Intercepts of the Quadratic

 $\triangle = \sqrt{b^2 - 4ac}$ Casel: $\triangle > 0$

Example 2.

 $y_{1,2} = \frac{-b \pm \sqrt{b^2 - 4 \, ac}}{2a}$ computes the y-intercepts of multiplicity 1. h(0) = c computes the single h-intercept.

Given a quadratic $h(y) = a y^2 + b y + c$ compute its discriminant \triangle :

 $\triangle=256>0$ $y_{1,2}=1,9$ h(0)=18 h-intercept.

 $h(y) = 2y^2 - 20y + 18$ compute its discriminant \triangle :

$$h(0) = 18$$
 $h-intercept.$

 $y_{1,2} = \frac{-b \pm \sqrt{b^2 - 4 \text{ ac}}}{2a} = \frac{-b \pm \theta}{2a} = \frac{-b}{2a}$ single y-intercept of multiplicity 2.

$\Delta = 0$ $y_{1,2} = 7,7$

 $h(y) = 3y^2 - 42y + 147$ compute its discriminant \triangle :

$h\left(y\right)=-9\ y^2-144\ y-640$ compute its discriminant \triangle : $\triangle=-2304<0$

However there is a h-intercept.

no y-intercepts.

Example 3.