MIPS Reference Data

(1)

ON SE	Т			OPCODE				
	FOR-			/ FUNCT				
NIC	MAT	OPERATION (in Verilog)		(Hex)				
add	R	R[rd] = R[rs] + R[rt]	(1)	0 / 20 _{hex}				
addi	I	R[rt] = R[rs] + SignExtImm	(1,2)	8 _{hex}				
addiu	I	R[rt] = R[rs] + SignExtImm	(2)	9 _{hex}				
addu	R	R[rd] = R[rs] + R[rt]		$0/21_{hex}$				
and	R	R[rd] = R[rs] & R[rt]		0 / 24 _{hex}				
andi	I	R[rt] = R[rs] & ZeroExtImm	(3)	c_{hex}				
beq	I	if(R[rs]==R[rt]) PC=PC+4+BranchAddr	(4)	4 _{hex}				
lbne	I	if(R[rs]!=R[rt]) PC=PC+4+BranchAddr	(4)	5 _{hex}				
j	J	PC=JumpAddr	(5)	2_{hex}				
jal	J	R[31]=PC+8;PC=JumpAddr	(5)	3_{hex}				
jr	R	PC=R[rs]		$0/08_{hex}$				
lbu	I	$R[rt]=\{24\text{'b0,M}[R[rs] \\ + SignExtImm](7:0)\}$	(2)	24 _{hex}				
lhu	I	$R[rt]=\{16\text{'b0,M}[R[rs] \\ + SignExtImm](15:0)\}$	(2)	25 _{hex}				
11	I	R[rt] = M[R[rs] + SignExtImm]	(2,7)	30_{hex}				
lui	I	$R[rt] = \{imm, 16'b0\}$		f_{hex}				
lw	I	R[rt] = M[R[rs] + SignExtImm]	(2)	23_{hex}				
nor	R	$R[rd] = \sim (R[rs] \mid R[rt])$		0 / 27 _{hex}				
or	R	$R[rd] = R[rs] \mid R[rt]$		0 / 25 _{hex}				
ori	I	R[rt] = R[rs] ZeroExtImm	(3)	Hex				
slt	R	R[rd] = (R[rs] < R[rt]) ? 1 : 0		$0/2a_{\text{hex}}$				
slti	I		: 0 (2)	a _{hex}				
sltiu	I	R[rt] = (R[rs] < SignExtImm) $? 1:0$	(2,6)	b _{hex}				
sltu	R	R[rd] = (R[rs] < R[rt]) ? 1 : 0	(6)	$0/2b_{\text{hex}}$				
sll	R	$R[rd] = R[rt] \ll shamt$		0 / 00 _{hex}				
srl	R	R[rd] = R[rt] >> shamt		0 / 02 _{hex}				
sb	I	M[R[rs]+SignExtImm](7:0) = R[rt](7:0)	(2)	28 _{hex}				
	NIC add addi addi addi addi and and and beq bne j jal jr lbu llui lw nor ori slt slti slti slti srl	NIC MAT add R addi I addiu I addiu R andi I beq I Ibne I j J jal J jr R lbu I lhu I lui I lui I lw I nor R ori R slti I s	FOR- NIC MAT OPERATION (in Verilog)	FOR- NIC MAT OPERATION (in Verilog)				

Subtract Unsigned subu R R[rd] = R[rs] - R[rt]

sc

sh

sw

(1) May cause overflow exception
(2) SignExtImm = { 16{immediate[15]}, immediate }

I M[R[rs]+SignExtImm] = R[rt]

(3) $ZeroExtImm = \{ 16\{1b'0\}, immediate \}$

R R[rd] = R[rs] - R[rt]

(4) BranchAddr = { 14{immediate[15]}, immediate, 2'b0 }

M[R[rs]+SignExtImm] = R[rt];

M[R[rs]+SignExtImm](15:0) =

R[rt] = (atomic) ? 1 : 0

R[rt](15:0)

- (5) $JumpAddr = \{ PC+4[31:28], address, 2'b0 \}$
- (6) Operands considered unsigned numbers (vs. 2's comp.)
- (7) Atomic test&set pair; R[rt] = 1 if pair atomic, 0 if not atomic

BASIC INSTRUCTION FORMATS

Store Conditional

Store Halfword

Store Word

Subtract

R	opcode	rs	rt	rd	shamt	funct
	31 26	25 21	20 16	15 11	10 6	5
I	opcode	rs	rt		immediate	
	31 26	25 21	20 16	15		
J	opcode			address		
	31 26	25				

