CSE 566 Spring 2023

Instructor: Mingfu Shao

KMP and Suffix-Tree

((Slides copied edited from these by Dr. Carl Kingsford))

Knuth-Morris-Pratt

Knuth-Morris-Pratt (KMP)

Def. $spm_i(P)$ = the length of the longest substring of P that ends at i > 1 and matches a prefix of P **and** such that $P[i+1] \neq P[spm_i + 1]$. ("spm" stands for suffix, prefix, mismatch.)

Computing spm from Z

 $g(i) = \min \{j : \text{right-end of the Z-box starting at j is } i\}$, or o if no such Z-box.

Thm. $spm_i = Z_{g(i)}$ if g(i) > 0 otherwise 0

Proof.

 $P[g(i)..i] = P[1..Z_{g(i)}]$ by the definition of Z.

Also, $P(i+1) \neq P[Z_{g(i)}+1]$, otherwise $Z_{g(i)}$ would be bigger.

So, $spm_i \ge Z_{g(i)}$. But it can't be longer, because otherwise g(i) would be smaller.

Key Idea of KMP

- Upon mismatch:
 - O naive algorithm: shift P to the right by 1
 - O KMP: shift P to the right by more than 1

• Why it's safe, i.e., why shifting less always fails?

KMP

new i

Knever de crease

```
while |P| - i \le |T| - k:

while |P| - i \le |T| - k:

while P[i] = T[k] and P[
```

KMP Running Time

Above procedure runs in O(|T|) time :

- #(iterations of outer while-loop) ≤ |T| since P is shifted by ≥ 1 each time
- total #mismatches \leq #(iterations of outer while-loop) \leq |T|
- total #matches $\leq |T|$, since k is increased after each match

Comparing Z and KMP

- building Z array / spm: O(|P|+|T|) vs O(|P|)
- main procedure: O(|T|) vs O(|T|)

$$O(IPI) + O(T)$$

$$= O(IPI + IT)$$

Suffix Tree

Preprocessing Strings

- Methods for preprocessing strings into data structures that make many questions (like searching) easy to answer:
 - Suffix Tries
 - Suffix Trees
 - Suffix Arrays
 - Borrows-Wheeler transform (BWT)
- Typical setting: A long, known, and fixed text string (like a genome) and many unknown, changing query strings.
 - To preprocess the **text** string once
- Data structures will be useful in other settings as well.

Suttir-trie (S)

Suffix Trie: Definition

- I. A tree structure representing string s.
- 2. Edges are labeled with letters from the alphabet Σ say $\{A,C,G,T\}$
- 3. Out-edges of the same node are labeled differently.
- 4. Every path from the root to a leaf represents a suffix of s.
- 5. Every suffix of s is represented by some path from the root to a leaf.

How many leaves will there be?
Why adding \$ to the end?