

Entwicklung des Avionik-Thermal-Managements einer Experimentalrakete

cand. aer. Viktor Hoffmann

September 2025

Institut für Thermodynamik der Luft- und Raumfahrt der Universität Stuttgart

Direktor: Professor Dr.-Ing. B. Weigand

Universität Stuttgart

INSTITUT FÜR THERMODYNAMIK DER LUFT- UND RAUMFAHRT

Direktor: Professor Dr.-Ing. B. Weigand

Pfaffenwaldring 31, 70569 Stuttgart, Germany · http://www.itlr.uni-stuttgart.de

Bachelorarbeit

für Herrn cand, aer, Viktor Hoffmann

Entwicklung des Avionik-Thermal-Managements einer Experimentalrakete

Motivation und Zielsetzung:

Im Rahmen des Projekts BLAST der studentischen Arbeitsgruppe HyEnD e.V. wird für die neu entwickelte und leistungsstarke Avionik ein Thermal-Management-Konzept notwendig, das die Hardware während der gesamten Flugdauer auf einer sicheren Betriebstemperatur hält. Darunter fallen kritische Systeme wie die Flugcomputer, Telemetrie und Stromversorgung, deren Ausfall durch Überhitzung eine erfolgreiche Bergung verhindern kann, sowie sekundäre Komponenten wie Kameras. Bei der Entwicklung soll insbesondere auf Leichtbau und Ausfallsicherheit geachtet werden.

Zunächst sollen die Randbedingungen der Mission und die Anforderungen an das Thermal-Management mithilfe angemessener Annahmen festgestellt werden. Basierend darauf wird, durch eine Literaturrecherche zu bestehenden Methoden in der Luft- und Raumfahrtindustrie, eine Auswahl getroffen, die sowohl Leichtbau als auch Ausfallsicherheit maximiert. Für die ausgewählten Methoden soll anschließend eine Vorauslegung gemacht und durch Simulationen verifiziert werden.

Arbeitsschritte:

- Einarbeitung in die Thematik
- Festlegung der Randbedingungen und Anforderungen
- Literaturrecherche zu vorhandenen Thermal-Management-Methoden
- Auswahl, Konzeption und Vorauslegung geeigneter Methoden
- Simulation und Auswertung der gewählten Methoden zum Vergleich mit der Vorauslegung

Ort und Dauer der Arbeit:

Die Bachelorarbeit soll am ITLR sowie bei HyEndD durchgeführt und innerhalb eines Zeitraums von 4 Monaten abgeschlossen werden.

Betreuer:

Dr.-Ing. Christian Waidmann, ITLR

Ausgabe: 01.05.2025

Abgabe: 01.09.2025

Hiermit versichere ich, dass ich diese Bachelorarbeit selbstständig mit Unterstützung des Betreuers / der Betreuer angefertigt und keine anderen als die angegebenen

Quellen und Hilfsmittel verwendet habe.

Die Arbeit oder wesentliche Bestandteile davon sind weder an dieser noch an einer anderen Bildungseinrichtung bereits zur Erlangung eines Abschlusses eingereicht

worden.

Ich erkläre weiterhin, bei der Erstellung der Arbeit die einschlägigen Bestimmungen zum Urheberschutz fremder Beiträge entsprechend den Regeln guter wissenschaftlicher Praxis eingehalten zu haben. Soweit meine Arbeit fremde Beiträge (z.B. Bilder, Zeichnungen, Textpassagen etc.) enthält, habe ich diese Beiträge als solche gekennzeichnet (Zitat, Quellenangabe) und eventuell erforderlich gewordene Zustimmungen der Urheber zur Nutzung dieser Beiträge in meiner Arbeit eingeholt. Mir ist bekannt, dass ich im Falle einer schuldhaften Verletzung dieser Pflichten die daraus entstehenden Konsequenzen zu tragen habe.

litter Huffman

Ort, Datum, Unterschrift

Kurzzusammenfassung

Für das Projekt Biliquid launch and Space Technology (BLAST) der Hochschulgruppe Hybrid Engine Development (HyEnD) wird eine neue, kompakte und hochleistungsfähige Avionik entwickelt, die unter extremen Flugbedingungen arbeitet. Die in dieser Arbeit entwickelte Kühlung muss leicht, zuverlässig, wiederverwendbar und für eine maximale Gehäusetemperatur von $T_{\rm C} \leq 89,15\,^{\circ}{\rm C}$ für die gesamte Flugdauer ausgelegt sein. Basierend auf den Anforderungen und Flugbedingungen wurden drei Konzepte untersucht: reiner Radiator, reines Phase Change Material (PCM) und eine hybride Radiator-PCM-Lösung. Die Vorauslegung ergab, dass ein Radiator wegen Aerodynamischer Aufheizung ungeeignet ist. Die hybride Lösung ist möglich, jedoch durch geometrische Verluste und hohe Luftwärmeströme der Vorauslegung nach mit 4,177 kg schwerer als ein einfaches PCM mit 0,347 kg. Simulationen der Außenströmung und des PCM bestätigten trotz angenommener Vereinfachungen die Vorauslegungsergebnisse mit einer Masse des hybriden Radiator-PCM von 1,625 kg.

Abstract

For the BLAST project of the HyEnD university group, a new, compact, and high-performance avionics system is being developed to operate under demanding flight conditions. The cooling system developed in this work must be lightweight, reliable, reusable, and designed for a maximum case temperature of $T_{\rm C} \leq 89,15\,^{\circ}{\rm C}$ for the entire flightduration. Based on the requirements and flightconditions, three concepts were investigated: pure radiator, pure PCM, and a hybrid radiator-PCM solution. Preliminary design showed that a radiator is unsuitable due to aerodynamic heating. The hybrid solution is feasible but, according to the preliminary design, heavier at 4,177 kg due to geometric losses and high convective heat flux than a simple PCM at 0,347 kg. Simulations of the external flow and the PCM confirmed the preliminary design results despite assumed simplifications with a mass of the hybrid radiator PCM of 1,625 kg.

Inhaltsverzeichnis

K	urzzı	usammenfassung	Ι
\mathbf{A}	bbild	lungsverzeichnis	\mathbf{V}
Ta	abell	enverzeichnis	VII
Sy	mbo	olverzeichnis	VIII
1	Ein	führung	1
	1.1	Darstellung des Problems	1
	1.2	Zielsetzung der Arbeit	2
	1.3	Lösungsweg	
2	Gru	ındlagen	3
	2.1	Sensible Wärme	3
	2.2	Latente Wärme	3
	2.3	Wärmeübertragung	4
		2.3.1 Wärmestrahlung	4
		2.3.2 Wärmeleitung	5
		2.3.3 Konvektion	5
	2.4	Simulation	7
3	Vor	auslegung	10
	3.1	Anforderungen	10
	3.2	Thermales Interface	12
		3.2.1 Heatpipes	12
		3.2.2 Thermal Straps	13
	3.3	PCM	13
	3.4	Radiator	15
	3.5	PCM-Radiator-Hybrid	16
4	Sim	ulation	20
	4.1	CFD	20
	12	Agradynamischa Aufhaizung	21

