

Using Origin-Destination Flow Graph and Public Transit Information to Enhance Short-Term Ridership Prediction in Bike-Sharing Systems

Kaifa Lu

International Center for Adaptation Planning & Design (iAdapt)
College of Design, Construction and Planning
University of Florida
April 25th, 2023

Bike-Sharing Market Is Blooming in Transportation Landscape

- As of July 2022, 61 docked bikeshare systems open to the general public operated 8,473 docking stations in the U.S.
- In Washington D.C., there are about more than 200,000 bikeshare trips each month, most of which are docked trips.
- Bike-sharing system is blooming in transportation landscape.

Source: https://data.bts.gov/stories/s/Bikeshare-and-e-scooters-in-the-U-S-/fwcs-jprj/

Bike-Sharing System Is Shaping New Transportation Landscape

Potential solution: Accurate spatiotemporal prediction of bike-sharing ridership is crucial to assist decision-makers in formulating effective bike dispatching and rebalancing plans and mitigating spatiotemporal imbalance.

Research Question

How to improve the accuracy of short-term ridership prediction in bike-sharing system?

Literature Review

However, there is a lack of a feature engineering approach to predicting bikesharing ridership that can compromise among data need, computing power, model interpretation, and prediction accuracy.

Types of dealing with docked bike ridership forecasting problems :

- Forecast unit: (1) at an individual station level (Lin et al. 2018); (2) at an aggregated group level (Li et al. 2015). The latter is preferred due to high flexibility of sharing bikes, and ridership biases and uncertainties among adjacent stations, which makes station-level prediction highly challenging.
- Forecast model:
 - o Parametric statistical models (Kaltenbrunner et al. 2010): timeseries prediction model, i.e., ARIMA (Jaber et al. 2022)
 - Machine learning approaches (Cho et al., 2021): random forest and support vector machine (Gao and Chen, 2022), convolutional neural networks (Li et al. 2023), and graph neural networks (Lin et al. 2018)

Background

Research Question

How to improve the accuracy of short-term ridership prediction in bike-sharing system?

Literature Review

A big research gap: whether bike trip flow and public transit information can further improve the accuracy of bikesharing ridership prediction? The key to feature engineering is how to extract features significantly contributing to the accuracy of bike ridership prediction:

- *Temporal feature*: hour of a day, day of a week, holidays (Jaber et al. 2022)
- Meteorology: temp, humidity, wind, precipitation (Cantelmo et al. 2020)
- Built environment: design, density, diversity, accessibility (Liu & Lin, 2019)
- Public transit: metro & bus schedules and ridership (Fan et al. 2019)
- *Origin-destination flow graph*: there are unexplored features present in time-series data of bike trips than may improve the prediction precision.

Most of feature engineering approaches was based on the association between bike-sharing ridership and the first three feature groups.

Approach: Data and Methods

Data:

- Bikeshare trip data in Washington D.C. during March 2020.
- GTFS data in Washington D.C. during March 2020.
- OpenStreetMap and socio-demographics & built environment
- Hourly meteorological data during March 2020

Methods:

- Modelling paradigm: Network Science & Machine Learning.
- Research method: A data-driven variable selection and feature engineering approach for short-term bike-sharing ridership prediction.
- Research design:
 - Data preprocessing and preparation
 - Bike station clustering: K-means clustering to group 352 bike stations into 100 clusters based on spatial proximity
 - OD flow graph construction and feature extraction: Nodes, Edges, and Weights & Degree, Betweenness, and PageRank
 - Public transit information: static and dynamic number of transit (bus or metro) stops around clustered centroids
 - Data aggregation: bike trip data, meteorology, built environment, OD graph and public transit information at the same scale

Table 2 Descriptive statistics affiliated to the 100 clustered centroids in Washington D.C.							
Metric		Stat	57 111 1 12				
	Mean	Std	Min	Median	Max	Variable description	
Hourly ridership	1.7971	3.9791	0	0	72	Hourly volume of bike trips	
Graph attributes							

