

IATEX-Vorlage für diverse Ausarbeitungen .. oder so ähnlich

Programmentwurf

der Vorlesung "Advanced Software Engineering"

an der

Dualen Hochschule Baden-Württemberg Karlsruhe

von

Max Mustermann

Abgabedatum 1. April 2090

Matrikelnummer Kurs Bearbeitungszeitrum Gutachter der Studienakademie

4711 tinf17b3 5. & 6. Semester Mirko Dostmann

Inhaltsverzeichnis

In	nhaltsverzeichnis			
\mathbf{A}	Abbildungsverzeichnis Codeverzeichnis			
C				
\mathbf{A}	kürzungsverzeichnis	v		
1	Domain Driven Design	1		
	1.1 Analyse der Ubiquitous Language	1 1		
2	Clean Architecture 2.1 Schichtenarchitektur	2 2		
3	Programming Principles	3		
	3.1 SOLID 3.2 GRASP (insb. Kopplung/Kohäsion) 3.3 DRY	3 3 3		
4	Refactoring 4.1 Identifizieren von Codesmells	4		
5	Entwurfsmuster	5		
	5.1 Begründung des Einsatzes			
	5.2 Unified Modeling Language (UML) Vorher			
	5.3 UML Nachher			
\mathbf{A}	Anhang	Ι		
	A.1 Löwenmann	Ι		
	A.2 SQL Snippet	II		

Abbildungsverzeichnis

Liste der Algorithmen

Abkürzungsverzeichnis

\mathbf{UML}	Unified Modeling Language	i
----------------	---------------------------	---

1. Domain Driven Design

- 1.1 Analyse der Ubiquitous Language
- 1.2 Analyse und Begründung der verwendeten Muster
- 1.2.1 Analyse
- 1.2.2 Begründung

2. Clean Architecture

- 2.1 Schichtenarchitektur
- 2.1.1 Planung
- 2.1.2 Entscheidung anhand von Kriterien

3. Programming Principles

- 3.1 SOLID
- 3.1.1 Analyse
- 3.1.2 Begründung
- 3.2 GRASP (insb. Kopplung/Kohäsion)
- 3.2.1 Analyse
- 3.2.2 Begründung
- 3.3 DRY
- 3.3.1 Analyse
- 3.3.2 Begründung

4. Refactoring

4.1 Identifizieren von Codesmells

4.1.1 Code Smell 1

Begründung

 \mathbf{Fix}

4.1.2 Code Smell 2

Begründung

 \mathbf{Fix}

5. Entwurfsmuster

- 5.1 Begründung des Einsatzes
- 5.2 UML Vorher
- 5.3 UML Nachher

A. Anhang

A.1 Löwenmann

Abbildung A.1: Löwe

A.2 SQL Snippet

```
1
2
     – Die Tabellengößen aus der Postgre_size Tabelle abfragen,
3
   SELECT
4
      relname \ as \ "Table" \, ,
5
       {\tt pg\_size\_pretty} \, (\, {\tt pg\_total\_relation\_size} \, (\, {\tt relid} \, ) ) \  \, {\tt As} \  \, "\, {\tt Size} \, " \, ,
6
       pg_size_pretty(pg_total_relation_size(relid) - pg_relation_size(relid)) as "
       External Size"
   FROM pg_catalog.pg_statio_user_tables as cat
8
    -, wenn der Name der Tabelle in dieser Liste steht
    where cat.relname LIKE any('{a,
10
                                by,
11
                                с,
^{12}
                                d}'::text[])
13
   ORDER by pg_total_relation_size(relid) desc ;
14
15
     16
```

Algorithmus A.1: SQL - Snippet