Package 'IDSL.FSA'

June 29, 2023

Type Package
Title Fragmentation Spectra Analysis (FSA)
Version 1.2
Depends R (>= 4.0)
Suggests readxl
Author Sadjad Fakouri-Baygi [aut] (https://orcid.org/0000-0002-6864-6911), Dinesh Barupal [cre, aut] (https://orcid.org/0000-0002-9954-8628)
Maintainer Dinesh Barupal <dinesh.barupal@mssm.edu></dinesh.barupal@mssm.edu>
Description The 'IDSL.FSA' package was designed to annotate standard .msp (mass spectra format) and .mgf (Mascot generic format) files using mass spectral entropy similarity, dot product (cosine) similarity, and normalized Euclidean mass error (NEME) followed by intelligent pre-filtering steps for rapid spectra searches. 'IDSL.FSA' also provides a number of modules to convert and manipulate .msp and .mgf files. The 'IDSL.FSA' workflow was integrated in the 'IDSL.CSA' and 'IDSL.NPA' packages introduced in <doi:10.1021 acs.analchem.3c00376="">.</doi:10.1021>
License MIT + file LICENSE
<pre>URL https://github.com/idslme/idsl.fsa</pre>
<pre>BugReports https://github.com/idslme/idsl.fsa/issues</pre>
Encoding UTF-8
Archs i386, x64
NeedsCompilation no
Repository CRAN
Date/Publication 2023-06-29 14:10:02 UTC
R topics documented:
fragmentation_spectra_annotator FSA_aggregate FSA_annotation_text_repel FSA_dir.create

	FSA_FSdb_xlsxAnalyzer
	FSA_loadRdata
	FSA_locate_regex
	FSA_logRecorder
	FSA_message
	FSA_msp2Cytoscape
	FSA_msp_annotator
	FSA_plotFSdb2Spectra
	FSA_R.aggregate
	FSA_SpectraSimilarity_xlsxAnalyzer
	FSA_spectra_marker_generator
	FSA_uniqueMSPblockTagger
	FSA_uniqueMSPblockTaggerUntargeted
	FSA_workflow
	FSA_xlsxAnalyzer
	FSdb2msp
	FSdb2PeakXcolSubsetter
	FSdb2precursorType
	FSdb_file_generator
	FSdb_subsetter
	mgf2msp
	msp2FSdb
	msp2TrainingMatrix
	mspPosNegSplitter
	plotFSdb2SpectraCore
	spectral_entropy_calculator
	spectral_entropy_similarity_score
	spectra_1A1B_mixer
	spectra_integrator
	spectra_ion_filter
	stackedSpectra
	UFSA_element_sorter
	UFSA_formula_vector_generator
	UFSA_hill_molecular_formula_printer
	UFSA_ionization_pathway_deconvoluter
	UFSA_precursorType_corrector
	xlsx2msp
	1
Index	34
frag	mentation_spectra_annotator
	Fragmentation Spectra Annotator

Description

This module annotates fragmentation spectra from .MSP files.

Usage

fragmentation_spectra_annotator(path, MSPfile = "", libFSdb,
libFSdbIDlist, targetedPrecursorType = NA, ratio2basePeak4nSpectraMarkers = 0,
allowedNominalMass = FALSE, allowedWeightedSpectralEntropy = TRUE,
noiseRemovalRatio = 0.01, roundingDigitPrefiltering = 1, minMatchedNumPeaks = 1,
massError = 0, maxNEME = 0, minIonRangeDifference = 0, minCosineSimilarity,
minEntropySimilarity, minRatioMatchedNspectraMarkers,
spectralEntropyDeviationPrefiltering, massErrorPrecursor = NA, RTtolerance = NA,
exportSpectraParameters = NULL, number_processing_threads = 1)

Arguments

path Address of .msp file(s)
MSPfile name of the .msp file

1ibFSdb A converted .msp library reference file using the 'msp2FSdb' module which is

an FSDB produced by the IDSL.FSA package.

libFSdbIDlist Ion markers object from the FSDB reference

targetedPrecursorType

A vector of targeted precursor types

ratio2basePeak4nSpectraMarkers

Ratio of peaks in fragmentation spectra to the basepeak to calculate minimum qualified number of matched abundant peaks

allowedNominalMass

c(TRUE, FALSE). Select 'TRUE' only for nominal mass analysis.

allowedWeightedSpectralEntropy

c(TRUE, FALSE). Weighted entropy to transform low abundant signals prior to calculating entropy similarity score. Please see the reference for details on wight transformation.

noiseRemovalRatio

noise removal ratio ([0 - 1]) relative to the basepeak to measure entropy similarity score.

roundingDigitPrefiltering

Level of pre-filtering

minMatchedNumPeaks

Minimum matched number of peaks

massError Mass accuracy in Da

maxNEME Maximum value for Normalized Euclidean Mass Error (NEME) in mDa

minIonRangeDifference

Minimum distance (Da) between lowest and highest matched m/z to prevent matching only isotopic envelopes

minCosineSimilarity

Minimum cosine similarity score

minEntropySimilarity

Minimum entropy similarity score

FSA_aggregate

minRatioMatchedNspectraMarkers

Minimum percentage of detection of abundant library peaks in percentage

spectralEntropyDeviationPrefiltering

Spectral entropy deviation for pre-filtering

massErrorPrecursor

Mass accuracy (Da) to find precursor m/z in .msp files

RTtolerance Retention time tolerance (min)

exportSpectraParameters

Parameters for export MS/MS match figures

number_processing_threads

Number of processing threads for multi-threaded processing

Value

A dataframe of matched spectra

FSA_aggregate aggregation method for FSA

Description

This module is to optimize the 'indexVec' variable by removing elements that have redundant 'id-Vec' numbers.

