

Machine Learning

Decision Trees

Engenharia Fábio Ayres <fabioja@insper.edu.br>

Iris

Iris Versicolor

Iris Setosa

Iris Virginica

Fonte: https://www.datacamp.com/community/tutorials/machine-learning-in-r

- Insper

Ideia:

- escolhe uma feature
- escolhe um limiar
- separa em conjuntos mais homogêneos

Medidas de "impureza"

- Queremos uma medida de impureza que seja
 - Zero para um conjunto completamente homogêneo
 - Se eu dobro (triplico, etc) o número de elementos em cada classe, a impureza é a mesma
 - Só a proporção de elementos por classe importa

Medidas de "impureza"

- Queremos uma medida de impureza que seja
 - Aumente para conjuntos mais misturados
 - Se o número de elementos por classe for o mesmo para todas as classes, a impureza é máxima para aquele número de classes
 - Quanto maior o número de classes existentes, maior a impureza máxima

Exemplo

Frequencias por classe:

- 50 setosa
- 50 versicolor
- 50 virginica

Proporções por classe:

$$p = \left[\frac{1}{3}, \frac{1}{3}, \frac{1}{3}\right]$$

(

Dividindo por limiar para uma feature escolhida

Mais puro!

Medidas de impureza comuns

Medida	Coeficiente Gini	Entropia
Definição	$G = 1 - \sum p_i^2$	$E = -\sum p_i \log_2 p_i$
Conjunto homogeneo $p_1=1$, no resto $p_i=0$		$E = -\begin{pmatrix} 1 \times \log_2 1 \\ +0 \times \log_2 0 \\ +\cdots \\ +0 \times \log_2 0 \end{pmatrix} = 0$
Conjunto heterogeneo $p_i = 1/C$	$G = 1 - \left(\sum \left(\frac{1}{C}\right)^{2}\right)$ $= 1 - C \times \frac{1}{C^{2}}$ $= 1 - \frac{1}{C}$	$E = -\left(\sum \frac{1}{C} \times \log_2 \frac{1}{C}\right)$ $= -C \times \frac{1}{C} \times \log_2 \frac{1}{C}$ $= \log_2 C$

Exemplo

Frequencias por classe:

- 50 setosa
- 50 versicolor
- 50 virginica

Proporções por classe:

$$p = \left[\frac{1}{3}, \frac{1}{3}, \frac{1}{3}\right]$$

12

Dividindo por limiar para uma feature escolhida

Mais puro!


```
petal length (cm) <= 2.45
               gini = 0.667
              samples = 150
            value = [50, 50, 50]
              class = setosa
                            False
         True
                       petal width (cm) <= 1.75
   gini = 0.0
                              gini = 0.5
 samples = 50
                            samples = 100
value = [50, 0, 0]
                          value = [0, 50, 50]
 class = setosa
                          class = versicolor
                 gini = 0.168
                                         gini = 0.043
                samples = 54
                                        samples = 46
               value = [0, 49, 5]
                                      value = [0, 1, 45]
               class = versicolor
                                       class = virginica
```


Algoritmo CART

CART: Classification and Regression Trees

• Sim, regressão também! Basta trocar a medida de

impureza!

CART para regressão

Algoritmo CART: treinamento

- Testa todas as features e todos os thresholds
 - Basta testar os thresholds correspondentes aos valores das amostras
- Para cada combinação feature e threshold, avaliar a função de custo do CART:

$$J = \frac{m_{left}}{m}G_{left} + \frac{m_{right}}{m}G_{right}$$

O que acontece com *J* se o conjunto já for puro?

Algoritmo CART: treinamento

- Se a melhor combinação (feature, threshold)
 efetivamente melhora a função de custo, dividir o
 conjunto de pontos de treinamento.
- Repetir recursivamente o algoritmo para cada partição

```
petal length (cm) <= 2.45
               gini = 0.667
              samples = 150
            value = [50, 50, 50]
              class = setosa
                            False
         True
                       petal width (cm) <= 1.75
   gini = 0.0
                              gini = 0.5
 samples = 50
                            samples = 100
value = [50, 0, 0]
                          value = [0, 50, 50]
 class = setosa
                          class = versicolor
                 gini = 0.168
                                         gini = 0.043
                samples = 54
                                        samples = 46
               value = [0, 49, 5]
                                      value = [0, 1, 45]
               class = versicolor
                                       class = virginica
```


Algoritmo CART: predição

Para uma nova amostra:

- Percorre a árvore até chegar na folha
- Retorna o valor da decisão na folha
 - Classificação: retorna a classe mais proeminente
 - Regressão: retorna o valor médio das amostras da folha

Vantagens da árvore de decisão

- Não precisa de scaling como a SVM
- Fácil de implementar
- Paralelizável

INTERPRETÁVEL

- Features mais importantes aparecem mais cedo na árvore!
- Podemos saber a incerteza da predição olhando a impureza do nó de decisão

Desvantagens

- Preferência por fronteiras de decisão ortogonais e alinhadas com os eixos cartesianos
- Não é invariante à rotação

