МИНОБРНАУКИ РОССИИ

САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ ЭЛЕКТРОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ «ЛЭТИ» ИМ. В.И. УЛЬЯНОВА (ЛЕНИНА)

Кафедра МО ЭВМ

ИНДИВИДУАЛЬНОЕ ДОМАШНЕЕ ЗАДАНИЕ по дисциплине «Введение в нереляционные базы данных»

Тема: Сервис хранения экспериментов инструмента ripes

Студенты гр. 0304	Голиков А.В.
	 Решоткин А.С.
	 Крицын Д.Р.
Преподаватель	 Заславский М.М

Санкт-Петербург

Студенты Голиков А.В. Решоткин А.С. Крицын Д.Р. Группа 0304 Тема проекта: Сервис хранения экспериментов инструмента ripes. Исходные данные: Необходимо реализовать сервис для хранения экспериментов инструментов ripes с использованием MongoDB. Содержание пояснительной записки: «Содержание» «Введение» «Качественные требования к решению» «Сценарий использования» «Модель данных» «Разработка приложения» «Вывод» «Приложение»

Предполагаемый объем пояснительной записки: Не менее 10 страниц.

Дата выдачи задания:	
Дата сдачи реферата:	
Дата защиты реферата:	
Студенты гр. 0304	Решоткин А.С. Голиков А.В. Крицын Д.Р.
Преподаватель	 Заславский М.М.

АННОТАЦИЯ

В качестве индивидуального домашнего задания была выбрана тема "Сервиса хранения экспериментов инструмента ripes", предполагающая разработку приложения хранения экспериментов с использованием СУБД MongoDB. Исходный код приложения можно найти по ссылке: https://github.com/moevm/nosql2h23-ripes

ANNOTATION

As an individual homework, the topic "Storage services for experiments of the ripes tool" was chosen, which involves the use of the MongoDB. The application source code can be found at:

https://github.com/moevm/nosql2h23-ripes

1. ВВЕДЕНИЕ	5
2. КАЧЕСТВЕННЫЕ ТРЕБОВАНИЯ К РЕШЕНИЮ	6
3. СЦЕНАРИИ ИСПОЛЬЗОВАНИЯ	7
3.2. Описание сценариев использования.	7
3.2.1. Сценарий использования - "просмотр списка экспериментов":	7
3.2.2. Сценарий использования - "просмотр списка экспериментов":	8
3.2.3. Сценарий использования - "просмотр статистики экспериментов".	9
3.2.4. Сценарий использования - "импорт / экспорт данных".	9
4. МОДЕЛЬ ДАННЫХ	9
4.1. Нереляционная модель данных.	9
4.1.1. Графическое представление модели.	9
4.1.2. Описание назначений коллекций, типов данных и сущностей.	11
4.1.2.1. Коллекции.	11
4.1.2.2. Типы данных.	11
4.1.4. Примеры запросов к модели	13
4.2. Реляционная модель.	15
4.2.2. Описание назначений типов данных и сущностей.	
Сущность "Experiment".	16
4.2.3. Примеры запросов к модели.	19
4.2.3.1. Просмотр списка экспериментов	19
4.2.3.2. Просмотр информации об эксперименте	19
4.2.3.3. Просмотр статистики экспериментов	19
4.3. Сравнение моделей.	20
4.4. Вывод сравнения моделей.	21
5. РАЗРАБОТАННОЕ ПРИЛОЖЕНИЕ	21
5.1 Краткое описание.	21
5.2. Снимки экрана приложения.	21
6. ВЫВОДЫ.	23
6.1 Достигнутые результаты	23
6.2 Недостатки и пути для улучшения полученного решения.	23
6.3 Будущее развитие решения	24

1. ВВЕДЕНИЕ

Цель работы — создать высокопроизводительное и удобное решение для хранения экспериментов инструмента ripes.

Было решено разработать веб-приложение, которое позволит хранить в электронном виде эксперименты инструмента ripes, при этом позволяющее удобно с ними взаимодействовать: импортировать, экспортировать, фильтровать.

2. КАЧЕСТВЕННЫЕ ТРЕБОВАНИЯ К РЕШЕНИЮ

Требуется разработать приложение с использованием СУБД – MongoDB, в которой будут храниться данные экспериментов ripes, а также с возможностью локального разворота приложения с помощью docker-compose.

