Capítulo 3

Aplicaciones lineales

3.1. Definición y ejemplos

Definición 8 Sean E y F dos espacios vectoriales sobre el mismo cuerpo \mathbb{K} . Decimos que una aplicación $f: E \longrightarrow F$ es una APLICACIÓN LINEAL si para todo $u, v \in E$ y todo $\lambda \in \mathbb{K}$:

$$f(u+v) = f(u) + f(v)$$

 $f(\lambda u) = \lambda f(u)$.

Si f y g son dos aplicaciones lineales de E en F, y λ , μ dos escalares, es directo comprobar las siguientes igualdades:

1. $f(\lambda u + \mu v) = \lambda f(u) + \mu f(v)$; o más en general:

$$f\left(\sum_{i=1}^{m} \lambda_i u_i\right) = \sum_{i=1}^{m} \lambda_i f(u_i).$$

- 2. $f(\mathbf{0}) = \mathbf{0}$ (obsérvese que $\mathbf{0} = 0v$ para cualquier v).
- 3. f(-v) = -f(v).
- 4. La aplicación $(\lambda f): E \longrightarrow F$, definida por $(\lambda f)(u) = \lambda f(u)$, es lineal.
- 5. La aplicación $f+g: E \longrightarrow F$, definida por (f+g)(u)=f(u)+g(u), es lineal.

En otra línea, tenemos también la siguiente propiedad:

6. Si $f: E \longrightarrow F \setminus g: F \longrightarrow G$ son lineales, entonces $g \circ f: E \longrightarrow G$ es lineal.

Ejemplo 1. Para todo espacio vectorial E la aplicación identidad:

$$\operatorname{Id}_E: E \longrightarrow E, \qquad \operatorname{Id}_E(v) = v, \quad \forall v \in E$$

es lineal. Más en general, si E es un espacio vectorial sobre el cuerpo $\mathbb K$ y tomamos un escalar fijo $\lambda \in E$, la aplicación

$$f_{\lambda}: E \longrightarrow E$$

$$v \longmapsto f_{\lambda}(v) = \lambda v$$

es lineal. En particular, la aplicación que manda cualquier vector de E al vector $\mathbf{0} \in F$ es lineal ("aplicación cero"). Llamamos homotecia en E a cualquier aplicación lineal de E en E de la forma $f_{\lambda}(v) = \lambda v$, y a λ la razón de la homotecia.

Ejemplo 2. Si E es un espacio vectorial y $F \subset E$ un subespacio vectorial, la aplicación $i: F \longrightarrow E$ dada por i(v) = v es lineal ("aplicación inclusión").

Ejemplo 3. (Imágenes de una base). Si $f: \mathbb{R}^3 \longrightarrow \mathbb{R}^3$ es una aplicación lineal, basta conocer las imágenes

$$f(1,0,0) = (2,-1,4), \quad f(0,1,0) = (1,5,-2), \quad f(0,0,1) = (0,3,1),$$

para calcular la imagen de cualquier $v \in \mathbb{R}^3$, ¿por qué? Calcular la imagen de (5,3,-1).

Ejemplo 4. Sea E un espacio vectorial sobre \mathbb{K} y $\{u_1, \ldots, u_n\}$ una base de E. La aplicación $f: E \longrightarrow \mathbb{K}^n$ que envía cada vector $v \in E$ a la n upla $(\lambda_1, \ldots, \lambda_n) \in \mathbb{K}^n$, donde $\lambda_1, \ldots, \lambda_n$ son las coordenadas de v en la base dada de E, es una aplicación lineal.

Ejemplo 5. Si E y F son espacios vectoriales sobre un mismo cuerpo \mathbb{K} , las siguientes son aplicaciones lineales:

Ejemplo 6. Si F es un subespacio vectorial del espacio vectorial E, la aplicación

$$\begin{array}{ccc} E & \longrightarrow & E/F \\ u & \longmapsto & [u] \end{array}$$

es lineal.

Ejemplo 7. (Aplicaciones lineales dadas por matrices). Sea $f: \mathbb{R}^2 \longrightarrow \mathbb{R}^3$ dada por

$$f(v) = Av = \begin{pmatrix} 3 & 0 \\ 2 & -1 \\ 1 & 4 \end{pmatrix} \begin{pmatrix} v_1 \\ v_2 \end{pmatrix} = \begin{pmatrix} 3v_1 \\ 2v_1 - v_2 \\ v_1 + 4v_2 \end{pmatrix}.$$

Comprobar que es lineal, y calcular las imágenes de $\mathbf{0}$, (1,0), (0,1) y (2,-3).

En general sean E y F dos espacios vectoriales de dimensiones finitas sobre \mathbb{K} , con respectivas bases $B_E = \{v_1, \dots, v_n\}$ y $B_F = \{w_1, \dots, w_m\}$. Para todo vector $v \in E$ usaremos la notación $[v]_{B_E}$ para la n upla $(\lambda_1, \dots, \lambda_n)^t$ formada por las coordenadas de v en la base B_E ; análogamente, $\forall w \in F$, $[w]_{B_F} = (\mu_1, \dots, \mu_m)^t$ si $w = \sum_{i=1}^m \mu_i w_i$.

