Serial No.: 10/692,079 Group Art Unit 2611

1

1

2

3

4

5

6

7

8

9

1

Docket No. PU030092 Customer No. 24498

RECEIVED
CENTRAL FAX CENTER

Listing and Amendments to the Claims

JAN 0 5 2007

This listing of claims will replace all prior versions, and listings, of claims in the application.

A method for sampling a digital signal yielding improved jitter 1. (original) 1 performance within prescribed bandwidth constraints, comprising the steps of: 2 periodically sampling the digital signal n times during every interval t, with n chosen such 3 that $log_2(n+1)$ is an integer (x) greater than zero; 4 generating a x+1-bit sample value after each interval t, the sample value having a first bit 5 indicating the value of the digital signal being sampled, and x remaining bits which collectively 6 indicate a sample interval during which the digital signal changed states if such a change did 7 8 occur, and inverting the first bit of each sample value upon decoding to coincide with the change in 9 the digital signal. 10

- 2. (original) The method according to claim 1 wherein n=15 and x equals 4.
- 3. (currently amended) An Aapparatus for sampling a digital signal yielding improved jitter performance within prescribed bandwidth constraints, comprising-of:
 - a sample clock for generating n periodic clock pulses during every interval t, with n chosen such that $\log_2(n+1)$ is an integer (x) greater than zero;
 - a receiver for generating a x+1-bit sample value after each interval t, the sample value having a first bit indicating the value of the digital signal being sampled, and x remaining bits which collectively indicate a sample interval during which the digital signal changed states if such a change did occur, and the receiver inverting the first bit of each sample value upon decoding to coincide with the change in the digital signal.
 - 4. (original) The apparatus according to claim 1 wherein n=15 and x equals 4.
- 5 (previously presented) A method for sampling a digital signal yielding improved jitter performance within prescribed bandwidth constraints, comprising the steps of:
- periodically sampling the digital signal n times during every interval t, with n chosen such that $\log_2(n) = \langle x \text{ where } x \text{ is an integer};$

Serial No.: 10/692,079 Group Art Unit 2611

1

Docket No. PU030092 Customer No. 24498

5	generating a $x+1$ -bit sample value after each interval t , the sample value having a first bit
6	indicating the value of the digital signal being sampled, and x remaining bits which collectively
7	indicate a sample interval during which the digital signal changed states if such a change did
8	occur, and
9	inverting the first bit of each sample value upon decoding to coincide with the change in
10	the digital signal.
1	6. (previously presented) The method according to claim 5 wherein $n=15$ and x
2	equals 4.
1	7. (currently amended) An Aapparatus for sampling a digital signal yielding
2	improved jitter performance within prescribed bandwidth constraints, comprising of:
3	a sample clock for generating n periodic clock pulses during every interval t , with n
4	chosen such that $\log_2(n) = \langle x \text{ where } x \text{ is an integer} \rangle$
5	a receiver for generating a $x+1$ -bit sample value after each interval t , the sample value
6	having a first bit indicating the value of the digital signal being sampled, and x remaining bits
7	which collectively indicate a sample interval during which the digital signal changed states if
8	such a change did occur, and the receiver inverting the first bit of each sample value upon
9	decoding to coincide with the change in the digital signal.

8. (new) The apparatus according to claim 7 wherein n=15 and x equals 4.