

33rd International Conference on VLSI Design 19th International Conference on Embedded Design Bangalore, Jan. 5. 2020.

Side-Channel Attack Analysis and Simulation Techniques

Tutorial

Makoto Nagata

Graduate School of Science, Technology and Innovation,
Kobe University, Kobe, Japan

Advent of adversary among IC chips

Outline

Background

- Side-channel attacks
- Power noise analysis technique
- Side-channel attack simulation
- Conclusions

Passive attack – power analysis

Cryptographic engines

- ► Public key crypto
 - ✓ Asymmetric key usage for encryption and decryption a pair of keys for public and private domains
 - ✓ Power side channel leakage analysis: SPA
 - ✓ ECC, ECDSA, RSA
- Private key crypto
 - ✓ Symmetric key usage a single private key for both encryption and decryption (there is no public domain)
 - ✓ Power side channel leakage analysis: DPA, CPA
 - ✓ AES, DES (obsolete)

Power side channel leakage analysis

- Analysis (or attacks in a malicious case) to extract a secret key from power-noise waveforms
- Simulation technique to evaluate security risks in design against diversified leakage models

SPA demonstration

AES* cryptographic architecture

*Advanced Encryption Standard

- ► A single key byte (8 bit) is used in byte-wise crypto computation.
- ► For AES with 128-bit key, 16 computations running in parallel.
- Source of correlation:
 PS current and internal activity
 measured as <u>Hamming distance</u>

Silicon test vehicle

Chip summary*		
Process	65 nm CMOS	
Metal	9 layer Cu metal	
Cores	AES engines with different S-box implementation	
	(example: Composite)	

*SPACES explorer chip

(Security evaluation of Physically Attacked Cryptoprocessors in Embedded Systems)

D. Fujimoto, et al., "Side-Channel Leakage on Silicon Substrate of CMOS Cryptographic Chip," HOST 2014.

SC leakage measurement system

- ► Exploration of physical mechanisms of SC information leakage
- ➤ A test chip directly mounted on an interposer, in the measurement system built on FPGA board called "SASEBO-R2"

SC leakage measurement examples

- SC leakage comes from the correlation of S-box internal switching activity and logic operation using secret key bytes.
- It is difficult to achieve complete elimination while possible to mitigate the level of correlation – a design challenge.

Active attack -- laser fault injection (LFI)

► High resolution fault injection both in time and space, 1-bit fault potentially reduces key space to 28@AES-128.

LFI physical mechanism

K. Matsuda et al., "On-Chip Substrate-Bounce Monitoring for Laser-Fault Countermeasure," AsianHOST 2016.

Physical attacks in dimensions

Objective: securing crypto-engines in the areas of ICs

Physical attack isolation walls at chip level

Attack measures and packaging structures

Physical media

Passive attacks		EM, Photon, Volt., Current
Active attacks	Fault attack (FA)	EM, Laser, ESD, Glitch

Assembly structure

ASIC	Wire bonding, Flip chip	Plastic mold, CoB, etc.
FPGA	3D stacking, Fan out	Si interposer, MCM, etc.

Reported countermeasure techniques

- ► Countermeasure design styles against SCA (e.g.)
 - ✓ Wave Dynamic Differential Logic (WDDL) [1]
 - ✓ Masked And Operation (MAO) [2]
 - ✓ Masked Dual-Rail Pre-charge Logic (MDPL) [3]
 - ✓ Threshold Implementation (TI) [4]
 - [1] K. Tiri, et al., "A Logic Level Design Methodology for a Secure DPA Resistant ASIC or FPGA Implementation," DATE'04, vol.1, pp.10246-10251, 2004.
 - [2] E. Trichina, "Combinational Logic Design for AES SubByte Transformation On Masked Data," Cryptology ePrint Archive, 2003/236, 2003.
 - [3] T.pop, et al., "Masked Dual-Rail Precharge Logic: DPA-Resistance Without Routing Constrain," CHES2005, LNCS3659, pp.172-186, Springer-Verlag, 2005.
 - [4] S.Nikova, et al., "Threshold Implementations Against Side-Channel Attacks and Glitches," The 8th Internal Conference on Information and Communications Security (ICICS 2006), LNCS4307, pp. 529-545, Springer-Verlag, Dec. 2006.

- ► Simulation methodology of SCA (e.g.)
 - ✓ Power consumption model [5]
 - √ Capacitor charging model [6]
 - ✓ Computational platforms / Gate and transistor-level simulation [7]

- [5] K. Tiri, et al., Simulation Models for Side-Channel Information Leaks," The proceedings of DAC 05, pp. 228-233, Dan Diego, CA, USA, June. 2005.
- [6] D. Fujimoto, *et al.*, "A Fast Power Current Simulation of Cryptographic VLSI Circuits for Side Channel Attack Evaluation," IEICE Transactions on Fundamentals, Vol.E96-A, No.12, pp.2533-2541, Dec. 2013.
- [7] A. Kumar, et al., "Efficient simulation of em side-channel attack resilience," IEEE/ACM Int. Conf. Comp. Aided Design (ICCAD), pp. 123-130, Nov. 2017.

