In the Claims

- 1. (original) Method of coloring a polymeric material, wherein a polymeric material containing
 - a) a phenolic antioxidant and/or a phenolic ultraviolet absorber and
 - b) a colour former

is irradiated using a radiation of higher energy than visible light, provided that the phenolic antioxidant and/or phenolic ultraviolet absorber (a) is not a compound of the formula (2) to (14)

$$\begin{array}{c|c}
S & S \\
OH
\end{array}$$
(3)

$$\begin{array}{c} O \\ N \\ \end{array}$$

$$OH$$

$$(6)$$

$$\bigcap_{N} OH$$
(11)

2. (currently amended) Method according to claim 1, wherein the radiation of higher energy than visible light is selected from ultraviolet light, X-ray, gamma radiation and particle radiation[[,]]

especially from ultraviolet laser or ultraviolet lamp radiation of 285 to 400 nm, electron radiation, X-ray and gamma-radiation.

3. (currently amended) Method according to claim 1, wherein component (a) is a compound comprising one or more mono-hydroxyphenyl moieties, each carrying one or two bonds to either a linking group connecting the moiety with 1 to 3 further moieties of the same type or to an anchor group,

and optionally 1-3 further substituents selected from alkyl of 1 to 12 carbon atoms, where the linking groups are di-, tri- or tetravalent aliphatic groups of 1 to 20 carbon atoms and

divalent linking groups are selected from alkylene which may be interrupted and/or end-capped with -O-, -NH-, -S-, -CO-, -COO-, -OCO-, -NHCO-, -CONH-, a group L₁, phenylene[[,]] <u>or</u> phenylene which is substituted by C₁-C₁₂alkyl and/or C₁-C₁₂alkoxy and/or C₂-C₁₂alkanoyloxy and/or C₃-C₁₂alkenoyloxy; divalent mono-, di- or tricycloalkylene groups interrupted by -O-; spacer groups -O-; -NH-; -S-; -CO-; -COO-; -NHCO-; <u>and</u> -CONH-;

trivalent groups are selected from

trivalent alkyl groups of 3 to 20 carbon atoms; said trivalent alkyl groups interrupted and/or end-capped with -O-, -NH-, -S-, -CO-, -COO-, -OCO-, -NHCO-, -CONH-, a group L_1 , phenylene [[,]] or phenylene which is substituted by C_1 - C_{12} alkyl and/or C_1 - C_{12} alkoxy and/or C_2 - C_{12} alkanoyloxy and/or C_3 - C_{12} alkenoyloxy; and/or trivalent groups of the formulae

$$\begin{array}{c|c}
A_7 \\
N \\
N \\
A_7
\end{array}$$

$$\begin{array}{c|c}
A_7 \\
N \\
A_7
\end{array}$$

tetravalent groups are selected from

tetravalent alkyl groups of 4 to 20 carbon atoms; <u>and said tetravalent alkyl groups interrupted and/or end-capped with -O-, -NH-, -S-, -CO-, -COO-, -OCO-, -NHCO-, -CONH-, a group L₁, phenylene [[,]] <u>or phenylene which is substituted by C₁-C₁₂alkyl and/or C₁-C₁₂alkoxy and/or C₂-C₁₂alkanoyloxy and/or C₃-C₁₂alkenoyloxy;</u></u>

wherein

L₁ is a group selected from the formulae

$$0 \xrightarrow{L_2} 0$$

$$N \xrightarrow{N} N$$

$$A_7$$
 A_7 A_7

 L_2 is OH, C_1 - C_{12} alkyl, C_1 - C_{12} alkoxy, C_2 - C_{12} hydroxyalkyl; <u>or</u> C_2 - C_{12} hydroxyalkoxy; L_3 independently are C_1 - C_4 alkylene; L_4 independently are H or C_1 - C_4 alkyl; and

