

İstatistiğe Dayalı Yöntemler

- Verilerin önceden belirlenen sınıflara göre ayrılması, aslında gelecekte elde edilecek sonuçların tahmini yani sınıfların tahminidir.
- Regresyon, zaman serileri analizi ve Bayes sınıflandırma yaklaşımı gibi istatistiksel yöntemler kullanılarak bu sınıflandırma işlemleri gerçekleştirilebilir.

Olasılık

Olasılık ifadesinin birçok kullanım şekli vardır. Rasgele bir A olayının herhangi bir olaydan bağımsız olarak gerçekleşme ihtimalini ifade etmek için P(A) notasyonu kullanılır. A olayının olasılığı olarak bilinen bu ifade "önsel" (prior), "koşulsuz" (unconditional) veya "marjinal" (marginal) olasılık isimleriyle kullanılabilir.

Olasılık

Rasgele bir A olayının, farklı bir rasgele B olayına bağlı gerçekleşmesi ihtimalini ifade etmek için önsel olasılıklar yeterli olmaz. Bu yüzden "koşullu" (conditional) veya "sonsal" (posterior) olasılık kullanılır.

Koşullu Olasılık

Bir olayın gerçekleşmesi bazı koşulların var olmasına bağlı ise "koşullu olasılık" dan söz edilir. A ve B gibi iki bağdaşan olayı göz önüne alalım. Yani A ve B olaylarının ortak noktaları vardır. Bu durum A∩B≠Ø biçiminde ifade edilebilir. A olayı B olayının bilinmesi durumunda gerçekleşecektir. Bilinen bir B olayına göre A olayının koşullu olasılığı P(A|B) biçiminde gösterilir ve şu şekilde ifade edilir:

$$P(A \mid B) = \frac{P(A \cap B)}{P(B)}$$

4

Bayes Sınıflandırıcı

Birbirinden bağımsız ve rasgele iki olayın (A ve B) birbiri ardı sıra gerçekleştiği durumlarda bu iki olaydan birinin gerçekleşmesi durumunda ikinci olayın gerçekleşme olasılığı P(A,B) veya P(B,A) ya da ifadesi ile gösterilebilir. Değişme özelliği sayesinde aşağıdaki çarpım kuralı iki farklı ifade ile yazılabilir.

$$P(A \cap B) = P(A \mid B)P(B)$$

$$P(A \cap B) = P(B \mid A)P(A)$$

Bayes Sınıflandırıcı

$$P(C_j \mid \mathbf{x}) = \frac{p(\mathbf{x} \mid C_j)P(C_j)}{p(\mathbf{x})}$$

: Sınıf j'den bir örneğin x olma olasılığı $p(\mathbf{x}|C_i)$

P(C_j) : Sınıf j'nin ilk olasılığı
 p(x) : Herhangi bir örneğin x olma olasılığı

P(C_i|x): x olan bir örneğin sınıf j'den olma

olasılığı (son olasılık)

Bayes Sınıflandırıcı

$$P(X,C) = P(C|X)*P(X) = P(X|C)*P(C)$$

Sınıf İlk Olasılık

Açıklayıcı Son Olasılık

$$P(C \mid X) = \frac{P(C)P(X \mid C)}{P(X)}$$

Sinif Son Olasilik

Açıklayıcı İlk Olasılık

Bayes Sınıflandırıcı

$$P(C \mid X) = \frac{P(C)P(X \mid C)}{P(X)}$$

$$P(C_1 \mid X) = P(x_1 \mid C_1)P(x_2 \mid C_1)P(x_3 \mid C_1)....P(x_n \mid C_1)\frac{P(C_1)}{P(X)}$$

$$P(C_2 \mid \mathbf{X}) = P(x_1 \mid C_2)P(x_2 \mid C_2)P(x_3 \mid C_2) \dots P(x_n \mid C_2) \frac{P(C_2)}{P(\mathbf{X})}$$

$$P(C_{m} \mid \mathbf{X}) = P(x_{1} \mid C_{m})P(x_{2} \mid C_{m})P(x_{3} \mid C_{m}) \dots P(x_{n} \mid C_{m}) \frac{P(C_{m})}{P(\mathbf{X})}$$

