Math 5301 – Numerical Analysis – Spring 2025 w/Professor Du

Paul Carmody Homework #1 – January 24, 2025

Question 1 (20 points)

Using Newton's Divided Difference Table, construct a quadratic polynomial to interpolate the function $f(x) = \sin x$ at x + 0 = 0, $x_1 = \pi/4$ and $x_2 = \pi/2$.

(a) Write the polynomial in the form $P_2(x) = ax^2 + bx + c$, include the divided difference table you use.

$$P_2(x) = -0.3357x^2 + 0.9003x$$

(b) Estimate the error bound for the interpolation.

Our Error Bound is

$$|f(x) - P_2(x)| \le \frac{1}{(n+1)!} |f'''|_{\max} (x - x_0)(x - x_1)(x - x_2)$$

 $\le \frac{1}{6} (x - 0)(x - \pi/4)(x - \pi/2)$

where $0 \le x \le \pi/2$

(c) Estimate (graphically) the largest real error by comparing the plots of y = f(x) and $y = P_2(x)$. Attach computer generated plots.

(d) Compare the real error with the error bound computed in step (b) and comment on the comparison. the largest real error appears to be at $\pi/2$ atabout 0.4. outside the error bound

Question 2 (20 points)

Suppose we do piecewise interpolation over equally-spaced nodes with [1,4] for f(x) = 1/x. We would like to keep the largest error under 10^{-3} .

(a) How many nodes are required for piecewise linear interpolation?

From Theorem 3.13

Error Bound =
$$\frac{M}{384} \max_{0 \le j \le n-1} h^4$$

where $M = \max_{a \le x \le b} f^{(4)}(x) = \max_{1 \le x \le 4} f^{(4)}(x) = \max_{1 \le x \le 4} \frac{4!}{x^5} = 4! = 24$
 $10^{-3} = 24h^4$
 $h = \sqrt[4]{\frac{0.001}{24}}$
 $= 0.803$
 $n = \frac{4-1}{0.0803}$
 $n \approx 37$

(b) How many nodes are required for piecewise quadratic interpolation?

Error Bound
$$\leq \frac{1}{(n+1)!} \left| f''' \right|_{\max_{a \leq x \leq b}} h^3$$
 where $h = (b-a)/n$
 $\leq \frac{1}{(n+1)!} \left| \frac{6}{x^4} \right|_{\max_{1 \leq x \leq 4}} h^3$ where $h = 3/n$
 $10^{-3} \leq \frac{162}{n^3(n+1)!}$
 $n^3(n+1)! = \frac{0.001}{162} = 0.000006172$
 $n \approx 3$

(c) Use Matlab to confirm your calculation in (a).