COMP 5660 Fall 2024 Assignment 1c $\,$

Logan Bolton

ldb0046@auburn.edu

1 Green Problem 1c

1.1 Parameters

Parameter	Value	
μ	20,000	
Number of Children	150	
Mutation Rate	0.05	
Parent Selection	k_tournament_without_replacement	
Parent Selection k_kwargs	{'k': 18}	
Survival Selection	$k_tournament_without_replacement$	
Survival Selection k_kwargs	{'k': 18}	
Recombination kwargs	{'method': 'one-point'}	

Table 1: Evolutionary Algorithm Parameters

1.2 Graphs

Figure 1: Base fitness histogram

Figure 2: Penalized fitness histogram

Figure 3: Violation histogram

Figure 4: Evals vs fitness plot

Figure 5: Green 1c best solution

1.3 Statistical Analysis

Parameter	1c	1b
Mean	292.2	214.9
Stdv	11.24155	31.70266
Number of Samples	30	
p-value	8.778909489128499e-15	
α -value	0.05	

Table 2: Comparison of Results for Data Sets 1a and 1b

The statistical analysis strongly supports rejecting the null hypothesis, with the p-value (8.778909489128499e-15) being much smaller than the α -value (0.05), indicating a significant difference between the two data sets. Based off this, we can confidently conclude that 1c had much better performance.