Sujet 1 – corrigé

I Domino le chien

Le chien Domino D est attaché à un arbre A circulaire de rayon R par l'intermédiaire d'une laisse de longueur $l_0 = 6\pi R$ constante qui s'enroule autour de l'arbre.

Il commence à courir à la date t = 0 (position D_0) avec une vitesse tangentielle à tout instant et de norme constante v_0 , sa laisse restant tendue en permanence.

1. Donnez en coordonnées polaires l'expression du vecteur position \overrightarrow{OD} du chien Domino à la date t en l'assimilant au point D.

Réponse:

La position du chien est donnée par $\overrightarrow{OD} = \overrightarrow{OI} + \overrightarrow{ID} = R.\overrightarrow{e}_r + ID(t).\overrightarrow{e}_\theta$ son vecteur position avec $ID(t) = l(t) = l_0 - I_0I = l_0 - R\theta$ la longueur de la corde à l'instant t.

On a ainsi
$$\overrightarrow{OD} = R.\overrightarrow{e}_r + (l_0 - R\theta(t)).\overrightarrow{e}_{\theta}$$
.

2. En déduire l'expression de sa vitesse.

Réponse:

On en déduit la vitesse de D par dérivation temporelle $\vec{v} = \frac{\overrightarrow{OD}}{dt} = R\dot{\theta}.\vec{e}_{\theta} - R\dot{\theta}\vec{e}_{\theta} + (l_0 - R\theta)(-\dot{\theta}\vec{e}_r)$ soit $\vec{v} = -(l_0 - R\theta)\dot{\theta}\vec{e}_r$. On vérifie sur la figure que \vec{v} est effectivement selon $-\vec{e}_r$.

3. En utilisant l'hypothèse $v = v_0$ constante, montrer à l'aide de la méthode de séparation des variables que $\theta(t) = \frac{l_0}{R} \left(1 - \sqrt{1 - \frac{2Rv_0t}{l_0^2}} \right)$ puis donner ensuite l'expression de r(t).

Réponse

D'après les questions précédentes, on a $||\vec{v}|| = v_0 = (l_0 - R\theta)\dot{\theta}$. On en déduit que

$$\int_{0}^{t} v_{0}dt' = \int_{0}^{\theta(t)} (l_{0} - R\theta)d\theta \Rightarrow v_{0}t = l_{0}\theta(t) - R\frac{\theta(t)^{2}}{2}$$

On obtient un polynome d'ordre deux pour $\theta(t)$ dont on garde la racine pertinente (celle ou $\theta(t)$ augmente). L'autre solution vient du fait que l'on a considéré la norme de la vitesse et qu'on a perdu le sens du mouvement. On obtient alors

$$\theta(t) = \frac{l_0}{R} \left(1 - \sqrt{1 - \frac{2Rv_0t}{l_0^2}} \right)$$

De même, on a $r(t)^2 = R^2 + l(t)^2$ avec $l(t) = l_0 = R\theta(t) = l_0\sqrt{1 - \frac{2Rv_0t}{l_0^2}}$. On en déduit que

$$r(t) = \sqrt{R^2 + l_0^2 - 2Rv_0t}$$

4. Écrivez en coordonnées polaires l'équation $r(\theta)$ de la trajectoire et tracer son allure.

Réponse

En reprenant $OD^2 = r^2 = OI^2 + ID^2 = R^2 + (l_0 - R\theta)^2 = R^2 + (6\pi R - R\theta)^2 = R^2[1 + (6\pi - \theta)]$ d'où $r = R\sqrt{1 + (6\pi - \theta)}$ ce qui correspond à l'équation d'une spirale.

5. À quel endroit et à quelle date la course s'achève-t-elle?

Réponse:

La course de D se termine quand $DI=0 \iff r=R$ ce qui correspond à $\theta=6\pi$ c'est à dire en I_0 et après 3 tours complets. On a alors $t=t_f$ tel que $(l_0-6\pi R)^2=-2Rv_0t_f+l_0^2\Rightarrow t_f=\frac{36\pi^2R}{v_0}$

Sujet 2 – corrigé

I | Optimisation d'un trajet

Soit une plage P, séparation entre deux milieux différents : le sable (milieu (1)) et la mer (milieu (2)).

