

编译原理 Complier Principles

Lecture 4 Syntax Analysis: Top-Down

赵帅

计算机学院 中山大学

Before we start...

So, please pay attention and keep on track!

Mind Map[思维导图]

Mind Map[思维导图]

- Most compilers use either Top-Down or Bottom-Up parsers.
- Bottom-up parsing [自底向上分析]
 - ◆ Begin at the leaves (the bottom) and working up towards the root (the top).
 - ◆Tries to reduce[规约] the input string to the start symbol.
 - ◆ Finds reverse order of the rightmost derivation[<u>最右推导</u>的逆过程即<u>最左规约</u>] 规范推导 规范规约
 - ◆ Parser code structure nothing like grammar.
 - □ Very difficult to implement manually.
 - □ Automated tools exist to convert to code (e.g., Yacc, Bison).

- Top-Down parsing [自顶向下分析]
 - ◆Starting from the root (*top*) and create the leaves (*down*) of the parse tree in a pre-defined order (depth-first) [深度优先,先根次序/前序].
 - ◆Top-down parsing can be viewed as **finding a leftmost derivation**[寻求最左推导] for an input string. **Why not rightmost or arbitrary derivation?**
 - ◆ Review: In each step of derivation, the following choices need to be made:
 - □ Choice of the non-terminal to be replaced. [替换哪个非终结符] Leftmost!
 - □ Choice of the production to be applied for a non-terminal. [使用文法中哪个规则来替换] Key Problem!
 - ◆ Question: At each step of a top-down parse, What is the key problem?

- Top-Down parsing [自顶向下分析]
 - ♦ Once a production is chosen, we try to match the terminal symbols in the production body with the input string.
 - ◆ Parser code structure closely mimics grammar.
 - Manually implementation is feasible.
 - Automated tools exist to convert to code. (e.g. ANTLR)
- Top-Down vs. Bottom-Up [对比]
 - ◆ Top-down: easier to understand and implement manually. (E.g. ANTLR)
 - ◆ Bottom-up: more powerful, can be implemented automatically. (E.g. YACC/Bison)

◆Example

- ♦ Grammar G(S): S \rightarrow AB; A \rightarrow aA | a; B \rightarrow bB | b;
- ◆ Sentence: aabb;

$$S \Rightarrow AB$$
 (1)
 $\Rightarrow aAB$ (2)
 $\Rightarrow aaB$ (3)
 $\Rightarrow aabB$ (4)
 $\Rightarrow aabb$ (5)

 $S \Rightarrow AB$ (5) B reduce to S.

 \Rightarrow AbB (4) bB reduce to B.

 \Rightarrow Abb (3) 2nd b reduce to B.

 \Rightarrow aAbb (2) aA reduce to A.

 \Rightarrow aabb (1) 2nd a reduce to A.

Leftmost derivation

Top-Down

Leftmost reduction

Bottom-Up

Revisit

Top-down Parsing[自顶向下分析]

- Recursive-descent parsing[RDP, 递归下降语法分析]
 - ◆A general form[通用形式] of top-down parsing.
 - ◆ A recursive-descent parsing program consists of a set of *procedures*, one for each non-terminal.
 - ◆ Execution begins with the procedure for the start symbol, which halts and announces success if its procedure body scans the entire input string.

```
void A() {
                                                         How to choose A-production?
           Choose an A-production, A \to X_1 X_2 \cdots X_k;
1)
                                                         It's not specified, so the pseudocode
2)
           for (i = 1 \text{ to } k) {
3)
                 if (X_i is a nonterminal)
                                                         is nondeterministic[伪代码是不确定的].
                        call procedure X_i();
4)
5)
                 else if (X_i equals the current input symbol a)
                        advance the input to the next symbol;
                 else /* an error has occurred */;
                                                                                                11
```

RDP with backtracking[回溯]

- RDP may require backtracking.
- Approach: for a non-terminal in the derivation, productions are tried in some order until
 - ◆A production is found that generates a portion of the input, or
 - ◆ No production is found that generates a portion of the input, in which case backtrack to previous non-terminal.
- Terminals of the derivation are compared against input
 - ◆ Match: advance input, continue parsing
 - ◆ Mismatch: backtrack, or fail
- Parsing fails if no derivation generates the entire input.

RDP with backtracking[回溯]

- In the analysis process, when a non-terminal is successfully matched with an alternative, the match may be temporary.
- If a mismatch occurs, backtracking[回溯] will be performed.
- G[S]: S \rightarrow xAy; A \rightarrow ** | *, whether the input string **x** * **y** is its sentence?

Left Recursion Problem[左递归问题]

- A grammar is **left recursive**[左递归] if it has a non-terminal **A** such that there is a derivation $\mathbf{A} \stackrel{+}{\Rightarrow} \mathbf{A} \boldsymbol{\alpha}$.
- Sentence can grow infinitely without consuming input.(Into an infinite loop!)
- Top-down parsing methods cannot handle left-recursive problems.[自顶向下语法分析方法不能处理左递归的文法]

Left Recursion Problem[左递归问题]

- Immediate left recursion [直接/立即左递归]
 - ♦ There is a production $A \rightarrow A\alpha$.
- Non-immediate left recursion [间接/非立即左递归]
 - ◆ Left recursion involving derivation of 2+ step.
 - $A \rightarrow B\beta$; $B \rightarrow A\alpha$.
- A transformation is needed to <u>eliminate left recursion</u>. [需要一个转 换方法来消除左递归]
- Rewrite the grammar so that it is right recursive. [改为右递归]

- Immediate left recursion[直接左递归的消除]
 - ♦ Grammar: A → Aα | β ($\alpha \neq \beta$, β doesn't start with A)
 - ◆ rewrite the rule of A as the following form equivalently:
 - ♦ Grammar: A → β A'; A' → α A' | ε (right recursion)

G[A]: A \rightarrow A α | β

 $A \Rightarrow A\alpha$

 $\Rightarrow A\alpha\alpha$

 \Rightarrow A $\alpha\alpha$

• • • • • •

 $\Rightarrow A\alpha...\alpha$

 $\Rightarrow \beta \alpha ... \alpha$

Remove Left Recursion

```
G[A]: A \rightarrow \beta A'
 A' \rightarrow \alpha A' \mid \epsilon
```

 $A \Rightarrow \beta A'$

 $\Rightarrow \beta \alpha A'$

 $\Rightarrow \beta \alpha \alpha A'$

.....

 $\Rightarrow \beta \alpha ... \alpha A'$

 $\Rightarrow \beta \alpha ... \alpha$

想办法把" $A\alpha\alpha$.."变成" $\alpha\alpha$..A"

 $A \rightarrow A\alpha$; $A \rightarrow \beta$ => $A\alpha$ => $A\alpha\alpha\alpha$... => $\beta\alpha\alpha\alpha$...

- 1. 避免对A的左递归 A -> βx, where x-> ααα..
- 2. $\exists \mid \lambda$ bridging production $A' \rightarrow \alpha A' \mid \epsilon$ => $\alpha A' \Rightarrow \alpha \alpha ... A' \Rightarrow \alpha \alpha ... \alpha$
- 3. 连接两个productions A -> β A'; A' -> α A' | ϵ => β A' => β α α ...A' => β α α .. α

- Immediate left recursion can be eliminated by the following technique, which works for any number of A-productions.
 - ◆ First, group the productions as

$$A \rightarrow A\alpha_1 \mid A\alpha_2 \mid ... \mid A\alpha_m \mid \beta_1 \mid \beta_2 ... \mid \beta_n$$
 where no β_i begins with an A.

