

1

SEQUENCE LISTING

<110> WAHL, SHARON M.

VAZQUEZ-MALDONADO, NANCY
GREENWELL-WILD, TERESA<120> METHODS AND COMPOSITIONS FOR THE INHIBITION OF HIV-1
REPLICATION

<130> 47992-64868WO

<140> 10/578,536

<141> 2006-05-04

<150> PCT/US04/36492

<151> 2004-11-03

<150> 60/516,734

<151> 2003-11-04

<160> 14

<170> PatentIn Ver. 3.3

<210> 1

<211> 15

<212> RNA

<213> Homo sapiens

<400> 1

uccgcgccccca gcuucc

15

<210> 2

<211> 15

<212> RNA

<213> Homo sapiens

<400> 2

uccggcccgca gcuucc

15

<210> 3

<211> 2265

<212> DNA

<213> Homo sapiens

<400> 3

gctgccgaag tcagttcctt gtggagccgg agctgggcgc ggattcggcg aggcaccgag 60
gcactcagag gaggtgagag agcggccgc gacaaacagg gaccccgggc cggcggccca 120
gagccgagcc aagcgtgcc gcgtgtgtcc ctgcgtgtcc gcgaggatgc gtgttcgcgg 180
gtgtgtgtcg cgttcacagg tgtttctgcg gcaggcgcca tgcagaacc ggctggggat 240
gtccgtcaga acccatgcgg cagcaaggcc tgccgcgc tcttcggccc agtggacagc 300
gagcagctga gccgcgactg tgatgcgcta atggcggtt gcatccagga ggcccgtgag 360
cgatggaaact tcgactttgt caccgagaca ccactggagg gtgacttcgc ctgggagcgt 420
gtgcggggcc ttggcctgcc caagctctac cttcccacgg ggcccccggcg aggccgggat 480
gaattgggag gaggcaggcg gcctggcacc tcacctgcgc tgctgcagg gacagcagag 540
gaagaccatg tggacctgtc actgtcttgtt acccttgcgc ctcgctcagg ggagcaggct 600

gaagggtccc caggtggacc tggagactct cagggtcgaa aacggcggca gaccagcatg 660
 acagatttct accactccaa acgcccgtg atcttctcca agaggaagcc ctaatccgcc 720
 cacagaagc ctgcagtctt ggaaggcgca gggctcaaa ggcccgtct acatcttctg 780
 ccttagtctc agtttggtgt tctaattat tatttgtgtt ttaatttaaa cacctcctca 840
 tgtacatacc ctggccgccc cctgcccccc agcctctggc attagaatta tttaaacaaa 900
 aactaggcgg ttgaatgaga gttcctaag agtgctggc atttttattt tatgaaatac 960
 tatttaaagc ctccatcc cgttctcc ttttctctc tcccgaggt tgggtgggccc 1020
 ggcttcatgc cagctacttc ctccctccca cttgtccgtt ggggtgtacc ctctggaggg 1080
 gtgtgctcc ttcccattcg tgcacaggc gtttatgaaa ttcacccctt tcctggaca 1140
 ctcagacctg aattctttt catggagaa gtaaacagat ggcacttga aggggcctca 1200
 ccgagtgccc gcatcatcaa aaactttgga gtcccctcac ctccctcaag gttggcagg 1260
 gtgacccctga agtgagcaca gccttagggct gagctgggga cctggtaccc tcctggctct 1320
 tgataccccc ctctgtctt tgaaggcagg gggaaagggtgg ggtcctggag cagaccaccc 1380
 cgccctgcctt catggccctt ctgacctgca ctggggaggg cgtctcgtt tgagccttt 1440
 tccctcttgc gtccttgc accttttgc gggcccccagc tacccttctt ctccagctgg 1500
 gctctgcaat tccctctgc tgctgtccct ccccttgc ctttcccttc agtaccctct 1560
 cagctccagg tggctctgag gtgcctgtcc ccccccacc cccagctcaa tggactggaa 1620
 ggggaaggga cacacaagaa gaaggcacc ctgttctac ctcaggcagc tcaaggcagcg 1680
 accgccccctt cctctagctg tgggggtgag gttccatgt ggtggcacag gcccccttga 1740
 gtggggttat ctctgtgtt ggggtatatg atgggggagt agatcttttctt aggagggaga 1800
 cactggccccc tcaaattcgtc cagcgacccctt cctcatccac cccatccctc cccagttcat 1860
 tgcactttga ttagcagcgg aacaaggagt cagacatttt aagatggtgg cagtagagggc 1920
 tatggacagg gcatgccacg tgggctata tggggctggg agtagttgtc ttcctggca 1980
 ctaacgttga gcccctggag gcactgaagt gtttagtgtt cttggagttt tggggctgt 2040
 cccaaacac cttccagctc ctgttaacata ctggcctgga ctgtttctc tcggctcccc 2100
 atgtgtcctg gttcccggtt ctccacccatg actgtaaacc tctcgaggc agggaccaca 2160
 ccctgtactg ttctgtgtt ttcacagctc ctccccacaat gctgaatata cagcagggtgc 2220
 tcaataaatg attcttagtg actttaaaaaa aaaaaaaaaa aaaaa 2265

