

Dr. Ashok Kumar Das

IEEE Senior Member

Associate Professor Center for Security, Theory and Algorithmic Research International Institute of Information Technology, Hyderabad

E-mail: ashok.das@iiit.ac.in
URL: http://www.iiit.ac.in/people/faculty/ashokkdas

Overview of Hierarchical Access Control

- Hierarchical access control is a fundamental problem in computer and network systems.
- In a hierarchical access control, a user of higher security level class has the ability to access information items (such as message, data, files, etc.) of other users of lower security classes.
- A user hierarchy consists of a number n of disjoint security classes, say, SC_1 , SC_2 , ..., SC_n . Let this set be $SC = \{SC_1, SC_2, ..., SC_n\}$.
- A binary partially ordered relation \geq is defined in SC as $SC_i \geq SC_j$, which means that the security class SC_i has a security clearance higher than or equal to the security class SC_j .

Overview of Hierarchical Access Control

- In addition the relation ≥ satisfies the following properties:
 - ▶ [Reflexive property] $SC_i \ge SC_i$, $\forall SC_i \in SC$.
 - ▶ [Anti-symmetric property] If SC_i , $SC_j \in SC$ such that $SC_i \geq SC_j$ and $SC_i \geq SC_i$, then $SC_i = SC_i$.
 - **[Transitive property]** If SC_i , SC_j , $SC_k \in SC$ such that $SC_i \geq SC_j$ and $SC_j \geq SC_k$, then $SC_i \geq SC_k$.
- If $SC_i \geq SC_j$, we call SC_i as the predecessor of SC_j and SC_j as the successor of SC_i . If $SC_i \geq SC_k \geq SC_j$, then SC_k is an intermediate security class. In this case SC_k is the predecessor of SC_j and SC_i is the predecessor of SC_k .
- In a user hierarchy, the encrypted message by a successor security class is only decrypted by that successor class as well as its all predecessor security classes in that hierarchy.

Overview of Hierarchical Access Control

Figure: A small sample of poset in a user hierarchy.

Applications of Hierarchical Access Control

- Military
- Government schools and colleges
- Private corporations
- Computer network systems
- Operating systems
- Database management systems

Chung et al.'s User Hierarchical Access Control Scheme

Reference

 Y. F. Chung, H. H. Lee, F. Lai and T. S. Chen, "Access control in user hierarchy based on elliptic curve cryptosystem", Information Sciences (Elsevier), vol. 178, no. 1, pp. 230-243, 2008 (2018 SCI Impact Factor: 5.524).

Chung et al.'s User Hierarchical Access Control Scheme

Relationship Building Phase

- CA (central authority) builds a hierarchical structure for controlling access according to the relationships among the nodes in the hierarchy.
- Let $U = \{SC_1, SC_2, \dots, SC_n\}$ be a set of n security classes in the hierarchy. Assume that SC_i is a security class with higher clearance and SC_j a security class with lower clearance, that is, $SC_i \geq SC_i$.
- A legitimate relationship $(SC_i, SC_j) \in R_{i,j}$ between two security classes SC_i and SC_j exists in the hierarchy if SC_i can access SC_j .

Key Generation Phase

CA performs the following steps:

- Step 1: Randomly selects a large prime *p*.
- Step 2: Selects an elliptic curve $E_p(a,b)$ defined over Z_p such that the order of $E_p(a,b)$ lies in the interval $[p+1-2\sqrt{p},p+1+2\sqrt{p}]$.
- Step 3: Selects a one-way function $h(\cdot)$ to transform a point into a number and a base point G_j from $E_p(a,b)$ for each security class SC_j $1 \le j \le n$.
- Step 4: For each security class SC_j (1 $\leq j \leq n$), selects a secret key sk_j and a sub-secret key s_j .
- Step 5: For all $\{SC_i|(SC_i,SC_j)\}\in R_{i,j}$, computes the followings: $s_iG_j=(x_{j,i},y_{j,i})$, $h(x_{i,j}||y_{i,j})$, where || is a bit concatenation operator.

Key Generation Phase (Continued...)

• Step 6: Finally, computes the public polynomial $f_j(x)$ using the values of $h(x_{i,j}||y_{i,j})$ as

$$f_j(x) = \prod_{SC_i \geq SC_i} (x - h(x_{j,i}||y_{j,i})) + sk_j \pmod{p}$$

- Step 7: Sends sk_j and s_j to the security class SC_j via a secret channel.
- Step 8: Announces $p, h(\cdot), G_j, f_j(x)$ as public.

Key Derivation Phase

In order to compute the secret keys sk_j of all successors, SC_j , the predecessor SC_i , for which the relationships $(SC_i, SC_j) \in R_{i,j}$ between SC_i and SC_j hold, proceeds as follows:

- Step 1: For $\{SC_i|(SC_i,SC_j)\}\in R_{i,j}$, computes the followings: $s_iG_j=(x_{j,i},y_{j,i})$, $h(x_{i,i}||y_{j,i})$.
- Step 2: Computes the secret key sk_j using $h(x_{j,i}||y_{j,i})$ as follows:

$$f_j(x) = \prod_{SC_i \geq SC_j} (x - h(x_{j,i}||y_{j,i})) + sk_j \pmod{p},$$

 $f_j(h(x_{j,i}||y_{j,i})) = sk_j \pmod{p}.$

Key Derivation Phase (Continued...)

Figure: A small sample of poset in a user hierarchy.

Key Derivation Phase (Continued...)

$$f_{j}(x) = \prod_{SC_{i} \geq SC_{j}} [x - h(x_{j,i}||y_{j,i})] + sk_{j} \pmod{p},$$

$$SC_{1} : f_{1}(x) = [x - h(x_{1,0}||y_{1,0})] + sk_{1} \pmod{p}, \text{ where } s_{0} \text{ is given by CA}$$

$$SC_{2} : f_{2}(x) = [x - h(x_{2,1}||y_{2,1})] + sk_{2} \pmod{p},$$

$$SC_{3} : f_{3}(x) = [x - h(x_{3,1}||y_{3,1})] + sk_{3} \pmod{p},$$

$$SC_{4} : f_{4}(x) = [x - h(x_{4,1}||y_{4,1})][x - h(x_{4,2}||y_{4,2})] + sk_{4} \pmod{p},$$

$$SC_{5} : f_{5}(x) = [x - h(x_{5,1}||y_{5,1})][x - h(x_{5,2}||y_{5,2})][x - h(x_{5,3}||y_{5,3})] + sk_{5} \pmod{p},$$

$$SC_{6} : f_{6}(x) = [x - h(x_{6,1}||y_{6,1})][x - h(x_{6,3}||y_{6,3})] + sk_{6} \pmod{p}$$

Chung et al.'s Scheme (Continued...)

Key Derivation Phase (Continued...)

To derive the secret key sk_5 of SC_5 by its predecessor class SC_2 , SC_2 needs to do following:

- Computes $s_2G_5 = (x_{5,2}, y_{5,2})$ and then $h(x_{5,2}||y_{5,2})$.
- Determines sk_5 using $h(x_{5,2}||y_{5,2})$ from the public polynomial $f_5(x) = [x h(x_{5,1}||y_{5,1})][x h(x_{5,2}||y_{5,2})][x h(x_{5,3}||y_{5,3})] + sk_5 \pmod{p}$ as $sk_5 = f_5(h(x_{5,2}||y_{5,2})) \pmod{p}$.