Chapter 36 Espaces vectoriels

36.1 Structure d'espace vectoriel

Exercice 36.1

Montrer que la commutativité de l'addition des vecteurs peut se déduire des autres axiomes de la structure d'espace vectoriel. On développera de deux façons l'expression (1 + 1)(x + y).

Exercice 36.2

Déterminer $\alpha \in \mathbb{R}$ pour que le vecteur $x = (7, \alpha, -6) \in \mathbb{R}^3$ soit une combinaison linéaire des vecteurs a = (2, -1, 3) et b = (1, 3, 7).

Exercice 36.3

Montrer que le polynôme $Q \in \mathbb{R}[X]$, défini par $Q(X) = 7X^3 - 5X^2 + 11$ est combinaison linéaire des polynômes P_1, P_2, P_3, P_4 définis par

$$P_1(X) = X^3 + X^2 + X + 1$$
 $P_2(X) = X^2 + X + 1$ $P_3(X) = X + 1$ $P_4(X) = 1$

Exercice 36.4

On considère dans \mathbb{K}^3 les vecteurs

$$u = (1, 0, 0);$$
 $v = (1, 1, 0);$ $w = (1, 1, 1);$ $g = (\alpha, \beta, \gamma).$

où α , β , γ sont des scalaires quelconques.

- **1.** g est-il combinaison linéaire de u, v, w?
- **2.** g est-il combinaison linéaire de v et de w?

36.2 Sous-espaces vectoriels

Exercice 36.5

Soit E un \mathbb{K} -espace vectoriel et $(F_n)_{n\in\mathbb{N}}$ une famille croissante (au sens de l'inclusion) de sous-espace vectoriel de E, c'est-à-dire vérifiant

$$\forall n \in \mathbb{N}, F_n \subset F_{n+1}.$$

Montrer que $F = \bigcup_{n \in \mathbb{N}} F_n$ est un sous-espace vectoriel de E.

Exercice 36.6

Parmi les ensembles suivants, lesquels sont des sous-espace vectoriels de $E = \mathbb{R}^3$.

$$S_{1} = \left\{ \begin{pmatrix} x \\ y \\ z \end{pmatrix} \in \mathbb{R}^{3} \middle| z = y = 3x \right\}, \qquad S_{2} = \left\{ \begin{pmatrix} x \\ y \\ z \end{pmatrix} \in \mathbb{R}^{3} \middle| z + y = 3x \right\},$$

$$S_{3} = \left\{ \begin{pmatrix} x \\ y \\ z \end{pmatrix} \in \mathbb{R}^{3} \middle| zy = 3x \right\}, \qquad S_{4} = \left\{ \begin{pmatrix} x \\ y \\ z \end{pmatrix} \in \mathbb{R}^{3} \middle| xyz = 0 \right\}.$$

Donner une démonstration ou un contre-exemple pour justifier votre réponse.

Exercice 36.7

Soit A une matrice (n, n) et $\lambda \in \mathbb{R}$ un scalaire fixé. Montrer que l'ensemble

$$S = \{ x \in \mathbb{R}^n \mid Ax = \lambda x \}$$

est un sous-espace vectoriel de \mathbb{R}^n .

Exercice 36.8

Soit $\mathcal{M}_2(\mathbb{R})$ l'ensemble des matrice (2,2) à coefficients réels.

Parmi les ensembles suivants, lesquels sont des sous-espace vectoriel de $\mathcal{M}_2(\mathbb{R})$?

$$W_{1} = \left\{ \begin{pmatrix} a & 0 \\ 0 & b \end{pmatrix} \middle| a, b \in \mathbb{R} \right\}, \qquad W_{2} = \left\{ \begin{pmatrix} a & 1 \\ 1 & b \end{pmatrix} \middle| a, b \in \mathbb{R} \right\},$$

$$W_{3} = \left\{ \begin{pmatrix} a^{2} & 0 \\ 0 & b^{2} \end{pmatrix} \middle| a, b \in \mathbb{R} \right\}.$$

Exercice 36.9

On se place dans le \mathbb{R} -espace vectoriel $\mathcal{M}_3(\mathbb{K})$.

- 1. On dit qu'une matrice A de $\mathcal{M}_3(\mathbb{K})$ est *symétrique* lorsque $A^T = A$. Montrer que l'ensemble $\mathcal{S}_3(\mathbb{K})$ des matrices symétriques est un sous-espace vectoriel de $\mathcal{M}_3(\mathbb{K})$.
- 2. On dit qu'une matrice A de $\mathcal{M}_3(\mathbb{K})$ est antisymétrique lorsque $A^T = -A$. Montrer que l'ensemble $\mathcal{A}_3(\mathbb{K})$ des matrices symétriques est un sous-espace vectoriel de $\mathcal{M}_3(\mathbb{K})$.

Exercice 36.10

Démontrer que les ensembles suivants sont des sous-espaces vectoriels de $\mathbb{K}[X]$.

1.
$$A = \{ P \in \mathbb{K}[X] \mid P(0) = P(1) \}.$$

2.
$$B = \{ P \in \mathbb{K}[X] \mid (X^2 + 1) \text{ divise } P \}.$$

3.
$$C = \{ a(X^3 - 3) + b(X^2 - 2) \mid (a, b) \in \mathbb{K}^2 \}.$$

Exercice 36.11

Soit
$$F = \{ (u_n) \in \mathbb{R}^{\mathbb{N}} \mid \forall n \in \mathbb{N}, u_{n+2} = nu_{n+1} + u_n \}.$$

Montrer que F est un sous-espace vectoriel de $\mathbb{R}^{\mathbb{N}}$.

Exercice 36.12

Soit $F = \mathcal{F}(\mathbb{R}, \mathbb{R})$ l'espace vectoriel des fonctions $\mathbb{R} \to \mathbb{R}$ muni de l'addition et la multiplication externe usuelle (point par point).

1. Parmi les ensembles suivant, lesquels sont des sous-espace vectoriel de F?

$$S_1 = \{ f \in F \mid f(0) = 1 \},$$
 $S_2 = \{ f \in F \mid f(1) = 0 \}.$

2. Montrer que l'ensemble

$$S_3 = \{ f \in F \mid f \text{ est dérivable et } f' - f = 0 \}$$

est un sous-espace vectoriel de F.

Exercice 36.13

Montrer que

$$F = \left\{ f \in \mathcal{F}(\mathbb{R}, \mathbb{R}) \mid \exists (A, \varphi) \in \mathbb{R}^2, \forall x \in \mathbb{R}, f(x) = A\cos(x + \varphi) \right\}.$$

est un \mathbb{R} -espace vectoriel.

Exercice 36.14

Soit U et V deux sous-espace vectoriel d'un espace vectoriel E.

- **1.** Montrer que $U \cap V$ est un sous-espace vectoriel de E.
- **2.** Montrer que $U \cup V$ est un sous-espace vectoriel de E si, et seulement si $U \subset V$ ou $V \subset U$.
- **3.** Donner un exemple de sous-espace U et V de \mathbb{R}^3 qui illustre le fait que $U \cap V$ est un sous-espace vectoriel, mais que $U \cup V$ ne l'est pas.

Exercice 36.15

On considère les sous-ensembles de \mathbb{R}^5 suivants

$$F = \{ (x, y, z, t, w) \in \mathbb{R}^5 \mid x + y = z + t + w \}$$
 et $G = \{ (x, y, z, t, w) \in \mathbb{R}^5 \mid x = y \text{ et } z = t = w \}.$

Vérifier que F et G sont des sous-espaces vectoriels de E, puis déterminer $F \cap G$.

Exercice 36.16

Dans l'espace vectoriel $E = \mathbb{R}^3$, on considère les sous-ensembles

$$F = \left\{ \left. (\lambda - 3\mu, 2\lambda + 3\mu, \lambda) \right| (\lambda, \mu) \in \mathbb{R}^2 \right. \right\} \quad \text{et} \quad G = \left\{ \left. (x, y, z) \in E \mid x + 2y = 0 \right. \right\}.$$

- 1. Prouver que les ensembles F et G sont des sous-espaces vectoriels de E.
- **2.** Déterminer le sous-espace vectoriel $F \cap G$.

Exercice 36.17

On considère

$$u = \begin{pmatrix} 2 \\ -1 \\ 1 \end{pmatrix} \qquad \text{et} \qquad \qquad v = \begin{pmatrix} -1 \\ 1 \\ 3 \end{pmatrix}.$$

Parmi les vecteurs suivants,

$$a = \begin{pmatrix} 3 \\ -2 \\ 4 \end{pmatrix}, \qquad b = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}, \qquad c = \begin{pmatrix} 7 \\ -5 \\ -7 \end{pmatrix}.$$

déterminer ceux qui appartiennent à Vect $\{u, v\}$. Lorsque c'est le cas, les exprimer comme combinaison linéaire de u et v.

Exercice 36.18

Soit F le sous-espace vectoriel de \mathbb{R}^4 engendré par u=(1,2,-5,3) et v=(2,-1,4,7). Déterminer λ et μ réels tels que $(\lambda,\mu,-37,-3)$ appartienne à F.

Exercice 36.19

1. Écrire, si possible, le vecteur $v = (1, 1, -3) \in \mathbb{R}^3$ comme combinaison linéaire des vecteurs

$$u_1 = (-3, 1, 2), \quad u_2 = (4, -2, 1), \quad u_3 = (-5, 1, 7).$$

2. Montrer que Vect $\{u_3\}$ \subset Vect $\{u_1, u_2\}$ mais que ces deux sous-espaces vectoriels ne sont pas égaux.

Exercice 36.20

Dans le \mathbb{R} -espace vectoriel \mathbb{R}^3 , on pose

$$u = (1, 2, 3),$$
 $v = (2, -1, 1),$ $a = (1, 0, 1)$ et $b = (0, 1, 1).$

Démontrer que Vect(u, v) = Vect(a, b).

Exercice 36.21

Montrer que les ensembles suivants sont des sous-espaces vectoriels de \mathbb{R}^3

- en utilisant la définition (ou caractérisation) d'un sous-espace vectoriel;
- en les décrivant comme le noyau d'une matrice ou comme l'image d'une matrice.

$$\mathbf{1.} \ F_1 = \left\{ \begin{pmatrix} x \\ y \\ z \end{pmatrix} \in \mathbb{R}^3 \ \middle| \ x + y - z = 0 \right\}.$$

2.
$$F_2 = \left\{ \begin{pmatrix} 2s+t \\ s-t \\ s+t \end{pmatrix} \middle| (s,t) \in \mathbb{R}^2 \right\}.$$

3.
$$F_3 = \left\{ \begin{pmatrix} x \\ y \\ z \end{pmatrix} \in \mathbb{R}^3 \mid x - y + z = 0 \text{ et } x + y - z = 0 \right\}.$$

4.
$$F_4 = \left\{ \begin{pmatrix} x \\ y \\ z \end{pmatrix} \in \mathbb{R}^3 \mid x - y - 2z = 0 \right\} \bigcap \left\{ \begin{pmatrix} x \\ y \\ z \end{pmatrix} \in \mathbb{R}^3 \mid 3x - y - z = 0 \right\}.$$

$$\mathbf{5.} \ \ F_5 = \left\{ \begin{pmatrix} 2t \\ 3t \\ t \end{pmatrix} \middle| \ t \in \mathbb{R} \right\}.$$

Chapter 37 Applications linéaires

Applications linéaires 37.1

Exercice 37.1

Les applications suivantes de \mathbb{K}^3 dans \mathbb{K} sont-elles des formes linéaires ?

1.
$$u:(x, y, z) \mapsto x + y$$
.

4.
$$u:(x,y,z)\mapsto x^2-y$$

2.
$$u:(x,y,z)\mapsto xy$$
.

5.
$$u:(x,y,z)\mapsto x+y+1.$$

6. $u:(x,y,z)\mapsto 3y.$

3.
$$u:(x,y,z)\mapsto 2x-y+z$$
.

6.
$$u:(x,y,z)\mapsto 3y$$

Exercice 37.2

Montrer que l'application $D: \mathscr{C}^{\infty}(\mathbb{R}) \to \mathscr{C}^{\infty}(\mathbb{R}), f \mapsto f'$ est une application linéaire.

Exercice 37.3

Soit E l'espace vectoriel des fonctions continues de \mathbb{R} dans \mathbb{R} . À toute application $f \in E$, on associe l'application A(f) définie par

$$x \mapsto \int_0^x f(t) \, \mathrm{d}t.$$

- 1. Justifier que A est une application de E à valeurs dans E.
- **2.** Montre que *A* est linéaire.

Exercice 37.4

Vérifier la linéarité des applications suivantes.

1.
$$f_1: \mathbb{R}^3 \to \mathbb{R}^3$$
. $(x, y, z) \mapsto (x, y)$

4.
$$f_4: \mathbb{R}[X] \to \mathbb{R}[X]$$
.

$$\mathbf{4.} \ f_4: \ \mathbb{R}[X] \to \mathbb{R}[X] \ .$$

$$P \mapsto X^2 P'$$

$$\mathbf{5.} \ f_5: \ \mathbb{R}^{\mathbb{N}} \to \mathbb{R}^{\mathbb{N}} \ .$$

$$(u_n)_{n \in \mathbb{N}} \mapsto (u_{2n})_{n \in \mathbb{N}}$$

3.
$$f_3: \mathbb{C} \to \mathbb{R}$$
. $z \mapsto \Re e(z)$.

Exercice 37.5

Montrer que l'application
$$f: \mathbb{R}^2 \to \mathbb{R}^2$$
 appartient à $\mathbf{GL}(\mathbb{R}^2)$.
 $(x, y) \mapsto (x + 3y, 4x - 2y)$

Préciser f^{-1} . Vérifier que f^{-1} est effectivement linéaire.

Soient E un K-espace vectoriel et $f \in \mathcal{L}(E)$ vérifiant

$$(f - \mathrm{Id}_E) \circ (f + 2 \, \mathrm{Id}_E) = 0. \tag{1}$$

Montrer que f est bijective.

37.2 Anatomie d'une application linéaire

Exercice 37.7

Soient E, F, G trois K-espace vectoriel, $f \in \mathcal{L}(E, F)$ et $g \in \mathcal{L}(F, G)$.

- **1.** Montrer que $g \circ f = 0$ si et seulement si Im $f \subset \ker g$.
- **2.** Montrer que ker $f \subset \ker g \circ f$.
- **3.** Montrer que $\operatorname{Im} g \circ f \subset \operatorname{Im} g$.

Exercice 37.8

Soient E un \mathbb{K} -espace vectoriel et $f \in \mathcal{L}(E)$. On note $f^2 = f \circ f$.

Montrer que ker $f \subset \ker f^2$ et Im $f^2 \subset \operatorname{Im} f$.

Exercice 37.9

Soit E un K-espace vectoriel et $f \in \mathcal{L}(E)$. On pose $f^2 = f \circ f$. Montrer que

$$\ker(f) = \ker(f^2) \iff \operatorname{Im}(f) \cap \ker(f) = \{0_F\}.$$

Exercice 37.10

Soit E un \mathbb{K} -espace vectoriel et u et v deux endomorphismes de E qui commutent.

Montrer que ker u et $\operatorname{Im} u$ sont stables par v.

Exercice 37.11

Soit f l'endomorphisme de \mathbb{R}^3 d'expression analytique

$$\begin{cases} x' = x + y + z \\ y' = x + 2y + 3z \\ z' = 2x + 3y + 4z \end{cases}$$

- 1. Montrer que ker(f) est une droite vectorielle dont on déterminera un vecteur directeur.
- **2.** Montrer que $\operatorname{Im}(f) = \{(x, y, z) \in \mathbb{R}^3 \mid z = x + y\}.$
- 3. Montrer que Im(f) est un plan vectoriel dont on déterminera deux vecteurs directeurs.

Exercice 37.12

Soit
$$f: \mathbb{R}^2 \to \mathbb{R}^2$$
 . $(x, y) \mapsto (2x - y, x + y)$

- 1. Prouver que f est linéaire.
- **2.** Déterminer le noyau de f.
- **3.** Déterminer l'image de f.

Exercice 37.13

Vérifier que les applications suivantes sont \mathbb{R} -linéaires et déterminer dans chaque cas l'image et le noyau. En déduire si u est injective, surjective, bijective.

1.
$$u: \mathbb{R}[X] \to \mathbb{R}[X]$$
.
 $P \mapsto P'$

2. $u: \mathbb{R}_3[X] \to \mathbb{R}_3[X]$.
 $P \mapsto P'$

3. $u: \mathbb{R}[X] \to \mathbb{R}^3$
 $P \mapsto (P(-1), P(0), P(1))$

4. $u: \mathbb{R}[X] \to \mathbb{R}[X]$
 $P \mapsto P - (X - 2)P'$

Exercice 37.14

On définit sur le \mathbb{R} -espace vectoriel $\mathbb{R}[X]$ des polynômes à coefficients dans \mathbb{R} deux applications A et B par

$$A(P(X)) = P'(X) \qquad \text{et} \qquad B(P(X)) = XP(X).$$

Démontrer les assertion suivantes.

- **1.** A et B sont des endomorphismes de $\mathbb{R}[X]$.
- **2.** Im $A = \mathbb{R}[X]$ et ker $A \neq \{0\}$.
- 3. $\ker B = \{0\} \text{ et } B \text{ n'a pas d'application réciproque.}$
- **4.** $A \circ B B \circ A = \operatorname{Id}_{\mathbb{R}[X]}$.
- 5. Pour tout $k \in \mathbb{N}^{\star}$, $A^k \circ B B \circ A^k = kA^{k-1}$.

