1

Corresponding author: Lovro Palaversa

lp@irb.hr

PhotoD: LSST photometric distances out to 100 kpc.

Lovro Palaversa 📵,¹ Željko Ivezić 📵,² and Karlo Mrakovčić 🕞

¹Ruder Bošković Institute, Bijenička cesta 54, 10000 Zagreb, Croatia
 ²Department of Astronomy, University of Washington, Box 351580, Seattle, WA 98195, USA
 ³Faculty of Physics, University of Rijeka, Radmile Matejčić 2, 51000 Rijeka, Croatia

ABSTRACT

Abstract here, mind the 250 word limit.

Keywords: Distance measure (395) — Interstellar extinction (841) — Photometry (1234) — Stellar distance (1595) — Two-color diagrams (1724)

1. INTRODUCTION

10

Thanks to the Vera C. Rubin observatory's Legacy 11 ¹² Survey of Space and Time (LSST), for the first time in 13 history, an astronomical catalog will contain more Milky 14 Way stars than there are living people on Earth – of the 15 order 10-20 billion, depending on model assumptions. 16 In order to map the Milky Way in three dimensions, 17 distances to these stars must be accurately estimated. 18 In this paper we describe a method that will deliver 19 LSST-based stellar distance estimations complementary 20 to Gaia's state-of-the-art trigonometric parallaxes and 21 reach about 10 times further, to approximately 100 kpc. 22 These results will be transformative for the studies of 23 the Milky Way in general, and the stellar and the dark 24 matter halo in particular as never before was there a 25 survey that simultaneously observed roughly two thirds of the sky, to the co-added depth of $r\approx 26$ mag.

A bit about the importance of the distance estimation in the MW, dust implications (for extragalactic science too).

There are a variety of astronomical methods to esintimate distances to stars, ranging from direct geometizeric (trigonometric) methods for nearby stars to indirect indirect methods based on astrophysics for more distant stars.

Mention Bailer-Jones et al. (2021), Gordon et al. (2016), Green et al. (2014, 2015, 2019), Jurić et al. (2008) and Lallement et al. (2014), Queiroz et al. (2018). Layout of the paper is...

Рното 3

2. METHOD

38

The photometric distance estimation method (here-a0 after photod) is conceptually quite simple and relies on the strong correlations between the stellar colors and spectral energy distributions (SED) for dominant stellar populations. The SEDs, and consequently colors, are determined by the effective temperature $(T_{\rm eff})$, the surface gravity (usually denoted as log(g)), and the metallicity ([M/H]), or alternatively, by the absolute magnitude in band b ($M_{\rm b}$), [M/H] and age.

The distributions that describe these correlations are obtained either from models or from observations. For example, the distribution of stellar SEDs in the color-color diagram in the middle and left panels of Figure 1 provide key insights in stellar evolution and classification of different stellar populations such as main-sequence stars, giant stars, white dwarf stars, a majority of unservices resolved binary stars and even extragalactic objects. Analogous distributions are responsible for the abundant structure seen in the Hertzsprung-Russell diagram (HRD).

Metallicity is an important factor in these correlations, as it has a strong effect on the luminosity of the stars. This is reflected in the width of the main stellar loci of the two-color diagrams (middle and right hand panels in Figure 1 and the color-absolute magnitude diagrams (CAMD) in Figure 2. The best photometric estimators of metallicity are colors whose shorter-wavelength component includes the metal absorbtion bands at near-UV wavelengths, short of Balmer break ($300 \lesssim \lambda$ [nm] $\lesssim 400$). Therefore, the LSST has a comparative advantage over the surveys lacking u-band measurements, and could provide accurate distances within the range of 5-110%. A plot of model spectra, fixed, log(g) and T_{eff} , several different metallicities?

