(12) NACH DEM VERTRAG ÜBER DIE INTERNATIONALE ZUSAMMENARBEIT AUF DEM GEBIET DES PATENTWESENS (PCT) VERÖFFENTLICHTE INTERNATIONALE ANMELDUNG

(19) Weltorganisation für geistiges Eigentum Internationales Büro

(43) Internationales Veröffentlichungsdatum 27. November 2003 (27.11.2003)

PCT

(10) Internationale Veröffentlichungsnummer WO 03/097869 A2

(51) Internationale Patentklassifikation7:

(21) Internationales Aktenzeichen: PCT/DE03/01572

(22) Internationales Anmeldedatum:

16. Mai 2003 (16.05.2003)

(25) Einreichungssprache:

(

Deutsch

C12Q 1/68

(26) Veröffentlichungssprache:

Deutsch

(30) Angaben zur Priorität:

102 22 632.6

17. Mai 2002 (17.05.2002) DE

- (71) Anmelder (für alle Bestimmungsstaaten mit Ausnahme von US): CON / CIPIO GMBH [DE/DE]; KYSELHÄUSER STRASSE 77, 06526 Sangerhausen (DE).
- (72) Erfinder: SÜSS, Karl-Heinz (verstorben).
- (74) Anwalt: BAUMBACH, Fritz; Robert-Rössle-Strasse 10, 13125 Berlin (DE).

- (81) Bestimmungsstaaten (national): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NI, NO, NZ, OM, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW.
- (84) Bestimmungsstaaten (regional): ARIPO-Patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW), eurasisches Patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), europäisches Patent (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IT, LU, MC, NL, PT, RO, SE, SI, SK, TR), OAPI-Patent (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Veröffentlicht:

 ohne internationalen Recherchenbericht und erneut zu veröffentlichen nach Erhalt des Berichts

Zur Erklärung der Zweibuchstaben-Codes und der anderen Abkürzungen wird auf die Erklärungen ("Guidance Notes on Codes and Abbreviations") am Anfang jeder regulären Ausgabe der PCT-Gazette verwiesen.

7

(54) Title: MICROSATELLITE MARKERS FOR GENETIC ANALYSES AND THE DIFFERENTIATION OF ROSES

(54) Bezeichnung: MIKROSATELLITENMARKER FÜR GENETISCHE ANALYSEN UND ZUR UNTERSCHEIDUNG VON ROSEN

(57) Abstract: Microsatellites from plants of the rose family, including said isolated microsatellites, primers from flanking regions of the microsatellites, a method for the production of microsatellites and the use thereof in the genotyping of plants from the rose family.

(57) Zusammenfassung: Mikrosatelliten aus Pflanzen der Gattung Rosa, einschließlich den isolierten Mikrosatelliten, Primem aus flankierenden Regionen der Mikrosatelliten, ein Verfahren zur Herstellung der Mikrosatelliten und deren Verwendung zur Genotypisierung von Pflanzen der Gattung Rosa.

Mikrosatellitenmarker für genetische Analysen und zur Unterscheidung von Rosen

Der Erfindung betrifft neuartige genetische Marker für genetische Analysen und zur Unterscheidung von Rosen.

Mögliche Anwendungsgebiete sind marker-gestützte Selektion und Herkunfts- und Variationsanalysen in Pflanzenzüchtung, Gartenbau und Landwirtschaft.

Stand der Technik

10

15

20

25

30

Rosa ist eine Gattung mit über 20 Arten allein in Deutschland, deren taxonomische Einteilung sich noch weitgehend in der Diskussion befindet (Haeupler H., Muer T., Bildatlas der Farn- und Blütenpflanzen Deutschlands). Die Gattung umfaßt Arten unterschiedlicher Ploidiestufen und unterschiedlichster geographischer Herkunft. Eine Vielzahl von Wildrosenarten kommt auf allen Kontinenten der Nordhalbkugel vor. Zudem sind natürliche Hybriden von im selben Habitat vorkommenden Rosenarten häufig, wodurch die Definition klar differenzierter Arten zusätzlich erschwert wird.

Andererseits ist die leichte Kreuzbarkeit von verschiedenen Rosenarten die Grundlage der großen Vielfalt von durch Züchtung entstandenen Sorten. Diese Vielfalt umfaßt Sorten mit unterschiedlicher Blütenfarbe und -form, unterschiedlicher Blühdauer (jährlich nur einmal blühend oder remontierend), Pflanzengröße und Wuchsform (Strauch-, Hecken-, Beet-, Kletter-, Bodendeckerrosen usw.), Art der Belaubung und Bestachelung, Aussehen der Früchte (Hagebutten), Winterhärte, Krankheitsresistenz und Ansprüchen an die Bodenqualität.

Für eine sichere Bestimmung von Arten und Sorten (die meist Ergebnisse komplexer Kreuzungen sind) ist in den meisten Fällen Blüte, Frucht, Bestachelung, Belaubung und Wuchsform mit einzubeziehen. Somit ist im Allgemeinen auch für den Fachmann kurzfristig lediglich eine Zuordnung zu einer Gruppe von Arten und Sorten möglich, nicht aber eine eindeutige Bestimmung.

Aufgabe-Lösungszusammenhang

Die Aufgabe der Erfindung besteht darin, neue Mikrosatellitenmarker zur genetischen Analyse von Pflanzen der Gattung Rosa bereitzustellen.

5

10

15

20

25

Ì

Die Aufgabe der Erfindung wird gemäß den Ansprüchen realisiert.

Wesen der Erfindung

Die erfindungsgemäßen Marker basieren auf der Amplifikation bestimmter hypervariabler Genomabschnitte, den sogenannten Mikrosatelliten, mit Hilfe der Polymerasekettenreaktion (PCR). Zur spezifischen Amplifikation werden für jeden Mikrosatelliten-Locus zwei Primer, jeweils links und rechts in den flankierenden Sequenzen benötigt. Diese Primer sind im Durchschnitt 23 +/- 5 Basen lang und durch ihre Sequenzen definiert. Ein Mikrosatellitenmarker ist im Prinzip eine sequence tagged site (STS), welche durch zwei spezifische Primer definiert ist. Diese Primer flankieren, links und rechts eine sogenannte Mikrosatellitensequenz. jeweils Mikrosatellitensequenz ist definiert als tandemrepetitive Wiederholung einer Di-, Trioder Tetranukleotidsequenz, beispielsweise (GA)_n, wobei n 8 ist. Es treten auch zusammengesetzte Mikrosatellitensequenzen auf, beispielsweise (GT)_n(AT)_n, sowie imperfekte Sequenzen, bei welchen einzelne Basen mutiert sind, beispielswise (GT)_nCA(AT)_n. Zwischen verschiedenen Linien und Sorten kommt es zu Variationen der Anzahl der Repeats an einem bestimmten Locus. Dies führt nach Amplifikation des Mikrosatelliten mittels der spezifischen Primer in den flankierenden Sequenzen zu PCR-Produkten verschiedener Länge und damit zu Polymorphismus. Diese Polymorphismen werden stabil vererbt und können daher als genetische Marker verwendet werden. In manchen Fällen treten auch Nullallele (kein sichtbares Fragment) auf, wenn Mutationen innerhalb der Bindungsstelle für die Primer vorhanden sind.

Über die biologische Funktion dieser der repetitiven Fraktion des Genoms zugeordneten Motive gibt es bisher keine gesicherten Erkenntnisse. Es wurde jedoch festgestellt, daß die Anzahl der Wiederholungen eines Mikrosatellitenmotivs zwischen nah verwandten Arten, Sorten und Linien variabler ist als der übrige (insbesondere codierende) Teil des

Genoms. So könnten z.B. drei Rosensorten einen Mikrosatelliten tragen, der in der Länge variiert (12, 14 und 17 Wiederholungen des Motivs GT), dessen flankierende Sequenzen aber in allen drei Sorten identisch sind. Somit kann durch PCR relativ leicht ein Längenunterschied nachgewiesen werden: ein Primerpaar bestehend aus je einem Primer links und rechts von der Mikrosatellitensequenz wird zur Amplifikation eines DNA-Fragments aus jeder der drei Linien verwendet.

Diese Fragmente unterscheiden sich dann in ihrer Länge: das Produkt der zweiten Sorte ist um 4 bp grösser als das der ersten Sorte, das Produkt der dritten Sorte um 10 bp. Dieser Längenunterschied (Längenpolymorphismus) kann z.B. durch verschiedene Techniken der hochauflösenden Elektrophorese (z.B. Kapillarelektrophorese) nachgewiesen werden. Damit sind diese drei Rosensorten eindeutig unterscheidbar, und zwar in jeder Entwicklungs- und Verarbeitungsstufe, aus der DNA gewonnen werden kann (Blatt, Blüte, Frucht, Same, Keimling, evtl. auch Rosenöl, Hagebuttenmarmelade, Tee, Trockensträuße usw.).

15

20

25

30

10

7

7

Die Auftrennung und Detektion der erhaltenen PCR-Produkte kann mit verschiedenen technischen Varianten durchgeführt werden. Für die Austrennung der Fragmente können hochauflösende Agarosegele, native Polyacrylamidgele oder denaturierende Polyacrylamidgele (=Sequenziergele) verwendet werden. Die Auftrennung kann auch auf massenspektrometrischem Wege durchgeführt werden. Die Detektion der Fragmente kann je nach Trennungssystem über Ethidiumbromidfärbung, Silberfärbung oder bei radioaktiver Markierung der PCR-Fragmente über Autoradiographie erfolgen. Eine weitere sehr effektive Variante der Auftrennung und Detektion besteht im Einsatz eines automatischen Sequenziergerätes mit farbstoff- bzw. fluoreszenzmarkierten Primern. Hierzu ist erforderlich, einen Primer aus jedem Mikrosatelliten-Primerpaar farbstoff- bzw. fluoreszenzmarkiert zu synthetisieren. Aus der PCR-Amplifikation resultiert ein markiertes Produkt, welches von dem Sequenziergerät detektiert werden kann. Dabei werden für jede Probe farbstoff- bzw. fluoreszenzmarkierte Größenstandards in derselben Spur mit aufgetrennt. Eine spezielle Software erlaubt es danach, die absolute Größe jedes aufgetrennten Fragmentes zu berechnen und somit auch Fragmente zwischen verschiedenen Gelläufen zu vergleichen. Mit dieser Methode können pro Tag mehrere hundert Proben weitgehend automatisch analysiert werden.

Untersucht man eine größere Zahl von Sorten, so geht diese Eindeutigkeit verloren: Bei 100 Sorten werden mehrere Sorten dieselbe PCR-Produktgröße zeigen und durch einen einzigen Mikrosatellitenmarker nicht voneinander unterscheidbar sein. Deshalb müssen mehrere Mikrosatellitenmarker, die unabhängig voneinander in ihrer Länge variieren, parallel untersucht werden. Daraus ergibt sich für jede untersuchte Rosensorte eine eindeutige Kombination von Mikrosatelliten-Fragmentlängen, die als der "Fingerprint" dieser Sorte bezeichnet werden kann.

Für Rose wird eine Anzahl von 25 Mikrosatellitenmarkern ausreichen, um über 90% der im Handel befindlichen Sorten voneinander zu unterscheiden. Bei Weizen liegt die Zahl z.B. bei 21 Markern für eine Unterscheidung von 95% aller Sorten. Mit diesem Ansatz nicht unterscheidbar bleiben sogenannte "Sports", also neue Rosensorten, die durch Spontanmutation aus einer bereits existierenden Sorte hervorgegangen sind und sich in nur einer Eigenschaft (z.B. Blütenfarbe oder Wuchsform) von dieser unterscheiden. Die beiden Genome sind in diesem Fall, abgesehen von der Mutation, identisch und mit dem beschriebenen Markerset wahrscheinlich nicht zu differenzieren.

10

15

20

Erfindungsgemäß werden Mikrosatellitenmarker bereitgestellt, die folgende Primerpaare mit zugeordneten Mikrosatellitensequenzen bzw. eine Anzahl davon enthalten und die Loci verschiedener Chromosomen des Genoms von Pflanzen der Gattung Rosa amplifizieren und daher zur Genmarkierung Verwendung finden.

Name	Motiv	Produkt Tm	Tm	Primer F* 5'->3'	Tm	Primer R 5'->3'
		-größe (bp) in "Licht- blick"				
RMS001	GT&GC	242	57.1	TTCAAAATTGCTGCCCCTTAG	44.8	TACCAGTTGAGTGAGAATAGTT
RMS002	GA	138	36.5	AATAATTTTTCTTTTGGTA	36.6	GATTTTCACTATTCA
RMS003	GA	151	52.9	TGGGAAAGGGAAAGCAACA	53.0	AAGGTAGGCAGAAGTGACAGACAT
RMS004	GT&AT	143	55.0	CAGGCCAAGGAAGAGGTAAAA	55.7	CGTATGCGCGTGTAGGAAGG
RMS005	GA	143	53.1	CTACCGGTGACCAGTGACGA	51.9	ATTITGCCCTCTCCCTTTGT
RMS006	GT&GA	114	53.0	ACCGGTCTCATTTCCATTG	52.2	GTAGGTCGGTCTGTCA
RMS007	GA	171	48.4	TCTTTCCGACTCCGACAA	54.8	TATGCCATTCAGACTCTCCAACAC
RMS008	GA	176	53.4	TCTCTGCGACAAAAAAAACAACT	61.9	CCATGAAGCGGCGGAGAGGA
RMS009	CT>	145	47.3	ATTGGCAAAAGATTCTCCTAC	46.5	ACTTGGTAATTTCGAGCATAA
RMS010	GA	105	61.2	GGTTGGGGGAAATTGAAGCAGAGA	58.9	TCTTTTCTACAAACCCCAACCAAC
RMS011	GT	190	47.9	TAGAAACGACCAATAAAAGAGG	48.0	TAACGAAACATCATCAATAGCA
RMS012	GT	141	48.8	ATAGAAAATAGAGGGGGTGTG	46.4	GATCGAAAAGTGGTCAAAATA
RMS013	GA	208	57.8	GCCTTAGCCGGGGTTTTCAA	45.6	GATCAATACCGAACTAACAAAG
RMS014	GA	124	56.1	TATTCTTCCCACCGACGAC	56.2	CCTCACTGCCAACCTGT
RMS015	GA	185	46.5	TAATGTAGGCAGATATAAAGGAGT	52.1	GCAGCTGCACAAGGAA
RMS016	GA	121	55.1	GGCCTGGACCTTTCTCATTTG	56.9	AACCGCTGCTTTCATTTTT
RMS017	AT>	246	46.2	AGGTCCCGTTATTTCAGG	46.2	AGTTGGCTTATGGCTTTTT

