Homework 2 of Dynamic Programming and Optimal Control

姓名: 林奇峰 学号: 19110977 2019 年 12 月 18 日

1 Exercise 9.6

Define $\gamma(r)$ as $\ln[g(r)]$ where $g(r) = \mathbb{E}[\exp(rX)]$. Assume that X is discrete with possible outcomes $\{a_i; i \geq 1\}$, let p_i denote $\Pr\{X = a_i\}$, and assume that g(r) exists in some open interval (r_-, r_+) containing r = 0. For any given $r, r_- < r < r_+$, define a rv X_r with the same set of possible outcomes $\{a_i; i \geq 1\}$ as X, but with a PMF $q_i = \Pr\{X_r = a_i\} = p_i \exp[a_i r - \gamma(r)]$. Note that X_r is not a function of X and is not even to be viewed as in the same probability space as X; it is of interest simply because of the behavior of its defined probability mass function. It is called a tilted rv relative to X, and this exercise, along with Exercise 9.11, will justify our interest in it.

- (a) Verify that $\sum_i q_i = 1$.
- (b) Verify that $E[X_r] = \sum_i a_i q_i$ is equal to $\gamma'(r)$.
- (c) Verify that $VAR[X_r] = \sum_i a_i^2 q_i (E[X_r])^2$ is equal to $\gamma''(r)$.
- (d) Argue that $\gamma''(r) \ge 0$ for all r such that g(r) exists, and that $\gamma''(r) > 0$ if $\gamma''(0) > 0$.

Solutions:

(a)
$$\sum_{i} q_{i} = \sum_{i} p_{i} \exp[a_{i}r - \gamma(r)] = \sum_{i} \frac{p_{i} \exp[a_{i}r]}{g(r)} = \frac{\sum_{i} p_{i} \exp[a_{i}r]}{g(r)} = \frac{g(r)}{g(r)} = 1$$

(b)

$$E[X_r] = \sum_i a_i q_i$$

$$= \sum_i a_i p_i \exp[a_i r - \gamma(r)]$$

$$= \frac{\sum_i p_i a_i \exp[a_i r]}{g(r)}$$

$$= \frac{1}{g(r)} \frac{d \sum_i p_i \exp[a_i r]}{dr}$$

$$= \frac{g'(r)}{g(r)} = \gamma'(r)$$

(c) Since

$$\sum_{i} a_i^2 q_i = \sum_{i} a_i^2 p_i \exp[a_i r - \gamma(r)]$$

$$= \frac{1}{g(r)} \sum_{i} p_i a_i^2 \exp[a_i r]$$

$$= \frac{1}{g(r)} \frac{d \sum_{i} p_i a_i \exp[a_i r]}{dr}$$

$$= \frac{1}{g(r)} \frac{dg'(r)}{dr}$$

$$= \frac{g''(r)}{g(r)}$$

we have

$$VAR[X_r] = \sum_{i} a_i^2 q_i - (E[X_r])^2$$

$$= \frac{g''(r)}{g(r)} - \frac{[g'(r)]^2}{[g(r)]^2}$$

$$= \frac{g''(r) - [g(r)]^2}{[g(r)]^2}$$

$$= \gamma''(r)$$

(d) Since $\gamma''(r) = \text{VAR}[X_r]$, it is nonnegative and $\gamma''(r) \ge 0$. If $\gamma''(0) > 0$, then VAR[X] > 0, which means that X is non-atomic. Thus X_r is non-atomic and $\gamma''(r) > 0$.