

B. Tech. Degree V Semester Special Supplementary Examination September 2022

CE/CS/EC/EE/IT/ME/SE 19-200-0501 NUMERICAL AND STATISTICAL METHODS

(2019 Scheme)

Time: 3 Hours

Maximum Marks: 60

Course Outcomes

On successful completion of the course, the students will be able to:

CO1: Solve algebraic and transcendental equations by numerical methods.

CO2: Solve numerical differentiation and integration problems.

CO3: Compute the mean and variance of a probability distribution including the binomial distribution.

CO4: Test hypotheses on data.

Bloom's Taxonomy Levels (BL): L1 - Remember, L2 - Understand, L3 - Apply, L4 - Analyze,

L5 - Evaluate, L6 - Create

PO - Programme Outcome

PART A

		ran a					
		(Answer ALL questions)					
		$(8 \times 3 =$	= 24)	Marks	BL	CO	PO
I.	(a)	Prove that (i) $\mu^2 = 1 + \frac{\delta^2}{4}$ (ii) $\mu \delta = \frac{1}{2} (\Delta + \nabla)$.		3	L1,L3		
	(b)	Find the third divided difference of $f(x)$ with arguments 2, 4, 9	, 10	3	L3	1	1
		where $f(x) = x^3 - 2x$.					
	(c)	Evaluate $\int_0^1 \frac{dx}{(1+x^2)}$ using Simpson's $\frac{1}{3}$ rule taking $h = \frac{1}{4}$.		3	L1,L3	1	3
	(d)	Use Euler's method to find $y(0.4)$ given $y' = xy$, $y(0) = 1$ (7)	Гake	3	L3	2	2
		h=0.2)			T 1 T 2	2	1
	(e)	A random variable x has the following probability function.		3	L1,L3	3	1
		x: -2 -1 0 1 2 3					
	//	x: -2 -1 0 1 2 3 p(x): 0.1 k 0.2 2k 0.3 k					
)*/g		Find the value of k and calculate mean and variance.	c	2	1214	2	2

Find the value of k and calculate mean and variance.

Find the probability that no defective fuse will be found in a box of 3 L3,L4 3 200 fuses if experience shows that 2% such fuses are defective.

Define (i) parameter and statistic (ii) critical region (iii) test statistic.

3 L1

The average score in mathematics of a sample of 100 students was 51

The average score in mathematics of a sample of 100 students was 51 with a standard deviation of 6 points. Could this have been a random sample from a population with average score 50?

PART B

 $(4 \times 12 = 48)$

II. (a) Find a real root of $x^3 + x - 1 = 0$ near x = 1 correct to 3 decimal 6 L3 1 2 places by Regula-Falsi method.

(b) Solve the system of equation by Gauss Seidel method.

6 L3 1 2

$$27x + 6y - z = 85$$

$$6x + 15y + 2z = 72$$

$$x + y + 54z = 110$$

1

			Marks	BL	CO	PO 2
III.	(a)	Using Lagrange's formula find $f(6)$ from the following table.	6	L3	1	4
		x: 2 5 7 10 12 $f(x):$ 18 180 448 1210 2028				
	(b)	From the following table of half-yearly premium for policies maturing at different ages, find the premium for policies maturing at age 46 and 63.	6	L3	1	3
		Age x : 45 50 55 60 65 Premium y : 1150 960 830 740 680				
IV.	(a)	Using modified Euler method, find $y(0.2)$, $y(0.4)$, given $y' = y - x^2$ $y(0) = 1$.	6	L3	2	2
	(b)	The table below gives the results of an observation: θ is the observed temperature in degree centigrade of a vessel of cooling water; t is the time in minutes from the beginning of observation.	6	L2,L3	2	3
		t: 1 3 5 7 9 $\theta: 85.3 74.5 67.0 60.5 54.3$				
		Find the approximate rate of cooling at $t = 3$. OR				
V.	(a)	Apply Runge-Kutta method to obtain $y(0.2)$, given $y' = \frac{y-x}{y+x}$ when	6	L2,L3	2	2
		y(0) = 1.			_	
	(b)	A rocket is launched from the ground. Its acceleration is registered during the first 80 seconds and is given in the table below. Using	6	L3	2	4
		Simpson's $\frac{1}{3}$ rule, find the velocity of the rocket at $t = 80$ seconds.				
	·	t (sec): 0 10 20 30 40 50 60 $A (\text{cm/sec}^2): 30.0 31.63 33.34 35.47 37.75 40.33 43.25$	70 46.69	80 50.67		
VI.	(a) (b)	Derive the mean and variance of Binomial Distribution. A screw manufacturing company is known to produce 5% defectives in a random sample of 15 screws. What is the probability that there are (i) exactly 3 defectives (ii) not more than 3 defectives OR	6 6	L1 L4	3 3	1 3
VII.	(a)	Fit a parabola, by the method of least squares, to the following data.	6	L3	3	2
		x: 1 2 3 4 5 y: 5 12 26 60 97				
	(b)	A sample of 100 dry battery cells tested to find the length of life produces the following results: $\bar{x} = 12 \text{hrs}$, $\sigma = 3 \text{hrs}$. Assuming the data to be normally distributed, what percentage of battery cells are expected to have life (i) more than 15 hrs (ii) less than 6 hrs (iii) between 10 and 14 hrs	6	L3,L4	3	3
VIII.	(a)	A manufacturer of tyres guarantees that the average lifetime of its tyres is more than 28000 miles. If 40 tyres of this company tested, yields a mean lifetime of 27463 miles with standard deviation of 1348 miles, can the guarantee be accepted at 0.01 level of significance?	6	L4,L5	4	4
	(b)	A sample of 900 numbers is found to have a mean 3.4 and standard deviation 2.61. Is this sample taken from a large population of mean	6	L4	4	4
		3.25?				

BTS-V(SS)-09-22-1059

			Marks	BL	CO	PO
IX.	(a)	The standard deviation of a sample of 20 observations from a normal population was found to be 5. Examine whether the sample was taken from a population with standard deviation 5.3.	6	L4	4	3
	(b)	In a random sample of 100 tube lights produced by a company A , the mean lifetime of tube light is 1190 hrs with standard deviation of 90 hrs. Also in a random sample of 75 tube lights from company B the mean lifetime is 1230 hrs with standard deviation 120 hrs. Is there a difference between the mean lifetime of the two brands of the tube lights?	6	L4	4	4
