

13 Security engineering

Objectives

The objective of this chapter is to introduce security issues that you should consider when you are developing application systems. When you have read this chapter, you will:

- understand the importance of security engineering and the difference between application security and infrastructure security;
- know how a risk-based approach can be used to derive security requirements and analyze system designs;
- know of software architectural patterns and design guidelines for secure systems engineering;
- understand why security testing and assurance is difficult and expensive.

Contents

- 13.1 Security and dependability
- 13.2 Security and organizations
- 13.3 Security requirements
- **13.4** Secure systems design
- **13.5** Security testing and assurance

The widespread adoption of the Internet in the 1990s introduced a new challenge for software engineers—designing and implementing systems that were secure. As more and more systems were connected to the Internet, a variety of different external attacks were devised to threaten these systems. The problems of producing dependable systems were hugely increased. Systems engineers had to consider threats from malicious and technically skilled attackers as well as problems resulting from accidental mistakes in the development process.

It is now essential to design systems to withstand external attacks and to recover from such attacks. Without security precautions, attackers will inevitably compromise a networked system. They may misuse the system hardware, steal confidential data, or disrupt the services offered by the system.

You have to take three security dimensions into account in secure systems engineering:

- 1. Confidentiality Information in a system may be disclosed or made accessible to people or programs that are not authorized to have access to that information. For example, the theft of credit card data from an e-commerce system is a confidentiality problem.
- Integrity Information in a system may be damaged or corrupted, making it unusual or unreliable. For example, a worm that deletes data in a system is an integrity problem.
- 3. Availability Access to a system or its data that is normally available may not be possible. A denial-of-service attack that overloads a server is an example of a situation where the system availability is compromised.

These dimensions are closely related. If an attack makes the system unavailable, then you will not be able to update information that changes with time. This means that the integrity of the system may be compromised. If an attack succeeds and the integrity of the system is compromised, then it may have to be taken down to repair the problem. Therefore, the availability of the system is reduced.

From an organizational perspective, security has to be considered at three levels:

- 1. Infrastructure security, which is concerned with maintaining the security of all systems and networks that provide an infrastructure and a set of shared services to the organization.
- 2. Application security, which is concerned with the security of individual application systems or related groups of systems.
- 3. Operational security, which is concerned with the secure operation and use of the organization's systems.

Figure 13.1 is a diagram of an application system stack that shows how an application system relies on an infrastructure of other systems in its operation. The lower levels of the infrastructure are hardware, but the software infrastructure for application systems may include:

Figure 13.1 System layers where security may be compromised

- an operating system platform, such as Linux or Windows;
- other generic applications that run on that system, such as web browsers and email clients;
- a database management system;
- middleware that supports distributed computing and database access; and
- libraries of reusable components that are used by the application software.

Network systems are software controlled, and networks may be subject to security threats where an attacker intercepts and reads or changes network packets. However, this requires specialized equipment, so the majority of security attacks are on the software infrastructure of systems. Attackers focus on software infrastructures because infrastructure components, such as web browsers, are universally available. Attackers can probe these systems for weaknesses and share information about vulnerabilities that they have discovered. As many people use the same software, attacks have wide applicability.

Infrastructure security is primarily a system management problem, where system managers configure the infrastructure to resist attacks. System security management includes a range of activities such as user and permission management, system software deployment and maintenance, and attack monitoring, detection, and recovery:

- 1. User and permission management involves adding and removing users from the system, ensuring that appropriate user authentication mechanisms are in place, and setting up the permissions in the system so that users only have access to the resources they need.
- 2. System software deployment and maintenance involves installing system software and middleware and configuring these properly so that security vulnerabilities are avoided. It also involves updating this software regularly with new versions or patches, which repair security problems that have been discovered.

Attack monitoring, detection, and recovery involves monitoring the system for unauthorized access, detecting and putting in place strategies for resisting attacks, and organizing backups of programs and data so that normal operation can be resumed after an external attack.

Operational security is primarily a human and social issue. It focuses on ensuring that the people using the system do not behave in such a way that system security is compromised. For example, users may leave themselves logged on to a system while it is unattended. An attacker can then easily get access to the system. Users often behave in an insecure way to help them do their jobs more effectively, and they have good reason to behave in an insecure way. A challenge for operational security is to raise awareness of security issues and to find the right balance between security and system effectiveness.

The term *cybersecurity* is now commonly used in discussions of system security. Cybersecurity is a very wide-ranging term that covers all aspects of the protection of citizens, businesses, and critical infrastructures from threats that arise from their use of computers and the Internet. Its scope includes all system levels from hardware and networks through application systems to mobile devices that may be used to access these systems. I discuss general cybersecurity issues, including infrastructure security, in Chapter 14, which covers resilience engineering.

In this chapter, I focus on issues of application security engineering—security requirements, design for security, and security testing. I don't cover general security techniques that may be used, such as encryption, and access control mechanisms or attack vectors, such as viruses and worms. General textbooks on computer security (Pfleeger and Pfleeger 2007; Anderson 2008; Stallings and Brown 2012) discuss these techniques in detail.

13.1 Security and dependability

Security is a system attribute that reflects the ability of the system to protect itself from malicious internal or external attacks. These external attacks are possible because most computers and mobile devices are networked and are therefore accessible by outsiders. Examples of attacks might be the installation of viruses and Trojan horses, unauthorized use of system services, or unauthorized modification of a system or its data.

If you really want a system to be as secure as possible, it is best not to connect it to the Internet. Then, your security problems are limited to ensuring that authorized users do not abuse the system and to controlling the use of devices such as USB drives. In practice, however, networked access provides huge benefits for most systems, so disconnecting from the Internet is not a viable security option.

For some systems, security is the most important system dependability attribute. Military systems, systems for electronic commerce, and systems that involve the processing and interchange of confidential information must be designed so that

Term	Definition
Asset	Something of value that has to be protected. The asset may be the software system itself or the data used by that system.
Attack	An exploitation of a system's vulnerability where an attacker has the goal of causing some damage to a system asset or assets. Attacks may be from outside the system (external attacks) or from authorized insiders (insider attacks).
Control	A protective measure that reduces a system's vulnerability. Encryption is an example of a control that reduces a vulnerability of a weak access control system.
Exposure	Possible loss or harm to a computing system. This can be loss or damage to data or can be a loss of time and effort if recovery is necessary after a security breach.
Threat	Circumstances that have potential to cause loss or harm. You can think of a threat as a system vulnerability that is subjected to an attack.
Vulnerability	A weakness in a computer-based system that may be exploited to cause loss or harm.

Figure 13.2 Security terminology

Unauthorized access to the Mentcare system

Clinic staff log on to the Mentcare system using a username and password. The system requires passwords to be at least eight letters long but allows any password to be set without further checking. A criminal finds out that a well-paid sports star is receiving treatment for mental health problems. He would like to gain illegal access to information in this system so that he can blackmail the star.

By posing as a concerned relative and talking with the nurses in the mental health clinic, he discovers how to access the system and personal information about the nurses and their families. By checking name badges, he discovers the names of some of the people allowed access. He then attempts to log on to the system by using these names and systematically guessing possible passwords, such as the names of the nurses' children.

Figure 13.3 A security story for the Mentcare system

they achieve a high level of security. If an airline reservation system is unavailable, for example, this causes inconvenience and some delays in issuing tickets. However, if the system is insecure, then an attacker could delete all bookings and it would be practically impossible for normal airline operations to continue.

As with other aspects of dependability, a specialized terminology is associated with security (Pfleeger and Pfleeger 2007). This terminology is explained in Figure 13.2. Figure 13.3 is a security story from the Mentcare system that I use to illustrate some of these terms. Figure 13.4 takes the security concepts defined in Figure 13.2 and shows how they apply to this security story.

System vulnerabilities may arise because of requirements, design, or implementation problems, or they may stem from human, social, or organizational failings. People may choose easy-to-guess passwords or write down their passwords in places where they can be found. System administrators make errors in setting up access control or configuration files, and users don't install or use protection software. However, we cannot simply class these problems as human errors. User mistakes or omissions often reflect poor systems design decisions that require, for example, frequent password changes (so that users write down their passwords) or complex configuration mechanisms.

Term	Example
Asset	The record of each patient who is receiving or has received treatment.
Attack	An impersonation of an authorized user.
Control	A password checking system that disallows user passwords that are proper names or words that are normally included in a dictionary.
Exposure	Potential financial loss from future patients who do not seek treatment because they do not trust the clinic to maintain their data. Financial loss from legal action by the sports star. Loss of reputation.
Threat	An unauthorized user will gain access to the system by guessing the credentials (login name and password) of an authorized user.
Vulnerability	Authentication is based on a password system that does not require strong passwords. Users can then set easily guessable passwords.

Figure 13.4 Examples of security terminology

Four types of security threats may arise:

- 1. Interception threats that allow an attacker to gain access to an asset. So, a possible threat to the Mentcare system might be a situation where an attacker gains access to the records of an individual patient.
- 2. Interruption threats that allow an attacker to make part of the system unavailable. Therefore, a possible threat might be a denial-of-service attack on a system database server.
- 3. Modification threats that allow an attacker to tamper with a system asset. In the Mentcare system, a modification threat would be where an attacker alters or destroys a patient record.
- 4. Fabrication threats that allow an attacker to insert false information into a system. This is perhaps not a credible threat in the Mentcare system but would certainly be a threat in a banking system, where false transactions might be added to the system that transfers money to the perpetrator's bank account.

The controls that you might put in place to enhance system security are based on the fundamental notions of avoidance, detection, and recovery:

- 1. Vulnerability avoidance Controls that are intended to ensure that attacks are unsuccessful. The strategy here is to design the system so that security problems are avoided. For example, sensitive military systems are not connected to the Internet so that external access is more difficult. You should also think of encryption as a control based on avoidance. Any unauthorized access to encrypted data means that the attacker cannot read the encrypted data. It is expensive and time consuming to crack strong encryption.
- 2. Attack detection and neutralization Controls that are intended to detect and repel attacks. These controls involve including functionality in a system that monitors its operation and checks for unusual patterns of activity. If these

- attacks are detected, then action may be taken, such as shutting down parts of the system or restricting access to certain users.
- 3. Exposure limitation and recovery Controls that support recovery from problems. These can range from automated backup strategies and information "mirroring" through to insurance policies that cover the costs associated with a successful attack on the system.

Security is closely related to the other dependability attributes of reliability, availability, safety, and resilience:

- 1. Security and reliability If a system is attacked and the system or its data are corrupted as a consequence of that attack, then this may induce system failures that compromise the reliability of the system.
 - Errors in the development of a system can lead to security loopholes. If a system does not reject unexpected inputs or if array bounds are not checked, then attackers can exploit these weaknesses to gain access to the system. For example, failure to check the validity of an input may mean that an attacker can inject and execute malicious code.
- 2. Security and availability A common attack on a web-based system is a denialof-service attack, where a web server is flooded with service requests from a range of different sources. The aim of this attack is to make the system unavailable. A variant of this attack is where a profitable site is threatened with this type of attack unless a ransom is paid to the attackers.
- 3. Security and safety Again, the key problem is an attack that corrupts the system or its data. Safety checks are based on the assumption that we can analyze the source code of safety-critical software and that the executing code is a completely accurate translation of that source code. If this is not the case, because an attacker has changed the executing code, safety-related failures may be induced and the safety case made for the software is invalid.
 - Like safety, we cannot assign a numeric value to the security of a system, nor can we exhaustively test the system for security. Both safety and security can be thought of as "negative" or "shall not" characteristics in that they are concerned with things that should not happen. As we can never prove a negative, we can never prove that a system is safe or secure.
- 4. Security and resilience Resilience, covered in Chapter 14, is a system characteristic that reflects its ability to resist and recover from damaging events. The most probable damaging event on networked software systems is a cyberattack of some kind, so most of the work now done in resilience is aimed at deterring, detecting, and recovering from such attacks.

Security has to be maintained if we are to create reliable, available, and safe softwareintensive systems. It is not an add-on, which can be added later but has to be considered at all stages of the development life cycle from early requirements to system operation.

13.2 Security and organizations

Building secure systems is expensive and uncertain. It is impossible to predict the costs of a security failure, so companies and other organizations find it difficult to judge how much they should spend on system security. In this respect, security and safety are different. There are laws that govern workplace and operator safety, and developers of safety-critical systems have to comply with these irrespective of the costs. They may be subject to legal action if they use an unsafe system. However, unless a security failure discloses personal information, there are no laws that prevent an insecure system from being deployed.

Companies assess the risks and losses that may arise from certain types of attacks on system assets. They may then decide that it is cheaper to accept these risks rather than build a secure system that can deter or repel the external attacks. Credit card companies apply this approach to fraud prevention. It is usually possible to introduce new technology to reduce credit card fraud. However, it is often cheaper for these companies to compensate users for their losses due to fraud than to buy and deploy fraud-reduction technology.

Security risk management is therefore a business rather than a technical issue. It has to take into account the financial and reputational losses from a successful system attack as well as the costs of security procedures and technologies that may reduce these losses. For risk management to be effective, organizations should have a documented information security policy that sets out:

- The assets that must be protected It does not necessarily make sense to apply stringent security procedures to all organizational assets. Many assets are not confidential, and a company can improve its image by making these assets freely available. The costs of maintaining the security of information that is in the public domain are much less than the costs of keeping confidential information secure.
- The level of protection that is required for different types of assets Not all assets need the same level of protection. In some cases (e.g., for sensitive personal information), a high level of security is required; for other information, the consequences of loss may be minor, so a lower level of security is adequate. Therefore, some information may be made available to any authorized and logged-in user; other information may be much more sensitive and only available to users in certain roles or positions of responsibility.
- The responsibilities of individual users, managers, and the organization The security policy should set out what is expected of users—for example, use strong passwords, log out of computers, and lock offices. It also defines what users can expect from the company, such as backup and information-archiving services, and equipment provision.
- 4. Existing security procedures and technologies that should be maintained For reasons of practicality and cost, it may be essential to continue to use existing approaches to security even where these have known limitations. For example,

a company may require the use of a login name/password for authentication, simply because other approaches are likely to be rejected by users.

