15. Composition and Resolution of Concurrent Forces (composition-and-resolution-of-concurrent-forces/solution/grade-

12/mathematics/190/solutions)

- 16. Parallel Forces, Moments and Couples (parallel-forces-moments-and-couples/solution/grade-12/mathematics/193/solutions)
- 17. Kinetics: The Geometry of Motion (kinetics:-the-geometry-of-motion/solution/grade-12/mathematics/196/solutions)
- $18.\ Newton's\ Law\ of\ Motion\ (newtons-law-of-motion/solution/grade-motion/solution/sol$

12/mathematics/199/solutions)

- 19. Projectiles (projectiles/solution/grade-12/mathematics/202/solutions)
- 20. Work, Energy and Power (work-energy-and-power/solution/grade-

12/mathematics/203/solutions)

21. Linear Programming (linear-programming/solution/grade-

12/mathematics/206/solutions)

22. Computational Methods (computational-methods/solution/grade-

12/mathematics/211/solutions)

23. System of Linear Equations (system-of-linear-equations/solution/grade-

12/mathematics/209/solutions)

24. Numerical Integration (numerical-integration/solution/grade-

12/mathematics/208/solutions)

Previous (statistics/solution/grade-12/mathematics/186/solutions)

Next (probability/solution/grade-12/mathematics/188/solutions)

Statistics

13.1 (statistics-13-1/solution/grade-12/mathematics/185/solutions)

 $13.2\ (statistics-13-2/solution/grade-12/mathematics/186/solutions)$

13.3 (statistics-13-3/solution/grade-12/mathematics/187/solutions)

13.3

1.

a.

Soln:

We have

$$\label{eq:correlation} \text{Correlation coefficient (r)} = \frac{\operatorname{Cov.}(X,Y)}{\sqrt{\operatorname{Var.}(X)}.\sqrt{\operatorname{Var.}(Y)}}$$

$$=\frac{18}{\sqrt{16}.\sqrt{81}}=\frac{18}{4*9}=\frac{1}{2}=0.5$$

b.

Soln:

$$r = \frac{\mathrm{Cov.}(X,Y)}{\sqrt{\mathrm{Var.}(X).}\sqrt{\mathrm{Var.}(Y)}} = \frac{-16.5}{\sqrt{2.89}.\sqrt{100}} = -\frac{16.5}{17} = -0.97.$$

C.

Soln:

$$r = \frac{\sum^{(X - \overline{X})(Y - \overline{Y})}}{\sqrt{\left(\sum^{X} - \bar{X}\right)^{2}} \cdot \sqrt{\left(\sum^{Y} - \bar{Y}\right)^{2}}} = \frac{35}{\sqrt{40} \cdot \sqrt{63}} = \frac{35}{50.2} = 0.70.$$

d

Soln:

Since,
$$\sigma_{\text{X}}$$
 = $\sqrt{\frac{\left(\sum^{x}-\bar{x}\right)^{2}}{n}}$ than 3.2 = $\sqrt{\frac{\left(\sum^{x}-\bar{x}\right)^{2}}{15}}$.

Or,
$$(\sum^{x} -\bar{x})^2 = 15 * (3.2)^2 = 15 * 10.24 = 153.6$$

Similarly,
$$(\sum^{y} - \bar{y})^2 = 15 * (3.4)^2 = 15 * 11.56 = 173.4$$

We have
$$r=\frac{\sum^(x-\bar{x})(y-\bar{y})}{\sqrt{(\sum^x-\bar{x})^2}.\sqrt{(\sum^y-\bar{y})^2}}$$

$$= \frac{122}{\sqrt{153.6}.\sqrt{173.4}} = \frac{122}{163.2} = 0.75.$$

e.

$$\begin{split} r &= \frac{n \sum_{xy} - \sum^{X} \cdot \sum^{Y}}{\sqrt{n \sum^{X^{2}} - \left(\sum^{X}\right)^{2}} \sqrt{n \sum^{Y^{2}} - \left(\sum^{Y}\right)^{2}}}, \\ &= \frac{10*415 - 60*60}{\sqrt{10*400 - 60^{2} \cdot \sqrt{10*580 - 60^{2}}}} = \frac{4150 - 3600}{20*46.9} = \frac{550}{938} = 0.589. \end{split}$$

f.

Soln

Or,
$$\bar{x} = \frac{\sum_{n=1}^{x} \hat{a} \sum_{n=1}^{x} \hat{a} \sum_{n=1}^$$

Or,
$$\bar{y} = \frac{\sum_{y=0}^{y}}{n} \hat{a} \sum_{y=0}^{y} = 10 * 3 = 30.$$

We have,

$$r = \frac{n \sum^{xy} - \sum^{X} \cdot \sum^{Y}}{\sqrt{n \sum^{X^2} - \left(\sum^{X}\right)^2} \sqrt{n \sum^{Y^2} - \left(\sum^{Y}\right)^2}.}$$

$$= \frac{10*115-50*30}{\sqrt{10*290-50^2}\sqrt{10*300-(30)^2}}$$

$$=\frac{1150-1500}{\sqrt{2900-2500}\sqrt{3000-900}}$$

$$= -\frac{350}{20*45.8} = -\frac{350}{916} = -0.382$$

2.

a.