anchor groups are selected from

 C_1 - C_{22} alkyl; C_1 - C_{22} alkyl- A_5 -; C_2 - C_{22} alkyl interrupted by - A_5 -; - A_4 -phenyl; - A_4 -phenyl where the phenyl core is substituted by C_1 - C_{12} alkyl, C_1 - C_{12} alkoxy, C_2 - C_{12} alkanoyloxy and/or C_3 - C_{12} alkenoyloxy; C_1 - C_8 alkyl substituted by a group of the formula

and phosphite, phosphate or phosphonate ester groups[[, e.g.]] of the formula

$$-A_3-(O)_m-P(=O)_p(OA_1)(OA_2);$$

or the anchor group is of the formula

$$\begin{array}{c|c}
A_7 \\
N \\
N \\
A_6 \\
N \\
A_6
\end{array}$$

where m and p independently are 0 or 1;

 A_1 and A_2 independently are C_1 - C_{12} alkyl or phenyl or phenyl substituted by C_1 - C_{12} alkyl or an equivalent of an alkaline, alkaline earth or aluminum atom;

A₃ is a direct bond or C₁-C₈alkylene;

A₄ is selected from C₁-C₈alkylene and A₅;

A₅ is selected from -O-, -NH-, -S-, -CO-, -COO-, -NHCO-[[,]] and -CONH-;

A₆ is selected from C₁-C₁₈alkoxy, C₁-C₁₈alkylthio and C₁-C₁₈alkylamino;

 A_7 is -O- or -NH-;

R' is H, C₁-C₁₈alkyl, C₁-C₁₈alkoxy or cyclohexyloxy[[:]];

or the anchor group is C_3 - C_{22} alkylene or C_3 - C_{22} oxaalkylene attached with both open bonds to adjacent carbon atoms of the mono-hydroxyphenyl moiety; or

component (a) can also be a phenolic UV absorber compound selected from benzotriazoles of the formula (IIa), 2-hydroxybenzophenones of the formula (IIb)[[,]] and 2-hydroxyphenyltriazines of formula (IIc):

$$T_3 \longrightarrow N \longrightarrow T_1$$

$$T_2 \longrightarrow T_1$$

$$T_2 \longrightarrow T_1$$

$$T_3 \longrightarrow T_2 \longrightarrow T_1$$

$$T_3 \longrightarrow T_2 \longrightarrow T_1 \longrightarrow T_1 \longrightarrow T_1 \longrightarrow T_2 \longrightarrow T_$$

wherein T₁ is hydrogen, C₁-C₁₈alkyl, or C₁-C₁₈alkyl which is substituted by phenyl,

or T_1 is a group of the formula $\begin{array}{c} OH & N \\ \hline \\ V \\ \hline \\ T_2 \end{array}$

 L_{10} is a divalent group [[,]] for example -(CH₂)_n-, where n is from the range 1-8;

 T_2 is hydrogen, C_1 - C_{18} alkyl, or is C_1 - C_{18} alkyl which is substituted by COOT₅, C_1 - C_{18} alkoxy, hydroxyl, phenyl or C_2 - C_{18} acyloxy;

 T_3 is hydrogen, halogen, C_1 - C_{18} alkyl, C_1 - C_{18} alkoxy, C_2 - C_{18} acyloxy, perfluoroalkyl of 1 to 12 carbon atoms such as -CF₃, or T_3 is phenyl; and

T₅ is C₁-C₁₈alkyl or C₄-C₅₀alkyl interrupted by one or more O and/or substituted by OH or by

a group

$$G_2$$
 O OH G_1 (IIb)

wherein

 G_1 , G_2 and G_3 independently are hydrogen, hydroxy or C_1 - C_{18} alkoxy;

$$G_{8}O$$

$$G_{12}$$

$$G_{11}$$

$$G_{10}$$

$$G_{0}$$

$$G_{0}$$

$$G_{0}$$

$$G_{0}$$

wherein

 G_8 is C_1 - C_{18} alkyl, or is C_4 - C_{18} alkyl which is interrupted by COO or OCO or O, or is interrupted by O and substituted by OH; <u>and</u>

 G_9 , G_{10} , G_{11} and G_{12} independently are hydrogen, methyl, hydroxy or OG_8 ; and G_9 and G_{12} also comprise phenyl.

