Support Vector Machine

Il-Chul Moon
Dept. of Industrial and Systems Engineering
KAIST

icmoon@kaist.ac.kr

Weekly Objectives

- Learn the support vector machine classifier
 - Understand the maximum margin idea of the SVM
 - Understand the formulation of the optimization problem
- Learn the soft-margin and penalization
 - Know how to add the penalization term
 - Understand the difference between the log-loss and the hinge-loss
- Learn the kernel trick
 - Understand the primal problem and the dual problem of SVM
 - Know the types of kernels
 - Understand how to apply the kernel trick to SVM and logistic regression

SUPPORT VECTOR MACHINE

Detour: Decision Boundary

• $f^*(x) = argmax_{Y=y}P(Y=y|X=x)$ = $argmax_{Y=y}P(X=x|Y=y)P(Y=y)$

What-if Gaussian class conditional density?

•
$$P(X=x;\mu,\sigma) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$

$$P(X=x|Y=y)P(Y=y)$$

KAIST

Detour: Decision Boundary in Two Dimension

$$P(X = x; \mu, \sigma) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{(x - \mu)^2}{2\sigma^2}\right)$$

$$f^*(x) = argmax_{Y=y}P(Y = y|X = x)$$

= $argmax_{Y=y}P(X = x|Y = y)P(Y = y)$

- Two multivariate normal distribution for the class conditional densities
- Decision boundary
 - A linear line
- Linear decision boundary
- Any problem in the real world applications?
 - Observing the combination of x₁ and x₂

$$P(X = (x_1, x_2)|Y = y) = \frac{1}{\sqrt{2\pi|\Sigma_y|}} \exp(-\frac{(x - \mu_y)\Sigma_y^{-1}(x - \mu_y)'}{2})$$

Decision Boundary without Prob.

- Which is a better decision boundary?
 - Without considering the probability distribution?
- Which points are at the front line?

Decision Boundary with Margin

- Decision boundary with maximum margin
 - Between the points close to the boundary
 - How many points?
- Decision boundary line
 - $\mathbf{w} \cdot \mathbf{x} + b = 0$
 - Positive case

•
$$\mathbf{w} \cdot \mathbf{x} + b > 0$$

- Negative case
 - $\mathbf{w} \cdot \mathbf{x} + b < 0$
- Confidence level
 - $(\mathbf{w} \cdot \mathbf{x}_j + b) y_j$
- Margin?
 - Perpendicular distance from the closest point to the decision boundary

How many parameters?

Margin Distance

- Let's say
 - $f(\mathbf{x}) = \mathbf{w} \cdot \mathbf{x} + b$
 - A point x on the boundary has

•
$$f(\mathbf{x}) = \mathbf{w} \cdot \mathbf{x} + b = 0$$

A positive point x has

- we are going to measure the distance
 - between an arbitrary point x and a point x_p on the boundary and on the perpendicular line from x to the boundary

•
$$x = x_p + r \frac{w}{||w||}$$
, $f(x_p) = 0$
• $f(x) = w \cdot x + b = w \left(x_p + r \frac{w}{||w||} \right) + b = w \left(x_p + r \frac{w \cdot w}{||w||} = r ||w|| \right)$

• The distance is
$$r = \frac{f(x)}{||w||}$$

Maximizing the Margin

- Good decision boundary?
 - Maximum margin!

•
$$r = \frac{a}{||w||}$$

- Need to consider the both side
- Optimization problem?

•
$$max_{w,b}2r = \frac{2a}{||w||}$$

 $s.t.(wx_j + b)y_j \ge a, \forall j$

- *a* is an arbitrary number and can be normalized
 - $min_{w,b}||w||$ $s.t.(wx_j + b)y_j \ge 1, \forall j$

This becomes a quadratic optimization problem. Why?

Support Vector Machine with Hard Margin

- Support Vector Machine (SVM)
 - Constructs a set of hyperplanes to have the largest distance to the nearest training data point of any class.
- Hard margin
 - No error cases are allowed
 - What If there is an error case?
- Let's implement the hard margin SVM
 - $min_{w,b}||w||$ $s.t.(wx_j + b)y_j \ge 1, \forall j$

