

Towards Foundational Verification of Cyber-physical Systems

Gregory Malecha Daniel Ricketts Mario M. Alvarez Sorin Lerner

SoSCYPS 2016

Verifier (KeYmaera)

System (Hw+C)

 $\begin{array}{c} \text{Model} \\ (\partial \text{DL}) \end{array}$

Verifier (KeYmaera)

Benefits of Foundational Verification [YCER11]

Compiler	Bugs
GCC	122
Clang/LLVM	181
CompCert	

Benefits of Foundational Verification [YCER11]

Compiler	Bugs
GCC	122
Verified in Coq	$181 \\ 0^{\dagger}$

[†] In verified code

Benefits of Foundational Verification [YCER11]

Compiler	Bugs
GCC	122
Clang/LLVM	181
CompCert	O_{\downarrow}

Foundational verification

- Strong guarantees, and
- Expressive logic

Verification in Coq

- Strong guarantees, and
- Expressive logic


```
Def opt (c:c_prog):c_prog :=
    ... c ...
```

Foundational verification

- Strong guarantees, and
- Expressive logic

Verification in Coq

```
Def opt (c:c_prog):c_prog :=
    ... c ...
```

Thm opt_some Definitions prog, c ~ opt c.

- Strong guarantees, and
- Expressive logic

Verification in Coq

```
Def opt (c:c_prog):c_prog :=
    ... c ...
```

Thm opt_sound: \forall c:c_prog, c \sim opt c.

Proof.

```
inductio Definitions
(* proof for each case *)
```


- Strong guarantees,
- Expressive logic

Verification in Definitions

```
Def opt (c:c_prog):c_prog :=
    ... c ...
```

Thm opt_sound: \forall c: e_prog, $c \sim \text{opt } c$.

Proof.

inductior Interactive proof scripts
(* proof for each case *)

(* proof for each case

Qed.

Foundational verification

- Strong guarantees, and
- Expressive logic

Case Study: Runtime Monitors [Dan15]

Case Study: Runtime Monitors [Dan 15] Sensors (v, y)

Case Study: Runtime Monitors [Dan15] Sensors (v, y)

Case Study: Runtime Monitors [Dan 15]

Case Study: Runtime Monitors [Dan15] "Sampled-Data System"

Case Sturdy: Runtime Monitors [Dan15] "Always"

Case Study: Runtime Monitors [Dan15]
Initial condition

Case Study: Runtime Monitors [Dan15]

Boundness, stability, robustness, etc.

$$P \wedge \Box \mathsf{Sys}_{\Delta}(D, W) \vdash \Box P$$
Custom proof rules

A Flavor of Customizal = after the transition

$$\frac{P \land D \land 0 \le \tau' \le \Delta \vdash P'}{P \land \Box \mathsf{Sys}_{\land}(D, W) \vdash \Box P} \mathsf{SYS}\text{-}\mathsf{IND}$$

(Discrete)
$$\frac{P \land D \land 0 \le \tau' \le \Delta \vdash P'}{P \land \Box \mathsf{Sys}_{\Delta}(D, W) \vdash \Box P} \mathsf{SYS\text{-}IND}$$

A Flavor of Customizable Verification (Continuous) $P \land \text{Cont}(W \land \dot{\tau} = -1) \land 0 \leq \tau' \vdash P'$ (Discrete) $P \land D \land 0 \leq \tau' \leq \Delta \vdash P'$ $P \land \Box \text{Sys}_{\Delta}(D, W) \vdash \Box P$ Sys-Ind

A Flavor of Customizable Venification (Continuous)
$$P \land \text{Cont}(W \land \dot{\tau} = -1) \land 0 \leq \tau' \vdash P'$$
(Discrete)
$$\frac{P \land D \land 0 \leq \tau' \leq \Delta \vdash P'}{P \land \Box \mathsf{Sys}_{\Delta}(D, W) \vdash \Box P}$$
 SYS-IND

$$\frac{P \wedge \mathsf{Cont} \left(W \wedge \dot{\tau} = -1 \right) \wedge 0 \leq \tau' \vdash P'}{P \wedge D \wedge 0 \leq \tau' \leq \Delta \vdash P'} \text{ SYS-IND}$$

