MAT217 HW 10 Due Tues. Apr. 23, 2013

1. Let V be an \mathbb{F} -vector space and $\{v_1, \ldots, v_n\}$ a basis for V. Consider the dual basis $\{v_1^*, \ldots, v_n^*\}$ and for all pairs $i, j \in \{1, \ldots, n\}$ define $f_{i,j}(v, w) = v_i^*(v)v_i^*(w)$. Show that

$$\{f_{i,j}: i, j \in \{1, \dots, n\}\}$$

is a basis for $Bil(V, \mathbb{F})$. Find the nullspace of each element in this basis.

- 2. (From Hoffman-Kunze) Let V be a finite dimensional \mathbb{F} -vector space and f a bilinear form on V of rank 1. Show that f can be written as g_1g_2 for elements $g_1, g_2 \in V^*$.
- 3. (From Hoffman-Kunze) Which of the following functions f, defined on vectors $x = (x_1, x_2)$ and $y = (y_1, y_2)$ in \mathbb{R}^2 , are bilinear forms?
 - (a) f(x,y) = 1.
 - (b) $f(x,y) = (x_1 y_1)^2 + x_2 y_2$.
 - (c) $f(x,y) = (x_1 + y_1)^2 (x_1 y_1)^2$.
 - (d) $f(x,y) = x_1y_2 x_2y_1$.
- 4. (From Hoffman-Kunze) Let f be the bilinear form on \mathbb{R}^2 defined by

$$f((x_1, y_1), (x_2, y_2)) = x_1x_2 + y_1y_2$$
.

Find the matrix of f in each of the following bases:

$$\{(1,0),(0,1)\},\ \{(1,-1),(1,1)\},\ \{(1,2),(3,4)\}\ .$$

- 5. Let $T: V \to V$ be linear on a finite-dimensional vector space. If W is a T-invariant subspace of V, define the restriction T_W of T to W.
 - (a) Show the characteristic polynomial of T_W divides that of T. Show the minimal polynomial of T_W divides that of T.
 - (b) Show that if T is diagonalizable then so is T_W .
- 6. Let $T, U : V \to V$ be linear on a finite-dimensional vector space. Assume that TU = UT and that both T and U are diagonalizable. We will show that T and U are simultaneously diagonalizable; that is, there is a basis B such that both $[T]_B^B$ and $[U]_B^B$ are diagonal.
 - (a) Show that each eigenspace E_{λ}^{T} of T is U-invariant.
 - (b) Show that there is a basis of each E_{λ}^{T} consisting of eigenvectors for both T and U. Conclude that T and U are simultaneously diagonalizable.

- 7. In this problem we will inspect the interaction between \mathbb{R}^n and \mathbb{C}^n . This will be used to establish the real Jordan form in the next problem.
 - (a) Every vector in \mathbb{C}^n can be written as v+iw where $v,w\in\mathbb{R}^n$. Define the inclusion map $\iota:\mathbb{R}^n\to\mathbb{C}^n$ by $\iota(v)=v=v+i\vec{0}$. Show that ι is \mathbb{R} -linear; that is, $\iota(cv+w)=c\iota(v)+\iota(w)$ for $v,w\in\mathbb{R}^n$ and $c\in\mathbb{R}$.
 - (b) Define the complex conjugation map $\mathfrak{c}:\mathbb{C}^n\to\mathbb{C}^n$ by

$$\mathfrak{c}(v+iw)=v-iw.$$

Show that \mathfrak{c}^2 is the identity and \mathfrak{c} is *anti-linear*; that is, \mathfrak{c} is additive but $\mathfrak{c}(z(v+iw)) = \overline{z}\mathfrak{c}(v+iw)$. (Here \overline{z} represents the complex conjugate of the number $z \in \mathbb{C}$.)