Exercice 37.15 (***)

On considère l'application T définie par

$$T: \mathbb{C}[X] \to \mathbb{C}[X]$$

 $P \mapsto (3X+8)P + (X^2-5X)P' - (X^3-X^2)P''$

- 1. Montrer que T est linéaire.
- **2.** Préciser T(1), T(X), $T(X^2)$ et $T(X^3)$.
- 3. Soit $P \in \mathbb{C}[X]$ tel que $\deg(P) = n \in \mathbb{N}$. Déterminer une condition nécessaire et suffisante pour que $\deg(T(P)) \le n$.
- **4.** Démontrer que $T(\mathbb{C}_3[X]) \subset \mathbb{C}_3[X]$.
- **5.** Dans quel sous-espace de $\mathbb{C}[X]$ doit-on chercher le noyau de T? Déterminer ker T. Que peut-on en déduire?
- **6.** En raisonnant par l'absurde, démontrer que le polynôme X n'admet pas d'antécédent par T.
- 7. Déterminer V_8 , l'ensemble de tous les polynômes $P \in \mathbb{C}[X]$ tels que T(P) = 8P.
- 8. On considère l'ensemble V des polynômes P pour lesquels il existe un scalaire λ tel que $T(P) = \lambda P$. Montrer que V contient quatre polynômes normalisés.

Exercice 37.16

On désigne par $E = \mathcal{C}^1(\mathbb{R}, \mathbb{R})$ et on considère l'application φ définie sur E par

$$\forall f \in E, \varphi(f) = f'(1).$$

- 1. Démontrer que φ est une forme linéaire sur E.
- **2.** En déduire que $F = \{ f \in E \mid f'(1) = 0 \}$ est un sous-espace vectoriel de E.

Exercice 37.17

Soit $E = \mathscr{C}^{\infty}(\mathbb{R}, \mathbb{R})$ l'espace vectoriel des fonctions $\mathbb{R} \to \mathbb{R}$ de classe \mathscr{C}^{∞} . Montrer que $\varphi : f \mapsto f''$ est un endomorphisme de E, et déterminer $\operatorname{Im} \varphi$ et $\ker \varphi$.

Exercice 37.18 Lemme des 5

Considérons $A_1, \ldots, A_5, B_1, \ldots, B_5$ dix espaces vectoriels et des application linéaires

$$f_k: A_k \to A_{k+1}$$
 et $g_k: A_k \to B_k$ et $h_k: B_k \to B_{k+1}$.

On suppose que (f_{k-1}, f_k) et (h_{k-1}, h_k) forment des suites exactes, c'est-à-dire

$$\operatorname{Im}(f_{k-1}) = \ker(f_k)$$
 et $\operatorname{Im}(h_{k-1}) = \ker(h_k)$.

et que le diagramme précédent est commutatif, c'est-à-dire que l'on a les égalités

$$h_k \circ g_k = g_{k+1} \circ f_k.$$

- 1. Montrer que si g_2 et g_4 sont injectives et g_1 est surjective alors g_3 est injective.
- **2.** Montrer que si g_2 et g_4 sont surjectives et g_5 est injective alors g_3 est surjective.
- **3.** En déduire que si g_1, g_2, g_4, g_5 sont bijectives, alors g_3 est bijective.

$$A_{1} \xrightarrow{f_{1}} A_{2} \xrightarrow{f_{2}} A_{3} \xrightarrow{f_{3}} A_{4} \xrightarrow{f_{4}} A_{5}$$

$$\downarrow g_{1} \downarrow g_{2} \downarrow g_{3} \downarrow g_{4} \downarrow g_{5} \downarrow$$

$$\downarrow g_{1} \xrightarrow{h_{1}} B_{2} \xrightarrow{h_{2}} B_{3} \xrightarrow{h_{3}} B_{4} \xrightarrow{h_{4}} B_{5}$$

Exercice 37.19

Déterminer le noyau et l'image de l'application linéaire

$$u: \mathbb{R}^3 \to \mathbb{R}^2$$

 $(x, y, z) \mapsto (x + y - z, x - y + 2z)$

Est-elle injective ? Surjective ?

Exercice 37.20

Montrer que les applications suivantes sont linéaires, préciser leur noyau et leur image, préciser aussi si celles-ci sont injectives ou surjectives.

- **1.** $f: \mathbb{R}^2 \to \mathbb{R}^3$ définie par f(x, y) = (y 3x, 5x + 2y, x + y).
- **2.** $f: \mathbb{R}^3 \to \mathbb{R}^3$ définie par f(x, y, z) = (x + y + z, x + 3y + 2z, 3x + y + 2z).
- 3. $f: \mathbb{R}^3 \to \mathbb{R}^4$ définie par f(x, y, z) = (2x y + z, 3x + y z, x 3y + 3z, 2x + 4y 4z).

Exercice 37.21

Montrer que les applications suivantes sont linéaires, préciser leur noyau et leur image, préciser aussi si celles-ci sont injectives ou surjectives.

- **1.** $f: \mathbb{R}_3[X] \to \mathbb{R}_3[X]$ définie par f(P) = X(P'(X+1) P'(1)).
- 2. $f: \mathbb{R}[X] \to \mathbb{R}[X]$ définie par f(P) = P XP' P(0).

Exercice 37.22

Soit
$$\theta$$
: $\mathbb{R}_2[X] \rightarrow \mathbb{R}^3$
 $P \mapsto (P(0), P(1), P(2))$

- **1.** Prouver que $\theta \in \mathcal{L}(\mathbb{R}_2[X], \mathbb{R}^3)$.
- **2.** Montrer que θ est injective.
- **3.** Montrer que θ est surjective.

Exercice 37.23

Soit
$$\varphi$$
: $\mathbb{R}_3[X] \to \mathbb{R}^3$
 $P \mapsto (P(0), P'(1), P(2))$

1. Prouver que φ est linéaire.

- **2.** Déterminer le noyau de φ .
- 3. Déterminer l'image de φ .
- **4.** L'application φ est-elle injective? Est-elle surjective?

Exercice 37.24

Soit
$$\varphi$$
: $\mathbb{R}_2[X] \to \mathbb{R}^4$.
 $P \mapsto (P(0), P(1), P(2), P(3))$.

- 1. Prouver que φ est linéaire.
- **2.** Déterminer le noyau de φ .
- 3. Soit $y = (y_1, y_2, y_3, y_4) \in \mathbb{R}^4$. Déterminer une condition nécessaire et suffisante sur y pour avoir $y \in \text{Im}(\varphi)$.
- **4.** L'application φ est-elle injective? Est-elle surjective?

Exercice 37.25

Montrer que les applications suivantes sont linéaires, préciser leur noyau et leur image, préciser aussi si celles-ci sont injectives ou surjectives.

1.
$$f: \mathbb{R}^3 \to \mathbb{R}^2$$
 définie par $f(x, y, z) = (2x + y - z, x + y)$.

2.
$$M: \mathbb{R}[X] \to \mathbb{R}[X]$$
 définie par $M(P) = XP$.

3.
$$\varphi: \mathscr{C}^1(\mathbb{R}, \mathbb{K}) \to \mathscr{C}(\mathbb{R}, \mathbb{K})$$
 définie par $\varphi(f) = f' - f$.

4.
$$T: \mathbb{C}^{\mathbb{N}} \to \mathbb{C}^{\mathbb{N}}$$
 définie par $T((u_n)_{n \in \mathbb{N}}) = (u_{n+1})_{n \in \mathbb{N}}$.

5.
$$f: \mathbb{C} \to \mathbb{R}$$
 définie par $f(z) = \mathfrak{Tm}(z) - \mathfrak{Re}(z)$.

Exercice 37.26

Vérifier que les applications suivantes sont \mathbb{R} -linéaires et déterminer dans chaque cas l'image et le noyau. En déduire si elles sont injectives, surjectives, bijectives.

1.
$$u: \mathbb{R}^3 \to \mathbb{R}^2$$
 . $(x, y, z) \mapsto (x, y)$

2.
$$u: \mathbb{R}^3 \to \mathbb{R}^2$$

 $(x, y, z) \mapsto (x + 2y + z, x - z)$

3.
$$u: \mathbb{R}^3 \rightarrow \mathbb{R}^3$$

 $(x, y, z) \mapsto (x - y, y + z, x + y + z)$

4.
$$u: \mathcal{F}(\mathbb{R}, \mathbb{R}) \to \mathbb{R}$$
 . $f \mapsto f(0)$

5.
$$u: \mathbb{C} \to \mathbb{R}$$

 $z \mapsto \Re e(z)$

6.
$$u : \mathbb{R}[X] \rightarrow \mathbb{R}$$
. $P \mapsto P(0)$

7.
$$u: \mathbb{R}[X] \rightarrow \mathbb{R}[X]$$
.
 $P \mapsto X^2 P'$

8.
$$f: \mathbb{R}^{\mathbb{N}} \to \mathbb{R}$$
 $(u_n)_{n \in \mathbb{N}} \mapsto u_3$

$$9. f: \mathbb{R}^{\mathbb{N}} \to \mathbb{R}^{\mathbb{N}} .$$
$$(u_n)_{n \in \mathbb{N}} \mapsto (u_{n+1})_{n \in \mathbb{N}}.$$

10.
$$f: \mathbb{R}^{\mathbb{N}} \to \mathbb{R}^{\mathbb{N}}$$

$$(u_n)_{n \in \mathbb{N}} \mapsto (u_{2n})_{n \in \mathbb{N}}$$

Chapter 38 Sommes et projecteurs

38.1 Somme de deux sous-espaces vectoriels

Exercice 38.1 (**)

Soient E un espace vectoriel et A, B, C trois sous-espace vectoriel tels que

$$A \cap B = A \cap C \tag{1}$$

$$A + B = A + C \tag{2}$$

$$B \subset C$$
. (3)

Montrer que B = C.

Exercice 38.2

Soient E un \mathbb{K} -espace vectoriel et $\mathbb{V}(E)$ l'ensemble des sous-espaces vectoriels de E. On ordonne $\mathbb{V}(E)$ par l'inclusion.

- 1. Vérifier que $\mathbb{V}(E)$ a un plus petit élément et un plus grand élément que l'on précisera.
- **2.** Soit $(A, B) \in V(E)^2$. Montrer que $\{A, B\}$ admet, dans (V(E), C), une borne inférieure et une borne supérieure, qu'on déterminera.

Exercice 38.3 (*)

Soient E un \mathbb{K} -espace vectoriel, A, B deux sous-espaces vectoriels de E, C un supplémentaire de $A \cap B$ dans B.

Montrer $A + B = A \oplus C$.

Exercice 38.4

Soit E un \mathbb{K} -espace vectoriel, v_0 un vecteur de E, V un sous-espace vectoriel de E. On appelle sous-espace affine passant par v_0 de **direction** V (ou dirigé par V) l'ensemble de vecteurs de E tels que $v-v_0$ appartienne à V.

Autrement dit, \mathcal{V} est un sous-espace affine de E si, et seulement s'il existe un vecteur v_0 appartenant à E tel que

$$\mathcal{V} = \left\{ w \in E \mid \exists v \in V, w = v_0 + v \right\}.$$

On le note $\mathcal{V} = v_0 + V$.

- **1.** Dans $E = \mathbb{R}^3$, on considère $\mathcal{P} = \{ (x, y, z) \in \mathbb{R}^3 \mid x + y + z = 1 \}$. Montrer que \mathcal{P} est un sous-espace affine de E.
- **2.** On considère l'équation différentielle d'inconnue $y: I \to \mathbb{R}$ où $I =]0, +\infty[$.

$$(e^x - 1) y' + (e^x + 1) y = 3 + 2e^x.$$
 (E)

- (a) Résoudre (E).
- (b) Montrer que l'ensemble S des solutions est un sous-espace affine de $C(I, \mathbb{R})$.

Soit V et W deux sous-espaces vectoriels de E, v_0 et w_0 deux vecteurs de E. On considère les deux sous-espaces affines $\mathcal{V} = v_0 + V$ et $\mathcal{W} = w_0 + W$.

- **3.** Prouver que si \mathcal{V} est inclus dans \mathcal{W} , alors V est inclus dans W.
- **4.** En déduire qu'un sous-espace affine de *E* n'admet qu'une seule direction.

- **5.** Prouver que si v_1 est un vecteur de \mathcal{V} , alors $\mathcal{V} = v_1 + V$.
- **6.** Démontrer que $\mathcal{V} \cap \mathcal{W}$ n'est pas vide si, et seulement si $w_0 v_0$ appartient à V + W. Prouver que dans ce cas $\mathcal{V} \cap \mathcal{W}$ est un sous-espace affine dirigé par $V \cap W$.

Exercice 38.5

Soit $u, w \in \mathbb{R}^2$ les vecteurs

$$u = \begin{pmatrix} -1\\2 \end{pmatrix}, \quad w = \begin{pmatrix} -3\\5 \end{pmatrix}.$$

En utilisant la définition de somme directe, montrer que \mathbb{R}^2 = Vect { u } \oplus Vect { w }.

Exercice 38.6

Vérifier si les espaces suivants sont supplémentaires dans $E = \mathbb{R}^3$

$$F = \left\{ (x, y, z) \in \mathbb{R}^3 \mid 3x - y + z = 0 \right\}$$
 et
$$G = \left\{ (t, -t, t) \mid t \in \mathbb{R} \right\}.$$

Exercice 38.7

On pose $E = \mathbb{R}_3[X]$ et on considère les deux sous-espaces vectoriels de E suivants

$$F = \{ P \in E \mid P(0) = P(1) = 0 \}$$
 et $G = \{ P \in E \mid \deg(P) \le 1 \}.$

Démontrer que $E = F \oplus G$.

Exercice 38.8 (*)

Soient $E = \mathcal{F}(\mathbb{R}, \mathbb{R})$.

- **1.** Montrer que $V = \{ f \in E \mid f(2) = f(3) \}$ est un sous-espace vectoriel de E.
- **2.** Montrer que $W = \text{Vect} \{ \text{Id}_{\mathbb{R}} \}$ est un supplémentaire de V dans E.

Exercice 38.9 (**)

Dans l'espace $\mathcal{F}(\mathbb{R}, \mathbb{R})$, on note \mathcal{P} l'ensemble des fonctions paires et \mathcal{I} l'ensemble des fonctions impaires.

- **1.** Montrer que \mathcal{P} et \mathcal{I} sont deux sous-espaces vectoriels de $\mathcal{F}(\mathbb{R},\mathbb{R})$.
- **2.** Montrer que l'intersection $\mathcal{P} \cap \mathcal{I}$ est réduite à la fonction nulle.
- 3. Montrer que toute fonction peut s'écrire comme la somme d'une fonction paire et d'une fonction impaire.
- **4.** En déduire $\mathcal{P} \oplus \mathcal{I} = \mathcal{F}(\mathbb{R}, \mathbb{R})$.

Exercice 38.10 (**)

On note $E = C^1([0, 1], \mathbb{R})$ le \mathbb{R} -espace vectoriel des applications de classe C^1 sur [0, 1] et à valeurs réelles,

$$F = \left\{ f \in E \mid \int_0^1 f = 0, f(0) = 0, f'(1) = 0 \right\}$$

et $G = \left\{ x \mapsto a + bx + cx^2 \mid (a, b, c) \in \mathbb{R}^3 \right\}.$

- 1. Montrer que F et G sont deux sous-espaces vectoriels de E.
- **2.** Montrer que $E = F \oplus G$.

38.2 Projecteurs

Exercice 38.11 (*)

Soit p un projecteur de E.

Montrer que si le scalaire λ est distinct de 0 et 1, alors $p - \lambda$ Id_E est un automorphisme, et expliciter son inverse.

Exercice 38.12

Soit \mathcal{P} le sous-espace vectoriel de \mathbb{R}^3 défini par $\mathcal{P} = \{(x, y, z) \in \mathbb{R}^3 \mid x + y - z = 0\}$ et $\mathcal{D} = \text{Vect } (1, 2, 0)$.

- **1.** Montrer que $\mathbb{R}^3 = \mathcal{D} \oplus \mathcal{P}$.
- **2.** Donner l'expression de la projection p sur \mathcal{P} parallèlement \mathcal{D} .

Exercice 38.13

Dans \mathbb{R}^4 , on considère les sous-espaces vectoriels

$$F = \left\{ (x, y, z, t) \in \mathbb{R}^4 \mid x + y - z + 2t = 0 \right\}$$
 $G = \text{Vect}(e) \text{ où } e = (1, 1, 1, 1).$

- Montrer que F et G sont supplémentaires.
- Soit p la projection sur F parallèlement à G, déterminer p(u) pour tout u de \mathbb{R}^4 .

Exercice 38.14

Soit

$$F = \{ P \in \mathbb{R}[X] \mid P(1) = 0 \}$$
 et $G = \text{Vect } \{ X \}.$

- **1.** Montrer que F et G sont supplémentaires dans $\mathbb{R}[X]$.
- **2.** Donner l'image de $X^2 3X + 1$ par le projecteur p sur F parallèlement à G.
- 3. Pour $i \in \mathbb{N}^*$, donner l'image de $X^i 1$ par le projecteur p sur F parallèlement à G.

Exercice 38.15

Soient p et q deux projecteurs de E.

- 1. Montrer que p + q est un projecteur si et seulement si $p \circ q = q \circ p = 0$.
- 2. Dans ce cas, montrer

$$\ker(p+q) = \ker p \cap \ker q$$
 et $\operatorname{Im}(p+q) = \operatorname{Im} p \oplus \operatorname{Im} q$.

Exercice 38.16

Soit E un \mathbb{K} -espace vectoriel et $f \in \mathcal{L}(E)$ vérifiant $(f - a \operatorname{Id})(f - b \operatorname{Id}) = 0$ où a et b sont deux éléments distincts de \mathbb{K} .

- 1. Établir l'existence de λ et μ non nuls tels que $\lambda(f-a\operatorname{Id})$ et $\mu(f-b\operatorname{Id})$ soient des projecteurs.
- **2.** Montrer que Im(f b Id) = ker(f a Id).
- **3.** Calculer f^n pour tout $n \in \mathbb{N}$.
- **4.** Si $ab \neq 0$, montrer que $f \in GL(E)$, et calculer f^n pour $n \in \mathbb{Z}$.

Exercice 38.17 (*)

Soit

$$p: \mathbb{R}^2 \to \mathbb{R}^2$$

$$(x, y) \mapsto \left(\frac{4x + 2y}{5}, \frac{2x + y}{5}\right)$$

- **1.** Montrer que *p* est un projecteur de \mathbb{R}^2 .
- 2. Déterminer les éléments caractéristiques de p.
- 3. Déterminer l'expression de la symétrie par rapport à $\operatorname{Im} p$ suivant la direction $\ker p$.

