(0) -19-1505

CONTRACTOR DISTRIBUTIONS IN THE CHAPTER NOTICES IN THE CHAPTER NOTIC

POUT L AST CONTRAMICS AND NUMERICAL RESULTS.

India Folkia

Websermore 1921

NATIONAL FECHNICAL

U.S. ARMY MATERIEL COMMAND

TARRY DIAMOUD ARONATESTES

NATHINGTON THE YEAR

CONTROL OF OUR CASE ASSESSMENT OF THE OWNER.

Unclassified

Security Classification DOCUMENT CONTROL DATA - R & D ntered when the overell report is classified) (Security classification of tille, body of abatract and indexing annotation must be enter Unclassified Harry Diamond Laboratories Washington. D. C. 20438 Ion and Electron Distributions in the Boundary Layer of Hypersonic Vehicles for Chemical Non-Equilibrium Flow Part I - Aerodynamics and Numerical Results 4. DESCRIPTIVE NOTE: Type of report and inclusive dates) S. AUTHORISI (First name, middle initial, lest name) Irvin Pollin b. NO. OF REFS 36 32 November 1971 M. CONTRACT OR GRANT NO. M. ORIGINATOR'S REPORT NUMBER(S) A. PROJECT NODA-1T-061101A91A HDL-TR-1565 Gb. OTHER REPORT NO(5) (Any other numbers that may be ensigned this report) AMCMS Code: 501A.11.84400 HDL Proj: ILIR15 10. DISTRIBUTION STATEMENT Approved for public release; distribution unlimited. U. S. Army Materiel Command IS. ABSTRACT

Flows over non-ablating hypersonic vehicles are considered when all electrons are produced by aerodynamic heating in the boundary layer. Detailed calculations of the ion and electron distributions are presented for a vehicle with a conical nose and a semivertex angle of 10 deg, for Mach numbers 8 and 10 at sea level. Except for a small region at the nose, the boundary layer is turbulent. Diffusion of electrons with respect to the ions and neutrals is considered and ambipolar diffusion is found to occur across most of the boundary layer only at large ion-electron densities.

DD FOR 1473 REPLACES OD FORM 1473, 1 JAN 64, WHICH IS

Unclassified

The findings to this report are not to be construed as an official Department of the Army position unless to benignated by other author ad decommon

Citation of manufacturars; or trade names does not unushitute an official indolasment or approval of the use thereof

Postroy the soport when it is no congre needed. Do no Deturn, it to the

Unclassified

Security Classification	LIN	K A	LIN	K D	LIN	K C
KEY WORDS	ROLE	WT	POLE	WT	ROLE	WT
Ionized flow	8	3				
Plasma	8	3				
Hypersonic vehicles	8	3				
Electron density distribution	8	3				
Non-equilibrium chemical flow	8	3				
				İ		
						3
						1
	•					
		:				
		1				

AD

DA-1T-061101A91A

AMCMS Code: 501A.11.84400

HDL Proj: ILR15

HDL-TR-1565

ION AND ELECTRON DISTRIBUTIONS IN THE BOUNDARY LAYER OF HYPERSONIC VEHICLES FOR CHEMICAL NON-EQUILIBRIUM FLOW

Part I
AERODYNAMICS AND NUMERICAL RESULTS
by
Irvin Pollin

November 1971

U.S. ARMY MATERIEL COMMAND.

ARRY DIAMOND LABORATORIES

WASHINGTON, D.C. 20438

ABSTRACT

Flows over non-ablating hypersonic vehicles are considered when all electrons are produced by aerodynamic heating in the boundary layer. Detailed calculations of the ion and electron distributions are presented for a vehicle with a conical nose and a semivertex angle of 10 deg, for Mach numbers 8 and 10 at sea level. Except for a small region at the nose, the boundary layer is turbulent. Diffusion of electrons with respect to the ions and neutrals is considered and ambipolar diffusion is found to occur across most of the boundary layer only at large ion-electron densities.

CONTENTS

ABS	TRACT 3
1.	INTRODUCTION
2.	NEUTRAL GAS FLOW AND THERMODYNAMIC PROPERTIES 8
3.	GOVERNING EQUATIONS FOR THE CHARGED PARTICLES
4.	BCUNDARY CONDITIONS17
5.	NUMERICAL CALCULATIONS FOR THE ION AND ELECTRON FLOW IN THE BOUNDARY LAYER
6.	CONCLUSIONS
7.	LIST OF SYMBOLS23
TAB	. Mach number 8
11 2	Boundary layer parameters \vec{D} , P and T - Mach number 814 b. Boundary layer parameters \vec{D} , P and T - Mach number 1014 a. Ion and electron densities at $\eta = 0.01$, 0.1 and 0.5 Mach number 8
3	Mach number 10
31	number 8
3	Mach number 8
34	Mach number 10

1. INTRODUCTION

The accuracy with which a hypersonic vehicle receiving microwave radiation through a dielectric window can track a target is affected by electrons produced by aerodynamic heating in the boundary layer of the tracking vehicle. The plasma distorts an incoming signal by changing its propagation velocity through the plasma, refracting it at the plasma radome interface, and causing additional changes in the passage of the signal within the radome itself. Accordingly, wherever the electron number density exceeds 10% /cm³, the calculation of boresight error requires a description of the electron distribution.

In the present case, detailed calculations for the ion and electron distributions are given for a tracking vehicle having the form of a 10-degree semivertex cone flying at zero angle of incidence, sea level, and Mach numbers 8 and 10. We assume that the vehicle is subjected to intense aerodynamic heating for a short time duration, so that no ablation occurs and the vehicle shape is unaltered. Hence, with a pointed or slightly rounded non-ablating nose, the electron production occurs entirely within a small fraction of the hot boundary layer adjacent to the vehicle surface. For the above conditions, the boundary layer is turbulent everywhere except for a very small region near the nose.

The random translational energy of the electrons is at most 0.4 electron-volt, and those electrons are subject to large accelerations by small electric fields. Thus, the electron production (as affected by recombination) as well as the distribution are sensitive to the small electric fields produced by charge separation, caused by the faster diffusion of electrons relative to ions from the region of higher ionization production. The electric field sets up a conduction current which tends toward ambipolar diffusion with increasing levels of ionization.

For the above flows, the enthalpy distribution is decoupled from the ionization, since the ionization enthalpy is insignificant in comparison with the local enthalpy. The ion mass fraction nowhere exceeds 10⁻⁴. Accordingly, all electrons are produced through the reaction²

Private communications, T.B.A. Senior, Univ. of Michigan, and G. Tricoles, General Dynamics-Electronics, San Diego, California, March 1971.

J.Hilsenrath, and M.Klein, Tables of Thermodynamic Properties of Air in Chemical Equilibrium Including Second Virial Corrections from 1500°K to 15,000°K, Arnold Engineering Development Center, AEDC-TR-65-58, March 1965.

Moreover, the effect of Coulomb forces on collisions between neutral particles and between ions and neutral particles is negligible. Consequently, the neutral gas viscosity and ion diffusion coefficients are not affected by the electric field.

In the present calculations, we account for the turbulent boundary layer by assuming a power-law velocity distribution for the neutral gas and an associated iso-energetic enthalpy boundary layer. This procedure allows for the complete determination of the neutral gas flow. Binary and turbulent eddy diffusion coefficients are included in the calculation of the ion-electron drift velocities. The boundary layer equations governing the electron and ion distributions are then solved exactly for dissociation equilibrium and ionization non-equilibrium.

The uncertainties in the boundary conditions, such as body temperature and body electric potential, justify use of this approximate method of solution. These conditions are usually known only to within a range of values that can yield variations in ion and electron distributions easily exceeding the error introduced by our method of solution. In addition, the effect on the ion and electron distributions by the neutral particle velocity distribution and boundary layer thickness can be readily obtained by our procedure. For prescribed boundary conditions, the present procedure permits a readily obtainable approximate evaluation of the plasma distribution for a wide range of body geometries and flow conditions.

2. NEUTRAL GAS FLOW AND THERMODYNAMIC PROPERTIES

For the cone of semivertex angle 10 deg considered here, significant shock wave ionization does not occur. High temperature and associated ionization, say $10^8/\text{cm}^3$ or larger, occur only within a small fraction of the boundary layer. As previously stated, all ions and electrons are produced by the reaction given by equation (1). Assuming ion formation from N_2 and 0_2 , approximately 10 ev per ion are required. The energy required to form

⁵ I.Pollin, The Stagnation-Point Langmuir Probe in a Shock Tube-Theory and Measurements, Harry Diamond Labs, HDL TR-1103, 28 June 1963.

