REPORT DOCUMENTATION PAGE

Form Approved OMB No. 0704-0188

blic reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources,

1. AGENCY USE ONLY (Leave blank)	2. REPORT DATE	3. REPORT TYPE	regarding this burden estimate or any other aspect of this e for information Operations and Reports, 1215 Jefferson Project (0704-0188), Washington, DC 20503. AND DATES COVERED
	09/00/76		
4. TITLE AND SUBTITLE INTERIM CONTAINMENT SYSTEM GROUND DENVER COLORADO, FINAL REPORT	DWATER TREATMENT ROCKY MOL	UNTAIN ARSENAL,	5. FUNDING NUMBERS
6. AUTHOR(S) MILLER, S.			
7. PERFORMING ORGANIZATION NAME ARMY ENGINEER WATERWAYS EXPERIMENT		EMENTS LABORATORY	8. PERFORMING ORGANIZATION REPORT NUMBER
VICKSBURG, MS			81266R50
9. SPONSORING/MONITORING AGENCY	NAME(S) AND ADDRESS(E	S)	10. SPONSORING / MONITORING AGENCY REPORT NUMBER
EDGEWOOD ARSENAL (MD.) MARYLAND	DTIC ELECTE JAN 20199	ī	
11. SUPPLEMENTARY NOTES	G		
12a. DISTRIBUTION / AVAILABILITY STAT	TEMENT		12b. DISTRIBUTION CODE
APPROVED FOR PUBLIC RELE	ASE; DISTRIBUTION	IS UNLIMITED	
13. ABSTRACT (Maximum 200 words) WES HAS BEEN REQUESTED TO CONTAINMENT/DEWATERING/R	ECHARGING OF CONTA ISITION AND EVALUA	MINATED GROUNDW	
ALSO TASKED TO PLAN ACQU DEVELOPMENT OF DESIGN CR	ITERIA FOR THE CHO		·
ALSO TASKED TO PLAN ACQU		SEN SYSTEM.	
ALSO TASKED TO PLAN ACQU DEVELOPMENT OF DESIGN CR		SEN SYSTEM.	9950118 024
ALSO TASKED TO PLAN ACQU	3	SEN SYSTEM.	

18. SECURITY CLASSIFICATION OF THIS PAGE

Standard Form 298 (Rev. 2-89) Prescribed by ANSI Std. 239-18

20. LIMITATION OF ABSTRACT

19. SECURITY CLASSIFICATION OF ABSTRACT

17. SECURITY CLASSIFICATION OF REPORT UNCLASSIFIED

DISCLAIMER NOTICE

THIS DOCUMENT IS BEST QUALITY AVAILABLE. THE COPY FURNISHED TO DTIC CONTAINED A SIGNIFICANT NUMBER OF PAGES WHICH DO NOT REPRODUCE LEGIBLY.

GROUNDWATER TREATMENT ROCKY MOUNTAIN ARSENAL DENVER, COLORADO

by

S. P. Miller

Accesi	on For	
NTIS	CRA&I	M
DTIC	TAB	1
Unann	ounced	
J ustific	cation	d
By	ution I	************
טואנוט	ution	
Α	vailability	Codes
Dist	Avail and Specia	
	I Specia	41
_		
A-1		
		777
ILI	CC	JY I
		-

September 1976

Final Report

Rocky Mountain Arsenal Information Center

Commerce City, Colorado

Prepared for Decontemination Systems Technical Working Group, Edgewood August, Maryland

Conducted by U. S. Army Engineer Wilterways Experiment Station Soils and Pavements Laboratory
Vicksburg, Mississippi

PREFACE

This investigation was conducted during the period 17 May 1976 to 30 September 1976 by the Soils and Pavements Laboratory (S&PL) of the U. S. Army Engineer Waterways Experiment Station (WES). The study was authorized by IAO BTOO4, Aberdeen Proving Ground, Maryland, dated 13 July 1976 and IAO RM-56-7T, Rocky Mountain Arsenal (RMA), Denver, Colorado, dated 16 August 1976.

This report was prepared by Mr. S. P. Miller of the Engineering Studies Branch, S&PL, WES, under the supervision of Mr. G. B. Mitchell, Chief, Engineering Studies Branch. Mr. C. L. McAnear was Chief, Soil Mechanics Division, and Mr. J. P. Sale was Chief, S&PL. Mr. W. O. Miller and Mr. W. L. Murphy of the Engineering Geology and Rock Mechanics Division, S&PL, developed parts of the project design criteria.

