

Perfect Wireless Experience 完美无线体验

FIBOCOM L610-CN系列硬件用户手册

文档版本: V1.0.0

更新日期: 2019-11-21

适用型号

序号	产品型号	说明
1	L610-CN-00	支持 MAIN_ANT、WIFI_ANT

版权声明

版权所有©2019 深圳市广和通无线股份有限公司。保留一切权利。

非经本公司书面许可,任何单位和个人不得擅自摘抄、复制本文档内容的部分或全部,并不得以任何形式 传播。

注意

由于产品版本升级或其他原因,本文档内容会不定期进行更新。除非另有约定,本文档仅作为使用指导,本文档中的所有陈述、信息和建议不构成任何明示或暗示的担保。

商标申明

为深圳市广和通无线股份有限公司的注册商标,由所有人拥有。

版本记录

文档版本	编写人	主审人	批准人	更新日期	说明
V1.0.0	王元广	汪博	刘科	2019-11-21	初始版本

目录

1	前言	i		6
	1.1	说印	明	6
	1.2	安全	全须知	6
	1.3	引月	甲标准	7
	1.4	相	关文档	7
2	产品	品概述		8
	2.1	产品	品简介	8
	2.2	产品	品规格	8
	2.3	硬值	件框图	9
3	应月	用接口		11
	3.1	LC	C 接口	, 11
		3.1.1	管脚分布	11
		3.1.2	管脚定义	12
	3.2	电流	原	17
		3.2.1	电源供电	17
		3.2.2	1.8V 输出	18
		3.2.3	功耗	18
	3.3	控制	制信号	20
		3.3.1	模块开机	20
		3. 3.	. 1. 1 开机电路参考	20
		3. 3.	. 1. 2 自动开机	21
		3.3.2	模块关机	21
		3.3.3	模块复位	21
		3.3.	3.1 复位电路	21
		3.3.	.3.2 RESET_N 控制时序	22
	3.4	US	B 接口	23
		3.4.1	USB 接口定义	23
	3.5	US	ilM 接口	23
		3.5.1	USIM 管脚	23
		3.5.2	USIM 接口电路	24
		3.5.	.2.1 带检测信号 SIM 卡座	24
		3.5.	.2.2 不带检测信号 SIM 卡座	25
		3.5.3	USIM 热插拔	26

	3.	5.4	USIM 设计要求	26
	3.6	UAR	T接口	27
	3.	6.1	UART 接口定义	27
	3.	6.2	UART 接口应用	27
	3.7	状态	指示	29
	3.	7.1	NET_MODE 信号	29
	3.8	低功	耗模式	30
	3.	8.1	飞行模式	30
	3.	8.2	睡眠模式	30
		3.8.2.	1 AP 与模块只有 UART 口数据通信	30
		3.8.2.	2 AP 与模块有 USB 端口数据通信	30
		3.8.2.	3 模块休眠唤醒说明:	30
	3.9	ADC	功能	31
4	射频技	姜口		32
	4.1)-CN 工作频率	
	4.2	L610)-CN 的 RF 输出功率	32
	4.3	L610)-CN 系列模块的 RF 接收灵敏度	33
	4.4	射频	PCB 设计	33
	4.	4.1	天线 RF 连接器	33
	4.5	天线	设计	34
5	电气料	寺性		36
	5.1	极限	电压范围	36
	5.2	环境	温度范围	36
	5.3	接口	工作状态电气特性	36
	5.4	环境	可靠性要求	37
	5.5	ESD	特性	37
6	结构规	见格		38
	6.1	产品	外观	38
	6.2	结构	尺寸	39
	6.3	SMT	· 贴片	39

1 前言

1.1 说明

本文阐述了 L610-CN 系列无线模块的电气特性、RF 性能、结构尺寸以及应用环境等方面的信息。在本文档和其他相关文档的帮助下,应用开发者可快速理解 L610-CN 系列模块的硬件功能并进行产品的硬件开发。

1.2 安全须知

通过遵循以下安全原则,可确保个人安全并有助于保护产品和工作环境免遭潜在损坏。产品制造商需要将如下的安全须知传达给终端用户。若未遵守这些安全规则,广和通通信不会对用户错误使用而产生的后果承担任何责任。

道路行驶安全第一! 当你开车时,请勿使用手持移动终端设备,即使其有免提功能。 请先停车,再打电话!

登机前请关闭移动终端设备。移动终端的无线功能在飞机上禁止开启用以防止对飞 机通讯系统的干扰。忽略该提示项可能会导致飞行安全,甚至触犯法律。

当在医院或健康看护场所时,请注意是否有移动终端设备使用限制。射频干扰可能 会导致医疗设备运行失常,因此可能需要关闭移动终端设备。

移动终端设备并不保障任何情况下都能进行有效连接,例如在移动终端设备没有话费或(U)SIM 无效时。当你在紧急情况下遇见以上情况,请记住使用紧急呼叫,同时保证您的设备开机并且处于信号强度足够的区域。

您的移动终端设备在开机时会接收和发射射频信号。当靠近电视、收音机、电脑或者其他电子设备时都会产生射频干扰。

请将移动终端设备远离易燃气体。当靠近加油站、油库、化工厂或爆炸作业场所时,请关闭移动终端设备。在任何有潜在爆炸危险场所操作电子设备都有安全隐患。

1.3 引用标准

本产品在设计时参考以下标准:

- 3GPP TS 51.010-1 V10.5.0: Mobile Statl/On (MS) conformance specificatl/On; Part 1: Conformance specificatl/On
- 3GPP TS 34.121-1 V10.8.0: User Equipment (UE) conformance specificatl/On; Radl/O transmissl/On and receptl/On (FDD); Part 1: Conformance specificatl/On
- 3GPP TS 34.122 V10.1.0: Technical Specificatl/On Group Radl/O Access Network; Radl/O transmissl/On and receptl/On (TDD)
- 3GPP TS 36.521-1 V10.6.0: User Equipment (UE) conformance specificatl/On; Radl/O transmissl/On and receptl/On; Part 1: Conformance testing
- 3GPP TS 21.111 V10.0.0: USIM and IC card requirements
- 3GPP TS 51.011 V4.15.0: Specificatl/On of the Subscriber Identity Module -Mobile Equipment (SIM-ME) interface
- 3GPP TS 31.102 V10.11.0: Characteristics of the Universal Subscriber Identity Module (USIM) applicatl/On
- 3GPP TS 31.11 V10.16.0: Universal Subscriber Identity Module (USIM) Applicatl/On Toolkit(USAT)
- 3GPP TS 36.124 V10.3.0: Electro Magnetic Compatibility (EMC) requirements for mobile terminals and ancillary equipment
- 3GPP TS 27.007 V10.0.8: AT command set for User Equipment (UE)
- 3GPP TS 27.005 V10.0.1: Use of Data Terminal Equipment Data Circuit terminating Equipment (DTE - DCE) interface for Short Message Service (SMS) and Cell Broadcast Service (CBS)

1.4 相关文档

- FIBOCOM_EVK-GT8230-NL 用户手册
- FIBOCOM_ADP-L610 开发板使用说明
- FIBOCOM_L610 LCC SMT 应用设计说明
- FIBOCOM RF Antenna 应用设计说明
- FIBOCOM L610-CN AT Commands User Manual

2 产品概述

2.1 产品简介

L610-CN 系列模块是款适用于 TDD-LTE/FDD-LTE/GSM 多种网络制式、多频段的宽带无线终端产品。

2.2 产品规格

规格						
	LTE FDD: Band 1,3,5,8					
工作频段	LTE TDD: Band 34,39	9,40,41(2555Mhz-2655Mhz)				
	GSM/GPRS/EDGE: 9	000/1800MHz				
	LTE FDD Rel.9	10Mbps DL/5Mbps UL				
	LTE TDD Rel.9	10Mbps DL/5Mbps UL				
数据传输		GPRS:85.6kbps DL/85.6kbps UL(multi-slot class 12)				
	GPRS/EDGE Rel.5	EDGE(E-GPRS):236.8kbps DL/236.8kbps UL				
		(multi-slot class 12)				
电源	3.4V~4.2V(推荐值:	3.8V)				
	正常工作: -30°C~+75°C					
温度	扩展工作: -40°C ~+85°C					
	存储: -45℃ ~+90℃					
	底电流: ≤TBD mA					
功耗	Sleep 模式: ≤TBD mA					
	Idle 模式: <tbd ma<="" td=""></tbd>					
	封装: LCC 80PIN+LGA 64PIN					
物理特性	尺寸: 31.0×28.0×2.35 mm					
	重量: 约 5.5g					
接口	接口					
天线	天线: 主集 x 1					
	USIM 3.0V/1.8V					
功能接口	USB 2.0 x 1					
	系统状态指示					

规格	
	ADC
软件	
协议栈	Embedded TCP/IP and UDP/IP protocol stack
AT 命令	3GPP TS 27.007 and 27.005, and proprietary FIBOCOM AT
固件更新	USB、UART2
语音业务	HR、FR、EFR、AMR、来电显示、呼叫转移、呼叫保持、呼叫等待和多方通话等
短信业务	点对点 MO、MT、小区广播、支持 Text 和 PDU 模式

注意:

当温度超出正常工作温度范围-30℃ ~+75℃ 时,模块的 RF 性能可能略微超出 3GPP 规范要求。

2.3 硬件框图

图 2-2 硬件框图展示了 L610-CN 系列模块的主要硬件功能,包括基带和射频功能。

Baseband 部分包含:

- GSM/UMTS/TD-SCDMA/LTE TDD/LTE FDD controller
- PMIC
- UART, SIM, PCM, I2C, SPI, SDI/O, ADC, KEY

RF 部分包含:

- RF Transceiver
- RF PA
- RF filter
- Antenna

图 2-2 硬件框图

3 应用接口

3.1 LCC 接口

L610-CN 系列模块采用 LCC 封装, 共 144 个管脚。

3.1.1 管脚分布

图 3-1 管脚分布图 (TOP 面透视图)

注意:

"85-->112"为散热管脚,模块内部接地,推荐 PCB 封装保留散热地焊盘,并焊接。

3.1.2 管脚定义

管脚定义如下表所示:

管脚	文如下表所亦: 管脚名	I/O	电平	描述
1	WAKEUP_IN	ı	Vi∟min=-0.3V Vi∟max=0.63V Vi⊣min=1.2V Vi⊣max=2.0V	外部设备唤醒模块
2	AP_READY	I	Vi∟min=-0.3V Vi∟max=0.6V Vi⊢min=1.2V Vi⊢max=2.0V	模块检测 host 是否休眠
3	SLEEP_IND	0	Vi∟min=-0.3V Vi∟max=0.6V Vi⊢min=1.2V Vi⊢max=2.0V	SLEEP_IND
4	W_DISABLE#	I	Vı∟min=-0.3V Vı∟max=0.6V Vıнmin=1.2V Vıнmax=2.0V	模块飞行模式控制
5	NET_MODE	0	Voнmin=1.35V VoLmax=0.45V	模块状态表示
6	NET_STATUS	0	Voнmin=1.35V Volmax=0.45V	
7	VDD_EXT	РО	1.8V	模块数字电平, 1.8V 输出
8	GND	G	-	地
9	GND	G	-	地
10	USIM_GND	G	-	地
11	DBG_RXD	I	Vi∟min=-0.3V Vi∟max=0.6V Viнmin=1.2V Viнmax=2.0V	DEBUG 串口接收
12	DBG_TXD	0	VoLmax=0.45V Voнmin=1.35V	DEBUG 串口发送
13	USIM_PRESENCE	ı	Vi∟min=-0.3V Vi∟max=0.6V Vi⊢min=1.2V Vi⊢max=2.0V	USIM 卡热插拔检测
14	USIM_VDD	РО	For 1.8V USIM: Vmax=1.9V Vmin=1.7V For 3.0V USIM: Vmax=3.05V Vmin=2.7V I/Omax=50mA	USIM 电源

