Versuch 103

Biegung elastischer Stäbe

Nico Schaffrath Mira Arndt nico.schaffrath@tu-dortmund.de mira.arndt@tu-dortmund.de

Durchführung: 7.01.2020 Abgabe: 14.01.2020

TU Dortmund – Fakultät Physik

Inhaltsverzeichnis

1	Ziel	3
2	Theorie 2.1 Allgemein	3
3	 Durchführung 3.1 Bestimmung des Elastizitätsmoduls über die einseitige Einspannung 3.2 Bestimmung des Elastizitätsmoduls über die beidseitige Einspannung 	
4	Auswertung 4.1 Runder Stab einseitig eingespannt 4.2 Eckiger Stab einseitig eingespannt 4.3 Runder Stab beidseitig eingespannt 4.4 Eckiger Stab beidseitig eingespannt 4.5 Eckiger Stab beidseitig eingespannt 4.6 Eckiger Stab beidseitig eingespannt	12 14
5	Diskussion	17
6	Anhang	19
Lit	eratur	21

1 Ziel

In diesem Versuch soll der Elastizitätsmodul unterschiedlicher Metalle mithilfe einer Messung der Durchbiegung bestimmt werden. Anschließend sollen die Metalle durch ihr Elastizitätsmodul identifiziert werden.

2 Theorie

2.1 Allgemein

Wenn äußere Kräfte auf einen Körper wirken, sodass sich dieser verformt, können Spannungen auftreten. Dieses Verhalten kann der Abbildung 1 entnommen werden.

Abbildung 1: Dehnung eines Stabes durch den Einfluss einer Normalspannung (Siehe [2])

Es wird unterschieden zwischen der Normalspannung, welche senkrecht zur Oberfläche steht und der Tangentialspannung, welche parallel zur Oberfläche verläuft. Wird durch eine von außenwirkende Kraft die Länge L eines Materials um ΔL verkürzt, so entsteht eine Spannung, welche mithilfe des Hookschen Gesetzes

$$\sigma = E \frac{\Delta L}{L} \tag{1}$$

beschrieben werden kann, wobei E als Elastizitätsmodul bezeichnet wird. Dieser Proportionalitätsfaktor lässt sich auch über die Biegung eines Stabes berechnen.

2.2 Einseitige Biegung des Stabes

Wird ein Stab, wobei die geometrische Form des Querschnitts allgemein nicht von Bedeutung für den Ablauf des Versuchs ist, an einem seiner Enden eingespannt und zusätzlich an dem anderen Ende mit einem Gewicht belastet, so lässt sich beobachten, dass die Durchbiegung des Stabes mit zunehmenden Abstand von dem eingespannten Ende ebenfalls zunimmt (siehe dazu Abbildung 2.

Durch die an der Stelle x=L wirkende Kraft, wird auf die Querschnittsfläche an der Stelle x ein Drehmoment M_F ausgeübt, welches eine Verdrehung des Stabes hervorruft. Die oberen Schichten des Stabes werden gestreckt und die unteren gestaucht. Der Stab

Abbildung 2: Durchbiegung eines elastischen Stabes unter dem Einfluss einer Kraft bei einseitige Einspannung (Siehe [2])

verdreht sich so lange weiter, bis ein Gleichgewicht zwischen dem Drehmoment M_F und dem durch die Spannungen zwischen den gestauchten beziehungsweise gestreckten Schichten des Stabes enstehenden Drehmoments M_{σ} entsteht. Es existiert aber auch eine Schicht, in der keine Spannungen auftreten. Diese wird als neutrale Faser bezeichnet.

Da die Kraft, die auf den Stab wirkt, senkrecht zu dem Kraftarm ist, gilt für das Drehmoment M_F , welches auf die Querschnittsfläche an der Stelle x wirkt

$$M_F = F \cdot (L - x). \tag{2}$$

Im Gegensatz dazu lässt sich das Drehmoment M_{σ} mit

$$M_{\sigma} = \int_{Q} y \cdot \sigma(y) \, \mathrm{d}q \tag{3}$$

berechnen, wobei y den Abstand des Flächenelements dq von der neutralen Faser angibt (siehe Abbildung 3).

Weiterhin kann $\sigma(y)$ mithilfe von Gleichung 1 umgeschrieben werden, sodass sich

$$\sigma(y) = E \frac{\delta x}{\Delta x} \tag{4}$$

ergibt. Hierbei gibt δx die Änderung der Länge von Δx infolge der Biegung des Stabes an.

