Claims

1. A compound of formula (I)

5

the N-oxides, the pharmaceutically acceptable acid addition salts and the stereochemically isomeric forms thereof, wherein

R1 is hydrogen, C1-4alkyl, halo, or polyhaloC1-4alkyl;

R² is hydrogen, C₁₋₄alkyl, halo, or polyhaloC₁₋₄alkyl;

10 R^3 is hydrogen or C_{1-4} alkyl;

R⁴ is hydrogen, C₁₋₄alkyl, or halo;

n is an integer 0, or 1;

 X^1 is carbon and X^2 is carbon; or X^1 is nitrogen and X^2 is carbon;

or X^1 is carbon and X^2 is nitrogen;

 X^3 is carbon or nitrogen;

Y represents O, or NR⁶ wherein R⁶ is hydrogen or C₁₋₄alkyl;

R⁵ represents a radical of formula

$$-(CH2)m - C - C - C - C - R9 (a-1)$$

$$-\frac{R^8}{C} - \frac{O}{C} - \frac{O}{C} - \frac{I}{C} - \frac$$

20

wherein

m is an integer 0, 1, or 2;

Z is O or NH;

R⁷ is hydrogen,

C₁₋₆alkyl;

25

C₁₋₆alkyl substituted with hydroxy, amino, mono- or

 $di(C_{1-4}alkyl)$ amino, $C_{1-4}alkyloxycarbonyl$, aminocarbonyl, aryl or heteroaryl;

C₁₋₄alkyl-O-C₁₋₄alkyl;

 C_{1-4} alkyl-S- C_{1-4} alkyl; or aryl;

 R^8 is hydrogen or C_{1-6} alkyl;

5

10

15

 R^9 is hydrogen, C_{1-4} alkyl, aryl¹, or C_{1-4} alkyl substituted with aryl¹;

- or when Y represents NR⁶ the radicals R⁵ and R⁶ may be taken together with the nitrogen to which they are attached to form pyrrolidinyl substituted with C₁₋₄alkyloxycarbonyl and optionally further substituted with hydroxy; or piperidinyl substituted with C₁₋₄alkyloxycarbonyl;
 - aryl is phenyl; phenyl substituted with one, two or three substituents each independently selected from C₁₋₄alkyl, C₁₋₄alkyloxy, halo, hydroxy, nitro, cyano, C₁₋₄alkyloxycarbonyl, trifluoromethyl, or trifluoromethoxy; or benzo[1,3]dioxolyl;
 - aryl¹ is phenyl; phenyl substituted with one, two or three substituents each independently selected from C_{1-4} alkyl, C_{1-4} alkyloxy, halo, hydroxy, nitro, cyano, C_{1-4} alkyloxycarbonyl, trifluoromethyl, or trifluoromethoxy; and heteroaryl is imidazolyl, thiazolyl, indolyl, or pyridinyl.
- 2. A compound as claimed in claim 1 wherein X^1 , X^2 and X^3 are carbon.
- 3. A compound as claimed in claim 1 wherein R¹ is trifluoromethyl; R² is hydrogen; R³ is hydrogen; R⁴ is hydrogen; X¹, X² and X³ are carbon; n is the integer 1; Y represents NR⁶ wherein R⁶ is hydrogen or methyl; and R⁵ is a radical of formula (a-1) wherein m is the integer 0.
- 4. A compound as claimed in claim 1 wherein R¹ is trifluoromethyl; R² is hydrogen; R³ is hydrogen; R⁴ is hydrogen; X¹, X² and X³ are carbon; n is the integer 1; Y represents NR⁶ wherein R⁶ is hydrogen or methyl; and R⁵ is a radical of formula (a-1) wherein m is the integer 1.
- 5. A compound as claimed in claim 1 wherein R¹ is trifluoromethyl; R² is hydrogen; R³ is hydrogen; R⁴ is hydrogen; X¹, X² and X³ are carbon; n is the integer 1; Y represents NR⁶ wherein R⁶ is hydrogen or methyl; and R⁵ is a radical of formula (a-2) wherein m is the integer 1.
- 6. A compound as claimed in claim wherein R¹ is trifluoromethyl; R² is hydrogen; R³ is hydrogen; R⁴ is hydrogen; X¹, X² and X³ are carbon; n is the integer 1; Y represents NR⁶ and R⁵ and R⁶ are taken together with the nitrogen to which they are attached to form pyrrolidinyl substituted with C₁₋₄alkyloxycarbonyl and optionally

further substituted with hydroxy, or piperidinyl substituted with C₁₋₄alkyloxy-carbonyl.

- 7. A pharmaceutical composition comprising a pharmaceutically acceptable carrier and a therapeutically active amount of a compound as claimed in any of claims 1 to 6.
 - 8. A process for preparing a pharmaceutical composition as claimed in claim 7 wherein a therapeutically active amount of a compound as claimed in any of claims 1 to 6 is intimately mixed with a pharmaceutically acceptable carrier.
 - 9. A compound as claimed in any of claims 1 to 6 for use as a medicine.

10

15

20

25

30

10. A process for preparing a compound of formula (I) wherein
a) an intermediate of formula (II), wherein R³, R⁴, R⁵, Y, n, X¹, X² and X³ are defined as in claim 1,

$$\begin{array}{c|c}
R^4 & O \\
-|-X^3 & O \\
|-X^3 & N \\
R^3 & X^1 = X^2
\end{array} \qquad (CH_2)_{\overline{n}} \stackrel{O}{C} - Y - R^5 \qquad (II)$$

is reacted with a biphenylcarboxylic acid or halide having the formula (III), wherein R¹ and R² are as defined in formula (I) and Q¹ is selected from hydroxy and halo, in at least one reaction-inert solvent and optionally in the presence of a suitable base

$$\mathbb{R}^1$$
 \mathbb{Q}^1 (III)

b) or, compounds of formula (I) are converted into each other following art-known transformation reactions; or if desired; a compound of formula (I) is converted into an acid addition salt, or conversely, an acid addition salt of a compound of formula (I) is converted into a free base form with alkali; and, if desired, preparing stereochemically isomeric forms thereof.