Software Packages | Euler Method

Assignment_03

Name: Muhammad Arslan Roll No: 201408

Date: 20-Nov-2023

Question: Write the matlab code for Euler Method and solve the first order ODE with given initial value by using euler method (numerical procedure).

$$n = 10$$

$$dy/dx = \sin(xy), y(0) = \pi$$

in the given interval $x \in [0, 1]$.

Solution:

3.6="Y" 3.7="Y" 3.7

step size (h)
$$\Rightarrow$$
 $\Delta x = \frac{x_n - x_0}{n}$

```
h = (1-0)/10; % step size
x=0:h:1; % range of x
y=zeros(size(x)); % allocate the result y
y(1)=pi; % initial value of y
n=numel(y); % number of y values
for i = 1:n-1
    dydx = sin(x(i)*y(i));
    y(i+1) = y(i) + dydx*h;
    fprintf('="Y"\n\t %0.01f', y(i));
end
   3.1="Y"
   3.1="Y"
   3.2="Y"
   3.2="Y"
   3.3="Y"
   3.4="Y"
   3.5="Y"
```

```
%%fprintf('="Y"\n\t %0.01f',y);

% Plotting with labels, title, legend, and markers
figure;
plot(x, y, '-o', 'LineWidth', 2, 'MarkerSize', 8, 'MarkerFaceColor', 'g');
```

```
grid on;
xlabel('x');
ylabel('y');
title('Numerical Solution of dy/dx = sin(xy) using Euler''s Method');
legend('Euler''s Method', 'Location', 'Best');
```


Quiz_03 Boundary Value Problem (bvp4c)

Name: Muhammad Arslan Roll No: 201408

Date: 30_Nov_2023

Statement:

$$\frac{d^2y}{dx^2} + y = 0$$
$$y(0) = 1, \quad y(\pi) = 0$$

Solution:

Defining a deviv function

Defining the boundary condition function

Using bypinit for the initial guess on the interval

bvp4c Iteration for the solution of non-linear system of equations

```
%bvp4c
Sol = bvp4c(@deviv, @bcs, Solinit);
```

```
figure ;
plot(Sol.x, Sol.y(1,:),'-o', 'LineWidth',2 ,'MarkerSize', 8, 'MarkerFaceColor','g')
grid on;
```

```
xlabel('x')
ylabel('y')
title('Boundary Value Problem Solution using bvp4c')
legend('bvp4c', 'Location', 'Best')
```


Notes_Linear Shooting Method:

- Linear
- For 2nd Order Differential Equation

$$\mathbf{y}'' = P(x)\mathbf{y}' + q(x)\mathbf{y} + r(x) \;, \quad a \le x \le b$$

$$\mathbf{y(a)} = \alpha \;, \quad \mathbf{y(b)} = \beta$$

Note: We've to construct two functions for solving this sutting method

Limitiations:

- Only for linear but there is another method for nonlinear shooting method
- 2nd Order Differential Equation

To solve this problem, convert in 2 initial value problem

IVP- i

$$y''_1 = p(x)y'_1 + q(x)y_1 + r(x),$$
 $a \le x \le b$ $y_1(a) = \alpha, y'_1(a) = 0$

IVP- ii

$$y''_2 = p(x)y'_2 + q(x)y_2,$$
 $a \le x \le b$ $y_2(a) = 0, y'_2(a) = 1$

The the sol of bvp is:

ode45: back rk-method

$$y = y_1 + \frac{\beta - y_1(b)}{y_2(b)}(y_2)$$

Assignment_04 Linear Shooting Method | Software Packages

Name: Muhammad Arslan Roll No: 201408

Problem: Solve this problem using linear shooting method...

$$y'' = y' + 2y + \cos(x), 0 \le x \le \frac{\pi}{2}$$

$$y(0) = -0.3, \quad y\left(\frac{\pi}{2}\right) = -0.1$$

```
% y(a) = alpha | y(b) = beta
```

