

Novel Materials and Devices in Information Technology: Logic and Memories

Rainer Waser
Institut für Werkstoffe der Elektrotechnik, IWE 2, RWTH Aachen
& Peter Grünberg Institut, PGI-7, FZ Jülich

Additional lecturers: Dr. Felix Gunkel

Dr. Dirk Wouters Dr. Ulrich Böttger Dr. Stephan Menzel

Tutorials: Dr. Felix Gunkel

Dr. Stefan Wiefels

Lecture schedule

Lecture: Wednesday 14:30-16:00; Tutorial: Wednesday 16:15-17:00

Room: 38 A 2 (5381 | U103) (SB Chemie, Worringerweg)

Date	Lecturer	Торіс
12.10 19.10 26.10	F. Gunkel	 Overview Mesoscopic electron transport Nano-fabrication and nano-analysis Interconnects
02.11	R. Waser	4. Processing of Information
09.11 16.11 23.11 30.11 07.12 14.12	R. Waser D. Wouters U. Böttger	5. Overview of memories6. Flash & Charge-based memories7. Magnetoresistive memories8. ReRAM Overview9. ECM10. VCM
11.01.2023 18.01 25.01 01.02	D. Wouters	 11. General Intro to Logic, von Neumann Architectures & Alternatives (PLA,FPGA) 12. Computing in Memory: logic gates, analog computing 13. General Intro Neuromorphic Computing + ML 14. Neuromorphic Computing mimicking brain functionality

Tutorial schedule

Tutorial: Wednesday 16:15-17:00

Room: 38 A 2 (5381 | U103) (SB Chemie, Worringerweg)

Start: Tutorial + Introduction 19.10.

Lecturer: Dr. Felix Gunkel (FG), Dr. Stefan Wiefels (SW)

Date	Lecturer	Topic	Sub-topics	
19.10	FG	Electronic transport & Mesoscopic effects	Mesoscopic effects, ballistic transport	
26.10	FG		Coulomb-blockade, single electron transistor	
02.11	FG		Interconnect arrays, delay times and scattering	
09.11	FG	Overview	CMOS Scaling	
16.11	SW	Memory	Memory overview, Write operation, Reading resistive memories	
23.11	SW		DRAM read operation, DRAM scaling	
30.11	SW		FeRAM operation principle, FeRAM read operation and scaling	
07.12	SW		ECM operation principle, ECM switching kinetics	
14.12	SW		VCM operation principle, VCM switching kinetics	
11.01.2023	SW	Logic	Boolean Logic + Programmable logic arrays	
18.01	SW		Compution-in-Memory: Memristive logic families	
25.01	SW		Machine Learning	
01.02	SW		Biological signal processing, neural networks, learning rules	

General information

Lecture and tutorial

- The lecture will be held in presence
- The lecture slides will be uploaded to Moodle during the morning of the lecture day
- The tutorial will be held in presence after the lecture.
- Before the tutorial, exercise and introduction will be uploaded to Moodle
- The tutorial solutions are additionally available online, after taking an e-Test in Moodle.

Exam

- Date of written exam: date will be announced
- Extra tutorial for the exam preparation: date will be announced
- 2nd date of exam: after the summer semester
- The exam will be in English. You can answer in English or German.
- Exam contains 3 problems, one for each topic: Overview/Logic; Mesoscopic effects,
 Memory
- Solving the problems requires calculations (about 50 %)
 and explanations in text form (about 50 %)

Main reference book of the lecture NMIT 1 & 2

- NMIT 1: Relevant chapters listed in Moodle
- Specific updates (introduced during the lecture)
- large number of copies in the Lehrbuchsammlung

Third, completely revised edition

April 2012

Student-friendly price (Euro 85,-)

about... Felix Gunkel – Interface electronics & mesoscopic energy materials

2004 – 2009 **Diploma in Physics**, RWTH Aachen

semester abroad Chalmers University of Technology, Sweden

2013 PhD PGI-7/RWTH Aachen

05/2013 – 09/2013 **Postdoc** at Stanford University (USA)

04/2013 – 12/2018 Postdoc/Researcher at PGI-7 & RWTH Aachen

12/2019 – 02/21 Ørsted-Research-Fellow at DTU Energy, Technical University of Denmark

0 Overview – Novel Materials and Devices in Information Technology:Logic and Memories

Areas in Information Technology

Emerging concepts in Future Information Technology

Emerging concepts in Future Information Technology

1 Mesoscopic electron transport

Transport in low dimensional structures

When is a system low dimensional?
When do we observe size effects?

