anticipez la consommation électrique de bâtiments

Soutenance Olivier Legrand Parcours Data Scientist Projet P4

Problématique

- Prédiction de la consommation totale d'énergie et d'émissions de GES à partir des caractéristiques de bâtiments:
 - Ground floor area
 - number of buildings
 - building type
 - Largest property use type
 - o etc.
- Evaluation de l'ENERGYSTARScore comme prédicteur des émissions de GES:
 - On cherchera à évaluer si ce prédicteur est fortement associé aux émissions de GES
 - o On cherchera à évaluer l'impact de cet indicateur dans la qualité des prédictions.

Interprétation

- Jeu de données: Seattle energy benchmarking, pour les années 2015 et 2016
- Identification des cibles
 - Emissions GES: TotalGHGEmissions
 - Consommation d'énergie totale: SiteEnergyUse

Pistes

- Plusieurs problématiques associées au jeu de données:
 - potentielle fuite de données → On s' empêchera d'utiliser toutes les variables "dérivées" (Intensity).
 - pas de données issues des relevés annuels, mais possibilité d'utiliser les nature et proportion d'énergie utilisées → on devra créer de nouvelles variables, mais ne pas utiliser Electricity, NaturalGas, SteamUse
- Comment les variables liées au permis d'exploitation commerciale sont-elles associées aux grandeurs cibles? Type et importance des corrélations
- Exploiter également les associations entre les variables catégorielles et les variables cibles.
- Envisager d'utiliser une prédiction sur une des cibles pour prédire l'autre.

Nettoyage

1. Fusion des deux tables:

1.1. Transformation de la colonne Location en 6 colonnes: Address, ZipCode, Latitude, Longitude, State, City

2. Sélection des colonnes pertinentes:

2.1. Variables du permis d'exploitation: GFA (PropertyGFAs, LargestPropertyUseTypeGFAs)
NumberofFloors/Building, PrimaryPropertyType, LargestPropertyType (and Second-, Third-),
DataYear, YearBuilt + Electricity, NaturalGas, Steam, OtherFuelUse

3. Traitement des valeurs manquantes:

- 3.1. SecondLargestPropertyUseType: on remplace par "None", car l'absence de valeur est cohérente, mais la présence de NaN peut empêcher certains traitements numériques. Idem pour ThirdLargestPropertyUseType.
- 3.2. Pour les variables quantitatives, on supprime les lignes incomplètement renseignées sauf pour ENERGYSTARScore: trop de valeurs manquantes.

Distribution des variables quantitatives

- Non-gaussiennes
- Grandes dispersions
- Grandes différences d'échelles

Corrélations importantes pour certains groupes de variables:

- 98% pour PropertyGFATotal, PropertyGFABuilding(s)
- 97% pour PropertyGFATotal, LargestPropertyUseTypeGFA
- 78% pour PropertyGFATotal, SecondLargestPropertyUseTypeGFA
- 94% pour Electricity et SiteEnergyUse, -92% pour Electricity et NaturalGas
- 89 % pour SiteEnergyUse et TotalGHGEmissions

Cas des variables catégorielles

 Grand nombre de modalités pour chaque variable (DataYear: 2 modalités, mais LargestPropertyUseType:53 et YearBuilt: 112 par exemple)

• Grand nombre de modalités presque vides: source potentielle de bruit

Corrélations: ANOVA	η^2	
	SiteEnergyUse	TotalGHGEmissions
PrimaryPropertyType	0.077	0.056
LargestPropertyUseType	0.060	0.067
SecondLargestPropertyUseType	0.042	0.019
BuildingType	0.023	0.013
YearBuilt	0.023	0.007

Corrélations et associations

- Intéressant d'envisager une PCA sur les variables quantitatives corrélées aux cibles, et très corrélées entre elles
- ➤ ANOVA → mise à l'écart des v. catégorielles non associées, ou dont l'effet est très faible
- ENERGYSTARScore très peu corrélée aux cibles et aux autres variables
- TotalGHGEmissions et SiteEnergyUse très corrélées entre elles, SiteEnergyUSe plus corrélée aux autres variables que TotalGHGEmissions: modèle séquentiel vs modèle non-séquentiel

Feature engineering

- 1. Très grande dispersion et non-gaussianité des données:
 - a. log10 sur les cibles TotalGHGEmissions et SiteEnergyUse
 - b. standardisation des prédicteurs (sur jeu d'entraînement seulement)

Feature engineering

- 1. Très grande dispersion et non-gaussianité des données:
 - a. log10 sur les cibles TotalGHGEmissions et SiteEnergyUse
 - b. standardisation des prédicteurs (sur jeu d'entraînement seulement)
- 2. PCA sur le groupe de variables 'GFA' très corrélées entre elles
- 3. Création des variables Energy_ratio, NaturalGas_ratio, Steam_ratio
- 4. One-hot encoding des variables catégorielles, puis réduction du nombre de modalités:
 - par groupements basés sur des seuils de population et/ou règles métiers et/ou des considérations portant sur les dépendances entre les cibles et les diverses modalités.
 - b. YearBuilt groupé en deux catégories: avant 1980, après 1980

Modèles

Structure des modèles

Modèle: pipeline de prétraitement + estimateur.

- Pipeline de prétraitement:
 - Standardisation des variables et PCA
 - one-hot encoding des variables catégorielles
 - optionnel: Transformation des features pour la régression polynomiale

Estimateurs:

- Régression Linéaire,
- KNN,
- Lasso pour réduire la complexité du modèle polynomial,
- RandomForest pour réduire la complexité et prédire.