◆Then, replace the A-productions by

$$A \rightarrow \beta_1 A' \mid \beta_2 A' \mid ... \mid \beta_n A' \quad AND \quad A' \rightarrow \alpha_1 A' \mid \alpha_2 A' \mid ... \mid \alpha_m A' \mid \epsilon$$

• Exercise-Remove Immediate left recursion.

$$\bullet G_1[E]: E \to E+T \mid T; \qquad \qquad T \to T^*F \mid F; \qquad \qquad F \to (E) \mid i.$$

$$\bullet$$
 G₂[E]: E \rightarrow TE'; E' \rightarrow +TE' | ϵ ; T \rightarrow FT'; T' \rightarrow *FT' | ϵ ; F \rightarrow (E) | i.

- Non-Immediate left recursion[非直接左递归的消除]
 - ♦ Grammar: $S \rightarrow Qc \mid c; Q \rightarrow Rb \mid b; R \rightarrow Sa \mid a.$
 - ◆ Although there is no immediate left recursion, S, Q and R are all left recursion.

$$S \rightarrow Qc \mid c$$

 $Q \rightarrow Sab \mid ab \mid b$
 $R \rightarrow Sa \mid a$

Left Recursion!

$$S \rightarrow Sabc \mid abc \mid bc \mid c$$

 $Q \rightarrow Sab \mid ab \mid b$
 $R \rightarrow Sa \mid a$

- The following algorithm systematically eliminates left recursion from a grammar[直接/间接]. It is guaranteed to work if:
 - ♦ the grammar has no cycles (derivations of the form $A \stackrel{+}{\Rightarrow} A$)
 - \bullet the grammar has no ϵ -productions (productions of the form A \rightarrow ϵ).
 - ◆ These two can be eliminated systematically from a grammar.
- Algorithm: Eliminating left recursion.
 - **INPUT:** Grammar G with no cycles or ε -productions.
 - ◆ OUTPUT: An equivalent grammar with no left recursion.
 - METHOD: Apply the following 3 steps to G. Note that the resulting non-left-recursive grammar may have ε -productions.

- ♦ Step 1 : Arrange all non-terminals of grammar G in some order A_1 , A_2 ,..., A_n ;
- ◆ **Step 2**: Execute in order obtained in Step 1:

```
FOR i:=1 TO n DO

FOR j:=1 TO i-1 DO
```

Replace each production of the form $A_i \to A_j \gamma$ by the productions $A_i \to \delta_1 \gamma \mid \delta_2 \gamma \mid ... \delta_k \gamma$, where $A_j \to \delta_1 \mid \delta_2 \mid ... \delta_k$ are all current A_i -productions; [间接左递归问题 转换为 直接左递归问题]

eliminate the immediate left recursion among the A_i-productions;

END

[解决直接左递归问题] $A \rightarrow A\alpha \mid \beta$

END

 $A \rightarrow \beta A'; A' \rightarrow \alpha A' \mid \epsilon$

◆Step 3 : Simplify the grammar obtained from Step 2 --- remove the production rules of non-terminal that can never be reached from the start symbol.

• Example: Consider Grammar G(S): (ILR = immediate left recursion)

$$R \rightarrow Sa \mid a$$

$$Q \rightarrow Rb \mid b$$

$$S \rightarrow Qc \mid c$$

```
(i=2,j=1) Replace production Q \to Rb by the productions R [A<sub>i</sub>=Q, A<sub>j</sub>=R] \to Sa | a, which generates Q \to Sab | ab | b; <u>not ILR</u> [A<sub>i</sub>=S, A<sub>j</sub>=R] (i=3,j=1) No operations.
```

```
(i=3,j=2) Replace production S \rightarrow Qc by the productions Q \rightarrow Sab \mid [A_i=S, A_j=Q]
ab | b, which generates S \rightarrow Sabc \mid abc \mid bc \mid c; <u>contain ILR</u>;
(continue...)
```



```
(continue...) (\alpha) (\beta) (i=3,j=2) S \rightarrow Sabc \mid abc \mid bc \mid c contains ILR. Eliminate ILR about S: S \rightarrow abcS' \mid bcS' \mid cS' S' \rightarrow abcS' \mid \epsilon Q \rightarrow Sab \mid ab \mid b R \rightarrow Sa \mid a
```

• Step 3: Simplify the grammar and get Final Grammar:

S
$$\rightarrow$$
 abcS' | bcS' | cS' S' \rightarrow abcS' | ϵ $R \rightarrow Sa \mid a$ $Q \rightarrow Rb \mid b$ (Q&R's production is included by S) $S \rightarrow Qc \mid c$

- Question: What will happen if the order in step 1 is different
- Again, consider $G(S): S \rightarrow Qc \mid c \mid Q \rightarrow Rb \mid b \mid R \rightarrow Sa \mid a$
- Exercise: If the order in step 1 is S,Q,R, the final grammar without ILR is? (was R, Q, S in the previous example)

• Different order in Step1 may cause the final grammar different in form[可能在形式上不同], but it is not difficult to prove that they are equivalent.

Recursive-descent parsing[递归下降语法分析]

- Recursive-descent parsing [RDP, 递归下降语法分析]
 - ◆ A general form of top-down parsing.
 - ◆ RDP is a simple and general parsing strategy.
 - Left-recursion must be eliminated first.(Can be eliminated automatically using some algorithm)
 - ◆ However, it is not popular because of backtracking.
 - Backtracking requires <u>re-parsing</u> the same string.
 - □Tried to solve problem <u>in any possible ways</u>[穷尽一切可能的试探法] which is inefficient.(can take exponential time)
 - □ Also removing already added nodes in parse tree is troublesome.

Mind Map[思维导图]

Predictive Parsing[预测分析]

- Predictive Parsing[预测分析法]
 - ◆A special case of recursive-descent parsing without backtracking[无回溯].
 - ◆ Predictive parsing chooses the correct production by looking ahead at the input a fixed number of symbols, typically we may look only at one.(that is, the next input symbol) [通过向前看一步输入符号,预测正确的产生式]
 - ◆ Restrictions on the grammar to avoid backtracking.[LL(k)]

Predictive Parsing[预测分析]

- A parser with no backtracking [无回溯]: select the correct
 alternative through given next input terminal(s)[下一个输入符号/终结符]
- A predictive parser chooses the production to apply solely on the basis of [选取产生式的依据]
 - ◆ Next input symbol(s).
 - ◆ Current non-terminal being processed.

```
G(S): S \rightarrow aBD | bBB; B \rightarrow c | bce; D \rightarrow d parsing input "abced" requires no backtracking
```

Common Prefix[共同前缀]

• G[S]: S \rightarrow xAy; A \rightarrow ** | *, If the current matching symbol is *, the next step is to expand A, and A \rightarrow α_1 | α_2 |... | α_n . How to choose α_i ?

