Stat 300A Theory of Statistics

Homework 2

Andrea Montanari

Due on October 10, 2018

- Solutions should be complete and concisely written. Please, use a separate sheet (or set of sheets) for each problem.
- We will be using Gradescope (https://www.gradescope.com) for homework submission (you should have received an invitation) no paper homework will be accepted. Handwritten solutions are still fine though, just make a good quality scan and upload it to Gradescope.
- You are welcome to discuss problems with your colleagues, but should write and submit your own solution.

1: Tweedie's formula

(a) Consider the normal mean model $P_{\theta} = N(\theta, \sigma^2)$, $\theta \in \Theta = \mathbb{R}$, and assume the variance σ^2 to be known. Let Q be a prior distribution for the parameter θ . Show that the posterior expectation (which is Bayes optimal for the loss $L(\hat{\theta}, \theta) = (\hat{\theta} - \theta)^2$) is given by

$$\hat{\theta}_{\text{Bayes}}(x) = x + \sigma^2 \frac{\mathrm{d}}{\mathrm{d}x} \log \mathsf{p}(x) \,, \tag{1}$$

where $p(x) = \int p_{\theta}(x) Q(d\theta)$ is the marginal distribution of x.

(b) Generalize the above formula to the case of an exponential family in canonical form defined by the following density in \mathbb{R}^d :

$$p_{\theta}(x) = \frac{1}{Z(\theta)} e^{\langle \theta, x \rangle} h(x).$$
 (2)

(Here $h: \mathbb{R}^d \to \mathbb{R}_{>0}$ can be assumed to be differentiable.)

2: Estimating a single bit

Consider a statistical model with two elements $\mathscr{P} = \{P_0, P_1\}$, on a common space $\mathcal{X} \subseteq \mathbb{R}^n$. Hence the parameter space is $\Theta = \{0, 1\}$. We consider a prior distribution Q on Θ , which is completely specified by $Q(\{1\}) = q$, whence $Q(\{0\}) = \overline{q} = 1 - q$. We will assume that P_0 , P_1 have densities, denoted respectively by p_0 , p_1 . Finally, we use the decision space $\mathcal{A} = \{0, 1\}$, and the loss

$$L(\hat{\theta}, \theta) = c_1 \, \mathbf{1}_{\{\theta = 0, \hat{\theta} = 1\}} + c_2 \, \mathbf{1}_{\{\theta = 1, \hat{\theta} = 0\}} \,. \tag{3}$$

- (a) Derive an expression for the Bayes optimal estimator.
- (b) Derive an expression for the Bayes risk $R_{\rm B}(Q)$.
- (c) Assume $c_1 = c_2 = 1$, and consider the case of a uniform prior $Q = Q_{unif}$. Show that the Bayes risk is given by $R_B(Q_{unif}) = (1 ||P_0 P_1||_{TV})/2$ where the total variation distance of two probability distributions with densities p_0, p_1 is defined as

$$\left\| \mathsf{P}_0 - \mathsf{P}_1 \right\|_{\mathsf{TV}} = \frac{1}{2} \int \left| \mathsf{p}_0(\boldsymbol{x}) - \mathsf{p}_1(\boldsymbol{x}) \right| d\boldsymbol{x}. \tag{4}$$

(d) Always assume $c_1 = c_2 = 1$. Provide an example of distributions $\{P_0, P_1\}$ such that $R_B(Q) > R_B(Q_{unif})$ for some non-uniform prior Q. For this point, you do not need to limit yourself to P_0, P_1 with a density, it might be easier to consider a finite sample space \mathcal{X} .

