Chapter 9: Part B Quantum statistics of ideal gases

Zhi-Jie Tan Wuhan University

2019 spring semester

Maxwell-Boltzmann, Bose-Einstein, Fermi-Dirac statistics 9.1 Identical particles and symmetry requirements

Quantum state description:

$$\{s_1, s_2, \ldots, s_N\}$$

Wave function:

$$\Psi = \Psi_{\{a_1, \ldots, a_N\}}(Q_1, Q_2, \ldots, Q_N)$$

9.1 Identical particles and symmetry requirements

"Classical limit":

- 1, distinguishable;
- 2, any number of particles can be in the same state;
- 3, no symmetry requirement

Quantum mechanics:

- 1, exchange two particles does not obey a new state;
- 2, indistinguishable;
- 3, symmetry requirement ← fundamental postulate of quantum mechanics

- 9.1 Identical particles and symmetry requirements
- A, Particles with integral spin (Bose-Einstein statistics)

$$\Psi(\cdot Q_i \cdot Q_i \cdot \cdot) = \Psi(\cdot \cdot Q_i \cdot \cdot Q_i \cdot \cdot)$$

- 1, exchange two particles does not obey a new state;
- 2, indistinguishable;
- 3, no restriction for number of particles in the same state

- 9.1 Identical particles and symmetry requirements
- B, Particles with half-integral spin (Fermi-Dirac statistics)

$$\Psi(\cdot \cdot \cdot \cdot Q_j \cdot \cdot \cdot \cdot Q_i \cdot \cdot \cdot \cdot) = -\Psi(\cdot \cdot \cdot \cdot Q_i \cdot \cdot \cdot \cdot Q_j \cdot \cdot \cdot)$$

- 1, exchange two particles does not obey a new state;
- 2, indistinguishable;
- 3, restriction for number of particles in the same state??

- 9.1 Identical particles and symmetry requirements
- B, Particles with half-integral spin (Fermi-Dirac statistics)

$$\Psi(\cdot \cdot \cdot \cdot Q_j \cdot \cdot \cdot \cdot Q_i \cdot \cdot \cdot \cdot Q_i \cdot \cdot \cdot \cdot Q_j \cdot \cdot \cdot \cdot)$$

If two particles i and j are in the same state, then

$$\Psi(\cdot \cdot \cdot \cdot Q_i \cdot \cdot \cdot \cdot Q_i \cdot \cdot \cdot \cdot) = \Psi(\cdot \cdot \cdot \cdot Q_i \cdot \cdot \cdot \cdot Q_j \cdot \cdot \cdot \cdot)$$

 $\Psi = 0$ when particles i and j are in the same state s

No state!!!

Pauli exclusion principle!!!

Maxwell-Boltzmann, Bose-Einstein, Fermi-Dirac statistics 9.1 Identical particles and symmetry

9.1 Identical particles and symmetry requirements

Illustration:

Two particles A and B can be In three states: 1, 2,3

Maxwell-Boltzmann statistics

1	2	5	
AB			
	AB		
		AB	
\boldsymbol{A}	\boldsymbol{B}		
\boldsymbol{B}	\boldsymbol{A}		
A		B	
\boldsymbol{B}		\boldsymbol{A}	
	\boldsymbol{A}	\boldsymbol{B}	
	\boldsymbol{B}	A	

Maxwell-Boltzmann, Bose-Einstein, Fermi-Dirac statistics 9.1 Identical particles and symmetry

9.1 Identical particles and symmetry requirements

Illustration:

Two particles A and B can be

In three states: 1, 2,3

Bose-Einstein statistics

1	2	8
	AA	
		AA
A	\boldsymbol{A}	
\boldsymbol{A}		\boldsymbol{A}
	A	A

9.1 Identical particles and symmetry requirements

Illustration:

Two particles A and B can be

In three states: 1, 2,3

Fermi-Dirac statistics

9.2 Formulation of the statistical problem

Energy:

$$E_R = n_1 \epsilon_1 + n_2 \epsilon_2 + n_3 \epsilon_3 + \cdots = \sum_r n_r \epsilon_r$$

restriction:

$$\sum_{r} n_{r} = N$$

Partition function:

$$Z = \sum_{R} e^{-\beta E_R} = \sum_{R} e^{-\beta (n_1 e_1 + n_2 e_3 + \cdots)}$$

9.2 Formulation of the statistical problem

Mean number in s state:

$$\bar{n}_{*} = \frac{\sum_{R} n_{*} e^{-\beta (n_{1}e_{1} + n_{2}e_{2} + \cdots)}}{\sum_{R} e^{-\beta (n_{1}e_{1} + n_{2}e_{2} + \cdots)}}$$

$$= \frac{1}{Z} \sum_{R} \left(-\frac{1}{\beta} \frac{\partial}{\partial \epsilon_{s}} \right) e^{-\beta (n_{1} \epsilon_{s} + n_{2} \epsilon_{s} + \cdots)}$$

$$= -\frac{1}{\beta Z} \frac{\partial Z}{\partial \epsilon}$$

9.2 Formulation of the statistical problem

Maxwell-Boltzmann statistics

$$n_r = 0, 1, 2, 3,$$

$$n_r = 0, 1, 2, 3,$$
 for each r
$$\sum_r n_r = N$$

distinguishable.

Bose-Einstein statistics

$$n_r = 0, 1, 2, 3,$$
 for each r

$$\sum_{r} n_{r} = N$$

indistinguishable.

Fermi-Dirac statistics

$$n_r = 0, 1$$
 for each r

$$\sum_{r} n_{r} = N$$

Maxwell-Boltzmann, Bose-Einstein, Fermi-Dirac statistics 9.3 Quantum distribution functions

$$\bar{n}_s = \frac{\sum_{n_1, n_2, \dots} n_s e^{-\beta(n_1 e_1 + n_2 e_2 + \dots + n_s e_s + \dots)}}{\sum_{n_1, n_2, \dots} e^{-\beta(n_1 e_1 + n_2 e_2 + \dots + n_s e_s + \dots)}}$$

$$\sum_{r} n_{r} = N$$

$$\bar{n}_s = \frac{\sum_{n_s} n_s e^{-\beta n_1 e_s} \sum_{n_1, n_2, \dots} e^{-\beta (n_1 e_1 + n_2 e_2 + \dots)}}{\sum_{n_s} e^{-\beta n_1 e_s} \sum_{n_2, n_2, \dots} e^{-\beta (n_1 e_1 + n_2 e_2 + \dots)}}$$

9.3 Quantum distribution functions

Photon statistics: BE statistics without restricted N

$$\bar{n}_s = \frac{\sum_{n_s} n_s e^{-\beta n_s \mathbf{e}_s}}{\sum_{n_s} e^{-\beta n_s \mathbf{e}_s}} \bar{n}_s = \frac{\sum_{n_s} n_s e^{-\beta n_s \mathbf{e}_s} \sum_{n_{1}, n_{2}, \dots} e^{-\beta (n_{1} \mathbf{e}_{1} + n_{2} \mathbf{e}_{2} + \dots)}}{\sum_{n_s} e^{-\beta n_s \mathbf{e}_s} \sum_{n_{2}, n_{2}, \dots} e^{-\beta (n_{1} \mathbf{e}_{1} + n_{2} \mathbf{e}_{2} + \dots)}} \bar{n}_s = \frac{(-1/\beta)(\partial/\partial \epsilon_s) \sum_{n_s} e^{-\beta n_s \mathbf{e}_s} \sum_{n_{2}, n_{2}, \dots} e^{-\beta (n_{1} \mathbf{e}_{1} + n_{2} \mathbf{e}_{2} + \dots)}}{\sum_{n_s} e^{-\beta n_s \mathbf{e}_s} \sum_{n_{2}, n_{2}, \dots} e^{-\beta (n_{1} \mathbf{e}_{1} + n_{2} \mathbf{e}_{2} + \dots)}}$$

