БЕЛОРУССКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ Кафедра высшей математики

Качан Илья Вадимович

Устойчивость решений стохастических дифференциальных уравнений с дробными броуновскими движениями

Научный руководитель
Васьковский Максим Михайлович,
доцент, кандидат физ.-мат. наук

2 марта 2019 г.

Введение

Представленная магистерская диссертация посвящена доказательству теорем об устойчивости решений стохастических дифференциальных уравнений и исследованию асимптотических свойств решений при малых значениях времени.

Основная часть представленной диссертации включает в себя 4 главы. В первой главе работы приводятся некоторые сведения из теорий случайных процессов, в частности дробных броуновских движений и интегралов по ним, функционального анализа, дифференциальных уравнений и др. Вторая глава работы посвящена исследованию стохастических дифференциально-функциональных уравнений со стандартным броуновским движением в гильбертовых пространствах. Третья глава работы посвящена развитию асимптотической теории стохастических дифференциальных уравнений, управляемых дробными броуновскими движениями с различными показателями Харста, большими 1/3. В четвертой главе работы доказана теорема о непрерывной зависимости от начальных данных решений стохастических дифференциальных уравнений с дробными броуновскими движениями.

Глава 2, раздел 1. Объект исследования и основной результат.

Нелинейное СДУ в \mathbb{R}^d с выделенной линейной частью и запаздыванием

$$dX(t) = (A(t)X(t) + f(t, X(t), X_t))dt + g(t, X(t), X_t)dW(t), \quad t \ge 0,$$
 (1)

где $f:\mathbb{R}^+ imes \mathbb{R}^d imes C_h o \mathbb{R}^d, g:\mathbb{R}^+ imes \mathbb{R}^d imes C_h o \mathbb{R}^{d imes d}$ – измеримые по Борелю функции, имеющие линейный порядок роста, $X_t = \{X(t+\tau): -h \le \tau \le 0\} \in C_h, C_h = C\left([-h,0],\mathbb{R}^d\right), h>0$ — время запаздывания, $A\colon\mathbb{R}^+ o \mathbb{R}^{d imes d}$ — кусочно-непрерывная функция такая, что $\sup_{t\ge 0} |A(t)| \le M, \ W(t)$ — d-мерное броуновское движение.

Линеаризованное однородное детерминированное уравнение

$$dX(t) = A(t)X(t)dt, \quad t \ge 0, \tag{2}$$

Теорема 2.3 (об устойчивости по линейному приближению)

Предположим, что функции $f(t,x,\varphi)$ и $g(t,x,\varphi)$ таковы, что при достаточно малом $\varepsilon>0$ найдется $\delta_{\varepsilon}>0$ такое, что выполняются неравенства

$$|f(t, x, \varphi)| \le \varepsilon |x|, \qquad |g(t, x, \varphi)| \le \varepsilon |x|,$$

для любых $x, |x| \leq \delta_{\varepsilon}, \ t \in \mathbb{R}^+, \ \varphi \in \mathcal{C}\left([-h,0],\mathbb{R}^d\right)$, а уравнение (2) имеет равномерно экспоненциально устойчивое нулевое решение. Тогда уравнение (1) имеет асимптотически устойчивое по вероятности нулевое решение.

Глава 2, раздел 1. Пример 2.1

Приведем пример уравнения, имеющего асимптотически устойчивое по вероятности слабое нулевое решение на основании теоремы 2.3. Рассмотрим систему стохастических дифференциальных уравнений (3)

$$dx(t) = ((-20 - 0.1\sin t)x(t) + 0.1\cos t \ y(t) + \sin^2 x(t))dt,$$

$$dy(t) = (-0.1\cos t \ x(t) - (20 + 0.1\sin t)y(t))dt + \sin^2 y(t)\operatorname{sgn}(x(t-1))dw(t), \quad (3)$$

при $t\geq 0$ с начальными условиями $x(t)=\psi(t),\ t\in [-1,0],\ y(0)=y_0,$ где x, $y\in \mathbb{R},\ w(t)$ – одномерное броуновское движение. Нулевое решение линеаризованной системы

$$dx(t) = ((-20 - 0.1\sin t)x(t) + 0.1\cos t \ y(t))dt,$$

$$dy(t) = (-0.1\cos t \ x(t) - (20 + 0.1\sin t)y(t))dt,$$

является равномерно экспоненциально устойчивым, и согласно теореме 2.3 нулевое решение системы (3) асимптотически устойчиво по вероятности.

