Escaping the Deep Saddle Points

Ankit Goyal Enayat Ullah

Indian Institute of Technology Kanpur Kanpur, India

14 April 2016

Outline

- Saddle Point Problem
- 2 Approach
- Tensor Decomposition
- Tensor Methods for Non-Convex Optimization
- 5 Tensor Decomposition Step

Why bother about saddle points?

- Proliferation of saddle points, in non-convex high dimensional setting. [1]
- Symmetry leads to saddle points. [2]
- In high-dimensions, sufficient to converge to local minima.
- Hessian based approaches to escape saddle points. [1]
- Strict-saddle property, SGD escape saddle point without second-order information. [3]

Strict Saddle

Definition

A twice differentiable function f(w) is strict-saddle, if all its local minima have $\nabla^2 f(w) \succ 0$ and all its other stationary points satisfy $\lambda_{min}(\nabla^2 f(w)) < 0$.

Definition (Formal)

A twice differentiable function f(w) is $(\alpha, \gamma, \epsilon, \delta)$ strict-saddle, if for any point w at least one of the following is true

- $\lambda_{min}(\nabla^2 f(w)) \leq -\gamma.$
- **③** There is a local minimum w^* such that $||w w^*|| ≤ \delta$, and the function f(w') restricted to 2δ neighborhood of w^* ($||w' w^*|| ≤ 2\delta$) is α -strongly convex.

Noisy SGD

Algorithm 1 Noisy Stochastic Gradient

Require: SG oracle SG(w), initial point w_0 , desired accuracy κ .

Ensure: w_t that is close to some local minimum w^* .

1: Choose
$$\eta = \min\{\tilde{O}(\kappa^2/\log(1/\kappa)), \eta_{\text{max}}\}, T = \tilde{O}(1/\eta^2)$$

- 2: **for** t = 0 to T 1 **do**
- 3: Sample noise *n* uniformly from unit sphere.
- 4: $W_{t+1} \leftarrow W_t \eta(SG(W) + n)$
- 5: end for

Main Theorem

Theorem

Suppose f(w) is strict-saddle, then Noisy Gradient Descent outputs a point that is close to a local minimum in polynomial number of steps.

Theorem (Formally)

Suppose a function $f(w): \mathbb{R}^d \to \mathbb{R}$ that is $(\alpha, \gamma, \epsilon, \delta)$ strict-saddle, and has a stochastic gradient oracle with radius at most Q. Further, suppose the function is bounded by $|f(w)| \leq B$, is β -smooth and has ρ -Lipschitz Hessian. Then there exists a threshold $\eta_{\max} = \tilde{\Theta}(1)$, so that for any $\zeta > 0$, and for any $\eta \leq \eta_{\max}/\max\{1,\log(1/\zeta)\}$, with probability at least $1-\zeta$ in $t = \tilde{O}(\eta^{-2}\log(1/\zeta))$ iterations. NGD outputs a point w_t that is $\tilde{O}(\sqrt{\eta}\log(1/\eta\zeta))$ -close to some local minimum w^* .

Tensor

• A 4-th order tensor $T \in \mathbb{R}^{d^4}$ has an orthogonal decomposition if it can be written as

$$T = \sum_{i=1}^{d} a_i^{\otimes 4},\tag{1}$$

where a_i 's are orthonormal vectors that satisfy $||a_i|| = 1$ and $a_i^T a_j = 0$ for $i \neq j$.

