Zarandioon,-Reddy-Villanueva-DS7331-Lab1

January 28, 2019

DS7331 - Lab 1 Submitted by: Shravan Reddy, Samira Zarandioon, Jaime Villanueva Forest Cover Type Analysis # Table of Contents

- 1. Section ??
- 2. Section ??
- 3. Section ??
- 4. Section ??
- 5. Section ??
- 6. Section ??
- 7. Section ??
- 8. Section ??
- 9. Section ??
- 10. Section ??

Introduction

The Roosevelt Natonal Forest is located about 100 miles northwest of Denver, Colorado, and is an area of more than 800,000 acres of land. The areas of interest in this forest for this analysis are the four wilderness areas, Rawah, Comanche Peak, Neota, and Cache la Poudre. A wilderness area is an official legal designation created by the Wilderness Preservation Act in 1964. This act created the Wilderness Preservation System and sets aside land areas in the United States to be managed and maintained in its natural wild state. This management is administered by four different government agencies: the National Park Service, the U.S. Forest Service (USFS), U.S. Fish and Wildlife Service, and the Bureau of Land Management.

images taken

from: https://www.wilderness.net/NWPS/maps Section?? # Business Understanding

Being able to accurately catalog the natural resources of an area is important to land management agencies. In order to maintain the natural state of the forest, the natural resource managers are responsible for developing ecosystem management strategies. This process requires the collection of information from large areas of land in order to properly inventory an ecosystem, however the actual collection of such information can be time and cost prohibitive. Good predictive modeling can serve as an alternate method for creating these necessary inventories.

One of the most basic pieces of information that is collected from wildlife areas is the type of trees that are present. If a predictive model could take other attributes of the land that are either known or are easier to collect, and then use the information from these attributes to accurately predict the type of trees that would be found under those conditions, this has the potential to have a big cost and time saving for the federal agencies managing the area. The data in this analysis was derived from data originally obtained from US Geological Survey (USGS) and USFS data. The data comes from the aforementioned wilderness areas so they should have minimal human interactions, so we can be more confident that the current forest cover type is more a result of natural ecological processes rather than forest management practices. The data is a combination of information about the terrain with mapping information gathered by agencies using modeling software. Also the type of trees has been collected for these areas, so it is possible to develop a model based on the attributes to predict what type of land cover will be there. Then this can be compared against the actual cover types to get a sense of the accuracy of the model. The model may also be able to weed out any data that is not helpful in the determination of the cover type which could potentially have a cost saving as well. Since the there are several tree types, and the data is a collection of both numerical and categorical, potential models to use would be Linear Discriminant Analysis (LDA), Multi-nomial Regression, or some other classification algorithm such as Artificial Neural Network (ANN).

Section ?? # Data Understanding ## Data Description

This data was taken from the UCI Machine Learning Archive: https://archive.ics.uci.edu/ml/datasets/covertype

Data can be downloaded from here: https://archive.ics.uci.edu/ml/machine-learning-databases/covtype/

References for data information: https://archive.ics.uci.edu/ml/machine-learning-databases/covtype/covtype.info http://web.cs.ucdavis.edu/~matloff/matloff/public_html/132/Data/ForestC

The four wilderness areas that the data was taken from vary greatly in size. The Rawah wilderness area is 73,213 acres. Comanche Peak is 67,680 acres. Neota is 9647 acres, and Cache la Poudre is 9433 acres. Each record is defined by a 30 \times 30 meter cell from a computer model used by the USGS. This cell is directly defined by a digital elevation model (DEM) and is the source for the elevation attribute. All other attributes are based on this 30 \times 30 meter cell. There are a total of 581,012 records each representing a cell.

There are ten numeric attributes which measure position relative to various features for each cell, as well as the amount of light at three different times of day during the summer solstice. The light measure is an index estimated by computer models. Also recorded is the amount of slope in each cell.

There are three different categorical attributes listed as well as two that are hidden. One of the categorical attributes is the cover type which is the variable that is being predicted. There are seven types of trees listed each being represented by an integer. The other categorical features are wilderness area and soil type both of which come dummy encoded in the data. There are four wilderness areas and forty soil types. The hidden categorical data are the climate zone and geologic zone which can be deduced from the USFS Ecological Landtype Unit (ELU) code listed for each soil type. The details for the attributes are listed below.

Attribute information:

Name	Data Type	Measurement	Description
Elevation	quantitative	meters	Elevation in meters
Aspect	quantitative	azimuth	Aspect in degrees azimuth
Slope	quantitative	degrees	Slope in degrees
Horizontal_Distance	_To_ dundriiktig ye	meters	Horz Dist to nearest surface water features
Vertical_Distance_To	_H yqluohtigy itive	meters	Vert Dist to nearest surface water features
Horizontal_Distance_	_To_ _Roaditativs e	meters	Horz Dist to nearest roadway
Hillshade_9am	quantitative	0 to 255 index	Hillshade index at 9am, summer solstice
Hillshade_Noon	quantitative	0 to 255 index	Hillshade index at noon, summer soltice

Name	Data Type	Measurement	Description
Hillshade_3pm	quantitative	0 to 255 index	Hillshade index at
			3pm, summer
			solstice
Horizontal_Distance_1	o <u>dinentilitaitinte</u>	meters	Horz Dist to nearest
			wildfire ignition
			points
Rawah Wilderness	qualitative	0 (absence) or 1	Wilderness area
Area		(presence)	designation
Neota Wilderness	qualitative	0 (absence) or 1	Wilderness area
Area		(presence)	designation
Comanche Peak	qualitative	0 (absence) or 1	Wilderness area
Wilderness Area	_	(presence)	designation
Cache la Poudre	qualitative	0 (absence) or 1	Wilderness area
Wilderness Area	•	(presence)	designation
Soil_Type (40 binary	qualitative	0 (absence) or 1	Soil Type
columns)	•	(presence)	designation
Cover_Type (7 types)	integer	1 to 7	Forest Cover Type
71			designation

Code Designations: Soil Types: 1 to 40: based on the USFS Ecological Landtype Units (ELUs) for this study area:

Study Code	USFS ELU Code	Description
1	2702	Cathedral family - Rock outcrop complex, extremely stony.
2	2703	Vanet - Ratake families complex, very stony.
3	2704	Haploborolis - Rock outcrop complex, rubbly.
4	2705	Ratake family - Rock outcrop complex, rubbly.
5	2706	Vanet family - Rock outcrop complex complex, rubbly.
6	2717	Vanet - Wetmore families - Rock outcrop complex, stony.
7	3501	Gothic family.
8	3502	Supervisor - Limber families complex.
9	4201	Troutville family, very stony.
10	4703	Bullwark - Catamount families - Rock outcrop complex, rubbly.

Study Code	USFS ELU Code	Description
11	4704	Bullwark - Catamount families - Rock land complex, rubbly.
12	4744	Legault family - Rock land complex, stony.
13	4758	Catamount family - Rock land - Bullwark family complex, rubbly.
14	5101	Pachic Argiborolis - Aquolis complex.
15	5151	unspecified in the USFS Soil and ELU Survey.
16	6101	Cryaquolis - Cryoborolis complex.
17	6102	Gateview family - Cryaquolis complex.
18	6731	Rogert family, very stony.
19	7101	Typic Cryaquolis - Borohemists complex.
20	7102	Typic Cryaquepts - Typic Cryaquolls complex.
21	7103	Typic Cryaquolls - Leighcan family, till substratum complex.
22	7201	Leighcan family, till substratum, extremely bouldery.
23	7202	Leighcan family, till substratum - Typic Cryaquolls complex.
24	7700	Leighcan family, extremely stony.
25	7701	Leighcan family, warm, extremely stony.
26	7702	Granile - Catamount families complex, very stony.
27	7709	Leighcan family, warm - Rock outcrop complex, extremely stony.
28	7710	Leighcan family - Rock outcrop complex, extremely stony.
29	7745	Como - Legault families complex, extremely stony.

