MATH221 Mathematics for Computer Science

Tutorial Sheet Week 11

Autumn 2017

1.

- (i) How many subgraphs are there of K_n which have all n vertices? (Hint: Ideas about power sets are relevant.) Note that the question is not asking about the number of *non-isomorphic* subgraphs of K_n ; that is a harder problem.
- (ii) How many non-isomorphic subgraphs are there of K_3 which have all 3 vertices?
- 2. Use Kruskal's and Prim's Algorithms to find a minimum spanning tree for the following weighted graph. What is the total weight of the minimum spanning tree?

- **3.** Let $f: \mathbb{N} \longrightarrow \mathbb{N}$ be given by f(n) = 1 + n/2 if n is even, and f(n) = 1 + (n-1)/2 if n is odd. Calculate the range of f and determine whether f is one-to-one.
- **4.** Prove the following statements. (i) $f:[0,\infty)\to\mathbb{R}$, defined by $f(x):=x^2+1$, for $x\geq 0$, is one-to-one but not onto. (ii) $f:\mathbb{R}\to(0,\infty)$, defined by $f(x):=x^2$ for $x\in\mathbb{R}$, is onto but not one-to-one. (iii) $f:(0,1)\to(0,\infty)$, defined by $f(x):=\frac{x}{1-x}$ for $x\in(0,1)$, is bijective.