

# PRODUCT ENVIRONMENTAL FOOTPRINT CATEGORY RULES

# Nougat

Draft version 1.0

September 2018

Il presente documento include indicazioni metodologiche per la conduzione di uno studio LCA secondo quanto previsto dalla metodologia PEF (Product Environmental Footprint) per la valutazione dell'impronta ambientale di prodotto così come definita nella Raccomandazione 2013/179/UE della Commissione e, ove possibile, dalle Product Environmental Footprint Category Rules Guidance, Version 6.3, May 2018.

ll documento, sviluppato nell'ambito del progetto LIFE EFFIGE, è riferito al solo mercato Italiano ed è stato redatto in collaborazione con Dai Carulina Agricola srl. I suoi contenuti sono un contributo agli studi di settore, ma non sono vincolanti rispetto ad altre iniziative in corso o a venire".

This paper include methodological indication for the development of a LCA study according with the PEF (Product Environmental Footprint) methodology in order to evaluate the product environmental footprint as defined in Recommendation 2013/179/UE of European Commission and, when possible, of *Product Environmental Footprint Category Rules Guidance, Version 6.3, May 2018.* 

The paper, developed inside the LIFE Project EFFIGE is focused only on Italian market and it was written in cooperation with Dai Carulina Agricola srl. The paper subjects are a contribution to the sectoral studies but are not binding in relation to other activities currently underway or forthcoming.

# **Summary**

| <u>1</u> | INTRODUCTION                                                            | <u>4</u>        |
|----------|-------------------------------------------------------------------------|-----------------|
| 2        | PEFCR SCOPE                                                             | 5               |
| _        |                                                                         | <u>_</u>        |
| 2.1      | PRODUCT CLASSIFICATION                                                  | 5               |
| 2.2      | REPRESENTATIVE PRODUCT(S)                                               | 5               |
| 2.3      | FUNCTIONAL UNIT AND REFERENCE FLOW                                      | 6               |
| 2.4      | SYSTEM BOUNDARY                                                         | 6               |
| 2.5      | EF IMPACT ASSESSMENT                                                    | 9               |
| 2.6      | LIMITATIONS                                                             | 11              |
| <u>3</u> | MOST RELEVANT IMPACT CATEGORIES, LIFE CYCLE STAGES, PROCESSES AND ELEME | ENTARY FLOWS 11 |
| <u>4</u> | LIFE CYCLE INVENTORY                                                    | 13              |
| 4.1      | LIST OF MANDATORY COMPANY-SPECIFIC DATA                                 | 13              |
| 4.2      | MANDATORY DATA ON CONSUMPTION AND SUPPLY OF INPUTS MATERIALS LIFE STAGE | 14              |
| 4.3      | MANDATORY DATA ON PRODUCTION COOKING LIFE STAGE                         | 21              |
| 4.4      | MANDATORY DATA ON PRODUCTION PACKAGING LIFE STAGE                       | 23              |
| 4.5      | MANDATORY DATA ON DISTRIBUTION CHAIN LIFE STAGE                         | 24              |
| 4.6      | USE STAGE                                                               | 26              |
| 4.7      | END OF LIFE STAGE                                                       | 26              |
| 4.8      | DIRECT ELEMENTARY FLOWS REQUIREMENTS                                    | 27              |
| 4.9      | LIST OF PROCESSES EXPECTED TO RUN BY THE COMPANY                        | 28              |
| 4.1      | 0 DATA GAPS                                                             | 28              |
| 4.1      | 1 DATA QUALITY REQUIREMENTS                                             | 28              |
|          | 2 DATA NEEDS MATRIX (DNM)                                               | 28              |
| 4.1      | 3 ALLOCATION RULES                                                      | 29              |
| 4.1      | 4 WHICH DATASETS TO USE?                                                | 29              |
| 4.1      | 5 MODELLING OF WASTES AND RECYCLED CONTENT                              | 29              |
| <u>5</u> | LIFE CYCLE STAGES                                                       | <u>29</u>       |
| 5.1      | INPUTS PRODUCTION                                                       | 29              |

| 5.2      | MANUFACTURING AND SUPPLY CHAIN |    | 30 |
|----------|--------------------------------|----|----|
| <u>6</u> | PEF RESULTS                    | 30 |    |
| 6.1      | BENCHMARK VALUES               |    | 30 |
| 6.2      | PEF PROFILE                    |    | 35 |

# 1 Introduction

The present Product Environmental Footprint Category Rules (PEFCR) is developed within the Life EFFIGE Project, aimed to develop new tools for the implementation of PEF in small and medium-sized businesses, helping them to experiment innovative approaches and methods reduce their environmental footprint and making them more competitive on the current market.

The Product Environmental Footprint (PEF) Guide provides detailed and comprehensive technical guidance on how to conduct a PEF study. PEF studies may be used for a variety of purposes, including in-house management and participation in voluntary or mandatory programmes.

The compliance with the present PEFCR is optional for PEF in-house applications, whilst it is mandatory whenever the results of a PEF study or any of its content is intended to be communicated.

#### Terminology: shall, should and may

This PEFCR uses precise terminology to indicate the requirements, the recommendations and options that could be chosen when a PEF study is conducted.

- The term "shall" is used to indicate what is required in order for a PEF study to be in conformance with this PEFCR.
- The term "should" is used to indicate a recommendation rather than a requirement. Any deviation from a "should" requirement has to be justified when developing the PEF study and made transparent.
- The term "may" is used to indicate an option that is permissible. Whenever options are available, the PEF study shall include adequate argumentation to justify 2. General information about the PEFCR

This PEFCR is valid for products in scope sold in Italy.

The PEFCR is written in English.

This PEFCR has been prepared in conformance with the following documents:

- Product Environmental Footprint (PEF) Guide; Annex II to the Recommendation 2013/179/EU, 9 April 2013. Published in the official journal of the European Union Volume 56, 4 May 2013;

- "PEFCR Guidance version 6.3", excluding all that parts applicable only from products already covered by existing PEFCR. Deviations from the requirements of Guidance v.6.3 have been made based on older versions of the Guidance and expert judgment.
- ENVIFOOD Food and Drink Protocol, version 1.0, November 20<sup>th</sup> 2013.

The organisations listed in Table 1 were the Sectorial Technical Group (STG), which is responsible for the development of the PEFCRs for the nougat sector.

Table 1 List of the organizations in the STG

| Name of the organization  | Type of organization | Name of the members        |
|---------------------------|----------------------|----------------------------|
| DAI CARULINA SRL AGRICOLA | Consortium           | Pasquale Guiducci          |
| Dolciaria Palumbo         | Industry             | Angelino Palumbo           |
| Sebaste srl               | Industry             | Dott. Matteo Rossi Sebaste |
| Strega Alberti            | Industry             | Ing. Andrea D'Angelo       |

# 2 PEFCR scope

#### 2.1 Product classification

Nougat is the result of activities that are classified *Nomenclature Générale des Activités Économiques dans les Communautés Européennes*/Statistical classification of products by activity (NACE/CPA) Rev.2 under code **10.82** and, in particular:

- **10.82.22.60:** Sugar confectionery and substitutes therefor made from sugar substitution products, containing cocoa (including chocolate nougat) (excluding white chocolate);
- 10.82.22.90: Food products with cocoa (excluding cocoa paste, butter, powder, blocks, slabs, bars, liquid, paste, powder, granular, other bulk form in packings > 2 kg, to make beverages, chocolate spreads);
- 10.82.23.53: Sugar confectionery pastes in immediate packings of a net content ≥1 kg (including marzipan, fondant, nougat and almond pastes).

#### 2.2 Representative product(s)

The RPs are virtual products defined on the basis on Italian market share of the different kind of nougat recipes. Nougat is an old product with long history and the innovation in the industry are very small. Therefore no significant differences are in the production process.

The following RP havs been identified:

| Representative Product | Market share |
|------------------------|--------------|
|                        | 93.8%        |
| Nougat                 |              |
|                        | 6,2%         |
| Croccante              |              |

# 2.3 Functional unit and reference flow

The functional unit, as approved by the STG, is **1 Nougat at industry gates**.

Table 2 Key aspects of the FU

| What?     | Nougat                |
|-----------|-----------------------|
| How much? | 1 kg of nougat        |
| How long? | until the expiry date |

# 2.4 System boundary

The flow diagram of the entire process includes the following activities:

Table 3 Life cycle stages

| Life cycle stage                       | Short description of the processes included                                                                                                                                                                                                              |
|----------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Inputs production – agricultural stage | Production and supply of inputs, including:  - Sugar (for nougat and croccante);  - Glucose syrup (nougat)  - Honey (for nougat);  - Chocolate (for nougat and croccante);  - Albumin (for nougat and croccante)  - Hazelnuts (for nougat and croccante) |
| Production – cooking stage             | Melting of inputs in big pots heated with hot water.                                                                                                                                                                                                     |

| Life cycle stage             | Short description of the processes included                                                                                                              |
|------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|
|                              | From the input side: - Energy sources (electricity, natural gas) - Water; From the output side; - Air emissions - Drainage Water - Waste                 |
| Production – packaging stage | Nougat Packaging.  From the input side:  - Electricity;  - Paper and cardboard  - PVC;  - Pallet wood;  From the output side;  - Air emissions;  - Waste |
| Distribution Chain           | Final product supply: storage and transportation.  From the input side:  - Electricity;  - Fuel;  From the output side:  - Waste.                        |
| Use                          | Consumption: eat the product (without cooking)                                                                                                           |
| End of Life                  | Circular Footprint Formula provided in chapter 4.7                                                                                                       |



Processes in Situation 1 are the processes run by the company applying the PEFCR. Processes in Situation 3 are the ones not run by the company applying the PEFCR and this company does not have access to (company-) specific information.

According to this PEFCR, the following processes may be excluded based on the cut-off rule:

• The production of buildings and equipment.

# 2.5 EF impact assessment

Each PEF study carried out in compliance with this PEFCR shall calculate the PEF-profile including all PEF impact categories listed in the table below (ILCD Method 2011 for characterisation, normalisation and weighting factors)

| Impact category                     | Indicator                                                    | Unit                               | Recommended<br>default LCIA<br>method                                                    | Source<br>of CFs                 | Robustness  |
|-------------------------------------|--------------------------------------------------------------|------------------------------------|------------------------------------------------------------------------------------------|----------------------------------|-------------|
| Climate change                      | Radiative forcing as Global<br>Warming Potential<br>(GWP100) | kg CO <sub>2 eq</sub>              | Baseline model<br>of 100 years of<br>the IPCC<br>(based on IPCC<br>2013)                 | EC-<br>JRC,<br>2017 <sup>1</sup> | I           |
| Ozone depletion                     | Ozone Depletion Potential (ODP)                              | kg CFC-11 <sub>eq</sub>            | Steady-state<br>ODPs as in<br>(WMO 1999)                                                 | EC-<br>JRC,<br>2017              | 1           |
| Human toxicity,<br>cancer*          | Comparative Toxic Unit for humans (CTU <sub>h</sub> )        | CTUh                               | USEtox model<br>(Rosenbaum et<br>al, 2008)                                               | EC-<br>JRC,<br>2017              | III/interim |
| Human toxicity,<br>non-cancer*      | Comparative Toxic Unit for humans (CTU <sub>h</sub> )        | CTUh                               | USEtox model<br>(Rosenbaum et<br>al, 2008)                                               | EC-<br>JRC,<br>2017              | III/interim |
| Particulate matter                  | Impact on human health                                       | disease incidence                  | PM method<br>recomended<br>by UNEP<br>(UNEP 2016)                                        | EC-<br>JRC,<br>2017              | I           |
| Ionising radiation,<br>human health | Human exposure efficiency<br>relative to U <sup>235</sup>    | kBq U <sup>235</sup> <sub>eq</sub> | Human health effect model as developed by Dreicer et al. 1995 (Frischknecht et al, 2000) | EC-<br>JRC,<br>2017              | II          |
| Photochemical ozone formation,      | Tropospheric ozone concentration increase                    | kg NMVOC <sub>eq</sub>             | LOTOS-EUROS<br>model (Van                                                                | EC-<br>JRC,                      | II          |

\_

<sup>&</sup>lt;sup>1</sup> The complete list of the characterization factors (EC-JRC, 2017a) is available at the following link: <a href="http://eplca.jrc.ec.europa.eu/LCDN/developer.xhtm">http://eplca.jrc.ec.europa.eu/LCDN/developer.xhtm</a>

| Impact category                                                                          | Indicator                                                                                                                                                       | Unit                                                                                                                            | Recommended<br>default LCIA<br>method                                                   | Source<br>of CFs    | Robustness  |
|------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|---------------------|-------------|
| human health                                                                             |                                                                                                                                                                 |                                                                                                                                 | Zelm et al,<br>2008) as<br>implemented<br>in ReCiPe 2008                                | 2017                |             |
| (AE)                                                                                     |                                                                                                                                                                 | mol H+ <sub>eq</sub>                                                                                                            | Accumulated<br>Exceedance<br>(Seppälä et al.<br>2006, Posch et<br>al, 2008)             | EC-<br>JRC,<br>2017 | II          |
| Eutrophication, terrestrial Accumulated Exceedance (AE)                                  |                                                                                                                                                                 | mol N <sub>eq</sub>                                                                                                             | Accumulated<br>Exceedance<br>(Seppälä et al.<br>2006, Posch et<br>al, 2008)             | EC-<br>JRC,<br>2017 | II          |
| Eutrophication, freshwater Fraction of nutrients reaching freshwater end compartment (P) |                                                                                                                                                                 | kg P <sub>eq</sub>                                                                                                              | EUTREND<br>model (Struijs<br>et al, 2009) as<br>implemented<br>in ReCiPe                | EC-<br>JRC,<br>2017 | II          |
| Eutrophication, marine Fraction of nutrients reaching marine end compartment (N)         |                                                                                                                                                                 | kg N <sub>eq</sub>                                                                                                              | EUTREND<br>model (Struijs<br>et al, 2009) as<br>implemented<br>in ReCiPe                | EC-<br>JRC,<br>2017 | II          |
| Ecotoxicity,<br>freshwater* <sup>2</sup>                                                 | Comparative Toxic Unit for ecosystems (CTU <sub>e</sub> )                                                                                                       | CTUe                                                                                                                            | USEtox model,<br>(Rosenbaum et<br>al, 2008)                                             | EC-<br>JRC,<br>2017 | III/interim |
| Land use                                                                                 | <ul> <li>Soil quality index</li> <li>Biotic production</li> <li>Erosion resistance</li> <li>Mechanical filtration</li> <li>Groundwater replenishment</li> </ul> | <ul> <li>Dimensionless (pt)</li> <li>kg biotic production</li> <li>kg soil</li> <li>m³ water</li> <li>m³ groundwater</li> </ul> | Soil quality<br>index based on<br>LANCA (Beck<br>et al. 2010 and<br>Bos et al.<br>2016) | EC-<br>JRC,<br>2017 | III         |
| Water use                                                                                | User deprivation potential (deprivation-weighted water consumption)                                                                                             | m <sup>3</sup> world <sub>eq</sub>                                                                                              | Available WAter REmaining (AWARE) as recommended by UNEP, 2016                          | EC-<br>JRC,<br>2017 | III         |
| Mineral, fossil<br>and renewable<br>resource<br>depletion                                | Abiotic resource depletion (ADP ultimate reserves)                                                                                                              | kg Sb <sub>eq</sub>                                                                                                             | CML 2002<br>(Guinée et al.,<br>2002) and van<br>Oers et al.<br>2002.                    |                     | III         |

