Programme de khôlle de maths no 9

Semaine du 28 Novembre

Cours

Chapitre 6 : Analyse réelle

- Nombres réels, inégalités, intervalles, valeur absolue, partie entière, voisinage d'un nombre, voisinage de $\pm \infty$
- Identités remarquables, identité $(x+y)^n = \sum_{k=0}^n \binom{n}{k} x^k y^{n-k}$, identité $x^n y^n = (x-y) \sum_{k=0}^{n-1} x^k y^{n-k-1}$
- Inégalités triangulaires $|x+y| \le |x| + |y|$ et $||x| |y|| \le |x-y|$.
- Majorant/minorant, maximum/minimum, borne supérieure/borne inférieure.
- Propriété de la borne supérieure, application aux suites croissantes majorées
- Fonctions réelles de la variables réelle
- Signe, variations, allure de la courbe de : fonctions affines, fonctions polynômes de degré 2, fonction racine carrée, fonction inverse, fonctions trigonométriques cos, sin et tan (pas encore arctan), fonctions exponentielles et logarithme.
- Puissance généralisée $\forall a > 0, \forall b \in \mathbb{R}, \ a^b := e^{b \ln a}$
- Limites de fonctions
- Négligeabilité, équivalence de fonctions au voisinage d'un réel ou de $\pm \infty$.
- Comparaisons usuelles entre $e^{\alpha x}$, x^{β} , $(\ln x)^{\gamma}$
- DL à l'ordre 1 au voisinage de 0 de $\sin x$, $\cos x$, \tan , e^x , $\ln(1+x)$, $\sqrt{1+x}$, $(1+x)^{\alpha}$, $\frac{1}{1-x}$
- Continuité, prolongement par continuité
- Si (u_n) converge vers ℓ et que f est continue en ℓ , alors $\lim_{n \to +\infty} f(u_n) = f(\ell)$
- Théorème des valeurs intermédiaires et son corollaire pour les fonctions strictement monotones.
- Théorème de la bijection
- Fonction arctangente, allure de la courbe, $\arctan(1) = \frac{\pi}{4}$ et $\arctan(-1) = -\frac{\pi}{4}$, $\arctan'(x) = \frac{1}{1+x^2}$.

Questions de cours et exercice

- Questions de cours
 - Démontrer que si (u_n) converge vers ℓ et que f est continue en ℓ , alors $f(u_n)$ converge vers $f(\ell)$.
 - Démontrer l'identité $x^n y^n = (x y) \times \sum_{k=0}^{n-1} x^k y^{n-k-1}$
 - En rappelant que $\binom{n}{k} + \binom{n}{k+1} = \binom{n+1}{k+1}$, démontrer l'égalité $(x+y)^n = \sum_{k=0}^n \binom{n}{k} x^k y^{n-k}$.
- Exercices vus en classe
 - 1) Déterminer la limite de f(x) lorsque x tend vers a

a)
$$f(x) = \frac{e^{3x} - x^5}{(e^x + 2)^3}$$
, $a = +\infty$

e)
$$f(x) = \frac{\sqrt{x}\ln(x)}{x^{1/4}}, \quad a = 0$$

b)
$$f(x) = \sqrt{x^{\ln x}}, \quad a = 0$$

f)
$$f(x) = \left(1 + \frac{1}{x}\right)^x$$
, $a = +\infty$

c)
$$f(x) = \frac{1}{x} \times e^{-1/x^2}$$
, $a = 0^+$

g)
$$f(x) = \left(\frac{x+1}{x-2}\right)^{x+3}, a = +\infty$$

d)
$$f(x) = x(e^{2/x} - 1), \quad a = +\infty$$

h)
$$f(x) = \ln(\sin(\sqrt{\pi x})) - \ln(\ln(1+2x)), \quad a = 0$$

2) Montrer que $f: x \mapsto \mathrm{e}^{-1/x^2}$ est prolongeable par continuité sur \mathbb{R} .

- 3) $f: x \mapsto \frac{e^x 1}{e^x + 1}$. Montrer que f réalise une bijection de \mathbb{R} vers un intervalle à préciser, et déterminer f^{-1} .
- 3) Montrer que tout polynôme de degré impair admet au moins une racine réelle
- 4) Montrer que la fonction $f: x \mapsto x \sin\left(\frac{1}{x}\right)$ est prolongeable par continuité sur $\mathbb R$
- 5) Suite implicite : pour tout $n \in \mathbb{N}^*$, $f_n(x) = 1 \frac{x}{2} x^n$
 - a) Pour tout $n \in \mathbb{N}^*$, montrer qu'il existe un unique x_n tel que $f_n(x_n) = 0$
 - b) Montrer que pour tout $n \in \mathbb{N}^*$, $f_{n+1}(x_n) > 0$.
 - c) En déduire que (x_n) est croissante et qu'elle converge vers une limite $\ell.$