G2	Voltampérová	3D2	
12. 2. 2018	charakteristika tranzistoru	Meinlschmidt	

ZADÁNÍ:

- 1. Vypracujte:
 - a) Popište strukturu bipolárního tranzistoru
 - b) Vysvětlete princip činnosti tranzistoru (tranzistorový jev)
 - c) Co jsou unipolární tranzistory? Čím se liší unipolární tranzistory od bipolárních?
 - d) Uveďte příklady použití tranzistorů v praxi
- 2. V zapojení dle schématu změřte hodnoty převodní charakteristiky vybraného tranzistoru. Měření proved'te v rozsahu $0 I_{BMAX}$ s krokem I_{BKROK} dle pokynů pro jednotlivé tranzistory
- 3. Z naměřených hodnot vypočtěte proudový zesilovací činitel h_{21E} . Pro lineární režim určete střední hodnotu činitele zesílení h_{21E} daného tranzistoru a tuto hodnotu porovnejte s hodnotou udávanou v katalogu součástek
- 4. Změřte výstupní charakteristiku zvoleného tranzistoru pro 4 hodnoty proudu I_B . Hodnoty proudu I_B volte rovnoměrně z rozsahu $0 I_{BMAX}$ uvedeného v pokynech pro jednotlivé tranzistory
- 5. Z naměřených hodnot sestrojte převodní a výstupní charakteristiku vybraného tranzistoru

POKYNY

	Tranzistor	U _{NAP} [V]	$R_{C}[\Omega]$	$R_B[k\Omega]$	I _{BMAX} [μA]	I _{BKROK} [μA]
T-01	KD 337	20	100	27	900	100
T-02	KU 611	20	68	12	2000	200
T-03	BSX 59	20	300	220	100	10

ODPOVĚDI NA OTÁZKY:

Struktura bipolárního tranzistor

Bipolární tranzistor se skládá třech vrstev, a tudíž dvou PN přechodů. Každá z vrstev má vlastní vývod: C – kolektor, B – báze, E – emitor.

Princip činnosti tranzistoru

Hlavní výhoda bipolárního tranzistoru spočívá v možnosti **řízení velkého proudu proudem malým**. Princip je velmi podobný principu diody, která využívá PN přechodu. Látka P obsahuje **přebytek kladných děr** – tzv. akceptor (kladný náboj) a látka N obsahuje **přebytek valenčních** (**volných**) **elektronů** – tzv. donor (záporný náboj). Na rozdíl od diody obsahuje tranzistor PN přechody dva.

V klidovém (ustáleném) stavu dochází v oblasti PN přechodů k vyrovnání potenciálů (tzv. rekombinaci), kdy elektrony z látky N jsou přitaženy do látky P. V této oblasti se nenacházejí volné vodiče, a oblast se proto stává izolantem (bariérou). Elektrický potenciál na této bariéře je $\cong 0.7 \ V$. Při zapojení kolektoru a emitoru je proudu kladen velmi vysoký odpor, a proud proto neprochází.

Pokud však přidáme obvod mezi bázi a emitor (nebo bázi a kolektor), dokážeme napětím bariéru na PN přechodu snížit až úplně odbourat (stejně jako u diody, která se plně otevře až při $\geq \sim 0.7 \ V$). PN přechodem nám začne procházet proud elektronů, a ty opět vytvoří volné nosiče, které dokáže využít proud, který také protéká mezi kolektorem a emitorem. Tento jev nazýváme lavinový efekt (nedestruktivní průraz PN přechodu).

Úpravou napětí mezi bází a emitorem (bází a kolektorem) můžeme v rozsahu $0 \ V$ až $\sim 0.7 \ V$ postupně otevírat PN přechod a řídit tak velikost procházejícího proudu. Proto velmi malým proudem, který protéká bází a emitorem (bází a kolektorem), můžeme řídit proud daleko větší (protékající kolektorem a emitorem), tento poměr se nazývá h_{21E} – tj. **proudový zesilovací činitel**. Výše popsaný efekt nazýváme jedním pojmem **tranzistorový jev**.

Unipolární tranzistory

Unipolární tranzistory na rozdíl od bipolárních nevyužívají malého množství proudu, který protéká mezi bází a emitorem (bází a kolektorem), ale **pro regulaci využívají elektrostatického pole**. Pro regulaci je tudíž možno využít nulový proud.

Použití praxi:

- Zesilovač
- Spínač oproti mechanickému zvládá daleko vyšší frekvence
- Základ integrovaných obvodů, čipů, procesorů

TEORIE:

SCHÉMA ZAPOJENÍ:

POUŽITÉ PŘÍSTROJE A POMŮCKY:

Název	Typové označení	Inventární číslo	
Laboratorní zdroj	UNI-T UTP3703S	975/20	
Voltmetr	UNI-T UT801	947/24	
Miliampérmetr	UNI-T UT801	947/22	
Mikroampérmetr	UNI-T UT801	947/23	
Proměnný rezistor			
Tranzistor	T-02 (KU 611)		

POPIS PRÁCE:

Před samotným měřením jsem si připravil potřebné pomůcky a součástky – například zdroj elektrické energie, tranzistor, voltmetr atd. Jejich typové značky, evidenční čísla a jiné nutné údaje jsem řádně zapsal do záznamu o měření. Sestrojil jsem obvod a dle zadání a pokynů učitele jsem provedl měření. Rozdíl mezi hodnotami jsem postupně zvyšoval a v přímkové části bylo hodnot nejméně.

TABULKY:

Typ tranzistoru:	KU 611	
h _{21E} katalogová:	90 ≥ 20	

$I_B [\mu A]$	$I_{\mathcal{C}}[mA]$	h _{21E}
200,00	9,46	47,30
400,00	19,09	47,73
600,00	30,20	50,33
800,00	41,80	52,25
1 000,00	53,90	53,90
1 200,00	66,10	55,08
1 400,00	77,80	55,57
1 600,00	89,30	55,81
1 800,00	99,80	55,44
2 000,00	108,80	54,40

$I_B [\mu A]$	200	800	1 400	2 000
$U_{CE}[V]$	I _{C1} [mA]	I_{C2} [mA]	I _{C3} [mA]	I _{C4} [mA]
0,050	0,2	1,9	3,8	8,2
0,100	1,1	3,0	12,5	29,5
0,150	2,3	5,0	23,0	56,2
0,200	3,5	7,3	34,3	81,4
0,250	4,9	9,8	45,1	96,3
0,300	6,2	12,8	56,4	103,4
0,400	7,9	38,7	89,6	106,0
0,800	8,1	40,4	94,6	107,9
1,600	8,3	40,7	98,3	111,2
3,200	8,5	41,4	103,4	114,9
6,400	8,8	42,8	110,4	121,6

GRAFY

Převodní charakteristika tranzistoru KU 611

VÝPOČTY:

Proudový zesilovací činitel h_{21E} :

$$h_{21E} = \frac{I_C}{I_B}$$

$$h_{21E} = \frac{19,09 \cdot 10^{-3}}{400 \cdot 10^{-6}}$$

$$h_{21E} = 47,73$$

SPOLUPRACOVALI:

Kotek Lubomír

ZÁVĚR:

Všechny úkoly se zadání byly splněny, během měření jsem si nevšiml žádných chyb nebo logických nesrovnalostí. Charakteristiky relativně odpovídají očekávaným průběhům.