Security policies often set out general information access strategies that should apply across the organization. For example, an access strategy may be based on the clearance or seniority of the person accessing the information. Therefore, a military security policy may state: "Readers may only examine documents whose classification is the same as or below the reader's vetting level." This means that if a reader has been vetted to a "secret" level, he or she may access documents that are classed as secret, confidential, or open but not documents classed as top secret.

The point of security policies is to inform everyone in an organization about security, so these should not be long and detailed technical documents. From a security engineering perspective, the security policy defines, in broad terms, the security goals of the organization. The security engineering process is concerned with implementing these goals.

Security risk assessment 13.2.1

Security risk assessment and management are organizational activities that focus on identifying and understanding the risks to information assets (systems and data) in the organization. In principle, an individual risk assessment should be carried out for all assets; in practice, however, this may be impractical if a large number of existing systems and databases need to be assessed. In those situations, a generic assessment may be applied to all of them. However, individual risk assessments should be carried out for new systems.

Risk assessment and management is an organizational activity rather than a technical activity that is part of the software development life cycle. The reason for this is that some types of attack are not technology-based but rather rely on weaknesses in more general organizational security. For example, an attacker may gain access to equipment by pretending to be an accredited engineer. If an organization has a process to check with the equipment supplier that an engineer's visit is planned, this can deter this type of attack. This approach is much simpler than trying to address the problem using a technological solution.

When a new system is to be developed, security risk assessment and management should be a continuing process throughout the development life cycle from initial specification to operational use. The stages of risk assessment are:

Preliminary risk assessment The aim of this initial risk assessment is to identify generic risks that are applicable to the system and to decide if an adequate level of security can be achieved at a reasonable cost. At this stage, decisions on the detailed system requirements, the system design, or the implementation technology have not been made. You don't know of potential technology vulnerabilities or the controls that are included in reused system components or middleware. The risk assessment should therefore focus on the identification and analysis of high-level risks to the system. The outcomes of the risk assessment process are used to help identify security requirements.

- 2. Design risk assessment This risk assessment takes place during the system development life cycle and is informed by the technical system design and implementation decisions. The results of the assessment may lead to changes to the security requirements and the addition of new requirements. Known and potential vulnerabilities are identified, and this knowledge is used to inform decision making about the system functionality and how it is to be implemented, tested, and deployed.
- 3. Operational risk assessment This risk assessment process focuses on the use of the system and the possible risks that can arise. For example, when a system is used in an environment where interruptions are common, a security risk is that a logged-in user leaves his or her computer unattended to deal with a problem. To counter this risk, a timeout requirement may be specified so that a user is automatically logged out after a period of inactivity.

Operational risk assessment should continue after a system has been installed to take account of how the system is used and proposals for new and changed requirements. Assumptions about the operating requirement made when the system was specified may be incorrect. Organizational changes may mean that the system is used in different ways from those originally planned. These changes lead to new security requirements that have to be implemented as the system evolves.

13.3 Security requirements

The specification of security requirements for systems has much in common with the specification of safety requirements. You cannot specify safety or security requirements as probabilities. Like safety requirements, security requirements are often "shall not" requirements that define unacceptable system behavior rather than required system functionality.

However, security is a more challenging problem than safety, for a number of reasons:

- 1. When considering safety, you can assume that the environment in which the system is installed is not hostile. No one is trying to cause a safety-related incident. When considering security, you have to assume that attacks on the system are deliberate and that the attacker may have knowledge of system weaknesses.
- When system failures occur that pose a risk to safety, you look for the errors or omissions that have caused the failure. When deliberate attacks cause system failure, finding the root cause may be more difficult as the attacker may try to conceal the cause of the failure.
- It is usually acceptable to shut down a system or to degrade system services to avoid a safety-related failure. However, attacks on a system may be denial-ofservice attacks, which are intended to compromise system availability. Shutting down the system means that the attack has been successful.

4. Safety-related events are accidental and are not created by an intelligent adversary. An attacker can probe a system's defenses in a series of attacks, modifying the attacks as he or she learns more about the system and its responses.

These distinctions mean that security requirements have to be more extensive than safety requirements. Safety requirements lead to the generation of functional system requirements that provide protection against events and faults that could cause safety-related failures. These requirements are mostly concerned with checking for problems and taking actions if these problems occur. By contrast, many types of security requirements cover the different threats faced by a system.

Firesmith (Firesmith 2003) identified 10 types of security requirements that may be included in a system specification:

- Identification requirements specify whether or not a system should identify its users before interacting with them.
- 2. Authentication requirements specify how users are identified.
- 3. Authorization requirements specify the privileges and access permissions of identified users.
- 4. Immunity requirements specify how a system should protect itself against viruses, worms, and similar threats.
- 5. Integrity requirements specify how data corruption can be avoided.
- 6. Intrusion detection requirements specify what mechanisms should be used to detect attacks on the system.
- 7. Nonrepudiation requirements specify that a party in a transaction cannot deny its involvement in that transaction.
- 8. Privacy requirements specify how data privacy is to be maintained.
- 9. Security auditing requirements specify how system use can be audited and checked.
- 10. System maintenance security requirements specify how an application can prevent authorized changes from accidentally defeating its security mechanisms.

Of course, you will not see all of these types of security requirements in every system. The particular requirements depend on the type of system, the situation of use, and the expected users.

Preliminary risk assessment and analysis aim to identify the generic security risks for a system and its associated data. This risk assessment is an important input to the security requirements engineering process. Security requirements can be proposed to support the general risk management strategies of avoidance, detection and mitigation.

1. Risk avoidance requirements set out the risks that should be avoided by designing the system so that these risks simply cannot arise.

Figure 13.5 The preliminary risk assessment process for security requirements

- Risk detection requirements define mechanisms that identify the risk if it arises and neutralize the risk before losses occur.
- Risk mitigation requirements set out how the system should be designed so that it can recover from and restore system assets after some loss has occurred.

A risk-driven security requirements process is shown in Figure 13.5. The process stages are:

- 1. Asset identification, where the system assets that may require protection are identified. The system itself or particular system functions may be identified as assets as well as the data associated with the system.
- 2. Asset value assessment, where you estimate the value of the identified assets.
- 3. Exposure assessment, where you assess the potential losses associated with each asset. This process should take into account direct losses such as the theft of information, the costs of recovery, and the possible loss of reputation.
- *Threat identification*, where you identify the threats to system assets.
- 5. Attack assessment, where you decompose each threat into attacks that might be made on the system and the possible ways in which these attacks may occur. You may use attack trees (Schneier 1999) to analyze the possible attacks. These are similar to fault trees, (Chapter 12) as you start with a threat at the root of the tree and then identify possible causal attacks and how these might be made.
- 6. Control identification, where you propose the controls that might be put in place to protect an asset. The controls are the technical mechanisms, such as encryption, that you can use to protect assets.
- 7. Feasibility assessment, where you assess the technical feasibility and the costs of the proposed controls. It is not worth having expensive controls to protect assets that don't have a high value.

Asset	Value	Exposure
The information system	High. Required to support all clinical consultations. Potentially safety critical.	High. Financial loss as clinics may have to be canceled. Costs of restoring system. Possible patient harm if treatment cannot be prescribed.
The patient database	High. Required to support all clinical consultations. Potentially safety critical.	High. Financial loss as clinics may have to be canceled. Costs of restoring system. Possible patient harm if treatment cannot be prescribed.
An individual patient record	Normally low, although may be high for specific high-profile patients	Low direct losses but possible loss of reputation.

Figure 13.6 Asset analysis in a preliminary risk assessment report for the Mentcare system

8. Security requirements definition, where knowledge of the exposure, threats, and control assessments is used to derive system security requirements. These requirements may apply to the system infrastructure or the application system.

The Mentcare patient management system is a security-critical system. Figures 13.6 and 13.7 are fragments of a report that documents the risk analysis of that software system. Figure 13.6 is an asset analysis that describes the assets in the system and their value. Figure 13.7 shows some of the threats that a system may face.

Once a preliminary risk assessment has been completed, then requirements can be proposed that aim to avoid, detect, and mitigate risks to the system. However, creating these requirements is not a formulaic or automated process. It requires inputs from both engineers and domain experts to suggest requirements based on their understanding of the risk analysis and the functional requirements of the software system. Some examples of the Mentcare system security requirements and associated risks are:

- 1. Patient information shall be downloaded, at the start of a clinic session, from the database to a secure area on the system client.
 - *Risk:* Damage from denial-of-service attack. Maintaining local copies means that access is still possible.
- 2. All patient information on the system client shall be encrypted.
 - *Risk:* External access to patient records. If data is encrypted, then attacker must have access to the encryption key to discover patient information.
- 3. Patient information shall be uploaded to the database when a clinic session is over and deleted from the client computer.
 - Risk: External access to patience records through stolen laptop.
- 4. A log of all changes made to the system database and the initiator of these changes shall be maintained on a separate computer from the database server.
 - *Risk:* Insider or external attacks that corrupt current data. A log should allow up-to-date records to be re-created from a backup.

Threat	Probability	Control	Feasibility
An unauthorized user gains access as system manager and makes system unavailable	Low	Only allow system management from specific locations that are physically secure.	Low cost of implementation, but care must be taken with key distribution and to ensure that keys are available in the event of an emergency.
An unauthorized user gains access as system user to confidential information	High	Require all users to authenticate themselves using a biometric mechanism.	Technically feasible but high- cost solution. Possible user resistance.
		Log all changes to patient information to track system usage.	Simple and transparent to implement and also supports recovery.

Figure 13.7 Threat and control analysis in a preliminary risk assessment report

The first two requirements are related—patient information is downloaded to a local machine, so that consultations may continue if the patient database server is attacked or becomes unavailable. However, this information must be deleted so that later users of the client computer cannot access the information. The fourth requirement is a recovery and auditing requirement. It means that changes can be recovered by replaying the change log and that it is possible to discover who has made the changes. This accountability discourages misuse of the system by authorized staff.

13.3.1 Misuse cases

The derivation of security requirements from a risk analysis is a creative process involving engineers and domain experts. One approach that has been developed to support this process for users of the UML is the idea of misuse cases (Sindre and Opdahl 2005). Misuse cases are scenarios that represent malicious interactions with a system. You can use these scenarios to discuss and identify possible threats and, therefore also determine the system's security requirements. They can be used alongside use cases when deriving the system requirements (Chapters 4 and 5).

Misuse cases are associated with use case instances and represent threats or attacks associated with these use cases. They may be included in a use case diagram but should also have a more complete and detailed textual description. In Figure 13.8, I have taken the use cases for a medical receptionist using the Mentcare system and have added misuse cases. These are normally represented as black ellipses.

As with use cases, misuse cases can be described in several ways. I think that it is most helpful to describe them as a supplement to the original use case description. I also think it is best to have a flexible format for misuse cases as different types of attack have to be described in different ways. Figure 13.9 shows the original description of the Transfer Data use case (Figure 5.4), with the addition of a misuse case description.

The problem with misuse cases mirrors the general problem of use cases, which is that interactions between end-users and a system do not capture all of the system

Figure 13.8 Misuse cases

Mentcare system	Mentcare system: Transfer data	
Actors	Medical receptionist, Patient records system (PRS)	
Description	A receptionist may transfer data from the Mentcare system to a general patient record database that is maintained by a health authority. The information transferred may either be updated personal information (address, phone number, etc.) or a summary of the patient's diagnosis and treatment	
Data	Patient's personal information, treatment summary	
Stimulus	User command issued by medical receptionist	
Response	Confirmation that PRS has been updated	
Comments	The receptionist must have appropriate security permissions to access the patient information and the PRS.	

Mentcare system: Intercept transfer (Misuse case)		
Actors	Medical receptionist, Patient records system (PRS), Attacker	
Description	A receptionist transfers data from his or her PC to the Mentcare system on the server.	
	An attacker intercepts the data transfer and takes a copy of that data.	
Data (assets)	Patient's personal information, treatment summary	
Attacks	A network monitor is added to the system, and packets from the receptionist to the server are intercepted.	
	A spoof server is set up between the receptionist and the database server so that receptionist believes they are interacting with the real system.	
Mitigations	All networking equipment must be maintained in a locked room. Engineers accessing the equipment must be accredited.	
	All data transfers between the client and server must be encrypted. Certificate-based client–server communication must be used.	
Requirements	All communications between the client and the server must use the Secure Socket Layer (SSL). The https protocol uses certificate-based authentication and encryption.	

Figure 13.9 Misuse case descriptions

requirements. Misuse cases can be used as part of the security requirements engineering process, but you also need to consider risks that are associated with system stakeholders who do not interact directly with the system.

13.4 Secure systems design

It is very difficult to add security to a system after it has been implemented. Therefore, you need to take security issues into account during the systems design process and make design choices that enhance the security of a system. In this section, I focus on two application-independent issues relevant to secure systems design:

- 1. *Architectural design*—how do architectural design decisions affect the security of a system?
- 2. Good practice—what is accepted good practice when designing secure systems?

Of course, these are not the only design issues that are important for security. Every application is different, and security design also has to take into account the purpose, criticality, and operational environment of the application. For example, if you are designing a military system, you need to adopt their security classification model (secret, top secret, etc.) If you are designing a system that maintains personal information, you may have to take into account data protection legislation that places restrictions on how data is managed.

Using redundancy and diversity, which is essential for dependability, may mean that a system can resist and recover from attacks that target specific design or implementation characteristics. Mechanisms to support a high level of availability may help the system to recover from denial-of-service attacks, where the aim of an attacker is to bring down the system and stop it from working properly.

