The Domain Name System

lwhsu (2020, CC-BY) ? (?-2019)

History of DNS

- ☐ What and Why is DNS?
 - IP is not easy to remember
 - Domain Name ↔ IP Address(es)
- ☐ Before DNS
 - ARPANET
 - ➤ HOSTS.txt contains all the hosts' information (/etc/hosts)
 - ➤ Maintained by SRI's Network Information Center
 - Register → Distribute DB
 - Problems: Not scalable!
 - > Traffic and Load
 - ➤ Name Collision
 - Consistency
- ☐ Domain Name System
 - Administration decentralization
 - Paul Mockapetris (University of Southern California)
 - ➤ RFC 882, 883 (1983) → 1034, 1035 (1984)

DNS Specification

- ☐ Tree architecture "domain" and "subdomain"
 - Divide into categories
 - ➤ Solve name collision
- ☐ Distributed database
 - Each site maintains segment of DB
 - Each site opens self information via network
- ☐ Client-Server architecture
 - Name servers provide information (Name Server)
 - Clients make queries to server (Resolver)

The DNS Namespace -(1)

- ☐ Domain name is
 - A inverted tree (Rooted tree)
 - > Root with label '.'
 - > Root with label " (Null)
- ☐ Domain and subdomain
 - Each domain has a "domain name" to identify its position in database
 - > domain:

nctu.edu.tw

> subdomain:

cs.nctu.edu.tw

The DNS Namespace -(2)

The DNS Namespace -(3)

- ☐ Domain level
 - Top-level / First level
 - ➤ Direct child of "root"
 - ➤ Maintained by ICANN (Internet Corporation for Assigned Names and Numbers)
 - Second-level
 - Child of a Top-level domain
- ☐ Domain name limitations (RFC1035: 2.3.4 "Size limits")
 - Up to 63-octets in each label
 - Up to 255-octets in a full domain name
 - ≥ 253 visible characters and 2 length bytes
 - What is the real maximum length of a DNS name?
 - https://devblogs.microsoft.com/oldnewthing/20120412-00/?p=7873

The DNS Namespace -(4)

- ☐ gTLDs (generic Top-Level Domains)
 - com: commercial organization, such as ibm.com
 - edu: educational organization, such as purdue.edu
 - gov: government organization, such as <u>nasa.gov</u>
 - mil: military organization, such as navy.mil
 - net: network infrastructure providing organization, such as hinet.net
 - org: noncommercial organization, such as \underline{x} .org
 - int: International organization, such as nato.int

The DNS Namespace -(5)

- ☐ New gTLDs launched in year 2000:
 - aero: for air-transport industry
 - biz: for business
 - coop: for cooperatives
 - info: for all uses
 - museum: for museum
 - name: for individuals
 - pro: for professionals
 - xxx: for adult entertainment industry (sTLD)
 - ➤ On March 18st, 2011
 - https://www.iana.org/domains/root/db

The DNS Namespace – (6)

- ☐ Other than US, ccTLD (country code TLD)
 - ISO 3166, but just based on
 - \triangleright Taiwan \rightarrow tw
 - ➤ Japan → jp
 - \triangleright United States \rightarrow us
 - ➤ United Kingdom → uk (ISO3166 is GB)
 - ➤ European Union → eu
 - Follow or not follow US-like scheme
 - ➤ US-like scheme example
 - edu.tw, com.tw, gov.tw
 - ➤ Other scheme
 - ac.jp, co.jp

How DNS Works

DNS Delegation

- ☐ Administration delegation
 - Each domain can delegate responsibility to subdomain
 - > Specify name servers of subdomain

How DNS Works

DNS query process

- ☐ Recursive query process
 - Ex: query <u>lair.cs.colorado.edu</u> → <u>vangogh.cs.berkeley.edu</u>, name server "ns.cs.colorado.edu" has no cache data

DNS Delegation

- Administrated Zone

- ☐ Zone
 - Autonomously administered piece of namespace
 - ➤ Once the subdomain becomes a zone, it is independent to it's parent
 - Even parent contains NS's A record

DNS Delegation

Administrated Zone

- ☐ Two kinds of zone files
 - Forward Zone files
 - Hostname-to-Address mapping
 - Ex:
 - bsd1.cs.nctu.edu.tw. IN A 140.113.235.131
 - Reverse Zone files
 - > Address-to-Hostname mapping
 - Ex:
 - 131.235.113.140.in-addr.arpa. IN PTR bsd1.cs.nctu.edu.tw.

