SD-TSIA204: PCA and LASSO

Ekhine Irurozki Télécom Paris, IP Paris

Lasso: Reminding the model

$$\mathbf{y} = X oldsymbol{ heta}^\star + arepsilon \in \mathbb{R}^n$$
 $X = [\mathbf{x}_1, \dots, \mathbf{x}_p] = \left(egin{array}{ccc} x_{1,1} & \dots & x_{1,p} \ dots & \ddots & dots \ x_{n,1} & \dots & x_{n,p} \end{array}
ight) \in \mathbb{R}^{n imes p}, oldsymbol{ heta}^\star \in \mathbb{R}^p$

Motivation

In the presence of super-collinearity the OLS estimators can not be given.

Estimators $\hat{m{ heta}}$ with many zero coefficients are useful :

- ► for interpretation
- ► for computational efficiency if *p* is huge

Underlying idea : variable selection

Rem: also useful if θ^* has few non-zero coefficients

Variable selection overview

- Screening : remove the \mathbf{x}_i 's whose correlation with \mathbf{y} is weak
 - pros : fast (+++), *i.e.*, one pass over data, intuitive (+++)
 - cons : neglect variables interactions \mathbf{x}_j , weak theory (- -)
- Greedy methods aka stagewise / stepwise
 - pros : fast (++), intuitive (++)
 - cons : propagates wrong selection forward; weak theory (-)
- Sparsity enforcing penalized methods (e.g., Lasso)
 - pros : better theory for convex cases (++)
 - cons : can be still slow (-)

The ℓ_0 pseudo-norm

The support of $\theta \in \mathbb{R}^p$ is the set of indexes of non-zero coordinates :

$$\operatorname{supp}(\boldsymbol{\theta}) = \{ j \in [1, p], \theta_j \neq 0 \}$$

The ℓ_0 pseudo-norm of a $\boldsymbol{\theta} \in \mathbb{R}^p$ is the number of non-zero coordinates : $\|\boldsymbol{\theta}\|_0 = \operatorname{card}\{j \in [\![1,\rho]\!], \theta_j \neq 0\}$

Rem:
$$\|\cdot\|_0$$
 is not a norm, $\forall t \in \mathbb{R}^*, \|t\theta\|_0 = \|\theta\|_0$

Rem:
$$\|\cdot\|_0$$
 it is not even convex, $\theta_1 = (1,0,1,\dots,0)$ $\theta_2 = (0,1,1,\dots,0)$ and $3 = \|\frac{\theta_1 + \theta_2}{2}\|_0 \geqslant \frac{\|\theta_1\|_0 + \|\theta_2\|_0}{2} = 2$

Regularization with the ℓ_0 penalty

First try to get a sparsity enforcing penalty : use ℓ_0 as a penalty (or regularization)

$$\hat{\boldsymbol{\theta}}_{\lambda} = \operatorname*{arg\,min}_{\boldsymbol{\theta} \in \mathbb{R}^p} \quad \left(\quad \underbrace{\frac{1}{2} \|\mathbf{y} - X\boldsymbol{\theta}\|_2^2}_{\text{data fitting}} \quad + \underbrace{\lambda \|\boldsymbol{\theta}\|_0}_{\text{regularization}} \right)$$

Combinatorial problem!!!

Exact solution : require considering all sub-models, *i.e.*,computing OLS for all possible support; meaning one might need 2^p least squares computation!

Example:

p=10 possible : $\approx 10^3$ least squares

p = 30 impossible : $\approx 10^{10}$ least squares

<u>Rem</u>: problem "NP-hard", can be solved for small problems by mixed integer programming.

