Mathematical Foundations of Computer Science

CS 499, Shanghai Jiaotong University, Dominik Scheder

Spring 2019

- Homework assignment published on Thursday, 2019-04-25.
- Work on it and submit a first solution or questions by Wednesday, 2019-05-01, 12:00 by email to me and the TAs.
- You will receive feedback by Sunday, 2019-05-05
- Submit your final solution by Wednesday, 2019-05-08 to me and the TAs.

8 Partial Orderings

Recall the definition of a partial ordering and an equivalence relation. A relation \leq on a set X is a partial ordering if (1) if it is reflexive, i.e., $x \leq x$ for all $x \in X$; (2) transitive, i.e., $x \leq y$ and $y \leq z$ together imply $x \leq z$; and (3) anti-symmetric, i.e., $x \leq y$ and $y \leq x$ only hold if x = y. A relation \sim is an equivalence relation if it is (1) reflexive, (2) transitive, and (3) symmetric, i.e., $x \sim y$ if and only if $y \sim x$.

8.1 Equivalence Relations as a Partial Ordering

A partition \mathcal{P} of V is a set $\{V_1, \ldots, V_k\}$ where (1) $V_1 \cup \cdots \cup V_k = V$ and (2) the V_i are pairwise disjoint, i.e., $V_i \cap V_j = \emptyset$ for $1 \leq i < j \leq k$. For example, $\{\{1\}, \{2,3\}, \{4\}\}$ is a partition of $\{1,2,3,4\}$ but $\{\{1\}, \{2,3\}, \{1,4\}\}$ is not.

A partition \mathcal{P} of V defines an equivalence relation \sim on V: set $x \sim y$ if and only if x, y are in the same part of \mathcal{P} ; conversely, an equivalence relation

 \sim defines a partition: throw equivalent elements into the same set; formally,

$$E(x) := \{ y \in V \mid x \sim y \}$$
 (the set of elements equivalent to x)
 $\mathcal{P} := \{ E(x) \mid x \in V \}$.

Thus, equivalence relations and partitions are basically the same thing, just represented in a different way. For example, the partition $\{\{1\}, \{2,3\}, \{4\}\}$ induces an equivalence relation R on $\{1,2,3,4\}$ in which $2 \sim 3$ are equivalent but all other elements are not. Formally, written in set notation, we get

$$R = \{(1,1), (2,2), (3,3), (4,4), (2,3), (3,2)\}.$$

Exercise 8.1. Let E_4 be the set of all equivalence relations on $\{1, 2, 3, 4\}$. Note that E_4 is ordered by set inclusion, i.e.,

$$(E_4, \{(R_1, R_2) \in E_4 \times E_4 \mid R_1 \subseteq R_2\})$$

is a partial ordering.

- 1. Draw the Hasse diagram of this partial ordering in a nice way.
- 2. What is the size of the largest chain?
- 3. What is the size of the largest antichain?

8.2 Chains and Antichains

Define the partially ordered set (\mathbb{N}_0^n, \leq) as follows: $x \leq y$ if $x_i \leq y_i$ for all $1 \leq i \leq n$. For example, $(2,5,4) \leq (2,6,6)$ but $(2,5,4) \not\leq (3,1,1)$.

Exercise 8.2. Consider the infinite partially ordered set (\mathbb{N}_0^n, \leq) .

- 1. Which elements are minimal? Which are maximal?
- 2. Is there a minimum? A maximum?
- 3. Does it have an infinite chain?
- 4. Does it have arbitrarily large antichains? That is, can you find an antichain A of size |A| = k for every $k \in \mathbb{N}$?

^{*}Exercise 8.3. Does every infinite subset $S \subseteq \mathbb{N}_0^n$ contain an infinite chain?

Exercise 8.4. Show that (\mathbb{N}_0^n, \leq) has no infinite antichain. **Hint.** Use the previous exercise.

Consider the induced ordering on $\{0,1\}^n$. That is, for $x,y \in \{0,1\}^n$ we have $x \leq y$ if $x_i \leq y_i$ for every coordinate $i \in [n]$.

Exercise 8.5. Draw the Hasse diagrams of $(\{0,1\}^n, \leq)$ for n = 2, 3.

Exercise 8.6. Determine the maximum, minimum, maximal, and minimal elements of $\{0,1\}^n$.

Exercise 8.7. What is the longest chain of $\{0,1\}^n$?

**Exercise 8.8. What is the largest antichain of $\{0,1\}^n$?