In the Specification

Please substitute the following amended paragraph for the paragraph beginning on page 14, line 21:

FIG. 2 shows a setup of TX I/Q channel mismatch and carrier local leakage calibration for 802.11g of a transmitter according to the embodiment of the present invention. First, a discrete-time signal $x[n] = x(nT_c) = e^{j2\pi f_T nT_c}$ is generated by a signal generator 30, where $x(t) = e^{t2\pi f_T t}$ represents a single tone signal, f_T is a real number representing the frequency in Hz of the signal x(t)and T_s is the sampling period. Next, the signal x[n] is passed to an I/Qcorrection module 31 including local leakage correction module 32 and gain/phase correction module 33, then the corrected signal $x_c[n]$ output by the I/Q correction module 31 is fed to a pair of D/A converters[[34]], the first D/A converter 34A and the second D/A converter 34B, which convert the corrected signal $x_0(n)$ to an analog signal $x_0(t)$. To speak more specifically, the first D/A converter 34A converts the real part of the corrected signal $x_c[n]$ to the real part of the analog signal $x_0(t)$ and the second D/A converter 34B converts the imaginary part of the corrected signal $x_c[n]$ to the imaginary part of the analog signal $x_c(t)$. The analog signal $x_c(t)$ is applied to an I/Q modulator, which increase the central frequency of the analog signal $x_c(t)$ by f_c Hz and outputting a modulated signal $x_m(t)$, wherein f_c is a preset real number. The modulated signal $x_m(t)$ is then monitored by a spectrum analyzer 36, or other equipment [[equipement]] that can monitor the signal spectrum [[specturm]], to obtain the intensities of the frequency components of the modulated signal $x_m(t)$ at f_c+f_T , f_{c-}

 f_{T_1} and f_c Hz, denoted by $W(f_T)$, $W(-f_T)$, and L, respectively. The $W(f_T)$, $W(-f_T)$, and L are actually values indicative of the power of the equivalent baseband signal of $x_m(t)$ at f_{T_1} - f_{T_1} and 0 Hz, respectively. From the point of view of the I/Q correction, the term $W(f_T)$ represents a desired component, which will contain all the energy of the analog corrected signal $x_c(t)$ if the I/Q mismatch is ideally compensated. And the term $W(-f_T)$ represents the image component, which is the additional interfering component at the image frequency due to the I/Q imbalance. And the term L represents the local leakage component, which is the baseband-equivalent DC component incurred by the carrier leakage. According to the obtained data $W(f_T)$, $W(-f_T)$, and L, the software-stored in a personal computer (PC) 38 computes the parameters required by the I/Q correction module 31 to minimize the impacts due to the I/Q channel mismatch and local leakage. The software-stored in the personal computer performs a different process from the prior art.

Please substitute the following amended paragraph for the paragraph beginning on page 21, line 17:

If the image rejection ratio corresponding to the fourth set of (A_p,B_p) is less than or equal to the image rejection ratio corresponding to the fifth set of (A_p,B_p) , the fourth set of (A_p,B_p) is chosen as the final set of (A_p,B_p) , otherwise, the fifth set of (A_p,B_p) is chosen as the final set of (A_p,B_p) . In addition, the final set of (A_p,B_p) can be further multiplied by a normalization factor $\chi = \frac{1}{4(A_p+BB_p^2)} = \frac{1}{(1-\hat{\alpha}^2)\cdot(1-2\Omega)}$ to ensure the unity gain of the correction process.

The steps S6 and S8 are performed by the personal computer 38 shown in FIG. $\,$

2 [[3]] of the present invention.