ARITHMETIC CORE INSTRUCTION SET

			O	/ FMT /FT
		FOR-		/ FUNCT
NAME, MNEMO	NIC	MAT	OPERATION	(Hex)
Branch On FP True	bc1t	FI	if(FPcond)PC=PC+4+BranchAddr (4)	11/8/1/
Branch On FP False	bc1f	FI	if(!FPcond)PC = PC + 4 + BranchAddr(4)	11/8/0/
Divide	div	R	Lo=R[rs]/R[rt]; Hi=R[rs]%R[rt]	0//-1a
Divide Unsigned	divu	R	$Lo=R[rs]/R[rt]; Hi=R[rs]\%R[rt] \qquad (6)$	0///1b
FP Add Single	add.s	FR	F[fd] = F[fs] + F[ft]	11/10//0
FP Add	add.d	FR	${F[fd],F[fd+1]} = {F[fs],F[fs+1]} +$	11/11//0
Double			$\{F[ft],F[ft+1]\}$	
FP Compare Single	C.X.S*	FR	FPcond = (F[fs] op F[ft]) ? 1 : 0	11/10//y
FP Compare	c.x.d*	FR	$FPcond = (\{F[fs], F[fs+1]\} op$	11/11//y
Double			{F[ft],F[ft+1]})?1:0	11/11/ //
			=, <, or <=) (y is 32, 3c, or 3e)	11/10/ /2
FP Divide Single FP Divide	div.s	FK	F[fd] = F[fs] / F[ft]	11/10//3
Double	div.d	FR	${F[fd],F[fd+1]} = {F[fs],F[fs+1]} / {F[ft],F[ft+1]}$	11/11//3
FP Multiply Single	mul a	FR	$\{\Gamma[\Pi], \Gamma[\Pi^{+1}]\}$ $\Gamma[fd] = \Gamma[fs] * \Gamma[ft]$	11/10//2
FP Multiply	muı.s			11/10//2
Double	mul.d	FR	${F[fd],F[fd+1]} = {F[fs],F[fs+1]} * {F[ft],F[ft+1]}$	11/11//2
FP Subtract Single	sub.s	FR	F[fd]=F[fs] - F[ft]	11/10//1
FP Subtract			$\{F[fd],F[fd+1]\} = \{F[fs],F[fs+1]\}$	
Double	sub.d	FR	{F[ft],F[ft+1]}	11/11//1
Load FP Single	lwc1	I	F[rt]=M[R[rs]+SignExtImm] (2)	31//
Load FP			F[rt]=M[R[rs]+SignExtImm]; (2)	
Double	ldc1	Ι	F[rt+1]=M[R[rs]+SignExtImm+4]	35//
Move From Hi	mfhi	R	R[rd] = Hi	0 ///10
Move From Lo	mflo	R	R[rd] = Lo	0 ///12
Move From Control	mfc0	R	R[rd] = CR[rs]	10 /0//0
Multiply	mult	R	$\{Hi,Lo\} = R[rs] * R[rt]$	0//-18
Multiply Unsigned	multu	R	$\{Hi,Lo\} = R[rs] * R[rt] $ (6)	0///19
Shift Right Arith.	sra	R	R[rd] = R[rt] >>> shamt	0//-3
Store FP Single	swc1	I	M[R[rs]+SignExtImm] = F[rt] (2)	39//
Store FP	sdc1	I	M[R[rs]+SignExtImm] = F[rt]; (2)	3d//
Double	Saci	1	M[R[rs]+SignExtImm+4] = F[rt+1]	3u//

(2) OPCODE

FLOATING-POINT INSTRUCTION FORMATS

FR	opcode	fmt	ft	fs	fd	funct
	31 26	25 21	20 16	15 11	10 6	5 0
FI	opcode	fmt	ft		immediate	;
	31 26	25 21	20 16	15		0

PSEUDOINSTRUCTION SET

 38_{hex}

 29_{hex}

0 / 23_{hex}

(1) $0/22_{hex}$

(2,7)

(2)

(2) 2b_{hex}

NAME	MNEMONIC	OPERATION
Branch Less Than	blt	$if(R[rs] \le R[rt]) PC = Label$
Branch Greater Than		if(R[rs]>R[rt]) PC = Label
Branch Less Than or Equal	ble	$if(R[rs] \le R[rt]) PC = Label$
Branch Greater Than or Equal	l bge	$if(R[rs] \ge R[rt]) PC = Label$
Load Immediate	li	R[rd] = immediate
Move	move	R[rd] = R[rs]

