ASEN 5331 - HW4

James Wright

December 11, 2019

0.1 Meaning of n...

Term	Definition	Source/Relevant Reference	
nsd	number of spacial dimensions	common/common.h#343	
nflow	number of flow variables (ie. size of \boldsymbol{Y})	?	
nshape	number of interior element shape functions	common/common.h#444	
ngauss	number of interior element integration points common/common.h#447		
npro	number of elements processed in a single call of e3.f Jansen lecture		
npro	number of virtual processors for the current block common/common/h#586		
nen	maximum number of element nodes common/common.h#341		
nQpt	number of quadrature points per element	common/shp4t.f#14	
nshl	number of shape functions per element	common/genblkPosix.f#70	
nshg	global number of shape functions common/common.h#354		
nenl	number of element nodes for current block	common/common.h#382	
nedof	total number of degrees of freedom	common/e3.f#35,344	

1 Essential Boundary Conditions

1.1 Setting BC Values

In compressible/itrbc.f

 $oldsymbol{Y}=\mathtt{y}$

g(x) = BC on a per node basis

The essential boundary conditions are set in /compressible/itrbc.f#59-198. The iBC variable contains bit-wise information on what specific boundary conditions are going to be set. BC contains the BC data (g(x)) in the notes for each individual node. iBC is set in common/genibc.f and BC is set in common/genbc.f, which takes iBC as an input.

Essentially, the code checks \mathtt{iBC} for which values of \boldsymbol{Y} should be set. This logical check is done via the $\mathtt{ibits}()$ function. If a given \boldsymbol{Y} chosen, then \boldsymbol{Y} is set to the corresponding value in \mathtt{BC} .

So common/gendat.f->gendat() calls common/genibc.f->geniBC() to create the iBC vector. common/gendat.f then calls common/genbc.f->genBC() to create the BC vector which contains the values that should then be substituted into the y array in compressible/itrbc.f.

1.2 Applying S Matrices

The application of the S matrices applied in two different locations: compressible/b3res.f and compressible/b3lhs.f, which apply S to the residual (res, RHS) and mass matrix (EGMass, LHS) respectively.

For the residual, the values of res are replaced based on the logical output from the same ibits() operation on iBC as before, similar to when BC values were set in common/genbc. f->genBC(). This process occurs in compressible/b3res.f#28-163.

Applying S on the LHS operates in a similar way, with the primary difference being the differences in how S is applied analytically (ie. S^TG vs. S^TMS). Since the S^TMS operation acts on the applicable row and column of the M matrix at once via do loops.

2 Natural Boundary Conditions

There are 6 different flux components: normal flux h^m , pressure flux h^p , viscous stress/traction vector h_i^v , and heat flux h^h .

iBCB is the equivalent of IBC for natural boundary conditions; it stores, bit-wise, which fluxes are to be set.

BCB stores the h^j values. The last index of the array represents the 6 flux components:

Index	Variable	Description
1	h^m	mass/normal flux
2	h^p	pressure flux
3	$\mid h_1^v \mid$	viscous flux in x1 direction
4	h_2^v	viscous flux in x2 direction
5	$h_3^{\overline{v}}$	viscous flux in x3 direction
6	$h^{\tilde{h}}$	heat flux

compressible/e3bvar.f#85-128 first computes the flow variable values at the quadrature points, pres, T, u1, u2, u3, rho, ei, rk. These values are used to set the "floating" fluxes (ie. fluxes on $\Gamma - \Gamma_h^j$). This also computes the user defined flux values h^j at quadrature points and puts them into rou, p, Fv1, Fv2, Fv3, heat for the components of BCB.

compressible/e3b.f sets a series of flux vectors F1, F2, F3, F4, F5 which correspond to the 5 fluxes of the primitive equation (density flux, 3 velocity fluxes, and a temperature flux). These fluxes are either set to their "floating" values or the user specified flux values, as determined by the value of iBCB. The e3b() routine also defines Fv2, Fv3, Fv4 and Fv5 as parts of the viscous flux, which are then used for creating other fluxes (for example, part of the energy flux is simply $u_i\tau_{ij}$).

Once the F1, F2, F3, F4, F5 variables are set, they are then put into the residual rl in compressible/e3b.f#266-292.