Sea $f: E \longrightarrow F$ una aplicación lineal entre estos espacios vectoriales. Si $f(v_j) = \sum_{i=1}^m a_{i,j} w_i$, la matriz

$$A = (a_{i,j}) \in \mathcal{M}_{m \times n}(\mathbb{K})$$

es tal que:

$$[f(v)]_{B_F} = A[v]_{B_E}, \quad \forall v \in E.$$

Ejemplo 8. Sea $f: \mathbb{R}^2 \longrightarrow \mathbb{R}^2$ la aplicación lineal definida por $f(x_1, x_2) = (x_1 + x_2, 2x_1 + x_2)$. Calcular la matriz de f respecto a las bases:

$$\begin{array}{ll} B:= \ \{(1,2),(-1,1)\} & \text{para el espacio de origen}; \\ B':= \ \{(2,1),(-1,2)\} & \text{para el espacio de llegada}. \end{array}$$

SOLUCIÓN: Las imágenes de los vectores de la base B, escritas en función de la base canónica, son:

$$f(1,2) = (3,4),$$
 $f(-1,1) = (0,-1).$

Si $f(1,2) = x_1(2,1) + y_1(-1,2)$ y $f(-1,1) = x_2(2,1) + y_2(-1,2)$, las coordenadas de estas imágenes en la base B' son las soluciones del sistema:

$$\left(\begin{array}{cc} 2 & -1 \\ 1 & 2 \end{array}\right) \left(\begin{array}{cc} x_1 & x_2 \\ y_1 & y_2 \end{array}\right) = \left(\begin{array}{cc} 3 & 0 \\ 4 & -1 \end{array}\right)$$

es decir:

$$\begin{pmatrix} x_1 & x_2 \\ y_1 & y_2 \end{pmatrix} = \frac{1}{5} \begin{pmatrix} 2 & 1 \\ -1 & 2 \end{pmatrix} \begin{pmatrix} 3 & 0 \\ 4 & -1 \end{pmatrix} = \begin{pmatrix} 2 & \frac{-1}{5} \\ 1 & \frac{-2}{5} \end{pmatrix}$$

que es la matriz buscada.

Definición 9 Una aplicación lineal $f: E \longrightarrow F$ se dice un:

1. MONOMORFISMO si es inyectiva, es decir, si y solo si:

$$f(u) = f(v) \iff u = v;$$

2. EPIMORFISMO si es sobreyectiva, es decir, si y solo si:

$$\forall w \in F, \exists u \in E \ tal \ que \ f(u) = w;$$

3. ISOMORFISMO si es biyectiva, es decir, si y solo si:

$$\forall w \in F, \exists ! u \in E \ tal \ que \ f(u) = w;$$

Definición 10 Si $f: E \longrightarrow F$ es una aplicación lineal, definimos:

I. el Núcleo de f, ker f o Nucf, como el subconjunto de E:

$$Nuc f = \{u \in E : f(u) = \mathbf{0}\};$$

II. la IMAGEN de f, Imf, como el subconjunto de F:

$$\operatorname{Im} f = \left\{ w \in F : \exists u \in E \ con \ f(u) = w \right\}.$$

Tenemos el siguiente resultado que relaciona estos nuevos conceptos.

Proposición 15 Sea $f: E \longrightarrow F$ una aplicación lineal. Entonces:

- a) Nucf es un subespacio vectorial de E;
- b) Im f es un subespacio vectorial de F;
- c) f es un monomorfismo si y sólo si $Nuc f = \{0\};$
- d) f es epimorfismo si y sólo si Im f = F; Además, si E es de dimensión finita entonces:
- e) Nucf y Imf son de dimensiones finitas y

$$\dim E = \dim(\operatorname{Nuc} f) + \dim(\operatorname{Im} f).$$

Dem.: a): Si $u, v \in \text{Nuc} f$, es decir $f(u) = \mathbf{0} = f(v)$, tenemos, por ser f lineal, que:

$$f(u+v) = f(u) + f(v) = \mathbf{0} + \mathbf{0} = \mathbf{0}$$

$$f(\lambda u) = \lambda f(u) = \lambda \mathbf{0} = \mathbf{0}, \quad \forall \lambda \in \mathbb{K};$$

luego $\operatorname{Nuc} f \subset E$ es un subespacio vectorial.

b): Sean $w_1, w_2 \in \text{Im} f$ y λ cualquier escalar. Por definición, existen $u_1, u_2 \in E$ tales que $w_1 = f(u_1)$ y $w_2 = f(u_2)$. Como f es lineal, se verifican

$$f(u_1 + u_2) = f(u_1) + f(u_2) = w_1 + w_2$$

 $f(\lambda u_1) = \lambda f(u_1) = \lambda w_1;$

luego $\operatorname{Im} f$ es un subespacio vectorial de F.

c): Una aplicación es inyectiva si y solo si

$$f(u) = f(v) \iff u = v$$
.

Si f es lineal, esto es equivalente a:

$$f(u-v)=\mathbf{0} \iff u-v=\mathbf{0}$$
;

de otra manera, el único vector con imagen $\mathbf{0}$ es el $\mathbf{0}$.

