TEACHING WITH INTEL® FPGAS TRAINING AID CATALOG

Intel Programmable Solutions Group

Welcome to Intel Programmable Solutions Group Academic Program

Our Intel PSG Academic Program is here to support all aspects of Intel FPGA education utilizing our SW & HW tools. The next 40 slides will introduce you to:

- <u>1</u>) Program History
- <u>2</u>) Undergraduate EE Coursework
- 3) Graduate EE Coursework
- 4) Dev Kits & HW available (donation & reduce price)
- <u>5</u>) New Remote Learning Framework
- 6) FPGA Cloud Free
- <u>7</u>) Workshops / Training Host a Workshop

Please visit our website: Intel® FPGA Academic Program

1) HISTORY OF INTEL® FPGA UNIVERSITY PROGRAM

- Program started @ Altera 2006
- Launched by Professor Stephen Brown from University of Toronto; Over 1800 university labs
- Developed coursework for Digital Logic, followed by Computer Organization and Embedded Systems
- Partner with Terasic Corporation to develop Altera based FPGA development kits for training and research
- Web page offers coursework and board and license purchase and donations

INTEL® FPGA ACADEMIC ECOSYSTEM

- Train the next generation of FPGA Designers
- Increase Intel® FPGA presence in academia

 Academic access to the latest generation of Intel FPGAs

- Nurture the talent pipeline for Intel and our customers
- Engage research on Intel FPGAs

ELECTRONICS COURSEWORK DELIVERY TECHNIQUES

1 week!

Traditional:

- University: In-person semester long
- Industry: In-person workshops 1-8 hours
- Handout hardware per person or per group

Online/Virtual for the CV19 world we live in:

- Instructor led: Zoom/GotoMeeting/Webex/Team/Google Hangout/Skype/Jupyter
- Recorded Lectures
- MooC (Massively Open Online Course): Coursera, Udemy, Khan Academy)
- Remote labs with no on-premise hardware

INTEL® FPGA COURSEWORK OFFERINGS

Undergraduate

- Digital Logic
- Digital Systems
- Computer Organization
- Embedded Systems

INTEL® QUARTUS® DEVELOPMENT TOOL SUITE

Everything you need to develop Intel® FPGAs!

Free software for academia with Intel * MAX* 10 and Cyclone* V low cost FPGA families

Includes Modelsim* Simulator from Mentor*

Includes Eclipse* IDE for use with NIOS® "Soft" Processor

Flow Elapsed Time
Flow OS Summary
Flow Log
Analysis & Synthesis

TUTORIALS: HARDWARE DESIGN (STEP BY STEP HOW-TO) LEARN THE BASICS OF INTEL® QUARTUS PRIME SOFTWARE AND HOW TO USE IT WITH THE TERASIC DE-SERIES DEVELOPMENT KITS

Get Started with the Terasic DE-Series Boards	Verilog & VHDL PDF
Introduction to Intel® Quartus® Prime Pro Edition Software	<u>Verilog PDF</u> <u>VHDL PDF</u>
Introduction to Intel® Quartus® Prime Software (standard or lite)	<u>Verilog PDF</u> <u>VHDL PDF</u>
Use Schematic Designs in Intel® Quartus® Software	<u>Verilog PDF</u> <u>VHDL PDF</u>
Use the Library of Parameterized Modules (LPM)	<u>Verilog PDF</u> <u>VHDL PDF</u>

TUTORIALS

TIMING, SIMULATION AND DEBUGGING

Timing Analyzer in Intel® Quartus® Prime Software	Verilog PDFVerilog Design FilesVHDL PDFVHDL Design Files
Use ModelSim* with Testbenches	Verilog PDFVerilog Design FilesVHDL PDFVHDL Design Files
Use ModelSim* by Drawing Waveforms	<u>Verilog PDF</u> <u>VHDL PDF</u>
Signal Tap II Logic Analyzer	Verilog PDF VHDL PDF
Debug Hardware Designs	Verilog PDF VHDL PDF

