Xarxes de Computadors

Tema 4 – Redes de área local (LAN)

Temario

- ▶ 1) Introducción
- > 2) Redes IP
- ▶ 3) Protocolos UDP y TCP
- ▶ 4) Redes de área local (LAN)
- > 5) Protocolos del nivel aplicación

Tema 4 – Redes LAN

- a) Introducción
- b) Arquitectura
- c) Acceso al medio compartido
- ▶ d) Ethernet
- e) Ethernet conmutada
- ▶ f) Virtual LAN
- ▶ g) WiFi

Tema 4 – Redes LAN

- a) Introducción
- b) Arquitectura
- c) Acceso al medio compartido
- ▶ d) Ethernet
- e) Ethernet conmutada
- ▶ f) Virtual LAN
- ▶ g) WiFi

Tema 4 – Introducción

- Los mecanismos y protocolos que permiten transmitir y recibir tramas
- Como se conectan los dispositivos

Tema 4 – Introducción

- Estas "nubes" pueden ser
 - Redes de área local (Local Area Network, LAN)
 - Redes de área extendida (Wide Area Network, WAN)
 - (Redes de área metropolitana (Metro Area Network, MAN))
- Según el alcance de las nubes, el número de dispositivos conectados y la tecnología empleada
- En esta asignatura solo trataremos las LAN

Tema 4 - Redes LAN

- a) Introducción
- **b)** Arquitectura
- c) Acceso al medio compartido
- ▶ d) Ethernet
- e) Ethernet conmutada
- ▶ f) Virtual LAN
- ▶ g) WiFi

Tema 4 – Arquitectura

▶ LLC (IEEE 802.2)

- Subcapa común a todos los estándares MAC
- Se usa como interfaz entre el protocolo de red superior y los diferentes MAC que se pueden encontrar por debajo

▶ MAC (IEEE 802.x)

- Se han creado diferentes tecnologías LAN con diferentes protocolos
- Esta capa especifica los detalles de la tecnología empleada

Tema 4 – Arquitectura

CRC Trama MAC Cabecera MAC

Tema 4 - Redes LAN

- a) Introducción
- b) Arquitectura
- c) Acceso al medio compartido
- ▶ d) Ethernet
- e) Ethernet conmutada
- ▶ f) Virtual LAN
- ▶ g) WiFi

Una LAN es una red de acceso múltiple en un medio compartido

Características

- Las estaciones están conectadas a un medio de transmisión común que no permite más de una transmisión a la vez
- Si una estación transmite una trama, todas las otras reciben, pero solo <u>una</u> se queda con la trama (las otras la descartan)
 - La dirección MAC destino define la estación que debe recibir la trama
 - Si la transmisión es en broadcast, todas las estaciones se quedan con la trama
- Si dos o mas estaciones transmiten a la vez, se crea una colisión (dos tramas se solapan y no se pueden leer correctamente)

 Para regular el acceso al medio compartido se define un protocolo llamado protocolo MAC (Medium Access Control)

- Si el medio compartido es un medio físico (cable)
 - LAN, wired LAN o LAN cableada
- Si el medio compartido es el espacio libre
 - WLAN, wireless LAN o LAN inalámbrica

Tema 4 – Topologías cableadas

Estructura de interconexión de las estaciones

Topología bus

- Una señal transmitida se propaga por todo el bus
- La señal termina al final del bus
- Ejemplo: Ethernet con cable coaxial

Topología Anillo

- Una señal transmitida da la vuelta a todo el anillo
- Dos posibilidades
 - El origen elimina la señal después de todo una vuelta
 - El destino elimina la señal
- Ejemplos: Token-ring (años 80), FDDI (años 90), RPR (años 2000)

Tema 4 – Topologías cableadas

Estructura de interconexión de las estaciones

Topología estrella

- Un hub conecta las estaciones
- Lo que recibe por una interfaz, un hub lo retransmite sin cambios por todas las otras interfaces
- Ejemplo: Ethernet (con par trenzado)
- El mas usado hoy en día

Tema 4 – Topologías inalámbricas

Estructura de interconexión de las estaciones

Topología ad-hoc

- Una señal transmitida se propaga en todo el entorno del origen
- La potencia de la señal se reduce con la distancia definiendo hasta donde se propaga (cobertura)
- Todas las estaciones reciben la señal, una sola se queda con la trama

