AIE111:

Artificial Intelligence

Lecture 1:

Introduction to Al

How Artificial Intelligence is Shaping Our World

1. Why Al?

- AI makes computers more useful.
- It has a significant impact on human civilization.
- Many scientists consider AI one of the most exciting fields to work in.
- AI helps us understand intelligence by using computers as models for thinking.

2. Applications of Al

2. Applications of Al

- ☐ Healthcare: AI-assisted diagnostics (e.g., AI detecting tumors in MRI scans).
- Autonomous Cars: AI-powered self-driving technology (e.g., Tesla's Autopilot system analyzing road conditions and making driving decisions).
- □ E-commerce: Recommendation systems (e.g., Amazon suggesting products based on browsing history).
- NLP: Virtual assistants like Siri, GoogleAssistant, and ChatGPT understanding and responding to user queries.

☐ <u>Healthcare</u>: AI-assisted diagnostics (e.g., AI detecting tumors in MRI scans).

☐ <u>Autonomous Cars</u>: AI-powered self-driving technology (e.g., Tesla's Autopilot system analyzing road conditions and making driving decisions).

☐ <u>AI in Agriculture</u> refers to the use of artificial intelligence technologies to enhance farming practices and food production.

□ NLP: Virtual assistants like Siri, Google Assistant, and ChatGPT understanding and responding to user queries.

Here are some example applications

- □ Computer vision: face recognition from a large set
- □ **Robotics**: autonomous (mostly) automobile
- □ Natural language processing: simple machine translation
- ☐ Expert systems: medical diagnosis in a narrow domain
- □ Spoken language systems: ~1000 word continuous speech
- □ Planning and scheduling: Hubble Telescope experiments
- ☐ **Learning:** text categorization into ~1000 topics
- ☐ <u>User modeling</u>: Bayesian reasoning in Windows help (the infamous paper clip...)
- ☐ Games: Grand Master level in chess (world champion), checkers, etc.

3. Definition of Al

The ability of a digital <u>computer</u> or computer-controlled <u>robot</u> to perform tasks commonly associated with intelligent beings.

Machines that mimic human intelligence by performing tasks typically requiring human cognition, such as learning, reasoning, and problem-solving.

Key Points Summary: Definition of Al

- Intelligence can be defined as the ability to learn, adapt to new situations, and make decisions based on specific criteria.
- Humans naturally acquire knowledge through experience and observation, which enables abstract thinking and decision-making.
- AI aims to replicate human intelligence by creating machines that can sense, act, and reason.
- Many human tasks (such as perception and control) are difficult to formalize into machineexecutable programs.
- AI is a branch of computer science that studies human intelligence and attempts to recreate it in machines.
- AI is relevant across industries, as it extends into various human activities and problemsolving domains.

12

Al Capabilities

- Learning: Ability to improve from experience (e.g., training neural networks to recognize images of cats and dogs).
- Reasoning: Making decisions based on rules and logic (e.g., chess engines analyzing possible moves and selecting the best one).
- Perception: Interpreting sensory inputs like images, sounds, or text (e.g., voice assistants recognizing spoken commands).

5. Al Categories

- Narrow AI: Designed for specific tasks (e.g., Google Translate, Chess AI like AlphaZero).
- ☐ General AI: Human-like reasoning and adaptability (hypothetical, no existing real-world example).
- □ Super AI: Beyond human intelligence (theoretical, often depicted in movies like "Ex Machina").

Artificial Narrow Intelligence (ANI)

- Siri
- Alexa
- Cortana

Artificial
General
Intelligence
(AGI)

- IBM's Watson Super Computer
- Self-driving Cars

Artificial
Super
Intelligence
(ASI)

 Hypothetical AI, we have not been able to achieve it yet

Relationship Between Al, Machine Learning, and Deep Learning

- ☐ Machine Learning (ML): AI models learn from data to make predictions

 (e.g., email spam filters learning from examples of spam and non-spam messages).
 - A major branch of AI that focuses on automating processes and discovering complex patterns.
- □ Deep Learning (DL): Advanced ML using neural networks (e.g., AI recognizing faces on Facebook).
- ☐ Expert Systems: Rule-based AI for decision-making (e.g., medical diagnosis software suggesting treatments based on symptoms).

