

正弦波振荡电路组成

- 放大电路:实现能量的控制运算放大器/三极管等
- 选频网络:产生单一频率振荡 RC/LC/石英晶振电路等
- 正反馈网络:使输入信号为反馈信号通常与选频网络合二为一
- 稳幅电路:非线性环节,稳定输出 晶体管和运放的非线性

(1) 相位条件:

$$\varphi = \varphi_A + \varphi_F = 2n\pi$$

$$(n=0,1,2...)$$

(2) 幅度条件:

$$|AF|=1$$

起振条件:

1

RC正弦波振荡电路

LC正弦波振荡电路

例:将下图所示电路合理连线,组成RC桥式正弦波振荡电路

负反馈放大电路 自激振荡条件

$$\begin{cases} |AF| = 1 \\ \phi_{A} + \phi_{F} = (2n+1)\pi, \quad n \in \mathbb{Z} \end{cases}$$

负反馈放大电路 自激振荡条件

$$\begin{cases} |AF| = 1 \\ \phi_{A} + \phi_{F} = (2n+1)\pi, \quad n \in \mathbb{Z} \end{cases}$$

自激振荡的消除

密勒效应补偿

$$C_{\mu}^{'} = (1 - K)C_{\mu}$$
 密勒效应

$$K = \frac{U_{\text{ce}}}{U_{\text{be}}}$$

$$C_{\mu} = (1 - K)C_{\mu}$$

密勒效应

$$C_{\mu}'' = \frac{K-1}{K}C_{\mu}$$

电容小,容抗大 可忽略

例:如图(a)所示放大电路环路增益的对数幅频特性如图(b)所示

- (1)判断该电路是否会产生自激振荡?简 述理由。
- (2) 若仅有一个50pF电容,分别接在三个三极管的基极和地之间均未能消振,则将其接在何处有可能消振?为什么?

解:(1)电路会产生自激振荡。 因为在f=103Hz时附加相移为 -45° ,在 $f=10^4$ Hz时附加相移约为 -135° ,在 $f=10^5$ Hz时附加相移约为 -225° ,因此附加相移为 -180° 的频率在 10^4 Hz $\sim 10^5$ Hz之间,此时 |AF|>0

(2) 可在晶体管基极和集电极之间加 消振电容。因为根据密勒定理,等效 在基极与地之间的电容比实际电容大 得多,因此容易消振。

7.2.1 电压比较器概述

电压比较器

对输入信号进行鉴幅与比较的电路,是组成非正弦波发生电路的基本单元;在测量和控制系统中有着广泛的应用,如报警电路。

电压传输特性:输出电压 u_o 与输入电压 u_i 的函数关系 $u_o = f(u_i)$ 用曲线来描述,其中 u_i 是模拟信号; u_o 是比较结果,是高电平和低电平表示的二值信号。

三要素:

输出电压的高低电平 $U_{\mathrm{OH}}U_{\mathrm{OL}}$; 阈值电压 U_{T} (使输出电压发生跃变的输入电压) u_{i} 变化经过 U_{T} 时 u_{o} 的跃变方向。

集成运放处于开环状态或仅引入正反馈

$$u_{\rm P}-o$$
, $u_{\rm N}-u_i$

当
$$u_i$$
 < 0时, u_N < u_P , u_O = + U_{OM}

当
$$u_i > 0$$
时, $u_N > u_P$, $u_O = -U_{OM}$

 u_{o} 翻转时所对应的 u_{i} 称门限电压或阈值电压,记为 U_{T}

当
$$u_i < u_{REF}$$
时, $u_N < u_P$, $u_O = + U_{OM}$

当
$$u_i > u_{REF}$$
时, $u_N > u_P$, $u_O = -U_{OM}$

$$U_{\mathrm{T}} = u_{\mathrm{REF}}$$