4. (currently amended) Method according to claim **3**, wherein the anchor groups are selected from tertiary C_4 - C_{12} alkyl; C_1 - C_{22} alkyl- A_5 -; C_2 - C_{22} alkyl interrupted by - A_5 -; - A_5 -phenyl; - A_5 -phenyl where the phenyl core is substituted by C_1 - C_{12} alkyl; and - A_4 -phenyl where the phenyl core is substituted by C_2 - C_{12} alkanoyloxy and/or C_3 - C_{12} alkenoyloxy, and optionally further by C_1 - C_{12} alkyl; or the anchor group is C_3 - C_{22} alkylene or C_3 - C_{22} oxaalkylene attached with both open bonds to adjacent carbon atoms of the mono-hydroxyphenyl moiety; or is a group of one the formulae

$$-A_3-(O)_m-P(=O)_p(OA_1)(OA_2);$$
 or

$$A_{6}$$

$$N$$

$$N$$

$$A_{6}$$

$$N$$

$$A_{6}$$

where m and p independently are 0 or 1;

 A_1 and A_2 independently are C_1 - C_{12} alkyl or phenyl or phenyl substituted by C_1 - C_{12} alkyl or an equivalent of an alkaline, alkaline earth or aluminum atom;

A₃ is a direct bond or C₁-C₈alkylene;

A₄ is selected from C₁-C₈alkylene, –O-, -NH-, -S-, -CO-, -COO-, -OCO-, -NHCO-[[,]] and -CONH-;

 A_5 is selected from -O-, -NH-, -S-, -CO-, -COO-, -OCO-, -NHCO-[[,]] and -CONH-;

 A_6 is selected from C_1 - C_{18} alkoxy, C_1 - C_{18} alkylthio and C_1 - C_{18} alkylamino;

 A_7 is -O- or -NH-;

A₈ is C₁-C₇alkyl; and

R' is C₁-C₁₈alkyl.

5. (currently amended) Method according to claim 3, wherein component (a) is a compound of the formula (A)

$$\begin{array}{c|c}
R_2 & R_4 \\
HO & R_3 & R_5
\end{array}$$
(A)

wherein

 R_2 , R_3 , R_4 and R_5 independently are hydrogen, methyl or tertiary C_4 - C_{12} alkyl[[,]]-especially methyl, tert.-butyl-and-tert.-pentyl;

n is from the range 1-4:

when n is 1,

 R_1 is tertiary C_4 - C_{12} alkyl; C_1 - C_{22} alkyl- A_5 -; C_2 - C_{22} alkyl interrupted by - A_5 -; - A_5 -phenyl; - A_5 -phenyl where the phenyl core is substituted by C_1 - C_{12} alkyl; - A_4 -phenyl where the phenyl core is substituted by C_2 - C_{12} alkanoyloxy and/or C_3 - C_{12} alkenoyloxy, and optionally further by C_1 - C_{12} alkyl; or R_1 together with R_5 is C_3 - C_{22} alkylene or C_3 - C_{22} oxaalkylene attached with both open bonds to adjacent carbon atoms of the mono-hydroxyphenyl moiety; or is a group of one the formulae

$$-A_3-(O)_m-P(=O)_p(OA_1)(OA_2); or$$

$$A_6$$
 N
 N
 A_6
 N
 A_6

where m and p independently are 0 or 1;

 A_1 and A_2 independently are C_1 - C_{12} alkyl or phenyl or phenyl substituted by C_1 - C_{12} alkyl or an equivalent of an alkaline, alkaline earth or aluminum atom;

A₃ is a direct bond or C₁-C₈alkylene;

A₄ is selected from C₁-C₈alkylene, –O-, -NH-, -S-, -CO-, -COO-, -OCO-, -NHCO-[[,]] and -CONH-;

As is selected from -O-, -NH-, -S-, -CO-, -COO-, -OCO-, -NHCO-[[,]] and -CONH-;

A₆ is selected from C₁-C₁₈alkoxy, C₁-C₁₈alkylthio and C₁-C₁₈alkylamino;

