The amplitudes as measured by 2 observers are

$$f(\vec{x},t) = e^{i(\vec{k}\cdot\vec{x}-\omega t)}, \quad f(\vec{x},t) \neq e^{i(\vec{k}\cdot\vec{x}-\omega t)}$$

we lemand the amplies be equal
$$e^{i(\vec{k}\cdot\vec{x}-\omega t)} = e^{i(\vec{k}\cdot\vec{x}-\omega t')}$$
This suggests $x^{M} = (t, \vec{x}), \quad k'' = (\frac{\omega}{c}, \vec{k})$

This suggests $x^{M} k'' g = x^{M} k$ is Lorentz invariant,

consequently, x^{M} is approximate.

By covariance of k''' , we know it follows Loventz transformate

Recall the transformation on spacetime coordinates:
$$f' = f(t - \vec{p} \cdot \vec{r})$$

$$f'' = f' (t - \vec{p} \cdot \vec{r})$$
This suggests the transformation for k''' :
$$k'' = f'(k' - \vec{p} \cdot \vec{k})$$

$$= f'' = f'(k' - \vec{p} \cdot \vec{k})$$

$$= f'' = f''$$

This is not the familiar form of relativistic doppler; to get such, do assume $\vec{\beta} \cdot \vec{k} = \beta k$, (busts allign with \vec{k}) w= r (w - cpk) Then Thuse dispersion $\frac{w}{k} = c$, $k = \frac{w}{c}$ 0/= X(W-BW) When we dead of the state of th = w (1-B)(1-B) $w' = w \int CI - \beta ds$ $\int (1+\beta ds)$ DAMP TO GEO GIVES SHACKELY FRINGE TO 의 10 = ZWpGPR May 2 전환

To w > 1 = 12

pandson Changes 2. 8.2024