UBA-	CBC	Segundo Parcial de Física (03)							2° Cuat	rimestre 2023	Tema A1
Apellido:				D.N.I	D.N.I.:				omisión:		Aula:
Nombre:				Sede	Sede:				Horario:		Hoja 1 de:
			Rese	rvado pa	ra el corre	ector		·		Calificación	Corrigió
P1a	P1b	P2a	P2b	P3a	P3b	E4	E5	E6	E7		
Situación Final: Promociona			□R	☐ Rinde Final			☐ Recupera 1°P		Recupera 2° P	Insuficiente	

Lea por favor todo antes de comenzar. Resuelva los 3 problemas en otras hojas <u>que debe entregar</u>. Incluya los desarrollos que le permitieron llegar a la solución. Las 4 preguntas tienen SOLO UNA respuesta correcta. Indique la opción elegida con una $\bf X$ en el casillero correspondiente. Los desarrollos y respuestas deben estar en tinta (no lápiz). Si encuentra algún tipo de ambigüedad en los enunciados, aclare en las hojas cuál fue la interpretación que adoptó. Use, si lo necesita, $|\bf g|=10~m/s^2$, sen $37^\circ=\cos 53^\circ=0,6$; $\cos 37^\circ=\sin 53^\circ=0,8$. Dispone de 2 horas. Autores: Jorge Nielsen – Cristian Rueda

Problema 1. Los bloques A y B de la figura ($m_A = 3 \text{ kg y } m_B = 7 \text{ kg}$) se mueven juntos horizontalmente, sin que A deslice respecto de B. Ambos

aumentan uniformemente el módulo de su velocidad a razón de 2 m/s². Para ello, sobre A se aplica una fuerza F horizontal de 60 N. Se considera rozamiento tanto entre A y B como entre B y el piso.

- a) Calcule el coeficiente de rozamiento dinámico entre B y el piso.
- b) Halle el mínimo valor posible del coeficiente de rozamiento estático entre A y B.

Problema 2. Supongamos que se ha descubierto un planeta X (de masa $2 \cdot 10^{24}$ kg y radio 5000 km) que orbita circularmente alrededor del Sol ($m_{Sol} = 2 \cdot 10^{30}$ kg) con un período de rotación de 200 días terrestres. Considere la constante de gravitación $G = 6,67 \cdot 10^{-11}$ Nm²/kg².

- a) Calcule el valor de la aceleración de la gravedad en la superficie del planeta descubierto X.
- b) ¿Cuál es la distancia existente entre los centros del planeta X y del Sol?

Problema 3. Un resorte ideal se encuentra con su eje vertical con un extremo fijo al piso. En esa condición, sin carga, el extremo libre se encuentra a una altura $h_1 = 30$ cm del piso, como muestra el

esquema A de la figura. Se le apoya una caja de 2 kg en dicho extremo, y se lo hace descender de manera que se lo mantiene en reposo a una altura $h_2=20\,$ cm del piso (esquema B). Al soltar al sistema, el resorte se relaja y la caja sale despedida de manera que alcanza una altura máxima $h_3=75\,$ cm respecto el piso (esquema C). Se desprecian todos los rozamientos.

- a) Calcule la constante elástica del resorte.
- b) Halle la velocidad de la caja al pasar por el nivel h_1 en el esquema C.

Ejercicio 4. Un corcho cúbico de 200 kg/m³ de densidad y 10 cm de arista se mantiene completamente sumergido en un líquido de densidad desconocida, aplicando sobre él una fuerza vertical de 7 N de intensidad. Si se lo mantuviera en reposo con la mitad de su volumen sumergido, la intensidad de la fuerza debería ser de:

	,,				
\square 1N	\square 2N	□ 2,5N	\Box 4N	☐ 4,5N	□ 7N

Ejercicio 5. La bolita de masa m de la figura está vinculada a un punto fijo S mediante un hilo inextensible y de masa despreciable. La misma describe una circunferencia en el plano horizontal, con velocidad angular constante. Si se desprecian los rozamientos, entonces:

- ☐ Para que la bolita no se acerque al punto C, es imprescindible la existencia de una fuerza radial que apunte hacia afuera de la circunferencia.
- ☐ La fuerza resultante sobre la bolita es nula.
- ☐ El peso de la bolita y la tensión que ejerce el hilo sobre ella son fuerzas de igual intensidad.
- La fuerza resultante sobre la bolita tiene una componente vertical y otra horizontal.
- ☐ La intensidad de la tensión del hilo es mayor a la intensidad del peso de la bolita.
- ☐ Si se duplica el valor de la velocidad angular, se duplica la intensidad de la tensión del hilo.

Ejercicio 6. Un ladrillo es lanzado por una rampa inclinada con rozamiento. Asciende por la misma en línea recta y se detiene. ¿Cuál de los siguientes gráficos representa correctamente su energía potencial (EP), cinética (EC) y mecánica (EM) en función de su distancia al punto de partida?

Ejercicio 7. Los recipientes de la figura alojan agua en equilibrio. Llamamos p a la presión hidrostática en los puntos del líquido indicados. Entonces:

$\bigcup p_A = p_B$	• •
\square $p_A = p_B$	$y\;p_C>p_D$
\bigcap $p_A > p_B$	$y\;p_C>p_D$

 \square p_A > p_B y p_C = p_D

