

Lagrangian density	$\frac{2}{3}t_{3}\;\omega_{,}^{\alpha\prime}\;\;\omega_{\kappa\alpha}^{\;\;\kappa}+\frac{2}{3}t_{2}\;\omega_{,}^{\;\kappa\lambda}\;\;\omega_{\kappa\lambda}^{\;\;\prime}+\frac{1}{3}t_{2}\;\omega_{\kappa\lambda}^{\;\;\prime}\;\;\omega^{\kappa\lambda}_{\;\;\prime}+f^{\alpha\beta}\;\;\tau_{\alpha\beta}+\;\omega^{\alpha\beta\chi}\;\;\sigma_{\alpha\beta\chi}+$	$\frac{2}{3}r_2\partial^{eta}\omega^{etalpha}_{\kappa}\partial_{\mu}\omega^{lpha}_{\beta}^{\kappa} - \frac{1}{3}r_2\partial_{\theta}\omega^{\kappa}_{\beta}^{\kappa}\partial_{\kappa}\omega^{lpha}\beta^{eta} - \frac{2}{3}r_2\partial_{\theta}\omega_{\beta}^{\kappa}\partial_{\kappa}\omega^{eta}\beta^{\kappa} +$	$r_3\partial_{lpha}\omega_{\lambda}^{\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	$\frac{1}{6}t_2\partial^\alpha f_{\kappa\theta}\partial^\kappa f_\alpha^{\ \ \theta} + \frac{1}{6}t_2\partial^\alpha f^\lambda_{\ \ \kappa}\partial^\kappa f_{\alpha\lambda}^{\ \ \lambda} - \frac{2}{3}t_3\omega_{\kappa\alpha}^{\ \ \alpha}\partial^\kappa f'_{\ \ \prime} - \frac{2}{3}t_3\omega_{\kappa\lambda}^{\ \ \lambda}\partial^\kappa f'_{\ \ \prime} -$	$rac{4}{3}t_{3}\partial^{lpha}f_{\kappalpha}\partial^{\kappa}f'_{\ \ \ \ \ \ \ \ } + rac{2}{3}t_{3}\partial^{\kappa}f'_{\ \ \ \ \ } + rac{1}{3}t_{2}\ \omega_{\ \ \ \ } + rac{4}{3}t_{2}\ \omega_{\ \ \ \ \ } + rac{2}{3}t_{2}\ \omega_{\ \ \ \ } + rac{2}{3}t_{2}\ \omega_{\ \ \ \ \ \ } + rac{2}{3}t_{2}\ \omega_{\ \ \ \ \ \ } + rac{2}{3}t_{2}\ \omega_{\ \ \ \ \ \ } + rac{2}{3}t_{2}\ \omega_{\ \ \ \ \ \ \ } + rac{2}{3}t_{2}\ \omega_{\ \ \ \ \ \ } + rac{2}{3}t_{2}\ \omega_{\ \ \ \ \ \ \ } + rac{2}{3}t_{2}\ \omega_{\ \ \ \ \ \ \ \ } + rac{2}{3}t_{2}\ \omega_{\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ } + \frac{2}{3}t_{2}\ \omega_{\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	$\frac{1}{3}t_{2}\ \omega_{\theta/\kappa}\ \partial^{\kappa}f^{'\theta} + \frac{2}{3}t_{2}\ \omega_{\theta\kappa'}\ \partial^{\kappa}f^{'\theta} + \frac{2}{3}t_{3}\ \omega_{/\alpha}^{\ \alpha}\ \partial^{\kappa}f'_{\ \kappa} + \frac{2}{3}t_{3}\ \omega_{/\lambda}^{\ \lambda}\ \partial^{\kappa}f'_{\ \kappa} -$	$\frac{1}{6}t_2\partial^\alpha f^\lambda_{\kappa}\partial^\kappa f_{\lambda\alpha} - \frac{1}{6}t_2\partial_\kappa f_{\beta}^{\lambda}\partial^\kappa f_{\beta}^{\beta} + \frac{1}{6}t_2\partial_\kappa f^\lambda_{\beta}\partial^\kappa f_{\lambda}^{\beta} + \frac{2}{3}t_3\partial^\alpha f^\lambda_{\alpha}\partial^\kappa f_{\lambda\kappa} +$	$\frac{1}{3}r_2\partial_\kappa\omega^{\alpha\beta\theta}\partial^\kappa\omega_{\alpha\beta\theta}+\frac{2}{3}r_2\partial_\kappa\omega^{\theta\alpha\beta}\partial^\kappa\omega_{\alpha\beta\theta}-\frac{2}{3}r_2\partial^\beta\omega_{\mu}^{\ \alpha\lambda}\partial_\lambda\omega_{\alpha\beta}^{\ \ \prime}+$	$\frac{2}{3} r_2 \partial^\beta \omega_{\lambda}{}^{\lambda \alpha} \partial_\lambda \omega_{\alpha\beta}{}^{\prime} - 4 r_3 \partial^\beta \omega_{\lambda}{}^{\lambda \alpha} \partial_\lambda \omega_{\alpha\beta}{}^{\prime} - r_3 \partial_\alpha \omega_{\lambda}{}^{\alpha}{}_{\theta} \partial^\lambda \omega^{\theta \kappa}{}_{\theta} + r_3 \partial_\theta \omega_{\lambda}{}^{\alpha}{}_{\alpha} \partial^\lambda \omega^{\theta \kappa}{}_{\kappa}$
--------------------	--	--	--	---	---	---	---	--	--

