Scientific Language Models for Biomedical Knowledge Base Completion: An Empirical Study

Rahul Nadkarni¹, David Wadden¹, Iz Beltagy², Noah A. Smith^{1,2}, Hannaneh Hajishirzi^{1,2}, Tom Hope^{1,2}

¹ Paul G. Allen School of Computer Science & Engineering, University of Washington

² Allen Institute for Artificial Intelligence (AI2)

Biomedical Knowledge Graph Completion

- Relations between entities
 - Repurposing drugs for diseases
 - Mapping diseases to genes

 Frame as biomedical knowledge graph completion

LMs for Biomedical Knowledge Graph Completion

First to systematically apply scientific LMs for KG completion and compare to KGE models

Datasets

RepoDB

drugs, diseases

2.7k entities, 6.7k triples

Hetionet

drugs, diseases, genes, symptoms, side effects

12.7k entities, 156k triples

MSI

drugs, diseases, proteins, protein functions

30k entities, 485k triples

Relative Performance

LMs and KGE models perform well on different subsets of examples

Integrating Models

- weighted average
- router classifier

Combinations with an LM perform better

Best router can outperform best weighted avg.

Inductive Performance

LMs perform well (and can improve KGE performance) on unseen entities

For code and data, visit:

github.com/rahuln/lm-bio-kgc