

GLO-4030/7030 APPRENTISSAGE PAR RÉSEAUX DE NEURONES PROFONDS

Optimisation pour l'apprentissage profond

Plan

- 1) Rappel sur notions d'apprentissage
- 2) Algorithmes d'optimisation
- 3) Stratégies d'optimisation
- 4) Diagnostique

Ludovic Trottier 2/105

Retour sur la semaine dernière

$$L(f(\mathbf{x}; \boldsymbol{\theta}), y)$$

$$\nabla_{\boldsymbol{\theta}} L(f(\boldsymbol{x};\boldsymbol{\theta}), y)$$

Backprop

Entropie croisée: $L(\hat{y}, y) = -\log \hat{y}_{cible}$

Cette semaine: comment améliorer les performances du réseau?

Rappel sur notions d'apprentissage

Notion d'apprentissage

• Risque empirique $J(\theta)$

– Fonction de coût L + distribution de données empirique \hat{p}_{data} :

$$J(\boldsymbol{\theta}) = \mathbb{E}_{(\boldsymbol{x}, y) \sim \hat{\boldsymbol{p}}_{data}} L(f(\boldsymbol{x}; \boldsymbol{\theta}), y)$$

• Vrai risque $J^*(\theta)$

– Fonction de coût L + vraie distribution de données p_{data} :

$$J^*(\boldsymbol{\theta}) = \mathbb{E}_{(\boldsymbol{x}, y) \sim p_{data}} L(f(\boldsymbol{x}; \boldsymbol{\theta}), y)$$

Notion d'apprentissage

- Accès à $p_{data} \rightarrow \text{vrai risque } J^*(\theta) \rightarrow \text{optimisation standard}$
- Accès à $\hat{p}_{data} \rightarrow \text{risque empirique } J(\theta) \rightarrow \text{problème d'apprentissage}$
- On a jamais accès à p_{data} .
- En résumé
 - On minimise directement $J(\theta)$.
 - Espérer minimiser aussi $J^*(\theta)$.

Algorithmes d'optimisation

Descente du gradient

- Concept
 - Déterminer un vecteur directionnel d basé sur le gradient $\nabla_{\theta} J(\theta)$.
 - Mettre à jour les paramètres:

$$\theta \leftarrow \theta - d$$

- Répéter jusqu'à convergence.
- Pourquoi est-ce que ça fonctionne?
 - $-\nabla_{\boldsymbol{\theta}} J(\boldsymbol{\theta}) = \mathbf{0} \rightarrow \boldsymbol{\theta}$ est un point critique.
 - Aide à trouver les extremums.

Descente du gradient

- Convergence
 - $-J(\boldsymbol{\theta})$ cesse de diminuer.
 - $-J(\theta)$ oscille autour d'une certaine valeur (petite variance).

Ludovic Trottier 9/105

Notion de gradient

Rappel

$$J \colon \mathbb{R}^D \to \mathbb{R}$$
$$\boldsymbol{\theta} \mapsto J(\boldsymbol{\theta})$$

- Gradient
 - $\nabla_{\theta} J(\theta) \in \mathbb{R}^d =$ **vecteur** des dérivées partielles de J par rapport aux entrées de θ :

$$\nabla_{\boldsymbol{\theta}} J(\boldsymbol{\theta}) = \left[\frac{\partial J(\boldsymbol{\theta})}{\partial \boldsymbol{\theta}_1}, \dots, \frac{\partial J(\boldsymbol{\theta})}{\partial \boldsymbol{\theta}_D} \right]$$

Notion de gradient

• Dérivation du gradient

$$\nabla_{\boldsymbol{\theta}} J(\boldsymbol{\theta}) = \nabla_{\boldsymbol{\theta}} \mathbb{E}_{(\boldsymbol{x}, \boldsymbol{y}) \sim \hat{\boldsymbol{p}}_{data}} L(f(\boldsymbol{x}; \boldsymbol{\theta}), \boldsymbol{y})$$

$$= \nabla_{\boldsymbol{\theta}} \frac{1}{N} \sum_{i=1}^{N} L(f(\boldsymbol{x}^{(i)}; \boldsymbol{\theta}), \boldsymbol{y}^{(i)})$$

$$= \frac{1}{N} \sum_{i=1}^{N} \nabla_{\boldsymbol{\theta}} L(f(\boldsymbol{x}^{(i)}; \boldsymbol{\theta}), \boldsymbol{y}^{(i)})$$

• $\nabla_{\theta} J(\theta) = \text{moyenne}$

Algorithmes d'optimisation

- Descente du gradient:
 - 1. par batch
 - 2. stochastique
 - 3. avec momentum
 - 4. accéléré de Nesterov
 - 5. Adagrad
 - 6. RMSprop
 - 7. Adam

Ludovic Trottier 12/105

1. Descente du gradient par batch

Vecteur directionnel

$$d = \epsilon_t \cdot \nabla_{\theta} J(\theta)$$

$$= \epsilon_t \cdot \frac{1}{N} \sum_{i=1}^{N} \nabla_{\theta} L(f(\mathbf{x}^{(i)}; \theta), y^{(i)})$$

 ϵ_t = taux d'apprentissage à l'itération t.

• MAJ:

$$\theta \leftarrow \theta - d$$

Ludovic Trottier 13/105

Inconvénients de la descente du gradient par batch

• Trop sensible au minimum / maximum locaux pour être utilisable en pratique.