Regularization with the ℓ_1 penalty : Lasso

Lasso: Least Absolute Shrinkage and Selection Operator Tibshirani (1996)

$$\hat{\boldsymbol{\theta}}_{\lambda}^{\mathrm{Lasso}} = \operatorname*{arg\,min}_{\boldsymbol{\theta} \in \mathbb{R}^p} \quad \left(\quad \underbrace{\frac{1}{2} \|\mathbf{y} - \boldsymbol{X}\boldsymbol{\theta}\|_2^2}_{\mathrm{data \, fitting}} \quad + \underbrace{\lambda \|\boldsymbol{\theta}\|_1}_{\mathrm{regularization}} \right)$$

or
$$\|oldsymbol{ heta}\|_1 = \sum_{j=1}^p | heta_j|$$
 sum of absolute values of the coefficients)

▶ We recover the limiting cases :

$$\lim_{\lambda \to 0} \hat{\boldsymbol{\theta}}_{\lambda}^{\mathrm{Lasso}} = \hat{\boldsymbol{\theta}}^{\mathrm{OLS}}$$
$$\lim_{\lambda \to +\infty} \hat{\boldsymbol{\theta}}_{\lambda}^{\mathrm{Lasso}} = 0 \in \mathbb{R}^{p}$$

Constraint point of view

The following problem:

$$\hat{\boldsymbol{\theta}}_{\lambda}^{\mathrm{Lasso}} = \operatorname*{arg\,min}_{\boldsymbol{\theta} \in \mathbb{R}^p} \quad \left(\quad \underbrace{\frac{1}{2} \|\mathbf{y} - \boldsymbol{X}\boldsymbol{\theta}\|_2^2}_{\text{data fitting}} \quad + \underbrace{\lambda \|\boldsymbol{\theta}\|_1}_{\text{regularization}} \right)$$

shares the same solutions as the constrained formulation:

$$\begin{cases} \mathop{\arg\min}_{\boldsymbol{\theta} \in \mathbb{R}^p} \|\mathbf{y} - X\boldsymbol{\theta}\|_2^2 \\ \text{s.t. } \|\boldsymbol{\theta}\|_1 \leqslant T \end{cases}$$

for some T > 0.

Rem: unfortunately the link $T \leftrightarrow \lambda$ is not explicit

- ▶ If $T \to 0$ one recovers the null vector : $0 \in \mathbb{R}^p$ ▶ If $T \to \infty$ one recovers $\hat{\boldsymbol{\theta}}^{OLS}$ (unconstrained)

Interpretation : Optimization under ℓ_1 constraint, sparse solution

$$rg \min_{oldsymbol{ heta} \in \mathbb{R}^p} \lVert \mathbf{y} - X oldsymbol{ heta}
Vert_2^2$$
 s.t. $\lVert oldsymbol{ heta}
Vert_1 \leqslant T$

Interpretation : Optimization under ℓ_2 constraint, non-sparse solution

Existance and uniqueness

Exercise: the Lasso estimator is not always **unique** for a fixed λ (consider cases with two equals columns in X). However, the prediction is unique. Show these points.

Analytical solution

Non-smooth problem

In general, there is no explicit solution

- ► Quadratic programming with constraints
- ► Iterative ridge
- ► Proximal gradient method

For a convex function $f: \mathbb{R}^n \to \mathbb{R}$, $u \in \mathbb{R}^n$ is a sub-gradient of f at x^* , if for any $x \in \mathbb{R}^n$,

$$f(x) \geqslant f(x^*) + \langle u, x - x^* \rangle$$

The sub-differential is the set of all sub-gradients,

$$\partial f(x^*) = \{ u \in \mathbb{R}^n : \forall x \in \mathbb{R}^n, f(x) \geqslant f(x^*) + \langle u, x - x^* \rangle \}.$$

For a convex function $f: \mathbb{R}^n \to \mathbb{R}$, $u \in \mathbb{R}^n$ is a sub-gradient of f at x^* , if for any $x \in \mathbb{R}^n$,

$$f(x) \geqslant f(x^*) + \langle u, x - x^* \rangle$$

The sub-differential is the set of all sub-gradients,

$$\partial f(x^*) = \{ u \in \mathbb{R}^n : \forall x \in \mathbb{R}^n, f(x) \geqslant f(x^*) + \langle u, x - x^* \rangle \}.$$

