

## MS31007: Materials Science

## CHAPTER 6: Mechanical Properties of Materials









## Why mechanical properties?

Need to design materials that will withstand applied load and in-service uses for...

Bridges for autos and people



skyscrapers



**MEMS** devices





Space elevator?



Space exploration





## Why mechanical properties?

- Motivation
  - Many engineering materials are subjected to forces or loads
    - How the material responds is central to many applications
  - The mechanical behavior of a material reflects the relationship between an applied force/load and its response (or deformation)

#### How do engineers figure in?

- Structural Engineers. Determine stress/strain distributions in objects subjected to well-defined loads (beams in bridges)
- Materials/Metallurgical Engineers. Produce materials that will have the desired mechanical properties
- The starting point for what follows are two concepts: Stress and Strain





#### **ISSUES TO ADDRESS...**

- Stress and strain: What are they and why are they used instead of load and deformation?
- Elastic behavior: When loads are small, how much deformation occurs? What materials deform least?
- Plastic behavior: At what point do dislocations cause permanent deformation? What materials are most resistant to permanent deformation?
- Toughness and ductility: What are they and how do we measure them?
- Ceramic Materials: What special provisions/tests are made for ceramic materials?





## Stress/Strain behavior

- □Stress: related to the force/load applied to the material
- □Strain: related to the deformation/response of the material to the force
- □<u>Idea</u>: if an applied load is static (?), or varies slowly with time (and is uniformly applied), can determine mechanical properties by stress-strain tests.

In other words, apply force  $\rightarrow$  observe how material responds

# There are three types of load:

- Tension,
- compression,
- Shear



#### Compression







#### Stress/strain behavior: shear

There are three types of load: tension, compression, **shear** 

## Shear









## **ENGINEERING STRESS**

To minimize these geometrical factors, load and elongation are normalized to the respective parameters of **engineering stress** 

• Engineering Stress  $\sigma$ : Engineering stress  $\sigma$  is defined by the relationship  $\sigma$  and F in which the instantaneous load applied perpendicular to the specimen cross section area  $A_0$  before any applied load

#### Tensile stress $\sigma$ :





Stress has units: N/m<sup>2</sup> or pounds force lb<sub>f</sub>/in<sup>2</sup>





## Common States Of Stress

• Simple tension: cable



$$\sigma = \frac{F}{A_0} \quad \sigma \longleftrightarrow \sigma$$

• Simple shear: drive shaft













#### Other Common Stress States

• Simple compression:



$$\sigma = \frac{F}{A_o}$$

Note: compressive structure member  $(\sigma < 0 \text{ here}).$ 



• Bi-axial tension:





 $\sigma_h < 0$ 

Fish under water

 $\sigma\theta > 0$ 

]**→**σ**z** > 0





## Tensile stress— strain tests

One of the most common mechanical stress–strain tests is performed in tension.

A standard tensile specimen with circular cross section

"dogbone" specimen configuration



A specimen is deformed, usually to fracture, with a gradually increasing tensile load that is applied uniaxially along the long axis of a specimen.

#### Most common mechanical test

- Apply stress uniaxially along sample
- Continually increase force on ends
- Perform test until fracture (i.e. sample breaks)
- Measure force ~ sample elongation

It requires twice the load to produce the same elongation if the cross-sectional area of the specimen is doubled.





## Tension and Compression test

#### **Tension measurements:**

Engineerin g stress 
$$\sigma = \frac{F}{A_o}$$

Engineerin g strain 
$$\varepsilon = \frac{l_i - l_o}{l_o} = \frac{\Delta l}{l_o}$$

F- force normal to sample, Units N or pounds force (lb<sub>f</sub>)  $A_o-$  original cross sectional area

1 MPa (SI) = 
$$10^6 \text{ N/m}^2$$



#### Compression measurements:

- A compression test is conducted in a manner similar to the tensile test, except that the force is compressive and the specimen contracts along the direction of the stress.
- Turns out tensile tests are much easier than compression tests



- Compression tests are more useful <u>if</u>:
  - Material's behavior under large and permanent (i.e. plastic) strain is needed
  - A material is brittle in tension



By convention, a compressive force is taken to be negative, which yields a negative stress.



