

Bachelorarbeit

Maße auf polnischen Räumen und die Wassersteinmetrik

Daniel Herbst

Datum der Abgabe

Betreuung: Prof. Dr. Roland Schnaubelt

Fakultät für Mathematik

Karlsruher Institut für Technologie

Inhaltsverzeichnis

1	Einleitung	2
2	Grundlagen	2

1 EINLEITUNG 2

1 Einleitung

Der Abschnitt Grundlagen folgt im Wesentlichen [Sim15, Kapitel 4.14]. **Einleitung, Zielsetzung**

2 Grundlagen

In diesem Abschnitt möchten wir zunächst einige maßtheoretische Grundlagen vorstellen, die wir später benötigen werden.

Definition 2.1 (Polnischer Raum). Ein polnischer Raum ist ein separabler und vollständig metrisierbarer topologischer Raum.

Definition 2.2 (Borelsche σ -Algebra). Sei (X, \mathcal{O}) ein topologischer Raum. Dann definieren wir die Borelsche σ -Algebra

$$\mathcal{B} := \sigma(\mathcal{O})$$

über X. Ferner sei

$$\mathcal{M}_{+,1}(X) := \{ \mu \colon \mathcal{B} \to [0,1] \mid \mu \text{ ist Wahrscheinlichkeitsmaß} \}.$$

Definition 2.3 (Schwache Regularität von Maßen). In der Situation von Definition 2.2, wobei zusätzlich μ ein endliches Maß auf \mathcal{B} sei, nennen wir $B \in \mathcal{B}$ schwach von innen bzw. von außen regulär, falls

$$\mu(B) = \sup_{\substack{C \subseteq B \\ C^{\epsilon} \in \mathcal{O}}} \mu(C) \quad \textit{bzw.} \quad \mu(B) = \inf_{\substack{U \supseteq B \\ U \in \mathcal{O}}} \mu(U)$$

gelten. Wir nennen $B \in \mathcal{B}$ schwach regulär, wenn B schwach von innen und von außen regulär ist. Sind alle $B \in \mathcal{B}$ schwach regulär, so nennen wir μ ein schwach reguläres Maß.

Bemerkung. Ersetzen wir in der obigen Definition "abgeschlossen" durch "kompakt", so erhalten wir analog den Begriff der Regularität. (Schwache) Regularität ist eine Approximationseigenschaft von Maßen, die es uns etwa erlaubt, gewisse Aussagen zunächst für abgeschlossene bzw. kompakte und für offene Mengen zu zeigen, um diese anschließend auf ganz $\mathcal B$ auszuweiten.

Offenbar ist eine abgeschlossene (bzw. offene) Menge schwach regulär von innen (bzw. außen).

Im Falle von Wahrscheinlichkeitsmaßen auf metrischen Räumen kann schwache Regularität recht einfach gezeigt werden, wie wir im Folgenden sehen werden.

Satz 2.4. Ist (X,d) ein metrischer Raum, so ist jedes $\mu \in \mathcal{M}_{+,1}(X)$ schwach regulär.

Für den Beweis des Satzes benötigen wir noch zwei Hilfssätze. Hilfssätz 2.5 wird uns zunächst ermöglichen, die schwache Regularität nur auf einem Erzeuger von \mathcal{B} zu zeigen (für den wir dann die abgeschlossenen Mengen wählen).

Hilfssatz 2.5. In der Situation von Definition 2.3 ist

$$S := \{ B \in \mathcal{B} \mid B \text{ schwach regulär bzgl. } \mu \}$$

eine σ -Algebra.

