

CSE2010 자료구조론

Week 1: Algorithm

ICT융합학부 한진영

알고리즘 성능 분석 기법

- 수행 시간 측정
 - 두개의 알고리즘의 실제 수행 시간을 측정하는 것
 - 실제로 구현하는 것이 필요
 - 동일한 하드웨어를 사용하여야 함

- 알고리즘의 복잡도 분석
 - 직접 구현하지 않고서도 수행 시간을 분석하는 것
 - 알고리즘이 수행하는 연산의 횟수를 측정하여 비교
 - 일반적으로 연산의 횟수는 n의 함수
 - 시간 복잡도 분석: 수행 시간 분석
 - 공간 복잡도 분석: 수행 시 필요로 하는 메모리 공간 분석

수행시간측정

- clock() 함수 사용
 - clock_t clock(void);
 - > clock 함수는 호출되었을 때의 시스템 시각을 CLOCKS_PER_SEC 단위로 반환
- 수행 시간을 측정하는 전형적인 프로그램

```
#include <stdio.h>
#include <stdiib.h>
#include <time.h>
void main( void )
{
    clock_t start, finish;
    double duration;
    start = clock();
    // 수행시간을 측정하고 하는 코드....
    // ....
    finish = clock();
    duration = (double)(finish - start) / CLOCKS_PER_SEC;
    printf("%f 초입니다.\n", duration);
}
```

알고리즘 효율성과 복잡도 분석

- 어떤 문제를 해결하는데 사용될 수 있는 알고리즘은?
 - 매우 다양함
- 다양한 알고리즘 중에서 우리는 어떤 것을 골라야 할까?
 - 효율적인 알고리즘
 - 그래서 알고리즘 분석이 필요! 즉, 알고리즘의 효율성을 분석해야 함!
- 알고리즘의 효율성 분석 방법은?
 - 알고리즘의 복잡도 분석(Complexity Analysis)
 - 직접 구현하지 않고 모든 입력을 고려하여 대략적으로 알고리즘 효율성을 비교하는 방법
 - 실행 하드웨어나 소프트웨어 환경과 관계없이 알고리즘의 효율성을 평가할 수 있음

시간 복잡도 분석(1)

- ■시간 복잡도 계산 방법
 - 알고리즘을 이루고 있는 연산들이 몇 번이나 수행되는지를 숫자로 표
 알고리즘의 절대적인 실행 시간을 분석하는 것이 아님!
 - 산술 연산, 대입 연산, 비교 연산, 이동 연산 등 기본적인 연산 고려
 - 연산의 수행횟수는 고정된 숫자가 아니라 입력의 개수 n에 대한 함수(시 간 복잡도 함수)

- ■시간 복잡도 함수(time complexity function) T(n)
 - n: 문제의 크기(입력자료의 개수)
 - 알고리즘을 수행하는데 필요한 시간을 추정한 것

시간 복잡도 분석(2)

- 최악의 경우의 시간 복잡도 (worst-case time complexity)
 - 크기가 n인 문제에 대한 알고리즘을 분석할 때, 그 알고리즘에 의해 수행되는 기본 연산의 회수를 최대로 하는 입력에 대한 시간복잡도 함수
 - D_n : 크기가 n 인 문제에 대한 모든 입력 집합
 - *I* : *D_n*의 원소
 - t(I): 입력 I에 대하여 수행하는 기본 연산 수
 - $T_W(n)$: 최악의 경우의 시간 복잡도, $T_W(n) = \max\{t(I)|I \in D_n\}$
- 평균적인 경우의 시간 복잡도(expected-case time complexity)
 - 알고리즘이 평균적으로 얼마 만큼의 기본 연산을 수행하는 가를 분석
 - *P(I)* : 입력 *I* 가 일어날 확률
 - $T_E(n)$: 평균적 경우의 시간 복잡도, $T_E(n) = \sum_{I \in D_n} p(I) t(I)$

복잡도 분석의 예

■ n을 n번 더하는 문제: 각 알고리즘이 수행하는 연산의 개수를 세어 봄. 단, for 루프 제어 연산은 고려하지 않음.