- d): No hay nada que probar.
- e): Puesto que E es de dimensión finita, el subespacio Nucf también lo es. Sea $\{u_1,\ldots,u_k\}$ una base del subespacio vectorial Nucf, y completémosla a una base $\{u_1,\ldots,u_k,u_{k+1},\ldots,u_n\}$ de E. Las imágenes, $f(u_i)$ para los k primeros son todas nulas. Además, $\{f(u_{k+1}),\ldots,f(u_n)\}$ generan Imf. Estudiemos su independencia lineal:

$$\sum_{i=k+1}^{n} \lambda_i f(u_i) = \mathbf{0}, \quad \text{pero}$$

$$\sum_{i=k+1}^{n} \lambda_i f(u_i) = f\left(\sum_{i=k+1}^{n} \lambda_i u_i\right)$$

y estamos diciendo entonces que $u:=\sum_{i=k+1}^n \lambda_i u_i \in \operatorname{Nuc} f$. En particular podemos expresar u en la base de $\operatorname{Nuc} f$:

$$\sum_{i=k+1}^{n} \lambda_i u_i = \sum_{i=1}^{k} a_i u_i \quad \Longleftrightarrow \quad \sum_{i=k+1}^{n} \lambda_i u_i - \sum_{i=1}^{k} a_i u_i = \mathbf{0}.$$

Puesto que $\{u_1, \ldots, u_k, u_{k+1}, \ldots, u_n\}$ son linealmente independientes, todos los coeficientes han de ser 0, en particular $\lambda_i = 0$ para $i = k+1, \ldots, n$.

Hemos probado, en particular, que Im f también es de dimensión finita, y de hecho:

$$\dim(\operatorname{Im} f) = \dim E - \dim(\operatorname{Nuc} f).$$

Definición 11 Para un espacio vectorial de dimensión finita E, y una aplicación lineal $f: E \longrightarrow F$, llamaremos RANGO DE LA APLICACIÓN f a la dimensión del espacio imagen:

$$\operatorname{rango}(f) := \dim(\operatorname{Im} f)$$
.

Proposición 16 Si E y F son espacios vectoriales de dimensión finita, $f: E \longrightarrow F$ una aplica ción lineal, $\mathcal{B}_E := \{u_1, \ldots, u_n\} \subset E$ una base de E, $\mathcal{B}_F := \{w_1, \ldots, w_m\} \subset F$ una base de F y $A \in \mathcal{M}_{m \times n}(\mathbb{K})$ la matriz de la aplicación f en las bases \mathcal{B}_E y \mathcal{B}_F , entonces:

$$\dim(\operatorname{Im} f) = rg_f(A).$$

Dem.: Puesto que las columnas de la matriz A son los vectores imágenes por f de los n vectores de la base de E, expresados en la base \mathcal{B}_F , este resultado es directo del apartado e) en la proposición 15.

Ejemplo 9. Sea E un espacio vectorial, $F \subset E$ un subespacio, y consideremos la aplicación lineal:

$$f: E \longrightarrow E/F$$
, definida por: $f(u) = [u]$.

Es directo ver que: Nuc f = F. También es claro que f es epimorfismo.

Si E es de dimensión finita, $\mathcal{B}_F := \{u_1, \dots, u_k\}$ es una base de F, y $\mathcal{B}_E := \mathcal{B}_F \cup \{u_{k+1}, \dots, u_n\}$ una base de E, ya hemos comprobado que:

$$\mathcal{B}_{E/F} := \{ [u_{k+1}], \dots, [u_n] \}$$

es una base de E/F. En particular, la matriz, $A \in \mathcal{M}_{(n-k)\times n}(\mathbb{K})$, de esta aplicación expresada en las bases \mathcal{B}_E y $\mathcal{B}_{E/F}$ es:

$$A = \begin{pmatrix} 0_{(n-k)\times k} & \mathrm{Id}_{(n-k)\times (n-k)} \end{pmatrix}.$$

Ejemplo 10. Sea E un espacio vectorial, $F \subset E$ un subespacio, y $G \subset E$ un complemento de F, es decir: $E = F \oplus G$. Todo vector $u \in E$ se puede expresar de manera única como una suma: $u = u_F + u_G$, con $u_F \in F$ y $u_G \in G$. Esto nos permite definir la aplicación

$$f: E \longrightarrow E$$
, tomando: $f(u) = u_G$.

Esta aplicación es lineal y es claro que: $\mathrm{Nuc}f=F$ e $\mathrm{Im}f=G.$

Si E es de dimensión finita, $\mathcal{B}_F := \{u_1, \dots, u_k\}$ es una base de F y $\mathcal{B}_E := \mathcal{B}_F \cup \{u_{k+1}, \dots, u_n\}$ una base de E, ya hemos comprobado que:

$$\mathcal{B}_G := \{u_{k+1}, \dots, u_n\}$$

es una base de G. En particular, la matriz, $A \in \mathcal{M}_{(n) \times n}(\mathbb{K})$, de esta aplicación expresada en la base \mathcal{B}_E es:

$$A = \left(\begin{array}{cc} \mathbf{0}_{n \times k} & \mathbf{0}_{k \times (n-k)} \\ \mathrm{Id}_{(n-k) \times (n-k)} \end{array} \right) \,.$$

Ejemplo 11. El apartado e) de la proposición 15 nos da cotas para las dimensiones del núcleo y la imagen de una aplicación lineal $f: E \longrightarrow F$ para $\dim(E)$ finita.

En particular, si $f: E \longrightarrow F$ es una aplicación lineal entre espacios vectoriales de dimensiones finitas $n = \dim E$ y $m = \dim F$, entonces:

- 1. si f es un monomorfismo entonces $m \geq n$;
- 2. si f es un epimorfismo entonces $m \leq n$;
- 3. si f es un isomorfismo entonces m=n.

