STAT 501 - Homework 6 Solutions

1. (8x5=40 points) Suppose that X_1 , X_2 , and X_3 are potential predictor variables in a model used to predict Y. Use the given SSE values in the following table to answer the questions below.

$SSE(X_1) = 510$	$SSE(X_1, X_2) = 450$	$SSE(X_1, X_2, X_3) = 330$
$SSE(X_2) = 905$	$SSE(X_1, X_3) = 400$	
$SSE(X_3) = 720$	$SSE(X_2, X_3) = 640$	

The notation SSE(X_1 , X_2) means the sum of squares for a multiple regression model that includes X_1 and X_2 as predictors (and does not include X_3).

a) Calculate $SSR(X_3|X_1)$. Show your work.

$$SSR(X_3|X_1) = SSE(X_1) - SSE(X_1, X_3) = 510 - 400 = 110.$$

b) Explain in words what is measured by the quantity calculated in the previous part.

This is the reduction in SSE that would come from adding X_3 to a model that already included X_1 .

c) Calculate $SSR(X_1|X_2, X_3)$. Show your work.

$$SSR(X_1|X_2,X_3) = SSE(X_2,X_3) - SSE(X_1,X_2,X_3) = 640 - 330 = 310.$$

d) Explain in words what is measured by the quantity calculated in the previous part.

This is the reduction in SSE that would come from adding X_1 to a model that already included X_2 and X_3 .

e) Consider the "full" model, $Y_i = \beta_0 + \beta_1 X_{i,1} + \beta_2 X_{i,2} + \beta_3 X_{i,3} + \epsilon_i$. What is the "reduced" model associated with the null hypothesis H_0 : $\beta_2 = \beta_3 = 0$?

The reduced model is $Y_i = \beta_0 + \beta_1 X_{i,1} + \epsilon_i$.

f) Suppose that n = 70. Calculate the value of an F-statistic for testing H_0 : $\beta_2 = \beta_3 = 0$ for the model $Y_i = \beta_0 + \beta_1 X_{i,1} + \beta_2 X_{i,2} + \beta_3 X_{i,3} + \varepsilon_i$. It is not necessary to carry out the test – just calculate the value of F. Show your work. (Hint: Use the general linear F-test.)

1

$$\mathbf{F} = \frac{\frac{SSE(X1) - SSE(X1,X2,X3)}{(n-2) - (n-4)}}{\frac{SSE(X1,X2,X3)}{n-4}} = \frac{\frac{510 - 330}{2}}{\frac{330}{66}} = \mathbf{18}.$$

g) Calculate the value of the coefficient of partial determination $R^{2}_{Y,2|1}$.

$$R^2_{Y,2|1} = \frac{SSR(X2|X1)}{SSE(X1)} = \frac{SSE(X1) - SSE(X1,X2)}{SSE(X1)} = \frac{510 - 450}{510} = 0.118.$$

h) Write a sentence that interprets the value calculated in the previous part.

X_2 explains 11.8% of the variation in Y that cannot be explained by X_1 .

2. (10+6x5=40 points)

a) Fill in the blanks in the following tables. The column labeled "Seq SS" represents "sequential sums of squares" (measures the reduction in the SS when a term is added to a model that contains only the terms before it), while the column labeled "Adj SS" represents "adjusted sums of squares" (measures the reduction in the SS for each term relative to a model that contains all of the remaining terms). [Hint: The t-statistics in the Coefficients table assume all other predictors are included in the model, so if we square these we get the F-statistics in the Anova table based on Adjusted Sums of Squares.]

Source	df	Seq SS	Adj SS	F-statistic	p-value
				based on Adj	based on Adj
				SS	SS
Regression	3	100.866	100.866	35.14	0.000
X1	1	67.444	33.031	34.52	0.000
X2	1	3.883	0.163	0.17	0.681
			=0.17x88.976/93	= -0.41 ²	
Х3	1	29.539	29.539	30.88	0.000
Error	93	88.976	88.976		
Total	96	189.842	189.842		

Coefficients

Term	Coef	SE coef	t-statistic	p-value
Constant	0.58	1.24	0.45	0.652
X1	0.34	0.058	5.88	0.000
X2	-0.01	0.0245	-0.41	0.681
			= -0.01/0.0245	
Х3	0.06	0.0103	5.56	0.000

b) Calculate $SSR(X_3|X_1)$, that is the sequential sum of squares obtained by adding X_3 to a model already containing only the predictor X_1 . Show your work.

$$SSR(X_3|X_1) = SSR(X_1,X_3) - SSR(X_1) = SSR(X_1,X_2,X_3) - SSR(X_2|X_1,X_3) - SSR(X_1)$$

= 100.866 - 0.163 - 67.444 = 33.259.

c) Explain in words what is measured by the quantity calculated in the previous part.

 $SSR(X_3|X_1)$ is the reduction in the error sum of squares when X_3 is added to the model in which X_1 is the only predictor. Alternatively, SSR($X_3|X_1$) is the increase in the regression sum of squares when X_3 is added to the model in which X_1 is the only predictor.

d) Discuss the conceptual difference between the sequential sum of squares (Seq SS) and adjusted sum of squares (Adj SS) in terms of the predictor X₂. For this data, what are the numerical values of these sums of squares for the predictor X_2 ?

