Série A

GÉOMÉTRIE ALGÉBRIQUE. — \otimes -catégories et dualité de Tannaka. Note (*) de M. Neantro Saavedra Rivano, transmise par M. Henri Cartan.

Introduction. — Soit S un schéma. Dans une Note précédente (°) on a associé à un S-groupe affine et plat G une \otimes -catégorie ACU abélienne Rep(G) munie d'un foncteur fibre ω^G : Rep(G) \to Q coh(S), et on a remarqué que le couple (Rep(G), ω^G) permet de reconstituer le S-groupe G; toutefois, Rep(G) ne détermine pas à elle seule G. Dans cette Note, on s'intéresse à classifier ces \otimes -catégories indépendamment d'un foncteur fibre choisi, et plus généralement à classifier les \otimes -catégories ACU abéliennes $\Gamma(S, \mathcal{O}_S)$ -linéaires qui possèdent un foncteur fibre « localement » pour la topologie fpqc. Des exemples de ces catégories apparaissent en Géométrie algébrique, notamment dans la théorie des motifs de Grothendieck (°).

Pour simplifier les énoncés, on supposera que S est affine, S = Spec(A).

- 1. DUALITÉ DE TANNAKA.
- 1.1. Soit C une catégorie abélienne A-linéaire avec des limites inductives. Si E est un A-module, X un objet de C, on note $E \otimes X$ l'objet de C qui représente le foncteur $Y \to \operatorname{Hom}_A(E, \operatorname{Hom}(X, Y))$. Si A' est une A-algèbre (commutative, unifère), on note $C_{(A')}$ la catégorie des « A'-modules de C»: ses objets sont les objets X de C munis d'un homomorphisme de A-algèbres $A' \to \operatorname{End}(X)$, ses morphismes sont les morphismes de C qui commutent à l'action de A'. $C_{(A')}$ est une catégorie abélienne A'-linéaire avec des limites inductives, et on a un foncteur A-linéaire $i_{A'/A}: C \to C_{(A')}$ défini par $X \mapsto A' \otimes X$ qui commute avec les limites inductives. Celui-ci a la propriété universelle évidente pour les foncteurs A-linéaires commutant avec les limites inductives de C dans une catégorie A'-linéaire avec des limites inductives.

Si C possède une loi \otimes -ACU, $C_{(A')}$ est canoniquement une \otimes -catégorie ACU et $i_{A'/A}$ un \otimes -foncteur ACU. En tant que tel, il a encore une propriété universelle évidente.

Définition 1.2. — Une \otimes -catégorie ACU abélienne A-linéaire C est dite ind-tannakienne s'il existe une A-algèbre fidèlement plate A' telle que

- (a) Le fonteur i_{A'/A} soit fidèle et exact;
- (b) $C_{(A')}$ soit \otimes -équivalente à une \otimes -catégorie $\operatorname{Rep}(G')$, où G' est un A'-groupe affine et plat.

Les catégories ind-tannakiennes sur A constituent de façon naturelle une 2-catégorie.

73

(2)

1.3. Si C est une catégorie ind-tannakienne sur A, A' une A-algèbre, on appelle foncteur fibre sur C à valeurs dans A' un \otimes -foncteur ACU A'-linéaire $\omega: C_{(A')} \to \operatorname{Mod}(A')$ qui soit fidèle, exact et commute avec les limites inductives. En prenant comme morphismes les \otimes -morphismes unifères on obtient une catégorie $\operatorname{Fib}(C, A')$. La collection de ces catégories, pour A' variable, définit de façon naturelle une catégorie fibrée sur la catégorie $\operatorname{Sch}_{/A}$ des A-schémas, qu'on notera $\operatorname{FIB}(C)$. On remarque alors que $\operatorname{FIB}(C)$ est une gerbe sur $\operatorname{Sch}_{/A}$ pour la topologie fpqc $[(^a)$, III , $2 \cdot 1 \cdot 1]$, et que cette gerbe est liée localement par un groupe affine et plat. Une gerbe vérifiant cette dernière condition sera appelée $\operatorname{tannakienne}$.

Remarquons enfin que la formation de la gerbe tannakienne $\mathrm{FIB}(C)$

est 2-fonctorielle en C.