Designing a system to be secure inevitably involves compromises. It is usually possible to design multiple security measures into a system that will reduce the chances of a successful attack. However, these security measures may require additional computation and so affect the overall performance of the system. For example, you can reduce the chances of confidential information being disclosed by encrypting that information. However, this means that users of the information have to wait for it to be decrypted, which may slow down their work.

There are also tensions between security and usability—another emergent system property. Security measures sometimes require the user to remember and provide additional information (e.g., multiple passwords). However, sometimes users forget this information, so the additional security means that they can't use the system.

System designers have to find a balance between security, performance, and usability. This depends on the type of system being developed, the expectations of its users, and its operational environment. For example, in a military system, users are familiar with high-security systems and so accept and follow processes that require frequent checks. In a system for stock trading, where speed is essential, interruptions of operation for security checks would be completely unacceptable.

Denial-of-service attacks

Denial-of-service attacks attempt to bring down a networked system by bombarding it with a huge number of service requests, usually from hundreds of attacking systems. These place a load on the system for which it was not designed and they exclude legitimate requests for system service. Consequently, the system may become unavailable either because it crashes with the heavy load or has to be taken offline by system managers to stop the flow of requests.

http://software-engineering-book.com/web/denial-of-service/

13.4.1 Design risk assessment

Security risk assessment during requirements engineering identifies a set of high-level security requirements for a system. However, as the system is designed and implemented, architectural and technology decisions made during the system design process influence the security of a system. These decisions generate new design requirements and may mean that existing requirements have to change.

System design and the assessment of design-related risks are interleaved processes (Figure 13.10). Preliminary design decisions are made, and the risks associated with these decisions are assessed. This assessment may lead to new requirements to mitigate the risks that have been identified or design changes to reduce these risks. As the system design evolves and is developed in more detail, the risks are reassessed and the results are fed back to the system designers. The design risk assessment process ends when the design is complete and the remaining risks are acceptable.

When assessing risks during design and implementation, you have more information about what needs to be protected, and you also will know something about the vulnerabilities in the system. Some of these vulnerabilities will be inherent in the design choices made. For example, an inherent vulnerability in password-based authentication is that an authorized user reveals their password to an unauthorized user. So, if password-based authentication is used, the risk assessment process may suggest new requirements to mitigate the risk. For example, there may be a requirement for multifactor authentication where users must authenticate themselves using some personal knowledge as well as a password.

Figure 13.10 Interleaved design and risk assessment

Figure 13.11 Design risk assessment

Figure 13.11 is a model of the design risk assessment process. The key difference between preliminary risk analysis and design risk assessment is that, at the design stage, you now have information about information representation and distribution and the database organization for the high-level assets that have to be protected. You also know about important design decisions such as the software to be reused, infrastructure controls and protection, and so forth. Based on this information, your assessment can identify changes to the security requirements and the system design to provide additional protection for the important system assets.

Two examples from the Mentcare system illustrate how protection requirements are influenced by decisions on information representation and distribution:

- You may make a design decision to separate personal patient information and information (design assets) about treatments received, with a key linking these records. The treatment information is technical and so much less sensitive than the personal patient information. If the key is protected, then an attacker will only be able to access routine information, without being able to link this to an individual patient.
- Assume that, at the beginning of a session, a design decision is made to copy patient records to a local client system. This allows work to continue if the server is unavailable. It makes it possible for a healthcare worker to access patient records from a laptop, even if no network connection is available. However, you now have two sets of records to protect and the client copies are subject to additional risks, such as theft of the laptop computer. You therefore have to think about what controls should be used to reduce risk. You may therefore include a requirement that client records held on laptops or other personal computers may have to be encrypted.

Figure 13.12 Vulnerabilities associated with technology choices

To illustrate how decisions on development technologies influence security, assume that the health care provider has decided to build a Mentcare system using an off-the-shelf information system for maintaining patient records. This system has to be configured for each type of clinic in which it is used. This decision has been made because it appears to offer the most extensive functionality for the lowest development cost and fastest deployment time.

When you develop an application by reusing an existing system, you have to accept the design decisions made by the developers of that system. Let us assume that some of these design decisions are:

- 1. System users are authenticated using a login name/password combination. No other authentication method is supported.
- 2. The system architecture is client–server, with clients accessing data through a standard web browser on a client computer.
- 3. Information is presented to users as an editable web form. They can change information in place and upload the revised information to the server.

For a generic system, these design decisions are perfectly acceptable, but design risk assessment shows that they have associated vulnerabilities. Examples of these possible vulnerabilities are shown in Figure 13.12.

Once vulnerabilities have been identified, you then have to decide what steps you can take to reduce the associated risks. This will often involve making decisions

about additional system security requirements or the operational process of using the system. Examples of these requirements might be:

- 1. A password checker program shall be made available and shall be run daily to check all user passwords. User passwords that appear in the system dictionary shall be identified, and users with weak passwords shall be reported to system administrators.
- Access to the system shall only be allowed to client computers that have been approved and registered with the system administrators.
- Only one approved web browser shall be installed on client computers.

As an off-the-shelf system is used, it isn't possible to include a password checker in the application system itself, so a separate system must be used. Password checkers analyze the strength of user passwords when they are set up and notify users if they have chosen weak passwords. Therefore, vulnerable passwords can be identified reasonably quickly after they have been set up, and action can then be taken to ensure that users change their password.

The second and third requirements mean that all users will always access the system through the same browser. You can decide what is the most secure browser when the system is deployed and install that on all client computers. Security updates are simplified because there is no need to update different browsers when security vulnerabilities are discovered and fixed.

The process model shown in Figure 13.10 assumes a design process where the design is developed to a fairly detailed level before implementation begins. This is not the case for agile processes where the design and the implementation are developed together, with the code refactored as the design is developed. Frequent delivery of system increments does not allow time for a detailed risk assessment, even if information on assets and technology choices is available.

The issues surrounding security and agile development have been widely discussed (Lane 2010; Schoenfield 2013). So far, the issue has not really been resolved—some people think that a fundamental conflict exists between security and agile development, and others believe that this conflict can be resolved using security-focused stories (Safecode 2012). This remains an outstanding problem for developers of agile methods. Meanwhile, many security-conscious companies refuse to use agile methods because they conflict with their security and risk analysis policies.

13.4.2 Architectural design

Software architecture design decisions can have profound effects on the emergent properties of a software system. If an inappropriate architecture is used, it may be very difficult to maintain the confidentiality and integrity of information in the system or to guarantee a required level of system availability.

Figure 13.13 A layered protection architecture

In designing a system architecture that maintains security, you need to consider two fundamental issues:

- 1. Protection—how should the system be organized so that critical assets can be protected against external attack?
- 2. *Distribution*—how should system assets be distributed so that the consequences of a successful attack are minimized?

These issues are potentially conflicting. If you put all your assets in one place, then you can build layers of protection around them. As you only have to build a single protection system, you may be able to afford a strong system with several protection layers. However, if that protection fails, then all your assets are compromised. Adding several layers of protection also affects the usability of a system, so it may mean that it is more difficult to meet system usability and performance requirements.

On the other hand, if you distribute assets, they are more expensive to protect because protection systems have to be implemented for each distributed asset. Typically, then, you cannot afford to implement as many protection layers. The chances are greater that the protection will be breached. However, if this happens, you don't suffer a total loss. It may be possible to duplicate and distribute information assets so that if one copy is corrupted or inaccessible, then the other copy can be used. However, if the information is confidential, keeping additional copies increases the risk that an intruder will gain access to this information.

For the Mentcare system, a client-server architecture with a shared central database is used. To provide protection, the system has a layered architecture with the critical protected assets at the lowest level in the system. Figure 13.13 illustrates this multilevel system architecture in which the critical assets to be protected are the records of individual patients.

To access and modify patient records, an attacker has to penetrate three system layers:

- 1. *Platform-level protection*. The top level controls access to the platform on which the patient record system runs. This usually involves a user signing-on to a particular computer. The platform will also normally include support for maintaining the integrity of files on the system, backups, and so on.
- 2. Application-level protection. The next protection level is built into the application itself. It involves a user accessing the application, being authenticated, and getting authorization to take actions such as viewing or modifying data. Application-specific integrity management support may be available.
- 3. Record-level protection. This level is invoked when access to specific records is required, and involves checking that a user is authorized to carry out the requested operations on that record. Protection at this level might also involve encryption to ensure that records cannot be browsed using a file browser. Integrity checking using, for example, cryptographic checksums can detect changes that have been made outside the normal record update mechanisms.

The number of protection layers that you need in any particular application depends on the criticality of the data. Not all applications need protection at the record level, and, therefore, coarser-grain access control is more commonly used. To achieve security, you should not allow the same user credentials to be used at each level. Ideally, if you have a password-based system, then the application password should be different from both the system password and the record-level password. However, multiple passwords are difficult for users to remember, and they find repeated requests to authenticate themselves irritating. Therefore, you often have to compromise on security in favor of system usability.

If protection of data is a critical requirement, then a centralized client–server architecture is usually the most effective security architecture. The server is responsible for protecting sensitive data. However, if the protection is compromised, then the losses associated with an attack are high, as all data may be lost or damaged. Recovery costs may also be high (e.g., all user credentials may have to be reissued). Centralized systems are also more vulnerable to denial-of-service attacks, which overload the server and make it impossible for anyone to access the system database.

If the consequences of a server breach are high, you may decide to use an alternative distributed architecture for the application. In this situation, the system's assets are distributed across a number of different platforms, with separate protection mechanisms used for each of these platforms. An attack on one node might mean that some assets are unavailable, but it would still be possible to provide some system services. Data can be replicated across the nodes in the system so that recovery from attacks is simplified.

Figure 13.14 illustrates the architecture of a banking system for trading in stocks and funds on the New York, London, Frankfurt, and Hong Kong markets. The system

Figure 13.14 Distributed assets in an equity trading system

is distributed so that data about each market is maintained separately. Assets required to support the critical activity of equity trading (user accounts and prices) are replicated and available on all nodes. If a node of the system is attacked and becomes unavailable, the critical activity of equity trading can be transferred to another country and so can still be available to users.

I have already discussed the problem of finding a balance between security and system performance. A problem of secure system design is that in many cases, the architectural style that is best for the security requirements may not be the best one for meeting the performance requirements. For example, say an application has an absolute requirement to maintain the confidentiality of a large database and another requirement for very fast access to that data. A high-level of protection suggests that layers of protection are required, which means that there must be communications between the system layers. This has an inevitable performance overhead and so will slow down access to the data.

If an alternative architecture is used, then implementing protection and guaranteeing confidentiality may be more difficult and expensive. In such a situation, you have to discuss the inherent conflicts with the customer who is paying for the system and agree on how these conflicts are to be resolved.

13.4.3 Design guidelines

There are no easy ways to ensure system security. Different types of systems require different technical measures to achieve a level of security that is acceptable to the system owner. The attitudes and requirements of different groups of users profoundly affect what is and is not acceptable. For example, in a bank, users are likely to accept a higher level of security, and hence more intrusive security procedures than, say, in a university.

However, some general guidelines have wide applicability when designing system security solutions. These guidelines encapsulate good design practice for secure systems engineering. General design guidelines for security, such as those discussed, below, have two principal uses:

- They help raise awareness of security issues in a software engineering team. Software engineers often focus on the short-term goal of getting the software working and delivered to customers. It is easy for them to overlook security issues. Knowledge of these guidelines can mean that security issues are considered when software design decisions are made.
- They can be used as a review checklist that can be used in the system validation process. From the high-level guidelines discussed here, more specific questions can be derived that explore how security has been engineered into a system.

Security guidelines are sometimes very general principles such as "Secure the weakest link in a system," "Keep it simple," and "Avoid security through obscurity." I think these general guidelines are too vague to be of real use in the design process. Consequently, I have focused here on more specific design guidelines. The 10 design guidelines, summarized in Figure 13.15, have been taken from different sources (Schneier 2000; Viega and McGraw 2001; Wheeler 2004).

Guideline 1: Base security decisions on an explicit security policy

An organizational security policy is a high-level statement that sets out fundamental security conditions for an organization. It defines the "what" of security rather than the "how." so the policy should not define the mechanisms to be used to provide and enforce security. In principle, all aspects of the security policy should be reflected in the system requirements. In practice, especially if agile development is used, this is unlikely to happen.

Designers should use the security policy as a framework for making and evaluating design decisions. For example, say you are designing an access control system for the Mentcare system. The hospital security policy may state that only accredited clinical staff may modify electronic patient records. This leads to requirements to check the accreditation of anyone attempting to modify the system and to reject modifications from unaccredited people.

The problem that you may face is that many organizations do not have an explicit systems security policy. Over time, changes may have been made to systems in response to identified problems, but with no overarching policy document to guide the evolution of a system. In such situations, you need to work out and document the policy from examples and confirm it with managers in the company.

Design guidelines for security		
1	Base security decisions on an explicit security policy	
2	Use defense in depth	
3	Fail securely	
4	Balance security and usability	
5	Log user actions	
6	Use redundancy and diversity to reduce risk	
7	Specify the format of system inputs	
8	Compartmentalize your assets	
9	Design for deployment	
10	Design for recovery	

Figure 13.15 Design guidelines for secure systems engineering

Guideline 2: Use defense in depth

In any critical system, it is good design practice to try to avoid a single point of failure. That is, a single failure in part of the system should not result in an overall systems failure. In security terms, this means that you should not rely on a single mechanism to ensure security; rather, you should employ several different techniques. This concept is sometimes called "defense in depth."

An example of defense in depth is multifactor authentication. For example, if you use a password to authenticate users to a system, you may also include a challenge/ response authentication mechanism where users have to pre-register questions and answers with the system. After they have input their login credentials, they must then answer questions correctly before being allowed access.

