LECTURER: TAI LE QUY

DATA SCIENCE

TOPIC OUTLINE

Introduction to Data Science	1
Use Cases and Performance Evaluation	2
Data Preprocessing	3
Processing of Data	4
Selected Mathematical Techniques	5
Selected Artificial Intelligence Techniques	6

SELECTED ARTIFICIAL INTELLIGENCE TECHNIQUES

On completion of this unit, you will have learned ...

- data classification by support vector machines.
- the feedforward neural network structure.
- the back propagation algorithm in neural networks. how to develop an artificial neural networks prediction model.
- recurrent networks and reinforcement learning.
- basics about genetic algorithms, fuzzy logic, and Naïve Bayes classification.

- 1. Explain the concept of Support Vector Machines (SVM) and the usage of the kernel tricks.
- 2. Name two activation functions. Can you draw them?
- 3. Describe the usage of Gradient Descent in Neural Networks.

SUPPORT VECTOR MACHINES

- model used for regression & classification tasks
- identify hyperplane in data space that maximizes the margin between support vectors
- apply kernel trick for nonlinearly separable datasets

DECISION BOUNDARY HYPERPLANES

- n-dimensional feature space
- n-1-dimensional decision boundary
 hyperplane
- Example
 - 3 Features → 2-dimensional decision boundary plane
 - 2 Features → 1-dimensional decision boundary line
- Classes might only be separable in higher dimensions

HARD & SOFT MARGIN MAXIMIZATION

Soft margin allows samples to be misclassified

Larger margin = manymisclassifications

Narrower margin = fewmisclassifications

THE KERNEL TRICK

Classes might only be separable in higher dimensions

- Tranform the data to higher dimensions
- Calculate the dot product of the transformed data
- Kernel functions give the same results as the dot product of the transformed data
- We do not have to transform the data to higher dimensions
- Common Kernel functions include polynomial, sigmoid, and radial

https://scikit-learn.org/stable/modules/svm.html

- 1. calculate weighted sum a from $X_1 \& X_2$ $a = 2 \cdot 0.5 + 100 \cdot 1.5 = 151$
- 2. apply Activation Function f(a) to get z

FEEDFORWARD NEURAL NETWORKS W = 0.5# of rooms house price X_2 sqm **Input Layer** Hidden Layer **Output Layer** Forward Pass

Forward Pass

- 1. calculate weighted sum a from $X_1 \& X_2$ $a = 2 \cdot 0.5 + 100 \cdot 1.5 = 151$
- 2. apply Activation Function f(a) to get z

Rectified Linear Unit (ReLU)

 $z = \max(a, 0)$

FEEDFORWARD NEURAL NETWORKS

Hidden Layer

Forward Pass

Output Layer

Forward Pass

- 1. calculate weighted sum a from $X_1 \& X_2$ $a = 2 \cdot 0.5 + 100 \cdot 1.5 = 151$
- 2. apply Activation Function f(a) to get z = f(151) = 151

... repeat until Output Neuron

Rectified Linear Unit (ReLU)

$$z = \max(a, 0)$$

Input Layer

ACTIVATION FUNCTIONS

FEEDFORWARD NEURAL NETWORKS

... how do we define network weights w?→ backpropagation

GRADIENT DESCENT

- Algorithm for finding a local minimum of a differentiable function
- in ML: find weights that
 minimize the error function
- calculate the gradient of the error function with respect to network weights

BACKPROPAGATION ALGORITHM

- 1. Randomly initialize weights
- 2. Calculate output of every neuron
- 3. Calculate the error for 2.
- 4. Update the weights with GD

$$w_{new} = w_{old} - \eta \left(\frac{\partial \operatorname{Error}}{\partial w_{old}}\right)$$
 Derivative of Error with respect to weights

- 5. Start new forward pass with updated weights
- 6. Repeat steps 2-4 until no improvement in Error achieved

LEARNING RATE

Feedforward Neural Networks

Input Hidden Layers Output Layer Layer

Recurrent Neural Networks

- Allow connections to previous layers
- Memory cells to
 retain information in
 deeper neural
 networks

REINFORCEMENT LEARNING

- Algorithm learns a policy how to act in a given environment through trial-and-error actions
- goal: maximize the reward for the agent

