

AlphaSyn: Logic Synthesis Optimization with Efficient Monte Carlo Tree Search

Zehua Pei¹, Fangzhou Liu², Zhuolun He¹, Guojin Chen¹, Haisheng Zheng², Keren Zhu¹, **Bei Yu**¹

¹ The Chinese University of Hong Kong

² Shanghai Artificial Intelligence Laboratory

Outline

1 Introduction

2 Framework

3 Experiments

Introduction

Logic synthesis with Transformation Recipe

- **Transformation recipe** is a sequence of synthesis transformations, which is iteratively applied to the logic network.
- Optimality gap happens when the recipe is applied to different designs!
- Better transformation recipe enables better optimization!

```
alias resyn "b; rw; rwz; b; rwz; b"

alias resyn2 "b; rw; rw; b; rfz; rwz; b"

alias resyn3 "b; rw; rwz; b; rwz; b"

alias resyn3 "b; rs; rs -K 6; b; rsz; rsz -K 6; b; rsz -K 5; b"

alias compress "b -l; rw -l; rwz -l; b -l; r
```

Recipe in ABC.1

Previous solutions

Classification & Prediction

Classify or predict the final Quality-of-Result (QoR) of synthesis sequences.²

- A large dataset is required for training and evaluation.
- The accuracy is limited and uncertain.

QoR prediction.³

²Cunxi Yu, Houping Xiao, and Giovanni De Micheli (2018). "Developing synthesis flows without human knowledge". In: *Proceedings of the 55th Annual Design Automation Conference*, pp. 1–6.

³Nan Wu et al. (2022). "Hybrid graph models for logic optimization via spatio-temporal information". In: *arXiv preprint arXiv:2201.08455*.

Previous solutions (cont'd)

Sequence Generation

Generate the sequence with specific optimization objectives by reinforcement learning (RL)⁴, Bayesian optimization (BO)⁵ or with heuristics.

- RL and BO based methods are lack of enough exploration by performing in a
 "forward" process, where the sequence is generated as trajectory and evaluated as a
 whole.
- The methods with heuristics always explore in the **reduced search space**, which results in local optimum.

⁴Keren Zhu et al. (2020). "Exploring logic optimizations with reinforcement learning and graph convolutional network". In: *Proceedings of the 2020 ACM/IEEE Workshop on Machine Learning for CAD*, pp. 145–150.

⁵Walter Lau Neto et al. (2022). "FlowTune: End-to-end Automatic Logic Optimization Exploration via Domain-specific Multi-armed Bandit". In: *IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems*.

Our solution

Decision-making with search tree

Exploring the logic optimization sequences by constructing a search tree, and making decision with the tree statistics.

- The performance of actions in different stages are aware, and hence balancing the act between **pushing forward and going back**.
- The **statistics** summarized from the search tree is informative and convincing for the final decision.

Search Tree and forward search.

Framework

Framework Overview

- Customized MCTS.
- Stable Learning Strategies.
- Acceleration for MCTS.

Overview of AlphaSyn.

Selection

SynUCT:

$$a^{t} = \arg\max_{a \in \mathcal{A}} (Q^{t,a} + R^{t,a} + U^{t,a}). \tag{1}$$

 $Q^{t,a}$: long-term return. $R^{t,a}$: immediate reward. $U^{t,a}$: balance mechanism:

$$U^{t,a} = c_{puct} \cdot P^{t,a} \cdot \frac{\sqrt{N^t}}{N^{t,a} + 1}.$$
 (2)

Selection in the customized MCTS.

Expansion & Evaluation

Define the **reward** $R^{\mathcal{T}}$:

$$R^{\mathcal{T}} = \operatorname{sgn}(O^{\mathcal{T}-1} - O^{\mathcal{T}}) \cdot \sqrt{\frac{|O^{\mathcal{T}-1} - O^{\mathcal{T}}|}{baseline}}.$$
 (3)

Multi-objectives reward:

$$R^{\mathcal{T}} = (1 - \beta) \cdot R_1^{\mathcal{T}} + \beta \cdot R_2^{\mathcal{T}}. \tag{4}$$

Then new nodes are **expanded** with initial statistics:

$$\{N^{\mathcal{T},a} = 0, Q^{\mathcal{T},a} = 0, P^{\mathcal{T},a} = p^{\mathcal{T},a}\}.$$
 (5)

Backpropagation

Update the node visit count:

$$N^t \leftarrow N^t + 1.$$
 (6)

Update the long-term return Q^t , all t < T:

$$Q^t \longleftarrow \lambda \cdot \max_{a \in \mathcal{A}} (Q^{t,a} + R^{t,a}). \tag{7}$$

The **exploration-exploitation** trade-off:

- Accumulated *Q* prioritizes the exploration in the **shallow levels**.
- **Deeper exploitation** is also encouraged in promising directions.

Decision Making

Take action T_i depends on the statistics:

Decision making in AlphaSyn.

