Label Hallucination for Few-Shot Classification

Yiren Jian and Lorenzo Torresani

Few-shot Learning: Related Work

Few-shot learning aims at adapting knowledge extracted from datarich base categories to novel categories where examples are limited.

Gradient-based Meta Learning

$\theta^* \stackrel{\text{meta-learning}}{\sim} \theta^*$ $\nabla \mathcal{L}_1 \qquad \theta^*_3$ $\theta^*_1 \qquad \theta^*_2$

MAML [1] learns a good initialization of networks for fast adaptation to the new tasks.

Metric-based Meta Learning

Prototypical Network
[2] learns embedding
for clustering
examples around a
prototypical
representation.

Transfer Learning

Simple transfer learning method [3] leveraging a fixed pre-trained feature extractor and learning a linear classifier on top of it also achieves impressive performances on several benchmarks.

^[1] Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks. C Finn, P Abbeel, S Levine. In ICML, 2017.

^[2] Prototipical Networks for Few-shot Learning. J Snell, K Swersky, R Zemel. In NeurIPS, 2017.

^[3] Rethinking Few-Shot Image Classification: a Good Embedding is All You Need? Y Tian, Y Wang, D Krishnan, J Tenenbaum, P Isola, In ECCV, 2020.

Prior Work and Limitations

Transfer learning:

 Train a large-capacity model using a multiway classification loss on the base dataset to learn as discriminative representation.

Then:

 Approach 1: train a linear classifier on top of the frozen representation for each set of novel classes [1].
 Weakness: limited learning capacity

Or:

• Approach 2: finetune entire model on the novel set [2].

Weakness: high risk of overfitting

[1] Rethinking Few-Shot Image Classification: a Good Embedding is All You Need? Y Tian, Y Wang, D Krishnan, J Tenenbaum, P Isola, In ECCV, 2020.
[2] A Baseline for Few-shot Image Classification. G Dhillon, P. Chaudhari, A Ravichandran, S Soatto, in ICLR, 2020.

Label Hallucination: Transferring Novel-Class Labels to Base Images

Our approach: finetune the entire model on the base dataset *pseudo-labeled according to the novel classes*

Label Hallucination: Visualization and Intuition

One-shot novel-class examples

Saluki

nematode

harvestman

sloth

sloth

frying_pan

scores

Texture

Label Hallucination: Experimental Results

Results on minilmageNet and tieredImageNet

		miniImageNet 5-way		tieredImageNet 5-way		
model	backbone	1-shot	5-shot	1-shot	5-shot	
DeepEMD [56] (CVPR'20)	ResNet-12	65.91 ± 0.82	82.41 ± 0.56	71.16 ± 0.87	86.03 ± 0.58	
RFS-simple [48] (ECCV'20)	ResNet-12	62.02 ± 0.63	79.64 ± 0.44	69.74 ± 0.72	84.41 ± 0.55	
RFS-distill [48] (ECCV'20)	ResNet-12	64.82 ± 0.82	82.41 ± 0.43	71.52 ± 0.69	86.03 ± 0.49	
AssoAlign [1] (ECCV'20)	ResNet-18 [†]	59.88 ± 0.67	80.35 ± 0.73	69.29 ± 0.56	85.97 ± 0.49	
AssoAlign [1] (ECCV'20)	WRN-28-10 [‡]	65.92 ± 0.60	82.85 ± 0.55	74.40 ± 0.68	86.61 ± 0.59	
SKD-GEN1 [35] (Arxiv'20)	ResNet-12	$66.54 \pm 0.97^{\S}$	$83.18 \pm 0.54^{\S}$	$72.35 \pm 1.23^{\S}$	$85.97 \pm 0.63^{\S}$	
MELR [14] (ICLR'21)	ResNet-12	67.40 ± 0.43	83.40 ± 0.28	72.14 ± 0.51	87.01 ± 0.35	
IEPT [57] (ICLR'21)	ResNet-12	67.05 ± 0.44	82.90 ± 0.30	72.24 ± 0.50	86.73 ± 0.34	
IER-distill [39] (CVPR'21)	ResNet-12	$66.85 \pm 0.76^{\S}$	$84.50 \pm 0.53^{\S}$	$72.74 \pm 1.25^{\S}$	$86.57 \pm 0.81^{\S}$	
Label-Halluc (pretrained w/ SKD-GEN1)	ResNet-12	67.50 ± 1.01	85.60 ± 0.52	72.80 ± 1.20	86.93 ± 0.60	
Label-Halluc (pretrained w/ IER-distill)	ResNet-12	68.28 ± 0.77	86.54 ± 0.46	$\textbf{73.34} \pm \textbf{1.25}$	87.68 ± 0.83	