#### **Shear and Torsional Tests**

## Shear and torsional tests

#### For pure **Shear Stress**

- The shear stress is  $\tau$ .
- F here is the applied force to the top and bottom face
- The **shear strain**  $\gamma$  is the tangent of the strain angle
- Note analogies between  $\tau \Leftrightarrow \sigma$  and  $\gamma \Leftrightarrow \varepsilon$





#### **Torsion** → variant of pure shear; object is twisted

- Torsional force produces rotation of one end of the object relative to the other (drive shaft)
- $\tau$  = function of the applied torque T;
- $\gamma$  = Function of the angle of twist,  $\phi$

Examples of torsion are found for machine axles and drive shafts as well as for twist drills.







## Geometry effects

Measurement depends on sample size (why?)

Forces are perpendicular or parallel to planar faces of objects

• This does not have to be true ... in general the stress is a function of the orientation of the planes on which it acts



- In plane p-p' stress is not purely tensile, rather a more complex stress state is present that consists of a tensile (or normal) stress  $\sigma'$  that acts normal to the p-p' plane and, in addition, a shear stress  $\tau'$  that acts parallel to this plane
- Often have both a tensile (normal) stress and shear stress

#### **HOME ASSIGNMENT**

Balancing forces in the y direction

$$(\sigma_y A)\cos\theta = \sigma_{y'}\left(\frac{A}{\cos\theta}\right)$$



$$\sigma' = \sigma \cos^2 \theta = \sigma \left( \frac{1 + \cos 2\theta}{2} \right)$$

$$\tau = \sigma \sin \theta \cos \theta = \sigma \left( \frac{\sin 2\theta}{2} \right)$$

(force balance in the tangential direction)





## **ENGINEERING STRAIN**

The degree to which a structure deforms or strains depends on the magnitude of an imposed stress.

• Tensile strain:

$$\varepsilon = \frac{\delta}{L_0}$$



Lateral strain:

$$\varepsilon_{\mathbf{L}} = \frac{-\delta_{\mathbf{L}}}{\mathbf{W_{o}}}$$

• Shear strain:



**Strain is always Dimensionless** 





#### **Elastic Deformation**

## Deformation in which stress and strain are proportional is called **elastic deformation**

#### Two key features of elastic deformation

- 1. Stress is proportional to strain
- Deformation is entirely reversible (remove force → material recovers initial shape)

|                | <u>Material</u> | range of <i>E</i> |
|----------------|-----------------|-------------------|
| E (CDo or poi) | Metal           | 45 – 400 GPa      |
| E (GPa or psi) | Ceramics        | 70 – 500 GPa      |
|                | Polymers        | 0.007 – 4 GPa     |

#### What is the physical meaning of *E* being large or small?

This modulus may be thought of as stiffness, or a material's resistance to elastic deformation. The greater the modulus, the stiffer is the material, or the smaller is the elastic strain that results from the application of a given stress.

Hooke's law— relationship between engineering stress and engineering strain for elastic deformation (tension and compression)

Hooke's law 
$$\rightarrow \sigma = E\varepsilon$$

*E* is the modulus of elasticity, or Young's modulus

This tells you stress and strain are proportional;



Elastic deformation is nonpermanent





Room-Temperature
Elastic and Shear
Moduli and Poisson's
Ratio for Various
Materials