Beweis. Offensichtlich liegen \emptyset und X in S. Sei $B \in S$ und damit schwach regulär von innen und von außen. Wegen $\mu(X) < \infty$ gilt dann

$$\mu(B^\mathsf{c}) \,=\, \mu(X) - \mu(B) \,=\, \mu(X) - \sup_{\substack{C \subseteq B \\ C^\mathsf{c} \in \mathcal{O}}} \mu(C) \,=\, \inf_{\substack{C \subseteq B \\ C^\mathsf{c} \in \mathcal{O}}} (\mu(X) - \mu(C)) \,=\, \inf_{\substack{U \supseteq B^\mathsf{c} \\ U \in \mathcal{O}}} \mu(U)$$

sowie analog

$$\mu(B^{\mathsf{c}}) \,=\, \mu(X) - \mu(B) \,=\, \mu(X) - \inf_{\substack{U \supseteq B \\ U \in \mathcal{O}}} \mu(C) \,=\, \sup_{\substack{U \supseteq B \\ U \in \mathcal{O}}} (\mu(X) - \mu(U)) \,=\, \sup_{\substack{C \subseteq B^{\mathsf{c}} \\ C^{\mathsf{c}} \in \mathcal{O}}} \mu(U).$$

Also ist auch B^{c} schwach regulär.

Es bleibt nun zu zeigen, dass für $(B_n)_n \in \mathcal{S}^{\mathbb{N}}$ auch $B := \bigcup_{n \in \mathbb{N}} B_n$ schwach regulär ist. Hierfür beweisen wir zunächst die schwache Regularität von innen. Sei dazu $\varepsilon > 0$. Für $n \in \mathbb{N}$ gibt es jeweils abgeschlossene Mengen $C_n \subseteq B_n$ mit $\mu(B_n) - \mu(C_n) < \frac{\varepsilon}{3^n}$. Wir wählen nun N so groß, dass $\mu\left(B \setminus \bigcup_{n=1}^N B_n\right) < \frac{\varepsilon}{2}$ ist (was wegen $\mu(B) < \infty$ immer geht). Für die abgeschlossene Menge $C := \bigcup_{n=1}^N C_k$ gilt dann die Ungleichung

$$\mu(B) - \mu(C) = \mu(B \setminus C) = \mu\left(\left(B \setminus \bigcup_{n=1}^{N} B_{n}\right) \cup \left(\bigcup_{n=1}^{N} B_{n} \setminus C\right)\right)$$

$$\leq \mu\left(B \setminus \bigcup_{n=1}^{N} B_{n}\right) + \sum_{n=1}^{N} \mu(B_{n} \setminus C_{n})$$

$$< \frac{\varepsilon}{2} + \sum_{n=1}^{\infty} \frac{\varepsilon}{3^{n}} = \varepsilon,$$

also ist B schwach regulär von innen.

Ferner existieren für alle n offene Mengen $U_n \supseteq B_n$ mit $\mu(U_n) - \mu(B_n) < \frac{\varepsilon}{2^n}$. Wir setzen $U := \bigcup_{n \in \mathbb{N}} U_n$ und berechnen

$$\mu(U) - \mu(B) \le \sum_{n=1}^{\infty} \mu(U_n \setminus B) \le \sum_{n=1}^{\infty} \mu(U_n \setminus B_n) < \varepsilon.$$

Weil U offen ist, folgt insgesamt die schwache Regularität von μ .

Bemerkung. Sofern X kompakt ist, bleibt der obige Hilfssatz 2.5 gültig, wenn man "schwach regulär" durch "regulär" ersetzt. Der hier vorgestellte Beweis ist eine Anpassung von [Sim15, Lemma 4.5.5], wo die Aussage für kompakte X bewiesen wird.

Der folgende Hilfssatz 2.6 liefert uns noch eine Möglichkeit, abgeschlossene Mengen von außen durch offene Mengen zu approximieren, womit wir im Beweis von Satz 2.4 die äußere Regularität von abgeschlossenen Mengen zeigen werden können. Insbesondere die in Hilfssatz 2.6 definierten Funktionen f_n werden auch noch im weiteren Verlauf nützlich sein.

