補論: 交差推定

機械学習入門

川田恵介

Table of contents

0.1	2度づけ回避	1
0.2	交差推定	1
0.3	数值例: 3 分割	2
0.4	数值例: Step 1	2
0.5	数值例: Step 2	
0.6	数值例: Step 3	3
0.7	Stacking	3
0.8	実装	3
	例	
0.10	例	4
0.11	比較	5
0.12	例	5

0.1 2度づけ回避

- ある事例の予測値は、その事例を含まないデータから推定する必要がある
- ここまでの方法: データを 2 分割し、片方で予測モデルを推定し、残りで OLS 推定を行う
 - 問題点: 半分のデータしか、OLS に使えず、推定精度が悪化する
 - 改善策: 交差推定

0.2 交差推定

- 0. データを細かく分割 (第 1,..,10 サブグループなど)
- 1. 第 1 サブグループ**以外**で推定して、第 1 サブグループの予測値を算出

2. 第 2...サブグループについて、繰り返し、全事例に対して予測値を算出

0.3 数值例: 3分割

A tibble: 9 x 3

	${\tt StationDistance}$	Price	Group
	<int></int>	<dbl></dbl>	<fct></fct>
1	9	6.05	3
2	4	3.94	2
3	7	31.0	3
4	1	8.64	1
5	2	-5.99	3
6	7	-4.48	1
7	2	-0.895	1
8	3	0.00785	2
9	1	-3.12	2

0.4 **数値例**: Step 1

A tibble: 9 x 5

	${\tt StationDistance}$	Price	Group	OLS	${\tt RandomForest}$
	<int></int>	<dbl></dbl>	<fct></fct>	<dbl></dbl>	<dbl></dbl>
1	9	6.05	3	NA	NA
2	4	3.94	2	NA	NA
3	7	31.0	3	NA	NA
4	1	8.64	1	-4.12	-1.89
5	2	-5.99	3	NA	NA
6	7	-4.48	1	12.9	16.7
7	2	-0.895	1	-1.29	-1.91
8	3	0.00785	2	NA	NA
9	1	-3.12	2	NA	NA

0.5 **数値例**: Step 2

A tibble: 9 x 5

	StationDistance	Price	Group	OLS	RandomForest
	<int></int>	<dbl></dbl>	<fct></fct>	<dbl></dbl>	<dbl></dbl>
1	9	6.05	3	NA	NA
2	4	3.94	2	4.86	-0.189

3	7	31.0	3	NA	NA
4	1	8.64	1	-4.12	-1.89
5	2	-5.99	3	NA	NA
6	7	-4.48	1	12.9	16.7
7	2	-0.895	1	-1.29	-1.91
8	3	0.00785	2	3.55	-0.189
9	1	-3.12	2	0.938	1.91

0.6 **数値例**: Step 3

A tibble: 9 x 5

	${\tt StationDistance}$	Price	Group	OLS	${\tt RandomForest}$
	<int></int>	<dbl></dbl>	<fct></fct>	<dbl></dbl>	<dbl></dbl>
1	9	6.05	3	-4.88	-1.84
2	4	3.94	2	4.86	-0.189
3	7	31.0	3	-3.03	-1.84
4	1	8.64	1	-4.12	-1.89
5	2	-5.99	3	1.61	0.945
6	7	-4.48	1	12.9	16.7
7	2	-0.895	1	-1.29	-1.91
8	3	0.00785	2	3.55	-0.189
9	1	-3.12	2	0.938	1.91

0.7 Stacking

• 交差推定から Stacking も可能

lm(Price ~ OLS + RandomForest, PopData)

Call:

lm(formula = Price ~ OLS + RandomForest, data = PopData)

Coefficients:

(Intercept) OLS RandomForest 5.056 -1.248 0.243

0.8 実装

• 以上の手続きは ddml package で実装可能

0.9 例

```
library(tidyverse)
library(ddml)

Y = Data$Price
D = Data$D

X = select(
   Data,
   Size,
   District,
   Distance,
   Tenure)
```

0.10 例

```
Model = ddml_plm(
    y = Y,
    D = D,
    X = data.matrix(X),
    learners = list(
        list(fun = ols),
        list(fun = mdl_glmnet),
        list(fun = mdl_ranger)
    ),
    shortstack = TRUE,
    silent = TRUE)
```

PLM estimation results:

```
, , nnls
```

0.11 比較

0.12 例

```
library(estimatr)

HatY = Model$ols_fit$model$y_r

HatD = Model$ols_fit$model$D_r

lm_robust(
    HatY ~ 0 + HatD +
        HatD:scale(Size) + HatD:scale(Tenure) + HatD:scale(Distance),
        Data)
```

```
Estimate Std. Error t value Pr(>|t|) CI Lower

HatD 9.0738250 0.3877271 23.402609 1.293111e-115 8.313729

HatD:scale(Size) 3.4971204 0.4196271 8.333876 9.756498e-17 2.674488

HatD:scale(Tenure) -0.6944621 0.3404948 -2.039567 4.144052e-02 -1.361965

HatD:scale(Distance) -1.4511045 0.3913597 -3.707854 2.110542e-04 -2.218322

CI Upper DF

HatD 9.8339212 5573
```