#Importing necessary python library

```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
from sklearn.preprocessing import LabelEncoder, StandardScaler
from sklearn.model_selection import train_test_split from
sklearn.linear_model import LinearRegression from
sklearn.metrics import r2_score
```

#Uploading Automobile Dataset

```
from google.colab import files uploaded
= files.upload()
<IPython.core.display.HTML object>
Saving Automobile_data.csv to Automobile_data.csv
```

#Load the dataset

```
df = pd.read csv('Automobile data.csv')
```

#Univariate Analysis Numeric Variables Preparing Data

```
df = df.replace('?', pd.NA)
# convert data types
df['normalized-losses'] = pd.to numeric(df['normalized-losses'],
errors='coerce')
df['bore'] = pd.to numeric(df['bore'], errors='coerce')
df['stroke'] = pd.to numeric(df['stroke'], errors='coerce')
df['horsepower'] = pd.to numeric(df['horsepower'], errors='coerce')
df['peak-rpm'] = pd.to numeric(df['peak-rpm'], errors='coerce')
df['price'] = pd.to numeric(df['price'], errors='coerce')
# drop rows with missing values
df = df.dropna()
# reset index
df = df.reset index(drop=True)
# display the first few rows
print(df.head())
   symboling normalized-losses make fuel-type aspiration num-of-
doors \
0
                          164.0 audi
                                                        std
four
     2
1
                    164.0 audi
                                       gas
                                                  std
                                                              four
     1
                    158.0 audi
                                       gas
                                                  std
                                                              four
```

3	1 2			58.0	audi bmw	gas gas	t	urbo std		four two
		vle dr			ngine-lo	_	wheel.			enginesize
\	ay be	yro ar	1 V 0 W 11	0010 0	1191110 10	0401011	WIICCI	Zase	•••	011911100120
0	se	edan		fwd		front		99.8		
109	se	edan		4wd		front		99.4		
136 2 136	se	sedan		fwd		front	front 1			
3 131	se	sedan		fwd		front		105.8		
4	s∈	edan		rwd		front		101.2		
		ystem	bore	strok	e compre	ssion-r	atio h	orsepo	wer	peak-rpm
0 24	-mpg	mpfi	3.19	3.	4		10.0	10	2.0	5500.0
1		mpfi	3.19	3.	4		8.0	11	5.0	5500.0
2		mpfi	3.19	3.	4		8.5	11	0.0	5500.0
3		mpfi	3.13	3.	4		8.3	14	0.0	5500.0
4 23		mpfi	3.50	2.	8		8.8	10	1.0	5800.0
23										
	ighwa 13950	y-mpg	pri	ce 0						
1		22	17450							
2		25 20	17710 23875							
4		29	16430							
[5 rows x 26 columns]										
df.d	escri	.be()								
widt	s h \	ymboli	ng no	rmaliz	ed-losse	s whee	l-base		lengt	h
coun	t 15	9.0000	00	1	59.00000	0 159.	000000	159.	00000	0
159.000000 mean 0.735849 121.132075 98.264151 172.413836 65.607547									6	
std 1.94		1.1930	86		35.65128	5 5.	167416	11.	52317	7
		2.0000	00		65.00000	0 86.	600000	141.	10000	0

60.300000						
25% 0.0 64.000000	00000	94.0	00000	94.50000	165.6500	00
50% 1.0	00000	113.0	00000	96.90000	172.4000	00
65.400000 75% 2.0	000000	1/18 0	00000	100.80000	00 177.8000	0.0
66.500000	300000	140.0	00000	100.00000	177.0000	00
max 3.0	00000	256.0	00000	115.60000	202.6000	00
	_	rb-weight 59.00000	_	e-size 000000 15		stroke \ 59.000000
		61.138365		226415	3.300126	3.236352
		81.941321 88.000000		460791 000000	0.267336 2.540000	0.294888
		65.500000		000000	3.050000	3.105000
50% 54.3		40.000000		000000	3.270000	3.270000
		09.500000		000000	3.560000 3.940000	
compi highway-mpg		tio norse	power	peak-1	rpm city-	mpg
count	159.000	000 159.0	00000	159.0000	159.000	000
159.000000 mean	10.161	132 95.8	36478	5113.8364	178 26.522	013
32.081761						
std 6.459189	3.889	475 30.7	18583	465.7548	6.097	142
min	7.000	000 48.0	00000	4150.0000	15.000	000
18.000000 25%	8.700	000 69.0	00000	4800.0000	23.000	000
28.000000						
50% 32.000000	9.000	000 88.0	00000	5200.0000	26.000	000
75%	9.400	000 114.0	00000	5500.0000	31.000	000
37.000000 max	23.000	000 200 0	00000	6600.0000	000 49.000	0.00
54.000000	23.000	200.0	00000	0000.0000	19.000	000
	price					
	9.000000					
	5.729560 7.856195					
min 511	8.000000					

```
25% 7372.000000
50% 9233.000000
75% 14719.500000
max 35056.000000
```

