

Single switch
Trench + Field Stop IGBT
Power Module

$$V_{CES} = 1200V$$

 $I_{C} = 600A @ Tc = 80^{\circ}C$

Application

- Welding converters
- Switched Mode Power Supplies
- Uninterruptible Power Supplies
- Motor control

Features

- Trench + Field Stop IGBT Technology
 - Low voltage drop
 - Low tail current
 - Switching frequency up to 20 kHz
 - Soft recovery parallel diodes
 - Low diode VF
 - Low leakage current
 - RBSOA and SCSOA rated
- Kelvin emitter for easy drive
- M6 connectors for power
- M4 connectors for signal
- High level of integration

Benefits

- Stable temperature behavior
- Very rugged
- Direct mounting to heatsink (isolated package)
- Low junction to case thermal resistance
- Easy paralleling due to positive T_C of V_{CEsat}
- RoHS Compliant

Absolute maximum ratings

Symbol	Parameter		Max ratings	Unit
V_{CES}	Collector - Emitter Breakdown Voltage		1200	V
T	Continuous Collector Current	$T_C = 25^{\circ}C$	900	
I_{C}	Continuous Conector Current	$T_C = 80$ °C	600	A
I_{CM}	Pulsed Collector Current	$T_C = 25^{\circ}C$	1200	
V_{GE}	Gate – Emitter Voltage		±20	V
P_{D}	Maximum Power Dissipation	$T_C = 25$ °C	2500	W
RBSOA	Reverse Bias Safe Operating Area	$T_j = 125^{\circ}C$	1200A@1050V	

CAUTION: These Devices are sensitive to Electrostatic Discharge. Proper Handling Procedures Should Be Followed. See application note APT0502 on www.microsemi.com

All ratings @ $T_j = 25^{\circ}C$ unless otherwise specified

Electrical Characteristics

Symbol	Characteristic	Test Conditions		Min	Typ	Max	Unit
I_{CES}	Zero Gate Voltage Collector Current	$V_{GE} = 0V, V_{CE} = 1200V$				5	mA
V	Collector Emitter saturation Voltage	$V_{GE} = 15V$	$T_j = 25$ °C		1.7	2.1	V
$V_{CE(sat)}$		$I_{\rm C} = 600 {\rm A}$ $T_{\rm j} = 125 {\rm °C}$	$T_j = 125$ °C		2.0		·
$V_{GE(th)}$	Gate Threshold Voltage	$V_{GE} = V_{CE}$, $I_C = 24mA$		5.0	5.8	6.5	V
I_{GES}	Gate – Emitter Leakage Current	$V_{GE} = 20V, V_{CE} = 0V$				400	nA

Dynamic Characteristics

•	Characteristic	Test Conditions	Min	Тур	Max	Unit
Cies	Input Capacitance	$V_{GE} = 0V$		43		
C_{oes}	Output Capacitance	$V_{CE} = 25V$		2.25		nF
C_{res}	Reverse Transfer Capacitance	f = 1MHz		2		
Q_{G}	Gate charge	V _{GE} =±15V, I _C =600A V _{CE} =600V		5.6		μС
$T_{d(on)}$	Turn-on Delay Time	Inductive Switching (25°C)		280		
$T_{\rm r}$	Rise Time	$V_{GE} = \pm 15V$		90		
$T_{d(off)}$	Turn-off Delay Time	$V_{Bus} = 600V$ $I_{C} = 600A$		550		ns
T_{f}	Fall Time	$R_G = 1.2\Omega$		130		
$T_{d(on)}$	Turn-on Delay Time	Inductive Switching (125°C)		300		
$T_{\rm r}$	Rise Time	$V_{GE} = \pm 15V$		100		***
$T_{d(off)}$	Turn-off Delay Time	$V_{Bus} = 600V$ - $I_{C} = 600A$		650		ns
T_{f}	Fall Time	$R_G = 1.2\Omega$		180		
Eon	Turn on Energy	$V_{GE} = \pm 15V V_{Bus} = 600V$ $T_j = 125^{\circ}C$		50		m I
E_{off}	Turn off Energy	$I_C = 600A$ $R_G = 1.2\Omega$ $T_j = 125^{\circ}C$		88		mJ
I_{sc}	Short Circuit data	$V_{GE} \le 15V$; $V_{Bus} = 900V$ $t_p \le 10 \mu s$; $T_j = 125^{\circ}C$		2400		A

Reverse diode ratings and characteristics

	Characteristic	Test Conditions		Min	Typ	Max	Unit
V_{RRM}	Maximum Peak Repetitive Reverse Voltage			1200			V
I_{RRM}	Maximum Reverse Leakage Current	V _R =1200V	$T_i = 25$ °C $T_i = 125$ °C			750 1000	μΑ
I_{F}	DC Forward Current		$Tc = 80^{\circ}C$		600		A
V_{F}	Diode Forward Voltage	$I_F = 600A$	$T_i = 25^{\circ}C$		1.6	2.1	V
V F		$V_{GE} = 0V$	$T_{i} = 125^{\circ}C$		1.6		V
+	Davaga Daaayam Tima	T	$T_j = 25^{\circ}C$		250		na
t_{rr}	Reverse Recovery Time		$T_j = 125$ °C		350		ns
0	Q_{rr} Reverse Recovery Charge $I_F = 600A$ $V_R = 600V$ $di/dt = 7000A/us$	$T_j = 25$ °C		60		C	
Qrr		$V_R = 600 V$ di/dt = $7000 A/\mu s$	$T_{j} = 125^{\circ}C$		115		μС
Е	D D E	, 00012 700	$T_j = 25^{\circ}C$		28		I
E_{rr}	Reverse Recovery Energy		$T_{\rm j} = 125^{\circ}{\rm C}$		52		mJ

Thermal and package characteristics

Symbol	Characteristic		Min	Тур	Max	Unit
R_{thJC}	Junction to Case Thermal Resistance	IGBT			0.05	°C/W
T _{th} JC		Diode			0.075	
V_{ISOL}	RMS Isolation Voltage, any terminal to case t =1 min, I isol<1mA, 50/60Hz		2500			V
$T_{\rm J}$	Operating junction temperature range		-40		150	
T_{STG}	Storage Temperature Range		-40		125	°C
T_{C}	Operating Case Temperature		-40		125	
Torque	Mounting torque	M6	3		5	N.m
		M4	1		2	11.111
Wt	Package Weight				350	g

Typical Performance Curve

Microsemi reserves the right to change, without notice, the specifications and information contained herein

Microsemi's products are covered by one or more of U.S patents 4,895,810 5,045,903 5,089,434 5,182,234 5,019,522 5,262,336 6,503,786 5,256,583 4,748,103 5,283,202 5,231,474 5,434,095 5,528,058 6,939,743 7,352,045 5,283,201 5,801,417 5,648,283 7,196,634 6,664,594 7,157,886 6,939,743 7,342,262 and foreign patents. U.S and Foreign patents pending. All Rights Reserved.