SEPTEMBER 17, 1964

VASA TM X-53131

ANALYSIS OF CLOSED CIRCUIT TELEVISION AND FIBER OPTICS FOR REMOTE VISUAL CONTROL OF TIG WELDING

by W. A. WALL AND L. K. SWAIM Manufacturing Engineering Laboratory	GPO PRICE \$
	OTS PRICE(S) \$
NASA	Hard copy (HC) $\frac{12,00}{10,50}$
George C. Marshall	Microfiche (MF) # 0, 50
Space Flight Center,	
Huntsville. Alahama	N 65 12018

TECHNICAL MEMORANDUM X-53131

ANALYSIS OF CLOSED CIRCUIT TELEVISION AND FIBER OPTICS FOR REMOTE VISUAL CONTROL OF TIG WELDING

By

W. A. Wall and L. K. Swaim

ABSTRACT

Two weld viewing systems, closed circuit television and stereo fiber optics, were tested for their relative abilities to transmit weld quality information to the weld operator. These tests were arranged to gather statistical data for comparing the information transmission merits of the two systems. One goal of the project was to determine if the validity of this method of analysis could be established. Data reduction supported the postulation that definite trends could be denoted using this test approach, and results support the belief that both fiber optics and closed circuit television pictures are suitable for remote aluminum welding control.

NASA-GEORGE C. MARSHALL SPACE FLIGHT CENTER

TECHNICAL MEMORANDUM X-53131

ANALYSIS OF CLOSED CIRCUIT TELEVISION AND FIBER OPTICS FOR REMOTE VISUAL CONTROL OF TIG WELDING

 $\mathbf{B}\mathbf{y}$

W. A. Wall and L. K. Swaim

EXPERIMENTAL ELECTRONIC DEVELOPMENT BRANCH
MANUFACTURING ENGINEERING LABORATORY
RESEARCH AND DEVELOPMENT OPERATIONS

TABLE OF CONTENTS

	Page
INTRODUCTION	1
TEST APPARATUS	2
METHOD OF TESTING	2
DISCUSSION	4
CONCLUSIONS	5
RECOMMENDATIONS	6
APPENDIX A	22

LIST OF ILLUSTRATIONS

Figure	Title	Page
1.	Closed Circuit Television Test Setup	7
2.	Spectral Sensitivity Characteristics 7038 Vidicon Tube	8
3.	Spectral Sensitivity Characteristics Sylvania Sun Gun Model SG63	9
4.	TV Camera Light Filter Characteristics	10
5.	Stereo Fiber Optics Test Setup	11
6.	Remote Viewing Weld Tests, Tensile Strength, 1/4-Inch Material, Variable Current	12
7.	Remote Viewing Weld Tests, 1/4-Inch Material, Variable Current	13
8.	Remote Viewing Weld Tests, 1/4-Inch Material, Variable Current	14
9.	Remote Viewing Weld Tests, 3/8-Inch Material, Variable Voltage	15
10.	Remote Viewing Weld Tests, 3/8-Inch Material, Variable Current	16
11.	Remote Viewing Weld Tests, 3/8-Inch Material, Variable Travel Speed	17
12.	Remote Viewing Weld Test, 1/4-Inch Material, Variable Current and Travel Speed	. 18
13.	Lighting Criteria for TV Camera with Interference Filter	. 19
14.	Machinists Chart Without Image Enhancement	. 20
15.	Machinists Chart With Image Enhancement	. 21

TECHNICAL MEMORANDUM X-53131

ANALYSIS OF CLOSED CIRCUIT TELEVISION AND FIBER OPTICS FOR REMOTE VISUAL CONTROL OF TIG WELDING

SUMMARY

Two weld viewing systems, closed circuit television and stereo fiber optics, were tested for their relative abilities to transmit weld quality information to the weld operator. These tests were arranged to gather statistical data for comparing the information transmission merits of the two systems. One goal of the project was to determine if the validity of this method of analysis could be established.

