Comp683: Computational Biology

Lecture 18

March 31, 2025

Today

Announcement: homework 2 is available and due April 11. Link (see git repository too) https://colab.research.google.com/drive/1Gq4zR5vBHA70BP8ajnFonqUS830LoACk?usp=sharing

- Departure from single-cell
- Begin multi-modal integration for biomedical datasets
- Specifying a joint subspace for multiple samples across several modalities
- Linear algebra tricks Rayleigh Ritz Theorem

Notation and Problem Formulation

- Consider M types of omics data measurements $\{\mathbf{X}^m\}_{m=1}^M$ from the same set of N patients.
- For a modality, m, there are p_m measured features and the dimensions of the data matrix are therefore $p_m \times N$
- We will let G^m be the graph for modality m
- **Goal**: We seek a joint subspace embedding, $\mathbf{U} \in \mathbb{R}^{N \times k}$ that is representative of all modalities.

Comment

Before we had node2vec, we just used nice theorems from linear algebra! :D (the OG graph embedding)

Overview of Subspace Merging

Figure: from Ding et al. Bioinformatics. 2019.

What is a Grassmann Manifold?

Figure: Example of $\mathcal{G}(2,3)$

- Notation, G(k, n) is the set of k-dimensional linear subspaces in \mathbb{R}^n , such that each subspace is a point.
- So, each point on $\mathcal G$ can be represented by an orthonormal matrix $\mathbf Y \in \mathbb R^{n \times k}$
- Selling Point: We know how to talk about how geometrically close the subspaces are, based on principle angles

Why is this useful to our problem?

- Each Modality Graph As A Subspace: From each modality, we create a graph. We can ultimately compute the joint subspace or embedding given individual subspaces.
- Well-Defined Distances Measures: We know how to compute distances between subspaces on the Grassmannian. The representative subspace, U should be equidistant from the per-modality subspaces (U^ms).

Build a Similarity Graph Between Patients in Each Modality

Use our 'favorite' rule for calculating edge weights as,

$$S_{ij}^{m} = \exp\left(-\frac{\left\|\mathbf{x}_{i}^{m} - \mathbf{x}_{j}^{m}\right\|^{2}}{2t^{2}}\right), i = 1, \dots, N, j = 1, \dots, N$$

From here, retain the top k edges for each node based on S_{ij} and use W_{ij} for the notation of the edge weights retained, such that, $W_{ij}^m = S_{ij}^m$

Quadratic form helps with optimization problem

We already talked about the total variation of a signal in terms of the Graph Laplacian, or the variation of a signal around neighbors as,

$$\mathbf{x}^{T}\mathbf{L}\mathbf{x} = \frac{1}{2} \sum_{i=1}^{N} \sum_{j=1}^{N} A_{ij} (x_i - x_j)^2$$
 (1)

This is useful for us, because you can think of \mathbf{x} as a dimension of the embedding coordinates, which should not vary too much across the graph.

Pause for Rayleigh Ritz Theorem

Let **A** be a square, symmetric matrix, $N \times N$ matrix with eigenvalues, $\lambda_1 \leq \lambda_2 \cdots \leq \lambda_n$ and corresponding eigenvectors $\{\mathbf{v}_1, \mathbf{v}_2, \dots \mathbf{v}_n\}$. Then define

$$R_{\mathbf{A}}(\mathbf{x}) = \frac{\mathbf{x}^{T} \mathbf{A} \mathbf{x}}{\mathbf{x}^{T} \mathbf{x}}.$$
 (2)

Then the minimum value of $R_{\mathbf{A}}(\mathbf{x})$ is λ_1 and it's taken for $\mathbf{x} = \mathbf{v}_1$

Matrix Extension

We will be seeing a lot on the form of $\mathbf{X}^T \mathbf{L} \mathbf{X}$. We can talk about the trace of that matrix product as the distance in vectors of adjacent nodes.

$$\operatorname{trace}(\mathbf{X}^{T}\mathbf{L}\mathbf{X}) = \frac{1}{2} \sum_{i=1}^{N} \sum_{j=1}^{N} A_{ij} ||\mathbf{x}_{i} - \mathbf{x}_{j}||$$
(3)

An extension of Rayleigh Ritz says that the minimum k-dimensional matrix \mathbf{X} of trace($\mathbf{X}^T \mathbf{L} \mathbf{X}$) is $\lambda_1 + \lambda_2 + \cdots + \lambda_k$ and is obtained using the first k eigenvectors of \mathbf{L} , as $\{\mathbf{v}_1, \mathbf{v}_2, \dots \mathbf{v}_k\}$.

