Paul Gustafson Texas A&M University - Math 641 Instructor - Fran Narcowich

Final

1 Let $f \in C[0, 2\pi]$ with $f(0) = f(2\pi)$. Let $Q_{trap}(f) = \frac{2\pi}{n} \sum_{k=0}^{n-1} f\left(\frac{2\pi k}{n}\right)$. Let $E_n = \left| \int_0^{2\pi} f(x) dx - Q_n(f) \right|.$

(a) Show
$$Q_{trap}(e^{ikx}) = \begin{cases} 0 & k \not\equiv 0 \pmod{n} \\ 2\pi & k \equiv 0 \pmod{n} \end{cases}$$

Proof. If $k \equiv 0 \pmod{n}$, we have $Q_{trap} = \frac{2\pi}{n} \sum_{j=0}^{n-1} e^{\frac{2\pi i j k}{n}} = \frac{2\pi}{n} \sum_{j=0}^{n-1} 1 =$

Otherwise, we have

$$Q_{trap}(e^{ikx}) = \frac{2\pi}{n} \sum_{j=0}^{n-1} e^{\frac{2\pi i j k}{n}}$$
$$= \frac{2\pi}{n} \frac{1 - e^{2\pi i k}}{1 - e^{\frac{2\pi i k}{n}}}$$
$$= 0$$

(b) Let f(x) be the 2π -periodic function that equals $x^2(2\pi - x)^2$ when $x \in$ [0, 2π]. Show that $\int_0^{2\pi} f(x) dx = 16\pi^5/15$. Prove that $E_n \leq C n^{-4}$. (Hint: $f(x) = \frac{8\pi^4}{15} - \frac{24}{\pi} \sum_{k \neq 0} e^{ikx} k^{-4}$.)

Proof. We have

$$\int_0^{2\pi} x^2 (2\pi - x)^2 dx = \int_0^{2\pi} 4\pi^2 x^2 - 4\pi x^3 + x^4 dx$$

$$= \frac{4}{3} \pi^2 (2\pi)^3 - \pi (2\pi)^4 + \frac{1}{5} (2\pi)^5$$

$$= \frac{4}{3} \pi^2 (2\pi)^3 - \pi (2\pi)^4 + \frac{1}{5} (2\pi)^5$$

$$= (32 \cdot 5 - 16 \cdot 15 + 32 \cdot 3) \pi^5 / 15$$

$$= 16\pi^5 / 15$$

1

On the midterm we calculated the Fourier expansion for f, so I will assume the hint without proof. Thus

$$\begin{split} E_n &= |\frac{16\pi^5}{15} - Q_n (\frac{8\pi^4}{15} - \frac{24}{\pi} \sum_{k \ge 0} e^{ikx} k^{-4})| \\ &= |\frac{C}{n} \sum_{j=0}^{n-1} \sum_{k \ge 0} e^{2\pi i k j / n} k^{-4})| \\ &= |\frac{C}{n} \sum_{k \ge 0} k^{-4} \sum_{j=0}^{n-1} e^{2\pi i k j / n}| \\ &= C' \sum_{k \ge 0} k^{-4} Q_n (e^{ikx}) \\ &= C' \sum_{k \ge 0} 2\pi (nk)^{-4} \\ &= C'' n^{-4} \end{split}$$

where the interchange of summation is justified by the absolute summability of the series. $\hfill\Box$

(c) Use Matlab or some other program to plot $\log(E_n)$ vs. $\log n$ for n = 16, 24, 256, 1024. This should be a straight line. What is its slope? Does it agree with what you found in (b)?

Proof.

The above plots $\log n$ on the x-axis and $\log E_n$ on the y-axis. The slope according to (b) should be -4. The graph seems to agree.

2 Let \mathcal{H} be a complex Hilbert space, and let $L \in \mathcal{B}(\mathcal{H})$.

1. Verify that $\langle L(u+e^{i\alpha}v), u+e^{i\alpha}v\rangle - \langle L(u-e^{i\alpha}v), u-e^{i\alpha}v\rangle = 2e^{-i\alpha}\langle Lu,v\rangle + 2e^{-i\alpha}\langle Lv,u\rangle$

Proof. We have

$$\begin{split} \langle L(u+e^{i\alpha}v), u+e^{i\alpha}v\rangle - \langle L(u-e^{i\alpha}v), u-e^{i\alpha}v\rangle &= \langle Lu, u\rangle + \langle Lu, e^{i\alpha}v\rangle + \langle e^{i\alpha}v), u\rangle + \langle u, v\rangle \\ &- \langle Lu, u\rangle + \langle Lu, e^{i\alpha}v\rangle + \langle e^{i\alpha}v), u\rangle - \langle u, v\rangle \\ &= 2e^{-i\alpha}\langle Lu, v\rangle + 2e^{-i\alpha}\langle Lv, u\rangle \end{split}$$

2. Show that if $L = L^*$, then $||L|| = \sup_{||u||=1} |\langle Lu, u \rangle|$.

 ${\it Proof.} \ \, {\rm Acknowledgement:} \ \, {\rm I\,looked\,at\,http://www.math.washington.edu/\,hart/m556/lecture2.pdf} \ \, {\rm for\,\,hints.}$

By Cauchy-Schwarz, we have $\sup_{\|u\|=1} |\langle Lu, u \rangle| \leq \sup_{\|u\|=1} \|Lu\| = \|L\|$.

For the reverse inequality, recall from a previous homework problem that $||L|| = \sup_{||u||=1,||v||=1} |\langle Lu,v\rangle||$. Pick $(u_n),(v_n)$ such that $|\langle Lu_n,v_n\rangle| \to ||L||$. Pick $\alpha_n \in [0,2\pi]$ such that $e^{i\alpha_n}\langle Lu_n,v_n\rangle = |\langle Lu_n,v_n\rangle|$. Let $w_n = e^{-i\alpha_n}v_n$. Thus, $\langle Lu_n,w_n\rangle \to ||L||$. In particular, $||L|| \le \sup_{||u||=1,||v||=1} \Re\langle Lu,v\rangle$. Since $\Re\langle Lu,v\rangle \le |\langle Lu,v\rangle|$, we have $||L|| = \sup_{||u||=1,||v||=1} \Re\langle Lu,v\rangle$.

For ||u|| = ||v|| = 1, we have

$$\begin{split} \Re\langle Lu,v\rangle &= \frac{1}{2}(\langle Lu,v\rangle + \langle v,Lu\rangle) \\ &= \frac{1}{2}(\langle Lu,v\rangle + \langle Lv,u\rangle) \\ &= \frac{1}{4}(\langle L(u+v),u+v\rangle - \langle L(u-v),u-v\rangle) \\ &\leq \frac{1}{4}(\|u+v\|^2 + \|u-v\|^2) \sup_{\|u\|=1} |\langle Lu,u\rangle| \\ &\leq \frac{1}{2}(\|u\|^2 + \|v\|^2) \sup_{\|u\|=1} |\langle Lu,u\rangle| \\ &\leq \frac{1}{2}(\|u\|^2 + \|v\|^2) \sup_{\|u\|=1} |\langle Lu,u\rangle| \\ &= \sup_{\|u\|=1} |\langle Lu,u\rangle| \end{split}$$

3. Show that if $M = \sup_{\|u\|=1} |\langle Lu, u \rangle|$, then $M \leq \|L\| \leq 2M$, whether or not L is self-adjoint. Give an example that shows that this result is false in a real Hilbert space.

Proof. By Cauchy-Schwarz, we have $M=\sup_{\|u\|=1}|\langle Lu,u\rangle|\leq \sup_{\|u\|=1}\|Lu\|=\|L\|.$

For the other inequality, let ||u|| = ||v|| = 1 and $\alpha \in \mathbb{R}$. By part (a),

$$\begin{split} \Re \langle Lu,v\rangle | &= \frac{1}{2}\Re (\langle L(u+e^{i\alpha}v),u+e^{i\alpha}v\rangle - \langle L(u-e^{i\alpha}v),u-e^{i\alpha}v\rangle - 2e^{-i\alpha}\langle Lv,u\rangle) \\ &\leq \frac{M}{2}(\|u+e^{i\alpha}v\|^2 + \|u-e^{i\alpha}v\|^2) - \Re (2e^{-i\alpha}\langle Lv,u\rangle) \\ &= M(\|u\|^2 + \|e^{i\alpha}v\|^2) - \Re (2e^{-i\alpha}\langle Lv,u\rangle) \\ &= 2M - \Re (2e^{-i\alpha}\langle Lv,u\rangle) \end{split}$$

By picking α appropriately, we can ensure that $e^{-i\alpha}\langle Lv,u\rangle$ is a nonnegative real number. Thus $\Re\langle Lu,v\rangle|\leq 2M$. Thus, $\|L\|\leq 2M$.

For the counterexample in the real case, let $\mathcal{H}=\mathbb{R}^2$ with the standard inner product. Let

$$L = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$$

. Then $\langle Lu, u \rangle = 0$ for all u, but ||L|| = 1.

3 Let $K \in \mathcal{C}(\mathcal{H})$ be self adjoint. Show that the only possible limit point of the set of eigenvalues of K is 0.

Proof. Let $\epsilon > 0$. Let \mathcal{E}_{λ} be the eigenspace corresponding to an eigenvector λ . Let $X = \bigoplus_{|\lambda| > \epsilon} \mathcal{E}_{\lambda}$. Then X is an invariant subspace for K, and K maps the unit ball B_X of X to a precompact set. Moreover $\epsilon B_X \subset KB_x$. But this implies that B_X is precompact. Hence X must be finite-dimensional, so there can only be finitely many λ with $|\lambda| > \epsilon$.

4 Let $K \in \mathcal{C}(\mathcal{H})$ be self adjoint. Suppose the range of K contains a dense subset of \mathcal{H} , and that an o.n. basis has been chosen for the igenspace of each nonzero eigenvalue of K. Show that the set of all these eigenvectors form a complete orthormal set.

Proof. By a theorem in class, we know that this set (call it S) is orthogonal. Thus we only need to show that the span of S is dense in \mathcal{H} . The spectral theorem states that an o.n. basis B of eigenvectors for K exists. We can write each vector in B as a sum of vectors in S since S spans each eigenspace. Thus, span $S = \operatorname{span} B = \mathcal{H}$.

5 Let $\mathcal{H} = L^2[0,1]$. Consider the boundary value problem

$$Lu := \frac{d}{dx} \left((1+x) \frac{du}{dx} \right) = f(x), u(0) = 0, u'(1) = 0.$$

(a) Find G(x, y), the Green's function for this BVP.

Proof. The fundamental set for this BVP is $\{1, \log(1+x)\}$. The Wronskian of these two functions is $W(x) = \log(1+x)$. Hence, the Green's function is

$$G(x,y) = \begin{cases} \frac{\log(1+x)}{\log(1+y)}, & \text{if } 0 \le x \le y \le 1\\ \frac{\log(1+y)}{\log(1+x)}, & \text{if } 0 \le y \le x \le 1 \end{cases}$$

(b) Let $Gf(x) = \int_0^1 G(x, y) f(y) dy$. Show that the range of G contains a dense set in \mathcal{H} .

Proof. Let S be the set of $u \in C^2[0,1]$ with support in (0,1). Note that if $u \in S$ then u satisfies the boundary conditions of the BVP. Hence, we can just plug u into the differential equation to find f such that Gf = u. Thus the range of G contains S.

To see that S is dense in \mathcal{H} , recall that functions of the form $g(x) = e^{inx}$ form a basis for $L^2[0,1]$. Thus, it suffices to approximate $g(x) = e^{inx}$ by elements of S in the L^2 norm. Letting $\epsilon > 0$, we can cut off the $[0, \epsilon/4)$ and $(1 - \epsilon/4, 1]$ ends off g and replace them with a C^2 spline on each end which agree up to second derivatives with g at $\epsilon/4$ and $1 - \epsilon/4$. Moreover, we can ensure that the splines are 0 near 0 and 1, respectively, and have sup-norm 2. This new function h is in S and $\|g - h\|_{L^2} < \epsilon$.