Approach: Data & Methods Background

Approach: Data and Methods

- Methods (continued):
 - Research design (continued):
 - Variable selection: A Spatial Vector Autoregressive LASSO (SpVAR-LASSO) Model
 - Opendent variables: $y_{i,t}$ Bike-sharing ridership data at 100 clustered centroids
 - o Independent variables: x_i Population density, housing unit density, land use diversity, bike lane density, static and dynamic number of metro and bus stops around bike centroids, $y_{i,t-1\sim t-n}$ bike-sharing ridership data in the last 168 hours (1 week)
 - Model form:

$$y_{i,t} = \beta_0 + \boldsymbol{\beta_1} \boldsymbol{x}_i + \beta_2 \sum_j w_{ij} y_{j,t} + \boldsymbol{\beta_3} \boldsymbol{y}_{i,t-1 \sim t-n} + \gamma \sum_j |\boldsymbol{\beta_j}| + \varepsilon_{i,t}; \boldsymbol{\beta} = \underset{\boldsymbol{\beta}}{\operatorname{argmin}} [(\boldsymbol{Y}_t - (\boldsymbol{X}, \boldsymbol{Y}_{t-1 \sim t-n}) \boldsymbol{\beta})' (\boldsymbol{Y}_t - (\boldsymbol{X}, \boldsymbol{Y}_{t-1 \sim t-n}) \boldsymbol{\beta}) + \gamma \sum_j |\boldsymbol{\beta_j}|]$$

- Short-term bike-sharing ridership prediction: Baseline model (HA, ARIMA), OLS, MLP, and XGBoost (a feature engineering approach)
 - \circ Dependent variables: Y Bike-sharing ridership data at 100 clustered centroids
 - \circ Independent variables: X Temporal variables, spatial variables, graph attributes, public transit information, and meteorology selected

from the SpVAR-LASSO Model

Model form:

OLS:
$$Y = AX + b + \varepsilon$$

MLP:

XGBoost:

Results – Data Preprocessing and Aggregation

• **Bike station clustering:** 352 bike stations into 100 bike centroids

- Graph construction and attributes:
 - Nodes: 100 centroids of 352 bike stations.
 - Edges: A travel flow from A to B.
 - Weights: The hourly number of trips from A to B.

Public transit information:

- Dynamic number of metro stops nearby: 2
- Dynamic number of bus stops nearby: 6
- Static number of metro stops nearby: 1
- Static number of bus stops nearby: 4

Results – Spatiotemporal Distribution of Bike Ridership

Temporal distribution:

- No significant weekly variation.
- Significant daily variation.
- Two peaks occurred at 8-9 am and 5-6 pm.

Spatial distribution:

- Downtown > Surroundings.
- Implying land use patterns:
- A: more likely to be residential areas.
- B: more likely to be commercial areas or workplace

Results & Major Findings

Results – Variable Selection for Ridership Prediction

- **SpVAR-LASSO**: both temporal and spatial information.
 - · Hyperparameter:
 - Time lag: 168 (based on ACF)
 - \circ Penalty: γ =0.0001 (based on CV)
 - Experiment design:
 - Perform 576 regressions (CV) for each hour
 - Count the number of each variable with nonzero coefficient estimates

Variable Selection and Importance:

- Spatial variables: dynamic number of bus and metro stops, as well as static number of bus stops.
- Temporal variables: bike demand data in the last 168th, 24th, 144th, 96th, 72nd, and 120th hours.

Results – Short-Term Bike Ridership Prediction

Experimental Design:

- Model inputs (Table 1)
- Experimental design:
 - Basic scenario (S0): T+M as model inputs
 - Effect of spatial dependency (S1): T+M+S as model inputs
 - Effect of graph attributes (S2): T+M+S+G as model inputs
 - Effect of public transit information (S3): T+M+S+PT as model inputs
 - Effect of all features (S4): T+M+S+G+PT as model inputs

- Model: HA, ARIMA, OLS, MLP, XGBoost.
- Data: training (80%) and testing (20%) data
 - All data set (D0): All data sets as model inputs
 - Partial data set 1 (D1): Non-zero data sets
 - Partial data set 2 (D2): Rush-hour data sets
- Evaluation indices:
 - MSE and r²

Prediction Accuracy:

- XGBoost > MLP > OLS > HA & ARIMA
- Effect of feature inputs:
 - Key: temporal & spatial features
 - Graph + Public Transit can further improve accuracy
- Effect of dataset:
 - All > rush-hour > nonzero dataset
 - In any dataset, public transit information is important
 - In all or nonzero datasets, graph is less important; while in rushhour dataset, graph is more important.

