Министерство образования Республики Беларусь

Учреждение образования БЕЛОРУССКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ИНФОРМАТИКИ И РАДИОЭЛЕКТРОНИКИ

Факультет информационных технологий и управления Кафедра интеллектуальных информационных технологий

ОТЧЕТ по лабораторной работе 1 по дисциплине

МОДЕЛИ РЕШЕНИЯ ЗАДАЧ В ИНТЕЛЛЕКТУАЛЬНЫХ СИСТЕМАХ

Вариант 10

Студент гр. 221702 Руководитель А. Н. Хлуд В. П. Ивашенко

СОДЕРЖАНИЕ

1	Ход	выполнения лабораторной работы	2
	1.1	Описание	2
	1.2	Структура программы	2
	1.3	Описание модели	2
	1.4	Графики	6
	1.5	Ответы на вопросы	8
		1.5.1 Проверить, что модель создана верно: программа рабо-	
		тает правильно(на всех этапах конвейера)	8
		1.5.2 Объясните на графиках точки перегиба и асимптоты .	8
		1.5.3 Спрогнозируйте, как изменится вид графиков при изме-	
		нении параметров модели	9
		1.5.4 Какого соотношение между параметрами n, r, m, p	9
		1.5.5 Каким будет соотношение между r_1 и r_2 характеристики	
		h, если для нее выполняется $h(n_1, r_1) = h(n_2, r_2), n_1 > n_2$?	9
	1.6	Задачи	11
		1.6.1 Определить значение r_0 , при котором выполняется	
		$e(n,r_0) > e_0$. (Получить формулу и подставить в нее	
		значение параметров)	11
		1.6.2 Для несбалансированного конвейера (использовать ис-	
		ходные данные предыдущего вопроса) определить:	
		$\lim(e(n,r))$ при $r o\infty$	13
		1.6.3 Дан несбалансированный конвейер (использовать исход-	
		ные данные предыдущего вопроса). Каким образом мож-	
		но перестроить данный конвейер, чтобы для заданного	
		r_0 выполнялось $e(n,r_0)>e_0$?	13
		1.6.4 Дан несбалансированный конвейер (использовать исход-	
		ные данные предыдущего вопроса) и значение минималь-	
		ного кванта времени t_0 (условной временной единицы).	
		Каким образом нужно перестроить данный конвейер,	
		чтобы получить максимально быстрый конвейер? Полу-	
		чить для него формулы $\mathrm{Ky}(\mathrm{n,r}),\mathrm{e}(\mathrm{n,r})$	14
	1.7	Вывод	15
C	писов	к использованных источников	16

1 ХОД ВЫПОЛНЕНИЯ ЛАБОРАТОРНОЙ РАБОТЫ

Вариант 10

Тема: конвейерная архитектура.

Цель: ознакомиться и получить навыки реализации модели решения задачи на конвейерной архитектуре.

Задание: реализовать алгоритм вычисления произведения пары 6разрядных чисел умножением со старших разрядов со сдвигом частичной суммы влево.

1.1 Описание

Задача заключается в написании алгоритма вычисления произведения пары 6-разрядных чисел умножением со старших разрядов со сдвигом частичной суммы влево. При запуске программы пользователь вводит некоторое кол-во чисел для вектора А и В, чьи элементы будут попарно перемножаться.

Для реализации программы использовался язык программирования Python. Также из структур данных был использован список.

1.2 Структура программы

Программа включает в себя следующие функции:

- **check_values(a,b)** проверка, что входные числа нужной разрядности p=6;
 - $-\mathbf{sum}(\mathbf{p}.\mathbf{str}, \mathbf{s}.\mathbf{str})$ выполняет сумму двух бинарных чисел;
 - algorithm(list) выполняет алгоритм для одного такта;
- print_tact(queue, steps, res, tact) выводит информацию каждого такта;
 - main() функция, запускающая программу.

