Covariance Properties and Graph Selection for High-Dimensional Compositional Data

Camden Lopez

WNAR 2017, Student Paper Session 3

Outline

- · Compositional microbiome data
- Graphical model selection using SPIEC-EASI
- Covariance relationships and properties
- Graph selection performance

Compositional microbiome data

16S amplicon sequencing

- Sample \rightarrow DNA \rightarrow 16S sequences \rightarrow OTU counts
- · Relative abundances only

	OTU 1	OTU 2		OTU p
Sample 1	136	28		10
Sample 2	0	2		18
:	:	:	٠.	:
Sample <i>n</i>	54	25		5

OTU = operational taxonomic unit

Graphical model inference using SPIEC-EASI

SPIEC-EASI: **SP**arse Invers**E** Covariance Estimation for **E**cological **AS**sociation Inference (Kurtz et al. 2015)

- Relationships among OTU abundances W = (W₁,..., W_p)?
- Suppose $\log W \sim \mathsf{Normal}(\,\cdot\,,\Omega)$
- Non-zero entries of Ω⁻¹ ⇔ conditional dependence, graphical model

Graphical model inference using SPIEC-EASI

SPIEC-EASI: **SP**arse Invers**E** Covariance Estimation for **E**cological **AS**sociation Inference (Kurtz et al. 2015)

- Observe $W \times ? \rightarrow \log W + ?$
- Centering $\log W+? \rightarrow \operatorname{clr} W$
- Assumption: $cov(clr W) = \Gamma \approx \Omega = cov(log W)$
- Graphical model inference:
 - $\widehat{\Gamma} \to \widehat{\Omega^{-1}}$ (graphical lasso, e.g.)

Properties of □

- $\gamma_{ij} = \omega_{ij} \overline{\omega}_{i.} \overline{\omega}_{.j} + \overline{\omega}_{.i}$
- Rows/col's sum to zero
- p fewer free parameters than Ω

Properties of □

- $\gamma_{ii} = \omega_{ii} \overline{\omega}_{i.} \overline{\omega}_{.i} + \overline{\omega}_{.i}$
- · Rows/col's sum to zero
- p fewer free parameters than Ω

$$\Gamma \approx \Omega$$

- Small or mostly negative correlations
- · Approx. equal variances
- Small "compositional effect"

Γ≉Ω

- Mostly positive correlations
- Unequal variances
- Large "compositional effect"

One $\Gamma \leftrightarrow \text{many } \Omega$

• For each Γ , p-dimensional space of **potential** Ω **s**

One $\Gamma \leftrightarrow$ many Ω

• Can solve for **potential** Ω **s** (must check $\Omega \succ 0$)

Relationships can vary among potential Ω s

· Somewhat constrained, but not entirely

Example (
$$p = 24$$
, red = negative, blue = positive)

Γ (correlations)

Relationships can vary among potential Ω s

· Somewhat constrained, but not entirely

Example (
$$p = 24$$
, red = negative, blue = positive)

Relationships can vary among potential Ω s

· Somewhat constrained, but not entirely

Example (
$$p = 24$$
, red = negative, blue = positive)

Relationships can vary among potential Ω s

· Somewhat constrained, but not entirely

Example (
$$p = 24$$
, red = negative, blue = positive)

Performance with small compositional effect

• Comparable to graph selection from log data

- · Sparse graph
- Approx. equal variances
- Partial correlations (pcor) \pm 0.25
- AUPR = area under precision-recall curve

Performance with small compositional effect

· Comparable to graph selection from log data

- · Sparse graph
- Approx. equal variances
- Partial correlations (pcor) \pm 0.25
- AUPR = area under precision-recall curve