Table 4 Comparison of prediction accuracy								
Model	Dataset	All dataset (N=57,600)			o dataset 3,162)	Rush-hour dataset (N=19,200)		
	Scenario	MSE	\mathbf{r}^2	MSE	\mathbf{r}^2	MSE	\mathbf{r}^2	
HA	T	15.57	-2.93	24.79	-5.22	29.27	-1.64	
ARIMA	1	19.97	-0.58					
	T+M	4.54/4.33	0.65/0.64	9.45/9.36	0.58/0.59	7.43/7.61	0.68/0.66	
	T+M+S	4.14/3.90	0.68/0.68	8.71/8.41	0.61/0.63	6.80/6.25	0.70/0.73	
OLS	T+M+S+G	4.10/3.89	0.68/0.68	8.62/8.31	0.62/0.64	6.57/6.79	0.72/0.69	
	T+M+S+PT	4.12/3.88	0.68/0.68	8.65/8.40	0.61/0.63	6.63/6.84	0.71/0.69	
	T+M+S+G+PT	4.08/3.87	0.68/0.68	8.57/8.30	0.62/0.64	6.55/6.77	0.72/0.69	
MLP	T+M	3.31/3.88	0.74/0.68	7.53/7.38	0.66/0.68	5.48/6.14	0.76/0.72	
	T+M+S	3.10/3.57	0.76/0.71	6.74/6.62	0.70/0.71	4.97/4.86	0.78/0.79	
	T+M+S+G	2.90/3.47	0.77/0.71	6.34/6.81	0.72/0.70	4.34/5.49	0.81/0.75	
	T+M+S+PT	2.97/3.46	0.77/0.71	6.53/6.68	0.71/0.71	4.55/5.57	0.80/0.75	
	T+M+S+G+PT	2.88/3.49	0.78/0.71	6.22/6.86	0.72/0.70	4.68/5.84	0.80/0.74	
	T+M	3.07/3.70	0.76/0.70	6.46/7.14	0.71/0.69	4.26/5.45	0.82/0.75	
XGBoost	T+M+S	2.83/3.41	0.78/0.72	5.98/6.56	0.73/0.71	4.16/4.96	0.82/0.79	
	T+M+S+G	2.82/3.42	0.78/0.72	5.95/6.63	0.73/0.71	4.02/5.46	0.83/0.75	
	T+M+S+PT	2.68/3.27	0.79/0.73	5.80/6.37	0.74/0.72	3.96/5.19	0.83/0.77	
	T+M+S+G+PT	2.67/3.25	0.79/0.73	5.71/6.44	0.75/0.72	3.93/5.30	0.83/0.76	

Note: a/b in MSE and R² columns represent training and testing MSE and R², respectively.

