A Theory of Software Testing

2. Test Case Design Technique

A Theory of Software Testing

2. Test Case Design Technique

Test Case Design Technique

PART I

Contents

Part I

- Terminologies
- Specification-based Testing (Black-box Testing)

Part II (White-box Testing)

- Coverage-based Testing
- Structural Path-based Testing
- Dataflow Testing

Terminologies

Dynamic Testing Procedure

Test data and Test cases

- Test data
 - Inputs which have been devised to test the system
- Test cases
 - Inputs to test the system and the predicted outputs from these inputs if the system operates according to its specification
- Test suite
 - A collection of test cases that are intended to be used to test a software program
- Test oracle
 - A mechanism used by software testers for determining whether a test has passed or failed
 - Specification and documentation, other products, and so on

Specification, Program, and Test Case

- Specification & Program
 - Spec. and Program are not exactly matched
- **Test Cases**
 - Scope 1
 - Expected, Programmed and Tested
 - Scope 2, 5
 - Expected, but not tested
 - Scope 6
 - Programmed, not expected and not tested

Program behaviors

(expected)

(implemented)

Program behaviors

IEEE Std. Fault Types (1/2)

- IEEE Standard Classification for Software Anomalies(1993)
 - Input / Output Faults, Logic Faults

Table 1.1 Input/Output Faults

Туре	Instances								
Input	Correct input not accepted								
	Incorrect input accepted								
	Description wrong or missing								
	Parameters wrong or missing								
Output	Wrong format								
	Wrong result								
	Correct result at wrong time (too early, too late)								
	Incomplete or missing result								
	Spurious result								
	Spelling/grammar								
	Cosmetic								

Table 1.2 Logic Faults

Missing case(s)					
Duplicate case(s)					
Extreme condition neglected					
Misinterpretation					
Missing condition					
Extraneous condition(s)					
Test of wrong variable					
Incorrect loop iteration					
Wrong operator (e.g., < instead of ≤)					

IEEE Std. Fault Types (2/2)

Table 1.3 Computation Faults

Incorrect algorithm					
Missing computation					
Incorrect operand					
Incorrect operation					
Parenthesis error					
Insufficient precision (round-off, truncation)					
Wrong built-in function					

Table 1.4 Interface Faults

Incorrect interrupt handling					
I/O timing					
Call to wrong procedure					
Call to nonexistent procedure					
Parameter mismatch (type, number)					
Incompatible types					
Superfluous inclusion					

Table 1.5 Data Faults

Incorrect initialization					
Incorrect storage/access					
Wrong flag/index value					
Incorrect packing/unpacking					
Wrong variable used					
Wrong data reference					
Scaling or units error					
Incorrect data dimension					
Incorrect subscript					
Incorrect type					
Incorrect data scope					
Sensor data out of limits					
Off by one					
Inconsistent data					

Black-box testing vs. White-box testing

Black-box testing

- An approach to testing where the program is considered as a 'black-box'
- The program test cases are based on the system specification
- Test planning can begin early in the software process
- White-box testing
 - Derivation of test cases according to program structure.
 - Knowledge of the program is used to identify additional test cases

Specification-based Testing

Black-box testing

- An approach to testing where the program is considered as a 'black-box'
- The program test cases are based on the system specification
- Test planning can begin early in the software process

Equivalence partitioning

- Input data and output results often fall into different classes where all members of a class are related
- Each of these classes is an equivalence partition where the program behaves in an equivalent way for each class member
- Test cases should be chosen from each partition

Equivalence partitioning

- Partition system inputs and outputs into 'equivalence sets'
 - If input is a 5-digit integer between 10,000 and 99,999,
 equivalence partitions are <0-9999>, <10000-99999> and <100000 ->
- Choose test cases at the boundary of these sets
 - 00000, 09999, 10000, 99999, 100000

Number of input values

Specification-based Testing(1/2)

• Black-box Testing (called as functional testing)

- Testing Approach
 - Boundary value Testing
 - Equivalence Class Testing
 - Decision Table-based Testing

- Strength
 - Test cases are independent of how the software is implemented
 - Test case development can occur in parallel with the implementation

Boundary Value Testing

• Input Domain(or output domain) of variable is used

$$- a \le x1 \le b,$$

or $c \le x2 \le d$

- Testing Approach
 - Normal boundary value testing
 - Robust boundary value testing
 - Worst-case boundary value testing
 - Robust worst-case boundary value testing

