Causal Modeling With GSS Data Using Multiple Approaches

Andy Grogan-Kaylor

24 Nov 2020 08:23:14

Research Question

What is the *possibly causal* association of *education* with *job satisfaction*, while accounting for factors that may possibly have an association with *level of education*?

Causality

A variable x can only be considered to have causal association with y if the following conditions are met (Holland, 1986):

- 1. x is correlated with y.
- 2. x precedes y in time order.
- 3. The association between x and y can not be accounted for by any third variable z.

Hence, for this particular data, we are exploring:

What happens to the association of education and job satisfaction when we control for possible confounding variables z using various statistical strategies?

To Be Added To Each Analysis

- Assumptions
- Equation
- Stata Command
- Conclusion

Setup

- . clear all
- . cd "/Users/agrogan/Desktop/newstuff/causal-modeling"/Users/agrogan/Desktop/newstuff/causal-modeling

Get Data

. use "GSS_panel2010w123_R6 - stata.dta", clear

ID Variable

. generate ID = id_1

Keep Only Relevant Variables

. keep ID satjob_? educ_? race_? incom16_?

Describe Data

. describe

Contains data from GSS_panel2010w123_R6 - stata.dta

obs: 2,044 vars: 13 size: 32,704

5 Jul 2020 13:27

variable name	storage type	display format	value label	variable label
educ_1	byte	%8.0g	EDUC_1	educ_1: HIGHEST YEAR OF SCHOOL COMPLETED
educ_2	byte	%8.0g	EDUC_2	educ_2: HIGHEST YEAR OF SCHOOL COMPLETED
educ_3	byte	%8.0g	EDUC_3	educ_3: HIGHEST YEAR OF SCHOOL COMPLETED
incom16_1	byte	%8.0g	INCOM16	incom16_1: RS FAMILY INCOME WHEN 16 YRS OLD
incom16_2	byte	%8.0g	V1318_A	incom16_2: RS FAMILY INCOME WHEN 16 YRS OLD
incom16_3	byte	%8.0g	V1319_A	incom16_3: RS FAMILY INCOME WHEN 16 YRS OLD
race_1	byte	%8.0g	RACE_1	race_1: RACE OF RESPONDENT
race_2	byte	%8.0g	RACE_2	race_2: RACE OF RESPONDENT
race_3	byte	%8.0g	RACE_3	race_3: RACE OF RESPONDENT
satjob_1	byte	%8.0g	SATJOB_1	satjob_1: JOB OR HOUSEWORK
satjob_2	byte	%8.0g	SATJOB_2	satjob_2: JOB OR HOUSEWORK
satjob_3	byte	%8.0g	SATJOB_3	satjob_3: JOB OR HOUSEWORK
ID	float	%9.0g	_	• -

Sorted by:

Note: Dataset has changed since last saved.

Codebook For Selected Variable(s)

. codebook satjob_3

satjob_3 satjob_3: JOB OR HOUSEWORK

type: numeric (byte)
label: SATJOB_3

range: [1,4] units: 1
unique values: 4 missing .: 0/2,044
unique mv codes: 3 missing .*: 1,086/2,044

tabulation: Freq. Numeric Label

483 1 VERY SATISFIED
367 2 MOD. SATISFIED
69 3 A LITTLE DISSAT
39 4 VERY DISSATISFIED
4 .d DK
1,073 .i IAP

.n NA

Analyses Relying On Wide Data

Correlation

. pwcorr satjob_3 educ_3, sig

	satjob_3	educ_3
satjob_3	1.0000	
educ_3	-0.0774 0.0166	1.0000

Regression With 1 Independent Variable

. regress satjob_3 educ_3

Ο .	, – –						
Source	SS	df	MS	Numb	er of obs	=	957
				F(1,	955)	=	5.76
Model	3.53828635	1	3.53828635	Prob	> F	=	0.0166
Residual	586.493062	955	.61412886	R-sq	uared	=	0.0060
				Adj	R-squared	=	0.0050
Total	590.031348	956	.617187602	Root	MSE	=	.78366
satjob_3	Coef.	Std. Err.	t	P> t	L95% Co	onf.	Interval]
educ_3 _cons	0216864 1.954439	.0090349	-2.40 15.06	0.017 0.000	039416 1.69973		003956 2.209139

Regression With Multiple Independent Variables

. regress satjob_3 educ_3 i.race_3 incom16_3

Source	SS	df	MS	Number of obs	=	951
				F(4, 946)	=	2.36
Model	5.81703392	4	1.45425848	Prob > F	=	0.0517
Residual	582.580442	946	.615835563	R-squared	=	0.0099
				Adj R-squared	=	0.0057
Total	588.397476	950	.619365765	Root MSE	=	.78475
	Γ					
satjob_3	Coef.	Std. Err.	t	P> t [95% Co	nf.	<pre>Interval]</pre>
educ_3	0215151	.0092674	-2.32	0.020039702	1	0033281
race 3						
black	.1267666	.0708898	1.79	0.074012352	8	.2658861
other	.0677238	.0985112	0.69	0.492125601	.9	.2610495
i16 2	.0115275	.0280601	0.41	0.681043539		.0665947
incom16_3					-	
_cons	1.89556	.144649	13.10	0.000 1.6116	9	2.17943