Hilfssatz 2.6. Sei (X,d) ein metrischer Raum und $C \subseteq X$ eine abgeschlossene Teilmenge. Ferner definieren wir für $n \in \mathbb{N}$

$$A_n := \left\{ y \in X \mid d(y, C) < \frac{1}{n} \right\} \quad und \quad f_n \colon X \to \mathbb{R}, \ x \mapsto \max \left\{ 0, 1 - nd(x, C) \right\},$$

wobei wir $d(y, C) := \inf_{x \in C} d(y, x)$ setzen. Dann gilt:

- (a) A_n ist offen für alle $n \in \mathbb{N}$.
- (b) $C = \bigcap_{n \in \mathbb{N}} A_n$, insbesondere ist C also eine G_{δ} -Menge. (c) Für alle n ist $f_n|_{A_n^c} = 0$ und f_n ist lipschitzstetig.
- (d) $f_n \downarrow \mathbb{1}_C$.

Beweis. Aussage (a) folgt aus der Stetigkeit von $y \mapsto d(y, C)$.

Weiter ist $C \subseteq A_n$ für alle $n \in \mathbb{N}$ und damit $C \subseteq \bigcap_{n \in \mathbb{N}} A_n$. Umgekehrt gibt es für ein beliebiges $y \in \bigcap_{n \in \mathbb{N}} A_n$ eine Folge $(x_n)_n \in C^{\mathbb{N}}$ mit $x_n \to y$. Wegen der Abgeschlossenheit von C liegt y damit in C, sodass (b) gezeigt ist.

Aussage (c) ist klar (f_n ist als Komposition lipschitzstetiger Funktionen selbst lipschitzstetig).

Schließlich fällt f_n und für $x \in C$ gilt $f_n(x) = 1$. Für $x \in C^c$ ist d(x,C) > 0 und damit

$$f_n(x) = \max\{0, 1 - nd(x, C)\} \to 0, \quad n \to \infty,$$

womit die Behauptung folgt.

Ausgestattet mit den Hilfssätzen 2.5 und 2.6 kann nun, wie oben bereits angedeutet wurde, Satz 2.4 bewiesen werden.

Beweis von Satz 2.4. Es ist nun zu zeigen, dass für jedes $\mu \in \mathcal{M}_{+,1}(X)$ die Menge

$$S := \{ B \in \mathcal{B} \mid B \text{ schwach regulär bzgl. } \mu \}$$

bereits ganz \mathcal{B} ist. Da \mathcal{S} nach Hilfssatz 2.5 eine σ -Algebra ist und \mathcal{B} von den abgeschlossenen Mengen erzeugt wird, genügt es zu zeigen, dass diese in \mathcal{S} enthalten sind.

Sei $C \in \mathcal{B}$. Dann ist C sicherlich schwach regulär von innen. Nun verwenden wir die offenen Mengen $A_n, n \in \mathbb{N}$ aus Hilfssatz 2.6. Wegen $A_n \downarrow C$ und $\mu(X) < \infty$ folgt mit der Maßstetigkeit von oben die Konvergenz $\mu(A_n) \downarrow \mu(C)$, sodass C auch schwach regulär von außen ist.

Satz 2.7. Sei (X,d) ein metrischer Raum und seien $\mu, \nu \in \mathcal{M}_{+,1}(X)$. Dann sind die folgenden Aussagen äquivalent:

- (i) $\mu = \nu$.
- (ii) Für alle gleichmäßig stetigen Funktionen $f: X \to \mathbb{R}$ ist $\int f d\mu = \int f d\nu$.

(iii) Für alle abgeschlossenen Mengen $C \in \mathcal{B}$ ist $\mu(C) = \nu(C)$.

Beweis. Die Implikation (i) \Rightarrow (ii) ist klar und (iii) \Rightarrow (i) folgt aus Satz 2.4.

(ii) \Rightarrow (iii): Gelte (ii) und sei $C \subseteq X$ abgeschlossen. Dann gilt für die gleichmäßig stetigen Funktionen f_n aus Hilfssatz 2.6

$$\int f_n \, \mathrm{d}\mu = \int f_n \, \mathrm{d}\nu, \quad n \in \mathbb{N}.$$

Wegen $|f_n| \leq 1$ und $f_n \downarrow \mathbb{1}_C$ folgt mit dem Satz von Lebesgue

$$\int f_n d\mu \rightarrow \mu(C)$$
 und $\int f_n d\nu \rightarrow \nu(C)$

und damit gilt (iii).