Глава 2, раздел 2. Описание объекта исследования.

Нелинейное СДУ в гильбертовом пространстве

Пусть H и U — сепарабельные гильбертовы пространства, $W(t,\omega)$ — броуновское движение со значениями в U, $C_h = C([-h,0],H)$.

$$dX(t,\omega) = AX(t,\omega)dt + f(t,\omega,X_t(\omega))dt + g(t,\omega,X_t(\omega))dW(t,\omega), \quad (t,\omega) \in \mathbb{R}^+ \times \Omega$$
(4)

$$X(t,\omega) = \xi(t,\omega), \quad t \in [-h,0], \ \omega \in \Omega, \tag{5}$$

где $X_t(\omega) = \{X(t+\tau,\omega)| \, \tau \in [-h,0]\} \in \mathcal{C}_h$, A — линейный оператор, порождающий \mathcal{C}_0 -полугруппу S(t) на H, $\xi:[-h,0] \times \Omega \to \mathcal{D}(A)$ — непрерывный случайный процесс, имеющий конечный момент $\mathbb{E} \sup_{t \in [-h,0]} \|\xi(t)\|^p < \infty$ порядка p > 2, $f: \mathbb{R}^+ \times \Omega \times \mathcal{C}_h \to H$, $g: \mathbb{R}^+ \times \Omega \times \mathcal{C}_h \to L_2(U,H)$ — функции, удовлетворяющие двум условиям:

① Локальное условие Липшица. Для любого a>0 существует постоянная q_a такая, что для всех $t\in [0,a]$ и любых $(\mathcal{F},\mathcal{B}(C_h))$ -измеримых случайных величин $\varphi,\psi\colon\Omega\to C_h$, таких, что п.н. $\|\varphi\|\le a$, $\|\psi\|\le a$:

$$\|f(t,\omega,\varphi)-f(t,\omega,\psi)\|\leq q_a\|\varphi-\psi\|,\quad \|g(t,\omega,\varphi)-g(t,\omega,\psi)\|\leq q_a\|\varphi-\psi\|.$$

③ Условие линейного порядка роста. Существует непрерывная функция $k\colon \mathbb{R}^+ \to \mathbb{R}^+$ такая, что для всех $t\in \mathbb{R}^+$ и любой $(\mathcal{F},\mathcal{B}(C_h))$ -измеримой случайной величины $\eta\colon \Omega \to C_h$ такой, что $\mathbb{E}\,\|\eta\|^p <\infty$:

$$||f(t,\omega,\eta)|| < k(t)(1+||\eta||), \quad ||g(t,\omega,\eta)|| < k(t)(1+||\eta||).$$

Глава 2, раздел 2. Основной результат

Операторы ляпуновского типа

$$\begin{split} LV(t,x,\varphi) &= V_t'(t,x) + \langle V_x'(t,x), Ax + f(t,\varphi) \rangle + \\ &+ \frac{1}{2} \mathrm{tr}[V_{xx}''(t,x)(g(t,\varphi)Q_w^{1/2})(g(t,\varphi)Q_w^{1/2})^*], \quad (t,x,\varphi) \in \mathbb{R}^+ \times \mathcal{D}(A) \times C_h, \\ QV(t,x,\varphi) &= \mathrm{tr}[V_{xx}''(t,x) \otimes V_{xx}''(t,x)(g(t,\varphi)Q_w^{1/2})(g(t,\varphi)Q_w^{1/2})^*], \\ &\qquad (t,x,\varphi) \in \mathbb{R}^+ \times H \times C_h. \end{split}$$

Теорема 2.4 (об асимптотической устойчивости)

Пусть задан функционал $V(t,x)\in C^{1,2}(\mathbb{R}^+ imes H,\mathbb{R}^+)$ и две неотрицательные непрерывные функции $\psi_1(t)$, $\psi_2(t)$. Предположим, что существуют положительные постоянные r>0, $m\geq 0$, постоянные $\mu,\nu,\theta\in\mathbb{R}$ и невозрастающая положительная функция $\zeta(t)$ такие, что $\frac{m-(\max\{\nu,\mu+\tau\}+\theta)}{r}>0$ и выполнены следующие условия:

- $||x||^r(\lambda(t))^m \leq V(t,x)$ для всех $(t,x) \in \mathbb{R}^+ \times H$.
- $m{Q}$ $LV(t,x,arphi)+\zeta(t)QV(t,x,arphi)\leq \psi_1(t)+\psi_2(t)V(t,x)$ для всех $t\in\mathbb{R}^+$, $x\in\mathcal{D}(A)$ и $arphi\in C_h$.

