

SERVIÇO NACIONAL DE APRENDIZAGEM INDUSTRIAL SENAI "GASPAR RICARDO JUNIOR"

Curso TÉCNICO EM DESENVOLVIMENTO DE SISTEMAS

Banco de Dados Avaliação Formativa 1

Nathalia Almeida Yoshioka

Sorocaba Novembro – 2024

SERVIÇO NACIONAL DE APRENDIZAGEM INDUSTRIAL SENAI "GASPAR RICARDO JUNIOR"

Nathalia Almeida Yoshioka

Banco de Dados Avaliação Formativa 1

Este trabalho se trata de uma comparação das características de bancos de dados aplicados.

Prof. – Emerson Magalhães

Sorocaba Novembro – 2024

HISTÓRICO DE VERSÕES

Data	Versão	Descrição	Autor

SUMÁRIO

1. CARACTERÍSTICAS BANCO DE DADOS SQL E NoSQL	4
1.1. Banco de dados relacional (SQL)	4
1.2. Banco de dados não-relacional (NoSql)	4
2. CONFIGURAÇÃO DO AMBIENTE	6
2.1. MySQL	
2.1.1. Instalação do MySQL	
2.1.2. Criação de tabelas e bancos de dados	
2.2. MongoDB	8
2.2.1. Instalação do MongoDB	
3. Diagrama Entidade-Relacionamento	
	10
4. Diagrama de modelagem Entidade-Relacionamento	
5. DICIONÁRIO DE DADOS	
CONCLUSÃO	11
BIBLIOGRAFIA	14

Banco de Dados Avaliação Formativa 1

1. CARACTERÍSTICAS BANCO DE DADOS SQL E NoSQL

Os Bancos de dados relacional e não-relacional que permite a criação, o mantimento e o gerenciamento de dados de uma empresa.

1.1. Banco de dados relacional (SQL)

O Banco de dados relacional SQL (Structured Quary Language) se baseia em um sistema de tabelas para gerenciamento e manipulação de dados, sendo assim, os dados são organizados de forma estruturada. Ao contrário de muitas linguagens de computador, o SQL não é difícil de ler e entender, mesmo para um novato.

Figura 1 - Exemplo de Banco de dados SQL

1.2. Banco de dados não-relacional (NoSql)

Ao contrário do SQL, o banco de dados NoSql comporta um grande volume de dados não estruturados e em constante mudança de maneiras diferentes de um banco de dados estruturado.

É uma linguagem de fácil desenvolvimento, funcionalidade e escala, tornando-se flexível para aplicações modernas.

Figura 2 - Exemplo de alguns tipos de bancos de dados NoSql

O NoSql do tipo colunas não trabalha com tabelas na sua estrutura, neste modelo as informações possuem colunas próprias e podem ser agrupadas por famílias. A grande vantagem de trabalhar com esse modelo é a simplicidade e velocidade de se lidar com um vasto volume de dados.

No tipo grafos, como exposto em seu nome, as informações são dispostas a partir de nós conectados por arestas. Esse modelo é ideal para pesquisas complexas que precisam de baixa latência para recuperar os dados.

O modelo chave-valor é um dos tipos mais populares do NoSql por sua facilidade de gerenciamento e flexibilidade na operação.

Por último, no modelo do tipo documento não é necessário ter qualquer estrutura pré-definida, já que essas são estabelecidas conforme a necessidade da aplicação. Nele é possível aninhar informações de formatos diferentes sem muita dificuldade. Para isso, seu funcionamento é simples: os dados são registrados em uma chave que, por sua vez, guardam algum valor.

2. CONFIGURAÇÃO DO AMBIENTE

2.1. MySQL

O MySql é um dos sistemas de gerenciamento de bancos de dados de código aberto mais popular e mais utilizado do mundo pela sua simplicidade de configuração e uso.

2.1.1. Instalação do MySQL

Caso a instalação ocorra no ambiente Windows, basta acessar o <u>instalador</u> do MySQL. Com o instalador no seu computador, clique-o duas vezes e aguarde o seu computador configurar o instalador.

