Path-loss and Shadowing (Large-scale Fading)

PROF. MICHAEL TSAI 2011/10/20

Friis Formula

TX Antenna

 $EIRP=P_tG_t$

RX Antenna

$$\Rightarrow P_r = \frac{P_t G_t A_e}{4\pi d^2}$$

Power spatial density
$$\left(\frac{W}{m^2}\right)$$

$$\times \frac{1}{4\pi d^2}$$

Antenna Aperture

$$\boldsymbol{P_r} = \frac{\boldsymbol{P_t G_t A_e}}{4\pi d^2}$$

- Antenna Aperture=Effective Area
- Isotropic Antenna's effective area $A_{e,iso} \doteq \frac{\lambda^2}{4\pi}$
- Isotropic Antenna's Gain=1

$$\bullet \quad G = \frac{4\pi}{\lambda^2} A_e$$

• Friis Formula becomes: $P_r = \frac{P_t G_t G_r \lambda^2}{(4\pi d)^2} = \frac{P_t A_t A_r}{\lambda^2 d^2}$

Friis Formula

$$P_r = \frac{P_t G_t G_r \lambda^2}{(4\pi d)^2}$$

- $\frac{\lambda^2}{(4\pi d)^2}$ is often referred as "Free-Space Path Loss" (FSPL)
- Only valid when d is in the "far-field" of the transmitting antenna
- Far-field: when $d>d_f$, Fraunhofer distance
- $d_f = rac{2D^2}{\lambda}$, and it must satisfies $d_f \gg D$ and $d_f \gg \lambda$
 - D: Largest physical linear dimension of the antenna
 - λ: Wavelength
- We often choose a d_0 in the far-field region, and smaller than any practical distance used in the system
- Then we have $P_r(d) = P_r(d_0) \left(\frac{d}{d_0}\right)^2$

Received Signal after Free-Space Path Loss

phase difference due to propagation distance $r(t) = Re \underbrace{\sqrt[3]{J_t G_t G_r} exp\left(-\frac{j2\pi d}{\lambda}\right)}_{\text{A}\pi d} \widetilde{g}(t) exp(j2\pi f_c t)$ Free-Space Path Loss Carrier (sinusoid)

Example: Far-field Distance

- Find the far-field distance of an antenna with maximum dimension of 1m and operating frequency of 900 MHz (GSM 900)
- Ans:
- Largest dimension of antenna: D=1m
- Operating Frequency: f=900 MHz
- Wavelength: $\lambda = \frac{c}{f} = \frac{3 \times 10^8}{900 \times 10^6} = 0.33$
- $d_f = \frac{2D^2}{\lambda} = \frac{2}{0.33} = 6.06$ (m)

Example: FSPL

- If a transmitter produces 50 watts of power, express the transmit power in units of (a) dBm and (b) dBW.
- If 50 watts is applied to a unity gain antenna with a 900 MHz carrier frequency, find the received power in dBm at a free space distance of 100 m from the antenna. What is the received power at 10 km? Assume unity gain for the receiver antenna.
- Ans:
- $10 \log_{10}(50) = 17 dBW = 47 dBm$
- Received Power at 100m $50 \times 1 \times 1 \times \left(\frac{3 \times 10^8}{900 \times 10^6} \right)^2$ $P_r(100m) = \frac{(4\pi \times 100)^2}{(4\pi \times 100)^2} = 3.5 \times 10^{-6} \ (W)$ $= -54.5 \ (dBW)$
- Received Power at 10km

$$P_r(10km) = P_r(100m) \left(\frac{100}{10000}\right)^2 = 3.5 \times 10^{-10} (W)$$

= -94.5 (dBW)

Two-ray Model

TX Antenna

Delayed since x+x' is longer. $\tau = (x + x' - l)/c$

$$Re \left\{ \frac{\lambda}{4\pi} \left[\frac{\sqrt{G_a G_b} \tilde{g}(t) \exp\left(-\frac{j2\pi l}{\lambda}\right)}{l} + \frac{R\sqrt{G_c G_d} \tilde{g}(t-\tau) \exp\left(-\frac{j2\pi (x+x')}{\lambda}\right)}{x+x'} \right] \exp(j2\pi f_c t) \right\}$$

