Estruturas Discretas

Relações Propriedades e Relação de equivalência

Profa. Helena Caseli helenacaseli@dc.ufscar.br

Relação

- Propriedades de autorrelações
 - Reflexiva
 - Antirreflexiva
 - Simétrica
 - Antissimétrica
 - Transitiva
- Relação de equivalência
- Classes de equivalência
- Partições
- Conjunto quociente

- Uma relação em um conjunto A (uma autorrelação) pode ter determinadas propriedades
- - 1. para qualquer $x \in A$, x = x, ou seja $(x, x) \in R$;
 - 2. quaisquer que sejam x, $y \in A$, se x = y então y = x, ou seja, $(x, y) \in R \rightarrow (y, x) \in R$;
 - 3. quaisquer que sejam x, y, $z \in A$, se x = y e y = z então x = z, ou seja, $[(x, y) \in R$ e $(y, z) \in R] \rightarrow (x, z) \in R$

- Uma relação em um conjunto A (uma autorrelação) pode ter determinadas propriedades
- Por exemplo, a relação R de igualdade em A, x R y

 → x = y, tem três propriedades:
 - 1. para qualquer $x \in A$, x = x, ou seja (x, x) R é simétrica
 - 2. quaisquer que sejam x, $y \in A$, se x = y então y = x, ou seja, $(x, y) \in R \rightarrow (y, x) \in R$;
 - 3. quaisquer que sejam x, y, $z \in A$, se x = y e y = z então x = z, ou seja, $[(x, y) \in R$ e $(y, z) \in R] \rightarrow (x, z) \in R$

- Uma relação em um conjunto A (uma autorrelação) pode ter determinadas propriedades
- Por exemplo, a relação R de igualdade em A, x R y

 → x = y, tem três propriedades:
 - 1. para qualquer $x \in A$, x = x, ou seja $(x, x) \in R$;
 - 2. quaisquer que sejam x, $y \in A$, se x = y então y = x, ou seja, $(x, y) \in R \rightarrow (y, x) \in R$;

 Rétransitiva
 - 3. quaisquer que sejam x, y, $z \in A$, se x = y e y = z então x = z, ou seja, $[(x, y) \in R \ e \ (y, z) \in R] \rightarrow (x, z) \in R$

- Seja R uma relação definida em um conjunto A
- Relação reflexiva
 - R é reflexiva se para todo $x \in A$ temos $x \in A$
 - → R é reflexiva se todo elemento de A está relacionado a ele mesmo
 - Exemplo Seja A = { 1, 2, 3 }
 a) R = { (1, 1), (2, 2), (3, 3), (1, 2), (3, 1) } é reflexiva
 b) R = { (1, 1), (1, 2), (2, 3), (3, 3) } não é reflexiva, pois (2,2) não está presente em R

- Seja R uma relação definida em um conjunto A
- Relação antirreflexiva
 - R é antirreflexiva se para todo $x \in A$ temos $x \not R x$
 - → R é antirreflexiva se nenhum elemento de A está relacionado a ele mesmo
 - Exemplo Seja A = {1, 2, 3}
 - a) R = {(1,1), (2,2), (3,3), (1,2),(3,1)} não é antirreflexiva, pois é reflexiva
 - b) $R = \{(1,1), (1,2), (2,3), (3,3)\}$ não é reflexiva e não é antirreflexiva, pois (1,1) está presente em R
 - c) $R = \{(1,3), (2,3), (1,2), (3,1)\}$ é antirreflexiva

IMPORTANTE

Relação reflexiva <u>e</u> antirreflexiva → IMPOSSÍVEL Relação não reflexiva <u>e</u> não antirreflexiva → POSSÍVEL

- Relação reflexiva X Relação antirreflexiva
 - Relação reflexiva → relação não antirreflexiva
 - Relação antirreflexiva → relação não reflexiva
 - Relação não reflexiva → ?
 - Uma relação não é reflexiva se <u>existe um</u> a ∈ A tal que (a,a) ∉ R
 - → existe um ≠ para todo
 - Relação não antirreflexiva → ?
 - Uma relação não é antirreflexiva se <u>existe um</u> a ∈
 A tal que (a,a) ∈ R
 - → existe um ≠ para todo

