MULTIPLE LINEAR REGRESSION

SIMPLE LINEAR REGRESSION

ASSUMPTIONS OF LINEAR REGRESSION

- Linearity
- Homoscedasticity
- Multivariate normality
- Independence of error
- Lack of multicollinearity

DUMMY VARIABLE

Dummy Variable

Profit	R&D	Admin	Marketing	State		New York	California
192261.8	165349.2	136897.8	471784.1	New York		I	0
191792.1	162597.7	151377.6	443898.5	California		0	I
191050.4	153441.5	101145.6	407934.5	New York		1	0
182902	144372.4	118671.9	383199.6	New York		I	0
166187.9	142107.3	91391.77	366168.4	California		0	1

$$y = b + a_1 x_1 + a_2 x_2 + a_3 x_3 + ???$$

BUILD A MODEL(1/3)

CONTD.(2/3)

I).

2).

CONTD.(3/3)

- There are 5 methods to build the model:
 - I. All-in
 - 2. Backward Elimination
 - 3. Forward Selection
 - 4. Bi-directional Elimination
 - 5. Score Comparison

ALL-IN METHOD

- Prior Knowledge
- You have to
- Preparing for backward elimination

BACKWARD ELIMINATION METHOD

- 2. Fit the full model with all possible predictors
- 3. Consider the predictor with the highest P-value. If P > SL, go to step 4 otherwise Finish.
- 4. Remove the predictor
- Fit the model without the variable.

FORWARD SELECTION METHOD

- Select a significance level to enter the model (e.g. SL = 0.05)
- Fit all the regression models $y \sim x_n$. Select the one with the lowest P-value
- Keep this variable and fit all possible models with one extra predictor added to the ones you already have.
- Consider the predictor with the lowest P-value. If P < SL, go to STEP 3, otherwise FINISH.

BIDIRECTIONAL ELIMINATION

- Select a significance level to enter and to stay in the model. (e.g. SLENTER = 0.05, SLSTAY = 0.05)
- Perform the next step of the Forward Selection (new variable must have: P < SLENTER to enter)
- Perform all the steps of Backward Elimination method (old variable must have P < SLSTAY to stay)
- No new variables can enter and no old variable can exit.
- Finish your model.

ALL POSSIBLE MODEL

- Select a criterion of goodness of fit (e.g. Akaike criterion)
- Construct All Possible Regression Model $2^n 1$ total Combination.
- Select the one with the best criterion.
- Fin your model.

THANKYOU