Lineare Algebra

1 Allgemeines

Dreiecksungleichung $|x+y| \le |x| + |y|$ Cauchy-Schwarz-Ungleichung: $|\langle x, y \rangle| \le ||x|| \cdot ||y||$ \mathbb{K} steht für \mathbb{R} und \mathbb{C} \mathbb{I}_n ist die nxn-Einheitsmatrix

2 Matrizen

Die Matrix $A=(a_{ij})\in\mathbb{K}^{m\times n}$ hat m Zeilen mit Index i und n Gesucht: A^n Spalten mit Index i.

2.1 Allgemeine Rechenregeln

Merke: Zeile vor Spalte! (Multiplikation, Indexreihenfolge, etc.)

- 1) A + 0 = A3) A + B = B + A

- Multiplikation von $A \in \mathbb{K}^{m \times r}$ und $B \in \mathbb{K}^{r \times n}$: $AB \in \mathbb{K}^{m \times n}$
- 2.2 Elementare Zeilenumformungen (EZF) (gilt äquiv. für Spalten)

 $A \in \mathbb{K}^{m \times n}$ hat m Zeilen $z_i \in \mathbb{K}^n$

- Vertauschen von Zeilen
- Multiplikation einer Zeile mit $\lambda \neq 0$
- Addition des λ -fachen der Zeile z_i zur Zeile z_i

2.3 Transponieren

 $A = (a_{ij}) \in \mathbb{K}^{m \times n} \text{ gilt: } A^{\top} = (a_{ij}) \in \mathbb{K}^{n \times m}$ Regent: $(A+B)^{\top} = A^{\top} + B^{\top}$ $(A \cdot B)^{\top} = B^{\top} \cdot A^{\top}$ $(\lambda A)^{\top} = \lambda A^{\top}$ $(A^{\top})^{\top} = A$

 $A \in \mathbb{K}^{n \times n}$ ist symmetrisch, falls $A = A^{\top}$ (\Rightarrow diagbar)

 $A \in \mathbb{K}^{n \times n}$ ist schiefsymmetrisch, falls $A = -A^{\top}$ $A \in \mathbb{K}^{n \times n}$ ist orthogonal (Spalten-/Zeilenvektoren=ONB), falls:

 $AA^{\top} = \mathbb{I}_n \quad \Leftrightarrow \quad A^{\top} = A^{-1} \quad \Leftrightarrow \quad \det A = \pm 1$

 $A \in \mathbb{C}^{n \times n}$ ist hermitesch, falls $A = \overline{A}^{\top}$ (kmplx. konj. u. transp.)

2.4 Inverse Matrix von $A \in \mathbb{K}^{n \times n}$

Für die inverse Matrix A^{-1} von A gilt: $A^{-1}A = \mathbb{I}_n$ $(A^{-1})^{-1} = A$ $(AB)^{-1} = B^{-1}A^{-1}$ $(A^{\top})^{-1} = (A^{-1})^{\top}$

 $A \in \mathbb{K}^{n \times n}$ ist invertierbar, falls: $\det(A) \neq 0 \quad \lor \quad \operatorname{rang}(A) = n$

Berechnen von A^{-1} nach Gauß:

Berechnen von
$$A$$
 - nach Gaub:
$$AA^{-1} = \mathbb{I}_n \implies (A|\mathbb{I}_n) \xrightarrow{EZF} (\mathbb{I}_n|A^{-1})$$

$$2x2\text{-Matrix:} \begin{pmatrix} a & b \\ c & d \end{pmatrix}^{-1} = \frac{1}{ad-bc} \begin{pmatrix} d & -b \\ -c & a \end{pmatrix}$$

2.5 Rang einer Matrix $A \in \mathbb{K}^{m \times n}$

(N0-Zeilen = Nicht-Null-Zeilen)

Rang (Zeilrang) $\operatorname{rang}(A)$: Anzahl N0-Zeilen Zeilenraum row(A): Erzeugnis der Zeilen, Basis(row(A)) = { N0-Zeilen } $\mathsf{Kern} \colon \ker \mathsf{n}(A) = \{ x \in \mathbb{K}^n \mid Ax = 0 \}$

Dimensionsformel: rang(A) + dim(kern(A)) = n

Bringe A auf Spaltenstufenform (transponieren, ZSF)

Spaltenrang: Anzahl der NO-Spalten

Spaltenraum col(A): Erzeugnis der Spalten, Basis(col(A)){ N0-Spalten }

Bild = Spaltenraum: Erzeugnis der Spalten

2.6 Matrixpotenzen

Gegeben: $A \in \mathbb{R}^{mxn}$, $x \in \mathbb{R}^n$ Gesucht: Lösung von A^n .

