

Last Time

LAS: 就是 seq2seq

RNN-T: 輸入一個東西可以輸出多個東西的 seq2seq

CTC: decoder 是 linear classifier 的 seq2seq 【

Neural Transducer: 每次輸入 一個 window 的 RNN-T

RNA: 輸入一個東西就要輸出一個東西的 seq2seq

MoCha: window 移動伸縮 自如的 Neural Transducer

Two Points of Views

Seq-to-seq

Hidden Markov Model (HMM)

$$Y^* = \underset{Y}{arg \max} P(Y|X)$$

$$Decode$$

$$= \underset{Y}{arg \max} \frac{P(X|Y)P(Y)}{P(X)}$$

$$= \arg \max_{\mathbf{Y}} P(X|\mathbf{Y})P(\mathbf{Y})$$

P(X|Y): HMM

Acoustic Model

P(Y): Language Model

$$P(X|Y) \longrightarrow P(X|S)$$

A token sequence Y corresponds to a sequence of **states** S

what do you think

hh w aa t d uw y uw th ih ng k

Tri-phone:

..... t-d+uw d-uw+y uw-y+uw y-uw+th

t-d+uw1 t-d+uw2 t-d+uw3 d-uw+y1 d-uw+y2 d-uw+y3 *State:*

HMM

$$P(X|Y) \longrightarrow P(X|S)$$

A sentence Y corresponds to a sequence of **states** S

HMM

$$P(X|Y) \longrightarrow P(X|S)$$

A sentence Y corresponds to a sequence of **states** S

Transition Probability

Probability from one state to another

HMM – Emission Probability

Too many states

終極型態: Subspace GMM [Povey, et al., ICASSP'10]

(Geoffrey Hinton also published deep learning for ASR in the same conference)

[Mohamed, et al., ICASSP'10]

$$P_{\theta}(X|S) = ? \sum_{h \in align(S)} P(X|h) \quad h = abccbc \times h = abbbb \times h = abbbbb \times h$$

Method 1: Tandem

Last hidden layer or bottleneck layer are also possible.

Method 2: DNN-HMM Hybrid

$$P(x|a) = \frac{P(x,a)}{P(a)} = \frac{P(a|x)P(x)}{P(a)}$$
Count from training data

How to train a state classifier?

How to train a state classifier?

How to train a state classifier?

Human Parity!

- 微軟語音辨識技術突破重大里程碑:對話辨識能力達人類水準!(2016.10)
 - https://www.bnext.com.tw/article/41414/bn-2016-10-19-020437-216

Machine 5.9% v.s. Human 5.9%

[Yu, et al., INTERSPEECH'16]

- IBM vs Microsoft: 'Human parity' speech recognition record changes hands again (2017.03)
 - http://www.zdnet.com/article/ibm-vs-microsoft-human-parityspeech-recognition-record-changes-hands-again/

Machine 5.5% v.s. Human 5.1%

[Saon, et al., INTERSPEECH'17]

Very Deep

	VGG Net (85M Parameters)	Residual-Net (38M Parameters)	LACE (65M Parameters)		
)	14 weight layers	49 weight layers	22 weight layers		
	40x41 input	40x41 input	40x61 input		
	3 – conv 3x3, 96	3 – [conv 1x1, 64 conv 3x3, 64 conv 1x1, 256]	5 – conv 3x3, 128		
	Max pool	4 – [conv 1x1, 128 conv 3x3, 128 conv 1x1, 512]	5 – conv 3x3, 256		
	4 – conv 3x3, 192	6 – [conv 1x1, 256 conv 3x3, 256 conv 1x1, 1024]	5 – conv 3x3, 512		
	Max pool	3 – [conv 1x1, 512 conv 3x3, 512 conv 1x1, 2048]	5 – conv 3x3, 1024		
	4 – conv 3x3, 384	Average pool	1 – conv 3x4, 1		
5]	Max pool	Softmax (9000)	Softmax (9000)		
	2-FC-4096				
	Softmax (9000)				

[Yu, et al., INTERSPEECH'16]

