Last name	
First name	

LARSON—MATH 601—CLASSROOM WORKSHEET 09 Vector Spaces.

Concepts & Notation

- (Sec. 2.1) vector, vector space, linear combination.
- (Sec. 2.2) subspace, subspace spanned by a set of vectors.
- (Sec. 3.3) linearly independent set of vectors, basis.
- 1. What is a *linear combination* of vectors $\alpha_1, \alpha_2, \ldots, \alpha_n$ in a vector space V over a field \mathbb{F} ?

2. What is a *subspace* of a vector space V?

3. Show that $W = \{(x,0) : x \in \mathbb{R}^2\}$ is a subspace of \mathbb{R}^2 .

4. Let $W = \{(x,0) : x \in \mathbb{R}^2\}$. Show that, for every $\alpha, \beta \in W$ and $c \in \mathbb{R}$, $c\alpha + \beta \in W$.

5. Let V is a vector space over a field \mathbb{F} , and $W \subseteq V$. Show: If, for every $\alpha, \beta \in W$ and $c \in \mathbb{F}$, $c\alpha + \beta \in W$, then W is a subspace of V.

If V is a vector space over a field \mathbb{F} and $S \subset V$, the subspace spanned by S is the intersection of all subspaces of V containing S; if $S = \{\alpha_1, \alpha_2, \dots, \alpha_n\}$ then say it is the subspace spanned by $\alpha_1, \alpha_2, \dots, \alpha_n$.

6. Find the subspace spanned by $\alpha = (1,0)$ in \mathbb{R}^2 .

7. Let $\alpha_1 = (1,0), \alpha_2 = (0,1) \in \mathbb{R}^2$. Show that, if $c_1\alpha_1 + c_2\alpha_2 = (0,0)$ then $c_1 = c_2 = 0$.

Vectors $\alpha_1, \ldots, \alpha_n$ in a vector space V over a field \mathbb{F} are linearly independent if $c_1\alpha_1 + \ldots c_n\alpha_n = 0$ ($c_i \in \mathbb{F}$) implies $c_1 = \ldots c_n$. If $\alpha_1, \ldots, \alpha_n$ are not linearly independent then they are linearly dependent.

8. Show $\alpha_1 = (1,0), \alpha_2 = (0,1) \in \mathbb{R}^2$ are linearly independent.