$$\bar{n}_s = \frac{(-1/\beta)(\partial/\partial \epsilon_s) \sum e^{-\beta n_i \epsilon_s}}{\sum e^{-\beta n_i \epsilon_s}}$$

$$= -\frac{1}{\beta} \frac{\partial}{\partial \epsilon_s} \ln \left(\sum e^{-\beta n_i \epsilon_s} \right)$$

$$= \frac{1}{1 - e^{-\beta \epsilon_{\bullet}}}$$

9.3 Quantum distribution functions

Photon statistics: BE statistics without restricted N

$$\bar{n}_{s} = \frac{1}{\beta} \frac{\partial}{\partial \epsilon_{s}} \ln \left(1 - e^{-\beta \epsilon_{s}} \right) = \frac{e^{-\beta \epsilon_{s}}}{1 - e^{-\beta \epsilon_{s}}}$$

$$\bar{n}_{\epsilon} = \frac{1}{e^{\beta \epsilon_{\bullet}} - 1}$$

Plank distribution

9.3 Quantum distribution functions $\sum_{r} n_r = N$

Fermi-Dirac statistics $n_r = 0$ and 1

$$\sum_{r} n_{r} = N$$

define
$$Z_s(N) = \sum_{n_1,n_2,\ldots}^{(e)} e^{-\beta(n_1e_1+n_3e_2+\ldots)}$$

$$n_s=0$$
 1

$$ar{n}_s = rac{0 + e^{-eta \epsilon_s} Z_s (N-1)}{Z_s (N) + e^{-eta \epsilon_s} Z_s (N-1)}$$

$$\bar{n}_{*} = \frac{1}{[Z_{*}(N)/Z_{*}(N-1)]e^{\beta\epsilon_{*}}+1}$$

9.3 Quantum distribution functions

define
$$\alpha = \frac{\partial \ln Z}{\partial N}$$

$$Z(N)/Z(N-1) = e^{\alpha}$$

$$\bar{n}_{\scriptscriptstyle a} = \frac{1}{[Z_{\scriptscriptstyle a}(N)/Z_{\scriptscriptstyle a}(N-1)] e^{\beta \epsilon_{\scriptscriptstyle a}} + 1}$$

$$\bar{n}_s = \frac{1}{e^{\alpha + \beta \epsilon_s} + 1}$$

Fermi-Dirac distribution

9.3 Quantum distribution functions

Fermi-Dirac statistics

define

$$\alpha = \frac{\partial \ln Z}{\partial N}$$

$$\alpha = -\frac{1}{kT}\frac{\partial F}{\partial N} =$$

$$=-\frac{\mu}{kT}=-\beta\mu$$

$$\bar{n}_s = \frac{1}{e^{\alpha + \beta \epsilon_s} + 1}$$

$$0 \le \bar{n}_s \le 1$$

$$\bar{n}_{\ell} \rightarrow 0$$

if ϵ_{\bullet} becomes large enough

Chemical potential per particle

9.3 Quantum distribution functions

Bose-Einstein statistics $n_r = 0, 1, 2, 3, \ldots$

$$n_r = 0, 1, 2, 3, \dots$$

$$n_s = 0$$
 1

$$\bar{n}_s = \frac{0 + e^{-\beta \epsilon_s} Z_s (N-1) + 2e^{-2\beta \epsilon_s} Z_s (N-2) + \cdots}{Z_s (N) + e^{-\beta \epsilon_s} Z_s (N-1) + e^{-2\beta \epsilon_s} Z_s (N-2) + \cdots}$$

$$Z(N)/Z(N-1)=e^{\alpha}$$

$$\bar{n}_{s} = \frac{Z_{s}(N)[0 + e^{-\beta \epsilon_{s}} e^{-\alpha} + 2e^{-2\beta \epsilon_{s}} e^{-2\alpha} + \cdots]}{Z_{s}(N)[1 + e^{-\beta \epsilon_{s}} e^{-\alpha} + e^{-2\beta \epsilon_{s}} e^{-2\alpha} + \cdots]}$$

$$\bar{n}_s = \frac{\sum_{e} n_s e^{-n_s(\alpha + \beta \epsilon_s)}}{\sum_{e} e^{-n_s(\alpha + \beta \epsilon_s)}}$$

9.3 Quantum distribution functions

Bose-Einstein statistics

$$\bar{n}_{s} = \frac{\sum_{s} n_{s} e^{-n_{s}(\alpha + \beta \epsilon_{s})}}{\sum_{s} e^{-n_{s}(\alpha + \beta \epsilon_{s})}}$$

$$n_{s} = -\frac{1}{\beta} \frac{\partial}{\partial \varepsilon_{s}} \ln \left(\sum_{n_{s}} e^{-n_{s}(\alpha + \beta \varepsilon_{s})} \right)$$

$$n_{s} = \frac{e^{-(\alpha + \beta \varepsilon_{s})}}{1 - e^{-(\alpha + \beta \varepsilon_{s})}}$$

9.3 Quantum distribution functions

Bose-Einstein statistics

$$\bar{n}_s = \frac{\sum_s n_s e^{-n_s(\alpha + \beta \epsilon_s)}}{\sum_s e^{-n_s(\alpha + \beta \epsilon_s)}}$$

$$ar{n}_{\scriptscriptstyle \perp} = rac{1}{e^{lpha + eta_{\scriptscriptstyle \perp}} - 1}$$

α can be determined by

$$\sum_{r} \frac{1}{e^{\alpha + \beta \epsilon_{r}} - 1} = N$$

$$\alpha = -\beta \mu$$

$$\bar{n}_{*}=\frac{1}{e^{\beta(\epsilon_{*}-\mu)}-1}$$

9.4 Maxwell-Boltzmann statistics: comparison

Partition function:

$$Z = \sum_{R} e^{-\beta(n_1 \epsilon_1 + n_2 \epsilon_2 + \cdots)}$$

for given values of $\{n_1, n_2, \ldots\}$

Possible way:

$$\frac{N!}{n_1!n_2!\cdots}$$

$$Z = \sum_{n_1, n_2, \dots, n_1! n_2! \dots} \frac{N!}{n_1! n_2! \dots} e^{-\beta (n_1 n_1 + n_2 n_2)}$$

$$\sum_{\mathbf{r}} n_{\mathbf{r}} = N$$

9.4 Maxwell-Boltzmann statistics

Partition function:

$$Z = \sum_{n_1, n_2, \dots} \frac{N!}{n_1! n_2! \dots} e^{-\beta(n_1 n_1 + n_2 n_2)}$$

$$Z = \sum_{n_1,n_2,\dots} \frac{N!}{n_1! n_2! \dots} (e^{-\beta \epsilon_1})^{n_1} (e^{-\beta \epsilon_2})^{n_2} \dots$$

$$Z = (e^{-\beta\epsilon_1} + e^{-\beta\epsilon_2} + \cdot \cdot \cdot)^N$$

$$\ln Z = N \ln \left(\sum_{r} e^{-\beta \epsilon_r}\right)$$

9.4 Maxwell-Boltzmann statistics

Partition function:

$$\ln Z = N \ln \left(\sum_{r} e^{-\beta \epsilon_{r}} \right)$$

$$\bar{n}_s = N \frac{e^{-\beta \epsilon_s}}{\sum_{\mathbf{r}} e^{-\beta \epsilon_r}}$$

Maxwell-Boltzmann distribution

9.5 Photon statistics

Partition function:

$$Z = \sum_{R} e^{-\beta(n_1\epsilon_1 + n_2\epsilon_2 + \cdots)}$$

$$Z = \sum_{n_1, n_2, \dots} e^{-\beta n_1 \epsilon_1} e^{-\beta n_2 \epsilon_2} e^{-\beta n_2 \epsilon_3} \cdots$$
 $Z = \left(\sum_{n_1=0}^{\infty} e^{-\beta n_1 \epsilon_1}\right) \left(\sum_{n_2=0}^{\infty} e^{-\beta n_2 \epsilon_2}\right) \left(\sum_{n_1=0}^{\infty} e^{-\beta n_1 \epsilon_2}\right) \cdots$

$$Z = \left(\frac{1}{1 - e^{-\beta \epsilon_j}}\right) \left(\frac{1}{1 - e^{-\beta \epsilon_j}}\right) \left(\frac{1}{1 - e^{-\beta \epsilon_j}}\right) \cdot \cdots$$

$$\ln Z = -\sum_{r} \ln \left(1 - e^{-\beta \epsilon_r}\right)$$

Maxwell-Boltzmann, Bose-Einstein, Fermi-**Dirac statistics** 9.5 Photon statistics

