Rachunek prawdopodobieństwa i statystyka

Lista zadań nr 4. Tydzień rozpoczynający się 28. marca

Zadania

- 1. Dla funkcji $f(x,y) = 0.5 \cdot (x+y) \exp\{-(x+y)\}, \text{ gdzie } x > 0, y > 0$
 - (a) Sprawdzić, czy zmienne losowe X, Y są niezależne.
 - (b) Obliczyć momenty m_{10}, m_{01} .
- 2. Dana jest funkcja $f(x,y) = C \exp\left\{-\frac{1}{2}(x^2 + 2xy + 5y^2)\right\}$ dla $(x,y) \in \mathbb{R}^2$.
 - (a) Wyznaczyć stała C.
 - (b) Wyznaczyć rozkłady brzegowe.
- 3. Czy można tak dobrać stałą C, aby funkcja $f_{XY}(x,y) = Cxy + x + y$, dla $0 \le x \le 3$, $1 \le y \le 2$, była gęstością dwuwymiarowej zmiennej losowej?
- 4. Dana jest funkcja $f_{XY}(x,y) = -xy + x \, dla \, 0 \leqslant x \leqslant 2, \, 0 \leqslant y \leqslant 1$. Sprawdzić, czy zmienne X i Y są niezależne oraz obliczyć ppb $P(1 \leqslant X \leqslant 3, \, 0 \leqslant Y \leqslant 0.5)$.
- 5. Załóżmy, że $X \sim U[0,1]$ i niech $Y = X^n$. Udowodnić, że $f_Y(y) = \frac{y^{1/n-1}}{n}$, dla $0 \le y \le 1$.
- 6. Niech $X \sim \text{Poisson}(\lambda)$. Udowodnić, że $V(X) = \lambda$.
- 7. Niech X będzie ciągłą zmienną losową i niech $Y = F_X(X)$. Udowodnić, że $Y \sim U[0;1]$.
- 8. Niech $Y=X^2$ (X określona na $\mathbb R$). Wykazać, że

$$f_Y(y) = \frac{f_X(\sqrt{y}) + f_X(-\sqrt{y})}{2\sqrt{y}}, \text{ dla } y > 0.$$

- 9. Zmienna losowa (X,Y) ma gęstość $f(x,y)=1/\pi$, dla $x^2+y^2\leqslant 1$. Obliczyć wartości $\mathrm{E} X,\mathrm{E} Y,\mathrm{E} (X\cdot Y)$. Czy zmienne X,Y są niezależne?
- 10. Niech $X \sim U[a;b]$. Obliczyć wartości $\mathrm{E}(X), \mathrm{V}(X)$.
- 11. Niech X podlega standardowemu rozkładowi Cauchy'ego, $f_X(x) = \frac{1}{\pi(1+x^2)}$, $x \in \mathbb{R}$. Udowodnić, że $Y = \frac{1}{X}$ ma również standardowy rozkład Cauchy'ego.

Witold Karczewski