

Unsupervised methods

Dr. Jakub Kuzilek

Introduction

Today you will learn:

- How clustering works
- Hierarchical clustering algorithm
 - How to compute similarity between samples (clusters)
- k-means algorithm
 - How to determine number of clusters k

Introduction

Small recap: What is Unsupervised learning?

Introduction

Small recap: What is Unsupervised learning?

- We do not know right answers
- Unsupervised learning algorithm is inferring function, which describes hidden structure of unlabelled data. We cannot estimate error of algorithm.

Unsupervised learning

- We do not know right answers.
- Unsupervised learning algorithm is inferring function, which describes hidden structure of unlabelled data.
- We cannot estimate error of algorithm
- Input:

$$T = \{x_1, x_2, x_3, ..., x_N\}$$

- Output (depending on type):
 - Labels: $\{y_1, y_2, y_3, ..., y_N\}$
 - Transformed data: $\{\hat{x}_1, \hat{x}_2, \hat{x}_3, ..., \hat{x}_N\}$
 - Distribution: $f(x; \theta)$

Clustering

Distance function

Can you tell me properties of distance (metrics) function?

Distance function

Can you tell me properties of distance (metrics) function?

1.
$$d(x, x) = 0$$

2.
$$d(x, y) \ge 0$$

3.
$$d(x,y) = d(y,x)$$

4.
$$d(x,z) \le d(x,y) + d(y,z)$$

- Input: $T = \{x_1, x_2, x_3, ..., x_N\}$
- Output: Dendrogram

Algorithm:

- Compute dissimilarity (proximity, distance) matrix $D_{ij} \ge 0$, of size $N \times N$, where N is the number of samples
- Initialize clusters as singletons (each sample is 1 cluster): $C_i \leftarrow \{i\}$
- Initialize set of clusters available for merging $S \leftarrow \{1, ..., N\}$
- Repeat:
 - 1. Select 2 most similar clusters: $(j,k) \leftarrow argmin_{j,k \in S} D_{j,k}$
 - 2. Create new cluster $C_l \leftarrow C_j \cup C_k$
 - 3. Remove (j,k) from set of available clusters S
 - 4. If C_l contains all samples end (no cluster available for merging)
 - 5. Update dissimilarity matrix D_{il} for all available clusters (set S)

How to compute similarity between two clusters?

There are multiple ways how to do that.

- Can cluster non-elliptical shapes
- Cannot separate clusters if there is noise

- Does well if there is noise
- Tends to break large clusters
- Bias towards elliptical shape clusters

- Does well when there is noise
- Biased towards elliptical shape clusters

How to compute similarity between two clusters?

Like average linkage, but computes the average over squared distances

Time complexity: $O(N^3)$

- $O(N^2)$ pick the most similar clusters
- *0*(*N*) steps

Space complexity: $O(N^2)$

- Input: $T = \{x_1, x_2, x_3, ..., x_N\}$; k number of clusters
- Output: $\{y_1, y_2, y_3, ..., y_N\}$

Algorithm:

- Initialize clusters randomly $C_1, C_2, C_3, ..., C_k$, where $\bigcup_{i=1}^k C_i = T$ and $C_i \cup C_j = \emptyset$; $C_i = \{x_{i1}, x_{i2}, x_{i3}, ..., x_{im_i}\}$, where $m_i \le N, \sum m_i = N, i \in \{1, ..., k\}$
- Repeat:
 - 1. Compute the cluster centres $\mu_i = \frac{1}{N_i} \sum_{j=1}^{m_i} x_{ij}$
 - 2. Reassign each point to the cluster, to which it has smallest Euclidean distance: $y_n = argmin_k ||x_n \mu_i||^2$, where $n \in \{1, ..., N\}$, $i \in \{1, ..., k\}$
 - 3. If $C_i = C'_i$ for $\forall i$ stop or the change in clusters is insignificant

- Criteria: $J(\mu_1, ..., \mu_k) = \sum_{C_i} \sum_{x_j \in C_i} ||x_j \mu_i||^2$
- The value of J is monotonically non-increasing with each step.
- Each iteration improves the result.
- The algorithm stops after the threshold on J is reached or the maximum number of iterations is reached
- The algorithm convergence is extremely dependent on initial choice of clusters, noise and outliers
- Standardization of data is recommended (0 mean, and 1 standard deviation)
- You need to pick k beforehand
- Time complexity: O(NkI), where I is number of iterations

How to select the number of clusters k?

How to select the number of clusters k?

Elbow Method

- Uses J
- Perform k-means for different number of clusters k
- Select the final k based on the "elbow in graph

How to select the number of clusters k?

Average silhouette score

- Computes the "homogeneity" of clusters
- Silhouette score for one sample:

$$s(x) = \frac{b(x) - a(x)}{\max\{a(x), b(x)\}}$$

, where a(x) is the average distance between x and all other points in its cluster and b(x) is minimum average distance from x to the points in other clusters

 Range (-1,1) where 1 means compact clusters, -1 is opposite and values around 0 represents overlapping clusters

How to select the number of clusters k?

Average silhouette score

Clusters silhouette plot Average silhouette width: 0.53

How to select the number of clusters k?

Average silhouette score

Questions?