Введение в Теорию Типов Конспект лекций

Штукенберг Д. Г. Университет ИТМО

9 ноября 2018 г.

1 Введение

Эти лекции были рассказаны студентам групп М3336–М3339 в 2018 году в Университете ИТМО, на Кафедре компьютерных технологий Факультета информационных технологий и программирования.

Конспект подготовили студенты Кафедры: Егор Галкин (лекции 1 и 2), Илья Кокорин (лекции 3 и 4), Никита Дугинец (лекции 5 и 6), Степан Прудников (лекции 7 и 8). (возможно, история сложнее)

2 Лекция 3

2.1 Ү-комбинатор

Определение 2.1. Комбинатором называется λ -выражение, не имеющее свободных переменных

Определение 2.2. (Y-комбинатор)

$$Y = \lambda f.(\lambda x. f(xx))(\lambda x. f(xx))$$

Очевидно, У-комбинатор является комбинатором.

Теорема 2.1.
$$Yf =_{\beta} f(Yf)$$

Доказательство. β -редуцируем выражение Yf

$$=_{\beta} (\lambda f.(\lambda x.f(xx))(\lambda x.f(xx)))f$$

$$=_{\beta} (\lambda x.f(xx))(\lambda x.f(xx))$$

$$=_{\beta} f((\lambda x.f(xx))(\lambda x.f(xx)))$$

$$=_{\beta} f(Yf)$$

Так как при второй редукции мы получили, что $Y f =_{\beta} (\lambda x. f(xx))(\lambda x. f(xx))$

Следствием этого утверждения является теорема о неподвижной точки для бестипового лямбда-ичисления

Теорема 2.2. В лямбда-исчислении каждый терм f имеет неподвижную точку, то есть такое p, что f $p =_{\beta} p$

Доказательство. Возьмём в качестве p терм Yf. По предыдущей теореме, $f(Yf) =_{\beta} Yf$, то есть Yf является неподвижной точкой для f. Для любого терма f существует терм Yf, значит, у любого терма есть неподвижная точка.

2.2 Рекурсия

С помощью Y-комбинатора можо определять рекурсивные функции, например, функцию, вычисляющую факториал Чёрчевского нумерала. Для этого определим вспомогательную функцию

```
fact' = \lambda f.\lambda n.isZero\ n\ \overline{1}(mul\ n\ f((-1)n))
Тогда fact = Y\ fact'
```

Заметим, что $fact \overline{n} =_{\beta} fact' (Y fact') \overline{n} =_{\beta} fact' fact \overline{n}$, то есть в тело функции fact' вместо функции f будет подставлена fact (заметим, что это значит, что именно функция fact будет применена к $\overline{n}-1$, то есть это соответсувует нашим представлениям о рекурсии.)

Для понимания того, как это работает, посчитаем $fact \overline{2}$

```
fact \ \overline{2}
=_{\beta} Y \ fact' \ \overline{2}
=_{\beta} fact'(Y \ fact' \ \overline{2})
=_{\beta} (\lambda f. \lambda n. is Zero \ \overline{1}(mul \ n \ f((-1)n)))(Y \ fact') \overline{2}
=_{\beta} is Zero \ \overline{2} \ \overline{1}(mul \ \overline{2} \ ((Y \ fact')((-1) \overline{2})))
=_{\beta} mul \ \overline{2} \ ((Y \ fact' \ \overline{1}))
=_{\beta} mul \ \overline{2} \ (fact' \ (Y \ fact' \ \overline{1}))
```

Раскрывая fact' $(Y fact' \overline{1})$ так же, как мы раскрывали fact' $(Y fact' \overline{2})$, получаем

$$=_{\beta} mul \ \overline{2} \ (mul \ \overline{1} \ (Y \ fact' \ \overline{0}))$$

Посчитаем $(Y fact' \overline{0})$.

$$(Y \ fact' \ \overline{0})$$

$$=_{\beta} fact' \ (Y \ fact') \ \overline{0}$$

$$=_{\beta} (\lambda f. \lambda n. isZero \ n \ \overline{1}(mul \ n \ f((-1)n))) \ (Y \ fact') \ \overline{0}$$

$$=_{\beta} isZero \ \overline{0} \ \overline{1}(mul \ \overline{0} \ ((Y \ fact'))((-1)\overline{0})) =_{\beta} \overline{1}$$

Таким образом,

$$fact \ \overline{2}$$

$$=_{\beta} mul \ \overline{2} \ (mul \ \overline{1} \ (Y \ fact' \ \overline{0}))$$

$$=_{\beta} mul \ \overline{2} \ (mul \ \overline{1} \ \overline{1}) =_{\beta} mul \ \overline{2} \ \overline{1} =_{\beta} \overline{2}$$

2.3 Парадокс Карри

Попробуем построить логику на основе λ -исчисления. Введём логический символ \to . Будем тредовать от этого исчисления наличия следующих схем аксиом:

$$1. \vdash A \rightarrow A$$

$$2. \vdash (A \rightarrow (A \rightarrow B)) \rightarrow (A \rightarrow B)$$

3.
$$\vdash A =_{\beta} B$$
, тогда $A \to B$

А так же правила вывода МР:

$$\frac{\vdash A \to B, \vdash A}{\vdash B}$$

Не вводя дополнительные правила вывода и схемы аксиом, покажем, что данная логика является противоречивой. Для чего введём следующие условные обозначения:

$$F_{\alpha} = \lambda x.(x \ x) \to \alpha$$

$$\Phi_{\alpha} = F_{\alpha} F_{\alpha} = (\lambda x.(x \ x) \to \alpha) \ (\lambda x.(x \ x) \to \alpha)$$

Редуцируя Φ_{α} , получаем

$$\Phi_{\alpha}$$

$$=_{\beta} (\lambda x.(x \ x) \to \alpha) (\lambda x.(x \ x) \to \alpha)$$

$$=_{\beta} (\lambda x.(x \ x) \to \alpha) (\lambda x.(x \ x) \to \alpha) \to \alpha$$

$$=_{\beta} \Phi_{\alpha} \to \alpha$$

Таким образом, для доказательства α нужно всего лишь доказать Φ_{α} и применить правило MP.

$$\begin{array}{lll} 1) \vdash \Phi_{\alpha} \to \Phi_{\alpha} \to \alpha & \text{Так как } \Phi_{\alpha} =_{\beta} \Phi_{\alpha} \to \alpha \\ 2) \vdash (\Phi_{\alpha} \to \Phi_{\alpha} \to \alpha) \to (\Phi_{\alpha} \to \alpha) & \text{Так как } \vdash (A \to (A \to B)) \to (A \to B) \\ 3) \vdash \Phi_{\alpha} \to \alpha & \text{MP 2, 3} \\ 4) \vdash (\Phi_{\alpha} \to \alpha) \to \Phi_{\alpha} & \text{Так как } \vdash \Phi_{\alpha} \to \alpha =_{\beta} \Phi_{\alpha} \\ 5) \vdash \Phi_{\alpha} & \text{MP 3, 4} \\ 6) \vdash \alpha & \text{MP 3, 5} \end{array}$$

Таким образом, введённая логика оказывается противоречивой.

2.4 Импликационный фрагмент интуиционистского исчисления высказываний