Лабораторная работа № 3.7.1 Скин-эффект в полом цилиндре

Илья Прамский

Ноябрь 2023

Введение

Цель работы: Исследование проникновения переменного магнитного поля в медный полый цилиндр

1 Теоретическая часть

1.1 Скин-эффект для полупрастранства

Рассмотрим квазистационарное поле внутри проводящей среды в простейшем плоском случае. Пусть вектор E направлен всюду вдоль оси y (рис. 1) и зависит только от координаты x, т. е. $E_x = E_z \equiv 0, \, E_y = E_y(x,t)$. В квазистационарном приближении

$$\vec{\nabla} \times \boldsymbol{H} = \sigma \boldsymbol{E}$$

Берем ротор обоих частей

$$\vec{\nabla} \times (\vec{\nabla} \times \boldsymbol{H}) = \vec{\nabla} (\vec{\nabla} \cdot \boldsymbol{H}) - \vec{\nabla}^2 \boldsymbol{H} = \sigma \vec{\nabla} \times \boldsymbol{E}$$

Испоьзуя ур-е Максвелла для ротора ${m E}$ и для дивергенчии ${m H}$ получаем

$$\vec{\nabla}^2 \mathbf{H} = \sigma \mu \mu_0 \frac{\partial \mathbf{H}}{\partial t} + \vec{\nabla} \left(\vec{\nabla} \cdot \mathbf{H} \right) = \sigma \mu \mu_0 \frac{\partial \mathbf{H}}{\partial t}$$
(1)

Берем ротор еще раз

$$\vec{\nabla} \times (\vec{\nabla}^2 \mathbf{H}) = \vec{\nabla}^2 (\vec{\nabla} \times \mathbf{H}) = \sigma \mu \mu_0 \frac{\partial (\vec{\nabla} \times \mathbf{H})}{\partial t}$$

Осталось подставить первое ур-е, и воспользоватся уравнением Максвелла

Рис. 1 — Скин-эффект в полупространстве

$$\vec{\nabla}^2 \mathbf{E} = \sigma \mu \mu_0 \frac{\partial \mathbf{E}}{\partial t} \tag{2}$$

Подставляем в (2) наше электрическое поле $E_y = E_y(x,t)$

$$\frac{\partial^2 E_y}{\partial x^2} = \sigma \mu \mu_0 \frac{\partial E_y}{\partial t} \tag{3}$$

Если $E_y(0,t)=E_0e^{i\omega t}$ то решением (3) будет функция вида

$$E_y(x,t) = E_0 e^{-x/\delta} e^{i(\omega t - x/\delta)}$$
(4)

где

$$\delta = \sqrt{\frac{2}{\omega \sigma \mu \mu_0}} \tag{5}$$

1.2 Скин-эффект в тонком полом цилиндре

Рис. 2 — Эл-магнитные поля в цилиндре

Рис. 3 — Стенка цилиндра

Перейдем теперь к описанию теории в нашей работе. Из соображении симметрии и непрерывности соответствующих компонет векторов \boldsymbol{E} и \boldsymbol{H} можем сказать что

$$H_z = H(r)e^{i\omega t}, E_{\varphi} = E(r)e^{i\omega t}$$

и при этом функции H(r) и E(r) непрерывны.

Внутри цилиндра токов нет, следовательно $H(r) = H_1 = {\rm const}$ внутри цилиндра. По теореме об электромагнитной индукции

$$E(r) = -\frac{1}{2}\mu_0 r \cdot i\omega H_1$$

откуда мы получаем граничное условие

$$E_1 = E(a) = -\frac{1}{2}\mu_0 a \cdot i\omega H_1 \tag{6}$$

В прближении $h \ll a$ можем пренебречь кривизной стенки и смоделировать его бесконечной полосой. Тогда, надо решить уравнение (1) с граничными условиями. Решая уравнение получим связь полей H_1 (поле внутри цилиндра которое мы будем измерять) и H_2 , которое колебается с частотой ω

$$H_1 = \frac{H_0}{\operatorname{ch}(\alpha h) + \frac{1}{2}\alpha a \operatorname{sh}(\alpha h)} \quad \alpha = \sqrt{i\omega\sigma\mu_0} = \frac{\sqrt{2}}{\delta}e^{i\pi/4}$$
 (7)