$f_{1^-}^{\#2}$	0	0	0	$-\frac{2}{3}$ Ikt	$\tfrac{1}{3}\bar{l}\sqrt{2}kt_3$	0	$\frac{2k^2t_3}{3}$
$f_{1^-}^{\#1}{}_{lpha}$	0	0	0	0	0	0	0
$\omega_{1}^{\#2}{}_{\alpha}$	0	0	0	$-\frac{\sqrt{2}t_3}{3}$	3	0	$-\frac{1}{3}\bar{l}\sqrt{2}kt_3$
$\omega_{1^{\bar{-}}}^{\#1}{}_{\alpha}$	0	0	0	$\frac{2t_3}{3}$	$-\frac{\sqrt{2}t_3}{3}$	0	2 i k t 3 3
$f_1^{\#1}$	$\frac{1}{3}\bar{l}\sqrt{2}kt_2$	<i>ikt</i> 2 3	$\frac{k^2t_2}{3}$	0	0	0	0
$\omega_1^{\#_+^2}$	$\frac{\sqrt{2}\ t_2}{3}$	$\frac{t_2}{3}$	$-\frac{1}{3}$ \bar{I} kt_2	0	0	0	0
$\omega_{1}^{\#1}{}_{\alpha\beta}$	$\frac{1}{6}$ ($\frac{\sqrt{2} t_2}{3}$	$-\frac{1}{3}$ i $\sqrt{2}$ kt ₂	0	0	0	0
	$\omega_1^{\#1} + ^{lphaeta}$	$\omega_1^{\#2} + \alpha^{\beta}$	$f_1^{#1} + \alpha \beta$	$\omega_{1}^{\#_{1}} +^{\alpha}$	$\omega_1^{\#^2} +^{lpha}$	$f_{1^{\bar{-}}}^{\#1} +^{\alpha}$	$f_{1}^{#2} + ^{\alpha}$

 ∞

 $\tau_{1}^{\#1}{}^{\alpha} == 0$

 $\tau_{1}^{\#2}{}^{\alpha}-ik\ \sigma_{1}^{\#1}{}^{\alpha}=0$

 $^{\circ}$

 $\sigma_{1}^{\#1}{}^{\alpha} + 2 \ \sigma_{1}^{\#2}{}^{\alpha} = 0$

 \sim

0

 $\iota_1^{\#1}{}^{\alpha\beta} + ik \; \sigma_1^{\#2}{}^{\alpha\beta} ==$

 $\sigma_{2^{-}}^{\#1}\alpha\beta\chi == 0$

3 1 1 #

 $\tau_0^{\#1} - 2 \, \bar{l} \, k \, \sigma_0^{\#1} = 0$

Source constraints

SO(3) irreps

 $\tau_{0}^{\#2} == 0$

	$\omega_{0^{\text{-}}}^{\#1}$	0	0	0	$k^2 r_2 + i$	
	$f_{0}^{#2}$	0	0	0	0	
24	$f_{0}^{\#1}$	$-i \sqrt{2} k t_3$	$2 k^2 t_3$	0	0	
 #	$\omega_{0}^{\#1}$	t3	$i\sqrt{2}kt_3$	0	0	
otal 1		$\nu_{0}^{\#1}$ †	$f_{0}^{\#1}$ \dagger	$f_{0}^{#2} \uparrow$	$\omega_{0}^{\#1}$ \dagger	

0

0

 $f_{2^+}^{\#1}\dagger^{\alpha\beta}$

 $\omega_2^{\#1} \dagger^{\alpha\beta\chi}$

5 2

0 ==

 $\tau_2^{\#1\,\alpha\beta}$

 $\omega_{2^{+}\alpha\beta}^{\#1} f_{2^{+}\alpha\beta}^{\#1} \omega_{2^{-}\alpha\beta\chi}^{\#1}$

0

0

0

0

0

0

	Massive particl	е
? /	Pole residue:	- -
$J^P = 0^-$	Polarisations:	1
k^{μ}	Square mass:	$-\frac{t}{r}$
?	Spin:	0
	Parity:	0

	Massive partic	e
? $J^{P} = 0^{-}$ k^{μ}	Pole residue:	$-\frac{1}{r_2} > 0$
	Polarisations:	1
	Square mass:	$-\frac{t_2}{r_2} > 0$
?	Spin:	0
	Parity:	Odd

(No massless particles)

Unitarity conditions

 $r_2 < 0 \&\& t_2 > 0$