The Configurations $3s^23p^53d$ and $3s3p^63d$ in Mn VIII and Fe IX

To cite this article: Rikard Smitt and Lars Åke Svensson 1983 Phys. Scr. 27 364

View the article online for updates and enhancements.

Related content

- <u>The Spectrum of Six-Times-Ionized</u> <u>Chromium, Cr VII</u> Jan Olof Ekberg
- <u>The Spectrum of Five-Times-Ionized Vanadium</u>
 Jan Olof Ekberg
- The Spectrum of Four-Times-Ionized Titanium, TiV
 Lars Åke Svensson

Recent citations

- <u>CHIANTI</u> an atomic database for <u>emission lines</u> K. P. Dere *et al*
- New EUV Fe IX Emission Line Identifications from Hinode/EIS P. R. Young
- CHIANTI—An Atomic Database for Emission Lines. X. Spectral Atlas of a Cold Feature Observed with Hinode/EUV Imaging Spectrometer
 E. Landi and P. R. Young

The Configurations $3s^2 3p^5 3d$ and $3s 3p^6 3d$ in Mn VIII and Fe IX

Rikard Smitt and Lars Ake Svensson*

Department of Physics, University of Lund, Lund, Sweden

Received February 10, 1983; accepted February 25, 1983

Abstract

The astrophysically important configuration $3s^23p^53d$ has been determined for Mn VIII and Fe IX by means of about 60 lines, classified as combinations $3s^23p^6-3s^23p^53d$ and $3s^23p^53d-3s^3p^63d$.

We also introduce a sensitive method for isoelectronic comparison of energy parameters. By this method the configuration $3s^23p^53d$ is studied through the Ar I sequence, thus supporting the reported Mn VIII and Fe IX identifications.

1. Introduction

A great interest has been attached to the configuration $3s^23p^53d$ in the Ar I sequence. In 1974 Svensson et al. [1] were able to propose identifications of 10 coronal lines with magnetic-dipole and electric-quadrupole transitions within this configuation in Fe IX and Ni XI. The identifications were made possible by laboratory studies of several spectra in the sequence. A few years earlier Wagner and House [2] had made an attempt to determine $3s^23p^53d$ by studying its combinations with $3s^23p^54f$ in the spectra from V VI to Fe IX. However, the data were insufficient to provide any definitive identifications of coronal lines.

At our laboratory we simultaneously studied spectra from Sc IV to Fe IX. The analyses of the spectra Sc IV to Cr VII [3-6] are quite comprehensive and contain several configurations. In this paper we discuss the results for Mn VIII and Fe IX. We have then concentrated our study on the transition $3s^23p^53d-3s3p^63d$, which provides the most favourable way of determining the levels of $3s^23p^53d$.

The manganese and iron spectra were recorded in our 3-m normal-incidence spectrograph. We used a gold replica grating from Bausch & Lomb with 1200 grooves mm⁻¹, which gives a plate factor of about 2.8 Å mm⁻¹. The light source was a triggered open spark operated at about 50 kV. The wavelength determination has been based on standard lines provided mainly from spectra of oxygen, iron and manganese. In the actual wavelength region (300–500 Å) a great number of resonance lines belonging to lower stages of ionization appear on the spectrograms. In some cases our measurements are strongly influenced by close-lying lines. Still we consider the errors of the experimentally determined levels to be less than 6 cm⁻¹.

2. $3s^23p^53d$ and $3s3p^63d$ in Mn VIII

The manganese spectrum has been measured on several spectrograms, the strongest lines both in the first and the second order. About 30 lines in the region between 320 and 420 Å have been classified as belonging to $3s^23p^53d-3s3p^63d$.

The energy relative to the ground state $3s^23p^6$ 1S_0 has been determined from the three possible combinations with levels in $3s^23p^53d$, those with J=1. The strongest one, $^1S_0-^1P_1$ at 185.455 Å, has been measured in the second to the fourth order. $^1S_0-^3D_1$ at 236.218 Å has been observed in the second and third order. The rather weak line $^1S_0-^3P_1$ at 266.181 Å only appears in the first order. The wavenumber of this line deviates from the adopted level value of 3P_1 with about 20 cm^{-1} , which indicates a coincidence with another manganese line.

