ЛАБОРАТОРНАЯ РАБОТА № 4

ТИПОВЫЕ ДИНАМИЧЕСКИЕ ЗВЕНЬЯ

Цель работы. Исследование переходных характеристик элементарных звеньев.

Методические рекомендации. До начала работы студенты должны получить от преподавателя вариант задания и файл с математическими моделями элементарных звеньев. Лабораторная работа рассчитана на 2 часа.

Теоретические сведения. Типовыми динамическими звеньями называются простейшие составные части системы, поведение которых описывается обыкновенными дифференциальными уравнениями 0-2-го порядка:

$$a_{1}\ddot{y} + a_{1}\dot{y} + a_{0}y = b_{1}\dot{g} + b_{0}g,$$
 (4.1)

где g = g(t) - входная переменная звена , y = y(t) -выходная переменная; a_i , b_i - постоянные коэффициенты (параметры). С использованием оператора дифференцирования s = d/dt уравнение (4.1) запишется в виде

$$a_2 s^2 y + a_1 s y + a_0 y = b_1 s g + b_0 g$$

или

$$y = \frac{b_1 s + b_0}{a_2 s^2 + a_1 s + a_0} \cdot g = W(s) \cdot g$$
,

где W(s)-передаточная функция звена (4.1).

Переходным процессом называется изменение во времени переменных (сигналов) динамической системы или звена: y = y(t), $\dot{y} = \dot{y}(t)$, обусловленное начальными условиями или входным воздействием.

Переходной функцией системы или звена y=h(t) называется переходный процесс выходной переменной при единичном входном воздействии g=1(t) и нулевых начальных условиях. По графику переходной функции может быть определена математическая модель исследуемого динамического звена и ее параметры.

Интегрирующее звено (интегратор) описывается дифференциальным уравнением:

$$\dot{y} = k \cdot g$$
 или $y = \frac{k}{s} \cdot g$,

где k - коэффициент усиления, а его переходная функция $h(t) = k \cdot t \cdot 1(t)$.

Интегрирующее звено с замедлением описывается дифференциальным уравнением:

$$T\ddot{y} + \dot{y} = kg$$
 или $y = \frac{k}{s(Ts+1)} \cdot g$

где T- постоянная времени, а его переходная функция

$$h(t) = k \cdot [t - T(1 - e^{-\frac{t}{T}})] \cdot 1(t)$$
.

$$\dot{y} = k(T\dot{g} + g)$$
 или $y = \frac{k(Ts+1)}{s} \cdot g$,

а его переходная функция -

$$h(t) = k \cdot (t + T) \cdot 1(t).$$

Реальное дифференцирующее звено описывается дифференциальным уравнением

$$T\ddot{y} + y = k\dot{g}$$
 или $y = \frac{ks}{Ts+1} \cdot g$

а его переходная функция -

$$h(t) = \frac{k}{T} \cdot e^{-\frac{t}{T}} \cdot 1(t).$$

Апериодическое звено 1-го порядка описывается дифференциальным уравнением:

$$T\ddot{y} + y = k \cdot g$$
 или $y = \frac{k}{Ts + 1} \cdot g$,

а его переходная функция -

$$h(t) = k(1 - e^{-\frac{t}{T}}) \cdot 1(t).$$

Апериодическое звено 2-го порядка описывается дифференциальным уравнением:

$$T_2^2 \ddot{y} + T_1 \dot{y} + y = k \cdot g$$
 или $y = \frac{k}{T_2^2 s^2 + T_1 s + 1} \cdot g$,

где T_1, T_2 - постоянные времени, причем $T_1 > 2T_2$. При этом корни характеристического уравнения $T_2^2 s^2 + T_1 s + 1 = 0$ будут вещественными и отрицательными.

