

Kauno technologijos universitetas

Elektros ir elektronikos fakultetas

Individualaus darbo ataskaita

Individualaus "Įterptinių sistemų" darbo ataskaita

Simonas Riauka

Studentas

Prof. Žilvinas Nakutis

Dėstytojas

Turinys

Įvadas	3
1. Principinė schema	
1.1. Blokinė schemos diagrama	4
1.2. Komponentų pagrindimas	
2. Programos schema	7
2.1. Algoritmo aprašas	
2.2. Matematinis pagrindimas	8
2.3. Vartotojo kalibracijos aprašymas	11
2.4. Kompiuterinės programos galimybės	11
2.5. Komunikacijų su kompiuteriu aprašas	13
3. Testavimas ir rezultatai	
3.1. Testavimas	15
3.1.1. Fizinis veikimo testavimas	16
3.1.2. Kompiuterinės programos veikimas	19
3.2. Paklaidų vertinimas	21
Išvados	23
Šaltiniai	24

Įvadas

Pagal užduoties variantą priklausytų 11 užduotis, bet kadangi turiu STM maketo plokštę su integruotu e-kompaso jutikliu, pasinaudosiu šiais, jau turimais įrenginiais.

Užduoties tikslas: sukurti elektroninį kompaso atitikmenį vartotojui atvaizduojant virtualią kompaso rodyklę ir jos skirtumą nuo geografinės šiaurės. Šio projekto įgyvendinimui reikės pasinaudoti ir magnetometro ir pagreičio sensorių duomenimis, kurie bus skirti kompaso nehorizontaliam laikymui atkompensuoti.

Lentelė 1. Sugalvotos užduoties varianto nurodymai

Matuojamas	Kanalų	Vaizduojami	Signalo	Dydžio	Parodymų	Parametrų
fizikinis dydis	skaičius	ir	pralaidumo	diapazonas	atnaujinimo	diskretizavimo
		perduodami į	juosta		indikatoriuje	periodas, s
		kompiuterį			periodas, s	
		parametrai				
3D pagreičio	1	Nuokrypio	0-1Hz	0° - 360°	0.5	0.1
ir 3D		nuo šiaurės				
magnetometro		vidurkis				
sensoriai						

1. Principinė schema

1.1. Blokinė schemos diagrama

Naudosime vieną modulį, kuriame yra integruoti magnetometro ir akselerometro sensoriai, jį nuskaitysime I2C sąsaja. OLED ekrano komunikacijoms bus panaudotas atskiras I2C kanalas dėl kitokio reikalaujamo sąsajos greičio.

1 pav. Įrenginio blokinė schema

Nubrėžta schema per Altium Designer programinę CAD įrangą:

2 pav. Įrenginio jungimo schema

E-kompaso modulis yra integruotas į maketą, todėl jo I2C kanalas nekeičiamas. OLED ekranas jungtas prie atskiro I2C kanalo, nes jam reikia greitojo 400kHz režimo, su kompiuteriu bendravimas per UART į USB keitiklį, 4 kanalą lengvesniam fiziniam prijungimui, pasirinktas baud rate – 9600bit/s.

Lentelė 2. BOM

Pavadinimas	Komentaras	Kiekis
STM32F303VC DISCOVERY	Mikrokontrolerio plokštė su	1
KIT	integruotu LSM303DLHC e-	
	kompaso sensoriumi	
SSD1306	OLED ekranas	1
PL2303	UART/USB konverteris	1
Male to Female laidai	Laidai skirti sujungti	7
	mikrokontrolerio išvadus su	
	OLED ekranu ir UART/USB	
	konverteriu	
USB-A į USB-B mini kabelis	Laidas skirtas tiekti elektrai į	1
	mikrokontrolerio plokštę	

1.2. Komponentų pagrindimas

Mikrokontroleris ir sensorius yra kartu ant vienos plokštės, kas palengvina jų naudojimą. Mikrokontroleris turi daug išorinės periferijos galimybių – turi ir I2C ir UART laisvų kanalų.

OLED ekranas turi pakankamai vietos atvaizduoti ir kompaso nuokrypio nuo šiaurės laipsnius, kurių bus daugiausia trys skaičiai, ir yra pakankamai vietos atvaizduoti grafiniam vaizdui – apvaliam kompasui su šiaurės rodykle. Taip pat maitinimas ir valdymo įtampos veikia 3.3V lygyje, kas yra suderinama su pasirinktu mikrovaldikliu.

