

CS 5330: Pattern Recognition and Computer Vision

Northeastern University

OpenCV Workshop Lab 4: Image Processing

Image Processing

- 1. Feature Detection and Matching
- 2. Implementing Keypoint Detection
- 3. Feature Descriptor and Matching

Introduction to Feature Detection and Matching

- Feature Detection
 - Features refer to specific structures or patterns that are easily distinguishable
 - Examples of features: edges, corners, and blobs
- Keypoint Detection
 - Keypoints are distinct points in an image that are invariant to transformations like scale and rotations
 - There are many methods for detecting keypoints
 - Harris Corner Detector
 - SIFT (Scale-Invariant Feature Transform)

Introduction to Feature Detection and Matching

- Harris Corner Detector
 - Corner detection operator that is used to extract corners and infer features of an image by taking differential of the corner score into account with reference to direction directly.
- SIFT (Scale-Invariant Feature Transform)
 - CV algorithm to detect, describe, and match local features in images
 - An object is recognized in a new image by individually comparing each feature form the new image to its database and finding candidate matching features based on Euclidean distance of their feature vectors.

Introduction to Feature Detection and Matching

- Feature Invariance
 - Ensures that keypoints remain consistent under different conditions such as scale, rotation, and illumination changes.
 - Vital for creating robust image processing systems.

Implementing Keypoint Detection - HCD

- cv2.cornerHarris(src, dest, blockSize, kSize, freeParameter, borderType)
 - Src input image
 - Dest image to store the Harris detector responses
 - blockSize neighborhood size
 - Ksize Aperture parameter for Sobel() operator
 - freeParameter Harris detector free parameter
 - borderType Pixel extrapolation method

Implementing Keypoint Detection - HCD

- cv2.dilate()
 - Dilates an image by using a specific structuring element that determines the shape of a pixel neighborhood which the maximum is taken:

$$dst(x,y) = \max_{(x',y'): \text{ element}(x',y')\neq 0} src(x+x',y+y')$$

src	input image; the number of channels can be arbitrary, but the depth should be one of CV_8U , CV_16U , CV_16S , CV_32F or CV_64F
dst	output image of the same size and type as src.
kernel	structuring element used for dilation; if element=Mat(), a 3 x 3 rectangular structuring element is used. Kernel can be created using getStructuringElement
anchor	position of the anchor within the element; default value (-1, -1) means that the anchor is at the element center.
iterations	number of times dilation is applied.
borderType	pixel extrapolation method, see BorderTypes. BORDER_WRAP is not suported.

Implementing Keypoint Detection - HCD

Implementing Keypoint Detection - SIFT

- sift = cv2.SIFT_create()
 - Used to create a SIFT object
- sift.detectAndCompute():

cv.SIFT/detectAndCompute

Detects keypoints and computes their descriptors

```
[keypoints, descriptors] = obj.detectAndCompute(img)
[...] = obj.detectAndCompute(..., 'OptionName',optionValue, ...)
```

Input

• img Image, input 8-bit grayscale image.

Output

- . keypoints The detected keypoints. A 1-by-N structure array with the following fields:
 - o pt coordinates of the keypoint [x,y]
 - size diameter of the meaningful keypoint neighborhood
 - angle computed orientation of the keypoint (-1 if not applicable); it's in [0,360) degrees and measured relative to image coordinate system (y-axis is directed downward), i.e in clockwise.
 - response the response by which the most strong keypoints have been selected. Can be used for further sorting or subsampling.
 - octave octave (pyramid layer) from which the keypoint has been extracted.
 - class_id object class (if the keypoints need to be clustered by an object they belong to).
- descriptors Computed descriptors. Output concatenated vectors of descriptors. Each descriptor is a 128-element vector, as returned by cv.SIFT.descriptorSize, so the total size of descriptors will be numel(keypoints) * obj.descriptorSize(). A matrix of size N-by-128 of class single, one row per keypoint.

Options

Implementing Keypoint Detection - SIFT

cv2.drawKeypoints():

Implementing Keypoint Detection - SIFT

- FLANN (Fast Library for Approximate Nearest Neighbors) is an algorithm that is used to match feature descriptors between images
- Contains a collection of algorithms to work best for nearest neighbor search and a system for automatically choosing the best algorithm and optimum parameters based on the dataset
- FLANN is written in C++ and contains bindings for C, MATLAB, Python, and Ruby

- FLANN INDEX KDTREE: Algorithm for indexing, using KD-tree.
 - parameter specifies that the KD-tree algorithm should be used for indexing. KD-trees are a data structure that efficiently organizes points in a space, which is useful for nearest neighbor searches.
 - · Parameters:
 - algorithm: Specifies the algorithm to use for indexing. In this case, FLANN INDEX KDTREE is used.
 - trees: Specifies the number of trees to be used in the KD-tree. A higher number of trees may result in more accurate but slower searches.
- index_params: Specifies the algorithm and number of trees.
 - The index_params dictionary contains parameters that define how the feature descriptors will be indexed.
 - Parameters:
 - algorithm: Specifies the algorithm to use for indexing. In this case, FLANN INDEX KDTREE is used.
 - trees: Specifies the number of trees to be used in the KD-tree. A higher number of trees may result in more accurate but slower searches.
- search_params: Controls the number of checks during the search.
 - The search params dictionary contains parameters that control the search behavior during the nearest neighbor search.
 - · Parameters:
 - checks: Specifies the number of times the tree(s) will be traversed recursively. A higher value results in a more exhaustive search, which may increase accuracy at the cost of speed. The default is often around 50.

- FLANN Matching: flann.knnMatch()
 - The knnMatch() function performs K-Nearest Neighbor matching between the descriptors of the two images. It returns the k best matches for each descriptor.
 - Parameters:
 - descriptors1: The descriptors from the first image.
 - descriptors2: The descriptors from the second image.
 - k: The number of nearest neighbors to find for each descriptor.

```
Code
                                                                                                                                Current File V 6 3
            CS5330 (TA) Version control V
          🧓 Lab2.py 👋 🧢 Lab 2-checkpoint.ipynb
                                                                                      0 0
                                                                                                                      Feature Matching
               # Load two images
                                                                                                                                                    Northeastern
               image1 = cv2.imread('seal.jpg', cv2.IMREAD_GRAYSCALE)
                                                                                                                                                    University
               image2 = cv2.imread('wordmark.jpg', cv2.IMREAD_GRAYSCALE)
               # SIFT Detector
               sift = cv2.SIFT_create()
               keypoints1, descriptors1 = sift.detectAndCompute(image1, None)
               keypoints2, descriptors2 = sift.detectAndCompute(image2, None)
               # FLANN Matcher
               FLANN_INDEX_KDTREE = 1
               index_params = dict(algorithm=FLANN_INDEX_KDTREE, trees=5)
               search_params = dict(checks=50)
               flann = cv2.FlannBasedMatcher(index_params, search_params)
               matches = flann.knnMatch(descriptors1, descriptors2, k=2)
               # Apply ratio test as per Lowe's paper
               good_matches = []
               for m, n in matches:
                   if m.distance < 0.7 * n.distance:
                       good_matches.append(m)
          25 # Draw matches
               result = cv2.drawMatches(image1, keypoints1, image2, keypoints2, good_matches, outling: None, flags=cv2.DrawMatchesFlags_NOT_DRAW_SINGLE_POINTS)
Ð
          28 # Show the matching result
          29 cv2.imshow( winname: 'Feature Matching', result)
2
               cv2.waitKey(0)
               cv2.destroyAllWindows()
```