第二节

线性微分方程通解的结构

- 一、二阶线性微分方程举例
- 二、二阶线性微分方程解的性质
- 三、二阶线性微分方程解的结构

一、二阶线性微分方程举例

例1 设有一弹簧下挂一重物,如果使物体具有一初始速度 $v_0 \neq 0$,物体便离开平衡位置,并在平衡位置的近作上下振动.试确定物体的振动规律

$$x = x(t)$$
.

解 受力分析

$$f_0 = P$$
, $kl = mg$

- 1.恢复力 f = -kx,
- $2. 阻力 R = -\mu \frac{\mathrm{d} x}{\mathrm{d} t};$

若受到铅直干扰力 $F = H \sin pt$,

$$\frac{d^2 x}{dt^2} + \frac{\mu}{m} \frac{dx}{dt} + \frac{k}{m} x = \frac{H}{m} \sin pt \text{ 有阻尼强迫振动 的方程}$$

$$Lc\frac{\mathrm{d}^{2}u_{c}}{\mathrm{d}t^{2}} + 2\beta\frac{\mathrm{d}u_{c}}{\mathrm{d}t} + \omega_{0}^{2}u_{c} = \frac{E_{m}}{LC}\sin\omega t$$

串联电路的振荡方程

$$\frac{d^2 y}{dx^2} + P(x)\frac{dy}{dx} + Q(x)y = f(x)$$
—— 二阶线性微分方程

当f(x) ≡ 0时,二阶齐次线性微分方程

当 $f(x) \neq 0$ 时,二阶非齐次线性微分方程

n 阶线性微分方程:

$$y^{(n)} + p_1(x)y^{(n-1)} + \dots + p_{n-1}(x)y' + p_n(x)y = f(x).$$

二、二阶线性微分方程解的性质

二阶线性微分方程解的性质

$$y'' + p(x)y' + q(x)y = 0 (6.1)$$

$$y'' + p(x)y' + q(x)y = f(x)$$
 (6.2)

性质 1 (齐次线性方程解的叠加原理)

若函数 $y_1(x)$ 与 $y_2(x)$ 是方程(6.1)的两个

解,则
$$y = C_1 y_1 + C_2 y_2$$
 也是(6.1)的解.

 $(C_1, C_2$ 是任意常数)

$$y'' + p(x)y' + q(x)y = 0 (6.1)$$

$$y'' + p(x)y' + q(x)y = f(x)$$
 (6.2)

性质2 若 y(x)是方程 (6.1)的解, $y^*(x)$ 是方程 (6.2)的解,则 $y(x) + y^*(x)$ 必是方程 (6.2)的解.

性质3 若 $y_1(x)$, $y_2(x)$ 均是非齐次线性方程 (6.2)的解,则 $y_1(x) - y_2(x)$ 必是齐次线性方程 (6.1)的解.

性质4(非齐次线性方程解的叠加原理)

若 $y_i(x)$ 是方程:

$$y'' + p(x)y' + q(x)y = f_i(x)$$
 $(i = 1, 2, \dots, n)$

的解,则 $\sum_{i=1}^{n} c_i y_i(x)$ 是方程:

$$y'' + p(x)y' + q(x)y = \sum_{i=1}^{n} c_i f_i(x)$$

的解,其中 c_1,c_2,\cdots,c_n 均为常数.

注 性质1~性质4可推广到 n阶线性微分 方程的情形.

例2 已知
$$y_1 = \frac{x}{2} \sin x$$
 和 $y_2 = -\frac{1}{8} \cos 3x$ 分别

是方程: $y'' + y = \cos x$,

$$y'' + y = \cos 3x$$

的解,试求 $y'' + y = \cos x \cos 2x$ 的一个特解.

$$\cos x \cos 2x = \frac{1}{2}(\cos x + \cos 3x)$$

 $: y_1$ 满足: $y'' + y = \cos x$,

 y_2 满足: $y'' + y = \cos 3x$,

$$\therefore y = \frac{1}{2}(y_1 + y_2) = \frac{x}{4}\sin x - \frac{1}{16}\cos 3x$$
为所求特解.

三、二阶线性微分方程解的结构

回顾:
$$y' + p(x)y = 0$$
 (6.3)
 $y' + p(x)y = q(x)$ (6.4)

若 Y为(6.3)的通解, y^* 是(6.4)的一个特解,则 $Y + y^*$ 是(6.4)的通解.

问题1 对于方程

$$y'' + p(x)y' + q(x)y = f(x)$$
 (6.2)

是否有类似的结论?