R: ground reflection coefficient (phase and amplitude change)

Two-ray Model: Received Power

•
$$P_r = P_t \left[\frac{\lambda}{4\pi} \right]^2 \left| \frac{\sqrt{G_a G_b}}{l} + \frac{\sqrt{G_c G_d} exp(-j\Delta\phi)}{x+x'} \right|^2$$

- The above is verified by empirical results.
- $\Delta \phi = 2\pi (x + x' l)/\lambda$

•
$$x + x' - l = \sqrt{(h_t + h_r)^2 + d^2} - \sqrt{(h_t - h_r)^2 + d^2}$$

Two-ray Model: Received Power

- When $d\gg h_t+h_{r}$, $\Delta\phi=rac{2\pi(x+x'-l)}{\lambda}pproxrac{4\pi h_t h_r}{\lambda d}$
- For asymptotically large d, $x + x' \approx l \approx d$, $\theta \approx 0$, $G_a G_b \approx G_c G_d$, $R \approx -1$ (phase is inverted after reflection)

•
$$\left| \frac{\sqrt{G_a G_b}}{l} + \frac{\sqrt{G_c G_d} exp(-j\Delta \phi)}{x+x'} \right|^2 \approx \left| \frac{\sqrt{G_a G_b}}{d} \right|^2 |1 + exp(-j\Delta \phi)|^2$$

•
$$|1 + exp(-j\Delta\phi)|^2 = (1 - cos(\Delta\phi))^2 + sin^2\Delta\phi = 2 - 2cos(\Delta\phi) = 4sin^2(\frac{\Delta\phi}{2}) \approx \Delta\phi^2$$

•
$$P_r \approx \left[\frac{\lambda \sqrt{G_a G_b}}{4\pi d}\right]^2 \left[\frac{4\pi h_t h_r}{\lambda d}\right]^2 P_t = \left[\frac{\sqrt{G_a G_b} h_t h_r}{d^2}\right]^2 P_t$$

Indoor Attenuation

• Factors which affect the indoor path-loss:

- Wall/floor materials
- Room/hallway/window/open area layouts
- Obstructing objects' location and materials
- Room size/floor numbers

Partition Loss:

Partition type	Partition Loss (dB) for 900-1300 MHz
Floor	10-20 for the first one, 6-10 per floor for the next 3, A few dB per floor afterwards.
Cloth partition	1.4
Double plasterboard wall	3.4
Foil insulation	3.9
Concrete wall	13
Aluminum siding	20.4
All metal	26

Simplified Path-Loss Model

Back to the simplest:

$$P_r = P_t K \left[\frac{d_0}{d} \right]^{\gamma}$$

- d_0 : reference distance for the antenna far field (usually 1-10m indoors and 10-100m outdoors)
- *K*: constant path-loss factor (antenna, average channel attenuation), and sometimes we use

$$K = \left(\frac{\lambda}{4\pi d_0}\right)^2$$

• γ : path-loss exponent

Some empirical results

Measurements in Germany Cities

Environment	Path-loss Exponent
Free-space	2
Urban area cellular radio	2.7-3.5
Shadowed urban cellular radio	3-5
In building LOS	1.6 to 1.8
Obstructed in building	4 to 6
Obstructed in factories	2 to 3

Empirical Path-Loss Model

- Based on empirical measurements
 - over a given distance
 - in a given frequency range
 - for a particular geographical area or building
- Could be applicable to other environments as well
 - Less accurate in a more general environment
- Analytical model: P_r/P_t is characterized as a function of distance.
- Empirical Model: P_r/P_t is a function of distance including the effects of path loss, shadowing, and multipath.
 - Need to average the received power measurements to remove multipath effects → Local Mean Attenuation (LMA) at distance d.

Example: Okumura Model

Okumura Model:

$$P_L(d)dB = L(f_c, d) + A_{\mu}(f_c, d) - G(h_t) - G(h_r) - G_{AREA}$$

• $L(f_c,d)$: FSPL, $A_{\mu}(f_c,d)$: median attenuation in addition to FSPL

$$\bullet \ G(h_t) = 20 \log_{10}(\frac{h_t}{200}) \ , G(h_r) = \begin{cases} 10 \log_{10}\left(\frac{h_r}{3}\right), h_r \leq 3m, \\ 20 \log_{10}\left(\frac{h_r}{3}\right), 3m < h_r < 10m. \end{cases}$$
 :antenna height gain factor.