Partition function:

$$\ln Z = -\sum_{\mathbf{r}} \ln \left(1 - e^{-\beta \epsilon_{\mathbf{r}}}\right)$$

$$\bar{n}_{\bullet} = -\frac{1}{\beta} \frac{\partial \ln Z}{\partial \epsilon_{\bullet}} = \frac{e^{-\beta \epsilon_{\bullet}}}{1 - e^{-\beta \epsilon_{\bullet}}}$$

$$ar{n}_s = rac{1}{e^{eta_s} - 1}$$

9.6 Bose-Einstein statistics

Partition function:

$$Z = \sum_{R} e^{-\beta(n_1 \epsilon_1 + n_2 \epsilon_2 + \cdots)}$$

$$n_r = 0, 1, 2, \ldots$$

$$\sum_r n_r = N$$

Considering Z(N').

Z(N') increases rapidly with N', but we are only interested in Z at N'=N.

Multiply $e^{-\alpha N'}$ to produce a function $Z(N')e^{-\alpha N'}$ with maximum at N'=N by a proper choice of α.

A sum of all N' must select only terms of interest near N

$$\sum_{N'} Z(N') e^{-\alpha N'} = Z(N) e^{-\alpha N} \Delta^* N'$$

Maxwell-Boltzmann, Bose-Einstein, Fermi-Dirac statistics 9.6 Bose-Einstein statistics

Define Grand partition function

$$\sum_{N'} Z(N') e^{-\alpha N'} = Z(N) e^{-\alpha N} \Delta^* N'$$

$$\mathbf{Z} \equiv \sum_{N'} Z(N') e^{-\alpha N'}$$

$$\ln Z(N) = \alpha N + \ln Z$$

?

9.6 Bose-Einstein statistics

Grand partition function
$$Z = \sum_{R} e^{-\beta(n_1 e_1 + n_2 e_2 + \cdots)} e^{-\alpha(n_1 + n_2 + \cdots)}$$

$$Z = \left(\frac{1}{1 - e^{-(\alpha + \beta \epsilon_1)}}\right) \left(\frac{1}{1 - e^{-(\alpha + \beta \epsilon_2)}}\right) \cdot \cdot \cdot \cdot \ln Z = -\sum_{r} \ln \left(1 - e^{-\alpha - \beta \epsilon_r}\right)$$

Maxwell-Boltzmann, Bose-Einstein, Fermi-

Dirac statistics

 $\ln Z(N) = \alpha N + \ln Z$

9.6 Bose-Einstein statistics

Grand partition function
$$\ln Z = -\sum \ln (1 - e^{-\alpha - \beta \epsilon_r})$$

Keep N'=N by a proper choice of α

$$Z(N')e^{-aN'}$$

$$\frac{\partial}{\partial N'} \left[\ln Z(N') - \alpha N' \right] = \frac{\partial \ln Z(N)}{\partial N} - \alpha = 0$$

$$\left[\alpha + \left(N + \frac{\partial \ln Z}{\partial \alpha}\right) \frac{\partial \alpha}{\partial N}\right] - \alpha = 0$$

$$N + \frac{\partial \ln Z}{\partial \alpha} = \frac{\partial \ln Z}{\partial \alpha} = 0$$