Performance with large compositional effect

· Affected by distortion of covariances

- Cluster graph,p = 64
- 25× larger variances in one cluster
- n = 1024

Performance with large compositional effect

· Affected by distortion of covariances

Summary

- Limitation of compositional data: One $\Gamma \leftrightarrow$ many Ω , uncertainty about $\log W$ relationships
- SPIEC-EASI graph selection for log W
 based on clr W data performs well ...
 provided the compositional effect is not too large
- Large compositional effect distorts covariances and causes erroneous edges in graph

References & Acknowledgements

SPIEC-EASI paper:

 Kurtz., Z. D., Müller, C. L., Miraldi, E. R., Littman, D. R., Blaser, M. J., and Bonneau, R. A. (2015). Sparse and compositionally robust inference of microbial ecological networks. *PLoS Computational Biology* 11, e1004226.

Thank you Oregon State University faculty:

- Yuan Jiang, Duo Jiang, Sarah Emerson (Statistics)
- Thomas Sharpton (Microbiology and Statistics)

Centered log-ratio transformation

Given sample $x = (x_1, ..., x_p)$ with geometric mean $g(x) = (\prod_{i=1}^p x_i)^{\frac{1}{p}}$,

$$\operatorname{clr}(x) = \left(\log \frac{x_1}{g(x)}, \dots, \log \frac{x_p}{g(x)}\right)$$
$$= \left(\log x_1 - \frac{1}{p} \sum_{i=1}^p \log x_i, \dots, \log x_p - \frac{1}{p} \sum_{i=1}^p \log x_i\right)$$

and for c > o,

$$clr(cx) = clr(x)$$

Covariance relationships

Matrix form:

$$\operatorname{clr} W = \operatorname{\mathsf{G}} \operatorname{\mathsf{log}} W$$

$$\operatorname{\mathsf{G}} = \begin{pmatrix} 1 - \frac{1}{p} & \dots & -\frac{1}{p} \\ \vdots & \ddots & \vdots \\ -\frac{1}{p} & \dots & 1 - \frac{1}{p} \end{pmatrix}$$

$$\Rightarrow \operatorname{\mathsf{cov}}(\operatorname{\mathsf{clr}} W) = \operatorname{\mathsf{G}} \operatorname{\mathsf{cov}}(\operatorname{\mathsf{log}} W) \operatorname{\mathsf{G}}$$

$$\Rightarrow \Gamma = \operatorname{\mathsf{G}} \Omega \operatorname{\mathsf{G}}$$

Graphical lasso estimation of Ω^{-1}

$$\begin{split} \widehat{\Omega^{-1}}_{\text{glasso}} &= \underset{\Omega^{-1} \succeq 0}{\text{arg max}} \left[\log \det(\Omega^{-1}) - \text{tr}(\widehat{\Omega}\Omega^{-1}) - \lambda \|\Omega^{-1}\|_1 \right] \\ \widehat{\Omega^{-1}}_{\text{SPIEC-EASI}} &= \underset{\Omega^{-1} \succeq 0}{\text{arg max}} \left[\log \det(\Omega^{-1}) - \text{tr}(\widehat{\Gamma}\Omega^{-1}) - \lambda \|\Omega^{-1}\|_1 \right] \end{split}$$

Solving for potential Ω

Option 1: Choose $\overline{\omega}_1, \ldots, \overline{\omega}_p$.

$$\gamma_{ij} = \omega_{ij} - \overline{\omega}_{i.} - \overline{\omega}_{.j} + \overline{\omega}_{..}$$

$$\Rightarrow \omega_{ij} = \gamma_{ij} + \overline{\omega}_{i.} + \overline{\omega}_{.j} - \overline{\omega}_{..}$$

Option 2: Choose $\omega_{11}, \ldots, \omega_{pp}$

$$\omega_{ij} = \gamma_{ij} + \frac{1}{2} \left(\omega_{ii} - \gamma_{ii} + \omega_{jj} - \gamma_{jj} \right)$$

Graphs used in simulations

$$p = 64$$
, $e = p - 1$

Band

Cluster

Scale-free