Section 14.4:

Equation of a Tangent Plane

Suppose f has continuous partial derivatives. An equation of the tangent plane to the surface z = f(x, y)at the point $P(x_0, y_0, z_0)$ is

$$z-z_{0}=f_{x}\left(x_{0},y_{0}
ight) \left(x-x_{0}
ight) +f_{y}\left(x_{0,}\,y_{0}
ight) \left(y-y_{0}
ight)$$

Le at
$$y = f(x) \approx f(x_0) +$$

The tangent plane contains the tangent lines T_1 and T_2 .

is differentiable at
$$y = f(x) \approx f(x_0) + f'(x_0)(x - x_0)$$
 for x close to x_0 .

Equation for the target line at $(x_0, f(x_0))$.

Higher dimensional equivalent:
$$\cdot z = f(x,y)$$
 is a sorr face in \mathbb{R}^3 .

• fix a point $(x_0, y_0, f(x_0, y_0))$ on the surface. Any plane that passes through the point

in of the form
$$A(x-x_0) + B(y-y_0) + C(-2-2_0) = 0$$

C=>
$$\frac{2-2}{C} = \frac{-A}{C}(x-x_0) - \frac{B}{C}(y-y_0) => 2 = \frac{2}{2} + a(x-x_0) + b(y-y_0)$$
 where $a = \frac{-A}{C}$, $b = \frac{-B}{C}$. By fixing $y = y_0$, the curve C, had tangent line T, with slope $f_x(x_0, y_0)$.

Def: The tangent plane at (xo, yo, f(xo, yo)) is the plane with lives T, and T2. Equation of the tangent plane $\Rightarrow x = x_0 \Rightarrow z = z_0 + b(y-y_0) \Rightarrow z = z_0 + f_y(x_0, y_0)(y-y_0)$ $y = y_0 = 2 = 2_0 + A(x - x_0) = 2 = 2_0 + f_x(x_0, y_0)(x - x_0)$ => Equation of fangent plane is $2 = 20 + f_{N}(N_{0}, y_{0})(x - N_{0}) + f_{y}(N_{0}, y_{0})(y - y_{0})$

Example 1

Find the tangent plane to the elliptic paraboloid $z = 2x^2 + y^2$ at the point (1, 1, 3).

$$f(x,y) = 2x^2 + y^2 \implies f_{\kappa}(x,y) = 4x, f_{\eta}(x,y) = 2y$$

$$\implies f_{\eta}(x,y) = 4x, f_{\eta}(x,y) = 2y$$

 $f(1,1) = 2(1)^2 + 1^2 = 3$

$$\Rightarrow$$
 2 = 3 + 4(x-1) + 2(y-1) => $\{ z = 4x + 2y - 3 \}$

The elliptic paraboloid $z=2x^2+y^2$ appears to coincide with its tangent plane as we zoom in toward (1,1,3).

Def: The linear function

$$L(x,y) = f(a,b) + f_x(a,b) (x-a) + f_y(a,b) (y-b)$$

is called the linearization of f at (a,b).

. The approximation

$$f(x,y) \approx f(x,b) + f_x(a,b)(x-a) + f_y(a,b)(y-b)$$

is called the linear approximation or the tangent plane approximation of fat (a,b).

$$\Delta y = f'(a) \Delta x + S \Delta x$$
 where $S \rightarrow D$ as $\Delta x \rightarrow D$

where $\Delta y = f(a+y) - f(y)$ and Δx describes a change from

 $f\left(x,y
ight)=rac{xy}{x^2+y^2} ext{ if } \left(x,y
ight)
eq \left(0,0
ight), f\left(0,0
ight)=0$

Differentials.

· Define the differential dx to be an independent variable.

. Then for y = f(x), dy = f'(x) dx

· When x changes by an

amount dx = Dx, the function

values change by by but the values along the tangent

line change by dy = f'(a) dx

= f'(n) \(\Dag{n} \)

when Δx is "small". That is, $\Delta y \approx dy$.

So we can approximate changes along f(x) by changes along the tangent line

Example 4

- (a) If $z = f(x, y) = x^2 + 3xy y^2$, find the differential dz.
- (b) If x changes from 2 to 2.05 and y changes from 3 to 2.96, compare the values of Δz and dz.

(a)
$$f_x = 2x + 3y$$
, $f_y = 3x - 2y$

(b)
$$dx = \Delta x = 2.05 - 2$$
 and $dy = \Delta y = 2.96.3 = -0.04$

$$\Rightarrow d = (2x + 3y) \Big|_{x=2, y=3} \Delta x + (3x - 2y) \Big|_{x=2, y=3} \Delta y$$

$$= (4+9)(0.05) + (6-6)(0.04) = 0.65$$

and
$$\Delta_2 = f(2.05, 2.96) - f(2,3) \approx 0.6449$$