Exercice 38.18

Soit
$$p: \mathbb{R}^3 \to \mathbb{R}^3$$
 . $(x, y, z) \mapsto \frac{1}{10}(3x + 6y + 9z, 2x + 4y + 6z, x + 2y + 3z)$.

- **1.** Montrer que *p* est un endomorphisme de \mathbb{R}^3 .
- **2.** Montrer que p est un projecteur sur une droite vectorielle \mathcal{D} parallèlement à un plan \mathcal{P} .
 - Déterminer $(u, v, w) \in (\mathbb{R}^3)^3$ tels que

$$\mathcal{D} = \text{Vect}(u)$$
 et $\mathcal{P} = \text{Vect}(v, w)$.

Exercice 38.19 (**)

Soit dans $E = \mathbb{R}^3$ un vecteur $v = (v_1, v_2, v_3)$ tel que $v_1 + v_2 + v_3 = 1$.

Montrer que l'application φ qui à un vecteur $x=(x_1,x_2,x_3)$ associe le vecteur

$$x - (x_1 + x_2 + x_3)v$$

est un projecteur.

Préciser son image et son noyau.

Exercice 38.20 (***)

Dans $E = \mathbb{R}^n$, on considère l'hyperplan H d'équation $x_1 + \ldots + x_n = 0$ dans la base canonique $(e_i)_{1 \le i \le n}$ de E. Pour $\sigma \in S_n$ donnée, on considère l'endomorphisme f_σ de E défini par

$$\forall i \in [[1, n]], \ f_{\sigma}(e_i) = e_{\sigma(i)}.$$

On pose alors $p = \frac{1}{n!} \sum_{\sigma \in S_n} f_{\sigma}$. Montrer que p est une projection dont on déterminera l'image et la direction.

Exercice 38.21

Soit $n \in \mathbb{N}^*$ et $\varphi : \mathbb{R}_n[X] \to \mathbb{R}_n[X]$ l'application qui a un polynôme $P \in \mathbb{R}_n[X]$ associe le reste dans la division euclidienne de P par le polynôme $A = X^3 - 3X^2 + X + 1$.

- **1.** Montrer que φ est un endomorphisme de $\mathbb{R}_n[X]$.
- 2. Montre que φ est une projecteur.
- 3. Déterminer les éléments caractéristiques de φ .

38.3 Symétries

Exercice 38.22

Dans l'espace vectoriel \mathbb{R}^3 , on considère les sous-espaces vectoriels

$$E_1 = \text{Vect} \{ (1,0,0), (1,1,1) \}$$
 et $E_2 = \text{Vect} \{ (1,2,0) \}.$

Déterminer l'expression analytique de la symétrie par rapport à E_1 parallèlement à E_2 .

Exercice 38.23

Soit

$$F = \text{Vect}\left\{X^2 + 2, 1\right\} \qquad \text{et} \qquad G = \text{Vect}\left\{(X+1)^2\right\}.$$

- **1.** Montrer que F et G sont supplémentaires dans $\mathbb{R}_2[X]$.
- 2. Donner l'image de $A(X) = 2X^2 + 3X + 1$ par le projecteur p sur F parallèlement à G.
- 3. Donner l'image de $A(X) = 2X^2 + 3X + 1$ par la symétrie s par rapport à F dans la direction G.

Exercice 38.24 (**)

Soit
$$n \ge 2$$
 et soit s : $\mathbb{R}_n[X] \to \mathbb{R}_n[X]$
 $P \mapsto P - P''(0)X^2 - 2P(0)$

- **1.** Montrer que s est un endomorphisme de $\mathbb{R}_n[X]$.
- 2. Montrer que s est une symétrie dont on donnera les éléments caractéristiques.

38.4 Sommes et applications linéaires

Exercice 38.25 (**)

Soit E, F, G trois espaces vectoriels sur un corps \mathbb{K} , $u \in \mathcal{L}(E, F)$ et $v \in \mathcal{L}(F, G)$.

- **1.** Montrer que $\text{Im}(v \circ u) \subset \text{Im}(v)$ et que $\text{ker}(u) \subset \text{ker}(v \circ u)$.
- **2.** Montrer que $v \circ u = 0 \iff \operatorname{Im} u \subset \ker v$.
- **3.** Montrer que $\ker(v \circ u) = \ker u \iff \ker v \cap \operatorname{Im} u = \{0\}.$
- **4.** Montrer que $\text{Im}(v \circ u) = \text{Im } v \iff \ker v + \text{Im } u = F$.

Exercice 38.26 (**)

Soit f un endomorphisme d'un \mathbb{K} -espace vectoriel E. On pose $f^2 = f \circ f$.

- **1.** Montrer que Im $f \cap \ker f = f(\ker f^2)$.
- **2.** Montrer que ker $f = \ker f^2$ si et seulement si Im $f \cap \ker f = \{0\}$.
- 3. Montrer que Im $f = \text{Im } f^2$ si et seulement si Im f + ker f = E.
- **4.** En déduire une condition nécessaire et suffisante pour que le noyau et l'image de f soient des sousespaces vectoriels supplémentaires de E.

Exercice 38.27 (**)

Soient E un espace vectoriel de dimension n sur \mathbb{K} , f un endomorphisme de E, P et Q deux éléments de $\mathbb{K}[X]$.

Si
$$P = a_0 + a_1 X + \cdots + a_n X^n$$
, on note $P(f)$ l'endomorphisme

$$a_0 \operatorname{Id}_E + a_1 f + \dots + a_n f^n$$
.

- **1.** Montrer que $(P \cdot Q)(f) = P(f) \circ Q(f)$.
- **2.** Montrer que si P divise Q, alors

$$\ker P(f) \subset \ker Q(f)$$
 et $\operatorname{Im} Q(f) \subset \operatorname{Im} P(f)$.

3. Montrer que si D est le PGCD de P et Q, alors

$$\ker D(f) = \ker P(f) \cap \ker P(f)$$
 et $\operatorname{Im} D(f) = \operatorname{Im} P(f) + \operatorname{Im} Q(f)$.

Exercice 38.28 (***)

Soient E un espace vectoriel sur un corps \mathbb{K} et $u \in \mathcal{L}(E)$.

1. Montrer que $(\ker u^k)_{k\in\mathbb{N}}$ est une suite croissante et $(\operatorname{Im} u^k)_{k\in\mathbb{N}}$ est une suite décroissante, c'est-à-dire

$$\forall k \in \mathbb{N}, \ker u^k \subset \ker u^{k+1} \text{ et } \operatorname{Im} u^{k+1} \subset \operatorname{Im} u^k.$$

2. On suppose qu'il existe un entier naturel d tel que ker $u^d = \ker u^{d+1}$. Montrer

$$\forall k \in \mathbb{N}, k > d \implies \ker u^{k+1} = \ker u^k.$$

3. Démontrer que, p étant un entier strictement positif, on a

$$\ker u^p = \ker u^{p+1} \iff \ker u^p \cap \operatorname{Im} u^p = \{ 0_E \}.$$

4. On suppose qu'il existe un entier naturel d tel que $\operatorname{Im} u^d = \operatorname{Im} u^{d+1}$. Montrer

$$\forall k \in \mathbb{N}, k \ge d \implies \operatorname{Im} u^{k+1} = \operatorname{Im} u^k.$$

5. Démontrer que, p étant un entier strictement positif, on a

$$\operatorname{Im} u^p = \operatorname{Im} u^{p+1} \iff E = \ker u^p + \operatorname{Im} u^p.$$

6. On suppose les deux suites $(\ker u^k)_{k\in\mathbb{N}}$ et $(\operatorname{Im} u^k)_{k\in\mathbb{N}}$ stationnaires. Soit p le plus petit entier strictement positif tel que $\ker u^p = \ker u^{p+1}$. Soit q le plus petit entier strictement positif tel que $\operatorname{Im} u^q = \operatorname{Im} u^{q+1}$.

Montrer que dans ces condition l'on a p = q et

$$E = \ker u^p \oplus \operatorname{Im} u^p$$
.

Exercice 38.29 (**)

Dans $E = \mathcal{F}(\mathbb{R}, \mathbb{R})$, on considère le sous-espace vectoriel

$$F = \{ f \in E \mid f(1) = f(2) = 0 \}.$$

1. Soit

$$\varphi: E \to \mathbb{R}^2 f \mapsto (f(1), f(2)).$$

Montrer que $\varphi \in \mathcal{L}(E, \mathbb{R}^2)$. Comment interpréter F? φ est-elle surjective?

2. Trouver un sous-espace vectoriel G de E sur lequel φ induit un isomorphisme entre G et \mathbb{R}^2 .

Exercice 38.30 (***) X MP

Soit E un espace vectoriel.

- **1.** Soit u un endomorphisme de E tel que ker $u = \operatorname{Im} u$ et S un supplémentaire de $\operatorname{Im} u : E = S \oplus \operatorname{Im} u$.
 - (a) Montrer que, pour tout $x \in E$, il existe un unique couple $(y, z) \in S^2$ tel que x = y + u(z). On pose z = v(x) et y = w(x).
 - (b) Montrer que v est linéaire et calculer $u \circ v + v \circ u$.
 - (c) Montrer que w est linéaire et calculer $u \circ w + w \circ u$.

- **2.** Soit $u \in \mathcal{L}(E)$ tel que $u^2 = 0$. On suppose qu'il existe v dans $\mathcal{L}(E)$ tel que $u \circ v + v \circ u = \mathrm{Id}_E$. A-t-on nécessairement ker $u = \mathrm{Im}\,u$?
- 3. Soit $u \in \mathcal{L}(E)$ tel que $u^2 = 0$ et $u \neq 0$. On suppose qu'il existe $w \in \mathcal{L}(E)$ tel que $u \circ w + w \circ u = u$. A-t-on nécessairement ker $u = \operatorname{Im} u$?

Exercice 38.31

Soient E un espace vectoriel sur un corps \mathbb{K} et F, G deux sous-espace vectoriel de E. On note

$$\mathcal{H} = \{ f \in \mathcal{L}(E) \mid \ker f = F \text{ et } \operatorname{Im} f = G \};$$

et on suppose $E = F \oplus G$.

- **1.** Montrer que $f \in \mathcal{H}$ induit sur G un automorphisme.
- **2.** Montrer que (\mathcal{H}, \circ) est un groupe.

Exercice 38.32

Soient E un \mathbb{K} -espace vectoriel et $f \in \mathcal{L}(E)$. On suppose que

$$f^2 - 5f + 6 \operatorname{Id}_E = 0$$
 (ici $f^2 = f \circ f$).

Montrer

$$\ker (f - 2\operatorname{Id}_E) \oplus \ker (f - 3\operatorname{Id}_E) = E.$$

Exercice 38.33

Soit E un espace vectoriel sur \mathbb{R} et $f \in \mathcal{L}(E)$ tel que $f^3 = \mathrm{Id}_E$.

- **1.** Montrer que $\operatorname{Im}(f \operatorname{Id}_E) \subset \ker(f^2 + f + \operatorname{Id}_E)$.
- **2.** Montrer que $E = \ker (f \operatorname{Id}_E) \oplus \operatorname{Im} (f \operatorname{Id}_E)$.
- **3.** En déduire que $E = \ker (f \operatorname{Id}_E) \oplus \ker (f^2 + f + \operatorname{Id}_E)$.

Exercice 38.34

Soit E un \mathbb{K} -espace vectoriel et u un endomorphisme de E vérifiant

$$u^2 - 2u - 3 \operatorname{Id}_E = 0.$$

- **1.** Montrer que u est bijectif, et déterminer u^{-1} .
- **2.** Montrer que $\operatorname{Im}(u-3\operatorname{Id}_E)\subset\ker(u+\operatorname{Id}_E)$ et $\operatorname{Im}(u+\operatorname{Id}_E)\subset\ker(u-3\operatorname{Id}_E)$.
- **3.** Déterminer $\ker (u 3 \operatorname{Id}_E) \cap \ker (u + \operatorname{Id}_E)$. En déduire $\operatorname{Im} (u 3 \operatorname{Id}_E) \cap \operatorname{Im} (u + \operatorname{Id}_E)$.
- **4.** Montrer que Id_E est combinaison linéaire de $u 3 Id_E$ et $u + Id_E$.
- 5. En déduire que $E = \operatorname{Im}(u 3\operatorname{Id}_E) \oplus \operatorname{Im}(u + \operatorname{Id}_E)$ puis que $E = \ker(u 3\operatorname{Id}_E) \oplus \ker(u + \operatorname{Id}_E)$.

Affinités vectorielles

Chapter 39 Génération et liberté

Avec une bouée

Exercice 39.1

On considère les vecteur suivants

$$v_1 = \begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix}, \qquad v_2 = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}, \qquad u = \begin{pmatrix} -1 \\ 2 \\ 5 \end{pmatrix}, \qquad w = \begin{pmatrix} 1 \\ 2 \\ 5 \end{pmatrix}.$$

- 1. Montrer que u est combinaison linéaire de v_1 et v_2 et expliciter cette combinaison linéaire. Montrer que w n'est pas combinaison linéaire de v_1 et v_2 .
- **2.** Comparer les quatres sous-espaces vectoriels de \mathbb{R}^3 suivants

$$\operatorname{Vect} \big\{ \, v_1, v_2 \, \big\} \qquad \qquad \operatorname{Vect} \big\{ \, v_1, v_2, u \, \big\} \qquad \qquad \operatorname{Vect} \big\{ \, v_1, v_2, w \, \big\} \qquad \qquad \mathbb{R}^3.$$

- **3.** En déduire que Vect $\{v_1, v_2, u, w\} = \mathbb{R}^3$.
- **4.** Montrer également que tout vecteur $b \in \mathbb{R}^3$ peut être exprimer comme combinaison linéaire de v_1, v_2, u, w d'une infinité de manières différentes.

Exercice 39.2

Soit
$$A = \begin{pmatrix} 1 & 1 \\ 2 & -1 \end{pmatrix}$$
.

1. En calculant A^{-1} , résoudre l'équation suivante d'inconnue α et β :

$$\alpha \begin{pmatrix} 1 \\ 2 \end{pmatrix} + \beta \begin{pmatrix} 1 \\ -1 \end{pmatrix} = \begin{pmatrix} 2 \\ -5 \end{pmatrix} \tag{1}$$

2. Soit $w_1 = (1,2)^T$ et $w_2 = (1,-1)^T$. Montrer que Vect $\{w_1, w_2\} = \mathbb{R}^2$. C'est-à-dire, montrer que *tout* vecteur $b \in \mathbb{R}^2$ est combinaison linéaire de w_1 et w_2 en résolvant l'équation b = Ax d'inconnue x:

$$\alpha \begin{pmatrix} 1 \\ 2 \end{pmatrix} + \beta \begin{pmatrix} 1 \\ -1 \end{pmatrix} = \begin{pmatrix} b_1 \\ b_2 \end{pmatrix} \tag{2}$$

3. Montrer que si v et w sont deux vecteurs non nuls de \mathbb{R}^2 , avec $v = (a, c)^T$ et $w = (b, d)^T$, alors

$$\operatorname{Vect} \left\{ \left. v, w \right. \right\} = \mathbb{R}^2 \iff \forall t \in \mathbb{R}, v \neq tw \iff \begin{vmatrix} a & b \\ c & d \end{vmatrix} \neq 0.$$

39.1 Familles et parties génératrices

Exercice 39.3

Soient E un \mathbb{K} -espace vectoriel, A et B deux parties quelconques de E.

- **1.** Comparer Vect $(A \cap B)$ et Vect $(A) \cap$ Vect (B).
- **2.** Comparer Vect $(A \cup B)$ et Vect $(A) \cup$ Vect (B).

3. Comparer Vect $(A \cup B)$ et Vect (A) + Vect (B).

Exercice 39.4

Soit $v, w \in \mathbb{R}^n$. Expliquer la différence entre les ensembles

$$A = \{v, w\}$$
 et $B = \text{Vect}\{v, w\}$.

Exercice 39.5

On considère l'ensemble

$$V = \left\{ \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{pmatrix} \in \mathbb{R}^4 \ \middle| \ x_1 + x_2 + x_3 + x_4 = 0 \text{ et } x_1 - x_2 + x_3 - x_4 = 0 \right\}.$$

Montrer que V est un sous-espace vectoriel de \mathbb{R}^4 :

- 1. en utilisant la définition de sous-espace vectoriel;
- **2.** en exhibant une famille finie qui engendre V;
- 3. en écrivant V comme le noyau d'une matrice.

Exercice 39.6

1. Écrire, si possible, le vecteur $v = (5, 1, 6) \in \mathbb{R}^3$ comme combinaison linéaire des vecteurs

$$u_1 = (0, 1, 1), \quad u_2 = (1, 2, 3), \quad u_3 = (2, -1, 3).$$

2. Montrer que Vect $\{v, u_1, u_3\} = \text{Vect }\{u_1, u_2, u_3\}.$

Exercice 39.7

Considérons les vecteurs u=(1,1,1) et v=(1,2,3) de \mathbb{R}^3 ainsi que le plan vectoriel $P=\text{Vect }\{u,v\}$. Déterminer une équation de P, c'est-à-dire, déterminer a,b,c tels que, pour tout $(x,y,z)\in\mathbb{R}^3$,

$$(x, y, z) \in P \iff ax + by + cz = 0.$$

Exercice 39.8 (*)

On considère le sous-espace vectoriel de \mathbb{R}^3

$$V = \operatorname{Vect} \left\{ \begin{pmatrix} 1 \\ -2 \\ -6 \end{pmatrix}, \begin{pmatrix} 0 \\ 3 \\ 6 \end{pmatrix}, \begin{pmatrix} -1 \\ -1 \\ 0 \end{pmatrix} \right\}$$

Déterminer une équation cartésienne (ou système d'équations cartésiennes) de V.

Exercice 39.9 (*)

On considère le sous-espace vectoriel de \mathbb{R}^3

$$V = \text{Vect}\left\{ \begin{pmatrix} 1\\2\\-6 \end{pmatrix}, \begin{pmatrix} -2\\-4\\12 \end{pmatrix} \right\}$$

Déterminer une équation cartésienne (ou système d'équations cartésiennes) de V.

