

Dual Precision JFET-Input Operational Amplifier

OP-215

FEATURES

•	High Siew Rate	10V/μs Min
•	Fast Settling Time $0.9\mu s$	to 0.1% Typ
•	Low Input Offset Voltage Drift 1	0μV/°C Max
•	Wide Bandwidth	3.5MHz Min

- **Temperature-Compensated Input Blas Currents**
- Guaranteed Input Bias Current 18nA Max (125°C)
- Bias Current Specified Warmed-Up Over Temperature
- Low Input Noise Current 0.01pA/√Hz Typ
- High Common-Mode Rejection Ratio 86dB Min
- Pin Compatible With Standard Dual Pinouts
- 125° C Temperature Tested DICE
- Models With MIL-STD-883 Class B Processing Available
- Available in Die Form

ORDERING INFORMATION 1

T_= 25°	C	PACKAGE									
V _{oe} MA (mV)	X TO-99	CERDIP 8-PIN	PLASTIC 8-PIN	LCC 20-CONTACT	TEMPERATURE RANGE						
1.0 (OP215AJ*	OP215AZ*	_	_	MIL						
1.0	OP215EJ	OP215EZ	OP215EP	_	COM						
2.0	OP215BJ/883	OP215BZ/883		OP215BRC/88	3 MIL						
2.0	OP215FJ	OP215FZ	OP215FP	_	COM						
4.0 (OP215CJ/883	OP215CZ/883	_	_	MIL						
6.0	_	OP215GZ	OP215GP	_	XIND						
6.0	_	_	OP215GS	-	XIND						

- For devices processed in total compliance to MIL-STD-883, add /883 after part number. Consult factory for 883 data sheet.
- Burn-in is available on commercial and industrial temperature range parts in CerDIP, plastic DIP, and TO-can packages.

GENERAL DESCRIPTION

The OP-215 offers the proven JFET-input performance advantages of high speed and low input bias current with the tracking and convenience advantages of a dual op-amp configuration.

Low input offset voltages, low input currents, and low drift are featured in these high-speed amplifiers.

On-chip zener-zap trimming is used to achieve low VOS while a bias-current compensation scheme gives a low input bias current at elevated temperatures. Thus the OP-215 features an input bias current of 18nA at 125°C ambient (not junction) temperature which greatly extends the application usefulness of this device.

Applications include high-speed amplifiers for current output DACs, active filters, sample-and-hold buffers, and photocell

PIN CONNECTIONS

SIMPLIFIED SCHEMATIC (1/2 OP-215)

OP-215

GENERAL DESCRIPTION Continued

amplifiers. For additional precision JFET op amps, see the OP-15/16/17 data sheet.

ABSOLUTE MAXIMUM RATINGS (Note 1)

Supply Voltage	
OP-215A, OP-215B, OP-215E, OP-215F	
(All DICE Except GR)	±22V
OP-215C, OP-215G (GR DICE Only)	
Operating Temperature Range	
OP-215A, OP-215B, OP-215C	-55°C to +125°C
OP-215E, OP215F	0°C to + 70°C
OP-215G	
Maximum Junction Temperature (T _i)	
Differential Input Voltage	
OP-215A, OP-215B, (All DICE Except GR)	±40V
OP-215E, OP-215F, (All DICE Except GR)	±40V
OP-215C, OP-215G, (GR DICE Only)	
Input Voltage	
OP-215A, OP-215B, (All DICE Except GR)	±20V
OP-215E, OP-215F, (All DICE Except GR)	±20V

OP-215C, OP-215G,			
(Unless otherwise sp			
tive input voltage is e		re positive	than the
negative power supp			
Output Short-Circuit Du			
Storage Temperature F	Range	–65°C	to +150°C
Lead Temperature (So	ldering, 60 sec)		300°C
Junction Temperature			
PACKAGE TYPE	Θ _{jA} (NOTE 2)	ejc	UNITS
TO-99 (J)	145	16	°C/W
8-Pin Hermetic DIP (Z)	134	12	°C/W

NOTES:

8-Pin SO (S)

8-Pin Plastic DIP (P)

20-Contact LCC (RC)

Absolute maximum ratings apply to both DICE and packaged parts, unless otherwise noted.

96

88

150

°C/W

°C/W

•C/W

37

33

41

 e_{jA} is specified for worst case mounting conditions, i.e., e_{jA} is specified for device in socket for TO, CerDIP, P-DIP, and LCC packages; e_{jA} is specified for device soldered to printed circuit board for SO package.

ELECTRICAL CHARACTERISTICS at $V_S = \pm\,15V$, $T_A = 25^{\circ}\,C$, unless otherwise noted.