Around 400 Å several very strong Mn V lines appear, and it is difficult to resolve the Mn VIII spectrum in that region. This has caused an increased uncertainty in the determination of $3s^23p^53d$ ³D and ¹D. However, these identifications are confirmed by the isoelectronic comparison of energy integrals, illustrated in Figure 1.

Most of the lines have been measured only in the first order, and we estimate the uncertainty of the wavelengths to be about 0.01 Å. The observed Mn VIII lines are given in Table I and the energy levels in Table III.

3. $3s^23p^53d$ and $3s3p^63d$ in Fe IX

The spectrum Fe IX has been measured in the first order. The study of the transition $3s^23p^53d-3s3p^63d$ has led to the classi-

Fig. 1. Isoelectronic comparison of energy integrals belonging to $3s^23p^53d$. The plotted quantity is $\Delta E - A(Z-17)$, where ΔE is the difference between observed and theoretically calculated integral values, and A is fitted to make the curves approximately horizontal.

^{*} Present address: Tetra Pak International AB, Lund, Sweden.

Table I. Observed lines in Mn VIII

Table II. Observed lines in Fe IX

Table 1. Observed times in lant vill			14010 11.	Obscired in	.03 1/1 1 0 1/1			
Intensity	λ (Å)	σ(cm ⁻¹)	Combination	Intensity	λ (Å)	λ _{calc} (Å)	σ (cm ⁻¹)	Combination
	-		$3s^23p^6-3s^23p^53d$					3s ² 3p ⁶ -3s ² 3p ⁵ 3d
20	185.455	539214	${}^{1}S_{0} - {}^{1}P_{1}$	120	171.073 ^a		584 546	${}^{1}S_{0} - {}^{1}P_{1}$
15	236.218	423 338	${}^{1}S_{0} - {}^{3}D_{1}$	10	217.100 ^a		460617	${}^{1}S_{0} - {}^{3}D_{1}$
5 a	266.181	375 684	${}^{1}S_{0} - {}^{3}P_{1}$	5	218.935 ^a		456 757	${}^{1}S_{0} - {}^{3}D_{2}$
			$3s^23p^53d-3s3p^63d$	30	241.739 ^a		413 669	${}^{1}S_{0} - {}^{3}P_{2}$
1	323.782	308 850	$^{3}P_{2} - ^{1}D_{2}$	20	244.911 ^a		408 312	$^{1}S_{0} - ^{3}P_{1}$
8	340.114	294 019	${}^{3}P_{0}^{2} - {}^{3}D_{1}$					$3s^23p^53d-3s3p^63d$
0^{b}	340.234	293 915	${}^{3}F_{3} - {}^{1}D_{2}$	2	311.563	.563	320962	${}^{3}P_{0} - {}^{3}D_{1}$
10	341.770	292 594	${}^{3}P_{1}^{3} - {}^{3}D_{2}^{2}$	4	313.234	.239	319 250	${}^{3}P_{1}^{0} - {}^{3}D_{2}^{1}$
7	342.501	291 970	${}^{3}P_{1}^{1} - {}^{3}D_{1}^{2}$	5	317.194	.193	315 264	${}^{3}P_{2}^{1} - {}^{3}D_{3}^{2}$
3	344.493	290 282	${}^{3}F_{2}^{1} - {}^{1}D_{2}^{1}$	2	318.586	.582	313 887	${}^{3}P_{2}^{2} - {}^{3}D_{2}^{3}$
11	345.617	289338	${}^{3}P_{2}^{2} - {}^{3}D_{3}^{2}$	0	319.426	.423	313 062	${}^{3}P_{2}^{2} - {}^{3}D_{1}^{2}$
8	346.842	288316	${}^{3}P_{2}^{1} - {}^{3}D_{2}^{3}$	6	329.890	.897	303 131	${}^{3}F_{4}^{2} - {}^{3}D_{3}^{2}$
2	347.602	287 685	${}^{3}P_{2}^{2} - {}^{3}D_{1}^{2}$	5	335.294	.290	298 246	${}^{3}F_{3}^{7} - {}^{3}D_{2}^{3}$
