

Syllabus

B. Tech. Information Technology (Second Year Semester III and IV)

From Academic Year 2019 – 20 (KJSCE 2018 CBGS Pattern)

Approved by Academic Council 13/12/2019 SY B. Tech/IT / Revision 2.1

K. J. Somaiya College of Engineering, Vidyavihar, Mumbai – 77 (Autonomous College Affiliated to University of Mumbai)

It is notified for information of all concerned that the Board of Studies at its meeting held on December01,2018 and the subsequent meeting of the Academic Council held on May 18, 2019 amended the syllabus of SY B. Tech IT and same be brought in to force from Academic Year 2019-20 with immediate effect.

The amendment in courses Programming Laboratory II - Advanced Java(2UIL401) and Web Programming I(2UIL402) is approved in the meeting of Board of Studies held on Nov 16, 2019 and subsequent meeting of Academic Advisory Board held on 13/12/2019.

Dr. Irfan A Siddavatam

(Head, Department of Information Technology)

K. J. Somaiya College of Engineering, Mumbai -77

(Autonomous College Affiliated to University of Mumbai)

Department of Information Technology

Preamble

Technology is an integral part of everyday life. An Engineering education in Information

Technology gives broad exposure to various technical subjects that develop skills that are

transferable to most industries such as problem solving, decision making, innovation, project

management, team working and communication which will contribute to a rapidly changing

technological environment.

Academic Autonomy conferred by the University of Mumbai from the Academic Year 2014-

15, gave us the freedom to develop and implement our own curriculum KJSCE2014 with

features such as inclusion of choice based Interdisciplinary Course (IDC), Audit Courses, Add

on Credit Courses, Add on Audit Courses, Exposure Courses, etc.

Our revision in syllabus KJSCE2018, to be introduced from the academic year 2018-19 and

2019-20 for SY, has been designed based on the revised AICTE guidelines as well as various

accrediting bodies. Some of the highlights of the KJSCE2018 syllabus are: more focus on

hands on, wide choice for branch specific electives, more number of open or interdisciplinary

electives, streamlined courses based on thrust areas, increased opportunity for internships, etc.

Laboratory courses like Programming labs will enhance the practical skills of the students.

We at IT department of KJSCE endeavor continuously to enable our students to move forward

and confidently embrace change rather than follow; to innovate rather than stagnate and to

initiate rather respond to become efficient technocrats and dynamic entrepreneurs.

Dr. Irfan Siddavatam

Head, Department of Information Technology

Vision

To become a center of excellence for holistic education by preparing world class professionals in the dynamic field of Information Technology.

Mission

Providing quality education to

- Develop competent IT professionals with ethical values and enable them in lifelong learning.
- Promote conducive ambience for research and creativity.

Program Educational Outcomes (PEO)

A graduate of Information Technology will

PEO1: Excel in professional career and contribute to social needs through Information Technology

PEO2: Pursue higher education, conduct research, demonstrate professionalism and ethics PEO3: Exhibit innovation, adaptability, team work, leadership and communication skills

Program Outcomes (PO):

Engineering Graduates will be able to:

PO1: **Engineering knowledge:** Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.

PO2: **Problem analysis**: Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.

PO3: **Design/development of solutions:** Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.

PO4: Conduct investigations of complex problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.

PO5:. Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern

engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations.

PO6:. The engineer and society: Apply reasoning informed by the contextual knowledge to assess

societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.

PO7: **Environment and sustainability:** Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.

PO8: **Ethics:** Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.

K. J. Somaiya College of Engineering, Mumbai -77

(Autonomous College Affiliated to University of Mumbai)

Department of Information Technology

- PO9: **Individual and team work:** Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.
- PO10. **Communication:** Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.
- PO11. **Project management and finance:** Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.
- PO12. **Life-long learning:** Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

Program Specific Outcomes

- PSO 1: Develop secure and reliable IT based solutions to real world operational problems using appropriate technologies
- PSO 2: Perform data analysis and interpretation required for building knowledge based systems using intelligent computing techniques

Acron	ym for category of courses	Acrony	ms used in syllabus document
Acronym	Definition	Acronym	Definition
BS	Basic Science Courses	CA	Continuous Assessment
ES	Engineering Science	ESE	End Semester Exam
HS	Humanities and Social Sciences including Management Courses	IA	Internal Assessment
PC	Professional Core Courses	0	Oral
PE	Professional Elective courses	P	Practical
OE	Open Elective Courses	P&O	Practical and Oral
LC	Laboratory Courses	TH	Theory
PR	Project	TUT	Tutorial
AC	Audit Course	TW	Term work
AOCC	Add on Credit Course	T – 1	Test – 1
AOAC	Add on Audit Course	T-2	Test -2
AVAC	Add on Value Audit Course	CO	Course Outcome
EX	Exposure Course	PO	Program Outcome
I	Interdisciplinary courses	PSO	Program specific Outcome

Acronyms used in Course code e.g. 2UTC301

Acronym	Definition
Serially as per code	
2	Second revision after autonomy KJSCE 2016
	(First revision KJSCE 2014
U	Undergraduate
T	Department of Electronics and Telecommunication Engineering
C	Core Course
L	Laboratory Course
W	Workshop
T	Tutorial
X	Exposure Course
S	Common to all
A	Audit Course
3	3- Semester 3 / 4- Semester 4
01	Course No.

K. J. Somaiya College of Engineering, Mumbai -77

(Autonomous College Affiliated to University of Mumbai) Department of Information Technology

Semester III Credit Scheme

Course	Course Name	Teaching	Total	Credits	Total	Course
Code		Scheme Hrs.)	(Hrs.)	Assigned	Credits	Category
		TH – P –TUT		TH – P – TUT		
2UIC301	Discrete and Applied	3 - 0 - 1	04	3 - 0 - 1	04	BS
	Mathematics					
2UIC302	Data Structures ^{\$}	3 - 0 - 0	03	3 - 0 - 0	03	PC
2UIC303	Database Management Systems	3 - 0 - 0	03	3 - 0 - 0	03	PC
2UIC304	Digital Systems	3 - 0 - 0	03	3 - 0 - 0	03	PC
2UIC305	Data Communication and	3 - 0 - 0	03	3 - 0 - 0	03	PC
	Networking					
2UIL301	Programming Laboratory I @	0 – 2–1	03	0 -1 -1	02	LC
2UIL302	Data Structures Laboratory	0 - 2 - 0	02	0 - 1 - 0	01	PC
2UIL303	Database Management Systems	0 - 2 - 0	02	0 - 1 - 0	01	PC
	Laboratory					
2UIL304	Digital Systems Laboratory	0 - 2 - 0	02	0 - 1 - 0	01	PC
2UIL305	Data Communication and	0 - 2 - 0	02	0 - 1 - 0	01	PC
	Networking Laboratory					
Total		15-10-02	27	15-05-02	22	
2USA3XX	Audit Course &	02	02	_	-	AC

[@] Students will have a choice of Java or Python Programming Language

Examination Scheme

Course Code	Course Name	Examination Scheme Marks								
0000		CA		ESE	T	0	P	P&O	Total	
		T – 1	T-2	IA		W	%		#	
2UIC301	Discrete and Applied Mathematics	15	15	20	50	25				125
2UIC302	Data Structures \$	15	15	20	50					100
2UIC303	Database Management Systems	15	15	20	50					100
2UIC304	Digital Systems	15	15	20	50					100
2UIC305	Data Communication and Networking	15	15	20	50					100
2UIL301	Programming Laboratory I @					50*			25	75
2UIL302	Data Structures Laboratory					25		-	25	50
2UIL303	Database Management Systems Laboratory					25			25	50
2UIL304	Digital Systems Laboratory					25	25			50
2UIL305	Data Communication and Networking Laboratory					25	25			50
Total		1:	50	100	250	175	50		75	800
2USA3XX	Audit Course &	_		_			_			-

^{\$} Course common with Computer Engineering

^{\$} Course common with Computer Engineering

[&]amp; Completion of the course equivalent to 25 activity points

[@] Students will have a choice of Java or Python Programming Language

[%] Oral examination based on entire theory syllabus

[#] Practical and Oral examination based on syllabus *Term Work based on continuous assessment

[&]amp; Completion of the course equivalent to 25 activity points

Semester IV Credit Scheme

Course Code	Course Name	Teaching Scheme (Hrs.) TH – P – TUT	Total (Hrs.)	Credits Assigned TH – P – TUT	Total Credits	Course Category
2UIC401	Probability, Statistics and Optimization Techniques \$	3 – 0 – 1	04	3 – 0 – 1	04	BS
2UIC402	Information Theory and Coding	3 – 0 – 1	04	3 – 0 – 1	04	PC
2UIC403	Analysis of Algorithms	3 - 0 - 0	03	3 - 0 - 0	03	PC
2UIC404	Advanced Databases	3 - 0 - 0	03	3 - 0 - 0	03	PC
2UIL401	Programming Laboratory II @	0 - 2 - 2	04	0 - 1 - 2	03	LC
2UIL402	Web Programming – I Laboratory	0 - 2 - 2	04	0 – 1– 2	03	LC
2UIL403	Analysis of Algorithms Laboratory	0 - 2 - 0	02	0 - 1 - 0	01	PC
2UIL404	Advanced Databases Laboratory	0 - 2 - 0	02	0 - 1 - 0	01	PC
Total		12-08-06	26	12-04-06	22	
2USA4XX	Audit Course &	02	02			AC

