

Teste de hipótese para uma população

Introdução

Componentes

Testes de hipótese para a média μ σ conhecido σ desconhe

Testes de hipótese para a proporção p

Referências

Teste de hipótese para uma população

Fernando de Pol Mayer

Laboratório de Estatística e Geoinformação (LEG) Departamento de Estatística (DEST) Universidade Federal do Paraná (UFPR)

Este conteúdo está disponível por meio da Licença Creative Commons 4.0 (Atribuição/NãoComercial/Partilhalgual)

Sumário

Teste de hipótese para uma população

Introdução

Componentes

Testes de hipótese para a média μ σ conhecido σ desconhe.

Testes de hipótese para a proporção p

Referências

- Introdução
- 2 Componentes dos testes de hipótese
- lacksquare Testes de hipótese para a média μ
 - \bullet σ conhecido
 - \bullet σ desconhecido
- 4 Testes de hipótese para a proporção p
- S Referências

Plano de aula

Teste de hipótese para uma população

Introdução

Componentes

Testes de hipótese para a média μ σ conhecido σ desconhe.

Testes de hipótese para a proporção p

Referências

- Introdução
- 2 Componentes dos testes de hipótese
 - $exttt{3}$ Testes de hipótese para a média μ
 - \bullet σ conhecido
 - \bullet σ desconhecido
- 4 Testes de hipótese para a proporção p
- 6 Referências

Introdução

Teste de hipótese para uma população

Introdução

Componentes

Testes de hipótese para a média μ σ conhecido σ desconhe.

Testes de hipótese para a proporção p

Referências

Na inferência estatística os dois principais objetivos são:

- Estimar um parâmetro populacional
- Testar uma hipótese ou afirmativa sobre um parâmetro populacional

Introdução

Teste de hipótese para uma população

Introdução

Componentes

Testes de hipótese para a média μ σ conhecido σ desconhe.

Testes de hipótese para a proporção p

Referências

Hipótese

É uma afirmativa sobre uma propriedade da população

Teste de hipótese

É um procedimento para se testar uma afirmativa sobre uma propriedade da população

Permite tomar **decisões** sobre a população com base em informações de dados amostrais.

Plano de aula

Teste de hipótese para uma população

Introdução

Componentes

Testes de hipótese para a média μ σ conhecido σ desconhe.

Testes de hipótese para a proporção p

a proporção Referências

- Introdução
- 2 Componentes dos testes de hipótese
- - \bullet σ conhecido
 - \bullet σ desconhecido
- 4 Testes de hipótese para a proporção p
- 5 Referências

Tipos de hipóteses

Teste de hipótese para uma população

Introdução

Componentes

Testes de hipótese para a média μ σ conhecido σ desconhe.

Testes de hipótese para a proporção p

Referências

Hipótese nula H₀

É uma afirmativa de que o valor de um parâmetro populacional é **igual** a algum valor especificado. (O termo *nula* é usado para indicar nenhuma mudança, nenhum efeito). Ex.:

- \bullet $\mu=$ 170 cm
- p = 0, 5

Hipótese alternativa H_a

É uma afirmativa de que o parâmetro tem um valor, que, de alguma forma, difere da hipótese nula. Ex.:

•
$$\mu \neq 170$$

$$\mu < 170$$

$$\mu > 170$$

Tipos de hipóteses

Teste de hipótese para uma população

Introdução

Componentes

Testes de hipótese para a média μ σ conhecido σ desconhe.

Testes de hipótese para a proporção p

Referências

Quando fazemos um teste de hipótese, chegamos a um dos dois possíveis resultados:

- **Rejeitar** H_0 : em favor da hipótese alternativa H_a
- Não rejeitar H_0 : e conclui-se que não existem diferenças

Atenção!

- O termo aceitar a hipótese nula é filosoficamente incorreto, pois não se pode aceitar uma hipótese baseada apenas em evidências amostrais (mesmo em um teste de hipótese formal).
- E ainda existe um **erro** associado a todo teste de hipótese . . .

