Preliminary migrate analysis of M. californianus

MIGRATION RATE AND POPULATION SIZE ESTIMATION using the coalescent and maximum likelihood or Bayesian inference Migrate-n version 3.7.2 [April-12-18]

Program started at Tue Jun 1 13:45:41 2021 Program finished at Tue Jun 1 18:47:10 2021

Options

Datatype: DNA sequence data

Inheritance scalers in use for Thetas:

All loci use an inheritance scaler of 1.0

[The locus with a scaler of 1.0 used as reference]

Random number seed: (with internal timer) 2591047884

Start parameters:

Theta values were generated from guessed values

Theta = 0.01000

M values were generated from guessed values

M-matrix:

100000.00 [all are the same]

Connection type matrix:

where m = average (average over a group of Thetas or M,

s = symmetric M, S = symmetric 4Nm, 0 = zero, and not estimated,

* = free to vary, Thetas are on diagonal

Population	1	2	3	4	5	6	7	8	9	10	11	12
1 ElfinCo	m	m	m	m	m	m	m	m	m	m	m	m
2 Bamfiel	m	m	m	m	m	m	m	m	m	m	m	m
3 PortRen	m	m	m	m	m	m	m	m	m	m	m	m
4 WalkOnB	m	m	m	m	m	m	m	m	m	m	m	m
5 BodegaH	m	m	m	m	m	m	m	m	m	m	m	m
6 Davenpo	m	m	m	m	m	m	m	m	m	m	m	m
7 VistaDe	m	m	m	m	m	m	m	m	m	m	m	m
8 HazardR	m	m	m	m	m	m	m	m	m	m	m	m
9 Refugio	m	m	m	m	m	m	m	m	m	m	m	m
10 Carpint	m	m	m	m	m	m	m	m	m	m	m	m

11 WhitePo	* *	* * *	* * * * * *
	* *	* * *	* * * * * *
12 LaJolla	^ *	^	
Order of param		0	
1	$\Theta_1 =$	Θ_1 [m]	
2	Θ_2 =	Θ_1 [m]	
3	$\Theta_3^2 =$	Θ_1 [m]	
4	$\Theta_4 =$	Θ_1 [m]	
5	$\Theta_5^{T} =$	Θ_1 [m]	
6	Θ_6 =	Θ_1 [m]	
7	$\Theta_7 =$	Θ_1 [m]	
8	$\Theta_8 =$	Θ_1 [m]	
9	$\Theta_{0} =$	Θ_1 [m]	
10	Θ_{10} =	Θ_1 [m]	
11	Θ_{11}		<displayed></displayed>
12	Θ_{12}		<displayed></displayed>
13	$M_{2->1}^{12} =$	$M_{2->1}$ [m]	<displayed></displayed>
14	$M_{3->1} =$	$M_{2->1}$ [m]	
15	$M_{4->1}^{3} =$	$M_{2->1}^{2}$ [m]	
16	$M_{5->1}^{7-1} =$	M $_{2->1}^{2}$ [m]	
17	$M_{6->1}^{5->1} =$	$M_{2->1}^{2->1}$ [m]	
18	$M_{7->1} =$	$M_{2->1}$ [m]	
19	$M_{8->1}^{7->1} =$	$M_{2->1}$ [m]	
20	$M_{9->1}^{6->1} =$	M $_{2->1}^{2->1}$ [m]	
21	M	$M_{2->1}$ [m]	
22	10->1	M $_{2->1}^{2->1}$ [m]	
23	M	M $_{2->1}^{2->1}$ [m]	
24	12->1	$M_{2->1}$ [m]	
25	$M_{1->2} = M_{3->2} = M_{1->2}$	$M_{2->1}$ [m]	
26	$M_{4->2} = M_{4->2}$	$M_{2->1}$ [m]	
27	$M_{5->2} = M_{5->2}$	$M_{2->1}$ [m] $M_{2->1}$ [m]	
28	$M_{5->2} = M_{6->2} = M_{5->2}$	$M_{2->1}$ [m] $M_{2->1}$ [m]	
29	$M_{6\rightarrow 2} = M_{7\rightarrow 2} =$	M [m]	
30	1-22	$ \begin{array}{ccc} M & [m] \\ M & [m] \end{array} $	
31	M _{8->2} =	$M = \begin{bmatrix} M \\ 2->1 \end{bmatrix} $ [m]	
32	M _{9->2} =	$M_{2\rightarrow 1} [m]$	
33	$M_{10->2} = M_{10->2}$	M = [m] $M = [m]$	
34	$M_{11->2} = M_{11->2}$	$M = \begin{bmatrix} M \\ 2->1 \end{bmatrix} $ [m]	
35	$M_{12->2} =$	M = [m]	
	$M_{1->3} = M_{1->3}$	$M_{2\rightarrow 1} [m]$	
36	$M_{2->3} =$	$M_{2\rightarrow 1} [m]$	
37	$M_{4->3} =$	$M_{2->1}$ [m]	
38	$M_{5->3} =$	$M_{2->1}$ [m]	
39	IVI _{6->3} =	$M_{2->1}$ [m]	
40	$M_{7->3} =$	$M_{2->1}$ [m]	

