

On Commonsense Domains within the Winograd Schema Challenge

Aneta Koleva Supervisor: Emmanuelle-Anna Dietz

Commonsense Reasoning in Computers

Levesque (2011) proposes a new test for assessing computer intelligence that requires the use of commonsense reasoning.

- S: The trophy does not fit into the brown suitcase because it is too [small/large].
- Q: What is too [small/large]?
- A: The suitcase/the trophy.

Add (least necessary) background knowledge and apply to reasoning algorithm.

Winograd Schema Challenge (WSC)

► Structure of a Winograd Schema:

Sentence containing two nouns	trophy, suitcase
One ambiguous pronoun	it
A special word	small/large
Question about the referent of the pronoun	What is too [small/large]
Two possible answers	The suitcase/the trophy

- ► Characteristics:
 - Easy to answer for an adult English speaker.
 - ► Always contains special word.
 - ► Google-proof statistical methods over large text corpora should not be able to resolve a WS.

Machine-Learning vs Knowledge-Based Approaches

	PDPs	WSC	WSC*		
Technique	Size Correct	Size Correct	Size Correct	Remarks	
					Supervised ranking NA
SVM model [6]	147 (147 (14/ (205 - 73%	-no evaluation on WSC dataset
Classification task	NA	282 - 100%	282 - 30%	-first to use substitution of the	
with NN [3]		157 - 56%	177 - 63%	pronoun with the antecedents	
Knowledge Enhanced	60-100%	NA	NA	-best results in the 2016	
Embeddings (KEE) [4]	40 - 66.7%	5.7%		WSC competition	
Google's language models [10]	60-100% 42 - 70%	273 - 100% 173 - 63.7%	NA	-no reasoning involved in the	
				discovery of the correct answer	
				-state-of-the-art for PDPs	
OpenAl language models [5]	NA	273 - 100% 193 - 70.70%	NA	-current state-of-the-art for WSC	
				-requires a lot of data for training	
				-results are not reproducible	
Graphs with Relevance theory [8]	NA	4 - 2.6% 4 - 100%	NA	-manual construction of graphs	
				-first representation of WS	
				as dependency graph	
2 identified categories [9]	NA	71 -25% 49 - 69%	NA	-first attempt of identifying	
				commonsense knowledge types	
				-developed the KParser	
Semantic relations	NA	100 - 34%	138 - 14% 111 - 80%	-provided Reasoning Algorithm	
		100 - 100%		-identified 12 commonsense types	
				which capture the entire WSC	
Knowledge hunting framework [2]	NA	273 - 100% 119 - 43.5%	NA	-refined query generation	
				-developed an algorithm for	
				scoring the retrieved sentences	

^{*}Additional dataset with 943 WS provided in [7].

References

- [1] C. Baral A. Sharma. Commonsense knowledge types identification and reasoning for the winograd schema challenge, 2018.
- [2] A. Emami, N. De La Cruz, A. Trischler, K. Suleman, and J. Chi Kit Cheung. A knowledge hunting framework for common sense reasoning. In *Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing, Brussels, Belgium, October 31 November 4, 2018*, pages 1949–1958, 2018.
 [3] Opitz J. and Frank A. Addressing the winograd schema challenge as a sequence ranking task. In *Proceedings of the First International Workshop on Language*
- Cognition and Computational Models, pages 41–52. Association for Computational Linguistics, 2018.
- [4] Q. Liu, H. Jiang, Z. Ling, X. Zhu, S. Wei, and Y. Hu. Combing context and commonsense knowledge through neural networks for solving winograd schema problems. 2016.
- A. Radford, J. Wu, R. Child, D. Luan, D. Amodei, and I. Sutskever. Language models are unsupervised multitask learners, 2019.
- [6] A. Rahman and V. Ng. Resolving complex cases of definite pronouns: The winograd schema challenge. In *Proceedings of the 2012 Joint Conference on Empirical Methods in Natural Language Processing and Computational Natural Language Learning, EMNLP-CoNLL 2012, July 12-14, 2012, Jeju Island, Korea,* pages 777–789, 2012.
- [7] A. Rahman and V. Ng. Resolving complex cases of definite pronouns: The winograd schema challenge. In *Proceedings of the 2012 Joint Conference on Empirical Methods in Natural Language Processing and Computational Natural Language Learning, EMNLP-CoNLL 2012, July 12-14, 2012, Jeju Island, Korea,* pages 777–789, 2012.
- [8] P. Schüller. Tackling winograd schemas by formalizing relevance theory in knowledge graphs. In Principles of Knowledge Representation and Reasoning: Proceedings of the Fourteenth International Conference, KR 2014, Vienna, Austria, July 20-24, 2014, 2014.
- [9] A. Sharma, Nguyen Ha Vo, Somak Aditya, and Chitta Baral. Towards addressing the winograd schema challenge building and using a semantic parser and a knowledge hunting module. In *Proceedings of the Twenty-Fourth International Joint Conference on Artificial Intelligence, IJCAI 2015, Buenos Aires, Argentina, July 25-31, 2015*, pages 1319–1325, 2015.
- July 25-31, 2015, pages 1319–1325, 2015.