Тогда слабое решение задачи (4), (5) асимптотически устойчиво.

Глава 2, раздел 2. Пример 2.2

Рассмотрим следующую стохастическую дифференциальную систему

$$\begin{split} dX_t(x) &= \left(\frac{d^2}{dx^2}X_t(x) + \alpha\sin\left(X_t(x) + e^{-\frac{mt}{2}}\cos X_t^1\right)\right)dt + \alpha e^{-\frac{mt}{2}}X_t(x)dW_t,\\ dX_t^1 &= \left(\alpha X_t^1\sin X_t^1 + \left(\int_0^\pi X_t(x)^2dx\right)^{1/2}\right)dt + \alpha e^{-\frac{mt}{2}}\left(\int_0^\pi X_t(x)^2dx\right)^{1/2}dW_t,\\ t &> 0, \quad 0 < x < \pi \end{split}$$

как уравнение относительно $\bar{X}_t = (X_t(\cdot), X_t^1)^{\top}$ в пространстве $H \times \mathbb{R}$ с начальным условием $\bar{X}_0 = (X_0(x), X_0^1)^{\top} = (x_0(x), x_0^1), \ x \in (0, \pi), \ H = L_2[0, \pi], \ U = \mathbb{R}.$

Положим $V(t,\bar{u})=V(t,u)=e^{mt}\|u\|^2,\ u\in H,\ \zeta(t)\equiv 1,\ r=2,\ \psi_1(t)\equiv \alpha\pi,\ \psi_2(t)\equiv \beta,\ \lambda(t)=e^t,\ \tau=\mu=\nu=0,\ \lambda_0=\inf_{u\in D(A)}\frac{\|u'\|^2}{\|u\|^2}\geq \frac{1}{\pi^2}>0.$ Можно показать, что при указанном выборе, при достаточно больших m>0 и достаточно малых $\alpha>0$ все условия теоремы 2.4 будут соблюдены и, следовательно,

$$\limsup_{t\to +\infty} \frac{\log \|X(t)\|}{t} \leq -\frac{m-\left(\max\{\nu,\mu+\tau\}+\theta\right)}{r} = -\frac{2\lambda_0-3\alpha-10\alpha^2}{2} < 0.$$

Причем коэффициент g уравнения удовлетворяет глобальному условию Липшица, а коэффициент f удовлетворяет локальному, но не удовлетворяет глобальному условию Липшица.

Главы 3, 4. Описание объекта исследования

Пусть $B_t^{(1)},\dots,B_t^{(d)}$ — независимые одномерные дробные броуновские движения с индексами Харста $H_1,\dots,H_d\in(1/3,1)$. Обозначим $B_t=(B_t^{(0)},\dots,B_t^{(d)})^{\top}$ (d+1)-мерное дробное броуновское движение, в котором $B_t^{(0)}=t,\,H_0=1$. Пусть H_{\min} — значение наименьшего из индексов Харста $H_i,\,i=0,\dots,d$. Выберем и зафиксируем некоторое $H\in(1/3,1/2]$ такое, что $H<H_{\min}$. Пусть $\xi,\,\widetilde{\xi}$ — случайные величины со значениями в \mathbb{R}^n .

СДУ с дробными броуновскими движениями

Рассмотрим стохастическое дифференциальное уравнение

$$dX_t = f(X_t)dB_t, \quad t \in [0, T], \tag{6}$$

где $f=(f_0,\dots,f_d),\,f_i:\mathbb{R}^n\to\mathbb{R}^n,\,i=0,\dots,d$ — достаточно гладкие функции с ограниченными производными. Наряду с уравнением (6) рассмотрим аналогичное уравнение с возмущенной правой частью

$$d\widetilde{X}_t = \widetilde{f}(\widetilde{X}_t)dB_t, \quad t \in [0, T], \tag{7}$$

где $\widetilde{f}=(\widetilde{f_0},\ldots,\widetilde{f_d}),\ \widetilde{f_i}:\mathbb{R}^n\to\mathbb{R}^n,\ i=0,\ldots,d$ — также достаточно гладкие функции с ограниченными производными.

