# Ch. 1: Logic Design and Number Systems

## 1.1: Digital Logic Circuit Design

Two general types of circuits:

# Analog Circuit Analog Circuit Outputs Outputs





A digital circuit manipulates information that has been encoded into ones and zeros.



Inputs and outputs can only take on only two unique values ("1" or "0")

# 1.2: Number Systems

9.25V, etc)

- Decimal, or Base-10: Uses 10 symbols (digits 0,1,2,3,4,5,6,7,8,9) to represent numbers. Examples: 145 90 1098 or  $(145)_{10}$   $(90)_{10}$   $(1098)_{10}$
- Binary, or Base-2: Used in digital logic (i.e., computers). Uses 2 symbols (binary digits, or **bits** 0,1) to represent numbers, letters, and everything else. Examples: (110101)<sub>2</sub> (11101111)<sub>2</sub> (1010 1011 1000 1010)<sub>2</sub> Spaces added to improve readability
- Octal, or Base-8: Uses 8 symbols (0,1,2,3,4,5,6,7) to represent numbers. Examples:  $(31670)_8$   $(531)_8$
- Hexadecimal, or Base-16: Uses 16 symbols (0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F) to represent numbers.

Examples:  $(3F9A)_{16}$  (E29F5B7AD4)<sub>16</sub>

Other bases possible (Base-3, Base-5, Base-9, Base-20, etc). Rarely used!

# First 16 integers in Decimal, Binary and Hexadecimal. [Must learn!]

| Decimal (base 10) | Binary<br>(base 2) | Hexadecimal (base 16) |
|-------------------|--------------------|-----------------------|
| 0                 | 0000               | 0                     |
| 1                 | 0001               | 1                     |
| 2                 | 0010               | 2                     |
| 3                 | 0011               | 3                     |
| 4                 | 0100               | 4                     |
| 5                 | 0101               | 5                     |
| 6                 | 0110               | 6                     |
| 7                 | 0111               | 7                     |
| 8                 | 1000               | 8                     |
| 9                 | 1001               | 9                     |
| 10                | 1010               | A                     |
| 11                | 1011               | В                     |
| 12                | 1100               | C                     |
| 13                | 1101               | D                     |
| 14                | 1110               | Е                     |
| 15                | 1111               | F                     |

NOTE: 4 bits are needed to represent decimal 0 to 15 in binary system.

#### Some definitions:

Bit (b) = Binary Digit: a  $\mathbf{1}$  or  $\mathbf{0}$ .

Byte (B) = 8 bits. Basic unit of information storage.

 $4 \text{ GB} = 4 \times 2^{30} \text{ bytes} \cong 4 \text{ billion bytes (but not exactly)}$ 

#### **Number Base Conversions**

How to convert a number from one base to another?

| From Any Base to Base-10    | From Base-10 to Other Base                    |  |  |  |  |
|-----------------------------|-----------------------------------------------|--|--|--|--|
| Positional Weight Expansion | Successive Division for Integer part          |  |  |  |  |
|                             | Successive Multiplication for Fractional part |  |  |  |  |

Where  $r \neq 10$ 

Positional Weight Expansion: Each "position" has a pre-assigned weight.

$$(7642.74)_{10} =$$

# **Base Conversion From Any Base to Base-10**

From Any Base to Base-10  $\rightarrow$  Use Positional Weight Expansion  $(101111.101)_2 \rightarrow (?)_{10}$ 

 $(11\ 1001\ 0110)_2 \rightarrow (?)_{10}$  [Spaces added to improve readability]

 $(1023.12)_5 \rightarrow (?)_{10}$ 

$$(D43F.A)_{16} \rightarrow (?)_{10}$$

$$(0.101)_2 \rightarrow (?)_{10}$$

$$(0.A5)_{16} \rightarrow (?)_{10}$$

# **Base Conversion From Base-10 to Some Other Base**

From Any Base to Base-10  $\rightarrow$  Use Successive Division / Successive Multiplication  $(24)_{10} \rightarrow (?)_2$   $(136)_{10} \rightarrow (?)_2$ 

$$(746)_{10} \rightarrow (?)_8$$

$$(746)_{10} \rightarrow (?)_{16}$$

$$(0.625)_{10} \rightarrow (?)_2$$

$$(0.625)_{10} \rightarrow (?)_{16}$$

$$(0.3)_{10} \rightarrow (?)_2$$

$$(24.625)_{10} \rightarrow (?)_2$$

What if you want to convert from Base-2 to Base-16? [Neither one is base-10]

