

www.uneatlantico.es

MATEMÁTICAS

Métodos de Integración II

Prof. Dr. Jorge Crespo Álvarez

Objetivo

Estudiar técnicas de integración de funciones reales de una variable real

- Integración trigonométrica
- Integración por sustitución trigonométrica
- Integrales impropias

Integración Trigonométrica

www.uneatlantico.es

Existen determinados casos de integrales trigonométricas que no se pueden resolver simplemente aplicando sustitución. En estos casos es necesario aplicar identidades trigonométricas previamente.

Ejemplo:

Evalúe $\int \cos^3 x \ dx$

Evalúe $\int_0^{\pi} \sin^2 x \, dx$

Determine $\int \tan^3 x \ dx$

Integración por Sustitución Trigonométrica

www.uneatlantico.es

En la determinación del área de un círculo o una elipse, surge una integral de la forma $\int \sqrt{a^2 - x^2} \, dx$, donde a > 0. Si fuese $\int x \sqrt{a^2 - x^2} \, dx$, la sustitución $u = a^2 - x^2$ sería eficaz; pero, tal como está, $\int \sqrt{a^2 - x^2} \, dx$ es más difícil. Si cambia la variable de x a θ por la sustitución x = a sen θ , entonces la identidad $1 - \sec^2\theta = \cos^2\theta$ permite eliminar el signo de la raíz porque

$$\sqrt{a^2 - x^2} = \sqrt{a^2 - a^2 \sin^2 \theta} = \sqrt{a^2 (1 - \sin^2 \theta)} = \sqrt{a^2 \cos^2 \theta} = a |\cos \theta|$$

Tabla de sustituciones trigonométricas

Expresión	Sustitución	Identidad
$\sqrt{a^2-x^2}$	$x = a \operatorname{sen} \theta, -\frac{\pi}{2} \le \theta \le \frac{\pi}{2}$	$1 - \sin^2\theta = \cos^2\theta$
$\sqrt{a^2+x^2}$	$x = a \tan \theta, -\frac{\pi}{2} < \theta < \frac{\pi}{2}$	$1 + \tan^2 \theta = \sec^2 \theta$
$\sqrt{x^2-a^2}$	$x = a \sec \theta$, $0 \le \theta < \frac{\pi}{2}$ o $\pi \le \theta < \frac{3\pi}{2}$	$\sec^2\theta - 1 = \tan^2\theta$

Integración por Sustitución Trigonométrica

www.uneatlantico.es

Ejemplo:

Evalúe
$$\int \frac{\sqrt{9-x^2}}{x^2} dx$$

Determine
$$\int \frac{x}{\sqrt{x^2+4}} dx$$

Las integrales impropias extienden el concepto de integral definida al caso donde el intervalo es infinito o donde f tiene una discontinuidad infinita dentro del intervalo [a, b].

Tipo 1: intervalos infinitos

Considere la región infinita S que está bajo la curva $y = 1/x^2$, por encima del eje x y a la derecha de la recta x = 1. Podría pensarse que, puesto que S se extiende al infinito, su área debe ser infinita, pero vea esto con más detalle. El área de la parte de S que está a la izquierda de la recta x = t (sombreada en la figura 1) es

$$A(t) = \int_{1}^{t} \frac{1}{x^{2}} dx = -\frac{1}{x} \bigg|_{1}^{t} = 1 - \frac{1}{t}$$

Las integrales impropias extienden el concepto de integral definida al caso donde el intervalo es infinito o donde f tiene una discontinuidad infinita dentro del intervalo [a, b].

Tipo 1: intervalos infinitos

Considere la región infinita S que está bajo la curva $y = 1/x^2$, por encima del eje x y a la derecha de la recta x = 1. Podría pensarse que, puesto que S se extiende al infinito, su área debe ser infinita, pero vea esto con más detalle. El área de la parte de S que está a la izquierda de la recta x = t (sombreada en la figura 1) es

$$A(t) = \int_{1}^{t} \frac{1}{x^{2}} dx = -\frac{1}{x} \bigg|_{1}^{t} = 1 - \frac{1}{t}$$

$$\int_{1}^{\infty} \frac{1}{x^{2}} dx = \lim_{t \to \infty} \int_{1}^{t} \frac{1}{x^{2}} dx = 1$$

1 Definición de una integral impropia de tipo 1

(a) Si $\int_a^t f(x) dx$ existe para todo número $t \ge a$, entonces

$$\int_{a}^{\infty} f(x) dx = \lim_{t \to \infty} \int_{a}^{t} f(x) dx$$

siempre que el límite exista (como un número finito).

(b) Si $\int_{t}^{b} f(x) dx$ existe para todo número $t \le b$, entonces

$$\int_{-\infty}^{b} f(x) dx = \lim_{t \to -\infty} \int_{t}^{b} f(x) dx$$

siempre que este límite exista (como un número finito).

Las integrales impropias $\int_a^{\infty} f(x) dx$ y $\int_{-\infty}^b f(x) dx$ se llaman **convergentes** si el límite correspondiente existe, y **divergentes** si el límite no existe.

(c) Si ambas $\int_a^{\infty} f(x) dx$ y $\int_{-\infty}^a f(x) dx$ son convergentes, entonces se define

$$\int_{-\infty}^{\infty} f(x) dx = \int_{-\infty}^{a} f(x) dx + \int_{a}^{\infty} f(x) dx$$

En el inciso (c) se puede utilizar cualquier número real a (véase el ejercicio 76).

Ejemplo:

Determine si la integral impropia $\int_{1}^{\infty} \frac{1}{x} dx$ es convergente o divergente

Evalúe
$$\int_{-\infty}^{\infty} \frac{1}{1+x^2} dx$$

3 Definición de una integral impropia de tipo 2

(a) Si f es continua en [a, b) y es discontinua en b, entonces

$$\int_a^b f(x) \, dx = \lim_{t \to b^-} \int_a^t f(x) \, dx$$

si este límite existe (como un número finito).

(b) Si f es continua sobre (a, b] y es discontinua en a, entonces

$$\int_a^b f(x) \ dx = \lim_{t \to a^+} \int_t^b f(x) \ dx$$

si este límite existe (como un número finito).

La integral impropia $\int_a^b f(x) dx$ se llama **convergente** si existe el límite correspondiente, y **divergente** si el límite no existe.

(c) Si f tiene una discontinuidad en c, donde a < c < b, y ambas $\int_a^c f(x) \, dx$ y $\int_c^b f(x) \, dx$ son convergentes, entonces se define

$$\int_a^b f(x) \, dx = \int_a^c f(x) \, dx + \int_c^b f(x) \, dx$$

Ejemplo:

Encuentre
$$\int_2^5 \frac{1}{\sqrt{x-2}} dx$$

Evalúe $\int_0^3 \frac{1}{x-1} dx$ si es posible.

www.uneatlantico.es