3: Stochastic block model

The objective of this problem is to derive a lower bound on the risk in estimating the community structure in a stochastic block model (SBM). We will be concerned with the two-groups symmetric SBM, which is a distribution over graphs defined as follows. The parameter is a vector $\boldsymbol{\theta} \in \Theta = \{+1, -1\}^n$. For each $\boldsymbol{\theta} \in \Theta$, $P_{\boldsymbol{\theta}}$ is a probability distribution over undirected graphs G = (V, E), with vertex set $V = [n] \equiv \{1, \dots, n\}$ and independent edges with edge probabilities

$$\mathsf{P}_{\boldsymbol{\theta}}\Big((i,j) \in E\Big) = \begin{cases} a/n & \text{if } \theta_i = \theta_j, \\ b/n & \text{if } \theta_i \neq \theta_j. \end{cases}$$
 (5)

Equivalently, we can regard P_{θ} as a probability distribution over symmetric 0-1 matrices X (the adjacency matrix of G).

We consider the loss function (for $\hat{\theta} \in \mathcal{A} = \{+1, -1\}^n$):

$$L(\hat{\boldsymbol{\theta}}, \boldsymbol{\theta}) = 1 - \left| \frac{1}{n} \langle \hat{\boldsymbol{\theta}}, \boldsymbol{\theta} \rangle \right|^2. \tag{6}$$

Note that $0 \le L(\hat{\boldsymbol{\theta}}, \boldsymbol{\theta}) \le 1$, with $L(\boldsymbol{\theta}, \boldsymbol{\theta}) = 0$. We further assume a uniform prior $Q(\{\boldsymbol{\theta}\}) = 1/2^n$ for all $\boldsymbol{\theta}$. (Equivalently, under Q, $\boldsymbol{\theta}$ has i.i.d. components $\theta_i \sim \mathsf{Unif}(\{+1, -1\})$.)

Our objective in this homework is to derive a lower bound on the Bayes risk $R_{\rm B}(\mathbf{Q})$.

- (a) Does the loss function (6) seem a reasonable choice to you? Why not use something simpler, such as $\tilde{L}(\hat{\boldsymbol{\theta}}, \boldsymbol{\theta}) = \{1 (\langle \hat{\boldsymbol{\theta}}, \boldsymbol{\theta} \rangle / n)\}/2$, which counts the number of incorrectly estimated vertex labels?
- (b) Let $\hat{\boldsymbol{\theta}}_{\mathsf{B}}$ denote the Bayes optimal estimator. For any fixed permutation $\pi \in S_n$ (a permutation over n objects), and a vector $\boldsymbol{v} \in \mathbb{R}^n$, denote by \boldsymbol{v}^{π} the vector obtained by permuting the entries of \boldsymbol{v} according to π . Show that there exists a (possibly randomized) Bayes optimal estimator such that, for any fixed permutation π , $(\boldsymbol{\theta}^{\pi}, \hat{\boldsymbol{\theta}}_{\mathsf{B}}^{\pi})$ has the same distribution as $(\boldsymbol{\theta}, \hat{\boldsymbol{\theta}}_{\mathsf{B}})$.

[Hint: Let G^{π} the graph obtained by permuting the vertices of G. Show that given a Bayes optimal estimator $\hat{\boldsymbol{\theta}}_{0,B}$, you can construct a new (possibly randomized) estimator $\hat{\boldsymbol{\theta}}_{B}$, that has the same risk as $\hat{\boldsymbol{\theta}}_{0,B}$ and such that $\hat{\boldsymbol{\theta}}_{B}(G^{\pi})$ has the same distribution as $\hat{\boldsymbol{\theta}}_{B}(G)^{\pi}$.]

(c) Prove the lower bound

$$R_{\mathrm{B}}(\mathsf{Q}) \ge \frac{1}{2} \left(1 - \frac{1}{n} \right) \left\{ 1 - \mathbb{E} \left(\hat{\theta}_{\mathsf{B},1}(G) \hat{\theta}_{\mathsf{B},2}(G) \theta_1 \theta_2 \right) \right\}. \tag{7}$$

