AKADEMIA GÓRNICZO-HUTNICZA IM. STANISŁAWA STASZICA

Kraków

Symulator pożaru lasu

Autorzy:
Marcin JĘDRZEJCZYK
Sebastian KATSZER
Katarzyna KOSIAK

11 stycznia 2016

Spis treści

1	$\mathbf{Wst}\mathbf{ep}$	2
\mathbf{C}	ele modelowania pożaru	2
\mathbf{C}	zynniki środowiskowe	2
P	odejścia do modelowania pożaru 1.1 Model paliwowy	2 3
$\mathbf{S}_{\mathbf{Z}}$	ztandarowe modele	3
	1.2 Rothermel - szybkość rozchodzenia się linii pożaru 1.2.1 Ciepło przed zapłonowe 1.2.2 Efektywność ogrzewania 1.2.3 Strumień ciepła 1.2.4 Współczynnik wiatru, nachylenia 1.3 Rothermel - szybkość rozprzestrzeniania się pożaru w koronach 1.4 Van Wagner - intensywność linii ognia 1.5 Cruz - szybkość rozprzestrzeniania się pożaru w koronach 1.6 Modele oparte na automatach komórkowych	3 4 4 4 5 5 5 5
2	Proponowany model	6
\mathbf{C}	ele modelu	6
U	zasadnienie wyboru danych narzędzi i technologii	6
D	Pane wejściowe	7
D	ane wyjściowe	7
Sa	${ m asiedztwo}$	7
Μ	Iodele paliwowe	8
3	Wyniki symulacji	9
P	orównanie wyników z danymi rzeczywistymi	9
4	\mathbf{Testy}	12
St	tatystyki	13
5	Wnioski	13
6	Literatura	11

1 Wstęp

Niniejszy dokument stanowi opis zagadnienia symulowania pożarów lasów wraz z prezentacją symulatora rozprzestrzeniania się pożaru lasu opartego na automatach komórkowych.

Cele modelowania pożaru

Modelowanie pożaru polega na próbie odtworzenia zachowania się ognia i poznaniu jego parametrów w zadanej sytuacji - m.in. szybkości rozprzestrzeniania się, kierunku i ilości wydzielanego ciepła, estymację skutków pożaru. Na parametry te mają oczywiście wpływ ilość, rodzaj i dokładność dostarczonych danych wejściowch, z których najważniejszym jest rodzaj paliwa.

Istniejące modele paliwowe definiują zestawy cech roślinności mających wpływ na ich palność. Najbardziej znane modele pożaru korzystają z głównych systemów klasyfikacji modeli paliwowych takich jak dynamiczne modele Scotta i Burgana czy trzynaście "oryginalnych" modeli paliwowych Andersona i Albiniego, które opisują roślinność w czasie pory suchej, kiedy to stopień zagrożenia pożarowego jest najwyższy. Zwiększa to trafność i przydatność symulacji pożarów podczas organizacji akcji pożarowych.

Czynniki środowiskowe

Na pożar lasu wpływ mają takie czynniki jak pogoda, charakterystyka paliwa i topografia terenu.

Pogoda wpływa na ogień poprzez kierunek i siłę wiatru oraz wilgotność powietrza. Mokre paliwo potrzebuje więcej dostarczonej energii, by nastąpił jego zapłon. Ilość potrzebnej energii zależy również od temperatury otoczenia.

Topologia ma znaczący wpływ na przebieg pożaru lasu. Jeżeli las jest na terenie pochyłym to ogień będzie rozprzestrzeniał się szybciej z dołu do góry niż odwrotnie, a to dzięki wstępnemu ogrzaniu drzew położonych wyżej. Dochodzi do tego jeszcze nasłonecznienie stoku. Jeśli drzewa są dobrze nasłonecznione oznacza to, że dostarczono im więcej energii, co przekłada się na ich szybszy zapłon niż drzew z zacienionego obszaru. Ukształtowanie terenu ma też wpływ na wiatr. Obecność gór, wąwozów oraz przełęczy zmienia przepływ powietrza. Ponadto mogą wystąpić bariery dla ognia takie jak drogi, uskoki w ziemi, rzeki, bagna, jeziora, które zatrzymują rozprzestrzenianie się ognia.