<sup>&</sup>lt;sup>2</sup> Long-term emissions (occurring beyond 100 years) shall be excluded from the toxic impact categories. Toxicity emissions to this sub-compartment have a characterisation factor set to 0 in the EF LCIA (to ensure consistency). If included by the applicant in the LCI modelling, the sub-compartment 'unspecified (long-term)' shall be used

#### 2.6 Limitations

The main limitation are the lack of data on the production of buildings and equipment. This is due also to the long history of the nougat production: in many firms the plants are mix of old and new tools and it is very difficult to make a model of the equipment with a similar differentiation. For example, there are craft production with big pots with more than eighty years and industrial production with production line with more than thirty years old. The same situation there is in the buildings, that in some firms are more than a century year old.

# 3 Most relevant impact categories, life cycle stages, processes and elementary flows

The most relevant impact categories for the products Nougat and Croccante, in scope of this PEFCR, are the following:

- · climate change
- particulate matter
- acidification
- marine eutrophication

For all relevant impact categories, the most relevant life cycle stages for products Nougat and Croccante, in scope of this PEFCR, are the following:

- agricultural production of inputs;
- Production process (for -nougat only).

The most relevant processes for product Nougat in scope of this PEFCR are the following:

Table 1. List of the most relevant processes: nougat

| Impact category       | Processes                                                                                                                                                                      |
|-----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Climate change;       | Cocoa bean - Input production – agricultural stage; Natural gas – Cooking stage Electricity – Cooking stage                                                                    |
| Particular matter     | Cocoa Bean - Input production – agricultural stage;<br>Electricity – Cooking stage                                                                                             |
| Acidification         | Albumin - Input production – agricultural stage; Almond - Input production – agricultural stage; Chocolate- Input production – agricultural stage; Electricity – Cooking stage |
| Marine eutrophication | Cocoa bean- Input production – agricultural stage; Sugar beet - Input production – agricultural stage; Almond - Input production – agricultural stage;                         |

The most relevant processes for product Croccante in scope of this PEFCR are the following:

Table 5. List of the most relevant processes: croccante

| Impact category       | Processes                                                                                                                                                 |
|-----------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|
| Climate change;       | Cocoa bean - Input production – agricultural stage; Electricity – Cooking stage                                                                           |
| Particular matter     | Cocoa Bean - Input production – agricultural stage; Electricity – Cooking stage Natural gas – Cooking stage                                               |
| Acidification         | Almond - Input production – agricultural stage; Chocolate- Input production – agricultural stage; Electricity – Cooking stage Natural gas – Cooking stage |
| Marine eutrophication | Cocoa bean- Input production – agricultural stage; Sugar beet - Input production – agricultural stage; Almond - Input production – agricultural stage;    |

# 4 Life cycle inventory

# 4.1 List of mandatory company-specific data

The following processes shall be modelled using company specific data:

- Consumption and supply of inputs materials;
- Cooking;
- Packaging;
- Distribution Chain
- Use (no mandatory data)
- End of Life

# 4.2 Mandatory data on consumption and supply of inputs materials life stage

Data collection requirements for mandatory process of Inputs Production life cycle stage: nougat

| Requirements for data collection purposes                                |                                                                               | Requirements for modelling purposes |                                                                          |                                      |      |     |     |     |     | Remarks |  |
|--------------------------------------------------------------------------|-------------------------------------------------------------------------------|-------------------------------------|--------------------------------------------------------------------------|--------------------------------------|------|-----|-----|-----|-----|---------|--|
| Activity data<br>to be<br>collected                                      | Specific<br>requirements<br>(e.g. frequency,<br>measurement<br>standard, etc) | Unit of<br>measure                  | Default dataset to be<br>used                                            | Dataset source (i.e.<br>node)        | UUID | TiR | TeR | GR  | P   | DQR     |  |
| Inputs:                                                                  |                                                                               |                                     |                                                                          |                                      |      |     |     |     |     |         |  |
| Yearly Honey consumption                                                 | 1 year average                                                                | ton/year                            | Honey, industry 330kg<br>package, at farm/RER<br>Economic                | EU PEF pilot for beer 3 <sup>3</sup> | n/a  | n/a | n/a | n/a | n/a | n/a     |  |
| Yearly amount<br>of transported<br>honey per km<br>travelled on<br>lorry | 1 year average                                                                | Ton km /<br>year                    | Transport, truck >20t,<br>EURO5, 80%LF,<br>default/GLO Economic          | Agri-footprint                       | n/a  | n/a | n/a | n/a | n/a | n/a     |  |
| Yearly amount<br>of transported<br>honey per km<br>travelled on<br>ship  | 1 year average                                                                | Ton km /<br>year                    | Transport, sea ship, 80000<br>DWT, 100%LF, long,<br>default/GLO Economic | Agri-footprint                       | n/a  | n/a | n/a | n/a | n/a | n/a     |  |
| Yearly<br>albumin<br>consumption                                         | 1 year average                                                                | Ton /year                           | Proxy from Egg, conventional, indoor system, cage, at                    | Agribalyse                           | n/a  | n/a | n/a | n/a | n/a | n/a     |  |

\_

<sup>&</sup>lt;sup>3</sup> Alejandro Pablo Arena, Gabriela Nuri Barón, Roxana Piastrellini, Silvia Curadelli, Bárbara María Civit (2014) Environmental profile of the life cycle of small-scale honey production in Mendoza, Argentina

|                                                                            |                |                  | farm gate/FR U                                                            |                |     |     |     |     |     |     |  |
|----------------------------------------------------------------------------|----------------|------------------|---------------------------------------------------------------------------|----------------|-----|-----|-----|-----|-----|-----|--|
| Yearly amount<br>of transported<br>albumin per<br>km travelled<br>on lorry | 1 year average | Ton km /<br>year | Transport, truck >20t,<br>EURO5, 80%LF,<br>default/GLO Economic           | Agri-footprint | n/a | n/a | n/a | n/a | n/a | n/a |  |
| Yearly amount<br>of transported<br>albumin per<br>km travelled<br>on ship  | 1 year average | Ton km /<br>year | Transport, sea ship, 80000<br>DWT, 100%LF, long,<br>default/GLO Economic  | Agri-footprint | n/a | n/a | n/a | n/a | n/a | n/a |  |
| Yearly Sugar consumption                                                   | 1 year average | ton/year         | Sugar, from sugar beet,<br>from sugar production,<br>at plant/IT Economic | Agri-footprint | n/a | n/a | n/a | n/a | n/a | n/a |  |
| Yearly amount<br>of transported<br>sugar per km<br>travelled on<br>lorry   | 1 year average | Ton km /<br>year | Transport, truck >20t,<br>EURO5, 80%LF,<br>default/GLO Economic           | Agri-footprint | n/a | n/a | n/a | n/a | n/a | n/a |  |
| Yearly amount<br>of transported<br>sugar per km<br>travelled on<br>ship    | 1 year average | Ton km /<br>year | Transport, sea ship, 80000<br>DWT, 100%LF, long,<br>default/GLO Economic  | Agri-footprint | n/a | n/a | n/a | n/a | n/a | n/a |  |
| Yearly almond consumption                                                  | 1 year average | Ton /year        | Almond {GLO}  market for almond   Alloc Rec, U                            | Ecoinvent 3    | n/a | n/a | n/a | n/a | n/a | n/a |  |

