Principles of Data Mining

Association Analysis: Advanced Concepts

Xiaowei Jia

Extensions of Association Analysis to Continuous and Categorical Attributes and Multi-level Rules

Continuous and Categorical Attributes

Example of Association Rule:

 $\{Gender=Male, Age \in [21,30)\} \rightarrow \{No \text{ of hours online } \geq 10\}$

• Example: Internet Usage Data

{Level of Education=Graduate, Online Banking=Yes}

→ {Privacy Concerns = Yes}

• Introdu	ce a new "item" for each distinct attribute-value pair

- Some attributes can have many possible values
 - Many of their attribute values have very low support
 - Potential solution: Aggregate the low-support attribute values

- Distribution of attribute values can be highly skewed
 - Example: 85% of survey participants own a computer at home
 - Most records have Computer at home = Yes
 - Computation becomes expensive; many frequent itemsets involving the binary item (Computer at home = Yes)
 - Potential solution:
 - discard the highly frequent items
 - Use alternative measures such as h-confidence
- Computational Complexity
 - Binarizing the data increases the number of items
 - But the width of the "transactions" remain the same as the number of original (non-binarized) attributes
 - Produce more frequent itemsets but maximum size of frequent itemset is limited to the number of original attributes

Handling Continuous Attributes

- Different methods:
 - Discretization-based
 - Statistics-based
 - Non-discretization based
 - minApriori
- Different kinds of rules can be produced:
 - {Age∈[21,30), No of hours online∈[10,20)}
 - \rightarrow {Chat Online = Yes}
 - {Age ∈ [21,30), Chat Online = Yes}
 - \rightarrow No of hours online: μ =14, σ =4

Discretization-based Methods

Discretization-based Methods

Unsupervised:

- Equal-width binning <1 2 3> <4 5 6><7 8 9>
- Equal-depth binning <12><3 4 5 6 7><8 9>
- Cluster-based

Supervised discretization

Continuous attribute, v

	1	2	3	4	5	6	7	8	9
Chat Online = Yes	0	0	20	10	20	0	0	0	0
Chat Online = No	150	100	0	0	0	100	100	150	100

 bin_1 bin_2 bin_3

Discretization Issues

Discretization Issues

- Interval too wide (e.g., Bin size= 30)
 - May merge several disparate patterns
 - Patterns A and B are merged together
 - May lose some of the interesting patterns
 - Pattern C may not have enough confidence
- Interval too narrow (e.g., Bin size = 2)
 - Pattern A is broken up into two smaller patterns
 - Can recover the pattern by merging adjacent subpatterns
 - Pattern B is broken up into smaller patterns
 - Cannot recover the pattern by merging adjacent subpatterns
 - Some windows may not meet support threshold

Discretization: all possible intervals

Number of intervals = kTotal number of adjacent intervals = k(k-1)/2

Execution time

- If the range is partitioned into k intervals, there are O(k2) new items
- If an interval [a,b) is frequent, then all intervals that subsume [a,b) must also be frequent
 - E.g.: if {Age ∈ [21,25), Chat Online=Yes} is frequent, then {Age ∈ [10,50), Chat Online=Yes} is also frequent
- Improve efficiency:
 - Use maximum support to avoid intervals that are too wide

Discretization Issues

Redundant rules

```
R1: {Age \in [18,20), Age \in [10,12)} \rightarrow {Chat Online=Yes} R2: {Age \in [18,23), Age \in [10,20)} \rightarrow {Chat Online=Yes}
```

• If both rules have the same support and confidence, prune the more specific rule (R1)

• Example:

{Income > 100K, Online Banking=Yes} → Age: μ =34

- Rule consequent consists of a continuous variable, characterized by their statistics
 - mean, median, standard deviation, etc.

Approach:

- Withhold the target attribute from the rest of the data
- Extract frequent itemsets from the rest of the attributes
 - Binarized the continuous attributes (except for the target attribute)
- For each frequent itemset, compute the corresponding descriptive statistics of the target attribute
 - Frequent itemset becomes a rule by introducing the target variable as rule consequent
- Apply statistical test to determine interestingness of the rule

Frequent Itemsets:

```
{Male, Income > 100K}

{Income < 30K, No hours ∈[10,15)}

{Income > 100K, Online Banking = Yes}

....
```

