AMATH 584: Numerical Linear Algebra: Exercise 26.1 Sid Meka

Given what this exercise says, Show that the following conditions:

- 1. z is an eigenvalue of $A + \delta A$ for some δA with $||\delta A||_2 \le \epsilon$.
- 2. There exists a vector $u \in \mathbb{C}^m$ with $||(A-zI)u||_2 \le \epsilon$ and $||u||_2 = 1$.
- 3. $\sigma_m(zI A) \leq \epsilon$ where σ_m denotes the smallest singular value.
- 4. $||(zI-A)^{-1}||_2 \ge \epsilon^{-1}$ where $(zI-A)^{-1}$ is known as the resolvent of A at z.
- 1. Statement 1 implies Statement 2:

Suppose z is an eigenvalue of $A + \delta A$ for some δA with $||\delta A|| \le \epsilon$. Let u be a corresponding eigenvector with ||u|| = 1. Then, $(A + \delta a)u = zu$. That gives us Au - zu = (A - zI)u. Note that $(A - zI) = -\delta Au$. Taking the norm of each side, we have:

$$||(A - zI)u||_2 = || - \delta Au|| \le ||\delta A|| \, ||u|| \le \epsilon$$

This proves that Statement 1 implies Statement 2.

2. Statement 2 implies Statement 3:

We first prove that

$$\sigma_m(A) = \min_{\|u\|_2 = 1} \|Au\|_2$$

Let $A = U\Sigma V^*$, $v = V^*u$ with $||u||_2 = ||v||_2 = 1$. Then, we have the equations:

$$||Au||_2 = ||\Sigma v||_2$$

$$||\Sigma v||_2^2 = \sum_{i=1}^m \sigma_i^2 v_i^2$$
 , where $\sum_{i=1}^m v_i^2 = 1$

To minimize $||\Sigma v||_2$, set $v_m = 1$, $v_i = 0$ for $i \neq m$. Thus, we have:

$$\min_{||u||_2=1} ||Au||_2 = \sigma_m$$

This means that:

$$\sigma_m(A - zI) = \min_{\|u\|_2 = 1} \|(A - zI)u\|_2$$

So, if there exists a vector $u \in \mathbb{C}^m$ with $||(A-zI)u||_2 \le \epsilon$ and $||u||_2 = 1$, then it follows that

$$\sigma_m(A - zI) = \min_{\|u\|_2 = 1} ||(A - zI)u||_2 \le ||(A - zI)u||_2 \le \epsilon$$

Thus we have shown that if such a vector u exists, then $\sigma_m(A-zI) \leq \epsilon$.

This proves that Statement 2 implies Statement 3.

3. Statement 3 implies Statement 4:

Recall the largest singular value of a matrix is the reciprocal of the smallest singular value of its inverse. We then have:

$$||(zI - A)^{-1}||_2 = \sigma_{\max}((zI - A)^{-1}) = \sigma_{\min}(zI - A)^{-1} \ge \epsilon^{-1}$$

This proves that Statement 3 implies Statement 4.

4. Statement 4 implies Statement 1:

Let u, v be the first left and right singular vectors of $(zI-A)^{-1}$ with singular value $\sigma^{-1} = ||(zI-A)^{-1}||$. Then, ||u|| = 1 and ||v|| = 1 meaning that ||u|| = ||v|| and $\sigma \leq \epsilon$. Furthermore, by definition, $(zI-A)^{-1}v = \sigma^{-1}u$. Rearranging, we have $\sigma v = (zI-A)u$ so

$$(A - \sigma vu^*)u = Au - \sigma vu^*u = Au - \sigma v = zu$$

This means z is an eigenvector of $A - \sigma vu^*$ and $||ovu^*|| = \sigma ||v|| ||u^*|| = \sigma \le \epsilon$. This proves that Statement 4 implies Statement 1.

Thus, we have that our four statements are equivalent.