Wiatr działa na pożar na parę sposobów. Dostarcza tlen potrzebny podczas spalania. Zmniejsza wilgotność paliwa przez zwiększenie parowania. Także fizycznie przesuwa ogień i ciepło zwiększając zasięg pożaru. Co więcej jest odpowiedzialny za śpotting"(z ang.), czyli transport płonących kawałków drzew i niedopałków dalej w teren.

Paliwo pożaru to trawy, krzewy oraz wszystko inne co może się spalić. Drobne rzeczy zapalają się szybciej, a wielkie wolniej, ale też dostarczają różną ilość ciepła zależy - to od kaloryczności materiału, który płonie. Paliwo ma także wpływ na to w jaki sposób rozprzestrzenia się ogień. Dzięki wyższej roślinności możliwa wysokość słupa ognia naturalnie się zwiększa.

Podejścia do modelowania pożaru

Od powstania pierwszych modeli pożarów w latach czterdziestych XX wieku minęło wiele czasu, w ciągu którego zaprezentowano kolejne - zróżnicowane pod względem wymaganych danych wejściowych, znaczących czynników i stopnia rozbudowania - modele.

Problemem związanym z modelowaniem tak skomplikowanego zjawiska jak ogień jest rosnąca wraz z ilością branych pod uwagę czynników liczba koniecznych do wykoniania obliczeń, a co za tym idzie - potrzeba coraz większej mocy obliczeniowej. Właśnie z powodu względnie długiego czasu symulacji i potrzeby dużej ilości danych wejściowych skomplikowane modele stosuje się częściej w badaniu niż w terenie. W związku z tym w istniejących modelach zastosowano różne uproszczenia, często poświęcając mniej znaczące czynniki na rzecz przyspieszenia obliczeń.

Modele pożaru można podzielić na trzy grupy: empiryczne (model kanadyjski i australijski), semi-empiryczne (automaty komórkowe i Rothermel) i oparte na fizyce (modelowanie ognia koron oraz pełne fizyczne i multifazowe podejście).

1.1 Model paliwowy

Model paliwowy jest to zbiór możliwych paliw, typów roślinności i ich własności, które są reprezentowane w postaci parametrów. Parametry te wykorzystywane są następnie jako dane wejściowe dla zastosowanego modelu.

Pierwszy taki zbiór wprowadził Rothermel, który rozróżnił 11 różnych paliw - od krótkiej trawy po powalone drzewa - których właściwości utrzymują sie na stałym poziomie właściwości cząstek w czasie. Zbiór ten został rozszerzony o dwa modele paliw przez Albiniego, a następnie opisany przez Andersena. Wraz z czasem powstały bardziej rozbudowane zestawy. Narodziły się dynamiczne modele paliwowe.

Sztandarowe modele

Poniżej znajduje się krótki przegląd kilku wartych uwagi modeli. Wszystkie wymienione miały znaczącą rolę w rozwoju zagadnienia modelowania pożaru lub są uznawane za najdokładniejsze dla zadanego czasu oczekiwania na rozwiązanie i używane są w najpopularniejszych profesjonalnych programach do symulacji pożaru jak na przykład Farasite, Prometheus czy BEHAVE, które dzięki swojej zdolności do oszacowywania zachowań ognia w czasie rzeczywistym demonstrują wielką użyteczność w terenie.

1.2 Rothermel - szybkość rozchodzenia się linii pożaru

Pierwszy matematyczny model dla symulacji pożaru, został opublikowany w 1972 roku przez Richarda Rothermela.

Przybliżone równanie na szybkość rozchodzenia się linii pożaru ma formę:

$$R = \frac{(I_p)_0(1 + \phi_W + \phi_S)}{\rho_b \epsilon Q_{ig}}$$

gdzie:

R - szybkość rozchodzenia się linii pożaru [m/min]

 $(I_P)_0$ - strumień ciepła dla warunków bezwietrznych [kJ/m2/min]

 ρ_b - gęstość drewna całkowicie suchego [kg/m3]

 ϵ - efektywność ogrzewania

 Q_{iq} - ciepło przed-zapłonowe [kJ/kg]

 ϕ_w - współczynnik wiatru

 ϕ_s - współczynnik nachylenia

1.2.1 Ciepło przed zapłonowe

 Q_{ig} - ciepło przed-zapłonowe [kJ/kg]

Ciepło przed zapłonem jest to energia w przeliczeniu na jednostkę masy, która jest potrzebna do zapłonu. Obliczane jest na podstawie zmian ciepła właściwego z otoczenia, temperatury zapłonu, jak i ciepła utajonego wyparowywania wilgoci .

$$Q_{iq} = C_{pd}\Delta T_{iq} + M_f(C_{pw}\Delta T_B + V)$$

gdzie:

 C_{pd} - ciepło właściwe suchego drewna,

 ΔT_{iq} - zakres temperatur zapłonu,

 M_f - wilgotność paliwa,

 C_{pw} - ciepło właściwe wody,

 ΔT_B - Zakres temperatur wrzenia,

V - Utajone ciepło parowania.