3. СЦЕНАРИИ ИСПОЛЬЗОВАНИЯ

3.1. Макеты UI.

Рис. 1 - Макет UI.

3.2. Описание сценариев использования.

3.2.1. Сценарий использования - "просмотр списка экспериментов":

Основной сценарий:

- 1. Система выводит на экран список экспериментов в виде таблицы.
- 2. Пользователь задаёт фильтрацию для экспериментов и нажимает кнопку "фильтровать".
- 3. Система скрывает неподходящие под фильтр эксперименты.

4. Пользователь осуществляет навигацию по списку с использованием прокрутки страницы.

3.2.2. Сценарий использования - "просмотр списка экспериментов":

Основной сценарий:

- 1. Пользователь нажимает на эксперимент в списке экспериментов.
- 2. Система переходит на отдельную веб-страницу, на которой выведена информация об эксперименте: название эксперимента, название процессора, дата начала и окончания выполнения, состояние регистров и памяти.
- 3. Пользователь выбирает временной штамп, для которого нужно отобразить состояние регистров и памяти.
- 4. Система обновляет состояние регистров и памяти на странице.

3.2.3. Сценарий использования - "просмотр статистики экспериментов".

Основной сценарий:

- 1. Пользователь нажимает на кнопку "статистика экспериментов".
- 2. Система переходит на веб-страницу, которая отображает общую статистику экспериментов: количество успешных экспериментов, среднее / минимальное / максимальное время моделирования.

3.2.4. Сценарий использования - "импорт / экспорт данных". Основной сценарий:

- 1. Пользователь нажимает на кнопку "импорт / экспорт".
- 2. Система переходит на веб-страницу, которая отображает параметры импорта / экспорта данных: формат файла, диапазон индексов записей, автоматическое наименование экспериментов.
- 3. Пользователь нажимает на кнопку "импорт" или на кнопку "экспорт".
- 4. Система осуществляет импорт или экспорт данных с заданными параметрами.

4. МОДЕЛЬ ДАННЫХ

- 4.1. Нереляционная модель данных.
- 4.1.1. Графическое представление модели.

```
{
    _id: <ObjectId1>,
    name: "Сегментирование памяти",
```

```
processor: "RV32 5S",
     source file: "experiment.s",
     start timestamp: ISODate("2023-10-22T19:00:00Z"),
     end timestamp: ISODate("2023-10-22T19:00:04Z"),
     instructions retired: 138,
     cpi: 1.5072463768115942,
     ipc: 0.6634615384615384,
     cycles: 208,
     extensions: "MC",
     Тип данных "конвейер":
     pipeline: {
          id: <0bjectId3>
          instructions: ["auipc x10 0x10000", "lw x10 0 x10",
"jal x1 28 <fact>", "addi x11 x10 0"],
          cycles: [
               [[0, "IF"]],
               [[0, "ID"], [1, "IF"]],
               [[0, "EX"], [1, "ID"], [2, "IF"]]
          ]
     },
     registers: [
          Тип данных "регистр":
          {
               id: <ObjectId2>,
               name: "x1",
               value: 28,
               size: 32
          }
```

]

4.1.2. Описание назначений коллекций, типов данных и сущностей.

4.1.2.1. Коллекции.

Система имеет одну коллекцию "Эксперименты", содержащую типы данных "Эксперимент". При этом тип данных "эксперимент" содержит типы "конвейер" и "регистры".

4.1.2.2. Типы данных.

- Регистр
 - пате название регистра
 - value значение регистра по окончанию эксперимента
 - size размер регистра в битах
- Конвейер
 - instructions массив уникальных машинных инструкций
 - cycles история конвейера микроинструкций
- Эксперимент
 - processor название процессора
 - пате название эксперимента
 - source file имя файла с исходным кодом
 - start_timestamp время начала эксперимента
 - end timestamp время окончания эксперимента
 - instructions retired количество выполненных инструкций
 - срі тактов на одну инструкцию
 - ірс инструкций на такт
 - cycles количество тактов в эксперименте
 - extensions используемые расширения процессора

- pipeline история конвейера микроинструкций
- registers окончательные значения регистров процессора

4.1.3. Оценка удельного объема информации, хранимой в модели.