- Bestimme Eigenwerte λ und Eigenvektoren v von A.
- Bestimme $\alpha_1, ..., \alpha_k$ mit $x = \alpha_1 v_1 + ... + \alpha_k v_k$
- $\bullet A^n x = \alpha_1 \lambda_1^n v_1 + \dots + \alpha_k \lambda_k^n v_k.$

Gegeben: $A \in \mathbb{R}^{n \times n}$, A diagonalisierbar.

 $\bullet \ A^n = SD^nS^{-1} \text{ mit } D^n = \begin{pmatrix} \lambda_1^n & \dots & 0 \\ \vdots & \ddots & \vdots \\ \vdots & \ddots & \ddots \\ \vdots & \ddots & \ddots \end{pmatrix}.$

4) $A\cdot B\neq B\cdot A$ (im Allg.) 2.7 Lineares Gleichungssystem LGS

5) (A+B)+C=A+(B+C) 6) $\lambda(A+B)=\lambda A+\lambda B$ Das LGS Ax=b kurz (A|b) mit $A\in\mathbb{K}^{m\times n}, x\in\mathbb{K}^n, b\in\mathbb{K}^m$ hat m Gleichungen und n Unbekannte.

Lösbarkeitskriterium:

Ein LGS (A|b) ist genau dann lösbar, wenn: $\operatorname{rang}(A) = \operatorname{rang}(A|b)$ Die Lösung des LGS (A|b) hat $\dim(\ker(A)) = n - \operatorname{rang}(A)$ frei wählbare Parameter

Das LGS hat eine Lsg. wenn $\det A \neq 0 \quad \rightarrow \exists A^{-1}$ Das homogene LGS: (A|0) hat stets die triviale Lösung 0Summen und Vielfache der Lösungen von (A|0) sind wieder Lösungen

2.8 Determinante von $A \in \mathbb{K}^{n \times n}$: det(A) = |A|

- $\bullet |A| = \sum_{i=1}^{n} (-1)^{i+j} \cdot a_{ij} \cdot |A_{ij}|$ Entwicklung n. j-ter Spalte
- ullet $|A| = \sum\limits_{i=1}^{n} \left(-1
 ight)^{i+j} \cdot a_{ij} \cdot |A_{ij}|$ Entwicklung n. i-ter Zeile
- $\det \begin{pmatrix} A & 0 \\ C & D \end{pmatrix} = \det \begin{pmatrix} A & B \\ 0 & D \end{pmatrix} = \det(A) \cdot \det(D)$

$$\bullet \begin{vmatrix} \lambda_1 & & * \\ & \ddots & \\ 0 & & \lambda_n \end{vmatrix} = \lambda_1 \cdot \ldots \cdot \lambda_n = \begin{vmatrix} \lambda_1 & & 0 \\ & \ddots & \\ * & & \lambda_n \end{vmatrix}$$

- $A = B \cdot C \Rightarrow |A| = |B| \cdot |C|$
- $det(A) = det(A^{\top})$
- Hat A zwei gleiche Zeilen/Spalten $\Rightarrow |A| = 0$
- $det(\lambda A) = \lambda^n det(A)$
- Ist A invertierbar, so gilt: $det(A^{-1}) = (det(A))^{-1}$
- $\det(AB) = \det(A)\det(B) = \det(B)\det(A) = \det(BA)$

Umformung Determinante

- ullet Vertauschen von Zeilen/Spalten ändert Vorzeichen von |A|
- \bullet Zeile/Spalte mit λ multiplizieren, |A| um Faktor λ größer
- ullet Addition des λ -fachen der Zeile X zur Zeile Y ändert |A| nicht

Vereinfachung für Spezialfall $A \in \mathbb{K}^{2 \times 2}$

Vereinfaction for Spezialian
$$A \in \mathbb{R}$$

$$A = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \Rightarrow \det(A) = |A| = ad - bc$$

