1 Wnioskowanie statystyczne

1.1 Lista zadań №8. 28 maja 2018

1. Oceny z egzaminu z pewnego przedmiotu przedstawiały się (średnio) w ubiegłych latach tak:

a)
$$5 - 10\%$$

b)
$$4 - 20\%$$

c)
$$3-50\%$$

d)
$$2-20\%$$
.

W bieżącym roku było to (w liczbach):

a)
$$5-20$$

b)
$$4 - 25$$

c)
$$3 - 60$$

d)
$$2-45$$
.

Hipoteza H_0 : bieżący rozkład jest zbliżony do średniego.

2. Grupa 20 osób oceniała dwa napoje (A, B). 12 badanych stwierdziło, że napój A jest lepszy. Hipoteza H_0 : nie ma różnicy pomiędzy napojami.

3. Rzucono 90 razy kostką. 35 razy zdarzyło się 1 lub 2, 40 razy 3 lub 4, 15 razy 5 lub 6. Hipoteza H_0 : kostka jest prawidłowa.

4. Grupa 40 (100) osób oceniała dwa napoje (A, B). 24 (60) badanych stwierdziło, że napój A jest lepszy. Hipoteza H_0 : nie ma różnicy pomiędzy napojami.

5. Hipoteza H_0 : stan cywilny jest niezależny od wyznania. Dane:

Stan cywilny	Kat.	Prot.	Inni
Małżeństwo	135	130	60
Rozwiedziona/y	40	50	25
Samotna/y	25	20	15

6. Hipoteza H_0 : mediana z 20 obserwacji = 10. Dane w pliku.

7. Ubiegłoroczne badania wykazały, że 45% telewidzów uważa telewizję za zbyt konserwatywną, 40% uważa ją za neutralną, 10% – za nazbyt lewicową i 5% nie ma zdania. Tegoroczna ankieta (wśród 500 widzów) dała odpowiedzi: 250, 175, 50, 25. Hipoteza H_0 : tegoroczne opinie zmieniły się.

a) przewid. wartości to 225, 200, 50, 25

b) wartość statystyki testowej to 5.90

c) statyst. testowa ~ $\chi^2(4)$

d) Wartość_P to 0.12

8. Znaleźć rozkład (gęstość) testu rang Wilcoxona dla $n_1 = n_2 = 3.$

9. Sprawdzamy czy istnieje różnica (między kobietami i mężczyznami) w ocenie zależności pomiędzy zadowoleniem z pracy a zwierzchnikiem.

Ocena	Zwierzchnik/Pracownik						
	K/M	M/K					
Pozytywnie	33	20	28	25			
Neutralnie	25	35	28	25			
Negatywnie	17	45	25	20			

1

a) tabela danych ma 16 komórek

b) $P(\chi^2(6) > 19.46) = 0.003$

c) H_a jest zawsze dwustronna

d) jeżeli $\alpha = 0.05$ to akceptujemy H_0

- 10. Porównujemy długość życia wegetarian i nie-wegetarian. Hipoteza H_0 : istnieje różnica w medianach. (Mann-Whitney). Dane w pliku.
- 11. Dane zawierają: liczbę papierosów dziennie i ciśnienie rozkurczowe. Znaleźć współczynnik korelacji (Spearmana, ρ Spearmana, τ Kendalla, γ Gooodmana-Kruskala, D Somersa.
- 12. W pliku ww-0812.ods zawarta jest cena mieszkania, liczba sypialni i liczba innych pomieszczeń
 - (a) wyznaczyć równanie regresji względem ceny względem pokojów i innych,
 - (b) przeprowadzić analizę ANOVA,

Sum of Squares

Deg. of Freedom

93.3889

1

(c) jak "ręcznie" obliczyć wartości 3 końcowych kolumn w tabelce REGRESJA?

```
13. > dane <- read.csv("ww-0813.csv", header=T, sep=",")
   > reslm <- lm(Razem ~ T1 + T2 + T3 + T4 + T5 + T6, data=dane)
   > reslm
   Call:
            lm(formula = Razem ~ T1 + T2 + T3 + T4 + T5 + T6, data = dane)
   Coefficients:
   (Intercept)
                         T1
                                     T2
                                                  Т3
                                                              T4
                                                                           T5
                                                                                       T6
        6.1779
                     -0.118
                                 -0.255
                                              -1.108
                                                           1.661
                                                                        0.392
                                                                                    0.343
   > summary(reslm)
   Call: lm(formula = Razem ~ T1 + T2 + T3 + T4 + T5 + T6, data = dane)
   Residuals:
       Min
                 1Q
                    Median
                                 3Q
                                        Max
   -9.2318 -2.1118 0.2908
                            2.8009
                                     9.8439
   Coefficients:
                Estimate Std. Error t value Pr(>|t|)
   (Intercept)
                 6.1779
                             7.8464
                                      0.787
                                               0.4371
   T1
                 -0.1182
                             1.4966 -0.079
                                               0.9375
   T2
                 -0.2546
                             1.0898 -0.234
                                               0.8168
   T3
                 -1.1078
                             0.6397 - 1.732
                                               0.0933 .
   T4
                 1.6610
                             1.6392
                                               0.3188
                                      1.013
   Т5
                  0.3915
                             0.2264
                                      1.730
                                               0.0936 .
   T6
                  0.3426
                             0.2266
                                      1.512
                                               0.1406
   Signif. codes: 0 '***, 0.001 '**, 0.01 '*, 0.05 '., 0.1 ', 1
   Residual standard error: 4.614 on 31 degrees of freedom
                                    Adjusted R-squared:
   Multiple R-squared: 0.4343,
   F-statistic: 3.967 on 6 and 31 DF, p-value: 0.004655
   > resaov <- aov(Razem ~ T1 + T2 + T3 + T4 + T5 + T6, data=dane)
   > resaov
   Call:
            aov(formula = Razem ~ T1 + T2 + T3 + T4 + T5 + T6, data = dane)
   Terms:
                          T1
                                   T2
                                             T3
                                                      T4
                                                               T5
                                                                         T6 Residuals
```

