

### МИНОБРНАУКИ РОССИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования

# «МИРЭА - Российский технологический университет» РТУ МИРЭА

Институт искусственного интеллекта

Кафедра высшей математики

## КУРСОВАЯ РАБОТА

по дисциплине

«Объектно-ориентированное программирование»

# Тема курсовой работы

«Применение обучения с подкреплением в игре на плоском дискретном поле»

Студент группы КМБО-01-22

Трудолюбов Н.А.

Руководитель курсовой работы доцент кафедры Высшей математики к.ф.-м.н

Петрусевич Д.А.

Работа представлена к

защите

«Допущен к защите»

«<u>28» fla 20 13</u> г. (подпись студента)
«<u>23» fla 20 23</u> г. (подпись руководителя)



### МИНОБРНАУКИ РОССИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования

# «МИРЭА – Российский технологический университет» РТУ МИРЭА

Институт искусственного интеллекта

Кафедра высшей математики

Утверждаю

Исполняющий обязанности заведующего кафедрой **Mllamun** A.B.Шатина

«22» сентября 2023 г.

## **ЗАДАНИЕ**

# на выполнение курсовой работы

по дисциплине «Объектно-ориентированное программирование»

Студент

Трудолюбов Н.А.

Группа

КМБО-01-22

1. Тема: «Применение обучения с подкреплением в игре на плоском дискретном поле»

### 2. Исходные данные:

Построить класс для модели реализации обучения с подкреплением (метод временных разностей и UCB, как минимум)

На игровом поле есть пустые ячейки, ямы, ячейки с препятствием заданной высоты. Агент может переходить в соседнюю ячейку или строить лестницу через стену (число действий равно высоте стены), если это не препятствие. За попадание в яму даётся максимальный штраф, малое поощрение за переход в ячейку без ямы (с приближением к конечной точке), большое поощрение за переход через препятствие, максимальное — за попадание в конечный пункт.

Реализовать переход между обучением и стационарным состоянием агента в виде эпсилонжадной стратегии 3. Перечень вопросов, подлежащих разработке, и обязательного графического материала: Продемонстрировать изменение распределения вероятностей выбора действия (строить переход через препятствие или выбрать ход в нужном направлении) Продемонстрировать изменение выигрыша агента со временем

4. Срок представления к защите курсовой работы: до «22» декабря 2023 г.

Задание на курсовую работу выдал Задание на курсовую работу получил

«22» сентября 2023 г. (Петрусевич Д.А.) «22» сентября 2023 г. (Трудолюбов Н.А.)

# Оглавление

| Введение          | 3 |
|-------------------|---|
| Глава 1           |   |
| UCB-обучение      |   |
| TD-обучение       |   |
| Вывод к главе 1   |   |
| Глава 2           |   |
| Вывод к главе 2   |   |
| Заключение        |   |
| Список литературы |   |
| Приложение        |   |
| 11pm:10/xcmrc     |   |

### Введение

В главе 1 будет реализована теоретическая часть курсовой работы. Рассмотрим алгоритмы обучения с подкреплением на основе верхнего доверительного интервала (UCB) и метод временных разниц (TD), а также  $\varepsilon$ -жадную стратегию, которая будет применяться в данных алгоритмах для увеличения активности обучения агентом поля. Проведем анализ и сравнение этих методов, на основе чего выявим наилучший способ обучения для динамического окружения.

В главе 2 будет представлена практическая реализация алгоритмов обучения с подкреплением. На языке программирования С++ будут созданы классы для моделирования игрового поля, агента и самой игры. Будут разработаны функции и методы, необходимые для работы алгоритмов. Затем сравним эффективности для получившихся функций-методов при различных параметрах. В конце измерим скорости работы для каждого из методов и выверим количественно эффективность алгоритмов.

### Глава 1. Теоретическая часть

<u>Обучение с подкреплением</u> (reinforcement learning) – это метод машинного обучения (ML), который обучает программное обеспечение принимать решения для достижения наиболее оптимальных результатов. Такое обучение основано на имитации процесса обучения методом проб и ошибок, который люди используют для достижения своих целей.

К настоящему моменту существует большое количество методов подобного типа. Поэтому, для целей курсовой работы ограничимся на двух из них, а именно на UCB и TD обучениях.

Метод UCB (upper confidence bound) или, в переводе на русский, метод верхнего доверительного интервала связан с так называемым принципом оптимизма в условиях неопределенности — статистическим принципом, основанным на законе больших чисел. UCB строит оптимистическую гипотезу, основанную на выборочном среднем вознаграждении и на оценке верхней доверительной границы вознаграждения. Оптимистическая гипотеза определяет ожидаемую выплату при каждом действии с учетом неопределенности действий. Таким образом, UCB всегда выбирает действие с более высоким потенциальным вознаграждением, пытаясь найти баланс между риском и наградой. Если оказывается, что у других действий оптимистическая оценка меньше, чем у текущего, то алгоритм переключается на другое действие. Точнее, UCB хранит ожидаемое

вознаграждение каждого действия  $Q(S_t,a)$  и верхнюю доверительную границу  $c\sqrt{\frac{\ln(t)}{N(S_t)}}$  во всех состояниях. Затем алгоритм выбирает то действие, для которого принимает максимум их сумма. Таким образом, общая формула выглядит следующим образом:

$$A_t = \underset{a}{argmax}[Q(S_t, a) + c\sqrt{\frac{\ln(t)}{N(S_t)}}]. \tag{1}$$

В этой формуле:

t - дискретный временной шаг,

a — одно из возможных действий,

 $Q(S_t, a)$  - оценка истинного значения (ожидаемого вознаграждения) действия a в состоянии  $S_t$ ,

c — константа, которая регулирует верхнюю доверительную границу (выбирается в зависимости от типа решаемой задачи),

 $N(S_t)$ - сколько раз агент был в состоянии  $S_t$ ,

 $\underset{a}{argmax} f(a)$  - действие a, при котором f(a) является максимальной.

 $Q(S_t, a)$  вычисляется следующим образом:

$$Q(S_t, a) = \frac{\sum_{t=1}^{T-1} R(S_t)}{N(S_t)}.$$
 (2)

Здесь  $R(S_t)$  - вознаграждение в текущем состоянии .

