- 1. $\sum_{n=1}^{\infty} \frac{(3)^{n+1}}{5^n} =$
 - (A) $\frac{3}{5}$ (B) $\frac{5}{2}$
- (C) $\frac{9}{2}$
- (D) The series diverges

- 2. If $f(x) = \sum_{n=1}^{\infty} (\tan x)^n$, then f(1) =
 - (A) -2.794
- (B) −0.61
- (C) 0.177
- (D) The series diverges

- 3. $\sum_{n=2}^{\infty} \frac{2}{n^2 1} =$
 - (A) 0
- (B) $\frac{1}{2}$
- (C) 1
- (D) $\frac{3}{2}$
- 4. The sum of the geometric series $\frac{2}{21} + \frac{4}{63} + \frac{8}{189} + \dots$ is
 - (A) $\frac{5}{21}$ (B) $\frac{2}{7}$ (C) $\frac{4}{7}$
- (D) The series diverges
- 5. If $S_n = \left(\frac{3^{n-1}}{(4+n)^{20}}\right) \left(\frac{(7+n)^{20}}{3^n}\right)$, to what number does the sequence $\{S_n\}$ converge?
- (A) $\frac{1}{3}$ (B) $\frac{7}{4}$ (C) $\left(\frac{7}{4}\right)^{20}$
- (D) Diverges

- 6. Which of the following sequences converge?
- I. $\left\{\frac{\cos^2 n}{(1.1)^n}\right\}$ III. $\left\{\frac{e^n 3}{3^n}\right\}$ III. $\left\{\frac{n}{9 + \sqrt{n}}\right\}$
- (A) I only
- (B) II only
- (C) III only
- (D) I and II only

7. Which of the following series converge?

I.
$$\sum_{n=1}^{\infty} \frac{n}{10(n+1)}$$
 II.
$$\sum_{n=1}^{\infty} \arctan n$$
 III.
$$\sum_{n=1}^{\infty} \frac{-6}{(-5)^n}$$

II.
$$\sum_{n=1}^{\infty} \arctan n$$

III.
$$\sum_{n=1}^{\infty} \frac{-6}{(-5)^n}$$

- (A) I only
- (B) II only
- (C) III only
- (D) II and III only
- 8. Find the sum of the series $\sum_{n=1}^{\infty} \left(\frac{3}{n(n+3)} + \frac{1}{7^n} \right).$

9. Find the sum of the series $\sum_{n=1}^{\infty} \frac{2^{n+1}}{3^n}$

10. Determine whether the series is convergent or divergent.

(a)
$$\sum_{n=1}^{\infty} \frac{n}{2n+3}$$
 (b) $\sum_{n=1}^{\infty} 2^{-n} 5^n$

(b)
$$\sum_{n=1}^{\infty} 2^{-n} 5^n$$

- 1. If $\int_{1}^{\infty} \frac{dx}{x^2 + 1} = \frac{\pi}{4}$, then which of the following must be true?
 - I. $\sum_{n=1}^{\infty} \frac{1}{n^2+1}$ diverges.
 - II. $\sum_{n=1}^{\infty} \frac{1}{n^2 + 1}$ converges.
 - III. $\sum_{n=1}^{\infty} \frac{1}{n^2 + 1} = \frac{\pi}{4}$
 - (A) none
- (B) I only
- (C) II only
- (D) II and III only
- 2. What are all values of p for which $\int_{1}^{\infty} \frac{1}{\sqrt[3]{x^p}}$ converges?
 - (A) P < -3
 - (B) P < -1
 - (C) P > 1
 - (D) P > 3
- 3. Which of the following series converge?
- I. $\sum_{n=1}^{\infty} \frac{n}{2n^2 + 1}$ II. $\sum_{n=1}^{\infty} ne^{-n^2}$ III. $\sum_{n=2}^{\infty} \frac{1}{x \ln x}$
- (A) I only
- (B) II only
- (C) III only
- (D) I and II only
- 4. What are all values of p for which $\sum_{n=1}^{\infty} \frac{\sqrt{n}}{n^p + 1}$ converges?

