CS3873: Final Review

Final Exam

Schedule

- o https://es.unb.ca/apps/exam-schedule/?page=FR
- Mar. 17, 2019, 9AM, Currie Centre

Format

- Two-hour, closed-book, calculator is allowed, no other electronics
- 50% of overall marks
- Cover all the materials of this course

Format

- Two parts (totally 50 points)
 - Part A: 20 multi-choice questions (10 points)
 - Part B: numerical and discussion questions (5 points each)
 - Best 8 among 9 questions of Part B are counted

References for Preparation

- Lecture slides
 - Posted at Desire2Learn
- Textbook
 - Check the sections related to the slides
- Assignments
 - Understand the corrections if you didn't get right answers
 - More self-testing questions in the problem set at the end of each chapter of the textbook

Topics

- 1. Network overview
- 2. Application layer
- 3. Transport layer
- 4. Network layer
- 5. Network security
- 6. Link layer

Topic 1: Network Overview (1)

- Computer network, distributed system, Internet
- What is the Internet?
 - End systems, communication links, and routers/switches
- Network architecture
 - End systems (network edge), access networks, network core
- Access options
 - Dial-up, DSL, coax cable, fibre optics (pros and cons)
 - Wireless access

Topic 1: Network Overview (2)

- Switching technologies in network core
 - Circuit switching vs. packet switching (pros and cons)
 - Throughput
 - Delay
- Layered architecture
 - Why layering?
 - Five-layer protocol stack
 - Peers and protocols

Topic 2: Network Applications (1)

- Client/server and peer-to-peer models
 - What are the advantages and disadvantages?
- C/S example: HTTP
 - O How does the HTTP protocol work for Web service?
 - **Request** and **Response** messages
 - Non-Persistent vs. persistent HTTP connections
 - Conditional GET
- P2P example: File sharing
 - How does the distribution time differ in C/S and P2P architecture?
 - What are strengths of P2P applications?

Topic 2: Network Applications (2)

DNS

- Hierarchy of DNS servers
- Name resolution with DNS: Iterative vs. Recursive
- DNS records
- DNS messages: Query vs. Response
- Attacks to DNS

Topic 3: Transport Protocols (1)

- Why is the transport layer needed?
 - End-to-end reliable and in-order delivery without duplicates
- UDP
 - Segment structure
 - UDP checksum algorithm
 - UDP socket: Identified by two-tuple

Topic 3: Transport Protocols (2)

- TCP
 - Segment structure
 - ★ A few very important control fields: Seq#, ACK#, Receive Window Size, control bits ACK/SYN/FIN
 - TCP socket: Identified by four-tuple
- TCP connection management
 - Three-way handshake for connection
 - SYN flood attack and SYN cookies

Topic 3: Transport Protocols (3)

- TCP error/flow control
 - Flow control concepts
 - Stop-and-Wait: Low utilization
 - **▼** Pipelining, utilization, window size
 - TCP: Pipelined sliding window protocol
 - **×** Cumulative ACK
 - ★ How does TCP generate ACKs and deal with in-order, out-of-order, missing, and duplicate segments?
 - **x** Fast retransmit

Topic 3: Transport Protocols (4)

- TCP congestion control
 - Flow control vs. congestion control
 - Philosophy: Take a loss event (timeout or tripe duplicate ACKs) as an indicator of congestion
 - Three phases:
 - ▼ Slow start → Exponentially increase CWND
 - ▼ Congestion avoidance → Additively increase CWND linearly
 - ▼ Congestion detection → Multiplicatively decrease CWND

Topic 4: Network Layer (1)

- Services provided by network layer
 - Store-and-forward packet switching
- IPv4 datagram
- IPv4 addressing
 - 32-bit IPv4 address, dotted-decimal notation
 - Split into subnet part and host part
 - Subnet mask
 - Network prefix: a.b.c.d/x: The x most significant bits constitute the subnet portion of IP address

Topic 4: Routing and IP (2)

- Allocation of IP addresses
 - How to allocate blocks of addresses to subnets based on requirements and specify network prefixes for subnets?
 - Dynamic host configuration protocol (DHCP)
 - Dynamically and automatically obtain its IP address from a network server when it connects to a network
 - Network address translation (NAT) with private address
 - ➤ How to configure NAT translation table for incoming and outgoing IP datagrams

Topic 4: Routing and IP (3)

Forwarding

- Forwarding table
- Longest prefix matching and route aggregation
- Routing
 - Routing table → derive forwarding table
 - Routing algorithms
 - ➤ Distance vector algorithms
 - **▼ Link state algorithms**

Topic 5: Network Security (1)

- Security requirements
 - CIA triad: Confidentiality, integrity, availability
 - Kerckhoff's principle
- Private-key cryptography
 - Traditional ciphers: substitution, transposition
 - Modern ciphers: DES, 3DES, AES
- Public-key cryptography
 - RSA algorithms
 - Key generation, encryption, and decryption
 - Private-key cryptography vs. public-key cryptography

Topic 5: Network Security (2)