10¹⁴/cm³ electrons, which exceeds the equilibrium ion density formed on the above body at Mach number 10 and sea level, is 1.6 (10⁻⁴) joule/cm³. This energy is insignificant in comparison with the Mach number 10 sea level free stream total enthalpy of 7.5 joule/cm³. Thus, the neutral gas enthalpy is decoupled from the ionization.

We assume the boundary layer neutral gas velocity profile corresponding to turbulent flow to be of the form 4 -8

$$u = u_{\delta} \eta \overline{\overline{m}}$$
 (2)

The extent of the laminar sublayer adjacent to the vehicle surface is about 1 percent of the total boundary layer thickness. Except for this displacement, the turbulent layer is unaffected by its presence, since only a small fraction of the momentum lies in the sublayer. 9,10 The velocity power law given by equation (2) is representative of a large class of fully developed turbulent boundary

⁴ R.K.Lobb, E.M.Winkler, and J.Persh, Experimental Investigation of Turbulent Boundary Layers in Hypersonic Flow, J.Aeronaut.Sci.22, 1-9-50 (1955).

⁵ D.M.Bushnell, and I.F.Beckwith, Calculation of Hypersonic Turbulent Boundary Layers and Comparison With Experimental Data, AIAA Paper No. 69-684, June 16-18, 1969.

⁶ H.L.Dryden, Transition from Laminar to Turbulent Flow, High Speed Aerodynamics and Jet Propulsion, Vol.V: Turbulent Flows and Heat Transfer, Princeton Univ. Press, 1959, Edited by C.C.Lin.

C.M.Jackson, and R.S.Smith, A Method for Determining the Total Drag of a Pointed Body of Revolution in Supersonic Flow with Turbulent Boundary Layer, National Aeronautics and Space, NASA TN D-5046, March 1969.

D.L.Brott, W.J.Yanta, R.L.Voisinet, and R.L.Lee. An Experimental Investigation of the Compressible Turbulent Boundary Layer with a Favorable Pressure Gradient, AIAA Paper No. 69-685, June 16-18,1969.

⁹ Ibid.

W.D.Hayes and R.F.Probstein, Hypersonic Flow Theory, pp 327-339, Academic Press, Inc., 1959.

layer flows at high and low Mach number, and therefore provides an adequate basis for determining the neutral gas velocity. The appropriate value of m appears to be between 6 and 8; m = 8 was used in the present calculations 9-12. As previously stated, the effect on the electron distribution caused by variation of m within this range is small in comparison with that produced by other uncertainties, such as the value of the vehicle temperature.

The boundary layer thickness $\delta = \delta$ (x) (defined as the distance measured normal to the wall where the velocity is 0.99 of the local free stream value) depends on such factors as the wall temperature, vehicle contour and flight conditions. 10-12 For example, at high Mach numbers, the effect of insulating the body is an increase in the boundary layer temperature and thereby, a reduction in the density and an increase of the boundary layer thickness. Usually, δ increases as the flow proceeds downstream, and thereby new fluid continually enters the boundary layer and is heated.

For fully developed turbulent boundary layer flow, at Mach numbers 1.8 and 4.25 the boundary layer thickness on an axisymmetric cone with the semivertex angle of 12-1/2 deg was everywhere found to be less than 10 percent of the local cone radius at all angles of incidence up to at least 15 deg. At the latter angle, the value of δ on the leeward side was found to be a factor of 5 larger than that on the windward side at the same downstream station. 13 The large variation of boundary layer thickness is brought about primarily by the circumferential pressure gradient. A favorable pressure gradient (pressure decreasing in the direction of the flow) always tends to reduce the rate of increase in 5; the opposite is also true. Thus, at a given axial station, the boundary layer thickness can circumferentially vary by a factor of 2 at 2 deg angle of incidence and by a factor more than 3 at 5 deg. 13 Consequently, unless the flow conditions and body geometry are known, only approximate values of $\delta = \delta(x)$ can be prescribed.

¹¹ R.K.Lobb, E.M.Winkler, and J.Persh, Experimental Investigation of Turbulent Boundary Layers in Hypersonic Flow, J.Aeronau.Sci. 22, 1-9-50,1955.

D.M.Bushnell, and I.F.Beckwith, Calculation of Hypersonic Turbulent Boundary Layers and Comparison with Experimental Data, AIAA Paper No. 69-684, June 16-18, 1969.

¹³ W.J.Rainbird, Turbulent Boundary Layer Growth and Separation on a Yawed 12 1/2° Cone at Mach Numbers 1.8 and 4.25. AIAA Paper No. 68-98, Jan 22-24, 1968.

The peak boundary layer electron density is reduced by diffusion, moreover, the ionization process is comparatively slow, so that equilibrium values of peak electron density are nowhere attained. Therefore, in an iso-energetic boundary layer, this means that the peak electron density will tend to increase with increasing δ . For moderate angles of incidence a reasonable estimate of δ is given by flat plate theory and Rainbird's data, 15 from which we deduce

$$\delta = bx^{a} \tag{3}$$

with a = 0.8. The effect of δ on the electron distribution can be calculated by adjusting b over the range 0.02 > b > 0.002. The smaller value of δ is associated with low altitudes, the windward side of the vehicle, etc. In the calculations, b = 0.02 was used.

Th pressure distribution across the boundary layer is given by $\partial p/\partial y = 0$. For cones, in the inviscid region p = constant along a conical generator. Hence, p = constant throughout the boundary layer for conical vehicles. Inside the boundary layer,

$$p = p/RTZ \tag{4}$$

For a fully developed turbulent flow in dissociative equilibrium on a conical body, the boundary layer enthalpy distribution is given by the Crocco relation

$$H = h_D + (H_{\delta} - h_D) \frac{u}{u_{\delta}},$$

when the laminar and turbulent Prandtl and Lewis numbers are unity. 14 , 15 For H = h, we obtain an isoenergetic boundary layer, so 5 that

$$h = h_b - \frac{u^2}{2} \tag{5}$$

Throughout the boundary layer, v << u; consequently, the v term is not included in the calculation for h.

W.D.Hayes and R.F.Probstein, Hypersonic Flow Theory, pp 327-339, Academic Press Inc., 1959.

L.H.Back and R.F.Cuffel, Relationship Between Temperature and Velocity Profiles In A Turbulent Boundary Layer Along A Supersonic Nozzle With Heat Transfer. AIAA Journal, Nov., 1970.

Actually, the equilibrium value of h_b is limited by the recovery factor, which has the value 0.90 for turbulent boundary layers. The value of h given by (5) is everywhere at most 10 percent larger than that obtained by assuming $h_b = .90~H_{\rm g}$ in the Crocco relation. The resulting difference in electron distribution is well within the difference corresponding to the uncertainty in describing actual flight conditions. The effect of assuming an isoenergetic boundary layer is equivalent to attaining a given peak electron density at a slightly lower Mach number with a slightly different electron distribution.

With the use of equation (2), the energy equation becomes

$$\int_{\delta}^{\pi} dh = \frac{u_{\delta}^{2}}{2} \left(1 - \eta^{-\frac{2}{m}}\right) \tag{6}$$

In equation (6), the recovery enthalpy is reached at $\eta = (0.1)^{\frac{m}{2}}$ The enthalpy then was assumed constant for $(0.1)^{\frac{m}{2}} \ge \eta_{\ge 0}$.

The flow thermodynamic properties at $y = \delta$ were calculated for the conical flow at zero angle of incidence with the help of the Sims' tables. The formation of equilibrium values of dissociated N and O takes place within several hundred collisions. The largest mean free path in the present calculations is of the order 10^{-5} cm. Thus, the boundary layer will be in chemical equilibrium with respect to the dissociated N and O. Since T = T(r) and p = constant, the N and O distributions are functions of r only.

J.L.Sims, Tables for Supersonic Flow Around Right Circular Cones at Zero Angle of Attack, National Aeronautics and Space Administration, NASA SP-3004,1964.

M.H.Bloom and M.H.Steiger, Inviscid Flow with Nonequilibrium Molecular Dissociation for Pressure Distributions Encountered in Hypersonic Flight, Journal of the Aero/Space Sciences, Vol.27, No.11, November 1960.

