

ABSORBENT ARTICLE

Patent number:

JP8052203

Publication date:

1996-02-27

Inventor:

HANAOKA KOJI; DOI HIROKO; MIYANAGA SEIICHI;

KONNO TAKESHI

Applicant:

KAO CORP

Classification:

- international:

A61L15/60; A61F13/46; A61F5/44; C08K5/00;

C08L101/14

- european:

Application number: JP19950144393 19950612

Priority number(s): JP19940129323 19940610; JP19950144393 19950612

Report a data error here

Abstract of JP8052203

PURPOSE:To provide an absorbent article which is capable of suppressing the lowering in body fluid holdability of an absorber contg. a highly water absorbent polymer with lapse of time and has excellent absorbing characteristic. CONSTITUTION:This absorbent article has a liquid permeable top sheet, a liquid impermeable back sheet and the absorber contg. the highly water absorbent polymer arranged between these two sheets. The absorber contains a chelate agent compd. which has a part capable of forming Cu ions and chelate and has the solubility of the Cu salt in a physiological salt soln. of 25 deg.C of <=0.01wt.%. The content ratio of this chelate agent compd. is specified to 0.0001 to 30 pts.wt. per 100 pts.wt. highly water absorbent polymer.

Data supplied from the esp@cenet database - Worldwide

(19)日本国特許庁(JP)

(12)公開特許公報 (A)

(11)特許出願公開番号

特開平8-52203

(43)公開日 平成8年(1996)2月27日

(51).Int. Cl. 6

識別記号

FI

A61L 15/60

A61F 13/46

5/44

H 7108-4C

A61F. 13/18

307

A41B 13/02

D

未請求 請求項の数8 OL 審査請求

(全14頁) 最終頁に続く

(21)出願番号

特願平7-144393

(22)出願日

平成7年(1995)6月12日

(31)優先権主張番号

特願平6-129323

(32)優先日

平6(1994)6月10日

(33)優先権主張国

. 日本 (JP)

(71)出願人 000000918

花王株式会社

東京都中央区日本橋茅場町1丁目14番10号

(72)発明者 花岡 幸司

栃木県芳賀郡市貝町赤羽2606 花王株式会

社研究所内

(72)発明者 土井 拓子 .

栃木県芳賀郡市貝町赤羽2606 花王株式会

社研究所内

(72)発明者 宮永 清一

和歌山県和歌山市湊1334 花王株式会社研

究所内

(74)代理人 弁理士 羽鳥 修 (外1名)

最終頁に続く

(54) 【発明の名称】吸収性物品

(57) 【要約】

【目的】 高吸水性ポリマーを含有する吸収体の経時的 な体液保持性の低下が抑制され、吸収特性に優れた吸収 性物品を提供すること。

【構成】 液透過性のトップシートと、液不透過性のバ ックシートと、これら両シート間に配置された高吸水性 ポリマーを含有する吸収体とを備える吸収性物品におい て、上記吸収体が、Cuイオンとキレートを形成し得る 部位を有し且つ25℃の生理食塩水中におけるCu塩の 溶解度が0.01重量%以下であるキレート剤化合物を 含有しており、該キレート剤化合物の含有割合が、該高 吸水性ポリマー100重量部に対して0.0001~3 0 重量部である吸収性物品。

【特許請求の範囲】

【請求項1】 液透過性のトップシートと、液不透過性のパックシートと、これら両シート間に配置された高吸水性ポリマーを含有する吸収体とを備える吸収性物品において、

上記吸収体が、Cuイオンとキレートを形成し得る部位を有し且つ25℃の生理食塩水中におけるCu塩の溶解度が0.01重量%以下であるキレート剤化合物を含有しており、該キレート剤化合物の含有割合が、該高吸水性ポリマー100重量部に対して0.0001~30重 10量部である吸収性物品。

【請求項2】 上記キレート剤化合物の、Cuイオンとの25℃におけるキレート安定度定数の常用対数値(pKCu)が3以上である、請求項1記載の吸収性物品。

【請求項3】 上記キレート剤化合物が、炭素原子数6以上の飽和又は不飽和炭化水素基からなる疎水部と、カルボン酸基、スルホン酸基、水酸基及びリン酸基から成る群から選択される少なくとも1つの基を有する親水部とからなる、請求項1又は2記載の吸収性物品。

【請求項4】 上記キレート剤化合物が、多価カルボン酸誘導体、ヒドロキシカルボン酸誘導体、イミノジ酢酸誘導体、有機酸アミド誘導体、N-アシル化アミノ酸誘導体、リン酸エステル誘導体、ホスホン酸誘導体又は多価ホスホン酸誘導体である、請求項3記載の吸収性物品。

【請求項5】 上記キレート剤化合物が、クエン酸モノアルキルアミド、クエン酸モノアルケニルアミド、クエン酸モノアルケニルエステル、クエン酸モノアルケニルエステル、アルキルマロン酸、アルケニルマロン酸、Nーアシル化グルタミン酸、Nーアシル化アスパラギン酸、NーアルキルーN'ーカルボキシメチルアスパラギン酸、NーアルケニルーN'ーカルボキシメチルアスパラギン酸、モノアルキルリン酸エステル、モノアルケニルリン酸エステル又はそれらのアルカリ金属塩若しくはアルカリ土類金属塩である、請求項4記載の吸収性物品。

【請求項6】 上記キレート剤化合物が、βージケトン 誘導体である、請求項1又は2記載の吸収性物品。

【請求項7】 上記キレート剤化合物が、トロポロン誘導体である、請求項1又は2記載の吸収性物品。

【請求項8】 上記吸水性ポリマーが、カルボキシル基 40 若しくはその塩を有する高分子化合物の部分架橋体又は 多糖類の部分架橋体である請求項1~7の何れかに記載 の吸収性物品。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は、幼児用、大人用あるい は失禁者用の使い捨ておむつ、又は婦人用の生理用ナプ キン等の吸収性物品に関する。

[0002]

【従来の技術及び発明が解決しようとする課題】幼児

用、大人用あるいは失禁者用の使い捨ておむつ、又は婦人用の生理用ナプキン等の吸収性物品における吸収体としては、近年、綿、パルプ、紙等の繊維質材料に高吸水性ポリマーを複合化したものが用いられている。また、最近では、携帯性や装着性の観点から、これらの吸収性物品をコンパクト化することが要求されており、その結果高吸水性ポリマーの含有割合を高くしてコンパクト化した吸収性物品も数多く上市されてきている。

【0003】しかしながら、これらの高吸水性ポリマーを含有する吸収体を用いた従来の吸収性物品、特に該高吸水性ポリマーの含有割合を高くした吸収性物品では、尿、経血、汗等の体液を吸収した後、該体液が含有するL-アスコルビン酸(塩)等のラジカル発生種の作用により、体液を吸収した高吸水性ポリマーの膨潤ゲルが経時的に劣化、分解し、結果として、吸収体の体液保持性が経時的に低下して液漏れが起こり、布団、シーツ、衣服等を体液で汚したり、また、吸収体に体重がかかったときに生じる液戻りが多くなり、装着中の快適性が損なわれることがあった。

【0004】また、上記ラジカル発生種による高吸水性ポリマーの分解反応は含水状態下、特に空気雰囲気下で2種以上の酸化数をとり得る鉄や銅などの遷移金属イオンが共存する水溶液中又は含水状態下で顕著である。

