

Introduction to Computer Systems

Computer networks

Lecture 09

ISO – OSI Reference Model

Lecture Outline

Network Protocols

Layered Architecture

IOS – OSI Model

TCP / IP Model

Rules of Communication

- ✓ Identified sender and receiver
- ✓ Communication language and grammar
- ✓ Speed and timing of delivery
- ✓ Confirmation or acknowledgment requirements

NETWORK PROTOCOLS

 Networking protocols define a common format and a set of rules for exchanging messages between devices

(1) User issues URL from a browser http://host:port/path/file
(5) Browser formats the response and displays

Client (Browser)

(2) Browser sends a request message

REFERENCE MODEL FOR NETWORK COMMUNICATION

- Defines how applications can communicate over a network: the full process
- Guide vendors and developers, so the digital communication products and software programs they create will interoperate
- A layered reference model divides the full process into specific related groups of actions at each layer

Layered Tasks

Higher layers

Middle layers

Lower layers

OLD SCHOOL METHOD

THE METHOD YOU ALL KNOW

Benefits of Using a Layered Model

- Provides a common language
- Create a competition between vendors
- Changes in one layer do not affect other layers
- Assists in protocol design

ISO – OSI Reference Model

- ISO International Organization for Standardization
- OSI Open Systems Interconnection
- The International Organization for Standardization (ISO)
 is a multinational body dedicated to worldwide agreement on international standards
- An ISO standard that covers all aspects of network communications is the Open Systems Interconnection (OSI) model
- It was first introduced in the late 1970s
- ✓ Note: ISO is the organization, OSI is the model

ISO – OSI Reference cont.

ISO – OSI Reference cont.

Application Layer

- Application layer is our (i.e. users)
 interface to the network
- Application layer provides many useful applications to facilitate our day-to-day tasks,
 - ✓ Email services
 - ✓ File transferring
 - ✓ Remote terminals
 - ✓ Web services

Presentation Layer

There are three major functions performed by the Presentation Layer,

- 1. Translation
- 2. Encryption
- 3. Compression

Presentation Layer cont.

There are three major functions performed by the Presentation Layer,

Translation

- Sender and Receiver may be using two different formats to represent data (e.g. ASCII vs. UNICODE).
- Translation is the process of converting data,
 - From sender-dependent format to a common format at the sender
 - From common format to the receiver-dependent format at the receiver.

Presentation Layer cont.

Encryption

- Translate the data into an not recognizable format
- To prevent unauthorized people from viewing the data

Compression

- To reduce the number of bits to be transmitted (e.g., reduce the size)
- Important when sending multimedia content such as audio and video

Session Layer

There are **two major functions** performed by the Session Layer,

- 1. Dialog Control
- 2. Synchronization

Session Layer cont.

Dialog Control

- ✓ Allows the two communicating processes to enter into a dialog
 (i.e. a two way communication)
- ✓ This dialog can be either half duplex or full duplex

Synchronization

- ✓ Session layer adds checkpoints

 in between the long data

 stream passed by the layer

 above (i.e. presentation layer)
- ✓ Adds an additional level of verification to the receiver

Transport Layer

- Several very important functionalities,
 - ✓ PORT Numbers: an address to each application
 - ✓ Segmentation and reassembly
 - ✓ Connection control
 - ✓ Flow control
 - ✓ **Error** control

TRANSPORT LAYER CONT.

Transport Layer: Process to Process Delivery

TRANSPORT LAYER CONT.

TRANSPORT LAYER ADDRESS: PORT ADDRESS

Uses to identify the source and destination processes for communication

At the end device, the service port number directs the data to the correct conversation.

Network Layer

- Network layer is responsible for two major functionalities:
- 1. Routing
- 2. Logical addressing (IP address)

Logical addressing (IP address)

Each device should have a address

 Network layer issues addresses to the devices called the logical addresses: IP addresses

Routing

- Applications are in different devices
- Different devices are connected to same/different networks
- So there should be a mechanism to travers the data between the devices through the networks
- That mechanism is known as routing

Network Layer cont.

Network Layer cont.

NETWORK LAYER ADDRESS: IP ADDRESS

Network Layer cont.

NETWORK LAYER ADDRESS: IP ADDRESS

■ IP address has two parts: the network prefix and the host part

The computer using this IP address is on network 192.168.10.0.

Data Link Layer

- Responsible to guarantee the successful transmission of frames from one hop to the next
 - 1. Framing Ethernet frame
 - 2. Physical addressing (MAC address)
 - 3. Flow control
 - 4. Error control
 - 5. Access control

Data Link Layer Cont.

DATA LINK LAYER ADDRESS: MAC ADDRESS

- Physical address
- Universally Unique address
- 48 bit long address

Physical Layer

 Physical Interfaces transmit and receive unstructured raw data over the transmission media

• Converts the digital/analog bits into electrical or optical

signals

Physical Layer cont.

PHYSICAL LAYER CONT.

Standard bodies that define Physical layer specifications

- EIA: Electronic Industries Alliance
- ITU-T: International Telecommunication Union Telecommunication Standardization Sector
- ANSI: American National Standards Institute

Summary of the ISO – OSI Layers

ISO - OSI reference model cont.

HEADERS CONCEPT:

EMBED CONTROL INFORMATION AT EACH LAYER

What are the Addresses used in network communication?

Port Addresses
 Logical Addresses

 (IP address)

 Data Link Layer
 Physical Addresses

 (MAC address)

What are the Connections used at different layers?

Transport Layer

- Process-to-Process
- i.e. Source Application to Destination Application

Network Layer

- Host-to-Host
- i.e. Source Computer to Destination Computer

Data Link Layer

- Hop-to-Hop
- i.e. One hop to the next hop

Names used for Data at each layer

Application Layer • Data Presentation Layer Data Session Layer • Data **Transport Layer** Segments **Network Layer** Packets Data Link Layer Frames Physical Layer • Bits

Protocols Used at Different Layers

Layer	Name	Example protocols
7	Application Layer	HTTP, FTP, DNS, SNMP, Telnet
6	Presentation Layer	SSL, TLS
5	Session Layer	NetBIOS, PPTP
4	Transport Layer	TCP, UDP
3	Network Layer	IP, ARP, ICMP, IPSec
2	Data Link Layer	PPP, ATM, Ethernet
1	Physical Layer	Ethernet, USB, Bluetooth, IEEE802.11

TCP/IP stack

THANK YOU!