Ludovic Trottier 14/105

Inconvénients de la descente du gradient par batch

- Autres inconvénients
 - Traiter tous les exemples d'entraînement $(x^{(i)}, y^{(i)})$ donne **une seule** mise-à-jour.
 - Pas de MAJ entre $(\boldsymbol{x}^{(i)}, y^{(i)})$ et $(\boldsymbol{x}^{(i+j)}, y^{(i+j)})$
 - Erreur semblable → gradient semblable → redondance

Ludovic Trottier 15/105

2. Descente du gradient stochastique

- SGD
 - stochastic gradient descent
 - Une **batch** de taille m → une MAJ
- Vecteur directionnel

$$\boldsymbol{d} \leftarrow \epsilon_t \cdot \widehat{\boldsymbol{g}} = \epsilon_t \cdot \frac{1}{m} \sum_{i=1}^m \nabla_{\boldsymbol{\theta}} L(f(\boldsymbol{x}^{(i)}; \boldsymbol{\theta}), y^{(i)})$$

- Algorithme
 - 1. Échantillonage: $(\mathbf{x}^{(i)}, \mathbf{y}^{(i)}) \sim \hat{p}_{data}$, $1 \le i \le m$.
 - 2. Gradient: \hat{g}
 - 3. MAJ: $\theta \leftarrow \theta d$

Avantages de la descente du gradient stochastique

- - $-\nabla_{\boldsymbol{\theta}}I(\boldsymbol{\theta})\approx\widehat{\boldsymbol{g}}$
 - $-\hat{g}$ = version bruitée du gradient.
 - Bruit aide à sortir des min / max locaux.

Avantages de la descente du gradient stochastique

- Avantage 2
 - Une batch de taille m réduit l'incertitude du gradient de $O(\sqrt{m})$.
 - Direction semblable avec moins de données.

Avantages de la descente du gradient stochastique

- Avantage 3
 - MAJ entre $(x^{(i)}, y^{(i)})$ et $(x^{(i+j)}, y^{(i+j)})$
 - Diminue la redondance si erreur semblable.
 - Convergence possible avant même de voir tous les exemples.
- Avantage 4
 - Traitement parallèle de la batch.
- Avantage 5
 - Optimisation hardware quand $m = 2^k$

Inconvénient #1 de la descente du gradient stochastique

• Variance → fluctuation

Ludovic Trottier 20/105

Inconvénient #2 de la descente du gradient stochastique

- Taux d'apprentissage ϵ a une grande influence
 - À suivre... (section stratégies d'optimisation)

Ludovic Trottier 21/105

3. SGD + Momentum

- Concept
 - Ajouter à SGD une dynamique Newtonniene.

Ludovic Trottier 22/105

SGD + Momentum

- Velocité $\boldsymbol{v} \in \mathbb{R}^D$
 - Estimation des directions précédentes.
- Facteur d'oubli $\alpha \in [0, 1)$
 - $-\alpha \rightarrow 0 \equiv SGD$ standard
 - Valeur suggérée: $\alpha = 0.9$
- Algorithme
 - 1. Échantillonage: $(\mathbf{x}^{(i)}, \mathbf{y}^{(i)}) \sim \hat{p}_{data}, 1 \leq i \leq m$.
 - 2. Gradient: $\hat{\boldsymbol{g}} = \frac{1}{m} \sum_{i=1}^{m} \nabla_{\boldsymbol{\theta}} L(f(\boldsymbol{x}^{(i)}; \boldsymbol{\theta}), y^{(i)})$
 - 3. Vélocité: $\mathbf{v} \leftarrow \alpha \mathbf{v} \epsilon_t \cdot \hat{\mathbf{g}}$
 - 4. MAJ: $\theta \leftarrow \theta + v$

Avantage de SGD + Momentum

Avantage

- Le momentum aide lorsqu'il y a des ravins.
- Les MAJ de θ tendent à s'aligner.

rouge = avec momentum
noir = sans momentum

Ludovic Trottier 24/105

Inconvénient de SGD + Momentum

Problème

- Peut survoler les min / max locaux.
- Mais, peut dépasser le min global.

Ludovic Trottier 26/105

Inconvénient de SGD + Momentum

Problème

- Peut survoler les min / max locaux.
- Mais, peut dépasser le min global.

Ludovic Trottier 27/105

4. SGD + Momentum accéléré de Nesterov

- But
 - MAJs s'adaptent plus rapidement à la courbe.
- Concept
 - Appliquer une correction sur le jump du momentum.
- Différence importante
 - La position où on évalue le gradient.

Ludovic Trottier 28/105

SGD + Momentum de Nesterov

Algorithme

- 1. Échantillonage: $(\mathbf{x}^{(i)}, \mathbf{y}^{(i)}) \sim \hat{p}_{data}$, $1 \le i \le m$.
- 2. Point intérimaire: $\overline{\theta} \leftarrow \theta + \alpha v$
- 3. Gradient: $\overline{g} = \frac{1}{m} \sum_{i=1}^{m} \nabla_{\overline{\theta}} L(f(x^{(i)}; \overline{\theta}), y^{(i)})$
- 4. Vélocité: $\mathbf{v} \leftarrow \alpha \mathbf{v} \epsilon_t \cdot \overline{\mathbf{g}}$
- 5. MAJ: $\theta \leftarrow \theta + v$

Ludovic Trottier 29/105

SGD + Momentum de Nesterov

- Momentum standard
 - 1. Gradient (petit bleu)
 - 2. Jump direction des gradients accumulés (grand bleu)
- Nesterov

Ludovic Trottier

- 1. Jump direction des gradients accumulés (brun)
- 2. Correction avec gradient intérimaire (rouge)

5. Adagrad

Concept

– Adapter la MAJ de chaque paramètre θ_d individuellement pour uniformiser le taux de changement.