Association Rules:

```
 \begin{split} &\{ \text{Male, Income} > 100\text{K} \} \rightarrow \text{Age: } \mu = 30 \\ &\{ \text{Income} < 30\text{K, No hours } \in [10,15) \} \rightarrow \text{Age: } \mu = 24 \\ &\{ \text{Income} > 100\text{K,Online Banking} = \text{Yes} \} \\ & \rightarrow \text{Age: } \mu = 34 \\ & \dots \end{split}
```

- How to determine whether an association rule interesting?
 - Compare the statistics for segment of population covered by the rule vs segment of population not covered by the rule:

$$A \Rightarrow B: \mu$$
 versus $\overline{A} \Rightarrow B: \mu'$

- Statistical hypothesis testing:
 - Null hypothesis: H0: $\mu' = \mu + \Delta$
 - Alternative hypothesis: H1: $\mu' > \mu + \Delta$
 - Z has zero mean and variance 1 under null hypothesis

$$Z = \frac{\mu' - \mu - \Delta}{\sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}}$$

• Example:

r: Browser=Mozilla \land Buy=Yes \rightarrow Age: μ =23

- Rule is interesting if difference between μ and μ' is more than 5 years (i.e., Δ = 5)
- For r, suppose n1 = 50, s1 = 3.5
- For r' (complement): n2 = 250, , $\mu' = 30$, s2 = 6.5

$$Z = \frac{\mu' - \mu - \Delta}{\sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}} = \frac{30 - 23 - 5}{\sqrt{\frac{3.5^2}{50} + \frac{6.5^2}{250}}} = 3.11$$

- For 1-sided test at 95% confidence level, critical Z-value for rejecting null hypothesis is 1.64.
- Since Z is greater than 1.64, r is an interesting rule

Document-term matrix:

TID	W1	W2	W3	W4	W5
D1	2	2	0	0	1
D2	0	0	1	2	2
D3	2	3	0	0	0
D4	0	0	1	0	1
D5	1	1	1	0	2

Example:

W1 and W2 tend to appear together in the same document

- Data contains only continuous attributes of the same "type"
 - e.g., frequency of words in a document

TID	W1	W2	W3	W4	W5
D1	2	2	0	0	1
D2	0	0	1	2	2
D3	2	3	0	0	0
D4	0	0	1	0	1
D5	1	1	1	0	2

- Potential solution:
 - Convert into 0/1 matrix and then apply existing algorithms
 - lose word frequency information
 - Discretization does not apply as users want association among words not ranges of words

- How to determine the support of a word?
 - If we simply sum up its frequency, support count will be greater than total number of documents!
 - Normalize the word vectors e.g., using L₁ norms
 - Each word has a support equals to 1.0

TID	W1	W2	W3	W4	W5
D1	2	2	0	0	1
D2	0	0	1	2	2
D3	2	3	0	0	0
D4	0	0	1	0	1
D5	1	1	1	0	2

• New definition of support:

$$\sup(C) = \sum_{i \in T} \min_{j \in C} D(i, j)$$

TID	W1	W2	W3	W4	W5	Fx
	0.40					
					0.33	Su
D3	0.40	0.50	0.00	0.00	0.00	= C
D4	0.00	0.00	0.33	0.00	0.17	= C
D5	0.20	0.17	0.33	0.00	0.33	

Example:

Sup(W1,W2,W3)

$$= 0 + 0 + 0 + 0 + 0.17$$

= 0.17

Anti-monotone property of Support

TID	W1	W2	W3	W4	W5
	0.40				
D2	0.00	0.00	0.33	1.00	0.33
D3	0.40	0.50	0.00	0.00	0.00
D4	0.00	0.00	0.33	0.00	0.17
D5	0.20	0.17	0.33	0.00	0.33

Example:

Sup(W1) =
$$0.4 + 0 + 0.4 + 0 + 0.2 = 1$$

Sup(W1, W2) = $0.33 + 0 + 0.4 + 0 + 0.17 = 0.9$
Sup(W1, W2, W3) = $0 + 0 + 0 + 0 + 0.17 = 0.17$

Concept Hierarchies

- Why should we incorporate concept hierarchy?
 - Rules at lower levels may not have enough support to appear in any frequent itemsets
 - Rules at lower levels of the hierarchy are overly specific
 - e.g., skim milk → white bread, 2% milk → wheat bread, skim milk → wheat bread, etc.
 are indicative of association between milk and bread
 - Rules at higher level of hierarchy may be too generic