【0005】上述の通り、従来の吸収体に高吸水性ポリマーを用いた吸収性物品では、吸収体の体液保持性が経時的に低下して、液戻りが多くなりかつ液漏れも起こしやすいという問題点があり、高吸水性ポリマーを含有する吸収体の経時的な体液保持性の低下がなく、体液吸収特性に優れる吸収性物品が要望されている。

[0006] そこで、吸収体中の高吸水性ポリマーが体液を吸収して形成される膨潤ゲルの経時的劣化、分解を抑制し、吸収体の体液保持性を経時的に安定にするための種々の方法が提案されており、例えば上記膨潤ゲルの安定化剤として、特開昭63-272349号公報、特公平5-34383号公報、特開平2-255804号公報、特開平3-179008号公報に含硫黄還元剤、含酸素還元性無機塩、水溶性連鎖移動剤等を用いる方法が報告されているが、これらの方法でも未だ十分な効果が得られてはおらず、また、上記安定化剤はいずれも悪臭を発生したり、皮膚刺激/アレルギー誘因物質であるため、人体との接触が起こりうる吸収性物品に用いるには安全性等に問題があった。

[0007] 従って、本発明の目的は、高吸水性ポリマーを含有する吸収体の経時的な体液保持性の低下が抑制され、吸収特性に優れた吸収性物品を提供することにある。

[0008]

30

【課題を解決するための手段】本発明者等は、上記問題 を解決すべく、鋭意検討を重ねた結果、特定のキレート 50 剤化合物を、高吸水性ポリマーを有する吸収体に含有さ

せた吸収性物品が、上記目的を達成し得るこを知見した。

[0009] 本発明は、上記知見に基づいてなされたものであり、液透過性のトップシートと、液不透過性のバックシートと、これら両シート間に配置された高吸水性ポリマーを含有する吸収体とを備える吸収性物品において、上記吸収体がCuイオンとキレートを形成し得る部位を有し且つ25℃の生理食塩水中におけるCu塩の溶解度が0.01重量%以下であるキレート剤化合物を含有しており、該キレート剤化合物の含有割合が、該高吸水性ポリマー100重量部に対して0.0001~30重量部である吸収性物品を提供するものである。

【0010】以下、本発明の吸収性物品についてさらに詳細に説明する。本発明の吸収性物品は、液透過性のトップシートと、液不透過性のバックシートと、これら両シート間に配置された高吸水性ポリマーを含有する吸収体がCuイオンとキレートを形成し得る部位を有し且つ25℃の生理食塩水中におけるCu塩の溶解度が0.01重量%以下であるキレート剤化合物を含有しており、該キレ20ート剤化合物の含有割合が、該高吸水性ポリマー100重量部に対して0.0001~30重量部であることを特徴とする。

【0011】尚、上記吸収体としては、親水性繊維を主たる材料とするものであり、該親水性繊維としては、解繊パルプ、セルロース系繊維、あるいは、熱可塑性繊維を親水化した繊維等が好ましく挙げられ、一般の吸収性物品の吸収体に用いられるものも特に制限されずに使用可能である。

[0012] 本発明において、上記吸収体が含有する上 30 記高吸水性ポリマーとしては、通常吸収性物品に用いられるものであれば特に制限されないが、例えば、カルボキシル基若しくはその塩を有する高分子化合物の部分架橋体又は多糖類の部分架橋体が特に好ましく用いられる。上記カルボキシル基若しくはその塩を有する高分子化合物の部分架橋体としては、例えば、ポリアクリル酸塩架橋体、ポリ(ビニルアルコール/アクリル酸塩) 共重合体架橋体、澱粉-アクリル酸塩グラフト共重合体

(架橋体)及びポリビニルアルコールーポリ無水マレイン酸塩グラフト共重合体架橋体等が挙げられる。多糖類 40 の部分架橋体としては、例えば、カルボキシメチルセルロース塩架橋体等が挙げられる。また、「ポイズSA-20」商品名、花王株式会社製、「ダイヤウエット」商品名、三菱油化製、等の市販品を用いることもできる。なお、これら高吸水性ポリマーは、各々単独で使用してもよく又は2種以上を組み合わせて使用してもよい。

【0013】また、本発明に用いられる上記吸収体における上記親水性繊維と上記高吸水性ポリマーとの配合割合(上記高吸収性ポリマーの含有割合)は、好ましくは親水性繊維1~99重量部に対して、高吸収性ポリマー 50

99~1重量部、更に好ましくは親水性繊維80~40 重量部に対して、高吸収性ポリマー20~60重量部で ある

【0014】上記吸収体の構造は特に限定されないが、 該構造としては、例えば、上記高吸水性ポリマーを上記 親水性繊維からなる吸収紙や不織布の間に挟持させた構 造や、上記高吸水性ポリマーと解繊パルプとを混合した 後、シート状に形成した構造等が挙げられる。

[0015]本発明において用いられるキレート剤化合 10 物は、Cuイオンとキレートを形成し得る部位を有し且 つ25℃の生理食塩水中におけるCu塩の溶解度が0.01重量%以下である。ここで、「Cuイオンとキレートを形成し得る部位」とは、一般に錯体化学の分野で配位子として作用すると考えられているような化合物中において、金属イオンと配位結合を形成し得る配位座を意味する。また、本発明における「溶解度」とは、25℃において生理食塩水に上記キレート剤化合物のCu塩を添加し、30分間攪拌しながら溶解させた後に、溶液が透明となるような該キレート剤化合物のCu塩の最大添加量(重量)を溶液の重量で除した濃度(重量%)を意味する。

【0016】上記キレート剤化合物は、従来高吸水性ポリマーの安定化剤として用いられてきた添加剤に比して、高吸水性ポリマーが体液を吸収して形成される膨潤ゲルの該体液中のLーアスコルビン酸等のラジカル発生種による分解/劣化抑制能が格段に高いものである。上記キレート剤化合物の吸収体への含有割合は、上記高吸水性ポリマー100重量部に対して0.0001~30重量部、好ましくは0.001~10重量部、更に好ましくは0.01~5重量部である。上記含有割合が、0.0001重量部未満であると、上記キレート剤化合

[0017]上記キレート剤化合物は、Cuイオン(Cu''イオン又はCu'イオン)との25℃におけるキレート安定度定数の常用対数値(pKCu)が3以上であることが特に好ましい。pKCuが3未満では、高吸水性ポリマーを含有する吸収体を備える吸収性物品における経時的な体液保持性の低下等の効果が発現しない場合があるので、上記の値以上とすることが好ましい。

物による効果は発現せず、また30重量部を超えて用い

ても効果の向上が無く、吸収体の物性等を損なう傾向に

あるので上記範囲内とするのが好ましい。

[0018] また、本発明において用いられるキレート 剤化合物は、下記の3つの群から選択されることが好ま しい。

(1)第1の群:炭素原子数6~30の飽和又は不飽和炭化水素基からなる疎水分と、カルボン酸基、スルホン酸基、水酸基及びリン酸基から成る群から選択される少なくとも1つの基を有する親水部とからなる化合物。