- (c) Prove that if W is a subspace of \mathbb{R}^n then $\mathrm{Span}(\iota(W))$ is \mathfrak{c} -invariant. Conversely, if W' is a \mathfrak{c} -invariant subspace of \mathbb{C}^n , show that $W' = \mathrm{Span}(\iota(W))$ for some subspace W of \mathbb{R}^n .
- 8. In this problem we establish the real Jordan form. Let $T: \mathbb{R}^n \to \mathbb{R}^n$ be linear. The complexification of T is defined as $T_{\mathbb{C}}: \mathbb{C}^n \to \mathbb{C}^n$ by

$$T_{\mathbb{C}}(v+iw) = T(v) + iT(w)$$
.

- (a) Show that $T_{\mathbb{C}}$ is a linear transformation on \mathbb{C}^n . If $\lambda \in \mathbb{C}$ is one of its eigenvalues and \hat{E}_{λ} is the corresponding generalized eigenspace, show that $\mathfrak{c}(\hat{E}_{\lambda}) = \hat{E}_{\overline{\lambda}}$. (Here \mathfrak{c} is the complex conjugation map from last problem.)
- (b) Show that the non-real eigenvalues of $T_{\mathbb{C}}$ come in pairs. In other words, show that we can list the distinct eigenvalues of $T_{\mathbb{C}}$ as

$$\lambda_1,\ldots,\lambda_r,\sigma_1,\ldots,\sigma_{2m}$$
,

where for each j = 1, ..., r, $\overline{\lambda_j} = \lambda_j$ and for each i = 1, ..., m, $\sigma_{2i-1} = \overline{\sigma_{2i}}$.

(c) Because \mathbb{C} is algebraically closed, the proof of Jordan form shows that

$$\mathbb{C}^n = \hat{E}_{\lambda_1} \oplus \cdots \oplus \hat{E}_{\lambda_r} \oplus \hat{E}_{\sigma_1} \oplus \cdots \oplus \hat{E}_{\sigma_{2m}}.$$

Using the previous two parts, show that for j = 1, ..., r and i = 1, ..., m, the subspaces of \mathbb{C}^n

$$\hat{E}_{\lambda_j}$$
 and $\hat{E}_{\sigma_{2i-1}} \oplus \hat{E}_{\sigma_{2i}}$

are $\mathfrak{c}\text{-invariant}.$

(d) Deduce from the previous problem that there exist subspaces X_1, \ldots, X_r and Y_1, \ldots, Y_m of \mathbb{R}^n such that for each $j = 1, \ldots, r$ and $i = 1, \ldots, m$,

$$\hat{E}_{\lambda_j} = \operatorname{Span}(\iota(X_j)) \text{ and } \hat{E}_{\sigma_{2i-1}} \oplus \hat{E}_{\sigma_{2i}} = \operatorname{Span}(\iota(Y_i))$$
.

Show that $\mathbb{R}^n = X_1 \oplus \cdots \oplus X_r \oplus Y_1 \oplus \cdots \oplus Y_m$.

- (e) Prove that for each j = 1, ..., r, the transformation $T \lambda_j I$ restricted to X_j is nilpotent and thus we can find a basis B_j for X_j consisting entirely of chains for $T \lambda_j I$.
- (f) For each $k = 1, \ldots, m$, let

$$C_k = \{v_1^{(k)} + iw_1^{(k)}, \dots, v_{n_k}^{(k)} + iw_{n_k}^{(k)}\}$$

be a basis of $\hat{E}_{\sigma_{2k-1}}$ consisting of chains for $T_{\mathbb{C}} - \sigma_{2k-1}I$. Prove that

$$\hat{C}_k = \{v_1^{(k)}, w_1^{(k)}, \dots, v_{n_k}^{(k)}, w_{n_k}^{(k)}\}\$$

is a basis for Y_k . Describe the form of the matrix representation of T restricted to Y_k , relative to the basis \hat{C}_k .

(g) Gathering the previous parts, state and prove a version of Jordan form for linear transformations on \mathbb{R}^n . Your version should be of the form "If $T:\mathbb{R}^n\to\mathbb{R}^n$ is linear then there exists a basis B such that $[T]_B^B$ has the form ..."