Cheap calibration of the normalizing flow using arbitrary classifier

by Robert Drynkin, Maxim Artemev, Denis Derkach

April 2020

Content

- Assumptions
- Idea
- Implementation details
- Pictures
- Current results
- FAQ

Assumptions

Normalizing flows

- Long time to train
- Unstable training
- Have an artefacts due to continuity
- + Generative model

Binary classifier

- + Fast training
- + A lot of libraries
- + Well studied
- Not a generative model
- Can we use binary classifier to improve normalizing flow with the preservation of useful properties?

Q(x) – density of the real distribution P(x) – density of the distribution given by nf clf(x) – prediction of the perfect discriminator (binary classifier which trained to distinguish samples from Q and P)

We can express Q(x) using only P(x) and clf(x)

$$clf$$
 - perfect $\Rightarrow clf(x) = \frac{Q(x)}{P(x) + Q(x)} \Rightarrow \frac{clf(x)}{1 - clf(x)} = \frac{Q(x)}{P(x)}$

$$Q(x) = P(x)\frac{clf(x)}{1 - clf(x)}$$

Implemetation details

For the numerical stability:

$$\log Q(x) = \log P(x) + clf \rfloor logit(x)$$

Sampling: rejection sampling from Q(x) using $c \cdot P(x)$ as a major distribution. Acceptance rate equals to 1/c, where $c = \max \exp clf logit(x)$

Pictures

Pictures

Current results

GAS dataset

- ullet SOTA: maf(10) ightarrow 10.08 log likelihood
- \bullet Ours: maf(5) \to 9.48 log likelihood \to 10.23 II after calibration by Catboost(2k trees)

Future work

- KL finetuning nf
- Conditional sampling

FAQ

- What happens if P = Q (perfect nf)? Then $\forall x \ clf \ logit(x) = 0$, acceptance rate of rejection sampling = 1.
- What happens if P is trivial (e. g. uniform)? Then $\exists x \ clf \ logit(x) \to \infty$, acceptance rate of rejection sampling $\to 0$.

The End