WHAT IS CLAIMED IS:

1

2

3

4

5

6

7

8

1

2

- 1. A voltage regulation system for multiword programming in a non volatile memory, for example of the Flash type, with low circuit area occupation, wherein the memory comprises at least a memory cell matrix organized in cell rows and columns and with corresponding circuits responsible for addressing, decoding, reading, writing and erasing the memory cell content, each cell having a drain terminal connected to a matrix column and biased in the programming step with a predetermined voltage value by a program load circuit associated with each matrix column, the system further including, in parallel with each program load circuit, a conduction-to-ground path enabled by a controlled active element.
- 2. The system according to claim 1, wherein the controlled active element is a pass transistor receiving on the control terminal thereof a first enabling signal.
- 1 3. The system according to claim 2, wherein the first enabling signal is complementary to a second enabling signal applied to the corresponding program load circuit.
- 1 4. The system according to claim 1, wherein the conduction-to-ground path is a 2 redundant current path.
- 1 5. The system according to claim 1, wherein the conduction-to-ground path is a 2 dummy current path.

1	6.	A non-volatile memory circuit, comprising:
2		a non-volatile memory cell coupled to a bit line and a word line; and
3		a selectively actuated conduction to ground path coupled to the bit line.
1	7.	The circuit of claim 6 wherein the non-volatile memory cell comprises a floating
2	gate transisto	r having its drain terminal connected to the bit line and its gate connected to the
3	word line.	
		·
1	8.	The circuit of claim 6 further including a bit line biasing circuit coupled to the bit
2	line, the selec	ctively actuated conduction to ground path being connected in parallel with the bit
3	line biasing ci	ircuit.
1	9.	The circuit of claim 6 wherein the selectively actuated conduction to ground path
2	is coupled to	the bit line through at least a column decoding circuit.
1	10.	The circuit of claim 6 wherein the selectively actuated conduction to ground path
2	is coupled to	the bit line through at least a bit line biasing circuit.
1	11.	The circuit of claim 10 wherein the bit line biasing circuit and the selectively
2	actuated cond	uction to ground path are oppositely activated.

1	12.	A non-volatile memory, comprising:	
2		a memory matrix including a plurality of memory cells arranged in columns, each	
3	associated with a bit line, and rows, each associated with a word line;		
4		a column programming circuit coupled between a programming voltage source	
5	and each bit line and activated in response to a first control signal; and		
6		a bypass path circuit for each bit line and coupled between the programming	
7	voltage source and ground and activated in response to a second control signal.		
1	13.	The memory of claim 12 wherein each memory cell comprises a floating gate	
2	transistor having its drain terminal connected to the bit line and its gate connected to the word		
3	line.		
1	14.	The memory of claim 12 wherein, for each column, the first and second control	
2	signals are complementary.		
	4.5		
1	15.	The memory of claim 12 further including a column decoding circuit for each	
2	column.		
1	16.	The memory of claim 12 wherein the bypass path circuit comprises a pass	
2		each column coupled between the programming voltage source and ground.	
-	and ground.		

1	17.	A voltage regulation system for a non volatile memory including a memory cell
2	matrix organi	zed in cell rows and columns, comprising:
3		a program load circuit for each matrix column that biases each memory cell in a
4	selected matri	ix column with a predetermined voltage value during a programming operation; and
5		a conduction-to-ground path for each matrix column, each path being enabled
6	when its asso	ciated matrix column is not selected during the programming operation.
1	18.	The system of claim 17 wherein each memory cell comprises a floating gate
2	transistor hav	ing its drain terminal connected to a bit line for a column and its gate connected to
3	a word line for a row.	
1	19.	The system of claim 17 further including a column decoding circuit for each
1	20.	The system according to claim 17, wherein the conduction to ground path
2	includes a controlled active element comprising a pass transistor receiving on a control termina	
3	thereof a first	enabling signal.
1	21.	The system according to claim 20, wherein the first enabling signal is ry to a second enabling signal applied to the corresponding program load circuit.
-	compromenta	
1	22.	The system according to claim 17, wherein the conduction-to-ground path is a

redundant current path for the program load circuit.

2

- 1 23. The system according to claim 17, wherein the conduction-to-ground path is a
- 2 dummy current path for the program load circuit.