République Islamique de Mauritanie Ministère de l'Enseignement Secondaire et Supérieur

Direction des Examens et de l'Evaluation Service des Examens

Baccalauréat 2010

Session Complémentaire

Honneur - Fraternité - Justice

Séries : C & TMGM Epreuve: Mathématiques Durée: 4 heures Coefficients: 9 & 6

(1,25)

(0,5)

Exercice 1 (4 points)

Pour tout réel t et pour tout entier naturel $n \ge 1$ on pose : $G_n(t) = \int_0^t e^x dx$ et $G_n(t) = \int_0^t x^n e^x dx$.

- 1.a) Démontrer que $G_n(t)$ existe pour tout entier naturel et donner l'expression $G_0(t)$ et de $G_1(t)$ en fonction de t.
- $\frac{1}{2}t^2 \le G_1(t) \le \frac{1}{2}t^2e^1$. (0,5)b) Démontrer que pour tout réel t≥0 on a :
- $\frac{1}{2}t^2e^t \le G_1(t) \le \frac{1}{2}t^2$. (0,5)c) Démontrer que pour tout réel t ≤ 0 on a :
- $\lim_{t\to 0}\frac{te^t-e^t+1}{t(e^t-1)}.$ (0,25)d) En déduire le calcul de la limite :
- 2) Pour tout entier naturel $n \ge 1$ on pose: $I_n = G_n(1) = \int_0^1 x^n e^x dx$.
- a) Montrer, à l'aide d'une intégration par parties, que pour tout entier naturel n≥1 on a ; (0,5) $G_n(t) = t^n e^t - nG_{n-1}(t)$. En déduire I_n en fonction de I_{n-1} pour $n \ge 1$.
 - b) Montrer que la suite (I_n) est décroissante et positive. Que peut on en déduire ? (0.5)
- e) Donner un encadrement de I_n qui permet de calculer lim I_n et calculer cette limite.

Exercice 2 (4 points)

Le plan complexe est muni d'un repère orthonormé (O; u, v). Pour tout nombre complexe z on pose :

- $P(z) = z^3 (4+6i)z^2 + (-6+16i)z + 12-4i$. 1.a) Calculer P(1+i). (0,25)
- b) Déterminer deux nombres a et b tels que pour tout nombre complexe z on a :
- $P(z) = (z-1-i)(z^2+az+b)$. (0,5)c) Déterminer les solutions de l'équation P(z) = 0. (0,5)
- 2.a) Placer les points A, B et C images des solutions de l'équation P(z) = 0 sachant que $|z_A| \le |z_B| \le |z_C|$. Déterminer la nature du triangle ABC.
- (0,5) b) Montrer qu'il existe une unique similitude directe s de centre A qui transforme C en B. (0,25)
- c) Donner l'expression complexe de s. Déterminer le rapport et un angle de s. (0,75)
- 3) On considère la transformation f qui à tout point M d'affixe z associe le M' d'affixe z' tel que :
- $z' = \frac{1-i}{2}z+i$. Pour tout entier naturel n on pose : f' = f et $f'' = f \circ f''' = f$. On définit une suite de points
- (M_n) par $M_0 = C$ et $M_n = f^n(M_0)$. a) Reconnaître la transformation f et déterminer ses éléments caractéristiques.
 - (0.5)b) Déterminer la nature du triangle AM, Mn+1. (0,25)
 - c) Calculer en fonction de n la somme : $S_n = M_0M_1 + M_1M_2 + \cdots + M_nM_{n+1}$. (0,25)
 - (0,25)d) Calculer la limite 11m Sn et l'interpréter.

Exercice 3 (5 points)

Dans le plan orienté on considère un triangle équilatéral direct ABC de coté a, (a > 0). Soient

- I, Jet K les milieux respectifs des segments [AB], [BC] et [CA].
- 1. Faire une figure illustrant les données précédentes que l'on complétera au fur et à mesure. (0,5)
- 2.a) Montrer qu'il existe une unique rotation r, qui transforme I en C et B en J. (0.25)(0.5)
- b) Préciser l'angle et le centre Ω de r₁.

