MIDTERM 1 REVIEW - MATH 4341

1. Proofs of Theorems

(1) (De Morgan's laws)

$$A \cup (\cap_{i \in I} B_i) = \bigcap_{i \in I} (A \cup B_i),$$

$$A \cap (\cup_{i \in I} B_i) = \bigcup_{i \in I} (A \cap B_i),$$

$$A \setminus (\cup_{i \in I} B_i) = \bigcap_{i \in I} (A \setminus B_i),$$

$$A \setminus (\cap_{i \in I} B_i) = \bigcup_{i \in I} (A \setminus B_i).$$

- (2) In a topological space X, we have
 - (a) \emptyset and X are closed,
 - (b) If C_i is closed for all $i \in I$, then $\bigcap_{i \in I} C_i$ is also closed,
 - (c) If C_1, \ldots, C_n are closed, then $C_1 \cup C_2 \cup \cdots \cup C_n$ is also closed.
- (3) If \mathcal{B} is a basis for a topology on X, then $\mathcal{T}_{\mathcal{B}} \subset \mathcal{P}(X)$ is a topology.
- (4) If \mathcal{B} be a basis for a topology on X, then $\mathcal{T}_{\mathcal{B}}$ is equal to the set of all unions of elements from \mathcal{B} .
- (5) Let (X, \mathcal{T}) be a topological space. Let $\mathcal{C} \subset \mathcal{T}$ be a collection of open sets on X with the following property: for each set $U \in \mathcal{T}$ and each $x \in U$ there is a $C \in \mathcal{C}$ such that $x \in C \subset U$. Then \mathcal{C} is a basis for \mathcal{T} .
- (6) Let X be a set, and let \mathcal{B} and \mathcal{B}' be bases for topologies \mathcal{T} and \mathcal{T}' respectively; both on X. Then the followings are equivalent:
 - (a) The topology \mathcal{T}' is finer than \mathcal{T} .
 - (b) For every $x \in X$ and each basis element $B \in \mathcal{B}$ satisfying $x \in B$, there is a basis element $B' \in \mathcal{B}'$ so that $x \in B' \subset B$.
- (7) The topologies \mathbb{R}_{ℓ} and \mathbb{R}_{K} are both strictly finer than the standard topology on \mathbb{R} but are not comparable with each other.
- (8) If (X, d) is a metric space, then the collection

$$\mathcal{B} = \{ B_d(x, r) \mid x \in X, r > 0 \}$$

is a basis for a topology. (The topology generated by this basis is called the metric topology.)

- (9) A set U is open in the metric topology if and only if for every point $x \in U$ there is an r > 0 so that $B_d(x, r) \subset U$.
- (10) The preimage behaves nicely with respect to various operations of sets.
 - (a) If $f: X \to Y$ and $\{A_i\}_{i \in I}$ is a family of subsets of Y, then

$$f^{-1}(\bigcup_{i\in I} A_i) = \bigcup_{i\in I} f^{-1}(A_i), \quad f^{-1}(\bigcap_{i\in I} A_i) = \bigcap_{i\in I} f^{-1}(A_i).$$

- (b) If $A \subset Y$, then $f^{-1}(Y \setminus A) = X \setminus f^{-1}(A)$.
- (c) If $g:Y\to Z$ is another map and $B\subset Z,$ then

$$(g \circ f)^{-1}(B) = f^{-1}(g^{-1}(B)).$$

- (11) The following properties hold:
 - (a) If $f: X \to Y$ and $g: Y \to Z$ are continuous, then so is $g \circ f: X \to Z$.

- (b) A function $f: X \to Y$ is continuous if and only if the preimage of any closed set is closed.
- (c) A function $f: X \to Y$ is continuous if and only if it is continuous at x for all $x \in X$.
- (12) Let (X, d_X) and (Y, d_Y) be metric spaces with their induced metric topologies. Then a function $f: X \to Y$ is continuous if and only if

$$\forall x \in X, \forall \epsilon > 0, \exists \delta > 0 : d_X(x, y) < \delta \Rightarrow d_Y(f(x), f(y)) < \epsilon.$$

(13) Let (X, \mathcal{T}) be a topological space, and let $Y \subset X$ be any subset of X. Then the collection

$$\mathcal{T}_Y = \{ Y \cap U \mid U \in \mathcal{T} \}$$

defines a topology on Y. (This topology is called the subspace topology.)

- (14) Let (X, \mathcal{T}) be a topological space, and let (Y, \mathcal{T}_Y) be a subspace. Then
 - (a) the inclusion map $\iota: Y \to X$ given by $\iota(y) = y$ is continuous,
 - (b) if Z is a topological space and $f: X \to Z$ is a continuous map, then the restriction map $f|_Y: Y \to Z$ is also continuous,
 - (c) a set $F \subset Y$ is closed in Y if and only if there is a set $G \subset X$ which is closed in X so that $F = Y \cap G$.
- (15) (The pasting lemma) Let X be a topological space, and let $U, V \subset X$ be two open subsets such that $X = U \cup V$. Let $f: U \to Y$ and $g: V \to Y$ be two functions so that $f|_{U \cap V} = g|_{U \cap V}$. Then f and g are continuous with respect to the subspace topologies on U and V if and only if the function $h: X \to Y$ given by

$$h(x) = \begin{cases} f(x) & \text{if } x \in U, \\ g(x) & \text{if } x \in V, \end{cases}$$

is continuous.

- (16) Let $\{X_i\}_{i\in I}$ be a family of topological spaces. Then
 - (a) The box topology on $\prod X_i$ has as basis all sets of the form $\prod U_i$, where U_i is open in X_i for each i.
 - (b) The product topology on $\prod X_i$ has as basis all sets of the form $\prod U_i$, where U_i is open in X_i for each i and U_i equals X_i except for finitely many values of i.
- (17) Let X be a topological space, and let $\{Y_i\}_{i\in I}$ be a family of topological spaces. A function $f: X \to \prod_{i\in I} Y_i$ consists of a family of functions $\{f_i\}_{i\in I}$ where $f_i: X \to Y_i$ for all $i \in I$. Then f is continuous if and only if f_i is continuous for every i.

2. Problems

- (1) Examples in lecture notes.
- (2) Homework 1, 2, 3, 4.