Vasérc

A vasérc a bányászható mennyiségű és minőségű vasat tartalmazó érckőzet összefoglaló neve.

Előfordulása

A vas a Föld második leggyakoribb féme (az alumínium után), körülbelül 4,7 tömegszázalék az előfordulása. A földkéreg átlagban mintegy 6,6%-nyi vasat tartalmaz, természetesen változatos eloszlásban. Minden olyan előfordulás, ami a kéreg átlagos vastartalmához képest 3–4-szeres vastartalmú, ércnek számít, a legtöbb jó minőségű vasérc ultrabázisos és bázisos környezetben található. A vas nagyon könnyen képez vegyületeket oxidatív környezetben, ezért sokféle összetételű természetes vasvegyület alkothat vasércet. Ezen vegyületek közül a gyakorlat számára legfontosabb ásványok:

- ▼ hematit, vastartalma 70%,
- ▼ magnetit, vastartalma 72,41%,
- v goethit, vastartalma 62,92%,
- ▼ limonit, vastartalma 59,89%.

A sziderit (vastartalma 48,28%), hidrohematit (vastartalma 66,27%), chamozit (vas-oxid-tartalmú szilikát) és szferosziderit gazdasági szempontból alárendelt.

Andradit és hematit

Finomított vasforgács és nagy tisztaságú vaskocka

Vasércek összetétel szerint

- Vörösvasércek
 - Lilásvörös színűek, és hematit alapúak. Ezek a legfontosabb vasércek. A legjobbak 64-68% vasat tartalmaznak.
- Mágnesvasércek vagy szürkevasércek
 - Magnetit alapú ércek, vastartalmuk 60% fölött is lehet. Tömörebbek, ezért valamivel nehezebben redukálhatóak. A magnetit gyakran a kova különböző, az érc minőségét rontó módosulataival (jáspis, kvarc) nő össze.
- V Barnavasércek alapásványai
 - Legalább részben hidroxidosak. Kötött víztartalmukat hevítés hatására elveszítik, így vastartalmuk növelhető.
- V Pátvasércek
 - Sziderit, azaz vaskarbonát alapúak és általában másodlagos keletkezésűek.

Vasércek képződés szerint

- Magmás vasércek
 - Ultrabázikus és bázikus magmákhoz kötődnek. Ezek a magma eredetileg magas vastartalma miatt dúsak vasvegyületekben.
- Hidrotermális vasérctelepek
 - A magma kristályosodási fázisai közül a hidrotermális szakaszhoz köthetők. Nagyobb méretű telepeket csak ritkán alkot, igazán nagy hidrotermális telep a szibériai, perm végi platóbazalt környékén van. A meleg vizes vasásványosodás többnyire szub- vagy utóvulkáni működéshez kötődik.
- Vulkáni exhalációs érctelepek
 - Az egyes tűzhányók utolsó életszakaszában jönnek létre a halogenidekkel együtt.
- ▼ Üledékes keletkezésű érctelepek
 - Olyan dúsulások, ahol a mállás folyamata vagy az üledék felhalmozódásának fizikai jellemzői miatt szaporodik a vastartalom. Ezek legfontosabbjai a reziduális (helyben maradó) üledékek, mivel ezek olyan mállástermékek, amik nem szállítódnak el eredeti helyükről, viszont a nem érces anyagok igen. (A reziduális üledékek közül a bauxit a leggyakoribb.) Az üledékes vaskőzetek az oolitos vasérc, a gyepvasérc, lápi vasérc, vasborsó, kéregvasérc.

Lelőhelyei

A jelenleg ismert legnagyobb területű magmás vasérctelep a mágnesvasércek közé tartozó magmás képződmény a Bushveld-masszívum területén, mintegy 67 000 km² kiterjedésben. (Magyarország területének 72%-a.) A telep 1,5–3,6 méter vastag, vagyis érctartalma kb. 170 km³. A nyugat-svédországi kirunavaarai érctelep hatalmas, kilométeres nagyságrendű lencsékben települt, amelyek száz méteres vastagságot is elérnek.

