| NUME:    |
|----------|
| PRENUME: |
| GRUPA:   |

## EXAMEN VERIFICAREA PROGRAMELOR

13 iunie 2019

| SI  | SII | SIII | SIV | TOTAL |
|-----|-----|------|-----|-------|
| /10 | /20 | /10  | /20 | /60   |

- SI. Stabiliți care dintre șirurile de caractere de mai jos sunt formule în logica CTL sau LTL. Pentru cele care nu sunt formule dați o justificare.
  - 1)  $F(p \to Gr) \lor \neg Up$
  - 2)  $GAFp \rightarrow EF(q \lor s)$
  - 3) EF(rUq)
  - 4)  $Fp \wedge Gq \rightarrow pUr$
  - 5)  $GFp \to F(q \lor s)$
  - 6)  $A \neg G \neg p$
  - 7)  $E[A[p_1Up_2]Up_3]$
  - 8)  $EFEGp \rightarrow AFr$
  - 9) A[pUEFr]
  - 10) EFE[rUq]
- SII. Verificați aplicând algoritmul de etichetare care dintre stările sistemului de tranziție din partea dreaptă satisfac formulele CTL:
  - 1)  $AG(EF(p \lor r))$
  - 2) AG(AFq)



## SIII.

Calculați  $wp(\Sigma, y < x)$ , aducând rezultatul la o formă cât mai redusă, unde  $\Sigma$  este:

```
1) a := 1; y := x; y := y-a;
2) a := x+1;
  if a-1 = 0 then y := 1
    else y := a
```

## ${\bf SIV.}$ Fie $\Pi$ următorul program

```
r := x;
d := 0;
while(r >= y){
    r:=r-y;
    d:=d+1
}
```

Demonstrați că în logica Hoare tripletul  $\{\neg(y=0)\}\ \Pi\ \{(x=d\cdot y+r)\wedge (r< y)\}$  este valid.