<210> 4
 <211> 2265
 <212> DNA
 <213> Homo sapiens

<400> 4
 tttttttttt tttttttttt aaagtcaacta agaatcattt attgaggcacc tgctgtatata 60
 tcagcattgt gggaggagct gtgaaagaca cagaacagta caggggtgtgg tccctgcctt 120
 cgagagggtt acagtctagg tggagaaacg ggaaccagga cacatggggc gccgagagaa 180
 aacagtccag gccagtagt tacaggagct ggaagggttt tgggttcaga ccccaataact 240
 ccaagttacac taagcacttc agtgcctcca ggggctcaac gttagtgcca gggaaagacaa 300
 ctactccag cccatcatatga gcccacgtgg catgcccgtt ccatagcctc tactgccacc 360
 atcttaaat gtctgactcc ttgttccgtt gctaataaaa gtgcaatgaa ctggggaggg 420
 atgggggtgaa tgaggaagggt cgctggacga tttgaggggc cagtgctcc tccttagaaaa 480
 gatctactcc cccatcatat acccctaaca cagagataac cccactcaag ggggctgtg 540
 ccaccacatg ggaccctcac ccccacagct agaggagggg gcggtcgctg cttgagctgc 600
 ctgaggtaga actagggtgc ctttcttctt gtgtgtccct tcccttcca gtccatttag 660
 ctgggggtgg ggggtggaca ggcacctcag agccacctgg agctgagagg gtactgaagg 720
 gaaaggacaa gggggaggga cagcagcaga ggggaaattgc agggcccagc tggagaagaa 780
 gggtagctgg ggctcctcaa aaggtaacagg ggagccaaag agggaaaagg ctcaacactg 840
 agacgggctc cccagtgcag gtcagagggg ccatgaggggc aggggggggtg gtctgctcca 900
 ggaccccccacc ttccccctgc ctccacaaga cagagggggg tatcaagagc caggagggtt 960
 ccaggcccccc agctcagccc taggctgtgc tcacttcagg gtcacccctgc ccaaccttag 1020
 aggaggtgag gggactccaa agttttgtat gatgccccca ctcgggtgagg ccccttcaaa 1080
 gtgcacatctg ttacttctc aaataaaaaa gaattcagggt ctgagtggtcc aggaaagggg 1140
 gtgaatttca taaccgcctg tgacagcgtt gggaaaggaggc cacacccctc cagagggtac 1200
 caccagcgg acaagtgggg aggaggaagt agctggcatg aagccggccc acccaacctc 1260
 cgggagagag aaaaaggaga acacgggatg aggaggctt aaatagtatt tcataaaaata 1320

