu juga sisi kiri dari R_f adalah ground tegangan, sehingga magnitude dari tegangan output adalah:

$$v_{out} = -i_{in}R_f$$

■ Untuk mendapatkan voltage gain, maka v_{out} dibagi dengan v_{in}:

$$A_{\nu(CL)} = \frac{-R_f}{R_1} \tag{3}$$

dimana $A_{v(CL)}$ adalah closed-loop voltage gain.

Voltage Gain

- Disebut closed-loop voltage gain karena merupakan tegangan ketika terdapat jalur feedback antara output dan input.
- Karena negative feedback, closed-loop voltage gain, $A_{v(CL)}$, selalu lebih kecil daripada open-loop voltage gain, A_{VOL} .
- Misalkan, jika $R_1=1$ k Ω dan $R_f=50$ k Ω , maka closed-loop voltage gain sebesar 50.
- Tanda negatif pada Persamaan 3 menunjukkan voltage gain memiliki beda fasa sebesar 180°.

Gambar. 14: Inverting amplifier memiliki arus yang sama yang melewati kedua resistor

Input Impedance

- Dalam beberapa hal, terkadang seorang engineer menginginkan impendansi input tertentu.
- Ini salah satu kelebihan dari inverting amplifier, mudah untuk mengatur impedansi input yang diinginkan.
- Karena sisi kanan dari R_1 adalah virtual ground, sehingga closed-loop input impedansinya adalah:

$$z_{in(CL)} = R_1 \tag{4}$$

- Ini adalah impedansi input yang ada di sisi kiri dari R_1 seperti yang ditunjukkan oleh Gambar 14.
- Misalkan, jika impedansi input sebesar 2 k Ω dan closed-loop voltage gain sebesar 50 yang dibutuhkan, maka engineer akan menggunakan $R_1 = 2$ k Ω dan $R_f = 100$ k Ω .

Bandwidth

- Open-loop bandwidth atau frekuensi cut-off dari op amp sangat kecil.
- Disebabkan oleh internal compensating capacitor.
- Untuk 741C:

$$f_{2(OL)}=10 \text{ Hz}$$

■ Pada frekuensi ini, open-loop voltage gain akan berhenti dan turun dengan respon orde-1.

Bandwidth

- Ketika negative feedback digunakan, overall bandwidth akan meningkat.
- Karena, jika frekuensi input lebih besar daripada $f_2(OL)$, A_{VOL} menurun sebesar 20 dB/decade.
- Ketika v_{out} mencoba untuk turun, tegangan yang berkebalikan akan diumpan-balik ke inverting input.
- Sehingga, v_2 meningkat dan mengkompensasi penurunan A_{VOL} .
- Karena hal ini lah maka $A_{v(CL)}$ berhenti pada frekuensi yang lebih besar daripada $f_2(OL)$.
- Semakin besar negative feedback ($A_{v(CL)}$ lebih kecil) maka closed-loop bandwidth $f_2(CL)$ semakin besar.

Bandwidth

- Gambar ?? menunjukkan bagaimana closed-loop bandwidth meningkat dengan adanya negative feedback.
- Semakin besar negative feedback ($A_{v(CL)}$ lebih kecil), semakin besar closed-loop bandwidth $f_2(CL)$.

$$f_{2(CL)} = \frac{f_{unity}}{A_{v(CL)} + 1}$$

• Umumnya, $A_v(CL)$ lebih besar daripada 10, sehingga persamaan di atas dapat disederhanakan menjadi

$$f_{2(CL)} = \frac{f_{unity}}{A_{v(CL)}} \tag{5}$$

$$f_{unity} = A_{v(CL)} f_{2(CL)} \tag{6}$$

Bias dan Offset

- Negative feedback mengurangi error output yang disebabkan oleh arus bias input, arus offset input, dan tegangan offset input.
- Seperti yang telah didiskusikan pada bab sebelumnya, ketika tegangan error input dan persamaan tegangan error output total adalah:

$$V_{error} = A_{VOL}(V_{1err} + V_{2err} + V_{3err})$$

• Ketika negative feedback digunakan, persamaan di atas menjadi:

$$V_{error} \cong \pm A_{\nu(CL)}(\pm V_{1err} \pm V_{2err} \pm V_{3err})$$
 (7)

dimana V_{error} adalah tegangan error output total.

lacktriangle Datasheet tidak menunjukkan tanda \pm karena hal ini dapat menunjukkan bahwa error bisa terjadi di kedua arah.

