04 2 Normalization

January 28, 2021

```
[]: # The MIT License (MIT)
     # Copyright (c) 2020, NVIDIA CORPORATION.
     # Permission is hereby granted, free of charge, to any person obtaining a copy_{\sqcup}
     \hookrightarrow of
     # this software and associated documentation files (the "Software"), to deal in
     # the Software without restriction, including without limitation the rights to
     # use, copy, modify, merge, publish, distribute, sublicense, and/or sell copiesu
     # the Software, and to permit persons to whom the Software is furnished to do_{\sqcup}
      ⇒SO.
     # subject to the following conditions:
     # The above copyright notice and this permission notice shall be included in all
     # copies or substantial portions of the Software.
     # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
     # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, U
     \hookrightarrow FITNESS
     # FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR
     # COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER
     # IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
     # CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE
```

1 Tutorial: Feature Engineering for Recommender Systems

2 4. Feature Engineering - Numerical

2.1 4.2. Normalization

```
import IPython
import pandas as pd
import cudf
import numpy as np
import cupy
```

```
import matplotlib.pyplot as plt
df_train = cudf.read_parquet('./data/train.parquet')
df_valid = cudf.read_parquet('./data/valid.parquet')
df_test = cudf.read_parquet('./data/test.parquet')
df_train['brand'] = df_train['brand'].fillna('UNKNOWN')
df_valid['brand'] = df_valid['brand'].fillna('UNKNOWN')
df_test['brand'] = df_test['brand'].fillna('UNKNOWN')
df_train['cat_0'] = df_train['cat_0'].fillna('UNKNOWN')
df_valid['cat_0'] = df_valid['cat_0'].fillna('UNKNOWN')
df_test['cat_0'] = df_test['cat_0'].fillna('UNKNOWN')
df_train['cat_1'] = df_train['cat_1'].fillna('UNKNOWN')
df_valid['cat_1'] = df_valid['cat_1'].fillna('UNKNOWN')
df_test['cat_1'] = df_test['cat_1'].fillna('UNKNOWN')
df_train['cat_2'] = df_train['cat_2'].fillna('UNKNOWN')
df_valid['cat_2'] = df_valid['cat_2'].fillna('UNKNOWN')
df_test['cat_2'] = df_test['cat_2'].fillna('UNKNOWN')
```

