#### Отчёт по лабораторной работе 9

Архитектура компьютеров и операционные системы

Старикова Владислава Александровна НММбд-03-24

## Содержание

| 1 | Цель работы                                                       | 5              |
|---|-------------------------------------------------------------------|----------------|
| 2 | <b>Выполнение лабораторной работы</b> 2.1 Самостоятельное задание | <b>6</b><br>21 |
| 3 | Выводы                                                            | 27             |

# Список иллюстраций

| <b>2.</b> 1 | Программа в фаиле lab9-1.asm            | 1  |
|-------------|-----------------------------------------|----|
| 2.2         | Запуск программы lab9-1.asm             | 7  |
| 2.3         | Программа в файле lab9-1.asm            | 8  |
| 2.4         | Запуск программы lab9-1.asm             | 9  |
| 2.5         | Программа в файле lab9-2.asm            | 10 |
| 2.6         | Запуск программы lab9-2.asm в отладчике | 11 |
| 2.7         | Дизассемблированный код                 | 12 |
| 2.8         | Дизассемблированный код в режиме Intel  | 13 |
| 2.9         | Точка остановки                         | 14 |
| 2.10        | Изменение регистров                     | 15 |
| 2.11        | Изменение регистров                     | 16 |
| 2.12        | Изменение значения переменной           | 17 |
| 2.13        | Вывод значения регистра                 | 18 |
| 2.14        | Вывод значения регистра                 | 19 |
| 2.15        | Вывод значения регистра                 | 20 |
| 2.16        | Программа в файле prog-1.asm            | 21 |
| 2.17        | Запуск программы prog-1.asm             | 22 |
|             |                                         | 23 |
|             |                                         | 24 |
| 2.20        | Код исправлен                           | 25 |
|             | Проверка работы                         | 26 |

#### Список таблиц

## 1 Цель работы

Целью работы является приобретение навыков написания программ с использованием подпрограмм. Знакомство с методами отладки при помощи GDB и его основными возможностями.

#### 2 Выполнение лабораторной работы

Я создала каталог для выполнения лабораторной работы № 9 и перешла в него. Затем я создала файл lab9-1.asm.

В качестве примера рассматривала программу для вычисления арифметического выражения f(x)=2x+7 с помощью подпрограммы calcul.

В данном примере x вводится с клавиатуры, а само выражение вычисляется в подпрограмме.

(рис. 2.1) (рис. 2.2)

```
lab9-1.asm
   Открыть
                                                  Сохранить
 1 %include 'in_out.asm'
 2 SECTION .data
 3 msg: DB 'Введите х: ',0
 4 result: DB '2x+7=',0
 5 SECTION .bss
 6 x: RESB 80
 7 rez: RESB 80
 9 SECTION .text
10 GLOBAL _start
11 _start:
12 mov eax, msg
13 call sprint
14 mov ecx, x
15 mov edx, 80
16 call sread
17 mov eax,x
18 call atoi
19 call _calcul ; Вызов подпрограммы _calcul
20 mov eax, result
21 call sprint
22 mov eax,[rez]
23 call iprintLF
24 call quit
25 _calcul:
26 mov ebx,2
27 mul ebx
28 add eax,7
29 mov [rez],eax
30 ret ; выход из подпрограммы
```

Рис. 2.1: Программа в файле lab9-1.asm

```
vastarikova@fedora:~/work/arch-pc/lab09$ nasm -f elf lab9-1.asm
vastarikova@fedora:~/work/arch-pc/lab09$ ld -m elf_i386 -o lab9-1 lab9-1.o
vastarikova@fedora:~/work/arch-pc/lab09$ ./lab9-1
Введите х: 8
2х+7=23
vastarikova@fedora:~/work/arch-pc/lab09$
```