- Data integrity: Hash/message digest
 - Properties of hash function: One-way many-to-one function
 - Un-keyed or keyed hash (message authentication code)
- Digital signature
 - Sender authentication, data integrity, non-repudiation
- How to use public-key cipher for confidentiality, sender authentication, and digital signature

Topic 5: Network Security (3)

- Internet security protocols
 - Application-layer security: PGP
 - Transport-layer security: TLS/SSL
 - ➤ Website certificate
 - Network-layer security: IPsec
 - **▼** Application to VPN

Topic 5: Link Layer and LANs (1)

- Data link layer introduction
 - Link: wired, wireless
 - Where is the link layer implemented?
- Functions of data link layer
 - Different scope compared to transport layer
 - Framing, error control, flow control, medium access control

Topic 5: Link Layer and LANs (2)

- Error detection and correction
 - Parity check
 - Cyclic redundancy check (CRC)
- LANs
 - Ethernet: Ethernet frame, MAC address
 - Wi-Fi: Wi-Fi MAC protocol

Example Question (1)

- Consider a router that interconnects three subnets: Subnet 1, Subnet 2, and Subnet 3. Suppose all of the interfaces in each of these three subnets are required to have the prefix 223.1.17.0/24.
- Also suppose that Subnet 1 is required to support up to 63 interfaces, Subnet 2 is to support up to 95 interfaces, and Subnet 3 is to support up to 16 interfaces. Provide three network prefixes (of the form a.b.c.d/x) that satisfy these constraints.

Example Question (1)

Block with network prefix 223.1.17.0/24

○ Subnet 1: 63 interfaces → 64

Subnet 2: 95 interfaces → 128

○ Subnet 3: 16 interfaces → 16

0000000

Subnet	Last byte of address	Network prefix	Address range
1	00 0000000 – 00 111111 : 64 addr	223.1.17.0/26	223.1.17.0 223.1.17.63
2	1 0000000 – 1 1111111: 128 addr	223.1.17.128/25	223.1.17.128223.1.17.255
3	0100 0000 – 0100 1111: 16 addr	223.1.17.64/28	223.1.17.64 223.1.17.79
3	0101 0000 – 0101 1111: 16 addr	223.1.17.80/28	223.1.17.80 223.1.17.95
3	0110 0000 – 0110 1111: 16 addr	223.1.17.96/28	223.1.17.96 223.1.17.111
3	0111 0000 – 0111 1111: 16 addr	223.1.17.112/28	223.1.17.112 223.1.17.127

(30)

Example Question (2)

Consider a datagram network using 32-bit host addresses. Suppose a router has 4 links, numbered 0 to 3, and packets are to be forwarded to the link interfaces as follows:

Destination Address Range			Interface	
11100000	00000000	00000000	0000000	0
11100000	00 111111	11111111	11111111	
11100000	01000000	00000000	0000000	1
11100000	01000000	11111111	11111111	
11100000	01 000001	00000000	0000000	2
11100001	01 111111	11111111	11111111	
otherwise				3

Example Question (2)

Destination Address Range			Interface	
11100000	00000000	00000000	00000000	0
11100000	00 111111	11111111	11111111	
11100000	01000000	00000000	00000000	1
11100000	01000000	11111111	11111111	
11100000	01 000001	00000000	00000000	2
11100001	01 111111	11111111	11111111	
otherwise				3

224.0.0.0/ 10
224.64.0.0/ 16

224.0.0.0/8

225.0.0.0/9

D	Interface	
11100000	OOXXXXXX XXXXXXXX	0
11100000	O1000000 xxxxxxxx xxxxxxxx	1
11100000	00000000 00000000 00000000	2
11100000	11111111 11111111 11111111	
11100001	00000000 00000000 00000000	2
11100001	0 1111111 11111111 11111111	
Otherwise	(32)	3

Example Question (2)

Determine interface for datagrams with destination addresses:

- $11001000 10010001 01010001 01010101 \rightarrow$ Interface 3
- 11100001 00000000 11000011 00111100 \rightarrow Interface 2
- 11100001 10000000 00010001 01110111 \rightarrow Interface 3

Net Prefix	Destination Address Range		
224.0.0.0/ 10	11100000 00 xxxxxx xxxxxxx xxxxxxx	0	
224.64.0.0/16	11100000 01000000 xxxxxxx xxxxxxx	1	
224.0.0.0/8	11100000 XXXXXXXX XXXXXXXX XXXXXXXX	2	
225.0.0.0/9	11100001 Oxxxxxxx xxxxxxx xxxxxxx	2	
Otherwise		3	

Example Question (3)

- Identify the three phases o TCP congestion control
 - Slow start, congestion avoidance, congestion detection

Example Question (4)

- A and B are communicating over a TCP connection, and B has already received from A all bytes up through byte 126.
- Suppose A then sends two segments to B back-to-back. The first and second segments contain 80 and 40 bytes of data, respectively. Host B sends an ACK whenever it receives a segment from A.
- Suppose the two segments sent by A arrive in order at B. The 1st ACK is lost and the 2nd ACK arrives after the 1st timeout interval.
- Then Host A retransmits accordingly.
 Suppose any retransmission is successful.
- Provide the missing sequence numbers and ACK numbers.