Maxwell-Boltzmann, Bose-Einstein, Fermi-

Dirac statistics

$$\ln Z = \alpha N - \sum_{r} \ln \left(1 - e^{-\alpha - \beta e_r}\right)$$

9.6 Bose-Einstein statistics

$$N + \frac{\partial \ln Z}{\partial \alpha} = \frac{\partial \ln Z}{\partial \alpha} = 0$$

$$\ln Z = -\sum_{r} \ln (1 - e^{-\alpha - \beta \epsilon_r})$$

$$\ln Z = -\sum_{r} \ln \left(1 - e^{-\alpha - \beta \epsilon_{r}}\right)$$

$$ar{n}_s = -rac{1}{eta} rac{\partial \ln Z}{\partial \epsilon_s} = -rac{1}{eta} \left[-rac{eta e^{-lpha - eta \epsilon_s}}{1 - e^{-lpha - eta \epsilon_s}} + rac{\partial \ln Z}{\partial lpha} rac{\partial lpha}{\partial \epsilon_s}
ight]$$

$$ar{n_s} = rac{1}{e^{lpha + eta \epsilon_s} - 1}$$

9.6 Bose-Einstein statistics

$$\bar{n}_s = \frac{1}{e^{\alpha + \beta \epsilon_s} - 1}$$

$$\frac{\partial \ln Z(N)}{\partial N} - \alpha = 0$$

$$\mu = \frac{\partial F}{\partial N} = \left(-kT\frac{\partial \ln Z}{\partial N} = -kT\alpha\right)$$

$$\alpha = -\beta \mu$$

9.7 Fermi-Dirac statistics

$$n_r = 0$$
 and 1 for each r

Similar to the treatment in BE statistics

$$Z = \sum_{\substack{n_1, n_2, n_3 \\ n_1 = 0}} e^{-\beta(n_1 e_1 + n_2 e_2 + \cdots) - \alpha(n_1 + n_2 + \cdots)}$$

$$= \left(\sum_{\substack{n_1 = 0 \\ n_1 = 0}}^{1} e^{-(\alpha + \beta e_1) n_2}\right) \left(\sum_{\substack{n_1 = 0 \\ n_2 = 0}}^{1} e^{-(\alpha + \beta e_2) n_2}\right)$$

$$Z = (1 + e^{-\alpha - \beta \epsilon_1})(1 + e^{-\alpha - \beta \epsilon_1}) - \ln Z = \sum_{r} \ln (1 + e^{-\alpha - \beta \epsilon_r})$$

9.7 Fermi-Dirac statistics
$$\ln Z = \sum_{r} \ln (1 + e^{-\alpha - \beta \epsilon_r})$$

$$\ln Z = \alpha N + \sum_{r} \ln \left(1 + e^{-\alpha - \beta \epsilon_r}\right)$$

α is also determined by the condition

$$\frac{\partial \ln Z}{\partial \alpha} = N - \sum_{r} \frac{e^{-\alpha - \beta \epsilon_{r}}}{1 + e^{-\alpha - \beta \epsilon_{r}}} = 0$$

$$\sum_{r} \frac{1}{e^{\alpha + \beta \epsilon_r} + 1} = N$$

Maxwell-Boltzmann, Bose-Einstein, Fermi-Dirac statistics 9.7 Fermi-Dirac statistics

$$\bar{n}_s = -\frac{1}{\beta} \frac{\partial \ln Z}{\partial \epsilon_s} = \frac{1}{\beta} \frac{\beta e^{-\alpha - \beta \epsilon_s}}{1 + e^{-\alpha - \beta \epsilon_s}}$$

$$ar{n}_s = rac{1}{e^{lpha + eta \epsilon_s} + 1}$$

Maxwell-Boltzmann, Bose-Einstein, Fermi-**Dirac statistics** 9.8 Quantum statistics in the classic limit

BE and FD distributions:

$$\bar{n}_r = \frac{1}{e^{\alpha + \beta \epsilon_r} \pm 1}$$

Total particles:

$$\sum_{r} \bar{n}_{r} = \sum_{r} \frac{1}{e^{\alpha + \beta \epsilon_{r}} \pm 1} = N$$

Partition function:

$$\ln Z = \alpha N \pm \sum_{r} \ln \left(1 \pm e^{-\alpha - \beta \epsilon_{r}}\right)$$