We generate some numerical features with the feature engineering from the previous notebooks.

```
[2]: def target_encode(train, valid, col, target, kfold=5, smooth=20, gpu=True):
         11 11 11
             train: train dataset
             valid: validation dataset
             col: column which will be encoded (in the example RESOURCE)
             target: target column which will be used to calculate the statistic
         n n n
         # We assume that the train dataset is shuffled
         train['kfold'] = ((train.index) % kfold)
         # We keep the original order as cudf merge will not preserve the original _{\sqcup}
      \hookrightarrow order
         if gpu:
             train['org_sorting'] = cupy.arange(len(train), dtype="int32")
         else:
             train['org_sorting'] = np.arange(len(train), dtype="int32")
         # We create the output column, we fill with O
         col_name = '_'.join(col)
         train['TE' + col name] = 0.
         for i in range(kfold):
             #####################################
             # filter for out of fold
             # calculate the mean/counts per group category
```

```
# calculate the global mean for the oof
      # calculate the smoothed TE
       # merge it to the original dataframe
       df_tmp = train[train['kfold']!=i]
      mn = df_tmp[target].mean()
      df_tmp = df_tmp[col + [target]].groupby(col).agg(['mean', 'count']).
→reset index()
      df_tmp.columns = col + ['mean', 'count']
      df_tmp['TE_tmp'] = ((df_tmp['mean']*df_tmp['count'])+(mn*smooth)) /__

    df_tmp['count']+smooth)

      df_tmp_m = train[col + ['kfold', 'org_sorting', 'TE_' + col_name]].
→merge(df_tmp, how='left', left_on=col, right_on=col).
⇔sort_values('org_sorting')
      df tmp m.loc[df_tmp_m['kfold']==i, 'TE_' + col_name] = df_tmp_m.
→loc[df_tmp_m['kfold']==i, 'TE_tmp']
      train['TE_' + col_name] = df_tmp_m['TE_' + col_name].fillna(mn).values
   ######################################
   # calculate the mean/counts per group for the full training dataset
   # calculate the global mean
   # calculate the smoothed TE
   # merge it to the original dataframe
   # drop all temp columns
   df_tmp = train[col + [target]].groupby(col).agg(['mean', 'count']).
→reset_index()
  mn = train[target].mean()
  df_tmp.columns = col + ['mean', 'count']
  df_tmp['TE_tmp'] = ((df_tmp['mean']*df_tmp['count'])+(mn*smooth)) / __
if gpu:
      valid['org_sorting'] = cupy.arange(len(valid), dtype="int32")
  else:
      valid['org_sorting'] = np.arange(len(valid), dtype="int32")
  df_tmp_m = valid[col + ['org_sorting']].merge(df_tmp, how='left',_
→left_on=col, right_on=col).sort_values('org_sorting')
  valid['TE_' + col_name] = df_tmp_m['TE_tmp'].fillna(mn).values
  valid = valid.drop('org_sorting', axis=1)
  train = train.drop('kfold', axis=1)
  train = train.drop('org_sorting', axis=1)
  return(train, valid)
```

```
[3]: df_train.columns
[3]: Index(['event_time', 'event_type', 'product_id', 'brand', 'price', 'user_id',
            'user_session', 'target', 'cat_0', 'cat_1', 'cat_2', 'cat_3',
            'timestamp', 'ts_hour', 'ts_minute', 'ts_weekday', 'ts_day', 'ts_month',
            'ts_year'],
           dtype='object')
[4]: cats = [['cat_0'], ['cat_1'], ['cat_2'], ['cat_0', 'cat_1', 'cat_2'],
      →['ts_hour'], ['ts_weekday'], ['ts_weekday', 'ts_hour', 'cat_2', 'brand']]
[5]: for cat in cats:
         df_train, df_valid = target_encode(df_train, df_valid, cat, 'target')
[6]: cats = ['brand', 'user_id', 'product_id', 'cat_0', 'cat_1', 'cat_2']
[7]: def count_encode(train, valid, col, gpu=True):
             train: train dataset
             valid: validation dataset
             col: column which will be count encoded (in the example RESOURCE)
         11 11 11
         # We keep the original order as cudf merge will not preserve the original \Box
      \rightarrow order
         if gpu:
             train['org_sorting'] = cupy.arange(len(train), dtype="int32")
         else:
             train['org_sorting'] = np.arange(len(train), dtype="int32")
         train tmp = train[col].value counts().reset index()
         train_tmp.columns = [col, 'CE_' + col]
         df_tmp = train[[col, 'org_sorting']].merge(train_tmp, how='left',__
      →left_on=col, right_on=col).sort_values('org_sorting')
         train['CE ' + col] = df tmp['CE ' + col].fillna(0).values
         if gpu:
             valid['org_sorting'] = cupy.arange(len(valid), dtype="int32")
         else:
             valid['org_sorting'] = np.arange(len(valid), dtype="int32")
         df_tmp = valid[[col, 'org_sorting']].merge(train_tmp, how='left',_
      →left_on=col, right_on=col).sort_values('org_sorting')
         valid['CE_' + col] = df_tmp['CE_' + col].fillna(0).values
         valid = valid.drop('org_sorting', axis=1)
         train = train.drop('org_sorting', axis=1)
         return(train, valid)
```

```
[8]: %%time
     for cat in cats:
         df_train, df_valid = count_encode(df_train, df_valid, cat, gpu=True)
    CPU times: user 648 ms, sys: 1.26 s, total: 1.91 s
    Wall time: 1.91 s
[9]: df_train.head()
[9]:
                     event_time event_type
                                            product_id
                                                            brand
                                                                    price
                                                                             user_id
        2019-12-01 00:00:28 UTC
                                               17800342
                                                             zeta
                                                                    66.90
                                                                           550465671