Рис. 2.2: Запуск программы lab9-1.asm

Я изменила текст программы, добавив подпрограмму subcalcul в подпрограмму calcul, для вычисления выражения f(g(x)), где x вводится с клавиатуры, f(x)=2x+7, g(x)=3x-1. (рис. 2.3) (рис. 2.4)

```
lab9-1.asm
   Открыть
                   \oplus
                                                  Сохранить
                                                                       >0
 8 rez: RESB 80
10 SECTION .text
11 GLOBAL _start
12 _start:
13 mov eax, msg
14 call sprint
15 mov ecx, x
16 mov edx, 80
17 call sread
18 mov eax,x
19 call atoi
20 call _calcul ; Вызов подпрограммы _calcul
21 mov eax,result
22 call sprint
23 mov eax,[rez]
24 call iprintLF
25 call quit
26
27 _calcul:
28 call _subcalcul
29 mov ebx,2
30 mul ebx
31 add eax,7
32 mov [rez],eax
33 ret ; выход из подпрограммы
35 _subcalcul:
36 mov ebx,3
37 mul ebx
38 sub eax,1
39 ret
```

Рис. 2.3: Программа в файле lab9-1.asm

```
vastarikova@fedora:~/work/arch-pc/lab09$ nasm -f elf lab9-1.asm
vastarikova@fedora:~/work/arch-pc/lab09$ ld -m elf_i386 -o lab9-1 lab9-1.o
vastarikova@fedora:~/work/arch-pc/lab09$ ./lab9-1
Введите x: 8
2x+7=23
vastarikova@fedora:~/work/arch-pc/lab09$
vastarikova@fedora:~/work/arch-pc/lab09$ nasm -f elf lab9-1.asm
vastarikova@fedora:~/work/arch-pc/lab09$ ld -m elf_i386 -o lab9-1 lab9-1.o
vastarikova@fedora:~/work/arch-pc/lab09$ ./lab9-1
Введите x: 8
2(3x-1)+7=53
vastarikova@fedora:~/work/arch-pc/lab09$
```

Рис. 2.4: Запуск программы lab9-1.asm

Создала файл lab9-2.asm с текстом программы из Листинга 9.2 (Программа печати сообщения "Hello world!"). (рис. 2.5)

```
lab9-2.asm
                                                   Сохранить
  Открыть
                   \oplus
                             ~/work/arch-pc/lab09
1 SECTION .data
2 msg1: db "Hello, ",0x0
 3 msglLen: equ $ - msgl
4 msg2: db "world!",0xa
5 msg2Len: equ $ - msg2
7 SECTION .text
8 global _start
10 _start:
11 mov eax, 4
12 mov ebx, 1
13 mov ecx, msgl
14 mov edx, msglLen
15 int 0x80
16 mov eax, 4
17 mov ebx, 1
18 mov ecx, msg2
19 mov edx, msg2Len
20 int 0x80
21 mov eax, 1
22 mov ebx, 0
23 int 0x80
```

Рис. 2.5: Программа в файле lab9-2.asm

Получила исполняемый файл и добавила отладочную информацию с помощью ключа -g для работы с GDB.

Загрузила исполняемый файл в отладчик GDB и проверила работу программы, запустив её с помощью команды run (сокращенно r). (рис. 2.6)

```
vastarikova@fedora:~/work/arch-pc/lab09$ nasm -f elf -g -l lab9-2.lst lab9-2.asm
vastarikova@fedora:~/work/arch-pc/lab09$ ld -m elf_i386 -o lab9-2 lab9-2.o
vastarikova@fedora:~/work/arch-pc/lab09$ gdb lab9-2
GNU gdb (Fedora Linux) 15.1-1.fc39
Copyright (C) 2024 Free Software Foundation, Inc.
License GPLv3+: GNU GPL version 3 or later <a href="http://gnu.org/licenses/gpl.html">http://gnu.org/licenses/gpl.html</a>
This is free software: you are free to change and redistribute it.
There is NO WARRANTY, to the extent permitted by law.
Type "show copying" and "show warranty" for details.
This GDB was configured as "x86_64-redhat-linux-gnu".
Type "show configuration" for configuration details.
For bug reporting instructions, please see:
Find the GDB manual and other documentation resources online at:
For help, type "help".
Type "apropos word" to search for commands related to "word"...
Reading symbols from lab9-2...
Starting program: /home/vastarikova/work/arch-pc/lab09/lab9-2
This GDB supports auto-downloading debuginfo from the following URLs:
Enable debuginfod for this session? (y or [n])
Debuginfod has been disabled.
To make this setting permanent, add 'set debuginfod enabled off' to .gdbinit.
Hello, world!
[Inferior 1 (process 4542) exited normally]
```

