

UNCLASSIFIED

AD NUMBER

AD020295

NEW LIMITATION CHANGE

TO

**Approved for public release, distribution
unlimited**

FROM

**Distribution authorized to U.S. Gov't.
agencies and their contractors; Foreign
Government Information; JUL 1953. Other
requests shall be referred to British
Embassy, 3100 Massachusetts Avenue, NW,
Washington, DC 20008.**

AUTHORITY

DSTL, AB 15/1357, 13 Aug 2008

THIS PAGE IS UNCLASSIFIED

Armed Services Technical Information Agency

AD

20295

NOTICE: WHEN GOVERNMENT OR OTHER DRAWINGS, SPECIFICATIONS OR OTHER DATA ARE USED FOR ANY PURPOSE OTHER THAN IN CONNECTION WITH A DEFINITELY RELATED GOVERNMENT PROCUREMENT OPERATION, THE U. S. GOVERNMENT THEREBY INCURS NO RESPONSIBILITY, NOR ANY OBLIGATION WHATSOEVER; AND THE FACT THAT THE GOVERNMENT MAY HAVE FORMULATED, FURNISHED, OR IN ANY WAY SUPPLIED THE SAID DRAWINGS, SPECIFICATIONS, OR OTHER DATA IS NOT TO BE REGARDED BY IMPLICATION OR OTHERWISE AS IN ANY MANNER LICENSING THE HOLDER OR ANY OTHER PERSON OR CORPORATION, OR CONVEYING ANY RIGHTS OR PERMISSION TO MANUFACTURE, USE OR SELL ANY PATENTED INVENTION THAT MAY IN ANY WAY BE RELATED THERETO.

Reproduced by
DOCUMENT SERVICE CENTER
KNOTT BUILDING, DAYTON, 2, OHIO

UNCLASSIFIED

AD No. 20295
ASTIA FILE COPY

A.E.R.E. T/R 500

UNCLASSIFIED

**ATOMIC ENERGY
RESEARCH ESTABLISHMENT**

**THE REPRESENTATION OF AN
EMPIRICAL FUNCTION BY MEANS
OF A POLYNOMIAL**

AN A.E.R.E. REPORT

by

D.J. BEHRENS

**MINISTRY OF SUPPLY,
HARWELL, BERKS.
1950**

UNCLASSIFIED
Price four shillings Net.

Cleared for sale

THE REPRESENTATION OF AN EMPIRICAL FUNCTION
BY MEANS OF A POLYNOMIAL.

by

D. J. Behrens

Abstract

If the values of a function are given at n equally-spaced intervals of the argument, a polynomial of order $n-1$ can be found which corresponds exactly to the given values. In general a polynomial of order $r (< n-1)$ cannot be made to do this, and $\sum_r (f_r^2)$, the minimized sum of the squares of the deviations, will exceed 0.

It is shown in this paper how $\delta_r(f)$, and the leading coefficient of the polynomial in question, can be evaluated without having to solve any simultaneous equations.

Contents

1. Introduction 2. Determination of $\delta_r(f)$ 3. Probable error in M_r	Page 1. 2. 2.
--	------------------------

Examples: I. Function values lying close to a polynomial of low order.

II. Functional values not lying close to a polynomial of low order.

III. Order of polynomial consistent with given probable error of functional values. 7.

$$1 \quad \text{The} \quad \sum_{j=0}^{n-r} \binom{n-j}{r+j-1} = \binom{n+r}{r}$$

$$\text{PROOF.} \quad \text{I.} \quad \text{That } \sum_{j=1}^r \binom{r}{j} \binom{r}{r-j} = (2r+1)$$

$$2. \text{ That } m_r = \sum_{j=1}^r \binom{n-j}{r} \binom{r+j-1}{r} \Delta_j^r / \binom{n+r}{2r+1} = 10.$$

$$2. \text{ That } m_r = \sum_{j=1}^{n-r} \binom{n-j}{r} \binom{r+j-1}{r} \Delta_j^r / \binom{n+r}{2r+1} 10.$$

3. That $(\delta_{r-1}(f) - \delta_r(f))/m_r^2$ is a function of n and r . 12.

4. That the above function is $\binom{n+r}{2r+1} / \binom{2r}{r}$ 13.

$$5. \text{ That } \sum_j \left\{ \sum_m (-1)^m \binom{r}{m} \binom{m+j-1}{r} \binom{n-j-m+r}{r} \right\}^2 = \binom{2r}{r} \binom{n+r}{2r+1} \quad 14.$$

November 1950, with minor revisions July 1953.

Crown copyright reserved.

H.D. 420

		page
<u>Tables:</u>	I. Values of $\binom{n-j}{r} \binom{r+j+1}{r}$ for n=3	16
	n = 20 inclusive, r ranging from 0 to n-1 or 0 to 10, whichever is less, and j from 1 to n-r.	
IA and II.	Sum of the weighting factors $\binom{n+r}{2r+1}$ for the same range of n and r.	16-23
III.	The function $\binom{2r}{r}$ for r from 0 to 10.	23

1. Introduction

It frequently happens in experimental work, that we can measure the value of some function f at several values of the argument x , and we wish to find a polynomial $p(x)$ which is a sufficiently accurate measure of the given functional values.

We shall confine our attention to the case in which (1) equal errors are considered to be equally probable in each of the given functional values, so that the method of least squares may be used without weighting factors to give the "best" polynomial, and in which (2) the values of the function are given for equally spaced values of the argument x . We shall assume them to be given at $x = 1, 2, \dots, n$, and the corresponding functional values will be denoted by f_1, f_2, \dots, f_n .

The two reservations made in the previous paragraph can usually be ensured by suitable experimental technique. We make them, because on their validity depends the simple method developed below.

It is clear that, if n functional values are given, we can construct a polynomial $p_{n-1}(x)$ of order $n-1$ which will pass exactly through each point. In general, a polynomial of order r , less than $n-1$, will not pass exactly through all the points. We can however define an r^{th} order polynomial $p_r(x)$ by adjusting its coefficients so as to minimize the sum of the squares

$$\sum_{j=1}^n \{p_r(j) - f_j\}^2.$$

This minimized sum will be denoted by $\delta_r(f)$.

If now we examine the form of $\delta_r(f)$ as r is increased from -1^* to $n-1$, we find that, if the functional values f_1, f_2, \dots, f_n really do lie close to a polynomial of comparatively low order, the general form of $\delta_r(f)$ is as sketched in Fig. 1.

In the region shown as (a), we have too few parameters to represent adequately even the general outline of the curve, while in (c) we have so many that phoney "accuracy" is obtained by fitting a curve even through the random errors of observation. The region (b) is that in which we have enough parameters to represent the general form of the curve, but not so many as to purport spurious accuracy. The value of r in which we are interested lies at the lower end of this region, and is indicated by the dotted line in Fig. 1.

We shall show how to find this value of r without the tedious and heavy arithmetical work involved in actually calculating $p(x)$ for each r .

Figure 1.

* $y = \text{constant}$ is a polynomial of order zero: it is convenient to define $y = 0$, which has one fewer degrees of freedom, as a polynomial of order -1 .

2. Determination of $\delta_r(f)$.

Let Δ_j denote $f_{j+1} - f_j$, $\Delta_j^2 = \Delta_{j+1} - \Delta_j$, and in general $\Delta_j^r = \Delta_{j+1}^{r-1} - \Delta_j^{r-1}$. This is the usual finite-difference notation for forward differences.

