

National University of Computer & Emerging Sciences, Karachi

Fall-2018 CS-Department **CS211-Discrete Structures Practice Assignment-II**

Note:

- 1- This is hand written assignment.
- 2- Just write the question number instead of writing the whole question.

Submission date: Tuesday, 13th November, 2018 by 01 pm

1. Let R be the following relation defined on the set {a, b, c, d}:

 $R = \{(a, a), (a, c), (a, d), (b, a), (b, b), (b, c), (b, d), (c, b), (c, c), (d, b), (d, d)\}.$

Determine whether R is:

- (a) Reflexive
- (b) Symmetric
- (c) Antisymmetric
- (d) Transitive

2. Let *R* be the following relation on the set of real numbers:

$$aRb \leftrightarrow |a| = |b|$$
, where |x| is the floor of x.

Determine whether R is:

- (a) Reflexive
- (b) Symmetric
- (c) Antisymmetric
- (d) Transitive

3.

Let
$$f(x) = \lfloor x^2/3 \rfloor$$
. Find $f(S)$ if

- a) $S = \{-2, -1, 0, 1, 2, 3\}.$
- **b**) $S = \{0, 1, 2, 3, 4, 5\}.$
- c) $S = \{1, 5, 7, 11\}.$
- **d**) $S = \{2, 6, 10, 14\}.$

4.

Why is f not a function from \mathbf{R} to \mathbf{R} if

- a) f(x) = 1/x?
- **b)** $f(x) = \sqrt{x}$?
- c) $f(x) = \pm \sqrt{(x^2 + 1)}$?

5.

Determine whether f is a function from \mathbf{Z} to \mathbf{R} if

- a) $f(n) = \pm n$.
- **b)** $f(n) = \sqrt{n^2 + 1}$.
- c) $f(n) = 1/(n^2 4)$.

6.

Find these values.

a) $\lceil \frac{3}{4} \rceil$

- c) $[-\frac{3}{4}]$ e) [3]g) $[\frac{1}{2} + [\frac{3}{2}]]$

Determine whether each of these functions from $\{a, b, c, d\}$ to itself is one-to-one.

a)
$$f(a) = b$$
, $f(b) = a$, $f(c) = c$, $f(d) = d$

b)
$$f(a) = b$$
, $f(b) = b$, $f(c) = d$, $f(d) = c$

c)
$$f(a) = d$$
, $f(b) = b$, $f(c) = c$, $f(d) = d$

8.

Determine whether each of these functions is a bijection from \boldsymbol{R} to \boldsymbol{R} .

a)
$$f(x) = 2x + 1$$

b)
$$f(x) = x^2 + 1$$

c)
$$f(x) = x^3$$

d)
$$f(x) = (x^2 + 1)/(x^2 + 2)$$

9.

Let $f: \mathbb{R} \to \mathbb{R}$ and let f(x) > 0 for all $x \in \mathbb{R}$. Show that f(x) is strictly decreasing if and only if the function g(x) = 1/f(x) is strictly increasing.

10.

Find $f \circ g$ and $g \circ f$, where $f(x) = x^2 + 1$ and g(x) = x + 2, are functions from R to R.

11.

Prove that if x is a real number, then $\lfloor -x \rfloor = -\lceil x \rceil$ and $\lceil -x \rceil = -\lfloor x \rfloor$.

12. For each of these relations on the set {1, 2, 3, 4}, decide whether it is reflexive, whether it is symmetric, whether it is antisymmetric, and whether it is transitive.

13. Determine whether the relation R on the set of all people is reflexive, symmetric, antisymmetric, and/or transitive, where (a, b) ∈ R if and only if

a) a is taller than b.

- b) a and b were born on the same day.
- c) a has the same first name as b.
- d) a and b have a common grandparent.

14. Give an example of a relation on a set that is

- a) both symmetric and antisymmetric.
- b) neither symmetric nor antisymmetric.