- (2) 第2の群: β-ジケトン誘導体。
- (3) 第3の群:トロポロン誘導体。

本発明においては、上記3つの群のうちの何れか1つの 群から選択される化合物の1種又は2種以上を用いるこ とができ、また、上記3つの群のうちの少なくとも2つ の群からそれぞれ選択される化合物の1種又は2種以上 を組み合わせて用いることもできる。更に、これら3つ の群から選択されるキレート剤化合物の p K C u が約3 以上であることもまた好ましい。

【0019】上記第1の群に属するキレート剤化合物 は、炭素原子数6~30(好ましくは12~22)の飽 和又は不飽和炭化水素基からなる疎水部と、カルボン酸 基、スルホン酸基、水酸基及びリン酸基から成る群から 選択される少なくとも1つの基を有する親水部とからな る。飽和炭化水素基としては、直鎖若しくは分枝アルキ ル基又はシクロアルキル基等が挙げられ、不飽和炭化水 素基としては、直鎖若しくは分枝アルケニル基又はフェ ニル基等が挙げられる。そのような基を有するキレート 剤化合物としては、例えば、多価カルボン酸誘導体、ヒ ドロキシカルボン酸誘導体、イミノジ酢酸誘導体、有機 酸アミド誘導体、N-アシル化アミノ酸誘導体、リン酸 エステル誘導体、ホスホン酸誘導体及び多価ホスホン酸 20 誘導体並びにそれらのアルカリ金属塩及びアルカリ土類 金属塩等が挙げられるが、これらの例示に限定されるも のではない。

[0020] 多価カルボン酸誘導体としては、アルキル マロン酸及びアルケニルマロン酸並びにそれらの塩等を 挙げることができる。ヒドロキシカルボン酸誘導体とし ては、クエン酸モノアルキルエステル及びクエン酸モノ アルケニルエステル並びにそれらの塩等を挙げることが できる。イミノジ酢酸誘導体としては、N-アルキルー N'-カルボキシメチルアスパラギン酸及びN-アルケ ニル-N'-カルボキシメチルアスパラギン酸並びにそ れらの塩等を挙げることができる。有機酸アミド誘導体 としては、クエン酸モノアルキルアミド及びクエン酸モ

CH2-CO-NH-R1 (I)HO-C-COOM,

CH2-COOM1

(式中、R'は炭素原子数6~30のアルキル基又はアルケニル基を表し、M'は 同一の又は異なるアルカリ金属イオン、アンモニウムイオン又は水素を表す。)

【0024】上記クエン酸モノアルキルアミド及びクエ ン酸モノアルケニルアミド並びにそれらの塩は、公知の 方法によって合成することができる。例えば、アミンと クエン酸の脱水縮合を完全に行わせしめて得られるイミ ンを加水分解、中和して得られる。一般式 (I) におけ るR'の炭素原子数を適切に選ぶことにより目的にあっ たクエン酸モノアルキルアミド及びクエン酸モノアルケ ニルアミド並びにそれらの塩を得ることができるが、R ' の炭素原子数が30を超えると水溶性が著しく悪くな ノアルケニルアミド並びにそれらの塩等を挙げることが できる。N-アシル化アミノ酸誘導体としては、N-ア シル化グルタミン酸及びN-アシル化アスパラギン酸並 びにそれらの塩等を挙げることができる。リン酸エステ ル誘導体としては、モノアルキルリン酸エステル及びモ ノアルケニルリン酸エステル並びにそれらの塩等を挙げ ることができる。ホスホン酸誘導体としては、アルキル ホスホン酸及びアルケニルホスホン酸並びにそれらの塩 やフェニルホスホン酸及びその塩等を挙げることができ る。そして、多価ホスホン酸誘導体としては、アルキレ ンピス(ニトリロジメチレン)テトラホスホン酸及びそ の塩等を挙げることができる。

【0021】これらのうち、就中クエン酸モノアルキル アミド及びクエン酸モノアルケニルアミド並びにそれら の塩、クエン酸モノアルキルエステル及びクエン酸モノ アルケニルエステル並びにそれらの塩、アルキルマロン 酸及びアルケニルマロン酸並びにそれらの塩、N-アル キル-N'-カルボキシメチルアスパラギン酸及びN-アルケニルーN'ーカルボキシメチルアスパラギン酸並 びにそれらの塩、N-アシル化グルタミン酸並びにそれ らの塩、モノアルキルリン酸エステル及びモノアルケニ ルリン酸エステル並びにそれらの塩がキレート剤化合物 として好ましく用いられ、特に、クエン酸モノアルキル アミド及びクエン酸モノアルケニルアミド並びにそれら の塩、クエン酸モノアルキルエステル及びクエン酸モノ アルケニルエステル並びにそれらの塩等のクエン酸誘導 体は、高吸水性ポリマーの安定化効果が高いので一層好 ましい。

[0022] 上記クエン酸モノアルキルアミド及びクエ ン酸モノアルケニルアミド並びにそれらの塩は、好まし くは下記一般式(I)で表される。

[0023]

[化1]

り、R'の炭素原子数が6未満であると高吸水性ポリマ 一の安定化剤としての性能が落ちる。 R' の炭素原子数 は、更に好ましくは12~22である。

【0025】上記クエン酸モノアルキルエステル及びク エン酸モノアルケニルエステル並びにそれらの塩は、好 ましくは下記一般式(II)で表される。

[0026]

(化2)

CH2-COO-M2

(式中、R*は炭素原子数6~30のアルキル基又はアルケニル基を表し、M*は 同一の又は異なるアルカリ金属イオン、アンモニウムイオン又は水素を表す。)

エン酸モノアルケニルエステル並びにそれらの塩は公知 の方法によって合成することができる。例えば、アルコ ールとクエン酸の脱水縮合により得られる。一般式(II) におけるR'の炭素原子数を適切に選ぶことにより目的 にあったクエン酸モノアルキルエステル及びクエン酸モ ノアルケニルエステル並びにそれらの塩を得ることがで きるが、R'の炭素原子数が30を超えると水溶性が著

[0027]上記クエン酸モノアルキルエステル及びク 10 しく悪くなり、R'の炭素原子数が6未満であると高吸 ·水性ポリマーの安定化剤としての性能が落ちる。R'の 炭素原子数は、更に好ましくは12~22である。 【0028】上記アルキルマロン酸及びアルケニルマロ ン酸並びにそれらの塩は、好ましくは下記一般式(III) で表される。

> . [0029] 【化3】

(III)

(式中、R³は炭素原子数6~30のアルキル基又はアルケニル基を表し、M³は 同一の又は異なるアルカリ金属イオン、アンモニウムイオン又は水素を表す。)

【0030】上記アルキルマロン酸及びアルケニルマロ ン酸並びにそれらの塩は公知の方法によって合成するこ とができる。例えば、αーオレフィンをマロン酸メチル 又はマロン酸エチルに付加せしめてアルキルマロン酸メ チル又はアルキルマロン酸エチルを得、次いでこれを加 水分解し、中和して得られる。一般式 (III)におけるR 30 * の炭素原子数を適切に選ぶことにより目的にあったア ルキルマロン酸及びアルケニルマロン酸並びにそれらの 塩を得ることができるが、R'の炭素原子数が30を超 えると水溶性が著しく悪くなり、R¹の炭素原子数が6 CH2COOM'

未満であると高吸水性ポリマーの安定化剤としての性能 が落ちる。R'の炭素原子数は、更に好ましくは12~ 22である。

[0031] 上記N-アルキル-N'-カルボキシメチ ルアスパラギン酸及びN-アルケニル-N'-カルボキ シメチルアスパラギン酸並びにそれらの塩は、好ましく は下記一般式(IV)で表される。

