AMENDMENTS TO THE CLAIMS

Please cancel claim 3, amend claims 1, 2, 4-6 and 8, and add new claims 10-28. No new matter is believed to be introduced as a result of the aforementioned amendments and new claims.

1. (Currently amended) A method of manufacturing an x-ray tube component for use in an x-ray generating apparatus, the method comprising the steps of:

forming a substrate material into [[the]] a shape of the x-ray tube component;

depositing a first bond coating on the substrate; and

depositing a radiation shielding coating on the <u>first bond coating substrate</u>, the coating comprising a material that limits the amount of x-radiation that is able to pass through the coated portion of the substrate material to a predetermined level.

2. (Currently amended) A method as defined in claim 1, wherein the depositing the coating step deposition of the radiation shielding coating is performed with a plasma spraying process.

3. (Canceled)

4. (Currently amended) A method as defined in claim [[2]] 1, wherein the depositing the bond coating step deposition of the first bond coating is performed with a plasma spraying process.

2

Docket No. 14374.27.1 Ser. No. 10/663,297 5. (Currently amended) A method of manufacturing an x-ray tube housing for use in an x-ray generating apparatus, the method comprising the steps of:

forming a substrate metal material into the shape of the housing;

plasma spraying a bond layer onto at least a portion of the surface of the substrate;

plasma spraying a powder metal material over at least a portion of the bond layer

so as to create an x-ray shield layer on the substrate, the powder metal material

comprising at least one powder metal that is a dense x-ray absorbing material; and

continuing the plasma spraying [[step]] until the thickness of the x-ray shield layer is at least approximately .085 inches.

- 6. (Currently amended) A method of manufacturing as defined in claim 5, wherein the substrate metal material is selected from one of the following: [[Kovar]] an alloy comprising about 29% nickel, about 17% cobalt, and about 53% iron; Alloy 46; nickel; copper; stainless steel; molybdenum; and alloys of the foregoing.
- 7. (Original) A method of manufacturing as defined in claim 5, wherein the powder metal material further comprises at least one powder metal having a thermal expansion characteristic that is substantially similar to that of the substrate metal material.
- 8. (Currently amended) A method of manufacturing as defined in claim [[6]] 7, wherein the powder metal material having the thermal expansion characteristic is iron.

3

9. (Original) A method of manufacturing as defined in claim 5, wherein the

powder metal that is a dense x-ray absorbing material is tungsten.

10. (New) A method as defined in claim 1, wherein the radiation shielding coating

has a thermal expansion coefficient that is substantially similar to a thermal expansion

coefficient of the substrate.

11. (New) A method as defined in claim 1, wherein the radiation shielding layer

includes a proportion of iron that falls in a range of zero percent to about 50 percent

12. (New) A method as defined in claim 1, wherein the radiation shielding layer

comprises about 10 percent iron and about 90 percent tungsten.

13. (New) A method as defined in claim 1, wherein the radiation shielding layer

includes at least one material selected from the following group: tungsten; copper; molybdenum;

tantalum; steel; bismuth; lead; nickel; aluminum; cobalt; and, an alloy of one or more of

tungsten, copper, molybdenum, tantalum, steel, bismuth, and lead.

14. (New) A method as defined in claim 1, further comprising applying a second

bond layer to the radiation shielding coating.

15. (New) A method as defined in claim 14, wherein the second bond layer includes

copper.

4

Docket No. 14374.27.1 Ser. No. 10/663,297

- 16. (New) A method as defined in claim 14, wherein the second bond layer is applied by a plasma spray process.
- 17. (New) A method as defined in claim 1, further comprising plating at least a portion of the substrate.
- 18. (New) A method as defined in claim 17, wherein material used in the plating substantially comprises nickel.
- 19. (New) A method as defined in claim 1, further comprising heating the x-ray tube component in a wet hydrogen environment.
- 20. (New) A method as defined in claim 2, wherein the plasma spray process comprises one of: atmospheric plasma spraying; low pressure plasma spraying; high velocity oxy fuel plasma spraying; and, plasma jet spraying.
- 21. (New) A method as defined in claim 4, wherein the plasma spray process comprises one of: atmospheric plasma spraying; low pressure plasma spraying; high velocity oxy fuel plasma spraying; and, plasma jet spraying.
 - 22. (New) A method of manufacturing an x-ray tube component, comprising: forming a substrate material into a shape of the x-ray tube component;

applying a first bond layer to at least a portion of the substrate;
depositing a radiation shield layer on the first bond layer; and

applying a second bond layer to at least a portion of the x-ray shield layer.

23. (New) The method as recited in claim 22, wherein at least one of the following is

performed by way of a plasma spray process: applying the first bond layer; depositing the

radiation shield layer; and, applying the second bond layer.

24. (New) The method as recited in claim 22, wherein the radiation shield layer is

applied using a powder metal mixture.

25. (New) The method as recited in claim 22, wherein the substrate substantially

comprises one of: an alloy comprising about 29% nickel, about 17% cobalt, and about 53% iron;

Alloy 46; nickel; copper; stainless steel; molybdenum; and alloys of the foregoing.

26. (New) The method as recited in claim 22, wherein the radiation shield layer

includes at least one material selected from the following group: tungsten; copper; molybdenum;

tantalum; steel; bismuth; lead; nickel; aluminum; cobalt; and, an alloy of one or more of

tungsten, copper, molybdenum, tantalum, steel, bismuth, and lead.

27. (New) The method as recited in claim 22, wherein the radiation shield layer

comprises a combination of iron and tungsten.

6

Docket No. 14374.27.1 Ser. No. 10/663,297

- 28. (New) The method as recited in claim 22, wherein the first bond layer is applied by one of: mechanical etching of the substrate; or, chemical etching of the substrate.
- 29. (New) The method as recited in claim 22, further comprising heating the x-ray tube component in a wet hydrogen environment.
- 30. (New) The method as recited in claim 22, further comprising plating at least a portion of the substrate.

₹..

7