Açıklayıcılar hakkında bağımsız varsayım

İki sınıflı (kanser ve kanser değil) bir tıbbi teşhis problemini ele alalım. Tüm popülasyonun %0.8'nin kanser olduğunu varsayalım. Ayrıca kişilere + (pozitif) ve - (negatif) olmak üzere iki sonucu olan bir laboratuar testi uygulanmış olsun. Test, hastalığın var olduğu durumların %98'inde +, olmadığı durumların ise %97'sinde - sonuçlar üretiyorsa;

$$P(kanser) = 0.008$$
 $P(\neg kanser) = 0.992$
 $P(+ | kanser) = 0.98$ $P(+ | \neg kanser) = 0.03$
 $P(- | kanser) = 0.02$ $P(- | \neg kanser) = 0.97$

 Bu olasılıklara göre laboratuvar sonucu + olan ve kanser şüphesiyle gelen bir kişinin kanser olup olmadığı Bayes Teoremine göre hesaplanırsa aşağıdaki sonuçlar elde edilir;

$$P(kanser | +) = \frac{0.98 \times 0.008}{P(+) = 0.0376} = 0.2085$$
$$P(\neg kanser | +) = \frac{0.03 \times 0.992}{P(+) = 0.0376} = 0.7915$$

 $P(kanser | +) < P(\neg kanser | +)$ olduğu için <u>kanser değildir.</u>

Gün	Hava	Sıcaklık	Nem	Rüzgar	Tenis Oyna
G1	Güneşli	Sıcak	Yüksek	Zayıf	Hayır
G2	Güneşli	Sıcak	Yüksek	Güçlü	Hayır
G3	Bulutlu	Sıcak	Yüksek	Zayıf	Evet
G4	Yağmurlu	Ilık	Yüksek	Zayıf	Evet
G5	Yağmurlu	Serin	Normal	Zayıf	Evet
G6	Yağmurlu	Serin	Normal	Güçlü	Hayır
G7	Bulutlu	Serin	Normal	Zayıf	Evet
G8	Güneşli	Ilık	Yüksek	Zayıf	Hayır
G9	Güneşli	Serin	Normal	Zayıf	Evet
G10	Yağmurlu	Ilık	Normal	Güçlü	Evet
G11	Güneşli	Ilık	Normal	Güçlü	Evet
G12	Bulutlu	Ilık	Yüksek	Güçlü	Evet
G13	Bulutlu	Sıcak	Normal	Zayıf	Evet
G14	Yağmurlu	Ilık	Yüksek	Güçlü	Hayır

P(Evet) = 9/14 **P(Hayır)** = 5/14

Frekans Tabloları

Sıcaklık	I	Hayır	Evet
Sıcak		2	2
llık		2	4
Serin		1	3

Nem	I	Hayır	Evet
Yüksek		4	3
Normal		1	6

Rüzgar	I	Hayır	Evet
Zayıf	1	2	6
Güçlü		3	3

Hava	l	Hayır	Evet
Güneşli	 	3/5	2/9
Bulutlu	 	0/5	4/9
Yağmurlı	۱	2/5	3/9

Sıcaklık	I	Hayır	Evet
Sıcak	I	2/5	2/9
llık	ı	2/5	4/9
Serin	1	1/5	3/9

Nem	I	Hayır	Evet
Yüksek		4/5	3/9
Normal		1/5	6/9

Rüzgar	١	Hayır	Evet
Zayıf		2/5	6/9
Güçlü		3/5	3/9

Olasılık Tabloları

Hava	Sıcaklık	Nem	Rüzgar	Oyna
Güneşli	Serin	Yüksek	Güçlü	Hayır

Sınıf?