Usage

FSA_aggregate(idVec, variableVec, indexVec, targetVar)

Arguments

idVec a vector of id numbers. Repeated id numbers are allowed

variableVec a vector of variable of the interest such as RT, m/z, etc.

indexVec a vector of indices

targetVar the targeted value in 'variableVec'

Value

a clean indexVec after removing redundant 'idVec'.

FSA_annotation_text_repel

FSA annotation text repel

Description

This function is to set annotations on the spectra plots with a reasonable distance to avoid overlying annotations.

Usage

```
FSA_annotation_text_repel(FSAspectra, nGridX, nGridY)
```

Arguments

FSAspectra FSAspectra

nGridX number of grids on the x-axis nGridY number of grids on the y-axis

Value

labels

FSA_dir.create

FSA_dir.create

Description

A module to create directories after removing the existing directory with the same name to prevent data interferences.

Usage

```
FSA_dir.create(folder, allowedUnlink = FALSE)
```

Arguments

folder folder

 $\verb|allowedUnlink| allowedUnlink|$

Value

when the original folder was deleted and recreated successfully, 'TRUE' is returned by this function.

FSA_loadRdata

Description

This function processes the spreadsheet of the 'FSDB' tab to ensure the parameter inputs are consistent with the requirements of the IDSL.FSA pipeline.

Usage

```
FSA_FSdb_xlsxAnalyzer(spreadsheet)
```

Arguments

spreadsheet FSA spreadsheet

Value

This function returns the FSDB parameters to feed the 'FSdb_file_generator' function.

FSA_loadRdata FSA loadRdata

Description

This function loads .Rdata files into a variable.

Usage

```
FSA_loadRdata(fileName)
```

Arguments

fileName is an '.Rdata' file.

Value

The called variable into the new assigned variable name.

FSA_locate_regex 7

FSA_locate_regex	FSA Locate regex	

Description

Locate indices of the pattern in the string

Usage

```
FSA_locate_regex(string, pattern, ignore.case = FALSE, perl = FALSE, fixed = FALSE, useBytes = FALSE)
```

Arguments

string a string as character

pattern a pattern to screen

ignore.case ignore.case

perl perl

fixed fixed

useBytes useBytes

Details

This function returns 'NULL' when no matches are detected for the pattern.

Value

A 2-column matrix of location indices. The first and second columns represent start and end positions, respectively.

```
pattern <- "C1"
string <- "NaC1.5HC1"
Location_C1 <- FSA_locate_regex(string, pattern)</pre>
```

FSA_message

FSA_logRecorder

 $FSA\ logRecorder$

Description

FSA_logRecorder

Usage

```
FSA_logRecorder(messageQuote, allowedPrinting = TRUE)
```

Arguments

```
\begin{tabular}{ll} message Quote & message Quote \\ allowed Printing & allowed Printing \\ \end{tabular}
```

Value

a line of communication messages is exported to the console and the log .txt file.

FSA_message

FSA message

Description

FSA_message

Usage

```
FSA_message(messageQuote, failedMessage= TRUE)
```

Arguments

```
messageQuote messageQuote failedMessage failedMessage
```

Value

a line of communication messages is exported to the console.

FSA_msp2Cytoscape 9

FSA_msp2Cytoscape	FSA Cytoscape Files Generator	

Description

This function generates necessary files from pairwise MSP blocks analysis to create Cytoscape networks.

Usage

```
FSA_msp2Cytoscape(path, MSPfile = "", mspVariableVector = NULL, mspNodeID = NULL, massError = 0.01, RTtolerance = NA, minEntropySimilarity = 0.75, allowedNominalMass = FALSE, allowedWeightedSpectralEntropy = TRUE, noiseRemovalRatio = 0.01, number_processing_threads = 1)
```

Arguments

path address of .msp file or an FSDB

MSPfile name of .msp file

mspVariableVector

a vector of msp variables

mspNodeID msp Node ID which is the ID that is required for the 'specsim' ID generation

massError Mass accuracy in Da

RTtolerance Retention time tolerance (min) to match msp blocks. Select NA to ignore reten-

tion time match. This option is so helpful to find co-occurring compounds.

minEntropySimilarity

Minimum entropy similarity score

allowedNominalMass

c(TRUE, FALSE). Select 'TRUE' only for nominal mass analysis.

 $allowed {\tt Weighted Spectral Entropy}$

c(TRUE, FALSE). Weighted entropy to measure entropy similarity score.

noiseRemovalRatio

noise removal ratio relative to the basepeak to measure entropy similarity score (in percent)

number_processing_threads

Number of processing threads for multi-threaded processing

Value

node_attributes_dataFrame

node_attributes dataframe. A string to store using 'writeTable' function of R after a tab separation.

 $\verb|edge_dataFrame|| edge | data frame|. A string to store using the `writeTable` function of R after a tab|\\$

separation.

correlation_network

correlation_network dataframe. A string to store using the 'writeTable' function of R after a tab separation.