Po przeliczeniu:

$$Q_{iq} = 250 + 1,116M_f$$

1.2.2 Efektywność ogrzewania

Jest to stosunek efektywnej gęstości, czyli ilość paliwa, które bierze udział w zapłonie p_{be} , do rzeczywistej gęstości paliwa p_b

$$\epsilon = \frac{p_{be}}{p_b}$$

Dana ta została wyliczona eksperymentalnie przez Rothermela i dla "dobrych paliw" przyjmuje wartość bliską jeden, a wraz ze wzrostem rozmiarów paliwa będzie maleć do 0.

$$\epsilon = exp(-138/\sigma)$$

gdzie:

 σ - iloraz powierzchni i objętości cząsteczki paliwa. Dla paliw o kształcie walca współczynnik ten może przyjąć wartość:

$$\epsilon = \frac{4}{d}$$

gdzie:

d - Jest średnicą paliw okrągłych lub długością krawędzi przekroju kwadratowego.

1.2.3 Strumień ciepła

Czynnik I_p określa, w jaki sposób rozchodzi się strumień ciepła. Składa się on z poziomego jak i pionowego strumienia. Istota wertykalnego strumienia pojawia się w momencie wiania wiatru, który to powoduje przechylenie się płomienia, powodując wzrost promieniowania podczerwonego. W modelu bezwietrznym pozostaje podstawowy, horyzontalny wektor $(I_p)_0$, który to może zostać wyliczony eksperymentalnie w bezwietrznych warunkach.

1.2.4 Współczynnik wiatru, nachylenia

Współczynniki te reprezentują dodatkowe strumienie ciepła, które tworzone są przez dodatkowe warunki jakimi są siła wiatru i ukształtowanie terenu. Są to bezwymiarowe współczynniki, wyliczane w sposób eksperymentalny.

1.3 Rothermel - szybkość rozprzestrzeniania się pożaru w koronach

Równanie opisujące szybkość rozprzestrzeniania się pożaru w koronach:

$$R_{active} = 3.34(R_10)_{40\%}$$

gdzie:

 R_{active} - szybkość rozprzestrzeniania się pożaru w koronach [m/min]

 R_{10} - szybkość rozchodzenia się linii pożaru dla 10. modelu paliwowego i prędkość wiatru na wysokości połowy płomieni równa 40% prędkości wiatru na wysokości 6,1m. [m/min]

1.4 Van Wagner - intensywność linii ognia

Van Wagner zaproponował inne podejście do zagadnienia rozprzestrzenania się pożaru. Równanie opisujące intensywność linii ognia wymaganą do dalszego przeniesienia się ognia:

$$I\lq_{initiation} = (\frac{CBH(460+25.9FMC)}{100})^{(\frac{3}{2})}$$

gdzie:

 $I_i nitation$ - intensywność linii ognia wymaganą do dalszego przeniesienia się ognia $[\mathrm{J/m}]$

CBH - podstawowa wysokość roślinności [m]

FMC- wilgotność roślinności (podłoża i drzew)

1.5 Cruz - szybkość rozprzestrzeniania się pożaru w koronach

Zaproponowane w 2002 roku przez Cruza równanie na szybkość rozprzestrzeniania się pożaru w koronach:

$$CROS_A = \beta_1 U_1^{\beta_2} 0 \times CBD^{\beta_3} \times e^{-\beta_4 EFFM}$$

gdzie:

EFFM - estymowana wilgotność paliwa

CBD - gestość grupy roślinności [1/m3]

 U_1010-m - prędkość wiatru ponad najwyższą roślinnością [m/min]

 $\beta_1, ..., \beta_4$ -współczynniki regresji

1.6 Modele oparte na automatach komórkowych

Automat komórkowy to system składający się z pojedynczych komórek, ktore znajdują sie jedna obok drugiej na n-wymiarowej siatce. Każda z komórek może mieć w danej chwili jeden stan z wielu. Stany komórki zmieniają się zgodnie z regułami przejść i zależą od stanu jej sąsiadów. Czas i przestrzeń są dyskretne.

