Deep Q Network

Q_learning + DNN

DQN은 Q 값을 DNN을 이용해서 업데이트를 하는 Q_learning 방법 딥러닝을 이용하기 때문에 보다 복잡한 함수로 Q 값을 표현이 가능해짐.

Q_learning의 한계점 개선

- 1.State가 다양해짐에 따라 복잡한 정확한 Q 값을 도출하기에는 한계가 존재함.
- 2.이를 해결하기 위해 비슷한 State끼리 묶은 후
- 3.하나의 State의 Q 값을 도출한 후 비슷한 State에 대입하는 형식
- 4.새로운 sample값이 들어와도 Ir을 이용해 Q 값을 미세하기 업데이트 해나감 ex) 10이라는 샘플을 열 번 얻었다고 가정.

11번째 값에 12가 들어왔을 때 평균 값은 아무리 커도 12 이하일 것이다(10.xxxx)

DQN 특징

가치 기반 Agent로 운용되는 강화학습 모델 - Q(st, at)가 아닌 State값만 사용 *그럼 Action을 어떻게 뽑는가?

DNN 모델에 State를 input으로 넣고 output으로 Action 값을 출력 ex) output - Q(st,왼쪽) & Q(st,오른쪽) - 둘 중 Max(Q)의 Action을 선택 선택된 Action에 대한 Q 값만 업데이트를 진행

기존의 DL은 모든 결과값을 업데이트 한다는 점과 차이점이 존재

핵심 포인트

- 1.CNN(DNN) 사용 인간처럼 행동하도록 구현
- 2.Experience Replay 예전에 했던 experience를 다시 참고하고 업데이트 하는 것
- 3.State Corr을 확연히 줄어들었음. (연속형 → 이산형)

Deep Q Network

State Corr이 너무 높으면 Action의 진행상황을 연속적으로 보게 되는 경우가 발생해서 학습시간이 오래걸릴 뿐만아니라 이산적으로 보는 것과 다를 바가 없다는 문제가 있음.

DQN 2015 차별성

Target Net과 Main Net으로 구분을 지음

Target Net - Sample을 뽑아서 w(가중치)를 업데이트 진행

Main Net - Target Net에서 충분히 업데이트 된 w값을 Main Net에 적용

- 1.Target Net w ← Main Net w(복사)
- 2.Target Net w Update 진행 (C 스텝 마다) *C는 사용자 정의
- 3.충분히 업데이트 한 후 Target Net w → Main Net w로 복사
- 4.반복

Deep Q Network 2