Error control of seeded matching

Jiaxin Hu

March 27, 2022

Previous note 0306_proof investigates the seed condition for the π_1 to fully recover the true permutation π^* . Note that 0321_clean_up indicates we can achieve fully recovery via a non-iterative clean up of π_1 with controlled error. Therefore, this note aims to investigate the seed condition for π_1 with controlled error. The theorem indicates that the seed condition can be more relaxed when we allow more error in π_1 .

To do list:

- Combine this error control result with the clean up result.
- Proof of Conjecture 1.

For self-consistency, we write the seeded algorithm without the non-iterative clean up procedure as the separate Algorithm 1 below.

Algorithm 1 Seeded matching

Input: Gaussian tensors $\mathcal{A}, \mathcal{B} \in \mathbb{R}^{n^{\otimes m}}$, seed $\pi_0 : S \mapsto T$.

1: For $i \in S^c$ and $k \in T^c$, obtain the similarity matrix $H = [\![H_{ik}]\!]$ as

$$H_{ik} = \sum_{\omega \in S^{m-1}} \mathcal{A}_{i,\omega} \mathcal{B}_{k,\pi_0(\omega)}.$$

2: Find the optimal bipartite permutation $\tilde{\pi}_1$ such that

$$\tilde{\pi}_1 = \underset{\pi:S^c \to T^c}{\arg\max} \sum_{i \in S^c} H_{i,\pi(i)}. \tag{1}$$

Let π_1 denote the matching on [n] such that $\pi_1|_S = \pi_0$ and $\pi_1|_{S^c} = \tilde{\pi}_1$. **Output:** Estimated permutations $\hat{\pi}_1$.

Theorem 0.1 (Error control of seeded matching). Suppose the seed π_0 corresponds to s true pairs and no fake pairs. Assume $s^{m-1} \gtrsim \log n - \log(r_0 + 1) + 1$. The output π_1 of seeded matching Algorithm 1 has at most r_0 errors for $r_0 \in \mathbb{N} \cap [0, n-s]$.

Remark 1. Note that the constant 1 in the condition for s^{m-1} can be replaced by any small positive constant $\epsilon \in [0, 1]$ as long as the $r_0 s^{m-1} \to \infty$ always holds for any r_0 when $n \to \infty$.

Remark 2 (Extreme cases). Note that when $r_0 = 0$, we have $s^{m-1} \gtrsim \log n$. This result coincides with our previous result in note 0306_proof, which investigates the seed condition for π_1 to achieve full recovery.

Remark 3 (Compare with Ding et al. (2021)). Our result also applies to the matrix case by taking m=2. Compared with Lemma 19 in Ding et al. (2021), we relax the seed condition from $s \gtrsim \log n$ to $s \gtrsim \log n - \log(r_0 + 1)$ when π_1 has errors $r_0 \approx \log n$.

Proof of Theorem 0.1. Without loss of generality, we assume the true permutation π^* is the identity mapping.

It suffices to show any permutation $\pi: S^c \mapsto T^c$ with more that r_0 errors is not picked by criterion (1) with high probability, where $r_0 \in \mathbb{N} \cap [0, n-s]$; i.e.,

$$\mathbb{P}\left(\sum_{i \in S^c} H_{ii} > \max_{r > r_0 \in \mathbb{N} \cap [0, n-s]} \max_{\pi \in \Pi_r} \sum_{i \in S^c} H_{i\pi(i)}\right) \\
\geq \mathbb{P}\left(\min_{r > r_0 \in \mathbb{N} \cap [0, n-s]} \min_{\pi \in \Pi_r} \left(\sum_{i \in S^c} H_{ii} - \sum_{i \in S^c} H_{i\pi(i)}\right) \geq t\right) \to 1,$$

as $n \to \infty$ for some positive constant t, where Π_r is the collection of all the permutations on $S^c \mapsto T^c$ has r errors.

Consider an arbitrary $\pi \in \Pi_r$ where $r > r_0 \ge 0$. Let the $R = \{i \in S^c : \pi(i) \ne i\}$ denote the set of errors in π , and we have $|R| = r \ge 1$. Then, consider the probability

$$\mathbb{P}\left(\sum_{i \in S^{c}} H_{ii} - \sum_{i \in S^{c}} H_{i\pi(i)} < t\right) = \mathbb{P}\left(\sum_{i \in R} H_{ii} - \sum_{i \in R} H_{i\pi(i)} < t\right)
= \mathbb{P}\left(\frac{1}{rs^{m-1}} \sum_{i \in R} H_{ii} - \frac{1}{rs^{m-1}} \sum_{i \in R} H_{i\pi(i)} < \frac{t}{rs^{m-1}}\right)
\leq \mathbb{P}\left(\frac{1}{rs^{m-1}} \sum_{i \in R} H_{ii} \le \frac{t+t'}{rs^{m-1}}\right) + \mathbb{P}\left(\frac{1}{rs^{m-1}} \sum_{i \in R} H_{i\pi(i)} > \frac{t'}{rs^{m-1}}\right).$$

Note that H_{ij} is independent with $H_{i'j'}$, denoted $H_{ij} \perp H_{i'j'}$ for any $i \neq i', j \neq j'$ because $\mathcal{A}_{i\omega}\mathcal{B}_{j\pi_0(\omega)} \perp \mathcal{A}_{i'\omega}\mathcal{B}_{j'\pi_0(\omega)}$ for any $\omega \in S^{m-1}$. Thus, the sequences $\{H_{ii}\}_{i\in R}$ and $\{H_{i\pi(i)}\}_{i\in R}$ with one-to-one permutation π have independent variables.