LAS

Decoding:
$$Y^* = arg \max_{Y} log P(Y|X)$$

Beam Search

Training: $\theta^* = arg \max_{\theta} log P_{\theta}(\hat{Y}|X)$

• LAS directly computes P(Y|X)

$$P(Y|X) = p(a|X)p(b|a,X)...$$

CTC, RNN-T

Decoding: $Y^* = arg \max_{Y} log P(Y|X)$ Beam Search

Training: $\theta^* = arg \max_{\theta} log P_{\theta}(\hat{Y}|X)$

• LAS directly computes P(Y|X)

$$P(Y|X) = p(a|X)p(b|a,X)...$$

 CTC and RNN-T need alignment

$$P(Y|X) = \sum_{h \in align(Y)} P(h|X)$$

HMM, CTC, RNN-T

HMM

CTC, RNN-T

$$P_{\theta}(X|S) = \sum_{h \in align(S)} P(X|h)$$

$$P_{\theta}(Y|X) = \sum_{h \in align(Y)} P(h|X)$$

- 1. Enumerate all the possible alignments
- 2. How to sum over all the alignments
- 3. Training:

$$\theta^* = \arg\max_{\theta} \log P_{\theta}(\widehat{Y}|X)$$

$$\frac{\partial P_{\theta}(\widehat{Y}|X)}{\partial \theta} = \widehat{X}$$

4. Testing (Inference, decoding):

$$Y^* = arg \max_{Y} log P(Y|X)$$

HMM, CTC, RNN-T

HMM

CTC, RNN-T

$$P(X|S) = \sum_{h \in align(S)} P(X|h) \qquad P(Y|X) = \sum_{h \in align(Y)} P(h|X)$$

$$P(Y|X) = \sum_{h \in align(Y)} P(h|X)$$

- 1. Enumerate all the possible alignments
- 2. How to sum over all the alignments

3. Training:
$$\theta^* = \arg\max_{\theta} \log P_{\theta}(\hat{Y}|X) \qquad \frac{\partial P_{\theta}(\hat{Y}|X)}{\partial \theta} = ?$$

4. Testing (Inference, decoding):

$$Y^* = arg \max_{Y} log P(Y|X)$$

LAS

All the alignments

你們在忙什麼 ☺

${\rm duplicate\ to\ length\ } T$

For n = 1 to
$$N$$

output the n-th token t_n times

constraint:
$$t_1 + t_2 + \cdots + t_N = T$$
, $t_n > 0$

Trellis Graph

HMM cat

ccaaat caaaat •••

duplicate to length T

For n = 1 to Noutput the n-th token t_n times

constraint: $t_1 + t_2 + \cdots + t_N = T$, $t_n > 0$

Trellis Graph

CTC

cat
$$\begin{array}{c} \text{c}\,\phi\,\text{aatt}\quad\phi\,\text{c}\,\phi\,\text{w}\\ \text{duplicate}\\ \text{add}\,\phi \end{array}$$
 to length T

output " ϕ " c_0 times

For n = 1 to Noutput the n-th token t_n times
output " ϕ " c_n times

constraint: $t_1 + t_2 + \cdots t_N + c_0 + c_1 + \cdots c_N = T$ $t_n > 0$ $c_n \ge 0$

	ϕ^{x^1}	x^2	x^3	x^4	<i>x</i> ⁵	<i>x</i> ⁶
ϕ	10 1	→ dı	uplicate	φ		
С		ne	ext toke	n		
φ			annot sk			
а		ar	ny toker	1		
φ						
t						
φ						

	x^1	x^2	x^3	x^4	x^5	<i>x</i> ⁶
ϕ						
С						
φ					→ dup	olicate
а			→ dup	licate	nex	kt token
φ			inse	ert ϕ		
t			nex	t token		
φ						

cat $\begin{array}{c|c} \text{c} & \text{c} & \text{c} & \text{d} & \text{$

cat $\begin{array}{c|c} \text{c} & \text{c} & \text{c} & \text{d} & \text{$

$$c \phi \phi \phi a \phi \phi t \phi$$
 $c \phi \phi a \phi \phi t \phi \phi$

output " ϕ " c_0 times

For n = 1 to Noutput the n-th token 1 times

output " ϕ " c_n times constraint: $c_0 + c_1 + \cdots c_N = T$ $c_N > 0$ $c_n \ge 0$ for n = 1 to N-1

	x^1	x^2	x^3	x^4	x^5	x ⁶			
	c	<i>b</i> →							
С								→	Insert ϕ
а								1	output token
t						$\overline{\phi}$	→ •		

HMM, CTC, RNN-T

HMM

CTC, RNN-T

$$P(X|Y) = \sum_{h \in align(Y)} P(X|h)$$

$$P(X|Y) = \sum_{h \in align(Y)} P(X|h) \qquad P(Y|X) = \sum_{h \in align(Y)} P(h|X)$$

- 1. Enumerate all the possible alignments
- 2. How to sum over all the alignments

3. Training:
$$\theta^* = \arg\max_{\theta} \log P_{\theta}(\widehat{Y}|X) \qquad \frac{\partial P_{\theta}(\widehat{Y}|X)}{\partial \theta} = ?$$

4. Testing (Inference, decoding):

$$Y^* = arg \max_{Y} log P(Y|X)$$

This part is challenging.

