Introduzione agli Algoritmi

Proff. T. Calamoneri - S. Caminiti

18 febbraio 2021

Es 1. Si imposti la relazione di ricorrenza che definisce il tempo di esecuzione della seguente funzione e la si risolva usando il metodo della **sostituzione**. Si commentino opportunamente i passaggi del calcolo, si descriva l'**albero della ricorsione** e come si giunge alla previsione sull'andamento del tempo di calcolo, si imposti l'induzione con chiarezza, sia nello scrivere cosa si vuole dimostrare sia nel formulare l'ipotesi induttiva.

```
fun exam(n) {
    if n==0 or n==1 then
        return 1;
    return n * exam(n-1);
}
```

- **Es 2.** Sia dato un vettore A di interi e due valori a e b con $a \le b$, il problema è quello di sapere quanti elementi di A sono compresi nell'intervallo chiuso [a, b].
 - I. Si progetti un algoritmo per risolvere tale problema su qualsiasi vettore A.
 - II. Si progetti un algoritmo più efficiente del precedente assumendo che A sia già ordinato e che contenga solo valori distinti.

Per ciascun algoritmo si descriva a parole l'idea, si scriva lo pseudocodice e si analizzi il tempo di esecuzione asintotica.

Es 3. Sia dato un heap compatto contenente esattamente 2^h -2 chiavi, memorizzato con una struttura a record e puntatori (anziché con la solita notazione posizionale).

Si progetti una funzione di inserimento di una nuova chiave k.

Si descriva a parole l'idea algoritmica, si produca lo pseudocodice e si analizzi il tempo di esecuzione asintotica, dettagliando dove entra in gioco il fatto di conoscere esattamente il numero di chiavi.

Se non avessimo questa informazione, l'algoritmo dato funzionerebbe ancora? Perché?