基础过关 1-5

人 1. 设 $\lim_{x\to 0} \frac{\sin 2x}{ax} = 3$,则 a =

(A)
$$\frac{2}{3}$$
. (B) $\frac{3}{2}$.

(B)
$$\frac{3}{2}$$

(C) 2.

(D) 不确定.

(C) v

2. 当 $x \rightarrow 0$ 时,下列变量是无穷小量的为

(A)
$$\frac{1}{x^2}$$
. (B) 2^x . (C) $\sin x$. (D) $\ln(x+e)$.

(B)
$$2^x$$

(C)
$$\sin x$$

3. 若 f(x) 与 g(x) 在 $x \to x_0$ 时都是无穷大,则下列极限正确的是

(D)
$$ln(x+e)$$

(A)
$$\lim_{x \to x_0} [f(x) + g(x)] = \infty.$$

(B)
$$\lim_{x \to x_0} [f(x) - g(x)] = 0$$
.

(C)
$$\lim_{x \to x_0} \frac{1}{f(x) + g(x)} = 0$$
.

(D) $\lim_{x \to x_0} bf(x) = \infty$ (b 为非零常数).

4 lim sin士= 入な友 ×>ロ

4. 设函数 $f(x) = \begin{cases} \sin\frac{1}{x}, x \neq 0 \\ 1, x = 0 \end{cases}$

(A) 无穷小.

- (B) 无穷大.
- (C) 既不是无穷大, 也不是无穷小.
- (D) 极限存在但不是 0.

5. 当 $x \to 0$ 时,下列四个无穷小中,比其他三个更高阶的无穷小是

(A) x^2 .

(B) $1-\cos x$.

(C) $\sqrt{1-x^2}-1$.

(D) $x - \tan x$.

J. (A) 二月介 (B) 立x² 二月介 (C) (1-x²) 二月介 ~ 立(-x²) 二月介 (D) x-tanx

(A) $1 - e^{\sqrt{x}}$.

(B) $\arcsin \sqrt{x}$.

(C) $\sqrt{1+\sqrt{x}}-1$.

(D) $1-\cos\sqrt{x}$.

6. (A) - (A) (国附不事所) (B) 反 (C) (1+反) ^{1/2} - 1 ~ ± (A) (D) ± X

7. 当 $x o 0^+$ 时,下列无穷小按阶从低到高的正确排列是

- (A) $e^{\sqrt{x}} 1$, $\tan(\sin x)$, $\ln(1+x^2)$, $1-\cos x^2$.
- (B) $\tan(\sin x)$, $e^{\sqrt{x}} 1$, $\ln(1+x^2)$, $1-\cos x^2$.
- (C) $\ln(1+x^2)$, $\tan(\sin x)$, $1-\cos x^2$, $e^{\sqrt{x}}-1$.
- (D) $\ln(1+x^2)$, $1-\cos x^2$, $e^{\sqrt{x}}-1$, $\tan(\sin x)$.

e^{x} - $1 \sim \sqrt{x}$ $tan(smx) \sim sinx \sim x$ $ln(Hx^{2}) \sim x^{2}$ $1-cosx^{2} \sim \pm |x^{2}|^{2} = \pm x^{4}$

8. 当 $x \to 0$ 时, $\tan(3x)\ln(1+2x)$ 与 $\sin x^2$ 比较是_____的无穷小量.

- (A) 同阶但不等价.
- (B) 较高阶.
- (C) 较低阶.
- (D) 等价.

8.
$$tan3x ln(1+2x)$$

 $\sim 3x \cdot 2x$
 $\sim 6x^2$
 $sinx^2 \sim x^2$

9. 当 $x \rightarrow 0$ 时,函数 $e^x - x - 1$ 是函数 x^2 的

(A) 高阶无穷小.

(B) 低阶无穷小.

(C) 同阶非等价无穷小.