Hier steht ein Kommentar. $C_b(X)$ bezeichne im Folgenden die Menge aller stetigen beschränkten Funktionen von X nach \mathbb{R} .

Definition 2.8 (Schwache Konvergenz von Maßen). Sei $(\mu_n)_n \in \mathcal{M}_{+,1}(X)^{\mathbb{N}}$ eine Folge von Wahrscheinlichkeitsmaßen. Dann sagen wir, dass $(\mu_n)_n$ schwach gegen $\mu \in \mathcal{M}_{+,1}(X)$ konvergiert, falls für alle $f \in C_b(X)$

$$\int f \, \mathrm{d}\mu_n \to \int f \, \mathrm{d}\mu, \quad n \to \infty$$

gilt. In diesem Fall schreiben wir

$$\mu_n \xrightarrow{w} \mu$$
.

Eine Charakterisierung der schwachen Konvergenz von Maßen liefert der folgende Satz:

Satz 2.9 (Portmanteau). Sei (X,d) ein metrischer Raum, $(\mu_n)_n \in \mathcal{M}_{+,1}(X)^{\mathbb{N}}$ und $\mu \in \mathcal{M}_{+,1}(X)$. Dann sind die folgenden Aussagen äquivalent:

- (i) $\mu_n \xrightarrow{w} \mu$.
- (ii) Für alle abgeschlossenen Mengen $C \subseteq X$ gilt

$$\limsup_{n \to \infty} \mu_n(C) \le \mu(C).$$

(iii) Für alle offenen Mengen $U \subseteq X$ gilt

$$\liminf_{n\to\infty}\mu_n(U) \geq \mu(U).$$

(iv) Für alle $B \in \mathcal{B}$ mit $\mu(\partial B) = 0$ ist

$$\lim_{n \to \infty} \mu_n(A) = \mu(A).$$

Beweis. (i) \Rightarrow (ii): Sei $C \subseteq X$ abgeschlossen und seien $f_m, m \in \mathbb{N}$ die Funktionen aus Hilfssatz 2.6. Diese sind stetig und beschränkt. Dann gilt für alle $m \in \mathbb{N}$

$$\mu_n(C) = \int \mathbb{1}_C d\mu_n \le \int f_m d\mu_n \to \int f_m d\mu, \quad n \to \infty,$$

also

$$\limsup_{n \to \infty} \mu_n(C) \le \int f_m \, \mathrm{d}\mu.$$

Wegen $f_m \downarrow \mathbb{1}_C$ und $|f_m| \leq 1$ liefert der Satz von Lebesgue die Konvergenz

$$\int f_m \, \mathrm{d}\mu \to \int \mathbb{1}_C \, \mathrm{d}\mu = \mu(C), \quad m \to \infty,$$

woraus

$$\limsup_{n \to \infty} \mu_n(C) \le \mu(C)$$

folgt.

(ii) \Leftrightarrow (iii): Es gelte (ii). Sei U offen, also $C := U^{\mathsf{c}}$ abgeschlossen. Dann erhalten wir

$$\mu(X) - \liminf_{n \to \infty} \mu_n(U) = \limsup_{n \to \infty} \mu_n(C) \le \mu(C) = \mu(X) - \mu(U)$$

und damit (iii). Die andere Richtung zeigt man analog.

