In [11]: #IMPORTING LIBRARIES

import pandas as pd
import seaborn as sns
import numpy as np

import matplotlib.pyplot as plt

In [2]: #READING THE CSV FILE

df= pd.read_csv("Student_data.csv")

In [3]: #DISPLAYS FIRST FEW ROWS

df.head()

Out[3]:

	StudentID	Age	Gender	Ethnicity	ParentalEducation	StudyTimeWeekly	Absences	Tutor
0	1001	17	1	0	2	19.833723	7	
1	1002	18	0	0	1	15.408756	0	
2	1003	15	0	2	3	4.210570	26	
3	1004	17	1	0	3	10.028829	14	
4	1005	17	1	0	2	4.672495	17	

In [4]: #DISPLAYS LAST FEW ROWS

df.tail()

Out[4]:

	StudentID	Age	Gender	Ethnicity	ParentalEducation	StudyTimeWeekly	Absences	Τι
2387	3388	18	1	0	3	10.680555	2	
2388	3389	17	0	0	1	7.583217	4	
2389	3390	16	1	0	2	6.805500	20	
2390	3391	16	1	1	0	12.416653	17	
2391	3392	16	1	0	2	17.819907	13	
4 (_	-	_	_				

In [5]: #INFO ABOUT THE DATASET df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 2392 entries, 0 to 2391
Data columns (total 15 columns):

#	Column	Non-Null Count	Dtype
0	StudentID	2392 non-null	int64
1	Age	2392 non-null	int64
2	Gender	2392 non-null	int64
3	Ethnicity	2392 non-null	int64
4	ParentalEducation	2392 non-null	int64
5	StudyTimeWeekly	2392 non-null	float64
6	Absences	2392 non-null	int64
7	Tutoring	2392 non-null	int64
8	ParentalSupport	2392 non-null	int64
9	Extracurricular	2392 non-null	int64
10	Sports	2392 non-null	int64
11	Music	2392 non-null	int64
12	Volunteering	2392 non-null	int64
13	GPA	2392 non-null	float64
14	GradeClass	2392 non-null	float64

dtypes: float64(3), int64(12)

memory usage: 280.4 KB

In [6]: df.head(5)

Out[6]:

	StudentID	Age	Gender	Ethnicity	ParentalEducation	StudyTimeWeekly	Absences	Tutor
0	1001	17	1	0	2	19.833723	7	
1	1002	18	0	0	1	15.408756	0	
2	1003	15	0	2	3	4.210570	26	
3	1004	17	1	0	3	10.028829	14	
4	1005	17	1	0	2	4.672495	17	

In [7]: #DESCRIBES THE DATASET

df.describe()

Out[7]:

	StudentID	Age	Gender	Ethnicity	ParentalEducation	StudyTimeWe
count	2392.000000	2392.000000	2392.000000	2392.000000	2392.000000	2392.000
mean	2196.500000	16.468645	0.510870	0.877508	1.746237	9.77
std	690.655244	1.123798	0.499986	1.028476	1.000411	5.652
min	1001.000000	15.000000	0.000000	0.000000	0.000000	0.00
25%	1598.750000	15.000000	0.000000	0.000000	1.000000	5.043
50%	2196.500000	16.000000	1.000000	0.000000	2.000000	9.70
75%	2794.250000	17.000000	1.000000	2.000000	2.000000	14.408
max	3392.000000	18.000000	1.000000	3.000000	4.000000	19.97{
4 -						

```
In [9]:
        # CHECKING FOR NULL VALUES
        df.isnull().sum()
Out[9]: StudentID
                              0
                              0
        Age
        Gender
                              0
        Ethnicity
                              0
        ParentalEducation
                              0
        StudyTimeWeekly
                              0
        Absences
        Tutoring
                              0
        ParentalSupport
        Extracurricular
                              0
        Sports
                              0
        Music
                              0
        Volunteering
        GPA
        GradeClass
        dtype: int64
```

GENDER DISTRBUTION

Data distribution - Numerical columns

In [27]: numerical_columns = ['Absences','Tutoring','ParentalSupport','Extracurricul for col in numerical_columns: plt.figure() sns.histplot(df[col], bins=20, kde=True) plt.title(f'Distribution of {col}') plt.show()

Categorical variables

```
In [28]:
    categorical_columns = ['Tutoring', 'ParentalSupport', 'Extracurricular', 'S
    for col in categorical_columns:
        plt.figure()
        sns.countplot(x = df[col])
        plt.title(f'Distribution of {col}')
        plt.show()
```


Looking at Extracurricular and ParentalSupport against Music

Out[31]: Text(15.06222222222218, 0.5, 'Music')

<Figure size 1440x1440 with 0 Axes>

Data Visualization - Pair Plot

```
In [32]:
```

```
sns.pairplot(df[numerical_columns])
plt.suptitle('Pair Plot of Numerical Variables', y=1.02)
plt.show()
```


Gender -0.014625 0.044895 1.000000 0.016010	-0.012990 -0.028473 0.016010 1.000000	ParentalEducation -0.002307 0.025099 0.006771 0.033595	StudyTi
-0.014625 0.044895 1.000000	-0.012990 -0.028473 0.016010	-0.002307 0.025099 0.006771	StudyTi
0.044895	-0.028473 0.016010	0.025099 0.006771	
1.000000	0.016010	0.006771	
0.016010	1.000000	0.033595	
0.0.00.0			
0.006771	0.033595	1.000000	
0.011469	0.007184	-0.011051	
0.021479	-0.025712	0.036518	
-0.031597	-0.017440	-0.017340	
0.008065	0.020922	-0.017463	
-0 005964	-0.008927	0.007479	
0.000001	-0.004484	0.002029	
	-0.005964 -0.008897	-0.005964 -0.008927	-0.005964 -0.008927 0.007479

Correlation analysis

```
In [34]:
    correlation_matrix = df.corr()
    plt.figure(figsize=(10, 8))
    sns.heatmap(correlation_matrix, annot=True, cmap='coolwarm')
    plt.title('Correlation Matrix')
    plt.show()
```


In []: