MIDDLE EAST TECHNICAL UNIVERSITY

SEMESTER I EXAMINATION 2024-2025

CENG 403 – Deep Learning - CNN Visualization & Classic Architectures (University Sources)

January 2025 TIME ALLOWED: 3 HOURS

INSTRUCTIONS TO CANDIDATES

- 1. This examination paper contains **SEVEN** (7) questions and comprises **TEN** (10) printed pages.
- 2. Answer all questions. The marks for each question are indicated at the beginning of each question.
- 3. Answer each question beginning on a **FRESH** page of the answer book.
- 4. This IS NOT an OPEN BOOK exam.
- 5. Show all mathematical derivations clearly with proper notation.
- 6. For architectural diagrams, draw clear and labeled components.
- 7. Calculate all requested parameters and show intermediate steps.
- 8. Explain computational complexity where requested.

Question 1. CNN Visualization Techniques and CAM Variants (25 marks)

Based on Stanford CS231n and university computer vision course materials.

- (a) Implement Class Activation Mapping (CAM) for a CNN with Global Average Pooling. Given a feature map F_k of size $H \times W$ for the k-th channel and weight w_k connecting to class c: (10 marks)
 - Derive the mathematical formulation for CAM: $M_c(x,y) = \sum_k w_k \cdot F_k(x,y)$
 - Explain why CAM requires Global Average Pooling (GAP) layer
 - Calculate the computational complexity for generating CAM for a 512×512 image with 512 feature maps

- (b) Compare CAM with Grad-CAM and Grad-CAM++. Explain the following improvements: (10 marks)
 - How Grad-CAM generalizes CAM to any CNN architecture without GAP
 - Why Grad-CAM++ provides better localization for objects with low spatial footprint
 - Mathematical differences in weight calculation between the three methods

- (c) Design an evaluation protocol for visualization methods. Propose metrics for: (5 marks)
 - Quantitative evaluation of localization accuracy
 - \bullet Qualitative assessment of explanation quality
 - Computational efficiency comparison

Question 2. AlexNet Architecture Analysis

(22 marks)

Based on D2L.ai and university deep learning course materials covering computational analysis.

- (a) Analyze AlexNet's computational requirements. Given the architecture specifications: (12 marks)
 - Input: $224 \times 224 \times 3$ images
 - Conv1: 96 filters, 11×11, stride 4, pad 0
 - Conv2: 256 filters, 5×5, stride 1, pad 2
 - FC6: 4096 neurons, FC7: 4096 neurons, FC8: 1000 neurons

Calculate:

- Memory footprint for each convolutional layer
- Number of parameters in fully connected layers vs. convolutional layers
- Which component dominates memory usage and why

- (b) Evaluate AlexNet's key innovations and their impact on deep learning: (10 marks)
 - ReLU activation functions: advantages over sigmoid/tanh for training speed
 - Dropout regularization: mathematical formulation and overfitting prevention
 - GPU utilization: architectural modifications needed for parallel processing

 \bullet Performance improvement: quantify the error rate reduction from 26.2% to 15.3%

Question 3. GoogleNet/Inception Architecture Design (28 marks) Based on research papers and university course materials on efficient CNN architectures.

- (a) Design the Inception module addressing the multi-scale processing challenge. For an input with C channels: (15 marks)
 - Explain why "information can exist at multiple scales" requires different filter sizes
 - Draw the naive inception module with 1×1 , 3×3 , 5×5 convolutions and 3×3 max pooling
 - Calculate output channels: if C + C + C + C =output channels, show the growth problem
 - ullet Design the improved inception module with 1×1 convolutions for dimensionality reduction

Draw naive vs. improved inception module

Show dimensionality bottleneck solution with 1×1 convolutions

(b) Analyze GoogleNet's efficiency achievements compared to AlexNet: (8 marks)

- Parameter reduction: from 60 million (AlexNet) to 4 million (GoogleNet)
- Role of Global Average Pooling in reducing parameters
- Computational cost comparison and architectural depth (22 layers)

(c) Evaluate auxiliary classifiers in GoogleNet:

(5 marks)

- Mathematical formulation of multi-loss training
- Benefits for gradient flow in deep networks
- Trade-offs in model generalization

Question 4. ResNet and Residual Learning Theory (30 marks) Based on Microsoft Research ResNet paper and university deep learning theory courses.