REGISTER NAME, NUMBER, USE, CALL CONVENTION

NAME	NUMBER	USE	PRESERVEDACROSS
NAME	NUMBER	USE	A CALL?
\$zero	0	The Constant Value 0	N.A.
\$at	1	Assembler Temporary	No
\$a0-\$a3 4-7		Values for Function Results and Expression Evaluation	No
		Arguments	No
		Temporaries	No
\$s0-\$s7	16-23	Saved Temporaries	Yes
\$t8-\$t9	24-25	Temporaries	No
\$k0-\$k1	26-27	Reserved for OS Kernel	No
\$gp	28	Global Pointer	Yes
\$sp	29	Stack Pointer	Yes
\$fp 30		Frame Pointer	Yes
\$ra	31	Return Address	No

OPCOD	EC BAC	E CONVER	SCION 4	ופרוו	CANE	e IO		3	
	(1) MIPS		ISION, A			ASCII	Ι	Hexa-	ASCII
opcode	funct	funct	Binary	Deci-	deci-	Char-	Deci-	deci-	Char-
(31:26)	(5:0)	(5:0)	Dinary	mal	mal	acter	mal	mal	acter
(1)	sll	add.f	00 0000	0	0	NUL	64	40	(a)
` ′		$\mathrm{sub}f$	00 0001	1	1	SOH	65	41	Ă
j	srl	$\mathtt{mul}.f$	00 0010	2	2	STX	66	42	В
jal	sra	div.f	00 0011	3	3	ETX	67	43	С
beq	sllv	sqrt.f	00 0100		4	EOT	68	44	D
bne	,	abs. f	00 0101	5 6	5 6	ENQ ACK	69 70	45 46	E F
blez bgtz	srlv srav	mov. f neg. f	00 0110 00 0111	7	7	BEL	71	47	G
addi	jr	neg.j	00 1000		8	BS	72	48	H
addiu	jalr		00 1001	9	9	HT	73	49	I
slti	movz		00 1010	10	a	LF	74	4a	J
sltiu	movn		00 1011	11	b	VT	75	4b	K
andi	syscall		00 1100		C	FF	76	4c	L
ori	break	trunc.w.f	00 1101	13	d	CR	77	4d	M
xori		ceil.w.f	00 1110 00 1111	14 15	e f	SO SI	78 79	4e 4f	N O
(lui)	mfhi	floor.w.f	01 0000	16	10	DLE	80	50	P
(2)	mthi		01 0001	17	11	DC1	81	51	Q
(-)	mflo	movz.f	01 0010	18	12	DC2	82	52	Ř
	mtlo	movn. f	01 0011	19	13	DC3	83	53	S
			01 0100	20	14	DC4	84	54	T
			01 0101	21	15	NAK	85	55	U
			01 0110	22	16	SYN	86	56	V
	1+		01 0111	23	17	CAN	87	57 58	X
	mult multu		01 1000	25	19	EM	89	59	Y
	div		01 1001	26	la	SUB	90	5a	Ž
	divu		01 1011	27	1b	ESC	91	5b	Ī
			01 1100	28	1c	FS	92	5c	1
			01 1101	29	1d	GS	93	5d]
			01 1110	30	1e	RS	94	5e	^
			01 1111	31	1f	US	95	5f	-
lb	add	cvt.s.f	10 0000	32 33	20 21	Space	96 97	60	
lh lwl	addu sub	$\operatorname{cvt.d} f$	10 0001 10 0010	34	22	!	98	61 62	a b
lw	subu		10 0010	35	23	#	99	63	c
1bu	and	cvt.w.f	10 0100	36	24	\$	100	64	d
lhu	or	,	10 0101	37	25	%	101	65	e
lwr	xor		10 0110	38	26	&	102	66	f
	nor		10 0111	39	27	,	103	67	g
sb			10 1000		28	(104	68	h
sh	e1+		10 1001 10 1010	41 42	29 2a) *	105 106	69 6a	i j
swl sw	slt sltu		10 1010	42	2b	+	100	6b	J k
J W	J U		10 1100	44	2c		107	6c	1
			10 1101	45	2d	-	109	6d	m
swr			10 1110	46	2e		110	6e	n
cache			10 1111	47	2f	/	111	6f	o
11	tge	c.f.f	11 0000	48	30	0	112	70	p
lwc1	tgeu	c.un.f	11 0001	49	31	1	113	71	q
lwc2	tlt	c.eq.f	11 0010	50	32	2	114	72	r
pref	tltu	c.ueq.f	11 0011 11 0100	51	33	3	115	73 74	s t
ldc1	teq	c.olt.f c.ult.f	11 0100	53	35	5	117	75	u
ldc2	tne	c.ole.f	11 0101		36	6	118	76	V
		c.ule.f	11 0111	55	37	7	119	77	w
sc		c.sf.f	11 1000	56	38	8	120	78	X
swc1		c.ngle. f	11 1001	57	39	9	121	79	У
swc2		c.seq.f	11 1010		3a	:	122	7a	Z
		c.ngl.f	11 1011	59	3b	;	123	7b	{
, ,		c.lt. f	11 1100	60	3c	<	124	7c	
sdc1		c.nge.f	11 1101 11 1110	61 62	3d 3e	= >	125 126	7d 7e	} ~
sdc2		c.le.f c.ngt.f	11 1111	63	3f	?	120	7f	DEL
(1) opco	de(31:26)		1 . 1 . 1 . 1 . 1 . 1	03	<i>J</i> 1	•	12/	/1	DLL
		== 17. (11.): if fm	nt(25·2	1)==1	5 (10.) f=	s (sin	ole).

