OTP E STIES

App No.: 10/046,649 10045649 102802

Tip Stress Proteins and Uses Therefor Information Richard A. Young, et al.





App No.: pp No.: 10/046,649 10046649 10026020 He: Stress Proteins and Uses Thereforentors: Richard A. Young, et al.

|     | <del></del> i ~                         | 10                                      | 20                                   | 30                                 | 40                                         | 50                                    | 09                                                                                                                              | . 70            |
|-----|-----------------------------------------|-----------------------------------------|--------------------------------------|------------------------------------|--------------------------------------------|---------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|-----------------|
|     | MLRLP!                                  | TVFRQMRPV                               | SRVLAPHLTI                           | AYAKDVKFG.                         | ADARALMLOG                                 | '<br>VDLLADAVA                        | MLRLPTVFRQMRPVSRVLAPHLTRAYAKDVKFGADARALMLOGVDLLADAVAVTMGPKGRTVTTFOGWGG                                                          | ,<br>SOMBORT I  |
|     | 1                                       | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | :<br>MA                              | AKDVKFG                            | ::: :::<br>NDARVKMLRG                      | : :::<br>VNVLADAVK                    | AKDVKFGNDARVKMLRGVNVLADAVKVTLGPKGRNVVLDKSFGA                                                                                    | VLDKSFGA        |
| 7   | 71                                      | 80                                      | 06                                   | 100                                | 110                                        | 120                                   | 130                                                                                                                             | 140             |
|     | PKVTKI<br>: :::<br>PTITKE               | GOTVAKSI:::::                           | DLKDKYKNIC<br>:: ::<br>EPEDKFENMG    | SAKLVQDVANI<br>: ::<br>:AQMVKEVASI | VTNEEAGDGT'<br>: ::::<br>(ANDAAGDGT'       | ,<br>TTATVLARS<br>::::::<br>TTATVLAOA | PKVTKDGVTVAKSIDLKDKYKNIGAKLVQDVANNTNEEAGDGTTTATVLARSIAKEGFEKISKGANPVEI : :::::::::::::::::::::::::::::::::::                    | KGANPVEI::::    |
| 141 | 11                                      | 150                                     | 160                                  | 170                                | 180                                        | 190                                   | . 200                                                                                                                           | 210             |
|     | RRGVMI::<br>KRGIDK                      | AVDAVIAE) :::: AVTAAVEEI                | LKKQSKPVTT<br>:: ::<br>LKALSVPCSD    | PEEIAQVATI<br>::::::<br>SKAIAQVGTI | SANGDKEIGH                                 | NIISDAMKK<br>: :::<br>KLIAEAMDK       | RRGVMLAVDAVIAELKKQSKPVTTPEEIAQVATISANGDKEIGNIISDAMKKVGRKGVITVKDGKTLNDE :: : : : : : : : : : : : : : : : : : :                   | GKTLNDE:        |
| 211 | <b></b>                                 | 220                                     | 230                                  | 240                                | 250                                        | 260                                   | 270                                                                                                                             | 280             |
|     | LEIIEGMKFDR<br>: ::: :::<br>LDVVEGMQFDR | MKFDRGYIE<br>: :::::<br>MQFDRGYLS       | SPYFINTSKG<br>:::::<br>SPYFINKPET    | QKCEFQDAYV<br>:<br>GAVELESPFI      | TLESEKKISSI::::::::::::::::::::::::::::::: | '<br>[QSIVPALE:::<br>REMLPVLE!        | GYISPYFINTSKGOKCEFQDAYVLLSEKKISSIQSIVPALEIANAHRKPLVIIAEDVDG ::::::: GYLSPYFINKPETGAVELESPFILLADKKISNIREMLPVLEAVAKAGKPLLIIAEDVEG | IAEDVDG:::::::  |
| 281 |                                         | 290                                     | 300                                  | 310                                | 320                                        | 330                                   | 340                                                                                                                             | 350             |
|     | EALSTL:                                 | VLNRLKVGL<br>: :<br>VVNTIRGIV           | QVVAVKAPGI<br>: :::::<br>'KVAAVKAPGI | FGDNRKNQLK<br>:::::::              | ,<br>DMAIATGGAV<br>: ::: ::<br>DIATLTGGTV  | 'FGEEGLTLN<br>::<br>ISEE-IGME         | EALSTLVLNRLKVGLQVVAVKAPGFGDNRKNQLKDMAIATGGAVFGEEGLTLNLEDVQPHDLGKVGEVIV :::::::::::::::::::::::::::::::::::                      | KVGEVIV<br>:    |
| 351 |                                         | 360                                     | 370                                  | 380                                | 390                                        | 400                                   | 410                                                                                                                             | 420             |
|     | rkddami::                               | LLKGKGDKA                               | QIEKRIQEII                           | LEQLDVTTSE                         | YEKEKLNERL                                 | AKLSDGVAV                             | TKDDAMLLKGKGDKAQIEKRIQEIIEQLDVTTSEYEKEKLNERLAKLSDGVAVLKVGGTSDVEVNEKKDR                                                          | ,<br>VNEKKDR    |
| 4   | VKDTTT.                                 | IIDGVGEEA                               | AIQGRVAQII                           | ROQIEEATSD                         | YDREKLQERV                                 | AKLAGGVAV                             | NKDTTTIIDGVGEEAAIQGRVAQIRQQIEEATSDYDREKLQERVAKLAGGVAVIKVGAATEVEMKEKKAR                                                          | ::::<br>MKEKKAR |