^{\$} Course common with Computer Engineering

Examination Scheme

Course Code	Course Name	Examination Scheme Marks								
Code		CA			ESE	TW	0	P	P&O	Total
		T-1	T-2	IA	1		%		#	
2UIC401	Probability, Statistics and Optimization Techniques	15	15	20	50	25	_	_	_	125
2UIC402	Information Theory and Coding	15	15	20	50	25	_	_	_	125
2UIC403	Analysis of Algorithms	15	15	20	50		_	_	_	100
2UIC404	Advanced Databases	15	15	20	50		_	_	_	100
2UIL401	Programming Laboratory-II @					50*			50	100
2UIL402	Web Programming – I Laboratory					50*	-	_	50	100
2UIL403	Analysis of Algorithms Laboratory					25	_		25	50
2UIL404	Advanced Databases Laboratory					25	_		25	50
Total		1:	20	80	200	200			150	750
2USA4XX	Audit Course &	-		_	_	_	_	_		AC

^{\$} Course common with Computer Engineering

[@] Students will have a choice of Advance Java or Advance Python Programming Language

[&]amp; Completion of the course equivalent to 25 activity points

[@] Students will have a choice of Java or Python Programming Language

[%] Oral examination based on entire theory syllabus

[#] Practical and Oral examination based on syllabus

^{*}Term Work based on continuous assessment

[&]amp; Completion of the course equivalent to 25 activity points

Semester III

SY B. Tech. Information Technology (KJSCE 2018)

Course Code	Course Title								
2UIC301		Discrete and Applied Mathematics							
		ТН				P		ГUТ	Total
Teaching Scheme(Hrs.)					-	01		04	
Credits Assigned			03				01		04
		Marks							
Examination	CA			ESE	TENNY.	0	P	P&O	Total
Scheme	T-1	T-2	IA	ESE	TW	J	r	100	1 Otal
	15	15	20	50	25				125

Course prerequisites:

- Applied Mathematics-I
- Applied Mathematics –II

Course Objectives

The objective of this course is to introduce different methods of finding Laplace Transform and Inverse Laplace transform of given function. The course also familiarizes students with the concepts of Relations, functions and different discrete structures. It will familiarize the students with different concepts of graph theory.

Course Outcomes

At the end of successful completion of the course the student will be able to

- CO1: Apply Different methods to find Laplace Transform and Inverse Laplace Transform of a function
- CO2: Find Fourier series, Fourier Integral and Fourier Transform of functions.
- CO3: Apply Relations, Functions and different discrete structures to solve Engineering problems.
- CO4: Apply various concepts of Graph theory to solve Engineering problems.

K. J. Somaiya College of Engineering, Mumbai -77 (Autonomous College Affiliated to University of Mumbai)

Department of Information Technology

Module	Unit	Department of Information Technology Details	Hrs.	CO
No.	No.	Details	1115.	CO
1		ce Transform	12	CO 1
-	1.1	Definition of Laplace Transform, Laplace Transform of	12	001
	1.1	sin(at), cos(at), , sinh(at), cosh(at), erf(t), Heavi-side unit		
		step, dirac-delta function, Laplace Transform of periodic		
		function		
	1.2	Properties of Laplace Transform (without proof):		
		Linearity, first shifting theorem, second shifting theorem,		
		multiplication by t, division by t, Laplace Transform of		
		derivatives and integrals, change of scale.		
	1.3	Inverse Laplace Transform: Partial fraction method,		
		convolution theorem, Application of Laplace Transform:		
		Solution of ordinary differential equations		
2	Fouri	er Series	10	CO2
	2.1	Introduction: Definition, Dirichlet's conditions, Euler's		
		formulae		
	2.2	Fourier Series of Functions: Exponential, trigonometric		
		functions, even and odd functions, half range sine and		
		cosine series		
	2.3	Complex form of Fourier series		
3		ons and Functions	9	CO 3
	3.1	Pigeon hole principle		
	3.2	Relations: Definition, Types of relations, Equivalence		
		relations, Partial ordering relations		
	3.3	Functions: Definition, Types of functions: Injective,		
		Surjective, Bijective, Invertible function, Composite		
	4.1. 1	function		60.2
4		raic Structure	6	CO 3
	4.1	Operations, Semi-groups, Groups, Rings, Integral		
	4.2	Domains and Fields Isomorphism and Homomorphism of groups		
5	4.2	h Theory	8	CO 4
3	5.1	Introduction to graphs, graph terminology, representing	O	CO 4
	3.1	graphs and graph isomorphism, connectivity.		
	5.2	Euler and Hamilton paths		
	5.3	Introduction to Planar graphs		
	5.4	Introduction to trees, Isomorphism of trees, Prefix code,		
	J. T	application of trees to coding and decoding of a message		
	1	Total	45	
		Total	TJ	1

Term-Work will consist of Tutorials covering entire syllabus. Students will be graded based on continuous assessment of their term work.

At least 2 tutorials will be conducted with the help of Mathematical and Statistical software in the Laboratory.

Sr.	Name/s of Author/s	Title of Book	Name of	Edition and
No.			Publisher with	Year of
			country	Publication
1.	B. S. Grewal	Higher Engineering	Khanna	43 rd Edition
		Mathematics	Publications,	2014
			India	
2.	Erwin Kreyszig	Advanced Engineering	Wiley Eastern	10 th Edition
		Mathematics	Limited, India	2015
3.	N.P. Bali and Manish	A Textbook of Engineering	Laxmi	9 th Edition
	Goyal	Mathematics	Publications	2016
			LTD, India	
4.	Bernard Kolman,	Discrete Mathematical	Pearson, India	6 th Edition
	Robert Busby and	Structures		2017
	Sharon C. Ross			
5.	P. N. Wartikar and	A text book of Applied	Pune Vidyarthi	6 th Edition
	J. N. Wartikar	Mathematics Vol I & II	Gruha, India	2012

K. J. Somaiya College of Engineering, Mumbai -77

(Autonomous College Affiliated to University of Mumbai)

Department of Information Technology

Course Code	Course Title									
2UIC302		Data structures ^{\$}								
]		P	•		TUT	Total		
Teaching Scheme(Hrs.)		03						-	03	
Credits Assigned		(03		-			-	03	
		Marks								
Examination	CA			ECE	TOXX/	0	D	P&O	Total	
Scheme	T-1	T-2	IA	ESE	TW		P	1 & 0	1 Otal	

50

20

Course prerequisites:

Any Programming Language

Course Objectives

The objective of this course is to introduce different types of data structure and how user can use data structure in software development. The course also familiarizes students with the concepts of advanced data structures such as balanced search trees, hash tables, priority queues, sorting and searching. Students will be master in the implementation of linked data structures such as linked lists and binary trees using any preferable language. Course mainly focuses on choosing the appropriate data structure for a specified application.

Course Outcomes

At the end of successful completion of the course the student will be able to

CO1: Explain the different data structures used in problem solving.

CO2: Apply linear and non-linear data structure in application development.

CO3: Describe concepts of advance data structures like set, map & dictionary.

CO4: Demonstrate sorting and searching methods.

100

^{\$} Course common with Computer Engineering

Module No.	Unit No.	Details	Hrs.	CO
1		luction	02	CO 1
	1.1	Introduction to Data Structures		
		Types of Data Structures, ADT (Abstract data type)		
2	Linea	r data structure	16	CO 2
	2.1	Linked List: Introduction, Representation of Linked List, Linked List v/s Array, Implementation of Linked List, Circular Linked List, Doubly Linked List, Application – Polynomial Representation and Addition, Other additional applications/Case study # Self Learning- Sparse matrix addition		
	2.2	Stack: The Stack as an ADT, Stack operations, Array Representation of Stack, Linked Representation of Stack, Application of stack – Polish Notation, Recursion and Other applications/Case study #Self Learning: Application of stack in evaluation of		
	2.3	Queues : The Queue as an ADT, Queue operation, Array Representation of Queue, Linked Representation of Queue, Circular Queue. Priority Queue, Double ended queue, Application of Queues – Simulation and other applications/Case study #Self Learning: Application of queue in Josephus Problem.		
3	Non-I	Linear data structures: Trees, Graph	12	CO 2
	3.1	Trees: Basic trees concept, Binary tree representation, Binary tree operation, Binary tree traversal, Binary search tree implementation, Threaded binary trees. Different Search Trees -AVL tree, Multiway Search Tree, B Tree, B+ Tree, and Trie, Applications/Case study of trees. #Self learning Learning - Red-Black and Splay		002
	3.2	Trees. Graph - Introduction, Graph Terminologies, Representation, Graph Traversals - Depth First Search (DFS) and Breadth First Search (BFS). Applications/Case study of Graphs.		
4	Non-I	Linear data structures: Set, Map, Dictionary	7	CO 3
	4.1	Set: Set ADT, Set Implementation, Partitions with Union-Find operations, Tree based partition implementation. Map: Map ADT, Implementation, Hash Tables Application of Maps Dictionary: Dictionary ADT, Implementation,. Application of Dictionaries #Self learning: Exploring case studies on use of set, map and dictionary		

5	Searc	hing and Sorting	8	CO 4
	5.1	Sorting : Sort Concept, Sort Stability, Bubble Sort,		
		Shell Sort, Counting Sort		
		#Self learning: Bucket and Radix sort		
	5.2	Searching: Search concept, Linear Search, Binary		
		Search, Hashed List Search, Comparison of searching		
		Techniques		
		Total	45	

[#] Students should prepare all Self Learning topics on their own . Self-learning topics will enable students to gain extended knowledge of the topic. Assessment of these topics may be included in IA and Laboratory Experiments.