Topología estrella

- Como antes, una señal transmitida se propaga en todo el entorno del origen y su potencia se reduce con la distancia
- Solo el punto de acceso (AP) se queda con la trama
- El AP retransmite la señal que finalmente recibe el destino
- Es el equivalente inalámbrico de la topología estrella cableada donde el AP sustituye el hub

Tema 4 – Protocolos MAC

Dos tipos de protocolo MAC

- Acceso centralizado
 - Una estación u otro dispositivo regulan el acceso de cada estación

Acceso distribuido

Cada estación decide por su cuenta según alguna regla o mecanismo

Estático
Paso de testigo
Aleatorio
Acepta que pueda haber un cierto número de colisiones
Ethernet y Wifi usan este tipo de protocolo

Tema 4 - Redes LAN

- a) Introducción
- b) Arquitectura
- c) Acceso al medio compartido
- **d) Ethernet**
- e) Ethernet conmutada
- ▶ f) Virtual LAN
- ▶ g) WiFi

Tema 4 – Ethernet

- Mitad de los '70 (empresa Xerox)
- Estándar IEEE 802.3 (1983)
- Usa el protocolo MAC llamado CSMA/CD
 - Carrier Sense Multiple Access with Collision Detection
 - Acceso múltiplo por escucha de portadora con detección de colisión
- Es un protocolo MAC de tipo distribuido y aleatorio
- Se usa con topologías bus y estrella

Tema 4 – Ethernet

Los estándares Ethernet IEEE 802.3

 $\overset{\text{Velocidad de}}{\text{transmisión}} \longleftarrow X \text{ base } Y \longrightarrow$

Varios significados

- Distancia máxima
- Topología
- Tipo de transmisor
- Etc.

Algunos ejemplos

•	10base5	10 Mbit/s	500 m
	10baseT	10 Mbit/s	Topología estrella
•	100baseTX	100 Mbit/s	Topología estrella, full duplex
•	1000baseLX	1000 Mbit/s	Fibra óptica, laser
•	10GbaseCX4	10 Gbit/s	Infiniband

CSMA

- Antes de transmitir, cada estación escucha el medio para detectar si otra estación está transmitiendo
 - > Si el medio está ocupado para otra estación, espera que se libere
 - Si el medio está libre, transmite

CD

- Durante su transmisión, la estación sigue escuchando el medio para ver si otra estación ha empezado a transmitir al mismo tiempo creando una colisión
 - Si no se detecta, la trama habrá llegado al destino sin errores
 - Si se detecta otra transmisión, se para de transmitir y se espera un <u>tiempo</u> aleatorio llamado backoff antes de volver a transmitir la misma trama
 - Ya que la otra estación también habrá detectado la misma colisión y esperará un tiempo aleatorio, cuando esta probará a retransmitir su trama, habrá pasado un tiempo diferente respecto a la primera estación

- Se consigue que el acceso al medio compartido sea justo
 - Es decir cada estación tiene la misma probabilidad de transmitir que cualquier otra

• Si A y B quieren transmitir a D al mismo tiempo, cada una, en media, transmitirá una trama de cada dos

- Se consigue que el acceso al medio compartido sea justo
 - Es decir cada estación tiene la misma probabilidad de transmitir que cualquier otra

10 Mbit/s cada una

- Se consigue que el acceso al medio compartido sea justo
 - Es decir cada estación tiene la misma probabilidad de transmitir que cualquier otra

• Si A y B quieren transmitir a D al mismo tiempo, cada una, en media, transmitirá una trama de cada dos

Ejemplo numérico

- Suponer que es una Ethernet 10 base T, es decir cada estación puede transmitir o recibir a 10 Mbit/s
- En este ejemplo, A y B intentarían transmitir al máximo, es decir a 10 Mbit/s cada una
- Pero claramente no pueden ya que llegarían 20 Mbit/s a D

- Se consigue que el acceso al medio compartido sea justo
 - Es decir cada estación tiene la misma probabilidad de transmitir que cualquier otra

- En este ejemplo, A y B intentarían transmitir al máximo, es decir a 10 Mbit/s cada una
- Pero claramente no pueden ya que llegarían 20 Mbit/s a D

- Se consigue que el acceso al medio compartido sea justo
 - Es decir cada estación tiene la misma probabilidad de transmitir que cualquier otra

Si A y B quieren transmitir a D al mismo tiempo, cada una, en media, transmitirá una trama de cada dos