Study Code	USFS ELU Code	Description
30	7746	Como family - Rock land - Legault family complex,
31	7755	extremely stony. Leighcan - Catamount families complex, extremely
32	7756	stony. Catamount family - Rock outcrop - Leighcan family
33	7757	complex, extremely stony. Leighcan - Catamount families - Rock outcrop complex, extremely stony.
34	7790	Cryorthents - Rock land
35	8703	complex, extremely stony. Cryumbrepts - Rock outcrop - Cryaquepts complex.
36	8707	Bross family - Rock land - Cryumbrepts complex,
37	8708	extremely stony. Rock outcrop - Cryumbrepts - Cryorthents complex,
38	8771	extremely stony. Leighcan - Moran families - Cryaquolls complex,
39	8772	extremely stony. Moran family - Cryorthents - Leighcan family complex,
40	8776	extremely stony. Moran family - Cryorthents - Rock land complex, extremely stony

Forest Cover Type Classes:

Measurement	Description
1	Spruce/Fir
2	Lodgepole Pine
3	Ponderosa Pine
4	Cottonwood/Willow
5	Aspen
6	Douglas-fir
7	Krummholz

Note:

```
First digit
climatic zone
1
lower montane dry
lower montane
montane dry
montane
montane dry and montane
montane and subalpine
subalpine
alpine
Second digit
geologic zones
alluvium
glacial
shale
sandstone
mixed sedimentary
unspecified in the USFS ELU Survey
igneous and metamorphic
volcanic
Section ?? ## Data Quality
```

Because the data came from the a machine learning repository, it is already clean, but there are not any headings for the columns. It is advertised as having no missing data, and this is verified with code. Also the categorical predictors are already dummy coded. For certain analysis techniques, this is nice, but many of the visualizations planned seemed easier without the dummy coding. Therefore after the data is read and labeled, the categorical attributes were collapsed. Also the two hidden categorical attributes were added.

```
In [1]: import pandas as pd
        import numpy as np
        import matplotlib.pyplot as plt
        import seaborn as sns
        import warnings
        warnings.simplefilter('ignore', DeprecationWarning)
        warnings.simplefilter('ignore', FutureWarning)
In [2]: #Read in the .data file into a pandas dataframe
        df = pd.read_csv('data/covtype.data', header = None)
Check for missing data and duplicates
In [3]: # to check if there is any missing value inf df
        df.isnull().values.any()
        # there is no missing value
Out[3]: False
In [4]: # to get number of duplicated rows in df
        len(df[df.duplicated()])
        # there is no duplicated row
Out[4]: 0
Label the columns
In [5]: #Create Names for the columns based on covtypeinfo.txt
        quantitative = ['Elevation', 'Aspect', 'Slope', 'hDistance_to_Hydrology', 'vDistance_to_
                            'hDistance_to_Roads', 'Hillshade_9am', 'Hillshade_Noon', 'Hillshade_
        wilderness_area = ['Rawah', 'Neota', 'Comanche_Peak', 'Cache_la_Poudre']
        soil_type = ['Soil Type ' + str(i) for i in range(1,41)]
        cover_type = ['Cover_Type']
        #Assign names to columns
        df.columns = quantitative + wilderness_area + soil_type + cover_type
Undoing the dummy coding
In [6]: #Preparing the dataframe with no dummy coding
        #Create separate of preparing for reversing dummy coding for categorical variables
        df_wilderness_area = df.iloc[:,10:14]
        df_soil_type = df.iloc[:,14:54]
        #Reverse dummy coding for wilderness area and soil type
        df['Wilderness_Area'] = pd.Series(df_wilderness_area.columns[np.where(df_wilderness_area
        df['Soil_Type'] = pd.Series(df_soil_type.columns[np.where(df_soil_type !=0)[1]])
```

Replacing cover type integer values with names

Creating climatic and geologic attributes from hidden categorical data

```
In [8]: #Map ELU codes into new column which will be used to generate columns for climatic and g
                 elu_map = {"Soil Type 1": "2702", "Soil Type 2":"2703", "Soil Type 3": "2704", "Soil Type
                                        "Soil Type 6":"2717", "Soil Type 7":"3501", "Soil Type 8":"3502", "Soil Type
                                        "Soil Type 11":"4704", "Soil Type 12":"4744", "Soil Type 13":"4758", "Soil Ty
                                        "Soil Type 16":"6101", "Soil Type 17":"6102", "Soil Type 18":"6731", "Soil Ty
                                        "Soil Type 21":"7103", "Soil Type 22":"7201", "Soil Type 23":"7202", "Soil Ty
                                        "Soil Type 26":"7702", "Soil Type 27":"7709", "Soil Type 28":"7710", "Soil Type
                                        "Soil Type 31":"7755", "Soil Type 32":"7756", "Soil Type 33":"7757", "Soil Ty
                                        "Soil Type 36": "8707", "Soil Type 37": "8708", "Soil Type 38": "8771", "Soil Ty
                df['ELU Codes'] = df['Soil_Type'].map(elu_map)
                 #Create Climatic Zone column and map values into it
                 climatic_map = {"1":"Lower Montane Dry", "2":"Lower Montane", "3":"Montane Dry", "4":"Montane Dry", "4"
                                          "5": "Montane Dry and Montane", "6": "Montane and Subalpine", "7": "Subalpine",
                climatic_zone = []
                for record in df['ELU Codes']:
                                                                                             #creates list from first digits of the ELU code
                         climatic_zone.append(record[0])
                df['Climatic_Zone'] = climatic_zone #column is filled with first digits of ELU code
                df['Climatic_Zone'] = df['Climatic_Zone'].map(climatic_map) #map first digits to descrip
                 #Create Geologic Zone column and map values into it
                geologic_map = {"1":"Alluvium", "2":"Glacial", "3":"Shale", "4":"Sandstone", "5":"Mixed
                                                   "7": "Igneous and Metamorphic", "8": "Volcanic"}
                geologic_zone = []
                for record in df['ELU Codes']:
                                                                                             #creates list from second digits of the ELU code
                         geologic_zone.append(record[1])
                df['Geologic_Zone'] = geologic_zone #column is filled with first digits of ELU code
                df['Geologic_Zone'] = df['Geologic_Zone'].map(geologic_map) #map first digits to descrip
```

Dropping columns not needed, defining categorical types, and re-ordering columns

```
#Make categorical as category type
        df['Wilderness_Area'] = df['Wilderness_Area'].astype('category')
        df['Soil_Type'] = df['Soil_Type'].astype('category')
        df['Cover Type Names'] = df['Cover Type Names'].astype('category')
        df['Climatic_Zone'] = df['Climatic_Zone'].astype('category')
        df['Geologic_Zone'] = df['Geologic_Zone'].astype('category')
        #Make the response variable last and rename to Cover Type
        df['Cover_Type'] = df['Cover Type Names']
        df = df.drop('Cover Type Names', axis=1)
The final prepared dataset for analysis
In [10]: df.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 581012 entries, 0 to 581011
Data columns (total 15 columns):
Elevation
                            581012 non-null int64
                            581012 non-null int64
                            581012 non-null int64
                            581012 non-null int64
hDistance_to_Hydrology
vDistance_to_Hydrology
                            581012 non-null int64
hDistance_to_Roads
                            581012 non-null int64
Hillshade 9am
                            581012 non-null int64
Hillshade_Noon
                            581012 non-null int64
Hillshade_3pm
                            581012 non-null int64
hDistance_to_Fire Points
                            581012 non-null int64
                            581012 non-null category
Wilderness_Area
Soil_Type
                            581012 non-null category
Climatic_Zone
                            581012 non-null category
Geologic_Zone
                            581012 non-null category
Cover_Type
                            581012 non-null category
dtypes: category(5), int64(10)
memory usage: 47.1 MB
In [11]: df.head().transpose()
Out[11]:
                                                          0
                                                                                    1 \
         Elevation
                                                       2596
                                                                                 2590
         Aspect
                                                         51
                                                                                   56
         Slope
                                                          3
                                                                                    2
         hDistance_to_Hydrology
                                                        258
                                                                                  212
         vDistance_to_Hydrology
                                                          0
                                                                                   -6
         hDistance_to_Roads
                                                        510
                                                                                  390
         Hillshade_9am
                                                        221
                                                                                  220
```

Aspect

Slope

Hillshade_Noon

232

235

Hillshade_3pm hDistance_to_Fire Points Wilderness_Area Soil_Type Climatic_Zone Geologic_Zone Cover_Type	148 6279 Rawah Soil Type 29 Subalpine Igneous and Metamorphic Aspen	151 6225 Rawah Soil Type 29 Subalpine Igneous and Metamorphic Aspen
Elevation Aspect Slope hDistance_to_Hydrology vDistance_to_Hydrology hDistance_to_Roads Hillshade_9am Hillshade_Noon Hillshade_3pm hDistance_to_Fire Points Wilderness_Area Soil_Type Climatic_Zone Geologic_Zone Cover_Type	2 2804 139 9 268 65 3180 234 238 135 6121 Rawah Soil Type 12 Montane Igneous and Metamorphic Lodgepole Pine	3 \ 2785 155 18 242 118 3090 238 238 238 122 6211 Rawah Soil Type 30 Subalpine Igneous and Metamorphic Lodgepole Pine
Elevation Aspect Slope hDistance_to_Hydrology vDistance_to_Hydrology hDistance_to_Roads Hillshade_9am Hillshade_Noon Hillshade_3pm hDistance_to_Fire Points Wilderness_Area Soil_Type Climatic_Zone Geologic_Zone Cover_Type	4 2595 45 2 153 -1 391 220 234 150 6172 Rawah Soil Type 29 Subalpine Igneous and Metamorphic Aspen	Lougepole Time

Before doing any analysis we check again to make sure there is no missing or duplicate data after all our data manipulation. If there were either of those, that record would have to be investigated to see if it should be kept or deleted.