Let m_r denote the mean of the r^{th} order differences Δ^r , weighted in accordance with the formula

$$m_r = \sum_{j=1}^{n-r} \binom{n-j}{r} \binom{r+j-1}{r} \Delta_j^r / \binom{n+r}{2r+1}$$

where the terms in round brackets () denote binomial coefficients. [It will be proved in appendix (proof 1) that $\sum_{j=1}^{n-r} \binom{n-j}{r} \binom{r+j-1}{r}$ is in fact equal to $\binom{n+r}{2r+1}$, so that m_r defined as above is in fact a weighted mean of the Δ_j^r 's.]

m_0 is defined in the same way, remembering that $\Delta_j^0 = f_j$, and in fact m_0 can be seen to be the arithmetic mean of the f 's. In general, m_r is the r^{th} difference of $p_r(x)$, the r^{th} -order polynomial giving the closest fit to the given f 's (See Appendix, Proof 2).

Then $\delta_r(f)$ and $\delta_{r-1}(f)$ are connected by the relation:

$$\delta_{r-1}(f) - \delta_r(f) = \binom{n+r}{2r+1} m_r^2 / \binom{2r}{r} \quad \text{See Appendix, proofs 3 and 4.}$$

Since we know that $\delta_{n-1}(f) = 0$, and that $\delta_1(f) = \sum_{j=1}^n (f_j^2)$, we can calculate the δ_r 's beginning from either end. Alternatively the fact that both end-values are known serves as a check on the arithmetic if we calculate $\delta_{r-1}(f) - \delta_r(f)$ for every r from 0 to $n-1$.

3. Probable error in m_r .

It remains to calculate the probable error of the m 's, in terms of that of the given functional values.

Expressing m_r in terms of the f 's themselves, instead of their r^{th} differences, we get

$$m_r = \sum_{j=1}^n f_j \sum_{m=0}^r (-1)^m \binom{r}{m} \binom{m+j-1}{r} \binom{n-j-m+r}{r} / \binom{n+r}{2r+1}$$

And thus the mean square error in m_r is given in terms of that in the f 's by:

$$\delta^2 m_r / \delta^2 f = \frac{\sum_{j=1}^n \left\{ \sum_{m=0}^r (-1)^m \binom{r}{m} \binom{m+j-1}{r} \binom{n-j-m+r}{r} \right\}^2}{\binom{n+r}{2r+1}^2}$$

This reduces to

$$\delta^2 m_r / \delta^2 f = \binom{2r}{r} / \binom{n+r}{2r+1} \quad [\text{see Appendix, proof 5}]$$

But this ratio has already been shown to be equal to $m_r^2 / (\delta_{r-1}(f) - \delta_r(f))$, so we have the result that

$$\frac{\delta^2 m_r}{m_r^2} = \frac{\delta^2 f}{\delta_{r-1}(f) - \delta_r(f)}$$

Often, we do not know the mean square error $\delta^2 f$. We may however assume that, if r has been sensibly chosen, it is of the order of $\delta_r(f)/(n-r-1)$ - we divide by $(n-r-1)$ as this is the excess number of degrees of freedom over those required to fix the parameters of $p_r(x)$.

Thus we may say $\delta^2 m_r / m_r^2 = \delta_r(f)/(n-r-1)(\delta_{r-1}(f) - \delta_r(f))$, and the condition that m_r should be significantly different from zero is $\delta_r(f) < (n-r-1)(\delta_{r-1}(f) - \delta_r(f))$,

$$\text{or } \frac{\delta_r(f)}{(n-r-1)} < \frac{\delta_{r-1}(f)}{(n-r)}$$

It is therefore worth while, in tabulating $\delta_r(f)$, also to note the value of the quotient $\delta_r(f)/(n-r-1)$, since (a) when $\delta^2 f$ is known, it is this quantity which must be kept down to the order of $\delta^2 f$, and (b) in any case if the quotient $\delta_r(f)/(n-r-1)$ exceeds the corresponding value at $(r-1)$, this shows that no significant additional accuracy arises from taking an r^{th} order polynomial instead of p_{r-1} . This argument is used in Example 3 below.

Reference to other work

M. G. Smith "The Lorentz Method of Analysis of Experimental Data using Orthogonal Polynomials" (A.R.E. Report No. 15/52). [This paper presents a method for calculating the best-fitting r^{th} order polynomial, having first obtained that of order $r-1$. It differs from the treatment of the present paper in computing first the polynomials themselves, and only afterwards the values of $\delta(f)$, whereas we have here treated the residual errors as being of prime interest - i.e. we determine the required order of polynomial without having first computed it. Either treatment can be more useful than the other, according to circumstances.]

EXAMPLE I. Functional values lying close to a polynomial of low order (cubic).

r	1	2	3	4	5	6	7	8	9	10	SUMS
f _r	261	378	392	320	198	68	-69	-162	-181	-100	
w. f.	1	1	1	1	1	1	1	1	1	1	10
	261	378	392	320	198	68	-69	-162	-181	-100	1100
Δ	117	14	-72	-122	-135	-132	-93	-19	81		
w. f.	9	16	21	24	25	24	21	16	9		165
	1053	224	-1512	-2928	-3575	-3168	-1953	-304	729		11284
Δ^2	-108	-86	-50	-18	8	39	74	100			
w. f.	86	84	126	150	150	126	84	86			792
	-3708	-7224	-6300	-1950	450	4914	6216	3600			4002
Δ^3	17	36	37	16	36	35	26				
w. f.	84	224	350	400	350	224	84				1716
	1428	8064	12950	6400	12600	7840	2184				51466
Δ^4	19	1	-21	20	-1	-9					
w. f.	126	350	525	525	350	126					2002
	2394	350	-11025	10500	-350	-1134					735
Δ^5	-18	-22	41	-21	-8						
w. f.	126	386	441	386	126						1265
	-2268	-7392	18081	-7056	-1008						357
Δ^6	-4	68	-62	13							
w. f.	84	196	196	84							560
	-336	12348	-12152	1092							952
Δ^7	67	-125	75								
w. f.	36	64	36								136
	2412	-8000	2700								-2388
Δ^8	-192	200									18
	9	9									+72
	-1728	1800									
Δ^9		392									1
w. f.		1									392

$$\Delta_1 = \Sigma(f^2) = 584008$$

$$\frac{1}{10} \Delta_1 \approx 58401$$

$$\Delta_0 = 584008 - (1100)^2(10 \times 1) = 584008 - 121000 = 463008$$

$$\frac{1}{5} \Delta_0 \approx 51445$$

$$\Delta_1 = 463008 - (11284)^2 / (185 \times 2) = 463008 - 382432^{0.8} / 1e5 = 80575^{0.7} / 1e5$$

$$\frac{1}{5} \Delta_1 \approx 10072$$

$$\Delta_2 = 80575^{0.7} / 1e5 - (4002)^2 / (792 \times 6) = 80575^{0.7} / 1e5 - 3370^{0.8} / 1e2 = 77205^{0.3} / 600$$

$$\frac{1}{5} \Delta_2 \approx 11029$$

$$\Delta_3 = 77205^{0.3} / 600 - (51466)^2 / (1716 \times 20) = 77205^{0.3} / 600 - 77178^{0.8} / 6550 = 27^{2.5} / 6550$$

$$\frac{1}{5} \Delta_3 \approx 4.5$$

$$\Delta_4 = 27^{2.5} / 6550 - (735)^2 / (2002 \times 70) = 27^{2.5} / 6550 - 3^{4.8} / 672 = 23^{2.5} / 132$$

$$\frac{1}{5} \Delta_4 \approx 4.6$$

$$\Delta_5 = 23^{2.5} / 132 - (357)^2 / (1335 \times 252) = 23^{2.5} / 132 - 23^{2.5} / 780 = 22^{1.724} / 2145$$

$$\frac{1}{5} \Delta_5 \approx 5.7$$

$$\Delta_6 = 22^{1.724} / 2145 - (952)^2 / (580 \times 224) = 22^{1.724} / 2145 - 25^{2.5} / 780 = 21^{1.12} / 2145$$

$$\frac{1}{5} \Delta_6 \approx 7.0$$

$$\Delta_7 = 21^{1.12} / 2145 - (2888)^2 / (136 \times 8432) = 21^{1.12} / 2145 - 17^{10.440} / 116688 = 3^{17.7} / 655$$

$$\frac{1}{5} \Delta_7 \approx 1.6$$

$$\Delta_8 = 3^{17.7} / 655 - (72)^2 / (18 \times 12870) = 3^{17.7} / 655 - 10^{1.8} / 718 = 3^{19.5} / 12155$$

$$\Delta_8 \approx 3.2$$

$$\Delta_9 = 3^{19.5} / 12155 - (392)^2 / (1 \times 48820) = 3^{19.5} / 12155 - 3^{19.5} / 12155 = 0$$

EXAMPLE I (continued)

EXAMPLE II.