(d) Let $\theta_{\sim 1} = (\theta_2, \dots, \theta_n)$ be the vector of vertex labels, except θ_1 . Derive the following lower bounds

$$R_{\mathrm{B}}(\mathsf{Q}) \ge \frac{1}{2} \left(1 - \frac{1}{n} \right) \inf_{\hat{\theta}_{1}(\cdot), \hat{\theta}_{2}(\cdot)} \left\{ 1 - \mathbb{E} \left(\hat{\theta}_{1}(G; \boldsymbol{\theta}_{\sim 1}) \hat{\theta}_{2}(G; \boldsymbol{\theta}_{\sim 1}) \theta_{1} \theta_{2} \right) \right\}$$
(8)

$$\geq \frac{1}{2} \left(1 - \frac{1}{n} \right) \left\{ 1 - \sup_{\hat{\theta}_1(\cdot)} \mathbb{E} \left(\hat{\theta}_1(G; \boldsymbol{\theta}_{\sim 1}) \theta_1 \right) \right\}. \tag{9}$$

In other words, we reduced the problem of lower bounding $R_{\rm B}(\mathsf{Q})$ to the problem of lower bounding the Bayes risk in estimating θ_1 given observations G, $\boldsymbol{\theta}_{\sim 1}$.

(e) Let $N_+ = \#\{i \in \{2, ..., n\} : \theta_i = +1\}$ be the number of vertices among $\{2, ..., n\}$ with label +1 and $N_- = \#\{i \in \{2, ..., n\} : \theta_i = -1\}$ the number of vertices with label -1. Further, define the number of edges that connect vertex 1 with these two sets of vertices:

$$X_{+} = \#\{j \in \{2, \dots, n\} : \theta_{j} = +1, (1, j) \in E\},$$
 (10)

$$X_{-} = \#\{j \in \{2, \dots, n\} : \theta_{j} = -1, (1, j) \in E\}.$$
 (11)

Prove that (N_+, N_-, X_+, X_-) is a sufficient statistic in the problem of estimating θ_1 from observations $(G, \theta_{\sim 1})$. Write the conditional distribution of (N_+, N_-, X_+, X_-) , given θ_1 .

At this point, we reduced the original problem to a much simpler one, namely the problem of estimating a uniformly random bit $\theta_1 \sim \text{Unif}(\{+1,-1\})$ from observations (N_+,N_-,X_+,X_-) . This problem further simplifies as $n \to \infty$ with a,b fixed. We will assume, for the sake of simplicity, n=2m+1. First of all $N_+=n-1-N_-$ is a binomial random variable Binom(n-1,1/2) and hence concentrates around m=(n-1)/2. We can make the simplifying assumption that $N_+=N_-=m$. Second, conditional on N_+,N_- , we see that X_+,X_- are independent with

$$\theta_1 = +1 \Rightarrow X_+ \sim \operatorname{Binom}(a/n, N_+), X_- \sim \operatorname{Binom}(b/n, N_-),$$

 $\theta_1 = -1 \Rightarrow X_+ \sim \operatorname{Binom}(b/n, N_+), X_- \sim \operatorname{Binom}(a/n, N_-),$

For large n, we can approximate the above binomials by Poisson distributions.

This suggests the following model. We deed to estimate a single bit $\theta \sim \mathsf{Unif}(\{+1, -1\})$ from observations (Z_+, Z_-) , whereby

$$\theta_1 = +1 \implies Z_+ \sim \text{Poisson}(a/2), Z_- \sim \text{Poisson}(b/2),$$

 $\theta_1 = -1 \implies Z_+ \sim \text{Poisson}(b/2), Z_- \sim \text{Poisson}(a/2),$

Denote by $R_B^s(a,b)$ the Bayes risk in this simplified one-bit problem (with loss $L^s(\hat{\theta},\theta) = \mathbf{1}_{\{\hat{\theta}\neq\theta\}}$). It is possible to make the above argument rigorous, thus getting:

$$R_{\rm B}(\mathsf{Q}) > 2 R_{\rm p}^s(a,b) + o_n(1)$$
 (12)

Here $o_n(1)$ denotes a term vanishing as $n \to \infty$.

(f) Derive an expression for $R_{\rm B}^s(a,b)$ as a function of a,b and show that it vanishes as $a-b\to\infty$. [Hint: Use the results of the previous problem.]