For a convex function $f: \mathbb{R}^n \to \mathbb{R}$, $u \in \mathbb{R}^n$ is a sub-gradient of f at x^* , if for any $x \in \mathbb{R}^n$,

$$f(x) \geqslant f(x^*) + \langle u, x - x^* \rangle$$

The sub-differential is the set of all sub-gradients,

$$\partial f(x^*) = \{ u \in \mathbb{R}^n : \forall x \in \mathbb{R}^n, f(x) \geqslant f(x^*) + \langle u, x - x^* \rangle \}.$$

For a convex function $f: \mathbb{R}^n \to \mathbb{R}$, $u \in \mathbb{R}^n$ is a sub-gradient of f at x^* , if for any $x \in \mathbb{R}^n$,

$$f(x) \geqslant f(x^*) + \langle u, x - x^* \rangle$$

The sub-differential is the set of all sub-gradients,

$$\partial f(x^*) = \{ u \in \mathbb{R}^n : \forall x \in \mathbb{R}^n, f(x) \geqslant f(x^*) + \langle u, x - x^* \rangle \}.$$

Fermat's Rule : optimality of x^*

A point x^* is a minimum of a convex function $f: \mathbb{R}^n \to \mathbb{R}$ if and only if $0 \in \partial f(x^*)$

Proof: use the sub-gradient definition:

▶ 0 is a sub-gradient of f at x^* if and only if $\forall x \in \mathbb{R}^n, f(x) \ge f(x^*) + \langle 0, x - x^* \rangle$

Fermat's Rule : optimality of x^*

A point x^* is a minimum of a convex function $f:\mathbb{R}^n\to\mathbb{R}$ if and only if $0\in\partial f(x^*)$

Proof: use the sub-gradient definition:

▶ 0 is a sub-gradient of f at x^* if and only if $\forall x \in \mathbb{R}^n, f(x) \ge f(x^*) + \langle 0, x - x^* \rangle$

Rem: Visually, it corresponds to a horizontal tangent

Function (abs):

$$f: \begin{cases} \mathbb{R} & \to \mathbb{R} \\ x & \mapsto |x| \end{cases}$$

$$\partial f(x^*) = \begin{cases} \{-1\} & \text{if } x^* \in]-\infty, 0[\\ \{1\} & \text{if } x^* \in]0, \infty[\\ [-1,1] & \text{if } x^* = 0 \end{cases}$$

Function (abs):

$$f: \begin{cases} \mathbb{R} & \to \mathbb{R} \\ x & \mapsto |x| \end{cases}$$

$$\partial f(x^*) = \begin{cases} \{-1\} & \text{if } x^* \in]-\infty, 0[\\ \{1\} & \text{if } x^* \in]0, \infty[\\ [-1,1] & \text{if } x^* = 0 \end{cases}$$

Function (abs):

$$f: \begin{cases} \mathbb{R} & \to \mathbb{R} \\ x & \mapsto |x| \end{cases}$$

$$\partial f(x^*) = \begin{cases} \{-1\} & \text{if } x^* \in]-\infty, 0[\\ \{1\} & \text{if } x^* \in]0, \infty[\\ [-1,1] & \text{if } x^* = 0 \end{cases}$$

Function (abs):

$$f: \begin{cases} \mathbb{R} & \to \mathbb{R} \\ x & \mapsto |x| \end{cases}$$

$$\partial f(x^*) = \begin{cases} \{-1\} & \text{if } x^* \in]-\infty, 0[\\ \{1\} & \text{if } x^* \in]0, \infty[\\ [-1,1] & \text{if } x^* = 0 \end{cases}$$

Function (abs):

$$f: \begin{cases} \mathbb{R} & \to \mathbb{R} \\ x & \mapsto |x| \end{cases}$$

$$\partial f(x^*) = \begin{cases} \{-1\} & \text{if } x^* \in]-\infty, 0[\\ \{1\} & \text{if } x^* \in]0, \infty[\\ [-1,1] & \text{if } x^* = 0 \end{cases}$$

