Chapter 3: Energy Exercises

Tuesday, February 28, 2017 12:21 PM

EXERCISE 3.16 Assume that u(x,t) is a solution of the Neumann problem (3.37). Use energy arguments to show that

$$\int_0^1 u^2(x,t)dx \le \int_0^1 f^2(x)dx, \qquad t \ge 0.$$

For each $t \geq 0$ let

$$E(t) = \int_0^1 u^2(x, t) dx.$$

⁴Maximum principles are another set of properties that can be derived without analytical formulas for the solution. This is studied in Chapter 6.

104 3. The Heat Equation

We now consider how ${\cal E}(t),$ which is a scalar variable, evolves in time. We consider

$$E'(t) \equiv \frac{d}{dt} \int_0^1 u^2(x,t) dx.$$

For smooth functions u we can interchange the order of differentiation and integration such that for t>0

$$E'(t) = \int_0^1 \frac{\partial}{\partial t} u^2(x, t) dx. \tag{3.59}$$

In this case we then derive from equations (3.56)–(3.57) and integration by parts that

$$E'(t) = 2 \int_{0}^{1} u(x,t)u_{t}(x,t)dx$$

$$= 2 \int_{0}^{1} u(x,t)u_{xx}(x,t)dx$$

$$= 2 [u(x,t)u_{x}(x,t)]_{0}^{1} - 2 \int_{0}^{1} (u_{x}(x,t))^{2} dx$$

$$= -2 \int_{0}^{1} (u_{x}(x,t))^{2} dx \le 0.$$

Hence, E(t) is a nonincreasing function, i.e.

$$E(0) = \int_{0}^{1} u^{2}(x,0) dx$$

$$= \int_{0}^{1} \int_{0}^{2} (x) dx$$

$$= \int_{0}^{1} \int_{0}^{2} (x) dx$$

$$\int_{0}^{1} u^{2}(x, t) dt \leq \int_{0}^{1} \int_{0}^{2} (x) dx.$$

EXERCISE 3.17 Let g = g(u) be a function u such that $ug(u) \leq 0$ for all u. Use energy arguments to show that any solution of the (possibly nonlinear) problem

$$u_t = u_{xx} + g(u)$$
 for $x \in (0,1)$, $t > 0$, $u(0,t) = u(1,t) = 0$, $u(x,0) = f(x)$.

satisfies the estimate

$$\int_0^1 u^2(x,t) dx \leq \int_0^1 f^2(x) dx, \qquad t \geq 0.$$

For each
$$t \ge 0$$
, let
$$E(t) = \int_0^1 u^2(x,t) dx$$

As before,

$$E'(t) = 2 \int_{0}^{1} u(x,t) u_{t}(x,t) dx$$

But, now,
$$u_{\pm} = u_{xx} + g(u)$$
, so
$$E'(\pm) = 2 \int_{0}^{1} u(u_{xx} + g(u)) dx$$

$$= 2 \int_{0}^{1} u u_{xx} dx + 2 \int_{0}^{1} u g(u) dx$$

$$= 0 \text{ for } \qquad \qquad \leq 0 \text{ b/c}$$

$$= 0 \text{ same reasons}$$

 $\varepsilon'(t) \leq 0$, so $\varepsilon(t) \leq \varepsilon(0)$

 $\Rightarrow \int_0^1 u^2(x,t) dx \leq \int_0^1 \int_0^2 (x) dx \qquad \Box$