## GATE: EE - 59.2022

## EE23BTECH11013 - Avyaaz\*

**Question:** For the ideal AC-DC rectifier circuit shown in the figure below, the load current magnitude is  $I_{dc} = 15$  A and is ripple free. The thyristors are fired with a delay angle of 45°. The amplitude of the fundamental component of the source current, in amperes, is \_\_\_\_\_(Round off to 2 decimal places). (GATE 59 EE 2022)



## **Solution:**

| Parameter | Description  | Value |
|-----------|--------------|-------|
| $I_{dc}$  | Load current | 15A   |
| α         | Firing angle | 45°   |

TABLE 1

A symmetrical single phase semi converter is shown below,



The Fourier series representation of supply current is given by:

$$I_s(t) = \sum_{n=1,3,5}^{\infty} \frac{4I_{dc}}{n\pi} \cos \frac{n\alpha}{2} \sin \left(n\omega t - \frac{n\alpha}{2}\right)$$
 (1)

1









From Table 1:

$$(I_{s_1})_{peak} = \frac{4I_{dc}}{\pi} \cos\left(\frac{\alpha}{2}\right)$$

$$= \frac{4 \times 15}{\pi} \times \cos\frac{45^{\circ}}{2}$$

$$= 17.64A$$
(2)
(3)

$$= \frac{4 \times 15}{\pi} \times \cos \frac{45^{\circ}}{2} \tag{3}$$

$$= 17.64A \tag{4}$$