2.9 Äquivalente Aussagen für $A \in \mathbb{K}^{n \times n}$

- 1) A ist invertierbar
- 3) $\operatorname{kern}(A) = 0$
- 5) $det(A) \neq 0$
- 7) Ax = b hat eine
- eindeutige Lösung $\forall b \in \mathbb{R}^n$
- 10) $\operatorname{rang}(A) = n$
- 8) 0 ist kein Singulärwert von A9) Lineare Abbildung ist bijektiv
- 11) 0 ist kein Eigenwert von A

4) Die strenge ZSF von A ist \mathbb{I}_n

3 Vektoren

Ein Vektor ist ein n-Tupel reeller oder komplexer Zahlen, also ein Element aus dem \mathbb{K}^n

3.1 Skalarprodukt $\langle v, w \rangle : V \times V \to \mathbb{R}$

- 1. Linear: $\langle u, v + w \rangle = \langle u, v \rangle + \langle u, w \rangle \wedge \langle u, \lambda v \rangle = \lambda \langle u, v \rangle$
- 2. Symmetrisch: $\langle v, w \rangle = \langle w, v \rangle$
- 3. Positiv definit: $\langle v, v \rangle > 0$ $\langle v, v \rangle = 0 \Leftrightarrow v = 0$

Kanonisches Skalarprodukt

$$\langle v, w \rangle = v^{\top} w = v_1 w_1 + \dots + v_n w_n$$

Skalarprodukt bzgl. sym., quadr. und positiv definiter Matrix $A \in \mathbb{K}^{n \times n}$

Skalarprodukt Polynome $\langle p(x), q(x) \rangle = \int p(x)q(x) dx$

Orthogonalität $\langle a, b \rangle = 0 \Leftrightarrow a \perp b$

Projektion eines Vektor v längs a: $\operatorname{proj}_a(v) = \frac{\langle v, a \rangle}{\langle a, a \rangle} \cdot a$ Orthogonale Zerlegung eine Vektors v längs a:

 $v = \mathrm{proj}_a(v) + \mathrm{proj}_{a^{\perp}}(v) \Rightarrow \mathrm{proj}_{a^{\perp}}(v) = v - \mathrm{proj}_a(v)$

Winkel $\cos \phi = \frac{\langle a, b \rangle}{\|a\| \|b\|}$ $\phi = \arccos\left(\frac{\langle a, b \rangle}{\|a\| \|b\|}\right)$

3.2 Kreuzprodukt (Vektorprodukt)

$$a \times b = \begin{pmatrix} a_2b_3 - a_3b_2 \\ a_3b_1 - a_1b_3 \\ a_1b_2 - a_2b_1 \end{pmatrix} \qquad a,b \ \in \mathbb{R}^3$$

 $a \times b \perp a, b$ (falls $a \times b = 0 \Leftrightarrow a, b$ linear abhängig) $a \times b = -b \times a$

 $||a \times b|| = ||a|| \cdot ||b|| \cdot \sin(\angle(a, b)) \stackrel{\frown}{=} \mathsf{Fläche} \mathsf{ des Parallelogramms}$ Graßmann-Identität: $a \times (b \times c) \equiv b \cdot (a \cdot c) - c \cdot (a \cdot b)$

Spatprodukt

 $[a, b, c] := \langle a \times b, c \rangle = \det(a, b, c) \stackrel{\widehat{=}}{=} Volumen des Spates.$ $[a, b, c] > 0 \Leftrightarrow a, b, c$ bilden Rechtssystem $[a, b, c] = 0 \Leftrightarrow \{a, b, c\}$ linear abhängig

4 Vektorräume (VR)

Eine nichtleere Menge V mit zwei Verknüpfungen + und \cdot heißt K-Vektorraum über dem Körper K.

