Single Final State for NFAs

Any NFA can be converted

to an equivalent NFA NFA Pag Mansmiller NFA Pag 1 state 1990 April 1890 1 state 1990 1 state 1990 April 1890 1 state 1990 1 state

with a single final state

NFA

In General

NFA

Equivalent NFA

Single final state

Extreme Case

NFA without final state

Add a final state
Without transitions

Properties of Regular Languages

DUSMON 1+7=1

For regular languages L_1 and L_2 we will prove that:

Union: $L_1 \cup L_2$

Concatenation: L_1L_2

Star: L_1 *

Reversal: L_1^R

Complement: L_1

Intersection: $L_1 \cap L_2$

Are regular Languages

We say: Regular languages are closed under

Mrshly g

Union:
$$L_1 \cup L_2$$

Concatenation:
$$L_1L_2$$

Star:
$$L_1$$
*

Reversal:
$$L_1^R$$

Complement:
$$\overline{L_1}$$

Intersection:
$$L_1 \cap L_2$$

Regular language L_1

Regular language L_2

$$L(M_1) = L_1$$

$$L(M_2) = L_2$$

NFA M₁

NFA M_2

Single final state

Single final state

Union

NFA for $L_1 \cup L_2$

NFA for
$$L_1 \cup L_2 = \{a^n b\} \cup \{ba\}$$

Concatenation

NFA for L_1L_2

NFA for
$$L_1L_2 = \{a^nb\}\{ba\} = \{a^nbba\}$$

$$L_{1} = \{a^{n}b\}$$

$$A \qquad L_{2} = \{ba\}$$

$$A \qquad b \qquad \lambda \qquad b \qquad \lambda$$

Star Operation

NFA for
$$L_1^* = \{a^n b\}^*$$

$$w = w_1 w_2 \cdots w_k$$
$$w_i \in L_1$$

Reverse

NFA for L_1^R

- 1. Reverse all transitions
- 2. Make initial state final state 21 that is 20 and vice were

$$L_1^R = \{ba^n\}$$

Complement

1. Take the **DFA** that accepts L_1

Ll state 177 state 1971 state 1973 state 1973

2. Make final states non-final,

and vice-versa

श्रवण्डी प्रीट भेड़िंग

EUCHTE MANUST COMblement DANUST

Intersection

DeMorgan's Law:
$$L_1 \cap L_2 = \overline{L_1} \cup \overline{L_2}$$
Reg \subseteq Reg $=$ Reg $=$

$$L_1$$
, L_2 regular

$$L_1$$
, L_2 regular

$$\overline{L_1} \cup \overline{L_2}$$
 regular

$$\overline{L_1} \cup \overline{L_2}$$
 regular

$$L_1 \cap L_2$$
 regular

$$L_1 = \{a^nb\} \cap \text{regular}$$

$$L_1 \cap L_2 = \{ab\}$$

$$L_2 = \{ab,ba\} \text{ regular}$$

$$\text{regular}$$

Regular Expressions

Regular Expressions

Regular expressions - Thamsolunano regular describe regular languages

Example:
$$(a+b\cdot c)^*$$

describes the language
$$\{a,bc\}^* = \{\lambda,a,bc,aa,abc,bca,...\}$$

Why do we need Regular Expressions? «Click»

Recursive Definition

Primitive regular expressions: \emptyset , λ , α Some case = Signatural Strong St

MULLI

Are regular expressions

A regular expression:
$$(a+b\cdot c)*\cdot(c+\varnothing)$$

Not a regular expression:
$$(a+b+)$$

Languages of Regular Expressions

$$L(r)$$
: language of regular expression r

Example

annosyegular expression

$$L((a+b\cdot c)^*) = \{\lambda, a, bc, aa, abc, bca, \dots\}$$

Definition

For primitive regular expressions:

$$L(\varnothing) = \varnothing$$

$$L(a) = \{a\}$$

Definition (continued)

balows, an openation for

For regular expressions r_1 and r_2

$$L(r_1+r_2)=L(r_1)\cup L(r_2)$$
 with sums then Levi N

$$L(r_1 \cdot r_2) = L(r_1) L(r_2)$$

$$L(r_1 *) = (L(r_1))*$$

$$L((r_1)) = L(r_1)$$

Regular expression:
$$(a+b) \cdot a^*$$

MESONOUSINNOS

$$L((a+b) \cdot a^*) = L((a+b)) L(a^*)$$

$$= L(a+b) L(a^*)$$

$$= (L(a) \cup L(b)) (L(a))^*$$

$$= (\{a\} \cup \{b\}) (\{a\})^*$$

$$= \{a,b\} \{\lambda,a,aa,aaa,...\}$$

$$= \{a,aa,aaa,...,b,ba,baa,...\}$$

Regular expression
$$r = (a+b)*(a+bb)$$

åpuravib?

