Module 1 – Fundamentals of Electricity Markets

1.4 Current challenges with renewables in electricity markets

Renewable energy generation affects system operation

The example of the California ISO's "duck curve"

[source: California ISO. Fast Facts. What the duck curve tells us about managing a green grid. www.caiso.com/documents/flexibleresourceshelprenewables_fastfacts.pdf]

Renewable energy generation is variable and non-dispatchable

Example power generation from rooftop solar panels for 3 consecutive days in September 2018 in Australia

 $[{\tt data\ source:\ University\ of\ Queensland,\ St\ Lucia\ campus,\ Prentice\ building.\ solar.uq.edu.au}]$

Renewable energy generation has limited predictability

Example wind power forecasts for an onshore wind farm in Northern Jutland, Denmark

Forecast issued on 23 December 2003, 12:00 (a good one)

Forecast issued on 16 November 2001 (18:00) (a not-so-good one)

The economic impact of renewable energy

Wind and solar energy induce a downward pressure on market prices

Example impact of forecasted wind power penetration on day-ahead prices (Nord Pool, Western Denmark, 2007)

[source: Jónsson T, Pinson P, Madsen H (2010). On the market impact of wind energy forecasts. *Energy Economics* 32: 313–320 (pdf)]

The quest for flexibility

Flexibility is to be seen as the ability to adapt to variable and possibly unforeseen changes in operating conditions

Flexibility may originate from

- generation units e.g. gas-fired power plants
- the power system itself e.g. transmission, interconnections and storage
- the *demand side* e.g. demand response and its integration in electricity markets
- from an *integrated energy system* view, e.g. heat and gas energy systems

Example installation for demand response in the EcoGrid project experiments on Bornholm [source: ecogrid.dk]

Renewables providing system services in a market environment

- Should renewables (and demand) pay for the power fluctuations they induce?
- What is an optimal market design (and offering strategies) if renewables are to provide system services?

Reveal the true cost of uncertainty

• The narrative fallacy:

Do we really believe we can offer renewables deterministically with lead times of 12-36 hours ahead?

 Why not adapting market designs to reveal and accommodate the true cost of renewables' uncertainty?

Dispatch under uncertainty

probabilistic offers Thínk Probabilistically
Act Probabilistically

evaluation of offers

Accountability for uncertainty

coupled dayahead and realtime markets

• Can we continuously integrate more and more renewable energy generation through existing electricity markets?

- Can we continuously integrate more and more renewable energy generation through existing electricity markets?
- What would electricity markets look like for power systems with 100% renewable energy generation?

- Can we continuously integrate more and more renewable energy generation through existing electricity markets?
- What would electricity markets look like for power systems with 100% renewable energy generation?
- What will be the impact of potential game-changers on the way e.g. storage and peer-to-peer electricity markets?

Use the self-assessment quizz to check your understanding!

