AMENDMENTS TO THE CLAIMS

1. (Original) A process for the extractive removal of optionally substituted phenol, 3-hydroxypyrazole, 2-hydroxypyridine, hydroquinone, resorcinol, catechol; C₁-C₂₀-alcohol, glycol, glycerol, optionally substituted aniline, N-C₁-C₂₀-alkylamine, N,N-di-C₁-C₂₀-alkylamine, P-C₁-C₂₀-alkylphosphine, P,P-di-C₁-C₂₀-alkylphosphine, phenylphosphine, diphenylphosphine, hydroxylamine, sulfonic acid, sulfinic acid, phosphoric acid, carboxylic acid or amino acid from aprotic solvents by means of ionic liquids of the formula [K]_n⁺[A]ⁿ⁻,

where

n is 1, 2 or 3;

[K]+ is selected from the group consisting of:

- quaternary ammonium cations of the formula [NR¹, R²,R³,R⁴]⁺ (Ia),
 - quaternary phosphonium cations of the formula $[PR^1, R^2, R^3, R^4]^+$ (Ib), where

 R^1 , R^2 , R^3 , R^4 are each C_1 - C_{12} -alkyl or phenyl- C_1 - C_4 -alkyl, where the aliphatic radicals may bear from 1 to 4 substituents selected from the group consisting of halogen, amino, cyano, C_1 - C_4 -alkoxy and the phenyl ring may bear the abovementioned substituents and also C_1 - C_6 -alkyl, carboxylate and sulfonate groups;

 R^1 and R^2 may together form a $C_4\text{-}C_5\text{-alkenylene}$ radical which may be substituted by $C_1\text{-}C_4\text{-alkyl}$, halogen, cyano or $C_1\text{-}C_4\text{-alkoxy}$;

• imidazolium cations of the formula,

• pyridinium cations of the formula,

$$(R^{x})_{n}$$
 $(Id),$

• pyrazolium cations of the formula,

$$(R^{x})_{n}$$
 $(P^{x})_{n}$
 $(Ie)_{n}$

• quinolinium cations of the formula,

$$(R^x)_n$$
 R (If),

• thiazolium cations of the formula,

$$(R^x)_n$$
 S
 (Ig)

• triazinium cations of the formula,

$$(R^{x})_{n}$$
 $N - R$ $(Ih)_{n}$

where the index n and the substituents R and R^x have the following meanings:

n is 0, 1, 2, 3 or 4;

- R is hydrogen, C₁-C₁₂-alkyl or phenyl-C₁-C₄-alkyl,
 where the aliphatic radicals may bear from 1 to 4 substituents selected
 from the group consisting of halogen, amino, cyano, C₁-C₄-alkoxy and
 the phenyl ring may bear the abovementioned substituents and also C₁C₆-alkyl, carboxylate and sulfonate groups;
- R^{x} is C_1 - C_6 -alkyl, halogen, amino, cyano, C_1 - C_4 -alkoxy, carboxylate or sulfonate;
- $[A]^{n-}$ is the partly or fully deprotonated anion of an inorganic or organic protic acid H_nA (III), where n is a positive integer and indicates the charge on the anion.
- 2. (Original) The process according to claim 1, wherein the organic compound to be extracted is a phenol or alcohol.

 (Currently Amended) The process according to claim 1-or 2, wherein the aprotic solvent is a hydrocarbon.

- 4. (Currently Amended) The process according to any of claims 1 to 3 claim 1, wherein the hydrocarbon is an alkane or halogenated alkane.
- 5. (Currently Amended) The process according to any of claims 1 to 3 claim 1, wherein the hydrocarbon is an arene which is optionally substituted by halogen, nitro, cyano, C₁-C₃-alkyl, C₁-C₃-alkoxy or methoxycarbonyl.
- 6. (Currently Amended) The process according to any of claims 1 to 5 claim 1, wherein the ionic liquid is an ammonium or imidazolium salt or a mixture of these salts.
- 7. (Currently Amended) The process according to any of claims 1 to 6 claim 1, wherein the ionic liquid is a sulfate or hydrogensulfate.
- 8. (Currently Amended) The process according to claim 1, 6 or 7, wherein a phenol is removed from chlorobenzene.
- 9. (Currently Amended) The process according to any of claims 1 to 8 claim 1, wherein the extracted impurity is separated off from the ionic liquid by distillation.

10. (Currently Amended) The process according to any of claims 1 to 8 claim 1, wherein the extracted impurity is separated off from the ionic liquid by reextraction.

- 11. (New) The process according to claim 2, wherein the aprotic solvent is a hydrocarbon.
- 12. (New) The process according to claim 2, wherein the hydrocarbon is an alkane or halogenated alkane.
- 13. (New) The process according to claim 3, wherein the hydrocarbon is an alkane or halogenated alkane.
- 14. (New) The process according to claim 2, wherein the hydrocarbon is an arene which is optionally substituted by halogen, nitro, cyano, C₁-C₃-alkyl, C₁-C₃-alkoxy or methoxycarbonyl.
- 15. (New) The process according to claim 3, wherein the hydrocarbon is an arene which is optionally substituted by halogen, nitro, cyano, C₁-C₃-alkyl, C₁-C₃-alkoxy or methoxycarbonyl.
- 16. (New) The process according to claim 2, wherein the ionic liquid is an ammonium or imidazolium salt or a mixture of these salts.

17. (New) The process according to claim 3, wherein the ionic liquid is an ammonium or imidazolium salt or a mixture of these salts.

- 18. (New) The process according to claim 4, wherein the ionic liquid is an ammonium or imidazolium salt or a mixture of these salts.
- 19. (New) The process according to claim 5, wherein the ionic liquid is an ammonium or imidazolium salt or a mixture of these salts.
- 20. (New) The process according to claim 2, wherein the ionic liquid is a sulfate or hydrogensulfate.