- 1) Convert to base-10 first, then convert to base-16 [2-step process]
- 2) For "related" bases (ie. 2 and 16 are related by a power exponent:  $2^4=16$ ), make groups of *n* bits, then convert each group to base-16.

$$(10\ 1100\ 0110.1111\ 101)_2 \rightarrow (\ ?\ )_{16}$$

$$(306.D)_{16} \rightarrow (?)_2$$

# 1.2.3: Unsigned and Signed Numbers

#### **Unsigned Numbers**

So far, we have dealt with <u>unsigned</u> numbers (positive only): 0, 1, 2, 3, 4, 5 ... If using 4 bits, can have  $2^4=16$  combinations.

0 = 0000 3 = 0011 6 = 0110 9 = 1001 : 1 = 0001 4 = 0100 7 = 0111 10 = 1010 : 2 = 0010 5 = 0101 8 = 1000 11 = 1011 15 = 1111



Using *n* bits  $\Rightarrow$  Range =  $0 \le N \le (2^n - 1)$   $2^n$  combinations

<u>Largest</u> unsigned number using *n* bits is  $N_{max} = (2^n - 1)$ . Ex: using 10 bits, can only represent \_\_\_\_\_ to \_\_\_\_.

How many bits (n) are needed to represent an unsigned number N?  $0 \le N \le (2^n - 1) \implies n \ge \log_2(N+1)$  [round up to whole number]

Ex. How many bits needed to represent the unsigned number: 15? 2,000?

#### **Signed Numbers**

For binary arithmetic, we need to represent  $\underline{signed}$  numbers (positive and negative numbers). Two ways to represent signed numbers using n bits:

- 1) Signed Magnitude Convention (Rarely used in practice)  $\rightarrow$  1 bit for sign, and remaining (n-1) bits represents magnitude.
  - Ex. Use 4 bits to represent +5 and -5 in signed magnitude convention

Using *n* bits 
$$\Rightarrow$$
 Range =  $-(2^{(n-1)} - 1) \le N \le +(2^{(n-1)} - 1)$ 

NOTE:  $2^n$  combinations

2) Two's Complement Convention (Most often used in practice) → Uses half of the combinations to represent negative numbers, by "wrapping around."



Half of combinations represent negative numbers, half represent positive numbers (zero included).

- If positive number: treat no differently as an unsigned (positive) number
- If negative number: represent as  $2^n |N|$  in binary

Consequence: Positive numbers start with **0**. Negative numbers start with **1**.

Using *n* bits 
$$\Rightarrow$$
 Range =  $-(2^{(n-1)}) \le N \le +(2^{(n-1)}-1)$ 

NOTE:  $2^n$  combinations

Ex. Use 4 bits to represent +5 and -5 in two's complement convention.

Ex. If two's complement convention with 16 bits, can only represent \_\_\_\_\_\_to \_\_\_\_\_.

How many bits (n) are needed to represent a signed number N?

If  $N > 0 \implies n \ge \log_2(N+1) + 1$ If  $N < 0 \implies n \ge \log_2(|N|) + 1$ 

[round up *n* to nearest integer] [round up *n* to nearest integer]

#### **Signed Binary Numbers** (using n = 4 bits)

| Decimal    | Signed    | Two's      |  |  |  |
|------------|-----------|------------|--|--|--|
|            | Magnitude | Complement |  |  |  |
| +7         | 0111      | 0111       |  |  |  |
| +6         | 0110      | 0110       |  |  |  |
| +5         | 0101      | 0101       |  |  |  |
| +4         | 0100      | 0100       |  |  |  |
| +3         | 0011      | 0011       |  |  |  |
| +2         | 0010      | 0010       |  |  |  |
| +1         | 0001      | 0001       |  |  |  |
| +0         | 0000      | 0000       |  |  |  |
| -0         |           |            |  |  |  |
| -1         |           |            |  |  |  |
| -2         |           |            |  |  |  |
| -3         |           |            |  |  |  |
| <u>-4</u>  |           |            |  |  |  |
| <b>-5</b>  |           |            |  |  |  |
| -6         |           |            |  |  |  |
| <b>–</b> 7 |           |            |  |  |  |
| -8         |           |            |  |  |  |

MSB: most-significant bit (leftmost bit)

#### NOTE:

MSB = 0 if binary number is positive MSB = 1 if binary number is negative (regardless of convention!)

Shortcut to find two's complement representation:

- 1. Find binary equivalent of magnitude
- 2. Invert each bit
- 3. Add 1

Ex. Write –5 in two's complement using 4 bits.