 A_7 is -O- or -NH-;

A₈ is C₁-C₇alkyl; and

R' is C₁-C₁₈alkyl;

when n is 2, R₁ is C₁-C₂₀alkylene which may be interrupted and/or end-capped with -O-, -NH-, -S-, -CO-, -COO-, -OCO-, -NHCO-, -CONH-, -L₁-, phenylene, phenylene which is substituted by C₁-C₁₂alkyl and/or C₁-C₁₂alkoxy and/or C₂-C₁₂alkanoyloxy and/or C₃-C₁₂alkenoyloxy; divalent mono-, di- or tricycloalkylene groups; divalent mono-, di- or tricycloalkylene groups interrupted by -O-; spacer groups -O-; -NH-; -S-; -CO-; -COO-; -OCO-; -NHCO-; or -CONH-;

when n is 3, R_1 is trivalent alkyl of 3 to 20 carbon atoms; said trivalent alkyl interrupted or end-capped with -O-, -NH-, -S-, -CO-, -COO-, -OCO-, -NHCO-, -CONH-, -L₁-, phenylene[[,]] <u>or phenylene</u> which is substituted by C_1 - C_{12} alkyl and/or C_1 - C_{12} alkoxy and/or C_2 - C_{12} alkanoyloxy and/or C_3 - C_{12} alkenoyloxy; or trivalent groups of the formulae

$$0 \longrightarrow N \longrightarrow 0$$

$$0 \longrightarrow N$$

$$0 \longrightarrow N$$

$$0 \longrightarrow N$$

$$0 \longrightarrow N$$

$$A_{7}$$

$$A_{7}$$

$$A_{7}$$

$$A_{7}$$

when n is 4, R₁ is tetravalent alkyl of 4 to 20 carbon atoms; said tetravalent alkyl interrupted or end-capped with -O-, -NH-, -S-, -CO-, -COO-, -OCO-, -NHCO-, -CONH-, -L₁-, phenylene[[,]] or phenylene

which is substituted by C_1 - C_{12} alkył and/or C_1 - C_{12} alkoxy and/or C_2 - C_{12} alkanoyloxy and/or C_3 - C_{12} alkenoyloxy;

L₁ is a group selected from the formulae

$$\begin{array}{c|c}
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\$$

$$A_7$$
 A_7 A_7

 L_2 is OH, C_1 - C_{12} alkyl, C_1 - C_{12} alkoxy, C_2 - C_{12} hydroxyalkyl; <u>or</u> C_2 - C_{12} hydroxyalkoxy; L_3 independently are C_1 - C_4 alkylene; <u>and</u> L_4 independently are H or C_1 - C_4 alkyl.

6. (currently amended) Method according to claim **5**, wherein R_2 , R_3 , R_4 and R_5 independently are hydrogen, methyl, tert[[.]]-butyl[[,]] <u>or</u> tert[[.]]-pentyl;

and

when n is 1,

 R_1 is tertiary butyl, tertiary pentyl; C_1 - C_{22} alkyl- A_5 -; C_2 - C_{22} alkyl interrupted by - A_5 -; - A_5 -phenyl where the phenyl core is substituted by C_1 - C_{12} alkyl; - A_4 -phenyl where the phenyl core is substituted by C_3 - C_4 alkenoyloxy and C_1 - C_{12} alkyl; or R_1 together with R_5 is C_3 - C_{22} alkylene or C_3 - C_{22} oxaalkylene attached with both open bonds to adjacent carbon atoms of the mono-hydroxyphenyl moiety; or R_1 is a group of one the formulae

$$-A_3-P(=O)(OA_1)(OA_2); or$$

$$A_{6}$$

$$N$$

$$N$$

$$N$$

$$A_{6}$$

$$N$$

$$A_{6}$$

where

 A_1 and A_2 independently are C_1 - C_4 alkyl or an equivalent of a metal atom selected from Li, Na, K, ½ Mg, ½ Ca[[,]] and 1/3 Al;

A₃ is methylene;

A₄ is C₁-C₈alkylene;