问题2 若 $y_1(x)$, $y_2(x)$ 均是二阶齐次线性方程 (6.1)的解, $y = C_1 y_1 + C_2 y_2$ 一定是(6.1)的通解吗?

答: 不一定.

例如: $y_1(x)$ 是某二阶齐次线性方程的解,则 $y_2(x) = 2y_1(x)$ 也是齐次线性方程的解

但是 $C_1y_1(x) + C_2y_2(x) = (C_1 + 2C_2)y_1(x)$

并不是通解. 为解决通解的判别问题,还需引入

函数的线性相关与线性无关概念.

定义12.1 设 $y_1(x), y_2(x), \dots, y_n(x)$ 是定义在

区间 I 上的n 个函数,若存在不全为 0 的常数 k_1, k_2, \dots, k_n ,使得

$$k_1 y_1(x) + k_2 y_2(x) + \dots + k_n y_n(x) \equiv 0, x \in I$$

则称这 n个函数在 I 上线性相关; 否则称为 线性无关.

例3 下列各函数组在给定区间上是线性相关 还是线性无关?

(1)
$$e^{x}, e^{-x}, e^{2x}$$
 $(x \in (-\infty, +\infty))$; 线性无关
解 若 $k_{1}e^{x} + k_{2}e^{-x} + k_{3}e^{2x} \equiv 0$,
则 $k_{1}e^{x} - k_{2}e^{-x} + 2k_{3}e^{2x} \equiv 0$,
 $k_{1}e^{x} + k_{2}e^{-x} + 4k_{3}e^{2x} \equiv 0$,
令 $x = 0$, 得 $\begin{cases} k_{1} + k_{2} + k_{3} = 0 \\ k_{1} - k_{2} + 2k_{3} = 0 \end{cases}$
 $\begin{cases} k_{1} + k_{2} + 4k_{3} = 0 \end{cases}$

求解得 $k_1 = k_2 = k_3 = 0$.

(2) $1, \cos^2 x, \sin^2 x, (x \in (-\infty, +\infty));$

故该函数组在任何区间 I 上都线性相关;

例4 证明: 函数组 $1, x, x^2, \dots, x^n$ 在任何区间 I上线性无关.

证 (用反证法)

假设: $1, x, x^2, \dots, x^n$ 在区间 I上线性相关则 3不全为零的常数 C_0, C_1, \dots, C_n

使得 $C_0 + C_1 x + \dots + C_n x^n \equiv 0, x \in I$ 令 $p_n(x) = C_0 + C_1 x + \dots + C_n x^n$

则 $p_n(x)$ 至多是x的n次多项式,从而至多有n个零点,故

$$p_n(x) = C_0 + C_1 x + \dots + C_n x^n \neq 0, \quad x \in I$$

矛盾!

 \therefore 1, x, x^2 , \dots , x^n 在任何区间 I上线性无关.

特别地,对于两个函数的情形:

定理 设 $y_1(x), y_2(x)$ 在 I = [a,b]上连续,若

$$\frac{y_1(x)}{y_2(x)} \neq 常数或 \frac{y_2(x)}{y_1(x)} \neq 常数$$

则函数 $y_1(x)$ 与 $y_2(x)$ 在 I 上线性无关.

 $\therefore \sin x, \cos x$ 在任何区间上线性无关.

1.齐线性微分方程解的结构

定理 12.1 (齐次线性方程(6.1)的通解结构)

如果 $y_1(x)$ 与 $y_2(x)$ 是方程(6.1)的两个线性无关的特解, 那么 $y = C_1 y_1 + C_2 y_2$ 就是方程(6.1)的通解.

推论 设 $y_i(x)$ $(i = 1, 2, \dots, n)$ 是n 阶齐次线性微分

方程:
$$y^{(n)} + p_1(x)y^{(n-1)} + \dots + p_{n-1}(x)y' + p_n(x)y = 0$$

n个线性无关的特解,则此方程的通解为

$$y(x) = C_1 y_1(x) + C_2 y_2(x) + \dots + C_n y_n(x)$$

其中 C_1, C_2, \dots, C_n 为任意常数.

例5 验证: $y_1 = \cos x$, $y_2 = \sin x$ 均是方程 y'' + y = 0 的解, 并求此方程的通 解.

$$\frac{\text{lin}}{\text{lin}}: (\cos x)'' + \cos x = -\cos x + \cos x \equiv 0$$
$$(\sin x)'' + \sin x = -\sin x + \sin x \equiv 0$$

 $\therefore y_1 = \cos x, y_2 = \sin x$ 均是所给方程的解.