(ii), (iii) \Rightarrow (iv): Sei $A \in \mathcal{B}$ mit $\mu(\partial A) = 0$. Wegen $A^{\circ} \subseteq A \subseteq \overline{A}$ und $\partial A = \overline{A} \setminus A^{\circ}$ gilt $\mu(A^{\circ}) = \mu(A) = \mu(\overline{A})$. Ferner liefern die Annahmen

$$\limsup_{n \to \infty} \mu_n(\overline{A}) \leq \mu(\overline{A}) \quad \text{und} \quad \liminf_{n \to \infty} \mu_n(A^{\circ}) \geq \mu(A^{\circ}).$$

Daraus folgt

$$\limsup_{n \to \infty} \mu_n(A) \le \mu(A) \le \liminf_{n \to \infty} \mu_n(A),$$

also insgesamt

$$\lim_{n \to \infty} \mu_n(A) = \mu(A).$$

(iv) \Rightarrow (i): Sei $f \in C_b(X)$ und $a < b \in \mathbb{R}$ mit a < f < b. Die Menge

$$S := \{ c \in (a, b) \mid \mu(\{ f = c \}) > 0 \},$$

ist abzählbar, da $S_n:=\left\{c\in(a,b)\mid \mu(\{f=c\})>\frac{1}{n}\right\}$ für jedes $n\in\mathbb{N}$ endlich ist und $S=\bigcup_{n\in\mathbb{N}}S_n$ gilt. Damit können wir für jedes $m\in\mathbb{N}$ Zahlen $c_j^{(m)}\notin S$ mit

$$a = c_0^{(m)} < \dots < c_{2m}^{(m)} = b, \qquad c_{j+1}^{(m)} - c_j^{(m)} \le \frac{b-a}{m}$$
 (2.1)

finden. Wir setzen

$$A_j^{(m)} := \left\{ c_j^{(m)} < f \le c_{j+1}^{(m)} \right\}, \qquad j \in \left\{ 0, \dots, 2m - 1 \right\}.$$

Die Stetigkeit von f impliziert $\partial A_j^{(m)} \subseteq \left\{ f = c_j^{(m)} \right\} \cup \left\{ f = c_{j+1}^{(m)} \right\}$, woraus sich

$$\mu(\partial A_j^{(m)}) = 0, \qquad j \in \{0, \dots, 2m - 1\}$$

ergibt. Für $m \in \mathbb{N}$ schreiben wir

$$u_m := \sum_{j=0}^{2m-1} c_j^{(m)} \mathbb{1}_{A_j^{(m)}}$$

und Aussage (iv) führt dann auf

$$\int u_m \, \mathrm{d}\mu_n = \sum_{j=0}^{2m-1} c_j^{(m)} \mu_n(A_j^{(m)}) \to \sum_{j=0}^{2m-1} c_j^{(m)} \mu(A_j^{(m)}) = \int u_m \, \mathrm{d}\mu, \quad n \to \infty.$$
 (2.2)

Außerdem folgen aus (2.1) die Ungleichungen

$$\left| \int f \, \mathrm{d}\mu_n - \int u_m \, \mathrm{d}\mu_n \right| \leq \frac{b-a}{m}, \qquad \left| \int f \, \mathrm{d}\mu - \int u_m \, \mathrm{d}\mu \right| \leq \frac{b-a}{m} \tag{2.3}$$

für $n \in \mathbb{N}$. Mit (2.3) gilt nun für alle $m, n \in \mathbb{N}$

$$\left| \int f \, \mathrm{d}\mu - \int f \, \mathrm{d}\mu_n \right| \leq \left| \int f \, \mathrm{d}\mu - \int u_m \, \mathrm{d}\mu \right| + \left| \int u_m \, \mathrm{d}\mu - \int u_m \, \mathrm{d}\mu_n \right| + \left| \int u_m \, \mathrm{d}\mu_n - \int f \, \mathrm{d}\mu_n \right|$$

$$\leq 2 \cdot \frac{b-a}{m} + \left| \int u_m \, \mathrm{d}\mu_n - \int f \, \mathrm{d}\mu_n \right|. \tag{2.4}$$

(2.2) und (2.4) liefern also letztendlich für alle m

$$\limsup_{n \to \infty} \left| \int f \, d\mu - \int f \, d\mu_n \right| \le 2 \cdot \frac{b - a}{m} + \limsup_{n \to \infty} \left| \int u_m \, d\mu_n - \int f \, d\mu_n \right|$$
$$= 2 \cdot \frac{b - a}{m} \to 0, \quad m \to \infty,$$

was (i) impliziert.

