学生学号 0121403490112 实验课成绩

学生实验报告书 或演習之大學

实验课程名称	数据分析与建模				
开课学院	管理学院				
指导教师姓名	鄢 丹				
学 生 姓 名	刘尚楠				
学生专业班级	信管 1401				

2016 —2017 学年 第 1 学期

实验报告填写规范

- 1、实验是培养学生动手能力、分析解决问题能力的重要环节;实验报告是反映实验教学水平与质量的重要依据。为加强实验过程管理,改革实验成绩考核方法,改善实验教学效果,提高学生质量,特制定本实验报告书写规范。
- 2、本规范适用于管理学院实验课程。
- 3、每门实验课程一般会包括许多实验项目,除**非常简单**的验证演示性实验项目可以不写实验报告外,其他实验项目均应按本格式完成实验报告。在课程全部实验项目完成后,应按学生姓名将各实验项目实验报告装订成册,构成该实验课程总报告,并给出实验课程成绩。
- 4、学生必须依据实验指导书或老师的指导,提前预习实验目的、实验基本原理及方法,了解实验内容及方法,在完成以上实验预习的前提下进行实验。教师将在实验过程中抽查学生预习情况。
- 5、学生应在做完实验后三天内完成实验报告,交指导教师评阅。
- 6、教师应及时评阅学生的实验报告并给出各实验项目成绩,同时要认真完整保存实验报告。 在完成所有实验项目后,教师应将批改好的各项目实验报告汇总、装订,交课程承担单位(实验中心或实验室)保管存档。

附表: 实验成绩考核建议

	观测点	考核目标	成绩组成
实验预习	 对验证型实验,考察对实验原理与方法的 预习情况 对于综合型、设计型实验,着重考查设计 方案的科学性、可行性和创新性 	对实验目的和基本原理 的认识程度,对实验方 案的设计能力	20%
实验过程	1. 是否按时参加实验 2. 对实验过程的熟悉程度 3. 对基本操作的规范程度 4. 对突发事件的应急处理能力 5. 实验原始记录的完整程度 6. 同学之间的团结协作精神	着重考查学生的实验态度、基本操作技能;严 谨的治学态度、团结协 作精神	30%
结果分析	 所分析结果是否用原始记录数据 计算结果是否正确 实验结果分析是否合理 对于综合实验,各项内容之间是否有分析、比较与判断等 	考查学生对实验数据处 理和现象分析的能力; 对专业知识的综合应用 能力;事实求实的精神	50%

实验项目名称	实验一	简单的	简单的数据建模						
实验者	刘尚楠		专业班级	,	信管 1401				
同组者		无	;	实验日期 2016年9月23日					

一、实验目的、意义

本实验旨在通过资料查阅和上机实验,使学生加深了解数据分析与建模的理论与方法,掌握典型的最优化模型的建立与使用。

二、实验基本原理与方法

数据分析的理论,最优化模型的建模方法。 应用 Excel 的方法。

三、实验内容及要求

1、应用 Excel 建模分析

某学院有 3 个系, 共有学生 200 人, A 系 103 人, B 系 63 人, C 系 34 人。现在成立一个由 21 名学生组成的学生会,该如何公平地分配席位?

实验任务: 利用 Q 值法分配席位,并且在 Excel 中进行 Q 值计算。 (提示:参考讲义中的计算过程。)

2、单变量最优化

- 一个汽车制造商售出一辆某品牌的汽车可获利 1500 美元,估计每 100 美元的折扣可以使销售额提高 15%。
 - (1) 多大的折扣可以使利润最高?利用五步方法及单变量最优化模型。
- (2) 对你所得的结果,求关于所做的 15%假设的灵敏性。分别考虑折扣量和相应收益。
- (3)假设实际每100美元的折扣仅可以使销售额提高10%,对结果会有什么影响?如果每100美元折扣的提高量为10%~15%之间的某个值,结果又如何?
 - (4) 什么情况下折扣会导致利润降低?

实验任务:请将上述求解过程,除了用导数求解外,再用 Excel 建模求解之。 (提示:考虑 Excel 的数据,图形,公式三者的关系;Excel 的函数。参考教材第一章。)

四、实验方案或技术路线(只针对综合型和设计型实验)

按照实验任务要求,理论结合实际的实验方案,巩固课程内容,温故知新,查遗补漏,夯实理论基础,提升实验动手能力。

技术路线是, 从整体规划, 分步骤实施, 实验全面总结。

实验一技术路线

Q值法,Huntington 方法(假设:每一方都享有平等的名额分配权利;每一方至少应该分配到一个名额,如果某一方连一个名额也分配不到的话,则应把它剔除在分配范围之外。)应用 Q 值法分配,可以尽量保证分配公平。如果各单位的成员数相差比较大时,应从一开始就采用 Q 值法分配。如果各单位的成员数相差不大,可以采取简便方法,即先分配整数部分,然后将小数部分再按 Q 值法分配。设 p_i 为第 i 个单位的总值, n_i 为第 i 次