Sr. No.	Name/s of Author/s	Title of Book	Name of Publisher with country	Edition and Year of Publication
1.	Michael T Goodrich Roberto Tamassia David Mount	Data Structure and Algorithm in C++	Wiley	First Edition
2.	Richard F. Gilberg & Behrouz A. Forouzan	Data Structures A Pseudocode Approach with C	CENGAGE Learning	Second Edition
3.	Aaron M Tanenbaum Yedidyah Langsam Moshe J Augentstein	Data structure Using C	Pearson	Twelfth Impression 2013
4.	Ellis Horowitz, Sartaj Sahni, Susan Anderson-Freed	Fundamentals Of Data Structures In C	University Press	Second Edition
5.	Jean Paul Tremblay, Paul G. Sorenson	An introduction to data structures with applications	Tata McGraw- Hill Education	Second Edition

Course Code	Course Title								
2UIC303		Database Management Systems							
		TH P TUT Total							
Teaching Scheme(Hrs.)			3					-	03
Credits Assigned			3					-	03
					Marks				
Examination		CA		ECE	(EXX.)		D	P&O	Total
Scheme	T-1	T-2	IA	ESE	TW	O	P	1 & O	1 Otal
	15	15	20	50					100

Course prerequisites: NIL Course Objectives

This course is imparting knowledge of database management system and its use in enterprise business. It enables students to perform entity-relationship modeling and relational database design. Student will learn and use Structured Query Language (SQL). It gives knowledge of applying normalization techniques to the database. Along with it, students are also introduced to the concept of transaction and query processing.

At the end of successful completion of the course the student will be able to

CO1: Understand the features of Relational database management systems.

CO2: Apply data models to real world scenario.

CO3: Illustrate the concept of security, Query processing, indexing and Normalization for Relational database.

CO4: Apply the concept of transaction, concurrency control and recovery techniques

Module	Unit No.	Details	Hrs.	CO
No. 1		pase concepts and Systems	6	CO1
1	1.1	Introduction- Purpose of Database Systems, DBMS	U	COI
	1.1	system architecture, Data Models, Data Independence		
	1.2	Database languages, Database Users and Administrator		
	1.3	Different types of Database Systems		
2		pase Models and SQL	9	CO 2
_	2.1	Database design phases, E-R Model		002
	2.2	Constraints, E-R Diagrams, E-R design issues		
	2.3	Entity set, Extended E-R features		
	2.4	Relational model concepts, Constraints		
	2.5	Relational Algebra: Unary, Binary and Set theory		
	2.3	relational operations		
	2.6	Data definition commands, attribute constraints, SET		
	2.0	operations, Aggregate functions, Null Values, Nested sub		
		queries, complex queries, Views Data control commands		
	2.7	Data manipulation commands: Insert, Update, Joined		
	2.7	relations		
	2.8	Integrity and security: Domain constraints, Referential		
		integrity, Triggers; Security and Authorization in SQL	10	~~~
3		onal Database Design	10	CO 3
	3.1	Design guidelines for relational schemas, Functional		
	2.2	dependencies		
	3.2	First Normal form, Second Normal form, Third normal		
	2.2	form.		
	3.3	Decomposition using functional dependencies, Boyce Codd normal form; decomposition using multivalued		
		dependencies, fourth normal form.		
	3.4	The database design and implementation process		
1		xing, Hashing, Query processing and Optimization	10	CO 3
7	4.1	Basic concepts, ordered indices: dense and sparse,	10	CO 3
	7.1	multilevel indices, secondary indices		
	4.2	Hashing: Static hashing, dynamic hashing, comparison of		
	1.2	ordered indexing and hashing		
	4.3	Query processing: Steps involved in query processing,		
		measures of query cost, algorithms for SELECT and		
		PROJECT operations.		
	4.4	Optimization: Overview, Transformation of relational		
		expressions, Estimating statistics, Choice of evaluation		
		plan		
5	Trans	actions, Concurrency control and Recovery system	10	CO4
	5.1	Transaction Concepts, Transaction state, ACID		
		properties, concurrent executions, Serializability,		
		Recoverability.		
	5.2	Concurrency control: Lock based, Timestamp based,		
		validation based protocol, Deadlock Handling		
	5.3	Recovery system: Failure classification, Recovery and		
		Atomicity, Log based recovery, Shadow paging		
<u> </u>		Total	45	

Sr. No.	Name/s of Author/s			Edition and Year of Publication	
1.	Elmasri and Navathe	Fundamentals of Database Systems	with country Pearson Education	7th Edition 2016	
2.	Korth, Slberchatz,Sudar shan	Database System Concepts	McGraw – Hil	7 th Edition 2016	
3.	Raghu Ramakrishnan and Johannes Gehrke	Database Management Systems	McGraw Hill	3 rd Edition 2014	
4.	C.J Date	Introduction to Database Systems	Pearson Education	8 th edition 2006	

K. J. Somaiya College of Engineering, Mumbai -77 (Autonomous College Affiliated to University of Mumbai)

Department of Information Technology

Course Code	Course Title								
2UIC304	Digital Systems								
		TH P TUT Total							Total
Teaching Scheme(Hrs.)		03			_			03	
Credits Assigned			03			-			03
					Marks				
Examination		CA		ECE			D	P&O	Total
Scheme	T-1	T-2	IA	ESE	TW	O	P	1 & 0	1 otai
	15	15	20	50	-		-		100

Course prerequisites: Nil

Course Objectives

This course lays the foundation for understanding the basics of digital computing. They also learn simulation tools to design digital logic systems.

Course Outcomes

At the end of successful completion of the course the student will be able to

CO1: Solve problems on number system conversion and Boolean algebra.

CO2: Understand the basic building blocks, techniques used in digital logic design

CO3: Design the combinational and sequential circuits using basic building blocks and MSI devices.

CO4: Design basic logic circuits using VHDL.

Module	Unit	Details	Hrs.	CO
No.	No.			
1	Numb	per Systems and Codes	6	CO 1
	1.1	Introduction to digital Systems		
	1.2	Binary, Octal, Decimal and Hexadecimal number		
		Systems, their conversion and Arithmetic.		
	1.3	Binary Addition and Subtraction (1's and 2's		
		complement method)		
	1.4	Gray Code, BCD Code, Excess-3 code, ASCII code,		
		Error Detecting Code: Even and Odd Parity, Minimum		
		Distance.		
2	Logic	Gates and Boolean Algebra	11	CO 2
	2.1	Basic Digital Circuits: NOT,AND,OR,NAND,NOR,EX-OR,EX-NOR		
	2.2	Theorems and Properties of Boolean Algebra, Standard		
		SOP and POS form. Simplification of expressions.		
	2.3	K-map method (2,3,4) ,Quine McClusky Method (4,5) .		
		NAND-NOR Realization.		
3	Comb	inational Logic Design	12	CO 3
	3.1	Introduction, Half and Full Adder, Half and Full Subtractor, Carry Look ahead adder, 4 bit binary adder using IC 7483, one digit BCD Adder, Four Bit Binary Subtractor (1's and 2's compliment method)		
	3.2	Multiplexers and Demultiplexers/Decoder using Logic gates and using MSI devices IC 74151,74138, Binary Encoder, Priority Encoder, Code Conversion Design of One bit, Two bit Magnitude Comparator, 4-bit		
	3.3	Magnitude Comparator using IC 7485.		
4	Seane	ential Logic Design	12	CO 3
•	4.1	Flip Flops: SR, D, JK, (IC 7476) JK Master Slave and T Flip Flop, Truth Tables and Excitation Tables, Flip-flop conversion. Design of sequential circuit using state equations		
	4.2	Counters: Design of Asynchronous and Synchronous		
		Counters, Modulo Counters, UP- DOWN counter.		
	4.3	Shift Registers: Bidirectional Shift Register, Universal		
		Shift Register, Ring and Johnson Counter.		
5		L Programming	04	CO4
	5.1	Introduction to VHDL, Framework of VHDL program. Implementation of combinational and sequential logic circuits using VHDL		
		Total	45	

Sr.	Name/s of Author/s	Title of Book	Name of	Edition and
No.			Publisher with	Year of
			country	Publication
1.	R. P. Jain	Modern Digital	Tata McGraw	4 th Edition
		Electronics	Hill	2009
2.	Donald p Leach,	Digital principles and	Tata McGraw	8 th Edition
	Albert Paul Malvino	Applications	Hill	2014
3.	J. Bhasker	A VHDL Primer	Phi Learning	3rd Edition
	Yalamanchili		Private Limited	2015
4.	Ronald J. Tocci,	Digital Systems –	Pearson	10 th Edition
	Neal S. Widmer,	Principles and		2009
	Gregory L. Moss	Applications		

Course Code	Course Title								
2UIC305	Data Communication and Networking								
		TH P TUT Tota						Total	
Teaching Scheme(Hrs.)	03				_				03
Credits Assigned			03		_	-			03
					Marks				
Examination		CA		ECE	TW		D	P&O	Total
Scheme	T-1	T-2	IA	ESE	TW	O	P	100	1 Otal
	15	15	20	50					100

Course prerequisites:

Fundamentals of Computer programming.

Course Objectives

This course provides an understanding of the concepts and mechanisms underlying the telecommunications and networking. Starting with the basics of data communication and types of networks, it introduces the transmission media. It also explains how two public networks, telephones and cable TV can be used for data transfer. A thorough background of the ISO-OSI model and the TCP/IP model will be given. The Application layer, Transport layer, Internet layer, Data link layer and Physical layers are covered in detail along with the protocols used. Top-down approach is used for this course will give students a better perception in terms of both usefulness and ease of understanding.