Automaty komórkowe tworzą środowisko dla większych dyskretnych klas modeli.

Rysunek 1: Automaty komórkowe - przykładow prezentacji różnych stanów wraz z zaznaczonym sąsiedztwem Moore'a

2 Proponowany model

Zastosowany w tej aplikacji model opiera się na modelu szybkości rozchodzenia się linii pożaru Rothermela, przy czym do reprezentacji lasu wykorzystana została sieć automatów komórkowych. Sąsiedztwo dla każdej komórki obliczane jest na podstawie wprowadzonych przez użytkownika danych i wykorzystuje zasadę Huygensa oraz opisaną poniżej zależność Andersona.

Cele modelu

Nasze cele to zapoznanie się z metodami przeprowadzania symulacji i próba przeniesienia wiedzy teoretycznej na projekt praktyczny. Ponadto celem jest przetestowanie jak radzi sobie język Java w tego typu projektach oraz ile z właściwości tego języka jesteśmy w stanie użyć przy tego rodzaju aplikacji.

Uzasadnienie wyboru danych narzędzi i technologii

Nasz symulator został zaimplementowany w języku Java, ponieważ wszyscy członkowie zespołu są pragną rozwijać swoje zdolności programistyczne w tym języku, a także chcielibyśmy sprawdzić wydajność tego języka.

Jeśli chodzi o bibliotekę graficzną, to nasz wybór padł na libGDX - crossplatformową bibliotekę z licencją opensource (oficjalna strona internetowa: www.libgdx.badlogicgames.com).

Jedną z głównych zalet tej biblioteki jest jej szybkość - twórcy postawili bardzo duży nacisk na rozsądne zarządzanie pamięcią. Dodatkowo libGDX dostarcza narzędzi do obsługi dźwięku i interpretacji wejścia dostarczonego przez użytkownika. Mimo, że renderowanie zachodzi przy użyciu OpenGL ES 2.0, to w większości przypadków nie trzeba znać szczegółów działania tego API, ponieważ biblioteka libGDX dostarcza wygodnych, wysokopoziomowych metod, dzięki którym sprawnie można uzyskać pożądane efekty - od wyświetlania dwuwymiarowych obiektów po

tworzenie trójwymiarowych scen.

Diagramy UML zostały stworzone w programie starUML - jest to lekki, darmowy program, który oferuje przyjazny interfejs użytkownika i wygodną hierarchizację elementów.

Dane wejściowe

Interfejs użytkownika

W celu uruchomienia symulacji na podstawie własnych danych należy podać:

- długość boku powierzchni (area),
- nierówność terenu (roughness),
- maksymalną wysokość terenu(maximum height),
- gęstość zalesienia (density),
- typ lasu (type),
- prędkość wiatru (wind velocity),
- kierunek wiatru (wind direction),
- wilgotność powietrza (humidity).

Aby wygenerować symulację na podstawie powyższych danych należy wcisnąć przycisk GENERATE.

Przycisk GENERATE EXAMPLE jest odpowiedzialny za podstawienie danych testowych i wygenerowanie dla nich symulacji.

Dane wyjściowe

Wersja Beta, poza generowaniem symulacji, nigdzie nie zapisuje swoich wyników.

Sąsiedztwo

W naszym projekcie sąsiedztwo dla danego drzewa wyliczane jest na podstawie szybkości rozchodzenia się pożaru ze wzoru Rothermela, który to uwzględnia również współczynniki wiatru i nachylenia. Zastosowana została zasada Huygensa, która to zakłada, że każdy wierzchołek może być źródłem nowej eliptycznej ekspansji ognia. W związku z tym, sąsiedztwo komórki jest

wygenerowane z elipsy. Jej kształt jest zgodny z zależnością odkrytą przez Andersona, przy założeniu, że pożar rośnie w kształcie pojedynczej elipsy, zgodnie z założeniami modelu Alexandra. Fizycznie tworzona jest ona w układzie współrzędnych biegunowych, gdzie zostaje obrócona wraz z kierunkiem wiania wiatru. Następnie jest ona rzutowana na rzeczywiste położenie komórki i poddana dyskretyzacji.

