Τεχνικές Βελτιστοποίησης - 3η Εργαστηριακή Άσκηση

Μέθοδος Μέγιστης Καθόδου με Προβολή

Δάφνη Νικολαΐδου ΑΕΜ:10546

Σε αυτή την άσκηση υλοποιούνται στο MATLAB η μέθοδος μέγιστης καθόδου χωρίς περιορισμούς για 4 διαφορετικά βήματα γκ, καθώς και η μέθοδος μέγιστης καθόδου με προβολή για διαφορετικά γκ, sκ και σημεία εκκίνησης.

Η εφαρμογή αυτών των μεθόδων έχει, ως γνωστόν, σκοπό την ελαχιστοποίηση της δοθείσας συνάρτησης:

$$f \colon \mathbb{R}^2 \to \mathbb{R}, \ f(x) = \frac{1}{3} x_1^2 + 3 x_2^2, \ x = [x_1 \, x_2]^T.$$

Αρχικά, ας σχεδιάσουμε την f, ώστε να έχουμε μια εικόνα της μορφής της στον τρισδιάστατο χώρο και στο επίπεδο x-y.

Το αρχείο MATLAB για την σχεδίασή της έχει όνομα fgraph.m

Μέθοδος Μέγιστης Καθόδου

Η υλοποίηση βρίσκεται στο αρχείο με όνομα thema1.m.

Επιλέγοντας σημείο εκκίνησης το (x1, x2) = (-6, 6), υλοποιούμε τη μέθοδο, όπως είχαμε κάνει στην Εργαστηριακή Άσκηση 2, χωρίς περιορισμούς, για ακρίβεια ε = 0.001 και για τις παρακάτω περιπτώσεις βήματος γκ:

γκ = 0.1

γκ = 0.3

γκ = 3

Διαπιστώνουμε ότι η Μέθοδος Μέγιστης Καθόδου καταφέρνει στις δύο πρώτες περιπτώσεις επιλογής του βήματος γk να συγκλίνει στο ολικό ελάχιστο της f. Δεν συμβαίνει το ίδιο όμως για γκ = 3 και γκ = 5.

Μπορούμε να καταλάβουμε γιατί, εφαρμόζοντας την παρακάτω μαθηματική ανάλυση:

Έχουμε
$$f(x_1,x_2)=\frac{1}{3}{x_1}^2+3{x_2}^2$$
 η κλίση της οποίας είναι $\nabla f(x_1,x_2)=\begin{bmatrix} \frac{2}{3}x_1\\ 6x_2 \end{bmatrix}$

Το βήμα της μεθόδου δίνεται από τη σχέση $X_{k+1}=X_k-\gamma_\kappa \nabla f(x_{1k},x_{2k})$, η οποία με αντικατάσταση των

παραπάνω μας δίνει
$$X_{k+1}=X_k-\left[rac{2}{3}\gamma_\kappa x_{1k}
ight]=\left[rac{1-rac{2}{3}\gamma_\kappa}{1-6\gamma_\kappa}
ight]X_k$$

Για να συγκλίνει η μέθοδος στο ελάχιστο της f πρέπει κάθε επόμενο βήμα να οδηγεί σε μικρότερη τιμή της αντικειμενικής συνάρτησης:

$$\left| \frac{x_{1,\kappa+1}}{x_{1,\kappa}} \right| < 1 \text{ kat } \left| \frac{x_{2,\kappa+1}}{x_{2,\kappa}} \right| < 1$$

Άρα,

$$\left|1 - \frac{2}{3} * \gamma_{\kappa}\right| < 1 \stackrel{\square}{\Rightarrow} 0 < \gamma_{\kappa} < 3 \ \kappa \alpha \iota \ |1 - 6 * \gamma_{\kappa}| < 1 \stackrel{\square}{\Rightarrow} 0 < \gamma_{\kappa} < \frac{1}{3}$$

Δηλαδή, να ισχύει η ανισοτική σχέση $0 < \gamma_{\kappa} < \frac{1}{3} = 0.333$.

Για αυτό λοιπόν, στις περιπτώσεις που $\gamma_{\rm K}$ = 0.1 και $\gamma_{\rm K}$ = 0.3 όπου $\gamma_{\rm K}$ < 0.333 ο αλγόριθμος καταφέρνει να φτάσει στο ελάχιστο της f, ενώ στις περιπτώσεις των $\gamma_{\rm K}$ = 3 και $\gamma_{\rm K}$ = 5 η μέθοδος δεν συγκλίνει αφού ισχύει $\gamma_{\rm K}$ > 0.333.

Αν συγκρίνουμε, τώρα την απόδοση της μεθόδου για $\gamma_{\rm K}$ = 0.1 και $\gamma_{\rm K}$ = 0.3, θα διαπιστώσουμε ότι ο αλγόριθμος απαιτεί πολύ περισσότερα βήματα για $\gamma_{\rm K}$ = 0.1, αφού το βήμα σε αυτή τη περίπτωση είναι πολύ μικρό.

