A2 - IoT Smart City

Bragadireanu Ruxandra Oana

Cuprins

- 1. Indexul calității aerului (AQI)
- 2. Deviația standard
- 3. Metode folosite
 - a. MPI
 - b. Agapia
- 4. Comparație metode folosite
- 5. Probleme întâmpinate Agapia
- 6. Concluzii

Indexul calității aerului (AQI)

$$AQI = \frac{I_{high} - I_{low}}{C_{high} - C_{low}} (C - C_{low}) + I_{low}$$

C = concentratie masurata

$$C \in \left[C_{low}, C_{high}\right]$$

$$\left[I_{low},\ I_{high}\right] = interval\ AQI\ care$$

corespunde intervalului $\begin{bmatrix} C_{low}, C_{high} \end{bmatrix}$

PM _{2.5} (μg/m³)	PM ₁₀ (μg/m³)	CO (ppm)	AQI	AQI	
C _{low} - C _{high} (avg)	C _{low} - C _{high} (avg)	C _{low} - C _{high} (avg)	I _{low} - I _{high}	Category	
0.0-12.0 (24-hr)	0-54 (24-hr)	0.0-4.4 (8-hr)	0-50	Good	
12.1-35.4 (24-hr)	55-154 (24-hr)	4.5-9.4 (8-hr)	51-100	Moderate	
35.5-55.4 (24-hr)	155-254 (24-hr)	9.5-12.4 (8-hr)	101-150	Unhealthy for Sensitive Groups	
55.5-150.4 (24-hr)	255-354 (24-hr)	12.5-15.4 (8-hr)	151-200	Unhealthy	
150.5–250.4 (24-hr)	355–424 (24-hr)	15.5–30.4 (8-hr)	201–300	Very Unhealthy	
250.5-350.4 (24-hr)	425-504 (24-hr)	30.5-40.4 (8-hr)	301-400	Hazardous	
350.5-500.4 (24-hr)	505-604 (24-hr)	40.5-50.4 (8-hr)	401-500		

Deviația standard (std)

= Variația datelor față de medie

$$\sigma = \sqrt{\frac{\sum_{i=0}^{N} (x_i - \mu)^2}{N}}$$

 $\sigma = devia$ ția standard

N = dimensiunea populației

 $x_i = f$ iecare valoare din populație

 $\mu = media populației$

Metode folosite

- Baza de date kaggle Air Pollution in Seoul;
- Script python pentru extragerea şi multiplicarea datelor;
- Algoritm serial C++;
- Algoritm paralel MPI;
- Algoritm paralel Agapia.

MPI

- Master: încarc datele din fișier;
- MPI_Scatterv datele pentru fiecare procesor;
- Calculez suma și numărul măsurătorilor cu statusul normal;
- MPI_Gather valori calculate
- Master: calculez media si AQI
- MPI_Bcast media
- Calculez varianța valorilor față de medie;
- MPI_Gather varianţa;
- Master: calculez varianța totală și deviația standard.

AGAPIA

Comparație metode folosite

Dimensiune fişier(GB)	Nr. Procese	Serial(s)	MPI(s)	Agapia(s)
0.7	2	1.43	0.92	1
0.7	5		0.62	1
4	2	2.1	1.35	1.5
I	5		0.9	1.5

Am măsurat doar timpul de procesare a datelor.

Probleme întâmpinate - Agapia

- 1. Nu se poate transmite orice tip de date între module -> pierdere de date între float double.
- 2. Modulele nu pot primi acelasi read/listen.
- 3. Instrucțiunile for (foreach_s, foreach_t, ...) lansează procese pentru fiecare element din vectorul de procese -> dacă folosesc aceste instrucțiuni de mai multe ori se vor crea mereu procese noi. Nu am reușit sa găsesc o soluție pentru a mă întoarce la cele vechi.

Concluzii

 Algoritmii paraleli sunt evident mai eficienti decat cel serial dar necesita multe resurse.