A₅ is selected from -O-, -S-, -COO-, -OCO-, -NHCO-[[,]] and -CONH-;

A₆ is selected from C₄-C₁₈alkylthio and C₄-C₁₈alkylamino;

 A_7 is -NH-;

A₈ is C₁-C₇alkyl; and

R' is C₁-C₁₈alkyl;

when n is 2, R_1 is C_1 - C_{12} alkylene; C_2 - C_{20} alkylene interrupted and/or end-capped with -O-, -S-, -COO-, -OCO-, -NHCO-, -CONH-[[,]] or $-L_1$ -; or R_1 is a divalent mono-, di- or tricycloalkylene group; or R_1 is -O-; -NH-; or -S-;

when n is 3, R_1 is trivalent alkyl of 3 to 20 carbon atoms; said trivalent alkyl interrupted by $-O_-$, $-S_-$, $-COO_-$, $-OCO_-$, $-NHCO_-$, $-CONH_-$, phenylene [[,]] or phenylene which is substituted by C_1-C_{12} alkyl; or R_1 is a trivalent group of one of the formulae

or

$$0 \downarrow N \downarrow 0$$

$$N \downarrow N$$

when n is 4, R₁ is tetravalent alkyl of 4 to 20 carbon atoms; or said tetravalent alkyl interrupted by -O-, -S-, -COO-, -OCO-, -NHCO-[[,]] or -CONH-; and

L₁ is a group of the formula

L₃ independently are C₁-C₄alkylene; and L₄ independently are H or C₁-C₄alkyl.

- 7. (currently amended) Method according to claim 1, wherein the colour former is a triphenylmethane, lactone, benzoxazine, spiropyran, or preferably fluoran or phthalide.
- **8.** (original) Method according to claim **1**, wherein the polymeric material contains 0.001 to 10 % by weight of the phenolic antioxidant and/or phenolic UVA, based on the total weight of the polymeric material.
- **9.** (currently amended) Method according to claim **1**, wherein the polymeric material contains 0.001 to 10 % by weight[[,]]preferably 0.01 to 5 % by weight of the colour former with respect to the total weight of the polymeric material.
- **10. (original)** Method according to claim **1**, wherein the polymeric material is a transparent thermoplast.
- 11. (currently amended) Method according to claim 1, wherein the polymeric material is selected from styrene acrylonitrile copolymer, polyolefin, polyvinylchloride, polychlorobutadiene, polyesters orand glycol modified polyesters, polyacrylics, polystyrene, acrylonitrile styrene acrylate copolymer, polyamide, acrylonitrile styrene butadiene copolymer, polycarbonate[[,]] ander blends or alloys thereof.
- 12. (original) Method of coloring a polymeric material, wherein a polymeric material containing
- c) a phenolic antioxidant, phenolic ultraviolet absorber and/or a latent acid, and
- d) a colour former is irradiated using a radiation of higher energy than ultraviolet light.

- **13.** (currently amended) Protective clothing or mask or irradiation indicating tag, wherein a polymeric material comprising components (c) and (d) according to claim **12** in the form of a fiber, textile, nonwoven or film is contained on or visibly below the surface of the clothing, mask or tag.
- **14.** (currently amended) Process for monitoring irradiation by X-ray or radioactive material, which process comprises placing a tag or sample of a polymeric material comprising components (c) and (d) according to claim **12** in the site to be controlled, and subsequently checking the colour of the tag or sample.

15. (canceled)

- **16. (original)** Process of making a fiber or woven or non-woven fabric, which process comprises adding (a) a phenolic antioxidant and/or phenolic UVA and (b) a colour former to a synthetic polymer before or during the fiber melt spinning process.
- **17. (new)** Method according to claim 1, wherein the radiation of higher energy than visible light is selected from ultraviolet laser or ultraviolet lamp radiation of 285 to 400 nm, electron radiation, X-ray and gamma radiation.
- **18.** (new) Method according to claim 1, wherein the polymeric material contains 0.01 to 5 % by weight of the colour former with respect to the total weight of the polymeric material.