IIC1253 Matemáticas Discretas

Sasha Kozachinskiy

DCC UC

16.08.2025 20. Hoy...

Lógica de predicados: predicados y operaciones sobre ellos.

"Cada número racional es algebráico. Cada número algebráico es computable. Por lo tanto, cada número racional es computable "

- "Cada número racional es algebráico. Cada número algebráico es computable. Por lo tanto, cada número racional es computable "
- Es verdadera (¡y no necesitamos entender nada!)

- "Cada número racional es algebráico. Cada número algebráico es computable. Por lo tanto, cada número racional es computable "
- Es verdadera (¡y no necesitamos entender nada!)
- ▶ ¿Tautología de la lógica proposicional?

- "Cada número racional es algebráico. Cada número algebráico es computable. Por lo tanto, cada número racional es computable "
- Es verdadera (¡y no necesitamos entender nada!)
- ¿Tautología de la lógica proposicional?
- $\blacktriangleright (A \land B) \to C \mathsf{no!}$

- "Cada número racional es algebráico. Cada número algebráico es computable. Por lo tanto, cada número racional es computable "
- Es verdadera (jy no necesitamos entender nada!)
- ¿Tautología de la lógica proposicional?
- $(A \wedge B) \to C \mathsf{no!}$
- ▶ intuición: en la lógica proposicional, proposiciones atómicas son completamente independientes.

- "Cada número racional es algebráico. Cada número algebráico es computable. Por lo tanto, cada número racional es computable "
- Es verdadera (¡y no necesitamos entender nada!)
- ¿Tautología de la lógica proposicional?
- $(A \wedge B) \to C \mathsf{no!}$
- ▶ intuición: en la lógica proposicional, proposiciones atómicas son completamente independientes.
- necesitamos algo con conecciones más intrincadas entre proposiciones atómicas

(informal): un predicado sobre el conjunto D es una proposición, parametrizado por elementos de conjunto D.

(informal): un predicado sobre el conjunto D es una proposición, parametrizado por elementos de conjunto D.

(informal): un predicado sobre el conjunto D es una proposición, parametrizado por elementos de conjunto D.

Ejemplos para $D = \mathbb{N}$:

"x es impar" (1 parámetro);

(informal): un predicado sobre el conjunto D es una proposición, parametrizado por elementos de conjunto D.

- "x es impar" (1 parámetro);
- ightharpoonup x < y (2 parámetros);

(informal): un predicado sobre el conjunto D es una proposición, parametrizado por elementos de conjunto D.

- "x es impar" (1 parámetro);
- \triangleright x < y (2 parámetros);
- $\triangleright x|y$ (2 parámetros);

(informal): un predicado sobre el conjunto D es una proposición, parametrizado por elementos de conjunto D.

- "x es impar" (1 parámetro);
- \triangleright x < y (2 parámetros);
- x|y (2 parámetros);
- > x + y = z (3 parámetros); x = 1 y = 2 z = 1000 z = 1 y = 2 z = 3 Web.

(informal): un predicado sobre el conjunto D es una proposición, parametrizado por elementos de conjunto D.

- "x es impar" (1 parámetro);
- \triangleright x < y (2 parámetros);
- x|y (2 parámetros);
- \triangleright x + y = z (3 parámetros);
- ▶ 0, 1 (0 parámetros). p20 posiciones

(informal): un predicado sobre el conjunto D es una proposición, parametrizado por elementos de conjunto D.

- "x es impar" (1 parámetro);
- \triangleright x < y (2 parámetros);
- $\triangleright x|y$ (2 parámetros);
- \triangleright x + y = z (3 parámetros);
- 0, 1 (0 parámetros).
- \triangleright x + y no es un predicado.

Predicados – definición

Convenio: para nombres de los parámetros usamos alfabeto latino (letras minusculas, posiblemente con indices).

Definición

Un **predicado** P con parametros x_1, \ldots, x_n sobre un conjunto D (llamado el **dominio** de P) es una función que devuelve 0 o 1 para cada asignación de x_1, \ldots, x_n a elementos de D.

Predicados – definición

Convenio: para nombres de los parámetros usamos alfabeto latino (letras minusculas, posiblemente con indices).

Definición

Un **predicado** P con parametros x_1, \ldots, x_n sobre un conjunto D (llamado el **dominio** de P) es una función que devuelve 0 o 1 para cada asignación de x_1, \ldots, x_n a elementos de D.

La aridad de P es el número de parametros de P.