Conductance quantization in ballistic 1D structures

Does the conductance diverge when there is no scattering?

Coulomb blockade in quantum dot structures

Transferring single electrons across a quantum dot

Outline

- 1.1 Mesoscopic regime: Transition from bulk to nanoscale
- 1.2 Review: Classical transport in 3 dimensions
- 1.3 Important time and length scales and quantized transport effects
 - Landauer quantization (ballistic transport in 1D)
 - Electron interference (magnetic length scales)
 - Coulomb blockade: single electron charging

1.1 Mesoscopic regime: Transition from bulk to nanoscale

Mesoscopic systems

Mesoscopic systems: typical length scales

1.2 Review: (Semi-)classical transport in 3 dimensions

Band structure of matter and Fermi distribution

Electronic conduction (Drude model)

Macroscopic model:

Current density (Ohm's law)

$$j = \sigma E = -env_D$$

Electrons are accelerated as a result of an electric force

$$m * \dot{v}_D = -eE$$

A friction force F_{fric} is introduced to avoid diverging v_{D}

$$m*\dot{v}_D + \frac{m*}{\tau}v_D = -eE$$

Stationary solution ($\dot{v}_D = 0$)

$$V_{D} = -\frac{e\tau}{m^{*}}E := -\mu E$$

drift velocity v_D relaxation (or scattering) time τ effective mass m^*

relaxation time τ

mean scattering time, i.e. averaged over many scattering events

electron mobility
$$\mu =$$

Free electrons in infinite 3D potential well

Solution of Schrödinger equation:

plane waves with discrete wave vectors (or Bloch waves for periodic potential)

$$W = \frac{\hbar^2}{2m^*} \underline{k}^2 = \frac{\hbar^2}{2m^*} (k_X^2 + k_y^2 + k_z^2)$$

$$k_i = \frac{2\pi}{L} n_i$$

L =size of potential well (bulk)

$$n_i = integer$$

$$\lambda_{F} = \frac{2\pi}{k_{F}}$$

Fermi wavelength

$$m * v_F = \hbar k_F$$
 Fermi velocity

Free electrons in infinite 3D potential well

Density of states (per volume) in 3D

 $g_{3D}(k) = \frac{1}{(2\pi)^3}$ in *k*-space, the density of states is constant (1/volume of a dice)

n = carrier density

$$n_{3D} = 2 \cdot \frac{1}{(2\pi)^3} \int_{|k| < |k_F|} d^3k$$
$$= 2 \cdot \frac{1}{(2\pi)^3} \cdot \frac{4}{3} \pi k_F^3 = \frac{1}{3\pi^2} k_F^3$$

$$n_{3D}(W_{\rm F}) \propto W_{\rm F}^{3/2}$$

will be filled up until $W(k)=W_F$

$$g_{3D}(W) = \frac{dn}{dW} = \frac{4\pi (2m^*)^{3/2}}{h^3} \sqrt{W}$$

Electronic conduction (Boltzmann model)

Macroscopic model (considering Pauli principle)

Current density

$$j_X = -e \int d^3k \ g(k) f(k) v_X(k)$$
$$= -\frac{2e}{(2\pi)^3} \int d^3k \ f(k) v_X(k)$$

f(W(k))

is **not Fermi-distribution**, but a **non-equilibrium** distribution determined by *Boltzmann's equation*

For metals it follows [...]

$$j_X = -e \cdot \frac{k_F^3}{3\pi^2} \cdot \frac{e\tau(W_F)}{m^*} \cdot E = -en\mu E$$

relaxation time τ

Relaxation rate from nonequilibrium **distribution** f to equilibrium distribution f_{Fermi}

electron mobility
$$\mu = \frac{e\tau(W_F)}{m^*}$$

How does a macroscopic system become mesoscopic?

