Mathématique - DS n°7

L'usage de documents, de calculatrices ou de téléphones portables est interdit.

Les étudiants sont invités à encadrer les résultats de leurs calculs.

Exercice 1

- 1. Déterminer la nature de la série $\sum \ln \left(1 + \frac{1}{\sqrt{n}}\right)$.
- 2. Montrer que la série $\sum \frac{1}{\lfloor \operatorname{ch}(n) \rfloor + 1}$ est convergente.

Exercice 2

Pour $n \in \mathbb{N}$, on considére l'équation $x^5 + nx^3 = 1$ (E_n)

- 1. Montrer que (E_n) admet une unique solution réelle que l'on notera x_n .
- 2. Montrer que la suite (x_n) est décroissante.
- 3. Montrer que (x_n) converge vers une limite ℓ que l'on déterminera.
- 4. Déterminer un équivalent simple de $x_n \ell$.
- 5. Déterminer un développement asymptotique à 2 termes significatifs de x_n .

Exercice 3

On souhaite dans cet exercice étudier la fonction $f:x\longmapsto x(x-1)\ln\left(1+\frac{1}{2x}\right)$. On notera $\mathcal C$ la courbe représentative de la fonction f.

- 1. Déterminer l'ensemble de définition de la fonction f.
- 2. Déterminer un équivalent en 0^+ de f(x). En déduire la limite en 0^+ de f(x).
- 3. Calculer $\lim_{x\to 0^+} \frac{f(x)}{x}$. Que peut-on en déduire?
- 4. Calculer un développement limité à l'ordre 2 en 1 de f.
- 5. En déduire la tangente à la courbe $\mathcal C$ en 1 et la position de $\mathcal C$ par rapport à sa tangente.
- 6. Calculer un développement limité à l'ordre 3 en 0 de $(1-u)\ln\left(1+\frac{u}{2}\right)$.
- 7. En déduire un développement asymptotique de f à l'ordre 3 quand x tend vers $\pm \infty$.
- 8. La courbe \mathcal{C} admet-elle une asymptote en $+\infty$ et en $-\infty$? Si oui, préciser la position relative de \mathcal{C} et de cette asymptote.

Exercice 4

On considère pour cet exercice l'application $\varphi:\mathbb{R}_3[X]\longrightarrow\mathbb{R}[X]$ définie pour tout $P\in\mathbb{R}_3[X]$ par

$$\varphi(P) = P(X^2) - (X^2 + 1)P(X).$$

On considère également la famille $\mathcal{F}=(3,2X-1,3X^3+1)$ et l'ensemble $G=\{P\in\mathbb{R}_3[X],(2X-1)P'=6P\}$

- 1. Montrer que G est un sous-espace vectoriel. Déterminer sa dimension et en donner une base.
- 2. Montrer que la famille \mathcal{F} est libre dans $\mathbb{R}_3[X]$. Est-ce une base de $\mathbb{R}_3[X]$?
- 3. Montrer que φ est une application linéaire.
- 4. Montrer que le noyau de φ est le sev engendré par (X^2-1) .
- 5. L'application φ est-elle injective? Que peut-on dire de son caractère surjectif? Est-ce un endomorphisme? Est-ce un isomorphisme?
- 6. Montrer que $\operatorname{Vect}(F)$ et $\operatorname{Ker}(\varphi)$ sont supplémentaires dans $\mathbb{R}_3[X]$. Puis, donner une base adaptée à la décomposition en somme directe $\mathbb{R}_3[X] = \operatorname{Vect}(F) \oplus \operatorname{Ker}(\varphi)$
- 7. Exprimer la symétrie σ par rapport à $Ker(\varphi)$ parallèlement à Vect(F).
- 8. Donner une base de l'image de φ .
- 9. On considère l'application $\tilde{\varphi}$ induite par φ de $\mathrm{Vect}(F)$ dans $\mathrm{Im}(\varphi)$,

$$egin{array}{lll} ilde{arphi} : \operatorname{Vect}(\mathcal{F}) & \longrightarrow & \operatorname{Im}(arphi) \ P & \longmapsto & P(X^2) - (X^2+1)P(X) \end{array}$$

Montrer que $\tilde{\varphi}$ est un isomorphisme.

Exercice 5

On considére la fonction f définie par $f(x)=\int_x^{2x} \frac{\sin(t)}{t^2} dt$ si $x \neq 0$ et $f(0)=\ln(2)$.

- 1. On considère la fonction g définie par $g(t)=rac{\sin(t)-t}{t^2}$ si t
 eq 0 et g(0)=0.
 - (a) Vérifier que g est continue sur \mathbb{R} .
 - (b) En utilisant la continuité de g sur [-2,2] et un encadrement, montrer que $\lim_{x\to 0}\int_x^{2x}g(t)\;\mathrm{d}t=0.$
 - (c) En déduire que f est continue en 0.
- 2. Montrer que f est paire.
- 3. (a) Montrer que f est dérivable sur $]-\infty,0[$ et sur $]0,+\infty[$ et calculer f'(x) pour tout réel x non nul.

- (b) En déduire que f est dérivable en 0 et donner f'(0).
- (c) Étudier le signe de f'(x) sur $]0, +\infty[$.
- $\text{4. Montrer que } \forall x \in]0,+\infty[, \quad |f(x)| \leqslant \frac{1}{2x}. \quad \text{En déduire } \lim_{x \to +\infty} f(x).$
- 5. (a) Montrer que $f(\pi/2) > 0$ et que $f(\pi) < 0$.
 - (b) Montrer que $f(2\pi)=\int_{2\pi}^{3\pi}\left(rac{1}{t^2}-rac{1}{(t+\pi)^2}
 ight)\sin(t)\;\mathrm{d}t.$ En déduire que $f(2\pi)>0.$
 - (c) Tracer dans un repère orthonormé les hyperboles : $y = \frac{1}{2x}$ et $y = -\frac{1}{2x}$ ainsi que l'allure de la courbe représentative de f sur $[-2\pi, 2\pi]$.