Objetivos a cubrir

Código: MAT4-EDO.14

• Ecuación diferencial ordinaria lineal de orden n a coeficientes variables homogénea.

1. Utilizar el resultado del problema (1) de la guia 13 para resolver: Si y_1 y y_2 son dos soluciones de

$$(1-x^2)y'' - 2xy' + n(n+1)y = 0$$

en (-1,1), demuestre que $W[y_1,y_2]=\frac{c}{1-x^2}$, donde c es una constante

2. En una ecuación de la forma

$$x^2y'' + \alpha xy' + \beta y = 0, \qquad x > 0,$$

en donde α y β son constantes reales, se conoce como ecuación de Cauchy-Euler. Demuestre que la sustitución $z = \ln x$ transforma una ecuación de Cauchy-Euler en una ecuación con coeficientes constantes.

3. Consideremos la ecuación diferencial ordinaria lineal de segundo orden a coeficientes variables homogénea dada por

$$a_2 x^2 y''(x) + a_1 x y'(x) + a_0 y(x) = 0 (1)$$

Hallar la ecuación auxiliar en r para que la función $y(x) = x^r$ sea solución de (1)

4. (a) Sea y_1 una solución de la ecuación (1). Demostrar que la sustitución $y_2 = vy_1$, transforma la ecuación (1) en una ecuación lineal de primer orden de variable dependiente v'

(b) Hallar la función y_2 de la parte 4a

(c) Demostrar que las funciones y_1 de la parte 4a y y_2 de la parte 4b son linealmente independiente

5. Encuentre una segunda solución para cada ecuación diferencial.

1.
$$y'' + 5y' = 0$$
; $y_1 = 1$

2.
$$x^2y'' - xy' + 2y = 0$$
; $y_1 = x \operatorname{sen}(\ln x)$

3.
$$y'' + 2y' + y = 0$$
; $y_1 = xe^{-x}$

4.
$$x^2y'' - 3xy' + 5y = 0$$
; $y_1 = x^2 \cos(\ln x)$

5.
$$4x^2y'' + y = 0$$
; $y_1 = x^{1/2} \ln x$

6.
$$x^2y'' - 5xy' + 9y = 0$$
; $y_1 = x^3 \ln x$

7.
$$y'' - 5(\tan x)y' = 0$$
; $y_1 = 1$

8.
$$(3x+1)y'' - (9x+6)y' + 9y = 0$$
; $y_1 = e^{3x}$

6. (a) Hallar y_2 , si $y_1 = x^{(a_2-a_1)/2a_2}$ es uns solución de la ecuación diferencial ordinaria lineal de segundo orden a coeficientes variables homogénea dada por

$$4a_2^2x^2y''(x) + 4a_1a_2xy'(x) + (a_1 - a_2)^2y(x) = 0$$

(b) Verificar que son funciones linealmente independientes.

7. Demostrar que las funciones $y_1(x) = e^{\alpha x} \cos(\beta x)$ y $y_2(x) = e^{\alpha x} \sin(\beta x)$ son linealmente independiente para todo $x \in \mathbb{R}$, donde α y β con constantes reales.

8. Resuelva las siguientes ecuaciones de Cauchy-Euler

1.
$$x^2y'' + xy' + y = 0$$

$$2. \quad x^2y'' + 4xy' + 2y = 0$$

1.
$$x^2y'' + xy' + y = 0$$
 2. $x^2y'' + 4xy' + 2y = 0$ 3. $x^2y'' - 3xy' + 4y = 0$, $x > 0$

4.
$$x^2y'' - xy' + y = 0$$

5.
$$x^2y'' - 4xy' - 6y = 0$$

4.
$$x^2y'' - xy' + y = 0$$
 5. $x^2y'' - 4xy' - 6y = 0$ 6. $x^2y'' + 3xy' + 1.25y = 0$

7.
$$x^2y'' - xy' - 3y = 0$$

$$8. \quad x^2y'' - 5xy' + 9y = 0$$

7.
$$x^2y'' - xy' - 3y = 0$$
 8. $x^2y'' - 5xy' + 9y = 0$ 9. $x^2y'' + 2xy' + 0.25y = 0$, $x > 0$

10.
$$x^2y'' + xy' + 4y = 0$$

11
$$(x+2)^2 y'' - y = 0$$

11.
$$(x+2)^2 y'' - y = 0$$
 12. $(2x+3)^2 y'' + (2x+3)y' - 2y = 0$

$$12 - 2 \cdot 1 + 2 \cdot 1 + 2 \cdot 1 = 0$$

$$14 - m^2 n'' + 2mn' + 6n = 0$$

13.
$$x^2y'' + 3xy' + y = 0$$
 14. $x^2y'' + 2xy' + 6y = 0$ 15. $(3x+1)y'' - (9x+6)y' + 9y = 0$

16.
$$x^2y'' + xy' - y = 0$$

17.
$$(x+2)^2 y'' + 3(x+2)y' - 3y = 0$$
 18. $x^2 y''' = 2y'$

18.
$$x^2y''' = 2u$$

19.
$$(2x+1)^2 y'' - 2(2x+1)y' + 4y = 0$$
 20. $x^3 y''' + 3x^2 y'' = 0$ 21. $x^3 y''' + xy' - y = 0$

22.
$$x^3y''' - 3x^2y'' + 6xy' - 6y = 0$$
 23. $x^2y''' - 3xy'' + 3y' = 0$ 24. $(x+1)^2y''' - 12y' = 0$

25.
$$(2x+1)^2 y''' + 2(2x+1)y'' + y' = 0$$
 26. $x^4 y^{(4)} + 6x^3 y''' + 7x^2 y'' + xy' - y = 0$

9. Resuelva las siguientes siguientes ecuaciones sujetas a las condiciones dadas

1.
$$4x^2y'' + y = 0$$
, $y(1) = 1$, $y'(1) = 0$ 2. $x^2y'' - 6y = 0$, $y(1) = 2$, $y'(1) = 0$

3.
$$x^3y''' + xy' - y = 0$$
, $y(0) = 0$, $y'(0) = 0$, $y''(0) = 1$

4.
$$x^3y''' - 3x^2y'' + 6xy' - 6y = 0$$
, $y(0) = 0$, $y'(0) = 1$, $y''(0) = -7$

5.
$$(x+1)^2 y''' - 12y' = 0$$
, $y(0) = 0$, $y'(0) = 0$, $y''(0) = 1$

10. Use la transformación $z = \operatorname{sen} x$ para resolver

$$y'' + (\tan x) y' + (\cos^2 x) y = 0$$

Bibliografía

- 1. Edwards, C. H. y Penney, D.: "Ecuaciones Diferenciales Elementales y problemas con condiciones en la frontera". Tercera Edición. Prentice Hall.
- 2. Kiseliov, A. Krasnov, M. y Makarenko, G., "Problemas de ecuaciones diferenciales ordinarias". Editorial Mir.
- 3. Spiegel, Murray R., "Ecuaciones diferenciales aplicadas". Tercera edición. Prentice Hall.
- 4. Viola-Prioli, Ana y Viola-Prioli, Jorge, "Ecuaciones Diferenciales Ordinarias". Universidad Simón Bolívar.
- 5. Zill, Dennis, "Ecuaciones Diferenciales con Aplicaciones". Grupo Editorial Iberoamérica.

E.D.O. - Orden n a coeficientes variables, homogénea.

Prof. Farith Briceño - 2009

e-mail: farith 72@hotmail.com