不确定度计算与分析

含不确定度的实验结果计算

不确定度分析是先分析各原始测量数据的不确定度,然后使用带有不确定度的数据进行计算,而非计算后再分析不确定度。

- 1. 按照等误差原则测量各需要的物理量。
- 2. 对测量到的数据分析统计不确定度(A)和测量不确定度(B)。
- 3. 计算总不确定度。
- 4. 将带有不确定度的物理量按不确定度合成法则计算,得到最终结果。

原始数据不确定度的评估

统计不确定度(A)

统计数据应当使用 3δ 判据进行剔除

假设测得的数据是 x_1, x_2, \dots, x_n , 算术平均值为 \bar{x} 。

计算样本标准差
$$u_a = \sqrt{rac{\sum_{i=1}^n (x_i - \overline{x})^2}{n(n-1)}}$$
。

由于实验次数较少,还需要乘上修正因子,即 $U_a = u_a \cdot t_p$ 。

置信概率 0.683

n	3	4	5	6	7	8	9	10	11	inf
t_p	1.32	1.20	1.14	1.11	1.09	1.08	1.07	1.06	1.05	1.00

置信概率 0.95

n	3	4	5	6	7	8	9	10	11	inf
t_p	4.30	3.18	2.78	2.57	2.45	2.36	2.31	2.26	2.23	1.96

 U_a 就是统计不确定度。

测量不确定度 (B)

测量不确定度根据测量过程来评定,包含仪器不确定度 $\Delta_{ extsf{Q}}$ 和估计不确定度 $\Delta_{ extsf{G}}$ 两部分。

 Δ_{IV} 根据仪器确定,一般认为是是仪器最小分度值的一半。数字测量仪器的最小分度值视为其读数稳

定的最后一位对应的值。

 $\Delta_{\rm ch}$ 为读取时的估计误差,绝大多数情况下远小于 $\Delta_{\rm ck}$,因而可以忽略。但是,某些特殊情况会有较大估计误差,例如在秒表测量时,由于人的反应速度差异,估计误差大约为 $0.2{
m s}$ (此时可以忽略秒表的仪器误差)。

最后,修正仪器不确定度并使用平方合成。

 $U_b = \sqrt{\left(\frac{\Delta_{(\!\!\! Q)}}{c}\right)^2 + \Delta_{(\!\!\! d)}}$,其中 c 取决于仪器误差的分布形式,正态分布取 3,均匀分布取 $\sqrt{3}$ 。一般认为数字仪器和游标卡尺的读数误差属于均匀分布,其他属于正态分布。

原始数据的不确定度

合成原始数据的不确定度 $u = \sqrt{U_a^2 + U_b^2}$ 。

若数据为 8.000cm,不确定度为 0.007cm,则可以记作 (8.000 ± 0.007) cm。注意这里的有效数字需要对齐。

不确定度合成计算

有效数字的运算规则

在含不确定度运算的情况下,这个规则可以不使用。

加减法运算时,取较少的小数点后位数;乘除法运算,取较少的有效数字;三角函数保留原有有效数字。

不确定度的合成规则

- $(A \pm a) + (B \pm b) = (A + B) \pm \sqrt{a^2 + b^2}$
- $(A\pm a)\cdot (B\pm b)=AB\pm \sqrt{\left(rac{a}{A}
 ight)^2+\left(rac{b}{B}
 ight)^2}$
- $\sin(A \pm a) = \sin A \pm |\cos A|a$
- $cos(A \pm a) = cos A \pm |sin A|a$