Propensity Score

Data Wrangling Since Propensity Score Requires a Binary Treatment Variable

- . generate twelve_years_3 = educ_3 >= 12 // 12 or more years of education
- . generate twelve_years_2 = educ_2 >= 12 // 12 or more years of education

- . generate twelve_years_1 = educ_1 >= 12 // 12 or more years of education
- . label variable twelve_years_3 "12 or more years of education"
- . label variable twelve_years_2 "12 or more years of education"
- . label variable twelve_years_1 "12 or more years of education"

Propensity Score Analysis

satjob_3	Coef.	AI Robust Std. Err.	z	P> z	[95% Conf.	Interval]
ATE twelve_years_3 (1 vs 0)	0410168	.1083808	-0.38	0.705	2534393	.1714057

Assess Balance of Propensity Score Model ¹

. tebalance summarize note: refitting the model using the generate() option

Covariate balance summary

	Raw	Matched
Number of obs =	952	1,904
Treated obs =	854	952
Control obs =	98	952

	Standardized Raw	differences Matched	Vari Raw	ance ratio Matched
incom16_3	.5429864	0077616	.9418824	.9726307
race_3 black other	1354119 0248378	0199848 .0326166	.7873145 .9163586	.9638265 1.114865

- . tebalance density, scheme(michigan) note: refitting the model using the generate() option
- . graph export mydensity.png, width(500) replace (file mydensity.png written in PNG format)

Cross Lagged Regression

- . sem (satjob_3 <- twelve_years_2 incom16_2) ///</pre>
- > (twelve_years_3 <- satjob_2 incom16_2), ///</pre>
- > cov(e.satjob_3*e.twelve_years_3)

(1164 observations with missing values excluded)

Endogenous variables

Observed: satjob_3 twelve_years_3

¹With many thanks to Jorge Cuartas for the ideas for earlier versions of this code.

Figure 1: Density Plot of Propensity Score

Number of obs

880

Exogenous variables

Observed: twelve_years_2 incom16_2 satjob_2

Fitting target model:

 $\log likelihood = -3673.669$ $\log likelihood = -3673.4349$ Iteration 0: Iteration 1: \log likelihood = -3673.4342 Iteration 2: \log likelihood = -3673.4342

Iteration 3: Structural equation model

Estimation method = ml
Log likelihood = -3673.4342

		OIM				
	Coef.	Std. Err.	z	P> z	[95% Conf.	Interval]
Structural						
satjob_3						
twelve_years_2	0722619	.1575751	-0.46	0.647	3811034	.2365795
incom16_2	0024625	.0304497	-0.08	0.936	0621428	.0572177
_cons	1.734644	.1378498	12.58	0.000	1.464464	2.004825
twelve_years_3						
incom16_2	.0607781	.0108369	5.61	0.000	.0395381	.0820181
satjob_2	0054737	.0149476	-0.37	0.714	0347704	.0238231
_cons	.7396908	.0427695	17.29	0.000	.6558642	.8235175
var(e.satjob_3)	.6046871	.0288304			.5507404	.6639181
var(e.twelve_years_3)	.0868092	.0041385			.0790653	.0953116
cov(e.satjob_3,e.twelve_years_3)	.0016217	.0154575	0.10	0.916	0286744	.0319178

LR test of model vs. saturated: chi2(2) = 968.48, Prob > chi2 = 0.0000

Analyses Relying On Long Data

Reshape The Data

```
. reshape long satjob_ educ_ twelve_years_ incom16_ race_, i(ID) j(wave)
(note: j = 1 2 3)
Data
                                    wide
                                           ->
                                                long
Number of obs.
                                    2044
                                                 6132
                                           ->
Number of variables
                                      16
                                           ->
j variable (3 values)
                                                wave
xij variables:
             satjob_1 satjob_2 satjob_3
                                                satjob_
                   educ_1 educ_2 educ_3
                                                educ_
twelve_years_1 twelve_years_2 twelve_years_3->
                                                twelve_years_
          incom16_1 incom16_2 incom16_3
                                                incom16_
                   race_1 race_2 race_3
                                                race_
```

Clean Up Variable Names

```
. rename satjob_ satjob
```

- . rename educ_ educ
- . rename incom16_ incom16
- . rename race_ race
- . rename twelve_years_ twelve_years