The assistance of personnel at RMA is gratefully acknowledged.

COL G. H. Hilt, CE, and COL J. L. Cannon, CE, were Directors of WES during the preparation of this report. Mr. F. R. Brown was Technical Director.

Rocky Mountain Arsenal
Information Center
Commerce City, Colorado

CONTENTS

	Page
PREFACE	ı
Introduction	3
Background	3
Site Conditions	4
Geology	4 5 5 5
Major System Components and Associated Design Criteria	6
Dewatering wells Groundwater barrier Recharging component General considerations	6 6 7 8
PRETIDENCE	

REFERENCES

Figures 1-7

Table 1

Plates 1-80

INTERIM CONTAINMENT SYSTEM, GROUNDWATER TREATMENT ROCKY MOUNTAIN ARSENAL, DENVER, COLORADO

Introduction

Background

1. The Decontamination Systems Technical Working Group, Aberdeen Proving Ground, Maryland, at the direction of the Program Manager, Installation Restoration, requested the U.S. Army Engineer Waterways Experiment Station (WES) to evaluate interim systems for containment/dewatering/recharging of contaminated groundwater at Rocky Mountain Arsenal (RMA). The WES was also tasked to plan acquisition and evaluation of geotechnical data for development of design criteria for the chosen system. This report does not address the treatment portion of the interim containment system.

Purpose and scope

- 2. This report will be used to develop the conceptual system into a project for construction and operation. After consideration of various system components in relation to several factors, e.g., geotechnical data, geochemical data, constraints, costs, the system described herein was selected. This report describes the chosen site, geotechnical data acquired, and system components selected, and provides design criteria for the system. The site chosen for the interim containment system is along part of the northern boundary of RMA near a small pond-like area primarily fed by groundwater and referred to as the "bog," Figures 1 and 2.
- 3. The objective of the interim containment system is to intercept the groundwater flowing across the alignment of the system, treat it, and return it to the aquifer downstream of the dewatering component. This system will consist of four major components: dewatering wells, a groundwater barrier, a recharge component, and a treatment component, Figure 3. The dewatering wells will remove water from the aquifer and the recharge component will return it to the aquifer. To avoid

movement of treated, recharged water back to the dewatering area, which would increase the volume of water to be treated, a barrier will be installed between the dewatering wells and the recharge component. Another use of the barrier will be to provide temporary underground storage of water to permit maintenance or repair of the treatment facilities without permitting contaminated groundwater to travel beyond the barrier.

Site Conditions

Geology

4. The geology of RMA consists of unconsolidated alluvial terrace deposits and eolian sand of Recent to Quaternary age overlying bedrock of clay shales and sandstone of the Cretaceous Denver formation. Small bedrock outcrops occur on a few of the hills within the Arsenal. Near the northern boundary, bedrock is predominantly clay shale overlain by 20 to 30 ft of terrace sands and gravels and eolian clays and sands. The interim system will be concerned only with the bedrock and materials above. Topography is gentle with elevations in the system area varying from approximately 5130 MSL to 5160 MSL. Remnants of ancient terraces form low hills in the area.

Groundwater

5. The shallow aquifer consists of alluvial materials overlying the bedrock. The aquifer and water table elevations have been charted in several publications. 1,2,3 Water levels taken from borings during the subsurface site investigation are recorded on the soil profiles, Plates 1-7. The water level is steady with minor seasonal variations. Saturated thickness in the site area varies from 10 to 25 ft, Plates 1-7, and the gradient is approximately 0.01 to 0.005 toward the north. 1,2 The bottom of the bog apparently intercepts the groundwater table and is supplied directly from the aquifer. This interpretation is substantiated by observation, borings, and bulk sampling in the bog area.