Out[13]: 0

Outliers The outliers are probably better determined by looking at quick box plots and comparing to basic statistics, but we run some arbitrary numbers first to just get a feel for the data. We used nine times the standard deviation as the benchmark for outlier. Of course, whether this is a big number and whether it is an outlier or not depends on the spread. Do it this way returned forty-five outliers which considering the size of the data set would seem pretty good. But we will a more visual approach as well.

```
In [15]: numeric_df = df[quantitative]
    outliers = numeric_df[(np.abs( numeric_df-numeric_df.mean())> (9*numeric_df.std())).any
    outliers
```

Out[15]:		Elevation	Aspect	Slope	hDistance_to_Hydrology	\
040[10].	220084	2954	290	31	845	`
	220445	2960	286	27	854	
	220812	2963	279	23	864	
	221187	2949	288	28	847	
	221188	2963	283	19	874	
	221567	2955	293	25	859	
	221956	2949	305	23	845	
	221957	2960	295	21	872	
	222355	2948	311	23	832	
	222356	2956	308	19	859	
	222357	2964	296	17	886	
	222774	2946	302	26	819	
	222775	2956	310	20	845	
	222776	2962	311	15	872	
	222777	2968	297	12	899	
	223207	2953	288	23	834	
	223208	2962	295	15	860	
	223209	2967	299	10	886	
	223210	2970	291	7	912	
	223652	2954	269	21	849	
	223653	2963	269	13	875	
	223654	2967	272	8	900	
	223655	2971	275	6	927	
	223885	2506	13	64	201	
	223886	2501	3	63	216	
	223887	2500	0	62	234	
	224109	2952	259	22	865	
	224110	2962	261	15	890	

224111	2967	270	9	e	916	
224112	2971	285	7	7	942	
224573	2949	259	24	1	882	
224574	2960	262	17	7	907	
224575	2968	274	12	2	932	
224576	2972	294	9	9	957	
225045	2959	269	19	9	924	
225046	2968	277	15	5	949	
225047	2975	289	11	1	973	
225517	2959	275	21	1	942	
225518	2970	281	17	7	960	
479525	3159	60	37	7	150	
479789	3281	38	59		150	
479790	3158	73	62		170	
480340	3147	96	59	9	216	
482917	3094	82	65		42	
483577	3083	105	57		0	
	vDistance_	_to_Hydro	ology	hDistance_to_Roads	Hillshade_9am	\
220084		·	581	939	121	
220445			588	953	134	
220812			589	960	152	
221187			573	940	132	
221188			588	968	164	
221567			583	949	143	
221956			574	930	149	
221957			587	959	155	
222355			576	914	151	
222356			585	942	165	
222357			589	969	170	
222774			574	899	138	
222775			586	926	163	
222776			590	953	179	
222777			597	981	186	
223207			578	912	150	
223208			590	939	178	
223209			597	966	193	
223210			598	993	199	
223652			577	927	160	
223653			588	953	186	
223654			595	979	199	
223655			601	1006	205	
223885			88	655	73	
223886			81	626	55	
223887			83	598	54	
224109			573	942	161	
224110			585	967	183	
224111			592	994	197	

224112		599	1020	202
224573		574	957	156
224574		581	983	175
224575		591	1008	189
224576		597	1034	194
225045		584	999	167
225046		589	1024	179
225047		598	1050	190
225517		582	1015	159
225518		595	1040	172
479525		0	3045	220
479789		123	3012	137
479790		-4	3042	191
480340		-6	3037	220
482917		3	3001	193
483577		0	3002	228
	Hillshade_Noon	Hillshade_3pm	hDistance_to_Fire	Points
220084	219	230		2438
220445	226	227		2408
220812	236	221		2379
221187	225	227		2343
221188	237	212		2350
221567	225	219		2314
221956	220	208		2278
221957	229	212		2285
222355	217	202		2242
222356	225	199		2249
222357	233	202		2256
222774	217	215		2206
222775	223	198		2213
222776	228	189		2219
222777	236	190		2226
223207	231	218		2177
223208	235	197		2183
223209	237	184		2190
223210	239	179		2197
223652	242	219		2148
223653	244	197		2154
223654	243	182		2161
223655	241	176		2168
223885	30	0		1470
223886	40	0		1470
223887	45	67		1471
224109	246	220		2118
224110	247	202		2125
224111	243	186		2132
224112	240	178		2139

224573	245	223	2089
224574	246	209	2096
224575	243	193	2103
224576	238	184	2110
225045	243	214	2067
225046	242	202	2074
225047	239	189	2081
225517	240	218	2037
225518	239	206	2045
479525	0	17	1177
479789	42	0	1159
479790	0	0	1187
480340	0	0	1209
482917	0	0	1315
483577	0	0	1350

Out[16]:	Elevation	Aspect	Slope	hDistance_to_Hydrology	\
220084	0.019163	1.200418	2.256377	2.707944	
220445	0.002267	1.164676	1.722206	2.750287	
220812	0.012982	1.102128	1.188035	2.797335	
221187	0.037021	1.182547	1.855749	2.717354	
221188	0.012982	1.137869	0.653865	2.844383	
221567	0.015591	1.227224	1.455121	2.773811	
221956	0.037021	1.334449	1.188035	2.707944	
221957	0.002267	1.245095	0.920950	2.834973	
222355	0.040593	1.388062	1.188035	2.646782	
222356	0.012020	1.361256	0.653865	2.773811	
222357	0.016553	1.254030	0.386779	2.900841	
222774	0.047736	1.307643	1.588664	2.585620	
222775	0.012020	1.379127	0.787407	2.707944	
222776	0.009410	1.388062	0.119694	2.834973	
222777	0.030840	1.262966	0.280934	2.962003	
223207	0.022734	1.182547	1.188035	2.656191	
223208	0.009410	1.245095	0.119694	2.778516	
223209	0.027268	1.280837	0.548020	2.900841	
223210	0.037983	1.209353	0.948648	3.023165	
223652	0.019163	1.012773	0.920950	2.726763	
223653	0.012982	1.012773	0.147392	2.849088	
223654	0.027268	1.039579	0.815105	2.966708	
223655	0.041555	1.066386	1.082190	3.093737	
223885	1.619250	1.274703	6.663286	0.321940	
223886	1.637108	1.364058	6.529743	0.251369	
223887	1.640680	1.390864	6.396201	0.166682	
224109	0.026306	0.923418	1.054493	2.802040	

224110	0.009410	0.941289	0.119694		2.919660	
224111	0.027268	1.021708	0.681562		3.041984	
224112	0.041555	1.155740	0.948648		3.164309	
224573	0.037021	0.923418	1.321578		2.882021	
224574	0.002267	0.950225	0.386779		2.999641	
224575	0.030840	1.057450	0.280934		3.117261	
224576	0.045126	1.236159	0.681562		3.234881	
225045	0.001305	1.012773	0.653865		3.079623	
225046	0.030840	1.084257	0.119694		3.197242	
225047	0.055841	1.191482	0.414477		3.310157	
225517	0.001305	1.066386	0.920950		3.164309	
225518	0.037983	1.119998	0.386779		3.248995	
479525	0.713020	0.854737	3.057633		0.561885	
479789	1.148758	1.051317	5.995572		0.561885	
479790	0.709448	0.738576	6.396201		0.467789	
480340	0.670160	0.533061	5.995572		0.251369	
482917	0.480864	0.658157	6.796829		1.070002	
483577	0.441577	0.452642	5.728487		1.267603	
	vDistance_	•			Hillshade_9am	\
220084		9.17023		0.905013	3.404797	
220445		9.29031		0.896035		
220812		9.30747		0.891545	2.246780	
221187		9.03300		0.904372	2.993888	
221188		9.29031		0.886415	1.798515	
221567		9.20454		0.898600	2.582979	
221956		9.05016		0.910785	2.358846	
221957		9.27316		0.892187	2.134714	
222355		9.08446		0.921047	2.284135	
222356		9.23885		0.903089	1.761160	
222357		9.30747		0.885773	1.574383	
222774		9.05016		0.930667	2.769756	
222775		9.25600		0.913351	1.835870	
222776		9.32462		0.896035	1.238184	
222777		9.44470		0.878077	0.976696	
223207		9.11877		0.922329	2.321491	
223208		9.32462			1.275539	
223209		9.44470		0.887697	0.715208	
223210		9.46185		0.870382	0.491076	
223652		9.10162		0.912709	1.947937	
223653		9.29031		0.896035	0.976696	
223654		9.41039		0.879360	0.491076	
223655		9.51331		0.862044	0.266944	
223885		0.71328		1.087152	5.197857	
223886		0.59320		1.105750	5.870254	
223887		0.62751		1.123708	5.907609	
224109		9.03300		0.903089	1.910581	
224110		9.23885	04	0.887056	1.088762	