FSDB

Fragmentation spectra database (FSDB) object

exclusionMSPnoideid

A vector of MSP node ids which can be excluded to create a library of unique MSP blocks.

filteredNetworkSIF

A filtered network in the cytoscape SIF format that does not have redundant MSP blocks within a RT window.

References

Shannon, P., Markiel, A., Ozier, O., Baliga, N.S., Wang, J.T., Ramage, D., Amin, N., Schwikowski, B. and Ideker, T., (2003). Cytoscape: a software environment for integrated models of biomolecular interaction networks. *Genome research*, 13(11), 2498-2504, doi:10.1101/gr.1239303

```
path_extdata <- system.file("extdata", package = "IDSL.FSA")</pre>
mspFileName <- "Kynurenine_Kynurenic_acid.msp"</pre>
listCytoscape <- FSA_msp2Cytoscape(path = path_extdata,</pre>
MSPfile = mspFileName, mspVariableVector = c("Name", "Collision_energy"),
mspNodeID = NULL, massError = 0.01, RTtolerance = NA, minEntropySimilarity = 0,
noiseRemovalRatio = 0, allowedNominalMass = FALSE,
allowedWeightedSpectralEntropy = TRUE, number_processing_threads = 1)
FSDB <- listCytoscape[["FSDB"]]</pre>
temp_wd <- tempdir() # just a temporary folder to save results</pre>
write.table(listCytoscape[["node_attributes_dataFrame"]], paste0(temp_wd,
"/node_attributes_dataFrame.txt"), quote = FALSE, sep = "\t", row.names = FALSE,
col.names = FALSE)
write.table(listCytoscape[["correlation_network"]], paste0(temp_wd,
"/correlation_network.sif"), quote = FALSE, sep = "\t", row.names = FALSE,
col.names = FALSE)
write.table(listCytoscape[["edge_dataFrame"]], paste0(temp_wd,
"/edge_dataFrame.txt"), quote = FALSE, sep = "\t", row.names = FALSE,
col.names = FALSE)
##
```

FSA_msp_annotator 11

FSA_msp_annotator FSA msp annotator

Description

This function arranges the parameters for the annotation process

Usage

```
FSA_msp_annotator(PARAM_SPEC, libFSdb, address_input_msp, output_path, allowedVerbose = TRUE)
```

Arguments

PARAM_SPEC a parameter driven from the 'FSA_SpectraSimilarity_xlsxAnalyzer' module.

libFSdb a converted .msp library reference files (FSDB) using the 'msp2FSdb' module address_input_msp address of the .msp files

output_path output path

allowedVerbose c(TRUE, FALSE). A 'TRUE' allowedVerbose provides messages about the flow of the function.

Value

A dataframe of matched annotated spectra stored in the output directory.

FSA_plotFSdb2Spectra plot FSdb to Spectra

Description

plot FSdb to Spectra

```
FSA_plotFSdb2Spectra(path, allowedUnlink = TRUE, annexName = "", FSdb, selectedFSdbIDs = NULL, number_processing_threads = 1, allowedVerbose = TRUE)
```

FSA_R.aggregate

Arguments

path Address of .msp file(s)

allowedUnlink allowedUnlink

annexName annexName

FSdb FSdb

selectedFSdbIDs

selected FSdb IDs. When 'NULL', the entire FSDB blocks are plotted.

number_processing_threads

Number of processing threads for multi-threaded processing

allowedVerbose c(TRUE, FALSE). A 'TRUE' allowedVerbose provides messages about the flow

of the function.

Value

spectra_figure object

FSA_R.aggregate

aggregate function for IDSL.FSA

Description

This module ensures that the 'aggregate' function of R returns a list type of data.

Usage

FSA_R.aggregate(FSAvec)

Arguments

FSAvec a vector of data

Value

listIDFSAvec

FSA_SpectraSimilarity_xlsxAnalyzer

FSA SpectraSimilarity xlsx Analyzer

Description

This function processes the spreadsheet of the 'SpectraSimilarity' tab to ensure the parameter inputs are consistent with the requirements of the IDSL.FSA pipeline.

Usage

FSA_SpectraSimilarity_xlsxAnalyzer(spreadsheet)

Arguments

spreadsheet FSA spreadsheet

Value

This function returns the FSA SpectraSimilarity parameters to feed the 'FSA_msp_annotator' module.

FSA_spectra_marker_generator

FSA Spectra Marker Generator

Description

This function generates spectra markers

Usage

```
FSA_spectra_marker_generator(FSdb, ratio2basePeak4nSpectraMarkers = 0,
aggregationLevel = NA)
```

Arguments

FSdb

FSdb object from the 'msp2FSdb' module

ratio2basePeak4nSpectraMarkers

Ratio of peaks in fragmentation spectra to the basepeak to calculate minimum qualified number of matched abundant peaks

aggregationLevel

c(NA, 0, 1, 2, 3). When 'NA', this function returns a matrix for the spectra markers. When integer numbers are used, the ion marker masses are grouped by a rounding digit equal to this number.

Value

```
spectraMarkerMass
```

a grouped or a matrix of ion marker masses corresponding to FSdb ids

nSpectraMarkers

number of spectra markers for each FSdb id

FSA_uniqueMSPblockTagger

FSA Unique MSP Block Tagger

Description

This function removes similar MSP blocks. This function aggregates MSP blocks based on the 'Name' values.