<u>ТD-обучение</u> (temporal difference learning), что на русском означает обучение на основе временных разностей, можно рассматривать как сочетание методов Монте-Карло и динамического программирования, поскольку в них используется идея выборки, заимствованная у первых, и идея бутстрэппинга, заимствованная у вторых. ТD-обучение широко применяется во всех алгоритмах обучения с подкреплением и составляет ядро многих из них. Одна из вариаций TD-метода выполняет обновление по формуле:

$$Q(S_t, a) \leftarrow Q(S_t, a) + \alpha [R_{t+1} + \gamma * \max_{a'} Q(S_{t+1}, a') - Q(S_t, a)]$$
 (3)

сразу после перехода в состояние  $S_{t+1}$  и получения вознаграждения  $R_{t+1}$ . ТD-обучение при таком способе обновления называется Q-обучением.

При этом, в формуле (3):

 $S_t$  - состояние в момент t,

 $Q(S_t, a)$  – ожидаемая ценность в состоянии  $S_t$  при выборе действия a,

 $\max_{a'} Q(S_{t+1}, a')$  — ожидаемая ценность при выборе максимизирующего действия в состоянии  $S_{t+1}$ ,

 $\alpha$  — постоянный параметр размера шага (влияет на скорость обучения, может находится в диапазоне (0, 1]),

у - коэффициент обесценивания.

Для обоих методов действия будем выбирать через  $\varepsilon$ -жадную стратегию, которая работает следующим образом:

Введем параметр  $\varepsilon \in (0, 1)$ .

На каждом шаге t:

- Получим значение  $\nu$  случайной величины, равномерно распределенной на отрезке (0,1);
- Если  $\nu \in (0, \varepsilon]$ , то выберем действие  $A_t \in A$  случайно и равновероятно, иначе выберем действие в соответствии с политикой принятия решения для каждого обучения;
- Обновляем оценку математического ожидания для действия  $A_t$ .

Оценка сложности для обновления UCB методом равна O(1). Для TD получается тоже O(1). В то же время, сравнивая оба подхода, можно сказать, что обучение на основе временных разностей должно работать лучше, несмотря на оценку сложности функций обновления. Это связано с тем, что TD-обучение использует информацию об обновлении оценок ценности из полученных образцов опыта, что позволяет агенту адаптироваться к изменяющейся динамической среде. В то время как UCB, хотя и использует верхние доверительные интервалы, но не обновляет оценки ценности на основе фактического

опыта, что может привести к менее гибкому поведению в динамически изменяющейся среде.

## Вывод:

Таким образом мы рассмотрели работы алгоритмов обучения UCB и TD при  $\varepsilon$ -жадной стратегии и в конце выверили, что обучение на основе временных разностей справляется лучше обучения на основе верхнего доверительного интервала для динамического окружения

# Глава 2. Практическая часть

Напишем код на языке программирования С++.

Для начала реализуем общий класс Field, который будет представлять из себя поле, по которому будет двигаться агент. В нем будут храниться двумерный вектор и значения его "высоты" и "ширины", а также матрица вероятностного распределения для каждого цвета. Также в нем будут содержаться функции и перегруженные операторы для возможности управления внутренними элементами Field. По заданию, каждая клетка в поле может иметь один из заданных цветов, для простоты вывода данных в консоль заменим их на числа. Кроме того, заместо выхода за границу в противоположной части поля, будем останавливать обучение агента уже при достижении конечной ячейки и выдавать ему максимально возможную награду.

Введем класс Agent, хранящий в себе координаты клеток, где агент появился изначально, где он находится на текущий момент и где он был на предыдущем шаге. Последний пункт будет использоваться в TD-методе обучения. У Agent будут свои функции и перегруженные методы для манипуляции внутренними данными.

Создадим главный класс Game, в котором будут храниться агент и изучаемое поле, а также функции методов обучения и перегруженные операторы для вывода игры. Пользователю будут доступны следующие параметры:

- epsilonTD и epsilonUCB параметры, отвечающие за границы в эпсилон-жадной стратегии, для TD и UCB обучений соответственно;
- alpha и gamma константы из TD-обучения;
- c константа из UCB-обучения;
- iteration\_count количество раз, сколько агент будет обучаться через выбранный метод;
- print\_agent вывод всех ходов агента;
- last\_iteration вывод ходов агента только на последней итерации обучения.

И следующие основные функции:

- MethodTD обучение агента на основе временных разностей;
- MethodUCB обучение агента на основе верхней доверительной границы;
- getAgent получение копии агента;
- getField получение копии поля;
- ClearGame функция сброса результатов обучения;
- print функция для вывода результатов обучения агента.

Для начала в классе Game реализуем  $\varepsilon$ -жадную стратегию:

```
//Эпсилон жадная стратегия
bool Epsilon(double epsilon) {
    double probability = GetRandomNumber(1, 999) * 0.001;
    if (probability < epsilon) { return 1; }
    return 0;
}
```

**Листинг 1.** Функция  $\varepsilon$ -жадной стратегии

Данная функция будет принимать значение epsilon, которая будет указывать на процент случайных действий и возвращать булеву переменную 1, если случайно сгенерированное число меньше epsilon, и 0 в противном случае. Здесь GetRandomNumber представляет из себя простейшую функцию генерации случного числа в указанном промежутке.

Реализуем UCB метод. Для этого создадим трехмерную матрицу Qt\_a, которая будет хранить оценку награды для каждой возможной комбинации состояние-действие. Также введем такую же матрицу Nt\_a, но при этом она будет показывать, сколько раз мы выполняли возможные действия в каждом из состояний.

Выбор последующего жадного шага для агента будет осуществляться в соответствии со стратегией текущего метода в функции argmax UCB. В нем будет проверяться, находятся ли соседние к агенту ячейки внутри поля, а затем произойдет отбор наилучшего состояния на основе верхней доверительной границы для следующего хода.

Таким образом, на выходе будет получаться действие, которое нужно сделать, чтобы получить максимальную ожидаемую награду.

Значения в введенных полях будут обновляться через функцию UpdateUCB:

```
void UpdateUCB(int action) {
   int x = agent.getx();
   int y = agent.gety();

   t += 1;
   Rt += field.getFieldElement(x, y);
   view_t += 1;
   view_Rt += field.getFieldElement(agent.getx(), agent.gety());

   double Qt_new = view_Rt / Nt[x][y];
   Qt_a[x][y][action] = Qt_new;
}
```

**Листинг 2.** Функция обновления ожидаемой ценности при действии action для UCB

В этой функции t — общее количество совершенных шагов, view\_t — количество шагов в текущей итерации, view\_Rt — сумма наград, собранных в текущей итерации обучения, Rt — общая сумма собранных наград за весь промежуток обучения агента, Nt — матрица, хранящая количество посещений каждой ячейки поля.