Рис. 2.6: Запуск программы lab9-2.asm в отладчике

Для более детального анализа программы, установила точку останова на метке 'start', с которой начинается выполнение любой ассемблерной программы, и запустила её. Затем просмотрела дизассемблированный код программы. (рис. 2.7) (рис. 2.8)

```
\oplus
                                  vastarikova@fedora:~/work/arch-pc/lab09 — gdb lab9-2
                                                                                                            Q ≡
                                                                                                                          ×
Starting program: /home/vastarikova/work/arch-pc/lab09/lab9-2
This GDB supports auto-downloading debuginfo from the following URLs:
Enable debuginfod for this session? (y or [n])
Debuginfod has been disabled.
To make this setting permanent, add 'set debuginfod enabled off' to .gdbinit.
Hello, world!
[Inferior 1 (process 4542) exited normally] (gdb) break _start
Breakpoint 1 at 0x8049000: file lab9-2.asm, line 11.
(gdb) r
Starting program: /home/vastarikova/work/arch-pc/lab09/lab9-2
Breakpoint 1, _start () at lab9-2.asm:14
(gdb) disassemble _start
  0x08049003 <+10>: mov
0x08049006 <+15>: mov
0x08049014 <+20>: int
0x08049016 <+22>: mov
0x0804901b <+27>: mov
0x08049020 <+32>: mov
   0x08049025 <+37>:
0x0804902a <+42>:
0x0804902c <+44>:
   0x08049031 <+49>:
0x08049036 <+54>:
End of assembler dump.
(gdb)
```

Рис. 2.7: Дизассемблированный код

```
\oplus
                                                                                                       Q
                                vastarikova@fedora:~/work/arch-pc/lab09 — gdb lab9-2
Dump of assembler code for function _start:
   0x0804900a <+10>:
0x0804900f <+15>:
   0x08049014 <+20>:
   0x08049016 <+22>:
   0x08049020 <+32>:
0x08049025 <+37>:
   0x0804902a <+42>:
   0x0804902c <+44>:
   0x08049031 <+49>:
     (08049036 <+54>:
End of assembler dump.
(gdb) set disassembly-flavor intel
(gdb) disassemble _start
Dump of assembler code for function _start:
   0x08049000 <+0>: mov
0x08049005 <+5>: mov
   0x0804900f <+15>:
   0x08049016 <+22>:
   0x0804901b <+27>:
   0x08049020 <+32>:
   0x0804902a <+42>:
   0x0804902c <+44>:
0x08049031 <+49>:
    0x08049036 <+54>:
End of assembler dump.
(gdb)
```

Рис. 2.8: Дизассемблированный код в режиме Intel

Для проверки точки остановки по имени метки '\_start', использовала команду info breakpoints (сокращенно i b).

Затем установила ещё одну точку останова по адресу инструкции, определив адрес предпоследней инструкции mov ebx, 0x0. (рис. 2.9)



Рис. 2.9: Точка остановки

В отладчике GDB можно просматривать содержимое ячеек памяти и регистров, а также изменять значения регистров и переменных.

Выполнила 5 инструкций с помощью команды stepi (сокращенно si) и отследила изменение значений регистров. (рис. 2.10) (рис. 2.11)



Рис. 2.10: Изменение регистров



Рис. 2.11: Изменение регистров

Просмотрела значение переменной msg1 по имени и получила нужные данные. Для изменения значения регистра или ячейки памяти использовала команду set, указав имя регистра или адрес в качестве аргумента. Изменила первый символ переменной msg1. (рис. 2.12)



Рис. 2.12: Изменение значения переменной

Для изменения значения регистра или ячейки памяти использовала команду set, указав имя регистра или адрес в качестве аргумента.

Изменила первый символ переменной msg1. (рис. 2.13)



Рис. 2.13: Вывод значения регистра

С помощью команды set изменила значение регистра ebx на нужное значение. (рис. 2.14)



Рис. 2.14: Вывод значения регистра

Скопировала файл lab8-2.asm, созданный во время выполнения лабораторной работы №8, который содержит программу для вывода аргументов командной строки.

