Notación sigma

Definición: Sea $a, b \in \mathbb{R}$ y $f : \mathbb{R} \to \mathbb{R}$, definimos a la sumatoria como sigue:

$$\sum_{n=a}^{b} f(n) := \begin{cases} f(a) + \sum_{n=a+1}^{b} f(n), & \text{si } b \ge a \\ 0, & \text{si } b < a. \end{cases}$$

Decimos que

- n es el índice,
- a el límite inferior,
- *b* el límite superior,
- f(n) el elemento típico (o genérico)

de la sumatoria. También decimos que n itera desde a hasta b.

Ejemplos:

1.

$$\sum_{i=2}^{5} i^2 = (2)^2 + \sum_{i=3}^{5} i^2$$

$$= 4 + (3)^2 + \sum_{i=4}^{5} i^2$$

$$= 4 + 9 + (4)^2 + \sum_{i=5}^{5} i^2$$

$$= 4 + 9 + 16 + (5)^2 + \sum_{i=6}^{5} i^2$$

$$= 4 + 9 + 16 + 25 + 0$$

$$= 54$$
(*)

2.

$$\sum_{m=-3}^{-1} 2m = 2(-3) + \sum_{m=-2}^{-1} 2m$$

$$= -6 + 2(-2) + \sum_{m=-1}^{-1} 2m$$

$$= -6 + -4 + 2(-1) + \sum_{m=0}^{-1} 2m$$

$$= -6 + -4 + -2 + 0$$

$$= -12$$
(†)

3.

$$\sum_{n=0}^{3} 2^{n} = 2^{0} + \sum_{n=1}^{3} 2^{n}$$

$$= 1 + 2^{1} + \sum_{n=2}^{3} 2^{n}$$

$$= 1 + 2 + \sum_{n=3}^{3} 2^{n}$$

$$= 1 + 2 + 2^{3} + \sum_{n=4}^{3} 2^{n}$$

$$= 1 + 2 + 8 + 0$$

$$= 11$$
(‡)

4.

$$\sum_{j=0}^{-1} j = 0$$

5.

$$\sum_{n=1}^{3} \frac{k}{n+1} = \frac{k}{(1)+1} + \sum_{n=2}^{3} \frac{k}{n+1}$$

$$= \frac{k}{2} + \frac{k}{(2)+1} + \sum_{n=3}^{3} \frac{k}{n+1}$$

$$= \frac{k}{2} + \frac{k}{3} + \frac{k}{(3)+1} + \sum_{n=4}^{3} \frac{k}{n+1}$$

$$= \frac{k}{2} + \frac{k}{3} + \frac{k}{4} + 0$$

$$= \frac{k}{2} + \frac{k}{3} + \frac{k}{4}$$

El lector notará que, en el caso en que los límites inferior y superior son iguales $(*, \dagger, \ddagger)$, la imagen de la sumatoria es el elemento típico evaluado en el índice, es decir,

Observación: Si a = b, entonces

$$\sum_{n=a}^{b} f(n) = f(n)$$
 (Índices iguales de la sumatoria)

Demostración: Sea $m \in \mathbb{R}$,

$$\sum_{n=m}^{m} f(n) = f(m = n) + \sum_{n=m+1}^{m} f(n)$$
 Definición
$$= f(n) + 0$$
 Definición
$$= f(n)$$

Nota: En este caso, el índice itera en un único valor.

A partir de esto tenemos que:

$$\sum_{n=a}^{b} f(n) = \begin{cases} f(a) + \sum_{n=a+1}^{b} f(n), & \text{si } a < b. \\ f(n), & \text{si } a = b \\ 0, & \text{si } a > b \end{cases}$$

El lector notará también que la suma del primer termino hasta el ultimo es igual a la suma del ultimo hasta el primero, es decir,

Proposición: Sea $(b-a) \in \mathbb{N}$ arbitrario pero fijo, entonces

$$\sum_{n=a}^{b} f(n) = f(b) + \sum_{n=a}^{b-1} f(n)$$
 (Sumatoria inversa)

Demostración:

I) Se verifica para (b-a)=1,

$$\sum_{n=a}^{a+1} f(n) = f(a) + \sum_{n=a+1}^{a+1} f(n)$$
 Definición
$$= f(a) + \sum_{n=b}^{b} f(n)$$
 Hipótesis
$$= f(a) + f(b)$$

$$= f(b) + \sum_{n=a}^{a} f(n)$$

$$= f(b) + \sum_{n=a}^{b-1} f(n)$$

$$b - a = 1 \Rightarrow b - 1 = a$$

II) Supongamos que si b - a = k, entonces

$$\sum_{n=a}^{b} f(n) = f(b) + \sum_{n=a}^{b-1} f(n)$$

III) Notemos que si b - a = k + 1, se tiene que

$$\sum_{n=a}^{a+k+1} f(n) = f(a) + \sum_{n=a+1}^{a+k+1} f(n)$$
 Definición
$$= f(a) + f(a+k+1) + \sum_{n=a+1}^{a+k} f(n)$$
 Hip. Ind.
$$= f(a+k+1) + f(a) + \sum_{n=a+1}^{a+k} f(n)$$
 Definición
$$= f(a+k+1) + \sum_{n=a}^{a+k} f(n)$$
 Definición
$$= f(b) + \sum_{n=a}^{b-1} f(n)$$

- Si b=a, entonces (b-a)=0, y por índices iguales de la sumatoria se tiene que $\sum_{n=a}^{b} f(n)=f(n)$.
- Por definición, si b < a se tiene que $\sum_{n=a}^{b} f(n) = 0$, que en particular se verifica si $b a \in \{-n : n \in \mathbb{N}\}$.

A partir de esta observación y de la Sumatoria Inversa se tiene que

Definición: Si $(b-a) \in \mathbb{Z}$, entonces

$$\sum_{n=a}^{b} f(n) := \begin{cases} 0 & , \text{ si } a > b \\ f(n) & , \text{ si } a = b \\ f(b) + \sum_{n=a}^{b-1} f(n), \text{ si } a < b. \end{cases}$$

De este modo, siempre que la *distancia* entre los límites de la sumatoria sea un número entero, contaremos con una definición alternativa para la sumatoria. Dado que contamos con una definición que puede ser planteada de dos maneras, podemos utilizar cualquiera (de las dos) a conveniencia; por ejemplo:

$$\sum_{n=-1}^{1} n^3 = (-1)^3 + \sum_{n=0}^{1} n^3$$

$$= -1 + 0^3 + \sum_{n=1}^{1} n^3$$

$$= -1 + 0 + 1^3$$

$$= 0$$

$$\sum_{n=-1}^{1} n^3 = 1^3 + \sum_{n=-1}^{0} n^3$$

$$= 1 + 0^3 + \sum_{n=-1}^{-1} n^3$$

$$= 1 + 0 + (-1)^3$$

$$= 0$$

Lista de Ejercicios 11 (LE11)

Sea $a, b, p, q, s, t \in \mathbb{Z}$, demuestre lo siguiente:

a)
$$\sum_{n=p}^q g(n) + \sum_{n=s}^t h(n) = \sum_{n=s}^t h(n) + \sum_{n=p}^q g(n) \qquad \text{(Conmutatividad de la sumatoria)}$$

Demostración:

I. Primero probaremos que $\left(\sum_{n=a}^b f(n)\right) \in \mathbb{R}, \forall n \in \mathbb{Z}$, es decir, que la imagen de la sumatoria siempre es un número real; la motivación es que, al estar definida *recursivamente*, la función podría parecer asignar números reales a funciones, pero este no es el caso.

Por definición, si a>b, entonces, $\left(\sum_{n=a}^b f(n)\right)=0\in\mathbb{R};$ si a=b, entonces $\left(\sum_{n=a}^b f(n)\right)=f(n)\in\mathbb{R}.$ Para el caso a< b procedemos por inducción:

i) Se verifica para b = a + 1,

$$\sum_{n=a}^{b} f(n) = \sum_{n=a}^{a+1} f(n)$$

$$= f(n+1) + \sum_{n=a}^{a} f(n)$$

$$= f(n+1) + f(n)$$

Como $f(n+1) \in \mathbb{R}$ y $f(n) \in \mathbb{R}$ y la suma es cerrada en \mathbb{R} se tiene que $\left(f(n+1) + f(n)\right) \in \mathbb{R}$, osea, $\left(\sum_{n=a}^{b} f(n)\right) \in \mathbb{R}$.

- ii) Supongamos que $\left(\sum_{n=a}^{b} f(n)\right) \in \mathbb{R}$, con b = a + k, para algún $k \in \mathbb{N}$.
- **iii)** Si b = a + k + 1,

$$\sum_{n=a}^{b} f(n) = \sum_{n=a}^{a+k+1} f(n)$$

$$= f(n+k+1) + \sum_{n=a}^{a+k} f(n)$$

$$= f(n+k+1) + \sum_{n=a}^{a+k} f(n)$$

Como $f(n+k+1) \in \mathbb{R}$ y $\sum_{n=a}^{a+k} f(n) \in \mathbb{R}$ (hip. ind.), se tiene que $\left(f(n+k+1) + \sum_{n=a}^{a+k} f(n)\right) \in \mathbb{R}$, es decir, $\left(\sum_{n=a}^{b} f(n)\right) \in \mathbb{R}$.

En cualquier caso $\left(\sum_{n=a}^{b} f(n)\right) \in \mathbb{R}$.

II. Finalmente demostramos la Conmutatividad de la sumatoria. Como $\left(\sum_{n=p}^q g(n)\right) \in \mathbb{R}$ y $\left(\sum_{n=s}^t h(n)\right) \in \mathbb{R}$, por conmutatividad de la suma en \mathbb{R} , sigue que

$$\sum_{n=p}^{q} g(n) + \sum_{n=s}^{t} h(n) = \sum_{n=s}^{t} h(n) + \sum_{n=p}^{q} g(n)$$

Corolario:

$$\sum_{n=p}^{q} g(n) \cdot \sum_{n=s}^{t} h(n) = \sum_{n=s}^{t} h(n) \cdot \sum_{n=p}^{q} g(n)$$

Demostración: Como $\left(\sum_{n=p}^q g(n)\right) \in \mathbb{R}$ y $\left(\sum_{n=s}^t h(n)\right) \in \mathbb{R}$, la igualdad se verifica por la conmutatividad de la multiplicación en \mathbb{R} .

b)

$$\sum_{n=a}^{b} f(n) + \sum_{n=a}^{b} g(n) = \sum_{n=a}^{b} \left(f(n) + g(n) \right)$$
 (Asociatividad de la sumatoria)

Demostración:

I) Si a > b,

$$\sum_{n=a}^{b} f(n) + \sum_{n=a}^{b} g(n) = 0 = \sum_{n=a}^{b} \left(f(n) + g(n) \right)$$

II) Si a = b,

$$\sum_{n=a}^{b} f(n) + \sum_{n=a}^{b} g(n) = f(n) + g(n) = \sum_{n=a}^{b} \left(f(n) + g(n) \right)$$

III) Si b > a,

i) Se comprueba para b = a + 1,

$$\begin{split} \sum_{n=a}^{a+1} \Big(f(n) + g(n) \Big) &= \Big(f(a) + g(a) \Big) + \sum_{n=a+1}^{a+1} \Big(f(n) + g(n) \Big) \\ &= f(a) + g(a) + \Big(f(a+1) + g(a+1) \Big) \\ &= \Big(f(a) + f(a+1) \Big) + \Big(g(a) + g(a+1) \Big) \\ &= \Big(f(a) + \sum_{n=a+1}^{a+1} f(n) \Big) + \Big(g(a) + \sum_{n=a+1}^{a+1} g(n) \Big) \\ &= \sum_{n=a}^{a+1} f(n) + \sum_{n=a}^{a+1} g(n) \end{split}$$
 Associatividad (de la suma)

ii) Supongamos que se verifica para b = a + k, con $k \in \mathbb{N}$, es decir, suponemos que

$$\sum_{n=a}^{a+k} \left(f(n) + g(n) \right) = \sum_{n=a}^{a+k} f(n) + \sum_{n=a}^{a+k} g(n)$$

iii) Notemos que

$$\begin{split} \sum_{n=a}^{a+k+1} \Big(f(n) + g(n) \Big) &= \Big(f(a+k+1) + g(a+k+1) \Big) + \sum_{n=a}^{a+k} \Big(f(n) + g(n) \Big) \\ &= f(a+k+1) + g(a+k+1) + \sum_{n=a}^{a+k} f(n) + \sum_{n=a}^{a+k} g(n) & \text{Hip. Inducción} \\ &= \left(f(a+k+1) + \sum_{n=a}^{a+k} f(n) \right) + \left(g(a+k+1) + \sum_{n=a}^{a+k} g(n) \right) \\ &= \sum_{n=a}^{a+k+1} f(n) + \sum_{n=a}^{a+k+1} g(n) \end{split}$$

c) Sea $c \in \mathbb{R}$,

$$c \cdot \sum_{n=a}^{b} f(n) = \sum_{n=a}^{b} (c \cdot f(n))$$
 (Distributividad de la sumatoria)

Demostración:

I) Si a > b,

$$c \cdot \sum_{n=a}^{b} f(n) = c \cdot 0 = \sum_{n=a}^{b} \left(c \cdot f(n) \right)$$

II) Si a=b,

$$c \cdot \sum_{n=a}^{b} f(n) = c \cdot f(n) = \sum_{n=a}^{b} \left(c \cdot f(n) \right)$$

III) Si b > a,

i) Se comprueba para b = a + 1,

$$\sum_{n=a}^{a+1} \left(c \cdot f(n) \right) = c \cdot f(a) + \sum_{n=a+1}^{a+1} c \cdot f(n)$$

$$= c \cdot f(a) + c \cdot f(a+1)$$

$$= c \cdot \left(f(a) + f(a+1) \right)$$

$$= c \cdot \left(f(a) + \sum_{n=a+1}^{a+1} f(n) \right)$$

$$= c \cdot \sum_{n=a}^{a+1} f(n)$$

ii) Supongamos que se verifica para b=a+k, con $k\in\mathbb{N},$ es decir, suponemos que

$$\sum_{n=a}^{a+k} \left(c \cdot f(n) \right) = c \cdot \sum_{n=a}^{a+k} f(n)$$

iii) Notemos que

$$\sum_{n=a}^{a+k+1} \left(c \cdot f(n) \right) = c \cdot f(a+k+1) + \sum_{n=a}^{a+k} \left(c \cdot f(n) \right)$$

$$= c \cdot f(a+k+1) + c \cdot \sum_{n=a}^{a+k} f(n)$$

$$= c \cdot \left(f(a+k+1) + \sum_{n=a}^{a+k} f(n) \right)$$

$$= c \cdot \sum_{n=a}^{a+k+1} f(n)$$
Hip. Inducción

Corolario: Sea $s, t \in \mathbb{R}$

i)

$$s \cdot \sum_{n=a}^{b} f(n) + t \cdot \sum_{n=a}^{b} g(n) = \sum_{n=a}^{b} \left(s \cdot f(n) + t \cdot g(n) \right)$$

