第四章:生成排列和组合

- 4.1 生成排列
- 4.2 排列中的逆序
- 4.3 生成组合
- 4.4 生成 r 子集

主要内容

- 生成组合算法
 - -压缩序
 - 一反射Gray序

4.3 生成组合

- n元集合 $S = \{x_{n-1}, ..., x_1, x_0\}$ 的所有组合(子集)共有 2^n 个。(S的幂集 2^S)。
- 设计一个算法将 S 的所有组合列举出来。
 - □没有重复
- 特征函数 χ_A : $S \rightarrow \{0, 1\}$, $A \subseteq S$

对任意
$$x \in S$$
, $\chi_A = \begin{cases} \mathbf{1}, & \exists x \in A \\ \mathbf{0}, & \exists x \notin A \end{cases}$

注意:长度为n的二进制数也是2n个,两者有何联系?

■ n元集合 $S=\{x_{n-1}, x_{n-2}, ..., x_0\}$ 的组合与长度为n的二进制数一一对应

$$x_{n-1}$$
 x_{n-2} ... x_1 x_0 a_{n-1} a_{n-2} ... a_1 $a_0 \in \{0,1\}$

■ 用二进制 $a_{n-1}a_{n-2}...a_0$ 表示 S 的一个组合 $\{x_{i_1}, x_{i_2}..., x_{i_k}\}$,其中 $n-1 \ge i_1 \ge i_2 \ge ... \ge i_k \ge 0$:

$$a_{i_i} = 1 \ (j \in [1, k])$$
,其他位置为 0

例: $S = \{x_7, x_6, ..., x_1, x_0\}$ 的一个组合 $\{x_7, x_5, x_1\}$ 对应的二进制数为 10100010

a_7	a_6	a_5	a_4	a_3	a_2	a_1	a_0
1	0	1	0	0	0	1	0

■ n元集合 $S=\{x_{n-1}, x_{n-2}, ..., x_0\}$ 的组合与长度为n的二进制数一一对应

$$x_{n-1}$$
 x_{n-2} ... x_1 x_0 a_{n-1} a_{n-2} ... a_1 $a_0 \in \{0,1\}$

■ 用 S 的组合来表示[0, 2^{n-1}]中的一个整数的二进制表示: 1 所在的位置对应的元素包含在组合中。

例: n=7,整数29 \in [1, 2⁷] 的二进制表示为: 0011101, 29对应的组合为 $\{x_4, x_3, x_2, x_0\}$

x_6	x_5	x_4	x_3	x_2	x_1	x_0
0	0	1	1	1	0	1

- - 如何生成 $S=\{x_{n-1},x_{n-2},...,x_0\}$ 的所有 2^n 个组合?
 - □按从小到大的顺序写出0 到 2ⁿ-1的所有数的二进制形式
 - □每次使用二进制数的加法加1

n=4时, $a_3a_2a_1a_0$, $\{x_3, x_2, x_1, x_0\}$ 的子集

		,	
	Φ	0000	0
•	x_0	0001	1
	x_1	0 0 1 0	2
,	x_1, x_0	0 0 1 1	3
		0 1 0 0	4
		0 1 0 1	5
		0 1 1 0	6
		0 1 1 1	7
	x_3	1000	8
	x_3, x_0	1001	9
	x_3, x_1	1010	10
	x_3, x_1, x_0	1011	11
	x_3, x_2	1 1 0 0	12
	x_3, x_2, x_0	1 1 0 1	13
	x_3, x_2, x_1	1110	14
	x_3, x_2, x_1, x_0	1 1 1 1	15
	x_1, x_0 x_2 x_2, x_0 x_2, x_1 x_2, x_1, x_0 x_3 x_3, x_0 x_3, x_1 x_3, x_1, x_0 x_3, x_2 x_3, x_2, x_0 x_3, x_2, x_0 x_3, x_2, x_0 x_3, x_2, x_0	0100 0101 0110 0111 1000 1001 1011 1100 1101 1110	4 5 6 7 8 9 10 11 12 13

 $\{x_0\}$ 的所有组合

 $\{x_1, x_0\}$ 的所有组合

 $\{x_2, x_1, x_0\}$ 的所有组合

■ 当 j < n-1时, $\{x_j, ..., x_1, x_0\}$ 的所有组合都在至少含有 $\{x_{n-1}, ..., x_{j+1}\}$ 中一个元素的 组合的前面

——子集的压缩序

$a_3 a_2 a_1 a_0$

	3 2 1 0
0	0000
1	0001
2	0010
3	0 0 1 1
2 3 4 5	0 1 0 0
5	0 1 0 1
6	0110
7	0 1 1 1
8	1000
9	1001
10	1010
11	1011
12	1 1 0 0
13	1 1 0 1
14	1 1 1 0
15	1 1 1 1

生成= $\{x_{n-1}, x_{n-2}, ..., x_0\}$ 的所有 2^n 个组合的二进制算法

- 1. 初始: $a_{n-1}...a_1a_0=0...00$
- 2. 当 $a_{n-1}...a_1a_0 \neq 1...11$ 时,执行以下操作:
 - (1) 求出使得 $a_i = 0$ 的最小整数j
 - (2)用1替换 a_j 并用 0 替换每个 $a_{j-1},...,a_0$ 。

二进制

3. 当 $a_{n-1}...a_1a_0$ =1...11时算法结束。

算法按自然二进制数顺序生成, 称为n元 组字典序。

问题:

- 组合 $\{x_6, x_4, x_2, x_1, x_0\}$ 的下一个组合是什么? 1010111+1=1011000, 下一个组合为 $\{x_6, x_4, x_3\}$
- 例2: $S = \{x_6, x_5, ..., x_1, x_0\}$ 的 哪个子集是子集列表中的第108个子集?

