# Generalização do Método de Taylor de Ordem 2 e 3 via Método de Diferenças Finitas

Prof<sup>a</sup> Dr<sup>a</sup> Analice Costacurta Brandi Mestrando Ayrton de Aguiar Amaral

Optativa - Tópicos de Matemática Aplicada Universidade Estadual Paulista "Júlio de Mesquita Filho"

#### Sumário

- Método de Taylor de Ordem 1, 2 e 3
- Dedução de f' e f"
- 3 Aproximação de Derivadas
- Generalização: Fórmulas Práticas
- Exemplos Numéricos
- 6 Implementação
- Atividades

### Método de Taylor

Dado o PVI 
$$\begin{cases} y' = f(x, y) \\ y(x_0) = y_0 \end{cases}$$
,  $x \in (x_0, x_n)$ 

• Taylor de Ordem 1 = Euler Explícito

$$y_{n+1} = y_n + h f(x_n, y_n)$$

• Taylor de Ordem 2

$$y_{n+1} = y_n + hf(x_n, y_n) + \frac{h^2}{2!}f'(x_n, y_n)$$

Taylor de Ordem 3

$$y_{n+1} = y_n + hf(x_n, y_n) + \frac{h^2}{2!}f'(x_n, y_n) + \frac{h^3}{3!}f''(x_n, y_n)$$

### Dedução de f'

Derivada total primeira:  $f' = \frac{d}{dx} f(x, y(x))$ .

Pelo PVI, y' = f(x, y). Aplicando a regra da cadeia em f(x, y(x)):

$$\frac{d}{dx}f(x,y(x))=f_x(x,y)+f_y(x,y)\frac{dy}{dx}.$$

Como  $\frac{dy}{dx} = f(x, y)$ , obtemos

$$f'=f_x+f_y\,f$$

#### Dedução de f"

**Derivada total segunda:**  $f'' = \frac{d^2}{dx^2} f(x, y(x)).$ 

Derivando novamente:

$$f'' = \frac{d}{dx} \Big( f_x + f_y f \Big) = \underbrace{\frac{d}{dx} (f_x)}_{(A)} + \underbrace{\frac{d}{dx} (f_y f)}_{(B)}.$$

(A) Pela regra da cadeia:

$$\frac{d}{dx}(f_x) = f_{xx} + f_{xy}\frac{dy}{dx} = f_{xx} + f_{xy} f.$$

(B) Pela regra do produto + regra da cadeia:

$$\frac{d}{dx}(f_{y} f) = (f_{yx} + f_{yy} \frac{dy}{dx})f + f_{y} \frac{df}{dx} = (f_{xy} + f_{yy} f)f + f_{y}(f_{x} + f_{y} f).$$

Somando:

$$f'' = f_{xx} + 2f_{xy}f + f_{yy}f^2 + f_xf_y + f_y^2f$$

### Como aproximar f' e f'' para o Método de Taylor

**Notação:** 
$$f_x = \frac{\partial f}{\partial x}$$
,  $f_y = \frac{\partial f}{\partial y}$ .

$$f' = f_x + f_y f$$
,  $f'' = f_{xx} + 2f_{xy} f + f_{yy} f^2 + f_x f_y + f_y^2 f$ .

Podemos aproximar os valores das derivadas por diferenças finitas com a série de Taylor. Para  $f_x$  e  $f_y$ , qual aproximação é melhor usar?

**Ideia:** aproximar  $f_x$ ,  $f_y$ ,  $f_{xx}$ ,  $f_{xy}$ ,  $f_{yy}$  por **diferenças finitas centradas** (erro  $\mathcal{O}(h^2)$ ) para usar no Taylor de ordem 2 e 3, evitando derivadas analíticas difíceis.

**Vantagem:** esquemas centrados têm erro de truncamento  $\mathcal{O}(h^2)$  para derivadas de  $1^{\underline{a}}$  ordem (maior acurácia que diferenças progressivas/regressivas  $\mathcal{O}(h)$ ).

