Quantizzazione semiclassica dei livelli vibrazionali di una molecola biatomica

Edoardo Battiti, Marco Chiloiro, Francesco Musso

26 marzo 2020

1 Introduzione

Nel corso di questa esperienza analizziamo gli autostati legati di 3 molecole biatomiche (rispettivamente di H_2 , HO, O_2) descritti secondo il modello di Lennard-Jones.

2 Descrizione Fisica del problema

Una molecola biatomica può essere descritta dal potenziale di Lennard-Jones: esso è caratterizzato da una forte repulsività, che si verifica quando la distanza tra i due atomi scende sotto la somma dei due raggi delle sfere con cui li approssimiamo, e tende a 0 quando la distanza tende all'infinito. Questo potenziale è riassunto dalla formula

$$v(r) = 4\epsilon \left[\left(\frac{\sigma}{r} \right)^{12} - \left(\frac{\sigma}{r} \right)^{6} \right]$$

dove ϵ rappresenta il valore minimo di energia, che si trova per la distanza $r=2^{1/6}\sigma$.

L'obiettivo del nostro lavoro è trovare i livelli energetici delle date molecole utilizzando l'approssimazione semiclassica di Sommerfeld per la quale possiamo assumere che l'azione S(E), definita come $S(E) = \int_{r_{in}}^{r_{out}} p(r) dr$ sia quantizzata secondo $S(E_n) = \pi(n+1/2)\hbar$, dove r_{in} e r_{out} sono i punti di inversione classici del sistema, per i quali $v(r_{in}) = v(r_{out}) = E$.

Infine possiamo riscrivere la relazione tra momento e posizione utilizzando la relazione tra il vettore d'onda k e il momento $p = \hbar k$ e la definizione classica dell'energia come somma di energia cinetica e potenziale:

$$E = \frac{\hbar^2 k^2}{2m} + v(r) \to k(r) = \sqrt{\frac{2m(E - v(r))}{\hbar^2}}$$

Unendo queste assunzioni giungiamo quindi all'espressione

$$S(E_n) = \int_{r_{in}}^{r_{out}} p(r)dr = \int_{r_{in}}^{r_{out}} dr \sqrt{2m(E - v(r))} = \pi(n + \frac{1}{2})\hbar$$

Questa condizione si riduce a trovare gli zeri della funzione:

$$F(E,n) = \int_{r_{in}}^{r_{out}} dr \sqrt{2m(E - v(r))} - \pi(n + \frac{1}{2})\hbar$$

Se ora esplicitiamo il potenziale e operiamo le sostituzioni $x=\frac{r}{\sigma}, \ \tilde{E}=\frac{E}{\epsilon}$ e $\gamma=\left(\frac{2m}{\hbar^2}\epsilon\sigma^2\right)^{1/2}$ ci riconduciamo all'espressione:

$$F(\tilde{E}, n) = \int_{x_{in}}^{x_{out}} \gamma \sqrt{\tilde{E} - 4\left(\frac{1}{x^{12}} - \frac{1}{x^6}\right)} dx - \pi(n + \frac{1}{2})$$

Cerchiamo gli zeri per 3 diversi valori di γ : rispettivamente $\gamma_{\rm H_2}=21.7,$ $\gamma_{\rm HO}=24.8,$ $\gamma_{\rm O_2}=150.$

3 Algoritmo utilizzato

Per ogni valore di n, partendo dal valore di $\tilde{E}_0 = \tilde{E}_{n-1}$ ricavato per il valore di n precedente ($\tilde{E}_0 = -1$ nel caso iniziale con n = 0) e dal valore $\tilde{E} = \tilde{E}_0 + 10^{-5}$, calcoliamo $F(\tilde{E}_0, n)$ e $F(\tilde{E}, n)$.

Ottenuti questi valori possiamo eseguire il primo passaggio del metodo delle secanti:

$$E = E - F(E) \frac{E - E_0}{F(E) - F(E_0)}$$

dove la tilde e n sono stati omessi per alleggerire la notazione. Operiamo ricorsivamente il metodo delle secanti, ponendo come E_0 il valore considerato come E nel passaggio precedente. L'algoritmo si ferma, per ogni n, quando la differenza di energia tra un passaggio e l'altro risulta minore di una soglia da noi arbitrariamente scelta pari a 10^{-7} .

L'algoritmo termina definitivamente quando con un passaggio del metodo delle secanti si ottiene un valore di E>0, in quanto la fisica del problema richiede che l'energia sia minore di zero.