 $P(Evet|X) = p(Güneşli|Evet) \times p(Serin|Evet) \times p(Yüksek|Evet) \times p(Güçlü|Evet) \times p(Evet)$

 $= 2/9 \times 3/9 \times 3/9 \times 3/9 \times 9/14 = 0.0053 => 0.0053/(0.0053+0.0206) = 0.205$

P(Hayır|X) = p(Güneşli|Hayır) x p(Serin|Hayır) x p(Yüksek|Hayır) x p(Güçlü|Hayır) x p(Hayır)

 $= 3/5 \times 1/5 \times 4/5 \times 3/5 \times 5/14 = 0.0206 = 0.0206 + (0.0053 + 0.0206) = 0.795$

Hava	I	Hayır	Evet
Güneşli	I	3/5	2/9
Bulutlu	I	0/5	4/9
Yağmurlı	1	2/5	3/9

	$\overline{}$		
Sicaklik	1	Hayır	Evet
Sıcak		2/5	2/9
llık	V	2/5	4/9
Serin	I	1/5	3/9

Nem	\nearrow	Hayır	Evet
Yüksek	ľ	4/5	3/9
Normal		1/5	6/9

Rüzgar	Hayır	Evet
Zayıf	2/5	6/9
Güçlü	3/5	3/9

Sıfır Olasılık Sorunu

Bayes formülü, özelliklere ait koşullu olasılıkların çarpımı şeklinde düzenlenirken bir özellik vektöründe çözümü aranan değere rastlanmaması durumunda genel sonucu etkileyecek bir sıfır olasılık üretilir. Diğer özellik olasılıklarının büyük olduğu durumlarda sıfır olasılıklı özellik genel sonucu etkiler. Bunu engellemek için olasılıklar sıfır olamayacak şekilde tekrar organize edilir.

Sıfır Olasılık Sorunu

Eğer bir açıklayıcı değeri her sınıf değerinde bulunmuyorsa ne olur?

Çözüm: Her açıklayıcı sınıf kombinasyonu için sayıya
 1 (bir) ekle (Laplace Estimator)

Sıcaklık	I	Hayır	Evet
Sıcak	I	2+1	2+1
llık	I	2+1	4+1
Serin	I	1+1	3+1

Nem		Hayır	Evet
Yüksek	I	4+1	3+1
Normal		1+1	6+1

Rüzgar	١	Hayır	Evet
Zayıf	1	2+1	6+1
Güçlü		3+1	3+1

Nümerik Değerler

Bayes Teoremi yalnızca kategorik veri özelliklerinde kullanılabilmektedir. Nümerik değerlere sahip özelliklere uygulayabilmek için ilgili özellik uzayında örneklerin Gauss (normal) Dağılımına sahip olduğu varsayılır. Aranan olasılık değeri, özellik vektörünün ortalaması μ ve standart sapması σ değerine bağlı aşağıdaki dağılım formülü ile hesaplanır.

$$P(v) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{1}{2}\left(\frac{v-\mu}{\sigma}\right)^2}$$

$$\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$$
 $\sigma = \sqrt{\frac{1}{n} \sum_{i=1}^{n} (x_i - \bar{x})^2}$ $\sigma = \sqrt{\frac{1}{n} \sum_{i=1}^{n} (x_i - \bar{x})^2}$ $\sigma = \sqrt{\frac{1}{n} \sum_{i=1}^{n} (x_i - \bar{x})^2}$ $\sigma = \sqrt{\frac{1}{n} \sum_{i=1}^{n} (x_i - \bar{x})^2}$

e = exponential fonksiyon

μ = verilen nümerik nitelik için sınıf ortalaması

 σ = nitelik için sınıf standart sapması

V ₁	V ₂	V ₃	V ₄	Yaş	Cinsiyet
Evet	Hayır	Evet	Hayır	38	k
Evet	Evet	Evet	Hayır	40	k
Evet	Evet	Evet	Hayır	41	k
Hayır	Hayır	Hayır	Hayır	55	k
Hayır	Evet	Hayır	Hayır	27	е
Evet	Evet	Evet	Evet	30	е
Evet	Hayır	Evet	Evet	35	е
Hayır	Hayır	Hayır	Hayır	42	е
Evet	Hayır	Hayır	Hayır	43	е
Evet	Hayır	Hayır	Hayır	45	е

$$V_1$$
 = Evet, V_2 = Evet,
 V_3 = Hayır, V_4 = Hayır, Yaş = 45
için Cinsiyet = ?