| Yearly amount<br>of transported<br>almond per<br>km travelled<br>on lorry   | 1 year average | Ton km /<br>year | Transport, truck >20t,<br>EURO5, 80%LF,<br>default/GLO Economic                        | Agri-footprint | n/a | n/a | n/a | n/a | n/a | n/a |  |
|-----------------------------------------------------------------------------|----------------|------------------|----------------------------------------------------------------------------------------|----------------|-----|-----|-----|-----|-----|-----|--|
| Yearly amount<br>of transported<br>almond per<br>km travelled<br>on ship    | 1 year average | Ton km /<br>year | Transport, sea ship, 80000<br>DWT, 100%LF, long,<br>default/GLO Economic               | Agri-footprint | n/a | n/a | n/a | n/a | n/a | n/a |  |
| Yearly<br>hazelnut<br>consumption                                           | 1 year average | ton/year         | Proxy from<br>Almond {GLO}  market<br>for almond   Alloc Rec,<br>U                     | Ecoinvent 3    | n/a | n/a | n/a | n/a | n/a | n/a |  |
| Yearly amount<br>of transported<br>hazelnut per<br>km travelled<br>on lorry | 1 year average | Ton km /<br>year | Transport, truck >20t,<br>EURO5, 80%LF,<br>default/GLO Economic                        | Agri-footprint | n/a | n/a | n/a | n/a | n/a | n/a |  |
| Yearly amount<br>of transported<br>hazelnut per<br>km travelled<br>on ship  | 1 year average | Ton km /<br>year | Transport, sea ship, 80000<br>DWT, 100%LF, long,<br>default/GLO Economic               | Agri-footprint | n/a | n/a | n/a | n/a | n/a | n/a |  |
| Yearly dark chocolate consumption                                           | 1 year average | Ton /year        | Cocoa bean {GH} <br>cocoa bean production,<br>sun-dried   Alloc Rec,<br>U <sup>4</sup> | Ecoinvent 3    | n/a | n/a | n/a | n/a | n/a | n/a |  |

\_

<sup>&</sup>lt;sup>4</sup> About the production process the data of the following study are used: "LIFE CYCLE ASSESSMENT OF CHOCOLATE PRODUCED IN GHANA - GEORGE AFRANE - Koforidua Polytechnic - Koforidua, Ghana - AUGUSTINE NTIAMOAH - Department of Chemical Engineering - Kwame Nkrumah University of Science & Technology, Kumasi, Ghana.

| Yearly amount<br>of transported<br>dark<br>chocolate per<br>km travelled<br>on lorry | 1 year average | Ton km /<br>year | Transport, truck >20t,<br>EURO5, 80%LF,<br>default/GLO Economic                          | Agri-footprint                                      | n/a | n/a | n/a | n/a | n/a | n/a |  |
|--------------------------------------------------------------------------------------|----------------|------------------|------------------------------------------------------------------------------------------|-----------------------------------------------------|-----|-----|-----|-----|-----|-----|--|
| Yearly amount of transported dark chocolate per km travelled on ship                 | 1 year average | Ton km /<br>year | Transport, sea ship, 80000<br>DWT, 100%LF, long,<br>default/GLO Economic                 | Agri-footprint                                      | n/a | n/a | n/a | n/a | n/a | n/a |  |
| Yearly potato<br>starch dried<br>consumption                                         | 1 year average | ton/year         | Potato starch dried,<br>from wet milling, at<br>plant/DE Economic                        | Ecoinvent 3                                         | n/a | n/a | n/a | n/a | n/a | n/a |  |
| Yearly amount of transported potato starch dried per km travelled on lorry           | 1 year average | Ton km /<br>year | Transport, truck >20t,<br>EURO5, 80%LF,<br>default/GLO Economic                          | Agri-footprint                                      | n/a | n/a | n/a | n/a | n/a | n/a |  |
| Yearly amount of transported potato starch dried per km travelled on ship            | 1 year average | Ton km /<br>year | Transport, sea ship, 80000<br>DWT, 100%LF, long,<br>default/GLO Economic                 | Agri-footprint                                      | n/a | n/a | n/a | n/a | n/a | n/a |  |
| Yearly<br>Glucose syrup<br>consumption                                               | 1 year average | Ton /year        | Sugar, from sugarcane<br>{GLO}  market for  <br>Alloc Rec, U + Enzyme,<br>Alpha-amylase, | Ecoinvent 3 + data<br>from EU PEF pilot for<br>beer | n/a | n/a | n/a | n/a | n/a | n/a |  |

|                                                                                     |                |                  | Novozyme<br>Liquozyme/kg/RER<br>Copy                                       |                |     |     |     |     |     |     |  |
|-------------------------------------------------------------------------------------|----------------|------------------|----------------------------------------------------------------------------|----------------|-----|-----|-----|-----|-----|-----|--|
| Yearly amount<br>of transported<br>Glucose syrup<br>per km<br>travelled on<br>lorry | 1 year average | Ton km /<br>year | Transport, truck >20t,<br>EURO5, 80%LF,<br>default/GLO Economic            | Agri-footprint | n/a | n/a | n/a | n/a | n/a | n/a |  |
| Yearly amount<br>of transported<br>Glucose syrup<br>per km<br>travelled on<br>ship  | 1 year average | Ton km /<br>year | Transport, sea ship, 80000<br>DWT, 100%LF, long,<br>default/GLO Economic   | Agri-footprint | n/a | n/a | n/a | n/a | n/a | n/a |  |
| Yearly water consumption                                                            | 1 year average | m³/year          | Tap water {Europe<br>without Switzerland} <br>market for   Alloc Rec,<br>U | Ecoinvent 3    | n/a | n/a | n/a | n/a | n/a | n/a |  |

#### Data collection requirements for mandatory process of Inputs Production life cycle stage: croccante

| Requir                     | rement | for data collecti                                                             | ion purposes       |                            | Requirements for modelling purposes |      |     |     |     |     |     |  |  |
|----------------------------|--------|-------------------------------------------------------------------------------|--------------------|----------------------------|-------------------------------------|------|-----|-----|-----|-----|-----|--|--|
| Activity<br>to<br>collecte | be     | Specific<br>requirements<br>(e.g. frequency,<br>measurement<br>standard, etc) | Unit of<br>measure | Default dataset to be used | Dataset source (i.e. node)          | UUID | TiR | TeR | GR  | P   | DQR |  |  |
| Inputs:                    |        |                                                                               |                    |                            |                                     |      |     |     |     |     |     |  |  |
| Yearly                     | Sugar  | 1 year average                                                                | ton/year           | Sugar, from sugar beet,    | Agri-footprint                      | n/a  | n/a | n/a | n/a | n/a | n/a |  |  |

