The University of Texas at Austin Department of Electrical and Computer Engineering

EE381K: Convex Optimization — Fall 2019

Lecture 6

Aryan Mokhtari

Wednesday, September 18, 2019.

Goal: In this lecture, we first look at some special cases of primal-dual LP where one side is unbounded or infeasible. Then, we review different forms of primal-dual problems. Then, we study the dual problem of a piecewise-linear minimization problem as well as an ℓ_{∞} -norm approximation. In the last part of the lecture, we talk about complementary slackness.

1 Infeasible and unbounded cases

Simple cases:

If the primal problem is unbounded $(p^* = -\infty)$ then by weak duality the dual problem should be infeasible. [Argument: If not, then the dual problem is feasible and by weak duality $p^* \ge d^* > -\infty$ which is a contradiction].

If the dual problem is unbounded $(d^* = +\infty)$ then by weak duality the primal problem should be infeasible. [Argument: If not, then the primal problem is feasible and by weak duality $\infty > p^* \ge d^*$ which is a contradiction].

Theorem 1. If the primal problem is infeasible $(p^* = +\infty)$, then the dual problem is either unbounded $(d^* = +\infty)$ or infeasible $(d^* = -\infty)$.

Proof: Note that according to the theorem of alternatives when primal is infeasible, i.e., $\mathbf{A}\mathbf{x} \leq \mathbf{b}$ has no solution, then there exists \mathbf{w} such that

$$\mathbf{w} \ge \mathbf{0}, \qquad \mathbf{A}^{\top} \mathbf{w} = \mathbf{0}, \qquad \mathbf{b}^{\top} \mathbf{w} < 0.$$

Case I: If the dual problem is feasible, then any z point that is feasible for the dual problem satisfies

$$\mathbf{z} + t\mathbf{w} \ge \mathbf{0}$$
 $\mathbf{A}^{\top}(\mathbf{z} + t\mathbf{w}) + \mathbf{c} = \mathbf{0}$, for all $t \ge 0$.

Therefore, $\mathbf{z} + t\mathbf{w}$ is dual feasible for all $t \geq 0$. Moreover, as $t \to \infty$ we have that

$$-\mathbf{b}^{\top}(\mathbf{z} + t\mathbf{w}) = -\mathbf{b}^{\top}\mathbf{z} - t\mathbf{b}^{\top}\mathbf{w} \to \infty$$

Hence, in this case, the dual problem is unbounded, i.e., $(d^* = +\infty)$.

Case II: If the dual problem is *infeasible*, then we are done as $(d^* = -\infty)$.

Theorem 2. If the dual problem is infeasible $(d^* = -\infty)$, then the primal problem is either unbounded $(p^* = -\infty)$ or infeasible $(p^* = +\infty)$.

Proof: Similar idea.

2 Different forms of primal-dual problems

In the last lecture, we introduced the dual of an LP which has inequality constraints

$$\begin{array}{lll} \text{minimize} & \mathbf{c}^{\top}\mathbf{x} \\ \text{subject to} & \mathbf{A}\mathbf{x} \leq \mathbf{b} \end{array} \iff \begin{array}{ll} \text{maximize} & -\mathbf{b}^{\top}\mathbf{z} \\ \text{subject to} & \mathbf{A}^{\top}\mathbf{z} + \mathbf{c} = \mathbf{0} \\ \mathbf{z} > \mathbf{0} \end{array}$$

We can also generalize it to the case that the primal problem has both equality and inequality constraints (it can be shown by writing $\mathbf{C}\mathbf{x} = \mathbf{d}$ as two inequalities)

$$\begin{array}{lll} \text{minimize} & \mathbf{c}^{\top}\mathbf{x} & \text{maximize} & -\mathbf{b}^{\top}\mathbf{z} - \mathbf{d}^{\top}\mathbf{y} \\ \text{subject to} & \mathbf{A}\mathbf{x} \leq \mathbf{b} & \Longleftrightarrow & \text{subject to} & \mathbf{A}^{\top}\mathbf{z} + \mathbf{C}^{\top}\mathbf{y} + \mathbf{c} = \mathbf{0} \\ & \mathbf{C}\mathbf{x} = \mathbf{d} & \mathbf{z} > \mathbf{0} \end{array}$$

Note that in this case $\mathbf{A} \in \mathbb{R}^{m \times n}$, $\mathbf{C} \in \mathbb{R}^{p \times n}$, $\mathbf{x} \in \mathbb{R}^{n}$, $\mathbf{c} \in \mathbb{R}^{n}$, $\mathbf{b} \in \mathbb{R}^{m}$, $\mathbf{d} \in \mathbb{R}^{p}$ and $\mathbf{z} \in \mathbb{R}^{m}$, $\mathbf{y} \in \mathbb{R}^{p}$.

