

Redes de Computadores Tecnologias de Rede Local

Redes Sem Fios

Parte I: Controlo de Acesso ao Meio

Parte II: 802.11 Wlan

Grupo de Redes e Comunicações por Computador

- os sistemas com interfaces wireless (laptops, IP phones, tablets, etc.) estão tipicamente ligados a uma estação base
- a ligação é coordenada por um método que permite o acesso múltiplo ao meio de difusão (*multiple* access protocol)
- são suportados vários data rates e áreas de cobertura (distâncias), dependendo da tecnologia em uso.

Universidade do Minho

Universidade do Minho Escola de Engenharia Departamento de Informática

Exemplos de coberturas e data rates

Source: J.Kurose, K.Ross, Computer Networking: A Top Down Approach, 6th Ed.. Addison-Wesley, April 2012.

Conceitos - Taxonomia

	single hop	multiple hops
infrastructure (e.g., APs)	host connects to base station (WiFi, WiMAX, cellular) which connects to larger Internet	host may have to relay through several wireless nodes to connect to larger Internet: mesh net
no infrastructure	no base station, no connection to larger Internet (Bluetooth, ad hoc nets)	no base station, no connection to larger Internet. May have to relay to reach other a given wireless node MANET, VANET

Source: J.Kurose, K.Ross, Computer Networking: A Top Down Approach, 6th Ed..Addison-Wesley, April 2012.

Medium Access Control (MAC)

Vários nodos partilham o mesmo canal de comunicação e têm dados para transmitir...

Em caso de transmissões simultâneas --> colisão e corrupção dos dados transmitidos. Controlar o acesso ao meio é função do **Protocolo MAC**

Medium Access Control (MAC)

Esquemas comuns para Controlo de Acesso ao Meio em redes wireless:

- Sem contenção
 - Alocar parte do canal para cada nodo:
 - FDMA Dividir o espectro do sinal em várias frequências;
 - TDMA Dividir o espectro do sinal no tempo;
 - CDMA Dividir o espectro do sinal com um código padrão.
- Com contenção

Alocar o canal a pedido:

- ALOHA;
- CSMA.

Ideia básica:

- 1. Dividir o espectro em gamas de frequências, chamadas *canais*
- Atribuir um ou mais canais a cada nó
- 3. Cada nó transmite/recebe no(s) canal(ais) atribuído(s)

Vantagens: Simples e eficiente para poucos nós Desvantagens: Canais dedicados eventualmente não usados; pouca

adaptabilidade a alterações no no de nós, crosstalk

Ideia básica:

- 1. Um canal dividido em intervalos de tempo chamados *time slots*
- 2. Atribuir um ou mais *time slots* a cada nó
- 3. Cada nó transmite/recebe no(s) time slot(s) atribuído(s)

Vantagens: bom para garantir requisitos temporais

Desvantagens: requer sincronização temporal; pouca adaptabilidade a alterações no no de nós

Exemplo (GSM)

Global System for Mobile communications (GSM).

Combinação de FDMA e TDMA.

ALOHA

Inventado na University of Hawaii. Basic ALOHA:

- Quando um nó tem algo para transmitir, transmite;
- Transmissor espera por um ACK;
- Se não existir ACK, espera um tempo aleatório e retransmite.

Slotted ALOHA:

- Divide o tempo em slots (n\u00e3o atribuidos a nenhum n\u00f3 em particular);
- Transmissões só podem começar no início dos time slots.

Vantagens: Sistema simples, sem pré-alocação e sem necessidades de sincronização.

Desvantagens: Colisões tornam-se um problema -> muito baixa utilização; slotted ALOHA reduz o problema mas não resolve (Util. Max. ~18 a 36%).

Carrier Sense Multiple Access (CSMA)

Porque não escutar o meio antes de transmitir?

Isso evitaria algumas colisões...

Ideia básica do CSMA:

- Antes de transmitir, escutar o meio.
- Se meio ocupado:
 - Esperar até que fique livre (persistente)
 - Tentar mais tarde (não-persistente)
- Quando o canal está livre:
 - Transmitir imediatamente?

CSMA/Collision Avoidance (CA)

- Esperar um período de tempo aleatório?
 - Usando janela de contenção
- Se mesmo assim existirem colisões ...
 - Como é difícil detectar colisões em redes wireless... usar ACKs.

Vantagens

- Canal alocado conforme necessário
- Não é necessário sincronização
- Bom desempenho (Max. utilização do canal ~80%*).

Desvantagens

- Tempo de espera aleatório
- Alguns fenómenos em redes wireless podem influenciar desempenho: hidden ou exposed nodes, etc.

*sem nós escondidos (hidden nodes).

Problemas com o CSMA

Sentir o canal no transmissor não fornece informação acerca do canal no receptor

Hidden node problem

N1 e N3 não se escutam mutuamente devido a obstáculos ou atenuação: os seus pacotes colidem em N2

Exposed node problem

N1 e N4 poderiam ser receptores simultâneos mas os respectivos emissores N2 e N3 estão em zona de alcance

Dois principais problemas

Problema menos grave que o anterior →reduz a utilização

→menos estudado

Exemplo

A norma 802.11 implementa um mecanismo opcional para reduzir colisões causadas por nós escondidos --> **mecanismo com reserva do meio**.