Por otra parte, si tenemos fijadas bases \mathcal{B}_E y \mathcal{B}_F en ambos espacios, podemos representar cada aplicación lineal por una matriz $A_f \in \mathcal{M}_{m \times n}(\mathbb{K})$. Los enunciados anteriores tienen la siguiente lectura en este contexto:

- 1. f es un monomorfismo si y sólo si $rg(A_f) = n$;
- 2. si f es un epimorfismo si y sólo si $rg(A_f) = m$;
- 3. si f es un isomorfismo si y sólo si $rg(A_f) = m = n$.

Ejemplo 12. Consideremos la aplicación lineal $f: \mathbb{R}^3 \longrightarrow \mathbb{R}^3$ con matriz:

$$A = \left(\begin{array}{rrr} 1 & 2 & 0 \\ 2 & 1 & -3 \\ -1 & 3 & 5 \end{array}\right) .$$

Calcular su núcleo, una base del mismo y la dimensión del espacio imagen. Encontrar razonadamente una base del espacio imagen.

Solución: El núcleo de f es el conjunto de soluciones del sistema homogéneo:

$$A\left(\begin{array}{c} x\\y\\z\end{array}\right) = \left(\begin{array}{c} 0\\0\\0\end{array}\right) \, .$$

Por el algoritmo de Gauss obtenemos:

$$A = \begin{pmatrix} 1 & 2 & 0 \\ 2 & 1 & -3 \\ -1 & 3 & 5 \end{pmatrix} \sim \begin{pmatrix} 1 & 0 & -2 \\ 0 & 1 & 1 \\ 0 & 0 & 0 \end{pmatrix} = A_{\text{red}}$$

de manera que el núcleo, de dimensión 3 - rg(A) = 3 - 2 = 1, es:

$$\begin{aligned} \text{Nuc} f &=& \{(x,y,z) \in \mathbb{R}^3 \, : \, z = t, \, x = 2t, \, y = -t\} \\ &=& \{(2t,-t,t) \in \mathbb{R}^3 \, : \, t \in \mathbb{R}\} \\ &=& \{t(2,-1,1) \in \mathbb{R}^3 \, : \, t \in \mathbb{R}\} \end{aligned}$$

$$\text{Nuc} f &=& <(2,-1,1) > .$$

La dimensión del espacio imagen es 2 = rg(A).

Calculemos una base del espacio, de dimensión 2, Imf. Sabemos que los vectores columna $v_1 = (1, 2, -1), v_2 = (2, 1, 3), v_3 = (0, -3, 5),$ generan Imf. Por otra parte, podemos observar de las columnas $\mathbf{c_1}$, $\mathbf{c_2}$ y $\mathbf{c_3}$ de la matriz reducida $A_{\rm red}$, la relación de dependencia lineal

$$c_3 = (-2)c_1 + 1c_2$$

y cómo esa misma relación se verifica en las columnas a₁, a₂ y a₃ de la matriz original A:

(3.1)
$$\begin{pmatrix} 0 \\ -3 \\ 5 \end{pmatrix} = (-2) \begin{pmatrix} 1 \\ 2 \\ -1 \end{pmatrix} + 1 \begin{pmatrix} 2 \\ 1 \\ 3 \end{pmatrix}.$$

Obsérvese ahora que la imagen de cualquier vector $(x, y, z) \in \mathbb{R}^3$ es:

$$A \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} x + 2y \\ 2x + y - 3z \\ -x + 3y + 5z \end{pmatrix} = x \begin{pmatrix} 1 \\ 2 \\ -1 \end{pmatrix} + y \begin{pmatrix} 2 \\ 1 \\ 3 \end{pmatrix} + z \begin{pmatrix} 0 \\ 3 \\ -5 \end{pmatrix}.$$

Si usamos la relación (3.1), $\mathbf{a_3} = (-2)\mathbf{a_1} + 1\mathbf{a_2}$, es equivalente escribir:

$$A\begin{pmatrix} x \\ y \\ z \end{pmatrix} = (x - 2z) \begin{pmatrix} 1 \\ 2 \\ -1 \end{pmatrix} + (y + z) \begin{pmatrix} 2 \\ 1 \\ 3 \end{pmatrix},$$

en otras palabras Im f = <(1, 2, -1), (2, 1, 3) >.

Definición 12 Sea $A \in \mathcal{M}_{m \times n}(\mathbb{K})$.

- 1. El ESPACIO DE FILAS de A es el subespacio de \mathbb{K}^n generado por los vectores fila de A.
- 2. El ESPACIO DE COLUMNAS de A es el subespacio de \mathbb{K}^m generado por los vectores columna de A.

Teorema 6 Sean A, $B \in \mathcal{M}_{m \times n}(\mathbb{K})$, entonces

- 1. Si A es equivalente por FILAS a B, el espacio de FILAS de A es igual al espacio de FILAS de B
- 2. Si A es equivalente por COLUMNAS a B, el espacio de COLUMNAS de A es igual al espacio de COLUMNAS de B.

Dem.: Como las filas (resp. columnas) de B se obtienen de las de A por medio de operaciones elementales por filas (resp. columnas), cada uno de los vectores fila (resp. columna) de B se puede escribir como combinación lineal de los vectores fila (resp. columna) de A. Así el subespacio generado por los vectores fila (resp. columna) de B está contenido en el espacio de filas (resp. columnas) de A. Pero, recíprocamente, las filas (resp. columnas) de A se pueden obtener de las de B mediante operaciones elementales (las inversas), de modo que cada uno de los subespacios de filas (resp. columnas) es subespacio del otro, y por tanto son iguales.