Subsurface investigation

- 6. The subsurface investigation consisted of 24 borings drilled in July 1976 and presented in Plates 1-7 which give boring locations and soil profiles. Samples were taken at 5-ft increments and/or change in stratum. Three different types of borings were made: undisturbed (UD), drive (D), and auger (A). Samples from the 8 UD borings were taken with a 3-in.-diam open Shelby tube in cohesive soils and with a 2-in. split spoon for cohesionless soils. •The 2-in. split spoon was used for all soils encountered in the 8 D borings. Jar samples were taken and blow counts recorded for all drive samples. The 8 A borings were visually classified. All borings penetrated the weathered zone of the bedrock and all samples were transported to the WES for classification and testing. Soil properties
- 7. The overburden soils are generally lean clays (CL) overlying sands (SC, SP) which, in turn, overlay the weathered shale (usually a fat clay CH or inorganic silt MH) or weathered sandstone (usually lean clay and silty sand CL-SM or silty sand SM) above the unweathered bedrock. This general trend is apparent from the soil profiles, Plates 1-7, which are classified from the boring logs.
- 8. Soil samples from the subsurface investigation were tested at the WES Soils and Pavements Laboratory (S&PL) to determine index properties and strengths. Grain size distribution curves, laboratory classifications, liquid limits (LL), plastic limits (PL), plastic indexes (PI), and water contents for samples from UD and D borings are shown on Plates 18-80. Unconsolidated, undrained triaxial tests were performed on selected UD samples, Plates 9-16. A Unified Soil Classification and legend are provided in Plate 8.

Pumping tests

9. Three pumping tests were made in the alignment areas, Figure 2, during August 1976 by the WES S&PL to determine local permeability and yield characteristics of the aquifer. Analysis of these tests gave a permeability of approximately 210 ft per day, which was used with gradient and aquifer cross sectional area to calculate groundwater flow across the system alignment.

Major System Components and Associated Design Criteria

Dewatering wells

10. A dewatering system to remove the contaminated water from the aquifer for treatment is shown in Figure 4. The dewatering alignment should be located 200 ft from the barrier and be 1400 ft in length. It is positioned between Station 26+00 and 40+00 of the original stationing of the north and south aligments as shown in Plates 1-7. Normal northerly groundwater flow across this alignment is expected to be 135 gallons per minute (gpm). Since this flow is expected to fluctuate, the maximum capacity of the dewatering system should be 125 percent of expected flow, or 169 gpm. This is the approximate expected capacity of the treatment component. The dewatering system should also have the capability to evenly remove the minimum flow of 75 percent of normal, or 100 gpm. Therefore the separate wells must be capable of handling a variation in flow due to these fluctuations and also due to local differences in flow along the alignment. The wells must fully penetrate the aquifer with well screen length equal to aquifer thickness. A general well spacing of 200 ft was chosen. This spacing has been varied to accommodate nonuniform flow across the dewatering alignment and should result in approximately 5 ft of drawdown in the wells. Pumps should have automatic controls to maintain a set drawdown once the required drawdown to operate the system is established. The distance between the barrier and dewatering alignment is set to make optimum use of undergound storage as described in paragraph 11 and Figure 5. Figure 4 presents the dewatering and barrier alignments in plan and the dewatering alignment in profile, west to east. Figure 5 is a schematic cross section of the entire system, south to north. The grain size curves provided as Plates 17-80 can be used for sizing of well screen openings.4

Groundwater barrier

ll. A groundwater barrier consisting of a bentonite slurry cutoff trench extending into the bedrock should be located from Station 26+00
to 40+00 of the northern system alignment, Plate 2, as shown in Figure 4.

This barrier will block movement of treated water from the recharge area back to the dewatering wells, thus preventing recycling of water in the treatment process. The barrier will also provide underground storage as shown schematically in Figure 6. This potential storage could be used during periods of dewatering system shutdown for maintenance problems or treatment delay. The total amount of storage is approximately 400,000 gallons which would be 2 days flow at the normal expected flow of 135 gpm. This amount assumes well drawdown as shown in Figure 4 and a porosity of 0.40 in the storage strata.

- 12. The slurry should be a mixture of bentonite, water, and any desired additives, and will serve to stabilize the trench during excavation. 6,7,8 The trench should extend 2 ft into weathered bedrock (CH) in clay shale areas and to the bedrock in sandstone areas, be a minimum of 24 in. in width, and have a structural cover. A structural cover is required to carry any load applied on or in the immediate vicinity of the slurry trench (e.g. traffic or working platforms) since it cannot support a load. The trench should be 1400 ft in length and an average of 27 ft in depth. These are approximate dimensions based on limited soil sampling, therefore determination of actual construction dimensions should be made by a knowledgeable soils engineer based on field conditions encountered during construction. Specifications should be developed defining water quality factors such as pH, hardness, and deleterious substances. Industrial suppliers of bentonite have guides for desired slurry water quality. If neither local well water nor the bog water meets these standards, alternative sources of water should be considered. A model study was conducted to discover if the groundwater in the system area would have any detrimental initial gross effects on the bentonite. The study lasted 10 days using groundwater from the interim containment system area. No detrimental effects were noted. Recharging component
- 13. The treated water must be restored to the aquifer through a recharge method downstream (north) of the barrier. The bog area presents a natural and readily accessible entrance to the aquifer. The rate of movement of the recharged water in the aquifer will vary