Function (abs):

$$f: \begin{cases} \mathbb{R} & \to \mathbb{R} \\ x & \mapsto |x| \end{cases}$$

$$\partial f(x^*) = \begin{cases} \{-1\} & \text{if } x^* \in]-\infty, 0[\\ \{1\} & \text{if } x^* \in]0, \infty[\\ [-1,1] & \text{if } x^* = 0 \end{cases}$$

Function (abs):

$$f: \begin{cases} \mathbb{R} & \to \mathbb{R} \\ x & \mapsto |x| \end{cases}$$

$$\partial f(x^*) = \begin{cases} \{-1\} & \text{if } x^* \in]-\infty, 0[\\ \{1\} & \text{if } x^* \in]0, \infty[\\ [-1,1] & \text{if } x^* = 0 \end{cases}$$

Function (abs):

$$f: \begin{cases} \mathbb{R} & \to \mathbb{R} \\ x & \mapsto |x| \end{cases}$$

$$\partial f(x^*) = \begin{cases} \{-1\} & \text{if } x^* \in]-\infty, 0[\\ \{1\} & \text{if } x^* \in]0, \infty[\\ [-1,1] & \text{if } x^* = 0 \end{cases}$$

Fermat's rule for the Lasso

$$\hat{\boldsymbol{\theta}}_{\lambda}^{\mathrm{Lasso}} = \operatorname*{arg\,min}_{\boldsymbol{\theta} \in \mathbb{R}^p} \quad \left(\quad \underbrace{\frac{1}{2} \| \mathbf{y} - \boldsymbol{X} \boldsymbol{\theta} \|_2^2}_{\text{data fitting}} \quad + \underbrace{\lambda \| \boldsymbol{\theta} \|_1}_{\text{regularization}} \right)$$

Necessary and sufficient optimality (Fermat) :

$$\forall j \in [p], \ \mathbf{x}_j^\top \left(\frac{y - X \hat{\boldsymbol{\theta}}_{\lambda}^{\mathrm{Lasso}}}{\lambda} \right) \in \begin{cases} \{ \mathrm{sign}(\hat{\boldsymbol{\theta}}_{\lambda}^{\mathrm{Lasso}})_j \} & \text{if} \quad (\hat{\boldsymbol{\theta}}_{\lambda}^{\mathrm{Lasso}})_j \neq 0, \\ [-1, 1] & \text{if} \quad (\hat{\boldsymbol{\theta}}_{\lambda}^{\mathrm{Lasso}})_j = 0. \end{cases}$$

$$\underline{\mathsf{Rem}} \colon \mathsf{If} \; \lambda > \lambda_{\mathsf{max}} := \max_{j \in [\![1, p]\!]} |\langle \mathbf{x}_j, \mathbf{y} \rangle|, \; \mathsf{then} \; \hat{\boldsymbol{\theta}}_{\lambda}^{\mathsf{Lasso}} = 0$$

Iterative algorithm for Lasso (Sub-gradient descent)

Lasso analysis

Theory : more involved for the Lasso than for least squares / Ridge

Recent reference : Bühlmann and van de Geer (2011)

In a nutshell: add bias to the standard least squares to perform variance reduction

Combining Lasso and Ridge (ℓ_1/ℓ_2 regularization) : Elastic-net

The Elastic-Net, introduced by Zou and Hastie (2005) is the (unique) solution of

$$\hat{\boldsymbol{\theta}}_{\lambda} = \operatorname*{arg\,min}_{\boldsymbol{\theta} \in \mathbb{R}^p} \left[\frac{1}{2} \| \mathbf{y} - X \boldsymbol{\theta} \|_2^2 + \lambda \left(\gamma \| \boldsymbol{\theta} \|_1 + (1 - \gamma) \frac{\| \boldsymbol{\theta} \|_2^2}{2} \right) \right]$$

<u>Motivation</u>: help selecting all relevant but correlated variable (not only one as for the Lasso)

<u>Rem</u>: two parameters needed, one for global regularization, one trading-off Ridge vs. Lasso

Rem: the solution is unique and the size of the Elastic-Net support is smaller than $\min(n, p)$