Proposición 17 Sean $A, B \in \mathcal{M}_{m \times n}(\mathbb{K})$. Si $A \ y \ B$ son equivalentes por filas, las relaciones de dependencia lineal en las columnas de $A \ y \ B$ son iquales.

Dem.: Puesto que las operaciones elementales son isomorfismos, el resultado es directo de la igualdad:

$$B = PA$$

con P la matriz de una operación elemental. En efecto, si $u_1, \ldots, u_k \in \mathbb{K}^n$, y $\lambda_1, \ldots, \lambda_k \in \mathbb{K}$ son tales que:

$$\sum_{i=1}^{k} \lambda_i B(u_i) = \mathbf{0}$$

entonces:

$$\mathbf{0} = \sum_{i=1}^{k} \lambda_i B(u_i) = \sum_{i=1}^{k} \lambda_i PA(u_i)$$
$$= \sum_{i=1}^{k} P(\lambda_i A(u_i))$$
$$= P\left(\sum_{i=1}^{k} \lambda_i A(u_i)\right).$$

Ahora bien, puesto que P es biyectiva, su núcleo es trivial, y así:

$$\sum_{i=1}^k \lambda_i B(u_i) = \mathbf{0} \quad \Longrightarrow \quad \sum_{i=1}^k \lambda_i A(u_i) = \mathbf{0} .$$

En particular, tomando vectores u_i en la base fijada en \mathbb{K}^n , vemos que las relaciones de dependencia lineal en las columnas de B dan las mismas en las columnas de A.

Recíprocamente, las relaciones de dependencia lineal en las columnas de A se mantienen en las de B, pues $A = P^{-1}B$, con P^{-1} el isomorfismo inverso de P.

Ejemplo 13. Describir el núcleo y la imagen de la aplicación lineal $f: \mathbb{R}^6 \longrightarrow \mathbb{R}^6$ determinada por la matriz:

$$A = \begin{pmatrix} 2 & 1 & -2 & 1 & 0 & 2 \\ 1 & -2 & 3 & 2 & 1 & 2 \\ 5 & 0 & -1 & 4 & 1 & 6 \\ 1 & -7 & 11 & 5 & 3 & 4 \\ 4 & 2 & -4 & 2 & 0 & 4 \\ 9 & 2 & -5 & 6 & 1 & 10 \end{pmatrix}.$$

Mediante operaciones elementales por filas se obtiene:

Así rg(A) = 2, dim Nucf = 4 con:

Nuc
$$f = \langle (1, 8, 5, 0, 0, 0), (-4, 3, 0, 5, 0, 0), (-1, 2, 0, 0, 5, 0), (-6, 2, 0, 0, 0, 5) \rangle$$
;

y dim Im f = 2 con:

$$\operatorname{Im} f = \langle (2, 1, 5, 1, 4, 9), (1, -2, 0, -7, 2, 2) \rangle$$
.

3.2. Cambio de base

Supongamos que de un espacio vectorial E de dimensión finita, n, sobre un cuerpo \mathbb{K} , conocemos dos bases:

$$\mathcal{B}_u := \{u_1, \dots, u_n\} \qquad \mathcal{B}_w := \{w_1, \dots, w_n\}$$

Para todo vector $v \in E$ tenemos n uplas $(x_1, \ldots, x_n), (y_1, \ldots, y_n)$ únicas tales que:

$$v = \sum_{i=1}^{n} x_i u_i = \sum_{i=1}^{n} y_i w_i$$

¿qué relación existe entre las coordenadas de un mismo vector en las distintas bases? Veamos algunos ejemplos.

Ejemplo 14.

14.1) Sea E de dimensión 1 sobre \mathbb{R} con bases:

$$\mathcal{B}_u := \{1\} \qquad \mathcal{B}_w := \{2\}.$$

Para el vector v=3 se tiene: $3=3\cdot 1=\frac{3}{2}\cdot 2$. En general, $v=v\cdot 1=\frac{v}{2}\cdot 2$. Si llamamos x a la coordenada en la base \mathcal{B}_{u} e y a la coordenada en \mathcal{B}_{w} , tenemos la relación:

$$y = \frac{x}{2} \,.$$

14.2) Sea E de dimensión 2 sobre \mathbb{R} con bases:

$$\mathcal{B}_u := \{(1,0),(0,1)\} \qquad \mathcal{B}_w := \{(3,0),(0,2)\}.$$

Si $v \in E$ con coordenadas:

$$v = x_1(1,0) + x_2(0,1)$$
 $v = y_1(3,0) + y_2(0,2)$

es clara la relación $y_1 = \frac{x_1}{3}$, $y_2 = \frac{x_2}{2}$, o matricialmente:

$$\left(\begin{array}{c} y_1 \\ y_2 \end{array}\right) = \left(\begin{array}{cc} \frac{1}{3} & 0 \\ 0 & \frac{1}{2} \end{array}\right) \left(\begin{array}{c} x_1 \\ x_2 \end{array}\right)$$

14.3) Sea E de dimensión 2 sobre \mathbb{R} con bases:

$$\mathcal{B}_u := \{(1,0),(0,1)\}$$
 $\mathcal{B}_w := \{(3,1),(0,2)\}.$

Si $v \in E$ con coordenadas:

$$v = x_1(1,0) + x_2(0,1)$$
 $v = y_1(3,0) + y_2(0,2)$

la relación la obtenemos de la siguiente manipulación algebraica:

$$x_1(1,0) + x_2(0,1) = \frac{x_1}{3}(3,1) - \frac{x_1}{3}(0,1) + \frac{x_2}{2}(0,2)$$
$$= \frac{x_1}{3}(3,1) + \left(\frac{x_2}{2} - \frac{x_1}{6}\right)(0,2)$$

