$$\frac{20) \times 10 / 0 / 5 / 1}{3 \cdot 10 / 1} = \frac{1}{(x^{3} - y^{3})^{2} + (x^{3} + y^{3})^{2}}$$

$$\frac{1}{(x^{2} + y^{3})}$$

$$\frac{1}{(x^{2} + y^{2})}$$

$$\frac{1}{(x^{2} + y^{2})^{3}}$$

$$\frac{1}{(x^{2}$$

$$\frac{\partial u}{\partial x} = \frac{3x^{2}(x^{2}+y^{2})-2x(x^{3}-y^{3})}{3y^{2}(x^{2}+y^{2})-2y(x^{3}+y^{3})} \frac{\partial u}{\partial v} = 0$$

$$\frac{\partial u}{\partial x} = \frac{3x^{2}(x^{2}+y^{2})-2y(x^{3}+y^{3})}{3y^{2}(x^{2}+y^{2})+2x(x^{3}+y^{3})} \frac{\partial u}{\partial v} = 0$$

$$\frac{\partial u}{\partial x} = \frac{3x^{2}(x^{2}+y^{2})+2x(x^{3}+y^{3})}{3y^{2}(x^{2}+y^{2})+2x(x^{3}+y^{3})} \frac{\partial u}{\partial v} = 0$$

$$\frac{\partial u}{\partial x} = \frac{3x^{2}(x^{2}+y^{2})+2x(x^{3}+y^{3})}{3y^{2}(x^{2}+y^{2})+2x(x^{3}+y^{3})} \frac{\partial u}{\partial v} = 0$$

$$\frac{\partial u}{\partial x} = \frac{3x^{2}(x^{2}+y^{2})+2x(x^{3}+y^{3})}{3y^{2}(x^{2}+y^{2})+2x(x^{3}+y^{3})} \frac{\partial u}{\partial v} = 0$$

$$\frac{\partial u}{\partial x} = \frac{3x^{2}(x^{2}+y^{2})+2x(x^{3}+y^{3})}{3y^{2}(x^{2}+y^{2})+2x(x^{3}+y^{3})} \frac{\partial u}{\partial v} = 0$$

$$\frac{\partial u}{\partial x} = \frac{3x^{2}(x^{2}+y^{2})+2x(x^{3}+y^{3})}{3y^{2}(x^{2}+y^{3})} \frac{\partial u}{\partial v} = 0$$

$$\frac{\partial u}{\partial x} = \frac{3x^{2}(x^{2}+y^{2})+2x(x^{3}+y^{3})}{3y^{2}(x^{2}+y^{3})} \frac{\partial u}{\partial v} = 0$$

$$\frac{\partial u}{\partial x} = \frac{3x^{2}(x^{2}+y^{2})+2x(x^{3}+y^{3})}{3y^{2}(x^{2}+y^{3})} \frac{\partial u}{\partial v} = 0$$

$$\frac{\partial u}{\partial x} = \frac{3x^{2}(x^{2}+y^{2})+2x(x^{3}+y^{3})}{3y^{2}(x^{2}+y^{3})} \frac{\partial u}{\partial v} = 0$$

$$\frac{\partial u}{\partial x} = \frac{3x^{2}(x^{2}+y^{2})+2x(x^{3}+y^{3})}{3y^{2}(x^{2}+y^{3})} \frac{\partial u}{\partial v} = 0$$

$$\frac{\partial u}{\partial x} = \frac{3x^{2}(x^{2}+y^{2})+2x(x^{3}+y^{3})}{3y^{2}(x^{3}+y^{3})} \frac{\partial u}{\partial v} = 0$$

$$\frac{\partial u}{\partial x} = \frac{3x^{2}(x^{2}+y^{2})+2x(x^{3}+y^{3})}{3y^{2}(x^{3}+y^{3})} \frac{\partial u}{\partial v} = 0$$

$$\frac{\partial u}{\partial x} = \frac{3x^{2}(x^{2}+y^{2})+2x(x^{3}+y^{3})}{3y^{2}(x^{3}+y^{3})} \frac{\partial u}{\partial v} = 0$$