| consumption                                                               |                |                  | from sugar production,                                                   |                |     |     |     |     |     |     |  |
|---------------------------------------------------------------------------|----------------|------------------|--------------------------------------------------------------------------|----------------|-----|-----|-----|-----|-----|-----|--|
|                                                                           |                |                  | at plant/IT Economic                                                     |                |     |     |     |     |     |     |  |
| Yearly amount<br>of transported<br>sugar per km<br>travelled on<br>lorry  | 1 year average | Ton km /<br>year | Transport, truck >20t,<br>EURO5, 80%LF,<br>default/GLO Economic          | Agri-footprint | n/a | n/a | n/a | n/a | n/a | n/a |  |
| Yearly amount<br>of transported<br>sugar per km<br>travelled on<br>ship   | 1 year average | Ton km /<br>year | Transport, sea ship, 80000<br>DWT, 100%LF, long,<br>default/GLO Economic | Agri-footprint | n/a | n/a | n/a | n/a | n/a | n/a |  |
| Yearly almond consumption                                                 | 1 year average | Ton /year        | Almond {GLO}  market<br>for almond   Alloc Rec,<br>U                     | Ecoinvent 3    | n/a | n/a | n/a | n/a | n/a | n/a |  |
| Yearly amount<br>of transported<br>almond per<br>km travelled<br>on lorry | 1 year average | Ton km /<br>year | Transport, truck >20t,<br>EURO5, 80%LF,<br>default/GLO Economic          | Agri-footprint | n/a | n/a | n/a | n/a | n/a | n/a |  |
| Yearly amount<br>of transported<br>almond per<br>km travelled<br>on ship  | 1 year average | Ton km /<br>year | Transport, sea ship, 80000<br>DWT, 100%LF, long,<br>default/GLO Economic | Agri-footprint | n/a | n/a | n/a | n/a | n/a | n/a |  |
| Yearly<br>hazeInut<br>consumption                                         | 1 year average | ton/year         | Proxy from<br>Almond {GLO}  market<br>for almond   Alloc Rec,<br>U       | Ecoinvent 3    | n/a | n/a | n/a | n/a | n/a | n/a |  |
| Yearly amount                                                             | 1 year average | Ton km /<br>year | Transport, truck >20t,<br>EURO5, 80%LF,                                  | Agri-footprint | n/a | n/a | n/a | n/a | n/a | n/a |  |

| of transported<br>hazelnut per<br>km travelled<br>on lorry                           |                |                  | default/GLO Economic                                                          |                |     |     |     |     |     |     |  |
|--------------------------------------------------------------------------------------|----------------|------------------|-------------------------------------------------------------------------------|----------------|-----|-----|-----|-----|-----|-----|--|
| Yearly amount<br>of transported<br>hazelnut per<br>km travelled<br>on ship           | 1 year average | Ton km /<br>year | Transport, sea ship, 80000<br>DWT, 100%LF, long,<br>default/GLO Economic      | Agri-footprint | n/a | n/a | n/a | n/a | n/a | n/a |  |
| Yearly dark chocolate consumption                                                    | 1 year average | Ton /year        | Cocoa bean {GH}  cocoa bean production, sun-dried   Alloc Rec, U <sup>5</sup> | Ecoinvent 3    | n/a | n/a | n/a | n/a | n/a | n/a |  |
| Yearly amount<br>of transported<br>dark<br>chocolate per<br>km travelled<br>on lorry | 1 year average | Ton km /<br>year | Transport, truck >20t,<br>EURO5, 80%LF,<br>default/GLO Economic               | Agri-footprint | n/a | n/a | n/a | n/a | n/a | n/a |  |
| Yearly amount<br>of transported<br>dark<br>chocolate per<br>km travelled<br>on ship  | 1 year average | Ton km /<br>year | Transport, sea ship, 80000<br>DWT, 100%LF, long,<br>default/GLO Economic      | Agri-footprint | n/a | n/a | n/a | n/a | n/a | n/a |  |
| Yearly water consumption                                                             | 1 year average | m³/year          | Tap water {Europe<br>without Switzerland}  <br>market for   Alloc Rec,<br>U   | Ecoinvent 3    | n/a | n/a | n/a | n/a | n/a | n/a |  |

<sup>&</sup>lt;sup>5</sup> About the production process the data of the following study are used: "LIFE CYCLE ASSESSMENT OF CHOCOLATE PRODUCED IN GHANA - GEORGE AFRANE - Koforidua Polytechnic - Koforidua, Ghana - AUGUSTINE NTIAMOAH - Department of Chemical Engineering - Kwame Nkrumah University of Science & Technology, Kumasi, Ghana.

# 4.3 Mandatory data on production cooking life stage

# Data collection requirements for mandatory process of Production Cooking life cycle stage: nougat and croccante

| Requirements                                         | for data collecti                                                                | on purposes        |                                                                                                                                                             | Requirements f                | or modelling pu | rposes |     |     |     |     | Remarks |
|------------------------------------------------------|----------------------------------------------------------------------------------|--------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|-----------------|--------|-----|-----|-----|-----|---------|
| Activity data to<br>be collected                     | Specific<br>requirements<br>(e.g.<br>frequency,<br>measurement<br>standard, etc) | Unit of<br>measure | Default dataset to be used                                                                                                                                  | Dataset source (i.e.<br>node) | UUID            | TiR    | TeR | GR  | P   | DQR |         |
| Inputs:                                              |                                                                                  |                    |                                                                                                                                                             |                               |                 |        |     |     |     |     |         |
| Yearly<br>electricity<br>consumption<br>for coocking | 1 year average                                                                   | kWh / year         | Electricity, medium<br>voltage {IT}  market for  <br>Alloc Rec, U                                                                                           | Ecoinvent 3                   | n/a             | n/a    | n/a | n/a | n/a | n/a |         |
| Yearly natural gas consumption for cooking           | 1 year average                                                                   | m³/year            | Heat, district or industrial, natural gas {Europe without Switzerland}  heat production, natural gas, at boiler condensing modulating >100kW   Alloc Rec, U | Ecoinvent 3                   | n/a             | n/a    | n/a | n/a | n/a | n/a |         |
| Yearly water consumption for coocking                | 1 year average                                                                   | m³/year            | Tap water {Europe without Switzerland}   tap water production, conventional treatment   APOS, U                                                             | Ecoinvent                     | n/a             | n/a    | n/a | n/a | n/a | n/a |         |

| Requirements                                                         | for data collecti                                                                | on purposes        |                                                                                                                                      | Requirements f                | or modelling pu | rposes |     |     |     |     | Remarks |
|----------------------------------------------------------------------|----------------------------------------------------------------------------------|--------------------|--------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|-----------------|--------|-----|-----|-----|-----|---------|
| Activity data to<br>be collected                                     | Specific<br>requirements<br>(e.g.<br>frequency,<br>measurement<br>standard, etc) | Unit of<br>measure | Default dataset to be used                                                                                                           | Dataset source (i.e.<br>node) | UUID            | TiR    | TeR | GR  | P   | DQR |         |
| Outputs:                                                             |                                                                                  |                    |                                                                                                                                      |                               |                 |        |     |     |     |     |         |
| Yearly packaging waste: paper and cardboard packaging (EWC 15.01.01) | 1 year average                                                                   | ton / year         | Linerboard {RER}  production, kraftliner   Alloc Rec, U  Linerboard {RER}  treatment of recovered paper to, testliner   Alloc Rec, U | Ecoinvent 3                   | n/a             | n/a    | n/a | n/a | n/a | n/a |         |
| Yearly plastic<br>packaging<br>(EWC 15.01.02)                        | 1 year average                                                                   | ton / year         | Polypropylene, granulate {GLO}  market for   Alloc Rec, UGlass, secondary, at plant/                                                 |                               | n/a             | n/a    | n/a | n/a | n/a | n/a |         |
| Yearly metallic<br>packaging<br>(EWC 15.01.04)                       | 1 year average                                                                   | ton / year         |                                                                                                                                      |                               | n/a             | n/a    | n/a | n/a | n/a | n/a |         |
| Yearly drainage water                                                | 1 year average                                                                   | MC / year          | Wastewater, average<br>{Europe without<br>Switzerland}  treatment<br>of wastewater, average,<br>capacity 1E9I/year   Alloc<br>Rec, U | Ecoinvent 3                   | n/a             | n/a    | n/a | n/a | n/a | n/a |         |