Limiting cases: very low concentration $\bar{n}_r \ll 1$ $\exp{(\alpha + \beta \epsilon_r)} \gg 1$ Very high T

$$\bar{n}_r \ll 1$$

$$\exp(\alpha + \beta\epsilon_r) \gg 1$$

$$\beta \rightarrow 0$$
 $\beta \epsilon_r \ll \alpha$

- 9.8 Quantum statistics in the classic limit
 - **Limiting cases:**

very low concentration $\bar{n}_r \ll 1$ $\exp{(\alpha + \beta \epsilon_r)} \gg 1$

$$\bar{n}_r \ll 1$$

$$\exp(\alpha + \beta \epsilon_r) \gg 1$$

Very high T

$$\beta \rightarrow 0$$

$$\beta \rightarrow 0$$
 $\beta \epsilon_r \ll \alpha$

Number of terms contribute substantially to summation increases $\sum_{\bar{r}} \bar{n}_{r} = \sum_{\bar{e}^{\alpha+\beta\epsilon_{r}} \pm 1} \frac{1}{1} = N$ Requires α must be large enough To keep sum ==N

$$\exp(\alpha + \beta \epsilon_r) \gg 1$$

9.8 Quantum statistics in the classic limit Limiting cases:

very low concentration, very high T

$$e^{a+eta\epsilon_r}\gg 1$$

$$\bar{n}_r \ll 1$$

$$\bar{n}_r = \frac{1}{e^{\alpha + \beta \epsilon_r} \pm 1}$$

$$\sum_{r}e^{-\alpha-\beta\epsilon_{r}}=e^{-\alpha}\sum_{r}e^{-\beta\epsilon_{r}}=N$$

$$e^{-\alpha} = N \left(\sum e^{-\beta \cdot r} \right)^{-1}$$

Limiting cases: low concentration high T --→MB dis.

$$\tilde{n}_r = N \frac{e^{-\beta \epsilon_r}}{\sum_r e^{-\beta \epsilon_r}}$$

Maxwell-Boltzmann, Bose-Einstein, Fermi-

Dirac statistics

$$\ln Z = \alpha N \pm \sum_{r} \ln \left(1 \pm e^{-\alpha - \beta \epsilon_r}\right)$$

9.8 Quantum statistics in the classic limit

Partition function:

$$\ln Z = \alpha N \pm \sum_{r} (\pm e^{-\alpha - \beta \epsilon_{r}}) = \alpha N + N$$

$$\alpha = -\ln N + \ln \left(\sum e^{-\beta \epsilon_r}\right)$$

$$\ln Z = -N \ln N + N + N \ln \left(\sum_{i} e^{-\beta \epsilon_{i}}\right)$$

While MB gives:

$$\ln Z = N \ln \left(\sum_{r} e^{-\beta \epsilon_r} \right)$$

9.8 Quantum statistics in the classic limit Partition function:

$$\ln Z = \ln Z_{\text{MB}} - (N \ln N - N)$$
 $\ln Z = \ln Z_{\text{MB}} - \ln N$
 $Z = \frac{Z_{\text{MB}}}{N!}$

<<< distinguishable

Class-work

P 398 9.1

Homework

P 398 9.2-9.3

Homework

conf	configuration		no. of states		
0	€	3€	МВ	BE	FD
xx			1	1	
	xx		1	1	
		xx	1	1	
x	x		2	1	1
x		x	2	1	1
	x	х	2	1	l

(a)
$$Z_{MB} = 1 + e^{-2\epsilon\beta} + e^{-6\epsilon\beta} + 2e^{-\epsilon\beta} + 2e^{-3\epsilon\beta} + 2e^{-4\epsilon\beta}$$

(b)
$$Z_{BE} = 1 + e^{-2\epsilon\beta} + e^{-6\epsilon\beta} + e^{-\epsilon\beta} + e^{-3\epsilon\beta} + e^{-4\epsilon\beta}$$

(c)
$$Z_{FD} = e^{-\epsilon\beta} + e^{-3\epsilon\beta} + e^{-4\epsilon\beta}$$