Matricialmente:

$$\left(\begin{array}{c} y_1 \\ y_2 \end{array}\right) = \left(\begin{array}{cc} \frac{1}{3} & 0 \\ \frac{-1}{6} & \frac{1}{2} \end{array}\right) \left(\begin{array}{c} x_1 \\ x_2 \end{array}\right)$$

Obsérvese además que:

$$\left(\begin{array}{cc} 3 & 0 \\ 1 & 2 \end{array}\right) \left(\begin{array}{cc} \frac{1}{3} & 0 \\ \frac{-1}{6} & \frac{1}{2} \end{array}\right) = \left(\begin{array}{cc} 1 & 0 \\ 0 & 1 \end{array}\right)$$

siendo la primera la matriz cuyas columnas son los vectores de \mathcal{B}_w expresados en la base \mathcal{B}_u .

Podemos comprobar que esta última afirmación se verifica en todos los ejemplos. A la vista de este resultado enunciamos el siguiente:

Teorema 7 (Cambio de base) Sea E es un espacio vectorial de dimensión n sobre un cuerpo K, y

$$\mathcal{B}_u := \{u_1, \dots, u_n\} \qquad \mathcal{B}_w := \{w_1, \dots, w_n\}$$

dos bases del mismo. Si $[v]_{\mathcal{B}_u} = (x_1, \dots, x_n) \ y \ [v]_{\mathcal{B}_w} = (y_1, \dots, y_n)$, entonces:

$$\begin{pmatrix} y_1 \\ \vdots \\ y_n \end{pmatrix} = \begin{pmatrix} \lambda_{i,j} \end{pmatrix}^{-1} \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}$$

siendo $(\lambda_{1,j},\ldots,\lambda_{n,j})=[w_j]_{\mathcal{B}_u}$ para $j=1,\ldots,n$.

A la matriz

$$\left(\begin{array}{c}\lambda_{i,j}\end{array}\right)^{-1}$$

del teorema se le llama la MATRIZ DEL CAMBIO DE BASE de la base \mathcal{B}_u a la base \mathcal{B}_w .

Dem.: Estamos suponiendo que:

$$w_j = \sum_{i=1}^n \lambda_{i,j} \, u_i$$

para $j=1,\ldots,n$. Obsérvese que el rango de la matriz con entradas $\lambda_{i,j}$ es n, puesto que \mathcal{B}_w son n vectores linealmente independientes de E, y en particular es invertible.

Sea $v \in E$ con $v = \sum_{i=1}^{n} x_i u_i$ y $v = \sum_{i=1}^{n} y_j w_j$, entonces:

$$\begin{split} v &= \sum_{j=1}^{n} y_{j} \, w_{j} &= \sum_{j=1}^{n} y_{j} \left(\sum_{i=1}^{n} \lambda_{i,j} \, u_{i} \right) \\ &= \sum_{j=1}^{n} \left(\sum_{i=1}^{n} \lambda_{i,j} \, y_{j} \, u_{i} \right) \\ v &= \sum_{i=1}^{n} \left(\sum_{i=1}^{n} \lambda_{i,j} \, y_{j} \right) u_{i} \, . \end{split}$$

Puesto que las coordenadas de todo vector en una base determinada son únicas y $v = \sum_{i=1}^{n} x_i u_i$, se tiene de esta y la anterior igualdad:

$$x_i = \sum_{j=1}^n \lambda_{i,j} y_j, \quad \forall i = 1, \dots, n.$$

Matricialmente:

$$\left(\begin{array}{c} x_1 \\ \vdots \\ x_n \end{array}\right) = \left(\begin{array}{c} \lambda_{i,j} \end{array}\right) \left(\begin{array}{c} y_1 \\ \vdots \\ y_n \end{array}\right) \,.$$

Puesto que $(\lambda_{i,j})$ es invertible, esta igualdad equivale a la que queríamos demostrar.

Ejemplo 15. Sea E de dimensión 3 sobre \mathbb{R} . Calcular la matriz del cambio de base de la base

$$\mathcal{B}_u := \{(1,3,-1), (2,1,0), (3,-1,2)\}$$

a la base

$$\mathcal{B}_w := \{(2,2,1), (1,3,-2), (1,7,3)\}.$$

Primero tendríamos que comprobar que efectivamente los conjuntos dados son bases. Para ello, y en previsión de que lo van a ser, ejecutamos el algoritmo de Gauss para buscar sus inversas:

$$\left(\begin{array}{ccc|c} 1 & 2 & 3 & 1 & 0 & 0 \\ 3 & 1 & -1 & 0 & 1 & 0 \\ -1 & 0 & 2 & 0 & 0 & 1 \end{array} \right) \sim \left(\begin{array}{ccc|c} 1 & 0 & 0 & \frac{-2}{5} & \frac{4}{5} & 1 \\ 0 & 1 & 0 & 1 & -1 & -2 \\ 0 & 0 & 1 & \frac{-1}{5} & \frac{2}{5} & 1 \end{array} \right)$$

$$\left(\begin{array}{ccc|c} 2 & 1 & 1 & 1 & 0 & 0 \\ 2 & 3 & 7 & 0 & 1 & 0 \\ 1 & -2 & 3 & 0 & 0 & 1 \end{array} \right) \sim \left(\begin{array}{ccc|c} 1 & 0 & 0 & \frac{23}{40} & \frac{-1}{8} & \frac{1}{10} \\ 0 & 1 & 0 & \frac{1}{40} & \frac{1}{8} & \frac{-3}{10} \\ 0 & 0 & 1 & \frac{-7}{40} & \frac{1}{8} & \frac{1}{10} \end{array} \right)$$