TUTORIALS: SYSTEM DESIGN

Tutorials	Downloads
Introduction to the Platform Designer System Integration Tool	PDF
Make Platform Designer Components	PDF PDF
Introduction to the Arm* Processor	Arm* Toolchain PDF Toolchain from Intel® PDF
Introduction to the Nios® II Processor	<u>PDF</u>
Debug Application Programs	<u>PDF</u>
Use the Arm Generic Interrupt Controller	<u>PDF</u>
Monitor Program Tutorial for the Arm Processor	<u>PDF</u>
Monitor Program Tutorial for the Nios II Processor	<u>PDF</u>
Hardware Abstraction Layer (HAL) Device Drivers with the Monitor Program	<u>PDF</u>
Terminals with Terasic DE-Series Boards	<u>PDF</u>

DIGITAL LOGIC/SYSTEMS - 12 LABS

- 1. Switches, Lights and Multiplexers
- 2. Numbers and Displays
- 3. Latches, Flip-Flops and Registers
- 4. Counters
- 5. Timers and Real Time Clock
- 6. Adders, Subtractors and Multipliers

- 7. Finite State Machines
- 8. Memory Blocks
- 9. A Simple Processor
- 10. An Enhanced Processor
- 11. Implement Algorithms in Hardware
- 12. Basic Digital Signal Processing

Lab 10: An Enhanced Processor

Implement an enhanced processor using the skills learned from Lab 9.

- Add functionality so that your processor can perform read and write operations using memory or other devices.
- Create an output module for your processor to drive seven-segment displays.
- Connect an input module for your processor to read and store the state of switches on the board.

Download Verilog

Download VHDL

<u>COMPUTER ORGANIZATION - 8 LABS: ARM® OR NIOS®</u>

- 1. Use a Hard or Soft Processor System on Intel® FPGAs
- 2. Logic Instructions
- 3. Subroutines and Stacks
- 4. Input and Output in an Embedded System
- 5. Use Interrupts with Assembly Code
- 6. Use C Code with an Intel FPGA Processor
- 7. Use Interrupts with C Code
- 8. Introduction to Graphics and Animation

<u>EMBEDDED SYSTEMS - 8 LABS: ARM® A9 SOC FPGA RUNNING LINUX</u>

- 1. Get Started with Linux*
- 2. Develop Linux Programs that Communicate with FPGAs
- 3. Character Device Drivers
- 4. Using Character Device Drivers
- 5. Use ASCII Graphics for Animation
- 6. Introduction to Graphics and Animation
- 7. Use the ADXL345 Accelerometer
- 8. Introduction to Audio and Multithreaded Applications

REFERENCE DESIGN REPOSITORY

- Intel FPGA "Design Store" catalogs reference designs by product family, development kit, tool release and function
- Great starting point for student projects

<u>HOW-TO VIDEOS</u>

■ Engineer to Engineer youtube video repository – short 3 to 5 minute videos on 100's of topics

<u>Forum</u>

Post your questions and answers – moderated by Intel FPGA experts

TERASIC: FPGA DEVELOPMENT KIT PARTNER FOR INTEL®

- 1. Over 100,000 boards sold!
- 2. Special low cost academic pricing, free donations for professors
- 3. Many LED, switches and IO connectivity perfect for learning hardware and embedded systems
- 4. FPGA only or FPGA with Arm* A9 SoC HPS (Hard Processor Subsystem)
- 5. Board selector (add link here)

DE10-LITE: \$64 USD

DE1-SOC: \$220 USD

Great for Embedded
Systems with Arm* A9 CPU

Includes Video, Audio, Ethernet and full Linux Support!

<u> TERASIC: ROBOTIC KIT – SELF BALANCING ROBOT</u>

Great kit to learn about embedded design, motor control and IO expansion with Intel® FPGA!

Perfect for senior projects – add Bluetooth, Wi-Fi, audio commands, etc.