with the head maintained in the bog. In order to use the bog for recharge, all fine-grained material in the bottom of the bog above the aquifer should be removed. From consideration of aquifer area, aquifer permeability, and required gradient, the bog area should be able to recharge the aquifer at the maximum dewatering/treatment rate of 169 gpm, with approximately 1 ft of head above natural groundwater level. Lower areas of the bog boundary may require a dike to accommodate this water level. It is assumed that the treated water will be of relatively high quality and should pose only a minor, if any, clogging problem in the recharge area.

14. If the bog is retained in its present configuration for recharge, excavation is expected to be approximately 12,000 cu yd based on the soil borings. Actual quantity should be determined by a knowledgeable inspection of the bog to insure removal of all fine-grained material above the aquifer. This excavated material could be used to form part of the small dike referred to in paragraph 13. Side slopes of the excavation and/or dike should not exceed 1 vertical on 2 horizontal.

General considerations

- 15. Further considerations in the design of the interim containment system must include provision for above-ground storage of water to handle short-term differences in pumping and treatment rates and other contingencies, and a system to transport water from the dewatering system to the treatment location and, after treatment, back to the recharge area. These designs should consider such factors as safety, effect of contaminents on all components, treatment location, and cold weather precautions.
- 16. Monitoring of the groundwater system prior to and during construction and operation is necessary to assess the effectiveness of the system and provide input to operational variables, e.g. pump rates, recharge rates. Obviously, water quality and location must be closely observed. This need can be accomplished by installing observation wells and incorporating existing observation wells into a monitoring program for the interim containment system. It is important that this

program be initiated as soon as possible to establish general groundwater quality and level prior to construction and operation of the interim containment system. This, with existing data, will establish conditions prior to intervention by the system.

- 17. Observation wells capable of providing water level measurements and water quality sampling should be installed. Elevations of the tops of riser pipes should be established and protection from damage and contamination provided for during construction and operation. Any necessary access requirements for the installation or reading of new or existing observation wells located off the Arsenal should be considered. Records of water level and quality should include the bog (recharge component) and the dewatering wells. Readings of water level should be made biweekly prior to and during construction, daily during initial system operation, and over longer time periods as a stable condition develops. Water samples should be taken as necessary to determine the effect of the interim containment system on water quality.
- 18. Figure 7 depicts a plan for placing observation wells for use in a monitoring program. The observation wells are listed in Table 1 by number and purpose. Readings from these wells, the bog, and the dewatering wells may be used to produce groundwater elevation and quality contour maps and groundwater elevation cross sections to interpret the effect of the interim containment system on the groundwater and determine operational variables such as pumping rates and recharge rate. This plan may require adjustment or additional observation points as monitoring requirements develop.

REFERENCES

- 1. Konikow, L. F., Hydrogeologic maps of the alluvial aquifer in and adjacent to the Rocky Mountain Arsenal, Colorado: U. S. Geol. Survey open file report 74-342, 1 sheet, 1975.
- 2. U. S. Army Engineer District, Omaha, Nebraska, "Program for Reclamation of Surface Aquifer, Rocky Mountain Arsenal, Denver, Colorado," February 1961.
- 3. Robson, S. G., "Model Study of Diisopropylmethylphosphonate (Dimp) Contamination, Rocky Mountain Arsenal near Denver, Colorado, Progress Report--Phase I," U. S. Geological Survey, Denver, Colorado, February 1976.
- 4. Departments of the Army, Navy, and Air Force, "Dewatering and Groundwater Control for Deep Excavations," TM 5-818-5, April 1971.
- 5. U. S. Army Engineer Waterways Experiment Station, "Comments on Imperviousness of Slurry Trench Interim Containment System Rocky Mountain Arsenal," letter 2 September 1976.
- 6. Xanthakos, Petros P., <u>Underground Construction in Fluid Trenches</u>, Chicago, April 1974.
- 7. Boyes, R.G.H., Structural and Cut-Off Diaphragm Walls, Wiley, New York, 1975.
- Stanley Consultants, Inc., and Woodward-Clyde Consultants, "Lake Chicot Pumping Plant, Letter Report, Slurry Trench," August 1975.