aaaatgccc gcaactttag gaacctctca tcaaccggcc tagttttgt taaataatt 1380
 ctaatgccag aggctgggg gcaggggcg gccagggtat gtacatgagg aggtgttaa 1440
 attaaaacac aaataataat taagacacac aaactgagac taaggcagaa gatgtagagc 1500
 gggcctttga ggccttcgcg ctccaggac tgcaggctt ctgtggcg 1560
 cctctggag aagatcagcc ggcgtttgga gtggtagaaa tctgtcatgc tggctgcgg 1620
 ccgtttcga ccctgagagt ctccagggtcc acctggggac cttcagcct gctccctga 1680
 gcgaggcaca agggtacaag acagtacacag gtccacatgg tcttcctctg ctgtccccctg 1740
 cagcagagca ggtgaggtgc caggccgcct gcctcctccc aactcatccc ggcctcgccg 1800
 gggccctgt ggaaggtaga gcttgggcag gccaaggccc cgacacacgt cccaggcgaa 1860
 gtcaccctcc agtggtgtct cggtgacaaa gtcgaagtcc catcgctcac gggctccctg 1920
 gatcagcccc gccattagcg catcacagtc ggggctcagc tgctcgctgt ccactggcc 1980
 gaagaggcg 2040
 cggcaggccct tgctggcga tgggttctga cggacatccc cagccgggtc 2040
 tgacatggcg ctcggcgacaa acacacctgt gaacgcagca cacaccccg 2100
 ctggcgaca cgcagggaca cacggggca cgcttggcgc ggctctggc cggccggcc 2160
 gggtccccctg ttgtctggc cgcctctc accttcctg agtgcctcg tgcctcg 2220
 aatccgcgc cagctccggc tccacaagga actgacttcg gcaga 2265

<210> 5

<211> 1909

<212> DNA

<213> Mus musculus

<400> 5

gagccgagag gtgtgagccg ccgcgggtgc agagtctagg ggaattggag tcaggcg 60
 atccacagcg atatccagac attcagagcc acaggcacca tgtccaatcc tggtgatgtc 120
 cgacctgttc cgcacaggag caaagtgtgc cgttgcctt tcggtcccgt ggacagttag 180
 cagttgcgcgttgcgttgc tgcgtcatgc ggggctgtc tccaggaggc cggagaacgg 240
 tggaaactttg acttcgtcac ggagacgccc ctggaggcca acttcgtctg ggagcgcgtt 300
 cggagccctag ggctgcccgg ggtctacctg agccctgggt cccgcggcc tgacgaccctg 360
 ggaggggaca agaggcccg tacttcttgc ggcctgtgc agggccggc tccggaggac 420
 cacgtggcct tgtcgtgtc ttgcactctg gtgtctgagc ggctgaaga ttccccgggt 480
 gggccggaa catctcaggc cggaaaaacgg aggcaagacca gcctgacaga tttctatcac 540
 tccaaacgcgca gattgggtct ctgcacccatc aaaccctgaa gtgcccacgg gagccccggcc 600
 ctcttctgtc gtgggtcagg aggcccttcc cccatcttgc gccttagccc tcactctgtg 660
 tgtctaatttattttgtt ttttaatttta aacgtctctt gtatatacgc tgcctgcct 720
 cttccagtct ccaaacttta agttattta aaaaagaaca aaacaaaaca aaaaaaaaaacc 780
 aaaaacaaaac aaacctaatt tagtaggacg gtggggccct tagtgtggg gatttctatt 840
 atgttagatta ttattattta agccctccc aacccaagct ctgtgtttcc tataccggag 900
 gaacagtccct actgatatac accccatctgc atccgttca cccaaaccccc ctccccccat 960
 tccctgcctg gttccttgc acttcttacc tgggggtgat cctcagaccc gaatagcact 1020
 ttggaaaaat gagtaggact ttggggctc cttgtcaccc ctaaggccag cttagatgac 1080
 agtgaagcag tcacagccca gaacaggat ggcagttagg actcaaccgt aatatcccg 1140
 ctcttgacat tgctcagacc tggaaagaca ggaatggtcc ccactctggc tccccttgc 1200
 cactcctggg gagcccaccc ctccctgtggg tctctgcccag ctgcccctct atttggagg 1260
 gttaatctgg tgatctgtc ctctttccc ccacccata cttcccttc tgcaggctgg 1320
 caggaggcat atctaggcac ttgccccaca gtcagtggc ctggaaaggga atgtatatgc 1380
 agggtaact aagtgggatt ccctggctt accttaggca gtcaggatggc caacccctg 1440
 cattgtgggt cttaggggtggg tccctgggtgg tgagacaggc ctccagagc attctatgtt 1500
 gtgtgggtggg ggggggtggc ttatctggg tggggacccc agttgggggtt ctcaagtgtact 1560
 tctcccatctt ctttagtagca gtttacaag gagccaggcc aagatgggtt cttgggggtt 1620
 aaggaggctc acaggacact gagcaatggc tgatcccttc tcagttgtga ataccgtggg 1680
 tgtcaaagca ctttaggggt ctgactcccg ccccaaaacat ccctgtttct gtaacatcct 1740
 ggtctggact gtctaccctt agcccgacc ccaagaacat gtatgtggc tcccctccctg 1800
 tctccactca gattgttaagc gtctcactcg aaggagacagc accctgcatt gtcccgagtc 1860
 ctcacaccccg accccaaacgc tggtgctcaa taaatacttc tcgatgatt 1909

