Heteroscadisticity

Data Set: magpo.xlsx

Source: Chapter 7, Introduction to Econometrics by Christopher Dougherty, 3rd edition, publisher: Oxford

Heteroscadisticity

5000

2000

3000

4000

Variance of each term in X is constant

Variance of each term in X is NOT constant

Dehradun, Jalandhar, Pune

38, 294, 567), (138, 297, 564), (139, 274, 586), (139, 276, 584), (139, 284, 576), (139, 286, 576), (139, 286, 576), (139, 286, 576), (139, 286, 576), (139, 286, 576), (139, 286, 576), (147, 269, 589), (147, 269, 589), (147, 269, 589), (147, 269, 589), (147, 269, 589), (147, 269, 589), (147, 269, 589), (147, 269, 589), (147, 269, 589), (147, 269, 589), (147, 269, 589), (148, 283, 567), (149, 287, 589), (150, 362, 479), (150, 362, 479), (150, 362, 479), (150, 379, 462), (159, 376, 478), (159, 372, 468), (159, 378, 489), (159, 37

[st*uh*-**tis**-tiks], *n*,

1. the only science where two recognized experts, using exactly the same set of data, may come to completely opposite conclusions.

57, 294, 538), (167, 298, 534), (168, 234, 597), (168, 237, 594), (168, 294, 537) 58, 352, 479), (168, 359, 472), (168, 372, 459), (168, 379, 452), (169, 243, 587)

Data

Data belongs to year 1994

Scatter Plot

DV = MANU, IV = GDP

SUMMARY	OUTPUT					7		57
Regression	Statistics		Very 8	good R				
Multiple R	0.943489		, ,	are!		1		
R Square	0.890172		- 3qu	ait:		1	1	
Adjusted R	0.885948							
Standard E	23461.99							
Observatio	28							
ANOVA								
	df	SS	MS	F	ignificance	F		
Regressior	1	1.16002E+11	1.16E+11	210.7339	5.53E-14			
Residual	26	14312086755	5.5E+08					
Total	27	1.30314E+11						
C	oefficients	Standard Error	t Stat	P-value	Lower 95%	Upper 95%	ower 95.0%	pper 95.0%
Intercept	603.8754	5699.68805	0.105949	0.916436	-11112	12319.75	-11112	12319.75
GDP	0.193693	0.013342803	14.51668	5.53E-14	0.166267	0.22112	0.166267	0.22112

© CanStockPhoto.com - csp47536463

Can we trust these results? What about heteroscedasticity?

Testing of Heteroscadast icity: GOLDFELD-QUANDT TEST

Dr Vinod on Heteroscadasticity 8971073111 vinodanalytics@gmail.com

	Country	GDP	MANU
	Country		_
_	Slovakia	13746	2720
	Slovenia	14386	4520
	Kuwait	24848	2797
	Hungary	41506	7227
	Syria	44753	3317
	Chile	50919	13096
7	Ireland	52662	17572
8	Singapore	71039	20648
9	Malaysia	72505	18874
10	Israel	74121	11349
11	Portugal	87352	17025
12	Finland	97624	21581
13	Greece	98861	9392
14	Norway	122926	13484
15	Hong Kong	130823	11758
16	Turkey	135961	31115
17	Denmark	151266	25927
18	Sweden	198432	34806
19	Belgium	232006	44517
20	Switzerland	261388	57503
21	Netherlands	334286	48595
22	Korea S	380820	161318
23	Mexico	420788	55073
24	Spain	483652	80104
25	Canada	547203	112617
26	Italy	1016286	145013
27	UK	1024609	244397
28	France	1330998	256316

Lets order data from low to high & identify top 11 bottom 11 observations

Top 11; DV = MANU, IV = GDP

	Country	GDP	MANU
1	Slovakia	13746	2720
2	Slovenia	14386	4520
3	Kuwait	24848	2797
4	Hungary	41506	7227
5	Syria	44753	3317
6	Chile	50919	13096
7	Ireland	52662	17572
8	Singapore	71039	20648
9	Malaysia	72505	18874
10	Israel	74121	11349
11	Portugal	87352	17025

RESIDUAL OUTPUT			
Observation	Predicted MANU	Residuals	Residual^2
1	2508.342423	211.657577	44798.9299
2	2656.071847	1863.928153	3474228.16
3	5070.986282	-2273.98628	5171013.61
4	8916.106208	-1689.10621	2853079.78
5	9665.60221	-6348.60221	40304750
6	11088.88288	2007.117117	4028519.12
7	11491.21474	6080.785263	36975949.4
8	15733.12666	4914.873336	24155979.9
9	16071.51938	2802.480624	7853897.65
10	16444.53617	-5095.53617	25964488.9
11	19498.6112	-2473.6112	6118752.35
			156945458
			RSS1

