2.7.

"Tasmania", una empresa de muñecos de peluche, quiere planificar la producción de sus famosos muñecos para los próximos dos meses. Fabricar un muñequito les insume 2 horas máquina y 1,5 kg. de materia prima. Por mes se puede disponer de 150 kilos de materia prima y de MAQ horas máquina. El primer mes se comprometió a entregar 70 muñequitos y el segundo mes el compromiso asciende a 110 muñequitos. Puede vender más de lo comprometido, pero no menos. Cada muñequito vendido le reporta una ganancia de \$P.

¿Qué es lo mejor que puede hacer "Tasmania" con la información disponible?

Ejercicio 2.7

Situacion problemática

Se trata de un problema de armado, donde hay que tener en cuenta la demanda y la ganancia de los muñequitos.

Objetivo

Determinar la cantidad de muñequitos a vender para maximizar las ganancias, teniendo en cuenta la disponiblidad de producción y la demanda mensual, durante los próximos dos meses.

Hipótesis y Supuestos

- Todos los parametros del modelo son constantes conocidas
- No hay limitantes no especificados
- No hay inflación ni varían las ganancias
- No hay desperdicio de recursos al fabricar

Variables de decisión controlables

 $P_m \in \mathbb{N}_0 \quad (m \in \{0,1\}) \quad [u_{mu\~nequitos}] \to \text{Cantidad de mu\~nequitos a producir en el mes } m$ $V_m \in \mathbb{N}_0 \quad (m \in \{0,1\}) \quad [u_{mu\~nequitos}] \to \text{Cantidad de mu\~nequitos a vender en el mes } m$

Vinculaciones y Restricciones

Fabricación

Horas máquina

$$2 * P_0 \le MAQ$$

$$2 * P_1 \leq MAQ$$

Materia prima

$$1.5 * P_0 \le 150$$

$$1.5 * P_1 \le 150$$

Demanda y ventas

Todo lo producido en ambos meses, menos lo que vendí en el primer mes, es lo que venderé en el segundo mes

$$(P_0 + P_1) - V_0 = V_1$$

Tengo que vender al menos 70 y 110 muñequitos en el primer y el segundo mes, respectivamente

$$V_0 \ge 70$$

$$V_1 \ge 110$$

Función Objetivo

$$Max Z = P * (V_0 + V_1)$$