Exercice 39.10 (*)

On considère le sous-espace vectoriel de \mathbb{R}^2

$$V = \text{Vect}\left\{ \begin{pmatrix} 1 \\ -2 \end{pmatrix}, \begin{pmatrix} 2 \\ -4 \end{pmatrix}, \begin{pmatrix} -6 \\ 12 \end{pmatrix} \right\}$$

Déterminer une équation cartésienne (ou système d'équations cartésiennes) de V.

Exercice 39.11 (*)

On considère le sous-espace vectoriel de \mathbb{R}^4

$$V = \operatorname{Vect} \left\{ \begin{pmatrix} 1 \\ -2 \\ 3 \\ 2 \end{pmatrix}, \begin{pmatrix} 0 \\ 3 \\ -3 \\ 0 \end{pmatrix}, \begin{pmatrix} -1 \\ -1 \\ 0 \\ -2 \end{pmatrix} \right\}$$

Déterminer une équation cartésienne (ou système d'équations cartésiennes) de V.

Exercice 39.12 (*)

Dans $\mathcal{M}_3(\mathbb{R})$, trouver une famille génératrice de $\mathcal{S}_3(\mathbb{R})$ et une famille génératrice de $\mathcal{A}_3(\mathbb{R})$.

Exercice 39.13

Montrer que les ensembles suivants sont des sous-espaces vectoriels de $\mathcal{F}(\mathbb{R}, \mathbb{R})$ en les décrivant sous la forme Vect(A).

1.
$$F_1 = \{ f \in \mathcal{C}^1(\mathbb{R}, \mathbb{R}) \mid f' - 2f = 0 \}.$$

2.
$$F_2 = \{ f \in \mathcal{C}^2(\mathbb{R}, \mathbb{R}) \mid f'' - \omega^2 f = 0 \} \text{ où } \omega \in \mathbb{R}_+^*.$$

3.
$$F_3 = \{ f \in \mathcal{C}^2(\mathbb{R}, \mathbb{R}) \mid f'' + 2f' + f = 0 \}.$$

4.
$$F_4 = \{ f \in \mathcal{C}^2(\mathbb{R}, \mathbb{R}) \mid f'' - 4f = 0 \}.$$

Exercice 39.14

On considère l'espace vectoriel $E = \mathscr{C}(\mathbb{R}, \mathbb{R})$ des fonctions continues sur \mathbb{R} et à valeurs réelles. On note $\varphi : \mathbb{R} \to \mathbb{R}, x \mapsto e^{-x}$. Montrer l'égalité

Vect (ch, sh) = Vect (exp,
$$\varphi$$
).

Exercice 39.15 (**)

Soit $n \in \mathbb{N}$. Montrer que les familles

$$(x \mapsto \cos(kx))_{0 \le k \le n}$$
 et $(x \mapsto \cos^k(x))_{0 \le k \le n}$

engendrent le même sous-espace vectoriel de $\mathcal{F}(\mathbb{R}, \mathbb{R})$.

Exercice 39.16 (**)

Soit $E = \mathbb{R}_2[X]$. On note $E^* = \mathcal{L}(E, \mathbb{K})$ l'espace vectoriel des formes linéaires sur E.

On considère les trois formes linéaires sur E, définies pour tout P de E par

$$f_0(P) = P(0);$$
 $f_1(P) = P(1);$ $f_2(P) = P(2).$

On pose par ailleurs, pour tout P de E

$$f(P) = \int_0^2 P(t) \, \mathrm{d}t.$$

Montrer que f appartient à l'espace vectoriel engendré par $\left\{\ f_0, f_1, f_2\ \right\}$.

39.2 Liberté

Exercice 39.17 (*)

On considère une famille de 4 vecteurs linéairement indépendants $(\vec{e_1}, \vec{e_2}, \vec{e_3}, \vec{e_4})$. Les familles suivantes sont-elles libres ?

1. $(\vec{e_1}, 2\vec{e_2}, \vec{e_3})$.

4. $(3\vec{e_1} + \vec{e_3}, \vec{e_3}, \vec{e_2} + \vec{e_3})$.

2. $(\vec{e_1}, \vec{e_3})$.

3. $(\vec{e_1}, 2\vec{e_1} + \vec{e_4}, \vec{e_4})$.

5. $(2\vec{e_1} + \vec{e_2}, \vec{e_1} - 3\vec{e_2}, \vec{e_4}, \vec{e_2} - \vec{e_1}).$

Exercice 39.18 (*)

En utilisant la définition de famille libre. Montrer que tout sous famille (non vide) d'une famille libre est une famille libre.

Exercice 39.19 (**)

Soit A un matrice quelconque. On suppose qu'il existe deux vecteurs non nuls, v_1 et v_2 , tels que $Av_1 = 2v_1$ et $Av_2 = 5v_2$.

Montrer que les vecteurs v_1 et v_2 sont linéairement indépendants.

Pouvez-vous généraliser ce résultat ?

Exercice 39.20 (**)

On suppose que $v_1, v_2, v_3, \dots, v_n$ sont des vecteurs linéairement indépendants.

1. Les vecteurs $v_1 - v_2$, $v_2 - v_3$, $v_3 - v_4$, ..., $v_n - v_1$ sont-ils linéairement indépendants ?

2. Les vecteurs $v_1 + v_2$, $v_2 + v_3$, $v_3 + v_4$, ..., $v_n + v_1$ sont-ils linéairement indépendants ?

3. Les vecteurs $v_1, v_1 + v_2, v_1 + v_2 + v_3, v_1 + v_2 + v_3 + v_4, \dots, v_1 + v_2 + \dots + v_n$ sont-ils linéairement indépendants ?

Exercice 39.21 (*)

Montrer que les vecteur x_1, x_2, x_3 ci-dessous sont linéairement indépendant:

$$x_1 = \begin{pmatrix} 2 \\ 1 \\ -1 \end{pmatrix}, \qquad \qquad x_2 = \begin{pmatrix} 3 \\ 4 \\ 6 \end{pmatrix}, \qquad \qquad x_3 = \begin{pmatrix} -2 \\ 3 \\ 2 \end{pmatrix},$$

Exprimer le vecteur

$$v = \begin{pmatrix} -5\\7\\-2 \end{pmatrix}$$

comme combinaison linéaire de x_1, x_2, x_3 .

Exercice 39.22 (*)

Montrer que les vecteurs ci dessous forment une famille liée en déterminant un relation de dépendance linéaire non triviale.

$$\begin{pmatrix} 1 \\ 2 \\ 1 \\ 2 \end{pmatrix}, \qquad \begin{pmatrix} 0 \\ -1 \\ 3 \\ 4 \end{pmatrix}, \qquad \begin{pmatrix} 4 \\ -11 \\ 5 \\ -1 \end{pmatrix}, \qquad \begin{pmatrix} 9 \\ 2 \\ 1 \\ -3 \end{pmatrix}.$$

Exercice 39.23 (**)

Montrer que si n > m, alors toute famille de n vecteurs de \mathbb{R}^m est liée.

Exercice 39.24 (*)

Soit
$$\sigma = (X^2 + 1, 2X^2 - X + 1, -X^2 + X).$$

1. La famille σ est-elle libre dans $\mathbb{R}_2[X]$?

2. La famille σ est-elle génératrice de $\mathbb{R}_2[X]$?

Exercice 39.25

Indiquer si les vecteurs suivants forment une famille libre ou liée de $\mathbb{R}[X]$.

1.
$$P = X^3 - X + 1$$
 et $Q = 2X^3 + X^2 + 3$.

2.
$$P = X^2 + 1$$
, $Q = X^2 + X - 1$ et $R = X^2 + X$.

3.
$$P = X^2 + 7X + 1$$
, $Q = 2X^2 - X + 3$ et $R = X^2 - 8X + 2$,

4.
$$P_1, \ldots, P_n$$
 avec $P_k = (X+1)^k - X^k$.

Exercice 39.26 (**)

Notons, pour tout $k \in \mathbb{N}$, $u^{(k)}$ la suite de réels dont le terme d'indice n est $u_n^{(k)} = n^k$. Démontrer que la famille $\left(u^{(k)}\right)_{k\in\mathbb{N}}$ est une famille libre du \mathbb{R} -espace vectoriel $\mathbb{R}^{\mathbb{N}}$.

Exercice 39.27 (*)

Montrer de deux manières que les trois fonctions

$$f: x \mapsto e^x$$
 $g: x \mapsto x^2$ $h: x \mapsto \ln(x)$

forment une famille libre dans l'espace vectoriel des applications de $]0,+\infty[$ dans $\mathbb R$:

- 1. une fois, en donnant des valeurs particulières à la variable x;
- 2. une autre fois, en utilisant les croissances comparées des trois fonctions en $+\infty$.

Exercice 39.28

Dans $\mathscr{C}^{\infty}(\mathbb{R},\mathbb{R})$, soit f,g,h les fonctions définies par

$$f(x) = \cos x$$
 $g(x) = \sin x$ $h(x) = e^x$.

Montrer que (f, g, h) est une famille libre.

Exercice 39.29 (**)

Soit

$$f_1: x \mapsto x;$$
 $f_2: x \mapsto \ln x;$ $f_3: x \mapsto \exp(x).$

Montrer que la famille (f_1, f_2, f_3) est libre dans $\mathscr{C}^0(\mathbb{R}^*_{\perp}, \mathbb{R})$.

Exercice 39.30 (*)

Soit $E = \mathcal{F}(\mathbb{R}, \mathbb{R})$ le \mathbb{R} -espace vectoriel des fonctions définies sur \mathbb{R} et à valeurs réelles. Pour tout $x \in \mathbb{R}$, on pose

$$f_1(x) = e^{x+1},$$
 $f_2(x) = e^{x+2},$ $f_3(x) = e^{x+3}.$

La famille (f_1, f_2, f_3) est-elle libre dans E?

Exercice 39.31 (**)

Soit $E = \mathcal{F}(\mathbb{R}, \mathbb{R})$ le \mathbb{R} -espace vectoriel des fonctions définies sur \mathbb{R} et à valeurs réelles. Pour tout $x \in \mathbb{R}$, on pose

$$g_1(x) = |x - 1|,$$
 $g_2(x) = |x - 2|,$ $g_3(x) = |x - 3|.$

La famille (g_1, g_2, g_3) est-elle libre dans E?

Exercice 39.32 (**)

Soit $n \in \mathbb{N}^*$ et a_1, a_2, \dots, a_n des réels tels que $a_1 < a_2 < \dots < a_n$. Montrer que la famille (f_1, f_2, \dots, f_n) où

$$f_k: x \mapsto e^{a_k x}$$

est libre dans $\mathcal{F}(\mathbb{R}, \mathbb{R})$.

Exercice 39.33 (**)

Soit $n \in \mathbb{N}$. Montrer que la famille (f_1, f_2, \dots, f_n) où

$$f_k: x \mapsto \sin(kx)$$

est libre dans $\mathcal{F}(\mathbb{R}, \mathbb{R})$.

Exercice 39.34

Dans l'espace vectoriel $\mathcal{L}(\mathbb{R}^3, \mathbb{R})$ des formes linéaires sur \mathbb{R}^3 , on considère les trois formes linéaires f_1, f_2, f_3 définies par

$$f_1(x, y, z) = -x + y + z$$

 $f_2(x, y, z) = 2x - y - z$
 $f_3(x, y, z) = x + 2y + z$

La famille (f_1, f_2, f_3) est-elle libre?

Exercice 39.35 (*)

Soit

$$x_1 = \begin{pmatrix} 2 \\ 3 \\ 5 \end{pmatrix}, \qquad x_2 = \begin{pmatrix} 1 \\ 1 \\ 2 \end{pmatrix}, \qquad v = \begin{pmatrix} a \\ b \\ c \end{pmatrix}.$$

Déterminer une condition nécessaire et suffisante sur a, b, c pour que la famille (x_1, x_2, v) soit liée.

Exhiber un vecteur x_3 tel que la famille (x_1, x_2, x_3) soit libre.

39.3 Bases

Exercice 39.36 (**)

On suppose que E est un \mathbb{K} -espace vectoriel qui admet (e_1, e_2) comme base.

À chaque fois, on donnera les relations entre coordonnées d'un même vecteur dans les deux bases en question.

- 1. λ et μ étant des scalaires différents de 0, montrer que $(\lambda e_1, \mu e_2)$ est encore une base de E.
- **2.** Montrer que $(e_1 + e_2, e_1 e_2)$ est encore une base de E.
- 3. En déduire que si λ et μ sont deux scalaires différents de 0, $(\lambda(e_1 + e_2), \mu(e_1 e_2))$ est une base de E.

Exercice 39.37

Soit E un \mathbb{K} -espace vectoriel et $\mathfrak{F} = (v_1, \dots, v_p)$ une famille de vecteurs. Nous pouvons lui associer les familles suivantes :

• $\mathfrak{F}' = (v'_1, \dots, v'_p)$ obtenue en multipliant un des vecteurs de \mathfrak{F} par un scalaire différent de 0, c'est-à-dire

$$\begin{cases} v'_k = v_k & \text{si } k \neq j \\ v'_j = \lambda v_j. \end{cases}$$

On code cette opération $v_i \leftarrow \lambda v_i$.

• $\mathfrak{F}'=(v_1',\ldots,v_p')$ obtenue en ajoutant à un vecteur de \mathfrak{F} un multiple d'un des autres vecteurs de \mathfrak{F} , c'est-à-dire

$$\begin{cases} v'_k = v_k & \text{si } k \neq j \\ v'_j = v_j + \lambda v_i & \text{où } i \neq j. \end{cases}$$

On code cette opération $v_i \leftarrow v_i + \lambda v_i$.

• $\mathfrak{F}' = (v'_1, \dots, v'_n)$ obtenue en échangeant les vecteurs v_i et v_j . On code cette opération $v_i \leftrightarrow v_j$.

Ces opération sont appelée **opérations élémentaires** sur une famille de vecteurs. On suppose que l'on passe de la famille \mathfrak{F} à la famille \mathfrak{F}' par un enchainement d'opération élémentaires.

- 1. Montrer que la famille \mathfrak{F}' est libre si, et seulement si \mathfrak{F} est libre.
- 2. Montrer que la famille \mathfrak{F}' est liée si, et seulement si \mathfrak{F} est liée.
- 3. Montrer que $Vect(v'_1, \dots, v'_p) = Vect(v_1, \dots, v_p)$.
- **4.** Montrer que la famille \mathfrak{F}' est une base de E si, et seulement si \mathfrak{F} est une base de E.

Exercice 39.38 (*)

Donner une base du plan (0xz) de \mathbb{R}^3 .

Exercice 39.39

- **1.** Soit $n \in \mathbb{N}$ tel que n ne soit le carré d'aucun entier.
 - (a) Montrer que $\sqrt{n} \notin \mathbb{Q}$.
 - (b) Montrer $\forall (\alpha, \beta) \in \mathbb{Q}^2, \alpha + \beta \sqrt{n} \implies \alpha = \beta = 0.$
- **2.** Soit $E = \left\{ a + b\sqrt{2} + c\sqrt{3} \mid (a, b, c) \in \mathbb{Q}^3 \right\}$.
 - (a) Vérifier que E est un \mathbb{Q} -espace vectoriel pour les lois usuelles.
 - (b) Montrer que $(1, \sqrt{2}, \sqrt{3})$ est une base de E.

Exercice 39.40 (*)

Soient F et G les sous-ensembles de $\mathcal{M}_3(\mathbb{R})$ définis par

$$F = \left\{ \begin{pmatrix} a+b & 0 & c \\ 0 & b+c & 0 \\ c+a & 0 & a+b \end{pmatrix} \middle| a,b,c \in \mathbb{R} \right\}$$
 et $G = \left\{ \begin{pmatrix} a+b+d & a & c \\ 0 & b+d & 0 \\ a+c+d & 0 & a+c \end{pmatrix} \middle| a,b,c,d \in \mathbb{R} \right\}.$

Montrer que ce sont des sous espaces vectoriels de $\mathcal{M}_3(\mathbb{R})$ dont on déterminera des bases.

Exercice 39.41 (**)

Soit $E = \mathcal{M}_n(\mathbb{R})$, soit $A \in E$ fixé et

$$F = \{ M \in E \mid AM = MA \}.$$

1. Montrer que F est un sous-espace vectoriel de E.

2. Dans cette question, n = 2 et $A = \begin{pmatrix} 1 & -1 \\ 1 & -1 \end{pmatrix}$. Déterminer une base de F.

Exercice 39.42 (*)

Soient

$$P_1 = X^2 + 1$$
 $P_2 = X^2 + X - 1$ $P_3 = X^2 + X$.

Montrer que la famille (P_1, P_2, P_3) est une base de $\mathbb{K}_2[X]$.

Exercice 39.43 (*)

Montrer que les ensembles suivants sont des sous-espaces vectoriels de $\mathbb{R}[X]$ et en déterminer une base.

- **1.** $F_1 = \mathbb{R}_2[X]$.
- **2.** $F_2 = \{ P \in \mathbb{R}_3[X] \mid P(1) = 0 \}.$
- 3. $F_3 = \{ P' \mid P \in \mathbb{R}_n[X] \} \text{ où } n \in \mathbb{N}.$
- **4.** $F_4 = \left\{ a(X^3 1) + b(X^2 2) + c(X + 4) \mid (a, b, c) \in \mathbb{R}^3 \right\}.$
- **5.** $F_5 = \{ P \in \mathbb{R}_4[X] \mid P(1) = P(2) = 0 \}.$
- **6.** $F_6 = \{ P \in \mathbb{R}_2[X] \mid P' = 0 \}.$
- 7. $F_7 = \{ P \in \mathbb{R}_3[X] \mid P'' = 0 \}.$

8.
$$F_8 = \left\{ P \in \mathbb{R}_2[X] \middle| \int_0^1 P(t) dt = 0 \right\}.$$

Exercice 39.44 (*)

Soient a et b deux nombres complexes distincts. Montrer que l'ensemble des polynômes de degré inférieur ou égal à 4 admettant a et b comme racines est un sous-espace vectoriel de l'espace vectoriel $\mathbb{C}_4[X]$. Trouver une base de cet espace.

