KIRCHHOFFIS CURRENT AND VOLTAGE LAW BASIC CIRCUIT ANALYSIS METHOD

TOPIC OUTLINE

Circuit Convention

Kirchhoff's Current Law (KCL)

Kirchhoff's Voltage Law (KVL)

CIRCUIT CONVENTION

CONVENTION

A <u>convention</u> is a widely accepted practice, method, or behavior that is followed by common <u>agreement</u> or tradition, rather than by formal rules.

<u>example</u>

Color coding in Offices

red – urgent documents blue – general files green – financial records

This is a common practice but not formally regulated.

STANDARD

A <u>standard</u> is a formal, established guideline, rule, or specification that is often <u>mandatory</u> and enforced by an authoritative body or organization.

<u>example</u>

IEC 60062 Resistor Color Code

black - 0

brown – 1

red - 2

.

•

white -9

Resistors have colored bands that represent specific digits, multipliers, and tolerance values.

LABELING VARIABLES

Steps in Labeling Variables

1. <u>Label the Reference Node</u> (ground)

Select a reference node with the most connections or the negative (-) terminal of a voltage source.

2. <u>Label Node Voltages</u>

Mark higher potentials as positive (+) relative to the reference node.

3. Label Currents

Entering the positive (+) terminal of a component.

4. Create a voltage loop

Follow the defined current directions.

CIRCUIT CONVENTION

Current Flow Convention

- Current <u>entering</u> a node is negative (-)
- Current <u>leaving</u> a node is positive (+)

CIRCUIT CONVENTION

Voltage Loop Convention

The <u>"sign"</u> of voltage of the element is the <u>first sign</u> the loop encounters.

$$\begin{array}{ccc}
\underline{@L_1} & \underline{@L_2} \\
-v_o & -v_2 \\
+v_1 & +v_3 \\
+v_2
\end{array}$$

KIRCHHOFFIS CURRENT AND VOLTAGE LAW

KIRCHHOFF'S CURRENT LAW

<u>Kirchhoff's current law</u> states that summation of currents going-in and going-out a node is zero.

$$\sum i_j = 0$$

$$-i_1+i_2+i_3=0$$

$$i_o + i_1 = 0$$

KIRCHHOFF'S VOLTAGE LAW

<u>Kirchhoff's voltage law</u> states that the summation of voltages in a closed-loop is zero.

$$\sum v_j = 0$$

$$-v_o+v_1+v_2=0$$

$$-v_2+v_3=0$$

Analyze the given circuit to determine both the current through and the voltage drop across each resistor.

$$\frac{|VUCA|}{-i_1 + i_2 + i_3 = 0}$$

$$-\frac{v_1}{k_1} + \frac{v_2}{k_2} + \frac{v_3}{k_3} = 0$$

$$-v_1G_1 + v_2G_2 + v_3G_3 = 0$$

FULCE LA
$$-v_0 + v_1 + v_2 = 0$$

$$v_1 + v_2 = v_0$$

Gaussian elimination method

$$-v_1\frac{1}{120} + v_2\frac{1}{220} + \frac{1}{330} = 0$$

$$v_1 + v_2 = 9 \ 2$$
 $-v_2 + v_3 = 0 \ 3$

Gaussian elimination method

Gaussian elimination method

Gaussian elimination method

from 3

$$\frac{21}{11} V_3 = 9$$
 $V_3 = \frac{9(11)}{21}$
 $V_3 = 4.71 V$

ans

Analyze the given circuit to determine both the current through and the voltage drop across each resistor.

$$\frac{\text{KVL Q lz}}{-\text{V2} + \text{V3}} = 0$$

$$\text{V2} = \text{V3}$$

$$\text{V2} = 4.71 \text{V}$$
ans

$$\frac{\text{KVLQ LI}}{-v_0 + v_1 + v_2} = 0$$

$$v_1 = v_0 - v_2$$

$$= 9 - 4.71$$

$$v_1 = 4.29 \text{ V}$$
and

Analyze the given circuit to determine both the current through and the voltage drop across each resistor.

$$i_1 = \frac{v_1}{R_1}$$

$$= \frac{4.29}{120}$$

$$i_1 = 35.75 \text{ mA}$$
one

$$i_2 = \frac{V_2}{R_2}$$

$$= \frac{4.71}{220}$$

$$i_2 = 21.41 \text{ m/s}$$
ans

$$i_{3} = \frac{v_{3}}{R_{3}}$$

$$= \frac{4.71}{330}$$

$$i_{3} = 14.27 \text{ mA}$$
onc

Determine the voltage drop across the load resistor and the current flowing through it.

$$\frac{|k \cdot \mathcal{U} \cdot \mathcal{Q} \cdot e_1|}{-i_1 + i_2 + i_2 + i_1 = 0}$$

$$-\frac{v_1}{k_1} + \frac{v_2}{k_2} + \frac{v_2}{k_2} = 0$$

$$-v_1 \cdot G_1 + v_2 \cdot G_2 + v_2 \cdot G_1 = 0 \quad (e.1)$$

$$\frac{|k \cdot \mathcal{U} \cdot \mathcal{Q} \cdot e_2|}{-i_3 + i_4 - i_1 = 0}$$

$$-\frac{v_3}{k_3} + \frac{v_4}{k_4} - \frac{v_2}{k_4} = 0$$

$$-\frac{v_3}{k_5} + \frac{v_4}{k_4} - v_4 \cdot G_4 - v_4 \cdot G_4 = 0 \quad (e.2)$$