Erro do tipo I e do tipo II

Teste de hipótese para uma população

Introdução

Componentes

Testes de hipótese para a média μ σ conhecido σ desconhe.

Testes de hipótese para a proporção p

Referências

Erro do tipo I: rejeitar uma hipótese nula verdadeira. A probabilidade de cometer esse erro é dada por α .

Erro do tipo II: não rejeitar uma hipótese nula falsa. A probabilidade de cometer esse erro é dada por β .

	<i>H</i> _o verdadeira	H_o falsa
Não rejeitar H ₀	Decisão correta	Erro tipo II
Rejeitar H_0	Erro tipo I	Decisão correta

Portanto, o valor de α determina a chance de erro do teste de hipótese.

Nível de significância α

Teste de hipótese para uma população

Introdução

Componentes

Testes de hipótese para a média μ σ conhecido σ desconhe.

Testes de hipótese para a proporção p

Referências

O nível de significância α é a probabilidade de cometermos um erro do tipo I.

Este valor é determinado **antes** de se iniciar o teste, e determina o nível de risco que pode ser tolerado ao se rejeitar uma hipótese nula que é verdadeira.

Valores comuns de α são 0,10; 0,05 e 0,01.

Teste de hipótese para uma população

Introdução

Componentes

Testes de hipótese para a média μ σ conhecido σ desconhe.

Testes de hipótese para a proporção p

Referências

Uma hipótese do tipo

 $H_0 =$

 $H_a \neq$

é bilateral

Teste de hipótese para uma população

Introdução

Componentes

Testes de hipótese para a média μ σ conhecido σ desconhe.

Testes de hipótese para a proporção p

Referências

Uma hipótese do tipo

$$H_0 \ge$$

$$H_a <$$

é unilateral à esquerda

Teste de hipótese para uma população

Introdução

Componentes

Testes de hipótese para a média μ σ conhecido σ desconhe

Testes de hipótese para a proporção p

Referências

Uma hipótese do tipo

$$H_0 \leq$$

$$H_a >$$

é unilateral à direita

Teste de hipótese para uma população

Introdução

Componentes

Testes de hipótese para a média μ σ conhecido σ desconhe.

Testes de hipótese para a proporção p

Referências

A **região crítica** de um teste de hipótese é a área de **rejeição** da hipótese nula

O **valor crítico** é o valor que divide a área de rejeição da área de não rejeição de H_0 . Depende:

- da distribuição amostral da estimativa testada
- ullet do valor de lpha

Estatística de teste

Teste de hipótese para uma população

Introdução

Componentes

Testes de hipótese para a média μ σ conhecido σ desconhe.

Testes de hipótese para a proporção p

Referências

A **estatística de teste** é um valor usado para tomar a decisão sobre a hipótese nula.

É encontrada pela conversão da estatística amostral em um escore (z ou t), com a suposição de que a hipótese nula seja verdadeira.

Se:

- A estatística de teste cair **dentro** da região crítica o **rejeita** H_0
- A estatística de teste cair fora da região crítica o não rejeita H_0

Estatística de teste

Teste de hipótese para uma população

Introdução

Componentes

Testes de hipótese para a média μ σ conhecido σ desconhe.

Testes de hipótese para a proporção p

Referências

Exemplo: estatística de teste para uma média com σ conhecido

$$z_{calc} = \frac{\bar{x} - \mu_0}{\sigma / \sqrt{n}}$$

Este valor **calculado** deve ser comparado com um **valor crítico** de z_{crit} , obtido a partir da tabela da distribuição N(0,1).

Se:

- $|z_{calc}| > |z_{crit}| \rightarrow$ rejeita H_0
- ullet $|z_{calc}|<|z_{crit}|
 ightarrow { t n ilde ao}$ rejeita H_0

Procedimentos gerais para um teste de hipótese

Teste de hipótese para uma população

Introdução

Componentes

Testes de hipótese para a média μ σ conhecido σ desconhe.