- Тип данных "Регистр"
 - id тип ObjectId. V = 12b
 - name тип String. V = Nrn b, где Nrn ~ 3 средняя длина имени регистра. V = 3b
 - value тип Int64. V = 8b
 - size тип Int. V = 4b Средний размер регистра V = 27b.
- Тип данных "Конвейер"
 - id тип ObjectId. V = 12b
 - instructions тип Array(String). V = Nin * Nasm b, где $Nin \sim 150$ среднее количество инструкций в эксперименте, а $Nasm \sim 10$ средняя длина машинной инструкции. V = 1500b
 - cycles Array(Array([Int, Int])). V = (Nm_in + 4) * Ncyc b, где Nm_in ~ 2 средняя длина микроинструкции, а Ncyc ~ 250 среднее количество тактов. V = 1500b Средний размер конвейера V = 3012b.
- Тип данных "Эксперимент"
 - _id тип ObjectId. V = 12b
 - ullet name тип String. V = Vename b, где Vename ~ 12 средняя длина названия эксперимента. V = 12b
 - processor тип String. V = Vсри b, где Vсри ~ 6 средняя длина названия процессора. V = 6b
 - ullet source_file тип String. V = Vnam b, где Vnam ~ 10 средняя длина имени файла с исходным кодом. V = 10b
 - start_timestamp тип Timestamp. V = 8b

- end timestamp тип Timestamp. V = 8b
- instructions retired тип Int. V = 4b
- cpi тип Double. V = 8b
- ipc тип Double. V = 8b
- cycles тип Int. V = 4b
- ullet extensions тип String. V = Vext b, где Vext ~ 2 средняя длина строки дополнений. V = 2b
- pipeline тип Object. V = 3012b
- registers тип Array(Object). V = Vreg * 27 b, где Vreg ~ 32 среднее количество регистров в процессоре. V = 864

Средний размер эксперимента V = 3958b. Объем данных для хранения Nexp экспериментов: V(Nexp) = 3958Nexp. Объем данных для хранения средней по объему базы данных экспериментов: V(200) = 791 600 b ~ 773 Kb.

Избыточность модели Чистый объем данных: 3550Nexp Избыточность модели: 3958Nexp / 3550Nexp = 1,11.

Направление роста модели При увеличении количества экспериментов объём коллекции "Experiments" возрастает линейно.

4.1.4. Примеры запросов к модели

Просмотр списка экспериментов.

• Получение всех экспериментов db.experiments.findAll()

• Получение экспериментов по фильтру.

```
db.experiments.findAll({ name: "Сегментирование памяти",
```

• Получение информации об эксперименте.

```
db.experiments.findOne({
    _id: <ObjectId1>
```

})

• Получение статистики экспериментов.

```
},
$min: {
        $dateDiff: {
           startDate: '$start_timestamp',
           endDate: '$end_timestamp',
           unit: 'second'
        }
},
$max: {
        $dateDiff: {
           startDate: '$start_timestamp',
           endDate: '$end_timestamp',
           unit: 'second'
        }
}
}}
])
```

4.2. Реляционная модель.

4.2.1. Графическое представление модели.

Рис.2. ER - диаграмма реляционной модели.

4.2.2. Описание назначений типов данных и сущностей. Сущность "Experiment".

- experiment_id уникальный идентификатор эксперимента. Тип int. V
 = 4b.
- name название процессора. Тип char(32). V = 32b.
- processor название эксперимента. Тип char(128). V = 128b.
- source_file имя файла с исходным кодом. Тип char(256). V=256b.
- start_timestamp время начала эксперимента. Тип timestamp. V=8b.
- end_timestamp время окончания эксперимента. Тип timestamp. V=8b.
- instruction_retired время окончания эксперимента. Тип int. V=4b.
- срі количество тактов на одну инструкцию. Тип double. V=8b.
- ірс количество инструкций на такт. Тип double. V = 8b.
- cycles- количество тактов в эксперименте. Тип int. V=4b.

• extensions - используемые расширения процессора. Тип char(16). V=16b.

Размер сущности "Experiment" = 732b

Сущность "Register".