- Geometrical size L of the system becomes small
- 2. Magnetic fields become large

Preconditions for the Boltzmann model	Conditions defining the mesoscopic regime	
$L \gg \ell_{\rm e}$: diffusive	$L \leq \ell_{\mathrm{e}}$: (quasi-)ballistic	
$L \gg \ell_{\phi}$: incoherent	$L \leq \ell_{\phi}$: coherent	
$L \gg \lambda_{\mathrm{F}}$: no size quantization	$L \leq \lambda_{\mathrm{F}}$: size quantization	
$\ell_{\rm e} \! \ll \! \ell_{\rm B} \! :$ no magnetic confinement	$\ell_{\rm e} \geq \ell_{\rm B}$: magnetic confinement	
$e^2/C < k_B T$: no single electron charging	$e^2/C \ge k_B T$: single electron charging	
$L\gg\ell_{\rm s}$: no spin memory	$L \leq \ell_{\rm s}$: spin memory effects	

Table 1: The Boltzmann model is applicable if all the conditions in the left column hold. However, fulfillment of any of the conditions listed in the right column drives the system into the mesoscopic regime. Notations (as introduced below): L = characteristic sample size;

 $[\]ell_e$ = elastic mean free path; ℓ_ϕ = coherence length; ℓ_B = magnetic length; ℓ_s = spin relaxation length.

1.3.1 Size quantization

Size effects: When is a system low dimensional?

Characteristic density of states is obtained by continuous integration in k-space

This is only allowed if the spacing of *discrete k*-values is small against the size of the Fermi sphere

$$L \leq \lambda_{F}$$

 $\lambda_{\rm F}$ is a measure of the length scale on which size quantization (i.e. the discreteness of the DOS) becomes important

	$\lambda_F = 2 \left(\frac{\pi}{3 n_{3D}} \right)^{1/3}$	metal	semiconductor
Typical values		<i>n</i> ~10 ²³ cm⁻³	$n \sim 10^{15} - 10^{17} \text{cm}^{-3}$
		$\lambda_{\rm F}$ ~4x10 ⁻⁸ cm~ 4 Å	$\lambda_{\rm F} \sim 10^{-5}$ - 10^{-6} cm ~ 10 -100 nm

Density of states in 2 dimensions (2DEG)

Density of states (per volume) in k-space

$$n =$$
carrier density

$$g_{2D}(W) = \frac{dn}{dW} = \frac{m^*}{\pi \hbar^2}$$
 (for each mode)

Density of states in 1 dimension (quantum wire)

Density of states (per volume) in k-space

n =carrier density

$$g_{\text{1D}}(W) = \sqrt{\frac{2m^*}{\pi^2\hbar^2}} \cdot (W - W_{n_x,n_y})^{-1/2}$$
 (for each mode)

1.3.2 Ballistic transport – elastic scattering length

Diffusive transport vs. ballistic transport

→ mean distance an electron travels between elastic scattering events is called elastic scattering length ℓ_e (or mean free path)

$$\ell_e = \overline{\mathbf{v}} \cdot \boldsymbol{\tau}$$

 $\ell_e = \overline{V} \cdot \tau$ \overline{V} mean velocity of electrons

transport in which electron undergo many elastic scattering events is called *diffusive*

- described by Drude and Boltzmann
- mobility and relaxation time can be defined

Diffusive transport vs. ballistic transport

What happens if the geometrical size of the system becomes smaller than the elastic scattering length?

$$\ell_e \ge L$$

→ no backscattering event (*more precise*: only specular reflection) is expected while electrons travel through the system

Systems with geometrical size smaller than the elastic scattering length are called *ballistic*

- usually a wire or point contact
- μ , τ are meaningless in ballistic systems
- Drude and Boltzmann models break down

Temperature dependence of the mean free path

A long mean free path is required and, thus, a high mobility

$$\ell_{e} = \overline{\mathbf{v}} \cdot \boldsymbol{\tau} \sim \boldsymbol{\mu}$$

 $\ell_{\rm e}$, τ and μ depend on the particular scattering process

- ullet phonon scattering time $au_{
 m p}$
- electron-electron scattering au_{e}
- (ionized) defect scattering time τ_s
- boundary scattering $\tau_{\rm b}$

Matthiessen's rule (strongest scattering process, i.e. lowest τ dominates)

$$\frac{1}{\tau} = \frac{1}{\tau_p} + \frac{1}{\tau_e} + \frac{1}{\tau_s} + \dots$$

Usually, the mean free path is maximum at **low temperatures** as phonons freeze out, defect scattering is the limiting effect!

Boundary scattering

Are there other scattering processes to consider as the geometrical size of the system is reduced?

system becomes smaller

- → scattering at sample edges becomes important
- specular reflection on a smooth wall (top)
- diffusive reflection on a rough wall (bottom)

specular reflection does not affect momentum in propagation direction

→ No momentum relaxation!

diffusive reflection does affect momentum in propagation direction

→ Momentum relaxation!