管脚	管脚名	1/0	电平	描述
15	USIM_DATA	I/O	For 1.8V USIM: VILMAX=0.6V VIHMIN=1.2V VOLMAX=0.45V VOHMIN=1.35V For 3.0V USIM: VILMAX=1.0V VIHMIN=1.95V VOLMAX=0.45V VOHMIN=2.55V	USIM 数据信号线
16	USIM_CLK	0	For 1.8V USIM: VoLmax=0.45V VoHmin=1.35V For3.0V USIM: VoLmax=0.45V VoHmin=2.55V	USIM 时钟信号线
17	USIM_RST	0	For 1.8V USIM: VoLmax=0.45V VoHmin=1.35V For 3.0V USIM: VoLmax=0.45V VOHmin=2.55V	USIM 复位信号线
18	NC	-		NC
19	GND	G	-	地
20	RESET_N	I	V _I Hmax=2.0V V _I Hmin=1.3V V _I Lmax=0.5V	模块复位信号,低电平有效
21	PWRKEY	I	V _I Hmax=2.0V V _I Hmin=1.3V V _I Lmax=0.5V	模块开机/关机 低电平有效
22	GND	G	-	地
23	SD_DET	I	-	SD 检测
24	PCM_IN	I	Vi∟min=-0.3V Vi∟max=0.6V Vi⊢min=1.2V Vi⊢max=2.0V	PCM 数据输入
25	PCM_OUT	0	VoLmax=0.45V Voнmin=1.35V	PCM 数据输出
26	PCM_SYNC	I/O	Volmax=0.45V Vohmin=1.35V Vilmin=-0.3V Vilmax=0.6V Vihmin=1.2V Vihmax=2.0V	PCM 数据同步信号
27	PCM_CLK	I/O	Volmax=0.45V Voнmin=1.35V	PCM 时钟

管脚		I/O	电平	描述
,			VILMIN=-0.3V VILMAX=0.6V VIHMIN=1.2V VIHMAX=2.0V	
28	SDC2_DATA_3	I/O		SDC2_DATA_3
29	SDC2_DATA_2	I/O	-	SDC2_DATA_2
30	SDC2_DATA_1	I/O	-	SDC2_DATA_1
31	SDC2_DATA_0	I/O	-	SDC2_DATA_0
32	SDC2_CLK	0	-	SDC2_CLK
33	SDC2_CMD	0	-	SDC2_CMD
34	VDD_SDI/O	РО	-	VDD_SDI/O
35	WIFI_DIV	ı	-	WIFI 天线
36	GND	G	-	地
37	SPI_CS_N	1	-	SPI_CS_N
38	SPI_MOSI	ı	-	SPI_MOSI
39	SPI_MISO	0	-	SPI_MISO
40	SPI_CLK	0		SPI_CLK
41	I2C_SCL	OD	-	I2C 接口时钟信号
42	I2C_SDA	OD	-	I2C 接口数据信号
43	RESERVED	-	-	RESERVED
44	ADC1	1	-	模数转换器接口 1
45	ADC0	1	-	模数转换器接口 0
46	GND	G	-	地
47	NC	-	-	NC
48	GND	G	-	地
49	ANT_MAIN	I/O	-	主集天线
50	GND	G	-	地
51	GND	G	-	地
52	GND	G	-	地
53	GND	G	-	地
54	GND	G	-	地
55	NC	-	-	NC
56	GND	G	-	地
57	VBAT_RF	PI	Vmax=4.2V	射频电源输入(3.4V-4.2V)

管脚	管脚名	1/0	电平	描述
			Vmin=3.4V	
			Vnorm=3.8V	
			Vmax=4.2V	
58	VBAT_RF	PI	Vmin=3.4V	射频电源输入(3.4V-4.2V)
			Vnorm=3.8V Vmax=4.2	
	VDAT DD	D .	Vmax=4.2 Vmin=3.4V	## + META > (0, 11/4, 0)()
59	VBAT_BB	PI	Vnorm=3.8V	基带电源输入(3.4V-4.2V)
			Vmax=4.2	
60	VBAT_BB	PI	Vmin=3.4V	基带电源输入(3.4V-4.2V)
	_		Vnorm=3.8V	
61	STATUS	0	VoHmin=1.35V	Reserved
01	OTATOO		Volmax=0.45V	Reserved
62	RI	0	Volmax=0.45V Vohmin=1.35V	模块输出振铃提示
			Volmax=0.45V	
63	DCD	0	Vонmin=1.35V	模块输出载波检测
			Volmax=0.45V	THE LEAD WAY
64	CTS	0	Voнmin=1.35V	模块清除发送
			Vılmin=-0.3V	
65	RTS	١,	Vilmax=0.6V	DTE 请求发送数据
	KIS		VIHMIN=1.2V VIHMAX=2.0V	
			VILMIN=-0.3V	
			Vılmax=0.6V	
66	DTR	1	V⊮min=1.2V	DTE 准备就绪
			Vıнmax=2.0V	
67	TXD	0	Volmax=0.45V	模块发送数据
67	IND	0	Vohmin=1.35V	快
			Vı∟min=-0.3V Vı∟max=0.6V	
68	RXD	1	VIHMIN=1.2V	模块接收数据
			VIHMax=2.0V	
69	USB_DP	I/O		USB 信号 DP
70	USB_DM	I/O		USB 信号 DM
		., 0	Vmax=5.25V	
71	USB_VBUS	PI	Vnorm=5.0V	USB 插入检测
72	GND	G	-	地
73	NC	-	-	NC
74	SPK_P	0		SPK_P
75	SPK_N	0		SPK_N
76	MIC_P	I		MIC_P
77	GND	G		地