HANDS-FREE LABS INITIATIVE

- Provide a series of documentation, IP to facilitate hands free operation for as many features as possible for Intel[®] and Terasic FPGA development kits – change switches view LEDs fully virtualized
- Make adaption of existing in-person lab material easy for prof/TA to adapt to remote learning
- Host boards and compute on existing university premise
- Support common OS: Windows*, Mac*, Linux
- Opensource through <u>github</u> site

Hardware based solution video

Simulator based solution video

Linux or Windows*

Server

Method 1: Intel Quartus® Prime Software Hosted on Student's PC

Method 2: Intel Quartus® Prime Software Hosted on Server

- Does not require 1 Devkit per Server use USB port replicator
- Install setup at university engineering department cluster
- Host on Windows or Linux server running Intel Quartus Prime Programmer

Intel provides guide on how to setup and access remote board

LABSLAND

- Labsland is a company with an installation of remotely hosted labs using video cameras on a variety of scientific topics, including Intel FPGAs
- Their business model is to utilize learning institutions to host the remote labs, and labsland collects a per student fee to access the remote learning setup.
- Host sites get free access to the remote labs. Please visit the labsland.com site for demonstrations of their remote FPGA board solution

INTEL® FPGA WORKSH

1-4 hour hands-on workshops conducted by Intel® FPGA experts – material also available for professors to use in coursework. Available in person or virtual. Request here: fpgauniversity@intel.com

- Introduction to FPGA Design in Intel® Quartus® Prime Software
 Embedded FPGA Design Using the Nios® II Processor
 Introduction to Static Timing Analysis of Digital Circuits
 Introduction to FPGA Simulation and Debug

- 5. Introduction to High-Speed I/O
- 6. Introduction to Video
- 7. Introduction to Memory
- 8. Introduction to High-Level Design9. Introduction to FPGA Acceleration
- 10. How to Get Hired in Tech, An Insider's View
- 11. Semiconductor Industry Överview

<u> Intel® fpga training – *free for educators!*</u>

- 1. 100s of courses: Self-directed, Virtual Teach and In-Person
- 2. Free for professors!
- 3. Every topic possible on FPGAs

ACCESS TO COURSEWORK, LICENSES AND BOARDS

Signup for Intel® FPGA University Program

Gain access to **coursework** and **solutions**

Request board **purchases and donations**

LICENSES, BOARD PURCHASE AND DONATIONS

Hardware Donations and Discount Purchases

Submit your proposal to obtain free hardware for use in teaching or academic research.

Recommended Teaching Hardware

Recommended Research Hardware

View All Intel FPGAs

Note Hardware donations are limited and considered on a case-by-case basis. Discounted hardware options are available for students who are required to purchase their own hardware. Select this option when submitting your request.

Request Hardware

INTEL® FPGAS ACCELERATING THE CLOUD & ENTERPRISE

LOOKASIDE ACCELERATION

58G/112G I/O 100G/400G

Ethernet

PCI-Express*

Intel® UPI

Compute Express Link (CXL)

INLINE ACCELERATION

INTEL® FPGA UNIVERSITY GRADUATE LEVEL COURSEWORK

Graduate level FPGA coursework focuses on AI, Machine Learning, Heterogeneous Computing using C++ extension languages: HLS, OpenCL*, DPC++

Many of these courses use high end FPGAs > \$1000 Boards

Complex PCIe* plug-in cards with extensive software and drivers Intel makes it easier by enabling access to our FPGA "Devcloud" or HARP free to academia

INTEL FPGA RESEARCH

Academics

Intel academic research programs (e.g., ISRAs, single Pls)

Research programs Intel involved in (e.g., SRC JUMP)

Internship program

Access to FPGA technologies (e.g., HARP, DevCloud) **Internal Research**

PSG CTO, Intel Labs

DL workloads

Eval current FPGAs

Next-gen FPGAs

FPGA programmability

FPGAs in system

•••

Broader Intel

Engineering (architecture, platform, tools, etc)

Product planning

Marketing

...

Transfers of innovations and technology

INTEL® FPGA ACADEMIC CLOUDS

Cloud access to Intel servers with FPGAs for academics

FPGAs/SW tools already installed. Just login remotely. Ready to use!

HARP (aka vlab) for Long-term Research

DevClouds for Teaching and Beyond

Hardware accelerator research program (HARP), originally offered cloud access to integrated (MCP) Intel® Xeon® + FPGA

Now expanded to offer servers with FPGAs cards in Intel® Labs Academic Compute Env.