DIT 28 TOTAL STATE OF THE PARTY OF THE PARTY

App No.: 10/046,649 10046649 1002802

e: Stress Proteins and Uses Thereforentors: Richard A. Young, et al.

|       | 421                               | 430                  | 440 4                                                                  | 450                | 460                | 470                                   | 480            | 490                |
|-------|-----------------------------------|----------------------|------------------------------------------------------------------------|--------------------|--------------------|---------------------------------------|----------------|--------------------|
| HUMP1 | VTDALN                            | ATRAAVEEGI           | VTDALNATRAAVEEGIVLGGGCALLRCIPALDSLTPANEDQKIGIEIIKRTLKIPAMTIAKNAGVEGSLI | PALDSLTP!          | ANEDQKIGI          | EIIKRTLE                              | KIPAMTIA       | KNAGVEGSLI         |
| GROEL | : ::: ::::<br>VEDALHATRA          | ATRAAVEEGU           | : ::: ::::::::::::::::::::::::::::::::                                 | :<br>SKLADLRGÇ     | ::::<br>SQNEDQNVVS | ;<br>SSL-RAME                         | :<br>Saperqivi | : : : : LNCGEEPSVV |
|       | 491                               | 500                  | 510 5                                                                  | 520                | 530                | 540                                   | 550            | 560                |
| HUMP1 | VEKIMQ                            | SSSEVGYDAM           | VEKIMQSSSEVGYDAMAGDFVNMVEKGIIDPTKVVRTALLDAAGVASLLTTAEVVVTEIPKEEKDPGMGA | IDPTKVVR           | TALLDAAGV          | ASLLTTA                               | SVVVTEIPI      | KEEKDPGMGA         |
| GROEL | ANTVKG                            | GDGNYGYNAA           | ANTVKGGDGNYGYNAATEEYGNMIDMGILDPTKVTRSALQYAASVAGLMITTECMVTDLPKND-AADLGA | LDPTKVTRS          | SALQYAASV          | :: :: : : : : : : : : : : : : : : : : | SCMVTDLP       | KND-AADLGA         |
|       | 561                               | 570                  |                                                                        |                    |                    |                                       |                |                    |
|       |                                   |                      |                                                                        |                    |                    |                                       |                |                    |
| HUMP1 | MGGMGG                            | MGGMGGGMGGGMF        |                                                                        |                    |                    |                                       |                |                    |
|       | ••                                |                      |                                                                        |                    |                    |                                       |                |                    |
| GROEL | AGGMGG                            | <b>А</b> ССМССМССММ— |                                                                        |                    |                    | •                                     |                |                    |
| Total | score = 4667,                     |                      | 5 breaks<br>tof EAE norrible matcher between regidner                  |                    | 100                |                                       |                |                    |
| 2     | ז מ כוו כד כד כ                   |                      | מימימים לי                                                             | וומרכווכא          | מבראבביוו ד        |                                       |                |                    |
| rand  | 25 random runs<br>Aliqnment score | = 65.34 SD           |                                                                        | Standard deviation | tion =             | 18.94                                 | Mean =         | 3429.48            |

