Travis Robinson CS475 Spring 2016 Project 6

OpenCL Array Multiply, Multiply-Add, and Multiply-Reduce

This project was run on my home laptop, an HP Pavilion dv7 with an AMD A8-3520M processor and an AMD Radeon HD 6620G GPU. Due to machine limits, I wasn't able to perform benchmarks at a local size of 512, but was able to at 256.

Tables and Graphs

Multiply and Multiply-Performace

Vs Local Work Size

Multiply and Multiply-Add Performance

Global Work Size

Global Data Size	Local Work Size	Number Work Groups	Multiply	Multiply-Add
1000	8	125	0.005	0.006
1000 1000	16 32	62.5 31.25		
1000	64	15.625		
1000	128	7.8125		
1000 2000	256 8	3.90625 250	0.01	0.012
2000	16	125	0.091	0.085
2000	32	62.5		
2000 2000	64 128	31.25 15.625		
2000	256	7.8125		
2000 2000	8 16	250 125		
2000	32	62.5		
2000	64	31.25		
2000 2000	128 256	15.625 7.8125		
4000	8	500	0.02	0.024
4000	16 32	250	0.0215	0.178 0.17
4000 4000	64	125 62.5	0.164	0.17
4000	128	31.25		
4000 8000	256 8	15.625 1000	0.05	0.047
8000	16	500	0.03	0.409
8000	32	250	0.442	0.399
8000 8000	64 128	125 62.5	0.431	0.409
8000	256	31.25		
16000	8	2000	0.092	0.088
16000 16000	16 32	1000 500	0.818 0.839	0.106 0.761
16000	64	250	0.617	0.798
16000	128	125	0.818	0.798
16000 32000	256 8	62.5 4000	0.188	0.14
32000	16	2000	1.423	1.488
32000	32 64	1000 500	1.455	0.727
32000 32000	128	250	0.761 1.393	1.596 1.364
32000	256	125	0.829	1.769
64000 64000	8 16	8000 4000	0.306 1.247	0.296 0.601
64000	32	2000	1.322	3.538
64000	64	1000	2.846	3.538
64000 64000	128 256	500 250	0.909 0.2618	3.273 3.273
128000	8	16000	0.0663	0.542
128000	16	8000	1.657	4.223
128000 128000	32 64	4000 2000	7.076 5.818	7.076 5.455
128000	128	1000	5.134	2.645
128000	256	500	5.571	6.386
256000 256000	8 16	32000 16000	1.64 13.427	0.938 12.772
256000	32	8000	13.78	13.78
256000 256000	64 128	4000 2000	14.152 10.909	14.152 14.152
256000	256	1000	11.383	13.78
512000	8	64000	2.793	2.83
512000 512000	16 32	32000 16000	27.56 20.945	20.535 6.271
512000	64	8000	24.935	24.935
512000	128	4000	17.75	17.168
512000 1024000	256 8	2000 128000	28.305 5.6	26.853 5.395
1024000	16	64000	55.12	53.706
1024000 1024000	32 64	32000	47.603 43.636	55.12 4.894
1024000	128	16000 8000	55.12	51.086
1024000	256	4000	41.891	2.599
2048000 2048000	8 16	256000 128000	9.227 93.091	6.485 99.74
2048000	32	64000	83.782	102.173
2048000	64	32000	107.413	82.139
2048000 2048000	128 256	16000 8000	99.74 89.13	107.413 35.804
4096000	8	512000	21.264	13.362
4096000	16	256000	46.545	52.364
4096000 4096000	32 64	128000 64000	53.706 135.132	214.825 186.182
4096000	128	32000	190.413	102.173
4096000	256	16000	152.331	204.346
8192000 8192000	8 16	1024000 512000	28.209 33.989	42.746 35.277
8192000	32	256000	34.621	36.99
8192000 8192000	64 128	128000 64000	33.85 40.183	33.989
8192000 8192000	128 256	32000	28.99	27.38 40.572

Patterns

What we see in the performance curves is that we get optimal performance with large local and global work sizes. The reason we see optimal performance with large local sizes is that there are more parallel processes going on, making it possible for the GPU to perform more calculations at the same time.

The reason we see optimal performance with large global work sizes is that the sequential part of the program takes up less relative time. There is a time cost with enqueueing and then reading the results back; this will be relatively constant across data sizes, meaning it takes a smaller proportion of overall time for larger data sizes. So as the global size gets larger, the parallel portion of the program gets larger and the sequential portion gets smaller, giving us more computations per second.

Multiply vs Multiply-Add

There was little difference between mltiply and multiply-add in performance. There was of course some variation, but not enough to say that one calculation was better than the other. The mean calculations per second for multiply was 25.52, and for multiply-add it was 26.34, with medians of 5.818 and 5.95, respectively.

What this means for proper use of GPU computing is that when multiplication and addition both need to be done, our best performance will come from doing them at the same time, rather than one then the other. Also, due to the way that multiply-add works, it also gives more accurate results, due to fewer rounding operations vs its sequential multiply then add counterpart.

In addition to that, we also see that GPU computing is most efficient with larger data sizes. Due to the large sequential portion of smaller data sizes, if the number of computations is too small, it's not worth it to use GPU parallel computing.

Table and Chart for Reduction Performance

Array Size	Local Work Size	I	Reduction Performance
10	000	31.25	0.001
2	000	62.5	
4	000	125	0.022
8	000	250	0.049
16	000	500	0.066
32	000	1000	1.769
64	000	2000	3.273
128	000	4000	5.343
256	000	8000	10.909
512	000	16000	21.373
1024	000	32000	26.513
2048	000	64000	87.273
4096	000	128000	167.564
8192	000	256000	288.903

Multiply-Reduction vs Input Array Size

Patterns

What we see in this curve is that as input array size increases, our performance also increases. The reason for this is that with reductions working in O(N) time, as N gets larger, the time increase gets smaller. In addition to that, like with multiplication and the fused multiplication-addition, with larger array sizes the sequential part (such as reading data to the GPU, getting results back, etc) becomes smaller and smaller relatively speaking, so that we end up with more calculations per second.

What this means for GPU parallel computing is that we get our best results with larger amounts of data, but with smaller amounts the sequential portion of processing makes it not worth while to do GPU computing.