Demostración:

$$s \cdot \sum_{n=a}^{b} f(n) + t \cdot \sum_{n=a}^{b} g(n) = \sum_{n=a}^{b} \left(s \cdot f(n) \right) + \sum_{n=a}^{b} \left(t \cdot g(n) \right)$$
 Distributividad de la sumatoria
$$= \sum_{n=a}^{b} \left(s \cdot f(n) + t \cdot g(n) \right)$$
 Asociatividad

ii)

$$\sum_{n=a}^{b} f(n) - \sum_{n=a}^{b} g(n) = \sum_{n=a}^{b} (f(n) - g(n))$$

Demostración:

$$\sum_{n=a}^{b} f(n) - \sum_{n=a}^{b} g(n) = \sum_{n=a}^{b} f(n) + (-1) \sum_{n=a}^{b} g(n)$$

$$= \sum_{n=a}^{b} \left(f(n) + (-1) \cdot g(n) \right)$$
Por (i) de este corolario
$$= \sum_{n=a}^{b} \left(f(n) - g(n) \right)$$

$$\sum_{n=a}^b \left(\sum_{m=s}^t \Bigl(f(n) \cdot g(m) \Bigr) \right) = \left(\sum_{n=a}^b f(n) \right) \cdot \left(\sum_{m=s}^t g(m) \right)$$

Demostración: Sea $n \in D(f)$ arbitrario pero fijo. Notemos que en la sumatoria $\sum_{m=s}^{t} (f(n) \cdot g(m))$, f(n) es constante, por lo que

$$\sum_{n=a}^b \left(\sum_{m=s}^t \Bigl(f(n) \cdot g(m) \Bigr) \right) = \sum_{n=a}^b \left(f(n) \sum_{m=s}^t g(m) \right)$$

De la misma manera, en la sumatoria (de índice n) $\sum_{n=a}^{b} \left(f(n) \sum_{m=s}^{t} g(m) \right)$, se tiene que $\sum_{m=s}^{t} g(m)$ es constante, por lo que

$$\begin{split} \sum_{n=a}^{b} \left(f(n) \sum_{m=s}^{t} g(m) \right) &= \left(\sum_{m=s}^{t} g(m) \right) \cdot \left(\sum_{n=a}^{b} f(n) \right) \\ &= \left(\sum_{n=a}^{b} f(n) \right) \cdot \left(\sum_{m=s}^{t} g(m) \right) \end{split}$$

e)

$$\sum_{n=a}^b \Bigl(f(n) \cdot g(n)\Bigr) \neq \left(\sum_{n=a}^b f(n)\right) \cdot \left(\sum_{n=a}^b g(n)\right)$$

Demostración: Sea a y b = a + 1, tenemos que

$$\sum_{n=a}^{b} (f(n) \cdot g(n)) = f(a) \cdot g(a) + \sum_{a+1}^{a+1} (f(n) \cdot g(n))$$

$$= f(a) \cdot g(a) + f(a+1) \cdot g(a+1)$$

$$\neq f(a) \cdot g(a) + f(a+1) \cdot g(a+1) + f(a+1) \cdot g(a) + f(a) \cdot g(a+1)$$

$$= g(a) \cdot (f(a) + f(a+1)) + g(a+1) \cdot (f(a) + f(a+1))$$

$$= (f(a) + f(a+1)) \cdot (g(a) + g(a+1))$$

$$= \left(\sum_{n=a}^{b} f(n)\right) \cdot \left(\sum_{n=a}^{b} g(n)\right)$$

f)

$$\sum_{n=a}^{b} \frac{f(n)}{g(n)} \neq \frac{\sum_{n=a}^{b} f(n)}{\sum_{n=a}^{b} g(n)}$$

g) Sea $c \in \mathbb{R}$, si $a \leq b$, entonces

$$\sum_{n=a}^{b} c = (b-a+1)c$$

Demostración:

I) Se comprueba para a = b,

$$\sum_{b=a}^{b} c = c = 1 \cdot c = (b - a + 1) \cdot c$$

- II) Si a < b se tiene que
 - i) Se verifica para b = a + 1,

$$\sum_{n=a}^{a+1} c = c + \sum_{n=a+1}^{a+1} c = c + c = 2c = (2+a-a)c = (1+1+a-a)c = ((a+1)-a+1)c$$

ii) Supongamos que se cumple para b=a+k, con $k\in\mathbb{N};$ es decir, suponemos que

$$\sum_{n=a}^{a+k} c = \left((a+k) - a + 1 \right) c$$

iii) Notemos que

$$\sum_{n=a}^{a+k+1} c = c + \sum_{n=a}^{a+k} c$$

$$= c + \left((a+k) - a + 1 \right) c$$

$$= \left(1 + \left((a+k) - a + 1 \right) \right) c$$

$$= \left((a+k+1) - a + 1 \right) c$$
Hip. Inducción

Nota: En esta proposición se restringe que $a \le b$, pues si a > b, se tiene que $\sum_{n=a}^{b} c = 0 \ne (b-a+1)c$; únicamente en el caso que c = 0, se cumpliría la igualdad con a > b.

Definición: (b-a+1) es el número de *iteraciones*, *cíclos*, o *sumandos* de la sumatoria $\sum_{n=a}^{b} f(n)$.

Corolario: Si $c \in \mathbb{R}$ y $n \in \mathbb{N}$, entonces $\sum_{i=1}^{n} c = nc$.

Demostración:
$$\sum_{i=1}^{n} c = ((n-1)+1)c = nc.$$

h) Sea $\ell, m \in \mathbb{R}$ y $c \in \mathbb{Z}$, encuentre las condiciones que deben cumplirse para que

$$\sum_{m=a}^{b} f(\ell + m \cdot n) = \sum_{m=a+c}^{b+c} f(\ell + m \cdot n - c)$$

- I) Notemos que si c=0, la proposición es tautológica; por lo que, en adelante, suponemos que $c\neq 0$.
- II) Si a > b, no importa qué valores tome ℓ o m, la proposición se verifica por definición:

$$\sum_{n=a}^{b} f(\ell + m \cdot n) = 0 = \sum_{n=a+c}^{b+c} f(\ell + m \cdot n - c)$$

III) Si a = b y m = 0,

$$\sum_{n=a+c}^{b+c} f(\ell+m\cdot n-c) = \sum_{n=a+c}^{a+c} f(\ell+m\cdot n-c)$$

$$= f(\ell+0\cdot (a+c)-c)$$

$$= f(\ell+0-c)$$

$$= f(\ell-c)$$

$$\neq f(\ell)$$

$$= f(\ell+0)$$

$$= f(\ell+0)$$

$$= f(\ell+0\cdot a)$$

$$= \sum_{n=a}^{a} f(\ell+m\cdot n)$$

Por lo que descartamos este caso.

IV) Si $a = b, m \neq 0 \text{ y } m \neq 1,$

$$\sum_{n=a+c}^{b+c} f(\ell+m\cdot n-c) = \sum_{n=a+c}^{a+c} f(\ell+m\cdot n-c)$$

$$= f(\ell+m(a+c)-c)$$

$$= f(\ell+ma+mc-c)$$

$$\neq f(\ell+ma)$$

$$= \sum_{n=a}^{a} f(\ell+m\cdot n)$$

$$= \sum_{n=a}^{b} f(\ell+m\cdot n)$$

Por lo que descartamos este caso.

V) Si a = b y m = 1,

$$\sum_{n=a+c}^{b+c} f(\ell+m\cdot n-c) = \sum_{n=a+c}^{a+c} f(\ell+m\cdot n-c)$$

$$= f(\ell+1\cdot (a+c)-c)$$

$$= f(\ell+a)$$

$$= f(\ell+1\cdot a)$$

$$= \sum_{n=a}^{a} f(\ell+m\cdot n)$$

$$= \sum_{n=a}^{b} f(\ell+m\cdot n)$$

Para b = a + 1 se tiene

$$\begin{split} \sum_{n=a}^{b} f(\ell+m\cdot n) &= \sum_{n=a}^{a+1} f(\ell+m\cdot n) \\ &= f(\ell+0\cdot (a+1)) + \sum_{n=a}^{a} f(\ell+0\cdot n) \\ &= f(\ell+0\cdot (a+1)) + f(\ell+0\cdot a) \\ &= f(\ell) + f(\ell) \\ &= 2f(\ell) \\ &\neq 2f(\ell-c) \\ &= f(\ell-c) + f(\ell-c) \\ &= f(\ell+0\cdot (a+c)-c) + f(\ell+0\cdot (a+c+1)-c) \\ &= f(\ell+0\cdot (a+c)-c) + \sum_{n=a+c+1}^{a+c+1} f(\ell+m\cdot n-c) \\ &= \sum_{n=a+c}^{(a+1)+c} f(\ell+m\cdot n-c) \\ &= \sum_{n=a+c}^{b+c} f(\ell+m\cdot n-c) \end{split}$$

Por lo que descartamos este caso.