Extinction is another major source of systematic errors in the process of luminosity and distance determirors nation. The fact that the extinction vector is nearly roparallel to the main stellar locus in the two-color diagrams gives rise to degeneracies that complicate the derows termination of the stellar type. An example is displayed rows in Figure 3, where in the left panel any of the different star types designated as 1,2 and 3 can have the same subserved colors as the star marked as "Obs". This degeneracy is a result of the combination of colors chosen for the two-color diagram and depends on the position on the stellar locus and the adopted extinction curve parametrized by a single parameter R_V where A_V stands for extinction in V-band and $E(B_{88} \ V)$ is the color excess. This relationship can be extended to an arbitrary photometric bandpass λ :

$$A_{\lambda} = C_{\lambda}(R_V)A_r,\tag{2}$$

with A_r designating extinction in r-band and $C_{\lambda}(R_V)$ describing the shape of the extinction curve. The degeneracy from the left panel in Figure 3 can be broken if several different colors are used, particularly those towards the infrared. There the stellar locus is not as kinked and the extinction vector is not parallel to it. A possible example is shown in the right-hand panel of the Fig. 3, where r-i and i-z colors are used, and assuming a fixed extinction law a unique solution for the extinction is possible.

Explain the choice of RV.

115

Another important degeneracy arises from the fact that even for a fixed $T_{\rm eff}$ and [Fe/H], the log(g) and thus the luminosity are not uniquely determined by the colors: a degeneracy may exist between the giant branch and the main sequence as the colors constructed from log(g) ugrizy bands are not sensitive to log(g).

We adopt a Bayesian framework in which we simultaneously fit for $M_{\rm b}$, [Fe/H] and $A_{\rm r}$, assuming a fixed RV value of 3.1^1 The posterior for each individual star with LSST photometry is then given as:

$$P(M_{\rm b}, [Fe/H], A_{\rm r} | \vec{c}) = \frac{P(\vec{c} | M_{\rm b}, [Fe/H], A_{\rm r}) P(M_{\rm b}, [Fe/H], A_{\rm r})}{P(\vec{c})}$$
(3)

with \vec{c} standing for the vector of input colors (*u-g*, *g-r* and so on). The log-likelihood is given by:

$$ln(\mathcal{L}) = C - \frac{1}{2} \sum_{i=1}^{N} \left(\frac{c_i^{obs} - c_i^{mod}}{\sigma_i} \right)^2 \tag{4}$$

where c_i^{obs} are the observed colors and c_i^{mod} the model colors. The priors are established by partitioning the TRILEGAL galaxy model (Dal Tio et al. 2022) in healpixels, and each of the pixel in one-magnitude wide bins in apparent magnitude. The model colors are then obtained from models based on SDSS results (reference), where the input for the models are the $M_{\rm r}$ and the [Fe/H] obtained from TRILEGAL. Given the assumed extinction curve, these colors are then reddened up to the maximum reddening which is estimated from Schlegel et al. (1998) (SFD98) maps. The latter upper

 $R_V = \frac{A_V}{E(B-V)},\tag{1}$

 $^{^{1}}$ In principle RV could be also fitted for.

Figure 1. The blue dots in the left panel show color-magnitude diagram for 841,000 stars from the SDSS Stripe 82 Standard Star Catalog that have Gaia matches within 0.15 arcsec (after correcting for proper motion using Gaia measurements). A subset of 415,000 stars with r < 22 and u < 22 are shown as red dots, and 409,000 of those that also have 0.2 < g - i < 3.5 are shown as cyan dots. Finally, 63,000 stars that have signal-to-noise ratio for Gaia's parallax measurements of at least 20 are shown as green dots. The same color scheme is used in other two panels. The three yellow lines in the middle panel show stellar locus parametrization used by Green et al. (2014) for three values of metallicity (left to right): [Fe/H] = -2.0, -1.0, 0.0. In the right panel, the impact of metallicity on color-color tracks is negligible and all three are indistinguishable from each other.