Functional Values Not Lying Close to a Polynomial of Low Order.

Independent variable:-	0	1	2	3	4	5	6	SUMS
functional values:-	1	2	4	8	16	32	64	
weighting factors	1	1	1	1	1	1	1	$m_0 = \frac{127}{7}$
	1	2	4	8	16	32	64	127
first differences	1	2	4	8	16	32		
weighting factors	6	10	12	12	10	6	56	$m_1 = \frac{281}{28}$
	6	20	48	96	160	192	522	
second differences	1	2	4	8	16			
weighting factors	15	30	36	30	15	126	$m_2 = \frac{233}{42}$	
	15	60	144	240	240	699		
third differences	1	2	4	8				
weighting factors	20	40	40	20	120	$m_3 = \frac{7}{2}$		
	20	80	160	160	420			
fourth differences	1	2	4					
weighting factors	15	25	15	55	$m_4 = \frac{25}{11}$			
	15	50	60	125				
fifth differences	1	2						
weighting factors	6	6	12	12	$m_5 = \frac{3}{2}$			
	6			18	18			
sixth differences		1						
weighting factors		1			1	$m_6 = 1$		
		1			1	1		

$$\delta_0 = 0$$

$$\delta_5 - \delta_0 = \frac{1}{924} m_0^2 = \frac{1}{924}$$

$$\delta_4 - \delta_5 = \frac{12}{282} m_1^2 = \frac{12}{252} \cdot \frac{9}{4} = \frac{3}{28} \therefore \delta_4 = \frac{1}{924} + \frac{3}{28} = \frac{100}{924} = \frac{25}{231}$$

$$\delta_3 - \delta_4 = \frac{55}{70} \times m_2^2 = \frac{55}{70} \times \frac{25}{121} = \frac{625}{154} \quad \delta_3 = \frac{25}{231} + \frac{625}{154} = \frac{1825}{462} = \frac{25}{6}$$

$$\delta_2 - \delta_3 = \frac{120}{20} \times \left(\frac{7}{2}\right)^2 = \frac{147}{2} \quad \delta_2 = \frac{25}{6} + \frac{147}{2} = \frac{466}{6} = \frac{233}{3}$$

$$\delta_1 - \delta_2 = \frac{120}{6} \left(\frac{233}{42}\right)^2 = (233)^2 / 84 \quad \delta_1 = 233 \left(\frac{1}{3} + \frac{233}{84}\right) = \frac{20271}{28}$$

$$\delta_0 - \delta_1 = \frac{56}{2} \left(\frac{261}{28}\right)^2 = (261)^2 / 28 \quad \delta_0 = (20271 + 68121) / 28 = 22098 / 7$$

$$\delta_{-1} - \delta_0 = \frac{7}{1} \left(\frac{127}{7}\right)^2 = (127)^2 / 7 \quad \delta_{-1} = (16129 + 22098) / 7 = 5461$$

$$\delta_0 = 0 \approx$$

$$\delta_5 = \frac{1}{924} \approx 1.1 \times 10^{-3}$$

$$\delta_4 = \frac{25}{231} \approx 1.1 \times 10^{-1}$$

$$\delta_3 = \frac{25}{6} \approx 4.2$$

$$\delta_2 = \frac{233}{3} \approx 7.8 \times 10$$

$$\delta_1 = \frac{20271}{28} \approx 7.2 \times 10^2$$

$$\delta_0 = \frac{22098}{7} \approx 3.2 \times 10^3$$

$$\delta_{-1} = 5461 \approx 5.4 \times 10^3$$

Check:- Sum of $f^2 = 1 + 4 + 16 + 64 + 256 + 1024 + 4096 = 5461$

And the shape of the curves suggest that the functional values certainly do not fit any low-order polynomial.

EXAMPLE III

What is the lowest order of polynomial consistent with the following observations,

(a) if the probable error of each observation is 50

(b) " " " " " " " " " 1

	x	1	2	3	4	5	6	7	8	9	$\Sigma(\Delta wf)$
f	27	676	1211	1576	1780	1640	1309	775	116		
wf	1	1	1	1	1	1	1	1	1		9060
Δ	649	535	865	154	-90	-881	-584	-659			1186
wf	28	68	90	100	90	68	28				-95271
Δ^2	-114	-170	-211	-244	-241	-203	-125				
wf	56	140	200	200	140	56					-5188
Δ^3	15	8	36	35	40						
wf	70	175	225	175	70						19475
Δ^4	-7	28	-1	5							
wf	56	126	126	56							3290
Δ^5	35	-29	6								
wf	28	49	28								-273
Δ^6	-64	35									
wf	8	8									-232
Δ^7	-99										
wf	1										-99

$$\dot{a}_0 = 0$$

$$\dot{a}_1 = (99)^2 / 1 \times 12870 = 0.76$$

$$\dot{a}_0 - \dot{a}_1 = (232)^2 / 16 \times 3432 = 0.98$$

$$\dot{a}_0 - \dot{a}_2 = (273)^2 / 105 \times 924 = 0.77$$

$$\dot{a}_0 - \dot{a}_3 = (3290)^2 / 364 \times 252 = 118$$

$$\dot{a}_0 - \dot{a}_4 = (19475)^2 / 715 \times 70 = 7578$$

$$\dot{a}_0 - \dot{a}_5 = (5188)^2 / 792 \times 20 = 1701$$

$$\dot{a}_0 - \dot{a}_6 = (95271)^2 / 462 \times 6 = 32.7 \times 10^5$$

$$\dot{a}_0 - \dot{a}_7 = (1186)^2 / 120 \times 2 = 5861$$

$$\dot{a}_0 - \dot{a}_8 = (9060)^2 / 9 \times 1 = 91.2 \times 10^5$$

$$\dot{a}_0 = 0$$

$$\dot{a}_1 = 0.76$$

$$\dot{a}_2 = 1.74$$

$$\dot{a}_3 = 2.51$$

$$\dot{a}_4 = 121$$

$$\dot{a}_5 = 77 \times 10^2$$

$$\dot{a}_6 = 94 \times 10^2$$

$$\dot{a}_7 = 32.8 \times 10^5$$

$$\dot{a}_8 = 4.7 \times 10^5$$

$$\dot{a}_9 = 32.9 \times 10^5$$

$$\dot{a}_{10} = 4.1 \times 10^5$$

$$\dot{a}_{11} = 124.1 \times 10^5$$

$$\dot{a}_{12} = 13.8 \times 10^5$$

$$= (.87)^2$$

$$= (.98)^2$$

$$= (.92)^2$$

$$= (5.5)^2$$

$$= 39^2$$

$$= 39^2$$

$$= (690)^2$$

$$= (840)^2$$

$$= (1200)^2$$

$\sqrt{\delta_r/(n-r-1)}$ should be of the same order of magnitude as the probable mean error of observation [for detailed treatment see any textbook of statistics, under the heading "Chi² distribution of goodness of fit"].

