

Supplementary Material

1 SUPPLEMENTARY MATHEMATICS

Here we prove the equation

$$|Q_L| = 2^{L-2}(2^{L-1} + 1) (S1)$$

Proof: For $L \geq 2$, there are 4^L IBD (identical by descent) probabilities $Q(i_1, i_2, \dots i_L)$ since $i_l = 1, 2, 3$ or 4 and furthermore they add up to 1. A number of these probabilities are equal because of two symmetries: (1) the two homologous chromosomes in each individual play identical roles, and (2) the siblings play identical roles (assuming no sex-dependence of meiosis, so that for instance the recombination rates $r_{l,l'}$ are sex-independent. It is thus appropriate to use only one representative of each symmetry equivalence class, so that for instance one may impose this representative to have its first index, i_1 , equal to zero. In fact one can identify exactly one element in each class by imposing that the indices of the representative Q's have either

1.
$$i_l \in \{0, 1\} \ \forall l \in \{2, .., L\}, or$$

2.
$$i_l \in \{0, 1\} \ \forall l \in \{2, .., K-1\}, i_K = 2 \ \text{and} \ i_l \in \{0, 1, 2, 3\} \ \forall l \in \{K+1, .., L\}$$

The number of equivalence classes and thus of Q's to consider is then

$$|Q_L| = 2^{L-1} + \sum_{l=2}^{L} 2^{l-2} 4^{L-l} = 2^{L-1} + 2^{2L-2} \sum_{l=2}^{L} 2^{-l}$$
 (S2)

Given that $\sum_{l=2}^{L} 2^{-l}$ is a geometric progression of common ratio 2^{-1} from 2 to L, the sum of its terms can be expressed as:

$$\sum_{l=2}^{L} 2^{-l} = \frac{2^{-2} - 2^{-(L-1)}}{1 - 2^{-1}} = 2^{-1} - 2^{-L}$$
 (S3)

Substituting S3 in S2, we get

$$|Q_L| = 2^{L-1} + 2^{2L-2}(2^{-1} - 2^{-L}) = 2^{L-1} + 2^{2L-3} - 2^{L-2}$$
(S4)

Factorizing with respect to 2^{L-2} and after simplification, this gives

$$|Q_L| = 2^{L-2}(1+2^{L-1}). (S5)$$

2 THE SELF-CONSISTENT EQUATIONS FOR THREE LOCI

Here we provide the coefficients entering each of the self-consistent equations.

2.1 The self consistent equation for Q(0,0,0)

In Figure S9 we show the graphical representation for each term entering this self-consistent equation.

$$((1 - r_{12})(1 - r_{23}) - 1)Q(0, 0, 0) + \frac{1}{2}(1 - r_{12})Q(0, 0, 2) + \frac{1}{2}(1 - r_{13})Q(0, 2, 0) + \frac{1}{2}(1 - r_{23})Q(0, 2, 2) = 0$$
(S6)

Figure S1. $Q(0,0,0): \frac{1}{2} \times (1-r_{12}) \times (1-r_{23}) \times Q(0,0,0)$

Figure S3. $Q(0,0,0): \frac{1}{2} \times \frac{1}{2} \times (1-r_{13}) \times Q(0,2,0)$

Figure S5. $Q(0,0,0): \frac{1}{2} \times (1-r_{12})(1-r_{23}) \times Q(2,2,2)$

Figure S7. $Q(0,0,0): \frac{1}{2} \times \frac{1}{2} \times (1-r_{13}) \times Q(2,0,2)$

Figure S2. $Q(0,0,0): \frac{1}{2} \times (1-r_{12}) \times \frac{1}{2} \times Q(0,0,2)$

Figure S4. $Q(0,0,0): \frac{1}{2} \times \frac{1}{2} \times (1-r_{23}) \times Q(0,2,2)$

Figure S6. $Q(0,0,0): \frac{1}{2} \times \frac{1}{2} \times (1-r_{12}) \times Q(2,2,0)$

Figure S8. $Q(0,0,0): \frac{1}{2} \times \frac{1}{2} \times (1-r_{23}) \times Q(2,0,0)$

Figure S9. Q(0, 0, 0)

