Subjectul 1

Se dă un graf neorientat conex cu n>3 vârfuri, m muchii, m>n și un vârf s.

Să se afișeze muchiile a doi arbori parțiali ai grafului, T1 și T2, dintre care unul, T1, este arbore de distante față de s ($d_{T1}(s, u) = d_G(s, u)$ pentru orice vârf u din G), iar celălalt, T2, nu este arbore de distanțe față de s. Se va afișa în plus un vârf u pentru care $d_{T2}(s, u) \neq d_G(s, u)$.

Complexitate O(m)

Informațiile despre graf se citesc din fișierul *graf.in* cu structura:

- pe prima linie sunt n și m
- pe următoarele m linii sunt câte 2 numere naturale reprezentând extremitățile unei muchii
- pe ultima linie este vârful s

 $(d_G(x,y) = distanța de la x la y în G)$

graf.in	Iesire pe ecran (solutia nu este unica)
45	T1:
12	12
13	13
23	2 4
2 4	T2:
3 4	12
1	2 3
	2 4
	u = 3

Subjectul 2

Se citesc informații despre un graf **orientat** ponderat G din fișierul graf.in. Fișierul are următoarea structură:

- Pe prima linie sunt două numere reprezentând numărul de vârfuri n (n>4) și numărul de arce m ale grafului, **m>n**
- Pe a doua linie din fișier sunt un număr natural k (0<k<n) și un șir de k vârfuri reprezentând vârfurile sursă ale grafului s₁,...,s_k
- Pe a treia linie a fișierului sunt trei vârfuri, reprezentând vârfurile destinație t₁, t₂, t₃ din G.
- Pe următoarele m linii sunt câte 3 numere întregi **pozitive** reprezentând extremitatea inițială, extremitatea finală și costul unui arc din graf

Notăm cu $S = \{s_1, ..., s_k\}$ mulțimea vârfurilor sursă din G și cu $T = \{t_1, t_2, t_3\}$ mulțimea vârfurilor destinație din G. Spunem că un vârf y este accesibil din x în G dacă există un drum de la x la y. Să de determine pentru fiecare vârf destinație $t \in T$ un vârf sursă $s \in S$ cu proprietatea că t este accesibil din s și distanța de la s la t este minimă (s este o sursă din care se poate ajunge cel mai repede în t) și să se afișeze un drum minim de la s la t. Dacă nu există o astfel de sursă se va afișa un mesaj corespunzător. Complexitate O(mlog(n))

graf.in	Iesire pe ecran
6 8 2 1 2 3 4 6 1 2 3 6 1 10 6 2 2 2 4 1 4 3 1 5 3 4 1 5 5 3 2 7	t=3 s=2 drum minim 2 4 3 t=4 s=2 drum minim 2 4 t=6 nu exista s

k=2, $S = \{1, 2\}$

 t_1 =3, t_2 = 4, t_3 =6 \Rightarrow T={3,4,6}

t=3: distanta(1,3)=5, distanta(2,3)=2

Cea mai mică este distanta(2,3) \Rightarrow s=2, drum minim 2 4 3 t=4: distanta(1,4)=4, distanta(2,4)=1 \Rightarrow s=2, drum minim 2 4 t=6: distanta(1,6)= ∞ , distanta(2,6)= ∞ \Rightarrow nu există s

Subjectul 3

Fisierul graf.in conține următoarele informații despre un graf bipartit conex:

- pe prima linie sunt 2 numere naturale n și m reprezentând numărul de vârfuri și numărul de muchii
- pe următoarele m linii sunt perechi de numere x y (separate prin spațiu) reprezentând extremitătile unei muchii

Se consideră graful G dat în fișierul graf.in. Notăm cu k numărul de vârfuri de grad impar din graf.

- a) Folosind un algoritm de determinare a unui flux maxim într-o rețea de transport, determinați un cuplaj maxim în subgraful indus de mulțimea vârfurilor de grad impar din G.
- b) Folosind punctul a) determinați dacă exista k/2 muchii care se pot elimina din G astfel încât să se obțină un graf cu următoarele proprietăți:
- gradul fiecărui vârf din G' este egal cu cel din G sau cu unu mai mic.
- în G' în fiecare componentă conexă există câte un ciclu care conține toate muchiile din componentă (o singura dată) Complexitate O(nm²)

graf.in	lesire pe ecran (solutia nu este unica)
8 9	16
15	2 5
16	3 7
17	
2 5	
3 5	
3 7	
3 4	
8 7	
8 4	