Bias dan Offset

■ Error input sama seperti sebelumnya, yaitu:

$$V_{1err} = (R_{B1} - R_{(B2)})I_{in(bias)}$$
 (8)

$$V_{2err} = (R_{B1} + R_{(B2)}) \frac{I_{in(off)}}{2}$$
 (9)

$$V_{3err} = V_{in(off)} \tag{10}$$

Bias dan Offset

- Saat $A_{v(CL)}$ kecil, error output total yang diberikan dari Persamaan 7 mungkin cukup kecil untuk diabaikan.
- Jika tidak, resistor compensation dan offset nulling menjadi perlu.
- Di dalam inverting amplifier, R_{B2} adalah resistor Thevenin.
- Resistor Thevenin:

$$R_{B2} = R_1 \parallel R_f \tag{11}$$

- Jika perlu untuk mengkompensasi arus bias input, resistor R_{B1} yang bernilai sama dapat dihubungkan ke noninverting input.
- Resistor ini tidak berdampak pada teknik virtual ground karena tidak ada arus sinyal AC yang akan mengalir melaluinya.

■ Pertanyaan:

- □ Berapa closed-loop voltage gain dan closed-loop bandwidth nya?
- □ Berapa tegangan output di 1 kHz? dan di 1 MHz?

Jawaban:

□ Closed-loop voltage gain:

$$A_{v(CL)} = \frac{-R_f}{R_1} = \frac{-75 \text{ k}\Omega}{1.5 \text{ k}\Omega} = -50$$

□ Closed-loop bandwidth:

$$f_{2(CL)} = \frac{f_{unity}}{A_{v(CL)}} = \frac{1 \text{ MHz}}{50} = 20 \text{ kHz}$$

Gambar di samping adalah ideal bode-plot dari closed-loop voltage gain, $A_{v(CL)}$.

$$\Box A_{v(CL)} = 20 \times \log(50) = 34 \text{ dB}$$

Jawaban:

□ Tegangan output di 1 kHz:

$$v_{out} = (A_{v(CL)})(v_{in}) = (-50)(10 \text{ mVp-p})$$

= -500 mVp-p

 Tegangan output di 1 MHz. Karena 1 MHz adalah unity-gain frekuensinya, maka

$$v_{out} = -10 \text{ mVp-p}$$

□ Tanda negatif menunjukkan phase-shift 180° antara input dan output

Latihan Soal 2.7

Pertanyaan:

- $\hfill\Box$ Berapa tegangan output di 100 kHz ?
- □ Hint: Gunakan Persamaan

$$A_{v} = \frac{A_{v(mid)}}{\sqrt{1 + (f/f_2)^2}}$$

■ Pertanyaan:

□ Berapa tegangan output ketika $v_{in} = 0$?

Jawaban:

Berdasarkan Tabel di Gambar 3, didapatkan:

$$I_{\rm in(bias)}=80~\rm nA$$

$$I_{\text{in(off)}} = 20 \text{ nA}$$

$$V_{\rm in(off)}=2~{\rm mV}$$

□ Berdasarkan Persamaan 11:

$$R_{B2} = R_1 \parallel R_f = 1.5 \text{ k}\Omega \parallel 75 \text{ k}\Omega$$

= 1.47 k Ω

Jawaban:

- \square Karena menggunakan analisis virtual ground, maka R_{B1} tidak berpengaruh apa-apa.
- □ Sehingga ketiga tegangan error input:

$$egin{aligned} V_{1err} &= (R_{B1} - R_{B2}) I_{in(bias)} \ &= (-1.47 \; \mathrm{k}\Omega) (80 \; \mathrm{nA}) \ &= -0.118 \; \mathrm{mV} \ V_{2err} &= (R_{B1} + R_{B2}) rac{I_{in(off)}}{2} \ &= (1.47 \; \mathrm{k}\Omega) (10 \; \mathrm{nA}) \ &= 0.0147 \; \mathrm{mV} \end{aligned}$$

Jawaban:

Sehingga ketiga tegangan error input (lanjutan):

$$V_{3err} = V_{in(off)} = 2 \text{ mV}$$

□ Closed-loop voltage gain:

$$A_{v(CL)} = \frac{-R_f}{R_1} = \frac{-75 \text{ k}\Omega}{1.5 \text{ k}\Omega} = -50$$

Jawaban:

□ Error tegangan output:

$$egin{aligned} V_{\it error} &= \pm 50 (V_{\it 1err} + V_{\it 2err} + V_{\it 2err}) \ &= \pm 50 (0.118 \mbox{mV} + 0.0147 \mbox{mV} + 2 \mbox{mV}) \ &= \pm 107 \mbox{ mV} \end{aligned}$$

Latihan Soal 2.8

■ Pertanyaan:

□ Jika op amp yang digunakan adalah LF157A, berapa tegangan output ketika $v_{in} = 0$?

