Matematiikan ja tilastotieteen laitos Todennäköisyyslaskenta II 1. kurssikoe 23.10.2015

Sallitut apuvälineet: kirjoitusvälineet, laskin sekä käsinkirjoitettu, A4-kokoinen lunttilappu. Ei taulukkokirjaa

- 1. Tavallista kuusisivuista noppaa heitetään viisi kertaa. Olkoon X niiden heittojen lukumäärä, joilla saadaan silmäluku 5 tai 6.
 - (a) Ilmoita satunnaismuuttujan X jakauma sekä kerro sen odotusarvo.
 - (b) Millä todennäköisyydellä X=3 ehdolla, että ensimmäisellä heitolla saadaan 5?
- 2. Olkoon $Y \sim U(0,1)$ ja määritellään $X = Y^3$.
 - (a) Määrää satunnaismuuttujan X kertymäfunktio F_X .
 - (b) Määrää satunnaismuuttujan X tiheysfunktio f_X .
 - (c) Laske $\mathbb{E}X$ ja var X.
- 3. Satunnaismuuttuja X noudattaa takajakaumaa välillä (0,2). Satunnaismuuttuja Y on eksponenttijakautunut odotusarvolla 2. Satunnaismuuttujat X ja Y ovat riippumattomia.
 - (a) Laske $\mathbb{E}(X-3Y)$
 - (b) Laske var(X + Y)
 - (c) Laske cov(X, X + XY)
- 4. (a) Satunnaismuuttujan X momenttiemäfunktio on

$$M(t) = \frac{1}{4} + \frac{1}{4}e^t + \frac{1}{2}e^{2t}$$

Määrää $\mathbb{E} X$ ja $\mathbb{E}(X^2)$.

(b) Oletetaan, että $Z\sim \mathrm{Gam}(3,2)$ ja $Y\sim \mathrm{Gam}(5,2)$ sekä Z ja Y ovat riippumattomia. Määrää satunnaismuuttujan Z+Y momenttiemäfunktio ja jakauma. Gammajakauman $\mathrm{Gam}(\alpha,\lambda)$ momenttiemäfunktio on

$$M(t) = \left(\frac{\lambda}{\lambda - t}\right)^{\alpha}, \quad (t < \lambda).$$