Definition 2.10 (Hilbertwürfel). Der Hilbertwürfel ist der topologische Raum $H = [0,1]^{\mathbb{N}}$ ausgestattet mit der Produkttopologie, also der kleinsten Topologie, bezüglich der alle Projektionen $\pi_n \colon H \to [0,1], \ x \mapsto x_n \ \text{für } n \in \mathbb{N} \ \text{stetig sind}.$

Hilfssatz 2.11. Für den Hilbertwürfel H gelten folgende Aussagen:

- (a) Eine Folge $(x^{(k)})_k \in H^{\mathbb{N}}$ konvergiert genau dann gegen ein $x \in H$, wenn alle Komponenten konvergieren, also, wenn $\lim_{n \to \infty} x_n^{(k)} = x_n$ für alle $n \in \mathbb{N}$ gilt.
- (b) Setzen wir für $x, y \in H$

$$d(x,y) := \max_{n \in \mathbb{N}} \frac{|x_n - y_n|}{2^n},$$

so definiert d eine Metrik, die H metrisiert.

Beweis. Die Hinrichtung von (a) folgt aus der Stetigkeit der Projektionen π_n , $n \in \mathbb{N}$. Für die Rückrichtung bemerke man zunächst, dass Mengen der Form

$$U = \prod_{n=1}^{\infty} U_n, \quad U_n \subseteq [0,1] \text{ offen}, \quad U_n = [0,1] \text{ für fast alle } n$$
 (2.5)

eine Basis der Topologie von H bilden. Konvergiert nun also $(x^{(k)})_k \in H^{\mathbb{N}}$ komponentenweise gegen $x \in H$, so enthält jede offene Umgebung von x von der Form (2.5) auch fast alle Folgenglieder $x^{(k)}$, $k \in \mathbb{N}$ und damit konvergiert auch $(x^{(k)})_k$ gegen x.

Offenbar wird durch d aus (b) eine Metrik auf H definiert. Es genügt also zu zeigen, dass d die Topologie von H induziert. Für $x \in H$ und r > 0 ist $B_r(x) = \prod_{n=1}^{\infty} B_{2^n r}(x_n) \subseteq H$ offen. Ist nun $U = \prod_{n=1}^{\infty} U_n$ wie in (2.5), so lässt sich leicht einsehen, dass es für jedes $x \in U$ ein r > 0 gibt mit $B_r(x) \subseteq U$, also ist U offen bezüglich der von d erzeugten Topologie und insgesamt wird H von d metrisiert.

Bemerkung. Der aus der Topologie bekannte Satz von Tychonoff liefert unmittelbar, dass H als Produkt kompakter topologischer Räume ebenfalls kompakt ist. Außerdem lässt sich unter Ausnutzung von Aussage (a) aus Hilfssatz 2.11 leicht zeigen, dass (H,d) vollständig ist. Weil Mengen der Form (2.5), bei denen U_n ausschließlich rationale Intervalle sind, eine abzählbare Basis der Topologie von H bilden, ist H sogar separabel und damit insgesamt ein kompakter polnischer Raum.

Hilfssatz 2.12. Sei (X, d) ein separabler metrischer Raum und sei $D := \{x_n \mid n \in \mathbb{N}\} \subseteq X$ eine abzählbare dichte Teilmenge. Außerdem setzen wir

$$\varphi \colon X \to H, \ x \mapsto (\min(1, d(x, x_n)))_n. \tag{2.6}$$

Dann gilt das Folgende:

- (a) φ ein Homöomorphismus zwischen X und $\varphi(X)$.
- (b) Ist (X, d) vollständig, so ist $\varphi(X) \subseteq H$ eine G_{δ} -Teilmenge.