Comparing regularizers in 1D: Ridge

$$\eta_{\lambda}(z) = \operatorname*{arg\,min}_{x \in \mathbb{R}} x \mapsto \frac{1}{2}(z - x)^2 + \frac{\lambda}{2}x^2$$

$$\eta_{\lambda}(z) = \frac{z}{1+\lambda}$$

 ℓ_2 shrinkage : Ridge

Comparing regularizers in 1D: Lasso

$$\eta_{\lambda}(z) = \operatorname*{arg\,min}_{x \in \mathbb{R}} x \mapsto \frac{1}{2} (z - x)^2 + \lambda |x|$$

$$\eta_{\lambda}(z) = \operatorname{sign}(z) (|z| - \lambda)_{+}$$

 ℓ_1 shrinkage : soft thresholding

Comparing regularizers in 1D : ℓ_0

$$\eta_{\lambda}(z) = \operatorname*{arg\,min}_{x \in \mathbb{R}} x \mapsto \frac{1}{2} (z - x)^2 + \lambda \mathbb{1}_{x \neq 0}$$

$$\eta_{\lambda}(z) = z \mathbb{1}_{|z| \geqslant \sqrt{2\lambda}}$$

 ℓ_0 shrinkage : hard thresholding

Comparing regularizers in 1D: Elastic-Net

solve:
$$\eta_{\lambda}(z) = \operatorname*{arg\,min}_{x \in \mathbb{R}} x \mapsto \frac{1}{2} (z - x)^2 + \lambda (\gamma |x| + (1 - \gamma) \frac{x^2}{2})$$

$$\ell_1/\ell_2$$

Numerical example on simulated data

- $\boldsymbol{\theta^{\star}} = (1,1,1,1,1,0,\ldots,0) \in \mathbb{R}^p$ (5 non-zero coefficients)
- $X \in \mathbb{R}^{n \times p}$ has columns drawn according to a Gaussian distribution
- $y = X\theta^* + \varepsilon \in \mathbb{R}^n$ with $\varepsilon \sim \mathcal{N}(0, \sigma^2 \operatorname{Id}_n)$
- \blacktriangleright We use a grid of 50 λ values

For this example : $n = 60, p = 40, \sigma = 1$

Lasso vs Ridge

Lasso vs Ridge

Lasso vs Ridge

Lasso vs Ridge

Lasso properties

- Solutions is not necessarily unique
- ▶ The analytic form does not necessarily exist
- ► Numerical aspect : the Lasso is a **convex** problem
- ▶ Variable selection / sparse solutions : $\hat{\boldsymbol{\theta}}_{\lambda}^{\mathrm{Lasso}}$ has potentially many zeroed coefficients. The λ parameter controls the sparsity level : if λ is large, solutions are very sparse.

 $\underline{\text{Example}}$: We got 17 non-zero coefficients for LassoCV in the previous simulated $\underline{\text{example}}$

Rem: RidgeCV has no zero coefficients

$$\gamma = 1.00$$

$$\gamma = \text{0.99}$$

$$\gamma = \text{0.95}$$

$$\gamma = {\rm 0.90}$$

$$\gamma = \text{0.75}$$

$$\gamma = \text{0.50}$$

$$\gamma = \text{0.25}$$

$$\gamma = \text{0.1}$$

$$\gamma = \text{0.05}$$

$$\gamma = \text{0.01}$$

$$\gamma = \text{0.00}$$

The Lasso bias

The Lasso is biased: it shrinks large coefficients towards 0

Illustration over the previous example

The Lasso bias

The Lasso is biased: it shrinks large coefficients towards 0

Illustration over the previous example

The Lasso bias: a simple remedy

How to rescale shrunk coefficients?

LSLasso (Least Square Lasso)

- 1. Lasso : compute $\hat{m{ heta}}_{\lambda}^{\mathrm{Lasso}}$

Rem: perform CV for the double step procedure; choosing λ by LassoCV and then performing OLS keeps too many variables

Rem: LSLasso is not coded in standard packages

De-biasing

De-biasing

Prediction: Lasso vs. LSLasso

LSLasso evaluation

Pros

- the "true" large coefficients are less shrunk
- ► CV recovers less "parasite" variables (improve interpretability) e.g., in the previous example the LSLassoCV recovers exactly the 5 "true" non zero variables, up to a single false positive

LSLasso : especially useful for estimation

Cons

- ▶ the difference in term of prediction is not always striking
- requires (slightly) more computation : needs to compute as many OLS as λ 's

Principal components analysis, PCA

What is it?