Aus der Abbildung 4 lässt sich für $\delta x \ll \Delta x$ entnehmen, dass sich die Längenänderung δx als

$$\delta x = y\Delta\phi = y\frac{\Delta x}{R} \tag{5}$$

schreiben lässt. Mit der Annahme, dass mit R ein geringer Krümmungsradius vorliegt, lässt sich das Gleichgewicht von M_F und M_σ mit den Gleichungen 2 und 3 zu

$$E\frac{\mathrm{d}^2 D}{\mathrm{d}x^2} \int_{O} y^2 \,\mathrm{d}q = F(L-x) \tag{6}$$

Abbildung 3: Querrschnitt des Stabes zur Berechnung des Drehmoments M_{σ} (Siehe [2])

umformulieren. Das Integral

$$I = \int_{O} y^2 \, \mathrm{d}q \tag{7}$$

wird als Flächenträgheitsmoment bezeichnet. Das Flächenträgheitsmoment eines runden Stabes beträgt

$$I_{Rund} = \frac{\pi}{4} \cdot R^4. \tag{8}$$

Das Flächenträgheitsmoment eines eckigen Stabes beträgt

$$I_{Eckig} = \frac{h * b^3}{12}. (9)$$

Zusammenfassend ergibt sich also für die gesuchte Durchbiegung D(x) der Zusammenhang

$$D(x) = \frac{F}{2EI} \left(Lx^2 - \frac{x^3}{3} \right) \tag{10}$$

für $0 \le x \le L$.

2.3 Zweiseitige Biegung eines Stabes

Wenn ein Stab nun nicht nur an einem Ende, sondern an seinen beiden Enden eingespannt wird, wie in der Abbildung 5 zu sehen ist, greift nur noch das Drehmoment

$$M_F = -\frac{F}{2}x\tag{11}$$

an der Querschnittsfläche Q
 an, für die $0 \leq x \leq L/2$ gilt. Im Gegensatz dazu gilt für
 $L/2 \leq x \leq L$ nun

$$M_F = -\frac{F}{2}(L-x). \tag{12}$$

Abbildung 4: Skizze zur Berechnung der Normalspannung $\sigma(y)$ in einem gebogenen Stab (Siehe [2])

Mittels dieser Gleichungen und der Annahme, dass in der Mitte des Stabes die Durchbiegung D(x) eine horizontale Tangente besitzt, ergibt sich aus der Gleichung 6 für $0 \le x \le L/2$

$$D(x) = \frac{F}{48EI} \left(3L^2x - 4x^3\right) \tag{13}$$

beziehungsweise für $L/2 \leq x \leq L$

$$D(x) = \frac{F}{48EI} \left(4x^3 - 12Lx^2 + 9L^2x - L^3 \right). \tag{14}$$

Abbildung 5: Durchbiegung eines zweiseitig aufgelegten Stabes

3 Durchführung

3.1 Bestimmung des Elastizitätsmoduls über die einseitige Einspannung

Sowohl ein zylindrischer, als auch ein quaderförmiger Stab werden zunächst vermessen und gewogen. Anschließend werden die Stäbe nacheinander einseitig, wie in Abbildung 6 zu sehen ist, in die Vorrichtung eingespannt.

Abbildung 6: Aufbau zur einseitigen Messung der Durchbiegung ohne Gewicht

Nun soll die Auslenkung D(x) ohne Verwendung eines Gewichts in Abhängigkeit von

x gemessen werden, wobei 15 Messwerte aufzunehmen sind. Daran angeschlossen wird eine Masse $m_{Zylinder,1}=503,2\,\mathrm{g}$ beziehungsweise $m_{Rechteck,1}=1168,8\,\mathrm{g}$ über eine Aufhängung ($m_A=40,4\,\mathrm{g}$) an die Seite des Stabes gehangen (siehe Abbildung 7), welche nicht eingespannt wurde. Auch hier werden 15 Messwerte für die Auslenkung D(x) in Abhängigkeit von x aufgenommen.

Abbildung 7: Aufbau zur Messung einseitigen Messung der Durchbiegung mit Gewicht

3.2 Bestimmung des Elastizitätsmoduls über die beidseitige Einspannung

Ähnlich wie beim ersten Teilversuch soll der Elastizitätsmoduls der beiden zuvor verwendeten Stäbe ermittelt werden. Zuerst wird jeweils ein Stab an beiden seiner Enden in der Vorrichtung eingespannt, wie in Abbildung 8 zu sehen ist. Hier sollen 15 Messwerte aufgenommen werden, welche die Abhängigkeit der Auslenkung D(x) in Abhängigkeit von x angeben.

