SAT-IT: the Interactive SAT-Tracer

Marc Cané¹, Jordi Coll², Marc Rojo¹ and **Mateu Villaret**¹

Departament d'Informàtica, Matemàtica Aplicada i Estadística, Universitat de Girona, Spain

² Institut d'Investigació en Intel·ligència Artificial, CSIC, Bellaterra, Spain

August 2023, WCTP 2023 (Toronto)

Motivation and main contributions

Provide interactive tool for better **learning and understanding basic SAT-solving algorithms**

- Backtracking
- Davis-Putnam-Logemann-Loveland (DPLL)
- Conflict-Driven Clause Learning (CDCL)

Provide interactive tool for better analysing encodings properties

Context of the course where it is used (1/2)

Subject: Declarative Programming, Applications

- 4th year undergraduate students in computer science
- Previous knowledge: Complexity (NP-completeness), Prolog, data-structures and advanced programming, etc.
- 5 ECTS = 50 hours
- TWO parts
 - First part of functional programming (20h)
 - Second part of combinatorial problem solving (30h)

Context of the course where it is used (2/2)

Combinatorial problem solving

- Constraint Programming (MiniZinc) [20 hours]
- SAT solving and modelling (ad-hoc SCALA API) [10 hours]
 - Backtracking, DPLL and CDCL
 - Cardinality constraints, PB constraints, ...

Assignment:

- use of given algorithms for solving Formulas
- implement some cardinality constraints encodings
- model and solve: Binary Sudoku, Crowded chessboard, Minesweeper, etc...

Boolean Formulas

A Formula is typically represented in Conjunctive Normal Form (CNF)

- **Variables**: e.g. $x_1, x_2, ...$
- **Literals** (variables and negated variables): e.g. x_1 and $\neg x_1$
- Clauses (disjunctions of literals): $(x_1 \lor \neg x_2 \lor x_3)$
- **CNF** formulas (conjunctions of clauses): $(x_1 \lor x_2) \land (x_1 \lor \neg x_2 \lor x_3) \land (\neg x_1 \lor x_2) \land (\neg x_1 \lor \neg x_2)$

An interpretation assigns truth values to variables, e.g.:

 $x_1 \rightarrow false, x_2 \rightarrow false, x_3 \rightarrow true$, represented as: $\neg x_1 \neg x_2 x_3$

Boolean Formulas

A Formula is typically represented in Conjunctive Normal Form (CNF)

- Variables: e.g. $x_1, x_2, ...$
- **Literals** (variables and negated variables): e.g. x_1 and $\neg x_1$
- Clauses (disjunctions of literals): $(x_1 \lor \neg x_2 \lor x_3)$
- **CNF** formulas (conjunctions of clauses): $(x_1 \lor x_2) \land (x_1 \lor \neg x_2 \lor x_3) \land (\neg x_1 \lor x_2) \land (\neg x_1 \lor \neg x_2)$

An interpretation assigns truth values to variables, e.g.:

$$x_1 \rightarrow \mathit{false}, x_2 \rightarrow \mathit{false}, x_3 \rightarrow \mathit{true}, \text{ represented as: } \neg x_1 \neg x_2 x_3$$

- A clause is satisfied by an interpretation if some of its literals appears in the interpretation
- A CNF is satisfied by an interpretation (model) if all of its clauses are satisfied by the interpretation

$$\neg x_1 x_2 x_3 \models (x_1 \lor x_2) \land (x_1 \lor \neg x_2 \lor x_3) \land (\neg x_1 \lor x_2) \land (\neg x_1 \lor \neg x_2)$$
$$x_1 x_2 x_3 \not\models (x_1 \lor x_2) \land (x_1 \lor \neg x_2 \lor x_3) \land (\neg x_1 \lor x_2) \land (\neg x_1 \lor \neg x_2)$$

SAT as "Machine Code" for Combinatorial Problem Solving

SAT is the problem of determining the satisfiability of a Boolean **Formula**, i.e. the existence of an interpretation that satisfies the formula.

- It is "the" NP-Complete problem
- It is a sort of "Machine Code" for Combinatorial Problem Solving

SAT is an elemental CSP

- Set of variables: $\{x_1, x_2, x_3\}$
- With Domains: $dom(x_1) = dom(x_2) = dom(x_3) = \{false, true\}$
- Set of constraints = set of clauses: $\{(x_1 \lor x_2), (x_1 \lor \neg x_2 \lor x_3), (\neg x_1 \lor x_2), (\neg x_1 \lor \neg x_2)\}$

The Trail System

In our course we follow a symbolic representation of the evolution of the searching process borrowed and adapted from:

Robert Nieuwenhuis, Albert Oliveras and Cesare Tinelli.
Solving SAT and SAT Modulo Theories: From an abstract Davis-Putnam Logemann Loveland procedure to DPLL(T).
In *Journal of the ACM*, 53(6): 937-977, 2006.

• The state is represented as a pair:

(annotated) partial assignment || (possibly updated) original formula

e.g.:
$$x_1^1 x_2^k \parallel \{(x_1 \lor x_2), (x_1 \lor \neg x_2 \lor x_3), (\neg x_1 \lor x_2), (\neg x_1 \lor \neg x_2)\}$$

- The rules transform the state until a model is found or unsatisfiability has been proved (there are NO decisions to change)
- Aplycability of rules is defined in terms of properties of the partial assignment and the formula

Backtracking Rules

Decision level: counter on amount of decisions present in the current trail

DECIDE:

$$M \parallel F$$

$$\implies$$
 $M I^d \parallel F$

if
$$\begin{cases} I \text{ or } \neg I \text{ occurs in a clause of } F \\ I \text{ is undefined in } M \end{cases}$$

Backtracking Rules

Decision level: counter on amount of decisions present in the current trail

DECIDE:

$$M \parallel F \qquad \Longrightarrow M \mid I^d \parallel F$$

if
$$\begin{cases} I \text{ or } \neg I \text{ occurs in a clause of } F \\ I \text{ is undefined in } M \end{cases}$$

BACKTRACK:

$$M \mid I^d \mid N \mid \mid F \cup \{C_i\} \implies M \neg I^k \mid \mid F \cup \{C_i\} \quad \text{if} \quad \begin{cases} M \mid I^d \mid N \models \neg C_i \\ N \text{ contains no decision literals} \end{cases}$$

Backtracking Rules

Decision level: counter on amount of decisions present in the current trail

DECIDE:

$$M \parallel F \implies M \mid I^d \parallel F$$

if
$$\begin{cases} I \text{ or } \neg I \text{ occurs in a clause of } F \\ I \text{ is undefined in } M \end{cases}$$

BACKTRACK:

$$M \mid I^d \mid N \mid \mid F \cup \{C_i\} \implies M \neg I^k \mid \mid F \cup \{C_i\} \quad \text{if} \quad \begin{cases} M \mid I^d \mid N \models \neg C_i \\ N \text{ contains no decision literals} \end{cases}$$

if
$$\begin{cases} M & I^d & N \models \neg C_i \\ N & \text{contains no decision literal} \end{cases}$$