(注:列表上的位置是从 0 开始,第108个子集是指子集列表中对应108的子集)

108的二进制数: 1101100

第108个子集为 $\{x_6, x_5, x_3, x_2\}$

字典序对应的组合生成

■ 例: 集合S={4,3,2,1}的组合生成。

0000 → ∅	1000 — {4}
0001 — {1}	$1001 \longrightarrow \{4,1\}$
$0010 \longrightarrow \{2\}$	$1010 \longrightarrow \{4.2\}$
$0011 \longrightarrow \{2,1\}$	$1011 \longrightarrow \{4,2,1\}$
$0100 \longrightarrow \left\{3\right\}$	$1100 \longrightarrow \{4,3\}$
$0101 \longrightarrow \{3,1\}$	$1101 \longrightarrow \{4,3,1\}$
$0110 \longrightarrow \{3,2\}$	$1110 \longrightarrow \{4,3,2\}$
$0111 \longrightarrow \{3,2,1\}$	$1111 \longrightarrow \{4,3,2,1\}$

相邻组合可能相差较大

是否可以使得相邻的组合尽可能相似?

算法2: 反射Gray码序生成算法

■ 特点: 相邻的组合**仅相差一个元素** (增加一个或者删除一个元素)

■ 如: n (=1, 2, 3) 元集的组合 n=1, \emptyset , $\{x_0\}$ 0 1 n=2, \emptyset , $\{x_0\}$, $\{x_1, x_0\}$, $\{x_1\}$ 0 0 0 1 1 1 1 0

n=3000**001** $\{x_0\}$ 011 $\{x_0, x_1\}$ 010 $\{x_1\}$ 110 $\{x_2, x_1\}$ 111 $\{x_2, x_1, x_0\}$ 101 $\{x_2, x_0\}$ 100 $\{x_2\}$

几何表示(Gray序)

- □ n 元组看作是 n 维空间的点的坐标 (单位 n方体)
- □ 每两个点的坐标<u>仅有一个位置不同</u>时,有一条连线

- □ 算法生成所有的 n元组:
 - ✓ 遍历 n 维空间的每个点,使得每个点与其后继只 在一个位置不同;
 - ✓ 产生的路径称为n阶Gray码

几何表示(Gray序)

- □ n 元组看作是 n 维空间的点的坐标 (单位 n 方体)
- □ 每两个点的坐标<u>仅有一个位置不同</u>时,有一条连线

- □ 算法生成所有的 n元组:
 - \checkmark 遍历n 维空间的每个点,使得每个点与其后继只

在一个位置不同;

 \checkmark 产生的路径称为n阶Gray码

遍历可以再经过一条 边从终点返回到起点: 循环Gray码

递归构造 n 阶Gray码 (n≥1): 反射Gray码

n 阶Gray反射码的归纳定义

- 1.1阶反射Gray码是 1 ;
- 2. 设n>1且n-1阶反射Gray码已经构造,如下构建 n阶反射Gray码:
 - (1) 以n-1阶反射Gray码所给出的顺序列出 0 和 1 的 n-1元组,把 0 添到每个 n-1 元组的开头,
 - (2) 再反序列出n-1阶反射Gray码的全部 n-1元组,并把1加到全部 n-1元组的开头。
- n 阶反射Gray码以 00...0开始, 并以 10...0结束。
- 因为00…0 与10…0只相差一位,因此该码是循环码。

阶Gray码 阶Gray码 **2**阶Gray码 □ 相邻序数只有一位不同。

□ 递归方法构造反射Gray码,生成组合。

问题:能否有直接的方法构造 n 阶反射Gray码?

以反射Gray码的顺序直接生成0,1的n元组

- 1.初始: $a_{n-1}...a_1a_0=0...00$
- 2. 当 $a_{n-1}...a_1a_0\neq 10...0$ 时,进行以下操作:
 - (1) 计算 $\sigma(a_{n-1}...a_1a_0) = a_{n-1}+...+a_1+a_0$
 - (2) 如果 $\sigma(a_{n-1}...a_1a_0)$ 是偶数,则改变 a_0 (0变1或1变0)
 - (3) 否则,确定j,使得 a_i =1且对于所有i < j, a_i =0, 然后,改变 a_{i+1} (0变1或1变0).