[0032]

【化4】

R'-N-CHCOOM' CH2COOM4

(V)

(式中、R'は炭素原子数6~30のアルキル基又はアルケニル基を表し、M'は 同一の又は異なるアルカリ金属イオン、アンモニウムイオン又は水素を表す。)

【0033】上記N-アルキル-N'-カルポキシメチ ルアスパラギン酸及びN-アルケニル-N'-カルポキ シメチルアスパラギン酸並びにそれらの塩は公知の方法 によって合成することができる。例えば、アミンをマレ イン酸に付加せしめて得られるアルキルアミノコハク酸 をカルボキシメチルクロライドでカルボキシメチル化 し、中和して得られる。一般式(IV)におけるR'の炭 素原子数を適切に選ぶことにより目的にあったN-アル キルーN'-カルボキシメチルアスパラギン酸及びN-

アルケニル-N'-カルボキシメチルアスパラギン酸並 びにそれらの塩を得ることができるが、R'の炭素原子 数が30を超えると水溶性が著しく悪くなり、R'の炭 素原子数が6未満であると高吸水性ポリマーの安定化剤 としての性能が落ちる。R'の炭素原子数は、更に好ま しくは12~22である。

【0034】上記モノアルキルリン酸エステル及びモノ アルケニルリン酸エステル並びにそれらの塩は好ましく 50 は下記一般式 (V) で表される。

'

[0035]

[化5]

(式中、R⁵は炭素原子数6~30のアルキル基又はアルケニル基を表し、M⁵は同一の又は異なるアルカリ金属イオン、アンモニウムイオン又は水素を表す。)

【0036】上記モノアルキルリン酸エステル及びモノアルケニルリン酸エステル並びにそれらの塩は公知の方 10 法によって合成することができる。例えば、五酸化リン、オキシ塩化リン又はポリリン酸などにより、アルコールをリン酸化せしめて得られる。一般式(V)におけるR'の炭素原子数を適切に選ぶことにより目的にあったモノアルキルリン酸エステル及びモノアルケニルリン酸エステル並びにそれらの塩を得ることができるが、R

*の炭素原子数が30を超えると水溶性が著しく悪くなり、 R^4 の炭素原子数が6未満であると高吸水性ポリマーの安定化剤としての性能が落ちる。 R^4 の炭素原子数は、更に好ましくは $12\sim22$ である。

【0037】上記N-アシル化グルタミン酸並びにそれらの塩は好ましくは下記一般式(VI)で表される。

[0038]

【化6】

(VI)

(式中、R⁶-CO-は炭素原子数 6~30のアシル基を表し、M⁶は同一の又は異なるアルカリ金属イオン、アンモニウムイオン、トリエタノールアンモニウムイオン又は水素を表す。)

【0039】上記N-アシル化グルタミン酸並びにそれらの塩は公知の方法によって合成することができるが、市販品としても入手できる。一般式(VI)におけるR・CO-の炭素原子数を適切に選ぶことにより目的にあったN-アシル化グルタミン酸並びにそれらの塩を得ることができるが、R・CO-の炭素原子数が30を超えると水溶性が著しく悪くなり、R・CO-の炭素原

R'-C-N-CH-CH₂-COOM' U I I O H COOM' 子数が6未満であると高吸水性ポリマーの安定化剤としての性能が落ちる。R'-CO-の炭素原子数は、更に好ましくは12~22である。

[0040]上記N-アシル化アスパラギン酸並びにそれらの塩は好ましくは下記一般式(VII)で表される。

[0041]

【化7】

(VII)

(式中、R⁷-CO-は炭素原子数6~30のアシル基を表し、M⁷は同一の又は 異なるアルカリ金属イオン、アンモニウムイオン、トリエタノールアンモニウム

イオン又は水素を表す。)

【0042】上記N-アシル化アスパラギン酸並びにそれらの塩は公知の方法によって合成することができるが、市販品としても入手できる。一般式 (VII)における R'-CO-の炭素原子数を適切に選ぶことにより目的にあったN-アシル化アスパラギン酸並びにそれらの塩を得ることができるが、R'-CO-の炭素原子数が30を超えると水溶性が著しく悪くなり、R'-CO-の炭素原子数が6未満であると高吸水性ポリマーの安定化剤としての性能が落ちる。R'-CO-の炭素原子数は、更に好ましくは12~22である。

【0043】上記第1の群に属するキレート剤化合物は、従来高吸水性ポリマーの安定化剤として用いられてきた添加剤に比べ安全性が高く、かつ高吸水性ポリマーに対する分解/劣化抑止能が高いものである。なお、上記第1の群に属するキレート剤化合物は各々単独で使用 50

してもよいし又は2種以上を併用してもよい。

【0044】上記の第2の群に属するβ-ジケトン誘導体は、Cuイオンとキレート形成が可能であり且つ25 ℃の生理食塩水中におけるCu塩の生理食塩水への溶解度が0.01重量%以下である化合物である。そして、上記β-ジケトン誘導体は、従来高吸水性ポリマーの安定化剤として用いられてきた添加剤に比べ安全性が高く、かつ高吸水性ポリマーに対する分解/劣化抑止能が高いものである。

【0045】そのような化合物としては、アセチルアセトン、ベンソイルアセトン、ジベンソイルメタン、フロイルアセトン、ベンソイルフロイルメタン、4ーヒドロキシーベンソイルアセトン、4ーヒドロキシージベンソイルメタン、4ーヒドロキシーソイルメタンーtertープチルケトン、4ーヒドロキシー

•

4' ーヒドロキシージベンゾイルメタン等の化合物が挙げられるが、これらの例示に限定されるものではない。また、これらのうち、就中アセチルアセトン、4 ーヒドロキシーベンゾイルアセトン、4 ーヒドロキシベンゾイルメタンー1 ルメタンー1 に属するこれらの1 の群に属するこれらの1 の形に属するこれらの1 を組み合わせて使用してもよい。

[0046] 上記の第3の群に属するトロポロン誘導体 は、Cuイオンとキレート形成が可能であり且つ25℃ 10 の生理食塩水中におけるCu塩の生理食塩水への溶解度 が0.01重量%以下である。かかるトロポロン誘導体 は、ある種の樹木中に見い出される天然物であり、高濃 度で人体や動物等に接触させても重大な影響を及ぼすこ とがなく、安全性の高いものである。そして、高吸水性 ポリマーを安定化する(分解/劣化を防止する)ために 上記トロポロン誘導体を使用することはこれまで知られ ておらず、特に上記トロポロン誘導体を含んで成る高吸 水性ポリマー組成物を吸収性物品等の衛生用品の吸水性 物質として使用することはこれまで知られていなかっ た。かかるトロポロン誘導体は、従来高吸水性ポリマー の安定化剤として用いられてきた添加剤に比べ安全性が 高く、かつ高吸水性ポリマーに対する分解/劣化抑止能 が高いものである。

