Bounds for Integer-Forcing Source Coding

Elad Domanovitz Joint work with Uri Erez

November 10th, 2017 ITW, Kaohsiung, Taiwan

- Fundamental limits understood in some cases
- Inner and outer bounds known

- Fundamental limits understood in some cases
- Inner and outer bounds known

Some applications require

- Extremely simple encoders/decoder
- Extremely short delay

We restrict attention to:

- ullet Gaussian sources $old x \sim \mathcal{N}(old 0, old K_{xx})$
- One-shot compression block length is 1
- MSE distortion measure: $E(x_k \hat{x}_k)^2 \le d_k$

Known bounds

- An achievable rate region is Berger and Tung
- Gaussian sources reduces to P2P quantizer + Slepian-Wolf encoding
- Optimal for two Gaussian source [Wagner '2008]

Towards a practical scheme: successive Wyner-Ziv

- ullet Equal rates \Longrightarrow Non equal distortion
- ullet Equal distortion \Longrightarrow Non equal rates
- Well understood for large blocklengths, less so for short blocks

Goal & Outline

- We're interested in a symmetric scheme:
 - Symmetric rates $R_1 = \cdots = R_K = R$
 - Symmetric distortion $d_1 = \cdots = d_K = d$
- Best known achievable scheme Berger Tung
- A simple choice for the auxiliary random variable in BT gives: $R_{\rm BT} = \frac{1}{2} \log \det \left(\mathbf{I} + \frac{1}{d} \mathbf{K}_{xx} \right)$
- We start by recalling integer forcing source coding: a simple and symmetric scheme
- Derive new bounds on outage probability of precoded source coding integer forcing

Motivation

 How can we utilize correlation via linear processing to reduce quantization problem to a scalar problem?

Motivation

 How can we utilize correlation via linear processing to reduce quantization problem to a scalar problem?

 But diagonalization requires linear processing at both ends...

Motivation

 How can we utilize correlation via linear processing to reduce quantization problem to a scalar problem?

• What can be done in case of distributed compression?

Integer-Forcing Source Coding: Overview

Basic Idea: Rather than solving the problem

Integer-Forcing Source Coding: Overview

First solve

and then invert equations to get $\hat{x}_1, \ldots, \hat{x}_K$

Integer-Forcing Source Coding: Overview

First solve

and then invert equations to get $\hat{x}_1, \ldots, \hat{x}_K$

- Problem reduces to simultaneous distributed compression of K linear combinations
- Can be efficiently solved with small rates for certain choices of coefficients
- Equation coefficients can be chosen to optimize performance

Integer Forcing Source Coding: Block Diagram

Integer Forcing Source Coding: Block Diagram

Modulo operation after dither reduction is redundant

Integer Forcing Source Coding: Block Diagram

Cancelled due to simple modulo property and careful choice of A

Explained in the following slides

Distributed Compression of Integer Linear Combination

Encoders

Each encoder is a modulo scalar quantizer with rate R : produces \tilde{x}_k^*

Distributed Compression of Integer Linear Combination

Encoders

Each encoder is a modulo scalar quantizer with rate R : produces \tilde{x}_k^*

Simple modulo property (main point)

For any set of integers a_1, \ldots, a_K and real numbers $\tilde{x}_1, \ldots, \tilde{x}_K$

$$\left[\sum_{k=1}^K a_k \tilde{x}_k\right]^* = \left[\sum_{k=1}^K a_k \tilde{x}_k^*\right]^*$$

Distributed Compression of Integer Linear Combination

Encoders

Each encoder is a modulo scalar quantizer with rate R : produces \tilde{x}_k^*

Simple modulo property (main point)

For any set of integers a_1, \ldots, a_K and real numbers $\tilde{x}_1, \ldots, \tilde{x}_K$

$$\left[\sum_{k=1}^K a_k \tilde{x}_k\right]^* = \left[\sum_{k=1}^K a_k \tilde{x}_k^*\right]^*$$