VII) Si $a < b, m \neq 0$ y $m \neq 1$, Para b = a + 1 se tiene

$$\begin{split} \sum_{n=a}^{b} f(\ell + m \cdot n) &= \sum_{n=a}^{a+1} f(\ell + m \cdot n) \\ &= f(\ell + m \cdot (a+1)) + \sum_{n=a}^{a} f(\ell + m \cdot n) \\ &= f(\ell + m \cdot (a+1)) + f(\ell + m \cdot a) \\ &= f(\ell + ma + m) + f(\ell + ma) \\ &\neq f(\ell + ma + mc - c) + f(\ell + ma + mc + m - c) \\ &= f(\ell + m \cdot (a+c) - c) + f(\ell + m \cdot (a+c+1) - c) \\ &= f(\ell + m \cdot (a+c) - c) + \sum_{n=a+c+1}^{a+c+1} f(\ell + m \cdot n - c) \\ &= \sum_{n=a+c}^{(a+1)+c} f(\ell + m \cdot n - c) \\ &= \sum_{n=a+c}^{b+c} f(\ell + m \cdot n - c) \end{split}$$

Por lo que descartamos este caso.

i) Si b = a + 1,

$$\sum_{n=a}^{b} f(\ell + m \cdot n) = \sum_{n=a}^{a+1} f(\ell + n)$$

$$= f(\ell + (a+1)) + \sum_{n=a}^{a} f(\ell + n)$$

$$= f(\ell + a + 1) + f(\ell + a)$$

$$= f(\ell + a + 1) + f(\ell + (a + c) - c)$$

$$= f(\ell + (a + 1 + c) - c) + \sum_{n=a+c}^{a+c} f(\ell + n - c)$$

$$= \sum_{n=a+c}^{(a+1)+c} f(\ell + n - c)$$

$$= \sum_{n=a+c}^{b+c} f(\ell + m \cdot n - c)$$

ii) Supongamos que se verifica para b = a + k, con $k \in \mathbb{N}$; es decir, supenmos que

$$\sum_{n=a}^{a+k} f(\ell+n) = \sum_{n=a+c}^{(a+k)+c} f(\ell+n-c)$$

iii) Notemos que

$$\sum_{n=a}^{a+k+1} f(\ell+n) = f\left(\ell + (a+k+1)\right) + \sum_{n=a}^{a} f(\ell+n)$$

$$= f(\ell+a+k+1) + f(\ell+a)$$

$$= f(\ell+a+k+1) + f(\ell+(a+c)-c)$$

$$= f\left(\ell + (a+k+1+c) - c\right) + \sum_{n=a+c}^{a+c} f(\ell+n-c)$$

$$= \sum_{n=a+c}^{(a+k+1)+c} f(\ell+n-c)$$

Por lo que en general, planteamos la proposición como sigue: Si $c \in \mathbb{Z}$, $\ell \in \mathbb{R}$, entonces

$$\sum_{l=0}^{b} f(\ell + n) = \sum_{l=0}^{b+c} f(\ell + n - c) \qquad \text{(Cambio de límites 1)}$$

i) Sea $c \in \mathbb{Z}$, $m \in \mathbb{R}$,

$$\sum_{m=a}^{b} f(m-n) = \sum_{m=a+c}^{b+c} f(m-(n-c)) \qquad \text{(Cambio de límites 2)}$$

Demostración:

i) Si a > b,

$$\sum_{n=a}^{b} f(m-n) = 0 = \sum_{n=a+c}^{b+c} f(m-(n-c))$$

ii) Si a = b,

$$\sum_{n=a+c}^{b+c} f(m-(n-c)) = \sum_{n=a+c}^{a+c} f(m-(n-c))$$

$$= f(m-((a+c)-c))$$

$$= f(m-a)$$

$$= \sum_{n=a}^{a} f(m-n)$$

$$= \sum_{n=a}^{b} f(m-n)$$

iii) Si a < b,

i) Se verifica para b = a + 1,

$$\sum_{n=a+c}^{(a+1)+c} f(m-(n-c)) = f\left(m - \left((a+c) - c\right)\right) + \sum_{n=a+c+1}^{a+c+1} f(m-(n-c))$$

$$= f(m-a) + f\left(m - \left((a+c+1) - c\right)\right)$$

$$= f(m-a) + f\left(m - (a+1)\right)$$

$$= f(m-a) + f\left(m - a - 1\right)$$

$$= f(m-a) + f\left(m - (a+1)\right)$$

$$= f(m-a) + \sum_{n=a+1}^{a+1} f(m-n)$$

$$= \sum_{n=a}^{a+1} f(m-n)$$

ii) Supongamos que se verifica para b = a + k, con $k \in \mathbb{N}$; es decir, suponemos que

$$\sum_{n=a}^{a+k} f(m-n) = \sum_{n=a+c}^{(a+k)+c} f(m-(n-c))$$

iii) Notemos que

$$\sum_{n=a+c}^{(a+k+1)+c} f(m-(n-c)) = f\left(m - ((a+k+1+c)-c)\right) + \sum_{n=a+c}^{a+k+c} f(m-(n-c))$$

$$= f\left(m - (a+k+1)\right) + \sum_{n=a}^{a+k} f(m-n)$$
Hip. Ind.
$$= \sum_{n=a}^{a+k+1} f(m-n)$$

j) Sea $m \in \mathbb{R}$ y $c \in \mathbb{Z}$,

$$\sum_{m=a}^{b} f(m \pm n) = \sum_{m=a+c}^{b+c} f(m \pm (n-c))$$
 (Cambio de índice)