Exercice 39.45 *Polynômes interpolateurs de Lagrange*

Soit n un entier naturel non nul et (a_1, \ldots, a_n) n nombres réels deux à deux distincts. On leur associe les polynômes L_1, \ldots, L_n définis, pour tout j de $\{1, \ldots, n\}$, par

$$L_{j} = \prod_{k=1}^{n} \frac{X - a_{k}}{a_{j} - a_{k}}.$$
(1)

Par exemple, si n = 3, on a

$$L_1 = \frac{(X - a_2)(X - a_3)}{(a_1 - a_2)(a_1 - a_3)}, \qquad L_2 = \frac{(X - a_1)(X - a_3)}{(a_2 - a_1)(a_2 - a_3)}, \qquad L_3 = \frac{(X - a_1)(X - a_2)}{(a_3 - a_1)(a_3 - a_2)}. \tag{2}$$

Dans la suite, *n est quelconque*.

- **1.** Pour tout entier j de $\{1, ..., n\}$, déterminer le degré de L_j .
- **2.** Pour tout entier j de $\{1, ..., n\}$, déterminer les racines de L_i .
- **3.** Pour tout entier j de $\{1, \ldots, n\}$, calculer $L_j(a_j)$.
- **4.** Montrer que (L_1, \ldots, L_n) est une famille libre de $\mathbb{R}_{n-1}[X]$.

5. Soit *P* un polynôme de $\mathbb{R}_{n-1}[X]$. On pose

$$Q = \sum_{i=1}^{n} P(a_j) L_j. \tag{3}$$

- (a) Pour tout entier k de $\{1, ..., n\}$, calculer $Q(a_k)$.
- (b) Montrer alors que P = Q.
- **6.** En déduire que $(L_1, ..., L_n)$ est une base de $\mathbb{R}_{n-1}[X]$. On l'appelle base de Lagrange. Que représente donc $P(a_i)$ pour le polynôme P dans la base de Lagrange ?
- 7. Montrer que le reste de la division euclidienne de X^q par $Q = (X a_1) \dots (X a_n)$ est

$$\sum_{j=1}^{n} a_j^q L_j.$$

8. Soient a et b deux réels distincts tels que $\forall k \in \{1, ..., n\}, a_k \in [a, b]$. Soit aussi une fonction $f \in \mathcal{F}([a, b], \mathbb{R})$. Déduire de la question **5.** qu'il existe un unique polynôme P_n de $\mathbb{R}_{n-1}[X]$ tel que

$$\forall k \in \{1, \dots, n\} \quad P_n(a_k) = f(a_k).$$

Ce polynôme s'appelle polynôme d'interpolation de Lagrange de f sur [a,b] relativement aux points $\{a_1,\ldots,a_n\}$: c'est donc l'unique polynôme de degré $\leq n-1$ prenant les mêmes valeurs que f aux points (a_1,\ldots,a_n) .

Exercice 39.46

Dans \mathbb{R}^4 , on considère

$$a = \begin{pmatrix} 1 \\ -2 \\ 4 \\ -1 \end{pmatrix}; \qquad b = \begin{pmatrix} 3 \\ 1 \\ -1 \\ 2 \end{pmatrix}; \qquad c = \begin{pmatrix} -2 \\ 4 \\ 0 \\ 1 \end{pmatrix}; \qquad d = \begin{pmatrix} -7 \\ 7 \\ 9 \\ -1 \end{pmatrix}; \qquad e = \begin{pmatrix} 9 \\ -4 \\ -6 \\ 3 \end{pmatrix}.$$

Déterminer les relations de dépendance linéaire entre a, b, c, d, e et donner une base de Vect (a, b, c, d, e).

Exercice 39.47 (*)

Soit V un \mathbb{K} -espace vectoriel et $\mathcal{B}=(v_1,v_2,\ldots,v_n)$ une base de V. Montrer que pour tous vecteurs $u,w\in V$, on a

$$\operatorname{Coord}_{\mathcal{B}}(\alpha u + \beta w) = \alpha \operatorname{Coord}_{\mathcal{B}}(u) + \beta \operatorname{Coord}_{\mathcal{B}}(w).$$

où Coord_B(u) désigne la matrice des coordonnées de u relativement à la base \mathcal{B} .

Exercice 39.48

Donner une base de $F = \{ (x, y, z, t) \in \mathbb{R}^4 \mid x + y = z + t = 0 \}.$

Quelles sont les coordonnées de a = (2, -2, -1, 1) dans cette base ?

Exercice 39.49 (**)

Soient (x_1, x_2, x_3) les coordonnées d'un vecteur u dans la base canonique de \mathbb{R}^3 . Exprimer les coordonnées (y_1, y_2, y_3) de ce même vecteur dans la base de \mathbb{R}^3 formée des vecteurs

$$\varepsilon_1 = (1, 1, 0),$$
 $\varepsilon_2 = (1, 0, 1),$ $\varepsilon_3 = (0, 1, 1).$

Exercice 39.50 (**)

Soit
$$F = \left\{ \begin{pmatrix} a+b+c & b & c \\ c & a+b+c & b \\ b & c & a+b+c \end{pmatrix} \middle| (a,b,c) \in \mathbb{R}^3 \right\}.$$

1. Montrer que F est un sous-espace vectoriel de $\mathcal{M}_3(\mathbb{R})$, dont on précisera une base \mathcal{B} .

2. Quelles sont les coordonnée de
$$\begin{pmatrix} 3 & 1 & 2 \\ 2 & 3 & 1 \\ 1 & 2 & 3 \end{pmatrix}$$
 dans la base \mathcal{B} ?

3. Calculer tous les produits deux à deux des éléments de la base \mathcal{B} (indiquer uniquement le résultat sur la copie).

Vérifier qu'ils appartiennent bien à F.

4. En déduire que pour tout $(M, N) \in F^2$, on a $MN \in F$.

Exercice 39.51 (*)

Soient

$$P_1 = 2X^2 - X + 1,$$
 $P_2 = X^2 + 2X,$ $P_3 = X^2 - 1.$

Montrer que la famille (P_1, P_2, P_3) est un base de $\mathbb{R}_2[X]$. Déterminer les coordonnées de $P = 3X^2 + 5X - 3$ dans cette base.

Généralisation aux familles quelconques 39.4

Chapter 40 Dimension

40.1 Espaces vectoriels de dimension finie

Exercice 40.1 (*)

Dans $E = \mathbb{R}^4$, on considère les sous-espaces vectoriels

$$V = \left\{ (x, y, z, t)^T \in \mathbb{R}^4 \mid x - y + z - t = 0 \right\}$$

et $W = \left\{ (x, y, z, t)^T \in \mathbb{R}^4 \mid x - y - z = y + t = 0 \right\}.$

1. Préciser une base et la dimension de V.

Déterminer les coordonnées dans cette base de $a = (3, 1, 2, 4)^T$.

- 2. Préciser une base et la dimension de W. Déterminer les coordonnées dans cette base de $b = (4, 1, 3, -1)^T$.
- **3.** Préciser une base et la dimension de $V \cap W$.

Exercice 40.2 (*)

Soit
$$F = \{ (x, y, z) \in \mathbb{R}^3 \mid x - y + 2z = 0 \}.$$

Prouver que F est un sous-espace vectoriel de \mathbb{R}^3 , en déterminer une base et calculer sa dimension.

Exercice 40.3 (*)

Soit
$$F = \{ (x, y, z) \in \mathbb{R}^3 \mid x - y + z = 0 \text{ et } -x - y + z = 0 \}.$$

Prouver que F est un sous-espace vectoriel de \mathbb{R}^3 , en déterminer une base et calculer sa dimension.

Exercice 40.4 (*)

Montrer que le sous-ensemble

$$F = \{ (\alpha + \beta, \beta, 2\alpha - \beta - \alpha) \mid \alpha, \beta \in \mathbb{R} \}$$

est un sous-espace vectoriel de \mathbb{R}^4 dont on déterminera la dimension et une base.

Exercice 40.5

Soit E le sous ensemble de $\mathcal{M}_3(\mathbb{R})$ défini par

$$E = \left\{ \left. M(a,b,c) = \begin{pmatrix} a & 0 & c \\ 0 & b & 0 \\ c & 0 & a \end{pmatrix} \right| a,b,c \in \mathbb{R} \right\}.$$

- **1.** Montrer que E est un sous-espace vectoriel de $\mathcal{M}_3(\mathbb{R})$ stable pour la multiplication des matrices. Calculer $\dim(E)$.
- **2.** Soit M(a, b, c) un élément de E. Déterminer son rang suivant les valeurs des paramètres $a, b, c \in \mathbb{R}$. Calculer (lorsque cela est possible) l'inverse de M(a, b, c).
- 3. Donner une base de E formée de matrices inversibles et une autre formée de matrices de rang 1.

Exercice 40.6

Soit $S = \mathbb{R}^{\mathbb{N}}$ l'espace vectoriel des suites à valeurs réelles. Soit W l'ensemble des suites nulles à partir du rang 3.

Montrer que W est un sous-espace vectoriel de S de dimension 3.

Exercice 40.7 (***)

Soit $x_1 < x_2 < \dots < x_n$ des réels. On pose $x_0 = -\infty$ et $x_{n+1} = +\infty$. On note E l'ensemble des fonctions de \mathbb{R} dans \mathbb{R} de classe \mathscr{C}^1 dont la restriction à chaque $]x_i, x_{i+1}[$ est un polynôme de degré 2 au plus.

Montrer que E est un espace vectoriel. En donner la dimension et une base.

Exercice 40.8 (*)

Soit la famille de vecteurs $\mathcal{B} = (v_1, v_2, v_3)$, où

$$v_1 = (1, 1, 0)^T$$
, $v_2 = (-4, 0, 3)^T$ et $v_3 = (3, 5, 1)^T$.

- **1.** Montrer que \mathcal{B} est une base de \mathbb{R}^3 .
- **2.** Soit $w = (-1, 7, 5)^T$ et $e_1 = (1, 0, 0)^T$. Déterminer les coordonnées de w et de e_1 relativement à la base \mathcal{B} .

Exercice 40.9 (*)

On pose $E = \mathbb{C}^3$ et on s'intéresse aux trois vecteurs

$$u_1 = (i, 1, -1),$$
 et $u_2 = (i, -1, 1)$ et $u_3 = (-1, i, 1).$

- **1.** Démontrer que la famille $\mathcal{B} = (u_1, u_2, u_3)$ est une base de E.
- **2.** Déterminer les coordonnées de w = (3 + i, 1 i, 2) dans \mathcal{B} .

Exercice 40.10 (*)

1. Montrer que

$$\mathcal{B} = \left(\begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}, \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}, \begin{pmatrix} 1 & -1 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \right)$$

est une base de l'espace vectoriel $E = \mathcal{M}_2(\mathbb{R})$.

2. Déterminer les coordonnées de $u = \begin{pmatrix} 2 & 3 \\ 4 & -7 \end{pmatrix}$ dans la base \mathcal{B} .

Exercice 40.11 (**)

Soient $\alpha \in \mathbb{R}$ et

$$P_1 = (1 + \alpha)X^2 + X + 1,$$
 $P_2 = X^2 + (1 + \alpha)X + 1,$ $P_3 = X^2 + X + (1 + \alpha).$

Donner une condition nécessaire et suffisante sur α pour que la famille (P_1, P_2, P_3) soit une base de $\mathbb{R}_2[X]$. **Exercice 40.12** (**)

Soient a et b deux réels distincts, et $n \in \mathbb{N}^*$.

- **1.** Montrer que la famille $((X-a)^k(X-b)^{n-k})_{0 \le k \le n}$ est une base de $\mathbb{R}_n[X]$.
- **2.** Donner un exemple d'isomorphisme de $\mathbb{R}_n[X]$ dans \mathbb{R}^{n+1} .
- 3. Déduire des deux questions précédentes une base de \mathbb{R}^3 composée de vecteurs dépendants de a et b.

40.2 Dimension et sous-espace vectoriel

Exercice 40.13 (*)

Soit E un K-espace vectoriel de dimension 3 et $e = (e_1, e_2, e_3)$ une base de E. On pose

$$f_1 = e_1 + 2e_2 + 2e_3$$
 $f_2 = e_2 + e_3$.

Montrer que (f_1, f_2) est libre et compléter cette famille en une base de E.

40.3 Sommes et dimension

Exercice 40.14

Soit E un \mathbb{K} -espace vectoriel, F et G deux sous-espaces vectoriels de E tels que $E = F \oplus G$. Soit $(w_i)_{i \in I}$ une famille de vecteurs de E. On décompose chaque vecteur w_i suivant la somme précédente ; cela donne pour tout i,

$$w_i = u_i + v_i,$$

égalité dans laquelle u_i appartient à F et v_i appartient à G.

On suppose la famille $(u_i)_{i \in I}$ libre. Prouver qu'il en est de même de la famille $(w_i)_{i \in I}$.

Exercice 40.15

Soit

$$X = \operatorname{Vect} \left\{ \begin{pmatrix} 1 \\ 0 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 0 \\ 0 \\ 1 \end{pmatrix} \right\}, \quad Y = \operatorname{Vect} \left\{ \begin{pmatrix} 0 \\ 1 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 1 \\ 0 \\ 1 \\ -1 \end{pmatrix} \right\}.$$

La somme X + Y est-elle directe ? Déterminer une base de X + Y.

Exercice 40.16 (**) Centrale PSI

Soient E un espace vectoriel de dimension $n \ge 1$ et S l'ensemble des sous-espaces vectoriels de E.

- **1.** Soient F et F' dans $S \setminus \{E\}$. Montrer que $F \cup F' \neq E$.
- **2.** Soient H et H' deux hyperplans de E. Montrer qu'il existe $D \in S$ tel que $H \oplus D = H' \oplus D = E$.
- **3.** Soit $d: S \to \mathbb{N}$ vérifiant

$$d(E) = n$$
 et $\forall F, F' \in S, F \cap F' = \{0\} \implies d(F + F') = d(F) + d(F')$.

Montrer que $\forall F \in \mathcal{S}, d(F) = \dim(F)$.

Exercice 40.17

Dans l'espace vectoriel \mathbb{R}^4 , on considère les parties suivantes,

$$F = \text{Vect} \left((1, 2, 1, 3), (2, 0, 0, 1) \right) \qquad \text{et} \qquad G = \left\{ \left. (x, y, z, t) \in \mathbb{R}^4 \; \middle| \; 2x + y + z = 0 \; \text{et} \; x = y \right. \right\}.$$

- **1.** Montrer que F et G sont des sous-espaces vectoriels de \mathbb{R}^4 .
- **2.** Déterminer une base et la dimension de F et G.
- **3.** Montrer que F et G sont supplémentaires dans \mathbb{R}^4 .

Exercice 40.18 (*)

Soient

$$r = (1, 0, 0, 1),$$
 $s = (-1, 1, 0, 0),$ $t = (0, 0, 1, 1),$ $u = (2, 0, 1, 0),$ et $v = (2, -1, 2, 3).$

On pose F = Vect(r, s), G = Vect(t, u) et H = Vect(t, v).

- **1.** Montrer que $\mathbb{R}^4 = F \oplus G$.
- **2.** Donner une base de F + H et de $F \cap H$.

Exercice 40.19

Dans \mathbb{R}^4 , on pose F = Vect(u, v, w) et G = Vect(x, y) avec

$$u = (0, 1, -1, 0)$$
 $v = (1, 0, 1, 0)$ $w = (1, 1, 1, 1)$ $x = (0, 0, 1, 0)$ et $y = (1, 1, 0, -1)$.

Quelles sont les dimensions de F, G, F + G et $F \cap G$?

Exercice 40.20 (*)

Soient F et G deux sous-espaces vectoriels de dimensions 3 de \mathbb{R}^5 . Montrer que $F \cap G \neq \{0\}$.

Exercice 40.21

Soit E un \mathbb{K} -espace vectoriel de dimension finie.

- **1.** Soient H_1 et H_2 deux hyperplans de E. Déterminer la dimension de $H_1 \cap H_2$.
- **2.** Plus généralement, si H est un hyperplan de E et F un sous-espace vectoriel de E, déterminer la dimension de $H \cap F$.

Exercice 40.22 (**)

Soit E un \mathbb{K} -espace vectoriel, A, B, C trois sous-espaces vectoriels de E de dimensions finies. Prouver

$$\dim(A+B+C) \leq \dim(A) + \dim(B) + \dim(C) - \dim(A \cap B) - \dim(A \cap C) - \dim(B \cap C) + \dim(A \cap B \cap C).$$

Donner un exemple où l'inégalité est stricte.

Exercice 40.23 (***) Drapeaux

Soit E un \mathbb{K} -espace vectoriel de dimension finie $n \ge 1$. On note $\mathbb{V}(E)$ l'ensemble des sous-espaces vectoriels de E et

$$\mathcal{D} = \left\{ \begin{array}{l} \left((F_0, \dots, F_n \right) \in (\mathbb{V}(E))^{n+1} \, \middle| & \forall i \in [\![0, n]\!], \dim(F_i) = i \\ \forall i \in [\![1, n]\!], F_{i-1} \subset F_i. \end{array} \right\}$$

1. Soit $(F_0, \dots, F_n) \in \mathcal{D}$. Montrer qu'il existe une base (x_1, \dots, x_n) de E telle que

$$\forall i \in [[1, n]], F_i = F_{i-1} \oplus \mathbb{K}x_i.$$

Une telle base de E sera dite adaptée à (F_0, \ldots, F_n) .