- (A) p > 0 (B) $p > \frac{1}{2}$ (C) p > 1 (D) $p > \frac{3}{2}$

- 5. What are all values of k for which the series $1 + (\sqrt{2})^k + (\sqrt{3})^k + (\sqrt{4})^k + \cdots + (\sqrt{n})^k + \cdots$ converges?
 - (A) k < -2
- (B) k < -1
- (C) k > 1
- (D) k > 2
- 6. Determine whether the following series converge or diverge.

(a)
$$1 + \frac{1}{8} + \frac{1}{27} + \frac{1}{64} + \cdots$$

(b)
$$1 + \frac{1}{(\sqrt[3]{2})^2} + \frac{1}{(\sqrt[3]{3})^2} + \frac{1}{(\sqrt[3]{4})^2} + \cdots$$

$$\sum_{n=1}^{\infty} n^{1-\pi}$$

 $\label{eq:convergent} \textbf{7. Determine whether the series is convergent or divergent.}$

1. Which of the following series converge?

I.
$$\sum_{n=1}^{\infty} \frac{1}{n^2 + n + 3}$$
 II. $\sum_{n=1}^{\infty} \frac{\cos^2 n}{n^2 + 2}$ III. $\sum_{n=1}^{\infty} \frac{1 + 4^n}{3^n}$

II.
$$\sum_{n=1}^{\infty} \frac{\cos^2 n}{n^2 + 2}$$

III.
$$\sum_{n=1}^{\infty} \frac{1+4^n}{3^n}$$

- (A) I only
- (B) II only
- (C) III only
- (D) I and II only

2. Which of the following series diverge?

I.
$$\sum_{n=1}^{\infty} \frac{1}{n!}$$

II.
$$\sum_{n=1}^{\infty} \frac{1}{\sqrt{n}+2}$$

II.
$$\sum_{n=1}^{\infty} \frac{1}{\sqrt{n+2}}$$
 III.
$$\sum_{n=1}^{\infty} \sin(\frac{1}{n})$$

- (A) I only
- (B) II only
- (C) II and III only
- (D) I, II, and III

3. Which of the following series converge?

I.
$$\sum_{n=1}^{\infty} \frac{n^{3/2}}{3n^3 + 7}$$

II.
$$\sum_{n=1}^{\infty} \frac{n^{3/2}}{3n^3 + 7}$$
 III. $\sum_{n=1}^{\infty} \frac{1}{\sqrt[3]{n^4 + 1}}$ IIII. $\sum_{n=1}^{\infty} \frac{n!}{n^n}$

III.
$$\sum_{n=1}^{\infty} \frac{n!}{n^n}$$

- (A) I only
- (B) I and II only
- (C) I and III only
- (D) I, II, and III
- 4. Which of the following series cannot be shown to converge using the limit comparison test with the series $\sum_{n=1}^{\infty} \frac{1}{2^n}$?

(A)
$$\sum_{n=1}^{\infty} \frac{1}{2^n - 1}$$

(B)
$$\sum_{n=1}^{\infty} \frac{n}{2^n}$$

(C)
$$\sum_{n=1}^{\infty} \frac{2n}{2^{n+1}\sqrt{n^2+1}}$$

(D)
$$\sum_{n=1}^{\infty} \frac{2n^2 - 3n}{2^n (n^2 + n - 100)}$$

5. Determine whether the following series converge or diverge.

(a)
$$\sum_{n=1}^{\infty} \frac{\cos(2n)}{1 + (1.6)^n}$$

(b)
$$\sum_{n=1}^{\infty} \frac{4^n}{2^n + 3^n}$$

 $_{
m 6.}$ Determine whether the series is convergent or divergent.