Usage

```
FSA_uniqueMSPblockTagger(path, MSPfile = "", aggregateBy = "Name", massError = 0.01, RTtolerance = NA, minEntropySimilarity = 0.75, noiseRemovalRatio = 0.01, allowedNominalMass = FALSE, allowedWeightedSpectralEntropy = TRUE, plotSpectra = FALSE, number_processing_threads = 1)
```

Arguments

path Address of .msp file or an FSDB

MSPfile name of .msp file

aggregateBy a variable to aggregate the MSP blocks based on

massError Mass accuracy in Da

RTtolerance Retention time tolerance (min) to match msp blocks. Select NA to ignore reten-

tion time match.

minEntropySimilarity

Minimum entropy similarity score

noiseRemovalRatio

noise removal ratio relative to the basepeak to measure entropy similarity score

(in percent)

allowedNominalMass

c(TRUE, FALSE). Select 'TRUE' only for nominal mass analysis.

 $allowed {\tt WeightedSpectralEntropy}$

c(TRUE, FALSE). Weighted entropy to measure entropy similarity score.

plotSpectra c(TRUE, FALSE)

number_processing_threads

Number of processing threads for multi-threaded processing

Value

a list of similar MSP blocks is returned at the end and a subsetted .msp and FSDB files are saved in the 'path' directory.

FSA_uniqueMSPblockTaggerUntargeted

FSA uniqueMSPblockTaggerUntargeted

Description

FSA_uniqueMSPblockTaggerUntargeted

Usage

```
FSA_uniqueMSPblockTaggerUntargeted(path, MSPfile_vector, minCSAdetectionFrequency = 20, minEntropySimilarity = 0.75, massError = 0.01, massErrorPrecursor = 0.01, RTtolerance = 0.1, noiseRemovalRatio = 0.01, allowedNominalMass = FALSE, allowedWeightedSpectralEntropy = TRUE, plotSpectra = FALSE, number_processing_threads = 1)
```

Arguments

- - -

 ${\it massErrorPrecursor}$

Mass accuracy (Da) to find precursor m/z in .msp files

RTtolerance Retention time tolerance (min)

noiseRemovalRatio

noise removal ratio ([0 - 1]) relative to the basepeak to measure entropy similarity score.

allowedNominalMass

c(TRUE, FALSE). Select 'TRUE' only for nominal mass analysis.

 $allowed {\tt WeightedSpectralEntropy}$

c(TRUE, FALSE). Weighted entropy to transform low abundant signals prior to calculating entropy similarity score. Please see the reference for details on wight transformation.

plotSpectra c(TRUE, FALSE)

number_processing_threads

Number of processing threads for multi-threaded processing

16 FSA_xlsxAnalyzer

Value

uniqueMSPvariants

FSA_workflow

FSA workflow

Description

This function executes the FSA workflow.

Usage

FSA_workflow(spreadsheet)

Arguments

spreadsheet

FSA spreadsheet

Value

This function organizes the FSA file processing for better performance using the template spreadsheet

FSA_xlsxAnalyzer

FSA xlsx Analyzer

Description

This function processes the spreadsheet of the FSA parameters to ensure the parameter inputs are consistent with the requirements of the IDSL.FSA pipeline.

Usage

FSA_xlsxAnalyzer(spreadsheet)

Arguments

spreadsheet

FSA spreadsheet

Value

This function returns the FSA parameters to feed the FSA_workflow function.

FSdb2msp 17

FSdb2msp

Fragmentation Spectra DataBase (FSDB) to MSP

Description

This function converts FSDB R objects into .msp standard files.

Usage

```
FSdb2msp(path, FSdbFileName = "", UnweightMSP = FALSE,
number_processing_threads = 1)
```

Arguments

path address of .msp file(s)

FSdbFileName name of the FSDB library name including '.Rdata' extension

UnweightMSP to unweight fragmentation patterns

number_processing_threads

Number of processing threads for multi-threaded processing

Value

The .msp file is stored in the same folder

FSdb2PeakXcolSubsetter

FSdb2PeakXcolSubsetter

Description

FSdb2PeakXcolSubsetter

Usage

```
FSdb2PeakXcolSubsetter(FSdb_address, peak_alignment_folder,
metavariable = "idsl.ipa_collective_peakids", number_processing_threads = 1)
```

Arguments

```
FSdb_address FSdb_address peak_alignment_folder
```

peak_alignment_folder

metavariable metavariable
number_processing_threads

Number of processing threads for multi-threaded processing

Value

peakXcol	peakXcol	
peak_height	peak_height	
peak_area	peak_area	
peak_R13C	peak_R13C	

FSdb2precursorType

Precursor Types from Fragmentation Spectra DataBase (FSDB)

Description

This function finds potential ionization pathways for molecular formulas using a vector of InChIKey values from an FSDB. This function only searches for the first 14 InChIKey letters; and therefore, may result with multiple potential precursor types.

Usage

```
FSdb2precursorType(InChIKeyVector, libFSdb, tableIndicator = "Frequency",
number_processing_threads = 1)
```

Arguments

InChIKeyVector A vector of InChIKey values. This value may contain whole InChIKey strings or first 14 InChIKey letters.