Data Collection and Training

Collecting data via *self-syn*, the accumulated Q and exponential distribution of (Q+R) are stored:

$$\pi^{0,a} = \frac{(Q^{0,a} + R^{0,a})^{1/\kappa}}{\sum_{b \in A} (Q^{0,b} + R^{0,b})^{1/\kappa}}.$$
(9)

Input and Output of the model PQnet (f_{θ}):

$$(\mathbf{p}^{\mathcal{T}}, Q_{es}^{\mathcal{T}}) = f_{\theta}(s_i^{\mathcal{T}}, a_i^{\mathcal{T}-1}, (\mathcal{T}-1)+i).$$
 (10)

Loss function:

$$L_{\text{total}} = L_{\text{CE}}(p^0, \pi^0) + L_{\text{MSE}}(Q_{es}^0, Q^0). \tag{11}$$

Network Architecture

We design the PQnet based on SAGEConv⁶ and the self-attention pooling SAGPool⁷.

The overview of PQnet.

⁶Will Hamilton, Zhitao Ying, and Jure Leskovec (2017). "Inductive representation learning on large graphs". In: *Advances in neural information processing systems* 30.

⁷Junhyun Lee, Inyeop Lee, and Jaewoo Kang (2019). "Self-attention graph pooling". In: *International conference on machine learning*. PMLR, pp. 3734–3743.

Asynchronous Parallelization

Conditional path-blocking-releasing Asynchronous Parallelization, Par-SynUCT:

$$a_{par}^{t} = \arg\max_{a \in A} (Q^{t,a} + R^{t,a} + U^{t,a} + B^{t,a}).$$
(12)

Based on conditions on the tree branch, Par-SynUCT acts differently:

- When no thread is selecting: tree branch is accessed.
- When a thread is selecting: tree branch is blocked and unaccessed.
- After selecting: tree branch is released.

Experiments

Logic Optimization

Table: Comparison with FlowTune⁸ for logic optimization. Comparison with MLCAD'20⁹ and ICCAD'21¹⁰ for logic optimization.

									9	10	AlphaS	yn w/o nn	AlphaSyn w/ nn		
	Flowtune AlphaSyn w/o nn			AlphaSyn w/ nn			Design	#N	#N	#ĪN	rt (s)	#ÎN	#N	rt (s)	
Design	#N	rt (s)	#N	rt (s)	#ÎN	#N	rt (s)	C1355	386.2	386	386	19.24	386	386	360.93
bfly	22740	495.81	22619.9	223.60	22381	22582.7	537.39	C6288	1870	1870	1870	24.35	1870	1870	454.89
dscg	22258	482.35	22225.2	210.20	22000	22155.9	557.09	C5315	1337.4	1315	1291.2	20.87	1287	1289.4	450.44
fir	21807	488.67	21611.6	211.40	21544	21591.5	543.77	dalu	1039.8	1085	1008.4	21.22	1007	1008.4	475.94
ode	13038	260.16	12935.9	112.98	12736	12768.7	472.55	k2	1128.4	1137	1045.9	22.66	1035	1041.3	451.69
or1200	10316	118.80	10266.9	74.16	10194	10195.2	420.02	mainpla	3438.4	3461	3406.3	24.81	3386	3390.2	462.66
syn2	23633	504.19	23547.1	242.00	23233	23535.7	587.01	apex1	1921.6	1885	1892	22.89	1881	1883	453.62
Average	18965.3	391.66	18867.8	179.06	18689.5	18805.0	519.64	bc0	819.4	831	803.2	23.14	795	798	464.43
Ratio	1.000	1.000	0.995	0.457	0.985	0.992	1.327	Average	1492.7	1496.3	1462.9	22.40	1455.88	1458.3	446.83
								Ratio	1.000	1.002	0.980	-	0.975	0.977	-

⁸Walter Lau Neto et al. (2022). "FlowTune: End-to-end Automatic Logic Optimization Exploration via Domain-specific Multi-armed Bandit". In: *IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems*.

¹⁰Yasasvi V Peruvemba et al. (2021). "RL-guided runtime-constrained heuristic exploration for logic synthesis". In: 2021 IEEE/ACM International Conference On Computer Aided Design (ICCAD). IEEE, pp. 1–9.

⁹Keren Zhu et al. (2020). "Exploring logic optimizations with reinforcement learning and graph convolutional network". In: *Proceedings of the 2020 ACM/IEEE Workshop on Machine Learning for CAD*, pp. 145–150.

Standard-cell Technology Mapping

Table: Comparison with FlowTune 11 for technology mapping on Nangate 45nm library and ASAP 7nm library.