Guideline 3: Fail securely

System failures are inevitable in all systems, and, in the same way that safety-critical systems should always fail-safe; security-critical systems should always "fail-secure." When the system fails, you should not use fallback procedures that are less secure than the system itself. Nor should system failure mean that an attacker can access data that would not normally be allowed.

For example, in the Mentcare system, I suggested a requirement that patient data should be downloaded to a system client at the beginning of a clinic session. This speeds up access and means that access is possible if the server is unavailable. Normally, the server deletes this data at the end of the clinic session. However, if the server has failed, then it is possible that the information on the client will be maintained. A fail-secure approach in those circumstances is to encrypt all patient data stored on the client. This means that an unauthorized user cannot read the data.

Guideline 4: Balance security and usability

The demands of security and usability are often contradictory. To make a system secure, you have to introduce checks that users are authorized to use the system and that they are acting in accordance with security policies. All of these inevitably make demands on users—they may have to remember login names and passwords, only use the system from certain computers, and so on. These mean that it takes users more time to get started with the system and use it effectively. As you add security features to a system, it usually becomes more difficult to use. I recommend Cranor and Garfinkel's book (Cranor and Garfinkel 2005), which discusses a wide range of issues in the general area of security and usability.

There comes a point when it is counterproductive to keep adding on new security features at the expense of usability. For example, if you require users to input multiple passwords or to change their passwords to impossible to remember character strings at frequent intervals, they will simply write down these passwords. An attacker (especially an insider) may then be able to find the passwords that have been written down and gain access to the system.

Guideline 5: Log user actions

If it is practically possible to do so, you should always maintain a log of user actions. This log should, at least, record who did what, the assets used and the time and date of the action. If you maintain this as a list of executable commands, you can replay the log to recover from failures. You also need tools that allow you to analyze the log and detect potentially anomalous actions. These tools can scan the log and find anomalous actions, and thus help detect attacks and trace how the attacker gained access to the system.

Apart from helping recover from failure, a log of user actions is useful because it acts as a deterrent to insider attacks. If people know that their actions are being logged, then they are less likely to do unauthorized things. This is most effective for casual attacks, such as a nurse looking up patient records of neighbors, or for detecting attacks where legitimate user credentials have been stolen through social engineering. Of course, this approach is not foolproof, as technically skilled insiders may also be able to access and change the log.

Guideline 6: Use redundancy and diversity to reduce risk

Redundancy means that you maintain more than one version of software or data in a system. Diversity, when applied to software, means that the different versions should not rely on the same platform or be implemented using the same technologies. Therefore, platform or technology vulnerabilities will not affect all versions and so will lead to a common failure.

I have already discussed examples of redundancy—maintaining patient information on both the server and the client, first in the Mentcare system and then in the distributed equity trading system shown in Figure 13.14. In the patient records system, you could use diverse operating systems on the client and the server (e.g., Linux on the server, Windows on the client). This ensures that an attack based on an operating system vulnerability will not affect both the server and the client. Of course, running multiple operating systems leads to higher systems management costs. You have to trade off security benefits against this increased cost.

Guideline 7: Specify the format of system inputs

A common attack on a system involves providing the system with unexpected inputs that cause it to behave in an unanticipated way. These inputs may simply cause a system crash, resulting in a loss of service, or the inputs could be made up of malicious code that is executed by the system. Buffer overflow vulnerabilities, first demonstrated in the Internet worm (Spafford 1989) and commonly used by attackers, may be triggered using long input strings. So-called SQL poisoning, where a malicious user inputs an SQL fragment that is interpreted by a server, is another fairly common attack.

You can avoid many of these problems if you specify the format and structure of the system inputs that are expected. This specification should be based on your knowledge of the expected system inputs. For example, if a surname is to be input, you might specify that all characters must be alphabetic with no numbers or punctuation (apart from a hyphen) allowed. You might also limit the length of the name. For example, no one has a family name with more than 40 characters, and no addresses are more than 100 characters long. If a numeric value is expected, no alphabetic characters should be allowed. This information is then used in input checks when the system is implemented.

Guideline 8: Compartmentalize your assets

Compartmentalizing means that you should not provide users with access to all information in a system. Based on a general "need to know" security principle, you should organize the information in a system into compartments. Users should only have access to the information that they need for their work, rather than to all of the information in a system. This means that the effects of an attack that compromises an individual user account may be contained. Some information may be lost or damaged, but it is unlikely that all of the information in the system will be affected.

For example, the Mentcare system could be designed so that clinic staff will normally only have access to the records of patients who have an appointment at their clinic. They should not normally have access to all patient records in the system. Not only does this limit the potential loss from insider attacks, but it also means that if an intruder steals their credentials, then they cannot damage all patient records.

Having said this, you also may have to have mechanisms in the system to grant unexpected access—say to a patient who is seriously ill and requires urgent treatment without an appointment. In those circumstances, you might use some alternative secure mechanism to override the compartmentalization in the system. In such situations, where security is relaxed to maintain system availability, it is essential that you use a logging mechanism to record system usage. You can then check the logs to trace any unauthorized use.

Guideline 9: Design for deployment

Many security problems arise because the system is not configured correctly when it is deployed in its operational environment. Deployment means installing the software

on the computers where it will execute and setting software parameters to reflect the execution environment and the preferences of the system user. Mistakes such as forgetting to turn off debugging facilities or forgetting to change the default administration password can introduce vulnerabilities into a system.

Good management practice can avoid many security problems that arise from configuration and deployment mistakes. However, software designers have the responsibility to "design for deployment." You should always provide support for deployment that reduces the chances of users and system administrators making mistakes when configuring the software.

I recommend four ways to incorporate deployment support in a system:

- Include support for viewing and analyzing configurations You should always include facilities in a system that allow administrators or permitted users to examine the current configuration of the system.
- Minimize default privileges You should design software so that the default configuration of a system provides minimum essential privileges.
- 3. Localize configuration settings When designing system configuration support, you should ensure that everything in a configuration that affects the same part of a system is set up in the same place.
- 4. Provide easy ways to fix security vulnerabilities You should include straightforward mechanisms for updating the system to repair security vulnerabilities that have been discovered.

Deployment issues are less of a problem than they used to be as more and more software does not require client installation. Rather, the software runs as a service and is accessed through a web browser. However, server software is still vulnerable to deployment errors and omissions, and some types of system require dedicated software running on the user's computer.

Guideline 10: Design for recovery

Irrespective of how much effort you put into maintaining systems security, you should always design your system with the assumption that a security failure could occur. Therefore, you should think about how to recover from possible failures and restore the system to a secure operational state. For example, you may include a backup authentication system in case your password authentication is compromised.

For example, say an unauthorized person from outside the clinic gains access to the Mentcare system and you don't know how that person obtained a valid login/ password combination. You need to re-initialize the authentication system and not just change the credentials used by the intruder. This is essential because the intruder may also have gained access to other user passwords. You need, therefore, to ensure that all authorized users change their passwords. You also must ensure that the unauthorized person does not have access to the password-changing mechanism.

You therefore have to design your system to deny access to everyone until they have changed their password and to email all users asking them to make the change. You need an alternative mechanism to authenticate real users for password change, assuming that their chosen passwords may not be secure. One way of doing this is to use a challenge/response mechanism, where users have to answer questions for which they have pre-registered answers. This is only invoked when passwords are changed, allowing for recovery from the attack with relatively little user disruption.

Designing for recoverability is an essential element of building resilience into systems. I cover this topic in more detail in Chapter 14.

13.4.4 Secure systems programming

Secure system design means designing security into an application system. However, as well as focusing on security at the design level, it is also important to consider security when programming a software system. Many successful attacks on software rely on program vulnerabilities that were introduced when the program was developed.

The first widely known attack on Internet-based systems happened in 1988 when a worm was introduced into Unix systems across the network (Spafford 1989). This took advantage of a well-known programming vulnerability. If systems are programmed in C, there is no automatic array bound checking. An attacker can include a long string with program commands as an input, and this overwrites the program stack and can cause control to be transferred to malicious code. This vulnerability has been exploited in many other systems programmed in C or C++ since then.

This example illustrates two important aspects of secure systems programming:

- 1. Vulnerabilities are often language-specific. Array bound checking is automatic in languages such as Java, so this is not a vulnerability that can be exploited in Java programs. However, millions of programs are written in C and C++ as these allow for the development of more efficient software. Thus, simply avoiding the use of these languages is not a realistic option.
- Security vulnerabilities are closely related to program reliability. The above example caused the program concerned to crash, so actions taken to improve program reliability can also improve system security.

In Chapter 11, I introduced programming guidelines for dependable system programming. These are shown in Figure 13.16. These guidelines also help improve the security of a program as attackers focus on program vulnerabilities to gain access to a system. For example, an SQL poisoning attack is based on the attacker filling in a form with SQL commands rather than the text expected by the system. These can corrupt the database or release confidential information. You can completely avoid this problem if you implement input checks (Guideline 2) based on the expected format and structure of the inputs.

Dependable programming guidelines

- 1. Limit the visibility of information in a program.
- 2. Check all inputs for validity.
- 3. Provide a handler for all exceptions.
- 4. Minimize the use of error-prone constructs.
- 5. Provide restart capabilities.
- 6. Check array bounds.
- 7. Include timeouts when calling external components.
- 8. Name all constants that represent real-world values.

Figure 13.16 Dependable programming guidelines

13.5 Security testing and assurance

The assessment of system security is increasingly important so that we can be confident that the systems we use are secure. The verification and validation processes for web-based systems should therefore focus on security assessment, where the ability of the system to resist different types of attack is tested. However, as Anderson explains (Anderson 2008), this type of security assessment is very difficult to carry out. Consequently, systems are often deployed with security loopholes. Attackers use these vulnerabilities to gain access to the system or to cause damage to the system or its data.

Fundamentally, security testing is difficult for two reasons:

Security requirements, like some safety requirements, are "shall not" requirements. That is, they specify what should not happen rather than system functionality or required behavior. It is not usually possible to define this unwanted behavior as simple constraints to be checked by the system.

If resources are available, you can demonstrate, in principle at least, that a system meets its functional requirements. However, it is impossible to prove that a system does not do something. Irrespective of the amount of testing, security vulnerabilities may remain in a system after it has been deployed.

You may, of course, generate functional requirements that are designed to guard the system against some known types of attack. However, you cannot derive requirements for unknown or unanticipated types of attack. Even in systems that have been in use for many years, an ingenious attacker can discover a new attack and can penetrate what was thought to be a secure system.

The people attacking a system are intelligent and are actively looking for vulnerabilities that they can exploit. They are willing to experiment with the system and to try things that are far outside normal activity and system use. For example, in a surname field they may enter 1000 characters with a mixture of letters, punctuation, and numbers simply to see how the system responds.

Once they find a vulnerability, they publicize it and so increase the number of possible attackers. Internet forums have been set up to exchange information about system vulnerabilities. There is also a thriving market in malware where

- 1. Do all files that are created in the application have appropriate access permissions? The wrong access permissions may lead to these files being accessed by unauthorized users.
- 2. Does the system automatically terminate user sessions after a period of inactivity? Sessions that are left active may allow unauthorized access through an unattended computer.
- 3. If the system is written in a programming language without array bound checking, are there situations where buffer overflow may be exploited? Buffer overflow may allow attackers to send code strings to the system and then execute them.
- 4. If passwords are set, does the system check that passwords are "strong"? Strong passwords consist of mixed letters, numbers, and punctuation, and are not normal dictionary entries. They are more difficult to break than simple passwords.
- 5. Are inputs from the system's environment always checked against an input specification? Incorrect processing of badly formed inputs is a common cause of security vulnerabilities.

Figure 13.17 Examples of entries in a security checklist

attackers can get access to kits that help them easily develop malware such as worms and keystroke loggers.

Attackers may try to discover the assumptions made by system developers and then challenge these assumptions to see what happens. They are in a position to use and explore a system over a period of time and analyze it using software tools to discover vulnerabilities that they may be able to exploit. They may, in fact, have more time to spend on looking for vulnerabilities than system test engineers, as testers must also focus on testing the system.

You may use a combination of testing, tool-based analysis, and formal verification to check and analyze the security of an application system:

- 1. Experience-based testing In this case, the system is analyzed against types of attack that are known to the validation team. This may involve developing test cases or examining the source code of a system. For example, to check that the system is not susceptible to the well-known SQL poisoning attack, you might test the system using inputs that include SQL commands. To check that buffer overflow errors will not occur, you can examine all input buffers to see if the program is checking that assignments to buffer elements are within bounds.
 - Checklists of known security problems may be created to assist with the process. Figure 13.17 gives some examples of questions that might be used to drive experience-based testing. Checks on whether design and programming guidelines for security have been followed may also be included in a security problem checklist.
- 2. Penetration testing This is a form of experience-based testing where it is possible to draw on experience from outside the development team to test an application system. The penetration testing teams are given the objective of breaching the system security. They simulate attacks on the system and use their ingenuity to discover new ways to compromise the system security. Penetration testing team

- members should have previous experience with security testing and finding security weaknesses in systems.
- 3. Tool-based analysis In this approach, security tools such as password checkers are used to analyze the system. Password checkers detect insecure passwords such as common names or strings of consecutive letters. This approach is really an extension of experience-based validation, where experience of security flaws is embodied in the tools used. Static analysis is, of course, another type of toolbased analysis, which has become increasingly used.
 - Tool-based static analysis (Chapter 12) is a particularly useful approach to security checking. A static analysis of a program can quickly guide the testing team to areas of a program that may include errors and vulnerabilities. Anomalies revealed in the static analysis can be directly fixed or can help identify tests that need to be done to reveal whether or not these anomalies actually represent a risk to the system. Microsoft uses static analysis routinely to check its software for possible security vulnerabilities (Jenney 2013). Hewlett-Packard offers a tool called Fortify (Hewlett-Packard 2012) specifically designed for checking Java programs for security vulnerabilities.
- 4. Formal verification I have discussed the use of formal program verification in Chapters 10 and 12. Essentially, this involves making formal, mathematical arguments that demonstrate that a program conforms to its specification. Hall and Chapman (Hall and Chapman 2002) demonstrated the feasibility of proving that a system met its formal security requirements more than 10 years ago, and there have been a number of other experiments since then. However, as in other areas, formal verification for security is not widely used. It requires specialist expertise and is unlikely to be as cost-effective as static analysis.

