1 Conditional Expectation

Definition. Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space. Let $(X_i)_{i \in I}$ be a collection of random variables defined on this space. Then we define $\sigma(X_i : i \in I) \subseteq \mathcal{F}$ to be the smallest σ -algebra such that all of the X_i are measurable, i.e

$$\sigma(X_i : i \in I) = \sigma(X_i^{-1}(B) : i \in I, B \in \mathcal{B}(\mathbb{R})).$$

Definition. If $B \in \mathcal{F}$ has $\mathbb{P}(B) > 0$ then we define

$$\mathbb{P}(A|B) = \frac{\mathbb{P}(A \cap B)}{\mathbb{P}(B)}$$

for any $A \in \mathcal{F}$. Furthermore, if X is an integrable random variable we define

$$\mathbb{E}[X|B] = \frac{\mathbb{E}[X\mathbb{1}(B)]}{\mathbb{P}(B)}.$$