RMS018	GT	125	46.4	TTTTGGGTGGGTAAGTTTT	48.0	TTGGCCAATAAGGAAGACA
RMS019	. GA	104	57.1	ACCGTTTCCATTACCCTTTCACC	57.1	CGTCGGCCATGGATTTTTGTA
RMS020	GA	239	59.9	AGGCGCCCATGCAAATCAA	47.9	TTCCTAACGCAAACTATGTAAAT
RMS021	GA	188	50.9	AATTCCCTCTTACCCAAAACAC	55.2	CCGGCGAAGTCCCCTATG
RMS022	GA	170	51.3	AAGAAGATAAATTAGGGGGAAAAA	52.6	GCGCGAACATATTGATTGGT
RMS023	GT	170	42.4	TTTGCTATTAATTACAGATGAA	51.3	TAAACAATATAAATGGGGGGGGTAAAT
RMS024	AT>	200	44.0	ACTACTGTAAAATATGAAAAATCC	50.5	GTAGTAGCGGTTGCAAGAAAATA
RMS025	AT/GT	167	33.4	TAATGTAAGCTAACTAATCT	47.1	TTTTAAATTTTCGGTGGAGA
RMS026	GT	129	38.8	ATAGATATGTTTGGGTTCA	39.3	AATGTCAGGTTTTTGTTATG
RMS027	AT>	189	47.7	ACCGTTGTGCTTATCAGGA	48.2	ATTGGTGGTGCTTTTACATTAC
RMS028	AT>	237	50.0	TAGGCAAGACCATGAACCAG	49.9	TGTGCCTGTTTGCTTGTA
RMS029	GA	201	8.99	GGATAAAACCAACGGGACAGACTC	58.3	TCCGACACCATCCCTCCTACATAA
RMS030	GA	201	46.2	GATAAATTTCAAGGCGAGAG	50.9	AAAAGATGAACGACCCAAATAAT
RMS031	GA	202	40.5	TATATTAAAGAACAAGTGAGAAC	43.1	GTGGCTATCGAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
RMS032	AT>	193	40.7	AGAAACCAACCTTAGCAT	44.1	AACCATCCATATTTCAGTCA
RMS033	GA	203	0.09	CAAGAGATGTCGGAAAAGCAGGAAG	£ 59.9	TGCACCCCAAATTTACAAACCACA
				· —		
RMS034	GA	136	55.6	GCTTCTCGGTCTCGTGCTCTC	55.2	CTCCCGCTCAAATCAATAAATCTC
RMS035	GA	229	58.3	CCTCCTTGGCAGCCTTTTCATT	56.1	ATCGGCTATCCACATCGTCTACAC
RMS036	GA	235	56.4	CTCGCGGCCCAAATAACAAT	55.9	TTGCCCTTACATTTTCTCTACTCCATA
RMS037	GA	228	59.9	AACCTCGGAGCCGCATTTCAC	52.1	AGTTTTCCTCGCCAGATAAGC

RMS038	GA	115	50.3	GTGATAAGAGCAAAACAAGATGG	53.8	CTCGCGGAAGCCTCAAAA	
RMS039	2xGA	124	52.1	GCTGCTTTCTCCAATCAACAA	52.1	CAGCTCAGCAAAGGGGACTA	
RMS040	GT	143	46.6	AACCCCAAACTTCCTAAACT	45.7	TCTGTATCTACTGGCTAACC	
RMS041	GA	249	49.2	TTAACCCAAAGCACCAAAAT	48.5	ACCTTCACCGATGTATCACC	
RMS042	AT>	181	55.4	GCATGGCCAGGCTCTTCAC	55.5	ATGCCAAACGTCTCAGTCAACC	
RMS043	GA	215	52.6	GATCAAAGATGGGTTCTCCTCTC	54.6	AGGGGAATCTTTGAAAGTCGTTC	
RMS044	AT	204	49.6	ACCGATGGATGGCAATAAC	49.7	ATACAGGACATAAACGGCTACC	
RMS045	RMS045 AT>&AT	233	40.0	GAAAATAAGGACATCATCTAC	41.4	GGTGCCTCCATTATTTAC	
	&GA						
RMS046	AT>	247	45.0	AAAGGATTGCTGGATGTG	42.4	TATTCGCGTGGACTCTAT	
RMS047	GA	86	51.6	GCTCCCTCAATTTCCACTCA	51.7	ACCAACCCAATTCGCTCAT	
RMS048	GA&AT	197	41.8	ATAAGTATGAAAAAGTAAAATGAT	44.0	GTATACTAGAAAAACAAAACTGGT	•
RMS049	AT>	178	39.9	AAAAATACAACCGAAAAA	52.6	CCAACCCGTCAAGGCTAAA	
RMS050	AT&GA	169	43.1	TAAGCCTAAGAAAAACTCATT	48.6	CAGCCGTCAGATTCACTTG	
RMS051	GT	215	46.5	AGTAGACTGTCCTCCATTTAGC	50.9	ATACCATCAGAGAGAGACGACAC	
RMS052	GA	224	8.65	TTAGCCGTTAATTGAGTCGACAACCT	57.0	TGATGAACCCAATAGAATGAAAACA	
				C		GA	
RMS053	GA	160	56.9	GGCGGTAGCTAGTGACTGGAATCT	55.4	CCCTTACCCTTAGTTAC	
RMS054	AT&GA	239	48.8	CTGGGAGGAGACTCTGTCA	48.7	TAGCTTATTAGTCTGCATTGATGA	
RMS055	GA	192	53.4	TGATCACAAGAGCTTTTCAAGTTTAG	53.4	AGTTAGGCGCATGTACAAGAAAAT	
RMS056	GA	133	36.7	TGTGTAGATTAGCATTCC	35.2	GATCTAGGATGATTCAATA	

>		
۱		

RMS057	GAA / GA	174	63.4	CGAGGTGGGTAAGGGCGAACAAAG	63.5	CCCATCCAAAGCGAGGACGAC
RMS058	GT	143	50.6	CAACCCTGAAGCCTGAA	47.4	TTTGTAACCCATTTGACCATA
RMS059	AT>	126	42.6	ACAGTCTTATAGTGGCTTCC	44.9	TACAGGGTTCTAATTGATACATAC
RMS060	GA	219	41.6	CATTCATTTGACTCTAAGGA	43.5	TATTCTGGTCTAAGCTATTGTAA
RMS061	GT	211	49.6	ATATCAGCCGTCCCATCAG	38.9	TTAGAAATCCCAAACAT
RMS062	GA>	189	50.4	GCGAACGGCATTTACTTGT	50.5	GGTTGTTCTGGGTGGTTTTT
RMS063	GAA	90	60.4	CCACCGCCCACAATG	59.9	GCTCTGCGGAGTGGAATGGT
RMS064	GA, GT	227	43.7	TTTTTGCAATATGTGAAGC	50.3	GATTGGTCAACCGATATGTAGAA
RMS065	GA	111	42.2	TATAGCTCGGTAGATTCAAA	56.2	CCAGACTGCCCCAACTCATA
RMS066	GA	198	48.8	TCCACCACAGACCACAG	49.5	AAGCTCCCTACGATTTCACTC
RMS067	GA	169	50.2	CAATCTGCAATCCGAATCC	47.5	ATGGTGAAAACAGAAATACTACA
RMS068	GA	199	52.8	GTGCGCTTTCTGCTCCATT	51.8	CATTITGICCIACGITITICACITC
RMS069	GT&GA	232	53.0	TCGGAGATTAAGAGTGAGGTGAGT	6.99	GTGCCCACTTACCCAAACCATC
RMS070	GA	173	45.2	TGCCTCTCGATACAAACC	54.0	AATAAGAACCAATACCCCGAAGAG
RMS071	GT	06	44.4	GTTAGCATCTGGCACATTAT	46.3	AGTTCCTT'GACCAGCAGAG
RMS072	GA	110	46.3	TTAGCTCAAGAATTCATCAAAG	51.9	TCCAAACCGAGCTAAGAAAACT
RMS073	AT>/GA	156	46.0	AAACCCCTTTTATGTAGAAGTAG	45.5	TAAAACATGAAATTATAACAATAGTG
	Ą					
RMS074	AT>	237	51.5	GCTTCTATCCACAGTTTCACCTC	51.0	TTCATGTCAACGCTTCTGTAATAG
RMS075	AT>	237	54.4	GCCCGTAAAGCCCGTAAA	48.3	TTGGTCAACCGATATGTAGAAT
RMS076	GA	180	48.9	TGGATGCAAACACCTACAAA	58.1	CGTCGCCGGCATTCGTC

RMS077	GA>	154	60.375	AGGTGAACATGGGCCAACTA	57.436	57.436 TCAAAGAATGAGTGCCTACTAAGA
RMS078	GT	112	59.585	CCATTCCAAAGTTGCACGTA	60.049	CTCTACTGCCAGCACCACA
RMS079	GA	182	59.502	CCGGTATGGAGAGGAATGAG	59.841	GCAATTATCCTTGACAGAACCC
RMS080	GT	213	59.585	GCTTTCAAAGATGGGAAACCT	59.470	TTGGTATCACATTTACTCTCATTGC
RMS081	GT&GA	164	57.402	TTTGACACACACACAT	59.784	GACTGAGAACAAGTCCGTCCT
RMS082	2xGA	113	59.469	AACAACACGCGGAATATG	59.873	TGCAGTTGGAGTTG
RMS083	GT	90	60.837	GACGTCCGCACTTTAGCAAC	61.720	AGGTCCTCAGCATAGACGGC
RMS084	GT	185	59.893	GGGAGTCTCAAGAGCTACCGT	58.787	CTTCATGTAAGCCACTGGACA
RMS085	GA	204	59.923	ATGCCCATGACTATCTTGCC	61.110	TCCAAGATGAAGAATTGCGG
RMS086	GA	150	60.195	TTCTGTTTCATCTGGCCTCC	59.700	GTTCGTAGATTCAGGTCGGC
RMS087	GA	229	60.328	GCCCAACTATTCCTCCCACT	60.454	CCCACAGTTGTCCAACACAA
RMS088	GA	207	59,955	TCCTGATTCGTATCATCCACTG	59.817	GAAGGCCTCAAGGTTCCTCT
RMS089	AT>	161	59.107	TTCTTATTGTTGGTTTGGAAGAAA	59.394	TCAATAGTGAGGTGCGAGGA
RMS090	GT&GC	204	59.837	TGTGTGTATCCATGGCCT	080.09	ATCTGCAATGACAATGGCAA
RMS091	GA>	207	59.513	GATCAGGGTGAATACCGAGC	59.589	GCCACTCTTCTGTCCTCAA
RMS092	AT>	208	59.546	TGAAATGAGAGCCAATTCCAA	58.762	ATCAAGTGAGCCGATGGAG
RMS093	GA	116	60.301	CGTTCTCGTTGTTGTCATCG	60.540	CCCTCTCTCCAGTCACGA
RMS094	GA	175	59.918	TCCTATCCACACCATCA	60.125	TCACAAATACCTTCCACTCGC
RMS095	GA	163	59.649	CCAATCTCCTCAACTCCCAG	59.730	TCAGGGCTTCTAAAGCTTGC
RMS096	RMS096 AT>&AT	203	59.485	TGACCAATATGACAGAGAACCAA	58.143	TGATAGCCTTACATATGGAAACATT
RMS097	GA>	163	60.162	ATCTGGCTGAACACCACACA	60.132 (CATGCTAACTCTCCATGTTCCA

RMS098	GT/GA	172	59.790 CACGTCCCATTCCAGAATTT	59.943 CCC	CCCTCAATGGAGGCAAGAG
RMS099	GA	166	60.088 GGTCTGGTTCCTTGAGGTGA	60.096 CTC	CTCTCTCGTCCGAAAGCATC
RMS100	GT&AT	169	59.556 AGAGCTCCGCTCTGGATATG	59.911 AAG	AAGCCAAAGCTTACGTGCAT
RMS101	GA	133	59.291 GAAGACTGAAAGCTTGAAGGA	60.388 CTC	CTCCTCTCCACTCACCA
RMS102	GT	170	59.891 AACTAAATGGTTGAGATGCCAAA	59.642 GGA	GGAATTTCGTTCCTTAAGCTAAGTT
RMS103	GT	193	59.960 ATTATGCGAACCAAACGAGG	60.214 TGG	TGGCAGCATTCTCCCTAAAC
RMS104	GA	209	57.011 CTAAAGCTTGAGCAAACAAATG	59.955 GGA	GGAGTATTGGCCGTAGGTGA
RMS105	GT&AT	189	58.857 TTGGTCTAATGCCCTATCCC	60.053 CCA	CCAGCCCTAGCCATAATTGA
RMS106	GA	189	58.100 CTCTCCTCTCTGCATCAAA	59.982 CCT(CCTCTTCTGCAACCCAAG
RMS107	AT>	194	60.073 CGACCTTGAACTCGATGGAT	59.266 CAT	CATGAAAGTGGAGCTAGCTAAGAA
RMS108	GA	183	61.395 GATCGCCATGCATGTAAAG	59.592 TTC	TTCTTCTAGTTTCCGGCTGC
RMS109	GT	115	59.625 TGCAAACCTAAATTCCACAGAA	60.012 TGG	TGGCCTCTACAGCTCCTGTT
RMS110	GT	194	59.673 TATGAGAATGAGCGTGTGGG	60.532 TTC	TTCCCTCTCTCTCCC
RMS111	GA	135	57.738 TTAGTCATCATCTTCAGTTATCAAGA	59.933 ATT(ATTCAATTGGCTTCACTGGG
			A		
RMS112	AT>	227	59.294 CAAGGATACCAGTCGGAGAGA	59.813 AGA	AGAAATGGACAGCTCCGAAA
RMS113	GA	174	60.263 CATGGATTGCGTGTCTTCTG	59.955 GGC	GGCATCAGAAAGCTGAAAGG
RMS114	СА	224	60.134 AGTCGCATAACAGGACTGGG	59.894 TTG(TTGGGATTTCGGATAAGTCG
RMS115	GA	222	60.027 CGTGAAGACGCAAAGTCAAA	60.059 GGA	GGAGGAGGAGGATTTGTG
RMS116	AT>	228	59.989 CACCCACTGGAATACTGGCT	58.724 CGA	CGACAAGCATGACCTGAAAT
RMS117	GA	199	59.950 TCTTCTCTCACCGCCAT	60.074 GGC	GGCCGATTTGTTGACCTAGA

RMS118	(AT&)GT	168	59.075	TGGCTATGGGAAGAACATGA	59.545	TCAGACAAATAATGCGTTACCAA
RMS119	AT>	122	59.857	GCACGCACATATATAACAACAA	59.807	GATATCCGCAGCCAAGAAG
RMS120		193	57.360	CAGTTGAAGAGAACCAAGGG	60.162	TGGTGGGTAGGGAAATGAAA
RMS121	GT	94	60.001	TCCTCTCCAAGACACAATATTCAA	66.999	GCCCTCTCTCTCCCTAA
RMS122		229	60.822	ATTCCACTTCCTCCTA	59.874	GGATTCTTTCCTCCTGACCC
RMS123	GA	167	59.128	AAACACTCTAAGGAGGTATTCCCTAA 59.137	59.137	CGAAGTCTCCCATGGTTTCT
RMS124		107	57.353	TTTGTGGTCGTGTGTAT	58.149	AGGCACAATACTATCCACCTG
RMS125		160	60.589	AAGTGAAGACTGAGCGACCG	59.694	CTACTCCAATGTCCGCTTCC
RMS126		210	59.822	AACGACCGCCTAGGAGAAA	58.048	TTGTTTCTGAATGGGT
RMS127		220	59.967	TGCCTTTCTAGATTTGCTGGA	60.812	TAGTTGTTCGTCACCCACCC
RMS128		230	60.016	AGCATCACGAGCACATTCAG	60.470	GCGAAGATTCACCCAATGAC
RMS129		229	59.203	ACGTGCACACTCACACAC	57.100	ACTGATGCAGTTTGCTCTGA
RMS130		126	59.518	CAAATCAATCTGCAAACCCA	59.833	TTTGCGAATACCAGATGCAG
RMS131	GA	230	60.615	CGGCCAGAGATAACAGATGG	58.938	TGTTTGTTGCTTAACTACTACAACCTT
RMS132	GA	184	59.454	TGTGGTTATGAATTGCTGGTG	59.956	TTCAGTTTGAATGGGAG
RMS133	GA	124	59.731	TCTGCAACAATCAGCAGAAGA	59.901	ATTTCTGGCAAATCCGAATG
RMS134	GA	226	58.173	TGAGCTCAAGCAATATGCAA	58.817	GGCTGTCTCTGATTCCAGTATG
RMS135	GA	190	60.011	GACCGATTGGAGGAATGA	58.909	TTGCCTTTCTCCTTTT
RMS136	GA	114	57.218	GATCATGAGAGTCGCCAAA	59.939	AAGAGGCAGATATGGAGCGA
RMS137	GA	228	60.362	TGTACATGATGGGACGC	59.847	GGCAATTGCAAAGACAGTCA
RMS138	GA&andere	157	60.022	CTTCTGAGAGCCACACCA	60.339	GCAAACACATCCATCA