Determine the voltage drop across the load resistor and the current flowing through it.

$$\frac{KVLCL_{1}}{-V_{0}+V_{1}+V_{2}=6}$$

$$V_{1}+V_{2}=V_{0} \quad (e.3)$$

Gaussian Elimination Method

System of Linear Equations

-
$$V_1S_1 + V_2S_2 + V_2S_1 = 0$$
 (eg.1)

- $V_3S_4 + V_4S_4 - V_2S_1 = 0$ (eg.2)

 $V_1 + V_2 = V_0$ (eg.3)

- $V_1 + V_3 - V_2 = 0$ (eg.4)

- $V_2 + V_4 + V_4 = 0$ (eg.5)

Gaussian Elimination Method

ı						
٧,	12	Vs	V*	72		
120	1 220	0	D	100	0	_
0	7	0	1	1	0	V2
0	0	320	470	-100	0	V3
-1	0	١	Q	-1	0	V4
1	ı	0	0	Q	9	Vs

Gaussian Elimination Method

1					l	
ν,	V2	Vs	V.	7/2		
12	220	, 0	D	100	0	<u>v</u> 1
0	1	0	l	1	0	V 2
0	0	-320	470	$-\frac{1}{100}$	0	V ₃
) 0	١	Q	-1	0	V4 € 120 V1 - V2
1	1	0	0	Q	9	√ 5

Gaussian Elimination Method

l						L
٧,	V2	Vs	V¥	VL		
-120	120	0	D	-)12	0	\ 1
0	-/	0	l	١	0	Y2
0	0 -	320	470	$-\frac{1}{100}$	0	V2
0	<u>Co</u>	-1	Q	115	0	٧ <u>٨</u>
ı	l	0	0	Q	9	٧ţ
					'	

l						L
٧,	12	Vs	V¥	7L		
120	220	0	D	-)10	0	-
0	7	0	1	1	0	V2
0	0 -	320	470	-100	0	V3
0	0	一	<u>E</u>	 	0	V ₄
1	I	0	0	Q	9	V 5

Gaussian Elimination Method

٧,	12	Vs	V ¥	VL		_
120	120	0	0	1/10	0	
0	-1	O	l	1	0	V2
0	0	720	- 470	- 100	0	V2
0	0	0	70 517	327 55	D	V
1	١	0	0	Ø	9	Vt

ı					1	
٧,	V2	Vs	V.	71		
120	120	0	D	<u>S</u> (-	0	Y 1
0	-1	0	l	1	0	V2
0	0	-320	470	- 1	0	<u>V3</u>
0	0	9	<u>E</u> 11	स्र	0	1 1/4 ← 320 V3 - V4
1	١	0	0	Q	9	VE

Gaussian Elimination Method

ı						L
V,	12	Vs	V¥	72		
-120	220	0	D	S (-	0	<u>v</u>
0	-1	0	1	١	0	V2
0	0	-320	470	- 100	0	V ₃
0	0	0	70 517	_327 55	D	V ₄
	1	0	0	a	9	V5 ← 120 ri + r5 ->

l						
V ,	12	Vs	V¥	72		
120	220	0	D	-)\$	0	-
0	7	0	l	1	0	V2
0	0	720	470	- 100	0	V3
0	0	0	70 517	_327 5ts	D	V4
0	17	D	D	8/4	9	V5

Gaussian Elimination Method

1	ما	- 1	•			-
\ \(\mu_1\)	72	Vs	V¥	VL		L
120	120	0	D	100	0	1
0	-1	0	l	1	0	V2
0	0	720	470	- 1	0	V3
0	0	0	70 517	-327 55	D	V4
0	0	0	17	<u> </u> \$1	9	VE

ı					1	
٧,	12	Vs	V*	VL		
120	220	0	D	5(-	0	Y ,
0	-1	0	l	1	0	<u>V2</u>
0	0 -	320	470	- 100	0	V ₃
0	0	0	70 517	327	D	V ₄
0	17 11	O	0	12/18	9	VE < 17 12 +

Gaussian Elimination Method

<u>1445516</u>		manc	<u> </u>	<u>10u</u>	ı	I
٧,	V2	Vs	V*	VL		
120	120	0	D	5(-	0	1
0	-1	0	l	1	0	V2
0	0 -	320	470	- 1	0	V3
0	0	0	70 517	_327 5t5	D	V4
0	D	0	17 11	क्ष ए	9	V5 ←.

	ı					1	
	٧,	V2	Vs	V4	VL		_
	120	120	0	D	-12	0	V 1
	0	-1	0	l	1	0	V2
	0	0 -	320	470	$-\frac{1}{100}$	0	V3
	0	0	0	30 517	-327 55	D	V4
•	0	0	0	0	-9.56	-1.22	V5

Gaussian Elimination Method

$$\frac{\text{from 15}}{-9.56 \text{ NL}} = -1.22$$

$$\frac{-9.56 \text{ NL}}{-9.56}$$

$$V_L = |27.62 \,\text{mV}$$

l					l	L
٧,	V2	Vs	V4	VL		
120	120	0	D	1/10	0	\(\gamma_1\)
0	-1	0	l	1	0	V2
0	0 -	320	470	$-\frac{1}{100}$	0	V3
0	0	0	20 517	-327 55	D	V4
0	0	0	0	-9.56	-1.22	V 5

LABORATORY

