Home > Chemistry > Physical > Energetics > Essential Pre-Uni Chemistry F3.4

Essential Pre-Uni Chemistry F3.4

Data (all in $kJ \text{ mol}^{-1}$):

	$\Delta_{f} H^{\scriptscriptstyle \oplus}$		$\Delta_{c} H^{\circ}$
$\mathrm{CH_{4}}\left(\mathrm{g}\right)$	-74.8	$\mathrm{C_6H_6}\left(\mathrm{l}\right)$	-3267.4
CCl ₄ (1)	-129.6	$ m H_{2}\left(g ight)$	-285.8
HCl(g)	-92.3	$\mathrm{C_6H_{12}}\left(\mathrm{l}\right)$	-3919.5
$\mathrm{TiCl}_{4}\left(\mathrm{l} ight)$	-804.2	$\mathrm{C_{2}H_{2}\left(g ight) }$	-1300.8
$\mathrm{TiCl}_{3}\left(\mathrm{s} ight)$	-720.9	$\mathrm{C_{2}H_{6}\left(g ight) }$	-1559.7
PCl ₃ (l)	-319.7	$\mathrm{C}_{2}\mathrm{H}_{5}\mathrm{OH}\left(\mathrm{l}\right)$	-1367.3
$\mathrm{PCl}_{5}\left(\mathrm{s}\right)$	-443.5	$\mathrm{C_{2}H_{4}\left(g ight) }$	-1410.8
$\mathrm{POCl}_{3}\left(\mathrm{l}\right)$	-597.1	$\mathrm{CH_{3}COOH}\left(\mathrm{l}\right)$	-874.1
$\operatorname{GeO}\left(\mathrm{s}\right)$	-212.1	$\mathrm{C_6H_{14}}$ (1)	-4163.0
$\mathrm{GeO}_{2}\left(\mathrm{s} ight)$	-551.0	$\mathrm{CH_{3}COOC_{2}H_{5}}\left(\mathrm{l}\right)$	-2237.9
$\mathrm{NH_{3}}\left(\mathrm{g}\right)$	-46.1	$\mathrm{CO}\left(\mathrm{g}\right)$	-283.0
$\mathrm{TiO}_{2}\left(\mathrm{s} ight)$	-939.7	$\mathrm{Mg}\left(\mathrm{s}\right)$	-601.7

Use the reaction enthalpies given, and the combustion or formation enthalpies above to find the requested enthalpy change in each case:

Part A NH₄Cl(s)

$$NH_{3}\left(g\right)+HCl\left(g\right)\longrightarrow NH_{4}Cl\left(s\right),\,\Delta_{\text{r}}H^{\circ}\,=\,-176\,\text{kJ}\,\text{mol}^{-1}\,\,\text{find}\,\,\Delta_{\text{f}}H^{\circ}\,\,\text{of}\,\,NH_{4}Cl\left(s\right)$$

 $\underline{\mbox{Home}}$ > Chemistry > Physical > Energetics > C_3H_6 combustion

C_3H_6 combustion

A and **B** are two isomers with the molecular formula C_3H_6 . The standard enthalpies of formation, $\Delta_{\mathsf{f}}H^{\circ}$, of both **A** and **B** have been found by first measuring the standard enthalpies of combustion, $\Delta_{\mathsf{c}}H^{\circ}$, of each. These values are given in the table below, together with the standard enthalpies of combustion of carbon and hydrogen.

	A	В	carbon	hydrogen
$\Delta_{c} H^{\circ}/\mathrm{kJ}\mathrm{mol}^{-1}$	-2058	-2091	-393.5	-241.8

Part A Combustion equation

^

Give the equation for the complete combustion of C_3H_6 . (Balance it for one mole of the hydrocarbon.)

Part B $\Delta_{\mathrm{f}}H^{\scriptscriptstyle \oplus}$ of A

V

Calculate the standard enthalpy of formation of A.

Part C $\Delta_{\mathrm{f}}H^{\scriptscriptstyle \oplus}$ of B

~

Calculate the standard enthalpy of formation of **B**.

Part D Isomerisation

Gaseous **B** needs to be stored carefully since it can convert explosively to the elements, to isomer **A**, or to other hydrocarbons. Calculate the standard enthalpy change for the reaction $\mathbf{B} \longrightarrow \mathbf{A}$.

