CS 492 Computer Security

Authentication

Guard: Halt! Who goes there?

Arthur: It is I, Arthur, son of Uther Pendragon, from the castle of Camelot. King of the Britons, defeater of the Saxons, sovereign of all England!

Dr. Williams
Central Connecticut State University

— Monty Python and the Holy Grail

Access Control

- Two parts to access control
- Authentication: Are you who you say you are?
 - Determine whether access is allowed
 - Authenticate human to machine
 - Or authenticate machine to machine
- Authorization: Are you allowed to do that?
 - Once you have access, what can you do?
 - Enforces limits on actions
- Note: "access control" often used as synonym for authorization

Are You Who You Say You Are?

- How to authenticate human to a machine?
- Can be based on...
 - Something you know
 - For example, a password
 - Something you have
 - For example, a smartcard
 - Something you are
 - For example, your fingerprint

Something You Know

- Passwords
- "Passwords are one of the biggest practical problems facing security engineers today."
- Lots of things act as passwords!
 - PIN
 - Social security number
 - Mother's maiden name
 - Date of birth
 - Where you were born
 - Name of your pet, etc.

Why Passwords?

- Why is "something you know" more popular than "something you have" and "something you are"?
- Cost: passwords are free
- Convenience: easier for admin to reset pwd than to issue a new thumb

Part 2 — Access Control

Keys vs Passwords

- Crypto keys
- Suppose key is 64 bits
- Then 2⁶⁴ keys
- Choose key at random...
- ...then attacker must try about 2^{63} keys

Passwords

- Suppose passwords are 8 characters, and 256 different characters
- Then $256^8 = 2^{64}$ pwds
- Users do not select passwords at random
- Attacker has far less than 2⁶³ pwds to try (dictionary attack)

Good and Bad Passwords

- Bad passwords
 - frank
 - Fido
 - password
 - ⁻ 4444
 - Pikachu
 - · 102560
 - AustinStamp

- Good Passwords?
 - jfIej,43j-EmmL+y
 - 09864376537263
 - FSa7Yago
 - onceuPonAt1m8
 - PokeGCTall150

Password Experiment

- Three groups of users each group advised to select passwords as follows
 - Group A: At least 6 chars, 1 non-letter
- winner → Group B: Password based on passphrase
 - Group C: 8 random characters
 - Results
 - Group A: About 30% of pwds easy to crack
 - Group B: About 10% cracked
 - Passwords easy to remember
 - Group C: About 10% cracked
 - Passwords hard to remember

Password Experiment

- User compliance hard to achieve
- In each case, 1/3rd did not comply
 - And about 1/3rd of those easy to crack!
- Assigned passwords sometimes best
- If passwords not assigned, best advice is...
 - Choose passwords based on passphrase
 - Use pwd cracking tool to test for weak pwds
- Require periodic password changes?

EASY

HARD

DIFFICULTY TO GUESS:

HARD

THROUGH 20 YEARS OF EFFORT, WE'VE SUCCESSFULLY TRAINED EVERYONE TO USE PASSWORDS THAT ARE HARD FOR HUMANS TO REMEMBER, BUT EASY FOR COMPUTERS TO GUESS.

Attacks on Passwords

- Attacker could...
 - Target one particular account
 - Target any account on system
 - Target any account on any system
- Common attack path
 - Outsider → normal user → administrator
 - May only require one weak password!

Password Retry

- Suppose system locks after 3 bad passwords. How long should it lock?
 - 5 seconds
 - 5 minutes
 - Until SA restores service
- What are +'s and -'s of each?

Password File?

- Bad idea to store passwords in a file
- But we need to verify passwords
- Cryptographic solution: hash the pwd
 - Store y = h(password)
 - Can verify entered password by hashing
 - If Trudy obtains "password file," she does not obtain passwords
- But Trudy can try a forward search
 - Guess x and check whether y = h(x)

Dictionary Attack

- Trudy pre-computes h(x) for all x in a dictionary of common passwords
- Suppose Trudy gets access to password file containing hashed passwords
 - She only needs to compare hashes to her precomputed dictionary
 - After one-time work, actual attack is trivial
- Can we prevent this attack? Or at least make attacker's job more difficult?

Salt

- Hash password with salt
- Choose random salt s and compute
 y = h(password, s)
 and store (s,y) in the password file
- Note: The salt s is not secret
- Easy to verify salted password
- But Trudy must re-compute dictionary hashes for each user
 - Lots more work for Trudy!

Password Cracking: Do the Math

- Assumptions:
- Pwds are 8 chars, 128 choices per character
 - □ Then $128^8 = 2^{56}$ possible passwords
- There is a password file with 2¹⁰ pwds
- Attacker has dictionary of 2²⁰ common pwds
- **Probability** of 1/4 that a pwd is in dictionary
- Work is measured by number of hashes

Password Cracking: Case I

- Attack 1 password without dictionary
 - Must try $2^{56}/2 = 2^{55}$ on average
 - Like exhaustive key search
- Does salt help in this case?