- 1.4. Soit \mathcal{G} une gerbe tannakienne sur A, i. e. une gerbe sur $\operatorname{Sch}_{/A}$ pour la topologie fpqc, liée localement par un groupe affine et plat. On note $\operatorname{Rep}(\mathcal{G})$ la catégorie des foncteurs cartésiens $\mathcal{G} \to \operatorname{QCOH}(A)$, où $\operatorname{QCOH}(A)$ dénote le champ sur $\operatorname{Sch}_{/A} \operatorname{des} \mathcal{O}_{S'}$ -modules quasi-cohérents, pour un A-schéma variable S'. La loi \otimes de $\operatorname{QCOH}(A)$ définit sur $\operatorname{Rep}(\mathcal{G})$ une loi \otimes ACU pour laquelle $\operatorname{Rep}(\mathcal{G})$ est une catégorie ind-tannakienne sur A. Par exemple, si G est un A-groupe affine et plat, et $\mathcal{G} = \operatorname{TORS}(G)$ est la gerbe tannakienne des torseurs à droite sous G, pour la topologie fpqc, on a une équivalence de catégories ind-tannakiennes $\operatorname{Rep}(\mathcal{G}) \to \operatorname{Rep}(G)$.
- 1.5. Soient C une catégorie ind-tannakienne, \mathcal{G} une gerbe tannakienne sur A. On laisse au lecteur le soin de définir des morphismes canoniques :

$$C \to \text{Rep}(\text{FIB}(C), \mathcal{G} \to \text{FIB}(\text{Rep}(\mathcal{G})).$$

Théorème 1.6. — Les morphismes précédents sont des équivalences; la correspondance $C \to \mathrm{FIB}(C)$ définit une 2-anti-équivalence de la 2-catégorie des catégories ind-tannakiennes sur A avec celle des gerbes tannakiennes sur A, ayant $\mathcal{G} \to \mathrm{Rep}(\mathcal{G})$ comme quasi-inverse.

- 2. LE CAS D'UN CORPS DE BASE.
- 2.1. Soit k un corps, C_0 une \otimes -catégorie ACU abélienne k-linéaire possédant des objets Hom. On dit que C_0 est une catégorie tannakienne sur k s'il existe une extension k'/k et un \otimes -foncteur ACU k-linéaire $C_0 \to \operatorname{Mod}(k')$ qui soit fidèle et exact et qui commute avec les Hom. Si C_0 est une catégorie tannakienne sur k, on définit comme dans $[(^9), 2.2]$ la catégorie fibrée $\operatorname{FIB}_0(C_0)$ des foncteurs fibre $C_0 \to \operatorname{Loclib}(T)$, où T est un k-schéma variable.

Proposition 2.2. — Si C_0 est une catégorie tannakienne sur k, la \otimes -catégorie $C = \operatorname{Ind}(C_0)$ des ind-objets de $C_0[(5), A, 2]$ est ind-tannakienne sur k; de plus, on a une équivalence de gerbes tannakiennes

74

(3)

2.3. Un cas important est celui où la gerbe FIB₀(C_0) est algébrique, i. e. est liée localement par un groupe de type fini. On dit également que la catégorie tannakienne C_0 est algébrique. On peut voir que C_0 est algébrique si et seulement si elle possède un \otimes -générateur [(°), 4]. Il en résulte que toute catégorie tannakienne est réunion de ses sous-catégories tannakiennes algébriques donc que sa gerbe est pro-algébrique, i. e. limite projective de gerbes tannakiennes algébriques. Réciproquement, si C est une catégorie ind-tannakienne sur k et si sa gerbe FIB(C) est pro-algébrique, C est équivalente à une catégorie ind-tannakienne Ind(C_0). J'ignore si cette condition est toujours satisfaite, elle l'est en tout cas si le lien de FIB(C) [voir (¹), chap. III] est représentable par un groupe. Le résultat essentiel pour démontrer ce qui précède est le suivant :

Théorème 2.4. — Si C est une catégorie ind-tannakienne sur k dont la gerbe FIB(C) est algébrique, C est une catégorie localement noethérienne [(3), II, 4], et la sous-catégorie pleine de ses objets noethériens est tannakienne. De plus, C possède un foncteur fibre sur une extension finie de k.

On se sert dans la preuve de ce théorème du résultat suivant d'Algèbre homologique non-abélienne.

Théorème 2.5. — Pour une catégorie fibrée E sur Sch/k, il est équivalent d'être une gerbe tannakienne algébrique pour la topologie fpqc ou pour la topologie fppf.