Pertanyaan:

□ Diketahui:

$$I_{in(bias)} = 500$$
 nA,
 $I_{in(off)} = 200$ nA, dan
 $V_{in(off)} = 6$ mV

□ Berapa tegangan output jika $v_{in} = 0$?

Jawaban:

□ Tegangan error input:

$$egin{aligned} V_{1err} &= (R_{B1} - R_{B2}) I_{in(bias)} \ &= (-1.47 \; \mathrm{k}\Omega) (500 \; \mathrm{nA}) \ &= -0.735 \; \mathrm{mV} \end{aligned} \ V_{2err} &= (R_{B1} + R_{B2}) rac{I_{in(off)}}{2} \ &= (1.47 \; \mathrm{k}\Omega) (100 \; \mathrm{nA}) \ &= 0.147 \; \mathrm{mV} \end{aligned} \ V_{3err} &= V_{in(off)} = 6 \; \mathrm{mV} \end{aligned}$$

Jawaban:

□ Closed-loop voltage gain:

$$A_{v(CL)} = \frac{-R_f}{R_1} = \frac{-75 \text{ k}\Omega}{1.5 \text{ k}\Omega} = -50$$

□ Tegangan error output:

$$egin{aligned} V_{\it error} &= \pm 50 (V_{\it 1err} + V_{\it 2err} + V_{\it 2err}) \ &= \pm 50 (0.735 {\rm mV} + 0.147 {\rm mV} + 6 {\rm mV}) \ &= \pm 344 \ {\rm mV} \end{aligned}$$

- Pada Contoh Soal 2.7, tegangan ouput yang diinginkan adalah 500 mVp-p.
- Bisakah kita mengabaikan tegangan error output yang besar?
- Terganti dalam pengaplikasiannya.
- Untuk amplifier sinyal suara, kita hanya butuh di rentang frekuensi suara yaitu 20 Hz hingga 20 kHz.
- Maka kita secara kapasitif memasangkan output ke resistor beban atau tahap berikutnya.
- Hal ini akan mem-blok tegangan error output DC tapi tetap mentransmisikan sinyal
 AC. Sehingga Error output menjadi tidak relevan lagi.

- Jika kita ingin menguatkan sinyal dengan frekuensi dari 0 Hz higga 20 kHz, maka kita membutuhkan op amp yang lebih baik (bias dan offset yang lebih kecil), atau memodifikasi rangkaiannya seperti pada Gambar 15b.
- Pada Gambar 15b, kita menambahkan compensating resistor terhadap noinverting input untuk menghilangkan efek dari arus bias input.
- lacktriangle Digunakan juga potentiometer 10 k Ω untuk meniadakan efek dari arus offset input dan tegangan offset input.

Gambar. 15: (a) Rangkaian op amp 741C dan (b) Rangkaian op amp 741C dengan penambahan compensating resistor dan potensiometer

- Salah satu rangkaian op amp dasar
- Menggunakan negative feedback untuk menstabilkan overall voltage gain
- Negative feedback juga meningkatkan impedansi input dan menurunkan impedansi output

Rangkaian Dasar

Gambar. 16: Non-inverting amplifier

Virtual Short

- Virtual short digunakan untuk menganalisis noninverting amplifier
- Virtual short berdasarkan 2 sifat dari op amp ideal

1.
$$R_{in} = \infty \rightarrow i_1 = i_2 = 0$$

2.
$$A_{VOL} = \infty \rightarrow v_1 - v_2 = 0$$

Gambar. 17: Virtual short

Voltage Gain

Gambar. 18: Tegangan input ada di R_1 dan arus yang sama mengalir di R_1

- Tegangan input: $v_{in} = i_1 R_1$
- Tegangan output: $v_{out} = i_1(R_f + R_1)$
- Penguatan tegangan closed-loop:

$$A_{v(CL)} = \frac{v_{out}}{v_{in}} = \frac{i_1(R_f + R_1)}{i_1R_1} = \frac{R_f + R_1}{R_1}$$

maka

$$A_{v(CL)} = \frac{R_f}{R_1} + 1 \tag{12}$$

- Karena impedansi input open-loop sudah sangat besar (2 M Ω untuk 741C), maka impedansi input closed-loop lebih besar lagi.
- Efek negative feedback terhadap bandwidth sama seperti di inverting amplifier

$$f_{2(CL)} = \frac{f_{unity}}{A_{v(CL)}}$$

■ Efek bias dan offset juga sama seperti di inverting amplifier

Gambar. 19: Error tegangan output dapat mereduksi MPP

■ Pertanyaan:

- □ Berapa penguatan tegangan closed-loop dan bandwidth?
- □ Berapa tegangan output di 250 kHz?