Ludovic Trottier 31/105

Adagrad

- Principe
 - $-\theta_k$ historique petite MAJ → augmenter la MAJ à k.
 - $-\theta_k$ historique grande MAJ → diminuer la MAJ à k.
- Méthode
 - Mettre à l'échelle la MAJ avec l'inverse de la racine carrée de la somme des gradients.
- Accumulation des gradients $r \in \mathbb{R}^D$
 - Accumule le carré des gradients.
- Petite constante $\delta \in \mathbb{R}$ pour stabilité numérique.

Ludovic Trottier 32/105

Adagrad

Algorithme

- 1. Échantillonage: $(\mathbf{x}^{(i)}, \mathbf{y}^{(i)}) \sim \hat{p}_{data}$, $1 \le i \le m$.
- 2. Gradient: $\hat{\boldsymbol{g}} = \frac{1}{m} \sum_{i=1}^{m} \nabla_{\boldsymbol{\theta}} L(f(\boldsymbol{x}^{(i)}; \boldsymbol{\theta}), y^{(i)})$
- 3. Accumulation: $\mathbf{r} \leftarrow \mathbf{r} + \hat{\mathbf{g}} \odot \hat{\mathbf{g}}$
- 4. Mise à l'échelle: $\mathbf{d} \leftarrow \frac{\epsilon_t}{\delta + \sqrt{r}} \odot \hat{\mathbf{g}}$
- 5. MAJ: $\theta \leftarrow \theta d$

Inconvénient de Adagrad

- Croissance excessive de *r*
 - Accumulation de valeurs positives $\hat{g} \odot \hat{g}$.
 - Les taux d'apprentissage mis à l'echelle $\frac{\epsilon_t}{\delta + \sqrt{r}} \rightarrow \mathbf{0}$ rapidement.

Ludovic Trottier 34/105

6. RMSprop

- Solution pour régler la croissance de *r*.
- Concept
 - Remplacer:
 - Accumuler $\widehat{g} \odot \widehat{g}$ pour tous les \widehat{g} depuis le début.
 - Par:
 - Accumuler $\widehat{g} \odot \widehat{g}$ que pour les plus récents \widehat{g} .
- Méthode
 - Utiliser une moyenne mobile exponentielle à taux de décroissance $\rho \in [0, 1]$.
 - Valeur suggérée: $\rho = 0.99$

Moyenne mobile exponentielle

$$v_t = \rho v_{t-1} + (1 - \rho) y_t$$

$$v_0 = 0$$

$$v_1 = 0.99 \cdot v_0 + 0.01 \cdot y_1$$

$$= 0.01 \cdot y_1$$

$$v_2 = 0.99 \cdot v_1 + 0.01 \cdot y_2$$

$$= 0.0099 \cdot y_1 + 0.01 \cdot y_2$$

Ludovic Trottier 36/105

RMSprop

Algorithme

- 1. Échantillonage: $(\mathbf{x}^{(i)}, \mathbf{y}^{(i)}) \sim \hat{p}_{data}$, $1 \le i \le m$.
- 2. Gradient: $\widehat{\boldsymbol{g}} = \frac{1}{m} \sum_{i=1}^{m} \nabla_{\boldsymbol{\theta}} L(f(\boldsymbol{x}^{(i)}; \boldsymbol{\theta}), y^{(i)})$
- 3. Accumulation: $r \leftarrow \rho r + (1 \rho)\hat{g} \odot \hat{g}$
- 4. Mise à l'échelle: $d \leftarrow \frac{\epsilon_t}{\delta + \sqrt{r}} \odot \hat{g}$
- 5. MAJ: $\theta \leftarrow \theta d$

7. RMSprop + Momentum

- Méthode:
 - Comme pour SGD, on peut ajouter du momentum aux direction calculées.
- Velocité $\boldsymbol{v} \in \mathbb{R}^D$
 - Estimation des directions mises à l'échelle précédentes.
- Facteur d'oubli $\alpha \in [0, 1)$
 - $-\alpha \rightarrow 0 \equiv RMSprop standard$

38/105

RMSprop + Momentum

Algorithme

- 1. Échantillonage: $(\mathbf{x}^{(i)}, \mathbf{y}^{(i)}) \sim \hat{p}_{data}$, $1 \le i \le m$.
- 2. Gradient: $\widehat{\boldsymbol{g}} = \frac{1}{m} \sum_{i=1}^{m} \nabla_{\boldsymbol{\theta}} L(f(\boldsymbol{x}^{(i)}; \boldsymbol{\theta}), y^{(i)})$
- 3. Accumulation: $\mathbf{r} \leftarrow \rho \mathbf{r} + (1 \rho)\hat{\mathbf{g}} \odot \hat{\mathbf{g}}$
- 4. Vélocité: $\mathbf{v} \leftarrow \alpha \mathbf{v} \frac{\epsilon_t}{\sqrt{r}} \odot \hat{\mathbf{g}}$
- 5. MAJ: $\theta \leftarrow \theta + v$

39/105

8. RMSprop + Nesterov

• Méthode:

- Comme pour SGD + Nesterov, on peut utiliser le momentum accéléré de Nesterov.
- Appliquer une correction mise à l'échelle du jump du momentum.