Security testing takes a long time, and, usually, the time available to the testing team is limited. This means that you should adopt a risk-based approach to security testing and focus on what you think are the most significant risks faced by the system. If you have an analysis of the security risks to the system, these can be used to drive the testing process. As well as testing the system against the security requirements derived from these risks, the test team should also try to break the system by adopting alternative approaches that threaten the system assets.

KEY POINTS

- Security engineering focuses on how to develop and maintain software systems that can resist malicious attacks intended to damage a computer-based system or its data.
- Security threats can be threats to the confidentiality, integrity, or availability of a system or its data.

- Security risk management involves assessing the losses that might ensue from attacks on a system, and deriving security requirements that are aimed at eliminating or reducing these losses.
- To specify security requirements, you should identify the assets that are to be protected and define how security techniques and technology should be used to protect these assets.
- Key issues when designing a secure systems architecture include organizing the system structure to protect key assets and distributing the system assets to minimize the losses from a successful attack.
- Security design guidelines sensitize system designers to security issues that they may not have considered. They provide a basis for creating security review checklists.
- Security validation is difficult because security requirements state what should not happen in a system, rather than what should. Furthermore, system attackers are intelligent and may have more time to probe for weaknesses than is available for security testing.

FURTHER READING

Security Engineering: A Guide to Building Dependable Distributed Systems, 2nd ed. This is a thorough and comprehensive discussion of the problems of building secure systems. The focus is on systems rather than software engineering, with extensive coverage of hardware and networking, with excellent examples drawn from real system failures. (R. Anderson, John Wiley & Sons, 2008) http://www.cl.cam.ac.uk/~rja14/book.html

24 Deadly Sins of Software Security: Programming Flaws and How to Fix Them. I think this is one of the best practical books on secure systems programming. The authors discuss the most common programming vulnerabilities and describe how they can be avoided in practice. (M. Howard, D. LeBlanc, and J. Viega, McGraw-Hill, 2009).

Computer Security: Principles and Practice. This is a good general text on computer security issues. It covers security technology, trusted systems, security management, and cryptography. (W. Stallings and L. Brown, Addison-Wesley, 2012).

WEBSITE

PowerPoint slides for this chapter:

www.pearsonglobaleditions.com/Sommerville

Links to supporting videos:

http://software-engineering-book.com/videos/security-and-resilience/

EXERCISES

- 13.1. Describe the security dimensions and security levels that have to be considered in secure systems engineering.
- 13.2. For the Mentcare system, suggest an example of an asset, an exposure, a vulnerability, an attack, a threat, and a control, in addition to those discussed in this chapter.
- 13.3. Explain why security is considered a more challenging problem than safety in a system.
- 13.4. Extend the table in Figure 13.7 to identify two further threats to the Mentcare system, along with associated controls. Use these as a basis for generating software security requirements that implement the proposed controls.
- 13.5. Explain, using an analogy drawn from a non-software engineering context, why a layered approach to asset protection should be used.
- 13.6. Explain why it is important to log user actions in the development of secure systems.
- 13.7. For the equity trading system discussed in Section 13.4.2, whose architecture is shown in Figure 13.14, suggest two further plausible attacks on the system and propose possible strategies that could counter these attacks.
- 13.8. Explain why it is important when writing secure systems to validate all user inputs to check that these have the expected format.
- 13.9. Suggest how you would go about validating a password protection system for an application that you have developed. Explain the function of any tools that you think may be useful.
- 13.10. The Mentcare system has to be secure against attacks that might reveal confidential patient information. Suggest three possible attacks against this system that might occur. Using this information, extend the checklist in Figure 13.17 to guide testers of the Mentcare system.

REFERENCES

Anderson, R. 2008. Security Engineering, 2nd ed. Chichester, UK: John Wiley & Sons.

Cranor, L. and S. Garfinkel. 2005. Designing Secure Systems That People Can Use. Sebastopol, CA: O'Reilly Media Inc.

Firesmith, D. G. 2003. "Engineering Security Requirements." Journal of Object Technology 2 (1): 53-68. http://www.jot.fm/issues/issue_2003_01/column6

Hall, A., and R. Chapman. 2002. "Correctness by Construction: Developing a Commercially Secure System." *IEEE Software* 19 (1): 18–25. doi:10.1109/52.976937.

Hewlett-Packard. 2012. "Securing Your Enterprise Software: Hp Fortify Code Analyzer." http:// h2o195.www2.hp.com/V2/GetDocument.aspx?docname=4AA4-2455ENW&cc=us&lc=en

Jenney, P. 2013. "Static Analysis Strategies: Success with Code Scanning." http://msdn.microsoft .com/en-us/security/gg615593.aspx

Lane, A. 2010. "Agile Development and Security." https://securosis.com/blog/agile-developmentand-security

Pfleeger, C. P., and S. L. Pfleeger. 2007. Security in Computing, 4th ed. Boston: Addison-Wesley.

Safecode. 2012. "Practical Security Stories and Security Tasks for Agile Development Environments." http://www.safecode.org/publications/SAFECode_Agile_Dev_Securityo712.pdf

Schneier, B. 1999. "Attack Trees." Dr Dobbs Journal 24 (12): 1-9. https://www.schneier.com/paperattacktrees-ddj-ft.html

— . 2000. Secrets and Lies: Digital Security in a Networked World. New York: John Wiley & Sons.

Schoenfield, B. 2013. "Agile and Security: Enemies for Life?" http://brookschoenfield.com/?p=151

Sindre, G., and A. L. Opdahl. 2005. "Eliciting Security Requirements through Misuse Cases." Requirements Engineering 10 (1): 34-44. doi:10.1007/S00766-004-0194-4.

Spafford, E. 1989. "The Internet Worm: Crisis and Aftermath." Comm ACM 32 (6): 678–687. doi:10.1145/63526.63527.

Stallings, W., and L. Brown. 2012. Computer Security: Principles, d Practice. (2nd ed.) Boston: Addison-Wesley.

Viega, J., and G. McGraw. 2001. Building Secure Software. Boston: Addison-Wesley.

Wheeler, D. A. 2004. Secure Programming for Linux and Unix. Self-published. http://www.dwheeler .com/secure-programs/

14 Resilience engineering

Objectives

The objective of this chapter is to introduce the idea of resilience engineering where systems are designed to withstand adverse external events such as operator errors and cyberattacks. When you have read this chapter, you will:

- understand the differences between resilience, reliability, and security and why resilience is important for networked systems;
- be aware of the fundamental issues in building resilient systems, namely, recognition of problems, resistance to failures and attacks, recovery of critical services, and system reinstatement;
- understand why resilience is a sociotechnical rather than a technical issue and the role of system operators and managers in providing resilience;
- have been introduced to a system design method that supports resilience.

Contents

- **14.1** Cybersecurity
- 14.2 Sociotechnical resilience
- 14.3 Resilient systems design

In April 1970, the Apollo 13 manned mission to the moon suffered a catastrophic failure. An oxygen tank exploded in space, resulting in a serious loss of atmospheric oxygen and oxygen for the fuel cells that powered the spacecraft. The situation was life threatening, with no possibility of rescue. There were no contingency plans for this situation. However, by using equipment in unintended ways and by adapting standard procedures, the combined efforts of the spacecraft crew and ground staff worked around the problems. The spacecraft was brought back to earth safely, and all the crew survived. The overall system (people, equipment, and processes) was resilient. It adapted to cope with and recover from the failure.

I introduced the idea of resilience in Chapter 10, as one of the fundamental attributes of system dependability. I defined resilience in Chapter 10 as:

The resilience of a system is a judgment of how well that system can maintain the continuity of its critical services in the presence of disruptive events, such as equipment failure and cyberattacks.

This is not a "standard" definition of resilience—different authors such as Laprie (Laprie 2008) and Hollnagel (Hollnagel 2006) propose general definitions based on the ability of a system to withstand change. That is, a resilient system is one that can operate successfully when some of the fundamental assumptions made by the system designers no longer hold.

For example, an initial design assumption may be that users will make mistakes but will not deliberately seek out system vulnerabilities to be exploited. If the system is used in an environment where it may be subject to cyberattacks, this is no longer true. A resilient system can cope with the environmental change and can continue to operate successfully.

While these definitions are more general, my definition of resilience is closer to how the term is now used in practice by governments and industry. It embeds three essential ideas:

- 1. The idea that some of the services offered by a system are critical services whose failure could have serious human, social, or economic effects.
- 2. The idea that some events are disruptive and can affect the ability of a system to deliver its critical services.
- 3. The idea that resilience is a judgment—there are no resilience metrics, and resilience cannot be measured. The resilience of a system can only be assessed by experts, who can examine the system and its operational processes.

Fundamental work on system resilience started in the safety-critical systems community, where the aim was to understand what factors led to accidents being avoided and survived. However, the increasing number of cyberattacks on networked systems has meant that resilience is now often seen as a security issue. It is essential to build systems that can withstand malicious cyberattacks and continue to deliver services to their users.

Obviously, resilience engineering is closely related to reliability and security engineering. The aim of reliability engineering is to ensure that systems do not fail. A system failure is an externally observable event, which is often a consequence of a fault in the system. Therefore, techniques such as fault avoidance and fault tolerance, as discussed in Chapter 11, have been developed to reduce the number of system faults and to trap faults before they lead to system failure.

In spite of our best efforts, faults will always be present in a large, complex system, and they may lead to system failure. Delivery schedules are short, and testing budgets are limited. Development teams are working under pressure, and it is practically impossible to detect all of the faults and security vulnerabilities in a software system. We are building systems that are so complex (see Chapter 19) that we cannot possibly understand all of the interactions between the system components. Some of these interactions may be a trigger for overall system failure.

Resilience engineering does not focus on avoiding failure but rather on accepting the reality that failures will occur. It makes two important assumptions:

- Resilience engineering assumes that it is impossible to avoid system failures and so is concerned with limiting the costs of these failures and recovering from them.
- Resilience engineering assumes that good reliability engineering practices have been used to minimize the number of technical faults in a system. It therefore places more emphasis on limiting the number of system failures that arise from external events such as operator errors or cyberattacks.

In practice, technical system failures are often triggered by events that are external to the system. These events may involve operator actions or user errors that are unexpected. Over the last few years, however, as the number of networked systems has increased, these events have often been cyberattacks. In a cyberattack, a malicious person or group tries to damage the system or to steal confidential information. These are now more significant than user or operator errors as a potential source of system failure.

Because of the assumption that failures will inevitably occur, resilience engineering is concerned with both the immediate recovery from failure to maintain critical services and the longer-term reinstatement of all system services. As I discuss in Section 14.3, this means that system designers have to include system features to maintain the state of the system's software and data. In the event of a failure, essential information may then be restored.

Four related resilience activities are involved in the detection of and recovery from system problems:

- Recognition The system or its operators should be able to recognize the symptoms of a problem that may lead to system failure. Ideally, this recognition should be possible before the failure occurs.
- Resistance If the symptoms of a problem or signs of a cyberattack are detected early, then resistance strategies may be invoked that reduce the probability that the system will fail. These resistance strategies may focus on isolating critical parts of the system so that they are unaffected by problems elsewhere. Resistance includes

Figure 14.1 Resilience activities

proactive resistance where defenses are included in a system to trap problems and reactive resistance where actions are taken when a problem is discovered.

- 3. *Recovery* If a failure occurs, the aim of the recovery activity is to ensure that critical system services are restored quickly so that system users are not seriously affected by the failure.
- 4. *Reinstatement* In this final activity, all of the system services are restored, and normal system operation can continue.

These activities lead to changes to the system state as shown in Figure 14.1, which shows the state changes in the system in the event of a cyberattack. In parallel with normal system operation, the system monitors network traffic for possible cyberattacks. In the event of a cyberattack, the system moves to a resistance state in which normal services may be restricted.

If resistance successfully repels the attack, normal service is resumed. Otherwise, the system moves to a recovery state where only critical services are available. Repairs to the damage caused by the cyberattack are carried out. Finally, when repairs are complete, the system moves to a reinstatement state. In this state, the system's services are incrementally restored. Finally, when all restoration is complete, normal service is resumed.

As the Apollo 13 example illustrates, resilience cannot be "programmed in" to a system. It is impossible to anticipate everything that might go wrong and every context where problems might arise. The key to resilience, therefore, is flexibility and adaptability. As I discuss in Section 14.2, it should be possible for system operators and managers to take actions to protect and repair the system, even if these actions are abnormal or are normally disallowed.

Increasing the resilience of a system of course has significant costs. Software may have to be purchased or modified, and additional investments made in hardware or cloud services to provide backup systems that can be used in the event of a system failure. The benefits from these costs are impossible to calculate because the losses from a failure or attack can only be calculated after the event.

Companies may therefore be reluctant to invest in resilience if they have never suffered a serious attack or associated loss. However, the increasing number of high-profile cyberattacks that have damaged business and government systems have increased awareness of the need for resilience. It is clear that losses can be very significant, and sometimes businesses may not survive a successful cyberattack. Therefore, there is increasing investment in resilience engineering to reduce the business risks associated with system failure.

14.1 Cybersecurity

Maintaining the security of our networked infrastructure and government, business, and personal computer systems is one of the most significant problems facing our society. The ubiquity of the Internet and our dependence on computer systems have created new criminal opportunities for theft and social disruption. It is very difficult to measure the losses due to cybercrime. However, in 2013, it was estimated that losses to the global economy due to cybercrime were between \$100 billion and \$500 billion (InfoSecurity 2013).