In the example given, it will be seen that a parabola ($r=2$) is consistent with a probable error of 50, while if the probable error is only unity, a 5th order polynomial is required to give an adequate fit.

With a probable error of 50 in each f, however, the lower values of $\sqrt{\delta_r/(n-r-1)}$ for r in excess of 3 would appear highly suspicious, and would lead very definitely to suppose that the errors are largely of a systematic rather than a random nature.

A P P E N D I X

Proof 1.

$$\text{That } \sum_{j=1}^{n-r} \binom{n-j}{r} \binom{r+j-1}{r} = \binom{n+r}{2r+1} \quad [n > r].$$

$$\text{Let } \delta(n, r) \text{ denote } \sum_{j=1}^{n-r} \binom{n-j}{r} \binom{r+j-1}{r} - \binom{n+r}{2r+1}.$$

Writing the binomial coefficients as the sums of coefficients of lower order, we may say

$$\begin{aligned} \delta(n, r) &= \sum_{j=1}^{n-r} \binom{n-j-1}{r-1} \left(1 + \frac{n-j-r}{r}\right) \binom{r+j-2}{r-1} \left(1 + \frac{j-1}{r}\right) - \binom{n+r-1}{2r} \left(1 + \frac{n-r-1}{2r+1}\right) \\ &= \sum_{j=1}^{n-r} \binom{n-j-1}{r-1} \binom{r+j-2}{r-1} \left(1 + \frac{n-r-1}{r} + \frac{(n-j-r)(j-1)}{r^2}\right) - \binom{n+r-2}{2r-1} \left(1 + \frac{n-r-1}{2r+1}\right) \left(1 + \frac{n-r-1}{2r}\right) \end{aligned}$$

The term $\frac{(n-j-r)(j-1)}{r^2}$ vanishes both at $j=1$ and at $j=n-r$; we may therefore shorten its range of summation by one at each end.

$$\begin{aligned} \text{so that } \delta(n, r) &= \sum_{j=1}^{n-r} \binom{n-j-1}{r-1} \binom{r+j-2}{r-1} \left(1 + \frac{n-r-1}{r}\right) + \sum_{j=2}^{n-r-1} \binom{n-j-1}{r} \binom{r+j-2}{r} - \binom{n+r-2}{2r-1} \left(1 + \frac{n-r-1}{r}\right) \binom{n+r-2}{2r+1} \\ &= \frac{r-1}{r} \delta(n-1, r-1) + \delta(n-2, r) \end{aligned}$$

$$\text{Now } \delta(n, 0) = \sum_{j=1}^n \binom{n-j}{0} \binom{j-1}{0} - \binom{n}{1} = n - n = 0$$

Again, at $r = n-1$, j can only be 1, and $\delta(n, n-1) = \binom{n-1}{n-1} \binom{n-1}{n-1} - \binom{2n-1}{2n-1} = 1 - 1 = 0$

At $r = n-2$, j can be 1 or 2, and $\delta(n, n-2) = \binom{n-1}{n-2} \binom{n-2}{n-2} + \binom{n-2}{n-2} \binom{n-1}{n-2} - \binom{2n-2}{2n-2} = 2(n-1) - (2n-2) = 0$

This suffices to prove by induction that $\delta(n, r) = 0$.

Proof 2.

That $\sum_{j=1}^{n-r} \binom{n-j}{r} \binom{r+j-1}{r} / \Delta_j^r \binom{n+r}{2r+1}$ is the r^{th} difference of the r^{th} order polynomial giving the closest fit to the points f_1, f_2, \dots, f_n

Let the f 's be chosen so that all but one of their r^{th} order differences vanish, and the other is unity. Let $\Delta_j^r = 1$, $\Delta_k^r = 0$ for $k \neq j$. Such a set of f 's is given by $f_0 = f_1 = \dots = f_{j+r-1} = 0$ and $f_k = \binom{k-j-1}{r-1}$ for $k \geq j+r$.

$$\text{Let } p_r(x) = a_r x^r + a_{r-1} x^{r-1} + \dots + a_1 x + a_0.$$

We are to choose the a 's so as to minimize

$$\sum_{x=1}^{j+r-1} (a_r x^r + a_{r-1} x^{r-1} + \dots + a_1 x + a_0)^2 + \sum_{x=j+r}^n \left\{ a_r x^r + a_{r-1} x^{r-1} + \dots + a_1 x + a_0 - \binom{x-j-1}{r-1} \right\}^2$$

If we use a notation in which $\binom{g}{h} = 0$ for all $g < h$, we may simplify this, and say that we have to minimize

$$\sum_{x=1}^n \left\{ a_r x^r + a_{r-1} x^{r-1} + \dots + a_1 x + a_0 - \binom{x-j-1}{r-1} \right\}^2$$

We obtain a set of simultaneous equations, from which $a_{r-1}, a_{r-2}, \dots, a_1, a_0$ can be eliminated, leaving

$$\begin{array}{c|l} a_r & \begin{array}{l} S_{2r} \ S_{2r-1} \ S_{2r-2} \ \dots \ S_r \\ S_{2r-1} \ S_{2r-2} \ \dots \ S_{r-1} \\ S_{2r-2} \ S_{2r-3} \ S_{2r-4} \ \dots \ S_{r-2} \\ \vdots \\ S_r \ S_{r-1} \ S_{r-2} \ \dots \ S_0 \end{array} = \begin{array}{l} \sum_{1}^n x^r \binom{x-j-1}{r-1} \ S_{2r-1} \ S_{2r-2} \ \dots \ S_r \\ \sum_{1}^n x^{r-1} \binom{x-j-1}{r-1} \ S_{2r-2} \ S_{2r-3} \ \dots \ S_{r-1} \\ \sum_{1}^n x^{r-2} \binom{x-j-1}{r-1} \ S_{2r-3} \ S_{2r-4} \ \dots \ S_{r-2} \\ \vdots \\ \sum_{1}^n \binom{x-j-1}{r-1} \ S_{r-1} \ S_{r-2} \ \dots \ S_0 \end{array} \end{array}$$

where S_k denotes $(1^k + 2^k + 3^k + \dots + n^k)$.

We have to calculate the values of these determinants.