1.3 Описание модели

Декларативное описание модели:

- а) Пользователь вводит вектор А и В;
- б) Если вектора имеют разный размер или числа превышают разряд, равный 6, модель останавливает работу;
- в) Инициализируется список, в который записывают преобразованные в двоичную систему пары из вектора A и B;
- г) Для каждого этапа модель инициализирует список, состоящий из нулевых множимого, множителя, частичного произведения и частичной суммы.

- д) Для каждого нового такта, модель берет значения, если они имеются, из этапов для обработки. Если модель берет из первого этапа, в первый этап записывается пара из списка пар, если тот не пуст.
- е) Если модель берет данные из последнего этапа, частичная сумма будет результатом умножения.
- ж) Взятые данные из этапа, модель сдвигает частичную сумму и множитель влево. Если старший разряд равен 1, записывает множимое в частичное произведение. Складывает частичную сумму с частичным произведением.
- з) Если конвейер пуст и список пар пуст, модель завершает работу. Иначе повторяет шаги д-е.

Описание входов и выходов программы:

Вход: вектора А и В 6-разрядных чисел.

Выход: протокол работы конвейера.

Исходные данные:

- Разрядность(р) попарно умножаемых чисел 6.
- Разрядность результата умножения 2*р 12.
- Количество этапов конвейера р 6.
- Количество пар m(зависит от количества введенных пар).

Демонстрация результатов работы программы:

Пример отработки для перемножения чисел 1 и 2, 3 и 4:

```
введите вектор А:
1, 2
введите вектор В:
3, 4
такт 0
Входная очередь:
1 и 3
2 и 4
этап 1
этап 2
этап 3
этап 4
этап 5
этап б
Дтакт 2
```

```
частичное произведение: 000000000000
частичная сумма: 000000000000
```

```
⊘такт 1
Входная очередь:
2 и 4
этап 1
множимое: 000001
множитель: 000011
частичное произведение: 000000000000
частичная сумма: 000000000000
этап 2
этап 3
этап 4
этап 5
этап б
⊠такт 3
```

```
Входная очередь:
этап 1
множимое: 000010
множитель: 000100
этап 2
множимое: 000001
множитель: 000110
частичное произведение: 000000000000
частичная сумма: 000000000000
этап 3
```

этап 1 этап 2 множимое: 000010 множитель: 001000 частичное произведение: 000000000000 частичная сумма: 000000000000 множимое: 000001 множитель: 001100

частичное произведение: 000000000000

частичная сумма: 000000000000

Входная очередь:

```
⊘такт 5
Дтакт 4
                                         Входная очередь:
Входная очередь:
                                         этап 1
этап 1
                                         этап 2
этап 2
                                         этап 3
этап 3
множимое: 000010
                                         этап 4
множитель: 010000
                                         множимое: 000010
частичное произведение: 000000000000
                                         множитель: 100000
частичная сумма: 0000000000000
                                         частичное произведение: 000000000010
этап 4
                                         частичная сумма: 000000000010
множимое: 000001
                                         этап 5
множитель: 011000
частичное произведение: 000000000000
                                         множимое: 000001
частичная сумма: 000000000000
                                         множитель: 110000
                                         частичное произведение: 000000000001
этап 5
                                         частичная сумма: 000000000001
этап б
                                         этап 6
⊠такт 6
Входная очередь:
                                         ⊠такт 7
                                         Входная очередь:
этап 1
                                         этап 1
этап 2
                                         этап 2
этап 3
                                         этап 3
этап 4
                                         этап 4
этап 5
множимое: 000010
                                         этап 5
множитель: 000000
частичное произведение: 0000000000010
                                         этап б
частичная сумма: 000000000100
                                         множимое: 000010
этап б
                                         множитель: 000000
множимое: 000001
множитель: 100000
                                         частичное произведение: 000000000010
                                         частичная сумма: 000000001000
частичное произведение: 000000000001
                                         Результат:
частичная сумма: 000000000011
                                         000000000011 (3)
Результат:
                                         000000001000 (8)
000000000011 (3)
```

Таблица 1.2 – Пример работы конвейера для умножения чисел 1 и 3, 2 и 4

Графики 1.4

Обозначения:

n – количество этапов.

r – ранг задачи(количество пар).