11	360.373	277 490	${}^{3}F_{4}^{2} - {}^{3}D_{3}^{1}$	2	339.838	.842	294 258	${}^{3}D_{3} - {}^{1}D_{2}$
5	364.427	274 403	${}^{3}F_{3}^{3}-{}^{3}D_{3}^{3}$	4	341.150	.159	293 126	${}^{1}D_{2}^{2} - {}^{1}D_{2}^{2}$
10	365.779	273 389	${}^{3}F_{3}^{3} - {}^{3}D_{2}^{3}$	4	341.390	.396	292 920	${}^{3}F_{2} - {}^{3}D_{1}$
5	370.722	269744	${}^{3}F_{2}^{3} - {}^{3}D_{2}^{3}$	1	348.124	.123	287 254	${}^{3}D_{2} - {}^{1}D_{2}$
6	371.090	269 476	$^{3}D_{3}^{2}-^{1}D_{2}^{2}$	4	352.072	.060	284 033	${}^{1}F_{3} - {}^{1}D_{2}$
9	371.586	269117	${}^{3}F_{2}^{3} - {}^{3}D_{1}^{3}$			${}^{3}D_{3} - {}^{3}D_{3}$		
8	371.695	269038	${}^{1}D_{2}^{2}-{}^{1}D_{2}^{2}$	1	369.260	.266	270 812	${}^{1}D_{2} - {}^{3}D_{2}$
5	378.482	264 213	${}^{3}D_{2}^{2}-{}^{1}D_{2}^{2}$	0	374.605	.610	266 948	${}^{3}D_{1} - {}^{3}D_{2}$
9	382.666	261324	${}^{1}F_{3}^{"}-{}^{1}D_{2}^{"}$	2	375.773	.773	266 118	${}^{3}D_{1} - {}^{3}D_{1}$
8	400.075	249 953	${}^{3}D_{3} - {}^{3}D_{3}$	2	377.443	.439	264 941	${}^{3}D_{2}-{}^{3}D_{2}$
3	400.781	249 513	${}^{1}D_{2} - {}^{3}D_{3}$	0	378.629	.620	264 111	${}^{3}D_{2}-{}^{3}D_{1}$
5 ^c	402.446	248481	${}^{1}D_{2} - {}^{3}D_{2}$	2	380.079	.074	263 103	${}^{1}F_{3} - {}^{3}D_{3}$
2 ^c	403.497	247 833	${}^{1}D_{2} - {}^{3}D_{1}$	0	604.880	.869	165 322	${}^{1}P_{1} - {}^{1}D_{2}$
0^{c}	408.206	244 974	${}^{3}D_{1} - {}^{3}D_{2}$	g Oh	1:- 41 1	[7]		
5 °	408.685	244687	${}^{3}D_{2} - {}^{3}D_{3}$	- Observe	d in the solar s	pectrum [7].		
5 °	409.270	244337	${}^{3}D_{1}^{2} - {}^{3}D_{1}^{3}$					
6 ^d	410.374	243 680	${}^{3}D_{2} - {}^{3}D_{2}$	the obse	rved levels	The resulti	ino inteoral	values are given in
0	411.473	243 029	${}^{3}D_{2}-{}^{3}D_{1}$				-	Hartree-Fock (HF)
-	412 502	241 700	1 m 2 m	Lanie IV	Together W	un me cor	responding	manifee-rock (fift)

a Possibly blend.

0

413.582

415.348

668.288

fication of about 20 lines between 310 Å to 380 Å. The energy relative to the ground level is given by the five combinations observed in the solar spectrum by Behring et al. [7]. Two of the lines, ${}^{1}S_{0}-{}^{3}P_{2}$ and ${}^{1}S_{0}-{}^{1}D_{2}$, originate from magnetic-quadrupole transitions, which are able to appear in the low-density solar plasma.

241 790

240762

149636

As in Mn VIII we estimate the uncertainty of the wavelengths to be about 0.01 Å. Most of the Fe IX levels, however, are more accurately connected by the coronal transitions within $3s^23p^53d$. The errors in the connection to the ground level are estimated to be less than 6 cm^{-1} .

The observed Fe IX lines are given in Table II and the energy levels in Table III. For $3s^23p^53d$ we have adopted the level values from Edlén and Smitt [8].