Data reduction supported the postulation that definite trends could be denoted using this test approach, and results support the belief that both fiber optics and closed circuit television pictures are suitable for remote aluminum welding control. Extensive analysis of the test samples indicates that the weld operator never failed to correct a maladjusted weld setting using television and fiber optic monitoring. Further, it is concluded that, from strictly an operational viewpoint, closed circuit television is superior to fiber optics as a means of image magnification and ease of viewing.

INTRODUCTION

Engineering Project 3035 was initiated to develop apparatus for remote viewing of aluminum welding. Two distinctly different systems of remote viewinh have evolved from this engineering project in the form of a black and white closed circuit television system and a fiber optic system which features stereo depth perception effect and color transmission. Because of the difficulty of describing, in words, the total information available from each device, it was decided that a series of tests should be conducted to more fully evaluate and compare the two viewing systems. The basis of these tests was to attempt to determine by statistical methods how dependably a weld operator could control the TIG process when relying entirely upon remote viewing devices to monitor the weld. Since the two viewing systems, CCTV and fiber optics, have totally different attributes, it was felt that one system might prove vastly superior to the other. On the other hand, it was possible that both systems were of about equal

picture quality and the selection of a viewing system for a particular job would depend principally on physical and economic considerations.

TEST APPARATUS

- 1. The test welding apparatus consisted of a Linde HWN-2 controller and manipulator for TIG welding of aluminum alloy 2219-T87. The welding was performed without joint backup, Figure 1, to simulate most SATURN SI-C welding conditions. Welding current and voltage were monitored with a clampon DC ammeter and a 2 percent accurate Triplett voltmeter. Welding speed was read from a calibrated meter on the Linde travel governor. Since only relative values were of interest, this instrumentation was considered sufficient.
- 2. The closed circuit television equipment consisted of the following components:
- a. Camera, Hallamore Model CC420, with 650 horizontal line resolution
 - b. Monitor and Camera Control, Hallamore Model MR17BR
 - c. Vidicon, RCA No. 7038 (See Figure 2 for characteristic curve)
 - d. Lens, 4 inch, F 2.5
- e. Ambient Light Source, Sylvania Sun Gun, 3400 degrees K light temperature, (See Figure 3)
 - f. Filter, interference, (See Figure 4 for characteristics)
- 3. The fiber optic system, Figure 5, is a 9-foot, stereo, 8×10 millimeter system with image enhancement and adjustable polaroid light filters. This system was built by OPTO Mechanisms, Inc., in compliance with R-ME specification MR&T SK 392, REV A, and is known as OPTO Mechanisms Model 565 with image enhancement.

METHOD OF TESTING

In order to get meaningful statistical data from this type of test, the testing was limited to the variation of one weld parameter at a time while all other weld parameters were held constant. The theory was to let the operator do his best to correct a maladjusted weld setting while monitoring it remotely,

and determine, by tensile test, X-ray, and penetration measurements, the operator's degree of success. The principle weld parameters affected were:

- 1. Weld voltage
- 2. Weld Current
- 3. Weld speed

On a typical test, the test panels were tack welded at both ends, lined up with the torch, and the operator would initiate weld start with known weld parameter settings and full penetration. Satisfied with the weld, the operator would change from direct visual monitoring to either CCTV, Figure 1, or fiber optics, Figure 5, for remote viewing. When the sample was approximately one-third finished, a second party, not the weld operator, would change one weld parameter approximately 10 percent, or more, and the weld operator would then attempt to adjust the weld, as nearly as possible, to the initial conditions. The operator was told which parameter had been changed, but he was not allowed to know the amount of change except through his remote visual monitor. Weld correction could not be accomplished instantaneously because large weld parameter changes made a difference in the heat pattern, and the weld had to be stabilized before the adjustment was considered complete. Each test panel was marked to indicate where the parameter change took place and when the weld operator was satisfied with his correction. Therefore, there were three principle conditions on each weld sample:

- 1. The beginning with known weld parameters and penetration
- 2. The middle portion subjected to change
- 3. The final condition after operator correction

Each test panel was X-rayed for porosity and visually inspected for loss of penetration. After X-ray, one or more test specimens from each of the starts, the maladjusted, and the corrected portion of the test panel, was cut out for tensile test. The results of the tensile tests are tabulated in Appendix A and graphically illustrated in Figures 6 - 12. It should be noted that these tests were limited to 1/4-inch and 3/8-inch materials, and the tests were stagge. I such that a different weld parameter was changed on each successive test panel. Of special interest was an extra-curricula test, Figure 12, conducted after the scheduled tests were completed. This time, two parameters, current and travel, were changed simultaneously, but the operator was not told what had been changed.

The weld operator made a remarkable recovery! On panel No. 1, he actually increased the weld strength during correction, and on panel No. 2, he reproduced the original good weld properties with a high degree of accuracy and skill. The viewing medium was CCTV. These two tests, more than anything else, tested the practicality of remote viewing equipment.

DISCUSSION

The optical interference type coated filter with transmission characteristics as shown in Figure 4, allowed the work to be performed with the best CCTV weld picture currently attainable. The picture quality stems from the use of a powerful sun-gun light source to illuminate the picture area in conjunction with the excellent visible light transmission characteristics of the interference filter. The remainder of the CCTV equipment is standard television and optical hardware. Of importance is the fact that the angle of the reflected light rays from the ambient light source is critical because of the interference filter. One light source, as Light A Figure 13, must be located so that it is in line with the TV camera and of about the same angle of incidence with respect to the work. The ambient rays should leave the light source, strike the aluminum surface at some angle of incidence, and leave the work at approximately the same angle to enter the TV camera. A second light, Light B Figure 13, can be used to illuminate the front of the torch and to eliminate shadows.

Standard fiber optic cables have excellent weld picture transmission qualities. Due to ambient lighting, the picture transmitted to the weld operator's eyes is much better than would be expected through a standard welder's green filter. The ambient lighting required for fiber optics is not as critical as it is for the above described CCTV setup, and a wide latitude of adjustment can produce about the same effect.

Lighting is important because the operator uses the side of the weld to judge the correct penetration and heat. A smooth side means no undercut; whereas, a rough side means too much penetration and the heat must be decreased. The bead width allows the operator to maintain correct voltage and speed. When using CCTV, the weld operator has a definite advantage in judging the roughness of the side of the weld because of the high magnification, 6X to 10X, of the CCTV system. Minute variations of the tungsten torch electrode are easily detectable on CCTV. The fiber optic cable system used for these tests has a magnification of about 1X when viewing an object 12 inches from the image lens.

Of primary importance is the data and findings of this experiment with regard to weld quality and controllability. The bar graphs, Figures 6 - 12, comprise most of the "hard" data gathered during these tests. There are three bars for each test panel. The bar on the left indicates the ultimate weld strength of the initial weld condition. The bar in the center shows the change in weld strength with a change in weld setting, and the bar on the right indicates the final weld strength after correction.

The test panels were run consecutively with no attempt made to eliminate or throw out any test panels. The panel numbers do not appear in numerical order on the graphs because a different parameter was changed on each successive panel. Good X-ray quality was obtained throughout the range of the test except during periods of maladjustment. Loss of penetration is noted on the bar graphs in all cases where detected. Although not absolutely conclusive, a study of the bar graphs of Figures 6 - 12 indicates that:

- 1. Both fiber optics and CCTV make acceptable tools to remotely view and control welds
- 2. Neither mode of remote viewing can be termed vastly superior to the other
- 3. Economic and practical considerations would prevail whenever a system was considered for remote viewing.