1ibFSdb A converted MSP library reference file using the 'msp2FSdb' module which is an FSDB produced by the IDSL.FSA package.

tableIndicator c("Frequency", "PrecursorMZ"). To show frequency or a median of 'PrecursorMZ' values in the output dataframe for each precursor type.

number_processing_threads

Number of processing threads for multi-threaded processing

Value

A matrix of frequency for each InChIKey in the FSDB. The matrix column headers represent precursor types.

```
address_input_msp <- system.file("extdata", package = "IDSL.FSA")
MSPfile_vector <- c("Kynurenine_Kynurenic_acid.msp")
libFSdb <- msp2FSdb(path = address_input_msp, MSPfile_vector)
##
InChIKeyVector <- c("HCZHHEIFKROPDY-UHFFFAOYSA-N", "YGPSJZOEDVAXAB-QMMMGPOBSA-N")
precursor_type_table <- FSdb2precursorType(InChIKeyVector, libFSdb,
tableIndicator = "Frequency", number_processing_threads = 1)</pre>
```

FSdb_file_generator 19

FSdb_file_generator FSdb

FSdb file generator

Description

This function generates FSDB objects

Usage

```
FSdb_file_generator(PARAM_FSdb, output_path = NULL)
```

Arguments

PARAM_FSdb

'PARAM_FSdb' parameters obtained by the 'FSA_FSdb_xlsxAnalyzer' func-

tion.

output_path output_path

Value

An FSDB object

FSdb_subsetter

FSdb subsetter

Description

FSdb subsetter

Usage

```
FSdb_subsetter(FSdb, inclusionIDs = NULL, exclusionIDs = NULL)
```

Arguments

FSdb FSdb

inclusionIDs inclusionIDs exclusionIDs exclusionIDs

Value

subsetted FSdb

20 msp2FSdb

mgf2msp

MGF to MSP

Description

This function converts .mgf (Mascot generic format) files into the .msp (mass spectra) format.

Usage

```
mgf2msp(path, MGFfile = "")
```

Arguments

path address of the .mgf file.

MGFfile name of the file with the .mgf extension.

Value

The .msp files are saved in the same location.

Examples

```
temp_wd <- tempdir() # just a temporary folder
path_extdata <- system.file("extdata", package = "IDSL.FSA")
MGFfile <- "Training_000.mgf"
file.copy(from = paste0(path_extdata, "/", MGFfile), to = temp_wd)
mgf2msp(path = temp_wd, MGFfile)</pre>
```

msp2FSdb

msp to Fragmentation Spectra DataBase (FSDB)

Description

This function converts .msp (mass spectra format) files into a readable R object.

```
msp2FSdb(path, MSPfile_vector = "", massIntegrationWindow = 0,
allowedNominalMass = FALSE, allowedWeightedSpectralEntropy = TRUE,
noiseRemovalRatio = 0.01, number_processing_threads = 1)
```

msp2FSdb 21

Arguments

path Address of .msp file(s)

MSPfile_vector A vector of names of .msp files or one .msp file name.

massIntegrationWindow

Mass window in Da to integrate adjacent peaks in the fragmentation spectra

allowedNominalMass

c(TRUE, FALSE). Select 'TRUE' only for nominal mass analysis.

allowedWeightedSpectralEntropy

c(TRUE, FALSE). Weighted entropy to transform low abundant signals prior to calculating entropy similarity score. Please see the reference for details on wight transformation.

noiseRemovalRatio

noise removal ratio ([0 - 1]) relative to the basepeak to measure entropy similarity

score.

number_processing_threads

Number of processing threads for multi-threaded processing

Value

logFSdb Parameters used to create the FSDB object

Precursor MZ A vector of precursor m/z values
Precursor Type A vector of precursor adduct types
Retention Time A vector of retention time values

Num Peaks A vector of num peaks values indicating number of ions for each fragment spec-

tra

Spectral Entropy

A vector of spectral entropy values

FragmentList A list of fragment ions

MSPLibraryParameters

A dataframe of tabulated headers and their values for each msp block

Note

This function was designed not only to achieve the fastest computational speed; but also can standardize .msp files that were generated by inconsistent settings.

References

Li, Y., Kind, T., Folz, J., Vaniya, A., Mehta, S.S. and Fiehn, O. (2021). Spectral entropy outperforms MS/MS dot product similarity for small-molecule compound identification. *Nature methods*, 18(12), 1524-1531, doi:10.1038/s4159202101331z

```
path_extdata <- system.file("extdata", package = "IDSL.FSA")
MSPfile <- c("Kynurenine_Kynurenic_acid.msp")
sampleFSdb <- msp2FSdb(path = path_extdata, MSPfile)</pre>
```

22 msp2TrainingMatrix

 ${\tt msp2TrainingMatrix}$

msp to Fragmentation Spectra DataBase (FSDB)

Description

This function creates an aligned table from the spectra in the .msp file

Usage

```
msp2TrainingMatrix(path, MSPfile = "", minDetectionFreq = 1,
selectedFSdbIDs = NULL, dimension = "wide", massAccuracy = 0.01,
allowedNominalMass = FALSE, allowedWeightedSpectralEntropy = TRUE,
noiseRemovalRatio = 0.01, number_processing_threads = 1)
```

Arguments

path Address of .msp file or an FSDB

MSPfile A .msp file name or FSDB in .Rdata format

A mass accuracy (Da)

minDetectionFreq

A minimum detection frequency for an ion across the entire spectra

selectedFSdbIDs

massAccuracy

selected MSP block/FSDB IDs to limit the screening to specific ion blocks

 $\mbox{dimension} \qquad \mbox{c("wide", "long"). *wide* or *long* alignment matrix output}$

allowedNominalMass

c(TRUE, FALSE). Select 'TRUE' only for nominal mass analysis.