Presentación gráfica de los predicados

$$D = \{1, 2, 3, 4\}, \qquad P(x) = "x \text{ es impar"}.$$

$$D = \{1, 2, 3, 4\}, \qquad P(x, y) = \begin{cases} 1 & x < y, \\ 0 & \text{si no.} \end{cases}$$

Soporte

Definición

Sea $P(x_1,...,x_n)$ un predicado n-ario sobre el conjunto D. **Su soporte** es el conjunto de todas las asignaciones de $x_1,...,x_n$ a elementos de D donde P toma valor 1.

Soporte

Definición

Sea $P(x_1,...,x_n)$ un predicado n-ario sobre el conjunto D. Su soporte es el conjunto de todas las asignaciones de $x_1,...,x_n$ a elementos de D donde P toma valor 1.

Retratar el soporte del predicado x|y sobre $D = \{1, 2, 3, 4\}$.

Soporte

Definición

Sea $P(x_1, ..., x_n)$ un predicado n-ario sobre el conjunto D. Su **soporte** es el conjunto de todas las asignaciones de x_1, \ldots, x_n a elementos de D donde P toma valor 1.

Retratar el soporte del predicado x|y sobre $D = \{1, 2, 3, 4\}$.

¿Cuál es el tamaño del soporte de x + y = z sobre

$$D = \{1, 2, 3, 4\}$$
?

$$16 \quad X=1-3 \quad X=3-1$$

 $X=2-2 \quad X=4-0$

$$K = 3 - 3$$

Operaciones sobre predicados

- conectivos lógicos;
- identificación de los parámetros;
- cuantificadores.

Operaciones sobre predicados

- conectivos lógicos;
- identificación de los parámetros;
- cuantificadores.

Conectivos

Al igual que las proposiciones, se puede componer predicados a través de conectivos lógicos.

Conectivos

Al igual que las proposiciones, se puede componer predicados a través de conectivos lógicos.

Definición

Sean P,Q dos predicados con parametros x_1,\ldots,x_n sobre un conjunto D. Entonces, $\neg P,P\wedge Q,P\vee Q,P\rightarrow Q$ son los siguientes predicados:

$$(\neg P)(x_1, \dots, x_n) = \neg (P(x_1, \dots, x_n)),$$
 $(P \land Q)(x_1, \dots, x_n) = (P(x_1, \dots, x_n)) \land (Q(x_1, \dots, x_n)),$
 $(P \lor Q)(x_1, \dots, x_n) = (P(x_1, \dots, x_n)) \lor (Q(x_1, \dots, x_n)),$
 $(P \to Q)(x_1, \dots, x_n) = (P(x_1, \dots, x_n)) \to (Q(x_1, \dots, x_n)).$

$$P(x_1, \dots, x_n) = (P(x_1, \dots, x_n)) \to (Q(x_1, \dots, x_n)).$$

$$D = \{1, 2, 3, \ldots\}$$

$$D = \{1, 2, 3, ...\}$$

$$i \text{ Qué es este predicado? } P(x, y) = (\neg(x < y)) \rightarrow (y < x)\} = 1$$

