

### Concordia Institute for Information System Engineering (CIISE) Concordia University

#### **INSE 6170 Network Security Architecture and Management**

#### Project 1: Scan the IoT devices

Submitted to: **Professor Carol Fung**Submitted by:

| Aniket Agarwal | 40266485 |
|----------------|----------|
| Kalyani Batle  | 40243967 |



### **Objectives**

- Target operating system Windows 10
- Scan our Wi-Fi network for active IoT devices
- Provide IP and MAC address about each discovered device
- Enable users to input device information and capture packets
- Save captured packets in a pcap file format
- Save pcap filename with the device info in database for 10 IoT devices.



#### **IoT Devices**

- IoT Devices are everyday objects embedded with sensors, software and connectivity to exchange data over the internet.
- It has wide range.
- Each IoT device has a public IP over the internet and a respective MAC address.



## Tools and Libraries Used to Scan Wi-Fi network for IoT Devices

- Python3
- PyQt5 (for GUI interface)
- Scapy to send ARP requests to discover IoT devices and capture packets to and from a specified device in the network.
- Requests to send API request to mavendors.com to get the vendor details of respective MAC addresses of the devices discovered.
- Sqlite3 to store filename and respective IP of device in the database.



#### PyQt5

- Python library to create cross-platform desktop applications with GUI.
- Offers wide range of widgets, layouts and tools for building sophisticated desktop apps.

| ■ IoT Device Scanner      | <u></u>     | <u>.</u> | - |  | × |
|---------------------------|-------------|----------|---|--|---|
| List of Active IoT Device | es:         |          |   |  |   |
| IP Address                | MAC Address | Vendor   |   |  |   |
|                           |             |          |   |  |   |
|                           |             |          |   |  |   |
|                           |             |          |   |  |   |
|                           |             |          |   |  |   |
|                           |             |          |   |  |   |
|                           |             |          |   |  |   |
|                           |             |          |   |  |   |
|                           |             |          |   |  |   |
| Scan Network              |             |          |   |  |   |
| Capture Packets from IP   |             |          |   |  |   |
| Fetch Data                |             |          |   |  |   |



#### Scapy

- Powerful Python Library for packet manipulation and network analysis.
- Allow packet capturing, send and receive packets on a network.
- Makes network discovery easier with Python.



#### Sqlite3

- In-built library in python to create database instances.
- No need to maintain a separate database server.
- Lightweight solution for small to medium sized applications.



# Algorithm to Scan Wi-Fi Network

- Scapy generates an ARP object having destination address as IP range of local Wi-Fi network.
- Generate Ethernet object having destination MAC address as broadcast address to send ARP request to all IP in network.
- Packet is created and send using srp function of scapy.
- Packets received are noted and device info is stored and displayed using PyQt5 GUI interface.



#### Source code for Scanning network

```
def scan_network(self):
    self.progress_indicator.show()
    self.movie.start()
    try:
        arp = ARP(pdst="192.168.0.0/24")
        ether = Ether(dst="ff:ff:ff:ff:ff")
        packet = ether/arp
        result, _ = srp(packet, timeout=3, verbose=False)
        self.device table.setRowCount(0)
        for sent, received in result:
           ip = received.psrc
            mac = received.hwsrc
            vendor = get vendor(mac)
            row position = self.device table.rowCount()
            self.device table.insertRow(row position)
            self.device_table.setItem(row_position, 0, QTableWidgetItem(ip))
            self.device table.setItem(row position, 1, QTableWidgetItem(mac))
            self.device_table.setItem(row_position, 2, QTableWidgetItem(vendor))
        self.movie.stop()
        self.progress indicator.hide()
    except Exception as e:
        self.movie.stop()
        self.progress_indicator.hide()
        QMessageBox.critical(self, "Error", f"Failed to scan network: {str(e)}")
```



# Algorithm to Capture Packets through a Device

- Scapy uses sniff() to capture the packets through a specific device.
- First, packets are filtered based on the device IP as src or dst fields and presence of IP layer.
- Next, packets are captured based on the packet count given by the user.
- Lastly, the packets are stored in a pcap file using wrpcap() function of scapy and stored in the database using sqlite3 INSERT statement.



#### Source code for Packet Capture

```
def run_capture(self, interface, target_ip, packet_count, file_name):
    try:
        def packet_filter(packet):
            return packet.haslayer(IP) and (packet[IP].src == target_ip or packet[IP].dst == target_ip)

        packets = sniff(iface=interface, filter=f"host {target_ip}", count=packet_count, prn=packet_filter)
        wrpcap(file_name, packets)
        self.insert_capture_data(target_ip, file_name)
        self.finished.emit(target_ip, file_name)
    except Exception as e:
        self.error.emit(str(e))
```



### **Displaying Device Information**

- IP Address
- MAC Address
- Vendor Details





# Displaying Stored Device Info in Database

- IP Address
- Packet filename





#### Implementation Demo





#### Conclusion

- In conclusion, the provided application effectively fulfills the specified requirements for scanning a Wi-Fi network for active IoT devices, capturing packets, and saving device information along with the captured packets.
- the application effectively combines the functionalities of network scanning, packet capturing, and database management into a coordinated solution. It provides users with a convenient way to discover and monitor IoT devices on their Wi-Fi network while also facilitating packet capture for further analysis.



## Individual Contribution of Each Team Member

| Name                      | Contribution                                                                                                                                                         |
|---------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Aniket Agarwal (40266485) | <ul> <li>Researched about tools to use</li> <li>Implemented PyQT5 code to make GUI interface</li> <li>Prepared presentation slides</li> </ul>                        |
| Kalyani Batle (40243967)  | <ul> <li>Researched about tools to use</li> <li>Implemented code to scan network and display discovered IoT devices</li> <li>Prepared presentation slides</li> </ul> |



#### THANK YOU