С учетом листинга 2, один шаг агента будет выполняться в функции UCB, которая будет вызывать функцию argmaxUCB для нахождения максимизирующего действия и UpdateUCB для обновления весов в Qt\_a и шагов в Nt\_a.

Один проход по полю реализуем через UCBLearning с учетом эпсилон-жадной стратегии. При этом, когда будет выбираться случайное действие, данная функция будет вызывать RandomStepUpdateUCB, специально для этого сделанная. Иначе будет вызвана функция UCB.

И полное обучение в несколько итераций будет уже проходить в MethodUCB:

```
void MethodUCB() {
    Qt_a = CreatVector(width, height, 4); //right, left, down, up
    Nt_a = CreatVector(width, height, 4);
    Nt = CreatVector(width, height);
```

```
for (int i = 0; i < iteration_count; i++) {
    vector<int> getres = UCBLearning(i);
}
cout << "\nUCB learning was successfull\n";
}</pre>
```

**Листинг 3.** Функция обучения по методу UCB

Обучение через TD-метод не будет сильно отличаться своей структурой от предыдущего способа обучения. На этот раз, заместо параметра c введем переменные alpha  $(\alpha)$ , определяющую, насколько сильно новые значения весов будут учитывать предыдущие, и gamma  $(\gamma)$ , показывающую, насколько будущие вознаграждения будут учитываться в обучении.

В этот раз функция argmaxTD будет выбирать действие с наибольшей оценкой. При этом, не посещённые ячейки также будут считаться максимизирующими, чтобы агент активнее исследовал пространство.

Значительное изменение претерпит функция обновления, где и будет реализована значительная часть метода обучения через временные разности:

```
void UpdateTD(int action) {
    int x = agent.getx();
    int y = agent.gety();
    int predx = agent.getpredx();
    int predy = agent.getpredy();
    double R_next = field.getFieldElement(x, y);
    t += 1;
    view_t += 1;
    view_Rt += field.getFieldElement(x, y);
    double V_St_pred = Qt_a[predx][predy][action];
    double V_St_next = Qt_a[x][y][argmaxTD(x, y)];
    double V_St_new = V_St_pred + alpha * (R_next + gamma * V_St_next - V_St_pred);
    Qt_a[predx][predy][action] = V_St_new;
    Nt[x][y] += 1; }
```

**Листинг 4.** Функция обновления ожидаемой ценности при действии action для TD

Остальные функции будут практически идентичными. По итогу в public секции будет доступна функция MethodTD для запуска цикла обучения в несколько итераций:

```
void MethodTD() {
   Qt_a = CreatVector(width, height, 4); //right, left, down, up
   Nt = CreatVector(width, height);

   for (int i = 0; i < iteration_count; i++) {
      vector<int> getres = TDLearning(i);
   }
   cout << "\nTD learning was successfull\n";
}</pre>
```

**Листинг 5.** Функция обучения по методу TD

Попробуем подобрать такие параметры для методов, чтобы скорость работы была наиболее быстрой, а также чтобы в итоге агент совершал минимальное количество шагов и получал максимально возможную награду.

Так как у UCB скорость обучения становиться слишком долгой для полей 5\*5 и выше, возьмем в качестве тестового полигона поле 4\*4. Награды за посещения клеток определенного цвета будут следующими:

Таблица 1. Таблица наград, содержащихся в клетках каждого из цветов

| Белая | Синяя | Красная | Желтая | Зеленая | Черная |
|-------|-------|---------|--------|---------|--------|
| -1    | -2    | -3      | -4     | -5      | -15    |

Для каждой уникальной клетки выберем распределения вероятностей, указанных в таблице 2:

**Таблица 2.** Таблица распределения вероятности выбора следующей ячейки в зависимости от того, какого цвета текущее состояние. По горизонтали цвет текущей ячейки, по вертикали цвет клетки при следующем шаге

|         | Белая | Синяя | Красная | Желтая | Зеленая | Черная |
|---------|-------|-------|---------|--------|---------|--------|
| Белая   | 0.25  | 0.1   | 0.3     | 0.25   | 0.05    | 0.05   |
| Синяя   | 0.2   | 0.15  | 0.2     | 0.3    | 0.05    | 0.1    |
| Красная | 0.1   | 0.1   | 0.1     | 0.55   | 0.05    | 0.1    |
| Желтая  | 0.25  | 0.1   | 0.3     | 0.25   | 0.05    | 0.05   |
| Зеленая | 0.25  | 0.15  | 0.25    | 0.15   | 0.1     | 0.1    |
| Черная  | 0.15  | 0.1   | 0.4     | 0.15   | 0.1     | 0.1    |

За переход в конечную клетку агент будет получать максимальную награду, значение которой выставим в 25, чтобы агент охотнее стремился к окончанию итерации.

Далее попробуем поэкспериментировать с параметром c в UCB обучении. Для начала определим epsilonUCB = 0.01. Это будет означать, что с вероятностью 1~% агент будет выбирать случайное действие на каждом шаге. Количество итераций будет равно 200. Получаем следующие графики:



**Рисунок 1.** Зависимость средней награды от параметра c (зеленый график — зависимость, полученная при первом тестировании, синий — зависимость, полученная при тех же параметрах при втором тестировании)



**Рисунок 2.** Зависимость количества шагов от параметра c (зеленый график — зависимость, полученная при первом тестировании, синий — зависимость, полученная при тех же параметрах при втором тестировании)

Отсюда можно сделать вывод, что при c меньших 30, модель начинает более случайно исследовать среду. При константе, большем 30, количество шагов увеличивается. Таким образом, удачным коэффициентом можно считать c=30.