$$L(r) = \{a,bb,aa,abb,ba,bbb,...\}$$

Regular expression
$$r = (aa)*(bb)*b$$

$$L(r) = \{a^{2n}b^{2m}b: n, m \ge 0\}$$

Regular expression r = (0+1)*00(0+1)*

$$L(r) = \{ \text{ all strings with at least two consecutive 0} \}$$

110011 1100011

```
Regular expression r = (1+01)*(0+\lambda)

\lambda, 1, 0, 1, 101, 0101, \dots \} \cdot \{0, \lambda\}

L(r) = \{ \text{ all strings without } \}

two consecutive 0 \}
```

Equivalent Regular Expressions

Definition:

Regular expressions r_1 and r_2 ชื่องเท่ากับก็ต่อเป็นแห่ง กับ r_2 ก็จะเท่ากับก็ต่อเป็นสายท่า

are equivalent if
$$L(r_1) = L(r_2)$$

 $L = \{ all strings without two consecutive 0 \}$

$$r_1 = (1+01)*(0+\lambda)$$

$$r_2 = (1*011*)*(0+\lambda)+1*(0+\lambda)$$

my lugger > mornion simplify

$$L(r_1) = L(r_2) = L$$

 r_1 and r_2 are equivalent regular expr.

Regular Expressions and material Regular Languages

Theorem

Languages
Generated by
Regular Expressions

Regular
Languages

Theorem - Part 1

1. For any regular expression r the language L(r) is regular

Theorem - Part 2

Languages
Generated by
Regular Expressions
Regular Expressions

2. For any regular language L there is a regular expression r with L(r) = L

Proof - Part 1

1. For any regular expression r the language L(r) is regular

Proof by induction on the size of r

Induction Basis

Primitive Regular Expressions: \emptyset , λ , α

NFAs

regular expression ครัฐเครื่อ "psimpline"

$$L(M_1) = \emptyset = L(\emptyset)$$

$$L(M_2) = \{\lambda\} = L(\lambda)$$

regular languages

$$L(M_3) = \{a\} = L(a)$$

Inductive Hypothesis

```
Assume for regular expressions r_1 and r_2 that L(r_1) and L(r_2) are regular languages
```

Inductive Step

We will prove:

$$L(r_1+r_2)$$

1872moperation 24

$$L(r_1 \cdot r_2)$$

$$L(r_1 *)$$

$$L((r_1))$$

By definition of regular expressions:

$$L(r_1+r_2)=L(r_1)\cup L(r_2)$$

$$L(r_1 \cdot r_2) = L(r_1) L(r_2)$$

$$L(r_1 *) = (L(r_1))*$$

$$L((r_1)) = L(r_1)$$

By inductive hypothesis we know:

$$L(r_1)$$
 and $L(r_2)$ are regular languages

We also know:

Regular languages are closed under:

Union $L(r_1) \cup L(r_2)$

Concatenation $L(r_1)L(r_2)$

Star $(L(r_1))*$

Therefore:

$$L(r_1 + r_2) = L(r_1) \cup L(r_2)$$

$$L(r_1 \cdot r_2) = L(r_1) L(r_2)$$

$$L(r_1 *) = (L(r_1))*$$

Are regular languages

And trivially:

 $L((r_1))$ is a regular language

Proof - Part 2

2. For any regular language L there is a regular expression r with L(r) = L

msที่ในเดิมตัวออง > สร์กรในอุจันลกเชื่อขอกวิจันจาก็ลัง
Proof by construction of regular expression

Since L is regular take the NFAM that accepts it

$$L(M) = L$$

Single final state

From M construct the equivalent Generalized Transition Graph

in which transition labels are regular expressions

Another Example: \boldsymbol{a} \boldsymbol{a}

Reducing the states: aejustate cresmais भूकाग्य २० -> ४ ° भूकाग्य १० -> ४ ° ลูเขากาเมื่อบ bb*(a+b)

Resulting Regular Expression: ถึง โปปนายุนใน ตั้งแตกน์ดิง

$$L(r) = L(M) = L$$

In General

Removing states: q_{j} q_i qaae*dce*b*ce***d* q_i q_j ae*b

The final transition graph:

The resulting regular expression:

$$r = r_1 * r_2 (r_4 + r_3 r_1 * r_2) *$$

$$L(r) = L(M) = L$$

Why do we need Regular Expressions?

Let's say you want to find a phone number in a string. You know the pattern: three numbers, a hyphen, three numbers, a hyphen, and four numbers.

Here's an example: 415-555-4242.

```
at text answer T some vosation is me that the without RE, your Python code
               may look lengthy like this.
               def isPhoneNumber(text):
                    if len(text) != 12:
                        return False
              KUUNUSUN
                    for i in range(0, 3):
                        if not text[i].isdecimal():
              GNON
                             return False
                    if text[3] != '-':
                        return False
                    for i in range(4, 7):
                        if not text[i].isdecimal():
                             return False
                    if text[7] != '-':
                        return False
                    for i in range(8, 12):
```

if not text[i].isdecimal():

return False

return True

Why do we need Regular Expressions?

With Regular Expression, your Python code will be compact.

```
import re
phoneNumRegex = re.compile(r'\d\d\d-\d\d\d\d\d\d')
mo = phoneNumRegex.search('My number is 415-555-4242.')
print('Phone number found: ' + mo.group())
```

Output:

Phone number found: 415-555-4242