41	M _{8->3} =	M _{2->1} [m]
42	$M_{9->3}^{8->3} =$	$ \begin{array}{ccc} M & 2 & 1 & 1 \\ 2 & 2 & 1 & 1 \end{array} $
43	$M_{10->3} =$	$ \begin{array}{ccc} M & 2 & 2 & 2 \\ 2 & 2 & 2 & 2 \end{array} $ [m]
44	$M_{11->3}^{10->3} =$	$ \begin{array}{ccccccccccccccccccccccccccccccccccc$
45	$M_{12->3}^{11->3} =$	$ \begin{array}{ccc} M & 2 & 51 & 53 \\ 2 & 2 & 51 & 53 \\ \end{array} $
46	$M_{1->4}^{12->3} =$	$ \begin{array}{ccc} M & 2 \rightarrow 1 & [m] \\ 2 \rightarrow 1 & [m] \end{array} $
47	$M_{2->4}^{1->4} =$	$ \begin{array}{ccc} M & 2->1 & [m] \\ 2->1 & [m] \end{array} $
48	$M_{3->4}^{2->4} =$	$ \begin{array}{ccc} M & 2 & & & \\ 2 & & & & & \\ 2 & & & & & & \\ \end{array} $
49	$M_{5->4}^{5->4} =$	$ \begin{array}{ccc} M & 2 & 2 & 2 \\ 2 & 2 & 2 & 2 \end{array} $ [m]
50	$M_{6->4} =$	$ \begin{array}{ccc} M & 2 & > 1 & \\ 2 & > > 1 & \\ M & 2 & > 1 \end{array} $
51	$M_{7->4}^{0->4} =$	$M_{2->1}^{2->1}$ [m]
52	$M_{8->4} =$	$ \begin{array}{ccc} M & 2 & > 1 \\ 2 & > > 1 \end{array} $ [m]
53	$M_{9->4}^{6->4} =$	$M_{2\to 1}$ [m]
54	$M_{10->4} =$	$ \begin{array}{ccc} M & 2 & > 1 \\ 2 & > > 1 \end{array} $ [m]
55	$M_{11->4}^{10->4} =$	$M_{2->1}^{2->1}$ [m]
56	$M_{12->4} =$	$ \begin{array}{ccc} M & 2 & > 1 \\ 2 & > > 1 \end{array} $ [m]
57	$M_{1->5} =$	M _{2->1} [m]
58	M _{2->5} =	$M_{2->1}^{2}$ [m]
59	$M_{3->5}^{2>3} =$	$M_{2->1}$ [m]
60	$M_{4->5}^{5} =$	$M_{2\to 1}$ [m]
61	M _{6->5} =	$M_{2\rightarrow 1}$ [m]
62	M _{7->5} =	$M_{2\rightarrow 1}$ [m]
63	M _{8->5} =	$M_{2\rightarrow 1}$ [m]
64	M _{9->5} =	$M_{2\rightarrow 1}$ [m]
65	$M_{10->5} =$	$M_{2\rightarrow 1}$ [m]
66	$M_{11->5} =$	$M_{2\rightarrow 1}$ [m]
67	$M_{12->5} =$	$M_{2\rightarrow 1}$ [m]
68	M _{1->6} =	$M_{2\rightarrow 1}$ [m]
69	M _{2->6} =	$M_{2\rightarrow 1}$ [m] $M_{2\rightarrow 1}$ [m]
70	$M_{3->6}^{2->0} =$	$M_{2\rightarrow 1}$ [m]
71	IVI _{4->6} =	M _{2->1} [m]
72	IVI _{5->6} =	$M_{2\rightarrow 1}$ [m]
73	IVI _{7->6} =	$M_{2\rightarrow 1}$ [m]
74	$ V _{8->6} =$	M _{2->1} [m]
75 70	$M_{9->6} =$	M _{2->1} [m]
76 77	$M_{10->6} =$	M _{2->1} [m]
77	$M_{11->6} =$	$ \begin{array}{c} M \\ 2->1 \end{array} [m] $
78	$M_{12->6} =$	M _{2->1} [m]
79	$M_{1->7} =$	M _{2->1} [m]
80	$M_{2->7} =$	M 2->1 [m]
81	$M_{3->7} =$	$ \begin{array}{c} M \\ 2->1 \end{array} [m] $
82	$M_{4->7}^{5-7} =$	M _{2->1} [m]
83	M _{5->7} =	$ \begin{array}{c} M \\ 2->1 \end{array} [m] $
84	M _{6->7} =	$ \begin{array}{c} M \\ 2->1 \end{array} [m] $
85	M _{8->7} =	$M_{2\rightarrow 1}$ [m]

	Tremminary migrate analysis of M. Camornands COT haplotypes for Evolution 2
86	$M_{9->7} = M_{2->1} [m]$
87	$M_{10-7} = M_{2-1} [m]$
88	$M_{11->7} = M_{2->1} [m]$
89	$M_{12->7} = M_{2->1} [m]$
90	$M_{1->8} = M_{2->1} [m]$
91	$M_{2->8} = M_{2->1} [m]$
92	$M_{3-8} = M_{2-1} [m]$
93	$M_{4-8} = M_{2-1} [m]$
94	M = M = M = M = M = M = M = M = M = M =
95	$M_{6->8}^{3->6} = M_{2->1}^{2->1} [m]$
96	$M_{7-8}^{0-3} = M_{2-31}^{2-31} [m]$
97	$M_{9-8} = M_{2-1} [m]$
98	$M_{10-8} = M_{2-1} [m]$
99	$M_{11-8}^{10-8} = M_{2-1}^{2-1} [m]$
100	$M_{12->8}^{11->8} = M_{2->1}^{2->1} [m]$
101	$M \frac{12->8}{1->9} = M \frac{2->1}{2->1} [m]$
102	M = M = M = M = M = M = M = M = M = M =
103	$M_{3-9}^{2-99} = M_{2-1}^{2-1} [m]$
104	$M_{4\to9}^{3\to9} = M_{2\to1}^{2\to1} [m]$
105	$M_{5->9}^{4->9} = M_{2->1}^{2->1} [m]$
106	$M_{6->9}^{3->9} = M_{2->1}^{2->1} [m]$
107	$M_{7->9}^{6->9} = M_{2->1}^{2->1} [m]$
108	$M_{8-99}^{7-99} = M_{2-91}^{2-91} [m]$
109	$M_{10\to 9}^{8\to 9} = M_{2\to 1}^{2\to 1} [m]$
110	$M_{11->9} = M_{2->1} [m]$
111	$M_{12->9} = M_{2->1} [m]$
112	$M = \frac{12-99}{1->10} = M = \frac{2->1}{2->1} [m]$
113	$M_{2\rightarrow 10}^{1\rightarrow 10} = M_{2\rightarrow 1}^{2\rightarrow 1} [m]$
114	$M_{3\to 10} = M_{2\to 1} [m]$
115	M [ma]
116	$M_{4\rightarrow 10} = M_{2\rightarrow 1} [m]$ $M_{5\rightarrow 10} = M_{2\rightarrow 1} [m]$
117	$M = \frac{5-10}{6-10} = M = \frac{2-1}{2-1} [m]$
118	$M_{7\to 10} = M_{2\to 1} [m]$
119	$M_{8\to 10}^{7\to 10} = M_{2\to 1}^{2\to 1} [m]$
120	$M_{9\rightarrow 10} = M_{2\rightarrow 1} [m]$
121	$M_{11->10} = M_{2->1}$ [m]
122	$M_{12->10} = M_{2->1} [m]$
123	M
124	$M = \frac{1}{1->11}$ <alsplayed> <alsplayed> <alsplayed></alsplayed></alsplayed></alsplayed>
125	$M = \frac{2-311}{3-311}$ <displayed></displayed>
126	M diaplayed
127	M
128	$\begin{array}{c} \text{IVI} & \text{$<$}\text{displayed} \\ \text{M} & \text{6-$}\text{$>$}11 \end{array}$ "><\displayed>"><\displayed>"><\displayed>"><\displayed>"><\displayed>"><\displayed>"><\displayed>"><\displayed>"><\displayed>"><\displayed>"><\displayed>"><\displayed>"><\displayed>"><\displayed>"><\displayed>"><\displayed>"><\displayed>"><\displayed>"><\displayed>"><\displayed>"><\displayed>"><\displayed>"><\displayed>"><\displayed>"><\displayed>"><\displayed>"><\displayed>"><\displayed>"><\displayed>"><\displayed>"><\displayed>"><\displayed>"><\displayed>"><\displayed>"><\displayed>"><\displayed>"><\displayed>"><\displayed>"><\displayed>"><\displayed>"><\displayed>"><\displayed>"><\displayed>"><\displayed>"><\displayed>"><\displayed>"><\displayed>"><\displayed>"><\displayed>"><\displayed>"><\displayed>"><\displayed>"><\displayed>"><\displayed>"><\displayed>"><\displayed>"><\displayed>"><\displayed>"><\displayed>"><\displayed>"><\displayed>"><\displayed>"><\displayed>"><\displayed>"><\displayed>"><\displayed>"><\displayed>"><\displayed>"><\displayed>"><\displayed>"><\displayed>"><\displayed>"><\displayed>"><\displayed>"><\displayed>"><\displayed>"><\displayed>"><\displayed>"><\displayed>"><\displayed>"><\displayed>"><\displayed>"><\displayed>"><\displayed>"><\displayed>"><\displayed>"><\displayed>"><\displayed>"><\displayed>"><\displayed>"><\displayed>"><\displayed>"><\displayed>"><\displayed>"><\displayed>"><\displayed>"><\displayed>"><\displayed>"><\displayed>"><\displayed>"><\displayed>"><\displayed>"><\displayed>"><\displayed>"><\displayed>"><\displayed>"><\displayed>"><\displayed>"><\displayed>"><\displayed>"><\displayed>"><\displayed>"><\displayed>"><\displayed>"><\displayed>"><\displayed>"><\displayed>"><\displayed>"><\displayed>"><\displayed>"><\displayed>"><\displayed>"><\displayed>"><\displayed>"><\displayed>"><\displayed>"><\displayed>"><\displayed>"><\displayed>"><\displayed>"><\displayed>"><\displayed>"><\displayed>"><\displayed>"><\displayed>"><\displayed>"><\displayed>"><\displayed>"><\displayed>"><\
129	$M_{7\rightarrow11} $ <displayed></displayed>
130	NA
	IVI _{8->11} <asplayed></asplayed>