Ludovic Trottier 40/105

RMSprop + Nesterov

Algorithme

- 1. Échantillonage: $(\mathbf{x}^{(i)}, \mathbf{y}^{(i)}) \sim \hat{p}_{data}$, $1 \le i \le m$.
- 2. Point intérimaire: $\overline{\theta} \leftarrow \theta + \alpha v$
- 3. Gradient: $\overline{g} = \frac{1}{m} \sum_{i=1}^{m} \nabla_{\overline{\theta}} L(f(x^{(i)}; \overline{\theta}), y^{(i)})$
- 4. Accumulation: $\mathbf{r} \leftarrow \rho \mathbf{r} + (1 \rho) \overline{\mathbf{g}} \odot \overline{\mathbf{g}}$
- 5. Vélocité: $\mathbf{v} \leftarrow \alpha \mathbf{v} \frac{\epsilon_t}{\sqrt{r}} \odot \overline{\mathbf{g}}$
- 6. MAJ: $\theta \leftarrow \theta + v$

Inconvénients de RMSprop

• Inconvénient 1

- -r est une estimation du second moment (variance décentrée) du gradient \hat{g} .
- Cet estimateur a un large biais positif au début de la descente du gradient.

Inconvénient 2

 L'utilisation du momentum en combinaison avec de la mise-à-l'echelle (étape vélocité) n'a pas une justification théorique claire.

Ludovic Trottier 42/105

9. Adam

- Solution pour résoudre les inconvénients de RMSprop + momentum / Nesterov.
- Méthode:
 - Calculer une estimation du premier et second moments avec une moyenne mobile exponentielle à taux $\rho_1, \rho_2 \in [0, 1)$.
 - Valeurs suggérées: $\rho_1=0.9$ et $\rho_2=0.999$
 - Corriger les biais des moments.
 - Le premier moment normalisé par le second moment donne la direction de MAJ.

Ludovic Trottier 43/105

Correction des biais

$$v_t = \rho v_{t-1} + (1 - \rho) y_t$$

$$v_0 = 0$$

$$v_1 = 0.99 \cdot v_0 + 0.01 \cdot y_1$$

$$= 0.01 \cdot y_1$$

$$v_2 = 0.99 \cdot v_1 + 0.01 \cdot y_2$$

$$= 0.0099 \cdot y_1 + 0.01 \cdot y_2$$

$$\hat{v}_t = \frac{v_t}{1 - (\rho)^t}$$

$$\hat{v}_2 = \frac{v_2}{1 - 0.99^2} \\ = \frac{0.0099 \cdot y_1 + 0.01 \cdot y_2}{0.0199} \\ = 0.497 \cdot y_1 + 0.503 \cdot y_2$$

Adam

Algorithme

- 1. Échantillonage: $(\mathbf{x}^{(i)}, \mathbf{y}^{(i)}) \sim \hat{p}_{data}$, $1 \le i \le m$.
- 2. Gradient: $\widehat{\boldsymbol{g}} = \frac{1}{m} \sum_{i=1}^{m} \nabla_{\boldsymbol{\theta}} L(f(\boldsymbol{x}^{(i)}; \boldsymbol{\theta}), y^{(i)})$
- 3. 1er moment: $\mathbf{s} \leftarrow \rho_1 \mathbf{s} + (1 \rho_1) \hat{\mathbf{g}}$
- 4. 2e moment: $\mathbf{r} \leftarrow \rho_2 \mathbf{r} + (1 \rho_2) \hat{\mathbf{g}} \odot \hat{\mathbf{g}}$
- 5. Correction biais 1er moment : $\hat{s} \leftarrow \frac{s}{1 (\rho_1)^t}$
- 6. Correction biais 2e moment : $\hat{r} \leftarrow \frac{r}{1 (\rho_2)^t}$
- 7. Direction: $\mathbf{d} \leftarrow \epsilon_t \frac{\hat{\mathbf{s}}}{\sqrt{\hat{r}} + \delta}$
- 8. MAJ: $\theta \leftarrow \theta d$

Tableau comparatif

Approche	Hyper-paramètre	Utilisation mémoire
Batch	ϵ_t	D
SGD	ϵ_t , m	D
SGD + Momentum	ϵ_t, m, α	D*2
SGD + Nesterov	ϵ_t, m, α	D*2
Adagrad	ϵ_t, m, δ	D*2
RMSProp	ϵ_t, m, ρ	D*2
RMSProp + Momentum	$\epsilon_t, m, \rho, \alpha$	D*3
RMSProp + Nesterov	$\epsilon_t, m, \rho, \alpha$	D*3
Adam	$\epsilon_t, m, \rho_1, \rho_2, \delta$	D*3

PyTorch documentation

Ludovic Trottier 46/105

Adam

Inconvénient

 Augmentation rapide du taux d'apprentissage effectif causé lorsque le 2e moment précédent est beaucoup plus grand que le gradient estimé.

Ludovic Trottier 47/105

Yogi

- Amélioration de Adam
- Le but est de contrôler l'augmentation rapide du taux d'apprentissage effectif
- Taille de la minibatch augmente avec le temps

Ludovic Trottier 48/105

Yogi

Algorithme

- Échantillonage: $(x^{(i)}, y^{(i)}) \sim \hat{p}_{data}$
- Gradient: $\hat{g}_t = \frac{1}{m} \sum_{i=1}^m \nabla_{\Theta} L(f(x^{(i)}; \Theta), y^{(i)})$
- **–** 1er moment: $s_t = \rho s_{t-1} + (1 \rho)\hat{g}_t$
- **2e moment:** $r_t = r_{t-1} (1 \beta_2) sign(r_{t-1} \hat{g}_t^2) \hat{g}_t^2$
- Correction biais 1er moment: $\hat{s}_t = \frac{s}{1 \rho_1^t}$
- Correction biais 2e moment: $\hat{r}_t = \frac{r}{1 \rho_2^t}$
- **–** Direction: $d = \epsilon_t \frac{\hat{s}}{\sqrt{\hat{r}} + \delta}$
- -MAJ: θ ← θ d

Table 1: Train and test loss comparison for Deep AutoEncoders. Standard errors with 2σ are shown over 6 runs are shown. All our experiments were run for 5000 epochs utilizing the ReduceLRonPlateau schedule with patience of 20 epochs and decay factor of 0.5 with a batch size of 128.

