Machine learning MSc BioInfo 2013

G. R.

October 15, 2013

Send the answers as a .pdf file + the Progol .pl file to richard@irit.fr. All documents and notes are allowed.

1. **(4marks)** Let us consider the table below with simple interpretation: each line is a web surfer and 1 2 3 means that, during a session, the corresponding user clicked on page1, page2 and page3.

Compute support, confidence and lift for the following association rules:

 $3 \leftarrow 2 \quad 1$ $2 \leftarrow 1 \quad 3$ $1 \leftarrow 2 \quad 3$

- 2. (4marks) In \mathbb{R}^2 , we consider the following set \mathcal{C} of concepts: the disks i.e. the circles and their interior. Show that $VC_{dim}(\mathcal{C}) \geq 3$. Could you say more and compute the exact value of $VC_{dim}(\mathcal{C})$?
- 3. (4marks) Back to the algorithm studied during the lecture to learn rectangles in \mathbb{R}^2 . Compute the minimal number of examples needed to get a precision of 10^{-2} with a confidence of 10^{-2} . Justify your answer.
- 4. **(4marks)** Write a Progol training set to learn a list permutation programme. We need positive examples, negative examples, mode declaration, type declaration and background knowledge.

- 5. (4marks) Binary Decision Trees (BDT) are powerful and effective tools when it comes to classify binary vectors. We want to estimate the VC_{dim} of the set of binary decision trees of a given height k. We assume that:
 - The representation space X is a cartesian product of dimension n, i.e. we have n attributes to represent our examples.
 - We consider only binary decision trees. i.e. a node has 2 children or is a leave (no child).
 - We consider 2 classes denoted + et -. Our binary decision trees classify an element of X as + or -.
 - (a) We denote D_k the set of BDT over X of height k and C_k its cardinality. What is the value of C_0 ? Show that

$$C_{k+1} = n \times C_k \times C_k$$

.

- (b) We denote $L_k = log_2(C_k)$. Extract from the previous question the relationship between L_{k+1} and L_k . Why are we interested in L_k ?
- (c) Show by induction that $L_k = (2^k 1)(1 + \log_2(n)) + 1$. Provide a conclusion.