- ► PCA is an unsupervised learning technique: the goal is to find a lower dimensional representation of the data that keeps as much of the variance of the original data. Can be used as a preprocessing for Clustering
- ► We use it here as a preprocessing for the OLS (aka PCA before OLS, aka PCRegression, ...)

Goal: Reduce the dimensionality while keeping the variance in the data

High level idea : remove

- ► Super-collinearity
- ► Close to 0 variance features

Graphical representation (not to be confused with OLS)

Data, mean and projection

Data, mean and projection

Data, mean and projection

Angle

Principal direction (main axis)

Variance of the distances along direction ν

We observe n points x_1, \ldots, x_n , i.e., $X = [x_1, \ldots, x_n]^\top \in \mathbb{R}^{n \times p}$, n observations (rows), p features (columns)

<u>Rem</u>: we have to center and scale the dataset : the points have a zero average $X \leftarrow [x_1 - \overline{x}_n, \dots, x_n - \overline{x}_n]^\top = X - \mathbf{1}_n \overline{x}_n^\top$ and variance 1.

Rem: The distance from x_i to the origin is $x_i^{\top} v$, and the variances are $\sum_{i=1}^{n} (x_i^{\top} v_1)^2$

Variance of the distances along direction v

We observe n points x_1, \ldots, x_n , i.e., $X = [x_1, \ldots, x_n]^\top \in \mathbb{R}^{n \times p}$, n observations (rows), p features (columns)

Rem: we have to center and scale the dataset: the points have a zero average $X \leftarrow [x_1 - \overline{x}_n, \dots, x_n - \overline{x}_n]^\top = X - \mathbf{1}_n \overline{x}_n^\top$ and variance 1.

Rem: The distance from x_i to the origin is $x_i^{\top} v$, and the variances are $\sum_{i=1}^{n} (x_i^{\top} v_1)^2$

Variance of the distances along direction v

We observe n points x_1, \ldots, x_n , i.e., $X = [x_1, \ldots, x_n]^\top \in \mathbb{R}^{n \times p}$, n observations (rows), p features (columns)

Rem: we have to center and scale the dataset: the points have a zero average $X \leftarrow [x_1 - \overline{x}_n, \dots, x_n - \overline{x}_n]^\top = X - \mathbf{1}_n \overline{x}_n^\top$ and variance 1.

Rem: The distance from x_i to the origin is $x_i^{\top}v$, and the variances are $\sum_{i=1}^{n}(x_i^{\top}v_1)^2$

Connection between PCA and variance (sketch), first step

Goal : find the direction v_1 that maximizes the variance of the data

- ▶ The data is centered and standardized
- Direction $v_1 \in \mathbb{R}^p$ is a linear combination of the original dimensions of X and $\|v\|=1$
- ▶ The distance from the origin to the projection of x_i onto v_1 is $x_i^\top v_1$
- ▶ The variance along v_i of the projections is $\sum_{i=1}^n (x_i^\top v_1)^2 = \|Xv_1\|^2 = v_1^\top X^\top X v_1$
- Gram matrix : $G = (n-1)^{-1}X^{\top}X$, a symmetric covariance matrix
- We rewrite the variance $\sum_{i=1}^{n} (x_i^{\top} v_1)^2 \propto v_1^{\top} G v_1$
- lacktriangle Optimization problem : the direction v_1 that maximizes the variance of the data is

$$v_1 = \underset{v \in \mathbb{R}^p, ||v|| = 1}{\arg \max} \sum_{i=1}^n (x_i^\top v)^2 = \underset{v \in \mathbb{R}^p, ||v|| = 1}{\arg \max} v^\top G v$$