Baseline: régression linéaire

- Jeu de données: On écarte 'DataYear' (SEU) ou 'DataYear' et ThirdLargestPropertyUseType
- Pipeline: Standardisation, PCA, One-hot encoding
- Méthode: validation croisée 5 folds

Baseline: régression linéaire

	SiteEnergyUse	TotalGHGEmissions
R2 (entraînement)	0.59 +/- 0.01	0.65 +/- 0.1
R2 (test)	0.56 +/- 0.04	0.62 +/- 0.04

 \rightarrow Le modèle semble stable, mais le score indique un possible sous-apprentissage. Régression polynomiale pour prendre en compte les interactions entre variables.

Baseline: régression linéaire

Principaux prédicteurs:

Coefficients pour TotalGHGEmissions log

- Jeu de données: On écarte 'DataYear', 'ThirdLargestPropertyUseType', 'BuildingType' car risque de surapprentissage.
- Modèle exploré seulement sur la cible SiteEnergyUse.
- Pipeline: Standardisation, PCA, One-hot encoding, PolynomialFeatures de degré 2, Lasso
- Méthode: GridSearch (5 folds) sur le set d'entraînement pour l'évaluation de alpha

SiteEnergyUSe

TotalGHGEmissions

	SiteEnergyUse	TotalGHGEmissions
alpha	0.00717	0.00717
R2 (entraînement)	0.65 +/- 0.01	0.730 +/- 0.002
R2 (test)	0.59 +/- 0.03	0.705 +/- 0.012

[→] Amélioration par rapport à la régression linéaire. Toujours en sous-apprentissage. Pour aller plus loin: knn, randomforest

Principaux prédicteurs:

→ Prise en compte des interactions.

k-NearestNeighbors

- Jeu de données: On écarte 'DataYear', 'ThirdLargestPropertyUseType', 'BuildingType' (SEU), et 'DataYear', 'ThirdLargestPropertyUseType', 'YearBuilt'
- Pipeline: Standardisation, PCA, One-hot encoding
- Méthode: GridSearch pour la détermination du nombre optimal de p.p. voisins

k-NearestNeighbors

SiteEnergyUSe

TotalGHGEmissions

k-NearestNeighbors

	SiteEnergyUse	TotalGHGEmissions
n_neighbors	5	5
R2 (entraînement)	0.783 +/- 0.002	0.816 +/- 0.004
R2 (test)	0.675 +/- 0.02	0.724 +/- 0.018

- Jeu de données: Même jeu de données que pour la régression linéaire simple
- Pipeline: Standardisation, PCA, One-hot encoding
- Méthode: GridSearch pour déterminer les valeurs optimales de max_features, max_depth et n_estimators
- + On utilise deux méthodes (feature permutation et feature importance) pour évaluer l'importance des différents prédicteurs et créer un modèle plus simple.

	SiteEnergyUse	TotalGHGEmissions
n_estimators, max_depth, max_features	500, 'None', 'sqrt'	500, 'None', 'auto'
R2 (entraînement)	0.971 +/- 0.000	0.975 +/- 0.001
R2 (test)	0.790 +/- 0.023	0.816 +/- 0.027

x1: PrimaryPropertyType

x2: LargestPropertyUseType

x3: SecondLargestPropertyUseType

- Sélection des variables dont l'importance ≥ 3%
- Variables sélectionnées: 'Electricity_ratio' → 'x3_group_1' (8 variables sur 21)
- Score (GHGEmissions): 0.84
 - → perte de performance maîtrisée avec la sélection.
- De plus:
 - → moindre temps de calcul
 - → amélioration de l'interprétabilité.

Pertinence d'ENERGYSTARScore pour la prédiction de TotalGHGEmissions

Modèle final

Comparaison des modèles

Modèle final

- 1. Sélection des inputs
- 2. PCA, normalisation, Onehot encoding
- 3. Prédiction de SiteEnergyUse avec RandomForest
- Deux modèles:
 - a. Prédiction de TotalGHGEmissions avec Random Forest, à partir des prédictions de SiteEnergyUse
 - b. Prédictions de SiteEnergyUse et TotalGHGEmissions en parallèle

I Modèle séquentiel

- Sélection des inputs: jeu de données complet (pas de sélection des features)
- 2. PCA, normalisation, One-hot encoding
- 3. Prédiction de SiteEnergyUse avec RandomForest
 - a. scoring sur train/test = 80/20
 - b. prédictions sur train1/test1 = 50/50
- 4. Prédiction de TotalGHGEmissions avec Random Forest, à partir des prédictions de SiteEnergyUse (train2/test2: 80/20 *(test1))

II Modèle non séquentiel

- 1. Sélection des inputs: jeux de données complets
- 2. PCA, normalisation, On-ehot encoding
- 3. Réduction de la complexité avec SelectFromModel et RandomForest
- 4. Prédiction de SiteEnergyUse avec RandomForest
- 5. Prédiction de TotalGHGEmissions avec Random Forest

	SiteEnergyUse	TotalGHGEmissions
Modèle séquentiel	0.83 +/- 0.09	0.84 +/- 0.02
Modèle non-séquentiel	0.83 +/- 0.01	0.83 +/- 0.02

 $[\]rightarrow$ Résultats très similaires. Modèle non-séquentiel plus stable, performances sur chaque variable indépendantes.