Normal Boundary Value Testing

- Testing focus on the boundary of the input space ot identify test cases
 - Usually errors occur near the boundary values
 - $< X_{\min}, X_{\min+1}, X_{\text{nom}}, X_{\max-1}, X_{\max} >$
- Input variables are considered as independent
 - Independent, bounded physical quantities
- example : x1[a, b], x2[c, d]

Robustness Testing

- Extension of Normal Boundary Value Testing
 - Focus on exceptional values
 - $-<X_{\min-1}, X_{\min}, X_{\min+1}, X_{nom}, X_{\max-1}, X_{\max}, X_{\max+1}>$
- Example
 - Exceeding the maximum weighting of an elevator

Worst-Case Testing

- Considering dependency of input variables
 - Worst-case test cases (Fig. 1)
 - Robust worst-case test cases (Fig. 2)

Equivalence Class Testing

- Motivation
 - A sense of complete testing
 - Hope to avoid redundancy

$$b_i \cap b_j = \Phi, \forall i \neq j, b_i, b_j \in B_q$$

- Equivalence Class
 - Modulus Operation(% 5) : Natural Number → 0 ~ 4

•
$$[0] = \{0, 5, 10, ...\}, [1] = \{1, 6, ...\}, [2], [3], [4] = \{4, 9, ...\}$$

- Test data are selected one or two representative numbers in each equivalence class
- Testing Technique
 - Traditional Equivalence
 - Weak/Strong Normal Equivalence
 - Weak/Strong Robust Equivalence

Traditional Equivalence Class Testing

- Equivalence Classes valid/invalid values
- Valid scope x1 = [a, b], x2 = [c, d]

Weak/Strong Normal Equivalence Class

- Focus on normal cases
- Independent inputs(weak)/dependent inputs(strong)
- Valid scope $x1 = \{[a, b), [b, c), [c, d]\}, x2 = \{[e, f), [f, d]\}$

<Weak Normal Equivalence Class>

<Strong Normal Equivalence Class>

Weak/Strong Robust Equivalence Class

- Consider both valid and invalid inputs
- Independent inputs(weak)/dependent inputs(strong)
- Valid scope $x1 = \{[a, b), [b, c), [c, d]\}, x2 = \{[e, f), [f, d]\}$

< Weak Robust Equivalence Class>

<Strong Robust Equivalence Class>

Classification Tree Method

- Selecting test objects or features (size, colour, shape, etc)
- Designing a classification tree (size : small, large)
- Combining classes to form test cases

Testing Example of CTM

Exercise: Mental Heath Care

- Patient Management System requirements: 기
 - If a patient is known to be <u>allergic to any particular medication</u> then prescription of that <u>medication</u> shall <u>result in a warning message</u> being issued to the system user.

If a prescriber chooses to ignore an allergy warning, they shall provide a reason why this has been ignored.

Classification Tree of Mental Health Care

Testing Example: Mental Heath Care

Test Case #1

- Set up a patient record with no known allergies.
- Prescribe medication for allergies that are known to exist.
- Check that a warning message is not issued by the system.

Test Case #2

- Set up a patient record with a known allergy.
- Prescribe the medication to that the patient is allergic to
- Check that the warning is issued by the system.

Test Case #3

- Set up a patient record in which allergies to two or more drugs are recorded.
- Prescribe both of these drugs separately
- Check that the correct warning for each drug is issued.

Test Case #4

- Prescribe two drugs that the patient is allergic to.
- Check that two warnings are correctly issued.

Test Case #5

- Prescribe a drug that issues a warning and overrule that warning.
- Check that the system requires users the reason of overruling warning

Decision Table-Based Testing (1/2)

- Decision table
 - Used to test complicated logical relations from 1960s
 - Execution conditions of each action(a1, a2, ...) are marked in the below
 - action a1 is related with !c1, c1 && !c2, c1 && c2 && !c3

				7							
c1: a < b + c?	F	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т
c2: b < a + c?	_	F	Т	Т	Т	Т	Т	Т	Т	Т	Т
c3: c < a + b?	_	_	F	Т	Т	Т	Т	Т	Т	Т	Т
c4: a = b?	_	_	_	Т	Т	Т	Т	F	F	F	F
c5: a = c?	_	_	_	Т	Т	F	F	Т	Т	F	F
c6: b = c?	_	_	_	Т	F	Т	F	Т	F	Т	F
a1: Not a triangle	X	X	X								
a2: Scalene											Х
a3: Isosceles							Х		Х	Χ	
a4: Equilateral				Х							
a5: Impossible					Х	Х		Х			

