МОСКОВСКИЙ ФИЗИКО-ТЕХНИЧЕСКИЙ ИНСТИТУТ (НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ)

Отчёт о	выполнении	лаборато	рной ј	работы	3.3.4
	Эффект Холл	а в полупј	роводни	IKax	

Автор: Тихонов Дмитрий Романович, студент группы Б01-206

1 Введение

Цель работы: измерение подвижности и концентрации носителей заряда в полупроводниках.

В работе используются: электромагнит с источником питания GPR, батарейка 1,5 В, амперметр, реостат, цифровой вольтметр B7-78/1, милливеберметр, образцы легированного германия.

2 Теоретические сведения

Движение электронов в некоторой кристаллической решётке под действием внешнего электрического поля можно описать следующей формулой:

$$\langle \boldsymbol{v} \rangle = -b\boldsymbol{E},\tag{1}$$

где $\langle {m v} \rangle$ — некоторая средняя скорость электронов, а b — величина, называемая nodeu электронов.

Плотность тока равна

$$j = en\langle v \rangle = enbE. \tag{2}$$

Отсюда, находим выражение для проводимости:

$$\sigma = enb. (3)$$

Если в проводнике присутствует внешнее магнитное поле \boldsymbol{B} , то на электроны действует сила Лоренца, равная

$$\mathbf{F}_{\Pi} = -e\left(\mathbf{E} + \langle \mathbf{v} \rangle \times \mathbf{B}\right) \tag{4}$$

Рассмотрим проводник с током в форме прямоугольного параллелепипеда со сторонами L, a и l, параллельными осям x, y и z соответственно, в котором течет ток I вдоль оси x (рис. 1).

Пусть поле E направлено против оси x, поле B – вдоль оси y. Тогда дрейфовая скорость электронов будет направлена против оси x и часть силы Лоренца, зависящая от магнитного поля, направлена вдоль оси z и равна

$$F_B = ebEB \tag{5}$$

Эта сила заставляет электроны смещаться в направлении оси z. Из-за этого в установившемся режиме возникает противоположно направленное поле E_z , компенсирующее силу F_B :

Рис. 1: Образец с током в магнитном поле

$$E_z = bEB = \frac{bjB}{\sigma} = \frac{IB}{enS} = \frac{IB}{e \cdot n \cdot al}$$
 (6)

Поле E_z создаёт ЭДС Холла, равную

$$\mathcal{E}_x = \frac{IB}{nea} = -R_x \cdot \frac{IB}{a},\tag{7}$$

Константа R_x называется постоянной Холла и равна

$$R_x = \frac{1}{ne}. (8)$$

3 Методика измерений и используемое оборудование

Электрическая схема установки для измерения ЭДС Холла представлена на рис. 2.

Рис. 2: Схема установки для исследования эффекта Холла в полупроводниках

В зазоре электромагнита (рис. 2a) создается постоянное магнитное поле, величину которого можно менять с помощью регуляторов источника питания. Ток измеряется амперметром источника питания A_1 . Разъём K_1 позволяет менять направление тока в обмотках электромагнита. Градуировка магнита проводится при помощи милливеберметра.

Образец из легированного германия, смонтированный в специальном держателе (рис. 26), подключается к батарее. При замыкании ключа K_2 вдоль длинной стороны образца течёт ток, величина которого регулируется реостатом R и измеряется миллиамперметром A_2 .

В образце с током, помещённом в зазор электромагнита, между контактами 3 и 4 возникает разность потенциалов U_{34} , которая измеряется с помощью цифрового вольтметра. Контакты 3 и 4 вследствие неточности подпайки не всегда лежат на одной эквипотенциали, и тогда напряжение между ними связано не только с эффектом Холла, но и с омическим падением напряжения, вызванным протеканием основного тока через образец. Исключить влияние омического падения напряжения можно, если при каждом токе через образец измерять напряжение между точками 3 и 4 в отсутствие магнитного поля. При фиксированном токе через образец это дополнительное к ЭДС Холла напряжение U_0 остаётся неизменным. От него следует отсчитывать величину ЭДС Холла с учётом знака: = $U_{34} \pm U_0$. При таком способе измерения нет необходимости проводить повторные измерения с противоположным направлением магнитного поля.