<u>Home</u> > Chemistry > Physical > Energetics > Essential Pre-Uni Chemistry F3.3

Essential Pre-Uni Chemistry F3.3

Data (all in $kJ \text{ mol}^{-1}$):

	$\Delta_{f} H^{\circ}$		$\Delta_{c} H^{\scriptscriptstyle \circ}$
$\mathrm{CH_{4}}\left(\mathrm{g}\right)$	-74.8	$\mathrm{C_6H_6}\left(\mathrm{l}\right)$	-3267.4
CCl ₄ (1)	-129.6	$ m H_{2}\left(g ight)$	-285.8
HCl(g)	-92.3	$\mathrm{C_{6}H_{12}}$ (1)	-3919.5
$\mathrm{TiCl}_{4}\left(\mathrm{l}\right)$	-804.2	$\mathrm{C_{2}H_{2}\left(g\right) }$	-1300.8
$\mathrm{TiCl}_{3}\left(\mathrm{s} ight)$	-720.9	$\mathrm{C_{2}H_{6}\left(g ight) }$	-1559.7
$\mathrm{PCl}_3\left(\mathrm{l}\right)$	-319.7	$\mathrm{C}_{2}\mathrm{H}_{5}\mathrm{OH}\left(\mathrm{l}\right)$	-1367.3
$\mathrm{PCl}_{5}\left(\mathrm{s}\right)$	-443.5	$\mathrm{C_{2}H_{4}\left(g ight) }$	-1410.8
$\mathrm{POCl}_3\left(\mathrm{l}\right)$	-597.1	$\mathrm{CH_{3}COOH}\left(\mathrm{l}\right)$	-874.1
$\operatorname{GeO}\left(\mathrm{s}\right)$	-212.1	$\mathrm{C_{6}H_{14}}$ (1)	-4163.0
$\mathrm{GeO}_{2}\left(\mathrm{s} ight)$	-551.0	$\mathrm{CH_{3}COOC_{2}H_{5}}\left(\mathrm{l}\right)$	-2237.9
$\mathrm{NH_{3}\left(g ight) }$	-46.1	$\mathrm{CO}\left(\mathrm{g} ight)$	-283.0
$\mathrm{TiO}_{2}\left(\mathrm{s} ight)$	-939.7	${ m Mg}\left({ m s} ight)$	-601.7

Use enthalpies of formation and combustion to calculate the reaction enthalpy for the reaction:

 $Ge\left(s\right)+2\,H_{2}O\left(l\right)\longrightarrow GeO_{2}\left(s\right)+2\,H_{2}\left(g\right)$ Give your answer to 3 significant figures.

<u>Home</u> > Chemistry > Physical > Energetics > Essential Pre-Uni Chemistry F3.2

Essential Pre-Uni Chemistry F3.2

Data (all in $kJ \, mol^{-1}$):

	$\Delta_{f} H^{\scriptscriptstyle \oplus}$		$\Delta_{c} H^{\scriptscriptstyle \oplus}$
$\mathrm{CH_{4}}\left(\mathrm{g}\right)$	-74.8	$\mathrm{C_6H_6}\left(\mathrm{l}\right)$	-3267.4
CCl ₄ (l)	-129.6	$\mathrm{H_{2}\left(\mathrm{g}\right) }$	-285.8
HCl(g)	-92.3	$\mathrm{C_6H_{12}}$ (1)	-3919.5
$\mathrm{TiCl}_{4}\left(\mathrm{l}\right)$	-804.2	$\mathrm{C_{2}H_{2}\left(g ight) }$	-1300.8
$\mathrm{TiCl}_{3}\left(\mathrm{s} ight)$	-720.9	$\mathrm{C_{2}H_{6}\left(\mathrm{g}\right) }$	-1559.7
PCl ₃ (l)	-319.7	$\mathrm{C}_{2}\mathrm{H}_{5}\mathrm{OH}\left(\mathrm{l} ight)$	-1367.3
$\mathrm{PCl}_{5}\left(\mathrm{s}\right)$	-443.5	$\mathrm{C_{2}H_{4}\left(\mathrm{g}\right) }$	-1410.8
$\mathrm{POCl}_3\left(1 ight)$	-597.1	$\mathrm{CH_{3}COOH}\left(\mathrm{l}\right)$	-874.1
$\operatorname{GeO}\left(\mathrm{s}\right)$	-212.1	$\mathrm{C_6H_{14}}$ (1)	-4163.0
$\mathrm{GeO}_{2}\left(\mathrm{s} ight)$	-551.0	$\mathrm{CH_{3}COOC_{2}H_{5}}\left(\mathrm{l}\right)$	-2237.9
$\mathrm{NH_{3}}\left(\mathrm{g}\right)$	-46.1	$\mathrm{CO}\left(\mathrm{g} ight)$	-283.0
$\mathrm{TiO}_{2}\left(\mathrm{s} ight)$	-939.7	$\mathrm{Mg}\left(\mathrm{s}\right)$	-601.7

Use standard enthalpies of combustion to calculate the reaction enthalpies for the following reactions:

Part A (a)

^

$$C_{2}H_{2}\left(g\right) +2H_{2}\left(g\right) \longrightarrow C_{2}H_{6}\left(g\right)$$