Specify Optimization Problem in terms of Normalized Graph Laplacian

$$\mathbf{L}^m = \mathbf{D}^{m^{-\frac{1}{2}}} \left(\mathbf{D}^m - \mathbf{W}^m \right) \mathbf{D}^{m^{-\frac{1}{2}}}$$

Written out this gives us,

$$L_{i,j}^{ ext{sym}} := \left\{ egin{array}{l} 1 \ -rac{1}{\sqrt{\mathsf{deg}(\mathsf{v}_i)\,\mathsf{deg}\left(\mathsf{v}_j
ight)}} \ 0 \end{array}
ight.$$

 $L_{i,j}^{\mathrm{sym}} := \left\{ egin{array}{ll} 1 & ext{if } i=j ext{ and } \deg\left(v_i
ight)
eq 0 \ -rac{1}{\sqrt{\deg(v_i)\deg(v_j)}} & ext{if } i
eq j ext{ and } v_i ext{ is adjacent to } v_j \ 0 & ext{otherwise.} \end{array}
ight.$

Writing Down the Objective Function

The goal is to specify a \mathbf{U}^m for each modality. The optimal graph embedding in k dimensions can written as,

$$\min_{\mathbf{U}^m \in \mathbb{R}^{N \times k}} \operatorname{tr} \left(\mathbf{U}^{m'} \mathbf{L}^m \mathbf{U}^m \right), \quad \text{s.t. } \mathbf{U}^{m'} \mathbf{U}^m = I$$

• It turns out the solution is the first k eigenvectors of the Graph Laplacian \mathbf{L}^m by the Rayleigh–Ritz theorem

1

¹Note that the $U^{m'}$ refers to the transpose of \mathbf{U}^m

Defining a Projection Distance Between The Integrative Subspace and Individual Modality Subspaces

$$d_{\text{proj}}^{2}\left(\mathbf{U}, \left\{\mathbf{U}^{m}\right\}_{m=1}^{M}\right) = \sum_{m=1}^{M} d_{\text{proj}}^{2}\left(\mathbf{U}, \mathbf{U}^{m}\right)$$
$$= \sum_{m=1}^{M} \left[k - \text{tr}\left(\mathbf{U}\mathbf{U}'\mathbf{U}^{m}\mathbf{U}^{m'}\right)\right]$$
$$= kM - \sum_{i=1}^{M} \text{tr}\left(\mathbf{U}\mathbf{U}'\mathbf{U}^{m}\mathbf{U}^{m'}\right)$$

The subspace, ${\bf U}$ that minimizes this is close to all individual subspaces, $\{{\bf U}^m\}_{i=1}^M$

Optimization Problem for Multiple Subspaces

The optimization problem for merging multiple subspaces finally can be written as,

$$\min_{\mathbf{U} \in \mathbb{R}^{n \times k}} \sum_{m=1}^{M} \operatorname{tr} \left(\mathbf{U}' \mathbf{L}^m \mathbf{U} \right) + \alpha \left[kM - \sum_{m=1}^{M} \operatorname{tr} \left(\mathbf{U} \mathbf{U}' \mathbf{U}^m \mathbf{U}^{m'} \right) \right], \quad \text{s.t. } \mathbf{U}' \mathbf{U} = I$$

The authors showed that this simplifies to,

$$\min_{\mathbf{U} \in \mathbb{R}^{n \times k}} \operatorname{tr} \left[\mathbf{U}' \left(\sum_{i=1}^{M} \mathbf{L}^m - \alpha \sum_{m=1}^{M} \mathbf{U}^m \mathbf{U}^{m \prime} \right) \mathbf{U} \right], \quad \text{ s.t. } \mathbf{U}' \mathbf{U} = I$$

Rayleigh Ritz Again....

$$\min_{\mathbf{U} \in \mathbb{R}^{n \times k}} \operatorname{tr} \left[\mathbf{U}' \left(\sum_{i=1}^{M} \mathbf{L}^m - \alpha \sum_{m=1}^{M} \mathbf{U}^m \mathbf{U}^{m'} \right) \mathbf{U} \right], \quad \text{s.t. } \mathbf{U}' \mathbf{U} = I$$

