Lezioni di Ricerca Operativa

Corso di Laurea in Informatica Università di Salerno

Lezione nº 16

Analisi di Post-Ottimalità:

- Variazione dei coefficienti di costo
- Variazione dei termini noti

R. Cerulli – F. Carrabs

Esempio: pianificare la produzione di una piccola azienda

- L'azienda produce due tipi di prodotti, il prodotto P₁ ed il prodotto P₂, usando due materie prime indicate con A e B.
- La disponibilità al giorno di materia prima A è pari a 6 ton, mentre quella di materia prima B è di 8 ton.
- La quantità di A e B consumata per produrre una ton di prodotto P₁ e P₂ è riportata nella seguente tabella.

- Si ipotizza che tutta la Quantità prodotta venga venduta.
- Il prezzo di vendita per tonnellata è Euro 3000 per P₁ e Euro 2000 per P₂.
- L'azienda ha effettuato un' indagine di mercato con i seguenti esiti:
 - la domanda giornaliera di prodotto P₂ non supera mai di più di 1 ton quella di prodotto P₁,
 - la domanda massima giornaliera di prodotto P₂ è di 2
 ton

Problema:

determinare le quantità dei due prodotti che debbono essere fabbricati giornalmente in modo da rendere massimo il ricavo.

Esempio: formulare il modello matematico

Definizione delle variabili

Si introducono due variabili che rappresentano le quantità prodotte (e vendute) al giorno per P₁ e P₂ (ton):

- produzione di P₁: x₁
- produzione di P₂: x₂

Le due variabili sono continue.

Definizione dell' obiettivo

Il ricavo giornaliero (K€) è dato da $z = 3x_1 + 2x_2$

L'obiettivo è rappresentato da un'equazione lineare.

Definizione dei vincoli

 Vincoli (tecnologici) sull'uso delle materie prime (l'uso giornaliero delle materie prime non può eccedere la disponibilità):

$$(A) \qquad x_1 + 2x_2 \le 6$$

$$(B) \quad 2x_1 + x_2 \le 8$$

Vincoli conseguenti le indagini di mercato

$$-x_1 + x_2 \le 1$$
$$x_2 \le 2$$

Non negatività delle variabili

$$x_1 \ge 0$$
 $x_2 \ge 0$

La formulazione definisce un Problema di Programmazione Lineare a variabili continue

Esempio: sensitività della soluzione.

Variazioni rispetto la disponibilità delle risorse.

- (a) come aumentare le risorse per migliorare la soluzione ottima;
- (b) come ridurre le risorse disponibili lasciando invariata la soluzione ottima.

I vincoli del problema hanno tutti la seguente forma

quantità di risorsa usata ≤ disponibilità di risorsa

anche se solamente i vincoli (1) e (2) rappresentano effettivamente il consumo delle materie prime A e B.

Poiché i vincoli (1) e (2) sono soddisfatti all'uguaglianza dalla soluzione ottima corrispondente al punto C=(10/3,4/3), il livello ottimo di produzione per i due prodotti è tale da utilizzare tutte le materie prime disponibili.

I vincoli (1) e (2) sono **saturi**, quindi le materie prime A e B sono utilizzate completamente, ovvero sono **risorse scarse**.

- E' possibile aumentare la disponibilità di una risorsa scarsa per migliorare la soluzione ottima (caso (a)).
- E' possibile diminuire la disponibilità di una risorsa abbondante senza variare la soluzione ottima (caso (b)).

Verifichiamo sino a che livello ha senso aumentare la materia

prima A.

Aumentando la risorsa A il vincolo (1) si sposta e di conseguenza varia il punto di ottimo.

Oltre K=(3,2) (intersezione di (2) e (4)) non ha più senso aumentare la risorsa A.

Il nuovo valore di A è 7.

Analoga verifica può essere fatta per la materia prima B.

Aumentando la risorsa B il vincolo (2) si sposta e di conseguenza varia il punto di ottimo.

Oltre L=(6,0) (intersezione di (1) e (6)) non ha più senso aumentare la risorsa B.

Il nuovo valore di B è 12.

Supponendo i vincoli (3) e (4) relativi al consumo di due ulteriori risorse abbondanti, è possibile verificare di quanto diminuirne la disponibilità senza modificare la soluzione ottima.