<u>Home</u> > Chemistry > Physical > Energetics > Essential Pre-Uni Chemistry F3.1

Essential Pre-Uni Chemistry F3.1

Data (all in $kJ \text{ mol}^{-1}$):

	$\Delta_{f} H^{\scriptscriptstyle \oplus}$		$\Delta_{c} H^{\circ}$
$\mathrm{CH_{4}\left(g\right) }$	-74.8	$\mathrm{C_6H_6}\left(\mathrm{l}\right)$	-3267.4
CCl ₄ (l)	-129.6	$\mathrm{H_{2}\left(\mathrm{g}\right) }$	-285.8
HCl(g)	-92.3	$\mathrm{C_6H_{12}}$ (1)	-3919.5
$\mathrm{TiCl}_{4}\left(\mathrm{l}\right)$	-804.2	$\mathrm{C_{2}H_{2}\left(g ight) }$	-1300.8
$\mathrm{TiCl}_{3}\left(\mathrm{s} ight)$	-720.9	$\mathrm{C_{2}H_{6}\left(\mathrm{g}\right) }$	-1559.7
PCl ₃ (l)	-319.7	$\mathrm{C}_{2}\mathrm{H}_{5}\mathrm{OH}\left(\mathrm{l} ight)$	-1367.3
$\mathrm{PCl}_{5}\left(\mathrm{s}\right)$	-443.5	$\mathrm{C_{2}H_{4}\left(\mathrm{g}\right) }$	-1410.8
$\mathrm{POCl}_3\left(1 ight)$	-597.1	$\mathrm{CH_{3}COOH}\left(\mathrm{l}\right)$	-874.1
$\operatorname{GeO}\left(\mathrm{s}\right)$	-212.1	$\mathrm{C_6H_{14}}$ (1)	-4163.0
$\mathrm{GeO}_{2}\left(\mathrm{s} ight)$	-551.0	$\mathrm{CH_{3}COOC_{2}H_{5}}\left(\mathrm{l}\right)$	-2237.9
$\mathrm{NH_{3}}\left(\mathrm{g}\right)$	-46.1	$\mathrm{CO}\left(\mathrm{g} ight)$	-283.0
$\mathrm{TiO}_{2}\left(\mathrm{s} ight)$	-939.7	$\mathrm{Mg}\left(\mathrm{s}\right)$	-601.7

Use standard enthalpies of formation to calculate the reaction enthalpies for the following reactions. Unless stated otherwise in the question part, give your answers to 4 significant figures.

Part A (a)

$$2\operatorname{TiCl}_{3}\left(s\right)+\operatorname{Cl}_{2}\left(g\right)\longrightarrow2\operatorname{TiCl}_{4}\left(l\right)$$

Home Chemistry

Essential Pre-Uni Chemistry F3.4

Essential Pre-Uni Chemistry F3.4

A Level - Practice (P2)

Data (all in $kJ \text{ mol}^{-1}$):

	$\Delta_{f} H^{\circ}$		$\Delta_{c} H^{\circ}$
$\mathrm{CH_{4}\left(g ight) }$	-74.8	$\mathrm{C_6H_6}\left(\mathrm{l}\right)$	-3267.4
$\mathrm{CCl}_4\left(1 ight)$	-129.6	$ m H_{2}\left(g ight)$	-285.8
HCl(g)	-92.3	$\mathrm{C_6H_{12}}$ (1)	-3919.5
$\mathrm{TiCl}_{4}\left(\mathrm{l}\right)$	-804.2	$\mathrm{C_{2}H_{2}\left(g\right) }$	-1300.8
$\mathrm{TiCl}_{3}\left(\mathrm{s} ight)$	-720.9	$\mathrm{C_{2}H_{6}\left(g ight) }$	-1559.7
$\mathrm{PCl}_3\left(\mathrm{l}\right)$	-319.7	$\mathrm{C}_{2}\mathrm{H}_{5}\mathrm{OH}\left(\mathrm{l}\right)$	-1367.3
$\mathrm{PCl}_{5}\left(\mathrm{s}\right)$	-443.5	$\mathrm{C_{2}H_{4}\left(g ight) }$	-1410.8
$\mathrm{POCl}_{3}\left(\mathrm{l}\right)$	-597.1	$\mathrm{CH_{3}COOH}\left(\mathrm{l}\right)$	-874.1
$\operatorname{GeO}\left(\mathrm{s}\right)$	-212.1	$\mathrm{C_6H_{14}}$ (1)	-4163.0
$\mathrm{GeO}_{2}\left(\mathrm{s} ight)$	-551.0	$\mathrm{CH_{3}COOC_{2}H_{5}}\left(1\right)$	-2237.9
$\mathrm{NH_{3}}\left(\mathrm{g}\right)$	-46.1	$\mathrm{CO}\left(\mathrm{g} ight)$	-283.0
$\mathrm{TiO}_{2}\left(\mathrm{s} ight)$	-939.7	${ m Mg}({ m s})$	-601.7

