

Reconstruction 3D et Optimisation de maillages

Romain Chaussonnier, Waël Doulazmi, Matias Etcheverry, Alexis Gadonneix, Ayoub Rhim

Objectif et enjeux

Comment obtenir un maillage simple d'un jeu d'images d'un objet dit "structuré?

Applications:

- Impression 3D
- City Modelling

SIFT

Feature matching

exhaustive

Geometry Verification

5 Point Relative Pose

Image Registration *P3P*

Triangulation

Sampling-based DLT

Bundle Adjustment

Ceres Solver

Robust estimation

RANSAC

COLMAP

Création du maillage dense

- Sélection à la main
- Suppression des outliers
- Bilateral smoothing
- Échantillonnage
- Reconstruction de Poisson

Approche hiérarchique

- N_i : nombre de faces minimale pour l'itération I
- (N_i) suite entière, strictement décroissante, de minimum 1

Nombre de faces min = 4

Critères de comparaison des maillages

- Nombre de faces
- Distance de Hausdorff
- Temps de calcul

Comparaison des méthodes de remaillage

- Performances différentes en fonction du nombre de faces en sorties
- Apparition d'un plateau

Conclusion et perspectives

- Création d'un pipeline performant depuis la prise de photo à l'obtention d'un maillage simple
- Améliorer l'automatisation
- Comparer aux méthodes à la pointe (kinetic shape reconstruction)
- Travailler avec des faces polygonales

Annexes

Choix des paramètres

Distance de Hausdorff

Soient deux maillages $\mathcal X$ et $\mathcal Y$. On définit la distance de Hausdorff D par :

$$D(\mathcal{X}, \mathcal{Y}) = \max \left(\sup_{x \in \mathcal{X}} \inf_{y \in \mathcal{Y}} d(x, y), \quad \sup_{y \in \mathcal{Y}} \inf_{x \in \mathcal{X}} d(x, y) \right)$$

Slicing

VSA

Edge collapse