OUT 2 8 YOUR WEEK

| , M M                          | ,<br>MLRLPT<br>:<br>M | LVERQMRP                       | ZU<br>,<br>VSRVLAPHL                       | 10 20 30 40 50 60 70<br>, , , , , , , , , , , , , , , , , , ,                                                                                 | 40<br>,<br>ADARALMLQGV<br>::::::     | 50<br>,<br>/DLLADAVA'<br>::::<br>.NSLADAVK'       | 30 40 50 60 70 , YAKDVKFGADARALMLQGVDLLADAVAVTMGPKGRTVIIEQSWGS :: :::::::::::::::::::::::::::::::::: | 70<br>IEQSWGS<br>: ::<br>LEKKWGA  |
|--------------------------------|-----------------------|--------------------------------|--------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|---------------------------------------------------|------------------------------------------------------------------------------------------------------|-----------------------------------|
| 1<br>PKVTKD:::                 | <b>⊣</b> ••           | 80<br>COUTVAKS                 | 90<br>IDLKDKYKN<br>: : : :<br>IELEDPYEK    | 1 80 90 100 110 120 130 140  ,                                                                                                                | 110<br>/<br>NTNEEAGDGT1<br>: ::::    | 120<br>, '<br>::::::::::::::::::::::::::::::::::: | 120 130 140 ' 'TTATVLARSIAKEGFEKISKGANPVEI::::::::::::::::::::::::::::::::::::                       | 140<br>GANPVEI<br>::::<br>GANPLGL |
| (GV)                           | Σ FI<br>Σ X           | 150<br>SAVDAVIA                | 160<br>ELKKQSKPV'<br>: : : :<br>TLLKDAKEVJ | 1 150 160 170 180 190 200 210,  RRGVMLAVDAVIAELKKQSKPVTTPEEIAQVATISANGDKEIGNIISDAMKKVGRKGVITVKDGKTLNDE  :: :: : : : : : : : : : : : : : : : : | 180<br>'<br> SANGDKEIGN<br> :: :: :: | 190<br>''<br>IIISDAMKKY<br>: ::::                 | 200<br>VGRKGVITVKD                                                                                   | 210<br>GRTLNDE<br>:               |
| 1<br>LEIIEG<br>:: ::<br>LELTEG | Б<br>Н<br>П           | 220<br>MKFDRGY<br>: :: ::      | 230<br>ISPYFINTSI<br>:: ::<br>ISGYFVTDAL   | 230 240 250 260 270 280 , , , , , , , , , , , , , , , , , , ,                                                                                 | 250<br>,<br>7LLSEKKISSI<br>:: : :    | 260<br>,<br>QSIVPALE:<br>:::                      | 270<br>IANAHRKPLVI<br>: : :                                                                          | 280<br>'<br>IAEDVDG<br>::::::     |
| 1.5<br>1.5<br>1.5              | 1<br>EALSTE<br>:::::: | 290<br>,VLNRLKV(::::,VLNKIRG:  | 300<br>,<br>GLQVVAVKAH<br>::::::           | 1 290 300 310 320 330 340 350, 36, 20, 37, 20, 350, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36                                                    | 320<br>DMAIATGGAV<br>:::::::         | 330<br>,<br>FGEEGLTLN<br>:::                      | 340<br>VLEDVQPHDLGI<br>:: ::                                                                         | 350<br>KVGEVIV<br>: :             |
|                                |                       | 360                            | 370                                        | 380                                                                                                                                           | 390                                  | 400                                               | 410                                                                                                  | 420                               |
| TKDDAMI<br>:::<br>TKDETTI      | AM                    | ILLKGKGD!<br>: ::<br>'IVEGAGD' | KAQIEKRIQE<br>: :<br>FDAIAGRVAÇ            | LLKGKGDKAQIEKRIQEIIEQLDVTTSEYEKEKLNERLAKLSDGVAVLKVGGTSDVEVNEKKDR : :: : : : : : : : : : : : : : : : : :                                       | YEKEKLNERL<br>: ::::::               | AKLSDGVAV::::                                     | /LKVGGTSDVE/<br>: : : : : : /<br>/IKAGAATEVE!                                                        | NEKKDR:::                         |