Use the reaction enthalpies given, and the combustion or formation enthalpies above to find the requested enthalpy change in each case:

 $\begin{array}{ll} \textbf{Part A} & NH_4Cl(s) \end{array}$

$$NH_{3}\left(g\right)+HCl\left(g\right)\longrightarrow NH_{4}Cl\left(s\right)\text{, }\Delta_{\text{r}}H^{\circ}=-176\,\text{kJ}\,\text{mol}^{-1}\,\text{find }\Delta_{\text{f}}H^{\circ}\,\,\text{of }NH_{4}Cl\left(s\right)$$

Part B $MgCl_2(s)$

$$\mathrm{TiCl_4}\left(\mathrm{l}\right) + 2\,\mathrm{Mg}\left(\mathrm{s}\right) \longrightarrow 2\,\mathrm{MgCl_2}\left(\mathrm{s}\right) + \mathrm{Ti}\left(\mathrm{s}\right)\,\Delta_{\mathsf{r}}H^{\,\circ} = -478.4\,\mathrm{kJ}\,\mathrm{mol}^{-1}, \,\mathrm{find}\,\,\Delta_{\mathsf{f}}H^{\,\circ}\,\,\mathrm{of}\,\,\mathrm{MgCl_2}\left(\mathrm{s}\right)$$

Part C CH₃ COOCOH₃ (l)

 ${
m CH_3COOCOCH_3}$ (l) + ${
m H_2O}$ (l) \longrightarrow 2 ${
m CH_3COOH}$ (l) $\Delta_r H^{\circ} = -46\,{\rm kJ\,mol^{-1}}$, find $\Delta_c H^{\circ}$ of ${
m CH_3COOCOCH_3}$ (l) Give your answer to 4 significant figures.

Part D $C_6H_5CHCH_2$

 $4 C_2 H_2 (g) \longrightarrow C_6 H_5 CHCH_2 (l), \ \Delta_r H^{\circ} = -808.2 \ kJ \ mol^{-1}, \ find \ \Delta_c H^{\circ} \ of \ C_6 H_5 CHCH_2 \ Give \ your answer to 4 significant figures.$

Part E $Al_2 O_3 (s)$

 $4\,\mathrm{Al}(\mathrm{s}) + 3\,\mathrm{GeO_2}(\mathrm{s}) \longrightarrow 2\,\mathrm{Al_2O_3}(\mathrm{s}) + 3\,\mathrm{Ge}(\mathrm{s})\,\Delta_{\mathrm{r}}H^\circ = -1698.4\,\mathrm{kJ\,mol^{-1}}, \text{ find }\Delta_{\mathrm{f}}H^\circ \text{ of }\mathrm{Al_2O_3}(\mathrm{s}) \text{ Give your answer to 4 significant figures.}$

Part F Fe_2O_3

$$\mathrm{Fe_{2}O_{3}\left(s\right)} + 3\,\mathrm{CO\left(g\right)} \longrightarrow 2\,\mathrm{Fe}\left(s\right) + 3\,\mathrm{CO_{2}\left(g\right)},\,\Delta_{\mathsf{r}}H^{\circ} = -24.8\,\mathrm{kJ\,mol^{-1}},\,\mathsf{find}\,\Delta_{\mathsf{f}}H^{\circ}\,\,\mathsf{of}\,\,\mathrm{Fe_{2}O_{3}}$$

Part $G \quad CuO(s)$

 $3~{\rm CuO}\,({\rm s}) + 2~{\rm NH_3}\,({\rm g}) \longrightarrow 3~{\rm Cu}\,({\rm s}) + {\rm N_2}\,({\rm g}) + 3~{\rm H_2O}\,({\rm l}),~ \Delta_{\rm r} H^\circ = -293.3~{\rm kJ\,mol^{-1}},~{\rm find}~\Delta_{\rm f} H^\circ~{\rm of}~{\rm CuO}\,({\rm s})~{\rm Give}~{\rm your}~{\rm answer}~{\rm to}~3~{\rm significant}~{\rm figures}.$

Part H $H_3PO_4(s)$

 $2 \operatorname{PCl}_5(s) + 8 \operatorname{H}_2 O(l) \longrightarrow 2 \operatorname{H}_3 \operatorname{PO}_4(s) + 10 \operatorname{HCl}(g), \ \Delta_r H^\circ = -307.6 \, \mathrm{kJ} \, \mathrm{mol}^{-1}, \ \text{find} \ \Delta_f H^\circ \ \text{of} \ \operatorname{H}_3 \operatorname{PO}_4(s)$ Give your answer to 3 significant figures.