- Request-to-Send (RTS)/Clear-to-Send (CTS):
 - Um nó que quer transmitir envia um pedido RTS;
 - O receptor responde com um CTS -> emissor inicia transmissão;
 - Outras estações que escutam um RTS/CTS permanecem em silêncio (durante a transmissão de dados seguinte cuja duração é declarada nos cabeçalhos RTS/ CTS).

 Node 3

Node 1

Wireless Lan

IEEE 802.11

802.11 - Normalização

Protocolo	Data	Frequência	Débito	Técnica de	Distância
	Norma		Máximo	Modulação	(int - ext)
802.11	Versão inicial de 1997 de baixo débito (1 ou 2Mbps)				
802.11a	1999	5 GHz	54 Mbps	OFDM	~35-120m
802.11b	1999	2,4 GHz	11 Mbps	DSSS	~38-140m
802.11g	2003	2,4 GHz	54 Mbps	OFDM	~38-140m
802.11n	2009	2,4 GHZ 5 GHz	248 Mbps	MIMO	~70-250m
802.11e	similar a 802.11b com suporte de Qualidade de Serviço				

802.11 Configurações wireless LAN

1. Independent/Ad-Hoc Network

2. Infrastructure Network

- WLAN isolada sem sistema de distribuição
- Sem ponto de acesso (AP)
- Com duas ou mais estações (STAs)
- STAs configuradas em *modo ad hoc*
- Carácter temporário

- Um AP interliga uma ou mais STAs a um sistema de distribuição
- Comunicações entre STAs realizadas sempre através do AP
- STAs configuradas em *modo infra-estrutura*

Universidade do Minho Escola de Engenharia Departamento de Informática

Componentes da arquitectura

STA - Estação com interface sem fios

- Varre os canais à procura de tramas beacon contendo o SSID (Service Set Identity) e o endereço BSSID (Basic SSID geralmente MAC do AP)
 - Procura passiva Beacon frames enviadas pelos APs
 - Procura activa Probe Request frames enviadas pelas STAs p/ todos
- Escolhe um AP para se associar
- Possibilidade de autenticação
- Configura-se normalmente por DHCP
- Sequência: Scanning Join Authentication Association

AP - Ponto de Acesso

- Admin escolhe o canal para transmitir ou auto-escolha pelo AP
- Podem ocorrer interferências de APs próximos no mesmo canal

Universidade do Minho Escola de Engenharia Departamento de Informática

Componentes da arquitectura

MIEI-RC

- AP (BS) Access Point (Base Station)
 Estação base com interface wireless e wired. Permite ligação do BSS ao sistema de distribuição (DS)
- BSS Basic Service Set / Base Station Subsystem
 - Célula (ou segmento WLAN) contendo grupo de estações abrangidas pelo alcance do AP;
 - Ad-hoc/Independent or infrastrutured BSS (IBSS)
- ESS Extended Service Set
 Vários BSS ligados entre si pelos APs a um sistema de distribuição
- DS *Distribution System*Liga os BSS de um ESS via APs; disponibiliza recursos da rede aos BSS; geralmente com fios (cabos)

Universidade do Minho 18

Universidade do Minho Escola de Engenharia Departamento de Informática

Componentes da arquitectura

BSSs podem ser:

- Parcialmente sobrepostos: para cobertura contínua numa determinada área
- **Totalmente sobrepostos**: para redundância ou melhoria de desempenho
- Fisicamente disjuntos: interrupção de serviço na transição

A norma 802.11 suporta mobilidade entre BSSs (*roaming*) pertencentes ao mesmo ESS, mas não suporta transição entre ESSs.

O IAPP (*Inter-Access Point Protocol*) coordena a interacção entre APs na transição entre BSSs

19

Métodos de acesso:

DCF (Distributed Coordination Function)
PCF (Point Coordination Function)

- MAC-DCF CSMA/CA (obrigatório)
 - Physical channel sensing
 - Evitar a colisão através de um mecanismo de random back-off
 - Distância mínima entre pacotes consecutivos
 - Pacotes ACK (exceto para envios em broadcast)
- MAC-DCF c/ RTS/CTS (opcional)
 - Physical e Virtual channel sensing
 - Protocolo de handshaking com pequenos pacotes de reserva do meio
 - Evita o problema de nós escondidos (hidden nodes)
- MAC-PCF (opcional) sem contenção
 - AP faz o polling das estações de acordo com uma lista

802.11 - CSMA/CA

Carrier Sense Multiple Access w/ Collision Avoidance

Cada STA escuta o meio antes de iniciar a transmissão (physical channel sensing). Se o meio estiver livre por alguns microsegundos (DIFS), a STA pode transmitir por um tempo limitado. Se o meio estiver ocupado, faz back off por um período aleatório antes de escutar o meio novamente.

Uma STA não escuta o meio enquanto transmite.

Não transmite e recebe ao mesmo tempo, logo não consegue detectar colisões (CD – Collision Detection).

