

Figure 1: Default parameters: $\alpha=0.1,\,\theta_u=\theta_x=0.5,$ linear interpolation and static mesh.

Figure 2: As above, but $\alpha = 0.25$.

Figure 3: Large wave amplitude, $\alpha = 0.5$.

Figure 4: Theta method in place of Crank-Nicholson with $\theta_u=\theta_x=0.55$. Side-by-side, this Figure and Figure 1 are indistinguishable.

Figure 5: Front speed using cubic Lagrange interpolation.

Figure 6: As in Figure 5, but with an interpolation limiter applied, sacrificing smoothness for monotonicity.

Figure 7: Moving mesh with exact equidistribution, so X_A^{n+1} equidistributes the linear interpolant of $M(U_A^n, X_A^n)$, with $M(u, x) = \sqrt{0.1 + u_x^2}$ (after smoothing and normalisation.

Figure 8: Moving mesh as in Figure 7, but with $M(u,x) = \sqrt{0.1 + u_x^2}$.