Bedingung $(u, v, w \in V \mid \lambda, \mu \in \mathbb{R})$

- 1. $v + w \in V$ $\lambda v \in V$
- 2. u + (v + w) = (u + v) + w
- 3. $0 \in V : v + 0 = v$
- 4. $v' \in V : v + v' = 0$
- 5. v + w = w + v
- 6. $\lambda(v+w) = \lambda v + \lambda w$
- 7. $(\lambda + \mu)v = \lambda v + \mu v$
- 8. $(\lambda \mu)v = \lambda(\mu v)$
- 9. 1v = v

4.1 Untervektorraum (UVR) $U \subset V(u, v \in U \ \lambda \in \mathbb{R})$

- 1. $U \neq \emptyset$ $(0 \in U)$
- 2. $u + v \in U$
- 3. $\lambda u \in U$

2) $\dim(\operatorname{col}(A)) = \dim(\operatorname{row}(A))$ 4.2 Basis (Jeder VR und jeder UVR besitzt eine Basis!)

- 6) Zeilen/Spalten von A linear unabhängig Teilmenge $B\subset V$ heißt Basis von V , wenn gilt:

• $\operatorname{span}(B) = V$, B erzeugt V

B ist linear unabhängig

4.3 Dimension

 $n = \dim(V) = |B| = \mathsf{M\"{a}chtigkeit} \ \mathsf{von} \ B$ Mehr als n Vektoren aus V sind stets linear abhängig. Für jeden UVR $U \subset V$ gilt: $\dim(U) \leq \dim(V)$

4.4 Linearkombination

Jeder Vektor $v \in \mathbb{K}^n$ kann als Linearkombination einer Basis B = $\{b_1,\ldots,b_n\}\subset\mathbb{K}^n$ dargestellt werden

$$v = \lambda_1 b_1 + \dots + \lambda_n b_n \Rightarrow \mathsf{Gauß} \left(b_1 \ b_2 \ b_3 \mid v \right)$$

Linear Unabhängig: Vektoren heißen linear unabhängig, wenn aus: $\lambda_1 v_1 + \dots + \lambda_n v_n = 0$ folgt, dass $\lambda_1 = \dots = \lambda_n = 0$

4.5 Orthogonalität

 $B \subset V$ heißt

- Orthogonalsystem, wenn $\forall v, w \in B : v \perp w$
- ullet Orthogonalbasis, wenn B Orthogonalsystem und Basis von V
- ullet Orthonormalsystem, wenn B Orthogonalssystem u. $\forall v \in B$: ||v|| = 1
- Orthonormalbasis(ONB), wenn B Orthonormalsystem u. Basis von

Matrix A heißt orthogonal, wenn $A^{\top}A = \mathbb{I}_n$

- $A^{-1} = A^{\top}$
- $\det A = \pm 1$
- Spalten bilden ONB
- Zeilen bilden ONB
- ||Av|| = ||v||

Orthonormalisierungsvefahren einer Basis $\{v_1, \ldots, v_n\}$ nach Gram-

- 1. $b_1 = \frac{v_1}{\|v_1\|}$ (Vektor mit vielen 0en oder 1en)
- 2. $b_2 = \frac{c_2}{\|c_2\|}$ mit $c_2 = v_2 \frac{\langle v_2, v_1 \rangle}{\langle v_1, v_1 \rangle} \cdot v_1$
- 3. $b_3 = \frac{c_3}{\|c_3\|}$ mit $c_3 = v_3 \frac{\langle v_3, v_1 \rangle}{\langle v_1, v_1 \rangle} \cdot v_1 \frac{\langle v_3, c_2 \rangle}{\langle c_2, c_2 \rangle} \cdot c_2$

Erweitern einer ONB von V auf eine ONB des \mathbb{R}^n

- 1. Vektor e_i mit $i \in \{1...n\}$ so wählen, sodass die Skalarprodukte
- möglichst einfach zu berechnen sind 2. Gram-Schmidt für $e_i \Rightarrow$ Ergebnis zur Basis hinzufügen
- 3. So lange Wiederholen bis die Basis n Vektoren besitzt.
- 4. Alle neu hinzugefügten Vektoren bilden zusammen eine ONB von

Orthogonale Projektion auf UVR

Gegeben: Vektorraum $V \in \mathbb{R}^n$, $v \in V$, Untervektorraum $U \subset V$

- 1. Basis von U bestimmen
- 2. Orthogonalisiere Basis $\{u_1, u_2, u_3, \ldots\}$ von U
- 3. $\operatorname{proj}_{U}(v) = \frac{\langle v, u_{1} \rangle}{\langle u_{1}, u_{1} \rangle} u_{1} + \frac{\langle v, u_{2} \rangle}{\langle u_{2}, u_{2} \rangle} u_{2} + \dots$
- 4. $\operatorname{proj}_{U^{\perp}}(v) = v \operatorname{proj}_{U}(v)$
- 5. Abstand von v zu $U = \|\operatorname{proj}_{U^{\perp}}(v)\|$