2.2 The self consistent equation for Q(0,0,1)

In Figure S18 we show the graphical representation for each term entering this self-consistent equation.

$$(1 - r_{12})r_{23}Q(0,0,0) - Q(0,0,1) + \frac{1}{2}(1 - r_{12})Q(0,0,2) + \frac{1}{2}r_{13}Q(0,2,0) + \frac{1}{2}r_{23}Q(0,2,2) = 0$$
(S7)

Figure S10. $Q(0,0,1): \frac{1}{2} \times (1-r_{12}) \times r_{23} \times Q(0,0,0)$

Figure S12. $Q(0,0,1): \frac{1}{2} \times \frac{1}{2} \times (1-r_{12}) \times Q(0,0,2)$

Figure S14. $Q(0,0,1): \frac{1}{2} \times \frac{1}{2} \times r_{13} \times Q(2,0,2)$

Figure S16. $Q(0,0,1): \frac{1}{2} \times \frac{1}{2} \times r_{23} \times Q(2,0,0)$

Figure S18. Q(0,0,1)

Figure S11. $Q(0,0,1): \frac{1}{2} \times \frac{1}{2} \times r_{13} \times Q(0,2,0)$

Figure S13. $Q(0,0,1): \frac{1}{2} \times \frac{1}{2} \times r_{23} \times Q(0,2,2)$

Figure S15. $Q(0,0,1): \frac{1}{2} \times \frac{1}{2} \times (1-r_{12}) \times Q(2,2,0)$

Figure S17. $Q(0,0,1): \frac{1}{2} \times (1-r_{12}) \times r_{23} \times Q(2,2,2)$

2.3 The self consistent equation for Q(0,0,2)

In Figure S27 we show the graphical representation for each term entering this self-consistent equation.

Figure S19. $Q(0,0,2): \frac{1}{2} \times (1-r_{12}) \times \frac{1}{2} \times Q(0,0,1)$

Figure S21. $Q(0,0,2): \frac{1}{2} \times (1-r_{12}) \times \frac{1}{2} \times Q(2,2,1)$

Figure S23. $Q(0,0,2): \frac{1}{2} \times \frac{1}{2} \times \frac{1}{2} \times Q(0,2,1)$

Figure S25. $Q(0,0,2): \frac{1}{2} \times \frac{1}{2} \times \frac{1}{2} \times Q(2,0,1)$

Figure S27. Q(0,0,2)

Figure S20. $Q(0,0,2): \frac{1}{2} \times (1-r_{12}) \times \frac{1}{2} \times Q(0,0,3)$

Figure S22. $Q(0,0,2): \frac{1}{2} \times (1-r_{12}) \times \frac{1}{2} \times Q(2,2,3)$

Figure S24. $Q(0,0,2): \frac{1}{2} \times \frac{1}{2} \times \frac{1}{2} \times Q(0,2,3)$

Figure S26. $Q(0,0,2): \frac{1}{2} \times \frac{1}{2} \times \frac{1}{2} \times Q(2,0,3)$

2.4 The self consistent equation for Q(0, 1, 0)

In Figure S36 we show the graphical representation for each term entering this self-consistent equation.

Figure S28. $Q(0,1,0): \frac{1}{2} \times r_{12} \times (1-r_{23}) \times Q(0,0,0)$

Figure S30. $Q(0,1,0): \frac{1}{2} \times \frac{1}{2} \times r_{13} \times Q(0,2,0)$

Figure S32. $Q(0,1,0): \frac{1}{2} \times r_{12}r_{23} \times Q(2,2,2)$

Figure S34. $Q(0,1,0): \frac{1}{2} \times \frac{1}{2} \times (1-r_{13}) \times Q(2,0,2)$

Figure S36. Q(0, 1, 0)

Figure S29. $Q(0,1,0): \frac{1}{2} \times r_{12} \times \frac{1}{2} \times Q(0,0,2)$

Figure S31. $Q(0,1,0): \frac{1}{2} \times \frac{1}{2} \times r_{23} \times Q(0,2,2)$

Figure S33. $Q(0,1,0): \frac{1}{2} \times \frac{1}{2} \times r_{12} \times Q(2,2,0)$

Figure S35. $Q(0,1,0): \frac{1}{2} \times r_{23} \times \frac{1}{2} \times Q(2,0,0)$

2.5 The self consistent equation for Q(0, 1, 1)

In Figure S45 we show the graphical representation for each term entering this self-consistent equation.

