Chemical Kinetics

- Q.1. The rate of reaction between A and B increases by a factor of 100, when the concentration of A is increased 10 folds, the order of reaction with respect to A is
 - a) 10
 - b) 4
 - c) 2
 - d) 1
- Q.2. Which of the following statements is incorrect?
 - a) Activation energy for the forward reaction equals activation energy for the reverse reaction
 - b) For a reversible reaction, an increase in temperature increases the reaction rate for both the forward and the backward reaction
 - C) The larger the initial reactant concentration for a second order reaction, the shorter its half-life
 - d) When Δt is infinitesimally small, the average rate equals the instantaneous rate

Q.3.

 $3A \longrightarrow 2B$, rate of reaction, $\frac{+d[B]}{dt}$ is equal to

a)

$$-\frac{3}{2}\frac{d[A]}{dt}$$

b)

$$-\frac{2}{3}\frac{d[A]}{dt}$$

c)

$$-\frac{1}{3}\frac{d[A]}{dt}$$

d)

$$+2\frac{d[A]}{dt}$$

- Q.4. . A chemical reaction was carried out at 300 K and 280 K. The rate constants were found to be K_1 and K_2 respectively, then
 - a) $K_1 = 4K_2$
 - b) $K_2=2K_1$
 - c) $K_2=0.25K_1$
 - d) $K_2=0.5K_1$

Q.5. The rate constant of a reaction is 10.8×10^{-5} mol dm ⁻³ s ⁻¹ . The order of the reaction is
a) 0
b) 1
c) 2
d) 3
Q.6. Half-life of a reaction is found to be inversely proportional to the square of initial
concentration. The order of reaction is
a) 4
b) 3
c) 5
d) 2

- Q.7. If initial concentration is reduced to 1/4th in a zero order reaction, the time taken for half the rection to complete
 - a) remains same
 - b) becomes 4 times
 - c) becomes one-fourth
 - d) doubles
- Q.8. A catalyst increases rate of reaction by
 - a) decreasing enthalpy
 - b) decreasing internal energy
 - c) decreasing activation energy
 - d) increasing activation energy
- Q.9. For an endothermic reaction, energy of activation is Ea and enthalpy of reaction of $\Delta H(both \ of \ these \ in \ kJ/mol)$. Minimum value of Ea will be.
 - a) less than ΔH
 - b) equal to ΔH
 - c) more than ΔH
 - d) equal to zero

Q.10. The rate of the reaction $2N_2O_5 \rightarrow 4NO_2 + 2O_2$ can be written in three ways . The relationship between k and k' and between k and k" are :

$$\frac{-d[N_2O_5]}{dt} = k[N_2O_5]$$

$$\frac{d[NO_2]}{dt} = k' [N_2O_5]$$

$$\frac{d[O_2]}{dt} = k''[N_2O_5]$$

- a) k' = 2k; k'' = k
- b) k' = 2k; k'' = k/2
- c) k'=2k; k''=2k
- d) k' = k; k'' = k

Q.11. In the rate equation, when the concentration of reactants is unity then the rate is equal to

- a) specific rate constant
- b) average rate constant
- c) instantaneous rate constant
- d) None of the above

Q.12. Which of the following observations is incorrect about the order of a reaction?

- a) Order of a reaction is always a whole number
- b) The stoichiometric coefficient of the reactants doesn't affect the order
- C) Order of reaction is the sum of power to express the rate of reaction to the concentration terms of the reactants.
- d) Order can only be assessed experimentally

Q.13. The rate constant of zero-order reactions has the unit

- a) s-1
- b) mol L-1 s-1
- C) L² mol⁻² s⁻¹
- d) L mol⁻¹ s⁻¹

Q.14. In the elementary reaction $2A + B \rightarrow A_2B$, if the concentration of A is doubled and that of B is halved, then the rate of the reaction will

- a) remain the same
- b) increase 4 times
- c) decrease 2 times
- d) increase 2 times

- Q.15. when the rate of the reaction is equal to the rate constant, the order of the reaction is
 - a) zero order
 - b) first order
 - c) second order
 - d) third order
- Q.16. he number of molecules of the reactants involved in a single stage of the reaction indicates
 - a) the order of the reaction
 - b) the molecularity of the reaction
 - c) the rapid step of the reaction mechanism, and
 - d) the reaction half-life.
- Q.17. A first order reaction has a half-life length of 10 minutes. In 100 minutes, what proportion of the response will be completed?
 - a) 25%
 - b) 50%
 - c) 99.9%
 - d) 75%
- Q.18. In pseudo unimolecular reactions,
 - a) both reactants are present in low concentrations,
 - b) both reactants are present in the same concentrations,
 - c) one reactant is present in excess,
 - d) one reactant is non-reactive.
- Q.19. Which reaction's rate increases as the temperature rises?
 - a) Exothermic reaction
 - b) Endothermic reaction
 - c) both Exothermic and Endothermic reaction
 - d) None of the above
- Q.20. The rate of chemical reaction is doubled for every 10°C rise in temperature because of
 - a) increase in the activation energy
 - b) decrease in the activation energy
 - c) increase in the number of molecular collisions
 - d) increase in the number of activated molecules

Q.21. The temperature coefficient of most of the reactions lies between
a) 1 and 3
b) 1 and 4
c) 2 and 4
d) 2 and 3
Q.22. For a first-order reaction, the half life period is independent of
a) initial concentration
b) cube root of initial concentration
c) first power of final concentration
d) square root of final concentration

- Q.23. If initial concentration is reduced to 1/4th in a zero order reaction, the time taken for half the rection to complete
 - a) remains same
 - b) becomes one-fourth
 - c) becomes 4 times
 - d) doubles
- Q.24. Collision theory is applicable to
 - a) first order reactions
 - b) bimolecular reactions
 - c) intra-molecular reactions
 - d) zero order reactions
- Q.25. The formation of gas at high pressure at the surface of tungsten due to adsorption is the reaction of order
 - a) 0
 - b) 1
 - c) 2
 - d) insufficient data.