AMATH 584: Numerical Linear Algebra: Exercise 27.1 Sid Meka

Let $A \in \mathbb{C}^{m \times m}$ be given, not necessarily hermitian. Show that a number $z \in \mathbb{C}$ is a Rayleigh quotient of A if and only if it is a diagonal entry of Q^*AQ for some unitary matrix Q. Thus Rayleigh quotients are just diagonal entries of matrices, once you transform orthogonally to the right coordinate system.

To prove that a number $z \in \mathbb{C}$ is a Rayleigh quotient of A if and only if it is a diagonal entry of Q^*AQ for some unitary matrix Q, we will use the Proof of the Biconditional.

First, we will prove that if a number $z \in \mathbb{C}$ is a Rayleigh quotient of A, then it is a diagonal entry of Q^*AQ for some unitary matrix Q.

Proof. Let $A \in \mathbb{C}^{m \times m}$ be given, not necessarily hermitian. Suppose $z \in \mathbb{C}$ is a Rayleigh quotient of A. By definition, there exists a nonzero vector $x \in \mathbb{C}^m$ such that:

$$z = \frac{x^* A x}{x^* x}$$

- 1. Without loss of generality, we can assume $||x||_2 = 1$. In other words, we normalize x to a unit vector. Then, the Rayleigh quotient simplifies to: $z = x^*Ax$.
- 2. Now, extend x to an orthonormal basis of \mathbb{C}^m . Let $Q \in \mathbb{C}^{m \times m}$ be a unitary matrix whose first column is x. That is, $Q = [x|q_2|\cdots|q_m]$, where q_2, \ldots, q_m are additional orthonormal vectors completing the basis.
- 3. Consider the matrix Q^*AQ , which is a unitary transformation of A. The (1,1) entry of Q^*AQ is:

$$(Q^*AQ)_{(1,1)} = x^*Ax = z$$

Thus, we have shown that z is a diagonal entry of Q^*AQ for some unitary matrix Q.

Second, we will prove that if $z \in \mathbb{C}$ is a diagonal entry of Q^*AQ for some unitary matrix Q, then z is a Rayleigh quotient of A.

Proof. Suppose z is a diagonal entry of Q^*AQ for some unitary matrix Q.

- 1. Let $Q \in \mathbb{C}^{m \times m}$ be unitary, and suppose $(Q^*AQ)_{ii} = z$ for some $i \in \{1, 2, \dots, m\}$.
- 2. Let e_i be the *i*th standard basis vector in \mathbb{C}^m . Then, it follows:

$$z = e_i^*(Q^*AQ)e_i = (Qe_i)^*A(Qe_i)$$

3. Define $x = Qe_i$, which is a unit vector since Q is unitary. Furthermore, we have $||x||_2 = ||Qe_i||_2 = 1$. Thus, if follows:

$$z = x^* A x = \frac{x^* A x}{x^* x}$$

showing that z is a Rayleigh quotient of A.

We have shown that if a number $z \in \mathbb{C}$ is a Rayleigh quotient of A, then it is a diagonal entry of Q^*AQ for some unitary matrix Q and if $z \in \mathbb{C}$ is a diagonal entry of Q^*AQ for some unitary matrix Q, then z is a Rayleigh quotient of A. Thus, we have shown that a number $z \in \mathbb{C}$ is a Rayleigh quotient of A if and only if it is a diagonal entry of Q^*AQ for some unitary matrix Q.

AMATH 584: Numerical Linear Algebra: Homework 7 A1 Sid Meka

Prove the Bauer-Fike theorem: suppose $A \in \mathbb{C}^m \times \mathbb{C}^m$ is diagonalizable with $A = V\Lambda V^{-1}$, and let $\delta A \in \mathbb{C}^m \times \mathbb{C}^m$ be arbitrary. If $\tilde{\lambda}_j$ is an eigenvalue of $A + \delta A$, show that there exists an eigenvalue λ_j of A such that

$$|\lambda_j - \tilde{\lambda}_j| \le \kappa_2(V) ||\delta A||_2$$

where $\kappa_2(V) = ||V||_2 ||V^{-1}||_2$ is the condition number of matrix V. In particular, when A is normal, show that

$$|\lambda_j - \tilde{\lambda}_j| \le ||\delta A||_2$$

This theorem implies that the problem of computing eigenvalues of a normal matrix is well conditioned.

