ML LECTURE-3

BY
Dr. Ramesh Kumar Thakur
Assistant Professor (II)
School Of Computer Engineering

Criterion for minimization of error

- In regression, we would like to write the numeric output y, called the dependent variable, as a function of the input x, called the independent variable.
- \diamond We assume that the output is the sum of a function f(x) of the input and some random error denoted by ϵ :

$$y = f(x) + \epsilon$$
.

- \Leftrightarrow Here the function f(x) is unknown and we would like to approximate it by some estimator g(x, θ) containing a set of parameters θ .
- \diamond We assume that the random error ϵ follows normal distribution with mean 0.
- Let x_1, \ldots, x_n be a random sample of observations of the input variable x and y_1, \ldots, y_n the corresponding observed values of the output variable y.
- \bullet Using the assumption that the error ϵ follows normal distribution, we can **apply the method of maximum** likelihood estimation to estimate the values of the parameter θ .
- \diamondsuit It can be shown that the values of θ which maximizes the likelihood function are the values of θ that minimizes the following sum of squares:

$$E(\theta) = (y_1 - g(x_1, \theta))^2 + \cdots + (y_n - g(x_n, \theta))^2$$

The method of finding the value of θ as that value of θ that minimizes E(θ) is known as the ordinary least squares method.

Criterion for minimization of error

x	x_1	x_2	• • • •	x_n
y	y_1	y_2		y_n

Table 7.1: Data set for simple linear regression

Figure 7.1: Errors in observed values

Simple linear regression

- Let x be the independent predictor variable and y the dependent variable.
- Assume that we have a set of observed values of x and y. A simple linear regression model defines the relationship between x and y using a line defined by an equation in the following form:

$$y = a + bx$$

 \diamond To determine the optimal estimates of α and β , an estimation method known as Ordinary Least Squares (OLS).

The OLS method

- In the OLS method, the values of y-intercept and slope are chosen such that they minimize the sum of the squared errors; that is, the sum of the squares of the vertical distance between the predicted y-value and the actual y-value (see Figure 7.1). Let \hat{y}_i be the predicted value of y_i
- Then the sum of squares of errors is given by

$$E = \sum_{i=1}^{n} (y_i - \hat{y}_i)^2$$

$$= \sum_{i=1}^{n} [y_i - (a + bx_i)]^2$$

So we are required to find the values of **a** and **b** such that E is minimum.

Solution of Simple linear regression using OLS

$$E = \sum_{i=1}^{n} (y_i - \hat{y}_i)^2$$

$$= \sum_{i=1}^{n} [y_i - (a + bx_i)]^2$$

To solve the above equation we have to take two partial derivations as below:

and

$$\frac{\partial E}{\partial b} = 0$$

----(ii)

By solving eq(i)

$$=> 2\sum_{i=1}^{n} [y_i - a - bx_i](-1) = 0$$

$$=> -2\sum_{i=1}^{n} y_i + 2a\sum_{i=1}^{n} 1 + 2b\sum_{i=1}^{n} x_i = 0$$

$$=> -\sum_{i=1}^{n} y_i + an + b\sum_{i=1}^{n} x_i = 0$$

$$\Rightarrow an = \sum_{i=1}^{n} y_i - b \sum_{i=1}^{n} x_i$$

$$\Rightarrow a = \frac{1}{n} \sum_{i=1}^{n} y_i - b \frac{1}{n} \sum_{i=1}^{n} x_i$$

$$\Rightarrow a = \overline{y} - b\overline{x}$$

where $\overline{y} = \frac{1}{n} \sum_{i=1}^{n} y_i$ (mean of values of y), $\overline{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$ (mean of values of x)

Solution of Simple linear regression using OLS

$$\mathbf{E} = \sum_{i=1}^{n} (y_i - \hat{y}_i)^2$$
$$= \sum_{i=1}^{n} [y_i - (a + bx_i)]^2$$

To solve the above equation we have to take two partial derivations as below:

and

$$\frac{\partial E}{\partial b} = 0$$

----(ii)

