UFA - Domača naloga Rok za oddajo: 14.1.2021

- **1.** Dokaži, da obstaja tak $\varphi \in (\ell^{\infty})^* \setminus \{0\}$, da velja $\varphi(x) = 0$ za vsak $x \in \ell^{\infty}$, za katerega obstaja tak $N \in \mathbb{N}$, da je $x_{n+N} = x_n$ za vsak $n \in \mathbb{N}$.
- **2.** Naj bosta X in Y Banachova prostora.
 - (a) Denimo, da za podprostor Z v X obstaja omejen linearen operator $P: X \to X$, ki zadošča P(X) = Z in $P^2 = P$. Dokaži, da je Z zaprt podprostor.
 - (b) Naj bo $T \in \mathcal{B}(X,Y)$ operator z zaprto zalogo vrednosti. Dokaži ekvivalenco spodnjih trditev.
 - (i) Obstajata omejena linearna operatorja $P: X \to X$ in $Q: Y \to Y$, ki zadoščata $P^2 = P$, $Q^2 = Q$ in:

$$P(X) = \ker T, \quad Q(Y) = \operatorname{im} T.$$

- (ii) Obstaja $S \in \mathcal{B}(Y, X)$, ki zadošča STS = S in TST = T.
- **3.** Naj bo X Banachov prostor in Y, Z njegova zaprta podprostora, za katera je $Y \cap Z = \{0\}$. Označimo:

$$k = \inf\{\|y - z\| \mid y \in Y, z \in Z, \|y\| = \|z\| = 1\}.$$

Dokaži, da je Y + Z zaprt podprostor natanko tedaj, ko je k > 0.

4. Na Hilbertovem prostoru $L^2[-1,1]$ definiramo funkcijo $\varphi:L^2[-1,1]\to\mathbb{R}$ s predpisom:

$$\varphi(f) = \int_{-1}^{1} |f(x)|^2 dx - 2 \int_{-1}^{1} x^2 f(x) dx.$$

Naj bo še $\mathcal{M}=\{f\in L^2[-1,1]\mid \int_{-1}^1 f(x)\,dx=0\}\leq L^2[-1,1].$ Določi vrednost $\inf_{f\in\mathcal{M}}\varphi(f).$

5. Definirajmo operator $A:\ell^2 \to \ell^2$ s predpisom:

$$A(x_1, x_2, \dots) = \left(x_1 + \frac{1}{2}x_2, -\frac{1}{2}x_1 + x_2, x_3 + \frac{1}{4}x_4, -\frac{1}{4}x_3 + x_4, \dots\right);$$

natančneje, vnosa desne strani na mestih 2n-1 in 2n sta enaka $x_{2n-1}+\frac{1}{2n}x_{2n}$ in $-\frac{1}{2n}x_{2n-1}+x_{2n}$.

- (a) Dokaži, da je A zvezen in določi A^* .
- (b) Ali je A surjektiven?
- (c) Ali je A kompakten?

6. Naj bo H Hardyjev prostor na odprtem enotskem disku \mathbb{D} :

$$H = \left\{ f : \mathbb{D} \to \mathbb{C} \text{ analitična } \middle| \sup_{r < 1} \frac{1}{2\pi} \int_0^{2\pi} |f(re^{\mathrm{i}\theta})|^2 d\theta < \infty \right\},$$

opremljen s skalarnim produktom:

$$\langle f, g \rangle_H = \sup_{r < 1} \frac{1}{2\pi} \int_0^{2\pi} f(re^{i\theta}) \overline{g(re^{i\theta})} d\theta$$

in pripadajočo normo $\|\cdot\|_H$.

- (a) Dokaži, da je za vsak $z \in \mathbb{D}$ operator $\Phi_z : H \to \mathbb{C}$, podan s predpisom $\Phi_z(f) = f(z)$, zvezen.
- (b) Naj bo še $\|\cdot\|$ norma na H, ki naredi H za Banachov prostor in glede na katero so operatorji $\Phi_{\frac{1}{n+1}}$ zvezni za vsak $n \in \mathbb{N}$. Dokaži, da je $\|\cdot\|$ ekvivalentna normi $\|\cdot\|_H$.
- 7. Naj bo \mathcal{H} Hilbertov prostor in $A \in \mathcal{B}(\mathcal{H})$. Za spodnje trditve dokaži, da vsaka implicira naslednjo, torej $(a) \Rightarrow (b) \Rightarrow \cdots \Rightarrow (e)$.
 - (a) Obstajata Hilbertov prostor \mathcal{K} , ki vsebuje \mathcal{H} , in tak normalen operator $B \in \mathcal{B}(\mathcal{K})$, da je $B(\mathcal{H}) \subseteq \mathcal{H}$ in $B|_{\mathcal{H}} = A$.
 - (b) Za vsak $n \in \mathbb{N}$ in izbor vektorjev $x_0, \ldots, x_n \in \mathcal{H}$ velja:

(1)
$$\sum_{i,j=0}^{n} \langle A^i x_j, A^j x_i \rangle \ge 0;$$

poleg tega obstaja taka konstanta c > 0, da za poljuben izbor vektorjev $x_0, \ldots, x_n \in \mathcal{H}$ velja:

(2)
$$\sum_{i,j=0}^{n} \langle A^{i+1} x_j, A^{j+1} x_i \rangle \le c \sum_{i,j=0}^{n} \langle A^i x_j, A^j x_i \rangle.$$

- (c) Obstaja konstanta $c > ||A||^2$, da je za vsak $n \in \mathbb{N}$ in poljuben izbor vektorjev $x_0, \ldots, x_n \in \mathcal{H}$ izpoljen pogoj (2).
- (d) Pogoj (1) velja za vsak $n \in \mathbb{N}$ in izbor vektorjev $x_0, \ldots, x_n \in \mathcal{H}$.
- (e) Za vsak $n \in \mathbb{N}$ in vektorje $x_0, \dots, x_n \in \mathcal{H}$ velja:

$$\sum_{i,j=0}^{n} \langle A^{i+j} x_i, A^{i+j} x_j \rangle \ge 0.$$