[0047] 該トロポロン誘導体としては、トロポロ ン、β-ツヤブリシン、γ-ツヤブリシン、β-ドラブ リン及び6-イソプロピルトロポロン-4-カルボン酸 メチル並びにそのナトリウム塩及びカリウム塩等が挙げ られるが、これらの例示に限定されるものではない。ま た、これらのうち、就中β-ツヤプリシン及びγ-ツヤ 30 プリシンが好ましく用いられる。特にβ-ツヤプリシン は養・育毛剤、歯磨、香料、外用剤、浴剤、シャンプー 及びリンス等の香料として添加/使用されており、生体 的に安全な化合物であるので好ましいものである。上記 トロポロン誘導体としては、合成品又は半合成品を用い ても良く、或いは上記トロポロン誘導体を含む天然産の ヒバ油又はヒノキ抽出油等をそのまま用いても良く又は これらを精製して用いても良い。これらのトロポロン誘 導体は、各々単独で使用してもよく又は2種以上を組み 合わせて使用してもよい。

【0048】また、上記キレート剤化合物を吸収体に配するには、上記キレート剤化合物を吸収体中に好ましくは均一に配置できれば、その手段や形態は特に制限されないが、例えば吸収体の製造工程で、吸収体を構成する高吸水性ポリマーや紙、パルプ等の親水性繊維材料に上記キレート剤化合物を添加するだけでよい。上記キレート剤化合物の添加は、上記キレート剤化合物をそのまま、又はエタノール、水等の溶媒に溶解又は分散させた溶液として添加することにより行うことができる。中でも、高吸水性ポリマーの製造過程で上記キレート剤化合50

物を添加する方法、上記キレート剤化合物の上記溶液中に上記高吸水性ポリマーを投入し、攪拌して、該高吸水性ポリマーに上記キレート剤化合物を含有させる方法、又は、上記親水性繊維からなる吸収紙やパルプシート等の上に上記高吸水性ポリマーを散布した後、上記キレート剤化合物を散布する方法等により、上記高吸水性ポリマーに上記キレート剤化合物を含有させるのが、上記高吸水性ポリマーの膨潤ゲルの経時的劣化、分解を防止する効果が大きいので好ましい。

10 【0049】本発明の吸収性物品は、液透過性のトップシートと、液不透過性のバックシートと、これら両シート間に配置された上記吸収体とを備えるものであり、具体的には、幼児用、大人用、あるいは失禁者用の使い捨ておむつ(フラットタイプ又はパンツタイプ)、又は婦人用の生理用ナプキン(羽付き又は羽なし)等が挙げられる。上記使い捨ておむつ及び上記生理用ナプキンの構造等は、従来周知の構造と同様に種々の構造を採用することができ、また、上記トップシート及び上記パックシートの材料等も従来用いられているものを特に制限無く20 用いることができる。

[0050] 本発明の吸収性物品は、排泄量が多く且つ 高吸水性ポリマーの膨潤ゲルの劣化/分解がより顕著で ある、尿との接触時間の長い幼児用、大人用あるいは失 禁者用の使い捨ておむつにおいて、特に優れた効果を発 揮する。

[0051]

、【実施例】以下、実施例により本発明の吸収性物品を更に具体的に説明するが、本発明はこれらの実施例に限定されるものではない。実施例及び比較例で使用した試薬は、一般に市販されている試薬である。但し、 $N-アシル化グルタミン酸Na塩は味の素(株)製:アミソフトHS-21、<math>\beta-$ ツヤブリシンは高砂香料工業(株)製、クエン酸モノアルキルアミドNa塩、クエン酸モノアルキルエステルNa塩、クエン酸モノオレイルエステルNa塩、アルキルマロン酸、N-アルキルーN'ーカルボキシメチルアスパラギン酸及びモノアルキルリン酸エステル、モノオレイルリン酸エステル、N-アシル化アスパラギン酸K塩は、常法により合成したものを用いた。

40 【0052】実施例及び比較例で使用したキレート剤化合物について、そのCu塩の溶解度及びpKCuの値を表1に示す。pKCuは、以下の操作によって求める。即ち、Cuイオン電極法(オリオン pH/イオンアナライザー、Cuイオン電極)を用い、溶液は0.1Mトリエタノールアミン-塩酸(pH8)緩衝溶液を使用する。まず、CuCl、・2H、Oを用いて標準銅イオン緩衝溶液(400、320、240、160、80ppm(Cu''換算))を調整し、Cuイオン電極により検量線を作成する。次に、サンプル(0.1g秤量)をメスフラスコを用いて緩衝溶液(100ml)に溶解す

[0054]

【表1】

る。このサンプル溶液に0.05MのCuCl, $\cdot 2H$, O緩衝溶液(pH8)をビュレットから0.6mlずつ滴下し、その時のCu'なずを読みとる。滴定は、400ppm(Cu'な類)相当の電位を越えるところまで行い、同時にプランクの測定も行う。電位から遊離Cu'なイオン濃度を算出し、その値に滴定による系の液量変化を補正する。サンプルに対して等モルのCuを加えたときに1:1モルの錯体を作るものとして、式1より算出する。

[0053]

[数1]

 $M+L \longleftrightarrow ML$

キレート安定度定数 Km = (ML) / ((M) (L))

(ML):金属キレート剤結合濃度

(M) : 遊離金属イオン濃度

(L):遊離キレート剤濃度

 $(M)_{\tau}:(ML)+(M)$

 $(L)_{\tau}:(ML)+(L)$

 $(M)_{\tau} = (L)_{\tau}$ のとき

 $00 = (\Gamma)$

 $(ML) = (L)_{\tau} - (L)$

 $= (L) \tau - (M)$

 $..K_{ML} = ((L)_{\tau} - (M)) / (M)^{2}$

∴pKCu=Log (K_{ML})

= $L_{0g} [((L)_{\tau} - (M))/(M)^{2}] (1)$

10

(9)

,				
		7444基、71かコル 基又は 734基 の炭素原子数	Cu塩の溶解度 (25°C) (重量%)	pKC u (25°C)
	β ーツヤプリシン	_ :	< 0.0001	7. 9
	アセチルアセトン		< 0.0001	1 2. 0
	クエン酸モノアル キルアミドZVa塩	1 8 1 6	0: 0 0 1 0: 0 0 1	6. 3 6. 5
	クエン酸モノアル キルエステルNa塩	1 8	0.001	6.6
	クエン酸モノオレ イ ル エ ス テ ル	18	0.001	6. 4
	アルキルマロン酸	1 6	0.001	5. 1
	N-アルキル-N'- カルボキシメチル アスパラギン酸	1 8	0.001	4. 4
	N-アシル化グル タミン酸2Na塩	18	< 0.0001	6. 7
	N-アシル化アス パラギン酸K塩	1 6	0.001	8. 6
-	モノアルキル リン酸エステル	1 2	< 0.0001	3. 2
	モノオレイル リン酸エステル	18	< 0.0001	3. 3
	エチレンジアミン テトラ酢酸ー4Na	. –	> 1 0	1 8. 8
	トリポリリン酸ね	-	- 1	6.8

> 1.0

クエン酸 3Na

状のβーツヤノリシンを含有する高吸水性ホリマー (1)を得た。次に、坪量200g/m になるように 40 パルプを積層して、300mm (幅)×410mm (長さ)×5mm (厚さ)のパルプシートを得、得られたパルプシートの中央部表面に上記高吸水性ポリマー (1)を150mm (幅)×410mm (長さ)の面積に均一に8g散布し、次に左右両側縁部〔それぞれ75mm (幅)×410(長さ)の面積〕を内側に向けて(上記高吸水性ポリマーを散布した上記中央部上に)折り返し、左右両側縁が互いに接するように重ね、βーツヤプリシンを含有する高吸水性ポリマーがパルプシートで挟