¹⁸ K.L.Wray, Chemical Kinetics of High Temperature Air International Hypersonics Conference, M.I.T., Cambridge, Mass., Aug. 16-18,1961.

S.C.Lin, and J.D.Teare, Rate of Ionization Behind Shock Waves in Air, II. Theoretical Interpretation, Avco Research Report 115, Sept.1962.

Moreover, because the ionization enthalpy is small in comparison with the free stream enthalpy, we may assume dissociative equilibrium in the boundary layer, and thereby $h = h(\rho,T)$. Then, with the use of equations (4) and (6), the thermodynamic properties were found for $y < \delta$ using the tables of Hilsenrath and Klein. In every case, T_{δ} is so small that dissociation is zero and Z = 1 at $y = \delta$. Within the boundary layer, $Z = Z(\rho, T)$.

The component of the neutral gas velocity normal to the conical surface, v, is obtained from the mass conservation equation for axisymmetrical flow,

$$(\rho ur)_{x} + (\rho vr)_{y} = 0$$
 (7)

Since ρ and u are known functions of η , and r and δ are known functions of x, the solution of equation (7) becomes

$$v = \frac{au_{\delta} \delta \eta \frac{m+1}{m}}{x} - \left[1+a\right] \frac{\delta u_{\delta} P}{x} \int_{0}^{\eta} \frac{1}{y^{m}} d\eta \qquad (8)$$

Since r<<x and δ <<x, by equations (2) and (8), v<<u; therefore, as previously noted, the effect of v on h is everywhere negligible. However, v has significance in the computation of the ion and electron velocities and thereby on their corresponding density distributions.

3. GOVERNING EQUATIONS FOR THE CHARGED PARTICLES

For axisymmetric flow, the conservation equations for the ions and electrons are

$$\rho u \dot{s}_{x} + \rho v \dot{s}_{y} = (\rho \dot{D} \dot{s}_{y} + \rho D_{T} \dot{s}_{y})_{y} + (\rho \dot{K} \dot{s}_{y})_{y} + \frac{\dot{W}}{\dot{c}_{a}}$$
(9)

$$\rho u \bar{s}_{x} + \rho v \bar{s}_{y} = (\rho \bar{D} \bar{s}_{y} + \rho D_{T} \bar{s}_{y})_{y} - (\rho \bar{K} \bar{s}_{\phi}_{y})_{y} + \frac{\bar{w}}{\bar{c}_{e}}$$
where $\dot{c}_{e} = \bar{c}_{e} = c_{e}$ and

$$\frac{\dot{\overline{W}}}{\dot{\overline{M}}} = \frac{\overline{W}}{\overline{M}} = \frac{d\overline{\overline{n}}}{dt} = K_f < N > < 0 > - K_r \dot{\overline{n}} \overline{n}, \qquad (11)$$

J.Hilsenrath and M.Klein, Tables of Thermodynamic Properties of Air in Chemical Equilibrium Including Second Virial Corrections from 1500°K to 15,000°K, Arnold Engineering Development Center, AEDC-TR-65-58, March 1965.

and the formation and recombination rate constants are given as?1,22,23,24

$$K_f = 5(10^{-11})T^{-3.5} \exp(-32.507/T)$$
 and
 $K_r = 3(10^{-3})T^{-1.5} \text{ cm}^3/\text{ion-sec},$ (12)

Fig. 1(a) Boundarv layer parameters
D, P and T - mach number 8

Fig. 1(b) Boundary layer parameters
D, P and T - mach number 10

S.C.Lin, and J.D.Teare, Rate of Ionization Behind Shock Waves in Air, II, Theoretical Interpretation, Avco Research Report 115, Sept.1962.

M.A.Biondi, Recombination Processes (Charged Particles), Defense Atomic Support Agency Reaction Rate Handbook, DASA 1948, Oct.1967, pp. 11-8 to 11-10.

A.Q.Eschenroeder, and T.Chen, Near-Wake Ionization Behind A Sphere in Hypersonic Flight. I.Reaction Kinetics, General Motors Defense Research Labs.TR 65-01 H. Sept., 1965.

A.Q.Eschenroeder, and T.Chen, Near-Wake Ionization Behind A Sphere in Hypersonic Flight. II. Influence of Flight Conditions, General Motors Defense Research Labs., TR 65-01 Q. Dec.1965.

The diffusion coefficient of NO⁺ in air, denoted by D, is about the same as that for NO in air²⁵. Consequently, using the Leonard-Jones potential, for constant pressure D is a function of temperature only. Since T = T(T), using the values given in Table V of reference 26, the dependence of D on T is shown in figure 1 for sea level flight at Mach numbers 8 and 10, where the boundary layer pressures for the two cases are 4.29 and 6.00 atmospheres, respectively.

The binary diffusion coefficient for the electrons in air can be found from the approximate relation

$$\vec{D} = (\vec{M}/\vec{M})^{\frac{1}{2}} (\vec{T}/\vec{T}) \vec{D} = 234\vec{D},$$
 (13)

where we have assumed $\bar{T} = T$,

pp. 370-83, Sept-Oct 1958.

When the turbulent Prandul and Lewis numbers are unity, the turbulent eddy kinematic viscosity and turbulent eddy diffusion coefficients become equal². The mixing length theory of Prandtl²⁸, gives ℓ = Xy and $u'v'=-\ell^2\left(\frac{du}{dy}\right)^2$, so that $D_T = \ell^2 \frac{d\bar{u}}{dy}$. With X = 0.4 and (2), there results for both ions and electrons,

$$D_{T} = 0.02 u_{5} 5 \eta^{9} / e.$$
 (14)

Since $u_x \approx 3(10^5)$ cm/sec, for x> lcm,

 $^{D}_{T}>120\eta \%$ cm²/sec. By fig. 1, except in the neighborhood of η = 0 (that is, except in the laminar sublayer), $^{D}_{T}>>\bar{D}$.Similarly, $^{D}_{T}>>\bar{D}$ at somewhat larger X.

For small values of the ratio of the electric field to the total gas pressure, the Einstein equation K = eD/kT or K = 11,600 D/T (15)

I.Pollin, The Stagnation-Point Langmuir Probe in a Shock Tube--Theory and Measurements, Harry Diamond Labs, HDL TR-1103, 28 June 1963.

W.D.Hayes, and R.F.Propstein, Hypersonic Flow Theory, pp 327-339, Academic Press Inc., 1959.

²⁸ H.Schlichting, Boundary Layer Theory, McGraw-Hill Book Co, 4th Ed., 1960, pp 477-490.

relates the mobility and binary diffusion coefficients for both electrons and ions, ref. 29

The y component of the ion or electron current density is defined by the equation

$$J = \pm v_{D} en, \qquad (16)$$

 $(\mathbf{J}_{>0})$ is in the direction toward the body surface) where the y component of the average drift velocity is

$$v_{D}^{=} -v + \frac{\pm}{D} s_{Y} / s + D_{T} s_{Y} / s \pm K_{D}$$
(17)

and where (+) is for ions and (-) is for electrons. Substitution of equations (16) and (17) into equations (9) and (10) and (10) and (10) are (10) and (10) are (10)

$$J_{-} = \frac{\delta \operatorname{en}_{e} \operatorname{us}_{x}}{P} - \frac{\operatorname{We}_{\delta} \operatorname{n}_{e}}{\delta e^{C} e} - \operatorname{en}_{e} \operatorname{s} \left(\frac{v}{P}\right)_{\eta}$$
 (18)

for either ions or electrons.

Eliminating v_D in equations (16) and (17) gives

$$\frac{\pm}{\mathbf{s}_{\eta}} = \frac{1}{\mathbf{r}_{\eta} + \pm} \left[\frac{\pm}{\mathbf{J}\mathbf{p}_{\delta}} + \pm \frac{\pm}{\mathbf{s}\mathbf{v}_{\delta}} \mp \mathbf{R} \pm \mathbf{s}_{\eta} \right] \tag{19}$$

where the (-) and (+) signs preceding the electric mobility term are for ions and electrons, respectively.

