

De kapitaalkost van de onderneming

Hoofdstuk 8

Eddy Laveren, Sven Damen & Peter-Jan Engelen, Financieel Beheer voor KMO's, Intersentia, Antwerpen, Derde editie.

Kapitaalkost

- Minimaal vereist rendement op investeringen
- Rendement dat financiers verwachten
- Gewogen gemiddelde van wat de verschillende kapitaalverschaffers verwachten
- Kenmerken
 - Opportuniteitskost
 - Bepaald in kapitaalmarkten
 - Afhankelijk van het risico
 - Toekomstgericht

Methode

Gewogen gemiddelde kapitaalkost

- Stap 1: Bepalen van de kost van de verschillende financieringsbronnen
- Stap 2: Bepalen van het relatief aandeel van elke financieringsbron in de kapitaalstructuur
- Stap 3: Berekening gewogen gemiddelde kapitaalkost

Kost van het vreemd vermogen op lange termijn (\mathbf{k}_{SL})

Kost van vreemd vermogen

- Bepalen van de kost van het vreemd vermogen voor belastingen
 - Gewogen gemiddelde van het rendement tot de vervaldag van publiek genoteerde obligaties
 - Waarde obligatie = $\sum_{t=1}^{N} \frac{C_t}{(1+k_S)^t} + \frac{F}{(1+k_S)^N}$

Voorbeeld

Een obligatie met een couponrente van 3,95% (eerste coupon na precies 1 jaar) en een nominale waarde van 1.000, heeft een looptijd van 8 jaar. Vind de uitgifteprijs als de yield to maturity 4% is.

```
Vergelijking: P = 39,5. \, a_{8 \neg 4\%} + \frac{1.000}{(1,04)^8}
```

Oplossing met rekenmachine:


```
N=8
I%=4
■PV=-996.6336276
PMT=39.5
FV=1000
P/J=1
C/J=1
PMT: ■IND■ BEGIN
```

Voorbeeld

Een 30-jarige obligatie met couponrente van 4,85% wordt uitgegeven tegen 99,45% (eerste coupon na precies 1 jaar) en wordt terugbetaald a pari. Wat is de yield van deze obligatie? Vergelijking:

99,45 = 4,85.
$$a_{30\neg r} + \frac{100}{(1+r)^{30}}$$

Met de rekenmachine:


```
N=30

■ I%=4.885311908

PV=-99.45

PMT=4.85

FV=100

P/J=1

C/J=1

PMT: ■IND■ BEGIN
```


Kost van het vreemd vermogen op lange termijn (k_{SL})

Indien geen obligaties verhandeld worden

- Zoek de rating van de onderneming en de bijhorende yield
- Deel de betaalde interesten door de uitstaande financiële schuld

Kost van schulden

- Moet berekend worden na belastingen omwille van de fiscale aftrekbaarheid van interesten
- Kost van schulden na belastingen = $k_{SL}(1-t)$
 - t = belastingsvoet vennootschapsbelasting
 - k_{SL} = kost van schulden voor belastingen

Kost van het eigen vermogen k_e

Kost van het eigen vermogen

- Weerspiegelt het risico van het project
- Rendement op eigen vermogen moet groter zijn dan het rendement op vreemd vermogen (meestal 3 tot 5 procent)
- Capital Asset Pricing Model (CAPM) is meest gebruikte model

$$k_e = R_f + \beta (R_m - R_f)$$

- R_f = risk free rate = meestal rente op schatkistcertificaten
- R_m - R_f = marktrisicopremie
- Beta = meet de gevoeligheid van het aandeel voor marktbewegingen

Kost van het eigen vermogen k_e

- **b** = de gevoeligheid van het aandeel voor marktschommelingen
- **b** > 1 => het aandeel is volatieler dan de markt
- b < 1 => het aandeel is minder volatiel dan de markt

Consensusdata Proximus

Aanvullende gegevens

TERM	WAARDE
Volatiliteit	39,43
Beta	0,41

CAPM kan ook grafisch voorgesteld worden:

-> Security Market Line

Kost van het eigen vermogen k_e

Schuldgraad en de ondernemingsbeta

- Een hoge schuldgraad verhoogt de beta van het eigen vermogen
- De onderstaande vergelijking toont aan hoe de schuldgraad (D/E) de beta van het eigen vermogen (β_e) verhoogt in vergelijking met de beta van een onderneming zonder schulden (β_u) (activiteitenrisico van een onderneming)

$$\beta_e = \beta_u \left[1 + \frac{D(1-t)}{E} \right]$$

Wegingsfactoren

- Bepaal eerst de kapitaalstructuur van de onderneming
- Liefst marktwaarde ratios maar eventueel boekwaarde ratios of industrieratios
 - Financiering van het project speelt geen rol
 - Uitgangspunt: optimale kapitaalstructuur

Kapitaalkost kg

Gewogen gemiddelde kapitaalkost (kg)

=Weighted Average Cost of Capital (WACC)

$$k_g = k_e * w_e + k_s * (1 - t) * w_s$$

Met

- k_e , de kost van het eigen vermogen
- k_s , de kost ven het vreemd vermogen
- w_e , de verhouding eigen vermogen op totaal vermogen
- w_s , de verhouding vreemd vermogen op totaal vermogen
- *t*, de belastingsvoet
- = De actualisatievoet die moet gebruikt worden om de periodieke VOKS te actualiseren

Projecten met verschillende risico's

Vereist rendement projecten

De relevante actualisatievoet

Voorbeeld berekening van de kapitaalkost

Een bedrijf overweegt een investering in een nieuw hoogtechnologisch project in en wil de relevante kapitaalkost bepalen.

Volgende gegevens zijn bekend:

- De balans van het bedrijf ziet er als volgt uit (boekwaarde)

Actief		Passief	
Vaste Activa	4.500.000	Kapitaal	1.600.000
		Reserves	1.400.000
		Schulden LT	3.500.000
Vlottende activa	3.000.000	Leveranciers- krediet	1.000.000
Totaal	7.500.000	Totaal	7.500.000

- De boekwaarde per aandeel is € 100

De relevante actualisatievoet

Voorbeeld berekening van de kapitaalkost

- De prijs per aandeel is € 350
- De obligaties van het bedrijf hebben een coupon van 4%, een looptijd van 6 jaar en een geëist rendement van 5%
- De risicovrije rente is 2% en de marktrisicopremie is 6%
- De beta van het bedrijf is 1,2. De sector waar het bedrijf nu wil in investeren heeft een beta van 1,5.
- Het bedrijf gaat er van uit dat het momenteel zijn ideale kapitaalstructuur heeft.
- De belastingsvoet is 30%

De relevante actualisatievoet

Oplossing berekening van de kapitaalkost

- Het bedrijf heeft 16.000 aandelen dus marktwaarde EV = 16.000*€ 350 = € 5.600.000
- De prijs van de obligatie = $4 * a_{6 \neg 5} + \frac{104}{(1,05)^6}$ = 94,9243 Marktwaarde obligaties = 3.500.000 * 0,949243 = € 3.322.350,78
- Marktwaarde bedrijf
 = € 5.600.000 + € 3.322.350,78 = € 8.922.350,78
- Gewicht EV = \leq 5.600.000/ \leq 8.922.350,78 = 62,76%
- Gewicht Schulden = € 3.322.350,78 / € 8.922.350,78 = 37,24%
- Kostprijs EV = 2% + 6%*1,5 = 11%
- Kostprijs VV = 5%
- $k_g = 11\% * 0,6276 + 5\% * (1-0,3) * 0,3724 = 8,21\%$