As I suggested in Chapter 13, cybersecurity is a broader issue than system security engineering. Software security engineering is a primarily technical activity that focuses on techniques and technologies to ensure that application systems are secure. Cybersecurity is a sociotechnical concern. It covers all aspects of ensuring the protection of citizens, businesses, and critical infrastructures from threats that arise from their use of computers and the Internet. While technical issues are important, technology on its own cannot guarantee security. Factors that contribute to cybersecurity failures include:

- organizational ignorance of the seriousness of the problem,
- poor design and lax application of security procedures,
- human carelessness, and
- inappropriate trade-offs between usability and security.

Cybersecurity is concerned with all of an organization's IT assets from networks through to application systems. The vast majority of these assets are externally procured, and companies do not understand their detailed operation. Systems such as web browsers are large and complex programs, and inevitably they contain bugs that can be a source of vulnerability. The different systems in an organization are related to each other in many different ways. They may be stored on the same disk, share data, rely on common operating systems components, and so on. The organizational "system of systems" is incredibly complex. It is impossible to ensure that it is free of security vulnerabilities.

Consequently, you should generally assume that your systems are vulnerable to cyberattack and that, at some stage, a cyberattack is likely to occur. A successful cyberattack can have very serious financial consequences for businesses, so it is essential that attacks are contained and losses minimized. Effective resilience engineering at the organizational and systems levels can repel attacks and bring systems back into operation quickly and so limit the losses incurred.

In Chapter 13, where I discussed security engineering, I introduced concepts that are fundamental to resilience planning. Some of these concepts are:

- 1. Assets, which are systems and data that have to be protected. Some assets are more valuable than others and so require a higher level of protection.
- 2. Threats, which are circumstances that can cause harm by damaging or stealing organizational IT infrastructure or system assets.
- 3. Attacks, which are manifestations of a threat where an attacker aims to damage or steal IT assets, such as websites or personal data.

Three types of threats have to be considered in resilience planning:

- 1. Threats to the confidentiality of assets In this case, data is not damaged, but it is made available to people who should not have access to it. An example of a threat to confidentiality is when a credit card database held by a company is stolen, with the potential for illegal use of card information.
- 2. Threats to the integrity of assets These are threats where systems or data are damaged in some way by a cyberattack. This may involve introducing a virus or a worm into software or corrupting organizational databases.
- 3. Threats to the availability of assets These are threats that aim to deny use of assets by authorized users. The best-known example is a denial-of-service attack that aims to take down a website and so make it unavailable for external use.

These are not independent threat classes. An attacker may compromise the integrity of a user's system by introducing malware, such as a botnet component. This may then be invoked remotely as part of a distributed denial-of-service attack on another system. Other types of malware may be used to capture personal details and so allow confidential assets to be accessed.

To counter these threats, organizations should put controls in place that make it difficult for attackers to access or damage assets. It is also important to raise awareness of cybersecurity issues so that people know why these controls are important and so are less likely to reveal information to an attacker.

Examples of controls that may be used are:

- 1. Authentication, where users of a system have to show that they are authorized to access the system. The familiar login/password approach to authentication is a universally used but rather weak control.
- 2. Encryption, where data is algorithmically scrambled so that an unauthorized reader cannot access the information. Many companies now require that laptop disks are encrypted. If the computer is lost or stolen, this reduces the likelihood that the confidentiality of the information will be breached.
- 3. Firewalls, where incoming network packets are examined, then accepted or rejected according to a set of organizational rules. Firewalls can be used to

ensure that only traffic from trusted sources is allowed to pass from the external Internet into the local organizational network.

A set of controls in an organization provides a layered protection system. An attacker has to get through all of the protection layers for the attack to succeed. However, there is a trade-off between protection and efficiency. As the number of layers of protection increases, the system slows down. The protection systems consume an increasing amount of memory and processor resources, leaving less available to do useful work. The more security, the more inconvenient it is for users and the more likely that they will adopt insecure practices to increase system usability.

As with other aspects of system dependability, the fundamental means of protecting against cyberattacks depends on redundancy and diversity. Recall that redundancy means having spare capacity and duplicated resources in a system. Diversity means that different types of equipment, software, and procedures are used so that common failures are less likely to occur across a number of systems. Examples of where redundancy and diversity are valuable for cyber-resilience are:

- 1. For each system, copies of data and software should be maintained on separate computer systems. Shared disks should be avoided if possible. This supports recovery after a successful cyberattack (recovery and reinstatement).
- 2. Multi-stage diverse authentication can protect against password attacks. As well as login/password authentication, additional authentication steps may be involved that require users to provide some personal information or a code generated by their mobile device (resistance).
- 3. Critical servers may be overprovisioned; that is, they may be more powerful than is required to handle their expected load. The spare capacity means that attacks may be resisted without necessarily degrading the normal response of the server. Furthermore, if other servers are damaged, spare capacity is available to run their software while they are being repaired (resistance and recovery).

Planning for cybersecurity has to be based on assets and controls and the 4 Rs of resilience engineering—recognition, resistance, recovery, and reinstatement. Figure 14.2 shows a planning process that may be followed. The key stages in this process are:

- 1. Asset classification The organization's hardware, software, and human assets are examined and classified depending on how essential they are to normal operations. They may be classed as critical, important, or useful.
- 2. Threat identification For each of the assets (or at least the critical and important assets), you should identify and classify threats to that asset. In some cases, you may try to estimate the probability that a threat will arise, but such estimates are often inaccurate as you don't have enough information about potential attackers.
- Threat recognition For each threat or, sometimes asset/threat pair, you should identify how an attack based on that threat might be recognized. You may

Figure 14.2 Cyberresilience planning

decide that additional software needs to be bought or written for threat recognition or that regular checking procedures are put in place.

- 4. Threat resistance For each threat or asset/threat pair, you should identify possible resistance strategies. These either may be embedded in the system (technical strategies) or may rely on operational procedures. You may also need to think of threat neutralization strategies so that the threat does not recur.
- 5. Asset recovery For each critical asset or asset/threat pair, you should work out how that asset could be recovered in the event of a successful cyberattack. This may involve making extra hardware available or changing backup procedures to make it easier to access redundant copies of data.
- 6. Asset reinstatement This is a more general process of asset recovery where you define procedures to bring the system back into normal operation. Asset reinstatement should be concerned with all assets and not simply assets that are critical to the organization.

Information about all of these stages should be maintained in a cyber-resilience plan. This plan should be regularly updated, and, wherever possible, the strategies identified should be tested in mock attacks on the system.

Another important part of cyber-resilience planning is to decide how to support a flexible response in the event of a cyberattack. Paradoxically, resilience and security requirements often conflict. The aim of security is usually to limit privilege as far as possible so that users can only do what the security policy of the organization allows. However, to deal with problems, a user or system operator may have to take the initiative and take actions that are normally carried out by someone with a higher level of privilege.

For example, the system manager of a medical system may not normally be allowed to change the access rights of medical staff to records. For security reasons, access permissions have to be formally authorized, and two people need to be involved in making the change. This reduces the chances of system managers colluding with attackers and allowing access to confidential medical information.

Now, imagine that the system manager notices that a logged-in user is accessing a large number of records outside of normal working hours. The manager suspects

that an account has been compromised and that the user accessing the records is not actually the authorized user. To limit the damage, the user's access rights should be removed and a check then made with the authorized user to see if the accesses were actually illegal. However, the security procedures limiting the rights of system managers to change users' permissions make this impossible.

Resilience planning should take such situations into account. One way of doing so is to include an "emergency" mode in systems where normal checks are ignored. Rather than forbidding operations, the system logs what has been done and who was responsible. Therefore, the audit trail of emergency actions can be used to check that a system manager's actions were justified. Of course, there is scope for misuse here, and the existence of an emergency mode is itself a potential vulnerability. Therefore, organizations have to trade off possible losses against the benefits of adding more features to a system to support resilience.

14.2 Sociotechnical resilience

Fundamentally, resilience engineering is a sociotechnical rather than a technical activity. As I explained in Chapter 10, a sociotechnical system includes hardware, software, and people and is influenced by the culture, policies, and procedures of the organization that owns and uses the system. To design a resilient system, you have to think about sociotechnical systems design and not exclusively focus on software. Resilience engineering is concerned with adverse external events that can lead to system failure. Dealing with these events is often easier and more effective in the broader sociotechnical system.

For example, the Mentcare system maintains confidential patient data, and a possible external cyberattack may aim to steal that data. Technical safeguards such as authentication and encryption may be used to protect the data, but these are not effective if an attacker has access to the credentials of a genuine system user. You could try to solve this problem at the technical level by using more complex authentication procedures. However, these procedures annoy users and may lead to vulnerabilities as they write down authentication information. A better strategy may be to introduce organizational policies and procedures that emphasize the importance of not sharing login credentials and that tell users about easy ways to create and maintain strong passwords.

Resilient systems are flexible and adaptable so that they can cope with the unexpected. It is very difficult to create software that can adapt to cope with problems that have not been anticipated. However, as we saw from the Apollo 13 accident, people are very good at this. Therefore, to achieve resilience, you should take advantage of the fact that people are an inherent part of sociotechnical systems. Rather than try to anticipate and deal with all problems in software, you should leave some types of problem solving to the people responsible for operating and managing the software system.

To understand why you should leave some types of problem solving to people, you have to consider the hierarchy of sociotechnical systems that includes technical, software-intensive systems. Figure 14.3 shows that technical systems S1 and S2 are

Figure 14.3 Nested technical and sociotechnical systems

part of a broader sociotechnical system ST1. That sociotechnical system includes operators who monitor the condition of S1 and S2 and who can take actions to resolve problems in these systems. If system S1 (say) fails, then the operators in ST1 may detect that failure and take recovery actions before the software failure leads to failure in the broader sociotechnical system. Operators may also invoke recovery and reinstatement procedures to get S1 back to its normal operating state.

Operational and management processes are the interface between the organization and the technical systems that are used. If these processes are well designed, they allow people to discover and to cope with technical system failures, as well as ensuring that operator errors are minimized. As I discuss in Section 14.2.2, rigid processes that are overautomated are not inherently resilient. They do not allow people to use their skills and knowledge to adapt and change processes to cope with the unexpected and deal with unanticipated failures.

The system ST1 is one of a number of sociotechnical systems in the organization. If the system operators cannot contain a technical system failure, then this may lead to a failure in the sociotechnical system ST1. Managers at the organizational level then must detect the problem and take steps to recover from it. Resilience is therefore an organizational as well as a system characteristic.

Hollnagel (Hollnagel 2010), who was an early advocate of resilience engineering, argues that it is important for organizations to study and learn from successes as well as failure. High-profile safety and security failures lead to inquiries and changes in practice and procedures. However, rather than respond to these failures, it is better to avoid them by observing how people deal with problems and maintain resilience. This good practice can then be disseminated throughout the organization. Figure 14.4 shows four characteristics that Hollnagel suggests reflect the resilience of an organization. These characteristics are:

- 1. The ability to respond Organizations have to be able to adapt their processes and procedures in response to risks. These risks may be anticipated risks, or they may be detected threats to the organization and its systems. For example, if a new security threat is detected and publicized, a resilient organization can make changes quickly so that this threat does not disrupt its operations.
- 2. The ability to monitor Organizations should monitor both their internal operations and their external environment for threats before they arise. For example, a company should monitor how its employees follow security policies.

Figure 14.4 Characteristics of resilient organizations

If potentially insecure behavior is detected, the company should respond by taking actions to understand why this has occurred and to change employee behavior.

- The ability to anticipate A resilient organization should not simply focus on its current operations but should anticipate possible future events and changes that may affect its operations and resilience. These events may include technological innovations, changes in regulations or laws, and modifications in customer behavior. For example, wearable technology is starting to become available, and companies should now be thinking about how this might affect their current security policies and procedures.
- The ability to learn Organizational resilience can be improved by learning from experience. It is particularly important to learn from successful responses to adverse events such as the effective resistance of a cyberattack. Learning from success allows good practice to be disseminated throughout the organization.

As Hollnagel says, to become resilient organizations have to address all of these issues to some extent. Some will focus more on one quality than others. For example, a company running a large-scale data center may focus mostly on monitoring and responsiveness. However, a digital library that manages long-term archival information may have to anticipate how future changes may affect its business as well as respond to any immediate security threats.

Human error 14.2.1

Early work on resilience engineering was concerned with accidents in safetycritical systems and with how the behavior of human operators could lead to safetyrelated system failures. This led to an understanding of system defenses that is equally applicable to systems that have to withstand malicious as well as accidental human actions.

We know that people make mistakes, and, unless a system is completely automated, it is inevitable that users and system operators will sometimes do the wrong thing. Unfortunately, these human errors sometimes lead to serious system failures. Reason (Reason, 2000) suggests that the problem of human error can be viewed in two ways:

1. The person approach Errors are considered to be the responsibility of the individual and "unsafe acts" (such as an operator failing to engage a safety barrier)

- are a consequence of individual carelessness or reckless behavior. People who adopt this approach believe that human errors can be reduced by threats of disciplinary action, more stringent procedures, retraining, and so on. Their view is that the error is the fault of the individual responsible for making the mistake.
- 2. The systems approach The basic assumption is that people are fallible and will make mistakes. People make mistakes because they are under pressure from high workloads, because of poor training, or because of inappropriate system design. Good systems should recognize the possibility of human error and include barriers and safeguards that detect human errors and allow the system to recover before failure occurs. When a failure does occur, the best way to avoid its recurrence is to understand how and why the system defenses did not trap the error. Blaming and punishing the person who triggered the failure does not improve long-term system safety.

