

任务 01 云计算平台的 系统架构

项目

环境设计和系统准备

任务 02 云平台系统 安装基础工作

学习目标

- 理解云计算平台的系统拓扑结构
- 掌握搭建云计算平台的基础组件工作

"人工智能就像一列火车,它临近时你听到了轰隆隆的声音,你 在不断期待着它的到来。它终于到了,一闪而过,随后便远远地 把你抛在身后。"

AI 之 微软小冰

https://poem.msxiaobing.com/

诗词、歌曲、书法......

而人生是萍水相逢 人们在广场上游戏 太阳不嫌疲倦 在不提防的时候降临 我再三踟蹰 你和我一同住在我的梦中 想象却皱起了眉 偶然的梦 她飞进天空的树影 这样的肆意并不常见 便迷路在人群里了 用一天经历一世的欢喜 那是梦的翅膀 正如旧时的安适 小冰

云计算的总体架构

人工智能即服务

人们在广场上游戏 太阳不嫌疲倦 我再三踟蹰

想象却皱起了眉

她飞进天空的树影 便迷路在人群里了 那是梦的翅膀 正如旧时的安适 而人生是萍水相逢 在不提防的时候降临 你和我一同住在我的梦中 偶然的梦

这样的肆意并不常见 用一天经历一世的欢喜

—— 小冰

云计算定义

NIST (美国国家标准与技术研究院): 云计算是一个模型,用来实现对已经配置好的计算资源(网络/服务器/存储/应用程序/服务)的高效/方便/按需的访问,这些计算资源可以快速的获取和释放,同时管理成本极低,而且与提供商的沟通成本基本

为零。

云计算-回顾

云计算-回顾

斯托曼

一 创立自由软件 GNU

— Emacs 文字编辑器

— GCC编译器

— GDB调试器

云计算的总体架构

laaS 基础实施即服务

Linux, BSD, Windows...

OpenStack

基础实施

1. 小米的 OpenStack 私有云

CentOS+OpenStack的系统, RDO方式安装, 有四个机房, 2000+VM, 4500+物理机内核; 机器的配置主要为: 50T内存、1200T虚拟磁盘、480T块存储、120T对象存储

- 可用度达到99.99%: 运行16个月, 2次故障;
- 目前使用率: 平均40% (物理机利用率) , 1虚拟12;
- 覆盖度: 小米所有产品线;
- 业务类型: 开发, 测试, 线上 (线下70%)。

1. 小米的 OpenStack 私有云

- 主控节点由哪些组件组成?备控节点的用途是什么?
- 计算节点由哪些组件组成?
- SDN采用什么组件? 网络结构?

任务要求

某公司确定采用OpenStack作为私有云平台架构方案 ,故需要进行云计算平台的系统环境设计和系统搭建 的基础安装工作,为此,要完成的任务如下:

- 公司云平台应用的需求分析
- 公司云平台系统环境架构设计

公司对云平台应用的需求

任务实现

经过调研,公司的基本情况如下:

1.公司的基本组织结构,内部有XXX名员工

XX名为项目研发部 (研发环境) XX名为业务部 (办公环境) XX人IT工程部 (运维环境)

公司对云平台应用的需求

任务实现

2.应用需求情况

Α

按员工办公情况不同,分别使用Centos7、Ubuntu 16、Windows 7和WinServer 2012镜像作为办公使用(Glance-Image镜像)

B

根据云存储特点,将镜像资源云硬盘存储于Swift内部, 提升镜像的安全性(Swiftcontainer对象存储)

编写批量模版文件,可以短期快速部署集群(Heat)

构建块存储和卷存储实现实例扩容和内部资源存储(Cinder-Volume)

E

根据企业员工构成比例构建办公网络和租户组,保证内部资源隔离和资料安全(Keystone-认证)

