

CAP5415 Computer Vision

Yogesh S Rawat

yogesh@ucf.edu

HEC-241

Linear Algebra Basics

Lecture 2

Outline

- Vectors
 - Operations
- Matrix
 - Operations
- Transformations
 - Scaling
 - Rotation
 - Translation
- Singular value decomposition

Outline

- Vectors
 - Operations
- Matrix
 - Operations
- Transformations
 - Scaling
 - Rotation
 - Translation
- Singular value decomposition

Vector

• Scalar: $x \in \mathbb{R}$

• Vector: $x \in \mathbb{R}^N$

• Row Vector $\mathbf{v} \in \mathbb{R}^{1 \times n}$

$$\mathbf{x} = \begin{bmatrix} x_1 & x_2 & \cdots & x_n \end{bmatrix}$$

• Column vector $\mathbf{v} \in \mathbb{R}^{n \times 1} : \mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} = \begin{bmatrix} x_1 & x_2 & \cdots & x_n \end{bmatrix}^T$

Transpose

Vectors - use

- Store data in memory
 - Feature vectors
 - Pixel values
 - Any other data for processing
- Any point in coordinate system
 - Can be n dimensional
- Difference between two points

$$[x_1 - y_1 \quad x_2 - y_2 \quad x_3 - y_3]$$

Outline

- Vectors
 - Operations
- Matrix
 - Operations
- Transformations
 - Scaling
 - Rotation
 - Translation
- Singular value decomposition

Norm – size of the vector

• p-norm

$$||x||_p = \left(\sum_i |a_i|^p\right)^{\frac{1}{p}} \qquad p \ge 1$$

• Euclidean norm

$$\left\|x\right\|_2 = \left(\sum_i \left|a_i\right|^2\right)^{1/2}$$

• L1-norm

$$||x||_1 = \left(\sum_i |a_i|\right)$$

- Inner product (dot product)
 - Scalar number
 - Multiply corresponding entries and add

$$\boldsymbol{x}^T \ \boldsymbol{y} = \begin{bmatrix} x_1 & x_2 & \cdots & x_n \end{bmatrix} \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{bmatrix} = \sum_{k=1}^n x_k \ y_k$$

Inner product (dot product)

$$\mathbf{x}_i^T \mathbf{x}_i = \sum_{k=1}^{n} (x_k^i)^2$$
 = squared norm of \mathbf{x}_i

x.y is also |x||y|cos(angle between x and y)

• If B is a unit vector, A.B gives projection of A on B

Outer product

$$\boldsymbol{x}_{i}\boldsymbol{x}_{j}^{T} = \begin{bmatrix} x_{1}^{i}x_{1}^{j} & x_{1}^{i}x_{2}^{j} & \cdots & x_{1}^{i}x_{n}^{j} \\ x_{2}^{i}x_{1}^{j} & x_{2}^{i}x_{2}^{j} & \cdots & x_{2}^{i}x_{2}^{j} \\ \vdots & \vdots & \ddots & \vdots \\ x_{n}^{i}x_{1}^{j} & x_{n}^{i}x_{2}^{j} & \cdots & x_{n}^{i}x_{m}^{j} \end{bmatrix}$$
 (a matrix)

Outline

- Vectors
 - Operations
- Matrix
 - Operations
- Transformations
 - Scaling
 - Rotation
 - Translation
- Singular value decomposition

Matrix

- Array $A \in \mathbb{R}^{m \times n}$ of numbers with shape m by n,
 - m rows and n columns

$$\mathbf{A} = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix}$$

- A row vector is a matrix with single row
- A column vector is a matric with single column

Matrix - use

- Image representation grayscale
 - One number per pixel
 - Stored as nxm matrix

Matrix - use

- Image representation
 - RGB
 - 3 numbers per pixel
 - Stored as nxmx3 matrix

Outline

- Vectors
 - Operations
- Matrix
 - Operations
- Transformations
 - Scaling
 - Rotation
 - Translation
- Singular value decomposition

Addition

$$\begin{bmatrix} a & b \\ c & d \end{bmatrix} + \begin{bmatrix} e & f \\ g & h \end{bmatrix} = \begin{bmatrix} a+e & b+f \\ c+g & d+h \end{bmatrix}$$

- Both matrices should have same shape
 - except with a scalar

$$\begin{bmatrix} a & b \\ c & d \end{bmatrix} + 2 = \begin{bmatrix} a+2 & b+2 \\ c+2 & d+2 \end{bmatrix}$$