По знаку можно определить характер проводимости - электронный или дырочный. Для этого необходимо знать направление тока в образце и направление магнитного поля.

Измерив ток в образце и напряжение U_{35} между контактами 3 и 5 в отсутствие магнитного поля, можно, зная параметры образца, рассчитать проводимость материала образца по очевидной формуле:

$$\sigma = I \cdot L_{35} / \left(U_{35} \cdot a \cdot l \right), \tag{9}$$

где L_{35} – расстояние между контактами 3 и 5, а – толщина образца, l – его ширина.

4 Результаты измерений и обработка данных

4.1 Градуировка электромагнита

Была исследована зависимость индукции $\Delta\Phi$ магнитного поля в зазоре электромагнита от тока через обмотки магнита. Для вычисления индукции В была применена формула

$$B = \frac{\Delta\Phi}{SN},\tag{10}$$

где $\Delta\Phi$ - разность между начальным и конечным значением потока вектора индукции, который пронизывал пробную катушку, находившуюся в зазоре электромагнита, а $SN=75~{\rm cm}^2\cdot$ вит.

Результаты измерений представлены в таблице 1. По этим данным построим график зависимости $B = f(I_{\rm M})$ (рис. 3).

$I_{\mathrm{M}}, \mathrm{A}$	$\Delta\Phi$, мВб	В, Тл
0,19	1,0	0,13
0,39	1,9	0,25
0,60	2,8	0,37
0,80	3,7	0,49
1,00	4,5	0,60
1,20	5,1	0,68
1,60	6,1	0,81
1,80	6,5	0,87
2,00	6,8	0,91
2,12	6,9	0,92

Таблица 1: Результаты измерения зависимости $B=f(I_{\mathrm{M}})$

Рис. 3: График зависимости $B = f(I_{\rm M})$

4.2 Измерение ЭДС Холла

Была исследована зависимость напряжения U_{34} от тока $I_{\rm M}$ через обмотки магнита при фиксированном токе через образец. При этом в отсутствие магнитного поля вольтметр показывал напряжение U_0 , которое также зависело от тока $I_{\rm M}$. При расчёте ЭДС Холла использовалась формула

$$\mathcal{E}_x = U_{34} - U_0. \tag{11}$$

При максимально возможном токе через образец измерение было проведено при изменённой ориентации образца. Результаты полученных значений представлены в таблице 2.

	I = 0, 3 M/	4	I = 0,4 MA			I=0,5 mA		
l	$U_0 = -17 \text{ M}$	кВ	$U_0 = -23 \text{ мкB}$			$U_0 = -29 \text{ мкB}$		
I_M , A	U_{34} , мкВ	\mathcal{E}_x , мкВ	I_M , A	U_{34} , мкВ	\mathcal{E}_x , мкВ	I_M , A	U_{34} , мкВ	\mathcal{E}_x , мкВ
0,20	-36	-19	0,20	-47	-24	0,19	-59	-30
0,57	-70	-53	0,56	-91	-68	0,58	-117	-88
0,98	-105	-88	1,05	-146	-123	1,05	-187	-158
1,39	-133	-116	1,38	-175	-152	1,42	-224	-195
1,80	-149	-132	1,78	-197	-174	1,80	-248	-219
2,12	-158	-141	2,10	-208	-185	2,09	-261	-232