## Série de Taylor para aproximar $f_x$ (centrada)

Dada a função f(x, y) em torno de (x, y), expandindo em série de Taylor, temos

$$f(x+h,y) = f(x,y) + hf_x(x,y) + \frac{h^2}{2}f_{xx}(x,y) + \mathcal{O}(h^3)$$
 (1)

$$f(x-h,y) = f(x,y) - hf_x(x,y) + \frac{h^2}{2}f_{xx}(x,y) + \mathcal{O}(h^3)$$
 (2)

Subtraindo (2) de (1), obtemos

$$f(x+h,y)-f(x-h,y)=2hf_x(x,y)+\mathcal{O}(h^3)$$

Assim, isolando  $f_x$ :

$$f_x(x,y) \approx \frac{f(x+h,y) - f(x-h,y)}{2h}$$

# Série de Taylor para aproximar $f_y$ (centrada)

Dada a função f(x, y) em torno de (x, y), expandindo em série de Taylor, temos

$$f(x,y+k) = f(x,y) + kf_y(x,y) + \frac{k^2}{2}f_{yy}(x,y) + \mathcal{O}(k^3)$$
 (3)

$$f(x,y-k) = f(x,y) - kf_y(x,y) + \frac{k^2}{2}f_{yy}(x,y) + \mathcal{O}(k^3)$$
 (4)

Subtraindo (4) de (3), obtemos

$$f(x, y + k) + f(x, y - k) = 2kf_y(x, y) + O(k^3)$$

Assim, isolando  $f_y$ :

$$f_y(x,y) \approx \frac{f(x,y+k) - f(x,y-k)}{2k}$$

# Série de Taylor para aproximar $f_{xx}$ (centrada)

Dada a função f(x, y) em torno de (x, y), expandindo em série de Taylor, temos

$$f(x+h,y) = f(x,y) + hf_x(x,y) + \frac{h^2}{2}f_{xx}(x,y) + \frac{h^3}{6}f_{xxx}(x,y) + \mathcal{O}(h^4)$$
(5)

$$f(x - h, y) = f(x, y) - hf_x(x, y) + \frac{h^2}{2}f_{xx}(x, y) - \frac{h^3}{6}f_{xxx}(x, y) + \mathcal{O}(h^4)$$
Somando (5) e (6), obtemos

Somando (5) e (6), obtemos

$$f(x + h, y) + f(x - h, y) = 2f(x, y) + h^2 f_{xx}(x, y) + \mathcal{O}(h^4)$$

Assim, isolando  $f_{xx}$ :

$$f_{xx} pprox rac{f(x+h,y)-2f(x,y)+f(x-h,y)}{h^2}$$

# Série de Taylor para aproximar $f_{vv}$ (centrada)

Dada a função f(x, y) em torno de (x, y), expandindo em série de Taylor, temos

$$f(x,y+k) = f(x,y) + kf_y(x,y) + \frac{k^2}{2}f_{yy}(x,y) + \frac{k^3}{6}f_{yyy}(x,y) + \mathcal{O}(k^4)$$
(7)

$$f(x, y - k) = f(x, y) - kf_y(x, y) + \frac{k^2}{2}f_{yy}(x, y) - \frac{k^3}{6}f_{yyy}(x, y) + \mathcal{O}(k^4)$$
Somando (7) e (8), obtemos

$$f(x, y + k) + f(x, y - k) = 2f(x, y) + k^2 f_{yy}(x, y) + \mathcal{O}(k^4)$$

Assim, isolando  $f_{vv}$ :

$$f_{yy} \approx \frac{f(x,y+k) - 2f(x,y) + f(x,y-k)}{k^2}$$

# Série de Taylor para aproximar $f_{xy}$ (mista centrada)

Considerando a fórmula de Taylor para duas variáveis:

$$f(x + h, y + k) \approx f(x, y) + hf_x(x, y) + kf_y(x, y) +$$
  
  $+ \frac{h^2}{2}f_{xx}(x, y) + hkf_{xy}(x, y) + \frac{k^2}{2}f_{yy}(x, y)$ 

Usando h = k para simplificar:

$$f(x+h,y+h) = f + hf_x + hf_y + \frac{h^2}{2}f_{xx} + h^2f_{xy} + \frac{h^2}{2}f_{yy} + \mathcal{O}(h^3),$$