Decision Table-Based Testing (2/2)

- Test cases are generated from Decision Table
 - A test case is generated from each column of decision table

c1: a < b + c?	F	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т
c2: b < a + c?	_	F	Т	T	Т	Т	Т	Т	T	Т	Т
c3: c < a + b?	_	_	F	Т	Т	Т	Т	Т	Т	Т	Т
c4: a = b?	_	_	_	Т	Т	Т	Т	F	F	F	F
c5: a = c?	_	_	_	Т	Т	F	F	Т	Т	F	F
c6: b = c?	_	_	_	Т	F	Т	F	Т	F	Т	F
a1: Not a triangle	Х	Х	Х								
a2: Scalene											Х
a3: Isosceles							Х		Х	Х	
a4: Equilateral				Х							
a5: Impossible					Х	Х		Х			

Case ID	a	b	С	Expected Output
DT1	4	1	2	Not a triangle
DT2	1	4	2	Not a triangle
DT3	1	2	4	Not a triangle
DT4	5	5	5	Equilateral
DT5	?	?	?	Impossible
DT6	?	?	?	Impossible
DT7	2	2	3	Isosceles
DT8	?	?	?	Impossible
DT9	2	3	2	Isosceles
DT10	3	2	2	Isosceles
DT11	3	4	5	Scalene

DT01 DT11

Testing Effort of Spec-based Testing

Test Case Design Technique

PART II

Contents

Part I

- Terminologies
- Specification-based Testing (Black-box Testing)

Part II (White-box Testing)

- Coverage-based Testing
- Structural Path-based Testing
- Dataflow Testing

White-box testing

- Sometimes called structural testing
- Derivation of test cases according to program structure.
- Knowledge of the program is used to identify additional test cases
- Objective is to exercise all program statements, all conditions, all decisions (not all path combinations)

Program Flow Graph

Test Coverage I

- Statement Coverage
 - Every statement in the program has been executed at least once
- Decision(Branch) Coverage
 - Every point of entry and exit in the program has been invoked at least once
 - Every decision in the program has taken all possible outcomes at least once
- Condition/Decision Coverage(C/DC)
 - Every point of entry and exit in the program has been invoked at least once
 - Every decision in the program has taken all possible outcomes at least once
 - Every condition in a decision in the program has taken all possible outcomes at least once

Ref: John Joseph Chilenski and Steven P. Miller, "Applicability of modified condition/decision coverage to software testing," Software Engineering Journal, Sep. 1994

Example of Test Coverage I

- Decision Coverage of OR(||)
 - Minimal Test Set: (TT, FF), (TF, FF), (FT, FF)
- Condition Coverage of OR(||)
 - Minimal Test Set: (TT, FF), (TF, FT)
- C/DC Coverage of OR(||)
 - Minimal Test Set (TT, FF)

A	В	A B
T	T	T
T	F	T
F	T	T
F	F	F

Exercise: Binary Search

```
public static void search (int key, int [] elemArray, Result r)
   int bottom = 0;
                                                                     Program Flow Graph
   int top = elemArray.length - 1;
   int mid;
   r.found = false ; r.index = -1 ;
   while (bottom <= top)
       mid = (top + bottom) / 2;
                                                                  bottom <= top
                                                                                   bottom > top
       if (elemArray [mid] == key)
                                                     elemArray[mid] == key
           r.index = mid;
           r.found = true;
           return:
       } // if part
                                                                                     elemArray[mid] < key
       else
           if (elemArray [mid] < key)
               bottom = mid + 1;
           else
               top = mid - 1;
   } //while loop
} // search
```

Example of Test Coverage

- Statement Coverage
 - key: 7, elemArray[]= { 1, 3, 5, 7, 9, 10}
 Path: (1, 2, 3, 7, 9, 10, 2, 3, 7, 8, 10, 2, 3, 5, 6)
- Decision Coverage
 - key: 7, elemArray[]= { 1, 3, 5, 7, 9, 10}
 - key : 3, elemArray[]= { }
 - Path: (1, 2, 4)