# 4.4 Mandatory data on production packaging life stage

Data collection requirements for mandatory process of packaging life cycle stage: nougat and croccante

| Requirements                                                          | s for data collect                                                               | ion purposes       |                                                                                                                                         | Requirements for                                 | or modelling pur | poses |     |     |     |     | Remarks |
|-----------------------------------------------------------------------|----------------------------------------------------------------------------------|--------------------|-----------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|------------------|-------|-----|-----|-----|-----|---------|
| Activity data<br>to be<br>collected                                   | Specific<br>requirements<br>(e.g.<br>frequency,<br>measurement<br>standard, etc) | Unit of<br>measure | Default dataset to be<br>used                                                                                                           | Dataset source (i.e.<br>node)                    | UUID             | TiR   | TeR | GR  | P   | DQR |         |
| Inputs:                                                               |                                                                                  |                    |                                                                                                                                         |                                                  |                  |       |     |     |     |     |         |
| Yearly<br>Aluminium<br>foil<br>consumption<br>for packaging           | 1 year average                                                                   | ton/year           | Aluminium, primary, at plant – IT                                                                                                       | Ecoinvent 3 + data from<br>EU PEF pilot for beer | n/a              | n/a   | n/a | n/a | n/a | n/a |         |
| Yearly amount of transported aluminium foil per km travelled on lorry | 1 year average                                                                   | Ton km /<br>year   | Transport, truck >20t,<br>EURO5, 80%LF,<br>default/GLO Economic                                                                         | Agri-footprint                                   | n/a              | n/a   | n/a | n/a | n/a | n/a |         |
| Yearly plastic<br>consumption<br>for packaging                        | 1 year average                                                                   | Ton km /<br>year   | Polypropylene, granulate {GLO}  market for   Alloc Rec, UGlass, secondary, at plant/  Extrusion, plastic film {GLO}  market for   Alloc | Ecoinvent 3                                      | n/a              | n/a   | n/a | n/a | n/a | n/a |         |

|                                                                                |                |                  | Rec, U                                                          |                |     |     |     |     |     |     |  |
|--------------------------------------------------------------------------------|----------------|------------------|-----------------------------------------------------------------|----------------|-----|-----|-----|-----|-----|-----|--|
| Yearly amount of transported plastic per km travelled on lorry                 | 1 year average | Ton km /<br>year | Transport, truck >20t,<br>EURO5, 80%LF,<br>default/GLO Economic | Agri-footprint | n/a | n/a | n/a | n/a | n/a | n/a |  |
| Yearly<br>cardboard<br>consumption<br>for packaging                            | 1 year average | Ton / year       |                                                                 |                | n/a | n/a | n/a | n/a | n/a | n/a |  |
| Yearly<br>amount of<br>transported<br>cardboard per<br>km travelled<br>on ship | 1 year average | Ton km /<br>year | Transport, truck >20t,<br>EURO5, 80%LF,<br>default/GLO Economic | Agri-footprint | n/a | n/a | n/a | n/a | n/a | n/a |  |

# 4.5 Mandatory data on distribution chain life stage

Data collection requirements for mandatory process of Distribution Chain life cycle stage: nougat and croccante

| Requirements                                                                        | for data collecti                                                                | on purposes        |                                                                                                                                      | Requirements f                | or modelling pu | rposes |     |     |     |     | Remarks |
|-------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|--------------------|--------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|-----------------|--------|-----|-----|-----|-----|---------|
| Activity data to<br>be collected                                                    | Specific<br>requirements<br>(e.g.<br>frequency,<br>measurement<br>standard, etc) | Unit of<br>measure | Default dataset to be used                                                                                                           | Dataset source (i.e.<br>node) | UUID            | TiR    | TeR | GR  | P   | DQR |         |
| Inputs:                                                                             |                                                                                  |                    |                                                                                                                                      |                               |                 |        |     |     |     |     |         |
| Yearly<br>electricity<br>consumption<br>for storage                                 | 1 year average                                                                   | kWh / year         | Electricity, medium<br>voltage {IT}  market for  <br>Alloc Rec, U                                                                    | Ecoinvent 3                   | n/a             | n/a    | n/a | n/a | n/a | n/a |         |
| Yearly amount<br>of transported<br>nougat per km<br>travelled on<br>lorry           | 1 year average                                                                   | Ton km /<br>year   | Transport, truck >20t,<br>EURO5, 80%LF,<br>default/GLO Economic                                                                      | Agri-footprint                | n/a             | n/a    | n/a | n/a | n/a | n/a |         |
| Outputs:                                                                            |                                                                                  |                    |                                                                                                                                      |                               |                 |        |     |     |     |     |         |
| Yearly<br>packaging<br>waste: paper<br>and cardboard<br>packaging<br>(EWC 15.01.01) | 1 year average                                                                   | ton / year         | Linerboard {RER}  production, kraftliner   Alloc Rec, U  Linerboard {RER}  treatment of recovered paper to, testliner   Alloc Rec, U | Ecoinvent 3                   | n/a             | n/a    | n/a | n/a | n/a | n/a |         |
| Yearly plastic<br>packaging<br>(EWC 15.01.02)                                       | 1 year average                                                                   | ton / year         | Polypropylene, granulate {GLO}  market for   Alloc Rec, U Glass, secondary, at plant/                                                |                               | n/a             | n/a    | n/a | n/a | n/a | n/a |         |

# 4.6 Use stage

No mandatory data are recommended both for nougat and croccante, because they are products eat without cooking and the only waste is the packaging (data are collected in the packaging stage).

# 4.7 End of Life stage

On end of life of packaging materials, use the CFF formula indicated in PEF Guidance 6.3, with national average value on recycling rate, incineration rate and landfill rate.