(D) 等价无穷小.

$$9. \lim_{x \to 0} \frac{e^{x} - X - 1}{x^{2}}$$

$$\stackrel{R}{=} \frac{e^{x} - 1}{2x} = \frac{x}{2x} = \frac{1}{2}$$

10. 已知当 $x \to 0$ 时, $\sqrt{1+ax^2} - 1$ 与 $\sin^2 x$ 是等价无穷小,则常数 a 的值是____

- (A) 1.
- (B) 2.
- (C) 3.
- (D) $4.\sqrt{0.5 \text{ sin} \times \times^2}$ $4.\sqrt{1+ax^2} 1 \sim \frac{1}{2}ax^2$

1.当
$$x \to 0$$
 时, $\alpha(x) = cx^k$ 与 $\beta(x) = \sqrt{1 - 2x \arcsin x} - \sqrt{\cos 2x}$ 是等价无穷小量,则 c, k 的

取值分别为

-1、有姓比: 1-2×avcsinx-cos2x Cxx. (JI-2xavcsinx + Jas2x)

$$\sqrt{31} = \frac{1 - 11 - 2x^2 + \frac{2}{3}x^4 + o(x^4) - 2x(x + \frac{1}{6}x^3 + o(x^3))}{2x^4 + o(x^4) - 2x(x + \frac{1}{6}x^3 + o(x^3))}$$

(A)
$$c = -1, k = 2$$
.

(B)
$$c = -\frac{1}{2}, k = 2$$

(C)
$$c = -1, k = 4$$
.

2.设当 $x \to 0$ 时, $2\sin x - \sin 2x$ 是比 $x'' \cos x$ 高阶的无穷小,而 $x'' \cos x$ 是比

 $((1+\sqrt{x})^x-1)$ 高阶的无穷小,则整数 n 的取值为

$$\Theta \times^{\mathsf{N}} oos \times = \times^{\mathsf{\Gamma}}$$

(C) 3 (D) 4.
$$\sim J \sin x - J \sin x \cos x$$

 $\sim J \sin x (1 - \cos x) = -x^3$
 $\Theta \times \cos x = x^n$ $\Theta (1 + \sqrt{x})^x = x \cdot \sqrt{x}$

3.当 $x \to 0$ 时,若 $\ln^{\alpha} \left(x + \sqrt{1 + x^2} \right)$, $\left(\cos x - \cos 2x \right)^{\frac{1}{\alpha}}$ 均是比x 高阶的无穷小量,则 α 的 取值范围是

= 3.00
$$\ln^{\alpha}(x+\sqrt{1+x^2}+1-1)=(x+\sqrt{1+x^2}-1)^{\alpha}$$

(B)
$$(1,2)$$

(A)
$$(2,+\infty)$$
. (B) $(1,2)$. (C) $(\frac{1}{2},1)$. (D) $(\frac{1}{2},2)$.

(D)
$$\left(\frac{1}{2},2\right)$$

$$\begin{array}{ll}
(\cos x - \cos x + 1) &= \cos x - \cos x + 1 - \cos x \\
&= \cos x (1 - \cos x) + (1 - \cos x) = \frac{1}{2}x^2 + x^2 = \frac{3}{2}x^2
\end{array}$$

4.设
$$\alpha_1 = \sqrt{x} \left(e^{\sqrt[3]{x}} - 1 \right)$$
, $\alpha_2 = \sqrt[3]{1 + 3x} - \sqrt{1 + 2x}$, $\alpha_3 = \csc x - \cot x$. 当 $x \to 0^+$ 时,以上3个

(A)
$$\alpha_1, \alpha_2, \alpha_3$$
.

