\star Spé - St Joseph/ICAM Toulouse \star

Math. - CC 1 - S1 - Algèbre

vendredi 06 octobre 2017 - Durée 1 h

Toutes les réponses seront justifiées. La notation tiendra compte du soin apporté à la rédaction.

Exercice 1

Première partie

Soit $n \in \mathbb{N}^*$ et $T \in \mathbb{C}[X]$ tel que $\operatorname{deg}(\mathbf{T}) = n$.

Si $P \in \mathbb{C}[X]$, on rappelle que la division euclidienne de $P(X^2)$ par T donne l'unique couple de polynômes (Q, R) tel que

$$P(X^2) = QT + R$$
 et $\deg(R) < \deg(T)$

Soit alors f l'application définie par :

$$\forall P \in \mathbb{C}[X], \quad f(P) = Q + X$$

avec Q et R précédemment définis.

- **1.** Montrer que f est un endomorphisme de $\mathbb{C}[X]$.
- **2.** Montrer que $\mathbb{C}_n[X]$ est stable par f. On note alors f_n l'endomorphisme induit.
- **3.** Dans cette question uniquement, n=2 et $T=X^2$.
 - a. Montrer que la matrice A de f_2 dans la base canonique de $\mathbb{C}_2[X]$ est :

$$A = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

- **b.** Calculer A^2 . En déduire que f_2 est bijective et donner son application réciproque.
- c. Préciser la nature de f_2 , ainsi que ses caractéristiques géométriques.

Deuxième partie

Soit $a \in \mathbb{C}$. Dans cette partie, n = 3 et $T = X^3 + X^2 + a$.

1. Montrer que la matrice B de f_3 dans la base canonique de $\mathbb{C}_3[X]$ est :

$$B = \begin{pmatrix} 0 & 0 & -1 & -a-1 \\ 1 & 0 & a+1 & 1+a+a^2 \\ 0 & 0 & -a & -a-1 \\ 0 & 1 & 1 & 2a+2 \end{pmatrix}$$

On admettra le résultat de la quatrième colonne.

- 2. Déterminer les valeurs de a pour laquelle l'application f_3 n'est pas bijective
- **3.** Dans cette question uniquement, a = -1.
 - a. Déterminer une base du noyau puis de l'image de f_3 .
 - **b.** Le noyau et l'image de f_3 sont-ils supplémentaires?

Fin de l'énoncé d'algèbre