使用<mark>监控</mark>系统可以查看平台运行 情况保证系统的正常稳定的运行 ,以及监测硬件平台的稳定

1

云平台系统构建基础工作

按云平台的网络拓扑结构图进行设备准备与网络连接,完成云平台系统安装基础工作:

- 准备OpenStack搭建云计算平台项目所需的软件资源
- 确定各节点的名称
- 配置各节点的IP网络地址
- 按要求安装各节点的操作系统
- 配置系统环境变量
- 在控制节点、网络节点、实例节点和存储节点分别修改,完成各 节点的配置安装
- 验证安装基础工作

云平台系统架构设计

在云平台的网络拓扑结构图中,采用两种节点服务器构建云计算平台

任务实现

- 一种为控制节点服务器
- 一种为计算节点服务器
- 一种为存储节点服务器

按照网络分离和功能化要求, 也依次构建网络,分别为:

- Provider网络
- Self-service网络

各节点的安装系统要求

控制节点

存放系统数据库、中间件服务、认证系统等,实际为云平台系统的大脑和控制中心。

• 控制节点损坏怎么办?

• 控制节点核心数据在哪里?

实例节点

虚拟机的服务器,支持处理器虚拟化功能,运行虚拟机管理程序(QEMU或KVM)管理虚拟机主机,同时为外部用户提供存储服务和内部实例提供块存储服务。

云平台系统架构设计

任务实现

节点部署服务示意图

控制节点 组件 MySQL RabbitMQ,Memcache Keystone

Glance; Nova; Neutron

- 实例节点 组件 Nova; Neutron
- 实例节点 组件 Swift; Cinder

各节点的Linux系统要求

控制节点: 主机为双网 卡服务器或者PC, 内存 为16G以上, 处理器4 核以上。

主机要求

操作系统为 Linux x64bit

系统要求

计算节点、存储节点: 若干云平台的物理服务 器

节点

Oracle **Linux** 等。

与Linux相关的操作知识

发行版本

发行版本是将Linux内核与应用软件打包发行的版本,支持OpenStack的Linux发行版本: Red Hat Enterprise Linux , CentOS , Ubuntu, OpenSUSE,

这里OpenStack云计算平台的搭建使用CentOS 7 x64bit。

与Linux相关的操作知识

安装时注意以下几个方面:

- · 在进行安装时请选择英文界面;填写主机名称(Hostname)
- 点击 "Configure Network" 作IP地址的设置
- · 选择安装系统时可请选最小化(Mini)安装,或最小化桌面(Minimal Desktop)安装

•

与Linux相关的操作知识

计算节点最小化安装

The default installation of CentOS is a minimum install. You can optionally select a different set of software now.		
○ Desktop		
O Minimal Desktop		
Minimal		
O Basic Server		
O Database Server		
○ Web Server		
Virtual Host Software Davidenment Workstation		
Please select any additional repositories that you want to use for software installation. CentOS		
Add additional software repositories Modify repository		
You can further customize the software selection now, or after install via the software management application.		
Customize later		
	♦ Back	Next

选择最小化 (Minimal) 安装

最小化安装中也会默认安装SSH 服务,这样就可以进行远程登录 管理操作,完成云计算平台的搭 建。

- 为何需要最小化安装?
 - Windows X、办公软件...是否需要?

节点主机名及IP地址规划

节点 主机		IP规划		
	主机名	实例通信	内部管理	内部私有
控制节点	controller	172. 24. 3. 10	172. 24. 2. 10	172. 24. 4-6. 0/24
实例 节点	compute	172. 24. 3. 10	172. 24. 2. 10	172. 24. 4-6. 0/24

- 为何要为主机命名?
- 各自云主机ip不同,根据情况修改。可否 统一设定为: 127.0.0.1?