Séries C & TMGM 1/2 Epreuve de Mathématiques Session Complémentaire Baccalauréat 2010

3. Soit t la translation de vecteur CK. On pose : $\mathbf{r}_2 = \mathbf{t} \circ \mathbf{r}_1$. (1) a) Déterminer la nature de la composée $\mathbf{r}_2 = \mathbf{t} \cdot \mathbf{r}_1$. Préciser $\mathbf{r}_2(\mathbf{I})$ et $\mathbf{r}_2(\mathbf{B})$. Caractériser \mathbf{r}_2 . b) Déterminer une droite Δ telle que $s_{\Delta} \circ r_2 = s_{(AJ)}$. En déduire une autre décomposition de r_2 . (0, 25)4. On considère les similitudes directes s_1 et s_2 de centres respectifs A et C telles que : $s_1(B) = K$ et $s_2(K) = B$. a) Déterminer un angle et le rapport de chacune des similitudes directes s₁ et s₂. (1) (0, 25)b) Déterminer la nature de la composée $f = s_1 \cdot s_1$ et la caractériser. 5. Dans cette question, M est un point variable du plan. On pose $r_1(M) = M_1$ et $r_2(M) = M_2$. (0.5)a) Démontrer que si M est distinct de J et de Ω alors on a : $(M\Omega, MJ) = (MM_1, MM_2)$ [2 π]. b) En déduire le lieu géométrique du point M lorsque les points M, M, et M2 sont alignés. (0,25)c) Démontrer que pour toute position du point M dans le plan, la distance M,M, reste constante et (0.5)la préciser et que la droite (M,M,) possède une direction fixe à préciser. Exercice 4 (7 points) 1- On considère la fonction numérique g définie par : $g(x) = \frac{2x^2 + 3x + 2}{x + 1}$. 1. Vérifier que pour tout réel x > -1 on a : g(x) > 0. (0.25)2. Déterminer les réels a, b et c tels que pour tout réel x > -1 on a : $g(x) = ax + b + \frac{c}{x+1}$. (0.75)3. Déterminer la primitive G de la fonction g sur l'intervalle I =]-1,+∞ et qui vérifie : G(0) = 1. (0.5)II- On considère la fonction numérique f définie sur l'intervalle $I =]-1,+\infty[$ par : $f(x) = x^2 + x + 1 + \ln(x + 1)$. Soit (C) sa courbe représentative dans un repère orthonormé (O; i, j) d'unité 1cm. I.a) Calculer $\lim_{x\to -1^+} f(x)$, $\lim_{x\to +\infty} f(x)$ et $\lim_{x\to +\infty} \frac{f(x)}{x}$. Donner une interprétation graphique. (1) b) Dresser le tableau de variation de f . (0,5)2.a) Montrer que la fonction f réalise une bijection de $I =]-1,+\infty[$ sur un intervalle J que l'on (0.25)déterminera. b) Montrer que l'équation f(x) = 0 admet une unique solution α . Vérifier que $-0.53 < \alpha < -0.52$. (0,5)3.a) Montrer que pour tout réel x > 0 on a : $f(x) \ge x + 1$. Interprétation graphique. (0,25)b) Montrer que les courbes (C) et (C'), représentant respectivement la fonction f et sa réciproque f^{-1} dans le repère (O; i, j), se coupent en un unique point dont l'abscisse β vérifie $-0.81 < \beta < -0.80$. (0,5)c) Démontrer que : $(f^{-1})'(\beta) = \frac{\beta + 1}{2\beta^2 + 3\beta + 2}$. (0,5)4.a) Déterminer tous les points de la courbe (C) en lesquels les tangentes sont parallèles à la droite d'équation y = 2x. (0,5)b) Discuter suivant les valeurs du paramètres réel k le nombre de solution de l'équation : (0,5) $x^2 - x + 1 + \ln(x+1) = k$. c) Construire les courbes (C) et (C'). (0,5)5. Soit A l'aire du domaine plan limité par les courbes (C) et (C') et les axes des coordonnées. (0,25)a) Montrer que : $A = \alpha^2 + \int_{0}^{1} (2x^2 + 2 + 2\ln(x+1))dx$. b) Calculer A en fonction de αet β (On pourra utiliser une intégration par parties). (0,25)

Baccalauréat 2010	Session Complémentaire	Epreuve de Mathématiques	Séries C & TMGM	2/2
			The second secon	