 $T_1(n,r) = r * n$ – время, затрачиваемое на вычисления в однопроцессорной вычислительной системе.

 $T_n(n,r) = n + r - 1$, при условии, что r>0 – время, затрачиваемое на вычисления в параллельной вычислительной системе.

 $K_y(T_1, T_n) = \frac{T_1}{T_n}$ – коэффициент ускорения. $e(K_y, n) = \frac{K_y}{n}$ – эффективность.

График зависимости коэффициента ускорения Ку от ранга задачи г

Рисунок 1.1 – График зависимости коэффициента ускорения
 K_y от ранга г

Рисунок 1.2 – График зависимости эффективности е от ранга г

Рисунок 1.3 — График зависимости коэффициента ускорения K_y от количества этапов n

График зависимости эффективности е от кол-ва этапов п

Рисунок 1.4 – График зависимости эффективности е от количества этапов n

1.5 Ответы на вопросы

1.5.1 Проверить, что модель создана верно: программа работает правильно(на всех этапах конвейера)

Доказательство корректной работы модели представлена в пункте "Демонстрация результатов работы программы" в разделе 1.2.

1.5.2 Объясните на графиках точки перегиба и асимптоты

Для графиков коэффициента ускорения рассмотрим 2 случая:

Поскольку $K_y = \frac{r*n}{n+r-1}$, то, найдя для него предел при $r \to \infty$: $\lim_{r\to\infty} \frac{r*n}{n+r-1} = n$, мы поймем, что в данном случае коэффициент ускорения ограничен числом п(количество этапов конвейера). Ранг задачи принимает максимально возможное значение, вычисления выполняются на ограниченном количестве этапов.

При $n \to \infty$: $\lim_{n \to \infty} \frac{r*n}{n+r-1} = r$, таким образом при большом количестве вычислительных блоков, коэффициент ускорения ограничивается рангом задачи, поскольку в таком случае некоторое количество вычислительных блоков будет простаивать.

Для объяснения асимптот графика эффективности действуем аналогично:

Поскольку $e=\frac{r}{n+r-1}$, то при $r\to\infty$ предел принимает значение $\lim_{r\to\infty}\frac{r}{n+r-1}=1$. Так как эффективность показывает долю работы одного процессорного элемента, то при ограниченном количестве блоков каждый

блок будет задействован в вычислениях. Следовательно, эффективность будет максимальной(ни один вычислительный блок не будет простаивать).

При $n \to \infty$ предел принимает значение $\lim_{n\to\infty} \frac{r}{n+r-1} = 0$. В этом случае ситуация обратная: из-за того, что количество вычислительных блоков больше возможного ранга задачи, некоторые блоки будут простаивать. Следовательно, эффективность будет минимальной.

1.5.3 Спрогнозируйте, как изменится вид графиков при изменении параметров модели

 $K_y(r)$ и $K_y(n)$ растут при увеличении r и n. При увеличении r значение эффективности ${\bf e}({\bf r})$ растет. При увеличении n значение эффективности ${\bf e}({\bf n})$ снижается. Причины данного поведения объяснены в ответе на предыдущий вопрос.

1.5.4 Какого соотношение между параметрами n, r, m, p

Ранг задачи(r) — максимальное количество экземпляров данных (одного типа) с необходимостью подлежащей обработке, которые могут быть обработаны (вне зависимости от варианта реализации) при решении этой задачи одновременно. Экземпляры данных одного типа — количество пар чисел(m). Следовательно, r=m.

Разрядность (p) – разрядность умножаемых попарно чисел (для данного варианта p=6).

Количество (n) – количество процессорных элементов, n=p=6.

1.5.5 Каким будет соотношение между r_1 и r_2 характеристики $\mathbf{h},$ если для нее выполняется $h(n_1,r_1)=h(n_2,r_2), n_1>n_2?$

Допустим, что имеется некоторая характеристика h (эффективность е или ускорение K_y) и для нее выполняется: $h(n_1,r_1)=h(n_2,r_2), n_1>n_2$. Каким будет соотношение между r_1 и r_2 ?

