CMPSC 465 Data Structures and Algorithms Spring 2022

Instructor: Chunhao Wang

(Textbook, Section 7.1)

Linear Programming

Duality of LP (I)

Consider

maximize
$$x_1 + 2x_2$$

subject to $x_1 \le 20$
 $x_2 \le 30$
 $x_1 + x_2 \le 40$
 $x_1, x_2 \ge 0$

Can we show the optimal solution is at least 60? Check (0, 30)

Can we show that optimal solution is at most 90? Use linear combinations constraints

Duality of LP (II)

Define a variable for each constraint

maximize
$$x_1 + 2x_2$$

subject to $x_1 \le 20$ y_1
 $x_2 \le 30$ y_2
 $x_1 + x_2 \le 40$ y_3
 $x_1, x_2 > 0$

Adding them together:

$$(y_1 + y_3)x_1 + (y_2 + y_3)x_2 \le 20y_1 + 30y_2 + 40y_3$$

We let $y_1 + y_3 \ge 1$ and $y_2 + y_3 \ge 2$ to get an upper bound on $x_1 + 2x_2$:
 $x_1 + 2x_2 \le (y_1 + y_3)x_1 + (y_2 + y_3)x_2 \le 20y_1 + 30y_2 + 40y_3$

Duality of LP (III)

Primal LP

maximize
$$x_1 + 2x_2$$

subject to $x_1 \le 20$
 $x_2 \le 30$
 $x_1 + x_2 \le 40$
 $x_1, x_2 \ge 0$

Optimal solution:
$$(x_1, x_2) = (10, 30) \implies x_1 + 2x_2 = 70$$

Dual LP

minimize
$$20y_1 + 30y_2 + 40y_3$$

subject to $y_1 + y_3 \ge 1$
 $y_2 + y_3 \ge 2$
 $y_1, y_2, y_3 \ge 0$

Optimal solution:

$$(y_1, y_2, y_3) = (0, 1, 1) \Longrightarrow$$

 $20y_1 + 30y_2 + 40y_3 = 70$

Duality of LP(IV)

More generally

Primal LP

max
$$c_1x_1 + c_2x_2 + \cdots + c_nx_n$$

s.t. $a_{11}x_1 + a_{12}x_2 + \cdots + a_{1n}x_n \le b_1$
 $a_{21}x_1 + a_{22}x_2 + \cdots + a_{2n}x_n \le b_2$
 \vdots
 $a_{m1}x_1 + a_{m2}x_2 + \cdots + a_{mn}x_n \le b_m$

Dual LP

min
$$b_1y_1 + b_2y_2 + \cdots + b_my_m$$

s.t. $a_{11}y_1 + a_{21}y_2 + \cdots + a_{m1}y_m \ge c_1$
 $a_{12}y_1 + a_{22}y_2 + \cdots + a_{m2}y_m \ge c_2$
 \vdots
 $a_{1n}y_1 + a_{2n}y_2 + \cdots + a_{mn}y_m \ge c_n$
 $y_1, y_2, \dots, y_m \ge 0$

 $x_1, x_2, \ldots, x_n > 0$

Duality of LP (V)

Duality of flow and cut

For LP we have:

Theorem (Weak Duality)

A feasible solution to the dual LP is an upper bound on any feasible solution to the primal LP

Theorem (Strong Duality)

The optimal solution to the dual LP is equal to the optimal solution to the primal LP

