مجموعه تمارين نظريه اعداد جلسه پنجم دوره تابستاني المپياد رياضي ١۴٠١

مبحث مرتبه و قضایای مربوطه

- $(n_{k+1}=n_1)$. $orall 1 \leq i \leq k: n_i \mid 2^{n_{i+1}}-1$ وهمچنین $k \geq 2:$ و همچنین که داریم و کنید $n_1, n_2, \cdots, n_k \in \mathbb{N}$ داده شده باشند به طوری که داریم و گلبت کنید تمام n_i ها با هم برابرند.
 - $pq\mid (5^p-2^p)(5^q-2^q)$. تمام اعداد $p,q\in \mathbb{P}$ را بیابید به طوری که
 - را بیابید $a\in\mathbb{N}$ عددی طبیعی باشد. برای هر $m,n\in\mathbb{N}$ مقدار $a\in\mathbb{N}$ عددی طبیعی باشد. برای هر $a\in\mathbb{N}$
 - $2^n \mid 5^m + 3$ فری کید برای هر $n \in \mathbb{N}$ ، مقدار طبیعی $m \in \mathbb{N}$ موجود است به طوری که ۴.
- ه فرض کنید $P(x)\in\mathbb{Z}[x]$ یک چندجملهای غیر ثابت باشد. ثابت کنید تعداد $n\in\mathbb{N}$ هایی که $p(x)\in\mathbb{Z}[x]$ برقرار باشد متناهی است.
 - ؛ کنید : $m,n\in\mathbb{N}$ اعدادی فرد با مجموعه عوامل اول یکسان باشند و $m,n\in\mathbb{N}$ ثابت کنید :

$$\forall a \in \mathbb{N} : \gcd(a,n) = \gcd(a,m) = 1 \implies \operatorname{Ord}_m(a) = \operatorname{Ord}_n(a) \cdot \frac{m}{\gcd(m,a^{\operatorname{Ord}_n(a)} - 1)}$$

- ۷. تمام اعداد $p,q,r\in\mathbb{P}$ را بیابید به طوری که روابط $p,q,r\in\mathbb{P}$ باشند. $p,q,r\in\mathbb{P}$ همزمان برقرار باشند.
 - $q\stackrel{p}{\equiv}1$ عددی اول باشد. ثابت کنید نامتناهی عدد اول $a\in\mathbb{P}$ موجود است به طوری که $a\in\mathbb{P}$. A
 - . ثابت کنید برای هر 2>n بزرگترین عامل اول $2^{n+1}+2$ بزرگتر یا مساوی با $n\cdot 2^{n+2}+1$ است.

$$\sum_{i=1}^n q_i lpha_i > p^2$$
 عددی اول و بزرگتر از ۳ باشد. همچنین فرض کنید $p \in \mathbb{P}$ عددی اول و بزرگتر از ۳ باشد. همچنین فرض کنید $p \in \mathbb{P}$ عددی اول و بزرگتر از ۳ باشد. همچنین فرض کنید اول و بزرگتر از ۳ باشد. همچنین فرض کنید اول و بزرگتر از ۳ باشد. همچنین فرض کنید اول و بزرگتر از ۳ باشد.

- داشته باشد. فرض کنید $a\in\mathbb{N}$ عددی طبیعی و بزرگتر از ۱ باشد. ثابت کنید $n\log_a(n)$ موجود است به طوری که a=n-1 عامل اولی بزرگتر از $n\log_a(n)$ داشته باشد.
- $p = (6p)^p$ داده شده باشد به طوری که $p \stackrel{4}{=} 1$ و همچنین $p = p \stackrel{2}{=} 1$ ثابت کنید اگر p بزرگترین عامل اول p = p باشد، آنگاه $p \in \mathbb{P}$.۱۲
 - ۱۳. تمام زوجهای $p,q\in\mathbb{P}$ را بیابید به طوری که p>q و همچنین داشته باشیم :

$$\frac{(p+q)^{p+q}(p-q)^{p-q}-1}{(p+q)^{p-q}(p-q)^{p+q}-1} \in \mathbb{Z}$$

- اد. فرض کنید $a\in\mathbb{N}$ عددی طبیعی باشد. ثابت کنید مجموعه $\{rac{p-1}{\mathrm{Ord}_n(a)}\mid orall p\in\mathbb{P}\}$ کران بالا ندارد.
- . Or $\mathrm{d}_p(a)=\mathrm{Ord}_p(b)$ کنید برای هر $a,b\in\mathbb{N}$ نامتناهی $p\in\mathbb{P}$ موجود است به طوری که ایند برای هر ۱۵
- ۱۶. فرض کنید $p\in \mathbb{R}$ عددی اول باشد. ثابت کنید عدد اول $p\in \mathbb{R}$ موجود است به طوری که برای هر $p\in \mathbb{R}$ رابطه $p\in \mathbb{R}$ برقرار باشد.
 - ۱۷. اعداد $k\in\mathbb{N}$ داده شده است. ثابت کنید مجموعه $n\in\mathbb{N}$ هایی که همه عوامل اول a^n-1 از k کمتر باشند، متناهی است.
 - : مام توابع $\mathbb{N} o \mathbb{N}$ را بیابید به طوری که .۱۸
- ست. $a \in \mathbb{N}$ برای هر $a \in \mathbb{N}$ داشته باشیم : $\operatorname{rad}(a) = \operatorname{rad}(f(a))$ که در آن $\operatorname{rad}(a) = \operatorname{rad}(f(a))$ داشته باشیم : $\operatorname{ad}(a) = \operatorname{rad}(f(a))$ داشته باشیم : $\operatorname{ad}(a) = \operatorname{rad}(f(a))$ به طوری که $\operatorname{ad}(a) = \operatorname{rad}(f(a))$ داشته باشیم : $\operatorname{ad}(a) = \operatorname{rad}(f(a))$ داشت : $\operatorname{ad}(a) = \operatorname{rad}(f(a))$

تمارين اضافه

- . $\gcd(m^{n-1}-1,n)>1$. ثابت کنید $p\in\mathbb{R}$ و $m,n\in\mathbb{N}$ و طوری بیشتر از ۱ باشند به طوری که $m,n\in\mathbb{R}$. ثابت کنید ۱.
 - $p^n+1\mid n^p+1$ که که ایر و را بیابید به طوری که ایر $p\in\mathbb{P},n\in\mathbb{N}$ ۲. تمام اعداد
- قرض کنید $a,b,c,d\in\mathbb{N}$ اعدادی متمایز باشند و $p\in\mathbb{P}$ عددی اول و فرد باشد که نسبت به a,b,c,d اول است. همچنین فرض کنید $p\in\mathbb{R}$ موجود است به طوری $p\in\mathbb{R}$ عددی اول و فرد باشد که نسبت به $p\in\mathbb{R}$ اعضای ناصفر این مجموعه با هم برابرند. که هر عضو از مجموعه $p\in\mathbb{R}$ حداکثر برابر با p و حداکثر برابر با p بوده و همگی هم ناصفر نابشند. ثابت کنید تمام اعضای ناصفر این مجموعه با هم برابرند.