В качестве характеристики h возьмем эффективность е. Тогда подставим формулу эффективности е:

$$e = \frac{K_y}{n} = \frac{T_1}{T_n * n} = \frac{r}{n + r - 1}; n \in N; r \in N$$

в заданное выражение:

$$e(n_1, r_1) = e(n_2, r_2)$$

$$\begin{cases} \frac{r_1}{n_1+r_1-1} = \frac{r_2}{n_2+r_2-1} \\ r_1 \neq r_2 \\ n_1 > 1, n_2 \ge 1 \\ r_1 \ge 1, r_2 \ge 1 \\ n_1 > n_2 \end{cases}$$

$$\iff \begin{cases} r_1n_2 + r_1r_2 - r_1 = r_2n_1 + r_1r_2 - r_2 \\ r_1 \neq r_2 \\ n_1 > 1, n_2 \ge 1 \\ r_1 \ge 1, r_2 \ge 1 \\ n_1 > n_2 \end{cases}$$

$$\iff \begin{cases} r_1n_2 - r_1 = r_2n_1 - r_2 \\ r_1 \neq r_2 \\ n_1 > 1, n_2 \ge 1 \\ r_1 \ge 1, r_2 \ge 1 \\ n_1 > n_2 \end{cases}$$

$$\iff \begin{cases} r_1(n_2 - 1) = r_2(n_1 - 1) \\ r_1 \neq r_2 \\ n_1 > 1, n_2 \ge 1 \\ r_1 \ge 1, r_2 \ge 1 \\ n_1 > n_2 \end{cases}$$

$$\iff \begin{cases} \frac{r_2}{r_1} = \frac{n_2 - 1}{n_1 - 1} \\ r_1 \neq r_2 \\ n_1 > 1, n_2 \ge 1 \end{cases}$$

$$\iff \begin{cases} \frac{r_2}{r_1} = \frac{n_2 - 1}{n_1 - 1} \\ r_1 \neq r_2 \\ n_1 > 1, n_2 \ge 1 \end{cases}$$

$$\iff \begin{cases} r_1 > r_2 \\ n_1 > 1, n_2 \ge 1 \\ r_1 \ge 1, r_2 \ge 1 \end{cases}$$

$$\iff \begin{cases} r_1 > r_2 \\ n_1 > 1, n_2 \ge 1 \\ r_1 \ge 1, r_2 \ge 1 \end{cases}$$

Ответ: $r_1 > r_2$.

1.6 Задачи

Дано: несбалансированный конвейер (заданы конкретные значения: n, t_i - времена выполнения обработки на этапах конвейера, e_0 - некоторое фиксированное значение эффективности.

1.6.1 Определить значение r_0 , при котором выполняется $e(n, r_0) > e_0$. (Получить формулу и подставить в нее значение параметров).

При $r_0 > 0; t_i > 0; n > 0; t_{max} > t_i$ верно: Время выполнения в однопроцессорной системе:

$$T_1 = r_0 \sum_{i=1}^n t_i$$

Время выполнения в конвейерной системе:

$$T_n = \sum_{i=1}^{n} t_i + (r_0 - 1) * t_{max}$$

Коэффициент ускорения:

$$K_y(n, r_0) = \frac{T_1}{T_n} = \frac{r_0 \sum_{i=1}^n t_i}{\sum_{i=1}^n t_i + (r_0 - 1) * t_{max}}$$

Эффективность:

$$e(n, r_0) = \frac{K_y(n, r_0)}{n} = \frac{r_0 \sum_{i=1}^n t_i}{n(\sum_{i=1}^n t_i + (r_0 - 1) * t_{max})} > e_0$$

Выразим r_0 :

Подставим выражение для эффективности:

$$\frac{K_y(n, r_0)}{n} = \frac{r_0 \sum_{i=1}^n t_i}{n(\sum_{i=1}^n t_i + (r_0 - 1) * t_{max})} > e_0$$