Μέθοδος Μέγιστης Καθόδου με Προβολή

Ο κώδικας για τα θέματα 2,3,4 που αφορούν τη μέθοδο αυτή βρίσκεται στο αρχείο thema2_3_4.m

Στη μέθοδο μέγιστης καθόδου με προβολή έχουμε $X_{k+1} = X_k + \gamma_\kappa (\overline{X_k} - X_k)$,

όπου
$$\overline{X_k} = \text{Prx} \{X_k - s_k \nabla f(X_k)\}$$

Αν, όμως, το $X_k - s_\kappa \nabla f(X_k)$ είναι εφικτό, τότε η μέθοδος ταυτίζεται με τη μέθοδο μέγιστης

καθόδου χωρίς περιορισμούς, δηλαδή $\overline{X_k} = X_k - s_\kappa \nabla f(x_{1k}, x_{2k})$ και $X_{k+1} = X_k - \gamma_\kappa s_\kappa \nabla f(X_k)$

Σύμφωνα με τη συνθήκη που θέσαμε στο προηγούμενο ερώτημα, θα πρέπει και σε αυτή τη περίπτωση να ισχύει η ανισότητα $0<\gamma_\kappa s_\kappa<0.333$.

Εξετάζουμε τρεις περιπτώσεις:

Θέμα 2 : σημείο εκκίνησης (5, –5), sκ = 5, γ κ = 0.5 και ακρίβεια ε = 0.01

Θέμα 3 : σημείο εκκίνησης (-5, 10), sκ = 15, γκ = 0.1 και ακρίβεια ε = 0.01

Θέμα 4 : σημείο εκκίνησης το (8, -10), $s\kappa = 0.1$, $\gamma\kappa = 0.2$ και ακρίβεια $\varepsilon = 0.01$

Επιπλέον θέτουμε τον περιορισμό:

$$-10 \le X_1 \le 5 \kappa \alpha \iota - 8 \le X_2 \le 12$$

Θέμα 2

Σε αυτή τη περίπτωση, τα αρχικά σημεία βρίσκονται εντός των περιορισμών και άρα δεν χρησιμοποιείται κάποια προβολή, οπότε ο αλγόριθμος τρέχει σαν την Μέθοδο Μέγιστης Καθόδου χωρίς περιορισμούς. Όμως δεν ικανοποιείται η συνθήκη $0 < s_k \gamma_\kappa < 0.333$, αφού χρησιμοποιούμε $s_\kappa = 5$ και $s_\kappa = 5$

Θέμα 3

Στην δεύτερη περίπτωση, χρησιμοποιούμε sκ = 15 και $\gamma_{\kappa}=0.1$, δηλαδή έχουμε $s_{k}*\gamma_{\kappa}=1.5>0.333$ και δεν τηρείται η συνθήκη. Όμως, όπως βλέπουμε, αφού ταλαντωθεί για αρκετές επαναλήψεις γύρω από το ελάχιστο, ο αλγόριθμος συγκλίνει. Αυτό μπορεί να οφείλεται στο γεγονός ότι τηρείται η πρώτη εκ των δύο ανισότητα ($0< s_{k}*\gamma_{\kappa}<3$). Η, απλά λόγω τύχης ο αλγόριθμος να "πέφτει" πάνω στο ελάχιστο σε κάποιο βήμα. Παρατηρούμε, ωστόσο, ότι η μέθοδος συγκλίνει εξαιρετικά αργά, σε σχεδόν 250 επαναλήψεις. Εάν χρησιμοποιηθεί κάποιος συνδυασμός s_{k} , γ_{κ} ώστε να ικανοποιείται η συνθήκη $0< s_{k}*\gamma_{\kappa}<3$, έστω sκ = 1 και $\gamma_{\kappa}=0.2$ τότε η μέθοδος συγκλίνει πολύ πιο γρήγορα, όπως διαπιστώνουμε από τα παρακάτω διαγράμματα.

<u>Θέμα 4</u>

Στην τρίτη και τελευταία περίπτωση που μελετούμε, παρατηρούμε ότι το σημείο εκκίνησης δεν είναι εφικτό. Έτσι ο αλγόριθμος παίρνει την προβολή του για να μας επαναφέρει στον χώρο των εφικτών σημείων, η οποία στη περίπτωση του σημείου (8,-10) είναι το (5,-8). Τότε η μέθοδος επιτυγχάνει να φτάσει στο ελάχιστο της f εντός των αρχικών περιορισμών, καθώς έχουμε χρησιμοποιήσει $S_{\rm K}=0.1$ και $\gamma_{\rm K}=0.2$ και ισχύει η συνθήκη $s_k*\gamma_{\rm K}=0.02<0.333$. .Λόγω του πολύ μικρού βήματος ,όμως ο αλγόριθμος χρειάζεται πολύ χρόνο για να φτάσει στο ελάχιστο της f.