FAIL:

$$M \parallel F \cup \{C_i\}$$

$$\implies$$
 FailState

if
$$\begin{cases} M \models \neg C_i \\ M \text{ contains no decision literals} \end{cases}$$

Backtracking Algorithm

Algorithm 1: BACKTRACKING algorithm

```
Input: F = \{C_1, \dots, C_{|F|}\}, a set of clauses.

Output: If F is SAT: (SAT, M), where M is a model of F.

Otherwise: UNSAT.

1 M \leftarrow \{\}

2 while True do

3 | if CanApply(BACKTRACK, M, F) then (M, F) \leftarrow Backtrack(M, F);

else if CanApply(FAIL, M, F) then return UNSAT;

5 | else if M is a complete assignment then return (SAT, M);

6 | else (M, F) \leftarrow Decide(M, F);
```

We set an order in the decision of variables:

$$x_1 \prec x_2$$

- $C1: (x_1 \lor x_2)$
- $C2: (x_1 \vee \neg x_2)$
- $C3: (\neg x_1 \lor x_2)$
- $C4: (\neg x_1 \lor \neg x_2)$

We set an order in the decision of variables:

$$x_1 \prec x_2$$

$$C1: (x_1 \lor x_2)$$

$$C2: (x_1 \lor \neg x_2)$$

$$C3: (\neg x_1 \lor x_2)$$

$$C4: (\neg x_1 \lor \neg x_2)$$

We set an order in the decision of variables:

$$x_1 \prec x_2$$

$$C1: (x_1 \lor x_2) \qquad x_1^d x_2^d$$

$$C2: (x_1 \lor \neg x_2)$$

$$C3: (\neg x_1 \lor x_2)$$

$$C4: (\neg x_1 \lor \neg x_2)$$

We set an order in the decision of variables:

$$x_1 \prec x_2$$

C1:
$$(x_1 \lor x_2)$$

C2: $(x_1 \lor \neg x_2)$

$$C3: (\neg x_1 \lor x_2)$$

$$C4: (\neg x_1 \lor \neg x_2)$$

$$x_1^d x_2^d$$

Fail C4, Backtrack

We set an order in the decision of variables:

$$x_1 \prec x_2$$

C1:
$$(x_1 \lor x_2)$$

C2: $(x_1 \lor \neg x_2)$
C3: $(\neg x_1 \lor x_2)$
C4: $(\neg x_1 \lor \neg x_2)$

$$x_1^d x_2^d x_1^d \neg x_2^k$$

Fail C4, Backtrack

We set an order in the decision of variables:

$$x_1 \prec x_2$$

C1:
$$(x_1 \lor x_2)$$

C2: $(x_1 \lor \neg x_2)$
C3: $(\neg x_1 \lor x_2)$
C4: $(\neg x_1 \lor \neg x_2)$

$$x_1^d x_2^d x_1^d \neg x_2^k$$

Fail C4, Backtrack Fail C3, Backtrack

We set an order in the decision of variables:

$$x_1 \prec x_2$$

$$C1: (x_1 \lor x_2) \qquad x_1^d x_2^d$$

$$C2: (x_1 \lor \neg x_2) \qquad x_1^d \neg x_2^k$$

$$C3: (\neg x_1 \lor x_2) \qquad \neg x_1^k$$

$$C4: (\neg x_1 \lor \neg x_2)$$

Fail C4, Backtrack Fail C3, Backtrack

We set an order in the decision of variables:

$$x_1 \prec x_2$$

$$C1: (x_1 \lor x_2) \qquad x_1^d x_2^d$$

$$C2: (x_1 \lor \neg x_2) \qquad x_1^d \neg x_2^k$$

$$C3: (\neg x_1 \lor x_2) \qquad \neg x_1^k x_2^d$$

$$C4: (\neg x_1 \lor \neg x_2)$$

Fail C4, Backtrack Fail C3, Backtrack

We set an order in the decision of variables:

$$x_1 \prec x_2$$

$$C1: (x_1 \lor x_2) \qquad x_1^d x_2^d$$

$$C2: (x_1 \lor \neg x_2) \qquad x_1^d \neg x_2^k$$

$$C3: (\neg x_1 \lor x_2) \qquad \neg x_1^k x_2^d$$

$$C4: (\neg x_1 \lor \neg x_2)$$

Fail C4, Backtrack Fail C3, Backtrack Fail C2, Backtrack

We set an order in the decision of variables:

$$x_1 \prec x_2$$

$$C1: (x_1 \lor x_2) & x_1^d x_2^d \\ C2: (x_1 \lor \neg x_2) & x_1^d \neg x_2^k \\ C3: (\neg x_1 \lor x_2) & \neg x_1^k x_2^d \\ C4: (\neg x_1 \lor \neg x_2) & \neg x_1^k \neg x_2^k \end{cases}$$

Fail C4, Backtrack Fail C3, Backtrack Fail C2, Backtrack

We set an order in the decision of variables:

$$x_1 \prec x_2$$

$$C1: (x_1 \lor x_2) & x_1^d x_2^d \\ C2: (x_1 \lor \neg x_2) & x_1^d \neg x_2^k \\ C3: (\neg x_1 \lor x_2) & \neg x_1^k x_2^d \\ C4: (\neg x_1 \lor \neg x_2) & \neg x_1^k \neg x_2^k \end{cases}$$

Fail C4, Backtrack Fail C3, Backtrack Fail C2, Backtrack Fail C1, UNSAT

Davis-Putnam-Logemann-Loveland (DPLL) Rules

DECIDE:

$$M \parallel F$$

$$\Longrightarrow M I^d \parallel F$$

if
$$\begin{cases} I \text{ or } \neg I \text{ occurs in a clause of } F \\ I \text{ is undefined in } M \end{cases}$$

BACKTRACK:

$$M \mid I^d \mid N \mid \mid F \cup \{C_i\} \implies M \neg I^k \mid \mid F \cup \{C_i\} \quad \text{if} \quad \begin{cases} M \mid I^d \mid N \models \neg C_i \\ N \text{ contains no decision literals} \end{cases}$$

$$\mathbf{f} \begin{cases} M \ I^d \ N \models \neg C_i \\ N \ \text{contains no decision} \end{cases}$$

FAIL:

$$M \parallel F \cup \{C_i\}$$

$$\Longrightarrow$$
 FailState

if
$$\begin{cases} M \models \neg C_i \\ M \text{ contains no decision literals} \end{cases}$$

UNITPROPAGATE:

$$M \parallel F \cup \{C_i\}$$

$$\Longrightarrow M I^i \parallel F \cup \{C_i\}$$

if
$$\begin{cases} C_i \text{ has the form } C' \lor I \\ M \models \neg C' \\ I \text{ is undefined in } M \end{cases}$$