Jawaban:

□ Penguatan tegangan closed-loop:

$$A_{v(CL)} = rac{R_f}{R_1} + 1 = rac{3.9 \text{ k}\Omega}{100 \text{ k}\Omega} + 1 = 40$$

□ Bandwidth:

$$f_{2(CL)} = \frac{f_{unity}}{A_{v(CL)}} = \frac{1 \text{ MHz}}{40} = 25 \text{ kHz}$$

□ Tegangan output di 250 kHz

$$v_{out} = A_{c(CL)}v_{in} = 4(50 \text{ mVp-p})$$

= 200 mVp-p

Latihan Soal 2.10

■ Pertanyaan:

□ Jika $R_f = 4.9$ kΩ, tentukan $A_{v(CL)}$ dan v_{out} di 200 kHz.

■ Pertanyaan:

□ Jika $I_{in(bias)} = 500$ nA, $I_{in(off)} = 200$ nA, dan $V_{in(off)} = 6$ mV, berapa error tegangan output?

Jawaban:

□ Resistor Thevenin:

$$R_{B2}=R_1\parallel R_f=3.9~{
m k}\Omega\parallel 100~\Omega$$
 $R_{B2}\approx 100~\Omega$

□ Error tegangan input

$$egin{aligned} V_{1err} &= (R_{B1} - R_{B2}) I_{in(bias)} \ &= (-100 \ \Omega) (500 \ \mathrm{nA}) = -0.05 \ \mathrm{mV} \ V_{2err} &= (R_{B1} + R_{B2}) I_{in(bias)} \ &= (100 \ \Omega) (100 \ \mathrm{nA}) = 0.01 \ \mathrm{mV} \ V_{3err} &= V_{in(off)} = 6 \ \mathrm{mV} \end{aligned}$$

Jawaban:

□ Error tegangan output

$$egin{aligned} V_{error} &= \pm A_{v(CL)} (\pm V_{1err} \pm V_{2err} \pm V_{3err}) \ &= \pm 40 (0.05 \ \text{mV} + 0.01 \ \text{mV} + 6 \ \text{mV}) \ &= \pm 242 \ \text{mV} \end{aligned}$$

- Aplikasi dari op amp sangat luas sekali dan beraneka ragam
- Tidak mungkin menjelaskannya secara komprehensif
- Sementara kita fokus pada 2 rangkaian dulu.

The Summing Amplifier

Gambar. 20: Rangkaian umming amplifier

 Menggabungkan 2 atau lebih sinyal analog menjadi satu output

- Menguatkan setiap sinyal input
- Penguatan setiap channel atau input

$$A_{v1(CL)} = \frac{-R_f}{R_1}; \quad A_{v2(CL)} = \frac{-R_f}{R_2}$$

Tegangan output

$$v_{out} = A_{v1(CL)}v_1 + A_{v2(CL)}v_2$$
 (13)

Resistor Thevenin:

$$R_{B2} = R_1 \parallel R_2 \parallel R_f \parallel \cdots \parallel R_n \quad (14)$$

The Summing Amplifier

Gambar. 21: Rangkaian summing amplifier dengan resistor yang sama

■ Tegangan output

$$v_{out} = -(v_1 + v_2 + \cdots + v_n)$$

The Summing Amplifier

Gambar. 22: Rangkaian mixer

- Menggabungkan sinyal audio
- Menurunkan LEVEL 1 \rightarrow sinyal v_1 semakin nyaring di output
- Menurunkan LEVEL 2 → sinyal v₂ semakin nyaring di output
- $\hbox{\bf Meningkatkan GAIN} \to \hbox{\bf kedua sinyal} \\ \hbox{\bf semakin nyaring}$