Hopefully you recognize the form of the objective. We can define a new matrix, \mathbf{L}_{mod} and again the first k eigenvectors are the optimal solution. Or,

$$\mathbf{L}_{mod} = \sum_{m=1}^{M} \mathbf{L}^{m} - \alpha \sum_{m=1}^{M} \mathbf{U}^{m} \mathbf{U}^{m\prime}$$

Recap

- Per-Modality Graph: Create a graph for each modality and compute corresponding Laplacians. These form the points on the Grassmannian.
- Quadratic Form for Per-Modality Subspaces: In general we want to ensure each subspace dimension respects each modality's graph structure and hence yields a small value for the quadratic form.
- **9 Projection Distance:** The ultimate joint subspace, \mathbf{U} should be as close as possible to per-modality subspaces, $\mathbf{U}^m s$
- **Apply Rayleigh Ritz:** Objective is formulated in a way that we know the optimal solution is the first *k* eigenvectors.

Clustering on Merged Subspace

When you cluster on the merged subspace, you get groups with different prognostic interpretations.

Figure: from Ding et al. Bioinformatics. 2018.

Another View: Between Patient Similarity

Figure: from Ding *et al.* Bioinformatics. 2018. Here we are viewing adjacency matrices between patients, based on all features jointly.

For Uncovering Trajectories Based on scRNA-seq Data

The joint subspace was used to infer the trajectory or ordering of cells.

Figure: from Ranek *et al.* Genome Biology. 2022. Grassmann does pretty well, especially for integrating RNA velocity information.

Integrating Heterogeneous Information Sources

Figure: from Cho *et al.* Cell Systems. Each graph is representing a different relational definition between features.

Considering proteins, there are multiple methods for predicting whether these proteins interact .

- Physical binding
- gene expression
- co-localization
- experimentally determined
- text mined, etc.

We Seek a Unified Representations of these Nodes

Figure: from Cho et al. Cell Systems. 2016.

Example from STRING

Using the STRING database, you can extract PPIs according to multiple relational definitions.

Figure: https://string-db.org/

Welcome Mashup

Given multiple relational definitions (e.g. multiple graphs) between a common set of nodes (features), define a consensus *d*-dimensional embedding vector for each node that aligns well with each individual graph (e.g. distinct relational definitions).

Figure: from Cho et al. Cell Systems. Each graph is representing a different relational definition between node (features).

Random Walk with Restart

 RWR is a way to account for both local and global 'walk' information in the graph by giving your walker the chance to restart

But first, let's re-define the transition probability that a walker goes from node i to node i as,

$$B_{ij} = \frac{A_{ij}}{\sum_{i'} A_{i'j}}$$

RWR Formally Written

Given the transition matrix, B, the RWR from a node i is defined as,

$$s_i^{t+1} = (1 - p_r)Bs_i^t + p_re_i$$

- p_r is the probability of restart
- e_i is an n-dimensional vector with $e_i(i) = 1$ and $e_i(j) = 0$ for $j \neq i$
- s_i^t is the vector of probabilities of each node being visited after t steps in the random walk, starting from node i

Clarifying What is Happening Here

$$s_i^{t+1} = (1 - p_r)Bs_i^t + p_re_i$$

- The first term corresponds to following a random edge connected to the current node
- The second term corresponds to restarting from node i.
- At some point, this reaches a stationary distribution, s_i^{∞} , or fixed point
- When the diffusion states between two nodes are close, this implies they have similar positions in the graph with respect to other nodes.

Quantifying Topological Overlap Between a Node Pair

Each node is given two vector representations, $\mathbf{w}_i, \mathbf{x}_i \in \mathbb{R}^d$

- Let w_i refer to the context feature of a node (e.g. per relational definition)
- Let x_i refer to the node feature of node i (e.g. overall)

Define a new similarity measure between nodes i and j as,

$$\hat{s_{ij}} = \frac{\exp\{x_i^T w_j\}}{\sum_{j'} \exp\{x_i^T w_{j'}\}}$$

Unpacking

$$\hat{s_{ij}} = \frac{\exp\{x_i^T w_j\}}{\sum_{j'} \exp\{x_i^T w_{j'}\}}$$

• If \mathbf{x}_i and \mathbf{w}_j are close in direction and hence have a large inner product, then node j should be frequently visited in the random walk starting from node i.

Recap of what is happening

Figure: from Fig. 1. Given observed diffusion states from RWR, we should be able to find a global vector (\mathbf{x}) and view-specific vector (\mathbf{w}) , such that a function of \mathbf{x} and \mathbf{w} gives a good diffusion state approximation.