• Multilinear form for a p-th order tensor $T \in \mathbb{R}^{d^p}$, where matrices $M_i \in \mathbb{R}^{d \times n_i}$ $i \in [p]$, we define

$$[T(M_1, M_2, ..., M_p)]_{i_1, i_2, ..., i_p} = \sum_{j_1, j_2, ..., j_p \in [d]} T_{j_1, j_2, ..., j_p} \prod_{t \in [p]} M_t[i_t, j_t].$$
 (2)

Tensor Decomposition

The orthogonal tensor decomposition objective function can be equivalently be expressed as follows:

$$\min_{\forall i, \|u_i\|^2 = 1} \quad \sum_{i \neq j} T(u_i, u_i, u_j, u_j), \tag{3}$$

Intuition: Expanding u_k along the orthogonal basis $\{a_i\}$'s, we get $u_k = \sum_{i=1}^d z_k(i)a_i$. Therefore, $T(u_k, u_k, u_l, u_l) = \sum_{i=1}^d (z_k(i))^2 (z_l(i))^2$. This is nonnegative, and is equal to 0 only when the support of z_k and z_l do not intersect.

Theorem

The optimization problem (9) is $(\alpha, \gamma, \epsilon, \delta)$ -strict-saddle, for $\alpha = 1$ and $\gamma, \epsilon, \delta = 1/\text{poly}(d)$. Moreover, all its local minima have the form $u_i = \kappa_i a_{\pi(i)}$ for some $\kappa_i = \pm 1$ and permutation $\pi(i)$.

Two-layer feed-forward neural network

Figure: Graphical representation of a neural network, Image Courtesy: "Beating the perils of non-convexity: Guaranteed training of neuralnetworks using tensor methods"

$$\tilde{f}(x) := \mathbb{E}[\tilde{y}|x] = \langle a_2, \sigma(A_1^\top x + b_1) \rangle + b_2, \tag{4}$$

Score Function

- Score functions are a class of features, which capture local variations in the probability density function of the input.
- The *m*-th order score function $S_m(x) \in \bigotimes^m \mathbb{R}^d$ is defined as follows:[4]

$$S_m(x) := (-1)^m \frac{\nabla_x^{(m)} p(x)}{p(x)},$$
 (5)

where p(x) is the probability density function of random vector $x \in \mathbb{R}^d$.

Tensor Decomposition for feed-forward neural network

• For label-function $f(x) := \mathbb{E}[y|x]$, Janzamin et al. [4] showed that

$$\mathbb{E}[y \cdot S_3(x)] = \mathbb{E}[\nabla_x^{(3)} f(x)]$$
 (6)

For a feed-forward neural network, Janzamin et al. [5] showed that

$$\mathbb{E}\left[\tilde{y}\cdot\mathcal{S}_{3}(x)\right] = \sum_{j\in[k]}\lambda_{j}\cdot(A_{1})_{j}\otimes(A_{1})_{j}\otimes(A_{1})_{j}\in\mathbb{R}^{d\times d\times d},\tag{7}$$

NN LIFT Algorithm

Algorithm 2 NN-LIFT (Neural Network LearnIng using Feature Tensors)

Require: Labeled samples $\{(x_i, y_i) : i \in [n]\}$, parameter $\tilde{\epsilon}_1$, parameter λ .

Require: Third order score function $S_3(x)$ of the input x

- 1: Compute $\widehat{T} := \frac{1}{n} \sum_{i \in [n]} y_i \cdot S_3(x_i)$.
- 2: $\{(\hat{A}_1)_j\}_{j\in[k]}$ = tensor decomposition (\hat{T})
- 3: $\hat{b}_1 = \text{Fourier method}(\{(x_i, y_i) : i \in [n]\}, \hat{A}_1, \tilde{\epsilon}_1)$
- 4: $(\hat{a}_2, \hat{b}_2) = \text{Ridge regression}(\{(x_i, y_i) : i \in [n]\}, \hat{A}_1, \hat{b}_1, \lambda)$

Approach

- Problem: May not yield orthogonal decomposition. Solution: Whitening, we get $T(W, W, W) \in \mathbb{R}^{K \times k \times k}$
- **1** The new objective T(u, u, u) is strict-saddle [Proof in report]
- Modified the Tensor Power method to use Noisy Gradient Descent for Tensor Decomposition

Robust Tensor Power Method

Algorithm 3 Robust tensor power method

Require: Symmetric tensor $\tilde{T} \in \mathbb{R}^{d' \times d' \times d'}$, number of iterations N

Ensure: the estimated eigenvector/eigenvalue pair; the deflated tensor.