Abbildung 8: Aufbau zur beidseitigen Messung der Durchbiegung ohne Gewicht

Daran angeschlossen wird an die Mitte des Stabes ein Gewicht aufgehangen und abermals soll die Auslenkung D(x) abhängig von x über 15 Messwerte ermittelt werden. Hierbei beträgt die Masse des Gewichts $m_2=2830,8\,\mathrm{g}$. Auch in diesem Teil des Versuchs wurde die Aufhängung mit der Masse $m_A=40,4\,\mathrm{g}$ verwendet. Dies lässt sich Abbildung 9 entnehmen.

Abbildung 9: Aufbau zur beidseitigen Messung der Durchbiegung mit Gewicht

4 Auswertung

4.1 Runder Stab einseitig eingespannt

Messung	d / mm
1	10,05
2	10,00
3	9,95
4	9,95
5	9,95
6	10,00
7	10,00
8	9,95
9	10,00
10	9,95

Tabelle 1: Durchmesserwerte des runden Stabes

Mit den Messwerten aus Tabelle 1 lässt sich der Durchmesser des runden Stabes mit Hilfe der Formeln für den Mittelwert

$$\bar{x} = \frac{1}{n} \cdot \sum_{i=1}^{n} x_i \tag{15}$$

und den Standardfehler des Mittelwertes

$$\Delta \bar{x} = \sqrt{\frac{1}{n(n-1)} \cdot \sum_{i=1}^{n} (x_i - \bar{x})^2}$$
 (16)

als

$$d = (9,980 \pm 0,012) \,\mathrm{mm}$$

angeben. Der Radius beträgt somit

$$R = (4,990 \pm 0,006) \,\mathrm{mm}.$$

Das Flächenträgheitsmoment des runden Stabes kann nach Formel 8 als

$$I_{Rund} = (0,003919 \pm 0,000005) \,\mathrm{m}^4$$

berechnet werden.

x / cm	$D_{OhneGewicht} / mm$	$\mid D_{MitGewicht} / \mathrm{mm}$	$D_{Differenz}$ / mm
5	-0.08	0,04	0,12
8	-0.12	0,12	$0,\!24$
11	-0.13	0,27	0,40
14	-0,11	0,51	$0,\!62$
17	-0.07	0,81	0,88
20	0,00	1,20	1,20
23	0,09	1,61	$1,\!52$
26	0,21	2,09	1,88
29	0,37	2,64	$2,\!27$
32	0,56	3,21	$2,\!65$
35	0,87	3,77	2,90
38	0,95	4,50	$3,\!55$
41	1,21	5,11	3,90
44	1,46	5,81	$4,\!35$
47	1,46	6,53	5,07

Tabelle 2: Messwerte des runden Stabes bei einseitiger Einspannung

Mit Hilfe einer Linearen Ausgleichsrechnung der Messwerte aus Tabelle 2 kann der Elastizitätsmodul aus dem Faktor $F/2EI_{Rund}$ aus Gleichung 10 bestimmt werden, der der Steigung

$$m = (0,0641 \pm 0,0008) \,\mathrm{m}^{-2}$$

der Ausgleichsgeraden in Abbildung 10 entspricht.

Aus dem Zusammenhang

$$E_{Rund} = \frac{F}{2 \cdot m \cdot I_{Rund}} \tag{17}$$

folgt dann, mit dem Wert $F = 5,3327\,\mathrm{N}$ des verwendeten Gewichtes,

$$E = (85, 4 \pm 1, 1) \cdot 10^9 \frac{\text{kg}}{\text{m s}^2}$$

als Wert für den Elastizitätsmodul.