	4.3 PCM	26
5	Discussion and conclusions 5.1 Discussion about including pictures	31
6	Zusammenfassung und Ausblick	32
$\mathbf{A}_{\mathbf{J}}$	ppendix	35

Abbildungsverzeichnis

3.1	Flugdaten der Trajektoriensimulation	12
3.2	Kommerzeill erhältliche Thermal Straps aus Graphen, Kupfer und	
	Aluminium [3]	13
3.3	PCM Wärmestrom ohne aerodynamische Aufheizung	17
3.4	PCM Wärmestrom bei aerodynamischer Aufheizung	17
3.5	Kontourlänge vom Staupunkt der Rakete bis zum Mittelpunkt des	
	Radiators	17
3.6	Dimensionierungs-Ablauf in der Vorauslegung	18
3.7	Reynolds- und Prandtlzahl während kritischer Phase im Flug	19
3.8	PCM Wärmestrom während Flug	19
4.1	PCM Struktur und vereinfachtes Mesh	20
4.2	Darstellung der Außensströmungssimulation mit Meshstruktur in grau,	
	velocity inlet in blau, pressure outlet in rot, Symmetrien in gelb und	
	Partitionen der parallelisierung in lila	22
4.3	Schichtaufdickungen des Mesh an der Rakete	22
4.4	Spezifischer Wärmestrom an der Außenhaut bei maximalem dynami-	
	schen Druck, sowie 10 s davor, danach und 20 s danach	23
4.5	y+ Wert an der Außenhaut bei Maximaler dynamischer Druck (max Q),	
	sowie 10 s davor, danach und 20 s danach	24
4.6	PCM Wärmestrom während Flug mit Simulationsergebnissen und Fit	
	Kurve	25
4.7	max Q Konturen der Luft	26
4.8	Effektive spezifische Wärmekapazität von Eicosane	27
4.9	Sensible spezifische Wärmekapazität von Eicosane	27
4.10	Approximiertes Beschleunigungsprofil	28
4.11	Flüssigkeitsanteil Konturen. Die Legende bezieht sich auf $4.11\mathrm{d}$	29
4.12	Konturen der statischen Temperatur. Die Legende bezieht sich auf $4.12\mathrm{d}$	29
4.13	Geschwindigkeitsvektoren der Konvektionswirbel einer, durch Nachbe-	
	arbeitung, vervollständigten Zelle bei 900 s. Darstellung der weiteren	
	Zeitschritte ist in 6.5 zu finden.	30
6.1	Radiator Leistung nach Fläche und Temperatur	35

6.2	PCM Auslegung	36
6.3	Statische Temperaturkontur der Luft	40
6.4	Machzahlkontur der Luft	41
6.5	Konturen der statischen Temperatur. Die Legende bezieht sich auf 4.12d	42

Tabellenverzeichnis

3.1	Leistung der Avionik	11
3.2	Stoffdaten für Eicosane	14
3.3	AZ-93 Spezifikationen [1]	15

Symbolverzeichnis

Lateinische Symbole

T	K	Temperatur
c	$\rm Jkg^{-1}K^{-1}$	Spezifische Wärmekapazität
h	$\rm Jkg^{-1}$	Spezifische Schmelzenthalpie
Q	J	Wärme
\dot{Q}	W	Wärmestrom
\dot{q}	${ m Wm^{-2}}$	Wärmestromdichte
m	kg	Masse
A	m^2	Fläche
S	${ m N}{ m m}^{-3}$	Quellterm

Griechische Symbole

ho	${\rm kgm^{-3}}$	Dichte
λ	${ m W}{ m m}^{-1}{ m K}^{-1}$	Wärmeleitfähigkeit
γ	K^{-1}	Flüssigkeitsanteil
β		Wärmeausdehnungskoeffizient
ε		Emissionsgrad
α		Absorptionsgrad
∇		Nablaoperator

Indizes

solidus	Solidus Punkt des Phasenwechsels
liquidus	Liquidus Punkt des Phasenwechsels
solid	Feststoff Eigenschaften
liquid	Flüssigstoff Eigenschaften
fus	Schmelz Phasenwechsel

Verzeichnisse & Nomenklatur

safety	Mit Sicherheitsfaktor 1.5
total	Totalgröße
p	Konstanter Druck
J	Sperrschicht
C	Gehäuse
f	Freistrom
W	Wand
t	Spektral integriert
S	Solar
X	Lokale Größe
r	Recovery Größe
a	adiabat

Konstanten

σ	$5,67 \cdot 10^{-8} \mathrm{W}\mathrm{m}^{-2}\mathrm{K}^{-4}$	Stefan-Boltzmann-Konstante
κ	1,40	Isentropenexponent der Luft
η_0	$18,27 \cdot 10^{-6} \mathrm{Pa} \mathrm{s}$	Sutherlands-Formel Referenzviskosität
T_0	$291,\!15\mathrm{K}$	Sutherlands-Formel Referenztemperatur
C	$120\mathrm{K}$	Sutherland Konstante

Abkürzungen

PCM Phase Change Material

PCB Printed Circuit Board

BLAST Biliquid launch and Space Technology

FCC Flight Control Computer

HyEnD Hybrid Engine Development

CFD Computational Fluid Dynamics

CHT Conjugate Heat Transfer

PGS Pyrolithic Graphite Sheet

max Q Maximaler dynamischer Druck

GSE Ground Support Equipment

PCDU Power Control and Delivery Unit

ATM Avionik-Thermal-Management

ROM Reduced Order Model

UDF User Defined Function

1 Einführung

Die Avionik ist ein Grundstein jeder erfolgreichen Experimentalrakete. Ob es hierbei um Telekommunikation, Datenerfassung oder auch aktive Steuerung und Regelung von Instrumenten und dem Fahrzeug während des Flugs geht, kompakte Hochleistungsmikroelektronik ist immer gefragt und muss oft redundant ausgeführt sein. Diese Elektronik, die zudem noch extremen Bedingungen ausgesetzt wird, kommt jedoch mit einer substanziellen Wärmeleistung und Wärmestromdichte die, bei mangelhafter Rücksicht zu reduzierter Lebensdauer der Avionik führt, oder sogar die Mission frühzeitig scheitern lässt.

Diese Arbeit befasst sich mit der lösung des dargestellten problems für das Projekt BLAST der studentischen Hochschulgruppe HyEnD wo eine neue Avionik entwickelt wird und ein Avionik-Thermal-Management (ATM) benötigt wird.

1.1 Darstellung des Problems

Das Thermal-Problem einer Experimentalrakete beginnt bereits lange vor dem eigentlichen Start. Oft muss nach integration und Befestigung der Rakete auf der Startvorrichtung und Verbindung mit dem Ground Support Equipment (GSE) noch einige Stunden auf das Startfenster gewartet werden. Während dieser Zeit steht die Rakete der Umwelt ausgesetzt in der Sonne und kann, je nach Bedingungen unzulässige Temperaturen für Elektronik erreichen. Da in dieser Phase eine Verbindung mit dem GSE besteht kann Masse durch externe Kühlung währenddessen eingespart werden, weshalb in dieser Arbeit nur für die darauf folgende Flugphase das ATM entwickelt werden soll. Da BLAST für ein Apogäum über der Kármán-Linie (100 km) entwickelt wird, sind während dem Flug extreme Umweltbedingungen durch Aerodynamische Aufheizung, mikrogravitation und annäherndes Vakuum zu erwarten, die ein komplexes ATM fordern.

