

EXERCÍCIO III – SISTEMAS DE NUMERAÇÃO CONVERSÃO DE OCTAL PARA DECIMAL E BINÁRIO

1. Converta os seguintes endereços em binário para decimal

a. 00001010.01111111.11110000.00011111

$$00001010 \rightarrow 2+8 = 10$$

$$011111111 \rightarrow 1+2+4+8+16+32+64 = 127$$

$$000111111 \rightarrow 1+2+4+8+16 = 31$$

Resultado: 10.127.240.31

b. 11001000.11000000.01110110.00100000

$$01110110 \rightarrow 2+4+16+32+64 = 118$$

Resultado: 200.192.118.32

2. Converta de representação octal para decimal

a.
$$234 \rightarrow 2x8^2 + 3x8^1 + 4x8^0 = 128 + 24 + 4 = 156$$

b.
$$123 \rightarrow 1x8^2 + 2x8^1 + 3x8^0 = 64 + 16 + 3 = 83$$

c.
$$7765 \rightarrow 7x8^3 + 7x8^2 + 6x8^1 + 5x8^0 = 3584 + 448 + 48 + 5 = 4085$$

a. Converta o número 1034(10) para cada uma das seguintes bases:

a. Base 2
$$\rightarrow$$
 1034-1024 = 10-8 = 2 = $\underline{10000001010}$

b. Base
$$8 \rightarrow 1034/8 = 129$$
. $129x8 = 1032$. Sobram 2. $129/8 = 16$. $16x8=128$. Sobra 1. $16/8=2$. Sobra 0. $2/8=0$. $2-0=$ sobra 2. 2012

3. Converta os seguintes números de octal para binário:

a.
$$103 \rightarrow \text{Primeiro para decimal: } 1x8^2 + 0x8^1 + 3x8^0 = 64 + 0 + 3 = 67.$$

Para binário: $67-64 = 3-2 = 1 \rightarrow 1000011$

b. $2732 \rightarrow \text{Primeiro para decimal: } 2x8^3 + 7x8^2 + 3x8^1 + 2x8^0 = 1024 + 448 + 24 + 2 = 1498$

Para binário: 1498-1024=474-256=218-128=90-64=26-16=10-8=2 → 10111011010

- 4. Converta os números escrito na base 2 em octal.
 - a. 1110011010101
 - 111 7
 - 011 3
 - 010 2
 - 101 5
 - <u>7325</u>(8)
 - b. 10111001110
 - 10 2
 - 111 7
 - 001 1
 - 110 6
 - <u>2716</u>(8)
 - c. 10000111101010
 - 10 2
 - 000 0
 - 111 7
 - 101 5
 - 010 2
 - <u>20752</u>(8)

_