The dual problem for the case that the primal problem is written in a standard form is given by

3 Examples of primal-dual problems

We study two examples in this section.

3.1 Piecewise-linear minimization

A function $f: \mathbb{R}^n \to R$ is piecewise-linear if it can be expressed as

$$f(\mathbf{x}) = \max_{i=1,\dots,m} (\mathbf{a}_i^{\mathsf{T}} \mathbf{x} + b_i)$$

Minimizing a piecewise-linear can be written as

minimize
$$f(\mathbf{x}) = \max_{i=1}^{m} (\mathbf{a}_i^{\mathsf{T}} \mathbf{x} + b_i)$$

This problem can be written as an LP by introducing a new variable t which is an upper bound on the values of $\mathbf{a}_i^{\mathsf{T}}\mathbf{x} + b_i$ for $i = 1, \dots, m$, i.e.,

minimize
$$t$$

subject to $(\mathbf{a}_i^{\mathsf{T}}\mathbf{x} + b_i) \leq t, \qquad i = 1, \dots, m$

Primal LP: This problem can also be written as

minimize
$$t$$
 subject to $\begin{bmatrix} \mathbf{A} & -\mathbf{1} \end{bmatrix} \begin{bmatrix} \mathbf{x} \\ t \end{bmatrix} \leq -\mathbf{b}$

Dual LP: The dual problem therefore is given by

maximize
$$\mathbf{b}^{\top}\mathbf{z}$$

subject to $\mathbf{A}^{\top}\mathbf{z} = \mathbf{0}$, $\mathbf{1}^{\top}\mathbf{z} = 1$, $\mathbf{z} \ge \mathbf{0}$

Note: By finding a feasible solution for the primal problem we can always find an upper bound for the the optimal solution p^* . But, to find a lower bound for the optimal value of primal problem we can find a feasible solution for the dual problem. For instance, if we look at the value of $\mathbf{b}^{\top}\hat{\mathbf{z}}$ for a point $\hat{\mathbf{z}}$ that is dual feasible $(\mathbf{A}^{\top}\hat{\mathbf{z}} = \mathbf{0}, \mathbf{1}^{\top}\hat{\mathbf{z}} = 1, \hat{\mathbf{z}} \geq \mathbf{0})$ we can find a lower bound for the optimal value of the primal problem for the minimization of a piecewise-linear function.

3.2 ℓ_{∞} -Norm approximation

Consider $\mathbf{A} \in \mathbb{R}^{m \times n}$ and $\mathbf{b} \in \mathbb{R}^m$ as our problem data, and $\mathbf{x} \in \mathbb{R}^n$ as our variable. The goal in norm approximation is to find a solution that approximately satisfies the condition $\mathbf{A}\mathbf{x} = \mathbf{b}$, while we keep the norm of the residual $\mathbf{r} = \mathbf{A}\mathbf{x} - \mathbf{b}$ small. (We will talk about this example later in the application part of the class.)

When we aim to minimize the infinity norm of the residual we should solve

minimize
$$\|\mathbf{A}\mathbf{x} - \mathbf{b}\|_{\infty}$$

Note that the ℓ_{∞} -norm (Chebyshev norm) of a vector $\mathbf{y} \in \mathbb{R}^m$ with elements y_i is defined as

$$\|\mathbf{y}\|_{\infty} = \max_{i=1,\dots,m} |y_i| = \max_{i=1,\dots,m} \max\{y_i, -y_i\}$$

This problem can be written as

minimize
$$t$$

subject to $-t\mathbf{1} \leq \mathbf{A}\mathbf{x} - \mathbf{b} \leq t\mathbf{1}$

If we then write it in inequality form with variables \mathbf{x} and t we obtain that

Primal LP:

minimize
$$t$$
 subject to $\begin{bmatrix} \mathbf{A} & -\mathbf{1} \\ -\mathbf{A} & -\mathbf{1} \end{bmatrix} \begin{bmatrix} \mathbf{x} \\ t \end{bmatrix} \leq \begin{bmatrix} \mathbf{b} \\ -\mathbf{b} \end{bmatrix}$

Dual LP: If we define the dual variable as $\mathbf{z} = [\mathbf{u}; \mathbf{v}] \in \mathbb{R}^{2m}$ then we can write the dual problem as

$$\begin{array}{ll} \text{maximize} & -\begin{bmatrix} \mathbf{b} \\ -\mathbf{b} \end{bmatrix}^\top \begin{bmatrix} \mathbf{u} \\ \mathbf{v} \end{bmatrix} \\ \text{subject to} & \begin{bmatrix} \mathbf{A} & -\mathbf{1} \\ -\mathbf{A} & -\mathbf{1} \end{bmatrix}^\top \begin{bmatrix} \mathbf{u} \\ \mathbf{v} \end{bmatrix} + \begin{bmatrix} \mathbf{0} \\ 1 \end{bmatrix} = \begin{bmatrix} \mathbf{0} \\ 0 \end{bmatrix}, & \begin{bmatrix} \mathbf{u} \\ \mathbf{v} \end{bmatrix} \geq \mathbf{0} \end{array}$$