                                       cart
     1 2019-12-01 00:00:39 UTC
                                       cart
                                                3701309
                                                         polaris
                                                                    89.32
                                                                           543733099
     2 2019-12-01 00:00:40 UTC
                                                3701309
                                                          polaris
                                                                    89.32
                                                                           543733099
                                       cart
     3 2019-12-01 00:00:41 UTC
                                                3701309
                                                         polaris
                                                                    89.32
                                                                           543733099
                                       cart
     4 2019-12-01 00:01:56 UTC
                                                1004767
                                                          samsung
                                                                   235.60
                                                                           579970209
                                       cart
                                 user_session
                                               target
                                                               cat_0
                                                                            cat_1 \
     0 22650a62-2d9c-4151-9f41-2674ec6d32d5
                                                    0
                                                           computers
                                                                          desktop
     1 a65116f4-ac53-4a41-ad68-6606788e674c
                                                    0
                                                          appliances
                                                                      environment
     2 a65116f4-ac53-4a41-ad68-6606788e674c
                                                    0
                                                          appliances
                                                                      environment
     3 a65116f4-ac53-4a41-ad68-6606788e674c
                                                    0
                                                          appliances
                                                                      environment
     4 c6946211-ce70-4228-95ce-fd7fccdde63c
                                                    0
                                                       construction
                                                                            tools
                                TE_ts_hour
                                            TE_ts_weekday
        ... TE_cat_0_cat_1_cat_2
     0
                      0.280155
                                   0.305423
                                                  0.410060
     1
                      0.350069
                                   0.305249
                                                  0.410061
     2
                      0.351989
                                   0.305235
                                                  0.410059
     3
                      0.351410
                                   0.305370
                                                  0.410061
                      0.460389
                                   0.305449
                                                  0.410061
     4
        TE_ts_weekday_ts_hour_cat_2_brand CE_brand CE_user_id
                                                                  CE_product_id \
     0
                                                                9
                                                                              743
                                  0.301241
                                               10859
     1
                                  0.333539
                                               50273
                                                               56
                                                                              12
     2
                                                               56
                                                                              12
                                  0.319065
                                               50273
     3
                                  0.333539
                                               50273
                                                               56
                                                                              12
     4
                                  0.466269
                                             2323417
                                                                9
                                                                          317711
        CE_cat_0
                 CE_cat_1 CE_cat_2
          372964
     0
                     51652
                              5058060
     1
         1527338
                    287043
                               213674
     2
         1527338
                    287043
                               213674
     3
         1527338
                    287043
                               213674
     4
         3363367
                   3307872
                              3172781
     [5 rows x 32 columns]
```

```
[10]: df_train.columns
```