The authors were both surprised and pleased with the degree of control a weld operator could exert when using only remote viewing apparatus. The operator who conducted these tests felt confident that he could control the weld after only a day's practice, and most of that day was spent in becoming familiar with the welding apparatus. Five days had originally been allocated on the test schedule for the operator to become accustomed to remote viewing. Of particular interest are the bar graphs of Figure 12 because they indicate the degree of control obtainable via a remote CCTV monitor. Improvement should be concentrated on the refinement of television apparatus and optics to reduce the amount, cost, and size of the monitoring equipment, and to improve picture resolution and information when practical.

CONCLUSIONS

Data gathered during this series of tests shows that both Closed Circuit Television and fiber optics viewing produce about equal picture quality with CCTV having a magnification advantage, and fiber optics a color edge. The operator can use

this picture information to control his weld rather than simply watch because of the vastly improved CCTV picture quality. Although there is not enough statistical data to prove it, the trends clearly visible in these tests indicate that stereo, or depth perception, is not required for welding control of this kind. In addition, CCTV would normally be preferred from an economic and utility point of view if the operator-to-weld distance exceeds 9 or 10 feet, or if the weld must be monitored for extended periods of time. Operator training time would not be a factor, based on our experience.

In conclusion, it is thought that these tests are significant because of the strong trend to prove that not only weld monitoring but also weld control can be reliably achieved through CCTV and fiber optics.

RECOMMENDATIONS

It is recommended that at least one experimental weld fixture (Bldg. 4728) be equipped with a CCTV camera and monitor for weld study purposes. Extreme close-ups with magnifications of 20X to 30X might aid in the study and in the causes of porosity.

FIGURE 1. CLOSED CIRCUIT TELEVISION TEST SETUP

SPECTRAL SENSITIVITY CHARACTERISTICS 7038 VIDICON TUBE FIGURE 2.

SPECTRAL SENSITIVITY CHARACTERISTICS SYLVANIA SUN GUN MODEL SG63 FIGURE 3.

FIGURE 4. TV CAMERA LIGHT FILTER CHARACTERISTIC

FIGURE 5. STEREO FIBER OPTICS TEST SETUP

REMOTE VIEWING WELD TESTS, TENSILE STRENGTH, 1/4 INCH MATERIAL, VARIABLE CURRENT FIGURE 6.

REMOTE VIEWING WELD TESTS, 1/4 INCH MATERIAL, VARIABLE CURRENT FIGURE 7.

FIGURE 8. REMOTE VIEWING WELD TESTS, 1/4 INCH MATERIAL, VARIABLE CURRENT

FIGURE 9. REMOTE VIEWING WELD TESTS, 3/8 INCH MATERIAL, VARIABLE VOLTAGE

FIGURE 10. VIEWING WELD TESTS, 3/8 INCH MATERIAL, VARIABLE CURRENT

FIGURE 11. REMOTE VIEWING WELD TESTS, 3/8 INCH MATERIAL, VARIABLE TRAVEL SPEED

REMOTE VIEWING WELD TEST, 1/4 INCH MATERIAL, VARIABLE CURRENT AND TRAVEL SPEED FIGURE 12.