In der Vergangenheit wurde bei HyEnD oft die Avionik ohne Redundanz oder

Einführung 1.3 Lösungsweg

zusammen mit fertig gekaufter Avionik, für missionskritische Aufgaben wie den Fallschirm-Auswurf, ausgeführt. Beim Projekt BLAST soll das vermieden werden, indem der selbst entwickelte Flight Control Computer (FCC) in Dual Duplex Redundanz ausgelegt wird. Dementsprechend gibt es vier Computer die die selben Programme ausführen und den vierfachen Stromverbrauch gegenüber einfach ausgeführter Avionik haben. Hinzu kommen weitere Kameras, Funkplatinen, Verstärker, Sensorplatinen etc. die jedoch keine redundante Ausführung haben.

1.2 Zielsetzung der Arbeit

Da es sich beim ATM um ein unterstützendes Subsystem handelt, soll besonders hohe Zuverlässigkeit gewehrleistet werden, da trotz der Redundanz des FCC ein Ausfall der Kühlung zum Ausfall durch Überhitzung führen kann.

Des weiteren ist Wiederverwendbarkeit, Kosten minimieren und besonders komplexe Integrations- und Vorbereitungsvorgänge vermeiden eine Priorität.

Als letzte Anforderung, nach einer Auswahl basierend auf den ersten beiden, soll wegen des begrenzten Massenbudgets der Avionik besonders auf Leichtbau geachtet werden und die Masse des ATM soweit wie möglich minimiert werden.

1.3 Lösungsweg

Um ein geeignetes ATM zu entwickeln wird zunächst eine Auswahl an etablierten Lösungen aus der Luft- und Raumfahrtindustrie getroffen, die die gestellten Anforderungen erfüllen können.

Diese werden in der Vorauslegung mithilfe eines Reduced Order Model (ROM) in Python ausgewertet, um eine erste Abschätzung der Leistungsfähigkeit zu erhalten. Anschließend wird die Vorauslegung, soweit mit vorhandenen Rechenressourcen möglich, durch Conjugate Heat Transfer (CHT)-Simulationen mit Domänenreduktion verifiziert und vergleichbar gemacht.

2 Grundlagen

In diesem Kapitel werden die Thermodynamischen, Chemischen und Numerischen Grundlagen die in dieser Arbeit angewandt wurden aufgelistet und erläutert.

2.1 Sensible Wärme

Unter sensibler Wärme versteht man die Eigenschaft von Masse durch eine Temperaturänderung Wärmeenergie zu absorbieren oder abzugeben. Dieses Phänomen kann durch die Änderung der kinetischen Energie von den molekularen Teilchen im System erklärt werden. Durch das Einführen von Wärmeenergie in ein System steigt die kinetische Energie der Teilchen:

$$c = \frac{\Delta Q}{m \cdot \Delta T} \tag{2.1}$$

c beschreibt die spezifische Wärmekapazität, welche entweder bei konstantem Druck oder konstantem Volumen angegeben ist, Q ist die Wärmeenergie, m die Masse und T die Temperatur

Da Elektronik eine gewisse Eigenmasse hat und meist Teil einer größeren Baugruppe ist, gibt es durch die sensible Wärme eine Dämpfung zu Temperaturänderungen, welche jedoch zeitlich von der Wärmeleitfähigkeit der Materialien abhängt.

2.2 Latente Wärme

Im Gegenteil zur sensiblen Wärme ist latente Wärme, auch Umwandlungsenthalpie genannt, die Eigenschaft von Masse bei einem Phasenwechsel Wärmeenergie zu absorbieren oder abzugeben, ohne dass dabei die Temperatur sich ändert. Das ist durch die Erhöhung der potentiellen Energie der Teilchen, statt der kinetischen wie bei der sensiblen Wärme, zu verstehen. Effektiv erhöht sich die potentielle Energie durch

Änderung der Bindungszustände. Die Stoffkonstante der Umwandlungsenthalpie ist die spezifische Umwandlungsenthalpie h:

$$h = \frac{\Delta Q}{m} \tag{2.2}$$

Zu beachten ist, dass die Konvention der Schreibweise für die massenspezifische Fest-Flüssig Umwandlungsenthalpie spezifische Schmelzenthalpie ist, aber für die massenspezifische Flüssig-Gas Umwandlungsenthalpie nur Verdampfungsenthalpie ist.

Die latente Wärme ist für die meisten Materialien im Fest-Flüssig Übergang um mindestens den Faktor 10 größer als die sensible Wärme bei einem Grad Temperaturerhöhung. Genauso ist die Verdampfungsenthalpie vom Flüssig-Gas Übergang meist um etwa den Faktor 10 größer als die spezifische Schmelzenthalpie [2].

2.3 Wärmeübertragung

Um Wärme innerhalb von einem System günstig zu verteilen, oder die Energie aus dem System zu entfernen, gibt es drei Mechanismen.

2.3.1 Wärmestrahlung

Bei der Wärmestrahlung geben Teilchen beim aufnehmen oder abgeben kinetischer Energie eine Gewisse Menge an Energie in Form von Elektromagnetischer Strahlung ab. Da die Strahlungsleistung von der vierten Potenz der Temperatur abhängt, ist dieser Modus erst bei sehr hohen Temperaturen dimensionierend, kann jedoch im Vakuum dominant sein:

$$\dot{Q} = \sigma \varepsilon A T^4 \tag{2.3}$$

 \dot{Q} ist der Wärmestrom, σ die Stefan-Boltzmann-Konstante, ε der Emissionsgrad, welcher von der Wellenlänge abhängt, A die Fläche und T die Temperatur des Radiators.

2.3.2 Wärmeleitung

Bei der Wärmeleitung wird Wärme
energie in einem Körper durch diffusion der kinetischen Energie der Teil
chen verteilt. Die Wärmestromdichte \dot{q} in einem Temperaturg
radienten wird durch das Fourier-Gesetz beschrieben:

$$\vec{\dot{q}} = -\lambda \nabla T \tag{2.4}$$

Hier ist λ die Wärmeleitfähigkeit des Materials. Für eine eindimensionale Wand ergibt sich die Gleichung mit der Querschnittfläche A und der Dicke Δx zu:

$$\dot{Q} = \lambda A \frac{\Delta T}{\Delta x} \tag{2.5}$$

2.3.3 Konvektion

Bei der Konvektion wird Wärmeenergie durch Massenaustausch transportiert. Bei der erzwungenen Konvektion bekommt das Fluid durch äußere Kräfte eine relative Geschwindigkeit, die zum Massenaustausch führt. Andererseits resultiert bei der natürlichen Konvektion nur die eigene inhomogene Temperaturverteilung, durch beispielsweise eine anliegende heiße Wand, zu einem Temperaturanstieg und infolge dessen zu einem Dichteanstieg, der in einem Beschleunigungsfeld zu Auftriebskräften und automatischer Bewegung des Fluids führt. Für den Wärmeübergang zwischen Fluid und Festkörper ergibt sich:

$$\dot{Q} = \alpha A \Delta T \tag{2.6}$$

Hier ist α der Wärmeübergangskoeffizient. Für den spezifischen Wärmestrom zwischen Fluid und Wand folgt daraus:

$$\dot{q} = \alpha \left(T_{\infty} - T_{\rm w} \right) \tag{2.7}$$

Der Wärmeübergangskoeffizient α kann aus der Nußelt-Beziehung für Längsangeströmte ebene Platte genommen. Diese lautet für laminare Grenzschichten im Gültigkeitsbereich Re < Re $_k$ (Re $_k \approx 5 \cdot 10^5$) und $0, 6 \leq \Pr \leq 2000$:

$$Nu_x = \frac{\alpha_x x}{\lambda} = 0.332 \text{ Pr}^{\frac{1}{3}} \text{ Re}_x^{\frac{1}{2}}$$
 (2.8)

für turbulente Grenzschichten mit Gültigkeitsbereich: $5\cdot 10^7 \le \text{Re}_L \le 10^7$ und $0,6 \le \text{Pr} \le 2000$ lautet die Gleichung:

$$Nu_x = \frac{\alpha_x x}{\lambda} = 0.0296 \text{ Re}_x^{0.8} \text{ Pr}^{\frac{1}{3}}$$
 (2.9)

Für die Reynolds-Zahl und Prandtl-Zahl werden die folgenden zwei Gleichungen verwendet:

$$\operatorname{Re}_{x} = \frac{V\rho x}{\eta}$$
 (2.10) $\operatorname{Pr} = \frac{c_{p}\eta}{\lambda}$

Die Dynamische Viskosität η wird mittels der Sutherlands-Formel berechnet, wobei η_0 , C und T_0 Konstanten für Luft sind:

$$\eta = \eta_0 \frac{T_0 + C}{T_\infty + C} \left(\frac{T_\infty}{T_0}\right)^{\frac{2}{3}} \tag{2.12}$$

Eine Strömung ist im Überschallbereich, wenn ihre Machzahl größer als 1 ist:

$$Ma = \frac{U}{a} \tag{2.13}$$

Wobei U die Strömungsgeschwindigkeit und a die lokale Schallgeschwindigkeit ist. Im Überschallbereich treten verschiedene Effekte durch die Kompressibilität der Strömung auf, wie große Unterschiede in Dichte, Temperatur und Druck.

Äußern tun sich diese Effekte durch Stoßwellen mit sprunghaftem Anstieg der Größen, Expansionsfächer mit Abfall der Größen und Temperaturerhöhungen durch die adiabate Kompression der Luft. Die in einer Grenzschicht erreichte Temperatur durch Reibung ist immer kleiner als die Totaltemperatur $T_{\infty} < T_r < T_{\text{total}}$, da die kinetische Energie nur teilweise in innere Energie umgewandelt wird und somit mit dem Recovery-Faktor r skaliert ist:

$$T_r = T_\infty \left(1 + r \frac{\kappa - 1}{2} \text{Ma}^2 \right) \tag{2.14}$$

Der Recovery-Faktor kann mittels der folgenden Gleichung berechnet werden:

Grundlagen 2.4 Simulation

$$r = \frac{2}{(\kappa - 1) \operatorname{Ma}_{\infty}^{2}} \left(\frac{T_{\operatorname{aw}}}{T_{\infty}} - 1 \right) \approx \begin{cases} \sqrt[3]{\operatorname{Pr}} & \text{für turbulente Grenzschicht} \\ \sqrt{\operatorname{Pr}} & \text{für laminare Grenzschicht} \end{cases}$$
(2.15)

In einer kompressiblen Strömung bei Ma > 0.3 wird somit T_{∞} aus 2.7 zu $T_{\rm r}$:

$$\dot{q} = \alpha \left(T_r - T_w \right) \tag{2.16}$$

2.4 Simulation

Aerodynamische Aufheizung

Die numerische Strömungssimulation (Computational Fluid Dynamics (CFD)) ist ein Verfahren zur Berechnung von Strömungs- und Wärmeübergangsprozessen mithilfe numerischer Methoden. CFD erlaubt die Untersuchung komplexer Geometrien und Betriebsbedingungen, die experimentell nur schwer oder gar nicht möglich sind. Ziel ist es, die Navier-Stokes-Gleichungen in differentieller Form auf einer diskreten Gitterstruktur zu lösen. Diese Erhaltungsgleichungen sind die Massenerhaltung:

$$\frac{\delta\rho}{\delta t} + \nabla\left(\rho\vec{u}\right) = 0\tag{2.17}$$

Impulserhaltung:

$$\frac{\delta(\rho \vec{u})}{\delta t} + \nabla(\rho \vec{u}\vec{u}) = -\nabla p + \nabla \tau + \rho \vec{g}$$
 (2.18)

und Energieerhaltung:

$$\frac{\delta(\rho \vec{u})}{\delta t} + \nabla[(\rho E + p)\vec{u}] = \nabla(k\nabla T) + \Phi$$
 (2.19)

Hier sind ρ die Dichte, \vec{u} der Geschwindigkeitsvektor, p der statische Druck, τ der Spannungstensor, \vec{g} die Gravitationsbeschleunigung, E die spezifische Gesamtenergie, T die Temperatur, k die Wärmeleitfähigkeit und Φ der viskose Dissipationsterm.

Grundlagen 2.4 Simulation

PCM

Um Temperatur- und Phasenabhängige Eigenschaften für die CHT-Simulation von PCM darzustellen, sowie Zeitabhängige Auftriebsterme, kommen weitere Modelle dazu, die in ANSYS Fluent nicht implementiert sind. Dafür wird eine in C programmierte User Defined Function (UDF) verwendet, die in Fluent direkt importiert und kompiliert werden kann. Die Boussinesq-Approximation modelliert den Auftrieb infolge von geringen Dichteänderungen. Für den Auftrieb in dem Impulsterm ergibt sich somit [5]:

$$S = -\rho_0 g_{\text{eff}}(t) \beta (T - T_0) \tag{2.20}$$

Hierbei ist S der Quellterm, β der Wärmeausdehnungskoeffizient, $g_{\text{eff}}(t)$ die effektive, Zeitabhängige Beschleunigung, T_0 und ρ_0 die Referenz-Temperatur und Dichte. Diese Approximation kann den Rechenaufwand erheblich verringern und ist für folgende Bedingungen gültig:

$$\frac{\Delta T}{T_0} \ll 1 \qquad (2.21) \qquad \text{Ma} \ll 1 \qquad (2.22)$$

ANSYS Fluent verwendet zur Modellierung des Schmelzbereiches ein internes Enthalpy-Porosity-Modell, welches das PCM als poröses Material mit diskreter Festund Flüssigphase ansieht. Hierfür ist die Dichte ρ notwendig und kann in Abhängigkeit des Flüssigkeitsanteils γ berechnet werden. Zwischen der Dichte der Flüssig- und Feststoffphase wird linear interpoliert [5]:

$$\rho(\gamma) = (1 - \gamma) \rho_{\text{solid}} + \gamma \rho_{\text{liquid}} \qquad \gamma \in [0, 1]$$
(2.23)