Password Cracking: Case II

- Attack 1 password with dictionary
- With salt
 - Expected work: $1/4 (2^{19}) + 3/4 (2^{55}) = 2^{54.6}$
 - In practice, try all pwds in dictionary...
 - ...then work is at most 2²⁰ and probability of success is 1/4
- What if no salt is used?
 - One-time work to compute dictionary: 2²⁰
 - Expected work still same order as above
 - But with precomputed dictionary hashes, the "in practice" attack is free...

Password Cracking: Case III

- Any of 1024 pwds in file, without dictionary
 - Assume all 2¹⁰ passwords are distinct
 - Need 2⁵⁵ comparisons before expect to find pwd
- If no salt is used
 - Each computed hash yields 2¹⁰ comparisons
 - □ So expected work (hashes) is $2^{55}/2^{10} = 2^{45}$
- If salt is used
 - Expected work is 2⁵⁵
 - Each comparison requires a hash computation

Password Cracking: Case IV

- Any of 1024 pwds in file, with dictionary
 - Prob. one or more pwd in dict.: $1 (3/4)^{1024} = 1$
 - So, we ignore case where no pwd is in dictionary
- If salt is used, expected work less than 2²²
 - Approximate work: size of dict. / probability
- What if no salt is used?
 - If dictionary hashes not precomputed, work is about $2^{19}/2^{10} = 2^9$

Other Password Issues

- Too many passwords to remember
 - Results in password reuse
 - Why is this a problem?
- Who suffers from bad password?
 - Login password vs ATM PIN
- Failure to change default passwords
- Social engineering
- Error logs may contain "almost" passwords
- Bugs, keystroke logging, spyware, etc.

Passwords

- The bottom line...
- Password cracking is too easy
 - One weak password may break security
 - Users choose bad passwords
 - Social engineering attacks, etc.
- Trudy has (almost) all of the advantages
- All of the math favors bad guys
- Passwords are a BIG security problem
 - And will continue to be a big problem

Password Cracking Tools

- Popular password cracking tools
 - Password Crackers
 - Password Portal
 - LophtCrack and LC4 (Windows)
 - John the Ripper (Unix)
- Admins should use these tools to test for weak passwords since attackers will
- Good articles on password cracking
 - Passwords Conerstone of Computer Security
 - Passwords revealed by sweet deal

Biometrics

Something You Are

- Biometric
 - "You are your key" Schneier
- Examples
 - o Fingerprint
 - o Handwritten signature
 - o Facial recognition
 - Speech recognition
 - o Gait (walking) recognition
 - o "Digital doggie" (odor recognition)
 - o Many more!

Why Biometrics?

- More secure replacement for passwords
- Cheap and reliable biometrics needed
 - Today, an active area of research
- Biometrics **are** used in security today
 - Thumbprint mouse
 - Palm print for secure entry
 - Fingerprint to unlock car door, etc.
- But biometrics not too popular
 - Has not lived up to its promise (yet?)

Ideal Biometric

- What are the 4 requirements of a biometric?
- Universal applies to (almost) everyone
 - In reality, no biometric applies to everyone
- **Distinguishing** distinguish with certainty
 - In reality, cannot hope for 100% certainty
- Permanent physical characteristic being measured never changes
 - In reality, OK if it to remains valid for long time
- Collectable easy to collect required data
 - Depends on whether subjects are cooperative
- Safe, user-friendly, etc., etc.

Biometric Modes

- Identification Who goes there?
 - Compare one-to-many
 - Example: The FBI fingerprint database
- Authentication Are you who you say you are?
 - Compare one-to-one
 - Example: Thumbprint mouse
- Identification problem is more difficult
 - More "random" matches since more comparisons
- We are interested in authentication

Enrollment vs Recognition

Enrollment phase

- Subject's biometric info put into database
- Must carefully measure the required info
- OK if slow and repeated measurement needed
- Must be very precise
- May be weak point of many biometric

Recognition phase

- Biometric detection, when used in practice
- Must be quick and simple
- But must be reasonably accurate

Cooperative Subjects?

- Authentication cooperative subjects
- Identification uncooperative subjects
- For example, facial recognition
 - Used in Las Vegas casinos to detect known cheaters (terrorists in airports, etc.)
 - Often do not have ideal enrollment conditions
 - Subject will try to confuse recognition phase
- Cooperative subject makes it much easier
 - We are focused on authentication
 - So, subjects are generally cooperative

Biometric Errors

- Fraud rate versus insult rate
 - Fraud Trudy mis-authenticated as Alice
 - Insult Alice not authenticated as Alice
- For any biometric, can decrease fraud or insult, but other one will increase
- For example
 - 99% voiceprint match ⇒ low fraud, high insult
 - □ 30% voiceprint match ⇒ high fraud, low insult
- **Equal error rate:** rate where fraud == insult
 - A way to compare different biometrics

Fingerprint Comparison

- Examples of loops, whorls, and arches
- Minutia extracted from these features

Loop (double)

Whorl

Arch

Fingerprint: Enrollment

- Capture image of fingerprint
- Enhance image
- Identify points

Fingerprint: Recognition

- Extracted points are compared with information stored in a database
- Is it a statistical match?
- Aside: <u>Do identical twins' fingerprints differ</u>?

