DB Fundamentals, ERD

7 November 2011 Lecture 2

Topics for Today

- Intro: Queries, Transactions, Crashes
- Structure of a DBMS
- Entity Relationship Diagrams
 - Simple to Complex
 - Entities, Attributes, Entity Sets
 - Relationships and Relationship Sets
 - Additional Features
- Sources:
 - Ramakrishnan and Gehrke 1.6 1.9, 2.1 2.4

Queries

- The power of database is how it lets the user ask questions about its contents
- Queries are questions we ask the DBMS it answers them by looking at the database
 - SQL is the most popular Query Language
- It's important to understand the meaning of queries their *semantics*
 - To help, abstract query languages have been devised Relational Algebra underlies SQL

Two Types of Queries

- Read Queries
 - Ask the DBMS to answer a question by returning a single value or a table of results
 - Using the <u>Query Language</u>
- Write Queries
 - Ask the DBMS to add/delete/modify a record
 - Using the <u>Data Manipulation Language</u>
- SQL is both

Three faces of SQL

- SQL is multipurpose:
 - We can use it to define, modify, and delete relations (Data Definition Language)
 - We can use it add, modify, and delete records (Data Manipulation Language)
 - We can use it to ask questions about the data (Query Language)

5

How to Query

- Could log into the DBMS with a command line or GUI interface and ask queries directly
- Could use a remote DB tool which builds a connection to a DB and has a GUI to receive user queries and display results
- Could write application code which builds a database connection, sends queries, and does things with the results
- Could build a web site which has a backend application which runs queries implicitly or explicitly and shows the results on the page

Transaction Management

- Transactions essential for two reasons:
 - Concurrency (multiple users)
 - Failure recovery

Concurrency

Failure Recovery

Transactions in DBs

- A transaction is one execution of a user program on a DBMS
 - Similar to the Operating System and Distributed Systems definitions
 - Unlike the definition we'll see in the other course
- DBMS performs actions at the transaction level
 - Atomic
 - All or nothing

Tools for Concurrency Control

- DBMS must manage multiple transactions
 - Enforce non-conflict
- Most use locks
 - There are other ways to do it, though

Dealing with Crashes

- The main tool to deal with crashes: the log
 - Write ahead each operation is entered in the log before it is executed
 - Log is flushed every so often, always when a transaction completes
- Also:
 - Checkpoints
 - Ability to selectively force pages to disk
- When a crash occurs:
 - Reload the database to where it was before
 - Go over the log and remove actions from transactions which didn't commit
- More in the book on this we may get to it this semester

So Far

- Intro: Queries, Transactions, Crashes
- Structure of a DBMS
- Entity Relationship Diagrams
 - Simple to Complex
 - Entities, Attributes, Entity Sets
 - Relationships and Relationship Sets
 - Additional Features

Structure of a DBMS

So Far

- Intro: Queries, Transactions, Crashes
- Structure of a DBMS
- Entity Relationship Diagrams
 - Simple to Complex
 - Entities, Attributes, Entity Sets
 - Relationships and Relationship Sets
 - Additional Features

Why use ERD?

- Useful for:
- Requirements Analysis
 - Think about relationships and objects
 - Concretize ideas
- Conceptual Database Design:
 - Organizing data in a schema is hard pictorial help
 - Easy to see connections and constraints
- Logical Database Design:
 - To communicate requirements between teams or designers
 - Acts as documentation

What is an Entity?

- Basically any noun you can describe:
 - Student
 - Car
 - Book
 - College
 - Courage X
 - Four X
- Attributes:
 - Descriptors of entities
 - All the ones that are interesting enough for the database
- Entities Sets are like classes *entities* are instances

Entity Example

- A student might be identified by (attributes):
 - Student Id number
 - Name
 - National ID number
 - Address
 - Height
 - Degree track
 - Phone Number
 - Email address
 - Passport Number
- Which would be appropriate for a college student relation?