Same with subtraction

Scaling

$$s \times \begin{bmatrix} a & b \\ c & d \end{bmatrix} = \begin{bmatrix} s \times a & s \times b \\ s \times c & s \times d \end{bmatrix}$$

Hadamard product

$$\begin{bmatrix} a & b \\ c & d \end{bmatrix} \odot \begin{bmatrix} e & f \\ g & h \end{bmatrix} = \begin{bmatrix} axe & bxf \\ cxg & dxh \end{bmatrix}$$

Transpose

$$\mathbf{A} = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix}$$

$$A^{T} = \begin{bmatrix} a_{11} & a_{21} & \cdots & a_{m1} \\ a_{12} & a_{22} & \cdots & a_{m2} \\ \vdots & \vdots & \ddots & \vdots \\ a_{1n} & a_{2n} & \cdots & a_{mn} \end{bmatrix}$$

- Matrix Multiplication
 - Compatibility?
 - mxn and nxp
 - Results in mxp matrix

- Matrix Multiplication another interpretation (my favorite)
 - Let a_i denote the *i-th* column of the matrix A, and
 - b_i denote the *j-th* column of the matrix **B**.

$$\pmb{A} = [\pmb{a}_1 \quad \pmb{a}_2 \quad \cdots \quad \pmb{a}_n]$$
, and $\pmb{B} = [\pmb{b}_1 \quad \pmb{b}_2 \quad \cdots \quad \pmb{b}_m]$

- The first column of AB
 - Linear combination of all the columns in A

$$[a_1b_{11} + a_2b_{12} + ... + a_nb_{1n}]$$

• Similarly, we can get other columns...

- How about linear combination of all rows of **B**?
 - Each row of C = AB is a linear combination of rows of B

- Determinant
 - A scalar

• For A =
$$\begin{bmatrix} a & b \\ c & d \end{bmatrix}$$
, det(A) = ad - bc

 Represents area of the parallelogram described by the vectors in the rows of the matrix

- Determinant
 - The determinant of a matrix A is denoted by

$$|A| = \sum_{i=1}^K a_{ij} C_{ij}$$

where C_{ij} is the cofactor of a_{ij} defined by

$$C_{ij} = (-1)^{i+1} |M_{ij}|$$
, and

 M_{ij} is the minor of matrix A formed by eliminating row i and column j of A

- Some properties

- Trace
 - Tr(A) = sum of diagonal elements

$$Tr \begin{bmatrix} a_{00} & a_{01} & a_{02} \\ a_{10} & a_{11} & a_{12} \\ a_{20} & a_{21} & a_{22} \end{bmatrix} = a_{00} + a_{11} + a_{22}$$

- Properties
 - tr(AB) = tr(BA)
 - tr(A + B) = tr(A) + tr(B)

- Inverse
 - Given a matrix A, its inverse A⁻¹ is a matrix such that

$$AA^{-1} = A^{-1}A = I$$

- Inverse does not always exist
 - Singular vs non-singular
- Properties
 - $(A^{-1})^{-1} = A$
 - $(AB)^{-1} = B^{-1}A^{-1}$

Special matrices

• Symmetric matrix

$$A^T = A$$

Skew-symmetric matrix

$$A^T = -A$$

Special matrices

- Diagonal matrix
 - Used for row scaling

- Identity matrix
 - Special diagonal matrix
 - 1 along diagonals

$$I.A = A$$

$$A = egin{bmatrix} A_1 & 0 & \cdots & 0 \ 0 & A_2 & \cdots & 0 \ dots & dots & \ddots & dots \ 0 & 0 & \cdots & A_n \end{bmatrix}$$

$$\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

CAP5415 Computer Vision

Yogesh S Rawat

yogesh@ucf.edu

HEC-241

Questions?

Linear Algebra Basics

Lecture 2

Transformations

Outline

- Vectors
 - Operations
- Matrix
 - Operations
- Transformations
 - Scaling
 - Rotation
 - Translation
- Singular value decomposition

Transformation - scaling

- Matrices are useful for vector transformations
- Matrix multiplication

$$x' = Ax$$

$$\begin{bmatrix} S_{\chi} & 0 \\ 0 & S_{\gamma} \end{bmatrix} \times \begin{bmatrix} \chi \\ y \end{bmatrix} = \begin{bmatrix} S_{\chi} \chi \\ S_{y} \chi \end{bmatrix}$$