管脚	管脚名	I/O	电平	描述
78	MIC_N	ı		MIC_N
79	KEYIN1	I		KEYIN1
80	KEYIN2	ı		KEYIN2
81	KEYIN3	ı		KEYIN3
82	KEYIN4	ı		KEYIN4
83	KEYIN5	ı		KEYIN5
84	KEYOUT0	ı		KEYOUT0
85-112	GND	G	-	地
113	KEYOUT2	I		KEYOUT2
114	KEYOUT3	ı		KEYOUT3
115	USB_BOOT	ı	-	USB_BOOT
116	RESERVED			RESERVED
117	CLK26M_OUT			CLK26M_OUT
118	NC			NC
119	LCD_FMARK			LCD_FMARK
120	LCD_RSTB			LCD_RSTB
121	SPILCD_SEL			SPILCD_SEL
122	SPILCD_CS			SPILCD_CS
123	SPILCD_CLK			SPILCD_CLK
124	SPILCD_SDC			SPILCD_SDC
125	SPILCD_SI/O			SPILCD_SI/O
126	GPI/O1			GPI/O1
127	PM_EN_WLAN			PM_EN_WLAN
128	NC			NC
129	SD1_DATA3			SD1_DATA3
130	SD1_DATA2			SD1_DATA2
131	SD1_DATA1			SD1_DATA1
132	SD1_DATA0			SD1_DATA0
133	SD1_CLK			SD1_CLK
135	WAKE_WLAN			WAKE_WLAN
136	WLAN_EN			WLAN_EN
137	UART3_RXD			UART3_RXD

管脚	管脚名	1/0	电平	描述
138	UART3_TXD			UART3_TXD
139	BT_EN			BT_EN
140	NC			NC
141	I2C2_SCL			I2C2_SCL
142	I2C2_SDA			I2C2_SDA
143	RFCTL_1			RFCTL_1
144	RFCTL_2			RFCTL_2

注意:

未使用的管脚保持悬浮状态。

85-112 为模块散热焊盘, PCB 封装预留对应地焊盘, 并焊接。

3.2 电源

L610-CN 系列模块电源接口如下表所示:

管脚名	1/0	管脚	描述
VBAT_RF	1	57,58	模块供电,3.4~4.2V,标称值 3.8V
VBAT_BB	I	59,60	模块供电,3.4~4.2V,标称值 3.8V
VDD_EXT	0	7	电压输出,1.8V
GND	-	8,9,19,22,36,46,48,50-54,56,85-112	地

3.2.1 电源供电

L610-CN 系列模块需要通过 VBAT 管脚提供电源供电,电源设计推荐如图 3-2 所示:

A

注意:

后续文档中的 VBAT 包括 VBAT RF, VBAT BB。

电源供电的滤波电容设计如下表:

推荐电容	应用	说明
		减少模块工作时的电源波动,要求采用
		低 ESR 电容
220uF x 2,10uf	 稳压电容	● LDO 或者 DCDC 供电要求不小于
220ur x 2,10ui	· 信压电台	440uF 电容
		● 电池供电可适当降低至 100~
		220uF 电容
1uF,100nF	数字信号噪声	滤除时钟以及数字信号产生的干扰
33pF	700, 850/900 MHz 频段	滤除低频段射频干扰
0.25	1700/1800/1900,2100/2300,2500/2600MHz	海瓜山 岩 婚 玑 纠 婚 工 朴
8.2pF	频段	滤除中/高频段射频干扰

电源供电的稳定可以确保 L610-CN 模块正常的工作,设计时需要特别注意电源的纹波要低于 300mV (线路 ESR<150m Ω) 当模块在 GSM 模式(Burst transmit)工作时最大工作电流可达到 2A,需要确保电源电压不低于 3.3V,否则模块可能掉电关机或重启。电源供电限制如图 3-3 所示:

注意:

建议客户在 VBAT 输入增加 TVS(推荐型号: SMBJ15A),提高产品防浪涌能力。

3.2.2 1.8V 输出

L610-CN 系列模块通过 VDD_EXT 输出 1.8V 电压供模块内部数字电路使用,该电压为模块的逻辑电平电压,可用于指示模块开机,也可用于外部小电流(<80mA)电路应用,如不使用保持悬浮状态。VDD_EXT的逻辑电平定义如下表:

参数	最小值	典型值	最大值	单位
VDD_EXT	1.71	1.8	1.89	٧

3.2.3 功耗

在 3.8V 电源供电的情况下, L610-CN 系列模块的功耗如下表所示:

Parameter	Mode	ConditI/On	Average Typ.Current(mA)
I/Off	Power off	Module power off	TBD
lidle	Idle	Idle	TBD
	0014	Band8 MFRMS=5	TBD
	GSM	Band3 MFRMS=5	TBD
		Band1 Paging cycle #128 frames	TBD
	LTE FDD	Band3 Paging cycle #128 frames	TBD
		Band5 Paging cycle #128 frames	TBD
		Band8 Paging cycle #128 frames	TBD
		Band34 Paging cycle #128 frames	TBD
Isleep	LTE TDD	Band39 Paging cycle #128 frames	TBD
	LIETOD	Band40 Paging cycle #128 frames	TBD
		Band41 Paging cycle #128 frames	TBD
		EGSM900 PCL5	TBD
	GSM	DCS1800 PCL0	TBD
	GPRS	GPRS Data transfer GSM900; PCL=5; 1Rx/4Tx	TBD
		GPRS Data transfer DCS1800; PCL=0; 1Rx/4Tx	TBD
		EDGE Data transfer GSM900; PCL=8; 1Rx/4Tx	TBD
I _{GSM-RMS}	EDGE	EDGE Data transfer DCS1800; PCL=2; 1Rx/4Tx	TBD
		LTE FDD Data transfer Band 1 @+23dBm	TBD
	LTE FDD	LTE FDD Data transfer Band 3 @+23dBm	TBD
		LTE FDD Data transfer Band 5 @+23dBm	TBD
		LTE FDD Data transfer Band 8 @+23dBm	TBD
I _{LTE-RMS}		LTE TDD Data transfer Band 38	TBD
		@+23dBm LTE TDD Data transfer Band 38	TBD
	LTE TDD	@+23dBm LTE TDD Data transfer Band 39	TBD
		@+23dBm LTE TDD Data transfer Band 40	TBD
		@+23dBm LTE TDD Data transfer Band 41 @+23dBm	TBD

