CS375: HW6 Ochder 6 2021

1. Explain how the component-wise update formula for Jacobi given on the course slides is equivalent to the vector-update version.

That is, for the Jacobi algorithm show that the vector update version

$$\chi^{(k)} = D \cdot CCL + Cu) \propto^{(k-1)} + D \cdot b$$
15 the same as the component-wise update,
$$\chi^{(k)}_{i} = -\frac{5}{5} \left(\frac{aii}{aic}\right) \chi^{(k-1)}_{j} + \frac{bi}{aii}$$

$$j=1, j\neq i$$

let's look at the 1-th component of the vector update version of Jacobi

$$\chi^{(\kappa)} = \begin{bmatrix} 0 & \frac{1}{a_{ii}} & \frac{1}{a_{ii}} & \frac{1}{a_{ii}} & \frac{1}{a_{ii}} \\ \frac{1}{a_{ii}} & \frac{1}{a_{ii}} & \frac{1}{a_{ii}} \end{bmatrix} + \begin{bmatrix} 0 & \frac{1}{a_{ii}} & \frac{1}{a_{ii}} \\ \frac{1}{a_{ii}} & \frac{1}{a_{ii}} & \frac{1}{a_{ii}} \end{bmatrix} + \begin{bmatrix} 0 & \frac{1}{a_{ii}} & \frac{1}{a_{ii}} \\ \frac{1}{a_{ii}} & \frac{1}{a_{ii}} & \frac{1}{a_{ii}} \end{bmatrix} + \begin{bmatrix} 0 & \frac{1}{a_{ii}} & \frac{1}{a_{ii}} \\ \frac{1}{a_{ii}} & \frac{1}{a_{ii}} & \frac{1}{a_{ii}} \end{bmatrix} + \begin{bmatrix} 0 & \frac{1}{a_{ii}} & \frac{1}{a_{ii}} \\ \frac{1}{a_{ii}} & \frac{1}{a_{ii}} & \frac{1}{a_{ii}} & \frac{1}{a_{ii}} \end{bmatrix} + \begin{bmatrix} 0 & \frac{1}{a_{ii}} & \frac{1}{a_{ii}} \\ \frac{1}{a_{ii}} & \frac{1}{a_{ii}} & \frac{1}{a_{ii}} & \frac{1}{a_{ii}} \end{bmatrix} + \begin{bmatrix} 0 & \frac{1}{a_{ii}} & \frac{1}{a_{ii}} \\ \frac{1}{a_{ii}} & \frac{1}{a_{ii}} & \frac{1}{a_{ii}} & \frac{1}{a_{ii}} \end{bmatrix} + \begin{bmatrix} 0 & \frac{1}{a_{ii}} & \frac{1}{a_{ii}} \\ \frac{1}{a_{ii}} & \frac{1}{a_{ii}} & \frac{1}{a_{ii}} & \frac{1}{a_{ii}} \end{bmatrix} + \begin{bmatrix} 0 & \frac{1}{a_{ii}} & \frac{1}{a_{ii}} \\ \frac{1}{a_{ii}} & \frac{1}{a_{ii}} & \frac{1}{a_{ii}} & \frac{1}{a_{ii}} \end{bmatrix} + \begin{bmatrix} 0 & \frac{1}{a_{ii}} & \frac{1}{a_{ii}} \\ \frac{1}{a_{ii}} & \frac{1}{a_{ii}} & \frac{1}{a_{ii}} & \frac{1}{a_{ii}} & \frac{1}{a_{ii}} \end{bmatrix} + \begin{bmatrix} 0 & \frac{1}{a_{ii}} & \frac{1}{a_{ii}} \\ \frac{1}{a_{ii}} & \frac{1}{a_{ii}} & \frac{1}{a_{ii}} & \frac{1}{a_{ii}} & \frac{1}{a_{ii}} & \frac{1}{a_{ii}} \end{bmatrix} + \begin{bmatrix} 0 & \frac{1}{a_{ii}} & \frac{1}{a_{ii}} \\ \frac{1}{a_{ii}} & \frac{1}{$$