Linear combination of columns

Transformation

- Rotation
 - Matrix multiplication to rotate a vector
- Rotation matrix

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} \cos \boldsymbol{\theta} & -\sin \boldsymbol{\theta} \\ \sin \boldsymbol{\theta} & \cos \boldsymbol{\theta} \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$

$$x' = \cos \theta x - \sin \theta y$$

 $y' = \sin \theta x + \cos \theta y$

Transformation - rotation

- Rotating axis first
- Vector $v = [x \ y]$
 - x projection of v on x axis
 - y projection of v on y axis

- To rotate the axis, we need to find
 - x component in new x-axis
 - y component in new y-axis

Now we need new x and y axis

- For rotation of **\theta**
 - New x-axis = $[\cos \theta, \sin \theta]$
 - New y-axis = $[-\sin \theta, \cos \theta]$

New x-axis =
$$[\cos \theta, \sin \theta]$$

New y-axis =
$$[-\sin \theta, \cos \theta]$$

We can form a matrix using new axis

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} \cos \boldsymbol{\theta} & \sin \boldsymbol{\theta} \\ -\sin \boldsymbol{\theta} & \cos \boldsymbol{\theta} \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$

- When we rotate the axis to left
- We are rotating the vector to right

• We can use rotation matrix to rotate the vector

- We need new x y axis coordinates
 - When we rotate the axis right
- Updated rotation matrix

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} \cos \boldsymbol{\theta} & -\sin \boldsymbol{\theta} \\ \sin \boldsymbol{\theta} & \cos \boldsymbol{\theta} \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$

8/25/2023

Transformation

Linear combination

$$\begin{bmatrix} a & b \\ c & d \end{bmatrix} \times \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} ax + by \\ cx + dy \end{bmatrix}$$

- Sufficient for
 - scaling
 - rotating and
 - skew transformations
- But no shifting

Transformation

Linear combination

$$\begin{bmatrix} a & b & 0 \\ c & d & 0 \\ 0 & 0 & 1 \end{bmatrix} \times \begin{bmatrix} x \\ y \\ 1 \end{bmatrix} = \begin{bmatrix} ax + by \\ cx + dy \\ 1 \end{bmatrix}$$

- Still be able to
 - scaling
 - rotation and
 - skew transformations

8/25/2023

Transformation

Homogenous system

$$\begin{bmatrix} a & b & c \\ d & e & f \\ 0 & 0 & 1 \end{bmatrix} x \begin{bmatrix} x \\ y \\ 1 \end{bmatrix} = \begin{bmatrix} ax + by + c \\ dx + ey + f \\ 1 \end{bmatrix}$$

- We can also perform shifting now
- This is called homogenous coordinates

Scaling + rotation + translation

Careful about the order

$$V' = (TRS)V$$

$$\begin{bmatrix} 1 & 0 & t_y \\ 0 & 1 & t_x \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \cos \boldsymbol{\theta} & -\sin \boldsymbol{\theta} & 0 \\ \sin \boldsymbol{\theta} & \cos \boldsymbol{\theta} & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} s_x & 0 & 0 \\ 0 & s_y & 0 \\ 0 & 0 & 1 \end{bmatrix} \mathbf{x} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$

Questions?

Outline

- Vectors
 - Operations
- Matrix
 - Operations
- Transformations
 - Scaling
 - Rotation
 - Translation
- Singular value decomposition

Linear independence

Linear independence

$$\{x_1, x_2 \cdots, x_M\}$$
 is a set of linearly independent vectors provided $a_1x_1 + a_2x_2 + \cdots + a_Mx_M = \mathbf{0} \Rightarrow a_1 = 0 = a_2 = a_M$

- In other words, none of the vectors can be expressed as a linear combination of the other vectors
 - Each vector is perpendicular to every other vector
 - For example, axis in cartesian coordinate system

Intuition

- In terms of features
 - Person recognition [height, hair color, weight, specs, eye color, etc.]

Matrix factorization

Singular value decomposition (SVD)

$$A = U\Sigma V^{T}$$

- If A is mxn matrix, then
 - U will be mxm,
 - Σ will be mxn, and
 - V^T will be nxn
- U and V are unitary matrices
 - Each column is a unit vector
- Σ is a diagonal matrix

Singular value decomposition

Interpretation

$$A = U\Sigma V^{T}$$

- Columns of U are scaled by values in Σ
- The resultant columns are linearly combined by V
- A is formed as a linear combination of columns of U
- If we use all column, we will get original A
- We can just use few columns of U and we get an approximation
 - We call these columns principal components

SVD application

Original image 256 singular values

retaining 20 singular values

retaining 50 singular values

Questions?

Sources for this lecture include materials from works by Abhijit Mahalanobis and Fei Fei Li