1 Model

The probabilistic model is simple. The first we just generate the cloud of n points uniformly distributed in $[0,1]^d$. After this we calculate the Alpha complex with these points, and then find its depth poset.

2 Scores

2.1 Poset Scores

- number_of_nodes : Returns the number of nodes in the poset.
- number_of_relations : Returns the number of relations in the transitive reduction.
- number_of_components : Returns the number of connected components in the poset
- cycles_dimension : Returns the dimension of space of cycles in reduction
- number_of_minimal_nodes : Returns the number of minimal nodes.
- number_of_maximal_nodes : Returns the number of maximal nodes.
- height: Returns the poset height the length of the longest chain.
- width: Returns the poset width the length of the longest antichain (subset, s.t. all elements are pairwise incomparable). The algorithm is based on Dilworth's theorem and it's proof via Kőnig's theorem: link
- minimum_maximal_chain : Returns the minimum size of maximal chains in the poset.
- avarage_maximal_chain : Returns the avarage size of maximal chains in the poset.

2.2 Node Scores

- ancestors_number: Returns the number of nodes higher than given
- ancestors_height: Returns the size of maximum chain of subposet of nodes higher or equal than given
- ancestors_width: Returns the size of maximum chain of subposet of nodes higher or equal than given
- ancestors_cycles_dimension: Returns the the dimension of space of cycles in reduction of subposet of nodes higher or equal than given

- successors_number: Returns the number of nodes higher than given
- successors_height: Returns the size of maximum chain of subposet of nodes lower or equal than given
- successors_width: Returns the size of maximum chain of subposet of nodes lower or equal than given
- successors_cycles_dimension: Returns the the dimension of space of cycles in reduction of subposet of nodes lower or equal than given

3 Experiments and Results

There are 20 experiments done. In the Figure 1 we can see how cases are distributed by size and dimension.

Figure 1: Size/dimension distribution of experiments

In the Figure 2 we can see the avarage poset scores values for each number of points n.

In the Figure 3 we can see the avarage mean node scores values in poset for each number of points n.

In the Figure 4 we can see the avarage maximum node scores values in poset for each number of points n.

Mean Poset Scores

Figure 2: Mean poset scores

Mean Node Scores

Figure 3: Mean node scores

Max Node Scores

Figure 4: Max node scores