import pandas as pd
import numpy as npdf
import seaborn as sns
import matplotlib.pyplot as plt

df = pd.read_csv(r'C:\Users\USER\Downloads\employee_survey.csv', sep =',')
df

→ *		EmpID	Gender	Age	MaritalStatus	JobLevel	Experience	Dept	EmpType	WLB	WorkEnv
	0	6	Male	32	Married	Mid	7	IT	Full-Time	1	1
	1	11	Female	34	Married	Mid	12	Finance	Full-Time	1	1
	2	33	Female	23	Single	Intern/Fresher	1	Marketing	Full-Time	2	4
	3	20	Female	29	Married	Junior	6	IT	Contract	2	2
	4	28	Other	23	Single	Junior	1	Sales	Part- Time	3	1
	•••										
	3020	2070	Male	47	Married	Lead	16	Marketing	Part- Time	1	3
	3021	2072	Female	47	Married	Lead	8	IT	Contract	3	1
	3022	2145	Male	41	Married	Lead	17	IT	Full-Time	1	1
	3023	2168	Female	54	Married	Lead	16	IT	Full-Time	1	5
	3024	2183	Female	44	Married	Lead	22	Marketing	Full-Time	3	3

3025 rows × 23 columns

df.shape

→ (3025, 23)

total = df.isnull().sum().sort_values(ascending= False)
total

\rightarrow	EmpID	0
_	Stress	0
	TrainingHoursPerYear	0
	have0T	0
	EduLevel	0
	NumReports	0
	TeamSize	0
	NumCompanies	0
	CommuteDistance	0
	CommuteMode	0
	SleepHours	0
	Workload	0
	Gender	0
	PhysicalActivityHours	0
	WorkEnv	0
	WLB	0
	EmpType	0
	Dept	0
	Experience	0
	JobLevel	0
	MaritalStatus	0

```
JobSatisfaction
    dtype: int64
df = df[['WLB', 'JobSatisfaction', 'Stress', 'WorkEnv']]
# Memeriksa data untuk memastikan tidak ada nilai NaN
print(df.isnull().sum())
→ WLB
    JobSatisfaction 0
    Stress
    WorkEnv
    dtype: int64
WLB
→ Series([], Name: JobSatisfaction, dtype: int64)
# Mendefinisikan variabel independen dan dependen
import statsmodels.api as sm
X = df[['WLB', 'Stress', 'WorkEnv']]
y = df['JobSatisfaction']
# Menambahkan konstanta ke model (intercept)
X = sm.add constant(X)
# Membuat model regresi linier
model = sm.OLS(y, X).fit()
# Melihat hasil regresi
print(model.summary())
\rightarrow
                           OLS Regression Results
    ______
    Dep. Variable: JobSatisfaction R-squared: 0.173
                       JobSatistaction Resquared:
OLS Adj. Resquared:
   Model:
Method:
Date:
                                                                   0.173
                       Least Squares F-statistic:
                                                                    211.4
                     Sat, 09 Nov 2024 Prob (F-statistic):
12:23:28 Log-Likelihood:
                                                               1.89e-124
                     12:23:28
                                                                  -4704.2
    No. Observations:
                                 3025
                                      AIC:
                                                                    9416.
    Df Residuals:
                                 3021
                                       BIC:
                                                                    9440.
    Df Model:
                                   3
    Covariance Type:
                           nonrobust
    ______
                 coef std err t P>|t| [0.025 0.975]
    ______

    const
    2.4727
    0.074
    33.227
    0.000
    2.327
    2.619

    WLB
    0.2257
    0.014
    15.661
    0.000
    0.197
    0.254

    Stress
    -0.2510
    0.020
    -12.812
    0.000
    -0.289
    -0.213

    WorkEnv
    0.2176
    0.015
    14.769
    0.000
    0.189
    0.246

    ______
                             144.291 Durbin-Watson:
    Omnibus:
                                                                    0.264
                               0.000 Jarque-Bera (JB):
    Prob(Omnibus):
                                                                  123.154
                               -0.423 Prob(JB):
                                                                 1.81e-27
    Skew:
                                2.489 Cond. No.
                                                                    18.0
    Kurtosis:
    ______
    [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
# pair plot with plot type regression
sns.pairplot(df,vars = ['WLB', 'Stress','WorkEnv'], kind="reg")
```

Λ

Age

plt.show()


```
#pair plot (matrix scatterplot) of few columns
sns.set(style="ticks", color_codes=True)
sns.pairplot(df,vars = ['WLB', 'Stress','WorkEnv'], hue="JobSatisfaction")
plt.show()
```


from scipy import stats

```
# Menghitung korelasi Pearson untuk masing-masing variabel terhadap JobSatisfaction
variables = ['WLB', 'Stress', 'WorkEnv']
for var in variables:
    corr = stats.pearsonr(df[var], df['JobSatisfaction'])
    print(f"Korelasi antara {var} dan JobSatisfaction:")
    print("p-value:\t", corr[1])
    print("cor:\t\t", corr[0])
    print()
```

→ Korelasi antara WLB dan JobSatisfaction: p-value: 8.194092905974926e-48 cor: 0.2596872800125278

Korelasi antara Stress dan JobSatisfaction: p-value: 8.759834103275332e-33 -0.21438269956302416 cor:

Korelasi antara WorkEnv dan JobSatisfaction: 6.945939004062785e-44 p-value:

0.2487300192722577 cor:

correlation = df.corr(method='pearson')
correlation

₹		WLB	JobSatisfaction	Stress	WorkEnv	
	WLB	1.000000	0.259687	0.003595	0.005751	
	JobSatisfaction	0.259687	1.000000	-0.214383	0.248730	
	Stress	0.003595	-0.214383	1.000000	-0.013791	
	WorkEnv	0.005751	0.248730	-0.013791	1.000000	

Start coding or generate with AI.