תכנון וניתוח אלגוריתמים הרצאה 17

רכיבי קשירות ורק״חים

<u>רכיבי קשירות</u>

- גרף לא מכוון נקרא קשיר אם בין כל שני קדקודים קיים מסלול.
 - G = (V,E) נתון גרף לא מכוון : נתון גרף א

רכיב קשיר זוהי קבוצה מקסימלית של קדקודים בגרף, כך שבין כל שני קדקודים בקבוצה זו קיים מסלול.

קדקוד בודד ללא שכנים יקרא גם כן רכיב קשיר. . בתרשים הבא מוצג גרף קשיר € דוגמא

. בתרשים הבא מוצג גרף שאינו קשיר. ♦

: בדוגמא מס' 2 נתון גרף שבו שלושה רכיבים קשירים והם בדוגמא מס' 2 נתון גרף שבו שלושה רכיבים קשירים והם בדוגמא מס' 2 נתון גרף שבו שלושה רכיבים קשירים והם בדוגמא מס' $\{a,b,c,d\}$

.G=(V,E) נתון גרף מכוון * 🌣

גדרה -"רכיב קשיר חזק" (בקיצור רק"ח) זוהי קבוצה מקסימלית של קדקודים בגרף G, כך שבין כל שני קדקודים בגרף קדקודים בקבוצה זו קיים מסלול מכוון.

: הרכיבים הם

- {a,b,c} ◆
 - {d,g} **◊**
 - {e,f} **◊**
 - {h} ❖

- מוצא את רכיבי DFS(G) , G בגרף לא מכוון הקשירות.
- נמצא a -ט מוצא את רכיב הקשירות שBFS(G,a) \diamondsuit בו.
- שאפשר לשכתב בקלות את האלגוריתם (BFS(G) שנוכל למצוא את כל רכיבי הקשירות.

- ◆ בתהליך של סריקת קדקודי הגרף בשיטת BFS נשתמש במערך בוליאני Used(v) כך ש Used(v) מציין האם ביקרנו בקדקוד v או לא.
 - שר מונה את מספר כמשתנה count בנוסף נשתמש במשתנה הכיבים הקשירים.
 - :שלגוריתם המבוקש:

- count $\leftarrow 0.1$
- 2 ♦ לכל קדקוד v בגרף בצע:
- :ערך FALSE אז בצע Used[v] -אם ל- 2.1 ♦
- כאשר BFS[G] כאשר 2.1.1

קדקוד מקור הינו v.

count \leftarrow count + 1 2.1.2

- אלגוריתם של האלגוריתם אינה של האלגוריתם O(|E|+|V|).
- עם ברצוננו להדפיס את כל הקדקודים שנמצאים באותו רכיב קשיר של V, נוכל לעשות זאת בצורה רקורסיבית בעזרת פרישת עץ בשיטת inorder, או preorder, בזמן (| V |) O(| V |).

- אם התשובה שלילית נרצה להדפים הודעה שאין מסלול
 - . כזה
 - אחרת נדפיס את המסלול עצמו.
 - *פתרון*
 - BFS(G) קודם נריץ את האלגוריתם ◆
- ▶ אחרי כן נפעיל את השגרה הרקורסיבית הבאה אשר
 מדפיסה את הקדקודים לאורכו של מסלול קצר ביותר מ-s ל-y

- (G,s,v) הדפס מסלול ◊
- s אז הדפס את הקדקוד v==s
 - P[v]=nil אחרת אם
- אז הדפס שלא קיים מסלול ועצור!
 - :אחרת בצע
- (*רקורסיה*) (G,s,P[v]) א. הדפס_מסלול
 - ב. הדפס את הקדקוד V.

- ♣ באלגוריתם, למציאת רכיבים קשירים בגרף לא מכוון,במקום המשפט:
- "ע כאשר קדקוד מקור הינו BFS(G) קרא לשגרה 'U'. ניתן לרשום את המשפט הבא :
- "v כאשר קדקוד מקור הינו, DFS(G) קרא לשגרה (סאשר הינו "סרא לשגרה (סאשר הינו) "סרא לשגרה (סא
 - בסוף האלגוריתם תוחזר אותה תוצאה.

G -מG מ-G קבלת גרף הפוך

- . G=(V,E) דוגמא: נתון גרף ♦
- נגדיר גרף חדש אשר יקרא גרף הפוך ומוגדר כדלקמן: ◆

$$G^T = (V, E^T)$$

- $E^{T} = \{ (u,v) | (v,u) \in E \}$ כאשר
 - . כלומר הופכים את כיווני הקשתות
- אשר O(|E|+|V|) אשר O(|E|+|V|) אשר סל לכתוב אלגוריתם בעל זמן הריצה G^T קולט את הגרף G^T ויחזיר את הגרף

דוגמה-נתון הגרף הבא:

* גרף זה מיוצג באמצעות רשימות סמיכות שלהלן:

€ כך:

איך בונים ממנו גרף הפוך?