	I = 0,6 M	4	I=0,7 MA			I = 0.8 MA		
l	$U_0 = -35 \text{ M}$	кВ	$U_0 = -43 \text{ MKB}$			$U_0 = -50 \text{ мкB}$		
I_M , A	U_{34} , мкВ	\mathcal{E}_x , мкВ	I_M , A	U_{34} , мкВ	\mathcal{E}_x , мкВ	I_M , A	U_{34} , мкВ	\mathcal{E}_x , мкВ
0,22	-75	-40	0,18	-80	-37	0,19	-93	-43
0,57	-140	-105	0,57	-165	-122	0,59	-193	-143
0,98	-211	-176	1,03	-256	-213	1,02	-300	-250
1,37	-265	-230	1,35	-308	-265	1,39	-357	-307
1,77	-297	-262	1,78	-350	-307	1,76	-396	-346
2,08	-314	-279	2,07	-367	-324	2,06	-418	-368

	I = 0,9 M	A	I=1,0 мА			$I_{flip} = 1,0$ мА			
l	$U_0 = -56 \text{ M}$	кВ	$U_0 = -63 \text{ мкB}$			$U_0 = -48 \text{ MKB}$			
I_M , A	U_{34} , мкВ	\mathcal{E}_x , мкВ	I_M , А $\mid U_{34}$, мкВ $\mid \mathcal{E}_x$, мкВ \mid		I_M , A	U_{34} , мкВ	\mathcal{E}_x , мкВ		
0,19	-105	-49	0,18	-117	-54	0,20	7	55	
0,59	-218	-162	0,56	-236	-173	0,57	113	161	
0,98	-315	-259	1,02	-365	-302	1,04	240	288	
1,37	-400	-344	1,35	-446	-383	1,44	318	366	
1,81	-449	-393	1,78	-500	-437	1,83	362	410	
2,06	-470	-414	2,05	-524	-461	2,04	380	428	

Таблица 2: Результаты измерения зависимости напряжения U_{34} от тока I_{M} через обмотки магнита

Теперь сопоставим токи в электромагните I_M с соответствующими значениями индукции магнитного поля B, воспользовавшись графиком, представленным на рис. 3. Полученные результаты занесём в таблицу 3 и построим графики зависимости $\mathcal{E}_x = f(B)$ при разных значениях тока через образец (рис. 4).

 Φ РКТ М Φ ТИ, 2023 4

I=0	I = 0, 3 MA		0,4 мА	I=0,5 MA	
В, Тл	\mathcal{E}_x , мкВ	В, Тл	\mathcal{E}_x , мкВ	В, Тл	\mathcal{E}_x , мкВ
0,14	-19	0,14	-24	0,13	-30
0,37	-53	0,36	-68	0,37	-88
0,58	-88	0,61	-123	0,61	-158
0,75	-116	0,75	-152	0,76	-195
0,87	-132	0,87	-174	0,87	-219
0,94	-141	0,94	-185	0,94	-232

I = 0, 6, MA		I = 0	0,7 мА	I = 0.8 mA	
B, Тл	\mathcal{E}_x , мкВ	В, Тл	\mathcal{E}_x , мкВ	В, Тл	\mathcal{E}_x , мкВ
0,15	-40	0,13	-37	0,13	-43
0,37	-105	0,37	-122	0,38	-143
0,58	-176	0,60	-213	0,60	-250
0,74	-230	0,74	-265	0,75	-307
0,87	-262	0,87	-307	0,86	-346
0,94	-279	0,93	-324	0,93	-368

I = 0	I = 0,9 MA		1,0 мА	$I_{flip} = 1,0$ мА		
В, Тл	\mathcal{E}_x , мкВ	В, Тл	\mathcal{E}_x , мкВ	В, Тл	\mathcal{E}_x , мкВ	
0,13	-49	0,13	-54	0,14	55	
0,38	-162	0,36	-173	0,37	161	
0,58	-259	0,60	-302	0,61	288	
0,74	-344	0,74	-383	0,77	366	
0,88	-393	0,87	-437	0,88	410	
0,93	-414	0,93	-461	0,93	428	

Таблица 3: Результаты вычислений зависимости ЭДС Холла \mathcal{E}_x от индукции магнитного поля B

 Φ РКТ М Φ ТИ, 2023 5

Рис. 4: Графики зависимости $\mathcal{E}_x = f(B)$

Аппроксимируем полученные данные зависимостями вида $\mathcal{E}_x = K(I) \cdot B + const$ при помощи программы OriginPro~2023b. Результаты аппроксимации представлены в таблице 4.