DPLL Algorithm

Algorithm 2: DPLL algorithm

```
Input: F = \{C_1, \dots, C_{|F|}\}, a set of clauses.

Output: If F is SAT: (SAT, M), where M is a model of F.

Otherwise: UNSAT.

1 M \leftarrow \{\}

2 while True do

3 | if CanApply(BACKTRACK, M, F) then (M, F) \leftarrow Backtrack(M, F);

else if CanApply(FAIL, M, F) then return UNSAT;

else if M is a complete assignment then return (SAT, M);

else if CanApply(UNITPROPAGATE, M, F) then

(M, F) \leftarrow UnitPropagate(M, F);

else (M, F) \leftarrow Decide(M, F);
```

Decisions' order:

$$x_1 \prec x_2 \prec x_3 \prec x_4 \prec x_5$$

$$C1: (x_3 \vee x_4 \vee \neg x_1 \vee x_5)$$

$$C2: (\neg x_3 \lor x_4 \lor x_5)$$

$$C3: (x_3 \vee \neg x_4 \vee \neg x_1)$$

$$C4: (x_1 \lor x_2)$$

$$C5: (\neg x_1 \vee \neg x_5)$$

$$C6: (\neg x_3 \vee \neg x_4 \vee x_5)$$

Decisions' order:

$$x_1 \prec x_2 \prec x_3 \prec x_4 \prec x_5$$

C2:
$$(\neg x_3 \lor x_4 \lor x_5)$$

C3: $(x_3 \lor \neg x_4 \lor \neg x_1)$
C4: $(x_1 \lor x_2)$
C5: $(\neg x_1 \lor \neg x_5)$

 $C6: (\neg x_3 \lor \neg x_4 \lor x_5)$

 $C1: (x_3 \lor x_4 \lor \neg x_1 \lor x_5)$

$$x_1^d$$

Decisions' order:

$$x_1 \prec x_2 \prec x_3 \prec x_4 \prec x_5$$

C2:
$$(\neg x_3 \lor x_4 \lor x_5)$$

C3: $(x_3 \lor \neg x_4 \lor \neg x_1)$
C4: $(x_1 \lor x_2)$

 $C1: (x_3 \lor x_4 \lor \neg x_1 \lor x_5)$

$$x_1^d \neg x_5^5$$

C5: $(\neg x_1 \lor \neg x_5)$ C6: $(\neg x_3 \lor \neg x_4 \lor x_5)$

Decisions' order:

$$x_1 \prec x_2 \prec x_3 \prec x_4 \prec x_5$$

$$C1: (x_3 \lor x_4 \lor \neg x_1 \lor x_5)$$

$$C2: (\neg x_3 \lor x_4 \lor x_5)$$

$$C3: (x_3 \lor \neg x_4 \lor \neg x_1)$$

$$C4: (x_1 \lor x_2)$$

$$C5: (\neg x_1 \lor \neg x_5)$$

$$C6: (\neg x_3 \lor \neg x_4 \lor x_5)$$

 $x_1^d \neg x_5^5 x_2^d$

Decisions' order:

$$x_1 \prec x_2 \prec x_3 \prec x_4 \prec x_5$$

C2:
$$(\neg x_3 \lor x_4 \lor x_5)$$

C3: $(x_3 \lor \neg x_4 \lor \neg x_1)$
C4: $(x_1 \lor x_2)$

 $C1: (x_3 \lor x_4 \lor \neg x_1 \lor x_5)$

$$C5: (\neg x_1 \vee \neg x_5)$$

$$C6: \left(\neg x_3 \vee \neg x_4 \vee x_5\right)$$

Decisions' order:

$$x_1 \prec x_2 \prec x_3 \prec x_4 \prec x_5$$

C1:
$$(x_3 \lor x_4 \lor \neg x_1 \lor x_5)$$

C2: $(\neg x_3 \lor x_4 \lor x_5)$
C3: $(x_3 \lor \neg x_4 \lor \neg x_1)$
C4: $(x_1 \lor x_2)$
C5: $(\neg x_1 \lor \neg x_5)$

 $C6: (\neg x_3 \lor \neg x_4 \lor x_5)$

$$x_1^d \neg x_5^5 x_2^d x_3^d x_4^2$$

Decisions' order:

$$x_1 \prec x_2 \prec x_3 \prec x_4 \prec x_5$$

C1:
$$(x_3 \lor x_4 \lor \neg x_1 \lor x_5)$$

C2: $(\neg x_3 \lor x_4 \lor x_5)$
C3: $(x_3 \lor \neg x_4 \lor \neg x_1)$
C4: $(x_1 \lor x_2)$
C5: $(\neg x_1 \lor \neg x_5)$

 $C6: (\neg x_3 \lor \neg x_4 \lor x_5)$

$$x_1^d \neg x_5^5 x_2^d x_3^d x_4^2$$

Fail C6, Backtrack

Decisions' order:

$$x_1 \prec x_2 \prec x_3 \prec x_4 \prec x_5$$

$$C1: (x_3 \vee x_4 \vee \neg x_1 \vee x_5)$$

$$C2: (\neg x_3 \lor x_4 \lor x_5)$$

$$C3: (x_3 \vee \neg x_4 \vee \neg x_1)$$

$$C4: (x_1 \lor x_2)$$

$$C5: (\neg x_1 \vee \neg x_5)$$

C6:
$$(\neg x_3 \lor \neg x_4 \lor x_5)$$

 $x_1^d \neg x_5^5 x_2^d x_3^d x_4^2$

$$x_1^d \neg x_5^5 x_2^d \neg x_3^k$$

Fail C6, Backtrack

Decisions' order:

$$x_1 \prec x_2 \prec x_3 \prec x_4 \prec x_5$$

$$C1: (x_3 \vee x_4 \vee \neg x_1 \vee x_5)$$

$$C2: (\neg x_3 \lor x_4 \lor x_5)$$

$$C3: (x_3 \vee \neg x_4 \vee \neg x_1)$$

$$C4: (x_1 \lor x_2)$$

$$C5: (\neg x_1 \vee \neg x_5)$$

$$C6: (\neg x_3 \vee \neg x_4 \vee x_5)$$

 $x_1^d \neg x_5^5 x_2^d x_3^d x_4^2$

$$x_1^d \neg x_5^5 x_2^d \neg x_3^k x_4^1$$

Fail C6, Backtrack

Decisions' order:

$$x_1 \prec x_2 \prec x_3 \prec x_4 \prec x_5$$

$$C1: (x_3 \lor x_4 \lor \neg x_1 \lor x_5)$$

$$C2: (\neg x_3 \lor x_4 \lor x_5)$$

$$C3: (x_3 \vee \neg x_4 \vee \neg x_1)$$

$$C4: (x_1 \lor x_2)$$

$$C5: (\neg x_1 \vee \neg x_5)$$

$$C6: (\neg x_3 \vee \neg x_4 \vee x_5)$$

$$x_1^d \neg x_5^5 x_2^d x_3^d x_4^2$$

$$x_1^d \neg x_5^5 x_2^d \neg x_3^k x_4^1$$

Decisions' order:

$$x_1 \prec x_2 \prec x_3 \prec x_4 \prec x_5$$

$$C1: (x_3 \vee x_4 \vee \neg x_1 \vee x_5)$$

$$C2: (\neg x_3 \lor x_4 \lor x_5)$$

$$C3: (x_3 \vee \neg x_4 \vee \neg x_1)$$

$$C4: (x_1 \vee x_2)$$

$$C5: (\neg x_1 \lor \neg x_5)$$

$$C6: (\neg x_3 \lor \neg x_4 \lor x_5)$$

$$x_1^d \neg x_5^5 x_2^d x_3^d x_4^2$$

 $x_1^d \neg x_5^5 x_2^d \neg x_3^k x_4^1$

$$x_1^d \neg x_5^5 \neg x_2^k$$

Decisions' order:

$$x_1 \prec x_2 \prec x_3 \prec x_4 \prec x_5$$

$$C1: (x_3 \lor x_4 \lor \neg x_1 \lor x_5)$$

$$C2: (\neg x_3 \lor x_4 \lor x_5)$$

$$C3: (x_3 \vee \neg x_4 \vee \neg x_1)$$

$$C4: (x_1 \vee x_2)$$

$$C5: (\neg x_1 \vee \neg x_5)$$

$$C6: (\neg x_3 \lor \neg x_4 \lor x_5)$$

$$x_1^d \neg x_5^5 x_2^d x_3^d x_4^2$$

$$x_1^d \neg x_5^5 x_2^d \neg x_3^k x_4^1$$

$$x_1^d \neg x_5^5 \neg x_2^k x_3^d$$

Fail C6, Backtrack

Fail C3, Backtrack

Decisions' order:

$$x_1 \prec x_2 \prec x_3 \prec x_4 \prec x_5$$

$$C1: (x_3 \lor x_4 \lor \neg x_1 \lor x_5)$$

$$C2: (\neg x_3 \lor x_4 \lor x_5)$$

$$C3: (x_3 \vee \neg x_4 \vee \neg x_1)$$

$$C4: (x_1 \vee x_2)$$

$$C5: (\neg x_1 \vee \neg x_5)$$

C6:
$$(\neg x_3 \lor \neg x_4 \lor x_5)$$

$$x_1^d \neg x_5^5 x_2^d x_3^d x_4^2$$

 $x_1^d \neg x_5^5 x_2^d \neg x_3^k x_4^1$

$$x_1^d \neg x_5^5 \neg x_2^k x_3^d x_4^2$$

Decisions' order:

$$x_1 \prec x_2 \prec x_3 \prec x_4 \prec x_5$$

$$C1: (x_3 \vee x_4 \vee \neg x_1 \vee x_5)$$

C2:
$$(\neg x_3 \lor x_4 \lor x_5)$$

$$C3: (x_3 \vee \neg x_4 \vee \neg x_1)$$

$$C4: (x_1 \lor x_2)$$

$$C5: (\neg x_1 \vee \neg x_5)$$

C6:
$$(\neg x_3 \lor \neg x_4 \lor x_5)$$

$$x_1^d \neg x_5^5 x_2^d x_3^d x_4^2$$

 $x_1^d \neg x_5^5 x_2^d \neg x_3^k x_4^1$

$$x_1^d \neg x_5^5 \neg x_2^k x_3^d x_4^2$$

Decisions' order:

$$x_1 \prec x_2 \prec x_3 \prec x_4 \prec x_5$$

$$C1: (x_3 \vee x_4 \vee \neg x_1 \vee x_5)$$

$$C2: (\neg x_3 \lor x_4 \lor x_5)$$

$$C3: (x_3 \vee \neg x_4 \vee \neg x_1)$$

$$C4: (x_1 \vee x_2)$$

$$C5: (\neg x_1 \vee \neg x_5)$$

$$C6: (\neg x_3 \lor \neg x_4 \lor x_5)$$

$$x_1^d \neg x_5^5 x_2^d x_3^d x_4^2$$

$$x_1^d \neg x_5^5 x_2^d \neg x_3^k x_4^1$$

$$x_1^d \neg x_5^5 \neg x_2^k x_3^d x_4^2$$

 $x_1^d \neg x_5^5 \neg x_2^k \neg x_3^k$

Decisions' order:

$$x_1 \prec x_2 \prec x_3 \prec x_4 \prec x_5$$

$$C1: (x_3 \vee x_4 \vee \neg x_1 \vee x_5)$$

$$C2: (\neg x_3 \lor x_4 \lor x_5)$$

$$C3: (x_3 \vee \neg x_4 \vee \neg x_1)$$

$$C4: (x_1 \vee x_2)$$

$$C5: (\neg x_1 \vee \neg x_5)$$

$$C6: (\neg x_3 \lor \neg x_4 \lor x_5)$$

$$x_1^d \neg x_5^5 x_2^d x_3^d x_4^2$$
$$x_1^d \neg x_5^5 x_2^d \neg x_3^k x_4^1$$

$$x_1^d \neg x_5^5 \neg x_2^k x_3^d x_4^2$$

$$x_1^d \neg x_5^5 \neg x_2^k \neg x_3^k x_4^1$$

Decisions' order:

$$x_1 \prec x_2 \prec x_3 \prec x_4 \prec x_5$$

C2:
$$(\neg x_3 \lor x_4 \lor x_5)$$

C3: $(x_3 \lor \neg x_4 \lor \neg x_1)$
C4: $(x_1 \lor x_2)$
C5: $(\neg x_1 \lor \neg x_5)$

 $C6: (\neg x_3 \lor \neg x_4 \lor x_5)$

 $C1: (x_3 \lor x_4 \lor \neg x_1 \lor x_5)$

$$x_1^d \neg x_5^5 x_2^d x_3^d x_4^2$$

$$x_1^d \neg x_5^5 x_2^d \neg x_3^k x_4^1$$

$$x_1^d \neg x_5^5 \neg x_2^k x_3^d x_4^2$$

$$x_1^d \neg x_5^5 \neg x_2^k \neg x_3^k x_4^1$$

$$x_1^d \neg x_5^5 \neg x_2^k \neg x_3^k x_4^1$$

Decisions' order:

$$x_1 \prec x_2 \prec x_3 \prec x_4 \prec x_5$$

C1:
$$(x_3 \lor x_4 \lor \neg x_1 \lor x_5)$$

C2: $(\neg x_3 \lor x_4 \lor x_5)$

C3:
$$(x_3 \lor \neg x_4 \lor \neg x_1)$$

$$C4: (x_1 \lor x_2)$$

$$C5: (\neg x_1 \vee \neg x_5)$$

$$C6: (\neg x_3 \vee \neg x_4 \vee x_5)$$

$$x_{1}^{d} \neg x_{5}^{5} x_{2}^{d} x_{3}^{d} x_{4}^{2}$$

$$x_{1}^{d} \neg x_{5}^{5} x_{2}^{d} \neg x_{3}^{k} x_{4}^{1}$$

$$x_{1}^{d} \neg x_{5}^{5} \neg x_{2}^{k} x_{3}^{d} x_{4}^{2}$$

$$x_{1}^{d} \neg x_{5}^{5} \neg x_{2}^{k} \neg x_{3}^{k} x_{4}^{1}$$

$$\neg x_{1}^{k}$$

Decisions' order:

$$x_1 \prec x_2 \prec x_3 \prec x_4 \prec x_5$$

$$C1: (x_3 \vee x_4 \vee \neg x_1 \vee x_5)$$

$$C2: (\neg x_3 \lor x_4 \lor x_5)$$

C3:
$$(x_3 \vee \neg x_4 \vee \neg x_1)$$

$$C4: (x_1 \lor x_2)$$

$$C5: (\neg x_1 \vee \neg x_5)$$

$$C6: (\neg x_3 \lor \neg x_4 \lor x_5)$$

$$x_1^d \neg x_5^5 x_2^d x_3^d x_4^2$$

$$x_1^d \neg x_5^5 x_2^d \neg x_3^k x_4^1$$

$$x_1^d \neg x_5^5 \neg x_2^k x_3^d x_4^2$$

$$x_1^d \neg x_5^5 \neg x_2^k x_3^d x_4^2$$

$$x_1^d \neg x_5^5 \neg x_2^k \neg x_3^k x_4^1$$

 $\neg x_1^k x_2^4$

Decisions' order:

$$x_1 \prec x_2 \prec x_3 \prec x_4 \prec x_5$$

C1:
$$(x_3 \lor x_4 \lor \neg x_1 \lor x_5)$$

C2: $(\neg x_3 \lor x_4 \lor x_5)$
C3: $(x_3 \lor \neg x_4 \lor \neg x_1)$
C4: $(x_1 \lor x_2)$
C5: $(\neg x_1 \lor \neg x_5)$

C6: $(\neg x_3 \lor \neg x_4 \lor x_5)$

$$x_{1}^{d} \neg x_{5}^{5} x_{2}^{d} x_{3}^{d} x_{4}^{2}$$

$$x_{1}^{d} \neg x_{5}^{5} x_{2}^{d} \neg x_{3}^{k} x_{4}^{1}$$

$$x_{1}^{d} \neg x_{5}^{5} \neg x_{2}^{k} x_{3}^{d} x_{4}^{2}$$

$$x_{1}^{d} \neg x_{5}^{5} \neg x_{2}^{k} x_{3}^{d} x_{4}^{2}$$

$$x_{1}^{d} \neg x_{5}^{5} \neg x_{2}^{k} \neg x_{3}^{k} x_{4}^{1}$$

$$\neg x_{1}^{k} x_{2}^{4} x_{3}^{d}$$

Decisions' order:

$$x_1 \prec x_2 \prec x_3 \prec x_4 \prec x_5$$

C1:
$$(x_3 \lor x_4 \lor \neg x_1 \lor x_5)$$

C2: $(\neg x_3 \lor x_4 \lor x_5)$
C3: $(x_3 \lor \neg x_4 \lor \neg x_1)$
C4: $(x_1 \lor x_2)$
C5: $(\neg x_1 \lor \neg x_5)$
C6: $(\neg x_3 \lor \neg x_4 \lor x_5)$

$$x_{1}^{d} \neg x_{5}^{5} x_{2}^{d} x_{3}^{d} x_{4}^{2}$$

$$x_{1}^{d} \neg x_{5}^{5} x_{2}^{d} \neg x_{3}^{k} x_{4}^{1}$$

$$x_{1}^{d} \neg x_{5}^{5} \neg x_{2}^{k} x_{3}^{d} x_{4}^{2}$$

$$x_{1}^{d} \neg x_{5}^{5} \neg x_{2}^{k} \neg x_{3}^{k} x_{4}^{1}$$

$$\neg x_{1}^{d} x_{4}^{d} x_{3}^{d} x_{4}^{d}$$

Decisions' order:

$$x_1 \prec x_2 \prec x_3 \prec x_4 \prec x_5$$

C1:
$$(x_3 \lor x_4 \lor \neg x_1 \lor x_5)$$

C2: $(\neg x_3 \lor x_4 \lor x_5)$
C3: $(x_3 \lor \neg x_4 \lor \neg x_1)$
C4: $(x_1 \lor x_2)$
C5: $(\neg x_1 \lor \neg x_5)$

 $C6: (\neg x_3 \lor \neg x_4 \lor x_5)$

$$x_{1}^{d} \neg x_{5}^{5} x_{2}^{d} x_{3}^{d} x_{4}^{2}$$

$$x_{1}^{d} \neg x_{5}^{5} x_{2}^{d} \neg x_{3}^{k} x_{4}^{1}$$

$$x_{1}^{d} \neg x_{5}^{5} \neg x_{2}^{k} x_{3}^{d} x_{4}^{2}$$

$$x_{1}^{d} \neg x_{5}^{5} \neg x_{2}^{k} \neg x_{3}^{k} x_{4}^{1}$$

$$\neg x_{1}^{k} x_{2}^{4} x_{3}^{d} x_{4}^{d} x_{5}^{6}$$

Decisions' order:

$$x_1 \prec x_2 \prec x_3 \prec x_4 \prec x_5$$

C1:
$$(x_3 \lor x_4 \lor \neg x_1 \lor x_5)$$

C2: $(\neg x_3 \lor x_4 \lor x_5)$
C3: $(x_3 \lor \neg x_4 \lor \neg x_1)$
C4: $(x_1 \lor x_2)$
C5: $(\neg x_1 \lor \neg x_5)$
C6: $(\neg x_3 \lor \neg x_4 \lor x_5)$

$$x_1^d \neg x_5^5 x_2^d x_3^d x_4^2$$

$$x_1^d \neg x_5^5 x_2^d \neg x_3^k x_4^1$$

$$x_1^d \neg x_5^5 \neg x_2^k x_3^d x_4^2$$

$$x_1^d \neg x_5^5 \neg x_2^k \neg x_3^k x_4^1$$

$$\neg x_1^d x_2^4 x_3^d x_4^d x_5^6$$

Decisions' order:

$$x_1 \prec x_2 \prec x_3 \prec x_4 \prec x_5$$

C1:
$$(x_3 \lor x_4 \lor \neg x_1 \lor x_5)$$
 $x_1^d \neg x_5^5 x_2^d x_3^d x_4^2$ Fail C6, Backtrack C2: $(\neg x_3 \lor x_4 \lor x_5)$ $x_1^d \neg x_5^5 x_2^d \neg x_3^k x_4^1$ Fail C3, Backtrack C3: $(x_3 \lor \neg x_4 \lor \neg x_1)$ $x_1^d \neg x_5^5 \neg x_2^k x_3^d x_4^2$ Fail C6, Backtrack C4: $(x_1 \lor x_2)$ $x_1^d \neg x_5^5 \neg x_2^k x_3^d x_4^2$ Fail C3, Backtrack C5: $(\neg x_1 \lor \neg x_5)$ $\neg x_1^k x_2^d x_3^d x_4^d x_5^6$ SAT