			OP-215A/E		OP-215B/F			OP-215C/G				
PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX	UNITS
		$R_S = 50\Omega$		0.2	1.0	_	0.8	2.0	_	2.0	4.0	mV
Input Offset Voltage	Vos	'G' Grade	_	_	_					2.5	6.0	
		T _i = 25° C (Note 1)	_	3	50	_	3	50	_	3	100	pA
Input Offset Current	los	Device Operating	_	5	100		5	100		5	200	
		T _i = 25° C (Note 1)	_	± 15	±100	_	±15	±200	_	±15	±300	pA
Input Bias Current	IB	Device Operating		± 18	±300		±18	±400		±18	±600	
Input Resistance	R _{IN}		_	10 ¹²			1012			10 ¹²		Ω
Large-Signal Voltage		R _L ≥2kΩ	150	500	_	75	220	_	50	200	_	V/mV
Gain	Avo	V _O = ±10V	150	300			220					
Output Voltage		$R_L = 10k\Omega$	±12	±13	_	±12	±13	_	±12	±13	_	v
Swing	v _o	$R_L = 2k\Omega$	±11	±12.7		±11	±12.7		±11	±12.7		
			_	6.0	8.5	_	6.0	8.5	_	7.0	10.0	mA
Supply Current	İsy	'G' Grade								7.0	12.0	
Slew Rate	SR	A _{VCL} = +1	10	18		7.5	18		5	15		V/μs
Gain Bandwidth Product	GBW	(Note 3)	3.5	5.7	_	3.5	5.7	_	3.0	5.4	_	MHz
Closed-Loop Bandwidth	CLBW	A _{VCL} = +1	_	13	-	_	13	_	-	12	_	MHz
		to 0.01%		2.3	_	_	2.3	_	_	2.4	_	
Settling Time	ts	to 0.05% (Note 2)	_	1.1	_	_	1.1	_	_	1.2	_	μ9
		to 0.10%		0.9			0.9			1.0		
	11/10		+10.2	+14.8	_	+10.2	+14.8	_	+10.1	+14.8	_	v
Input Voltage Range	IVR		-10.2	-11.5		-10.2	-11.5		-10.1	-11.5	_	
Common-Mode	OMBB	A, B, C Grades	86	100	_	86	100	_	82	96	-	dB
Rejection Ratio	CMRR	V _{CM} = ±IVR E, F, G Grades	82	100		82	100		80	<u>96</u>	_	
Power Supply	PSRR	$V_{S} = \pm 10V \text{ to } \pm 16V$	-	10	51	_	10	80	_		_	μ٧/٧
Rejection Ratio	ronn	$V_S = \pm 10V \text{ to } \pm 15V$								16	100	
Input Noise Voltage	_	f _O = 100Hz	_	20	_	_	20	_	_	20	_	nV/√Hz
Density	e _n	f _O = 1000Hz		15			15			15		• • • • • • • • • • • • • • • • • • • •
Input Noise Current		f _O = 100Hz	_	0.01	-	_	0.01	_	_	0.01	_	pA/√Hz
Density	in	f _O = 1000Hz	_	0.01			0.01		_	0.01		
Input Capacitance	C _{IN}	<u> </u>	_	3	_	_	3	_	_	3	_	pF

ELECTRICAL CHARACTERISTICS at $V_S = \pm 15V$, -55° C $\leq T_A \leq +125^{\circ}$ C, unless otherwise noted.

		\$	()P-215	A		DP-215	В	()P-215	C	
PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX	UNITS
Input Offset Voltage	vos	$R_S = 50\Omega$	_	0.5	2.0	_	1.5	3.0		3.0	6.0	mV
Average Input Offset Voltage Drift												
Without External Trim	TCVOS	(Note 3)	_	3	10	_	3	10	_	6	_	
With External Trim	TCVOSn	$R_P = 100k\Omega$	_	3	_		3	_	_	4	_	μV/°C
Input Offset Current		T _i = +125°C	_	0.8	8		0.8	8	_	1.0	12	
(Note 1)	los	T _A = +125°C, Device Operating	_	1.2	14	_	1.2	14	_	1.5	22	nA
Input Bias Current		T _i = +125°C	_	± 1.5	±10	_	± 1.5	±10	_	±1.8	± 15	
(Note 1)	I _B	TA = +125°C, Device Operating	_	±2.2	±18		±2.2	±18	_	±2.7	±28	nA
Input Voltage Renge	IVR	+	10.2	+14.6	_	+10.2	+14.6	<u> </u>	+10.1	+14.6	_	v
Input Voltage Range	IVN	-	10.2	-11.3		-10.2	-11.3		-10.1	-11.3	_	
Common-Mode Rejection Ratio	CMRR	V _{CM} = ± IVR	82	97	-	82	97	_	80	93	_	dB
Power Supply		$V_S = \pm 10V \text{ to } \pm 16V$	_	10	100		15	100	_	_	_	110
Rejection Ratio	PSRR	$V_S = \pm 10V \text{ to } \pm 15V$	_	_		_	_		_	23	126	μV/V
Large-Signal Voltage Gain	Avo	$R_L \ge 2k\Omega$ $V_O = \pm 10V$	30	110	_	30	110	_	25	100	_	V/mV
Output Voltage Swing	v _o	R _L ≥ 10kΩ	±12	±13	_	±12	±13	_	±12	±13	_	v

ELECTRICAL CHARACTERISTICS at $V_S = \pm 15V$, 0°C $\leq T_A \leq +70$ °C for E/F Grades, -40°C $\leq T_A \leq +85$ °C for G Grade, unless otherwise noted.

