Solución

En la fórmula (3),

$$\frac{\partial(x,y)}{\partial(r,\theta)} = \begin{vmatrix} \cos\theta & -r\sin\theta \\ \sin\theta & r\cos\theta \end{vmatrix} = r,$$

$$\frac{\partial(y,z)}{\partial(r,\theta)} = \begin{vmatrix} \sin\theta & r\cos\theta \\ 1 & 0 \end{vmatrix} = -r\cos\theta,$$

у

$$\frac{\partial(x,z)}{\partial(r,\theta)} = \begin{vmatrix} \cos\theta & -r\sin\theta \\ 1 & 0 \end{vmatrix} = r\sin\theta,$$

por lo que el integrando del área es

$$\|\mathbf{T}_r \times \mathbf{T}_{\theta}\| = \sqrt{r^2 + r^2 \cos^2 \theta + r^2 \sin^2 \theta} = r\sqrt{2}$$

Evidentemente, $\|\mathbf{T}_r \times \mathbf{T}_{\theta}\|$ se anula para r = 0, pero $\Phi(0, \theta) = (0, 0, 0)$ para cualqueir θ . Por tanto, (0, 0, 0) es el único punto en el que la superficie no es regular. Tenemos

$$\iint_{D} \|\mathbf{T}_{r} \times \mathbf{T}_{\theta}\| dr d\theta = \int_{0}^{2\pi} \int_{0}^{1} \sqrt{2}r dr d\theta = \int_{0}^{2\pi} \frac{1}{2} \sqrt{2} d\theta = \sqrt{2}\pi.$$

Para confirmar que esta es el área de $\Phi(D)$, tenemos que comprobar que Φ es inyectiva (para puntos que no están en la frontera de D). Sea D^0 el conjunto de (r,θ) con 0 < r < 1 y $0 < \theta < 2\pi$. Por tanto, D^0 es D sin su frontera. Para ver que $\Phi: D^0 \to \mathbb{R}^3$ es inyectiva, supongamos que $\Phi(r,\theta) = \Phi(r',\theta')$ para (r,θ) y $(r',\theta') \in D^0$. Entonces

$$r\cos\theta = r'\cos\theta', \quad r\sin\theta = r'\sin\theta', \quad r = r'.$$

A partir de estas ecuaciones se deduce que $\cos \theta = \cos \theta'$ y sen $\theta = \sin \theta'$. Luego, o bien $\theta = \theta'$ o $\theta = \theta' + 2\pi n$. Pero el segundo caso es imposible para n entero distinto de cero, ya que tanto θ como θ' pertenecen al intervalo abierto $(0, 2\pi)$ y por tanto no pueden distar más de 2π radianes. Esto prueba que fuera de la frontera, Φ es inyectiva (¿es inyectiva Φ : $D \to \mathbb{R}^3$?). En los próximos ejemplos, normalmente no comprobaremos que la parametrización es inyectiva cuando intuitivamente esté claro que es así.

Ejemplo 2

Un *helicoide* se define por $\Phi: D \to \mathbb{R}^3$, donde

$$x = r\cos\theta, \qquad y = r\sin\theta, \qquad z = \theta$$

y Des la región en la que $0 \le \theta \le 2\pi$ y $0 \le r \le 1$ (Figura 7.4.2). Hallar su área.

Solución

Calculamos $\partial(x,y)/\partial(r,\theta)=r$ como en el Ejemplo 1, y

$$\frac{\partial(y,z)}{\partial(r,\theta)} = \begin{vmatrix} \sin\theta & r\cos\theta \\ 0 & 1 \end{vmatrix} = \sin\theta,$$

$$\frac{\partial(x,z)}{\partial(r,\theta)} = \begin{vmatrix} \cos\theta & -r\sin\theta\\ 0 & 1 \end{vmatrix} = \cos\theta.$$