Implementation: Functions

1. Data receiving functions:

Upload data, impute data, summarize data

2. Data handling functions

 Retrieval of genotype from bulk-data, caching of genotypes for quick access, retrieval of genotypes from quick-access

3. Genetic risk scoring functions (lots of options)

• One person, one SNP:

Trivial

One person, many SNPs

Count effect-allele

Count effect-alleles, *beta-weight

Count effect-alleles, *beta-weight, normalized, unit-variance

LDPred-hybrid (only for select GWAS)

Counting effect-alleles

			Person 1	Effect allele
	Effect allele	Effect Size	genotype	count
SNP1	G	0.97	A/G	1
SNP2	С	0.76	C/C	2
SNP3	Α	0.51	G/G	0
SNP4	C	0.59	C/C	2
SNP5	G	1.1	C/C	0
SNP6	G	-0.31	G/T	1
SNP7	С	-0.56	C/C	2

Counting effect-alleles, *beta-weight

(identical to PLINK --SCORE)

			Person 1	Effect allele	Weighted
	Effect allele	Effect Size	genotype	count	score
SNP1	G	0.97	A/G	1	0.97
SNP2	С	0.76	C/C	2	1.5
SNP3	А	0.51	G/G	0	0
SNP4	C	0.59	C/C	2	1.2
SNP5	G	1.1	C/C	0	0
SNP6	G	-0.31	G/T	1	-0.31
SNP7	C	-0.56	C/C	2	-1.1

Counting effect-alleles, *beta-weight, normalized

(Purpose: when per-SNP mean_{population} = 0

-> more robust against missing SNPs)

To get this: Multiply with the frequency of the effect allele in the population:

 $Score_{population} = freq * 2 * beta$

Where *freq* is the effect allele frequency

To get this, subtract average population score from weighted score

						_	
						Average	
			Person 1	Effect allele	Weighted	population	Normalized
	Effect allele	Effect Size	genotype	count	score	score	score
SNP1	G	0.97	A/G	1	0.97	0.45	0.53
SNP2	C	0.76	C/C	2	1.5	0.12	1.4
SNP3	А	0.51	G/G	0	0	0.12	-0.12
SNP4	C	0.59	C/C	2	1.2	0.21	0.97
SNP5	G	1.1	C/C	0	0	0.066	-0.066
SNP6	G	-0.31	G/T	1	-0.31	-0.27	-0.037
SNP7	C	-0.56	C/C	2	-1.1	-0.089	-1
							1.67

Counting effect-alleles, *beta-weight, normalized, unit variance

(Purpose: Z-scores -> 68% is within score of "1")

Calculate score variance based on MAF and Hardy-Weinberg, then scale all

			Person 1	Effect allele	Weighted	Average population	Normalized	Normalized score (unit
	Effect allele	Effect Size	genotype	count	score	score	score	variance)
SNP1	G	0.97	A/G	1	0.97	0.45	0.53	
SNP2	С	0.76	C/C	2	1.5	0.12	1.4	
SNP3	Α	0.51	G/G	0	0	0.12	-0.12	
SNP4	С	0.59	C/C	2	1.2	0.21	0.97	
SNP5	G	1.1	C/C	0	0	0.066	-0.066	
SNP6	G	-0.31	G/T	1	-0.31	-0.27	-0.037	
SNP7	С	-0.56	C/C	2	-1.1	-0.089	-1	
							1.67	2.17

Counting effect-alleles, *beta-weight, normalized, unit variance

(Purpose: Z-scores -> 68% is within score of "1")

overall sd <- sqrt(sum(sd per snp^2))</pre>

Counting effect-alleles, *beta-weight, normalized, unit variance

(Purpose: Z-scores -> 68% is within score of "1")

```
#per-SNP hardy-weinberg
frac 0 <- (1-effect allele freq)^2</pre>
                                                                         p^2 + 2pq + q^2 = 1
frac 1 <- (1-effect allele freq) * (effect allele freq) *2</pre>
frac 2 <- (effect allele freq)^2</pre>
                                                                         \sigma = \sqrt{\frac{\Sigma(x - \bar{x})^2}{N}} "ish"
#per-SNP slow simulation example with same outcome
dosages<-vector()</pre>
for(i in 1:1000){
  genotype<-sample(</pre>
    x=c(1, 0),
    size=2,
    replace=T,
    prob=c(effect allele freq,1-effect allele freq))
    dosages<-c(dosages, sum(genotype))</pre>
sd per snp <- sd(dosages * effect size)</pre>
                                                                                   instead
#all-SNP standard-deviation of score
```

overall sd <- sqrt(sum(sd per snp^2))</pre>

Counting effect-alleles, *beta-weight, normalized, unit variance

(Purpose: Z-scores -> 68% is within score of "1")

SD = 0.777

			Davis and		VA/a: abt a d	Average		Normalized
	-cc			Effect allele			Normalized	
	Effect allele	Effect Size	genotype	count	score	score	score	variance)
SNP1	G	0.97	A/G	1	0.97	0.45	0.53	
SNP2	C	0.76	C/C	2	1.5	0.12	1.4	
SNP3	А	0.51	G/G	0	0	0.12	-0.12	
SNP4	С	0.59	C/C	2	1.2	0.21	0.97	
SNP5	G	1.1	C/C	0	0	0.066	-0.066	
SNP6	G	-0.31	G/T	1	-0.31	-0.27	-0.037	
SNP7	С	-0.56	C/C	2	-1.1	-0.089	-1	
							1.67	2.17