	Flowtune		AlphaSyn w/o nn		AlphaSyn w/ nn				Flowtune		AlphaSyn w/o nn		AlphaSyn w/ nn		
Design	Area	rt	Area	rt	Area	Area	rt	Design	Area	rt	Area	r̄t	Area	Area	rt
	(μm^2)	(s)	(μm^2)	(s)	(μm^2)	(μm^2)	(s)		(μm^2)	(s)	(μm^2)	(s)	(μm^2)	(μm^2)	(s)
bfly	16881.8	969.95	16089.0	450.78	15493	15959.2	830.20	bfly	16934.2	2111.12	15586.7	1396.17	14837.7	15059.7	1520.04
dscg	16393.2	913.20	16142.2	411.80	15743	16097.1	958.01	dscg	15722.3	1865.30	15537.2	1261.43	15031	15164	1329.71
fir	16323.5	922.73	15876.9	431.70	15336	15724.4	896.26	fir	16109	1784.02	16225.8	1060.90	15301	15471	1294.33
ode	9302.5	479.77	9138.4	272.59	9101	9151.2	710.97	ode	9193.4	979.36	8319.8	763.16	8123	8257.3	919.07
or1200	6731.4	228.24	6756.6	153.92	6689.6	6729.1	531.53	or1200	4107.6	442.80	4241.9	584.95	4191.3	4201.1	719.72
syn2	17246.4	880.14	16410.6	490.37	16051.5	16078.1	943.32	syn2	18501.4	1812.36	15728.9	1254.69	15217.3	15370.2	1480.61
Average	13813.1	732.34	13402.3	368.53	13069.0	13289.9	811.72	Average	13428	1499.16	12606.7	1053.55	12116.9	12253.9	1210.58
Ratio	1.000	1.000	0.970	0.503	0.946	0.962	1.108	Ratio	1.000	1.000	0.939	0.703	0.902	0.913	0.808

¹¹Walter Lau Neto et al. (2022). "FlowTune: End-to-end Automatic Logic Optimization Exploration via Domain-specific Multi-armed Bandit". In: *IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems*.

FPGA Technology Mapping

Table: Comparison with FlowTune¹², DRiLLS¹³ and ASPDAC'23¹⁴ for FPGA mapping.

AlphaSyn w/o nn

AlphaSyn w/ nn

								Design	LUTs	LUTs	LŪTs	rt (s)	LÛTs	LŪTs	rt (s)
								max	694	687.8	680.5	74.59	674	680	342.5
								adder	244	244	244	62.74	244	244	368.7
									112.2	111.3	106.8	53.14	106	106	321.1
	Flowtune			AlphaSyn w/o nn		AlphaSyn w/ nn		ctrl	28	28	28	38.81	28	28	341
Design	LUTs	rt (s)	LŪTs	rt (s)	LÛTs	LŪTs	rt (s)	int2float	42.6	42.3	39.2	56.62	39	39	332.8
bfly	8187	1511.40	7974.6	945.39	7889	7949.9	1148.27	router	70.1	69.5	65.6	24.59	65	65	320.4
dscg	8191	1481.99	8018.9	1005.74	7965	7972.9	1065.17	priority	133.4	142.9	135.6	59.15	131	135	350.1
fir	7958	1422.34	7815.6	952.29	7728	7778.1	1036.73	i2c	292.1	289.32	280.6	47.78	272	280	373.4
ode	5022	708.07	5010.7	593.29	4973	4995.2	830.44	sin	1441.5	1438	1439.7	91.02	1435	1438	406.1
or1200	2751	401.295	2725.2	300.62	2714	2720.6	564.46	square	3889.4	3889	3877	166.27	3875	3877	523.2
syn2	8316	1510.25	8215.4	968.38	8172	8189.7	1142.71	sqrt	4708	4685.3	4415	269.59	4415	4415	589.9
Average	6737.5	1172.56	6626.7	794.27	6573.5	6601.1	964.63	log2	7583.6	7580.1	7580	365.77	7580	7580	706.9
Ratio	1.000	1.000	0.984	0.677	0.976	0.980	0.823	multiplier	5678	5672	5687.5	245.75	5670.5	5672	620.5
								voter	1834.7	1678.1	1538.8	111.44	1534	1537.4	470.6
								div	7944.4	7807.1	6685.3	244.04	5088.4	6650.1	712.5
								mem_ctrl	10527.6	10309.7	9567.7	71.63	9211.5	9513.2	659.6
								Average	2826.5	2792.2	2648.2	123.93	2523.0	2641.2	464.9

¹²Walter Lau Neto et al. (2022). "FlowTune: End-to-end Automatic Logic Optimization Exploration via Domain-specific Multi-armed Bandit". In: *IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems*.

Ratio

1.000

¹⁴Guanglei Zhou and Jason H Anderson (2023). "Area-Driven FPGA Logic Synthesis Using Reinforcement Learning". In: *Proceedings of the 28th Asia and South Pacific Design Automation*

¹³Abdelrahman Hosny et al. (2020). "DRiLLS: Deep reinforcement learning for logic synthesis". In: 2020 25th Asia and South Pacific Design Automation Conference (ASP-DAC). IEEE, pp. 581–586.

Multi-objective Synthesis

Experienment is also conducted for **Multi-objective Synthesis**. Bule points are 100000 randomly generated sequences.

By tuning the weight between and_node and level, a Pareto front has been formed by AlphaSyn's results. The result on objective of pure and_node minimization is specially marked ("AlphaSyn_node") for fair comparison with FlowTune.

THANK YOU!