Method	LR	eta_1	eta_2	ϵ	MNIST	
	LK				Train Loss	Test Loss
PT + NCG [20]	-	-	-	-	2.31	2.72
RAND+HF [20]	-	-	-	-	1.64	2.78
PT + HF [20]	-	-	-	-	1.63	2.46
KSD [36]	-	-	-	-	1.8	2.5
HF [36]	-	-	-	-	1.7	2.7
ADAM (Default)	10^{-3}	0.9	0.999	10^{-8}	1.85 ± 0.19	4.36 ± 0.33
ADAM (Modified)	10^{-3}	0.9	0.999	10^{-3}	0.91 ± 0.04	1.88 ± 0.07
Yogi (Ours)	10^{-2}	0.9	0.9	10^{-3}	0.78 ± 0.02	1.70 ± 0.03
Yogi (Ours)	10^{-2}	0.9	0.999	10^{-3}	0.88 ± 0.02	$\boldsymbol{1.36 \pm 0.01}$

Ludovic Trottier 50/105

Stratégies d'optimisation

Stratégies d'optimisation

Stratégies pour améliorer l'optimisation:

- 1. Choisir les hyperparamètres
- 2. Initialisation des paramètres
- 3. Normalisation

Ludovic Trottier 52/105

1. Choisir les hyperparamètres

- Trois façons de choisir les hyperparamètres:
 - 1. Horaire d'entraînement
 - 2. Taux d'apprentissage cyclique
 - 3. Recherche en grille
 - 4. Recherche aléatoire
 - 5. "Learning rate finder"

Ludovic Trottier 53/105

1.1 Horaire d'entraînement

Principe

- Établir à l'avance un horaire indiquant la valeur des hyperparamètres en fonction de l'époque.
- Le plus souvent utilisé pour définir les taux d'apprentissage ϵ_t .
- Plus un art qu'une science.

Ludovic Trottier 54/105

Example d'horaire d'entraînement

- Nombre d'époque maximum: 200
- Taille de la batch: m = 32
- Algorithme d'optimisation: SGD + Nesterov $\alpha = 0.9$
- Horaire:

Époque	0	75	125	175
Taux d'apprentissage	0.1	0.01	0.001	0.0001
Weight decay	1e-4	5e-4	1e-5	5e-5

Ludovic Trottier 55/105

Stratégie #1 pour choisir l'horaire

Principe

- $-J(\theta)$ atteint un plateau → changer l'hyperparamètre.
- Produira une courbe en forme d'escalier.

Méthode

- 1. Définir la valeur initiale.
- 2. Définir le taux de décroissance $\beta \in (0, 1]$.
- 3. Définir les époques de MAJ en identifiant les plateaux de $J(\theta)$.

Ludovic Trottier 56/105

Stratégie #1 pour choisir l'horaire du taux d'apprentissage ϵ

- Exemple: taux d'apprentissage ϵ .
- Valeur initiale ϵ_0
 - Trop large: grandes oscillations → $J(\theta)$ augmente → divergence (NaNs, Inf)
 - Trop petit: convergence local → $J(\theta)$ grande valeur → piètre solution θ
 - Stratégie pour ϵ_0 :
 - Prendre approximativement la plus grande valeur de ϵ_0 qui ne fait pas diverger $J(\theta)$.

Ludovic Trottier 57/105

Stratégie #1 pour choisir l'horaire du taux d'apprentissage ϵ

- Taux de décroissance
 - MAJ: $\epsilon \leftarrow \epsilon \cdot \beta$
 - Représente l'aggressivité de la convergence.
 - Convergence rapide quand $\beta \rightarrow 0$
 - Convergence lente quand $\beta \rightarrow 1$
 - Valeurs suggérées: $\beta \in \{0.1, 0.2, 0.5\}$

Ludovic Trottier 58/105

Stratégie #1 pour choisir l'horaire du taux d'apprentissage ϵ

- Époques de MAJ
 - Observer $J(\boldsymbol{\theta})$
 - Soit t_e l'époque où $J(\theta)$ converge.
 - Ajouter à l'horaire d'entraînement une entrée avec époque = t_e .
 - Recommencer avec la nouvelle horaire.
 - Arrêter lorsque la MAJ de ϵ ne fait plus diminuer $J(\theta)$.

Ludovic Trottier 59/105

- Example
- Valeur initiale ϵ_0
 - $-10 \rightarrow \text{nan}, 1 \rightarrow \text{nan}, 0.1 \rightarrow \text{ok}$
- Taux de décroissance
 - $-\beta = 0.1$
- Époques de MAJ
 - Commençons avec l'horaire suivante:

Époque	0	
Taux d'apprentissage	0.1	

Ludovic Trottier 60/105

Convergence aux alentours de l'époque 75.

Époque	0	
Taux d'apprentissage	0.1	

Ludovic Trottier 61/105

Convergence aux alentours de l'époque 125.

Époque	0	75	
Taux d'apprentissage	0.1	0.01	

Ludovic Trottier 62/105

Convergence aux alentours de l'époque 175.

