CYU CERGY-PARIS UNIVERSITÉ

Master 1, 2021-22 Systèmes dynamiques

Devoir Maison

A rendre le 17 novembre 2021

Binômes autorisés

Exercice 1 1) Déterminer les solution de l'équation différentielle scalaire

$$\begin{cases} \ddot{x}(t) - 4\dot{x}(t) + 4x(t) = 0\\ x(0) = 0,\\ \dot{x}(0) = 1. \end{cases}$$

2) Soit $f:\mathbb{R}\to\mathbb{R}$ une fonction continue. Déterminer les solutions de l'équation différentielle scalaire

$$\begin{cases} \ddot{x}(t) - 4\dot{x}(t) + 4x(t) = f(t) \\ x(0) = 0, \\ \dot{x}(0) = 1. \end{cases}$$

[On pourra utiliser la formule de variation de la constante.]

Exercice 2 On considère le système d'équations différentielles

$$\begin{cases} x'(t) = -x(t) + \frac{x(t)y(t)^2}{1 + x(t)^2 + y(t)^2} \\ y'(t) = -y(t) - \frac{x(t)^2 y(t)}{1 + x(t)^2 + y(t)^2}. \end{cases}$$
 (1)

- 1) Démontrer que toute solution $t \mapsto (x(t), y(t))$ de (1) est définie pour tout temps $t \in \mathbb{R}$.
- 2) Démontrer que 0 est asymt potiquement stable quand $t\to\infty$: toute solution $t\mapsto (x(t),y(t))$ de (1) vérifie

$$\lim_{t \to \infty} \max(|x(t)|, |y(t)|) = 0.$$

[On pourra calculer $\frac{d}{dt}(x(t)^2 + y(t)^2)$.]

Exercice 3

1) 1.a) On suppose que a > 0 et $b \ge 0$ sont des réels et que $M : \mathbb{R} \to \mathbb{R}$ est une fonction de classe C^1 et vérifie

$$\begin{cases} \forall t \ge 0, \quad M'(t) \le aM(t) + b \\ M(0) = 0. \end{cases}$$

Démontrer que

$$\forall t \ge 0, \quad M(t) \le b \frac{e^{at} - 1}{a} \quad \text{et} \quad M'(t) \le b e^{at}.$$

[On pourra dériver la quantité $e^{-at}M(t)$.]

1.b) En déduire que si $m: \mathbb{R} \to \mathbb{R}$ continue vérifie

$$\forall t \ge 0, \quad m(t) \le a \int_0^t m(s)ds + b$$

on a

$$\forall \ t \geqslant 0, \quad m(t) \leqslant be^{at}.$$

1.c) On suppose que $Y: \mathbb{R} \to \mathbb{R}^n$ est solution de

$$Y'(t) = A(t)Y(t) + q(t)$$

où $A \in C^0(\mathbb{R}, M(n, \mathbb{R})), g \in C^0(\mathbb{R}, \mathbb{R}^n).$

Démontrer que

$$\sup_{t \in [0,1]} \|Y(t)\| \leqslant e^{\sup_{t \in [0,1]} \|A(t)\|} \bigg(\|Y(0)\| + \sup_{t \in [0,1]} \|g(t)\| \bigg).$$

(Si M est une matrice de $M(n,\mathbb{R})$ on a noté $\|M\|$ sa norme d'opérateur $\|M\|=\sup_{v\in\mathbb{R}^n\setminus\{0\}}\|Mv\|/\|v\|$.)

2) On considère le problème de Cauchy

$$X'(t) = (A + \epsilon F(t))X(t), \qquad X(0) = v.$$
 (2)

où $A \in M(n, \mathbb{R}), F \in C^0(\mathbb{R}, M(n, \mathbb{R})), v \in \mathbb{R}^n \text{ et } \epsilon \in \mathbb{R}.$

- 2.a) Rappeler pourquoi (2) admet une solution unique $X^{(\epsilon)}(\cdot)$ définie sur \mathbb{R} tout entier.
- 2.b) On définit X_0 et X_1 solutions respectives de

$$X_0'(t) = AX_0(t), X_0 = v$$

$$X_1'(t) = AX_1(t) + F(t)X_0(t), X_1(0) = 0$$

et on pose

$$Y_{\epsilon}(t) = X^{(\epsilon)}(t) - X_0(t) - \epsilon X_1(t).$$

Démontrer que Y_{ϵ} vérifie l'EDO

$$Y_{\epsilon}'(t) = (A + \epsilon F(t))Y_{\epsilon}(t) + \epsilon^2 F(t)X_1(t).$$