分配的名额数目,则Q值的计算公式为:

$$Q_i = \frac{{p_i}^2}{n_i * n_i} (i = 1, 2 ...)$$

初始给每一个单位分配一个名额,计算其 Q 值,得到 Q 值最小的单位,分配下一次名额,反复迭代,直至名额分配完成,可以得到最公平的席位分配方案。流程图如下:

实验二技术路线:

题目主要涉及两个方面,一是单变量最优化问题,另一方面是对于 15%假设的灵敏 度分析。

对于单变量问题使用五步法:

1. 提出问题

全部变量: 打折后汽车获利 W(美元), 打折前汽车销售额为 n(辆), 打折后汽车销售额为 N(辆), 打折金额为

最终获得的净收益 P(美元)。

其他相关的参(非变)量: 打折前单位汽车获利 (1500美元)等。

假设汽车折后销售额为 $N = \left(\frac{c}{100} * 0.15 + 1\right) * n$

$$W = 1500 - c$$

汽车的总利润为 P=W*N=目标: 求利润 P 的最大值

2. 选择建模方法

该题可定位为单变量优化问题,或极大一极小化问题,建模方法为:设 y=f(x)在 $x \in S$ 处是可微的,若 f(x)在 x 处达到极大或极小,则 f'(x)=0。

3. 推导模型公式

$$P = (1500 - c) * \left(\frac{C}{100} * 0.15 + 1\right) * n$$

求 P 得最大值可以转化为: y=P 作为求最大值的目标变量, x=c 作为自变量,同时为了方便问题求解,假设 n 为 1,我们的问题就化为在集合 $S=\{x:x\geq 0\}$ 上求下面函数的最大值:

$$y = f(x) = (1500 - x) * (\frac{x}{100} * 0.15 + 1)$$

4. 求解模型

$$f'(x) = -1 + 0.0015 * (1500 - x) - 0.0015x$$

当 f'(x) = 0 时,f(x)的值最大,此时 x = 416.667 美元,f(x) = 1760.42 美元。

5. 回答问题

当折扣金额为416.667美元的时候,获得的利润最大为1760.42美元。

对于灵敏度分析问题:

题中估计每折扣 100 美元销售量提高 15%, 现在假设其实际值是不同的, 对几个不同的值 13%, 14%, 16%, 17%.18%, 重复问题一中的求解过程,以此来分析销售量提高率的敏感程度。通过 Excel 求解该类问题。

五、实验原始记录(可附加页)

(**程序设计类实验:**包括原程序、输入数据、运行结果、实验过程发现的问题及解决方法等:

分析与设计、软件工程类实验:编制分析与设计报告,要求用标准的绘图工具绘制文档中的图表。系统实施部分要求记录核心处理的方法、技巧或程序段;

其它实验: 记录实验输入数据、处理模型、输出数据及结果分析)

实验一原始记录:

1. EXCEL 初始单位分配名额

Liv	,		₩ JA	SIK			
4	Α	В	С	D	E	F	G
1	系	人数	初始化				
2	Α	103	1				
3	В	63	1				
4	С	34	1				
5		200	3				
6							
7							

2. 求出第一次的 Q 值

4	Α	В	С	D	E	F	G	H	- 1
1	系	人数	初始化						
2	Α	103	1						
3	В	63	1						
4	С	34	1						
5		200	3						
6									
7	Q								
8	Qa		5304.5						
9	Qь		1984.5						
10	Qc		578						

3. 根据第一次求出的 Q 值进行下一次的名额分配

K1	7 -	: ×	√ f _x				
4	Α	В	С	D	Е	F	G
1	系	人数	初始化	1			
2	Α	103	1	2			
3	В	63	1	1			
4	С	34	1	1			
5		200	3	4			
6							
7	Q						
8	Qa		5304.5				
9	Qь		1984.5				
10	Qc		578				
11							

4. 反复求 Q 值进行迭代知道名额分配完成

AAT	1		√ Jx																		
4	Α	В	С	D	Е	F	G	н	1	J	K	L	М	N	0	Р	Q	R	S	T	U
1	系	人数	初始化	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	
2	Α	103	1	2	2	3	4	4	4	5	6	6	7	7	7	8	9	9	10	11	
3	В	63	1	1	2	2	2	3	3	3	3	4	4	5	5	5	5	6	6	6	
4	C	34	1	1	1	1	1	1	2	2	2	2	2	2	3	3	3	3	3	3	
5		200	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	
6																					
7	Q			1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	
8	Qa		5304.5	1768	1768	884	530	530	530	354	253	253	189	189	189	147	118	118	96.4	80.4	
9	Qь		1984.5	1985	662	662	662	331	331	331	331	198	198	132	132	132	132	94.5	94.5	94.5	
10	Qc		578	578	578	578	578	578	193	193	193	193	193	193	96.3	96.3	96.3	96.3	96.3	96.3	
11																					
12																					

