1 14.3: Motion in Space

Definition.

Let the **position** of an object moving in three-dimensional space be given by $\mathbf{r}(t) = \langle x(t), y(t), z(t) \rangle$, for $t \geq 0$. The **velocity** of the object is

$$\mathbf{v}(t) = \mathbf{r}'(t) = \langle x'(t), y'(t), z'(t) \rangle.$$

The **speed** of the object is the scalar function

$$\left| \mathbf{v}(t) = \sqrt{x'(t)^2 + y'(t)^2 + z'(t)^2} \right|$$

The **acceleration** of the object is $\mathbf{a}(t) = \mathbf{v}'(t) = \mathbf{r}''(t)$.

Theorem 14.2: Motion with constant $|\mathbf{r}|$

Let \mathbf{r} describe a path on which $|\mathbf{r}|$ is constant (motion on a circle or sphere centered at the origin). Then $\mathbf{r} \cdot \mathbf{v} = 0$, which means the position vector and the velocity vector are orthogonal at all times for which the functions are defined.

Summary: Two-Dimensional Motion in a Gravitational Field

Consider an object moving in a plane with a horizontal x-axis and a vertical y-axis, subject only to the force of gravity. Given the initial velocity $\mathbf{v}(0) = \langle u_0, v_0 \rangle$ and the initial position $\mathbf{r}(0) = \langle x_0, y_0 \rangle$, the velocity of the object, for $t \geq 0$, is

$$\mathbf{v}(t) = \langle x'(t), y'(t) \rangle = \langle u_0, -gt + v_0 \rangle$$

and the position is

$$\mathbf{r}(t) = \langle x(t), y(t) \rangle = \left\langle u_0 t + x_0, -\frac{1}{2} g t^2 + v_0 t + y_0 \right\rangle.$$

Summary: Two-Dimensional Motion

Assume an object traveling over horizontal ground, acted on only by the gravitational force, has an initial position $\langle x_0, y_0 \rangle = \langle 0, 0 \rangle$ and initial velocity $\langle u_0, v_0 \rangle = \langle |\mathbf{v}_0| \cos \alpha, |\mathbf{v}_0| \sin \alpha \rangle$. The trajectory, which is a segment of a parabola, has the following properties.

time of flight =
$$T = \frac{2|\mathbf{v}_0| \sin \alpha}{g}$$

range = $\frac{|\mathbf{v}_0|^2 \sin (2\alpha)}{g}$
maximum height = $y\left(\frac{T}{2}\right) = \frac{(|\mathbf{v}_0| \sin \alpha)^2}{2g}$