В итоге, значения награды и шага от итерации выглядят так:



Рисунок 3. Награда, получаемая на каждой итерации



Рисунок 4. Количество шагов, которые агент совершает на каждой итерации

После обучения таблица весов для агента будет выглядеть следующим образом:

**Таблица 3.** Матрица весов для UCB-обучения, с помощью которой агент будет предпринимать действия при хождении по полю. Здесь учитывается как каждое состояние, так и каждой действие

| Правый ход   |             |            |            |  |  |
|--------------|-------------|------------|------------|--|--|
| -0.000563698 | -0.00474383 | -0.439689  | 0          |  |  |
| -0.524115    | -26.3129    | -0.0505145 | 0          |  |  |
| -1.32543     | -145.727    | -0.0105871 | 0          |  |  |
| -9.47059     | -4720.4     | -4720.6    | 0          |  |  |
| Левый ход    |             |            |            |  |  |
| 0            | -0.360644   | -0.298938  | -0.206667  |  |  |
| 0            | -1.15583    | -6.24091   | -0.0236601 |  |  |

| 0            | -0.257919 | -45.7143   | -0.0184805  |  |  |
|--------------|-----------|------------|-------------|--|--|
| 0            | -1.05078  | -11.0417   | 0           |  |  |
|              | Нижн      | ий ход     |             |  |  |
| -0.000765111 | -1.49299  | -0.0245614 | -0.286928   |  |  |
| -0.00543884  | -7.98246  | -0.0987654 | -0.00118819 |  |  |
| -1.32129     | -28.3247  | -10.1154   | -0.00262626 |  |  |
| 0            | 0         | 0          | 0           |  |  |
| Верхний ход  |           |            |             |  |  |
| 0            | 0         | 0          | 0           |  |  |
| -0.00212258  | -0.610868 | -5.77866   | -0.0137221  |  |  |
| -0.00268513  | -14.916   | -66.4545   | -0.0123703  |  |  |
| -0.0786026   | -45.9091  | -3040.5    | 0           |  |  |

На основе полученных данных, можно увидеть, что агент будет делать следующие ходы: вправо-вправо-вниз-вправо-вниз-вниз.

Теперь попробуем поиграться с параметрами в обучении на основе временных разностей. Выставим epsilonTD = 0.01 и создадим, как и в UCB, поле размером 4\*4. Для начала будем менять параметр gamma:



**Рисунок 5.** Зависимость средней награды от параметра гамма (красный график – первое тестирование, желтый – второе тестирование, синий – третье тестирование)



**Рисунок 6.** Зависимость количества шагов от параметра гамма (красный график – первое тестирование, желтый – второе тестирование, синий – третье тестирование)

Как мы видим, с приближением гаммы к единице суммарная награда растет экспоненциально, а количество шагов убывает практически линейно. Таким образом, гамму можно приравнять к 0.99.



**Рисунок 7.** Зависимость средней награды от параметра альфа (красный график – первое тестирование, желтый – второе тестирование, синий – третье тестирование)



**Рисунок 8.** Зависимость количества шагов от параметра альфа (красный график – первое тестирование, желтый – второе тестирование, синий – третье тестирование)

В этот раз видно, что первый график вначале растет, а после с некоторого момента начинает убывать. Количество шагов перестает меняться почти сразу же. Поэтому, можно сделать вывод, что наиболее оптимальным alpha будет 0.4.

Таким образом, график обучения после подбора параметров будет следующим:



Рисунок 9. Награда, получаемая на каждой итерации



Рисунок 10. Количество шагов, которые агент совершает на каждой итерации

Также получаем матрицу весов для каждого хода:

**Таблица 4.** Матрица весов для TD-обучения, с помощью которой агент будет предпринимать действия при хождении по полю. Как и в UCB учитываются как каждое состояние, так и каждой действие

| Правый ход  |            |            |           |  |  |
|-------------|------------|------------|-----------|--|--|
| -12.9625    | -3.83183   | -3.5242    | 0         |  |  |
| -2.03302    | 1.21797    | 7.70567    | 0         |  |  |
| -1.39337    | -5.06752   | 15.1265    | 0         |  |  |
| -7.04184    | 14.2877    | 24.8488    | 0         |  |  |
|             | Левь       | ій ход     |           |  |  |
| 0           | -9.17424   | -5.05997   | -2.88     |  |  |
| 0           | -8.41564   | -4.59853   | -2        |  |  |
| 0           | -11.1946   | -0.736     | 5.45884   |  |  |
| 0           | -1.31776   | -1.6       | 0         |  |  |
|             | Нижний ход |            |           |  |  |
| -9.07392    | -8.97785   | -0.0382737 | 5.90971   |  |  |
| -11.2422    | -6.35808   | -0.723613  | 14.9131   |  |  |
| -9.99248    | 4.48008    | -0.4       | 25        |  |  |
| 0           | 0          | 0          | 0         |  |  |
| Верхний ход |            |            |           |  |  |
| 0           | 0          | 0          | 0         |  |  |
| -12.901     | -8.87611   | -4.63288   | -0.198933 |  |  |
| -7.98298    | -8.62164   | -1.2       | 0         |  |  |
| -9.07371    | -1.952     | -0.512     | 0         |  |  |

В этот раз агент предпочел идти вниз-вправо-вправо-вправо-вниз-вниз.

Сравним результаты времени работы алгоритмов для поля 4\*4 при количестве итераций обучения 500 и при полученных оптимальных параметрах. UCB в таком случае отрабатывает за 0.730 секунд, а TD за 0.207. Видим, что второй метод обучения справляется лучше первого примерно в 3.5 раза быстрее.

## Вывод:

По итогу удалось реализовать алгоритмы обучений с подкреплением на основе верхней доверительной границы (UCB) и методом временных разностей (TD) на языке C++. В конечном счете получилось выявить наилучшие параметры (c=30, gamma = 0.99 и alpha = 0.4) для нашей задачи, а также сравнить эффективности двух подходов на примере. Как и ожидалось, UCB хуже справляется с нестатическим полем, по которому перемещается агент.

#### Заключение

- 1. В ходе работы были изучены алгоритмы обучения с подкреплением UCB и TD. Было освоено понятие подкрепления, моделирование среды и выбор оптимальных стратегий на основе полученного опыта. Это знание позволило лучше понять принципы работы и эффективность данных алгоритмов.
- 2. Была проведена практическая реализация алгоритмов обучения с подкреплением на языке программирования С++. Были созданы необходимые классы для представления игрового поля, агента и самой игры. Были также разработаны функции и методы, обеспечивающие корректную работу алгоритмов. Это позволило проверить работоспособность алгоритмов и провести исследование их эффективности.
- 3. Был проведен анализ эффективности алгоритмов UCB и TD. Были рассмотрены влияющие параметры, такие как c в обучении на основе верхней доверительной границы, гамма и альфа в методе временных разностей, а также проведены сравнения результатов работы алгоритмов. В итоге на практике был сделан вывод, что TD-обучение лучше подходит для поставленной задачи, нежели UCB.

