Date: Mar 13 Made by Eric

1.

Proof. $y = x^4 - x^2$

$$y' = 4x^3 - 2x$$

$$y'' = 12x^2 - x$$

$$\kappa = \frac{|y''|}{(1 + (y')^2)^{\frac{3}{2}}}$$

$$\kappa(0) = \frac{2}{1} = 2$$

The radius is then $\frac{1}{2}$

$$y' = 0 \iff x = 0 \text{ or } \pm \frac{1}{\sqrt{2}}$$

$$\forall x \in (-\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}), y < 0 = y(0)$$
, since $y = (x^2 - 1)x^2$

So y(0) is a local maximum

Then the circle is below the curve

Equation of the circle: $(y + \frac{1}{2})^2 + x^2 = \frac{1}{4}$

2.

2.(a)

Proof.
$$r(t) = tR(t)$$

$$v(t) = r'(t) = R(t) + tR'(t) = (\cos \omega t, \sin \omega t) + t\mathbf{v}_d$$

2.(b)

Proof.
$$a(t) = v'(t) = \frac{d}{dt}(R(t) + tR'(t)) = R'(t) + R'(t) + tR''(t) = 2R'(t) + tR''(t) = 2v_d + a_d$$

2.(c)

Proof.
$$r(t) = (e^{-t}\cos\omega t, e^{-t}\sin\omega t)$$

$$R(t) = \left(\frac{e^{-t}\cos\omega t}{t}, \frac{e^{-t}\sin\omega t}{t}\right)$$
$$v_d = 2R'(t)$$

$$R'(t) = \left(\frac{\frac{de^{-t}\cos\omega t}{dt}t - e^{-t}\cos\omega t}{t^2}, \frac{\frac{de^{-t}\sin\omega t}{dt}t - e^{-t}\sin\omega t}{t^2}\right)$$

$$t(\frac{d}{dt}e^{-t}\cos\omega t) = t(-e^{-t}\cos\omega t - e^{-t}\sin\omega t)$$

$$t(\frac{d}{dt}e^{-t}\sin\omega t) = t(-e^{-t}\sin\omega t + e^{-t}\cos\omega t)$$

$$v_d = (2^{\frac{t(-e^{-t}\cos\omega t - e^{-t}\sin\omega t) - e^{-t}\cos\omega t}{t^2}}, 2^{\frac{t(-e^{-t}\sin\omega t + e^{-t}\cos\omega t) - e^{-t}\sin\omega t}{t^2}})$$

3.

3.(a)

Proof.
$$r(t) = (R \cos \omega t, R \sin \omega t)$$

$$v = r'(t) = (-\omega R \sin \omega t, \omega R \cos \omega t)$$

$$v \cdot r = \sqrt{(-\omega R^2 + \omega R^2)\cos \omega t \sin \omega t} = 0$$

We see
$$v = \omega \begin{bmatrix} \cos \frac{\pi}{2} & -\sin \frac{\pi}{2} \\ \sin \frac{\pi}{2} & \cos \frac{\pi}{2} \end{bmatrix} r$$

So v indeed point counter clockwise

3.(b)

Proof. If $\omega < 0$, we can find t small enough to see the particle is moving clockwise $|v| = \sqrt{\omega^2 R^2 (\sin^2 \omega t + \cos^2 \omega t)} = \sqrt{\omega^2 R^2} = \omega R$

The period of time T to finish one revolution is the distance, circumference $2\pi R$, divided by the speed |v|

So
$$T=rac{2\pi R}{|v|}=rac{2\pi R}{\omega R}=rac{2\pi}{\omega}$$

3.(c)

Proof.
$$a(t) = v'(t) = (-\omega^2 R \cos \omega t, -\omega^2 R \sin \omega t) = -\omega^2 r(t)$$

From equation above, it clearly point toward the origin

$$|a| = \omega^2 |r| = \omega^2 R$$

3.(d)

Proof.
$$|F|=m|a|=m\omega^2R=mrac{\omega^2R^2}{R}=mrac{|v|^2}{R}$$

4.

4.(a)

Proof.
$$r(t) = \langle (v_0 \cos \alpha)t, (v_0 \sin \alpha)t - \frac{1}{2}gt^2 \rangle$$

$$r'_{u}(t) = v_0 \sin \alpha - gt$$

The maximum height is at $t = \frac{v_0 \sin \alpha}{q}$

$$r_y(\frac{v_0 \sin \alpha}{g}) = \frac{v_0 \sin^2 \alpha}{g} - \frac{1}{2}g \frac{v_0^2 \sin^2 \alpha}{g^2} = \frac{v_0^2 \sin^2 \alpha}{2g}$$

The maximum of the maximum height then is when $\sin \alpha$ is the maximum, that is $\alpha = \frac{\pi}{2}$

So the maximum of the maximum height is $\frac{v_0^2}{2g}$

4.(b),(c)

Enclosed hand writing

5.

