

Universidad Tecnológica Nacional – Facultad Regional Pacheco Técnico Universitario en Programación Matemática

Practica de Grafos y Árboles

1) Para cada uno de los siguientes casos dar la definición del grafo $G = (V, A, \varphi)$

2) Dibujar el grafo $G=(V,\,A,\, \mathcal{O})$ dado por: $V=\{\,v_1,\,v_2,\,v_3\,\}$, $A=\{a_1,\,a_2,\,a_3,a_4\}$

a _i	a ₁	a ₂	a ₃	a ₄
φ	{v ₁ , v ₁ }	{v ₂ , v ₃ }	{V ₃ , V ₂ }	$\{v_2, v_1\}$

- 3) Para cada uno de los grafos de los ejercicios del punto 2) se pide un par de:
 - a) Vértices y aristas incidentes, aristas paralelas, vértices adyacentes.
 - b) ¿Es un grafo simple?
- 4) Dibujar los grafos a partir de los conjuntos de información siguientes:
 - a) Conjunto de los vértices $V = \{v_1, v_2, v_3, v_4\}$

Conjunto de las aristas $A = \{a_1, a_2, a_3, a_4, a_5\}$

a₁, a₃ son bucles con puntos extremos v₂, v₄ respectivamente.

 a_2 es incidente con v_1 y v_4

 a_4 es incidente con v_1 y v_2 .

v₂ y v₄ son los puntos extremos de a₅.

 \cite{L} Hay algún vértice aislado? ¿Hay aristas paralelas? ¿Puede llegarse a todos los puntos desde v_1 ?

Universidad Tecnológica Nacional – Facultad Regional Pacheco Técnico Universitario en Programación Matemática

b) Conjuntos de los vértices $V = \{v_1, v_2, v_3, v_4, v_5\}$

Conjuntos de aristas $A = \{a_1, a_2, a_3, a_4, a_5, a_6, a_7\}$

a₁ tiene como puntos extremos v₁ y v₄;

a₂, a₃ y a₄ son aristas paralelas; a₅ es incidente con v₃ y v₄;

Un punto extremo de a₄ es v₄;

a₇ es un bucle incidente con v₅;

a₆ es incidente en v₃ y v₅; no hay vértices aislados.

5) Para el siguiente grafo calcula:

- a) Calcula los grados de los vértices de G.
- b) Calcula la matriz de adyacencia de G.
- c) Dibuja, nombrando los vértices y las aristas utilizadas:
 - (a) Un subgrafo de G de orden 3 con cuatro aristas.
 - (b) Un subgrafo de G de orden 4 con 6 aristas.

Completa:

(a) Los vértices v_3 y v_5 son adyacentes. $\square^{\text{VERDADERO}}$ \square^{FALSO}
(b) El vértice v_2 es una hoja. $\square^{\text{VERDADERO}}$ \square^{FALSO}
(c) Las aristas que inciden en v_1 son e_1 y e_2 . $\square^{VERDADERO}$ \square^{FALSO}
(d) La arista e ₇ incide en los vértices v ₃ y v ₄ . \square VERDADERO \square FALSO
(e) Las aristas paralelas de G son:

Universidad Tecnológica Nacional – Facultad Regional Pacheco Técnico Universitario en Programación Matemática

6) Para el siguiente grafo hallar la matriz de adyacencia y la matriz de incidencia.

- 7) Escribe un camino de longitud 2 y un ciclo de longitud 3 del grafo del ejercicio 5). Halla el grado de cada vértice.
- 8) Hallar, si es posible un ciclo y/o un camino de Euler para cada uno de los siguientes grafos.

a)

b)

c)

9) Teniendo en cuenta los siguientes árboles binarios, mostrar el recorrido en preorden, postorden y orden simétrico:

a) v₁ v₂ v₂ v₄ v₅ v₆