			OP-215E		(DP-215	F	•)P-215	G	-	
PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX	UNITS
Input Offset Voitage	vos	R _S = 50Ω	_	0.4	1.65	-	1.4	2.65	_	3.5	8.0	mV
Average Input Offset Voltage Drift												
Without External Trim	TCVOS	(Note 3)	_	3	15	_	3	15	_	6	_	V/°C
With External Trim	TCV _{OSn}	$R_P = 100k\Omega$		3			3			4	-	μν/-С
Input Offset Current		T _i = +70°C	_	0.06	0.45	_	0.06	0.45	_	0.08	0.65	
(Note 1)	los	T _A = +70°C, Device Operating	_	0.08	0.80	_	0.08	0.80	_	0.10	1.2	nA
Input Bias Current		T _i = +70°C		±0.12	±0.70	_	±0.12	±0.70		±0.14	±0.9	
(Note 1)	IB	T _A = +70°C, Device Operating	_	±0.16	±1.40	_	±0.16	±1.40		±0.19	±1.8	nA
Innut Mallana Danca	IVR	<u>-</u>	+ 10.2	+14.7	_	+10.2	+14.7	_	+10.1	+14.7	_	v
Input Voltage Range	IVN		-10.2	-11.4		-10.2	-11.4		-10.1	~11.3	_	
Common-Mode Rejection Ratio	CMRR	V _{CM} = ±IVR	80	98	_	80	98		76	94	_	dB
Power Supply		$V_{S} = \pm 10V \text{ to } \pm 16V$	_	13	100	_	13	100	_	_	_	2/0/
Rejection Ratio	PSRR	$V_8 = \pm 10V \text{ to } \pm 15V$	_	_		_	_	_	_	20	159	μV/V
Large-Signal Voltage Gain	Avo	$R_L \ge 2k\Omega$ $V_O = \pm 10V$	50	180	_	50	180	_	35	130	_	V/mV
Output Voltage Swing	v _o	R _L ≥ 10kΩ	±12	±13	-	±12	±13	_	±12	±13	_	v

NOTES

- Input bias current is specified for two different conditions. The T_j = 25° C specification is with the junction at ambient temperature; the Device Operating specification is with the device operating in a warmed-up condition at 25° C ambient. The warmed-up bias current value is correlated to the junction temperature value via the curves of I_Bvs. T_j and I_Bvs. T_A. PMI has a bias current compensation circuit which gives improved bias current and bias current over temperature vs. standard JFET input op amps. I_B and I_{OS} are measured at V_{CM} = 0.
- 2. Settling time is defined here for a unity gain inverter connection using $2k\Omega$ resistors. It is the time required for the error voltage (the voltage at the inverting input pin on the amplifier) to settle to within a specified percent of its final value from the time a 10V step input is applied to the inverter. See settling time test circuit.
- 3. Sample tested.

DICE CHARACTERISTICS (125°C TESTED DICE AVAILABLE)

1. INVERTING INPUT (A) 2. NONINVERTING INPUT (A)

8. NULL (B) 9. V+

3. NULL (A)

10. V_O (B)

11. V+

5. NULL (B)

12. V_O (A)

6. NONINVERTING INPUT (B)

13. V+

7. INVERTING INPUT (B)

14. NULL (A)

ALL V+ PADS ARE INTERNALLY CONNECTED.

DIE SIZE 0.110×0.075 inch, 8250 sq. mils

 $(2.79 \times 1.91 \text{ mm}, 5.33 \text{ sq. mm})$

WAFER TEST LIMITS at $V_S = \pm 15V$, $T_A = 25^{\circ}$ C for OP-215N, OP-215G and OP-215GR devices; $T_A = 125^{\circ}$ C for OP-215NT and OP-215GT devices, unless otherwise noted.

