This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

DIALOG(R)File 347:JAPIO

(c) 2000 JPO & JAPIO. All rts. reserv.

04409603

Image available

THIN FILM TRANSISTOR AND FABRICATION THEREOF

PUB. NO.:

06-053503 [JP 6053503 A]

PUBLISHED:

February 25, 1994 (19940225)

INVENTOR(s): ARAI MICHIO

APPLICANT(s): TDK CORP [000306] (A Japanese Company or Corporation), JP

(Japan)

APPL. NO.:

04-199749 [JP 92199749]

FILED:

July 27, 1992 (19920727)

INTL CLASS:

[5] H01L-029/784; H01L-021/316

JAPIO CLASS: 42.2 (ELECTRONICS -- Solid State Components)

JAPIO KEYWORD:R004 (PLASMA); R097 (ELECTRONIC MATERIALS -- Metal Oxide Semiconductors, MOS)

JOURNAL:

Section: E, Section No. 1555, Vol. 18, No. 280, Pg. 28, May

27, 1994 (19940527)

ABSTRACT

PURPOSE: To deposit an SiO(sub 2) film having uniform thickness suitable for formation of a uniform gate oxide film by depositing SiO(sub 2) film under a specific filming temperature through plasma CVD employing TEOS + O(sub 2) gas added with Cl(sub 2) gas while generating plasma by means of rod electrodes.

CONSTITUTION: Large area sample substrates 2 are mounted oppositely each other on a supporting table in a silicon chamber 1 into which O(sub 2) gas, TEOS gas, and Cl(sub 2) gas are then introduced. Filming temperature in the silicon chamber 1 is controlled in the range of 450-600 deg.C by means of a heater 7 disposed on the outside of the silicon chamber 1. Voltage is then applied between a pair of rod electrodes 8, 8' interposed between the silicon chamber 1 and the heater 7 to generate oxygen plasma and chlorine plasma thus obtaining an SiO(sub 2) film having uniform quality and thickness through CVD. When an SiO(sub 2) film thus formed is employed, a gate oxide film excellent in step coverage having low interface state density and high withstand voltage can be obtained.

DIALOG(R)File 352:Derwent WPI

(c) 2000 Derwent Info Ltd. All rts. reserv.

009825186

WPI Acc No: 1994-105042/199413

XRAM Acc No: C94-048480 XRPX Acc No: N94-082257

Thin film transistor - uses silica film formed by generating plasma by

electrode at specified as gate oxide film NoAbstract

Patent Assignee: TDK CORP (DENK)

Number of Countries: 001 Number of Patents: 001

Patent Family:

Patent No Kind Date Applicat No Kind Date Week

JP 6053503 A 19940225 JP 92199749 A 19920727 199413 B

Priority Applications (No Type Date): JP 92199749 A 19920727

Patent Details:

Patent No Kind Lan Pg Main IPC Filing Notes

JP 6053503 A 6 H01L-029/784

Title Terms: THIN; FILM; TRANSISTOR; SILICA; FILM; FORMING; GENERATE;

PLASMA; ELECTRODE; SPECIFIED; GATE; OXIDE; FILM; NOABSTRACT

Derwent Class: L03; U11; U12

International Patent Class (Main): H01L-029/784
International Patent Class (Additional): H01L-021/316

File Segment: CPI; EPI

(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平6-53503

(43)公開日 平成6年(1994)2月25日

(51)IntCL⁵

識別記号

庁内整理番号

FΙ

技術表示箇所

H01L 29/784 // H01L 21/316

X 7352-4M

9056-4M

H01L 29/78

311 G

審査請求 未請求 請求項の数2(全 6 頁)

(21)出願番号

特願平4-199749

(71)出願人 000003067

ティーディーケイ株式会社

東京都中央区日本橋1丁目13番1号

(22)出願日 平成 4年(1992) 7月27日

(72)発明者 荒井 三千男

東京都中央区日本橋一丁目13番1号 ティ

ーディーケイ株式会社内

(74)代理人 弁理士 山谷 晧榮 (外1名)

(54)【発明の名称】 薄膜トランジスタ及びその製造方法

(57) 【要約】

【目的】 本発明は薄膜トランジスタ及びその製造方法に関し、 $TEOSガス+O_2$ ガスによるプラズマCVD 法によって大面積基板上に均一な膜厚でかつ均質なゲート酸化膜に適した SiO_2 膜を成膜することを目的とする。

【構成】 TEOSガスと O_2 ガスの他に $C1_2$ ガスも用いてプラズマCVD法を行う際、 O_2 ガスと $C1_2$ ガスをプラズマ化して450 $C\sim600$ Cの成膜温度でSiO2 膜を形成し、これをTFTのゲート酸化膜とする。

