Section 10.1 – Parametric Equations; Tangent Lines & Arc Length

- 1. a. By eliminating the parameter, sketch the trajectory over the time interval $0 \le t \le 5$ of the particle whose parametric equations of motion are: x(t) = t 1 and y(t) = t + 1
 - b. Indicate the direction of motion on your sketch.
 - c. Make a table of x and y-coordinates of the particle at times t=0,1,2,3,4,5.
 - d. Mark the position of the particle on the curve at the times in part (c), and label those positions with the vales of t.
- 11. Sketch the curve by eliminating the parameter, and indicate the direction of increasing t $x(t) = 2\sin^2 t$ and $y(t) = 3\cos^2 t$ (0 \le t \le π /2)

Find parametric equations for the curve and check your work by generating the curve with a graphing utility.

- 13. A circle with radius 5, centered at the origin, oriented counterclockwise.
- 17. The portion of a parabola $x = y^2$ joining (1,-1) and (1,1), oriented down to up.
- 40. If a projectile is fired from ground level with an initial speed of v_0 meters per second at an angle α with the horizontal, and if air resistance is neglected, then its position after t seconds is $x(t) = (v_0 \cos \alpha)t$, $y(t) = -\frac{1}{2}gt^2 + (v_0 \sin \alpha)t + h_0$, where $g \approx 9.81\frac{m}{s^2}$ and h_0 is the initial height.
- a. By eliminating the parameter, show that the trajectory lies on the graph of a quadratic polynomial.
 - b. Use a graphing utility to sketch the trajectory of $\propto 30^{\circ}$ and $v_0 = 1000 \frac{m}{s}$
 - c. Using the trajectory, how high does the shell rise?
 - d. Using the trajectory, how far does the shell travel horizontally?
- 47. Find $\frac{dy}{dx}$ and $\frac{d^2y}{dx^2}$ at the given point without eliminating the parameter.

$$x = \sec t$$
 and $y = \tan t$; $t = \frac{\pi}{3}$

- 51. a. Find the equation of the tangent line to the curve $x=e^t$ and $y=e^{-t}$ at t=1 without eliminating the parameter.
- b. Find the equation of the tangent line in part (a) by eliminating the parameter.
- 62. Suppose that a bee follows the trajectory $x=t-2\cos t$, $y=2-2\sin t$ (0 \le t<2 π)
 - a. At what times was the bee flying horizontally?
 - b. At what times was the bee flying vertically?

Find the exact arc length of the curve over the stated interval.

65.
$$x = t^2$$
, $y = \frac{1}{3}t^3$ $(0 \le t \le 1)$

67.
$$x = \cos 3t$$
, $y = \sin 3t$ $(0 \le t \le \pi)$

69.
$$x = e^{2t}(\sin t + \cos t), y = e^{2t}(\sin t - \cos t) \ (-1 \le t \le 1)$$