Multilevel Model

incom16

black

other

_cons

race

-.0350535

.1695589

2.049073

.035975

.0154559

.0451171

.0543135

.0843019

```
. mixed satjob wave educ incom16 i.race || ID:
Performing EM optimization:
Performing gradient-based optimization:
               log likelihood = -4161.775
Iteration 0:
Iteration 1:
               log likelihood = -4161.7476
               log likelihood = -4161.7476
Iteration 2:
Computing standard errors:
Mixed-effects ML regression
                                                 Number of obs
                                                                           3,595
Group variable: ID
                                                 Number of groups
                                                                           1,661
                                                  Obs per group:
                                                                               1
                                                                avg =
                                                                              2.2
                                                                max =
                                                                               3
                                                  Wald chi2(5)
                                                                           42.38
Log likelihood = -4161.7476
                                                 Prob > chi2
                                                                          0.0000
                                                 P>|z|
                                                            [95% Conf. Interval]
                    Coef.
                            Std. Err.
      satjob
                                            z
                  -.018625
                              .014015
                                         -1.33
                                                 0.184
                                                           -.0460938
                                                                         .0088439
        wave
                 -.018976
                             .0054133
                                                           -.0295859
                                                                        -.008366
        educ
                                         -3.51
                                                 0.000
```

-2.27

3.76

0.66

24.31

0.023

0.000

0.508

0.000

-.0653465

.0811311

-.0704776

1.883845

-.0047606

.2579868

.1424276

2.214302

Random-effec	cts Parameters	Estimate	Std. Err.	[95% Conf.	Interval]
ID: Identity	var(_cons)	.2305185	.0161162	.2009999	. 2643722
	var(Residual)	.4174209	.0131143	.3924927	.4439323

LR test vs. linear model: chibar2(01) = 322.95

Prob >= chibar2 = 0.0000

Fixed effects regression

. xtreg satjob	o wave educ in	ncom16 i.rac	e, i(ID)	fe		
(,8					of obs =	3,595
Group variable	e: ID			Number c	of groups =	1,661
R-sq:				Obs per	group:	
within =	= 0.0052				min =	1
between =	= 0.0148				avg =	2.2
overall =	= 0.0122				max =	3
				F(5,1929) =	2.03
corr(u_i, Xb)	= -0.0714			Prob > F	=	0.0711
satjob	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
wave	0237842	.0152551	-1.56	0.119	0537023	.006134
educ	0087664	.0158008	-0.55	0.579	0397548	.022222
incom16	047186	.0228265	-2.07	0.039	0919531	0024189
race						
black	.3226033	.2025604	1.59	0.111	0746572	.7198637
other	.0383663	.104807	0.37	0.714	1671806	.2439132
_cons	1.928458	.227991	8.46	0.000	1.481323	2.375593
sigma_u	.6861769					
sigma_e	.64822634					
rho	.52841711	(fraction	of variar	ice due to	u_i)	

F test that all $u_i=0$: F(1660, 1929) = 2.18

Prob > F = 0.0000

"Hybrid" Model

The contention here is that the *between person* coefficient replicates the effect of the fixed effects regression coefficient while the *within person* coefficient is simultaneously estimated.

Generate Within And Between Variables

```
. bysort ID: egen educ_mean = mean(educ)
(6 missing values generated)
```

. generate educ_deviation = educ - educ_mean
(1,240 missing values generated)

Estimate The Model

. mixed satjob wave educ_mean educ_deviation incom16 i.race || ID:
Performing EM optimization:
Performing gradient-based optimization:
Iteration 0: log likelihood = -4161.3224

	log likelihood					
						0 505
Mixed-effects MI	_			Number of ol		3,595
Group variable:	ID			Number of gr	roups =	1,661
				Obs per grou	ıp:	
					min =	1
					avg =	2.2
					max =	3
				Wald chi2(6)) =	43.30
Log likelihood =	= -4161.2951			Prob > chi2	=	0.0000
satjob	Coef.	Std. Err.	z	P> z	[95% Conf.	Interval]
wave	0197009	.0140588	-1.40	0.161	0472556	.0078537
educ_mean	0208983	.0057775	-3.62	0.000	0322221	0095745
educ_deviation	0054971	.0151667	-0.36	0.717	0352233	.0242292
incom16	0343579	.0154712	-2.22	0.026	0646809	0040349
race						
black	.1684699	.0451261	3.73		.0800245	.2569154
other	.0342568	.0543368	0.63	0.528	0722414	.140755

Random-effect	s Parameters	Estimate	Std. Err.	[95% Conf.	Interval]
ID: Identity	var(_cons)	.2304651	.0161097	.2009581	.2643046
	var(Residual)	.4173132	.0131099	.3923934	.4438157

23.36

0.000

.088866

LR test vs. linear model: chibar2(01) = 323.08

2.075849

Prob >= chibar2 = 0.0000

1.901675

2.250023

Difference In Difference Model

_cons

Combinations of Models

e.g. Difference in difference + propensity scores

References

Holland, P. W. (1986). Statistics and Causal Inference. Journal of the American Statistical Association, 81(396), 945-960. https://doi.org/10.1080/01621459.1986.10478354