- **2.** Soit (F_0, \ldots, F_n) et (G_0, \ldots, G_n) deux éléments de \mathcal{D} .
 - (a) Montrer

$$\forall i \in \llbracket 1, n \rrbracket, \left\{ \ j \in \llbracket 0, n \rrbracket \ \middle| \ F_{i-1} + G_j = F_i + G_j \ \right\} \neq \emptyset.$$

On pose alors

$$s(i) = \min \left\{ j \in \llbracket 0, n \rrbracket \; \middle| \; F_{i-1} + G_j = F_i + G_j \right\}$$

(b) Montrer

$$\forall i \in [1, n], \exists e_{s(i)} \in E, F_i = F_{i-1} + \mathbb{K}e_{s(i)} \text{ et } G_{s(i)} = G_{s(i-1)} + \mathbb{K}e_{s(i)}.$$

- (c) Démontrer que $(e_{s(1)},\ldots,e_{s(n)})$ est une base de E adaptée (F_0,\ldots,F_n) .
- (d) Démontrer que (e_1,\ldots,e_n) est une base de E adaptée à (G_0,\ldots,G_n) .

Exercice 40.24 (**)

Soit $E = \mathbb{R}_3[X]$. On note

$$F = \left\{ P \in E \mid P(-1) = 0 \text{ et } \int_{-1}^{1} P(t) \, dt = 0 \right\} \text{ et } G = \text{Vect} \left\{ 1 - X - X^{2}, 1 + X + X^{3} \right\}.$$

On ne demande pas de vérifier que F et G sont deux sous-espaces vectoriels de E.

- 1. Déterminer une base de F et une base de G. En déduire les dimensions de F et G.
- **2.** Montrer que $E = F \oplus G$.
- 3. Donner l'expression de la projection π sur F parallèlement à G.

Exercice 40.25 (**)

Soient $n \in \mathbb{N}$, $n \ge 3$. On considère $F = \{ P \in \mathbb{R}_n[X] \mid P(1) = P(2) = 0 \}$.

- 1. Justifier que F est un sous-espace vectoriel de $\mathbb{R}_n[X]$ et préciser sa dimension.
- **2.** Soit $G = \text{Vect}(X, X^2)$. Justifier que F et G sont supplémentaires dans $\mathbb{R}_n[X]$.
- 3. Soit π la projection sur F parallèlement à G, déterminer $\pi(P)$ pour tout P de $\mathbb{R}_n[X]$.

Exercice 40.26

Soient $n \in \mathbb{N} \setminus \{0, 1\}$, F un sous-espace vectoriel de $\mathcal{M}_n(\mathbb{K})$ de dimension n^2-1 et stable par multiplication. On se propose de montrer que $I_n \in F$, en raisonnant par l'absurde. On suppose $I_n \notin F$, et on note p le projecteur de $\mathcal{M}_n(\mathbb{K})$ d'image $\mathbb{K}I_n$ et de noyau F.

- 1. Montrer $\forall M, M' \in \mathcal{M}_n(\mathbb{K}), p(MM') = p(M)p(M')$.
- **2.** En déduire $\forall M \in \mathcal{M}_n(\mathbb{K}), (M^2 \in F \implies M \in F)$.
- **3.** Établir que F contient la base canonique de $\mathcal{M}_n(\mathbb{K})$.
- 4. Conclure.

40.4 Bases et dimension dans \mathbb{K}^n

Exercice 40.27 (*)

On considère les ensembles

$$U = \left\{ \begin{pmatrix} -1\\0\\1 \end{pmatrix}, \begin{pmatrix} 1\\2\\3 \end{pmatrix}, \begin{pmatrix} -1\\2\\5 \end{pmatrix} \right\} \qquad W = \left\{ \begin{pmatrix} -1\\0\\1 \end{pmatrix}, \begin{pmatrix} 1\\2\\3 \end{pmatrix}, \begin{pmatrix} 1\\2\\5 \end{pmatrix} \right\}$$

Décrire les sous-espace vectoriel Vect(U) et Vect(W). Donner une base pour chacun d'eux.

Montrer que l'un des deux est un plan vectoriel et déterminer une équation cartésienne de celui-ci.

Exercice 40.28 (*)

Soit V le sous-espace vectoriel de \mathbb{R}^4 engendré par les vecteurs

$$v_1 = (1, 2, 3, 4),$$
 $v_2 = (2, 3, 4, 5),$ $v_3 = (3, 4, 5, 6),$ $v_4 = (4, 5, 6, 7).$

Déterminer une base de V et dim V.

Exercice 40.29

Soit A une matrice de type $m \times k$. On suppose que les colonnes de A sont linéairement indépendantes. Montrer

- **1.** $A^T A$ est une matrice symétrique de type $k \times k$,
- **2.** $A^T A$ est une matrice inversible.

Vérifier les résultats précédents pour la matrice $M = \begin{pmatrix} 1 & -2 \\ 3 & 0 \\ 1 & 1 \end{pmatrix}$.

Exercice 40.30

Soit *B* une matrice $m \times k$ tel que $\text{Im}(B^T)$ est un plan de \mathbb{R}^3 admettant pour équation cartésienne

$$4x - 5y + 3z = 0$$
.

- 1. Peut-on déterminer m ou k? Le faire si possible.
- **2.** Déterminer le noyau de B. Écrire la solution générale de l'équation Bx = 0.

Exercice 40.31

On donne une partie d'une matrice A ainsi que sa forme échelonnée réduite

$$A = \begin{pmatrix} 1 & 4 & * & * \\ 2 & -1 & * & * \\ 3 & 2 & * & * \end{pmatrix} \sim \cdots \sim \begin{pmatrix} 1 & 0 & -1 & 5 \\ 0 & 1 & 3 & 2 \\ 0 & 0 & 0 & 0 \end{pmatrix}.$$

- 1. Déterminer une base de l'image de A, Im(A), une base du noyau de A, ker(A), ainsi qu'une base de $Im(A^T)$.
- **2.** Soit $b = (9,0,a)^T$ où $a \in \mathbb{R}$. L'équation matricielle Ax = b représente un système linéaire. Quel est son nombre d'équations? Son nombre d'inconnue?

Déterminer une condition nécessaire et suffisante sur a pour que le système Ax = b soit compatible.

3. Déterminer si possible les colonnes de *A* manquantes.

40.5 Bases de polynômes à degrés échelonnés

Chapter 41 Applications linéaires et dimension

Révisions

Exercice 41.1 (**)

Soit f une application linéaire d'un espace vectoriel E vers un espaces vectoriels F. Montrer que pour toute partie A de E,

$$f(\operatorname{Vect}(A)) = \operatorname{Vect}(f(A))$$
.

Exercice 41.2 (*)

- 1. L'image d'une famille libre par une application linéaire injective est libre.
- 2. L'image d'une famille liée par toute application linéaire est liée.

Exercice 41.3

Soit f un endomorphisme d'un \mathbb{K} -espace vectoriel E. À tout scalaire λ , on associe le sous-ensemble V_{λ} de E défini par

$$V_{\lambda} = \{ x \in E \mid f(x) = \lambda x \}.$$

- 1. Que peut on dire de V_0 ?
- 2. Démontrer que, pour tout scalaire λ , V_{λ} est un sous-espace vectoriel de E.
- 3. Démontrer que, pour tous scalaires λ , μ ,

$$\lambda \neq \mu \implies V_{\lambda} \cap V_{\mu} = \{ 0_E \}.$$

- **4.** Étant données λ et μ deux scalaires distincts, on suppose qu'il existe deux vecteurs non nuls u et v appartenant respectivement à V_{λ} et à V_{μ} . Démontrer que les vecteurs u et v sont linéairement indépendants.
- 5. Plus généralement, $\lambda_1, \lambda_2, \dots, \lambda_n$ étant n scalaires deux à deux distincts, on suppose qu'il existe n vecteurs non nuls u_1, u_2, \dots, u_n appartenant respectivement à V_1, V_2, \dots, V_n . Démontrer par récurrence que les vecteurs u_1, u_2, \dots, u_n sont linéairement indépendants.

Exercice 41.4 (**)

Soient E un \mathbb{K} -espace vectoriel, $f \in \mathcal{L}(E)$. On suppose que, pour tout $x \in E$, la famille (x, f(x)) est liée. Démontrer que f est une homothétie.

Exercice 41.5 (*)

Soit
$$f: \mathbb{R}^3 \to \mathbb{R}$$

 $(x, y, z) \mapsto x - y + 2z$

- 1. Montrer que f est linéaire de deux manières différentes.
- **2.** Déterminer ker f puis donner une base de ker f.
- **3.** Déterminer $\operatorname{Im} f$.

Exercice 41.6 (*)

Soit
$$g: \mathbb{R}^3 \to \mathbb{R}^2$$

 $(x, y, z) \mapsto (x - y + 2z, 2x - z)$

- 1. Justifier que g est linéaire.
- 2. Déterminer Im g.
- **3.** Déterminer ker g puis donner une base de ker g.

41.1 Application linéaire en dimension finie

Exercice 41.7

Soient E un espace vectoriel de dimension 3 et $f \in \mathcal{L}(E)$. On note $f^2 = f \circ f$, $f^3 = f \circ f \circ f$. On suppose que $f^2 \neq 0$ et $f^3 = 0$.

- 1. Montrer qu'il existe $x_0 \in E$ tel que $f^2(x_0) \neq 0$.
- **2.** Montrer que $(x_0, f(x_0), f^2(x_0))$ est une base de E.
- **3.** Montrer que l'ensemble des endomorphismes qui commutent avec f est un sous-espace vectoriel de $\mathcal{L}(E)$ de base (Id_E, f, f^2) .

Exercice 41.8 (*)

On pose $E = \mathbb{R}^3$ et on considère les vecteurs $u_1 = (1, 0, 1), u_2 = (-1, 1, -2), u_3 = (2, 1, 0)$ de E.

- **1.** Démontrer que la famille $\mathfrak{B} = (u_1, u_2, u_3)$ est une base de E.
- 2. Justifier l'existence d'un unique endomorphisme f de E vérifiant

$$f(u_1) = u_1 - u_2,$$
 $f(u_2) = u_3,$ $f(u_3) = u_2 + u_3.$

3. Déterminer l'image par f du vecteur v = (1, -3, 5).

Exercice 41.9 (*)

On considère les vecteurs

$$v_1 = \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}, \qquad v_2 = \begin{pmatrix} -1 \\ 1 \\ 2 \end{pmatrix}, \qquad v_3 = \begin{pmatrix} 0 \\ 1 \\ 5 \end{pmatrix}, \qquad \text{et} \qquad u = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}.$$

- **1.** Montrer que $\mathcal{B} = (v_1, v_2, v_3)$ est une base de \mathbb{R}^3 . Déterminer les coordonnées de u relativement à la base \mathcal{B} et en déduire une expression de u comme combinaison linéaire de v_1, v_2, v_3 .
- **2.** Une application linéaire $f: \mathbb{R}^3 \to \mathbb{R}^3$ vérifie les conditions suivantes

$$f(v_1) = e_1$$
 $f(v_2) = e_2$ $f(v_3) = e_3$,

où (e_1, e_2, e_3) est la base canonique de \mathbb{R}^3 . Déterminer f(u).

- 3. Déterminer, si possible, le noyau de f et l'image de f.
- **4.** Donner l'expression analytique de f (c'est-à-dire l'expression de f(x) en fonction de x_1, x_2, x_3).

Exercice 41.10 (*)

Soit l'application linéaire $f: \mathbb{R}^4 \to \mathbb{R}^3$ définie par

$$f(1,0,0,0) = (1,-1,0);$$
 $f(0,1,0,0) = (-1,0,1);$ $f(0,0,1,0) = (1,-1,2);$ $f(0,0,0,1) = (0,-2,3).$

- 1. Rappeler brièvement pourquoi ces relations caractérisent f.
- **2.** Déterminer ker f. L'application f est-elle injective?
- **3.** Déterminer Im f. L'application f est-elle surjective? bijective?

Exercice 41.11 (**) Dual de $\mathcal{M}_n(\mathbb{K})$

On note $\mathcal{M}_n(\mathbb{K})^* = \mathcal{L}(\mathcal{M}_n(\mathbb{K}), \mathbb{K})$ le dual de $\mathcal{M}_n(\mathbb{K})$. Pour $A \in \mathcal{M}_n(\mathbb{K})$, on définit

$$\begin{array}{cccc} \Psi_A: & \mathcal{M}_n(\mathbb{K}) & \to & \mathbb{K} \\ & M & \mapsto & \mathrm{Tr}(AM) \end{array}.$$

- 1. Montrer que Ψ_A est une forme linéaire sur $\mathcal{M}_n(\mathbb{K})$.
- 2. Soit

$$\begin{array}{ccccc} \Psi : & \mathcal{M}_n(\mathbb{K}) & \to & \mathcal{M}_n(\mathbb{K})^* \ . \\ & A & \mapsto & \Psi_A \end{array}$$

Montrer que Ψ est un isomorphisme d'espaces vectoriels.

Exercice 41.12 (*)

Montrer que $f: \mathbb{R}^3 \to \mathbb{R}^3$, $(x, y, z) \mapsto (z, x - y, y + z)$ est un automorphisme.

Exercice 41.13

On définit l'application

$$\varphi: \ \mathbb{R}_3[X] \ \rightarrow \ \mathbb{R}^4$$

$$P \ \mapsto \ (P(0), P'(1), P''(1), P''(2))$$

- 1. Montrer que φ est un isomorphisme.
- **2.** En déduire qu'il existe un et un seul polynôme $P \in \mathbb{R}_3[X]$ vérifiant

$$P(0) = 1,$$
 $P'(1) = 2,$ $P''(1) = -1,$ et $P''(2) = 1.$

Exercice 41.14

Soient $n \in \mathbb{N}$ et

$$\varphi: \mathbb{R}_n[X] \to \mathbb{R}^{n+1}$$

$$P \mapsto (P(0), P(1), \dots, P(n))$$

Montrer que φ est un isomorphisme.

Exercice 41.15

On considère une fonction dérivable $f:[a,b]\to\mathbb{R}$ et n+1 réels $\alpha_0<\alpha_1<\ldots<\alpha_n$ de l'intervalle [a,b]. Montrer qu'il existe un unique polynôme $P\in\mathbb{R}_{2n+1}[X]$ tel que

$$\forall i \in [0, n], P(\alpha_i) = f(\alpha_i) \text{ et } P'(\alpha_i) = f'(\alpha_i).$$

41.2 Rang d'une application linéaire

Exercice 41.16 (*)

Soit l'application
$$h: \mathbb{R}^3 \to \mathbb{R}^3$$
 . $(x, y, z) \mapsto (x - y + 2z, 2x - z, 4x + 2y - 7z)$.

- 1. Déterminer ker h puis donner une base de ker h.
- 2. Donner une famille génératrice de Im h; en déduire une base de Im h.

Exercice 41.17

Soit E un K-espace vectoriel de dimension $n, n \in \mathbb{N}$, u et v deux endomorphismes de E tels que

$$E = \operatorname{Im} u + \operatorname{Im} v$$
 et $E = \ker u + \ker v$.

Montrer que ces deux sommes sont directes.

Exercice 41.18 (**)

Soient E et F deux K-espaces vectoriels de dimensions finies et $u, v \in \mathcal{L}(E, F)$.

1. Montrer que

$$rg(u + v) \le rg(u) + rg(v)$$
.

- 2. En déduire que $|rg(u) rg(v)| \le rg(u + v)$.
- **3.** On suppose que E = F, que $u \circ v = 0_{\mathcal{L}(E)}$ et que $(u + v) \in \mathbf{GL}(E)$. Montrer que

$$rg(u + v) = rg(u) + rg(v).$$

Exercice 41.19 (**) Un théorème de factorisation, Banque PT 2010

Soient E, F et G trois espaces vectoriels de dimension finie, $u \in \mathcal{L}(E, F)$ et $v \in \mathcal{L}(E, G)$. Le but de cette partie est de montrer que

$$\ker(u) \subset \ker(v) \iff \exists w \in \mathcal{L}(F, G), v = w \circ u.$$

1. On suppose qu'il existe $w \in \mathcal{L}(F,G)$ telle que $v = w \circ u$.

Montrer que $ker(u) \subset ker(v)$.

- **2.** On suppose que dim E = n, dim ker(u) = n p et dim F = r.
 - (a) Justifier pourquoi on peut choisir (e_1, e_2, \dots, e_n) base de E de sorte que (e_{p+1}, \dots, e_n) soit une base de $\ker(u)$.

Quelle est alors la dimension de Im(u)?

- (b) Pour tout $1 \le i \le p$, on pose $f_i = u(e_i)$. Montrer que la famille $(f_i)_{1 \le i \le p}$ est une base de $\mathrm{Im}(u)$.
- (c) On complète la famille précédente de sorte que $(f_i)_{1 \le i \le r}$ soit une base de F. On définit alors $w \in \mathcal{L}(F, G)$ par

$$w(f_i) = \begin{cases} v(e_i) & \text{si } 1 \le i \le p, \\ 0 & \text{sinon.} \end{cases}$$

Montrer que, si $\ker(u) \subset \ker(v)$, alors $v = w \circ u$.

Exercice 41.20 (**)

Soit E un espace vectoriel de dimension finie. Soit $u \in \mathcal{L}(E)$. Montrer qu'il existe un automorphisme a de E et un projecteur p, tel que $u = a \circ p$.

En prenant l'exemple de la dérivation dans $\mathbb{K}[X]$, montrer que ce résultat peut tomber en défaut lorsque E n'est pas de dimension finie.

Exercice 41.21

Déterminer une base du noyau et de l'image de l'application linéaire $T: \mathbb{R}^3 \to \mathbb{R}^3$ définie par

$$T\begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} x_1 + x_2 + 2x_3 \\ x_1 + x_3 \\ 2x_1 + x_2 + 3x_3 \end{pmatrix}$$

Vérifier la cohérence avec le théorème du rang. L'application T est-elle bijective ?

Exercice 41.22

Soit $g: \mathbb{R}^3 \to \mathbb{R}^2$ une application linéaire.

1. On suppose que le noyau de g est l'ensemble des vecteurs $x = (x_1, x_2, x_3)^T \in \mathbb{R}^3$ tels que $x_1 = x_2 = x_3$ et que l'image de g est \mathbb{R}^2 . Cela contredit il le théorème du rang ?

2. On suppose de plus que $g(e_1) = \varepsilon_1$, $g(e_2) = \varepsilon_2$, où $e = (e_1, e_2, e_3)$ est la base canonique de \mathbb{R}^3 et $(\varepsilon_1, \varepsilon_2)$ la base canonique de \mathbb{R}^2 .

