INF3490 Mandatory Assignment 2

Multi-layer perceptron

Name: Haiyue Chen

Username: haiyuec

Instructions on how to run my programs:

Python movement.py [number_of_hidden_nodes]

Result with 10 hidden nodes:

Confusion table:

]	7	0	0	0	0	0	0	1]
Ī	0	17	0	0	0	0	0	1]
[0	0	7	0	0	0	0	0]
								5]
[2	0	0	3	13	0	0	0]
								0]
[0	0	0	0	0	0	14	0]
	0	0	0	0	0	0	0	17]]

Accuracy: 81.99%

Result with 20 hidden nodes:

Confusion table:

Accuracy: 91.89%

Result with 40 hidden nodes:

Confusion table:

Accuracy: 96.40%

Result with 40 hidden nodes:

Confusion table:

Accuracy: 97.30%

I found that with numbers higher than 40 the results are usually quite good, normally between 90% and 95%. The cases reported here are some of the best runs.

Looking at these tables, I see that class 8 is often mistakenly categorized as class 4, and sometimes class 1 is mistakenly categorized as class 8.