Proof. By the definition for even numbers, there exists an integer η such that $\chi = 2\eta$. Hence, $\langle 2\eta \rangle^2 = 4\eta^2 = 2\langle 2\eta^2 \rangle$

Theorem (1.6.3). If χ is an even integer, then χ^2 is an even integer.

Integers are closed under multiplication. Thus, the factor $\langle 2\eta^2 \rangle$ is an integer.

It follows that χ^2 is even, by the definition for even numbers.