Ex. Write –24 in two's complement using: (a) 6 bits; (b) 8 bits; (c) 4 bits

Given a binary number represented in two's complement, one can obtain the decimal equivalent.

Ex:  $(011000)_2 = (?)_{10}$ 

Ex:  $(101000)_2 = (?)_{10}$ 

Ex:  $(1110\ 1000)_2 = (?)_{10}$ 

**Summary**: For two's complement number conversions:

Positive Number Negative Number

Decimal to Binary: Successive Division  $2^n - |x|$ , or shortcut (invert, add 1)

Binary to decimal: Normal positional Modified positional weight

weight expansion expansion (1<sup>st</sup> weight is negative)

# 1.2.2, 1.2.4: Binary Arithmetic

**1.2.2: Binary Addition**. Given A and B, wish to compute A + B in binary.

Rules of binary addition: (Adding 2 bits  $\Rightarrow$  4 combinations)

Underlined: **carry bit** into the next higher column.

What about 3-bit addition? (8 combinations)

Can be extended to many more bits.

When performing binary addition, must restrict result to given number of bits. *Overflow* occurs when result is out of range (for given number of bits).

Assume unsigned (positive) numbers in following examples.

**Ex.** Add 6+7 in binary (use 4 bits). **Ex.** Add 13+5 in binary (use 4 bits).

**Ex.** Add 13+5 in binary (use 5 bits). For <u>unsigned</u> numbers arithmetic: How is *Overflow* detected?

Multi-bit addition is done with an "adder" circuit (we will learn this later).

Figure 1.2 A 4-bit adder.



**1.2.4: Binary Subtraction**. Given A and B, wish to compute A - B in binary.

Key: A - B = A + (-B). Convert the *subtraction* into an *addition* problem.

Ex. Compute 7–5 in binary. (use 4 bits)

Ex. Compute (-5 + 7) in binary. (use 4 bits)

Ex. Compute (-5 + 7) in binary. (use 6 bits)

**Ex.** Compute (-5) - (6) in binary. (use 4 bits)

For signed numbers arithmetic: How is *Overflow* detected?

When Overflow occurs  $\Rightarrow$  Binary result does not equal expected decimal result, because resulting number is *out of range*.

# Must be told whether dealing with unsigned or signed numbers!

Ex. What is being computed here?

#### **1.2.6, 1.2.7: Binary Encoding**

**Goal**: Use binary combinations to represent distinct values or objects Fact: A n-bit binary code can represent at most  $2^n$  distinct objects

These codes are widely used:

- BCD (Binary Coded Decimal) Codes
- Gray Code
- ASCII (American Standard Code for Information Interchange) Code

## • BCD (Binary Coded Decimal) Codes

- Use 4-bit binary combination to represent each **decimal** digit (0 through 9).

Table 1.7Binary coded decimal codes.(Page 18)

|                  |              |              |              | · · · · · · · · · · · · · · · · · · · |                |  |  |  |
|------------------|--------------|--------------|--------------|---------------------------------------|----------------|--|--|--|
| Decimal<br>digit | 8421<br>code | 5421<br>code | 2421<br>code | Excess 3 code                         | 2 of 5<br>code |  |  |  |
| 0                | 0000         | 0000         | 0000         | 0011                                  | 11000          |  |  |  |
| 1                | 0001         | 0001         | 0001         | 0100                                  | 10100          |  |  |  |
| 2                | 0010         | 0010         | 0010         | 0101                                  | 10010          |  |  |  |
| 3                | 0011         | 0011         | 0011         | 0110                                  | 10001          |  |  |  |
| 4                | 0100         | 0100         | 0100         | 0111                                  | 01100          |  |  |  |
| 5                | 0101         | 1000         | 1011         | 1000                                  | 01010          |  |  |  |
| 6                | 0110         | 1001         | 1100         | 1001                                  | 01001          |  |  |  |
| 7                | 0111         | 1010         | 1101         | 1010                                  | 00110          |  |  |  |
| 8                | 1000         | 1011         | 1110         | 1011                                  | 00101          |  |  |  |
| 9                | 1001         | 1100         | 1111         | 1100                                  | 00011          |  |  |  |
| unused           | 1010         | 0101         | 0101         | 0000                                  | any of         |  |  |  |
| Invalid          | 1011         | 0110         | 0110         | 0001                                  | the 22         |  |  |  |
| combinations     | 1100         | 0111         | 0111         | 0010                                  | patterns       |  |  |  |
|                  | 1101         | 1101         | 1000         | 1101                                  | with 0, 1,     |  |  |  |
|                  | 1110         | 1110         | 1001         | 1110                                  | 3, 4, or 5     |  |  |  |
|                  | 1111         | 1111         | 1010         | 1111                                  | 1's            |  |  |  |