Die spezifische Wärmekapazität ergibt sich im Schmelzbereich durch eine Dichtegewichtete Mischung [5]:

$$c_{p}(T) = \begin{cases} c_{p,\text{solid}}, & T < T_{\text{solid}}, \\ \frac{(1-\gamma)\rho_{\text{solid}}c_{p,\text{solid}} + \gamma\rho_{\text{liquid}}c_{p,\text{liquid}}}{(1-\gamma)\rho_{\text{solid}} + \gamma\rho_{\text{liquid}}}, & T_{\text{solid}} \leq T \leq T_{\text{liquid}}, \\ c_{p,\text{liquid}}, & T > T_{\text{liquid}}. \end{cases}$$
(2.24)

Die Wärmeleitfähigkeit λ im Schmelzbereich hingegen lässt sich direkt berechnen [5]:

Grundlagen 2.4 Simulation

$$\lambda(\gamma) = (1 - \gamma) \lambda_{\text{solid}} + \gamma \lambda_{\text{liquid}}$$
 (2.25)

Die Dynamische Viskosität η wird hier, anders als für Luft in der Vorauslegung 2.12, mittels eines empirischen Polynomfit [5] abhängig von der Temperatur berechnet:

$$\eta(T) = (9 \times 10^{-4} \, T^2 - 0.6529 \, T + 119.94) \times 10^{-3} \tag{2.26}$$

In der verwendeten Software ANSYS Fluent werden diese Gleichungen über die Finite-Volumen-Methode gelöst. Dabei werden die Erhaltungsgleichungen über diskrete Kontrollvolumina integriert, wodurch für jede Zelle ein algebraisches Gleichungssystem entsteht. Dieses wird iterativ gelöst, bis vorgegebene Konvergenzkriterien erfüllt sind.

3 Vorauslegung

Die Flugdaten kommen aus einer Trajektoriensimulation aus dem Simulationsprogramm OpenRocket, welche vom Triebwerk-Subsystem durchgeführt wurde. Diese Flugdaten (3.1) sind eine Maximalabschätzung der Schubkraft und Dauer mit 8 kN für 43 s, welche in maximaler Flugdauer und Aerodynamischen Aufheizung resultieren.

3.1 Anforderungen

Da die Kühlung zeitgleich zu der Avionik entwickelt wurde, musste auf eine genaue Analyse aller Komponenten der Avionik verzichtet werden. Stattdessen wurde anhand des bereits festgelegten Microcontrollers STM32H743ZGT6, der auf den redundanten Flugcomputern verwendet wird, die Auslegung durchgeführt. Aus dem Datenblatt des Microcontrollers folg eine maximale Sperrschichttemperatur von $T_{\rm J}=125\,^{\circ}{\rm C}$ [4] und ein Sperrschicht-Gehäuse Wärmeleitwiederstand von $\Theta_{\rm JC}=23,9\,^{\circ}{\rm C}\,{\rm W}^{-1}$ [4]. Mit einem konservativen Sicherheitsfaktor von 1.5, um bisher unbekannte Bauteile zu berücksichtigen, folgt daraus $\Theta_{\rm JC,safety}=35,85\,^{\circ}{\rm C}\,{\rm W}^{-1}$ und eine maximale Gehäusetemperatur von $T_{\rm C}=89,15\,^{\circ}{\rm C}$. Im Kontext der Elektronik ist mit Gehäuse immer die Oberseite der elektronischen Komponente gemeint. Die Kühlung soll außerdem eine hohe Zuverlässigkeit haben, welche durch Verwendung von ausschließlich passiven Bauteilen gewehrleistet wird. Dadurch kann aufwendiges und teures testen und verifizieren von aktiven Bauteilen mit mechanischer oder elektrischer Funktion vermieden werden und es besteht bei nicht nominalen Flügen eine geringere Ausfallwahrscheinlichkeit durch die inherent größeren Toleranzen passiver Bauteile.

Dem Energieerhaltungssatz nach haben der FCC, die Kameras und weitere Elektronik die keine Leistung abgibt, gegenüber etwa der Power Control and Delivery Unit (PCDU) und Funkplatine welche Leistung in Form von Strom und elektromagnetischer Strahlung abgeben, einen Wirkungsgrad von 0 %, da Logikoperationen physikalisch gesehen keine Arbeit sind. Resultierend wird der komplette Stromverbrauch in Wärme umgewandelt.

Tabelle 3.1: Leistung der Avionik

Komponente	Spannung & Strom	Wirkungsgrad	Wärmestrom
STM32H743ZGT6	$V_{\rm DD} = 3.3 \mathrm{V},$	$\approx 0 \%$	$1,769{ m W}$
÷	$I_{\rm DD} = 536 \mathrm{mA} [4]$		
$Q_{ m ges}$			7,075 W
RunCam Split 4 V2	$V_{\rm DD} = 5 \mathrm{V},$	$\approx 0\%$	$2,\!25\mathrm{W}$
	$I_{\rm DD} = 450 \mathrm{mA} [11]$		
Q_{ges}			9 W
Thebe-II	$V_{\rm DD} = 3.6 \mathrm{V},$	$\approx 30\% [13]$	$1.3\mathrm{W}$
	$I_{\rm DD} = 500 \mathrm{mA} [13]$		
PCDU		$\approx 30 \%$	9,3 W
$\dot{Q}_{ m ges, \ safety}$			40 W

Die Leistung der Avionik 3.1 ergibt sich durch den Maximalverbrauch der FCC mikrocontroller bei maximaler clock rate $(400\,\mathrm{MHz})$ und vollständig aktiver Peripherie, der Kameras und einer Abschätzung der restlichen Komponenten ohne Quellenangabe. Der aus 3.1 resultierende gesamten Wärmestrom der Avionik mit $40\,\mathrm{W}$ ist mit einem gewöhnlichen Laptop vergleichbar.

Abbildung 3.1: Flugdaten der Trajektoriensimulation

3.2 Thermales Interface

3.2.1 Heatpipes

Hetpipes

Vorauslegung 3.3 PCM

3.2.2 Thermal Straps

Um das Printed Circuit Board (PCB) mit der Heatpipe zu verbinden werden Thermal Straps aus verschiedenen Materialien analysiert. Thermal Straps sind flexible Verbindungsteile die Wärmebrücken zwischen mehreren Bauteilen gewehrleisten. Wegen der hohe Wärmeleitzahl von Pyrolithic Graphite Sheet (PGS) und bedonders für Thermal Straps wichtigen Flexibilität, sind diese eine interessante Option. Ein Nachteil von PGS ist die geringe Dicke und der daraus resultierende geringe Querschnitt, welcher trotz hoher Wärmeleitzahl zu hoher Wärmestromdichte und stärkerer Temperaturerhöhung führen kann. Im Vergleich mit herkömmlichen Materialien wie Aluminium und Kupfer soll ein Vergleich gezogen werden.