Код решения задачи приведен в Приложении.

Список используемой литературы можно посмотреть здесь.

### Список литературы

- 1. Саттон Р. С., Обучение с подкреплением: Введение. 2-е изд. / Саттон Р. С., Барто Э. Дж. [пер. с англ. А. А. Слинкина.] Москва: ДМК Пресс, 2020 552 с. ISBN 978-5-97060-097-9
- 2. Лонца А., Алгоритмы обучения с подкреплением на Python [пер. с англ. А. А. Слинкина.] Москва: ДМК Пресс, 2020 286 с. ISBN 978-5-97060-855-5
- 3. Лю Ю., Обучение с подкреплением на РуТогсh: сборник рецептов [пер. с англ. А. А. Слинкина.] Москва: ДМК Пресс, 2020 282 с. ISBN 978-5-97060-853-1
- 4. Судхарсан Р., Глубокое обучение с подкреплением на Python. OpenAI Gym и TensorFlow для профи. [пер. с англ. Е. Матвеев] СПб.: Питер, 2019 250 с. ISBN 978-5-4461-1251-7
- 5. Грессер Л., Глубокое обучение с подкреплением: теория и практика на языке Python / Грессер Л., Кенг В. Л. [пер. с англ. Панов А. И.] СПб.: Питер, 2022 416 с. ISBN 978-5-4461-1699-7

