Examenul de bacalaureat național 2013 Proba E. c) Matematică *M_şt-nat* Barem de evaluare și de notare

Varianta 9

Varianta 9

Filiera teoretică, profilul real, specializarea științe ale naturii

- Pentru orice soluție corectă, chiar dacă este diferită de cea din barem, se acordă punctajul corespunzător.
- Nu se acordă fracțiuni de punct, dar se pot acorda punctaje intermediare pentru rezolvări parțiale, în limitele punctajului indicat în barem.
- Se acordă 10 puncte din oficiu. Nota finală se calculează prin împărțirea la 10 a punctajului total acordat pentru lucrare.

SUBIECTUL I (30 de puncte)

1.	3(2+5i)=6+15i	2p
	3(2+5i) = 6+15i 5(1+3i) = 5+15i	2p
	$a=1\in\mathbb{R}$	1p
2.	$f(x) = 0 \Rightarrow (x+5)^2 = 0$	2p
	x = -5 si y = 0	3p
3.	$x^2 + x + 1 = x + 2$	3p
	Rezultă $x = -1$ sau $x = 1$, care verifică ecuația	2p
4.	Se notează cu x prețul înainte de ieftinire $\Rightarrow x - \frac{10}{100} \cdot x = 90$	3p 2p
	x = 100	
5.	$d \parallel h \Rightarrow m_d = m_h = 1$	3р
	$d: y-2=1\cdot(x-2)$, deci $d: y=x$	2p
6.	$\cos A = \frac{AB^2 + AC^2 - BC^2}{2 \cdot AB \cdot AC} = \frac{25 + 36 - 49}{2 \cdot 5 \cdot 6} =$	3p
	$=\frac{1}{5}$	2 p

SUBIECTUL al II-lea (30 de puncte)

1.a)	$A(2) + A(6) = \begin{pmatrix} 1 & 1 & 0 \\ 2 & 1 & 1 \\ 1 & -1 & 1 \end{pmatrix} + \begin{pmatrix} 1 & 1 & 0 \\ 6 & 1 & 1 \\ 1 & -1 & 1 \end{pmatrix} = \begin{pmatrix} 2 & 2 & 0 \\ 8 & 2 & 2 \\ 2 & -2 & 2 \end{pmatrix} =$	
	$ \begin{pmatrix} 1 & 2 & 1 & 1 \\ 1 & -1 & 1 \end{pmatrix} \begin{pmatrix} 0 & 1 & 1 \\ 1 & -1 & 1 \end{pmatrix} = \begin{pmatrix} 0 & 2 & 2 \\ 2 & -2 & 2 \end{pmatrix} = $	3 p
	=2A(4)	2p
b)	$\det(A(x)) = \begin{vmatrix} 1 & 1 & 0 \\ x & 1 & 1 \\ 1 & -1 & 1 \end{vmatrix} = 3 - x$	3p
	$3-x=0 \Rightarrow x=3$	2p
c)	$\det(A(2)) = 1$	2p
	$(A(2))^{-1} = \begin{pmatrix} 2 & -1 & 1 \\ -1 & 1 & -1 \\ -3 & 2 & -1 \end{pmatrix}$	3p
2.a)	f(-1) = -1 + 1 - m + m = 0	2p
	Rezultă $X + 1$ divide polinomul f	3 p
b)	$x_1 + x_2 + x_3 = -1$, $x_1 x_2 + x_1 x_3 + x_2 x_3 = m$	2 p
	$x_1^2 + x_2^2 + x_3^2 = 1 - 2m$	2p
	$1-2m=11 \Rightarrow m=-5$	1p

Probă scrisă la matematică *M_şt-nat*

Barem de evaluare și de notare

1

c)	$x_1 = -1 \Rightarrow x_2 = x_3 = 1$	2p
	$x_1 x_2 x_3 = -m$	1p
	$ m =1 \Rightarrow m=-1$ sau $m=1$; ambele valori verifică cerința	2p

SUBIECTUL al III-lea (30 de puncte)

SUBIECTUL al III-lea		(30 de puncte)	
1.a)	$f'(x) = x' - (\ln x)' =$	2p	
	$=1-\frac{1}{x}$, pentru orice $x \in (0,+\infty)$	3 p	
b)	y - f(1) = f'(1)(x-1)	2 p	
	$f(1)=1, f'(1)=0 \Rightarrow$ ecuația tangentei este $y=1$	3 p	
c)	$f'(1) = 0, f'(x) < 0, \text{ pentru } x \in (0,1) \text{ si } f'(x) > 0, \text{ pentru } x \in (1,+\infty)$	3p	
	$f(x) \ge f(1) \Rightarrow x \ge \ln x + 1$, pentru orice $x \in (0, +\infty)$	2p	
2.a)	$\int_{2}^{3} \frac{f(x)}{x(x-1)} dx = \int_{2}^{3} (x+1) dx = \left(\frac{x^{2}}{2} + x\right) \Big _{2}^{3} =$	3р	
	$=\frac{15}{2}-4=\frac{7}{2}$	2 p	
b)	$f(x) = x^3 - x \Rightarrow \text{primitiva } F \text{ a funcției } f \text{ este } F(x) = \frac{1}{4}x^4 - \frac{1}{2}x^2 + c \text{, unde } c \in \mathbb{R}$	3p	
	$F(1) = -1 \Rightarrow c = -\frac{3}{4} \Rightarrow F(x) = \frac{1}{4}x^4 - \frac{1}{2}x^2 - \frac{3}{4}$	2 p	
c)	$\int_{2}^{e} \frac{f(x)\ln x}{x^2 - 1} dx = \int_{2}^{e} x \ln x dx =$	2p	
	$= \left(\frac{x^2}{2} \ln x\right) \Big _2^e - \frac{1}{2} \int_2^e x dx = \frac{e^2}{4} - 2 \ln 2 + 1$	3p	