Assuming $\phi_{\eta\eta}>>5^2\phi_{xx}$, Poisson's equation for the electric field is $^{\eta\eta}$

$$\phi_{mij} = -\frac{10^{14}}{8.85} \frac{\text{en}_{6}\delta^{2}}{\text{p}} (s - s)$$
 (20)

Previously, u, T and P were made functions of η . As we have seen, equilibrium dissociation may be assumed and thereby the < N > and < 0 > are only functions of η . Since the pressure is constant throughout the boundary layer, $\frac{1}{D}$ and $\frac{1}{K}$ are also functions of η only. By (14), at a given x, $D_{m} = D_{m}(\eta)$. The five equations (18)-(20) are explicit expressions for the derivatives $\frac{1}{J}_{\eta}, \frac{1}{S}_{\eta}, (\delta_{\eta})_{\eta}$ in terms of $\frac{1}{J}_{\eta}, \frac{1}{S}_{\eta}, \frac{1}{J}_{\eta}, \frac{1}{J}_{\eta}$. Consequently, the computation

A. Von Engle, Ionized Gases, Oxford Univ. Press,1955.

for \mathbf{J} , $\mathbf{\dot{\bar{s}}}$ and ϕ_n varies with η for different x through v=v(x, \(\mathbf{r}\)), $\xi = \xi$ (x) and $\mathbf{\dot{\bar{s}}}_{\mathbf{x}} = \mathbf{\dot{\bar{s}}}_{\mathbf{x}}$ (x, η).

4. BOUNDARY CONDITIONS

The solution of equations (18), (19) and (20) requires specification of five boundary conditions in addition to initial conditions at x = 0. For sharp nose cones

at
$$x = 0$$
, $\frac{1}{s} = 0$ (21)

As previously stated, all ionization production occurs within a small fraction of the boundary layer adjacent to the vehicle surface. Whether a wall is catalytic or non-catalytic with respect to charged particle recombination depends on the gas-solid surface interaction, which in turn depends somewhat on the wall temperature. For the wall temperature of 1000° K assumed by Wangae, experimental observations agree with the calculations obtained using the conditions $\frac{1}{5}(0) = 0$. Similarly, we assume

at
$$\tau = 0$$
, $\dot{s} = 0$ (22)

The temperatures at the edge of the boundary layer and for some distance therein are very low (see fig. 1). Except for the diffusion, this condition would give $\dot{s}=0$ at $\eta=1$. Calculations show that nonzero boundary conditions for \dot{s} at $\dot{s}=1$ wherein $\dot{s}_{\eta} \leq 0$ at $\eta=1$ principally affect only the \dot{s} distributions near $\dot{\eta}=1$. Consequently, we assume

at
$$n = 1$$
, $\dot{s} = 0$ (23)

The boundary condition for an insulated surface is $J_{\text{Net}} = J + J = 0$, so that $\phi_n(1)$ is a function of x. Including the passage of current into the wake, $\phi_n(1)$ is not known for a conducting surface. The value of $(\phi_n)_n$ near $\eta = 1$ is necessarily small because of the small values of \bar{s} near $\eta = 1$ and the electric field would appear to be small at $\eta = 1$. Accordingly, for all x, we assume

at
$$n = 1$$
, $\phi_n = 0$ (24)

Thus, (24) is an approximate boundary condition for both insulated and conducting surfaces.

Nonequilibrium Boundary-Layer Flows, AIAA Journal, p.316, April 1969.

In the next section, the Mach number 2 calculations show that ϕ_n is not significant in the determination of \bar{s} and \bar{j} , since the $\bar{k}\phi_n$ terms are small compared to the other diffusion terms. For Mach 10, ϕ_n is small for small x, and again the effect of ϕ_n on the calculations is negligible. At larger x, the faster electron diffusion results in significant values of ϕ_n at n=0, fig. 3(c). Upon using these values of ϕ_n for the boundary condition (24), the effect on the \bar{s} and \bar{j} distributions (not shown) was found to be limited to the neighborhood of $\eta=1$ and did not affect the ϕ_n at n=0 and the peak \bar{n} .

Finally, in the evaluation of ϕ , we assume

at
$$n = 1, \phi = 0$$
 (25)

5. NUMERICAL CALCULATIONS FOR THE ION AND ELECTRON FLOW IN THE BOUNDARY LAYER

The $\frac{1}{5}$ (x,-) in (18) can be approximated by an appropriate finite difference expression involving $\frac{1}{5}$ (x,\pi), $\frac{1}{5}$ (x-\Delta x,\pi), etc., so that the system (18)-(20) with the boundary conditions (21)-(25) ultimately reduces to solving a two-point, nonlinear boundary-value problem at each x. This was solved numerically both by integrating the differential equations and by matrix methods. As determined by reducing the stepsize of the calculation intervals Ax and Ap at any station x, the accuracy of any quantity was found to be within about 5 percent providing the quantity was not reduced to less than 1 percent of its maximum value. Improvement of the calculation precision requires longer computer running time. 1

The numerical data is summarized in tables I and II and figures 2 and 3. In particular, the tables give the printout of the independent variables at typical stations $0 < x \le 100$ as well as the contributing terms to v_D . The graphs of $\frac{1}{n}$ were obtained from the relation

$$\dot{\bar{n}} = n_e \dot{\bar{s}}/P \tag{26}$$

where n = 6.54 (10^{10}) and 5.63 (10^{10}) for Mach numbers 8 and $^{\circ}$ 10 and the corresponding P = P(η) functions are given in figure 1.

A. Hausner, Ion and Electron Distributions in the Boundary Layer of Hypersonic Vehicles For Chemical Non-Equilibrium Flow - Part II: Method of Solution and Computer Program, Harry Diamond Labs., HDL-TR1567 1971.

All functions $\frac{1}{5}$, $\frac{1}{5}$, and $\frac{1}{5}$, are zero at x=0. The enthalpy and density profiles of the neutral gas flow result in the total ionization production occurring within a small fraction of the boundary layer in the neighborhood of the vehicle wall. For all x, the diffusion caused by concentration gradient is directed from n=0 toward n=1. Thus, in the neighborhood n=0, ion-electron recombination is negligible and the ionization production remains constant for all x. The diffusion effects become significant with increasing x and therefore with increasing x. Hence, because of the diffusion, $\frac{1}{2}\frac{1}{8}$ and $\frac{1}{6}$ on $\frac{1}{6}$ in the n=0 neighborhood.

Fig. 2(a) Ion and electron densities at n = 0.01, 0.1 and 0.5 mach number 8

Fig. 3(a) Normalized electric field & potential at X= 100cm - mach number 8

Fig. 2(b) Ion and electron densities at 0 = 0.01, 0.1 and 0.5 mach number 10

Fig. 3(b) Ion and electron densities at X = 5.62 and 100cm - mach number 8

Fig. 3(c) Normalized electric field & potential at X=5.62 and 100cm mach number 10

Fig. 3(d) Ion and electron densities at X=5.62 and 100cm mach - mach number 10

From previous work³, the u velocity is sufficiently small at 10^{-4} to allow time for ionization equilibrium well before x = 100, particularly forMach number 10. Ionization equilibrium at 10^{-4} is denoted by $\frac{1}{5} = 1$. By figures 3(b) and 3(d), for Mach numbers 8 and 10, the diffusion reduces the peak electron density at x = 100 by a factor of more than 10^{-4} and 10^{-2} , respectively. On the other hand, for x = 100, the $\frac{1}{5}$ at $\frac{1}{5}$ are much larger than those corresponding to ionization equilibrium. This occurrence is explained by the diffusion from the region $\frac{1}{5}$ 0.1 and the low recombination rate.

For the Mach number 10 calculations we observe the following behavior: Because of the faster electron diffusion over that of the ions, for small x, \overline{s} (η) $<<\overline{s}$ (η), fig. 2(b). As x increases, $\overline{s} \approx \frac{1}{5}$ near $\eta = 1$ and the η -region of approximate ion-electron equality progresses from $\eta = 1$ toward $\eta = 0$. Finally, at $\chi = 100, \overline{s} \approx \frac{1}{5}$ everywhere except for $\eta = 0.01$ (figs. 2(b) and 3(d)). This difference between \overline{s} and \overline{s} gives rise to a $\eta = 0$ which increases sharply near $\eta = 0$ and is a monotonically increasing function of χ at $\eta = 0$ (fig. 3(c)). The values for are obtained by integration of η (fig. 3(c)).

I. Pollin, Plasma Formation in the Boundary Layer of a Sharply Pointed Hypersonic Vehicle, Harry Diamond Labs., HDL-TR-1453, June 1969.