Un point A_1 sur le sable est à la distance $A_1H_1 = a_1$ de P. Un point A_2 en mer est à la distance $A_2H_2 = a_2$ de P. On pose $H_1H_2 = d$.

Un maître nageur I est en A_1 au moment où il repère un petit chien en difficulté en A_2 . Il peut courir sur le sable à la vitesse v_1 et nager à la vitesse $v_2 < v_1$, on notera τ la durée du parcours A_1OA_2 .

1. Quel trajet doit-il emprunter pour rejoindre A_2 le plus rapidement possible? On déterminera d'abord l'équation que doit vérifier $x = H_1O$, puis on simplifiera l'expression obtenue en introduisant les angles $\alpha_1 = (\overrightarrow{A_1H_1}, \overrightarrow{A_1O})$ et $\alpha_2 = (\overrightarrow{A_2H_2}, \overrightarrow{A_2O})$

Réponse

On décompose $\tau = \tau_1 + \tau_2 = \frac{A_1O}{v_1} + \frac{OA_2}{v_2}$ la durée du parcours sur les deux parties du trajet.

Par utilisation du théorème de Pythagore dans le triangle A_1H_1O , on détermine

$$A_1O^2 = A_1H_1^2 + H_1O^2 = a^2 + x^2 \text{ et de même, dans } A_2OH_2 \text{ on lit } A_2I^2 = A_2H_2^2 + OH_2^2 = b^2 + (d-x)^2.$$

D'où
$$\tau = \frac{\sqrt{x^2 + a^2}}{v_1} + \frac{\sqrt{b^2 + (d-x)^2}}{v_2}$$

au est une fonction de x, elle est minimale quand sa dérivée par rapport à la variable x s'annule.

On part donc de l'équation
$$\frac{d\tau}{dx}=0 \Rightarrow \frac{d}{dx}\left[\frac{(x^2+a^2)^{\frac{1}{2}}}{v_1}+\frac{(b^2+(d-x)^2)^{\frac{1}{2}}}{v_2}\right]=0$$

$$\Rightarrow \frac{1}{v_1} \frac{1}{2} (x^2 + a^2)^{-\frac{1}{2}} \times 2x + \frac{1}{v_2} \frac{1}{2} (b^2 + (d - x)^2)^{-\frac{1}{2}} \times 2(d - x)(-1) = 0$$

D'où après simplification,

$$\frac{x}{v_1\sqrt{x^2+a^2}} - \frac{d-x}{v_2\sqrt{b^2+(d-x)^2}} = 0$$

En remarquant que $\sin i_1=\frac{H_1O}{A_1O}=\frac{x}{\sqrt{x^2+a^2}}$ et $\sin i_2=\frac{OH_2}{IA_2}=\frac{d-x}{\sqrt{b^2+(d-x)^2}}$ on obtient la relation $\frac{\sin i_1}{v_1}=\frac{\sin i_2}{v_2}$.

2. A quelle loi physique l'expression obtenue vous fait-elle penser ?

Réponse:

Cette relation ressemble étrangement à la loi de Snell-Descartes pour la réfraction. On retrouve bien la relation $n_1 \sin i_1 = n_2 \sin i_2$ en posant $n_1 = \frac{c}{v_1}$ et $n_2 = \frac{c}{v_2}$.

Sujet 3 – corrigé

I | Quelques notions de ski (\star)

A Leçon n° 1 : le remonte-pente

On considère une skieuse de masse m remontant une pente d'angle α à l'aide d'un téléski. Celui-ci est constitué de perches de longueur L accrochées à un câble parallèle au sol situé à une hauteur h.

On néglige les frottements de la neige sur les skis.

1. Quelles sont les trois forces que subit la skieuse?

Réponse:

Les 3 forces sont:

- tension de la perche \vec{F} ,
- réaction normale du sol \vec{R}_N (il n'y a pas de frottement donc la réaction est uniquement normale),
- poids de la skieuse \vec{P} .