$$\frac{\partial u}{\partial x} = \frac{3x^{2}(x^{2}+y^{2})+2x(x^{3}+y^{3})}{3y^{2}(x^{3}+y^{3})} \frac{\partial u}{\partial v} = 0$$

$$\frac{\partial u}{\partial x} = \frac{3x^{2}(x^{2}+y^{2})+2x(x^{2}+y^{3})}{3y^{2}(x^{3}+y^{3})} \frac{\partial u}{\partial v} = 0$$

$$\frac{\partial u}{\partial x} = \frac{3x^{2}(x^{2}+y^{2})+2x(x^{2}+y^{3})}{3y^{2}(x^{3}+y^{3})} \frac{\partial u}{\partial v} = 0$$

,		. +	1	次のよ	΄, μ	17	C -	1) 7	北
ι, -	()) 仕	d	SUSI	NA	Ç		KA	118

$$= \lim_{\Delta x \to 0} \frac{(\Delta x)^2 + (\Delta y)^2 - i((\Delta x)^2 + (\Delta y)^2)}{(\Delta x)^2 + (\Delta y)^2} \frac{1}{(\Delta x)^2 + (\Delta y)^2}$$

$$= \frac{f_{1}}{x \to 0} \frac{(\chi^{3} + y^{3})(\chi^{2} + y^{3})(\chi^{2} - iy)}{(\chi^{2} + y^{2})^{2}}$$

$$= \lim_{x \to \infty} \frac{\chi^{4} - \chi^{3}y + \chi y^{3} - y^{4} - (\chi^{4} + \chi^{3}y + \chi y^{3} + y^{4})}{(\chi^{2} + y^{2})^{2}}$$

$$f'(3) = \frac{-23^3 - 53 + 48 - 3}{(3 - 1)^2 (3^2 + 1)^2}$$

$$U_{x} = \frac{(\chi^{2} + y^{2}) - 2\chi(\chi + y)}{(\chi^{2} + y^{2})^{2}} = \frac{-\chi^{2} - 2\chi y + y^{2}}{(\chi^{2} + y^{2})^{2}}$$

$$Vy = \frac{-(\chi^2 + y^2) - 2y(\chi - y)}{(\chi^2 + y^2)^2} \frac{-\chi^2 - 2\chi y + y^2}{(\chi^2 + y^2)^2}$$

$$Uy = \frac{(x^{2}+y^{2}) - 2y(x+y)}{(x^{2}+y^{2})} - \frac{x^{2}-3xy-y^{2}}{(x^{2}+y^{2})^{2}}$$

$$\frac{\sqrt{\chi^{2}+y^{2}}-2\chi(\chi-y)}{(\chi^{2}+y^{2})^{2}}=\frac{-\chi^{2}+2\chi_{y}+y=1}{(\chi^{2}+y^{2})^{2}}$$

$$\frac{\int (3) = -\chi - \chi + \chi + \chi^{2} + (-\chi^{2} + \chi^{2})^{2}}{(\chi^{2} + \chi^{2})^{2}} + (-\chi^{2} + \chi^{2})^{2}$$

5.	(1). (1 = xy2	, v = χ' μ
		Vy = χ²
		1/2 = 124

$$(x^{2}, U = \chi^{3} - y^{3}, V = 2\chi^{2}y^{2})$$

 $(y = 3\chi^{2}, V_{y} = 4\chi^{2}y)$
 $(y = 4y^{2}\chi, U_{y} = -3y^{2})$
 $(y = 4y^{2}\chi, U_{y} = -3y^{2})$

$$V_x = 4y^2x$$
, $u_y = -3y^2$
 $U_x = V_y = -3y^2 = 4x^2y$

$$\chi = \frac{3}{4}$$
, $y = \frac{3}{4}$ by $f'(b) = \frac{27}{76} + \frac{27}{16}$ c

$$U = Xy - X, V = y^2$$

$$ux = x \qquad vx = 0$$

$$\int y^{-1} = 2y \qquad \Rightarrow \qquad \int \chi = 0$$

$$U_{\mu}=2y$$
 $V_{\gamma}=-2x$

$$y = \chi \gamma$$
, $f'(\lambda) = 2\chi - 2i\chi$

91

Date.