Artificial Intelligence

The ability for omputer programs to perform task that typically require some degree of human intelligence

Machine Learning

Applying data-driven algorithms to "learn" from labeled data and provide insights

Deep Learning

ML algorithms and deep neural networks that are inspired by the human brain

Computer Vision

Ability for computers to "see" and understand images

What is Learning?

- Learning is essentially the process of acquiring, processing, and applying new knowledge or skills.
- It involves:
 - 1. Receiving Information through sensory inputs like sight, sound, touch, taste, and smell.
 - 2. Relating to Prior Knowledge connecting new information to what we already know.
 - 3. Processing & Understanding making sense of the new information in context.
 - **4. Applying or Acting on It** using what we've learned to make decisions, solve problems, or create something new.

Learning can be

- 1. conscious (studying, practicing)
- 2. subconscious (picking up social cues, adapting to environments).
- 3. It can also happen through different methods like observation, experience, repetition, and teaching.

Human Learning Versus Machine Learning

Different Approaches to Al

Acting Humanly (Turing Test):

AI is considered successful if it can imitate human behavior well enough that a judge cannot distinguish between a human and a machine.

This requires language processing, knowledge representation, reasoning, learning, computer vision, and robotics.

Thinking Humanly (Cognitive Modeling):

This approach focuses on replicating how the human brain works.

a key role in understanding how humans think and applying it to AI.

Thinking Rationally (Logic-Based AI):

AI should follow logical reasoning principles to make correct decisions.

The field of logic provides a foundation for many AI systems.

Acting Rationally (Rational Agents):

AI should act in a way that maximizes the best possible outcome.

Rational agents perceive their environment, adapt, and make decisions based on expected results.

Intelligent Agents

- An agent interacts with its environment through sensors (to perceive) and actuators (to take action).
- Examples:
 - 1. Human Agent: Sensors = eyes, ears; Actuators = hands, legs.
 - 2. Robot Agent: Sensors = cameras, sonar; Actuators = motors.

Intelligent Agents

Example: A vacuum-cleaner

Percept sequence	Action
[A, Clean]	Right
[A, Dirty]	Suck
[B, Clean]	Left
[B,Dirty]	Suck
[A, Clean], [A, Clean]	Right
[A, Clean], [A, Dirty]	Suck
	:
[A, Clean], [A, Clean], [A, Clean]	Right
[A, Clean], [A, Clean], [A, Dirty]	Suck
	:

PEAS Framework for AI Systems

Performance measure – Defines success criteria.

Environment – The surroundings in which the AI operates.

Actuators – The components that allow AI to take action.

Sensors – The components that allow AI to perceive the world.

Example: AI Taxi Driver

Performance Measure: Safe, fast, comfortable driving while maximizing profits.

Environment: Roads, traffic, passengers.

Actuators: Steering, accelerator, brake, signals, horn.

Sensors: Cameras, GPS, speedometer, accelerometer

Advantage

- <u>Automates repetitive tasks</u>: Increases efficiency (e.g., AI-powered chatbots handling customer support inquiries).
- Recognizes patterns efficiently: Helps in fraud detection (e.g., AI flagging unusual credit card transactions).
- Enhances productivity: AI-driven decision-making (e.g., supply chain optimization in logistics companies).

Limitations:

- Requires massive data: Needs large datasets for training (e.g., Al translation services improving with more language data).
- Cannot think creatively: Lacks human intuition and emotional intelligence (e.g., Al writing articles but struggling with humor and abstract reasoning).
- Ethical concerns: Bias in Al, privacy risks, potential job displacement (e.g., facial recognition misidentifying individuals from minority groups).

THANK YOU!

nelsayad@horus.edu.eg

