EECS 16B	D75	14B	Crown	jue	
Discrete Fo	amer	Transfor	nn CD?	FT)	
$\vec{x} = U$					
time clower	tregi	venny de	main		
$U = \sqrt{U}$	v° w°	w ²	~		
N: # Samples	W ²		Wa-134-13	t	
$W = e^{\int \frac{2\pi}{N}}$					
			[Wo.k		(wk)°
kth Column	of U	2	1.k 2.k W) he	()'
DAII column DAII columns				7	

1. DFT

In order to get practice with calculating the Discrete Fourier Transform (DFT), this problem will have you calculate the DFT for a few variations on a cosine signal.

Consider a sampled signal that is a function of discrete time x[t]. We can represent it as a vector of discrete samples over time \vec{x} , of length N.

$$\vec{x} = \begin{bmatrix} x[0] & \dots & x[N-1] \end{bmatrix}^T \tag{1}$$

Let $\vec{X} = \begin{bmatrix} X[0] & \dots & X[N-1] \end{bmatrix}^T$ be the signal \vec{x} represented in the frequency domain, then

$$\vec{x} = U\vec{X} \tag{2}$$

and the inverse operation is given by

$$\vec{X} = U^{-1}\vec{x} = U^*\vec{x} \tag{3}$$

where the columns of U are the orthonormal DFT basis vectors.

$$U = \frac{1}{\sqrt{N}} \begin{bmatrix} 1 & 1 & 1 & \cdots & 1\\ 1 & e^{j\frac{2\pi}{N}} & e^{j\frac{2\pi(2)}{N}} & \cdots & e^{j\frac{2\pi(N-1)}{N}} \\ 1 & e^{j\frac{2\pi(2)}{N}} & e^{j\frac{2\pi(4)}{N}} & \cdots & e^{j\frac{2\pi2(N-1)}{N}} \\ \vdots & \vdots & & \vdots \\ 1 & e^{j\frac{2\pi(N-1)}{N}} & e^{j\frac{2\pi2(N-1)}{N}} & \cdots & e^{j\frac{2\pi(N-1)(N-1)}{N}} \end{bmatrix}$$

$$= \frac{1}{\sqrt{N}} \begin{bmatrix} 1 & 1 & 1 & \cdots & 1\\ 1 & \omega_N^1 & \omega_N^2 & \cdots & \omega_N^{(N-1)} \\ 1 & \omega_N^2 & \omega_N^{2\cdot2} & \cdots & \omega_N^{(N-1)2} \\ \vdots & \vdots & \vdots & & \vdots \\ 1 & \omega_N^{N-1} & \omega_N^{2(N-1)} & \cdots & \omega_N^{(N-1)(N-1)} \end{bmatrix},$$

$$(5)$$

where $\omega_N = e^{j\frac{2\pi}{N}}$ is the Nth primitive root of unity.

We sometimes call the components of \vec{X} the *DFT coefficients* of the time-domain signal \vec{x} . We can think of the components of \vec{X} as weights that represent \vec{x} in the DFT basis.

(a) Let's begin by looking at the DFT of $x_1[n] = \cos\left(\frac{2\pi}{5}n\right)$ for N=5 samples $n\in\{0,1,\ldots,4\}$. Compute the DFT basis matrix U.

$$N = 5 \qquad N_5 = e$$

$$1 \qquad 1 \qquad 1 \qquad 1$$

$$1 \qquad e^{\frac{1}{15}} \qquad e^{\frac{1}{15}$$

(b) Write out \vec{x}_1 in terms of the DFT basis vectors.