The Name Server Taxonomy (1)

- ☐ Categories of name servers
 - Based on the source of name server's data
 - ➤ Authoritative: official representative of a zone (master/slave)
 - Master: get zone data from disk
 - Slave: copy zone data from master
 - Nonauthoritative: answer a query from cache
 - caching: caches data from previous queries
 - Based on the type of answers handed out
 - Recursive: do query for you until it return an answer or error
 - Nonrecursive: refer you to the authoritative server
 - Based on the query path
 - Forwarder: performs queries on behalf of many clients with large cache
 - Caching: performs queries as a recursive name server

The Name Server Taxonomy (2)

☐ Nonrecursive referral

- Hierarchical and longest known domain referral with cache data of other zone's name servers' addresses
- Ex:
 - > Query lair.cs.colorado.edu from a nonrecursive server
 - ➤ Whether cache has
 - IP of lair.cs.colorado.edu
 - Name servers of cs.colorado.edu
 - Name servers of colorado.edu
 - Name servers of edu
 - Name servers of root
- The resolver libraries do not understand referrals mostly. They expect the local name server to be recursive

The Name Server Taxonomy (3)

- ☐ Caching
 - Positive cache (Long TTL)
 - Negative cache (Short TTL)
 - ➤ No host or domain matches the name queried
 - The type of data requested does not exist for this host
 - The server to ask is not responding
 - The server is unreachable of network problem
- ☐ Negative cache
 - 60% DNS queries are failed
 - To reduce the load of root servers, the authoritative negative answers must be cached

The Name Server Taxonomy (4)

☐ Caching and forwarder DNS server

The Name Server Taxonomy (5)

- ☐ How to arrange your DNS servers?
 - Ex:

The Name Server Taxonomy (6)

- ☐ Root name servers
 - In named.root file of BIND

	3600000	IN	NS	A.ROOT-SERVERS.NET.
A.ROOT-SERVERS.NET.	3600000		A	198.41.0.4
A.ROOT-SERVERS.NET.	3600000		AAAA	2001:503:BA3E::2:30
	3600000		NS	B.ROOT-SERVERS.NET.
B.ROOT-SERVERS.NET.	3600000		A	199.9.14.201
B.ROOT-SERVERS.NET.	3600000		AAAA	2001:500:200::b
	3600000		NS	C.ROOT-SERVERS.NET.
C.ROOT-SERVERS.NET.	3600000		A	192.33.4.12
C.ROOT-SERVERS.NET.	3600000		AAAA	2001:500:2::c
	3600000		NS	D.ROOT-SERVERS.NET.
D.ROOT-SERVERS.NET.	3600000		A	199.7.91.13
D.ROOT-SERVERS.NET.	3600000		AAAA	2001:500:2d::d
	3600000		NS	E.ROOT-SERVERS.NET.
E.ROOT-SERVERS.NET.	3600000		A	192.203.230.10
E.ROOT-SERVERS.NET.	3600000		AAAA	2001:500:a8::e
	3600000		NS	F.ROOT-SERVERS.NET.
F.ROOT-SERVERS.NET.	3600000		A	192.5.5.241
F.ROOT-SERVERS.NET.	3600000		AAAA	2001:500:2F::F
	3600000		NS	G.ROOT-SERVERS.NET.
G.ROOT-SERVERS.NET.	3600000		A	192.112.36.4
G.ROOT-SERVERS.NET.	3600000		AAAA	2001:500:12::d0d
·	3600000		NS	H.ROOT-SERVERS.NET.
H.ROOT-SERVERS.NET.	3600000		A	198.97.190.53
H.ROOT-SERVERS.NET.	3600000		AAAA	2001:500:1::53
·	3600000		NS	I.ROOT-SERVERS.NET.
I.ROOT-SERVERS.NET.	3600000		A	192.36.148.17
I.ROOT-SERVERS.NET.	3600000		AAAA	2001:7FE::53
:	3600000		NS	J.ROOT-SERVERS.NET.
J.ROOT-SERVERS.NET.	3600000		A	192.58.128.30
J.ROOT-SERVERS.NET.	3600000		AAAA	2001:503:C27::2:30
<u> </u>	3600000		NS	K.ROOT-SERVERS.NET.
K.ROOT-SERVERS.NET.	3600000		A	193.0.14.129
K.ROOT-SERVERS.NET.	3600000		AAAA	2001:7FD::1
	3600000		ŅS	L.ROOT-SERVERS.NET.
L.ROOT-SERVERS.NET.	3600000		A	199.7.83.42
L.ROOT-SERVERS.NET.	3600000		AAAA	2001:500:3::42
N DOOM GEDLEDG NEE	3600000		ŅS	M.ROOT-SERVERS.NET.
M.ROOT-SERVERS.NET.	3600000		A	202.12.27.33
M.ROOT-SERVERS.NET.	3600000		AAAA	2001:DC3::35