Exact Solution:

$$y = -0.1 \sin(x) + 3 \cos(x)$$

Step 1: Converting two 2nd order odes to initial value problems and then solve using ode45

```
Editor - C:\Users\Ghost \( \)\Downloads\New folder\deriv0.m

Ass4_30_Nov_23.mlx deriv0.m deriv1.m +

function dy = deriv0(x, y)

% Conversion

From 2nd order ode to 1st order ode

dy = zeros(2,1);

dy(1) = y(2);

dy(2) = y(2) + 2*y(1) + cos(x);

end
```

```
xspan = [0, pi/2];
y0 = [-0.3, 0];
[x, y01] = ode45(@deriv0, xspan, y0);
```

```
Editor - C:\Users\Ghost (3\Downloads\New folder\deriv1.m)
   Ass4_30_Nov_23.mlx × deriv0.m × deriv1.m × +
  \Box function dy2 = deriv1(x, y)
1
    □% Conversion
2
3
     -% From 2nd order ode to 1st order ode
4 -
      dy2 = zeros(2,1);
5 -
      dy2(1) = y(2);
      dy2(2) = y(2) + 2*y(1);
6 -
7 -
     end
```

```
y1 = [0 , 1];
[x, y02] = ode45(@deriv1, xspan, y1);

Beta =- 0.1;
ya = (y01) + (((Beta - y01(end))/y02 (end)) *y02);
```

Step 2: Comparison of the Exact solution vs Evaluated Solution

```
y = -0.1*sin(x) + 3*cos(x);

plot (x, ya(:,1), '-o', 'LineWidth',1 ,'MarkerSize', 4, 'MarkerFaceColor','g')
hold on
plot (x, y, '-o', 'LineWidth',1 ,'MarkerSize', 4, 'MarkerFaceColor','g')
grid on;
```

```
xlabel('x')
ylabel('y')
title('ya - 1st Column Solution Comparison')
legend('ya1','y', 'Location', 'Best')
hold off
```



```
plot (x, ya(:,2), '-o', 'LineWidth',1 ,'MarkerSize', 4, 'MarkerFaceColor','g')
hold on
plot (x, y, '-o', 'LineWidth',1 ,'MarkerSize', 4, 'MarkerFaceColor','g')
grid on;
xlabel('x')
ylabel('y')
title('ya - 2nd Column Solution Comparison')
legend('ya2','y', 'Location', 'Best')
hold off
```


POES in 2 dim spec: (1) Elliptic: \(\sigma(c, \sigma(u) + au - \frac{1}{2}\) Leplange \(\sigma(u) = \frac{1}{2}\) Leplange
(1) Elliptec: V(c Var Just laplange
AUXX + BUng + CUyy + DUX + FUY + FUG $ \nabla = \begin{pmatrix} \partial & \partial \\ \partial x & \partial y \end{pmatrix} $
VI = Gradient of sealor 1.
(2) Paraboliu: du - V. ((Ju) + qu = t
(3) Hyperbalia: dun = V.(eVa) + que = 1
- PDE: Matlob to built in fla-
Example of cliptical PDE Consider Pairson's can on a ocetangle-

Durchlet son u.
On commend window privis a name
Type: political
Turngrid on: Select options, Grad
Invase demain window: options, Axes limits on
x-axis (-0.5, 2.5)
Webs edges => y-axis [-0.5, 1.5] apply and class.
specify to draw rectangles click on rectangle soon at
top left of menu options left clack on the
point (0,0 and keeping left mouse butter grand
drag ocelarge to point (2,1) and release it.
convert it by double eliclary it wany done her charge
Specifit boundary Conditions: people when and work
Click on symbol as or select barodary, Boundary
mede or type controlib.
color of boundary indicales type of condition
ie red = Dirichlet , blue = Neumann , green = mixed
Double click on butter horizontal line = meruniar
the get formula bu=r & u(x,0) tore is type of DE rel escapia
an are \Rightarrow $h=1$, $Y=X$
Continue around boundary specifying remaining cond;
then
sive as and some mattab file for fecture use.