On considère une skieuse de 50kg sur une pente de 15% (c'est-à-dire que la skieuse s'élève de 15 m lorsqu'elle parcourt horizontalement 100 m). La force exercée par la perche sur la skieuse sera supposée fixée et égale à $F=100\mathrm{N}$.

2. Existe-t-il un angle limite β_l pour lequel le contact entre les skis et le sol serait rompu ?

Réponse:

Le contact entre la skieuse et le sol sera rompu lorsque $R_N = 0$. On cherche donc à calculer R_N et voir s'il existe une valeur de β telle que $R_N = 0$.

On applique alors la loi de la quantité de mouvement au skieur dans le référentiel de la montagne (galiléen) et on la projette selon l'axe orthogonal à la pente. La projection de l'accélération est alors nulle car la skieuse se déplace perpendiculairement à cet axe.

$$0 = R_N + F \cos \beta - mg \cos \alpha \quad \Rightarrow \quad R_N = mg \cos \alpha - F \cos \beta.$$

$$R_N > 0 \quad \Rightarrow \quad mg\cos\alpha > F\cos\beta \quad \Rightarrow \quad \cos\beta < \frac{mg\cos\alpha}{F}.$$

On peut calculer l'angle α puisque la pente est de 15% :

$$\alpha = \arctan\left(\frac{15}{100}\right) = 8.5^{\circ}.$$

On en déduit que :

$$\frac{mg\cos\alpha}{F} = \frac{50 \times 9.8 \times \cos(8.5^{\circ})}{100} \approx 5.$$

Finalement, quelque soit β ,

$$\cos \beta < 5 \quad \Rightarrow \quad R_N > 0,$$

donc il n'existe pas d'angle limite : la skieuse touche toujours le sol.

On suppose maintenant que sa trajectoire est rectiligne et sa vitesse constante.

3. Quelle relation les 3 forces que subit la skieuse doivent-elles vérifier ?

Réponse:

Si la trajectoire de la skieuse est rectiligne uniforme, alors d'après la loi de l'inertie :

$$\vec{F} + \vec{R}_N + \vec{P} = \vec{0}$$

On note β l'angle que forme la perche du téléski avec la perpendiculaire à la pente.

4. Représenter les trois forces sur une même figure en repérant bien les angles α et β .

Réponse:

cf question 2

5. En déduire une relation entre m, g, α, β et F (la norme de la force exercée par la perche).

Réponse:

On a déjà projeté cette relation sur l'axe orthogonal à la pente :

$$0 = R_N + F\cos\beta - mq\cos\alpha.$$

On peut également la projeter sur l'axe de la pente :

$$0 = 0 + F \sin \beta - mg \sin \alpha \quad \Rightarrow \quad \left[F = \frac{mg \sin \alpha}{\sin \beta} \right]$$

6. En négligeant la distance entre la rondelle et le sol, exprimer F en fonction m, g, α, h et L. Comment varie F avec α et h? Commenter.

Réponse:

Dans cette hypothèse:

$$\cos \beta = \frac{h}{L} \quad \Rightarrow \quad \sin \beta = \sqrt{1 - \left(\frac{h}{L}\right)^2}.$$

Finalement:

$$F = \frac{mg\sin\alpha}{\sqrt{1 - \left(\frac{h}{L}\right)^2}}.$$

La norme de la force F augmente alors lorsque α augmente ou lorsque h augmente. On a donc tout intérêt à positionner le câble de traction horizontal le plus bas possible (en évitant bien entendu qu'il touche la tête des usagers et usagères).

В

B Leçon n° 2 : le virage

La skieuse est toujours sur le remonte pente et aborde une zone horizontale où sa trajectoire est un cercle de centre C et de rayon d. Sa célérité est toujours constante. On suppose pour les questions suivantes que la perche est contenue dans le plan formé par la droite SC et la verticale.

et perpendiculaires au plan de la figure

7. Que peut-on dire de son accélération ?

Réponse:

Le mouvement de la skieuse est circulaire uniforme donc son accélération est radiale et orientée vers l'intérieur du cercle (centripète) :

$$\vec{a} = \frac{-v^2}{d} \vec{e}_r$$
 avec $\vec{e}_r = \frac{\overrightarrow{CS}}{||CS||}$.