Magyarország egyetlen bányászható vasérctelepe hidrotermális eredetű. Itt dolomit szideritesedett meleg vizes oldatok hatására, valamint a felső mállási zónában limonitosodott. A telep vegyesen barnavasérc és pátvasérc jellegű. Teljes érckészlete 70 millió tonna körüli, aminek valamivel több mint a felét bányászták eddig ki. Magyarországon néhány helyen még akadnak hidrotermális és metaszomatikus vasércek, de legtöbbjük művelésre alkalmatlan. A Bükk-fennsíkon, valamint Zengővárkony környékén exhalációs lencsék is vannak, az utóbbit az 1950-es években bányászták is. Reziduális vasérctelepeink többsége művelésre alkalmatlan, az Árpád-korban Pécs és Komló környékén bányásztak ilyeneket.

Vasércbányászat az amerikai Geological Survey adatai alapján.

No.	ország	felhasználható vasérc-termelés (ezer tonna)	év
	világ	2.280.000	2015
1	Kína (becslés)	1.500.000	2019
2	Ausztrália	660.000	2019
3	Brazília (becslés)	320.000	2019
4	India	153.000	2019
5	Oroszország	101.000	2015
6	Dél-afrikai Köztársaság	73.000	2015

No.	ország	felhasználható vasérc-termelés (ezer tonna)	év
7	Ukrajna	67.000	2015
8	Egyesült Államok	46.000	2015
9	Kanada	46.000	2015
10	Irán	27.000	2015
11	Svédország	25.000	2015
12	Kazahsztán	21.000	2015
13	Mexikó	18.840	2013
14	Chile	17.109	2013
15	Venezuela	16.800	2013
16	Mauritánia	13.400	2013
17	Sierra Leone	11.895	2013
18	Malajzia	11.588	2013
19	Peru	10.126	2013
20	Törökország	8.589	2013
21	Mongólia	6.736	2013
22	Libéria	5.103	2013
23	Vietnam	4.708	2013
24	Indonézia	4.000	2013
25	Norvégia	3.409	2013
26	Egyiptom	3.320	2013
27	Új-Zéland	3.157	2013
28	Észak-Korea	3.054	2013
29	Ausztria	2.320	2013
30	Görögország	2.221	2013
31	Bosznia-Hercegovina	2.122	2013
32	Laosz	1.459	2013
33	Algéria	1.067	2013

Nyersvasgyártás

A nyersvasgyártás a vas- és acélkohászat technológiai folyamatának első alapvető fázisa. A vas a természetben nem fordul elő színfém formájában (legfeljebb a meteoritvas ilyen), ezért azt érceiből, tűzi kohászati eljárással kell előállítani. A tűzi kohászat során a vasércből – ami főleg vasoxidok elegye – az oxigént redukálással távolítják el. A redukáló anyag szén (koksz, a kohászok szóhasználatában "karbon"). A koksz nemcsak redukálja a vasérceket, de megfelelő hőmérsékletet is ennek égése biztosítja. A nyersvasat többnyire nagyolvasztóban, speciális aknás kemencében állítják elő. Vannak más eljárások is, de a nagyolvasztó a nyersvasgyártás legtipikusabb kemencetípusa: olyan, aknás kemence, amelynek működtetéséhez kisegítő egységekre (léghevítőkre, fúvógépházra, torokgáztisztítóra stb.) is szükség van. A nagyolvasztót és a kisegítő egységeket együtt nagyolvasztóműnek nevezik.

A nyersvasgyártás történetét az 1300-as évektől követhetjük: a levegőfúvatás fejlesztésével ekkor sikerült a bucakemencékben elég magas hőmérsékletet elérni. Az így előállított vas ugyan nagy széntartalma miatt eleinte használhatatlan (pig iron, csugunnaja szvinka, azaz disznó vas) volt, mégis ez a nyersvas vált az ipari méretű, kétlépcsős acélgyártás első fázisává.

A nyersvasgyártás anyagai

Vasérc

A földkéreg átlagban mintegy 6,6%-nyi vasat tartalmaz – igen változatos vegyületi formációkban és még változatosabb eloszlásban.