Proof. r(t) lies in a plane if and only if $\exists m, p, q, d \in \mathbb{R}, \forall t \in \mathbb{R}, m(a_1t^2 + b_1t + c_1) + p(a_2t^2 + b_2t + c_2) + q(a_3t^2 + b_3t + c_3) - d = 0$ **The equation**

$$m(a_1t^2 + b_1t + c_1) + p(a_2t^2 + b_2t + c_2) + q(a_3t^2 + b_3t + c_3) - d = 0 \iff (ma_1 + pa_2 + qa_3)t^2 + (mb_1 + pb_2 + qb_3)t + (mc_1 + pc_2 + qc_3 - d) = 0$$

Write
$$\begin{bmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{bmatrix} \begin{bmatrix} m \\ p \\ q \end{bmatrix} = \begin{bmatrix} d_1 \\ d_2 \\ d_3 \end{bmatrix}$$

$$(ma_1 + pa_2 + qa_3)t^2 + (mb_1 + pb_2 + qb_3)t + (mc_1 + pc_2 + qc_3 - d) = d_1t^2 + d_2t + (d_3 - d)$$

So
$$\exists m, p, q, d \in \mathbb{R}, \forall t \in \mathbb{R}, m(a_1t^2 + b_1t + c_1) + p(a_2t^2 + b_2t + c_2) + q(a_3t^2 + b_3t + c_3) - d = 0 \iff \exists m, p, q, d \in \mathbb{R}, \forall t \in \mathbb{R}, d_1t^2 + d_2t + (d_3 - d) = 0$$

We want to find $d_1 = d_2 = 0$, where (m, p, q) is nontrivial

So we can pick $d=d_3$, which give us $\forall t\in R, d_1t^2+d_2t+d_3-d=0$ $t^2+0td_3-d=0$

If
$$\left\{\begin{bmatrix}a_1\\b_1\\c_1\end{bmatrix},\begin{bmatrix}a_2\\b_2\\c_2\end{bmatrix},\begin{bmatrix}a_3\\b_3\\c_3\end{bmatrix}\right\}$$
 is linearly dependent, we find nontrivial m,p,q , such that $\begin{bmatrix}d_1\\d_2\\d_3\end{bmatrix}=0$

If $\left\{\begin{bmatrix} a_1\\b_1\\c_1\end{bmatrix},\begin{bmatrix} a_2\\b_2\\c_2\end{bmatrix},\begin{bmatrix} a_3\\b_3\\c_3\end{bmatrix}\right\}$ is linearly independent, the image is the whole \mathbb{R}^3 . We

find m, p, q, such that $\begin{bmatrix} d_1 \\ d_2 \\ d_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$

6.

6.(a)

$$\lim_{(x,y)\to(0,0)} \frac{x^2 + xy^2}{x^4 + y^2}$$

Proof. Approach from y = x

we see $\lim_{(x,y)\to(0,0)} \frac{x^2+xy^2}{x^4+y^2} = \lim_{x\to 0} \frac{x^3+x^2}{x^4+x^2} = \infty$

So not exists

6.(b)

$$\lim_{(x,y)\to(1,1)} \frac{y-x}{1-y+\ln x}$$

Proof. Approach from y = x

We have
$$\lim_{(x,y)\to(1,1)} \frac{y-x}{1-y+\ln x} = \lim_{(x,y)\to(1,1)} \frac{0}{1-x+\ln x} = 0$$

Approach from y = 2x - 1

We have
$$\lim_{(x,y)\to(1,1)} \frac{y-x}{1-y+\ln x} = \lim_{x\to 1} \frac{x-1}{2-2x+\ln x} = \lim_{x\to 1} \frac{1}{-2+\frac{1}{x}} = -1$$

By Queation 8, it does not exist

6.(c)

$$\lim_{(x,y)\to(0,0)} \frac{x^2+y^2}{\sqrt{x^2+y^2+1}-1}$$

Proof. Approach from y = mx

For all
$$m$$
, We have $\lim_{(x,y)\to(0,0)}=\frac{(m^2+1)x^2}{\sqrt{(m^2+1)x^2+1}-1}=\lim_{(x,y)\to(0,0)}\frac{2(m^2+1)x}{\frac{2(m^2+1)x}{2\sqrt{(m^2+1)x^2+1}}}=\lim_{(x,y)\to(0,0)}2\sqrt{(m^2+1)x^2+1}=2$

6.(d)

$$\lim_{(x,y)\to(0,0)} xy \sin\frac{1}{x^2+y^2}$$

Proof.
$$\lim_{(x,y)\to(0,0)} xy = 0$$

Noted sin is bounded above by 1 and below by -1

So multiplying an element of the image of \sin will only make xy closer to 0

Then the limit value of $xy \sin \frac{1}{x^2+y^2}$ is 0

6.(e)

$$\lim_{(x,y)\to(6.3)} xy\cos x - 2y$$

Proof.
$$\lim_{(x,y)\to(6,3)} xy \cos x - 2y = \lim_{(x,y)\to(6,3)} x \lim_{(x,y)\to(6,3)} y \lim_{(x,y)\to(6,3)} \cos x - 2y$$

= $6*3*1=18$

7.

