Київський національний університет імені Тараса Шевченка факультет радіофізики, електроніки та комп'ютерних систем

Звіт з дисципліни

«Прикладна теорія цифрових автоматів» Лабораторна робота № 4

Тема: "*Тригери"* Варіант: 7511

Роботу виконав студент 3 курсу KI-CA, ФРЕКС Мургашов Г.Е.

Київ 2020 Хід виконання роботи:

0	1	0	1	0	1	0	1	1	1
h_{10}	h_9	h_8	h_7	h_6	h_5	h_4	h_3	h_2	h_1

1) Схема RS-тригера з інвертованими входами

'Схема NS NR-тригера

Графік:

2) Схема RS-тригера з прямими входами

3) Схема RS-тригера з синхронізуючим входом.

Графік

4,5) Схема універсального двотактового ЈК-тригера.

Графіки:

6) Розробити <u>Т-тригер</u> на основі схеми «<u>74107</u>» за <u>переднім фронтом</u>

Схема 74107 – ЈК – тригер, який має таку таблиць істинності станів:

J	K	Q(t)	Q(t+1)				
0	0	0	0				
0	0	1	1				
0	1	0	0				
0	1	1	0				
1	0	0	1				
1	0	1	1				
1	1	0	1				
1	1	1	0				

JK-тригер синхронізується задопомогою входа «СLК», на якийподається спад заднього фронту.

Таблиця станів Т- тригера

oriniopi ciiidiide i iiipuicepu							
J	K	Q(t)	Q(t+1)	Т	Q(t)	Q(t+1)	
0	0	0	0	0	0	0	
0	0	1	1	0	1	1	
0	1	0	0	1	0	1	
0	1	1	0	1	1	0	
1	0	0	1				
1	0	1	1				
1	1	0	1				
1	1	1	0				

Завдяки таблиці, Можна закодуввти ЈК-тригером поводження Т-тригера.

$$J=T,\,K=T,\,mo\partial i\,npu\,T=0,\,JK=00=> \qquad Q(t+1)=Q(t)$$

 $A\quad npu\,T=1,\,JK=11=> \qquad Q(T+1)=\overline{Q(t)}$

T	J	K	Q(T)	Q(t+1)
0	0	0	Q	Q
1	1	1	Q	Q

Tenep залишилось лишь інвертувати Clock

Графік:

7) Асинхронний S-тригер на елементах «3-АБО-НІ»

Таблиця істинності для цього тригеру:

S	R1	R2	Q_n	Q_{n+1}
0	0	0	0	0
0	0	0	1	1
0	1	1	0	0
0	1	1	1	0
1	0	0	0	1
1	0	0	1	1
1	1	0	0	1
1	1	0	1	1

Треба, щоб при R=1, S=1, На R був 0.

$$R2 = R1^{ } \overline{(S1 * R1)} =$$

$$\overline{R1} \overline{V} \overline{(\overline{S1} \overline{V} \overline{R1})}$$

$$R2 = \bar{S} * (S V R1) = \bar{S} \wedge R1$$

$$R2 = \overline{S} \wedge R1 = S \downarrow \overline{R1}$$

По таблиці істинності та за допомогою отриманого R2, отримаємо схему:

Графік:

Висновок: в данній лабораторній роботі було ознайомлено з найелементарнішими автоматами — тригерами, було складено декілька схем з ними та отримано знання, як правильно складати схеми їх переходів.