2.c) En utilisant les résultats de la question 1) démontrer qu'il existe une constante $C\geqslant 0$ telle que pour tout $\epsilon\in [-1,1]$

$$\sup_{t \in [0,1]} \|Y_{\epsilon}(t)\| \leqslant C\epsilon^2$$

c'est-à-dire

$$X^{(\epsilon)}(t) = X_0(t) + \epsilon X_1(t) + O(\epsilon^2).$$

3) On considère l'EDO

$$X'(t) = \left(\begin{pmatrix} 0 & -2\pi \\ 2\pi & 0 \end{pmatrix} + \epsilon \cos^2(2\pi t) \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \right) X(t). \tag{3}$$

3.a) En utilisant les résultats de la question 2) démontrer que si $X^{(\epsilon)}(\cdot)$ est la solution de (3) telle que $X^{(\epsilon)}(0)=v$ on a

$$X^{(\epsilon)}(1) = (1 + \epsilon/2)v + O(\epsilon^2).$$

3.b) On note $R_{\epsilon}(t,0)$ la résolvante de (3). Démontrer que

$$R_{\epsilon}(1,0) = (1 + \epsilon/2)I + O(\epsilon^2).$$

3.c) Discuter la stabilité et la stabilité asymptotique en $t \to \pm \infty$ de l'EDO (3) en fonction de ϵ .

Exercice 4 Soit $a: \mathbb{R} \times \mathbb{R} \to \mathbb{R}$ une fonction de classe C^1 telle que

$$\begin{cases} (i) & \forall \ (t,x) \in \mathbb{R} \times \mathbb{R}, \quad a(t+1,x) = a(t,x) \\ (ii) & \kappa := \sup_{(t,x) \in \mathbb{R}^2} \left| \frac{\partial a}{\partial x}(t,x) \right| < 1/2. \end{cases}$$

On définit E l'espace des fonctions $x: \mathbb{R} \to \mathbb{R}$ de classe C^0 qui sont 1-périodiques (i.e. $\forall t \in \mathbb{R}, x(t+1) = x(t)$) et on munit E de la norme du sup :

$$||x|| = \sup_{t \in \mathbb{R}} |x(t)| = \sup_{t \in [0,1]} |x(t)|.$$

1) Démontrer que $(E, \|\cdot\|)$ est un espace de Banach.

2) 2.a) On suppose que $f \in E$. Démontrer que pour tout $t \in \mathbb{R}$

$$\int_{t}^{t+1} f(s)ds = \int_{0}^{1} f(s)ds.$$

2.b) On note Φ l'application qui à une fonction $x(\cdot)$ de E associe la fonction $y=\Phi(x)$ définie par

$$\forall \ t \in \mathbb{R}, \quad \Phi(x)(t) = y(t) = \int_0^t a(s, x(s)) ds - \left(\int_0^1 a(s, x(s)) ds \right) t.$$

Démontrer que Φ envoie E dans E.

[On vérifiera au préalable que si $x(\cdot)$ est 1-périodique la fonction $s \mapsto a(s, x(s))$ est également 1-périodique.]

- 3) Démontrer que Φ admet un unique point fixe dans E.
- 4) En utilisant la question précédente, démontrer qu'il existe $m \in \mathbb{R}$ tel que l'EDO

$$x'(t) = a(t, x(t)) - m$$

admet une solution 1-périodique.

5) Démontrer qu'il existe une application $\mathbb{R}\ni\lambda\mapsto m(\lambda)\in\mathbb{R}$ continue telle que pour tout $\lambda\in\mathbb{R}$ l'EDO

$$x'(t) = \cos(2\pi t) + \ln(1 + \lambda^2 + \frac{x(t)^2}{9}) - m(\lambda)$$

admet une solution 1-périodique.

[On vérifiera dans un premier temps que la fonction $a_{\lambda}(t,x)=\cos(2\pi t)+\ln(1+\lambda^2+\frac{x^2}{9})$ vérifie les conditions (i) et (ii) du début de l'exercice.]

6)* Démontrer qu'il existe une application $\mathbb{R}\ni\lambda\mapsto m(\lambda)\in\mathbb{R}$ de classe C^1 telle que pour tout $\lambda\in\mathbb{R}$ l'EDO

$$x'(t) = \cos(2\pi t) + \ln(1 + \lambda^2 + \frac{x(t)^2}{9}) - m(\lambda)$$

admet une solution 1-périodique.

FIN