Whether or not scattering at the boundary reduces ℓ_e depends on the roughness of the boundary!

Boundary scattering

When is a boundary rough or smooth?

spatial extension of electrons is $\sim \lambda_F$ in a metal/deg. sc

rough means feature size R at boundary is of the order of or larger than Fermi wavelength

$$R \ge \lambda_F \longrightarrow \ell_e \le L$$

For **metals** (λ_F <1nm) the boundaries are *rough* in most cases

For **semiconductors** (λ_F ~10-100 nm) *smooth* boundaries can be obtained \rightarrow ballistic samples may be available on the length scale of 50 nm

How to construct a ballistic sample?

How to get a ballistic sample from semiconductors?

Challenges in engineering ballistic systems from semiconductors

- intrinsic sc provide large $\ell_{\rm e}$, but they loose (all) carriers at low temperature
- *n-type* doped sc provide carriers, but the mobility drops

How to get a ballistic sample?

modulation doping – separate carriers and dopants e.g. at AlGaAs/GaAs interface

- 1. Engineer band gap by Ga-Al-ratio
- 2. Step in conduction band
- 3. Electrons diffuse to undoped GaAs
- Emerging charge separation/electric field keeps electrons at the interface separated from positive ions(scatterers) forming 2D gas!

$$\ell_e = V_F \tau \approx 120 \mu m$$
 $\mu \approx 1.4 \times 10^7 \frac{cm^2}{Vs}$ at 4K
 $\tau \approx 400 \, ps$

Ballistic channel length ~ 140 nm << $\ell_{\rm e}$ width ~ 80 nm ~ $\lambda_{\rm F}$

Such a wire is often called (quantum) point contact (QPC)

 at low temperatures the conductance of the quantum wire is a step-like function of gate voltage

$$G_0 = \frac{2e^2}{h} = (12.9 \text{ k}\Omega)^{-1}$$
 conductance quantum

1.3.3 Conductance quantization in ballistic quantum wires

How can we understand this phenomenon? Where does the resistance come from?

Simple but drastic model:

- source and drain are perfect metal reservoirs
- leads/transition region are ballistic, 1D quantum wires
- QPC is represented by barrier with transmission probability T

T=1 means the QPC is open

Current through QPC means electrons transverse barrier from left to right (S to D) or from right to left (D to S)

- reservoirs will fill up the 1D levels up to their chemical potential, η_S and η_D
- density of states in wires is 1D

$$\overrightarrow{g_{1D}}(W) = \overleftarrow{g_{1D}}(W) = \frac{1}{2}g_{1D}(W)$$

$$\overrightarrow{k}$$

$$k_{x}$$

$$\overrightarrow{\overline{n_{S,D}}}(W) \vee_{S,D} = \frac{1}{2} g_{1D}(W) \cdot f_{Fermi}(W - \eta_{S,D}) \cdot \vee_{S,D}$$

$$= \sum_{j} \frac{1}{2} \sqrt{\frac{2m^*}{\pi^2 \hbar^2}} \cdot (W - W_j)^{-1/2} \cdot \sqrt{\frac{2(W - W_j)}{m^*}} \cdot f_{Fermi}(W - \eta_{S,D})$$

$$= \sum_{j} \frac{1}{\pi \hbar} \cdot f_{Fermi}(W - \eta_{S,D})$$

$$I(W) = \frac{2eT}{h} \sum_{j} f_{Fermi}(W - \eta_{S}) - f_{Fermi}(W - \eta_{D})$$
$$= \frac{2eT}{h} M \cdot \left[f_{Fermi}(W - \eta_{S}) - f_{Fermi}(W - \eta_{D}) \right]$$

G is quantized because the energy dependence of the one-dimensional density of states and that of the electron velocity cancel out

- No of modes (M) can be tuned by gate voltage
 →it controls how many 1D sub-bands are filled
- Increased temperature smears out step-like distribution function
- → Steps smear out

$$G = \frac{I}{V} = \frac{2e^2}{h}TM$$
 Landauer Formula

no barrier means $T \rightarrow 1$ *M* is number of activated modes

Other ballistic systems

QPC in semiconductor devices

 $\ell_e \sim 5 \mu \text{m}$

Breaking metal contacts...

CNT FET

Carbon nanotubes

Atomic switch – a novel data memory device

...addressed/controlled by external voltage...

