Dropout is a special case of the stochastic delta rule: faster and more accurate deep learning

Radek Bartyzal

Let's talk ML in Prague

28. 2. 2019

Dropout

- add stochasticity = escape local minima
- removes hidden units according to a Bernoulli random variable with probability p prior to each update
- \implies gradient updates affect non-removed neurons only
- exponential number of networks averaged over updates
- ullet increase generalization by model averaging

Stochastic Delta Rule: Motivation

- neural transmissions involve noise
- neuron stimulated with same stimuli will never result in the same response
- $\bullet \ \ \text{smooth neural rate functions} = \text{averaging over many stimulation trials} \\$
- synapse between two neurons could be modeled with a distribution with fixed parameters

Stochastic Delta Rule: Idea

- each weight $w_{ij}=$ random variable with mean $\mu_{w_{ij}}$ and standard deviation $\sigma_{w_{ii}}$
- we assume Gaussian but can be other distr.
- weight random variable is sampled on each forward activation

Stochastic Delta Rule: Details

- exponential number of potential networks with shared weights
- Both parameters are updated according to prediction error
- ullet weight noise injections reflecting local history of prediction error = bigger error \Longrightarrow bigger σ
- ⇒ local model averaging
- model averaging may smooth out ravines in the error surface [Hinton]
- simulated annealing per weight
- each weight is updated based on its sampled contribution = gradient is a random variable

Stochastic Delta Rule: Update rules

Forward pass samples weights w_{ij}^* from $N(\mu_{w_{ij}}, \sigma_{w_{ij}})$:

$$S(w_{ij} = w_{ij}^*) = \mu_{w_{ij}} + \mu_{w_{ij}} \theta(w_{ij}; 0, 1)$$

Classic gradient update to mean:

$$\mu_{w_{ij}}(n+1) = \alpha(\frac{\partial E}{\partial w_{ij}^*}) + \mu_{w_{ij}}(n)$$

Bigger error \implies bigger $\sigma =$ increase temperature:

$$\sigma_{w_{ij}}(n+1) = \beta \left| \frac{\partial E}{\partial w_{ij}^*} \right| + \sigma_{w_{ij}}(n)$$

Exponentially lower $\sigma =$ lower temperature = converge:

$$\sigma_{w_{ij}}(n+1) = \zeta \sigma_{w_{ij}}(n+1), \zeta < 1.$$

◆ロト ◆母 ト ◆ 重 ト ◆ 重 ・ 釣 Q ②

Dropout is Stochastic Delta Rule

- Bernoulli random variable over many trials results in a Binomial distribution with mean np and standard deviation (np(1-p)).
- The random variable is the number of removals over learning
- Dropout = hidden unit Binomial sampling

Experiments

- DenseNet-40, DenseNet-100, DenseNet-BC 250
- original parameters kept
- dropout = 0.2
- \bullet α/LR dropping at 50% and 75% of the run
- around $\alpha = 0.25$, $\beta = 0.05$, $\gamma = 0.7$
- ullet annealed γ to reduce the influence of σ as the model converges
- σ updated twice every epoch, in the middle and at the end, for DenseNet-BC 250 and DenseNet-100 and after every batch for the others
- number of updates per epoch affects performance = new hyperparameter
- earlier layers have $\gamma = 0.9 * \gamma$

Table 1. Top-1 error validation rates at end of training of DenseNet-SDR compared to DenseNet with Dropout.

Dataset		
Model	CIFAR-10	CIFAR-100
DenseNet-40	6.88	27.88
(k=12)		
DenseNet-100	-	24.67
(k=12)		
DenseNet-BC 250	-	23.91
(k=12)		
DenseNet-40 with SDR	5.91	24.58
(k=12)		
DenseNet-100 with SDR	-	21.72
(k=12)		
DenseNet-BC 250 with SDR	-	19.79
(k=12)		

Table 2. Training losses of DenseNet-SDR compared to DenseNet with Dropout at end of training.

Dataset		
Model	CIFAR-10	CIFAR-100
DenseNet-40	1.85	10.01
(k=12) DenseNet-100	-	1.17
(k=12) DenseNet-BC 250	-	1.24
(k=12) DenseNet-40 with SDR	0.24	0.89
(k=12) DenseNet-100 with SDR	_	0.15
(k=12) DenseNet-BC 250 with SDR	_	0.11
(k=12)		

DN100 - Dropout vs Titrated SDR

Sources

1. Frazier-Logue, Noah, and Stephen José Hanson. "Dropout is a special case of the stochastic delta rule: faster and more accurate deep learning." arXiv preprint arXiv:1808.03578 (2018).

https://arxiv.org/pdf/1808.03578v2.pdf

Code: https://github.com/noahfl/sdr-densenet-pytorch