알고리즘 A	알고리즘 B	알고리즘 C
sum ←n*n;	sum ← 0; for i ← 1 to n do sum ←sum + n;	sum ← 0; for i←1 to n do for j←1 to n do sum ←sum + 1;

	알고리즘 A	알고리즘 B	알고리즘 C				
대입연산	1	n + 1	n*n + 1				
덧셈연산		n	n*n				
곱셈연산	1						
나눗셈연산							
전체연산수	2	2n + 1	2n ² + 1				

복잡도 분석의 예

시간 복잡도 함수 계산 예

■ 코드를 분석해보면 수행되는 수행되는 연산들의 횟수를 입력 크기의 함수로 만들 수 있음

```
      ArrayMax(A,n)

      tmp ← A[0];
      1번의 대입 연산

      for i←1 to n-1 do
      루프 제어 연산은 제외

      if tmp < A[i] then</td>
      n-1번의 비교 연산

      tmp ← A[i];
      n-1번의 대입 연산(최대)

      return tmp;
      1번의 반환 연산

      총 연산수= 2n(최대)
```

빅오 표기법(1)

- 자료의 개수가 많은 경우에는 차수가 가장 큰 항이 가장 영향을 크게
 미치고 다른 항들은 상대적으로 무시될 수 있음
 - (예) n=1,000 일 때, T(n)의 값은 1,001,001이고 이중에서 첫 번째 항인
 의 값이 전체의 약 99%인 1,000,000이고 두 번째 항의 값이 1000으로 전체의 약 1%를 차지함
 - 따라서 보통 시간 복잡도 함수에서 가장 영향을 크게 미치는 항만을 고 려하면 충분함

n=1000인 경우
$$T(n)=(n^2+(n+1))$$
 입력의 개수 n
99%
1%

빅오 표기법(2)

- **빅오(big-oh) 표기법**: 연산의 횟수를 대략적(점근적)으로 표기한 것
 - 두개의 함수 f(n)과 g(n)이 주어졌을 때,
 모든 n≥n₀에 대하여 |f(n)| ≤ c|g(n)|을 만족하는 두개의 상수 c와 n₀가
 존재하면 f(n)=O(g(n))
 - "빅오"는 **함수의 상한**을 표시
 - > (예) n≥5 이면 2n+1 <10n 이므로 2n+1 = O(n) ← Big-oh of n

빅오 표기법 예제

- f(n) = 5이면 이다. 왜냐하면 $n_0 = 1$, c = 10일 때, $n \ge 1$ 에 대하여 $5 \le 10$ •1이 되기 때문이다.
- f(n) = 2n + 1이면 이다. 왜냐하면 $n_0 = 2$, c = 3일 때, $n \ge 2$ 에 대하여 $2n + 1 \le 3n$ 이 되기 때문이다.
- $f(n) = 3n^2 + 100$ 이면 이다. 왜냐하면 $n_0 = 100$, c = 5일 때, $n \ge 100$ 에 대하여 $3n^2 + 100 \le 5n^2$ 이 되기 때문이다.
- $f(n) = 5 \cdot 2^n + 10n^2 + 100$ 이면 이다. 왜냐하면 $n_0 = 1000$, c = 10일 때, $n \ge 1000$ 에 대하여 $5 \cdot 2^n + 10n^2 + 100 \le 10 \cdot 2^n$ 이 되기 때문이다.