持されてなる吸収体(1)を得た。得られた吸収体

(1)をバックシートとしての1枚のポリエチレンフィルム及びトップシートとしての1枚のポリプロピレン不織布で挟持して本発明の吸収性物品(1)(使い捨ておむつ)を得た。

【0056】〔実施例2〕キレート剤化合物として、 β ーツヤプリシンN α 塩の0. 1 重量%のエタノール溶液 100gを用いた以外は、実施例1と同様にして、本発明の吸収性物品(2)を得た。

[0057] (実施例3] キレート剤化合物として、クエン酸モノアルキルアミドNa塩(アルキル基の炭素原子数18)の0.1重量%の水溶液100gを用いた以外は、実施例1と同様にして、本発明の吸収性物品

(3) を得た。

5. 2

【0058】〔実施例4〕高吸水性ポリマーとして、「ダイヤウエット」〔商品名、三菱油化製〕を用い、キレート剤化合物として、アセチルアセトンの1重量%の水溶液10gを用いた以外は、実施例1と同様にして、本発明の吸収性物品(4)を得た。

[0059] 〔実施例5〕キレート剤化合物として、ク

エン酸モノアルキルアミドNa塩(アルキル基の炭素原子数16)の1重量%の水溶液10gを用いた以外は、 実施例1と同様にして、本発明の吸収性物品(5)を得た。

[0060] 〔実施例6〕キレート剤化合物として、NーアルキルーN・一カルボキシメチルアスパラギン酸(アルキル基の炭素原子数18)の2重量%の水溶液25gを用いた以外は、実施例1と同様にして、本発明の吸収性物品(6)を得た。

[0061] (実施例7) キレート剤化合物として、モ 10 ノアルキルリン酸エステル (アルキル基の炭素原子数12) の10重量%の水溶液10gを用いた以外は、実施例1と同様にして、本発明の吸収性物品 (7) を得た。 [0062] (実施例8) キレート剤化合物として、モノオレイルリン酸エステル (アルケニル基の炭素原子数18) の5重量%の水溶液5gを用いた以外は、実施例1と同様にして、本発明の吸収性物品 (8) を得た。 [0063] (実施例9) キレート剤化合物として、ク

エン酸モノアルキルエステルNa塩(アルキル基の炭素原子数18)0.1gを水20gに溶解した水溶液を用20いた以外は、実施例1と同様にして、本発明の吸収性物品(9)を得た。

【0064】 (実施例10) キレート剤化合物として、 クエン酸モノオレイルエステルNa塩 (アルキル基の炭素原子数18) 0.5 gを水50gに分散させた分散液 を用いた以外は、実施例1と同様にして、本発明の吸収 性物品(10)を得た。

【0065】 (実施例11】キレート剤化合物として、アルキルマロン酸(アルキル基の炭素原子数16)1gを水10gに分散させた分散液を用いた以外は、実施例301と同様にして、本発明の吸収性物品(11)を得た。【0066】 (実施例12】キレート剤化合物として、Nーアシル化グルタミン酸2Na塩(アルキル基の炭素原子数18)の20重量%の水溶液10g溶液を用いた以外は、実施例1と同様にして、本発明の吸収性物品(12)を得た。

【0067】 (実施例13) キレート剤化合物として、 N-アシル化アスパラギン酸K塩(アルキル基の炭素原 子数16)の10重量%の水溶液5gを用いた以外は、 実施例1と同様にして、本発明の吸収性物品(13)を 40 得た。

【0068】〔実施例14〕坪量200g/m³になるようにパルプを積層して、300mm(幅)×410mm(長さ)×5mm(厚さ)のパルプシートを得、得られたパルプシートの中央部表面に高吸水性ポリマー(商品名「ポイズSA-20」、花王株式会社製)を150mm(幅)×410mm(長さ)の面積に均一に8g散布して高吸水性ポリマー層を形成し、該高吸水性ポリマー層上面にキレート剤化合物として β -ツヤプリシンの0.1重量%のエタノール溶液8gをスプレーで散布

し、次いで、実施例1と同様に左右両側縁部を内側に折り返してβ-ツヤプリシンを含有する吸収体(14)を 得た。得られた吸収体(14)を吸収体(1)に代えて 用いた以外は実施例1と同様にして本発明の吸収性物品 (14)を得た。

 $[0\ 0\ 6\ 9]$ [実施例 $1\ 5$] キレート剤化合物として、 β - ツヤプリシンN α 塩の 0 . 1 重量%のエタノール溶液 8 g を用いた以外は、実施例 1 4 と同様にして、本発明の吸収性物品($1\ 5$)を得た。

[0070] 〔実施例16〕キレート剤化合物として、 クエン酸モノアルキルアミドNa塩(アルキル基の炭素 原子数18)の0.1重量%の水溶液8gを用いた以外 は、実施例14と同様にして、本発明の吸収性物品(1 6)を得た。

[0071] 〔実施例17〕高吸水性ポリマーとして、「ダイヤウエット」〔商品名、三菱油化製〕を用い、キレート剤化合物として、アセチルアセトンの1重量%の水溶液0.8gを用いた以外は、実施例14と同様にして、本発明の吸収性物品(17)を得た。

[0072] 〔実施例18〕キレート剤化合物として、 クエン酸モノアルキルアミドNa塩(アルキル基の炭素 原子数16)の1重量%の水溶液0.8gを用いた以外 は、実施例14と同様にして、本発明の吸収性物品(1 8)を得た。

[0073] 〔実施例19〕 キレート剤化合物として、 N-アルキル-N'-カルボキシメチルアスパラギン酸 (アルキル基の炭素原子数18)の2重量%の水溶液2 gを用いた以外は、実施例14と同様にして、本発明の 吸収性物品(19)を得た。

[0074] 〔実施例20〕キレート剤化合物として、 モノアルキルリン酸エステル(アルキル基の炭素原子数 12)の10重量%の水溶液0.8gを用いた以外は、 実施例14と同様にして、本発明の吸収性物品(20) を得た。

[0075] (実施例21] キレート剤化合物として、モノオレイルリン酸エステル(アルケニル基の炭素原子数18)の5重量%の水溶液0.4gを用いた以外は、実施例14と同様にして、本発明の吸収性物品(21)を得た。

【0076】〔実施例22〕キレート剤化合物として、 クエン酸モノアルキルエステルNa塩(アルキル基の炭 素原子数18)0.008gを水1gに溶解した水溶液 を用いた以外は、実施例14と同様にして、本発明の吸 収性物品(22)を得た。

[0077] [実施例23] キレート剤化合物として、 クエン酸モノオレイルエステルNa塩(アルキル基の炭 素原子数18) 0.04gを水1gに分散させた分散液 を用いた以外は、実施例14と同様にして、本発明の吸 収性物品(23)を得た。

50 【0078】 [実施例24] キレート剤化合物として、

40

20

アルキルマロン酸(アルキル基の炭素原子数16)0. 08gを水1gに分散させた分散液を用いた以外は、実 施例14と同様にして、本発明の吸収性物品(24)を

【0079】〔実施例25〕キレート剤化合物として、 N-アシル化グルタミン酸2Na塩(アルキル基の炭素 原子数18)の20重量%の水溶液0.8gを用いた以 外は、実施例14と同様にして、本発明の吸収性物品 (25)を得た。

