$The Kappa Statistic\ Paul Czodrowski$

Data · N	ovember 2013		
CITATIONS 0	5	READS 120	
1 author	r:		
0	Paul Czodrowski Technische Universität Dortmund 44 PUBLICATIONS 1,486 CITATIONS SEE PROFILE		

The *kappa* statistic: Taking care of background rates

Paul Czodrowski
Merck KGaA
Small Molecule Platform, Computational Chemistry
Darmstadt, Germany

Gordon Research Conference CADD, Mound Snow, July 2013

Stop me if you think you've heard this one before!

We want to train accurate models.

We do not want miss the positives.

For the positive predictions, no false-positives shall be predicted.

We want to be better than a trivial model!

Data used throughout the talk

toy data

Some figures of merit

what fraction of positively labeled points are correctly **labeled**

what fraction of positive samples are correctly **identified**

Binary classification: model performance

2 assays / 2 thresholds → 4 models

accuracy	precision	recall
0.81±0.008	0.74±0.035	0.422±0.028
0.804±0.009	0.822±0.012	0.938±0.009
0.903±0.015	0.561±0.13	0.152±0.035
0.678±0.031	0.626±0.053	0.536±0.064

accuracy	precision	recall
0.797±0.01	0.775±0.049	0.316±0.04
0.773±0.009	0.781±0.012	0.962±0.009
0.903±0.018	0.608±0.444	0.046±0.048
0.693±0.026	0.676±0.059	0.489±0.049

10 random train/test splits - mean/stdev values are given

(ir)relevance of accuracy/precision/recall

accuracy	precision	recall
0.90	1.00	0.03

Functional assay threshold = $1 \mu M$

experimental situation

accuracy	precision	recall
0.79	0.80	0.96

Binding assay threshold = $10 \mu M$

experimental situation

experiment

What is the background noise?

Jacob Cohen

Originally, Cohen developed κ to estimate the inter-rater reliability.

EDUCATIONAL AND PSYCHOLOGICAL MEASUREMENT Vol. XX, No. 1, 1960

A COEFFICIENT OF AGREEMENT FOR NOMINAL SCALES¹

JACOB COHEN New York University

some recent studies using Cohens's κ

'Why do white people have thin lips?' Google and the perpetuation of stereotypes via auto-complete search forms

Baker, P. W. Potts, A. &

Department of Linguistics and English Language, Lancaster University, Lancaster, Lancashire, LA14YL, United Kingdom

How do hospitals handle patients complaints? An overview from the Paris area

Veneau, L.ª, Chariot, P. bc W &

- a Unit of Forensic Medicine, Hôpital Emmanuel-Rain, 95500 Gonesse, France
- ^b Unit of Forensic Medicine, Service de Médecine Légale, Hôpital Jean-Verdier (AP-HP), 93140 Bondy, France
- ⁵ Université Paris 13, Sorbonne Paris Cité, EHESS, F-93000 Bobigny, France

Reproducibility of the measurement of sweet taste preferences

Asao, K.ª M, Luo, W.b, Herman, W.H.ª L

- * The University of Michigan, Department of Internal Medicine, Division of Metabolism, Endocrinology and Diabetes, United States
- ^b Wayne State University School of Medicine, United States

prediction

experiment

88	10	2	100
14	40	6	60
18	10	12	40

Great introduction to kappa statistics

prediction experiment

prediction

experiment

88	10	2	100
14	40	6	60
18	10	12	40

120	60	20

120 60 2

prediction

experiment

88	10	2	100
14	40	6	60
18	10	12	40

120	60	20

nt	60	30	10	100
experiment	36	18	6	60
Θ				40

120	60	20
-----	----	----

100

60

40

What is ",the" random choice?

prediction

experiment

88	10	2	100
14	40	6	60
18	10	12	40

nt	60	30	10
experiment	36	18	6
© X	24	12	4

120 60 20

prediction

experiment

88	10	2	100
14	40	6	60
18	10	12	40

120 60 20

prediction

nt	60	30
experiment	36	18
(G)	24	12

h _{1x}
h _{2x}
h _{3x}

10

6

4

$$\kappa = \frac{accuracy - baseline}{1 - baseline}$$

$$baseline = \sum_{i=1}^{k} \frac{h_{ix} \cdot h_{xi}}{N^2}$$

prediction

experiment

88	10	2	100
14	40	6	60
18	10	12	40 6

120	60	20 0
		.0.

nt	60	30	10
experiment	36	18	6
Ô	24	12	4

	h _{1x}
	h _{2x}
	h _{3x}

4 12 4
$$h_{3x}$$

$$\kappa = \frac{accuracy - baseline}{1 - baseline}$$

$$ne = \sum_{i=1}^{k} \frac{h_{ix} \cdot h_{xi}}{N^{2}}$$

$$baseline = \sum_{i=1}^{k} \frac{h_{ix} \cdot h_{xi}}{N^2}$$

Error bars included!

$$var(\hat{\kappa}) = \frac{1}{n} \left\{ \frac{\theta_1 (1 - \theta_1)}{(1 - \theta_2)^2} + \frac{2(1 - \theta_1)(2\theta_1 \theta_2 - \theta_3)}{(1 - \theta_2)^3} + \frac{(1 - \theta_1)^2(\theta_4 - 4\theta_2^2)}{(1 - \theta_2)^4} \right\}$$

in which

$$\theta_1 = \frac{1}{n} \sum_{i=1}^k n_{ii}$$

$$\theta_3 = \frac{1}{n^2} \sum_{i=1}^k n_{ii} (n_{i+} + n_{+i})$$

$$\theta_2 = \frac{1}{n^2} \sum_{i=1}^k n_{i+} n_{+i}$$

$$\theta_4 = \frac{1}{n^3} \sum_{i=1}^k \sum_{i=1}^k n_{ij} (n_{j+} + n_{+i})^2$$

Many human endeavors have been cursed with repeated failures before final success is achieved. The scaling of Mount Everest is one example. The discovery of the Northwest Passage is a second. The derivation of a correct standard error for kappa is a third.

Fleiss, J.L., Cohen, J., Everitt, B.S. (1969) Large sample standard errors of kappa and weighted kappa. Psychological Bulletin 72(5), 323-327.

What is a good kappa value?

< 0.2	poor
0.21-0.4	fair
0.41 - 0.60	moderate
0.61 - 0.80	good
> 0.81	very good

Landis, J.R. and Koch, G.G. (1977) The measurement of observer agreement for categorical data. Biometrics 33, 159-74.

κ: If I take the majority vote...

	pred	
e	0	71
р	0	623

kappa	0.0 ± 0.0
precision	0.90
recall	1.0
accuracy	0.90

	pr	ed
е	0	174
X p	0	520

kappa	0.0 ± 0.0
precision	0.75
recall	1
accuracy	0.75

	pro	ed
е	347	0
x p	347	0

kappa	0.0 ± 0.0
precision	0.0
recall	0.0
accuracy	0.5

	pred	
е	520	0
x p	174	0

kappa	0.0 ± 0.0
precision	0.0
recall	0.0
accuracy	0.75

You can't fool k!

How does kappa perform for the hERG models?

situation"

κ: influence of balancing

- Balancing the data set only has minor influence on κ.
- However, for largely imbalanced data sets, there is a stronger influence on ĸ.
- **CAVE: Don't forget the remainder when balancing!**

κ: no signal on Y-scrambled data!

κ is ≈ 0.01

Other figures of merit show a signal!

κ: availability

... but without the error bars!

irr package PresenceAbsence package

```
print kappa
Simple Kappa Coefficient
Kappa 0.2500
ASE 0.1367
  95% Lower Conf Limit -0.0180
                                     statsmodels
  95% Upper Conf Limit 0.5180
Test of H0: Simple Kappa = 0
ASE under H0 0.1412
z 1.7705
One-sided Pr > Z 0.0383
Two-sided Pr > |Z| 0.0766
```


κ-onclusions

The principles fit on a sweater

ac-κ-nowledgment

Anthony Nicholls

Christian Kramer

Greg Landrum

Kim Branson

Anja von Heydebreck
Daniel Kuhn
Friedrich Rippmann
Gerhard Barnickel
Martin Held