Voltage Follower

■ Penguatan tegangan closed-loop:

$$A_{\nu(CL)} = 1 \tag{15}$$

Bandwidth closed-loop:

$$f_{2(CL)} = f_{unity} \tag{16}$$

Gambar. 23: Rangkaian voltage follower

- Pertanyaan:
 - □ Berapa tegangan output ac?
- Jawaban:
 - □ Penguatan tegangan tiap channel:

$$A_{v1(CL)} = \frac{-R_f}{R_1} = \frac{-100 \text{ k}\Omega}{20 \text{ k}\Omega} = -5$$

$$A_{v2(CL)} = \frac{-R_f}{R_2} = \frac{-100 \text{ k}\Omega}{10 \text{ k}\Omega} = -10$$

$$A_{v3(CL)} = \frac{-R_f}{R_3} = \frac{-100 \text{ k}\Omega}{50 \text{ k}\Omega} = -2$$

Jawaban:

□ Tegangan output:

$$v_{out} = A_{v1(CL)}v_1 + A_{v2(CL)}v_2 + A_{v3(CL)}v_3$$

□ Jika diperlukan untuk mengkompensasi bias input dengan menambahkan *R*_B yang sama ke noninverting input

$$R_{B2} = R_1 \parallel R_2 \parallel R_3 \parallel R_f$$

= 20 k $\Omega \parallel$ 10 k $\Omega \parallel$ 50 k $\Omega \parallel$ 100 k Ω
= 5.56 k Ω

Latihan Soal 2.12

Pertanyaan:

Jika tegangan input peak-to-peak diganti dengan tegangan positif dc, berapakah tegangan output dc-nya?

■ Pertanyaan:

Berapa tegangan output dan bandwidth?

■ Jawaban:

□ Penguatan tegangan closed-loopnya adalah unity, sehingga:

$$v_{out} = A_{v(CL)}v_{in} = 1(10 \text{ mV}_{p-p})$$

□ Bandwidthnya adalah:

$$f_{2(CL)} = f_{unity} = 1 \text{ MHz}$$

Latihan Soal 2.13

■ Pertanyaan:

Berapa tegangan output dan bandwidth jika op amp yang digunakan adalah LF157A?

Pertanyaan:

 $\hfill \Box$ Jika rangkaian voltage follower di samping dibuat dengan Multisim, tegangan output di 1 Ω adalah 9.99 mV. Tentukan berapa impedansi output closed-loop?

Jawaban:

□ Tegangan output:

$$v_{out} = 9.99 \text{ mV}$$

□ Arus di beban adalah:

$$i_{out} = rac{9.99 \; ext{mV}}{1 \; \Omega} = 9.99 \; ext{mA}$$

□ Impedansi output closed-loop

$$z_{out(CL)} = \frac{0.01 \text{ mV}}{9.99 \text{ mA}} = 0.001 \Omega$$

Latihan Soal 2.14

Pertanyaan:

 $\hfill \Box$ Jika rangkaian voltage follower di samping dibuat dengan Multisim, tegangan output di 1 Ω adalah 9.95 mV. Tentukan berapa impedansi output closed-loop?

Ringkasan

Ringkasan

Noninverting amp

Voltage follower

$$A_v = 1$$

Linear IC

• Op amp : $\frac{1}{3}$ bagian dari IC

■ Linear IC : op amp, audio amplifier, video amplifier, voltage regulator

Tabel Parameter Op Amp saat 25°

Number	V _{in} max, mV	I _{in(bias)} max, nA	l _{in(off)} max, nA	I _{out} max, mA	f _{unity} typ, MHz	S _R typ, V/μs	A _{VOL} typ, dB	CMRR min, dB	PSRR min, dB	Drift typ, μV/°C	Description of Op Amps
LF353	10	0.2	0.1	10	4	13	88	70	-76	10	Dual BIFET
LF356	5	0.2	0.05	20	5	12	94	85	-85	5	BIFET, wideband
LF411A	0.5	200	100	20	4	15	88	80	-80	10	Low offset BIFET
LM301A	7.5	250	50	10	1+	0.5+	108	70	-70	30	External compensation
LM318	10	500	200	10	15	70	86	70	-65	-	High speed, high slew rate
LM324	4	10	2	5	0.1	0.05	94	80	-90	10	Low-power quad
LM348	6	500	200	25	1	0.5	100	70	-70	-	Quad 741
LM675	10	2 μΑ*	500	3 A'	5.5	8	90	70	-70	25	High-power, 25 W out
LM741C	6	500	200	25	1	0.5	100	70	-70	-	Original classic
LM747C	6	500	200	25	1	0.5	100	70	-70	-	Dual 741
LM833	5	1 mA*	200	10	15	7	90	80	-80	2	Low noise
LM1458	6	500	200	20	1	0.5	104	70	-77	-	Dual
LM3876	15	1 μΑ*	0.2 μA*	6 A'	8	11	120	80	-85	(-)	Audio power amp, 56W
LM7171	1	10 μA*	4 μΑ'	100	200	4100	80	85	-85	35	Very high-speed amp
OP-07A	0.025	2	1	10	0.6	0.17	110	110	-100	0.6	Precision
OP-42E	0.75	0.2	0.04	25	10	58	114	88	-86	10	High-speed BIFET
TL072	10	0.2	0.05	10	3	13	88	70	-70	10	Low-noise BIFET dual
TL074	10	0.2	0.05	10	3	13	88	70	-70	10	Low-noise BIFET quad
TL082	3	0.2	0.01	10	3	13	94	80	-80	10	Low-noise BIFET dual
TL084	3	0.2	0.01	10	3	13	94	80	-80	10	Low-noise BIFET quad