Salakképző anyagok

Kohósítás közben a vasérc meddőtartalma is megolvad, ebből lesz a salak. A salak kémiai összetétele igen fontos, mert a metallurgus – többek között – ezzel tudja befolyásolni a kéntelenítés folyamatát. A kéntelenítés azért fontos, mert a kén a vasban és az acélban is szennyező elem. A salak kémiai összetételét salakképzők adagolásával állítják be: a salakképző anyag többnyire mészkő és dolomit. Ha olyan zsugorítványt vagy pelletet használnak, amely már tartalmazza ezeket, akkor általában nem kell külön salakképző anyag (ezek az "önjáró ércek").

Tüzelő-redukáló anyagok

A nagyolvasztóban használatos tüzelő-redukálóanyag többnyire a koksz. A koksz egyrészt hőt, másrészt redukáló gázt fejleszt, harmadrészt karbonizálja (szénnel ötvözi) a vasat. A koksz C-tartalma több mint 85%, és annál jobb, ha minél kisebb (1% alatti) a kéntartalma. A koksz szerkezete erősen porózus, ami javítja a nagyolvasztóban elhelyezett elegyoszlop gázátjárhatóságát. Egyes esetekben brikettkokszot használnak, amit szurok kötőanyaggal állítanak elő. A kokszfelhasználás csökkentése érdekében külön redukálóanyagokat: szénhidrogéneket (földgáz, fűtőolaj), szénport stb. is használnak; ezeket a forrószélhez keverik.

Levegő

A levegőt a hőszükséglet biztosítására (a koksz égetéséhez) fúvatják a nagyolvasztóba – a kohászok ezt a levegőt fúvószélnek nevezik. Mivel a befúvott hideg levegő lehűtené az olvadékot, ezért előzőleg a nagyolvasztóból távozó gázok hőjét hőcserélőkkel hasznosítva felmelegítik. A meleg fúvószél a forrószél. A hőcserélők magas, tűzálló téglákból épített, rácsos szerkezetű oszlopok (a

feltaláló Edward A. Cowper nevéből kauperek), amelyek a levegőt szakaszos üzemben 1100–1300 °C-ra melegítik fel.

Redukciós folyamatok

A nagyolvasztóban lejátszódó metallurgiai (kémiai) folyamatok meglehetősen bonyolultak és sokrétűek, még akkor is, ha "csak" a vasérc redukciójáról van szó (ezen kívül más jellegű reakciók, folyamatok is lezajlanak). A lejátszódó kémiai reakciók jelentős mértékben függenek az adott térrész hőmérsékletétől, az uralkodó nyomásviszonyoktól és a jelenlévő vegyületektől.

A nagyolvasztóban a redukciós folyamatok alapvetően háromféle módon zajlanak le:

- ▼ direkt módon, azaz közvetlenül szénnel (C),
- ▼ indirekt módon, azaz szén-monoxid (CO) segítségével,
- ▼ más redukálószerek, többnyire hidrogén (H₂) segítségével.

Az aknába adagolt és lefelé haladó érc először az elegyoszlopon felfelé haladó gázokkal találkozik. Ennek a gázkeveréknek legjelentősebb alkotórésze a koksz elégetéséből származó szén-monoxid (CO) és szén-dioxid (CO₂). A redukálás szempontjából a széndioxidnak nincs szerepe, a szén-monoxid a legfontosabb összetevő, ez végzi az indirekt vagy közvetett redukciót. Az indirekt redukció akkor a leghatásosabb, ha az érc porozitása megfelelően nagy (ezt célozza például a kohósítás előtt zsugorítás). A redukciónak ez a módja azonban kis sebességű, így viszonylag kevés vasat eredményez. Az oxidok további redukálását a közvetlen vagy direkt redukciónak kell elvégeznie. A közvetett redukció az aknában, míg a közvetlen redukció a fúvósíkban vagy közvetlenül fölötte megy végbe, miközben a redukálódott vas megolvad.