### Приложение

```
#include <iostream>
#include <vector>
#include <string>
#include <stdlib.h>
#include <stdio.h>
#include <time.h>
using namespace std;
vector<vector<double>>> CreatVector(int width, int height, int
action_count)
{
    vector<vector<double>>> field;
    for (int x = 0; x < width; x++)
        vector<vector<double>> fieldy;
        for (int y = 0; y < height; y++)</pre>
            vector<double> fielda;
            for (int a = 0; a < action_count; a++)</pre>
                fielda.push_back(0);
            fieldy.push_back(fielda);
        field.push_back(fieldy);
    return field;
vector<vector<double>> CreatVector(int width, int height, double value = 0)
    vector<vector<double>> field;
    for (int x = 0; x < width; x++)
        vector<double> fieldy;
        for (int y = 0; y < height; y++)</pre>
            fieldy.push_back(value);
        field.push_back(fieldy);
    return field;
//Функция для получения случайного натурального числа от min до max
int GetRandomNumber(int min, int max)
{
    int num = min + rand() % (max - min + 1);
    return num;
}
ostream& operator<< (ostream& stream, vector<double> v)
    stream << "\nVector:\n( ";</pre>
    for (int i = 0; i < v.size() - 1; i++) {</pre>
        stream << v[i] << ", ";
    stream << v[v.size() - 1];</pre>
    stream << " )\n";
    return stream;
```

```
ostream& operator<< (ostream& stream, vector<vector<double>> v)
{
    stream << "\nVector:\n";</pre>
    for (int y = 0; y < v[0].size(); y++) {</pre>
        for (int x = 0; x < v.size(); x++) {</pre>
            stream << v[x][y] << "\t";
        stream << "\n";</pre>
    return stream;
ostream& operator<< (ostream& stream, vector<vector<double>>> v)
    stream << "\nVector:\n";</pre>
    for (int a = 0; a < v[0][0].size(); a++) {
        if (a == 0) { cout << "Right:\n"; }</pre>
        else if (a == 1) { cout << "Left:\n"; }</pre>
        else if (a == 2) { cout << "Down:\n"; }</pre>
        else if (a == 3) { cout << "Up:\n"; }
        for (int y = 0; y < v[0].size(); y++) {</pre>
            for (int x = 0; x < v.size(); x++) {</pre>
                stream << v[x][y][a] << "\t";</pre>
            stream << "\n";
        stream << "----\n";
    return stream;
}
//Дискретное поле
class Field {
protected:
    int width;
    int height;
    vector<vector<double>> mas;
    vector<vector<double>> getField() const { return mas; }
                             ||| Вероятность, что следующая клетка будет
    // Награда за клетку:
указанного цвета
   // 0 — белая клетка (б) — б: 0.25, с: 0.1, к: 0.3, ж: 0.25, з: 0.05, ч:
0.05
    // 1 - синяя клетка (с) - б: 0.25, с: 0.1, к: 0.3, ж: 0.25, з: 0.05, ч:
0.05
    // 2 — красная клетка (к) — б: 0.25, с: 0.1, к: 0.3, ж: 0.25, з: 0.05, ч:
0.05
    // 3 - желтая клетка (ж) - б: 0.25, с: 0.1, к: 0.3, ж: 0.25, з: 0.05, ч:
    // 4 — зеленая клетка (з) — б: 0.25, с: 0.1, к: 0.3, ж: 0.25, з: 0.05, ч:
    // -2 - черная клетка (ч) - б: 0.25, с: 0.1, к: 0.3, ж: 0.25, з: 0.05, ч:
0.05
    // 25 - выход
    vector<vector<double>> propabilities = {{ 0.25, 0.1, 0.3, 0.25, 0.05, 0.05 },
                                              { 0.2, 0.15, 0.2, 0.3, 0.05, 0.1 },
                                              { 0.1, 0.1, 0.1, 0.55, 0.05, 0.1 },
                                              { 0.25, 0.1, 0.3, 0.25, 0.05, 0.05 },
                                             { 0.25, 0.15, 0.25, 0.15, 0.1, 0.1 },
                                             { 0.15, 0.1, 0.4, 0.15, 0.1, 0.1 }};
    vector<int> rewards = { -1, -2, -3, -4, -5, -15 };
    int max_reward = 25;
```

```
public:
    Field() { width = 0; height = 0; }
    Field(int w, int h) { width = w; height = h; mas = CreatVector(w, h); }
    Field(int w, int h, double value) { width = w; height = h; mas =
CreatVector(w, h, value); }
    Field(vector<vector<double>> f, int w, int h) { mas = f; width = w; height =
    Field(const Field& f) { width = f.getWidth(); height = f.getHeight(); mas =
f.getField(); }
    int getWidth() const { return width; }
    int getHeight() const { return height; }
    double getFieldElement(int x, int y) const { return mas[x][y]; }
    void setValue(int x, int y, double value) {
        if (x \ge width or x < 0 or y \ge width or y < 0) { throw "Value isn't
correct"; }
        mas[x][y] = value;
    int getReward(int this_reward) {
        double pr = GetRandomNumber(0, 99)*0.01;
        if (this_reward == rewards[5]) {
            this_reward = 5;
        double sumpr = 0;
        for (int i = 0; i < propabilities.size(); i++) {</pre>
            sumpr += propabilities[this_reward][i];
            if (sumpr >= pr) {
                return rewards[i];
        }
    void setNextReward(vector<int> thispos, vector<int> nextpos) {
        if (nextpos[0] == width - 1 and
            nextpos[1] == height - 1)
        {
            mas[nextpos[0]][nextpos[1]] = max_reward;
        else {
            mas[nextpos[0]][nextpos[1]] = getReward(mas[thispos[0]][thispos[1]]);
        }
    }
    Field& operator= (const Field& other) {
        width = other.getWidth(); height = other.getHeight();
        this->mas = other.getField(); return *this; }
    friend ostream& operator<< (ostream& stream, const Field& f);</pre>
};
ostream& operator<< (ostream& stream, const Field& f)</pre>
    stream << "\nField:\n";</pre>
    for (int y = 0; y < f.height; y++) {</pre>
        for (int x = 0; x < f.width; x++) {
            stream << f.mas[x][y] << "\t";
        }
        stream << "\n";
    return stream;
}
//Агент, исследующий поле
class Agent {
```

```
protected:
    int start_pos_x;
    int start_pos_y;
    int pred_pos_x;
    int pred_pos_y;
    int pos_x;
    int pos_y;
public:
    Agent() { start_pos_x = start_pos_y =
              pos_x = pos_y =
              pred_pos_x = pred_pos_y = 0; }
    Agent(int x, int y) {
        if (x < 0 \text{ or } y < 0)
            throw "Coordinates of the agent aren't correct!";
        start_pos_x = pos_x = pred_pos_x = x; start_pos_y = pos_y = pred_pos_y =
y; }
    Agent(const Agent& a) {
        start_pos_x = a.getStartPosition()[0]; start_pos_y =
a.getStartPosition()[1];
        pos_x = a.getPosition()[0]; pos_y = a.getPosition()[1];
        pred_pos_x = a.getPredPosition()[0]; pred_pos_y = a.getPredPosition()[1];
    ~Agent() {}
    vector<int> getPosition() const { vector<int> res = { pos_x, pos_y}; return
res; }
    void setPosition(vector<int> pos) { pos_x = pos[0]; pos_y = pos[1]; }
    void setPosition(int x, int y) { pos_x = x; pos_y = y; }
    vector<int> getPredPosition() const { vector<int> res = { pred_pos_x,
pred_pos_y }; return res; }
    void setPredPosition(vector<int> predpos) { pred_pos_x = predpos[0];
pred_pos_y = predpos[1]; }
    void setPredPosition(int x, int y) { this->pred_pos_x = x; this->pred_pos_y =
y; }
    vector<int> getStartPosition() const { vector<int> res = { start_pos_x ,
start_pos_y }; return res; }
    void RestartPosition() { pos_x = pred_pos_x = start_pos_x; pos_y = pred_pos_y
= start_pos_y; }
    int getx() { return pos_x; }
    int gety() { return pos_y; }
    int getpredx() { return pred_pos_x; }
    int getpredy() { return pred_pos_y; }
    vector<int> RandomStep()
        //выбираем, по какой оси будем делать шаг
