পর্বঃ ০১ "মেমোরী এবং ডাটা টাইপ"

<u>একটুখানি গনিতঃ</u>

এই সমীকরনগুলো একটু দেখিঃ

P= \(\frac{1}{2} + \xeta + \zeta \)

যে ব্যাপারটি এখানে উল্লেখযোগ্য তা হলোঃ প্রত্যেকটি সমীকরণের ক্ষেত্রে ধারার সমষ্টি ২^(n+১)-১। এখানে n=০,১,২,৩,৪...।

আসলে উপরের (১) নং সমীকরনটি ২^০+২^১+২^২+২^৩+২^৪ এর পরিবর্তিত রূপ। নয় কি? অর্থাৎ,

く^o+く^১+く^く+......+く^(n-১)+く^(n-<)+く^n= く^(n+১)-5......(く)

বাইনারী থেকে ডেসিমেল কনভার্সনঃ

বাইনারীতে যদি একটি সংখ্যা হয়ঃ ১১১১১ তাহলে তাকে ডেসিমেলে কনভার্ট করার সহজ নিয়ম হলো, বাইনারী ফরমেটে যতগুলো ১ আছে তাদের প্রত্যেকের জন্য ২ এর ঘাত নিয়ে যোগ করলে যা হয় তাই হবে তার ডেসিমেল মান। এখানে ঘাত হবে ডানদিক খেকে প্রত্যেক ১ এর পজিশনের চেয়ে এক কম।

অর্থাৎ ১১১১১ এর জন্য প্রত্যেকটি ১ এর জন্য ২ এর ঘাতের যোগফল হবেঃ

120=0^5+2^5+5^5+0^5+8^5

অনুরূপভাবে, ১০১০১ এর মান হবে ২^৪+২^২+২^০=২১।

এবার মূল আলোচনায় আসি।

আমরা জানি int হল দুই বাইট।

(এখানে একটি কথা বলে রাখি যেকোন signed ডাটা টাইপের ক্ষেত্রে প্রথম বিট ব্যবহৃত হয় সাইন এর জন্য। '+' সাইনের ক্ষেত্রে বিটটি হয় ০ আর '-' এর ক্ষেত্রে ১)

ইন্টিজারের জন্য মেমোরীতে ১ বিট ব্যবহৃত হয় সাইনের জন্য আর অবশিষ্ট ১৫ বিট ব্যবহৃত হয় ভেরিয়েবলের মান নির্ধারনের জন্য। যেমনঃ int a=15;

ডিক্লেয়ার করা হলে মেমোরীতে তা অ্যালোকেট হবে এভাবেঃ

ইন্টিজার ভেরিয়েবলে যেহেতু ১৫ বিট, ভেরিয়েবলের মানের জন্য ব্যবহৃত হয় তাই সর্বন্ধ মান (বাইনারীতে) হতে পারেঃ

০১১১১১১১১১১১১(১৬ বিট ইন্টিজার)। বাইনারী থেকে ডেসিমেল কনভার্সন অনুযায়ী যার ডেসিমাল ভেলূ হলোঃ

২^১8+২^১७+২^১২+২^১১+২^১০+২^৯+২^৮+২^৭+২^৬+২^৫+২^8+২^৩+২^২+২^১+২^০ (২ এর সর্বন্দ ঘাত (১৫-১=)১৪)।

হুম..ম...ম আপনারা নিশ্চ্য়ই ধরে ফেলেছেন এই সমীকরনটি (২) নং সমীকরনের অনুরূপ। অর্থাৎ সমীকরনটিকে এভাবেও লিখা যেতে পারেঃ

২^০+২^১+২^২+২^৩+.....+২^১৩+২^১৪(২ এর অনুরূপ)

আর এর মান তো ২^১৫-১। (এইটুকুর জন্যই একটুখানি গণিত'টুকু করা!!!)

তাহলে নিশ্চই এখন আমরা বিভিন্ন ডাটা টাইপের জন্য নির্ধারিত বাইট খেকেই বলে দিতে পারব সেই টাইপের ভেরিয়েবলের মানের রেঞ্জ কত হবে।

(যমনঃ

char টাইপ ভেরিয়েবল হল ১ বাইট বা ৮ বিট। ১ বিট সাইনের জন্য আর বাকি ৭ বিট(২ এর সর্বন্ধ ঘাত ৭-১=৬) মান নির্ধারনের জন্য। তাই এর সর্বন্ধ মান হবে ২^(৬+১)-১=২^৭-১=১২৭।

* * * এথানে দেখা যাচ্ছে ভেরিয়েবলের জন্য নির্ধারিত বিটের মানটাই ২ এর সর্বন্দ ঘাত হচ্ছে।

আবার long int ঢার বাইট(৩২ বিট) হওয়ায় এই টাইপের ভেরিয়েবলের সর্বন্দ মান হবে

২^৩১-১=২১৪৭৪৮৩৬৪৭

এভাবে long long int (৮ বাইট বা ৬৪ বিট) এর সর্বন্দ মান ২^৬৩-১

এবার সর্বনিম্ন মানগুলোর হিসেব দেখে নেইঃ

তাহলে আগের আলোচনা থেকে ইন্টিজারের জন্য লিখতে পারিঃ

১৬ বিট(২ বাইট) ইন্টিজারের সর্বনিম্ন মান -২^১৫ এবং সর্বন্ধ মান ২^১৫-১।
নিচে সব ডাটা টাইপের জন্য ভেরিয়েবলের সর্বন্ধ ও সর্বনিম্ন দেয়া হলোঃ

ডাটা টাইপ	যত বিট	ভেরিয়েবলের মান
char	8 bit	- 2^7 to (2^7-1)
int	16 bit	-2^15 to (2^15-1)
long int	32 bit	- 2^31 to (2^31-1)
long long int	64 bit	- 2^63 to (2^63-1)

unsigned মুডিফায়ার এর ক্ষেত্রে সকল টাইপের ডাটার মান যেহেতু শুধু ধনাত্মক হতে পারে তাই unsignedযেকোন ডাটা টাইপ ভেরিয়েবলের সর্বনিম্ন মান ০ হবে। আর সর্বন্ড মানের জন্য ঐ ভেরিয়েবলের সবগুলোবিট ব্যবহৃত হবে। তাই unsigned মুডিফায়ার যুক্ত বিভিন্ন ডাটা টাইপের ভেরিয়েবলের মান হবেঃ

ডাটা টাইপ	ত বিট	ভেরিয়েবলের মান
unsigned char	8 bit	0 to (2^8-1)
unsigned int	16 bit	0 to (2^16-1)
unsigned long	32 bit	0 to (2^32-1)
unsigned long long in	t 64 bit	0 to (2^64-1)

যদি কোখাও বুঝতে প্রোব্লেম হয় তবে পুরো পোস্টটি পুনরায় পড়ুন, আশাকরি পুনরায় পড়লে বুঝতে অসুবিধা হবে না।

্রিলায়েট টাইপের ভেরিয়েবলের জন্য সর্বন্ধ ও সর্বনিম্ন মান কিভাবে নির্ধারিত হয় তা আমাদের পরবর্তিত পোস্টে আলোচনা করা হবে।]