It may be shown that

$$\begin{vmatrix} \frac{1}{2r+1} & \frac{1}{2r} & \frac{1}{2r-1} & \dots & \frac{1}{r+1} \\ \frac{1}{2r} & \frac{1}{2r-1} & \frac{1}{2r-2} & \dots & \frac{1}{r} \\ \frac{1}{2r-1} & \frac{1}{2r-2} & \frac{1}{2r-3} & \dots & \frac{1}{r-1} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ \frac{1}{r+1} & \frac{1}{r} & \frac{1}{r-1} & \dots & \frac{1}{1} \end{vmatrix} = [\mathfrak{S}(r)]^4 / \mathfrak{S}(2r+1)$$

where $\mathfrak{S}(r)$ denotes the factorial function $1! 2! 2! 4! \dots r!$

From this it follows that

$$\begin{vmatrix} s_{2r} & s_{2r-1} & \dots & s_r \\ s_{2r-1} & s_{2r-2} & \dots & s_{r-1} \\ \vdots & \vdots & \ddots & \vdots \\ s_r & s_{r-1} & \dots & s_0 \end{vmatrix} = \mathfrak{S}(n+r) \mathfrak{S}(n-r-2) [\mathfrak{S}(r)]^4 / [\mathfrak{S}(n-1)]^2 \mathfrak{S}(2r+1)$$

It can also be shown that

$$\begin{vmatrix} \sum_{j=1}^n x^r \binom{x-j-1}{r-1} s_{2r-1} \dots s_r \\ \sum_{j=1}^n x^{r-1} \binom{x-j-1}{r-1} s_{2r-2} \dots s_{r-1} \\ \vdots \\ \sum_{j=1}^n \binom{x-j-1}{r-1} s_{r-1} \dots s_0 \end{vmatrix} = \left\{ r! \binom{n-j}{r} \binom{r+j-1}{r} / \binom{2r}{r} \right\} \begin{vmatrix} s_{2r-2} s_{2r-3} \dots s_{r-1} \\ s_{2r-3} s_{2r-4} \dots s_{r-2} \\ \vdots \\ s_{r-1} s_{r-2} \dots s_0 \end{vmatrix}$$

$$= \frac{\binom{n-j}{r} \binom{r+j-1}{r} \mathfrak{S}(n+r-1) \mathfrak{S}(n-r-1) \mathfrak{S}(r-1) [\mathfrak{S}(r)]^3}{[\mathfrak{S}(n-1)]^2 \mathfrak{S}(2r)}$$

$$\text{So that } a_r = \binom{n-j}{r} \binom{r+j-1}{r} \frac{(n-r-1)! (2r+1)!}{(n+r)! r!}$$

And hence the m^{th} order difference of $p_r(x)$, which is $r! a_r$, is given by $\binom{n-j}{r} \binom{r+j-1}{r} / \binom{n+r}{2r+1}$. This is in fact the coefficient of Δ_j^r in the expression for M_r . As this applies for any j , and the differences and M 's are all linear in the f 's, it follows that M_r is always the r^{th} difference of the best $p_r(x)$, whatever be the values of the f 's.

Proof 3. That $\frac{\delta_{r-1}(f) - \delta_r(f)}{m^2_r}$ is a function only of n and r.

Let f denote a set of functional values $f_1, f_2, f_3, \dots, f_n$ given at n equally-spaced intervals of the argument.

Let $p_r(x)$ denote the best r^{th} order polynomial through the functional values - i.e. the parameters are so chosen that $\sum_{j=1}^n$ is minimized - and let $\delta_r(f)$ be used to denote this minimized sum, and $m_r(f)$ the r^{th} difference of the polynomial $p_r(x)$.

Now let f^* denote that set of functional values $f_1^*, f_2^*, \dots, f_n^*$ such that the first $(r+1)$ of them, viz f_1^* to f_{r+1}^* , are the same as those in the f set ($f_1^* = f_1, f_2^* = f_2, \dots, f_{r+1}^*$), and the remaining $n-r-1$ values are so chosen that they lie on the r^{th} order polynomial through f_1, f_2, \dots, f_{r+1} .

Then clearly $\delta_r(f^*) = 0$.

Next, define a new set $f(\theta)$ of functional values, such that $f_j(\theta) = \theta f_j + (1-\theta)f_j^*$ for any j from 1 to n. It is clear that all the $f_j(\theta)$'s must be linear in θ , since f_j and f_j^* are constants already fixed. From this it follows that $m_r(f(\theta))$ is also linear in θ , as m is linear in all the $f_j(\theta)$'s.

Since $m_r(f(\theta))$ is linear in θ , there must exist a θ for which $m_r(f(\theta)) = 0$. Let this value of θ be denoted by θ^{**} , and let f^{**} represent the corresponding set of functional values.

Then the statement that $m_r(f^{**}) = 0$ means that the best r^{th} order polynomial through $f_1^{**}, f_2^{**}, \dots, f_n^{**}$ has a leading coefficient of zero. I.e. it is of order $(r-1)$ or lower. Thus it follows that $\delta_r(f^{**}) = \delta_{r-1}(f^{**})$.

Now the coefficients in $p_r(x)$ [and likewise in $p_{r-1}(x)$] can be seen to be linear in the functional values and hence in θ . Thus it follows that $\delta_r(f(\theta))$ and $\delta_{r-1}(f(\theta))$ are both quadratic in θ . The difference $\delta_{r-1}(f(\theta)) - \delta_r(f(\theta))$ is also quadratic in θ . But this difference can never be negative - (the best r^{th} order polynomial must always be at least as good a fit as the best $r-1^{\text{th}}$ order). Also $\delta_{r-1}(f(\theta)) - \delta_r(f(\theta))$ vanishes at $\theta = \theta^{**}$.

$$\therefore \delta_{r-1}(f(\theta)) - \delta_r(f(\theta)) = K_1(\theta - \theta^{**})^2 \text{ where } K_1 \text{ is some constant.}$$

Again, $m_r(f_\theta)$ is as we have seen linear in θ , and by definition vanishes at $\theta = \theta^{**}$

$$\therefore m_r(f(\theta)) = K_2(\theta - \theta^{**}) \text{ where } K_2 \text{ is another constant.}$$

From this it follows at once that

$$\frac{\delta_{r-1}(f(\theta)) - \delta_r(f(\theta))}{m_r^2} = \frac{K_1}{K_2^2} = \text{a constant independent of } \theta.$$

As we could have defined f^* by any $r+1$ points (not necessarily the first ones), we can see that this constant must be the same whatever the values of the functional values, and in fact $(\delta_{r-1}(f) - \delta_r(f))/m_r^2$ can depend only on the numbers n and r.

Proof 4. That $\frac{\delta_{r+1}(f) - \delta_r(f)}{m^2_r}$ is equal to $\binom{n+r}{2r+1} / \binom{2r}{r}$

NOTE: In proof (8) above we have shown that $\frac{\delta_{r-1}(f) - \delta_r(f)}{m^2(r)}$

depends only on r and n , and not on the f 's. Consequently we are at liberty to choose now what f 's we wish

* * *

Let the f 's be chosen so that $f_j = \frac{(-1)^{r-j+1} \binom{r}{j-1}}{r!}$ for $1 \leq j \leq r+1$,

and $f_j = 0$ for $r+1 < j < n$.

Then $\sum_{j=1}^n j^k f_j = 0$ for $k < r$ and = 1 for $k = r$.

From this it follows that $p_{r-1}(x) = 0$ and $\delta_{r-1}(f) = \sum_{j=1}^n (f_j)^2$.

For $p_r(x)$ we have the conditions

$$\left. \begin{array}{l} a_r S_{2r} + a_{r-1} S_{2r-1} + \dots + a_1 S_{r+1} + a_0 S_r = 1 \\ a_r S_{2r-1} + a_{r-1} S_{2r-2} + \dots + a_1 S_r + a_0 S_{r-1} = 0 \\ a_r S_{2r-2} + a_{r-1} S_{2r-3} + \dots + a_1 S_{r-1} + a_0 S_{r-2} = 0 \\ \cdots \cdots \cdots \\ a_r S_r + a_{r-1} S_{r-1} + \dots + a_1 S_1 + a_0 S_0 = 0 \end{array} \right\} \dots, (1)$$

$$\begin{aligned} \text{But } \delta_r &= \sum_{j=1}^n (a_r j^r + a_{r-1} j^{r-1} + \dots + a_1 j + a_0 - f_j)^2 \\ &= a_r (a_r S_{2r} + \dots + a_0 S_r) \\ &\quad + a_{r-1} (a_r S_{2r-1} + \dots + a_0 S_{r-1}) \\ &\quad \cdots \cdots \cdots \\ &\quad + a_0 (a_r S_r + \dots + a_0 S_0) \\ &\quad - 2a_r \sum f_j j^r - 2a_{r-1} \sum f_j j^{r-1} - \dots - 2a_0 \sum f_j \\ &\quad + \sum (f_j)^2 \\ &= a_r - 2a_r + \sum (f_j)^2 \end{aligned}$$

So that $\delta_{r-1} - \delta_r = a_r$.