Создала исполняемый файл из скопированного файла.

Для загрузки программы с аргументами в GDB использовала ключ –args и загрузила исполняемый файл в отладчик с указанными аргументами.

Установила точку останова перед первой инструкцией программы и запустила её.

Адрес вершины стека, содержащий количество аргументов командной строки (включая имя программы), хранится в регистре esp.

По этому адресу находится число, указывающее количество аргументов. В данном случае видно, что количество аргументов равно 5, включая имя программы lab9-3

и сами аргументы:

аргумент1, аргумент2 и 'аргумент 3'.

Просмотрела остальные позиции стека.

По адресу [esp+4] находится адрес в памяти, где располагается имя программы. По адресу [esp+8] хранится адрес первого аргумента, по адресу [esp+12] - второго и так далее. (рис. 2.15)

```
vastarikova@fedora:~/work/arch-pc/lab09 — gdb --args lab9-3 argument 1 argument 2 argu...
                                                                                             Q ≡
For help, type "help".
Type "apropos word" to search for commands related to "word"...
Reading symbols from lab9-3...
(gdb) b _start
Breakpoint 1 at 0x80490e8: file lab9-3.asm, line 5.
Starting program: /home/vastarikova/work/arch-pc/lab09/lab9-3 argument 1 argument 2 argument\ 3
This GDB supports auto-downloading debuginfo from the following URLs:
Enable debuginfod for this session? (y or [n])
Debuginfod has been disabled.
To make this setting permanent, add 'set debuginfod enabled off' to .gdbinit.
Breakpoint 1, _start () at lab9-3.asm:5
(gdb) x/x $esp
               0x00000006
(gdb) x/s *(void**)($esp + 4)
               "/home/vastarikova/work/arch-pc/lab09/lab9-3"
(gdb) x/s *(void**)($esp + 8)
               "argument"
(gdb) x/s *(void**)($esp + 12)
(gdb) x/s *(void**)($esp + 16)
              "argument"
(gdb) x/s *(void**)($esp + 20)
(gdb) x/s *(void**)($esp + 24)
               "argument 3"
(gdb)
```

Рис. 2.15: Вывод значения регистра

Шаг изменения адреса равен 4, так как каждый следующий адрес на стеке находится на расстоянии 4 байт от предыдущего ([esp+4], [esp+8], [esp+12]).

#### 2.1 Самостоятельное задание

Преобразовала программу из лабораторной работы  $N^{\circ}8$  (Задание  $N^{\circ}1$  для самостоятельной работы), реализовав вычисление значения функции f(x) как подпрограмму. (рис. 2.16) (рис. 2.17)

```
prog-1.asm
                   \oplus
                                                   Сохранить
   Открыть
                                                                 \equiv
                                                                         ×
                              ~/work/arch-pc/lab09
 6 SECTION .text
 7 global _start
 8 _start:
 9 mov eax, fx
10 call sprintLF
11 pop ecx
12 pop edx
13 sub ecx,1
14 mov esi, 0
15
                                  I
16 next:
17 cmp ecx,0h
18 jz _end
19 pop eax
20 call atoi
21 call var
22 add esi,eax
24 loop next
25
26 _end:
27 mov eax, msg
28 call sprint
29 mov eax, esi
30 call iprintLF
31 call quit
32
33 var:
34 sub eax,1
35 mov ebx,10
36 mul ebx
37 ret
```

Рис. 2.16: Программа в файле prog-1.asm

```
vastarikova@fedora:~/work/arch-pc/lab09$
vastarikova@fedora:~/work/arch-pc/lab09$ nasm -f elf prog-l.asm
vastarikova@fedora:~/work/arch-pc/lab09$ ld -m elf_i386 prog-l.o -o prog-l
vastarikova@fedora:~/work/arch-pc/lab09$ ./prog-l
f(x)= 10(x - 1)
Peзультат: 0
vastarikova@fedora:~/work/arch-pc/lab09$ ./prog-l 2
f(x)= 10(x - 1)
Peзультат: 10
vastarikova@fedora:~/work/arch-pc/lab09$ ./prog-l 2 4 3 5 6 3
f(x)= 10(x - 1)
Peзультат: 170
vastarikova@fedora:~/work/arch-pc/lab09$
```

Рис. 2.17: Запуск программы prog-1.asm

В листинге приведена программа вычисления выражения (3+2)\*4+5. При запуске данная программа даёт неверный результат. Проверила это, анализируя изменения значений регистров с помощью отладчика GDB.