Score Computation

Score Computation

Score Computation

 $\alpha_{i,j}$: the summation of the scores of all the alignments that read i-th acoustic features and output j-th tokens

$$\alpha_{4,2} = \alpha_{4,1}p_{4,1}(a) + \alpha_{3,2}p_{3,2}(\phi)$$

 $\alpha_{i,j}$: the summation of the scores of all the alignments that read i-th acoustic features and output j-th tokens

$$\alpha_{4,2} = \alpha_{4,1}p_{4,1}(a) + \alpha_{3,2}p_{3,2}(\phi)$$

You can compute summation of the scores of all the alignments.

HMM, CTC, RNN-T

HMM

CTC, RNN-T

$$P_{\theta}(X|Y) = \sum_{h \in align(Y)} P(X|h) \qquad P_{\theta}(Y|X) = \sum_{h \in align(Y)} P(h|X)$$

- 1. Enumerate all the possible alignments
- 2. How to sum over all the alignments
- 3. Training: $\theta^* = \arg\max_{\theta} \log P_{\theta}(\widehat{Y}|X) \qquad \frac{\partial P}{\partial Y}$

$$\frac{\partial P_{\theta}(Y|X)}{\partial \theta} = ?$$

4. Testing (Inference, decoding):

$$Y^* = arg \max_{Y} log P(Y|X)$$

Training

$$\theta^* = arg \max_{\theta} log P(\hat{Y}|X)$$

$$P(\hat{Y}|X) = \sum_{h} P(h|X)$$

φ c φ φ a φ t φ φ

$$p_{1,0}(\phi)$$
 $p_{2,0}(c)$ $p_{2,1}(\phi)$ $p_{3,1}(\phi)$ $p_{4,1}(a)$ $p_{4,2}(\phi)$ $p_{5,2}(t)$ $p_{5,3}(\phi)$ $p_{6,3}(\phi)$

$$\frac{\partial P(\widehat{Y}|X)}{\partial \theta} = ?$$

$$P(\hat{Y}|X) = \sum_{h} P(h|X)$$

$$p_{1,0}(\phi)$$
 $p_{2,0}(c)$ $p_{2,1}(\phi)$ $p_{3,1}(\phi)$ $p_{4,1}(a)$ $p_{4,2}(\phi)$ $p_{5,2}(t)$ $p_{5,3}(\phi)$ $p_{6,3}(\phi)$

Each arrow is a component in $P(\hat{Y}|X) = \sum_{h} P(h|X)$

Training

$$\theta^* = arg \max_{\theta} log P(\hat{Y}|X)$$

$$\theta \xrightarrow{p_{4,1}(a)} P(\hat{Y}|X)$$

$$P(\hat{Y}|X) = \sum_{h} P(h|X)$$

φ c φ φ a φ t φ φ

$$p_{1,0}(\phi)$$
 $p_{2,0}(c)$ $p_{2,1}(\phi)$ $p_{3,1}(\phi)$ $p_{4,1}(a)$ $p_{4,2}(\phi)$ $p_{5,2}(t)$ $p_{5,3}(\phi)$ $p_{6,3}(\phi)$

$$\frac{\partial P(\hat{Y}|X)}{\partial \theta} = ? \qquad \frac{\partial p_{4,1}(a)}{\partial \theta} \frac{\partial P(\hat{Y}|X)}{\partial p_{4,1}(a)} + \frac{\partial p_{3,2}(\phi)}{\partial \theta} \frac{\partial P(\hat{Y}|X)}{\partial p_{3,2}(\phi)} + \cdots$$

Each arrow is a component

$$\frac{\partial p_{4,1}(a)}{\partial \theta} = ?$$

Backpropagation (through time)

To encoder

$$\frac{\partial P(\hat{Y}|X)}{\partial \theta} = ? \qquad \frac{\partial p_{4,1}(a)}{\partial \theta} \frac{\partial P(\hat{Y}|X)}{\partial p_{4,1}(a)} + \frac{\partial p_{3,2}(\phi)}{\partial \theta} \frac{\partial P(\hat{Y}|X)}{\partial p_{3,2}(\phi)} + \cdots$$

$$P(\hat{Y}|X) = \sum_{\substack{h \text{ with } p_{4,1}(a) \\ p_{4,1}(a) \times other}} P(h|X) + \sum_{\substack{h \text{ without } p_{4,1}(a) \\ }} P(h|X)$$

$$\frac{\partial P(\hat{Y}|X)}{\partial p_{4,1}(a)} = \sum_{h \text{ with } p_{4,1}(a)} other = \sum_{h \text{ with } p_{4,1}(a)} \frac{P(h|X)}{p_{4,1}(a)}$$