$$f(x+h,y-h) = f + hf_x - hf_y + \frac{h^2}{2}f_{xx} - h^2f_{xy} + \frac{h^2}{2}f_{yy} + \mathcal{O}(h^3),$$

$$f(x-h,y+h) = f - hf_x + hf_y + \frac{h^2}{2}f_{xx} - h^2f_{xy} + \frac{h^2}{2}f_{yy} + \mathcal{O}(h^3),$$

$$f(x-h,y-h) = f - hf_x - hf_y + \frac{h^2}{2}f_{xx} + h^2f_{xy} + \frac{h^2}{2}f_{yy} + \mathcal{O}(h^3).$$

Agora, considerando a seguinte operação com as expansões de Taylor:

$$f(x + h, y + h) - f(x + h, y - h) - f(x - h, y + h) + f(x - h, y - h)$$

Substituindo as expansões na expressão, todos os termos em f,  $f_x$ ,  $f_y$ ,  $f_{xx}$ ,  $f_{yy}$  se cancelam, sobrando:

$$f(x+h,y+h) - f(x+h,y-h) - f(x-h,y+h) + f(x-h,y-h)$$
  
=  $4h^2 f_{xy}(x,y) + \mathcal{O}(h^4)$ .

Por fim, isolando  $f_{xy}$ , obtemos a fórmula da derivada mista:

$$f_{xy}(x,y) \approx \frac{f(x+h,y+h) - f(x+h,y-h) - f(x-h,y+h) + f(x-h,y-h)}{4h^2}$$

### Resumo – fórmulas para o método de Taylor

#### Atualizações de Taylor para o PVI y' = f(x, y)

Ordem 1 (Euler): 
$$y_{n+1} = y_n + h f_n$$
  
Ordem 2:  $y_{n+1} = y_n + h f_n + \frac{h^2}{2} f'_n$   
Ordem 3:  $y_{n+1} = y_n + h f_n + \frac{h^2}{2} f'_n + \frac{h^3}{6} f''_n$   
onde  $f_n = f(x_n, y_n)$ ,  $f'_n = f'(x_n, y_n)$  e  $f''_n = f''(x_n, y_n)$ .

### Exemplo 1

$$\begin{cases} y' = y, & x \in [0, 1] \\ y(0) = 1 \end{cases}$$

Solução exata:  $y(x) = e^x$ .

Para 
$$f(x,y)=y$$
 temos  $f_x=0$ ,  $f_y=1$ , logo  $f'=y$ ,  $f''=y$  e Taylor-2:  $y_{n+1}=y_n\Big(1+h+\frac{h^2}{2}\Big),$ 

Taylor-3: 
$$y_{n+1} = y_n \left( 1 + h + \frac{h^2}{2} + \frac{h^3}{6} \right)$$
.

### Tabela de resultados — Exemplo 1 (h = 0.2)

| X   | Taylor-2 | Taylor-3 | Exata    | erro T2  | erro  T3 |
|-----|----------|----------|----------|----------|----------|
| 0.0 | 1.000000 | 1.000000 | 1.000000 | 0.000000 | 0.000000 |
| 0.2 | 1.220000 | 1.221333 | 1.221403 | 0.001403 | 0.000069 |
| 0.4 | 1.488400 | 1.491655 | 1.491825 | 0.003425 | 0.000170 |
| 0.6 | 1.815848 | 1.821808 | 1.822119 | 0.006271 | 0.000311 |
| 8.0 | 2.215335 | 2.225035 | 2.225541 | 0.010206 | 0.000506 |
| 1.0 | 2.702708 | 2.717509 | 2.718282 | 0.015574 | 0.000772 |

Tabela: Exemplo 1: y' = y, y(0) = 1 com h = 0,2.