Dual LP: This problem can be simplified as

maximize
$$-\mathbf{b}^{\top}\mathbf{u} + \mathbf{b}^{\top}\mathbf{v}$$

subject to $\mathbf{A}^{\top}\mathbf{u} - \mathbf{A}^{\top}\mathbf{v} = \mathbf{0}$
 $\mathbf{1}^{\top}\mathbf{u} + \mathbf{1}^{\top}\mathbf{v} = 1$
 $\mathbf{u} \ge \mathbf{0}, \quad \mathbf{v} \ge \mathbf{0}$

(Exercise): Show that the dual LP can also be written as

maximize
$$\mathbf{b}^{\top}\mathbf{z}$$

subject to $\mathbf{A}^{\top}\mathbf{z} = \mathbf{0}$, $\|\mathbf{z}\|_1 \leq 1$

4 Complementary Slackness

For the following primal-dual LP

$$\begin{array}{lll} \text{minimize} & \mathbf{c}^{\top}\mathbf{x} & \text{maximize} & -\mathbf{b}^{\top}\mathbf{z} - \mathbf{d}^{\top}\mathbf{y} \\ \text{subject to} & \mathbf{A}\mathbf{x} \leq \mathbf{b} & \Longleftrightarrow & \text{subject to} & \mathbf{A}^{\top}\mathbf{z} + \mathbf{C}^{\top}\mathbf{y} + \mathbf{c} = \mathbf{0} \\ & \mathbf{C}\mathbf{x} = \mathbf{d} & \mathbf{z} \geq \mathbf{0} \end{array}$$

the optimality conditions are (\mathbf{x}^*) and $(\mathbf{y}^*, \mathbf{z}^*)$ are optimal iff)

$$\begin{aligned} \mathbf{A}\mathbf{x}^* &\leq \mathbf{b}, & \mathbf{C}\mathbf{x}^* &= \mathbf{d} \\ \mathbf{A}^\top \mathbf{z}^* &+ \mathbf{C}^\top \mathbf{y}^* + \mathbf{c} &= \mathbf{0}, & \mathbf{z}^* &\geq \mathbf{0} \\ \mathbf{c}^\top \mathbf{x}^* &= -\mathbf{b}^\top \mathbf{z}^* - \mathbf{d}^\top \mathbf{y}^* & \end{aligned}$$

If we define $\Delta = p^* - d^*$ as the duality gap, it can be shown that

$$\Delta = p^* - d^*$$

$$= \mathbf{c}^\top \mathbf{x}^* + \mathbf{b}^\top \mathbf{z}^* + \mathbf{d}^\top \mathbf{y}^*$$

$$= (\mathbf{b} - \mathbf{A} \mathbf{x}^*)^\top \mathbf{z}^* + (\mathbf{d} - \mathbf{C} \mathbf{x}^*)^\top \mathbf{y}^*$$

$$= (\mathbf{b} - \mathbf{A} \mathbf{x}^*)^\top \mathbf{z}^*$$

$$= \sum_{i=1}^m z_i^* (b_i - \mathbf{a}_i^\top \mathbf{x}^*)$$

where in the third inequality we replace \mathbf{c} by $-\mathbf{A}^{\top}\mathbf{z}^* - \mathbf{C}^{\top}\mathbf{y}^*$, in the fourth equality we used the fact that $\mathbf{C}\mathbf{x}^* = \mathbf{d}$, and in the last equality b_i is the *i*-th element of vector \mathbf{b} and \mathbf{a}_i^{\top} is the *i*-th row of matrix \mathbf{A} .

Note that by strong duality we know that for primal and dual feasible LPs the duality gap is zero, i.e., $\Delta = 0$. Hence, we can conclude that \mathbf{x}^* and $(\mathbf{y}^*, \mathbf{z}^*)$ are primal-dual optimal iff

$$z_i^*(b_i - \mathbf{a}_i^\top \mathbf{x}^*) = 0, \qquad i = 1, \dots, m$$

Therefore, we observe that $\mathbf{b} - \mathbf{A}\mathbf{x}^*$ and $\mathbf{z}^* \geq \mathbf{0}$ have a **complementary sparsity pattern**:

if
$$z_i^* > 0$$
 \Rightarrow $\mathbf{a}_i^\top \mathbf{x}^* = b_i$
if $\mathbf{a}_i^\top \mathbf{x}^* < b_i$ \Rightarrow $z_i^* = 0$