A vasoxid redukcióját úgy kell elképzelni, hogy az először az érc felületén indul meg, majd a darab belső részei felé haladva fokozatosan veszíti el oxigéntartalmát:

$$Fe_2O_3 \rightarrow Fe_3O_4 \rightarrow FeO \rightarrow Fe$$

Indirekt redukció

A vasoxid közvetett redukciója már a vörösizzás hőmérsékletén elkezdődik:

$$3 \text{ Fe}_2\text{O}_3 + \text{CO} \rightarrow 2 \text{ Fe}_3\text{O}_4 + \text{CO}_2$$

A képződött Fe₃O₄ tovább redukálódik:

$$Fe_3O_4 + CO = 3 FeO + CO_2$$

 $FeO + CO = Fe + CO_2$

A redukció folyamata azonban nem ilyen egyszerű. A fenti kémiai egyenletek ugyanis az egyensúlyi állapotot tételezik fel. Ettől eltérő körülmények között más jellegű reakciók is végbemennek, pl.:

$$Fe_3O_4 + 4 CO \rightarrow 3 Fe + 4 CO_2$$

Direkt redukció

A közvetlen vasredukció egyenletei:

$$Fe_2O_3 + 3 C = 2 Fe + 3 CO$$

 $Fe_3O_4 + 4 C = 3 Fe + 4 CO$

$$FeO + C = Fe + CO$$

A két – direkt és indirekt – reakciófajta között jelentős különbség, hogy míg a közvetlen redukálás valamennyi folyamata hőfogyasztó (endoterm), addig a közvetett reakciók hőtermelők (exotermek). Ebből is következik, hogy a nagyolvasztóban törekedni kell az indirekt (szén-monoxidos) redukciókra, mert az tüzelőanyag-megtakarítással jár.

Redukció hidrogénnel

A hidrogén a levegővel, az elegy kötött víztartalmával vagy szénhidrogén adagolással kerülhet be a nagyolvasztóba. A hidrogén nagyobb hőmérsékleten kezd redukálni, mint a szén-monoxid, de sokkal gyorsabb, hatékonyabb annál. Ugyanakkor bonyolultabb is, mert a hidrogén (víz) szilárd szén és szén-monoxid gáz mellett van jelen, s ezek egymásra is hatnak. Hidrogén keletkezésére vízgőzből a következő reakcióegyenleteket lehet felírni:

$$C + H_2O = CO + H_2$$

 $CO + H_2O = CO_2 + H_2$

A hidrogén a redukálási sort hasonlóan végzi az előzőekkel (egyensúlyi állapotot feltételezve):

$$3 \text{ Fe}_2\text{O}_3 + \text{H}_2 = 2 \text{ Fe}_3\text{O}_4 + \text{H}_2\text{O}$$

$$\text{Fe}_3\text{O}_4 + \text{H}_2 = 3 \text{ FeO} + \text{H}_2\text{O}$$

$$\text{FeO} + \text{H}_2 = \text{Fe} + \text{H}_2\text{O}$$

Az első két reakció hőfogyasztó, míg a középső enyhén hőtermelő jellegű. Az egyensúlyi állapottól eltérő körülmények között létrejöhető reakciók:

$$Fe_3O_4 + 4 H_2 = 3 Fe + 4 H_2O$$

 $Fe_2O_3 + 3 H_2 = 2 Fe + 3 H_2O$

A nagyolvasztó

A nagyolvasztó nyersvasgyártás legtipikusabb kemencetípusa. Aknás kemence, amelynek működtetése azonban több, egyéb feladatot ellátó egységet is igényel. Ilyenek például a léghevítők, a fúvógépház, a torokgáztisztító stb. Ezeket – a nagyolvasztóval együtt – nagyolvasztóműnek nevezik.

A nagyolvasztó méreteit hasznos magasságával, medencéjének átmérőjével és hasznos térfogatával lehet bemutatni. A nagyolvasztók fejlődése során egyre nagyobb kemencéket építettek, de a méretnövekedést sokkal inkább az átmérővel érték el, mint a magasság növelésével. A legnagyobb magassági méretek a 30–35 méter körüli tartományban vannak, a hasznos térfogat pedig az 5000 köbmétert is meghaladja.