Abbildung 10: Runder Stab einseitig eingespannt

4.2 Eckiger Stab einseitig eingespannt

Messung	h / mm	b / mm
1	9,95	10,00
2	$9,\!95$	10,00
3	10,00	10,05
4	9,90	10,00
5	10,00	10,00
6	9,90	10,05
7	9,95	9,95
8	10,00	9,95
9	9.95	10.00

Tabelle 3: Höhen- und Breitenwerte des eckigen Stabes

Mit den Messwerten aus Tabelle 2 lässt sich der die Höhe des eckigen Stabes mit Hilfe der Formeln 15 und 16 als

$$h = (9,960 \pm 0,013)\,\mathrm{mm}$$

und die Breite als

$$b = (9,995 \pm 0,012) \,\mathrm{mm}$$

angeben. Das Flächenträgheitsmoment des eckigen Stabes kann nach Formel 9 als

$$I_{Eckiq} = (85, 4 \pm 1, 1) \cdot 10^{-9} \,\mathrm{m}^4$$

berechnet werden.

x / cm	$\mid D_{OhneGewicht} / \mathrm{mm} \mid$	$\mid D_{MitGewicht} / \mathrm{mm}$	$D_{Differenz}/\mathrm{mm}$
5	-0.09	-0.04	0,05
8	-0,34	-0.09	$0,\!25$
11	-0.70	-0.06	0,64
14	-0.98	0,04	1,02
17	$-1,\!22$	0,21	1,43
20	-1,47	0,57	2,04
23	-1,74	0,77	2,51
26	-1,98	1,10	3,08
29	$-2,\!17$	1,53	3,70
32	$-2,\!20$	1,96	4,16
35	$-2,\!20$	2,47	4,67
38	$-2,\!20$	3,11	5,31
41	$-2,\!20$	3,60	5,80
44	$-2,\!20$	4,25	6,45
47	$-2,\!17$	4,86	7,03

Tabelle 4: Messwerte des eckigen Stabes bei einseitiger Einspannung

Mit Hilfe einer Linearen Ausgleichsrechnung der Messwerte aus Tabelle 4 kann der Elastizitätsmodul aus dem Faktor $F/2EI_{Rund}$ aus Gleichung 10 bestimmt werden, der der Steigung

$$m = (0.0930 + 0.0023) \,\mathrm{m}^{-2}$$

der Ausgleichsgeraden in Abbildung 11 entspricht.

Aus dem Zusammenhang

$$E_{Eckig} = \frac{F}{2 \cdot m \cdot I_{Eckig}} \tag{18}$$

folgt dann, mit dem Wert $F = 11,855 \,\mathrm{N}$ des verwendeten Gewichtes,

$$E = (76, 9 \pm 1, 9) \cdot 10^9 \, \frac{\text{kg}}{\text{m s}^2}$$

als Wert für den Elastizitätsmodul. (VERGLEICH MIT LITERATUR)

Abbildung 11: Eckiger Stab einseitig eingespannt

4.3 Runder Stab beidseitig eingespannt

x / cm	$\mid D_{OhneGewicht} / \operatorname{mm}$	$\mid D_{MitGewicht} / \mathrm{mm}$	$D_{Differenz} / mm$
6,6	-0.84	0,05	0,89
9,6	-0.75	0,48	1,23
12,6	-0,63	0,94	1,57
15,6	-0,48	1,32	1,80
18,6	-0.33	1,66	1,99
21,6	-0,22	1,91	2,13
24,6	-0.11	2,05	2,16
30,6	0,09	2,02	1,93
33,6	0,13	1,89	1,76
36,6	0,20	1,68	1,48
39,6	0,27	1,43	1,16
42,6	0,35	1,14	0,79
45,6	0,44	0,78	0,34
48,6	0,54	0,39	-0.15

Tabelle 5: Messwerte des runden Stabes bei beidseitiger Einspannung

Auch bei der beidseitigen Einspannung kann der Elastizitätsmodul durch eine Ausgleichsrechnung bestimmt werden. Hierfür werden die linke und die Rechte Hälfte des Stabes seperat betrachtet (siehe Abbildung 12). Die Steigung der Ausgleichsgeraden auf der linken Seite beträgt

$$m = (0,0122 \pm 0,0005) \,\mathrm{m}^{-2}$$

und auf der rechten Seite

$$m = (0.01945 \pm 0,00016) \,\mathrm{m}^{-2}$$
.