- Ejemplo numérico
- Suponer que es una Ethernet 10 base T, es decir cada estación puede transmitir o recibir a 10 Mbit/s
- En este ejemplo, A y B intentarían transmitir al máximo, es decir a 10 Mbit/s cada una
- Pero claramente no pueden ya que llegarían 20 Mbit/s a D
- El CSMA/CD consigue regular este acceso y realmente cada estación encuentra el medio libre solo I vez de cada 2 intentos

- Se consigue que el acceso al medio compartido sea justo
 - Es decir cada estación tiene la misma probabilidad de transmitir que cualquier otra

Si A y B quieren transmitir a D al mismo tiempo, cada una, en media, transmitirá una trama de cada dos

Ejemplo numérico

- Suponer que es una Ethernet I 0 base T, es decir cada estación puede transmitir o recibir a 10 Mbit/s
- En este ejemplo, A y B intentarían transmitir al máximo, es decir a 10 Mbit/s cada una
- Pero claramente no pueden ya que llegarían 20 Mbit/s a D
- El CSMA/CD consigue regular este acceso y realmente cada estación encuentra el medio libre solo I vez de cada 2 intentos

Cada estación entonces irá en media a la mitad, 5 Mbit/s

- Se consigue que el acceso al medio compartido sea justo
 - Es decir cada estación tiene la misma probabilidad de transmitir que cualquier otra

 ¿Y si fuesen 3 estaciones las que transmitiesen al mismo tiempo?

- Este protocolo pero no es perfecto, cosa que hace que su eficiencia no sea realmente del 100%
 - Cada colisión hace perder eficiencia: por el tiempo de reacción, por la retransmisión, los tiempos perdidos sin poder transmitir, etc.

- Si A y B quieren transmitir a D al mismo tiempo, cada una, en media, transmitirá una trama de cada dos
- Suponiendo una eficiencia del 70% en una 10 base T

- Este protocolo pero no es perfecto, cosa que hace que su eficiencia no sea realmente del 100%
 - Cada colisión hace perder eficiencia: por el tiempo de reacción, por la retransmisión, los tiempos perdidos sin poder transmitir, etc.

- Si A y B quieren transmitir a D al mismo tiempo, cada una, en media, transmitirá una trama de cada dos
- Suponiendo una eficiencia del 70% en una 10 base T
- → Eso implica que no se puede llegar a los 10 Mbit/s si 2 o más estaciones transmiten a la vez

- Este protocolo pero no es perfecto, cosa que hace que su eficiencia no sea realmente del 100%
 - Cada colisión hace perder eficiencia: por el tiempo de reacción, por la retransmisión, los tiempos perdidos sin poder transmitir, etc.

- Si A y B quieren transmitir a D al mismo tiempo, cada una, en media, transmitirá una trama de cada dos
- Suponiendo una eficiencia del 70% en una 10 base T
- → Eso implica que no se puede llegar a los 10 Mbit/s si 2 o más estaciones transmiten a la vez
- → Realmente D podrá recibir a un 70% de la capacidad del sistema, es decir a 7 Mbit/s

- Este protocolo pero no es perfecto, cosa que hace que su eficiencia no sea realmente del 100%
 - Cada colisión hace perder eficiencia: por el tiempo de reacción, por la retransmisión, los tiempos perdidos sin poder transmitir, etc.

- Si A y B quieren transmitir a D al mismo tiempo, cada una, en media, transmitirá una trama de cada dos
- Suponiendo una eficiencia del 70% en una 10 base T
- → Eso implica que no se puede llegar a los 10 Mbit/s si 2 o más estaciones transmiten a la vez
- → Realmente D podrá recibir a un 70% de la capacidad del sistema, es decir a 7 Mbit/s
- → Cada estación por lo tanto transmite en media a 3,5 Mbit/s

Tema 4 – Ethernet

Formato de una trama Ethernet

6 bytes	6 bytes	2 bytes	46-1500 bytes	4 bytes	_
MAC destino	MAC origen	Longitud	Payload	CRC	

MAC destino y MAC origen

Dirección MAC de 48 bits que identifica la tarjeta origen y destino de la trama

Longitud

Una trama puede ser de tamaño variable y aquí se indica su longitud

CRC

Control y detección de error en los bits parecido al checksum pero capaz de corregir algunos errores

Payload

- Paquete de nivel superior que se encapsula en una trama (típicamente datagrama IP)
- Tamaño mínimo: 46 bytes Tamaño máximo: 1500 bytes

Tema 4 - Redes LAN

- a) Introducción
- b) Arquitectura
- c) Acceso al medio compartido
- ▶ d) Ethernet
- e) Ethernet conmutada
- ▶ f) Virtual LAN
- ▶ g) WiFi

Tema 4 – Ethernet conmutada

- Las LANs vistas hasta ahora solo permiten una transmisión a la vez
- Si el número de estaciones crece, aumenta la probabilidad de tener una colisión y baja la eficiencia de la red ya que se está continuamente retransmitiendo tramas
- Solución
 - Usar un dispositivo que segmente el medio compartido en diferentes medios
 - → Este dispositivo es el conmutador (o switch)

▶ Sigue siendo una única red con un único netID ...