Hand Geometry

- A popular biometric
- Measures shape of hand
 - o Width of hand, fingers
 - o Length of fingers, etc.
- Human hands not unique
- Hand geometry sufficient for many situations
- OK for authentication
- Not useful for ID problem

Hand Geometry

- Advantages
 - Quick 1 minute for enrollment, 5 seconds for recognition
 - Hands are symmetric so what?
- Disadvantages
 - Cannot use on very young or very old
 - Relatively high equal error rate

Iris Patterns

- Iris pattern development is "chaotic"
- Little or no genetic influence
- Different even for identical twins
- Pattern is stable through lifetime

Iris Scan

- Scanner locates iris
- Take b/w photo
- Use polar coordinates...
- 2-D wavelet transform
- Get 2048 byte iris code

Measuring Iris Similarity

- Based on Hamming distance
- Define d(x,y) to be
 - # of non match bits / # of bits compared
 - d(0010,0101) = 3/4 and d(1011111,101001) = 1/3
- Compute d(x,y) on 2048-bit iris code
 - Perfect match is d(x,y) = 0
 - For same iris, expected distance is 0.08
 - At random, expect distance of 0.50
 - Accept iris scan as match if distance < 0.32

Iris Scan Error Rate

distance	Fraud	rate
uistance	Tauu	raic

0.29	1 in 1.3*10 ¹⁰
0.30	1 in 1.5*10 ⁹
0.31	1 in 1.8*10 ⁸
0.32	1 in 2.6*10 ⁷
0.33	1 in 4.0*10 ⁶
0.34	1 in 6.9*10 ⁵
0.35	1 in 1.3*10 ⁵

Attack on Iris Scan

- Good photo of eye can be scanned
 - Attacker could use photo of eye

Afghan woman was authenticated by iris

scan of old photo

■ To prevent attack, scanner could use light to be sure it is a "live" iris

Equal Error Rate Comparison

- Equal error rate (EER): fraud == insult rate
- Voice recognition has EER of about 10⁻²
- Signature recognition has EER of about 10⁻²
- Hand geometry has EER of about 10⁻³
- Fingerprint biometric has EER of about 10⁻³
- In theory, **iris scan** has EER of about 10⁻⁶
 - But in practice, may be hard to achieve
 - Enrollment phase must be extremely accurate
- Retina scan has EER of about 10⁻⁷

Biometrics: The Bottom Line

- Biometrics are hard to forge
- But attacker could
 - Steal Alice's thumb
 - Photocopy Bob's fingerprint, eye, etc.
 - Subvert software, database, "trusted path" ...
- And how to revoke a "broken" biometric?
- Biometrics are not foolproof
- Biometric use is limited today
- How could you make more widespread use of biometrics in the future?

Something You Have

- Something in your possession
- Examples include following...
 - Car key
 - Laptop computer (or MAC address)
 - Password generator (next)
 - ATM card, smartcard, etc.

Password Generator

- Alice requests authentication
- Alice receives random "challenge" R from Bob
- Alice enters PIN and R in password generator
- Password generator hashes symmetric key K with R
- Alice sends "response" h(K,R) back to Bob
- Bob verifies response
- Note: Alice has pwd generator and knows PIN

2-factor Authentication

- Requires any 2 out of 3 of
 - o Something you know
 - o Something you have
 - o Something you are
- Examples?
 - ATM: Card and PIN
 - Credit card: Card and signature
 - Password generator: Device and PIN
 - Smartcard with password/PIN
 - Draw diagram of Credit card authorization

Single Sign-on

- A hassle to enter password(s) repeatedly
 - Alice wants to authenticate only once
 - "Credentials" stay with Alice wherever she goes
 - Subsequent authentications transparent to Alice
- Kerberos --- example single sign-on protocol
- Single sign-on for the Internet?
 - Microsoft: Passport
 - Everybody else: Liberty Alliance
 - Security Assertion Markup Language (SAML)

Web Cookies

- Cookie is provided by a Website and stored on user's machine
- Cookie indexes a database at Website
- Cookies maintain state across sessions
 - Web uses a stateless protocol: HTTP
 - Cookies also maintain state within a session
- Sorta like a single sign-on for a website
 - But, a very, very weak form of authentication
- Cookies also create privacy concerns

Authorization summary

- Passwords
 - Theoretically secure, but in practice very easy to break for commonly used passwords
- System is only as secure as weakest point making passwords a serious problem
- Biometrics offer far more security
 - Not widespread primarily due to cost
 - Equal error rate fraud rate vs. insult rate
 - How to achieve widespread use?
- 2-factor authentication