Logic and Foundation with Haskell

Exercise sheet 6

Recall the definition of the Set type from the last exercise class:

```
data Set a = Set [a] deriving Show
```

In this sheet, we will use this type to implement relations.

Definition 1. A relation $R: A \to B$ is a subset $R \subseteq A \times B$ of the Cartesian product.

Thinking of a relation as a set of pairs, we define

```
type Rel a b = Set (a,b)
```

The type keyword defines Rel a b as a synonym for Set (a,b). Hence, you can use all the code from the previous sheet to manipulate relations.

Exercise 1. Using the newly defined type, define the relation $d: [1, ..., 50] \rightarrow [1, ..., 50]$ where $(a, b) \in d$ if and only if a divides b.

Definition 2. The *domain* and *range* of a relation $R: A \to B$ are defined as

$$dom(R) := \{ a \in A \mid \exists b \in B : (a, b) \in R \}, ran(R) := \{ b \in B \mid \exists a \in A : (a, b) \in R \}.$$

Exercise 2. Write functions that compute the domain and range of a relation, both returning sets.

Definition 3. A relation $R: A \to A$ is said to be

- (i) reflexive if $(a, a) \in R$, for all $a \in A$,
- (ii) symmetric if $(a, b) \in R$ implies $(b, a) \in R$, for all $a, b \in A$,
- (iii) transitive if $(a, b) \in R$ and $(b, c) \in R$ imply $(a, c) \in R$, for all $a, b, c \in A$.

Exercise 3. Write functions that check whether a relation is reflexive, symmetric, and transitive.

Definition 4. Given relations $R: A \to B$ and $S: B \to C$, their composite $S \circ R: A \to C$ is defined as

$$S \circ R := \{(a, c) \in A \times C \mid \exists b \in B : (a, b) \in R \land (b, c) \in S\}.$$

Exercise 4. Write a function that implements relation composition.