```
In [1]:
         import numpy as np
         import pandas as pd
         import scipy
         import statsmodels.api as sm
         import matplotlib.pyplot as plt
          import seaborn as sns
          import sklearn
         sns.set()
In [2]:
         data = pd.read_csv('SATGPA.csv')
In [3]:
          data
Out[3]:
             SAT GPA
          0 1714 2.40
          1 1664 2.52
          2 1760 2.54
          3 1685 2.74
          4 1693 2.83
         79 1936 3.71
         80 1810 3.71
        81 1987 3.73
         82 1962 3.76
        83 2050 3.81
        84 rows × 2 columns
In [4]:
         data.describe()
Out[4]:
                      SAT
                               GPA
         count
                 84.000000 84.000000
         mean 1845.273810
                            3.330238
           std
                104.530661
                            0.271617
          min 1634.000000
                            2.400000
          25% 1772.000000
                            3.190000
          50% 1846.000000
                            3.380000
          75% 1934.000000
                            3.502500
```

```
        SAT
        GPA

        max
        2050.000000
        3.810000
```

```
In [5]:
    y = data['GPA']
    x1 = data['SAT']
```

```
plt.scatter(x1, y)
  plt.xlabel('SAT', fontsize = 20)
  plt.ylabel('GPA', fontsize = 20)
  plt.show()
```


Out[7]: OLS Regression Results

Dep. Variable: GPA **R-squared:** 0.406

Model: OLS Adj. R-squared: 0.399

Method: Least Squares **F-statistic:** 56.05

Date: Thu, 21 Dec 2023 **Prob (F-statistic):** 7.20e-11

Time: 10:07:15 **Log-Likelihood:** 12.672

No. Observations: 84 AIC: -21.34

Df Residuals: 82 BIC: -16.48

Df Model: 1

Covariance Type: nonrobust

 coef
 std err
 t
 P>|t|
 [0.025
 0.975]

 const
 0.2750
 0.409
 0.673
 0.503
 -0.538
 1.088

 SAT
 0.0017
 0.000
 7.487
 0.000
 0.001
 0.002

```
      Omnibus:
      12.839
      Durbin-Watson:
      0.950

      Prob(Omnibus):
      0.002
      Jarque-Bera (JB):
      16.155

      Skew:
      -0.722
      Prob(JB):
      0.000310

      Kurtosis:
      4.590
      Cond. No.
      3.29e+04
```

Notes:

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The condition number is large, 3.29e+04. This might indicate that there are strong multicollinearity or other numerical problems.

```
plt.scatter(x1, y)
yhat = 0.0017 * x1 + 0.275
fig = plt.plot(x1, yhat, lw = 4, c ='orange', label = 'regression line')
plt.xlabel('SAT', fontsize = 20)
plt.ylabel('GPA', fontsize = 20)
plt.show()
```



```
In [9]: print(results.summary())
```

OLS Regression Results

		_					
==========	=====		====	======			=======
Dep. Variable:		G	PA	R-squar	red:		0.406
Model:		0	LS	Adj. R-	squared:		0.399
Method:	Least Squares			F-statistic:			56.05
Date:	Thu, 21 Dec 2023			Prob (F-statistic):			7.20e-11
Time:	10:07:20			Log-Lik	celihood:		12.672
No. Observations:		:	84	AIC:			-21.34
Df Residuals:		:	82	BIC:			-16.48
Df Model:			1				
Covariance Type:		nonrobu	st				
==========	coef	std err	====	t	P> t	[0.025	0.975]
const 0.	 2750	0.409		.673	0.503	-0.538	1.088

SAT	0.0017	0.000	7.487	0.000	0.001	0.002					
==========	========	========			=======	======					
Omnibus:		12.839	Durbin-Wa	atson:		0.950					
<pre>Prob(Omnibus):</pre>		0.002	Jarque-B	era (JB):		16.155					
Skew:		-0.722	Prob(JB)	•	(0.000310					
Kurtosis:		4.590	Cond. No	•		3.29e+04					

Notes:

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The condition number is large, 3.29e+04. This might indicate that there are strong multicollinearity or other numerical problems.