| PROCESS                                                                                                                           | KIND OF WASTE   | CFF VALUE |
|-----------------------------------------------------------------------------------------------------------------------------------|-----------------|-----------|
| Disposal, aluminium, 0% water, to municipal incineration/CH U (incl energy recovery)                                              | Aluminium       | 9.8 %     |
| Disposal, aluminium, 0% water, to sanitary landfill/CH U - PEF                                                                    | Aluminium       | 18.2 %    |
| Recycling aluminium (PEF) - CFF - IT                                                                                              | Aluminium       | 57.6 %    |
| Disposal, packaging cardboard, 19.6% water, to municipal incineration/CH U (incl energy recovery) - CFF IT                        | Cardboard       | 9.45 %    |
| Disposal, packaging cardboard, 19.6% water, to sanitary landfill/CH U - CFF                                                       | Cardboard       | 10.07 %   |
| Recycling cardboard (PEF) - CFF IT                                                                                                | Cardboard       | 67.6 %    |
| Disposal, glass, 0% water, to inert material landfill/CH U - PEF                                                                  | Glass           | 24.05 %   |
| Disposal, glass, 0% water, to municipal incineration/CH U (incl energy recovery)                                                  | Glass           | 12.95 %   |
| Recycling glass (PEF) - PEF/Integrated formula - CFF IT                                                                           | Glass           | 50.4 %    |
| Disposal, packaging paper, 13.7% water, to municipal incineration/CH U - PEF (included energy recovery) - CFF IT                  | Packaging paper | 9.45 %    |
| Disposal, packaging paper, 13.7% water, to sanitary landfill/CH U - PEF                                                           | Packaging paper | 17.55 %   |
| Recycling packaging paper (PEF) - CFF IT                                                                                          | Packaging paper | 58.4 %    |
| Disposal, PE sealing sheet, 4% water, to municipal incineration/CH U - CFF IT                                                     | PE              | 25.2 %    |
| Recycling PE (CFF)                                                                                                                | PE              | 14 %      |
| Waste polyethylene {Europe without Switzerland}  treatment of waste polyethylene, sanitary landfill   Alloc Rec, U - CFF - IT     | PE              | 46.8 %    |
| Disposal, polyethylene terephtalate, 0.2% water, to municipal incineration/CH U (incl energy recovery) - CFF IT                   | PET             | 24.15 %   |
| Disposal, polyethylene terephtalate, 0.2% water, to sanitary landfill/CH U - PEF                                                  | PET             | 44.85 %   |
| Recycling PET (PEF) - CFF IT                                                                                                      | PET             | 15.5 %    |
| Recycling PP (PEF) - CFF IT PROXY                                                                                                 | PP              | 14 %      |
| Waste polypropylene {CH}  treatment of, municipal incineration   Alloc Rec, U - CFF IT                                            | PP              | 25.2 %    |
| Waste polypropylene {CH}  treatment of, sanitary landfill   Alloc Rec, U - CFF IT                                                 | PP              | 46.8 %    |
| Recycling PVC - CFF IT - Proxy                                                                                                    | PVC             | 14 %      |
| Waste polyvinylchloride {Europe without Switzerland}  treatment of waste polyvinylchloride, municipal incineration   Alloc Rec, U | PVC             | 25.2 %    |
| Waste polyvinylchloride {Europe without Switzerland}  treatment of waste polyvinylchloride, sanitary landfill   Alloc Rec, U      | PVC             | 46.8 %    |

# 4.8 Direct elementary flows requirements

Direct elementary flow collection requirements - nougat

| Emissions/resources                   | Elementary flow                                                      | Frequency of measurement |  |  |
|---------------------------------------|----------------------------------------------------------------------|--------------------------|--|--|
| Water from well                       | Water, well, in ground, COUNTRY                                      | Yearly consumption       |  |  |
| CO <sub>2</sub> to Air, from coocking | Carbon dioxide (from fossil and Carbon dioxide, land transformation) | Yearly emission          |  |  |
| Dust to air, from coocking            | Particulates, < 2.5 um                                               | Yearly emission          |  |  |
| Sulphur oxides to air, from coocking  | Sulphur oxides                                                       | Yearly emission          |  |  |
| Nitrogen oxides to air, from cooking  | Nitrogen oxides                                                      | Yearly emission          |  |  |

## 4.9 List of processes expected to run by the company

All processes expected to be run by the company, for which company-specific data are mandatory, are reported in chapters 4.2 – 4.5 List of mandatory company-specific data.

#### 4.10 Data gaps

Unless primary data on input materials and consumables production of appropriate quality (as defined in the PEF Recommendation) are made available from producers, to assure an appropriate overall quality of the PEF study and the comparability of the results, default proxies reported in cap. 5.1. have to be used.

#### 4.11 Data quality requirements

In the screening report there are two categories with poor data in nougat production:

- Acidification;
- Terrestrial eutrophication.

Acidification is one of the most important impact categories, so an improvement of the data will be tried with the PEF on the firms.

In the screening report there are five categories with poor data in croccante production:

- Climate change;
- Ozone depletion;
- Human toxicity, cancer effects;
- Freshwater eutrophication;
- · Land use.

This is due to the haxelnut proxy used for the analysis. Also in this case, an improvement of the data will be tried and the hazelnut production chain in the upstream stage will be analysed with more detailed data.

For other data quality requirements, assessment and reporting, see. PEFCR Guidance 6.3, Section B.5.4

#### 4.12 Data needs matrix (DNM)

For the evaluation of all processes required to model the product using the Data Needs Matrix, see PEFCR Guidance 6.3. Section B.5.5.

#### 4.13 Allocation rules

In the Production Plant, data of consumption of energy (power and gas), water and some waste output (drained water and packaging) shall be allocated with respect to the total mass of materials that are processed in the Plant and measured at the production gate.

#### 4.14 Which datasets to use?

The secondary datasets to be used by the applicant are those listed in this PEFCR. Whenever a dataset needed to calculate the PEF-profile is not among those listed in this PEFCR, then the applicant shall choose between the following options (in hierarchical order):

- Use an EF-compliant dataset available on one of the EU nodes or available in a free or commercial source:
- Use another EF-compliant dataset considered to be a good proxy. In such case this information shall be included in the "limitation" section of the PEF report;
- Use an ILCD-entry level-compliant dataset. In such case this information shall be included in the "data gap" section of the PEF report.

#### 4.15 Modelling of wastes and recycled content

For modelling of waste and recycled content the Circular Footprint Formula, as described in PEFCR Guidance 6.3, Section B.5.11, shall be applied.

# 5 Life cycle stages

#### 5.1 Inputs production

Processes related to production inputs acquisition, for which company-specific data are mandatory, are reported in chapter 4.2 List of mandatory company-specific data.

# 5.2 Manufacturing and supply chain

Processes expected to be run by the company at manufacturing stage, for which company-specific data are mandatory, are reported in chapter 4.3,4.4, 4.5 List of mandatory company-specific data.

# 6 PEF results

#### **6.1** Benchmark values

The following table reports the characterized, normalized and weighted LCIA results for 1 kg of nougat.

#### **Characterized results**

| Impact category                          | Unit         | Total    | Ingredients | Packaging | Processing | Distribution | End of life |
|------------------------------------------|--------------|----------|-------------|-----------|------------|--------------|-------------|
| Climate change                           | kg CO2 eq    | 6,30     | 4,10        | 0,29      | 1,91       | 0,03         | - 0,03      |
| Ozone depletion                          | kg CFC-11 eq | 4,38E-07 | 1,78E-07    | 3,57E-08  | 2,31E-07   | 6,32E-11     | -5,99E-09   |
| Human toxicity, cancer effects           | CTUh         | 1,03E-07 | 9,18E-08    | 9,93E-09  | 5,94E-09   | 2,33E-11     | -4,20E-09   |
| Human toxicity, non-cancer effects       | CTUh         | 2,26E-05 | 2,25E-05    | 4,89E-08  | 4,93E-08   | 5,16E-10     | -9,21E-09   |
| Particulate matter                       | kg PM2.5 eq  | 3,08E-03 | 2,48E-03    | 2,41E-04  | 4,76E-04   | 2,76E-06     | -1,11E-04   |
| Ionizing radiation HH                    | kBq U235 eq  | 1,29E-01 | 5,21E-02    | 2,19E-02  | 6,51E-02   | 7,69E-05     | -1,02E-02   |
| Photochemical ozone formation            | kg NMVOC eq  | 1,44E-02 | 1,06E-02    | 1,03E-03  | 2,89E-03   | 2,09E-04     | -3,26E-04   |
| Acidification                            | molc H+ eq   | 3,72E-02 | 2,62E-02    | 1,69E-03  | 9,78E-03   | 1,66E-04     | -6,29E-04   |
| Terrestrial eutrophication               | molc N eq    | 1,16E-01 | 8,73E-02    | 3,79E-03  | 2,58E-02   | 8,41E-04     | -1,32E-03   |
| Freshwater eutrophication                | kg P eq      | 4,95E-04 | 4,41E-04    | 2,24E-05  | 3,90E-05   | 9,95E-08     | -7,24E-06   |
| Marine eutrophication                    | kg N eq      | 1,72E-02 | 1,58E-02    | 3,36E-04  | 9,57E-04   | 7,67E-05     | -1,93E-05   |
| Freshwater ecotoxicity                   | CTUe         | 66,86    | 66,44       | 0,27      | 0,21       | 0,01         | - 0,06      |
| Land use                                 | kg C deficit | 110,37   | 108,08      | 2,51      | 1,16       | -            | - 1,37      |
| Water resource depletion                 | m3 water eq  | 4,88E-01 | 4,74E-01    | 1,07E-03  | 1,35E-02   | 4,52E-07     | -5,23E-04   |
| Mineral, fossil & ren resource depletion | kg Sb eq     | 5,45E-04 | 5,31E-04    | 9,60E-06  | 6,99E-06   | 7,26E-09     | -3,06E-06   |