 $allowed {\tt WeightedSpectralEntropy}$

c(TRUE, FALSE). Weighted entropy to transform low abundant signals prior to calculating entropy similarity score. Please see the reference for details on wight transformation.

noiseRemovalRatio

noise removal ratio ([0 - 1]) relative to the basepeak to measure entropy similarity score.

number_processing_threads

Number of processing threads for multi-threaded processing

Value

A FSDB file (.Rdata) and aligned spectra table (.csv) are stored in the same directory.

mspPosNegSplitter 23

Examples

```
temp_wd <- tempdir() # just a temporary folder
path_extdata <- system.file("extdata", package = "IDSL.FSA")
MSPfile <- "Kynurenine_Kynurenic_acid.msp"
file.copy(from = paste0(path_extdata, "/", MSPfile), to = temp_wd)
msp2TrainingMatrix(path = temp_wd, MSPfile, minDetectionFreq = 1)</pre>
```

mspPosNegSplitter

MSP Pos/Neg Splitter

Description

This function separates the positive and negative MSP blocks.

Usage

```
mspPosNegSplitter(path, MSPfile = "", number_processing_threads = 1)
```

Arguments

path address of the .msp file.

MSPfile name of the file with the .msp extension.

number_processing_threads

Number of processing threads for multi-threaded processing

Value

The .msp files are saved in the same location with '_Neg.msp' and '_Pos.msp' extensions.

```
temp_wd <- tempdir() # just a temporary folder
path_extdata <- system.file("extdata", package = "IDSL.FSA")
MSPfile <- "Kynurenine_Kynurenic_acid.msp"
file.copy(from = paste0(path_extdata, "/", MSPfile), to = temp_wd)
mspPosNegSplitter(temp_wd, MSPfile)</pre>
```

```
plotFSdb2SpectraCore plot spectra from FSdb core
```

Description

This function plots spectra figures from FSdb objects generated using the 'msp2FSdb' function.

Usage

```
plotFSdb2SpectraCore(FSdb, index)
```

Arguments

FSdb FSdb index

Value

spectra_figure object

Examples

```
## To create the FSdb object
temp_wd <- tempdir() # just a temporary folder
path_extdata <- system.file("extdata", package = "IDSL.FSA")
MSPfile <- c("Kynurenine_Kynurenic_acid.msp")
file.copy(from = paste0(path_extdata, "/", MSPfile), to = temp_wd)
FSdb <- msp2FSdb(path = temp_wd, MSPfile)
## To plot spectra
index <- 1
plotFSdb2SpectraCore(FSdb, index)</pre>
```

Description

This module calculates spectral entropy for a fragmentation pattern using a method described by the reference paper.

```
spectral_entropy_calculator(FragmentList, allowedWeightedSpectralEntropy = TRUE,
noiseRemovalRatio = 0.01)
```

Arguments

 $\label{lem:adjustment} FragmentList \qquad A \ matrix \ (m/z, int) \ of \ fragmentation \ pattern \ after \ intensity \ adjustment \ allowed \ Weighted \ Spectral Entropy$

c(TRUE, FALSE). Weighted entropy to transform low abundant signals prior to calculating entropy similarity score. Please see the reference for details on weight transformation.

noiseRemovalRatio

noise removal ratio ([0 - 1]) relative to the basepeak to measure entropy similarity score.

Value

spectralEntropy

spectral entropy

NumPeaks

NumPeaks

FragmentList

A matrix of two-columns after intensity normalization relative to summation of intensities AND entropy weight transformation when is selected.

Note

noise removal on intensities should be performed prior to feeding to this function

References

Li, Y., Kind, T., Folz, J., Vaniya, A., Mehta, S.S. and Fiehn, O. (2021). Spectral entropy outperforms MS/MS dot product similarity for small-molecule compound identification. *Nature methods*, 18(12), 1524-1531, doi:10.1038/s4159202101331z

Examples

```
FragmentList <- cbind(seq(50, 600, length.out = 10), seq(10, 90, length.out = 10))
SE <- spectral_entropy_calculator(FragmentList)
print(SE[[1]])</pre>
```

```
spectral_entropy_similarity_score
```

Spectral Entropy Calculator

Description

This module measures similarity of spectral entropies between 'PEAK_A' and 'PEAK_B' fragment spectra using a method described by the reference paper.

```
spectral_entropy_similarity_score(PEAK_A, S_PEAK_A, PEAK_B, S_PEAK_B, massError,
allowedNominalMass = FALSE)
```

spectra_1A1B_mixer

Arguments

PEAK_A A matrix (m/z, int) of fragmentation spectra

S_PEAK_A Spectral entropy of PEAK_A

PEAK_B A matrix (m/z, int) of fragmentation spectra

S_PEAK_B Spectral entropy of PEAK_B

massError Mass accuracy in Da

allowedNominalMass

c(TRUE, FALSE). Select 'TRUE' only for nominal mass analysis.