I, мА	$ K(I) \cdot 10^{-3}, B/T\pi$	$\sigma_{K(I)} \cdot 10^{-3}, \mathrm{B/T}$ л
0,3	1,51	0,01
0,4	1,99	0,02
0,5	2,51	0,03
0,6	3,00	0,03
0,7	3,51	0,04
0,8	4,02	0,05
0,9	4,48	0,05
1,0	5,02	0,05
1,0	4,65	0,05

Таблица 4: Результаты аппроксимации зависимостей $\mathcal{E}_x = f(B)$

По данным таблицы 4 был построен график зависимости K = f(I) (рис. 5).

Рис. 5: График зависимости K(I)

Аппроксимируя полученную зависимость при помощи программы OriginPro 2023b, получим

$$\frac{\Delta K}{\Delta I} = (4,93 \pm 0,05) \frac{B}{T_{\pi} \cdot A}.$$
 (12)

Тогда, согласно соотношению (8), $R_x = \frac{\Delta K}{\Delta I} a$, где a=1,5 мм — толщина исследуемого образца. Окончательно получим

$$R_x = (7, 4 \pm 0, 1) \cdot 10^{-3} \frac{B \cdot M}{T\pi \cdot A}.$$
 (13)

Отсюда, пользуясь соотношением (8), получим концентрацию носителей заряда

$$n = (0, 85 \pm 0, 01) \cdot 10^{21} \,\mathrm{m}^{-3} \tag{14}$$

4.3 Расчёт удельной проводимости и подвижности

По формуле (9) была рассчитана удельная проводимость нашего образца. По результатам измерений $U_{35}=1,784$ мВ, I=1 мА, $L_{35}=3$ мм и l=1,7 мм. В итоге получаем

$$\sigma = (660 \pm 10) \text{ Om}^{-1} \cdot \text{m}^{-1}$$
 (15)

Теперь, зная эти характеристики, можно рассчитать подвижность носителей заряда по следующей формуле

$$b = \frac{\sigma}{en} = (4850 \pm 100) \ \frac{\text{cm}^2}{\text{B} \cdot \text{c}} \tag{16}$$

5 Заключение

Результаты работы представлены в таблице 5.

$R_X \pm \Delta R_X$, $10^{-3} \cdot \text{м}^3/\text{K}$ л	Знак носителя	$n \pm \Delta n,$ $10^{21} \cdot \text{M}^{-3}$	$\begin{array}{c c} \sigma \pm \Delta \sigma, \\ \mathrm{Om}^{-1} \cdot \mathrm{m}^{-1} \end{array}$	$b \pm \Delta b,$ $cm^2 \cdot (B \cdot c)^{-1}$
$(7,4\pm 0,1)$	_	$(0,85 \pm 0,01)$	(660 ± 10)	(4850 ± 100)

Таблица 5: Результаты лабораторной работы

Полученные результаты совпали с табличными по порядку. Например, полученная подвижность электронов в германии отличается от табличной ($b_{\text{табл}} = 3900 \text{ cm}^2 \cdot (\text{B} \cdot \text{c})^{-1}$). Это может свидетельствовать о наличии примесей в исследуемом образце. Также ощутимый вклад в погрешность полученных данных могла внести зависимость характеристик исследуемого образца от температуры, которая могла значительно изменяться вследствие прохождения через образец электрического тока.

<u>ФРКТ МФТИ, 2023</u> 8