On a représenté ci-dessus différentes vues de la situation où la skieuse est modélisée par un point matériel S posé sur le sol. On néglige les frottements, on note \overrightarrow{F} la force exercée par la perche du téléski et γ l'angle qu'elle forme avec la verticale.

8. Déterminer $F = ||\vec{F}||$ en fonction de $m, v = ||\vec{v}||$ la célérité, d et γ .

Réponse:

On applique la loi de la quantité de mouvement à la skieuse dans le référentiel galiléen de la montagne. On projette cette équation sur le vecteur \overrightarrow{e}_r :

$$ma = -F\sin\gamma \quad \Rightarrow \quad \boxed{F = \frac{mv^2}{d\sin\gamma}}$$

9. En déduire $R = ||\vec{R}||$ en fonction de toutes les autres données.

Réponse :

On projette alors l'équation de la loi de la quantité de mouvement sur l'axe vertical ascendant perpendiculaire à \overrightarrow{e}_r . La projection de l'accélération y est nulle :

$$0 = -mq + R + F\cos\gamma$$

On combine cette équation avec celle de la question précédente :

$$R = mg - \frac{mv^2}{d\tan\gamma}$$

10. Comment évolue R lorsque la célérité augmente ?

Réponse:

On voit que R augmente lorsque v diminue.

11. En pratique la perche n'est pas rigoureusement orthogonale à la trajectoire mais est également dirigée vers l'avant. Expliquer pourquoi.

Réponse:

En réalité il existe des frottements colinéaires à la vitesse, mais de sens opposé. Si le mouvement est uniforme, une composante de la force exercée par la perche doit compenser ces frottements

Sujet 4 – corrigé

I | Ressort vertical

On considère un ressort vertical de constante de raideur k et de longueur à vide ℓ_0 . L'extrémité inférieure est en contact avec un support horizontal au point A. Une masse m assimilable à un point matériel M est accrochée à l'autre extrémité. La masse a un mouvement rectiligne vertical.

Dans un premier temps, on suppose que le point A est fixe. On définit l'axe vertical ascendant (O,z). On note z_M la coordonnée de la masse. A l'équilibre, $z_M = 0$.

1. Établir l'équation différentielle vérifiée par z_M .

Réponse:

On commence par définir les grandeurs d'intérêt. D'après le schéma, $z_M = OM$. Or, on nous dit que $z_M = 0$ à l'équilibre. On note donc $AO = \ell_{\rm eq}$ la longueur d'équilibre du ressort. Ainsi, la longueur du ressort AM s'exprime comme

$$AM = \ell = \ell_{eq} + z_M$$

On peut donc faire le bilan des forces :

$$\begin{array}{ll} \mathbf{Poids} & \overrightarrow{P} = -mg\overrightarrow{u}_z \\ \mathbf{Ressort} & \overrightarrow{F}_{\mathrm{ressort}} = -k(\ell - \ell_0)\overrightarrow{u}_z \\ & \overrightarrow{F}_{\mathrm{ressort}} = -k(\ell_{\mathrm{eq}} + z_M - \ell_0)\overrightarrow{u}_z \end{array}$$

Le **PFD** donne ainsi

$$m\frac{\mathrm{d}^2 z_M}{\mathrm{d}t^2} = -mg - kz_M - k(\ell_{\mathrm{eq}} - \ell_0)$$

$$\Leftrightarrow m\frac{\mathrm{d}^2 z_M}{\mathrm{d}t^2} + kz_M = k(\ell_0 - \ell_{\mathrm{eq}}) - mg$$

Or, z_M vaut 0 à l'équilibre, donc le terme de droite doit être nul. On détermine donc $\ell_{\rm eq}$:

$$k(\ell_0 - \ell_{\rm eq}) - mg = 0 \Leftrightarrow k(\ell_0 - \ell_{\rm eq}) = mg \Leftrightarrow \ell_{\rm eq} = \ell_0 - \frac{m}{k}g$$

On trouve donc bien

$$\frac{\mathrm{d}^2 z_M}{\mathrm{d}t^2} + \frac{k}{m} z_M = 0$$

2. On suppose que la masse est lâchée depuis la position $z_M(t=0)=z_0$ et sans vitesse initiale. Exprimer $z_M(t)$ pour $t\geq 0$.