## **Ex1.** Represent the decimal number 739 using:

- (i) 8421 code:
- (ii) 5421 code:
- (iii) XS3 code:

# **Ex2.** What do the following represent in decimal?

- (i)  $(0011 \ 1001)_{XS3 \ code}$ :
- (ii)  $(0000 \ 0101)_{2421 \text{ code}}$ :
- (iii)  $(0001 \ 0101)_2$ :

#### • Gray Code

- Uses *n* bits to represent  $2^n$  decimal digits (from 0 to  $2^n 1$ )
- Special property: consecutive numbers differ in only one bit
- Useful in coding the position of a continuous device (i.e., a wheel)

**Table 1.9** Gray code. n = 4 bits

Gray code Number Gray code Number 0 8 0000 1100 1 0001 9 1101 (Page 20) 2 10 0011 1111 3 0010 11 1110 4 0110 12 1010 5 13 0111 1011 6 0101 14 1001 7 0100 15 1000

**Ex3.** Represent the decimal number 739 using 4-bit gray code.

 $739 \Rightarrow (0100 \ 0010 \ 1101)_{Grav Code}$ 

## • ASCII (American Standard Code for Information Interchange) Code

- Uses 7 bits to represent printable characters from standard keyboard
- Also represents 32 non-printable control codes (carriage return, SHIFT, CTRL)

#### **American Standard Code for Information Interchange (ASCII)** (Page 19)

|     |                |               |            |       | $a_6a_5a_4$ |     |     |     |        |
|-----|----------------|---------------|------------|-------|-------------|-----|-----|-----|--------|
| Hex | $a_3a_2a_1a_0$ | 000           | 001        | 010   | 011         | 100 | 101 | 110 | 111    |
| 0   | 0000           | NUL           | DLE        | space | 0           | @   | P   | 4   | p      |
| 1   | 0001           | SOH           | DC1        | !     | 1           | A   | Q   | a   | q      |
| 2   | 0010           | STX           | DC2        | "     | 2           | В   | R   | b   | r      |
| 3   | 0011           | ETX           | DC3        | #     | 3           | C   | S   | c   | S      |
| 4   | 0100           | EOT           | DC4        | \$    | 4           | D   | T   | d   | t      |
| 5   | 0101           | <b>ENQ</b>    | NAK        | %     | 5           | E   | U   | e   | u      |
| 6   | 0110           | ACK           | SYN        | &     | 6           | F   | V   | f   | V      |
| 7   | 0111           | BEL           | ETB        | •     | 7           | G   | W   | g   | W      |
| 8   | 1000           | BS            | CAN        | (     | 8           | Н   | X   | h   | X      |
| 9   | 1001           | HT            | EM         | )     | 9           | I   | Y   | i   | y      |
| A   | 1010           | LF            | SUB        | *     | :           | J   | Z   | j   | Z      |
| В   | 1011           | VT            | <b>ESC</b> | +     | ;           | K   | [   | k   | {      |
| C   | 1100           | FF            | FS         | ,     | <           | L   | \   | 1   | 1      |
| D   | 1101           | CR            | GS         | _     | =           | M   | ]   | m   | }      |
| E   | 1110           | SO            | RS         |       | >           | N   | ٨   | n   | ~      |
| F   | 1111           | SI            | US         | /     | ?           | O   | _   | O   | delete |
| •   | Hex            | $\rightarrow$ | 1          | 2     | 3           | 4   | 5   | 6   | 7      |

Ex4. Code the string 244 Logic using ASCII code. Convert to hex too.

Ex5. Code the string 4 + 5 = 9 using ASCII code. Convert to hex too.

```
4
                                            5
           space
                                space
                                                    space
                                                                         space
                                                                                      9
                        +
011 0100
          010 0000
                    010 1011
                               010 0000
                                         011 0101
                                                   010 0000
                                                              011 1101
                                                                        010 0000
                                                                                  011 1001
             20
                       2B
                                  20
                                            35
                                                      20
                                                                3D
                                                                           20
   34
                                                                                     39
```

Ex6. What does hexadecimal ASCII string "45 78 61 6D 23 31" represent?

45 78 61 6D 23 31