Mit dem entsprechenden Wert $F=11,855\,\mathrm{N}$ für beide Gewichte ergibt sich dann aus dem Zusammenhang

$$E_{Rund} = \frac{F}{48 \cdot m \cdot I_{Rund}} \tag{19}$$

für x < L/2

$$E = (99 \pm 4) \cdot 10^9 \, \frac{\text{kg}}{\text{m s}^2}$$

und für x > L/2

$$E = (62 \pm 6) \cdot 10^9 \, \frac{\text{kg}}{\text{m s}^2}.$$

Abbildung 12: Runder Stab beidseitig eingespannt

4.4 Eckiger Stab beidseitig eingespannt

x / cm	$D_{OhneGewicht} / mm$	$D_{MitGewicht}$ / mm	$D_{Differenz}/\mathrm{mm}$
6,6	-0.28	0,35	0,63
9,6	$-0,\!24$	$0,\!64$	0,88
12,6	-0.16	0,92	1,08
15,6	-0.05	1,19	1,24
18,6	-0.06	1,42	1,48
21,6	0,00	1,60	1,60
24,6	0,07	1,66	1,59
30,6	0,06	1,68	$1,\!62$
33,6	0,07	1,68	1,61
36,6	0,07	1,53	1,46
39,6	0,07	1,38	1,31
42,6	0,01	1,25	1,24
45,6	0,13	1,04	0,91
48,6	0,18	0,87	0,69

Tabelle 6: Messwerte des eckigen Stabes bei beidseitiger Einspannung

Die Steigung der Ausgleichsgeraden in Abildung 13 auf der linken Seite beträgt

$$m = (0,0095 \pm 0,0004) \,\mathrm{m}^{-2}$$

und auf der rechten Seite

$$m = (0.0089 \pm 0,0006) \,\mathrm{m}^{-2}$$
.

Mit dem entsprechenden Wert $F=11,855\,\mathrm{N}$ für beide Gewichte ergibt sich dann aus dem Zusammenhang

$$E_{Eckig} = \frac{F}{48 \cdot m \cdot I_{Eckig}} \tag{20}$$

für x < L/2

$$E = (127 \pm 5) \cdot 10^9 \, \frac{\text{kg}}{\text{m s}^2}$$

und für x > L/2

$$E = (135 \pm 9) \cdot 10^9 \, \frac{\text{kg}}{\text{m s}^2}.$$

Abbildung 13: Eckiger Stab beidseitig eingespannt

5 Diskussion

Das Ergebnis für den Elastizitätsmodul des runden Stabes bei einseitiger Einspannung $(E = (85, 4 \pm 1, 1) \cdot 10^9 \,\mathrm{kg/(m\,s^2)})$ lässt vermuten, dass es sich bei dem Material des Stabes um Messing handelt. Der Literaturwert des Elastizitätsmoduls bei Messing beträgt $(78 - 123) \cdot 10^9 \,\mathrm{kg/(m\,s^2)}$ (Siehe [1]). Die Ergebnisse bei der beidseitigen Einspannung weichen jedoch um 20,51% von der unteren Grenze des Literaturwertes auf der rechten Seite ab

Das Ergebnis für den Elastizitätsmodul des eckigen Stabes bei einseitiger Einspannung $(E=(76,9\pm1,9)\cdot10^9\,\mathrm{kg/(m\,s^2)})$ lässt vermuten, dass es sich bei dem Material des Stabes um Aluminium handelt. Der Literaturwert des Elastizitätsmoduls bei Aluminium beträgt $(70)\cdot10^9\,\mathrm{kg/(m\,s^2)}$ (Siehe [1]). Das aus der Messung bestimmte Elastizitätsmodul weicht also um 9,86% ab. Bei der beidseitigen Messung treten Abweichungen von 81,43% auf der linken und 92,86% auf der rechten Seite auf.

Die Abweichungen lassen sich durch statischtische Fehler und systematische Fehler bei der Messung erklären. Wahrscheinlich ist, dass Ungenauigkeiten beim Ablesen der Messuhr und beim kalibrieren dieser aufgetreten sind. Der zweite Stab kann durch die großen Abweichungen für die einseitige und beidseitige Einspannung nicht sicher als Aluminium identifiziert werden.

