次の積分を求めよ。

$$\int_0^\infty \frac{\sqrt{x}}{x^3 + 1} \mathrm{d}x \tag{1}$$

この広義積分を複素数上の積分として考える。

$$\int_0^\infty \frac{\sqrt{z}}{z^3 + 1} dz \qquad (z \in \mathbb{C})$$
 (2)

被積分関数 $\frac{\sqrt{z}}{z^3+1}$ に対して、積分経路を実軸上 $0\to R$ と半径 R の円周上 $R\to Ri$ と虚軸上 $Ri\to 0$ の 3 つの部分 C_1,C_2,C_3 からなる閉曲線 C とする。

この時、 C_1 上の積分 $\int_{C_1} \frac{\sqrt{z}}{z^3+1} dz$ は $\int_0^\infty \frac{\sqrt{x}}{x^3+1} dx$ と一致する。 C 上の積分は次のような式となる。

$$\int_{C} \frac{\sqrt{z}}{z^{3} + 1} dz = \int_{C_{1}} \frac{\sqrt{z}}{z^{3} + 1} dz + \int_{C_{2}} \frac{\sqrt{z}}{z^{3} + 1} dz + \int_{C_{3}} \frac{\sqrt{z}}{z^{3} + 1} dz$$
 (3)

 $z^3+1=0$ を満たす複素数は $z^3=-1=e^{(2n+1)\pi i}$ から $z=e^{\frac{\pi}{3}i},e^{\pi i},e^{\frac{5\pi}{3}i}$ である。これらは関数 $\frac{\sqrt{z}}{z^3+1}$ の極となりえるが、R を十分大きな数とした時に C の内部に含まれるのは $z=e^{\frac{\pi}{3}i}$ のみである。留数定理により $\int_C \frac{\sqrt{z}}{z^3+1} \mathrm{d}z$ は $z=e^{\frac{\pi}{3}i}$ の留数から求まる。

$$(z - e^{\frac{\pi}{3}i}) \times \frac{\sqrt{z}}{z^3 + 1} = (z - e^{\frac{\pi}{3}i}) \times \frac{\sqrt{z}}{(z - e^{\frac{\pi}{3}i})(z - e^{\pi i})(z - e^{\frac{5\pi}{3}i})} = \frac{\sqrt{z}}{(z - e^{\pi i})(z - e^{\frac{5\pi}{3}i})}$$
(4)

上記の関数は $z=e^{\frac{\pi}{3}i}$ の時に値を持つので、1 位の極である。 この時の留数を求める。

$$\lim_{z \to e^{\frac{\pi}{3}i}} \frac{\sqrt{z}}{z^3 + 1} = \lim_{z \to e^{\frac{\pi}{3}i}} \frac{1}{2} \frac{z^{-1/2}}{3z^2} = \frac{1}{6} e^{\frac{5\pi}{6}i}$$
 (5)

よって、C上の積分は次のようになる。

$$\int_{C} \frac{\sqrt{z}}{z^{3} + 1} dz = 2\pi i \times \frac{1}{6} e^{\frac{5\pi}{6}i} = \frac{1}{3} \pi i e^{\frac{5\pi}{6}i}$$
 (6)

C は3 つに分かれるためそれぞれの積分を考える。

 C_2 は半径 R の円周上であるので、 $z=Re^{i\theta}$ で θ が $0\to \frac{1}{2}\pi$ の範囲の区間となる。 $\mathrm{d}z=iRe^{i\theta}\mathrm{d}\theta$ を利用し C_2 上の積分を計算する。

$$\int_{C_0} \frac{\sqrt{z}}{z^3 + 1} dz = \int_0^{\frac{\pi}{2}} \frac{\sqrt{Re^{i\theta}}}{(Re^{i\theta})^3 + 1} iRe^{i\theta} d\theta = \int_0^{\frac{\pi}{2}} \frac{iR^{\frac{3}{2}}e^{\frac{3}{2}i\theta}}{R^3e^{3i\theta} + 1} d\theta \tag{7}$$

$$\left| \int_0^{\frac{\pi}{2}} \frac{iR^{\frac{3}{2}} e^{\frac{3}{2}i\theta}}{R^3 e^{3i\theta} + 1} d\theta \right| \le \int_0^{\frac{\pi}{2}} \left| \frac{iR^{\frac{3}{2}} e^{\frac{3}{2}i\theta}}{R^3 e^{3i\theta} + 1} \right| d\theta \tag{8}$$

$$= \int_0^{\frac{\pi}{2}} \frac{|iR^{\frac{3}{2}}e^{\frac{3}{2}i\theta}|}{|R^3e^{3i\theta}+1|} d\theta = \int_0^{\frac{\pi}{2}} \frac{|iR^{\frac{3}{2}}e^{\frac{3}{2}i\theta}|}{|e^{3i\theta}||R^3+e^{-3i\theta}|} d\theta \tag{9}$$

 $\theta \in \mathbb{R}$ について $-1 \le |e^{-3i\theta}| \le 1$ となるので R が十分に大きい値であれば $|R^3 + e^{-3i\theta}| > R^3 - 1$ である。これを利用し上の式を計算する。

$$\int_0^{\frac{\pi}{2}} \frac{|iR^{\frac{3}{2}}e^{\frac{3}{2}i\theta}|}{|e^{3i\theta}||R^3 + e^{-3i\theta}|} d\theta \le \int_0^{\frac{\pi}{2}} \frac{R^{\frac{3}{2}}}{R^3 - 1} d\theta = \frac{R^{\frac{3}{2}}}{R^3 - 1} \cdot \frac{\pi}{2} \to 0 \ (R \to \infty)$$
 (10)

つまり、 C_2 上の積分は $R \to \infty$ において 0 に収束する。

$$\lim_{R \to \infty} \int_{C_2} \frac{\sqrt{z}}{z^3 + 1} dz = 0 \tag{11}$$

次に C_3 上の積分を考える。 C_3 は虚軸上の $iR \to 0$ の区間である。そこで、z=it と置き、t が $R \to 0$ に動く場合の積分として計算する。このとき、 $\frac{\mathrm{d}z}{\mathrm{d}t}=i$ であるので、 $\mathrm{d}z=i\mathrm{d}t$ である。

$$\int_{C_2} \frac{\sqrt{z}}{z^3 + 1} dz = \int_R^0 \frac{\sqrt{it}}{(it)^3 + 1} i dt = -i^{\frac{3}{2}} \int_0^R \frac{\sqrt{t}}{-it^3 + 1} dt$$
 (12)