$$X = y - \text{ es falso.} \qquad 1 \rightarrow 0 = (x < y) \lor / y < x$$

$$X = y - \text{ es falso.} \qquad 1 \rightarrow 0 = (x < y) \lor / y < x$$

$$X = y - \text{ es falso.} \qquad 1 \rightarrow 0 = (x < y) \lor / y < x$$

$$X = y - \text{ es falso.} \qquad 1 \rightarrow 0 = (x < y) \lor / y < x$$

$$X = y - \text{ es falso.} \qquad 1 \rightarrow 0 = (x < y) \lor / y < x$$

$$X = y - \text{ es falso.} \qquad 1 \rightarrow 0 = (x < y) \lor / y < x$$

$$X = y - \text{ es falso.} \qquad 1 \rightarrow 0 = (x < y) \lor / y < x$$

$$X = y - \text{ es falso.} \qquad 1 \rightarrow 0 = (x < y) \lor / y < x$$

$$X = y - \text{ es falso.} \qquad 1 \rightarrow 0 = (x < y) \lor / y < x$$

$$X = y - \text{ es falso.} \qquad 1 \rightarrow 0 = (x < y) \lor / y < x$$

$$X = y - \text{ es falso.} \qquad 1 \rightarrow 0 = (x < y) \lor / y < x$$

$$X = y - \text{ es falso.} \qquad 1 \rightarrow 0 = (x < y) \lor / y < x$$

$$X = y - \text{ es falso.} \qquad 1 \rightarrow 0 = (x < y) \lor / y < x$$

$$X = y - \text{ es falso.} \qquad 1 \rightarrow 0 = (x < y) \lor / y < x$$

$$X = y - \text{ es falso.} \qquad 1 \rightarrow 0 = (x < y) \lor / y < x$$

$$X = y - \text{ es falso.} \qquad 1 \rightarrow 0 = (x < y) \lor / y < x$$

$$X = y - \text{ es falso.} \qquad 1 \rightarrow 0 = (x < y) \lor / y < x$$

$$D = \{1, 2, 3, ...\}$$

$$\text{¿Qué es este predicado? } P(x, y) = (\neg(x < y)) \rightarrow (y < x))$$

$$\neg \left((\times \langle y) \lor | y \angle z \right) \lor (z < x) \right) =$$

$$\text{¿Como expresar} = (\neg(x < y) \lor | y < z) \lor (z < x) | (z < x) | (z < x) |$$

$$Q(x, y, z) = (x < y) \lor (y < z) \lor (z < x) | (y > z) \lor (z < x) |$$

$$\text{a través de} = \text{y conectivos lógicos?}$$

$$X = 1, \quad Y = 2, \quad Z = 2 - \sqrt{2}$$

$$X = 2, \quad Y = 2, \quad Z = 2 - \sqrt{2}$$

$$X = 3, \quad Y = 2, \quad Z = 3 - \sqrt{2}$$

$$X = 4, \quad Y = 2, \quad Z = 3 - \sqrt{2}$$

$$X = 4, \quad Y = 2, \quad Z = 3 - \sqrt{2}$$

$$X = 5, \quad Y = 2, \quad Z = 3 - \sqrt{2}$$

$$X = 5, \quad Y = 2, \quad Z = 3 - \sqrt{2}$$

$$X = 5, \quad Y = 3, \quad Z = 3 - \sqrt{2}$$

$$X = 5, \quad Y = 3, \quad Z = 3 - \sqrt{2}$$

$$X = 5, \quad Y = 3, \quad Z = 3 - \sqrt{2}$$

$$X = 5, \quad Y = 3, \quad Z = 3 - \sqrt{2}$$

$$X = 5, \quad Y = 3, \quad Z = 3 - \sqrt{2}$$

$$X = 5, \quad Y = 3, \quad Z = 3 - \sqrt{2}$$

$$D = \{1, 2, 3, \ldots\}$$

¿Qué es este predicado?
$$P(x, y) = (\neg(x < y)) \rightarrow (y < x))$$

¿Como expresar

$$Q(x, y, z) = (x < y) \lor (y < z) \lor (z < x)$$

a través de = y conectivos lógicos?

¿Como expresar el predicado x = y a través de x|y y conectivos lógicos? (x) / (x) = (x = x)

Conectivos y soportes

Proposición

Sean P, Q dos predicados n-arios sobre el conjunto A. Entonces,

- $ightharpoonup sop(P \wedge Q) =$
- $ightharpoonup sop(P \lor Q) =$
- ightharpoonup sop($\neg P$) =

Dibujos

Operaciones sobre predicados

- conectivos lógicos;
- identificación de los parámetros;
- cuantificadores.

Identificación (y cambio de nombres) de los parámetros

Ddominio \mathbb{R} :

Identificación (y cambio de nombres) de los parámetros

Ddominio \mathbb{R} :

Identificación (y cambio de nombres) de los parámetros

Ddominio \mathbb{R} :

- \triangleright $x + y = z \rightsquigarrow x + x = y$.
- \triangleright $x + y = z \rightsquigarrow z + x = z$.

Identificación (y cambio de nombres) de los parámetros

Ddominio ℝ:

- \triangleright $x + y = z \rightsquigarrow x + x = y$.
- \triangleright $x + y = z \rightsquigarrow z + x = z$.
- ightharpoonup ¿Cómo obtener x = y a partir de a + b = c + d?

Identificación (y cambio de nombres) de los parámetros

Ddominio ℝ:

- \triangleright $x + y = z \rightsquigarrow x + x = y$.
- \triangleright $x + y = z \rightsquigarrow z + x = z$.
- ▶ ¿Cómo obtener x = y a partir de a + b = c + d?