$$\frac{P \wedge D \wedge 0 \leq \tau' \leq \Delta \vdash P'}{P \wedge \Box \mathsf{Sys}_{\Delta}(D, W) \vdash \Box P}$$

$$\frac{P \wedge \mathsf{Cont} \left(W \wedge \dot{\tau} = -1 \right) \wedge 0 \leq \tau' \vdash P'}{P \wedge D \wedge 0 \leq \tau' \leq \Delta \vdash P'} \text{ SYS-IND}$$

$$\frac{P \wedge D \wedge 0 \leq \tau' \leq \Delta \vdash P'}{P \wedge \Box \mathsf{Sys}_{\Delta}(D, W) \vdash \Box P}$$

$$\frac{P \wedge \mathsf{Cont} \left(W \wedge \dot{\tau} = -1 \right) \wedge 0 \leq \tau' \vdash P'}{P \wedge D \wedge 0 \leq \tau' \leq \Delta \vdash P'} \text{ SYS-IND}$$

$$\frac{P \wedge D \wedge 0 \leq \tau' \leq \Delta \vdash P'}{P \wedge \Box \mathsf{Sys}_{\Delta}(D, W) \vdash \Box P}$$

tavor of Customizable Verification
$$P \land \mathsf{Cont}(W \land \dot{\tau} = -1) \land 0 \le \tau' \vdash P'$$

$$\frac{P \land D \land 0 \le \tau' \le \Delta \vdash P'}{P \land \Box \mathsf{Sys}_{\land}(D, W) \vdash \Box P} \mathsf{SYS-IND}$$

Def

World dynamics

$$W_{QC} \triangleq \begin{pmatrix} C_{\theta\phi} & \rightarrow & \dot{\mathbf{x}} = \mathbf{v_x} \wedge \dot{\mathbf{y}} = \mathbf{v_y} \wedge \dot{\mathbf{z}} = \mathbf{v_z} \\ & \wedge & \dot{\mathbf{v_x}} = \mathbf{T}\cos\phi\sin\theta \\ & \wedge & \dot{\mathbf{v_y}} = -\mathbf{Pitch} \\ & \wedge & \dot{\mathbf{v_z}} = \mathbf{T}\cos\phi\cos\theta - g \\ & \wedge & \dot{\phi} = 0 \wedge \dot{\theta} = 0 \wedge \dot{\mathbf{T}} = 0 \end{pmatrix}$$
Angular thrus

$$C_{\theta\phi} \triangleq |\theta| \leq 30^{\circ} \land |\phi| \leq 30^{\circ} \land 0 \leq \mathbf{T}$$

Aside: Simplified Quadcopter Dynamics

$$C_{\theta\phi} \rightarrow \dot{\mathbf{x}} = \mathbf{v_x} \wedge \dot{\mathbf{y}} = \mathbf{v_y} \wedge \dot{\mathbf{z}} = \mathbf{v_z}$$

$$\wedge \dot{\mathbf{v_x}} = \mathbf{T}\cos\phi\sin\theta$$

$$\wedge \dot{\mathbf{v_y}} = -\mathbf{T}\sin\phi$$

$$\wedge \dot{\mathbf{v_z}} = \mathbf{T}\cos\phi\cos\theta$$

$$\wedge \dot{\mathbf{v_z}} = \mathbf{T}\cos\phi\cos\theta$$
Instantaneous change
$$\wedge \dot{\phi} = 0 \wedge \dot{\theta} = 0 \wedge \dot{\mathbf{T}}$$

$$C_{\theta\phi} \triangleq |\theta| \leq 30^{\circ} \land |\phi| \leq 30^{\circ} \land 0 \leq \mathbf{T}$$

[†] Approximation justified by fast angular dynamics and the small angle constraint [GHH⁺11].

 $\mathsf{Max}_y \wedge \mathsf{Min}_y$

- Spatial transformation
- Conjunctive composition

 $Max_v \wedge Min_v$

- Spatial transformation
- Conjunctive composition

Monitors might not be compatible!

