Séries Temporais

Disciplina: Modelos Estatísticos

Professora: Jéssica Assunção

Definição de Séries Temporais

Definição

- Dados Coletados em Intervalo Regulares de Tempo
- Intervalos:

Milissegundos, hora, dia, trimestre, ano...

Ordem < Dependência da ordem

Exemplos

Evasão de alunos por mês

Internações por dia

Mortes por problemas cardíacos por ano

Exemplos

Índice pluviométrico mensal

Cotação da bolsa por minuto

Manchas solares por mês

Componentes

Ordem

Univariadas e Multivariadas

- Univariadas
 Apenas uma variável conectada ao tempo
- Multivariadas
 Duas ou mais variáveis conectadas ao tempo

Por que estudarmos Séries Temporais

- Compreender fenômenos
- Prever eventos

airmiles

Milhas áreas de passageiros nos EUA de 1937 até 1960

AirPassengers

Passageiros de linha aéreas mensais de 1949 até 1960

austres

Dados trimestrais de residentes australianos 1971-1994

co2

Concentração de co2 em Mauna Loa de 1959 a 1997 (trimestral)

Gráfico

Janela 1990-1994

Histograma

Estatísticas

Min. 1st Qu. Median Mean 3rd Qu. Max. 313.2 323.5 335.2 337.1 350.3 366.8

fdeaths

Mortes mensais de doenças pulmonares no Reino Unido de 1974-1979

JohnsonJohnson

Lucro trimestral por ação da Johnson & Johnson de 1960 a 1980

nhtemp

Temperatura anual in Fahrenheit in New Heaven de 1912 até 1971

Min. 1st Qu. Median Mean 3rd Qu. Max. 47.90 50.58 51.20 51.16 51.90 54.60

presidents

Aprovação trimestral dos presidentes americanos de 1945 até 1974

Min. 1st Qu. Median Mean 3rd Qu. Max. NA's 3.00 46.00 59.00 56.31 69.00 87.00

sunspots

Número médio de manchas solares de 1749 a 1983

Seatbelts

Mortes ou gravemente feridos em acidentes de carros de 1969 até 1984

- DriversKilled: motoristas mortos
- Front: passageiros do banco da frente mortos
- Rear: passageiros do banco traseiro mortos
- Kms: distância dirigida
- PetrolPrice: preço do combustível
- VanKilled: número de motoristas de vans
- Law: 0/1: vigência da lei de obrigatoriedade do uso do cinto

EuStockMarkets

Preço de Fechamento das Bolsas Europeias de 1991 até 1998

Alemanha (DAX)

Suíça (SMI)

França (CAC)

Reino Unido (FTSE)

Componentes e Padrões

- Tendência
- Sazonalidade
 - Ciclo
 - Erro

Tendência

Aumento ou redução a longo prazo

Sazonalidade

Padrões que ocorrem em intervalos fixos

Ciclo

Aumento ou redução de frequência sem intervalos fixos

Erro

Tendência + Sazonalidade + Ciclo + ERRO =

Autocorrelação

- Lembra do correlação?
- A autocorrelação mede se existe uma relação matemática entre os intervalos da série temporal.
- Também deve estar entre -1 e 1.
- É medida em intervalos (lag):
- De 1 intervalo: mede como valores de 1 período distantes estão relacionados.
- De 2 intervalos: mede como valores de 2 períodos distantes estão relacionados.

Autocorrelação - Diagramas

ACF - Mostra a autocorrelação em uma série temporal

Autocorrelação - Diagramas

PACF - Mede a autocorrelação entre diferentes intervalos dos resíduos

Autocorrelação - com sazonalidade e tendênción

- Com tendência: tende a ser grande e positiva
- Com sazonalidade: tende a ser major nos intervalos com majores valores

Ruído Branco

- Série temporal que não apresenta autocorrelação
- Se mais de 5% dos intervalos estiverem fora da linha azul, não é ruído branco

Regressão Linear - Erro

Residuais: pressupostos para a previsão

- Não devem estar relacionados (autocorrelação)
- Se existe autocorrelação, existe informação nos resíduos que deveria ser usada na previsão.
- Média deve ser zero (aproximadamente)
- Variância constante
- Distribuição Normal

Analisando Residuais

Ljung-Box test

data: Residuals from ARIMA(1,0,1)(0,1,1)[12] $Q^* = 25.371$, df = 21, p-value = 0.2315

Model df: 3. Total lags used: 24

Decomposição

- Processo de separar componentes de uma série temporal
- Por que?
- Compreender a série
- Fazer previsão
- Modelo Aditivo: melhor quando o elemento sazonal ou tendência não é proporcional com o nível da série.
- Modelo Multiplicativo: melhor quando o elemento sazonal ou tendência muda com o nível da série.
- Nível: valor médio da série

Decomposição - Exemplo

Decomposição - Exemplo

- A média e a variância se mantêm constantes durante o tempo
- Em princípio, séries com tendência e sazonalidade não são estacionárias

- Por que a estacionariedade é importante?
- Existem técnicas analíticas de séries temporais que dependem da estacionariedade da série para funcionarem.
- Se a série não é estacionária, pode-se aplicar algum tipo de transformação.