The obtained model is $\neg x_1 x_2 x_3 x_4 x_5$

Conflict-Driven Clause Learning (CDCL) Rules

Decide:		,
$M \parallel F$	$\Longrightarrow M\ I^d \parallel F$	if $\begin{cases} I \text{ or } \neg I \text{ occurs in a clause of } F \\ I \text{ is undefined in } M \end{cases}$
		I I is undefined in M
BACKJUMP:		
$M I^d N \parallel F \cup \{C_i\}$	$\Longrightarrow M I'^j \parallel F \cup \{C_i\}$	if $ \begin{cases} M \ l^d \ N \models \neg C_i, \text{ and} \\ \text{there is some clause } C_j \text{ such that:} \\ C_j \text{ has the form } C' \lor l', \\ F \cup \{C_i\} \models C_j \text{ and } M \models \neg C', \\ l' \text{ is undefined in } M, \text{ and} \\ l' \text{ or } \neg l' \text{ occurs in } F \text{ or in } M \ l^d \ N \end{cases} $
Fail:		
M E (C)	F 11C	$M \models \neg C_i$
$M \parallel F \cup \{C_i\}$	\Longrightarrow Fail S tate	if $\begin{cases} M \models \neg C_i \\ M \text{ contains no decision literals} \end{cases}$
UnitPropagate:		
		C_i has the form $C' \vee I$
$M \parallel F \cup \{C_i\}$	$\Longrightarrow M I^i \parallel F \cup \{C_i\}$	if $\begin{cases} M \models \neg C' \end{cases}$
	., ()	$ \mathbf{if} \ \begin{cases} C_i \text{ has the form } C' \lor I \\ M \models \neg C' \\ I \text{ is undefined in } M \end{cases} $
Learn:		
$M \parallel F$	$\Longrightarrow M \parallel F \cup \{C_j\}$	if $\begin{cases} each \text{ literal of } C_j \text{ occurs in } F \text{ or in } M \\ F \models C_j \end{cases}$

CDCL Algorithm

Algorithm 3: CDCL algorithm

```
Input: F = \{C_1, \dots, C_{|F|}\}, a set of clauses.
  Output: If F is SAT: (SAT, M), where M is a model of F.
            Otherwise: UNSAT.
1 M \leftarrow \{\}
2 while True do
      if CanApply(BACKJUMP, M, F) then
           C_i \leftarrow ConflictAnalysis(M,F)
          (M, F) \leftarrow \mathsf{Backjump}(M, F, C_i)
           (M, F) \leftarrow \text{Learn}(M, F, C_i)
      else if CanApply(FAIL, M, F) then return UNSAT;
      else if M is a complete assignment then return (SAT,M);
      else if CanApply(UNITPROPAGATE, M, F) then
        (M, F) \leftarrow UnitPropagate(M, F):
      else (M, F) \leftarrow Decide(M, F);
```

$$x_1 \prec x_2 \prec x_3 \prec x_4 \prec x_5$$

- $C1: (x_3 \lor x_4 \lor \neg x_1 \lor x_5)$
- $C2: (\neg x_3 \lor x_4 \lor x_5)$
- $C3: (x_3 \vee \neg x_4 \vee \neg x_1)$
- $C4:(x_1 \vee x_2)$
- $C5: (x_1 \vee \neg x_2)$
- $C6: (\neg x_1 \vee \neg x_5)$
- $C7: (\neg x_3 \vee \neg x_4 \vee x_5)$

$$x_1 \prec x_2 \prec x_3 \prec x_4 \prec x_5$$

$$C1: (x_3 \vee x_4 \vee \neg x_1 \vee x_5)$$

$$C2: (\neg x_3 \lor x_4 \lor x_5)$$

$$C3: (x_3 \vee \neg x_4 \vee \neg x_1)$$

$$C4: (x_1 \lor x_2)$$

$$C5: (x_1 \vee \neg x_2)$$

$$C6: (\neg x_1 \lor \neg x_5)$$

$$C7: (\neg x_3 \vee \neg x_4 \vee x_5)$$

Unsatisfiable formula solved with CDCL and the following order for decisions

 $x_1^d \neg x_5^6$

$$x_1 \prec x_2 \prec x_3 \prec x_4 \prec x_5$$

$$C1: (x_3 \vee x_4 \vee \neg x_1 \vee x_5)$$

$$C2: (\neg x_3 \lor x_4 \lor x_5)$$

$$C3: (x_3 \vee \neg x_4 \vee \neg x_1)$$

$$C4: (x_1 \lor x_2)$$

$$C5: (x_1 \vee \neg x_2)$$

$$C6: (\neg x_1 \vee \neg x_5)$$

$$C7: (\neg x_3 \vee \neg x_4 \vee x_5)$$

Unsatisfiable formula solved with CDCL and the following order for decisions

 $x_1^d \neg x_5^6 x_2^d$

$$x_1 \prec x_2 \prec x_3 \prec x_4 \prec x_5$$

$$C1: (x_3 \vee x_4 \vee \neg x_1 \vee x_5)$$

$$C2: (\neg x_3 \lor x_4 \lor x_5)$$

$$C3: (x_3 \vee \neg x_4 \vee \neg x_1)$$

$$C4: (x_1 \lor x_2)$$

$$C5: (x_1 \vee \neg x_2)$$

$$C6: (\neg x_1 \vee \neg x_5)$$

$$C7: (\neg x_3 \vee \neg x_4 \vee x_5)$$

$$x_1 \prec x_2 \prec x_3 \prec x_4 \prec x_5$$

$$C1: (x_{3} \lor x_{4} \lor \neg x_{1} \lor x_{5}) \qquad x_{1}^{d} \neg x_{5}^{6} x_{2}^{d} x_{3}^{d}$$

$$C2: (\neg x_{3} \lor x_{4} \lor x_{5})$$

$$C3: (x_{3} \lor \neg x_{4} \lor \neg x_{1})$$

$$C4: (x_{1} \lor x_{2})$$

$$C5: (x_{1} \lor \neg x_{2})$$

$$C6: (\neg x_{1} \lor \neg x_{5})$$

$$C7: (\neg x_{3} \lor \neg x_{4} \lor x_{5})$$

$$x_1 \prec x_2 \prec x_3 \prec x_4 \prec x_5$$

C1:
$$(x_3 \lor x_4 \lor \neg x_1 \lor x_5)$$
 $x_1^d \neg x_5^6 x_2^d x_3^d x_4^2$
C2: $(\neg x_3 \lor x_4 \lor x_5)$
C3: $(x_3 \lor \neg x_4 \lor \neg x_1)$
C4: $(x_1 \lor x_2)$
C5: $(x_1 \lor \neg x_2)$
C6: $(\neg x_1 \lor \neg x_5)$
C7: $(\neg x_3 \lor \neg x_4 \lor x_5)$