• G_{AREA} : gain due to the type of environment

Example: Piecewise Linear Model

- N segments with N-1 "breakpoints"
- Applicable to both outdoor and indoor channels
- Example dual-slope model

$$P_r(d) = \begin{cases} P_t K \left(\frac{d_0}{d}\right)^{\gamma_1} & d_0 \le d \le d_c, \\ P_t K \left(\frac{d_c}{d}\right)^{\gamma_1} \left(\frac{d}{d_c}\right)^{\gamma_2} & d > d_c. \end{cases}$$

- *K*: constant path-loss factor
- γ_1 : path-loss exponent for $d_0{\sim}d_c$
- γ_2 : path-loss exponent after d_c

Shadow Fading

- Same T-R distance usually have different path loss
 - Surrounding environment is different
- Reality: simplified Path-Loss Model represents an "average"
- How to represent the difference between the average and the actual path loss?
- Empirical measurements have shown that
 - it is random (and so is a random variable)
 - Log-normal distributed

Log-normal distribution

 A log-normal distribution is a probability distribution of a random variable whose <u>logarithm</u> is normally distributed:

logarithm of the random variable

$$f_X(x; \mu, \sigma^2) = \frac{1}{x\sigma\sqrt{2\pi}} \exp\left(-\frac{(\log x - \mu)^2}{2\sigma^2}\right)$$

normalized so that the integration of the pdf=1

- *x*: the random variable (linear scale)
- μ , σ^2 : mean and variance of the distribution (in dB)

Log-normal Shadowing

Expressing the path loss in dB, we have

$$P_L(d)[dB] = \overline{P_L}(d) + X_{\sigma} = \overline{P_L}(d_0) + 10\gamma \log\left(\frac{d}{d_0}\right) + X_{\sigma}$$

- X_{σ} : Describes the <u>random</u> shadowing effects
- $X_{\sigma} \sim N(0, \sigma^2)$ (normal distribution with zero mean and σ^2 variance)
- Same T-R distance, but different levels of clutter.
- Empirical Studies show that σ ranges from 4 dB to 13dB in an outdoor channel

Why is it log-normal distributed?

 Attenuation of a signal when passing through an object of depth d is αpproximately:

$$s(d) = \exp(-\alpha d)$$

- α : Attenuation factor which depends on the material
- If α is approximately the same for all blocking objects:

$$s(d_t) = \exp\left(-\alpha \sum_i d_i\right) = \exp(-\alpha d_t)$$

- $d_t = \sum_i d_i$: sum of all object depths
- By central limit theorem, $d_t \sim N(\mu, \sigma^2)$ when the number of object is large (which is true).

Path Loss, Shadowing, and Multi-Path

• Cell coverage area: expected percentage of locations within a cell where the received power at these locations is above a given minimum.

- We can boost the transmission power at the BS
 - Extra interference to the neighbor cells
- In fact, <u>any mobile</u> in the cell has a <u>nonzero</u> probability of having its received power below P_{min} .
 - Since Normal distribution has infinite tails
 - Make sense in the real-world: in a tunnel, blocked by large buildings, doesn't matter if it is very close to the BS

• Cell coverage area is given by

1 if the statement is true, o otherwise. (indicator function)

$$C = E \left[\frac{1}{\pi R^2} \int_{cell\ area} \mathbf{1}[P_r(r) > P_{min}\ in\ dA] dA \right]$$

$$= \frac{1}{\pi R^2} \int_{cell\ area} E \left[\mathbf{1}[P_r(r) > P_{min}\ in\ dA] \right] dA$$

•
$$P_A \doteq p(P_r(r) > P_{min})$$

$$C = \frac{1}{\pi R^2} \int_{cell\ area} P_A dA = \frac{1}{\pi R^2} \int_0^{2\pi} \int_0^R P_A r dr \ d\theta$$

$$P_{A} = p(\overline{P_{r}}(r) \ge P_{min}) = Q\left(\frac{P_{min} - (P_{t} - \overline{P_{L}}(r))}{\sigma}\right)$$