UART į USB konverteris priima ir 5V ir 3.3V UART signalus, gamintojas turi veikiančius Windows draiverius bei garantuoja veikimą 300bps iki 1.5Mbps greičiais.

2. Programos schema

2.1. Algoritmo aprašas

3 pav. Mikrokontrolerio pagrindinės programos flow chart

4 pav. Programos konfigūravimo duomenų priėmimo iš kompiuterio flow chart tesinys

2.2. Matematinis pagrindimas

Laikant įrenginio plokštę nehorizontaliai sensoriaus matavimo ašys pasislenka ir rodo duomenis, kurie su įprasta apskaičiavimo formule nėra teisingai apdorojami, todėl kompaso nehorizontaliai padėčiai atkompensuoti reikia panaudoti duomenis iš dviejų sensorių:

- 1. 3D Akselerometro žemės sunkio vektoriaus atradimui ir įrenginio pasukimo apskaičiavimui
- 2. 3D Magnetometro magnetinių laukų stiprumui rasti ir žinant įrenginio pasukimą apskaičiuoti šiaurės krypties vektorių

Abu sensoriai yra integruoti į vieną komponentą.

2.2.1. Įprastas šiaurės krypties skaičiavimo metodas

Objekto pasisukimą erdvėje galima nusakyti trimis dydžiais: roll, pitch ir heading.

5 pav. Objekto orientacijos iliustracija

Jei įrenginys yra horizontalioje būsenoje (pitch = roll = 0), tai magnetinio lauko komponentę (rodančią šiaurės krypties link) H galima suprojektuoti į horizontalią plokštumą, randant Hh – kryptį magnetinės šiaurės link. Pasinaudojant magnetometro X ir Y komponentėmis, arktangento funkcijos pagalba galima rasti šį vektorių.

Heading =
$$arctan(Y_h/X_h)$$
 (1)

6 pav. Šiaurės krypties (heading) radimo iliustracija

2.2.2. Atkompensuotos šiaurės krypties skaičiavimo metodas

Kompaso modulį laikant ne horizontalioje padėtyje sensoriaus X ir Y rodmenys išsikreipia ir reikia įskaičiuoti ir Z ašies duomenis.

Pirma turime apskaičiuoti įrenginio pitch ir roll vertes pasitelkus akselerometro rezultatais:

Ieškant šių verčių turime susidaryti pasukimo matricas iš kurių galėsime atrasti tikrąsias plokštės posūkio komponentes.

Sudarant pasukimo matricas mūsų objektas turi būti pirma pasukamas aplink Z ašį kampu ψ , tada Y kampu ρ , X kampu γ :

7 pav. Objekto pasukimo erdvėje transformacijos ieškant pasukimo kampų

Iš šių pasukimų ir jų kampų aprašomos pasisukimų matricos gauname originalaus objekto pasukimų kampus Xb, Yb, Zb paverstus į horizontaliai sulygiuotas X'b, Y'b, Z'b:

$$R_{\psi} = \begin{bmatrix} cos\psi & sin\psi & 0 \\ -sin\psi & cos\psi & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

$$R_{\rho} = \begin{bmatrix} \cos\rho & 0 & -\sin\rho \\ 0 & 1 & 0 \\ \sin\rho & 0 & \cos\rho \end{bmatrix}$$

$$R_{\gamma} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos \gamma & \sin \gamma \\ 0 & -\sin \gamma & \cos \gamma \end{bmatrix}$$

$$\begin{bmatrix} X_b' \\ Y_b' \\ Z_b' \end{bmatrix} = R_{\gamma} R_{\rho} R_{\psi} \begin{bmatrix} X_b \\ Y_b \\ Z_b \end{bmatrix}$$

$$= \begin{bmatrix} \cos \rho \cos \psi & \cos \rho \sin \psi & -\sin \rho \\ \cos \psi \sin \rho \sin \gamma - \cos \gamma \sin \psi & \cos \gamma \cos \psi + \sin \rho \sin \gamma \sin \psi & \cos \rho \sin \gamma \\ \cos \psi \sin \rho \cos \gamma + \sin \gamma \sin \psi & -\sin \gamma \cos \psi + \sin \rho \cos \gamma \sin \psi & \cos \rho \cos \gamma \end{bmatrix} \cdot \begin{bmatrix} X_b \\ Y_b \\ Z_b \end{bmatrix}_{(2)}$$