Déterminer une matrice A telle que l'application g définie par g(x) = Ax vérifie les conditions précédente. Donner l'expression analytique de g (c'est-à-dire l'expression de g(x) en fonction de x_1, x_2, x_3).

Exercice 41.23

Soit $e = (e_1, e_2, e_3, e_4)$ la base canonique de \mathbb{R}^4 et soit v_1, v_2, v_3, x les vecteurs de \mathbb{R}^3

$$v_1 = \begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix}, \qquad v_2 = \begin{pmatrix} 2 \\ 1 \\ 2 \end{pmatrix}, \qquad v_3 = \begin{pmatrix} 5 \\ 1 \\ -1 \end{pmatrix}, \qquad \text{et } x = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix},$$

où x_1,x_2,x_3 sont fixés dans la suite. Soit T l'application linéaire $T:\mathbb{R}^4\to\mathbb{R}^3$ telle que

$$T(e_1) = v_1,$$
 $T(e_2) = v_2,$ $T(e_3) = v_3,$ $T(e_4) = x_1$

1. Donner une condition nécessaire et suffisante sur les coefficients de x pour que l'application linéaire T vérifie la relation

$$rg(T) = \dim \ker(T)$$
.

Dans ce cas, donner une base de Im(T).

2. Donner une condition nécessaire et suffisante sur les coefficients de *x* pour que l'application linéaire *T* vérifie la relation

$$\dim \ker(T) = 1$$
.

Dans ce cas, donner une base de ker(T).

Exercice 41.24 (***)

Soient $m, n, p \in \mathbb{N}^*$ et $A \in \mathcal{M}_{n,p}(\mathbb{K})$ une matrice fixée. Calculer, en fonction du rang de A, la dimension du sous-espace vectoriel de $\mathcal{M}_{m,n}(\mathbb{K})$ formé des matrices M telles que MA = 0 (donner deux solutions).

Même question si *M* est fixée et *A* varie.

Exercice 41.25

Soient $n \ge 2$ et

$$f: \mathbb{R}_n[X] \to \mathbb{R}_2[X]$$

$$P \mapsto XP(1) + (X^2 - 4)P(0)$$

Montrer que f est linéaire et déterminer ker f et Im f ainsi que leurs dimensions.

Exercice 41.26

Soit $n \in \mathbb{N}$ et

$$\begin{array}{cccc} \varphi : & \mathbb{K}_n[X] & \to & \mathbb{K}_n[X] \\ & P & \mapsto & P(X) - P(X+1) \end{array}.$$

- 1. Montrer que φ est linéaire.
- **2.** Déterminer ker φ et Im φ .
- 3. Déterminer $\ker(\varphi 2\operatorname{Id}_{\mathbb{K}_{-}[X]})$ et $\operatorname{Im}(\varphi 2\operatorname{Id}_{\mathbb{K}_{-}[X]})$

Exercice 41.27 (**)

Soit E l'espace vectoriel des polynômes de degré inférieur ou égal à n. Soit f l'application définie sur E par

$$f(P) = P(X+1) + P(X-1) - 2P(X).$$

- 1. Montrer que f est une application linéaire de E dans E.
- **2.** Calculer $f(X^p)$; quel est son degré? En déduire ker f, Im f et le rang de f.
- 3. Soit O un polynôme de Im f; montrer qu'il existe un unique polynôme P tel que

$$f(P) = Q$$
 et $P(0) = P'(0) = 0$.

41.3 Dualité

Exercice 41.28

Soit E un \mathbb{K} -espace vectoriel de dimension finie et $\mathcal{B} = (e_1, e_2, \dots, e_n)$ une base de E. On note $E^* = \mathcal{L}(E, \mathbb{K})$ l'ensemble des formes linéaires sur E, appelé **espace dual** de E. Pour $j \in [1, n]$, on définit la forme linéaire e_j^* sur E par

$$\forall i \in [[1, n]], e_j^* \left(e_i \right) = \delta_{i, j} = \begin{cases} 1, & \text{si } i = j \\ 0, & \text{si } i \neq j \end{cases}.$$

1. Montrer que pour tout $x \in E$,

$$x = e_1^*(x)e_1 + e_2^*(x)e_2 + \dots e_n^*(x)e_n.$$

2. Montrer que pour tout $f \in E^*$,

$$f = f(e_1)e_1^* + f(e_2)e_2^* + \dots + f(e_n)e_n^*$$

3. Montrer que la famille $(e_1^*, e_2^*, \dots, e_n^*)$ est une base de E^* .

La base $(e_1^*, e_2^*, \dots, e_n^*)$ est appelée **base de duale** de (e_1, e_2, \dots, e_n) . **Exercice 41.29** (**)

Sur $E = \mathbb{R}_n[X]$, on définit les n + 1 formes linéaires

$$\varphi_k : P \mapsto P^{(k)}(0), \quad k \in [0, n].$$

Montrer que la famille $(\varphi_0, \varphi_1, \dots, \varphi_n)$ est un base de $E^* = \mathcal{L}(E, \mathbb{R})$.

Exercice 41.30

Soit $E = \mathbb{C}_n[X]$. On pose

$$P_0 = 1$$
 et $\forall k \ge 1, P_k = \frac{1}{k!} X(X - k)^{k-1}$.

On pose, pour $k \in \mathbb{N}$, $\varphi_k : E \to \mathbb{C}$ $P \mapsto (D^k P)(k)$

- **1.** Montrer, pour $k \ge 1$, $P'_k(X+1) = P_{k-1}(X)$.
- **2.** Montrer que $(\varphi_0, \varphi_1, \dots, \varphi_n)$ est la base duale de (P_0, P_1, \dots, P_n) .
- 3. En déduire l'égalité d'Abel:

$$\forall (x,y) \in \mathbb{C}^2, (x+y)^n = y^n + x \sum_{j=1}^n \binom{n}{j} (x-j)^{j-1} (y+j)^{n-j}. \tag{1}$$

Exercice 41.31

Soit $E = \mathbb{R}_2[X]$. Pour $a \in \mathbb{R}$, on définit

$$\varphi_a: E \rightarrow \mathbb{R}$$
.
 $P \mapsto P(a)$.

- **1.** Montrer que $(\varphi_0, \varphi_{1/2}, \varphi_1)$ est une base de E^* .
- **2.** Déterminer la base préduale de $(\varphi_0, \varphi_{1/2}, \varphi_1)$, *i.e.* l'unique base de E dont elle est la base duale. On la notera F.

3. Déterminer les coordonnées dans la base \mathcal{F} d'un polynôme P de E.

Exercice 41.32 (***)

Soit E un \mathbb{K} -espace vectoriel de dimension finie n.

- 1. Soient $H_i = \ker \varphi_i$, $1 \le i \le 3$, trois hyperplans de E, discuter selon le rang de $(\varphi_1, \varphi_2, \varphi_3)$ la dimension de $H_1 \cap H_2 \cap H_3$. Interpréter géométriquement ce résultat en dimension 3.
- **2.** Si H_1, \ldots, H_p sont p hyperplans de E, montrer que

$$\dim(H_1\cap\cdots\cap H_p)\geq n-p.$$

Exercice 41.33

1. Soient $n \in \mathbb{N}^*$ puis $\varphi_1, ..., \varphi_n$ et φ n+1 formes linéaires sur un K-espace vectoriel E de dimension finie. Montrer l'équivalence

$$\exists (\lambda_1, ..., \lambda_n) \in \mathbb{K}^n, \varphi = \lambda_1 \varphi_1 + \cdots + \lambda_n \varphi_n \iff \bigcap_{i=1}^n \ker \varphi_i \subset \ker \varphi.$$

2. Application du résultat précédent dans \mathbb{R}^3 .

Déterminer une équation d'un plan
$$P$$
 contenant D :
$$\begin{cases} x+y+z=0\\ 2x+3z=0 \end{cases}$$
 et le vecteur $u=(1,1,1)$?

41.4 Application aux suites récurrentes linéaires d'ordre deux

41.5 Exercices mélangés

Exercice 41.34 (**) *Centrale MP 2015*

Soit E un \mathbb{R} -espace vectoriel de dimension $n \ge 2$. Pour $a \in E$, on note \mathcal{F}_a l'ensemble des endomorphisme f de E tels que, pour tout $x \in E$, (x, f(x), a) soit liée.

- **1.** Déterminer \mathcal{F}_a lorsque a = 0 puis lorsque n = 2.
- **2.** Montrer que \mathcal{F}_a est un espace vectoriel pour tout $a \in E$.
- 3. Soit H un espace vectoriel de dimension finie. Caractériser les endomorphismes v de H tels que pour tout $h \in H$, (h, v(h)) soit liée.
- **4.** Déterminer la dimension de \mathcal{F}_a .

Chapter 42 Représentation matricielle en algèbre linéaire

42.1 Famille de vecteurs

Exercice 42.1

Soit $e = (e_1, e_2, e_3, e_4)$ la base canonique de \mathbb{R}^4 et $f = (f_1, f_2, f_3, f_4)$ la famille de \mathbb{R}^4 définie par

$$f_1 = e_1 - 2e_2,$$
 $f_2 = e_2 - 3e_3,$ $f_3 = e_3 - 4e_4,$ $f_4 = e_4.$

- **1.** Prouver que la famille f est une base de \mathbb{R}^4 .
- 2. Déterminer les matrices de passage de e à f et de f à e.

Exercice 42.2

1. Déterminer les valeurs du paramètre λ telles que

$$v_1 = \begin{pmatrix} 1 \\ 3 \\ -5 \end{pmatrix}, \qquad v_2 = \begin{pmatrix} 1 \\ -1 \\ 1 \end{pmatrix}, \qquad v_3 = \begin{pmatrix} 2 \\ 0 \\ \lambda \end{pmatrix}$$

forment une base de \mathbb{R}^3 .

2. Soit $b = (2,0,1)^T$ et $s = (2,0,3)^T$. Vérifier que chacune des familles

$$\mathcal{B} = (v_1, v_2, b)$$
 et $\mathcal{S} = (v_1, v_2, s)$

est une base de \mathbb{R}^3 . Déterminer la matrice de passage de la base \mathcal{B} à la base \mathcal{S} .

3. Si Coord_S(w) = $\begin{bmatrix} 1 \\ 2 \\ 2 \end{bmatrix}$, déterminer Coord_B(w).

Exercice 42.3

On considère le plan W dans \mathbb{R}^3 ,

$$W = \left\{ \begin{pmatrix} x \\ y \\ z \end{pmatrix} \middle| x - 2y + 3z = 0 \right\}.$$

1. Monter que chacune des familles

$$S = \begin{pmatrix} 2 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} -3 \\ 0 \\ 1 \end{pmatrix} \quad \text{et} \quad \mathcal{B} = \begin{pmatrix} -1 \\ 1 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ 2 \\ 1 \end{pmatrix}$$

est une base de W.

2. Montrer que le vecteur $v = (5,7,3)^T$ est un vecteur de W et déterminer ses coordonnées $\operatorname{Coord}_S(v)$ relativement à la base S.

3. Déterminer la matrice de passage M de la base S à la base B; ainsi

$$Coord_{S}(x) = M \times Coord_{B}(x)$$
.

Utiliser la relation précédente pour déterminer $Coord_{\mathcal{B}}(v)$ pour le vecteur $v = (5,7,3)^T$ et vérifier votre réponse.

Exercice 42.4

Soit $\mathcal{B} = (1, X, X^2)$ la base canonique de $\mathbb{R}_2[X]$ et $\mathcal{B}' = (X^2 + X + 1, X^2 - 1, X^2 + X)$.

- **1.** Démontrer que \mathcal{B}' est une base de $\mathbb{R}_2[X]$.
- 2. Déterminer les matrices de passage de \mathcal{B} à \mathcal{B}' et de \mathcal{B}' à \mathcal{B} .
- 3. Déterminer les coordonnées du polynôme $P = 3X^2 6X + 5$ dans \mathcal{B}' .

42.2 Représentation d'une application linéaire par une matrice

Exercice 42.5

Soit $T: \mathbb{R}^2 \to \mathbb{R}^3$ l'application linéaire donnée par

$$T \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} x_2 \\ -5x_1 + 13x_2 \\ -7x_1 + 16x_2 \end{pmatrix}.$$

Déterminer la matrice de T relativement aux bases

$$\mathcal{B} = \begin{pmatrix} 3 \\ 1 \end{pmatrix}, \quad \begin{pmatrix} 5 \\ 2 \end{pmatrix} \end{pmatrix} \qquad \text{et} \qquad \qquad \mathcal{B}' = \begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix}, \quad \begin{pmatrix} -1 \\ 2 \\ 2 \end{pmatrix}, \quad \begin{pmatrix} 0 \\ 1 \\ 2 \end{pmatrix} \end{pmatrix}.$$

Exercice 42.6

Soit f l'application de $\mathbb{R}_3[X]$ dans $\mathbb{R}_4[X]$ définie par

$$\forall P \in \mathbb{R}_3[X], f(P) = P(X+1) + P(X+2) - 2P(X).$$

- **1.** Montrer que f est linéaire et que son image est incluse dans $\mathbb{R}_3[X]$.
- **2.** Donner la matrice de f par rapport aux bases canoniques.
- 3. Déterminer le noyau et l'image de f. Calculer leurs dimensions respectives.
- **4.** Soit $Q \in \text{Im } f$. Montrer qu'il existe un unique $P \in \mathbb{R}_3[X]$ vérifiant f(P) = Q et P(0) = P'(0) = 0.

Exercice 42.7

Donner les matrices des applications linéaires suivantes dans les bases canoniques puis déterminer le noyau et l'image de l'application.

1.
$$u: \mathbb{R}_{5}[X] \rightarrow \mathbb{R}_{5}[X]$$
.
 $P \mapsto XP'$
 3. $u: \mathbb{R}_{3}[X] \rightarrow \mathbb{R}_{3}[X]$.
 $P \mapsto (1 + X^{2})P'' - 2XP'$

 2. $u: \mathbb{R}_{2}[X] \rightarrow \mathbb{R}_{3}[X]$.
 $P \mapsto XP - (X - 1)^{2}P'$.
 4. $u: \mathbb{R}_{5}[X] \rightarrow \mathbb{R}^{3}$.
 $P \mapsto (P(-1), P(0), P(1))$.

Exercice 42.8

Donner les matrices des applications linéaires suivantes dans les bases canoniques puis déterminer le noyau et l'image de l'application.

1.
$$u: \mathbb{R}^2 \to \mathbb{R}^3$$
 . $(x, y) \mapsto (2x - y, x + y, x)$

$$\begin{array}{ccc} : & \mathbb{R}^3 & \to & \mathbb{R} & . \\ (x, y, z) & \mapsto & x + y + 2z \end{array}$$

2.
$$u: \mathbb{R} \to \mathbb{R}^3$$

 $x \mapsto (x, 2x, x)$

1.
$$u: \mathbb{R}^2 \to \mathbb{R}^3$$
 .
 $(x,y) \mapsto (2x-y,x+y,x)$
 3. $u: \mathbb{R}^3 \to \mathbb{R}$
 .

 2. $u: \mathbb{R} \to \mathbb{R}^3$
 .
 $(x,y,z) \mapsto x+y+2z$

 4. $u: \mathbb{R}^3 \to \mathbb{R}^3$
 .

 $(x,y,z) \mapsto (2x+3y,x-z,3x)$

Soit
$$u \in \mathcal{L}\left(\mathbb{R}^4, \mathbb{R}^3\right)$$
 canoniquement associée à $A = \begin{pmatrix} 4 & 5 & -7 & 7 \\ 2 & 1 & -1 & 3 \\ 1 & -1 & 2 & 1 \end{pmatrix}$.

1. On considère les quatre vecteurs

$$e_1 = (1,0,0,0), \qquad e_2 = (0,1,0,0), \qquad e_3 = (4,1,0,-3) \qquad \text{ et } \qquad e_4 = (-7,0,1,5).$$

Montrer que $e = (e_1, e_2, e_3, e_4)$ est une base de \mathbb{R}^4 .

2. On considère les trois vecteurs

$$f_1 = (4, 2, 1),$$
 et $f_2 = (1, 1, -1)$ et $f_3 = (0, 0, 1).$

Montrer que $\mathbf{f} = (f_1, f_2, f_3)$ est une base de \mathbb{R}^3 .

3. Déterminer la matrice de u dans les bases e et f.

Exercice 42.10

On considère les deux applications f et g définies par

$$f: \mathbb{R}_2[X] \to \mathbb{R}^4$$

$$P \mapsto \left(P(0), P(1), P'(0), P'(1)\right)$$
 et $g: \mathbb{R}^4 \to \mathbb{R}^2$
$$(x, y, z, t) \mapsto (x + y + z + t, x - t)$$

- **1.** Montrer que f et g sont linéaires.
- 2. Déterminer les matrices de f et g relativement aux bases canoniques de leurs ensembles de départ et d'arrivée.
- **3.** En déduire la matrice de $g \circ f$ relativement aux bases canoniques de $\mathbb{R}_2[X]$ et \mathbb{R}^2 .

42.3 Cas des endomorphismes

Exercice 42.11 *CCINP MP 2022*

Le corps de base \mathbb{K} est \mathbb{R} ou \mathbb{C} . Soit E un \mathbb{K} -espace vectoriel de dimension 3, $f \in \mathcal{L}(E)$ tel que $f^2 \neq 0$ et $f^3 = 0$. Montrer que dans une certaine base de E la matrice de f est $\begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}$.

Exercice 42.12

Soit
$$A = \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$$
 et $\varphi : B \mapsto AB$.

- Montrer que φ est un endomorphisme de $\mathcal{M}_2(\mathbb{R})$.
- Déterminer ker φ et Im φ .

• Donner la matrice de φ dans la base $\mathcal{B} = (E_{1,1}, E_{1,2}, E_{2,1}, E_{2,2})$ de $\mathcal{M}_2(\mathbb{R})$.