7.(a)

$$f(x) = \frac{\sin xy}{e^x - y^2}$$

Proof. Notice $\sin xy_{,}e^{x}$ and y^{2} are all continuous functions

we give out only the uncontinuous point, that is, $e^x - y^2 = 0$. The rest of the points are all continuous.

Uncontinuous:
$$\{(x, \sqrt{e^x})|x \in \mathbb{R}\}$$

7.**(b)**

Proof. Notice x^2 , y^2 , $2x^2$ and y^2 are all continuous function, and $\forall (x,y) \neq (0,0), 2x^2 + y^2 \neq 0$

So the only possible uncontinuous point is (0,0), leaving the rest of the domain continuous

Approaching from y = x

We have $\lim_{(x,y)\to(0,0)} \frac{x^2y^2}{2x^2+y^2} = \lim_{(x,y)\to(0,0)} \frac{x^4}{3x^2} = 0 \neq 1$

So, at (0,0), weather the limit exists or not, we know it is uncontinuous

8.

Proof. Assume $\lim_{(x,y)\to(a,b)} f(x,y) = L$ and $\lim_{(x,y)} f(x,y) = M$ and L < MLet $\epsilon = \frac{M-L}{2}$

Pick δ_L , such that $\forall |(x-a,y-b)| < \delta_L, |f(x,y)-L| < \epsilon$

$$|f(x,y)-L|<\epsilon \implies f(x,y)<rac{M+L}{2}$$
 (i)

Pick δ_M , such that $\forall |(x-a,y-b)| < \delta_M, |f(x,y)-M| < \epsilon$

$$|f(x,y)-M|<\epsilon \implies f(x,y)>rac{M+L}{2}$$
 (ii)

Arbitrarily pick $(x, y) < min(\delta_L, \delta_M)$, we CaC from (i),(ii)

9.

Proof. $\forall (x,y): y > x, f(x,y) = y$, which is continuous.

 $\forall (x,y): y < x \text{, } f(x,y) = x \text{, which is continuous.}$

We consider only $H := \{(x, x) | x \in \mathbb{R}\}$

Let $(a, a) \in H$

For each ϵ , we pick $\delta = \epsilon$

$$\begin{array}{l} \sqrt{(x-a)^2 + (y-a)^2} < \delta = \epsilon \implies a - \delta < x < a + \delta \text{ and } a - \delta < y < a + \delta \implies a - \delta < \max(x,y) < a + \delta \implies |f(x,y) - f(a,a)| < \delta = \epsilon \end{array}$$

10.

10.(a)

Proof. x^2 , y^2 , $h(s)=\sqrt{s}$, are all continuous function, and $x^2+y^2>0$, yielding us that $h(x^2+y^2)$ is continuous

10.(b)

Proof.
$$\forall m \in \mathbb{R}, g(m) < n$$

$$\forall (x,y) \in \mathbb{R}^2, \exists m \in \mathbb{R}, f(x,y) = m$$

$$\forall (x,y) \in \mathbb{R}^2, \exists m \in \mathbb{R}, g \circ f(x,y) = g(m) < n$$

10.(c)

Proof. Because g is bounded below by 0 and decreasing

$$\lim_{n\to\infty} g(n)$$
 exists

Then
$$\lim_{\|(x,y)\| \to \infty} g \circ f(x,y) = \lim_{n \to \infty} g(n)$$
 exists

10.(d)

Proof. Rearrange D into a sequence $\{(x,y)_i\}$ such that $\{h((x,y)_i)\}$ is an increasing function

Then we see $\lim_{i\to\infty}\{h((x,y)_i)\}=M$

10.e

Proof. No, let
$$g(x) = \begin{cases} 1, x < 0 \\ -1, x \ge 0 \end{cases}$$

Notice $im(f) \subseteq \mathbb{R}^+$

So
$$im(g \circ f) = -1$$

Then obviously, $\forall \{x_n\}, \{y_n\}, \lim_{n\to\infty} g \circ f(x_n, y_n) \neq 1 = K$