```
install.packages("tidyverse")
library(tidyverse)
library(dplyr)
library(ggplot2)
food_data <- read.csv("Food_Texture_Data.csv")</pre>
```

```
# Using View() function to preview the data frame
View(food_data)
```

```
# summary() or glimpse() any function can be used in this case
summary(food data)
    Χ
                    Oil Density Crispy Fracture
Length: 50 Min. :13.7 Min. :2570 Min. : 7.00 Min. : 9.
00
Class: character 1st Qu.:16.3 1st Qu.:2772 1st Qu.:10.00 1st Qu.:17.
\cap \cap
Mode :character Median :16.9 Median :2868 Median :12.00 Median :21.
00
                Mean :17.2 Mean :2858 Mean :11.52 Mean :20.
86
                3rd Qu.:18.1 3rd Qu.:2945 3rd Qu.:13.00 3rd Qu.:25.
00
               Max. :21.2 Max. :3125 Max. :15.00 Max. :33.
00
  Hardness
Min. : 63.0
1st Qu.:107.2
```

Median: 126.0
Mean: 128.2
3rd Qu::143.8

Max. :192.0

Hide

Using nrow() and ncol() function to get the number of rows and columns
nrow(food_data)

[1] 50

Hide

ncol(food_data)

[1] 6

Hide

Using colnames() function to get the variable names
colnames(food_data)
[1] "X" "Oil" "Density" "Crispy" "Fracture" "Hardness"

Hide

We use head() function to get first few rows
head(food data,5)

	X <chr></chr>	Oil <dbl></dbl>	Density <int></int>	Crispy <int></int>	Fracture <int></int>	Hardness <int></int>
1	B110	16.5	2955	10	23	97
2	B136	17.7	2660	14	9	139
3	B171	16.2	2870	12	17	143
4	B192	16.7	2920	10	31	95
5	B225	16.3	2975	11	26	143

5 rows

Hide

Here we use mutate() function to create a column and store it in another variable

food_data_01 <- food_data %>% mutate(Price=Density/(Oil+Crispy+Fracture+Hardn
ess))

head(food data 01)

	X <chr></chr>	Oil <dbl></dbl>	Density <int></int>	Crispy <int></int>	Fracture <int></int>	Hardness <int></int>	Price <dbl></dbl>
1	B110	16.5	2955	10	23	97	20.17065
2	B136	17.7	2660	14	9	139	14.80245
3	B171	16.2	2870	12	17	143	15.24973
4	B192	16.7	2920	10	31	95	19.12246
5	B225	16.3	2975	11	26	143	15.15537
6	B237	19.1	2790	13	16	189	11.76719

6 rows

Hide

 $\mbox{\#}$ Here we rename the column Oil to Oil Percentage and store it in a data fram e

food_data_02 <- food_data_01 %>% rename(Oil_Percentage=Oil,Crispyness=Crispy,
Price in dollar=Price,Product=X)

head(food data 02)

	Product <chr></chr>	Oil_Percentage <dbl></dbl>	Density <int></int>	Crispyness <int></int>	Fracture <int></int>	Hardness <int></int>	Price_in_dollar <dbl></dbl>
1	B110	16.5	2955	10	23	97	20.17065
2	B136	17.7	2660	14	9	139	14.80245
3	B171	16.2	2870	12	17	143	15.24973
4	B192	16.7	2920	10	31	95	19.12246
5	B225	16.3	2975	11	26	143	15.15537
6	B237	19.1	2790	13	16	189	11.76719

6 rows

Hide

Here we use mutate() function
food_data_03 <- food_data_02 %>% mutate(Price_in_Rs= 80*Price_in_dollar)
head(food_data_03)

	Product <chr></chr>	Oil_Percentage <dbl></dbl>	. •			Hardness <int></int>	Price_in_dollar <dbl></dbl>	Price_in_Rs <dbl></dbl>
1	B110	16.5	2955	10	23	97	20.17065	1613.6519
2	B136	17.7	2660	14	9	139	14.80245	1184.1959
3	B171	16.2	2870	12	17	143	15.24973	1219.9787