Époque	0	75	125	
Taux d'apprentissage	0.1	0.01	0.001	

Ludovic Trottier 63/105

Aucun gain après époque 175.

Époque	0	75	125	175
Taux d'apprentissage	0.1	0.01	0.001	0.0001

Ludovic Trottier 64/105

Stratégie #2 pour choisir l'horaire

Principe

- Changer l'hyper-parameter à chaque époque t_e .
- Produira une courbe sans plateau.

Méthode

- 1. Définir la valeur initiale.
- 2. Définir le taux de décroissance $\beta \in (0, 1]$.
- 3. Définir la règle de décroissance.

Ludovic Trottier 65/105

Stratégie #2 pour choisir l'horaire du taux d'apprentissage ϵ

- Exemple: taux d'apprentissage ϵ .
- Valeur initiale ϵ_0
 - Prendre approximativement la plus grande valeur de ϵ_0 qui ne fait pas diverger $J(\theta)$.
- Taux de décroissance
 - Dépend du problème.
- Règle de décroissance

$$\epsilon_t = \frac{\epsilon_0}{1 + \beta \cdot t_e}$$
 ou $\epsilon_t = \epsilon_0 \cdot \exp\{-\beta \cdot t_e\}$

Ludovic Trottier 66/105

•
$$\epsilon_0 = 0.1$$
, $\beta = 0.1$, $\epsilon_t = \frac{\epsilon_0}{1 + \beta \cdot t_e}$

Ludovic Trottier 67/105

Stratégie #1 > Stratégie #2

- Avantage de Stratégie #1
 - Relation non-linéaire entre le taux de décroissance de $J(\theta)$ et celui de ϵ_t .
 - Difficile de caractériser cette relation.
 - Stratégie #1 approxime la relation non-linéaire avec une fonction en escalier.

Ludovic Trottier Epoch 68/105

Avantages et inconvénients des horaires d'entraînement

- Avantages
 - Simple à expliquer.
 - Facile à reproduire.
- Inconvénients
 - Développer son intuition pour comprendre l'effet des hyper-paramètres.
 - Peut sembler arbitraire.
- Somme toute
 - Souvent utilisé en pratique

Ludovic Trottier 69/105

1.2 Taux d'apprentissage cyclique

- Méthode d'optimisation en soit
 - Descente de gradient stochatique avec redémarrage
 - Ensemble de modèles conservé pour faire la prédiction finale sur l'ensemble de test

Ludovic Trottier 70/105

1.2 Taux d'apprentissage cyclique

Ludovic Trottier 71/105

1.2 Taux d'apprentissage cyclique

https://arxiv.org/abs/1704.00109

Ludovic Trottier 72/105

1.3 Recherche en grille

- Certains hyperparamètres doivent restés fixes pour toute la durée de l'optimisation.
 - Nombre de neurones
 - Fonction d'activation
 - Probabilité de dropout (Semaine 4)
 - Dimension des filtres à convolution (Semaine 5)
- D'autres peuvent être fixés même si pas nécessaire.
 - Weight decay (Semaine 4)
 - Taux d'apprentissage
- Comment trouver leur valeur optimale?

Ludovic Trottier 73/105

Recherche en grille

Principe

- Déterminer un ensemble de valeur à tester pour chaque hyperparamètre.
- Utiliser une échelle logarithmique.
- Méthode
 - Minimiser $J(\theta)$ pour chaque combinaison du produit cartésien.

Ludovic Trottier 74/105

Exemple de recherche en grille

- Hyperparamètres:
 - Taux d'apprentissage: $\epsilon \in \{0.1, 0.01, 0.001\}$
 - − Weight decay $\lambda \in \{0.001, 0.0005, 0.0001\}$

Ludovic Trottier 75/105

Avantages et inconvénients

Avantages

- Profiter de la connaissance d'un expert.
- Recherche exhaustive (brute force).
- Facilement parallélisable.
- Inconvénients
 - Demande computationnelle élevée.
 - Calcul redondant, car un seul hyperparamètre change à la fois.

Ludovic Trottier 76/105

1.4 Recherche aléatoire

Principe

- Déterminer une distribution de probabilité pour chaque hyperparamètre.
- Utiliser une échelle logarithmique.

Méthode

- Échantillonner les distributions T fois.
- Minimiser $J(\theta)$ T fois, une fois pour chaque combinaison.

Ludovic Trottier 77/105

Exemple de recherche aléatoire

- Hyperparamètres:
 - Taux d'apprentissage: $\epsilon = 10^{\gamma_1}$ où $\gamma_1 \sim U(-1, -3)$
 - Weight decay: $\lambda = 10^{\gamma_2}$ où $\gamma_2 \sim U(-3, -4)$

Ludovic Trottier 78/105

Avantages et inconvénients

Avantages

- Mêmes avantages que recherche en grille.
- Moins redondant, car hyperparamètre change à chaque fois.
- Anytime: peut être arrêté n'importe quand.
- Plus il roule, meilleure est la recherche.

Inconvénients

- Demande computationnelle élevée.
- Difficile à reproduire (random seed).

Ludovic Trottier 79/105

1.5 Learning rate finder

Principe

 Trouver un bon taux d'apprentissage pour débuter l'entraînement

Importance

- Un taux d'apprentissage trop petit occasionne une descente de gradient longue
- Un taux d'apprentissage trop élevé peut faire diverger le réseau

Ludovic Trottier 80/105

1.5 Learning rate finder

fast.ai

Ludovic Trottier 81/105

1.5 Learning rate finder

fast.ai

Ludovic Trottier 82/105

2. Initialisation des paramètres

Principe

– Choisir la valeur initial de θ avant l'optimisation

Importance

- Souvent laisser de côté.
- Un réseau mal initialisé peut être difficile à optimiser.

$$- w = -1,000,000, x = 1$$

$$-sigmoid(w \cdot x) = \frac{1}{1 + \exp(-w \cdot x)} = \frac{1}{1 + \exp(1,000,000)}$$

Ludovic Trottier 83/105

2. Initialisation des paramètres

• A un grand impact sur l'optimisation.