Results – Short-Term Bike Ridership Prediction

OLS Regression Results							
Dep. Variable: Model: Method: Date: Time:	lag_0 OLS Least Squares Mon, 24 Apr 2023 14:10:01		Adj. R-squared: Adj. R-squared: F-statistic: Prob (F-statistic): Log-Likelihood: AIC:		0. 39 0 -1.2196e		
No. Observations: Df Residuals: Df Model: Covariance Type:	no	57600 57568 31 nonrobust		dataset	2.440e+05 2.443e+05		
	coef	std err	t	P> t	[0.025	0.975]	
const	-0.9855	0.232	-4.247	0.000	-1.440	-0.531	
lag_24	0.3410	0.003	100.195	0.000	0.334	0.348	
lag_96	0.0434	0.003	12.732	0.000	0.037	0.050	
lag_120	0.0370	0.004	9.884	0.000	0.030	0.044	
lag_144	0.0804	0.004	21.966	0.000	0.073	0.088	
lag_168	0.1610	0.003	48.888	0.000	0.155	0.167	
gw_lag_0	0.4896	0.006	77.199	0.000	0.477	0.502	
degree_24 pagerank_24 petweenness_24	-2.0401	0.285	-7.165	0.000	-2.598	-1.482	
	0.4538	0.368	1.232	0.218	-0.268	1.176	
	-1.5621	0.470	-3.322	0.001	-2.484	-0.640	
degree_96 pagerank_96 petweenness 96 degree 120	-2.0880	0.282	-7.397	0.000	-2.641	-1.535	
	1.8029	0.381	4.732	0.000	1.056	2.550	
	0.4549	0.474	0.960	0.337	-0.474	1.384	
	-1.2003	0.279	-4.306	0.000	-1.747	-0.654	
pagerank_120	1.2817	0.384	3.339	0.001	0.529	2.034	
betweenness 120	-0.0568	0.475	-0.120	0.905	-0.988	0.874	
degree_144	-1.7707	0.276	-6.426	0.000	-2.311	-1.231	
pagerank_144	1.3110	0.387	3.388	0.001	0.553	2.069	
betweenness 144	-0.5192	0.479	-1.084	0.279	-1.458	0.420	
degree_168	-1.5701	0.278	-5.651	0.000	-2.115	-1.025	
pagerank_168	1.2008	0.394	3.045	0.002	0.428	1.974	
betweenness_168	-1.1023	0.476	-2.315	0.021	-2.035	-0.169	
metro dnum 0	-0.0004	0.000	-1.472	0.141	-0.001	0.000	
bus dnum 0	-0.0023	0.000	-14.119	0.000	-0.003	-0.002	
bus_snum_0	0.0986	0.006	16.894	0.000	0.087	0.110	
	0.0087	0.007	1.259	0.208	-0.005	0.022	
	0.0353	0.008	4.417	0.000	0.020	0.051	
dew_point_temp	-0.0329	0.008	-3.969	0.000	-0.049	-0.017	
relative_humidity	0.0069	0.002	3.120	0.002	0.003	0.011	
wind_speed	-0.0135	0.002	-6.352	0.000	-0.018	-0.009	
precipitation			-1.346 1.750				
Omnibus: Prob(Omnibus): Skew:	44	4407.355 0.000 3.006	Durbin-Watso Jarque-Bera Prob(JB):		4815275.	.00	

OLS Regression Results							
Dep. Variable:		lag 0	R-squared:			:==	
Model:		OLS	Adj. R-square	ed:	0.6		
Method:	Least 9	Squares	F-statistic:		122		
Date:	Mon, 24 A		Prob (F-stat:	istic):		00	
Time:		1:24:25	Log-Likeliho		-5768		
No. Observations:	_	23162	AIC:		1.154e+		
Df Residuals:		23130	BIC:	_	1 15704		
Df Model:		31	Nnn-7	ero data	set		
Covariance Type:	noi	nrobust	11011 2	oro data	300		
=========	coef	std err	t	P> t	[0.025	0.975]	
const	-0.7840	0,557	-1.409	0,159	-1.875	0.307	
	0.3285	0.005	-1.409 61.707	0.159	0.318	0.307	
lag_24 lag 96	0.0435	0.005	8.045	0.000	0.033	0.054	
lag_96 lag 120	0.0396	0.006	6.665	0.000	0.028	0.051	
lag_120 lag 144	0.0396	0.006	14.741	0.000	0.028	0.097	
lag_144 lag 168	0.1547	0.005	29.652	0.000	0.144	0.165	
gw lag 0	0.5192	0.003	48.971	0.000	0.498	0.540	
degree 24	-3.6869	0.638	-5.776	0.000	-4.938	-2.436	
pagerank 24	2.3008	1.050	2.192	0.028	0.243	4.358	
pager ank_24	-0.7553	0.870	-0.868	0.385	-2.460	0.950	
degree 96	-3.1206	0 602	-5 18/1	0 000	-4.301	-1.941	
pagerank 96	3.3281				4 202	5.353	
perweenness so	1.7308	_o ler	nporal + 🤄	Snatial 4	-0.013	3.474	
degree 120	-1.5707				2 720	-0.413	
pager ank_120	2.0223	₃l lec	gree + Pag	geKank ·	- 0.075	4.119	
betweenness 120	1.4860	_		_	0 202	3.254	
degree 144	-2.5494	Puhl	ic Transit	t + Wind	+ -3.673	-1.426	
pagerank 144	2.5721	1.000	IO IT GIISI	t Willia	0.495	4.649	
Detweelilless 144	1.0238	0.903	Tempera	ature ⁵⁷	-0.747	2.794	
degree 168	-2.1754	0.575	rompore	itui U	-3.303	-1.048	
pagerank_168	3.7155	1.130	3.289	0.001	1.502	5.929	
petweenness_168	0.0161	0.917	0.018	0.986	-1.781	1.813	
metro dnum 0	-0.0002	0.000	-0.388	0.698	-0.001	0.001	
bus_dnum_0	-0.0023	0.000	-8.571	0.000	-0.003	-0.002	
bus_snum_0	0.0372	0.011	3.350	0.001	0.015	0.059	
	0.0196	0.023	0.840	0.401	-0.026	0.065	
temperature	0.0599	0.017	3.592	0.000	0.027	0.093	
dew_point_temp	-0.0442	0.017	-2.567	0.010	-0.078	-0.010	
=. 1	0.0072	0.005	1.453	0.146	-0.003	0.017	
wind_speed	-0.0188	0.005	-3.810	0.000	-0.028	-0.009	
wind_direction	-0.0003	0.000	-1.562	0.118	-0.001	8.3e-05	
precipitation	-0.4739	4.026	-0.118 	0.906 	-8.364	7.416	
Omnibus:	134	173.526	Durbin-Watso	n:	1.8	806	
Prob(Omnibus):		0.000	Jarque-Bera	(JB):	459443.2	214	
Skew:		2.224	Prob(JB):		0.	00	
Kurtosis:		24.361	Cond. No.		4.92e+	-04	
						==	

