

Lecture 6: Introduction to

<u>Hypothesis Testing, and Type 1 and</u>

3. Statistical Model of a Two

<u>课程 > Unit 2 Foundation of Inference > Type 2 Errors</u>

> Sample Experiment

3. Statistical Model of a Two Sample Experiment

Preparation: Statistical Model of a Two Sample Experiment

2/2 points (graded)

The observed outcome of a statistical experiment consists of two samples:

$$X_1, X_2, \dots X_n \overset{ ext{i.i.d.}}{\sim} X \sim \mathsf{Ber}\left(p_1
ight)$$

$$Y_1,Y_2,\dots Y_m \overset{ ext{i.i.d.}}{\sim} Y \sim \mathsf{Ber}\left(p_2
ight).$$

where in addition, \boldsymbol{X} and \boldsymbol{Y} are independent.

An associated statistical model is $(E,\{P_{ heta}\}_{ heta\in\Theta})$ where E is the (smallest) sample space of the pair (X,Y), and $P_{ heta}$, is the joint distribution of (X,Y) with parameter θ . Because X and Y are independent, their joint distribution is the product of their respective distributions.

Identify the sample space E and the parameter space Θ : (Choose one per column.)

Sample space E:

Parameter space Θ

0,1

0,1

0 $\{0,1\} \times \{0,1\} = \{(0,0),(0,1),(1,0),(1,1)\}$

(0,1)

(0,1)

 \bigcirc $(0,1) imes(0,1)\in\mathbb{R}^2$

ullet $(0,1) imes(0,1)\in\mathbb{R}^2$

Solution:

Since $X \sim \mathsf{Ber}\,(p_1)$ and $Y \sim \mathsf{Ber}\,(p_2)$, the pair (X,Y) takes value in the sample space $E = \{0,1\} \times \{0,1\} = \{(0,0),(0,1),(1,0),(1,1)\}.$

Since X, Y are independent, the joint distribution of (X,Y) is the product $\mathsf{Ber}\,(p_1) \times \mathsf{Ber}\,(p_2)$. Hence, the family $\{P_\theta\}_{\theta \in \Theta}$ of joint distributions is parametrized by $\theta = (p_1, p_2)$ and the parameter space is

$$\Theta = \left\{ \left(p_1, p_2
ight) : p_1 \in \left(0, 1
ight), p_2 \in \left(0, 1
ight)
ight\} = \left(0, 1
ight) imes \left(0, 1
ight) \in \mathbb{R}^2.$$

提交

你已经尝试了2次(总共可以尝试2次)

1 Answers are displayed within the problem

Preparation: Statistical Model of a Two Sample Experiment II

1/2 points (graded)

Recall the statistical experiment from the lecture: to test whether boarding times by the Window-Middle-Aisle boarding method is shorter than boarding times by the rear-to-front method, we collect a sample of boarding times of each method. We model these boarding times as the following two sets of normal variables:

 $X_1, X_2, \dots X_n$ are i.i.d. copies of $X \sim \mathcal{N}\left(\mu_1, \sigma_1^2\right)$ boarding times of rear-to-front $Y_1, Y_2, \dots Y_m$ are i.i.d. copies of $Y \sim \mathcal{N}\left(\mu_2, \sigma_2^2\right)$ boarding times of window-middle-aisle

where \boldsymbol{X} and \boldsymbol{Y} are also independent.

Let $\left(E,\{P_{ heta}\}_{ heta\in\Theta}
ight)$ be the statistical model associated with this experiment where

- E is the sample space of the pair of random variables (X,Y);
- $\{P_{\theta}\}_{\theta\in\Theta}$ is the family of joint distributions of (X,Y).

For simplicity, assume the two variances σ_1 and σ_2 are some known, fixed quantities σ_1^* and σ_2^* .

Choose a valid candidate for the parametrization θ , which describes the family of joint probability distributions of (X,Y).

 \bullet $\mu_1 - \mu_2 \times$

 $igcup \left(\mu_1, (\sigma_1)^2, \mu_2, (\sigma_2)^2
ight)$ where $(\sigma_1)^2$ and $(\sigma_2)^2$ can each take on more than a single value

 \circ (μ_1,μ_2) \checkmark

 \circ (μ_2,μ_1)

Which of the following are legitimate choice(s) of the parameter space Θ ? (Choose all that apply)

- \square $\Theta = \mathbb{R}$
- \square $\Theta = [0, \infty)$
- ullet $\Theta=\mathbb{R}^2$ \checkmark
- $\Theta = [0,\infty) \times [0,\infty)$

~

Solution:

Since X,Y are independent, the joint distribution of (X,Y) is the product $\mathcal{N}\left(\mu_1,(\sigma_1)^2\right) imes\mathcal{N}\left(\mu_2,(\sigma_2)^2\right)$

Since the variances σ_1 and σ_2 are fixed and known, the only parameters determining the joint distribution is μ_1 and μ_2 . Hence, a choice of the parameter θ is the 2-dimensional vector $\begin{pmatrix} \mu_1 & \mu_2 \end{pmatrix}$. (We could also have chosen to construct the statistical model using the pair (Y,X) instead. The family of joint distributions in that case would be parametrized by $\begin{pmatrix} \mu_2 & \mu_1 \end{pmatrix}$).

This gives the parameter space

$$\Theta=\{(\mu_1,\mu_2): \mu_1\in\mathbb{R}, \mu_2\in\mathbb{R}\}=\mathbb{R}^2.$$

Because μ_1 and μ_2 model average boarding times, we can further restrict to

$$\Theta = \{ (\mu_1, \mu_2) : \mu_1 \in [0, \infty) \,, \mu_2 \in [0, \infty) \} = [0, \infty) imes [0, \infty) \}.$$

Answers are displayed within the problem
 讨论
 显示讨论
 基題: Unit 2 Foundation of Inference:Lecture 6: Introduction to Hypothesis Testing, and Type 1 and Type 2 Errors / 3. Statistical Model of a Two Sample Experiment
 认证证书是什么?

© 保留所有权利