84/105

2. Initialisation des paramètres

Deux façons:

- 1. Initialisation à partir de rien
 - La seule façon pour beaucoup de problèmes.
- 2. Initialisation par pré-entraînement
 - Utilisée lorsqu'un réseau à déjà été entraîné sur le même type de problème.

Ludovic Trottier 85/105

Initialisation à partir de rien

- Initialisation des biais
 - Généralement initialisés à 0.
- Initialisation des poids
 - 1. Choisir une distribution de probabilité.
 - 2. Choisir ses paramètres.
 - 3. Échantillonner les poids iid.
- Définition:
 - $-n_i$: nombre de neurones en entré.
 - $-n_o$: nombre de neurones en sortie.

Ludovic Trottier 86/105

Initialisation aléatoire des poids

Nom	Uniforme $w \sim U(-a, a)$	Normale $w \sim N(0, s^2)$	Article
Glorot / Xavier	$a = \sqrt{6/(n_i + n_o)}$	$s = \sqrt{2/(n_i + n_o)}$	<u>pdf</u>
Kaiming He	$a = \sqrt{6/n_i}$	$s = \sqrt{2/n_i}$	<u>pdf</u>

- Glorot / Xavier
 - À utiliser avec sigmoid et tanh.
- Kaiming
 - À utiliser avec ReLU
- Dérivation des équations
 - lien

Ludovic Trottier 87/105

Initialisation PyTorch

 Par défaut pour linéaire et à convolution (<u>lien</u>):

$$-w \sim U(-a, a), \ a = \sqrt{1/n_i}$$

- Pourquoi ? ¯_(ツ)_/¯
- Module init.py
 - kaiming_normal, kaiming_uniform, xavier_normal, xavier_uniform

Ludovic Trottier 88/105

Initialisation constante des poids

Principe

- On peut aussi initialiser à une constante k.
- -w=k

Inconvénient

Poids identique → MAJ identique

$$-y_1 = w_{11}x_1 + w_{12}x_2$$

$$-y_2 = w_{21}x_1 + w_{22}x_2$$

$$-\frac{\partial J}{w_{11}} = \frac{\partial J}{y_1} \frac{\partial y_1}{w_{11}} = \frac{\partial J}{y_1} x_1 \leftrightarrow \frac{\partial J}{w_{21}} = \frac{\partial J}{y_2} \frac{\partial y_2}{w_{21}} = \frac{\partial J}{y_2} x_1$$

Ludovic Trottier 89/105

Initialisation par pré-entraînement

Ludovic Trottier 90/105

Initialisation par pré-entraînement

- Méthode
 - Initialiser les paramètres du modèle cible avec ceux du modèle source.
 - Entraînement devient *fine-tuning*.
- Fonctionne si Dom(source) ≈ Dom(cible).

Ludovic Trottier 91/105

3. Normalisation

Principe

 Transformer l'input pour mieux conditionner l'optimisation.

• Nous verrons:

- Normalisation Min-Max
- Normalisation du z-score
- Normalisation par batch

Ludovic Trottier 92/105

Normalisation Min-Max

- Principe
 - Transforme l'input au range [0, 1].
- Méthode

$$-\overline{x} = \frac{x - x_{min}}{x_{max} - x_{min}}$$

- Sensibilité au outliers.
 - Utilisé seulement quand x est borné.
 - Exemple: image $I \in \{0, 255\}^3$ → $I \in [0, 1]^3$

Ludovic Trottier 93/105

Normalisation du *z-score*

- Principe
 - Aussi appelée normalisation tout court.
 - Transforme l'input pour que moyenne = 0 et variance = 1.
- Méthode

$$-\overline{x} = \frac{x - x_{\mu}}{\sqrt{x_{\sigma^2} + \delta}}$$

- $-x_{\mu}$ et x_{σ^2} calculés avec tous les $x^{(i)}$, i=1...N, d'entraînement.
- Également sensible aux outliers.
- Souvent utilisée.

Normalisation par batch (BN)*

- Principe (<u>lien</u>)
 - Appliquer *normalisation du z-score* sur les neurones des couches cachées du réseau.
- Méthode

$$-\boldsymbol{h}^l = \mathcal{F}(\boldsymbol{h}^{l-1})$$

$$-\overline{h}^{l} = \alpha \cdot \frac{h^{l} - h^{l}_{\mu}}{\sqrt{h^{l}_{\sigma^{2}} + \delta}} + \beta$$

- $-\mathbf{h}^l{}_{\mu}$ et $\mathbf{h}^l{}_{\sigma^2}$ calculés seulement sur les \mathbf{h}^l de la batch.
- $-\alpha$ et β paramètres additionnels à apprendre.