FIGURE 14. MACHINISTS CHART AS SEEN THROUGH FIBER OPTICS WITHOUT IMAGE ENHANCEMENT

FIGURE 15. MACHINISTS CHART AS SEEN THROUGH FIBER OPTICS WITH IMAGE ENHANCEMENT

APPENDIX A CONSTANT CURRENT AND TRAVEL SPEED

VIEW	ULTLYATE STRENGTH	Panel and Specimen Niphber	SPECIMEN SIZE	VARIABLE UOLTAGE	COMPLEATES	SPECIMEN BROKE
	l l					
Δ.	43.030	T3-1	1.503 x .252	12		Fusion Line
T.	42.140	T3-2	×	15		Weld
77	43,730	T3-3	1.503 x .251	12		Fuston Line
į	190	T6-1	>	12		Fusion Line
Λ.T.	38,580	T6-2	1,503 x 250	87		Weld
TV	42,610	T6-3	×	12		Fusion Line
.						Tueston I tan
Z.	42,000	I-6.I	×	C•71		Tuston tine
<u>, 17</u>	40,300	T9-2	1.501 x .248	. 12.5		Fusion Line
TV	39,020	T3-1	×	12.5		Fusion Line
Z.	34,680	T3-2	×	15		Weld
T	38,990	T3~3	1.503 x .360	12.5		rusion Line
Λ.	40.310	T6+1	×	11.5		Fusion Line
TV	40, 350	T6-2		16.5		Fusion Line
		,				and weld
TV	39,340	T6-3	1.502 × .369	17.5		ruston Line
					-	
					Sheet I	of 7

APPENDIX A CONSTANT CURRENT AND TRAVEL SPEED

VIEW	ULT!MATE STRENGTH	PANEL AND SPECIMEN NUMBER	SPECIVENE SIZE	VARIABLE VOLTAGE	COMMENTS	SPECTYEN BROKE
					•	
# 0 P	44,730 33,890 . 43,700	F4-1 F4-2 F4-3	1,498 x .250 1,498 x .251 1,498 x .249	12.5 15 12.5	Lack of Penetration	Fusion Line Weld Fusion Line
0.00	43,560 35,860 42,000	87-1 87-2 87-3	* * *	12.75 16.5 12.5	Lack of Penetration	Fusion Line Weld Fusion Fusion Line
9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	42,860 29,320 41,700	F10-1 F10-2 F10-3	1.499 x .249 1.499 x .248 1.500 x .251	12 15.5 13	Lack of Penetration	Fusion Line Weld Fusion Line
F0 F0 F0	40,640 37,050 40,690	F3-1 F3-2 F3-3	1,502 x ,360 1,502 x ,363 1,502 x ,360	1,25 15,5 13	Lack of Penetration	Fusion Line Fusion Line and Weld Fusion Line
FO FO	41.640 36,450	F6-1 F6-2 F6-3	1,501 x ,368 1,502 x ,369 1,501 x ,370	12.5 15.5 13.5		Fusion Line Fusion Line and Weld Fusion Line
FO FO FO	38,970 28,520 37,540	F9-1 F9-2 F9-3	1.501 x .359 1.501 x .362 1.501 x .362	13.5 16 12.5		Fusion Line Fusion Line Fusion Line
* Fiber Optics	tics					Shaet 2 of 7

APPENDIX A CONSTANT VOLTAGE AND TRAVEL SPEED

VIEW	ULTIMATE Strength	PANEL AKD SPECIMEN NIPHER	SPECTVEN SIZE	VARIABLE AMPS	Coppents	SPECIMEN BROKE
7	45,000 38,450 39,540	T1-1 T-12 T1-3	1.503 x .244 1.503 x .244 1.503 x .244	160 140 160	Lack of Penetration	Weld Weld Fusion Line
7T 7T 7T	43,620 41,880 42,160	T4-1 T4-2 T4-3	1.501 x .252 1.503 x .251 1.499 x .250	155 135 150	Lack of Penetration	Fusion Line Fusion Line Fusion Line
TV TV TV	43,830 23,440 52,270	17-1 17-2 17-3	1.503 x .249 1.502 x .250 1.502 x .250	150 125 150	Lack of Penetration	Weld Weld
* FO FO FO FO	44,990 23,740 43,390	72-1 72-2 72-3	1,498 x .250 1,501 x .247 1,501 x .248	159 140 159	Lack of Penetration	Fusion Line Fusion Line
PO .	42,930 26,070 43,860	P5-1 P5-2 P5-3	1,499 x .251 1,500 x .253 1,499 x .251	159 150 165	Lack of Penetration	Weld Weld Fusion Line
PO PO 04	43,930 26,510 44,440	F8-1 F8-2 F8-3	1.499 x .249 1.500 x .249 1.500 x .249	160 144 158	Lack of Penetration	Fusion Line Weld Fusion Line
PO PO O P	39,050 39,600 36,470 35,630	P1-1 P1-2 P1-3	1.501 x .360 1.501 x .360 1.501 x .358 1.501 x .359	193 180 210 190		Fusion Line Fusion Line Fusion Line
* Fiber Optics	lcs.					Sheet 3 of 7