【特許請求の範囲】

【請求項1】 薄膜トランジスタに用いるゲート酸化膜として、テトラエトキシシラン(TEOS)ガスと酸素ガスと塩素ガスによるプラズマCVD法によって形成するSiO2 膜であって、その成膜温度を450~600℃にし、棒状電極によってプラズマを発生させつつ成膜した均質なSiO2 膜を用いることを特徴とする薄膜トランジスタ。

【請求項 2】 薄膜トランジスタに用いるゲート酸化膜として、TEOSガスと酸素ガスと塩素ガスによるプラズマCVD法であって、その成膜温度を $450\sim600$ ℃とし、反応室内に棒状電極によりプラズマを発生させつつSiO2 膜を成膜する工程を含む薄膜トランジスタの製造方法。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は薄膜トランジスタ(Thin Film $Transistor以下TFTという)とその製造方法に係り、特にTFTのゲート酸化膜として適した良好な膜質である上に、均一な膜厚の<math>SiO_2$ 膜を有するTFT及びその製造方法に関する。

[0002]

【従来の技術】ファクシミリ用のイメージセンサ、液

晶、薄膜IC等に用いられるTFTのゲート酸化膜は、 大面積基板上にTFTを構成するとき、均一な膜質であ るとともに、その膜厚の均一性も求められる。

【0003】従来このようなTFTに適したゲート酸化 膜用 SiO_2 は、CVD法で形成することがよく知られている。またCVD法により SiO_2 膜を形成することも周知である(例えば、特開昭61-63020号公報、特開昭62-216261号公報、特開平1-238024号公報、特開平2-93069号公報、特開平2-170974号公報等参照)。

【0004】従来の代表的なゲート酸化膜用 SiO_2 膜には次のようなものがある。

(1) テトラエトキシシラン $\{Si(OC_2H_5)_4\}$ (以下TEOSという) $\{EO_2\}$ ガスによる滅圧CVD法 ($\{EO_2\}$ により形成した $\{EO_2\}$ 膜、(2) スパッタ法により形成した $\{EO_2\}$ 膜、(3) $\{EC_1\}$ マCVD法により形成した $\{EO_2\}$ 膜、(4) TEOSと $\{EO_2\}$ ガスによるプラズマCVD法 $\{EO_2\}$ により形成した $\{EO_2\}$ により形成した $\{EO_2\}$ により形成した $\{EO_2\}$ により形成した $\{EO_2\}$ により形成した $\{EO_2\}$ により形成した

【0005】これらのゲート酸化膜用 SiO_2 膜の特性を表1に示す。

[0006]

【表1】

			法	耐圧(MVfm)	界面单位密度(Karey)	屈折牽	ステップカバレージ
	1	TEOS: LP-C	VD法		1×10"以下	1.2~2.5	良好
3	2	スパッ	タ法	8	/x/0 ["] 以下	1.46	不可
	_	ECR-P		8	5×10"	1.46	良好
	4	TEQS+ P-CV	O2 /D法	8	/x/0"以下	1.46	良好

【0007】一般にゲート酸化膜用 SiO_2 としては耐 圧 6MV/c m以上、界面準位密度は $1\times1011/c$ m $2\cdot e$ V以下、屈折率1.46 程度のものが求められて いる。

【0008】表1から明らかな如く(1) TEOS+O2 ガスのLP-CVD法によるS iO_2 膜は耐圧が低く、屈折率が変動するなどの問題点がある。

(2) スパッタ法によるSiO2 膜はステップカバレージが悪く、ゲートリークを発生し易いという問題点がある。

【0009】(3) ECRプラズマ又はCVD法によるSiO2 膜は界面準位密度が大きく、TFTを形成した場合、素子のオフ電流が大きいという問題点がある。

(4) $TEOS + O_2$ ガスのP - CVD法による SiO_2 膜は表1に示す特性では最もすぐれたものである。

[0010]

【発明が解決しようとする課題】ところがTEOS+O 2 ガスによるP-CVD法によって成膜するための従来 の装置はサス・ステンレス・チャンバーを使用しなけれ ばならない。そして、このサス・ステンレス・チャンバーの不純物が、生成する酸化膜中に混入し易いこと、酸化膜の成膜温度が450℃以下と低く、高温での膜生成が不可能であるという問題点がある。

【0011】さらにこのTEOS+O2 ガスによるP-CVD法によって大面積基板上にSiO2 膜を成膜する場合、膜厚と膜質の均一性を得るために、チャンバー内に均一なプラズマを発生させる。そのためチャンバーの外側に設ける平板電極を平行にし、このサス又はAl電極内で製造しなければならない。