Ludovic Trottier 97/105

Normalisation par batch

- Pour le mode test
 - Moyenne mobile: $\boldsymbol{m} \leftarrow \rho \boldsymbol{m} + (1 \rho) \boldsymbol{h}^{l}_{\mu}$
 - Variance mobile: $\mathbf{s} \leftarrow \rho \mathbf{s} + (1 \rho) \mathbf{h}^{l}_{\sigma^{2}}$

$$-\overline{h}^l = \alpha \cdot \frac{h^l - m}{\sqrt{s + \delta}} + \beta$$

Initialisation

$$-\alpha = 1$$
, $\beta = 0$, $m = 0$, $s = 1$

Avantages de la normalisation par batch

- Avantage #1
 - Apprentissage end-to-end avec backprop.
- Avantage #2
 - Diminue l'impact d'un taux d'apprentissage initial trop grand.
 - $-\epsilon_0 = 0.1$ fonctionne souvent très bien.
- Avantage #3
 - Réseaux profonds facile à entraîner.

Ludovic Trottier 99/105

Avantages de la normalisation par batch

- Avantage #4
 - Réseau converge plus rapidement.
- Avantage #5
 - Diminue le nombre de neurones morts / désactivés de la ReLU.

Ludovic Trottier 100/105

Avantages de la normalisation par batch

- Tout ces avantages sont en grande partie causés par un lissage de la fonction de perte
- La normalisation par batch devrait toujours être utilisée.
 - Placer avant activation ou après fc / conv.

Ludovic Trottier 101/105

Diagnostique

Diagnostique

- Quelques recettes à suivre pour partir du bon pied
 - 1. Structure neuronale de base.
 - 2. Information à enregistrer.
 - 3. Méthode rouleau compresseur.
 - 4. Analyse

Ludovic Trottier 103/105

1. Structure neuronale de base

- Fully Connected
 - InitialisationKaiming He uniforme
 - bias = False
 - BN: $\alpha = 1$, $\beta = 0$, m = 0, s = 1

Entrée

Linéaire

BN

ReLU

x K1

Linéaire

Sortie

104/105

Structure neuronale de base

Convolution

- InitialisationKaiming He normale
- bias = False
- BN: $\alpha = 1$, $\beta = 0$, m = 0, s = 1
- Max Pooling
- Global AveragePooling

Ludovic Trottier

2. Information à enregistrer

- Bien diagnostiquer

 accès à toute

 l'information
 - But: s'assurer que tout se passe comme voulu.
- Voici quelques exemples d'information à enregistrer.

Ludovic Trottier 106/105

Information de performance

- Valeur de la fonction de coût
 - Peut voir s'il y a des nan, inf, si ça augmente au lieu de diminuer.
- Valeur de la métrique de performance
 - Donne une meilleure idée de la performance que la function de coût (coût=1.2, err=5%).

Ludovic Trottier 107/105

Information sur le réseau

- Structure du réseau
 - Peut voir si on entraîne le bon réseau.
- Afficher le nombre de paramètres
 - np.sum([p.numel() for p in network.parameters()])
- Afficher les prédictions d'une seule batch en début d'époque
 - Peut voir l'évolution des prédictions.

Ludovic Trottier 108/105

Information sur les donnés

- Nombre d'exemples d'entraînement / de validation / de test.
- Ratio des classes
 - Détecter un déséquilibre de classes.
- Afficher les exemples d'une seule batch en début d'époque
 - Seulement si c'est informatif (e.g. images)

Ludovic Trottier 109/105

Information sur l'optimisation

- La norme / moyenne / variance des MAJ d
- La norme / moyenne / variance / % = 0 des neurones cachées
 - Peut donner une idée du nombre d'unités mortes.
- Afficher le temps de calcul d'une batch
 - Estimer le temps total de l'apprentissage.
- Valeur des hyperparamètres

Ludovic Trottier 110/105

3. Méthode rouleau compresseur

- Pour mieux se familiariser avec un nouveau problème d'apprentissage.
- Procéder en 3 étapes:
 - 1. Sous-ensemble des données + sous-ensemble des classes.
 - 2. Toutes les données + sous-ensemble des classes.
 - 3. Toutes les données + toutes les classes.

Ludovic Trottier 111/105

Étape #1: sous-ensemble données + sous-ensemble classes

• But

- Démontrer que le réseau peut sur-apprendre.
- Si pas bon en train \rightarrow pas bon en val.

Astuces

- Pas de régularisation.
- Pas d'augmentation de donnée.

Exemple

 Classification binaire avec 10 exemples par classe.

Ludovic Trottier 112/105

Étape #2: toutes les données + sousensemble classes

- But
 - Démontrer que le réseau peut généraliser.
- Astuces
 - Ajouter un peu de régularisation.
 - Ajouter un peu d'augmentation de donnée.
- Exemple
 - Classification binaire avec 100,000 exemples par classe.

Ludovic Trottier 113/105

Étape #3: toutes les données + toutes les classes

- But
 - Débuter l'entraînement normal.
- Astuces
 - Petit réseau → gros réseau
 - Horaire d'entrainement
 - Augmentation de donnée maximale
- Exemple
 - Classification 100 classes avec 100,000 exemples par classe.

Ludovic Trottier 114/105

4. Analyse

• But

 Obtenir une retrospective après l'apprentissage.

Permet de

- Détecter des étiquettes fausses
- Détecter un mauvais traitement de données.
- Donner une intuition sur la difficulté de la tâche.

Ludovic Trottier 115/105

Analyse d'erreur

Exemple

- Aléatoirement, regarder quelques exemples de predictions correctes et erronées.
- L'exemple ayant la meilleure performance.
- L'exemple ayant la pire performance.
- L'exemple le plus incertain (prob 0.5 classification binaire)

Ludovic Trottier 116/105

Analyse des batches

- S'assurer que:
 - Tous les exemples sont différents
 - Les étiquettes sont correctes
- Afficher l'augmentation de données
 - Regarder si elle respecte l'invariance de classe.

Ludovic Trottier 117/105