Глава 3. Основные результаты

Теорема 3.3 (об асимптотических разложениях)

Пусть $f \in C_b^{N+2}(\mathbb{R}^n,\mathbb{R}^{n\times(d+1)}), \ g \in C_b^{N+3}(\mathbb{R}^n,\mathbb{R}), \ N \in \mathbb{N}.$ Тогда для любого фиксированного $H \in (1/3,1/2]$ такого, что $H < H_{min} = \min_{i=0,\dots d} H_i$ справедливо следующее асимптотическое разложение для функции $\mathbf{P}_t g(x) = \mathbb{E} g(X_t^x)$:

$$\mathsf{P}_t g(x) = g(x) + \sum_{k=1}^N \sum_{I_k \in \{0,\dots,d\}^k} t^{|H_{I_k}|} \cdot (D_f^{(I_k)} g)(x) \, \mathbb{E} \bigg(\int_{\Delta^k[0,1]} dB^{(I_k)} \bigg) + O(t^{(N+1)H}),$$

при $t \to 0$, где $|H_{i_k}| = H_{i_1} + H_{i_2} + \ldots + H_{i_k}$ — сумма индексов Харста дробных броуновских движений $B^{(i_1)}, B^{(i_2)}, \ldots, B^{(i_k)}, D^{(i)}_f = \sum_{j=1}^n f_{ji}(x) \frac{\partial}{\partial x_j}, \ i \in \{0, \ldots, d\},$ $D^{(I_k)}_{\varepsilon} = D^{(i_1)}_{\varepsilon} \ldots D^{(i_k)}_{\varepsilon}$ при $I_k = (i_1, \ldots, i_k)$.

Теорема 3.5 (аналог обратных уравнений Колмогорова)

Предположим, что операторы $D_f^{(i)}$ и $D_f^{(j)}$ коммутируют для любых $i,j\in\{0,\dots,d\}$. Тогда если $f\in C_b^\infty$, то функция $\varphi(t,x)=\mathbb{E}\left(g(X_t^\times)\right)$, удовлетворяет дифференциальному уравнению в частных производных

$$\frac{\partial \varphi}{\partial t} = D_f^{(0)} \varphi + \sum_{i=1}^d H_i t^{2H_i - 1} (D_f^{(i)})^2 \varphi, \tag{9}$$

с начальным условием $\varphi(0,x)=g(x)$.

(8)

Глава 3. Примеры 3.1, 3.2

Пример 3.1

$$dX_t = b(X_t) dt + \sigma(X_t) dB_t^H,$$

где B_t^H — одномерное дробное броуновское движение с индексом Харста $H \in (1/2,1),\ b,\ \sigma\colon \mathbb{R} \to \mathbb{R}$ — функции класса C_b^4 . Согласно теореме 3.3 асимптотические разложения примут вид:

$$\begin{split} P_{t}g(x) &= g(x) + t \, b(x)Dg(x) + \frac{1}{2}t^{2} \left(b(x)Db(x)Dg(x) + b^{2}(x)D^{2}g(x)\right) + \\ &+ \frac{1}{2}t^{2H} \left(\sigma(x)D\sigma(x)Dg(x) + \sigma^{2}(x)D^{2}g(x)\right) + O\left(t^{3H}\right). \end{split}$$

Пример 3.2

$$dX_t = \sin X_t dt + 2H^{-1} \sin X_t dB_t^H,$$

где B_t^H — одномерное дробное броуновское движение с индексом Харста $H \in (1/3,1)$.

Нетрудно показать, что указанное уравнение удовлетворяет коммутативному случаю, и согласно теореме 3.5 функция $\varphi(t,x)=\mathbb{E}\,g(X_t^x)$ будет являться решением уравнения в частных производных

$$\frac{\partial \varphi}{\partial t} = \left(\sin x + t^{2H-1}\sin 2x\right)\frac{\partial \varphi}{\partial x} + \frac{4t^{2H-1}}{H}\sin^2 x \frac{\partial^2 \varphi}{\partial x^2}$$

с начальным условием $\varphi(0,x)=g(x)$.

Глава 4. Основной результат

Будем считать функцию f фиксированной, а функцию \widetilde{f} — изменяющейся в малой окрестности f в пространстве $C_b^1(\mathbb{R}^n,\mathbb{R}^{n\times (d+1)})$.

Теорема 4.2 (о непрерывной зависимости от начальных данных)

Пусть $f,\widetilde{f}\in C^3_b(\mathbb{R}^n,\mathbb{R}^{n imes(d+1)})$, причем функция \widetilde{f} такова, что $\|f-\widetilde{f}\|_{C^2_b}\leq 1$.