Abbildung 3.2: Kommerzeill erhältliche Thermal Straps aus Graphen, Kupfer und Aluminium [3]

3.3 PCM

PCM mit Fest-Flüssig Übergang sind eine weit verbreitete Lösung in der Luft- und Raumfahrtindustrie um für für begrenzte Zeiträume Elektronik in einem akzeptablen Temperaturbereich zu halten. Auch wenn PCM Lösungen generell eine hohe Masse haben, wird das oft aufgrund der ansonsten idealen Eigenschaften inkauf genommen. Durch die hohe spezifische Schmelzenthalpie, kann rein passiv eine große Wärmemenge, bei einem isothermen Prozess, absorbiert werden. Aufgrund dessen kann ein von der Umwelt isoliertes ATM entwickelt werden, das nicht mit stark schwankenden Zuständen der Sonneneinstrahlung und Lufttemperatur zurecht kommen muss. Auch wenn PCM im Flüssig-Gas Übergang meist eine etwa 10-fach höhere Verdampfungsenthalpie haben, werden diese generell nicht verwendet, da der Dichteunterschied zwischen Flüssig- und Gasphase zu extremen Drücken führen würden, falls Wiederverwendbarkeit verlangt wird und somit ein Druckkörper nötig ist. Alternativ kann

Vorauslegung 3.3 PCM

die Gasphase auch aus dem Fahrzeug abgelassen werden in einem Prozess der Vapour Venting genannt wird. Hierbei geht jedoch die Wiederverwendbarkeit verloren, da vor jedem Start die Flüssigphase neu getankt werden muss. Weiter kann das Venting trotz der geringen Massenströme zu Momenten führen, die das Fahrzeug destabilisieren; besonders im Überschallbereich können unintuitive Momente entstehen [7], die aufwendige CFD-Simulationen oder Tests benötigen. Dementsprechend wird nur ein Fest-Flüssig PCM analysiert.

Für die Auswahl eines geeigneten PCM sind spezifische Schmelzenthalpie, Schmelztemperatur und Wärmeleitfähigkeit am wichtigsten. Letzteres kann jedoch durch Lamellen oder ähnliche Strukturen, zur Verbesserung der Wärmeleitfähigkeit durch das komplette PCM verbessert werden, wobei dabei PCM Masse mit Strukturmasse ersetzt wird und somit die Wärmekapazität verringert. Das Volumen der Wärmeleitenden Struktur welches PCM ersetzt wird Void Fraction genannt, da es gewissermaßen eine Leerstelle im PCM bildet, die keine latente Wärmeaufnahme hat. Hier wird ein Void Fraction von F=0.1 todo

Die Thermodynamischen Eigenschaften von Eicosane, aufgeführt in Tabelle 3.2, wurden aus mehreren Quellen entnommen.

Tabelle 3.2: Stoffdaten für Eicosane

Solidus Temperatur	$T_{ m solidus}$	309 K [10]
Liquidus Temperatur	$T_{ m liquidus}$	311 K [10]
Spezifische Wärmekapazität bei konstantem Druck der Flüssigphase	$c_{p, m liquid}$	$2350,05\mathrm{Jkg^{-1}K^{-1}}$ [10]
Spezifische Wärmekapazität bei konstantem Druck der Feststoffphase	$c_{p, m solid}$	$2132.4 \mathrm{Jkg^{-1}K^{-1}}$ [10]
Dichte der Flüssigphase	$ ho_{ m solid}$	$910 \mathrm{kg} \mathrm{m}^{-3} \left[9\right]$
Dichte der Feststoffphase	$ ho_{ m liquid}$	$769 \mathrm{kg} \mathrm{m}^{-3} [9]$
Wärmeleitfähigkeit der Flüssigphase	$\lambda_{ m liquid}$	$0.1505\mathrm{Wm^{-1}K^{-1}}$ [6]
Wärmeleitfähigkeit der Feststoffphase	$\lambda_{ m solid}$	$0,4248\mathrm{Wm^{-1}K^{-1}}$ [12]
Wärmeausdehnungskoeffizient	β	$0,0009\mathrm{K^{-1}}$ [6]
Spezifische Schmelzenthalpie	$h_{ m fus}$	$240998,86\mathrm{Jkg^{-1}}$ [10]

Die pcm masse und kapazität kontour sieht man im anhang

Vorauslegung 3.4 Radiator

```
# aluminium density [kg*m^-3]
  rho_alu = 2700
  rho_pcm = 788
                      # pcm density [kg*m^-3]
                      # pcm latent heat [J*kg^-1]
          = 240998.9
3
  F
           = 0.1
                        void fraction
4
                      # wall thickness [m]
           = 0.001
5
6
  def total_mass(L, H): # pcm mass including case and fins
       return (rho_alu * (L**2 * H - (L - 2*t)**2 * (H - 2*t))
8
               + (F * rho_alu + (1 - F) * rho_pcm) * (L - 2*t)
9
                  **2 * (H - 2*t))
10
  def total_heat(L, H): # pcm latent heat capacity
11
12
                = (1 - F) * rho_pcm * (L - 2*t)**2 * (H - 2*t)
       pcm_heat
13
          * h
       return pcm_heat
14
```

Listing 3.1: Berechnung der Masse und Latenten Wärmekapazität des PCM in der pcm.py

3.4 Radiator

Bei Radiatoren ist ein hoher Emissions- und niedriger Absorptionsgrad nach 2.3 dimensionierend, da die Temperatur den Anforderungen nach limitiert ist und die Fläche minimiert werden muss, da diese proportional zu eingehende Wärmeströmen aus der Umgebung ist, welche auch möglichst gering gehalten werden müssen.

Als Beschichtung wurde AZ-93 der Firma AZ Technology LLC. [1] ausgewählt. Dabei handelt es sich um eine in der Raumfahrt weit verbreitete inorganische Farbe mit idealen Eigenschaften, welche Tabelle 3.3 entnommen werden können. In 6.1 sieht man für die ausgewählte Beschichtung die Leistung eines Radiators bei gegebener Temperatur und Fläche. Durch in 3.5 analysierte Wärmeströme, würde es bei nutzung eines einfachen Radiators schnell zur Überhitzung der Avionik kommen.

Tabelle 3.3: AZ-93 Spezifikationen [1]

$arepsilon_{ m t}$	0.91 ± 0.02
$lpha_{ m s}$	0.15 ± 0.02
Temperaturbereich	−180 °C bis 1400 °C

Die konturen des Radiators können im Anhang gefunden werden

3.5 PCM-Radiator-Hybrid

Eine Hybridlösung wird auch in erwägung gezogen, um die Masse durch Nutzung eines Radiators zu minimieren, wobei wegen aerodynamischer Aufheizung für kurze Zeit ein PCM gebraucht werden könnte. Um eine umständliche Simulation mittels CFD zu vermeiden, wird die Außenkontour der Rakete von Spitze bis Avionik-Sektion, mit Hilfe der Nußelt-Beziehungen, als längsangeströmte ebene Platte angesehen, wie in Abbildung 3.5 dargestellt ist. Um zu wissen, ob hier die Beziehung für laminare oder turbulente Grenzschichten angewandt werden soll, müssen zunächst die Gültigkeitsbereiche der Reynolds- und Prandtlzahl (2.11, 2.10) überprüft werden. Mittels der Nußelt-Beziehung wird α bestimmt und dann in Gleichung ?? eingesetzt, um auf den spezifischen Wärmestrom zu schließen.