COLOUNT	5	101	00.109 CAAGIAICIGCICAGGCAAGC	0.218 CCATCAC	60.218 CCATCACATTCGGCTCTTCT
RMS140	GT	123	59.792 CCAATAGCGATGCAATGAGA	9.052 TTGGCTA	59.052 TTGGCTACCACTAACCTCCC
RMS141	GT	202	58.624 ACAGAGACTTGACGCTGCAT	9.668 AGCGTGT	59.668 AGCGTGTGTAGCTAGGGAGC
RMS142	$2 \times GA$	186	60.255 TGGCCTCAACGTCTTCTACC	8.588 CCTGAAA	58.588 CCTGAAATATCCCTATGTCAGAAA
RMS143	GA	230	60.261 GTGGGAAGTGTGGGAACAAC	9.617 GCCTCAT	59.617 GCCTCATCCTGTCCATCTTC
RMS144	GT	202	57.412 TTTATCACTGTCACAAGGCATTA	59.661 GAGCTCC	GAGCTCCATGAGGTGTTTCC
RMS145	2 x GA	122	60.397 TGCTCACTTACCCAGAAGCC	59.350 TCTCTCTC	TCTCTCTCATTTCAAGAGTAAACCC
RMS146	GT	186	59.454 ACAAGGCATTCACCTTGGTT	58.253 TTTCTGG	TTTCTGGGCCTGCATAAATA
RMS147	AT>	191	59.583 CCAATCTCAATAACACCGAGC	59.767 TCTTTGTC	TCTTTGTGCTGCTAATGCTCA
RMS148	GT	230	59.756 TTTAGCAGGCATTGGCACTAT	9.698 ACCTCCA	59.698 ACCTCCAGCACCAACTCCT
RMS149	RMS149 AT>&AT	203	59.566 CGGTGTGTAGTTGATTCGGA	0.195 TCAAATTO	60.195 TCAAATTCTGGCCTCTGTCC
RMS150	GT	209	60.251 TGCTGCAGTATGATGCCAAT	9.055 TGGAAAT	59.055 TGGAAATCCTTTCCTTT

WO 03/097869 PCT/DE03/01572

Erklärung zur obenstehenden Tabelle:

Spalte A: Name Name des Mikrosatellitenmarkers; RMS für

RosenMikroSatellit; fortlaufende Nummern von 001 bis

150

Spalte B: Motiv Mikrosatellitenmotiv in der DNA-Sequenz, fuer das ein

Primerpaar gesetzt wurde

Spalte C: Produktgrößee anhand der DNA-Sequenz ermittelte theoretische Groesse

des PCR-Produkts (bp)

in der Rosensorte Lichtblick

Spalte D: Tm theoretische optimale Annealingtemperatur des F-Primers

Spalte E: Primer F* 5'->3' Sequenz des F-Primers

Spalte F: Tm theoretische optimale Annealingtemperatur des R-Primers

Spalte G: Primer R 5'->3' Sequenz des R-Primers

Diese Marker zeichnen sich durch einen hohen Grad an Polymorphismus zwischen verschiedenen Rosensorten bzw. -linien aus und detektieren in der Regel in verschiedenen Rosenlinien mehrere Allele pro genetischem Locus.

Sie sind daher für "DNA fingerprinting", Sortenidentifikation, Verwandschaft- bzw. Ähnlichkeitsstudien und alle Formen von genetischen Kartierungen, einschließlich der Kartierung von Einzelgenen und quantitativen Merkmalen (QTLs) verwendbar. Außerdem ist ihr Ensatz sehr gut für eine Automatisierung geeignet und es ist möglich, die Detektion der Produkte mit nichtradioaktiven Methoden durchzuführen. Mit Hilfe dieser erfindungsgemäßen Marker ist z.B. die Möglichkeit einer Unterschiedung nahezu aller im Handel erhältlichen Rosensorten gegeben.

Damit wird es möglich, Rosensorten und -arten, die sich bereits in der Datenbank befinden, im vegetativen Zustand zu bestimmen. Ein weiterer Vorteil der Erfindung liegt der Identifikation oder Zuordnung anonymer Rosenherkünste zu einer Verwandtschaftsgruppe. Ferner wird es möglich, Linien, welche unter verschiedenen Sortennamen gehandelt werden, zu identifizieren. Auch kann die genetische Vielfalt einer Gruppe von Linien festgestellt werden (z.B. die genetische Vielfalt im Zuchtmaterial eines einzelnen Züchters). Es wird auch möglich, die genetische Distanz von Eltern einer geplanten Kreuzung und damit möglicherweise auch die Erfolgsaussichten der Kreuzung abzuschätzen.

Ausführungsbeispiel

Das folgende Ausführungsbeispiel dient der Erläuterung der Erfindung und schränkt die Erfindung in keinem Falle ein.

Verwendete Methoden

DNA-Isolierung

a. Präparation nach der Methode von Saghai Maroof et al. (1994) Proc. Natl Acad Sci USA 91: 5466-5470:

Etwa 1.5 g Blattmaterial wurden in flüssigen Stickstoff gemörsert, mit 15 ml CTAB-Puffer versetzt und 60 min bei 65 inkubiert. Die Mischung wurde zweimal mit Chloroform extrahiert und die DNA mit Ethanol gefällt. DNA-Fäden wurden gefischt, in 70% Ethanol gewaschen und in TE-Puffer aufgenommen. Nach RNase-Verdau wurde mit Phenol und nochmals mit Chloroform extrahiert, mit Ethanol gefällt und wieder in TE gelöst.

b. DNeasy Plant Mini Kit (Qiagen #69104)

100 mg Blattmaterial wurden in flüssigen Stickstoff gemörsert und nach Anleitung des Herstellers verarbeitet.

In beiden Fällen wurde die Konzentration der gewonnenen genomische Rosen-DNA über ein Agarosegel abgeschätzt. Für jede Sorte wurde eine Verdünnung von 2.5 ng/µl in Wasser hergestellt. Je 2µl dieser Verdünnung wurden in PCR-Platten vorgelegt und eingetrocknet und konnten in diesem Zustand bis zur Verwendung bei Raumtemperatur bis zur Verwendung gelagert werden.

2. PCR-Reaktionen

Die PCR-Reaktionen wurden im 25 µl-Volumen in einer 96-well-Mikrotiterplatte durchgeführt. Die Reaktion enthielt:

200 nM Primer 1

200 nM Primer 2

je 200 μM dATP, dGTP, dTTP, dCTP

1 x PCR-Puffer (50 mM KCl, 10mM TRIS-HCl (pH 9.0 bei 25°C), 1.5 mM

MgCl₂, 0.1% Triton[®] X-100; wird als 10 x Stock zur Polymerase #M2668 mitgeliefert)

ca. 5 ng genomische Rosen-DNA

0.5 U Taq-Polymerase (Promega #M2668)

Die PCR wurde in GeneAmp PCR System 9700 PCR-Maschinen (Applied Biosystems) durchgeführt. Das Temperaturprofil ist in der folgenden Tabelle dargestellt:

Schritt 1: Initial-Denaturierung	94°C	3 min	
Schritt 2: Denaturierung	94°C	1 min	Schritt 2-4
Schritt 3: Annealing	60°C	1 min	45x
Schritt 4: DNA-Synthese	72°C	2 min	wiederholen
Schritt 5: Final-Synthese	72°C	10 min	
Schritt 6: Kühlung	12°C	ô	

3. Fragmentanalyse

Die Größenanalyse der PCR-Produkte wurde auf einem ABI3100-Sequenziergerät durchgeführt. Es wurden Kapillaren einer Länge von 36 cm verwendet, die mit einer aus dem Polymer POP4 (Applied Biosystems) gefüllt waren. Die Laufbedingungen waren: Injektionszei:t 20 ms, Spannung: 15 kV, Laufzeit: 1080 s

Als interne Standardfragmente wurden NED-markierte Fragmente der Länge 73 bp, 121 bp, 156 bp, 235 bp, 303 bp, 377 bp und 434 bp verwendet. Die zu analysierenden PCR-Fragmente trugen für ein später im Hochdurchsatz anzustrebendes Multiplexing eine der drei Markierungsfarben HEX, ROX oder FLU.

Die Analyse der gewonnenen Daten erfolgte über die Programme GeneScan und GenoTyper (Applied Biosystems).

Erstellen einer genomischen Plasmidbibliothek

DNA der Rosensorte "Lichtblick" wurde aus Laubblättern isoliert. Diese DNA wurde einem Verdau mit dem Restriktionsenzym *Pst*I unterzogen. Über ein präparatives Agarosegel wurde die Fraktion der Restriktionsfragmente von ca. 5 bis 30 kb isoliert

WO 03/097869 PCT/DE03/01572

und einem weiteren Restriktionsverdau mit dem Enzym MboI unterzogen. Über ein zweites präparatives Gel wurden die Fragmente im Bereich von 500-1500 bp isoliert und in den Plasmidvektor pUC18 kloniert. Die so entstandene genomische Plasmidbibliothek von Rose wurde transformiert (E. coli XL2-Blue MRF) und auf Petrischalen plattiert.

Entwicklung der Mikrosatelliten

Durch einen Pipettierroboter wurden die Bakterienkolonien als Referenzbibliothek (ein Klon pro Vertiefung) in Mikrotiterplatten überführt. Die Klone wurden dann in hochdichter Anordnung ("High-density-array") auf Nylonmembranen überführt (spotting). Durch radioaktive Hybridisierung mit einem synthetischen Mikrosatelliten-Oligonukleotid (GAn oder GTn) wurden die Plasmidklone identifiziert, die einen entsprechenden Mikrosatelliten enthalten. Diese Plasmide wurden für die Sequenzierung im µg-Maßstab präpariert und sequenziert. Durch spezielle Software (Primer 3.0 bzw. DNAStar/PrimerSelect von Lasergene) wurde Primerpaare abgeleitet, die das Mikrosatellitenmotiv einschließen und ein theoretisches Produkt von 80-250 bp erzeugen.

Auswahlkriterien

Durch PCR und Auftrennung der entstandenen PCR-Fragmente über ein ABI3100-Sequenziergerät von Perkin Elmer wurden Funktionalität (es entsteht ein Fragment im erwarteten Größenbereich) und Spezifität (es entstehen ein oder wenige klar ansprechbare Fragmente) der PCR mit den Primerpaaren überprüft und bei Bedarf optimiert. Zuverlässig funktionierende, polymorphe Mikrosatelliten, die eine klare Differenzierung der 30 für einen Vortest verwendeten Rosensorten erlauben, werden als Markerset für weitere Genotypisierungen ausgewählt. Die Ergebnisse aus der Untersuchung der verschiedenen Sorten werden in einer Datenbank archiviert, die es erlaubt, hinzukommende Sorten als identisch oder nicht identisch mit bereits untersuchten Sorten oder Linien zu identifizieren oder alternativ Verwandtschaft zu den bereits untersuchten Sorten zu bestimmen.

Durchführung der Genotypisierung

Für die weitere Analyse der 84 für die Genotypisierung geeigneten Marker wurden 32 Rosenlinien verwendet (Tabelle 1). Wiederum wurde zunächst DNA präpariert, wobei größere Schwierigkeiten bei der DNA-Präparation aus den im Spätsommer 2001 erhaltenen ausgewachsenen Laubblätter auftraten. Wahrscheinlich werden die Probleme durch lösliche Kohlenhydrate verursacht, die sich in älteren Blättern ansammeln. Das Pflanzenmaterial vom Mai diesen Jahres dagegen ließ sich problemlos verarbeiten. Die Ergebnisse der Fragmentanalysen, die als "Fingerprint" einer Sorte bezeichnet werden können, wurden in einer Datenbank erfasst. Als Beispiel sind die Daten für Mikrosatellitenmarker RMS059 dargestellt (Tabelle 2).

Nach der Genotypisierung, die zweimal an unabhängig präparierter DNA durchgeführt wurde, konnten die analysierten Mikrosatellitenmarker nach ihrer Qualität in zwei Kategorien eingeteilt werden: "brauchbare" und "gute" Marker.

Als Bewertungskriterien wurden folgende Punkte herangezogen:

- wird eine überschaubare Zahl von Fragmenten (Allelen) pro Rosensorte erzeugt (in der Regel 1-4 Fragmente)?
- werden verschiedene Allele etwa gleich stark amplifiziert?
- erschweren Stotterbanden und Schattenpeaks die Auswertung?
- sind die Fragmente in unabhängigen Experimenten reproduzierbar?
- ist die Amplifikation unabhängig von DNA-Qualität und -Menge?
- besteht ein Gleichgewicht zwischen den Allelen, d.h. kommen die verschiedenen Allele im untersuchten Material etwa gleich häufig vor oder gibt es viele nur selten auftretende Allele?

In die Kategorie "gut" fielen 41 (27%) der ursprünglich 150 untersuchten funktionalen Mikrosatellitenmarker und in die Kategorie "brauchbar" 43 Marker (29%). Die anderen 66 Primerkombinationen (44%) waren bereits bei der Testung (siehe oben) als nicht nutzbar bewertet worden. Über 20 dieser für die Genotypisierung nicht nutzbaren Marker können aber für die genetische Kartierung verwendet werden.

PCT/DE03/01572 WO 03/097869 18

Tabelle 1: Liste der untersuchten Rosensorten.

fortlaufende	Code	Sortenname	Laborkürzel
Nummer			
1	3774	Ulrike	01ULR
2	7062	Sommerliebe	02SOM
3	6982	Spreeglut	03SPR
4	3400	Sappho	04SAP
5	3296	Viridiflora	05VIR
6	5488	Kaiserin Auguste Victoria	06KAI
7	1740	Lady Susan Birch	07LAD
8	4737	Comtesse de Murinais	08COM
9	3963	Zoe	09ZOE
10	4934	Alexandre Dupont	10ALE
11	1431	Ibica	11 I BI
12	4437	Dr. Georges Martin	12GEO
13	3960	Zizi	13ZIZ
14	3735	Toni Lander	14TON
15	3162	Signet	15SIG
16	7008	Una	16UNA
17	133	Spes	17SPE
18		Canary Bird	18CAN
19	6120	Mme. Alfred Carriere	19ALF
20	6650	Jan Spek	20.01.02
21	3633	Super Congo	21SUP
21 22 23 24 25 26	109	Minette	22MIN
23	2037	Marjorie le Grice	23MAR
24	3969	Pardinas Bonet	24PAR
25	6040	Sangerhausen	25SAN
26	5234	Abraham Zimmermann	26ABR
27 28		Nida Senf	27NID
28		Lovania	28LOV
29	3346	Autumn	29AUT
30	791	Bertram Park	30BER
31		Lichtblick	31LIC
32		Rosa multiflora thunb. (Japan)	32JAP

WO 03/097869 PCT/DE03/01572

Tabelle 2: Datenblatt für Mikrosatellitenmarker RMS059. Spalten bezeichnen verschiedene Allele des Markers in Basenpaaren (bp), Zeilen bezeichnen die 32 verschiedenen Rosensorten; eine 1 steht für Anwesenheit, eine 0 für Abwesenheit eines Allels in der untersuchten Sorte. Die letzte Zeile gibt an, wie oft ein Allel im untersuchten Material beobachtet wurde. Die letzte Spalte enthält die Zahl der Allele in einer Sorte. RMS059 enthält einen Mikrosatelliten mit den dinukleotiden Wiederholungsmotiven AT und GT und zeigt daher Allele mit einem Größenunterschied von 2 bp (mit Ausnahme des größten Allels).