Figure 1. Interim Containment System location - Rocky Mountain Arsenal, Denver, Colorado

Figure 2. Subsurface investigation alignments and pump-ing test locations

Figure μ . Plan and profile of dewatering alignment

Schematic diagram of Interim Containment System, RMA Figure 5.

Schematic diagram of Interim Containment System subsurface water storage, RMA Figure 6.

Figure 7. Groundwater monitoring plan

GIRLA LAG SIL CO

AND UNITE PROFILE LINE

10000

12450

15400

17450

180

180

181

181

181

182

10400

17500

17500

17750

17750

17750

17750

17750

17750

17750

17750

17750

17750

17750

1500'
VILOT SYSTEM PROPOSED EXTENSION (1700'?) -NORTH PROFILE LINE 17+50 25+00 UD-5 182 185 SOUTH PROFILE LINE 194 SCALE IN FEET BUE NOS. ARE RHA NUMBERING SYSTEM FOR BORINGS 27+005165 18+00 21+00 20+00 22+00 23+00 24+00 26+00 D-2 5155 <u>5150</u> 5140 5130 (UNWEATHERED) 5120 PLAN AND SOIL PROFILE INTERIM CONTAINMENT SYSTEM NORTH ALIGNMENT ROCKY MOUNTAIN ARSENAL PLATE I

NORTH PROFILE LINE 5+00 7+50 SOUTH PROFILE LINE 7+50 7+00 5165 5160 5155 5145 5140 5135 5130 5125 5120 PLAN AND SOIL PROFILE INTERIM CONTAINMENT SYSTEM NORTH ALIGNMENT ROCKY MOUNTAIN ARSENAL

NORTH PROFILE LINE

5+00

7+50

SOUTH PROFILE LINE

7+50

HORIZONTAL

SCALE IN FEET

50 0 50 100

VERTICAL

SCALE IN FEET

5 0 1 5 10

5+00	6+00	7+00	8+00		5 0	3 10	
							5165
							5160
							5155
UTH PROFILE L	INE						5150
							5145
							5140
							5135
							5130
							5125
							5120
				+ + + =			

PLAN AND SOIL PROFILE
INTERIM CONTAINMENT SYSTEM
SOUTH ALIGNMENT
ROCKY MOUNTAIN ARSENAL

UNIFIED SOIL CLASSIFICATION

					
MAJOR	DIVISION	TYPE	LETTER SYMBOL		
ø :		GRAVEL	GW	90	GRAVEL, Well Graded, gravel-sand mixtures, little or no fines
SOILS is larger	AVELS Ign half fraction than No	(Little or No Fines)	GP.		GRAVEL,Poorly Graded,gravel-sand mixtures, little or no fines
5	æ = • - "	GRAVEL WITH FINES	GM		SILTY GRAVEL, grovel-sand-silt mixtures
GRAINED of material	More coors forge	(Appreciable Amount of Fines)	GC	,	CLAYEY GRAVEL, grovel -sand - clay mixtures
	0:4	CLEAN SAND	SW		SAND, Well - Graded, gravelly sands
ARSE - than half	SANDS thon half the fraction ter than No.	(Little or No Fines)	SP		SAND, Poorly - Graded, gravelly sands
COARSE	100	SANDS WITH FINES	SM		SILTY SAND, sond-silt mixtures
Mo. o.	More Coors Smoil	(Appreciable Amount of Fines	SC		CLAYEY SAND, sand-clay mixtures
SOILS material		SILTS AND	ML	Ш	SILT & very fine sand, silty or clayey fine sand or clayey silt with slight plasticity
		CLAYS (Liquid Limit	CL		LEAN CLAY; Sandy Clay; Silty Clay; of low to medium plasticity
- GRAINED than half the		< 50)	OL		ORGANIC SILTS and organic silty clays of low plasticity
- GRA	•	SILTS AND	MH	\prod	SILT, fine sandy or silty soil with high plasticity
	*	(Liquid Limit	CH		FAT CLAY, inorganic clay of high plasticity
- 2 ·	<u>.</u>	> 50)	H		ORGANIC CLAYS of medium to high plasticity, organic silts
HIGHL	Y ORGANIC	SOILS	Pt		PEAT, and other highly organic soil
	WOOD		Wd		WOOD
	SHELLS		SI	7,37	SHELLS
	NO SAMPLE				