100000.00

3.00

1.50

Swapping interval is 1

1.00

		1 101111	illiary illigiate all	aryolo or ivi. camorri	ilarias oo i riapiotypi	68 101 EVOIUIION 2 3
131	M ₉₋	->11	<	displayed>		
132	N A)->11	<	displayed>		
133	N/I	2->11	<	displayed>		
134	N/I	->12	<	displayed>		
135	R A	->12 ->12	<	displayed>		
136	R A	->12 ->12	<	displayed>		
137	N/I	->12 ->12	<	displayed>		
138	R A	->12 ->12	<	displayed>		
139	R A	->12 ->12	<	displayed>		
140	R A	->12 ->12	<	displayed>		
141	N A	->12 ->12		displayed>		
142	ь л	->12 ->12		displayed>		
143	N/I	->12)->12		displayed>		
144	N/I)->12 1->12		displayed>		
	1	1->12		, ,		
Mutation	rate among loc	i:			Muta	tion rate is constant
Analysis	strategy:					Bayesian inference
Proposal	distributions fo	r naramatar				
Paramet		i parameter	Proposal			
Theta	GI	Mo	etropolis sampling			
M		IVIC	Slice sampling			
IVI			Slice sampling			
Prior dist	tribution for para	ameter				
Paramet	er Prior	Minimum	Mean*	Maximum	Delta	Bins
Theta	Exp window	0.000010	0.010000	10.000000	1.000000	500
М	Exp window	0.000100	100000.000000	1000000.000000	100000.000000	500
 Markov (chain settings:					Long chain
	of chains					1
Record	ded steps [a]					1000
	nent (record eve	ry x step [b]				100
	er of concurrent		cates) [c]			3
	l (sampled) para	` .	,			300000
	er of discard tre					1000
		: p 3: 2::8	/			
Multiple	Markov chains:					
	heating scheme)			4 chains	s with temperatures
				4000	000 00 2 00	4.50

Print options:

Data file:	//mcalifornianus_210528.mig
Output file:	outfile.txt
Posterior distribution raw histogram file:	bayesfile
Print data:	No
Print genealogies [only some for some data type]:	None

Data summary

Datatype: Sequence data
Number of loci: 1

Population	Locus	Gene copies	
1 ElfinCo	1	19	
2 Bamfiel	1	23	
3 PortRen	1	15	
4 WalkOnB	1	16	
5 BodegaH	1	7	
6 Davenpo	1	17	
7 VistaDe	1	19	
8 HazardR	1	23	
9 Refugio	1	16	
10 Carpint	1	19	
11 WhitePo	1	11	
12 LaJolla	1	8	
Total of all populations	1	193	
I and the second			