Rysunek 2: Sąsiedztwo komórki generowane z elipsy

Modele paliwowe

Nasza aplikacja pozwala użytkownikowi na wybranie jednego z trzech modeli paliwowych, które opisują najpowszechniejsze w Polsce typy lasów. Dodatkowo dla każdego z tych typów można zdefiniować gęstość lasu. Typ lasu:

- liściasty (broadleaf) składający się w 85% z dębów i w pozostałej części z sosen,
- iglasty (needleleaf) składający się w 85% z sosen i w pozostałej części z dębów,
- mieszany (mixed) składający się z równej ilości sosen i dębów.

Gęstość lasu:

- las otwarty (open) tylko 20% terenu jest zajęte przez drzewa,
- las rzadki (sparse) 50% terenu jest zajęte przez drzewa,
- las gesty (dense) aż 80% terenu jest zajęte przez drzewa,

Diagramy

Rysunek 3: Diagram przypadków użycia

3 Wyniki symulacji

W niniejszym rozdziale przedstawione zostaną wyniki testów naszej aplikacji.

Porównanie wyników z danymi rzeczywistymi

Do walidacji wykorzystaliśmy jako punkt odniesienia pożar Kuźni Raciborskiej w 1992 roku. Informacje z materiałów źródłowych o tym pożarze to m.in.:

- Klimat umiarkowany, kontynentalny z wpływem atlantyckiego,
- Średnia roczna opadów 650mm w części północnej, 660mm w części południowej, 500mm ostatniego lata,
- Udział drzew iglastych (sosna, świerk) w powierzchni- 85%,
- Udział drzew liściastych (głównie dąb, buk, brzoza) w powierzchni- 15%,
- Wiatr południowo-zachodni,
- Wiek drzew: do 20 lat 15\%, do 40 lat 18\%, starsze 67\%,
- Teren nizinny, płaski, bez wyraźnych wzgórz czy znacznych różnic wysokości terenu,
- Temperatura w dniu pożaru wynosiła $34^{\circ}C$, a wcześniej nawet do $40^{\circ}C$,
- Większość warstwy podłoża to niezmineralizowana ściółka lub zbutwiałe drzewa oraz rośliny o grubości kilkunastu cm,
- Obecność torfu o grubości 1-1.5m, który zajmował około 150ha obszaru.

Pożar Kuźni Raciborskiej

Wynik naszego programu dla danych o o Kuźni Raciborskiej

Rysunek 4: Wyniki naszej symulacji dla danych Kuźni Raciborskiej

4 Testy

Rysunek 5: Przykładowe wyniki naszej symulacji dla danych wpisanych przez użytkownika

Rysunek 6: Przykładowe wyniki naszej symulacji dla danych wpisanych przez użytkownika

Rysunek 7: Przykładowe wyniki naszej symulacji dla danych wpisanych przez użytkownika

Statystyki

 sd

5 Wnioski

W tym rozdziale przedstawione zostaną różnego rodzaju wnioski z projektu.

Najważniejsze wnioski

Symulacja przeprowadzona na danych z pożaru Kuźni Raciborskiej w 1992 roku daje oczekiwane rezultaty, zgodne z rzeczywistym przebiegiem początkowego etapu pożaru. Porównanie wyników naszej symulacji z późniejszymi etapami pożaru jest bezcelowe z powodu ingerencji straży pożarnej, czego nie modelowaliśmy w naszym projekcie.

Wybranym przez nas językiem programowania była Java, a pośrednim celem tego projektu było sprawdzenie, jak radzi sobie ten język z ogromną ilością obliczeń potrzebnych przy symulacji pożaru lasu z jednoczesnym wyświetlaniem modelu trójwymiarowego. Testy aplikacji wykazały, że - tak jak się spodziewaliśmy - złożoność tego języka wpływa negatywnie na szybkość obliczeń (szczególnie dobrze widać to przy starcie aplikacji, gdy obliczane są elipsy sąsiedztw dla drzew).

Usytuowanie modelu symulacji na tle istniejących rozwiązań

Nasza symulacja bazuje na badaniach Rothermela sprzed prawie pięćdziesięciu lat, przez co śmiało można stwierdzić, że w porównaniu z nowoczesnymi systemami symulacji pożaru lasu (jak na przykład FARSITE) symulator nasz jest niedoskonały i wręcz prehistoryczny.