REINFORCEMENT LEARNING

MARKOV DECISION PROCESS

- framework to solvereinforcement learningproblems
- set of states $\{s_{0, s_{1, s_{2}}}\}$
- set of actions to take a path $\{a_{0}, a_{1}...\}$
- set of rewards {+10,+40,-50}
- policy for selected path $\{s_0 \rightarrow s_1 \rightarrow s_2\}$

The parameters:

- Set of states $\{S_1, S_2, \dots S_t, \dots\}$
- Set of actions to take a specific path (e.g., $\{S_2 \rightarrow S_3\}$)
- Set of rewards $\{r_1, r_2, ..., r_t, ...\}$
- The policy, which is the selected path to complete the task (e.g., $\{S_1 \rightarrow S_3 \rightarrow S_5\}$)
- The value (V): total reward achieved by following this policy

Algorithm for policy-based:

- 1. Initialize the parameters {S, A, R, P, and V}.
- 2. Observe the current state $\{S_t\}$.
- 3. Choose an action {rt+1} according to the maximum possible reward for the next state.
- 4. Take the action and reach the new state {St+1}.
- 5. Update the value {V}.
- 6. Repeat the process until the terminated (end) state is reached.

GENETIC ALGORITHM

- Solving optimization problems based on natural selection.
- Starts by generating a population of possible solutions and then applies selection rules to randomly select individuals from the current population to be parents.
- The crossover rules are applied to combine two parents and form children for the next generation.
- Mutation rules are applied with random changes to the parents to form different children.
- Over successive generations, the population evolves toward the optimal solution (in this case, children with the best genetic combinations).

FUZZY LOGIC

- Deals with classes of objects with unsharp boundaries.
- The membership of these clusters is based on degrees of truth instead of the usual {+1,-1} assignments.
- The first step of fuzzy logic is to fuzzify (decompose) all input values into truth values, which are any real numbers between "0" (completely false) and "1" (completely true).
- The fuzzy output is computed by the execution of a group of "IF-THEN" rules in a way that mimics Boolean logic operators ("AND", "OR", and "NOT").
- Finally, a de-fuzzification step is performed on the fuzzy truth values to get a continuous output value

NAÏVE BAYES CLASSIFIER

Example

Posterior Probability:	$P(c \mid x) = P(N_c)$	$o \mid Sunny$) = $0.40 \times 0.36 \div 0.36 = 0.40$
	4	

$$P(c \mid X) = P(x_1 \mid c) \times P(x_2 \mid c) \times \cdots \times P(x_n \mid c) \times P(c)$$

Outlook	Temp	Humidity	Windy	Play Golf
Rainy	Hot	High	False	No
Rainy	Hot	High	True	No
Overcast	Hot	High	False	Yes
Sunny	Mild	High	False	Yes
Sunny	Cool	Normal	False	Yes
Sunny	Cool	Normal	True	No
Overcast	Cool	Normal	True	Yes
Rainy	Mild	High	False	No
Rainy	Cool	Normal	False	Yes
Sunny	Mild	Normal	False	Yes
Rainy	Mild	Normal	True	Yes
Overcast	Mild	High	True	Yes
Overcast	Hot	Normal	False	Yes
Sunny	Mild	High	True	No