*For the LM675, LM833, LM3876 and LM7171, this value is commonly expressed in microamperes.

¹For the LM675 and LM3876, this value is commonly expressed in amperes.

Power Supply Rejection Ration (PSRR)

■ Persamaan PSRR:

$$PSRR = \frac{\Delta V_{in(off)}}{\Delta V_S} \tag{17}$$

- PSRR dari LF353 = -76 dB \rightarrow PSRR = $10^{(} 76/20) = 0.000158 = 158 <math>\mu$ V/V
- \blacksquare Setiap perubahan pada tegangan supply sebesar 1 V akan menyebabkan perubahan tegangan offset input sebesar 158 $\mu {\rm V}$

Drift

- Koefisien temperatur dari tegangan offset input
- Seberapa banyak tegangan offset input akan meningkat karena temperatur
- Drift dari LF353 = 10 μ V/°C \rightarrow tegangan offset input akan meningkat sebesar 10 μ V untuk setiap kenaikan 1 °C
- \blacksquare Jika temperatur internal dari op amp meningkat sebesar 50 °C maka tegangan offset input dari LF353 meningkat sebesar 500 μ V

Audio Amplifiers

- Preamps = audio amplifier dengan daya output < 50 mW
- Front-end audio system
- Mengurangi low noise dari optical sensors, magnetic tape heads, microphones, dll
- Contoh:
 - $\hfill\Box$ LM833: low-noise dual preamp, $A_{\nu}=110$ dB, 27-V power bandwidth 120 kHz, input berupa diff amp

Audio Amplifiers

- Medium-level audio amplifiers = output power 50 mW 500 mW
- Near output end
- Portable electonic devices: cell phones, CD player
- Contoh:
 - □ LM4818 audio power amplifier: output power 350 mW

Audio Amplifiers

- Output power > 500 mW
- High-fidelity amplifier, intercoms, AM-FM radio
- Contoh:
 - $\ \square$ LM380: $A_{\nu}=$ 34 dB, bandwidth 100 kHz, output power 2 W
 - $\hfill\Box$ LM4756: $A_{\nu}=30$ dB, output power 7 W/channel

Video Amplifiers

- Wideband amplifier
- Flat response (constant decibel voltage gain)
- Very broad range of frequencies
- Applications in which the range of input frequencies is very large: analog oscilloscopes, video cameras, copiers and scanners, and HDTV amplifiers
- Contoh:
 - \Box LM7171: very high-speed amplifier, wide unity-gain bandwidth of 200 MHz, slew rate of 4100 V/ μ S
 - NE592: voltage gain 52 dB, cutoff frequency 40 MHz, voltage gains and bandwidths dapat diatur dengan menghubungkan external resistors yang berbeda sehingga menjadi 90 MHz
 - MC1553: gain 52 dB, bandwidth 20 MHz, adjusted by changing external components
 - □ LM733: up to 20-dB gain, bandwidth of 120 MHz (adjusted by changing external components)

Voltage Regulator

- Rectifier \rightarrow dc voltage + ripple \rightarrow voltage regulator
- DC voltage ∝ line voltage
- lacktriangle Perubahan 10% dari line voltage \propto perubahan 10% DC voltage \leftarrow ini terlalu besar
- LM340 series \rightarrow menahan perubahan 0.01%, positive/negative output, adjustable output voltage, and short-circuit protection.

TERIMA KASIH