Connection between PCA and variance, first step

By the method of Lagrange multipliers the solution of $\mathbf{v}_1 = \arg\max_{\mathbf{v} \in \mathbb{R}^p, \|\mathbf{v}\| = 1} \mathbf{v}^\top G \mathbf{v}$ is $G \mathbf{v}_1 = \lambda_1 \mathbf{v}_1$

- $ightharpoonup \lambda_1, \mathbf{v}_1$ are the eigenvalue/vector
- λ_1 is also the variance
- \triangleright v_1 is the eigenvector associated to the largest eigenvalue

To summarize, we have found that if we wish to find a 1-dimensional subspace with with to approximate the data, we should choose v to be the principal eigenvector of G.

Then, to represent $x^{(i)}$ in this basis, we need only compute the corresponding scalar : $v_1^T x^{(i)} \in \mathbb{R}$.

Further components

In the following "iterations", find \mathbf{v}_2 , a direction $\perp \mathbf{v}_1$ that maximizes the variance.

Let λ_i, v_i the *i*-th largest eigenvalue and its associated eigenvector. Then $\mathbf{v}_i \perp \mathbf{v}_{i-1}$ for i > 1 (since G is symmetric p.s.d.) and maximizes the variance

If we wish to project our data into a k-dimensional subspace (k < d), we should choose $\mathbf{v}_1, \ldots, \mathbf{v}_k$ to be the top k eigenvectors of G. The \mathbf{v}_i 's now form a new, orthogonal basis for the data.

Then, to represent $x^{(i)}$ in this basis, we need only compute the corresponding vector

$$\begin{bmatrix} \mathbf{v}_1^T x^{(i)} \\ \mathbf{v}_2^T x^{(i)} \\ \vdots \\ \mathbf{v}_k^T x^{(i)} \end{bmatrix} \in \mathbb{R}^k.$$

Lower dimensional representation of X

- ▶ The axes (of direction) $\mathbf{v}_1, \dots, \mathbf{v}_p \in \mathbb{R}^p$ are called **principal components**
- ▶ The new variables $\mathbf{c}_j = X\mathbf{v}_j, j = 1, \dots, p$ are called scores

New representation (order k):

▶ The matrix XV_k (with $V_k = [\mathbf{v}_1, \dots, \mathbf{v}_k]$) is the matrix representing the data in the base of the first k eigenvectors

Reconstruction in the original space (debruiter):

- ▶ "Perfect" reconstruction for $\mathbf{x} \in \mathbb{R}^p$: $\mathbf{x} = \sum_{j=1}^p (\mathbf{x}^\top \mathbf{v}_j) \mathbf{v}_j$
- ▶ Reconstruction with loss of information : $\hat{\mathbf{x}} = \sum_{j=1}^k (\mathbf{x}^\top \mathbf{v}_j) \mathbf{v}_j$

PCA before OLS

Algorithme: PCA before OLS

Entrées : $X \in \mathbb{R}^{n \times p}$, itérations K

 $V_k \leftarrow k$ -th eigenvectors assoc to the k largest eigenvalues

 $Z = XV_k$ is the new (projected) dataset

OLS in Z

When does it work?

For practical reasons, we usually prefer to use the SVD of X than the eigen-decomposition of X^TX

Exercise: Show that the *i*-th singular value of X, σ_i , and the *i*-th eigenvalue of $X^\top X$, λ_i , are related as follows $\lambda_i = (n-1)^{-1}\sigma_i^2$

Understanding the projection/direction, dataset USArrests

		Murder	Assault	UrbanPop	Rape
0	Alabama	13.2	236	58	21.2
1	Alaska	10.0	263	48	44.5
2	Arizona	8.1	294	80	31.0
3	Arkansas	8.8	190	50	19.5
4	California	9.0	276	91	40.6

Percentage of variance explained

Principal components

Conclusions

- ► PCA is an unsupervised technique
- ► Dimensionality reduction (more than a feature subset selection method)
- ▶ When the target **y** is correlated with the variance directions then its useful
- ▶ Interpretation of the proportion of variance explained
- Projection to low dimensions
- ► No interpretability on lower dimensions