DocOIE: A Document-level Context-Aware Dataset for OpenIE

Kuicai Dong, Yilin Zhao, Aixin Sun, Jung-Jae Kim, Xiaoli Li

Presented by : Amira Chebbi

Introduction - Problematic

Is it a Verb or a Noun?

DocOIE: A Document-level Context-Aware Dataset for OpenIE

What is the relationship between this two words?

Introduction - Proposed Solution

DocOIE: A Document-level Context-Aware Dataset for OpenIE

Related work - OpenIE Datasets

OpenIE Datasets

OIE2016 (Gabriel Stanovsky and Ido Dagan. 2016)

first large-scale dataset constructed for OpenIE tasks and comes with a standard scoring framework.the gold tuples are automatically generated according to human crafted rules.

Wire57(Lechelle et al., 2019)

manually annotates 57 sentences + scoring improvement

CaRB (Bhardwaj et al. (2019))

50 expert-annotated sentences + a sophisticated scoring framework

Related work - OpenIE Datasets - Problems

Dataset's size problem

The number of the annotated sentences ramains small

OpenIE Datasets Problems

No referring to contextual Information

The Annotation is elaborated on a sentence-level and not a document-level

Related works - OpenIE Models

OpenIE Models

TextRunner (Yates et al., 2007)

neural OpenIE systems (Cui et al., 2018; Zhan and Zhao, 2020; Kolluru et al., 2020a,b)

the first OpenIE system, extract relational tuples based on handcrafted rules or statistical methods

They extract tuples in an endtoend manner, not requiring prior syntactic or semantic analysis.

Related works - OpenIE Models - Problems

Error accumulation for traditional models

Because they rely on prior syntactic or semantic analysis

No consideration of the documentlevel context

The tuple extraction is based only on the sentence-level

Methodology – DocOIE Dataset

05

Dataset Collection

Types of documents and document selection

02

Evaluation Dataset

Selection of the evaluation Dataset

04

Analysis of Evaluation Dataset

Understand the difficulty of DocOIE

03

Annotation process

Diffrent stages of the annotation process and the consistency measurement

Training Dataset

Selection of the training dataset

06

Pseudo Label Generation

Generating pseudo labels for the training Dataset

Methodology –DocOIE Dataset

1- Dataset Collection

- Document types : News and Wikipedia articles
- Document selection criterias :

- Keyword selection criterias : Magnitude and Diversity
- Document cleaning

Methodology –DocOIE Dataset

2-Evaluation Dataset

- Randomly select 80 documents (40 each domain)
- From each document, select randomly 10 sentences
- Result : 800 expert-annotated sentences from the DocOIE evaluation
 Dataset

Methodology – DocOIE Dataset

3- Annotation process

Annotation process and consistency measurement

Stage 1

1- Annotation

The two annotators practiced annotations independently on 100 sentences

2- Cross validation

Crossvalidation of the results, discussion and then update

Stage 2

1- Annotation

The two experts annotated independently other 100 sentences 2- Consistency Measurement

Evaluation used at tuple-level using the CaRB scorer

Stage 3

Based on the highlevel annotation consistency, each expert annotate independently 300 sentences.

Methodology –DocOIE Dataset

4- Analysis of evaluation dataset

■ Used to understand the difficulty of DoclE, similar to (Gashteovski et al., 2019).

and

Sentence-level Analysis

Evaluate sentence complexity by the number of :

- Conjunction words
- Terminology mention
- Dependent clause

Tuple-level Analysis

The analysis of a tuple is based on three points :

15

- Negative polarity
- Possibility
- Under-specificity

Methodology –DocOIE Dataset

5- Trainig Dataset

- Select 2400 documents randomly (1200 each Domain)
- The 1200 documents in each domain contain around 120.000 sentences (sufficient for the openIE model)

Methodology – DocOIE Dataset

6- Pseudo Label generation

- Generation of the pseudo labels by bootstrapping with traditional OpenIE models(Kolluru et al., 2020b; Cui et al., 2018; Zhao et al., 2020)
- But First: Evaluation of the performance of the traditional OpenIE models on the evaluation Dataset using CaRB scorer(to guarantee better quality of pseudo labels)
- The evaluated models were: Reverb (Fader et al., 2011), Clausie (Corro and Gemulla, 2013), Stanford OpenIE (Angeli et al., 2015), OpenIE4 (Mausam, 2016), OpenIE5, Rev+Oie4 and Oie4+ Rev
- Results shows that : both Reverb and OpenIE4 are the best performing individual models and their combinations lead to the best and second best F1 scores in both domains.

Methodology – DocIE Model

Results - DocIE Against sentence-level OpenIE systems

System	Healthcare				Transportation			
	AUC	Prec	Rec	F1	AUC	Prec	Rec	F1
Rev+Oie4	36.8	75.8	47.7	58.6	31.0	74.2	42.4	54.0
Oie4+Rev	35.8	59.6	55.3	57.4	30.1	53.4	52.7	53.0
CopyAttention+BERT	46.8	77.9	48.6	59.8	38.3	55.3	56.9	56.1
IMOJIE	39.7	80.1	46.4	58.7	35.8	63.5	49.2	55.5
DocIE w/o transformer	<u>47.1</u>	76.2	49.9	60.3	38.5	55.8	<u>57.0</u>	<u>56.4</u>
DocIE w transformer	47.4	74.4	<u>51.3</u>	60.8	38.5	56.0	57.5	56.9

- DocIE with transformer achieves the best AUC and F1 in both domains.
- DocIE without transformer is the second best performer and outperforms all the sentence-level systems.

Results - Impact of the context Window size

and

Large window size may introduce noise

21

Results - Error Analysis

Incompleteness

Fails to cover at least one key phrase in either arguments or relations

02 **Incorrect Boundary**

Misinterpretaion of the syntactic meaning of the sentence, leading to incorrect Boundary

Redundant extraction 03

The same relational fact is extracted multiple times

Grammatical Errors 04

> Extracions are not grammatically correct

Analysis – Contributions

Contributionfacet

Positive outcomes

Better correct understanding of various topics First documentlevel context-aware OpenIE dataset and model

Relation to public policy

better analysis and helps in writing the adequate public policy and taking the right measurement in many areas.

Analysis – Possible Issues and limitations

No Generalization

DocIE Dataset is restricted to specific type of documents

Domains restriction

Foucus only on two domains:
Transportion and Health-care

Using CaRB scorer for Evaluation

During the penalization CaRB scorer does not take the contextual sentences into consideration

Analysis – Future Work

Model Improvement

Research on more effective context-aware models

Pseudo-Labels 02

Invistigate the possiblity of not relying on pseudo labels

Adapted Scorer 03

Trying to develop a new scorer that takes into consideration the contextual informations

Refrences

- DocOIE: A Document-level Context-Aware Dataset for OpenIE
- Creating a Large Benchmark for Open Information Extraction
- WiRe57: A Fine-Grained Benchmark for Open Information Extraction
- CaRB: A Crowdsourced Benchmark for Open IE
- TextRunner: Open Information Extraction on the Web
- Span Model for Open Information Extraction on Accurate Corpus

Q/A Part

