Giải bài tập Tổ hợp và Lý thuyết đồ thị

1 Bài toán 1: Biểu đồ Ferrers và hoán vị

1.1 Đề bài

Nhập $n, k \in \mathbb{N}$. Viết chương trình C/C++, Python để in ra $p_k(n)$ biểu đồ Ferrers F và biểu đồ Ferrers chuyển vị F^T cho mỗi phân hoạch $\lambda = (\lambda_1, \lambda_2, \dots, \lambda_k) \in (\mathbb{N}^*)^k$ có đúng dạng các đầu chấm được biểu diễn bởi dấu *.

1.2 Lý thuyết

- Phân hoạch của số n
 với k phần: Là cách viết $n = \lambda_1 + \lambda_2 + \cdots + \lambda_k$ với $\lambda_1 \ge \lambda_2 \ge \cdots \ge \lambda_k > 0$.
- Biểu đồ Ferrers: Biểu diễn phân hoạch bằng các hàng chấm, hàng thứ i có λ_i chấm.
- Biểu đồ Ferrers chuyển vị: Hoán đổi hàng và cột của biểu đồ Ferrers gốc.

1.3 Giải pháp

Để sinh tất cả phân hoạch của n với đúng k phần, ta sử dụng thuật toán quay lui:

Algorithm 1 Sinh phân hoạch với k phần

```
Require: n, k, current partition, current sum, last value
 1: if current partition.size() = k then
      if current sum = n then
        In biểu đồ Ferrers và chuyển vị
 3:
 4:
      end if
      return
 6: end if
 7: for i = 1 to min(last value, n – current sum) do
      Thêm i vào partition
 8:
 9:
      Gọi đệ quy với current sum +i, i
      Loại bỏ i khỏi partition
10:
11: end for
```

2 Bài toán 2: Đếm phân hoạch lớn nhất

2.1 Đề bài

Nhập $n, k \in \mathbb{N}$. Đếm số phân hoạch của n sao cho phần tử lớn nhất là k. So sánh $p_k(n)$ và $p_{\max}(n, k)$.

2.2 Lý thuyết

- $p_k(n)$: Số phân hoạch của n với đúng k phần
- $p_{\text{max}}(n,k)$: Số phân hoạch của n với phần tử lớn nhất là k

2.3 Công thức

Để tính $p_{\max}(n,k)$, ta cần đếm số phân hoạch của n có chứa ít nhất một phần bằng k và không có phần nào lớn hơn k.

$$p_{\text{max}}(n,k) = \text{Số phân hoạch của } n \text{ với các phần } \leq k$$
 (1)

$$-$$
 Số phân hoạch của n với các phần $\leq k-1$ (2)

3 Bài toán 3: Số phân hoạch tự liên hợp

3.1 Đề bài

Nhập $n, k \in \mathbb{N}$.

- (a) Đếm số phân hoạch tự liên hợp của n có k phần, ký hiệu $p_k^{\rm self}(n)$.
- (b) Đếm số phân hoạch của n có lẻ phần, so sánh với $p_k^{\text{self}}(n)$.
- (c) Thiết lập công thức truy hồi cho $p_k^{\text{self}}(n)$.

3.2 Lý thuyết

Phân hoạch tự liên hợp: Là phân hoạch mà biểu đồ Ferrers của nó trùng với biểu đồ Ferrers chuyển vị. Điều này xảy ra khi và chỉ khi phân hoạch có dạng đối xứng.

3.3 Tính chất

Số phân hoạch tự liên hợp của n bằng số phân hoạch của n chỉ gồm các phần lẻ.

3.4 Công thức truy hồi

Gọi q(n,k) là số phân hoạch tự liên hợp của n với phần lớn nhất là k:

$$q(n,k) = \begin{cases} 1 & \text{n\'eu } n = k \\ 0 & \text{n\'eu } n < k \\ q(n-k,k) + q(n,k-2) & \text{n\'eu } n > k \text{ và } k \text{ l\'e} \\ q(n,k-1) & \text{n\'eu } k \text{ ch\'an} \end{cases}$$
(3)

4 Thuật toán Implementation

4.1 Bài 1: Sinh biểu đồ Ferrers

```
Algorithm 2 In biểu đồ Ferrers
Require: partition \lambda = (\lambda_1, \lambda_2, \dots, \lambda_k)
 1: Biểu đồ gốc:
 2: for i = 1 to k do
       for j = 1 to \lambda_i do
          In "*"
 4:
 5:
       end for
 6:
 7: end for
 8: Biểu đồ chuyển vi:
 9: \max_{\text{col}} = \lambda_1
10: for j = 1 to max col do
       for i = 1 to k do
11:
          if j \leq \lambda_i then
12:
            In "*"
13:
          end if
14:
       end for
15:
16:
17: end for
```

4.2 Bài 2: Đếm phân hoạch với $\max = k$

Sử dụng quy hoạch động với bảng dp[n][k] để lưu số phân hoạch của n với các phần không vượt quá k.

4.3 Bài 3: Phân hoạch tự liên hợp

Sử dụng định lý Euler về phân hoạch với các phần lẻ và phân hoạch tự liên hợp.