Zaalima Development Internship Project
AI-Powered
Task Management System
Submitted by
Submitted by P. Saineelima
Submitted by
Submitted by P. Saineelima

Objective

The main goal of this project is to design an intelligent system that can:

- Automatically classify tasks based on their content.
- Predict task priority levels (High, Medium, Low).
- Assign tasks to the right person considering workload and deadlines.

This automation helps teams save time, stay organized, and work more efficiently.

Dataset and Preprocessing

We used a **synthetic dataset** designed to simulate real-world task management data from tools like Jira or Trello. The dataset contained columns such as Task ID, Title, Description, CreatedAt, DueDate, Assignee, Priority, and Label.

Preprocessing steps included:

- Removing missing or irrelevant data.
- Applying NLP techniques such as tokenization, stopword removal, and lemmatization.
- Combining Title and Description fields for text analysis.
- Generating clean and structured data for further modeling.

Methodology

The project was developed in four main phases:

Phase 1: Data Cleaning and NLP

- Cleaned text data using NLTK.
- Tokenized and lemmatized words.
- Created a cleaned dataset ready for model input.

Phase 2: Feature Extraction

- Used **SentenceTransformer (MiniLM model)** to convert textual data into embeddings.
- Represented task descriptions and titles numerically for ML processing.

Phase 3: Task Classification and Priority Prediction

- Implemented classification models (Naive Bayes, SVM) to categorize tasks.
- Built a Random Forest model to predict task priority.
- Tuned model performance using **GridSearchCV** to achieve higher accuracy.

Phase 4: Workload Balancing

- Developed logic to assign tasks to team members based on workload and due dates.
- Ensured fair distribution and reduced bottlenecks in task allocation.

Technologies Used

- **Python** Main programming language
- Pandas, NumPy Data manipulation and analysis
- Matplotlib, Seaborn Visualization
- scikit-learn ML model implementation and evaluation
- **SentenceTransformers** Text embedding generation
- NLTK NLP preprocessing

Results

- The Random Forest model achieved good performance in classifying task priorities.
- Tasks were successfully assigned to appropriate team members based on workload.
- Visualizations helped display task distribution and workload balance.

Conclusion

The AI-powered task management system automates task classification, prioritization, and assignment. By combining **NLP and ML**, it can interpret task details and make intelligent decisions to assign work efficiently. The project proves that artificial intelligence can simplify everyday management processes, reduce manual work, and improve team productivity.