Program Flow Graph

Example2: Leap Year Function

```
□bool isLeap(int vear)
      bool rest
      if ( year <= 0 )
           return false:
      if (((year%4 = 0) \&\& (year%100 != 0)) || (year%400 == 0))
           res = true:
      else
                                                       if (year \leq 0)
           res = false;
                                 year <= 0
                                                      year > 0
      return res;
                                                       if ((year\%4 == 0) \&\& (year\%100 != 0)) || (year\%400 == 0)
                                                       C = ((year\%4 == 0) \&\& (year\%100 != 0)) || (year\%400 == 0)
                                         !C
                             res = false;
                                                             res = true:
                                          4
                                                         return res;
```

Test Coverage of Leap Year

Decision Coverage

$$-C1: (year \%4 == 0), C2 = (year \%100! = 0), C3 = (year \%400 == 0)$$

Test Input	Test Path	year<=0	(C1&&C2) C3
year = -1	[1,2]	T	-
year = 4	[1, 3, 4, 6]	F	Т
year = 5	[1, 3, 5, 6]	F	F

C/DC Coverage

$$-C1: (year \%4 == 0), C2 = (year \%100!= 0), C3 = (year \%400 == 0)$$

Test Input	Test Path	year<=0	C1	C2	C3	Result
year = -1	[1,2]	Т	1	-	1	-
year = 4	[1, 3, 4, 6]	F	T	T	F	Т
year = 5	[1, 3, 5, 6]	F	F	T	F	F
year = 400	[1, 3, 4, 6]	F	T	F	T	Т

Test Coverage II

- Modified Condition/Decision Coverage (MC/DC)
 - Every point of entry and exit in the program has been invoked at least once
 - Every condition in a decision in the program has taken all possible outcomes at least once
 - Each condition has been shown to independently affect the decision output.
 - A condition is shown to independently affect a decision's outcome by varying just that condition while holding fixed all other possible conditions

MC/DC's Example 1

A and B

- (T,T) can be paired with (F,T) to show the independence of A
- (T,T) can be paired with (T,F) to show the independence of B
- Minimal Test Set : $\{1,2,3\} = \{(T,T), (T,F), (F,T)\}$

Index	A	В	A && B	A	В
1	T	T	T	3	2
2	T	F	F		1
3	F	T	F	1	
4	F	F	F		

MC/DC's Example 2

• A or B

$$- \{2, 3, 4\} = \{(T,F), (F,T), (F,F)\}$$

Index	A	В	A B	A	В
1	T	T	T		
2	T	F	T	4	
3	F	Т	T		4
4	F	F	F	2	3

Coverage-based Testing

Structural Path-based Testing

Overview of Path-based Testing

Structured Programming

- Structured programming technique is simple
- Bohm and Jacopini provided only three basic structures for creating software program
 - Sequence
 - Selection
 - Repetition
- Rules for structured programs

Rules for forming structured programs

- 1. Begin with the simplest activity diagram (Fig. 5.22).
- 2. Any action state can be replaced by two action states in sequence. (This is the stacking rule.)
- 3. Any action state can be replaced by any control statement (sequence of action states, if, if...else, switch, while, do...while or for). (This is the nesting rule.)
- 4. Rules 2 and 3 can be applied as often as you like and in any order.

Three basic structures

Example of applying rules (1/2)

Example of applying rules (2/2)

Control Flow Graphs

- A CFG models all executions of a method by describing control structures
- Nodes: Statements or sequences of statements (basic blocks)
- Edges: Transfers of control
- <u>Basic Block</u>: A sequence of statements such that if the first statement is executed, all statements will be (no branches)
- CFGs are sometimes annotated with extra information
 - Branch predicates
 - Defs/Uses

CFG: The if Statement

```
if (x < y)
{
    y = 0;
    x = x + 1;
}
else
{
    x = y;
}</pre>
```


CFG: The if-return Statement

```
if (x < y)
{
    return;
}
printf("%d", x);
return;</pre>
```

No edge from node 2 to 3. The return nodes must be distinct.

CFG: while and for Loops

CFG: do Loop, break and continue

```
x = 0;
do {
  y = f (x, y);
  x = x + 1;
} while (x < y);
printf("%d",y);</pre>
```


CFG: The case (switch) Structure

```
scanf("%c",&c);
switch (c)
 case 'N':
   y = 25;
   break;
 case 'Y':
   y = 50;
   break;
 default:
   y = 0;
   break;
printf("%d", y);
```


