1. Parâmetro p — AutoRegressivo (AR)

O parâmetro p indica quantos valores **anteriores da própria série** serão usados para prever o próximo valor.

Exemplo visual:

Imagine uma série onde o valor atual depende dos anteriores:

```
Exemplo com p = 2

t-2 t-1 t

\begin{vmatrix} ---- \end{vmatrix}

Prevê valor atual
```

Gráfico PACF (Partial Autocorrelation Function):

Usado para escolher o p. Ele mostra até onde os valores anteriores estão **parcialmente correlacionados** com o presente.

2. Parâmetro d — Integração (Diferença)

d é o número de vezes que aplicamos a **diferença entre os valores** da série para torná-la estacionária (sem tendência).

Exemplo visual:

Série original com tendência crescente:

```
Série original (com tendência)
/
/
/
/
```

Depois de 1ª diferença (d=1):

```
Série após d = 1
```

Quando usar d?

- Se a série tem **tendência**, aplique d = 1.
- Se ainda não for estacionária, tente d = 2 (raro).

3. Parâmetro q — Média Móvel (MA)

q representa o número de **erros anteriores** considerados na previsão.

Exemplo visual:

```
Erro anterior afeta previsão atual: e(t-1) \longrightarrow usado para prever y(t) q = 1 \rightarrow usa erro do período anterior <math>q = 2 \rightarrow usa dois erros anteriores
```

Gráfico ACF (Autocorrelation Function):

Ajuda a escolher q, mostrando até onde os **erros passados** têm correlação.

Resumo visual

Parâmetro	Significado	Gráfico usado para identificar	Exemplos comuns
p	Termos autoregressivos (lags Y)	PACF	0, 1, 2, 3
d	Número de diferenças (estacionar)	Série original	0, 1, 2
q	Termos de média móvel (lags erro)	ACF	0, 1, 2, 3

Com base nos gráficos:

- **d** = **1** parece adequado (pois removeu a tendência).
- **p** ≈ **1 ou 2** (baseado no PACF da série diferenciada).
- **q** ≈ **1** (baseado no ACF da série diferenciada).

Limites práticos para (p, d, q)

p - AutoRegressivo (AR)

- Limite prático comum: até 5 ou 6.
- Pode ser maior (10, 20 ou mais), **mas cuidado com overfitting** e perda de interpretabilidade.
- Modelos AR de ordem muito alta tendem a ser **instáveis** e difíceis de interpretar.
 - © Dica: Se o **PACF** mostrar cortes após lag 2 ou 3, já é suspeito usar p > 5.

- Valores comuns: 0, 1 ou no máximo 2.
- d = 0 → série já estacionária.
- d = $1 \rightarrow$ tendência simples.
- d = 2 → tendência mais forte, mas é **raro**.

⚠ d ≥ 3 normalmente indica problema grave de **não estacionaridade**, e **não é recomendado**, pois pode tornar o modelo instável ou fazer a série perder significado.

q – Média Móvel (MA)

- Limite prático comum: até 5 ou 6, assim como p.
- Aumentar muito q pode causar **problemas numéricos** na estimação dos coeficientes.
- A análise da **ACF** ajuda a limitar o valor ideal de q.

Limites técnicos (implementação)

Algumas bibliotecas podem ter restrições internas:

 statsmodels e pmdarima permitem valores maiores, mas o tempo de processamento cresce rapidamente. • Modelos com (p + q) > 20 podem travar, ou ter **problemas de convergência**.

☑ Boas práticas

Parâmetro	Valores recomendados	Cuidado
p	0 a 5	Overfitting se muito alto
d	0, 1, 2	d > 2 raramente necessário
q	0 a 5	Instabilidade se muito alto

Resumo

Não há um limite fixo, mas sim um equilíbrio entre:

- Qualidade da previsão
- Simplicidade do modelo
- Estabilidade numérica
- Capacidade de generalização

Ⅲ Tabela-Resumo dos Parâmetros do ARIMA

Parâmetro	Significado	Função no modelo	Valores recomendados	Como identificar	Alertas / Cuidados
p	AutoRegressivo (AR)	Usa valores anteriores da própria série	0 a 5	Gráfico PACF	p alto pode causar overfitting
d	Diferença (Integração)	Remove tendência para estacionar a série	0, 1 ou 2	Visual + teste ADF	d > 2 é raro e pode gerar instabilidade
q	Média Móvel (MA)	Usa erros anteriores na previsão	0 a 5	Gráfico ACF	q alto pode gerar problemas numéricos

☑ Recomendações rápidas:

- Comece testando modelos como: ARIMA(1,1,1) ou ARIMA(2,1,2)
- Use auto_arima para automatizar a escolha dos melhores valores
- Sempre verifique se a série é estacionária (d) antes de ajustar p e q

Exemplos de Combinações ARIMA(p, d, q)

Modelo Explicação

ARIMA(0,0,0) Série já estacionária. Sem AR, sem MA.

ARIMA(1,0,0) Modelo autoregressivo simples (AR(1))

ARIMA(0,1,0) Modelo com 1 diferenciação, sem AR ou MA

ARIMA(1,1,0) AR com 1 diferença (modelo comum em séries com tendência)

ARIMA(0,1,1) MA com 1 diferença (modelo muito usado em economia)

ARIMA(1,1,1) AR e MA, com 1 diferença

ARIMA(2,1,2) Modelo mais complexo com 2 defasagens e 2 erros passados