- \bullet (1) If there is a unique α_i with * as the head, replace using this unique α_i .
- ullet (2) If there are multiple α_i with * as the head, the substitution is not unique[替换是不唯一的], **backtracking** may happen.
- Left factoring[提取左公因子]: Rewrite the productions to <u>defer the</u> <u>decision</u> until enough of the input has been seen that we can make the right choice. [推后决定直至可选择]

Left factoring[提取公共左因子]

- For each non-terminal A, find <u>the longest prefix α </u> common to two or more of its alternatives. If $\alpha \neq \epsilon$, **replace** all of the A-productions $A \rightarrow \alpha \beta_1 \mid \alpha \beta_2 \mid ... \mid \alpha \beta_n \mid \gamma$, where γ represents all alternatives that do not begin with α , by $A \rightarrow \alpha A' \mid \gamma$; $A' \rightarrow \beta_1 \mid \beta_2 \mid ... \mid \beta_n$.
- Repeatedly apply this transformation until no two alternatives for a non-terminal have a common prefix.
- Example: $G[S]: S \rightarrow abc \mid abd \mid ae;$
 - ◆**Step1:** S \rightarrow aA'; A' \rightarrow bc |bd | e;
 - ◆Step2: S \rightarrow aA'; A' \rightarrow bB' | e; B' \rightarrow c | d;

Predictive Parsing[预测分析]

- Patterns in grammars that prevent predictive parsing [并非总是能预测分析]:
 - ◆Left Recursion Problem [左递归问题]
 - Lookahead symbol changes only when a terminal is matched.
 - □ Q: How to solve? A: Remove Left Recursion.
 - ◆ Common Prefix[共同前缀] Cause Backtracking Problem.
 - □ Q: How to solve? A: Left factoring.
 - ◆ Question: After left factoring, Can we <u>completely</u> avoid the backtracking and do predictive parsing? What if S → EBD | FBB; E → a...; F → a...

G(S): S \rightarrow aBD | bBB; B \rightarrow c | bce; D \rightarrow d FIRST && FOLLOW! parsing input "abced" requires no backtracking

FIRST[终结首符集]

- During top-down parsing, FIRST and FOLLOW allow us to choose which production to apply, based on the next input symbol.
- FIRST(α) [终结首符集] (α is *any string* of grammar symbols)
 - ◆ Define FIRST(α) to be the set of terminals that are the first symbol in strings[串的终结首符的集合] derived from α . FIRST(α)*= {a | α ⇒ a..., a ∈ V_T}
 - \bullet AND if $\alpha \stackrel{*}{\Rightarrow} \epsilon$, then ϵ is also in FIRST(α).
 - Consider two(or more) A-productions A $\rightarrow \alpha \mid \beta$, where FIRST(α) and FIRST(β) are disjoint sets [不相交的集合]. We can then choose between these A-productions by looking at the next input symbol α , since α can be in at most one of FIRST(α) and FIRST(β), not both.

FOLLOW[后继终结符号集]

- Question: And then, if for an input symbol α and the non-terminal $A (A \rightarrow \alpha_1 \mid \alpha_2 \mid ... \mid \alpha_n)$, but for any α_i , $\alpha \notin FIRST (\alpha_i)$, in this case, how to choose α_i , or draw a conclusion of grammatical errors?
- FOLLOW(A): For <u>nonterminal</u> A, the set of terminals a that can appear immediately to the right of A in some sentential form; that is, FOLLOW(A) = {a | S $\stackrel{*}{\Rightarrow}$...Aa..., a \in V_T}. [在某些句型中紧跟在A右边的终结符号的集合]
 - ◆ If A is the rightmost symbol in some sentential form, then \$ is in FOLLOW(A); recall that \$ is a special "endmarker"[结束标记] symbol that is assumed not to be a symbol of any grammar.

 [First与Follow的区别]
 First(a): 東展工的集的第二次模块算

First(α): α展开的串的第一个终结符

Follow(A): A后面紧跟的终结符 (不包括A展开的串)

FOLLOW[后继终结符号集]

- Question: for an input symbol α and the non-terminal A ($A \rightarrow \alpha_1$ $\mid \alpha_2 \mid ... \mid \alpha_n$), $\alpha \notin FIRST(\alpha_i)$, in this case, how to choose α_i , or draw a conclusion of grammatical errors?
- Answer: if $\varepsilon \in FIRST$ (α_i), then when $a \in FOLLOW(A)$, select A \rightarrow α_i , otherwise, report grammatical error. [如果A的所有候选式都推不到a, 看看有没有 候选式能推到 ε (即 $\varepsilon \in FIRST$ (α_i)),并且A后直接跟着a (即 $\alpha \in FOLLOW(A)$)]
- Example: G(S): S \rightarrow aA | d; A \rightarrow bAS | ϵ . String : abd.

FIRST(aA)= {a}	$FOLLOW(A) = \{\$,a,d\}$	S	<mark>a</mark> bd
$FIRST(d) = \{d\}$		\Rightarrow aA	a <mark>b</mark> d
FIRST(bAS)= {b}		⇒ abAS	abd (First cannot tell, check Follow)
$FIRST(A) = \{b, \epsilon\}$	HOW TO compute	⇒ ab\$	abd
$FIRST(S) = \{a, d\}$	FIRST & FOLLOW?	⇒ abd	33
		- abu	

- To compute FIRST(X) for all grammar symbol X, apply the following rules until no more terminals or ε can be added to any FIRST set:
 - ◆ Rule1: If X ∈ V_T, then FIRST(X) = {X}. [x是终结符]
 - ♦ Rule2: If X ∈ V_N and X → ε exists, then add ε to FIRST(X). [非终结符,空式]
 - ◆ Rule3: If X ∈ V_N and X → $Y_1Y_2Y_3...Y_k$, then [非终结符,非空式]
 - □ If for some Y_i and a terminal a: ① $\varepsilon \in \text{all of FIRST}(Y_1),..., \text{FIRST}(Y_{i-1}), \text{ i.e.,}$ $Y_1...Y_{i-1} \stackrel{*}{\Rightarrow} \varepsilon$; ② $a \in \text{FIRST}(Y_i) \setminus \{\varepsilon\}$. Then, $a \in \text{FIRST}(X)$.
 - **□** E.g.,
 - \square Everything in FIRST(Y₁) \ { ε } is surely in FIRST(X).
 - \blacksquare If Y_1 doesn't derive ϵ , then we add nothing more.
 - □ But if Y₁ $\stackrel{*}{\Rightarrow}$ ε, then we add FIRST(Y₂) \ {ε} , and so on...
 - \square Add ε to FIRST(X), if ε is in FIRST(Y_i) for all i=1,2,...k.

- Next, we can compute FIRST for any string $\alpha = X_1X_2...X_n$ [符号串]
 - \bullet Add all non- ϵ symbols of FIRST(X₁) to FIRST(α).
 - ullet Add non- ε symbols of FIRST(X_i), 2≤i≤n, to FIRST(α), if FIRST(X₁), ..., FIRST(X_{i-1}) all contain ε . [前i-1个都包含空串]
 - \bullet Add ε to FIRST(α), if FIRST(X_1), ..., FIRST(X_n) all contain ε .