6.	(]}	神;	u +	V =	<i>C</i> .
		•	211		

$$0 \times (1+0) \times V : ((1^2+V^2)) \frac{\partial u}{\partial x} = 0$$

-	
Del	-

四大记叫,区域D上约实值的	ANG	校心色	足名数
设更(3)为实值的			

7. 国党
$$\frac{\partial U_x}{\partial x} + \frac{\partial U_y}{\partial y} = 0$$
 $\frac{\partial V_x}{\partial x} + \frac{\partial V_y}{\partial y} = 0$ $\frac{\partial V_x}{\partial x} + \frac{\partial V_y}{\partial y} = 0$ $\frac{\partial V_x}{\partial x} + \frac{\partial V_y}{\partial y} = 0$ $\frac{\partial V_x}{\partial y} + \frac{\partial V_y}{\partial y} = 0$ $\frac{\partial V_x}{\partial x \partial y} + \frac{\partial V_y}{\partial y} = 0$ $\frac{\partial V_x}{\partial x \partial y} + \frac{\partial V_y}{\partial y} = 0$ $\frac{\partial V_x}{\partial x} + \frac{\partial V_y}{\partial x} = 0$ $\frac{\partial V_x}{\partial x} + \frac{\partial V_y}{\partial x} = 0$ $\frac{\partial V_x}{\partial x} + \frac{\partial V_y}{\partial x} = 0$ $\frac{\partial V_x}{\partial x} + \frac{\partial V_y}{\partial x} = 0$ $\frac{\partial V_x}{\partial x} + \frac{\partial V_y}{\partial x} = 0$ $\frac{\partial V_x}{\partial x} + \frac{\partial V_y}{\partial x} = 0$ $\frac{\partial V_x}{\partial x} + \frac{\partial V_y}{\partial x} = 0$ $\frac{\partial V_x}{\partial x} + \frac{\partial V_y}{\partial x} = 0$ $\frac{\partial V_x}{\partial x} + \frac{\partial V_y}{\partial x} = 0$ $\frac{\partial V_x}{\partial x} + \frac{\partial V_y}{\partial x} = 0$ $\frac{\partial V_x}{\partial x} + \frac{\partial V_y}{\partial x} = 0$ $\frac{\partial V_x}{\partial x} + \frac{\partial V_y}{\partial x} = 0$ $\frac{\partial V_x}{\partial x} + \frac{\partial V_y}{\partial x} = 0$ $\frac{\partial V_x}{\partial x} + \frac{\partial V_y}{\partial x} = 0$ $\frac{\partial V_x}{\partial x} + \frac{\partial V_y}{\partial x} = 0$ $\frac{\partial V_x}{\partial x} + \frac{\partial V_y}{\partial x} = 0$ $\frac{\partial V_x}{\partial x} + \frac{\partial V_y}{\partial x} = 0$ $\frac{\partial V_x}{\partial x} + \frac{\partial V_y}{\partial x} = 0$ $\frac{\partial V_x}{\partial x} + \frac{\partial V_y}{\partial x} = 0$ $\frac{\partial V_x}{\partial x} + \frac{\partial V_y}{\partial x} = 0$ $\frac{\partial V_x}{\partial x} + \frac{\partial V_y}{\partial x} = 0$ $\frac{\partial V_x}{\partial x} + \frac{\partial V_y}{\partial x} = 0$ $\frac{\partial V_x}{\partial x} + \frac{\partial V_y}{\partial x} = 0$ $\frac{\partial V_x}{\partial x} + \frac{\partial V_y}{\partial x} = 0$ $\frac{\partial V_x}{\partial x} + \frac{\partial V_y}{\partial x} = 0$ $\frac{\partial V_x}{\partial x} + \frac{\partial V_y}{\partial x} = 0$ $\frac{\partial V_x}{\partial x} = 0$ $\frac{\partial V_x}{\partial x} + \frac{\partial V_y}{\partial x} = 0$ $\frac{\partial V_x}{\partial x} = 0$ $\frac{\partial$