APPENDIX A CONSTANT VOLTAGE AND TRAVEL SPEED

SPECIMEN BROKE	Fusion Line Fusion Line Fusion Line Fusion Line	Weld Weld Fusion Line Fusion Line Pusion Line	Weld Fusion Line and Weld Weld Fusion Line	Fusion Line Weld Fusion Line	Weld Weld	Weld Weld Fusion Line Tusion Line Sheet 4 of 7
COMENTS	Lack of Penetration	Lack of Penetration				Shee
VARIABLE AMPS	200 180 210 200	195 175 200 190 195	190 175 197 193	192 170 191	200 180 200	201 180 210 202
SPECI-WEWS SIZE	1,501 x ,370 1,501 x ,369 1,501 x ,369 1,502 x ,369	1,501 x .369 1,501 x .361 1,502 x .359 1,502 x .357 1,502 x .361	1,501 x ,360 1,502 x ,359 1,502 x ,359 1,502 x ,358	1,501 x ,359 1,501 x ,360 1,502 x ,360	1,502 x ,368 1,502 x ,368 1,502 x ,367	1,503 x ,367 1,502 x ,367 1,503 x ,369 1,502 x ,369
PANEL AND SPECIMEN NUMBER	74-1 74-2 74-3 74-4	77-1 77-2 77-3 77-4 77-5	T1-1 T1-2 T1-3	T4-1 T4-2 T4-3	T8-1 T8-2 T8-3	T9-1 T9-2 T9-3
ULTIMATE STRENGTH	41,410 25,100 41,340 39,520	41,340 27,300 38,580 44,220 40,210	41,450 38,390 38,760 40,450	41,000 33,310 39,490	41,790 28,040 40,460	43,510 34,650 42,55) 42,580 Fiber Optics
VIEG	* OFF OFF OFF	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	VT VT VT	TV TV TV	TV TV TV	77 77 71 71

APPENDIX A CONSTANT VOLTAGE AND CURRENT

	NOTE	Travel - 1s Meter Setting						4 3 3 3 SHE
	SPECIMEN BROKE	Fusion Line Fusion Line Fusion Line		Weld Weld	Fusion Line Weld Pusion Line	Fusion Line Weld Fusion Line	Weld Weld Fusion Line	1000
	COMMENTS		Lack of Pen	Lack of Pen				
, ,	VARIABLE TRAVEL	60 40 60	09 80 90 90	60 75 58	39 50 39	38 54 37	38 60 42	
	SPECIMEN SIZE	1.503 x .245 1.502 x .244 1.502 x .245	1.502 x .251 1.501 x .251 1.501 x .251	1.501 x .249 1.501 x .250 1.502 x .249	1,501 x ,361 1,502 x ,360 1,502 x ,359	1,501 x ,368 1,502 x ,367 1,502 x ,366	1.503 x .359 1.503 x .356 1.502 x .357	
	PANEL AND SPECIMEN NUMBER	12-1 12-2 12-3	T5-1. T5-2 T5-3	T8-1 T8-2 T8-3	T2-1 T2-2 T2-3	T5-1 T5-2 T5-3	T10-1 T10-2 T10-3	
	ULTIMATE Strength	42,910 43,660 43,480	41,380 23,890 45,120	42,280 29,560 40,106	39,310 41,240 38,580	39,370 31,750 39,290	43,180 43,730 41,780	
	VIEW	222	TT TT VT	77.77	7. A. A.	222	222	