Yaş özelliği nümeriktir. Normal dağılıma sahip olduğu varsayılarak olasılıkları hesaplanır.

4

Bayes Sınıflandırıcı - Örnek

k
k
k
k
е
е
е
е
е
е

P(Yaş | Cinsiyet=k) için
$$\mu$$
=43.5 ve σ =7.77 P(Yaş | Cinsiyet=e) için μ =37 ve σ =7.46

Normal dağılıma göre;

$$P(Yaş=45 | Cinsiyet=k) = 0.0504 \sim 5/100$$

 $P(Yaş=45 | Cinsiyet=e) = 0.0301 \sim 3/100$

bulunur.

V ₁	V ₂	V ₃	V ₄	Yaş	Cinsiyet
Evet	Hayır	Evet	Hayır	38	k
Evet	Evet	Evet	Hayır	40	k
Evet	Evet	Evet	Hayır	41	k
Hayır	Hayır	Hayır	Hayır	55	k
Hayır	Evet	Hayır	Hayır	27	е
Evet	Evet	Evet	Evet	30	е
Evet	Hayır	Evet	Evet	35	е
Hayır	Hayır	Hayır	Hayır	42	е
Evet	Hayır	Hayır	Hayır	43	е
Evet	Hayır	Hayır	Hayır	45	е

P(C | Evet,Evet,Hayır,Hayır,45) = ?

$$P(C = e \mid v_1, v_2, v_3, v_4, Yaş) = \frac{3}{5} \left(\frac{2}{3} \frac{1}{3} \frac{2}{3} \frac{2}{3} \frac{3}{100} \right) \cong 0.0018$$

$$P(C = k \mid v_1, v_2, v_3, v_4, Yaş) = \frac{2}{5} \left(\frac{3}{4} \frac{1}{2} \frac{1}{4} \frac{1}{100} \right) \cong 0.0019$$

Sonuçlara göre hedef sınıf "k" bulunur.

age	income	student	credit_rating	buys_computer
				<u> </u>
<=30	high	no	fair	no
<=30	high	no	excellent	no
3140	high	no	fair	yes
>40	medium	no	fair	yes
>40	low	yes	fair	yes
>40	low	yes	excellent	no
3140	low	yes	excellent	yes
<=30	medium	no	fair	no
<=30	low	yes	fair	yes
>40	medium	yes	fair	yes
<=30	medium	yes	excellent	yes
3140	medium	no	excellent	yes
3140	high	yes	fair	yes
>40	medium	no	excellent	no

Sinif:

C1:buys_computer = 'yes'

C2:buys_computer = 'no'

Sınıflandırılacak veri:

X = (age <= 30,

Income = medium,

Student = yes

Credit_rating = Fair)

- $P(C_i)$: $P(buys_computer = "yes") = 9/14 = 0.643$ $<math>P(buys_computer = "no") = 5/14 = 0.357$
- Her sınıf için P(X|C_i) hesapla

$$P(age = "<=30" | buys_computer = "yes") = 2/9 = 0.222$$

$$P(age = "<= 30" | buys_computer = "no") = 3/5 = 0.6$$

P(income = "medium" | buys_computer = "yes") =
$$4/9 = 0.444$$

P(income = "medium" | buys_computer = "no") =
$$2/5 = 0.4$$

$$P(student = "yes" | buys_computer = "yes) = 6/9 = 0.667$$

P(student = "yes" | buys computer = "no") =
$$1/5 = 0.2$$

X = (age <= 30, income = medium, student = yes, credit_rating = fair)</p>

$$P(X|C_i)$$
: $P(X|buys_computer = "yes") = 0.222 x 0.444 x 0.667 x 0.667 = 0.044 $P(X|buys_computer = "no") = 0.6 x 0.4 x 0.2 x 0.4 = 0.019$$

$$P(X|C_i)*P(C_i): P(X|buys_computer = "yes") * P(buys_computer = "yes") = 0.028$$