Course Outcomes

At the end of successful completion of the course the student will be able to

- CO1: Understand the data communication systems, network topologies and network devices
- CO2: Enumerate the layers of the OSI model and TCP/IP model, their functions and Protocols.
- CO3: Build the skills of sub-netting and routing mechanisms.
- CO4: Execute their knowledge of computer communication principles, including Error detection and correction, multiplexing, flow control, and error control.

Module	Unit	Details	Hrs.	CO					
No.	No.								
1	Intro	duction	05	CO 1					
	1.1	Introduction: Data Communications, Networks, The Internet, Protocols and Standards, Uses of Computer networks							
	1.2	Network Models: Layered tasks ,The OSI Model, Layers in the OSI Model, TCP/IP Protocol Suite							
2	The Application Layer								
	2.1	Introduction: Providing services, Application layer paradigm, Client Server paradigm: Application programming Interface, Using services of the Transport layer.							
	2.2	Standard client server applications: Domain Name System (DNS), Hyper Text Transfer Protocol (HTTP), Remote Logging(Telnet), Email(SMTP,MIME,POP3), File Transfer(FTP) and SNMP							
3	The T	The Transport Layer							
	3.1	The Transport Layer Services, Protocols: UDP, TCP							
	3.2	User datagram protocols: User datagram, services and UDP application							
	3.3	TCP features and services, Flow control, Error Control, Congestion Control, TCP segment, TCP Connection Establishment, Data transfer, TCP Connection Release							
4	The N	letwork Layer	08	CO 3					
	4.1	Network Layer Design Issues, IP Addressing, Subnetting							
	4.2	The Network Layer In The Internet: The IP Protocol, IPv4 header, IPv6 header, Routing Algorithms, Congestion Control Algorithms, Quality Of Service							
	4.3	# Self learning: Internet Control protocols, Routing protocols (Intra-domain-RIP,OSPF and Inter-domain-BGP)							
5		Oata Dink Layer & Physical layer (Host layer)	16	CO4					
	5.1	Error detection and correction: Types of errors, redundancy, detection versus correction, forward error correction versus retransmission, Error detection, Error correction, Hamming Code, CRC, Checksum							
	5.2	Data Link Control: Framing, Fixed size and variable size framing; Flow and Error control, Protocols for Noiseless and Noisy Channels, Piggybacking, HDLC,PPP. Multiple Access: Random Access, Controlled Access, Channelization.							

5.3	Data and Signals: Analog and Digital Signals, Transmission impairments, Data Rate Limits, Performance. Digital transmission: Digital –to-Digital Conversion, Analog –to-Digital Conversion. Analog transmission: Digital –to-Analog Conversion, Analog –to-Analog Conversion.		
5.4	Transmission Media: Guided Media, Unguided Media, Switching and Multiplexing.		
	Total	45	

Students should prepare all self-learning topics on their own. Self-learning topics will enable students to gain extended knowledge of the topic. Assessment of these topics may be included in IA and Laboratory.

Sr.	Name/s of Author/s	Title of Book	Name of	Edition and
No.			Publisher with country	Year of Publication
1.	B. A. Forouzan and Firouz Mosharraf	Computer Networks A Top down Approach	Tata McGraw Hill,India	1st Edition, 2011
2.	James F. Kurose and Keith W. Ross	Computer Networking: A top down approach	Peason, India	5 th Edition, 2012
3.	A. S. Tanenbaum	Computer Networks	Prentice Hall, India	5 th Edition, 2014
4.	B. F. Ferouzan	TCP/IP Protocol Suite	Tata McGraw Hill,India	4 th Edition,2010
5.	Williams Stallings	Data & Computer communications	Pearson	9 th Edition, 2017

Course Code	Course Title								
2UIL301		Programming Laboratory – I [@]							
		TH P TUT Total							Total
Teaching Scheme(Hrs.)					02	02		01	03
Credits Assigned					01	01		01	02
				-	Marks				
Examination		CA		ECE	TW	0	n	P&O	Total
Scheme	T-1	T-2	IA	ESE	TW	U	P	rau	1 Otal
					50*	-		25	75

[@] Java Programming Language

Course prerequisites:

• Knowledge of Programming language(2UHL106)

Course Objectives

The objective of the course is to impart the fundamentals of Object Oriented Programming using JAVA programming language. The course emphasizes identifying simple real world problems and providing solution to them using object oriented paradigms.

At the end of successful completion of the course the student will be able to

CO1: Comprehend the need and features of object oriented programming.

CO2: Apply object oriented design methodology using JAVA programming.

CO3: Demonstrate the concept of exceptions handling.

CO4: Illustrate the concept of user defined package and multithreading in JAVA.

^{*} Term Work based on continuous assessment

Module	Unit	Details	Hrs.	CO
No.	No.			
1	Princ	iples of Object-Oriented Programming	01	CO 1
	1.1	Need of Object Oriented Programming, Comparison of		
		Procedural and Object Oriented Approach		
	1.2	Characteristics of OOPs-Object, Classes, Polymorphism,		
		Inheritance, Reusability, Data Hiding and Abstraction etc		
	1.3	Features of Java, JDK		
2	Class	es, Array and String	05	CO 2
	2.1	Class, Object, Method, Member, Dot Operator,		
		Command Line Argument, Input Output using Scanner		
		Class and Buffer-reader Class,		
	2.2	Constructor, Constructer Overloading, Destructor		
	2.3	One Dimensional Array, One Dimensional Array,		
		Multidimensional Array, Array of an Object		
	2.4	String Class and Methods		
	2.5	String-Buffer Class and Methods		
3	Inher	itance, Interface	04	CO 2
	3.1	Types of Inheritance: Single, Multilevel, Hierarchical		
	3.2	Access Specifiers		
	3.3	Method Overloading, Method Overriding		
	3.4	Final class, Abstract Class and Method		
	3.5	Interface, Multiple Inheritance		
4	Mana	ging Exception	02	CO3
	4.1	Try, Catch, Finally, Throw, Throws,		
	4.2	Inbuilt Exception Handling		
	4.3	User Defined Exceptions Handling		
5	Packa	nge, Multithread Programming	03	CO4
	5.1	Creating and Using User Defined Package		
	5.2	Introduction to Multithreading, Thread Lifecycle		
		Total	15	

Term-Work will consist of Tutorials and laboratory work covering entire syllabus. Students will be graded based on continuous assessment of their term work Practical and Oral examination based on laboratory experiments and entire syllabus

Sr.	Name/s of	Title of Book	Name of	Edition and
No.	Author/s		Publisher	Year of
			with country	Publication
1.	Herbert Schildt	Java: The Complete Reference	Tata McGraw-	10 th Edition
			Hill Publishing	2017
			Company	
			Limited	
2.	Sachin Malhotra,	Programming in Java	Oxford	2 nd Edition
	Saurab		University	2018
	Choudhary		Press	
3.	Dt Editorial	Java 8 Programming Black	Dreamtech	Edition
	Services	Book		2015

Course Code	Course Title									
2UIL301	Programming laboratory -1 [@]									
	ТН				F	•	,	TUT	Total	
Teaching Scheme(Hrs.)	-				02		01		03	
Credits Assigned			-		01		01		02	
	Marks									
Examination	CA			ECE	TW		D	De O	Total	
Scheme	T-1	T-2	IA	ESE	1 77	O	P	P&O	1 Otal	
	_	_	-	-	50*	_	-	25	75	

[@]Python Programming Language

Course prerequisites

• Knowledge of programming languages.

Course Objectives

The objective of the course is to impart knowledge of python programming. The course mainly introduces basic in python programming language concepts like data structures, Decision Making statements and Functions. Further the course also covers Object Oriented Programming concepts and Files Handling in Python.

Course Outcomes

At the end of successful completion of the course the student will be able to

CO1: Use basic data structures in Python

CO2: Use different Decision Making statements and Functions in Python.

CO3: Apply Object oriented programming concepts in Python

CO4: Implement different File handling operations

^{*}Term Work based on continuous assessment

Module	Unit	Details	Hrs.	CO
No.	No.			
1	Intro	luction Python	01	CO 1
	1.1	Introduction, Features of Python, Installation of IDE for		
		python		
	1.2	Spyder and Jupyter Notebook		
2	Progr	amming with python: Basic Concepts	03	CO1
	2.1	Data Types in Python, Basic & Built-in Math functions,		
		Number Formats, Strings, Quotes, print() Function,		
		Variables, Operators in Python, Copying Data: Shallow		
		Copy and Deep Copy		
	2.2	Data Structures: Tuples — Unchanging Sequences of		
		Data, list— Unchanging Sequences of Data,		
		Dictionaries— Groupings of Data Indexed by Name,		
		Special String, Substitution Using Dictionaries, Arrays		
		Treating a String Like a List, Special Types Ranges of		
		Sequences, Working with Sets and Arrays		
3	Progr	amming with python: Decision Making and Functions	03	CO2
	3.1	If statement: if, if-else, elif, Repetition using While loop,		
		for loop, break statement		
	3.2	Functions- Defining a Function, Checking & Setting		
		Parameters, Nested Functions, Closures, Factory		
		Function, Decorators, Lambda and Filter, Map & range		
		functions.		
4	Objec	t Oriented Programming using Python programming	05	CO3
	4.1	Class, Object, Self-Variables, Constructors, Types of		
		Methods, Access Modifiers		
	4.2	Inheritance and types, constructor in inheritance, The		
		super() Method, Method Resolution order(MRO)		
	4.3	Polymorphism,		
	4.4	Exceptions Handling: Errors in python program,		
		Exceptions, Exception Handling, Types of Exceptions,		
		The Except Block, The assert statement		
	4.5	Multithreading in Python		
5		Handling	03	CO4
	5.1	Types of Files in Python, Opening a File, Closing a		
		File. Writing Text Files, Knowing Whether a File		
		Exists or Not		
	5.2	Working with Binary Files, Appending Text to a File,		
		Reading Text Files, File Exceptions, The with Statement		
		Pickle in Python		
		Total	15	

