Intro to neural nets
Friday, September 30, 2016 8:49 AM

Neural Networks

- Neuron
- Brain information processing emerges from networks of neurons

- McCulloch & Pitts (1943)
 - Linear combination of inputs

Nodes are neurons

There is a link from j to i j sends a signal of strength a_j i receives it with weight $\underline{W_{j,i}}$. Additionally, each node has a bias, a_0 , $W_{0,i}$

- Output of a node: $a_i = (g(\overline{tn_i}))$
- $W_{0,j}$ $U_{0,j}$ U_{0
- What is g?
 - A function that computes near 1.0 when the "right" inputs are given and computers near 0.0 when the "wrong" inputs are given
 - $-\ W_{0,i}$ sets the threshold actual inputs must overcome bias

Comparison to logic

- Can replicate logic gates with nodes
- Can compute any boolean logic statement with neural network

Network structures

- Feed-forward network
 - Represents a function of current inputs
 - No internal state other than weights
 - Output is the result of the function

Network structures

• Multiple outputs

A simple network

10/15/2016 OneNote Online

- Adjusting the weights changes the function that the network represents
- •This is how learning occurs