• ... pero se permiten tantas transmisiones a la vez cuantas interfaces del switch

- Para tener esta información, el switch implementa auto-aprendizaje
 - Es decir, cada vez que una estación (host o router) transmite una trama que llega a una interfaz del swith, el swith lee la dirección MAC origen
 - Esta dirección MAC indica que el que ha creado esta trama está conectado a esta interfaz, por lo tanto el switch pone esta entrada en la tabla
 - Estas entradas son dinámicas, es decir se van modificando en el tiempo según que Host está conectado a que interfaz y tienen un tiempo de vida

MAC origen: 00:CC:DD:12:34:56 MAC destino: 00:44:55:99:88:77	——— MAC ir		interfaz
11AC destillo. 00.44.55.77.68.77		00:CC:DD:12:34:56	4
00:CC:DD:12:34:56	4		

Problema

- Como se ha visto, se pueden usar topología diferentes con tecnología diferentes
- Estás pueden usar velocidades de transmisión diferentes, causando congestión en el switch y por lo tanto perdida de información

Solución

- El switch implementa un mecanismo llamado control de flujo
- Este mecanismo fuerza a las estaciones que están causando la congestión a ir mas lentas y lo hace de manera equitativa

¿Y si la eficiencia de la 100 base TX fuese 80%?

¿Y si la eficiencia de la 100 base TX fuese 80%?

Otra mejora de introducir un switch

Half Duplex

- Una estación puede o transmitir o recibir, nunca las dos cosas a la vez
- Si se transmite y recibe al mismo tiempo → colisión

Full Duplex

Una estación puede transmitir y recibir al mismo tiempo

 Una estación puede funcionar en Full Duplex solo y exclusivamente si es la única estación del dominio de colisión

 Una estación puede funcionar en Full Duplex solo y exclusivamente si es la única estación del dominio de colisión

¿Cuantos dominios de colisión hay?

 Una estación puede funcionar en Full Duplex solo y exclusivamente si es la única estación del dominio de colisión

¿Cuantos dominios de colisión hay? Un dominio por interfaz del switch \rightarrow 3

 Una estación puede funcionar en Full Duplex solo y exclusivamente si es la única estación del dominio de colisión

¿Cuantos dominios de colisión hay? Un dominio por interfaz del switch \rightarrow 3

¿Qué estación o estaciones funcionan en Full Duplex?

 Una estación puede funcionar en Full Duplex solo y exclusivamente si es la única estación del dominio de colisión

¿Cuantos dominios de colisión hay? Un dominio por interfaz del switch \rightarrow 3

¿Qué estación o estaciones funcionan en Full Duplex?

Tema 4 – Redes LAN

- a) Introducción
- b) Acceso al medio compartido
- c) Ethernet
- d) Ethernet conmutada
- e) Virtual LAN
- ▶ f) WiFi

- Permite configurar una LAN libremente, de manera que la configuración física no se corresponda a la que se quiere
- Se necesita un switch y un router

- Permite configurar una LAN libremente, de manera que la configuración física no se corresponda a la que se quiere
- Se necesita un switch y un router

- Estándar IEEE 802.1q (conocido también como dot1q)
- El router solo tiene un enlace y una interfaz, pero <u>virtualmente</u> es como si tuviera tantos enlaces e interfaces cuantas VLAN se crean
 - En el ejemplo hay 2 VLAN, entonces el router tiene 2 interfaces virtuales y dos enlaces virtuales
 - Este enlace del router se llama trunk
 - Es implica que hay que asignar 2 @IP al router, una por cada VLAN
- ▶ El switch se separa en tantos switches cuantas VLAN se crean
 - Para configurarlo, se asignan interfaces a las VLAN creadas
 - El switch mantiene una tabla con estas asignaciones

VLAN	interfaz
VLAN-I	1,4
VLAN-2	2, 3, 5
trunk	6

Ejemplo

Configuración física

Configuración deseada

Ejemplo

VLAN	interfaz
VLAN-I	1,3
VLAN-2	2, 4
trunk	5

Ejemplo

VLAN	interfaz
VLAN-I	1,3
VLAN-2	2, 4
trunk	5

¿Por donde pasan los datagramas si PCI transmite a PC2?