Sorten	121	123	125	127	129	133	137	139	144	
01ULR	1	0	0	1	1	0	0	0	1	4
02SOM	0	1	0	1	1	0	0	0	0	3
03SPR	0	0	0	1	1	0	0	0	1	3
04SAP	0	1	0	1	0	0	0	00	0	2
05VIR	1	0	0	1	0	0	0	0	0	2
06KAI	0	1	0	1	1	0	0	0	0	3
07LAD	0	1	0	1	1	0	0	0	0	3
08COM	0	1	0	00	0	0	1	0	0	2
09ZOE	0	1	0	0	0	0	1	0	0	2
10ALE	1	1	0	0	0	0	0	0	1	3
11 I BI	1	1	00	1	1	<u>b</u>	0	0	0	4
12GEO	1	0	0	1	1	0	0	0	1	4
13ZIZ	1	1	0	0	0	0	0	0	0	2
14TON	1	0	0	1	1	b	0	0	1	4
15SIG	0	0	0	1	1	0	0	0	1	3
16UNA	0	1	1	1	0	0	0	0	0	3
17SPE	0	1	0	1	1	0	0	0	0	3
18CAN	0	0	1	0	1	0	0	1	0	3
19ALF	1	0	0	1	0	0	1	0	0	3
20JAN	1	0	0	1	1	0	0	0	0	3
21SUP	0	0	0	1	1	0	0	0	1	3
22MIN	0	1	0	0	1	1	1	0	0	4
23MAR	1	0	0	1	1	0	0	0	1	4
24PAR	0	0	0	0	1	0	0	0	1	2
25SAN	1	1	0	0	0	0	0	0	1	3
26ABR	1	0	0	0	1	0	0	0	1	3
27NID	1	0	0	0	0	0	0	0	0	1
28LOV	1	0	0	1	0	0	0	0	1	3
29AUT	1	0	0	1	0	0	0	0	0	2
30BER	1	0	0	1	0	0	0	0	0	2
31LIC	1	0	0	1	1	0	0	0	1	4
32JAP	1	0	00	00	0	0	0	0	0	1
	18	13	2	21	18	1	4	1	13	

Ergebnisse der Genotypisierung

Im Vergleich zu anderen Kulturpflanzen wie z.B. Weizen, Raps oder Zuckerrübe zeigt Rose eine hohe durchschnittliche Anzahl von Allelen pro Sorte (letzte Spalte in Tabelle 2), eine hohe Zahl von verschiedenen Allelen pro Mikrosatellitenmarker und relativ wenige Nullallele. Das spiegelt die Heterogenität des untersuchten genetischen Materials und die komplexe Genetik von Rose wider.

Die Ergebnisse der Genotypisierung wurden für eine Verwandtschaftsanalyse der untersuchten Rosensorten über das Programm NTSYS verwendet. Dabei wurden einmal nur die mit den 41 "guten" Markern erzeugten Daten und einmal die mit allen 84 "brauchbaren" Markern erzeugten Daten verrechnet. Die Ergebnisse sind in Form von Stammbäumen in Abbildung 3 und 4 dargestellt. Auf der horizontalen Achse ist jeweils die genetische Distanz angegeben, die zwischen den theoretischen Werten 0 (keine genetische Verwandtschaft) und 1,00 (Übereinstimmung aller untersuchten Markerdaten) liegt. Beide Dendrogramme unterscheiden sich im Wesentlichen nur in der oberen Hälfte, wo Verzweigungen in sehr kurzen Abständen aufeinander folgen. Die Verwandtschaftsbeziehungen in der unteren Hälfte stellen sich bei Verwendung von 41 oder 84 Markern relativ gut übereinstimmend dar.

Das Ziel der Untersuchung, die eindeutige Unterscheidung aller untersuchten Sorten mit Hilfe von Mikrosatellitenmarkern, wurde damit erreicht. Für jede der Sorten existiert nun ein genetischer Fingerabdruck, der mit dem anderer Sorten verglichen werden kann. Je mehr Markerdaten zwischen zwei Sorten übereinstimmen, desto näher sind sie im Dendrogramm benachbart. Die Ergebnisse der durchgeführten Analyse können daher nicht nur zur Unterscheidung von Sorten verwendet werden, sondern auch Verwandtschaften und Züchtungswege offenlegen.

Unter Nutzung der Information, die im Internet zugänglich ist (z.B. www.everyrose.com, www.rogersroses.com), konnte im Dendrogramm von unter nach oben eine grobe Tendenz von Wildarten über alte Sorten zu moderneren Sorten festgestellt werden. Die ganz unten stehende Art Rosa multiflora zeigt übereinstimmend in beiden Analysen eine geringe Verwandtschaft von nur 0,22 zu allen anderen untersuchten Sorten.

Auch die Art Rosa xanthina mit der Sorte 'Canary Bird' ist kaum mit den übrigen Sorten

verwandt. Die Moosrosen 'Zoé' und 'Comtesse de Murinais' entstanden 1861 bzw. 1843. Die weiter oben stehenden Remontant-Hybriden 'Abraham Zimmermann' (1876) und 'Dr. Georges Martin' (1908) stammen aus der 2. Hälfte des 19. Jahrhunderts bzw. aus dem frühen 20. Jahrhundert. Die relativ junge Teehybriden 'Autumn' (1928), 'Sommerliebe' (1988) und 'Spes' (1970) stehen in der oberen Hälfte des Dendrogramms. Jeweils am oberen Ende sind die beiden Floribundarosen 'Ulrike' (1973) und 'Jan Spek' (1966) zu finden. Schlecht einzuordnen sind die Sorten 'Spreeglut' (Strauchrose, 1985), 'Sangerhausen' (Polyantha-Hybride, 1938) und 'Lichtblick' (Strauchrose, 1972). Sie bilden zwar in beiden Dendrogrammen eine Gruppe, werden jedoch in Abbildung 2 eher in die Verwandtschaft der Teehybriden und in Abbildung 3 eher in die Verwandtschaft der Floribundarosen gestellt.

Definierung eines Sets von 25 Mikrosatellitenmarkern

Für die weitere Genotypisierung einer größeren Zahl von Sorten wurden aus den 41 guten Markern 25 ausgewählt, die verläßliche Ergebnisse liefern, eindeutig unterscheidbare Allele aufweisen und einen hohen Informationsgehalt haben: RMS023, RMS029, RMS038, RMS047, RMS052, RMS057, RMS059, RMS062, RMS065, RMS070, RMS077, RMS088, RMS089, RMS095, RMS097, RMS102, RMS103, RMS104, RMS112, RMS115, RMS120, RMS128, RMS139, RMS146 und RMS148.

Mit Hilfe dieses Sets sollte es möglich sein, mindestens 90% aller Rosensorten zu unterscheiden. Für eine Abstammungsanalyse z.B. zum genauen nachvollziehen von Züchtungswegen sollte aber eine größere Zahl von Markern eingesetzt werden. Generell steigt die Zuverlässigkeit solcher Analysen proportional mit der Zahl der verwendeten Marker (zumindest im Bereich von unter 100 verwendeten Markern).

Das Ziel der Erfindung, die Entwicklung von mindestens 25 für die Genotypisierung geeigneten Mikrosatellitenmarkern, ist erreicht worden. Insgesamt wurden 84 nutzbare Mikrosatellitenmarker entwickelt, von denen 41 besonders gut einsetzbar sind. Ein Set von 25 Mikrosatelitenmarkern wurde definiert, mit dem eine verläßliche Genotypisierung von weiteren Rosensorten durchgeführt werden kann. Die wichtigsten Angaben und Nutzungshinweise für den Gebrauch der Marker sind in der erstellten Datenbank enthalten.

Nähere Beschreibung der Mikrosatellitenmarker

Die nähere Beschreibung der Mikrosatellitenmarker wird in der folgenden Tabelle dargestellt.

Tabelle: Beschreibung der Mikrosatelittenmarker

Marker- name	Motiv	Bewertung	Primer 1 (F), 5' -> 3'	Primer 2 (R), 5' → 3'	Markie- rung	Tempe- ratur- opti- mum	Anwen- dung	Kommentar	erwart ete Produ kt- größe (bp)	Größen- bereich, untere Grenze	Größen- bereich, obere Grenze	durch- schnitt- liche Alle!- anzahi pro Sorte
RMS001	GT& GC	brauchbar	TTCAAAATTGC	TACCAGTTGAGT GAGAAATAGTT	НЕХ	55	Geno- typisle- rung & Kartle- rung	unterschiedlich starke Allele; unzuverlässige Amplifikation	242	220	250	4
RMS002	GA	nicht nutzbar	AATAATTTTCT TTTGGTA	GATTIGTITICAC TAITCA	FLU	×	keine	keine Amplifikation	138			
RMS003	8	brauchbar	TGGgaAAGGGA	AAGGTAGGCAGA AGTGACAGACAT	ROX	09	Geno- typisle- rung & Kartle- rung	Schattenpeaks und echte Peaks v.a. im vorderen Bereich schwer zu unterscheiden; Peaks >170 bp schwach	151	130	190	m
RMS004	GT& AT	nicht nutzbar	CAGGCCAAGG AAGAGGTAAGT AAA	CGTATGCGCGTG TAGGAAGG	FLU	×	keine	unspezifische Amplifikation	143			
RMS005	GA	nicht nutzbar	CTACCGGTGAC	ATTITICCCTCT CCCTITIGT	FLU	×	keine	keine Amplifikation	143			
RMS006	GT& GA	nicht nutzbar	ACCGGTCTCAT CTTTCCATTG	GTAGGTCGGTCC GTCTGTCA	FLU	×	keine	keine Amplifikation	114			
RMS007	В	nicht nutzbar	TCTTTCCGACT	TATGCCATTCAG ACTCTCCAACAC	ROX	×	keine	Fragmente polymorph, aber z.T. unter 74 bp, deshalb am ABI nicht auswertbar	171	30	180	2
RMS008	GA	brauchbar	TCTCTGCGACA AAAACAAACAC T	CCATGAAGCGGC GGAGAGGA	ROX	65	Geno- typisie- rung & Kartie- rung	Schattenpeaks z.T. schwer von Allelpeaks zu unterscheiden, v.a. im vorderen Bereich; 1 bp-Unterschiede	176	140	200	4
RMS009	CT&	nicht nutzbar	ATTGGCAAAAG ATTCTCCTAC	ACTTGGTAATTTC GAGCATAA	FLU	×	keine	unspezifische Amplifikation	145			
RMS010	8	nicht nutzbar	GGTTGGGGGA AATTGAAGCAG AGA	TCTTTTCTTCTAC AAACCCCAACCA AC	FLU	×	keine	unspezifische Amplifikation	105			
RMS011	GT	brauchbar	TAGAAACGACC	TAACGAAACATC ATCAATAGCA	ROX	55	Geno- typisie- rung & Kartie- rung	starker fast monomorpher Peak, daneben seltene Allele, unzuverlässige Amplifikation2; 10 bp-Allel sehr schwach	190	170	290	-

	durch- schnitt- liche Allel- anzahl pro Sorte												
		4	-	-	<u>е</u>		m	-	<u> </u>	-	-	-	7
	Größen- bereich, obere Grenze	200	220	300	230		270			260			190
	Größen- bereich, untere Grenze	100	150	240	120		200			220			140
	erwart ete Produ kt- größe (bp)	141	208	124	185	121	246	125	104	239	188	170	170
	Kommenfar	Neigung zu unspezifischer Amplifikation	Stotterbanden	nicht reproduzierbarer p/a- Polymorphismus	unterschiedlich starke Allele	unspezifische Amplifikation	"Igel" bei ca. 180 bp, große Allele relativ schwach	keine Amplifikation	keine Amplifikation	monomorph mit schlecht reproduzierbarer Amplifikation -> evtl. als Sensor für DNA-Menge und -Qualität geeignet	zu schwache Amplifikation	keine Amplifikation	
	Anwen- dung	Kartie- rung	Kartie- rung	keine	Geno- typisie- rung & Kartie- rung	keine	Geno- typisie- rung & Kartie- rung	keine	keine	keine	keine	keine	Geno- typisie- rung &
	Tempe- ratur- opti- mum	09	09	55	55	×	55	×	×	×	×	×	50
	Markie- rung	FLU	HEX	FLU	ROX	FLU	нех	FLU	FLU	HEX	ROX	ROX	ROX
tenmarker	Primer 2 (R), 5' -> 3'	GATCGAAAAGTG GTCAAAATA	GATCAATACCGA ACTAACAAAG	CCTCACTGCCAA CCCAACTGT	GCAGCTGCACAA CAAGGAA	AACCGCTGCTGC TTTCATTTTT	AGTTGGCTTATG GCTTTTT	TTGGCCAATAAG GAAGACA	CGTCGGCCATGg AtttTGTA	TTCCTAACGCAA ACTATGTAAAT	CCGGCGAAGTCC	GCGCGAACATAtT gATTGGT	TAAACAATATAAA TGGGGGAGTAAA T
der Mikrosatelittenmarker	Primer 1 (F), 5' -> 3'	ATAGAAAAATA GAGGGGGTGT G	GCCTTAGCCG	TATTCTTTCTTC CCACCGACGA C	TAATGTAGGCA GATATAAAGGA GT	GGCCTGGACC	AGGTCCCGTTA	TTTTGGGTGGG TAAGTTTT	ACCGTTTCCAT TACCCTTTCAC C	AGGCGCCCAT GCAAAATCAA	AATTCCCTCTT	AAGAAGATAAA TTAGGGGGAAA AA	TGCTATTAAT CAGATGAA
Beschreibung o	Bewertung	nicht nutzbar	nicht nutzbar	nicht nutzbar	ਲ	nicht nutzbar	brauchbar	nicht nutzbar	nicht nufzbar	. nicht nufzbar	nicht nutzbar	nicht nutzbar	gut
Besch	Moth	GT.	δĄ	8	&	8	AT& GT	GT	GA	GA	В	GA	GT
Tabelle:	Marker- name	RMS012	RMS013	RMS014	RMS015	RMS016	RMS017	RMS018	RMS019	RMS020	RMS021	RMS022	RMS023