Figure S37. $Q(0,1,1): \frac{1}{2} \times r_{12} \times (1-r_{23}) \times Q(0,0,0)$

Figure S39. $Q(0,1,1): \frac{1}{2} \times \frac{1}{2} \times r_{13} \times Q(0,2,0)$

Figure S41. $Q(0,1,1): \frac{1}{2} \times r_{12} \times (1-r_{23}) \times Q(2,2,2)$

Figure S43. $Q(0,1,1): \frac{1}{2} \times r_{13} \times \frac{1}{2} \times Q(2,0,2)$

Figure S45. Q(0, 1, 1)

Figure S38. $Q(0,1,1): \frac{1}{2} \times \frac{1}{2} \times r_{12} \times Q(0,0,2)$

Figure S40. $Q(0,1,1): \frac{1}{2} \times \frac{1}{2} \times (1-r_{23}) \times Q(0,2,2)$

Figure S42. $Q(0,1,1): \frac{1}{2} \times r_{12} \times \frac{1}{2} \times Q(2,2,0)$

Figure S44. $Q(0,1,1): \frac{1}{2} \times \frac{1}{2} \times (1-r_{23}) \times Q(2,0,0)$

2.6 The self consistent equation for Q(0, 1, 2)

In Figure S54 we show the graphical representation for each term entering this self-consistent equation.

Figure S46. $Q(0,1,2): \frac{1}{2} \times \frac{1}{2} \times r_{12} \times Q(0,0,1)$

Figure S48. $Q(0,1,2): \frac{1}{2} \times \frac{1}{2} \times \times r_{12} \times Q(2,2,1)$

Figure S50. $Q(0,1,2): \frac{1}{2} \times \frac{1}{2} \times \frac{1}{2} \times Q(0,2,1)$

Figure S52. $Q(0,1,2): \frac{1}{2} \times \frac{1}{2} \times \frac{1}{2} \times Q(2,0,1)$

Figure S54. Q(0, 1, 2)

Figure S47. $Q(0,1,2): \frac{1}{2} \times \frac{1}{2} \times \frac{1}{2} \times r_{12} \times Q(0,0,3)$

Figure S49. $Q(0,1,2): \frac{1}{2} \times \frac{1}{2} \times r_{12} \times Q(2,2,3)$

Figure S51. $Q(0,1,2): \frac{1}{2} \times \frac{1}{2} \times \frac{1}{2} \times Q(0,2,3)$

Figure S53. $Q(0,1,2): \frac{1}{2} \times \frac{1}{2} \times \frac{1}{2} \times Q(2,0,3)$

2.7 The self consistent equation for Q(0, 2, 0)

In Figure S63 we show the graphical representation for each term entering this self-consistent equation.

Figure S55. $Q(0,2,0): \frac{1}{2} \times (1-r_{13}) \times \frac{1}{2} \times Q(0,1,0)$

Figure S57. $Q(0,2,0): \frac{1}{2} \times (1-r_{13}) \times \frac{1}{2} \times Q(2,1,2)$

Figure S59. $Q(0,2,0): \frac{1}{2} \times \frac{1}{2} \times \frac{1}{2} \times Q(2,1,0)$

Figure S61. $Q(0,2,0): \frac{1}{2} \times \frac{1}{2} \times \frac{1}{2} \times Q(0,1,2)$

Figure S63. Q(0, 2, 0)

Figure S56. $Q(0,2,0): \frac{1}{2} \times (1-r_{13}) \times \frac{1}{2} \times Q(0,3,0)$

Figure S58. $Q(0,2,0): \frac{1}{2} \times (1-r_{13}) \times \frac{1}{2} \times Q(2,3,2)$

Figure S60. $Q(0,2,0): \frac{1}{2} \times \frac{1}{2} \times \frac{1}{2} \times Q(2,3,0)$

Figure S62. $Q(0,2,0): \frac{1}{2} \times \frac{1}{2} \times \frac{1}{2} \times Q(0,1,3)$

2.8 The self consistent equation for Q(0, 2, 1)

In Figure S72 we show the graphical representation for each term entering this self-consistent equation.

