

Uniwersytet Przyrodniczy we Wrocławiu

Data Mining Wykład 3

Klasyfikacja danych Klasyfikacja poprzez indukcje drzew decyzyjnych

Plan wykładu

- Sformułowanie problemu
- Kryteria oceny metod klasyfikacji
- · Metody klasyfikacji
- Klasyfikacja poprzez indukcje drzew decyzyjnych

Uniwersytet Przyrodniczy we Wrocławii

Co to jest klasyfikacja

- Polega ona na znajdowaniu odwzorowania danych w zbiór predefiniowanych klas.
- Budowany jest model (np. drzewo decyzyjne, reguły logiczne), który służy do klasyfikowania nowych obiektów lub głębszego zrozumienia istniejącego podziału obiektów na predefiniowane klasy.
- Klasyfikacja jest metoda eksploracji danych z nadzorem (z nauczycielem).
- Proces klasyfikacji składa się z kilku etapów:
 - 1. Budowa modelu,
 - 2. Walidacja modelu,
 - 3. Testowanie modelu,
 - 4. Predykcji nieznanych wartości.

4
- 1

	Klasyfikacja - Założenia
	Dane wejściowe:
	Treningowy zbiór krotek (przykładów, obserwacji, próbek), będących lista wartości atrybutów opisowych (tzw. deskryptorów) i wybranego atrybutu decyzyjnego (ang. class label attribute)
•	Dane wyjściowe:
	Model (klasyfikator), przydziela każdej krotce wartość atrybutu decyzyjnego w oparciu o wartości pozostałych atrybutów (deskryptorów)
	Uniwersytet Przyrodniczy we Wrocławiu
	Klasyfikator
	Wartości atrybutu decyzyjnego dzielą zbiór krotek na predefiniowane klasy, składające się z krotek o tej samej wartości atrybutu decyzyjnego.
	Klasyfikator - Służy do predykcji wartości atrybutu decyzyjnego (klasy) krotek, dla których
	wartość atrybutu decyzyjnego, tj. przydział do klasy, nie jest znany
	Uniwersytet Przyrodniczy we Wrocławiu
	Proces klasyfikacji
•	Klasyfikacja danych jest 4-etapowym procesem: > Etap 1:
	Budowa modelu (klasyfikatora) opisującego predefiniowany zbiór klas danych lub zbiór pojęć
	> Etap 2:
	Walidacja modelu (klasyfikatora) na pewnej części danych treningowych

➤ Etap 3:

➤ Etap 4:

Testowanie modelu (klasyfikatora) na nowych danych testowych

Zastosowanie opracowanego modelu do klasyfikacji nowych danych
UNIWERSYTET PRZYRODNICZY WE WROCŁAWIU

Proces uczenia i testowania

- Zbiór dostępnych krotek (przykładów, obserwacji, próbek) dzielimy na dwa zbiory: zbiór treningowy i zbiór testowy
- Model klasyfikacyjny (klasyfikator) jest budowany trzyetapowo:

Uczenie (trening) – klasyfikator jest budowany w oparciu o zbiór treningowy danych

Walidacja modelu (klasyfikatora) na pewnej części danych treningowych

Testowanie – dokładność (jakość) klasyfikatora jest weryfikowana w oparciu o zbiór testowy danych

Uniwersytet Przyrodniczy we Wroczawii

Proces uczenia i testowania

- · Wynik klasyfikacji:
 - Reguły klasyfikacyjne postaci if then
 - Formuly logiczne
 - Drzewa decyzyjne
- · Dokładność modelu:

Dla przykładów testowych, dla których znane są wartości atrybutu decyzyjnego, wartości te są porównywane z wartościami atrybutu decyzyjnego generowanymi dla tych przykładów przez klasyfikator

Współczynnik dokładności (ang. accuracy rate) = procent przykładów testowych poprawnie zaklasyfikowanych przez model

Uniwersytet Przyrodniczy we Wrocław

Uczenie Algorytm klasyfikacji dane treningowe Klasyfikator Ryzyko Wiek Typ_sam (model) Combi High Sports High Sports High if Wiek < 31 50 Family Low or Typ_sam = "Sports" Minivan Low then Ryzyko = High 30 Combi High Family 40 Combi Low

3

Klasyfikacja a predykcja • Dwie metody, które są stosowane do analizy danych i ekstrakcji modeli opisujących klasy danych lub do predykcji trendów: - klasyfikacja: predykcja wartości atrybutu kategorycznego (predykcja klasy) - predykcja: modelowanie funkcji ciągłych

Kryte	ria ocen	y metod k	lasyfikaci
-------	----------	-----------	------------

• Trafność klasyfikacji (ang. Classification / Predictive accuracy)

zdolność modelu do poprawnej predykcji wartości atrybutu decyzyjnego (klasy) nowego przykładu