Strong independence assumption between random variables

NAÏVE BAYES CLASSIFIER

Frequency Table

Likelihood Table

		Play	Golf
		Yes	No
	Sunny	3	2
Outlook	Overcast	4	0
	Rainy	2	3

			Golf
		Yes	No
	Sunny	3/9	2/5
Outlook	Overcast	4/9	0/5
	Rainy	2/9	3/5

		Play Golf	
		Yes	No
Humidity	High	3	4
numicity	Normal	6	1

		Play	Golf
		Yes	No
Urranialitae	High	3/9	4/5
Humidity	Normal	6/9	1/5

		Play Golf		
		Yes	No	
	Hot	2	2	ı
Temp.	Mild	4	2	
	Cool	3	1	

Play Golf		Golf	
		Yes	No
	Hot	2/9	2/5
Temp.	Mild	4/9	2/5
	Cool	3/9	1/5

		Play Golf	
		Yes	No
Windy	False	6	2
Windy	True	3	3

		Play	Golf
		Yes	No
Minde	False	6/9	2/5
Windy	True	3/9	3/5

Outlook	Temp	Humidity	Windy	Play Golf
Rainy	Hot	High	False	No
Rainy	Hot	High	True	No
Overcast	Hot	High	False	Yes
Sunny	Mild	High	False	Yes
Sunny	Cool	Normal	False	Yes
Sunny	Cool	Normal	True	No
Overcast	Cool	Normal	True	Yes
Rainy	Mild	High	False	No
Rainy	Cool	Normal	False	Yes
Sunny	Mild	Normal	False	Yes
Rainy	Mild	Normal	True	Yes
Overcast	Mild	High	True	Yes
Overcast	Hot	Normal	False	Yes
Sunny	Mild	High	True	No

Outlook	Temp	Humidity	Windy	Play
Rainy	Cool	High	True	?

$$P(Yes \mid X) = P(Rainy \mid Yes) \times P(Cool \mid Yes) \times P(High \mid Yes) \times P(True \mid Yes) \times P(Yes)$$

 $P(Yes \mid X) = 2/9 \times 3/9 \times 3/9 \times 3/9 \times 9/14 = 0.00529$
 $0.2 = \frac{0.00529}{0.02057 + 0.00529}$

$$P(No \mid X) = P(Rainy \mid No) \times P(Cool \mid No) \times P(High \mid No) \times P(True \mid No) \times P(No)$$

 $P(No \mid X) = 3/5 \times 1/5 \times 4/5 \times 3/5 \times 5/14 = 0.02057$
 $0.8 = \frac{0.02057}{0.02057 + 0.00529}$

You have learned ...

- data classification by support vector machines.
- the feedforward neural network structure.
- the back propagation algorithm in neural networks. how to develop an artificial neural networks prediction model.
- recurrent networks and reinforcement learning.
- basics about genetic algorithms, fuzzy logic, and Naïve Bayes classification.

SESSION 6

TRANSFER TASK

TRANSFER TASK 1

- 1. Discuss the parameter of *learning rate* η in the context of Gradient Descent.
- 2. How does it influence the process?
- 3. Can you foresee challenges in choosing the adequate learning rate?

Working in groups

- Select your domain (e.g., healthcare, education, finance, etc.)
- Select a classification and/or regression task (e.g., credit scoring, customer demand prediction, diabetes prediction, etc.)
- Describe how SVM and/or artificial neural networks and/or
 Naïve Bayes techniques can be applied?
- Present your finding in 5 minutes

TRANSFER TASK PRESENTATION OF THE RESULTS

Please present your results.

The results will be discussed in plenary.

- 1. The Naïve Bayes approach assumes that the independent variables are...
 - a) random variables.
 - b) orthogonal variables.
 - c) normalized variables.
 - d) structured data variables.

2. A memory cell is a concept which exists in ...

- a) feedforward networks.
- b) recurrent networks.
- c) reinforcement learning.
- d) support vector machines.

- 3. The Kernel trick is employed in support vector machines to...
 - a) maximize the margin between the two classes.
 - b) minimize the classification error.
 - c) deal with nonlinearly separable dataset.
 - d) define the set of support vectors.

How did you like the course?

LIST OF SOURCES

Alvarez, W. (2017). Markov Decision Process [Image]. https://commons.wikimedia.org/wiki/File:Markov_Decision_Process.svg, CC BY-SA 4.0.

Géron, A. (2019). Hands-on machine learning with scikit-learn, keras, and tensorflow: Concepts, tools, and techniques to build intelligent systems. O'Reilly Media, Incorporated.

Larhmam (2018). SVM-Margin [Image]. https://commons.wikimedia.org/wiki/File:SVM_margin.png, CC BY-SA 4.0.

Jordon, J. (2018). Setting the learning rate of your neural network. [Image]. https://www.jeremyjordan.me/nn-learning-rate/

© 2021 IU Internationale Hochschule GmbH
This content is protected by copyright. All rights reserved.
This content may not be reproduced and/or electronically edited, duplicated, or distributed in any kind of form without written permission by the IU Internationale Hochschule GmbH.