APPENDIX A CONSTANT VOLTAGE AND CURRENT

VIEW	ULTIMATE STRENGTH	PANEL AND SPECIMEN NUMBER	SPECIMEN SIZE	VARIABLE TRAVEL	COMMENTS	SPECIMEN BROKE	NOTE
* 04	40,220 33,760 35,850	F2-1 F2-2 F2-3	1,501 x ,371 1,501 x, 371 1,501 x ,367	40 50 42	Lack of Pen	Fusion Line Fusion Line Fusion Line	
F0 F0	42,220 28,230 40,640	F5-1 F5-2 F5-3	1,502 x ,369 1,502 x ,368 1,502 x ,367	38 50 40	Lack of Pen	Fusion Line Weld Fusion Line	
FO FO	42,720 37,940 43,990	F8-1 F8-2 F8-3	1,502 x ,360 1,502 x ,358 1,502 x ,360	38 52 37		Weld Weld Fusion Line	
F0 F0	44,740 38,150 41,770	F3-1 F3-2 F3-3	1,499 x ,249 1,501 x ,248 1,500 x ,249	60 70 60	Lack of Pen	Fusion Line Weld Fusion Line	
F0 F0 F0	43,030 35,060 43,570	F6-1 F6-2 F6-3	1,500 x ,251 1,500 x ,251 1,501 x ,250	60 80 64	Lack of Pen	Fusion Line Weld Fusion Line	
FO FO FO	43,910 30,650 42,030	F9-1 F9-2 F9-3	1,500 x ,249 1,500 x ,248 1,500 x ,249	60 82 52	Lack of Pen	Fusion Line Weld Fusion Line	
						Sheet 6 of 7	7

APPENDIX A CONSTANT VOLTAGE

VIEW	ULT TMATE STRENGTH	PANEL AND SPECIMEN NUMBER	VARIABLE ATPERES AND TRAVEL	COMMENTS	SPECIMEN BROKE	VARIABLE SETTING	SPECIMEN
Ţ	32,020	TX1-1			Fusion	160 Amis	050 ~ 067 1
<u>R</u>	32,950	TX1-3		Lack of Penetration	Line	60 mg	007. A 00% I
ß	36,850	TX1-3			Line	80 Var 81	1.499 x .248
Ŋ	42,630	TX2-1	-		Line	160 TPM	1 501 - 250
ŢΛ	32,770	TX2-2		Lack of Penetration	Line	har 09	1 501 \$ 250
ΙΛ	41,740	TX2-3			Line	70 IP1 165 AMPS	1.501 x .249
					Line	1.dl 99	

			•				
	·						,
						Chage	Choot 7 0f 7

ANALYSIS OF CLOSED CIRCUIT TELEVISION AND FIBER OPTICS FOR REMOTE VISUAL CONTROL OF TIG WELDING

By

W. A. Wall and L. K. Swaim

The information in this report has been reviewed for security classification. Review of any information concerning Department of Defense or Atomic Energy Commission programs has been made by the MSFC Security Classification Officer. This report, in its entirety, has been determined to be unclassified.

This document has also been reviewed and approved for technical accuracy.

L. K. SWAIM

Automation and Design Section

W. A. WALL

Chief, Automation and Design Section

Chief, Manufacturing Research and

Technology Division

WERNER R. KUERS

Director, Manufacturing Engineering

Laboratory

DISTRIBUTION

DIR

Dr. von Braun

R-ME-DIR

Mr. Kuers

Mr. Wuenscher

R-ME-T

Mr. Franklin

R-ME-M

Mr. Orr

R-ME-D

Mr. Eisenhardt

R-ME-U

Mr. Maurer

R-ME-X

Mr. Berge

R-ME-D

Mr. Cresap

R-ME-MW

Mr. Parks

R-ME-ME

Mr. Schwinghamer

Mr. McCampbell

Mr. Vann

File (20 copies)

MS-IPL (8)

MS-IP

MS-H

CC-P

HME-P

Scientific and Technical Information

Facility (25)

Attn: NASA Representative (S-AK/RKT)

P. O. Box 5700

Bethesda, Maryland