DNS Client Configurations

- ☐ /etc/resolv.conf
 - nameserver
 - domain
 - search
 - resolver(5) resolverconf(8)
- ☐ /etc/hosts
 - IP FQDN Aliases
 - C:\Windows\system32\drivers\etc\hosts
 - hosts(5)
- □ /etc/nsswitch.conf
 - hosts: files (nis) (ldap) dns
 - nsswitch.conf(5)

DNS Client Commands – host

- □ \$ host nasa.cs.nctu.edu.tw
 - nasa.cs.nctu.edu.tw has address 140.113.17.32
- □ \$ host 140.113.17.32
 - 32.17.113.140.in-addr.arpa domain name pointer nasa.cs.nctu.edu.tw.

DNS Client Commands – nslookup

□ \$ nslookup nasa.cs.nctu.edu.tw

• Server: 140.113.235.1

Address: 140.113.235.1#53

Name: nasa.cs.nctu.edu.tw

Address: 140.113.17.32

□ \$ nslookup 140.113.17.225

• Server: 140.113.235.1

Address: 140.113.235.1#53

32.17.113.140.in-addr.arpa name = nasa.cs.nctu.edu.tw.

DNS Client Commands – dig (1)

```
□ $ dig nasa.cs.nctu.edu.tw
     ;; Got answer:
      ;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 47883
      ;; flags: qr aa rd ra; QUERY: 1, ANSWER: 1, AUTHORITY: 3,
      ADDITIONAL: 3
      ;; QUESTION SECTION:
      ;nasa.cs.nctu.edu.tw.
                             IN
      ;; ANSWER SECTION:
      nasa.cs.nctu.edu.tw. 3600 IN A 140.113.17.32
```

DNS Client Commands – dig (2)

```
\square $ dig -x 140.113.17.32
     ;; Got answer:
      ;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 5514
      ;; flags: qr aa rd ra; QUERY: 1, ANSWER: 1, AUTHORITY: 3,
      ADDITIONAL: 3
      ;; QUESTION SECTION:
      ;32.17.113.140.in-addr.arpa.
                                IN
                                      PTR
      ;; ANSWER SECTION:
      32.17.113.140.in-addr.arpa. 86400 IN PTR nasa.cs.nctu.edu.tw.
```

DNS Security

□ DNSSEC

- Provide
 - Origin authentication of DNS data
 - ➤ Data integrity
 - ➤ Authenticated denial of existence
- Not provide
 - Confidentiality
 - ➤ Availability
- \$ dig +dnssec bsd1.cs.nctu.edu.tw
 - > ;; ANSWER SECTION:
 bsd1.cs.nctu.edu.tw. 3600 IN A 140.113.235.131
 bsd1.cs.nctu.edu.tw. 3600 IN RRSIG A 7 5 3600 ...

RRSIG: Resource Record Signature

DNS Security (c)

- ☐ DNS over TLS (DoT)
- □ DNS over HTTPS (DoH)
- ☐ DNS Amplification Attack
 - http://www.cc.ntu.edu.tw/chinese/epaper/0028/20140320_2808.html

DNS Server Software

- ☐ BIND
 - Complete DNS Server solution
- ☐ Unbound
 - Local resolver
 - ➤ Validating
 - > Recursive
 - Caching
- □ https://en.wikipedia.org/wiki/Comparison_of_DNS_server_s oftware

Misc.

- ☐ Internationalized Domain Name (IDN)
 - Punycode
 - > A representation of Unicode with ASCII
 - ▶ .台灣 <-> .xn--kpry57d
 - https://en.wikipedia.org/wiki/Punycode
- ☐ Public & cloud services
 - Hurricane Electric Free DNS Hosting
 - https://dns.he.net/
 - AWS Route53
 - https://aws.amazon.com/route53/
- ☐ GeoDNS
 - Different DNS answers based on client's geographical location