Example Control Flow – Stats

```
void computeStats (int [ ] numbers)
   int length = numbers.length:
   double med, var, sd, mean, sum, varsum;
   sum = 0.0;
   for (int i = 0; i < length; i++) {
      sum += numbers [ i ];
   med = numbers [ length / 2];
   mean = sum / (double) length;
   varsum = 0.0;
   for (int i = 0; i < length; i++) {
      varsum = varsum + ((numbers [i] - mean) * (numbers [i] - mean));
   var = varsum / (length - 1.0);
   sd = sqrt (var);
   printf ("length:
                            %d\n", length);
                            %lf\n", mean);
   printf ("mean:
   printf ("median:
                            %lf\n", med);
   printf ("variance:
                            %lf\n", var);
   printf ("standard deviation:%lf \n", sd);
```

Control Flow Graph for Stats

Control Flow TRs and Test Paths – EC

3/7/23

Control Flow TRs and Test Paths – EPC

Edge-Pair Coverage

TR

A. [1, 2, 3]

B. [2, 3, 4]

C. [2, 3, 5]

D. [3, 4, 3]

E. [3, 5, 6]

F. [4, 3, 5]

G. [5, 6, 7]

H. [5, 6, 8]

I. [6, 7, 6]

J. [7, 6, 8]

K. [4, 3, 4]

L. [7, 6, 7]

Test Paths

i. [1, 2, 3, 4, 3, 5, 6, 7, 6, 8]

ii. [1, 2, 3, 5, 6, 8]

iii. [1, 2, 3, 4, 3, 4, 3, 5, 6, 7, 6, 7, 6, 8]

TP	TRs toured	sidetrips
i	A, B, D, E, F, G, I, J	C, H
ii	A, C, E, H	
iii	A, B, D, E, F, G, I, J, K, L	C, H

^{*} sidetrips : some cycles are included in paths

Exercise

```
w=x;
if (m>0){
  w++;
else{
  w=2*w;
if (y \le 10)
  x=5*y;
else{
  x = 3*y+5;
z = w+x;
```

- 1. Draw a control flow graph
- 2. Find TR and Test Paths for EC
- 3. Find TR and Test Paths for EPC

Dataflow Testing

Data Flow Coverage

- def: a location where a value is stored into memory
 - x appears on the left side of an assignment (x = 44;)
 - x is an actual ref. parameter in a call and the method changes its value
 - x is a formal parameter (implicit DEF when method starts)
 - x is an input to a program
- use: a location where variable's value is accessed
 - x appears on the right side of an assignment or a conditional test
 - x is an actual parameter to a method
 - x is an output of the program or a method (in return statement)
- When a def and a use appear on the same node,
 - a DU-pair if the def occurs <u>after</u> the use in a loop
 - Not a DU-pair if the def occurs <u>before</u> the use

Control Flow Graph for computeStats()

3/7/23

CFG for Stats – With Defs & Uses

Defs and Uses Tables for computeStats()

Node	Def	Use
1	{ numbers, sum, length }	{ numbers }
2	{ i }	
3		
4	{ sum, i }	{ numbers, i, sum }
5	{ med, mean, varsum, i }	{ numbers, length, sum }
6		
7	{ varsum, i }	{ varsum, numbers, i, mean }
8	{ var, sd }	{ varsum, length, var, mean, med, var, sd }

Edge	Use
(1, 2)	
(2,3)	
(3, 4)	{ i, length }
(4, 3)	
(3, 5)	{ i, length }
(5, 6)	
(6, 7)	{ i, length }
(7, 6)	
(6, 8)	{ i, length }

DU Pairs for computeStats()

variable	DU Pairs	defs come <u>before</u> uses, do	
numbers	(1, 4) (1, 5) (1, 7)	not count as DU pairs	
length	(1, 5) (1, 8) (1, (3,4)) (1, (3,5)) (1, (6,7)) (1, (6,8))	
med	(5, 8)		
var	(8,8)	defs <u>after</u> use in	loop,
sd	(8,8)	these are valid I	OU pairs
mean	(5, 7) (5, 8)		
sum	(1,4)(1,5)(4,4)(4,5)	No def-clear pat different scope f	
varsum	(5,7)(5,8)(7,7)(7,8)	different scope i	OI I
	(2,4)(2,(3,4))(2,(3,5))(2,7)(2,(4,4))(2,(3,5))(2,7)(2,(4,4))(2,(3,5))(2,7)(2,(4,4))(2,(4,4))(2,(4,4))(2,(4,5))(2,(4,4)	6,7)) (2, (6,8))	
	(4,4)(4,(3,4))(4,(3,5))(4,7)(4,6)	6,7)) (4, (6,8))	
i	(5,7)(5,(6,7))(5,(6,8))		
	(7,7)(7,(6,7))(7,(6,8))		