[First(X)集合的计算本质上就是看X能推导出什么, First(X)包括所有X能推导出的句子的首个字符(必须是终结符或空串)]

• Example: G[E]: E \rightarrow TE'; E' \rightarrow +TE' | ϵ ; T \rightarrow FT'; T' \rightarrow *FT' | ϵ ; F \rightarrow (E) | id , compute the FIRST set of each non-terminal.

```
◆ FIRST(E):{
```

- **♦** FIRST(T):{
- ♦ FIRST(E'):{ +, ε
- ♦ FIRST(T'):{ * , ε
- ◆ FIRST(F):{ (, id

Apply rules for the first time:

E \rightarrow TE' <u>FIRST(T)</u> add to <u>FIRST(E)</u>, <u>FIRST(T)</u> doesn't contain ε E' \rightarrow +TE' <u>FIRST(+)</u> add to <u>FIRST(E')</u>, <u>FIRST(+)</u> doesn't contain ε E' \rightarrow ε <u>add to FIRST(E')</u> T \rightarrow FT' <u>FIRST(F)</u> add to <u>FIRST(T)</u>, <u>FIRST(F)</u> doesn't contain ε T' \rightarrow *FT' <u>FIRST(*)</u> add to <u>FIRST(T')</u>, <u>FIRST(*)</u> doesn't contain ε T' \rightarrow ε add to <u>FIRST(T')</u>

 $F \rightarrow (E)$ FIRST('(') add to FIRST(F), FIRST('(') doesn't contain ε $F \rightarrow id$ FIRST(id) add to FIRST(F)

- Example: G[E]: E \rightarrow TE'; E' \rightarrow +TE' | ϵ ; T \rightarrow FT'; T' \rightarrow *FT' | ϵ ; F \rightarrow (E) | id , compute the FIRST set of each non-terminal.
 - ◆ FIRST(E):{
 - ◆ FIRST(T):{ (, id
 - ♦ FIRST(E'):{ +, ε
 - ♦ FIRST(T'):{ *, ε
 - ◆ FIRST(F):{ (, id

It is necessary to determine whether the FIRST set has changed after each rule application. first time YES!

Apply rules for the second time:

 $E \rightarrow TE'$ FIRST(T) add to FIRST(E), FIRST(T) doesn't contain ε

 $E' \rightarrow +TE' FIRST(+)$ add to FIRST(E'), FIRST(+) doesn't contain ε

 $E' \rightarrow \varepsilon \varepsilon$ add to FIRST(E')

 $T \rightarrow FT' \ FIRST(F) \ add \ to \ FIRST(T), \ FIRST(F) \ doesn't \ contain \ \varepsilon$

 $T' \rightarrow *FT' FIRST(*) add to FIRST(T'), FIRST(*) doesn't contain <math>\varepsilon$

 $T' \rightarrow \varepsilon \varepsilon add to FIRST(T')$

 $F \rightarrow (E)$ FIRST('(') add to FIRST(F), FIRST('(') doesn't contain ε

 $F \rightarrow id FIRST(id)$ add to FIRST(F)

Compute FIRST[计算FIRST集合的方法]

- Example: G[E]: E \rightarrow TE'; E' \rightarrow +TE' | ϵ ; T \rightarrow FT'; T' \rightarrow *FT' | ϵ ; F \rightarrow (E) | id , compute the FIRST set of each non-terminal.
 - ◆ FIRST(E):{ (, id
 - ◆ FIRST(T):{ (, id
 - ♦ FIRST(E'):{ +, ε
 - ♦ FIRST(T'):{ *, ε
 - ◆ FIRST(F):{ (, id

It is necessary to determine whether the FIRST set has changed after each rule application. second time YES!

Apply rules for the third time:

 $E \rightarrow TE'$ FIRST(T) add to FIRST(E), FIRST(T) doesn't contain ε

 $E' \rightarrow +TE' \frac{FIRST(+)}{add} \frac{dd}{dt} \frac{fIRST(E')}{first(E')}$, $FIRST(+) \frac{doesn't}{dt} \frac{dd}{dt} \frac{dd}{dt}$

 $E' \rightarrow \varepsilon \ \underline{\varepsilon} \ add \ to \ FIRST(E')$

 $T \rightarrow FT' FIRST(F)$ add to FIRST(T), FIRST(F) doesn't contain ε

 $T' \rightarrow *FT' FIRST(*) add to FIRST(T'), FIRST(*) doesn't contain <math>\varepsilon$

 $T' \rightarrow \varepsilon \varepsilon$ add to FIRST(T')

 $F \rightarrow (E)$ FIRST('(') add to FIRST(F), FIRST('(') doesn't contain ε

 $F \rightarrow id FIRST(id)$ add to FIRST(F)

Compute FIRST[计算FIRST集合的方法]

- Example: G[E]: E \rightarrow TE'; E' \rightarrow +TE' | ϵ ; T \rightarrow FT'; T' \rightarrow *FT' | ϵ ; F \rightarrow (E) | id , compute the FIRST set of each non-terminal.
 - ◆ FIRST(E):{ (, id }
 - ◆FIRST(T):{ (, id }
 - ◆FIRST(E'):{ +, ε}
 - ♦ FIRST(T'):{ *, ε}
 - ◆ FIRST(F):{ (, id }

It is necessary to determine whether the FIRST set has changed after each rule application. third time YES!

Apply rules for the 4th time:

 $E \rightarrow TE'$ FIRST(T) add to FIRST(E), FIRST(T) doesn't contain ε

 $E' \rightarrow +TE'$ FIRST(+) add to FIRST(E'), FIRST(+) doesn't contain ε

 $E' \rightarrow \varepsilon \ \underline{\varepsilon} \ add \ to \ FIRST(E')$

 $T \rightarrow FT'$ FIRST(F) add to FIRST(T), FIRST(F) doesn't contain ε

 $T' \rightarrow *FT' FIRST(*)$ add to FIRST(T'), FIRST(*) doesn't contain ε

 $T' \rightarrow \varepsilon \varepsilon$ add to FIRST(T')

 $F \rightarrow (E)$ FIRST('(') add to FIRST(F), FIRST('(') doesn't contain ε

 $F \rightarrow id FIRST(id)$ add to FIRST(F)

It is necessary to determine whether the FIRST set has changed after each rule application. 4th time NO!

- To compute FOLLOW(A) for all non-terminals A, apply the following rules until nothing can be added to any FOLLOW set.
 - ◆ Rule1: Place \$ in FOLLOW(S), where S is the start symbol.
 - ♦ Rule2: If there is a production A → αBβ, then everything in FIRST(β) except ε is in FOLLOW(B).
 - ♦ Rule3: If there is a production A → αB, or a production A → αBβ, where FIRST(β) contains ε, then everything in FOLLOW(A) is in FOLLOW(B).
- Example: G[E]: E \rightarrow TE'; E' \rightarrow +TE' | ϵ ; T \rightarrow FT'; T' \rightarrow *FT' | ϵ ; F \rightarrow (E) | id , compute the FOLLOW set of each non-terminal.
 - FIRST(E):{ (, id }; FIRST(T):{ (, id } ; FIRST(E'):{ +, ε } ; FIRST(T'):{ *, ε } ; FIRST(F):{ (, id }.

- Example: G[E]: E \rightarrow TE'; E' \rightarrow +TE' | ϵ ; T \rightarrow FT'; T' \rightarrow *FT' | ϵ ; F \rightarrow (E) | id , compute the FOLLOW set of each non-terminal.
 - ◆FIRST(E):{ (, id };FIRST(T):{ (, id };FIRST(E'):{ +, ε };FIRST(T'):{ *, ε };FIRST(F):{ (, id }.
 - ◆ FOLLOW(E):{\$
 - ◆ FOLLOW(T):{ +, \$

 - ◆ FOLLOW(E'):{\$
 - ◆ FOLLOW(T'):{
 - ◆ FOLLOW(F):{

- Apply rules for the first time:
- ◆ Place \$ in FOLLOW(E), since E is the start symbol.
- \bullet E \rightarrow TE'
 - \Box FIRST(E') except ε is in FOLLOW(T).
 - Everything in FOLLOW(E) is in FOLLOW(E').
 - Since FIRST(E') contains ε , then everything in FOLLOW(E)
- \bullet E' \rightarrow +TE' | ϵ
 - \Box FIRST(E') except ε is in FOLLOW(T).
 - Everything in FOLLOW(E') is in FOLLOW(E').
 - Since FIRST(E') contains ε , then everything in FOLLOW(E')

is in FOLLOW(T).

is in FOLLOW(T).