♦ בהתחלה

. (2,0) תתוסף כקשת (0,2) בהתחלה קשת (0,2)

איך בונים ממנו גרף הפוך?

. (4,0) תתוסף כקשת (0,4)

. בהתחלה קשת (2,4) תתוסף כקשת (4,2) בתחילת הרשימה.

♦ בהתחלה קשת (3,1) תתוסף כקשת (1,3) בתחילת הרשימה.

♦ בהתחלה קשת (4,1) תתוסף כקשת (1,4) בתחילת הרשימה.

♦ בהתחלה קשת (4,3) תתוסף כקשת (3,4) בתחילת הרשימה.

- ⇒בסוף התהליך קיבלנו את המצופה.
- ◆רואים בבירור שמספר הצעדים שאנו עושים באלגוריתם זה פרופורציוני לסכום אורכי רשימות הסמיכות.
 - לכן סיבוכיות זמן הריצה של האלגוריתם הינה \odot לכן O(|E| + |V|)

אלגוריתם למציאת רכיבי קשירות חזקה בגרפים מכוונים

- שלגוריתם למציאת רכיבי קשירות חזקה בגרפים מכוונים ♦
 - (SCC) Strong Connected Component •
- (L) ויוצרים רשימת קדקודים DFS(G) אעד 1.1 מריצים את מריצים את שעד אווצרים את
 - אשר ממוינת בסדר יורד לפי זמני סיום הטיפול בהם.

$$G^T = (V, E^T)$$
 ומקבלים $G = (V, E)$ את הגרף הופכים את הגרף $G = (V, E)$

$$E^{T} = \{ (u,v) | (v,u) \in E \}$$

. כלומר הופכים את קשתות הגרף

כאשר

- של של DFS(GT). מריצים .3 צעד 3. מריצים .3 סך שהלולאה המרכזית של
 - עוברת על קדקודי הגרף לפי הסדר , כפי DFS
 - שנקבע בצעד 1 ברשימה .L

יעילות האלגוריתם �

- O(|E| + |V|) צעד 1 דורש זמן \diamond
 - O(|E| + |V|) צעד 2 דורש זמן \diamond
 - O(|E| + |V|) צעד 3 דורש זמן
- אינון היא: סיבוכיות ממן הריצה של האלגוריתם הנדון היא: \odot O(|E|+|V|)
- שתואר (SCC) שתואר של האלגוריתם 🍣
 - :אכיל על הגרף הבא:

דוגמת הרצה

• נתון גרף מכוון הבא:

⇒ בשלב זה תמונת המצב מוצגת בתרשים הבא:

28

לפי הסדר GT על הגרף DFS כעת נריץ את האלגוריתם lacktriangle כפי שמופיע ברשימה lacktriangle, אשר התקבלה בצעד lacktriangle.

:עצי פרישה DFS שמתקבלים הינם

- לכן בגרף הנתון 3 רק"חים והם (כצפוי) ♦
- \Diamond {a,c,b} {d,e} {f}
 - בהרצאה זו אנו לא נעסוק בנכונות האלגוריתם המודע
 כיוון שהוכחת נכונותו של השיטה חורגת מן הדרישות
 של התכנית.

(רק"ח) והם:

$$\bullet$$
 C1={a,b,c} C2={d,e} C3={f}

גרף על

G=(V,E) כאשר G=(V,E) כאשר G=(V,E) הגדרה: גרף העל הוא: C_i הוא: C_i רק"ח ו-1 C_i ו-1 C_i וקיימת קשת C_i וקיימת קשת C_i וקיימת קשת C_i (C_i) (C_i) (C_i) (C_i)

G בגרף

בהמשך לדוגמה האחרונה גרף העל של הגרף ההפוך הנתון הוא הגרף הבא :

⇒קל לראות כי גרף העל הוא תמיד גרף מכוון ללא מעגלים. (מדוע?).

L הרשימה – הרשימה בוגמת הרצה נוספת – הרשימה a, b, c, f, e, d, g , h שנקבל הינה:

a, b, c, f, e, d, g , h שהינה L ש"פ הרשימה נריץ DF\$ על גרף ההפוך מ-a ונקבל

: קדקודים שביקרנו בהם צבועים בצבע אדום a, b, c, f, e, d, g , h

:נקבל . e -ם לפי הרשימה L יש להריץ את ה-DFS שלה לפי הרשימה €

קדקודים שביקרנו בהם זה עתה צבועים בצבע כחול: a, b, c, f, e, d, g , h

:נקבל . h -שימה DFS וש להריץ את ה-L דערה לפי הרשימה בקבל • €

קדקודים שביקרנו בהם זה עתה צבועים בצבע סגול: a, b, c, f, e, d, g , h

● סיימנו! כל אלה הצבועים באותו צבע משתייכים לאותו רק"ח.

