# Reproducible analysis reports with eye-tracking reading time data

**Summer Semester 2023** 

Daniela Palleschi

Invalid Date

# Table of contents

| 1          | Welcome/About |                                         |    |
|------------|---------------|-----------------------------------------|----|
|            | 1.1           | Course description                      | 3  |
|            | 1.2           | Course credits                          | 3  |
| 2          | Rea           | ding list                               | 5  |
|            | 2.1           | Further readings                        | 5  |
| 3          | Rep           | roducible Analyses                      | 8  |
|            | 3.1           | Replication                             | 8  |
|            |               | 3.1.1 An example from language research | 8  |
|            | 3.2           | Reproducibility                         | 9  |
|            |               | 3.2.1 Replication vs. Reproducibility   | 9  |
|            | 3.3           | Open Science: Why should I care?        | 10 |
|            |               | 3.3.1 What can I do?                    | 10 |
|            |               | 3.3.2 How to do better science          | 10 |
|            |               | 3.3.3 What will we learn here?          | 11 |
|            | 3.4           | R is for Reproducibility                | 11 |
|            | 3.5           | Exercises                               | 11 |
|            |               | 3.5.1 RStudio                           | 11 |
|            |               |                                         | 13 |
|            |               | 3.5.1 Quarto                            | 14 |
|            |               | 3.5.2 Quarto Exercises                  | 16 |
|            |               | 3.5.3 Quarto cont'd                     | 17 |
| References |               |                                         | 18 |

# 1 Welcome/About

Welcome to the website for the course "Reproducible analysis reports with eye-tracking reading time data" for the Summer Semester 2023. Some quick info about the course:

- the language of instruction is English
- Block course:
  - April 12-14 (10am-4pm)
  - June 30th (2-6pm)
  - July 1st (10am-4pm)

Most documents are available as slides, html, and PDF on Moodle. Choose whichever you prefer (I suggest html).

## 1.1 Course description

- develop skills and know-how
  - create reproducible **reports & presentations** of eye-tracking reading data
  - common measures in eye-tracking reading
  - importance of **reproducible workflow**
  - communicate findings
- hands-on exercises in RStudio with the R programming language
  - data wrangling (tidyverse)
  - data visualisation (ggplot2),
  - descriptive and inferential statistics (lme4 and lmerTest)

#### 1.2 Course credits

- 4 LP
  - attendance and participation: 1LP
  - In-class exercises and preparation: 1LP
  - Assignments: 2 LP

- 1. Reproducible (pilot) analysis report + Pre-registration
- 2. Reproducible analysis report

# 2 Reading list

- this course does not have a heavy reading load, but a few readings are strongly recommended:
  - Open Science: (kathawalla\_easing\_2021?)
  - Eye-tracking reading: (clifton\_eye\_2007?); (vasishth\_what\_2013?);
  - A short recommendation for statistics for psycholinguists: (vasishth\_statistical\_2016?)
  - Statistics for Linguistics (textbook): (winter\_statistics\_2019?) (E-book available via Grimm)

# 2.1 Further readings

- there are lots of useful resources out there, specifically:
  - Bodo Winter's tutorials on linear (mixed) models (winter\_linear\_2013?; winter\_very\_2014?)
  - the PsyTeachR website is a great resource for hands-on stats and/or data analysis in R from the University of Glasgow School of Psychology and Neuroscience

# **Session Info**

Save your session info at the end of each document. Our results very often depend on the version of R/RStudio/a package we used. This is a great first step towards creating a reproducible workflow!

```
R version 4.3.0 (2023-04-21)
Platform: aarch64-apple-darwin20 (64-bit)
Running under: macOS Ventura 13.2.1
Matrix products: default
        /Library/Frameworks/R.framework/Versions/4.3-arm64/Resources/lib/libRblas.0.dylib
LAPACK: /Library/Frameworks/R.framework/Versions/4.3-arm64/Resources/lib/libRlapack.dylib;
locale:
[1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8
time zone: Europe/Berlin
tzcode source: internal
attached base packages:
[1] stats
              graphics grDevices utils
                                            datasets methods
                                                                 base
loaded via a namespace (and not attached):
 [1] compiler_4.3.0 fastmap_1.1.1
                                     cli_3.6.1
                                                     tools_4.3.0
 [5] htmltools_0.5.5 rstudioapi_0.14 yaml_2.3.7
                                                     rmarkdown_2.22
 [9] knitr_1.43
                     jsonlite_1.8.5 xfun_0.39
                                                     digest_0.6.31
                     evaluate_0.21
[13] rlang_1.1.1
```

# References

# 3 Reproducible Analyses

What is it and why should I care?