Após a configuração automática completa, selecione a primeira opção da tela de boas-vindas: **Install MySQL Products.** Em seguida, selecione as opções solicitadas e avance para o próximo passo, nele vamos escolher o tipo de instalação **full** para instalar todos os recursos e produtos disponíveis. Avance os passos até que se encontre na tela de configuração de porta e, por padrão, defina o **Port number** como "3306".

Escolha uma senha para a conta root e os detalhes de do serviço Windows. Avance as etapas até que apareça **finish** conforme o carregamento e a configuração dos recursos.

2.1.2. Criação de tabelas e bancos de dados

Utilizaremos o comando **CREATE** para criar as tabelas e os bancos de dados, sendo *create database db_nome* para criar bancos de dados (com a sigla "db" de database por padrão, mas não obrigatório) e *create table nome* para criar tabelas.

```
CREATE DATABASE db_PlataformaEAD;
use db_PlataformaEAD;

CREATE TABLE ALUNOS (
id_aluno int NOT NULL auto_increment,
nome varchar(30) NOT NULL UNIQUE,
nascimento date NOT NULL,
genero char NOT NULL,
curso varchar(30) NOT NULL,
PRIMARY KEY (id_aluno),
FOREIGN KEY (curso) REFERENCES cursos(id_curso)
);
```

Neste exemplo, criamos um banco de dados chamado **PlataformaEAD** e, dentro dele, adicionamos uma tabela **ALUNOS** com as colunas: **id_aluno, nome, nascimento, gênero e curso.**

Nestas colunas, há a definição do tipo de cada dado, sendo **int** para números inteiros, **varchar** para cadeias de caracteres variados e **date** para formatação de datas no padrão americano (ano-mês-dia).

PRIMARY KEY: A chave-primária refere-se à identificação da informação inserida na tabela.

FOREIGN KEY: A chave-estrangeira refere-se à identificação de uma informação que faz parte de outra tabela, no exemplo acima, foi referenciada a tabela cursos para a utilização de uma identificação já existente.

Para inserir os dados, basta utilizar o comando **Insert into nome values** (valores).

2.2. MongoDB

Para um NoSQL flexível e escalável, o MongoDB pode ser uma ótima opção. Com sua capacidade de armazenar grandes quantidades de dados e suportar uma variedade de tipos de dados, o MongoDB é uma escolha popular para empresas de todos os tamanhos.

2.2.1. Instalação do MongoDB

Acesse o site oficial da MongoDB para instalar ele em seu computador. Caso o arquivo esteja zipado, basta clicar com o botão direito e selecionar a opção extrair arquivo. Após a extração, abra o prompt de comando e digite:

```
mkdir C:\mongodb
cd C:\Program Files\MongoDB
mkdir data
Para criar uma pasta chamada "db" dentro da pasta "data", execute o seguinte
comando:
cd data
mkdir db
Para iniciar o servidor MongoDB, abra uma janela do prompt de comando e
navegue até a pasta bin do MongoDB. Em seguida, execute o seguinte comando:
cd C:\Program Files\MongoDB\bin
mongod.exe --dbpath C:\Program Files\MongoDB\data\db
Para iniciar o shell do MongoDB, abra outra janela do prompt de comando e navegue
até a pasta bin novamente. Em seguida, execute o seguinte comando:
cd C:\Program Files\MongoDB\bin # se ainda não estiver
dentro da pasta
mongo.exe
```

Para entender melhor o funcionamento, recomendo o acesso ao site <u>Luiz Tools</u>, já que este software não é a minha especialidade.