Exclusively for long-term academic research (e.g., 1+ year PhD research)

Offers servers with FPGA cards

Suitable for teaching (e.g., lab projects) and short-term research efforts. Move to HARP when research grows

And for short-term development projects in general (academic and industry)

WHAT'S AVAILABLE TODAY

FPGA flows/framework	Devcloud	HARP
Traditional RTL flow	Y	Y
HLS Compiler	Y	Υ
FPGA SDK for OpenCL*	Υ	Υ
DPC++ (part of oneAPI)	Υ	Upon Request
OpenVINO* (Al framework)	Y	Upon Request

FPGA Hardware

- Intel® Xeon® with Intel® Arria® 10 Programmable Acceleration Cards (PAC)
- Intel® Xeon with Intel® Stratix® 10 Programmable Acceleration Cards (PAC)
- Integrated Intel® Xeon + FPGA systems (HARP only)

Target

WORKING IN THE FPGA CLOUDS

ARRIA® 10 GX FPGA PROGRAMMABLE ACCELERATION CARD (PAC)

Key Components and Interfaces

- Intel® Arria® 10 GX 20nm FPGA -1.15M LUTs
- 8 GB DDR4 memory banks (2 banks)
- 128 MB flash
- Quad small form factor pluggable (QSFP) interface speeds up to 40G
- PCI Express* (PCIe*) x8 Gen3 interface form factor
- Half-length card with standard (full height) and low profile (1/2 height) bracket options

INTEL® STRATIX® 10 D5005 PAC

Key Components and Interfaces

- Intel® Stratix 10 SX 14nm FPGA 2.8M LUTs
- 32 GB DDR4 memory banks with error correction code (ECC) (4 banks, 2,400 Mbps)
- x2 quad small form factor pluggable (QSFP) with interface speeds up to 100G
- PCIe Gen3 x16 interface

Website Access for the Intel® FPGA Devcloud

https://software.intel.com/en-us/devcloud/FPGA

HARP: GETTING ACCESS

To get access

- Send email to: <u>IL Academic Res Env@intel.com</u>
- Put email subject "[HARP] new account request".
- Include a short (1 page max) research proposal
- Include the type of workloads you are planning to run

More details

The following website offers information of available FPGA systems in HARP. It also provides detailed tutorials and examples on how to get started. https://wiki.intel-research.net/FPGA.html

TYPICAL EE/ECE CURRICULUM TIMELINE

Year	Grade Level	Fall Semester	Spring Semester
1	Freshman		
2	Sophomore		Digital Logic
3	Junior	Digital Systems	Computer Organization
4	Senior	Embedded Systems	Senior Project
5-6	Graduate Level	Heterogeneous Computing	

Discussion Forums and Project Ideas

Contact Intel: fpgauniversity@intel.com

Contact Terasic: support@terasic.com

Intel FPGA University Forum (FPGA Support)

Intel FPGA reference design repository

Intel Developer Zone (reference designs)

Opencores.org (repository of IP functions)

Fun FPGA projects: fpga4fun

Digital logic university training: nandland

Need ideas for capstones and senior designs? Contact us @ fpgauniversity@intel.com

SUMMARY

Learning hasn't stopped and can't be stopped due to Covid-19

The Intel FPGA group is here to help!

Contact us: fpgauniversity@intel.com

Legal Disclaimers/Acknowledgements

- Intel technologies may require enabled hardware, software or service activation
- No product or component can be absolutely secure
- Your costs and results may vary
- Intel, the Intel logo, and other Intel marks are trademarks of Intel Corporation or its subsidiaries.
 Other names and brands may be claimed as the property of others
- OpenCL and the OpenCL logo are trademarks of Apple Inc. used by permission by Khronos
- *Other names and brands may be claimed as the property of others
- This document is intended for personal use only.
- Unauthorized distribution, modification, public performance, public display, or copying of this material via any medium is strictly prohibited.

Copyright © 2020 Intel Corporation intel

#