But, from the conditions (1) above, it follows that

$$a_r = \left| \begin{array}{c} S_{2r-2} \dots S_{r-1} \\ \cdots \cdots \cdots \\ S_{r-1} \dots S_0 \end{array} \right| \div \left| \begin{array}{c} S_{2r} \dots S_r \\ \cdots \cdots \cdots \\ S_r \dots S_0 \end{array} \right|$$

$$\frac{\beta(n+r-1) \beta(n-r-1)[\beta(r-1)]^4 [\beta(n-1)]^2 \beta(2r+1)}{[\beta(n-1)]^2 \beta(2r-1) \beta(n+r) \beta(n-r-2) [\beta(r)]^4}$$

$$= \frac{(n-r-1)! (2r)! (2r+1)!}{(n+r)! (r!)^4}$$

Again, the quantity Δ_i^r for the f 's as defined, is

$$\frac{1}{r!} \binom{2r}{r}; \quad \Delta_2^r \text{ is } -\frac{1}{r!} \binom{2r}{r+1}, \text{ and so on.}$$

$$\text{Hence } m_r \text{ is } \frac{\left\{ \binom{n-1}{r} \binom{r}{r} \binom{2r}{r} \right\} - \left\{ \binom{n-2}{r} \binom{r+1}{r} \binom{2r}{r+1} \right\} \dots \pm \left\{ \binom{r}{r} \binom{n-1}{r} \binom{2r}{n-r-1} \right\}}{r! \binom{n+r}{2r+1}}$$

$$= \frac{2r!(2r+1)!(n-r-1)!}{(n+r)! (r!)^3} \sum_{j=1}^{j=r+1} \frac{(-)^{j+1} (n-j)!}{(n-j-r)!(j-1)!(r-j+1)!}$$

and the summation is in all cases unity.

$$\therefore \frac{\beta_{r-1} - \beta_r}{m_r^2} = \frac{(n-r-1)!(2r)!(2r+1)!}{(n+r)!(r!)^4} \div \left\{ \frac{2r!(2r+1)!(n-r-1)!}{(n+r)!(r!)^3} \right\}^2$$

$$= \frac{(n+r)! r!^2}{(2r+1)!(n-r-1)! 2r!} = \binom{n+r}{2r+1} \binom{2r}{r}$$

Q. E. D.

$$\text{Proof 5. That } \sum_j \left\{ \sum_m (-1)^m \binom{r}{m} \binom{m+j-1}{r} \binom{n-j-m+r}{r} \right\}^2 = \binom{2r}{r} \binom{n+r}{2r+1}.$$

Let $m+j = k$ and $n+r = s$

$$\text{Then L.H.S.} = \sum_j \left\{ \sum_k (-1)^k \binom{r}{k-j} \binom{k-1}{r} \binom{s-k}{r} \right\}^2$$

$$= \sum_j \sum_k \sum_l \left\{ (-1)^{k-l} \binom{r}{k-j} \binom{r}{l-j} \binom{k-1}{r} \binom{l-1}{r} \binom{s-k}{r} \binom{s-l}{r} \right\}$$

We can sum at once over all j , for

$$\sum_j \binom{r}{k-j} \binom{r}{l-j} = \binom{2r}{r+k-l}$$

$$\therefore \text{L.H.S.} = \sum_k \sum_l \left\{ (-1)^{k-1} \binom{2r}{r+k-l} \binom{k-1}{r} \binom{l-1}{r} \binom{s-k}{r} \binom{s-l}{r} \right\}$$

$$\text{Now } \binom{2r}{r+k-l} \binom{k-1}{r} \binom{l-1}{r} = \binom{2r}{r} \binom{k-1}{r+k-l} \binom{l-1}{r+l-k}$$

At this stage it is useful to put $k=l+d$

$$\text{Thus L.H.S.} = \binom{2r}{r} \sum_l \sum_d \left\{ (-1)^d \binom{l+d-1}{r+d} \binom{l-1}{r-d} \binom{s-l-d}{r} \binom{s-l}{r} \right\}$$

Carrying out the summation first over all d , we get

$$\binom{2r}{r} \sum_l \binom{s-l}{r} \sum_d \left\{ (-1)^d \binom{l-1}{r-d} \binom{l+d-1}{r+d} \binom{s-l-d}{r} \right\}$$

which may be written as

$$\sum_l \binom{s-l}{r} \binom{l-1}{r} \sum_d \left\{ (-1)^d \binom{l+d-1}{r} \binom{s-l-d}{r} \binom{2r}{r+d} \right\}$$

$$\text{Now it may be shown that } \sum_d (-1)^d \binom{a+d}{r} \binom{b-d}{r} \binom{2r}{r+d} = \binom{2r}{r}$$

for all $a > r, b > r$.

Putting $a = l-1, b = s-l$, these inequalities are seen to apply.
Consequently we are left with

$$\binom{2r}{r} \sum_l \binom{s-l}{r} \binom{l-1}{r} \{ 1 \}$$

and this reduces at once to $\binom{2r}{r} \binom{s}{2r+1}$

which = R.H.S.

[NOTE. We have omitted the limits of summation, since the summation is required for all values of the parameters giving nonzero contribution, and may in fact be taken from $-\infty$ to $+\infty$ for each parameter].

TABLES I and IA.

Weighting Factors to be Applied to Δ_j^r in Calculating m_r , and
Sums of Weighting Factors.

Functional Values given at 3 points

w.f.	m_0	m_1	m_2	
1		2		
1		2	1	
1				
SUMS	3	4	1	

Functional Values given at 4 points

w.f. for m_0	m_1	m_2	m_3	
1	3			
1	4	3		
1	4	3	1	
1	3			
SUMS	4	10	6	1

Functional Values given at 5 points

w.f. for m_0	m_1	m_2	m_3	m_4	
1	4				
1	6	6			
1	6	9	4		
1	6	6	4	1	
1	4				
SUMS	5	20	21	8	1

Functional Values given at 6 points

w.f. for m_0	m_1	m_2	m_3	m_4	m_5	
1	5					
1	8	10				
1	9	18	10			
1	8	18	18	5		
1	8	10	10	5	1	
1	5					
SUMS	6	35	58	36	10	1

TABLES I & IA Continued

Functional Values given at 7 points

w.f. for	m_0	m_1	m_2	m_3	m_4	m_5	m_6
1		6					
1		10	15	20	15		
1		12	30	40	25	6	
1		12	33	40	25	6	1
1		10	30	40	15		
1		10	15	20			
1		8					
SUMS	7	56	126	120	55	12	1

Functional Values given at 8 points

w.f. for	m_0	m_1	m_2	m_3	m_4	m_5	m_6	m_7
1		7						
1		12	21	35				
1		15	45	80	35	21		
1		15	60	100	75	36		
1		16	60	100	75	36		
1		15	45	80	35	21		
1		12	45	85				
1		7	21					
1								
SUMS	8	84	252	380	220	78	14	1

Functional Values given at 9 points.

w.f. for	m_0	m_1	m_2	m_3	m_4	m_5	m_6	m_7	m_8
1		8	28						
1		14	63	56	70				
1		18	63	140	70	56			
1		20	90	200	175	126	28		
1		20	100	200	225	126	49	8	
1		20	90	200	175	126	28	3	
1		18	90	140	70	56			
1		14	63	56					
1		8	28						
1									
SUMS	9	120	462	792	715	384	105	16	1