- register_id уникальный идентификатор регистра. Тип int NOT
 NULL. V = 4b.
- experiment_id уникальный идентификатор эксперимента. Тип int NOT NULL. V = 4b.
- name название регистра. Тип char(16). V = 16b.
- value значение регистра по окончанию эксперимента. Тип bigint. V
 = 8b
- size -размер регистра в битах. Тип int. V = 4b.

Размер сущности "Register" = 36b Сущность "Cycle".

- cycle_id уникальный идентификатор такта. Тип int. V = 4b.
- experiment_id уникальный идентификатор эксперимента. Тип int. V = 4b.
- number номер такта. Тип int. V = 4b.

Размер сущности "Cycle" = 12b.

Сущность "Instruction".

- instruction_id уникальный идентификатор инструкции. Тип char. V = 8b.
- asm_line машинная инструкция. Тип char(256). V = 256b.
- Размер сущности "Instruction" = 264b.
- Сущность "Microinstruction".

- microinstruction_id уникальный идентификатор микроинструкции.
 Тип int. V = 4b.
- name название микроинструкции. Тип char(8). V = 8b.

Размер сущности "Microinstruction" = 12b.

Сущность "PipelineCycle".

- pypeline cycle id уникальный идентификатор. Тип int. V = 4b.
- cycle id уникальный идентификатор такта. Тип int. V = 4b.
- instruction_id уникальный идентификатор инструкции. Тип int. V = 4b.
- microinstruction_id уникальный идентификатор микроинструкции. Тип int. V = 4b.

Размер сущности "PipelineCycle" = 16b.

Среднее количество сущностей "Register" на один эксперимент = 32.

Среднее количество сущностей "Cycle" на один эксперимент = 250.

Среднее количество сущностей "Instruction" на один эксперимент = 150.

Среднее количество сущностей "Microinstruction" на один эксперимент = 30.

Среднее количество сущностей "PipelineCycle" на один такт = 5.

Объем данных для хранения Nexp экспериментов:

$$V(Nexp) = (3236 + 25012 + 150264 + 3012 + 250516 + 732)Nexp = 64844Nexp$$

Объем данных для хранения средней по объему базы данных экспериментов:

4.2.3. Примеры запросов к модели.

4.2.3.1. Просмотр списка экспериментов

```
SELECT `Experiments`.experiment_id, `Experiments`.name,

`Experiments`.processor, `Experiments`.start_timestamp,

`Experiments`.end_timestamp FROM `Experiments` JOIN

`Registers` USING (experiment_id) WHERE `Experiments`.name =

'Cermentupobahue namstu' AND `Experiments`.source_file =

'experiment.s' AND

TIMESTAMPDIFF(`Experiments`.start_timestamp,

`Experiments`.end_timestamp, SECOND) = 3 AND `Registers`.name

= 'x1';
```

Количество запросов к БД равно V(Nexp) = 32Nexp, где Nexp - количество документов в коллекции "Experiments" (32 - среднее количество регистров в эксперименте).

4.2.3.2. Просмотр информации об эксперименте

```
SELECT * FROM `Experiments` WHERE

`Experiments`.experiment_id=3 JOIN `Register` USING

(experiment_id) JOIN `Cycle` USING (experiment_id) JOIN

`PipelineCycle` USING (cycle_id) JOIN `Instructions` USING

(instruction_id) JOIN `Microinstructions` USING

(microinstruction id);
```

Количество запросов к БД равно V(Nexp) = 322505*(150+30)Nexp = 7200000Nexp, где Nexp - количество документов в коллекции "Experiments".

4.2.3.3. Просмотр статистики экспериментов

SELECT AVG(TIMESTAMPDIFF('Experiments'.start_timestamp, 'Experiments'.end timestamp, SECOND)) AS duration avg,

MIN(TIMESTAMPDIFF(`Experiments`.start_timestamp,
`Experiments`.end_timestamp, SECOND)) AS duration_min,
MAX(TIMESTAMPDIFF(`Experiments`.start_timestamp,
`Experiments`.end_timestamp, SECOND)) AS duration_max FROM
'Experiments'

Количество запросов к БД равно V(Nexp) = Nexp.

4.3. Сравнение моделей.

