EN.601.414/614 Computer Networks

BGP

Xin Jin

Spring 2019 (MW 3:00-4:15pm in Shaffer 301)

Agenda

- BGP policies and how they are implemented
- BGP protocol details
- BGP issues in practice

Topology & policy shaped by inter-AS business relationship

- Three basic kinds of relationships between ASes
 - >AS A can be AS B's customer
 - >AS A can be AS B's provider
 - >AS A can be AS B's peer
- Business implications
 - Customer pays provider
 - ➤ Peers don't pay each other
 - Exchange roughly equal traffic

Routing follows the money!

Inter-domain routing: Setup

- Destinations are IP prefixes (12.0.0.0/8)
- Nodes are Autonomous Systems (ASes)
 - ► Internals of each AS are hidden
- Links represent both physical links and business relationships
- BGP (Border Gateway Protocol) is the Interdomain routing protocol
 - ➤ Implemented by AS border routers

BGP: Basic idea

BGP inspired by Distance-Vector with four differences

- Shortest-path routes may not be picked to enforce policy
- Path-Vector routing to avoid loops
- Selective route advertisement may affect reachability
- Routes may be aggregated for scalability

BGP policies

Policy dictates how routes are "selected" and "exported"

- > Controls whether/how traffic leaves the network
- Export: Which path to advertise?
 - Controls whether/how traffic enters the network

Typical selection policies

In decreasing order of priority

- ➤ Make/save money (send to customer > peer > provider)
- Maximize performance (smallest AS path length)
- ➤ Minimize use of my network bandwidth ("hot potato")
- **>...**

Typical export policy

Destination prefix advertised by	Export route to
Customer	Everyone (providers, peers, other customers)
Peer	Customers
Provider	Customers

We'll refer to these as the "Gao-Rexford" rules (capture common – but not required! – practice)

Gao-Rexford

Peers

Customers

With Gao-Rexford, the AS policy graph is a DAG (directed acyclic graph) and routes are "valley free"

Valley-Free Routing

- Number links as (+1, 0, -1) for customer-toprovider, peer and provider-to-customer
- In any path should only see sequence of +1, followed by at most one 0, followed by sequence of -1

Example: Valley-Free Routing

The path is (-1, +1). It is not valley-free.

BGP Protocol details

Who speaks BGP?

Border routers in an Autonomous System

What does "speak BGP" mean?

- Implement the BGP protocol standard
 - ➤ Read more here: http://tools.ietf.org/html/rfc4271
- Specifies what messages to exchange with other BGP "speakers"
 - ➤ Message types (e.g., route advertisements, updates)
 - ➤ Message syntax
- How to process these messages
 - ➤ E.g., "when you receive a BGP update, do.... "
 - Follows BGP state machine in the protocol spec + policy decisions, etc.

BGP sessions: External

Border routers in an AS speaks BGP with border routers in other ASes using eBGP sessions

BGP sessions: Internal

A border routers speaks BGP with other routers in the same AS using iBGP sessions

eBGP, iBGP, and IGP

- eBGP: BGP sessions between border routers in different ASes
 - > Learn routes to external destinations
- iBGP: BGP sessions between border routers and other routers within the same AS
 - Distribute externally learned routes internally
- IGP: "Interior Gateway Protocol" = Intra-domain routing protocol
 - Provide internal reachability
 - ► E.g., OSPF, RIP

eBGP, iBGP, and IGP together

- Learn routes to external destination using eBGP
- Distribute externally learned routes internally using iBGP
- Travel shortest path to egress using IGP

Basic messages in BGP

Open

Establishes BGP session (BGP uses TCP)

Notification

> Report unusual conditions

Update

- ➤ Inform neighbor of new routes
- ➤ Inform neighbor of old routes that become inactive

Keep-alive

➤ Inform neighbor that connection is still viable

Route updates

- Format <IP prefix: route attributes>
 - >Attributes describe properties of the route
- Two kinds of updates
 - ➤ Announcements: new routes or changes to existing routes
 - ➤ Withdrawal: remove routes that no longer exist

