FIRST SEMESTER 2019-2020 Course Handout (Part II)

1-07-2019

In addition to Part-I (general handout for all courses appended to the time table) this portion gives further specific details regarding the course.

Course No. : PHA G613

Course Title : Pharmaceutical Biotechnology

Instructor-in-charge: Nirmal J

Instructors : Raghuraman Manimaran

1. Scope and Objective of the course:

This course is designed to provide pharmaceutics graduate students with an understanding about the technology used in pharmaceutical biotechnology industry to develop biologics based medicines. The application of genetic engineering, recombinant DNA technology, hybridoma technology, biologicals formulation and characterization, drug delivery aspects of biologics products are dealt with in this course.

Learning Outcomes (course benefits): Students who have undergone the course are expected to

- Understand the rationale and theory behind common techniques used in the pharmaceutical biotechnology field and use them to solve problems routinely encountered in the biotech industry
- Understand the formulation considerations and characterization of biological products like monoclonal antibodies, vaccines and peptides
- Select appropriate excipients and containers for biologics formulation
- Understand the fate of biologics in the body after administration
- Understand the role of delivery system in biologics to treat various diseases.

2. Text Books (T)

1. Bernard R. Glick, Jack J. Pasternak, Molecular Biotechnology – Principles and Application of rDNA. 2nd edition, ASM press, Washington. 1998.

Reference Books (R):

- 1. Wei Wang and Manmohan Singh, Biological drug products development and strategies, Wiley and sons, 2014
- 2. Bruce Alberts et al, Molecular Biology of the Cell, 5th edition, New York, Garland Science 2006.
- 3. Stefan Deubel and Janice M Reichert, Handbook of therapeutic antibodies, 2nd edition, Volume 1 to 4, Wiley Blackwell, 2014

- 4. Daan J. A. Crommelin, Robert D. Sindelar, Pharmaceutical Biotechnology. Harwood Academic Publishers, Amsterdam, 1997.
- 5. Balasubramanian D, Bryce, CFA, Dharmalingam K, Green J, Jayaraman K. Concepts in Biotechnology. University Press, Hyderabad, India, 1996

3. Course Plan:

a) Lectures:

S. No	Learning objectives	Topics to be covered	Chapter in the Text	No. of lecture
			Book/Ref	S
			Book	
1	Pharmaceutical	Emergence of molecular	T1, Ch-1	1
	biotechnology: An	biotechnology,		
	overview	commercialization, concerns		
		and consequences		
2	Theoretical basis of	Structural and functional	R2, Ch-1, 2 &	4
	molecular	dynamics of cells, structure of	3	
	biotechnology	DNA, DNA replication,		
		Decoding genetic information:		
		RNA and proteins,		
		Transcription, translation, and		
		their regulations , protein		
		secretion pathways		
3	Recombinant DNA	Recombinant DNA technology,	T1, Ch-3	4
	Technology	Restriction endonucleases and		
		other enzymes required for		
		cloning, principle behind Gel		
		electrophoresis, and western		
		blot, Plasmid cloning vectors,		
		process of transformation and		
		selection,		
		Creating and screening		
		procedures of genomic library,		
		including DNA hybridization,		
		immunological assays and		
		protein activity, Vectors for		
		cloning large pieces of DNAs.		
4	Monoclonal	Principle behind the	R3, Ch-2	5
	antibodies and	Monoclonal antibodies and	R1, Ch-11	
	biosimilars	biosimilar	Notes to be	
		Formulation considerations	given in	
		Stability issues	class	
5	Vaccine formulation	Principle behind the vaccine	T1, Ch-7	4

		Formulation considerations Stability issues	R1, Ch-13 & 14	
6	Peptide formulations	Principle behind the peptide Formulation considerations Stability issues	R1, Ch-11	4
7	Characterization of biologicals products	Structural characterization Physicochemical properties Biophysical characterization Aggregates and particulates	R1, Ch-10	4
8	Biologics manufacturing	Upstream and downstream process	T1, Ch-9	4
9	Packaging of biologicals	Conventional delivery packaging Emerging containers and devices for biologics delivery	R1, Ch-20	2
10	Pharmacokinetics of biologicals: Brief overview	Routes of delivery for biologics Absorption, distribution, and elimination of biologics	R1, Ch-22 Notes to be given in class	5
11	Novel delivery systems for biologics	Implants, liposomes, nanoparticles, hydrogels, microspheres etc	R1, Ch-21 Notes to be given in class	5

4. Evaluation Scheme:

Component	Duratio n	Weightage (%)	Date and time	Remarks
Mid-semester Test	90 min	20	28/9, 11:00 –	СВ
Wild-Serriester Test	90 111111	20	12:30 PM	СВ
Seminars/		25		ОВ
Assignments				
Laboratory		20		15 % OB+5 % CB
component				
Comprehensive	180 min	35	02/12 AN	35% CB
exam				

^{*:} Assignments/lab sessions/seminar will involve 3 contact hours per week for each student. Topics, mode of evaluation and number will be announced in the regular class or lab sessions. **CB** – closed book and OB – open book

- **5. Mid-semester evaluation:** Will be announced after the 2nd test.
 - a) **Grading Procedure:** It is not necessary that all the five grades (i.e. A to E) would be awarded.

- b) In borderline cases subjective judgment will be exercised for pull-up's (max. 2%). Basic guiding factors will be regularity, consistency in performance (above average) or/and steady improvement throughout the semester.
- **6. Make-up:** Make-up will be given only for **genuine** reasons. It is expected that students shall avoid misuse of this feature.
- **7.** Chamber consultation hours: To be announced in the class.
- **8. Notices:** Notices pertaining to this course will be displayed on Department Notice Board.
- **9. Academic Honesty and Integrity Policy**: Academic honesty and integrity are to be maintained by all the students throughout the semester and no type of academic dishonesty is acceptable.

Instructor-in-charge PHA G613