- How do support and confidence vary as we traverse the concept hierarchy?
 - If X is the parent item for both X1 and X2, then $\sigma(X) \le \sigma(X1) + \sigma(X2)$

```
• If \sigma(X1 \cup Y1) \ge minsup, and X is parent of X1, Y is parent of Y1 then \sigma(X \cup Y1) \ge minsup, \sigma(X1 \cup Y) \ge minsup \sigma(X \cup Y) \ge minsup
```

• If $conf(X1 \Rightarrow Y1) \ge minconf$, then $conf(X1 \Rightarrow Y) \ge minconf$

• Approach 1:

 Extend current association rule formulation by augmenting each transaction with higher level items

```
Original Transaction: {skim milk, wheat bread}
Augmented Transaction:
{skim milk, wheat bread, milk, bread, food}
```

Issues:

- Items that reside at higher levels have much higher support counts
 - if support threshold is low, too many frequent patterns involving items from the higher levels
- Increased dimensionality of the data

Approach 2:

- Generate frequent patterns at highest level first
- Then, generate frequent patterns at the next highest level, and so on

Issues:

- I/O requirements will increase dramatically because we need to perform more passes over the data
- May miss some potentially interesting cross-level association patterns

Association Analysis: Advanced Concepts

Sequential Patterns

Examples of Sequence

Sequence of different transactions by a customer at an online store:

```
< {Digital Camera,iPad} {memory card} {headphone,iPad cover} >
```

 Sequence of initiating events causing the nuclear accident at 3-mile Island:

```
(https://www.nrc.gov/reading-rm/doc-collections/fact-sheets/3mile-isle.html)
```

- < {clogged resin} {outlet valve closure} {loss of feedwater}
 {condenser polisher outlet valve shut} {booster pumps trip}
 {main waterpump trips} {main turbine trips} {reactor pressure increases}>
- Sequence of books checked out at a library:

```
<{Fellowship of the Ring} {The Two Towers} {Return of the King}>
```

Sequential Pattern Discovery: Examples

- In telecommunications alarm logs,
 - Inverter_Problem:
 (Excessive_Line_Current) (Rectifier_Alarm) --> (Fire_Alarm)
- In point-of-sale transaction sequences,
 - Computer Bookstore:

– Athletic Apparel Store:

```
(Shoes) (Racket, Racketball) --> (Sports_Jacket)
```

Sequence Data

Sequence Database	Sequence	Element (Transaction)	Event (Item)
Customer	Purchase history of a given customer	A set of items bought by a customer at time t	Books, diary products, CDs, etc
Web Data	Browsing activity of a particular Web visitor	A collection of files viewed by a Web visitor after a single mouse click	Home page, index page, contact info, etc
Event data	History of events generated by a given sensor	Events triggered by a sensor at time t	Types of alarms generated by sensors
Genome sequences	DNA sequence of a particular species	An element of the DNA sequence	Bases A,T,G,C

Sequence Data

Sequence Database:

Sequence ID	Timestamp	Events
Α	10	2, 3, 5
А	20	6, 1
А	23	1
В	11	4, 5, 6
В	17	2
В	21	7, 8, 1, 2
В	28	1, 6
С	14	1, 8, 7

Sequence Data vs. Market-basket Data

Sequence Database:

Customer	Date	Items bought
А	10	2, 3, 5
А	20	1,6
А	23	1
В	11	4, 5, 6
В	17	2
В	21	1,2,7,8
В	28	1, 6
С	14	1,7,8

Market-basket Data

Events
2, 3, 5
1,6
1
4,5,6
2
1,2,7,8
1,6
1,7,8

Sequence Data vs. Market-basket Data

Sequence Database:

Customer	Date	Items bought
А	10	2 , 3, 5
А	20	1 ,6
А	23	1
В	11	4, 5, 6
В	17	2
В	21	1,2,7,8
В	28	1, 6
С	14	1,7,8

Market-basket Data

Events
2, 3, 5
1,6
1
4,5,6
2
1,2,7,8
1,6
1,7,8

Sequence Data vs. Market-basket Data

Sequence Database:

Customer	Date	Items bought
А	10	2 , 3, 5
А	20	1 ,6
А	23	1
В	11	4, 5, 6
В	17	2
В	21	1,2,7,8
В	28	1, 6
С	14	1,7,8

$$\{2\} \rightarrow \{1\}$$

Market-basket Data

Events
2, 3, 5
1,6
1
4,5,6
2
1,2,7,8
1,6
1,7,8

$$(1,8) \rightarrow (7)$$

Formal Definition of a Sequence

A sequence is an ordered list of elements

$$s = < e_1 e_2 e_3 ... >$$

Each element contains a collection of events (items)

$$e_i = \{i_1, i_2, ..., i_k\}$$

- Length of a sequence, |s|, is given by the number of elements in the sequence
- A k-sequence is a sequence that contains k events (items)

