

Calculus 2 Workbook

Volume of revolution

DISKS, HORIZONTAL AXIS

■ 1. Use disks to find the volume of the solid that's formed by rotating the region enclosed by the curves about the x-axis.

$$y = x^2 + 2x + 3$$

$$x = -3$$
 and $x = 1$

 \blacksquare 2. Use disks to find the volume of the solid that's formed by rotating the region enclosed by the curves about the *x*-axis.

$$y = \sqrt{x - 1}$$

$$x = 1 \text{ and } x = 10$$

 \blacksquare 3. Use disks to find the volume of the solid that's formed by rotating the region enclosed by the curves about the *x*-axis.

$$y = 2 \sec x$$

$$x = -\frac{\pi}{3} \text{ and } x = \frac{\pi}{3}$$

■ 4. Set up the integral that approximates the volume of the solid that's formed by rotating the region enclosed by the curves about the x-axis. Do not evaluate the integral.

$$y = \arctan x$$

$$x = 0$$
 and $x = 5$

 \blacksquare 5. Use disks to find the volume of the solid that's formed by rotating the region enclosed by the curves about the *x*-axis.

$$y = \sqrt{25 - x^2}$$

$$x = -4$$
 and $x = 4$

DISKS, VERTICAL AXIS

■ 1. Use disks to find the volume of the solid that's formed by rotating the region enclosed by the curves about the y-axis.

$$x = \frac{1}{6}y - 2 \text{ and } x = 0$$

$$y = 1$$
 and $y = 6$

 \blacksquare 2. Use disks to find the volume of the solid that's formed by rotating the region enclosed by the curves about the *y*-axis.

$$x = \frac{3}{7}\sqrt{y} + 2$$
 and $x = 0$

$$y = 2$$
 and $y = 5$

 \blacksquare 3. Use disks to find the volume of the solid that's formed by rotating the region enclosed by the curves about the *y*-axis.

$$x = y^2 + 1$$
 and $x = 0$

$$y = -2$$
 and $y = 2$

 \blacksquare 4. Use disks to find the volume of the solid that's formed by rotating the region enclosed by the curves about the *y*-axis. Set up the integral, but do not evaluate it.

$$x = \sin y$$

$$y = 0$$
 and $y = \pi$

DISKS, VOLUME OF THE FRUSTUM

■ 1. Use disks to find the volume of the frustum of a right circular cone with height h = 18 inches, a lower base radius R = 9 inches, and an upper radius of r = 6 inches.

■ 2. Use disks to find the volume of the frustum of a right circular cone with height h = 16 inches, a lower base radius R = 12 inches, and an upper radius of r = 9 inches.

■ 3. Use disks to find the volume of the frustum of a right circular cone with height h=7 inches, a lower base radius $R=8\sqrt{3}$ inches, and an upper radius of $r=\sqrt{3}$ inches.

WASHERS, HORIZONTAL AXIS

■ 1. Use washers to find the volume of the solid that's formed by rotating the region enclosed by the curves about the x-axis.

$$y = x^{\frac{2}{3}}$$
 and $y = 4$

$$x = 0$$
 and $x = 8$

 \blacksquare 2. Use washers to find the volume of the solid that's formed by rotating the region enclosed by the curves about the *x*-axis.

$$y = x^2$$
 and $y = \sqrt{x}$

 \blacksquare 3. Use washers to find the volume of the solid that's formed by rotating the region enclosed by the curves about the *x*-axis.

$$y = x^2$$
 and $y = x^3$

WASHERS, VERTICAL AXIS

■ 1. Use washers to find the volume of the solid that's formed by rotating the region enclosed by the curves about the y-axis.

$$x = y^2 - 4y + 6$$
 and $x = 6$

$$y = 2$$
 and $y = 4$

 \blacksquare 2. Use washers to find the volume of the solid that's formed by rotating the region enclosed by the curves about the *y*-axis.

$$x = 12(y^2 - y^3) + 2$$
 and $x = 2$

$$y = 0$$
 and $y = 1$

 \blacksquare 3. Use washers to find the volume of the solid that's formed by rotating the region enclosed by the curves about the *y*-axis.

$$x = \frac{y^4}{4} - \frac{y^2}{2} + 2$$
 and $x = \frac{y^2}{2} + 2$

$$y = -2$$
 and $y = 2$

CYLINDRICAL SHELLS, HORIZONTAL AXIS

■ 1. Use cylindrical shells to find the volume of the solid that's formed by rotating the region enclosed by the curves about the x-axis.

$$x = \left(\frac{y}{2}\right)^2 \text{ and } x = 4$$

$$y = 0$$

 \blacksquare 2. Use cylindrical shells to find the volume of the solid that's formed by rotating the region enclosed by the curves about the x-axis.

$$x = \frac{y}{3}$$
 and $x = \sqrt{y}$

 \blacksquare 3. Use cylindrical shells to find the volume of the solid that's formed by rotating the region enclosed by the curves about the *x*-axis.

$$x = \sqrt[3]{\frac{y}{3}} \text{ and } x = \sqrt{\frac{y}{6}}$$

$$y = 3$$

 \blacksquare 4. Use cylindrical shells to find the volume of the solid that's formed by rotating the region enclosed by the curves about the x-axis.

$$x = 4 - \sqrt{y} \text{ and } x = 2 - \sqrt{\frac{y}{6}}$$

$$y = 0$$
 and $y = 3$

W W W . K R I S T A K I N G M A T H . C O M