1

1.8982 103.2154 258.5505

1

1

48.6904

1

1

660.0059

31

1.0139

Residual standard error: 4.614164 Estimated effects may be unbalanced

> summary(resaov)

```
Df Sum Sq Mean Sq F value Pr(>F)
T1
                  93.4
                          93.39
                                   4.386 0.04450 *
T2
                   1.0
                           1.01
                                   0.048 0.82868
Т3
              1
                   1.9
                           1.90
                                   0.089 0.76724
T4
                 103.2
                         103.22
                                   4.848 0.03525 *
              1
T5
              1
                 258.6
                         258.55
                                 12.144 0.00149 **
T6
              1
                  48.7
                          48.69
                                   2.287 0.14059
Residuals
             31
                 660.0
                          21.29
```

0 '***, 0.001 '**, 0.01 '*, 0.05 '., 0.1 ', 1 Signif. codes:

- a) przedział ufności dla współczynnika β_6 b) współczynnik określoności (determinato $0.3426 \pm 1.96(0.2266)$
 - cji) jest równy 43.4%
- c) "poprawiony" współczynnik określono- d) na poziomie $\alpha = 0.05$ istotny wpływ ści to 32.5%
 - na Razem mają T3 i T5.

1.2 Kilka testów

- 1. test znaków,
- 2. test Wilcoxona (Wilcoxon rang sum), jeżeli $n_1, n_2 > 10$ to statystyka W ma w przybliżeniu rozkład N $\left(\frac{n_1(n_1+n_2+1)}{2}, \frac{n_1n_2(n_1+n_2+1)}{12}\right)$. Jak policzyć wartość statystyki W?
- 3. test Manna-Whitneya.
- 4. test $\chi^2 = \sum_{i=1}^n \frac{(f_i e_i)^2}{e_i} \sim \chi^2(n-1),$

Lista zadań №7. 7 maja 2018 1.3

- 1. Obszar odrzucenia to Z > 2.0. Jaki jest poziom istotności α ?
 - a) 0.2280
- b) **0.0228**
- c) 0.05
- d) 0.10
- 2. Obszar odrzucenia to |Z| > 1.55. Jaki jest poziom istotności α ?
 - a) 0.5500
- b) 0.0606
- c) **0.1211**
- d) 0.1234
- 3. Poziom istotności $\alpha = 0.075$, hipoteza alternatywna $H_1: \mu < \mu_0$. Podać obszar odrzucenia:

 - a) Z < -1.34 b) Z < -1.38 c) Z < -1.40
- d) Z < -1.44
- 4. Statystyka testowa Z = 2.34, $H_1: \mu \neq \mu_0$. Jaka jest wartość-p?
 - a) 0.0096
- b) 00.0101
- c) **0.0193**
- d) 0.0202
- 5. Statystyka testowa Z = -3.05, $H_1: \mu < \mu_0$. Jaka jest wartość-p?

- a) **0.0011**
- b) 0.0111
- c) 0.0022
- d) 0.0001
- 6. Statystyka testowa $Z=1.89, H_1: \mu > \mu_0$. Jaka jest wartość-p?
 - a) 0.0588
- b) 0.1234
- c) 0.0249
- d) **0.0294**
- 7. $H_0: \mu = 10, H_1: \mu \neq 10$. Który z poniższych obszarów odrzucenia spowoduje odrzucenie hipotezy H_0 ??
 - a) (12.1, 15.3)
- b) (8.8, 12.5)
- c) (5.5, 15.5)
- d) (9.9, 10.5)

- 8. BŁĄD W TREŚCI ZADANIA
 - a) test jest jednostronny

b) wartość statystyki testowej to -22.59

c) rozmiar próbki to 500

d) wartość μ_0 to 5.519

9. Uzupełnić poniższą tabelę

Źródło	df	SS	MS	\mathbf{F}	p-value
Czynnik	2	1156	578	2.28	0.133
Błąd	17	4304	253		
Razem	19	5460			

10. Uzupełnić poniższą tabelę

Źródło	df	SS	\mathbf{MS}	\mathbf{F}	p-value
Czynnik A	5	750	150	3	0.127
Czynnik B	5	500	100	2	0.233
Błąd	5	250	50		
Razem	15	1500			

11. Czynnik A i czynnik B mają po 2 poziomy. Dla każdej kombinacji poziomów dane jest 5 obserwacji. Uzupełnić poniższą tabelę:

Źródło	df	SS	MS	F	p-value
Czynnik A	1	50	50	2.29	0.150
Czynnik B	1	25	25	1.14	0.302
Interakcja AB	1	75	75	3.43	0.083
Błąd	16	350	22		
Razem	19	500			

12. Czynniki A, B, C mają po 2 poziomy. Dla każdej kombinacji poziomów dane są 3 obserwacje. Uzupełnić poniższą tabelę:

Źródło	df	SS	MS	\mathbf{F}	p-value
Czynnik A	1	50	50	2.50	0.133
Czynnik B	1	150	150	7.50	0.015

Czynnik C	1	300	300	15.00	0.001
Interakcja AB	1	15	15	0.75	0.399
Interakcja AC	1	25	25	1.25	0.280
Interakcja BC	1	20	20	1.00	0.332
Interakcja ABC	1	5	5	0.25	0.624
Błąd	16	320	20		
Razem	23	885			

Witold Karczewski