Тогда для решений $X_t,\,X_t$ уравнений (6), (7) с начальными условиями $X_0=\xi,\,\widetilde{X}_0=\widetilde{\xi}$ соответственно имеет место следующее неравенство

$$\mathbb{E}\left(\ln\|X - \widetilde{X}\|_{H}\right) \le C + \ln\left(\mathbb{E}|\xi - \widetilde{\xi}| + \|f - \widetilde{f}\|_{C_{b}^{2}}\right),\tag{10}$$

где $C=C(H,H_1,\ldots,H_d,T,\|f\|_{C^3_b})\in\mathbb{R}$ — константа, вообще говоря, зависящая от $H,\,H_1,\ldots,H_d,\,T,\,\|f\|_{C^3_b}.$

Заключение: положения, выносимые на защиту

Глава 2

- Теорема 2.3 об устойчивости по линейному приближению нулевого решения СДУ (1) в \mathbb{R}^d с разрывными коэффициентами и запаздыванием.
- Теорема 2.4 об асимптотической устойчивости слабого нулевого решения задачи Коши (4), (5) в гильбертовом пространстве H с локально липшициевыми коэффициентами.

Главы 3, 4

Теоремы для СДУ (6) со сносом, с дробными броуновскими движениями, имеющими различные индексы Харста $> \frac{1}{3}$ и коэффициентами из C_b^3 :

- Теорема 3.3 об асимптотических разложениях для математических ожиданий функционалов от решений.
- Теорема 3.5 об аналоге обратных уравнений Колмогорова в коммутативном случае.
- Теорема 4.2 о логарифмической непрерывной зависимости в среднем решений уравнений (6), (7) на конечном отрезке в условиях их существования.

Глава 2: уравнения в гильбертовых пространствах

- Khasminskii, R. Stochastic stability of differential equations / R. Khasminskii. Berlin; Heidelberg: Springer-Verlag, 2012. — 342 p.
- Liu, K. On stability for a class of semilinear stochastic evolution equations /
 K. Liu // Stochastic Processes and their Applications 1997. Vol. 70, № 2. —
 P. 219–241.
- Prato, G.D. Stochastic equations in infinite dimensions / G. Da Prato,
 J. Zabczyk. Cambridge: Cambridge university press, 1992. 449 p.

Главы 3, 4: уравнения с дробными броуновскими движениями

- Friz, P. A Course on Rough Paths with an introduction to regularity structures / P. Friz, M. Hairer. — Cham: Springer International Publishing AG, 2014. — 262 p.
- ② Baudoin, F. Operators associated with a stochastic differential equation driven by fractional Brownian motions / F. Baudoin, L. Coutin // Stochastic Processes and their Applications 2007. Vol. 117, № 5. P. 550–574.
- Trees and asymptotic expansions for fractional stochastic differential equations / A. Neuenkirch [et al.] // Annales de l Institut Henri Poincaré (B) Probability and Statistics. — 2009. — Vol. 45, № 1. — P. 157–174.

Заключение: список основных публикаций автора

- Васьковский, М.М. Исследование устойчивости решений неавтономных стохастических дифференциальных уравнений с разрывными коэффициентами с помощью метода функций Ляпунова / М.М. Васьковский, Я.Б. Задворный, И.В. Качан // Вестн. Белорус. ун-та. Сер. 1: физ., мат., информ. — 2015. — №3. — С. 117-125.
- Васьковский, М.М. Устойчивость решений стохастических дифференциально-функциональных уравнений в гильбертовых пространствах с локально липшициевыми коэффициентами / М.М. Васьковский, И.В. Качан // Дифференциальные уравнения. — 2018. — Т. 54, № 7. — 15 с.
- *Качан, И.В.* Непрерывная зависимость от начальных данных решений стохастических дифференциальных уравнений с дробными броуновскими движениями / И.В. Качан // Вес. Нац. акад. навук Беларусі. Сер фіз.-мат. навук. 2018. Т. 54, № 2. С. 193–209.
- *Васьковский, М.М.* Асимптотические разложения решений стохастических дифференциальных уравнений с дробными броуновскими движениями / М.М. Васьковский, И.В. Качан // Доклады Нац. акад. наук Беларуси. 2018. Принято к печати.
- Vaskouski, M. Asymptotic expansions of solutions of stochastic differential equations driven by multivariate fractional Brownian motions having Hurst indices greater than 1/3 / M. Vaskouski, I. Kachan // Stochastic Analysis and Applications. 2018. DOI: 10.1080/07362994.2018.1483247. Accepted (29.05.2018).

Спасибо за внимание!