Bayesian Analysis: Posterior distribution table

Locus	Parameter	2.5%	25.0%	Mode	75.0%	97.5%	Median	Mean
1	Θ_1	0.00001	0.00001	0.01001	0.06001	0.16001	0.07001	0.00067
1	Θ_2	0.00001	0.00001	0.01001	0.06001	0.16001	0.07001	0.00067
1	Θ_3	0.00001	0.00001	0.01001	0.06001	0.16001	0.07001	0.00067
1	Θ_4	0.00001	0.00001	0.01001	0.06001	0.16001	0.07001	0.00067
1	Θ_5	0.00001	0.00001	0.01001	0.06001	0.16001	0.07001	0.00067
1	Θ_6	0.00001	0.00001	0.01001	0.06001	0.16001	0.07001	0.00067
1	Θ_7	0.00001	0.00001	0.01001	0.06001	0.16001	0.07001	0.00067
1	$\Theta_8^{'}$	0.00001	0.00001	0.01001	0.06001	0.16001	0.07001	0.00067
1	Θ_9	0.00001	0.00001	0.01001	0.06001	0.16001	0.07001	0.00067
1	Θ_{10}	0.00001	0.00001	0.01001	0.06001	0.16001	0.07001	0.00067
1	Θ_{11}^{10}	0.00001	0.00001	0.01001	0.06001	0.16001	0.07001	0.01210
1	Θ_{12}^{11}	0.00001	0.00001	0.01001	0.06001	0.16001	0.07001	0.00845
1	M _{2->1}	24000.0	30000.0	45000.0	56000.0	62000.0	53000.0	58478.2
1	M _{3->1}	24000.0	30000.0	45000.0	56000.0	62000.0	53000.0	58478.2
1	M _{4->1}	24000.0	30000.0	45000.0	56000.0	62000.0	53000.0	58478.2
1	M _{5->1}	24000.0	30000.0	45000.0	56000.0	62000.0	53000.0	58478.2
1	M _{6->1}	24000.0	30000.0	45000.0	56000.0	62000.0	53000.0	58478.2
1	M _{7->1}	24000.0	30000.0	45000.0	56000.0	62000.0	53000.0	58478.2
1	M _{8->1}	24000.0	30000.0	45000.0	56000.0	62000.0	53000.0	58478.2
1	M _{9->1}	24000.0	30000.0	45000.0	56000.0	62000.0	53000.0	58478.2
1	M _{10->1}	24000.0	30000.0	45000.0	56000.0	62000.0	53000.0	58478.2
1	M _{11->1}	24000.0	30000.0	45000.0	56000.0	62000.0	53000.0	58478.2
1	M _{12->1}	24000.0	30000.0	45000.0	56000.0	62000.0	53000.0	58478.2
1	M _{1->2}	24000.0	30000.0	45000.0	56000.0	62000.0	53000.0	58478.2
1	M _{3->2}	24000.0	30000.0	45000.0	56000.0	62000.0	53000.0	58478.2
1	M _{4->2}	24000.0	30000.0	45000.0	56000.0	62000.0	53000.0	58478.2
1	M _{5->2}	24000.0	30000.0	45000.0	56000.0	62000.0	53000.0	58478.2
1	$M_{6->2}$	24000.0	30000.0	45000.0	56000.0	62000.0	53000.0	58478.2
1	M _{7->2}	24000.0	30000.0	45000.0	56000.0	62000.0	53000.0	58478.2
1	M _{8->2}	24000.0	30000.0	45000.0	56000.0	62000.0	53000.0	58478.2
1	M _{9->2}	24000.0	30000.0	45000.0	56000.0	62000.0	53000.0	58478.2
1	M _{10->2}	24000.0	30000.0	45000.0	56000.0	62000.0	53000.0	58478.2
1	M _{11->2}	24000.0	30000.0	45000.0	56000.0	62000.0	53000.0	58478.2
1	M _{12->2}	24000.0	30000.0	45000.0	56000.0	62000.0	53000.0	58478.2
1	M _{1->3}	24000.0	30000.0	45000.0	56000.0	62000.0	53000.0	58478.2
1	M _{2->3}	24000.0	30000.0	45000.0	56000.0	62000.0	53000.0	58478.2

Locus	Parameter	2.5%	25.0%	Mode	75.0%	97.5%	Median	Mean
1	M _{4->3}	24000.0	30000.0	45000.0	56000.0	62000.0	53000.0	58478.2
1	$M_{5->3}$	24000.0	30000.0	45000.0	56000.0	62000.0	53000.0	58478.2
1	$M_{6->3}$	24000.0	30000.0	45000.0	56000.0	62000.0	53000.0	58478.2
1	M _{7->3}	24000.0	30000.0	45000.0	56000.0	62000.0	53000.0	58478.2
1	M _{8->3}	24000.0	30000.0	45000.0	56000.0	62000.0	53000.0	58478.2
1	$M_{9->3}$	24000.0	30000.0	45000.0	56000.0	62000.0	53000.0	58478.2
1	M _{10->3}	24000.0	30000.0	45000.0	56000.0	62000.0	53000.0	58478.2
1	M _{11->3}	24000.0	30000.0	45000.0	56000.0	62000.0	53000.0	58478.2
1	M _{12->3}	24000.0	30000.0	45000.0	56000.0	62000.0	53000.0	58478.2
1	M _{1->4}	24000.0	30000.0	45000.0	56000.0	62000.0	53000.0	58478.2
1	M _{2->4}	24000.0	30000.0	45000.0	56000.0	62000.0	53000.0	58478.2
1	M _{3->4}	24000.0	30000.0	45000.0	56000.0	62000.0	53000.0	58478.2
1	M _{5->4}	24000.0	30000.0	45000.0	56000.0	62000.0	53000.0	58478.2
1	M _{6->4}	24000.0	30000.0	45000.0	56000.0	62000.0	53000.0	58478.2
1	M _{7->4}	24000.0	30000.0	45000.0	56000.0	62000.0	53000.0	58478.2
1	M _{8->4}	24000.0	30000.0	45000.0	56000.0	62000.0	53000.0	58478.2
1	M _{9->4}	24000.0	30000.0	45000.0	56000.0	62000.0	53000.0	58478.2
1	M _{10->4}	24000.0	30000.0	45000.0	56000.0	62000.0	53000.0	58478.2
1	M _{11->4}	24000.0	30000.0	45000.0	56000.0	62000.0	53000.0	58478.2
1	M _{12->4}	24000.0	30000.0	45000.0	56000.0	62000.0	53000.0	58478.2
1	M _{1->5}	24000.0	30000.0	45000.0	56000.0	62000.0	53000.0	58478.2
1	M _{2->5}	24000.0	30000.0	45000.0	56000.0	62000.0	53000.0	58478.2
1	M _{3->5}	24000.0	30000.0	45000.0	56000.0	62000.0	53000.0	58478.2
1	M _{4->5}	24000.0	30000.0	45000.0	56000.0	62000.0	53000.0	58478.2
1	M _{6->5}	24000.0	30000.0	45000.0	56000.0	62000.0	53000.0	58478.2
1	M _{7->5}	24000.0	30000.0	45000.0	56000.0	62000.0	53000.0	58478.2
1	M _{8->5}	24000.0	30000.0	45000.0	56000.0	62000.0	53000.0	58478.2
1	M _{9->5}	24000.0	30000.0	45000.0	56000.0	62000.0	53000.0	58478.2
1	M _{10->5}	24000.0	30000.0	45000.0	56000.0	62000.0	53000.0	58478.2
1	M _{11->5}	24000.0	30000.0	45000.0	56000.0	62000.0	53000.0	58478.2
1	M _{12->5}	24000.0	30000.0	45000.0	56000.0	62000.0	53000.0	58478.2
1	M _{1->6}	24000.0	30000.0	45000.0	56000.0	62000.0	53000.0	58478.2
1	M _{2->6}	24000.0	30000.0	45000.0	56000.0	62000.0	53000.0	58478.2
1	2->6 M _{3->6}	24000.0	30000.0	45000.0	56000.0	62000.0	53000.0	58478.2
1	3->6 M _{4->6}	24000.0	30000.0	45000.0	56000.0	62000.0	53000.0	58478.2
1	M _{5->6}	24000.0	30000.0	45000.0	56000.0	62000.0	53000.0	58478.2
1	5->6 M _{7->6}	24000.0	30000.0	45000.0	56000.0	62000.0	53000.0	58478.2
1	M _{8->6}	24000.0	30000.0	45000.0	56000.0	62000.0	53000.0	58478.2
1	M _{9->6}	24000.0	30000.0	45000.0	56000.0	62000.0	53000.0	58478.2
1	M _{10->6}	24000.0	30000.0	45000.0	56000.0	62000.0	53000.0	58478.2
1	M _{11->6}	24000.0	30000.0	45000.0	56000.0	62000.0	53000.0	58478.2