Tabelle: Besch	Beschreibung d	der Mikrosatelittenmarker	tenmarker								
Motiv		Primer 1 (F), 5' -> 3'	Primer 2 (R), 5' -> 3'	Markie- rung	Tempe- ratur- opti- mum	Anwen- dung	Kommentar	erwart ete Produ kt. größe (bp)	Größen- bereich, untere Grenze	Größen- bereich, obere Grenze	durch- schnitt- liche Allel- anzahl pro Sorte
						Kartie- rung					
AT& GT	brauchbar	ACTACTGTaAA ATATGAAAAAT CC	GTAGTAGCGGTT GCAAGAAAATA	нЕХ	55	Geno- typisie- rung & Kartie- rung	Allele verschieden stark: Allele >200 bp meist schwach; nicht gut, aber reproduzierbar	200	170	250	ო
AT/ GT	nicht nutzbar	TAATGTAAGCT AACTAATCT	TTTTAAATTTTCG GTGGAGA	ROX	×	keine	keine Amplifikation	167			
GT	nicht nutzbar	ATAGATATGTT TGGGTTCA	AATGTCAGGTTT TGTTATG	FLU	×	keine	schwache und unzuverlässige Amplifikation	129			
AT& GT	gut	ACCGTTGTGCT TATCAGGA	ATTGGTGGTGCT TTTACATTAC	ROX	55	Geno- typisie- rung & Kartie- rung	Peaks >160 bp z.T. sehr schwach; Schattenpeaks im vorderen Bereich	189	120	200	ေ
AT& GT	nicht nutzbar	TAGGCAAGACC ATgaACCAG	TGTGCcTGTTTG CTTGTGTA	ХЭН	×	keine	unspezifische Amplifikation	237			
GA	gut	GGATAAAACCA ACGGGACAGA CTC	TCCGACACCATC	нех	65	Geno- typisie- rung & Kartie- rung	1 bp-Unterschiede zwischen den Allelen	201	190	230	
Ø Ø	brauchbar	GATAAATTTCA AGGCGAGAG	AAAAGATGAACG ACCCAAATAAT	HEX	55	Geno- typisie- rung & Kartie- rung	elnige Linlen mit 7 Peaks, sonst nur 1-2 Peaks	201	150	210	2
GA	.	TATATTAAAGA ACAAGTGAGAA C		HEX	×	keine	zu schwache Amplifikation	202			
AT& GT	nicht nutzbar	AGAAACCAACC TTAGCAT	AACCATCCATATT TCAGTCA	ROX	×	keine	zu schwache Amplifikation	193		<u> </u> 	
GA	nicht nutzbar	CAAgAGATGTC GGAAAAGCagG AAGT		HEX	09	Kartie- rung	Stotterbanden, Allele nicht eindeutig ansprechbar	203	160	240	4
ВA	brauchbar	GCTTCTCGGTC	CTCCCGCTCAAA	FLU	09	Geno-	Stotterbanden	136	110	190	3

			 			·				Т
durch- schnitt- liche Allef- anzahl pro Sorte		4		4	ო	4	2		ဇ	٣
Größen- bereich, obere Grenze		250		240	180	150	160		300	240
Größen- bereich, untere Grenze		180		180	100	80	130		170	000
erwart ete Produ kt- größe (bp)		229	235	228	115	124	143	249	181	7,7
Kommentar		Stotterbanden	zu schwache Amplifikation	unterschiedlich starke Allele	Aliele >150 bp stottern und sind relativ schwach	Stotterbanden, 1 bp- Unterschiede	zu starkes Stottern	zu unspezifische Stotterpeaks	Neigung zu Unspezifität; nur im Bereich 180 bis 272 bp auswerten (evtl. nur <200 bp)	
Anwen- dung	typisle- rung & Kartie- rung	Geno- typisie- rung & Kartie- rung	keine	Geno- typlsie- rung & Kartie- rung	Geno- typisie- rung & Kartie- rung	Geno- typisie- rung & Kartie- rung	Kartie- rung	keine	Geno- typisie- rung & Kartie-	
Tempe- ratur- opti- mum		55	×	60	55	09	55	55	09	
Markie- rung		ЖÄ	HEX	HEX	FLU	FLU	FLU	HEX	ROX	
Primer 2 (R), 5' → 3'	TCAATAAATCTC	ATCGGCTATCCA	TTGCCCTTACATT TTCTCTACTCCAT A	AGTTTTCCTCGC CAGATAAGC	CTCGCGGAAGCC TCAAAA	CAGCTCAGCAAA GGGGACTA	TCTGTATCTACT GTGGCTAACC	ACCTTCACCGAT GTATCACC	ATGCCAAACGTC TCAGTCAACC	
Primer 1 (F), 5' -> 3'	тсвтвстстс	CCTCCTTGGCA	CTCGCGGCCC	AACCTCGGAGC CGCATTTCAC	GTGATAAGAGC AAAACAAGATG G	GCTGCTTTCTC	AACCCCAAACT TCCTAAACT	TTAACCCAAAG CACCAAAaT	GCATGGCCAG	
Bewertung		brauchbar	nicht nutzbar	gut	gut	brauchbar	nicht	1.	 	
Motiv		8	g.	8	GA GA	2xG A	GT	GA	AT& GT	
Marker- Motiv Bewertung		RMS035	RMS036	RMS037	RMS038	RMS039	RMS040	RMS041	RMS042	

Tabelle: 1	Besch	Beschreibung der	ter Mikrosatelittenmarker	tenmarker								
	Motiv	Bewertung	1 1	Primer 2 (R), 5' → 3'	Markie- rung	Tempe- ratur- opti- mum	Anwen- dung	Kommentar	erwart ete Produ kt- größe (bp)	Größen- bereich, untere Grenze	Größen- bereich, obere Grenze	durch- schnitt- liche Alfel- anzahl pro Sorte
			GETTCTCCTCT C	GAAAGTCGTTC			typisle- rung & Kartie- rung					
RMS044	АТ	brauchbar	ACCGATGGATG GCAATAAC	ATACAGGACATA AACGGCTACC	HEX	55	Geno- typisle- rung & Kartie- rung	schlechte Reproduzlerbarkeit; Amplifikation evtl. stark abhängig von DNA-Menge oder -Qualität	204	190	220	2
RMS045	AT& GT& AT& GA	brauchbar	GAaaaTAAGGA CATCATCTAC	GGTGCCTCCATT ATTTAC	Ä	55	Geno- typisie- rung & Kartie- rung	Stotterbanden, dadurch sind Heterozygote mit 2 bp- Unterschieden schwer auszuwerten; zusätzliche schwache Allele	233	150	240	2
RMS046	AT& GT	brauchbar	AAAGGATTGCT GGATGTG	TATTCGCGTGGA CTCTAT	НЕХ	55	Geno- typisie- rung & Kartie- rung	p/a-Polymorphismus des 248 bp-Allels (genomspezifischer Marker?); empfindlich für DNA-Kontaminationen	247	200	260	-
RMS047	GA	gut	GCTCCCTCAAT	aCCAACCCAATT CGCTCAT	FLU	09	Geno- typisle- rung & Kartie- rung	74 bp-Peak läßt sich nicht immer markieren	98	70	110	8
RMS048	GA& AT	nicht nutzbar	ATAAGTATGAA AAAGTAAAATG AT	GTATACTAGAAA AACAAAACTGGT	ROX	×	keine	zu schwache Amplifikation	197			
RMS049	AT& GT	nicht nutzbar	AAAAATACAAC CGAAAAA	CCAACCCGTCAA GGCTAAA	ROX	×	keine	zu schwache Amplifikation	178			
RMS050	AT& GA	brauchbar	TAAGCCTAAGA AAAACTCATT	CAGCCGTCAGAT TCACTTG	ROX	50	Geno- typisie- rung & Kartie- rung	amplifiziert sehr schwach, zeigt nur p/a- Polymorphismus des 177 bp-Allels mit einer Ausnahme: 21SUP hat 175	169	140	250	-
RMS051	GT	brauchbar	AGTAGACTGTC CTCCATTTAGC	ATACCATCAGAG AAGAGACGACAC	нех	55	Geno- typisie- rung &	wenig Polymorphismus, Linien mit Nullallelen zeigen einen nicht immer	215	160	240	-

WO 03/097869 PCT/DE03/01572 -

28

ļ	durch- schnitt- liche Allel- anzahl pro Sorte		м		-	4	က	က	ო	က
	Größen- bereich, obere Grenze		250		250	220	170	200	200	150
	Größen- bereich, untere Grenze		160		190	180	110	150	120	110
	erwart ete Produ kt- größe (bp)		224	160	239	192	133	174	143	126
	Kommentar	reproduzierbaren 169 bp- Peak	trotz Stotterbanden gut auswertbar	unspezifische Ampilfikation	241.bp-Allel schwach, wenn kleineres Allel vorhanden	komplexes Muster	Doppel- und Dreifachpeaks nicht auswertbar	viele 1 bp-Unterschiede, die aber reproduzierbar sind	z.T. sehr starke Amplifikation, dadurch auch starke Schattenpeaks; große Allele schwach	Allele >130 sind manchmal relativ schwach
	Anwen- dung	Kartie- rung	Geno- typisle- rung & Kartie- rung	keine	Geno- typisie- rung & Kartie- rung	Geno- typisie- rung & Kartie- rung	Kartie- rung	Geno- typisie- rung & Kartie- rung	Geno- typisie- rung & Kartie- rung	Geno- typisie- rung & Kartie- rung
	Tempe- ratur- opti- mum		09	65	50	55	90	09	55	55
	Markie- rung		нех	ROX	HEX	ROX	FLU	ROX	FLU	FLU
tenmarker	Primer 2 (R), 5' -> 3'		TGATGAACCCAA TAGAATGAAAAC AGA	CCCTTACCCTtAC CCTTTGTTAC	TAGCTTATTAGTC TGCATTGATGA	AGTTAGGCGCAT GTACAAGAAAAT	GATCTAGGATGA TTCAATA	CCCATCCAAAGC GAGACGACGAC	TTGTAACCCATT TGACCATA	TACAGGGTTCTA ATTGATACATAC
ler Mikrosatelittenmarker	Primer 1 (F), 5' -> 3'		TTAGCCGTTAA TTGAGTCGACA ACCTC	GGCGGTAGCT AGTGACTGGAA TCT	CTGGGAGGAG AACTcTgTCA	TGATCACAAGA GCTTTTCAAGT TTAg	TGTGTAGATTA GCATTCC	CGAGGTGGGT AAGGGCGAaca AAG	cAACCCCTGAA GCCTGAA	ACAGTCTTATA GTGGCTTCC
Tabelle: Beschreibung d	Bewertung		gut	nicht nutzbar	brauchbar	brauchbar	nicht nutzbar	gut	gut	gut
Besch	Motiv		∀	GA GA	AT& GA	GA	GA GA	GAA / GA	GT	AT& GT
Tabelle:	Marker- name		RMS052	RMS053	RMS054	RMS055	RMS056	RMS057	RMS058	RMS059

Tabelle:	Besch	Tabelle: Beschreibung d	der Mikrosatelittenmarker	tenmarker								
Marker- name	Motiv	Bewertung	Primer 1 (F), 5' → 3'	Primer 2 (R), 5' > 3'	Markie- rung	Tempe- ratur- opti- mum	Anwen- dung	Kommentar	erwart ete Produ kt- größe (bp)	Größen- bereich, untere Grenze	Größen- bereich, obere Grenze	durch- schnitt- liche Allel- anzahl pro Sorte
RMS060	GA	brauchbar	CATTCATTTGA CTCTAAGGA	TATTCTGGTCTAA GCTATTGTAA	HEX	20	Geno- typisie- rung & Kartie- rung	schwach und unzuverfässig, aber evtl. genomspezifisch	219	205	260	8
RMS061	GT	brauchbar	ATATCAGCCGT CCCATCAG	TTAGAAAATCCC AAACAT	HEX	50	ጉ ወ ል ዋ	gut reproduzierbare Nuliallele, evtl. genomspezifisch	211	190	240	-
RMS062	GA&	gut	GCGAACGGCA TTTACTTGT	сеттеттстеес тестттт	ROX	55	Geno- typisie- rung & Kartie- rung	1 bp-Unterschiede	189	150	200	4
RMS063	GAA	gut	CCACCGCCCA	GCTCTGCGGAGT	FLU	09	Geno- typisle- rung & Kartie- rung	zwei Allele < 80 bp; Schattenpeaks und Allele im Bereich um 80 bp überlagernd	06	09	100	0
RMS064	GA, GT	nicht nutzbar	TTTTTGCAATAT GTGAAGC	GATTGGTCAACC	НЕХ	50	keine	unspezifische Amplifikation	227		ļ	
RMS065	GA	gut	TATAGCTCGGT AGATTCAAA	CCAGACTGCCCC	FLU	55	Geno- typisie- rung & Kartie- rung	viele 1 bp-Unterschiede, die aber reproduzierbar sind	17	06	150	Ю
RMS066	GA GA	gut	TCCACCCACAG	AAGCTCCCTACG ATTTCACTC	ROX	60	Geno- typisie- rung & Kartie- rung	Schattenpeaks und Allele schwer unterscheidbar, 1 bp-Unterschiede	198	170	220	ო
RMS067	GA	nicht nutzbar	CAATCTGCAAT	ATGGTGAAAAAC AGAAATACTACA	ROX	×	keine	zu schwache Amplifikation	169		3	
RMS068	Ø Ø	nicht nutzbar	GTGCGCTTTCT	CATTITGICCTAC	ROX	×	keine	keine Amplifikation	199			
RMS069	GT & A	nicht nutzbar	TCGGAGATTAA GAGTGAGGTgA	GTGCCCACTTAC	HEX	65	Kartie- rung	starke Stotterbanden; "Igel" bei 235 bp	232	170	250	-