Out
$$\vec{x}_1$$
 in terms of the DFT basis vectors.

$$\vec{X}_1 \left[n \right] = \cos \left(\frac{2\pi}{5} n \right)$$

$$\frac{(37)}{(5n)} = \frac{1}{2} \left(e^{\frac{125}{5}n} + e^{-\frac{125}{5}n} \right)$$

$$= \frac{\sqrt{5}}{2} \left(\frac{1}{5} e^{\frac{125}{5}n} + \frac{1}{5} e^{-\frac{125}{5}n} \right)$$

$$= \frac{\sqrt{5}}{2} \left(\frac{1}{5} e^{\frac{125}{5}n} + \frac{1}{5} e^{-\frac{125}{5}n} \right)$$

$$= \frac{\sqrt{5}}{2} \left(\frac{1}{\sqrt{5}} e^{\frac{125}{5}n} + \frac{1}{\sqrt{5}} e^{-\frac{125}{5}n} \right)$$

$$= \frac{\sqrt{5}}{2} \left(\frac{1}{\sqrt{5}} e^{\frac{125}{5}n} + \frac{1}{\sqrt{5}} e^{-\frac{125}{5}n} \right)$$

$$= \frac{\sqrt{5}}{2} \left(\frac{1}{\sqrt{5}} e^{\frac{125}{5}n} + \frac{1}{\sqrt{5}} e^{-\frac{125}{5}n} \right)$$

$$= \frac{\sqrt{5}}{2} \left(\frac{1}{\sqrt{5}} e^{\frac{125}{5}n} + \frac{1}{\sqrt{5}} e^{-\frac{125}{5}n} \right)$$

$$= \frac{\sqrt{5}}{2} \left(\frac{1}{\sqrt{5}} e^{\frac{125}{5}n} + \frac{1}{\sqrt{5}} e^{-\frac{125}{5}n} \right)$$

$$= \frac{\sqrt{5}}{2} \left(\frac{1}{\sqrt{5}} e^{\frac{125}{5}n} + \frac{1}{\sqrt{5}} e^{-\frac{125}{5}n} \right)$$

(c) Find the DFT coefficients
$$X_1[k]$$
.

$$X_i = I X$$

	_	~ \(\sigma_0\)	J= (1 + V4)
J <u>s</u>	۷	*	5 (M + M4)
 0			
D			
<u> 15</u>	4		

(d) Plot the time domain representation of $x_1[n]$. Plot the magnitude, $|X_1[k]|$, and plot the phase, $\angle X_1[k]$, for the DFT representation \vec{X}_1 .

(e) Now let's consider the case were have a non-zero phase. Let $x_2[n] = \cos\left(\frac{4\pi}{5}n + \pi\right)$. Find the DFT coefficients \vec{X}_2 for \vec{x}_2 .

$$\cos(\frac{4\pi}{5}n + \pi) = \frac{1}{2}(e^{\frac{4\pi}{5}n})^{\frac{1}{5}n} + e^{\frac{1}{5}n}$$

=
$$\frac{\sqrt{5}}{2}(\bar{u}_{2}[n]e^{jn} + \bar{u}_{3}[n]e^{-jn})$$

$$\begin{array}{c|c}
 & - \overline{u}_{0}^{*} - \\
 & - \overline{u}_{1}^{*} - \\
 & - \overline{u}_{2}^{*} - \\
 & - \overline{u}_{3}^{*} -
\end{array}$$

(f) Plot the time domain representation of $x_2[n]$. Plot the magnitude, $|X_2[k]|$, and plot the phase, $\angle X_2[k]$, for the DFT representation \vec{X}_2 .

(g) Now let's look at the reverse direction. Given
$$\vec{X}_3 = \begin{bmatrix} 2 & e^{-j\frac{\pi}{2}} & 0 & 0 & e^{j\frac{\pi}{2}} \end{bmatrix}^{\mathsf{T}}$$
, find $x_3[n]$.

$$\overline{X}_{3} = U \overline{X}_{3}$$

$$= \begin{bmatrix}
1 & 1 & 2 \\
\overline{X}_{1} & -1 & \overline{X}_{2} \\
\hline
0 & 0
\end{bmatrix}$$

$$= 2\overline{X}_{0} + e^{-j\frac{\overline{X}_{2}}{2}}$$

$$= 2\overline{X}_{0} + e^{-j\frac{\overline{X}_{2}}{2}}$$

$$= 2\overline{X}_{0} + e^{-j\frac{\overline{X}_{2}}{2}}$$

