ECHELON INSTITUTE OF TECHNOLOGY, Faridabad

Department of Computer Science and Engineering

Assignment No-1: Even Semester 2023-24

Course/Branch : B. Tech-CSE Semester : 6
Subject Name : Soft Computing Max. Marks : 20

Subject Code : PEC-CS-D-602

NOTE: Last date of submission:29/2/2024

On completion of this course, the student will be able to

CO-1: To introduce soft computing concepts and techniques and foster their abilities in designing appropriate technique for a given scenario.

CO-2: To implement soft computing based solutions for real-world problems.

I. Descriptive questions:

{5marks*2=10}

- 1. Explain the importance of studying Soft Computing.
- 2. What do understand by Fuzzy Logic?

II. Multiple Choice questions:

4 marks

What is the correct answer?

3. If A and B are two fuzzy sets with membership functions $\mu A(x) = \{0.2, 0.5, 0.6, 0.1, 0.9\} \ \mu B(x) = \{0.1, 0.5, 0.2, 0.7, 0.8\}$ Then the value of $\mu(A \cap B)$

will be

- (A) $\{0.2, 0.5, 0.6, 0.7, 0.9\}$
- (B) {0.2, 0.5, 0.2, 0.1, 0.8}
- (C) {0.1, 0.5, 0.6, 0.1, 0.8}
- (D) {0.1, 0.5, 0.2, 0.1, 0.8}

4 marks

4. Consider a fuzzy set A defined on the interval x=[0,10] of integers by the membership function.

 $\mu A(x) = x / x + 2$

 α cut corresponding to $\alpha = 0.5$ will be

- (A) $\{0,1,2,3,4,5,6,7,8,9,10\}$
- (B) {1,2,3,4,5,6,7,8,9,10}
- (C) $\{2,3,4,5,6,7,8,9,10\}$

	2 marks
5. The height $h(A)$ of a fuzzy set A is defined as $h(A) = \sup A(x)$ where x belongs to A. Then the fuzzy set normal when	et A is called
(A)h(A)=0	
(B)h(A)<0	
(C)h(A)-1	

(D) { }

(D)h(A)<1