٢		7		1		1		_			
	durch- schnitt- liche Allel- anzahl pro Sorte		m	N	-	-	! 			-	2
	Größen- bereich, obere Grenze		200	150	120	180				180	140
	Größen- bereich, untere Grenze		150	80	90	150				130	100
	erwart ete Produ kt- größe (bp)		173	06	110	156	237	237	180	154	112
	Kommentar	200	sehr gute, von der DNA- Qualität relativ unabhängige Amplifikation, keine Ausfälle oder Nullaliele, 158 bp- und 177 bp-Allel z.T. unsicher anzusprechen (Vorpeak zu größerem Fragment oder eigenes Allel?)	verschieden starke Allele, Allele nur z.T. reproduzierbar zwischen 55 und 60°C	bei starker Amplifikation Doppelpeaks (letzter Peak ist der "echte"); schwache Peaks nicht ausgewertet	Nullaliele und schwache Amplifikation kaum unterscheidbar	zu schwache Amplifikation	unspezifische Amplifikation	keine Amplifikation	kleinere Allele schwächer	unzuverlässige Amplifikation, evtl. DNA-
	Anwen- dung		Geno- typisle- rung & Kartie- rung	Geno- typisie- rung & Kartie- rung	Geno- typisie- rung & Kartie- rung	Geno- typlsie- rung & Kartie- rung	keine	keine	keine	Geno- typisle- rung & Kartie- rung	Geno- typisie-
	Tempe- ratur- opti- mum		50	55	55	50	×	×	×	09	09
	Markie- rung]	ROX	FLU	FLU	ROX	HEX	HEX	ROX	ROX	FLU
enmarker	Primer 2 (R), 5' -> 3'		AATAAGAACCAA TACCCCGAAGAG	AGTTCCTTGACC AGCAGAG	TCCAAACCGAGC TAAGAAAACT	TAAAACATGAAAT TATAACAATAGT G	TTCATGTCAACG	TTGGTCAACCGA TATGTAGAAT	CGTCGCCGGCAT TCGTC	TCAAAGAATGAG TGCCTACTAAGA	CTCTACTGCCAG
er Mikrosatelittenmarker	ner 1 (F),	GT	CCTCTCGAT	GTTAGCATCTG GCACATTAT	TTAGCTCAAGA ATTCATCAAAG		GCTTCTATCCA CAGTTTCACCT C		_ 1		CCATTCCAAAG TTGCACGTA
reibung der	~		gut	brauchbar	gut	brauchbar	nicht nutzbar	nicht nutzbar	nicht nutzbar	gut	brauchbar
Besch	Motiv		₽	GT	QA	AT& GT/ GAA	AT& GT	AT& GT	GA	GA& GT	GT
Tabelle: Beschreibung	Marker- name		RMS070	RMS071	RMS072	RMS073	RMS074	RMS075	RMS076	RMS077	RMS078

ner ivnikrosatenti Primer 1 (F),	Primer 1 (F), Prin	r E	enmarker Primer 2 (R),	Markie-	Tempe- ratur-	Anwen-		erwart ete Produ	Größen- bereich,	Größen- bereich,	durch- schnitt- liche
Bewertung		5' → 3'	5' -> 3'	rung	opti- mum	dung	Kommentar	kt- größe (bp)	untere Grenze	obere Grenze	Allel- anzahl pro Sorte
	•					rung & Kartie- rung	qualitätsabhängig; Nullallele, schwache Allele, Überschneidungen von Vorpeaks und Allelen				
brauchbar		CCGGTATGGA GAGGAATGAG	GCAATTATCCTT	ROX	60	Geno- typisie- rung & Kartie- rung	sehr schöne Allelleiter, aber durch Stotterbanden und schwache Peaks schwlerige Auswertung	182	160	210	2
brauchbar		GCTTTCAAAGA TGGGAAACCT	TTGGTATCACATT	нех	60	Geno- typisle- rung & Kartie- rung	verschieden starke Allele	213	180	230	ო
nícht nutzbar	 ```	TTTGACACACA	GACTGAGAAACA AGTCCGTCCT	ROX	60	Kartieru ng	Stotterpeaks, verschieden starke Allele	164	110	180	2
brauchbar		AACAACACACG CGGAATATG	TGCAGTTGGAGT TGGAGTTG	FLU	55	Geno- typisie- rung & Kartie- rung	starke Schattenpeaks	113	06	150	-
nicht nutzbar		GACGTCCGCA	AGGTCCtCAGCA TAGACGGC	FLU	×	keine	unspezifische Amplifikation	06			
gut		GGGAGTCTCAA GAGCTACCGT	CTTCATGTAAGC CACTGGACA	ROX	60	Geno- typisle- rung & Kartie- rung	nur Fragmente <200 bp auswerten; 181/183 bp- Doppelpeaks schwer zu interpretieren	185	160	210	ო
nicht nutzbar	 `	ATGCCCATGAC TATCTTGCC	TCCAAGATGAAG AATTGCGG	нех	×	keine	unspezifische Amplifikation	204			
brauchbar	 -	TTCTGTTtCATC TGGCCTCC	GTTCGTAGATTC AGGTCGGC	FLU	55	Geno- typisia- rung & Kartie- rung	unzuverlässig, schwer auszuwerten, stottert stark	150	120	170	2
nlcht nutzbar		GCCCAACTATT	CCCACAGTTGTC	нех	X	keine	zu schwache Amplifikation	229			
gut	H	тсстеаттсет	GAAGGCCTCAAG	HEX	65	Geno-	gleichmäßig starke	207	180	220	3

+ # , F										
durch- schnitt- liche Allel- anzahl pro Sorte		ဧ	5	5		3	<u></u>	ဗ		2
Größen- bereich, obere Grenze		190	220	270		210	190	190		190
Größen- bereich, untere Grenze		150	150	190		80	150	130		150
erwart ete Produ kt- größe (bp)		161	204	207	208	116	175	163	203	163
Kommentar	Amplifikation	verläßlich amplifizlerender Marker mit 1 bp- Polymorphismen; Heterozygote im Bereich 167-168-169 bp schwer anzusprechen	Nullallele, einige schwach amplifizierende Linien	Stotterbanden, unterschiedlich starke Allele	unspezifische Amplifikation	unspezifische Amplifikation	verschieden starke Doppelpeaks schwer anzusprechen	Doppelpeaks (ersten Peak auswerten)	keine Amplifikation	Allele manchmal
Anwen- dung	typisie- rung & Kartie- rung	Geno- typisie- rung & Kartie- rung	Geno- typisie- rung & Kartie- rung	Geno- typisie- rung & Kartie- rung	keine	Kartie- rung	G Geno- typlsie- rung & Kartie- rung	Geno- typisie- rung & Kartie- rung	kelne	Geno-
Tempe- ratur- opti- mum		55	. 60	55	×	60	60	. 09	×.	65
Markie- rung		ROX	HEX	нех	HEX	FLU	ROX	ROX	HEX	%ÖX
Primer 2 (R), 5' -> 3'	вттсстст	TCAATAGTGAGG TGCGAGGA	ATCTGCAATGAC AATGGCAA	gCCACTCTTCTCT GTCCTCAA	ATCAAGTGAGCC GATGGAG	CCCTCTCTCTCC AGTCACGA	TCACAAATACCTT	TCAGGGCTTCTA AAGCTTGC	TGATAGCCTTAC ATATGGAAACAT T	CATGCTAACTCT
	ATcATCCACTG	TTCTTATTGTTG GTTTGGAAGAA A	TGTGTGTGtATC	gAtcAGGGTgAat ACCGAGC	TGAAATGAGAG ACCAATTCCAA	CETTCTCGTTG TTGtCAtCG	TCCTATCCACA CCGACATCA	CCAATCTCCTC	TGACCAATATG ACAGAGAACCA A	ATCTGGCTGAA
Bewertung		gut	gut	brauchbar]	nicht nufzbar	brauchbar	gut	nicht nutzbar	gut
Motiv		AT& GT	GT& GC	GA&	AT& GT	GA	GA	GA	AT& GT& AT	GA&
Marker- name		RMS089	RMS090	RMS091	RMS092	RMS093	RMS094	RMS095	RMS096	RMS097

rker ? (R),	Drimer 1 (F), Primer 2 (R),	Mer 1 (F), Primer 2 (R),		≥ -	Markie-	Tempe- ratur-	Anwen-	Kommentar	erwart ete Produ kt.	Größen- bereich, unfere	Größen- bereich,	durch- schnitt- liche Allei-
name			6 4 1 1	 } 	ດແກລ	opti- mum	gung		Kr- größe (bp)	untere Grenze	Grenze	anzahl pro Sorte
	GT		CACCACACA	ссатеттсса			typisie- rung & Kartie- rung	unterschiedlich stark				
RMS098	GT / GA	gut	CACGTCCCATT	CCCTCAATGGAG AGCAAGAG	ROX	9	Geno- typisie- rung & Kartie- rung	bis auf wenige Ausnahmen monomorph	172	150	190	-
RMS099	GA	nicht nutzbar	GETCTGGTTCC	CTCTCTCGTCCG	ROX	×	keine	unspezifische Amplifikation	166			
RMS100	GT& AT	nicht	AGAGCTCCGCT CTGGATATG	AAGCCAAAGCTT ACGTGCAT	ROX	×	keine	keine Amplifikation	169			
RMS101	δρ	nicht nutzbar	GAAGAGACTGA AAGCTTGAAgG A	CTCCTCTCCACT	FLU	99	Kartie- rung	unterschiedlich starke Allele, Schattenpeaks nicht von Allelpeaks zu unterscheiden; reproduzierbar	133	110	160	ო
RMS102	GT	gut	AACTAAATGGT TGAGATGCCAA A	GGAATTTCGTTC CTTAAGCTAAGT T	ROX	55	Geno- typisie- rung & Kartle- rung	kleine Fragmente (bis 174 bp) oft schwächer	170	160	210	~
RMS103	GT	guť	ATTATGCGAAC	TGGCAGCATTCT CCCTAAAC	ROX	55	Geno- typisie- rung & Kartie- rung	1 bp-Unterschiede	193	180	220	~
RMS104	GA	gut	CTAAAGCTTGA GCAAACAAATG	GEAGTATTGGCC GTAGGTGA	нех	09	Geno- typlsie- rung & Kartle- rung	weitere Peaks bei ca. 400 bp	209	160	220	-
RMS105	GT& AT	nicht nutzbar	ttgGTCTAATGC CCTATCCC	CCAGCCCTAGCC ATAATTGA	ROX	09	Kartie- rung	Stotterbanden	189	80	200	က
RMS106	GA	nicht nutzbar	CTCTCCCTCTC TGCATCAAA	CCTCTTCTCTGC	ROX	22	Kartie- rung	Stotterbanden	189	150	230	က
RMS107	AT&	1 1	CGACCTTgaAC	CATGAAAGTGGA	ROX	09	Geno-	nur zwei Hauptallele, 205	194	170	210	2

ERSATZBLATT (REGEL 26)

1	 7	T			 j	7				Γ
durch- schnitt- liche Aliel- anzahl pro Sorte		ν-		7		~	₩.	-	2	\ -
Größen- bereich, obere Grenze		200	ļ	220	180	250	200	250	230	240
Größen- bereich, untere Grenze		150		180	90	210	160	160	200	160
erwart ets Produ kt- größe (bp)		183	115	194	135	227	174	224	222	900
Kommentar	bp schwächer als 203 bp	schlechte Reproduzlerbarkeit; Auswertung evtl. auf starke Produkte beschränken	unspezifische Amplifikation	schwache 207 und 211 bp- Allele schwer ansprechbar	unspezifische Amplifikation	z.T. ungleichmäßige und unzuverlässige Amplifikation; kein reproduzierbares Nulialiei	viele Nullallele, Stotterbanden	schwache Amplifikation, Stotterbanden, Nullallele, schlecht reproduzierbar	meist nur ein Allel pro Linie, 221 bp-Allel neben 224 bp- Allel schwer anzusprechen, einige Linien mit schwacher Amplifikation	Male Mullelle
Anwen- dung	typisle- rung & Kartie- rung	Geno- typlsie- rung & Kartle- rung	keine	Geno- typisie- rung & Kartie- rung	keine	Geno- typisie- rung & Kartie- rung	Geno- typisle- rung & Kartle- rung	Kartle- rung	Geno- typlsie- rung & Kartie- rung	Ĺ
Tempe- ratur- optí- mum		55	×	60	×	60	65	09	65	3
Markie- rung		ROX	FLU	ROX	FLU	HEX	ROX	HEX	HEX	21.
Primer 2 (R), 5' → 3'	GCTAGCTAAGAA	TTCTTCTAGTTTC CGGCTGC	TGGCCTCTACAG CTCCTGTT	TTCCCTCTCATTC	ATTCAATTGGCTT CACTGGG	AGAAATGGACAG CTCCGAAA	GGCATCAGAAAG CTGAAAGG	TTGGGATTTCGG ATAAGTCG	GGAGGAGAAGG AGGATTTGTG	VOT VOO VOVOO
Primer 1 (F), 5' → 3'	TCGATGGAT	gATCGCCATGg CATGTAAAG	TGCAAACCTAA ATTCCACAGAA	TATGAGAATGA GCGTGTGGG	ttaGTCATCATCT TCAGTTATCAA GAA	CAAGGATACCA GTCGGAGAGA	CATGGATTGCG TGTCTTCTG	AGTCGCATAAC AGGACTGGG	CGTGAAGACG	A COTACOCAC
Bewertung		brauchbar	nicht nutzbar	<u></u>	nicht nutzbar	gut	gut	nicht nutzbar	gut	1000
Motiv	Э	GA	GT	GT	GA	AT& GT	GA.	Ø.	GA	i i
Marker- name		RMS108	RMS109	RMS110	RMS111	RMS112	RMS113	RMS114	RMS115	0770000

Tabelle: 1	Besch	Beschreibung d	der Mikrosatelittenmarker	tenmarker								
Marker- name	Motiv	Bewertung		Primer 2 (R), 5' → 3'	Markie- rung	Tempe- ratur- opti- mum	Anwen- dung	Kommentar	erwart ete Produ kt- größe (bp)	Größen- bereich, untere Grenze	Größen- bereich, obere Grenze	durch- schnitt- liche Allel anzahl pro Sorte
	GT		tACTGGCT	CCTGAAAT			typisie- rung & Kartie- rung	Stotterbanden				
RMS117	GA.	brauchbar	TCTTCTTCTCT	GGCCGATTTGTT GACCTAGA	ROX	09	Geno- typisie- rung & Kartie- rung	Schattenpeaks, aber klar differenzierte Allele	199	170	230	8
RMS118	(AT&)GT	brauchbar		TCAGACAAATAA TGCGTTACCAA	ROX	90	Geno- typisie- rung & Kartie- rung	Schaffenpeaks	168	150	210	8
RMS119	AT& GT	nicht nufzbar	GCACGCACACA TATATAACAAC AA	GATATCCGCAGC CAAGAAAG	FLU	65	Kartie- rung	nicht reproduzierbare Peaks; z.T. <74 bp	122	50	130	2
RMS120	GT	gut	CAGTTGAAGAG AACCAAGGG	TGGTGGGTAGG GAAATGAAA	ROX	55	Geno- typisie- rung & Kartie- rung	Schattenpeaks bei ca13 bp	193	170	210	ю
RMS121	GT	nicht nufzbar	TCCTCTCCAAg ACACAATATTC AA	GCCCTCTCTGCT CTCCCTAA	FLU	55	Kartie- rung	Stotterbanden	94	70	130	က
RMS122	GA GA	brauchbar	ATTCCACTTCC TCCTTCCCA	GGATTCTTTCCT CCTGACCC	HEX	60	Geno- typisie- rung & Kartie- rung	Schattenpeaks	229	190	250	က
RMS123	₽	nicht nutzbar	AAACACTCTAA GGAGGTATTCC CTAA	CGAAGTCTCCCA TGGTTTCT	ROX	×	keine	Stotterbanden	167			
RMS124	GT	nicht nutzbar	TTTGTGGTCGT GTGTGTGTAT	AGGCACAAATAC TATCCACCTG	FLU	65	Kartie- rung	schwache Amplifikation, viele Ausfälle	107	80	270	2
RMS125	GA	brauchbar	AAgtgAAGACTG AGCGACCG	CTACTCCAATGT CCGCTTCC	ROX	09	Geno- typisie- rung &	Schattenpeaks, große Fragmente meist schwach	160	140	190	m

durch- schnitt- liche Allel- anzahl pro Sorte											
durch- schnitt liche Allel- anzahl pro Sorte		-	60	м	7	5	8	m	4	4	m
Größen- bereich, obere Grenze	·	240	260	260	270	220	310	220	140	250	240
Größen- bereich, untere Grenze		190	200	190	220	80	210	160	06	150	160
erwart ete Produ kt- größe (bp)		210	220	230	229	126	230	184	124	226	190
Kommentar		p/a-Polymorphismus des 211 bp-Allels (genomspezifischer Marker?)	Stotterbanden, zu komplexes Bandenmuster		verschieden starke Allele	zu viele Fragmente (v.a. in 04SAP und 18CAN)	Stotterbanden	manchmal Schattenpeaks; große Fragmente meist schwächer	unspezifische Amplifikation	z.T. schwache und stottemde Allele	strake Intensitätsunterschiede zwischen den Allelpeaks
Anwen- dung	Kartie- rung	ፕ፴፟፟፟፠ዋ	Kartle- rung	Geno- typisie- rung & Kartie- rung	Geno- typisie- rung & Kartie- rung	Kartie- rung	Kartie- rung	Geno- typisie- rung & Kartie- rung	Kartie- rung	Kartie- rung	Geno- typisie- rung & Kartie-
Tempe- ratur- opti- mum		9	60	65	09	09	09	09	09	09	55
Markie- rung		HEX	HEX	нех	HEX	FLU	HEX	ROX	FLU	нех	ROX
Primer 2 (R), 5' -> 3'		TTGTTTCTGTTCG AATGGGT	TAGITGTTCGTC ACCCACCC	GCGAAGATTCAC CCAATGAC	ACTGATGCAGTT TGCTCTGA	TTTGCGAATACC AGATGCAG	TGTTTGTTGCTTA ACTACTACAACC TT	TTCAGTTTGGTT GAATGGGAG	ATTTCTGGCAAA TCCGAATG	GGCTGTCTCTGA	ттессттстсс
Primer 1 (F), 5° → 3'		AACGACCGCCT AGGAGAAA	TGCCTTTCTAG ATTTGCTGGA	AGCATCACGAG	ACGTGCACACA	CAAATCAATCT GCAAACCCA	CGGCCAGAGA TAACAGATGG	TGTGGTTATGA ATTGCTGGTG	TCTGCAACAAT	TGAGCTCAAGC AATATGCAA	GACCGATTGGA GAGGAATGA
Bewertung		brauchbar	nicht nutzbar	gut	brauchbar	nicht nutzbar	nicht nutzbar	ğ		nicht nutzbar	nicht
Motiv		GT	GA	GA GA	GT	8	8	GA.	g.	GA GA	GA
Marker- name		RMS126	RMS127	RMS128	RMS129	RMS130	RMS131	RMS132	RMS133	RMS134	RMS135

