Endow \mathbb{F}_q^n with the symmetric bilinear form:

$$\left\langle \cdot,\cdot\right\rangle : \frac{\mathbb{F}_q^n\times\mathbb{F}_q^n\rightarrow\mathbb{F}_q^n}{(x,y)\mapsto\sum\limits_{i=1}^nx_iy_i}$$

Definition (Dual code)

For $\mathcal{C}\subseteq\mathbb{F}_q^n$ a code, we define its $\mathit{dual\ code\ }\mathcal{C}^\perp$ as

e its auai code
$$\mathcal{C}^-$$
 as $\mathcal{C}^\perp \coloneqq \left\{x \in \mathbb{F}_q^n \mid orall c \in \mathcal{C}, \langle x, c
angle = 0
ight\}$

I. Properties

Prop

Let $\mathcal{C} \subseteq \mathbb{F}_q^n$ be a code with generator matrix G and parity check matrix H.

Then G is a parity check matrix of \mathcal{C}^\perp and H is a generator matrix of \mathcal{C}^\perp .

Proof (exercise).

Hint: take note that $G \cdot H^T = 0$: rows of G are orthogonal to rows of H.

Prop

- 1. $\dim \mathcal{C}^{\perp} = n \dim \mathcal{C}$
- 2. $(\mathcal{C}^{\perp})^{\perp} = \mathcal{C}$ (immediate from prop. 1) 3. $(\mathcal{C} + \mathcal{D})^{\perp} = \mathcal{C}^{\perp} \cap \mathcal{D}^{\perp}$ 4. $(\mathcal{C} \cap \mathcal{D})^{\perp} = \mathcal{C}^{\perp} + \mathcal{D}^{\perp}$

riangle In real Euclidean spaces, if $\mathcal{C} \subseteq \mathbb{R}^n$ then: $\mathbb{R}^n = \mathcal{C} \oplus \mathcal{C}^{\perp}$. This is not true in \mathbb{F}_q^n with $\langle \cdot, \cdot \rangle$.

Example

 $\mathcal{C}\subseteq \mathbb{F}_2^n \text{ with generator matrix } G=\begin{pmatrix}1&0&1&0\\0&1&0&1\end{pmatrix}.$ Then $\mathcal{C}=\mathcal{C}^\perp.$

Remark. The dual of the repetition code is the parity code.

II. Metric relation: the McWilliams theorem

Question. Is there a relation between the minimum distances of \mathcal{C} and \mathcal{C}^{\perp} ? No.

Explanation. Minimum distance is not informative enough for this problem.

Definition (Weight enumerator)

Let $\mathcal{C}\subseteq \mathbb{F}_q^n$ a code, its weight enumerating polynomial $P_{\mathcal{C}}\in \mathbb{Z}[X,Y]$ is defined as:

$$P_{\mathcal{C}(x,y)} \coloneqq \sum_{i=0}^n |\{c \in C \mid w(c) = i\}| x^i y^{n-i}$$

Theorem (McWilliams)

Let $\mathcal{C} \subseteq \mathbb{F}_2^n$ a code. Then:

$$P_{\mathcal{C}^\perp}(x,y) = \frac{1}{|\mathcal{C}|} P(y-x,y+x)$$

The proof rests of the following lemma:

Lemma

Let $f: \mathbb{F}_2^n \to \mathbb{C}$ and denote

$$\hat{f}: \begin{cases} \mathbb{F}_2^n \to \mathbb{C} \\ v \mapsto \sum\limits_{u \in \mathbb{F}_2^n} (-1)^{\langle u,v \rangle} f(u) \end{cases}$$

Let $\mathcal{C} \subseteq \mathbb{F}_2^n$ be a code.

Then:

$$\forall f: \mathbb{F}_2^n \to \mathbb{C}, \sum_{u \in \mathcal{C}^\perp} f(u) = \frac{1}{|\mathcal{C}|} \sum_{v \in \mathcal{C}} \hat{f}(v)$$

Proof.

$$\begin{split} (\star) \quad & \sum_{v \in \mathcal{C}} \hat{f}(v) = \sum_{v \in \mathcal{C}} \sum_{u \in \mathbb{F}_2^n} (-1)^{\langle u, v \rangle} f(u) \\ & = \sum_{u \in \mathbb{F}_2^n} f(u) \sum_{v \in \mathcal{C}} (-1)^{\langle u, v \rangle} \end{split}$$

Fact:

$$\sum_{v \in \mathcal{C}} (-1)^{\langle u, v \rangle} = \begin{cases} |\mathcal{C}| \text{ if } u \in \mathcal{C}^{\perp} \\ 0 \text{ otherwise} \end{cases}$$

- If $u \in \mathcal{C}^{\perp}$, $\sum_{v \in \mathcal{C}} (-1)^0 = |\mathcal{C}|$ If $u \notin \mathcal{C}^{\perp}$, then the map: $\varphi_u : \begin{cases} \mathcal{C} \to \mathbb{F}_2 \\ v \mapsto \langle u, v \rangle \end{cases}$ is a nonzero linear form: $\dim \ker \varphi_u = \dim \mathcal{C} 1$. Thus:

 - $\langle u, v \rangle = 0$ 2^{k-1} times $\langle u, v \rangle = 1$ $2^k 2^{k-1} = 2^{k-1}$ times

Back to (\star) :

$$\sum_{v \in \mathcal{C}} \hat{f}(v) = \sum_{u \in \mathcal{C}^{\perp}} f(u) \ |C| \quad \blacksquare$$

Proof of McWilliams theorem.

We will prove $P_{\mathcal{C}^\perp}(x,y)=\frac{1}{|C|}P_{\mathcal{C}}(y-x,y+x)$ for any $(x,y)\in\mathbb{C}^* imes\mathbb{C}^*$.

Algebraic identities prolongation theorem says two bivariate polynomials coinciding on a product of two infinite sets are equal.

Fix $x, y \in \mathbb{C}^* \times \mathbb{C}^*$ and take:

$$f: \begin{cases} \mathbb{F}_2^n \to \mathbb{C} \\ u \mapsto x^{w(u)} y^{n-w(u)} \end{cases}$$

Note that
$$P_{\mathcal{C}(x,y)} = \sum_{u \in \mathcal{C}} f(u)$$
.
$$\hat{f}(v) = \sum_{u \in \mathbb{F}_2^n} (-1)^{\langle u,v \rangle} x^{w(u)} y^{n-w(u)}$$

$$= \sum_{(u_1,\dots,u_n) \in \mathbb{F}_2^n} (-1)^{u_1v_1} \dots (-1)^{u_nv_n} x^{u_1} \dots x^{u_n} y^{1-u_1} \dots y^{1-u_n}$$

$$= \sum_{(u_1,\dots,u_n) \in \mathbb{F}_2^n} \prod_{i=1}^n (-1)^{u_iv_i} x^{u_i} y^{1-u_i}$$

$$= \prod_{i=1}^n \left(\sum_{t \in \mathbb{F}_2} (-1)^{tv_i} x^t y^{1-t} \right)$$

$$= \prod_{i=1}^n (y + (-1)^{v_i} x)$$

$$i.e. \ \hat{f}(v) = (y+x)^{n-w(v)} (y-x)^{w(v)}$$

Now, we can finish the proof using the lemma (skipped on my notes).