<210> 6
 <211> 1909
 <212> DNA
 <213> Mus musculus

<400> 6
 aatcatcgag aagtattttat tgagcaccag ctttggggtc gggtgtgagg actcgggaca 60
 atgcagggtg ctgtcccttc tcgtgagacg cttacaatct gagtgagac agggagggag 120
 ccacaataca tggcttgggg gtgcgggcta aggtagaca gtccagacca ggatgttaca 180
 gaaacaggga tgtttggggc tggagtca cccactaagt gctttgacac ccacggatt 240
 caacactgag aaaggatca cattgctca gtgtcctgt agctccctta gcccccaaga 300
 caccatcttgcgcgttgc ttgtacaact gctactaaga aatggagaa gtcactgaga 360
 accccaactg gggcccccatacccgataag cccacccca ccaccacaca ccatagaatg 420
 ctctgggg cctgtctcac accaaaggac ccacccataga cccacaatgc aggggggttc 480
 cactggagct gcttaaggta agaccaggaa atcccactta gtgttacccatgatatacatt 540
 cccttccatg cactgagct gtggggcaag tgccttagata tgccttgc cgacctgcag 600
 aaggggaagt atgggggtggg ggaaaagagc agcagatcac cagattaacc ctccaaaata 660
 gaggggcagc tggcagagac ccacaggaga ggtgggctcc ccaggagtgg caaaggggat 720
 ccagagtggg gaccattcct gtcttacag gtctgagcaa tgtcaagagt cggatattta 780
 cggttgagtc ctaactgccttcccttgc tttaggttcttggctgtgac tgcttcaactg tcatccttagc 840
 tggccttgc tttaggttcttggctgtgac tgcttcaactg tcatccttagc 900
 ggtctgagga tcaaaaaacagtaaaatgt gcaaggaacc aggcaggaa tggggggagg 960
 ggggttgggt gaaacggatg cagatgggtt gatatcgttgc gactgttcc tccggatata 1020
 gaaacacaga gcttgggttg ggaggggctt aaataataat aatctacata atagaaatcc 1080
 cccacactaa gggccctacc gtcctactaa tttaggttgc tttaggttgc tttaggttgc 1140
 gttttttttt gttttttttt taaataactt taagtttgc gactgggaga gggcaggcag 1200
 cgtatataca ggagacgtt aaattaaaac acaaataata attaagacac acagagttag 1260
 ggcttaaggcc gaagatgggg aagaggcctc ctgaccacca gcagaagagg ggggggctcc 1320
 cgtggcact tcagggtttt ctcttgcaga agaccaatct ggcgttggag tgatagaat 1380
 ctgtcaggct ggtctgcctc cggtttcggc cctgagatgt tccggggccca cccggggaaat 1440
 cttcaggcccg ctcagacacc agagtcaag acagcgcacaa ggccacgtgg tccctccggag 1500
 ctggccctcg cagcaggcga gaggaagtac tgggccttgc tccctccccc aggtcgac 1560
 ggctgcggga cccaggggcctc aggttagaccc tggcggccca taggtccga acgcgcctcc 1620
 agacgaagtt gccctccagc ggcgttcccg tgacgaagtc aaagttccac cgttctcg 1680
 cctcctggag acagccggcc atgagcgcac cgcacgtgg tccctccccc aggtcgac 1740
 cgggaccgaa gagacaacgg cacatggatgc tccctgtccgg aacaggtcg 1800
 gatgggtcat ggtgcctgt gctctgaatgc tctggatatac gctgtggatc tgcgcctgac 1860
 tccaaatccccctc tagactctg acaccgcggc ggctcacacc tctcggtc 1909

