FGI2 Übungen Blatt 1

Oliver Sengpiel, 6322763 Daniel Speck, 63XXXXX Daniel Krempels, 6YYYYYY

16. Oktober 2014

1 1.3

1.1 1.3.1

 $L(A_n)$ als regulärer Ausdruck: $L(A_n) = (a^{2i} \cdot c \cdot b^{2i}) + (a^{2i-1} \cdot d \cdot b^{2i-1}) + (a^n \cdot d) + (d) \text{ mit } i \in \{1,\dots,\frac{n}{2}\}$

1.2 1.3.3

Sei $M(A_n)$ genau die vom Automaten akzeptierte Sprache. $L(A_n) \subseteq M(A_n)$:

 $L(A_n)$ wird vom Automaten akzeptiert. Wird vom Startzustand aus ein einziges 'd' gelesen, so geht der Automat direkt in den Endzustand p_1 über und akzeptiert. Wird eine gerade Anzahl an 'a's gelesen, so erreicht man einen Zustand p_i mit i mod 4=0. Von hier aus kann das folgende 'd' gelesen werden, sowie dieselbe Anzahl an 'b's wie 'a's, hiermit wird auch der Endzustand p_1 erreicht. Wird eine ungerade Anzahl an 'a's gelesen, so wird ein Zustand p_i mit i mod 4=2 erreicht. Von diesen aus kann das darauf folgende 'c' gelesen werden und wiederum die selbe Anzahl an 'b's wie 'a's, und derselbe Endzustand p_1 wird erreicht. Somit werden alle Eingaben von $L(A_n)$ akzeptiert. $M(A_n) \subseteq L(A_n)$:

Alle vom Automaten akzeptierten Wörter sind in $L(A_n)$ enthalten. Sei $w \in M(A_n)$. w kann vier verschiedene Formen haben: 1. w kann aus einem einzelnen 'd' bestehen, dies ist in $L(A_n)$ enthalten. 2. w kann auch aus einer beliebigen, geraden Anzahl an 'a's, darauf folgend ein 'd' und darauf folgend genau so viele 'b's wie 'a's bestehen. Auch in diesem Fall gilt $w \in L(A_n)$. 3. Oder w ist aus einer ungeraden Anzahl an 'a's und der gleichen Anzahl an 'b's aufgebaut, genau zwischen 'a's und b's ein 'c'. Auch dieses w ist in $L(A_n)$ enthalten. Somit sind alle Wörter, die vom Automaten gelesen werden können, auch in $L(A_n)$, also gilt: $M(A_n) \subset L(A_n)$.

1.3 1.3.4

 $L(A_n)$ ist regulär. Denn in der akzeptierten Sprache ist festgelegt, dass kein Wort länger als n+1,n Anzahl der Zustände sein kann. Damit kann es keine Schleifen in dem Wort geben und das Pumping Lemma nicht widerlegt werden.

1.4 1.3.5

 $A=\bigcup_{n\geq 0}L(A_n)$. Nun ist gegeben, dass
n beliebig ist. Damit A regulär ist, und also von einem endlichen Automaten akzeptiert wird, muss es eine Schleife in einem Wort $w\in (a^{2i}\cdot c\cdot b^{2i})$ geben, bei dem
 i>n,nAnzahl der Zustände des Automaten.