 [10] Q. V. Le T. H. Trinh. A simple method for commonsense reasoning. 2018.

Knowledge Types Identification and Reasoning (Sharma and Baral, 2018)

- ► Identified 12 knowledge types which cover entire WSC dataset.
- Categorization based on the structure of the Winograd sentence.
- ▶ 10 knowledge types based on interaction between entities and actions.
- ► Provided a logical reasoning algorithm in ASP.
- \blacktriangleright Evaluated on 100 problems from WSC and achieved 100% accuracy.

Extracted knowledge: "small y prevents y fits".

Knowledge type "Property prevents Action".

%entity y has a trait small
has_k(small,is_trait_of,y).

%having trait small prevents the entity to fit another entity 3
has_k(small,prevents,fits).

%entity y is the recipient of the action fit
has_k(fits,recipient,y).

► Rule 4 has no effect in the reasoning procedure!

The trophy doesn't fit into the brown suitcase because it's too small.

Reasoning algorithm

Change of the formalization of the background knowledge such that it has effect in the reasoning procedure.

```
%entity y is small if we know it could not fit another entity 1
has_k(small,is_trait_of,y) :- has_k(fit, recipient, y), 2
not has_k(fit, modifier, could). 3
%entity y should fit another entity 4
has_k(fit, recipient,y). 5
```

- ► Rule 1 has effect in the reasoning procedure!
- In rule 5, switching **recipient** with **agent** leads to no answer!

Categorization of Winograd Schemas

- ► Inductively analyzed the WSC dataset and identified 6 categories.
- ► Categorization based on the content of the Winograd sentence.
- Two annotators annotated the entire WSC corpus with these categories.

Calculated Cohen's kappa - measure for inter-rater agreement $\kappa=0.66$

- Category

 1. Physical

 S: John couldn't see the stage with Billy in front of him because he is so [short/tall].

 Q: Who is so [short/tall]?

 S: Frank felt [vindicated/crushed] when his longtime rival Bill revealed that he was the winner of the competition.

 Q: Who was the winner of the competition?

 S: Joan made sure to thank Susan for all the help she had [given/received].
- 3. Interactions

 S: Joan made sure to thank Susan for all the help she had [given/received].

 Q: Who had [given/received] help?

 4. Comparison

 S: Joe's uncle can still beat him at tennis, even though he is 30 years [older/younger].

 Q: Who is [older/younger]?

 5. Causal

 S: Pete envies Martin [because/although] he is very successful.

 Q: Who is very successful?

 6. Multiple knowledge

 S: Sam and Amy are passionately in love, but Amy's parents are unhappy about it,

Conclusions and Outlook

► Most knowledge-based approaches, so far, have concentrated on the semantic structure of the WS sentence.

because they are [snobs/fifteen].

Q: Who are [snobs/fifteen]?

- None have specified domain specific categories, i.e., the information about the relation between entities and their properties within a certain domain.
- ► How to identify the most necessary and the least possible knowledge for solving a WS?
- An approach, where knowledge is provided only 'by demand' might be more efficient and adequate.