Referring to the \$ development with x for various n in fig. 2(b), for sufficiently large x, steady state values of \$ will finally evolve for the Mach number 10 case with the following characteristics:

Ambipolar diffusion occurs everywhere except in the immediate neighborhood of n=0 where s< s. Because of the large t, the (s-s) difference will give rise to a large t, the t and t are t are t are t and t are t and t are
The diffusion coefficients for Mach number 8 are slightly smaller than for Mach number 10. For Mach number 8, the diffusion is more effective in reducing the peak \hat{n} because of the slower rate of ionization production. Now, the $\frac{1}{n}$ are everywhere markedly reduced so that the contribution to v_n by the electric field resulting from charge separation is everywhere negligible (fig.3 (a) and table I). Hence, for Mach number 8, the electron diffusion everywhere exceeds that corresponding to ambipolar diffusion and, for all x, $\bar{n} > 10 \bar{n}$ (fig.2(a)). (If the electric field arising from the charge separation was not negligible, a counter flow diffusion would occur which would increase the peak n and reduce the peak n). These effects, together with the lower_n (by two orders of magnitude) result in reduced peak \bar{n} of about 5 to 6 orde:s of magnitude lower than those for Mach number 10.

6. CONCLUSIONS

The ion-electron distribution in the turbulent boundary layer has been calculated for a hyperscnic vehicle consisting of a 10 degree semivertex, sharply pointed cone at Mach numbers 8 and 10 for sea level flight. Binary and turbulent eddy diffusions across the boundary layer normal to the vehicle surface act to reduce the peak # whereas the electric field arising from the charge separation acts to cause ambipolar diffusion and thereby acts to increase the peak \(\bar{n} \) and decrease the peak n. For the cases considered, a balance between the ionization production and diffusion results in the attainment of a steady state peak electron density of about two orders of magnitude less than equilibrium ionization at Mach number 10 and a reduction of about six orders at Mach number 8. Moreover, the distance along the missile surface required to attain the steady state peak electron density in the present calculation is several times larger

than the corresponding distance to attain peak equilibrium ionization for the same flight wherein all diffusion is neglected.

The calculation procedure allows for an easy evaluation of the effect of the neutral gas enthalpy profile, boundary layer thickness, binary and eddy turbulent diffusion coefficients, etc., on the ion-electron turbulent boundary layer distributions.

The described procedure can be used to determine the ionization distributions in the turbulent boundary layer of sharply pointed vehicles for Mach numbers up to 15 at sea level and 20 at the altitude 10⁵ ft. The ion mass fraction exceeds 10⁻⁴ at higher Mach numbers, and the electron production is no longer adequately given by reaction (1).

The assumption of the boundary conditions s=0 at x=0 requires a sharply pointed nose. For slightly rounded and blunt nosed vehicles, in the nose shock region, shock induced ionization governs the ion and electron distributions; however, diffusion, initially aided by recombination, will produce rapid reductions of the $\frac{1}{n}$ as the flow proceeds downstream. Consequently, for the extension to blunt nose bodies, we can assume the initial conditions to be those corresponding to equilibrium ionization behind the nose shock and proceed therefrom as before.

7. LIST OF SYMBOLS

- c; mass fraction of component j
- D binary diffusion coefficient, cm²/sec
- D_{m} turbulent eddy diffusion coefficient, cm²/sec
- e electron charge = $1.60 (10^{-19})$ coulomb = $4.80 (10^{-10})$ esu
- h enthalpy per unit mass of mixture
- H total enthalpy per unit mass of mixture = h÷V2
- J y component of ion current density, Amp/cm²
- K electric field mobility coefficient, cm2/V-sec
- K_f rate constant for ion-electron formation, cm³/ion-sec
- K_r rate constant for ion-electron recombination, cm³/ion-sec
- m velocity profile power law coefficient = 8
- M mass, g
- n ion or electron number density, cm⁻³
- <N> nitrogen number density, atom/cm3
- <0> oxygen number density, atom/cm³
- p pressure kg/m² or atmosphere
- P density ratio = ρ_0/ρ
- r radial distance of vehicle surface from axis of symmetry, cm
- R gas constant for air = 1.987 cal/mole° K
- s mass fraction for ions or electrons = c/c
- t time, sec
- T absolute temperature, °K
- u x component of neutral gas mixture velocity, cm/sec
- v y component of neutral gas mixture velocity, cm/sec
- V speed of neutral gas mixture velocity = $\sqrt{u^2 + v^2}$, cm/sec

- W mass rate of formation of ions or electrons, g/sec-cm³
- x distance along meridian profile, cm
- y distance normal to the surface, cm
- Z compressibility factor $= p/\rho RT$ (Z = 1 at STP)
- boundary layer thickness, cm
- dimensionless boundary layer thickness = y/8
- k Boltzmann constant = 1.38 (10⁻²⁵) joule/oK
- mass density, kg/m²
- electric potential, V

Subscripts

- b vehicle surface
- D y component of total ion or electron velocity, cm/sec
- e recovery temperature condition $(n \le 10^{-4})$
- x partial differentiation along meridian profile
- y partial differentiation along surface normal
- edge of boundary layer
- partial differentiation along dimensionless surface normal

Superscripts

- electron
- + ion

(1)			
	27.7.7.0	* SY/5	######################################
	מושומ	• \$Y/\$	######################################
	J	,	#0000000000000000000000000000000000000
		\$ / \S	$\begin{array}{c} 0-u_4+4v_200A-u_4v_404-v_5-0v_5+4x_5-0v_6+4x_5-v_6+4x_6+x_6+x_6+x_6+x_6+x_6+x_6+x_6+x_6+x_6+$
	۲	•	-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4
	ĭ	S	
	5	SY/S	のようなもんできならなっているのとことできないというなっというなっているとしているとしなった。それでしているとしなったとれてもなるなったっというない。これにはなってもなってもなってもなってもなってものできなっている。またまで、日本日本の自由のでは、日本日本のは、日本日本のは、日本日本のは、日本日本のは、日本日本のは、日本日本のは、日本日本のは、日本日本のは、日本日本のは、日本田本のは、日本田本のは、日本田本のは、日本田本のは、日本田本のは、日本のは、日本のは、日本のは、日本のは、日本のは、日本のは、日本のは、日
	C		
		H	そののあるまたまのというのでしてのようには、またっちょうないとは、またっちょうないとは、またっちょうないとのようない。 というない こうはい はいい はい こうない という はい という はい といい はい といい はい といい はい といい といい といい といい
	0	. 0.	
			000000000000000000000000000000000000000
		>	
		'	2000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
00			DUMBRE 2
NUMBER			00000000000000000000000000000000000000
뛽		H	てしょうなどとしょうなののつくないないないないないない。これではなっているなどとしょくのなくなくとなっているない。のももはなっていないなどとしているのできなっているのできなっているのでは、というなどとしない 日本日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日
ž		-	Λημηνημηνημή τη
H		_	
MACH		ETA	
_		PH	11.00000000000000000000000000000000000
H	400	_	- ജ്ജ്ജ്ജ്ജ്ജ്മ്മ്മ്മ്മ്മ്മ്മ്മ്മ്മ്മ്മ്മ
TABLE	7	S	
AB	2	NINUS	
H	× ×	7	
	ETA INTERVALS		- # - # # # # # # # # # # # # # # # # #
	=	LUS	
	ETA	4	でをんとこくのこのられののやとこらんでいっては「そどごでの」と思うのようかっともよりからとしからというのというというないというないというないというないというないないないないないないない
			######################################
			00000000000000000000000000000000000000
	.3991	MINUS	0.000
	6.9	SMI	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
	Ü	•	O M W 4 (N M N N N N N N N N N N N N N N N A 4 4 4 4
		S	00000000000000000000000000000000000000
	7	PLUS	
	₹.	2	
	DELTA		りょうこうこうこうこうこうこうこうこうこうこうこうこうこうこうこうこうこうこうこ
		NUS	
		Į	000mm34FF4000m444mm44F74mm4F78mm4m04m04m04m04m04m04m04m04m04m04m04m04m
	.62	•	O-MWWWW444444444444444444444444444444444
	•		######################################
		₹.	- បំណាល់យក់ប្រាយ៉ាយ៉ាយ៉ាស់ អំបើប្រាស់ប្រាស់ អំបើប្រាស់ប្រាស់ប្រាស់ប្រាស់ប្រាស់ប្រាស់ប្រាស់ប្រាស់ប្រាស់ប្រាស់ប្រ - ប្រាស់ប្រាស់ប្រាស់ប្រាស់ប្រាស់ប្រាស់ប្រាស់ប្រាស់ប្រាស់ប្រាស់ប្រាស់ប្រាស់ប្រាស់ប្រាស់ប្រាស់ប្រាស់ប្រាស់ប្រាស់ប