Part I Ga

$$Ga_2O_3\left(s\right)+3\,Mg\left(s\right)\longrightarrow 2\,Ga\left(s\right)+3\,MgO\left(s\right),\, \Delta_rH^{\circ}=-716.1\,kJ\,mol^{-1},\, find\, \Delta_cH^{\circ}\,\, of\, Ga.$$

Part J HCl(g)

 ${
m TiCl_4\,(l)} + 2\,{
m H_2O\,(l)} \longrightarrow {
m TiO_2\,(s)} + 4\,{
m HCl\,(aq)}, \ \Delta_{
m r}H^\circ = -232.3\,{
m kJ\,mol^{-1}}, \ {
m find}\ \Delta_{
m sol}H^\circ \ {
m of}\ {
m HCl\,(g)}\ {
m Give}$ your answer to 3 significant figures.

 C_3H_6 combustion

$\mathrm{C}_3\mathrm{H}_6$ combustion

A Level - Practice (P2)

A and **B** are two isomers with the molecular formula C_3H_6 . The standard enthalpies of formation, $\Delta_{\mathsf{f}}H^{\circ}$, of both **A** and **B** have been found by first measuring the standard enthalpies of combustion, $\Delta_{\mathsf{c}}H^{\circ}$, of each. These values are given in the table below, together with the standard enthalpies of combustion of carbon and hydrogen.

	Α	В	carbon	hydrogen
$\Delta_{\sf c} H^{\circ}/{ m kJmol^{-1}}$	-2058	-2091	-393.5	-241.8

Part A Combustion equation

Give the equation for the complete combustion of C_3H_6 . (Balance it for one mole of the hydrocarbon.)

Part B $\Delta_{\mathrm{f}}H^{\scriptscriptstyle \oplus}$ of A

Calculate the standard enthalpy of formation of A.

Part C $\Delta_{\mathrm{f}}H^{\scriptscriptstyle \oplus}$ of B

Calculate the standard enthalpy of formation of **B**.

Part D Isomerisation

Gaseous **B** needs to be stored carefully since it can convert explosively to the elements, to isomer **A**, or to other hydrocarbons. Calculate the standard enthalpy change for the reaction $\mathbf{B} \longrightarrow \mathbf{A}$.

Adapted with permission from the Cambridge Chemistry Challenge 2011, Question 1

Home Chemistry

Essential Pre-Uni Chemistry F3.3

Essential Pre-Uni Chemistry F3.3

A Level - Practice (P2)

Data (all in $kJ\,mol^{-1}$):

	$\Delta_{f} H^{\circ}$		$\Delta_{c}H^{\circ}$
$\mathrm{CH_{4}}\left(\mathrm{g}\right)$	-74.8	$\mathrm{C_6H_6}\left(\mathrm{l}\right)$	-3267.4
CCl ₄ (1)	-129.6	$\mathrm{H_{2}\left(\mathrm{g}\right) }$	-285.8
HCl(g)	-92.3	$\mathrm{C_6H_{12}}$ (1)	-3919.5
$\mathrm{TiCl}_{4}\left(\mathrm{l}\right)$	-804.2	$\mathrm{C_{2}H_{2}\left(g ight) }$	-1300.8
$\mathrm{TiCl}_{3}\left(\mathrm{s} ight)$	-720.9	$\mathrm{C_{2}H_{6}\left(g ight) }$	-1559.7
$\mathrm{PCl}_3\left(\mathrm{l}\right)$	-319.7	$\mathrm{C}_{2}\mathrm{H}_{5}\mathrm{OH}\left(\mathrm{l} ight)$	-1367.3
$\mathrm{PCl}_5\left(\mathrm{s}\right)$	-443.5	$\mathrm{C_{2}H_{4}\left(\mathrm{g}\right) }$	-1410.8
POCl ₃ (l)	-597.1	$\mathrm{CH_{3}COOH}\left(\mathrm{l}\right)$	-874.1
$\mathrm{GeO}\left(\mathrm{s}\right)$	-212.1	$\mathrm{C_6H_{14}}$ (1)	-4163.0
$\mathrm{GeO}_{2}\left(\mathrm{s} ight)$	-551.0	$\mathrm{CH_{3}COOC_{2}H_{5}}\left(\mathrm{l}\right)$	-2237.9
$\mathrm{NH_{3}\left(g ight) }$	-46.1	$\mathrm{CO}\left(\mathrm{g} ight)$	-283.0
$\mathrm{TiO}_{2}\left(\mathrm{s} ight)$	-939.7	$\mathrm{Mg}\left(\mathrm{s} ight)$	-601.7