DU Paths for computeStats()

variable	DU Pairs	DU Paths
numbers	(1, 4) (1, 5) (1, 7)	[1, 2, 3, 4] [1, 2, 3, 5] [1, 2, 3, 5, 6, 7]
length	(1, 5) (1, 8) (1, (3,4)) (1, (3,5)) (1, (6,7)) (1, (6,8))	[1, 2, 3, 5] [1, 2, 3, 5, 6, 8] [1, 2, 3, 4] [1, 2, 3, 5] [1, 2, 3, 5, 6, 7] [1, 2, 3, 5, 6, 8]
med	(5, 8)	[5, 6, 8]
var	(8,8)	No path needed
sd	(8, 8)	No path needed
sum	(1, 4) (1, 5) (4, 4) (4, 5)	[1, 2, 3, 4] [1, 2, 3, 5] [4, 3, 4] [4, 3, 5]

3/7/23

variable	DU Pairs	DU Paths
	(5, 7)	[5, 6, 7]
mean	(5,8)	[5, 6, 8]
	(5, 7)	[5, 6, 7]
	(5,8)	[5, 6, 8]
varsum	(7,7)	[7, 6, 7]
	(7,8)	[7, 6, 8]
	(2, 4)	[2, 3, 4]
	(2, (3,4))	[2, 3, 4]
	(2, (3,5))	[2, 3, 5]
	(4,4)	[4,3,4]
	(4, (3,4))	[4,3,4]
i	(4, (3,5))	[4, 3, 5]
1	(5,7)	[5, 6, 7]
	(5, (6,7))	[5, 6, 7]
	(5, (6,8))	[5, 6, 8]
	(7,7)	[7, 6, 7]
	(7, (6,7))	[7, 6, 7]
SW Testing Theo	(7, (6,8))	[7, 6, 8]

DU Paths for Stats – No Duplicates

There are 38 DU paths for Stats, but only 12 unique

Infeasible Path

| 1, 2, 3, 5 |
| 1, 2, 3, 5 |
| 1, 2, 3, 5, 6

- *
- 4 expect a loop not to be "entered"

6 require at least one iteration of a loop

 \Diamond

2 require at least two iterations of a loop

>= length

>= length

length

Test Cases and Test Paths

Test Path: [1, 2, 3, 4, 3, 5, 6, 7, 6, 8] **DU Paths covered** [1, 2, 3, 4] [2, 3, 4] [4, 3, 5] [5, 6, 7] [7, 6, 8]The five stars \diamondsuit that require at least one iteration of a loop **Test Path**: [1, 2, 3, 4, 3, 4, 3, 4, 3, 5, 6, 7, 6, 7, 6, 7, 6, 8] **DU Paths covered** [4, 3, 4] [7, 6, 7] The two stars 🍄 that require at least two iterations of a loop **Test Path**: [1, 2, 3, 5, 6, 8] **Additional DU Paths covered** [1, 2, 3, 5][2, 3, 5][5, 6, 8] A fault was Other DU paths require arrays with length 0 to skip loops found But the method fails with index out of bounds exception... med = numbers [length / 2];

Exercise

```
w=x;
if (m>0){
  w++;
else{
  w=2*w;
if (y \le 10)
  x=5*y;
else{
  x = 3*y+5;
z = w+x;
```

- 1. Find DU paths
- 2. Find test cases and test paths to cover all DU paths

DU-Path Coverage Metrics

Slice-Based Testing

- Slice S(V, n)
 - The set of all statement fragments in P that contribute to the value of variables in V at node n
 - Forward Slice / Backward Slice

Analysis of Structural Test Methods

Summary

- Test Cases are inputs to test the system and the predicted outputs from these inputs
- In black-box testing, test cases are constructed from the system specification
 - Boundary value Testing, Equivalence Class Testing, Decision Table-based Testing, etc.
- In white-box testing, test cases are constructed from the control flow of program code
 - Edge coverage, Edge-Pair Coverage, etc.
- Data flow testing uses DU(definition-use) pair of variables
- Test coverages include statement coverage, decision coverage,
 C/DC, and MC/DC coverage

참고문헌

- Paul C. Jorgensen, Software Testing : A Craftman's Approach, 4th Edition, CRC Press, 2014
- Paul Ammann, Jeff Offutt, Introduction to Software Testing, 2008
- Sommerville, Software Engineering, 9th Edition, Addison-Wesley, 2010
- Wikipedia