Ši formulė mums leidžia žinant esamas ir norimas gauti koordinates laisvai pasukti bet kokį kūną. Kadangi horizontaliai sulygiuotos plokštės Xb ir Yb ašių pasisukimai bus lygūs 0, tai įvedus akselerometro duomenis Ax1, Ay1, Az1 gaunama formulė:

$$\begin{bmatrix} A_{x1} \\ A_{y1} \\ A_{z1} \end{bmatrix} = \begin{bmatrix} \cos\rho\cos\psi & \cos\rho\sin\psi & -\sin\rho\\ \cos\psi\sin\rho\sin\gamma - \cos\gamma\sin\psi & \cos\gamma\cos\psi + \sin\rho\sin\gamma\sin\psi & \cos\rho\sin\gamma\\ \cos\psi\sin\rho\cos\gamma + \sin\gamma\sin\psi & -\sin\gamma\cos\psi + \sin\rho\cos\gamma\sin\psi & \cos\rho\cos\gamma \end{bmatrix} \cdot \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}_{(3)}$$

Ji supaprastinama iki:

Pitch =
$$\rho$$
 = arcsin($-A_{x1}$)
Roll = γ = arcsin($A_{y1}/\cos\rho$) (4)

Gavę dvi mums reikiamas pasisukimo vertes galime jas įvertinti skaičiuodami atkompensuotą magnetinio sensoriaus šiaurės kryptį:

Imdami (3) formulės matricą ją galime panaudoti magnetinio lauko pasukimui rasti ir ją išskleidę gausime atkompensuoto magnetinio lauko komponentes (Mx2, My2, Mz2) iš nuskaitytų sensoriumi (Mx1, Mx1, Mz1).

$$\begin{split} \mathbf{M}_{x2} &= \mathbf{M}_{x1} \cos \rho + \mathbf{M}_{z1} \sin \rho \\ \mathbf{M}_{y2} &= \mathbf{M}_{x1} \sin \gamma \sin \rho + \mathbf{M}_{y1} \cos \gamma - \mathbf{M}_{z1} \sin \gamma \cos \rho \\ \mathbf{M}_{z2} &= -\mathbf{M}_{x1} \cos \gamma \sin \rho + \mathbf{M}_{y1} \sin \gamma + \mathbf{M}_{z1} \cos \gamma \cos \rho \end{split}$$
 (5)

Įstatę jau apskaičiuotas pitch ir roll reikšmes ir panaudoję pradinę (1) formulę gausime atsakymą [3].

2.3. Vartotojo kalibracijos aprašymas

Nors sensorius yra individualiai sukalibruotas gamykloje, bet papildomų netikslumų gali atsirasti einant laikui arba norint tiesiog pakeisti rodmenis (pridėti deklinacijos vertę atsižvelgiant į esamą įrenginio platumą, jei norima, kad kompasas rodytų geografinės šiaurės link). Norint labai paprastai tai įvykdyti, prie apskaičiuotų iš sensoriaus laipsnių galima pridėti konfigūracijos vertę. Ši vertė gali būti saugoma mikrokontrolerio vidinėje Flash tipo atmintyje, todėl bus išsaugota tarp įjungimų, ją nustatyti galima atsiuntus UART komandą iš kompiuterio programos.

Mikrokontrolerio Flash atmintis yra suskirstyta į 128 puslapius po 2kB. Kadangi atminties pradžioje atmintis skirta programai laikyti, pasirenkame paskutinį atminties puslapį adresu 0x0803F800, kuriame yra mažiausias šansas sugadinti esamus ar mūsų įrašytus duomenis.

Mikrokontroleryje atmintis laikoma po 32 bitų ilgio žodžius, todėl skaitysime ir rašysime tokio ilgio informaciją. Rašant į atmintį reikia išjungti jos apsaugas, tam padaryti panaudojame jau esamą internete prieinamą biblioteką [5].

2.4. Kompiuterinės programos galimybės

Personaliniam kompiuteriui parašyta programa naudojantis C# programavimo kalba, Windows Forms sistemos pagalba, per UART sąsają COM port ir "System.IO.Ports" biblioteką geba perduoti ir priimti informaciją iš kompiuterio.

8 pav. Pavyzdinis kompiuterio programos vaizdas

Ši programa sugeba:

- Prisijungti prie atitinkamo COM porto ir pranešti vartotojui apie prisijungimo stadiją
- Priimti kontrolerio informaciją ir ją atvaizduoti ekrane
- Siųsti į kontrolerį kalibravimo duomenis
- Išsaugoti surinktą informaciją tekstinio failo pavidalu

Priimant informaciją ji yra išsaugoma kartu su priėmimo laiko momento data. Vartotojui paspaudus "Save to file" mygtuką surinkti duomenys yra išsaugomi tekstinio failo pavidalu. Sukuriamas failas išsaugojimo datos pavadinimu o jame išsaugomi kompaso kampo duomenys su priėmimo laikų momentais.