By solving eq(ii)

$$=> 2\sum_{i=1}^{n} [y_i - a - bx_i](-x_i) = 0$$

$$=> -2\sum_{i=1}^{n} x_i y_i + 2a\sum_{i=1}^{n} x_i + 2b\sum_{i=1}^{n} x_i^2 = 0$$

$$=> -\sum_{i=1}^{n} x_i y_i + a \sum_{i=1}^{n} x_i + b \sum_{i=1}^{n} x_i^2 = 0$$

$$=> -\sum_{i=1}^{n} x_i y_i + (\overline{y} - b\overline{x}) \sum_{i=1}^{n} x_i + b \sum_{i=1}^{n} x_i^2 = 0$$

$$=> b(\sum_{i=1}^{n} x_i^2 - \overline{x} \sum_{i=1}^{n} x_i) = \sum_{i=1}^{n} x_i y_i - \overline{y} \sum_{i=1}^{n} x_i$$

$$=> b[\sum_{i=1}^{n} x_i \{\sum_{i=1}^{n} (x_i - \bar{x})\}] = \sum_{i=1}^{n} x_i \{\sum_{i=1}^{n} (y_i - \bar{y})\}$$

$$=> \boldsymbol{b} = \frac{\sum_{i=1}^{n} (y_i - \overline{y})}{\sum_{i=1}^{n} (x_i - \overline{x})}$$

By multiplying $\frac{1}{n-1} \{ \sum_{i=1}^{n} (x_i - \overline{x}) \}$ in the numerator and denominator of RHS

$$=> b = \frac{\frac{1}{n-1} \{\sum_{i=1}^{n} (x_i - \bar{x})\} \sum_{i=1}^{n} (y_i - \bar{y})}{\frac{1}{n-1} \{\sum_{i=1}^{n} (x_i - \bar{x})\} \sum_{i=1}^{n} (x_i - \bar{x})} = \frac{Cov(x,y)}{Var(x)}$$

Solution of Simple linear regression using OLS

Formulas to find a and b

Recall that the means of x and y are given by

$$\bar{x} = \frac{1}{n} \sum x_i$$

$$\bar{y} = \frac{1}{n} \sum y_i$$

and also that the variance of x is given by

$$Var(x) = \frac{1}{n-1} \sum (x_i - \bar{x})^2$$

 \diamond The covariance of x and y, denoted by Cov(x, y) is defined as

$$Cov(x,y) = \frac{1}{n-1} \sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y})$$

It can be shown that the values of a and b can be computed using the following formulas:

$$b = \frac{\text{Cov}(x, y)}{\text{Var}(x)}$$
$$a = \bar{y} - b\bar{x}$$

Variations of Least Square for Solving Simple linear regression

- * Remarks:
- ❖ It is interesting to note why the least squares method discussed above is christened as "ordinary" least squares method.
- Several different variants of the least squares method have been developed over the years. For example, in the weighted least squares method, the coefficients **a** and **b** are estimated such that the weighted sum of squares of errors.

$$E = \sum_{i=1}^{n} w_i [y_i - (a + bx_i)]^2$$

- for some positive constants w_1, \ldots, w_n , is minimum. There are also methods known by the names **generalised** least squares method, partial least squares method, total least squares method, etc.
- The OLS method has a long history. The method is usually credited to **Carl Friedrich Gauss (1795)**, but it was first published by **Adrien-Marie Legendre (1805)**.

Simple linear regression Example

- Example:
- Obtain a linear regression for the data in Table 7.2 assuming that y is the independent variable.

x	1.0	2.0	3.0	4.0	5.0
y	1.00	2.00	1.30	3.75	2.25

Table 7.2: Example data for simple linear regression

- ❖ Solution:
- ❖ In the usual notations of simple linear regression, we have

$$n = 5$$

$$\bar{x} = \frac{1}{5}(1.0 + 2.0 + 3.0 + 4.0 + 5.0)$$

$$= 3.0$$

$$\bar{y} = \frac{1}{5}(1.00 + 2.00 + 1.30 + 3.75 + 2.25)$$

$$= 2.06$$

$$\text{Cov}(x, y) = \frac{1}{4}[(1.0 - 3.0)(1.00 - 2.06) + \dots + (5.0 - 3.0)(2.25 - 2.06)]$$

$$= 1.0625$$

$$\text{Var}(x) = \frac{1}{4}[(1.0 - 3.0)^2 + \dots + (5.0 - 3.0)^2]$$

$$= 2.5$$

$$b = \frac{1.0625}{2.5}$$

$$= 0.425$$

$$a = 2.06 - 0.425 \times 3.0$$

$$= 0.785$$

Simple linear regression Example

❖ Therefore, the linear regression model for the data is

$$y = 0.785 + 0.425x$$
.

Figure 7.2: Regression model for Table 7.2