(c) Use it and the previous problem to show that the eigenfunctions for $\frac{d}{dx}\left((1+x)\frac{du}{dx}\right) + \lambda u = 0, u(0) = 0, u'(1) = 0$ form a complete orthogonal set.

Proof. The the function G(x,y) is bounded hence L^2 . Thus, the operator G is Hilbert-Schmidt hence compact. Moreover, G(x,y) is symmetric so G is self-adjoint. Thus we can apply part (b) and problem (4) to get that the eigenfunctions form a complete orthogonal set.

6 Let $\|\cdot\|_{op}$ be the operator norm for $\mathcal{B}(\mathcal{H})$.

1. Show that $(\mathcal{B}(\mathcal{H}), \|\cdot\|_{op})$ is a Banach space.

Proof. We need to show that $\|\cdot\|_{op}$ is positive definite, homogeneous, and satisfies the triangle inequality.

It is clearly positive. Moreover, if $||T||_{op}=0$, then ||Tu||=0 for all ||u||=1. Hence $Tv=||v||T\frac{v}{||v||}=0$ for all $v\in\mathcal{H}\setminus\{0\}$. Thus Tv=0.

For the homogeneity, we have $||cT||_{op} = \sup_{||u||=1} |c|||Tu|| = |c|||T||_{op}$ for all $c \in \mathbb{R}$ and $T \in \mathcal{H}$.

For the triangle inequality, we have $||S+T||_{op} = \sup_{||u||=1} ||Su+Tu|| \le \sup_{||u||=1} ||Su|| + ||Tu|| \le \sup_{||u||=1} ||Su|| + \sup_{||v||=1} ||Tv|| = ||S||_{op} + ||T||_{op}$.

2. Consider the operator $L = I - \lambda M$, with $M \in \mathcal{B}(\mathcal{H})$. Show that if $|\lambda| < \|M\|_{op}^{-1}$, then, in the operator norm, $\sum_{k=0}^{\infty} \lambda^k M^k = (I - \lambda M)^{-1}$.

Proof. First note that $||(I - \overline{\lambda}M^*)u|| \ge ||u|| - ||\overline{\lambda}M^*u|| > 0$ for all $u \ne 0$. Thus, $\mathcal{N}(I - \overline{\lambda}M^*) = \{0\}$ so L is invertible by the Fredholm Alternative theorem.

For ||u|| = 1, write $u = (I - \lambda M)v$. Then

$$((I - \lambda M)^{-1} - \sum_{k=0}^{K} \lambda^k M^k) u = v - \sum_{k=0}^{K} \lambda^k M^k (I - \lambda M) v$$

$$= v - \sum_{k=0}^{K} \lambda^k M^k + \sum_{k=0}^{K} \lambda^{k+1} M^{k+1} v$$

$$= v - \sum_{k=0}^{K} \lambda^k M^k + \sum_{k=0}^{K} \lambda^{k+1} M^{k+1} v$$

$$= \lambda^{k+1} M^{k+1} v$$

$$\leq \lambda^{k+1} M^{k+1} \| (I - \lambda M)^{-1} \|$$

$$\to 0$$

as $k \to \infty$. Since the last estimate is uniform in u, the converge holds in the operator norm.

7 Show that if B, B^{-1} are in $\mathcal{B}(\mathcal{H})$, and $K \in \mathcal{C}(\mathcal{H})$, then the range of $L = B + \lambda K$ is closed.

Proof. Suppose $Lx_n \to y$. We need to find x such that Lx = y. By passing to a subsequence, since λK is compact, we may assume $\lambda Kx_n \rightarrow z$. Then $Bx_n \to y-z$. Since B^{-1} is continuous, we have $x_n \to B^{-1}(y-z)$. Let $x = B^{-1}(y-z)$. Then $Lx = LB^{-1}(y-z) = (y-z) + \lambda KB^{-1}(y-z) = 0$

Let
$$x = B^{-1}(y - z)$$
. Then $Lx = LB^{-1}(y - z) = (y - z) + \lambda KB^{-1}(y - z) = (y - z) + \lambda K \lim_n x_n = y$.