TABLES I & IA Continued

Functional Values given at 10 points

w.f. for	m_0	m_1	m_2	m_3	m_4	m_5	m_6	m_7	m_8	m_9
1		9								
1		16	86	84						
1		21	84	224	126					
1		24	126	350	350					
1		24	150	350	525	386	84			
1		25	150	400	525	441	196	36		
1		24	150	350	525	386	196	64	9	1
1		21	126	350	350	336	84	36	9	
1		16	84	224	126	126				
1		9	36	84						
SUMS	10	165	792	1716	2002	1365	560	136	18	1

Functional Values given at 11 points

w.f. for	m_0	m_1	m_2	m_3	m_4	m_5	m_6	m_7	m_8	m_9	m_{10}
1		10									
1		18	45								
1		24	108	120							
1		28	168	336	210						
1		30	210	560	630	252					
1		30	225	700	1050	756	210				
1		30	225	700	1225	1176	588	120			
1		28	210	700	1050	1176	784	288	45		
1		24	168	560	1050	1176	784	288	81	10	1
1		24	108	336	756	210	210	120	45	10	
1		18	45	120							
SUMS	11	220	1287	3432	5005	4368	2280	816	171	20	1

Functional Values given at 12 points

w.f. for	m_0	m_1	m_2	m_3	m_4	m_5	m_6	m_7	m_8	m_9	m_{10}
1		11	55								
1		20	55	165							
1		20	135	480	330						
1		27	216	480	1050	462	462				
1		32	280	840	1890	1512	1470	330			
1		35	315	1120	2450	2846	2352	960	165		
1		36	315	1225	2450	3136	2352	1296	405	55	11
1		35	315	1120	2450	2646	2352	1296	405	100	11
1		32	290	840	1890	1512	1470	960	165	55	
1		27	216	480	1050	462	462	330			
1		20	135	480	330	462					
1		11	55	165							
SUMS	12	286	2002	6485	11440	12376	8568	3876	1140	210	22

TABLES I & IA Continued

Functional Values given at 13 points

w. f. for	m_0	m_1	m_2	m_3	m_4	m_5	m_6	m_7	m_8	m_9	m_{10}
1	12										
1	22	66	220								
1	30	165	660	495	792						
1	36	270	1200	1650	2772	924					
1	40	360	1680	3150	5292	5880	2640	495			
1	42	420	1960	4410	7056	7056	4320	1485	220	550	66
1	42	441	1960	4900	7056	7056	4320	2025	550	121	
1	42	420	1680	4410	5292	5880	4320	1485	550	66	
1	36	360	1200	3150	2772	3234	2640	495	220		
1	30	270	660	1650	792	924	792				
1	22	165	220	495							
1	12	66									
SUMS	13	364	3008	11440	24310	31824	27132	15504	5985	1540	253

Functional Values given at 14 points

w. f. for	m_0	m_1	m_2	m_3	m_4	m_5	m_6	m_7	m_8	m_9	m_{10}
1	13										
1	24	78	286								
1	38	198	880	715							
1	38	380	2475	1287	1716						
1	40	450	1650	4950	4752	6468	1716				
1	45	540	2400	7350	9702	12936	6336	1287	715	286	
1	48	540	2940	7350	14112	17640	11880	4455	2200	726	
1	49	583	3136	8820	15876	17640	14400	7425	3025	726	
1	48	588	2940	8820	14112	17640	11380	7425	2200	726	
1	45	540	2400	7350	9702	12936	6336	4455	715	286	
1	40	450	1650	4950	4752	6468	1716	1287			
1	38	380	2475	1287							
1	38	198	880	715							
1	24	78	286								
1	18										
SUMS	14	455	4868	19448	48620	75532	77520	54264	26334	8855	2024

TABLES I & IA Continued

Functional Values given at 15 points

w.f. for	No	m_1	m_2	m_3	m_4	m_5	m_6	m_7	m_8	m_9	m_{10}
1	14	91		364	1001						
1	28	284		1144	3575	2002					
1	36	396		2200	7425	7722	3003				
1	44	550		3800	11550	16632	12012	8482			
1	50	675		4200	14700	25872	25872	13728	3003	2002	1001
1	54	756		4704	15876	31752	38808	28512	11583	7150	3146
1	56	784		4704	15876	31752	44100	39600	27225	12100	4356
1	58	756		4200	14700	31752	38808	39600	22275	12100	3146
1	54	675		4200	11550	25872	25872	28512	11583	7150	3146
1	50	550		3800	7425	16632	12012	13728	3003	2002	1001
1	44	284		2200	3575	7722	3003	8482			
1	36	396		1144		2002					
1	28	284		364	1001						
1	14	91									
SUMS	15	560	6188	31824	92378	167960	203490	170544	100947	42504	12650

Functional Values given at 16 points

w.f. for	No	m_1	m_2	m_3	m_4	m_5	m_6	m_7	m_8	m_9	m_{10}
1	15	105									
1	28	105	455		1365						
1	39	273	1456		5005	3003					
1	48	468	2860		10725	12012	21021	6485			
1	55	660	4400		17325	27027	48048	27456			
1	60	825	5775		23100	44552	59212	61778	27027	5005	3003
1	63	945	5720		26460	59212	77616	95040	57915	39825	11011
1	64	1008	7056		26460	63504	97020	108900	81675	48400	18876
1	68	1008	6720		26460	58212	97020	95040	81675	39825	18876
1	30	945	5775		23100	44352	77616	61776	57915	20020	11011
1	55	825	4400		17325	27027	48048	27456	27027	5005	3003
1	660	660			10725		21021				
1	48	468	2860		5005	3003		6485			
1	39	488	1456		1365						
1	28	273	455								
1	15	105									
SUMS	16	680	8568	50368	167960	352716	497420	490314	346104	177100	65780

TABLES I & IA Continued

Functional Values given at 17 points

w.f. for	m_0	m_1	m_2	m_3	m_4	m_5	m_6	m_7	m_8	m_9	m_{10}
1	16										
1	80	120		560							
1	315		1820	1820	4368						
1	546		3640	6825	18018	8008		11440			
1	52		780	3640	15015	42042	35035	51480	12870		
1	60		990	5720	25025	84084	123552	57915	11440	8008	
1	66		7700		72072				50050		
1	70	1155	9240	34650	99792	144144	205920	135135		38083	
1	72	1260	10080	41580	116424	194040	261360	212355	110110	66066	
1	72	1296	10080	44100	116424	213444	261360	245025	157300	81796	
1	70	1260	9240	41580	99792	194040	205920	212355	157300	66066	
1	66	1155	7700	34650	72072	144144	123552	135135	50050	38083	
1	60	990		25025	42042	84084	51480	57915		8008	
1	52	780		15015	18018	35035	11440	12870			
1	546		3640	6825		8008					
1	315		1820	1820	4368						
1	30		560								
1	16										

SUMS 17 816 11628 77520 298980 705432 1144066 1307504 1081575 657800 296010

Functional Values given at 18 points

w.f. for	m_0	m_1	m_2	m_3	m_4	m_5	m_6	m_7	m_8	m_9	m_{10}
1	17										
1	32	136		680							
1	360		2240	2380	6188						
1	45		630	2240	9100	26208	12376	19448			
1	58		910	4550	20475	63063	56056	91520	24310		
1	65	1170	7280	35035		112112	140140	281660	115830	24310	19448
1	72	1386	10010	50050		162162	252252	289575	114400		88088
1	77	1540	12320	62370	199584	360360	411840	495495	275275		198198
1	80	13860	69300	426888	637065				440440		
1	81	1620	14400	213444	511225						
1	80	1620	69300	426888	637065						
1	1540	13860	62370	199584	566280						
1	77	1388	12320	62370	360360						
1	72	1388	50050	162162	411840						
1	65	1170	35035	252252	289575						
1	58	910	20475	140140	115830						
1	630	4550	9100	84084	24310						
1	45	360	2240	6188							
1	32		680								
1	17										