	OL	_	ion Results					
======== Dep. Variable:		lag_0	R-squared:		0.713			
Model:		OLS	Adj. R-squar	ed:	0.713			
Method:	Least	Squares	F-statistic:		1538.			
Date:	Mon, 24 A	pr 2023	Prob (F-stat	istic):	0.00			
Time:	1	4:14:25	Log-Likeliho	od:	-45352.			
No. Observations:		19200	AIC:		9.077e+04			
Df Residuals:		19168	BIC:		9.102e+04			
Df Model:		31	Rush	-hour da	taset			
Covariance Type:	nonrobust							
==========	coef	std err	t	P> t	[0.025	0.975]		
const	-0.2863	0.519	-0.551	0.581	-1.304	0.732		
lag 24	0.3951	0.006	69.658	0.000	0.384	0.406		
lag_24	0.0344	0.006	5.927	0.000	0.023	0.406		
lag_90 lag_120	0.0297	0.007	4.516	0.000	0.023	0.043		
lag_120	0.0762	0.006	11.960	0.000	0.064	0.089		
lag_168	0.1537	0.005	28.033	0.000	0.143	0.164		
gw lag 0	0.5155	0.003	48.634	0.000	0.495	0.104		
degree 24	-5.2390	0.651	-8.047	0.000	-6.515	-3.963		
pagerank 24	1.0737	1.235	0.870	0.385	-1.346	3.494		
hetweenness 24	0.2846	0.998	0.285	0.776	-1.671	2.240		
degree 96	-1.7893	0.592	-3.025	0.002	-2.949	-0.630		
pagerank 96	4.1715	1.384	3.015	0.003	1.459	6.884		
Dermeelilless ao	1.2429	1.040	1.195	0.232	-0.796	3.281		
degree 120	-0.3456	0.575	-0.601	0.548	-1.473	0.782		
pagerank 120	1.4789	1.405	1.052	0.293	-1.275	4.233		
DC CMCCIIIIC33_120	-0.6703	1.030	-0.651	0.515	-2.689	1.349		
degree 144	-2.5175	0.557	-4.518	0.000	-3.610	-1.425		
nagananic 144	1.9807	1.417	1.398	0.162	-0.797	4.759		
hatwaannass 111	2.0144	1.038	1.940	0.052	-0.020	4.049		
degree 168	-2.2351	0.552	-4.050	0.000	-3.317	-1.153		
радеганк 108	0.2867	1.428	0.201	0.841	-2.512	3.086		
hetweenness 168	-0.0180	1.028	-0.017	0.986	-2.033	1.997		
metro_dnum_0	-0.0010	0.000	-2.098	0.036	-0.002	-6.64e-05		
bus_dnum_0	-0.0016	0.000	-5.774	0.000	-0.002	-0.001		
bus snum 0	0.0772	0.013	6.112	0.000	0.052	0.102		
visibility	-0.0242	0.016	-1.558	0.119	-0.055	0.006		
temperature	0.0286	0.018	1.626	0.104	-0.006	0.063		
dew_point_temp	-0.0034	0.019	-0.183	0.855	-0.040	0.033		
relative humidity	-0.0017	0.005	-0.347	0.729	-0.012	0.008		
wind_speed	-0.0198	0.005	-4.152	0.000	-0.029	-0.010		
wind_direction	-0.0009	0.000	-4.635	0.000	-0.001	-0.001		
precipicacion	1.4465	2.185	0.662 	0.508 	-2.836	5.729		
 Omnibus:		 288.765	Durbin-Watso			799		
Prob(Omnibus):		0.000	Jarque-Bera		465101.	489		
Skew:		2.197	Prob(JB):			0.00		
Kurtosis:		26.708	Cond. No.		2.55e	+04		
						===		