Alternative Methode

- 1. Basis $\{b_1, \ldots, b_r\}$ von U bestimmen
- 2. Setze $A = (b_1 \ b_2 \ \dots \ b_r) \in \mathbb{R}^{n \times r}$
- 3. Löse das LGS $A^{\top}Ax = A^{\top}v$ und erhalte den Lösungsvektor $x = (\lambda_1, \dots, \lambda_r)^{\mathsf{T}}$
- 4. $\operatorname{proj}_{I_{I}}(v) = \lambda_{1}b_{1} + \cdots + \lambda_{r}b_{r}$

Norm von Vektoren $||a|| = \sqrt{\langle a, a \rangle} = \sqrt{a_1^2 + a_2^2 + \ldots + a_n^2}$ $\forall v, w \in \mathbb{R}^n$:

- 1. $\|\lambda v\| = |\lambda| \|v\|$
- 2. ||v + w|| < ||v|| + ||w||

6 Lineare Abbildungen

Abbildung $f:V\to W$ ist linear, wenn

1.
$$f(0) = 0$$

2.
$$f(a + b) = f(a) + f(b)$$

3.
$$f(\lambda a) = \lambda f(a)$$

⇒ Abbildung als Matrix darstellbar (siehe Abbildungsmatrix)

Injektiv, wenn aus $f(x_1)=f(x_2)\Rightarrow x_1=x_2$ Surjektiv: $\forall y\in W\ \exists x\in V: f(x)=y$ (Alle Werte aus W werden angenommen.) Bijektiv(Eineindeutig): f ist injektiv und surjektiv $\Rightarrow f$ umkehrbar.

6.1 Koordinatenvektor bezüglich einer Basis ${\cal B}$

Gegeben: Vektorraum $V \in \mathbb{R}^n$, $v \in V$. Gesucht: $[v]_B$ (Koordinaten von v bezüglich der Basis B).

- 1. Bestimme Basis B von V.
- 2. Löse das LGS Bx = v.
- 3. $[v]_B = x$.

6.2 Abbildungsmatrix (Darstellungsmatrix)

Lineare Abbildung $f:\mathbb{R}^n \to \mathbb{R}^m$ Abbildungsmatrix spaltenweise: $[f]=ig(f(e_1) \quad \dots \quad f(e_n)ig)$

 $\begin{array}{l} \text{Allgemein } f:V\to W \text{ mit } V,W \text{ Vektorräume} \\ B=(b_1,\ldots,b_n) \text{ ist eine Basis von } V,\ \exists B^{-1}. \\ [f]_B:=B^{-1}[f]B. \end{array}$

Gesucht: $x \in \mathbb{R}^n$ mit f(x) = b und $b \in \mathbb{R}^n$. - Löse das LGS $[f]_B x = B^{-1} b$.

- Lose das LGS $[f]_B x = B$ b. Folgende Aussagen sind äquivalent:

a)
$$[f]_B=\begin{pmatrix} \lambda_1 & & & & \\ & \lambda_2 & & & \\ & & \ddots & & \\ & & & \ddots & \lambda_n \end{pmatrix}$$
 b) $f(b_1)=\lambda_1b_1,\ldots,f(b_n)=\lambda_nb_n$

$$\begin{split} C &= (c_1, \dots, c_n) \text{ ist eine Basis von } V. \\ &\Rightarrow [f]_B^C = \begin{pmatrix} & & & & & & \\ & | & & & & & \\ f(b_1)_C & & f(b_2)_C & \cdots & f(b_n)_C \\ & & & & & & \\ & & & & & & \\ \end{split}$$

ist die Darstellungsmatrix von f bzgl. B und C

"In der j-ten Spalte der Abbildungsmatrix stehen die Koordinaten des Bildes $f(b_j)$ bzgl. der Basis $C=(c_1,\ldots,c_m)$ "

Eigenschaften von f mit Hilfe von [f]