U MINUS DIPLUS OTHINUS	25	1.16E 03-2.25E 04-2.16E 1.24E 03-3.16E 04-3.12E 1.40E 03-E 03E 04-5 04E
KPLUS O PLUS	96 E - 0 1 1 0 0 E 9 6 E 0 1 1 0 0 E 9 6 E 0 1 1 0 0 E 9 6 E 0 1 1 0 0 E 9 6 E 0 1 1 0 0 E 9 6 E 0 1 1 0 0 E 9 6 E 0 1 1 0 0 E 9 6 E 0 1 0 E 0 0 E 9 6 E 0 1 0 E 0 0 E 9 6 E 0 0 E 0 E 0 E 0 E 0 E 0 E 0 E 0 E 0	16-03-5.06E C
(Contd)	7.000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	4.57E C2 2
MACH NUMBER 8 000	5.78 CE - 03 - 1.26 E - 5.68 E - 03 - 1.26 E - 5.68 E E - 03 - 1.25 E - 5.68 E E - 03 - 1.25 E - 5.68 E E - 03 - 1.25 E - 5.68 E E - 03 - 1.25 E - 5.81 E E - 03 - 1.25 E - 5.81 E E - 03 - 1.25 E - 5.81 E E - 03 - 1.18 E - 5.82 E E - 03 - 1.18 E - 5.82 E E - 03 - 1.18 E - 6.82 E - 03 - 1.18 E - 6.8	1.725E-04-1.45 8.342E-05-4.92
TABLE I ETA INTERVALS = 4	2.9496-10 2.9496-10 3.706-11 3.6716-11 5.7196-11 7.476-11 7.476-11 8.218-11 8.218-11 8.218-11 8.218-11 8.218-11 8.218-11 8.218-11 8.218-11 8.218-11 8.218-11 8.218-11 8.218-12 8.218-11 8.	2.297E-1
1868.0	2.5.5.00 2.5.00 2.5.00 2.5.00 2.5.00 2.5.00 2.5.00 2.5.00 2.5.00 2.	2.37CE-09-
DELTA Z =	-3-9-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0	02 5.204E- 02 3.185E-
22.20	9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	E-01 6. 3

(3)																																						
	ų	3.4	900	05	36	33	35	3																0	5 5	5:	ے د	60	,	ô.	3 6	S	Š č	2 4	0	Ċ	0	
	2	• SY/S	200E		. 14t	00	2 12	43	174	F. 5	5.25	175	74%	1,7		~	1.5	-2 to E		736	. 175	in .		. 155	525	116.	100	300°	-	. 50°.	400	10 to	0.	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	:00	; <u>.</u>	376	300
	č		82-	• •	\$ 4)	~		ş.	7 ?	2	7	7	4	9 1	- 3											-			13	3 - 6	~ 30 I I		,	; ;		, ,	4-5	-
	-	SS	M 0 0	0	0	0	0	0	0	0	0 0		0	o .	ے ر 		0	01	o €	····	ر.	00	5 5	0	2	0	ں ن	OC	0	3	0	9	0	ة ة سار	Č	00	i di	1
	Ġ	2.4	55.5	2	2 2	6	4.1	~	\$ 5 5	-	. 3 3	5.5	375	5	2 -	~	3.75	2.	7 .	~	6.7	23:	``	Ğ,	1	5		2 2	74	2		-		3 3				2
	•	•	- 6 -	7	? ?	5 -		-		-		7	7	7	٠.	. ~	~	~ .	2.	` ~	7	· · · · ·	~	~ .	1	ï		7			ıĩ	1		7	7	1	5	<u>-</u>
	2	S o	8000																										0	0	òò	8	33	0 0	0	ခဲ့ခဲ့	6	1
	-	SY/S	.00E	2 8 E	4 ac 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	755	355	25E	62t	2:1	24E	316	295	2.4.		97E	91C	345	200	21.2	955	10 to	1.	316	146	3.0	016	305	19.56	346	20.7	87.5	4.7	4 L		75.	0 7.1	0
		•	-4-	8	, -	w c			- ?								-2.	÷.		: -	-		-	÷.	: :	- 0	60-6	9.	٥	.5	กลา	4	3	, ,	•			•
	ي	SS	98	05	000	25	50	-4 .		-		-	~			• -	5	តីន	5 6	33	0	8 6	33	S	SS	8	SS	66	SS	ė i	30	S	S S	200	S	000	S	33
		\$ / \s	300	(C)	1 4	30	a w	36		で で	5.5E) (L)	9 E	2 E	9	111 m	135	4 0		, w	36	W (4	7	310	2 G	38) (II	2 E	7.	9 0	1 41 L 4	35	C) E	1 4 2 4			7.	,0E
	•	3 *	0.1	-	::	- 0	200	~	ی ن														0 - 2			s.	; ;	2.	, w	ė.	: ~	2	<u>:</u> .	: :	_		~	-
			888	-00	38	00	80	င္ပ်င္ပ		S	86	8	0	င်င်		80	00	98	0 0	SS	0	9 5	200	200	ទីទី	00	25		-			-					P1 1	39
	-	PHIY	m.m.ii	w :	ב א	10 1	υ	U1 9	u L	1 123	טוע	ינו נ	u i	.	u 11	ı uı	(LI	er :	با در 	n in	m L	er d	עי נ	200	n ni	W I	u u	75	u	å t			in i	נו ני נו ני	11/ 1		i iii i	å
	9		7.0		7 ~	7.0		5,1			ů,		~	٦, ۲	9 9	. 60	~	0	Ç 4	. 2	-:	0.3	σ.	~	. 4		·	? •	~	9.9		8	3 .	, 5	0		0	
=																																						_
(Contd		>	10-39										***					*** *												17 8 41							111. 4	
Ö		•	55.00	-	111	.32		8		9	. 8	7	8	-	0 0	200	, 14				. 85	8	<u>،</u>	6	. 3	7	ò	.24	ò	æ c	2	4	Š	9	9	· .	~	• 8
			08-		4	· .	9 00	0.				4 ~	N	m r	0 4	4	L.	en .	9 1	- -	æ	σ-					- N		1 76					n m	m (•
00		_	E-02	100		E-0	9 0	E-0	() 		6-1	1 ti	E - 0	-0	יוני נוני	יו עוני	6-0	9) (0	0 0		9	יי עייני	6-0	111		101	0 0		ن :	0	9 C	0-3		-	in L
3EF		Ĭ	506 47E	38	234	23	:=	ö		5.	64.	47	.35	25.	5 6	74	.57	.37	710	.73	.47	22.		.33	69	34	.62	-26	52	31.		-18	.72	. 05	3.5	- 5	63	8
NUMBER			660		5 5	1	1 1	6.	E 1	1	E 0	1	-	30 G			1	-	1	9	9-1	9 3		5-1	î	1	11		~	-1	1	-	60 ° N: €	1 4	2-2	- E		G
		4	999	9	၀ ၀	P	9	9	o c	9	99	9	9	P	9 9	20	S	9	2 6	??	9	99	7	5	၁၀	5	٩٩	97	2	93	? ?	9	o o	? ?	P	c o	P	
MACH		1	386	99	~ ⊗	4 (* *	0	* 3	, Ю	~ -	• • •	æ		* 4	o ∝	0	~		2	•	~ ~	-	9	r •0	•	~ Œ	800	15	-O	o ec	٠	~ ○	ວ ⊶		214	0.2	0
£	00	H	22.7			•	3.9	8.	L 4	3.	3.6	, w	3.4	4,	υ . υ .	3.6	3.1	6			2.6	2.5		2.2	2.0	2	1:5	4.	::		7.9	6	, , ,	2.5	2.2		1.8	Ö
	0		660	0	-10	=:	21	=:	= =	: =	=:	: ::	11	Ξ:	= =	1 =	-	=:	= :	==	=	==	: =	= :	==	=:	==	= =	: =	= :	: =	=	Ξ:	==	= :	==	=	=
H		NUS	4 40 a	96	9E-	101	96	25	0.00	16.	CET	5 C	ZE-	- L	1 U	1 1	2E-	2	1 I	0 0 0	16-	4 5	1 I	-11	75.	75-	75	36-	- H	75.	3 1 1	96	300	2 E	76-	7.E-	190	ا 0
TABLE	AL	UM I MO	246E	5	97	613	9 6	5	9 6	23	200	9 20	39	39	9		35	93		2 6	.27	52		87.	12	000	90	9	93	5	33	80	14	7.7	89.	6.00	90	9
TA	INTERVALS	•	4 4	10	- 0	m (4 4	7	- 6		7	7	~	7	7	1	~~	-2	2 -	? ?	-2	-2	` ~	7	- `	~	??	-2	-	7	7	7	7.	77	7		7	7
	Z	S	977	·	77	7	77	-	77		7 7	7	7	7	-	77	7	7	7	7	7	7 -	7 7	7	7 7	7.	77	77	7	7	77	7	7.	77	7	77	7	<u> </u>
	ETA	JPLU	986	97	346	82	50	73	20-	146	02E	5.5	388	110	200	000	96	3	121	200	86	395	7	68	227	21	000	40	7	516	200	6.5	08	700	6.0	000	9.0	821
	w	7	3.5		3.5	7-4-5			Š	5.0	2.0	•	4.9	5	*				•	4	4	3		4		4				3.8		3.6	3.6		3.4	E 4	m	3.3
			-03	-20	- - - - -	-20	-20	-20	000	-20	07-	1,7	-20	-20	- 60	- 20	07-	-20	7 6			-20	- 20	-10	07-	- 20	- 20	120	-20	-20	200	-80	500	200	- PC	500	-60	3 1-
	186	NUS	14E-	יוח ד ו		2E-	7 10	-H-	38-	- E	1 U	ינונים מענונים מס	ė.	36-	26-	7 T T T	190	-36	20.0	7 17 17	ZE-	36	1 H	- 39	- 12 - 12	100	76-	30.0	5.5	35.	- L	- J	- J.	0.00	Ę.	- u	ģ.	0.6
	0.39	SMINU																																				
		٠,	ONE																																			
		S	-39	P	00	0	۲	0	30	9	0		9	0	0 0	0	0	5	0	9 0	٦	9	20	0	9	-06	Õ	0	9	0	Ö	ò	0	00	0	0	ō	33
	7	P.L.U	53E		26	0	25	5	12	6.2	50	<u> </u>	7	63	5	1 0		6 7	200	3 4	73	24	03	7	3 5	8	54	20	38	83	2 5	4	63	\$? -	86	50	24	CO
	DEL TA	V	0.04		4 M	6	ייי יייי	0	2.9		~	2.5	5		e v				•			•		•			* E			•			•				er-	•
	OE	s	600	4	4 4	4	* *	40	2 2	4	*	5 6	4	4	* 6	4 4	4	50	4 6	* *	4	4:	င်္ခ	č	4 6	50		*	4	*	4 4	3	7	M. K.	33	e e	32	68
		ş	u m u	u u	មា ដ	1 12 1 1	u ei	113		טי ע	900	u tu	w	w ı	·		J 121	511	111	u n	1 (1)	121 1	1.5	LL!	u u	* * 1.3 *	u tu	121 E	u u	• 11	u n	J (1)	ш.	u e	ı	ш н		141
	00	Ĩ	1.83	3.2	5.	5	2 -	7	-	7	7		-	-		5	2		70.7	•	4	4.	-	3	0	0	* ~		0	.5		· ~	?	- 3	~	-	1.71	0.0
	100.00																																					
	10	⋖	E-39	0 - 0	0 - 0 0 - 0	5	9 0	2	0.0	1 1	?		5-3	0-11	1	1 1	100	6-3	0 0	1 1	0-1	?	2 O	0	9 Q	2	0 O	0) C	0-1	1 1	0 -	0-5	0 0	0-1	E-0	1.1	0-
	11	<u></u>	35E-	3.5	380	43	37	1	34	25	0.5	9 5	0	41	4 .	7 6	39	05	- 1	+ -	3	7:	5 7	3.5	25		500	30	2 5	75	3 1	20	30	200	9	4 5	08	8