Contents

- Homework 6
- Problem 2.b
- Problem 2.c
- Problem 2.d
- Problem 3.c
- Problem 4.a
- Problem 4.b

Homework 6

Juan Alejandro Ormaza October 6 2021

```
clear all;clc; close all;
format LONG E
```

Problem 2.b

```
P=20;
A=gallery('poisson',P);
b = ones(P^2,1);
% Since both algorithms should be the same, I am going to use norm 2 to
% figure the difference between my_jacobi and my_vector_jacobi.
error = norm(my_jacobi(A,b,100)-my_vector_jacobi(A,b,100),2);
fprintf("the size of the difference between my_jacobi and my_vector_jacobi is %2.8f\n",error);
```

the size of the differnce between my_jacobi and my_vector_jacobi is 0.00000000

Problem 2.c

```
my vector jacobi takes 0.00596608 seconds
my component-wise jacobi takes 9.96381930 seconds
my_vector_jacobi is 1670.07721884 times faster than my_jacobi
```

Problem 2.d

```
P=[ 10, 20, 40, 80, 160];
error=zeros(size(P,2),1);

for i=1:size(P,2)
    A=gallery('poisson',P(i));
    b = ones(P(i)^2,1);
    xtrue=A\b;
    x=my_vector_jacobi(A,b,100);
    error(i)=norm(xtrue-x,2)/norm(xtrue,2);
end
```

Problem 3.c

```
tot_it = [50, 100, 200, 400, 800, 1600];
error=zeros(size(tot_it,2),3);
for i=1:size(tot_it,2)
   A=gallery('poisson',160);
   b = ones(160^2,1);
   xtrue=A\b;
   x_jacobi=my_vector_jacobi(A,b,tot_it(i));
   x_CG=my_CG(A,b,tot_it(i));
   x_gauss=my_gauss_siedel(A,b,tot_it(i));
   error(i,1)=norm(xtrue-x_jacobi,2)/norm(xtrue,2);
   error(i,2)=norm(xtrue-x_gauss,2)/norm(xtrue,2);
   error(i,3)=norm(xtrue-x_CG,2)/norm(xtrue,2);
end
fprintf("Num Iterations\tError Jacobi\tError GS\tError CG\n");
for i=1:size(tot it,2)
fprintf("%4.0f\t\t %2.5f\t\t%2.5f\t\t%2.5f\t\n",tot_it(i),error(i,1),error(i,2),error(i,3));
end
```

Num Iterations	Error Jacobi	Error GS	Error CG
50	0.99012	0.98039	0.22322
100	0.98039	0.96131	0.00849
200	0.96130	0.92453	0.00000
400	0.92452	0.85577	0.00000
800	0.85574	0.73419	0.00000
1600	0.73415	0.54123	0.00000

Problem 4.a

```
P=10;
A=gallery('poisson',P);
b = ones(P^2,1);
```

```
nonZeros = nnz(A)/size(A,1);

fprintf("The number of nonzeros in A is %3.6f\n", nonZeros);
fprintf("As P increases the number of nonzeros approaches 5.")
```

The number of nonzeros in A is 4.600000 As P increases the number of nonzeros approaches 5.

Problem 4.b

fprintf("see in attached written solutions.\n")

see in attached written solutions.

Published with MATLAB® R2021a

9.6 based on the answer of part or we know thus Big-oh is O(m2n) = O(25n) additionally, we know that component-wise does not take advantage of spansify because it goes through each element of the matrix. Vector-update does take advantage of the speed that sparsity provides because QIr to solve for each welrow 4.c m=2p=2Vn Since the solution for an in banded system Takes O(min) to solve. We know that the system with m=2m? will take (B(4 n2) or essentially 6(n2) with n= 0 = 2 ad if n=100 let's assume i is the number of iterations 1) we want to find the moment when Jacoba to ecomes more expension $\frac{i_1}{2500} \ge \frac{i_2}{10000}$ $4i_1 \ge i_2$ $i_1 \ge 0.25i_2$ at 4 times i_2 (number of iterations for C) i, \(\frac{1}{4} \) is Jacobi will become more expensive.