Locus	Parameter	2.5%	25.0%	Mode	75.0%	97.5%	Median	Mean
1	M _{12->6}	24000.0	30000.0	45000.0	56000.0	62000.0	53000.0	58478.2
1	M _{1->7}	24000.0	30000.0	45000.0	56000.0	62000.0	53000.0	58478.2
1	M _{2->7}	24000.0	30000.0	45000.0	56000.0	62000.0	53000.0	58478.2
1	M _{3->7}	24000.0	30000.0	45000.0	56000.0	62000.0	53000.0	58478.2
1	M _{4->7}	24000.0	30000.0	45000.0	56000.0	62000.0	53000.0	58478.2
1	M _{5->7}	24000.0	30000.0	45000.0	56000.0	62000.0	53000.0	58478.2
1	M _{6->7}	24000.0	30000.0	45000.0	56000.0	62000.0	53000.0	58478.2
1	M _{8->7}	24000.0	30000.0	45000.0	56000.0	62000.0	53000.0	58478.2
1	M _{9->7}	24000.0	30000.0	45000.0	56000.0	62000.0	53000.0	58478.2
1	M _{10->7}	24000.0	30000.0	45000.0	56000.0	62000.0	53000.0	58478.2
1	M _{11->7}	24000.0	30000.0	45000.0	56000.0	62000.0	53000.0	58478.2
1	M _{12->7}	24000.0	30000.0	45000.0	56000.0	62000.0	53000.0	58478.2
1	M _{1->8}	24000.0	30000.0	45000.0	56000.0	62000.0	53000.0	58478.2
1	M _{2->8}	24000.0	30000.0	45000.0	56000.0	62000.0	53000.0	58478.2
1	M _{3->8}	24000.0	30000.0	45000.0	56000.0	62000.0	53000.0	58478.2
1	M _{4->8}	24000.0	30000.0	45000.0	56000.0	62000.0	53000.0	58478.2
1	M _{5->8}	24000.0	30000.0	45000.0	56000.0	62000.0	53000.0	58478.2
1	M _{6->8}	24000.0	30000.0	45000.0	56000.0	62000.0	53000.0	58478.2
1	M _{7->8}	24000.0	30000.0	45000.0	56000.0	62000.0	53000.0	58478.2
1	M _{9->8}	24000.0	30000.0	45000.0	56000.0	62000.0	53000.0	58478.2
1	M _{10->8}	24000.0	30000.0	45000.0	56000.0	62000.0	53000.0	58478.2
1	M _{11->8}	24000.0	30000.0	45000.0	56000.0	62000.0	53000.0	58478.2
1	M _{12->8}	24000.0	30000.0	45000.0	56000.0	62000.0	53000.0	58478.2
1	M _{1->9}	24000.0	30000.0	45000.0	56000.0	62000.0	53000.0	58478.2
1	M _{2->9}	24000.0	30000.0	45000.0	56000.0	62000.0	53000.0	58478.2
1	M _{3->9}	24000.0	30000.0	45000.0	56000.0	62000.0	53000.0	58478.2
1	M _{4->9}	24000.0	30000.0	45000.0	56000.0	62000.0	53000.0	58478.2
1	M _{5->9}	24000.0	30000.0	45000.0	56000.0	62000.0	53000.0	58478.2
1	M _{6->9}	24000.0	30000.0	45000.0	56000.0	62000.0	53000.0	58478.2
1	M _{7->9}	24000.0	30000.0	45000.0	56000.0	62000.0	53000.0	58478.2
1	M _{8->9}	24000.0	30000.0	45000.0	56000.0	62000.0	53000.0	58478.2
1	M _{10->9}	24000.0	30000.0	45000.0	56000.0	62000.0	53000.0	58478.2
1	10->9 M _{11->9}	24000.0	30000.0	45000.0	56000.0	62000.0	53000.0	58478.2
1	M _{12->9}	24000.0	30000.0	45000.0	56000.0	62000.0	53000.0	58478.2
1	12->9 M _{1->10}	24000.0	30000.0	45000.0	56000.0	62000.0	53000.0	58478.2
1	1->10 M _{2->10}	24000.0	30000.0	45000.0	56000.0	62000.0	53000.0	58478.2
1	2->10 M _{3->10}	24000.0	30000.0	45000.0	56000.0	62000.0	53000.0	58478.2
1	M _{4->10}	24000.0	30000.0	45000.0	56000.0	62000.0	53000.0	58478.2
1	M _{5->10}	24000.0	30000.0	45000.0	56000.0	62000.0	53000.0	58478.2
1	M _{6->10}	24000.0	30000.0	45000.0	56000.0	62000.0	53000.0	58478.2
1	M _{7->10}	24000.0	30000.0	45000.0	56000.0	62000.0	53000.0	58478.2