$$x_1 \prec x_2 \prec x_3 \prec x_4 \prec x_5$$

$$C1: (x_3 \lor x_4 \lor \neg x_1 \lor x_5) \qquad x_1^d \neg x_5^6 x_2^d x_3^d x_4^2 \qquad \text{Fail C7}$$

$$C2: (\neg x_3 \lor x_4 \lor x_5)$$

$$C3: (x_3 \lor \neg x_4 \lor \neg x_1)$$

$$C4: (x_1 \lor x_2)$$

$$C5: (x_1 \lor \neg x_2) \qquad \qquad \text{Conflict analysis:}$$

$$(in blue, lits. of current decision level)$$

$$C7: (\neg x_3 \lor \neg x_4 \lor x_5)$$

$$(\neg x_3 \lor \neg x_4 \lor x_5)$$

Unsatisfiable formula solved with CDCL and the following order for decisions

$$x_1 \prec x_2 \prec x_3 \prec x_4 \prec x_5$$

C1:
$$(x_3 \lor x_4 \lor \neg x_1 \lor x_5)$$

C2: $(\neg x_3 \lor x_4 \lor x_5)$
C3: $(x_3 \lor \neg x_4 \lor \neg x_1)$
C4: $(x_1 \lor x_2)$
C5: $(x_1 \lor \neg x_2)$
C6: $(\neg x_1 \lor \neg x_5)$
C7: $(\neg x_3 \lor \neg x_4 \lor x_5)$

C1:
$$(x_3 \lor x_4 \lor \neg x_1 \lor x_5)$$
 $x_1^d \neg x_5^6 x_2^d x_3^d x_4^2$ Fail C7

Conflict analysis:

$$\frac{(\neg x_3 \lor \neg x_4 \lor x_5) \qquad (\neg x_3 \lor x_4 \lor x_5)}{(\neg x_3 \lor x_5)}$$

Unsatisfiable formula solved with CDCL and the following order for decisions

$$x_1 \prec x_2 \prec x_3 \prec x_4 \prec x_5$$

$$C1: (x_3 \vee x_4 \vee \neg x_1 \vee x_5)$$

$$C2: (\neg x_3 \lor x_4 \lor x_5)$$

$$C3: (x_3 \vee \neg x_4 \vee \neg x_1)$$

$$C4: (x_1 \lor x_2)$$

$$C5: (x_1 \vee \neg x_2)$$

$$C6: (\neg x_1 \vee \neg x_5)$$

C7:
$$(\neg x_3 \lor \neg x_4 \lor x_5)$$

$$C8: (\neg x_3 \lor x_5)$$

$$x_1^d \neg x_5^6 x_2^d x_3^d x_4^2$$
 Fail C7 , Learn C8, Backjump $x_1^d \neg x_5^6 \neg x_2^8$

Conflict analysis:

$$\frac{(\neg x_3 \lor \neg x_4 \lor x_5) \qquad (\neg x_3 \lor x_4 \lor x_5)}{(\neg x_3 \lor x_5)}$$

Unsatisfiable formula solved with CDCL and the following order for decisions

$$x_1 \prec x_2 \prec x_3 \prec x_4 \prec x_5$$

C1:
$$(x_3 \lor x_4 \lor \neg x_1 \lor x_5)$$

C2: $(\neg x_3 \lor x_4 \lor x_5)$
C3: $(x_3 \lor \neg x_4 \lor \neg x_1)$
C4: $(x_1 \lor x_2)$
C5: $(x_1 \lor \neg x_2)$
C6: $(\neg x_1 \lor \neg x_5)$
C7: $(\neg x_3 \lor \neg x_4 \lor x_5)$
C8: $(\neg x_3 \lor x_5)$

$$x_1^d \neg x_5^6 x_2^d x_3^d x_4^2$$
$$x_1^d \neg x_5^6 \neg x_3^8 x_4^1$$

Fail C7 , Learn C8, Backjump

Unsatisfiable formula solved with CDCL and the following order for decisions

$$x_1 \prec x_2 \prec x_3 \prec x_4 \prec x_5$$

$$C1: (x_3 \vee x_4 \vee \neg x_1 \vee x_5)$$

$$C2: (\neg x_3 \lor x_4 \lor x_5)$$

$$C3: (x_3 \vee \neg x_4 \vee \neg x_1)$$

$$C4: (x_1 \lor x_2)$$

$$C5: (x_1 \vee \neg x_2)$$

$$C6: (\neg x_1 \vee \neg x_5)$$

$$C7: (\neg x_3 \vee \neg x_4 \vee x_5)$$

$$C8: (\neg x_3 \lor x_5)$$

$$x_1^d \neg x_5^6 x_2^d x_3^d x_4^2$$

$$x_1^d \neg x_5^6 \neg x_3^8 x_4^1$$

Conflict analysis:

(in blue, lits. of current decision level)

$$(x_3 \vee \neg x_4 \vee \neg x_1)$$

Fail C3

Unsatisfiable formula solved with CDCL and the following order for decisions

$$x_1 \prec x_2 \prec x_3 \prec x_4 \prec x_5$$

$$C1: (x_3 \vee x_4 \vee \neg x_1 \vee x_5)$$

$$C2: (\neg x_3 \lor x_4 \lor x_5)$$

C3:
$$(x_3 \lor \neg x_4 \lor \neg x_1)$$

$$C4: (x_1 \lor x_2)$$

$$C5: (x_1 \vee \neg x_2)$$

$$C6: (\neg x_1 \vee \neg x_5)$$

$$C7: (\neg x_3 \vee \neg x_4 \vee x_5)$$

$$C8: (\neg x_3 \lor x_5)$$

$$x_1^d \neg x_5^6 x_2^d x_3^d x_4^2$$

$$x_1^d \neg x_5^6 \neg x_3^8 x_4^1$$

Fail C3

Conflict analysis:

$$\frac{(x_3 \vee \neg x_4 \vee \neg x_1) \qquad (x_3 \vee x_4 \vee \neg x_1 \vee x_5)}{(x_3 \vee \neg x_1 \vee x_5)}$$

