Prediction of ozone level in Boston

Lucas Emanuel Resck Domingues

Lucas Machado Moscheb*

Predicting O3 in Boston

Load and visualize

Daily average level of O3 in Boston

Data treatment

We noticed that some days do not exist in the dataset, for example, the day August 31, 2001 does not have information in the dataset.

```
## 148 148 Boston Massachusetts 42 2001-08-28 0.024583
## 149 149 Boston Massachusetts 42 2001-08-29 0.015000
## 150 150 Boston Massachusetts 42 2001-08-30 0.022333
## 151 151 Boston Massachusetts 42 2001-09-01 0.021958
## 152 152 Boston Massachusetts 42 2001-09-02 0.018750
## 153 153 Boston Massachusetts 42 2001-09-03 0.028708
```

Also, there is duplicated days, as June 9, 2002:

^{*}Escola de Matemática Aplicada

```
## 412 412 Boston Massachusetts 42 2002-06-09 0.036190  
## 414 414 Boston Massachusetts 42 2002-06-09 0.037000  
## 415 415 Boston Massachusetts 42 2002-06-10 0.023389
```

The duplicated one is easier to deal, but the nan values are harder. First we calculate the mean value between the duplicated.

The rate of NA values is almost 5% of the dataset.

```
## [1] 0.04453367
```

So as to solve that problem, we make a knn imputation using the month (k = 30)

```
o3.clean <- knn.impute(as.matrix(o3.ts), k = 30)
o3.clean <- as.ts(o3.clean)
```

Models

Now we develop some models using the train data.

The metric to compare is the Mean Absolute Error (MAE) in the predictions:

```
mae <- function(error)
{
    mean(abs(error))
}</pre>
```

Decompose

Regression

Holt-Winters

 \mathbf{ARMA}