        int xory = GetRandomNumber(0, 1); //0 - x, 1 - y
        //размер шага
        int step = GetRandomNumber(0, 1); //шаг -1 либо 1
        if (step == 0) { step = -1; }
        vector<int> result;
        if (xory)
            result.push_back(pos_x);
            result.push_back(pos_y + step);
        }
        else {
            result.push_back(pos_x + step);
            result.push_back(pos_y);
```

```
return result;
    Agent& operator= (const Agent& a) {
        this->start_pos_x = a.getStartPosition()[0]; this->start_pos_y =
a.getStartPosition()[1];
        this->pos_x = a.getPosition()[0]; this->pos_y = a.getPosition()[1];
        this->pred_pos_x = a.getPredPosition()[0]; this->pred_pos_y =
a.getPredPosition()[1];
        return *this; }
};
class Game {
protected:
    Agent agent;
    Field field;
    // Определяет динамичность поля
    bool propabilities_color = true;
    int t = 0; // общее кол-во шагов
    double Rt = 0; //общее полученное вознаграждение к текущему моменту
    int view_t = 0; //кол-во шагов в текущей итерации
    double view_Rt = 0; //набранное вознаграждение в текущей итерации
    vector<double> result_Rt;
    vector<double> result_t;
    int width = 0;
    int height = 0;
    vector<vector<double>>> Nt_a; // сколько раз действие а выбиралось для
каждого состояния до момента t (для UCB)
   vector<vector<double>>> Qt_a; //ожидаемое вознаграждение при действии а
для каждого состояния
    vector<vector<double>> Nt; // кол-во шагов в текущую клетку
protected:
    int Action(vector<int> pos, vector<int> pred_pos) {
        int action = 0;
        if (pos[0] - pred_pos[0] == -1) {
            action = 1;
        else if (pos[1] - pred_pos[1] == 1) {
            action = 2;
        else if (pos[1] - pred_pos[1] == -1) {
            action = 3;
        return action;
    vector<int> Action(vector<int> pos, int act) {
        vector<int> res = pos;
        if (act == 0) {
            res[0] += 1;
        else if (act == 1) {
            res[0] -= 1;
        }
        else if (act == 2) {
            res[1] += 1;
        }
        else if (act == 3) {
            res[1] -= 1;
```

```
return res;
    bool BorderPosition() {
        int x = agent.getx();
        int y = agent.gety();
        if (x \ge 0 \text{ and } x < \text{field.getWidth()} \text{ and}
            y >= 0 and y < field.getHeight())
            return 1;
        return 0;
    bool BorderPosition(int x, int y) {
        if (x \ge 0 \text{ and } x < \text{field.getWidth()} \text{ and } y \ge 0 \text{ and } y < \text{field.getHeight())}
            return 1;
        }
        return 0;
    //Эпсилон жадная стратегия
    bool Epsilon(double epsilon) {
        double probability = GetRandomNumber(1, 999) * 0.001;
        if (probability < epsilon) { return 1; }</pre>
        return 0;
    void Clear() { view_t = 0; view_Rt = 0; }
    //Обучение через метод UCB
    vector<int> UCBLearning(int iteration) {
        if (print_agent or (last_iteration and iteration == (iteration_count -
1)))
        {
            cout << *this << "\n=======\n";</pre>
        }
        while (1) {
            if (Epsilon(epsilon_ucb)) { RandomStepUpdateUCB(iteration); }
            else { UCB(iteration); }
            if (agent.getx() == (field.getWidth() - 1) and agent.gety() ==
(field.getHeight() - 1))
                agent.RestartPosition();
                vector<int> res;
                res.push_back(view_t);
                res.push_back(view_Rt);
                result_t.push_back(view_t);
                result_Rt.push_back(view_Rt);
                Clear();
                return res;
            }
        }
    }
    void UCB(int iteration) {
        int x = agent.getx();
        int y = agent.gety();
        vector<int> oldpos = agent.getPosition();
        int action = argmaxUCB(x, y);
        Nt_a[x][y][action] += 1;
        vector<int> newpos = Action(agent.getPosition(), action);
        // Задаем случайный цвет, в этом случае поле нестатично
        if (propabilities_color) {
            field.setNextReward(oldpos, newpos);
```

```
UpdateUCB(action);
        Nt[newpos[0]][newpos[1]] += 1;
        agent.setPredPosition(x, y);
        agent.setPosition(newpos[0], newpos[1]);
        if (print_agent or (last_iteration and iteration == (iteration_count -
1)))
            cout << *this << "\n=======\n";</pre>
        }
    }
    void RandomStepUpdateUCB(int iteration) {
        vector<int> newpos = agent.RandomStep();
        if (BorderPosition(newpos[0], newpos[1])) {
            vector<int> pos = agent.getPosition();
            int action = Action(newpos, pos);
            // Задаем случайный цвет, в этом случае поле нестатично
            if (propabilities_color) {
                field.setNextReward(pos, newpos);
            UpdateUCB(action);
            Nt_a[pos[0]][pos[1]][action] += 1;
            Nt[newpos[0]][newpos[1]] += 1;
            agent.setPredPosition(pos[0], pos[1]);
            agent.setPosition(newpos[0], newpos[1]);
            if (print_agent or (last_iteration and iteration == (iteration_count -
1)))
                cout << *this << "\n=======\n";</pre>
            }
        }
        else
            RandomStepUpdateUCB(iteration);
    int argmaxUCB(int x, int y) {
        vector<int> pos = { x, y };
        vector<int> actions;
        if (BorderPosition(x + 1, y)) {
            actions.push_back(0);
        }
        if (BorderPosition(x - 1, y)) {
            actions.push_back(1);
        }
        if (BorderPosition(x, y + 1)) {
            actions.push_back(2);
        }
        if (BorderPosition(x, y - 1)) {
            actions.push_back(3);
        }
        int act_max = actions[GetRandomNumber(0, actions.size() - 1)];
        for (int i = 0; i < actions.size(); i++) {</pre>
```

```
double value1 = Ot_a[x][y][actions[i]] + c * sqrt(log(t) /
Nt_a[x][y][actions[i]]);
            double value2 = Qt_a[x][y][act_max] + c * sqrt(log(t) /
Nt_a[x][y][act_max]);
            if (value1 > value2)
                act_max = actions[i];
        vector<int> max_actions;
        max_actions.push_back(act_max);
        for (int i = 0; i < actions.size(); i++) {</pre>
            vector<int> nextpos = Action(pos, actions[i]);
            double value1 = Qt_a[x][y][actions[i]] + c * sqrt(log(t) /
Nt_a[x][y][actions[i]]);
            double value2 = Qt_a[x][y][act_max] + c * sqrt(log(t) /
Nt_a[x][y][act_max]);
            if (value1 == value2 or Nt[nextpos[0]][nextpos[1]] == 0)
                max_actions.push_back(actions[i]);
        }
        act_max = max_actions[GetRandomNumber(0, max_actions.size() - 1)];
        return act_max;
    }
    void UpdateUCB(int action) {
        int x = agent.getx();
        int y = agent.gety();
        t += 1;
        Rt += field.getFieldElement(x, y);
        view_t += 1;
        view_Rt += field.getFieldElement(agent.getx(), agent.gety());
        double Qt_new = view_Rt / Nt[x][y];
        Qt_a[x][y][action] = Qt_new;
         //==========
    //TD - обучение
    vector<int> TDLearning(int iteration) {
        if (print_agent or (last_iteration and iteration == (iteration_count -
1)))
            cout << *this << "\n=======\n";</pre>
        }
        while (1) {
            if (Epsilon(epsilon_td)) { RandomStepUpdateTD(iteration); }