Formal Definition of a Subsequence

A sequence <a₁ a₂ ... a_n> is contained in another sequence <b₁ b₂ ... b_m> (m ≥ n) if there exist integers
 i₁ < i₂ < ... < i_n such that a₁ ⊆ b_{i1}, a₂ ⊆ b_{i2}, ..., a_n ⊆ b_{in}

• Illustrative Example:

s: b_1 b_2 b_3 b_4 b_5 t: a_1 a_2 a_3

t is a subsequence of s if $a_1 \subseteq b_2$ $a_2 \subseteq b_3$ $a_3 \subseteq b_5$

	- / / - / - 1 	
Data sequence	Subsequence	Contain?
< {2,4} {3,5,6} {8} >	< {2} {8} >	Yes
< {1,2} {3,4} >	< {1} {2} >	No
< {2,4} {2,4} {2,5} >	< {2} {4} >	Yes
<{2,4} {2,5}, {4,5}>	< {2} {4} {5} >	No
<{2,4} {2,5}, {4,5}>	< {2} {5} {5} >	Yes
<{2,4} {2,5}, {4,5}>	< {2, 4, 5} >	No

Sequential Pattern Mining: Definition

- The support of a subsequence w is defined as the fraction of data sequences that contain w
- A sequential pattern is a frequent subsequence (i.e., a subsequence whose support is ≥ minsup)
- Given:
 - a database of sequences
 - a user-specified minimum support threshold, minsup
- Task:
 - Find all subsequences with support ≥ minsup

Sequential Pattern Mining: Example

Object	Timestamp	Events
Α	1	1,2,4
Α	2	2,3
Α	3	5
В	1	1,2
В	2	2,3,4
С	1	1, 2
С	2	2,3,4 2,4,5
С	3	2,4,5
D	1	2
D	2	3, 4
D	3	4, 5
Е	1	1, 3
Е	2	2, 4, 5

```
Minsup = 50\%
Examples of Frequent Subsequences:
< {1,2} >
               s=60%
< {2,3} >
               s=60%
< {2,4}>
               s=80%
< {3} {5}>
               s=80%
< {1} {2} >
               s=80%
< \{2\} \{2\} > s=60\%
< \{1\} \{2,3\} >  s=60%
< \{2\} \{2,3\} > s=60\%
< {1,2} {2,3} >
              s=60%
```

Sequence Data vs. Market-basket Data

Sequence Database:

Customer	Date	Items bought
А	10	2, 3, 5
А	20	1,6
А	23	1
В	11	4, 5, 6
В	17	2
В	21	1,2,7,8
В	28	1, 6
С	14	1,7,8

{2} -> {1}

Novement in Engineering Control of Control o

Market-basket Data

Events

2, 3, 5

1,6

1

4,5,6

2

1,2,7,8

1,6

1,7,8

 $(1,8) \rightarrow (7)$

Extracting Sequential Patterns

- Given n events: i₁, i₂, i₃, ..., i_n
- Candidate 1-subsequences:

Candidate 2-subsequences:

Candidate 3-subsequences:

Extracting Sequential Patterns: Simple example

- Given 2 events: a, b
- Candidate 1-subsequences:
 <{a}>, <{b}>.

Item-set patterns

Candidate 2-subsequences:

Candidate 3-subsequences:

Generalized Sequential Pattern (GSP)

• Step 1:

• Make the first pass over the sequence database D to yield all the 1-element frequent sequences

• Step 2:

Repeat until no new frequent sequences are found

- Candidate Generation:
 - Merge pairs of frequent subsequences found in the (k-1)th pass to generate candidate sequences that contain k items
- Candidate Pruning:
 - Prune candidate k-sequences that contain infrequent (k-1)-subsequences
- Support Counting:
 - Make a new pass over the sequence database D to find the support for these candidate sequences
- Candidate Elimination:
 - Eliminate candidate *k*-sequences whose actual support is less than *minsup*

