Modelagem de Processos

Profa. Silvia Inês Dallavalle de Pádua

BIBLIOGRAFIA

• DEBEVOISE, T; GENEVA, R. The microguide Process Modeling in BPMN. Booksurge, 2008.

 VALLE, R.; OLIVEIRA, S.B. Análise e modelagem de processo de negócio: foco na notação BPMN. Editora Atlas. 2009

AGENDA

- Conceitos
- Diagrama versus Mapa versus Modelo
- Características dos processos de negócio
- Padrões de modelagem e notações
- Técnicas e ferramentas de modelagem
- BPMN

CONCEITO

Modelagem de Processos de Negócio é um conjunto de atividades envolvidas na criação de uma representação de um processo de negócio existente ou proposto para permitir a sua análise, desenho e medição.

DIAGRAMA VERSUS MAPA VERSUS MODELO

Diagrama

- Retrata uma notação simples do fluxo de trabalho básico de um processo.
- Omite detalhes menores

Mapa

- Maior precisão e agrega maior detalhe acerca dos processos e de alguns relacionamentos como atores, eventos
- Varia de níveis de detalhe

Modelo

- A representação pode ser utilizada para representar o desempenho do que está sendo modelado e, portanto, maior precisão, mais dados acerca do processo e mais dados acerca dos fatores que afetam seu desempenho
- É desenvolvida com frequência utilizando ferramentas que fornecem capacidade de simulação e reporte úteis para analisar e entender o processo.

DEFINIÇÕES IMPORTANTES

- Fluxo é uma sequência de tarefas onde um processo pode passar através de uma mensagem ou uma transição
- Evento é uma mensagem, indicador, notificação ou algo similar que significa que uma ocorrência que aconteceu e foi registrado
- Participante é um recurso que está envolvido em um processo de negócio, que tanto pode ser uma pessoa humana, um grupo de pessoas, um sistema ou outro processo

MODELOS DE NOTAÇÕES

- BPMN
- Fluxograma
- Raias
- Event Process Chain (EPC)
- Cadeia de valor
- Unified Modeling Language (UML)
- IDEF-0
- LOVEM-E
- SIPOC

TÉCNICAS

LIMITAÇÕES DOS FLUXOGRAMAS

- Simbologia é muito limitada e inadequada para diagramas de processos complexos
- Pouco claro para a representação de parelelismo
- Limitado para tratamento de exceções

- Business Process Management Notation
- Moderna notação para modelar processos
- Facilita a comunicação entre áreas de negócio
- Possui mapeamento de elementos para automatizar dos processos

PRÓS X CONTRAS

Prós		Contras	
1.	Permite descrever todos os passos dos processos no menor nível de granularidade	 Não cobre mapas mais estratégicos e mapas de processos mais alto nível Muitas políticas de processo precisam de 	
2.	Suporta orquestração de serviços e a execução de tarefas humanas do workflow	descrição mais textual	
3.	Permite descrever como a organização responderá às suas exceções e regras de negócio		
4.	Está diretamente ligada a service-		
5.	oriented-Arquitecture (SOA) Possibilita gerar código para linguagem BPEL		

COMPONENTES PRINCIPAIS

	Termos de Tecnologia		
Participantes	Tarefas e decisões	Fluxo	
Termos de Negócio			
Papéis	Responsabilidades	Regras ou rotas	

FLUXO DE PROCESSO

O tempo é no sentido da esquerda para a direita

É necessário mostrar ordem cronológica

B inicia depois de A C inicia depois de B

As transições saem da direita e chegar na esquerda da próxima tarefa

PARTICIPANTES

Participantes são recursos envolvidos em um processo de negócio, pode ser uma pessoa, um grupo de pessoas, um sistema.

Pessoas	Um balconista dá entrada em uma nova ordem de compra Um gerente aprova um relatório de despesas
Processos	Um processo de faturamento
Sistemas	ERP, CRM, um servidor de regras de negócio

PARTICIPANTES

- Cada piscina representa um participante
- As raias podem ser usadas para representar funções diferentes para um mesmo participante
- Nas raias e piscinas são identificadas as trocas de serviços, produtos, valores, transações, informações e conhecimento entre clientes, fornecedores e parceiros da organização

Três tipos de objetos

- -Eventos
- –Atividades (sub-processo, tarefas)
- -Controles de Fluxo

Três maneiras de conexão

- -Seqüência
- -Mensagem
- -Associação

Duas maneiras de agrupamento

- -Piscinas
- -Raias

Artefatos

- Objeto de dados
- Anotação

FLUXO DA INFORMAÇÃO

SÍMBOLOS PARA FACILITAR A COMUNICAÇÃO

TAREFAS

Tarefa: Uma atividade atômica

Subprocesso Repetitivo Sequencial

Tarefa Repetitiva

Subprocesso Repetitivo em Paralelo

Subprocesso: grupo(s) de tarefas Transacional

faz tudo ou nada Borda dupla Faço débito e crédito, exemplo

FLUXO

Fluxo de sequência

Figure 2-4 Sequence flow.

Paralelo split simples

Implícito merge **Ambíguo**

CONECTORES - GATEWAYS

Exclusivo baseado em dados

Exclusivo baseado em eventos

Inclusivo baseado em dados

Paralelo

Complexo

CONECTORES - GATEWAY

Figure 2-9 Parallel gateway—all paths will be taken simultaneously.