 $P(X|buys_computer = "no") * P(buys_computer = "no") = 0.007$

Böylece, X ("buys_computer = yes") sınıfına aittir.

age	income	student	credit_rating	buys_computer
<=30	high	no	fair	no
<=30	high	no	excellent	no
3140	high	no	fair	yes
>40	medium	no	fair	yes
>40	low	yes	fair	yes
>40	low	yes	excellent	no
3140	low	yes	excellent	yes
<=30	medium	no	fair	no
<=30	low	yes	fair	yes
>40	medium	yes	fair	yes
<=30	medium	yes	excellent	yes
3140	medium	no	excellent	yes
3140	high	yes	fair	yes
>40	medium	no	excellent	no

- Yapay sinir ağları biyolojik sinir ağlarından esinlenilerek geliştirilmiş bir bilgi işleme sistemidir.
- Birbiriyle bağlantılı katmanlardan oluşur.
- Katmanlar arasındaki iletim nöronlar arasındaki bağlantıların ağırlığına ve her hücrenin değerine bağlı olarak değişebilir.

X ₁	X_2	X ₃	Υ
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1
0	0	1	0
0	1	0	0
0	1	1	1
0	0	0	0

En az iki giriş 1 ise çıkış 1, diğer durumlarda çıkış 0

X ₁	X ₂	X ₃	Υ
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1
0	0	1	0
0	1	0	0
0	1	1	1
0	0	0	0

$$Y = I(0.3X_1 + 0.3X_2 + 0.3X_3 - 0.4 > 0)$$

$$I(z) = \begin{cases} 1 \text{ eğer z} > 0 \\ 0 \text{ diğer} \end{cases}$$

- Birbiri ile bağlantılı nöronlar ve ağırlıklar
- Çıkış nöronu kendisine gelen girişleri ağırlıklı olarak topluyor
- Çıkış nöronu bir eşik değeri ile karşılaştırılıyor

$$Y = I(\sum_{i} w_{i} X_{i} - t)$$

$$Y = sign(\sum_{i} w_{i} X_{i} - t)$$

Yapay Sinir Ağı ile Öğrenme

- Yapay sinir ağı oluşturma
 - giriş verisini modelleme
 - gizli katman sayısını, gizli katmanlardaki nöron sayısını belirleme
- Yapay sinir ağını eğitme
- Sinir ağını küçültme
- Sonucu yorumlama

Yapay Sinir Ağını Oluşturma

- Giriş nöron sayısı
 - Öğrenme kümesindeki verilerin nitelik sayısı
- Gizli nöron sayısı
 - öğrenme sırasında ayarlanır
- Çıkış nöron sayısı
 - sınıf sayısı

Yapay Sinir Ağını Eğitme

- Amaç: Veri kümesindeki örneklerin hepsini doğru sınıflandıracak ağırlıkları belirlemek
 - ağırlıklara rasgele değerler ata
 - öğrenme kümesindeki giriş değerlerini teker teker sinir ağına uygula
 - çıkışı hesapla
 - hata değerini hesapla $E = \sum_{i} [Y_i f(w_i, X_i)]^2$
 - ağırlıkları hata fonksiyonunu en küçültecek şekilde düzelt

Yapay Sinir Ağını Küçültme

- Tam bağlı ağın anlaşılması çok güç
- n giriş nöron, h gizli nöron, m çıkış nöronu h(m+n) ağırlık
- Küçültme: ağırlıklardan bazıları sınıflandırma sonucunu etkilemeyecek şekilde silinir

Yapay Sinir Ağı - Perceptron

• θ_i değerleri x girdilerine bağlı olarak toplam üzerinde sınırlı bir etkiye sahiptir. X girdileri değiştirilemeyeceği için bias değerinin değişimi toplamın değişimini sağlayacaktır.