Figure S64. $Q(0,2,1): \frac{1}{2} \times r_{13} \times \frac{1}{2} \times Q(0,1,0)$

Figure S66. $Q(0,2,1): \frac{1}{2} \times r_{13} \times \frac{1}{2} \times Q(2,1,2)$

Figure S68. $Q(0, 2, 1) : \frac{1}{2} \times \frac{1}{2} \times \frac{1}{2} \times Q(2, 1, 0)$

Figure S70. $Q(0,2,1): \frac{1}{2} \times \frac{1}{2} \times \frac{1}{2} \times Q(0,1,2)$

Figure S72. Q(0, 2, 1)

Figure S65. $Q(0,2,1): \frac{1}{2} \times r_{13} \times \frac{1}{2} \times Q(0,3,0)$

Figure S67. $Q(0,2,1): \frac{1}{2} \times r_{13} \times \frac{1}{2} \times Q(2,3,2)$

Figure S69. $Q(0,2,1): \frac{1}{2} \times \frac{1}{2} \times \frac{1}{2} \times Q(2,3,0)$

Figure S71. $Q(0,2,1): \frac{1}{2} \times \frac{1}{2} \times \frac{1}{2} \times Q(0,3,2)$

2.9 The self consistent equation for Q(0,2,2)

In Figure S81 we show the graphical representation for each term entering this self-consistent equation.

Figure S73. $Q(0,2,2): \frac{1}{2} \times \frac{1}{2} \times (1-r_{23}) \times Q(0,1,1)$

Figure S75. $Q(0,2,2): \frac{1}{2} \times \frac{1}{2} \times (1-r_{23}) \times Q(2,1,1)$

Figure S77. $Q(0,2,2): \frac{1}{2} \times \frac{1}{2} \times \frac{1}{2} \times Q(0,1,3)$

Figure S79. $Q(0,2,2): \frac{1}{2} \times \frac{1}{2} \times \frac{1}{2} \times Q(2,1,3)$

Figure S81. Q(0,2,2)

Figure S74. $Q(0,2,2): \frac{1}{2} \times \frac{1}{2} \times (1-r_{23}) \times Q(0,3,3)$

Figure S76. $Q(0,2,2): \frac{1}{2} \times \frac{1}{2} \times (1-r_{23}) \times Q(2,3,3)$

Figure S78. $Q(0,2,2): \frac{1}{2} \times \frac{1}{2} \times \frac{1}{2} \times Q(031)$

Figure S80. $Q(0,2,2): \frac{1}{2} \times \frac{1}{2} \times \frac{1}{2} \times Q(2,3,1)$

2.10 The self consistent equation for Q(0, 2, 3)

In Figure S90 we show the graphical representation for each term entering this self-consistent equation.

Figure S82. $Q(0,2,3): \frac{1}{2} \times \frac{1}{2} \times r_{23} \times Q(0,1,1)$

Figure S84. $Q(0,2,3): \frac{1}{2} \times \frac{1}{2} \times r_{23} \times Q(2,1,1)$

Figure S86. $Q(0,2,3): \frac{1}{2} \times \frac{1}{2} \times \frac{1}{2} \times Q(0,1,3)$

Figure S88. $Q(0,2,3): \frac{1}{2} \times \frac{1}{2} \times \frac{1}{2} \times Q(2,1,3)$

Figure S90. Q(0, 2, 3)

Figure S83. $Q(0,2,3): \frac{1}{2} \times \frac{1}{2} \times r_{23} \times Q(0,3,3)$

Figure S85. $Q(0,2,3): \frac{1}{2} \times \frac{1}{2} \times r_{23} \times Q(2,3,3)$

Figure S87. $Q(0,2,3): \frac{1}{2} \times \frac{1}{2} \times \frac{1}{2} \times Q(031)$

Figure S89. $Q(0,2,3): \frac{1}{2} \times \frac{1}{2} \times \frac{1}{2} \times Q(2,3,1)$