Decoder

- Gets: $\tilde{x}_1^*, \dots, \tilde{x}_K^*$
- Outputs:

$$\widehat{\mathbf{a}^T \mathbf{x}} = \left[\sum_{k=1}^K a_k \widetilde{x}_k^*\right]^* = \left[\sum_{k=1}^K a_k \widetilde{x}_k\right]^* = \left[\mathbf{a}^T (\mathbf{x} + \mathbf{u})\right]^*$$

Compression of Integer Linear Combination

$$\widehat{\mathbf{a}^T \mathbf{x}} = \left[\mathbf{a}^T (\mathbf{x} + \mathbf{u}) \right]^* = \begin{cases} \mathbf{a}^T \mathbf{x} + \mathbf{a}^T \mathbf{u} & & \\ \text{error} & & \\ & & \\ \end{cases}$$

What is a good **a**?

For a given modulo interval Δ (not to be confused with the quantization step size), a good a is such that modulo is not active

$$\bullet \text{ If } \tfrac{\mathbb{E}(\|\mathbf{a}^T(\mathbf{x} + \mathbf{u})\|)^2}{n} \leq \tfrac{\Delta^2}{n} \Longrightarrow \widehat{\mathbf{a}^T\mathbf{x}} \overset{\mathrm{w.h.p}}{=} \mathbf{a}^T\mathbf{x} + \mathbf{a}^T\mathbf{u}$$

• Small $\Delta \Longrightarrow$ small R

Compression of Integer Linear Combination

$$\widehat{\mathbf{a}^T \mathbf{x}} = \left[\mathbf{a}^T (\mathbf{x} + \mathbf{u}) \right]^* = \begin{cases} \mathbf{a}^T \mathbf{x} + \mathbf{a}^T \mathbf{u} & & \\ \text{error} & & \\ & & \\ \end{cases}$$

What is a good a?

For a given modulo interval Δ (not to be confused with the quantization step size), a good a is such that modulo is not active

$$\bullet \text{ If } \tfrac{\mathbb{E}(\|\mathbf{a}^T(\mathbf{x}+\mathbf{u})\|)^2}{n} \leq \tfrac{\Delta^2}{n} \Longrightarrow \widehat{\mathbf{a}^T\mathbf{x}} \overset{\text{w.h.p}}{=} \mathbf{a}^T\mathbf{x} + \mathbf{a}^T\mathbf{u}$$

- Small $\Delta \Longrightarrow$ small R
- ullet Now, form $oldsymbol{a}_1 \dots oldsymbol{a}_K$ and define $oldsymbol{\mathsf{A}} = egin{bmatrix} oldsymbol{a}_1 \dots oldsymbol{a}_K \end{bmatrix}^T$

Theorem [Ordentlich '17]

$$R_{\mathsf{IF}}(\mathbf{A},d) \triangleq \frac{1}{2} \log \left(\max_{m=1,\dots,K} \mathbf{a}_m^T \left(\mathbf{I} + \frac{1}{d} \mathbf{K}_{\mathbf{x}\mathbf{x}} \right) \mathbf{a}_m \right)$$

Integer-Forcing Source Coding: Example

$$\begin{aligned} \mathbf{H} &\in \mathbb{R}^{8 \times 2}, \text{ i.i.d. Rayleigh, SNR} = 20 \text{dB} \\ &\implies \mathbf{x} \sim \mathcal{N}\left(\mathbf{0}, \mathbf{K_{xx}}\right), \mathbf{K_{xx}} = \mathbf{I} + \text{SNR}\mathbf{H}\mathbf{H}^{\mathcal{T}} \end{aligned}$$

We show next the expected compression rate with IF source coding

Integer-Forcing Source Coding: Example

$$\mathbf{x} \sim \mathcal{N}\left(\mathbf{0}, \mathbf{K}_{\mathbf{x}\mathbf{x}}\right), \ \mathbf{K}_{\mathbf{x}\mathbf{x}} = \mathbf{I} + \mathsf{SNR}\mathbf{H}\mathbf{H}^T, \ \mathsf{SNR} = \mathsf{20dB} \ \mathsf{and} \ \mathbf{H} \in \mathbb{R}^{8 \times 2}$$