גרף העל של הגרף הוא:

. רואים שהגרף (גרף על) חסר מעגלים. ♦

- 1 אדוגמא ♦
- המיוצג על ידי רשימות G=(V,E) המיוצג על ידי רשימות שכנות.
- כאלר אלגוריתם המוצא את כל הקדקודים ב-G אם יש כאלה בכלל, אליהם אפשר להגיע במסלול מכוון מכל קדקודי הגרף

- ספתרון
- . מצא רכיבי קשירות חזקה 1-
 - . על. בנה גרף על. ♦
- ◄-3 עתה נעבור על "גרף העל" ונספור את מספר הצמתים להם דרגת יציאה 0. (חייב להיות לפחות אחד כזה).

נניח שקיבלנו <u>גרף על</u>של גרף כלשהו הנראה כך:

.C3 קל לראות שהקבוצה המבוקשת היא

נניח שקיבלנו <u>גרף על</u>של גרף כלשהו אחר הנראה כך:

קל לראות שהקבוצה המבוקשת לא קיימת כי מקדקודי♥ לראות שהקבוצה המבוקשת לא קיימת כי מקדקודיC3 לא ניתן להגיע לקדקודיC3 לא ניתן להגיע לקדקודי

47

1.05.2020

- ♦לכן המסקנה היא שבגרף על חייב להיות קדקוד אחד בלבד שדרגת היציאה שלו היא 0.
- ❖אחרת, אם יש יותר מקדקוד אחד שדרגת היציאה שלו היא 0 אז לא קיימת הקבוצה המבוקשת.

המשך האלגוריתם

- שדרגת, שדרגת בלבד בלבד, בגרף העל \bullet 4- \bullet היציאה שלו 0 אז:
- כל הקדקודים שנמצאים ברכיב קשירות חזקה,
 המיוצגים באמצעות קדקוד זה בגרף העל, עונים לדרישת הבעיה.
- ◄ -5אם קיים יותר מקדקוד אחד כזה אזי אין קדקודים
 כאלה בגרף שאפשר להגיע אליהם במסלול מכוון מכל קדקודי הגרף.

סיבוכיות זמן הריצה של האלגוריתם

- O(|E| + |V|) צעד 1. דורש זמן \bullet
- . מקסימום O(|E|) מקסימום \diamond
- , לכן O(1) או 3. דורשים זמן או € לכן סלכן סלכ
- יא: סופית סיבוכיות זמן הריצה של האלגוריתם היא:
 - O(|E| + |V|)

2דוגמא

- 2 דוגמא ♦
- אשר מיוצג על ידי רשימות G=(V,E) אשר מיוצג על ידי רשימות \diamondsuit שכנות.
- (אם קיימת קבוצה כזו) נתאר אלגוריתם אשר מוצא קבוצה (אם קיימת קבוצה כזו)
- של קדקודים כך ש: |S|>1/2|V| כלומר מספר $S \subset V$
 - איברים בקבוצה S גדול מחצי מספר הקדקודים בגרף,
 - . Y -לX קיים מסלול מכוון מ $Y \in V$ ו לכל

- פתרון
- .1-♦ נמצא רכיבי קשירות חזקה.
- . בנה "גרף על" של רכיבי קשירות חזקה 2-
 - .3-♦ נספור לכל רכיב את דרגת הכניסה שלו.
- 4- ♦ אם יש יותר מרכיב אחד שדרגת הכניסה שלו 0 אזי
 עצור. ותן הודעה: לא קיימת קבוצה כזו.

- ◆ -5 אם קיים קדקוד אחד " בגרף על " המייצג רכיב אחד עם דרגת כניסה 0 אז הקבוצה המבוקשת S תכיל את כל הקדקודים שברכיב קשיר זה.
- ואחרי S עתה נספור את מספר הקדקודים (K) בקבוצה S, ואחרי כן נבדוק :
 - אז נודיע: קיימת קבוצה כזו. K>|V|/2 אם
 - .אז נודיע לא קיימת קבוצה כזו $K \leq |V|/2$ אם $K \leq |V|/2$
 - של לראות כי סיבוכיות זמן הריצה של האלגוריתם הזה ♥
 - O(|E| + |V|) : היא