- Szybkość i skalowalność (ang. Speed):
 - czas uczenia się,
 - szybkość samego klasyfikowania

koszt obliczeniowy związany z wygenerowaniem i zastosowaniem klasyfikatora

- Odporność (ang. Robustness)
 - szum (noise),
 - Brakujące wartości (missing values),

zdolność modelu do poprawnej predykcji klas w przypadku braku części danych lub występowania danych zaszumionych

Uniwersytet Przyrodniczy we Wroczawii

Kryteria oceny metod klasyfikacji

 Zdolności wyjaśniania / Interpretowalność (ang. Interpretability): np. drzewa decyzyjne vs. sieci neuronowe

odnosi się do stopnia w jakim konstrukcja klasyfikatora pozwala na zrozumienie mechanizmu klasyfikacji danych

- Skalowalność / Złożoność struktury (ang. Scalability), np.
 - rozmiar drzew decyzyjnego,
 - miary oceny reguly

zdolność do konstrukcji klasyfikatora dla dowolnie dużych wolumenów danych

• Kryteria dziedzinowo zależne

Uniwersytet Przyrodniczy we Wrocławiu

Macierz pomyłek

- Analiza pomyłek w przydziale do różnych klas przy pomocy tzw. Macierz pomyłek (ang. Confusion matrix)
- Macierz r×r, gdzie kolumny odpowiadają poprawnym klasom decyzyjnym, a wiersze decyzjom przewidywanym przez klasyfikator; na przecięciu wiersza i oraz kolumny j - liczba przykładów n-ij należących oryginalnie do klasy i-tej, a zaliczonej do klasy j-tej
- Przykład:

Przewidywane klasy	Rzeczywiste klasy		
decyzyjne	K ₁	K ₂	K ₃
K ₁	50	0	0
K ₂	0	48	2
K ₃	0	4	46

-
5

Ocena klasyfikatora binarnego

Niektóre problemy \Rightarrow jedna z klas posiada szczególne znaczenie, np. diagnozowanie poważnej choroby \Rightarrow **klasyfikacja binarna**.

	Rzeczywiste klasy			
Wynik klasyfikacji	Pozytywna (True)	Negatywna (False)		
Pozytywna (True)	TP	FP (Błąd typu I)		
Negatywna (False)	FN (Błąd typu II)	TN		

Nazewnictwo (inspirowane medycznie):

- TP (ang. true positive) liczba poprawnie sklasyfikowanych przykładów z wybranej klasy (ang. hit),
- FP (ang. false positive) liczba przykładów błędnie przydzielonych do wybranej klasy, podczas gdy w rzeczywistości do niej nie należą (<u>falszywy alarm</u> z ang. false alarm).
 FN (ang. false negative) liczba błędnie sklasyfikowanych przykładów z tej klasy, tj.
- FN (ang. false negative) liczba blędnie sklasyfikowanych przykładów z tej klasy, tj decyzja negatywna podczas gdy przykład w rzeczywistości jest pozytywny (<u>bląd</u> <u>pominięcia</u> - z ang. miss),
- TN (ang. true negative) liczba przykładów poprawnie nie przydzielonych do wybranej klasy (poprawnie odrzuconych z ang. correct rejection),

Uniwersytet Przyrodniczy we Wroczawiu

Miary klasyfikatora

• Trafność klasyfikacji (ang. classification accuracy) (Acc)

$$ACC = \frac{TP + TN}{TP + TN + FP + FN} \times 100\%$$

Błąd klasyfikowania (ang. failed detection) (FD)

$$FD = \frac{FN + FP}{TP + FN} \times 100\%$$

Wrażliwość / czułość (ang. sensitivity) (Se)

$$SE = \frac{TP}{TP + FN} \times 100\%$$

• Specyficzność (ang. specificity) (Sp)

$$SP = \frac{TN}{FP + TN} \times 100\%$$

 Wnikliwszą analizę działania klasyfikatorów binarnych dokonuje się w oparciu o analizę krzywej ROC, (ang. Receiver Operating Characteristic).

Uniwersytet Przyrodniczy we Wrocławii

Miary klasyfikatora na Macierzy pomyłek

Analiza macierzy... spróbuj rozwiązać...

$$SE = \frac{TP}{TP + FN} \times 100\% = ???$$

$$SP = \frac{TN}{FP + TN} \times 100\% = ???$$

- 60+30 = 90 przykładów w danych należało do Klasy 1
- 80+20 = 100 przykładów było w Klasy 0
- 90+100 = 190 łączna liczba przykładów

Uniwersytet Przyrodniczy we Wrocławie

Analiza krzywej ROC

Każda technika budowy klasyfikatora może być scharakteryzowana poprzez pewne wartości miar 'sensitivity' i 'specificity'. Graficznie można je przedstawić na wykresie 'sensitivity' vs. 1 – 'specificity'.