Value

spectral entropy similarity between 0 - 1

References

Li, Y., Kind, T., Folz, J., Vaniya, A., Mehta, S.S. and Fiehn, O. (2021). Spectral entropy outperforms MS/MS dot product similarity for small-molecule compound identification. *Nature methods*, 18(12), 1524-1531, doi:10.1038/s4159202101331z

Examples

```
allowedWeightedSpectralEntropy <- TRUE
##
A <- cbind(seq(50, 160, length.out = 10), seq(10, 90, length.out = 10))
sA <- spectral_entropy_calculator(A, allowedWeightedSpectralEntropy)
S_PEAK_A <- sA[[1]]
PEAK_A <- sA[[3]]
##
B <- cbind(seq(50, 160, length.out = 10), seq(50, 60, length.out = 10))
sB <- spectral_entropy_calculator(A, allowedWeightedSpectralEntropy)
S_PEAK_B <- sB[[1]]
PEAK_B <- sB[[3]]
##
allowedNominalMass = TRUE
entropyScore <- spectral_entropy_similarity_score(PEAK_A, S_PEAK_A, PEAK_B, S_PEAK_B, allowedNominalMass)</pre>
```

spectra_1A1B_mixer Mixer 1:1 spectra A and B

Description

This function creates 1:1 mixed AB spectra for spectral entropy calculation

```
spectra_1A1B_mixer(PEAK_A, PEAK_B, massError = 0, allowedNominalMass = FALSE)
```

spectra_integrator 27

Arguments

PEAK_A A matrix (m/z, int) of fragmentation spectra
PEAK_B A matrix (m/z, int) of fragmentation spectra

massError Mass accuracy in Da

allowedNominalMass

c(TRUE, FALSE). Select 'TRUE' only for nominal mass analysis.

Value

A matrix of 1:1 mixing spectra. First and second columns represent intensity-weighted average m/z and cumulated intensity, respectively.

Description

This function integrates individual m/z peaks from multiple chromatogram scans (spectra) into summed m/z peaks using a mass accuracy or nominal masses.

Usage

```
spectra_integrator(stackedSpectra, massError = 0, allowedNominalMass = FALSE)
```

Arguments

stackedSpectra A matrix of two columns of the stacked spectra. First and second columns should represent m/z and intensity, respectively.

massError Mass accuracy in Da

allowedNominalMass

c(TRUE, FALSE). Select 'TRUE' only for nominal mass analysis.

Value

A matrix of integrated spectra. First and second columns represent intensity-weighted average m/z and cumulated intensity, respectively.

```
data(stackedSpectra)
massError <- 0.005 # Da
Integrated_spectra <- spectra_integrator(stackedSpectra[, 1:2], massError)</pre>
```

28 stackedSpectra

Description

This function can detect m/z peaks that are related to each other across selected spectra lists.

Usage

```
spectra_ion_filter(spectraList, indexSpectraList = length(spectraList), massError,
minPercentageDetectedScans = 10, rsdCutoff = 0, pearsonRHOthreshold = NA)
```

Arguments

spectraList a list of matrices of m/z and intensity values for each chromatogram scan indexSpectraList

a vector of spectra indices for the analysis. This vector should have at least $\boldsymbol{3}$

elements to run this function.

massError required mass error for m/z values

rsdCutoff Relative standard deviations (in percent) to remove constant peaks (usually noisy

peaks)

minPercentageDetectedScans

Minimum percentage of detected scans for an m/z peak

pearsonRHOthreshold

A threshold for pairwise Pearson's correlation coefficient across the selected spectra lists. This feature is recommended to find co-occurring peaks within a chromatographic peak. This feature may be used to eliminate instrument noises from MS2 data channels within an MS1 chromatographic peak for DDA analysis.

Value

A matrix of m/z and cumulated intensities across the 'indexSpectraList' spectra

stackedSpectra Example for a stacked spectra

Description

A data to test the 'spectra_integrator' function.

```
data("stackedSpectra")
```

UFSA_element_sorter 29

Format

```
mz a numeric vector of m/z values
int a numeric vector of intensities
scan_number a numeric vector of chromatogram scan numbers
```

Details

The 'scan_number' column is not necessary to test the 'spectra_integrator' function.

Examples

```
data(stackedSpectra)
```

UFSA_element_sorter

Element Sorter

Description

This function sorts 84 elements in the periodic table for molecular formula deconvolution.

Usage

```
UFSA_element_sorter()
```

Value

A string vector of elements

Examples

```
Elements <- UFSA_element_sorter()</pre>
```

 ${\tt UFSA_formula_vector_generator}$

Molecular Formula Vector Generator

Description

This function convert a molecular formulas into a numerical vector

```
UFSA_formula_vector_generator(molecular_formula, Elements, LElements = length(Elements),
allowedRedundantElements = FALSE)
```

Arguments

molecular_formula

molecular formula

Elements a string vector of elements. This value must be driven from the 'element_sorter'

function.

LElements number of elements. To speed up loop calculations, consider calculating the

number of elements outside of the loop.

allowedRedundantElements

'TRUE' should be used to deconvolute molecular formulas with redundant elements (e.g. CO2CH3O), and 'FALSE' should be used to skip such complex

molecular formulas.(default value)

Value

a numerical vector for the molecular formula. This function returns a vector of -Inf values when the molecular formula has elements not listed in the 'Elements' string vector.

Examples

```
molecular_formula <- "C12H2Br5Cl30"
Elements <- UFSA_element_sorter()
mol_vec <- UFSA_formula_vector_generator(molecular_formula, Elements)
##
regenerated_molecular_formula <- UFSA_hill_molecular_formula_printer(Elements, mol_vec)</pre>
```

```
UFSA_hill_molecular_formula_printer

Print Hill Molecular Formula
```

Description

This function produces molecular formulas from a list numerical vectors in the Hill notation system

Usage

```
UFSA_hill_molecular_formula_printer(MolVecMat, Elements, LElements = length(Elements))
```

Arguments

MolVecMat A matrix of numerical vectors of molecular formulas in each row.

