The Boltzmann Machine

- Similarities to Hopfield Networks
 - **1.** state values +1, -1
 - 2. weights symmetric
 - 3. unit selected at random
 - 4. no self-feedback
- Differences with Hopfield Networks
 - 1. Boltzmann permits hidden neurons
 - 2. Boltzmann uses stochastic neurons
 - 3. Hopfield unsupervised while Boltzmann may operate supervised
- Boltzmann Machine terminology
 - o hidden, visible
 - o clamped, operating freely
 - o training: input output
 - o thermal equilibrium
- Basic Operation
 - select neuron at random
 - update stochastically
 - $prob(s_j \rightarrow -s_j) = 1/(1+exp(-delat_E_j/T))$
- Clamped and free probabilities: P⁺_{alpha} and P⁻_{alpha}
- Energy for $s_j \rightarrow -s_j$
- $prob(s_i -> -s_i) = 1/(1 + exp(2s_iv_i/T))$
- Operates like a stochastic neuron

- 1. No self-feedback
- 2. external threshold theata_i ($s_0 = -1$)
- 3. 2^N states
- thermal equilibrium
- Boltzmann Distributi
 - $P_{alpha} = 1/Z exp(-E_{alpha}/T)$
 - \circ $\mathbf{Z} = ...$
 - o for large T all states are equiprobable
 - as T->0 only states with minimum energy level have non-zero probability
 - coarse search -> fine search
 - o constraint- satisfaction: weak constraints
- The Boltzmann Learning Rule
- hidden neurons act as feature detectors
- state = visible/hidden (alpha / beta)
- 2^K choices for alpha
- 2^L choices for beta, where L = N-K
- N.B. text says alpha runs from 1 to 2^K
- Clamped Probability: $P_{alpha}^+ = ...$
- Running free probability: $P_{alpha} = ...$
- actual /desired probabilities
- relative entropy
- gradient descent method
- Correlations