## 3.1 Replication

"There is increasing concern that in modern research, false findings may be the majority or even the vast majority of published research claims"

- (ioannidis\_why\_2005?)
- replication refers to re-running a previous experiment with as few differences as possible
  - aim: determine whether the original results were robust and are replicable
  - if yes, great! the original findings are reliable
  - if no, hmm, maybe the original findings were false positives? or due to some other factor?
- in recent years, researchers have tried to replicate classic studies in their field
  - but in many cases, they did not get the same effects the original study reported (and were famous for)
- this began the *replication crisis*

#### 3.1.1 An example from language research

- (nieuwland\_large-scale\_2018?): a direct EEG<sup>1</sup> replication (versus conceptual replication)
- a multi-lab replication of (delong probabilistic 2005?)'s impactful paper

<sup>&</sup>lt;sup>1</sup>electroencephalography

- (**delong\_probabilistic\_2005?**): reported N400 effects elicted at unexpected nouns, but also on preceding determiners (English a/an) when it signalled an unexpected word,
  - \* e.g., The day was breezy so the boy went outside to fly...a kite/\*an airplane
  - \* taken as evidence of pre-activation of phonological form, graded by cloze probability
- (nieuwland large-scale 2018?): replicated N400 at noun, but not at adjective
  - \* i.e., failure to replicate a famous finding

## 3.2 Reproducibility

- reproducibility refers to the ability to reproduce somebody's analyses with their
  - data
  - and code
- it is not something we do once, nor is it something that will get us published
  - but it's important for open science and encourages transparency

#### 3.2.1 Replication vs. Reproducibility

- replication of a study
  - repeating an **experiment**
  - getting *similar* results
- reproducibility of analyses
  - repeating **analyses** of the same data
  - getting the same results
- e.g., when you submit a paper to a journal, they make ask for your data and code so reviewers can *reproduce* your analyses
  - requires data and code
- if you have interesting findings, other researchers (or future you) may want to replicate your study to see if they can replicate your findings
  - (may require) stimuli, set-up and presentation information, participant demographics

## 3.3 Open Science: Why should I care?

- 1. Science is cumulative
  - We should ensure we're building on reliable, robust findings
  - i.e., it's good scientific practice
- 2. Because the field cares
  - replication/reproducibility are beginning to be foregrounded by e.g., journals/job advertisements
- 3. Helps future you

#### 3.3.1 What can I do?

- there's a variety of open science practices that we can choose to implement
- some suggestions from (kathawalla\_easing\_2021?):

Level: Easy

- 1. Journal Club
- 2. Project workflow
- 3. Pre-prints

Level: Medium

- 4. Reproducible code
- 5. Sharing data
- 6. Transparent manuscripts
- 7. Pre-registration

Level: Difficult

8. Registered reports

#### 3.3.2 How to do better science

- don't be afraid of making mistakes
  - (most) researchers aren't statisticians or programmers
  - do the best you can, and be transparent
- doing *some* of the steps is better than doing *none*

#### 3.3.3 What will we learn here?

Design and Reporting

- Preregistration/Registered Reports
- Transparent writing

#### Analysis

- Reproducible code
  - with open source software (R, RStudio, packages)
  - dynamic reports with Quarto/Rmarkdown
- Project workflow
  - folder structure
    - \* how to sensibly set up your folders
  - contained environments
    - \* using RProjects and the here package

## 3.4 R is for Reproducibility

- we will be working with R, RStudio, Quarto, and RProjects
  - R: a programming language for statistical computing and graphics
  - RStudio: an integrated development environment (IDE)
    - \* RStudio Desktop
    - \* RStudio Server
  - Quarto (similar to Rmarkdown): dynamic reports
    - \* combining text, code, and printed tables and figures
  - RProjects: a workflow tool
    - \* contains all files necessary for a project
    - \* works with *relative* file paths