3.3 控制信号

L610-CN 系列模块提供 2 路控制信号对模块进行开机/关机和复位操作,管脚定义如下表	L610-CN 系列模块提供 2	2 路控制信号对模块讲行开机/	/关机和复位操作,	管脚定义如下表
---	------------------	-----------------	-----------	---------

管脚名	1/0	管脚	描述
RESET_N	I	20	当模块在工作时,给 RESET 一个 Tst (100ms) 低电平,然后拉高,模块 复位
PWRKEY	I	21	拉低电平开机时,最短低电平持续时间 3s, 拉低电平关机时,最短电平持续时间 2.5s

3.3.1 模块开机

3.3.1.1 开机电路参考

当 L610-CN 系列模块处于关机模式,可以通过拉低 PWRKEY 至少 600ms 使模块开机。推荐使用 OC/OD 驱动电路来控制 PWRKEY 管脚。参考电路如图 3-4 所示:

图 3-4 OC/OD 驱动参考开机电路

另一种控制 PWRKEY 管脚的方式是直接通过一个按钮开关,按钮附近需放置一个 TVS (推荐 ESD9X5VL-2/TR) 用于 ESD 保护,参考电路如图 3-5 所示:

图 3-5 按键开机参考电路

备注

在拉低 PWRKEY 管脚之前,需保证 VBAT 电压稳定。建议从 VBAT 上电到拉低 PWRKEY 管脚之间的时间间隔不少于 30ms。

3. 3. 1. 2自动开机

若需要模块上电自动开机,可将 PWRKEY 管脚直接对地。此种方式模块关机,只能直接断电。

3.3.2 模块关机

模块支持下表三种关机方式:

关机方式	关机方法	适用场景
低电压关机	VBAT 电压过低或者掉电时,模块会	此时模块没有进行正常的关机流程,没有走从基站
似电压大机	关机	注销的流程
硬件关机	拉低 PWRKEY(大于 3.1s),然后释放	正常关机
AT 关机	AT+ CFUN=0	软件关机

- 1.当模块正常工作时,不要立即切断模块电源,以避免损坏模块内部的Flash。强烈建议先通过PWRKEY或者 AT 命令关闭模块后,再断开电源。
- 2.使用 AT 命令关机时,请确保在关机命令执行后 PWRKEY 一直处于高电平状态,否则模块完成关机后,会自动再次开机。

3.3.3 模块复位

L610-CN 系列模块复位方式有两种:硬件复位、AT 命令复位。

复位方式	复位方法
硬件复位	给 RESET_N 一个 Tst(100ms)低电平,然后拉高
AT 命令复位	AT+CFUN=15

3.3.3.1 复位电路

复位参考电路如图 3-8 所示,与 PWRKEY 控制电路类似,客户可使用 OC/OD 驱动电路或按钮控制 RESET_N 管脚。

图 3-6 RESET_N 复位 OC/OD 参考电路

另一种复位控制如图 3-9 所示:

图 3-7 RESET_N 复位按钮参考电路

3.3.3.2 RESET_N 控制时序

图 3-8 Reset 控制时序

RESET_N 是敏感信号,建议在靠近模块端增加去抖电容。PCB layout 时要远离射频干扰并做好包地处理,同时避免在 PCB 边缘及表层走线(避免 ESD 造成模块复位)。

3.4 USB 接口

L610-CN 系列模块支持 USB2.0,兼容 USB High-Speed(480Mbits/s)和 USB Full-Speed(12Mbits/s)。 L610-CN 系列模块 USB 总线的时序和电气特性参考"Universal Serial Bus Specificatl/On 2.0"。

3.4.1 USB 接口定义

管脚名	I/O	管脚.	描述
USB_DM	I/O	70	USB 差分数据总线
USB_DP	I/O	69	USB 差分数据总线
USB_VBUS	PI	71	USB_DET

如需了解更多关于 USB 2.0 规范的信息,请访问 http://www.usb.org/home

⚠ 注意:

由于模块支持 USB 2.0 High-Speed, 因此 USB_DM/DP 差分信号线上的 TVS 管等效电容要求低于 1pF, 推荐使用 0.5pF 容值 TVS;

建议在 USB_DM/DP 差分线各串 0 欧电阻;

USB_DM 和 USB_DP 为高速差分信号线,最高传输速率达到 480Mbits/s,在 PCB Layout 必须严格遵守以下规则:

- USB_DM 和 USB_DP 信号线控制差分阻抗 90Ω;
- USB DM 和 USB DP 信号线要求等长、平行,避免直角走线;
- USB DM 和 USB DP 信号线布线在离地层最近的信号层,走线上下左右包地保护。

3.5 USIM 接口

L610-CN 系列模块支持 USIM 卡接口,支持 1.8V 和 3.0V SIM 卡。

3.5.1 USIM 管脚

USIM 管脚如下表所示:

管脚名	1/0	管脚.	描述
USIM_DATA	I/O	15	USIM/SIM DATA
USIM_CLK	0	16	USIM/SIM Clock Signal
USIM_RESET	0	17	USIM/SIM RESET Signal
USIM_VDD	0	14	USIM/SIM Power
USIM_PRESENCE	I	13	Detect USIM/SIM card for Hot-swap

3.5.2 USIM 接口电路

3.5.2.1 带检测信号 SIM 卡座

USIM/SIM 设计需要选用 SIM 卡座(推荐型号: SIM016-8P-220P), 推荐使用带有 SIM 卡检测功能的热插拔卡座。

图 3-9 SIM 卡座图示 SIM016-8P-220P

图 3-10 L610-CN 系列 USIM/SIM 接口带检测参考设计图

带检测信号 SIM 卡座原理说明如下:

SIM 卡插入时, USIM_PRESENCE 为高电平

SIM 卡拔出时, USIM_PRESENCE 为低电平

3.5.2.2 不带检测信号 SIM 卡座

图 3-11 L610-CN 系列 USIM/SIM 接口不带检测参考设计图

无检测信号 SIM 卡座,模块 USIM_ PRESENCE 管脚可以悬空,或者接地,另外,要通过软件

at 命令关闭 SIM 热插拔检测功能。

3.5.3 USIM 热插拔

L610-CN 系列模块支持 SIM 卡热插拔功能,通过检测 SIM 卡座的 USIM PRESENCE 管脚状态来判 定 SIM 卡插入和拔出,从而支持 SIM 卡热插拔功能。

SIM 卡热插拔功能可通过"AT+MSMPD"命令配置, AT 命令说明如下表所示:

AT 命令	SIM 卡热插拔检测	功能说明
AT . MOMBD 4	T P	默认值,SIM 卡热插拔检测功能开启,模块通过
AT+MSMPD=1	开启	USIM_PRESENCE 管脚状态检测 SIM 卡是否插入
AT+MSMPD=0	V. 27	SIM 卡热插拔检测功能关闭,开机时模块读取 SIM 卡,不
	关闭 	检测 USIM_PRESENCE 状态

开启 SIM 卡热插拔检测功能后,当 USIM_PRESENCE 为高电平,模块检测到 SIM 卡插入则会执行 SIM 卡初始化程序, 读取到 SIM 卡信息后模块会进行网络的注册。当 USIM PRESENCE 为低电平时, 模 块判定 SIM 卡拔出,则不读取 SIM 卡。

USIM PRESENCE 默认高电平有效,可通过 AT 命令切换为低电平有效。

AT 命令	功能说明
AT+GTSET="SIMPHASE",1	默认,高电平检测
AT+GTSET="SIMPHASE",0	低电平检测

3.5.4 USIM 设计要求

SIM 卡电路设计需要满足 EMC 标准及 ESD 要求,同时需要提高抗干扰能力,确保 SIM 卡能够稳定的 工作。在设计中需要严格遵守以下几点:

- SIM 卡座布局尽量靠近模块,远离 RF 天线、DCDC 电源、时钟信号线等强干扰源;
- 采用带金属屏蔽外壳的 SIM 卡座,从而提高抗干扰能力;
- 模块到 SIM 卡座的走线长度不得超过 100mm, 过长的走线会降低信号质量;
- USIM_CLK 和 USIM_DATA 信号包地隔离,避免相互干扰。如难以做到,则至少需要将 SIM 信号 作为一组包地保护;
- SIM 卡信号线的滤波电容和 ESD 器件靠近 SIM 卡座放置, ESD 器件等效电容请选择 22~33pF 电容;

3.6 UART 接口

3.6.1 UART接口定义

L610-CN 模块有两个串口: 主串口和调试串口。下面描述了这两个串口的主要特性:

主串口支持 4800bps, 9600bps, 19200bps, 38400bps, 57600bps, 115200bps, 230400bps 波特率, 默认波特率为 115200bps, 用于数据传输和 AT 命令传送。

调试串口支持 115200bps 波特率,供 FIBOCOM 内部调试使用。

下表为主串口管脚描述:

1.6732.11			
管脚名	1/0	管脚	描述
RI	0	62	模块输出振铃提示
DCD	0	63	模块输出载波检测
CTS	0	64	模块清除发送
RTS	I	65	DTE 请求发送数据
DTR	1	66	DTE 准备就绪
TXD	0	67	模块发送数据
RXD	1	68	模块接收数据

下表为调试串口管脚描述:

管脚名	1/0	管脚	描述
DBG_RXD		11	模块接收数据
DBG_TXD	0	12	模块发送数据

3.6.2 UART 接口应用

L610-CN 系列模块的串口电平为 1.8V。若客户主机系统电平为 3.3V 或者其他,则需在模块和主机的串口连接中增加电平转换器。下图为使用电平转换芯片的参考电路设计:

图 3-17 UART 信号连接 1

另一种电平转换电路如下图所示。如下虚线部分的输入和输出电路设计可参考实线部分,但需注意连接方向。

图 3-18 UART 信号连接 2

注意:

此电平转换电路不适用于波特率超过 460Kbps 的应用。

3.7 状态指示

3.7.1 NET_MODE 信号

L610-CN 系列提供三个网络指示灯输出信号接口。

管脚名	I/O	管脚	描述	
NET_MODE	0	5	模块状态指示	
NET_STATUS	0	6	Reserved	
STATUS	0	61	Reserved	

L610-CN 系列模块网络指示灯 NET_MODE 状态描述。

模式	NET_MODE	描述
	快闪 (600ms High /600ms Low)	没有 SIM 卡
4		SIM PIN
1		注册网络中(T<15S)
		注网失败
2	慢闪(75ms Low /3000ms High)	待机
3	速闪(75ms Low /75ms High)	数据链接建立
4	High	睡眠
5	Low	语音通话

L610-CN 系列模块的网络指示灯接口参考电路如图 3-19:

图 3-19 L610-CN 系列模块网络指示灯参考设计图

3.8 低功耗模式

3.8.1 飞行模式

W_DISABLE#管脚描述:

管脚名	1/0	管脚.	描述
W_DISABLE#	ı	4	模块飞行模式控制

L610-CN 系列模块支持两种方式进入飞行模式:

1	硬件 I/O 接口按键控制	拉高或悬空(默认为上拉)W_DISABLE#为正常模
<u>'</u>		式,拉低为飞行模式
	A.T. +比, 公 +交供用	AT+CFUN=4进入飞行模式
2	AT 指令控制	AT+CFUN=1进入普通模式

3.8.2 睡眠模式

3.8.2.1 AP 与模块只有 UART 口数据通信

模块可以通过如下方式激活睡眠模式:

1. ATS24 命令使模块睡眠,唤醒保持时间取决于命令 ats24 = [<value>]中的</value>。发送 AT 命令: ats24=2,模块将在 2s 后进入 Sleep 模式,模块掉电后设置不保存。

2.通过 AT+GTSET="LPMMODE",x 设置睡眠模式,模块掉电后设置保存。

x=1 --- 电平唤醒, WAKEUP_IN 低电平不允许睡眠;

x=2 --- 电平唤醒, WAKEUP_IN 高电平不允许睡眠。

3.8.2.2 AP 与模块有 USB 端口数据通信

模块可以通过如下方式激活睡眠模式:

除了 3.8.2.1 上面两种激活睡眠方式外,还可以通过 AT+ GTSET="SLEEPMODE",x 设置睡眠模式,模块掉电后设置保存。当 AP 与模块有 USB 端口连接时推荐此方式激活睡眠模式。

x=1 模块通过 AP READY 检测 AP 是否睡眠,模块自行进入或退出睡眠模式;

x=0 模块是否激活睡眠模式与 AP_READY 无关

3.8.2.3 模块休眠唤醒说明:

L610-CN 模块提供一个中断口用于唤醒模块。当模块进入休眠后,拉低或拉高 WAKEUP_IN 管脚来唤醒模块。唤醒模块功能不用时,WAKEUP_IN 管脚接 47K 上拉电阻或下拉电阻。

- 1 模块缺省不休眠,必须通过 ATS24 命令设置非 0 值,模块才能休眠
- 2 通过 AT+GTSET="LPMMODE", x 设置唤醒模式

x=0 --- 中断唤醒,模块休眠后,WAKEUP_IN 给个电平转换即可唤醒模块,唤醒后 IDLE 一段时间后重新进入休眠(软件默认为 0)

x=1 --- 电平唤醒, WAKEUP_IN 低电平不允许休眠

x=2 --- 电平唤醒, WAKEUP_IN 高电平不允许休眠

3.9 ADC 功能

L610-CN 提供两路模数转换接口。使用 AT+TMMD=0 可以读取 ADC0 的电压值,用 AT+TMMD=1 能够读取 ADC1 的电压值。ADC 范围为 0-5V。

管脚名	1/0	管脚.	描述	
ADC0	I	45	模数转换器接口 0	
ADC1	1	44	模数转换器接口 1	

注意:

建议 ADC 在布线时做包地处理,这样可以提高 ADC 电压测量准确度。

4 射频接口

4.1 L610-CN 工作频率

Operating Band	Descriptl/On	Mode	Tx (MHz)	Rx (MHz)
Band 1	IMT 2100MHz	LTE FDD	1920 - 1980	2110 - 2170
Band 3	DCS 1800MHz	LTE FDD/GSM	1710 - 1785	1805 - 1880
Band 5	CLR 850MHz	LTE FDD	824 - 849	869 - 894
Band 8	E-GSM 900MHz	LTE FDD/GSM	880 - 915	925 - 960
Band 34	IMT 2100MHz	TD-SCDMA	2010 - 2025	
Band 39	TDD 1900MHZ	LTE TDD	1880 - 1920	
Band 40	IMT 2300MHz	LTE TDD	2300 - 2400	
Band 41	BRS/EBS 2500MHZ	LTE TDD	2555 - 2655	

4.2 L610-CN 的 RF 输出功率

L610-CN 系列模块的 RF 输出功率见下表。

Mode	Band	Tx Power(dBm)	Note
CSM	GSM 900	TBD	
GSM	DCS 1800	TBD	
	Band 1	TBD	10MHz Bandwidth, 1 RB
LTE FDD	Band 3	TBD	10MHz Bandwidth, 1 RB
LIEFDD	Band 5	TBD	10MHz Bandwidth, 1 RB
	Band 8	TBD	10MHz Bandwidth, 1 RB
	Band 34	TBD	10MHz Bandwidth, 1 RB
LTE TDD	Band 39	TBD	10MHz Bandwidth, 1 RB
LIETUU	Band 40	TBD	10MHz Bandwidth, 1 RB
	Band 41	TBD	10MHz Bandwidth, 1 RB

4.3 L610-CN 系列模块的 RF 接收灵敏度

Mode	Band	Rx Sensitivity(dBm) Typical	Note
GSM	GSM 900	TBD	BER<2.43%
GSIVI	DCS 1800	TBD	BER<2.43%
	Band 1	TBD	10MHz Band width
	Band 3	TBD	10MHz Band width
	Band 5	TBD	10MHz Band width
LTE FDD	Band 8	TBD	10MHz Band width
	Band 39	TBD	10MHz Band width
	Band 40	TBD	10MHz Band width
	Band 41	TBD	10MHz Band width

注意:

上表的灵敏度是采用主集和分集双天线测试的结果,如果只使用主集(不带分集)则 LTE 各频段 灵敏度会相应地降低约 3dbm。

4.4 射频 PCB 设计

4.4.1 天线 RF 连接器

L610-CN 系列模块的三路天线采用焊盘引出的方式,推荐客户使用 U.FL-R-SMT-1 天线连接器,并使用与之匹配的 RF 转接线。

天线是一个敏感器件,容易受到外部环境的影响。例如天线位置,占用空间大小以及周围的接地等情况均可能影响天线性能。此外,连接天线的射频电缆,固定天线的位置也会影响天线性能。

图 4-1 为主集和分集天线的参考电路设计。这些匹配需要靠近天线放置:

图 4-1 射频参考电路设计

- 确保传输线的特性阻抗是 50 欧姆。
- 由于天线线路损失要小于 0.3dB, 所以要保持 PCB 走线尽可能短。
- PCB LAYOUT 尽可能走直线,避免过孔和翻层,同时也要避免走直角和锐角走线。
- PCB 走线周围要有良好的参考地,避免其它信号线靠近天线。
- 推荐使用完整的地层作为参考地。
- 天线周围的地加强与主地之间的连接。

