Работа 1.4.1*

Изучение экспериментальных погрешностей на примере физического маятника

> Тимонин Андрей Б01-208

Содержание

1) Аннотация	3
2) Теоретические сведения	3
3) Методика измерений	4
4) Используемое оборудование	4
5) Результаты измерений и обработка данных	5
6) Заключение	9

1) Аннотация

Цель работы: 1) на примере измерения периода свободных колебаний физического маятника познакомиться с систематическими и случайными погрешностями, прямыми и косвенными измерениями; 2) проверить справедливость формулы для периода колебаний физического маятника и определить значение ускорения свободного падения; 3) убедиться в справедливости теоремы Гюйгенса об обратимости точек опоры и центра качания маятника; 4) оценить погрешность прямых и косвенных измерений и конечного результата.

В работе используются: металлический стержень с опорной призмой; дополнительный груз; закреплённая на стене консоль; подставка с острой гранью для определения цента масс маятника; секундомер; счётчик колебаний (механический или электронный); линейки металлические различной длины; штангенциркуль; электронные весы; математический маятник (небольшой груз, подвешенный на нитях).

2) Теоретические сведения

Учёт влияния подвесной призмы*

Формула (6) получена в предположении, что подвес маятника является материальной точкой. На самом же деле маятник подвешивается с помо-щью треугольной призмы конечного размера, поэтому использование (6) может привести к *систематической* погрешности результата. Для более точных расчётов следовало бы воспользоваться общей формулой периода колебаний физического маятника (5), принимая во внимание наличие двух тел — стержня и призмы:

$$T = 2\pi \sqrt{\frac{J_{\text{ct}} + J_{\text{np}}}{m_{\text{ct}}ga_{\text{ct}} - m_{\text{np}}ga_{\text{np}}}},$$

где $JJ_{\rm np}$, $mm_{\rm np}$ и $aa_{\rm np}$ — соответственно момент инерции, масса и расстояние до центра масс призмы (знак «минус» в знаменателе учитывает, что призма находится *выше* оси подвеса).

Однако призма имеет малые размеры и массу, и, возможно, эта погреш-ность будет мала. Проведём соответствующие оценки. В работе использу-ется призма массой $mm_{\rm пp}\sim70~{\rm r}$, с расстоянием от ребра центра масс $aa_{\rm пp}\sim1,5~{\rm cm}$. Поскольку призма находится непосредственно вблизи оси качания, её наличие мало влияет на суммарный момент инерции маятника. Действи-тельно, по порядку величины для призмы имеем $JJ_{\rm пp}\sim mm_{\rm пp}aa_{\rm пp}2\sim10$ –5 кг·м2, а при $aa=10~{\rm cm}$ имеем $mm_{\rm cr}aa2\sim10$ –2 кг·м2, то есть поправка на мо-мент инерции призмы в условиях опыта составляет не более 0,1%. По-скольку такая погрешность заведомо меньше погрешности используемых нами приборов (например, линейки), ей можно спокойно пренебречь. Срав-ним теперь моменты сил, действующие на призму и стержень при тех же $aa=10~{\rm cm}$:

$$\frac{M_{\rm np}}{M_{\rm cr}} = \frac{m_{\rm np} g a_{\rm np}}{m_{\rm cr} g a_{\rm cr}} \sim 10^{-2}.$$

Видим, что здесь поправка может достигать 1%. Таким образом, если мы хотим (и можем) провести измерения с погрешностью менее 1%, эту по-правку нельзя не учитывать †.

На практике учесть влияние призмы можно следующим образом. Поскольку расстояние $aa_{\rm пp}$ трудно поддаётся непосредственному изме-рению, можно исключить его, изме-ряя положение центра масс всей системы. Пусть $xx_{\rm ц}$ — расстояние от центра масс cucmemb до точки подвеса. По определению имеем

$$x_{\mathrm{I\hspace{-.1em}I}} = \frac{m_{\mathrm{c}\mathrm{T}} a_{\mathrm{c}\mathrm{T}} - m_{\mathrm{n}\mathrm{p}} a_{\mathrm{n}\mathrm{p}}}{m_{\mathrm{c}\mathrm{T}} + m_{\mathrm{n}\mathrm{p}}}$$

Рис. 4. Смещение центра масс из-за подвесной призмы

(«минус» учитывает положение призмы). Исключая отсюда aa_{np} , получим формулу для периода с нужной нам поправкой:

$$T = 2\pi \sqrt{\frac{\frac{l^2}{12} + a^2}{g\left(1 + \frac{m_{\rm np}}{m_{\rm cr}}\right)x_{\rm II}}},$$

Таким образом, для более точного измерения g следует для каждого по-ложения призмы измерять не только величину aa — положение призмы от-носительно центра масс стержня), но и расстояние $xx_{\rm ц}$ — положение центра масс стержня с призмой относительно призмы (см. Рис. 4).

3) Методика измерений

Расстояния во всех установках измеряются линейками и штангенциркулем. Положение центра масс маятника может быть определено с помощью балансирования маятника на вспомогательной 1-образной подставке с острой верхней гранью.

4) Используемое оборудование

Прибор	Цена деления	Погрешность
Линейка	1 mm	0.5 мм
Секундомер	0.01 c	0.01 c
Весы	0.001 г	0.001 г

Экспериментальная установка

Тонкий стальной стержень длиной $ll\sim 1$ м и массой $mm\sim 1$ кг (точные параметры определяются непосредственными измерениями) подвешивается на прикреплённой стене консоли с помощью небольшой призмы. Диаметр стержня много меньше его длины $dd\sim 12$ мм $\ll ll$. Небольшая призма крепится на стержне винтом и острым основанием опирается на поверхность закреплённой на стене консоли. Острие ребра призмы образует ось качания маятника.