Log-normal distribution's standard deviation

• Q-function:

$$Q(z) \doteq p(X > z) = \int_{z}^{\infty} \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{y^{2}}{2}\right) dy$$

Solving the equations yield:

$$C = Q(a) + \exp\left[\frac{2 - 2ab}{b^2}\right] Q\left(\frac{2 - ab}{b}\right)$$

- $a = \frac{P_{min} \overline{P_r}(R)}{\sigma}$, $b = \frac{10\gamma log_{10}(e)}{\sigma}$ average received power at cell boundary (distance=R)
- If $P_{min} = \overline{P_r}(R)$

$$C = \frac{1}{2} + \exp\left[\frac{2}{b^2}\right] Q\left(\frac{2}{b}\right)$$

$$C = Q(a) + \exp\left[\frac{2 - 2ab}{b^2}\right] Q\left(\frac{2 - ab}{b}\right)$$

Example

$$a = \frac{P_{min} - \overline{P_r}(R)}{\sigma}, b = \frac{10\gamma log_{10}(e)}{\sigma}$$

- Find the coverage area for a cell with
 - a cell radius of 600m
 - a base station transmission power of 20 dBm
 - a minimum received power requirement of -110 dBm.
 - path loss model: $P_r(d) = P_t K \left(\frac{d_0}{d}\right)^{\gamma}$, $\gamma = 3.71$, K = -31.54 dB, $d_0 = 1$, shadowing standard deviation $\sigma = 3.65$ dB
- Ans:
- $\overline{P_r}(R) = 20 31.54 10 \times 3.71 \times log_{10}(600) = -114.6 dBm$
- $a = \frac{-110+114.6}{3.65} = 1.26, b = \frac{10\times3.71\times0.434}{3.65} = 4.41$
- C = Q(1.26) + exp(-0.46)Q(-0.807) = 0.6 (not good)
- If we calculate C for a minimum received power requirement of -120 dBm
 - C=0.988!

Example: road corners path loss

Link Measurements – Path loss around the corner building

- Compare the path-loss exponent of three different locations:
- 1. Corner of NTU_CSIE building
- 2. XinHai-Keelong intersection
- 3. FuXing-HePing intersection

	1	2	3
Passing-by vehicles	Occasionally	Frequently	Frequently
Buildings Around	No	Few buildings	Some high buildings
Intersection	Narrow	Wide	Wide

Doppler Effect

- Difference in path lengths $\Delta l = d \cos \theta = v \Delta t \cos \theta$
- Phase change $\Delta \phi = \frac{2\pi\Delta l}{\lambda} = \frac{2\pi v \Delta t}{\lambda} \cos\theta$
- Frequency change, or <u>Doppler shift</u>,

$$f_d = \frac{1}{2\pi} \frac{\Delta \phi}{\Delta t} = \frac{v}{\lambda} cos\theta$$

Example

$$f_d = \frac{1}{2\pi} \frac{\Delta \phi}{\Delta t} = \frac{v}{\lambda} cos\theta$$

- Consider a transmitter which radiates a sinusoidal carrier frequency of 1850 MHz. For a vehicle moving 60 mph, compute the received carrier frequency if the mobile is moving
 - 1. directly toward the transmitter.
 - 2. directly away from the transmitter
 - 3. in a direction which is perpendicular to the direction of arrival of the transmitted signal.

Ans:

- Wavelength= $\lambda = \frac{c}{f_c} = \frac{3 \times 10^8}{1850 \times 10^6} = 0.162 \ (m)$
- Vehicle speed $v = 60mph = 26.82 \left(\frac{m}{s}\right)$
- 1. $f_d = \frac{26.82}{0.162}\cos(0) = 160 \ (Hz)$
- 2. $f_d = \frac{26.82}{0.162}\cos(\pi) = -160 \ (Hz)$
- 3. Since $\cos\left(\frac{\pi}{2}\right) = 0$, there is no Doppler shift!

Doppler Effect

- If the car (mobile) is moving toward the direction of the arriving wave, the Doppler shift is positive
- Different Doppler shifts if different θ (incoming angle)
- Multi-path: all different angles
- Many Doppler shifts → Doppler spread