又:
$$\frac{y_2}{y_1} = \tan x \neq 常数$$
,

 $\therefore y = C_1 \cos x + C_2 \sin x$ 是所给方程的通解.

2. 非齐线性微分方程解的结构

定理12.2 (二阶非齐次线性方程(6.2)的解的结构)

设y*是二阶非齐次线性方程

$$y'' + p(x)y' + q(x)y = f(x)$$
 (6.2)

的一个特解,Y是与(6.2)对应的齐次线性方程(6.1)

的通解,那么 $y = Y + y^*$ 是二阶非齐次线性微分方程(6.2)的通解.

证 由性质3,可知

y = Y(x) + y*(x) 是非齐次线性方程(6.2)的解,

又Y 中含有两个独立任意常数,因而

$$y = Y(x) + y * (x)$$

也含有两个独立任意常数,因而它是(6.2)的通解。

例6 设
$$y_1, y_2, y_3$$
 是微分方程
$$y'' + p(x)y' + q(x)y = f(x)$$

的三个不同解,且 $\frac{y_1-y_2}{y_2-y_3} \neq 常数$,

则该微分方程的通解为 (1).

(A)
$$C_1y_1 + C_2y_2 + y_3$$
;

(B)
$$C_1(y_1-y_2)+C_2(y_2-y_3)$$
;

$$(C) C_1y_1 + C_2y_2 + C_3y_3;$$

(D)
$$C_1(y_1-y_2)+C_2(y_2-y_3)+y_3$$
.

例7 已知 $y_1 = x^2$, $y_2 = x + x^2$, $y_3 = e^x + x^2$ 都是方程

$$(x-1)y''-xy'+y=-x^2+2x-2$$
 (1)

的解, 求此方程的通解 .

解 由性质3, 知 $\tilde{y}_1 = y_2 - y_1 = x$, $\tilde{y}_2 = y_3 - y_1 = e^x$

均是对应齐次线性方程:

$$(x-1)y'' - xy' + y = 0 (2)$$

的解.

又:
$$\frac{\widetilde{y}_1}{\widetilde{y}_2} = \frac{x}{e^x} \neq 常数,$$

 \ddot{y}_1 与 \ddot{y}_2 线性无关

齐次线性方程(2)的通解为:

$$Y = C_1 \widetilde{y}_1 + C_2 \widetilde{y}_2 = C_1 x + C_2 e^x$$

由定理12.2,知

原方程(1)的通解为:

$$y = Y + y_1 = C_1 x + C_2 e^x + x^2$$
.

- 注 求二阶非齐次线性微分方程(6.2) 的通解 的关键:
- 1°确定与其相对应的二阶齐次线性方程 (6.1)的两个线性无关的解;
- 2° 求(6.2) 的一个特解.

内容小结

- 1、二阶线性微分方程解的性质 解的叠加原理
- 2、二阶线性微分方程解的结构 函数组线性相关与线性无关

思考题

齐次线性方程有一特解 为 x^2 ,试求:

- (1) P(x), f(x)的表达式;
- (2) 此方程的通解 .

思考题解答

(1) 由条件可得

$$\begin{cases} 2 + P(x)2x = 0\\ \frac{2}{x^3} + P(x)(-\frac{1}{x^2}) = f(x) \end{cases}$$

解得
$$P(x) = -\frac{1}{x}, \quad f(x) = \frac{3}{x^3}$$

代入原方程,得
$$y'' - \frac{1}{x}y' = \frac{3}{x^3}$$

$$y''-\frac{1}{x}y'=\frac{3}{x^3}$$

(2) 显见
$$y'' - \frac{1}{x}y' = 0$$
 有一特解 $y = 1$,

故齐次线性方程的通解 $Y = C_1 + C_2 x^2$

由解的结构定理知,

原方程的通解为 $y = C_1 + C_2 x^2 + \frac{1}{x}$

备用题

例6-1 设 $y_1(x), y_2(x)$ 是微分方程

$$y' + P(x)y = Q(x)$$

的两个不同特解,则此 微分

方程的通解是 $\underline{y = C(y_1 - y_2) + y_1}$

$$mathbb{m}$$
 : $y_1 - y_2 \neq 0$ 是 $y' + P(x)y = 0$ 的解

- $C(y_1 y_2)$ 也是该方程 的解,且是通解.
- : 所给非齐次线性方程的通解为:

$$y = C(y_1 - y_2) + y_1$$