Use enthalpies of formation and combustion to calculate the reaction enthalpy for the reaction:

 $Ge\left(s\right)+2\,H_{2}O\left(l\right)\longrightarrow GeO_{2}\left(s\right)+2\,H_{2}\left(g\right)\text{ Give your answer to 3 significant figures}.$

Home Chemistry

Essential Pre-Uni Chemistry F3.2

Essential Pre-Uni Chemistry F3.2

A Level - Practice (P1)

Data (all in $kJ \text{ mol}^{-1}$):

	$\Delta_{f} H^{\circ}$		$\Delta_{c} H^{\circ}$
$\mathrm{CH_{4}}\left(\mathrm{g}\right)$	-74.8	$\mathrm{C_6H_6}\left(\mathrm{l}\right)$	-3267.4
$\mathrm{CCl}_4\left(1 ight)$	-129.6	$ m H_{2}\left(g ight)$	-285.8
HCl(g)	-92.3	$\mathrm{C_{6}H_{12}}\left(\mathrm{l}\right)$	-3919.5
$\mathrm{TiCl}_{4}\left(\mathrm{l}\right)$	-804.2	$\mathrm{C_{2}H_{2}\left(g ight) }$	-1300.8
$\mathrm{TiCl}_{3}\left(\mathrm{s}\right)$	-720.9	$\mathrm{C_{2}H_{6}\left(g ight) }$	-1559.7
$\mathrm{PCl}_3\left(\mathrm{l}\right)$	-319.7	$\mathrm{C}_{2}\mathrm{H}_{5}\mathrm{OH}\left(\mathrm{l}\right)$	-1367.3
$\mathrm{PCl}_5\left(\mathrm{s} ight)$	-443.5	$\mathrm{C_{2}H_{4}\left(\mathrm{g}\right) }$	-1410.8
POCl ₃ (l)	-597.1	$\mathrm{CH_{3}COOH}\left(\mathrm{l}\right)$	-874.1
$\operatorname{GeO}\left(\mathrm{s}\right)$	-212.1	$\mathrm{C_6H_{14}}$ (1)	-4163.0
$\mathrm{GeO}_{2}\left(\mathrm{s} ight)$	-551.0	$\mathrm{CH_{3}COOC_{2}H_{5}}\left(\mathrm{l}\right)$	-2237.9
$\mathrm{NH_{3}\left(g ight) }$	-46.1	$\mathrm{CO}\left(\mathrm{g} ight)$	-283.0
$\mathrm{TiO}_{2}\left(\mathrm{s} ight)$	-939.7	${ m Mg}\left({ m s} ight)$	-601.7

Use standard enthalpies of combustion to calculate the reaction enthalpies for the following reactions:

Part A (a)

$$\mathrm{C_{2}H_{2}\left(\mathrm{g}\right) +2H_{2}\left(\mathrm{g}\right) \longrightarrow\mathrm{C_{2}H_{6}\left(\mathrm{g}\right) }}$$

Part B (b)

$$C_{6}H_{6}\left(l\right)+3\,H_{2}\left(g\right)\longrightarrow C_{6}H_{12}\left(l\right)$$

Part C (c)

$$3 C_2 H_2 (g) \longrightarrow C_6 H_6 (l)$$

Part D (d)

 $C_{2}H_{4}\left(g\right) +H_{2}O\left(l\right) \longrightarrow C_{2}H_{5}OH\left(l\right)$ Give your answer to 3 significant figures.

Part E (e)

$$C_2H_5OH(l) + O_2(g) \longrightarrow CH_3COOH(l) + H_2O(l)$$

Part F (f)

$$C_6H_{14}(l) \longrightarrow C_2H_6(g) + 2C_2H_4(g)$$

Part G (g)

$$C_2H_5OH(l) + CH_3COOH(l) \longrightarrow CH_3COOC_2H_5(l) + H_2O(l)$$
 Give your answer to 2 significant figures.

Part H (h)

$$2 C_2 H_2(g) + 2 H_2 O(l) + O_2(g) \longrightarrow 2 CH_3 COOH(l)$$

Home Chemist

Chemistry Essential Pre-Uni Chemistry F3.1

Essential Pre-Uni Chemistry F3.1

A Level - Practice (P1)

Data (all in $kJ \text{ mol}^{-1}$):