Beweis. Wir zeigen zunächst, dass φ injektiv ist. Dazu seien $y, z \in H$ mit $\varphi(y) = \varphi(z)$, also gilt

$$\min(1, d(y, x_n)) = \min(1, d(z, x_n)) \tag{2.7}$$

für alle $n \in \mathbb{N}$. Weil es eine Folge $(y_n)_n \in D^{\mathbb{N}}$ mit $y_n \to y$ gibt und diese wegen (2.7) auch gegen z konvergiert, folgt die Gleichheit von y und z.

Die Stetigkeit von φ folgt direkt, weil die Komponentenfunktionen $x \mapsto \min(1, d(x, x_n))$ jeweils stetig sind. Seien nun $(y_k)_k \in X^{\mathbb{N}}$ und $y \in X$ mit $\varphi(y_k) \to \varphi(y)$, also

$$\min(1, d(y_k, x_n)) \to \min(1, d(y, x_n)), \quad k \to \infty$$
 (2.8)

für alle $n \in \mathbb{N}$. Wählt man nun $\varepsilon < 1$ beliebig, so existiert ein $n \in \mathbb{N}$ mit $d(y, x_n) \leq \varepsilon$. Wegen (2.8) ist dann auch $d(y_k, x_n) \to d(y, x_k)$, $k \to \infty$. Es gilt also die Ungleichung

$$\limsup_{k \to \infty} d(y_k, y) \leq \limsup_{k \to \infty} d(y_k, x_n) + d(y, x_n) \leq 2\varepsilon$$

und mit $\varepsilon \to 0$ folgt die Stetigkeit von φ^{-1} , womit Aussage (a) gezeigt ist.

Nun beweisen wir noch Aussage (b). Da φ ein Homöomorphismus auf sein Bild ist, ist $\varphi(B_{1/k}(x_m)) \subseteq \varphi(X)$ für alle $k, m \in \mathbb{N}$ relativ offen, also gibt es jeweils offene Mengen $V_{k,m} \subseteq H$ mit

$$\varphi(B_{1/k}(x_m)) = V_{k,m} \cap \varphi(X). \tag{2.9}$$

Wir möchten jetzt zeigen, dass

$$\varphi(X) = \overline{\varphi(X)} \cap \bigcap_{k \in \mathbb{N}} \left(\bigcup_{m \in \mathbb{N}} V_{k,m} \right)$$
 (2.10)

gilt. Weil $\overline{\varphi(X)}$ nach Hilfssatz 2.6 als abgeschlossene Menge eine G_{δ} -Menge ist, folgt aus (2.10) direkt die Aussage (b).

Für jedes $m \in \mathbb{N}$ ist sicherlich $\varphi(X) \subseteq \bigcup_{m \in \mathbb{N}} V_{k,m}$, weshalb "⊆" in (2.10) unmittelbar folgt. Wir nehmen nun an, dass z in der rechten Seite von (2.10) liegt. Dann gibt es für jedes $k \in \mathbb{N}$ ein $m_k \in \mathbb{N}$ mit $z \in V_{k,m_k}$. Ferner existiert wegen $z \in \varphi(X)$ eine Folge $(y_k)_k \in X^{\mathbb{N}}$ mit $\varphi(y_k) \to z$, wobei wir zusätzlich $\varphi(y_k) \in \bigcap_{j=1}^k V_{j,m_j}$ fordern. Weil damit nach (2.9) auch für alle $k \in \mathbb{N}$

$$y_k \in \bigcap_{i=1}^k B_{1/k}(x_m)$$

gilt, ist $(y_k)_k$ eine Cauchyfolge. Aufgrund der Vollständigkeit von (X,d) gibt es also ein $y \in X$ mit $y_k \to y$, was $z = \varphi(y) \in \varphi(X)$ impliziert.

Hilfssatz 2.13. Sei X ein polnischer Raum. Dann ist jede G_{δ} -Teilmenge von X (ausgestattet mit der Teilraumtopologie) ebenfalls polnisch.