PARAMETER	SYMBOL	CONDITIONS	OP-215NT LIMIT	OP-215N LIMIT	OP-215GT LIMIT	OP-215G LIMIT	OP-215GR LIMIT	UNITS
Input Offset Voltage	Vos	R _S = 50Ω	2	1	3	2	6	mV MAX
Input Bias Current	I _B		±18	_	±18	_		nA MAX
Input Offset Current	los		14	_	14		<u> </u>	nA MAX
Large-Signal Voltage Gain	A _{VO}	$V_O = \pm 10V$, $R_L = 2k\Omega$	30	150	30	75	50	V/mV MIN
Input Voltage Range	IVR		± 10.2	±10.2	±10.2	± 10.2	±10.1	V MIN
Common-Mode Rejection Ratio	CMRR	V _{CM} = ±IVR	82	86	82	86	82	dB MIN
Power Supply Rejection Ratio	PSRR	$V_S = \pm 10 \text{ to } \pm 16V$ $V_S = \pm 10 \text{ to } \pm 15V$	100	51 —	100	80 —	 100	μV/V MAX
Output Voltage Swing	v _o	$R_L = 10k\Omega$ $R_L = 2k\Omega$	±12	±12 ±11	±12 —	±12 ±11	±12 ±11	V MIN
Supply Current	I _{SY}			8.5		8.5	12.0	mA MAX

For 25°C characteristics of NT & GT devices, see N & G characteristics respectively.

Electrical tests are performed at wafer probe to the limits shown. Due to variations in assembly methods and normal yield loss, yield after packaging is not guaranteed for standard product dice. Consult factory to negotiate specifications based on dice lot qualification through sample lot assembly and testing.

TYPICAL ELECTRICAL CHARACTERISTICS at $V_S = \pm 15 V$, $T_A = +25 ^{\circ} C$, unless otherwise noted.

PARAMETER	SYMBOL	CONDITIONS	OP-215NT TYPICAL	OP-215N TYPICAL	OP-215GT TYPICAL	OP-215G TYPICAL	OP-215GR TYPICAL	UNITS
Average Input Offset Voltage Drift	TCVos	Unnulled R _p = 100kΩ	2	2	3	3	4	μ V/° C
Average Input Offset Voltage Drift	TCV _{OSn}	Nulled R _P = 100kΩ	0.5	0.5	1	1	2	μV/°C
Input Offset Current	los		3	3	3	3	3	рA
Input Bias Current	I _B		±15	± 15	±15	±15	±15	pΑ
Slew Rate	SR	A _{VCL} = +1	17	17	16	16	15	V/μs
Settling Time	t _S	to 0.01% to 0.05% to 0.10%	2.2 1.1 0.9	2.2 1.1 0.9	2.3 1.1 0.9	2.3 1.1 0.9	2.4 1.2 1.0	μS
Gain Bandwidth Product	GBW		6.0	6.0	5.7	5.7	5.4	MHz
Closed-Loop Bandwidth	CLBW	A _{VCL} = +1	14	14	13	13	12	MHz
Input Noise Voltage Density	en	f _O = 100Hz f _O = 1000Hz	20 15	20 15	20 15	20 15	20 15	nV∕√Hz
Input Noise Current Density	in	f _O = 100Hz f _O = 1000Hz	0.01	0.01	0.01	0.01	0.01	pA/√ Hz
Input Capacitance	C _{IN}		3	3	3	3	3	pF

TYPICAL PERFORMANCE CHARACTERISTICS

LARGE-SIGNAL TRANSIENT RESPONSE

SMALL-SIGNAL TRANSIENT RESPONSE

SETTLING TIME

CLOSED-LOOP BANDWIDTH AND PHASE SHIFT VS FREQUENCY

BANDWIDTH vs TEMPERATURE

OPEN-LOOP

MAXIMUM OUTPUT SWING vs FREQUENCY

SLEW RATE vs TEMPERATURE

COMMON-MODE REJECTION

OP-215

TYPICAL PERFORMANCE CHARACTERISTICS

BASIC CONNECTIONS

SETTLING TIME TEST CIRCUIT

SLEW RATE TEST CIRCUIT

INPUT OFFSET VOLTAGE NULLING

BASIC CONNECTIONS

BURN-IN CIRCUIT

APPLICATIONS INFORMATION

DYNAMIC OPERATING CONSIDERATIONS

As with most amplifiers, care should be taken with lead dress, component placement and supply decoupling in order to ensure stability. For example, resistors from the output to an input should be placed with the body close to the input to minimize "pick-up" and maximize the frequency of the feedback pole by minimizing the capacitance from the input to ground.

A feedback pole is created when the feedback around any amplifier is resistive. The parallel resistance and capacitance from the input of the device (usually the inverting input) to

AC ground sets the frequency of the pole. In many instances, the frequency of this pole is much greater than the expected 3dB frequency of the closed-loop gain and consequently there is negligible effect on stability margin. However, if the feedback pole is less than approximately six times the expected 3dB frequency, a lead capacitor should be placed from the output to the negative input of the op amp. The value of the added capacitor should be such that the RC time constant of this capacitor and the resistance it parallels is greater than, or equal to, the original feedback-pole time constant.

;

-8-