	$\Delta_{f} H^{\scriptscriptstyle \oplus}$		$\Delta_{c} H^{\circ}$
$\mathrm{CH_{4}}\left(\mathrm{g}\right)$	-74.8	$\mathrm{C_6H_6}\left(\mathrm{l}\right)$	-3267.4
$\mathrm{CCl}_4\left(1 ight)$	-129.6	$ m H_{2}\left(g ight)$	-285.8
HCl(g)	-92.3	$\mathrm{C_6H_{12}}$ (1)	-3919.5
TiCl ₄ (l)	-804.2	$\mathrm{C_{2}H_{2}\left(g\right) }$	-1300.8
$\mathrm{TiCl}_{3}\left(\mathrm{s}\right)$	-720.9	$\mathrm{C_{2}H_{6}\left(g ight) }$	-1559.7
$\mathrm{PCl}_3\left(\mathrm{l}\right)$	-319.7	$\mathrm{C}_{2}\mathrm{H}_{5}\mathrm{OH}\left(\mathrm{l}\right)$	-1367.3
$\mathrm{PCl}_{5}\left(\mathbf{s} ight)$	-443.5	$\mathrm{C_{2}H_{4}\left(\mathrm{g}\right) }$	-1410.8
POCl ₃ (l)	-597.1	CH ₃ COOH(l)	-874.1
$\operatorname{GeO}\left(\mathrm{s}\right)$	-212.1	$\mathrm{C_{6}H_{14}}\left(\mathrm{l}\right)$	-4163.0
$\mathrm{GeO}_{2}\left(\mathrm{s} ight)$	-551.0	$\mathrm{CH_{3}COOC_{2}H_{5}}$ (1)	-2237.9
$\mathrm{NH_{3}\left(g ight) }$	-46.1	$\mathrm{CO}\left(\mathrm{g}\right)$	-283.0
$\mathrm{TiO}_{2}\left(\mathrm{s} ight)$	-939.7	${ m Mg}({ m s})$	-601.7

Use standard enthalpies of formation to calculate the reaction enthalpies for the following reactions. Unless stated otherwise in the question part, give your answers to 4 significant figures.

Part A (a)

$$2\operatorname{TiCl}_{3}\left(s\right)+\operatorname{Cl}_{2}\left(g\right){\longrightarrow}2\operatorname{TiCl}_{4}\left(l\right)$$

Part B (b)

$$\mathrm{PCl}_{3}\left(\mathrm{l}\right)+\mathrm{Cl}_{2}\left(\mathrm{g}\right)\longrightarrow\mathrm{PCl}_{5}\left(\mathrm{s}\right)$$

Part C (c)

$$2\operatorname{PCl}_{3}\left(l\right)+\operatorname{O}_{2}\left(g\right)\longrightarrow2\operatorname{POCl}_{3}\left(l\right)$$

Part D (d)

$$\mathrm{CH_4}\left(\mathrm{g}\right) + 4\,\mathrm{Cl_2}\left(\mathrm{g}\right) \longrightarrow \mathrm{CCl_4}\left(\mathrm{l}\right) + 4\,\mathrm{HCl}\left(\mathrm{g}\right)$$

Part E (e)

$$2 \operatorname{GeO}(s) \longrightarrow \operatorname{Ge}(s) + \operatorname{GeO}_2(s)$$

Part F (f)

$$\operatorname{GeO}\left(s\right)+\operatorname{PCl}_{3}\left(l\right)\longrightarrow\operatorname{Ge}\left(s\right)+\operatorname{POCl}_{3}\left(l\right).$$
 Give your answer to 3 significant figures.

Part G (g)

$$PCl_{5}\left(s\right)+2\operatorname{TiCl}_{3}\left(s\right)\longrightarrow PCl_{3}\left(l\right)+2\operatorname{TiCl}_{4}\left(l\right)\text{ Give your answer to 3 significant figures}.$$

Part H (h)

$$20\,\mathrm{Ti}\,(\mathrm{s}) + 12\,\mathrm{PCl}_5\,(\mathrm{s}) \longrightarrow 20\,\mathrm{TiCl}_3\,(\mathrm{s}) + 3\,\mathrm{P}_4\,(\mathrm{s})$$
 Give you answer to 5 significant figures.

Ethene Combustion

Ethene Combustion

A Level - Practice (P1)

The standard enthalpy change of combustion of but-1-ene, $C_4H_8(g)$, is $x \text{ kJ mol}^{-1}$.

The standard enthalpy change of the reaction $2 C_2 H_4(g) \longrightarrow C_4 H_8(g)$ is $y \text{ kJ mol}^{-1}$.

Write down an expression, in terms of x and y, for the standard enthalpy change of combustion of ethene, $C_2H_4(g)$ when expressed in $kJ \mod^{-1}$ (your answer should not feature any units).

The following symbols may be useful: x, y

Adapted with permission from UCLES, A Level Chemistry, November 1993, Paper 4, Question 8

Formation and Combustion

Formation and Combustion

A Level - Practice (P1)

For which of the following reactions does the value of ΔH° represent **both** a standard enthalpy change of combustion and a standard enthalpy change of formation?