Si denotamos por A la matriz del cambio de base de la canónica a \mathcal{B}_w , por B la del cambio de la canónica a \mathcal{B}_u , y por P la matriz del cambio de \mathcal{B}_u a \mathcal{B}_w , se tiene:

$$P = A \cdot B^{-1}$$

¿por qué? Así:

$$P = \begin{pmatrix} \frac{23}{40} & \frac{-1}{8} & \frac{1}{10} \\ \frac{1}{40} & \frac{1}{8} & \frac{-3}{10} \\ \frac{-7}{40} & \frac{1}{8} & \frac{1}{10} \end{pmatrix} \begin{pmatrix} 1 & 2 & 3 \\ 3 & 1 & -1 \\ -1 & 0 & 2 \end{pmatrix} = \begin{pmatrix} \frac{1}{10} & \frac{41}{40} & \frac{41}{20} \\ \frac{7}{10} & \frac{7}{40} & \frac{-13}{20} \\ \frac{1}{10} & \frac{9}{40} & \frac{9}{20} \end{pmatrix}.$$

Ejemplo 16. Calcular la matriz de la aplicación $\mathrm{Id}:\mathbb{R}^3\longrightarrow\mathbb{R}^3$ respecto a las bases:

$$\mathcal{B}_u := \{(1,3,-1), (2,1,0), (3,-1,2)\}$$
 en el espacio inicial $\mathcal{B}_w := \{(2,2,1), (1,3,-2), (1,7,3)\}$ en el espacio final.

De lo visto hasta ahora, bastaría expresar los vectores de la base \mathcal{B}_u en la base \mathcal{B}_w (¿por qué?). Ahora bien, en el ejemplo anterior hemos calculado la matriz de cambio de base, P, de la base \mathcal{B}_u a la base \mathcal{B}_w . Así:

$$[(1,3,-1)]^t_{\mathcal{B}_w} = [(1,0,0)_{\mathcal{B}_u}]^t_{\mathcal{B}_w} = P(1,0,0)^t_{\mathcal{B}_u} = \left(\frac{1}{10},\frac{7}{10},\frac{1}{10}\right)^t_{\mathcal{B}_w}$$
 en efecto:
$$(1,3,-1) = \frac{1}{10}(2,2,1) + \frac{7}{10}(1,3,-2) + \frac{1}{10}(1,7,3) \,.$$
 Análogamente:
$$[(2,1,0)]^t_{\mathcal{B}_w} = [(0,1,0)_{\mathcal{B}_u}]^t_{\mathcal{B}_w} = P(0,1,0)^t_{\mathcal{B}_u} = \left(\frac{41}{40},\frac{7}{40},\frac{-9}{40}\right)^t_{\mathcal{B}_w}$$
 comprobación:
$$(2,1,0) = \frac{41}{40}(2,2,1) + \frac{7}{40}(1,3,-2) + \frac{-9}{40}(1,7,3) \,;$$
 así como:
$$[(3,-1,2)]^t_{\mathcal{B}_w} = [(0,0,1)_{\mathcal{B}_u}]^t_{\mathcal{B}_w} = P(0,0,1)^t_{\mathcal{B}_u} = \left(\frac{41}{20},\frac{-13}{20},\frac{-9}{20}\right)^t_{\mathcal{B}_w}$$
 comprobación:
$$(3,-1,2) = \frac{41}{20}(2,2,1) + \frac{-13}{20}(1,3,-2) + \frac{-9}{20}(1,7,3) \,.$$

En definitiva la matriz de la aplicación identidad de \mathbb{R}^3 respecto a las bases \mathcal{B}_u y \mathcal{B}_w respectivamente, coincide con la matriz, P, de cambio de base de \mathcal{B}_u a \mathcal{B}_w .

Estos ejemplos ilustran el siguiente resultado, cuya demostración se deja como ejercicio.

Proposición 18 Sea E un espacio vectorial de dimensión finita sobre un cuerpo \mathbb{K} , y sean \mathcal{B}_u y \mathcal{B}_w dos bases del mismo. Entonces, la matriz de la aplicación identidad $\mathrm{Id}: E \longrightarrow E$ respecto a las bases \mathcal{B}_u , para el espacio inicial, y \mathcal{B}_w para el final, coincide con la matriz de cambio de base de la base \mathcal{B}_u a la base \mathcal{B}_w .

En particular, si P es la matriz de cambio de base de \mathcal{B}_u a \mathcal{B}_w , entonces P^{-1} es la matriz de cambio de base de \mathcal{B}_w a \mathcal{B}_u .

3.3. Teorema de isomorfía

Teorema 8 (Teorema de isomorfía) $Si \ f: E \longrightarrow F \ es \ una \ aplicación \ lineal \ de \ espacios \ vecto \ riales, entonces:$

$$\operatorname{Im} f \simeq E/\operatorname{Nuc} f$$
.