Configuración física

Configuración deseada

¿Por donde pasan los datagramas si PCI transmite a PC2?

Pertenecen a la misma red, van directo pasando por el switch

Configuración física

Configuración deseada

¿Por donde pasan los datagramas si PCI transmite a PC3?

Configuración física

Configuración deseada

¿Por donde pasan los datagramas si PCI transmite a PC3?

PCI y PC3 pertenecen a dos redes (VLAN) diferentes, hay que pasar por el router

Configuración física

Configuración deseada

Segundo ejemplo

Switch I

VLAN	interfaz
VLAN-I	4
VLAN-2	3
VLAN-3	2
trunk	1,5

Switch 2

VLAN	interfaz
VLAN-I	4
VLAN-2	3
VLAN-3	2
trunk	1

Tercer ejemplo

Configuración física

Configuración deseada

/LAN	interfaz
LAN-I	4
1 4 5 1 2	2

Switch I

VLAN-2 3 VLAN-3 2, 5 trunk I

Sv	vitch	2
JV	VILCI:	ıZ

VLAN	interfaz
VLAN-3	1, 2, 3, 4

Tema 4 – Redes LAN

- a) Introducción
- b) Acceso al medio compartido
- c) Ethernet
- d) Ethernet conmutada
- ▶ e) Virtual LAN
- ▶ f) WiFi

Tema 4 – Wireless LAN (WLAN)

Los estándares WLAN (WiFi)

•	802.11	Primera versión	I-2 Mbit/s	1997
•	802.11b	Comercial, WiFi	II Mbits/s	1999
•	802.11g	WiFi de alta velocidad	54 Mbit/s	2003
•	802.11n	Mayor velocidad	hasta 600 Mbit/s	2009
•	802.11ac		hasta I.3 Gbit/s	2013
•	802.11ax		hasta 10 Gbit/s	2019

▶ 802.11ay

...

- Las indicadas son las velocidades máximas. La velocidad real depende de varios factores como son las interferencias, la distancia, los obstáculos, número de estaciones, etc.
- Por ejemplo
 - ▶ El 802. I I b puede ir a I I Mbits, 5.5 Mbits/, 2 Mbits o I Mbit/s
 - ▶ El 802. I lg puede ir a 54, 48, 36, 24, 18, 12, 11, 9, 6, 5.5, 2 o 1 Mbit/s

Dos modos de operar

Ad-hoc

- Una señal transmitida se propaga en todo el entorno del origen
- La potencia de la señal se reduce con la distancia definiendo hasta donde se propaga
- Todas las estaciones reciben la señal, una sola se queda con la trama

Estrella o infraestructura

- Como antes, una señal transmitida se propaga en todo el entorno del origen y su potencia se reduce con la distancia
- Solo el punto de acceso (AP) se queda con la trama
- El AP retransmite la señal que finalmente recibe el destino
- Es el equivalente inalámbrico de la topología estrella cableada donde el AP sustituye el hub

Posibles extensiones modo infraestructura

Extended Service Set

- En los dos casos, sigue habiendo una única LAN
- Permiten crear una red inalámbrica más grandes

Wireless Distributed System

- ► En todos los casos, las estaciones y el AP deben crear un vinculo para establecer una WLAN
 - Cada WLAN se identifica con un Basis Service Set (BSS)
 - Un BSS tiene un nombre llamado Service Set Identifier (SSID) y un número de 48 bits llamado BSS Identifier (BSSID)

- El AP o una estación determinada en el modo ad-hoc envía tramas periódicas que contienen el SSID y el BSSID para anunciar su WLAN
- > Si una estación quiere pertenecer a la WLAN, debe asociarse a ella

De manera que cada estación pertenece a la WLAN que le toca aunque haya solapamiento de áreas

- Se usa un protocolo distribuido de tipo aleatorio
- Pero no se puede usar el mismo protocolo de Ethernet porque si una estación transmite, esta no puede escuchar el medio para detectar si una colisión
- Se usa el CSMA/CA
 - Carrier Sence Multiple Access with Collision Avoidance
 - Acceso múltiplo por escucha de portadora con prevención de colisiones