Testes de hipótese para a proporção *p*

Referências

- Definir a hipótese nula (H_0) e a alternativa (H_a)
- ② Definir um nível de **significância** α (ex.: $\alpha = 0,05$), que irá determinar o nível de **confiança** $100(1-\alpha)\%$ do teste
- Oeterminar a região de rejeição com base no nível de significância → valor crítico
- Calcular a estatística de teste, sob a hipótese nula ⇒ valor calculado
- Rejeitar a hipótese nula se a estatística de teste calculada estiver dentro da região de rejeição \Rightarrow |valor calculado| > |valor crítico|

Plano de aula

Teste de hipótese para uma população

Introdução

Componentes

Testes de hipótese para a média μ σ conhecido σ desconhe.

Testes de hipótese para a proporção p

Referências

- Introdução
- 2 Componentes dos testes de hipótese
- f 3 Testes de hipótese para a média μ
 - ullet σ conhecido
 - \bullet σ desconhecido
- 4 Testes de hipótese para a proporção p
- 6 Referências

Plano de aula

Teste de hipótese para uma população

Introdução

Componentes

Testes de hipótese para a média μ σ conhecido

σ desconhe. Testes de hipótese para

a proporção p

Introdução

2 Componentes dos testes de hipótese

- $oxed{3}$ Testes de hipótese para a média μ
 - ullet σ conhecido
 - \bullet σ desconhecido
- 4 Testes de hipótese para a proporção p
- 5 Referências

Teste de hipótese para uma população

Introdução

Componentes

Testes de hipótese para a média μ

 σ conhecido σ desconhe.

Testes de hipótese para a proporção p

Referências

Quando temos os seguintes requisitos:

- Temos uma AAS
- \circ σ é conhecido
- **3** A população tem distribuição normal ou n > 30

podemos usar o Teorema do Limite Central para afirmar que a média segue uma distribuição normal, e a **estatística de teste** é dada por

$$z_{calc} = \frac{\bar{x} - \mu_0}{\sigma / \sqrt{n}}$$

onde μ_0 é o valor de teste na hipótese nula.

Teste de hipótese para uma população

Introdução

Componentes

Testes de hipótese para a média μ σ conhecido σ desconhe

Testes de hipótese para a proporção p

Referências

Procedimentos gerais para um teste de hipótese com σ conhecido

- Definir a hipótese nula (H_0) e a alternativa (H_1)
- ② Definir um nível de **significância** α (ex.: $\alpha = 0,05$), que irá determinar o nível de **confiança** $100(1-\alpha)\%$ do teste
- **②** Determinar a **região de rejeição** com base no nível de significância $o z_{crit}$
- Calcular a estatística de teste, sob a hipótese nula

$$z_{calc} = rac{ar{x} - \mu_0}{\sigma / \sqrt{n}}$$

• Rejeitar a hipótese nula se a estatística de teste calculada estiver dentro da região de rejeição $(|z_{calc}| > |z_{crit}|)$

Teste de hipótese para uma população

Introdução

Componentes

Testes de hipótese para a média μ σ conhecido

σ desconhe. Testes de hipótese para

hipótese para a proporção p

Referências

Exemplo: Uma máquina de encher embalagens de café está funcionando adequadamente se colocar 700 g em cada embalagem. Para verificar a calibração da máquina, uma empresa coletou uma amostra de 40 embalagens, que resultou em uma média de 698 g. Sabe-se que o desvio-padrão do enchimento da máquina é de 10 g. Teste a hipótese de o peso médio das embalagens na população ser 700 g, com um nível de significância de 5%.

Teste de hipótese para uma população

Introdução

Componentes

Testes de hipótese para a média μ

σ desconhe.

Testes de
hipótese para
a proporção n

Referências

Exemplo: Um fabricante de lajotas introduz um novo material em sua fabricação e acredita que aumentará a resistência média, que é de 206 kg. A resistência das lajotas tem distribuição normal com desvio-padrão de 12 kg. Retirou-se uma amostra de 30 lajotas, e obteve-se uma média amostral de 210 kg. Ao nível de 10%, pode o fabricante afirmar que a resistência média de suas lajotas tenha aumentado?