- SQL модель данных требует больше места из-за наличия связующих таблиц, а также большего количества сущностей (что затрачивает дополнительную память на идентификаторы) и зарезервированной под строки памяти. Одна и та же база данных на 200 экспериментов имеет размер 773 килобайта в MongoDB, а в SQL 12 мегабайт.
- SQL модель требует большего количества запросов из-за необходимости множественных соединений различных таблиц:
- Для запроса "Просмотр списка экспериментов" в SQL требуется в среднем в 32 раза больше обращений к БД, чем в MongoDB из-за необходимости соединения таблиц "Experiment" и "Register".
- Для запроса "Просмотр информации об эксперименте" в SQL требуется в среднем 7200000 раз больше обращений к БД, чем в MongoDB, что обусловлено необходимостью соединения всех таблиц в БД.
- Для запроса "Просмотр статистики экспериментов" требуется одинаковое количество запросов из-за отсутствия необходимости соединения таблиц

4.4. Вывод сравнения моделей.

Таким образом, MongoDB гораздо лучше подходит для данной задачи, поскольку как объем данных, так и количество запросов гораздо меньше в MongoDB, чем в SQL.

5. РАЗРАБОТАННОЕ ПРИЛОЖЕНИЕ

5.1 Краткое описание.

Приложение имеет клиент-серверную архитектуру и использует подход REST.

Приложение разработано на языке программирования JavaScript. Клиентская часть реализована при помощи фреймворка Vue 3, серверная часть - при помощи фреймворка express.

Приложение разворачивается при помощи платформы докер, используя три отдельных виртуальных контейнера для клиентской части приложения, серверной части приложения и базы данных.

5.2. Снимки экрана приложения.

Эксперименты RIP	PES Эксперимент	гы Статистика Импорт/экс	порт		
Название	Процессор	Исходный файл	Начало эксперимента	Конец эксперимента	Длительность
Вычисление факториала	RV32_5S	experiment.s	2023-10-22T19:00:00.000Z	2023-10-22T19:00:04.000Z	4000
Вычисление факториала	RV32_5S	experiment.s	2023-10-22T19:00:00.000Z	2023-10-23T19:00:04.000Z	86404000
Умножение комплексных чисел	RV32_6S	experiment2.s	2022-10-22T20:17:00.000Z	2023-10-23T00:01:03.000Z	31549443000
Умножение комплексных чисел	RV32_6S	experiment2.s	2023-10-22T20:17:00.000Z	2023-10-23T00:03:03.000Z	13563000

Рис. 3. Страница "Список экспериментов".

Рис. 4. Страница "Эксперимент".

Эксперименты RIPES Эксперименты Статист	ика Импорт/экспор	TO	
	Фильтры Название процессора RV32_55 Начало эксперимента 22.10.2023, 19:00:00 □	Название исполняемого файла experiment.s Окончание эксперимента 22.10.2023, 19:00:04 🗂	
		ля: 4000.00 е время: 4000.00 е время: 4000.00	

Рис. 5. Страница "Статистика экспериментов".

Рис. 6. Страница "Импорт / экспорт данных".

6. ВЫВОДЫ.

6.1 Достигнутые результаты

В ходе работы было разработано приложение веб-сервиса хранения экспериментов инструмента ripes с использованием нереляционной базы данных MongoDB. Была реализована вся требуемая функциональность, такая как фильтрация, импорт, экспорт файлов, просмотр статистика экспериментов. Также была добавлена возможность локального разворота приложения с помощью docker-compose.

6.2 Недостатки и пути для улучшения полученного решения.

Недостатком приложения является примитивный дизайн и функционал. Пока что, из возможных функций доступны только импорт/экспорт файлов, просмотр экспериментов и их фильтрация. В перспективе развития приложения возможно реализовать гораздо более широкий функционал: интеграция с другими сервисами или платформами, реализация инструментов аналитики и визуализации результатов экспериментов, реализация возможности сохранения данных в облаке.

6.3 Будущее развитие решения

Улучшение функциональности сервиса путем реализации различных возможностей:

Интеграция с облачными сервисами для сохранения данных в облаке.

Интеграция искусственного интеллекта в качестве инструмента аналитики и визуализации результатов экспериментов.