(B)
$$\alpha_1, \alpha_2, \alpha_2$$
.

$$= \cos(x) + (1-\cos(x)) + (1-\cos(x)) = \pm x^2 + x^2 = \pm x^2$$
4.设 $\alpha_1 = \sqrt{x} \left(e^{\sqrt{x}} - 1 \right), \alpha_2 = \sqrt[3]{1 + 3x} - \sqrt{1 + 2x}, \alpha_3 = \csc x - \cot x$. 当 $x \to 0^+$ 时,以上 $3 \uparrow x \to 0^+$ 元分 量按照从低阶到高阶的排序是

(A) $\alpha_1, \alpha_2, \alpha_3$. (B) $\alpha_1, \alpha_3, \alpha_2$. (C) $\alpha_3, \alpha_1, \alpha_2$. (D) $\alpha_2, \alpha_3, \alpha_1$.

$$a_3 = \frac{1}{\sin x} - \frac{1}{\tan x} = \frac{1}{\sin x} + \frac{1}{\sin x} = \frac{1}{\sin x} \times \frac{1}{\sin x} = \frac{1}{\sin x}$$

 $\int 5.$ 设a,b为正常数,且当 $n \to \infty$ 时, $\left(1 + \frac{1}{n}\right)^{-n^2}$ 与 ae^{-bn} 为等价无穷小,求a,b的值.

(A)
$$a = 1, b = 1$$

(B)
$$a = 1, b = 2$$

(C)
$$a = e^{\frac{1}{2}}, b = 1$$

(D)
$$a = e^{-\frac{1}{2}}, b = 1$$

(C)
$$a = e^{\frac{1}{2}}, b = 1$$

(D) $a = e^{-\frac{1}{2}}, b = 1$

$$\begin{vmatrix}
(1 + \frac{1}{n})^{-n^{2}} \\
a e^{-bn}
\end{vmatrix} = \frac{e^{-n^{2}} \ln(1 + \frac{1}{n})}{a e^{-bn}} = \frac{1}{a} \lim_{n \to \infty} e^{-n^{2}} \ln(1 + \frac{1}{n}) \\
= \frac{1}{a} \lim_{n \to \infty} e^{-bn} = \frac{1$$

(A)
$$c = -1, k = 2$$
.

(B)
$$c = -\frac{1}{2}, k = 2$$
.

(C)
$$c = -1, k = 4$$
.

(D)
$$c = -\frac{1}{2}, k = 4$$
.

2.设当 $x \to 0$ 时, $2\sin x - \sin 2x$ 是比 $x^n \cos x$ 高阶的无穷小,而 $x^n \cos x$ 是比 $((1+\sqrt{x})^x-1)$ 高阶的无穷小,则整数n的取值为

- (A) 1.
- (B) 2.
- (C) 3. (D) 4.

3.当 $x \to 0$ 时,若 $\ln^{\alpha} \left(x + \sqrt{1 + x^2} \right)$, $\left(\cos x - \cos 2x \right)^{\frac{1}{\alpha}}$ 均是比 x 高阶的无穷小量,则 α 的 取值范围是

(A)
$$(2,+\infty)$$

(B)
$$(1,2)$$

(A)
$$(2,+\infty)$$
. (B) $(1,2)$. (C) $(\frac{1}{2},1)$ (D) $(\frac{1}{2},2)$.

(D)
$$\left(\frac{1}{2},2\right)$$

4.设 $\alpha_1 = \sqrt{x} \left(e^{\sqrt[3]{x}} - 1 \right)$, $\alpha_2 = \sqrt[3]{1 + 3x} - \sqrt{1 + 2x}$, $\alpha_3 = \csc x - \cot x$. 当 $x \to 0^+$ 时,以上3个 无穷小量按照从低阶到高阶的排序是

- (A) $\alpha_1, \alpha_2, \alpha_3$.

- (B) $\alpha_1, \alpha_3, \alpha_2$. (C) $\alpha_3, \alpha_1, \alpha_2$. (D) $\alpha_2, \alpha_3, \alpha_1$.

5.设 a,b 为正常数,且当 $n \to \infty$ 时, $\left(1 + \frac{1}{n}\right)^{-n^2}$ 与 ae^{-bn} 为等价无穷小,求 a,b 的值.

(A)
$$a = 1, b = 1$$

(B)
$$a = 1, b = 2$$

(C)
$$a = e^{\frac{1}{2}}, b = 1$$

(D)
$$a = e^{-\frac{1}{2}}, b = 1$$