Elliptic pdes no time involvement

Criterian for parabollic b^2 - 4ac > 0

Heat equation U_t =

Previous Task discussion Steady case no change in time eloptic pde

Boundary condition are dritchelet boundary conditions

no invelvement of derivatice

Dritchlet B.C's:(Matlab specify)

h u = r

ANeuman boundry condition

Mixed boundary condition (Combinition of both)

Noslip dritchlet = 0

flux = 0

neuman = 0

inflow = outflow

Pipe

boundary drich = 0

tab, drich = 1 neuman = 0, open (inflow = outflow)

Parabollic PDE: Lab_Task 14_Dec_23

Date: 14 Dec 2023 Thursday

Example: Consider the heat equation

$$U_{t} = U_{xx} + U_{yy} + \sin(t)$$

$$U(t, 0, y) = 0; U_{x}(t, \pi, y) = 1$$

$$U_{y}(t, x, 0) = 0; U(t, x, 2\pi) = x$$

$$U(0, x, y) = 0$$

Note: For unique solution because 2 derivative of space variable then we need 2 boundary conditions (left & right)

$$x = 0; x = \pi$$

Same goes for y

$$y = 0; y = 2\pi$$

For t we have initial condition

$$t = 0$$

Solution:

$$[0,\pi]x[0,2\pi]$$

For Neumann B.C's

Matlab specify:

$$n * C * \operatorname{grad}(U) + qU = g$$

$$\overrightarrow{n} \cdot (C(x, y)\nabla U) + q(x, y)U = g(x, y)$$

where \overrightarrow{n} represents a unit vector normal to domain

For case $U_{\nu}(t, x, 0)$, we have,

$$\overrightarrow{n} = (0, -1), C(x, 0) = 1, q(x, 0) = 0, g(x, 0) = 0$$

For case $U_x(t, \pi, y) = 1$ we have

$$\overrightarrow{n} = (1,0), C(\pi, y) = 1, q(\pi, y) = 0, g(x, 0) = 1$$

Note: Derechilt = Red , Neuman b.cs = Blue Color

General Parabolic Pde:

$$d\; U_t - \nabla \cdot (C \nabla U) + \, \mathrm{aU} \, = f$$

In our case,

$$d = 1, C(t, x, y) = 1, f(t, x, y) = \sin(t)$$

For Initial condition:

Solve, parameters, Time: U(t0)

Let type:

linspace(0, 5, 10)

for the time to run till 5 sec


```
% write pdetool in command window
% make the domain
% option, grid on (for easy scaling)
% opetion axes limit
% x = [-0.5 1.5*pi] for visualize actual [0, pi]
% y = [-0.5 3*pi] for visualization purpose actual [0, 2*pi]
% select the rectangle icon from the top(1) and drag
% make this exact by double clicking the rectangular domain
% alternative usign draw tab
% partial sign for boundary condition drichlet / neuman
% for pde click on PDE, select the type and give the general values
% give the initial condition by click solve, parameter and put values by comparison
% plot, parameters, check animations and plot
% check plot in x, y grid, 3d height
%(Autamitacally triangularization jet color is encouraged)
```

Simulink

Lets add two numbers

Exxample:

 $dy/dt = 4 \sin 2t - 10 y$

 $y(t) = \inf(4 \sin 2t - 10 y) dt$

Note: For solving differential equaiton dintegrator block must

But for 2nd order double integrator block must be used

Simulink

Library Browser

Sine wave aplitude 4 and frequency 2

Gain must be connected after integrator as input and add or in O input with 2 inputs and after that the source will show output

if variable change to t then sanerio change

Example:

$$y'' + 5y' + 6y = 0$$
, $y(0) = 0$, $y(0) = 1$

$$y'' = -5y' - 6y$$

Note: if double integrator is only involved in the equaiton then only use integrator, sexcond-order

After mids only

ode45

bvp4c