Ullman et al. : Database System Principles

Notes 6: Query Processing

Query Processing

Q → Query Plan

Focus: Relational System

• Others?

Example

Select B,D From R,S Where R.A = "c" \wedge S.E = 2 \wedge R.C=S.C

R	A	В	C	S	C	D	Е	
	a	1	10		10	X	2	
	b	1	20		20	у	2	
	c	2	10		30	Z	2	
	d	2	35		40	X	1	
	e	3	45		50	y	3	

How do we execute query?

One idea

- Do Cartesian product
- Select tuples
- Do projection

RXS	R.A	R.B	R.C	S.C	S.D	S.E
	a	1	10	10	X	2
	a	1	10	20	у	2
	•					
Bingo! Got one	· C · ·	2	10	10	X	2

Relational Algebra - can be used to describe plans...

Ex: Plan I

$$\Pi_{B,D}$$

$$\sigma_{R.A=\text{``c''}\land S.E=2 \land R.C=S.C}$$

$$X$$

$$X$$

$$S$$

OR:
$$\Pi_{B,D} [\sigma_{R.A="c" \land S.E=2 \land R.C=S.C} (RXS)]$$

Another idea:

Plan II

<u>Plan III</u>

Use R.A and S.C Indexes

- (1) Use R.A index to select R tuples with R.A = "c"
- (2) For each R.C value found, use S.C index to find matching tuples
- (3) Eliminate S tuples S.E \neq 2
- (4) Join matching R,S tuples, project B,D attributes and place in result

Overview of Query Optimization

Example: SQL query

```
SELECT title
FROM StarsIn
WHERE starName IN (
      SELECT name
      FROM MovieStar
      WHERE birthdate LIKE '%1960'
);
(Find the movies with stars born in 1960)
```

Example: Parse Tree

Example: Generating Relational Algebra

Fig. 7.15: An expression using a two-argument σ , midway between a parse tree and relational algebra

Example: Logical Query Plan

Fig. 7.18: Applying the rule for IN conditions

Example: Improved Logical Query Plan

Fig. 7.20: An improvement on fig. 7.18.

Example: Estimate Result Sizes

Example: One Physical Plan

Example: Estimate costs

Query Optimization

- Relational algebra level
- Detailed query plan level
 - Estimate Costs
 - without indexes
 - with indexes
 - Generate and compare plans

Relational algebra optimization

- Transformation rules (preserve equivalence)
- What are good transformations?

Rules: Natural joins & cross products & union

$$R \bowtie S = S \bowtie R$$

 $(R \bowtie S) \bowtie T = R \bowtie (S \bowtie T)$

Note:

- Carry attribute names in results, so order is not important
- Can also write as trees, e.g.:

Rules: Natural joins & cross products & union

$$R \bowtie S = S \bowtie R$$

 $(R \bowtie S) \bowtie T = R \bowtie (S \bowtie T)$

$$R \times S = S \times R$$

 $(R \times S) \times T = R \times (S \times T)$

$$R U S = S U R$$

 $R U (S U T) = (R U S) U T$

Rules: Selects

Rules: Project

```
Let: X = \text{set of attributes}

Y = \text{set of attributes}

XY = X U Y

\pi_{xy}(R) = \pi_{x}[\pi_{xy}(R)]
```

Rules: $\sigma + \bowtie$ combined

Let p = predicate with only R attribs q = predicate with only S attribs m = predicate with only R,S attribs

Rules: $\sigma + \bowtie combined$ (continued)

Some Rules can be Derived:

$$\sigma_{p \land q} (R \bowtie S) = (\sigma_p R) \bowtie (\sigma_q S)$$

$$\sigma_{p \land q \land m} (R \bowtie S) = \sigma_m [(\sigma_p R) \bowtie (\sigma_q S)]$$

$$\sigma_{pvq}(R \bowtie S) = [(\sigma_p R) \bowtie S] \cup [R \bowtie (\sigma_q S)]$$

Rules: π,σ combined

Let x = subset of R attributes z = attributes in predicate P (subset of R attributes)

$$\pi_{x}[\sigma_{p}(R)] = \pi_{x}\{\sigma_{p}[\pi_{x}(R)]\}$$

Rules: π , \bowtie combined

Let x = subset of R attributes y = subset of S attributes z = intersection of R,S attributes $\pi_{xy} (R \bowtie S) =$

$$\pi_{xy}\{[\pi_{xz}(R)] \bowtie [\pi_{yz}(S)]\}$$

$$\pi_{xy} \{ \sigma_P (R \bowtie S) \} =$$

$$\pi_{xy} \{ \sigma_P [\pi_{xz'}(R) \bowtie \pi_{yz'}(S)] \}$$

$$z' = z \ U \{ \text{attributes used in P } \}$$

Rules for σ , π combined with X

similar...

e.g.,
$$\sigma_P(RXS) = ?$$

Rules σ , U combined:

$$\sigma_p(R \cup S) = \sigma_p(R) \cup \sigma_p(S)$$

 $\sigma_p(R - S) = \sigma_p(R) - S = \sigma_p(R) - \sigma_p(S)$

Which are "good" transformations?

- \Box $\sigma_{p1 \land p2} (R) \rightarrow \sigma_{p1} [\sigma_{p2} (R)]$
- $^{\square}$ $\sigma_{p}(R \bowtie S) \rightarrow [\sigma_{p}(R)] \bowtie S$
- $\square R \bowtie S \rightarrow S \bowtie R$
- $\ \square \ \pi_{x} \left[\sigma_{p} \left(R\right)\right] \rightarrow \pi_{x} \left\{\sigma_{p} \left[\pi_{xz} \left(R\right)\right]\right\}$

Conventional wisdom: do projects early

Example:
$$R(A,B,C,D,E) = x=\{E\}$$

P: $(A=3) \land (B="cat")$

$$\pi_x \{ \sigma_p (R) \}$$
 vs. $\pi_E \{ \sigma_p \{ \pi_{ABE}(R) \} \}$

Usually good: early selections

But What if we have A, B indexes?

