

Selective Bokeh Effect Transformation

Juewen Peng 1 , Zhiyu Pan 1 , Chengxin Liu 1 , Xianrui Luo 1 , Huiqiang Sun 1 , Liao Shen 1 , Ke Xian 2 , Zhiguo Cao 1* ¹Huazhong University of Science and Technology ²Nanyang Technological University

Problem Statement

Bokeh effect transformation aims to convert bokeh effects from one camera lens to another. In this paper, we mainly consider the transformation of lens type and blur amount.

Sony50mmf16.0 → Canon50mmf1.4

Blur Ratio

To perform blur amount transformation, we define blur ratio η :

$$\eta = \frac{S_t}{S_s} = \frac{l_t^2 f_s}{l_s^2 f_t},$$

where subscript t and s denote target lens and source lens. S is defocus map. l is focal length. f is f-number.

Method

implement blur amount transformation with an arbitrary blur ratio which may not exist in the training dataset

Integration in feature level to

Experiments

NTIRE 2023 Bokeh Effect Transformation Challenge Results:.

Methods	Synthetic + Real			Real	
IVIELITOUS	PSNR↑	SSIM↑	LPIPS↓	PSNR↑	LPIPS↓
NAFBNET	35.264	0.9362	0.0985	0.8416	0.2186
SBTNet (Ours)	<u>34.572</u>	0.9361	0.0966	0.8435	0.2224
CBTNet	32.326	0.9333	0.1076	0.8420	0.2230
BokehOrNot	32.288	0.9327	0.1130	0.8423	0.2199
SGLMS	32.076	0.9324	0.1076	0.8419	0.2161
IR-SDE	30.866	0.9297	0.1301	0.8427	0.2387
BGNet	30.327	0.9281	0.1249	0.8415	0.2178
JiXiangNiu	27.970	0.9213	0.1542	0.8455	0.2175
EBokehNet-s (Organizers) EBokehNet (Organizers)	34.543 35.521	0.9350 0.9362	0.1039 0.0993	0.8414 0.8412	0.2206

Ablation Study on Cat-Eye Encoding:

Coordinate Map	PSNR [↑]	SSIM↑	LPIPS↓
W/O	43.567	0.9892	0.0352
	45.627	0.9946	0.0331

Integration in Image Level vs. in Feature Level:

 	c Level vs	o. III I Cat	die Levei			
Integration Mode	PSNR↑	SSIM↑	LPIPS↓			
Canon50mmf1.8 \rightarrow Sony50mmf16.0						
Image Level Feature Level	35.755 35.768	0.9850 0.9851	0.0684 0.0675			
$Sony50mmf16.0 \to Canon50mmf1.8$						
Image Level Feature Level	37.282 38.005	0.9894 0.9921	0.0752 0.0555			

Qualitative Results:

Synthetic

Real

Sony50mmf1.8 → Canon50mmf1.4

Canon50mmf1.4 \rightarrow Sony50mmf1.8

GitHub: https://juewenpeng.github.io/SBTNet/

Sony50mmf1.8 \rightarrow Canon50mmf1.4

Sony50mmf1.8 \rightarrow Canon50mmf1.4

Canon50mmf1.4 \rightarrow Sony50mmf1.8

Sony50mmf1.8 \rightarrow Canon50mmf1.4