Bazowanie się na matematycznym modelu rozchodzenia się linii pożaru Rorhermela a nie na nowszych modelach uzasadniamy dwoma argumentami. Po pierwsze, moc obliczeniowa naszych komputerów jest dość mała przez co tworzenie bardziej skomplikowanego modelu byłoby powolne, a korzystanie z aplikacji irytujące dla użytkownika. Po drugie, jest to nasz pierwszy projekt związany z symulacją jakiegoś rzeczywistego procesu; nasze doświadczenie i wiedza byłyby niewystarczające do ukończenia tak skomplikowanego projektu w zadanym czasie.

Najważniejsze wyzwania i trudności rozpatrywanego problemu

Największym wyzwaniem symulacji pożaru lasu jest według nas wybranie skończonej liczby najbardziej znaczących czynników wpływających na przebieg pożaru. Jest to niezwykle problematyczne, ponieważ na przebieg pożaru ma wpływ bardzo dużo czynników, do tego trudno jest ocenić które mają największy wpływ na pożar.

Kolejnym ważnym problemem jest walidacja symulacji i zdobycie danych o rzeczywistych pożarach - trudno jest znaleźć dobrze udokumentowane pożary, a przeprowadzenie kontrolowanego pożaru to mimo wszystko proces destrukcyjny i trudny do legalnego zrealizowania.

Największe sukcesy projektu

Pierwszym sukcesem było szczęśliwe znalezienie dokładnych danych o pożarze Kuźni Raciborskiej - przez cały okres tworzenia projektu służyły nam one jako podstawa do sprawdzania poprawności naszej symulacji.

Kolejne dwa sukcesy to: poprawne zaimplementowanie matematycznego modelu rozchodzenia się linii pożaru Rorhermela i uwzględnienie w naszej symulacji zjawiska spottingu.

Jako kolejny sukces uznajemy element niezwiązany ściśle z modelowaniem pożaru lasu, ale silnie wpływający na łatwość zrozumienia i sprawdzenia działania naszego programu - generowanie obracalnego, trójwymiarowego modelu prezentującego aktualny stan płonącego lasu.

Proponowane kierunki rozwoju

Kierunek rozwoju tej symulacji jest dla nas oczywisty - w pierwszym kroku należałoby zamodelować rozprzestrzenianie się pożaru w koronach drzew. Następnie można by pokusić się o uwzględnienie w symulacji nie tylko właściwości drzew, ale też ściółki. Należałoby też "zdynamizować" środowisko - uwzględnić fakt, że wiatr, wilgotność powietrza i inne czynniki zmieniają się w czasie.

6 Literatura

Asensio MI, Ferragut L., Simon J.: Modelling of convective phenomena in forest fire. Rev Real Academia de Ciencias, 2002, 96:299–313

Bodrožić Ljiljana, Stipaniev Darko, Šerić Marijo: Forest fires spread modeling using cellular automata approach, University of Split, 21000 Split, Croatia, 2009

Chad Hoffman: Fire Behavior Predictions Case Study, University of Idaho, 2007

Czerpak Tomasz, Maciak Tadeusz: Modelowanie pożaru lasu. Część 1. Metody i algorytmy modelowania pożaru lasu, Wydział Informatyki, Politechnika Białostocka, 2011

Kułakowski Krzysztof: Automaty Komórkowe, OEN AGH (2000)

Law A.M., Kelton W.D.: Simulation Modeling and Analysis, Second Edition, McGraw-Hill 2000

Ottmar Roger D. et al.: An Overview of the Fuel Characteristic Classification System - Quantifying, Classifying, and Creating Fuel beds for Resource Planning. Ćanadian Journal of Forestry Research. 37:2383-2393. 2007

Rothermel Richard C.: A Mathematical Model for Predicting Fire Spread in Wildland Fuels. USDA Forest Service. Research Paper INT-115. 1972.

Sayama Hiroki: Introduction to the Modeling and Analysis of Complex Systems, Open SUNY Textbooks, State University of New York at Geneseo, 2015

Scott Joe H., Burgan Robert E.: Standard Fire Behavior Fuel Models, USDA Forest Service Gen. Tech. Rep. RMRS-GTR-153., June 2005

Weise David R., Biging Gregory S.: A Qualitative Comparison of Fire Spread Models Incorporating Wind and Slope Effects, Research Gate, October 2015

Wells Gail: The Rothermel Fire-Spread Study: Still Running Like a Champ, Fire Science Direct, Issue 2, March 2008

Carolyn H. Chase: Spot Fire Distance Equations for Pocket Calculators. USDA Forest Service, March 1981