Topic Modeling: Theory and Implementation

Ch.15. Machine Learning for Algorithmic Trading. Stefan Jansen. 2020. Packt Publishing Ch.6. Text Analytics with Python. Dipanjan Sarkar. 2019. Apress Topic Modeling with LSA, PLSA, LDA & Ida2Vec. Joyce Xu. 2018. Medium

Document-Term Matrix

Bag-of-Words (BOW)

the frequency of terms representing a document

Document-Term Matrix DTM)

the frequency of terms in a collection of documents

<u>Useful</u> for comparing and classifying documents

Cannot capture the latent variables/themes or provide document summary

Latent (hidden) variables = The Semantics of the documents (meaning)

Source: Jansen, Stefan. 2020. Ch.14. Figure 14.3

Topic Modeling

The process of learning, recognizing, and extracting hidden topics across a collection of documents

Applications

Unsupervised discovery of insightful themes in customer reviews, contracts, news...

Topic Modeling Techniques

- Each document consists of a mixture of topics
- Each topic consists of a collection of words

LSI (LSA)

Latent Semantic
Indexing

pLSA probabilistic Latent Semantic Analysis

LDA Latent Dirichlet

Allocation

lda2vec LDA+word2vec

Latent Semantic Analysis

the semantic document-term relationship by reducing word space dimensionality using SVD

TDM - Term-Document Matrix

DTM - Document-Term Matrix

 $m \times n$ – a term-document matrix A

A =					
	D1	D2	D3	D4	
Brown	0.0	3.0	1.5	0.0	
Cat	0.0	4.3	0.0	0.0	
Coat	0.0	0.0	2.0	0.0	

	D1	D2	D3	D4
brown	0.6	3.0	1.2	-0.7
cat	0.1	2.6	0.0	-1.4
coat	0.7	1.1	1.5	0.5

m – a term n – a document

$$A = USV^T$$

Single Value Decomposition (SVD)

- Find the <u>best approximation</u> of the original data points using <u>fewer dimensions</u>
- Identify and order the dimensions along which data points exhibit the most variation

Truncated SVD

- only the k largest S values
- only k columns of U and V

Latent Semantic Analysis I (BBC News)

Ad sales boost Time Warner profit

Quarterly profits at US media giant TimeWarner months to December, from \$639m year-earlier.

The firm, which is now one of the biggest invehigh-speed internet connections and higher advales rose 2% to \$11.1bn from \$10.9bn. Its prooffset a profit dip at Warner Bros, and less to

1

BBC dataset - 2,225 News articles

(txt) in 5 categories:

- business
- entertainment
- politics
- sport
- tech

```
path = Path('bbc') # after you unzip bbc you should have a folder bbc
files = sorted(list(path.glob('**/*.txt'))) # sudirectories in the bbc folder
doc_list = []
for i, file in enumerate(files):
    with open(str(file), encoding='latin1') as f:
        topic = file.parts[-2] # parse path and extract the category name
        lines = f.readlines()
        heading = lines[0].strip()|
        body = ' '.join([l.strip() for l in lines[1:]]) # exclude heading
        doc_list.append([topic.capitalize(), heading, body])
```

2 Create a dataframe with three columns: Category, Heading, Article

```
docs = pd.DataFrame(doc_list, columns=['Category', 'Heading', 'Article'])
```

Article	Heading	Category
Quarterly profits at US media giant TimeWarne	Ad sales boost Time Warner profit	Business
The dollar has hit its highest level against	Dollar gains on Greenspan speech	Business
The owners of embattled Russian oil giant Yuk	Yukos unit buyer faces loan claim	Business
British Airways has blamed high fuel prices f	High fuel prices hit BA's profits	Business
Shares in UK drinks and food firm Allied Dome	Pernod takeover talk lifts Domecq	Business

sparse matrix: 2,175 x 2,917

Split and TF-IDF Vectorize

```
train_docs, test_docs = train_test_split(docs, stratify=docs.Category, test_size=50, random_state=42)
```

Latent Semantic Analysis II

SVD Model: <u>sklearn.decomposition.TruncatedSVD</u>

Strength: Noise Removal, Semantics **Weakness:** Interpretability, Evaluation

The Average Topic
Assignment per News
category

Top-10 words per Topic

Source: Jansen, Stefan. 2020. Ch.15.

Probabilistic Latent Semantic Analysis (pLSA)

a probabilistic method instead of SVD: the probability for word w to appear in a document d

Strength: Models can be compared using the probabilities assigned to new documents

Source: Jansen, Stefan. 2020. Ch.15.

pLSA Implementation

Non-negative matrix factorization (NMF) model: <u>sklearn.decomposition.NMF</u>

Source: Jansen, Stefan. 2020. Ch.15.

Latent Dirichlet Allocation (LDA) - (Blei, Ng, and Jordan 2003)

- Extends pLSA adding a generative process
 - Hierarchical Bayesian model:
 - topics are probability distribution over words
 - documents are probability distribution over topics
 - topics follow a sparse Dirichlet distribution
 - Can generalize to new documents
- Variants can include metadata (authors, image data)

pLSA: document>topic>word

LDA Implementation

Pipeline

1 Laten Dirichlet allocation model: <u>decomposition.LatentDirichletAllocation</u>

3 Visualization: pyLDAvis