- 1 Her bir girdi değerine karşılık gelen ağırlık değerlerinin (θ) rastgele belirlenmesi.
- Girdi değerlerine ait i'inci eğitim örneği $x_j^{(i)}$ seçilmesi.
- 3 Ağın çıktısının hesaplanması.
- 4 Ağın ürettiği hatanın hesaplanması. $y^{(i)}$, gerçek çıktı değeri ve $h_{\theta}(x^{(i)})$, ağın tahmin ettiği değer olmak üzere; $Hata(E) = y^{(i)} h_{\theta}(x^{(i)})$
- Ağırlıkların aşağıdaki kurala göre güncellenmesi; $(\gamma, \text{ \"ogrenme oranı})$ $\theta = \begin{cases} \theta, & \textit{E\"ger } E = 0 \\ \theta + \gamma . E . x_j^{(i)}, & \textit{E\'ger } E = 1 \\ \theta \gamma . E . x_j^{(i)}, & \textit{E\'ger } E = -1 \end{cases}$
- 6 Adım 2'ye dönülür. (Adım 2 ve adım 6 arasındaki döngü, algoritmanın tüm girdileri için doğru çıktının sağlandığı iterasyona ulaşılana dek devam eder.)

b	x_1	x_2	<i>x</i> ₃	у
-1	1	-1	0	1
-1	-1	0	2	0
-1	0	-2	3	1

Eğitim gerçekleştirilirken $\gamma = 0.5$ ve başlangıç ağırlıkları ise $\theta = [\mathbf{0.6} \ 0.6 \ 0.6 \ 0.6]$ olarak rastgele belirlenmiştir.

iterasyon 1: 1. Eğitim Örneği

b	x1	X2	X3	y
-1	1	-1	0	1
-1	-1	0	2	0
-1	0	-2	3	1

Adım 1. Başlangıç ağırlıklarının belirlenmesi $\theta = [\mathbf{0}.\mathbf{6}\ 0.6\ 0.6\ 0.6]$

Adım 2. Girdi setindeki örneğin alınması $x_i^{(1)} = [-1 \ 1 \ -1 \ 0]$

Adım 3. Ağın çıktısının hesaplanması

$$u = (0.6)(-1) + (0.6)(1) + (0.6)(-1) + (0.6)(0) = -0.6$$

$$h_{\theta}(x^{(i)}) = f(-0.6) = 0$$

Adım 4. Ağın ürettiği hatanın hesaplanması

$$Hata(E) = y^{(i)} - h_{\theta}(x^{(i)}) = 1 - 0 = 1$$

Adım 5. Ağırlıkların güncellenmesi

Hata=1 olduğu için;

$$\theta_b = \theta_b + \gamma E b$$
 $\theta_b = 0.6 + (0.5)(1)(-1) = 0.1$

$$\theta_2 = \theta_2 + \gamma E x_2^{(1)}$$

 $\theta_2 = 0.6 + (0.5)(1)(-1) = 0.1$

$$\theta_1 = \theta_1 + \gamma E x_1^{(1)}$$

 $\theta_1 = 0.6 + (0.5)(1)(1) = 1.1$

$$\theta_3 = \theta_3 + \gamma E x_3^{(1)}$$

 $\theta_3 = 0.6 + (0.5)(1)(0) = 0.6$

Birinci eğitim örneğinin ağırlıklarının güncellenmiş hali $\theta = [\mathbf{0}. \, \mathbf{1} \, 1.1 \, 0.1 \, 0.6]$

iterasyon 1: 2. Eğitim Örneği

b	x1	x2	x3	у
-1	1	-1	0	1
-1	-1	0	2	0
-1	0	-2	3	1

Adım 1. Başlangıç ağırlıklarının belirlenmesi $\theta = [\mathbf{0}. \mathbf{1} \ 1.1 \ 0.1 \ 0.6]$

