2014 年全国硕士研究生招生考试试题

一、选择题(本题共8/	心题,每小题4分, 共32分	. 在每小题给出的四个选〕	项中,只有一项符合题 目	
要求,把所选项前的	的字母填在题后的括号内.)		
(1)下列曲线中有渐近	线的是()			
$(A)y = x + \sin x.$	$(B)y = x^2 + \sin x.$	$(C)y = x + \sin\frac{1}{x}.$	$(D)y = x^2 + \sin\frac{1}{x}.$	
(2)设函数 $f(x)$ 具有 2	阶导数, $g(x) = f(0)(1 - x)$	(x) + f(1)x, 则在区间[0,1]]上()	
(A) $\stackrel{\text{def}}{=}$ $f'(x)$ ≥0 $\stackrel{\text{def}}{=}$	$f, f(x) \geqslant g(x).$	(B) $\leq f'(x)$ ≥0 \in	(B) 当 $f'(x) \ge 0$ 时, $f(x) \le g(x)$.	
$(C) \stackrel{\text{def}}{=} f''(x) \geqslant 0 \mathbb{R}$	$\dagger, f(x) \geqslant g(x).$	(D) $\stackrel{\text{def}}{=}$ $f''(x)$ ≥0	(D) 当 $f''(x) \ge 0$ 时, $f(x) \le g(x)$.	
(3)设 $f(x,y)$ 是连续函	i数,则 $\int_0^1 dy \int_{-\sqrt{1-y^2}}^{1-y} f(x,y) dx$	dx = ()		
(A) $\int_0^1 dx \int_0^{x-1} f(x, y)$	$\int_{-1}^{0} dx \int_{0}^{\sqrt{1-x^2}} f(x,y) dx$	ly.		
(B) $\int_0^1 dx \int_0^{1-x} f(x, y)$	$\int_{-1}^{0} dx \int_{-\sqrt{1-x^2}}^{0} f(x,y) dy$	dy.		
(C) $\int_0^{\frac{\pi}{2}} \mathrm{d}\theta \int_0^{\frac{1}{\cos\theta + \sin\theta}} f(\theta)$	$r\cos\theta, r\sin\theta$) dr + $\int_{\frac{\pi}{2}}^{\pi} d\theta \int_{0}^{1}$	$f(r\cos\theta,r\sin\theta)\mathrm{d}r.$		
(D) $\int_0^{\frac{\pi}{2}} d\theta \int_0^{\frac{1}{\cos\theta + \sin\theta}} f(\theta)$	$(r\cos\theta, r\sin\theta)rdr + \int_{\frac{\pi}{2}}^{\pi} d\theta \int_{0}^{\pi}$	$f(r\cos\theta,r\sin\theta)r\mathrm{d}r.$		
(4) 若 $\int_{-\pi}^{\pi} (x - a_1 \cos x - a_2 \cos x)$	$b_1 \sin x)^2 dx = \min_{a,b \in \mathbf{R}} \left\{ \int_{-\pi}^{\pi} (x - x)^2 dx \right\}$	$-a\cos x - b\sin x$) ² dx, 则	$a_1 \cos x + b_1 \sin x = ($	
$(A) 2\sin x$.	$(B)2\cos x.$	$(C)2\pi\sin x$.	$(D)2\pi\cos x.$	
$\begin{bmatrix} 0 & a & b \end{bmatrix}$	0			
$(5) 行列式 \begin{vmatrix} 0 & a & b \\ a & 0 & 0 \\ 0 & c & d \\ c & 0 & 0 \end{vmatrix}$	$\begin{vmatrix} b \\ 0 \\ d \end{vmatrix} = ()$			
	$(B) - (ad - bc)^2$.	$(C) a^2 d^2 - b^2 c^2$.	$(D)b^2c^2-a^2d^2.$	
(6) 设 $\boldsymbol{\alpha}_1,\boldsymbol{\alpha}_2,\boldsymbol{\alpha}_3$ 均为3	\$ 维向量,则对任意常数 k ,	l ,向量组 $\boldsymbol{\alpha}_1 + k\boldsymbol{\alpha}_3, \boldsymbol{\alpha}_2 + l\boldsymbol{\alpha}_3$	α_3 线性无关是向量组 α_1	
α_2, α_3 线性无关的	()			
(A)必要非充分条件.		(B)充分非必要条件.		
(C)充分必要条件.		(D)既非充分也非必要条件.		
(7)设随机事件 A 与 B	相互独立,且 $P(B) = 0.5$	$P(A-B) = 0.3, \square P(B-B)$	-A) = (
(A)0.1.	(B)0.2.	(C)0.3.	(D)0.4.	
(8)设连续型随机变量	X_1 与 X_2 相互独立且方差	均存在, X_1 与 X_2 概率密度	要分别为 $f_1(x)$ 与 $f_2(x)$	
随机变量 Y_1 的概率	ጆ密度为 $f_{Y_1}(y) = \frac{1}{2} [f_1(y)]$) +f ₂ (y)],随机变量 Y ₂ =	$\frac{1}{2}(X_1 + X_2)$,则()	
$(A)E(Y_{\bullet}) > E(Y_{\bullet})$	D(Y) > D(Y)	$(B)E(Y_{\bullet}) = E(Y_{\bullet})$	D(Y) = D(Y)	

 $(D)E(Y_1) = E(Y_2) \text{ (B) } (F_1)$

 $(C)E(Y_1) = E(Y_2), D(Y_1) < D(Y_2).$

二、填空题(本题共6小题,每小题4分,共24分,把答案填在题中横线上.)