из этой формулы получим сколько по фазе отстает поле H_1 от H_0 . При $\delta \ll h$ (высокочастотная область)

$$\psi \approx \frac{\pi}{4} + \frac{h}{\delta} = \frac{\pi}{4} + h\sqrt{\frac{\omega\sigma\mu_0}{2}} \tag{8}$$

При $\delta \gg h$ (низкочастотная область)

$$\tan \psi \approx \frac{ah}{\delta^2} = \pi ah\sigma \mu \mu_0 \nu \tag{9}$$

1.3 Процесс измерения

Рис. 4 — Установка

Мангнитное поле внутри цилиндра измеряется катушкой 3. Напряжение на катушке пропорционалным производной $\dot{B}_1(t)$

$$U(t) \propto \dot{B}_1(t) = -i\omega H_1 e^{i\omega t}$$

Поле внутри цилиндра пропорциональна току через соленоид

$$B_0(t) \propto I(t)$$

Отсюда несложно увидеть, что

$$\frac{|H_1|}{|H_0|} = c \cdot \frac{U}{\nu I} = c\xi \tag{10}$$

где константу можно определить из условия $|H_1|/|H_2| \to 1$ при $\nu \to 0$.

При измерениях разности фаз нужно учесть, что первый сигнал на осциллографе пропорционален магнитному полю снаружи, а второй пропорционален производному поля внутри цилиндра по времени. Вследствии этого набегает дополнительная фаза $\pi/2$, которую надо вычесть при измерениях.

2 Ход работы

Параметры установки 2a=45мм, h=1,5мм. Примем проводимость равной порядка $\sigma \ 5 \cdot 10^7$. Тогда частота, при которой глубина проникновения будет равна толщине стенки h равна $\nu_h=2252\ \Gamma$ ц.

2.1 Вычисление проводимости

Рассмотрим область низких частот($< 0,05\nu_h$). Тогда $\nu \ll \nu_h$, а значит $\alpha h \ll 1$, поэтому формулу (7) можно представить в виде(учтем, что ch $\alpha h \approx 1$, sh $\alpha h \approx \alpha h$)

$$H_1 = \frac{H_0}{1 + \frac{1}{2} \cdot \alpha^2 \cdot a \cdot h} \tag{11}$$

Тогда отношение модулей H_1 и H_0 можно представить в виде

$$\frac{|H_1|}{|H_0|} = \frac{1}{\sqrt{1 + (\frac{1}{2} \cdot a \cdot h \cdot \omega \cdot \sigma \cdot \mu_0)^2}} = c\xi$$

Что позволяет нам найти зависимость $\frac{1}{\xi^2}$ от ν^2 (подставим $\omega=2\pi\nu$)

$$\frac{1}{c^2 \xi^2} = 1 + (a \cdot h \cdot \sigma \cdot \mu_0)^2 \cdot \nu^2$$

$$\frac{1}{\xi^2} = c^2 + (a \cdot h \cdot \sigma \cdot \mu_0 \cdot c)^2 \cdot \nu^2$$

Теперь построим график зависимости $\frac{1}{\xi^2}$ от ν^2 и убедимся в её линейности.

v,Гц	I, MA	U, мВ	ξ	1/ξ^2	v^2, Гц^2
25	473,18	162,1	0,0137	5325,5780	625
30	471,12	192,8	0,01364	5373,9242	900
35	468,87	222,6	0,01356	5434,8888	1225
40	466,29	251,4	0,01348	5504,2942	1600
45	463,4	279,1	0,01338	5582,3545	2025
50	460,4	305,7	0,01328	5670,4792	2500
55	457,27	331,2	0,01317	5766,2058	3025
60	453,88	355,2	0,01304	5878,1231	3600
65	450,47	378,5	0,01293	5984,4838	4225
70	447,07	400,5	0,0128	6105,7933	4900
75	443,56	421,3	0,01266	6235,1134	5625
80	440,07	441	0,01253	6373,0353	6400
85	436,63	459,5	0,01238	6523,6997	7225
90	433,2	477,1	0,01224	6677,9487	8100
95	429,84	493,5	0,01209	6846,7828	9025
100	426,5	509	0,01193	7021,0571	10000
105	423,24	523,6	0,01178	7203,6522	11025
110	420,08	537,2	0,01163	7399,0740	12100
115	417	550,1	0,01147	7599,4909	13225

Получается, что $c = 72, 24 \pm 0, 07$ Ом/ Γ ц, а $\sigma = (4, 41 \pm 0, 02) \cdot 10^7$ См/м.