Demostración:

i) Por el cambio de límites 1 se tiene que

$$\sum_{n=a}^{b} f(m+n) = \sum_{n=a+c}^{b+c} f(m+(n-c))$$

ii) Por el cambio de límites 2 se tiene que

$$\sum_{n=a}^{b} f(m-n) = \sum_{n=a+c}^{b+c} f(m-(n-c))$$

Nota: El lector encontrará que en ocasiones, en lugar de utilizar este teorema simplemente se trabaja con susbsituciones sobre el índice, por ejemplo:

$$\sum_{i=1}^{n} (i-1) = \sum_{j=0}^{n-1} j$$
 donde $j = i-1$

k) Si $s \leq j \leq t$,

$$\sum_{n=s}^{t} f(n) = \sum_{n=s}^{j} f(n) + \sum_{n=j+1}^{t} f(n) \qquad \text{(Partir la suma)}$$

Nota: Alternativamente podemos escribir esta igualdad como sigue: Si $s \le j \le t$, entonces $\sum_{n=s}^t f(n) = \sum_{n=s}^{j-1} f(n) + \sum_{n=j}^t f(n)$. El lector debería verificar esta equivalencia

Demostración: Consideremos los casos:

I) Si s = j = t,

$$\sum_{n=s}^{t} f(n) = f(s)$$

$$= f(s) + 0$$

$$= \sum_{n=s}^{j} f(n) + \sum_{n=j+1}^{t} f(n)$$

II) Si s < j = t,

$$\sum_{n=s}^{t} f(n) = \sum_{n=s}^{j} f(n)$$

$$= \sum_{n=s}^{j} f(n) + 0$$

$$= \sum_{n=s+1}^{j} f(n) + \sum_{n=s+1}^{t} f(n)$$

III) Si s = j < t,

$$\sum_{n=s}^{t} f(n) = f(s) + \sum_{n=s+1}^{t} f(n)$$
$$= \sum_{n=s}^{j} f(n) + \sum_{n=j+1}^{t} f(n)$$

- **IV)** Si s < j < t. Sea $j \in \mathbb{Z}$ arbitrario pero fijo,
 - i) Si t = j + 1,

$$\sum_{n=s}^{t} f(n) = \sum_{n=s}^{j+1} f(n)$$

$$= f(j+1) + \sum_{n=s}^{j} f(n)$$

$$= \sum_{n=s}^{j} f(n) + f(j+1)$$
Conmutatividad
$$= \sum_{n=s}^{j} f(n) + \sum_{n=j+1}^{t} f(n)$$

- ii) Supongamos que $\sum_{n=s}^{j+k} f(n) = \sum_{n=s}^{j} f(n) + \sum_{n=j+1}^{j+k} f(n)$ para algún $k \in \mathbb{N}$.
- iii) Si t = j + k + 1, notemos que

$$\sum_{n=s}^{t} f(n) = \sum_{n=s}^{j+k+1} f(n)$$

$$= f(j+k+1) + \sum_{n=s}^{j+k} f(n)$$

$$= f(j+k+1) + \sum_{n=s}^{j} f(n) + \sum_{n=j+1}^{j+k} f(n)$$
Hip. Ind.
$$= \sum_{n=s}^{j} f(n) + \sum_{n=j+1}^{j+k} f(n) + f(j+k+1)$$

$$= \sum_{n=s}^{j} f(n) + \sum_{n=j+1}^{j+k+1} f(n)$$

$$= \sum_{n=s}^{j} f(n) + \sum_{n=j+1}^{t} f(n)$$

Nota: En esta proposición se restringe que $s \leq j \leq t$, pues la proposición no es válida para todo $s \geq j \geq t$:

I) Si s > j > t.

$$\sum_{n=s}^{t} f(n) = 0 = \sum_{n=s}^{j} f(n) + \sum_{n=j+1}^{t} f(n)$$

II) Si s > j = t,

$$\sum_{n=s}^{t} f(n) = 0 = \sum_{n=s}^{j} f(n) + \sum_{n=j+1}^{t}$$

III) Si s = j > t,

i)
$$\sum_{n=s}^{j} f(n) + \sum_{n=j+1}^{t} f(n) = f(n) + 0 = f(n)$$
.

ii) $\sum_{n=s}^{t} f(n) = 0.$

El lector notará que para partir la suma en este caso, debe cumplirse que f(n) = 0, pero esto dependerá de cada función y de los íncides, por lo que en general, $f(n) \neq 0$, por ejemplo para cualquier sumatoria $\sum_{n=a}^{b} c$, donde $c \neq 0$.