#Categorical Variables

```
sns.histplot(x='length', data=df)
<Axes: xlabel='length', ylabel='Count'>
```


#Bi-Variate Analysis Numerical Variables

```
sns.displot(df[['price', 'width', 'length', 'curb-weight']])
plt.show()
```


#Categorical Variables

```
plt.figure(figsize=(10, 8))
sns.displot(x='make', y='num-of-cylinders', data=df)
plt.xticks(rotation=90) plt.title('num-of-
cylinders') plt.show()

<Figure size 1000x800 with 0 Axes>
```


#Muliti-Variate Analysis

```
sns.barplot(df)
plt.show()
```


#Task 4: Perform data preprocessing handling missing values

```
df.replace('?', np.nan, inplace=True)
df.dropna(inplace=True)
```

#Handling categorical values

```
le = LabelEncoder()
df['make'] = le.fit_transform(df['make']) df['fuel-type']
= le.fit_transform(df['fuel-type']) df['aspiration'] =
le.fit_transform(df['aspiration']) df['num-of-doors'] =
le.fit_transform(df['num-of-doors']) df['body-style'] =
le.fit_transform(df['body-style']) df['drive-wheels'] =
le.fit_transform(df['drive-wheels']) df['engine-location']
= le.fit_transform(df['engine-location']) df['engine-type'] = le.fit_transform(df['engine-type']) df['num-of-cylinders'])
df['fuel-system'] = le.fit_transform(df['fuel-system'])
```

#perform scaling

```
scaler = StandardScaler()
df_scaled =
pd.DataFrame(scaler.fit_transform(df.drop('price',
```

```
axis=1)), columns=df.columns[:-1]) df_scaled['price'] =
df['price']
```

#Task 5: Build Machine Learning Model

```
import pandas as pd
from sklearn.linear model import LinearRegression
from sklearn.model selection import train test split
from sklearn.preprocessing import StandardScaler
from sklearn.impute import SimpleImputer import
numpy as np
# Load the dataset
df = pd.read csv("Automobile data.csv")
# Handling missing values
df.replace('?', np.nan, inplace=True) # replace '?' with NaN
df['normalized-losses'].fillna(df['normalized-losses'].median(),
inplace=True) # replace missing values with median
df['num-of-doors'].fillna(df['num-of-doors'].mode()[0], inplace=True)
# replace missing values with mode
# Encode categorical variables
df = pd.get dummies(df, columns=['make', 'fuel-type', 'aspiration',
'num-of-doors', 'body-style',
                                 'drive-wheels', 'engine-location',
'engine-type', 'num-of-cylinders',
                                 'fuel-system'])
# Handle missing values
imputer = SimpleImputer(strategy='mean')
df = pd.DataFrame(imputer.fit transform(df), columns=df.columns)
# Perform scaling scaler
= StandardScaler()
df scaled = scaler.fit transform(df)
# Convert numpy array to DataFrame
df scaled = pd.DataFrame(df scaled, columns=df.columns)
# Split data into train and test sets
X = df scaled.drop('price', axis=1) y
= df scaled['price']
X train, X test, y train, y test = train test split(X, y, test size=0.2,
random state=42)
# Build and fit the linear regression model
lr = LinearRegression() lr.fit(X train,
y train)
LinearRegression()
```

#Task 6: Evaluating Machine Learing Model

```
y_pred = lr.predict(X_test)
print('R-squared score:', r2_score(y_test, y_pred))
R-squared score: -1.7804692480809753e+23
```