App No.: Stress Proteins and Uses Therefor

Richard A. Young, et al.

490 IEDAVRNAKAAVEEGIVAGGGVTLLQAAPALDKLKLTGDEAT-GANIVKVALEAPLKQIAFNSGMEPGVV 560 VTDALNATRAAVEEGIVLGGGCALLRCIPALDSLTPANEDQKIGIEIIKRTLKIPAMTIAKNAGVEGSLI VEKIMQSSSEVGYDAMAGDFVNMVEKGIIDPTKVVRTALLDAAGVASLLTTAEVVVTEIPKEEKDPGMGA AEKVRNLSVGHGLNAATGEYEDLLKAGVADPVKVTRSALQNAASIAGLFTT-EAVVADKPEKTAAPASDP Mean = 3413.16550 255 identities out of 540 possible matches between residues 470 540 23.86 Standard deviation = 460 530 450 440 510 47.73 SD 7 breaks MGGMGGGMF TGGMGG-MD---F score = 4552, Alignment score 25 random runs 491 HUMPI ML65K HUMP1 ML65K Total ML65K HUMP1

430

421

App No.:

MLRLPTVFRQMRPVSRVLAPHLTRAYAKDVKFGADARALMLQGVDLLADAVAVTMGPKGRTVI I EQSWGS

TB65K

HUMP1

9

50

30

20

--AKTIAYDEEARRGLERGLNALADAVKVTLGPKGRNVVLEKKWGA

tle: Stress Proteins and Uses Therefoventors: Richard A. Young, et al.

102802

140 210 280 PTITNDGVSIAKEIELEDPYEKIGAELVKEVAKKTDDVAGDGTTTATVLAQALRKEGLRNVAAGANPLGL RRGVMLAVDAVIAELKKQSKPVTTPEEIAQVATISANGDKEIGNIISDAMKKVGRKGVITVKDGKTLNDE KRGIEKAVEKVTETĻLKGAKEVETKEQIAATAAISA-GDQSIGDLIAEAMDKVGNEGVITVEESNTFGLQ LEIIEGMKFDRGYISPYFINTSKGQKCEFQDAYVLLSEKKISSIQSIVPALEIANAHRKPLVIIAEDVDG LELTEGMRFDKGYISGYFVTDPERQEAVLEDPYILLVSSKVSTVKDLLPLLEKVIGAGKPLLIIAEDVEG 350 420 PKVTKDGVTVAKSIDLKDKYKNIGAKLVQDVANNTNEEAGDGTTTATVLARSIAKEGFEKISKGANPVEI TKDDAMLLKGKGDKAQIEKRIQEIIEQLDVTTSEYEKEKLNERLAKLSDGVAVLKVGGTSDVEVNEKKDR TKDETTIVEGAGDTDA I AGRVAQ I RQE I ENSDSDYDREKLQERLAKLAGGVAV I KAGAATEVELKERKHR EALSTLVLNRLKVGLQVVAVKAPGFGDNRKNQLKDMAIATGGAVFGEEGLTLNLEDVQPHDLGKVGEVIV EALSTLVVNKIRGTFKSVAVKAPGFGDRRKAMLQDMAILTGGQVISEE-VGLTLENADLSLLGKARKVVV 130 200 120 190 260 ••• 400 330 110 180 250 320 390 100 170 310 380 90 160 230 300 370 80 150 290 360 141 351 TB65K **TB65K** HUMP1 HUMP1 HUMP1 rB65K TB65K TB65K HUMP1 HUMP1

App No.: 10/046,649 10046649 .102802

Mean = 3413.16

23.23

Standard deviation =

SD

Alignment score = 25 random runs

identities out of 540 possible matches between residues

score = 4560, 5 breaks

Total 257

Stress Proteins and Uses Therefore Richard A. Young, et al.

