CPE301 - SPRING 2019

Design Assignment 5

Student Name: Ron Joshua Recrio

Student #: 5003825419

Student Email: recrio@unlv.nevada.edu

Primary Github address: https://github.com/recrio/submissions

Directory: /DesignAssignments/DA5

Partner: Steven Lee

Submit the following for all Labs:

- 1. In the document, for each task submit the modified or included code (only) with highlights and justifications of the modifications. Also, include the comments.
- 2. Use the previously create a Github repository with a random name (no CPE/301, Lastname, Firstname). Place all labs under the root folder ESD301/DA, sub-folder named LABXX, with one document and one video link file for each lab, place modified asm/c files named as LabXX-TYY.asm/c.
- 3. If multiple asm/c files or other libraries are used, create a folder LabXX-TYY and place these files inside the folder.
- 4. The folder should have a) Word document (see template), b) source code file(s) and other include files, c) text file with youtube video links (see template).

1. COMPONENTS LIST AND CONNECTION BLOCK DIAGRAM w/ PINS

List of Components used:

ATmega328p Xplained Mini NRF24L01 LM35

Block diagram with pins used in the Atmega328P

2. INITIAL CODE OF TASK 1/B

```
settings changed in lib file
```

```
// Settings
 uint8_t rx_address[5] = { 0x45, 0x45, 0x45, 0x45 }; // Read pipe address
 uint8 t tx address[5] = { 0x31, 0x31, 0x31, 0x31 }; // Write pipe address
main.c
      Set clock frequency
#ifndef F CPU
#define F CPU 16000000UL
#endif
#include <avr/io.h>
#include <util/delay.h>
#include <avr/interrupt.h>
#include <stdbool.h>
#include <stdio.h>
#include <string.h>
     Set up UART for printf();
#ifndef BAUD
#define BAUD 9600
#endif
#include "inc\STDIO_UART.c"
      Include nRF24L01+ library
#include "inc\nrf24101.c"
#include "inc\nrf24101-mnemonics.h"
#include "inc\spi.c"
void print_config(void);
      Used in IRQ ISR
volatile bool message_received = false;
volatile bool status = false;
void ADC_init (void);
volatile unsigned adc_temp;
volatile char temp[20];
int main(void)
{
             Set cliche message to send (message cannot exceed 32 characters)
       char tx_message[32];
                                              // Define string array
      strcpy(tx_message,"It's working!");
                                              // Copy string into array
      //
             Initialize UART
      uart_init();
      // Initialize ADC
      ADC init();
             Initialize nRF24L01+ and print configuration info
      nrf24_init();
      print_config();
             Start listening to incoming messages
      //
```

```
nrf24_start_listening();
       strcpy(tx_message,"Initializing Chat Room..."); // Copy string into array
       nrf24_send_message(tx_message);
      while (1)
             if (message received)
                           Message received, print it
                    //
                    message_received = false;
                    printf("Received Temperature: %s\n\n",nrf24_read_message());
                    ADCSRA |= (1<<ADSC); // start conversion
                    while ((ADCSRA&(1<<ADIF))==0){} // Wait for conversion</pre>
                    ADCSRA |= (1<<ADIF); // Clear Interrupt Flag
                    adc temp = ADCL; // take in lower bits first
                    adc temp = adc temp | (ADCH<<8); // take in upper bits
                    adc_temp = (adc_temp/1024.0) * 5000/10;
                    adc temp = adc temp*1.8 + 32;
                    snprintf(temp, sizeof(temp), "%d\r\n", adc_temp); // print to the
buffer
                    //
                           Send message as response
                    _delay_ms(500);
                    status = nrf24 send message(temp);
                    if (status == true) printf("Temperature Successfully Sent\n\n");
             }
      }
}
      Interrupt on IRQ pin
//
ISR(INT0_vect)
{
      message_received = true;
}
// Prints configuration
void print_config(void)
{
       uint8_t data;
      printf("Startup successful\n\n nRF24L01+ configured as:\n");
      printf("-----\n");
      nrf24 read(CONFIG,&data,1);
      printf("CONFIG
                                  0x%x\n",data);
      nrf24_read(EN_AA,&data,1);
      printf("EN AA
                                  0x%x\n",data);
      nrf24 read(EN RXADDR,&data,1);
      printf("EN RXADDR
                                  0x%x\n",data);
      nrf24 read(SETUP RETR,&data,1);
      printf("SETUP_RETR
                                  0x%x\n",data);
      nrf24_read(RF_CH,&data,1);
      printf("RF CH
                                  0x%x\n",data);
      nrf24 read(RF SETUP,&data,1);
      printf("RF SETUP
                                  0x%x\n",data);
      nrf24_read(STATUS,&data,1);
      printf("STATUS
                                  0x%x\n",data);
```

```
nrf24_read(FEATURE,&data,1);
       printf("FEATURE
printf("-----
                                   0x%x\n",data);
                                                   ----\n\n");
}
void ADC_init(void) {
       ADMUX |= (1<<REFS0) | // Selected AVcc
                      (1<<MUX2);
       ADCSRA |= (1<<ADEN) | // Enable ADC
                       (0<<ADSC) | // Do not start conversion
                       (0<<ADATE) |// Auto Trigger Disabled
                       (0<<ADIF) // Interrupt Flag Cleared
                       (0<<ADIE) // Interrupt Disabled
                       (1<<ADPS2)| // ADC Prescaler Select
                       (0<<ADPS1) | // Set to
                       (1<<ADPS0); // 32
}
```

3. SCHEMATICS

4. SCREENSHOTS OF EACH TASK OUTPUT (ATMEL STUDIO OUTPUT)

5. SCREENSHOT OF EACH DEMO (BOARD SETUP)

6. VIDEO LINKS OF EACH DEMO

https://youtu.be/ZMXrQmhXJXM

7. GITHUB LINK OF THIS DA

 $\underline{https://github.com/recrio/submissions/tree/master/DesignAssignments/DA5}$

Student Academic Misconduct Policy

http://studentconduct.unlv.edu/misconduct/policy.html

"This assignment submission is my own, original work".

Ron Joshua Recrio