HW Assignment 5

Due date: Thursday 4/7/2016

Question 1

The signal $f_1(t) = 10^4 rect(10^4 t)$ is passed through an ideal low pass filter

 $H_1(\omega) = rect\left(\frac{\omega}{4\cdot 10^4\pi}\right)$, to obtain the output signal $y_1(t)$. The signal $f_2(t) = \delta(t)$ is passed

through a different low-pass filter $H_2(\omega) = rect \left(\frac{\omega}{2 \cdot 10^4 \pi} \right)$ to obtain $y_2(t)$. the two outputs are

multiplied $y(t) = y_1(t) \cdot y_2(t)$.

- 1. Sketch $F_1(\omega)$ and $F_2(\omega)$.
- 2. Sketch $H_1(\omega)$ and $H_2(\omega)$.
- 3. Sketch $Y_1(\omega)$ and $Y_2(\omega)$.
- 4. What is the bandwidth of the signals y_1, y_2 and y?

Note: we define $rect(x) = \begin{cases} 1 & |x| < \frac{1}{2} \\ 0 & else \end{cases}$

Question 2

consider the functions

$$f_{\alpha}(t) = \begin{cases} \frac{1}{2} + \frac{1}{2}\cos\left(\frac{\pi}{\alpha}t\right) & |t| < \alpha \\ 0 & else \end{cases} \quad g(t) = \begin{cases} 1 & |t| < \frac{1}{2} \\ 0 & else \end{cases}$$

where $0 < \alpha \le \frac{1}{2}$.

- 1. Write $f_{\alpha}(t)$ as a sum of three rect functions (with modulations = complex exponents).
- 2. Calculate $F_{\alpha}(\omega)$ the Fourier transform of $f_{\alpha}(t)$.
- 3. Using any plotting software (Matlab is recommended), plot $|F_{\alpha}(\omega)|$ for 3 different values of α .
- 4. plot the function $f_{\alpha} * g$ in the frequency domain for 3 different values of α .

Question 3

Consider the fluctuating solution to a second order ODE and it's analytical version:

$$f(t) = u(t)e^{-\alpha t}\cos(\omega_0 t)$$

$$f_a(t) = u(t)e^{-\alpha t} \frac{1}{2}e^{j\omega_0 t}$$

¹ Note that you are not supposed to calculate the Fourier transform using a computer - you need to calculate the correct formula analytically and then plot it.

- 1. Calculate the Fourier transforms $F(\omega)$ and $F_a(\omega)$.
- 2. Sketch (manually or using plotting software) the amplitudes $|F(\omega)|$ and $|F_a(\omega)|$.

Since in the positive range $|F_a(\omega)| \approx |F(\omega)|$, we shall use the analytical signal $(f_a(t))$ from now on, since the calculations are simpler.

- 3. What is the maximum value of $|F_a(\omega)|$? at what value of ω is the maximum attained? (hint: try to find the maximum value of $\left|\frac{1}{F_a(\omega)}\right|^2$).
- 4. At what frequencies is the value of $|F_a(\omega)|$ equal to half of the maximum?

Denote by ω_{r} the frequency of the maximum and by ω_{l} and ω_{h} the half-maximum points.

- 5. Write the quality factor, defined $Q = \frac{\omega_r}{|\omega_h \omega_l|}$, as a function of α and ω_0 . What does it measure?
- 6. In you own words, describe the connection between the quality factor and attributes of the time-domain function $f_a(t)$. What does it imply about keeping a constant Q for different resonance frequencies ω_0 ?

Question 4

Calculate the inverse Laplace transforms for the following functions and ROCs:

1.
$$X(s) = \frac{1}{s+4} \operatorname{Re}\{s\} > -4$$
.

2.
$$X(s) = \frac{1}{s+4} \operatorname{Re}\{s\} < -4$$
.

3.
$$X(s) = \frac{s}{s^2 + 1}$$
 Re $\{s\} > 0$.

4.
$$X(s) = \frac{1}{s-2} \operatorname{Re}\{s\} > 2$$
.

5.
$$X(s) = \frac{1}{(s-2) + \frac{1}{s-2}} \operatorname{Re}\{s\} > 2$$
.

Question 5

The function g(t) is a periodic continuation of function f(t) with a cycle T_0 .

- 1. Show that $G(s) = \frac{F(s)}{1 e^{-sT_0}}$.
- 2. Using this result, calculate the Laplace transform of the signal p(t)

Question 6

consider the function $x(t) = u(t)e^{-t}$

- 1. Calculate F(s).
- 2. Calculate $F(\omega)$, how come it exists?
- 3. What's the connection between F(s) and $F(\omega)$?