

Physics Informed Multi-frame Super Resolution for Weather Forecasts

Project report

PhD-1 Student

Eduard Tulchinskiy

Why Upscaling the weather?

- Weather prediction and climate studies models (both classic and data-driven) require a lot of data
- Data is measured either at some point or averaged over large region (from satellite)
- To measure something away from observation station we need another observation station
- Data is gathered by very expensive and complex hardware
- Maybe we can calculate necessary data without measuring them?
- Proper mathematical models are extremely difficult

Inspiration - Deep Image Super Resolutioning

However...

- 1) Physics data are something different than just pixels
- 2) Need too much data to train

Physics-Informed Machine Learning

Dataset overwiev

Wind velocity measured over 256 small (200 x 200 km) in continental United States

- Low resolution data 25x25 measurements
- 2. High resolution data 100x100 measurements
- Data at each point --- one float number (expected to be). For display they were converted to RGB with respect to Viridis color scheme
- 4. Total 8448 pairs were used for training and 1024+1024 (validation/test) for inference

Implemented methods of Physics-Informing:

1) Gradient loss (Serifi et. al., 2021) – add to loss function term minimizing distance between gradients of vector fields

$$\mathcal{L}_{grad} = ||\mathbf{v} - \mathbf{w}||_1 + ||\nabla \mathbf{v} - \nabla \mathbf{w}||_1$$

2) Contextualization (*Jiang et. al., 2020*) – convolution models don't pay much attention to actual positions, so we just add points coordinates as additional parameters to context representations and stack some fully-connected layers on top of it

Model architecture

Results

Model	MSE	MAE	PSNR
	В	aselines	
Bicubic	7.2e-3	0.0604	22.404
SR-CNN	3.8e-3	0.0438	25.605
ESRGAN	5.6e-3	0.0533	23.795
SRFBN	3.8e-3	0.0428	25.820
	Single fra	me model setups	i
Gradient loss	3.7e-3	0.0426	25.838
Contextualized	3.7e-3	0.0427	25.854
Both	3.6e-3	0.0421	25.912
	Multi	frame setup	
inal	3.1e-3	0.0396	26.113

Table 1. Performance of models on Test data. MSE=mean square error. MAE=mean absolute error. PSNR=average peak signal to noise ratio.

High resolution image (ground truth)

Example of super-resolutioning. One parameter (wind velocity) is converted to color according to standard Matplotling pallete

References

- Jiang, C. M., Esmaeilzadeh, S., Azizzadenesheli, K., Kashinath, K., Mustafa, M., Tchelepi, H. A., Marcus, P., Prabhat, and Anandkumar, A. MeshfreeFlowNet: A Physics-Constrained Deep Continuous Space-Time Super-Resolution Framework. 2020. URL http://arxiv.org/abs/2005.01463.
- Serifi, A., G'unther, T., and Ban, N. Spatio-temporal downscaling of climate data using convolutional and error-predicting neural networks. Frontiers in Climate, 3:26, 2021.
- Karniadakis, G. E., Kevrekidis, I. G., Lu, L., Perdikaris, P., Wang, S., and Yang, L. Physics-informed machine learning. Nature review Physics, 3:422–440, 2021
- Kashinath, K., Esmaeilzade, S., and et al, A. A. Physics-informed machine learning: Case studies for weather and climate modelling. Philosophical Transactions of The Royal Society A Mathematical Physical and Engineering Sciences, 379(2194), 2021..