Attributes

- Attributes have a given domain
 - Strings
 - Numbers
 - Sets
 - Formats
- Attributes must identify an entity in an entity set uniquely
 - The Key is the set of attributes which together uniquely identify each entity in the entity set
 - Other possibilities (also keys, but not in use) are called Candidate Keys
- Keys must be minimal
 - Why?

Attributes Example

- Back to the Students example:
 - Student Id
 - Name
 - Address
 - Degree Track (Major)
 - Phone Number

Student Id	Name	Address	Major	Phone Number
45	Sam Smith	Simon 45	Information Systems	04-444-4444
59	Alan Arts	Antsen 10	Information Systems	055-555-5555
63	Karen Kim	Kubot 56	Information Systems	077-777-7777

Student Id	Name	Address	Major	Phone Number
45	Sam Smith	Simon 45	Information Systems	04-444-4444
59	l		Information Systems	055-555-5555
63	Karen Kim	Kubot 56	Information Systems	077-777-7777
74	Sue Smith	Simon 45	Mathematics	04-444-4444
103	Karen Kim	Karli 104	Mathematics	066-666-6666

Employee Example and Diagram

- Employees have:
 - National Id
 - Name
 - Parking Lot

Relationships

- A relationship is an association between two or more entities
 - Relationships can be sets too
- Formally, a relationship set is of n-tuples where each entity belongs to some entity set:

$$\{(e_1,\ldots,e_n)|e_1\in E_1,\ldots,e_n\in E_n\}$$

• This is read "A relationship is a set of tuples of the form $e_1, e_2, ..., e_n$ such that e_1 is a member of entity set E_1, e_2 is a member of entity set E_2 , etc."

Relationship Example

Relationships and Sets

- An instance of a relationship set is a relationship
- Relationships can binary:

- Or Ternary
- Or more

Reflexive Relationships

 Sometimes a role label can help identify important aspects of a relationship

So far

- Intro: Queries, Transactions, Crashes
- Structure of a DBMS
- Entity Relationship Diagrams
 - Simple to Complex
 - Entities, Attributes, Entity Sets
 - Relationships and Relationship Sets
 - Additional Features

Additional Features of ERD

- ERDs can also represent more complex aspects of relationships:
 - Key Constraints
 - Participation Constraints
 - Weak Entities
 - Inheritance
 - Aggregation

Key Constraints

- Types of Key Constraints:
 - One to one
 - One to Many
 - Many to Many
- Examples:
 - One to One 1 TZ to 1 person

One to Many – 1 mother to Many children

Many to Many – Many addresses to Many residents

Key Constraint Example

Participation Constraints

- Whether each member of an entity set must appear in the relationship
 - Thick line on its side if yes
- Examples:
 - Each person must have a TZ, every TZ is for a person

Each child must have a mother

Not everyone has an address, every address has someone there

Participation Example

Weak Entities

- These come up when there is something important which has no way of being identified except in terms of its relationship to another entity
- Example: We need to store data about offices in an office building
 - Each office has an office number and floor
 - ex. 308
 - Two offices in different buildings may have the same number
 - 308 in Building 1 and 308 in Building 2
 - We may identify an office based on its building

Weak Entities Example

Weak Entity Example

Inheritance

- ERDs can show hierarchical entity relationships
 - Inheritance in programming jargon
 - Limited to Is A relationships
- Examples:
 - A car is a vehicle
 - A motorcycle is a vehicle
 - A worker is a person
 - A manager is a person
- Has implicit containment semantics:
 - Every car/motorcycle entity is a vehicle as well
 - Every worker/manager is a person as well

Inheritance Examples

Car and Motorcycle COVER Vehicle

Worker OVERLAPS Manager

Worker and Manager COVER Person

Conclusion

- Intro: Queries, Transactions, Crashes
- Structure of a DBMS
- Entity Relationship Diagrams
 - Simple to Complex
 - Entities, Attributes, Entity Sets
 - Relationships and Relationship Sets
 - Additional Features