		, VE 14	706.2	TX TATE	TABLE II	MACH 1	NUMBER 10	(Contd	<u>-</u>						(3)
ETA	NFINUS	רי ש	2	, 3	Š	PHIETA	114	?	*PLUS	0 PLUS	INIW J	S.S.	DTPLUS • SY/S	SYYS .	٠,
		0000	0000	7136.6		7 4 6 4	-0 400	300		acc		1 00	200		0
8-35E-04-2	45E 07	7.976E-04	4.136E-06	7.4808	7-4565-06 3	3.661E 0	1	9	1.12E 03	7.05E	03 2.16E	06 1.		2.295	63
+755-03	€4.	.170E-03	.449E-0	4.8356-06	808	604E	-358-2-1	2071	360°	2.01E	9.22	05 1.	191 0	2.315	50
-76E-03	ul 9	4 3E-03	245E-0	3.197E-06	ŏ 0	424E	1-7-481-	234	202	3.82E	2000	65.0	32.5	2007	n e
105-03	100	420E03	63,5-0	1.1546-06		315E	1-6.581-	05:00	7.E	9.61	2.93	05-1.	23E C	2,606	03
455-03	.205	.393E-03	959€-0	4.367E-07	3. 86	1916	1-6-24:-	.13. 0	346	1.70£	2.35	05-4.	SAE C	2.77	63
+94E-03	364°	.344E-03	-386Z.	1.395E-C7-	1.97	.058E	1-5-776-	.15E C	368	2 - 20E	1.97	C5-7	BUE	386.	63
+57E-03	701	-263E-03	- 680E-0	6.024E-07-	5.682	9156	1-5.29:-	0 .61	124	2.39E	1.70	0.5-1.	300	3.735	ر د د د
3402	2 7 T	1466-03	6196-0	1.256E-06-	333	0.0	1-4-241-	0 0 0	435		1.36	05-1	SUEC	3. 57E	(e)
55-02	378.	.976E-03	214E-05	1.475E-C6-	1.56	446E	1-3.69	396	.92E	2.18E	1.23	05-1.	765 0	357.	5
195-02	390.	.0076-03	-9195-05	1.6395-06-	1.74	277E	1-3-12:-	.7.	345	2.016	1.1	05-1.	3 2 2 2	. 69	50
1061-02	.02:	4105-04	7445	1.757E-06-	989	1035	-366.7-1	47.	300	1 . 7 4 t	0.0	0.5-2	112	5.4.36	م, به ک د
.07E-02	716	1825-04	994F-05	1.905E-05-	.03	7446	1-1-378-	305	78-	1.516	8.37	04-2	416	5.715	E 0
*05E-05	. 32E	.518c-04	.438E-02	1.9458-06-	5.03	561E	1-7.91	500.	.245	395.	7.41	24-7	9 3 6 6	5. 136	en (
4416-02	146	-087E-04	117E	1.968E-06-		3775	- 77.7-1	0.0	. / 1c	1075	1 0 C	04-7) L	0.00°	7 5
315-02	2 -	1236-04 1236-04	5185-04	-97-55-109-	61.0	7.10	8.451	371	100	1 P 4 P	1.0	04-7	0 11 11 11 11 11 11 11 11 11 11 11 11 11	1) c
4825-02	348	584E-04	747E-04	1.9736-06-	2.140	421E	0 1.324-	.026	1,75	3.348	3.64	04-3	111	5.37¢	63
1395-02	546	-273E-04	-980€	1.9636-06-	2.131	.788E	91-1 0	Ç	.77E	356.7	2.79	04-3.	186 0	387 ·	0
+025-02	.745	.986E-04	-20%E-04	1.949E-06-	. 116	-279E	2.138-	2010		1.146	2.02	04-3	L .	326	٠ د د
701/*	100	.521E-04	1004 m	1.9325-00-	0.00	7416	7.764-	<u>ء</u> د) C	3 - 4 C E	7.81	03-3	, L	1115	\ *
315-02	73.5	.854E-04	10-3,49	1.895E-Co-	200	747E	2.89	0	.35£	5.21c	3.29	03-3	010	0.7	
23=-05	. 3 . E.	.547E-04	704E-04	1.8738-06-	2.00	408E	1 3.014-	S	.316	. 70E	-1.24	02-4	CCE	IE	ວ
.02E-01	3000	.258E-04	-0-3269·	1.851E-05-	1.97	1405	3.076-	25	7.615	197.	76.2-	03-4	ZUE O	12 to	0.00
26:-01	100	104E-04	o v	1.8038-06-	906	764E	3.046-	3 3	1.12E	3 Ot	5.1	03-4	, 0	9.00	n (1
1068	273	.478E-04	.35%E-0-	1.778E-06-	1.87	8916	-396-2	.211 62	1.600	3.176	-5.5	03-4	-	3.725	10
.54c-01	.10E	.246E-04	.18 E-04	.751E-06-	1.826	137E	2.84	.51 C C2	1.955	2.86E	5.62	03-5	\circ	****	
10-312	10 th 2 th	821F-04	824 T	1.697F-06-	77	839F	7.556-	20 300	1 4 4	100 C	5.12	03-5)	3.52E	0 0
0-360	.745	.527E-04	-5475-04	1.558E-06-	7.	634E	1 2.37	.27 C2	1.84E	3.0.2	4.75	03-5		5.105	60
10-505*	-60E	*446E-04	-46 E-04	1.6395-06-	1.71	.222E	2.196-	546 02	1.71	1.88°L	-4.34	03-6	-	309.5	03
10-320	3 m	80-104 0 F-04	1.1316-04-	1.510E-06-	649	0876	1.80	4.13F 02-	1.40E	1.52E	3.54	03-7	ار د	7.785	5 C
.10E-01	. 23E	.749E-05	-0-21500	1.5518-06-	19.1	463E	1 1.606-	.436 C2	1.24	1. 76E	-3.18	03-9	v	30 * · E	60
10-374	115	-404E-05	. 5406-03	1.5225-00-	1.589	8415	1 1.415-	.74c C2	26001	1.22	1-2.95	9-50	9	3116	0.3
1782-01	4 y D.	.166E-05	1246-0	1.4926-06-	5.56	- 2 34E	1 1.211-	22 352	9.32	1000	1-2,54	03-1	\circ	1000	
39E-01	- 17E	.398E-05	-074E-05	1.437E-06-	504	.072E	1 8.325-	59: 65	4.0	3.916	70-7-0	03	2 2	1.226	1 4
.06E-01	.7cë	.361E-05	.1295-0	1.4116-06-	1.47	.505E	. 6.540-	.735 02	5.56E 0	-8.C6E	0-1.87	63-1.	336.0	1.375	77
-38c	. 81E	-220E-05	-278E-0	1.3886-	1.45	9346	4.87E-	. 72° C	4.43	-7.761	300	03-1-	100	1.56	40.
786-01	396.	.914E-05	851E-05	350E-0	1.41	760E	1 2.071-0	.250 02	2.35E C	-6.09E	14-1-0	0.5	ני ניים	. ~	* •
4486-01	.04E	-240E-05	.277E-0	336E-0	1.4C6E-05-	172E	1 1.06 0	20 :19.	1.465 0	-5.795	0-1.34	03-2.	1	2	C.
.24E-01	101	.473E-06	.69-E-0	26E-0	976-0	6.240E	3.87	25	7.095-	-5. 12E	-	3-4.	40 aco	(• • • • • • • • • • • • • • • • • • •	4)
100000	636-	-134E-00	10	21	100	0.000	00.0	30	00.00	1.006		-	0 11 0 0 1 1 0 0 1 1 1 1 1 1 1 1 1 1 1	000	: X
0 100	,	1000) 1						•		100		