Возможны две схемы реализации установок.

Установка А. Призму можно перемещать вдоль стержня, изменяя длину *аа* — расстояние от центра масс до точки подвеса. Период колебаний измеряется непосредственно с помощью секундомера.

Рис. 1. Стержень как физический маятник

5) Результаты измерений и обработка данных

$$\sigma_t^{ ext{cayq}} = \sqrt{rac{1}{N-1} \sum (t_i - ar{t})^2}.$$

Формула - 1. Формула для вычисления случайной погрешности периода

$$\sigma_t^{ ext{полн}} = \sqrt{(\sigma_t^{ ext{ca}})^2 + (\sigma_t^{ ext{chct}})^2}.$$

Формула - 2. Формула для вычисления полной погрешности периода

#	T
1	30.5
2	30.56
3	30.56
4	30.5

Лаб. данные - 1. Измерения 4 периодов колебаний физ. маятника

#	T	а	х_с(от острия)	n	отклоняли на 5 градусов	шаг 5	t_n	L маятника мат	Т_мат_маят
1	31.9	40	37	20			1.595	0.6319	31.72
2	30.28	35	32.5	20			1.514	0.569965685	30.15
3	30.9	30	27.6	20			1.545	0.593545377	30.6
4	30.53	25	23.5	20			1.5265	0.579416124	30.44
5	31.31	20	18.6	20			1.5655	0.609400917	31.56
6	33.35	15	14	20			1.6675	0.691398837	31.28
7	38.38	10	9.7	20			1.919	0.915686706	-
8	52.1	5	4.5	20			2.605	1.687378125	-

Лаб. данные - 2. Измерения 8 периодов маятника при перемещении призмы и длины матем. маятника с тем же периодом

$$T = 2\pi \sqrt{\frac{\frac{l^2}{12} + a^2}{g\left(1 + \frac{m_{\rm np}}{m_{\rm cr}}\right) x_{\rm u}}},$$

Формула - 3. Для вычисления периода физического маятника с учетом влияния призмы

$$g = \frac{\frac{l^2}{12} + a^2}{\left(1 + \frac{m_{prism}}{m_{sterj}}\right) \cdot x_y} \cdot \frac{4 \cdot \pi^2}{T^2}$$

Формула - 4. Формула для вычисления ускорения свободного падения

$$g = \frac{\frac{1}{12} + 0.36^2}{(1 + \frac{0.075}{1.0243}) \cdot 0.335} \cdot \frac{4 \cdot \pi^2}{1.5345^2}$$

Расчет - 1. Вычисление ускорения свободного падения

$$q = 9.929$$

Расчет - 2. Значение ускорения свободного падения для одного измерения

$$\triangle g = (\frac{9.929}{9.81} \cdot 100\%) - 100\% = 1.22\%$$

Расчет - 3. Вычисление процентного отклонения значения от истинного

$$t_{sred} = \frac{30.5 + 30.56 + 30.56 + 30.5}{4} = 30.53$$

Расчет - 4. Вычисление среднего значения периода 20 колебаний

$$\sigma_{sluch} = 0.03464101615$$

Расчет - 5. Значение случайной погрешности при вычислении периода 20 колебаний

Для более точной оценки погрешности мы возьмем в качестве систематической ошибки – время реакции человека. Будем отпускать линейку от 0 и ловить ее.

№	Н_линейки
1	18
2	22
3	14
4	17
5	23

$$h_{sred} = \frac{18+22+14+17+23}{5} = 18.8 \text{ cm}$$

Расчет - 6. Вычисление среднего значения высоты схвата линейки

$$\sigma_h = 3 \text{ mm}$$

Расчет - 7. Систематическая ошибки при измерении высоты схвата линейки

$$\sigma_{t_{reak}} = \sqrt{\frac{2}{g}} \cdot \frac{1}{2 \cdot \sqrt{h}} \cdot \sigma_h$$

Формула - 5. Формула для расчета погрешности времени реакции через частную производную

$$\sigma_h = \sqrt{(\sigma_{h_{sluch}})^2 + (\sigma_{h_{sist}})^2}$$

Формула - 6. Формула для вычисления полной погрешности высоты схвата линейки

$$\sigma_h = \sqrt{(0.03701351105)^2 + (\frac{3}{1000})^2} = 0.03713488926$$

Расчет - 8. Полная погрешнсоть высоты схвата линейки

$$\sigma_{t_{reak}} = \sqrt{\frac{2}{9.81}} \cdot \frac{1}{2 \cdot \sqrt{0.188}} \cdot 0.03713488926 = 0.01933542431$$

Расчет - 9. Погрешность вычисления времени реакции

$$\sigma_{t_{total}} = \sqrt{(\sigma_{t_{reak}})^2 + (\sigma_{t_{sluch}})^2}$$

Формула - 7. Формула для полной погрешности периода 20 колебаний

$$\sigma_{t_{total}} = \sqrt{(0.01933542431)^2 + (0.3464101615)^2}$$

Расчет - 10. Полная погрешность периода 20 колебаний

$$\sigma_{t_{total}} = 0.3469493603$$

Расчет - 11. Полная погрешность периода 20 колебаний

$$\sigma_{t_i} = 0.01734746802$$

Расчет - 12. Полная погрешность периода 1 колебания

График зависимости Т от а

График зависимости и от v

 $g_mnk = 12.54$

Отклонение g в процентах = +27.8 %

6) Заключение

Среднее меньше мнк => погрешность вычисления среднего меньше чем погрешность вычисления мнк