- Como saber?
- Visualmente
- Testes Estatísticos (Dickey-Fuller)

Estacionária

Augmented bickey-Fuller Test

data: TS Dickey-Fuller = -4.2082, Lag order = 4, p-value = 0.01 alternative hypothesis: stationary

Não estacionária

Augmented Dickey-Fuller Test

data: austres
Dickey-Fuller = -2.5512, Lag order = 4, p-value = 0.3493
alternative hypothesis: stationary

Estacionária

Augmented Dickey-Fuller Test

PREVISÕES

- Em estatística temos métodos eficientes para efetuar previsões de séries temporais
- Isso n\u00e3o significa que prever n\u00e3o esteja sujeito a erros
- Analogia da granada:
- velocidade inicial, ângulo, resistência do ar, gravidade

- Conceitualmente, toda previsão está errada
- O objetivo é minimizar o erro (torná-lo menor possível)
- Mas, o quão fácil é prever?

- Como prever usando séries temporais?
- usando os próprio dados séries temporais puras
- usando outras variáveis modelo explanatório
- usando as duas técnicas modelo misto

- Regressão vs Séries Temporais
- Na regressão, em geral, a previsão pode significar extrapolação, mas também dados entre os intervalos já conhecidos
- Previsão em séries temporais univariadas significa extrapolação

Suavização Exponencial

Suavização Exponencial

- Princípio básico
- As observações passadas possuem pesos
- Quanto mais recentes as observações, maiores seus pesos para as previsões
- Utiliza médias que reduzem quanto mais distantes são as observações
- O parâmetro α determina o índice de redução: valor entre 0 e 1
 - Próximo de 0: observações antigas tem maior peso
 - Próximo de 1: observações recentes têm mais peso

Suavização Exponencial

Intervalo	Peso
t-1	0,5
t-2	0,2
t-3	0,07
t-4	0,01
t-5	0,005
t-6	0,001
t-7	0,0004

Suavização Exponencial Simples

Tendência Linear de Hold

- Hold Linear Trend
- Suavização Exponencial para dados com tendência
- Gera uma tendência linear para o futuro
- Proposto por Hold(1957)

Tendência Amortecida

- Damped
- Proposto por Gardner and McKenzie (1985)
- A tendência linear de Hold cresce ao infinito
- Na tendência amortecida, um novo parâmetro amortece a tendência conforme a previsão avança para o futuro
- Inclui um parâmetro de amortecimento:Φ
- 0 < Φ < 1</p>

Tendência Amortecida

Holt-Winters Sazonal

- Holt(1957) e Winters(1960)
- Inclui captura de sazonalidade
- Também ideal para tendência
- Aditivo: para variação sazonal constante
- Multiplicativo: variação sazonal varia na série

Holt-Winters Sazonal

ETS (Error, trend, seasonal)

Erro	Tendência	Sazonalidade
Α	N	N
М	Α	Α
Z	М	М
	Z	Z

Α	Aditivo
М	Multiplicativo
N	Nenhum
Z	Automático

Tendência		
A_{a}	Aditivo Amortecido	
M_{a}	Multiplicativo Amortecido	

- Robusto: Pode ser usado em praticamente qualquer tipo de ST
- Dados estáveis, com poucos outliers
- Requer dados estacionários: pode ser transformada usando diferenciação: remove tendências
- Subtrai a observação do período atual do período anterior
- A diferenciação pode ser feita 1x: diferenciação de primeira ordem
- Ou pode ser necessário uma segunda vez: diferenciação de segunda ordem (mais raro)

- AR Autoregressivo: avalia a relação entre os períodos (lags): autocorrelação.
 Extrai essa influência
- I Integrated: Aplica a diferenciação, se necessária
- MA Moving Average: avalia erros entre períodos e extrai estes erros (não tem relação com MA usados para suavização de st)

- p = 1, significa que uma determinada observação pode ser explicada pela observação prévia + erro
- p = 2, significa que uma determinada observação pode ser explicada por duas observações prévias + erro
- d = 0, significa que não é aplica diferenciação
- d = 1, significa que será aplicada diferenciação de primeira ordem
- d = 2, significa que será aplicada diferenciação de segunda ordem
- q = 1, significa que uma determinada observação pode ser explicada erro da observação prévia
- q = 2, significa que uma determinada observação pode ser explicada pelo erro de duas observações prévias

- AR(1) ou ARIMA(1,0,0) Apenas elemento autoregressivo, de 1º ordem
- AR(2) OU ARIMA(2,0,0)) Apenas elemento autoregressivo, de 2º ordem
- MA(1) OU ARIMA(0,0,1) Apenas média móvel
- ◆ ARMA(1,1) ou Arima(1,0,1) Autoregressão e média móvel de 1º ordem

- Como definir valores de p,d e q?

p: ordem da parte autoregressiva - PACF

d: grau de diferenciação – Teste de Estacionariedade

q: ordem da média móvel - ACF

- Como saber qual o melhor modelo?
- Akaike Information Criteria (AIC)
- Bayesian Information Criteria (BIC)

Referências Bibliográficas

- Introdução à Estatística Mário F. Triola
- Noções de Probabilidade e Estatística Marco Nascimento Magalhães
- Modelos de Regressão em R Écio Souza Diniz
- Análise de Séries Temporais Pedro A. Moretin / Clélia M. C. Toloi
- Análise e Previsões de Séries Temporais: Os modelos ARIMA Reinaldo Castro Souza / Maria Emília Camargo