- Example: G[E]: E \rightarrow TE'; E' \rightarrow +TE' | ϵ ; T \rightarrow FT'; T' \rightarrow *FT' | ϵ ; F \rightarrow (E) | id , compute the FOLLOW set of each non-terminal.
 - ◆FIRST(E):{ (, id };FIRST(T):{ (, id };FIRST(E'):{ +, ε };FIRST(T'):{ *, ε };FIRST(F):{ (, id }.
 - ◆ FOLLOW(E):{\$
 - ◆ FOLLOW(T):{ +, \$
 - ◆ FOLLOW(E'):{ \$
 - ◆ FOLLOW(T'):{+, \$
 - ◆ FOLLOW(F):{ *, +, \$

Apply rules for the first time:

- \bullet T \rightarrow FT'
 - \Box FIRST(T') except ε is in FOLLOW(F).
 - Everything in FOLLOW(T) is in FOLLOW(T').
 - Since FIRST(T') contains ε, then everything in FOLLOW(T) is in FOLLOW(F).
- ♦ T' → *FT' | ε
 - **□** FIRST(T') except ε is in FOLLOW(F).
 - Everything in FOLLOW(T') is in FOLLOW(T').
 - Since FIRST(T') contains ε, then everything in FOLLOW(T') is in FOLLOW(F).

- Example: G[E]: E \rightarrow TE'; E' \rightarrow +TE' | ϵ ; T \rightarrow FT'; T' \rightarrow *FT' | ϵ ; F \rightarrow (E) | id , compute the FOLLOW set of each non-terminal.
 - ◆FIRST(E):{ (, id };FIRST(T):{ (, id };FIRST(E'):{ +, ε };FIRST(T'):{ *, ε };FIRST(F):{ (, id }.
 - ◆ FOLLOW(E):{ \$, }
 - ◆ FOLLOW(T):{ +, \$, }
 - ◆ FOLLOW(E'):{ \$, }
 - ◆ FOLLOW(T'):{ +, \$
 - ♦ FOLLOW(F): $\{*, +, $$ ◆ $E \rightarrow TE'$

Apply rules for the first time:

- \bullet F \rightarrow (E) | id
 - \Box FIRST(')') except ε is in FOLLOW(E).

Since FOLLOW sets has changed at the first time, Apply rules for

the second time:

- - \Box FIRST(E') except ε is in FOLLOW(T).
 - Everything in FOLLOW(E) is in FOLLOW(E').
 - \Box Since FIRST(E') contains ε , then everything in FOLLOW(E) is in FOLLOW(T).

- Example: G[E]: E \rightarrow TE'; E' \rightarrow +TE' | ϵ ; T \rightarrow FT'; T' \rightarrow *FT' | ϵ ; F \rightarrow (E) | id , compute the FOLLOW set of each non-terminal.
 - ◆FIRST(E):{ (, id };FIRST(T):{ (, id };FIRST(E'):{ +, ε };FIRST(T'):{ *, ε };FIRST(F):{ (, id }.
 - ♦ FOLLOW(E):{\$,} + E' + +TE' | ε
 - ◆ FOLLOW(T):{ +, \$,)
 - ◆ FOLLOW(E'):{ \$, }
 - ◆ FOLLOW(T'):{ +, \$,)
 - ♦ FOLLOW(F): $\{*, +, \$, \}$ ↑ $T \rightarrow FT'$

- - \Box FIRST(E') except ε is in FOLLOW(T).
 - Everything in FOLLOW(E') is in FOLLOW(E').
 - Since FIRST(E') contains ε , then everything in FOLLOW(E') is in FOLLOW(T).
- - FIRST(T') except ε is in FOLLOW(F).
 - Everything in FOLLOW(T) is in FOLLOW(T').
 - Since FIRST(T') contains ε , then everything in FOLLOW(T) is in FOLLOW(F).

- Example: G[E]: E \rightarrow TE'; E' \rightarrow +TE' | ϵ ; T \rightarrow FT'; T' \rightarrow *FT' | ϵ ; F \rightarrow (E) | id , compute the FOLLOW set of each non-terminal.
 - ◆FIRST(E):{ (, id };FIRST(T):{ (, id };FIRST(E'):{ +, ε };FIRST(T'):{ *, ε };FIRST(F):{ (, id }.

 - ◆ FOLLOW(T):{ +, \$, } }
 - ◆ FOLLOW(E'):{\$,}}
 - ◆ FOLLOW(T'):{ +, \$, } }
 - ♦ FOLLOW(F): $\{*, +, \$, \}$ \rightarrow (E) | id

- - \Box FIRST(T') except ε is in FOLLOW(F).
 - Everything in FOLLOW(T') is in FOLLOW(T').
 - \Box Since FIRST(T') contains ε , then everything in FOLLOW(T') is in FOLLOW(F).
 - - \Box FIRST(')') except ε is in FOLLOW(E).

Since FOLLOW sets has changed at the second time, Apply rules for the third time:

◆ EXERCISE! –Ans: no FOLLOW set will be changed.

Revisit

Top-down Parsing

- Recursive-descent parsing [RDP, 递归下降语法分析]
 - (immediate and indirect) left recursion -> remove left recursion
 - Backtracking -> brutal force, not preferred due to complications and high overheads
- Predicative parsing LL(k) [预测分析]
 - Predict the right production based on the input symbol (i.e., lookahead), no backtracking!
 - Preliminaries: (1) remove left recursion, (2) left factoring
 - To enable prediction: FIRST and FOLLOW
 - FIRST(α) = { a | $\alpha \Rightarrow$ a..., a $\in V_T$ }, ϵ can be included
 - FOLLOW(A) = { a | S \Rightarrow ...Aa..., a \in V_T }, \$ can be included
 - Prediction based on the input symbol a when expanding A:
 - For A with A $\rightarrow \alpha \mid \beta$, where FIRST(α) and FIRST(β) are disjoint, *i.e.*, **chose the one with a inside its FIRST set**.
 - If all FIRST sets do not contain a, but $\varepsilon \in FIRST(\alpha)$ while $a \in FOLLOW(A)$, chose $FIRST(\alpha)$

Compute FIRST (Revisit)

- To compute FIRST(X) for all grammar symbol X, apply the following rules until no more terminals or ε can be added to any FIRST set:
 - ◆ **Rule1:** If X ∈ V_T, then FIRST(X) = {X}. [x是终结符]
 - ♦ Rule2: If X ∈ V_N and X → ε exists, then add ε to FIRST(X). [非终结符,空式]
 - ◆ Rule3: If X ∈ V_N and X → $Y_1Y_2Y_3...Y_k$, then [非终结符,非空式]
 - □ If for some Y_i and a terminal a: ① $\varepsilon \in \text{all of FIRST}(Y_1),..., \text{FIRST}(Y_{i-1}), \text{ i.e.,}$ $Y_1...Y_{i-1} \stackrel{*}{\Rightarrow} \varepsilon$; ② $\alpha \in \text{FIRST}(Y_i) \setminus \{\varepsilon\}$. Then, $\alpha \in \text{FIRST}(X)$.
 - □ E.g.,
 - \square Everything in FIRST(Y₁) \ { ε } is surely in FIRST(X).
 - \square If Y_1 doesn't derive ε , then we add nothing more.
 - □ But if Y₁ $\stackrel{*}{\Rightarrow}$ ε, then we add FIRST(Y₂) \ {ε}, and so on...
 - \square Add ε to FIRST(X), if ε is in FIRST(Y_i) for all i=1,2,...k.