Bottom 11; DV = MANU, IV = GDP

11	18 Sweden	198432	34806	-9627.91
10	19 Belgium	232006	44517	-6150.15
9	20 Switzerland	261388	57503	1380.884
8	21 Netherlands	334286	48595	-21061.1
7	22 Korea S	380820	161318	83022.52
6	23 Mexico	420788	55073	-30642.8
5	24 Spain	483652	80104	-17282.9
4	25 Canada	547203	112617	3431.383
3	26 Italy	1016286	145013	-51261.1
2	27 UK	1024609	244397	46577.71
1	28 France	1330998	256316	1613.506

RESIDUAL (DUTPUT		
 Observation	Predicted MANU	Residuals	Residual^2
1	44433.90628	-9627.90628	92696579.3
2	50667.14794	-6150.14794	37824319.7
3	56122.11626	1380.883736	1906839.89
4	69656.12623	-21061.1262	443571038
5	78295.48012	83022.51988	6892738808
6	85715.81141	-30642.8114	938981891
7	97386.94096	-17282.941	298700048
8	109185.6167	3431.383252	11774391
9	196274.0691	-51261.0691	2627697201
10	197819.2907	46577.70933	2169483006
11	254702.4943	1613.505684	2603400.59
			1.3518E+10
			RSS2

Conclusion, Ho: Variances are same

86.13169	=RSS2/RSS	1= Test Stat	
df = n'-k = 1	1-2 = 9		
F(9,9) @ 0.:	1 LOS = 10.1	L	
10.10663	Crit Stat		
=FINV(0.00	01,9,9) = 10	.10663	
•			

RESIDUAL OUTPUT				
Observation	Predicted MANU	Residuals	Residual^2	
1	2508.342423	211.657577	44798.9299	
2	2656.071847	1863.928153	3474228.16	
3	5070.986282	-2273.98628	5171013.61	
4	8916.106208	-1689.10621	2853079.78	
5	9665.60221	-6348.60221	40304750	
6	11088.88288	2007.117117	4028519.12	
7	11491.21474	6080.785263	36975949.4	
8	15733.12666	4914.873336	24155979.9	
9	16071.51938	2802.480624	7853897.65	
10	16444.53617	-5095.53617	25964488.9	
11	19498.6112	-2473.6112	6118752.35	
			156945458	
			RSS1	

As Test stat (86.13) is > Critical Value (10.11), REJECT Ho

© CanStockPhoto.com - csp47536463

RESIDUAL O	DUTPUT		
Observation	Predicted MANU	Residuals	Residual^2
1	44433.90628	-9627.90628	92696579.3
2	50667.14794	-6150.14794	37824319.7
3	56122.11626	1380.883736	1906839.89
4	69656.12623	-21061.1262	443571038
5	78295.48012	83022.51988	6892738808
6	85715.81141	-30642.8114	938981891
7	97386.94096	-17282.941	298700048
8	109185.6167	3431.383252	11774391
9	196274.0691	-51261.0691	2627697201
10	197819.2907	46577.70933	2169483006
11	254702.4943	1613.505684	2603400.59
			1.3518E+10
			RSS2
			RSS2

Let's build GLS Model

Weighted Model

	1/DOD	GDP/POP	SUMMARY	OLITBLIT						
MANU/POP			SUIVIIVIARY	OUIPUI						
511	0.187793	2581				Scaled 1	model			
2348	0.519481	7473	Regression	Statistics		No Interce	pt			
1595	0.570125	14166	Multiple R	0.951479		per capita	MANU &	GDP & REC	PROCAL O	POP
711	0.098406	4084	R Square	0.905312						
240	0.072254	3234	Adjusted R	0.863208						
936	0.071459	3639	Standard E	1091.886						
4969	0.282805	14893	Observatio	28						
6318	0.305998	21738								
958	0.050774	3681	ANOVA							
2117	0.186498	13823		df	SS	MS	F	ignificance	F	
1733	0.101792	8892	Regressior	2	296366291.7	1.48E+08	124.2924	1.02E-13		
4244	0.196657	19198	Residual	26	30997564.32	1192214				
902	0.096034	9494	Total	28	327363856					
3126	0.231803	28495								
1945	0.165453	21645	(Coefficients	Standard Error	t Stat	P-value	Lower 95%	Upper 95%	6
519	0.016694	2270	Intercept	0	#N/A	#N/A	#N/A	#N/A	#N/A	7
4979	0.192049	29051	1/POP	612.6525	1370.385339	0.447066	0.65853	-2204.21	3429.52	
3977	0.114273	22675	GDP/POP	0.182245	0.0155095	11.75057	6.67E-12	0.150365	0.214126	
4411	0.099079	22987	-							

Follow the same procedure Conclusion, Ho: Variances are same

GOLDFEL	D-QUANDT TE	ST	
F ratio=	1.06178563		
F crit			
@5%	3.1788931		
@1%	10.1066279		
@10%	2.44034044		
As F stat <	F Crit, ACCEPT		
NO PRESI	ENCE OF HETE	ROSKEDAS	STICITY

