A. .

Insert between stage C and stage D. $Throughput = \frac{1 \, instruction}{(80+30+60+20) \, picoseconds} \cdot \frac{1,000 \, picoseconds}{1 \, nanosecond} \approx 5.26 GIPS.$ The latency is 380ps.

В. .

Between stage B and stage C and stage D and stage E. $Throughput = \frac{1 \, instruction}{(80+30+20) \, picoseconds} \cdot \frac{1,000 \, picoseconds}{1 \, nanosecond} \approx 7.69 GIPS.$ The latency is 390ps.

C. .

For a three-stage pipeline, we should have blocks A and B in the first stage, blocks C and D in the second, and blocks E and F in the third. $Throughput = \frac{1 instruction}{(30+60+20) \, picoseconds} \cdot \frac{1,000 \, picoseconds}{1 \, nanosecond} \approx 9.09 GIPS.$ The latency is 440ps.

D. .

The optimal design would be a five-stage pipeline, with each block in its own stage, except that fifth stage has blocks E and F. Throughput = $\frac{1 \, instruction}{(80+20) \, picoseconds} \cdot \frac{1,000 \, picoseconds}{1 \, nanosecond} \approx 10 GIPS.$ The latency is 500ps.