Candidate Generation

- Base case (k=2):
 - Merging two frequent 1-sequences $<\{i_1\}>$ and $<\{i_2\}>$ will produce the following candidate 2-sequences: $<\{i_1\}$ $\{i_1\}>$, $<\{i_1\}$ $\{i_2\}>$, $<\{i_2\}$ $\{i_2\}>$, $<\{i_2\}$ $\{i_1\}>$ and $<\{i_1$ $i_2\}>$.
- General case (k>2):
 - A frequent (k-1)-sequence w₁ is merged with another frequent (k-1)-sequence w₂ to produce a candidate k-sequence if the subsequence obtained by removing an event from the first element in w₁ is the same as the subsequence obtained by removing an event from the last element in w₂
 - The resulting candidate after merging is given by extending the sequence w₁
 as follows-
 - If the last element of w₂ has only one event, append it to w₁
 - Otherwise add the event from the last element of w₂ (which is absent in the last element of w₁) to the last element of w₁

Candidate Generation Examples

- Merging w_1 =<{1 2 3} {4 6}> and w_2 =<{2 3} {4 6} {5}> produces the candidate sequence < {1 2 3} {4 6} {5}> because the last element of w_2 has only one event
- Merging w_1 =<{1} {2 3} {4}> and w_2 =<{2 3} {4 5}> produces the candidate sequence < {1} {2 3} {4 5}> because the last element in w_2 has more than one event
- Merging w_1 =<{1 2 3} > and w_2 =<{2 3 4} > produces the candidate sequence < {1 2 3 4}> because the last element in w_2 has more than one event
- We do not have to merge the sequences $w_1 = <\{1\} \{2 \ 6\} \{4\}>$ and $w_2 = <\{1\} \{2 \ 6\} \{4 \ 5\}>$ to produce the candidate $<\{1\} \{2 \ 6\} \{4 \ 5\}>$ because if the latter is a viable candidate, then it can be obtained by merging w_1 with $<\{2 \ 6\} \{4 \ 5\}>$

GSP Example

GSP Example

Frequent 3-sequences

Candidate Generation

Candidate Pruning

< {1} {2 5} {3} >

Timing Constraints (I)

x_g: max-gap

n_g: min-gap

m_s: maximum span

$$x_g = 2$$
, $n_g = 0$, $m_s = 4$

Data sequence, d	Sequential Pattern, s	d contains s?
< {2,4} {3,5,6} {4,7} {4,5} {8} >	< {6} {5} >	Yes
< {1} {2} {3} {4} {5}>	< {1} {4} >	No
< {1} {2,3} {3,4} {4,5}>	< {2} {3} {5} >	Yes
< {1,2} {3} {2,3} {3,4} {2,4} {4,5}>	< {1,2} {5} >	No

Mining Sequential Patterns with Timing Constraints

Approach 1:

- Mine sequential patterns without timing constraints
- Postprocess the discovered patterns

Approach 2:

- Modify GSP to directly prune candidates that violate timing constraints
- Question:
 - Does Apriori principle still hold?

Apriori Principle for Sequence Data

Object	Timestamp	Events
А	1	1,2,4
А	2	2,3
А	3	5
В	1	1,2
В	2	2,3,4
С	1	1, 2
С	2	2,3,4
С	3	2,4,5
D	1	2
D	2	3, 4
D	3	4, 5
E	1	1, 3
E	2	2, 4, 5

Suppose:

$$x_g = 1 \text{ (max-gap)}$$

 $n_g = 0 \text{ (min-gap)}$
 $m_s = 5 \text{ (maximum span)}$
 $minsup = 60\%$

Problem exists because of max-gap constraint

No such problem if max-gap is infinite

Contiguous Subsequences

s is a contiguous subsequence of

$$w = \langle e_1 \rangle \langle e_2 \rangle ... \langle e_k \rangle$$

if any of the following conditions hold:

- 1. s is obtained from w by deleting an item from either e₁ or e_k
- 2. s is obtained from w by deleting an item from any element e_i that contains at least 2 items
- 3. s is a contiguous subsequence of s' and s' is a contiguous subsequence of w (recursive definition)
- Examples: s = < {1} {2} >
 - is a contiguous subsequence of{1} {2 3}>, < {1 2} {2} {3}>, and < {3 4} {1 2} {2 3} {4} >
 - is not a contiguous subsequence of
 {1} {3} {2}> and < {2} {1} {3} {2}>

Modified Candidate Pruning Step

- Without maxgap constraint:
 - A candidate k-sequence is pruned if at least one of its (k-1)-subsequences is infrequent
- With maxgap constraint:
 - A candidate *k*-sequence is pruned if at least one of its **contiguous** (*k*-1)-subsequences is infrequent