Abbildung 3.3: PCM Wärmestrom ohne aerodynamische Aufheizung

 $\dot{Q}_{\mathrm{Radiator}} = \dot{Q}_{\mathrm{Umwelt}} + \dot{Q}_{\mathrm{Avionik}}$ In diesem Fall reicht die Leistung des Radiators, um die Avionik auf Betriebstemperatur zu halten.

Abbildung 3.4: PCM Wärmestrom bei aerodynamischer Aufheizung

Hier reicht die Leistung des Radiators nicht mehr aus und das PCM fängt an zu schmilzen. Zu beachten ist, dass die Leistung des Radiators durch die Temperaturerhöhung steigen würde, wegen des PCM jedoch sehen wir das System als isotherm an

Abbildung 3.5: Kontourlänge vom Staupunkt der Rakete bis zum Mittelpunkt des Radiators

In Abbildung 3.6 sieht man wie die Dimensionierung in den Programmen abläuft. Die Programme erzeugen alle Graphen und rechnen simultan für gegebenen Avionik Wärmestrom alle Werte aus.

Abbildung 3.6: Dimensionierungs-Ablauf in der Vorauslegung

Abbildung 3.7: Reynolds- und Prandtlzahl während kritischer Phase im Flug

Abbildung 3.8: PCM Wärmestrom während Flug

4 Simulation

4.1 CFD

Abbildung 4.1: PCM Struktur und vereinfachtes Mesh

Die Vorauslegungwurde mit folgenden Werten durchgeführt:

- Isotherm auf: 38 °C
- Avionik Abwärme: 40 W
- 1 m Kontourlänge
- Radiator Emissionsgrad: 0,91 (AZ-93)
- Radiator Absorptionsgrad: 0,15 (AZ-93)
- Icosane PCM
- Trajektoriensimulation
- $1\,\mathrm{kW}\,\mathrm{m}^{-2}$ mit 50% dutycycle durch Rotation der Rakete

Zu beachten ist, dass die Radiatorleistung konstant bleibt, da das System als iso-

therm mit einer infinitesimalen Temperaturerhöhung über den Schmelzpunkt hinweg angenommen wird.

Als nächstes sieht man die Flugdaten

4.2 Aerodynamische Aufheizung

Speziell für die Strömungssimulationen welche keine Koppelung mit Festkörpern haben, wurde der Density-Based Solver ausgewählt und die Simulation als 2D Steady State durchgeführt. Das Energiemodell wurde aktiviert und für das Viskositätsmodell [8]

Die Umströmungssimulationen der Rakete wurden an max Q orientiert, da es als Richtwert für Aerodynamische Aufheizung genommen werden kann. Desweiteren ist der Wert unanhängig von der Vorauslegung, wodurch Ungenauigkeiten von dort getroffenen Annahmen vermieden werden.

als nächstes habe ich geschaut wo der maximale dynamische Druck erreicht wurde in der Vorauslegung. Die korrespondierenden Werte des Flugzustandes habe ich dann als Boundery Conditions in der CFD Simulation genommen. Um zu verifizieren, dass dort auch die maximale Aufheizung stattfindet, habe ich 1 Sekunden vorher und nachder im Flug die BC's auch verwendet und einen Vergleich gezogen.

Maximaler dynamischer Druck: 112901.25708461029 Pa at 28.691 s

Entsprechender Flugzustand: 10244.138 m, 750.704 m/s, -51.587°C , 254.783 hPa mit entsprechender Luft Dichte $0,4006 \text{ kg/m}^3$

Flugzustand bei 18.691 s \max Q - 10 s: 4274.387 m, 461.355 m/s, -12.784, 594.935 hPa mit entsprechender Luft Dichte 0,7960 kg/m³

Flugzustand bei 38.691 s max Q + 10 s: 19758.652 m, 1189.968 m/s, -56.5°C, 56.93 h Pa mit entsprechender Luft Dichte 0,0915 kg/m³

Flugzustand bei 48.7 s max Q + 20 s: 32439.616 m, 1393.377 m/s, -43.269°C, 8.136 hPa mit entsprechender Luft Dichte $0.01233001\,\mathrm{kg/m^3}$

Da wie in 4.4 zu sehen ist, der Zeitpunkt des maximalen dynamischen Druckes nicht im größten spezifischen Wärmestrom resultiert, wurde mit der Simulation die den höheren spezifischen Wärmestrom ergeben hat, eine Lösungsfortsetzung durchgeführt um das Maximum zu finden.

Abbildung 4.2: Darstellung der Außensströmungssimulation mit Meshstruktur in grau, velocity inlet in blau, pressure outlet in rot, Symmetrien in gelb und Partitionen der parallelisierung in lila

Abbildung 4.3: Schichtaufdickungen des Mesh an der Rakete

Abbildung 4.4: Spezifischer Wärmestrom an der Außenhaut bei maximalem dynamischen Druck, sowie $10\,\mathrm{s}$ davor, danach und $20\,\mathrm{s}$ danach

Abbildung 4.5: y+ Wert an der Außenhaut bei \max Q, sowie 10 s davor, danach und 20 s danach

Abbildung 4.6: PCM Wärmestrom während Flug mit Simulationsergebnissen und Fit Kurve

Abbildung 4.7: \max Q Konturen der Luft

4.3 PCM

Um in ANSYS Fluent Temperaturabhängige Stoffeigenschaften zu implementieren müssen UDF verwendet werden. Zu der in 2.3.3 behandelten Bossinesq-Approximation ?? kommen noch

Abbildung 4.8: Effektive spezifische Wärmekapazität von Eicosane

Abbildung 4.9: Sensible spezifische Wärmekapazität von Eicosane

Abbildung 4.10: Approximiertes Beschleunigungsprofil

4.10 zeigt das Beschleunigungsprofil, welches in der Simulation verwendet wurde. Zu beachten ist, dass Beschleunigungsspitzen durch den Fallschirm, wie sie in 3.1a gesehen werden können, ignoriert werden, da diese in einer Überschätzung der Beschleunigung und der Konvektionsvorgänge resultieren würden.

Abbildung 4.11: Flüssigkeitsanteil Konturen. Die Legende bezieht sich auf $4.11\mathrm{d}$

Abbildung 4.12: Konturen der statischen Temperatur. Die Legende bezieht sich auf 4.12d

```
//Y-momentum source
  DEFINE_SOURCE(Boussinesq_momentum_source, cell, thread, dS, eqn)
2
  {
3
            double Temp, source, acc;
4
           Temp=C_T(cell,thread);
5
6
           double t = CURRENT_TIME;
            if (t < 20)
9
                     acc = 34.81;
10
            else if (t < 50)
11
                     acc = 109.81;
12
            else if (t < 150)
13
                     acc = 19.62;
14
            else
15
                     acc = 9.81;
16
17
            source=-Rol_pcm*acc*TEC*(Temp-Tr); //negative for -Y
18
                down
                                                                   //
           dS[eqn] = -Rol_pcm * acc * TEC;
19
               negative for -Y down
            return source;
20
21
```

Listing 4.1: Boussinesq-Approximation des Auftriebs im PCM in der UDF eicosane.c

Abbildung 4.13: Geschwindigkeitsvektoren der Konvektionswirbel einer, durch Nachbearbeitung, vervollständigten Zelle bei $900\,\mathrm{s}$. Darstellung der weiteren Zeitschritte ist in $6.5\,\mathrm{zu}$ finden.