Per il vincolo (3)

Per il vincolo (4)

 Dopo aver verificato la convenienza di una possibile maggiore disponibilità delle risorse A e B, è interessante determinare quale sia la risorsa che di più convenga aumentare.

- Nell'esempio, l'azienda potrebbe avere una limitata disponibilità finanziaria che vorrebbe far fruttare al meglio, acquisendo un'ulteriore quantità di una delle risorse in modo da incrementare maggiormente i propri profitti.
- Questa informazione è ottenibile per mezzo della Programmazione Lineare.

Si può calcolare il Valore di una Unità di Risorsa wi:

$$w_i = \frac{\text{massima variazione di } z}{\text{massima variazione della risorsa } i}$$

Per la risorsa A:
$$w_A = \frac{13 - \frac{38}{3}}{7 - 6} = \frac{39 - 38}{3} = \frac{1}{3}$$
 (K€/ton)

Per la risorsa B:
$$w_B = \frac{18 - \frac{38}{3}}{12 - 8} = \frac{\frac{54 - 38}{3}}{4} = \frac{4}{3}$$
 (K€/ton)

- La quantità w_i indica di quanto aumenta l'obiettivo in corrispondenza dell'acquisizione di un'ulteriore unità di risorsa.
- E' evidente come nell'esempio l'incremento unitario migliore è associato alla risorsa B.

Variazioni del prezzo di vendita dei prodotti.

Si tratta di analizzare entro quali limiti di tolleranza possono variare i prezzi di vendita senza alterare la soluzione ottima (la produzione associata al punto C).

Variazioni del prezzo di vendita dei prodotti.

Variando c₁ e c₂ cambia la pendenza della funzione obiettivo:

Variazioni del prezzo di vendita dei prodotti

Variando c₁ e c₂ cambia la pendenza della funzione obiettivo:

Analisi di Post-Ottimalità (Analisi della Sensitività della Soluzione)

Dato un problema di programmazione lineare

$$\min \underline{c}^T \underline{x}$$

$$A\underline{x} = \underline{b}$$

$$x \ge 0$$

e data la soluzione ottima \underline{x}^* e la base ottima associata B, determinare come sia possibile variare certe caratteristiche del problema lasciando invariata la base ottima.

Cinque casi:

- 1) variazione nel vettore dei costi c;
- 2) variazione nel vettore dei termini noti b;
- 3) variazione nella matrice di vincoli A;
- 4) aggiunta di una nuova variabile;
- 5) aggiunta di un nuovo vincolo.

Caso 1: variazione nel vettore dei costi c.

Data una soluzione di base ottima x^* (sia B la base associata a tale soluzione), supponiamo che il coefficiente di una delle variabili sia cambiato da c_k a c'_k . L'effetto di questo cambio si ripercuoterà solo sui coefficienti di costo ridotto.

Bisogna considerare i seguenti due casi:

- caso 1.1) variazione di un coefficiente di costo relativo ad una variabile **non in base**;
- caso 1.2) variazione di un coefficiente di costo relativo ad una variabile in base.

Caso 1.1) variazione di un coefficiente di costo c_k relativo ad una variabile x_k **non in base**:

Sia c_k, k∈N, il coefficiente che viene modificato come segue:

$$c'_{k} = c_{k} + \delta$$

In questo caso \underline{c}^T_B non subisce variazioni e quindi

$$z_j = \underline{c}_B^T A_B^{-1} \underline{a}_j$$
 rimane inalterato per ogni j $\in \mathbb{N}$.

Solo il coefficiente di costo di ridotto z_k - c_k cambia come segue:

$$z_{k}-c'_{k}=z_{k}-(c_{k}+\delta)=(z_{k}-c_{k})-\delta$$

Se z_k-c'_k≤0 allora x* è ancora la soluzione ottima.

Se invece z_k - c'_k >0 allora x^* non è più la soluzione ottima e quindi occorre effettuare un'iterazione del simplesso per far entrare in base la variabile x_k .

Caso 1.1) variazione di un coefficiente di costo c_k relativo ad una variabile x_k **non in base**:

Quale è l'intervallo di valori che può assumere δ affinchè l'attuale base B continui a rimanere ottima?

$$z_k - c'_k = \underbrace{(z_k - c_k)}_{\leq 0} - \delta \leq 0 \implies \delta \geq (z_k - c_k)$$

Quindi per ogni valore di δ nell'intervallo $(z_k-c_k) \le \delta \le +\infty$ la base continua a rimanere ottima.

