Análise Amortizada (Cap. 17 CLRS)

Prof. Jussara Almeida

Análise Amortizada

- Útil quando se tem uma sequência de operações sobre alguma estrutura de dados, sendo algumas "caras" e outras "baratas"
- Em uma análise de complexidade simples, a operação cara pode elevar erroneamente o custo do pior caso
- Com a análise amortizada é possível mostrar que o custo amortizado da operação é menor, quando consideradas todas as operações

Análise Amortizada

 A análise amortizada não é a análise do caso médio que, como vimos, envolve a análise de probabilidades sobre diferentes entradas

 A análise amortizada é a análise do pior caso, mas considerando que em uma sequência de operações os custos diferentes se compensam

Análise Amortizada

- Atribuir custos às operações mantendo o custo total (logo, limite superior).
- Para qualquer sequência de operações:
 - \sum custo amortizado $\geq \sum$ custo real
- Objetivo: simplificar a apresentação da soma dos custos
- Três métodos principais:
 - Análise Agregada
 - Método Contábil (accounting)
 - Método do Potencial

Análise Agregada

 Na análise agregada mostra-se que uma sequência de n operações tem o custo T(n)

 No pior caso, o custo médio (ou amortizado) de cada operação é T(n)/n

 Nessa análise o custo amortizado de todas as operações é igual, mesmo sendo o custo real diferente

Exemplo: operações sobre uma pilha

- Operações comuns, custo O(1):
 - Push(S,x): empilha o item x na pilha S
 - Pop(S): desempilha o top da pilha S
- Nova operação
 - Multipop(S,k): desempilha k itens da pilha
 - Custo: min(n,k), para n itens na pilha O(n)

```
Multipop(S,k)
while not Vazia(S) and K>0
pop(S)
k=k-1
```

Exemplo: operações sobre uma pilha

- No pior caso, qual o custo de uma sequência de n operações PUSH, POP e MULTIPOP sobre uma pilha inicialmente vazia ?
 - Cada push ou pop é O(1), logo: O(n)
 - Cada multipop é O(n), logo: n.O(n) = O(n²). Correto?
- Correto, mas esse pior caso não é firme!
- Usando a análise agregada, pode-se obter um limite mais firme, considerando que as outras operações "compensam" essa.

Exemplo: operações sobre uma pilha

- Apesar de uma operação multipop ser O(n), uma sequência qualquer de n operações push, pop e multipop em uma pilha vazia é O(n)
 - Só podemos desempilhar um item que foi empilhado.
 - Portanto para n operações, temos no máximo n itens: O(n).
- Fazendo-se a análise agregada, o custo amortizado de cada operação é O(n)/n = O(1)

```
5 4 3 2 1 0
00000
000001
000010
000011
000100
0\ 0\ 0\ 1\ 0\ 1
0 \ 0 \ 0 \ 1 \ 1 \ 0
0 \ 0 \ 0 \ 1 \ 1 \ 1
0 0 1 0 0 0
0 0 1 0 0 1
```

```
k−1 3 2 1 0
```

```
INCREMENT (A, k)

1 i \leftarrow 0

2 enquanto i < k \in A[i] = 1

3 faça A[i] \leftarrow 0

4 i \leftarrow i + 1

5 se i < k

6 então A[i] \leftarrow 1
```

Custo: número de bits invertidos = O(k)

A 5 4 3 2 1 0	Custo Total	k-1 3 2 1 0
$\frac{3+3210}{00000}$	0	
0 0 0 0 0 1	1	INCREMENT (A,k)
000010	3	$1 i \leftarrow 0$
000011	4	2 enquanto $i < k \in A[i] = 1$
000100	7	3 faça $A[i] \leftarrow 0$
000101	8	$4 \qquad \qquad i \leftarrow i + 1$
000110	10	5 se $i < k$
000111	11	6 então $A[i] \leftarrow 1$
001000	15	
001001	16	Custo do uma chamada do INCREME

Custo de uma chamada de INCREMENT: número de bits invertidos = O(k)

- n chamadas do procedimento increment
 - n.O(k) = O(n.k).
- Mas quando se analisa a sequência de operações, observa-se que o custo total é menor:
 - A[0] é invertido n vezes
 - A[1] é invertido n/2 vezes
 - A[2] é invertido n/4 vezes ...

$$\sum_{i=0}^{k-1} \left\lfloor \frac{n}{2^i} \right\rfloor < n \sum_{i=0}^{\infty} \frac{1}{2^i} = 2n = O(n)$$

Custo amortizado por operação é O(n) / n = O(1)