Réponse:

L'équation étant déjà homogène, on écrit la forme générale :

$$z_M(t) = A\cos(\omega_0 t) + B\sin(\omega_0 t)$$

Celle-ci est souvent plus pratique pour trouver les constantes d'intégration. On trouve A avec la première condition initiale : $z_M(0^+) = z_0$. En effet,

$$z_M(0) = A\cos(0) + B\sin(0) = A$$

donc $A = z_0$.

On trouve B avec la seconde condition initiale : $v(0) = 0 = \frac{\mathrm{d}z_M}{\mathrm{d}t}(0)$. En effet,

$$\frac{\mathrm{d}z_M}{\mathrm{d}t} = -A\omega_0 \sin(\omega_0 t) + B\omega_0 \cos(\omega_0 t)$$

$$\Rightarrow \frac{\mathrm{d}z_M}{\mathrm{d}t}(0) = B\omega_0$$

Donc B = 0 ($\omega_0 \neq 0$). Ainsi,

$$z_M(t) = z_0 \cos(\omega_0 t)$$

3. Exprimer l'énergie potentielle élastique. On prendra l'origine de cette énergie en $z_M=0$.

Réponse:

L'énergie potentielle élastique est, comme toute énergie potentielle, définie à une constante près, servant de référence au calcul. On ajoute donc un terme A à déterminer dans l'expression de $E_{p,el}$ du cours, qu'on trouve en prenant $E_{p,el}(z_M=0)=0$ et en utilisant l'expression de $\ell_{\rm eq}$ trouvée question 1:

$$E_{p,el} = \frac{1}{2}k(\ell_{eq} + z_M - \ell_0)^2 + A$$

$$z_M = 0 \Leftrightarrow E_{p,el} = 0$$

$$\Leftrightarrow 0 = \frac{1}{2}k(\ell_{eq} - \ell_0)^2 + A \Leftrightarrow A = -\frac{1}{2}k(\frac{m}{k}g)^2$$

Ainsi,

$$E_{p,el} = \frac{1}{2}k(z_M + \underbrace{\ell_{eq} - \ell_0})^2 - \frac{1}{2}k\left(\frac{m}{k}g\right)^2 \Leftrightarrow E_{p,el} = \frac{1}{2}k\left(z_M^2 - 2z_M\frac{m}{k}g + \frac{m^2}{k^2}g^2\right) - \frac{1}{2}k\left(\frac{m^2}{k^2}g^2\right)$$
$$\Leftrightarrow E_{p,el} = \frac{1}{2}k\left(z_M^2 - 2\frac{mgz_M}{k}\right)$$

4. Exprimer l'énergie potentielle de pesanteur. On prendra l'origine de cette énergie en $z_M = 0$.

Réponse:

$$E_{p,p} = mgz_M$$

5. Montrer que l'énergie mécanique est conservée.

Réponse:

$$E_m = \frac{1}{2}m(\dot{z}_M)^2 + \frac{1}{2}k(z_M^2 - 2mgz_M/k) + mgz_M = \frac{1}{2}m(\dot{z}_M)^2 + \frac{1}{2}kz_M^2 = kz_0^2/2$$

On suppose désormais que le ressort est posé sur le sol et non fixé

6. Quelle est la condition sur z_0 pour que le ressort ne décolle pas du support.

Réponse:

On étudie cette fois le système **entier** masse + ressort, dont le centre de masse se situe en M. On repère donc le système par son altitude z_M . C'est ce système entier qui subit la réaction du support. Les forces **extérieures** sont donc le **poids** et la **réaction** du support : la force du ressort est une force interne qui n'apparaît pas dans le bilan des forces extérieures.