- Spatial transformation
- Conjunctive composition

 $Max_v \wedge Min_v$

- Spatial transformation
- Conjunctive composition

- Spati Formalize and build proof rules
- Conjunctive composition

- Spatial transformation
- Conjunctive composition

- Spatial transformation
- Conjunctive composition

- Spatial transformation
- Conjunctive composition
- Disjunctive composition

- Spatial transformation
- Conjunctive composition
- Disjunctive composition

- Spatial transformation
- Conjunctive composition
- Disjunctive composition

- Spatial transformation
- Conjunctive composition
- Disjunctive composition

- Spatial transformation
- Conjunctive composition
- Disjunctive composition

- Spatial transformation
- Conjunctive composition
- Disjunctive composition

Transition region

- Spatial transformation
- Conjunctive composition
- Disjunctive composition

Extending the Model: Robustness [Dan16b]

Tolerance to disturbances

- Add disturbances
- Bound violations

Extending the Model: Robustness [Dan16b]

Tolerance to disturbances

- Add disturbances
- Bound violations

Extending the Model: Robustness [Dan16b]

Tolerance to disturbances

- Add disturbances
- Bound violations

More Properties: Stability [Mat16]

Boundedness over time

More Properties: Stability [Mat16]

- Boundedness over time
- Convergence to a goal

More Properties: Stability [Mat16]

- Boundedness over time
- Convergence to a goal

• 100 years of control theory!

More Properties: Stability [Mat16] Def Def **Stability Boundary** Boundedness over time • Convergence to a soal Thm Thm • 100 years of control theory!

Connect to other tools

Connect to other tools

Formalize in Coq

Model Checker (e.g. SpaceEx)

Connect to other tools

- Formalize in Coq
- Leverage automation

Model Checker (e.g. SpaceEx)

Connect to other tools

- Formalize in Coq
- Leverage automation

Model Checker (e.g. SpaceEx)

Connect to other tools

- Formalize in Coq
- Leverage automation

Model Checker (e.g. SpaceEx)

Connect to other tools

- Formalize in Coq
- Leverage automation

Connect to other tools

- Formalize in Coq
- Leverage automation
- Combine with other reasoning

End-to-End Guarantees

$$\mathsf{Sys}_\Delta(\qquad D, \qquad W) \vdash P$$

Connect models & code

End Floating point & execution $\mathsf{Sys}_{\Delta}(\qquad \qquad D, \qquad \qquad W) \vdash P$

Connect models & code $Sys_{\Delta}(C\{C-code\}, W) \vdash P$

End-to-End Guarantees

 $\mathsf{Sys}_{\Delta}(D, W) \vdash H$ $\mathsf{Sys}_{\Delta}(\mathsf{buffer overflows, crypto, etc.})$

Connect models & code

End-to-End Guarantees

Connect models & code

barometer

- Probabilistic processes
- Minimize uncertainty

Tuscu

- Probabilistic processes
- Minimize uncertainty

Uncertainty

Safe (80%)

Unsafe (20%)

- Probabilistic processes
- Minimize uncertainty
- Decide with uncertainty

Uncertainty

Safe (80%)

Unsafe (20%)

- Probabilistic processes
- Minimize uncertainty
- Decide with uncertainty

Uncertainty

- Probabilistic processes
- Minimize uncertainty
- Decide with uncertainty

References I

Daniel Ricketts and Gregory Malecha and Mario M. Alvarez and Vignesh Gowda and Sorin Lerner.

Towards Verification of Hybrid Systems in a Foundational Proof Assistant.

In *MEMOCODE '15*, 2015.

Daniel Ricketts and Gregory Malecha and Sorin Lerner.

Modular Reasoning about Cyber-physical Systems.

2016.

Daniel Ricketts and Gregory Malecha and Sorin Lerner.

Verifying Robustness of Cyber-Physical Systems.

2016.

References II

Jeremy H. Gillula, Gabriel M. Hoffmann, Huang Haomiao, Michael P. Vitus, and Claire J. Tomlin.

Applications of hybrid reachability analysis to robotic aerial vehicles.

The International Journal of Robotics Research, 30(3):335–354, 2011.

- Matthew Chan and Daniel Ricketts and Sorin Lerner and Gregory Malecha. Formal Verification of Stability Properties of Cyber-physical Systems, 2016.
- Xuejun Yang, Yang Chen, Eric Eide, and John Regehr.

Finding and understanding bugs in C compilers.

PLDI '11, pages 283–294, New York, NY, USA, 2011. ACM.