4. Calculations and isoelectronic studies

According to Slater the energy matrix of $3s^23p^53d$ contains the electrostatic integrals E_{av} , $F^2(3p,3d)$, $G^1(3p,3d)$, $G^3(3p,3d)$ and the spin-orbit integrals ζ_{3p} and ζ_{3d} . In our parametric calculations we also introduced the effective electrostatic integrals $D^1(3p,3d)$ and $X^2(3p,3d)$ as defined by Goldschmidt [9]. The integrals were determined by least-squares fits to

the observed levels. The resulting integral values are given in Table IV together with the corresponding Hartree-Fock (HF) values. The resulting energy levels of $3s^23p^53d$ and the percentage composition of the eigenvectors in LS-coupling are given in Table V. Eigenvector components of less than 5% have been excluded.

In order to check the validity of the identifications we introduce a sensitive method for isoelectronic studies similar to the one described in [8]. The difference between the fitted parameter value and the Hartree-Fock value is determined and then, after subtracting the linear part of its Z-dependence, plotted against Z. A comparison of the $3s^23p^53d$ integrals in

Table III. Energy levels (in cm⁻¹) of Mn VIII and Fe IX

Level	Mn VIII	Fe IX ^a
$3s^23p^53d^{-3}P_0$	373658	405 772
³ P ₁	375 710	408 315.1
$^{3}P_{2}^{^{2}}$	379 993	413 66 9.2
3F_4	391 836	425 809.8
${}^{3}F_{3}^{"}$	394 921	429310.9
${}^{3}F_{2}$	398 564	433 818.8
$^{3}D_{3}$	419374	455616.2
$^{1}D_{2}^{^{3}}$	419817	456 752.7
${}^{3}D_{1}^{2}$	423 337	460616
$^{3}D_{2}^{^{1}}$	424641	462616.6
¹ F ₃	427 531	465 828.4
¹ P ₁	539 214	584 546
$3s3p^63d^{-3}D_1$	667 677	726 734
3D_2	668308	727 560
$^{3}D_{3}$	669326	728 935
$^{1}D_{2}^{^{3}}$	688850	749 871

a Energy levels from [8].

b Broad line. Possibly blend.

c Affected by a close-lying Mn V line.

d Blend with Mn V.

Table IV. Energy parameters (in cm^{-1}) for $3s^23p^53d$ and $3s3p^63d$

Ion	Parameter	HF-value	Fitted	Fitted/HF
Mn VIII	3s ² 3p ⁵ 3d			
	$E_{\mathbf{a}\mathbf{v}}$	406 129	412049 ± 11	1.015
	$F^{2}(3p, 3d)$	119370	107 484 ± 95	0.900
	$G^{1}(3p, 3d)$	143 091	120423 ± 32	0.842
	$G^{3}(3p, 3d)$	90 300	79 322 ± 168	0.878
	53p	7599	7917 ± 33	1.042
	53d	594	576 ± 12	0.970
	$D^{1}(3p, 3d)$		3793 ± 82	
	$X^{2}(3p, 3d)$		4977 ± 157	

Mean error of the least-squares level fit ± 35 cm⁻¹

3s3p63d			
$E_{\mathbf{a}\mathbf{v}}$	716 284	$673\ 705 \pm 1$	0.941
$G^{2}(3s, 3d)$	111 035	50377 ± 8	0.454
ζ_{3d}	595	659 ± 1	1.108

Mean error of the least-squares level fit ± 2 cm⁻¹

Fe IX	3s ² 3p ⁵ 3d			
	$E_{\mathbf{a}\mathbf{v}}$	440 542	448 137 ± 16	1.017
	$F^{2}(3p, 3d)$	128434	116 392 ± 143	0.906
	$G^{1}(3p, 3d)$	152397	129 299 ± 47	0.848
	$G^{3}(3p, 3d)$	96 768	85638 ± 259	0.885
	ζ ₃ p	9533	9917 ± 48	1.040
	5₃d	802	784 ± 18	0.978
	$D^{1}(3p, 3d)$		4013 ± 121	
	$X^{2}(3p, 3d)$		5254 ± 245	