Tabelle:]	Besch	Beschreibung d	der Mikrosatelittenmarker	tenmarker								
Marker- name	Motiv		1 444	Primer 2 (R), 5' -> 3'	Markie- rung	Tempe- ratur- opti- mum	Anwen- dung	Kommentar	erwart ete Produ kt- größe (bp)	Größen- bereich, unfere Grenze	Größen- bereich, obere Grenze	durch- schnitt- liche Allel- anzahl pro Sorte
RMS136	Ą	nicht nutzbar	GATCATGAgAGt CGCCAAA	AAGAGGCAGATA TGGAGCGA	FLU	55	Kartie- rung	PCR bei 65°C zu unzuverlässig; bei 55°C unspezifisch	114	06	180	4
RMS137	8	brauchbar	TGTACATGATG ATGGGACGC	GGCAATTGCAAA GACAGTCA	НЕХ	55	Geno- typisle- rung & Kartle- rung	Stotterbanden & Vorpeaks, meist aber eindeutig auswertbar	228	210	270	е
RMS138	GA& ande re	gut	CTTCTGAGAGC	GCAAACACATCC CATCATCA	ROX	09	Geno- typisle- rung & Kartie- rung	Schattenpeaks	157	130	180	8
RMS139	8	gut	CAAGTATCtGCT	CCATCACATTCG GCTCTTCT	ROX	65	Geno- typisle- rung & Kartie- rung	Doppelpeaks, 178 bp-Peak erscheint als Dreifach-Peak	187	170	210	2
RMS140	GT	gut	CCAATAGCGAT GCAATGAGA		ΩTJ	09	Geno- typisie- rung & Kartie- rung	starke Vorpeaks, die aber gut identifizierbar sind; bis auf wenige Ausnahmen monomorph	123	50	140	ν-
RMS141	GT	nicht nutzbar	ACAGAGACTTG ACGCTGCAT		HEX	×	keine	keine Amplifikation	202			
RMS142	8× GA	}	TGGCCTCAACG	CCTGAAATATCC	ROX	09	Kartie- rung	zu viele Fragmente	186	160	290	ھ
RMS143	8		GTGGGAAGTGT GGGAACAAC		ХЭН	65	Geno- typisie- rung & Kartie- rung	schwache Peaks manchmal nicht eindeutig auswertbar	230	220	250	7
RMS144	GT	gut	TTTATCACTGT CACAAGGCATT A	GAGCTCCATGAG	HEX	09	Geno- typisie- rung & Kartie- rung	von schlechter Amplifikation ist das 199 bp-Allel stärker betroffen als das 205 bp- Allel	202	180	210	2
RMS145	2×	gut	TGCTCACTTAC	TCTCTCTCATTTC	FLU	65	Geno-	wenig polymorph, Allele	122	100	140	2
		· · · · · · · · · · · · · · · · · · ·										

					· -	1
schnitt- liche Alle! anzahl pro Sorte		n	က	7		
Gräßen- bereich, obere Grenze		210	220	250		
Größen- bereich, unfere Grenze		150	140	210		
erwart ete Produ kt- größe (bp)		186	191	230	203	209
Kommentar	ungleich stark	gut reproduzierbare Peaks, manchmal zusätzliche Stotterbanden im Bereich 160-175 bp, große Allele meist schwächer	1 bp-Unterschiede Im hinteren Bereich kaum auswertbar, insbesondere bei Heterozygofen	einige schwache Peaks >240 bp nicht ausgewertet	keine Amplifikation	keine Amplifikation
Anwen- dung	typisle- rung & Kartie- rung	ጉ ଢ ፟ፙ ቁ	Geno- typlsie- rung & Kartie- rung	Geno- typlsie- rung & Kartie- rung	keine	keine
Tempe- ratur- opti- mum		55	55	65	×	×
Markie- rung		ROX	ROX	нех	нех	HEX
Primer 2 (R), 5' → 3'	AAGAGTAAACCC	TTTCTGGGCCTG	TCTTTGTGCTGC TAATGCTCA	ACCTCCAGCACC	TCAAATTCTGGC CTCTGTCC	TGGAAATCCTTT
Primer 1 (F), 5' -> 3'	CCAGAAGCC	ACAAGGCATTC ACCTTGGTT	CCAATCTCAAT AACACCGAGC	TTTAGCAGGCA	CGGTGTGTAGT tGATTCGGA	TGCTGCAGTAt GatGCCAAT
Bewertung		gut	brauchbar	gut	nicht nutzbar	nicht nutzbar
Motiv	B	GT	AT& GT	GT	AT& GT& AT	GT
Marker- name		RMS146	RMS147	RMS148	RMS149	RMS150
	Motives Bewertung St. > 3' Tempe-rature Anwen-rature Kommentar Kommentar Kommentar Kommentar Bereich, bereich, bereich, aunfere obere größe Grenze Grenze Motives 5' > 3' rung opti- dung Kommentar kt- unfere obere größe Grenze Grenze	Motives Bewertung Sr -> 3' Frimer 2 (R), rung Markle-ratur-rung opti-rung Anwen-rung stark Kommentar dung dung dung dung dung dung dung dung	Motives and Motives	Motiv Bewertung 5-37 GA CCAGAAGCC AAGAGTAAACCC GI Tild Buttle Tild Bewertung GA CCAGAAGCC AAGAGGTAAACCC GA Tild Buttle Tild	Moth Bewertung 5:→3; Primer 2 (R), markle rature Anwendar dung. GA CCAGAAGCC AAGAGTAAACCC Rung ACAAGGCATTC CATAAATA ATA branchbar branchbar AACACGAGCA AGACTCAGCACCC ROX S5 rung a suswerthar, insbesondere and a schwache Peaks and a schwache and a s	Modify Bewerfung 5: 3 Time 1 (P). British Fraue. Annear Rommentar

Legenden zu den Abbildungen:

Abbildung 1 (zweiseitig, a und b): Elektropherogramm der PCR-Produkte der Rosensorten 10 bis 18 mit der Primerkombination RMS059. Peaks bezeichnen Allele, deren Größe automatisch berechnet (untere Zahl unter dem Peak) und einer Allelkategorie zugeordnet wurde (obere Zahl).

Abbildung 2: Verwandtschaftsanalyse der 32 Sorten anhand von 41 Mikrosatellitenmarkern der Kategorie "gut". Je weiter eine Verzweigung zwischen zwei Sorten nach rechts verschoben ist, desto näher sind sie verwandt.

Abbildung 3: Verwandtschaftsanalyse der 32 Sorten anhand von 84 Mikrosatellitenmarkern der Kategorie "gut" und "brauchbar"

WO 03/097869 PCT/DE03/01572

Ansprüche

1. Oligonukleotide von Mikrosatellitenmarkern des Rosengenoms gekennzeichnet durch folgende Sequenzen:

Name	RMS Primer F* 5'->3'	RMS Primer R 5'->3'	Motiv
RMS00	TTCAAAATTGCTGCCCCCTTAG	TACCAGTTGAGTGAGAAATAGTT	GT&G C
RMS00	AATAATTTTTCTTTTGGTA	GATTTGTTTTCACTATTCA	GA
RMS00	TGGGAAAGGAAAGCAACA	AAGGTAGGCAGAAGTGACAGACA T	GA
RMS00	CAGGCCAAGGAAGAGGTAAGTAA A	CGTATGCGCGTGTAGGAAGG	GT&A T
RMS00	CTACCGGTGACCAGTGACGA	ATTTTGCCCTCTCCCTTTGT	GA
RMS00	ACCGGTCTCATCTTTCCATTG	GTAGGTCGGTCCGTCTGTCA	GT&G A
RMS00	TCTTTCCGACTCCGACAA	TATGCCATTCAGACTCTCCAACAC	GA
RMS00 8	TCTCTGCGACAAAAACAAACACT	CCATGAAGCGGCGGAGAGGA	GA
RMS00	ATTGGCAAAAGATTCTCCTAC	ACTTGGTAATTTCGAGCATAA	CT&G T
RMS01	GGTTGGGGGAAATTGAAGCAGAG	TCTTTTCTTCTACAAACCCCAACCA AC	GA
RMS01	TAGAAACGACCAATAAAAGAGG	TAACGAAACATCATCAATAGCA	GT
RMS01	ATAGAAAAATAGAGGGGGTGTG	GATCGAAAAGTGGTCAAAATA	GT
RMS01	GCCTTAGCCGGGGTTTTCAA	GATCAATACCGAACTAACAAAG	GA
RMS01	TATTCTTTCCCACCGACGAC	CCTCACTGCCAACCCAACTGT	GA
RMS01	TAATGTAGGCAGATATAAAGGAG	GCAGCTGCACAACAAGGAA	GA
RMS01	GGCCTGGACCTTTCTCATTTG	AACCGCTGCTGCTTTCATTTTT	GA
RMS01	AGGTCCCGTTATTTCAGG	AGTTGGCTTATGGCTTTTT	AT&G T
RMS01	TTTTGGGTGGGTAAGTTTT	TTGGCCAATAAGGAAGACA	GT
RMS01	ACCGTTTCCATTACCCTTTCACC	CGTCGGCCATGGATTTTTGTA	GA
	AGGCGCCCATGCAAAATCAA	TTCCTAACGCAAACTATGTAAAT	GA
RMS02	AATTCCCTCTTACCCAAAACAC	CCGGCGAAGTCCCCTATG	GA
RMS02	AAGAAGATAAATTAGGGGGAAA AA	GCGCGAACATATTGATTGGT	GA
_	TTTGCTATTAATTACAGATGAA	TAAACAATATAAATGGGGGAGTAA AT	GT

W	O 03/097869		03/01572
	ACTACTGTAAAATATGAAAAATC	41 GTAGTAGCGGTTGCAAGAAAATA	AT&G
4 RMS02 5	TAATGTAAGCTAACTAATCT	TTTTAAATTTTCGGTGGAGA	T AT / GT
	ATAGATATGTTTGGGTTCA	AATGTCAGGTTTTGTTATG	GT
	ACCGTTGTGCTTATCAGGA	ATTGGTGGTGCTTTTACATTAC	AT&G T
RMS02 8	TAGGCAAGACCATGAACCAG	TGTGCCTGTTTGCTTGTGTA	AT&G T
RMS02 9	GGATAAAACCAACGGGACAGACT C	TCCGACACCATCCCTCCTACATAA	GA
RMS03 0	GATAAATTTCAAGGCGAGAG	AAAAGATGAACGACCCAAATAAT	GA
RMS03	TATATTAAAGAACAAGTGAGAAC	GTGGCTATCGAAAAACAA	GA
RMS03	AGAAACCAACCTTAGCAT	AACCATCCATATTTCAGTCA	AT&G T
RMS03	CAAGAGATGTCGGAAAAGCAGGA AGT	TGCACACCCAAATTTACAAACCAC A	GA
RMS03	GCTTCTCGGTCTCGTGCTCTC	CTCCCGCTCAAATCAATAAATCTC	GA
RMS03	CCTCCTTGGCAGCCTTTTCATT	ATCGGCTATCCACATCGTCTACAC	GA
RMS03	CTCGCGGCCCAAATAACAAT	TTGCCCTTACATTTTCTCTACTCCA TA	GA
RMS03 7	AACCTCGGAGCCGCATTTCAC	AGTTTTCCTCGCCAGATAAGC	GA
RMS03 8	GTGATAAGAGCAAAACAAGATGG	CTCGCGGAAGCCTCAAAA	GA
RMS03 9	GCTGCTTTCTCCAATCAACAA	CAGCTCAGCAAAGGGGACTA	2xGA
RMS04 0	AACCCCAAACTTCCTAAACT	TCTGTATCTACTGTGGCTAACC	GT
RMS04 1	TTAACCCAAAGCACCAAAAT	ACCTTCACCGATGTATCACC	GA
RMS04 2	GCATGGCCAGGCTCTTCAC	ATGCCAAACGTCTCAGTCAACC	AT&G T
RMS04	GATCAAAGATGGGTTCTCCTCTC	AGGGGAATCTTTGAAAGTCGTTC	GA
RMS04 4	ACCGATGGATGGCAATAAC	ATACAGGACATAAACGGCTACC	AT
RMS04 5	GAAAATAAGGACATCATCTAC	GGTGCCTCCATTATTTAC	AT&G T&AT
RMS04	AAAGGATTGCTGGATGTG	TATTCGCGTGGACTCTAT	&GA AT&G T
_	GCTCCCTCAATTTCCACTCA	ACCAACCCAATTCGCTCAT	GA
RMS04 8	ATAAGTATGAAAAAGTAAAATGA T	GTATACTAGAAAAACAAAACTGGT	GA&A T
_	AAAAATACAACCGAAAAA	CCAACCCGTCAAGGCTAAA	AT&G
	TAAGCCTAAGAAAAACTCATT	CAGCCGTCAGATTCACTTG	AT&G A

