Statistiques bayésiennes

Devoir surveillé, 2h

Avec document

Exercice 1

Soit $X \sim \mathcal{B}(n, p), p \in (0, 1)$.

On considère la famille de lois a priori sur (0,1) définie par leur densité par rapport à la mesure de Lebesgue:

$$\pi_{a,b}(p) = \frac{p^{a-1}(1-p)^{b-1}}{B(a,b)} \mathbb{I}_{0,1}(p), \quad a > 0, b > 0$$
(1)

où B(a,b) est le facteur de renormalisation et est égale à

$$B(a,b) = \frac{\Gamma(a)\Gamma(b)}{\Gamma(a+b)}$$

 $\Gamma(x)$ étant la fonction Gamma. On rappelle que pour tout x > 0, $\Gamma(x+1) = x\Gamma(x)$ et $\Gamma(1) = 1$. On dit que p suit une loi Béta de paramètre (a, b), notée Be(a, b).

- 1. Montrer que la famille définie par (1) est une famille conjuguée et déterminer $\delta_{a,b}(x)$ l'estimateur de Bayes associé à $\pi_{a,b}$ et à la fonction de perte quadratique: $L(p,\delta) = (p-\delta)^2$.
 - 2. Pour quelle(s) valeur(s) de (a, b) $R(p, \delta_{a,b})$ est-il constant en p? On notera δ^* l'estimateur associé. Montrer que δ^* est minimax.
 - 3. L'estimateur $\delta_0(x) = X/n$ est-il minimax? Montrer qu'il est admissible.

Exercice 2 On considère le modèle suivant: $X_1, ..., X_n$ sont n variables indépendantes de lois respectives $\mathcal{N}(\mu_i, 1)$. On suppose que

$$\pi(\mu_1,, \mu_n | \xi, \tau) = \prod_{i=1}^n \varphi(\mu_i; \xi, \tau^2),$$

où $\varphi(x;\xi,\tau^2)$ désigne la densité d'une loi normale d'espérance ξ et de variance τ^2 .

1. Si la densité des hyperparamètres (ξ, τ) par rapport à la mesure de Lebesgue est

$$g(\xi,\tau) = \frac{1}{\tau} \mathbb{I}_{\tau>0},$$

montrer que le loi a posteriori $\pi(\mu_1,...,\mu_n|X_1,...,X_n)$ n'est pas définie.

2. Si

$$q(\xi, \tau) \propto 1$$

Calculer $\pi(\xi, \tau|X)$ et en déduire que la loi a posteriori de $(\mu_1, ..., \mu_n)$ est définie.

3. On veut tester l'hypothèse :

$$H_0: \mu_1 = \mu_2 = \dots = \mu_n$$

contre son complémentaire.

On pose $\rho_0>0$ la probabilité a priori de H_0 et on met sur l'alternative la densité à priori

$$\pi(\mu_1, ..., \mu_n | \xi, \tau) = (1 - \rho_0) \prod_{i=1}^n \varphi(\mu_i; \xi, \tau^2),$$

Calculer le facteur de Bayes en fonction de ξ et τ^2 .

4. Si on considère comme loi a priori pour les hyparamètres :

$$\pi(\xi, \tau) \propto 1$$
,

Proposer une méthode numérique de construction de la région à plus haute densité a posteriori pour $(\mu_1, ..., \mu_n)$, ainsi qu'une méthode basée sur l'approche empirique.