            else { TD(iteration); }
            if (agent.getx() == (field.getWidth() - 1) and agent.gety() ==
(field.getHeight() - 1)) {
                agent.RestartPosition();
                vector<int> res;
                res.push_back(view_t);
                res.push_back(view_Rt);
                result_t.push_back(view_t);
                result_Rt.push_back(view_Rt);
                Clear();
                return res;
            }
        }
    void TD(int iteration) {
        int x = agent.getx();
        int y = agent.gety();
```

```
vector<int> pos = agent.getPosition();
        int action = argmaxTD(x, y);
        vector<int> newpos = Action(pos, action);
        // Задаем случайный цвет, в этом случае поле нестатично if (propabilities_color) {
            field.setNextReward(pos, newpos);
        agent.setPredPosition(x, y);
        agent.setPosition(newpos[0], newpos[1]);
        UpdateTD(action);
        if (print_agent or (last_iteration and iteration == (iteration_count -
1)))
            cout << *this << "\n=======\n";</pre>
        }
    }
    void RandomStepUpdateTD(int iteration) {
        vector<int> newpos = agent.RandomStep();
        if (BorderPosition(newpos[0], newpos[1])) {
            int action = Action(newpos, agent.getPosition());
            // Задаем случайный цвет, в этом случае поле нестатично
            vector<int> pos = agent.getPosition();
            if (propabilities_color) {
                field.setNextReward(pos, newpos);
            agent.setPredPosition(agent.getx(), agent.gety());
            agent.setPosition(newpos[0], newpos[1]);
            UpdateTD(action);
            if (print_agent or (last_iteration and iteration == (iteration_count -
1)))
                { cout << *this << "\n=======\n"; }
        }
        else
            RandomStepUpdateTD(iteration);
    }
    int argmaxTD(int x, int y) {
        vector<int> pos = { x, y };
        vector<int> actions;
        if (BorderPosition(x + 1, y)) {
            actions.push_back(0);
        }
        if (BorderPosition(x - 1, y)) {
            actions.push_back(1);
        if (BorderPosition(x, y + 1)) {
            actions.push_back(2);
        }
        if (BorderPosition(x, y - 1)) {
            actions.push_back(3);
        }
        int act_max = actions[GetRandomNumber(0, actions.size()-1)];
        for (int i = 0; i < actions.size(); i++) {</pre>
            if (Qt_a[x][y][actions[i]] > Qt_a[x][y][act_max])
                act_max = actions[i];
```

```
vector<int> max_actions;
        for (int i = 0; i < actions.size(); i++) {</pre>
            vector<int> nextpos = Action(pos, actions[i]);
            if (Qt_a[x][y][actions[i]] == Qt_a[x][y][act_max] or
Nt[nextpos[0]][nextpos[1]] == 0)
                max_actions.push_back(actions[i]);
        }
        act_max = max_actions[GetRandomNumber(0, max_actions.size() - 1)];
        return act_max;
    }
    void UpdateTD(int action) {
        int x = agent.getx();
        int y = agent.gety();
        int predx = agent.getpredx();
        int predy = agent.getpredy();
        double R_next = field.getFieldElement(x, y);
        t += 1;
        view_t += 1;
        view_Rt += field.getFieldElement(x, y);
        Rt += view_Rt;
        double V_St_pred = Qt_a[predx][predy][action];
        double V_St_next = Qt_a[x][y][argmaxTD(x, y)];
        double V_St_new = V_St_pred + alpha * (R_next + gamma * V_St_next -
V_St_pred);
        Qt_a[predx][predy][action] = V_St_new;
        Nt[x][y] += 1;
    }
    friend ostream& operator<< (ostream& stream, Game& g);</pre>
public:
    //из TD
    double alpha = 0.9; //параметр, определяющий скорость обучения
    double gamma = 0.85; //
    double epsilon_td = 0.05; //для TD обучения
    // N3 UCB
    double c = 2.4; //константа из UCB
    double epsilon_ucb = 0.005; // параметр из эпсилон жадной стратегии (для UCB)
    // Общие настройки
    int iteration_count = 100; // сколько раз модель будет обучаться
    bool print_agent = 0; //вывод результата ходьбы агента на каждом шаге (0/1
соответственно)
   bool last_iteration = 0; //вывод ходов агента на последнем обучении
    Game() {}
    Game(Field f) { field = f; }
    Game(Agent a, int width0, int height0) {
        if (width0 <= 1 and height0 <= 1) { throw "The size of field is very
little"; }
        agent = a; Field newf(width0, height0); field = newf;
        width = width0; height = height0;
```

```
propabilities_color = true;
    Game(Field f, Agent a) {
        if ((a.getPosition())[0] >= f.getWidth() or (a.getPosition())[0] < 0 or</pre>
            (a.getPosition())[1] >= f.getHeight() or (a.getPosition())[1] < 0)</pre>
        {
            throw "Coordinates of the agent aren't correct!";
        field = f;
        agent = a;
        propabilities_color = false;
        width = f.getWidth();
        height = f.getHeight();
    Game(const Game& g) { agent = g.getAgent(); field = g.getField(); }
    Agent getAgent() const { return agent; }
    Field getField() const { return field; }
    vector<double> get_Rt() { return result_Rt; }
    vector<double> get_t() { return result_t; }
    int getTotal_t() { return t; }
    int getTotal_r() { return Rt; }
    void ClearGame() {
        t = 0; Rt = 0;
        Qt_a = CreatVector(field.getWidth(), field.getHeight(), 4);
        Nt = CreatVector(field.getWidth(), field.getHeight());
        Nt_a = CreatVector(field.getWidth(), field.getHeight(), 4);
        result_Rt.clear(); result_t.clear();
    void MethodUCB() {
        Qt_a = CreatVector(width, height, 4); //right, left, down, up
        Nt_a = CreatVector(width, height, 4);
        Nt = CreatVector(width, height);
        for (int i = 0; i < iteration_count; i++) {</pre>
            vector<int> getres = UCBLearning(i);
        }
        cout << "\nUCB learning was successfull\n";</pre>
    void MethodTD() {
        Qt_a = CreatVector(width, height, 4); //right, left, down, up
        Nt = CreatVector(width, height);
        for (int i = 0; i < iteration_count; i++) {</pre>
            vector<int> getres = TDLearning(i);
        cout << "\nTD learning was successfull\n";</pre>
    void print() {
        if (t == 0) { throw "You need do learning to see results"; }
        cout << "\n\n\c << Qt_a;
        cout << "\n\nNt:\n" << Nt;</pre>
        cout << "\nRewards:" << get_Rt();</pre>
        cout << "\nSteps:" << get_t();</pre>
    }
};
ostream& operator<< (ostream& stream, Game& g)</pre>
```

```
stream << "\Game:\n";</pre>
    for (int y = 0; y < (g.field).getHeight(); y++) {</pre>
         for (int x = 0; x < (g.field).getWidth(); x++) {
    if (x == ((g.agent).getPosition())[0] and y ==</pre>
((g.agent).getPosition())[1])
                  stream << "*\t";
                  stream << (g.field).getFieldElement(x, y) << "\t";</pre>
         stream << "\n";</pre>
    return stream;
int main()
    try
         // Для генератора случайных чисел
         srand(time(NULL));
         Agent a(0, 0);
         Game newgame(a, 4, 4);
         cout << newgame << "\n======\n";</pre>
         newgame.MethodUCB();
         newgame.print();
         newgame.ClearGame();
         newgame.MethodTD();
         newgame.print();
         return 0;
    catch (const char* error) { cout << error; }</pre>
```