- $kern(f) = \{x \in \mathbb{R}^n : f(x) = 0\}$
- $\operatorname{im}(f) = \operatorname{col}([f])$
- f injektiv, wenn $kern([f]) = \{0\}$
- f surjektiv, wenn $\operatorname{im}([f]) = \mathbb{R}^m$
- f bijektiv, wenn [f] invertierbar
- f ist bijektiv $\Leftrightarrow f$ ist injektiv $\Leftrightarrow f$ ist surjektiv

6.3 Transformationsmatrix

Transformationsmatrix der Koordinaten von B zu C: ${}_CT_B$ Regeln und Berechnung:

- $T_B = T_B$: Vektoren der Basis B
- $_CT_B = _CT \cdot T_B$
- $(_{C}T_{B})^{-1} = {}_{B}T_{C}$
- $\bullet \ [v]_C = {}_C T_B \cdot [v]_B$
- $C = B \cdot {}_{C}T_{B}$

7 Diagonalisierung (Eigenwerte und Eigenvektoren)

Gegeben: Quadratische Matrix $A \in \mathbb{R}^{n \times n}$. Gilt $Av = \lambda v$ mit $v \neq 0$, so nennt man

- $\bullet \ v \in V$ einen Eigenvektor von A zum Eigenwert $\lambda \in \mathbb{R}$ und
- ullet $\lambda \in \mathbb{R}$ einen **Eigenwert** von A zum **Eigenvektor** $v \in V$

Ist λ ein Eigenwert von A, so nennt man den Untervektorraum

- • Eig $_A(\lambda)=\{v\in\mathbb{R}^n|Av=\lambda v\}$ den Eigenraum von A zum Eigenwert λ und
- ullet dim(Eig $_A(\lambda)$) die geometrische Vielfachheit des Eigenwerts λ
- $geo(\lambda) = dim(Eig_A(\lambda))$

Diagonalisieren von Matrizen

A ist diag.bar falls eine invertierbar Matrix B existiert, sodass

$$D = B^{-1}AB \Leftrightarrow A = BDB^{-1}$$

und D eine Diagonalmatrix ist.

- Eine Matrix ist genau dann diagonalisierbar wenn $\operatorname{alg}(\lambda) = \operatorname{geo}(\lambda)$ für jeden Eigenwert λ von A gilt.
- \bullet Jede Matrix $A \in \mathbb{R}^{n \times n}$ mit n verschiedenen Eigenwerten ist diagonalisierbar.
- Eine symmetrische Matrix hat nur reelle Eigenwerte und ist diagonalisierbar.
- Die Determinante einer Matrix ist gleich dem Produkt der Eigenwerte: $\det(A) = \lambda_1 \ldots \lambda_n$

7.1 Rezept: Diagonalisieren

Gegeben: $A \in \mathbb{R}^{n \times n}$

1. Bestimme das charakteristische Polynom von ${\cal A}$

$$p_A(\lambda) = \det(A - \lambda \mathbb{I}_n)$$

2. Charakteristische Polynom p_A in Linearfaktoren zerlegen.

$$p_A(\lambda) = (\lambda_1 - \lambda)^{\nu_1} \dots (\lambda_r - \lambda)^{\nu_r}$$

Es gilt $\nu_1 + \cdots + \nu_r = n$

 $\lambda_1,\dots,\lambda_r$ sind die Eigenwerte mit algebraischer Vielfachheit $\mathrm{alg}(\lambda_i)=\nu_i$

Ist p_A nicht vollständig in Linearfaktoren zerlegbar \Rightarrow A nicht diagonalisierbar!

3. Bestimme zu jeden Eigenwert λ_i den Eigenraum V_i

$$V_i = \ker(A - \lambda_i \mathbb{I}_n) = \operatorname{span}(B_i)$$

Die Vektoren der Basis B_i sind die Eigenvektoren von λ_i .

Einfacher: Der Eigenvektor v_i ist Lösung des homogenen LGS

$$(A - \lambda_i \mathbb{I}_n)v_i = 0$$

 $\dim(V_i)=\gcd(\lambda_i)$ geometr. Vielfachheit des Eigenwerts λ_i . Gilt $\gcd(\lambda_i)\neq \deg(\lambda_i)$ für ein i, ist A nicht diagonalisierbar!