Знаменатель передаточной функции апериодического звена 2-го порядка разлагается на множители:

$$y = \frac{k}{(T_3 s + 1)(T_4 s + 1)} \cdot g$$
,

где
$$T_3 = \frac{T_1}{2} + \sqrt{\frac{T_1^2}{4} - T_2^2}$$
, $T_4 = \frac{T_1}{2} - \sqrt{\frac{T_1^2}{4} - T_2^2}$

Апериодическое звено второго порядка эквивалентно двум звеньям первого порядка, включенным последовательно друг за другом, с общим коэффициентом усиления k и постоянными времени T_3 , T_4 . Его переходная функция имеет вид

$$\begin{array}{c|c} h(t) \\ \hline k \\ \hline \\ O \\ \hline T_3 \\ \hline \\ T_3 \\ \hline \\ T_3 \\ \hline \\ T_4 \\ \end{array} \begin{array}{c} T_3 \\ T_4 \\ \hline \\ T_4 \\ \end{array} \begin{array}{c} t \\ \hline \\ T_4 \\ \hline \end{array}$$

$$h(t) = k\left(1 - \frac{T_3}{T_3 - T_4}e^{-\frac{t}{T_3}} + \frac{T_4}{T_3 - T_4}e^{-\frac{t}{T_4}}\right) \cdot 1(t).$$

Колебательное звено описывается тем же дифференциальным уравнением, что и апериодическое звено второго порядка. Однако корни характеристического уравнения $T_2^2 s^2 + T_1 s + 1 = 0$ должны быть комплексными, что будет выполняться при $T_1 < 2T_2$.

Передаточная функция колебательного звена обычно представляется в виде

$$y = \frac{k}{T^2 s^2 + 2\zeta T s + 1} \cdot g ,$$

где $2\pi T$ - период свободных колебаний при отсутствии затухания, ζ - параметр затухания, лежащий в пределах $0 < \zeta < 1$. Переходную функцию данного звена можно представить в виде

$$h(t) = k[1 - e^{-\sigma t} (\cos \omega t + \frac{\sigma}{\omega} \sin \omega t)] \cdot 1(t),$$

где $\sigma = \frac{\zeta}{T}$, $\omega = \frac{1}{T}\sqrt{1-\zeta^2}$. Параметр ω легко определяется по графику переходной функции, а параметр σ находится посредством выражения

$$\sigma = \frac{\omega}{\pi} \ln \frac{a_1}{a_2}.$$

Консервативное звено является частным случаем колебательного звена при $\zeta=0$. Тогда корни характеристического уравнения $T^2s^2+1=0$ будут чисто мнимые. Передаточная функция колебательного звена имеет вид

$$y = \frac{k}{T^2 s^2 + 1} \cdot g ,$$

а его переходная функция -

$$h(t) = k(1 - \cos \omega t) \cdot 1(t)$$
,

где $\omega = \frac{1}{T}$.

Порядок выполнения работы

Открыть файл *lab_*N.*m*, где N - номер варианта, содержащий шесть блоков. Каждый блок описывает некоторое элементарное звено. Снять переходные характеристики каждого из них. По переходным характеристикам определить тип звена, его передаточную функцию и параметры. Подтвердить полученные результаты вычислительными экспериментами.

Содержание отчета

- **1.** Переходные характеристики исследуемых элементарных звеньев, их передаточные функции и параметры
 - **2.** Выводы

Вопросы к защите лабораторной работы

- 1. Перечислите способы, с помощью которых может быть задана динамическая система.
- 2. Назовите типовое динамической звено, если корни знаменателя его передаточной функции чисто мнимые, а числитель передаточной функции равен постоянной.
- 3. Назовите типовое динамической звено и параметры, если его переходная функция $h(t) = 1 2e^{-t/2} + e^{-t}$.
- 4. Динамической звено описывается дифференциальным уравнением $4\ddot{y} + a\dot{y} + y = 3 \cdot g$. При каких значения параметра a оно называется колебательным звеном?
- 5. Найдите переходную функцию динамической звена заданного дифференциальным уравнением $\dot{y} + 2y = 1.5 \cdot g$