Agenda

PROBLEM DOMAIN - NUMBER THEORY

- PROPERTIES OF GROUPS
- PROPERTIES OF Z*_N:

EULER'S THEOREM AND FERMAT'S THEOREM

Lagrange's Theorem - Proof Step 1

- Lagrange's Theorem:
 - For any finite group (G, .) and any subgroup H of G :
 - |H|||G|
- Proof:

Sub-Groups: Lagrange's Theorem

- Lagrange's Theorem:
 - For any finite group (G, .) and any subgroup H of G:
 |H| | |G|
- Proof:
 - Define R_H on G:
 - $x R_H y$ iff there exists $h \in H$ such that x = y.h
 - Claim 1: R_H is an <u>equivalence relation</u>.
 - Exercise: Prove this claim!

Lagrange's Theorem - Proof Step 2

- Lagrange's Theorem:
 - For any finite group (G, .) and any subgroup H of G:
 |H| | |G|
- Proof:
 - Define R_H on G:
 - $x R_H y$ iff there exists $h \in H$ such that x = y.h
 - Claim 1: R_H is an <u>equivalence relation</u>.
 - Claim 2: H is one of the equivalence classes of R_H
 - Exercise: Prove this claim!

Lagrange's Theorem - Proof Step 3

- Lagrange's Theorem:
 - For any finite group (G, .) and any subgroup H of G:
 |H| | |G|
- Proof:
 - Define R_H on G:
 - $x R_H y$ iff there exists $h \in H$ such that x = y.h
 - Claim 1: R_H is an <u>equivalence relation</u>.
 - Claim 2: H is one of the equivalence classes of R_H
 - Claim 3:
 - If H_a and H_b are two equivalences classes of R_H
 - then $f(x) = b \cdot a^{-1} \cdot x$ is bijective.
 - Exercise: Prove this claim!

Lagrange's Theorem - Proof

- Lagrange's Theorem:
 - For any finite group (G, .) and any subgroup H of G:
 |H| | |G|
- Proof:
 - Define R_H on G:
 - $x R_H y$ iff there exists $h \in H$ such that x = y.h
 - Claim 1: R_H is an <u>equivalence relation</u>.
 - Claim 2: H is one of the equivalence classes of R_H
 - Claim 3: If H_a and H_b are two equivalences classes of R_H then $f(x) = b. a^{-1}.x$ is bijective.
 - Conclusion from Claims 2 and 3:
 - All equivalence classes of R_H are of the same size |H|
 - and so |H| | |G|

Groups: Order of an element

- For any group (G, .) and for any x in G, define x^k as follows:
 - $\mathbf{x}^{\circ} = \mathbf{1}$ (where $\mathbf{1}$ is the identity element),
 - $x^{k} = x \cdot x^{k-1} \text{ for } k > 0$
- For any x in G, define the order of x as follows:
 - ord(x) = the smallest k > osuch that $x^k = 1$ where 1 is the identity element

Finite Groups have Finite Orders

- **Proof** of <u>existence of a finite order for any finite group</u>:
 - For any x in G, consider x^1 , x^2 , ..., x^n where n = |G|
 - If one of them is not 1, are they all distinct?
 - No!
 - By <u>pigeonhole principle</u> and by <u>closure property</u>
 - there exist i and j such that i!= j and $x^i == x^j$
 - i.e. **x**^{i-j} = **1**

Properties of Groups: Order Lemma

Order Lemma:

- For any finite group (G, .), and any x in G, ord(x) divides |G|.
- Proof:
 - The elements \mathbf{x}^1 , \mathbf{x}^2 , ..., \mathbf{x}^k , where \mathbf{k} is $\mathbf{ord}(\mathbf{x})$, form a subgroup of \mathbf{G} .
 - Why?
 - Therefore, by Lagrange's Theorem, k divides |G|.
- Corollary (to Order Lemma):
 - $\mathbf{x}^{|G|} = \mathbf{1}$ (the identity element of **G**)

Properties of Z*_n: Euler's Theorem

- Euler's Theorem:
 - □ For all **n** and for **x** in \mathbb{Z}_{n}^* , $\mathbb{X}^{\phi(n)} = \mathbf{1} \pmod{n}$
- Proof:
 - Recall that $|Z*_n| = \phi(n)$
 - By the corollary to the Order Lemma
 - $x^{\phi(n)} = 1 \pmod{n}$

Fermat's Theorem

Fermat's Theorem:

□ For all primes \mathbf{p} and for \mathbf{x} in $\mathbf{Z}^*_{\underline{\mathbf{n}}}$ $\mathbf{x}^{\mathbf{p}-\mathbf{1}} = \mathbf{1} \text{ (mod } \mathbf{p}\text{)}.$

Proof:

For prime p

$$\phi(p) = p-1.$$

By Euler's Theorem

$$x^{p-1} = 1 \pmod{p}$$