Gateway exclusivo

É o típico if-then-else com o controle mutualmente exclusivo

Avalia cada ramificação em separado e desvia para a primeira verdadeira

Gateway paralelo

É usada quando múltiplos fluxos são executados em paralelo

Usado para otimizar o fluxo do processo onde envolve atividades independentes que podem ser executadas em ordem diferente

CONECTORES - GATEWAYS

Figure 2-10 An implicit merge with a parallel split.

Qual é a melhor prática?

Figure 2-12 Proper merging of parallel paths.

CONSIDERAR

- Todas as tarefas precisam ser executadas?
- Existe alguma tarefa na sequência que depende de outra?
- Qual o impacto no resultado se todas as tarefas ocorrerem simultaneamente?

CONECTORES – GATEWAY INCLUSIVO

Chamado inclusive porque múltiplos caminhos podem ser seguidos

Figure 2-14 An explicit merge with a data-based inclusive gateway.

Se nenhum caminho for definido sem defaut poderá ocorrer deadlock (travamento)

SUB PROCESSOS AD-HOC

Um sub processo ad hoc deve ser completado mas a ordem é desconhecida

Simplifica quando não é conhecida a ordem

EXCLUSIVO BASEADO EM DADOS

- •Seguirá somente o caminho verdadeiro
- •Exceção será pelo caminho default
- •Os dados chegam pela tarefa A

EXCLUSIVO BASEADO EM EVENTOS

- •Somente um caminho será seguido
- •Seguira o caminho do primeiro evento que acontecer

INÍCIO MÚLTIPLO

Qual é a melhor prática?

EXEMPLO DE INÍCIO MÚLTIPLO

INCLUSIVE BASEADO EM DADOS

•Seguirá todos os caminhos verdadeiros em paralelo

GO TO OU LOOPING

LOOPING

- Muitas atividades são repetidas muitas vezes em um processo
- Isso pode ser modelado com looping
- O Go to (backwards running sequence flows) são utilizados.
- Para processos automatizado loop são preferidos
- Go To para modelar loops complexos pode ser fonte de erros (deadlock)

GO TO OU LOOPING

LOOP: WHILE X REPEAT UNTIL

While: A condição é avaliada antes da atividade

Repeat Until: a condição é avaliada após a atividade

FOR EACH: SEQUÊNCIAL E PARALELO

For Each Sequêncial:

A B1 C1 B2 C2 B3 C3

Executa cada conteúdo do sub-processo por vez

For Each paralelo

Executa cada conteúdo do sub-processo ao mesmo tempo. É recomendado quando cada atividade não tem dependência entre si.

O paralelismo é poderoso. É importante conhecer.

FOR EACH PARALELO

Se forem atividade humanas é interessante balancear carga. Se uma pessoa for muita lenta o trabalho pode ficar parado.

EVENTOS

EVENTOS

Na modelagem de processo os eventos de negócio são mais importantes que o mapeamento de dados.

EVENTOS INICIAIS

Mensagem

Condicional

Tempo

Sinal

Múltiplo

Conector

- •Indica onde o processo inicia
- •O eventos de início são representados por elementos com círculo simples ao redor
- •Uma instância de processo é criada
- •O evento de **início** vazio pode ser usado para definir onde o processo inicia. É aplicado somente quando o processo não possui uma entrada
- •Mensagem: uma nova instância do processo inicia a partir do recebimento de uma mensagem de um participante. Não é só e-mail!
- •Condicional: quando uma regra torna-se verdadeira, aciona-se o processo (Ex. o processo inicia quando estoque estiver no nível x) Ex. Cliente novo no ERP aciona um processo
- •**Tempo**: uma hora específica inicia uma nova instância do processo

EXEMPLOS DE EVENTOS

EVENTOS INTERMEDIÁRIOS

Vazio

Mensagem

Tempo

Erro

Compensação

Condicional

Cancelamento

Sinal

Múltiplo

Conector

- •São representados por elementos com círculo duplo ao redor
- •Podem ser usados em qualquer lugar no diagrama do processo entre início e o fim.
- •Não podem ser usadas como início e/ou fim
- •Vazio: usado para assinalamento. Indica alguma mudança no estado do processo
- •Mensagem: o processo espera por uma mensagem de um participante
- •Tempo: um período de tempo pode ser assinalado para acionar um evento
- •Erro: empregado para tratar ocorrência de exceções
- •Compensação: aciona operações compensatórias que desfaçam trabalhos já executados
- •Condicional: uma condição é satisfeita. Exemplo: usado somente para tratamento de exceção

EVENTOS INTERMEDIÁRIOS

- Existem dois tipos:
 - Captura: aguarda a recepção de uma mensagem
 - Acionamento: envia uma mensagem e continua o processo

ACIONAMENTO E CAPTURA DE EVENTOS

CAPTURA E ACIONAMENTO DE EVENTOS (SINAL)

EVENTOS INTERMEDIÁRIOS: TEMPO

Evento intermediário tempo pode ser usado para expressar que o participante necessitará de um tempo após completar a atividade, entre o início da próxima atividade

Pode ser usado também dentro do sub-processo para expressar que o processo deverá ser completado até um determinado tempo.

EVENTO INTERMEDIÁRIO: ERRO

O evento intermediário Erro pode ser usado dentro do sub-processo para capturar erros que ocorrem no sub-processo e fornece como lidar com esses erros

Vazio

Mensagem

Erro

Compensação

Término

Sinal

Múltiplo

Cancelamento

Conector

- •São representados por elementos com círculo mais forte
- •Utilizado para última atividade no processo
- •São similares os eventos intermediários com a diferença de ser usados somente como última atividade do processo

MENSAGENS

RAIAS

EXERCÍCIO

BOAS PRÁTICAS

BOAS PRÁTICAS