Product <chr></chr>	_ ~	Density <int></int>			Hardness <int></int>	$\begin{array}{c} \textbf{Price_in_dollar} \\ < \!\!\! \texttt{dbl} \!\!\! > \end{array}$	Price_in_Rs <dbl></dbl>
4 B192	16.7	2920	10	31	95	19.12246	1529.7970
5 B225	16.3	2975	11	26	143	15.15537	1212.4300
6 B237	19.1	2790	13	16	189	11.76719	941.3749

Hide

6 rows

```
# We use summarize() function to calculate this values
food_data_03 %>% summarize(min(Oil_Percentage), max(Oil_Percentage), mean(Oil_Percentage))
```

Hide

```
# We use summarize() function to calculate this values
food_data_03 %>% summarize(min(Density), max(Density), mean(Density))
```

Hide

```
# We use summarize() function to calculate this values
food_data_03 %>% summarize(min(Crispyness), max(Crispyness), mean(Crispyness))
```

Hide

```
# We use summarize() function to calculate this values
food_data_03 %>% summarize(min(Fracture), max(Fracture), mean(Fracture))
```

Hide

```
# We use summarize() function to calculate this values
food_data_03 %>% summarize(min(Hardness), max(Hardness), mean(Hardness))
```

Hide

```
# We use summarize() function to calculate this values
food_data_03 %>% summarize(min(Price_in_Rs), max(Price_in_Rs), mean(Price_in_Rs)))
```

Hide

```
View(food_data_03)
```

```
# Find the product that has lowest Price_in_Rs
food_data_03 %>% filter(Price_in_Rs == min(Price_in_Rs)) %>% select(Product)
```

Product

<chr>

B237

1 row

Hide

```
# Dot plot of Density vs Price_in_Rs
p=ggplot(data=food_data_03)+
    geom_point(mapping = aes(x=Density,y=Price_in_Rs),color='red',alpha=0.8,siz e=2)+
    labs(title='Distribution of Price(Rs) along Density',x='Density',y='Price I n Rupees')
p
```

Distribution of Price(Rs) along Density


```
# Dot plot of Oil_Percentage vs Price_in_Rs
pl=ggplot(data=food_data_03)+
   geom_point(mapping = aes(x=Oil_Percentage,y=Price_in_Rs),color='red',alpha=
0.8,size=2)+
   labs(title='Distribution of Price(Rs) along Oil_Percentage',x='Oil Percentage',y='Price In Rupees')
pl
```

Distribution of Price(Rs) along Oil_Percentage


```
# Dot plot of Crispness vs Price_in_Rs
p2=ggplot(data=food_data_03)+
    geom_point(mapping = aes(x=Crispyness,y=Price_in_Rs),color='red',alpha=0.8,
size=2)+
    labs(title='Distribution of Price(Rs) along Crispyness',x='Crispyness',y='Price In Rupees')
p2
```

Distribution of Price(Rs) along Crispyness


```
# Dot plot of Fracture vs Price_in_Rs
p3=ggplot(data=food_data_03)+
    geom_point(mapping = aes(x=Fracture,y=Price_in_Rs),color='red',alpha=0.8,si
ze=2)+
    labs(title='Distribution of Price(Rs) along Fracture',x='Fracture',y='Price
In Rupees')
p3
```

Distribution of Price(Rs) along Fracture


```
# Dot plot of Hardness vs Price_in_Rs
p4=ggplot(data=food_data_03)+
    geom_point(mapping = aes(x=Hardness,y=Price_in_Rs),color='red',alpha=0.8,si
ze=2)+
    labs(title='Distribution of Price(Rs) along Hardness',x='Hardness',y='Price
In Rupees')
p4
```