Timing Constraints (II)

x_g: max-gap

n_g: min-gap

ws: window size

m_s: maximum span

$$x_g = 2$$
, $n_g = 0$, ws = 1, $m_s = 5$

Data sequence, d	Sequential Pattern, s	d contains s?
< {2,4} {3,5,6} {4,7} {4,5} {8} >	< {3,4,5}>	Yes
< {1} {2} {3} {4} {5}>	< {1,2} {3,4} >	No
< {1,2} {2,3} {3,4} {4,5}>	< {1,2} {3,4} >	Yes

Modified Support Counting Step

- Given a candidate sequential pattern: <{a, c}>
 - Any data sequences that contain

```
<... {a c} ... >,
<... {a} ... {c}...> ( where time({c}) – time({a}) ≤ ws)
<...{c} ... {a} ...> (where time({a}) – time({c}) ≤ ws)
```

will contribute to the support count of candidate pattern

Other Formulation

- In some domains, we may have only one very long time series
 - Example:
 - monitoring network traffic events for attacks
 - monitoring telecommunication alarm signals
- Goal is to find frequent sequences of events in the time series
 - This problem is also known as frequent episode mining

Pattern: <E1> <E3>

General Support Counting Schemes

Assume:

$$x_g = 2 \text{ (max-gap)}$$

$$n_q = 0$$
 (min-gap)

$$ws = 0$$
 (window size)

$$m_s = 2$$
 (maximum span)

Association Analysis: Advanced Concepts

Subgraph Mining

Frequent Subgraph Mining

- Extends association analysis to finding frequent subgraphs
- Useful for Web Mining, computational chemistry, bioinformatics, spatial data sets, etc

Graph Definitions

Representing Transactions as Graphs

Representing Graphs as Transactions

Challenges

- Node may contain duplicate labels
- Support and confidence
 - How to define them?
- Additional constraints imposed by pattern structure
 - Support and confidence are not the only constraints
 - Assumption: frequent subgraphs must be connected
- Apriori-like approach:
 - Use frequent k-subgraphs to generate frequent (k+1) subgraphs
 - What is k?

Challenges...

- Support:
 - number of graphs that contain a particular subgraph
- Apriori principle still holds
- Level-wise (Apriori-like) approach:
 - Vertex growing:
 - k is the number of vertices
 - Edge growing:
 - k is the number of edges

Vertex Growing

Edge Growing

Apriori-like Algorithm

- Find frequent 1-subgraphs
- Repeat
 - Candidate generation
 - Use frequent (k-1)-subgraphs to generate candidate k-subgraph
 - Candidate pruning
 - Prune candidate subgraphs that contain infrequent (k-1)-subgraphs
 - Support counting
 - Count the support of each remaining candidate
 - Eliminate candidate *k*-subgraphs that are infrequent

In practice, it is not as easy. There are many other issues

Example: Dataset

Example

Candidate Generation

- In Apriori:
 - Merging two frequent k-itemsets will produce a candidate (k+1)-itemset
- In frequent subgraph mining (vertex/edge growing)
 - Merging two frequent k-subgraphs may produce more than one candidate (k+1)-subgraph

Multiplicity of Candidates (Vertex Growing)

Multiplicity of Candidates (Edge growing)

Multiplicity of Candidates (Edge growing)

• Case 2: Core contains identical labels Core: The (k-1) subgraph that is common between the joint graphs

Multiplicity of Candidates (Edge growing)

• Case 3: Core multiplicity

Topological Equivalence

• Given:

• Case 1: $a \neq c$ and $b \neq d$

• Case 2: a = c and $b \neq d$

• Case 3: $a \neq c$ and b = d

• Case 4: a = c and b = d

- Test for graph isomorphism is needed:
 - During candidate generation step, to determine whether a candidate has been generated
 - During candidate pruning step, to check whether its (k-1)-subgraphs are frequent
 - During candidate counting, to check whether a candidate is contained within another graph

[•] The same graph can be represented in many ways

- Use canonical labeling to handle isomorphism
 - Map each graph into an ordered string representation (known as its code) such that two isomorphic graphs will be mapped to the same canonical encoding
 - Example:
 - Lexicographically largest adjacency matrix

Example of Canonical Lal (Kuramochi & Karypis, IC		
• Graph:	(P transfer to transfer	
 Adjacency matrix repr 	esentation:	

Example of Canonical Labeling (Kuramochi & Karypis, ICDM 2001)

• Order based on vertex degree:

Order based on vertex labels:

Example of Canonical Labeling (Kuramochi & Karypis, ICDM 2001)

Eind	canonical	lahal	•
ГШИ	Carronnear	ianci	•

(Canonical Label)