## 3.5 Exercises

#### 3.5.1 RStudio

1. Open RStudio



Figure 1. Open Science research practices across the research cycle

Figure 3.1: Image source: (kathawalla\_easing\_2021?) (all rights reserved)

- locate the Environment, Files, and Console panes
- File > New File > R script
- write [your birth-month number] \* [the your birth day] and hit Enter
- write print("Hello World!")
- write number <- 3\*32; this will create an object/variable 'number'
- write string <- "Hello World!"; this will create an object/variable 'string'
- write number
- write string
- add comments describing each step using #
- File > Save As

```
# multiply 5 by 7
5*7

[1] 35

# print some text
print("Hello World!")

[1] "Hello World!"

# save an object 'number' with 5*7
number <- 5*7

# save an object 'string' with text
string <- "Hello World!"

# print number
number

[1] 35

# print string
string</pre>
```

```
[1] "Hello World!"

# do math with objects
number+number

[1] 70

number*number

[1] 1225

number*2

[1] 70

month <- 5
day <- 7
month*day</pre>
```

## 3.5.1 Quarto<sup>2</sup>

[1] 35

- R scripts are a great way to keep track of what you did
  - however, the output is not saved, and adding comments with # gets kind of chunky
  - enter: dynamic reports!
- dynamic reports are those that combine text, code, and output
  - they are a great tool for communicating, collaborating, and documenting
  - they are also fantastic for note-taking
- Rmarkdown vs. Quarto

<sup>&</sup>lt;sup>2</sup>https://r4ds.hadley.nz/quarto.html#workflow

- both can combine text with code, outputting PDFs, Word Documents, html, or slides
- main difference: Quarto has native support of a wider range of programming languages (e.g., Python and Julia)
- Want to know more? Check out Hadley Wickham's intro (wickham\_r\_nodate?)

#### 3.5.1.1 YAML

```
title: "My title"
author: "My name"
format: html
```

- YAML is a human-readable programming language used to configure documents
- formatting is important: but be sandwiched between --- and ---
- in Quarto the output type must at least be given (with R: pdf, html, revealjs)

#### 3.5.1.2 Headings and text

```
# This is a heading
This is text.
## This is a sub-heading
This is more text.
```

- headings are indicated by #
  - the number of #'s indicates the heading level

#### 3.5.1.3 Code snippets

```
# do some math
year <- 1989
dog <- "Lola"</pre>
```

- sandwiched between markdown ```{r} and 'markdown
  - shortcut: Ctrl/Cmd+Alt+I

#### 3.5.1.4 In-line code

```
I was born on `r month`/`r day`/`r year`. My dog's name is `r dog`.
```

I was born on 5/7/1989. My dog's name is Lola.

- code output that was run above text can be called in-line using 'r '

#### 3.5.1.5 Altogether

```
title: "My title"
author: "My name"
format: html
---

# This is a heading

This is text.

## This is a sub-heading

This is more text.

Add some code chunks.

```{r}

# do some math
year <- 1989
dog <- "Lola"

And use call objects for in-line code: I was born on `r month'/`r day`/`r year`. My dog's
```

#### 3.5.2 Quarto Exercises

- 3. Create a new Quarto document
  - File > New File > Quarto Document
  - Read the instructions
  - Practice running the chunks individually

- render the document
- verify that you can modify the code, re-run it, and see modified output
- 4. Create one new Quarto document for each of the three built-in formats: HTML, PDF and Word.
  - Render each of the three documents
  - How do the outputs differ?
  - How do the inputs differ?<sup>3</sup>

#### 3.5.3 Quarto cont'd

- Choose a Quarto document:
  - give it a title, your name (author), and unclick 'Use visual markdown editor'
- Render
- YAML:

```
title: "Eye-tracking during reading"
subtitle: "Lecture 2 notes"
author: "[YOUR NAME HERE]"
lang: en
date: `r Sys.Date()`
```

- Render
- you can now try writing your class notes in this document (if you're brave)

<sup>&</sup>lt;sup>3</sup>You may need to install LaTeX in order to build the PDF output — RStudio will prompt you if this is necessary.

# References