Далее исследуем зависимость ξ и ψ от частоты ν при низких частотах (от $0,05\nu_h$ до $0,5\nu_h$). Полученные данные занесём в таблицу. По этим результатам построим график зависимости $\tan \psi$ от ν .

Как было сказано выше(из формулы (9)) следует:

$$\tan \psi \approx ah\pi\sigma\mu_0 \cdot \nu$$

$$\sigma = \frac{k}{ah\pi\mu_0}$$

ν, Гц	I,MA	U, MB	х, дел	х0, дел	ψ, рад	tgψ
115	417	550	3,1	4,4	0,642598	0,75
125	410	572	5,8	8,1	0,678739	0,81
135	404	593	5,4	7,5	0,69115	0,83
145	399	611	5,1	7	0,718078	0,87
155	394	627	4,9	6,5	0,797481	1,02
165	390	641	4,6	6,2	0,760063	0,95
180	384	659	4,3	5,6	0,841498	1,12
190	380	670	4,1	5,3	0,859492	1,16
200	377	679	3,9	5	0,879646	1,21
210	373	686	3,8	4,8	0,916298	1,30
220	370	694	3,6	4,5	0,942478	1,38
230	368	700	3,4	4,2	0,972398	1,47
290	355	725	7,4	8,8	1,070997	1,83
350	346	737	6,8	7,8	1,168028	2,35
410	339	742	5,4	6	1,256637	3,08

График зависимости tgψ от v

$$k = (6, 1 \pm 0, 3) \cdot 10^{-3} \; \Gamma \text{ц}^{-1}. \; \sigma = (4, 7 \pm 0, 2) \cdot 10^7 \; \text{См/м}.$$

Теперь рассмотрим более высокие частоты. В этой области из формулы (8) выполняется следующее равенство

$$\psi - \frac{\pi}{4} = h\sqrt{\pi\sigma\mu_0} \cdot \sqrt{\nu}$$
$$\psi - \frac{\pi}{4} = k_1 \cdot \sqrt{\nu}$$
$$\sigma = \frac{k_1^2}{h^2\pi\mu_0}$$

Повторим измерения на высоких частотах. Внесем полученные данные в таблицу и построим график зависимости $\psi - \frac{\pi}{4}$ от $\sqrt{\nu}$.

v, Гц	I,MA	U, MB	х, дел	х0, дел	ψ, рад	√v, Гц^(1/2	ψ-π/4, рад
470	333,24	741,9	4,9	5,1	1,45	21,68	0,66
530	328,06	739,5	8,8	9,5	1,34	23,02	0,55
590	323,21	735,2	8	8,5	1,39	24,29	0,60
650	318,56	729,3	7,3	7,7	1,41	25,50	0,62
710	313,95	722,3	6,9	7,1	1,48	26,65	0,70
770	309,35	714,5	6,3	6,6	1,43	27,75	0,64
830	304,77	706	5,9	6,1	1,47	28,81	0,68
890	300,21	696,9	5,55	5,7	1,49	29,83	0,70
950	295,6	687,4	5,2	5,3	1,51	30,82	0,73
1010	290,99	677,6	5,9	6	1,52	31,78	0,73
1070	286,37	667,6	4,6	4,6	1,57	32,71	0,79
1130	281,71	657,3	4,2	4,2	1,57	33,62	0,79
1337	265,94	621,1	7,7	7,6	1,61	36,57	0,83
1588	247,27	577,5	6,6	6,4	1,67	39,85	0,88
1882	226,93	529,2	5,6	5,4	1,69	43,38	0,90
2231	205,33	477,4	4,9	4,6	1,78	47,23	0,99
2645	183,3	424	4,2	3,8	1,90	51,43	1,12
3135	161,67	371,1	8,8	8	1,88	55,99	1,10
3716	141,08	320,5	7,6	6,7	1,99	60,96	1,21
4405	122,01	273,2	6,6	5,7	2,07	66,37	1,28
5521	99,47	216,9	5,5	4,5	2,27	74,30	1,48
6189	89,31	191,3	10,2	8,2	2,34	78,67	1,55
7337	75,67	157	7,8	5,9	2,58	85,66	1,80
8697	63,8	127,1	7,7	5,9	2,53	93,26	1,74
10309	53,3	101,4	6,8	4,9	2,79	101,53	2,00
12220	43,643	79	7	5,1	2,74	110,54	1,96
14485	35,57	61,7	5,3	3,5	3,19	120,35	2,40
17170	28,237	47,8	9,4	6	3,35	131,03	2,57
20353	21,464	37,1	8,4	5,1	3,60	142,66	2,82
24126	15,043	29,3	7,4	4,4	3,71	155,33	2,93
28599	8,764	22,7	6,5	3,6	4,10	169,11	3,32