224111	9	.358933	0.869740	0.565787
224112	9	.479011	0.853066	0.379010
224573	9	.050160	0.893469	2.097358
224574	9	.170238	0.876795	1.387606
224575	9	.341779	0.860762	0.864630
224576	9	.444703	0.844087	0.677853
225045	9	.221700	0.866534	1.686449
225046	9	.307470	0.850500	1.238184
225047	9	.461857	0.833826	0.827275
225517	9	.187392	0.856272	1.985292
225518		.410395	0.840239	1.499672
479525		.796272	0.445632	0.293388
479789		.313678	0.424468	2.807111
479790		.864888	0.443708	0.789919
480340		.899196	0.440501	0.293388
482917		.744810	0.417413	0.715208
483577		.796272	0.418054	0.592231
100011	V	.100212	0.110001	0.032201
	Hillshade_Noon	Hillshade_3pm	hDistance_to_Fi	re Points
220084	0.218462	2.285377	indistance_to_r	0.345651
220445	0.135633	2.206996		0.322995
220443	0.641483	2.050234		0.322995
221187	0.085048	2.206996		0.301093
221187	0.692068	1.815091		0.273909
221166		1.997980		
	0.085048			0.252009
221956	0.167877	1.710582		0.224822
221957	0.287388	1.815091		0.230109
222355	0.319632	1.553820		0.197636
222356	0.085048	1.475439		0.202922
222357	0.489728	1.553820		0.208209
222774	0.319632	1.893472		0.170450
222775	0.016122	1.449312		0.175736
222776	0.236803	1.214169		0.180267
222777	0.641483	1.240296		0.185553
223207	0.388558	1.971853		0.148550
223208	0.590898	1.423185		0.153081
223209	0.692068	1.083534		0.158367
223210	0.793238	0.952898		0.163653
223652	0.944993	1.997980		0.126650
223653	1.046163	1.423185		0.131181
223654	0.995578	1.031279		0.136467
223655	0.894408	0.874517		0.141753
223885	9.779032	3.723841		0.385360
223886	9.273181	3.723841		0.385360
223887	9.020256	1.973330		0.384604
224109	1.147333	2.024107		0.103994
	1.147000	2.024101		0.100001
224110 224111	1.197918	1.553820		0.109281

	224112	0.843823	0.926771	0.119853
	224573	1.096748	2.102488	0.082094
	224574	1.147333	1.736709	0.087380
	224575	0.995578	1.318677	0.092667
	224576	0.742653	1.083534	0.097953
	225045	0.995578	1.867345	0.065480
	225046	0.944993	1.553820	0.070767
	225047	0.793238	1.214169	0.076053
	225517	0.843823	1.971853	0.042825
	225518	0.793238	1.658328	0.048866
	479525	11.296582	3.279681	0.606626
	479789	9.172011	3.723841	0.620219
	479790	11.296582	3.723841	0.599074
	480340	11.296582	3.723841	0.582460
	482917	11.296582	3.723841	0.502412
	483577	11.296582	3.723841	0.475981
In [17]	: outliers.	info()		
<class< td=""><td>'pandas.cor</td><td>e.frame.DataFrame</td><td>e'></td><td></td></class<>	'pandas.cor	e.frame.DataFrame	e'>	
Tn+64Tn	dex. 45 ent	ries 220084 to 4	183577	

```
Int64Index: 45 entries, 220084 to 483577
Data columns (total 10 columns):
Elevation
                            45 non-null int64
Aspect
                            45 non-null int64
Slope
                            45 non-null int64
hDistance_to_Hydrology
                            45 non-null int64
vDistance_to_Hydrology
                            45 non-null int64
hDistance_to_Roads
                            45 non-null int64
Hillshade_9am
                            45 non-null int64
                            45 non-null int64
Hillshade_Noon
Hillshade_3pm
                            45 non-null int64
hDistance_to_Fire Points
                            45 non-null int64
dtypes: int64(10)
memory usage: 3.9 KB
In [18]: # Boxplots of quantitative attributes
         %matplotlib inline
         vars_to_plot_separate1 = [['Elevation'],
                                   ['Aspect'],
                                   ['Slope'],
                                   ['hDistance_to_Hydrology'],
                                   ['vDistance_to_Hydrology']]
         vars_to_plot_separate2 = [['hDistance_to_Roads','hDistance_to_Fire Points'],
```

for index, plot_vars in enumerate(vars_to_plot_separate1):

plt.figure(figsize=(15, 6))

['Hillshade_9am', 'Hillshade_Noon', 'Hillshade_3pm']]

```
plt.subplot(len(vars_to_plot_separate1)/2,
                         index+1)
          ax = df.boxplot(column=plot_vars)
     plt.show()
     plt.figure(figsize=(15, 3))
     for index, plot_vars in enumerate(vars_to_plot_separate2):
          plt.subplot(len(vars_to_plot_separate2)/2,
                         index+1)
          ax = df.boxplot(column=plot_vars)
          plt.xticks(rotation=60)
     plt.show()
3500
                                                                40
3000
                                200
2500
                                100
2000
              Elevation
                                              Aspect
                                600
1250
                                400
1000
750
                                200
500
250
                               -200
          hDistance_to_Hydrology
                                         vDistance_to_Hydrology
                                                 250
7000
                                                 200
5000
                                                 150
4000
3000
1000
```

Above we can see that many of the attributes display some heavy tails creating skew. Aspect is the only attribute not showing any outliers. This will be verified in the next section with the distribution plots.

Section ?? ## Basic Statistics and Visualizations

First we will consider individually the numeric data, and then the categorical data. There are some basic statistics in the numeric data which are interesting.

First aspect which was the only attribute in the box plots to not show heavy taling has a standard deviation almost as big as its mean. Since this in degrees and is an angular measure from a reference, this would make the range from 0 to 360. This means that all the range of values of aspect are about three standard deviations apart. Because this is a positioning measure from a reference point, this may not be significant, but the variance is noteworthy. Other attributes have standard deviations close to their mean and reach out of the interquartile range within a couple of standard deviations, but none are as extreme aspect.

The indexes for hillshade are interesting because, like aspect, the values are bounded; the index for hillshade is between 0 and 254. But unlike aspect, these indexes have a standard deviation that is much smaller than the mean and the interquartile range is pretty tight. The standard deviation is smallest for the measurement at noon when the sun is near directly overhead. This would produce the least amount of variation in the measurement and that is reflected in the values.

The last attribute that jumps out is the vertical distance to hydrology because it ranges into negative numbers. This means that the sometimes the mean distance is sometimes higher or lower than the water area.

In [22]: df[quantitative].describe().transpose()

Out[22]:		coun	t	mean	std	min	25%	\
	Elevation	581012.	0 2959	.365301	279.984734	1859.0	2809.0	
	Aspect	581012.	0 155	.656807	111.913721	0.0	58.0	
	Slope	581012.	0 14	.103704	7.488242	0.0	9.0	
	hDistance_to_Hydrology	581012.	0 269	.428217	212.549356	0.0	108.0	
	vDistance_to_Hydrology	581012.	0 46	.418855	58.295232	-173.0	7.0	
	hDistance_to_Roads	581012.	0 2350	.146611	1559.254870	0.0	1106.0	
	Hillshade_9am	581012.	0 212	. 146049	26.769889	0.0	198.0	
	Hillshade_Noon	581012.	0 223	.318716	19.768697	0.0	213.0	
	Hillshade_3pm	581012.	0 142	.528263	38.274529	0.0	119.0	
	hDistance_to_Fire Points	581012.	0 1980	.291226	1324.195210	0.0	1024.0	
		50%	75%	max				
	Elevation	2996.0	3163.0	3858.0				
	Aspect	127.0	260.0	360.0				
	Slope	13.0	18.0	66.0				
	hDistance_to_Hydrology	218.0	384.0	1397.0				
	vDistance_to_Hydrology	30.0	69.0	601.0				
	hDistance_to_Roads	1997.0	3328.0	7117.0				
	Hillshade_9am	218.0	231.0	254.0				
	Hillshade_Noon	226.0	237.0	254.0				
	Hillshade_3pm	143.0	168.0	254.0				

Distribution plots of all the numeric data were performed and it verifies what we saw in the box plots and in the statistical summaries. The variation for aspect is big and there is heavy tailing present for most of the other distributions. Only the amount of light at 3:00 PM looks

hDistance_to_Fire Points 1710.0 2550.0 7173.0

approximately normal. This real data emphasizes the importance of the central limit theorem if needing to do an analysis where one of the assumptions is normality.

