Teoria: Informacyjnie: Kody Hammonda: kod długości 7, uogólniony kod Hammonda. Rozwinięcie Laplace'a. Wzór na macierz odwrotną. Obliczanie macierzy odwrotnej metodą bezwyznacznikową. Macierz przejścia od współrzędnych w bazie \mathcal{B} do współrzędnych w bazie \mathcal{C} : $m_{\mathcal{BC}}(id)$. Rząd macierzy, rząd odwzorowania liniowego (= rząd jego macierzy). Liczba ln wierszy macierzy = liczba ln kolumn. $\mathrm{rk}(A) = \mathrm{rk}(A^T)$. Charakteryzacja rzędu przy pomocy minorów. Postać macierzy z uporządkowanymi wierszami. Diagonalizowalność macierzy i przekształceń liniowych.

Ćwiczenia.

- (a) Obliczyć wyznacznik macierzy z ćw. 1 z listy 4 stosując rozwinięcie Laplace'a względem wybranych wierszy lub kolumn. Porównać uzyskane wyniki.
 (b) Obliczyc macierze odwrotne do macierzy z (a) stosując wzór i metodą bezwyznacznikową. Porównać wyniki.
- 2. (a) Obliczyć rzędy poniższych macierzy poprzez sprowadzenie ich do postaci z uporządkowanymi wierszami.

$$\begin{bmatrix} 4 & 3 & 2 & 1 & 0 \\ 4 & 3 & 2 & 0 & 0 \\ 4 & 3 & 0 & 0 & 0 \\ 4 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0 \end{bmatrix}.$$

- (b) Wskazać liniowo niezależne wiersze, kolumny.
- (c) Wskazać niezerowe minory maksymalnego stopnia.
- 3. Załóżmy, że $F, G: V \to V$ są liniowe $B, C \subset V$, są dwiema bazami. Wyrazić macierz $m_{CB}F(FG)^{-1}$ jako pewien iloczyn macierzy $m_B(F), m_C(G), m_B(F)^{-1}, m_C(G)^{-1}$ i odpowiednich macierzy przejścia.
- 4. Obliczyć wymiar podprzestrzeni $Lin(A, B, C, D) \subseteq \mathbb{R}^5$, gdzie: $A = (0, 1, 0, 1, 0), \ B = (1, 1, 1, 1, 1), \ C = (1, 0, 1, 0, 1), \ D = (2, 2, 2, 2, 2),$ dwiema metodami:
 - (a) Znajdując rząd macierzy utworzonej ze współrzędnych wektorów A, B, C, D,
 - (b) Wskazując maksymalny liniowo niezależny układ wektorów w zbiorze $\{A, B, C, D\}$.

Zadania.

1. Załóżmy, że macierz kwadratowa A jest postaci $\begin{pmatrix} B & C \\ 0 & D \end{pmatrix}$ dla pewnych macierzy kwadratowych B i D oraz macierzy C odpowiednich rozmiarów. Udowodnić, że $det(A) = det(B) \cdot det(D)$.

2. * (dla fanów wyznaczników, wyznacznik Vandermonde'a). Niech $x_1,\dots,x_n\in\mathbb{R}.$ Udowodnić, że

$$\det \begin{bmatrix} 1 & x_1 & x_1^2 & \cdots & x_1^{n-1} \\ 1 & x_2 & x_2^2 & \cdots & x_2^{n-1} \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 1 & x_n & x_n^2 & \cdots & x_n^{n-1} \end{bmatrix} = \prod_{1 \le i < j \le n} (x_j - x_i)$$