实验二原始记录:

1. 求解最优折扣值 输入数据

绘图

求解

4	Α	В	С	D	E	F
1	X	Υ	索引	最优X	最优Y	
2	0	1500	418	417	1760.4165	
3	1	1501.2485				
4	2	1502.494				
5	3	1503.7365				
6	4	1504.976				
7	5	1506.2125				
8	6	1507.446				
	7	1500 6765				

灵敏度分析:

六、实验结果与讨论

实验一的结果与讨论:

结果: A,B,C 三个单位分别分配 11, 6, 3 个人。

讨论:本次实验为验证型的实验,主要是对讲义中的问题及算法用 EXCEL 工具进行 求解,在实际使用 EXCEL 的过程中我遇到了一下的困难。

● 算法的表示:例如题目中的Q值求法,以及分配判定的规则,用C语言来描述 是非常容易的,但是在EXCEL中就成为一个难点,借助于之前使用EXCEL的 经验使用单元格智能填充的功能,设计指定单元格的求值公式进行单元格批量 填充,实验截图如下:

D8	-	: ×	√ f _x	=10	03^2/	(D2*(E)2+1))	
4	Α	В	С	D	Е	F	G	н
1	系	人数	初始化	1	2	3	4	5
2	Α	103	1	2	2	3	4	4
3	В	63	1	1	2	2	2	3
4	С	34	1	1	1	1	1	1
5		200	3	4	5	6	7	8
6								
7	Q			1	2	3	4	5
8	Qa		5304.5	1768	1768	884	530	530
9	Qь		1984.5	1985	662	662	662	331
10	Qc		578	578	578	578	578	578
11								
12								

Q值单元格求值公式

人员分配逻辑判断公式

● 同时在逻辑与的表达下,我习惯性的使用符号&结果导致了错误,经过查阅得知在 EXCEL 中有 AND 函数表示与运算,

通过本次的实验我看到了自身对于 EXCEL 这一类软件的掌握不足,同时也看到了 EXCEL 的强大之处,经过我查阅资料发现 EXCEL 可以实现简单的编程,即 VBA 编程,本实验可以通过该编程来实现。同时对于席位分配问题我有了更深的理解,通过建立 Q 值模型,设计迭代规则,反复迭代计算可以量化的公平度从而得到公平的席位分配,通过建立数学模型解决问题,关键是从实际的问题出发,将问题数学化,逻辑条理化,合理的对解决方案进行设计,考虑数学推理法等形式,借助数学软件可以很好的解决实际生活中的问题

实验二结果与讨论

结果:

- 1) 折扣为 417 美元时, 利润最大为 1760.4165 美元
- 2) 销售量提高率与降价金额,最大利润关系表

销售量提高率	降价金额	最大利润
14%	391	1716.067
15%	421	1760.389
16%	441	1806.23
17%	451	1853.268
18%	471	1901.386

销售量提高率与最大利润灵敏度分析

由该表可知,厂商需降价的金额对销量的提高率是很敏感的。

- (3)当销售量提高率降低到 10%,最优结果中的降价金额为 251 美元,最大金额为 1562 美元,二者都会下降。
- (4) 降价幅度超过最优解 x 后导致利润下降。 讨论:

在本题中对 EXCEL 的操作要求不高,关键是对问题的理解,在求解本题的过程中,我以为是求相对灵敏度,于是一开始是借助了 mathematic 辅助运算求出 对于 15%变量与折扣量之间的关系有:

$$-1 + 15 * r - r * \frac{x}{50} = 0$$

求解:
$$S(x,r) = \frac{dx}{dr} * \frac{r}{x}$$

对于15%变量与相应收益之间的关系有:

通过 f'(x)求解出 x,代入原公式,将 f'(x)转换为,y与 r 的关系式有:

$$x = 50 * (\frac{15r - 1}{r})$$
$$y = \left(1500 - 50 * (\frac{15r - 1}{r})\right) * \left(\frac{1}{2} * (\frac{15r - 1}{r}) * 0.15 + 1\right)$$

求解:
$$S(y,r) = \frac{dy}{dr} * \frac{r}{y}$$

虽然可行的,但是在计算的过程中我发现很复杂,也背离了老师实验一的重心,最后发现是在 EXCEL 上进行操作,但是借助 mathematic 工具实际运用,我感到十分的便利,

比如第一问 mathematic 求解 x = 416.667 美元,f(x) = 1760.42 美元,而用 EXCEL 设置步
长为 10, 求解 X 为 421 美元,误差偏大。总而言之,好的工具会更加方便,但是解决问
题的关键还是建立模型。
七、实验报告成绩(请按优,良,中,及格,不及格五级评定)
1、大型101000000000000000000000000000000000
教师签字
我加拉 <u>亚士</u>