Beweis. Sei $P \subseteq X$ eine G_{δ} -Teilmenge und $U_n \subseteq X$, $n \in \mathbb{N}$ offene Mengen mit $P = \bigcap_{n \in \mathbb{N}} U_n$, wobei wir außerdem $A_n := U_n^{\mathfrak{c}}$ schreiben. Ferner sei d eine Metrik, die X vollständig metrisiert. Da P als Teilmenge eines separablen metrischen Raumes selbst separabel ist, genügt es, die vollständige Metrisierbarkeit von P zu beweisen.

Für $x, y \in P$ definieren wir

$$d^*(x,y) := d(x,y) + \sum_{n=1}^{\infty} \min\left(\frac{1}{2^n}, \left| \frac{1}{d(x,A_n)} - \frac{1}{d(y,A_n)} \right| \right).$$

Offensichtlich ist d^* eine Metrik auf P, die dieselbe Topologie wie d erzeugt.

Wir möchten nun zeigen, dass (P, d^*) vollständig ist. Sei dazu $(x_k)_k \in P^{\mathbb{N}}$ eine Cauchyfolge. Wegen $d \leq d^*$ ist $(x_k)_k$ dann auch bezüglich d eine Cauchyfolge und die Vollständigkeit von (X, d) liefert die Existenz eines Grenzwertes $x \in X$. Angenommen $x \notin P$, so gibt es ein $m \in \mathbb{N}$ mit $x \in A_m$. Damit gilt aber für alle $k \in \mathbb{N}$

$$\sup_{l \ge k} d^*(x_k, x_l) \ge \sup_{l \ge k} \sum_{n=1}^{\infty} \min \left(\frac{1}{2^n}, \left| \frac{1}{d(x_k, A_n)} - \frac{1}{d(x_l, A_n)} \right| \right) \ge \frac{1}{2^m} > 0,$$

was der Tatsache widerspricht, dass $(x_k)_k$ eine Cauchyfolge bezüglich d^* ist. Damit muss also $x \in P$ gelten. Aus der Stetigkeit von $x \mapsto d(x, A_n)$ folgt mit dem Satz von Lebesgue unmittelbar die Konvergenz $d^*(x_k, x) \to 0$ für $k \to \infty$.

Da wir in Hilfssatz 2.12 bereits gesehen haben, dass jeder polnische Raum homöomporph zu einer G_{δ} -Teilmenge vom Hilbertwürfel H ist und wir durch Lemma 2.13 nun auch wissen, dass jede G_{δ} -Teilmenge von H tatsächlich polnisch ist, haben wir also insgesamt den folgenden Satz bewiesen:

Satz 2.14 (Charakterisierung polnischer Räume). Ein topologischer Raum (X, \mathcal{O}) ist genau dann polnisch, wenn es eine G_{δ} -Teilmenge $Y \subseteq H$ gibt, sodass X zu Y homöomorph ist.

Bemerkung. Da eine Teilmenge von H genau dann kompakt ist, wenn sie abgeschlossen (und damit nach Hilfssatz 2.6 eine G_{δ} -Teilmenge) ist, entsprechen die kompakten polnischen Räume bis auf Homöomorphie den abgeschlossenen Teilmengen von H.

LITERATUR 11

Literatur

[Sim15] Barry Simon. Real Analysis. Bd. Part 1. A Comprehensive Course in Analysis. Providence, Rhode Island: AMS American Mathematical Society, 2015. ISBN: 978-1-4704-1099-5.

Erklärung

Ich versichere wahrheitsgemäß, die Arbeit selbstständig verfasst, alle benutzten Hilfsmittel vollständig und genau angegeben und alles kenntlich gemacht zu haben, was aus Arbeiten anderer unverändert oder mit Abänderungen entnommen wurde, sowie die Satzung des KIT zur Sicherung guter wissenschaftlicher Praxis in der jeweils gültigen Fassung beachtet zu haben.

Ort, den Datum