Caso 1.2) variazione di un coefficiente di costo c_k relativo ad una variabile **in base**:

Sia c_{Bi} , i=1,...,m, il coefficiente di costo che viene modificato in c'_{Bi} = c_{Bi} + δ .

Poichè:
$$z_j - c_j = \underline{c}_B^T A_B^{-1} \underline{a}_j - c_j$$
 $j \in \mathbb{N}$

la modifica di c_{Bi} implica la variazione di tutti i coefficienti di costo ridotto associati alle variabili fuori base. In particolare si ha che:

$$c'_{B_i} = c_{B_i} + \delta \implies \underline{c'}_B = \underline{c}_B + \delta \underline{e}_i$$

dove
$$\underline{e}_i = \begin{bmatrix} 0 \\ \vdots \\ 1 \\ 0 \end{bmatrix}$$
 (*i* – esimo elemento)

Caso 1.2) variazione di un coefficiente di costo c_k relativo ad una variabile **in base**:

$$z'_{j} - c_{j} = (\underline{c}_{B}^{T} + \delta \underline{e}_{i}^{T}) A_{B}^{-1} \underline{a}_{j} - c_{j} = \underline{c}_{B}^{T} A_{B}^{-1} \underline{a}_{j} + \delta \underline{e}_{i}^{T} A_{B}^{-1} \underline{a}_{j} - c_{j}$$

dove
$$\underline{e}_i^T A_B^{-1} = (A_B^{-1})^i$$
 è la riga i-esima di A_B^{-1}

Le condizioni su δ si ottengono imponendo che:

$$z'_j - c_j = (z_j - c_j) + \delta(A_B^{-1})^i \underline{a}_j \le 0 \qquad \forall j \in \mathbb{N}$$

Caso 2) variazione del termine noto di un vincolo.

Sia b_i , i=1,...,m, il termine noto del i-esimo vincolo che viene variato in: $b_i' = b_i + \delta \implies \underline{b}' = \underline{b} + \delta \underline{e}_i$.

A causa di tale variazione si modificano i valori delle variabili di base:

$$\underline{x'}_{B} = A_{B}^{-1}\underline{b}' = A_{B}^{-1}(\underline{b} + \delta\underline{e}_{i}) = A_{B}^{-1}\underline{b} + \delta(A_{B}^{-1})_{i} \implies \underline{x'}_{B} = \underline{x}_{B} + \delta(A_{B}^{-1})_{i}$$

dove $A_B^{-1} \underline{e}_i = (A_B^{-1})_i$ è la colonna i-esima di A_B^{-1}

Le condizioni su δ si ottengono imponendo che

$$\underline{x}'_B = \underline{x}_B + \delta(A_B^{-1})_i \ge \underline{0}$$

Esempio: Analisi di Sensibilità.

Dato il seguente problema di P.L.

$$\min - 2x_1 + x_2 - x_3
x_1 + x_2 + x_3 \le 6
- x_1 + 2x_2 \le 4
\underline{x} \ge 0$$

$$\min -2x_1 + x_2 - x_3$$

$$x_1 + x_2 + x_3 + x_4 = 6$$

$$-x_1 + 2x_2 + x_5 = 4$$

$$\underline{x} \ge 0$$

Base ottima:
$$B = \{1,5\}$$
; $N = \{2,3,4\}$; $A_B = \begin{bmatrix} 1 & 0 \\ -1 & 1 \end{bmatrix}$; $A_B^{-1} = \begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix}$ Infatti:

$$z_2 - c_2 = -3;$$

 $z_3 - c_3 = -1;$
 $z_4 - c_4 = -2$

$$\underline{x}_{B} = A_{B}^{-1}\underline{b} = \begin{bmatrix} x_{1} \\ x_{5} \end{bmatrix} = \begin{bmatrix} 6 \\ 10 \end{bmatrix};$$

$$z^{*} = \underline{c}_{B}^{T} A_{B}^{-1} \underline{b} = -12$$

Esempio: caso 1.1) variazione di un coefficiente di costo c_k relativo ad una variabile x_k non in base.

Di quanto può variare il coefficiente c₂ prima di cambiare la base ottima?

$$z_2 - c'_2 = (z_2 - c_2) - \delta \le 0 \Rightarrow -3 - \delta \le 0 \Rightarrow \delta \ge -3$$

Verifichiamo cosa succede se scegliamo un δ < -3 per esempio δ = -4.