I believe that the systems approach is the right one and that systems engineers should assume that human errors will occur during system operation. Therefore, to improve the resilience of a system, designers have to think about the defenses and barriers to human error that could be part of a system. They should also think about whether these barriers should be built into the technical components of the system. If not, they could be part of the processes, procedures, and guidelines for using the system. For example, two operators may be required to check critical system inputs.

The barriers and safeguards that protect against human errors may be technical or sociotechnical. For example, code to validate all inputs is a technical defense; an approval procedure for critical system updates that needs two people to confirm the update is a sociotechnical defense. Using diverse barriers means that shared vulnerabilities are less likely and that a user error is more likely to be trapped before system failure.

In general, you should use redundancy and diversity to create a set of defensive layers (Figure 14.5), where each layer uses a different approach to deter attackers or to trap component failures or human errors. Dark blue barriers are software checks; light blue barriers are checks carried out by people.

As an example of this approach to defense in depth, some of the checks for controller errors that may be part of an air traffic control system include:

- 1. A conflict alert warning as part of an air traffic control system When a controller instructs an aircraft to change its speed or altitude, the system extrapolates its trajectory to see if it intersects with any other aircraft. If so, it sounds an alarm.
- 2. Formalized recording procedures for air traffic management The same ATC system may have a clearly defined procedure setting out how to record the control instructions that have been issued to aircraft. These procedures help controllers check if they have issued the instruction correctly and make the information visible to others for checking.
- 3. *Collaborative checking* Air traffic control involves a team of controllers who constantly monitor each other's work. When a controller makes a mistake, others usually detect and correct it before an incident occurs.

Figure 14.5 Defensive layers

Reason (Reason 2000) draws on the idea of defensive layers in a theory of how human errors lead to system failures. He introduces the so-called Swiss cheese model, which suggests that defensive layers are not solid barriers but are instead like slices of Swiss cheese. Some types of Swiss cheese, such as Emmenthal, have holes of varying sizes in them. Reason suggests that vulnerabilities, or what he calls latent conditions in the layers, are analogous to these holes.

These latent conditions are not static—they change depending on the state of the system and the people involved in system operation. To continue with the analogy, the holes change size and move around the defensive layers during system operation. For example, if a system relies on operators checking each other's work, a possible vulnerability is that both make the same mistake. This is unlikely under normal conditions so, in the Swiss cheese model, the hole is small. However, when the system is heavily loaded and the workload of both operators is high, then mistakes are more likely. The size of the hole representing this vulnerability increases.

Failure in a system with layered defenses occurs when there is some external trigger event that has the potential to cause damage. This event might be a human error (which Reason calls an active failure) or it could be a cyberattack. If all of the defensive barriers fail, then the system as a whole will fail. Conceptually, this corresponds to the holes in the Swiss cheese slices lining up, as shown in Figure 14.6.

This model suggests that different strategies can be used to increase system resilience to adverse external events:

- Reduce the probability of the occurrence of an external event that might trigger system failures. To reduce human errors, you may introduce improved training for operators or give operators more control over their workload so that they are not overloaded. To reduce cyberattacks, you may reduce the number of people who have privileged system information and so reduce the chances of disclosure to an attacker.
- 2. Increase the number of defensive layers. As a general rule, the more layers that you have in a system, the less likely it is that the holes will line up and a system failure will occur. However, if these layers are not independent, then they may share a common vulnerability. Thus, the barriers are likely to have the same "hole" in the same place, so there is only a limited benefit in adding a new layer.

Figure 14.6 Reason's Swiss cheese model of system failure

- 3. Design a system so that diverse types of barriers are included. This means that the "holes" will probably be in different places, and so there is less chance of the holes lining up and failing to trap an error.
- 4. Minimize the number of latent conditions in a system. Effectively, this means reducing the number and size of system "holes." However, this may significantly increase systems engineering costs. Reducing the number of bugs in the system increases testing and V & V costs. Therefore, this option may not be cost-effective.

In designing a system, you need to consider all of these options and make choices about what might be the most cost-effective ways to improve the system's defenses. If you are building custom software, then using software checking to increase the number and diversity of layers may be the best option. However, if you are using off-the-shelf software, then you may have to consider how sociotechnical defenses may be added. You may decide to change training procedures to reduce the chances of problems occurring and to make it easier to deal with incidents when they arise.

14.2.2 Operational and management processes

All software systems have associated operational processes that reflect the assumptions of the designers about how these systems will be used. Some software systems, particularly those that control or are interfaced to special equipment, have trained operators who are an intrinsic part of the control system. Decisions are made during the design stage about which functions should be part of the technical system and which functions should be the operator's responsibility. For example, in an imaging system in a hospital, the operator may have the responsibility of checking the quality of the images immediately after they have been processed. This check allows the imaging procedure to be repeated if there is a problem.

Operational processes are the processes that are involved in using the system for its defined purpose. For example, operators of an air traffic control system follow specific processes when aircraft enter and leave airspace, when they have to change height or speed, when an emergency occurs, and so on. For new systems, these operational processes have to be defined and documented during the system development process. Operators may have to be trained and other work processes adapted to make effective use of the new system.

Most software systems, however, do not have trained operators but have system users, who use the system as part of their work or to support their personal interests. For personal systems, the designers may describe the expected use of the system but have no control over how users will actually behave. For enterprise IT systems, however, training may be provided for users to teach them how to use the system. Although user behavior cannot be controlled, it is reasonable to expect that they will normally follow the defined process.

Enterprise IT systems will also usually have system administrators or managers who are responsible for maintaining that system. While they are not part of the business process supported by the system, their job is to monitor the software system for errors and problems. If problems arise, system managers take action to resolve them and restore the system to its normal operational state.

In the previous section, I discussed the importance of defense in depth and the use of diverse mechanisms to check for adverse events that could lead to system failure. Operational and management processes are an important defense mechanism, and, in designing a process, you need to find a balance between efficient operation and problem management. These are often in conflict as shown in Figure 14.7 as increasing efficiency removes redundancy and diversity from a system.

Over the past 25 years, businesses have focused on so-called process improvement. To improve the efficiency of operational and management processes, companies study how their processes are enacted and look for particularly efficient and inefficient practice. Efficient practice is codified and documented, and software may be developed to support this "optimum" process. Inefficient practice is replaced by more efficient ways of doing things. Sometimes process control mechanisms are introduced to ensure that system operators and managers follow this "best practice."

The problem with process improvement is that it often makes it harder for people to cope with problems. What seems to be "inefficient" practice often arises because people maintain redundant information or share information because they know this makes it easier to deal with problems when things go wrong. For example, air traffic controllers may print flight details as well as rely on the flight database because they will then have information about flights in the air if the system database becomes unavailable.

People have a unique capability to respond effectively to unexpected situations, even when they have never had direct experience of these situations. Therefore, when things go wrong, operators and system managers can often recover the situation, although they may sometimes have to break rules and "work around" the defined process. You should therefore design operational processes to be flexible and adaptable. The operational processes should not be too constraining; they should not require operations to be done in a particular order; and the system software should not rely on a specific process being followed.

For example, an emergency service control room system is used to manage emergency calls and to initiate a response to these calls. The "normal" process of handling a call is to log the caller's details and then send a message to the appropriate emergency service giving details of the incident and the address. This procedure provides an audit trail of the actions taken. A subsequent investigation can check that the emergency call has been properly handled.

Efficient process operation	Problem management
Process optimization and control	Process flexibility and adaptability
Information hiding and security	Information sharing and visibility
Automation to reduce operator workload with fewer operators and managers	Manual processes and spare operator/manager capacity to deal with problems
Role specialization	Role sharing

Figure 14.7 Efficiency and resilience

Now imagine that this system is subject to a denial-of-service attack, which makes the messaging system unavailable. Rather than simply not responding to calls, the operators may use their personal mobile phones and their knowledge of call responders to call the emergency service units directly so that they can respond to serious incidents.

Management and provision of information are also important for resilient operation. To make a process more efficient, it may make sense to present operators with the information they need, when they need it. From a security perspective, information should not be accessible unless the operator or manager needs that information. However, a more liberal approach to information access can improve system resilience.

If operators are only presented with information that the process designer thinks they "need to know," then they may be unable to detect problems that do not directly affect their immediate tasks. When things go wrong, the system operators do not have a broad picture of what is happening in the system, so it is more difficult for them to formulate strategies for dealing with problems. If they cannot access some information in the system for security reasons, then they may be unable to stop attacks and repair the damage that has been caused.

Automating the system management process means that a single manager may be able to manage a large number of systems. Automated systems can detect common problems and take actions to recover from these problems. Fewer people are needed for system operations and management, and so costs are reduced. However, process automation has two disadvantages:

- 1. Automated management systems may go wrong and take incorrect actions. As problems develop, the system may take unexpected actions that make the situation worse and that cannot be understood by the system managers.
- 2. Problem solving is a collaborative process. If fewer managers are available, it is likely to take longer to work out a strategy to recover from a problem or cyberattack.

Therefore, process automation can have both positive and negative effects on system resilience. If the automated system works properly, it can detect problems, invoke cyberattack resistance if necessary, and start automated recovery procedures. However, if the automated system can't handle the problem, fewer people will be available to tackle the problem and the system may have been damaged by the process automation doing the wrong thing.

In an environment where there are different types of system and equipment, it may be impractical to expect all operators and managers to be able to deal with all of

the different systems. Individuals may therefore specialize so that they become expert and knowledgeable about a small number of systems. This leads to more efficient operation but has consequences for the resilience of the system.

The problem with role specialization is that there may not be anyone available at a particular time who understands the interactions between systems. Consequently, it is difficult to cope with problems if the specialist is not available. If people work with several systems, they come to understand the dependencies and relationships between them and so can tackle problems that affect more than one system. With no specialist available, it becomes much more difficult to contain the problem and repair any damage that has been caused.

You may use risk assessment, as discussed in Chapter 13, to help make decisions on the balance between process efficiency and resilience. You consider all of the risks where operator or manager intervention may be required and assess the likelihood of these risks and the extent of the possible losses that might arise. For risks that may lead to serious damage and extensive loss and for risks that are likely to occur, you should favor resilience over process efficiency.

14.3 Resilient systems design

Resilient systems can resist and recover from adverse incidents such as software failures and cyberattacks. They can deliver critical services with minimal interruptions and can quickly return to their normal operating state after an incident has occurred. In designing a resilient system, you have to assume that system failures or penetration by an attacker will occur, and you have to include redundant and diverse features to cope with these adverse events.

Designing systems for resilience involves two closely related streams of work:

- Identifying critical services and assets Critical services and assets are those elements of the system that allow a system to fulfill its primary purpose. For example, the primary purpose of a system that handles ambulance dispatch in response to emergency calls is to get help to people who need it as quickly as possible. The critical services are those concerned with taking calls and dispatching ambulances to the medical emergency. Other services such as call logging and ambulance tracking are less important.
- 2. Designing system components that support problem recognition, resistance, recovery, and reinstatement For example, in an ambulance dispatch system, a watchdog timer (see Chapter 12) may be included to detect if the system is not responding to events. Operators may have to authenticate with a hardware token to resist the possibility of unauthorized access. If the system fails, calls may be diverted to another center so that the essential services are maintained. Copies of the system database and software on alternative hardware may be maintained to allow for reinstatement after an outage.

Figure 14.8 Stages in survivability analysis

The fundamental notions of recognition, resistance, and recovery were the basis of early work in resilience engineering by Ellison et al. (Ellison et al. 1999, 2002). They designed a method of analysis called survivable systems analysis. This method is used to assess vulnerabilities in systems and to support the design of system architectures and features that promote system survivability.

Survivable systems analysis is a four-stage process (Figure 14.8) that analyzes the current or proposed system requirements and architecture, identifies critical services, attack scenarios, and system "softspots," and proposes changes to improve the survivability of a system. The key activities in each of these stages are as follows:

- 1. *System understanding* For an existing or proposed system, review the goals of the system (sometimes called the mission objectives), the system requirements, and the system architecture.
- 2. *Critical service identification* The services that must always be maintained and the components that are required to maintain these services are identified.
- 3. *Attack simulation* Scenarios or use cases for possible attacks are identified, along with the system components that would be affected by these attacks.
- 4. *Survivability analysis* Components that are both essential and compromisable by an attack are identified, and survivability strategies based on resistance, recognition, and recovery are identified.

The fundamental problem with this approach to survivability analysis is that its starting point is the requirements and architecture documentation for a system. This is a reasonable assumption for defense systems (the work was sponsored by the U.S. Department of Defense), but it poses two problems for business systems:

1. It is not explicitly related to the business requirements for resilience. I believe that these are a more appropriate starting point than technical system requirements.

Figure 14.9 Resilience engineering

2. It assumes that there is a detailed requirements statement for a system. In fact, resilience may have to be "retrofitted" to a system where there is no complete or up-to-date requirements document. For new systems, resilience may itself be a requirement, or systems may be developed using an agile approach. The system architecture may be designed to take resilience into account.

A more general resilience engineering method, as shown in Figure 14.9, takes the lack of detailed requirements into account as well as explicitly designing recovery and reinstatement into the system. For the majority of components in a system, you will not have access to their source code and will not be able to make changes to them. Your strategy for resilience has to be designed with this limitation in mind.

There are five interrelated streams of work in this approach to resilience engineering:

- 1. You identify business resilience requirements. These requirements set out how the business as a whole must maintain the services that it delivers to customers and, from this, resilience requirements for individual systems are developed. Providing resilience is expensive, and it is important not to overengineer systems with unnecessary resilience support.
- 2. You plan how to reinstate a system or a set of systems to their normal operating state after an adverse event. This plan has to be integrated with the business's

normal backup and archiving strategy that allows recovery of information after a technical or human error. It should also be part of a wider disaster recovery strategy. You have to take account of the possibility of physical events such as fire and flooding and study how to maintain critical information in separate locations. You may decide to use cloud backups for this plan.