- 3. Niech $\mathcal{B} = \{U, V, W\}$, gdzie $U = \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}$, $V = \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}$, $W = \begin{pmatrix} 0 \\ 2 \\ 0 \end{pmatrix}$.
 - (a) Znaleźć macierz przejścia $m_{\mathcal{BE}}(id)$ od współrzędnych w bazie \mathcal{B} do współrzędnych w bazie standardowej $\mathcal{E} = \{E_1, E_2, E_3\}$ oraz macierz przejścia $m_{\mathcal{EB}}(id)$ od współrzędnych w bazie \mathcal{E} do wspołrzędnych w bazie \mathcal{B} .
 - (b) Znaleźć współrzędne wektora $A = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}$ w bazie $\mathcal B$ dwoma sposobami:
 - (i) korzystając z macierzy przejścia $m_{\mathcal{EB}}(id)$,
 - (ii) rozwiązując układ równań A = uU + vV + wW o niewiadomych u, v, w.
- 4. Niech R_{α}^{3} oznacza obrót przestrzeni R^{3} o kąt α wokół osi Ox_{3} (macierz R_{α}^{3} : patrz zad. 4 z listy 2). Znaleźć macierz $m_{\mathcal{B}}(R_{\alpha}^{3})$ dla bazy \mathcal{B} z poprzedniego zadania (wykorzystać macierze przejścia).
- 5. Załóżmy, że $F, G: \mathbb{R}^n \to \mathbb{R}^m$ sa liniowe, tego samego rzędu.
 - (a)– Udowodnić, że istnieją podprzestrzenie $V, W < \mathbb{R}^n$ dopełnicze do Ker(F) i Ker(G) odpowiednio (tzn. takie, że $\mathbb{R}^n = Ker(F) \oplus V = Ker(G) \oplus W$).
 - (b) Udowodnić, że w (a) można znaleźć V i W takie, że V = W.
 - (c) Udowodnić, że istnieją izomorfizmy liniowe $g:\mathbb{R}^n\to\mathbb{R}^n$ i $h:\mathbb{R}^m\to\mathbb{R}^m$ takie, że $F=h^{-1}\circ G\circ g.$
- 6. * Niech $F: \mathbb{R}^n \to \mathbb{R}^m$ będzie liniowe oraz $A \in M_{m \times n}(\mathbb{R})$. Udowodnić, że następujące warunki są równoważne:
 - (a) ${\cal A}$ i ${\cal F}$ mają taki sam rząd.
 - (b) $A = m_{\mathcal{BC}}(F)$ dla pewnych baz $\mathcal{B} \subseteq \mathbb{R}^n$, $\mathcal{C} \subseteq \mathbb{R}^m$.
- 7. * Dla ciał $K\subseteq L$ definiujemy [L:K] jako wymiar ciała L jako przestrzeni liniowej nad K. Załóżmy, że V jest przestrzenią liniową nad L. Wtedy V jest też przestrzenią liniową nad K (zapominamy o mnożeniu przez skalary z $L\backslash K$). Udowodnić, że $dim_K V=[L:K]dim_L(V)$, gdzie $dim_K V$ to wymiar V jako przestrzeni liniowej nad K, zaś $dim_L V$ to wymiar V jako przestrzeni liniowej nad L.
- 8. Dla $z \in \mathbb{C}$ mamy przekształcenie liniowe $f_z : \mathbb{C} \to \mathbb{C}$ dane wzorem $f_z(x) = z \cdot x$ (tu \mathbb{C} traktujemy jako przestrzen liniową nad \mathbb{R}). Niech $\mathcal{B} = \{1, i\}$.
 - (i) Wyznaczyć $m_{\mathcal{B}}(f_z)$.

- (ii) Niech $K = \{m_{\mathcal{B}}(f_z) : z \in \mathbb{C}\}$. Udowodnić, ze K, z działaniami mnożenia i dodawania macierzy, jest ciałem, a funkcja $z \mapsto m_{\mathcal{B}}(f_z)$ jest izomorfizmem ciał \mathbb{C} i K.
- 9. Macierz $A \in M_{n \times n}(\mathbb{R})$ nazywamy nilpotentną, gdy $A^r = 0$ dla pewnego r > 0. Udowodnić, że jesli macierz A jest nilpotentna, to macierz I A jest odwracalna i $(I A)^{-1} = I + A + \ldots + A^{r-1}$.
- 10. Niech A będzie macierzą kwadratową $n \times n$. Gdy $W(X) = \sum a_i X^i$ jest wielomianem, to W(A) oznacza $\sum a_i A^i$. Udowodnić, że istnieje niezerowy wielomian W taki, ze W(A) = 0 (uwaga: istnieje taki wielomian stopnia $\leq n$, ale to jest trudne).