- Seja R uma relação definida em um conjunto A
- Relação simétrica
 - R é simétrica se <u>para todo</u> x, y \in A temos x R y \Rightarrow y R x
 - A expressão x R y ⇒ y R x deve ser lida como "<u>sempre</u> que x está relacionado a y por R, <u>então</u> y está relacionado a x por R"
 - → O par (y,x) deve aparecer na relação "apenas" se o par (x,y) estiver na relação
 - Não é necessário que todos os pares (x,y) com x ≠ y estejam relacionados

- Seja R uma relação definida em um conjunto A
- Relação simétrica
 - Ré simétrica se <u>para todo</u> $x, y \in A$ temos $x R y \Rightarrow y R x$
 - Exemplo Seja A = {1, 2, 3}
 a) R = { (1,1), (2,2), (3,3) } é simétrica
 b) R = { (1,1), (2,2), (1,2), (3,2), (2,3) } não é simétrica,
 pois (1,2) ∈ R mas (2,1) ∉ R

- Seja R uma relação definida em um conjunto A
- Relação antissimétrica
 - R é antissimétrica se <u>para todo</u> x, y ∈ A temos $(x R y \land y R x) \Rightarrow x = y$
 - O símbolo ∧ representa o conectivo "e", logo a expressão x R y ∧ y R x significa "x está relacionado com y por R e y está relacionado com x por R"
 - A propriedade antissimétrica estabelece que não é possível inverter a ordem dos elementos do par ordenado a menos que eles sejam iguais

- Seja R uma relação definida em um conjunto A
- Relação antissimétrica
 - R é antissimétrica se <u>para todo</u> x, y \in A temos (x R y \wedge y R x) \Rightarrow x = y
 - Exemplo Seja A = {1, 2, 3} a) R = { (1,1), (2,2), (3,3) } é antissimétrica b) R = { (1,1),(2,2),(1,2),(3,2),(2,3)} não é antissimétrica, pois (3,2) ∈ R e (2,3) ∈ R e 2 ≠ 3

IMPORTANTE

Relação simétrica <u>e</u> antissimétrica → POSSÍVEL Relação não simétrica <u>e</u> não antissimétrica → POSSÍVEL

- Relação simétrica X Relação antissimétrica
 - As propriedades de simetria e antissimetria não são mutuamente excludentes
 - Uma relação pode não ser simétrica nem antissimétrica, ou pode ser simétrica e antissimétrica ao mesmo tempo (veja exemplos anteriores)
 - Uma relação não é simétrica se existe (a,b) ∈ R mas (b,a) ∉ R, ou seja, existe pelo menos um par (a,b) na relação R tal que seu inverso (b,a) não esteja em R
 - → Isso não basta para afirmar que a relação é antissimétrica
 - R não é antissimétrica se existem a,b ∈ A tais que (a,b) e (b,a) ∈ R mas a ≠ b

- Seja R uma relação definida em um conjunto A
- Relação transitiva
 - R é transitiva se <u>para todo</u> x, y, z \in A temos (x R y \wedge y R z) \Rightarrow x R z
 - Exemplo Seja A = {1, 2, 3}
 a) R = { (1,1), (1,2), (2,3), (1,3) } é transitiva
 b) R = { (1,1), (2,2), (3,3), (1,2), (2,3) } não é transitiva, pois (1,2) ∈ R, (2,3) ∈ R mas (1,3) ∉ R
 c) R = { (1,1), (2,2), (3,3) } é transitiva

- Diga quais propriedades as autorrelações a seguir possuem:
 - a) Relação de igualdade (=) sobre \mathbb{Z}
 - b) Relação de menor ou igual (\leq) sobre \mathbb{Z}
 - c) Relação divide (x|y) sobre \mathbb{Z}^*

Propriedades de autorrelações

- Diga quais propriedades as autorrelações a seguir possuem:
 - a) Relação de igualdade (=) sobre \mathbb{Z}

RESPOSTAS a) • Reflexiva (qualquer inteiro é igual a si mesmo) • Não antirreflexiva, pois é reflexiva • Simétrica (se x = y então y = x) • Antissimétrica (se x = y e y = x então x e y são o mesmo elemento) • Transitiva (se x = y e y = z então x = z) ✓

Propriedades de autorrelações

- Diga quais propriedades as autorrelações a seguir possuem:
 - a) Relação de igualdade (=) sobre \mathbb{Z}
 - b) Relação de menor ou igual (\leq) sobre \mathbb{Z}

RESPOSTAS b) • Reflexiva (para qualquer inteiro x, é verdade que $x \le x$) • Não antirreflexiva, pois é reflexiva • Não simétrica $(x \le y \nrightarrow y \le x)$ • Antissimétrica (se $x \le y$ e $y \le x$, então x = y) • Transitiva $(x \le y \text{ e } y \le z \text{ implicam } x \le z)$

Propriedades de autorrelações

- Diga quais propriedades as autorrelações a seguir possuem:
 - a) Relação de igualdade (=) sobre \mathbb{Z}
 - b) Relação de menor ou igual (\leq) sobre \mathbb{Z}
 - c) Relação divide (x|y) sobre \mathbb{Z}^*

RESPOSTAS c) • Reflexiva (por exemplo, 3|3 e -3|-3) • Não antirreflexiva, pois é reflexiva • Não simétrica (por exemplo, 3|9 mas 9 não divide 3) • Não antissimétrica (por exemplo, 3|-3 e -3|3 e 3 ≠ -3) • Transitiva (por exemplo, 2|4 e 4|8 então 2|8)

- IMPORTANTE
 - As propriedades são atributos de uma relação R definida em um conjunto A
 - O conhecimento do conjunto A é fundamental para que se determine se a relação é ou não reflexiva
 - Para as outras propriedades, contudo, é suficiente olhar apenas para os pares ordenados em R

Resumo das propriedades

- Seja R uma relação definida em um conjunto A
 - R é reflexiva se para todo $x \in A$ temos $x \in A$
 - R é antirreflexiva se para todo $x \in A$ temos $x \not \in X$
 - Ré simétrica se <u>para todo</u> $x, y \in A$ temos $x R y \Rightarrow y R x$
 - R é antissimétrica se <u>para todo</u> x, y \in A temos (x R y \wedge y R x) \Rightarrow x = y
 - R é transitiva se <u>para todo</u> x, y, $z \in A$ temos (xRy \times y Rz) \Rightarrow x Rz

Relação de equivalência

- Seja R uma relação em um conjunto A
- Dizemos que R é uma relação de equivalência se R é reflexiva, simétrica e transitiva
 - Relações de equivalência são relações que apresentam forte semelhança com a relação de igualdade
 - Objetos relacionados por uma relação de equivalência são objetos parecidos
- Exemplos
 - Em {1, 2, 3}, R = {(1, 1), (2, 2), (3, 3), (1, 2), (2, 1)}
 - Em {x | x é um aluno dessa turma}, x R y ↔ "x sentase na mesma fila que y"

Classes de equivalência

- Seja R uma relação de equivalência em um conjunto A e seja a ∈ A
- A classe de equivalência de a, denotada por [a], é o conjunto de todos os elementos do conjunto A que estão R-relacionados com a; isto é,

$$[a] = \{ x \mid x \in A \in x R a \}$$

Classes de equivalência

- Exemplos
 - Considerando-se algumas das relações de equivalência vistas anteriormente
 - a) Dado o conjunto A= {1, 2, 3}, e a relação de equivalência R = {(1, 1), (2, 2), (3, 3), (1, 2), (2, 1)} Conjunto [1] = {1, 2}. Esse conjunto também pode ser chamado de [2]
 - b) Dado o conjunto de alunos de uma turma e a relação R, x R y ↔ "x senta-se na mesma fila que y". Se João, Carlos, José, Judite e Téo sentam-se todos na terceira fila

A classe de equivalência de João é [João] = {João, Carlos, José, Judite, Téo}

Classes de equivalência

- Considerando-se a relação de equivalência em N,
 x R y ↔ "x + y é par", qual é a classe de equivalência [0]?
 - Pela definição,

$$[0] = \{ x \mid x \in \mathbb{N} \text{ e } x R 0 \leftrightarrow "x + 0 \text{ é par"} \}$$