Poiché x_2 non è in base il valore $z_j = \underline{c}_B A_B^{-1} \underline{a}_j$ non cambia per nessun indice $j \in \mathbb{N}$. L'unico coeff. di costo ridotto che cambia è:

$$z_2 - c'_2 = (z_2 - c_2) - \delta = -3 + 4 = 1 > 0$$

Poiché z_2 - c'_2 è maggiore di zero la soluzione non è più ottima. Bisogna fare entrare in base x_2 .

Esempio: caso 1.2) variazione di un coefficiente di costo c_k relativo ad una variabile x_k in base.

Di quanto può variare il coefficiente c₁ prima di cambiare la base ottima?

$$z'_{j} - c_{j} = (z_{j} - c_{j}) + \delta(A_{B}^{-1})^{i} \underline{a}_{j} \le 0 \quad \forall j \in \mathbb{N}$$

$$A_{B}^{-1} = \begin{vmatrix} 1 & 0 \\ 1 & 1 \end{vmatrix}$$

$$z'_2 - c_2 = (z_2 - c_2) + \delta \begin{bmatrix} 1 & 0 \end{bmatrix} \begin{vmatrix} 1 \\ 2 \end{vmatrix} \le 0 \Rightarrow -3 + \delta \le 0 \Rightarrow \delta \le 3$$

$$z'_3 - c_3 = (z_3 - c_3) + \delta \begin{bmatrix} 1 \\ 0 \end{bmatrix} \le 0 \Rightarrow -1 + \delta \le 0 \Rightarrow \delta \le 1$$

$$z'_4 - c_4 = (z_4 - c_4) + \delta \begin{bmatrix} 1 & 0 \end{bmatrix} \begin{vmatrix} 1 \\ 0 \end{vmatrix} \le 0 \Rightarrow -2 + \delta \le 0 \Rightarrow \delta \le 2$$

Verifichiamo cosa succede se scegliamo un $\delta > 1$ per esempio $\delta = 2$.

Poiché x_1 è in base il valore z_j cambia per ciascun indice $j \in \mathbb{N}$ secondo la relazione: $z'_j - c_j = (z_j - c_j) + \delta(A_B^{-1})^i \underline{a}_j \le 0 \quad \forall j \in \mathbb{N}$

$$z'_2 - c_2 = -3 + 2[1, 0]\begin{bmatrix} 1 \\ 2 \end{bmatrix} = -3 + 2 \times 1 = -1$$

$$z'_3 - c_3 = -1 + 2[1, 0]\begin{bmatrix} 1 \\ 0 \end{bmatrix} = -1 + 2 \times 1 = 1$$

$$z'_4 - c_4 = -2 + 2[1, 0]\begin{bmatrix} 1 \\ 0 \end{bmatrix} = -2 + 2 \times 1 = 0$$

Esempio: caso 2) variazione del termine noto di un vincolo.

Di quanto può variare al più il termine noto b₁ prima di rendere inammissibile la base ottima?

$$\underline{x'}_{B} = A_{B}^{-1}\underline{b}' = A_{B}^{-1}(\underline{b} + \delta\underline{e}_{i}) = A_{B}^{-1}\underline{b} + \delta(A_{B}^{-1})_{i} \implies \underline{x'}_{B} = \underline{x}_{B} + \delta(A_{B}^{-1})_{i}$$

$$\underline{x'}_{B} = \begin{bmatrix} x_{1} \\ x_{5} \end{bmatrix} + \delta \begin{bmatrix} 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 6 \\ 10 \end{bmatrix} + \begin{bmatrix} \delta \\ \delta \end{bmatrix} = \begin{cases} 6 + \delta \ge 0 \Rightarrow \delta \ge -6 \\ 10 + \delta \ge 0 \Rightarrow \delta \ge -10 \end{cases}$$

Verifichiamo cosa succede se scegliamo δ = -7.

$$\underline{x}'_B = \underline{x}_B + \delta(A_B^{-1})_i$$

$$\underline{x'}_{B} = \begin{bmatrix} x_{1} \\ x_{5} \end{bmatrix} - 7 \begin{bmatrix} 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 6 \\ 10 \end{bmatrix} + \begin{bmatrix} -7 \\ -7 \end{bmatrix} = \begin{bmatrix} -1 \\ 3 \end{bmatrix}$$