- 1. $C(s) + O_2(g) \longrightarrow CO_2(g)$
- 2. $2 \mathrm{C(s)} + \mathrm{O_2(g)} \longrightarrow 2 \mathrm{CO(g)}$
- $\textbf{3}.~CO\left(g\right)+\tfrac{1}{2}\,O_{2}(g)\longrightarrow CO_{2}\left(g\right)$
 - None of the above
 - 1 only
 - 2 only
 - 3 only
 - 1 and 2 only
 - 1 and 3 only
 - 2 and 3 only
 - All of the above

Adapted with permission from UCLES, A Level Chemistry, June 1994, Paper 4, Question 31

Reducing carbon dioxide

Reducing carbon dioxide

A Level - Practice (P1)

The standard enthalpy changes of formation of carbon monoxide and carbon dioxide are $-110 \, \mathrm{kJ} \, \mathrm{mol}^{-1}$ and $-393 \, \mathrm{kJ} \, \mathrm{mol}^{-1}$, respectively.

Part A Carbon monoxide formation

Write an equation, including state symbols, for the first of these enthalpy changes (formation of carbon monoxide).

Part B Carbon dioxide formation

Write an equation, including state symbols, for the second of these enthalpy changes (formation of carbon dioxide).

Part C Standard enthalpy change

Use the two standard enthalpy of formation values to calculate, in $kJ\ mol^{-1}$, the standard enthalpy change of the reaction

$$C + CO_2 \longrightarrow 2\,CO$$

Part D Condition In light of the result obtained in the previous part, suggest what condition is necessary to obtain a reasonable

yield of	carbon monoxide by this reaction.
	Low pressure
	Presence of O_2
	Low temperature
	High temperature

Adapted with permission from UCLES, A Level Chemistry, June 1990, Paper 2, Question 1

<u>Home</u> > Chemistry > Physical > Energetics > Ethene Combustion

Ethene Combustion

The standard enthalpy change of combustion of but-1-ene, $C_4H_8(g)$, is $x \text{ kJ mol}^{-1}$.

The standard enthalpy change of the reaction $2 \, \mathrm{C}_2 \mathrm{H}_4 \, (\mathrm{g}) \longrightarrow \mathrm{C}_4 \mathrm{H}_8 \, (\mathrm{g})$ is $y \, \mathrm{kJ} \, \mathrm{mol}^{-1}$.

Write down an expression, in terms of x and y, for the standard enthalpy change of combustion of ethene, $C_2H_4(g)$ when expressed in $kJ \mod^{-1}$ (your answer should not feature any units).

The following symbols may be useful: x, y

Adapted with permission from UCLES, A Level Chemistry, November 1993, Paper 4, Question 8

Home > Chemistry > Physical > Energetics > Formation and Combustion

Formation and Combustion

For which of the following reactions does the value of ΔH° represent **both** a standard enthalpy change of combustion and a standard enthalpy change of formation?

- 1. $C(s) + O_2(g) \longrightarrow CO_2(g)$
- 2. $2 \mathrm{C(s)} + \mathrm{O_2(g)} \longrightarrow 2 \mathrm{CO(g)}$
- 3. $CO(g) + \frac{1}{2}O_2(g) \longrightarrow CO_2(g)$
 - None of the above
 - 1 only
 - 2 only
 - 3 only
 - 1 and 2 only
 - 1 and 3 only
 - 2 and 3 only
 - All of the above

Adapted with permission from UCLES, A Level Chemistry, June 1994, Paper 4, Question 31

<u>Home</u> > Chemistry > Physical > Energetics > Reducing carbon dioxide

Reducing carbon dioxide

The standard enthalpy changes of formation of carbon monoxide and carbon dioxide are $-110\,\mathrm{kJ}\,\mathrm{mol}^{-1}$ and $-393\,\mathrm{kJ}\,\mathrm{mol}^{-1}$, respectively.

Part A Carbon monoxide formation

^

Write an equation, including state symbols, for the first of these enthalpy changes (formation of carbon monoxide).

Part B Carbon dioxide formation

\

Write an equation, including state symbols, for the second of these enthalpy changes (formation of carbon dioxide).

Part C Standard enthalpy change

Use the two standard enthalpy of formation values to calculate, in $kJ \, \mathrm{mol}^{-1}$, the standard enthalpy change of the reaction

$$\mathrm{C} + \mathrm{CO}_2 \longrightarrow 2\,\mathrm{CO}$$

Part D Condition	~
In light of the result obtained in the previous part, suggest what condition is necessary to obtain a reasonal yield of carbon monoxide by this reaction.	able
High temperature	
Low pressure	
Low temperature	
$igcup$ Presence of O_2	

Adapted with permission from UCLES, A Level Chemistry, June 1990, Paper 2, Question 1