Proof. We can suppose $\tilde{\lambda}_j \notin \Lambda(A)$, otherwise take $\lambda_j = \tilde{\lambda}_j$ and the result in trivially true since $\kappa_2(V) \geq 1$. Since $\tilde{\lambda}_j$ is an eigenvalue of $A + \delta A$, we have $\det(A + \delta A - \tilde{\lambda}_j I) = 0$ and so

$$0 = \det(A + \delta A - \tilde{\lambda}_j I)$$

$$= \det(V^{-1}) \det(A + \delta A - \tilde{\lambda}_j I) \det(V)$$

$$= \det(V^{-1}(A + \delta A - \tilde{\lambda}_j I)V)$$

$$= \det(V^{-1}AV + V^{-1}\delta AV - V^{-1}\tilde{\lambda}_j IV)$$

$$= \det(\Lambda + V^{-1}\delta AV - \tilde{\lambda}_j I)$$

$$= \det((\Lambda - \tilde{\lambda}_j I) + V^{-1}\delta AV)$$

$$= \det((\Lambda - \tilde{\lambda}_j I)((\Lambda - \tilde{\lambda}_j I)^{-1}V^{-1}\delta AV + I))$$

$$= \det(\Lambda - \tilde{\lambda}_j I) \det((\Lambda - \tilde{\lambda}_j I)^{-1}V^{-1}\delta AV + I)$$

Notice how we supposed that $\tilde{\lambda}_j \notin \Lambda(A)$. Therefore, we can say that $\det(\Lambda - \tilde{\lambda}_j I) \neq 0$ by definition. Thus, we can say:

$$\det((\Lambda - \tilde{\lambda}_j I)^{-1} V^{-1} \delta A V + I) = 0$$

We have -1 as an eigenvalue of $(\Lambda - \tilde{\lambda}_j I)^{-1} V^{-1} \delta A V$.

We know that $|\lambda_j| \leq ||A||_2$ where λ_j is an eigenvalue of A. In this instance, this gives us:

$$\begin{aligned} &1\\ &= |-1|\\ &\leq ||(\Lambda - \tilde{\lambda}_j I)^{-1} V^{-1} \delta A V||_2\\ &\leq ||(\Lambda - \tilde{\lambda}_j I)^{-1}||_2 ||V^{-1}||_2 ||V||_2 ||\delta A||_2\\ &= ||(\Lambda - \tilde{\lambda}_i I)^{-1}||_2 \kappa_2(V) ||\delta A||_2 \end{aligned}$$

Now, we find the 2-norm of $(\Lambda - \tilde{\lambda}_j I)^{-1}$: By definition, the induced 2-norm is:

$$||(\Lambda - \tilde{\lambda}_j I)^{-1}||_2 = \max_{||x||_2 \neq 0} \frac{||(\Lambda - \tilde{\lambda}_j I)^{-1} x||_2}{||x||_2}$$

Since Λ is diagonal with entries λ_j , the matrix $(\Lambda - \tilde{\lambda}_j I)$ is also diagonal with entries $\lambda_j - \tilde{\lambda}_j$. For a diagonal matrix, the 2-norm is the maximum of the reciprocals of its diagonal entries:

$$||(\Lambda - \tilde{\lambda}_j I)^{-1}||_2 = \max_{\lambda_j \in \Lambda(A)} \frac{1}{|\lambda_j - \tilde{\lambda}_j|}$$