Intersect pointers to get pointers to matching tuples

Outline - Query Processing

- Relational algebra level
 - transformations
 - good transformations
- Detailed query plan level
 - estimate costs
 - generate and compare plans

- Estimating cost of query plan
- (1) Estimating <u>size</u> of results
- (2) Estimating # of IOs

Estimating result size

Keep statistics for relation R

- T(R): # tuples in R
- L(R): # of bytes in each R tuple
- B(R): # of blocks to hold all R tuples
- V(R, A): # distinct values in R for attribute A
- b: block size
- bf(R) (blocking factor): # of tuples in a blockbf(R) = b/L(R)

Example

R

Α	В	С	D
cat	1	10	а
cat	1	20	b
dog	1	30	а
dog	1	40	С
bat	1	50	d

A: 20 byte string

B: 4 byte integer

C: 8 byte date

D: 5 byte string

$$T(R) = 5$$
 $L(R) = 37$
 $V(R,A) = 3$ $V(R,C) = 5$
 $V(R,B) = 1$ $V(R,D) = 4$

Size estimates for $W = R \times S$

$$T(W) = T(R) \times T(S)$$

$$L(W) = L(R) + L(S)$$
$$bf(W) = b/(L(R)+L(S))$$

$$B(W) = T(R)*T(S)/bf(W) =$$

$$= T(R)*T(S)*L(S)/b + T(S)*T(R)*L(R)/b =$$

$$= T(R)*T(S)/bf(S) + T(S)*T(R)/bf(R) =$$

$$= T(R)*B(S) + T(S)*B(R)$$

Size estimate for $W = \sigma_{A=a}(R)$

$$L(W) = L(R)$$

$$T(W) = ?$$

Example

.	Α	В	С	D
	cat	1	10	а
	cat	1	20	b
	dog	1	30	а
	dog	1	40	С
	bat	1	50	d

$$W = \sigma_{z=val}(R)$$
 $T(W) = \frac{T(R)}{V(R,Z)}$

Selection cardinality

```
SC(R,A) = average # records that satisfy
equality condition on R.A
SC(R,A) = T(R) / V(R,A)
```

What about
$$W = \sigma_{z \ge val}(R)$$
?

$$T(W) = ?$$

Solution # 1:
 T(W) = T(R)/2

Solution # 2:
 T(W) = T(R)/3

Solution # 3: Estimate values in range

Example R

$$f = 20-15+1 = 6$$
 (fraction of range)
20-1+1 20

$$T(W) = f \times T(R)$$

Equivalently:

$$f \times V(R,Z) = fraction of distinct values$$

 $T(W) = [f \times V(Z,R)] \times \underline{T(R)} = f \times T(R)$
 $V(Z,R)$

Size estimate for $W = R1 \bowtie R2$

Let x = attributes of R1y = attributes of R2

Case 1

$$X \cap Y = \emptyset$$

Same as R1 x R2

Assumption:

$$V(R1,A) \le V(R2,A) \Rightarrow \text{Every A value in R1 is in R2}$$

 $V(R2,A) \le V(R1,A) \Rightarrow \text{Every A value in R2 is in R1}$

"containment of value sets"

Computing T(W) when $V(R1,A) \leq V(R2,A)$

1 tuple matches with
$$\frac{T(R2)}{V(R2,A)}$$
 tuples...

so
$$T(W) = \frac{T(R2)}{V(R2, A)} \times T(R1)$$

•
$$V(R1,A) \le V(R2,A)$$
 $T(W) = T(R2) T(R1)$
 $V(R2,A)$

•
$$V(R2,A) \le V(R1,A)$$
 $T(W) = T(R2) T(R1)$
 $V(R1,A)$

[A is common attribute]

In general
$$W = R1 \bowtie R2$$

$$T(W) = T(R2) T(R1)$$

 $max\{ V(R1,A), V(R2,A) \}$

Size Estimation Summary (1/2)

$$\sigma_{A=v}(R)$$
 SC(R,A) (--> SC(R,A) = T(R) / V(R,A))

$$\sigma_{A \le v}(R)$$
 $T(R) * \frac{v - \min(A, R)}{\max(A, R) - \min(A, R)}$

 $\sigma_{\theta_1 \wedge \theta_2 \wedge ... \wedge \theta_n}(R)$ multiplying probabilities

$$T(R)*[(sc_1/T(R))*(sc_2/T(R))*...(sc_n/T(R))]$$

 $\sigma_{\theta_1 \vee \theta_2 \vee ... \vee \theta_n}(R)$ probability that a record satisfy none of θ :

$$[(1-sc_1/T(R))*(1-sc_2/T(R))*...*(1-sc_n/T(R))]$$

$$T(R)*(1-[(1-sc_1/T(R))*(1-sc_2/T(R))*...*(1-sc_n/T(R))])$$

Size Estimation Summary(2/2)

- R x S
 T(RxS) = T(R)*T(S)
- R⋈S
 - $-R \cap S = \emptyset$: T(R) * T(S)
 - $-R \cap S$ key for R: maximum output size is T(S)
 - $-R \cap S$ foreign key for R: T(S)
 - $-R \cap S = \{A\}$, neither key of R nor S
 - T(R) * T(S) / V(S,A)
 - T(R) * T(S) / V(R,A)

A Note on Histograms

$$\sigma_{A=val}(R) = ?$$

<u>Summary</u>

Estimating size of results is an "art"

Don't forget:

Statistics must be kept up to date... (cost?)