Dem.: Si $u \in E$ y $w \in \text{Nuc} f$ entonces:

$$f(u+w) = f(u) + f(w) = f(u),$$

por tanto la aplicación f envía todos los elementos del conjunto

$$u + \text{Nuc} f = \{u + w : w \in \text{Nuc} f\} = [u]$$

al mismo elemento $f(u) \in \text{Im} f$. Tenemos así una aplicación bien definida:

$$g: E/\mathrm{Nuc}f \longrightarrow \mathrm{Im}f$$

 $[u] \longmapsto g([u]) = f(u)$

que es, obviamente, lineal y sobreyectiva (epimorfismo). Además, $g([u]) = \mathbf{0}$ equivale a $f(v) = \mathbf{0}$ para uno, y por lo tanto para cualquier, $v \in [u]$. En particular $v \in \text{Nuc} f$, es decir $[u] = [\mathbf{0}]$, y así g es también inyectiva. En definitiva, g es un isomorfismo, y así $\text{Im} f \simeq E/\text{Nuc} f$.

Corolario 3 Sean F y G subespacios de un espacio vectorial E. Entonces se cumple:

- 1. $(F+G)/F \simeq G/(F \cap G)$;
- 2. si además $F \subset G$, entonces:

$$(E/F)/(G/F) \simeq E/G$$
.

Dem.:

1. La aplicación

$$\begin{array}{ccc} f:G & \longrightarrow & (F+G)/F \\ v & \longmapsto & [v] \end{array}$$

es lineal. El núcleo de f está formado por todos los vectores $v \in G$ tales que $[v] = [\mathbf{0}]$ en la relación de equivalencia, en F + G, módulo F, es decir tales que $v \in F \cap G$. Por tanto Nuc $f = F \cap G$ y por el teorema de isomorfía:

$$(F+G)/F \simeq G/(F\cap G)$$
.

2. Obsérvese que $F \subset G$ implica, para todo $u \in E$, la inclusión de conjuntos:

$$u + F = \{u + w_F : w_F \in F\} \subset \{u + w_G : w_G \in F\} = u + G.$$

Si para $u \in E$, denotamos por $[u]_F$ la clase de u módulo F, y por $[u]_G$ la clase de u módulo G, la inclusión anterior nos permite definir la aplicación:

$$\begin{array}{ccc} f: E/F & \longrightarrow & E/G \\ [u]_F & \longmapsto & [u]_G \end{array}$$

que está bien definida pues elementos equivalentes módulo F también lo son módulo G. En efecto si $u \sim_F v$, entonces $v \in u + F \subset u + G$, y por tanto $u \sim_G v$.

Además la aplicación es lineal y sobreyectiva, y su núcleo es $\{[u]_F : u \in G\} = G/F$, por tanto:

$$(E/F)/(G/F) \simeq E/G$$

por el teorema de isomorfía.

Nota 3. Obsérvese que todos los isomorfismos definidos en las demostraciones anteriores se han construído sin utilizar bases. Se denominan canónicos a este tipo de isomorfismos, definidos sin bases.

Ejemplo 17.

17.1) Consideremos la aplicación lineal

$$f: \mathbb{R}^2 \longrightarrow \mathbb{R}$$
$$(x,y) \longmapsto x - y.$$

El núcleo es la recta diagonal del primer cuadrante: $\ell_0 := <(1,1)>$. El cociente $\mathbb{R}^2/\mathrm{Nuc}f$ es el conjunto de rectas paralelas a la diagonal ℓ_0 . Si ℓ_a es la recta paralela a ℓ_0 que pasa por el punto (a,0) del eje <(1,0)>, el isomorfismo canónico $g:\mathbb{R}^2/\mathrm{Nuc}f\longrightarrow\mathbb{R}$ envía ℓ_a a su intersección con el eje $<(1,0)>\simeq\mathbb{R}$: $g(\ell_a)=a$.

17.2) Sea $E = \mathbb{R}^3$, $e_1 = (1,0,0)$, $e_2 = (0,1,0)$, $e_3 = (0,0,1)$, $F = < e_1, e_2 >$ y $G = < e_2, e_3 >$. Entonces:

$$F+G=\mathbb{R}^3;$$

 $\mathbb{R}^3/F = \text{planos paralelos al plano} \, F = \{(x,y,0)\};$

$$F \cap G = \langle e_2 \rangle;$$

 $G/F \cap G = \operatorname{rect}$ as en el plano $G = \{(0,y,z)\}$, paralelas al eje < $e_2 >$.

El isomorfismo canónico $F+G/F\simeq G/F\cap G$ identifica cada plano paralelo a F con la única recta del plano G paralela al eje $< e_2 >$ contenida en él.

17.3) Con e_1 , e_2 y e_3 como antes, $F = \langle e_1 \rangle \subset G = \langle e_1, e_2 \rangle$, $E = \mathbb{R}^3$, se tiene

 $G/F = \text{rectas paralelas a } F \text{ en el plano } G = \{(x, y, 0)\};$

E/F = rectas paralelas al eje F;

 $E/G = {\rm planos\ paralelos\ al\ plano}\ G = \{(x,y,0)\};$

(E/F)/(G/F)=conjuntos de rectas paralelas a F situadas en un plano paralelo a $G=\{(x,y,0)\}$.

El isomorfismo canónico $(E/F)/(G/F) \simeq E/G$ identifica cada conjunto de rectas paralelas a F situadas en un plano paralelo a G, con el plano en cuestión.