【0080】〔実施例26〕キレート剤化合物として、 N-アシル化アスパラギン酸K塩(アルキル基の炭素原 子数16)の10重量%の水溶液0.4gを用いた以外 は、実施例14と同様にして、本発明の吸収性物品(2 6) を得た。

【0081】 (実施例27) 坪量200g/m² になる ようにパルプを積層して、300mm(幅)×410m m(長さ)×5mm(厚さ)のパルプシートを得、得ら れたパルプシートの中央部表面に高吸水性ポリマー(商 品名「ポイズSA-20」、花王株式会社製)を150 mm (幅) × 4 1 0 mm (長さ) の面積に均一に 8 g散 20 布し、次に左右両側縁部(それぞれ75mm(幅)×4 10mm (長さ)の面積)を内側に向けて(上記高吸水 性ポリマーを散布した上記中央部上に)折り返し、左右 両側縁が互いに接するように重ねた。次に重ね合わせた パルプシート上面にキレート剤化合物β-ツヤプリシン の0.1重量%のエタノール溶液を8gスプレーで散布 し、乾燥した後、β-ツヤプリシンを含有する吸収体 (27)を得た。得られた吸収体(27)を吸収体

(1) に代えて用いた以外は実施例1と同様にして本発 明の吸収性物品(27)を得た。

【0082】〔実施例28〕キレート剤化合物として、 β-ツヤプリシンΝ a 塩の 0. 1 重量%のエタノール溶 液8gを用いた以外は、実施例27と同様にして、本発 明の吸収性物品(28)を得た。

【0083】〔実施例29〕キレート剤化合物として、 クエン酸モノアルキルアミドNa塩(アルキル基の炭素 原子数18)の0.1重量%の水溶液8gを用いた以外 は、実施例27と同様にして、本発明の吸収性物品(2 9) を得た。

·【0084】〔実施例30〕高吸水性ポリマーとして、 「ダイヤウエット」〔商品名、三菱油化製〕を用い、キ レート剤化合物として、アセチルアセトンの1重量%の 水溶液0.8gを用いた以外は、実施例27と同様にし て、本発明の吸収性物品(30)を得た。

【0085】〔実施例31〕キレート剤化合物として、 クエン酸モノアルキルアミドNa塩(アルキル基の炭素 原子数16)の1重量%の水溶液0.8gを用いた以外 は、実施例27と同様にして、本発明の吸収性物品(3 1) を得た。

【0086】〔実施例32〕キレート剤化合物として、

N-アルキル-N'-カルボキシメチルアスパラギン酸 (アルキル基の炭素原子数18)の2重量%の水溶液2 gを用いた以外は、実施例27と同様にして、本発明の 吸収性物品(32)を得た。

[0087] [実施例33] キレート剤化合物として、 モノアルキルリン酸エステル(アルキル基の炭素原子数 12) の10重量%の水溶液0.8gを用いた以外は、 実施例27と同様にして、本発明の吸収性物品(33) を得た。

【0088】〔実施例34〕キレート剤化合物として、 モノオレイルリン酸エステル(アルケニル基の炭素原子 数18)の5重量%の水溶液0.4gを用いた以外は、 実施例27と同様にして、本発明の吸収性物品(34) を得た。

[0089] [実施例35] キレート剤化合物として、 クエン酸モノアルキルエステルNa塩(アルキル基の炭 素原子数18) 0. 008gを水1gに溶解した水溶液 を用いた以外は、実施例27と同様にして、本発明の吸 収性物品(35)を得た。

【0090】 [実施例36] キレート剤化合物として、 クエン酸モノオレイルエステルNa塩(アルキル基の炭 素原子数18) 0. 04gを水1gに分散させた分散液 を用いた以外は、実施例27と同様にして、本発明の吸 収性物品(36)を得た。

【0091】〔実施例37〕キレート剤化合物として、 アルキルマロン酸(アルキル基の炭素原子数16)0. 08gを水1gに分散させた分散液を用いた以外は、実 施例27と同様にして、本発明の吸収性物品(37)を 得た。

【0092】 [実施例38] キレート剤化合物として、 N-アシル化グルタミン酸2Na塩(アルキル基の炭素 原子数18)の20重量%の水溶液0.8g溶液を用い た以外は、実施例27と同様にして、本発明の吸収性物 品(38)を得た。

【0093】〔実施例39〕キレート剤化合物として、 N-アシル化アスパラギン酸K塩(アルキル基の炭素原 子数16)の10重量%の水溶液0.4g溶液を用いた 以外は、実施例27と同様にして、本発明の吸収性物品 (39)を得た。

【0094】 〔比較例1〕 坪量200g/m' になるよ うにパルプを積層して、300mm(幅)×410mm (長さ) ×5mm (厚さ) のパルプシートを得、得られ たパルプシートの中央部表面に高吸水性ポリマー(商品 名「ポイズSA-20」、花王株式会社製)を150m m(幅)×410mm(長さ)の面積に均一に8g散布 し、次に左右両側縁部(それぞれ75mm(幅)×41 0mm(長さ)の面積)を内側に向けて(上記高吸水性 ポリマーを散布した上記中央部上に)折り返し、左右両 例縁が互いに接するように重ね、比較吸収体(1)を得 50 た。得られた比較吸収体(1)を吸収体(1)に代えて

用いた以外は実施例1と同様にして比較品(1)を得 た。

[0095] [比較例2] 高吸水性ポリマーとして、 「ダイヤウエット」〔商品名、三菱油化製〕を用いた以 外は、比較例1と同様にして、比較品(2)を得た。

[0096] [比較例3] 部分中和ポリアクリル酸塩架 橋体を主成分とする高吸水性ポリマー(商品名「ポイズ SA-20」、花王株式会社製)100gを双腕型二一 ダーに入れ、攪拌しながらキレート剤化合物としてクエ ン酸3Na塩の1.0重量%の水溶液100gを投入 し、十分攪拌混合を行い高吸水性ポリマーに吸収させた 後、減圧下に乾燥して顆粒状のクエン酸3Na塩を含有 する高吸水性ポリマー(40)を得た。次に、坪量20 0g/m¹ になるようにパルプを積層して、300mm (幅) ×410mm (長さ) ×5mm (厚さ) のパルプ -シートを得、得られたパルプシートの中央部表面に上記 高吸水性ポリマー (40) を150mm (幅) ×410 mm (長さ)の面積に均一に8g散布し、次に左右両側 縁部 (それぞれ 7 5 mm (幅) × 4 1 0 mm (長さ) の 面積)を内側に向けて(上記高吸水性ポリマーを散布し 20 表面に戻ってくる生理食塩水の量を測定した。 た上記中央部上に)折り返し、左右両側縁が互いに接す るように重ね比較吸収体(3)を得た。得られた比較吸 収体(3)を吸収体(1)に代えて用いた以外は実施例 1と同様にして比較品(3)を得た。

[0097] [比較例4] キレート剤化合物として、ト リポリリン酸Na塩0.1gを水10gに溶解した水溶 液を用いた以外は、比較例3と同様にして、比較品

(4)を得た。

【0098】 [比較例5] キレート剤化合物として、エ チレンジアミンテトラ酢酸-4Na塩0.1gを水10 gに溶解した水溶液を用いた以外は、比較例3と同様に して、比較品(5)を得た。