График зависимости ψ - $\pi/4$ от $\forall v$

$$k_1 = (209 \pm 2) \cdot 10^{-4} \ \Gamma \mathrm{q}^{-\frac{1}{2}}$$
. Тогда $\sigma = (4, 9 \pm 0, 1) \cdot 10^7 \ \mathrm{Cm/m}$.

Теперь при помощи RLC-метра измерим индуктивность катушки при различных частотах, занесем эти данные в таблицу и построим графики зависимостей L от ν и $\frac{L_{max}-L_{min}}{L-L_{min}}$ от ν^2 .

$$\frac{L_{max} - L_{min}}{L - L_{min}} = (\pi a h \mu_0 \sigma)^2 \cdot \nu^2$$

Из графика $L_{max}=9,55$ м Γ н, $L_{min}=2,94$ м Γ н.

ν, Гц	L, мГн
75	9,55
100	8,84
150	7,47
250	5,51
300	4,92
400	4,19
500	3,78
800	3,28
1500	3,01
2000	2,97
2500	2,95
3000	2,94

v^2, МГц^2	Lmax-Lmin/L-Lmin
0,006	1,000
0,010	1,120
0,023	1,459
0,063	2,572
0,090	3,338
0,160	5,288
0,250	7,869
0,640	19,441
2,250	94,429
4,000	220,333

График зависимости L от v

График зависимости Lmax-Lmin/L-Lmin от v^2

$$k_2 = (51, 433 \pm 0, 7) \cdot 10^{-6} \ \Gamma$$
ц $^{-2}$. Тогда $\sigma = (5, 38 \pm 0, 05) \cdot 10^7 \ \mathrm{Cm/m}$.

Полученные значения проводимости:

$$\sigma = (4, 41 \pm 0, 02) \cdot 10^7 \text{Cm/m}$$

$$\sigma = (4,7\pm0,2)\cdot 10^7 \mathrm{Cm/m}$$

$$\sigma = (4, 9 \pm 0, 1) \cdot 10^7 \text{Cm/m}$$

 $\sigma = (5, 38 \pm 0, 05) \cdot 10^7 \text{Cm/m}$

Теперь сравним теоретические и экспериментальные результаты для зависимости $\frac{|H_1|}{|H_0|}$ от ν .

Теоретически

$$\frac{|H_1|}{|H_0|} = \frac{1}{|\operatorname{ch} \alpha h + \frac{1}{2} \alpha h \operatorname{sh} \alpha h|}$$

Экспериментально

$$\frac{|H_1|}{|H_0|} = c \cdot \frac{U}{\nu I}$$

Получаются такие зависимости

3 Вывод

В ходе работы был исследован скин-эффект в полом цилиндре, измерена проводимость материала цилиндра четырьмя способами. $\sigma_{\text{справ}} = 5,62 \cdot 10^7 \text{ Cm/m}$, результаты получены порядка справочной величины. Расхождение результатов со справочным значением можно объяснить тем, что была использована модель бесконечного цилиндра.

Теоретическое отношение показывает большее ослабление, чем экспериментальное.