- ① Si una estación quiere transmitir, escucha el medio (si no transmite, si que puede detectar otra transmisión)
 - Si está ocupado va al punto (2)
 - Si está libre, espera un tiempo y transmite y va al punto (3)
- 2 Como el medio está ocupado, en este caso la estación genera un tiempo aleatorio (backoff) y vuelve al punto (1)
- ① Después de haber transmitido la trama enteramente, espera un tiempo (temporizador). Durante este tiempo
 - La estación espera que la estación destino le transmita una trama de vuelta que confirme que la trama se ha recibido correctamente
 - Si pasado este tiempo la estación no recibe esta trama de confirmación, se vuelve al punto (I) y intenta retransmitir la misma trama

- 1 Si una estación quiere transmitir, escucha el medio (si no transmite, si que puede detectar otra transmisión)
 - Si está ocupado va al punto (2)
 - Si está libre, espera un tiempo y transmite y va al punto (3)

- 1 Si una estación quiere transmitir, escucha el medio (si no transmite, si que puede detectar otra transmisión)
 - Si está ocupado va al punto (2)
 - Si está libre, espera un tiempo y transmite y va al punto (3)

- 3 Después de haber transmitido la trama enteramente, espera un tiempo (temporizador). Durante este tiempo
 - La estación espera que la estación destino le transmita una trama de vuelta que confirme que la trama se ha recibido correctamente
 - Si pasado este tiempo la estación no recibe esta trama de confirmación, se vuelve al punto (1) y intenta retransmitir la misma trama

- 1 Si una estación quiere transmitir, escucha el medio (si no transmite, si que puede detectar otra transmisión)
 - Si está ocupado va al punto (2)
 - Si está libre, espera un tiempo y transmite y va al punto (3)

Protocolo MAC de WLAN

2 Como el medio está ocupado, en este caso la estación genera un tiempo aleatorio (backoff) y vuelve al punto (1)

- 1 Si una estación quiere transmitir, escucha el medio (si no transmite, si que puede detectar otra transmisión)
 - Si está ocupado va al punto (2)
 - Si está libre, espera un tiempo y transmite y va al punto (3)

- 3 Después de haber transmitido la trama enteramente, espera un tiempo (temporizador). Durante este tiempo
 - La estación espera que la estación destino le transmita una trama de vuelta que confirme que la trama se ha recibido correctamente
 - Si pasado este tiempo la estación no recibe esta trama de confirmación, se vuelve al punto (1) y intenta retransmitir la misma trama

Formato de una trama

2 bytes	2 bytes	6 bytes	6 bytes	6 bytes	2 bytes	6 bytes	0-2312 bytes	4 bytes
Control de trama	Duración	MAC I	MAC 2	MAC 3	Control de secuencia	MAC 4	Payload	CRC

Control de trama

Indica el tipo de trama: datos, confirmaciones, RTS, CTS, etc.

Duración

Indica la duración de la trama (en microsegundos)

Control de secuencia

- Numera las tramas enviadas y permite fragmentar a nivel 2 (enlace)
 - Es mas fácil transmitir con éxito tramas pequeñas (menor probabilidad de colisión)
 - Un mecanismo actúa cuando el medio está muy ocupado y fragmenta las tramas en trozos más pequeños

Payload

Paquete de nivel superior que se encapsula en una trama (típicamente datagrama IP)

CRC

Control y detección de error en los bits capaz de corregir algunos errores

- Cuatro direcciones MAC
 - > Se usan según el modo

Cuatro direcciones MAC

Se usan según el modo

Modo ad-hoc

- MAC I: MAC de la estación destino
- MAC 2: MAC de la estación origen
- MAC 3: BSSID de la WLAN
- MAC 4: no se usa

En este ejemplo, se transmite de A a B

- MAC I: MAC de B
- MAC 2: MAC de A
- MAC 3: 56-AC-23-1F-C0-91

Cuatro direcciones MAC

Se usan según el modo

Modo infraestructura

- Hay dos pasos
- MAC 4: no se usa

Generalmente, en este modo, el BSSID es la MAC del AP

En este ejemplo, cuando A transmite al AP

- MAC I: MAC del AP
- MAC 2: MAC de A
- MAC 3: MAC de B

En este ejemplo, cuando el AP transmite B

- MAC I: MAC del B
- MAC 2: MAC de AP
- MAC 3: MAC de A

Cuatro direcciones MAC

Se usan según el modo

Modo infraestructura Wireless Distributed System

MAC 2: MAC de AP2

MAC 3: MAC de A

Xarxes de Computadors

Tema 4 – Redes de área local (LAN)