Label Hallucination: Experimental Results

Results on CIFAR-FS and FC100

		CIFAR-FS 5-way		FC-100 5-way		
model	backbone	1-shot	5-shot	1-shot	5-shot	
DeepEMD [56] (CVPR'20)	ResNet-12	-	-	46.5 ± 0.8	63.2 ± 0.7	
RFS-simple [48] (ECCV'20)	ResNet-12	71.5 ± 0.8	86.0 ± 0.5	42.6 ± 0.7	59.1 ± 0.6	
RFS-distill [48] (ECCV'20)	ResNet-12	73.9 ± 0.8	86.9 ± 0.5	44.6 ± 0.7	60.9 ± 0.6	
AssoAlign [1] (ECCV'20)	ResNet-18 [‡]	-	_	45.8 ± 0.5	59.7 ± 0.6	
SKD-GEN1 [35] (Arxiv'20)	ResNet-12	$76.6 \pm 0.9^{\S}$	$88.6 \pm 0.5^{\S}$	$46.5 \pm 0.8^{\S}$	$64.2 \pm 0.8^{\S}$	
InfoPatch [18] (AAAI'21)	ResNet-12	-	_	43.8 ± 0.4	58.0 ± 0.4	
IER-distill [39] (CVPR'21)	ResNet-12	$77.6 \pm 1.0^{\S}$	$89.7 \pm 0.6^{\S}$	$48.1 \pm 0.8^{\S}$	$65.0 \pm 0.7^{\S}$	
Label-Halluc (pretrained w/ SKD-GEN1)	ResNet-12	77.3 ± 0.9	89.5 ± 0.5	47.3 ± 0.8	67.2 ± 0.8	
Label-Halluc (pretrained w/ IER-distill)	ResNet-12	$\textbf{78.0} \pm \textbf{1.0}$	90.5 ± 0.6	49.1 ± 0.8	68.0 ± 0.7	

Label Hallucination: Ablations

Hard or soft Pseudo-Labels

	mini-IN		CIFAR-FS		FC100	
	1-shot	5-shot	1-shot	5-shot	1-shot	5-shot
Transfer w/ frozen backbone (LR)	66.54	83.18	76.6	88.6	46.5	64.2
Transfer w/ finetuning	61.43	80.03	68.8	85.7	43.1	61.9
Hard LabelHalluc + finetuning	65.04	80.68	75.3	85.3	44.6	62.4
Soft LabelHalluc + finetuning	67.50	85.60	77.3	89.5	47.3	67.2

Soft Label Hallucination works the best, outperforming Hard Label Hallucination and the frozen backbone baseline.

Label Hallucination: Ablations

Learning embedding or classifier with LabelHalluc

STATE OF THE PERSON				
	Curananti		3 4 <i>i</i> i b b	support set
	SHOOM!	ı garnınd	$\lambda \Lambda I I I I I$	CHANALL CAL
	Oupport.		VVILII	

- ☐ Base: Learning with pseudo-labeled base set
- Net: Learning the backbone network
- Clf: Learning the classifier

Support		Base		miniImageNet		
Net	Clf	Net	Clf	1-shot	5-shot	
√	√			61.43	80.03	
				63.59	81.53	
				66.18	84.36	
				67.50	85.60	

The largest improvements come from learning the capacity embedding network, and fine-tuning both the embedding and classifier yields best results.

Label Hallucination: Ablations

Different pre-training methods

	miniImageNet		CIFAR-FS		FC100	
	LR	ours	LR	ours	LR	ours
RFS-simple [48]	79.33	81.75	86.6	87.3	58.1	61.2
RFS-distill [48]	81.15	82.74	86.5	87. 1	61.0	63.9
SKD-gen0 [35]	82.31	84.14	87.8	88.8	62.8	66.5
SKD-gen1 [35]	83.18	85.60	88.6	89.5	64.2	67.2
IER-gen0 [39]	83.88	85.86	89.5	90.2	63.8	67.2
IER-distill [39]	84.50	86.54	89.7	90.5	65.0	68.0
Average improvement		+2.05		+0.8		+3.2

Our LabelHalluc can be used with different pretraining methods. Experiments with six different pretraining strategies show the consistent improvements enabled by our method.

Thank you!