Умножим обе части на знаменатель(положительный по условию $\mathbf{t}_i > 0)$:

$$r_0 \sum_{i=1}^{n} t_i > e_0 n \left(\sum_{i=1}^{n} t_i + (r_0 - 1) * t_{max}\right)$$

Раскроем скобки и сгруппируем слагаемые с r_0 :

$$r_0 \sum_{i=1}^{n} t_i > e_0 n \sum_{i=1}^{n} t_i + e_0 n r_0 t_{max} - e_0 n t_{max}$$

Перенесем все члены с r_0 :

$$r_0(\sum_{i=1}^n t_i - e_0 n t_{max}) > e_0 n(\sum_{i=1}^n t_i - t_{max})$$

Для любого конвеера $\sum_{i=1}^{n} t_i - t_{max} > 0$ При $\sum_{i=1}^{n} t_i - e_0 n t_{max} > 0$:

$$r_0 > \frac{e_0 n(\sum_{i=1}^n t_i - t_{max})}{\sum_{i=1}^n t_i - e_0 n t_{max}}$$

удовлетворяет условиям $r_0 > 0; t_i > 0; n > 0; t_{max} \ge t_i, \sum_{i=1}^n t_i - t_{max} > 0$ При $\sum_{i=1}^n t_i - e_0 n t_{max} < 0$:

$$r_0 < \frac{e_0 n(\sum_{i=1}^n t_i - t_{max})}{\sum_{i=1}^n t_i - e_0 n t_{max}}$$

противоречит условию $\mathbf{r}_0 > 0, \sum_{i=1}^n t_i - e_0 n t_{max} < 0$ знак станет противоположным.

При
$$\sum_{i=1}^{n} t_i - e_0 n t_{max} = 0$$

$$r_0(\sum_{i=1}^n t_i - e_0 n t_{max}) > e_0 n(\sum_{i=1}^n t_i - t_{max})$$

$$0 > e_0 n(\sum_{i=1}^n t_i - t_{max})$$

противоречит условиям n > 0; $\sum_{i=1}^{n} t_i - t_{max} > 0$ Отсюда:

$$r_0 > \frac{e_0 n(\sum_{i=1}^n t_i - t_{max})}{\sum_{i=1}^n t_i - e_0 n t_{max}}$$

Ответ: минимальное значение r_0 , при котором эффективность превышает e_0 :

$$r_0 > \frac{e_0 n(\sum_{i=1}^n t_i - t_{max})}{\sum_{i=1}^n t_i - e_0 n t_{max}}$$

при $r_0 > 0, t_i > 0, n > 0, t_{max} \ge t_i$

1.6.2 Для несбалансированного конвейера (использовать исходные данные предыдущего вопроса) определить: $\lim(e(n,r))$ при $r\to\infty$

$$e(n,r) = \frac{K_y(n,r)}{n} = \frac{r * \sum_{i=1}^n t_i}{n * (\sum_{i=1}^n t_i + (r-1) * \max_{i=1}^n (t_i))}$$

Следовательно:

$$\lim_{r \to \infty} e(n, r) = \lim_{r \to \infty} \frac{r * \sum_{i=1}^{n} t_i}{n * (\sum_{i=1}^{n} t_i + (r - 1) * \max_{i=1}^{n} (t_i))}$$

Для вычисления данного предела может быть использовано правило Лопиталя:

$$\lim_{x \to x_0} \frac{f(x)}{g(x)} = \lim_{x \to x_0} \frac{f'(x)}{g'(x)}$$

Тогда выражение примет вид:

$$\lim_{r \to \infty} e(n, r) = \lim_{r \to \infty} \frac{r * \sum_{i=1}^{n} t_i}{n * (\sum_{i=1}^{n} t_i + (r-1) * \max_{i=1}^{n} (t_i))} = \frac{\sum_{i=1}^{n} t_i}{n * \max_{i=1}^{n} (t_i)}$$

Ответ: $\lim_{r\to\infty} e(n,r) = \frac{\sum_{i=1}^{n} t_i}{n*\max_{i=1}^{n} (t_i)}$