(a)
$$\sum_{n=1}^{\infty} \frac{1}{\sqrt{n^2 + 4}}$$
 (b) $\sum_{n=3}^{\infty} \frac{2^n}{3^n + 1}$

(b)
$$\sum_{n=2}^{\infty} \frac{2^n}{3^n + 1}$$

1. Which of the following series converge?

I.
$$\sum_{n=1}^{\infty} \frac{(-1)^n \sqrt{n}}{n}$$
 II. $\sum_{n=1}^{\infty} \frac{(-1)^n}{\ln n}$

II.
$$\sum_{n=1}^{\infty} \frac{(-1)^n}{\ln n}$$

III.
$$\sum_{n=1}^{\infty} \cos(n\pi)$$

- (A) I only
- (B) II only
- (C) III only
- (D) I and II only

2. Which of the following series converge?

$$I. \sum_{n=1}^{\infty} (-1)^n \cos(\frac{\pi}{n})$$

II.
$$\sum_{n=1}^{\infty} \sin(\frac{2n-1}{2})\pi$$

I.
$$\sum_{n=1}^{\infty} (-1)^n \cos(\frac{\pi}{n})$$
 II. $\sum_{n=1}^{\infty} \sin(\frac{2n-1}{2})\pi$ III. $\sum_{n=1}^{\infty} (-1)^{n+1} \frac{2n}{n^2+1}$

- (A) I only
- (B) II only
- (C) III only
- (D) I and II only
- 3. For what integer k, k > 1, will both $\sum_{n=1}^{\infty} \frac{(-1)^{kn}}{\sqrt{n}}$ and $\sum_{n=1}^{\infty} \frac{n^2 \sqrt{n}}{n^k + 1}$ converge?
 - (A) 3
- (B) 4
- (C) 5
- (D) 6
- 4. Let $s = \sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n^3}$ and s_n be the sum of the first n terms of the series. If $|s s_n| < \frac{1}{500}$ what is the smallest value of n?
 - (A) 6
- (B) 7
- (C) 8
- (D) 9

5. Which of the following series converge?

I.
$$\sum_{n=2}^{\infty} (-1)^n \sqrt[n]{3}$$

II.
$$\sum_{n=1}^{\infty} \frac{3^{n+1}}{\pi^n}$$

I.
$$\sum_{n=2}^{\infty} (-1)^n \sqrt[n]{3}$$
 III. $\sum_{n=1}^{\infty} \frac{3^{n+1}}{\pi^n}$ III. $\sum_{n=1}^{\infty} (\tan^{-1}(n+1) - \tan^{-1}(n))$

- (A) I only
- (B) II only
- (C) III only
- (D) II and III only

6. Which of the following statements about the series $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}(n+3)}{n^2}$ is true?

- (A) The series converges conditionally.
- (B) The series converges absolutely.
- (C) The series converges but neither conditionally nor absolutely.
- (D) The series diverges.

7. Which of the following series is absolutely convergent?

(A)
$$\sum_{n=1}^{\infty} \frac{(-1)^{n+1} \sqrt{n}}{n}$$

(B)
$$\sum_{n=1}^{\infty} \frac{(-1)^{n+1} n}{n^2 \sqrt{n}}$$

(C)
$$\sum_{n=1}^{\infty} \frac{(-1)^{n-1} n}{n^2 - \sqrt{n}}$$

(D)
$$\sum_{n=1}^{\infty} \frac{(-1)^{n-1} (n^2 + 1)}{n^3}$$

8. An alternating series is given by $S = \sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n^2 + 3}$. Let S_3 be the sum of the first three terms of the given alternating series. Of the following, which is the smallest number M for which the alternating series error bound guarantees that $|S - S_3| \le M$?

- (A) $\frac{1}{4}$
- (B) $\frac{1}{7}$
- (C) $\frac{1}{19}$ (D) $\frac{1}{28}$

9. Let $f(x) = 1 - \frac{3x}{2!} + \frac{9x^2}{4!} - \frac{27x^3}{6!} + \dots + \frac{(-1)^n (3x)^n}{(2n)!} + \dots$

Use the alternating series error bound to show that $1 - \frac{3}{2!} + \frac{9}{4!}$ approximates f(1) with an error less than $\frac{1}{20}$.