【0099】 〔比較例6〕部分中和ポリアクリル酸塩架 橋体を主成分とする高吸水性ポリマー(商品名「ダイヤ ウエット」商品名、三菱油化製) 100gを双腕型ニー ダーに入れ、攪拌しながらキレート剤化合物としてクエ ン酸3Na塩1.0重量%の水溶液100gを投入し、 十分攪拌混合を行い高吸水性ポリマーに吸収させた後、 減圧下に乾燥して顆粒状のクエン酸3Naを含有する高 吸水性ポリマー (43) を得た。次に、坪量200g/ 40 m¹ になるようにパルプを積層して、300mm (幅) ×410mm (長さ)×5mm (厚さ)のパルプシート を得、得られたパルプシートの中央部表面に上記高吸水 性ポリマー (43) を150mm (幅) ×410mm

(長さ)の面積に均一に8g散布し、次に左右両側縁部 (それぞれ75mm (幅) ×410 (長さ) の面積) を 内側に向けて(上記高吸水性ポリマーを散布した上記中 央部上に)折り返し、左右両側縁が互いに接するように 重ね比較吸収体(6)を得た。得られた比較吸収体

(6) を吸収体(1) に代えて用いた以外は実施例1と 50

同様にして比較品(6)を得た。

[0100] [比較例7] キレート剤化合物として、ト リポリリン酸Na塩0.1gを水10gに溶解した水溶 液を用いた以外は、比較例6と同様にして、比較品 . (7) を得た。

【0101】 〔比較例8〕 キレート剤化合物として、エ チレンジアミンテトラ酢酸-4Na塩0.1gを水10 gに溶解した水溶液を用いた以外は、比較例6と同様に して、比較品(8)を得た。

【0102】上記実施例1~39及び比較例1~8で得 られた各吸収性物品について、下記評価基準に従って、 それぞれ評価を行った。その結果を〔表2〕 (実施例1 ~20)、〔表3〕(実施例21~39)及び〔表4〕 (比較例1~8) に示す。

【0103】〔液戻り量〕0.05重量%でL-アスコ ルビン酸ナトリウムを含有する生理食塩水を吸収性物品 に150g吸収させ、該吸収性物品をポリエチレンパッ クにより密封して40℃で6時間保存した後、2分間、 35g/cm'の荷重で加圧し、内部からトップシート

【0104】 [膨潤ゲルの安定性] 0:05重量%でし - アスコルビン酸ナトリウムを含有する生理食塩水を吸 収性物品に150g吸収させ、該吸収性物品をポリエチ レンパックにより密封して40℃で6時間保存した後、 高吸水性ポリマーの膨潤ゲルの様子を肉眼にて観察し、 その状態 (安定性) を下記の如く4段階に評価した。 ◎:膨潤ゲルは、流動性も曳糸性もなく、また形状も変 化していない。

○:膨潤ゲルは、若干の流動性と曳糸性とを有するが、 30 形状は変化していない。

△:溶解するまでには至っていないが、膨潤ゲルは、流 動性と曵糸性とを有し、形状も変化して不明瞭化してい る。

×:一部溶解しており、半数以上の膨潤ゲルは形状が変 化しており、当初の形状を残していない。

[0105]

【表2】

		3
_	9	

		吸収性物品	液戻り量	膨潤ゲルの
		2047日初前8	(g)	安 定 性
	1	本発明品(I)	0. 1	🔘
. [. 2	本発明品(2)	0. 1	• ©
	3	本発明品(3)	0.1	0
	4	本発明品(4)	0. 1	0
	5	本発明品(5)	0. 1	0
実	6	本発明品(6)	1:0	. 🔘
	7	本発明品(7)	0.1	0
	8	本発明品(8)	0. 1	0
	9	本発明品(9)	0. 1	- ©
施	1 0	本発明品(10)	0. i	©
	1 1	本発明品(11)	0. 1	0
	1 2	本発明品(12)	0. 1	©
	1 3	本発明品(13)	0. 1	0
例	1 4	本発明品(14)	0.1	0
1	15	本発明品(15)	0. 1	0
	16	本発明品(16)	0. 1	©
	17	本発明品(17)	0.1	0
	1 8	本発明品(18)	0. 1	©
	1 9	本発明品(19)	0. 1	O
	20	本発明品(20)	0.1	0

[0106] 【表3】

		放戻り量 膨潤ゲ		膨潤ゲルの
		吸収性物品	(g)	安 定 性
	2 1	本発明品(21)	0. 1	0
.	2 2	本発明品(22)	0. 1	0
	2 3	本発明品(23)	0 <u>.</u> 1	0
実	2 4	本発明品(24)	0. 1	0
	2 5	本発明品(25)	0. 1	0
	2 6	本発明品(26)	0. 1	0
	2 7	本発明品(27)	0. 1	0
	2 8	本発明品(28)	0. 1	0
施	2 9	本発明品(29)	0. 1	0
	3 0	本発明品(30)	0. 1	0
	3 1	本発明品(31)	0. 1	· ©
.	3 2	本発明品(32)	0. 1	. 🔘
	3 3	本発明品(33)	0. 1	. 🔘
例	3 4	本発明品(34)	0. 1	0
	3 5	本発明品(35)	0. 1	0
	3 6	本発明品(36)	0. 1	O .
	3 7	本発明品(37)	0. 1	0
	3 8	本発明品(38)	0.1	©
	3 9	本発明品(39)	0. 1	0

[0107]

[表4]

(4.4)				
		ms in the	液戻り量	膨潤ゲルの
		吸収性物品	(g)	安 定 性
	1	比較品(1)	0.8	Δ.
11.	2	比較品 (2)	2.5	×
比	3	比較品 (3)	0. 8	Δ
#A	4	比較品 (4)	0.8	Δ
較	5	比較品 (5)	0. 8	Δ
non .	6.	比較品 (6)	2.5	× .
例	7	比較品 (7)	2.5	×.
	8	比較品 (8)	2. 5	×

[0108]

【発明の効果】本発明の吸収性物品は、高吸水性ポリマ 40 ーを含有する吸収体の経時的な体液保持性の低下が抑制 され、吸収特性に優れたものである。更に詳細には、本 発明の吸収性物品は、高吸水性ポリマーを含有する吸収 体の体液保持性が経時的に低下しないので、液戻りも少 なく、且つ液漏れを起こすことなく、幼児用、大人用あ るいは失禁者用の使い捨ておむつ、又は婦人用の生理用 ナプキン等として、特に使い捨ておむつとして有効であ る。また、本発明の吸収性物品は、吸収体中に配されて いる前記キレート剤化合物の作用で、高吸水性ポリマー 50 の膨潤ゲルの劣化分解が体液吸収後も抑えられているた

め、吸収体中の高吸水性ポリマーの含有割合を増大させることができる。従って、本発明の吸収性物品は、コン

パクトで携帯性がよく、装着性に優れかつ吸収特性にも 優れたものとすることができる。

フロントページの続き

(51) Int. C1.6

識別記号

庁内整理番号

'F. I

技術表示箇所。

C08K 5/00

KAJ

C08L 101/14

LTB

(72)発明者 今野 剛

栃木県芳賀郡市貝町赤羽2606 花王株式会 社研究所内