For the categorical data individual analysis is done with basic frequency counts displayed by bar graphs. The first graph clearly shows that most of the data comes from the Rawah and Comanch Peak wilderness areas. This is expected because the acreage from those two areas is larger and thus there can be more 30×30 m cells.

The next one is soil type, and though there are forty soil types, from the graph, we can estimate the most of the records come from about 25% of the soil types. The most prevalent soil type is number 29 which correlates to: Como - Legault families complex, extremely stony Since this is a stony area, it would be interesting in the relations section to see what wilderness area and tree type grow from this soil. The graph is slightly offset making it look like soil type 28, but running the numbers with a cross-tab show that it should be soil type 29.

```
Out[18]: (array([ 0,  1,  2,  3,  4,  5,  6,  7,  8,  9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39]), <a list of 40 Text xticklabel objects>)
```


The bar graph shows that a majority of the records come from the subalpine climate zone. The subalpine zone is just below the tree line at high elevations (9000-12000 ft.) and is cool year round.

There is mostly igneous and metamorphic rock in from these wilderness areas. This corresponds with the prevalence of soil type 29 seen in the soil type chart.

The graph shows the most of the trees in these wilderness areas are Lodgepole Pine, and Spruce/Fir. This probably means that the Rawah and Comanche Peak areas predominantly have these types. It would be interesting to see whether the other tree types could be predicted with better or worse accuracy than these two.

Section ?? ## Attributes of Interest

Cover Type The cover type is what the other attributes are trying to predict and would be the response for the analysis, but it would be interesting to look at an overall numerical breakdown of tree types. We already saw that Lodgepine and Spruce/Fir occured more frequently, but a percentage breakdown would complete the picture. It would also be interesting to see the most frequent tree types in each wilderness area, climatic zone, and at what elevation.

In [10]: pd.crosstab(df.Cover_Type, df.Wilderness_Area, margins=True, margins_name="Total")

Out[10]:	Wilderness_Area Cover_Type	Cache_la_Poudre	Comanche_Peak	Neota	Rawah	Total
	Aspen	0	5712	0	3781	9493
	Cottonwood/Willow	2747	0	0	0	2747
	Douglas-fir	9741	7626	0	0	17367
	Krummholz	0	13105	2304	5101	20510
	Lodgepole Pine	3026	125093	8985	146197	283301
	Ponderosa Pine	21454	14300	0	0	35754
	Spruce/Fir	0	87528	18595	105717	211840
	Total	36968	253364	29884	260796	581012

This a breakdown of the trees in the various wilderness areas by count. Noticeable immediately are the zeros. The cottonwood/willow cover type only occurs in Cache la Poudre. The douglas fir does not occur in Neota and Rawah. This is curious because the biggest areas are Rawah and Comanche Peak, so there must be some other condition difference between Rawah and Comanch Peak that lets the tree only grow in one and not the other. The same circumstance is seen with the Ponderosa Pine. The spruce fir which is the second most populous tree on the list does not occur in Cache la Poudre. Cache la Poudre is looking a little exclusive regarding cover types because neither Krummholz nor Aspen grow there. The numbers here also confirm what the graph showed which is that there are much more Lodgepole Pines and Spruce/Fir cover types.

In [15]: pd.crosstab(df.Cover_Type, df.Wilderness_Area, margins=True, margins_name="Total", norm

Out[15]:	Wilderness_Area	Cache_la_Poudre	Comanche_Peak	Neota	Rawah
	Cover_Type				
	Aspen	0.000000	0.601707	0.000000	0.398293
	Cottonwood/Willow	1.000000	0.000000	0.000000	0.000000
	Douglas-fir	0.560891	0.439109	0.000000	0.000000
	Krummholz	0.000000	0.638957	0.112335	0.248708
	Lodgepole Pine	0.010681	0.441555	0.031715	0.516048
	Ponderosa Pine	0.600045	0.399955	0.000000	0.000000
	Spruce/Fir	0.000000	0.413180	0.087779	0.499042
	Total	0.063627	0.436074	0.051434	0.448865

Normalizing the tree type numbers gives the percentage breakdown of tree type per wilderness area by the total of each individual tree type. All the rows should add up to 100%. The majority of the total number of trees are in the Rawah and Comanche Peak area, but these are the biggest areas. The Douglas Fir and Ponderosa Pine are about evenly split between Cache la Poudre and Comanche Peak. The biggest occurrence is with Krummholz where 64% of its trees are in Comanche Peak. The smallest occurrence is with the Lodgepole Pine. Only 1% of it's trees are found in Cache la Poudre.

In [16]: pd.crosstab(df.Cover_Type, df.Wilderness_Area, margins=True, margins_name="Total", norm

		_ 31 ,	- ,	,	0 -	
Out[16]:	Wilderness_Area	Cache_la_Poudre	Comanche_Peak	Neota	Rawah	\
	Cover_Type					
	Aspen	0.000000	0.022545	0.00000	0.014498	
	Cottonwood/Willow	0.074308	0.000000	0.00000	0.000000	
	Douglas-fir	0.263498	0.030099	0.00000	0.000000	
	Krummholz	0.000000	0.051724	0.077098	0.019559	
	Lodgepole Pine	0.081855	0.493728	0.300663	0.560580	
	Ponderosa Pine	0.580340	0.056441	0.000000	0.000000	
	Spruce/Fir	0.000000	0.345463	0.622239	0.405363	
	Wilderness_Area	Total				
	Cover_Type					
	Aspen	0.016339				
	Cottonwood/Willow	0.004728				
	Douglas-fir	0.029891				
	Krummholz	0.035300				
	Lodgepole Pine	0.487599				
	Ponderosa Pine	0.061537				
	Spruce/Fir	0.364605				

The next table is similar except it normalizes the tree types according to the wilderness area numbers so that we can see the breakdown of trees within each area. Each column should add to 100%. Between this table and the table normalized according to row, a better distribution of the trees throughout the wilderness area can be seen. The other important item from this table is that the total column gives the fraction from all the tree types. Therefore, the Lodgepol Pine makes 49% of all the tree types recorded. The Cottnwood/Willow is less than one percent.

Soil Type This categorical variable has forty values, and since the type of soil can affect the plant life, it would be good to get a handle on some of the numbers.

In [18]: pd.crosstab(df.Soil_Type, df.Wilderness_Area, margins=True, margins_name="Total")

Out[18]: Wilderness_Area	Cache_la_Poudre	Comanche_Peak	Neota	Rawah	Total
Soil_Type	2021	0	0	0	2021
Soil Type 1	3031	0 14720	0	0	3031
Soil Type 10	17914 596		0	0	32634
Soil Type 11	0	11814 0	0	0 29971	12410
Soil Type 12	0	17176	255	29971	29971 17431
Soil Type 13	359	240	255	0	599
Soil Type 14	339	0	0	0	3
Soil Type 15	263	325	117	2140	
Soil Type 16	793	2629	0	2140	2845 3422
Soil Type 17 Soil Type 18	0	2029	70	1829	1899
	0	675	597	2749	4021
Soil Type 19 Soil Type 2	2144	5381	0	2149	7525
Soil Type 2	0	2452	55	6752	9259
Soil Type 20 Soil Type 21	0	838	0	0732	838
Soil Type 22	0	8362	5363		33373
Soil Type 23	0	21071	8153		57752
Soil Type 23	0	16252	2123	2903	21278
Soil Type 25	0	0	474	2903	474
Soil Type 26	0	2589	0	0	2589
Soil Type 27	0	1086	0	0	1086
Soil Type 28	0	946	0	0	946
Soil Type 29	0	0	74	115173	115247
Soil Type 3	2455	2368	0	0	4823
Soil Type 30	0	0	0	30170	30170
Soil Type 31	0	25240	426	0	25666
Soil Type 32	0	48758	3761	0	52519
Soil Type 33	0	42337	2817	0	45154
Soil Type 34	0	1611	0	0	1611
Soil Type 35	0	732	503	656	1891
Soil Type 36	0	119	0	0	119
Soil Type 37	0	66	0	232	298
Soil Type 38	0	5993	2073		15573
Soil Type 39	0	6117	931	6758	13806
Soil Type 4	1238	11158	0	0	12396
Soil Type 40	0	2309	2092	4349	8750
Soil Type 5	1597	0	0	0	1597
Soil Type 6	6575	0	0	0	6575
Soil Type 7	0	0	0	105	105
Soil Type 8	0	0	0	179	179
Soil Type 9	0	0	0	1147	1147
Total	36968	253364	29884	260796	581012

So the big numbers and little numbers are easily determined. Soil type 29 dominates the numbers and soil type 15 only has three occurrences. Soil type 15 is unspecified. The next lowest number is soil type 7 which is the gothic family. Because there are so many values, it makes it a little harder to read so we will make a partial visual plot to help.