Compute FIRST (Revisit)

- Next, we can compute FIRST for any string $\alpha = X_1X_2...X_n$ [符号串]
 - \bullet Add all non- ϵ symbols of FIRST(X₁) to FIRST(α).
 - ullet Add non- ε symbols of FIRST(X_i), 2≤i≤n, to FIRST(α), if FIRST(X₁), ..., FIRST(X_{i-1}) all contain ε . [前i-1个都包含空串]
 - \bullet Add ε to FIRST(α), if FIRST(X_1), ..., FIRST(X_n) all contain ε .

[First(α)集合的计算本质上就是看 α 能推导出什么, First(α)包括所有 α 能推导出的句子的首个字符 (必须是终结符或空串)] [给定 α ->X₁X₂...X_n First(α)的计算基于单个First(X_i) 的计算(方法见上页)

Compute FIRST (Revisit)

• Example: G[E]: E \rightarrow TE'; E' \rightarrow +TE' | ϵ ; T \rightarrow FT'; T' \rightarrow *FT' | ϵ ; F \rightarrow (E) | id , compute the FIRST set of each non-terminal.

- ◆ FIRST(E):{ (, id }
- ◆ FIRST(T):{ (, id }
- ◆FIRST(E'):{ +, ε}
- ♦ FIRST(T'):{ *, ε}
- ◆ FIRST(F):{ (, id }

```
\alpha = X_1 X_2 ... X_n
```

- (1) all non- ε symbols of FIRST(X₁) to FIRST(α)
- (2) If $FIRST(X_1)$, ..., $FIRST(X_{i-1})$ all contain ε , add non- ε symbols of $FIRST(X_i)$, $2 \le i \le n$, to $FIRST(\alpha)$
- (3) If FIRST(X_1), ..., FIRST(X_n) all contain ε , add ε to FIRST(α)

It is necessary to determine whether the FIRST set has changed after each rule application.

- $E \rightarrow TE'$ FIRST(T) add to FIRST(E), FIRST(T) doesn't contain ε
- $E' \rightarrow +TE' \frac{FIRST(+)}{add} \frac{dd}{dt} \frac{fIRST(E')}{first(E')}$, $FIRST(+) \frac{doesn't}{dt} \frac{dd}{dt} \frac{dd}{dt}$
- $E' \rightarrow \varepsilon \ \underline{\varepsilon} \ add \ to \ FIRST(E')$
- $T \rightarrow FT' \frac{FIRST(F)}{e} add to \frac{FIRST(T)}{e}$, FIRST(F) doesn't contain ε
- $T' \rightarrow *FT' FIRST(*)$ add to FIRST(T'), FIRST(*) doesn't contain ε
- $T' \rightarrow \varepsilon \frac{\varepsilon \ add \ to \ FIRST(T')}{\varepsilon}$
- $F \rightarrow (E)$ FIRST('(') add to FIRST(F), FIRST('(') doesn't contain ε
- $F \rightarrow id FIRST(id)$ add to FIRST(F)

Compute FOLLOW (Revisit)

- To compute FOLLOW(A) for all non-terminals A, apply the following rules until nothing can be added to any FOLLOW set.
 - ◆ Rule1: Place \$ in FOLLOW(S), where S is the start symbol.
 - ♦ Rule2: If there is a production A → αBβ, then everything in FIRST(β) except ε is in FOLLOW(B).
 - ♦ Rule3: If there is a production A → αB, or a production A → αBβ, where FIRST(β) contains ε, then everything in FOLLOW(A) is in FOLLOW(B).

[FOLLOW(A)计算的本质是在看这个A后 (不包含A本身的推导结果) 的符号 (必须是终结符或结束符号)]

[给定 $A \rightarrow \alpha B \beta$, FOLLOW(B)计算基于FIRST(β)的计算

Compute FOLLOW (Revisit)

- G[E]: E \rightarrow TE'; E' \rightarrow +TE' | ϵ ; T \rightarrow FT'; T' \rightarrow *FT' | ϵ ; F \rightarrow (E) | id
 - ◆FIRST(E):{ (, id };FIRST(T):{ (, id };FIRST(E'):{ +, ε };FIRST(T'):{ *, ε };FIRST(F):{ (, id }.
 - ◆ FOLLOW(E):{\$, }}
 - ◆ FOLLOW(T):{ +, \$,) }
 - ◆ FOLLOW(E'):{\$,}}
 - ◆ FOLLOW(T'):{ +, \$,) }
 - ◆ FOLLOW(F):{ *, +, \$,) }

$A \rightarrow \alpha B \beta$

- (1) If A is the start symbol, $\$ \in FOLLOW(A)$
- (2) Everything in FIRST(β) except ϵ is in FOLLOW(B).
- (3) If β does not exist or FIRST(β) contains ϵ , then everything in FOLLOW(A) is in FOLLOW(B).

- ◆ Place \$ in FOLLOW(E), since E is the start symbol.
- \bullet E \rightarrow TE'
 - \Box FIRST(E') except ε is in FOLLOW(T).
 - Everything in FOLLOW(E) is in FOLLOW(E').
 - Since FIRST(E') contains ε, then everything in FOLLOW(E) is in FOLLOW(T).
- ♦ E' → +TE' | ε
 - **□** FIRST(E') except ε is in FOLLOW(T).
 - Everything in FOLLOW(E') is in FOLLOW(E').
 - □ Since FIRST(E') contains ε, then everything in FOLLOW(E') is in FOLLOW(T).

LL(1) Grammar[LL(1)文法]

- Predictive parsers, that is, recursive-descent parsers needing no backtracking, can be constructed for a class of grammars called LL(1).
- A grammar G is LL(1) **if and only if** whenever any two distinct productions of G [G的任意两个不同的产生式], $A \to \alpha \mid \beta$, the following conditions hold: So, S \to EBD | FBB; E \to a...; F \to a... is not LL(1)
 - 1. For no terminal α , do both α and β derive strings beginning with α .
 - 2. At most one of α and β can derive the empty string. [条件1和2不满足则直接产生工义性,即使用α还是β?]
 - 3. If $\beta \stackrel{*}{\Rightarrow} \epsilon$, then α does not derive any string beginning with a terminal in FOLLOW(A). Likewise, if $\alpha \stackrel{*}{\Rightarrow} \epsilon$, then β does not derive any string beginning with a terminal in FOLLOW(A). [条件3不满足也会产生两种可能的推导,如推导 β 为 ϵ 还是推导 α]

LL(1) Grammar[LL(1)文法]

- The first two conditions are equivalent to the statement that $FIRST(\alpha)$ and $FIRST(\beta)$ are disjoint sets [不相交的集合].
- The third condition is equivalent to stating that if ϵ is in FIRST(β), then FIRST(α) and FOLLOW(A) are disjoint sets, and likewise if ϵ is in FIRST(α). [确保无等价的推导] 反例: input symbol为b,当前句型aaAb,产生式A-> b | ϵ
- LL(1) Grammar does not contain left recursion. [LL(1)文法不含左递归]
- LL(1) Grammar is not ambiguous. [LL(1)文法不是二义的]

LL(1)/LL(k) Grammar[LL(1)/LL(k)文法]

- LL (1) grammar.
 - **♦ L:** The first "L" in LL(1) stands for scanning the input from left to right.
 - **♦ L:** The second "L" for producing a leftmost derivation.
 - ♦1: The "1" for using one input symbol of lookahead at each step to make parsing action decisions.
- LL (k) grammar.
 - ♦ k: using k input symbols of lookahead at each step to make parsing action decisions.
- Many languages are LL(k), in fact many are LL(1).
- Is LL(0) useful at all?
 - ◆ Grammar where rules can be predicted with no lookahead.
 - \Rightarrow That means, there can only be one rule per non-terminal.
 - ♦⇒ That means, this language can have only one string.

