Number Theory 2

Binary Exponentiation

Many times, our answer is out of range of datatype int. To avoid this we use modulo operation to overcome this problem. Some of the properties of modulo operation are:

$$(a + b)\%m = (a\%m) + (b\%m)$$

 $(a * b)\%m = (a\%m) * (b\%m)$
 $(a - b)\%m = (a\%m) - (b\%m)$
 $(a/b)\%m = (a\%m) * (b^{-1}\%m)$

Iterative

We can write any decimal number into a binary number. Let us take an example 7^{45}

We can write,

$$45 = 1x2^{5} + 0x2^{4} + 1x2^{3} + 1x2^{2} + 0x2^{1} + 1x2^{0}$$

$$\Rightarrow 7^{45} \text{ can be calculated easily.}$$

```
int pr(int a, int n)
{
   int ans=1;
   while(n)
   {
      if(n&1)
        ans = (ans*a)%MOD;
      a = (a*a)%MOD;

      n >>= 1;
   }
   return ans;
}
```

Recursive

To calculate a^n , we recursively call on $a^{n/2}$ and multiply them. Its base case is returning 1 when n=0.

```
int power(int a, int n) {
    if(n == 0)
        return 1;

if(n == 1) {
        return a;
    }

if(n&1)
        return ((a*power(a,n/2)%MOD)*power(a,n/2))%MOD;

return (power(a,n/2)*power(a,n/2))%MOD;
}
```

Euler Totient Function

For a positive integer n , totient function is represented as Φ (n). It is defined as the number of integers m such that

$$1 \le m < n$$
 $gcd(m, n) = 1$

In simple words number of numbers from 1 to n-1 which are coprime with n. Its formula is given by

$$\Phi$$
(n) = n*(1 - 1/p₁)*(1 - 1/p₂)*(1 - 1/p₃)...*(1 - 1/p_k) where p₁, p₂, p₃, ..., p_k are distinct prime factors of n.

Derivation

If A and B are coprime or gcd(A,B) = 1, then

$$\Phi(A*B) = \Phi(A)*\Phi(B)$$

We can write

$$n = p_1^{a} * p_2^{b} * p_3^{c} ... p_k^{k}$$

$$\Phi(n) = \Phi(p_1^{a} * p_2^{b} * p_3^{c} ... p_k^{k})$$

Since
$$gcd(p_1^a, p_2^b) = 1$$

$$\Phi(n) = \Phi(p_1^a) * \Phi(p_2^b) * \Phi(p_3^c) * ... * \Phi(p_k^k)$$

Let us analyze $\Phi(p^a)$

Numbers from 1 to p^a which are not coprime with p^a are p, 2p, 3p... p^a.

This is an AP with common difference p and first term p. Using the formula of nth term of AP, we get

$$p^{a} = p + (x-1)*p$$
$$x = p^{a-1}$$

Therefore, the number of numbers that are coprime with p^a are

$$p^a - p^{a-1}$$

$$p^{a}(1 - 1/p)$$

Substituting this in above equation of Φ (n), we get

```
\Phi(n) = p_1^a (1-1/p_1) * p_2^b (1-1/p_2) * p_3^c (1-1/p_3) * ... * p_k^k (1-1/p_k)
\Phi(n) = p_1^a * p_2^b * p_3^c * p_k^k * (1-1/p_1) * (1-1/p_2) * (1-1/p_3) * ... * (1-1/p_k)
\Phi(n) = n * (1-1/p_1) * (1-1/p_2) * (1-1/p_3) * ... * (1-1/p_k)
since n = p_1^a * p_2^b * p_3^c * ... * p_k^k
```

Implementing totient function

- 1. Declare an array a[] of size n+1.
- 2. Initialize the array with a[i] = i.
- 3. Iterate from 2 to n and check if(a[i] == i), if yes, that means it is a prime number because it is not touched by previous numbers during their iteration. Change it to a[i]-1 and multiply all its multiples with (1 1/a[i]).
- 4. You have your array with totient values ready.

Segmented Sieve

When the value of n is very large but the r-l range is less than 10^8 , then we use segmented sieve in place of Sieve of Eratosthenes.

```
/ segmented sieve implementation
vector<bool> segmentedSieve(int 1, int r)
  vector<int> primes;
  int rootR = sqrtl(r);
  vector<bool> isprime(rootR+1, 1);
  isprime[0] = isprime[1] = 0;
  for(int i=2; i<rootR+1; i++)</pre>
      if(isprime[i])
           primes.pb(i);
           for(int j=i*i; j<=rootR; j+=i)</pre>
               isprime[j] = 0;
  vector<bool> requiredSieve(r-1+1, 1);
  for(int currPrime : primes)
       for(int j=max(currPrime*currPrime, (l+currPrime-1)/currPrime *
currPrime); j<=r; j+=currPrime)</pre>
           requiredSieve[j-l] = 0;
  if(1==1)
       requiredSieve[0] = 0;
  return requiredSieve;
```