Per calcolare il valore di F(E,n) l'algoritmo calcola analiticamente, invertendo la funzione V(x) - E, i valori di x_{in} e x_{out} e con la formula di Simpson cubica stima il valore di integrale di azione.

4 Risultati

Per quanto riguarda la molecola di H_2 , caratterizzata da $\gamma_{H_2}=24.1$ abbiamo ottenuto 4 livelli di energia, riportati nella seguente tabella e raffigurati in Figura 1.

H_2	\tilde{E}	$F(E_N)$
E_0	-0.772449	-1.90579e-11
E_1	-0.422638	-3.21272e-11
E_2	-0.195576	-1.28243e-10
E_3	-0.0677386	1.73767e-10

Figura 1: Livelli energetici ${\rm H}_2$

Per quanto riguarda la molecola di HO, caratterizzata da $\gamma_{\rm H_2}=24.8$ abbiamo ottenuto 5 livelli di energia, riportati nella seguente tabella e raffigurati in Figura 2.

НО	$ ilde{E}$	$F(E_N)$
E_0	-0.793458	-6.64646e-12
E_1	-0.466558	8.67821e-11
E_2	-0.241864	-9.59579e-11
E_3	-0.102624	-8.01794e-11
E_4	-0.0301276	7.1168e-11

Figura 2: Livelli energetici HO

Per quanto riguarda la molecola di O_2 , caratterizzata da $\gamma_{\rm H_2}=150$ abbiamo ottenuto 38 livelli di energia, riportati nella seguente tabella e raffigurati in Figura 3.

O_2	Е	$F(E_N)$
E_0	-0.964765	-3.75187e-11
E_1	-0.896672	-1.18749e-12
E_2	-0.831705	-4.80185e-11
E_3	-0.769803	-8.56684e-11
E_4	-0.710908	1.24619e-10
E_5	-0.65496	1.29308e-10
E_6	-0.601898	5.22885e-10
E_7	-0.551659	-3.42624e-11
E_8	-0.504182	3.13705e-11
E_9	-0.4594	-1.34001e-10
E_{10}	-0.41725	-1.912e-10
E_{11}	-0.377665	-2.34145e-10
E_{12}	-0.340576	-3.44613e-12
E_{13}	-0.305916	5.48319e-10
E_{14}	-0.273614	9.3555e-10
E_{15}	-0.243599	1.10128e-09
E_{16}	-0.215798	8.20989e-10
E_{17}	-0.190138	5.2033e-10
E_{18}	-0.166543	-2.49557e-10
E_{19}	-0.144937	9.90283e-11
E_{20}	-0.125242	1.37348e-10
E_{21}	-0.107379	6.25249e-10
E_{22}	-0.0912655	-4.01101e-10
E_{23}	-0.0768208	8.04008e-10
E_{24}	-0.063961	1.32459e-10
E_{25}	-0.0526007	-1.0925e-09
E_{26}	-0.0426534	2.31869e-09
E_{27}	-0.0340311	1.68598e-10
E_{28}	-0.0266442	3.99467e-10
E_{29}	-0.0204018	7.79821e-10
E_{30}	-0.0152117	-5.22647e-10
E_{31}	-0.0109801	3.22096e-09
E_{32}	-0.00761211	-3.07217e-09
E_{33}	-0.00501152	-3.37054e-09
E_{34}	-0.00308099	-7.064e-09
E_{35}	-0.00172213	-8.15223e-08
E_{36}	-0.000835576	7.22919e-09
E_{37}	-0.000321157	-3.1054e-07

Figura 3: Livelli energetici O_2

5 Problemi riscontrati

Per quanto riguarda la ricerca dei parametri x_{in} e x_{out} abbiamo utilizzato il metodo analitico, poiché abbiamo riscontrato difficoltà nell'utilizzare il metodo di Newton-Raphson: il nostro algoritmo partiva dalla posizione del minimo di energia, alla quale aggiungevamo un incremento infinitesimale positivo oppure negativo, rispettivamente per la ricerca di x_{in} e x_{out} . Successivamente però restituiva lo stesso valore per entrambi. Associamo questo problema alla forma del potenziale: nel caso dell'incremento positivo infatti il metodo delle tangenti porta a una situazione in cui la tangente si annulla in un punto di valore minore rispetto a quello relativo al minimo di energia e porta allo stesso valore di x_{in} . Un altro problema riscontrato risiede nel fatto che alle volte la tangente si annulla in un punto di valore negativo, dato dal fatto che il potenziale presenti in realtà 4 zeri (2 positivi e 2 negativi).