Figure 2. The left panel shows the absolute magnitude vs. color parametrization for main sequence and red giant stars. The symbols are color-coded by metallicity, ranging from [Fe/H] = -2.5 to 0.0 (blue to red). The three lines correspond to three values of metallicity: [Fe/H] = -2.0, -1.0, 0.0 (dot-dashed, solid and dashed, respectively). The middle panel shows a sample of 63,000 stars that have signal-to-noise ratio for Gaia's parallax measurements of at least 20 (white dwarfs can be seen in the lower left corner). The dot-dashed, solid and dashed black lines are the same as in the left panel. For comparison, the dotted lines were computed using eqs. A2 and A7 from Ivezic et al. (2008). The right panel shows a sample of 415,000 stars with r < 22 and u < 22 as red dots, and 409,000 of those that also have 0.2 < g - i < 3.5 as cyan dots. Their absolute magnitudes were computed using the so-called "photo-geometric" distances from Bailer-Jones et al. (2021). The dot-dashed, solid and dashed black lines are the same as in the left and middle panels. About 10,000 outliers seen at g - i = 0.4 and Mr > 7 are predominantly found at the faint end (r > 20).

Figure 3. Add caption.

127 limit is used in order to provide a realistic stop condi-

128 tion on the amount of extinction and reduce the pro-129 cessing time. This is usually a valid assumption because 130 the SFD98 maps provide *total* extinction along a line 131 of sight. In order to account for the eventual under-132 estimation in the SFD98 maps we increase the SFD98 133 extinctions by 20%.

Our fitting procedure is also executed on an adaptive grid, a coarse search over the parameter space is performed first in order to establish the layout of the manifold. However, care is taken that any possible local minima are not missed by appropriately adjusting the Рното 5

139 step size how?. The located maxima are then explored
140 with a smaller step size (adjusted how?).
141 In addition to the approach described here, we also
142 tested Markov Chain Monte Carlo and neural net143 work approaches that will be/are described in forthcom144 ing/published papers.

Figure 4. Write caption: prior, likelihood, posterior maps

Figure 5. Write caption: 2-param covariances and marginal distributions

PHOTOD 7

Figure 6. Write caption: prior, likelihood, posterior marginal distributions

Figure 7. Write caption: TRILEGAL mean values of input model params in umag vs. g-i

Figure 8. Write caption: performance for Mr vs. true Mr and FeH

Figure 9. Write caption: performance for FeH vs. true Mr and FeH

Figure 10. Write caption: performance for Ar vs. true Mr and FeH

Figure 11. Write caption: performance for Mr vs. estimated Mr and FeH

РнотоD 9

APPENDIX

REFERENCES

```
146 Bailer-Jones, C. A. L., Rybizki, J., Fouesneau, M.,
     Demleitner, M., & Andrae, R. 2021, AJ, 161, 147,
147
     doi: 10.3847/1538-3881/abd806
148
149 Dal Tio, P., Pastorelli, G., Mazzi, A., et al. 2022, The
     Astrophysical Journal Supplement Series, 262, 22,
150
     doi: 10.3847/1538-4365/ac7be6
151
152 Gordon, K. D., Fouesneau, M., Arab, H., et al. 2016, The
```

- Astrophysical Journal, 826, 104,
- 153
- doi: 10.3847/0004-637X/826/2/104 154
- 155 Green, G. M., Schlafly, E., Zucker, C., Speagle, J. S., &
- Finkbeiner, D. 2019, The Astrophysical Journal, 887, 93, 156
- doi: 10.3847/1538-4357/ab5362 157
- 158 Green, G. M., Schlafly, E. F., Finkbeiner, D. P., et al. 2014,
- ApJ, 783, 114, doi: 10.1088/0004-637X/783/2/114

- 160 —. 2015, ApJ, 810, 25, doi: 10.1088/0004-637X/810/1/25
- 161 Jurić, M., Ivezić, Ž., Brooks, A., et al. 2008, The
- Astrophysical Journal, 673, 864, doi: 10.1086/523619
- Lallement, R., Vergely, J.-L., Valette, B., et al. 2014, A&A,
- 561, A91, doi: 10.1051/0004-6361/201322032
- 165 Queiroz, A. B. A., Anders, F., Santiago, B. X., et al. 2018,
- Monthly Notices of the Royal Astronomical Society, 476,
- 2556, doi: 10.1093/mnras/sty330
- 168 Schlegel, D. J., Finkbeiner, D. P., & Davis, M. 1998, The
- Astrophysical Journal, 500, 525, doi: 10.1086/305772 169