Term-Work will consist of Tutorials and laboratory work covering entire syllabus. Students will be graded based on continuous assessment of their term work Practical and Oral examination based on laboratory experiments and entire syllabus

Sr.	Name/s of Author/s	Title of Book	Name of	Edition and
No.			Publisher with	Year of
			country	Publication
1.	Reema Thareja	Python Programming:	Oxford	First
		Using Problem Solving	University	Edition
		Approach	Press	2017, India
2.	Dr. R. Nageswara	Core Python Programming	Wiley	Second
	Rao		Publication.	Edition
				2018,India
3.	Sheetal Taneja and	Python Programing: A	Pearson India	Second
	Naveen Kumar	Modular Approach		Edition 2018,
				India
4.	Swarroop C.H	Byte of python	e-book	Kindle edition
5.	Martin C Brown	The Complete Reference	Brandon A	First
		Python	Nordin	Edition
				2001

Course Code	Course Title									
2UIL302	Data Structures Laboratory									
	TH				P)	'	TUT	Total	
Teaching Scheme(Hrs.)					02				02	
Credits Assigned					01				01	
	Marks									
Examination	CA			ESE	TOXX/	0	P	P&O	Total	
Scheme	T-1	T-2	IA	ESE	TW		1	100	Total	
		-			25			25	50	

- Term-Work will consist of practical covering entire syllabus of "Data Structures" (2UIC302). Students will be graded based on continuous assessment of their term work.
- Practical and Oral Examination will be based on laboratory work and entire theory syllabus of "Data Structures" (2UIC302).

Course Code	Course Title										
2UIL303		Database Management Systems Laboratory									
	TH				P		TUT		Total		
Teaching Scheme(Hrs.)					02		-		02		
Credits Assigned					01		-		01		
	Marks										
Examination	CA			ECE	TW	0		P&O	Total		
Scheme	T-1	T-2	IA	ESE	1 W	U	P	rau	Total		
	-	-	_	-	25	-	-	25	50		

- Term-Work will consist of practical covering entire syllabus of "Database Management Systems laboratory" (2UIC303). Students will be graded based on continuous assessment of their term work.
- Practical and Oral Examination will be based on laboratory work and entire theory syllabus of "Database Management Systems laboratory" (2UIC303).

Course Code	Course Title									
2UIL304	Digital Systems Laboratory									
	TH				P		TUT		Total	
Teaching Scheme(Hrs.)					02				02	
Credits Assigned					01				01	
					Marks	ks				
Examination		CA			TEXX!		Ъ	P&O	Total	
Scheme	T-1	T-2	IA	ESE	TW	O	P	100	1 otal	
					25	25			50	

- Term-Work will consist of practical covering entire syllabus of "Digital systems" (2UIC304). Students will be graded based on continuous assessment of their term work.
- Oral Examination will be based on laboratory work and entire theory syllabus of "Digital systems" (2UIC304).

Course Code	Course Title									
2UIL305	Data Communication and Networking									
	ТН				P)	r	ГUТ	Total	
Teaching Scheme(Hrs.)					02				02	
Credits Assigned					01				01	
	Marks									
Examination	CA			ECE			D	P&O	T-4-1	
Scheme	T-1	T-2	IA	ESE	TW	O	P	1 & O	Total	
		-			25	25			50	

- Term-Work will consist of practical covering entire syllabus of "Data Communication and Networking"
 (2UIC305). Students will be graded based on continuous assessment of their term work.
- Oral Examination will be based on laboratory work and entire theory syllabus of "Data Communication and Networking" (2UIC305).

Semester IV

SY B. Tech. Information Technology (KJSCE 2018)

Course Code	Course Title									
2UIC401	Probability, Statistics and Optimization Techniques ^{\$}									
	ТН				P		r	TUT	Total	
Teaching Scheme(Hrs.)	03						01		04	
Credits Assigned			03				01		04	
					Marks					
Examination		CA			TEXX /	0	D	De O	Total	
Scheme	T-1	T-2	IA	ESE	TW		P	P&O	Total	
	15	15	20	50	25				125	

^{\$} Course common with Computer Engineering

Course prerequisites:

- Basics of Statistics and Probability
- Introductory LPP

Course Objectives

This course Exposes students to the concepts of Correlation, Regression for given bivariate data. Students are made familiar with different discrete and continuous probability distributions. The course acquaints students with concepts of Large sample test, Small sample test and Chi – Square test. The course familiarizes students with different methods of solving Linear and Non Linear Programming problems. Some basic queuing theory models are also discussed in the course.

Course Outcomes

At the end of successful completion of the course the student will be able to

- CO1: Apply concepts of correlation, regression for given bivariate data.
- CO2: Apply concepts of Binomial, Poisson, Exponential and Normal distribution to solve Engineering problems.
- CO3: Apply Large sample test and small sample test to analyze collected data.
- CO4: Apply concepts of Linear and Nonlinear programming methods to solve problems.
- CO5: Solve Problems based on single server limited queue and single server unlimited queue models.

No. No. Correlation and Regression 1.1 Correlation, Co-variance, Karl Pearson Coefficient of Correlation & Spearman's Rank Correlation Coefficient 1.2 Regression Coefficients, lines of regression & logistic regression 2 Probability and Probability Distribution 2.1 Conditional Probability, Bayes' theorem, Joint Probability 2.2 Discrete and Continuous Probability Distribution 2.3 Binomial Distribution, Poisson Distribution	Module
1.1 Correlation, Co-variance, Karl Pearson Coefficient of Correlation & Spearman's Rank Correlation Coefficient 1.2 Regression Coefficients, lines of regression & logistic regression 2 Probability and Probability Distribution 2.1 Conditional Probability, Bayes' theorem, Joint Probability Probability 2.2 Discrete and Continuous Probability Distribution	
Correlation & Spearman's Rank Correlation Coefficient 1.2 Regression Coefficients, lines of regression & logistic regression 2 Probability and Probability Distribution 2.1 Conditional Probability, Bayes' theorem, Joint Probability 2.2 Discrete and Continuous Probability Distribution	1
1.2 Regression Coefficients, lines of regression & logistic regression 2 Probability and Probability Distribution 2.1 Conditional Probability, Bayes' theorem, Joint Probability 2.2 Discrete and Continuous Probability Distribution	
regression 2 Probability and Probability Distribution 2.1 Conditional Probability, Bayes' theorem, Joint Probability 2.2 Discrete and Continuous Probability Distribution	
2 Probability and Probability Distribution 2.1 Conditional Probability, Bayes' theorem, Joint Probability 2.2 Discrete and Continuous Probability Distribution	
 2.1 Conditional Probability, Bayes' theorem, Joint Probability 2.2 Discrete and Continuous Probability Distribution 	
Probability 2.2 Discrete and Continuous Probability Distribution	2
2.2 Discrete and Continuous Probability Distribution	
23 Rinomial Distribution Poisson Distribution	
2.4 Uniform Distribution, Normal Distribution, Exponential	
Distribution	
3 Sampling Theory 07 CO	3
3.1 Sampling distribution. Test of Hypothesis. Level of	
significance, critical region. One tailed and two tailed	
tests. Interval Estimation of population parameters. Large	
and small samples.	
3.2 Difference between sample mean and population means	
for large samples, Test for significance of the difference	
between the means of two large samples.	
3.3 Student's t-distribution: Test for significance of the	
difference between sample mean and population means,	
Test for significance of the difference between the means of two Samples, paired t-test.	
3.4 Chi-square distribution as a Test of Independence, Test	
of the Goodness of fit and Yate's correction.	
3.5 Fisher's z-test	
4 Optimization Techniques 13 CO	1
4.1 Types of solution, Standard and Canonical form of LPP,	
Basic and feasible solutions, simplex method.	
4.2 Artificial variables, Big –M method (method of penalty).	
4.3 Duality and Dual Simplex method.	
4.4 Unconstrained optimization, problems of two or three	
variables with one equality constraint using Lagrange's	
Multiplier method.	
4.5 Problems of two or three variables with one inequality	
constraint using Kuhn-Tucker conditions	
5 Queuing Theory 07 CO5	5
5.1 Introduction, Features of Queuing, solution of Queuing	
models.M/M/1(Singal Server ,Unlimited Queue Model)	
5.2 M/M/1 Singal Server, limited Queue Model	
Total 45	

Term-Work will consist of Tutorials covering entire syllabus. Students will be graded based on continuous assessment of their term work.

At least 2 tutorials will be conducted with the help of Mathematical and Statistical software in the Laboratory.