Le PFD donne donc

$$m\ddot{z}_M = -mq + R$$

Ici, il faut réussir à traduire « le ressort ne décolle pas du support ». Mathématiquement, ça veut dire que le support exerce toujours une force sur le système, c'est-à-dire

$$R > 0 \Leftrightarrow m\ddot{z}_M + mg > 0$$

I. Ressort vertical

On développe et on utilise l'expression de z_M donnée plus tôt :

$$\frac{\mathrm{d}^2 z_M}{\mathrm{d}t^2} = -z_0 \omega_0^2 \cos(\omega_0 t)$$

$$\Rightarrow m\ddot{z}_M + mg > 0 \Leftrightarrow -z_0 \omega_0^2 \underbrace{\cos(\omega_0 t)}_{=1 \text{ au maximum}} > -g \Leftrightarrow z_0 \frac{k}{m} < g$$

$$\Leftrightarrow \boxed{z_0 < \frac{mg}{k}}$$

Sujet 5 – corrigé

${ m I} \mid { m Miroir~de~Lloyd}$

On dispose une source ponctuelle S monochromatique de longueur d'onde $\lambda=650\,\mathrm{nm}$ à une distance horizontale $L=45\,\mathrm{cm}$ d'un détecteur D. Initialement, un miroir de longueur L/3 positionné à égale distance de S et D se trouve en z=0 (même côte que S et D). On lâche le miroir à t=0 sans vitesse initiale. Il ne subit que les effets de la pesanteur.

La réflexion sur le miroir métallique s'accompagne d'un retard de phase égale à π . L'indice optique de l'air est supposé égal à 1.

On donne dans le tableau ci-dessous l'instant t_k auquel est mesuré le $k^{\text{ième}}$ maximum d'intensité par le détecteur D.

indice k	1	2	3	4	5	6	7	8	9
$t_k \text{ (ms)}$	7,42	9,77	11,11	12,08	12,86	13,53	14,10	14,62	15,00

1. Pour une position z(t) du miroir, représenter les deux rayons qui interfèrent au niveau du détecteur D.

Réponse:

2. Déterminer l'expression de la différence de marche δ_D entre ces deux ondes au point D. Pour cela, il pourra être utile de faire apparaître une source fictive S' image de S par le miroir. Simplifier cette expression dans le cas où $L\gg z(t)$. On rappelle qu'au premier ordre en $\epsilon\ll 1,\,\sqrt{1+\epsilon}\approx 1+\epsilon/2$. **Réponse :**

$$\delta_D = S'D + \lambda/2 - SD = \sqrt{L^2 + (2z)^2} + \lambda/2 - L$$

$$= L\left(\sqrt{1 + (2z/L)^2} - 1\right) + \lambda/2$$

$$\approx \frac{2z^2}{L} + \lambda/2$$

3. En déduire l'expression de l'intensité en D en fonction du temps. On rappelle la formule de Fresnel

$$I = I_1 + I_2 + 2\sqrt{I_1 I_2} \cos(\Delta \phi)$$

Réponse:

En étudiant le mouvement du miroir soumis à l'accélération $\vec{a} = g \vec{e}_z$,

$$z(t) = \frac{1}{2}gt^2$$

En notant $I_1 = I_2 = I_0$, l'intensité des deux ondes, on a

$$I_D = 2I_0 \left(1 + \cos \left(\frac{2\pi}{\lambda} \times \frac{2z^2}{L} + \pi \right) \right)$$
$$= 2I_0 \left(1 + \cos \left(\frac{\pi g^2 t^4}{\lambda L} + \pi \right) \right)$$

4. Quelle est l'intensité reçue en D à t=0 ?

Réponse :

 $I_D(t=0)=0$: intéreférences destructives liées au déphasage de π ajouté par la réflexion.

5. Déterminer l'expression de l'instant t_k auquel est observé le $k^{\text{ième}}$ maximum d'intensité en D. **Réponse :**

On résout
$$I_D(t_k) = 4I_0$$
, soit $\frac{\pi g^2 t_k^4}{\lambda L} = (2k-1)\pi$:

$$t_k = \left(\frac{(2k-1)\lambda L}{g^2}\right)^{1/4}$$

6. Á l'aide d'une régression linéaire, déterminer la valeur de g.

Réponse :

On trace t_k^4 en fonction de k, et on trouve $g=9.81\,\mathrm{m\cdot s^{-2}}.$