- 3. You identify system failures and cyberattacks that can compromise a system, and you design recognition and resilience strategies to cope with these adverse events.
- 4. You plan how to recover critical services quickly after they have been damaged or taken offline by a failure or cyberattack. This step usually involves providing redundant copies of the critical assets that provide these services and switching to these copies when required.
- Critically, you should test all aspects of your resilience planning. This testing involves identifying failure and attack scenarios and playing these scenarios out against your system.

Maintaining the availability of critical services is the essence of resilience. Accordingly, you have to know:

- the system services that are the most critical for a business,
- the minimal quality of service that must be maintained,
- how these services might be compromised,
- how these services can be protected, and
- how you can recover quickly if the services become unavailable.

As part of the analysis of critical services, you have to identify the system assets that are essential for delivering these services. These assets may be hardware (servers, network, etc.), software, data, and people. To build a resilient system, you have to think about how to use redundancy and diversity to ensure that these assets remain available in the event of a system failure.

For all of these activities, the key to providing a rapid response and recovery plan after an adverse event is to have additional software that supports resistance, recovery, and reinstatement. This may be commercial security software or resilience support that is programmed into application systems. It may also include scripts and specially written programs that are developed for recovery and reinstatement. If you have the right support software, the processes of recovery and reinstatement can be partially automated and quickly invoked and executed after a system failure.

Resilience testing involves simulating possible system failures and cyberattacks to test whether the resilience plans that have been drawn up work as expected. Testing is essential because we know from experience that the assumptions made in resilience planning are often invalid and that planned actions do not always work. Testing for resilience can reveal these problems so that the resilience plan can be refined.

Figure 14.10 The client-server architecture of the Mentcare system

Testing can be very difficult and expensive as, obviously, the testing cannot be carried out on an operational system. The system and its environment may have to be duplicated for testing, and staff may have to be released from their normal responsibilities to work on the test system. To reduce costs, you can use "desk testing." The testing team assumes a problem has occurred and tests their reactions to it; they do not simulate that problem on a real system. While this approach can provide useful information about system resilience, it is less effective than testing in discovering deficiencies in the resilience plan.

As an example of this approach, let us look at resilience engineering for the Mentcare system. To recap, this system is used to support clinicians treating patients in a variety of locations who have mental health problems. It provides patient information and records of consultations with doctors and specialist nurses. It includes a number of checks that can flag patients who may be potentially dangerous or suicidal. Figure 14.10 shows the architecture of this system.

The system is consulted by doctors and nurses before and during a consultation, and patient information is updated after the consultation. To ensure the effectiveness of clinics, the business resilience requirements are that the critical system services are available during normal working hours, that the patient data should not be permanently damaged or lost by a system failure or cyberattack, and that patient information should not be released to unauthorized people.

Two critical services in the system have to be maintained:

- An information service that provides information about a patient's current diagnosis and treatment plan.
- A warning service that highlights patients who could pose a danger to others or to themselves.

Notice that the critical service is not the availability of the complete patient record. Doctors and nurses only need to go back to previous treatments occasionally, so clinical care is not seriously affected if a full record is not available. Therefore, it is possible to deliver effective care using a summary record that only includes information about the patient and recent treatment.

The assets required to deliver these services in normal system operations are:

- 1. The patient record database that maintains all patient information.
- 2. A database server that provides access to the database for local client computers.
- 3. A network for client/server communications.
- 4. Local laptop or desktop computers used by clinicians to access patient information.
- 5. A set of rules that identify patients who are potentially dangerous and that can flag patient records. Client software highlights dangerous patients to system users.

To plan recognition, resistance, and recovery strategies, you need to develop a set of scenarios that anticipate adverse events that might compromise the critical services offered by the system. Examples of these adverse events are:

- The unavailability of the database server either through a system failure, a network failure, or a denial-of-service cyberattack.
- 2. The deliberate or accidental corruption of the patient record database or the rules that define what is meant by a "dangerous patient."
- 3. Infection of client computers with malware.
- Access to client computers by unauthorized people who gain access to patient records.

Figure 14.11 shows possible recognition and resistance strategies for these adverse events. Notice that these are not just technical approaches but also include workshops to inform system users about security issues. We know that many security breaches arise because users inadvertently reveal privileged information to an attacker and these workshops reduce the chances of this happening. I don't have space here to discuss all of the options that I identified in Figure 14.11. Instead, I focus on how the system architecture can be modified to be more resilient.

In Figure 14.11, I suggested that maintaining patient information on client computers was a possible redundancy strategy that could help maintain critical services. This leads to the modified software architecture shown in Figure 14.12. The key features of this architecture are:

- 1. Summary patient records that are maintained on local client computers The local computers can communicate directly with each other and exchange information using either the system network or, if necessary, an ad hoc network created using mobile phones. Therefore, if the database is unavailable, doctors and nurses can still access essential patient information. (resistance and recovery)
- 2. A backup server to allow for main server failure This server is responsible for taking regular snapshots of the database as backups. In the event the main server

Event	Recognition	Resistance
Server unavailability	Watchdog timer on client that times out if no response to client access Text messages from system managers to clinical users	 Design system architecture to maintain local copies of critical information Provide peer-to-peer search across clients for patient data Provide staff with smartphones that can be used to access the network in the event of server failure Provide backup server
Patient database corruption	 Record level cryptographic checksums Regular auto-checking of database integrity Reporting system for incorrect information 	 Replayable transaction log to update database backup with recent transactions Maintenance of local copies of patient information and software to restore database from local copies and backups
Malware infection of client computers	Reporting system so that computer users can report unusual behavior Automated malware checks on startup	 Security awareness workshops for all system users Disabling of USB ports on client computers Automated system setup for new clients Support access to system from mobile devices Installation of security software
Unauthorized access to patient information	Warning text messages from users about possible intruders Log analysis for unusual activity	 Multilevel system authentication process Disabling of USB ports on client computers Access logging and real-time log analysis Security awareness workshops for all system users

Figure 14.11 Recognition and resistance strategies for adverse events

fails, it can also act as the main server for the whole system. This provides continuity of service and recovery after a server failure (resistance and recovery).

Database integrity checking and recovery software Integrity checking runs as a background task checking for signs of database corruption. If corruption is discovered, it can automatically initiate the recovery of some or all of the data from backups. The transaction log allows these backups to be updated with details of recent changes (recognition and recovery).

To maintain the key services of patient information access and staff warning, we can make use of the inherent redundancy in a client-server system. By downloading information to the client at the start of a clinic session, the consultation can continue without server access. Only the information about the patients who are scheduled to attend consultations that day needs to be downloaded. If there is a need to access other patient information and the server is unavailable, then other client computers may be contacted using peer-to-peer communication to see if the information is available on them.

The service that provides a warning to staff of patients who may be dangerous can easily be implemented using this approach. The records of patients who may harm themselves or others are identified before the download process. When clinical staff access these records, the software can highlight the records to indicate the patients that require special care.

Figure 14.12 An architecture for Mentcare system resilience

The features in this architecture that support the resistance to adverse events are also useful in supporting recovery from these events. By maintaining multiple copies of information and having backup hardware available, critical system services can be quickly restored to normal operation. Because the system need only be available during normal working hours (say, 8 a.m to 6 p.m), the system can be reinstated overnight so that it is available for the following day after a failure.

As well as maintaining critical services, the other business requirements of maintaining the confidentiality and integrity of patient data must also be supported. The architecture shown in Figure 14.12 includes a backup system and explicit database integrity checking to reduce the chances that patient information is damaged accidentally or in a malicious attack. Information on client computers is also available and can be used to support recovery from data corruption or damage.

While maintaining multiple copies of data is a safeguard against data corruption, it poses a risk to confidentiality as all of these copies have to be secured. In this case, this risk can be controlled by:

- 1. Only downloading the summary records of patients who are scheduled to attend a clinic. This limits the number of records that could be compromised.
- 2. Encrypting the disk on local client computers. Attackers who do not have the encryption key cannot read the disk if they gain access to the computer.
- 3. Securely deleting the downloaded information at the end of a clinic session. This further reduces the chances of an attacker gaining access to confidential information.

4. Ensuring that all network transactions are encrypted. If an attacker intercepts these transactions, they cannot get access to the information.

Because of performance degradation, it is probably impractical to encrypt the entire patient database on the server. Strong authentication should therefore be used to protect this information.

KEY POINTS

- The resilience of a system is a judgment of how well that system can maintain the continuity of its critical services in the presence of disruptive events, such as equipment failure and cyberattacks.
- Resilience should be based on the 4 Rs model—recognition, resistance, recovery, and reinstatement.
- Resilience planning should be based on the assumption that networked systems will be subject to cyberattacks by malicious insiders and outsiders and that some of these attacks will be successful.
- Systems should be designed with a number of defensive layers of different types. If these layers are effective, human and technical failures can be trapped and cyberattacks resisted.
- To allow system operators and managers to cope with problems, processes should be flexible and adaptable. Process automation can make it more difficult for people to cope with problems.
- Business resilience requirements should be the starting point for designing systems for resilience. To achieve system resilience, you have to focus on recognition and recovery from problems, recovery of critical services and assets, and reinstatement of the system.
- An important part of design for resilience is identifying critical services, which are those services that are essential if a system is to ensure its primary purpose. Systems should be designed so that these services are protected and, in the event of failure, recovered as quickly as possible.

FURTHER READING

"Survivable Network System Analysis: A Case Study." An excellent paper that introduces the notion of system survivability and uses a case study of a mental health record treatment system to illustrate the application of a survivability method. (R. J. Ellison, R. C. Linger, T. Longstaff, and N. R. Mead, IEEE Software, 16 (4), July/August 1999) http://dx.doi.org/10.1109/52.776952

Resilience Engineering in Practice: A Guidebook. This is a collection of articles and case studies on resilience engineering that takes a broad, sociotechnical systems perspective. (E. Hollnagel, J. Paries, D. W. Woods, and J. Wreathall, Ashgate Publishing Co., 2011).

"Cyber Risk and Resilience Management." This is a website with a wide range of resources on cybersecurity and resilience, including a model for resilience management. (Software Engineering Institute, 2013) https://www.cert.org/resilience/

WEBSITE

PowerPoint slides for this chapter:

www.pearsonglobaleditions.com/Sommerville

Links to supporting videos:

http://software-engineering-book.com/videos/security-and-resilience/

EXERCISES

- 14.1. Explain how the complementary strategies of resistance, recognition, recovery, and reinstatement may be used to provide system resilience.
- 14.2. What are the types of threats that have to be considered in resilience planning? Provide examples of the controls that organizations should put in place to counter those threats.
- 14.3. Describe the ways in which human error can be viewed according to Reason (Reason, 2000) and the strategies that can be used to increase resilience according to the Swiss cheese model (Figure 14.6).
- 14.4. A hospital proposes to introduce a policy that any member of clinical staff (doctors or nurses) who takes or authorizes actions that leads to a patient being injured will be subject to criminal charges. Explain why this is a bad idea, which is unlikely to improve patient safety, and why it is likely to adversely affect the resilience of the organization.
- 14.5. What is survivable systems analysis and what are the key activities in each of the four stages involved in it as shown in Figure 14.8?
- 14.6. Explain why process inflexibility can inhibit the ability of a sociotechnical system to resist and recover from adverse events such as cyberattacks and software failure. If you have experience of process inflexibility, illustrate your answer with examples from your experience.
- 14.7. Suggest how the approach to resilience engineering that I proposed in Figure 14.9 could be used in conjunction with an agile development process for the software in the system. What problems might arise in using agile development for systems where resilience is important?
- 14.8. In Section 13.4.2, (1) an unauthorized user places malicious orders to move prices and (2) an intrusion corrupts the database of transactions that have taken place. For each of these cyberattacks, identify resistance, recognition, and recovery strategies that might be used.
- 14.9. In Figure 14.11, I suggested a number of adverse events that could affect the Mentcare system. Draw up a test plan for this system that sets out how you could test the ability of the Mentcare system to recognize, resist, and recover from these events.
- 14.10. A senior manager in a company is concerned about insider attacks from disaffected staff on the company's IT assets. As part of a resilience improvement program, she proposes that a logging system and data analysis software be introduced to capture and analyze all employee actions but that employees should not be told about this system. Discuss the ethics of both introducing a logging system and doing so without telling system users.

REFERENCES

Ellison, R. J., R. C. Linger, T. Longstaff, and N. R. Mead. 1999. "Survivable Network System Analysis: A Case Study." *IEEE Software* 16 (4): 70–77. doi:10.1109/52.776952.

Ellison, R. J., R. C. Linger, H. Lipson, N. R. Mead, and A. Moore. 2002. "Foundations of Survivable Systems Engineering." Crosstalk: The Journal of Defense Software Engineering 12: 10–15. http://resources.sei.cmu.edu/asset_files/WhitePaper/2002_019_001_77700.pdf

Hollnagel, E. 2006. "Resilience—the Challenge of the Unstable." In Resilience Engineering: Concepts and Precepts, edited by E. Hollnagel, D. D. Woods, and N.G. Leveson, 9-18.

– . 2010. "RAG — The Resilience Analysis Grid." In Resilience Engineering in Practice, edited by E. Hollnagel, J. Paries, D. Woods, and J. Wreathall, 275–295. Farnham, UK: Ashgate Publishing Group.

InfoSecurity. 2013. "Global Cybercrime, Espionage Costs \$100-\$500 Billion Per Year." http://www infosecurity-magazine.com/view/33569/global-cybercrime-espionage-costs-100500-billion-per-year.

Laprie, J-C. 2008. "From Dependability to Resilience." In 38th Int. Conf. on Dependable Systems and Networks. Anchorage, Alaska. http://2008.dsn.org/fastabs/dsno8fastabs_laprie.pdf

Reason, J. 2000. "Human Error: Models and Management." British Medical J. 320: 768-770. doi:10.1136/bmj.320.7237.768.