NOTE: Soils possessing characteristics of two groups are designated by combinations of group symbols

DESCRIPTIVE SYMBOLS

COLOR			CONSISTENCY					MODIFICATIO	NS		
COLOR	SYMBOL			FOR	FOR COHESIVE SOILS				MODIFICATION	SYMBOL	
TAN	T	CONCICTENCY		COHES	COHESION IN LBS./SQ.FT. FROM				SYMBOL	Traces	Tr-
YELLOW	Y	CONSIST	CONSISTENCY		UNCONFINED COMPRESSION TEST			STMBUL	Fine	F	
RED	R	VERY SOFT			< 250 250 - 500				vSo So	Medium	M
BLACK	BK									Coorse	С
GRAY	Gr	MEDIUM			500 - 1000 1000 - 2000			M St	Concretions	СС	
LIGHT GRAY	IGr	STIFF							Rootiets	rt	
DARK GRAY	dGr	VERY ST	TIFF		2000 - 4	000			vSt	Lignite fragments	Ig
BROWN	Br	HARD		1	> 4	000			н	Shale fragments	sh
LIGHT BROWN	IBr									Sandstone fragments	sds
DARK BROWN	dBr	× 60	i		· · · · · ·	 	1 1	- ;	コ	Shell fragments	sif
BROWNISH-GRAY	br Gr	NDEX	L	_	<u>i</u>		1	_ <u> </u>		Organic matter	0
GRAYISH - BROWN	gyBr						CHH		7	Clay strata or lenses	cs
GREENISH - GRAY	gnGr	<u></u>		++		├ '	1		_	Silt strata or lenses	SIS
GRAYISH - GREEN	gy Gn	ASTICITY		CL	1			1	1	Sand strata or lenses	SS
GREEN	Gn	E				- •	++			Sandy	s
BLUE	BI	A	1	1 1			ОН	į	l	Gravelly	G
BLUE-GREEN	PI Gn	7 20					8		-1	Boulders	В
WHITE	Wh	'.	<u> '</u> -	CL-ML	v	L i	MH	¦ -	4	Slickensides	SL
MOTTLED	Mot	- a	777		ML.	;	1 1		İ	Wood	Wd
		0	<u> </u>	20	40	60	80	i	니 100	Oxidized	Ox
					L LIC					Crumbly	Cr
				PLA	STICIT	TY CH	IART			Loose	Lo
			For	classific	ation of	fine - g	rained :	soils		Vegetation	Veg

_					
					_
					_
			·		-
					_
• • •					-
nth	sligh	it ple	ostici	ty	
city					
CHI	7				
					_
					_
-					_
					_

symbols

ATIONS		
ON	SYMBOL	
	Tr-	
	F	
	M	
	С	
	cc	
	rt	
nts	lg	
nts	sh	
nents	sds	
S	sif	
	0	
enses	CS	
enses	SIS	
enses	SS	
	S	
	G	
	В	
	SL	
	Wd	
	Ox	
	Cr	
	Lo	
	Veg	

NOTES:
FIGURES TO LEFT OF BORING UNDER COLUMN "W OR DIO"
Are natural water contents in percent dry weight
When underlined denotes Dio size in mm *
FIGURES TO LEFT OF BORING UNDER COLUMNS "LL" AND "PL"
Are liquid and plastic limits, respectively
SYMBOLS TO LEFT OF BORING
_∇ Ground-water surface and date observed
© Denotes location of consolidation test **
S Denotes location of consolidated - drained direct shear test **
R Denotes location of consolidated – undrained triaxial compression test ***
Denotes location of unconsolidated-undrained triaxial compression test **
Denotes location of sample subjected to consolidation test and each of the above three types of shear tests ***
FW Denotes free water
FIGURES TO RIGHT OF BORING
Are values of cohesion in lbs./sq.ft. from unconfined compression tests
in parenthesis are driving resistances in blows per foot determined with a standard split spoon sampler (1 3 L.D., 2 O.D.) and a 140 lb. driving hammer with a 30 drap
Where underlined with a solid line denotes laboratory permeability in centimeters per second of undisturbed sample
Where underlined with a dashed line denotes laboratory permeability in centimeters per second of sample remoulded to the estimated natural void ratio

 \Rightarrow The D₁₀ size of a soil is the grain diameter in millimeters of which 10% of the soil is finer, and 90% coarser than size D₁₀.

