29 The diagram shows an arrangement for demonstrating two-source interference using coherent light of a single wavelength λ .

An interference pattern is observed on a screen $3.0\,\mathrm{m}$ away from the slits X and Y, which have a separation of $1.0\,\mathrm{mm}$.

The central bright fringe is at Q, and the **second** bright fringe from the centre is at P.

What is the distance between Q and P?

- **A** $6.0 \times 10^3 \lambda$
- **B** $3.0 \times 10^{3} \lambda$
- **C** $6.7 \times 10^{-4} \lambda$
- **D** $3.3 \times 10^{-4} \lambda$
- **30** Light of wavelength λ is incident normally on a diffraction grating. The angle between the **second**-order maximum and the normal to the grating is θ . The variation with sin θ of λ is shown on the graph.

How many lines per millimetre are on the diffraction grating?

- **A** 400 mm⁻¹
- **B** 625 mm⁻¹
- **C** 800 mm⁻¹
- **D** 1250 mm⁻¹