Soil Type 1 -	0.082	0	0	0	0.0052
Soil Type 10 -	0.48	0.058	0	0	0.056
Soil Type 11 -	0.016	0.047	0	0	0.021
Soil Type 12 -	0	0	0	0.11	0.052
Soil Type 13 -	0	0.068	0.0085	0	0.03
Soil Type 14 -	0.0097	0.00095	0	0	0.001
Soil Type 15 -	8.1e-05	0	0	0	5.2e-06
Soil Type 16 -	0.0071	0.0013	0.0039	0.0082	0.0049
Soil Type 17 -	0.021	0.01	0	0	0.0059
Soil Type 18 -	0	0	0.0023	0.007	0.0033
Soil Type 19 -	0	0.0027	0.02	0.011	0.0069
Soil Type 2 -	0.058	0.021	0	0	0.013
Soil Type 20 -	0	0.0097	0.0018	0.026	0.016
Soil Type 21 -	0	0.0033	0	0	0.0014
Soil Type 22 -	0	0.033	0.18	0.075	0.057
Soil Type 23 -	0	0.083	0.27	0.11	0.099
Soil Type 24 -	0	0.064	0.071	0.011	0.037
Soil Type 25 -	0	0	0.016	0	0.00082
Soil Type 26 -	0	0.01	0	0	0.0045
Soil Type 27 -	0	0.0043	0	0	0.0019
Soil Type 27 -	0	0.0037	0	0	0.0016
01					
Soil Type 29 -		0	0.0025	0.44	0.2
	0	0.0093	0.0025	0.44	0.2 0.0083
Soil Type 29 -	0.066				
Soil Type 29 - Soil Type 3 -	0 0.066 0	0.0093	0	0	0.0083
Soil Type 29 - Soil Type 3 - Soil Type 30 -	0 0.066 0 0	0.0093	0	0	0.0083 0.052
Soil Type 29 - Soil Type 3 - Soil Type 30 - Soil Type 31 -	0 0.066 0 0	0.0093 0 0.1	0 0 0.014	0 0.12 0	0.0083 0.052 0.044
Soil Type 29 - Soil Type 3 - Soil Type 30 - Soil Type 31 - Soil Type 32 -	0 0.066 0 0 0	0.0093 0 0.1 0.19	0 0 0.014 0.13	0 0.12 0 0	0.0083 0.052 0.044 0.09
Soil Type 29 - Soil Type 3 - Soil Type 30 - Soil Type 31 - Soil Type 32 - Soil Type 33 -	0 0.066 0 0 0 0	0.0093 0 0.1 0.19 0.17	0 0 0.014 0.13 0.094	0 0.12 0 0	0.0083 0.052 0.044 0.09 0.078
Soil Type 29 - Soil Type 30 - Soil Type 31 - Soil Type 32 - Soil Type 33 - Soil Type 33 -	0 0.066 0 0 0 0	0.0093 0 0.1 0.19 0.17 0.0064	0 0 0.014 0.13 0.094	0 0.12 0 0 0	0.0083 0.052 0.044 0.09 0.078 0.0028
Soil Type 29 - Soil Type 30 - Soil Type 31 - Soil Type 32 - Soil Type 33 - Soil Type 34 - Soil Type 35 -	0 0.066 0 0 0 0 0	0.0093 0 0.1 0.19 0.17 0.0064 0.0029	0 0.014 0.13 0.094 0	0 0.12 0 0 0 0 0	0.0083 0.052 0.044 0.09 0.078 0.0028 0.0033
Soil Type 29 - Soil Type 30 - Soil Type 31 - Soil Type 32 - Soil Type 33 - Soil Type 34 - Soil Type 35 - Soil Type 36 -	0 0.066 0 0 0 0 0	0.0093 0 0.1 0.19 0.17 0.0064 0.0029 0.00047	0 0 0.014 0.13 0.094 0 0.017	0 0.12 0 0 0 0 0 0.0025	0.0083 0.052 0.044 0.09 0.078 0.0028 0.0033
Soil Type 29 - Soil Type 30 - Soil Type 31 - Soil Type 32 - Soil Type 33 - Soil Type 34 - Soil Type 35 - Soil Type 36 - Soil Type 37 -	0 0.066 0 0 0 0 0 0	0.0093 0 0.1 0.19 0.17 0.0064 0.0029 0.00047 0.00026	0 0 0.014 0.13 0.094 0 0.017	0 0.12 0 0 0 0 0.0025 0	0.0083 0.052 0.044 0.09 0.078 0.0028 0.0033 0.0002
Soil Type 29 - Soil Type 30 - Soil Type 31 - Soil Type 32 - Soil Type 33 - Soil Type 34 - Soil Type 35 - Soil Type 36 - Soil Type 37 - Soil Type 37 - Soil Type 38 -	0 0.066 0 0 0 0 0 0	0.0093 0 0.1 0.19 0.17 0.0064 0.0029 0.00047 0.00026	0 0 0.014 0.13 0.094 0 0.017 0 0	0 0.12 0 0 0 0 0.0025 0 0.00089	0.0083 0.052 0.044 0.09 0.078 0.0028 0.0033 0.0002 0.00051
Soil Type 29 - Soil Type 30 - Soil Type 31 - Soil Type 32 - Soil Type 33 - Soil Type 34 - Soil Type 35 - Soil Type 36 - Soil Type 37 - Soil Type 38 - Soil Type 38 - Soil Type 39 -	0 0.066 0 0 0 0 0 0 0 0 0	0.0093 0 0.1 0.19 0.17 0.0064 0.0029 0.00047 0.00026 0.024	0 0 0.014 0.13 0.094 0 0.017 0 0 0.069	0 0.12 0 0 0 0 0.0025 0 0.00089	0.0083 0.052 0.044 0.09 0.078 0.0028 0.0033 0.0002 0.00051 0.027 0.024
Soil Type 29 - Soil Type 30 - Soil Type 31 - Soil Type 32 - Soil Type 33 - Soil Type 34 - Soil Type 35 - Soil Type 36 - Soil Type 37 - Soil Type 38 - Soil Type 39 - Soil Type 4 -	0 0.066 0 0 0 0 0 0 0 0 0	0.0093 0 0.1 0.19 0.17 0.0064 0.0029 0.00047 0.00026 0.024 0.024 0.024	0 0 0.014 0.13 0.094 0 0.017 0 0 0.069 0.031	0 0.12 0 0 0 0 0.0025 0 0.00089 0.029 0.026	0.0083 0.052 0.044 0.09 0.078 0.0028 0.0033 0.0002 0.00051 0.027 0.024 0.021
Soil Type 29 - Soil Type 30 - Soil Type 31 - Soil Type 32 - Soil Type 33 - Soil Type 34 - Soil Type 35 - Soil Type 36 - Soil Type 37 - Soil Type 38 - Soil Type 39 - Soil Type 4 - Soil Type 4 - Soil Type 40 -	0 0.066 0 0 0 0 0 0 0 0 0	0.0093 0 0.1 0.19 0.17 0.0064 0.0029 0.00047 0.00026 0.024 0.024 0.044 0.0091	0 0 0.014 0.13 0.094 0 0.017 0 0 0.069 0.031 0	0 0.12 0 0 0 0 0.0025 0 0.00089 0.029 0.026 0	0.0083 0.052 0.044 0.09 0.078 0.0028 0.0033 0.0002 0.00051 0.027 0.024 0.021 0.015
Soil Type 29 - Soil Type 30 - Soil Type 31 - Soil Type 32 - Soil Type 33 - Soil Type 34 - Soil Type 35 - Soil Type 36 - Soil Type 37 - Soil Type 38 - Soil Type 39 - Soil Type 4 - Soil Type 40 - Soil Type 5 -	0 0.066 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.0093 0 0.1 0.19 0.17 0.0064 0.0029 0.00047 0.00026 0.024 0.024 0.024 0.0091 0	0 0 0.014 0.13 0.094 0 0.017 0 0.069 0.031 0	0 0.12 0 0 0 0 0 0 0 0.0025 0 0.00089 0.029 0.026 0 0.017	0.0083 0.052 0.044 0.09 0.078 0.0028 0.00033 0.0002 0.00051 0.027 0.024 0.021 0.015 0.0027
Soil Type 29 - Soil Type 30 - Soil Type 31 - Soil Type 32 - Soil Type 33 - Soil Type 34 - Soil Type 36 - Soil Type 37 - Soil Type 38 - Soil Type 39 - Soil Type 4 - Soil Type 4 - Soil Type 4 - Soil Type 5 - Soil Type 5 - Soil Type 6 -	0 0.066 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.0093 0 0.1 0.19 0.17 0.0064 0.0029 0.00047 0.00026 0.024 0.024 0.024 0.0091 0	0 0 0.014 0.13 0.094 0 0.017 0 0.069 0.031 0 0 0.07	0 0.12 0 0 0 0 0.0025 0 0.00089 0.029 0.026 0	0.0083 0.052 0.044 0.09 0.078 0.0028 0.0033 0.0002 0.00051 0.027 0.024 0.021 0.015 0.0027 0.011
Soil Type 29 - Soil Type 30 - Soil Type 31 - Soil Type 32 - Soil Type 33 - Soil Type 34 - Soil Type 35 - Soil Type 36 - Soil Type 37 - Soil Type 38 - Soil Type 39 - Soil Type 4 - Soil Type 4 - Soil Type 5 - Soil Type 5 - Soil Type 6 - Soil Type 7 -	0 0.066 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.0093 0 0.1 0.19 0.17 0.0064 0.0029 0.00047 0.00026 0.024 0.024 0.044 0.0091 0 0	0 0 0.014 0.13 0.094 0 0.017 0 0.069 0.031 0 0.07	0 0.12 0 0 0 0 0 0 0.0025 0 0.00089 0.029 0.026 0 0.017 0 0 0.0004	0.0083 0.052 0.044 0.09 0.078 0.0028 0.0033 0.0002 0.00051 0.027 0.024 0.021 0.015 0.0027 0.011 0.00018