SUMS 18 969 15504 116280 497420 1352078 2498114 8268760 3124550 2220075 1184040

TABLES I & IA Continued

Functional Values given at 19 points

w. f. for	m_0	m_1	m_2	m_3	m_4	m_5	m_6	m_7	m_8	m_9	m_{10}
1		18									
1		153		816							
1		34			3060						
1		408		2720		8568					
1		48		720		11900					
1		60		5600		37128					
1		70		1050		91728					
1		78		1365		47775					
1		84		1638		12740					
1		88		1848		70070					
1		90		1980		18480					
1		90		2025		19800					
1		90		1980		103950					
1		88		1980		90090					
1		84		1848		16016					
1		78		1638		252252					
1		78		1365		18480					
1		70		1848		90090					
1		60		1980		103950					
1		60		1980		91728					
1		48		1848		824324					
1		34		1638		630630					
1		34		1365		224224					
1		18		1638		168168					
1				12740		420420					
1				1848		772200					
1				90		1132560					
1				1980		792792					
1				103950		1359072					
1				1980		1359072					
1				1980		1486485					
1				103950		1486485					
1				90		1101100					
1				1980		1481430					
1				103950		1656369					
1				90		1431430					
1				1980		858858					
1				103950		1486485					
1				90		1101100					
1				1980		528528					
1				103950		629200					
1				90		243100					
1				1980		213928					
1				103950		48620					
1				90		43758					
1				1980		816					
1				103950		86632					
1				90		31824					
1				1980		43758					
1				103950		18564					
1				90		37128					
1				1980		8568					
1				103950		18564					
1				90		27132					
1				1980		50388					
1				103950		75582					
1				90		92378					
1				1980		393822					
1				103950		486200					
1				90		481338					
1				1980		1093950					
1				103950		1337050					
1				90		1233550					
1				1980		2123550					
1				103950		2516800					
1				90		2290288					
1				1980		3185325					
1				103950		3578575					
1				90		3864861					
1				1980		4008004					
1				103950		3006003					
1				90		3864861					
1				1980		3578575					
1				103950		2290288					
1				90		2516800					
1				1980		1283568					
1				103950		2123550					
1				90		1337050					
1				1980		481338					
1				103950		92378					
1				90		816					
1				1980		3876					
1				103950		11628					
1				90		27132					
1				1980		51408					
1				103950		129948					
1				90		346528					
1				1980		672672					
1				103950		700128					
1				90		1093950					
1				1980		1372800					
1				103950		2123550					
1				90		2123550					
1				1980		2516800					
1				103950		2290288					
1				90		3185325					
1				1980		3578575					
1				103950		4008004					
1				90		3864861					
1				1980		3578575					
1				103950		2290288					
1				90		2516800					
1				1980		1283568					
1				103950		2123550					
1				90		1337050					
1				1980		481338					
1				103950		92378					
1				90		171					
1				1980		969					
1				103950		3876					
1				90		11628					
1				1980		51408					
1				103950		129948					
1				90		346528					
1				1980		672672					
1				103950		700128					
1				90		1093950					
1				1980		1372800					
1				103950		2123550					
1				90		2123550					
1				1980		2516800					
1				103950		2290288					
1				90		3185325					
1				1980		3578575					
1				103950		4008004					
1				90		3864861					
1				1980		3578575					
1				103950		2290288					
1				90		2516800					
1				1980		1283568					
1				103950		2123550					
1				90		1337050					
1				1980		481338					
1				103950		92378					
1				90		171					
1				1980		969					
1				103950		3876					
1				90		11628					
1				1980		51408					
1				103950		129948					
1				90		346528					
1				1980		672672					
1				103950		700128					
1				90		1093950					
1				1980		1372800					
1				103950		2123550					
1				90		2123550					
1				1980		2516800					
1				103950		2290288					
1				90		3185325					
1				1980		3578575					
1				103950		4008004					
1				90		3864861					
1				1980		3578575					
1				103950		2290288					
1				90		2516800					
1				1980		1283568					
1				103950		2123550					
1				90		1337050					
1				1980		481338					
1				103950		92378					
1				90		171					
1				1980		969					
1				103950		3876					
1				90		11628					
1				1980		51408					
1				103950		129948					
1				90		346528					
1				1980		672672					
1				103950		700128					
1				90		1093950					</

TABLE II

Summary Table of Sums of the Weighting Factors.

Number of points at which functional values are given.			
Sum of w.f. for m_0			
Sum of w.f. for m_1			
Sum of w.f. for m_2			
Sum of w.f. for m_3			
Sum of w.f. for m_4			
Sum of w.f. for m_5			
Sum of w.f. for m_6			
Sum of w.f. for m_7			
Sum of w.f. for m_8			
Sum of w.f. for m_9			
Sum of w.f. for m_{10}			
Sum of w.f. for m_{11}			
General form: The sum of the weighting factors for m_r , when functional values are given at n points, is the binomial coefficient $\binom{n+r}{2r+1}$.			
1			
2	1		
3	4	1	
4	10	6	1
5	20	21	8
6	35	56	86
7	56	126	120
8	84	252	380
9	120	462	792
10	165	792	1716
11	220	1287	3482
12	286	2002	6435
13	364	3003	11440
14	455	4368	19448
15	560	6188	31824
16	680	8568	50388
17	816	11628	77520
18	969	15504	116280
19	1140	20349	170544
20	1330	26334	245157
			1307504
			4457100
			10400600
			17383860
			21474180
			20030010
			14307150

TABLE III

$\hat{S}_{r-1} - \hat{S}_r$ is given by $K M_r^2$, where the constant K is equal to the sum of the weighting factors for M_r , given in the table above, divided by the binomial coefficient $\binom{2r}{r}$, a function of r only and independent of n . This is tabulated below for r up to 10.

r	0	1	2	3	4	5	6	7	8	9	10
$\binom{2r}{r}$	1	2	6	20	70	252	924	3432	12870	49620	184756

Information Centre
Knowledge Services
[dstl] Porton Down
Salisbury
Wiltshire
SP4 0JQ
22060-6218
Tel. 01980-613753
Fax 01980-613970

Defense Technical Information Center (DTIC)
8725 John J. Kingman Road, Suit 0944
Fort Belvoir, VA 22060-6218
U.S.A.

AD#: AD020295

Date of Search: 13 August 2008

Record Summary: AB 15/1357

Title: The representation of an empirical function by means of a polynomial Author(s): D.J. Behrens
Availability Open Document, Open Description, Normal Closure before FOI Act: 30 years
Former reference (Department) AERE T/R580
Held by The National Archives, Kew

This document is now available at the National Archives, Kew, Surrey, United Kingdom.

DTIC has checked the National Archives Catalogue website (<http://www.nationalarchives.gov.uk>) and found the document is available and releasable to the public.

Access to UK public records is governed by statute, namely the Public Records Act, 1958, and the Public Records Act, 1967.
The document has been released under the 30 year rule.
(The vast majority of records selected for permanent preservation are made available to the public when they are 30 years old. This is commonly referred to as the 30 year rule and was established by the Public Records Act of 1967).

This document may be treated as UNLIMITED.