

מחלקה למדעי המחשב

19 - 09 - 239:00 - 12:00

אלגברה ליניארית 1 למדעי המחשב

מועד ג'

מרצים: ד"ר שי סרוסי

'תשפ"ג סמסטר א

השאלון מכיל 11 עמודים (כולל עמוד זה וכולל דף נוסחאות).

בהצלחה!

הנחיות למדור בחינות שאלוני בחינה

- לשאלון הבחינה יש לצרף מחברת.
- ניתן להשתמש במחשבון מדעי לא גרפי עם צג קטן.

חומר עזר

. און. מצורפים לשאלון. (A4) מצורפים לשאלון. \bullet

אחר / הערות יש לענות על השאלות באופן הבא:

- יש לנמק היטב כל שלב של פתרון. תשובה ללא הסבר וללא נימוק, אפילו נכונה, לא תתקבל.
 - . יש לפתור 4 מתוך 5 השאלות הבאות. משקל כל שאלה 25 נקודות.
 - סדר התשובות אינו משנה, אך יש לרשום ליד כל תשובה את מספרה.
 - הסבר היטב את מהלך הפתרון.
 - יש לציין את השאלות שעניתם עליהן בתחילת המחברת.

שאלה 1

(21 נק') (א

נתונה המערכת משוואות הבאה:

$$x + 2y + (k - 1)z = 1$$

$$2x + y + (2k - 6)z = -k$$

$$kx + 2ky + 2z = -1$$

מצאו את ערכי הפרמטר k עבורם למערכת אין פתרון, יש פתרון יחיד, ויש אינסוף פתרונות. במקרה של אינסוף פתרונות רשמו את הפתרון הכללי.

- ב) (13 נק')
- א) (א גניח בי $A \in \mathbb{R}^{n \times n}$ נניח כי $A \in \mathbb{R}^{n \times n}$ נניח כי מטריצה מטריצה מטריצה מטריצה את מטריצה מטריצה מטריצה מטריצה מטריצה או מטריצה מטר
 - ב) נניח ש- $A^3+A=0$ מטריצה שמקיימת $A\in\mathbb{R}^{7 imes7}$ הוכיחו כי A לא הפיכה.
- ג) (5 נקי) נניח כי $A\cdot u=ar 0$ ו- $A\cdot u=ar 0$ ווקטור שמקיים את המשוואה ההומוגנית ווקטור $u\in\mathbb R^n$ ווקטור ש0 באם 0 אז u
 eq 0 אז ווקטור שמח

שאלה 2

א) (10 נק') במרחב ווקטורי $\mathbb{R}^{2 imes 2}$ נתונים הווקטורים

$$v_1=\begin{pmatrix}1&1\\-1&2\end{pmatrix},\quad v_2=\begin{pmatrix}2&1\\3&2\end{pmatrix},\quad v_3=\begin{pmatrix}3&4\\1&1\end{pmatrix},\quad v_4=\begin{pmatrix}2&0\\-1&1\end{pmatrix},\quad v_5=\begin{pmatrix}2&2\\3&0\end{pmatrix},\quad v_6=\begin{pmatrix}3&-2\\5&1\end{pmatrix}.$$

- $W = \mathrm{span}\,\{\mathrm{v}_4,\mathrm{v}_5,\mathrm{v}_6\}$, $U = \mathrm{span}\,\{\mathrm{v}_1,\mathrm{v}_2,\mathrm{v}_3\}$ נגדיר
 - $\cdot W$ -ו ו- של ומימד בסיס מצאו (5 נק') א) (א
 - $U\cap W$ מצאו בסיס ומימד של 5) (ב נק') מצאו בסיס מיס מאו ב
- הפריכו ע"י דוגמה N מממד הוכיחו ווקטורים במרחב ווקטורים או הפריכו ע"י דוגמה או הפריכו ע"י דוגמה את היינה $X\subseteq Y$ קבוצות של ווקטורים במרחב ווקטורי עדית את הטענות הבאות:
 - א) בלתי תלויה לינארית אז א בלתי הלויה לינארית. בלתי אם X בלתי אם (5 נק") אם א
 - בלתי תלויה לינארית אז X בלתי תלויה לינארית Y בלתי תלויה לינארית.
 - . בלתי תלויה לינארית X אז X בלתי תלויה לינארית X אם מספר הווקטורים ב-

שאלה 3

א"ט שמוגדרת ע"י $T: \mathbb{R}_2[x] o \mathbb{R}^{2 imes 2}$ שמוגדרת ע"י נתונה העתקה לינארית

$$T(a+bx+cx^{2}) = \begin{pmatrix} a+2b+3c & 2a+4b+5c \\ 3a+6b+9c & 4a+8b+12c \end{pmatrix}.$$

המכללה האקדמית להנדסה סמי שמעון

קמפוס באר שבע ביאליק פינת בזל 84100 | קמפוס אשדוד ז'בוטינסקי 84, 77245 | www.sce.ac.il | קמפוס באר שבע ביאליק פינת בזל 84100 | קמפוס אשדוד ז'בוטינסקי