Mean error of the least-squares level fit ± 51 cm⁻¹

3s3p			
$E_{\mathbf{av}}$	774 597	733 497 ± 2	0.947
$G^{2}(3s, 3d)$	117 958	54 406 ± 14	0.461
Ś₃d	802	880 ± 3	1.097

Mean error of the least-squares level fit ± 3 cm⁻¹

Table V. Calculated level values (in cm^{-1}) of $3s^23p^53d$

	J	$E_{f calc}$	$E_{\mathtt{obs}}$ - $E_{\mathtt{calc}}$	Percentage composition
Mn VIII	0	373619	39	100 ³P
	1	375725	 15	99 ³P
		423357	 20	99 ³D
		539214	0	100 ¹P
	2	380018	- 25	98 ³P
		398552	12	95 ³F
		419828	-11	$73 ^{1}D + 22 ^{3}D + 5 ^{3}F$
		424606	35	$75 ^{3}D + 23 ^{1}D$
	3	394 941	20	96 ³F
		419379	 5	$71 {}^{3}D + 29 {}^{1}F$
		427528	3	$69 {}^{1}F + 27 {}^{3}D$
	4	391 828	8	100 ³F
Fe IX	0	405 712	60	100 ³P
	1	408340	-25	99 ³P
		460640	- 24	99 ³D
		584 546	0	100 ¹P
	2	413 706	- 37	98 ³P
		433 802	17	92 ³F
		456 770	-17	$70 {}^{1}D + 23 {}^{3}D + 7 {}^{3}F$
		462571	46	$72 ^{3}D + 25 ^{1}D$
	3	429 343	-32	94 ³F
		455625	- 9	$69\ ^{3}D + 31\ ^{1}F$
		465 822	6	$66 {}^{1}F + 29 {}^{3}D + 6 {}^{3}F$
	4	425 795	15	$100 \ ^{3}F$

Fig. 2. Isoelectronic comparison of the effective electrostatic integrals D^1 and X^2 in $3s^23p^53d$. Before plotting we have subtracted A(Z-17) from the integral values. See text to Fig. 1.

the Ar I sequence is shown in Fig. 1. The small deviations from the curves of F^2 , G^3 , ζ_{3p} and ζ_{3d} can be fully explained by possible experimental errors. In the case of G^1 the deviations from the dotted curve in Sc IV and Ti V arise from the strong interaction between $3s^23p^53d$ 1P_1 and 4s 1P_1 , 3P_1 in these two spectra.

Since no HF-values were available for the effective electrostatic parameters D^1 and X^2 , we have chosen to illustrate the behavior of these two parameters in the sequence merely by subtracting the linear parts of their Z-dependence before plotting. This is shown in Fig. 2. As the parameters are relatively small (and, in this sequence obviously almost linear in Z) the curves are very sensitive to changes of the level values.

This method provides a reliable way of determining energy levels in highly ionized atoms and may be helpful in analyzing spectra of high-temperature plasmas. Studies of such spectra are frequently based on ab initio calculations of energy levels. However, by extrapolating curves of the kind described above, we can obtain more accurate predictions of levels, which will extend our knowledge of spectra in astrophysical and laboratory plasmas.

Acknowledgement

We wish to thank Prof. Bengt Edlén who has supported us with valuable advice during this investigation. The work has been supported by the Swedish Natural Science Research Council (NFR), and the National Board for Energy Source Development (NE).

References

- Svensson, L. Å., Ekberg, J. O. and Edlén, B., Solar Physics 34, 173 (1974).
- 2. Wagner, W. J. and House, L. L., Astrophys. J. 166, 683 (1971).
- 3. Smitt, R., Physica Scripta 8, 292 (1973).
- 4. Svensson, L. A., Physica Scripta 13, 235 (1976).
- 5. Ekberg, J. O., Physica Scripta 13, 111 (1976).
- 6. Ekberg, J. O., Physica Scripta 13, 245 (1976).
- Behring, W. E., Cohen, L., Feldman, U. and Doschek, G. A., Astrophys. J. 203, 521 (1976).
- 8. Edlén, B. and Smitt, R., Solar Physics 57, 239 (1978).
- 9. Goldschmidt, Z. B., J. Physics **B3**, L141 (1970).