Somos infinitas possibilidades

LISTA DE EXERCÍCIOS 03

1 Determine a transformada de Laplace dos seguinte sinais. Você pode tanto usar a definição, por integração direta, quanto as propriedades da transformada e a tabela de transformadas básicas.

a)
$$x(t) = \cosh(at)$$
. Dica: $\cosh x = \frac{1}{2} (e^x + e^{-x})$

b)
$$x(t) = \sinh(at)$$
. Dica: $\cosh x = \frac{1}{2} (e^x - e^{-x})$

c)
$$x(t) = \frac{d}{dt} (te^{-t} \cos t)$$

d)
$$x(t) = 5u(t/2)$$

e)
$$x(t) = 6\sin(3t) + 8\cos(3t)$$

f)
$$x(t) = 2tu(t-4)$$

g)
$$x(t) = (t-4)u(t-2)$$

h)
$$\int_0^t e^{\tau} d\tau$$

i)
$$\int_0^t e^{-\tau} \cos \tau d\tau$$

j)
$$x(t) = 3t^4e^{-2t}$$

k)
$$x(t) = t^2 \cos(2t + 30^{\circ})$$
.
 $Dica: \cos(x + y) = \cos x \cos y - \sin x \sin y$

1)
$$x(t) = e^{-2t}\cos(4t)$$

$$m) x(t) = e^{-3t} \cosh(2t)$$

n)
$$x(t) = 3te^{-2t}\sinh(4t)$$

 $2^{\rm \ Encontre\ a\ transformada\ de\ Laplace\ dos\ sinais}_{\rm \ apresentados\ abaixo:}$

$$3^{\text{Dadas as funções abaixo}}, \\ x\left(t\right) = 2\delta\left(t\right), \, y\left(t\right) = 4u\left(t\right), \, z\left(t\right) = e^{-2t}u\left(t\right)$$

calcule as seguintes operações de convolução. Você pode usar tanto a integração direta quanto a propriedade de convolução da transformada de Laplace.

$$a) x(t) * y(t)$$

b)
$$x(t) * z(t)$$

c)
$$y(t) * z(t)$$

A Para certo sistema LITC, a resposta ao impulso é $h\left(t\right)=4e^{-2t}u\left(t\right)$. Encontre a resposta de estado nulo $y\left(t\right)$ do sistema ao sinal de entrada $x\left(t\right)=\delta\left(t\right)-2e^{-2t}u\left(t\right)$

Respostas

1. (a)
$$\frac{s}{s^2-a^2}$$
; (b) $\frac{a}{s^2-a^2}$; (c) $\frac{s^2(s+2)}{(s^2+2s+2)^2}$; (d) $\frac{5}{s}$; (e) $\frac{8s+18}{s^2+9}$; (f) $\left(\frac{2}{s^2}+\frac{8}{s}\right)e^{-4s}$; (g) $\frac{e^{-2s}}{s^2}-\frac{2e^{-2s}}{s^2}$; (h) $\frac{1}{s(s-1)}$; (i) $\frac{s+1}{s\left[(s+1)^2+1\right]}$; (j) $\frac{72}{(s+2)^5}$; (k) $\frac{8-12\sqrt{3}s-6s^2+\sqrt{3}s^3}{(s^2+4)^3}$; (l) $\frac{s+2}{s^2+4s-12}$; (m) $\frac{s+3}{(s+3)^2-4}$; (n) $\frac{24(s+2)}{(s^2+4s-12)^2}$

Somos infinitas possibilidades

2. (a)
$$\frac{10}{s} (2 - e^{-4s} - e^{-8s})$$
; (b) $\frac{5}{s} - \frac{15e^{-2s}}{2s^2} + \frac{5e^{-6s}}{2s^2}$;

(c)
$$\frac{1-e^{-2s}}{s(1-e^{-5s})}$$
; (d) $5\frac{1-e^{-s}-se^{-s}}{s^2(1-e^{-3s})}$

3. (a)
$$8u(t)$$
; (b) $2e^{-2t}u(t)$; (c) $2(1-e^{-2t})$

4.
$$(4e^{-2t} - 8te^{-2t}) u(t)$$