Univerza *v Ljubljani* Fakulteta *za matematiko in fizik*o

Oddelek za fiziko Torzijsko nihalo

Poročilo pri fizikalnem praktikumu III

avtor: Kristofer Č. Povšič

Asistentka: Jelena Vesić

Uvod

O strižni napetosti $\frac{F}{S}$ govorimo takrat, ko leži sila v ravnini ploskve, v kateri prijemlje, v nasprotju s tlačno silo, ki je pravokotna na ploskev. Za strižno napetost velja enačba:

$$\frac{F}{S} = G\alpha \tag{1}$$

Torzijski koeficient žice je sorazmernostni faktor med navorom in kotom φ , zasukom prostega konca žice:

$$M = D\varphi \tag{2}$$

Torzijski koeficient je za zasuke, ki niso preveliki, povezan s strižno napetostjo G preko

$$D = \frac{\pi \rho^4 G}{2l} \tag{3}$$

pri čemer je ρ polmer, l pa dolžina žice. Če na spodnji konec viseče žice obesimo telo in ga zasukom, lahko opazujemo torzijsko nihanje. Za majhne zasuke je to nihanje harmonično in velja:

$$t_0 = 2\pi \sqrt{\frac{J}{D}} \tag{4}$$

Naloga

- 1. Določi torzijski koeficient D žice
- 2. Izračunaj strižni modul G jekla, iz katerega je žica
- 3. Določi vztrajnostni moment in vztrajnostni radij danega telesa (kvadra z valjasto votlino) iz meritve nihajnega časa torzijskega nihala in primerjaj rezultate z izračunanim vztrajnostnim momentom.
- 4. Določi vztrajnostni moment zobnika.

Potrebščine

- stojalo, jeklena žica, plošča z ročajem
- uteži: votel kovinski valj, kvader z valjasto votlino
- tehtnica, štoparica, kljunasto merilo, mikrometer

Navodilo

Izmeri dolžino in debeline žice nihaja. Nanjo obesi ploščo z ročajem. Izmeri ni-

hajni čas nihala pri prazni plošči, votlim valjem in še s kvadrom z valjasto odprtino ter zobnik. Pri vsaki meritvi izmeri čas 10 nihajev s štoparico. Kotne amplitude pri nihanju naj bodo majhne.

Obdelava podatkov

Izmerjeni so bili sledeči podatki:

Debelina žice $d = (0.63 \pm 0.05)mm$ in dolžina žice $l = (29 \pm 0.5)cm$.

Izmerim in izračunamo naslednje povprečne čase za prazno ploščo, ploščo z valjem, ploščo s kvadrom in ploščo z zobnikom:

meritev	$t_p[s]$	$t_v[s]$	$t_k[s]$	$t_z[s]$
1	1.874	5.263	3.666	2.943
2	1.888	5.317	3.624	2.986
3	1.897	5.300	3.636	2.895
$\overline{t}[s]$	1.886	5.293	3.642	2.941
$\sigma_t[s]$	0.009	0.023	0.018	0.037

Z izmerjenimi podatki valja: masa valja $m_v = (2500 \pm 1)g$, manjši radij $r = (15 \pm 87.2)mm$, veliki radij $R = (87.2 \pm 0.1)mm$ in višino $h = (50 \pm 0.1)mm$. Iz teh podatkov izračunam vztrajnostni moment valja $J = (2.446 \pm 0.007)gm^2$. Za nihalo z valjem po enačbi 4:

$$D = (J_p + J_v) \left(\frac{2\pi}{t_v}\right)^2 \tag{5}$$

za J_p pa tudi velja $J_p = D(\frac{t_p}{2\pi})^2$.

Tako izračunamo torzijski koeficient žice $D=(3.94\pm0.04)mNm$. Iz enačbe 3 izračunamo strižni koeficient $G=(7\pm1)kN/mm^2$.

Analogno velja tudi za poljubno telo, ki ga položimo na ploščo tako, da os vrtenja prebada njegovo težišče. Za kvader z luknjo tako dobimo rezultat $J_k=(0.97\pm0.02)gm^2$ in za zobnik $J_z=0.53\pm0.01gm^2$.

Za kvader z luknjo sem izmeril sledeče rezultate: masa kvadra $m_k = (1193 \pm 1)g$, stranica $a = (60 \pm 0.05)mm$ in premer valja $d = (40 \pm 0.05)mm$.

Vztrajnostni moment za kvader se tako zapiše:

$$J_k = \sigma \left(\frac{S_k}{12} (2a^2) - \frac{S_v}{2} \left(\frac{d}{2} \right)^2 \right) \tag{6}$$

Iz enačbe poračunamo $J_k = (0.98 \pm 0.002) gm^2$.