LL(1) Parser Implementation[实现]

- <u>Recursive</u> LL(1) parser for G[S]: $S \rightarrow A \mid B$; $A \rightarrow a$; $B \rightarrow b$.
 - ◆ Maintaining a stack implicitly. [隐式维护栈]
 - ♦ What is the stack for? Derivation results
- Is there a way to express above code more concisely? [简洁]
 - ◆ *Non-recursive* LL(1) parsers
 - □ Use a predictive parsing table. [预测分析表]
 - □ maintaining a stack explicitly. [显式维护栈]
 - □ Table-driven parser. [表驱动]

```
void S(){
     token = Next(); // lookahead
      if(token == a) // 'A' starts with 'a'
            A(); // call procedure A()
      else if (token == b) // 'B' starts
with 'b'
            B(); // call procedure B()
     else
            return; // error, reject.
```

Non-recursive LL(1) Parser [非递归]

- Input buffer[输入串]: contains the string to be parsed, followed by the "end marker" \$.
- Stack[推导的中间结果]: holds a sequence of grammar symbols and the symbol \$ to mark the bottom of the stack. It may contain:
 - ◆ Terminals that have yet to matched against the input symbol.
 - ◆ Non-terminals that have yet to be expanded.

- Parsing Table M[A,a] [语法分析表]: an entry containing production "A→…" or error.
- Predictive Parsing Program[语法分析程序]: Execute the action according to <stack top, current input symbol>

LL(1) Parse Table [预测分析表]

G [E]:
$E \rightarrow TE'$
$E' \rightarrow + TE' \mid \epsilon$
$T \rightarrow FT'$
$T' \rightarrow *FT' \mid \epsilon$
$F \rightarrow (E) \mid id$

	id	+	*	()	\$
E	$E \rightarrow TE'$			E → TE′		
E'		E' → +TE'			$E' \rightarrow \epsilon$	$E' \rightarrow \epsilon$
Т	$T \rightarrow FT'$			T → FT'		
T'		T′ → ε	T' → *FT'		T′ → ε	T′ → ε
F	F ightarrow id			F → (E)		
1						

Input symbol, lists all possible terminals and \$

all non-terminals in the grammar

One action for each <non-terminal, next input>, it "predicts" the correct action based on one lookahead

- Reject on reaching error state
- Accept on end of input & empty stack

LL(1) Parsing Algorithm [非递归算法]

- Initial state [初始态]
 - ◆Input: A string w and a parsing table M for grammar G. Input Buffer: w\$.
 - ◆ Stack: start symbol followed by '\$' at bottom.
 - ◆ Assume X: symbol at the top of the stack, a: current input symbol.
- General idea [总体思路]: repeat one of two actions
 - ◆ Expand non-terminal symbol at top of stack by applying a production
 - ◆ Match terminal symbol at top of stack with input token

LL(1) Parsing Algorithm [非递归算法]

- Algorithm Step-by-Step based on <X, a>:
 - X: symbol at the top of the stack
 - ◆a: current input token
 - ♦ If $X \subseteq V_{\tau}$, [栈顶符号为终结符] and
 - $\square X == a == \$$, declare **SUCCESS**, stop parsing.
 - X == a != \$, **pop** X from stack and move the current input symbol forward one.
 - X != a, declare ERROR, input is rejected, stop parsing.
 - ♦ If $X \subseteq V_N$, [栈顶符号为非终结符] and
 - M[X, a] has a production about X, pop X and push right side of production to stack.
 - M[X, a] == empty, declare ERROR, input is rejected, stop parsing.

If M[X,a] = X → +TE'

Push to stack in

Reverse Order

If M[X,a] = $X \rightarrow \epsilon$

[逆序入栈]

Only pop and push nothing

- When using parse table for predictive parsers, if the grammar does not conform to the specification of LL (1) grammar:
 - ◆ the grammar should be rewritten into LL (1) grammar by removing left recursion and backtracking, then the parse table should be constructed.

• LL(1) parser example: consider G[E] to recognize "id + id * id"

G[E] :			
$E \to I$	ΓΕΊ		
E' →	+TE	'	3
$T \rightarrow I$	FT'		
$T' \rightarrow$	*FT	'	3
$F \rightarrow ($	(E)	id	

	id	+	*	()	\$
E	E → TE′			$E \rightarrow TE'$		
E'		E' → +TE'			E′ → ε	E′ → ε
Т	T → FT'			$T \rightarrow FT'$		
T'		T' → ε	T' → *FT'		T′ → ε	T′ → ε
F	$F \rightarrow id$			F → (E)		

Matched	Stack	Input	Action
	E\$	id + id * id\$	E → TE′
	TE'\$	id + id * id\$	$T \rightarrow FT'$
	FT'E'\$	id + id * id\$	$ extsf{F} ightarrow extsf{id}$
	idT'E'\$	id + id * id\$	match id
id	T'E'\$	+ id * id\$	T′ → ε
id	E'\$	+ id * id\$	E' → +TE'
id	+TE'\$	+ id * id\$	match +
id +	TE'\$	id * id\$	$T \rightarrow FT'$
id +	FT' E'\$	id * id\$	$ extsf{F} ightarrow extsf{id}$
id +	id T' E'\$	id * id\$	match id
id + id	T' E'\$	* id \$	T' → *FT'
id + id	*FT'E'\$	* i d \$	match *

Matched	Stack	Input	Action
id + id *	FT'E'\$	i d \$	F ightarrow id
id + id *	idT'E'\$	i d \$	match id
id + id * id	T'E'\$	\$	T' → ε
id + id * id	E'\$	\$	E' → ε
id + id * id	\$	\$	ACCEPT

The parser mimics a leftmost derivation.

• Top-down parsing mimics the grammar

How to construct LL(1) Parse Table?

the input has been reached and \$ is in FOLLOW (A).

