ECCV'20 ONLINE 23-28 AUGUST 2020

Duality Diagram Similarity: a generic framework for initialization selection in task transfer learning

Kshitij Dwivedi^{1,3}, Jiahui Huang², Radoslaw Martin Cichy³, Gemma Roig¹

Initialization selection for transfer learning

New task: Semantic segmentation

Goal:

DeepNet → best transfer performance

Initialize from a pretrained model

Duality Diagram Similarity (DDS) selects

- 1. pretrained model
- 2. layer of the pretrained model for best transfer performance

Task similarity ↔ Transfer learning performance

Similarity ↓

Performance \(\)

Idea explored previously in

- 1. Dwivedi & Roig, CVPR 2019
- 2. Song et al., NeurIPS 2019

Duality Diagram Similarity

DDS allows exploring different

- 1. feature normalizations
- 2. similarity functions

Results

 DDS finds model initialization with high transfer performance

 DDS finds best branching to transfer from

Method	Affinity	Winrate	Total time(s)
Taskonomy Winrate 48	0.988	1	1.6×10^{7}
Taskonomy affinity 48	1	0.988	1.6×10^{7}
saliency 41	0.605	0.600	3.2×10^{3}
DeepLIFT 41	0.681	0.682	3.3×10^{3}
ϵ -LRP 41	0.682	0.682	5.6×10^{3}
RSA 9	0.777	0.767	78.2
$\overline{\text{DDS } (f = cosine)}$	0.862	0.864	84.14
DDS $(f = Laplacian)$	0.860	0.860	103.36

Task	Pascal VOC			NYUv2		
Block	Edge	Normals	Semantic	Edge	Depth	Semantic
DIOCK	(MAE)	(mDEG_DIFF)	(mIOU)	(MAE)	$(\log\mathrm{RMSE})$	(mIOU)
1	0.658	18.09	0.257	0.823	0.322	0.124
2	0.686	15.59	0.392	0.857	0.290	0.165
3	0.918	14.39	0.627	1.297	0.207	0.219
4	0.900	15.11	0.670	1.283	0.208	0.285

K.D