#### Normalized results

| Impact category                    | Total    | Ingredients | Packaging | Processing | Distribution | End of life |
|------------------------------------|----------|-------------|-----------|------------|--------------|-------------|
| Climate change                     | 6,93E-04 | 0,000451    | 3,17E-05  | 2,11E-04   | 3,40E-06     | -3,55E-06   |
| Ozone depletion                    | 2,03E-05 | 8,22E-06    | 1,65E-06  | 1,07E-05   | 2,92E-09     | -2,77E-07   |
| Human toxicity, cancer effects     | 0,002805 | 0,002488    | 2,69E-04  | 0,000161   | 6,31E-07     | -0,00011    |
| Human toxicity, non-cancer effects | 4,23E-02 | 0,042141    | 9,18E-05  | 9,24E-05   | 9,67E-07     | -1,73E-05   |
| Particulate matter                 | 8,11E-04 | 0,000651    | 6,35E-05  | 1,25E-04   | 7,25E-07     | -2,91E-05   |
| Ionizing radiation HH              | 1,14E-04 | 4,61E-05    | 1,94E-05  | 5,76E-05   | 6,80E-08     | -9,05E-06   |
| Photochemical ozone formation      | 4,54E-04 | 0,000334    | 3,24E-05  | 9,10E-05   | 6,58E-06     | -1,03E-05   |
| Acidification                      | 7,86E-04 | 0,000553    | 3,56E-05  | 2,06E-04   | 3,51E-06     | -1,33E-05   |
| Terrestrial eutrophication         | 6,62E-04 | 0,000496    | 2,15E-05  | 1,47E-04   | 4,78E-06     | -7,50E-06   |
| Freshwater eutrophication          | 3,34E-04 | 0,000298    | 1,51E-05  | 2,63E-05   | 6,73E-08     | -4,89E-06   |
| Marine eutrophication              | 1,02E-03 | 0,000938    | 1,99E-05  | 5,67E-05   | 4,54E-06     | -1,14E-06   |
| Freshwater ecotoxicity             | 0,007622 | 0,007574    | 3,05E-05  | 2,36E-05   | 1,50E-06     | -7,26E-06   |
| Land use                           | 1,48E-03 | 1,45E-03    | 3,36E-05  | 1,55E-05   | 0,00E+00     | -1,84E-05   |
| Water resource depletion           | 0,006007 | 0,005835    | 1,31E-05  | 1,66E-04   | 5,56E-09     | -6,43E-06   |
| Mineral, fossil & ren resource     |          |             |           |            |              |             |
| depletion                          | 0,005396 | 0,005262    | 9,50E-05  | 6,92E-05   | 7,19E-08     | -3,03E-05   |

#### Weighted results

| Impact category                          | Unit | Total    | Ingredients | Packaging | Processing | Distribution | End of life |
|------------------------------------------|------|----------|-------------|-----------|------------|--------------|-------------|
| Totale                                   | μPt  | 4,70E+00 | 4,57E+00    | 5,16E-02  | 9,72E-02   | 1,79E-03     | -1,82E-02   |
| Climate change                           | μPt  | 4,62E-02 | 3,00E-02    | 2,11E-03  | 1,40E-02   | 2,27E-04     | -2,36E-04   |
| Ozone depletion                          | μPt  | 1,35E-03 | 5,48E-04    | 1,10E-04  | 7,13E-04   | 1,95E-07     | -1,85E-05   |
| Human toxicity, cancer effects           | μPt  | 1,87E-01 | 1,66E-01    | 1,79E-02  | 1,07E-02   | 4,20E-05     | -7,60E-03   |
| Human toxicity, non-cancer effects       | μPt  | 2,82E+00 | 2,81E+00    | 6,12E-03  | 6,16E-03   | 6,45E-05     | -1,15E-03   |
| Particulate matter                       | μPt  | 5,41E-02 | 4,34E-02    | 4,23E-03  | 8,34E-03   | 4,83E-05     | -1,94E-03   |
| Ionizing radiation HH                    | μPt  | 7,61E-03 | 3,08E-03    | 1,29E-03  | 3,84E-03   | 4,54E-06     | -6,03E-04   |
| Photochemical ozone formation            | μPt  | 3,03E-02 | 2,23E-02    | 2,16E-03  | 6,07E-03   | 4,39E-04     | -6,84E-04   |
| Acidification                            | μPt  | 5,24E-02 | 3,69E-02    | 2,38E-03  | 1,38E-02   | 2,34E-04     | -8,85E-04   |
| Terrestrial eutrophication               | μPt  | 4,41E-02 | 3,31E-02    | 1,44E-03  | 9,78E-03   | 3,19E-04     | -5,00E-04   |
| Freshwater eutrophication                | μPt  | 2,23E-02 | 1,99E-02    | 1,01E-03  | 1,76E-03   | 4,49E-06     | -3,26E-04   |
| Marine eutrophication                    | μPt  | 6,79E-02 | 6,25E-02    | 1,33E-03  | 3,78E-03   | 3,03E-04     | -7,60E-05   |
| Freshwater ecotoxicity                   | μPt  | 5,08E-01 | 5,05E-01    | 2,03E-03  | 1,57E-03   | 1,00E-04     | -4,84E-04   |
| Land use                                 | μPt  | 9,86E-02 | 9,66E-02    | 2,24E-03  | 1,03E-03   | 0,00E+00     | -1,23E-03   |
| Water resource depletion                 | μPt  | 4,00E-01 | 3,89E-01    | 8,75E-04  | 1,10E-02   | 3,71E-07     | -4,29E-04   |
| Mineral, fossil & ren resource depletion | μPt  | 3,60E-01 | 3,51E-01    | 6,34E-03  | 4,61E-03   | 4,79E-06     | -2,02E-03   |

# **6.2** PEF profile

The applicant shall calculate the PEF profile of its product in compliance with all requirements included in this PEFCR. The following information shall be included in the PEF report:

- full life cycle inventory;
- characterised results in absolute values, for all impact categories (including toxicity; as a table);
- normalised and weighted result in absolute values, for all impact categories (including toxicity; as a table);
- the aggregated single score in absolute values.