The darker colors highlight higher numbers with the level of darkness proportional to the magnitude of percentage. This map makes it a little easier to see that soil type 29 is 20% of all the soil types throughout the wilderness areas, but it is 44% of the soil types in the Rawah area. Soil type 10 is 48% of all the soil in Cache la Poudre. We know from the previous cover type analysis is that this area is more exclusive and is largely made up of Ponderosa Pine. Soil type 10 however is only 6% of the total soil types in all the areas. This makes sense that exclusivity of Cache la Poudre in soil type agrees with its exclusivity in tree type.

Aspect Aspect is the azimuth measured in degrees from a reference point, so it is horizontal angular distance to some reference. This is a positional attribute, but what makes it interesting is its variance. The total range of degrees from 0 to 360 is covered in 3 standard deviations. We'll look at violin plots to visualize this.

Out[31]: (array([0, 1, 2, 3]), <a list of 4 Text xticklabel objects>)

It looks like the distribution is largely bidmodal for all the areas, but if this is an angular distance from a reference line, then interestingly enough, this should represent a positional clustering of areas. This suggests not as many cells across the wilderness areas at 200 degrees from reference, and most around 0 and 360 degrees which are right at the reference line. This probably means that the reference line for this measure is drawn right through the area with the most cells.

Elevation The previous analysis have shown some exclusivity with cover types, soil types, and wilderness area, so it would be interesting to look at the elevation of these areas.

The boxplot shows that the area showing the most exclusivity is also the one with the lowest mean elevation. The two largest areas which have the most number of cover types are at about the same elevation. The neota area has the highest elevation

Vertical distance to Hydrology This attribute had negative values, so it would be interesting to look at boxplots to see what they look like.

```
ax.set_title('Elevation by Cover Type')
plt.xticks(rotation=60)
```

Out[33]: (array([0, 1, 2, 3]), <a list of 4 Text xticklabel objects>)

The area with the lowest elevation, Cache la Poudre, and the least number of trees, also has the highest mean distance to water. The Comanche Peak area has the most outliers probably marking a very diverse terrain. Comanche Peak, Neota, and Rawah have about the same distance to hydrology. This may have something to do with the big body of water that sits between all of them.

Section ?? ## Attribute - Attribute Relationships

In [26]: pd.crosstab(df.Soil_Type, df.Wilderness_Area, margins=True, margins_name="Total")

Out[26]: Wilderness_Area	Cache_la_Poudre	Comanche_Peak	Neota	Rawah	Total
Soil_Type					
Soil Type 1	3031	0	0	0	3031
Soil Type 10	17914	14720	0	0	32634
Soil Type 11	596	11814	0	0	12410
Soil Type 12	0	0	0	29971	29971
Soil Type 13	0	17176	255	0	17431
Soil Type 14	359	240	0	0	599
Soil Type 15	3	0	0	0	3
Soil Type 16	263	325	117	2140	2845
Soil Type 17	793	2629	0	0	3422

Soil Type	18	0	0	70	1829	1899
Soil Type	19	0	675	597	2749	4021
Soil Type	2	2144	5381	0	0	7525
Soil Type	20	0	2452	55	6752	9259
Soil Type	21	0	838	0	0	838
Soil Type	22	0	8362	5363	19648	33373
Soil Type	23	0	21071	8153	28528	57752
Soil Type	24	0	16252	2123	2903	21278
Soil Type	25	0	0	474	0	474
Soil Type	26	0	2589	0	0	2589
Soil Type	27	0	1086	0	0	1086
Soil Type	28	0	946	0	0	946
Soil Type	29	0	0	74	115173	115247
Soil Type	3	2455	2368	0	0	4823
Soil Type	30	0	0	0	30170	30170
Soil Type	31	0	25240	426	0	25666
Soil Type	32	0	48758	3761	0	52519
Soil Type	33	0	42337	2817	0	45154
Soil Type	34	0	1611	0	0	1611
Soil Type	35	0	732	503	656	1891
Soil Type	36	0	119	0	0	119
Soil Type	37	0	66	0	232	298
Soil Type	38	0	5993	2073	7507	15573
Soil Type	39	0	6117	931	6758	13806
Soil Type	4	1238	11158	0	0	12396
Soil Type	40	0	2309	2092	4349	8750
Soil Type	5	1597	0	0	0	1597
Soil Type	6	6575	0	0	0	6575
Soil Type	7	0	0	0	105	105
Soil Type		0	0	0	179	179
Soil Type		0	0	0	1147	1147
Total		36968	253364	29884	260796	581012

Soil Type 1 and 15 are only present in the Cache_la_Poudre wilderness area. Soil Type 7, 8, 9, 12, and 30, are only present in the Rawah wilderness area. Soil Type 14, 17, 2, 3, and 4, are only present in the Cache_la_Poudre and Comanche_Peak wilderness area. Only Soil Type 16 is present in all wilderness areas.

In [27]: pd.crosstab(df.Soil_Type, df.Wilderness_Area, margins=True, margins_name="Total", norma

Out[27]:	Wilderne	ss_Area	Cache_la_Poudre	Comanche_Peak	Neota	Rawah
	Soil_Typ	е				
	Soil Typ	e 1	1.000000	0.000000	0.000000	0.000000
	Soil Typ	e 10	0.548937	0.451063	0.000000	0.000000
	Soil Typ	e 11	0.048026	0.951974	0.000000	0.000000
	Soil Typ	e 12	0.000000	0.000000	0.000000	1.000000
	Soil Typ	e 13	0.000000	0.985371	0.014629	0.000000
	Soil Typ	e 14	0.599332	0.400668	0.000000	0.000000

```
Soil Type 15
                        1.000000
                                       0.000000 0.000000 0.000000
Soil Type 16
                        0.092443
                                       0.114236 0.041125
                                                          0.752197
Soil Type 17
                        0.231736
                                       0.768264 0.000000
                                                          0.000000
Soil Type 18
                       0.000000
                                       0.000000 0.036862
                                                           0.963138
Soil Type 19
                        0.000000
                                       0.167869 0.148471
                                                           0.683661
Soil Type 2
                        0.284917
                                       0.715083 0.000000 0.000000
Soil Type 20
                        0.000000
                                       0.264823 0.005940
                                                           0.729236
Soil Type 21
                        0.000000
                                       1.000000 0.000000 0.000000
Soil Type 22
                        0.000000
                                       0.250562 0.160699 0.588739
Soil Type 23
                        0.000000
                                       0.364853 0.141173 0.493974
Soil Type 24
                        0.000000
                                       0.763794 0.099774 0.136432
Soil Type 25
                        0.000000
                                       0.000000 1.000000 0.000000
Soil Type 26
                                                0.000000 0.000000
                        0.000000
                                       1.000000
Soil Type 27
                        0.000000
                                       1.000000
                                                 0.000000
                                                           0.000000
Soil Type 28
                        0.000000
                                       1.000000
                                                 0.000000
                                                           0.00000
Soil Type 29
                        0.000000
                                       0.000000 0.000642 0.999358
Soil Type 3
                                       0.490981 0.000000 0.000000
                        0.509019
Soil Type 30
                        0.000000
                                       0.000000 0.000000
                                                           1.000000
Soil Type 31
                                       0.983402 0.016598
                                                           0.00000
                        0.000000
Soil Type 32
                        0.000000
                                       0.928388 0.071612 0.000000
Soil Type 33
                        0.000000
                                       0.937614 0.062386
                                                           0.00000
Soil Type 34
                                       1.000000 0.000000 0.000000
                        0.000000
Soil Type 35
                        0.000000
                                       0.387097 0.265997
                                                           0.346906
Soil Type 36
                        0.000000
                                       1.000000 0.000000 0.000000
Soil Type 37
                        0.000000
                                       0.221477
                                                0.000000
                                                          0.778523
Soil Type 38
                        0.000000
                                       0.384833
                                                0.133115
                                                           0.482052
Soil Type 39
                                       0.443068
                        0.000000
                                                0.067434 0.489497
Soil Type 4
                        0.099871
                                       0.900129
                                                 0.000000
                                                           0.000000
Soil Type 40
                        0.000000
                                       0.263886
                                                 0.239086
                                                           0.497029
Soil Type 5
                                                0.000000 0.000000
                        1.000000
                                       0.000000
Soil Type 6
                        1.000000
                                       0.000000
                                                0.000000 0.000000
Soil Type 7
                                                 0.000000
                        0.000000
                                       0.000000
                                                           1.000000
Soil Type 8
                        0.000000
                                       0.000000 0.000000
                                                           1.000000
Soil Type 9
                        0.000000
                                       0.000000
                                                0.000000
                                                           1.000000
Total
                                       0.436074 0.051434 0.448865
                        0.063627
```

```
df_sample.shape
Out[8]: (11620, 15)
In [18]: sns.set(style="white")

g = sns.PairGrid(df_sample[quantitative], diag_sharey=False)
g.map_lower(sns.kdeplot, cmap="Blues_d") # use joint kde on the lower triangle
g.map_upper(plt.scatter) # scatter on the upper
g.map_diag(sns.kdeplot, lw=3) # kde histogram on the diagonal
CPU times: user 5 ts, sys: 0 ns, total: 5 ts
```