Exercice 42.13

Vérifier que $P \mapsto (X^2 - 1)P'' + XP'$ est un endomorphisme de $\mathbb{R}_n[X]$ et écrire sa matrice dans la base canonique de $\mathbb{R}_n[X]$.

Exercice 42.14

Soit $E = \mathbb{R}_3[X]$ et f l'endomorphisme de E défini par

$$f: P(X) \mapsto P(X+2) + P(X) - 2P(X+1).$$

Déterminer ker f et Im f et montrer qu'il existe une base de E dans laquelle la matrice de f est

$$M = \begin{pmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}.$$

Exercice 42.15

Soit $f: \mathbb{R}^2 \to \mathbb{R}^2$ l'application linéaire dont la matrice relativement à la base canonique $\mathcal{B} = (e_1, e_2)$ de \mathbb{R}^2 est

$$A = \begin{pmatrix} 3 & -4 \\ 2 & -3 \end{pmatrix}.$$

Déterminer une base $\mathcal{B}' = (v_1, v_2)$ de \mathbb{R}^2 telle que la matrice de f relativement à \mathcal{B}' soit

$$D = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$

Exercice 42.16

Soit $f: \mathbb{R}^3 \to \mathbb{R}^3$ l'application linéaire dont la matrice relativement à la base canonique $\mathcal{B} = (e_1, e_2, e_3)$ de \mathbb{R}^3 est

$$A = \begin{pmatrix} 5 & 5 & -6 \\ -4 & -4 & 6 \\ -2 & -3 & 5 \end{pmatrix}.$$

Déterminer une base $\mathcal{B}' = (v_1, v_2, v_3)$ de \mathbb{R}^3 telle que la matrice de f relativement à \mathcal{B}' soit

$$D = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 2 \end{pmatrix}$$

Exercice 42.17

Soit $f: \mathbb{R}^3 \to \mathbb{R}^3$ l'application linéaire dont la matrice relativement à la base canonique $\mathcal{B} = (e_1, e_2, e_3)$ de \mathbb{R}^3 est

$$A = \begin{pmatrix} 2 & 6 & -8 \\ 1 & 1 & 4 \\ 1 & -3 & 8 \end{pmatrix}.$$

Déterminer une base $\mathcal{B}' = (v_1, v_2, v_3)$ de \mathbb{R}^3 telle que la matrice de f relativement à \mathcal{B}' soit

$$D = \begin{pmatrix} 4 & 0 & 0 \\ 0 & 4 & 0 \\ 0 & 0 & 3 \end{pmatrix}$$

Exercice 42.18

Soit $f: \mathbb{R}^3 \to \mathbb{R}^3$ l'application linéaire dont la matrice relativement à la base canonique $\mathcal{B} = (e_1, e_2, e_3)$ de \mathbb{R}^3 est

$$A = \begin{pmatrix} 5 & 3 & -6 \\ -4 & 0 & 4 \\ 1 & 2 & -2 \end{pmatrix}.$$

Déterminer une base $\mathcal{B}' = (v_1, v_2, v_3)$ de \mathbb{R}^3 telle que la matrice de f relativement à \mathcal{B}' soit

$$T = \begin{pmatrix} -1 & 0 & 0 \\ 0 & 2 & 1 \\ 0 & 0 & 2 \end{pmatrix}$$

Exercice 42.19

Montrer que

$$A = \begin{pmatrix} 2 & 1 \\ 1 & 2 \end{pmatrix} \text{ et } B = \begin{pmatrix} 1 & 0 \\ 0 & 3 \end{pmatrix}$$

sont les matrices d'un même endomorphisme relativement à des bases différentes.

Exercice 42.20

Soit
$$f \in \mathcal{L}(\mathbb{R}^3)$$
 canoniquement associée à $A = \begin{pmatrix} -2 & 4 & 2 \\ -4 & 8 & 4 \\ 5 & -10 & -5 \end{pmatrix}$. Vérifier que f est un projecteur. Déterminer le noyau et l'image de f .

Exercice 42.21

Soit
$$f \in \mathcal{L}(\mathbb{R}^3)$$
 canoniquement associée à $A = \begin{pmatrix} 5 & -8 & -4 \\ 8 & -15 & -8 \\ -10 & 20 & 11 \end{pmatrix}$

Vérifier que f est une symétrie. Déterminer $\ker(f - \operatorname{Id})$ et ke

Exercice 42.22 d'après Ecricome ECE 2014

Soit f l'endomorphisme de \mathbb{R}^3 dont la matrice dans la base canonique de \mathbb{R}^3 , notée $\mathcal{E} = (e_1, e_2, e_3)$, est

$$A = \begin{pmatrix} 1 & 0 & 0 \\ 1 & 2 & 1 \\ 2 & -2 & -1 \end{pmatrix}.$$

Le but de cet exercice est de déterminer les «racines carrés» de f, c'est-à-dire les endomorphismes de \mathbb{R}^3 tels

On considère les vecteurs u et v de \mathbb{R}^3 définis par

$$u = \begin{pmatrix} 0 \\ 1 \\ -2 \end{pmatrix} \qquad \text{et} \qquad \qquad v = \begin{pmatrix} 0 \\ 1 \\ -1 \end{pmatrix}.$$

- 1. (a) Déterminer une base de ker(f) et une base de Im(f).
 - (b) Justifier que f n'est pas bijectif.
 - (c) Rechercher tous les vecteurs $t = (x, y, z)^T$ de \mathbb{R}^3 vérifiant l'équation

$$f(t) = t + v$$
.

(d) Déterminer un vecteur w de \mathbb{R}^3 , dont la troisième coordonnée (dans la base canonique de \mathbb{R}^3) est nulle, tel que la famille C = (u, v, w) soit une base de \mathbb{R}^3 et que la matrice de f dans la base C soit la matrice

$$T = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix}.$$

2. Dans cette question, on suppose qu'il existe un endomorphisme g de \mathbb{R}^3 vérifiant

$$g \circ g = f$$
.

(a) Montrer que

$$f \circ g = g \circ f$$
.

En déduire que

$$f(g(u)) = 0$$
 et $f(g(v)) = g(v)$.

- (b) Justifier qu'il existe deux réels a et b tels que g(u) = au et g(v) = bv.
- (c) On note N la matrice de g dans la base C = (u, v, w) définie à la question 1.d. Justifier que

$$N = \begin{pmatrix} a & 0 & c \\ 0 & b & d \\ 0 & 0 & e \end{pmatrix}$$

où a et b sont les deux réels définis à la question précédente (2.b) et c, d, e des réels.

3. Existe-t-il des endomorphismes g de \mathbb{R}^3 tels que $g \circ g = f$?

Exercice 42.23

On note $E = \mathbb{R}_3[X]$. On désigne par u et v les endomorphismes suivants

- 1. Déterminer la matrice, sur la base canonique de E, de l'endomorphisme $u+\lambda v$, où λ est un réel arbitraire. On notera M_{λ} cette matrice.
- 2. Discuter suivant le réel λ , le rang de la matrice M_{λ} .

Exercice 42.24

Soit E l'espace vectoriel des fonctions réelles indéfiniment dérivables à valeurs dans \mathbb{R} .

1. Montrer que les quatre fonctions définies par

$$x_1(t) = \cos(t) \operatorname{ch}(t), \qquad x_2(t) = \sin(t) \operatorname{ch}(t), \qquad x_3(t) = \cos(t) \operatorname{sh}(t), \qquad x_4(t) = \sin(t) \operatorname{sh}(t).$$

appartiennent à E et sont linéairement indépendantes.

- 2. Soit F le sous-espace vectoriel de E engendré par ces quatres vecteurs, et u l'endomorphisme de E défini par u(f) = f'. Montrer que F est stable par u et déterminer la matrice M de u dans la base (x_1, x_2, x_3, x_4) de F.
- **3.** Calculer M^2 , M^3 , M^4 . En déduire M^n pour tout $n \in \mathbb{N}$.

Exercice 42.25

Retrouver le résultat de 42.9 en utilisant des matrices de passage.

Exercice 42.26

Soit u l'endomorphisme de \mathbb{R}^2 de matrice

$$A = \begin{pmatrix} 2 & \frac{2}{3} \\ -\frac{5}{2} & -\frac{2}{3} \end{pmatrix}$$

dans la base canonique $e = (e_1, e_2)$. Soient $f_1 = (-2, 3)$ et $f_2 = (-2, 5)$.

- 1. Montrer que $f = (f_1, f_2)$ est une base de \mathbb{R}^2 et déterminer $D = M_f(u)$.
- **2.** Exprimer A en fonction de D.
- **3.** Calculer A^n pour $n \in \mathbb{N}$.
- 4. Déterminer l'ensemble des suites réelles qui vérifient

$$\forall n \in \mathbb{N}, \begin{cases} x_{n+1} = 2x_n + \frac{2}{3}y_n \\ y_{n+1} = -\frac{5}{2}x_n - \frac{2}{3}y_n \end{cases}$$
 (R)

Soit $u \in \mathcal{L}(\mathbb{R}^3)$ canoniquement associée à $A = \begin{pmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 0 & 0 & 1 \end{pmatrix}$.

1. On considère les trois vecteurs

$$e_1 = (1, -1, 0),$$
 $e_2 = (1, 1, 0),$ $e_3 = (0, 0, 1).$

Montrer que $e = (e_1, e_2, e_3)$ est une base de \mathbb{R}^3 .

- **2.** Calculer la matrice T de u dans la base e.
- **3.** Calculer T^n pour tout $n \in \mathbb{N}^*$.
- **4.** En déduire A^n pour tout $n \in \mathbb{N}^*$.

Exercice 42.28

Soient les vecteurs de \mathbb{R}^3

$$b_1 = (1, 1, 2),$$
 $b_2 = (-2, -1, 3),$ $b_3 = (0, -3, -1).$

Notons

$$E = \text{Vect}(b_1, b_2)$$
 et $F = \text{Vect}(b_3)$.

- **1.** Montrer que la famille $b = (b_1, b_2, b_3)$ est une base de \mathbb{R}^3 . Que peut-on dire des espaces E et F?
- 2. Soit p la projection sur E parallèlement à F. Calculer la matrice M de p dans la base b.
- 3. Notons $e = (e_1, e_2, e_3)$ la base canonique de \mathbb{R}^3 . Calculer la matrice P de passage de e à b.
- **4.** Soit N la matrice de p dans la base e. Quelle relation existe-t-il entre les matrices M, N et P? Calculer la matrice N.

Exercice 42.29

Soit u l'endomorphisme de \mathbb{R}^3 dont la matrice dans la base canonique $e=(e_1,e_2,e_3)$ est

$$A = \begin{pmatrix} 0 & -1 & 1 \\ 1 & 2 & -3 \\ 1 & 1 & -2 \end{pmatrix}.$$

1. À l'aide de la méthode du pivot de Gauß ou du déterminant, déterminer pour quelles valeurs de $\lambda \in \mathbb{R}$, la matrice $A - \lambda I_3$ n'est pas inversible.

- 2. Pour chacune des valeurs trouvées à la question précédente, déterminer le sous-espace vectoriel ker $(u \lambda \operatorname{Id}_{\mathbb{R}^3})$.
- 3. En déduire une base $e' = (e'_1, e'_2, e'_3)$ dans laquelle la matrice D de u soit une matrice diagonale.
- **4.** Exprimer A en fonction de D.
- **5.** En déduire une expression de A^n pour tout $n \in \mathbb{N}^*$.

Soient (u_n) et (v_n) les suites à termes réels définies par

$$u_0=1, v_0=2, \quad \forall n\in \mathbb{N}, \begin{cases} u_{n+1}=4u_n-2v_n\\ v_{n+1}=u_n+v_n \end{cases}.$$

Pour $n \in \mathbb{N}$, on pose $X_n = \begin{pmatrix} u_n \\ v_n \end{pmatrix}$.

- **1.** Trouver une matrice $A \in \mathcal{M}_2(\mathbb{R})$ telle que, quel que soit $n \in \mathbb{N}$, on ait $X_{n+1} = AX_n$.
- **2.** Soit $n \in \mathbb{N}$. Exprimer X_n en fonction des puissance de A et de X_0 .
- **3.** Notons f l'endomorphisme de \mathbb{R}^2 dont la matrice dans la base canonique est A. Calculer une base des espaces vectoriels $\ker(f-2\operatorname{Id})$ et $\ker(f-3\operatorname{Id})$. En déduire une matrice $P\in\operatorname{GL}_2(R)$ vérifiant

$$P^{-1}AP = \begin{pmatrix} 2 & 0 \\ 0 & 3 \end{pmatrix} = D.$$

4. Soit $n \in \mathbb{N}$. Calculer A^n en fonction de D^n . En déduire l'expression de u_n et v_n .

Exercice 42.31 BanquePT 2009, épreuve A, partie A

Dans tout l'exercice, n est un entier strictement positif, E désigne un espace vectoriel réel de dimension finie n, $\mathcal{L}(E)$ l'ensemble des endomorphismes de E, I_E l'identité dans E et 0_E l'endomorphisme nul sur E.

1. Dans cette question E est de dimension 2. On considère la base $\mathcal{B}=(e_1,e_2)$ de E. On considère l'application linéaire f ayant pour matrice, dans la base \mathcal{B} :

$$M = \frac{1}{3} \begin{pmatrix} 1 & -1 \\ -2 & 2 \end{pmatrix}.$$

- (a) Montrer que f est un projecteur. Quel est son rang?
- (b) Déterminer le noyau et l'image de f.
- 2. Dans cette question, E est de dimension 3. On considère la base $\mathcal{B}=(e_1,e_2,e_3)$ de E. D désigne la droite vectorielle engendrée par le vecteur $\varepsilon_1=e_1+3e_2-e_3$ et P le plan engendré par les vecteurs $\varepsilon_2=e_1-e_3$ et $\varepsilon_3=2e_1-e_2$.

Déterminer la matrice, dans la base \mathcal{B} , du projecteur sur P parallèlement à D.

- 3. Dans cette question et jusqu'à la fin de cette partie, p désignera un projecteur de E, où E est un espace vectoriel de dimension n. Montrer que $\ker(p)$ et $\operatorname{Im}(p)$ sont supplémentaires dans E; on pourra écrire, pour $x \in E$, x = [x p(x)] + p(x).
- **4.** Soit q l'endomorphisme défini par: $q = I_E p$. Montrer que q est un projecteur de E. Déterminer le noyau et l'image de q. Calculer $p \circ q$ et $q \circ p$.
- 5. Soit p_1 et p_2 deux projecteurs de E et $q = p_1 + p_2 p_2 \circ p_1$.

- (a) Montrer que si $p_1 \circ p_2 = O_E$, alors q est un projecteur de E.
- (b) Montrer que $\ker(p_1) \cap \ker(p_2) \subset \ker(q)$.
- (c) Montrer¹ alors que $ker(p_1) \cap ker(p_2) = ker(q)$.

On considère les deux matrices

$$A = \begin{pmatrix} 0 & j & 0 \\ 0 & 0 & j^2 \\ 1 & 0 & 0 \end{pmatrix}; \qquad B = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & -2 \\ 1 & 0 & 0 \end{pmatrix}.$$

- 1. Déterminer leurs rangs et leurs traces.
- **2.** Calculer A^3 et B^3 . En déduire que A et B ne sont pas semblables.

Exercice 42.33

Soit K un corps de caractéristique nulle.

- 1. Montrer qu'une matrice de $\mathcal{M}_n(\mathbb{K})$ de trace nulle est semblable à une matrice de diagonale nulle.
- **2.** Montrer que si une matrice $A \in \mathcal{M}_n(\mathbb{K})$ est de trace nulle, il existe B et C dans $\mathcal{M}_n(\mathbb{K})$ telles que A = BC CB = [B, C] (crochet de Lie).

Exercice 42.34

Soit
$$A\in\mathcal{M}_n(\mathbb{R})$$
 et $u:\mathcal{M}_n(\mathbb{R})\to\mathcal{M}_n(\mathbb{R})$. Calculer $\mathrm{Tr}(u)$.
$$M\mapsto AM+MA$$

Exercice 42.35 Crochets de Lie de $\mathcal{M}_n(\mathbb{K})$

 \mathbb{K} désigne \mathbb{R} ou \mathbb{C} .

- **1.** Soit n un entier ≥ 2 et $u \in \mathcal{L}(\mathbb{K}^n)$. Montrer que si u n'est pas une homothétie, il existe e_1 et e_2 dans \mathbb{K}^n tels que $u(e_1) = e_2$ et (e_1, e_2) linéairement indépendants.
- **2.** Soit $A \in \mathcal{M}_n(\mathbb{K})$. On suppose que Tr A = 0. Montrer que A est semblable à une matrice dont tous les termes diagonaux sont nuls.
- 3. Soit $D = \text{diag}(d_1, \dots, d_n)$ une matrice diagonale dont tous les termes diagonaux sont distincts. Soit f l'endomorphisme de $\mathcal{M}_n(\mathbb{K})$ qui à M associe DM MD. Déterminer le noyau et l'image de f.
- **4.** Soit $A \in \mathcal{M}_n(\mathbb{K})$. Montrer que la trace de A est nulle si et seulement si il existe deux matrices R et S de $\mathcal{M}_n(\mathbb{K})$ telles que A = RS SR.

Exercice 42.36

Soient p matrices A_1, A_2, \dots, A_p de $\mathbf{GL}_n(\mathbb{K})$ tels que l'ensemble de ces p matrices soit stable par produit matriciel. Montrer que

$$\operatorname{Tr}\left(\sum_{i=1}^{p} A_i\right) \equiv 0 \pmod{p}.$$

Exercice 42.37

L'espace $E=\mathcal{M}_{n,1}(\mathbb{C})$ est identifié à \mathbb{C}^n par isomorphisme canonique. Soit G un sous-groupe fini de $\mathbf{GL}_n(\mathbb{C})$. On pose

$$E^G = \left\{\; x \in E \mid \forall g \in G, gx = x \;\right\}.$$

Montrer que

$$\dim E^G = \frac{1}{\operatorname{card} G} \sum_{g \in G} \operatorname{Tr}(g).$$

¹Ça ressemble à une erreur d'énoncé, il faut continuer à supposer $p_1 \circ p_2 = 0_E$.