CS2100 - L21a - Sequential Logic (Building Blocks)

21a.1 - Memory elements

21a.2 - Latches

- S-R latch

- Dlatch

21a.3 - Flip-flops

- S-R flip-flop

- D flip-flop

- J-K flip-flop

- T flip-flop

Memory Elements: Overview

 A device which can remember value indefinitely, or change value on command from its inputs.

Characteristic table:

		11000	Carre
Diff K from truth	Command (at time t)	Q(t)	Q(t+1
table	Set	Х	1
	Reset	Х	0
	Memorise /	0	0

No Change

Q(t) or Q: current state Q(t+1) or Q^+ : next state

[L21a - AY2021S1]

Memory Elements: Triggering/Activation

- Two types of triggering/activation
- 1. Pulse-triggered
 - Latches
 - ON = 1, OFF = 0

 Positive pulses

 Positive edges

 Negative edges
- 2. Edge-triggered
 - Flip-flops
 - Positive edge-triggered (ON = from 0 to 1; OFF = other time)
 - Negative edge-triggered (ON = from 1 to 0; OFF = other time)

[L20a - AY1920S1]

S-R latch

S-R Latch: Overview

- Two inputs: [S and R]
- Two complementary outputs: [Q and Q']
 - When Q = HIGH → latch is in SET state
 - When Q = LOW → latch is in RESET state

- Two variants:
 - Active high input S-R Latch (1 = active)
 - Active low input S-R Latch (0 = active)

[L21a - AY2021S1]

Active High S-R Latch: Characteristic

Characteristic table:

S	R	Q	Q'	Action
0	0	NC	NC	No change. Latch remained in present state.
1	0	1	0	Latch SET.
0	1	0	1	Latch RESET.
1	1	0	0	Invalid condition.

, –) 	Q
<u>.</u> _	> <u> </u>	Q'
	s	_ Q
_	R	⊶ q′

s	R	Q(t+1)	r Q ⁺
0	0	Q(t)	No change
0	1	0	Reset
1	0	1	Set
1	1	indeterminate	

$$\int Q(t+1) = ? S + R' \cdot G$$

$$S \cdot R = 0$$

Active-Low S-R Latch

Active-low input S-R latches are similarly constructed with cross-coupled NAND gates:

- Note the alternative drawing on the right, where NAND gate is drawn as Negative-OR gate
- In this case.

[L21a - AY2021S1]

- □ when **R=0** and **S=1**, the latch is **reset** (i.e. Q becomes 0)
- when R=1 and S=0, the latch is set (i.e. Q becomes 1)
- when **S=R=1**, it is a **no-change** command.
- when **S=R=0**, it is an **invalid** command.

Gated S-R Latch (with enable)

S-R latch + enable input (EN) and 2 AND gates → a gated S-R latch

Outputs change (if necessary) only when EN is high

Gated **DLatch**: Overview

■ Make input R equal to $S' \rightarrow \text{gated } D \text{ latch}$

 D latch eliminates the undesirable condition of invalid state in the S-R latch

[L21a - AY2021S1]

Gated **D**Latch: Characteristic

- When EN is high,
 - □ $D = HIGH \rightarrow latch$ is SET
 - D = LOW → latch is RESET
- Hence when EN is high, Q "follows" the D (data) input.
- Characteristic table:

EN	D	Q(t+1)	
1	0	0	Reset
1	1	1	Set
0	Χ	Q(t)	No change

When EN=1, Q(t+1) = ? D

Flip-Flops: Variants

- S-R flip-flop, D flip-flop, J-K flip-flop and T flip-flop
- Note the ">" symbol at the clock input.

S-R flip-flop

S-R Flip-Flop

- On the triggering edge of the clock pulse,
 - □ R = HIGH and S = LOW → Q becomes LOW (RESET state)

 - Both R and S are LOW → No change in output Q
 - Both R and S are HIGH → Invalid!
- Characteristic table of positive edge-triggered S-R flip-flop:

S	R	CLK	Q(t+1)	Comments
0	0	Х	Q(t)	No change
0	1	\uparrow	0	Reset
1	0	\uparrow	1	Set
1	1	\uparrow	?	Invalid

X = irrelevant ("don't care")

↑ = clock transition LOW to HIGH

[L21a - AY2021S1]

D Hip-Hop

D Flip-Flop: Summary

- Single input D (data), on the triggering edge of the clock pulse:
 - □ $D = HIGH \rightarrow Q$ becomes HIGH (SET state)
 - □ D = LOW → Q becomes LOW (RESET state)
- Hence, Q "follows" D at the clock edge.
- Convert S-R flip-flop into a D flip-flop: add an inverter

D	CLK	Q(t+1)	Comments
1	↑	1	Set
0	↑	0	Reset

↑ = clock transition LOW to HIGH

[L21a - AY2021S1]

J-K flip-flop

J-K Flip-Flop

Q and Q' are fed back to the pulse-steering NAND gates

Characteristic table:

	J	Κ	CLK	Q(t+1)	Comments		
	0	0	↑	Q(t)	No change	-	
	0	1	↑	0	Reset		
	1	0	\uparrow	1	Set	(No illogal
	1	1	\uparrow	Q(t)'	Toggle		No illegal state!
Q(t+1) = ?							State!

[L21a - AY2021S1]

T flip-flop

T Flip-Flop

Formed by tying both inputs of J-K Flip-Flop together:

Characteristic table:

[L21a - AY2021S1]

T	CLK	Q(t+1)	Comments
0	↑	Q(t)	No change
1	↑	Q(t)'	Toggle

$$Q(t+1) = ?$$

Q	Т	Q(t+1)
0	0	0
0	1	1
1	0	1
1	1	0

Flip-Flop Characteristic Tables

Summary of the 4 flip-flops covered:

J	K	Q(t+1)	Comments
0	0	Q(t)	No change
0	1	0	Reset
1	0	1	Set
1	1	Q(t)'	Toggle

S	R	Q(t+1)	Comments
0	0	Q(t)	No change
0	1	0	Reset
1	0	1	Set
1	1	?	Unpredictable

D	Q(t+1)	
0	0	Reset
1	1	Set

T	Q(t+1)	
0	Q(t)	No change
1	Q(t)'	Toggle