【0012】このため、この平行平板電極のサイズより大きな基板に SiO_2 膜を成膜するのは困難であった。従って、本発明の目的はTEOSガスを用いたCVD法によって大面積基板上に均一な膜厚でかつ均質なゲート酸化膜に適した SiO_2 膜を成膜することである。

[0013]

【課題を解決するための手段】前記目的を達成するため、本発明者は鋭意研究の結果、TEOS+O2 ガスにCl2 ガスを加えたプラズマCVD法を用いることによ

り、大面積基板に均一な膜厚と膜質を有するSiO2を 生成することができることを見出した。成膜温度は45 0~600℃の範囲である。

【0014】この時、 O_2 プラズマを発生させるための 電極は、チャンバー内に均一なプラズマを発生させる必 要はなく、棒状電極で十分均質なSiO2膜を得ること ができる。

[0015]

【作用】TEOS+О2 ガス+С12 ガスによるプラズ マCVD法によれば膜の均質性、膜厚の均一性が得られ ることはもちろん、SiO2 膜の成膜速度(グロースレ ート)が早くなる上、反応のために必要な成膜温度をさ らに下げることもできる。

[0016]

【実施例】本発明の一実施例を図1~図4により説明す る。図1は本発明の一実施例に使用するCVD装置を示 す概略構成図であり、図1 (a) は装置の断面図、図1 (b) は装置の平面図である。

【0017】図1において1は石英チャンバー、2は試 料基板、3、4、5はガス導入口、6は排気ポンプ、7 はヒータ、8、8′は棒状電極を示す。ガス導入口3、 4、5からそれぞれ、O2 ガス、TEOSガス、C12 ガスが石英チャンパー1に導入される。また排気ポンプ 6により、石英チャンバー1内を減圧する。

【0018】石英チャンバー1の外部に設けられたヒー タ7により石英チャンバー内の成膜温度を制御する。本 実施例においては、石英チャンバー1とヒータ7の間に 例えば直径2cmの一対の棒状電極8、8′が設けられ ており、両者に電圧を印加することにより、石英チャン バー1内に酸素プラズマ、塩素プラズマを発生させる。

【0019】この装置を用いた SiO_2 膜の成膜方法に ついて説明する。石英チャンバー1内に例えば30cm ×30cm角の大面積の試料基板2・・・を図示しない 支持台上に対向する形で載置し、次に示す如き成膜条件 によって試料基板上2上に SiO_2 膜を成膜する。

【0020】TEOSガズ

5 0 SCCM

O2 ガス

5 0 0 SCCM

Cl2 ガス

5 SCCM

電力

100W

成膜温度

600℃

圧力 0. 05 Torr~2. 0 Torr

この条件で成膜した後550℃以上の温度で長時間アニ ールすることにより、より安定化した SiO_2 膜を得る ことができる。なお、TEOSガスや O_2 ガスのそれぞ れの量を変えても同様な安定した SiO_2 膜を得ること ができる。

【0021】形成したSiO2 膜は屈折率1.46、耐 圧、界面準位密度はともに従来のTEOS+О2 ガスの P-CVD法による SiO_2 膜と変わらない良好な特性 を示す。しかもCVD法で成膜したので、ステップカバ レージも良好である。

【0022】また、本発明においては添加するC1 $_2$ ガ スの量によって、成膜したSiO2膜の膜厚にバラツキ が生じることがある。図2に、30cm×25cm基板 に成膜した本発明の SiO_2 膜の膜厚のバラツキと成膜 温度との関係及びCl2 ガスの量によって変化するSi ○2 膜の膜厚のバラツキと成膜温度との関係を示す。 【0023】なお、この時の成膜条件は次の通りであ

る。 TEOS. 5 O SCCM

O2 ガス 300 SCCM Clgガス 5 SCCM(曲線A)、20 SCCM(曲線 B)、50_{SCCM}(曲線C)

電力 100 (W)

図 2 の曲線Aによれば、C 1 2 ガスを 5 SCCM導入した場 合、成膜温度を530℃以上とすることにより膜厚の均 性が満足できるものとなる。さらにCl2 ガスの濃度を 増加すれば450℃以上のより低い温度領域で膜厚のバ ラツキを非常に少なくすることができる。

【0024】また、С12ガスを導入することによって SiO₂ 膜の成膜速度(グロスレート)を上昇させるこ とができる。さらにNa等のゲッタリング効果を期待で

【0025】熱CVD法によるSiO2 膜の成膜は62 0℃から始まるが、本発明ではプラズマをかけるためよ り低い温度領域においても均一なSi〇2 膜を生成でき る。図2からも明らかな如く450 $\mathbb{C} \sim 600$ \mathbb{C} が適当 である。