|                                                   | Modulus of Elasticity |                     | Shear Modulus |                     |                 |  |  |
|---------------------------------------------------|-----------------------|---------------------|---------------|---------------------|-----------------|--|--|
| Material                                          | GPa                   | 10 <sup>6</sup> psi | GPa           | 10 <sup>6</sup> psi | Poisson's Ratio |  |  |
| Metal Alloys                                      |                       |                     |               |                     |                 |  |  |
| Tungsten                                          | 407                   | 59                  | 160           | 23.2                | 0.28            |  |  |
| Steel                                             | 207                   | 30                  | 83            | 12.0                | 0.30            |  |  |
| Nickel                                            | 207                   | 30                  | 76            | 11.0                | 0.31            |  |  |
| Titanium                                          | 107                   | 15.5                | 45            | 6.5                 | 0.34            |  |  |
| Copper                                            | 110                   | 16                  | 46            | 6.7                 | 0.34            |  |  |
| Brass                                             | 97                    | 14                  | 37            | 5.4                 | 0.34            |  |  |
| Aluminum                                          | 69                    | 10                  | 25            | 3.6                 | 0.33            |  |  |
| Magnesium                                         | 45                    | 6.5                 | 17            | 2.5                 | 0.35            |  |  |
| Ceramic Materials                                 |                       |                     |               |                     |                 |  |  |
| Aluminum oxide (Al <sub>2</sub> O <sub>3</sub> )  | 393                   | 57                  | _             | _                   | 0.22            |  |  |
| Silicon carbide (SiC)                             | 345                   | 50                  | _             | _                   | 0.17            |  |  |
| Silicon nitride (Si <sub>3</sub> N <sub>4</sub> ) | 304                   | 44                  | _             | _                   | 0.30            |  |  |
| Spinel (MgAl <sub>2</sub> O <sub>4</sub> )        | 260                   | 38                  | _             | _                   | _               |  |  |
| Magnesium oxide (MgO)                             | 225                   | 33                  | _             | _                   | 0.18            |  |  |
| Zirconia (ZrO <sub>2</sub> ) <sup>a</sup>         | 205                   | 30                  | _             | _                   | 0.31            |  |  |
| Mullite $(3Al_2O_3-2SiO_2)$                       | 145                   | 21                  | _             | _                   | 0.24            |  |  |
| Glass-ceramic (Pyroceram)                         | 120                   | 17                  | _             | _                   | 0.25            |  |  |
| Fused silica (SiO <sub>2</sub> )                  | 73                    | 11                  | _             | _                   | 0.17            |  |  |
| Soda-lime glass                                   | 69                    | 10                  | _             | _                   | 0.23            |  |  |
|                                                   | Poly                  | mers <sup>b</sup>   |               |                     |                 |  |  |
| Phenol-formaldehyde                               | 2.76-4.83             | 0.40-0.70           | _             | _                   | _               |  |  |
| Poly(vinyl chloride) (PVC)                        | 2.41-4.14             | 0.35-0.60           | _             | _                   | 0.38            |  |  |
| Poly(ethylene terephthalate) (PET)                | 2.76-4.14             | 0.40-0.60           | _             | _                   | 0.33            |  |  |
| Polystyrene (PS)                                  | 2.28-3.28             | 0.33-0.48           | _             | _                   | 0.33            |  |  |
| Poly(methyl methacrylate) (PMMA)                  | 2.24-3.24             | 0.33-0.47           | _             | _                   | 0.37-0.44       |  |  |
| Polycarbonate (PC)                                | 2.38                  | 0.35                | _             | _                   | 0.36            |  |  |
| Nylon 6,6                                         | 1.59-3.79             | 0.23-0.55           | _             | _                   | 0.39            |  |  |
| Polypropylene (PP)                                | 1.14-1.55             | 0.17-0.23           | _             | _                   | 0.40            |  |  |
| Polyethylene – high density (HDPE)                | 1.08                  | 0.16                | _             | _                   | 0.46            |  |  |
| Polytetrafluoroethylene (PTFE)                    | 0.40-0.55             | 0.058-0.080         | _             | _                   | 0.46            |  |  |
| Polyethylene – low density (LDPE)                 | 0.17-0.28             | 0.025-0.041         |               | _                   | 0.33-0.40       |  |  |





## How materials respond to forces - by deforming!

- What follows essentially is an explanation of how materials respond to applied forces
- This will (more or less) be structured around the magnitude of the force
- √ Elastic deformation (small forces)
- ✓ Plastic deformation (larger forces)
- √ Fracture (material failure)

**✓ Elastic deformation (small forces)** 

### 1. Initial 2. Small load 3. Unload Elastic means reversible! bonds stretch elastic initial on-Linearelastic



## PLASTIC DEFORMATION (METALS)

1. Initial 3. Unload 2. Small load //// **Plastic means** bonds permanent! planes stretch still & planes sheared shear  $\delta$ plastic δelastic + plastic linear linear elastic>S elastic  $\delta$ plastic





### Elastic deformation – microscopic description

#### Strain is manifested as small changes in the interatomic spacing/stretching of bonds

• |E| is a measure of resistance to separation of adjacent atoms/ions/molecules (i.e. it is related to bonding forces)

$$E \propto \frac{dF}{dr}\Big|_{r_o}$$



**Or** differences in *E* are due to differences in bonding!

In other words microscopic (bonding) determines macroscopic (*E*)

Also as T increases, E generally decreases

Make similar observations for other "stress modes"

$$\tau = G\gamma$$

G is the shear modulus





#### **Nonlinear Elastic Behavior**

For some materials (i.e., gray cast iron, concrete, and mainly polymers) stress-strain plot is non-linear. What do you do (what is *E*)?

#### Two approaches

- Tangent modulus slope of stress-strain curve at a specified stress
- Secant modulus slope of a line drawn from zero stress to a specified stress







Modulus of Elasticity ~ Temperature