Unsatisfiable formula solved with CDCL and the following order for decisions

$$x_1 \prec x_2 \prec x_3 \prec x_4 \prec x_5$$

C1:
$$(x_3 \lor x_4 \lor \neg x_1 \lor x_5)$$
 $x_1^d \neg x_5^6 x_2^d x_3^d x_4^2$

$$C2: (\neg x_3 \lor x_4 \lor x_5)$$

C3:
$$(x_3 \lor \neg x_4 \lor \neg x_1)$$

$$C4: (x_1 \lor x_2)$$

$$C5: (x_1 \vee \neg x_2)$$

$$C6: (\neg x_1 \vee \neg x_5)$$

$$C7: (\neg x_3 \vee \neg x_4 \vee x_5)$$

$$C8: (\neg x_3 \lor x_5)$$

$$x_1^d \neg x_5^6 x_2^d x_3^d x_4^2$$

$$x_1^d \neg x_5^6 \neg x_3^8 x_4^1$$

Fail C3

Conflict analysis:

$$\frac{(x_3 \vee \neg x_4 \vee \neg x_1) \qquad (x_3 \vee x_4 \vee \neg x_1 \vee x_5)}{(x_3 \vee \neg x_1 \vee x_5) \qquad (\neg x_3 \vee x_5)}$$
$$(\neg x_1 \vee x_5)$$

Unsatisfiable formula solved with CDCL and the following order for decisions

$$x_1 \prec x_2 \prec x_3 \prec x_4 \prec x_5$$

C1:
$$(x_3 \lor x_4 \lor \neg x_1 \lor x_5)$$
 $x_1^d \neg x_5^6 x_2^d x_3^d x_4^2$

$$C2: (\neg x_3 \lor x_4 \lor x_5)$$

C3:
$$(x_3 \lor \neg x_4 \lor \neg x_1)$$

$$C4: (x_1 \lor x_2)$$

$$C5: (x_1 \vee \neg x_2)$$

$$C6: (\neg x_1 \vee \neg x_5)$$

$$C7: (\neg x_3 \vee \neg x_4 \vee x_5)$$

$$C8: (\neg x_3 \lor x_5)$$

$$x_1^d \neg x_5^6 x_2^d x_3^d x_4^2$$

$$x_1^d \neg x_5^6 \neg x_3^8 x_4^1$$

Conflict analysis:

$$\frac{(x_3 \vee \neg x_4 \vee \neg x_1) \qquad (x_3 \vee x_4 \vee \neg x_1 \vee x_5)}{(x_3 \vee \neg x_1 \vee x_5) \qquad (\neg x_3 \vee x_5)}$$

$$\frac{(\neg x_1 \vee x_5) \qquad (\neg x_1 \vee \neg x_5)}{(\neg x_1)}$$

Unsatisfiable formula solved with CDCL and the following order for decisions

$$x_1 \prec x_2 \prec x_3 \prec x_4 \prec x_5$$

$$C1: (x_3 \vee x_4 \vee \neg x_1 \vee x_5)$$

$$C2: (\neg x_3 \lor x_4 \lor x_5)$$

$$C3: (x_3 \vee \neg x_4 \vee \neg x_1)$$

$$C4: (x_1 \lor x_2)$$

$$C5: (x_1 \vee \neg x_2)$$

C6:
$$(\neg x_1 \lor \neg x_5)$$

$$C7: (\neg x_3 \vee \neg x_4 \vee x_5)$$

$$C8: (\neg x_3 \lor x_5)$$

$$C9: (\neg x_1)$$

$$x_1^d \neg x_5^6 x_2^d x_3^d x_4^2$$

 $x_1^d \neg x_5^6 \neg x_3^8 x_4^1$

$$\neg x_1^9$$

Conflict analysis:

$$\frac{(x_3 \vee \neg x_4 \vee \neg x_1) \qquad (x_3 \vee x_4 \vee \neg x_1 \vee x_5)}{(x_3 \vee \neg x_1 \vee x_5) \qquad (\neg x_3 \vee x_5)}$$

$$\frac{(\neg x_1 \vee x_5) \qquad (\neg x_1 \vee \neg x_5)}{(\neg x_1)}$$

$$x_1 \prec x_2 \prec x_3 \prec x_4 \prec x_5$$

$$C1: (x_3 \lor x_4 \lor \neg x_1 \lor x_5)$$

$$C2: (\neg x_3 \lor x_4 \lor x_5)$$

$$C3: (x_3 \vee \neg x_4 \vee \neg x_1)$$

$$C4: (x_1 \lor x_2)$$

$$C5: (x_1 \vee \neg x_2)$$

C6:
$$(\neg x_1 \lor \neg x_5)$$

$$C7: (\neg x_3 \vee \neg x_4 \vee x_5)$$

$$C8: (\neg x_3 \lor x_5)$$

$$C9: (\neg x_1)$$

$$x_1^d \neg x_5^6 x_2^d x_3^d x_4^2$$

 $x_1^d \neg x_5^6 \neg x_3^8 x_4^1$

$$\neg x_1^9 x_2^4$$

Unsatisfiable formula solved with CDCL and the following order for decisions

$$x_1 \prec x_2 \prec x_3 \prec x_4 \prec x_5$$

$$C1: (x_3 \lor x_4 \lor \neg x_1 \lor x_5)$$

$$C2: (\neg x_3 \lor x_4 \lor x_5)$$

$$C3: (x_3 \vee \neg x_4 \vee \neg x_1)$$

$$C4: (x_1 \lor x_2)$$

$$C5: (x_1 \vee \neg x_2)$$

$$C6: (\neg x_1 \vee \neg x_5)$$

$$C7: (\neg x_3 \vee \neg x_4 \vee x_5)$$

$$C8: (\neg x_3 \lor x_5)$$

$$C9: (\neg x_1)$$

$$x_1^d \neg x_5^6 x_2^d x_3^d x_4^2$$

 $x_1^d \neg x_5^6 \neg x_3^8 x_4^1$

$$\neg x_1^9 x_2^4$$

Fail C5. UNSAT

Example of N-Queens and System demonstration

Place *N* queens in a N×N chessbord such that they don't threat each other (rows, columns and diagonals)

1	2	3	4
5	6	7	8
9	10	11	12
13	14	15	16

Variable *i* encodes the presence of queen in the corresponding cell

```
c exactly one queen per row
1 \lor 2 \lor 3 \lor 4
\neg 1 \lor \neg 2
\neg 1 \lor \neg 3
\neg 1 \lor \neg 4
\neg 2 \lor \neg 3
\neg 2 \lor \neg 4
-3 \lor -4
c exactly one queen per column
1 \lor 5 \lor 9 \lor 13
\neg 1 \lor \neg 5
\neg 1 \lor \neg 9
\neg 1 \lor \neg 13
\neg 5 \lor \neg 9
\neg 5 \lor / \neg 13
\neg 9 \lor \neg 13
...
c exactly one queen per diagonal
2 \vee 5
\neg 2 \lor \neg 5
```

Future Work

- Move application to web
- Integrate it with our own declarative SAT modelling language (GOS/BUP)
- Extending rules (e.g. pure literal, restart, ...)
- Consider MAX-SAT algorithms
- ...

Thanks for your attention

Tool available at: https://imae.udg.edu/Recerca/LAI/