4. $B = (v_1 \dots v_n)$ setzt sich aus den Eigenvektoren zusammen. $D = \operatorname{diag}(\lambda_1, \dots, \lambda_n)$ ist die Diagonalmatrix der Eigenwerte.

$$D = B^{-1}AB \Leftrightarrow A = BDB^{-1}$$

8 QR-Zerlegung

A = QR, wobei Q orthogonal und R oben dreieckig.

- Q berechnen durch Gram-Schmidt mit den Spalten von A, beginnend bei der ersten
- ullet Die Koeffizienten von R ergeben sich durch Umstellen der jeweiligen Gram-Schmidt Gleichungen auf die Spalten von A
- Alternativ gilt: $R = Q^T A$

9 Kleinstes-Quadrate-Problem

Für Ax=b lautet die **Normalengleichung** $A^TAx=A^Tb$ \Rightarrow optimale Lösung mit minimalem quadratischen Fehler (existiert immer).

10 Singulärwertzerlegung

Bei der Singulärwertzerlegung wird eine beliebige Matrix $A \in \mathbb{R}^{m \times n}$ als Produkt dreier Matrizen U, S und V geschrieben

$$A = USV^{\top}$$

mit $U \in \mathbb{R}^{m \times m}$, $S \in \mathbb{R}^{m \times n}$ und $V \in \mathbb{R}^{n \times n}$. U und V sind orthogonal, S ist eine Diagonalmatrix.

10.1 Rezept: Singulärwertzerlegung

Gegeben: $A \in \mathbb{R}^{m \times n}$

- 1. Bestimme alle Eigenwerte λ_j und Eigenwektoren v_j der Matrix $A^\top A \in \mathbb{R}^{n \times n}$ und ordne sie $\lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_r > \lambda_{r+1} = \cdots = \lambda_n = 0$ mit $r \leq n$
- 2. Bestimme eine ONB des \mathbb{R}^n aus den Eigenvektoren v_j und erhalte $V=\begin{pmatrix}v_1&\dots&v_n\end{pmatrix}\in\mathbb{R}^{n\times n}$
- 3. Die Singulärwerte sind $\sigma_j = \sqrt{\lambda_j} \qquad j=1,\dots,\min\{m,n\}$

$$S = \begin{pmatrix} \sigma_1 & & 0 & \dots & 0 \\ & \ddots & & \vdots & & \vdots \\ & \sigma_m & 0 & \dots & 0 \end{pmatrix} \in \mathbb{R}^{m \times n} \quad m < n$$

$$S = \begin{pmatrix} \sigma_1 & & & \\ & \ddots & & \\ 0 & \dots & \sigma_n \\ \vdots & & \ddots & \vdots \\ 0 & \dots & 0 \end{pmatrix} \in \mathbb{R}^{m \times n} \qquad m > n$$

- 4. Bestimme u_1,\ldots,u_r aus $u_i=rac{1}{\sigma_j}Av_j$ für alle $j=1,\ldots,r$ (alle $\sigma_j
 eq 0$)
- 5. Falls r < m ergänze u_1, \ldots, u_r zu einer ONB, bzw. zu $U = \begin{pmatrix} u_1 & \ldots & u_m \end{pmatrix}$ orthogonal.
- 6. $A = USV^{\top}$

11 Lineare Differentialgleichungen

11.1 Lösen einer linearen Differentialgleichung

Gegeben: $y'(t) = \lambda y(t)$, mit y(0) = cLösung: $y(t) = ce^{\lambda t}$ mit $c \in \mathbb{R}$

11.2 Lösen eines Systems linearer Differentialgleichungen

Gegeben: y'(t)=Ay, mit $y_1(0)=c_1,...,y_n(0)=c_n$ Wobei $A\in\mathbb{R}^{n\times n},c_1,...,c_n\in\mathbb{R},y,y'\in\mathbb{R}^n$. Lösung:

1. Eigenwerte und Eigenvektoren von A bestimmen.

$$2. \begin{pmatrix} x_1(t) \\ \vdots \\ x_{-t}(t) \end{pmatrix} = c_1 e^{\lambda_1 t} v_1 + \dots + c_n e^{\lambda_n t} v_n.$$

3. Anfangswerte einsetzen und Werte für c_1 , bis c_n bestimmen