- ou seja, esse é o conjunto de todos os números naturais x, de modo que somados a 0, resulte em par
- ... é o conjunto de todos os números pares
- → O conjunto [0] é o conjunto dos números pares
- → De modo semelhante, não é difícil ver que [1] é o conjunto dos números ímpares

Classes de equivalência

- A relação de equivalência em N, x R y ↔ "x + y é par" tem apenas duas classes de equivalências:
 - O conjunto dos números naturais pares [0] e
 - O conjunto dos números naturais ímpares [1]
- Assim, as classes de equivalência dividem o conjunto sobre o qual estão definidas
 - Toda classe contém elementos que estão relacionados uns com os outros, mas não com qualquer elemento que não esteja naquela classe
 - Se duas classes de equivalência tem 1 elemento em comum, então elas são idênticas

Classes de equivalência e Partições

Teorema

 Seja R uma relação de equivalência em um conjunto A. As classes de equivalência de R são subconjuntos não-vazios de A, disjuntos dois a dois, cuja união é A

Partição

 Dado um conjunto não-vazio A, uma partição de A é uma subdivisão de A em conjuntos não-vazios,

disjuntos

Partições de A: A₁, A₂, A₃, A₄, A₅

Classes de equivalência e Partições

- Reescrevendo o Teorema
 - Seja R uma relação de equivalência em um conjunto A. O conjunto das classes de equivalência de A pela R é uma partição de A. Especificamente:

```
    i. para cada a ∈ A, temos a ∈ [a]
    ii. Toda relação de equivalência é reflexiva
```

Classes de equivalência e Partições

- Reescrevendo o Teorema
 - Seja R uma relação de equivalência em um conjunto A. O conjunto das classes de equivalência de A pela R é uma partição de A. Especificamente:

```
i. para cada a \in A, temos a \in [a]
```

```
    ii.[a] = [b] se e somente se (a,b) ∈ R
    iii.
    Toda relação de equivalência é simétrica
```

Classes de equivalência e Partições

- Reescrevendo o Teorema
 - Seja R uma relação de equivalência em um conjunto A. O conjunto das classes de equivalência de A pela R é uma partição de A. Especificamente:
 - i. para cada $a \in A$, temos $a \in [a]$
 - ii.[a] = [b] se e somente se $(a,b) \in R$
 - iii.se [a] \neq [b], então [a] e [b] são disjuntos

Consequência de (ii)

Classes de equivalência e Partições

- Reescrevendo o Teorema
 - Seja R uma relação de equivalência em um conjunto A. O conjunto das classes de equivalência de A pela R é uma partição de A. Especificamente:
 - i. para cada $a \in A$, temos $a \in [a]$
 - ii.[a] = [b] se e somente se $(a,b) \in R$
 - iii.se [a] \neq [b], então [a] e [b] são disjuntos
 - Qualquer relação de equivalência determina uma partição no conjunto em que está definida
 - → Por outro lado, dada uma partição {A_i} do conjunto A, existe uma relação de equivalência R em A tal que os conjuntos A_i são as classes de equivalência

Conjunto quociente

• É a coleção de todas as classes de equivalência de elementos de A por uma relação de equivalência R

$$A/R = \{ [a] | a \in A \}$$

- Exemplo
 - Dado o conjunto A= {1, 2, 3}, e a relação de equivalência R = {(1, 1), (2, 2), (3, 3), (1, 2), (2, 1)}
 - O conjunto quociente A/R é A/R = { [1], [3] }
- Reescrevendo mais uma vez o Teorema
 - Seja R uma relação de equivalência em um conjunto A. O quociente A/R é uma partição de A.

- Classes de equivalência X Partições X
 Conjunto quociente Teorema e suas versões
 - Seja R uma relação de equivalência em um conjunto A. As classes de equivalência de R são subconjuntos nãovazios de A, disjuntos dois a dois, cuja união é A
 - Seja R uma relação de equivalência em um conjunto A. O conjunto das classes de equivalência de A pela R é uma partição de A. Especificamente:
 - i. para cada $a \in A$, temos $a \in [a]$
 - ii. [a] = [b] se e somente se $(a,b) \in R$
 - iii. se [a] \neq [b], então [a] e [b] são disjuntos
 - Seja R uma relação de equivalência em um conjunto A. O quociente A/R é uma partição de A.