Plano de aula

Teste de hipótese para uma população

Introdução

Componentes

Testes de hipótese para a média μ σ conhecido σ desconhe.

Testes de hipótese para a proporção p

Referências

- Introdução
- 2 Componentes dos testes de hipótese
- $oxed{3}$ Testes de hipótese para a média μ
 - \bullet σ conhecido
 - \bullet σ desconhecido
- 4 Testes de hipótese para a proporção p
- S Referências

Teste de hipótese para uma população

Introdução

Componentes

Testes de hipótese para a média μ σ conhecido σ desconhe.

Testes de hipótese para a proporção p

Referências

Quando temos os seguintes requisitos:

- Temos uma AAS
- \circ σ é desconhecido
- A população tem distribuição normal ou n > 30 usamos a distribuição t como estatística de teste, dada por

$$t_{calc} = rac{ar{x} - \mu_0}{s/\sqrt{n}}$$

com n-1 graus de liberdade, e onde μ_0 é o valor de teste na hipótese nula.

Teste de hipótese para uma população

Introdução

Componentes

Testes de hipótese para a média μ σ conhecido σ desconhe.

Testes de hipótese para a proporção p

Referências

Procedimentos gerais para um teste de hipótese com σ desconhecido

- **9** Definir a hipótese nula (H_0) e a alternativa (H_1)
- ② Definir um nível de **significância** α (ex.: $\alpha = 0,05$), que irá determinar o nível de **confiança** $100(1-\alpha)\%$ do teste
- **①** Determinar a **região de rejeição** com base no nível de significância $\rightarrow t_{crit}$ (com gl = n 1)
- Calcular a estatística de teste, sob a hipótese nula

$$t_{calc} = rac{ar{x} - \mu_0}{s/\sqrt{n}}$$

§ Rejeitar a hipótese nula se a estatística de teste calculada estiver dentro da região de rejeição $(|t_{calc}| > |t_{crit}|)$

Teste de hipótese para uma população

Introdução

Componentes

Testes de hipótese para a média μ σ conhecido σ desconhe.

Testes de hipótese para a proporção p

Referências

Exemplo: A vida média das lâmpadas produzidas por uma empresa era de 1120 horas. Uma amostra de 8 lâmpadas extraída recentemente apresentou a vida média de 1070 horas, com desvio-padrão de 125 horas, e distribuição próxima da normal. Testar a hipótese de que a vida média das lâmpadas não tenha se alterado, ao nível de 1% de significância.

Teste de hipótese para uma população

Introdução

Componentes

Testes de hipótese para a média μ σ conhecido σ desconhe.

Testes de hipótese para a proporção p

Referências

Exemplo: Querendo determinar a quantidade média de nicotina dos cigarros, uma empresa retirou uma amostra de 25 cigarros e obteve os seguintes resultados:

$$\bar{x} = 38 \,\mathrm{mg}$$
 $s^2 = 0,25 \,\mathrm{mg}^2$

Ao nível de 5%, teste se a quantidade média de nicotina pode ser considerada inferior a 40 mg.

Plano de aula

Teste de hipótese para uma população

Componentes

Testes de hipótese para a média μ σ conhecido σ desconhe.

Testes de hipótese para a proporção p Referências

Introdução

- \circ σ conhecido
- \bullet σ desconhecido

Testes de hipótese para a proporção p

Teste de hipótese para uma população

Introdução

Componentes

Testes de hipótese para a média μ σ conhecido σ desconhe.

Testes de hipótese para a proporção p

Referências

A proporção amostral

$$p = \frac{x}{n} = \frac{\text{número de sucessos}}{\text{total de tentativas}}$$

é a **melhor estimativa** para a proporção populacional π

Já vimos que quando ambas condições são satisfeitas

- np ≥ 5
- $n(1-p) \ge 5$

a distribuição binomial das proporções amostrais pode ser **aproximada** por uma distribuição normal com com média $\mu=np$ e desvio-padrão $\sigma=\sqrt{np(1-p)}$

Teste de hipótese para uma população

Introdução

Componentes

Testes de hipótese para a média μ σ conhecido σ desconhe.