15. Consider these relations on the set of real numbers:

$$R1 = \{(a, b) \in R^2 \mid a > b\}$$
, the "greater than" relation,

R2 =
$$\{(a, b) \in \mathbb{R}^2 \mid a \ge b\}$$
, the "greater than or equal to "relation,

$$R3 = \{(a, b) \in R^2 \mid a < b\}, \text{ the "less than" relation,}$$

R4 =
$$\{(a, b) \in \mathbb{R}^2 \mid a \le b\}$$
, the "less than or equal to "relation,

$$R5 = \{(a, b) \in \mathbb{R}^2 \mid a = b\}, \text{ the "equal to" relation,}$$

R6 =
$$\{(a, b) \in \mathbb{R}^2 \mid a \neq b\}$$
, the "unequal to" relation.

	i) Find:					
	a) R2 ∪ R4.	b) R3 ∪ R6.	c) R3 ∩ R6.	d)	R4 ∩ R6 .	
	e) R3 - R6.	f) R6 – R3.	g) R2 ⊕ R6.	•	R3 ⊕ R5.	
	0,110	.,	9/1-	,	()	
	ii) Find:					
	Find					
	a) R2 ∘ R1.	b) R2 ∘ R2.	c) R3 ∘ R5.	d)	R4 ∘ R1.	
	e) R5 ∘ R3.	f) R3 ∘ R6.	g) R4 ∘ R6.	•	R6 ∘ R6.	
	,	, -	3,	,		
16.	What are the quotient and remainder when					
	a) 19 is divided by	7?	b) -111 is divided by 1	1?		
	c) 789 is divided b	y 23? d) 100	11 is divided by 13?			
	e) 0 is divided by 19? f) 3 is divided by 5?					
	g) -1 is divided by	3?	h) 4 is divided by 1?	is divided by 1?		
17.	_et m be a positive integer. Show that a ≡ b (mod m) if a mod m = b mod m.					
18.	Find a div m and a mod m when					
	a) a = −111, m = 99.		b) a = -9999, m = 101.			
	c) a = 10299, m = 9	999.	d) a = 123456, m = 100 ²	l.		
19.		<u> </u>	congruent to 5 modulo 17			
	a) 80	b) 103	c) −29	d)	-122	
	5	41 1 4 1 1				
20.		•	of these sets are pairwise	• •		
	a) 11, 15, 19	b) 14, 15, 21	c) 12, 17, 31, 3	<i>(</i> a)	7, 8, 9, 11	
24	Find the prime factorization of each of these integers.					
۷۱.	a) 88	b) 126 c) 729	•	e) 1111	f) 909,090	
	a) 00	b) 120 C) 123	u) 1001	<i>e)</i> 1111	1) 303,030	
22	What are the GCD & LCM of these pairs of integers?					
	a) 37 · 53 · 73, 211 · 35 · 59 b) 11 · 13 · 17, 29 · 37 · 55 · 73					
	c) 2331, 2317		d) 41 · 43 · 53, 41 · 43 · 53			
	e) 313 · 517, 212 · 721		f) 1111, 0			
	, , , , , , , , , , , , , , , , , , , ,					
23.	Use the extended	Euclidean algorithm to	express gcd (144, 89) and	l gcd (1001, 1	00001) as a linear combi	nation.
		J		• ,	,	
24.	Solve each of thes	se congruences using t	he modular inverses.			
	a) $55x \equiv 34 \pmod{89}$ b) $89x \equiv 2 \pmod{232}$					
25.	25. Use the construction in the proof of the Chinese remainder theorem to find all solutions to the system					
	congruences.					
	a) $x \equiv 5 \pmod{6}$, $x \equiv 3 \pmod{10}$, and $x \equiv 8 \pmod{15}$.					
	b) $x \equiv 7 \pmod{9}$,	$x \equiv 4 \pmod{12}$, and $x \equiv$	16 (mod 21).			
c) $x \equiv 1 \pmod{2}$, $x \equiv 2 \pmod{3}$, $x \equiv 3 \pmod{5}$, and $x \equiv 4 \pmod{11}$.						
26. Find an inverse of a modulo m for each of these pairs of relatively prime integers.						
	a) a = 2, m = 17	•	34, m = 89			
	c) a = 144, m = 2	33 d) a =	200, m = 1001			

- 27. Use Fermat's little theorem to compute $5^{2003} \mod 7$, $5^{2003} \mod 11$, and $5^{2003} \mod 13$.
- 28. Encrypt the message STOP POLLUTION by translating the letters into numbers, applying the given encryption function, and then translating the numbers back into letters.

a)
$$f(p) = (p + 4) \mod 26$$

b)
$$f(p) = (p + 21) \mod 26$$

29. Decrypt these messages encrypted using the shift cipher

$$f(p) = (p + 10) \mod 26$$
.

30. What is the original message encrypted using the RSA system with $n = 53 \cdot 61$ and e = 17 if the encrypted message is 3185 2038 2460 2550? (To decrypt, first find the decryption exponent d, which is the inverse of e = 17 modulo 52 \cdot 60.)