- - ${\tt Im} T$ מצאו את המימד והבסיס של (3 נק') מצאו את
 - .KerT מצאו את המימד והבסיס של (נק") מצאו את מימד את (נק")
 - ד) (6 נק') נתון הבסיס

$$B = \{1, 1+x, 1+x^2\}$$

של $\mathbb{R}_2[x]$ והבסיס

$$C = \left\{ \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}, \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} \right\}$$

C של B לפי בסיס לפי ובסיס המייצגת המטריצה המטריצה מצאו את מצאו את של . $\mathbb{R}^{2 imes2}$

- ב) (10 נקי) הוכיחו או הפריכו ע"י דוגמה נגדית את הטענות הבאות:
- .Ker $(T)=\{ar{0}\}$ אז m>n אם $T:\mathbb{R}^n o\mathbb{R}^m$ אז (5 נק׳) נתונה העתקה לינארית
- . $\mathrm{Ker}(T)
 eq \{ar{0}\}$ אז m < n אם $T: \mathbb{R}^n o \mathbb{R}^m$ אז לינארית (5 נקי) נתונה העתקה לינארית

שאלה 4

א) יהיו $\{u_1,u_2,u_3\}\in\mathbb{R}^{2 imes 3}$ נתונה שלושה ווקטורים בלתי תלויים לינארית (מונה שלושה ווקטורים אינארים בלתי היו

$$w_1 = u_1 + 3u_2 + u_3$$
, $w_2 = 2u_1 + 4u_2$, $w_3 = -u_1 + u_2 + (k^2 + 2)u_3$.

לאילו ערכים האלה מצאו צירוף לינארית. עבור הערכים w_1,w_2,w_3 תלויים לינארי לאילו ערכי w_1,w_2,w_3 האלה מצאו צירוף לינארי לאינויאלי השווה לווקטור האפס.

- ב) (12 נק')
- (6 נק')

, 2×2 תת-מחב של $\mathbb{F}^{2\times 2}$ של כל המטריצות הסימטריות מסדר עות תהימטריות מסדר $U=\left\{egin{pmatrix}a&b\\b&c\end{pmatrix}\middle|a,b,c\in\mathbb{F}\right\}$ יהיו מסדר עות מסדר $W=\left\{egin{pmatrix}0&x\\-x&0\end{pmatrix}\middle|x\in\mathbb{F}\right\}$ -ו מסדר ביתו כי

$$U \oplus W = \mathbb{F}^{2 \times 2}$$

ב) (6 נק') הוכיחו או הפריכו ע"י דוגמה נגדית:

V תת מרחב של תה ער אז $U \cup W$ אז הייו מעל שדה של מרחב של מרחב של תת מרחב של תתי

שאלה 5

א) (15 נק") נתונה מטריצה

$$A = \begin{pmatrix} 1 & 1 & 2 & 3 \\ 4 & k & 1 & 6 \\ 0 & 0 & 2 & 1 \end{pmatrix} .$$

המכללה האקדמית להנדסה סמי שמעון

קמפוס באר שבע ביאליק פינת בזל 84100 | קמפוס אשדוד ז'בוטינסקי 84, 77245 | www.sce.ac.il | קמפוס באר שבע ביאליק פינת בזל 84100 | קמפוס אשדוד ז'בוטינסקי

לכל ערך של הפרמטר k מצאו

- .col(A) א) (6 נק') המימד והבסיס של
- $\mathrm{Nul}(A)$ ב) אווו המימד והבסיס של (\mathbf{r}
- ב) (10 נק") הוכיחו או הפריכו ע"י דוגמה נגדית את הטענות הבאות:

-ם ב- תלויה לינארית של ווקטורים ב- $\{u_1,\dots,u_k\}$ העתקה לינארית העתקה לינארית ותהי $T:\mathbb{R}^n \to \mathbb{R}^m$ הוכיחו או הפריכו ע"י דוגמה נגדית את הטענות הבאות:

- א) בת"ל. $\{T(u_1), \dots, T(u_k)\}$ בת"ל.
- בת"ל. $\{T(u_1), \dots, T(u_k)\}$ בת"ל. בת"ל.

פתרונות

שאלה 1

(N

$$\begin{pmatrix} 1 & 2 & k-1 & 1 \\ 2 & 1 & 2k-6 & -k \\ k & 2k & 2 & -1 \end{pmatrix} \xrightarrow{R_2 \to R_2 - 2R_1} \begin{pmatrix} 1 & 2 & k-1 & 1 \\ 0 & -3 & -2 & -k-2 \\ 0 & 0 & -k^2 + k + 2 & -k-1 \end{pmatrix}$$

$$= \begin{pmatrix} 1 & 2 & k-1 & 1 \\ 0 & -3 & -2 & -k-1 \\ 0 & 0 & -(k-2)(k+1) & -(k+1) \end{pmatrix}$$

$$:k = -1$$

יהיו אינסוף פתרונות:

- שאלה 2
- שאלה 3
- שאלה 4
- שאלה 5