2. Exemples.

3.1. Soit k un corps, \dot{M}_k la catégorie des motifs sur k (²); c'est une \otimes -catégorie ACU pseudo-abélienne Q-linéaire, dont la loi \otimes est déduite du produit direct des k-variétés lisses et projectives. Supposons la validité des conjectures standard [(7), (8)] pour une théorie de la cohomologie à valeurs dans un corps K de caractéristique o (par exemple, la cohomologie l-adique). Il en résulte en particulier que \dot{M}_k est munie d'une \otimes -graduation de type \mathbf{Z} : chaque motif M se décompose de façon canonique en une somme finie

 $\mathbf{M} = \bigoplus_{n \in \mathbf{Z}} \mathbf{M}^n$

et, de plus, on a un isomorphisme canonique $(M \otimes N)^n \simeq \bigoplus_{p+q=n} M^p \otimes N^q$. Modifions la contrainte de commutativité dans \dot{M}_k : si M, N sont des motifs, et l'isomorphisme de commutativité $\psi: M \otimes N \cong N \otimes M$ a des composantes $\dot{\psi}^{p,q}: M^p \otimes N^q \cong N^q \otimes M^p$, le nouvel isomorphisme de commutativité ψ a des composantes $\psi^{p,q} = (-l)^{pq} \dot{\psi}^{p,q}$. On vérifie que la nouvelle \otimes -catégorie ACU obtenue, notée M_k , est une catégorie tannakienne sur Q. Les foncteurs fibre sur M_k à valeurs dans des extensions K de Q sont les théories de la cohomologie à valeurs dans K; elles vérifient automatiquement les conjectures standard.

(4)

On déduit de 2.3 et 2.4 que si N est une sous-catégorie tannakienne de M_k possédant un \otimes -générateur, il existe des théories de la cohomologie définies sur N et à valeurs dans une extension *finie* de \mathbb{Q} .

3.2. Soit k un corps parfait de caractéristique $p \neq 0$, W l'anneau des vecteurs de Witt sur k, K son corps des fractions; l'automorphisme de Frobenius de k induit un automorphisme σ du corps K. On appelle F-isocristal sur k un espace vectoriel M de rang fini sur K, munie d'un automorphisme σ -linéaire $F_{M}: M \to M$, i. e., vérifiant $F_{M}(\lambda x) = \sigma(\lambda) F_{M}(x)$ si $\lambda \in K$, $x \in M$. On obtient ainsi une catégorie F Criso(k), qui est muni d'une loi \otimes ACU évidente, et pour laquelle c'est une catégorie tannakienne sur le corps Q_{p} des nombres p-adiques.

La catégorie tannakienne F Criso(k) dépend fonctoriellement du corps parfait k. Si k est algébriquement clos, on prouve que la gerbe tannakienne sur \mathbf{Q}_p qui la définit est liée par un \mathbf{Q}_p -groupe pro-diagonalisable, ayant \mathbf{Q} comme groupe de caractères.

Les F-isocristaux apparaissent dans la théorie de Dieudonné-Grothendieck des groupes de Barsotti-Tate, et en cohomologie cristalline $[(^{i}), (^{5})]$. On espère que la cohomologie cristalline des variétés lisses et projectives sur k définit un morphisme de catégories tannakiennes

 $M_k \to F \operatorname{Cris}(k)$.

- (*) Séance du 25 janvier 1971.
- (1) P. BERTHELOT, Comptes rendus, 269, série A, 1969, p. 297.
- (2) M. Demazure, Motifs des variétés algébriques, Séminaire Bourbaki, 365 (novembre 1969).
 - (3) P. GABRIEL, Bull. Soc. Math. Fr., 90, 1962, p. 323-448.
 - (4) J. GIRAUD, Cohomologie non-abélienne, Notes miméographiées, Columbia University.
 - (5) A. GROTHENDIECK, TDTE III, Séminaire Bourbaki, 195 (février 1969).
- (6) A. GROTHENDIECK, Notes by J. COATES and O. JUSSILA: Crystals and the De Rham cohomology of schemes; dix exposés sur la cohomologie des schémas, North-Holland, 1968.
- (7) A. GROTHENDIECK, Standard Conjectures on Algebraic Cycles; Proceedings of the Bombay Colloquium on Algebraic Geometry, 1968, p. 193-199.
 (8) S. KLEIMAN, Algebraic cycles and the Weil conjectures; dix exposés sur la cohomologie
- des schémas, North-Holland, 1968.
 - (°) N. SAAVEDRA, Comptes rendus, 272, série A, 1971, p. 258.

(Institut des Hautes Études scientifiques, 35, route de Chartres, 91-Bures-sur-Yvette, Essonne.)

183281. — Imp. Gauthier-Villars. — 55, Quai des Grands-Augustins, Paris (6e). Imprimé en France.

76