W	0 03/097869		03/01572
RMS05	AGTAGACTGTCCTCCATTTAGC	42 ATACCATCAGAGAAGAGACGACA	GT
RMS05	TTAGCCGTTAATTGAGTCGACAA CCTC	TGATGAACCCAATAGAATGAAAAC AGA	GA
RMS05	GGCGGTAGCTAGTGACTGGAATC	CCCTTACCCTTACCCCTTTGTTAC	GA
RMS05	CTGGGAGGAGAACTCTGTCA	TAGCTTATTAGTCTGCATTGATGA	AT&G A
RMS05	TGATCACAAGAGCTTTTCAAGTTT AG	AGTTAGGCGCATGTACAAGAAAAT	GA
RMS05	TGTGTAGATTAGCATTCC	GATCTAGGATGATTCAATA	GA
RMS05	CGAGGTGGGTAAGGGCGAACAAA	CCCATCCAAAGCGAGACGACGAC	GAA / GA
RMS05	CAACCCCTGAAGCCTGAA	TTTGTAACCCATTTGACCATA	GT
•	ACAGTCTTATAGTGGCTTCC	TACAGGGTTCTAATTGATACATAC	AT&G T
RMS06	CATTCATTTGACTCTAAGGA	TATTCTGGTCTAAGCTATTGTAA	GA
RMS06	ATATCAGCCGTCCCATCAG	TTAGAAAATCCCAAACAT	GT
RMS06	GCGAACGCATTTACTTGT	GGTTGTTCTGGGTGGTTTTT	GA&G T
_	CCACCGCCCACAATCACAATG	GCTCTGCGGAGTGGGAATGGT	GAA
RMS06	TTTTTGCAATATGTGAAGC	GATTGGTCAACCGATATGTAGAA	GA, GT
RMS06	TATAGCTCGGTAGATTCAAA	CCAGACTGCCCCCAACTCATA	GA
RMS06	TCCACCCACAGACCACAG	AAGCTCCCTACGATTTCACTC	GA
•	CAATCTGCAATCCGAATCC	ATGGTGAAAAACAGAAATACTACA	GA
RMS06 8	GTGCGCTTTCTGCTCCATT	CATTTTGTCCTACGTTTTCACTTC	GA
RMS06	TCGGAGATTAAGAGTGAGGTGAG	GTGCCCACTTACCCAAACCATC	GT&G A
RMS07	TGCCTCTCGATACAAACC	AATAAGAACCAATACCCCGAAGA G	GA
RMS07	GTTAGCATCTGGCACATTAT	AGTTCCTTGACCAGCAGAG	GT
RMS07	TTAGCTCAAGAATTCATCAAAG	TCCAAACCGAGCTAAGAAAACT	GA
	AAACCCCTTTTATGTAGAAGTAG	TAAAACATGAAATTATAACAATAG TG	AT&G T/GAA
RMS07	GCTTCTATCCACAGTTTCACCTC	TTCATGTCAACGCTTCTGTAATAG	AT&G
RMS07	GCCCGTAAAAGCCCGTAAA	TTGGTCAACCGATATGTAGAAT	AT&G
RMS07	TGGATGCAAACACCTACAAA	CGTCGCCGGCATTCGTC	GA
RMS07	AGGTGAACATGGGCCAACTA	TCAAAGAATGAGTGCCTACTAAGA	GA&G
RMS07	CCATTCCAAAGTTGCACGTA	CTCTACTGCCAGCAACCACA	GT

	O 03/097869	43 PCT/DE	03/01572
	CCGGTATGGAGAGGAATGAG	GCAATTATCCTTGACAGAACCC	GA
9 RMS08	GCTTTCAAAGATGGGAAACCT	TTGGTATCACATTTACTCTCATTGC	GT
RMS08	TTTGACACACACACAAACAT	GACTGAGAAACAAGTCCGTCCT	GT&G
RMS08	AACAACACGCGGAATATG	TGCAGTTGGAGTTG	A 2xGA
RMS08	GACGTCCGCACTTTAGCAAC	AGGTCCTCAGCATAGACGGC	GT
RMS08	GGGAGTCTCAAGAGCTACCGT	CTTCATGTAAGCCACTGGACA	GT
RMS08	ATGCCCATGACTATCTTGCC	TCCAAGATGAAGAATTGCGG	GA
RMS08	TTCTGTTTCATCTGGCCTCC	GTTCGTAGATTCAGGTCGGC	GA
RMS08	GCCCAACTATTCCTCCCACT	CCCACAGTTGTCCAACACAA	GA
RMS08 8	TCCTGATTCGTATCATCCACTG	GAAGGCCTCAAGGTTCCTCT	GA
RMS08	TTCTTATTGTTGGTTTGGAAGAAA	TCAATAGTGAGGTGCGAGGA	AT&G T
RMS09	TGTGTGTGTATCCATGGCCT	ATCTGCAATGACAATGGCAA	GT&G
RMS09	GATCAGGGTGAATACCGAGC	GCCACTCTTCTCTGTCCTCAA	GA&G T
RMS09	TGAAATGAGAGACCAATTCCAA	ATCAAGTGAGCCGATGGAG	AT&G T
RMS09	CGTTCTCGTTGTTGTCATCG	CCCTCTCTCCAGTCACGA	GA
RMS09	TCCTATCCACACCGACATCA	TCACAAATACCTTCCACTCGC	GA
RMS09 5	CCAATCTCCTCAACTCCCAG	TCAGGGCTTCTAAAGCTTGC	GA
RMS09	TGACCAATATGACAGAGAACCAA	TGATAGCCTTACATATGGAAACAT T	AT&G T&AT
RMS09	ATCTGGCTGAACACCACACA	CATGCTAACTCTCCATGTTCCA	GA&G T
RMS09	CACGTCCCATTCCAGAATTT	CCCTCAATGGAGAGCAAGAG	GT / GA
RMS09 9	GGTCTGGTTCCTTGAGGTGA	CTCTCTCGTCCGAAAGCATC	GA
RMS10 0	AGAGCTCCGCTCTGGATATG	AAGCCAAAGCTTACGTGCAT	GT&A T
RMS10	GAAGAGACTGAAAGCTTGAAGGA	CTCCTCCACTCCTCACCA	GA
RMS10 2	AACTAAATGGTTGAGATGCCAAA	GGAATTTCGTTCCTTAAGCTAAGTT	GT
RMS10	ATTATGCGAACCAAACGAGG	TGGCAGCATTCTCCCTAAAC	GT .
RMS10 4	CTAAAGCTTGAGCAAACAAATG	GGAGTATTGGCCGTAGGTGA	GA
RMS10 5	TTGGTCTAATGCCCTATCCC	CCAGCCCTAGCCATAATTGA	GT&A T

PCT/DE03/01572

WO 03/097869

wo	03/097869	PCT/DE0	3/01572
RMS10	CTCTCCCTCTCTGCATCAAA	44 CCTCTTCTCTGCAACCCAAG	GA
RMS10	CGACCTTGAACTCGATGGAT	CATGAAAGTGGAGCTAGCTAAGAA	AT&G T
RMS10 8	GATCGCCATGGCATGTAAAG	TTCTTCTAGTTTCCGGCTGC	GA
RMS10	TGCAAACCTAAATTCCACAGAA	TGGCCTCTACAGCTCCTGTT	GT
RMS11	TATGAGAATGAGCGTGTGGG	TTCCCTCTCATTCCTCTCCC	GT
RMS11	TTAGTCATCATCTTCAGTTATCAA GAA	ATTCAATTGGCTTCACTGGG	GA
RMS11	CAAGGATACCAGTCGGAGAGA	AGAAATGGACAGCTCCGAAA	AT&G T
RMS11	CATGGATTGCGTGTCTTCTG	GGCATCAGAAAGCTGAAAGG	GA
RMS11	AGTCGCATAACAGGACTGGG	TTGGGATTTCGGATAAGTCG	GA
RMS11	CGTGAAGACGCAAAGTCAAA	GGAGGAGAAGGAGGATTTGTG	GA
5 RMS11 6	CACCCACTGGAATACTGGCT	CGACAAGCATGACCTGAAAT	AT&G T
RMS11	TCTTCTCTCACCGCCAT	GGCCGATTTGTTGACCTAGA	GA
RMS11	TGGCTATGGGAAGAACATGA	TCAGACAAATAATGCGTTACCAA	(AT&) GT
RMS11	GCACGCACACATATATAACAACA A	GATATCCGCAGCCAAGAAAG	AT&G T
RMS12	CAGTTGAAGAGAACCAAGGG	TGGTGGGTAGGGAAATGAAA	GT
RMS12	TCCTCTCCAAGACACAATATTCAA	GCCCTCTCTGCTCTCCCTAA	GT
RMS12	ATTCCACTTCCTCCTTCCCA	GGATTCTTTCCTCCTGACCC	GA
RMS12	AAACACTCTAAGGAGGTATTCCC TAA	CGAAGTCTCCCATGGTTTCT	GA
RMS12		AGGCACAAATACTATCCACCTG	GT
•	AAGTGAAGACTGAGCGACCG	CTACTCCAATGTCCGCTTCC	GA.
RMS12	AACGACCGCCTAGGAGAAA	TTGTTTCTGTTCGAATGGGT	GT
-	TGCCTTTCTAGATTTGCTGGA	TAGTTGTTCGTCACCCACCC	GA
RMS12 8	AGCATCACGAGCACATTCAG	GCGAAGATTCACCCAATGAC	GA
•	ACGTGCACACACTCACACAC	ACTGATGCAGTTTGCTCTGA	GT
	CAAATCAATCTGCAAACCCA	TTTGCGAATACCAGATGCAG	GA
RMS13	CGGCCAGAGATAACAGATGG	TGTTTGTTGCTTAACTACTACAACC TT	GA
RMS13	TGTGGTTATGAATTGCTGGTG	TTCAGTTTGGTTGAATGGGAG	GA
RMS13	TCTGCAACAATCAGCAGAAGA	ATTTCTGGCAAATCCGAATG	GA

WC	03/097869	PCT/DEC	3/01572
3			
RMS13	TGAGCTCAAGCAATATGCAA	GGCTGTCTCTGATTCCAGTATG	GA
RMS13	GACCGATTGGAGAGGAATGA	TTGCCTTTCTCCCTTCTGTT	GA
RMS13	GATCATGAGAGTCGCCAAA	AAGAGGCAGATATGGAGCGA	GA
•	TGTACATGATGATGGGACGC	GGCAATTGCAAAGACAGTCA	GA
RMS13	CTTCTGAGAGCCACACACA	GCAAACACATCCCATCATCA	GA&a ndere
	CAAGTATCTGCTCAGGCAAGC	CCATCACATTCGGCTCTTCT	GA
•	CCAATAGCGATGCAATGAGA	TTGGCTACCACTAACCTCCC	GT
RMS14	ACAGAGACTTGACGCTGCAT	AGCGTGTGTAGCTAGGGAGC	GT
RMS14	TGGCCTCAACGTCTTCTACC	CCTGAAATATCCCTATGTCAGAAA	2 x GA
RMS14	GTGGGAAGTGTGGGAACAAC	GCCTCATCCTGTCCATCTTC	GA
•	TTTATCACTGTCACAAGGCATTA	GAGCTCCATGAGGTGTTTCC	GT
RMS14	TGCTCACTTACCCAGAAGCC	TCTCTCATTTCAAGAGTAAACCC	2 x GA
•	ACAAGGCATTCACCTTGGTT	TTTCTGGGCCTGCATAAATA	GT
	CCAATCTCAATAACACCGAGC	TCTTTGTGCTGCTAATGCTCA	AT&G T
RMS14	TTTAGCAGGCATTGGCACTAT	ACCTCCAGCACCAACTCCT	GT
RMS14	CGGTGTGTAGTTGATTCGGA	TCAAATTCTGGCCTCTGTCC	AT&G T&AT
•	TGCTGCAGTATGATGCCAAT	TGGAAATCCTTTCCTTTCCTT	GT

- 2. Testkit zur genetischen Analyse von Kultur- und Wildformen der Gattung Rosa umfassend ein oder mehrere Oligonukleotidpaare nach Anspruch 1.
- 3. Testkit nach Anspruch 2 umfassend mindestens ein Oligonukleotidpaar folgender Mikrosatellitenmarker: RMS001 RMS003 RMS008 RMS011 RMS015 RMS017 RMS024 RMS030 RMS034 RMS035 RMS039 RMS042 RMS043 RMS044 RMS045 RMS046 RMS050 RMS051 RMS054 RMS055 RMS060 RMS061 RMS071 RMS073 RMS078 RMS079 RMS080 RMS082 RMS086 RMS091 RMS094 RMS108 RMS110 RMS116 RMS117 RMS118 RMS122 RMS125 RMS126 RMS129 RMS132 RMS137 RMS147 RMS023 RMS027 RMS029 RMS037 RMS038 RMS047 RMS052 RMS057 RMS058 RMS059 RMS062 RMS063 RMS065 RMS066 RMS070 RMS072 RMS077 RMS084

- RMS059 RMS062 RMS063 RMS065 RMS066 RMS070 RMS072 RMS077 RMS084 RMS088 RMS089 RMS090 RMS095 RMS097 RMS098 RMS102 RMS103 RMS104 RMS107 RMS112 RMS113 RMS115 RMS120 RMS128 RMS138 RMS139 RMS140 RMS143 RMS144 RMS145 RMS146 RMS148.
- 4. Testkit nach Anspruch 2 umfassend mindestens ein Oligonukleotidpaar folgender Mikrosatellitenmarker: RMS023 RMS027 RMS029 RMS037 RMS038 RMS047 RMS052 RMS057 RMS058 RMS059 RMS062 RMS063 RMS065 RMS066 RMS070 RMS072 RMS077 RMS084 RMS088 RMS089 RMS090 RMS095 RMS097 RMS098 RMS102 RMS103 RMS104 RMS107 RMS112 RMS113 RMS115 RMS120 RMS128 RMS138 RMS139 RMS140 RMS143 RMS144 RMS145 RMS146 RMS148
- Testkit nach Anspruch 2 umfassend mindestens ein Oligonukleotidpaar aus folgendem Set: RMS023, RMS029, RMS038, RMS047, RMS052, RMS057, RMS059, RMS062, RMS065, RMS070, RMS077, RMS088, RMS089, RMS095, RMS097, RMS102, RMS103, RMS104, RMS112, RMS115, RMS120, RMS128, RMS139, RMS146 oder RMS148.
- Testkit nach Anspruch 2 oder 3 umfassend folgende Oligonukleotidpaare: RMS023, RMS029, RMS038, RMS047, RMS052, RMS057, RMS059, RMS062, RMS065, RMS070, RMS077, RMS088, RMS089, RMS095, RMS097, RMS102, RMS103, RMS104, RMS112, RMS115, RMS120, RMS128, RMS139, RMS146 oder RMS148.
- 7. Verfahren zur Herstellung von Mikrosatellitenmarkern für Pflanzen der Gattung Rosa, dadurch gekennzeichnet, dass hypervariable Genomabschnitte (sogenannte Mikrosatelliten) mit Hilfe der Polymerasekettenreaktion (PCR) zu polymorphen Fragmenten in Gegenwart mindestens eines Oligonukleotidpaares gemäß Anspruch 1, das links und rechts für jeden Mikrosatelliten-Locus eine Mikrosatellitensequenz flankiert, amplifiziert, anschließend aufgetrennt und detektiert werden.
- 8. Verfahren nach Anspruch 7, dadurch gekennzeichnet, daß die Auftrennung der Mikrosatellitenmarker gelelektrophoretisch, insbesondere durch hochauflösende Agarosegele, native Polyacrylamidgele, denaturierende Polyacrylamidgele oder massenspektrometrisch erfolgt.
- 9. Verfahren nach Anspruch 7, dadurch gekennzeichnet, daß die Detektion je nach Trennungssystem über Ethidiumbromidfärbung, Silberfärbung, bei radioaktiver Markierung über Autoradiographie oder mittels automatischem Sequenziergerät unter Verwendung farbstoff- bzw. fluoreszenzmarkierter Primer oder massenspektrometrisch erfolgt.

- 10. Verwendung der Oligonukleotide nach Anspruch 1 zur genetischen Analyse von Kultur- und Wildformen der Gattung Rosa.
- 11. Verwendung nach dem Anspruch 10 zur genetischen Kartierung und Markierung von monogenen und polygenen Eigenschaften und deren Selektion, zur Verwandtschaftsanalyse und Sortenidentifikation sowie zur Evaluierung von Sortenreinheit, Hybrididentifikation und Pflanzenzüchtung.

Abbildung 1a

Abbildung 1b

Abbildung 2:

ERSATZBLATT (REGEL 26)

Abbildung 3:

