

GCNs-Net: A Graph Convolutional Neural Network Approach for Decoding Time-resolved EEG Motor Imagery Signals

School of Automation Engineering, NEEPU, China Shuyue Jia shuyuej@ieee.org Supervisor: Yimin Hou

Research Background

- BCI: connects the brain with machines, acquires and analyzes brain signals regarding actual or imagery tasks, and then commands machines.
- **Significance**: help the disabled (e.g., strokes) and understand our brains.
- Types of BCI:
 - Electroencephalography (EEG)
 - Magnetoencephalography (MEG)
 - Functional Magnetic Resonance Imaging (fMRI)
 - Invasive BCI Technologies (e.g., Neuralink)
 - etc.
- Reasons for using **EEG** for this project:
 - Non-invasiveness
 - High Temporal Resolution
 - Portability
 - Inexpensive Equipment
 - etc.

Potentially have a broad market.

- Related Applications: Wheelchair (Nature Machine Intelligence, 2019), Spoken Sentences (Nature 2019)
- Specific Task: EEG Motor Imagery Tasks Classification (e.g., control a wheelchair through only brain signals)
- Our Goal: develop EEG-based BCI applications that could potentially be used to improve the current stroke rehabilitation strategies.

Difficulties in dealing with EEG Signals

- Individual Variability → Lower Classification Accuracy
 - Low Signal-noise ratio
 - Different brain electrical conductivity ← different anatomical structure of brain
 - Electrodes' position error
 - etc.
- Slow Real-time Responding → Hard to develop Real-life Applications
 - Trial-level prediction (e.g., 4 s) (most literature)
 - Window-level prediction (e.g., 0.4 s)
 - Time-resolved prediction (e.g., 6.25 ms) (Our Work)
- Low Group-level Accuracy → Hard to develop Applications for a Group of People
 - Subject-level prediction (most literature) (Our Work)
 - Group-level prediction (Our Work)

Intuition & Motivation

• Traditional CNN-based approaches:

- Most recent published literature in the field of EEG (MI) introduced CNN-based approaches.
- Check <u>our previous work</u> (*Journal of Neural Engineering, SCI, IF=4.551*), which used CNN method and achieved competitive results (96% accuracy at the subject level, and 94.50% at the group level (10 subjects)).
- Local connectivity, weights sharing, translation invariance, hierarchical, low dimensionality, etc.
- Implemented on the Euclidean-structured data (e.g. Image, voice, natural languages)
- Neuroscience research has increasingly emphasized Brain Network Dynamics.
 - The functional topological connectivity of EEG electrodes → Graph instead of Euclidean structure

Our Question:

Can we implement CNNs on graphs directly?

Can we use Traditional CNNs on graphs directly?

- Traditional CNNs cannot process graphs directly:
 - **Graphs are irregular** (1. unordered, 2. vary in size)
 - → Convolution cannot keep translation invariance on the non-Euclidean signals
- Can we implement CNNs on Graphs? → Graph Convolutional Neural Networks (GCNs / Graph CNN)
 - Can process Graph-structured Signals directly
 - Consider the relationship properties (e.g., correlations) between nodes
 - Consider the functional topological relationships of EEG electrodes

Our Question:

How to implement CNNs on graphs? (How to implement GCNs?)

Our presented GCNs-Net for EEG Signals Classification

Benchmark Dataset Description

- The PhysioNet Dataset (EEG Motor Movement/Imagery Dataset)
- 64-electrode EEG (International 10-10 system, excluding electrodes Nz, F9, F10, FT9, FT10, A1, A2, TP9, TP10, P9, and P10)

- 109 subjects (largest number of participants in the field of EEG MI)
- 4-class EEG Motor Imagery Classification
 - Imagining left fist, right fist, both fists, and both feet
- For each subject, 3 runs, 7 trials, 4 classes \rightarrow 84 trials in total
- For each trial, 4 seconds experimental duration, 160 Hz Sampling Rate → 640 Time Points
- We applied Time-resolved Method → Real-time Applications:
 - Total samples per subject: 3 runs \times 7 trials \times 4 classes \times 4 seconds \times 160 Hz = 53,760 samples
 - Randomly shuffled, 90% as the training set and the left 10% as the test set.

Graph Representation: Laplacian Matrix in Graph Theory

- Undirected and Weighted Graph: $G = \{V, E, A\}$
 - V: nodes, |V| = N
 - E: edges that connected nodes
 - A: weights / correlations between nodes

- Correlations representation: Pearson Matrix
 - Measure the linear correlations between nodes
 - Below, μ is the expectation, σ is the standard deviation, and $P_{x,y}$ is the Pearson Correlation Coefficient (PCC) between two nodes

$$P_{x,y} = \frac{E((x - \mu_x)(y - \mu_y))}{\sigma_x \sigma_y}$$

- Absolute Pearson Matrix: $|P_{x,y}|$
- Graph Weights representation: Adjacency Matrix: $A = |P_{x,y}| I$, where I is an Identity Matrix
- Graph Degrees representation: Degree Matrix

$$D_{ii} = \sum_{j=1}^{N} A_{ij}$$

• Graph representation: Graph Laplacian (Laplacian Matrix, Combinatorial Laplacian)

$$L = D - A$$

Normalized Graph Laplacian:

$$L = I_{N} - D^{-\frac{1}{2}}AD^{\frac{1}{2}}$$

Convolutions on Graphs (Spectral Graph Filtering):

- Convolutions on graphs in the spatial domain
 - No convinced mathematical definition
 - Hard to match local neighborhoods

- Have a solid mathematical definition
- Have a well-defined localized operator on graphs

- U: Fourier basis, which is a complete set of orthonormal eigenvectors of L
- Λ: a Diagonal Matrix, where the diagonal is the ordered real nonnegative eigenvalues of L

$$L = U\Lambda U^T$$

• Fourier Transform of Signal x

$$\hat{\mathbf{x}} = \mathbf{U}^{\mathsf{T}}\mathbf{x}$$

Spectral filtering of graph signal x (feature vector of graph nodes)

$$y = g_{\theta}(L)x = g_{\theta}(U\Lambda U^{T})x = Ug_{\theta}(\Lambda)U^{T}x$$

• A non-parametric filter, i.e., a filter whose parameters are all free, would be defined as

$$g_{\theta}(\Lambda) = diag(\theta)$$

 θ is a vector of Fourier coefficients.

Problem 1 non-parametric filter not localized in space

Convolution the apartial domain

Spatial domain

Polynomial approximation

Convolutions on Graphs (Spectral Graph Filtering):

- One commonly used filter is the Chebyshev polynomial
 - Kth Chebyshev polynomial

$$T_k(x) = 2xT_{k-1}(x) - T_{k-2}(x)$$
 $T_0 = 1$
 $T_1 = x$

The filter after approximation

Convolution: Weighted Sum

$$g_{\theta}(\Lambda) = \sum_{k=1}^{K} \theta_k \Lambda^k$$

 $g_{\theta}(\Lambda) = \sum_{k=1}^{n} \theta_k \Lambda^k$ Weights Sharing \rightarrow Translation Invariance

Defined Convolutional Operation

If ined Convolutional Operation
$$y = U\left(\sum_{k=1}^{K} \theta_k \Lambda^k\right) U^T x = \left(\sum_{k=1}^{K} \theta_k U \Lambda^k U^T\right) x = \left(\sum_{k=1}^{K} \theta_k L^k\right) x = \sum_{k=1}^{K} \theta_k (L^k x)$$

$$x_{\text{new}} \leftarrow L x_i = \sum_{i} A_{ij} (x_i - x_j)$$

Local connectivity

 θ are the trainable parameters \leftarrow Back-propagation Algorithm

No need for Fourier

K-hop Neighbor features divergence/average, K is the size of the repetitive field

 $O(n^2) \rightarrow O(n)$

GCN Key Idea: Use "edge information" to "aggregate" "node information" to generate a new "node representation"

Pooling on Graphs (Graph Coarsening + 1D Pooling)

- Traditional CNNs **don't** need to consider neighbors after convolutions
 - The output feature maps are regular (Euclidean Structure)
 - The neighbors are "meaningful"

- GCNs need to consider neighbors after convolutions
 - The output graphs' nodes are not arranged in any meaningful way
 - So, we have to find meaningful neighbors of the graph nodes after convolution to carry out pooling
 - We will use Graclus multilevel clustering algorithm, a cluster algorithm to find meaningful neighbors
 - a.k.a. Graph Coarsening
 - Minimize the local normalized cut

$$-W_{ij}(\frac{1}{d_i} + \frac{1}{d_j})$$

- i and j are two nodes. After the Coarsening, Wij will be their new weight

Pooling on Graphs (*Graph Coarsening* + 1D Pooling)

- Along the way, a balanced binary tree was used to store nodes of the coarsened graph
 - Memory Efficient
- Then carry out one-dimensional pooling
- If there is singletons (non-matched nodes) → Cannot pool based on a size two → We will use a
 fake node.

Model Initialization

- Optimal Model Structure (64-electrode EEG system)
 - C6-P6-K2, [16, 32, 64, 128, 256, 512] filters
- Optimizer: Adam Optimizer with the Stochastic Gradient Descent (SGD) algorithm
 - Learning Rate: 0.01
 - Batch Size: 1,024
- Activation Function: Softplus (Smooth Rectified Linear Unit)

$$f(x) = \log(1 + e^x)$$

• Softmax Output: y is the label, \hat{y} is the final output probability

$$\hat{y} = \operatorname{argmax}(\frac{e^{y_i}}{\sum_{i=1}^4 e^{y_i}})$$

Loss =
$$-\sum_{i=1}^{4} y_i \log(\widehat{y}_i) + \lambda(\sum_{j=1}^{n} w_j^2 + b_j^2)$$

• λ (1×10-6) is the coefficient of L2 norm.

Which Chebyshev polynomial order should we use?

- The model using 1st order Chebyshev polynomial approximation performed worst (<58% accuracy), while the others using 2nd to 5th order performed nearly the same.
- So, for our GCNs-Net, we will use 2nd Order Chebyshev to approximate filters.

Which model should we use for EEG signals classification?

- For 64-electrode EEG system, the C6-P6-K2 model performed best (88.85% accuracy).
- Six-layer graph convolutions, each followed by a graph pooling layer, and finally used a Softmax layer to predict the EEG tasks.
- Used Batch normalization (BN), and L2 regularization to prevent overfitting.

Results of the Subject-level Prediction:

- For the Subject-level prediction, we used the first 10 Subjects ($S_1 \sim S_{10}$) from the PhysioNet Dataset.
- Averaged accuracy: 93.056%, Maximum accuracy: 98.72%.

Results of the Group-level Prediction:

- At the Group-level, we used the first 20, 50, 100 Subjects from the PhysioNet Dataset.
- For 20 subjects, averaged accuracy: 88.57%, maximum accuracy: 89.387%.
- For 50 subjects, accuracy: 89.75%.
- For 100 subjects, accuracy: **88.14%**.

Compared with State-of-the-art Models:

TABLE IV: Performance comparison on the PhysioNet Dataset

Related Work	Max. GAA	Avg. GAA	p-value	Level	Approach	Num of Subjects
Dose et al. (2018) [20]	-	58.58%	-	Group	CNNs	105
	80.38%	68.51%	< 0.05	Subject	CITITO	1
Ma et al. (2018) [53]	82.65%	68.20%	_	Group	RNNs	12
Hou et al. (2020) [18]	94.50%	_	_	Group	ESI-CNNs	10
	96.00%	-	> 0.05	Subject	E31-CNNS	1
Author	89.387%	88.57%	_	Group Subject	GCNs-Net	20
	88.14%	-				100
	98.72%	93.056%				1

TABLE V: Performance comparison on the High Gamma Dataset

Related Work	Avg. GAA	p-value	Level	Approach	Dataset
Schirrmeister et al. (2017) [22]	92.50%	< 0.05		CNNs	
Li et al. (2019) [54]	93.70%	< 0.05	Subject	CP-MixedNet	1 subjects
Tang et al. (2019) [27]	95.30%	> 0.05		DAN	
Author	80.89% 96.24%	-	Group Subject	GCNs-Net	14 subject 1 subject

To summarize my undergraduate studies

- Research Topics: EEG Signals/Tasks Classification
 - 5 Papers (All selected by SCI, 1 accepted, 4 under review)
 - Open-source <u>EEG-DL</u> on GitHub, a Deep Learning (DL) Library written by TensorFlow for EEG signals classification, currently supports 22 DL algorithms, and keeps updating.
 - 36+ GitHub stars, 12+ forks
- 2017 Summer School at the *University of California, Irvine*, CA, USA
- 2019 Summer Intern at *Tsinghua University*, Beijing, China
- Student Member of IEEE, ACM and CCF, and attended a few CCF talks in Beijing, China

^{*} The projects' details can be found at my **Homepage**.

Publications

- 1. A Novel Approach of Decoding EEG Four-Class Motor Imagery Tasks via Scout ESI and CNN. Yimin Hou, Lu Zhou, **Shuyue Jia**, and Xiangmin Lun. *Journal of Neural Engineering*, 2019; 17(1):016048. (Published)
- 2. GCNs-Net: A Graph Convolutional Neural Network Approach for Decoding Time-resolved EEG Motor Imagery Signals. Xiangmin Lun, **Shuyue Jia** *, Yimin Hou, Yan Shi, Yang Li, Hanrui Yang, Shu Zhang, and Jinglei Lv. *IEEE Transactions on Neural Systems and Rehabilitation Engineering (TNSRE)*, 2020. (Major Revision)
- Deep Feature Mining via Attention-based BiLSTM-GCN for Human Motor Imagery Recognition. Yimin Hou, Shuyue
 Jia *, Shu Zhang, Xiangmin Lun, Yan Shi, Yang Li, Hanrui Yang, Rui Zeng, and Jinglei Lv. IEEE Access, 2020.

 (Minor Revision/Resubmit)
- 4. A Novel Synergetic Framework for Enhancing Electronic Nose Performance to measure the Quality Difference of Rice. Yan Shi, Xiaofei Jia, Hangcheng Yuan, **Shuyue Jia**, Jingjing Liu, and Hong Men. *Measurement Science and Technology*, 2020. (Major Revision)
- 5. Improving Performance: a Collaborative Strategy for Multi-data Fusion of Electronic Nose and Hyperspectral to Track the Quality Difference of Rice. Yan Shi, Hangcheng Yuan, Chenao Xiong, **Shuyue Jia**, Jingjing Liu, and Hong Men. *Sensors & Actuators: B. Chemical*, 2020. (Under Review)

^{*} denotes the Corresponding Author.

Acknowledgements

Supervisors: Yimin Hou, Hanrui Yang, Yang Li,

Yan Shi, and Jinglei Lv

Co-authors: Xiangmin Lun, Shu Zhang, and Rui

Zeng

Labmates: Ziyu Huo, and Lu Zhou

Friends: Shitu Zhang, Shichang Li, Xingyu Tong

My parents

I would like to thank all the people who help and support me during my undergraduate studies. These research works could not have happened without you.