2.2 Theory

Normalization is required to enable neural networks to leverage numerical features. Tree-based models do not require normalization as they define the split independent of the scale of a feature. Without normalization, neural networks are difficult to train. The image visualizes the loss surface and the gradient updates for non-normalized input (left) and normalized input (right).

Source: https://www.jeremyjordan.me/batch-normalization/

The reason is that different numerical features have different scales. When we combine the features in a hidden layer, the different scales make it more difficult to extract patterns from it.

2.3 Normalization Techniques

After we outline the importance for normalizing the numerical input feature, we will discuss different strategy to achieve a normal distributed input feature: 1. Normalization with mean/std 2. Log-based normalization 3. Scale to 0-1 4. Gauss Rank (separate notebook) 5. Power transfomer

2.3.1 4.2.1 Normalization with mean/std

The most common approach is to normalize a numerical feature by substracting the mean and divide the feature by the standard derviation:

$$X_{norm} = \frac{X - mean_X}{\sigma_X} \sim \mathcal{N}(0, 1) \tag{1}$$

```
[11]: X = df_train['CE_product_id']
```

Our features does not follow a normal distribution

```
[13]: fig, axs = plt.subplots(1, 2, figsize=(16,3))
    axs[0].hist(X.sample(frac=0.01).to_pandas(), bins=50)
    axs[0].set_title('Histogram non-normalised')
    axs[1].hist(X_norm.sample(frac=0.01).to_pandas(), bins=50)
    axs[1].set_title('Histogram normalised')
```

[13]: Text(0.5, 1.0, 'Histogram normalised')

2.3.2 4.2.2 Log-based normalization

Some features are not normal distributed in the raw format. If they have a long-tail distribution, we can normalize them by applying the log function, first.

$$X_{log} = log(X+1)X_{log-norm} = \frac{X_{log} - mean_{X_{log}}}{\sigma_{X_{log}}} \sim \mathcal{N}(0, 1)$$
 (2)

User behavior data have often a long-tail distribution, such as # of clicks or # of purchases.

```
[14]: X = df_train['CE_product_id'].to_pandas()
```

[15]:
$$X_{log} = np.log(X+1)$$

```
[17]: fig, axs = plt.subplots(1, 2, figsize=(16,3))
    axs[0].hist(X.sample(frac=0.01), bins=50)
    axs[0].set_title('Histogram non-normalised')
    axs[1].hist(X_norm.sample(frac=0.01), bins=50)
    axs[1].set_title('Histogram normalised')
```

[17]: Text(0.5, 1.0, 'Histogram normalised')

2.3.3 4.2.3 Scale to 0-1

Another technique is to scale the numerical features between 0-1.

$$X_{norm} = \frac{X - min(X)}{max(X) - min(X)} \tag{3}$$

```
[18]: X = df_train['TE_cat_2']
     plt.hist(((X-X.min())/(X.max()-X.min())).sample(frac=0.01).to_pandas(), bins=50)
[19]: (array([8.0000e+00, 8.0000e+00, 0.0000e+00, 0.0000e+00, 0.0000e+00,
             0.0000e+00, 0.0000e+00, 0.0000e+00, 0.0000e+00, 1.0000e+00,
             3.2000e+01, 9.2000e+01, 1.5600e+02, 1.4000e+01, 4.9000e+01,
             3.4800e+02, 9.1000e+01, 1.0510e+03, 1.1800e+02, 1.7700e+02,
              1.4710e+03, 1.1560e+03, 3.5200e+02, 7.2900e+02, 3.4340e+03,
             4.7980e+04, 1.9500e+03, 1.0770e+03, 4.4340e+03, 3.4220e+03,
             2.9400e+02, 3.6550e+03, 0.0000e+00, 3.5900e+02, 1.6090e+03,
             2.5380e+03, 9.9100e+02, 2.3800e+02, 0.0000e+00, 0.0000e+00,
             0.0000e+00, 2.7500e+02, 0.0000e+00, 3.4905e+04, 8.4600e+02,
             0.0000e+00, 0.0000e+00, 0.0000e+00, 0.0000e+00, 7.5400e+02]),
       array([0., 0.02, 0.04, 0.06, 0.08, 0.1, 0.12, 0.14, 0.16, 0.18, 0.2,
             0.22, 0.24, 0.26, 0.28, 0.3, 0.32, 0.34, 0.36, 0.38, 0.4, 0.42,
             0.44, 0.46, 0.48, 0.5, 0.52, 0.54, 0.56, 0.58, 0.6, 0.62, 0.64,
             0.66, 0.68, 0.7, 0.72, 0.74, 0.76, 0.78, 0.8, 0.82, 0.84, 0.86,
             0.88, 0.9, 0.92, 0.94, 0.96, 0.98, 1. ]),
       <BarContainer object of 50 artists>)
```


2.4 Practice

Now, it is your turn.

ToDo:

Normalize the features: price, TE_ts_weekday_ts_hour_cat_2_brand, CE_cat_2

Which normalization technique seems good?

```
[20]: ### ToDo
```

Optimisation is skipped

We shutdown the kernel.

```
[25]: app = IPython.Application.instance()
app.kernel.do_shutdown(False)
```

```
[25]: {'status': 'ok', 'restart': False}
```