<210> 7
 <211> 20
 <212> DNA
 <213> Mus musculus

<400> 7
 tgtcaggctg gtctgcctcc

20

<210> 8
 <211> 20
 <212> DNA
 <213> Homo sapiens

<400> 8
 tgtcatgctg gtctgccggcc

20

<210> 9
 <211> 20
 <212> DNA
 <213> Mus musculus

<400> 9
 acatcaccag gattggacat 20

<210> 10
 <211> 23
 <212> DNA
 <213> Homo sapiens

<400> 10
 acatccccag ccggttctga cat 23

<210> 11
 <211> 202
 <212> DNA
 <213> Homo sapiens

<400> 11
 accatccctt tcctcacctg aaaacaggca gcccaaggac aaaatacgcc ccagccttt 60
 ctatgccaga gctcaacatg ttggacatg ttcctgacgg ccagaaaagcc aatcagagcc 120
 acagcctgtt gcccaggcat gttcctggga agcaggcagc atagggatgg agggaggctc 180
 agcctggggg aacaagagtgc cc 202

<210> 12
 <211> 202
 <212> DNA
 <213> Homo sapiens

<400> 12
 ggcactcttg ttcccccagg ctgagcctcc ctccatccct atgctgcctg cttcccagga 60
 acatgcttgg gcagcaggct gtggctctga ttggctttct ggcgtcagg aacatgtccc 120
 aacatgttga gctctggcat agaagaggct ggtggctatt ttgtccttgg gctgcctgtt 180
 ttcaggtgag gaagggatgt gt 202

<210> 13
 <211> 160
 <212> PRT
 <213> Homo sapiens

<400> 13
 Met Ser Glu Pro Ala Gly Asp Val Arg Gln Asn Pro Cys Gly Ser Lys
 1 5 10 15

Ala Cys Arg Arg Leu Phe Gly Pro Val Asp Ser Glu Gln Leu Ser Arg
 20 25 30

Asp Cys Asp Ala Leu Met Ala Gly Cys Ile Gln Glu Ala Arg Glu Arg
 35 40 45

Trp Asn Phe Asp Phe Val Thr Glu Thr Pro Leu Glu Gly Asp Phe Ala
50 55 60

Trp Glu Arg Val Arg Gly Leu Gly Leu Pro Lys Leu Tyr Leu Pro Thr
65 70 75 80

Gly Pro Arg Arg Gly Arg Asp Glu Leu Gly Gly Arg Arg Pro Gly
85 90 95

Thr Ser Pro Ala Leu Leu Gln Gly Thr Ala Glu Glu Asp His Val Asp
100 105 110

Leu Ser Leu Ser Cys Thr Leu Val Pro Arg Ser Gly Glu Gln Ala Glu
115 120 125

Gly Ser Pro Gly Gly Pro Gly Asp Ser Gln Gly Arg Lys Arg Arg Gln
130 135 140

Thr Ser Met Thr Asp Phe Tyr His Ser Lys Arg Arg Leu Ile Phe Ser
145 150 155 160

<210> 14
<211> 18
<212> DNA
<213> Mus musculus

<400> 14
tggatccgac atgtcaga

18