Experiment-8

Implement 0/1 Knapsack problem using Dynamic Programming

Dynamic Programming

Dynamic Programming is a general algorithm design technique for solving problems defined by or formulated as recurrences with overlapping subinstances

- "Programming" here means "planning"
- Main idea:
 - set up a recurrence relating a solution to a larger instance to solutions of some smaller instances
 - solve smaller instances once
 - record solutions in a table
 - extract solution to the initial instance from that table

Knapsack Problem by DP

Given *n* items of

integer weights: w_1 w_2 ... w_n

values: $v_1 \quad v_2 \quad \dots \quad v_n$

a knapsack of integer capacity W

find most valuable subset of the items that fit into the knapsack

Consider instance defined by first *i* items and capacity j ($j \le W$).

Let V[i,j] be optimal value of such an instance. Then

$$\max_{V[i,j]} \{V[i-1,j], v_i + V[i-1,j-w_i]\} \text{ if } j-w_i \ge 0$$

$$V[i,j] = \begin{cases} V[i-1,j] & \text{if } j-w_i \le 0 \\ V[i-1,j] & \text{if } j-w_i \le 0 \end{cases}$$

Initial conditions: V[0,j] = 0 and V[i,0] = 0

Knapsack Problem by DP (pseudocode)


```
Algorithm DPKnapsack(w[1..n], v[1..n], W)
    var V[0..n,0..W], P[1..n,1..W]: int
   for j := 0 to W do
        V[0,j] := 0
   for i := 0 to n do
                                            Running time and space:
        V[i, \theta] := \theta
                                                O(nW).
   for i := 1 to n do
       for j := 1 to W do
           if w[i] \le j and v[i] + V[i-1,j-w[i]] > V[i-1,j] then
                V[i,j] := v[i] + V[i-1,j-w[i]]; P[i,j] := j-w[i]
            else
                V[i,j] := V[i-1,j]; P[i,j] := j
    return V[n,W]
```


i / w	0	1	2	3	4	5
0	0	0	0	0	0	0
1	0					
2	0					
3	0					
4	0					

Consider instance defined by first i items and capacity j ($j \le W$).

Let V[i,j] be optimal value of such an instance. Then

$$V[i,j] = \max_{V[i-1,j]} \{V[i-1,j], v_i + V[i-1,j-w_i]\} \text{ if } j-w_i \ge 0$$

$$V[i-1,j] \text{ if } j-w_i \le 0$$

Initial conditions: V[0,j] = 0 and V[i,0] = 0

Example: Knapsack of capacity W = 5

item	weight	<u>value</u>
1	$\overline{2}$	\$12
2	1	\$10
3	3	\$20
4	2	\$15
	capacity j	

i/w	0	1	2	3	4	5
0	0	0	0	0	0	0
1	0	0	12	12	12	12
2	0					
3	0					
4	0					

$$V[i,j] = \max \{V[i-1,j], vi + V[i-1,j-wi]\}$$
 if $j-wi \ge 0$

$$V[1,2]=max{V[0,2],12+V[0,0]}$$

 $V[1,3]=max{v[0,3],12+v[0,1]}$

i / w	0	1	2	3	4	5
0	0	0	0	0	0	0
1	0	0	12	12	12	12
2	0	10	12	22		22
3	0					
4	0					

$$V[2,1]=max{V[1,1],10+V[1,0]} = 10$$

 $V[2,3]=max{V[1,3],10+V[1,1]} = 22$

i/w	0	1	2	3	4	5
0	0	0	0	0	0	0
1	0	0	12	12	12	12
2	0	10	12	22	22	22
3	0					
4	0					

$$V[2,1]=max{V[1,1],10+V[1,0]} = 10$$

 $V[2,3]=max{V[1,3],10+V[1,1]} = 22$

i / w	0	1	2	3	4	5
0	0	0	0	0	0	0
1	0	0	12	12	12	12
2	0	10	12	22	22	22
3	0	10	12	22		
4	0					

i / w	0	1	2	3	4	5
0	0	0	0	0	0	0
1	0	0	12	12	12	12
2	0	10	12	22	22	22
3	0	10	12	22	30	
4	0					

i / w	0	1	2	3	4	5
0	0	0	0	0	0	0
1	0	0	12	12	12	12
2	0	10	12	22	22	22
3	0	10	12	22	30	32
4	0	10	15			

i / w	0	1	2	3	4	5
0	0	0	0	0	0	0
1	0	0	12	12	12	12
2	0	10	12	22	22	22
3	0	10	12	22	30	32
4	0	10	15	25		

i / w	0	1	2	3	4	5
0	0	0	0	0	0	0
1	0	0	12	12	12	12
2	0	10	12	22	22	22
3	0	10	12	22	30	32
4	0	10	15	25	30	

i / w	0	1	2	3	4	5
0	0	0	0	0	0	0
1	0	0	12	12	12	12
2	0	10	12	22	22	22
3	0	10	12	22	22	32
4	0	10	15	25	30	37

Efficiency

Time Efficiency is $\Theta(nW)$

Time needed to find comparison of an optimal solution is in Θ (n+W)