Sr.	Name/s of Author/s	Title of Book	Name of	Edition and
No.			Publisher with	Year of
			country	Publication
1.	B. S. Grewal	Higher Engineering	Khanna	43 rd Edition
		Mathematics	Publications,	2014
			India	
2.	Erwin Kreyszig	Advanced Engineering	Wiley Eastern	10 th Edition
		Mathematics	Limited, India	2015
3.	J. K. Sharma	Operation research:	Laxmi	6 th Edition
		Theory and Applications	Publications,	2017
			India	
4.	S.C.Gupta and	Fundamentals of	Sultan Chand &	11 th Edition
	V.K.Kapoor	Mathematical Statistics	Sons	2009
5.	Ronald E.Walipole,	Probabilities & Statistics	Pearson	9 th Edition
	Raymond H.Myers	for Engineers & Scientists	Education	2010

Course Code	Course Title								
2UIC402	Information Theory and Coding								
	TH				P		TUT		Total
Teaching Scheme(Hrs.)	03						01		04
Credits Assigned	03						01		04
	Marks								
Examination Scheme	CA			ESE	TW	0	P	P&O	Total
	T-1	T-2	IA	LSE	1 **		1	1 & O	1 Utai
	15	15	20	50	25		-		125

Course prerequisites:

Basic concepts of Discrete Mathematics, Computer networks

Course Objectives:

The objective of the course is to impart knowledge of foundation of Information theory – the theory that provides quantitative measures of information and allows us to analyze and characterize the fundamental limits of communication systems. It includes detailed knowledge of compression techniques and error control methods. The Course also covers concept of basic number theory which forms the foundation for the cryptography.

Course Outcomes:

At the end of successful completion of the course the student will be able to

CO1: Understand basics of Information Theory, Information Source and Channel.

CO2: Illustrate different Data Compression algorithms.

CO3: Demonstrate the concepts and techniques for error detection and correction.

CO4: Apply basic number theory concepts for securing information.

Module	Unit	Details	Hrs.	CO
No.	No.			
1	Basics	s of Information Theory	6	CO 1
	1.1	Introduction, Measure of Information, Entropy, Information		
		Rate		
	1.2	Joint and Conditional entropies, Mutual Information		
	1.3	Channel models, Channel Capacity, Shannon's Theorem		
2	Sourc	e Codes	10	CO 2
	2.1	Introduction, Coding parameters, Source coding Theorem		
	2.2	Classification of Codes, Shannon-Fano coding		
	2.3	Huffman coding, Arithmetic coding		
	2.4	LZW coding, Run Length Encoding, Image Compression		
3	Error	Control Code :Linear block code	10	CO 3
	3.1	Introduction, Types of codes, Types of Errors, Error		
		Control Strategies, Modular Arithmetic, Galois field,		
		Primitive root.		
	3.2	Linear block codes-Introduction, Generator matrices, Parity		
		check matrices.		
	3.3	Error syndrome, Error detection, Error detecting and error		
		correcting capability.		
	3.4	Standard Array and Syndrome, Decoding, Hamming Code.		
4	Error	Control Code: Cyclic code and Convolution code	09	CO 3
	4.1	Cyclic codes- Introduction, Generation, Syndrome		
		computation and error detection, Decoding.		
	4.2	Cyclic Hamming code, Golay code, Cyclic Redundancy		
		Check.		
	4.3	Convolution codes- Introduction, Tree and Trellis Codes		
	4.4	Encoding, Decoding, Applications		
5		Number Theory	10	CO4
	5.1	Solving ax+by=d, Congruences, Chinese Remainder		
		Theorem.		
	5.2	Modular Exponentiation, Fermat's Little and Euler Theorem		
	5.3	Quadratic Residue, Legendre and Jacobi Symbols		
	5.4	Prime Number Generation, Random Number Generation.		
	5.5	Introduction to Cryptography: Symmetric and Asymmetric		
		Total	45	

Term Work will consist of Tutorials covering entire syllabus. Students will be graded based on continuous assessment of their term work

Sr. No.	Name/s of Author/s	Title of Book	Name of Publisher with country	Edition and Year of Publication
1.	ArijitSaha, Nilotpal Manna, SurajitMandal	Information Theory Coding and Cryptography	Pearson Education, India	First Edition 2013
2.	Ranjan Bose	Information Theory Coding and Cryptography	TMH, India	Third Edition 2016
3.	Khalid Sayood	Introduction to Data Compression	Elsevier	Fourth Edition, 2013
4.	Trappe and Washington	Introduction to Cryptography with Coding theory	Pearson, India	Second Edition 2006
5.	S Gravano	Introduction to Error Control Codes	Oxford University Press	First Edition 2007

Course Code	Course Title								
2UIC403			A	nalysis	of Alg	gorith	ıms		
]	ГН		F)	,	TUT	Total
Teaching Scheme(Hrs.)	03								03
Credits Assigned			03		_				03
		Marks							
Examination	CA		ESE	TW	0	P	P&O	Total	
Scheme	T-1	T-2	IA	ESE	TW	J	ľ	100	1 Utai
	15	15	20	50					100

Course prerequisites:

Data Structures

Course Objectives

The objective of the course is to the introduce fundamentals of analysis of algorithms. The specifications and process for algorithm analysis is covered using sample algorithms. The course helps understanding efficiency of algorithms and comparison of algorithms based on efficiency. The course also covers different algorithm design strategies, along with examples...

At the end of successful completion of the course the student will be able to

CO1: Analyze time and space complexity of algorithms

CO2: Implement Divide and Conquer algorithms with recurrence

CO3: Implement Greedy and Dynamic Programming algorithms

CO4: Understand Backtracking and Branch-and-bound algorithms

Module	Unit	Details	Hrs.	CO
No.	No.			
1		luction to Analysis of Algorithms	8	CO1
	1.1	Introduction: Computation and Efficiency: Discussion of		
	4.0	Computational tractability and defining efficiency		
	1.2	Asymptotic order of growth: Asymptotic notations		
	1.3	Common running times : Linear, quadratic, logarithmic etc.		
	1.4	Insertion Sort		
	1.5	Selection Sort		
	1.6	Radix sort		
	1.7	Naïve String Matching Algorithms		
		#Self learning topic: Shell Sort, Bucket Sort, Rabin		
		Karp Algorithm for Pattern Matching		
2		e and Conquer algorithms	8	CO2
	2.1	Introduction to Divide and Conquer approach :Binary		
		Search		
	2.2	Recurrences: Recurrence relations, Solving recurrence		
		with recursion tree method, substitution method and		
		Master's theorem		
	2.3	Merge sort		
	2.4	Quick sort		
	2.5	Strassen's Matrix Multiplication Algorithm		
2	2.6	Multiplication of Large Integers		602
3		ly Algorithms	9	CO3
	3.1	The Greedy approach		
	3.2	Minimum Spanning Trees: Prim's algorithm, Kruskal's		
	2.2	algorithm		
	3.3	Single Source Shortest Paths: Dijkstra's algorithm		
	3.4	Ford-Fulkerson Algorithm Huffman Algorithm		
	3.6	č		
	3.7	Knapsack Problem: 0/1 Knapsack, Fractional Knapsack Job Sequencing: With and Without Deadlines		
	3.7	#Self learning topic: Travelling Salesman Problem		
		using Greedy Approach		
4	Dyna	mic Programming Algorithms	10	CO3
7	4.1	Dynamic Programming and Optimization problems	10	- 03
	4.2	Optical Binary Search Trees		
	4.3	All Pair Shortest Path: Floyd-Warshall Algorithm		
	4.4	Sequence Alignment		
	4.5	Matrix Chain Multiplication		
	4.5	Longest Common Subsequence		
	1.5	#Self learning topic: Travelling Salesman Problem		
		using Dynamic Programming		
5	Backt	racking and Branch and Bound Algorithms	10	CO4
	5.1	The Backtracking Technique		
	5.2	n-Queens Problem		
	5.3	Hamiltonian Circuit Problems		
	5.4	Sum of Subsets Problem		

K. J. Somaiya College of Engineering, Mumbai -77 (Autonomous College Affiliated to University of Mumbai)

Department of Information Technology

		Total	45	
		Backtracking		
		#Self learning topic: 0/1 Knapsack Problem using		
	5.7	15 Puzzle Problem (Branch and Bound)		
	5.6	Travelling Salesman Problem (Branch and Bound)		
	5.5	0/1 Knapsack Problem (Branch and Bound)		

[#] Students should prepare all self-learning topics on their own. Self-learning topics will enable students to gain extended knowledge of the topic. Assessment of these topics may be included in IA and Laboratory.

Sr.	Name/s of Author/s	Title of Book	Name of	Edition and
No.			Publisher with	Year of
			country	Publication
1.	Richard E.	Foundation of Algorithms	Jones &	5 th Edition
	Neapolitan		Bartlett	2016
			Students	
			Edition	
2.	Harsh Bhasin	Algorithms : Design &	Oxford Higher	1 st Edition
		Analysis	education,	2013
		-	India	
3.	T.H. Coreman,	Introduction to algorithms	Prentice Hall	3 rd Edition
	C.E. Leiserson, R.L.		India	2009
	Rivest, and C. Stein		Publication	
4.	Jon Kleinberg,	Algorithm Design	Pearson India	10 th Edition
	Eva Tardos		Education	2013
			Services Pvt.	
			Ltd.	
5.	Jeffrey J. McConnell	Analysis of Algorithms :	Jones and	2 nd Edition
		An Active Learning	Bartlett	2017
		Approach	Student Edition	

Course Code		Course Title							
2UIC404			-	Advanc	ed Da	tabas	ses		
		7	ГН		F)	r	ГUТ	Total
Teaching Scheme(Hrs.)		03							03
Credits Assigned			03						03
					Marks				
Examination		CA		ECE	TW	O	D	P&O	Total
Scheme	T-1	T-2	IA	ESE	TW	U	P	rau	1 Otal
	15	15	20	50					100

Course prerequisites:--

Database Management systems

Course Objectives

The course will impart the skills that can help design and develop advanced database models. Students will be able to select appropriate advanced database model depending on the application requirement. This course will also make them aware of challenges and limitations while implementing the models. Further, the student will learn that how enterprise can organize and analyze large amounts of data by creating a data warehouse.