802.11 - CSMA/CA

Algoritmo CSMA/CA:

Se sentir o meio desocupado por **DIFS** segundos (*Distributed Inter Frame Space*) transmite trama (sem efectuar *Collision Detection*) receptor devolve ACK após **SIFS** segundos (*Short Inter Frame Space*)
Se sentir o meio ocupado => espera por um DIFS livre + random *backoff*

Universidade do Minho 22

802.11 - CSMA/CA

Retransmissão por limite de tempo e fragmentação

- O nível MAC reenvia uma trama se não vier a confirmação
 => ARQ stop-and-wait
- O ar é menos fiável do que meios guiados => taxas de erros maiores
 - => MAC fragmenta tramas para evitar retransmissão de pacotes grandes

NAV: Network Allocation Vector (tempo reservado)

23

24

802.11 - RTS/CTS

Virtual channel sensing (RTS/CTS)

- RTS requisita o uso do meio
- CTS silência as estações que estão acessíveis para o receptor (mas possivelmente escondidas do emissor); isto previne colisões provocadas por estações escondidas durante a troca de dados
- RTS e CTS muito curtos: colisões improváveis

802.11 - RTS/CTS

Source: J.Kurose, K.Ross, Computer Networking: A Top Down Approach, 6th Ed..Addison-Wesley, April 2012.

Universidade do Minho

25

802.11 - RTS/CTS (cont)

- Estação envia RTS com parâmetro de reserva depois de esperar DIFS (reserva declara o tempo que a trama de dados necessita do meio)
- Receptor envia acknowledgement via CTS depois de SIFS (se apto a receber)
- Emissor pode agora enviar os dados, com confirmação via ACK
- Outras estações registam os anúncios de reserva do meio enviados via RTS e CTS

802.11 Formato da trama

Universidade do Minho 27

802.11 Formato da trama

• Endereço 1:

- Receptor: nó que recebe a trama e deve confirmar a recepção
- Todas as estações lêem este endereço

Endereço 2

• Transmissor: nó que transmite a trama e deve retransmitir em caso de não-confirmação

• Endereços 3 e 4 dependem do modo de operação

toDS	fromDS	addr1	addr2	addr3	addr4	obs.
0	0	DA	SA	BSSID	12	ad hoc
0	1	DA	BSSID	SA	-	do AP
1	0	BSSID	SA	DA	-	para AP
1	1	RA	TA	DA	SA	dentro DS

802.11 Formato da trama

toDS=1, fromDS=0

A1 (RA) = BSSID = MAC AP A2 (TA) = SA = MAC STA A3 (DA) = MAC R1

toDS=1, fromDS=1

A1 (RA) = MAC AP2

A2 (TA) = MACAP1A3 (DA) = MACR2

A4 (SA) = MAC R1

toDS=0, fromDS=1

A1 (RA) = DA = MAC STA A2 (TA) = BSSID = MAC AP A3 (SA) = MAC R1 DA - Destination Address - receptor final

SA - Source Address - origem da transmissão

RA - Receiver Address - estação wireless que deve processar a trama wireless STA -> RA=DA wired node -> RA=MAC AP; DA=router

TA - Transmitter Address - interface wireless que transmitiu a trama BSSID - MAC da interface wireless do AP (Infrastrurure networks); aleatório BSSID (Ad-hoc networks)

802.11 Tipos e sub-tipos de tramas

ANSI/IEEE Std 802.11, 1999 Edition

LOCAL AND METROPOLITAN AREA NETWORKS: WIRELESS LAN

Table 1-Valid type and subtype combinations

Type value b3 b2	Type description	Subtype value b7 b6 b5 b4	Subtype description
00	Management	0000	Association request
00	Management	0001	Association response
00	Management	0010	Reassociation request
00	Management	0011	Reassociation response
00	Management	0100	Probe request
00	Management	0101	Probe response
00	Management	0110-0111	Reserved
00	Management	1000	Beacon
00	Management	1001	Announcement traffic indication message (ATIM)
00	Management	1010	Disassociation
00	Management	1011	Authentication
00	Management	1100	Deauthentication
00	Management	1101–1111	Reserved
01	Control	0000-1001	Reserved
01	Control	1010	Power Save (PS)-Poll
01	Control	1011	Request To Send (RTS)
01	Control	1100	Clear To Send (CTS)
01	Control	1101	Acknowledgment (ACK)
01	Control	1110	Contention-Free (CF)-End
01	Control	1111	CF-End + CF-Ack
10	Data	0000	Data
10	Data	0001	Data + CF-Ack
10	Data	0010	Data + CF-Poll
10	Data	0011	Data + CF-Ack + CF-Poll
10	Data	0100	Null function (no data)
10	Data	0101	CF-Ack (no data)
10	Data	0110	CF-Poll (no data)
10	Data	0111	CF-Ack + CF-Poll (no data)
10	Data	1000–1111	Reserved
11	Reserved	0000-1111	Reserved

IEEE 802.11 / 802.3

802.**11** frame

Source: J.Kurose, K.Ross, Computer Networking: A Top Down Approach, 6th Ed.. Addison-Wesley, April 2012.