6 Anhang

Großes Cenich	40,49	9 7. Brops	ies bewirlt.	1-	15	9,79	
Quader Stab:	504139	range: 59,95.	em				
Foliar Shaho!	164,19	Länge: 59,1 c1	-				
= Westab	Höte	Brile (mit tarke)	Runder Sh	ab 1	I D.	rich wico-	
1	9,95 mm	10 mm	1 2				
7	9,85 mm 10 mm	10 mm				10,05 mm	
3	9,9	10,05 mm	7			9,95 mm	
5	10 mm	18 mm	5			9,95 mm	
7	9, 9 5 mm	9,95 mm	7			10 mm	
8	10 mm	9,95 mm	8			10 mm	
70	9,95 mm	10 mm	9			10 mm	
70	10mm	9,95 mm	10			9,95mm	
kiyo stab: effect	in Pina		(0/2/2)				
Abstand x in cm	Ohne	gewicht/mm	mit gewic	h-1 (QQ.	ing Sewich	DIMM
Endo-Saracaf						34	
	1,0			3			
6	1,4	.6	и, 8	31	+	1	
9	1,2	Λ	4,1	ı	+	1	
N	0,5						
				50			
15	0,8	7	35	17	+	1	
18	0,50		27	1	+	1	
21	0,3	7-					
	0,3		1,60	4	+	1	
14	0,2	1	1,09	9	+	1	
	0,0	9		1			
LA							
17	0		0,2	0	+	1	F-92
30			-0,1	1 4	+	1	
	-0	07		1		1	+ 1, weil was com
30	-0					1	/
30	-6,		-0,0	Lg	+	1	Endo clar Maying as
30	-6,	11	-0,0			7	Ende der Marting au
30 33 36 19		11				7	gefallen int, das u
30 33 36	-6,	13	-0,0	-3	+	1	gefolden sist, dass we folsel zonossen loke

		of the applifure Ringe	55,2 cm
A 0	weiseitig purdo	of the man	mit Sewill Imm
alle Gewille	fortand x incom	ohre Gawielt / mm	
			0,05
Almg	ou 6 6,6	-0,84	0,48
	30,696	. 0,45	0,94
	12,6	-0,63	4,32
	15,6	-ous-our oper	
		19cu -0,33	1,66
	18,6	in the second second	4,91
	21,6	- 0,12	233 2,05
01 07	24,6	-0,11	
Sewielt 27,	30,6	0,09	2,26 2,02
		0,13	1,89
	33,6		1,68
	36,6	0,20	
	39,6	0,27	4,43
	uz,6	0,385	1,14
	ASSIS		0,48
	45,6	944	
side .	48,6	o,54	0,39
a consenty			
•	Abbad x in con	one gewerlf I mm	med gewild Imm
50 cm	enself 3		
1 W. Groffes	3	- 2,17	4,86
Genielde	6	-2,20	425
6	9	-2,20	3,60
	12 15 18 21	-320	3,60 3,11
	15	-2,20	247
	18	-2,20	1,96
		-2,17	153
	24	-1,98 -1,74	1,10
	77	-1,74	0,44
	30	-1,47	mr2
	33	- 1,47 - 1,72	057
	36	-0,98	001
	39	-020	009
	uz	-034	0,21
	45	-0,34	0,00 -0,09
	us		-6,64
	Water Street Company of the Company		
FAR			
F. Sec			

part stable X/AM cm	eige = 55 cm obre gevill / Inm	most gewich I min alle gewille
6,6	-0,28	0,35
3,6	-0,24	0,64
12,6	-0,16	0,32
156	-0,05	1,19
18,6	-0,08	1,42
21,6	900	4,60
246	0,07	J,66
[17,62-MHe]		
30,6	0,06	1,68
73,6	0,07	1,68
36,6	0,07	4,53
336	0,07	438
42,6	9,1	125
45,6	9,13	404
48,6	0,18	084
		7-R2

Literatur

- $[1] \quad \textit{Chemie.de.} \ \, \text{URL: https://www.chemie.de/lexikon/Elastizit\%C3\%A4tsmodul.} \\ \quad \text{html.}$
- $[2] \quad \text{TU Dortmund. } \textit{Versuchsanleitung-Biegung elastischer St\"{a}be}.$

- [3] John D. Hunter. "Matplotlib: A 2D Graphics Environment". Version 1.4.3. In: Computing in Science & Engineering 9.3 (2007), S. 90–95. URL: http://matplotlib.org/.
- [4] Eric Jones, Travis E. Oliphant, Pearu Peterson u.a. SciPy: Open source scientific tools for Python. Version 0.16.0. URL: http://www.scipy.org/.
- [5] Eric O. Lebigot. *Uncertainties: a Python package for calculations with uncertainties.* Version 2.4.6.1. URL: http://pythonhosted.org/uncertainties/.
- [6] Travis E. Oliphant. "NumPy: Python for Scientific Computing". Version 1.9.2. In: Computing in Science & Engineering 9.3 (2007), S. 10–20. URL: http://www.numpy.org/.