Course Outcomes

At the end of successful completion of the course the student will be able to

- CO1: Design advanced database systems using Parallel, Distributed and In-memory Databases and its implementation.
- CO2: Design advanced database systems using Object Relational, Spatial and NOSQL Databases and its implementation
- CO3: Understanding of data warehouse and its multi-dimensional modeling
- CO4: Apply ETL processing and Online Analytical Processing on the warehouse data.

Module	Unit	Details	Hrs.	CO
No.	No.			
1		el and Distributed Databases	10	CO 1
	1.1	Parallel Database Concepts, Parallel Query Evaluation		
	1.2	Parallelizing Individual Operations-Sorting, Join		
	1.3	Distributed Database - Concepts, Types, Architecture		
	1.4	Distributed Database Design - Data Fragmentation,		
		Replication, and Allocation Techniques		
	1.5	Query Processing and Optimization in Distributed Databases		
	1.6	Concurrency Control and Recovery in Distributed		
		Databases		
	1.7	In-memory Databases : Architecture, in- memory		
		database vs disk residence database, practical		
		applications of in-memory databases, challenges of in-		
		memory database		
2	Or,	1 -		COA
2		t Based, Spatial Databases and NOSQL Databases		CO 2
	2.1	Features Of Object based DBMS		
	2.2	Database Design concepts for an ORDBMS Nested Relations and Collections		
	2.3		10	
	2.4	Spatial Database Components, Spatial Objects		
	2.5	Spatial Dimensions, Spatial Relations, Spatial SQL Queries		
	2.6	NOSQL databases: What is NOSQL?, NOSQL business		
		drivers		
	2.7	NOSQL data architectural patterns: Document type, Key-		
		Value, Graph and Column family		
3	Intro	duction to Data Warehousing and multi-dimensional	10	CO 3
	Mode	ling		
	3.1	Operational Vs Decisional Support System ,The Need for		
		Data Warehousing		
	3.2	Data Warehouse Definition, Features, The Information		
		Flow Mechanism, Architecture, Role of Metadata,		
		Classification of Metadata		
	3.3	Data Warehouse Vs Data Marts, Data Warehousing		
		Design Strategies, Data Warehouse Modeling Vs		
		Operational Database Modeling		
	3.4	The Star Schema - Fact Tables and Dimension Tables,		
		The Fact less Fact Table, Keys in the Data Warehouse		
		Schema- Primary Keys, Surrogate Keys & Foreign Keys,		
		The Snowflake Schema, Fact Constellation		
	2 5	Schema(Family of Stars) Undates To Dimension Tables Slowly Changing		
	3.5	Updates To Dimension Tables - Slowly Changing Dimensions Type 1 Type 2 and Type 3 Changes Large		
		Dimensions, Type 1, Type 2 and Type 3 Changes, Large Dimensions, Rapidly Changing Dimensions, Junk		
		, 1 , 5		
	3.6	Dimensions, Aggregate Fact Tables Data lake, Architecture of Data lake, Data Warehouse Vs		
	3.0	Data lake, Architecture of Data lake, Data warehouse vs		
		Data lanc		

4	ETL 1	Process	09	CO4
	4.1	Introduction to ETL Process		
	4.2	Data Extraction - Identification of Data Sources, Types -		
		Immediate Data Extraction and Deferred Data Extraction		
	4.3	Data Transformation: Tasks Involved in Data		
		Transformation		
	4.4	Data Loading: Techniques, Loading the Fact Tables and		
		Dimension Tables		
	4.5	Data Quality, Issues in Data Cleansing		
5	Online	e analytical processing (OLAP)	06	CO4
	5.1	Need for Online Analytical Processing; OLTP Vs OLAP,		
		OLAP and Multidimensional Analysis		
	5.2	OLAP Operations in Multidimensional Data Model -		
		Rollup, Drill-down, Dice, Slice and Pivot		
	5.3	OLAP Models: MOLAP, ROLAP, HOLAP		
		Total	45	

Sr.	Name/s of Author/s	Title of Book	Name of	Edition and
No.			Publisher with	Year of
			country	Publication
1.	Elmasri and Navathe	Fundamentals of Database	Pearson	7th Edition
		Systems	Education	2015
2.	Korth,	Database System Concepts	McGraw - Hil	6 th Edition
	Slberchatz, Sudarshan			2010
3.	Raghu Ramakrishnan	Database Management	McGraw Hill	3 rd Edition
	and Johannes Gehrke	Systems		2002
4.	Paulraj Ponniah,	Data Warehousing	Wiley India	2 nd Edition
		Fundamentals: A		2009
		Comprehensive Guide for		
		IT Professionals		
5.	McCreary, D., and	Making sense of NoSQL	Manning Press	2014
	Kelly			

Course Code	Course Title								
2UIL401			Prog	rammin	ıg Lab	orat	ory-I	$\mathbf{I}^{@}$	
]	ГН		P	•	,	TUT	Total
Teaching Scheme(Hrs.)					02		02		04
Credits Assigned					0	1		02	03
	Marks								
Examination	CA		ECE	OF TW		P	P&O	Total	
Scheme	T-1	T-2	IA	ESE	TW	O	ľ	1 & O	1 Otal
		I			50*			50	100

[@] Advanced Java

Course prerequisites:

• Basic knowledge of Java Programming (Programming Laboratory-I 2UIL301)

Course Objectives

The course aims to introduce the designing of the Graphical User Interface using Swing packages in Java. Through collection framework, the technique to represent and manipulate collections in Java is introduced. Advanced features of Java are studied. Networking concepts like socket programming, client-server communication using Servlet and JSP are introduced. Java application using Java Database Connectivity is developed and Java Persistence API (JPA) is introduced.

Course Outcomes:

At the end of successful completion of the course the student will be able to

- CO1: Demonstrate use of Swing to design user interface and use of collection framework for storing data dynamically
- CO2: Illustrate the wiring of front end with back end of Java application using database connectivity
- CO3: Illustrate networking concepts such as socket programming and web based client-server communication
- CO4: Understand the concept of design patterns and object relational features with Java.

^{*}Term Work based on continuous assessment

Module	Unit	Details	Hrs.	CO
No.	No.			
1	GUI I	Programming with Java	06	CO 1
	1.1	Introduction to GUI Programming and its importance		
	1.2	Swing in Java, Swing Class hierarchy, Swing Event		
		Handlers, Swing Action Listeners		
2	Collec	ction Framework	06	CO 1
	2.1	Introduction to Iterators		
	2.2	Collection interfaces		
	2.3	Collection classes		
	2.4	Lambda Expression, Functional Interface and Assertions		
3	JDBC	2-Java Database Connectivity	06	CO 2
	3.1	Introduction to JDBC		
	3.2	JDBC Drivers		
	3.3	CRUD operations using JDBC		
	3.4	Connection to Non-conventional databases		
4	Basic	Communication and Web Programming with Java	06	CO 3
	4.1	Basic Network Communication with Java through Socket		
		Programming		
	4.2	Web Server and its role in Communication, Client –		
		Server Side Programming with Java using Servlet and		
		JSP		
	4.4.	Introduction to JAVA Restful Services		
5		n Patterns and Object Relational Concepts	06	CO 4
	5.1	Singleton design pattern, Factory Pattern, Decorator		
		Pattern, Iterator Pattern		
	5.2	Java Persistence API (JPA), JPA Entity , Mapping		
		Inheritance and SQL		
		Total	30	

Term-Work will consist of Tutorials and laboratory work covering entire syllabus. Students will be graded based on continuous assessment of their term work Practical and Oral examination based on laboratory experiments and entire syllabus Recommended Books:

Sr.	Name/s of Author/s	Title of Book	Name of	Edition and
No.			Publisher with	Year of
			country	Publication
5.	Herbert Schildt	Java The Complete	McGraw-Hill,	10 th Edition
		Reference	India	2017
6.	D.T. Editorial	Java 8 Programming	Dream tech	Edition 2015
	Services	Black Book	Press	
7.	Santosh Kumar K.	JDBC 4.2, Servlet 3.1, and	Dream tech	2 nd Edition,
		JSP 2.3 Includes JSF 2.2	Press	2016
		and Design Patterns,		
		Black Book		
8.	Erich Gamma	Design Patterns	Pearson	Edition 2015
			Publication	

K. J. Somaiya College of Engineering, Mumbai -77 (Autonomous College Affiliated to University of Mumbai)

Department of Information Technology

Course Code	Course Title								
2UIL401		Programming Laboratory- II [@]							
		1	ТН		P	ı	,	TUT	Total
Teaching Scheme(Hrs.)					02		02		04
Credits Assigned					01		02		03
	Marks								
Examination	CA			ECE	TEXX!	0	D	P&O	Total
Scheme	T-1	T-2	IA	ESE	ESE TW		P	rau	1 Otal
					50*			50	100

[@]Advanced Python

Course prerequisites:

• Basics of Python Programming (Programming Laboratory – I 2UIL301)

Course Objectives

The objective of this laboratory course is to impart knowledge of scientific and mathematical computing, networking, image processing, database handling and machine learning based applications using various python libraries.