**Results of these tests are available for inspection in the U.S. Army Engineer District Office, if these symbols appear beside the boring logs on the drawings.

GENERAL NOTES:

While the borings are representative of subsurface conditions at their respective locations and for their respective vertical reaches, local variations characteristic of the subsurface materials of the region are paticipated and, if encountered, such variations will not be considered as differing materially within the purview of clause 4 of the contract.

Ground-water elevations shown on the boring logs represent ground-water surfaces encountered on the dates shown. Absence of water surface data in certain borings implies that no ground-water data is available, but does not necessarily mean that ground water will not be encountered at the locations or within the vertical reaches of these borings.

Consistency of cohesive sails shown on the boring logs is based on driller's log and visual examination and is approximate, except within those vertical reaches of the borings where shear strengths from unconfined compression tests are shown.

12.00

SOIL BORING LEGEND

Table 1
Purpose of Groundwater Observation Wells

Mall Mary	
Well Number - Figure 7	Purpose
1, 3, 8, 16, 23, 27, 9, 17	Indicate incoming groundwater quality and quantity
4, 9, 17, 24, 10, 18	Indicate groundwater levels around dewatering system used to establish pumping rates
1, 2, 27, 28	Indicate influence of interim contain- ment system on groundwater outside of the local area of the system
10, 18, 11, 15, 19	Indicate groundwater levels on each side of barrier and effectiveness of barrier
wells north of bog	Indicate recharge rate and effect of recharge on water quality
north-south lines of wells	Readings for groundwater level cross sections
all wells	Readings used for groundwater level and quality contour maps

3 c = T/SF φ= DEG TAN 6 = 2 0 2 NORMAL STRESS, o, T/SQ FT 3.0 SPECIMEN NO. WATER CONTENT, % 17.0 2.5 DRY DENSITY γď 79.1 LB/ CU FT \$ 2.0 SATURATION, % 40.6 VOID RATIO w_c WATER CONTENT. % DRY DENSITY 1.5 Yd. LB/CU FT SATURATION, % BEFORE eç 0.5 VOID RATIO FINAL BACK u_o PRESSURE, T/SQ FT MINOR PRINCIPAL σ_3 1.5 STRESS, T/SQ FT (σ₁ - σ₃) MAXIMUM DEVIATOR 1.76 STRESS, T.'SO FT TIME TO (01 - 03) t, ULTIMATE DEVIATOR (0, - 03) STRESS, T/SQ FT <u>1.3</u>8 AXIAL STRAIN, 6, % INITIAL DIAMETER, IN. 00 INITIAL HEIGHT, IN. CONTROLLED-3.00 STRAIN DESCRIPTION OF SPECIMENS SANDY CLAY(CL), light brown TYPE OF SPECIMEN UNDISTURBED TYPE OF TEST c. 2.70 14 PI 15 LL 29 PROJECT ROCKY MOUNTAIN ARSENAL REMARKS: Soil too friable to permit trimming more specimens. BORING NO. UD-7 SAMPLE NO. DEPTH/ELEVM 10.0-12.5 USAEWES DATE 13 August, 1976 LABORATORY TRIAXIAL COMPRESSION TEST REPORT KOC ENG FORM NO. REV JUNE 1970 2089 PLATE 14 (EM 1110-2-1906) TRANSLUCENT PREVIOUS EDITION IS OBSOLETE

PLATE 17

PLATE 18

FORM 2087

ENG ENG

į.

ENG , MAY 63 2087

ENG , FORM 2087 PLATE 22

ENG LMAY 63 2087

ENG , FORM 2087

PLATE 28

ENG FORM 2087

ENG , MAY 63 2087

PLATE 37

ENG , MAY 63 2037

ENG , MAY 43 2087

PLATE 44

ENG , MAY 63 2087

ENG , MAY 63 2087

ENG , FORM 2087

- 200 = 7%

PLATE 53

ENG , FORM 2087

NG 1 MAY 63 2087

ENG , MAY 63 2037

NG , FORM 3 2087

1

ENG FORM 2087

PLATE 68

PLATE 71

PLATE 74

PLATE 75

. 1