- 1: **for** τ = 1 to R **do**
- 2: **for** t = 1 to N **do**
- Compute power iteration update

$$\widehat{v}_{t}^{(\tau)} := \frac{\widetilde{T}(I, \widehat{v}_{t-1}^{(\tau)}, \widehat{v}_{t-1}^{(\tau)})}{\|\widetilde{T}(I, \widehat{v}_{t-1}^{(\tau)}, \widehat{v}_{t-1}^{(\tau)})\|}$$
(8)

- 4: end for
- 5: end for
- $\text{6: Let } \tau^* := \arg\max\nolimits_{\tau \in [R]} \{ \tilde{T}(\widehat{v}_N^{(\tau)}, \widehat{v}_N^{(\tau)}, \widehat{v}_N^{(\tau)}) \}.$
- 7: Do N power iteration updates (8) starting from $\widehat{v}_N^{(\tau^*)}$ to obtain \widehat{v} , and set $\widehat{\mu} := \widetilde{T}(\widehat{v}, \widehat{v}, \widehat{v})$.
- 8: **return** the estimated eigenvector/eigenvalue pair $(\hat{\mathbf{v}}, \hat{\mu})$; the deflated tensor $\tilde{T} \hat{\mu} \cdot \hat{\mathbf{v}}^{\otimes 3}$.

Modified Tensor Decomposition Using Noisy Gradient Descent

Algorithm 4 Tensor Decomposition Using Noisy Gradient Descent

Require: Symmetric tensor $\tilde{T} \in \mathbb{R}^{d' \times d' \times d'}$, number of iterations N **Ensure:** the estimated eigenvector/eigenvalue pair; the deflated tensor.

1: Compute \hat{v} using by using Noisy Gradient Descent on the following objective function

$$\max_{\|u\|^2=1} \quad \tilde{T}(u, u, u), \tag{9}$$

- 2: Set $\hat{\mu} := \tilde{T}(\hat{v}, \hat{v}, \hat{v})$.
- 3: **return** the estimated eigenvector/eigenvalue pair $(\hat{\mathbf{v}}, \hat{\mu})$; the deflated tensor $\tilde{\mathbf{T}} \hat{\mu} \cdot \hat{\mathbf{v}}^{\otimes 3}$.

Figure: Overview of tensor decomposition algorithm for third order tensor.

Table: Results

Dimension	Average Error(Tensor Decomposition)	Average Error(Standard NN)
d=3	1.82	0.564
d=10	2.79	0.682
d=20	5.67	1.237

Details of the dataset created in the report.

References I

Yann N Dauphin, Razvan Pascanu, Caglar Gulcehre, Kyunghyun Cho, Surva Ganguli, and Yoshua Bengio.

Identifying and attacking the saddle point problem in high-dimensional non-convex optimization.

In Advances in Neural Information Processing Systems, pages 2933-2941, 2014.

Andrew M Saxe, James L McClelland, and Surya Ganguli. Exact solutions to the nonlinear dynamics of learning in deep linear neural networks.

arXiv preprint arXiv:1312.6120, 2013.

Rong Ge, Furong Huang, Chi Jin, and Yang Yuan. Escaping from saddle points—online stochastic gradient for tensor decomposition.

arXiv preprint arXiv:1503.02101, 2015.

References II

Majid Janzamin, Hanie Sedghi, and Anima Anandkumar. Score function features for discriminative learning: Matrix and tensor framework.

arXiv preprint arXiv:1412.2863, 2014.

Majid Janzamin, Hanie Sedghi, and Anima Anandkumar.

Beating the perils of non-convexity: Guaranteed training of neural networks using tensor methods.

CoRR abs/1506.08473, 2015.