At the end of successful completion of the course the student will be able to

CO1:Use python libraries like matplotlib, numpy, pandas, scipy for data visualization and scientific-mathematical data computing.

CO2: Understand network programming with Python scapy.

CO3:Demonstrate handling database with python

CO4: Illustrate python libraries for machine learning and image processing

^{*}Term Work based on continuous assessment

Module	Unit	Details	Hrs.	CO					
No.	No.								
1	Intro	Introduction to Numpy and Pandas for data computing 1.1 Introduction Exploratory data analysis using Pandas and							
	1.1	Introduction Exploratory data analysis using Pandas and							
		Numpy Example of Numpy in Python for data computing							
	1.2								
	1.3								
		and data frames, Importing libraries, Object creation,							
		Basic functionality of Pandas, Binary operations with							
		Pandas							
2		tific computing and visualization using python	06	CO1					
	2.1	Introduction, Basic functions, Special functions,							
		statistical functions							
	2.2	Optimization, IO, Interpolation, Linear Algebra							
	2.3	Use of Matplotlib for data Visualization							
3		orking using Python	06	CO2					
	3.1	Network Fundamentals, network addressing and data							
		transfer, ports, Using netstat, concept of Client/Server,							
		request response cycle.							
	3.2	Introduction to sockets and socket programming, Server							
		Implementation, TCP Server							
	3.3	Python networking with Telnet, Python networking with							
		SSH							
	3.4	Using python library Scapy for networking. Creating							
		your own packets. Designing basic network snipper							
4		stence and databases using python	06	CO3					
	4.1	Shelve and Pickle, SQL Relational Databases							
		Connection							
	4.2	Cursor, Row Objects, Create, Read, Update, Delete,							
		Error Handing,							
	4.3	Query Results and Metadata, Create and Aggregate							
		Functions, Exporting and Importing,							
	4.4	Transactions and Rollbacks, Database Objects							
5		on for machine learning and image processing	06	CO4					
	5.1	Sklearn for machine learning: linear regression							
	5.2	Skimage for image processing							
	5.3	Case study on machine learning using Sklearn							
			30						

Term-Work will consist of Tutorials and laboratory work covering entire syllabus. Students will be graded based on continuous assessment of their term work Practical and Oral examination based on laboratory experiments and entire syllabus

Sr.	Name/s of	Title of Book	Name of	Edition and
No.	Author/s		Publisher	Year of
			with country	Publication
1.	Yuxi Liu	Python Machine Learning By	Packt	1 st edition
		Example: The easiest way to get	publishing Ltd	2017
		into machine learning 1st		
		Edition, Kindle Edition		
2.	Martin C. Brown	Python: The Complete Reference	Osborne	2 nd edition
		Paperback		2001
3.	Frank Millstein	Data Analytics With Python:	Copyright at	1 st edition
		Data Analytics In Python Using	Frank	2018
		Pandas	Millstein	

Course Code	Course Title								
2UIL402		Web Programming I Laboratory							
]	P		r	ГUТ	Total		
Teaching Scheme(Hrs.)				02		02		04	
Credits Assigned					01		02		03
	Marks								
Examination	CA			ECE	TEXX!		P	P&O	Total
Scheme	T-1	T-2	IA	ESE	TW	O	r	100	1 Otal
					50*			50	100

^{*}Term Work based on continuous assessment

Course prerequisites:

• Knowledge of Programming language

Course Objectives

The objective of this project-driven course is to acquaint with necessary techniques for developing client/server applications. The course will introduce concept of HTML and CSS to create and maintain Web pages, grid layout and responsive web page. Students will be familiarizing with Document Object Model to learn how browser represents web page. In addition, the course will make students conversant with JavaScript, ReactJS, JSON, CBOR and Angular JS.

At the end of successful completion of the course the student will be able to

CO1: Comprehend basics of web technologies

CO2: Create Web pages using HTML 5 and CSS

CO3: Apply JavaScript for web application development

CO4: Implement web application using ReactJS, Angular JS, JSON &CBOR

Module	Unit	Details	Hrs.	CO
No.	No.			
1	Introd	luction to web technologies	02	CO ₁
1	1.1	Introduction: Introduction to OSI layers, Web system		
		architecture- 1,2,3 and n tier architecture, URL, domain		
		name system, overview of HTTP		
	1.2	Site Design Issues: Planning a Web Site – Objective and		
		Goals, Audience, Organizing contents, Publishing of Web		
		Site, Function of Web Server, Introduction to UI		
		#Self-learning topic: Working of Web Browser,		
		Introduction to Internet Application Protocols – FTP,		
		Telnet, SMTP		
2		sign with HTML 5 and CSS3	09	CO2
	2.1	Formatting and Fonts, Anchors, Backgrounds, images,		
		Hyperlinks, Lists, Tables		
	2.2	HTML5, New Element, Forms, Audio and Video, HTML5		
		Canvas, SVG in HTML5, Google Map, Geolocation, Web		
	- 2 2	storage, Web Worker, Application cache		
	2.3	CSS: The need for CSS, Basic syntax and structure using		
		CSS, Positioning using CSS, Apply styles to Box Model,		
	2.4	Class and ID		
	2.4	Create a flexible content layout		
		Implement a layout using multi-column; implement a		
		layout using position floating, implement a layout using grid		
alignment		Responsive Web page, Web accessibility		
	2.5	#Self-learning topic: HTML <meta tag=""/> , Introduction		
		to XHTML		
3	Introd	luction to XML	02	CO1
3	3.1	Introduction: Syntax, Document structure, Document type	02	COI
	3.1	definitions, Namespaces, XML schemas, Displaying raw		
		XML documents, XSLT,XML Parsing		
		#Self-learning topic: Using XML as Database		
4	Work	ing with JavaScript	09	CO3
-	4.1	Introduction to JavaScript: Variables, Types, operators,		
		conditions , functions		
	4.2	JavaScript Object, Array, Regular Expression, Event		
		handling		
	4.3	The DOM and the Web browser Environment, DOM		
		manipulation		
	4.4	Introduction to JavaScript framework – AngularJS –		
		Overview, Life Cycle, Environmental Setup, Features		
	4.5	Single page web application with Angular JS		
5	Introd	luction to ReactJS, JSON and CBOR	08	CO4
	5.1	Introduction to ReactJS: Syntax, Lifecycle, HTML		
		rendering, components, forms, React SAss, React ES6, JSX		
	5.2	Introduction to Angular JS: Introduction, Expressions,		
		Modules, Directives, Model, Binding, Controllers, Services.		

K. J. Somaiya College of Engineering, Mumbai -77 (Autonomous College Affiliated to University of Mumbai)

Department of Information Technology

5.3	Data handling with JSON – Data types, Objects, Arrays,		
	JSON Parse, Stringify		
5.4	Introduction to CBOR, JSON Vs. CBOR		
	#Self-learning: Displaying XML documents with CSS		
	Total	30	

Students should prepare all self-learning topics on their own. Self-learning topics will enable students to gain extended knowledge of the topic. Assessment of these topics may be included in term work and Laboratory.

Term-Work will consist of Tutorials and laboratory work covering entire syllabus. Students will be graded based on continuous assessment of their term work Practical and Oral examination based on laboratory experiments and entire syllabus

Sr. No.	Name/s of Author/s	Title of Book	Name of Publisher with country	Edition and Year of Publication
1.	Kogent Learning Solutions Inc.,	HTML 5 Black Book: Covers CSS3, JavaScript, XML, XHTML, AJAX, PHP and jQuery	DreamTech Press,India	2001
2.	Nixon, Robin	Learning PHP, MySQL & JavaScript: With jQuery, CSS & HTML5	O'Reilly Media	4 th Edition, (2014)
3.	Flanagan, David	JavaScript: the definitive guide	O'Reilly Media, Inc	6 th Edition, 2006
4.	Kogent Learning Solutions Inc.,	Web Technologies: HTML, JAVASCRIPT, PHP, JAVA, JSP, ASP.NET, XML and Ajax, Black Book: HTML, Javascript, PHP, Java, Jsp, XML and Ajax, Black Book	DreamTech Press,India	2013
5.	Brad Dayley	Learning AngularJS	O'Reilly Media	2015

Course Code	Course Title									
2UIL403	Analysis of Algorithms Laboratory									
	ТН				P		TUT		Total	
Teaching Scheme(Hrs.)					02		-		02	
Credits Assigned					01		-		01	
	Marks									
Examination	CA		ECE	TXX	0	Р	P&O	Total		
Scheme	T-1	T-2	IA	ESE	TW	IW		100	1 Otal	
	-	-	_	-	25			25	50	

- Term-Work will consist of practical covering entire syllabus of "Analysis of Algorithms" (2UIC403). Students will be graded based on continuous assessment of their term work.
- Practical and Oral Examination will be based on laboratory work and entire theory syllabus of "Analysis of Algorithms" (2UIC403).

Course Code	Course Title								
2UIL404		Advanced Databases Laboratory							
		1		P		1	TUT	Total	
Teaching Scheme(Hrs.)					02		-		02
Credits Assigned					01		_		01
	Marks								
Examination	CA			ECE	TW		P	P&O	Total
Scheme	T-1	T-2	IA	ESE	TW	O	ľ	1 & O	1 Otal
	-	-	_	_	25	-		25	50

- Term-Work will consist of practical covering entire syllabus of "Advanced databases" (2UIC404). Students will be graded based on continuous assessment of their term work.
- Practical and Oral Examination will be based on laboratory work and entire theory syllabus of "Advanced databases" (2UIC404).