- Use FIRST and FOLLOW sets for a predictive parsing table M[A,a],
 and the algorithm is based on the following idea:
 - \bullet The production $A \rightarrow \alpha$ is chosen if the next input symbol α is in FIRST (α).
 - ♦ The only complication occurs when $\alpha = \varepsilon$ or, more generally, $\alpha \stackrel{*}{\Rightarrow} \varepsilon$:

 □ we should again choose A $\rightarrow \alpha$, if (1) a is in FOLLOW(A) or (2) the \$ on

- **Algorithm**: For each production $A \rightarrow \alpha$ of the grammar:
 - \bullet For each terminal $\alpha \in FIRST(\alpha)$, add $A \rightarrow \alpha$ to M[A, a].

$$G[E] \colon \xrightarrow{E} \to TE' \quad \xrightarrow{E'} \to +TE' \mid \epsilon \quad \xrightarrow{T} \to FT' \quad \xrightarrow{T'} \to *FT' \mid \epsilon \quad \xrightarrow{F} \to (E) \mid id$$

	id	+	*	()	\$
E	$E \rightarrow TE'$			$E \rightarrow TE'$		
E'		E' → +TE'				
Т	$T \rightarrow FT'$			$T \rightarrow FT'$		
T'			$T' \rightarrow *FT'$			
F	$F \rightarrow id$			F → (E)		

Production	$FIRST(\alpha)$
$E \rightarrow TE'$	(, id
$E' \rightarrow +TE'$	+
$T \rightarrow FT'$	(, id
$T' \rightarrow *FT'$	*
$F \rightarrow (E)$	(
F ightarrow id	id
$E' \rightarrow \epsilon$	FOLLOW
$T' \rightarrow \epsilon$	FOLLOW

- **Algorithm**: For each production $A \rightarrow \alpha$ of the grammar:
 - \bullet If $\varepsilon \in \mathsf{FIRST}(\alpha)$, then for each terminal b in $\mathsf{FOLLOW}(A)$, add $A \to \alpha$ to M[A,b]. If $\varepsilon \in \mathsf{FIRST}(\alpha)$ and $\varphi \in \mathsf{FOLLOW}(A)$, add $A \to \alpha$ to M[A, φ] as well.

$G[E]: E \rightarrow$	TE' E'-	> +ΤΕ' ε	T → FT	" T' → "	*FT' ε	F → (E)	id
	id	+	*	()	\$	
Е	E → TE′			$E \rightarrow TE'$			
E'		E' → +TE'			$E' \rightarrow \epsilon$	$E' \rightarrow \epsilon$	
Т	T → FT'			$T \rightarrow FT'$			
T'		$T' \rightarrow \epsilon$	T' → *FT'		$T' \rightarrow \epsilon$	$T' \rightarrow \epsilon$	
F	$F \rightarrow id$			$F \rightarrow (E)$			

Production	$FIRST(\alpha)$
$E' \rightarrow \epsilon$	FOLLOW
$T' \rightarrow \epsilon$	FOLLOW
Symbol	FOLLOW(A)
E'	\$,)
T'	+,\$,)

G[E]: $E \rightarrow TE'$ $E' \rightarrow +TE' \mid \epsilon$

 $T \rightarrow FT'$ $T' \rightarrow *FT' \mid \epsilon$

 $F \rightarrow (E) \mid id$

Symbol	FIRST	FOLLOW
E	(, i	\$,)
Ε'	+, ε	\$,)
Т	(, i	+, \$,)
T'	*, ε	+, \$,)
F	(, i	*, +, \$,)

	id	+	*	()	\$
E	E → TE′			E → TE′		
E'		E' → +TE'			$E' \rightarrow \epsilon$	$E' \rightarrow \epsilon$
Т	T → FT'			T → FT'		
T'		T′ → ε	T' → *FT'		T′ → ε	T′ → ε
F	$F \rightarrow id$			F → (E)		

Production	FIRST(α)
E → TE′	(, i
E' → +TE'	+
T → FT'	(, i
T' → *FT'	*
F → (E)	(
F o id	id
E' → ε	FOLLOW
T′ → ε	FOLLOW

Determine If Grammar is LL(1)[判断LL(1)文法]

- Observation [直观依据]
 - ◆ If a grammar is LL(1), each of its LL(1) table entry contains at most one rule.
 - ◆Otherwise, it is not LL(1).

	id	+	*	()	\$
E	E → TE′			$E \rightarrow TE'$		
E'		E' → +TE'			E′ → ε	E′ → ε
Т	T → FT'			T → FT′		
T'		T′ → ε	T' → *FT'		T′ → ε	T′ → ε
F	$F \rightarrow id$			F → (E)		

- Two methods to determine if a grammar is LL(1) or not
 - ◆Construct LL(1) table, and check if there is a multi-rule entry. [看语法分析表]
 - ♦ Check each rule as if the table is getting constructed, grammar G is LL(1) if and only if for any two distinct productions A $\rightarrow \alpha \mid \beta$: [看文法]
 - \bullet FIRST(α) \cap FIRST(β) = φ
 - \bullet If $\varepsilon \in FIRST(\beta)$, $FIRST(\alpha) \cap FOLLOW(A) = \phi$ (Mentioned before)

Non-LL(1) Grammar [非LL(1)文法]

- Assume that a grammar is not LL(1). How to solve?
 - ◆ Case1- the language may still be LL(1)
 - □ Try to rewrite grammar to LL(1) grammar [<u>remove left-recursion & left-factoring</u>]
 - □ Try to remove ambiguity in grammar.
 - ◆ Case2- If Case-1 fails, language may not be LL(1)
 - □ It's impossible to resolve conflict at the grammar level.
 - □ Programmer chooses which rule to use for conflicting entry (if choosing that rule is always semantically correct)
 - □ Otherwise, use a more powerful parser (e.g. LL(k), LR(1))

LL(1) Time and Space Complexity[复杂度]

- Linear time and space relative to the length of input.
- Time: each input symbol is consumed within a constant number of steps.
 - ◆ If symbol at top of stack is a terminal: Matched immediately in one step.
 - ◆ If symbol at top of stack is a non-terminal:
 - □ Matched in at most **N steps**, where **N = number of rules**.
 - □ Since LL(1) is not left-recursive, we do not apply same rule twice without consuming input.

LL(1) Time and Space Complexity[复杂度]

- Space: smaller than input (after removing $X \rightarrow \varepsilon$)
 - ◆ Right side of production is always longer or equal to left side of production
 - Derivation string expands monotonically.
 - □ Derivation string is always shorter than final input string.
 - Stack is a subset of derivation string (unmatched portion)
- LL(k)'s size of parse table = O(|N|*|T|k)
 - ◆ N = number of non-terminals, T = number of terminals
 - ◆ prevent LL(2) ... LL(k) from wide usage

Summary

Summary

- Top-down Parsing; RDP with backtracking, predictive parsing.
- (Immediate / Non-immediate) Left Recursion and how to resolve
- Left-factoring.
- FIRST, FOLLOW.
- LL(1)/LL(k) Grammar.
- Recursive / Non-recursive LL(1) parser implementation.
- The use of LL(1) Parse Table.
- The construction of LL(1) Parse Table.

Summary [自顶向下分析]

- RDP [递归下降分析]
 - left recursion [左递归]
 - Remove Left Recursion [消除直接/间接左递归]
 - Backtracking [回溯]
 - left factoring [提取左公因子]
- Predictive Parsing [预测分析]
 - FIRST & FOLLOW [终结首符集 & 后继终结符号集]
 - Definition of LL(1)/LL(k) [LL(1)/LL(k)文法的定义]
 - LL(1) Parse Table [LL(1)的分析表]
 - The use of the Parse Table [分析表的使用]
 - The Construction of the Parse Table [分析表的构建]
 - Table-driven LL(1) Parser Implementation [分析表驱动的LL(1)语法分析实现]
 - Complexity of LL(1) [LL(1)的时间与空间复杂度]

Further Reading

Compilers

Dragon Book

- ◆Comprehensive Reading:
 - □ Section 4.1.2 and 4.4.1 for the introduction to top-down parsing.
 - Section 4.4.2 for function FIRST and FOLLOW.
 - □ Section 4.1.4, 4.4.3–4.4.4, and 4.4.5 for LL(1) parsing and error recovery.

◆Skip Reading:

regular expressions.