注意:

具体详细设计可参考文档《FIBOCOM_RF Antenna 应用设计说明》

4.5 天线设计

1) 天线效率

天线效率是天线输入功率与辐射功率的比。由于天线的回波损耗,材料损耗,耦合损耗,辐射功率总比输入功率低,推荐>40%(-4dB)。

2) S11 or VSWR

S11 表明了天线的 50 欧姆阻抗的匹配程度,一定程度上影响天线效率。可以用 VSWR 测试手段去衡量这个指标。推荐 S11<-10dB。

3) 极化

极化是天线在辐射最大方向上电场的旋转方向。

推荐使用线极化。

4) 辐射方向图

辐射方向图是指天线在远场各个方向上电磁场的强度。半波振子天线是最合适终端的天线。如果是内置天线,推荐使用 PIFA 天线或者 IFA 天线:

天线面积: 高 6mm*宽 10mm*长 100mm。

天线辐射方向: Omni_directl/Onal(全向性)。

5) 增益和方向性

天线的方向性是指电磁波在各个方向上的电磁场强度。增益是天线效益与天线方向性的集合。推荐的天线增益≤2.5dBi。

6) 干扰

除了天线性能以外,PCB 板上的其它干扰也会影响到模块的性能。为了保证模块的高性能,必须对干扰做好控制。建议:比如 LCD、CP、FPC 走线,音频电路,电源部分要尽可能远离天线,并做相应隔离和屏蔽,或者路径上作滤波处理。

7) 天线指标要求

L610-CN 系列模块主天线	L610-CN 系列模块主天线要求			
频率范围	必须使用最适合的天线来适配相关频段			
带宽(GSM/EDGE)	GSM900: 80 MHz			
市见(GSIW/EDGE)	GSM1800(DCS) : 170 MHz			
带宽 (WCDMA)	WCDMA band I(2100) : 250 MHz			
市见(WCDIVIA)	WCDMA band VIII(900) : 80 MHz			
	LTE band 1(2100): 250 MHz			
	LTE Band 3(1800): 170 MHz			
	LTE Band 5(850): 70 MHz			
带宽 (LTE)	LTE Band 8(900): 80 MHz			
	LTE Band 39(1900): 40 MHz			
	LTE band 40(2300): 100 MHz			
	LTE band 41(2500): 100 MHz			
阻抗	50 欧姆			
输入功率	> 33dBm(2 W) 峰值功率 GSM			
加八ツ平	> 23dBm 平均功率 WCDMA & LTE &TD-SCDMA			
驻波比推荐	≤ 2:1			

5 电气特性

5.1 极限电压范围

极限电压范围指模块电源电压以及数字和模拟输入/输出接口能够承受的最大电压范围。

L610-CN 系列模块的电压范围见下表。

Parameter	Descriptl/On	Min	Тур	Max	Unit
VBAT	供电	-0.3	-	4.6	V
GPI/O	数字 I/O 的电平供电电压	-0.3	-	2.0	V

5.2 环境温度范围

L610-CN 系列模块推荐在-30℃~+75℃环境下工作。建议应用端在环境恶劣条件下考虑温控措施。同时提供模块的受限工作温度范围,此温度条件下,可能某些 RF 指标超标。同时建议模块应用终端在一定温度条件下储存。超出此范围模块可能不能正常工作或者损坏。

Temperature	Min	Тур	Max	Unit
工作温度	-30	25	75	℃
受限工作温度	-40	-	85	℃
储存温度	-45	-	90	°C

5.3 接口工作状态电气特性

VL: 逻辑低电平;

VH: 逻辑高电平;

VL VL		VH			
Signal	Min	Max	Min	Max	Unit
数字输入	-0.3	0.6	1.2	2.0	٧
数字输出	-	0.45	1.35	-	V

Parameter	1/0	Min	Тур	Max	Unit
VBAT	1	3.3	3.8	4.4	V
USIM_VDD	0	1.7/2.75	1.8/2.85	1.9/2.95	V

5.4 环境可靠性要求

测试项目	测试条件		
低温存储测试	温度-45℃±3℃,关机状态下持续24小时		
高温存储测试	温度+90℃±3℃,关机状态下持续24小时		
温度冲击试验	关机状态下,分别在温度-40℃和+85℃环境下持续0.5h,温度转换时间 <3min,共进行24个循环		
高温高湿试验	温度+65℃±3℃,湿度90~95%RH,关机状态下持续88小时		
低温运行测试	温度-30℃±3℃,工作状态下持续24小时		
高温运行测试	温度+75℃±3℃,工作状态下持续24小时		
	按照下表所示的要求进行震动测试:		
震动测试	频率	随机振动ASD(加速度谱密度)	
	5~20Hz	0.96m ² /s ³	
	20~500Hz	0.96m²/s³(20Hz处),其它-3dB/倍频程	

5.5 ESD 特性

L610-CN 系列模块设计时已经考虑了 ESD 的问题,并做了 ESD 防护,但是考虑在运输和二次开发也可能有 ESD 问题发生,所以开发者要考虑最终产品 ESD 问题的防护,除了必须考虑包装的防静电处理之外,客户应用时请参考文档中的接口设计的推荐电路。

对于 L610-CN 系列模块的 ESD 允许的放电范围参考下表。

位置	空气放电	接触放电
GND	±15KV	±8KV
VBAT	±10KV	±8KV
天线接口	±15KV	±8KV
其他接口	-	±0.5KV

注意:

上表数据是在ADP-L610-CN-00上测试的。

6 结构规格

6.1 产品外观

L610-CN 系列模块产品外观如图所示:

图 6-1 模块产品外观(顶部)

图 6-2 模块产品外观(底部)

6.2 结构尺寸

L610-CN 系列模块结构尺寸如图 6-3 所示:

图 6-3 结构尺寸图 (单位: mm)

6.3 SMT 贴片

模块钢网设计,锡膏及炉温控制请参考 FIBOCOM_L610 LCC SMT 应用设计说明。