Test	Series	Conditions of Convergence or Divergence
n th-Term	$\sum_{n=1}^{\infty} a_n$	The series is divergent if $\lim_{x\to\infty} a_n \neq 0$. Test is inconclusive if $\lim_{x\to\infty} a_n = 0$.
Geometric Series	$\sum_{n=1}^{\infty} ar^{n-1}$	The series is convergent if $ r < 1$, divergent if $ r \ge 1$. $S = \frac{a}{1-r}$
Telescoping Series	$\sum_{n=1}^{\infty} (a_n - a_{n+1})$	The series is convergent if $\lim_{x\to\infty} a_n = L$. $S = a_1 - L$
<i>p</i> -Series	$\sum_{n=1}^{\infty} \frac{1}{n^p}$	The series is convergent if $p > 1$, divergent if $p \le 1$.
Alternating Series	$\sum_{n=1}^{\infty} (-1)^{n-1} a_n$	The series is convergent if $\lim_{x \to \infty} a_n = 0$ and $0 < a_{n+1} \le a_n$.
Integral	$\sum_{n=1}^{\infty} a_n$	If f is positive, continuous, and decreasing for $x \ge 1$ and $a_n = f(n)$, then the series converges if $\int_1^\infty f(x) \ dx$ converges, diverges if $\int_1^\infty f(x) \ dx$ diverges.
Ratio	$\sum_{n=1}^{\infty} a_n$	The series is convergent if $\lim_{n\to\infty} \left \frac{a_{n+1}}{a_n} \right < 1$, divergent if $\lim_{n\to\infty} \left \frac{a_{n+1}}{a_n} \right > 1$, inconclusive if $\lim_{n\to\infty} \left \frac{a_{n+1}}{a_n} \right = 1$.
Direct Comparison	$\sum_{n=1}^{\infty} a_n$	Let $0 < a_n \le b_n$ for all n . If $\sum_{n=1}^{\infty} b_n$ converges, then $\sum_{n=1}^{\infty} a_n$ converges. If $\sum_{n=1}^{\infty} a_n$ diverges, then $\sum_{n=1}^{\infty} b_n$ diverges.
Limit Comparison	$\sum_{n=1}^{\infty} a_n$	Suppose that $a_n > 0$, $b_n > 0$, and $\lim_{n \to \infty} (\frac{a_n}{b_n}) = L$. Then $\sum_{n=1}^{\infty} a_n$ converges if $\sum_{n=1}^{\infty} b_n$ converges and $\sum_{n=1}^{\infty} a_n$ diverges if $\sum_{n=1}^{\infty} b_n$ diverges.

- 1. Which of the following series converge?
 - I. $\sum_{n=1}^{\infty} \frac{n!}{2^n}$
- II. $\sum_{n=1}^{\infty} \frac{n}{3^n}$
- III. $\sum_{n=1}^{\infty} n \left(\frac{2}{3}\right)^n$

- (A) I only
- (B) II only
- (C) II and III only
- (D) I, II, and III

- 2. Which of the following series converge?
 - I. $\sum_{n=1}^{\infty} \frac{n!}{n^n}$
- II. $\sum_{n=1}^{\infty} \frac{(n!)^2}{(2n)!}$
- III. $\sum_{n=1}^{\infty} \frac{n^9}{9^n}$

- (A) I only
- (B) II only
- (C) I and II only
- (D) I, II, and III
- 3. Determine whether the following series converge or diverge.
 - (a) $\sum_{n=1}^{\infty} \frac{n!}{n \ 2^n}$
 - (b) $\sum_{n=0}^{\infty} \frac{\cos^n x}{2^n}$
 - (c) $\sum_{k=1}^{\infty} \frac{3^k k!}{(k+3)!}$