Definición

Sea $P(x_1,...,x_n)$ un predicado n-ario sobre un conjunto D. Sea $\alpha:\{1,...,n\} \to \{1,...,k\}$ una función. Entonces, el siguiente predicado k-ario sobre D:

$$R(y_1,\ldots,y_k)=P(y_{\alpha(1)},\ldots,y_{\alpha(n)}),$$

es el resultado de identificación de los parámetros, dada por α .

Operaciones sobre predicados

- conectivos lógicos;
- identificación de los parámetros;
- cuantificadores.

• "existe" = \exists .

- "existe" = \exists .

- "existe" = \exists .
- ightharpoonup x|y a través de $x\cdot y=z$ sobre $D=\mathbb{Z}$;

• "x es par" a través de a+b=c sobre $D=\mathbb{Z}$;

- "existe" = \exists .
- ightharpoonup x|y a través de $x\cdot y=z$ sobre $D=\mathbb{Z}$;

• "x es par" a través de a + b = c sobre $D = \mathbb{Z}$;

Definición

Sea P un predicado n-ario sobre un conjunto D con parametres x_1, \ldots, x_n . Entonces, $\exists x_i P$ es el siguiente predicado (n-1)-ario sobre D:

$$(\exists x_i P)(x_1, x_2, \dots, x_{i-1}, x_{i+1}, \dots, x_n) = \bigvee_{a \in A} P(x_1, x_2, \dots, x_{j-1}, a, x_{j+1}, \dots, x_n)$$

Ejemplos cuantificador existencial

Define los siguientes predicados

$$P(y) = \exists x \ x < y, \qquad Q(x) = \exists y \ x < y$$

sobre $D = \{0, 3, 4, 5\}$.

Ejemplos cuantificador existencial

Define los siguientes predicados

$$P(y) = \exists x \ x < y, \qquad Q(x) = \exists y \ x < y$$

sobre $D = \{0, 3, 4, 5\}.$

Define el siguiente predicado

$$\exists x \exists y \exists z \ x + y + z = a$$

sobre
$$D = \{1, 3, 5, 6, 7\}.$$

Interpretación geométrica de ∃

Para el siguiente predicado A(x, y):

dibujar $\exists x A(x, y)$, $\exists y A(x, y)$.

Interpretación geométrica de ∃

Para el siguiente predicado A(x, y):

dibujar $\exists x A(x, y), \exists y A(x, y).$

Proposición

Sea P un predicado sobre un conjunto A. Entonces, $sop(\exists x_i P)$ es la proyección del sop(P) paralelo a la dirección del eje x_i .

Cuantificador universal

Para uso conveniente, se usan también el cuantificador \forall (para todos)...

Definición

Sea P un predicado n-ario sobre un conjunto D con parametres x_1, \ldots, x_n . Entonces, $\forall x_i P$ es el siguiente predicado (n-1)-ario:

$$(\forall x_i P)(x_1, x_2, \dots, x_{i-1}, x_{i+1}, \dots, x_n) = \bigwedge_{a \in A} P(x_1, x_2, \dots, x_{i-1}, a, x_{i+1}, \dots, x_n)$$

Cuantificador universal

Para uso conveniente, se usan también el cuantificador \forall (para todos)...

Definición

Sea P un predicado n-ario sobre un conjunto D con parametres x_1, \ldots, x_n . Entonces, $\forall x_i P$ es el siguiente predicado (n-1)-ario:

$$(\forall x_i P)(x_1, x_2, \dots, x_{i-1}, x_{i+1}, \dots, x_n) = \bigwedge_{a \in A} P(x_1, x_2, \dots, x_{i-1}, a, x_{i+1}, \dots, x_n)$$

... aunque se expresa a través de \neg , \exists

Proposición

Sea P un predicado sobre un conjunto D y x_i uno de sus parámetros. Entonces, $\forall x_i P = \neg(\exists x_i (\neg P))$

Proposición

Sea P un predicado sobre un conjunto D y x_i uno de sus parámetros. Entonces, $\forall x_i P = \neg(\exists x_i(\neg P))$

Demostración.

Ejemplos

Sea $D=\mathbb{N}$. Expresar los siguientes predicados a través de predicados $x=y, x+y=z, x\cdot y=z$, conectivos lógicos, identificación de los parámetros y \exists , \forall :

$$\blacksquare \{x = 0\}$$

$$\blacktriangleright \mathbb{I}\{x=1\}$$

$$\blacktriangleright \mathbb{I}\{x=2\}$$

$$\rightarrow x|y$$

Espacio

iGracias!