1.6.3 Дан несбалансированный конвейер (использовать исходные данные предыдущего вопроса). Каким образом можно перестроить данный конвейер, чтобы для заданного r_0 выполнялось $e(n,r_0)>e_0$?

$$e(n, r_0) > e_0$$

Для несбалансированное конвейера:

$$e(n, r_0) = \frac{r \sum_{i=1}^{n} t_i}{n * (\sum_{i=1}^{n} t_i + (r-1) * t_{max})}$$

Следовательно, по условию дано:

$$\frac{r_0 \sum_{i=1}^n t_i}{n * (\sum_{i=1}^n t_i + (r_0 - 1) * t_{max})} > e_0$$

При n>0:

$$\frac{r_0 \sum_{i=1}^n t_i}{(\sum_{i=1}^n t_i + (r_0 - 1) * t_{max})} > n * e_0$$

Случай с $n \leq 0$ не имеет смысла, так как конвейер с отрицательным или нулевым количеством процессорных элементов не имеет смысла.

При $e_0 > 0$:

$$\frac{r_0 \sum_{i=1}^n t_i}{e_0(\sum_{i=1}^n t_i + (r_0 - 1) * t_{max})} > n$$

Случай с $e_0 \le 0$ не имеет смысла, так как конвейер с отрицательной или нулевой эффективностью не имеет смысла.

Таким образом, конвейер можно перестроить путем изменения количества его процессорных элементов (или этапов) так, чтобы для п было верно $1 \leq n < \frac{r_0 \sum_{i=1}^{n_0} t_i}{e_0 * (\sum_{i=1}^n t_i + (r_0 - 1) * t_{max})}$ Добиться этого можно путем объединения этапов конвейера.

Приведем пример решения данной задачи на конкретных данных. Пусть $r_0=4,\ n_0=5,\ t_i=\{2,3,4,6,15\}$. Исходная эффективность $e_0=0.32$. Объединим 1-й этап со 2-ым, 3-й с 4-ым. Тогда получим n=3 и $t_i=\{5,10,15\}$ Тогда e=0.53, следовательно $e>e_0$.

Ответ: перестроить путем изменения количества его процессорных элементов (или этапов) так, чтобы для n было верно $1 \le n < \frac{r_0 \sum_{i=1}^{n_0} t_i}{e_0 * (\sum_{i=1}^n t_i + (r_0 - 1) * t_{max})}$

1.6.4 Дан несбалансированный конвейер (использовать исходные данные предыдущего вопроса) и значение минимального кванта времени t_0 (условной временной единицы). Каким образом нужно перестроить данный конвейер, чтобы получить максимально быстрый конвейер? Получить для него формулы Ky(n,r), e(n,r)

Данный конвейер необходимо перестроить так, чтобы он был сбалансированным и каждый этап выполнялся за минимальный квант времени t0, т.е. разделить этапы конвейера, которые длятся дольше, чем t0, на более мелкие этапы, которые будут длиться t0. Количество этапов в этом сбалансированном конвейере будет равняться:

$$n = \frac{\sum_{i=1}^{n} t_i}{t_0}$$

Тогда:

$$K_y = \frac{r * \frac{\sum_{i=1}^n t_i}{t_0}}{\frac{\sum_{i=1}^n t_i}{t_0} + r - 1}$$
$$e = \frac{r}{\frac{\sum_{i=1}^n t_i}{t_0} + r - 1}$$

1.7 Вывод

В ходе выполнения лабораторной работы приобретены навыки реализации моделей решения задач на конвейерной архитектуре. В рамках данной лабораторной работы была исследована и реализована модель сбалансированного конвейера для вычисления частного пар 6-разрядных чисел делением без восстановления частичного остатка. Были изучены различные числовые характеристики конвейерной архитектуры, а именно коэффициент ускорения и эффективность .

СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ

[1] Ивашенко, В. П. Модели решения задач в интеллектуальных системах : учеб.-метод. пособие: в 2 ч. Ч. 1 : Формальные модели обработки информации и параллельные модели решения задач / В. П. Ивашенко. — Минск : БГУИР, 2020.