490 560 VTDALNATRAAVEEGIVLGGGCALLRCIPALDSLTPANEDQKIGIEIIKRTLKIPAMTIAKNAGVEGSLI IEDAVRNAKAAVEEGIVAGGGVTLLQAAPTLDELK-LEGDEATGANIVKVALEAPLKQIAFNSGLEPGVV VEKIMQSSSEVGYDAMAGDFVNMVEKGIIDPTKVVRTALLDAAGVASLLTTAEVVVTEIPKEEKDPGMGA AEKVRNLPAGHGLNAQTGVYEDLLAAGVADPVKVTRSALQNAASIAGLFLTTEAVVADKPEKEKASVPG-480 550 470 540 460 530 450 520 510 MGGMGGGMGGGMF ---GGDMGGMDF 430 500 421 561 491 TB65K **TB65K** HUMP1 , HUMP1 **HUMP1** TB65K

App No.: 10/046,649 10046645 102802

The Stress Proteins and Uses Therefor Richard A. Young, et al.



App No.: 10/046,649 10046649 10046649 10046649 10046649 10046649 10046649 10046649 10046649 10046649 10046649 10046649 10046649 10046649 10046649 10046649 10046649 10046649 10046649 10046649 10046649 10046649 10046649 10046649 10046649 10046649 10046649 10046649 10046649 10046649 10046649 10046649 10046649 10046649 10046649 10046649 10046649 10046649 10046649 10046649 10046649 10046649 10046649 10046649 10046649 10046649 10046649 10046649 10046649 10046649 10046649 10046649 10046649 10046649 10046649 10046649 10046649 10046649 10046649 10046649 10046649 10046649 10046649 10046649 10046649 10046649 10046649 10046649 10046649 10046649 10046649 10046649 10046649 10046649 10046649 10046649 10046649 10046649 10046649 10046649 10046649 10046649 10046649 10046649 10046649 10046649 10046649 10046649 10046649 10046649 10046649 10046649 10046649 10046649 10046649 10046649 10046649 10046649 10046649 10046649 10046649 10046649 10046649 10046649 10046649 10046649 10046649 10046649 10046649 10046649 10046649 10046649 10046649 10046649 10046649 10046649 10046649 10046649 10046649 10046649 10046649 10046649 10046649 10046649 10046649 10046649 10046649 10046649 10046649 10046649 10046649 10046649 10046649 10046649 10046649 10046649 10046649 10046649 10046649 10046649 10046649 10046649 10046649 10046649 10046649 10046649 10046649 10046649 10046649 10046649 10046649 10046649 10046649 10046649 10046649 10046649 10046649 10046649 10046649 10046649 10046649 10046649 10046649 10046649 10046649 10046649 10046649 10046649 10046649 10046649 10046649 10046649 10046649 10046649 10046649 10046649 10046649 10046649 10046649 10046649 10046649 10046649 10046649 10046649 10046649 10046649 10046649 10046649 10046649 10046649 10046649 10046649 10046649 10046649 10046649 10046649 10046649 10046649 10046649 10046649 10046649 10046649 10046649 10046649 10046649 10046649 10046649 10046649 10046649 10046649 10046649 10046649 10046649 10046649 10046649 10046649 100466449 100466449 100466449 100466449 100466449 100466449 100466449 100466449 100466449 1



PE STANT & TRACE.

App No.: 10/046,649 10046 10046 10028 Therefor Invers: Richard A. Young, et al.