Locus	Parameter	2.5%	25.0%	Mode	75.0%	97.5%	Median	Mean
1	M _{8->10}	24000.0	30000.0	45000.0	56000.0	62000.0	53000.0	58478.2
1	M _{9->10}	24000.0	30000.0	45000.0	56000.0	62000.0	53000.0	58478.2
1	M _{11->10}	24000.0	30000.0	45000.0	56000.0	62000.0	53000.0	58478.2
1	M _{12->10}	24000.0	30000.0	45000.0	56000.0	62000.0	53000.0	58478.2
1	M _{1->11}	10000.0	22000.0	33000.0	42000.0	136000.0	77000.0	73916.7
1	M _{2->11}	42000.0	56000.0	73000.0	126000.0	158000.0	117000.0	133339.8
1	M _{3->11}	46000.0	64000.0	85000.0	108000.0	158000.0	99000.0	99652.7
1	M _{4->11}	14000.0	28000.0	47000.0	68000.0	136000.0	61000.0	69168.5
1	M _{5->11}	32000.0	44000.0	65000.0	90000.0	112000.0	85000.0	99396.1
1	M _{6->11}	4000.0	16000.0	35000.0	54000.0	80000.0	49000.0	67485.4
1	M _{7->11}	86000.0	158000.0	181000.0	202000.0	256000.0	169000.0	165945.6
1	M _{8->11}	10000.0	26000.0	43000.0	82000.0	102000.0	75000.0	126613.8
1	M _{9->11}	96000.0	128000.0	153000.0	172000.0	240000.0	167000.0	167463.4
1	M _{10->11}	36000.0	58000.0	77000.0	94000.0	156000.0	97000.0	97573.6
1	M _{12->11}	54000.0	86000.0	107000.0	120000.0	146000.0	105000.0	103330.5
1	M _{1->12}	22000.0	78000.0	101000.0	120000.0	150000.0	95000.0	88801.9
1	M _{2->12}	0.0	64000.0	79000.0	102000.0	134000.0	77000.0	69871.2
1	M _{3->12}	8000.0	16000.0	35000.0	66000.0	134000.0	103000.0	116179.9
1	M _{4->12}	70000.0	98000.0	113000.0	142000.0	174000.0	125000.0	124076.9
1	M _{5->12}	20000.0	38000.0	59000.0	86000.0	148000.0	75000.0	79698.2
1	M _{6->12}	98000.0	120000.0	147000.0	174000.0	316000.0	165000.0	190550.8
1	M _{7->12}	42000.0	62000.0	83000.0	102000.0	160000.0	93000.0	96818.8
1	M _{8->12}	24000.0	40000.0	67000.0	94000.0	114000.0	87000.0	111579.2
1	M _{9->12}	14000.0	32000.0	57000.0	76000.0	94000.0	69000.0	89963.5
1	M _{10->12}	0.0	6000.0	21000.0	32000.0	42000.0	107000.0	94781.1
1	M _{11->12}	22000.0	74000.0	99000.0	124000.0	188000.0	101000.0	100619.4

Citation suggestions:

Beerli P., 2006. Comparison of Bayesian and maximum-likelihood inference of population genetic parameters. Bioinformatics 22:341-345

Beerli P., 2007. Estimation of the population scaled mutation rate from microsatellite data, Genetics, 177:1967-1968.

Beerli P., 2009. How to use MIGRATE or why are Markov chain Monte Carlo programs difficult to use? In Population Genetics for Animal Conservation, G. Bertorelle, M. W. Bruford, H. C. Hauffe, A. Rizzoli, and C. Vernesi, eds., vol. 17 of Conservation Biology, Cambridge University Press, Cambridge UK, pp. 42-79.

Bayesian Analysis: Posterior distribution over all loci

Log-Probability of the data given the model (marginal likelihood)

Use this value for Bayes factor calculations:

BF = Exp[ln(Prob(D | thisModel) - ln(Prob(D | otherModel) or as LBF = 2 (ln(Prob(D | thisModel) - ln(Prob(D | otherModel)) shows the support for thisModel]

Method	In(Prob(D Model))	Notes
Thermodynamic integration	-2402.136161	(1a)
	-2273.693386	(1b)
Harmonic mean	-2007.516162	(2)

(1a, 1b and 2) are approximations to the marginal likelihood, make sure that the program run long enough! (1a, 1b) and (2) should give similar results, in principle.

But (2) is overestimating the likelihood, it is presented for historical reasons and should not be used (1a, 1b) needs heating with chains that span a temperature range of 1.0 to at least 100,000.

(1b) is using a Bezier-curve to get better approximations for runs with low number of heated chains

Citation suggestions:

Beerli P. and M. Palczewski, 2010. Unified framework to evaluate panmixia and migration direction among multiple sampling locations, Genetics, 185: 313-326.

Acceptance ratios for all parameters and the genealogies

Parameter	Accepted changes	Ratio
Θ_1	8/1104	0.00725
Θ_2°	8/1104	0.00725
Θ_3^-	8/1104	0.00725
Θ_4°	8/1104	0.00725
Θ_5	8/1104	0.00725
Θ_6	8/1104	0.00725
Θ_7	8/1104	0.00725
$\Theta_8^{'}$	8/1104	0.00725
Θ_{0}	8/1104	0.00725
Θ_{10}	8/1104	0.00725
Θ_{11}	726/1039	0.69875
Θ_{12}	570/1020	0.55882
$M_{2->1}^{12}$	1028/1028	1.00000
M $_{3->1}^{2}$	1028/1028	1.00000
$M_{4\rightarrow 1}$	1028/1028	1.00000
M $_{5->1}$	1028/1028	1.00000
M $_{6->1}^{5-1}$	1028/1028	1.00000
M $_{7->1}^{6->1}$	1028/1028	1.00000
M _{8->1}	1028/1028	1.00000
M 9->1	1028/1028	1.00000
M 10->1	1028/1028	1.00000
$M_{11->1}$	1028/1028	1.00000
M _{12->1}	1028/1028	1.00000
$M_{1->2}$	1028/1028	1.00000
M $_{3->2}$	1028/1028	1.00000
M $_{4->2}^{5-2}$	1028/1028	1.00000
M $_{5->2}^{4->2}$	1028/1028	1.00000
M $_{6->2}^{5->2}$	1028/1028	1.00000
M $_{7->2}^{0->2}$	1028/1028	1.00000
M $_{8->2}^{7->2}$	1028/1028	1.00000
M $_{9->2}^{8->2}$	1028/1028	1.00000
M $_{10->2}^{9->2}$	1028/1028	1.00000
M $_{11->2}^{10->2}$	1028/1028	1.00000
M $\frac{11-22}{12-2}$	1028/1028	1.00000
$M_{1->3}^{12->2}$	1028/1028	1.00000
$M_{2->3}^{1->3}$	1028/1028	1.00000
$M_{4\rightarrow 3}^{2\rightarrow 3}$	1028/1028	1.00000
1 -/J		