Elements A vector string of the used elements.

LElements LElements

Value

A vector of molecular formulas

Examples

```
Elements <- c("C", "H", "O", "N", "Br", "C1")

MoleFormVec1 <- c(2, 6, 1, 0, 0, 0) # C2H60

MoleFormVec2 <- c(8, 10, 2, 4, 0, 0) # C8H10N402

MoleFormVec3 <- c(12, 2, 1, 0, 5, 3) # C12H2Br5Cl30

MolVecMat <- rbind(MoleFormVec1, MoleFormVec2, MoleFormVec3)

H_MolF <- UFSA_hill_molecular_formula_printer(MolVecMat, Elements)
```

UFSA_ionization_pathway_deconvoluter

Ionization Pathway Deconvoluter

Description

This function deconvolutes ionization pathways into a coefficient and a numerical vector to simplify prediction ionization pathways.

Usage

UFSA_ionization_pathway_deconvoluter(IonPathways, Elements, LElements = length(Elements))

Arguments

IonPathways A vector of ionization pathways. Pathways should be like [Coeff*M+ADD1-

DED1+...] where "Coeff" should be an integer between 1-9 and ADD1 and DED1 may be ionization pathways. ex: 'IonPathways <- c("[M]+", "[M+H]+",

"[2M-Cl]-", "[3M+CO2-H2O+Na-KO2+HCl-NH4]-")'

Elements A vector string of the used elements

LElements Counts of elements

Value

A list of adduct calculation values for each ionization pathway.

```
Elements <- UFSA_element_sorter()
IonPathways <- c("[M]+", "[M+H]+", "[2M-C1]-", "[3M+C02-H20+Na-K02+HC1-NH4]-")
Ion_DC <- UFSA_ionization_pathway_deconvoluter(IonPathways, Elements)</pre>
```

32 xlsx2msp

```
UFSA_precursorType_corrector
```

UFA Precursor Type Corrector

Description

Precursor type corrector from MSP files. This function initially attempts to standardize the precursor types to be consistent with the 'ionization_pathway_deconvoluter' module of the IDSL.SUFA package.

Usage

```
UFSA_precursorType_corrector(precursorType, ionMode = NULL)
```

Arguments

```
precursorType precursorType ionMode ionMode
```

Value

correctedPrecursorType

Examples

```
uncorrectedPrecursorType <- c("[M]+", "[M+H]+", "[2M-C1]-", "[3M+C00-H20+Na-K02+HC1-NH4]-")
precursorType <- UFSA_precursorType_corrector(uncorrectedPrecursorType, ionMode = NULL)</pre>
```

xlsx2msp

xlsx to MSP

Description

This function creates .msp files from an organized spreadsheet of fragmentation data.

Usage

```
xlsx2msp(path, xlsxFileName = "", number_processing_threads = 1)
```

Arguments

```
path address of the spreadsheet
```

xlsxFileName name of the file with the .xlsx extension.

number_processing_threads

Number of processing threads for multi-threaded processing

xlsx2msp 33

Value

The .msp files are saved in the same location.

Note

The spreadsheet should have only one column for the following headers (case-sensitive): c('ID', 'mz_fragment', 'int_fragment', 'Name')

```
temp_wd <- tempdir() # just a temporary folder
path_extdata <- system.file("extdata", package = "IDSL.FSA")
xlsxFileName <- "PFAS_MSe.xlsx"
file.copy(from = paste0(path_extdata, "/", xlsxFileName), to = temp_wd)
xlsx2msp(temp_wd, xlsxFileName)</pre>
```

Index

```
* datasets
                                               stackedSpectra, 28
    stackedSpectra, 28
                                               UFSA_element_sorter, 29
                                               UFSA_formula_vector_generator, 29
fragmentation_spectra_annotator, 2
                                               UFSA_hill_molecular_formula_printer,
FSA_aggregate, 4
FSA_annotation_text_repel, 5
                                               UFSA_ionization_pathway_deconvoluter,
FSA_dir.create, 5
FSA_FSdb_xlsxAnalyzer, 6
                                               UFSA_precursorType_corrector, 32
FSA_loadRdata, 6
FSA_locate_regex, 7
                                               x1sx2msp, 32
FSA_logRecorder, 8
FSA_message, 8
FSA_msp2Cytoscape, 9
FSA\_msp\_annotator, 11
FSA_plotFSdb2Spectra, 11
FSA_R.aggregate, 12
FSA_spectra_marker_generator, 13
FSA_SpectraSimilarity_xlsxAnalyzer, 13
FSA_uniqueMSPblockTagger, 14
FSA_uniqueMSPblockTaggerUntargeted, 15
FSA_workflow, 16
FSA_xlsxAnalyzer, 16
FSdb2msp, 17
FSdb2PeakXcolSubsetter, 17
FSdb2precursorType, 18
FSdb_file_generator, 19
FSdb_subsetter, 19
mgf2msp, 20
msp2FSdb, 20
msp2TrainingMatrix, 22
mspPosNegSplitter, 23
plotFSdb2SpectraCore, 24
spectra_1A1B_mixer, 26
spectra_integrator, 27
spectra_ion_filter, 28
spectral_entropy_calculator, 24
spectral_entropy_similarity_score, 25
```