In [8]: df_sample = df.sample(frac=0.02, replace=True, random_state=1) #sample with 10% of the d

Out[18]: <seaborn.axisgrid.PairGrid at 0x7f2f74f89ba8>

We can see the bimodal nature of aspect and how it relates to the other continuous variables throug this plot. Also we can quickly see some positive and negative correlation for the hillshade index.

Out[32]: <matplotlib.axes._subplots.AxesSubplot at 0x7f880a019c18>

Very quickly we can see how the Hillshade variables are correlated with eachother. Hill-shade_9am and Hillshade_3pm have the highest correlation among all of the continuous variables (-.8). We also see that Hillshade_3pm is also highly correlated with Hillshade_Noon (.6). Outside of the Hillshade variables we can see that the Aspect variable is correlated with Hillshade_Noon (-.6). The variables Slope and Hillshade_Noon also have

a relatively high correlation (-.5). The last set of variables worth mentioning are the distance to hydrology variables. The vertical and horizontal **Distance_to_Hydrology** have a correlation coefficient of .6.

When considering feature selection we try to avoid including variables with high levels of correlation. Based on the correlation analysis we would need to investigate strategies to combine the variables mentioned above to build a better predictive model.

Section ?? ## Attribute - Response Relationship

In [33]: df[quantitative + ['Cover_Type']].groupby(by='Cover_Type').mean()

Out[33]:		Elevation	Aspect	Slope	hDistance_t	to_Hydrology	\
	Cover_Type	0000 440004	100 000051	10 011015		0.4.0 0.5.4.0.0	
	Aspen	2787.417571	139.283051	16.641315		212.354893	
	Cottonwood/Willow	2223.939934	137.139425	18.528941		106.934838	
	Douglas-fir	2419.181897	180.539068			159.853458	
	Krummholz	3361.928669	153.236226	14.255924		356.994686	
	Lodgepole Pine	2920.936061	152.060515	13.550499		279.916442	
	Ponderosa Pine	2394.509845	176.372490			210.276473	
	Spruce/Fir	3128.644888	156.138227	13.127110		270.555245	
		vDistance_to	_Hydrology	hDistance_t	o_Roads Hil	llshade_9am	\
	Cover_Type						
	Aspen		50.610344		.765722	223.474876	
	Cottonwood/Willow		41.186749		.199490	228.345832	
	Douglas-fir		45.437439		.169805	192.844302	
	Krummholz				. 250463	216.967723	
	Lodgepole Pine			.530799	213.844423		
	Ponderosa Pine				.940734	201.918415	
	Spruce/Fir		42.156939	2614	.834517	211.998782	
		Hillshade_No	oon Hillsha	de_3pm hDis	tance_to_Fi	re Points	
	Cover_Type						
	Aspen	219.0358	316 121.	920889	157	77.719794	
	Cottonwood/Willow	216.9970	088 111.	392792	88	59.124135	
	Douglas-fir	209.8276	662 148.	284044	1055.351471		
	Krummholz	221.7460	026 134.	932033	2070.031594		
	Lodgepole Pine	225.3265					
	0 1	220.0200	596 142.	983466	216	68.154849	
	Ponderosa Pine	215.8265		983466 367176		38.154849 10.955949	
			537 140.		9:		
In [34]:	Ponderosa Pine	215.8268 223.4302	537 140. 211 143.	367176 875038	9: 200	10.955949 09.253517	
In [34]:	Ponderosa Pine Spruce/Fir df[quantitative +	215.8268 223.4302 ['Cover_Type	537 140. 211 143. [1]].groupby(367176 875038	9: 200 pe').median	10.955949 09.253517 ()	
	Ponderosa Pine Spruce/Fir df[quantitative +	215.8268 223.4302 ['Cover_Type	537 140. 211 143. [1]].groupby(367176 875038 by='Cover_Ty	9: 200 pe').median	10.955949 09.253517 ()	
	Ponderosa Pine Spruce/Fir df[quantitative +	215.8268 223.4302 ['Cover_Type	537 140. 211 143. [1]].groupby(367176 875038 by='Cover_Ty e hDistance	9: 200 pe').median _to_Hydrolog	10.955949 09.253517 ()	
	Ponderosa Pine Spruce/Fir df[quantitative +	215.8268 223.4302 ['Cover_Type' Elevation A	140.0 211 143.0 []].groupby(Aspect Slop	367176 875038 by='Cover_Ty e hDistance	9: 200 pe').median _to_Hydrolog	10.955949 09.253517 ()	
	Ponderosa Pine Spruce/Fir df[quantitative + Cover_Type Aspen	215.8268 223.4302 ['Cover_Type' Elevation A	537 140. 211 143. [7]].groupby(Aspect Slop	367176 875038 by='Cover_Ty e hDistance	9: 200 pe').median _to_Hydrolog 17	10.955949 09.253517 () gy \	
	Ponderosa Pine Spruce/Fir df [quantitative + Cover_Type Aspen Cottonwood/Willow	215.8268 223.4302 ['Cover_Type' Elevation A 2796 2231	140. 211 143. [7]] groupby(Aspect Slop 111 1 119 1	367176 875038 by='Cover_Ty e hDistance 6 9	9: 200 pe').median _to_Hydrolog 17	10.955949 09.253517 () gy \ 75	

Ponderosa Pine	2404	160 2	1		190	
Spruce/Fir	3146	122 1	2		218	
	vDistance_to_Hy	drology	hDista	nce_to_Roads	Hillshade_9am	\
Cover_Type						
Aspen		35		1282	228	
Cottonwood/Willow		6		949	235	
Douglas-fir		34		966	196	
Krummholz		43		2654	221	
Lodgepole Pine		30		2039	219	
Ponderosa Pine		50		853	213	
Spruce/Fir		24		2389	216	
	Hillshade_Noon	Hillsha	.de_3pm	hDistance_to	_Fire Points	
Cover_Type						
Aspen	224		128		1471	
Cottonwood/Willow	220		113		806	
Douglas-fir	213		150		942	
Krummholz	224		140		1969	
Lodgepole Pine	227		142		1846	
Ponderosa Pine	221		142		824	
Spruce/Fir	226		144		1825	
In [34]: fig,axs=plt.subplo	ots(6, figsize=(1	10,25))				

Out[34]: <matplotlib.axes._subplots.AxesSubplot at 0x7fb5d86dccc0>

0.1 Analysis of Continuous Variables within each Cover Type

These boxplots help visualize the distribution of our continuous variables within each cover type. Here You'll see that the majority of the variables dont have much of a distinct distribution when comparing between the cover types. The exceptions seem to be the variables **Elevation**, **Slope**, **Horizontal Distance to Hydrology**, **Horizontal Distance to Roadways**, and **Horizontal Distance to Fire Points**. This analysis can give us an idea of which variables to include when building a predictive model.

If there was one variable to highlight, it would be elevation. The degree of distinction among between the cover types is quite easy to see from the box plots.

Section ?? ## Additional Features

Out[39]: (array([0, 1, 2, 3, 4, 5, 6]), <a list of 7 Text xticklabel objects>)

When reviewing our correlation analysis we observed that the **Distance_to_Hydrology** variables were highly correlated. To help reduce the number of correlated variables we can find ways to combine certain data features. Using the Pythagorean Theorem we can determine the straight distance to hydrology and create 1 variable that incorporates two highly correlated variables.

Section ?? #### end