Assignment

1. Given a library of 2-input AND, NOT and 2-input XOR gates, synthesize the function f(A,B,C,D) as shown in the Karnaugh map using minimum number of gates of the library.

AB^{C}	D_{00}	01	11	10
00	1		1	
01		1	1	
11		1		1
10		1	1	

- 2. Design a full adder circuit using 4*1 multiplexer.
- 3. Consider the multiplication of two 2-bit integers a1a0 and b1b0 to get a 4-bit output c3c2c1c0. Design a circuit for deriving the bit c2 using only 2-input NAND gates.
 - 4. Perform BCD addition and subtraction of the following data:
 - I) 55 32
 - II) 32 + 13
 - 5. You are required to design a 4-bit prime number checker. Note that 0 and 1 are not prime. Design the circuit using a single 4 → 1 multiplexer and a minimal number of AND, OR or NOT gates, if needed.
 - 6. Design a combinational logic circuit that takes an unsigned 2-bit integer as input and computes its square.