【0026】また電力についても同様の理由から必要に 応じて10~500Wの間の値をとることができる。次 に本発明によるSiO2 膜をゲート酸化膜として用いた TFTの一例として、ガラス基板上にC-MOSFET から成るTFTを形成する場合の製造工程を図3、図4 によって説明する。

【0027】まずガラス基板として、例えば日本電気ガ ラス社製のネオセラム(商品名)ガラス基板31を用意 し、このネオセラムガラス基板31上にジシラン(Si 2 H₆) ガスを用いた減圧CVD法によりa-Si層3 2を約1000Åの厚さで成膜する(図3 (a) 参 照)。

【0028】成膜条件はSi₂H₆ガス:100_{SCCM}、 圧力:0. 3Torr、Heガス:200_{SCCM}、加熱温 度:450℃~570℃であり、膜の成長<u>速度</u>は50Å ~500A/分である。

【0029】次にa−Si層32を550℃~600℃ で8時間~56時間加熱し、固相成長させ固相成長した 膜32′とする。固相成長した膜32′にフィールド酸 化膜用の SiO_2 膜 33をRFスパッタリングにより形 成した後、レジストによりパターニングしてチャネル部 を開孔する(図3(b)参照)。

【0030】 SiO_2 膜 33を含む基板上に本発明のゲート酸化膜用の SiO_2 膜 34 を形成する。成膜条件は前記実施例と同様にし次の通りである。

[0031]

TEOSガス 50 SCCM O2 ガス 300 SCCM Cl2 ガス 20 SCCM

電力

100W

成膜温度

600℃

0℃以上の温度で長時間アニールする。

圧力0.05Torr~2.0Torrこの条件で膜厚500Å~1500Åで成膜した後55

【0032】次にこの上にゲート電極用のa-S i B 3 5 ' を形成する(図3(c)参照)。レジストを用いた2段階のエッチングにより、ゲート電極のパターニングを行い、ゲート酸化膜34、ゲート電極35を形成する(図3(d)参照)。

【0033】イオン打込み用のマスクとして、一方のチャネル部開孔部にレジスト36を形成し、開孔部に第1のドーパントイオン、例えばリン(P)イオンをドープする(図3(e)参照)。

【0034】このレジスト36を剥離し、第2のイオン打込み用マスクのためのレジスト37を形成し、開孔部に第2のドーパントイオン、例えばホウ素(B)イオンをドープし、C-MOSFETを形成する(図3(f)参照)。

【0035】次にレジスト37を剥離後、 N_2 雰囲気中で5500~6000で24時間加熱し、ドーパントの活性化とゲート電極a-Si層35の結晶化を行う。さらに例えば H_2 雰囲気中で4000、30分間加熱して水素化を行い、チャネル層を含む半導体層の欠陥準位を減少させる(図4(a)参照)。

【0036】この後、基板全体にスパッタリングによって層間絶縁膜として SiO_2 膜38を形成する(図4 (b) 参照)。次にこの SiO_2 膜38にコンタクトホールを形成し、電極用Al 膜を成膜後、パターニングし

て、ガラス基板上の非単結晶半導体層中に低温プロセスによりC-MOSFETを完成する。

[0037]

【発明の効果】本発明により形成するゲート酸化膜用S $i O_2$ 膜は従来の $TEOS+O_2$ ガスによるP-CVD 法による SiO_2 膜と同様に良質な SiO_2 膜を、例えば $30cm\times30cm$ 角の如き大面積基板に均一な膜厚を保持しつつ、より低い温度領域で成膜できる。その上成膜速度が早くなる。

【0038】また本発明により形成した SiO_2 膜を用いることにより、ステップカバレージがすぐれ、界面準位密度が小さく、耐圧の大きいゲート酸化膜が得られる。従って、このゲート酸化膜を用いたTFTは活性SiBの厚みを厚くでき、TFTの移動度を大きくすることが出来る効果がある。

【図面の簡単な説明】

【図1】本発明による薄膜トランジスタを製造するCV D装置の概略構成図である。

【図2】本発明により成膜した SiO_2 膜の膜厚のバラッキと成膜温度の関係を示す図である。

【図3】本発明により成膜した SiO_2 膜を用いたC-MOSFETの製造工程説明図の一部である。

【図4】本発明により成膜した SiO_2 膜を用いたC-MOSFETの製造工程説明図のうち図3の次工程説明図である。

【符号の説明】

- 1 石英チャンバー
- 2 試料基板
- 3 ガス導入口
- 4 ガス導入口
- 5 ガス導入口
- 7 ヒータ
- 8 棒状電極
- 34 ゲート酸化膜
- 35 ゲート電極

【図2】

[図3]