$$= \frac{1}{p_{4,1}(a)} \sum_{h \text{ with } p_{4,1}(a)} P(h|X)$$

 $\beta_{i,j}$: the summation of the score of all the alignments staring from i-th acoustic features and j-th tokens

$$\beta_{4,2} = \beta_{4,3} p_{4,2}(t) + \beta_{5,2} p_{4,2}(\phi)$$

	x^1	x^2	x^3	x^4	x ⁵	x ⁶	
С				_	rate "q		
а	C.	enerat	eta_4	-,2	$oldsymbol{eta_{5,}}$	2	
t	g	בוופומנ	.e t eta_4	,3 ,3	•	,	

$$\frac{\partial P(\hat{Y}|X)}{\partial p_{4,1}(a)} = \frac{1}{p_{4,1}(a)} \sum_{\substack{a \text{ with } p_{4,1}(a)}} P(h|X) \quad \alpha_{4,1} \ p_{4,1}(a) \beta_{4,2}$$

$$x^{1} \quad x^{2} \quad x^{3} \quad x^{4} \quad x^{5} \quad x^{6}$$

$$p_{4,1}(a) \quad \beta_{4,2}$$

$$\frac{\partial P(\hat{Y}|X)}{\partial \theta} = ? \quad \frac{\partial p_{4,1}(a)}{\partial \theta} \alpha_{4,1} \beta_{4,2} + \frac{\partial p_{3,2}(\phi)}{\partial \theta} \frac{\partial P(\hat{Y}|X)}{\partial p_{3,2}(\phi)} + \cdots$$

HMM, CTC, RNN-T

HMM

CTC, RNN-T

$$P_{\theta}(X|Y) = \sum_{h \in align(Y)} P(X|h) \qquad P_{\theta}(Y|X) = \sum_{h \in align(Y)} P(h|X)$$

- 1. Enumerate all the possible alignments
- 2. How to sum over all the alignments

3. Training:
$$\theta^* = \arg\max_{\theta} \log P_{\theta}(\widehat{Y}|X) \qquad \frac{\partial P_{\theta}(\widehat{Y}|X)}{\partial \theta} = ?$$

4. Testing (Inference, decoding):

$$Y^* = arg \max_{Y} log P(Y|X)$$

Decoding

$$Y^* = arg \max_{Y} log P(Y|X)$$

理想 =
$$arg \max_{Y} log \sum_{h \in align(Y)} P(h|X) \max_{h \in align(Y)} P(h|X)$$

現實
$$\approx arg \max_{\substack{Y \ h \in align(Y)}} log P(h|X)$$

$$Y^* = align^{-1}(h^*)$$

$$h_1 h_2 h_3$$

$$\uparrow \uparrow$$

$$h^* = arg \max_{h} log P(h|X)$$

$$h = \phi c \phi \phi a \phi t \phi \phi ...$$

$$P(h|X) = P(h_1|X)P(h_2|X, h_1)P(h_3|X, h_1, h_2) \dots$$

Summary

	LAS	СТС	RNN-T
Decoder	dependent	independent	dependent
Alignment	not explicit (soft alignment)	Yes	Yes
Training	just train it	sum over alignment	sum over alignment
On-line	No	Yes	Yes

Reference

- [Yu, et al., INTERSPEECH'16] Dong Yu, Wayne Xiong, Jasha Droppo, Andreas Stolcke, Guoli Ye, Jinyu Li, Geoffrey Zweig, Deep Convolutional Neural Networks with Layer-wise Context Expansion and Attention, INTERSPEECH, 2016
- [Saon, et al., INTERSPEECH'17] George Saon, Gakuto Kurata, Tom Sercu, Kartik Audhkhasi, Samuel Thomas, Dimitrios Dimitriadis, Xiaodong Cui, Bhuvana Ramabhadran, Michael Picheny, Lynn-Li Lim, Bergul Roomi, Phil Hall, English Conversational Telephone Speech Recognition by Humans and Machines, INTERSPEECH, 2017
- [Povey, et al., ICASSP'10] Daniel Povey, Lukas Burget, Mohit Agarwal, Pinar Akyazi, Kai Feng, Arnab Ghoshal, Ondrej Glembek, Nagendra Kumar Goel, Martin Karafiat, Ariya Rastrow, Richard C. Rose, Petr Schwarz, Samuel Thomas, Subspace Gaussian Mixture Models for speech recognition, ICASSP, 2010
- [Mohamed, et al., ICASSP'10] Abdel-rahman Mohamed and Geoffrey Hinton, Phone recognition using Restricted Boltzmann Machines, ICASSP, 2010