Лабораторная работа 2.1.3 "Определение C_p/C_v по скорости звука в газе"

Учащийся 1 курса ЛФИ Гусаров Николай

Февраль 2021

1. Цель лабораторной работы

Измерение скорости звука и адиабатической постоянной C_p/C_v в CO_2 и воздухе.

2. Оборудование

Звуковой генератор ГЗ, электронный осциллограф ЭО, микрофон, телефон, раздвижная труба, баллон со сжатым углекислым газом, газгольдер.

3. Теория

Из теории нам известна зависимость скорости звука от показателя адиабаты γ :

$$c = \sqrt{\gamma \frac{RT}{\mu}}.$$

Таким образом, задача нахождения γ сходится к задаче нахождения скорости звука при заданной температуре.

В этом эксперименте предпологается использовать стоячие волны для нахождения c. Известно, что стоячие волны в коридоре длиной L образуются при:

$$L = \frac{n}{2}\lambda,$$

где λ – длина волны звука, связанная со скоростью звука и частотой f, как:

$$\lambda = c/f$$
.

То есть верно, что:

$$L = \frac{c}{2f}n.$$

Тогда для получения резонансов с разницей в номере =1 мы можем либо при L-const изменять частоту стоячих волн на

$$\Delta f = \frac{c}{2L}$$

либо длину трубы при f-const на

$$\Delta L = \frac{\lambda}{2} = \frac{c}{2f}$$

4. Эксперементальная установка

Мы используем установку на Рис. 1. Эта установка представляет из себя две вложенных друг в друга трубы с миллиметровой шкалой на подвижной части. На краях этой системы установлены приемник Т и передатчик М. Также к системе подведена трубка, через которую можно накачивать пространство внутри труб воздухом или углекислым газом.

Рис. 1. Установка для измерения скорости звука при помощи раздвижной трубы

5. Эксперимент

5.1. Воздух, L-const

 $L_0=(700\pm 5)$ мм, $\Delta f=0,001$ к Г
ц, $\Delta L=0,5$ мм, $T=(24,0\pm 0,1)^oC=(297,0\pm 0,1)$ К

n, номер	\$f\$, кГц
1	2,971
2	3,211
3	3,461
4	3,703

Из графика:

$$\frac{c}{2L} = (0.245 \pm 0,001) \text{к} \Gamma \text{ц}$$

$$c = (343 \pm 1) \text{м}/c$$

$$\gamma = \frac{c^2 \mu}{RT} = (1,399 \pm 0,005)$$

5.2. Воздух, f - const

 $f=(3,211\pm0,001)$ к
Гц, $\Delta f=0,001$ к Гц, $\Delta L=0,5$ мм, $T=(24,0\pm0,1)^oC=(297,0\pm0,1)$ К

n, номер	\$L\$, MM
1	700
2	755
3	810
4	864
5	918

Из графика:

$$\frac{c}{2f} = (54, 5 \pm 0, 5) \text{мм}$$

$$c = (344 \pm 1) \text{м/}c$$

$$\gamma = \frac{c^2 \mu}{RT} = (1, 401 \pm 0, 005)$$

5.3. Углекислый газ, L-const

 $L_0=(700\pm 5)$ мм, $\Delta f=0,001$ к Гц
, $\Delta L=0,5$ мм, $T=(24,0\pm 0,1)^oC=(297,0\pm 0,1)$ К

n, номер	\$f\$, кГц
1	2,123
2	2,321
3	2,493
4	2,691

Из графика:

$$\frac{c}{2L} = (0, 187 \pm 0, 001) \text{к} \Gamma \text{ц}$$

$$c = (264, 6 \pm 1, 2) \text{м}/c$$

$$\gamma = \frac{c^2 \mu}{RT} = (1, 299 \pm 0, 005)$$

5.4. Углекислый газ, f-const

 $f=(2,421\pm0,001)$ к
Гц, $\Delta f=0,001$ к Гц, $\Delta L=0,5$ мм, $T=(24,0\pm0,1)^oC=(297,0\pm0,1)$ К

n, номер	\$L\$, MM
1	700
2	755
3	810
4	864
5	918

Из графика:

$$\frac{c}{2f} = (55.1 \pm 0, 5) \text{MM}$$

$$c = (264, 4 \pm 1, 1) \text{M}/c$$

$$\gamma = \frac{c^2 \mu}{RT} = (1, 298 \pm 0, 005)$$

6. Заключение

Табличные значения для воздуха:

$$c({
m возд},0^{o}C)=331\,{
m m/}c$$
 $c({
m возд},30^{o}C)=350\,{
m m/}c$ $\gamma({
m возд},25^{o}C)=1,400$

Получившиеся значения совпадают с хорошей точностью.

Табличные значения для углекислого газа:

$$c(CO_2, 0^{o}C) = 260 \text{ m/}c$$

 $\gamma(CO_2, 25^{o}C) = 1,300$

Получившиеся значения совпадают с хорошей точностью.