Outline

Background
Side-channel attacks

- Power noise analysis technique
- Side-channel attack simulation
- Conclusions

Power SC leakage from EMC viewpoint

- ► Electromagnetic emission → Side channel leakage (passive information leakage)
 ► EMI analysis → SCA analysis

- ► Electromagnetic immunity → Fault injection (active information leakage)
 ► EMS analysis → Fault analysis
- In-depth understandings of IC-chip level EMC, toward the quality design of IC chips for hardware security

EMI simulation framework

Passive part of EMI models

Active part of EMI models

Challenges

S-parameters or equivalent circuits of PCB, package and

IC chip

Power current models of active circuits with multiple power domains (PDs)

Scenarios to properly activate crypto circuits for EMI simulation toward HWS

EMS simulation framework

External	part of	EMS

Internal part of EMS

Challenge

Limited to the direct and associated RF paths of the most significance

On-die paths of ESD I/O rings and Si substrate, in addition to PDN of circuits

Specification of the most sensitive part of circuits to RF disturbance

C-P-S* model for power noise analysis

*Chip-Package-System board

► Full-system level simulation of power-noise generation and interference

General flow of C-P-S modeling

General flow of C-P-S modeling

PDN impedance model

 C-P-B integrated passive model, capturing AC impedance seen from power source side (VDD)

Power noise: C-P-S active interaction

- \triangleright Power current (I_{DD} , active part of IC) interacts with PDN AC impedance.
- ► C-P-S integrated models for power noise in IC chips and PCB

General flow of C-P-S modeling

Chip power model

CPM -- A power delivery network involving multiple power current models

Liner network model (passive part)

 Liner network model (Passive CPM) -- Reduced and distributed RC network among explicit ports

Power current model (active part)

- SPICE simulation: I(t)
 LUT for in/out condition, load caps
- Post-layout extraction
 logic cell level: C_{esc}, R_{esr}

▶ Cell based -- Logic cells are characterized in power current model.

Full chip level model

 Active current models and passive network models are represented in respective sub circuits and then unified in a single netlist (SPICE compatible).

Analysis and diagnosis of SC leakage

- ► Full-system level simulation of power side-channel (SC) leakage using C-P-S models¹
- On-die diagnosis of physical attacks using OCM²

¹Chip-Package-System board ²On-Chip Monitor

On-chip power noise monitor (OCM)

On-chip waveforms during crypto operation

SC leakage is observable everywhere on a die – even in the backside.

Simulation versus measurements

A. Tsukioka et al., "Active Power Noise Modeling toward Design for EMI Compliance of IC Chips," DesignCon 2017.

Outline

Background

Side-channel attacks

Power noise analysis technique

- Side-channel attack simulation
- Conclusions

AES* cryptographic architecture

*Advanced Encryption Standard

- ► A single key byte (8 bit) is used in byte-wise crypto computation.
- ► For AES with 128-bit key, 16 computations running in parallel
- Source of correlation:
 PS current and internal activity
 measured as Hamming distance

SC leakage simulation flow

Time-domain simulation for a set of plain texts to be encrypted with a private key

PS current waveforms for CPA (sim.)

Cost of simulation for 10,000 plain texts

Model	cost
Full transistor (pre-layout)	115 days
Full transistor (post-layout)	Unlikely
Active PS current model	10 hours

280 times acceleration demonstrated

D. Fujimoto, *et al.*, "A Fast Power Current Analysis Methodology Using Capacitor Charging Model for Side Channel Attack Evaluation," HOST 2011.

PS current breakdown (sim.)

Sub (SubBytes) exhibits clear correlation with bits in plain texts, on the other hand, Sub (MixColumn) is shown to be random.

CPA simulation and measurements

► Correlation between Hamming distance and PS waveforms

SC leakage of AES in 130 nm CMOS

► Comparison among 4 different S-box implementations

SC leakage of AES in 65 nm CMOS

Comparison among 4 different S-box implementations

Conclusion

- ► C-P-S power noise simulation accelerates CPA and clarifies vulnerability of AES cores against attacks in design phase. It will play a key role in the co-design of cryptographic circuits and PDNs for suppressing SC information leakage through PS as well as electromagnetic (EM) channels.
- There are relevant disciplines between EMC and HWS fields.

 The knowledge (both for emission and immunity) is to be wisely integrated for HW and SW design toward secure and safe society.

Acknowledgements: This work was in part based on results obtained from a project commissioned by the New Energy and Industrial Technology Development Organization (NEDO). The authors would like to deeply thank K. Matsuda, A. Tsukioka, and Prof. N. Miura for their valuable help and valuable scientific discussions.