Adım 2. Girdi setindeki örneğin alınması $x_j^{(2)} = [-1 -1 \ 0 \ 2]$

Adım 3. Ağın çıktısının hesaplanması

$$u = (0.1)(-1) + (1.1)(-1) + (0.1)(0) + (0.6)(2) = 0$$

$$h_{\theta}\big(x^{(i)}\big) = f(0) = 1$$

Adım 4. Ağın ürettiği hatanın hesaplanması

$$Hata(E) = y^{(i)} - h_{\theta}(x^{(i)}) = 0 - 1 = -1$$

Adım 5. Ağırlıkların güncellenmesi

Hata=-1 olduğu için;

$$\theta_b = \theta_b - \gamma E b$$
 $\theta_b = 0.1 - (0.5)(-1)(-1) = -0.4$

$$\theta_2 = \theta_2 - \gamma E x_2^{(1)}$$

 $\theta_2 = 0.1 - (0.5)(-1)(0) = 0.1$

$$\theta_1 = \theta_1 - \gamma E x_1^{(1)}$$

 $\theta_1 = 1.1 - (0.5)(-1)(-1) = 0.6$

$$\theta_3 = \theta_3 - \gamma E x_3^{(1)}$$

 $\theta_3 = 0.6 - (0.5)(-1)(2) = 1.6$

İkinci eğitim örneğinin ağırlıklarının güncellenmiş hali $\theta = [-\mathbf{0}.\mathbf{4}\ 0.6\ 0.1\ 1.6]$

iterasyon 1: 3. Eğitim Örneği

Ь	x_1	x2	<i>x</i> ₃	y.
-1	1	-1	0	1
-1	-1	0	2	0
-1	0	-2	3	1

Adım 1. Başlangıç ağırlıklarının belirlenmesi $\theta = [-0.4 \ 0.6 \ 0.1 \ 1.6]$

Adım 2. Girdi setindeki örneğin alınması $x_j^{(2)} = [-1 \ 0 \ -2 \ 3]$

Adım 3. Ağın çıktısının hesaplanması

$$u = (-0.4)(-1) + (0.6)(0) + (0.1)(-2) + (1.6)(3) = 5.0$$

$$h_{\theta}\big(x^{(i)}\big) = f(5) = 1$$

Adım 4. Ağın ürettiği hatanın hesaplanması

$$Hata(E) = y^{(i)} - h_{\theta}(x^{(i)}) = 1 - 1 = 0$$

Adım 5. Ağırlıkların güncellenmesi Hata=0 olduğu için güncelleme yapılmaz.

$$\theta = [-0.4 \ 0.6 \ 0.1 \ 1.6]$$

Adım 6. Adım 2'ye dönülür.

Bu ağırlıklar artık ikinci iterasyonun ilk eğitim örneği için kullanılacaktır.

İlk iterasyona ait sonuçlar

İter.	Girdiler				Çıktı	Ağırlıklar			Toplam	Akt F.	Hata	Ağırlık Güncelleme	Durum	
	b	X_1	X_2	X3	у	θ_b	θ_1	θ_2	θ_3	$u = \sum$	f(S)	y - f(u)		
	-1	1	-1	0	1	0.6	0.6	0.6	0.6	-0.6	0	1	$\theta = \theta + \gamma E x_i^{(i)}$	-
1	-1	-1	0	2	0	0.1	1.1	0.1	0.6	0	1	-1	$\theta = \theta - \gamma E x_i^{(t)}$	
	-1	0	-2	3	1	-0.4	0.6	0.1	1.6	5	1	0	θ	+

Hepsinin + olmasını istiyoruz.

Onuncu iterasyonda tüm örneklerin doğru tahmin edildiği varsayılsın. Bu aşamadan sonra ne yapılmalı?

En son elde edilen ağırlık değerleri kullanılarak doğrusal modelin denkleminin oluşturulması

$$y = h_{\theta}(x) = b + \theta_1 x_1 + \theta_2 x_2 + \theta_3 x_3$$

- Avantajları
 - doğru sınıflandırma oranı genelde yüksek
 - kararlı öğrenme kümesinde hata olduğu durumda da çalışıyor
 - çıkış ayrık, sürekli ya da ayrık veya sürekli değişkenlerden oluşan bir vektör olabilir
- Dezavantajları
 - öğrenme süresi uzun
 - öğrenilen fonksiyonun anlaşılması zor