Corolario:

$$\sum_{n=a}^{b} f(n) = \sum_{n=0}^{b} f(n) - \sum_{n=0}^{a-1} f(n)$$

Demostración:

$$\sum_{n=0}^{b} f(n) - \sum_{n=0}^{a-1} f(n) = \sum_{n=0}^{a} f(n) + \sum_{a+1}^{b} f(n) - \sum_{n=0}^{a-1} f(n)$$
 Partir la suma
$$= \sum_{n=0}^{a-1} f(n) + \sum_{n=a}^{a} f(n) + \sum_{a+1}^{b} f(n) - \sum_{n=0}^{a-1} f(n)$$
 Partir la suma
$$= \sum_{n=a}^{a} f(n) + \sum_{a+1}^{b} f(n)$$
 Partir la suma
$$= \sum_{n=a}^{a} f(n) + \sum_{a+1}^{b} f(n)$$

$$= \sum_{n=a}^{b} f(n)$$

1)

$$\sum_{n=a}^{b} f(n) = \sum_{n=0}^{b-a} f(b-n)$$

Demostración:

I) Si b < a, entonces b - a < 0, por lo que

$$\sum_{n=0}^{b-a} f(b-n) = 0 = \sum_{n=a}^{b} f(n)$$

II) Si b = a,

$$\sum_{n=0}^{b-a} f(b-n) = \sum_{n=0}^{0} f(b-n)$$
$$= f(b-0)$$
$$= f(b)$$
$$= \sum_{n=a}^{b} f(n)$$

III) Si b > a,

i) Se verifica para b = a + 1,

$$\sum_{n=0}^{b-a} f(b-n) = \sum_{n=0}^{(a+1)-a} f(a+1-n)$$

$$= \sum_{n=0}^{1} f(a+1-n)$$

$$= f(a+1-0) + \sum_{n=1}^{1} f(a+1-n)$$

$$= f(a+1) + f(a+1-1)$$

$$= f(a+1) + f(a)$$

$$= f(a) + f(a+1)$$

$$= \sum_{n=a}^{a+1} f(n)$$

$$= \sum_{n=a}^{b} f(n)$$

ii) Supongamos que se verifica para b = a + k, con $k \in \mathbb{N}$, es decir, suponemos que

$$\sum_{n=a}^{a+k} f(n) = \sum_{n=0}^{(a+k)-a} f(a+k-n) = \sum_{n=0}^{k} f(a+k-n)$$

iii) Si b = a + k + 1,

$$\sum_{n=a}^{a+k+1} f(n) = f(a+k+1) + \sum_{n=a}^{a+k} f(n)$$

$$= f(a+k+1) + \sum_{n=0}^{k} f(a+k-n) \qquad \text{Hip. Ind.}$$

$$= f(a+k-(-1)) + \sum_{n=0}^{k} f(a+k-n)$$

$$= \sum_{n=-1}^{k} f(a+k-n) \qquad \text{Definición (de sumatoria)}$$

$$= \sum_{n=-1+(1)}^{k+(1)} f(a+k-(n-1)) \qquad \text{Cambio de índice}$$

$$= \sum_{n=0}^{k+1} f(a+k+1-n)$$

Corolario:

$$\sum_{n=0}^{b} f(n) = \sum_{n=0}^{b} f(b-n)$$

Demostración: La porposición se verifica por el teorema para a=0.

Una nota sobre la notación sigma

Abuso de la notación

Considere el siguiente argumento planteado por un estudiante, y decida si está o no de acuerdo:

Para números reales a y b tales que a < b, hemos definido $\sum_{n=a}^{b} f(n) = f(a) + \sum_{n=a+1}^{b} f(n)$; el lector notará que del lado izquierdo de esta igualdad n=a pero del lado derecho n=a+1, es decir, se emplea el mismo símbolo n para números enteros distintos, lo que resulta útil en este caso ya que la definición de sumatoria está dada recursivamente; sin embargo, de manera minuciosa (y pedante), se podría reescribir como $\sum_{n=a}^{b} f(n) = f(a) + \sum_{n+1=a+1}^{b} f(n+1)$, pero en cada iteración tendríamos que cambiar el índice (inferior) y, con ello, la variable a evaluar, lo que llegaría a ser laborioso, especialmente si se requiere de expresar múltiples iteraciones; por ello, se acude al abuso mencionado.

Extensión

Usualmente, el alcance de una suma se extiende hasta el primer símbolo de suma o resta que no está entre paréntesis o que no es parte de algún término más amplio (por ejemplo, en el numerador de una fracción), de manera que:

$$\sum_{i=1}^{n} i^2 + 1 = \left(\sum_{i=1}^{n} i^2\right) + 1 = 1 + \sum_{i=1}^{n} i^2 \neq \sum_{i=1}^{n} (i^2 + 1)$$

dado que esto puede resultar confuso, generalmente es más seguro encerrar el argumento de la sumatoria entre paréntesis (como en la segunda forma arriba) o mover los términos finales al principio (como en la tercera forma arriba). Una excepción (a la confusión) es cuando se suman dos sumas, como en

$$\sum_{i=1}^{n} i^2 + \sum_{i=1}^{n^2} i = \left(\sum_{i=1}^{n} i^2\right) + \left(\sum_{i=1}^{n^2} i\right)$$