RÉQUENCE

Soit E une **population de référence**, et A une **sous-population** de E. L'effectif de E est n_E , celui de A est n_A .

La fréquence de A dans E est le rapport

$$f = \frac{n_A}{n_E}$$

EXEMPLE

« Dans une classe de 32 élèves, il y a 18 filles. Parmi les 26 élèves de 17 ans, on dénombre 14 filles. Calculer:

- 1. la fréquence de filles dans la classe;
- 2. la fréquence de filles de 17 ans parmi les filles. »

Réponse:

1.
$$f = \frac{18}{32} = \frac{9}{16}$$
;

2.
$$f = \frac{14}{18} = \frac{7}{9}$$
.

ABLEAU CROISÉ DE FRÉQUENCES

Un tableau croisé des fréquences par rapport à l'effectif global est identique à un tableau croisé d'effectifs, à la différence près que les effectifs sont remplacés par les fréquences correspondantes.

EXEMPLE

« Donner le tableau croisé de fréquences dans l'exemple précédent des élections. »

Réponse :

	$y_1 = A.$	$y_2 = B.$	TOTAL
$x_1 = $ Femmes	$\frac{326}{2570} \approx 0.13$	$\frac{489}{2570} \approx 0.19$	$\boxed{\frac{815}{2570} \approx 0.32}$
$x_2 = Hommes$	$\frac{1406}{2570} \approx 0.54$	$\frac{349}{2570} \approx 0.14$	$\frac{1755}{2570} \approx 0.68$
TOTAL	$\frac{1732}{2570} \approx 0.67$	$\frac{838}{2570} \approx 0.33$	1

DÉFINITION

Les **fréquences marginales** correspondent aux fréquences de chaque caractère (ie. les fréquences que l'on retrouve dans la ligne et la colonne « TOTAL »).

EXEMPLE

Dans l'exemple précédent, la fréquence marginale correspondant au vote pour A. est de $\frac{1732}{2570} \approx 0.67$.

Tableau des fréquences conditionnelles

DÉFINITION

Reprenons le tableau croisé d'effectifs vu précédemment :

	y_1	 y_j	 y_m	TOTAL
x_1	n_{11}	n_{1j}	n_{1m}	Effectif de x_1
x_i	n_{i1}	n_{ij}	n_{im}	Effectif de x_i
x_k	n_{k1}	n_{kj}	n_{km}	Effectif de x_k
TOTAL	Effectif de y_1	Effectif de y_j	Effectif y_m	Effectif total

On peut isoler une ligne ou une colonne si on fixe une valeur d'un des deux caractères. La série obtenue est appelée **série conditionnelle**. C'est une série statistique à une seule variable :

Y	y_1	 y_j	 y_m	TOTAL
EffectifdesY	n_{i1}	n_{ij}	n_{im}	Effectif des Y pour x_i

On peut également donner le tableau de fréquences associé. Dans ce cas, on divisera non pas par l'effectif total mais par l'effectif **du caractère** x_i **isolé**. Les fréquences obtenues ne sont plus des **fréquences** marginales, mais des fréquences conditionnelles.

EXEMPLE

Donner le tableau des fréquences conditionnelles par rapport au caractère « la personne ayant voté est un homme » dans l'exemple précédent des élections.

Réponse : Ici nous devons calculer les fréquences par rapport à l'effectif marginal associé aux hommes, c'est-à-dire 1755.