빅오 표기법 종류

■ O(1) : 상수형

■ O(logn) : 로그형

■ O(n) : 선형

O(nlogn) : 로그선형

■ O(n²): 2차형

■ O(n³): 3차형

■ O(n^k): k차형

■ O(2ⁿ) : 지수형

■ O(n!): 팩토리얼형

함수 수행속도 비교(1)

시간복잡도	n							
	1	2	4	8	16	32		
1	1	1	1	1	1	1		
logn	0	1	2	3	4	5		
n	1	2	4	8	16	32		
nlogn	0	2	8	24	64	160		
n²	1	4	16	64	256	1024		
n³	1	8	64	512	4096	32768		
2 ⁿ	2	4	16	256	65536	4294967296		
n!	1	2	24	40326	20922789888000	26313 × 10 ³³		

함수 수행속도 비교(2)

(단위 연산속도 : 10⁻⁶초)

입력 알고리	즘	А		В		C	;	D		E
복집 크기 n	토	100n		$10nlog_2n$		$5n^2$		n^3		2^n
10		10 ⁻³	초	1.5*10 ⁻³	초	5*10	⁴ 초	10 ⁻³	초	10 ⁻³ 초
100		10 ⁻²	초	0.03	초	5*10 ⁻¹	² 초	1	초	4*10 ¹⁴ 세기
1,000		10 ⁻¹	초	0.45	초	5	초	1.6	분	***
10,000		1	초	6.1	초	8.3	분	11.57	일	***
100,000		10	초	1.5	분	13.8	시간	31.7	년	***

빅오 표기법 – 함수의 상한 표시

- **빅오(big-oh) 표기법**: 연산의 횟수를 대략적(점근적)으로 표기한 것
 - 두개의 함수 f(n)과 g(n)이 주어졌을 때,
 모든 n≥n₀에 대하여 |f(n)| ≤ c|g(n)|을 만족하는 두개의 상수 c와 n₀가
 존재하면 f(n)=O(g(n))
 - "빅오"는 **함수의 상한**을 표시
 - > (예) n≥5 이면 2n+1 <10n 이므로 2n+1 = O(n) ← Big-oh of n

빅오메가 표기법

■ 빅오메가(big omega) 표기법

- 두개의 함수 f(n)과 g(n)이 주어졌을 때,
 모든 n≥n₀에 대하여 |f(n)| ≥ c|g(n)|을 만족하는 두개의 상수 c와 n₀가
 존재하면 f(n)= Ω(g(n))
- "빅오메가"는 **함수의 하한**을 표시
 - > (예) n≥1 이면 2n+1 ≥ n 이므로 2n+1 = Ω(n)

빅세타 표기법

■ 빅세타(big theta) 표기법

- 두개의 함수 f(n)과 g(n)이 주어졌을 때,
 모든 n≥n₀에 대하여 c₁|g(n)| ≤ |f(n)| ≤ c₂|g(n)| 을 만족하는 세개의
 상수 c₁, c₂ 와 n₀가 존재하면 f(n)= θ(g(n))
- "빅세타"는 **함수의 하한인 동시에 상한**을 표시
- f(n)=O(g(n))이면서 $f(n)=\Omega(g(n))$ 이면, $f(n)=\theta(n)$
- (예) n ≥ 1이면 n ≤ 2n+1 ≤ 3n이므로 2n+1 = θ(n)

최선, 평균, 최악의 경우

- 알고리즘의 수행시간은 입력 자료 집합에 따라 다를 수 있음
 - (예) 정렬 알고리즘
- 최선의 경우(best case): 수행 시간이 가장 빠른 경우
- 평균의 경우(average case): 수행시간이 평균적인 경우
- 최악의 경우(worst case): 수행 시간이 가장 늦은 경우

순차탐색 알고리즘 예

5 9 10 17 21 29 33 37 38 43

- 최선의 경우
 - 찾고자 하는 숫자가 맨앞에 있는 경우∴ O(1)
- 최악의 경우
 - 찾고자 하는 숫자가 맨뒤에 있는 경우: O(n)
- 평균적인 경우
 - 각 요소들이 균일하게 탐색된다고 가정하면 모든 숫자들이 탐색되었을 경우의비교 연산 수행횟수를 더한 후, 전체 숫자 개수로 나누면 됨
 (1+2+···+n)/n=(n+1)/2
 ∴ O(n)

Week 1: Algorithm

