TL06

Q1 AVL Tree Insertion

AVL – Insert 33

AVL – **Insert 33**

AVL – Insert 33

AVL – **Insert 33**

AVL – Delete 62

 $\underset{\text{AVL Tree Deletion}}{Q2}$

AVL – Delete 62

AVL – Delete 62

AVL – Delete 62

Q3 AVL Tree Deletion - General

a. Delete 83

b. So, what's the worst case?

b. So, what's the worst case?

Q4
Hash Table – Collision Resolution

```
a. Separate Chaining { 10, 22, 31, 4, 15, 28, 17, 88, 59 } = key % 11

0 1 2 3 4 5 6 7 8 9 10
```


b. Linear Probing

Hash(key)
= key % 11

Insert(17), *Insert*(37), *Insert*(59), *Insert*(70)

0	1	2	3	4	5	6	7	8	9	10

b. Linear Probing

Hash(key)
= key % 11

Find(60), Delete(59), Find(70), Insert(16)

0	1	2	4		0	,	•	9	10
			37	59	17	70			

c. Quadratic Probing

Hash(key)
= key % 11

Insert(20), *Insert*(82), *Insert*(28), *Insert*(93)

'	1	 <u> </u>		82	20	, 	0	20	10
				82	28			20	

d. Double Hashing

Hash(key)
= key % 11

Insert(32), Insert(49), Insert(65), Insert(26)

Hash2(key)
= 7 - key % 7

0	1	2	3	4	5	6	7	8	9	10

c. Quadratic Probing

Hash(key)
= key % 11

Find(51), Delete(82), Find(93), Insert(24), Insert(68)

0	1	2	3	4	5	6	7	8	9	10
			93		82	28			20	

Find(37), Delete(26), Insert(98)

c. Key = even # in 0 to 1,000,000 Uniform?

Hash(key)
= key % 100

Q5 Hash Function Analysis

d. Key = 0 to 1,000,000 Uniform?

Hash(key) = key * 7 % 49 e. Key = 1 to 10,000 Uniform?

Lab Q1

Lab Q2

AVL Tree – Insertion

[Submission] ork on _balance(T) function

- This function checks the BF of T:
 - If skewed:
 - What case?
 - What rotation?
 - Update height
 - Return
 - Just return!

AVL Tree - Deletion

- With _balance(), this is literally a one line problem.....
- Hint: Look at how insertion() is updated from BST to AVL Tree.....

Lab Q3 Hash Table?!!

Just the probe sequence

- i.e. simple calculation only!
- If written in small steps = \sim 3-4 lines
- If written in condense mode = 1 line ©

• Note that ONLY part (c) needs to be **submitted!**