Combining different parts and outputing combined.csv

```
from google.colab import drive
import os
import pandas as pd
import numpy as np
# Mount the drive
drive.mount('/content/drive')
# Get the current working directory
cwd = os.path.abspath('/content/drive/MyDrive/CS 470 data')
# List all the files from the directory, filtering out directories
file_list = [f for f in os.listdir(cwd) if os.path.isfile(os.path.join(cwd, f))]
\ensuremath{\mathtt{\#}} Concatenate the DataFrames from each file, ignoring directories
df_concat = pd.concat([pd.read_csv(os.path.join(cwd, f)) for f in file_list], ignore_index=True)
# Remove columns named 'Unnamed: 0.1' and 'Unnamed: 0' first
df_concat = df_concat.drop(columns=['Unnamed: 0.1', 'Unnamed: 0'])
# Replace empty strings with NaN to uniformly represent missing values
df_concat.replace('', np.nan, inplace=True)
df_concat = df_concat.dropna(subset=df_concat.columns[1:], how='all')
df_concat.reset_index(drop=True, inplace=True)
df_concat.to_csv('/content/drive/MyDrive/CS 470 data/combined.csv', index=False)
df_concat
     Drive already mounted at /content/drive; to attempt to forcibly remount, call drive.mour
     <ipython-input-2-7ec03f1359a4>:16: DtypeWarning: Columns (12) have mixed types. Specify
       df_concat = pd.concat([pd.read_csv(os.path.join(cwd, f)) for f in file_list], ignore_i
     <ipython-input-2-7ec03f1359a4>:16: DtypeWarning: Columns (5,6) have mixed types. Specify
       df_concat = pd.concat([pd.read_csv(os.path.join(cwd, f)) for f in file_list], ignore_i
     <ipython-input-2-7ec03f1359a4>:16: DtypeWarning: Columns (4,5,10) have mixed types. Spec
       df_concat = pd.concat([pd.read_csv(os.path.join(cwd, f)) for f in file_list], ignore_i
                Major_School Description Date_Added Status_Date GRE_Stats GPA Degree C
```

0	Education Policy, University Of Wisconsin- Madison	NaN	January 29, 2024	Rejected on 29 Jan	NaN	NaN	Masters
1	Computer Science, University Of Illinois	CV area. Did my undergrad at same school, One	January 29, 2024	Accepted on 29 Jan	NaN	GPA 4.00	PhD
2	Astronomy, Indiana University Bloomington	NaN	January 29, 2024	Rejected on 28 Jan	NaN	NaN	PhD
3	Physics, Penn State University	Accepted for high energy theory with a focus o	January 29, 2024	Accepted on 29 Jan	NaN	GPA 3.00	PhD
4	Integrated Program In Biochemistry (IPiB), Uni	NaN	January 29, 2024	Accepted on 29 Jan	NaN	NaN	PhD
2040845	Advertising, University of Texas, Austin (UT A	NaN	February 11, 2006	Accepted on 2 Feb	NaN	NaN	NaN

GPA and GRE score Only for US applicants (GPA difficult to normalize and convert between different countries)

```
# Filtering out 'international' from 'Citizenship' column, ensuring proper handling of NaN values
df_USONLY = df_concat[(~df_concat['Citizenship'].str.contains("international", case=False, na=False)) & df_concat['Citizenship'].notna()]
df_USONLY
# Make data frame with Major/School, GPA, GRE, and Application Cycle, clean unnecessary data
df_gpaandgre = df_USONLY[['Major_School', 'GPA', 'GRE_Stats', 'Attribute_1', 'Status_Date']].rename(columns={'Attribute_1': 'Application Cyclo
df_gpaandgre = df_gpaandgre.dropna()
df_gpaandgre['GPA'] = df_gpaandgre['GPA'].str.replace('GPA ', '').astype(float)
df_gpaandgre = df_gpaandgre[df_gpaandgre['Application Cycle'] != 'Other']
# Simplify values to either Accept, Wailist, or Reject, remove other values
def simplify_status(status):
    if "accept" in status.lower():
       return "Accept"
    elif "wait listed" in status.lower():
        return "Waitlist"
    elif "interview" in status.lower():
        return None
    else:
        return "Reject"
df_gpaandgre['Status'] = df_gpaandgre['Status_Date'].apply(simplify_status)
df_gpaandgre = df_gpaandgre.dropna(subset=['Status'])
# Reset the index
df_gpaandgre.reset_index(drop=True, inplace=True)
# Export to File
df_gpaandgre.to_csv('/content/drive/MyDrive/CS 470 data/gpaandgre.csv', index=False)
→ <ipython-input-22-78538c01cd12>:21: SettingWithCopyWarning:
     A value is trying to be set on a copy of a slice from a DataFrame.
     Try using .loc[row_indexer,col_indexer] = value instead
     See the caveats in the documentation: \underline{\text{https://pandas.pydata.org/pandas-docs/stable/user\_guide/indexing.html\#returning-a-view-versus-a-cc}}
       df_gpaandgre['Status'] = df_gpaandgre['Status_Date'].apply(simplify_status)
```

df_gpaandgre

	Major_School	GPA	GRE_Stats	Application Cycle	Status_Date	Status
0	Human Ecology PhD - Design Studies, University	2.18	GRE 157; GRE V 155; GRE AW 4.00	Fall 2024	Accepted on 24 Jan	Accept
1	Political Science, Brown University	3.80	GRE 155; GRE V 168	Fall 2024	Rejected on 29 Jan	Reject
2	Political Science, Brown University	4.00	GRE 158; GRE V 165; GRE AW 4.50	Fall 2024	Rejected on 29 Jan	Reject
3	Sociology, Emory University	3.46	GRE 161; GRE V 163; GRE AW 3.00	Fall 2024	Rejected on 29 Jan	Reject
4	Sociology, Indiana University Bloomington	3.46	GRE 163; GRE V 161; GRE AW 3.00	Fall 2024	Rejected on 26 Jan	Reject
186363	Communication Sciences And Disorders, Emerson	3.80	GRE 570; GRE V 710; GRE AW 4.00	MBA	Accepted on 2 Mar	Accept
186364	Creative Writing - Poetry, University Of Montana	3.60	GRE 670; GRE V 640; GRE AW 4.00	MFA	Accepted on 26 Feb	Accept
186365	Acting, CalArts	3.79	GRE 390; GRE V 650; GRE AW	MFA	Accepted on 16	Accept

Most popular Major_School

```
major_school_counts = df_gpaandgre['Major_School'].value_counts().reset_index(name='Count')
major_school_counts.rename(columns={'index': 'Major_School'}, inplace=True)
major_school_counts.head()
```

	Major_School	Count
0	Speech Language Pathology, University Of South	910
1	Economics, University Of Michigan (Ann Arbor)	884
2	Economics, Stanford University	858
3	Economics, Yale University	754
4	Economics, University Of Chicago	624

Curious about Chemistry

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-cc chemistry_programs['University'] = chemistry_programs['Major_School'].apply(lambda x: x.split(',')[1] if ',' in x else x)

	Major_School	GPA	GRE_Stats	Application Cycle	Status_Date	Status	University
0	Chemistry, Harvard University	4.00	GRE 162; GRE V 161; GRE AW 4.50	Fall 2024	Accepted on 23 Jan	Accept	Harvard University
1	Chemistry, University Of California, Berkeley	4.00	GRE 162; GRE V 161; GRE AW 4.50	Fall 2024	Accepted on 16 Jan	Accept	University Of California
2	Chemistry, University Of Chicago	4.00	GRE 161; GRE V 162; GRE AW 4.50	Fall 2024	Accepted on 5 Jan	Accept	University Of Chicago
3	Chemistry, Brown University	3.92	GRE 164; GRE V 165; GRE AW 4.50	Fall 2023	Rejected on 3 Feb	Reject	Brown University
4	Chemistry, Northwestern University	3.92	GRE 164; GRE V 165; GRE AW 4.50	Fall 2023	Rejected on 2 Feb	Reject	Northwestern University
3999	Chemistry, Texas A	3.93	GRE 162; GRE V 157; GRE AW 4.00	Fall 2021	Accepted on 11 Dec	Accept	Texas A
4000	Chemistry And Biochemistry, George	3 90	GRF AW 5 50	Fall 2021	Accepted on 6	Accept	George Mason University

duplicate_chemistry_programs_count = duplicate_chemistry_programs['University'].value_counts().reset_index(name='Count')
duplicate_chemistry_programs_count.head()

	index	Count
0	University Of California	416
1	Yale University	260
2	Stanford University	234
3	University Of Chicago	208
4	Northwestern University	156

GPA and GRE rates for Yale University (this part is bugged, pls fix later)

```
import matplotlib.pyplot as plt
import numpy as np
```

```
# Filter the dataset for Yale University applicants only, regardless of application cycle
yale_university_applicants = duplicate_chemistry_programs[duplicate_chemistry_programs['University'].str.contains("Yale")]
# Display the DataFrame for Yale University applicants
yale_university_applicants.reset_index(drop=True, inplace=True)
yale_university_applicants.to_csv('/content/drive/MyDrive/CS 470 data/yale_university_applicants.csv', index=False)
import matplotlib.pyplot as plt
yale_university_applicants['GRE_Stats'] = yale_university_applicants['GRE_Stats'].astype(str)
yale_university_applicants['GRE_Stats'] = yale_university_applicants['GRE_Stats'].str.extract(r'GRE (\d+)').astype(float)
yale_university_applicants
# fall_2021_applicants = yale_university_applicants[yale_university_applicants['Application Cycle'] == 'Fall 2021']
# fall_2021_applicants
selected columns = yale university applicants[['GPA', 'GRE Stats', 'Application Cycle', 'Status']]
selected_columns.reset_index(drop=True, inplace=True)
selected_columns
gpa = selected_columns['GPA'].values
statuses = selected_columns['Status'].values
gre_quantitative = selected_columns['GRE_Stats'].values
accepted_indices = np.where(selected_columns['Status'] == 'Accept')
rejected_indices = np.where(selected_columns['Status'] == 'Reject')
gpa_accepted = gpa[accepted_indices]
gre_quantitative_accepted = gre_quantitative[accepted_indices]
gpa_rejected = gpa[rejected_indices]
gre_quantitative_rejected = gre_quantitative[rejected_indices]
# Introduce jitter to the data for better visualization
jitter = 0.02 # Adjust this value as needed for the desired amount of jitter
gpa_accepted jittered = gpa_accepted + np.random.normal(0, jitter, size=len(gpa_accepted))
gre_accepted_jittered = gre_quantitative_accepted + np.random.normal(0, jitter, size=len(gre_quantitative_accepted))
gpa_rejected_jittered = gpa_rejected + np.random.normal(0, jitter, size=len(gpa_rejected))
gre_rejected_jittered = gre_quantitative_rejected + np.random.normal(0, jitter, size=len(gre_quantitative_rejected))
# Prepare the plot
plt.figure(figsize=(14, 9))
# Plot accepted applicants with green points and jitter
plt.scatter(gpa_accepted_jittered, gre_accepted_jittered, color='green', label='Accepted', alpha=0.6)
# Plot rejected applicants with red points and jitter
plt.scatter(gpa_rejected_jittered, gre_rejected_jittered, color='red', label='Rejected', alpha=0.6)
# Adding plot title and labels
plt.title('Accepted and Rejected Applicants at Yale University: GPA vs. GRE Quantitative Scores with Jitter')
plt.xlabel('GPA')
plt.ylabel('GRE Quantitative Scores')
plt.legend(title='Application Status')
plt.grid(True)
# Display the plot
plt.show()
```

<ipython-input-139-be4906f1526e>:10: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead

See the caveats in the documentation: <a href="https://pandas.pydata.org/pandas-docs/stable/user-yale_university_applicants['GRE_Stats'] = yale_university_applicants['GRE_Stats'].asty<ipython-input-139-be4906f1526e>:11: SettingWithCopyWarning:

A value is trying to be set on a copy of a slice from a DataFrame.

Try using .loc[row_indexer,col_indexer] = value instead

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user yale_university_applicants['GRE_Stats'].str.