Testes de hipótese para a proporção p

Referências

Quando temos os seguintes requisitos:

- Temos uma AAS
- As condições para a distribuição binomial são satisfeitas
 - as tentativas são independentes
 - há duas categorias de resultado ("sucesso", "fracasso")
 - a probabilidade de sucesso p permanece constante
- $n\pi_0 \geq 5 \text{ e } n(1-\pi_0) \geq 5$

podemos usar a distribuição normal como aproximação da binomial, e portanto, usamos a **estatística de teste**

$$z_{calc} = \frac{p - \pi_0}{\sqrt{\frac{\pi_0(1 - \pi_0)}{n}}}$$

onde π_0 é o valor de proporção de teste na hiótese nula.

Teste de hipótese para uma população

Introdução

Componentes

Testes de hipótese para a média μ σ conhecido σ desconhe.

Testes de hipótese para a proporção p

Referências

Procedimentos gerais para a construção de um teste de hipótese para a proporção π

- Definir a hipótese nula (H_0) e a alternativa (H_1)
- ② Determine o valor de $p = \frac{x}{n}$
- Verifique se $n\pi_0 \geq 5$ e $n(1-\pi_0) \geq 5$
- **①** Definir um nível de **significância** α (ex.: $\alpha = 0,05$), que irá determinar o nível de **confiança** $100(1-\alpha)\%$ do teste
- Determinar a **região de rejeição** com base no nível de significância $\rightarrow z_{crit}$
- O Calcular a estatística de teste, sob a hipótese nula

$$z_{calc} = \frac{p - \pi_0}{\sqrt{\frac{\pi_0(1 - \pi_0)}{n}}}$$

② Rejeitar a hipótese nula se a estatística de teste calculada estiver dentro da região de rejeição ($|z_{calc}| > |z_{crit}|$)

Teste de hipótese para uma população

Introdução

Componentes

Testes de hipótese para a média μ σ conhecido σ desconhe.

Testes de hipótese para a proporção p

Referências

Exemplo: Uma empresa desenvolveu um método de seleção de gênero, e afirma que, com a utilização deste método, a proporção de nascer uma menina é maior do que 50%. Para pais que utilizaram o método, dos 726 bebês nascidos, 668 eram meninas.

Use este resultado, com um nível de significância de 5%, para testar a afirmativa de que, entre bebês nascidos de casais que utilizaram o método, a proporção de meninas é maior do que 50% (que seria o valor esperado sem qualquer tratamento).

Teste de hipótese para uma população

Introdução

Componentes

Testes de hipótese para a média μ σ conhecido σ desconhe

Testes de hipótese para a proporção p

Referências

Exemplo: Um candidato a deputado estadual afirma que terá 60% dos votos dos eleitores de uma cidade. Um instituto de pesquisa colhe uma amostra de 300 eleitores dessa cidade, encontrando 160 que votarão no candidato. Esse resultado mostra que a afirmação do candidato é verdadeira? (Use um nível de significância de 5%).

Plano de aula

Teste de hipótese para uma população

Introdução

Componentes

Testes de hipótese para a média μ σ conhecido σ desconhe.

Testes de hipótese para a proporção p

Referências

- Introdução
- Componentes dos testes de hipótese
- lacksquare Testes de hipótese para a média μ
 - \bullet σ conhecido
 - \bullet σ desconhecido
- 4 Testes de hipótese para a proporção p
- S Referências

Referências

Teste de hipótese para uma população

Introdução

Componentes

Testes de hipótese para a média μ σ conhecido σ desconhe.

Testes de hipótese para a proporção p

Referências

- Bussab, WO; Morettin, PA. Estatística básica. São Paulo: Saraiva, 2006. [Cap. 11]
- Magalhães, MN; Lima, ACP. Noções de Probabilidade e Estatística. São Paulo: EDUSP, 2008. [Cap. 7]
- Montgomery, DC; Runger, GC. Estatística aplicada e probabilidade para engenheiros. Rio de Janeiro: LTC Editora, 2012. [Cap. 8]