Summary

Conclusions

Bike Ridership Distribution

 Significant daily variations and spatial distribution patterns

SpVAR-LASSO: Variable Selection

 Bike ridership prediction: public transit, bike ridership in the last 168th,24th,144th,96th,72nd,120th hours.

XGBoost: Bike Ridership Prediction

• Graph (rush-hour) and public transit can improve accuracy.

Discussion

Innovation:

- To propose a feature engineering approach for bike ridership prediction
- (2) To reveal the impact of OD flow graph and transit information on the prediction accuracy

Implication:

- (1) Bike fleet rebalancing to reduce the spatiotemporal imbalance
- (2) Insights into the interaction between bike-sharing system and public transit

References

- Baumanis, C., Hall, J., Machemehl, R., 2023. A machine learning approach to predicting bicycle demand during the COVID-19 pandemic. Research in Transportation Economics.
- Bigazzi, A., Wong, K., 2020. Electric bicycle mode substitution for driving, public transit, conventional cycling, and walking. Transportation Research Part D: Transport and Environment 85.
- Cantelmo, G., Kucharski, R., Antoniou, C., 2020. Low-dimensional model for bike-sharing demand forecasting that explicitly accounts for weather data. Transportation Research Record: Journal of the Transportation Research Board 2674, 132-144.
- Chen, L., Ma, X., Nguyen, T.-M.-T., Pan, G., Jakubowicz, J., 2017. Understanding bike trip patterns leveraging bike sharing system open data. Frontiers of Computer Science 11, 38-48.
- Cho, J.-H., Ham, S.W., Kim, D.-K., 2021. Enhancing the accuracy of peak hourly demand in bike-sharing systems using a graph convolutional network with public transit usage data. Transportation Research Record: Journal of the Transportation Research Board 2675, 554-565.
- Fan, A., Chen, X., Wan, T., 2019. How have travelers changed mode choices for first/last mile trips after the introduction of bicycle-sharing systems: An empirical study in Beijing, China. Journal of Advanced Transportation 2019, 1-16.
- Ferguson, B., Sanguinetti, A., 2021. Facilitating micromobility for first and last mile connection with public transit through environmental design: A case study of California Bay Area rapid transit stations. Proceedings of the Design Society 1, 1577-1586.
- Gao, C., Chen, Y., 2022. Using machine learning methods to predict demand for bike sharing, in: Stienmetz, J.L., Ferrer-Rosell, B., Massimo, D. (Eds.), Information and Communication Technologies in Tourism 2022. Springer.
- Hartigan, J.A., Wong, M.A., 1979. Algorithm AS 136: A K-Means Clustering Algorithm. Applied Statistics 28.
- Hasselwander, M., Nieland, S., Dematera-Contreras, K., Goletz, M., 2022. MaaS for the masses: Potential transit accessibility gains and required policies under mobility-as-a-service.
- Jaber, A., Csonka, B., Juhasz, J., 2022. Long term time series prediction of bike sharing trips: A cast study of Budapest City, 2022 Smart City Symposium Prague (SCSP), pp. 1-5.
- Jin, C., Lee, G., 2019. Exploring spatiotemporal dynamics in a housing market using the spatial vector autoregressive Lasso: A case study of Seoul, Korea. Transactions in GIS 24, 27-43.
- Kaltenbrunner, A., Meza, R., Grivolla, J., Codina, J., Banchs, R., 2010. Urban cycles and mobility patterns: Exploring and predicting trends in a bicycle-based public transport system. Pervasive and Mobile Computing 6, 455-466.
- Li, X., Xu, Y., Zhang, X., Shi, W., Yue, Y., Li, Q., 2023. Improving short-term bike sharing demand forecast through an irregular convolutional neural network. Transportation Research Part C: Emerging Technologies 147.
- Li, Y., Zheng, Y., Zhang, H., Chen, L., 2015. Traffic prediction in a bike-sharing system, Proceedings of the 23rd SIGSPATIAL International Conference on Advances in Geographic Information Systems, pp. 1-10.
- Lin, L., He, Z., Peeta, S., 2018. Predicting station-level hourly demand in a large-scale bike-sharing network: A graph convolutional neural network approach. Transportation Research Part C: Emerging Technologies 97, 258-276.