(3)	
(Contd)	
10	
NUMBER 10	

		S	6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	ျာလ္က
		Y VS	でんせょう かいしょうりょう ちょうしょう 日本 こうしょう こうしゅう しょうしょう かんしょう かんしょう かんしょう かんしょう かんしょう かんしょう かんしょう かんしょう ちょうしょう ちょうしょう ちょうしょう しょうしょう しょうしょう しょうしょう しょうしょう しゅうしょう しゅうしょう しゅうしょう しゅうしょう しゅうしょう しゅうしょう しゅうしょう しょうしょう しゅうしょう しゅうしゅう しょう しゅうしゅう しゅうりゅう しゅうしゅう しゅうりゅう しゅうりゅう しゅうりゅう しゅうりゅう しゅう しゅう しゅうりゅう しゅう しゅうりゅう しゅうりゅう しゅうりゅう しゅうりゅう しゅうりゅう しゅう しゅう しゅう しゅう しゅうりゅう しゅうりゅう しゅうりゅう しゅう しゅうりゅう しゅう しゅうりゅう しゅうりゅう しゅう しゅうりゅう しゅう しゅう しゅう しゅう しゅう しゅう しゅう しゅう しゅう し	900
			#NANANANANANANANANANANANANANANANANANANA	45 E
		S		I I I I I I I I I I I I I I I I I I I
		OTPLUS +SY/S	などのできょう しょうしゅう しょうしゅく オライ・エル はっちょうりゅう マック・ストラー しょうしょう しゅうしゅう しゅうしゅう しゅうしゅう しゅうしゅう	000
		₽		4 ~ -
		u		36
		MINC SY/S		فيد في فت
		ΞŞ	- ひらきろまちょけひりをひきんできんけるおろうちょうきょうてきょうきょうしょうりょう	
		۵ *		15.1
		s s	##0126003000000000000000000000000000000000	000
		35		் ம ம
		0 P		P N O
			ニュース ごうかん ちゅうしゅ しょうし しょうこう ごうこう ニュー・ニー・ニー・ニー・ニー・ニー・ニー・ニー・ニー・ニー・ニー・ニー・ニー・ニー	777
				999
		KPLUS ¢₽HlY		ுள்ள்
$\overline{}$	1	X *	Funt wo min we am in more whose and with a contraction of the contract	- T O
td			10.00 1.2.548 1.0.548	2-1-2
(Cont			m0000000000000000000000000000000000000	000
ũ		>	コ らうごう 自自 自由 ちょうかい ちょういい ちょうり アロック とうしょう こうりゅう ちゅうりゅう くんからく そくとく アムヤー ほんてき といく からく からく するく しょく しょく しょく かんしょく りょく しょく しょく しょく しょく しょく しょく しょく しょく しょく し	2E 2E 2
0				
7				2 6
æ				1 1 1
NUMBER		H	$\frac{1}{2} \frac{1}{2} \frac{1}$	9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
M		_		
Z				-20
		TA		0.3 %
H		m.		0 4 0 N W O
MACH	_	<u>₹</u>	<u>oraquintrumantrumanoramantanoramitano</u>	NOC
Σ	400			5-1
H	H	S	- B O O O O O C O O O O O O O O O O O O O	000
	63	INC		83E
TABLE	INTERVAL	Ξ.	- 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	25.30
AE	ar ar		◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇	6-6 6-6
H	Ä		00000000000000000000000000000000000000	ခိုင်ခို
	4	เบร	1001 1001	36.6
	14	3	しきよりらく ちょしょ ちゅうしゅう しゅうしょう しゅうしょう しゅうしょ とっしょうしょう しょくりょう しょくりょう しょうしょう しゅうしょう しゅうしゅう しゅう	247
				9 9
				32.0
	62	O.S	សំណើលបំណើជាប់ ជាជាប្រជាជាប្រជាជាប្រជាជាប្រជាជាប់ ជាប់ ជាប្រជាជាប់ ជាប្រជាជាប់ ជាប់ ជាប់ ជាប់ ជាប់ ជាប់ ជាប់ ជាប	யய்ய
	.796	7	りょうりょう というしょく しょくしょく というしょく というしょく というしょく りょうしょく しょくしょく しょくしょく しょく しょく しょく しょく しょく しょ	M ~ 0
	o	ź	O O O O O O O O O O O O O O O O O O O	
			#0000000000000000000000000000000000000	
	Ħ	Sn	т месе и	1 1 1
	7	7	THE COMMIND AND A POUR OF THE CANCENCE CONTRICTION AND A CONTRICTI	7 2 0 0 0 0 0
	IA	S	- C-4 C-4 C-4 C-4 C-4 C-4 C-4 C-4 C-4 C-	v.v.c.
	DELTA		O W D O R W W W 4 4 4 4 4 W W W W W W W W W W W	
	٦	S		. [
		J.	######################################	முற்ற
	0	2	_ , , , . , , . ,	
	00.0			
	5		#\$6699999999999999999999999999999999999	900
	li .	ETA	######################################	24 E
	" ×) (I	Ox=/~~/or=================================	3.6