Определила ошибку — перепутан порядок аргументов у инструкции add. Также обнаружила, что по окончании работы в edi отправляется ebx вместо eax. (рис. 2.18)

```
prog-2.asm
                   \oplus
  Открыть
                                                   Сохран
                             ~/work/arch-pc/lab09
 1 %include 'in_out.asm'
 2 SECTION .data
 3 div: DB 'Результат: ',0
 4 SECTION .text
 5 GLOBAL _start
 6 start:
 7; ---- Вычисление выражения (3+2) *4+5
 8 mov ebx,3
 9 mov eax,2
10 add ebx,eax
11 mov ecx,4
12 mul ecx
13 add ebx,5
14 mov edi,ebx
15; ---- Вывод результата на экран
16 mov eax, div
17 call sprint
18 mov eax, edi
19 call iprintLF
20 call quit
```

Рис. 2.18: Код с ошибкой

```
€
                                                                                               Q ≡
                              vastarikova@fedora:~/work/arch-pc/lab09 — gdb prog-2
eax
                0x8
есх
                0x4
 edx
                0x0
                0ха
ebx
                                     0xffffd0e0
                0xffffd0e0
 esp
 ebp
                0x0
                                     0x0
                0x0
esi
 edi
                0ха
                                     10
 eip
                0x8049100
                                     0x8049100 <_start+24>
               <_start+12>
   >0x8049100 <_start+24>
                                    eax,0x804a000
                 start+29>
                                               <sprint>
              <_start+34>
              <_start+41>
native process 4739 (asm) In: _start
                                                                                              PC: 0x8049100
To make this setting permanent, add 'set debuginfod enabled off' to .gdbinit.
Breakpoint 1, _start () at prog-2.asm:8
(gdb) si
(gdb)
```

Рис. 2.19: Отладка

Отметила, что перепутан порядок аргументов у инструкции add и что по окончании работы в edi отправляется ebx вместо eax (рис. 2.19).

Исправленный код программы (рис. 2.20) (рис. 2.21)

```
prog-2.asm
                                                  Сохранить
  Открыть
                             ~/work/arch-pc/lab09
 1 %include 'in_out.asm'
 2 SECTION .data
 3 div: DB 'Результат: ',0
 4 SECTION .text
 5 GLOBAL _start
 6 _start:
 7; ---- Вычисление выражения (3+2)*4+5
 8 mov ebx,3
 9 mov eax,2
10 add eax,ebx
11 mov ecx,4
12 mul ecx
13 add eax,5
14 mov edi,eax
15 ; ---- Вывод результата на экран
16 mov eax, div
17 call sprint
18 mov eax, edi
19 call iprintLF
20 call quit
```

Рис. 2.20: Код исправлен

```
\oplus
                                           vastarikova@fedora:~/work/arch-pc/lab09 — gdb prog-2
                                                       xffffd0e0
                             fffd0e0
                                                       [ Register Values Unavailable ]
                                                   eax,0x804a000
eax,edi
0x8049086 <iprintLF>
0x80490db <quit>
       0x804910a <_start+34>
0x804910c <_start+36>
0x8049111 <_start+41>
native process 4800 (asm) In: _start
BreakpoNo process (asm) In:
(gdb) si
(gdb) si
(gdb) si
                                                                                                                                       PC: 0x8049100
                                                                                                                                        L?? PC: ??
 (gdb) si
 (gdb) si
 (gdb) si
(gdb) c
Continuing.
Результат: 25
[Inferior 1 (process 4800) exited normally] (gdb)
```

Рис. 2.21: Проверка работы

# 3 Выводы

Освоила работу с подпрограммами и отладчиком.