- (9) 曲面 $z = x^2(1 \sin y) + y^2(1 \sin x)$ 在点(1,0,1)处的切平面方程为 .
- (10)设f(x)是周期为4的可导奇函数,且 $f'(x) = 2(x-1), x \in [0,2], 则 f(7) = ...$
- (11) 微分方程 $xy' + y(\ln x \ln y) = 0$ 满足条件 $y(1) = e^3$ 的解为 $y = ____.$
- (12)设 L 是柱面 $x^2 + y^2 = 1$ 与平面 y + z = 0 的交线,从 z 轴正向往 z 轴负向看去为逆时针方向,则 曲线积分 $\oint z dx + y dz =$ _____.
- (13)设二次型 $f(x_1,x_2,x_3) = x_1^2 x_2^2 + 2ax_1x_3 + 4x_2x_3$ 的负惯性指数为1,则a的取**值**范围是_
- (14) 设总体 X 的概率密度为 $f(x;\theta) = \begin{cases} \frac{2x}{3\theta^2}, & \theta < x < 2\theta, \\ 0, & \text{其中 } \theta \ \text{是未知参数}, X_1, X_2, \cdots, X_n \ \text{为来自} \end{cases}$ 总体 X 的简单随机样本,若 $c \sum_{i=1}^n X_i^2 \stackrel{}{=} \theta^2$ 的无偏估计,则 $c = \underline{\hspace{1cm}}$.

三、解答题(本题共9小题,共94分,解答应写出文字说明、证明过程或演算步骤.)

(15)(本题满分10分)

求极限
$$\lim_{x \to +\infty} \frac{\int_1^x \left[t^2 \left(e^{\frac{1}{t}} - 1 \right) - t \right] dt}{x^2 \ln \left(1 + \frac{1}{x} \right)}$$
.

(16)(本题满分10分)

设函数 y = f(x) 由方程 $y^3 + xy^2 + x^2y + 6 = 0$ 确定,求 f(x) 的极**值**.

(17)(本题满分10分)

设函数f(u)具有二阶连续导数, $z = f(e^x \cos y)$ 满足 $\frac{\partial^2 z}{\partial x^2} + \frac{\partial^2 z}{\partial y^2} = (4z + e^x \cos y)e^{2x}$. 若f(0) = 0, f'(0) = 0,求 f(u)的表达式.

22

淘宝店铺:筑梦教育

(18)(本题满分10分)

设∑为曲面 $z = x^2 + y^2 (z ≤ 1)$ 的上侧,计算曲面积分

$$I = \iint_{\Sigma} (x-1)^{3} dydz + (y-1)^{3} dzdx + (z-1) dxdy.$$

(19)(本题满分10分)

设数列 $\{a_n\}$, $\{b_n\}$ 满足 $0 < a_n < \frac{\pi}{2}, 0 < b_n < \frac{\pi}{2}, \cos a_n - a_n = \cos b_n$, 且级数 $\sum_{n=1}^{\infty} b_n$ 收敛.

- (I)证明 $\lim_{n\to\infty}a_n=0$;
- (\mathbb{I})证明级数 $\sum_{n=1}^{\infty} \frac{a_n}{b_n}$ 收敛.

(20)(本题满分11分)

设 $\mathbf{A} = \begin{pmatrix} 1 & -2 & 3 & -4 \\ 0 & 1 & -1 & 1 \\ 1 & 2 & 0 & -3 \end{pmatrix}$, \mathbf{E} 为 3 阶单位矩阵.

- (I)求方程组 Ax = 0 的一个基础解系;
- (Ⅱ)求满足AB = E的所有矩阵B.

23

(21)(本题满分11分)

证明
$$n$$
 阶矩阵 $\begin{pmatrix} 1 & 1 & \cdots & 1 \\ 1 & 1 & \cdots & 1 \\ \vdots & \vdots & & \vdots \\ 1 & 1 & \cdots & 1 \end{pmatrix}$ 与 $\begin{pmatrix} 0 & \cdots & 0 & 1 \\ 0 & \cdots & 0 & 2 \\ \vdots & & \vdots & \vdots \\ 0 & \cdots & 0 & n \end{pmatrix}$ 相似.

(22)(本题满分11分)

设随机变量 X 的概率分布为 $P\{X=1\}=P\{X=2\}=\frac{1}{2}$. 在给定 X=i 的条件下,随机变量 Y 服 从均匀分布 U(0,i) (i=1,2).

- (I)求 Y的分布函数 $F_{y}(y)$;
- (**I**) 求 E(Y).

(23)(本题满分11分)

设总体 X 的分布函数为 $F(x;\theta) = \begin{cases} 1-\mathrm{e}^{-\frac{x^2}{\theta}}, & x \geq 0, \\ 0, & x < 0, \end{cases}$ 其中 θ 是未知参数且大于零. X_1, X_2, \cdots, X_n

24

为来自总体 X 的简单随机样本.

- (I)求E(X)与 $E(X^2)$;
- (\mathbb{I})求 θ 的最大似然估计量 $\hat{\theta}_n$;
- (Ⅲ)是否存在实数 a,使得对任何 $\varepsilon > 0$,都有 $\lim_{n \to \infty} P\{\mid \widehat{\theta_n} a \mid \ge \varepsilon\} = 0$?

淘宝店铺:筑梦教育