Pleasing empirical results; what can be analyzed?

$$\begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \sim \mathcal{N}(\mathbf{0}, \mathbf{K}_{xx}) \qquad \begin{array}{c} X_1 \longrightarrow & \mathcal{E}_1 & \mathcal{R} \\ & & \mathcal{E}_2 & \mathcal{R} \end{array} \longrightarrow \begin{array}{c} (\hat{x}_1, d) \\ & (\hat{x}_2, d) \end{array}$$

- What is outage in integer forcing source coding?
- Define the compound class of Gaussian sources with K_{xx} s.t.:

$$\mathbb{K}(R_{\mathrm{BT}}) = \left\{ \mathbf{K}_{\mathbf{xx}} \in \mathbb{R}^{K \times K} : \log \det \left(\mathbf{I} + \mathbf{K}_{\mathbf{xx}} \right) = R_{\mathrm{BT}} \right\}$$

• The worst-case (WC) scheme outage probability is defined as

$$P_{ ext{out,IF}}^{ ext{WC}}\left(\textit{R}_{ ext{BT}}, \Delta \textit{R}
ight) = \sup_{old K_{xx} \in \mathbb{K}\left(\textit{R}_{ ext{BT}}
ight)} \Pr\left(\textit{R}_{ ext{IF}}ig(old K_{xx}ig) > \textit{R}_{ ext{BT}} + \Delta \textit{R}ig)$$

This is no longer distributed compression...

This is no longer distributed compression...

Bear with me for a few more slides

Performance of Precoded IF Source Coding

Figure: Zoom in on the empirical WC outage probability for a two-dimensional Gaussian source vector with $R_{\rm BT}=16$ and uniform (Haar) disturbed over orthogonal matrices ${\bf P}$

$$\begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \sim \mathcal{N}(\mathbf{0}, \mathbf{K}_{xx}) \qquad \begin{array}{c} X_1 \longrightarrow & \mathcal{E}_1 & \mathcal{R} \\ & & \mathcal{E}_2 & \mathcal{R} \end{array} \longrightarrow \begin{array}{c} (\hat{x}_1, d) \\ & (\hat{x}_2, d) \end{array}$$

Theorem (worst-case outage of precoded IF)

For any K sources with Berger-Tung rate of $R_{\rm BT}$, and for ${\bf P}$ drawn from the CRE we have

$$\Pr\left(R_{\mathrm{P-IF}}(\mathbf{K}_{\mathsf{xx}}, \mathbf{P}) > R_{\mathrm{BT}} + \Delta R\right) < c(K)2^{-\Delta R}$$

where
$$c(K) = K \left(\frac{K+3}{4} \gamma_K^{\Delta^2}\right)^{\frac{K}{2}} \left(1 + \sqrt{K}\right)^K \frac{\pi^{K/2}}{\Gamma(K/2+1)}$$

This is no longer distributed compression...

This is no longer distributed compression...

But there are cases where the precoding can be viewed as was done by nature

Cloud Radio Access Network (C-RAN) over Rayleigh channel

- The covariance of the received signal $\mathbf{K}_{xx} = SNR\mathbf{H}\mathbf{H}^T + \mathbf{I}$
- W.L.O.G assume $SNR = 1 \Longrightarrow \mathbf{K}_{xx} = \mathbf{H}\mathbf{H}^T + \mathbf{I}$
- \bullet $H = U\Sigma V^T$
- $\bullet \ \mathsf{K}_{\mathsf{XX}} = \mathsf{U} \mathbf{\Sigma} \mathbf{\Sigma}^{\mathsf{T}} \mathsf{U}$
- $\mathbf{H}_{i,j} \sim \mathcal{N}(0, \sigma^2)$ and i.i.d. $\Longrightarrow \mathbf{U}, \mathbf{V}^T$ are Haar distributed

Figure: Outage bounds for different number of sources.

Thanks for your attention!