Uniwersytet Przyrodniczy we Wrocławi

Krzywa ROC

Algorytm może być parametryzowany, i w rezultacie otrzymuje się serie punktów odpowiadających doborowi parametrów.

Sformułowanie problemu Dana jest baza danych przykładów, z których każdy należy do określonej klasy, zgodnie z wartością atrybutu decyzyjnego. Celem klasyfikacji jest znalezienie modelu dla każdej klasy Typ_sam Combi High Sports High Typ_sam="sports" Sports Family High Minivan High Low Family Combi

Klasyfikacja poprzez indukcje drzew decyzyjnych (1) drzewo decyzyjne jest grafem o strukturze drzewiastej, gdzie każdy wierzchołek wewnętrzny reprezentuje test na atrybucie (atrybutach), każdy łuk reprezentuje wynik testu, każdy liść reprezentuje pojedyncza klasę lub rozkład wartości klas Wiek < 31 Typ_sam="sports" High Low

Klasvfikacia	nonrzoz	induk	منہ ط	rzow d	OCVZVI	nych /	ำ
Klasviikacia	pobrzez	mauk	9 (4E)	irzew a	lecvzvi	nvcn (_

- Drzewo decyzyjne rekurencyjnie dzieli zbiór treningowy na partycje do momentu, w którym każda partycja zawiera dane należące do jednej klasy, lub, gdy w ramach partycji dominują dane należące do jednej klasy
- Kady wierzchołek wewnętrzny drzewa zawiera tzw. punkt podziału (ang. split point), którym jest test na atrybucie (atrybutach), który dzieli zbiór danych na partycje

Uniwersytet Przyrodniczy we Wroczawii

Klasyfikacja poprzez indukcje drzew decyzyjnych (3)

· Algorytm podstawowy:

algorytm zachłanny, który konstruuje rekurencyjnie drzewo decyzyjne metoda top-down w sposób "dziel i rządź" (ang. divide-and-conquer)

- Wiele wariantów algorytmu podstawowego.
- Podstawowa różnica: kryterium podziału czyli sposobu w jaki tworzone są nowe węzły wewnętrzne w drzewie decyzyjnym, używanego podczas fazy budowania drzewa decyzyjnego
- Metoda podziału powinna maksymalizować dokładność konstruowanego drzewa decyzyjnego, lub innymi słowy minimalizować błędna klasyfikacje rekordów danych.

Uniwersytet Przyrodniczy we Wrocławii

Fazy algorytmu

• Algorytm jest wykonywany w dwóch fazach:

➤ Faza 1:

Konstrukcja drzewa decyzyjnego w oparciu o zbiór treningowy

➤ Faza 2:

Obcinanie drzewa w celu poprawy dokładności, interpretowalności i uniezależnienia się od efektu przetrenowania

Konstrukcja drzewa

- W fazie konstrukcji drzewa, zbiór treningowy jest dzielony na partycje, rekurencyjnie, w punktach podziału do momentu, gdy każda z partycji jest "czysta" (zawiera dane należące wyłącznie do jednej klasy) lub liczba elementów partycji jest dostatecznie mała (spada poniżej pewnego zadanego progu)
- Postać testu stanowiącego punkt podziału zależy od kryterium podziału i typu danych atrybutu występującego w teście:

dla atrybutu ciągłego A, test ma postać wartość(A) < x, gdzie x należy do dziedziny atrybutu A, $x \in dom(A)$

dla atrybutu kategorycznego A, test ma postać wartość(A) \in X, gdzie X \subset dom(A)

Uniwersytet Przyrodniczy we Wrocławii

Algorytm konstrukcji drzewa

Make Tree (Training Data D)
{
 Partition(D)
}
Partition(Data S)
{
 if (all points in S are in the same class)
 then
 return

 for each attribute A do
 evaluate splits on attribute A;

 use best split found to partition S into S1 and S2
 Partition(S1)
 Partition(S2)
}

Uniwersytet Przyrodniczy we Wrocławii

Algorytm konstrukcji drzewa

- W trakcie budowy drzewa decyzyjnego, wybieramy taki atrybut i taki punkt podziału, określający wierzchołek wewnętrzny drzewa decyzyjnego, który "najlepiej" dzieli zbiór danych treningowych należących do tego wierzchołka
- Do oceny jakości punktu podziału zaproponowano szereg kryteriów (wskaźników)

Podsumowanie
Metody klasyfikacji
Kryteria oceny metod klasyfikacji
Sformułowanie problemu
 Klasyfikacja poprzez indukcje drzew decyzyjnych
I Sunverseyet Przyriamiczy we Worch weit