Método Contábil

- No método contábil atribui-se um custo fictício (amortizado) a cada operação, que pode ser maior ou menor que o custo real
 - ĉ_i: custo amortizado da operação i
 - c_i: real da operação i
- Em uma sequência de n operações a seguinte condição deve ser satisfeita: $\sum_{i=1}^{n} \hat{c}_i \geq \sum_{i=1}^{n} c_i$
- A estrutura de dados armazena o "saldo" das operações, que ajuda a "pagar" operações mais caras

Método Contábil

- Analogia:
 - Banco: para armazenar tempo
 - Cada operação: deposita ou armazena tempo

Custo amortizado = custo real + deposito - saque

 \sum custo amortizado = \sum custo real + (\sum depositos - \sum saques)

= \sum custo real + saldo do banco ≥ \sum custo real

desde que saldo do banco ≥ 0

Exemplo: pilha

	Custo Real	Custo Amortizado
Push	1	2
Pop	1	0
Multipo	p min(n,k)	0

- Cada operação push deixa um "crédito" de 1 que será usado pela operação pop ou multipop.
- Comecando com uma pilha vazia, a condição

$$\sum_{i=1}^{n} \hat{c}_i \ge \sum_{i=1}^{n} c_i \quad \text{é satisfeita}$$

Exemplo: pilha

- Para qualquer sequência de n operações Push,
 Pop e Multipop o custo amortizado total é
 2n = O(n)
 - Assumindo pop/multipop após push

 Como o custo amortizado é um limite superior do custo real, considerando-se n operações, temos que o custo real das operações também é O(n)

		k-1 3 2 1 0
A	Custo	
5 4 3 2 1 0	Total	
00000	0	INCREMENT (A,k)
	_	$1 i \leftarrow O$
000001	1	2 enquanto $i < k$ e $A[i] = 1$
000010	3	
	4	3 faça $A[i] \leftarrow 0$
0 0 0 0 1 1	4	$i \leftarrow i + 1$
000100	7	5 se $i < k$
000101	8	6 então $A[i] \leftarrow 1$
000110	10	
000111	11	Custo real: Custo amortizado
0 0 1 0 0 0	15	0->1 1 2
	13	1 > 0 1
001001	16	1-> 0 1 0

Quanto é o custo de n operações?

Método Potencial

- Define-se uma função que representa a "Energia Potencial" acumulada na estrutura
 - Paralelo com método contábil (crédito associado a elemento na estrutura)
- Seja c_i uma operação e D_i o estado da estrutura após a aplicação de c_i em D_{i-1}
- A função ϕ representa o potencial, que pode ser liberado para operações futuras
- Definimos o custo amortizado de uma operação como o custo real acrescido da mudança de potencial $\hat{c}_i = c_i + \Phi(D_i) \Phi(D_{i-1})$

Método Potencial

Para uma sequência de n operações:

$$\sum_{i=1}^{n} \hat{c}_{i} = \sum_{i=1}^{n} (c_{i} + \Phi(D_{i}) - \Phi(D_{i-1}))$$

$$= \sum_{i=1}^{n} c_{i} + \Phi(D_{n}) - \Phi(D_{0}).$$

• Definindo um potencial Φ tal que $\Phi(D_n) \ge \Phi$ (D_o) , temos que o custo amortizado vai ser um limite superior para o custo real

Exemplo: Pilha

- Vamos definir uma função potencial tal que ϕ seja o número de itens na pilha. Logo
 - $-\Phi(D_0)=0$
 - $-\Phi(D_i) \ge 0$, para todo *i* pois o número de elementos da pilha nunca é negativo
- Portanto o custo amortizado é um limite superior para o custo real

Exemplo: Pilha

Analisando o custo amortizado de cada operação:

• <u>Push</u>: a diferença de potencial causada pela operação em uma pilha com s elementos é ϕ $(D_i) - \phi(D_{i-1}) = (s+1) - s = 1$

O custo da operação é portanto:

$$\hat{C}_i = C_i + \Phi(D_i) - \Phi(D_{i-1}) = 1 + 1 = 2$$

• Pop: fazendo um raciocínio similar

$$\Phi(D_i) - \Phi(D_{i-1}) = (s-1) - s = -1$$

 $\hat{C}_i = C_i + \Phi(D_i) - \Phi(D_{i-1}) = 1 - 1 = 0$

Exemplo: Pilha

 Multipop: a operação multipop em uma pilha com s items remove k' = min(s,k) items da pilha. Logo a diferença de potencial é

$$\Phi(D_i) - \Phi(D_{i-1}) = -k'$$

O custo da operação é portanto:

$$\hat{C}_i = C_i + \Phi(D_i) - \Phi(D_{i-1}) = k' - k' = 0$$

 Logo, o custo amortizado das 3 operações é O(1)

Exemplo Pilha

- Em uma sequência de n operações quaisquer sobre a pilha, temos que o custo total amortizado é n.O(1) = O(n)
- Como o custo amortizado é um limite superior para o custo real, temos que o custo real também é O(n).