Route attributes

- Routes are described using attributes
 - ➤ Used in route selection/export decisions
- Some attributes are local
 - ➤I.e., private within an AS, not included in announcements
- Some attributes are propagated with eBGP route announcements
- There are many standardized attributes in BGP
 - ➤ We will discuss a few

Attributes: (1) ASPATH

- Carried in route announcements
- Vector that lists all the ASes a route advertisement has traversed (in reverse order)

Attributes: (2) LOCAL PREF

- Local preference in choosing between different AS paths
 - ➤ Local to an AS; carried only in iBGP messages
- The higher the value the more preferred

AS2 AS3 AS3

BGP table at AS4:

Destination	AS Path	Local Pref
140.20.1.0/24	AS3 AS1	300
140.20.1.0/24	AS2 AS1	100

Attributes: (3) MED

- Multi-exit discriminator is used when ASes are interconnected via 2 or more links; it specifies how close a prefix is to the link it is announced on
- Lower is better
- AS that announces a prefix sets MED
- AS receiving the prefix (optionally!) uses MED to select link

Attributes: (4) IGP cost

Used for hot-potato routing

Each router selects the closest egress point based on the path cost in intra-domain protocol

Using attributes

Rules for route selection in priority order

Priority	Rule	Remarks
1	LOCAL PREF	Pick highest LOCAL PREF
2	ASPATH	Pick shortest ASPATH length
3	MED	Lowest MED preferred
4	eBGP > iBGP	Did AS learn route via eBGP (preferred) or iBGP?
5	iBGP path	Lowest IGP cost to next hop (egress router)
6	Router ID	Smallest next-hop router's IP address as tie-breaker

BGP UPDATE processing

BGP issues in practice

Issues with BGP

- Reachability
- Security
- Convergence
- Performance
- Anomalies

Reachability

- In normal routing, if graph is connected then reachability is assured
- With policy routing, this does not always hold

Security

- An AS can claim to serve a prefix that they do not have a route to (blackholing)
 - ➤ Problem not specific to policy or path vector
 - ➤ Important because of AS autonomy
 - Fixable: make ASes "prove" they have a path
- AS may forward packets along a route different from what is advertised
 - >Tell customers about fictitious short path...
 - ➤ Much harder to fix!
 - ➤ More: http://queue.acm.org/detail.cfm?id=2668966

Convergence

- If all AS policies follow "Gao-Rexford" rules, BGP is guaranteed to converge
 - A set of rules that decide the preferences of routes, e.g., prefer a route via a customer over a route via a provider or peer
- For arbitrary policies, BGP may fail to converge!

Example of policy oscillation

• Initially: nodes 1, 2, 3 know only shortest path to

1 advertises its path 1 0 to 2

3 advertises its path 3 0 to 1

1 withdraws its path 1 0 from 2

2 advertises its path 2 0 to 3

3 withdraws its path 3 0 from 1

1 advertises its path 1 0 to 2

2 withdraws its path 2 0 from 3

We're back to where we started

Convergence

- If all AS policies follow "Gao-Rexford" rules, BGP is guaranteed to converge
- For arbitrary policies, BGP may fail to converge!

Performance nonissues

- Internal routing
 - > Domains typically use "hot potato" routing
 - ➤ Not always optimal, but economically expedient
- Policy is not always about performance
 - ➤ Policy-driven paths aren't the shortest
- AS path length can be misleading
 - ≥20% of paths inflated by at least 5 router hops

AS path length can be misleading

An AS may have many router-level hops

Real performance issue: Slow convergence

- BGP outages are biggest source of Internet problems
- Most popular paths are very stable
- Outages are still very common
 - ➤ Check out https://bgpstream.com/

BGP misconfigurations

- BGP protocol is bloated yet underspecified
 - >Lots of attributes
 - >Lots of leeway in how to set and interpret attributes
 - Necessary to allow autonomy, diverse policies
 - But also gives operators plenty of rope
- Configuration is mostly manual and ad hoc
 - ➤ Disjoint per-router configuration to effect AS-wide policy

Summary

- Network layer deals with data plane (forwarding) and control plane (routing)
- Control plane deals with intra-domain routing (LS and DV) and inter-domain routing (BGP)

Next lecture: Programmable Networks

Thanks! Q&A