称为逐次法。 每次改变均变化σ值的奇偶性

例:用逐次法生成4阶反射Gray码。

$$\sigma=0$$
 $\sigma=1$ $\sigma=2$ $\sigma=1$ $\sigma=2$ $\sigma=3$ $0000 \longrightarrow 0001 \longrightarrow 0011 \longrightarrow 0010 \longrightarrow 0110 \longrightarrow 0111$ $0101 \longrightarrow 0100 \longrightarrow 1101 \longrightarrow 1111 \longrightarrow 1110$ $\sigma=2$ $\sigma=3$ $\sigma=3$

定理 4.3.1 对于每一个正整数n, 逐次法生成 n阶 反射Gray码

证明:对n进行归纳证明。

- 1. n=1 时显然成立。
- 2. 假设对于n-1时,结论成立,即逐次法生成n-1 阶反射Gray码。
- 3. 当对于n时,证明逐次法生成n阶反射Gray码。
- 考虑 n 阶Gray码的前 2n-1 个组合与后 2n-1 个组合。

0 000

0 001

0 011

0 010

0|110

0|111

0 101

0 100

1 100

1 101 1 111

1 110

1 010

1 011

1 001

1 000

- (1) 考虑 n 阶Gray码的前2n-1个组合:
 - \checkmark 是由 n-1 阶 Gray 码 在 开头添加 0 形成,因此 不会改变 σ 值的 奇偶性。
 - ✓除第 2ⁿ⁻¹个元组(010...0)外,其余元组首 位的 0不影响逐次法的应用,即逐次法用于 前2ⁿ⁻¹-1个元组,与逐次法生成n-1阶Gray</sup> 0 100 码的顺序一致。 1 100

0000

0001

01011

0|010

1 111

1 11<mark>0</mark>

1 010

1 011

1 001

1 00<mark>0</mark>

由归纳假设,逐次法可生成前一半的n阶Gray码。对 n 阶反射码的第2 $^{n-1}$ 个元组 (010...0),运用逐次算法: $\sigma(010...0)=1$,则得到 (110...0) 正好是 $2^{n-1}+1$ 个 n 阶反射Gray码。

(2)考虑 n 阶Gray码的后2 ⁿ⁻¹ 个组合:	0 000
对任意前后连续的两个n元组:	0 001
$1a_{n-2}a_1a_0 \to 1b_{n-2}b_1b_0$	0 011
	0 010
只需证明逐次法确实从 $1a_{n-2}a_1a_0$ 生成 $1b_{n-2}b_1b_0$ 。	0 110
在 $n-1$ 阶反射Gray码中,有 $a_{n-2}a_1a_0$ 在 $b_{n-2}b_1b_0$	0 111
之后,即 $b_{n-2}b_1b_0 \rightarrow a_{n-2}a_1a_0$ 。	0 101
由于 $\sigma(a_{n-2}a_1a_0)$ 与 $\sigma(b_{n-2}b_1b_0)$ 奇偶性相反,因此,	0 100
$\sigma(1a_{n-2}a_1a_0)$ 与 $\sigma(1b_{n-2}b_1b_0)$ 奇偶性也相反。	1 100
$O(1u_{n-2}u_1u_0)$ 一分 $O(1v_{n-2}v_1v_0)$ 則 国生 医相次。	1 101
(b) 若 $\sigma(1a_{n-2}a_1a_0)$ 是奇数,那么 $\sigma(a_{n-2}a_1a_0)$ 是偶数,	1 111
$\sigma(b_{n-2}b_1b_0)$ 是奇数,	1 110
由归纳假设, $a_{n-2}a_1a_0$ 由 $b_{n-2}b_1b_0$ 改变 b_{i+1} 得到,其中	1 010
$b_i = 1$, $0 \le j < n-2$, 而对于所有 $i < j$, $b_i = 0$.	1 011
因此,由 $1a_{n-2}a_1a_0$ 改变 a_{j+1} 得到 $1b_{n-2}b_1b_0$,与逐次法一	1 001
致。由归纳注假设。结论成立	1 000
反序 反序	

组合的两种生成方法

- 2^n 个二进制 n 元组的两种线性排序
- 从00...0 开始利用二进制算术的字典序
 - □与二进制数顺序一致
- 从00…0开始的反射Gray码
 - □相邻两个子集相差一个元素
 - □递归法、逐次法

问题:如何确定 n 元组在线性排序的准确位置?

■ 如何确定 n 元组在 Gray 码序表的准确位置?

给定Gray码 $a_{n-1}...a_1a_0$. 对于i=0,1,...,n-1,设

$$b_i = \begin{cases} 0, 苦 a_{n-1} + \cdots + a_i$$
是偶数,
1, 若 $a_{n-1} + \cdots + a_i$ 是奇数,

此时, $a_{n-1}...a_1a_0$ 在 Gray码序表的位置和 $b_{n-1}...b_1b_0$ 在 字典序表上的位置相同。

即 a_{n-1} … $a_1 a_0$ 在Gray码序表的位置是

$$b_{n-1} \times 2^{n-1} + \dots + b_1 \times 2 + b_0 \times 2^0$$
.

《计算机程序设计艺术》第4卷2册——生成所有元组和排列, Donald E. Knuth著,苏运霖译。