- (a) Analyze the degradation problem in deep networks that ResNet addresses: (10 marks)
 - Why do 56-layer CNNs perform worse than 20-layer CNNs on both training and test sets?
 - Mathematical explanation of gradient vanishing in very deep networks
 - Distinction between degradation problem and overfitting

- (b) Derive the mathematical foundation of residual learning: (12 marks)
 - Given target mapping H(x), show why learning F(x) = H(x) x is easier than learning H(x)
 - Residual block formulation: $y = F(x, \{W_i\}) + x$
 - Gradient flow analysis: $\frac{\partial loss}{\partial x} = \frac{\partial loss}{\partial y} (1 + \frac{\partial F}{\partial x})$
 - Explain why the "+1" term prevents gradient vanishing

- (c) Compare ResNet variants and their performance characteristics: (8 marks)
 - ResNet-18, ResNet-34: basic blocks vs. deeper architectures
 - ResNet-50, ResNet-101, ResNet-152: bottleneck blocks for efficiency
 - Performance scaling: how accuracy improves with depth up to 152 layers
 - Computational complexity comparison with VGG architectures

Question 5. Adversarial Attacks and Defenses (25 marks) Based on cybersecurity research and university machine learning security courses.

- (a) Formulate adversarial attack optimization problems for image classification: (10 marks)
 - Targeted attack: $\min_{\delta} |||\delta|||_p$ subject to $f(x+\delta) = t$ and $|||\delta|||_{\infty} \le \epsilon$
 - Untargeted attack: $\min_{\delta} \||\delta\||_p$ subject to $f(x+\delta) \neq y$ and $\||\delta\||_{\infty} \leq \epsilon$
 - Explain the role of L_p norms in constraint formulation

- (b) Implement the Fast Gradient Sign Method (FGSM): (10 marks)
 - Derive FGSM formula: $x' = x + \epsilon \cdot \text{sign}(\nabla_x J(\theta, x, y))$
 - Explain why FGSM is effective against linear behavior in neural networks
 - Calculate perturbation for a binary classification problem with crossentropy loss
 - Discuss computational efficiency compared to iterative methods

- (c) Analyze defense strategies against adversarial attacks: (5 marks)
 - Adversarial training: training with adversarial examples

- Defensive distillation: temperature-based softmax smoothing
- Detection methods: statistical analysis of input distributions
- Trade-offs between robustness and accuracy

Question 6. Architecture Comparison and Evolution (20 marks) Based on comprehensive analysis from multiple university computer vision courses.

(a) Create a comparative analysis table for CNN architectures: (12 marks)

Architecture	Depth	Parameters	Top-5 Error	Key Innovation
AlexNet (2012)	8	60M	15.3%	?
VGG-16 (2014)	16	138M	?	?
GoogleNet (2014)	22	4M	?	?
ResNet-152 (2015)	152	?	?	?

Complete the table and analyze:

- Parameter efficiency trends over time
- Relationship between depth and performance
- Trade-offs between accuracy and computational cost

- (b) Evaluate architectural design principles: (8 marks)
 - Why smaller filter sizes (3×3) became preferred over larger ones $(11\times11, 7\times7)$
 - Role of skip connections in enabling very deep networks
 - Impact of global average pooling vs. fully connected layers
 - Evolution from hand-crafted to learnable architectures

Question 7. Feature Visualization and Interpretability (20 marks) Based on interpretable AI research and university courses on explainable deep learning.

- (a) Design feature inversion techniques for understanding CNN representations: (10 marks)
 - Formulate optimization: $\min_{x} |||f(x) f_0|||^2 + \lambda R(x)$
 - Explain different regularization terms R(x): total variation, L_2 norm
 - Implement gradient-based optimization for feature reconstruction
 - Analyze why early layers preserve more spatial information than later layers

- (b) Evaluate saliency map generation methods: (10 marks)
 - Vanilla gradients: $S_i = \left| \frac{\partial f_c}{\partial x_i} \right|$
 - Integrated gradients: addressing gradient saturation problems
 - LIME (Local Interpretable Model-agnostic Explanations): local approximation approach
 - Quantitative evaluation metrics for explanation quality

END OF PAPER