This can also be written as the reciprocal of the minimum distance:

$$||(\Lambda - \tilde{\lambda}_j I)^{-1}||_2 = \frac{1}{\min_{\lambda_j \in \Lambda(A)} |\lambda_j - \tilde{\lambda}_j|}$$

This means that we have:

$$\min_{\lambda_j \in \Lambda(A)} |\lambda_j - \tilde{\lambda}_j| \le \kappa_2(V) ||\delta A||_2$$

Therefore, there exists an eigenvalue λ_j of A such that

$$|\lambda_i - \tilde{\lambda}_i| \le \kappa_2(V) ||\delta A||_2$$

When A is normal: Now if A is normal, that means V is unitary giving us $\kappa_2(V) = 1$. Note that $|\lambda_j - \tilde{\lambda}_j| \le \kappa_2(V) ||\delta A||_2$ and with $\kappa_2(V) = 1$, that means $|\lambda_j - \tilde{\lambda}_j| \le ||\delta A||_2$. Thus, when A is normal, $|\lambda_j - \tilde{\lambda}_j| \le ||\delta A||_2$.

A2. Consider the two matrices

$$A = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix}, A_{\varepsilon} = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

where E is a small real number. What are the eigenvalues of A and Az? Would you say that the problem of computing the eigenvalues of the matrix A is well conditioned or ill conditioned?

Notice that matrix A is an upper triangular matrix with 0's on the diagonal. This means

matrix with 0's on the diagonal. The eigenvalues of A are as follows:

 $\lambda = 0, 0, 0, 0.$

The matrix Az is:

$$A_{\varepsilon} = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ \varepsilon & 0 & 0 & 0 \end{bmatrix}$$

To find the eigenvalues, we solve det(Ag-II)=C Thus:

More simply:

Assessing the conditioning of the eigenvalue problems

$$\hat{K} = \sup_{SX} \frac{1|Sf||}{||SX||} = \frac{|S\lambda|}{|E|} = \frac{E^{\frac{1}{4}}}{|E|} = \frac{3}{4}$$

Now to find Rim, when E approaches O:

$$\frac{1}{1000} \frac{1}{1000} = \frac{1}{$$

We see that when & approaches O, Rim approaches oo. This suggests that there are large changes when small perturbations in A occur. Thus, the problem of computing the eigenvalues of the matrix A is ill conditioned.

A3. Find the Householder reflector Q and an upper Hessenberg matrix H by hand such that Q* AQ=H, where

$$A = \begin{bmatrix} 1 & 2 & 3 \\ 1 & 1 & 2 \end{bmatrix}$$

we find a vector, or subvector, $a_1 = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$. We now find $||a_1||_2 e_1 = \int_{1^2+1^2}^{2} \begin{bmatrix} 1 \\ 1 \end{bmatrix} = \sqrt{2} \begin{bmatrix} 1 \\ 1 \end{bmatrix}$. The Householder vector is computed as: $v = a_1 - ||a_1||_2 e_1 = \begin{bmatrix} 1 \\ 1 \end{bmatrix} - \sqrt{2} \begin{bmatrix} 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \end{bmatrix} - \sqrt{2}$.

The Howeholder reflector is:

$$\hat{Q}_1 = I - \frac{2vv^*}{v^*v} = \begin{bmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \end{bmatrix}.$$

Extend it to a 3×3 matrix to get Q:

Now, we apply to A:
$$Q * A = \begin{bmatrix} 1 & 2 & 3 \\ \sqrt{2} & \sqrt{2} & \frac{3}{\sqrt{2}} \\ 0 & 0 & \frac{1}{\sqrt{2}} \end{bmatrix}.$$

Rembember that
$$H=Q*AQ$$
. Thus,
$$H=\begin{bmatrix} 1 & \frac{5}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \\ \sqrt{2} & \frac{5}{2} & -\frac{1}{2} \\ 0 & \frac{1}{2} & -\frac{1}{2} \end{bmatrix}.$$

We have found our Q and H as desired.