3. Diagrama Entidade-Relacionamento

4. Diagrama de modelagem Entidade-Relacionamento

5. DICIONÁRIO DE DADOS

Dicionário de Dados Plataforma de Ensino Online

Entidade ALUNOS					
Atributo	Tipo de dado	Tamanho	Restrições	Desc. Do Atributo	
ID_ALUNOS	INT	4 bytes	PK, NOT NULL	Cod. De ld do aluno	
NOME	VARCHAR	30 bytes	NOT NULL	Nome do aluno	
NASCIMENTO	DATE	10 bytes	NOT NULL	Nasc. Do aluno	
CURSO	VARCHAR	30 bytes	FK, NOT NULL	Nome do curso	

Entidade CURSOS					
Atributo	Tipo de dado	Tamanho	Restrições	Desc. Do Atributo	
ID_CURSOS	INT	4 bytes	PK, NOT NULL	Cod. De Id do curso	
NOME	VARCHAR	30 bytes	NOT NULL	Nome do curso	
DESCRIÇÃO	TEXT	10 bytes		Desc. Do curso	
TOTAL_AULAS	INT	30 bytes	NOT NULL	Total de Aulas	
ANO	YEAR	4 bytes		Ano do curso	

Entidade TRANSAÇÕES					
Atributo	Tipo de dado	Tamanho	Restrições	Desc. Do Atributo	
ID_TRANSIÇÃO	INT	4 bytes	PK, NOT NULL	Cod. Da transação	
CLIENTE	VARCHAR	30 bytes	FK, NOT NULL	Nome do aluno	
VALOR	FLOAT	10 bytes	NOT NULL	Valor da compra	

6. SCRIPT

DROP DATABASE IF EXISTS DB PLATAFORMAEAD;

CREATE DATABASE DB PLATAFORMAEAD;

USE DB PLATAFORMAEAD;

CREATE TABLE IF NOT EXISTS ALUNOS (

ID_ALUNO INT NOT NULL AUTO_INCREMENT,

NOME VARCHAR (30) NOT NULL UNIQUE,

NASCIMENTO DATE NOT NULL,

CURSO VARCHAR (30) NOT NULL,

PRIMARY KEY (ID ALUNO),

FOREIGN KEY (CURSO) REFERENCES CURSOS (NOME)

) DEFAULT CHARSET=UTF8MB4;

CREATE TABLE IF NOT EXISTS CURSOS (

ID CURSOS INT NOT NULL AUTO INCREMENT,

NOME VARCHAR (30) NOT NULL UNIQUE,

DESCRIÇÃO TEXT,

TOTAL_AULAS INT UNSIGNED,

ANO YEAR DEFAULT '2024',

PRIMARY KEY (ID_CURSOS)

) DEFAULT CHARSET=UTF8MB4;

CREATE TABLE IF NOT EXISTS TRANSACOES (

ID TRANSACAO INT NOT NULL AUTO INCREMENT,

CLIENTE VARCHAR (30) NOT NULL,

VALOR FLOAT NOT NULL,

PRIMARY KEY (ID TRANSACAO),

FOREIGN KEY (CLIENTE) REFERENCES ALUNOS (NOME)

) DEFAULT CHARSET=UTF8MB4;

CONCLUSÃO

Os bancos de dados relacionais e não-relacionais são ferramentas essenciais para o gerenciamento e a manipulação de dados de todos os tipos. Cada um apresenta suas características únicas e flexibilidades agradáveis par todos os usuários, permitindo o desenvolvimento simplificado de armazenamento de dados diversos.

BIBLIOGRAFIA

Tutorial MongoDB para iniciantes em NoSQL. Disponível em:

https://www.luiztools.com.br/post/tutorial-mongodb-para-iniciantes-em-nosql/>.

ZANDONADI, R. Como instalar o MongoDB: Guia Passo a Passo para Windows, Mac e Linux. Disponível em: https://medium.com/code-write/como-instalar-o-mongodb-guia-passo-a-passo-para-windows-mac-e-linux-3240171d8ead. Acesso em: 11 nov. 2024.

ALURA. MySQL: do download e instalação até sua primeira tabela.

Disponível em: https://www.alura.com.br/artigos/mysql-do-download-e-instalacao-ate-sua-primeira-

tabela?srsltid=AfmBOop5BEE4khqYxzu9Ec0dfDVL9kAwvyZDJ5FgHAjqJYz-0v2h7XLJ>. Acesso em: 11 nov. 2024.