5 Discussion and conclusions

5.1 Discussion about including pictures

6 Zusammenfassung und Ausblick

Beispielliteraturverweise:

- 1. Fachzeitschrift
- 2. Internetquelle
- 3. Buch
- 4. Vorlesungsskript

Anmerkung: Es gibt verschiedene Referenzierungsstile

Literaturverzeichnis

- [1] Az technology llc. VII, 15
- [2] Enthalpy of fusion and enthalpy of vaporization. https://chem.libretexts.org/Bookshelves/General_Chemistry/ChemPRIME_(Moore_et_al.)/10% 3A_Solids_Liquids_and_Solutions/10.10%3A_Enthalpy_of_Fusion_and_Enthalpy_of_Vaporization. 4
- [3] Thermal space and thermal straps. V, 13
- [4] Stm32h743zgt6 datasheet. https://www.st.com/en/microcontrollers-microprocessors/stm32h743zg.html, 2022-08-12. 10, 11
- [5] AKAM CAE. Phase change material simulation in ansys fluent (tutorial), 2023. Online tutorial. 8, 9
- [6] M. Benbrika, M. Teggar, M. Benbelhout, and K. A. R. Ismai. Numerical study of n-eicosane melting inside a horizontal cylinder for different loading rates. *International Journal of Heat and Technology*, 38, 2020. 14
- [7] Karen A. Deere, S. Paul Pao, and Khaled S. Abdol-Hamid. Computational analysis of ares i roll control system jet interaction effects on rolling moment. In *Proceedings of the 48th AIAA Aerospace Sciences Meeting*, Orlando, FL, January 2011. American Institute of Aeronautics and Astronautics. AIAA Paper 2011-0172. 14
- [8] Hugh Irving. An external CFD study of the HyEnD N2ORTH rocket. Master's thesis, University College Dublin, School of Mechanical & Materials Engineering, Dublin, Ireland, April 2021. Master's thesis. 21
- [9] V. M. Nazarychev, M. V. Subbotin, A. A. Ermakov, D. A. Khrustalev, A. N. Frolov, S. G. Ovchinnikov, A. V. Knyazev, A. V. Churakov, and A. V. Novikov. Cooling-rate computer simulations for the description of crystallization of organic phase-change materials. *International Journal of Molecular Sciences*, 23, 2022.

- [10] U.S. Secretary of Commerce. Nist chemistry webbook, 2025. 14
- [11] RunCam Technology Co., Ltd. Runcam split 4 v2 user manual, 2020. Product manual (PDF). 11
- [12] P. C. Stryker and E. M. Sparrow. Application of a spherical thermal conductivity cell to solid n-eicosane paraffin. *International Journal of Heat and Mass Transfer*, 99, 1990. 14
- [13] Würth Elektronik ei
Sos GmbH & Co. KG. User manual: Thebe-ii (order code 2609031181000), version 1.14, 2024. Radio module 868 MHz, up to $+27 \, \mathrm{dBm}$ TX power. 11

Appendix

Appendix A: Vorauslegung

Abbildung 6.1: Radiator Leistung nach Fläche und Temperatur

Abbildung 6.2: PCM Auslegung

```
//Modified UDF of the original source: https://akamcae.com/
     tutorials/phase-change-material-simulation-in-ansys-fluent
  #include "udf.h"
  #include "mem.h"
  //eicosane constant properties in solid phase
  #define Ros_pcm 910.0
  #define Cps_pcm 2132.4
  #define Ks_pcm 0.4248
8
  //eicosane constant properties in fluid phase
10
  #define Rol_pcm 769.0
11
  #define Cpl_pcm 2350.05
12
  #define Kl_pcm 0.1505
13
14
  //thermal expansion coefficient
15
  #define TEC 0.0009
16
17
  //solidus and liquidus temperatures of n-eicosane
18
  #define Ts 309.0
19
  #define Tl 311.0
21
  //reference temperature for Boussinesq's approximation
22
                                     //Fluent Tref must be equal
  #define Tr 310.0
     to Tr
24
  //density of PCM
25
  DEFINE_PROPERTY(Ro_var_PCM, cell, thread)
26
27
           double Gama, Ro_pcm;
28
           #if !RP_HOST
29
                    Gama=C_LIQF(cell,thread);
                    Ro_pcm = (1 - Gama) * Ros_pcm + Gama * Rol_pcm;
31
           #endif
32
           return Ro_pcm;
34
35
  DEFINE_SPECIFIC_HEAT(Cp_var_PCM,T,Tref,h,yi)
36
37
           double Gama, Cp_pcm;
38
           #if !RP_HOST
39
```

```
if (T<Ts) { Cp_pcm=Cps_pcm; } else if (T>=Ts
40
                         \&\&T <= T1)
                     {
41
                               Gama = (T-Ts)/(Tl-Ts);
42
                               Cp_pcm = ((1-Gama) * Ros_pcm * Cps_pcm + Gama
43
                                  *Rol_pcm*Cpl_pcm)/((1-Gama)*
                                  Ros_pcm+Gama*Rol_pcm);
                     }
44
                     else
45
                     {
46
                               Cp_pcm=Cpl_pcm;
47
                     }
48
                     *h=Cp_pcm*(T-Tref);
49
            #endif
            return Cp_pcm;
51
52
   //thermal conductivity of eicosane
54
  DEFINE_PROPERTY(K_var_PCM, cell, thread)
55
56
            double Gama, K_pcm;
57
            #if !RP_HOST
58
                     Gama=C_LIQF(cell,thread);
59
                     K_pcm = (1 - Gama) * Ks_pcm + Gama * Kl_pcm;
60
            #endif
61
            return K_pcm;
62
63
   //dynamic viscosity of PCM with fit
65
  DEFINE_PROPERTY(Mu_var_PCM, cell, thread)
66
   {
67
            double Temp, Mu_pcm;
68
            #if !RP_HOST
                     Temp=C_T(cell,thread);
70
                     Mu_pcm = (9*pow(10., -4)*pow(Temp, 2) - 0.6529*Temp
71
                         +119.94) *pow(10.,-3);
            #endif
72
            return Mu_pcm;
73
74
75
  DEFINE_SOURCE(Boussinesq_momentum_source,cell,thread,dS,eqn)
76
   {
77
            double Temp, source, acc;
78
```

```
Temp=C_T(cell,thread);
79
80
           double t = CURRENT_TIME;
81
82
           if (t < 20)
83
                    acc = 34.81;
            else if (t < 50)
85
                     acc = 109.81;
86
            else if (t < 150)
87
                    acc = 19.62;
88
            else
89
                    acc = 9.81;
90
91
            source=-Rol_pcm*acc*TEC*(Temp-Tr); //negative for -Y
92
               down
           dS[eqn]=-Rol_pcm*acc*TEC; //negative for -Y down
93
           return source;
  }
95
```

Listing 6.1: Vollständige PCM UDF eicosane.c

Appendix B: Simulation

Abbildung 6.3: Statische Temperaturkontur der Luft

Abbildung 6.4: Machzahlkontur der Luft

Abbildung 6.5: Konturen der statischen Temperatur. Die Legende bezieht sich auf $4.12\mathrm{d}$