References

- Lin, P., Weng, J., Hu, S., Alivanistos, D., Li, X., Yin, B., 2020. Revealing spatio-temporal patterns and influencing factors of dockless bike sharing demand. IEEE Access 8, 66139-66149.
- Liu, H.-C., Lin, J.-J., 2019. Associations of built environments with spatiotemporal patterns of public bicycle use. Journal of Transport Geography 74, 299-312.
- Madapur, B., Madangopal, S., Chandrashekar, M.N., 1970. Micro-mobility infrastructure for redefining urban mobility. European Journal of Engineering Science and Technology 3, 71-85.
- Oeschger, G., Carroll, P., Caulfield, B., 2020. Micromobility and public transport integration: The current state of knowledge. Transportation Research Part D: Transport and Environment 89.
- Peng, B., Yang, K., Dong, X., 2023. Variable selection for quantile autoregressive model: Bayesian methods versus classical methods. Journal of Applied Statistics, 1-33.
- Reck, D.J., Haitao, H., Guidon, S., Axhausen, K.W., 2021. Explaining shared micromobility usage, competition and mode choice by modelling empirical data from Zurich, Switzerland. Transportation Research Part C: Emerging Technologies 124.
- Saberi, M., Ghamami, M., Gu, Y., Shojaei, M.H., Fishman, E., 2018. Understanding the impacts of a public transit disruption on bicycle sharing mobility patterns: A case of Tube strike in London. Journal of Transport Geography 66, 154-166.
- Saberi, M., Mahmassani, H.S., Brockmann, D., Hosseini, A., 2016. A complex network perspective for characterizing urban travel demand patterns: graph theoretical analysis of large-scale origin—destination demand networks. Transportation 44, 1383-1402.
- Tavassoli, K., Tamannaei, M., 2020. Hub network design for integrated Bike-and-Ride services: A competitive approach to reducing automobile dependence. Journal of Cleaner Production 248.
- Xu, Y., Paliwal, M., Zhao, X., 2021. Real-time forecasting of dockless scooter-sharing demand: A context-aware spatio-temporal multi-graph convolutional network approach. arXiv preprint arXiv:2111.01355.
- Yang, Y., Heppenstall, A., Turner, A., Comber, A., 2019. A spatiotemporal and graph-based analysis of dockless bike sharing patterns to understand urban flows over the last mile. Computers, Environment and Urban Systems 77.
- Yang, Y., Heppenstall, A., Turner, A., Comber, A., 2020. Using graph structural information about flows to enhance short-term demand prediction in bike-sharing systems. Computers, Environment and Urban Systems 83.
- Yang, Y., Shao, X., Zhu, Y., Yao, E., Liu, D., Zhao, F., Zou, Y., 2023. Short-term forecasting of dockless bike-sharing demand with the built environment and weather. Journal of Advanced Transportation 2023, 1-13.
- Zellner, A., 1962. An efficient method of estimating seemingly unrelated regressions and tests for aggregation bias. Journal of the American statistical Association 57, 348-368.
- Zhou, Y., Li, Y., Zhu, Q., Chen, F., Shao, J., Luo, Y., Zhang, Y., Zhang, P., Yang, W., 2019. A reliable traffic prediction approach for bike- sharing system by exploiting rich information with temporal link prediction strategy. Transactions in GIS 23, 1125-1151.
- Zuo, T., Wei, H., Chen, N., Zhang, C., 2020. First-and-last mile solution via bicycling to improving transit accessibility and advancing transportation equity. Cities 99.