Soln:

 $\label{eq:calculation} \textbf{Calculation of correlation Co-efficient}.$

Height(X)	Weight(Y)	$x = X - \overline{X}$	$y = Y - \overline{Y}$	x ²	y ²	xy
1						

160	63	-2	1	4	1	-2
162	62	0	0	0	0	0
165	64	3	2	9	4	6
161	60	-1	-2	1	4	2
162	61	0	-1	0	1	0
$\sum_{X} = 810$	\sum^{Y} = 310			$\sum^{x^2} = 14$	$\sum_{y^2} = 10$	$\sum^{xy} = 0$

Or,
$$\bar{X} = \frac{\sum^{X}}{n} = \frac{810}{5} = 162$$
,

Or,
$$\bar{Y} = \frac{\sum_{i=1}^{Y} x_i}{n} = \frac{310}{5} = 62$$
,

Now,
$$r = \frac{\sum^{xy}}{\sqrt{\sum^{x^2}}\sqrt{\sum^{y^2}}} = \frac{6}{\sqrt{14}.\sqrt{10}} = \frac{6}{11.82} = 0.51$$

b.

Soln:

Calculation of correlation Co - efficient.

X	Υ	$x = X - \overline{X}$	$y = Y - \overline{Y}$	x ²	y ²	xy
5	2	1	-2	1	4	-2
7	3	3	-1	9	1	-3
1	4	-3	0	9	0	0
3	5	-1	1	1	1	-1
4	6	0	2	0	4	0
\sum^{X} = 20	\sum^{Y} = 20			$\sum_{x^2} = 20$	$\sum_{y^2} = 10$	∑xy = -6

Or,
$$\bar{X} = \frac{\sum^{X}}{n} = \frac{20}{5} = 4$$
,

Or,
$$\bar{Y} = \frac{\sum_{n}^{Y}}{n} = \frac{20}{5} = 4$$
,

Now,
$$r = \frac{\sum^{xy}}{\sqrt{\sum^{x^2}}\sqrt{\sum^{y^2}}} = \frac{-6}{\sqrt{20}.\sqrt{10}} = \frac{-6}{14.14} = -0.42$$

C.

Soln:

Calculation of correlation Co - efficient.

Husband(X)	Wife(Y)	$x = X - \overline{X}$	$y = Y - \overline{Y}$	x ²	y ²	xy
23	29	-1.17	-0.33	1.3689	0.1089	0.3861
22	18	-2.17	-2.33	4.7089	5.4289	5.0561
24	20	-0.17	-0.33	0.0289	0.1089	0.0561
23	21	-1.17	0.67	1.3689	0.4489	-0.7839
26	21	-1.83	0.67	3.3489	0.4489	1.2261
27	22	2.83	1.67	2.7889	2.7889	4.7261

$\sum^{X} = 145 \qquad \sum^{Y} = 122$	$\sum^{x^2} = 13.61$ $\sum^{y^2} = .33$	$\sum_{xy} = -10.67$
--	---	----------------------

Or,
$$\bar{X} = \frac{\sum^{x}}{n} = \frac{145}{6} = 24.17$$
,

Or,
$$\bar{Y} = \frac{\sum_{n=1}^{Y} \frac{122}{6}}{1} = 20.33$$
,

Now,
$$r = \frac{\sum^{xy}}{\sqrt{\sum^{x^2}}\sqrt{\sum^{y^2}}} = \frac{10.67}{\sqrt{13.61}.\sqrt{9.33}} = \frac{10.67}{11.27} = 0.94.$$

3.

Soln:

Let the missed number of Y series be a then,

Or,
$$\overline{\mathbf{Y}} = \frac{9+11+a+8+7}{5}$$

So, a

= 5

Calculation of correlation Co - efficient.

Х	Υ	$x = X - \overline{X}$	$y = Y - \overline{Y}$	x ²	y ²	ху
		0				
6	9		1	10	1	0
2	11	-4 4	3	16	9	-12
10	5	-2	-3	16	9	-12
4	8	2	0	4	0	0
8	7		-1	4	1	-2
				$\sum_{x^2} = 40$	$\sum_{y^2} = 20$	$\sum^{xy} = -26$

Now,
$$r = \frac{\sum^{xy}}{\sqrt{\sum^{x^2}}\sqrt{\sum^{y^2}}} = -\frac{26}{\sqrt{40}\sqrt{20}} = -\frac{26}{28.28} = -0.92.$$

4.

Soln:

$$n = 12.$$

Corrected
$$\left(\sum^{X}\right)$$
 = 30 – 11 + 10 = 29,

Corrected
$$\left(\sum^{Y}\right)$$
 = 5 – 4 + 14 = 15,

Corrected
$$\left(\sum^{x^2}\right) = 670 - (11)^2 + (10)^2 = 649.$$

Corrected
$$\left(\sum^{y^2}\right) = 288 - (4)^2 + (14)^2 = 468.$$

Corrected (
$$\sum^{xy}$$
) = 334 – 11 * 4 + 10 * 14 = 430.

Now, corrected (r) =
$$\frac{n\sum^{xy} - \sum^{X}.\sum^{Y}}{\sqrt{n\sum^{X^2} - \left(\sum^{X}\right)^2}\sqrt{n\sum^{Y^2} - \left(\sum^{Y}\right)^2}.} = \frac{12*430 - 29*15}{\sqrt{12*649 - (29)^2}.\sqrt{12*468 - (15)^2}} = \frac{5160 - 435}{\sqrt{7788 - 841}.\sqrt{5616 - 225}} = \frac{4725}{83.34*72.42} = 0.775.$$

Go Top