For this data, the sequential sum of squares for $X_2 = SSR(X_2|X_1) = 3.883 =$ increase in the regression sum of squares when X2 is added to the model which has only X_1 as a predictor. Sequential sum of squares depends on the order the predictors are entered into the model. It is the portion of the regression sum of squares explained by a predictor, after accounting for the previously entered predictors. The adjusted sum of squares for X_2 = $SSR(X_2|X_1,X_3) = 0.163 = increase in the regression sum of squares when <math>X_2$ is added to the model which already contains all other predictors, X₁ and X₃ in this case. Adjusted sum of squares does not depend on the order the predictors are added to the model.

e) Calculate the value of an F-statistic for testing H_0 : $\beta_2 = \beta_3 = 0$ within the model $Y_i = \beta_0$ + $\beta_1 X_{i,1}$ + $\beta_2 X_{i,2}$ + $\beta_3 X_{i,3}$ + ϵ_i . It is not necessary to carry out the test – just calculate the value of F. Show your work.

$$F = \frac{SSR(X2,X3|X1)/2}{MSE} = \frac{(3.883 + 29.539)/2}{88.976/93} = \frac{16.711}{0.957} = 17.467.$$

f) Calculate the value of the coefficient of partial determination
$$R^{2}_{Y,2|1}$$
.
$$R^{2}_{Y,2|1} = \frac{SSR(X2|X1)}{SSE(X1)} = \frac{3.883}{3.883 + 29.539 + 88.976} = 0.032.$$

g) Write a sentence that interprets the value calculated in the previous part.

 X_2 explains 3.2% of the variation in Y that cannot be explained by X_1 .

- 3. **(6+7+5+2 = 20 points)** Consider the "GroceryRetailer" dataset. A large, national grocery retailer tracks productivity and costs of its facilities closely. Data were obtained from a single distribution center for a one-year period. Each data point for each variable represents one week of activity. The variables included are the number of cases shipped (X_1) , the indirect costs of the total labor hours as a percentage (X_2) , a qualitative predictor called holiday that is coded 1 if the week has a holiday and 0 otherwise (X_3) , and the total labor hours (Y).
 - a) Obtain the ANOVA table that decomposes the regression sum of squares into extra sums of squares associated with X_1 ; X_3 given X_1 ; and with X_2 given X_1 and X_3 . Give their values along with the associated dfs.

Regression Analysis: Y versus X1, X3, X2

Analysis of Variance

Source	DF	Seq SS	Seq MS	F-Value	P-Value
Regression	3	2176606	725535	35.34	0.000
X1	1	136366	136366	6.64	0.013
х3	1	2033565	2033565	99.04	0.000
X2	1	6675	6675	0.33	0.571
Error	48	985530	20532		
Total	51	3162136			

 $SSR(X_1) = 136,366$; $SSR(X_3 | X_1) = 2,033,565$; $SSR(X_2 | X_1, X_3) = 6,675$ with corresponding dfs: 1, 1, 1.

b) Test whether X_2 can be dropped from the regression model given that X_1 , and X_3 are retained. Use the F test statistic and $\alpha = 0.05$. State the alternatives, decision rule, and conclusion. What is the P-value of the test?

$$H_0$$
: $β_2 = 0$, vs. H_a : $β_2 \neq 0$.
 $SSR(X_2 | X_1, X_3) = 6,675$, $SSE(X_1, X_2, X_3) = 985,530$,

Test Statistic:
$$F = \frac{SSR(X2|X1,X3)/1}{SSE/48} = \frac{6675}{985530/48} = 0.3251$$
.

Critical Value: F(0.95; 1, 48) = 4.04265.

Conclusion: Since 0.3251 < 4.04265, we do not reject H0.

P-value = P(F > 0.3251) = 0.571.

c) Now test H_0 : $\beta_2 = 0$ vs. H_a : $\beta_2 \neq 0$ in the model $E(Y) = \beta_0 + \beta_1 X_1 + \beta_3 X_3 + \beta_2 X_2$ using a t-test. Give the value of the test statistic, the p-value and conclusion.

Coefficients

Term	Coef	SE Coef	T-Value	P-Value	VIF
Constant	4150	196	21.22	0.000	
X1	0.000787	0.000365	2.16	0.036	1.01
х3	623.6	62.6	9.95	0.000	1.01
X2	-13.2	23.1	-0.57	0.571	1.02

Test statistic: t = -0.57 with p-value = 0.571. So, we fail to reject H_0 in favor of H_a and conclude X_2 is not useful in this model.

d) From part (a), use sequential sum of squares to test H_0 : $\beta_2 = \beta_3 = 0$ in the model E(Y) = $\beta_0 + \beta_1 X_1 + \beta_3 X_3 + \beta_2 X_2$. Give the test statistic, P-value and conclusion.

From part (a) we get, SSR(X2,X3|X1) = SSR(X3|X1) + SSR(X2|X1,X3) = 2033565 + 6675 = 2040240. So,

Test Statistic:
$$F = \frac{SSR(X1,X2|X3)/2}{MSE} = \frac{2040240/2}{20532} = 49.68439509.$$

P-value = $P(F > 49.68439509) \approx 0.000$.

Conclusion: Since P-value is very small, we reject H₀.