各节点主机名和IP地址规划列表

2

云平台系统安装基础工作

与Linux相关的操作知识

系统配置文件

序号	配置文件	所在子目录	功能
1	hosts	/etc	主机名与IP地址的映射关系
2	network	/etc/sysconfig/	主机名称
3	ifcfg-eth0	/etc/sysconfig/network-scripts/	网卡的IP地址
4	config	/etc/selinux/	selinux的配置
5	iptales	/etc/sysconfig/	配置防火墙规则

常用系统配置文件

2

云平台系统安装基础工作 常用工具

vi是一个功能强大的文本编辑工具

一直以来都作为类UNIX操作系统的默 认文本编辑器, vim是vi编辑器的增强 版本

在vi编辑器的基础上扩展了很多实用的功能,但是习惯上也将vim称作vi

yum即Yellow dog Updater, Modified。主要功能是更方便的"添加/删除"更新RPM包

它能自动解决包的倚赖性问题,便于管理大量系统的更新问题。

另外, apt (Advanced Packaging Tool) 是一款强大的包管理工具,也可以称作机制,

另外, apt (Advanced Packaging在 Debian及其衍生版本的GNU/Linux中使用。 为什么CentOS要使用yum而不用apt,最简单的原因是Centos自带yum。

与Linux相关的操作知识—yum安装

Centos自带yum软件包,在最小化安装时已经默认安装了yum

也可用下面命令安装,但 在具体应用时需修改源的 路径 rpm -ivh yum-3.2.29-40.el6.centos.noarch.r pm

CentOS采用的二进制包是rpm, CentOS的yum使用和apt有几分相似,安装了yum对许多包的安装就,很方便。在OpenStack云计算平台的搭建中需要改变软件包的文件位置,因此还需要作相应的修改,后面的项目任务会作相应的练习,但是,yum是必须安装的。

与Linux相关的操作知识—教材中FTP服

务器安装模式

在OpenStack云计算平台的搭建过程中需要安装系统的软件包,这些软件包可以直接拷贝到服务器本地,然后建立本地源yum,用yum命令进行软件包的安装操作。

但是,有时不必将大量软件包拷贝到服务器上,而是在Linux客户端用其自带的 FTP服务器或在Windows客户端用第三方FTP服务软件(如Serv-U)建立FTP服务 器,在服务器上建立源yum的安装配置。

与Linux相关的操作知识—yum

- o1 可以同时配置多个资源库(Repository)
- ⁰² 简洁的配置文件(/etc/yum.conf, /etc/yum.repos.d 下的文件)
- 03 自动解决增加或删除rpm包时遇到的倚赖性问题
- 04 使用方便
- 05 保持与RPM数据库的一致性

云平台系统安装基础工作 与Linux相关的操作知识—CentOS的yum配置

使用Aliyun的源(使用国外的源很慢,安装会耗费很长时间):
mv /etc/yum.repos.d/CentOS-Base.repo /etc/yum.repos.d/CentOS-Base.repo.backup
wget -O /etc/yum.repos.d/CentOS-Base.repo http://mirrors.aliyun.com/repo/Centos-7.repo
yum源配置文件位置: /etc/yum.repos.d/*.repo

手动OpenStack的阿里云yum源地址:

vi /etc/yum.repos.d/CentOS-OpenStack-Rocky.repo

与Linux相关的操作知识—yum命令简介

[centos-openstack-rocky]

name=CentOS-7 - OpenStack rocky

baseurl=http://mirrors.aliyun.com/centos/7/cloud/\$basearch/openstack-rocky/

gpgcheck=1

enabled=1

gpgkey=file:///etc/pki/rpm-gpg/RPM-GPG-KEY-CentOS-SIG-Cloud

[centos-openstack-rocky-test]

name=CentOS-7 - OpenStack rocky Testing

baseurl=http://mirrors.aliyun.com/centos/7/cloud/\$basearch/openstack-rocky/

gpgcheck=0

enabled=0

与Linux相关的操作知识—Linux脚本命令的运行

为了达到简化云平台的安装过程,将 搭建过程归纳为几大步骤,每一个步骤通 过建立Linux的命令执行完成相关的任务 ,实验过程中提供相应的安装文档 因此,对Linux的命令和执行知识有 所了解,通过分析脚本,可以更清楚地 知识安装过程及内部完成的任务,对云 平台的搭建有很好的理解和掌握效果。

云平台基础部署工作

配置IP

配置控制节点和计算节点IP地址,修改/etc/sysconfig/network-scripts/ifcfg-XXXX配置文件。 配置如下:

控制节点

DEVICE=eth0 //配置网卡的设备名称

IPADDR=XXXXX //配置实际网络地址

NETMASK=XXX //配置网络子网掩码

GATEWAY=XXXX //配置网络网关

BOOTPROTO=static //配置静态网络地址

ONBOOT=yes //开机启动网络

USERCTL=no //不允许非root用户修改此设备

如图

```
[root@controller network-scripts]# more ifcfg-enp0s3
TYPE=Ethernet
PROXY_METHOD=none
BROWSER ONLY=no
BOOTPROTO=static
DEFROUTE=yes
IPV4 FAILURE FATAL=no
IPV6INIT=ves
IPV6_AUTOCONF=yes
IPV6_DEFROUTE=yes
IPV6_FAILURE_FATAL=no
IPV6_ADDR_GEN_MODE=stable-privacy
NAME=enp0s3
UUID=2bb6bfda-e4e6-4af8-a8fa-9adceb91a62e
DEVICE=enp0s3
IPADDR=192.168.56.126
GATEWAY=192.168.56.1
NETMASK=255.255.255.0
#DN51=8.8.8.8
ONBOOT=yes
```

配置主机名

云平台基础部署工作

配置控制节点主机名为controller、配置计算节点主机名为compute,

配置完成通过如下命令验证:

hostnamectl set-hostname controller

控制节点

计算节点

```
# vi /etc/sysconfig/network //修改主机名和网络设置
NETWORKING=yes
HOSTNAME=controller //修改主机名为controller
# hostname controller // 临时修改系统主机名
# hostname // 查询当前系统主机名
controller
```

```
# vi /etc/sysconfig/network
NETWORKING=yes
HOSTNAME=compute
# hostname compute
# hostname
compute
```

云平台基础部署工作

配置域名解析

在controller节点和compute节点的/etc/hosts文件上配置域名解析配置完成通过如下命令验证:

cat << EOF >> /etc/hosts 127.0.0.1 controller EOF

控制节点

vi /etc/hosts

172.24.2.10 controller

172.24.2.20 compute

ping compute

64 bytes from compute (172.24.2.20):

icmp_seq=1 ttl=64 time=0.160 ms

计算节点

```
# vi /etc/hosts
```

172.24.2.10 controller

172.24.2.20 compute

ping controller

64 bytes from controller (172.24.2.10):

icmp_seq=1 ttl=64 time=0.187 ms

云平台基础部署工作

配置防火墙

配置控制节点及计算节点防火墙和selinux。

配置如下:

systemctl stop firewalld.service systemctl disable firewalld.service

```
# 配置防火墙

# iptables -F //清除所有chains链 (INPUT/OUTPUT/FORWARD) 中所有的rule规则

# iptables -Z //清空所有chains链 (INPUT/OUTPUT/FORWARD) 中包及字节计数器

# iptables -X //清除用户自定义的chains链 (INPUT/OUTPUT/FORWARD) 中的rule规则

# service iptables save //保存修改的Iptables规则
```

配置selinux

修改配置文件 vi /etc/selinux/config

SELINUX=permissive //表示系统会收到警告讯息但是不会受到限制,作为selinux的debug模式

保存修改内容后退出

参考文献

- 朱义勇, 云计算构架与应用, 华南理工大学出版社, 2018
- · 沈建国, OpenStack云计算基础构架平台, 人民邮电出版社, 2017
- 官方文档: https://docs.openstack.org/mitaka/zh_CN/install-guide-rdo

Thank YOU!