		1 71
M _{5->3}	1028/1028	1.00000
M _{6->3}	1028/1028	1.00000
M _{7->3}	1028/1028	1.00000
M _{8->3}	1028/1028	1.00000
$M_{9->3}$	1028/1028	1.00000
M 10->3	1028/1028	1.00000
M 11->3	1028/1028	1.00000
$M_{12->3}$	1028/1028	1.00000
M 1->4	1028/1028	1.00000
$M_{2\rightarrow 4}$	1028/1028	1.00000
$M_{3\rightarrow 4}$	1028/1028	1.00000
$M_{5->4}$	1028/1028	1.00000
M _{6->4}	1028/1028	1.00000
M 7->4	1028/1028	1.00000
M _{8->4}	1028/1028	1.00000
$M_{9->4}$	1028/1028	1.00000
M 10->4	1028/1028	1.00000
M 11->4	1028/1028	1.00000
M _{12->4}	1028/1028	1.00000
M _{1->5}	1028/1028	1.00000
$M_{2\rightarrow 5}$	1028/1028	1.00000
$M_{3\rightarrow 5}$	1028/1028	1.00000
M _{4->5}	1028/1028	1.00000
M _{6->5}	1028/1028	1.00000
M 7->5	1028/1028	1.00000
M _{8->5}	1028/1028	1.00000
M _{9->5}	1028/1028	1.00000
M _{10->5}	1028/1028	1.00000
M _{11->5}	1028/1028	1.00000
M _{12->5}	1028/1028	1.00000
M _{1->6}	1028/1028	1.00000
M 2->6	1028/1028	1.00000
M 3->6	1028/1028	1.00000
M _{4->6}	1028/1028	1.00000
M 5->6	1028/1028	1.00000
M 7->6	1028/1028	1.00000
M 8->6	1028/1028	1.00000
M 9->6	1028/1028	1.00000
M 10->6	1028/1028	1.00000
M 11->6	1028/1028	1.00000
M 12->6	1028/1028	1.00000
M 1->7	1028/1028	1.00000
M 2->7	1028/1028	1.00000
M 3->7	1028/1028	1.00000
M _{4->7}	1028/1028	1.00000

M _{5->7}	1028/1028	1.00000
M _{6->7}	1028/1028	1.00000
M _{8->7}	1028/1028	1.00000
M _{9->7}	1028/1028	1.00000
M 10->7	1028/1028	1.00000
M 11->7	1028/1028	1.00000
M _{12->7}	1028/1028	1.00000
M 1->8	1028/1028	1.00000
$M_{2\rightarrow 8}$	1028/1028	1.00000
$M_{3->8}$	1028/1028	1.00000
M _{4->8}	1028/1028	1.00000
M _{5->8}	1028/1028	1.00000
M 6->8	1028/1028	1.00000
M 7->8	1028/1028	1.00000
$M_{9->8}$	1028/1028	1.00000
$M_{10->8}$	1028/1028	1.00000
$M_{11->8}^{10->8}$	1028/1028	1.00000
$M_{12->8}^{11->8}$	1028/1028	1.00000
M 1->9	1028/1028	1.00000
M _{2->9}	1028/1028	1.00000
M _{3->9}	1028/1028	1.00000
M _{4->9}	1028/1028	1.00000
M _{5->9}	1028/1028	1.00000
M _{6->9}	1028/1028	1.00000
M _{7->9}	1028/1028	1.00000
M _{8->9}	1028/1028	1.00000
M _{10->9}	1028/1028	1.00000
M _{11->9}	1028/1028	1.00000
M _{12->9}	1028/1028	1.00000
M _{1->10}	1028/1028	1.00000
M 2->10	1028/1028	1.00000
M _{3->10}	1028/1028	1.00000
M _{4->10}	1028/1028	1.00000
M 5->10	1028/1028	1.00000
M 6->10	1028/1028	1.00000
M 7->10	1028/1028	1.00000
M 8->10	1028/1028	1.00000
M 9->10	1028/1028	1.00000
M 11->10	1028/1028	1.00000
M 12->10	1028/1028	1.00000
M 1->11	966/966	1.00000
M 2->11	1040/1040	1.00000
M 3->11	1044/1044	1.00000
M 4->11	1048/1048	1.00000
M _{5->11}	1037/1037	1.00000
L		

L A	4040/4040	4.00000
M 6->11	1018/1018	1.00000
M _{7->11}	999/999	1.00000
M _{8->11}	1033/1033	1.00000
M _{9->11}	1030/1030	1.00000
M 10->11	1066/1066	1.00000
M _{12->11}	1015/1015	1.00000
M _{1->12}	1008/1008	1.00000
M _{2->12}	1018/1018	1.00000
M _{3->12}	1058/1058	1.00000
M _{4->12}	1015/1015	1.00000
M _{5->12}	1057/1057	1.00000
M _{6->12}	1068/1068	1.00000
M _{7->12}	1035/1035	1.00000
M _{8->12}	1042/1042	1.00000
M _{9->12}	1083/1083	1.00000
M _{10->12}	1069/1069	1.00000
M 11->12	1013/1013	1.00000
Genealogies	23533/150164	0.15672

MCMC-Autocorrelation and Effective MCMC Sample Size

Parameter	Autocorrelation	Effective Sampe Size
Θ_1	0.98931	16.10
$\Theta_2^{^1}$	0.98931	16.10
Θ_3^2	0.98931	16.10
Θ_4^{3}	0.98931	16.10
Θ_5^{7}	0.98931	16.10
96	0.98931	16.10
\mathbf{p}_{7}°	0.98931	16.10
$\Theta_8^{'}$	0.98931	16.10
09	0.98931	16.10
) ₁₀	0.98931	16.10
) ₁₁	0.79619	342.42
12	0.83635	269.09
1 2->1	0.98973	15.47
1 3->1	0.98973	15.47
A 4->1	0.98973	15.47
1 5->1	0.98973	15.47
6->1	0.98973	15.47
7->1	0.98973	15.47
8->1	0.98973	15.47
1 9->1	0.98973	15.47
10->1	0.98973	15.47
11->1	0.98973	15.47
11->1	0.98973	15.47
1 1->2	0.98973	15.47
1 3->2	0.98973	15.47
1 4->2	0.98973	15.47
1 5->2	0.98973	15.47
1 6->2	0.98973	15.47
1 _{7->2}	0.98973	15.47
1 8->2	0.98973	15.47
1 9->2	0.98973	15.47
1 10->2	0.98973	15.47
1 11->2	0.98973	15.47
11->2	0.98973	15.47
Λ	0.98973	15.47
1 1->3 1 _{2->3}	0.98973	15.47
$A = \begin{cases} 2-3 \\ 4-3 \end{cases}$	0.98973	15.47