By Lemma 1, we have

$$\mathbb{P}\left(\frac{1}{rs^{m-1}}\sum_{i\in R}H_{ii}\leq \frac{t+t'}{rs^{m-1}}\right)\leq 2\exp\left(-\frac{rs^{m-1}}{32}\left(\rho-\frac{t+t'}{rs^{m-1}}\right)^2\right),$$

for $\rho-\frac{t+t'}{rs^{m-1}}\in[0,\min\{2\rho,2\sqrt{2}\sqrt{1-\rho^2}\}]$ and

$$\mathbb{P}\left(\frac{1}{rs^{m-1}}\sum_{i\in R}H_{i\pi(i)} > \frac{t'}{rs^{m-1}}\right) \le \exp\left(-\frac{(t')^2}{4rs^{m-1}}\right),$$

for $\frac{t'}{rs^{m-1}} \in [0, \sqrt{2}]$. Take $t' = \frac{\rho}{4} rs^{m-1}$. Note that by assumption

$$rs^{m-1} \gtrsim r\log n - r\log(r_0 + 1) + r. \tag{2}$$

When $r_0 = o(n)$, the lower bound (2) is dominated by $r \log n$; when $r_0 \approx n$, the lower bound (2) is of order larger than $r \geq r_0 \approx n$. Hence, we always have $rs^{m-1} \to \infty$ as $n \to \infty$ for $r > r_0$. Then, $t^2/rs^{m-1} \leq \rho/4$ when n is large enough. We have

$$\mathbb{P}\left(\sum_{i \in S^c} H_{ii} - \sum_{i \in S^c} H_{i\pi(i)} < t\right) \le 3 \exp\left(-\frac{rs^{m-1}}{128}\rho^2\right).$$

Note that $|\Pi_r| = \binom{n}{r} \le \frac{n^r}{r!}$ for $r \ge 1$. Hence,

$$\mathbb{P}\left(\min_{r>r_{0}} \min_{\pi \in \Pi_{r}} \left(\sum_{i \in S^{c}} H_{ii} - \sum_{i \in S^{c}} H_{i\pi(i)} \right) < t \right) \leq \sum_{r \geq r_{0}} \frac{n^{r}}{r!} \mathbb{P}\left(\sum_{i \in S^{c}} H_{ii} - \sum_{i \in S^{c}} H_{i\pi(i)} < t \right) \\
\leq 3 \sum_{r > r_{0}} \frac{n^{r}}{r!} \exp\left(-\frac{1}{128} r s^{m-1} \rho^{2} \right) \\
\leq 3 \sum_{r > r_{0}} \exp\left(-\frac{1}{256} r s^{m-1} \rho^{2} \right) \\
\leq 3 \exp\left(-\frac{1}{256} (r_{0} + 1) s^{m-1} \rho^{2} \right) \to 0. \tag{3}$$

In (3), the first inequality follows by the union bound; the third inequality in (3) follows by the assumption that

$$rs^{m-1} \gtrsim r \log n - r \log(r_0 + 1) \gtrsim r \log n - r \log r \gtrsim r \log n - \log(r!),$$

where the last inequality above follows by the Stirling's approximation that $\log(x!) \approx x \log x$ and thus $\frac{n^r}{r!} \exp\left(-rs^{m-1}\right) \lesssim 1$; the last inequality in (3) follows by the sum of proportional sequence that $\sum_{r>r_0} q_0 q^r \leq \frac{q_0 q}{1-q} \leq q_0 q$ for q < 1; and the probability decays to 0 due to the implication of assumption (2).

Therefore, we have finished the proof of Theorem 0.1.

Lemma 1 (Tail bounds for the product of normal variables). Consider the correlated pairs of normal variables (X_i, Y_i) for $i \in [n]$, where $X_i, Y_i \sim N(0, 1)$. Let $M = \frac{1}{n} \sum_{i \in [n]} X_i Y_i$. If $cov(X_i, Y_i) = \rho > 0$, then we have

$$\mathbb{P}(|M - \rho| \ge t) \le 4 \exp\left(-\min\left\{\frac{1}{32\rho^2}, \frac{1}{16(1 - \rho^2)}\right\} nt^2\right) \le 4 \exp\left(-\frac{nt^2}{32}\right),$$

for constant $t \in [0, \min\{2\rho, 2\sqrt{2}\sqrt{1-\rho^2}\}]$. If $cov(X_i, Y_i) = 0$, then, we have

$$\mathbb{P}(|M| \ge t) \le 2 \exp\left(-\frac{nt^2}{4}\right),$$

for constant $t \in [0, \sqrt{2}]$.

References

Ding, J., Ma, Z., Wu, Y., and Xu, J. (2021). Efficient random graph matching via degree profiles. *Probability Theory and Related Fields*, 179(1):29–115.