MAZUR'S DEFORMATION RINGS

PAULINA FUST

1

Contents

References 4

This talk is about deformation theory à la Mazur.

Fix a prime p and k a finite field of characteristic p, and let $\mathcal{O} = W(k)$ denote its ring of Witt vectors.

Definition 0.0.1. We let $\widehat{\mathcal{C}}_{\mathcal{O}}$ denote the category whose objects are pairs consisting of a complete local Noetherian ring R and a fixed isomorphism $R/\mathfrak{m}_R \xrightarrow{\sim} k$, and whose morphisms are local homomorphisms which respect the isomorphism to k. We let $\mathcal{C}_{\mathcal{O}}$ denote the full subcategory of $\widehat{\mathcal{C}}_{\mathcal{O}}$ of Artinian rings.

Definition 0.0.2. A functor $F: \mathcal{C}_{\mathcal{O}} \to \mathsf{Set}$ is called *pro-representable* if there exists $A \in \widehat{\mathcal{C}_{\mathcal{O}}}$ such that $F \cong \mathrm{Hom}_{\widehat{\mathcal{C}_{\mathcal{O}}}}(A,-)$.

Remark 0.0.3.

• If a functor $F:\widehat{\mathcal{C}}_{\mathcal{O}} \to \mathsf{Set}$ is representable by $A \in \mathcal{C}_{\mathcal{O}}$ then $A = \varprojlim_n A/\mathfrak{m}_A^n$, so F is uniquely determined by $F|_{\mathcal{C}_{\mathcal{O}}}$ because if $B \in \widehat{\mathcal{C}}_{\mathcal{O}}$ then

$$F(B) = \operatorname{Hom}_{\widehat{\mathcal{C}}_{\mathcal{O}}}(A,B) = \operatorname{Hom}_{\widehat{\mathcal{C}}_{\mathcal{O}}}(A,\varprojlim_n B/\mathfrak{m}_B^n) = \varprojlim_n \operatorname{Hom}_{\widehat{\mathcal{C}}_{\mathcal{O}}}(A,B/\mathfrak{m}_B^n)$$

and $B/\mathfrak{m}_n^B\in\mathcal{C}_\mathcal{O}$. This is why in practice it is convenient to consider functors on $\mathcal{C}_\mathcal{O}$ only.

• $\mathcal{C}_{\mathcal{O}}$ is closed under fiber products.

Example 0.0.4. The ring of dual numbers $k[\epsilon] = k[x]/x^2$ is in $\mathcal{C}_{\mathcal{O}}$, and plays an important role in the theory. We note now that

$$k[\epsilon] \times_k k[\epsilon] = \{ (\lambda_0 + \lambda_1 \epsilon, \mu_0 + \mu_1 \epsilon) \in k[\epsilon] \times k[\epsilon] \mid \lambda_0 = \mu_0 \}$$
$$= k[x, y] / (x^2, y^2, xy)$$

Definition 0.0.5. The *Zariski tangent space* of F is $F(k[\epsilon])$.

Given a diagram $A \to C \leftarrow B$ in $\mathcal{C}_{\mathcal{O}}$, then we get a map of sets $h_{A,B,C} : F(A \times_C B) \to F(A) \times_{F(C)} F(B)$.

We want conditions for a functor $F: \mathcal{C}_{\mathcal{O}} \to \mathsf{Set}$ to be pro-representable.

Theorem 0.0.6 (Grothendieck). Suppose $F(k) = \{ \bullet \}$. Then F is pro-representable if and only if for all $A \to C \leftarrow B$ in $\mathcal{C}_{\mathcal{O}}$, the map $h_{A,B,C}$ is bijective and $F(k[\epsilon])$ is a finite dimensional k-vector space.

¹notes taken by Ashwin Iyengar

2 PAULINA FUST

Ok, we haven't yet said why $F(k[\epsilon])$ is a k-vector space, but there is a completely natural structure that one can define when $h_{k[\epsilon],k[\epsilon],k}$ is bijective.

Grothendieck's condition turns out to be difficult to check in practice, but it can be significantly weakened as follows.

Definition 0.0.7. If $\alpha: A \to B$ in $\mathcal{C}_{\mathcal{O}}$ is a morphism, it is *small* if it is surjective such that the kernel is principal and killed by \mathfrak{m}_A .

Theorem 0.0.8 (Schlessinger). If $F(k) = \{\bullet\}$, then F is pro-representable if and only if the following conditions hold (letting $A \xrightarrow{\alpha} C \xleftarrow{\beta} B$ denote an arbitrary diagram in $\mathcal{C}_{\mathcal{O}}$ in each condition below)

- (1) If $\alpha: A \to C$ is a small surjection, then $h_{A,B,C}$ is surjective.
- (2) If $\alpha: k[\epsilon] \to k$ is the map killing ϵ , then $h_{k[\epsilon],B,k}$ is bijective.
- (3) $\dim_k F(k[\epsilon]) < \infty$ (by condition (2) there is a vector space structure, as above)
- (4) If $\alpha = \beta$ are both small then $h_{A,B,C}$ is bijective.

Definition 0.0.9. A profinite group G satisfies the "p-finiteness condition" if

$$\dim_{\mathbb{F}_p} \operatorname{Hom}^{\operatorname{cts}}(H, \mathbb{F}_p) < \infty$$

for any open subgroup $H \leq G$.

Example 0.0.10. If K/\mathbb{Q}_{ℓ} is a finite extension, then $G=G_K=\operatorname{Gal}(K/\mathbb{Q}_p)$ is p-finite. If F/\mathbb{Q} is a finite extension and S is a finite set of primes, then $G=G_{F,S}=\operatorname{Gal}(F_S/F)$ does as well. Here F_S is the maximal algebraic extension of F unramified at primes outside S.

Definition 0.0.11.

- (1) A representation if G of dimension n is a continuous group homomorphism $\rho: G \to \mathrm{GL}_n(A)$ for $A \in \widehat{\mathcal{C}_{\mathcal{O}}}$.
- (2) If $\rho_0: G \to \operatorname{GL}_n(A_0)$ and $\varphi: A \to A_0$ is a map in $\mathcal{C}_{\mathcal{O}}$ then we say that a *lifting* of ρ_0 to A is a representation $\rho: G \to \operatorname{GL}_n(A)$ such that $\operatorname{GL}_n(\varphi) \circ \rho = \rho_0$.
- (3) Two liftings of ρ_0 to A are called *strictly equivalent* if they are conjugate by an element in the kernel of $\mathrm{GL}_n(\varphi)$.
- (4) A deformation of ρ_0 to A is a strict equivalence class of liftings.

We can now define deformation functors of representations of profinite groups.

Definition 0.0.12. Fix a representation $\overline{\rho}: G \to \mathrm{GL}_n(k)$. Then we let

$$D_{\overline{\rho}}^{\square}: \mathcal{C}_{\mathcal{O}} \to \mathsf{Set}$$

$$A \mapsto \{\mathsf{liftings of } \overline{\rho} \mathsf{ to } A\}$$

and

$$D_{\overline{\rho}}: \mathcal{C}_{\mathcal{O}} \to \mathsf{Set}$$

$$A \mapsto \{\mathsf{deformations} \ \mathsf{of} \ \overline{\rho} \ \mathsf{to} \ A\}$$

Fact 0.0.13. $D_{\overline{\rho}}^{\square}$ is pro-representable by its universal lifting ring $R_{\overline{\rho}}^{\square} \in \widehat{\mathcal{C}_{\mathcal{O}}}$, which comes with a universal lifting $\rho^{\square}: G \to \operatorname{GL}_n(R_{\overline{\rho}}^{\square})$. If $\operatorname{End}_G(\overline{\rho}) = k$, then $D_{\overline{\rho}}$ is also pro-representable by its universal deformation ring $R_{\overline{\rho}}$ which comes with a universal deformation $\rho^{\operatorname{univ}}: G \to \operatorname{GL}_n(R_{\overline{\rho}})$.

Example 0.0.14. • If n=1, so that $\overline{\rho}:G\to k^\times$ is a character, then $D^\square_{\overline{\rho}}=D_{\overline{\rho}}$ is represented by $\mathcal{O}\left[\!\!\left[G^{\mathrm{ab},p}\right]\!\!\right]$, where ab denotes the abelianization and p the pro-p-completion.

For instance if F/\mathbb{Q}_p is a finite extension, then $R_{\overline{\rho}} = \mathcal{O}[\mu_{p^{\infty}}(F)] [X_1, \dots, X_{[F:\mathbb{Q}]}]$.

• If instead F_m is the free pro-p group on m generators and $\overline{\rho}=1\oplus\cdots\oplus 1$ (n times), then

$$R^{\square}_{\overline{\rho}} = \mathcal{O}\left[\!\!\left\lceil X_{i,j}^{(k)} \mid 1 \leq k \leq m, 1 \leq i, j \leq n \right]\!\!\right]$$

and ρ^{\square} takes γ_k to $1 + (X_{ij}^{(k)})$.

ullet Here is a non-example. If $G=F_1$ as above and $\overline{
ho}=1\oplus 1$, then let

$$D_{\mathrm{ord}}(A) := \{ \text{liftings of } \overline{\rho} \text{ fixing a flag} \}$$

This is not pro-representable because the first condition in Theorem 0.0.8 is not satisfied because

$$D_{\mathrm{ord}}^{\square}(k[\epsilon] \times_k k[\epsilon]) \to D_{\mathrm{ord}}^{\square}(k[\epsilon]) \times D_{\mathrm{ord}}^{\square}(k[\epsilon])$$

is not surjective. For instance two liftings are given by $\gamma\mapsto\begin{pmatrix}1&\psi(g)\epsilon\\0&1\end{pmatrix}$ and $\gamma\mapsto\begin{pmatrix}1&0\\\psi(g)\epsilon&1\end{pmatrix}$ but one can check that they don't lift to something ordinary.

From now on assume $\operatorname{End}_G(\overline{\rho})=k$ so that $R_{\overline{\rho}}$ exists. Define $\operatorname{ad}\overline{\rho}=\operatorname{End}_k(\overline{\rho})$ with G acting via ρ composed with conjugation.

Lemma 0.0.15. $\operatorname{Hom}_k(\mathfrak{m}_{R_{\overline{\rho}}}/(\mathfrak{m}_{R_{\overline{\rho}}}^2,p),k) = \operatorname{Hom}_{\widehat{\mathcal{C}_{\mathcal{O}}}}(R_{\overline{\rho}},k[\epsilon]) = D_{\overline{\rho}}(k[\epsilon]) \xrightarrow{\sim} H^1_{\operatorname{cts}}(G,\operatorname{ad}\overline{\rho}).$

Proof. A lifting $\rho:G\to \mathrm{GL}_n(k[\epsilon])\in D^\square_{\overline{\rho}}(k[\epsilon])$ must be of the form $(1+\epsilon c(g))\overline{\rho}(g)$ where $c:G\to \mathrm{ad}\,\overline{\rho}$ and then one shows that the fact that ρ is a continuous group homomorphisms translates into the fact that $c\in Z^1(G,\mathrm{ad}\,\overline{\rho})$. So then $D^\square_{\overline{\rho}}(k[\epsilon])\stackrel{\sim}{\to} Z^1(G,\mathrm{ad}\,\overline{\rho})$ and in fact taking strict equivalence classes corresponds to killing coboundaries. \square

Now take $\rho_0: G \to \operatorname{GL}_n(A_0) \in D_{\overline{\rho}}(A_0)$. Take $\varphi: A \twoheadrightarrow A_0$ in $\mathcal{C}_{\mathcal{O}}$ and take $I = \ker \varphi$ such that $\mathfrak{m}_A I = 0$. Then we want a class $\mathcal{O}(\rho_0) \in H^2(G, \operatorname{ad} \overline{\rho}) \otimes I$ which vanishes if and only if ρ_0 lifts along φ . For this take a set theoretic lifting $\gamma: G \to \operatorname{GL}_n(A_1)$ of ρ_0 and define

$$(g_1, g_2) \mapsto \gamma(g_1g_2)\gamma(g_2)^{-1}\gamma(g_1)^{-1}$$
.

One can show (this is very annoying to show) that this is a 2-cocycle, and that $[c] \in H^2$ does not depend on γ .

Now take $h^i := \dim_k H^i(G, \operatorname{ad} \overline{\rho})$. Then

Proposition 0.0.16. There is a (non-canonical) isomorphism

$$R_{\overline{\rho}} \cong \mathcal{O} \left[x_1, \dots, x_{h^1} \right] / (f_1, \dots, f_{h^2})$$

and in particular $\dim R_{\overline{\rho}} \geq 1 + h^1 - h^2$.

Proof. We can find a surjection $\pi: S = \mathcal{O}[X_1, \dots, X_{h^1}] \to R_{\overline{\rho}}$ which is an isomorphism on tangent spaces (basically by lifting a basis of the tangent space), and we take $J = \ker \pi$. But there is an exact sequence

$$0 \to J/\mathfrak{m}_S J \to S/\mathfrak{m}_S J \to R_{\overline{\rho}} \to 0$$

so we want to bound the number of generators $J/\mathfrak{m}_S J$. But one can show that the map $\operatorname{Hom}_k(J/\mathfrak{m}_S J,k) \to H^2(G,\operatorname{ad}\overline{\rho})$ taking

$$f \mapsto (1 \otimes f)(\mathcal{O}(\overline{\rho}^{\mathrm{univ}}))$$

is injective, and then we're done.

4 PAULINA FUST

Remark 0.0.17. By this presentation, if we know that $H^2(G, \operatorname{ad} \overline{\rho}) = 0$ then $R_{\overline{\rho}}$ is formally smooth over $\mathcal O$ of dimension h^1 , and if $\dim R_{\overline{\rho}} = 1 + h^1 - h^2$ then $R_{\overline{\rho}}$ is a complete intersection.

Example 0.0.18. If F/\mathbb{Q}_p is finite, and $G=G_F$, then local Tate duality says that

$$H^2(G,\operatorname{ad}\overline{\rho})\cong H^0(G,\operatorname{ad}\overline{\rho}^*(1))\cong \operatorname{Hom}_G(1,\operatorname{ad}\overline{\rho}^*(1))=\operatorname{Hom}_G(\overline{\rho},\overline{\rho}(1)).$$

Therefore, if $\operatorname{Hom}_G(\overline{\rho},\overline{\rho}(1))=0$ then $R_{\overline{\rho}}$ is formally smooth over $\mathcal O$ of relative dimension h^1 . But in fact we can compute the relative dimension using the Euler characteristic: $h^0-h^1+h^2=-[F:\mathbb Q_p]\dim_k\operatorname{ad}\overline{\rho}$. In particular $R_{\overline{\rho}}$ is formally smooth over $\mathcal O$ of relative dimension $h^1=[F:\mathbb Q_p]n^2+\dim(\operatorname{ad}\overline{\rho})^G=[F:\mathbb Q_p]n^2+1$.

References