M _{5->3}	0.98973	15.47
M 6->3	0.98973	15.47
M 7->3	0.98973	15.47
$M_{8->3}$	0.98973	15.47
$M_{9->3}^{8->3}$	0.98973	15.47
$M_{10->3}^{9->3}$	0.98973	15.47
$M_{11->3}^{10->3}$	0.98973	15.47
$M_{12->3}^{11->3}$	0.98973	15.47
I M	0.98973	15.47
M 1->4 M 2->4	0.98973	15.47
\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	0.98973	15.47
N/	0.98973	15.47
5->4 NA	0.98973	15.47
0->4 NA	0.98973	15.47
\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	0.98973	15.47
NA 0->4	0.98973	15.47
9->4 NA	0.98973	15.47
10->4 NA	0.98973	15.47
M 11->4 M 12->4	0.98973	15.47
12->4	0.98973	15.47
M 1->5 M 2->5	0.98973	15.47
$M_{3->5}^{2->3}$	0.98973	15.47
$M_{4->5}^{5->5}$	0.98973	15.47
$M_{6->5}^{4->3}$	0.98973	15.47
M 7->5	0.98973	15.47
$M_{8->5}$	0.98973	15.47
$M_{9->5}$	0.98973	15.47
M 10->5	0.98973	15.47
M 11->5	0.98973	15.47
M 12->5	0.98973	15.47
M _{1->6}	0.98973	15.47
M _{2->6}	0.98973	15.47
M _{3->6}	0.98973	15.47
M _{4->6}	0.98973	15.47
M _{5->6}	0.98973	15.47
M 7->6	0.98973	15.47
M _{8->6}	0.98973	15.47
M _{9->6}	0.98973	15.47
M _{10->6}	0.98973	15.47
M _{11->6}	0.98973	15.47
M _{12->6}	0.98973	15.47
M _{1->7}	0.98973	15.47
M _{2->7}	0.98973	15.47
M _{3->7}	0.98973	15.47
M _{4->7}	0.98973	15.47

		1 71
M _{5->7}	0.98973	15.47
M _{6->7}	0.98973	15.47
M _{8->7}	0.98973	15.47
M _{9->7}	0.98973	15.47
M 10->7	0.98973	15.47
M 11->7	0.98973	15.47
M 12->7	0.98973	15.47
M 1->8	0.98973	15.47
$M_{2->8}^{1->8}$	0.98973	15.47
$M_{3\rightarrow 8}^{2\rightarrow 8}$	0.98973	15.47
N/I	0.98973	15.47
M 4->8 M 5->8	0.98973	15.47
N/ 3->8	0.98973	15.47
NA 0->0	0.98973	15.47
NA /->0	0.98973	15.47
NA 9->0	0.98973	15.47
10->8	0.98973	15.47
M 11->8 M 12->8	0.98973	15.47
M 12->0	0.98973	15.47
M 1->9 M 2->9	0.98973	15.47
$M_{3->9}^{2->9}$	0.98973	15.47
$M_{4->9}^{3->9}$	0.98973	15.47
M _{5->9}	0.98973	15.47
M 6->9	0.98973	15.47
M 7->9	0.98973	15.47
M _{8->9}	0.98973	15.47
M 10->9	0.98973	15.47
M 11->9	0.98973	15.47
M _{12->9}	0.98973	15.47
M _{1->10}	0.98973	15.47
M _{2->10}	0.98973	15.47
M _{3->10}	0.98973	15.47
M _{4->10}	0.98973	15.47
M _{5->10}	0.98973	15.47
M _{6->10}	0.98973	15.47
M _{7->10}	0.98973	15.47
M _{8->10}	0.98973	15.47
M _{9->10}	0.98973	15.47
M _{11->10}	0.98973	15.47
M _{12->10}	0.98973	15.47
M 1->11	0.94622	82.89
M 2->11	0.89188	171.85
M 3->11	0.89373	168.29
M _{4->11}	0.88277	188.78
M _{5->11}	0.88381	186.59
L		

	Preliminary migrate analysis of M. californ	nianus CO1 haplotypes for Evolution 2 24
M _{6->11}	0.93426	102.05
M 7->11	0.91296	136.90
M 8->11	0.92073	123.72
M 9->11	0.89994	157.98
M _{10->11}	0.90417	152.07
M $_{12->11}$	0.91249	137.59
$M_{1->12}$	0.88416	187.33
M $_{2->12}$	0.87521	201.86
M 3->12	0.90580	149.74
M $_{4->12}^{3-12}$	0.88352	185.99
M 5->12	0.94285	88.31
M $_{6\rightarrow12}^{5\rightarrow12}$	0.91386	136.07
M $_{7->12}^{0->12}$	0.89092	174.28
M 8->12	0.90183	154.88
M 9->12	0.86417	218.98
M $\frac{9-12}{10->12}$	0.91460	134.49
M $\frac{10->12}{11->12}$	0.92811	112.05
Ln[Prob(D G)]	0.97857	32.50

Potential Problems

This section reports potential problems with your run, but such reporting is often not very accurate. Whith many parameters in a multilocus analysis, it is very common that some parameters for some loci will not be very informative, triggering suggestions (for example to increase the prior range) that are not sensible. This suggestion tool will improve with time, therefore do not blindly follow its suggestions. If some parameters are flagged, inspect the tables carefully and judge wether an action is required. For example, if you run a Bayesian inference with sequence data, for macroscopic species there is rarely the need to increase the prior for Theta beyond 0.1; but if you use microsatellites it is rather common that your prior distribution for Theta should have a range from 0.0 to 100 or more. With many populations (>3) it is also very common that some migration routes are estimated poorly because the data contains little or no information for that route. Increasing the range will not help in such situations, reducing number of parameters may help in such situations.

- Param 1: Effective sample size of run seems too short!
- Param 1: Effective sample size of run seems too short!
- Param 1: Effective sample size of run seems too short!
- Param 1: Effective sample size of run seems too short!
- Param 1: Effective sample size of run seems too short!
- Param 1: Effective sample size of run seems too short!
- Param 1: Effective sample size of run seems too short!
- Param 1: Effective sample size of run seems too short!
- Param 1: Effective sample size of run seems too short!
- Param 1: Effective sample size of run seems too short!
- Dans at 40. Effect! a consideral and a consequence (consideral)
- Param 13: Effective sample size of run seems too short!
- Param 13: Effective sample size of run seems too short! Param 13: Effective sample size of run seems too short!
- _____
- Param 13: Effective sample size of run seems too short!
- Param 13: Effective sample size of run seems too short! Param 13: Effective sample size of run seems too short!
- Param 13: Effective sample size of run seems too short!
- Danier 40 Effecti a a a a la ci a afra a a a a a a a la collecti
- Param 13: Effective sample size of run seems too short!
- Param 13: Effective sample size of run seems too short! Param 13: Effective sample size of run seems too short!
- Param 13: Effective sample size of run seems too short!
- Param 13: Effective sample size of run seems too short!
- Param 13: Effective sample size of run seems too short!
- Param 13: Effective sample size of run seems too short!
- Taram To: Encouve sample size of fair seems too short.
- Param 13: Effective sample size of run seems too short!
- Param 13: Effective sample size of run seems too short!
- Param 13: Effective sample size of run seems too short!

Param 13: Effective sample size of run seems too short! Param 13: Effective sample size of run seems too short!

Param 13: Effective sample size of run seems too short!	
Param 13: Effective sample size of run seems too short!	
Param 13: Effective sample size of run seems too short!	
·	