### Resultados — Exemplo 1 (h = 0.2)



### Exemplo 2

$$\begin{cases} y' = y + x, & x \in [0, 1] \\ y(0) = 1 \end{cases}$$

**Solução exata:**  $y(x) = 2e^{x} - x - 1$ .

Aqui f(x,y)=y+x, logo  $f_x=1$ ,  $f_y=1$  e (com segundas parciais nulas)

$$f' = f_x + f_y f = 1 + (y + x),$$
  $f'' = f_x f_y + f_y^2 f = 1 + (y + x).$ 

Taylor-2: 
$$y_{n+1} = y_n + hf_n + \frac{h^2}{2}f'_n$$
,  
Taylor-3:  $y_{n+1} = y_n + hf_n + \frac{h^2}{2}f'_n + \frac{h^3}{6}f''_n$ .

# Tabela de resultados — Exemplo 2 (h = 0.2)

| X   | Taylor-2 | Taylor-3 | Exata    | erro T2  | erro  T3 |
|-----|----------|----------|----------|----------|----------|
| 0.0 | 1.000000 | 1.000000 | 1.000000 | 0.000000 | 0.000000 |
| 0.2 | 1.220000 | 1.221333 | 1.221403 | 0.001403 | 0.000069 |
| 0.4 | 1.488400 | 1.491655 | 1.491825 | 0.003425 | 0.000170 |
| 0.6 | 1.815848 | 1.821808 | 1.822119 | 0.006271 | 0.000311 |
| 8.0 | 2.215335 | 2.225035 | 2.225541 | 0.010206 | 0.000506 |
| 1.0 | 2.702708 | 2.717509 | 2.718282 | 0.015574 | 0.000772 |

Tabela: Exemplo 2: y' = y + x, y(0) = 1 com h = 0,2.

# Resultados — Exemplo 2 (h = 0.2)



### Implementação de um Código Genérico

Iniciaremos agora a implementação de um código genérico para os métodos de Taylor de ordem 1, 2 e 3.

Nosso objetivo é que o código obtenha soluções pelos métodos apenas pela inserção da EDO e as condições do PVI, sem necessidade de pré-tratamento algébrico. Para Taylor-2 e Taylor-3, as derivadas  $f_x$ ,  $f_y$ ,  $f_{xx}$ ,  $f_{yy}$ ,  $f_{yy}$  podem ser aproximadas numericamente por diferenças finitas centradas.

**Tarefa inicial:** adapte o código do método de Taylor da aula anterior (PVI\_Aula4\_Exercício\_2) para incluir Taylor-2 com  $f_x$ ,  $f_y$  avaliados numericamente, pelo método de diferenças finitas.

#### Atividade em Sala

Utilizando o código adaptado e o PVI

$$\left\{ egin{array}{ll} y' = sen(x), & x \in [0,10] \ y(0) = -1 \end{array} 
ight. ext{ (solução exata: } y(x) = -\cos x) \end{array}$$

- **1** Plote a solução para h = 0.5 e h = 0.125 usando Taylor-2 com derivadas analíticas e numéricas.
- Plote os erros absolutos de Taylor-2 (analítico vs. numérico) para os mesmos h.
- Analise a relação custo-benefício de usar derivadas numéricas por diferenças finitas em vez de derivadas analíticas. (O ganho de não derivar analiticamente compensa o erro adicional das aproximações numéricas de f', f"?)

#### **Tarefa**

Faça um código genérico (qualquer PVI) com Taylor-1/2/3 aproximando  $f_x$ ,  $f_y$ ,  $f_{xx}$ ,  $f_{yy}$  por diferenças finitas. E, resolva:

$$\left\{\begin{array}{ll} y'=4x\sqrt{y}, & x\in[0,2]\\ y(0)=1 \end{array}\right. \quad \text{(solução exata: } y(x)=(1+x^2)^2\text{)}$$

- Plote a solução analítica e as numéricas (três métodos) para h = 0.2, 0.1, 0.05.
- Plote os erros absolutos dos três métodos para cada h.
   (Poste seu código junto!)

### Tarefa (continuação)

Substitua o PVI e repita:

$$\begin{cases} y' = \frac{sen(x)}{y}, & x \in [0, \pi] \\ y(0) = 1 \end{cases}$$
 (solução exata:  $y(x) = \sqrt{3 - 2\cos x}$ )

- Plote a solução analítica e as numéricas (três métodos) para  $h=\pi/5,\ \pi/10,\ \pi/20.$
- Plote os erros absolutos dos três métodos para cada h.