⁽²⁾ opcode(31:26) == 17_{ten} (11_{hex}); if fmt(25:21)== 16_{ten} (10_{hex}) f = s (single); if $fmt(25:21) == 17_{ten} (11_{hex}) f = d (double)$

IEEE 754 FLOATING-POINT STANDARD

 $(-1)^S \times (1 + Fraction) \times 2^{(Exponent - Bias)}$ where Single Precision Bias = 127,

Double Precision Bias = 1023.

IEEE 754 Symbols Exponent Fraction Object 0 ± 0 0 **≠**0 ± Denorm 1 to MAX - 1 anything ± Fl. Pt. Num. MAX MAX NaN

S.P. MAX = 255, D.P. MAX = 2047

IEEE Single Precision and Double Precision Formats:

S	Exponent	Fraction
31	30 23	22 0
S	Exponent	Fraction
63	62	52 51 0

DATA ALIGNMENT

ALIGINI	_141						
			Doub	le Wor	d		
	Wo	rd			W	ord	
Halfw	ord	Half	word	Hal	fword	Half	word
Byte	Byte	Byte	Byte	Byte	Byte	Byte	Byte
0	1	2	3	4	5	6	7

Value of three least significant bits of byte address (Big Endian)

EXCEPTION CONTROL REGISTERS: CAUSE AND STATUS

	 					_		
B		iterrupt		E	xception			
D		Mask			xception Code			
31	15		8	6		2		
	P	ending			U		Е	Ι
	Ir	nterrupt			M		L	Е
	15		8		4		1	0

BD = Branch Delay, UM = User Mode, EL = Exception Level, IE =Interrupt Enable

EXCEPTION CODES

= /	KCEPIIC	JN CC	DES			
	Number	Name	Cause of Exception	Number	Name	Cause of Exception
0		Int	Interrupt (hardware)	9	Bp	Breakpoint Exception
4		AdEL	Address Error Exception	10	RI	Reserved Instruction
		Auel	(load or instruction fetch)	10	Exception Exception	
	5	AdES	Address Error Exception			Coprocessor
	3	Auls	(store)	11	Сро	Unimplemented
	6	IBE	Bus Error on	12	Ov	Arithmetic Overflow
	0	IDE	Instruction Fetch	12	Ov	Exception
	7	DBE	Bus Error on	13	Tr	Trap
	_ ′	DBE	Load or Store	13	11	пар
	8	Svs	Syscall Exception	15	FPE	Floating Point Exception

SIZE PREFIXES (10^x for Disk, Communication; 2^x for Memory)

۰	ter blee (10 101 blok, communication, e 101 monory)											
		PRE-		PRE-		PRE-		PRE-				
	SIZE	FIX	SIZE	FIX	SIZE	FIX	SIZE	FIX				
	$10^3, 2^{10}$	Kilo-	$10^{15}, 2^{50}$	Peta-	10-3	milli-	10 ⁻¹⁵	femto-				
	$10^6, 2^{20}$	Mega-	10 ¹⁸ , 2 ⁶⁰	Exa-	10-6	micro-	10 ⁻¹⁸	atto-				
	$10^9, 2^{30}$	Giga-	$10^{21}, 2^{70}$	Zetta-	10 ⁻⁹	nano-	10-21	zepto-				
	$10^{12}, 2^{40}$	Tera-	$10^{24}, 2^{80}$	Yotta-	10-12	pico-	10-24	yocto-				

The symbol for each prefix is just its first letter, except μ is used for micro.