Seat No.:	Enrolment No.
Scal NO	Emoniem no.

GUJARAT TECHNOLOGICAL UNIVERSITY

BE - SEMESTER- I & II (NEW) EXAMINATION - WINTER 2019

Subject Code: 3110011	Date: 02/01/2020
-----------------------	------------------

Subject Name: Physics

Time: 10:30 AM TO 01:00 PM	Total Marks: 70
----------------------------	-----------------

Instructions:

1.	Attempt all	questions.
----	-------------	------------

- Make suitable assumptions wherever necessary.
 Figures to the right indicate full marks.

	5. .	rigures to the right indicate full marks.	
			Marks
Q.1	(a)	Define: coefficient of viscosity.	03
•	(b)	Define Reverberation time and write down the Sabine's formula of it by	04
	` '	explaining the parameters in it.	
	(c)	What is damping motion? Derive the differential equation and general	07
	(-)	solution of damped harmonic motion.	
		•	
Q.2	(a)	Define resonance in an oscillating system.	03
V. -	(b)		04
	(c)	Write down the factors affecting the acoustics of an auditorium. Give	07
	(C)	remedies.	07
		OR	
	(c)	Explain Young's Modulus, shear modulus, bulk modulus and	07
	(C)	Poisson's ratio.	07
		1 0155011 5 Tatio.	
Q.3	(a)	Write down various applications of ultrasonic waves.	03
Ų.S			03
	(b)	that Young's modulus of iron = 11.5×10^{10} N/m ² and density of pure iron =	04
		7.25×10^3 kg/m ³ . Can you use it in a magentostriction oscillator to produce	
		ultrasonic waves?	
	(c)		07
	(0)	its advantages and limitations.	0,
		OR	
Q.3	(a)	What do you understand by NDT. Give names of few NDT methods.	03
	(b)	A Nikel rod having 5 cm length is vibrating at resonance. Calculate the	04
	(~)	fundamental frequency of vibration for which ultrasonic waves are	
		generated. Given that Young's modulus of Nikel = $2.14 \times 10^{11} \text{ N/m}^2$, density	
		of Nikel = $8.908 \times 10^3 \text{ kg/m}^3$.	
	(c)	Describe acoustic diffraction method to determine the speed of sound in	07
		liquid with suitable diagram.	
0.4	(a)	Explain the phenomenon of superconductivity.	03
•	(b)	The critical magnetic field of Niobium is 1×10^5 Tesla at 8 K and 2×10^5 Tesla	04
	(~)	at 0 K. Calculate the transition temperature of the element.	0 -
	(c)	Write down the applications of superconductors.	07
		OR	
Q.4	(a)	Describe BCS theory of superconductivity.	03
.	(b)	Derive the formula for time period of a torsional pendulum.	04
	(c)	(i) Josephson Junction and its applications 04	07
	(-)	(ii) What force is required to stretch a steel wire to double the length when	٠.
		its area of cross section is 1 cm ² . Given that Young's modulus of wire is	
		$7 \times 10^{10} \text{ N/m}^2$.	

Q.5	(a)	Write down the properties of LASER light.	03
	(b)	What is the wavelength of light of Ruby Laser if the separation between metastable state and lower energy state is 1.79 eV. Given that Planck's constant = 6.64×10^{-34} Js.	04
	(c)	Describe the construction and working principle of He-Ne LASER with suitable diagrams.	07
		OR	
Q.5	(a)	Classify sound on the basis of frequency with suitable examples.	03
	(b)	Derive the relationship between Einstein Coefficients.	04
	(c)	Write down the various applications of LASER.	07