9 pav. Išsaugotas pavyzdinis failas

10 pav. Pavyzdinio failo išsaugota informacija

2.5. Komunikacijų su kompiuteriu aprašas

Komunikacijos su kompiuteriu vykdomos per UART sąsają. Yra sukurtos trys komandos komunikacijai iš ir į kompiuterį.

Pirmasis siunčiamas baitas yra ID/Komandos numeris, kad priimantis įrenginys galėtų atpažinti kokie duomenys yra siunčiami. Likę du baitai skirti naudingai informacijai siųsti.

Pasirinkti du informacijos baitai, nes siunčiamos kampų ar konfigūracijos vertės yra 0-360 laipsnių diapazone ir vieno baito tam neužtektų. Galima buvo dalį informacijos įrašyti į komandos baitą, bet tai būtų apsunkinę nuskaitymą.

Lentelė 3. Komunikacijų komandų aprašas

ID/Komandos	Kryptis	Baitų	Aprašas	
numeris		kiekis		
1	Kompiuteris -> kontroleris	3	Atnaujina mikrokontrolerio kalibracijos	
			vertę, įrašo ją į jo vidinę atmintį.	
3	Kontroleris -> kompiuteris	3	Nusiunčia esamo kampo nuo šiaurės	
			reikšmę kompiuteriui atvaizduoti ekrane.	

4	Kontroleris -> kompiuteris	3	Nusiunčia esamos kalibracijos reikšmę į
			kompiuterį.

3. Testavimas ir rezultatai

3.1. Testavimas

Kompaso X ašis yra nukreipta lygiagrečiai plokštės ilgio tolyn nuo USB jungties, ją laikysime kaip priekio kryptį. Palei ją skaičiuosime nuokrypio nuo šiaurės kampą.

11 pav. Sensoriaus ašys

Ribinių verčių matavimą galėsime atlikti kodo simuliacijoje:

Ribinių verčių matavimas

3.1.1. Fizinis veikimo testavimas

12 pav. Realaus pilno įtaiso sujungimas

13 pav. Kompaso ir mikrokontrolerio rodomo kampo fizinis testavimas, indikatoriaus rodoma kryptis atitinka realaus kompaso kryptį

14 pav. Kampu laikomo kompaso vaizdas išjungus nehorizontalios laikymo padėties kompensavimą

15 pav. Kampu laikomo kompaso testavimas įjungus kompensavimą, matome, kad skaičiavimai veikia gerai, atitinka realaus kompaso rodmenis

(Nuotraukose atjungtas UART-USB konverteris dėl patogesnio laikymo)

3.1.2. Kompiuterinės programos veikimo testavimas

16 pav. Kompaso realybėje ir kompiuterinėje programoje vaizdas, kai sensorius nukreiptas šiaurės kryptimi Norint įrašyti naują konfigūravimo reikšmę į mikrovaldiklį:

17 pav. Kompiuterio programos vaizdas prieš konfigūravimo reikšmės įrašymą

18 pav. Kompiuterio programos vaizdas prieš 45 laipsnių konfigūravimo vertės išsiuntimą (dešinė apačia)

19 pav. Kompiuterio programos vaizdas po naujos konfigūravimo vertės išsiuntimo nepakeitus fizinio sensoriaus kampo, matome, kad rodomas kampas pasisuko 45 laipsniais palei laikrodžio rodyklę

3.2. Paklaidų vertinimas

Symbol	Parameter	Test conditions	Min.	Typ. ⁽¹⁾	Max.	Unit
LA_TCSo	Linear acceleration sensitivity change vs. temperature	FS bit set to 00		±0.01		%/°C
LA_TyOff	Linear acceleration typical Zero-g level offset accuracy ^{(3),(4)}	FS bit set to 00		±60		mg
LA_TCOff	Linear acceleration Zero-g level change vs. temperature	Max delta from 25 °C		±0.5		mg/°C
LA_An	Acceleration noise density	FS bit set to 00, normal mode(<i>Table 8.</i>), ODR bit set to 1001		220		ug/(√Hz)
M_R	Magnetic resolution			2		mgauss
M_CAS	Magnetic cross-axis sensitivity	Cross field = 0.5 gauss H applied = ±3 gauss		±1		%FS/ gauss
M_EF	Maximum exposed field	No permanent effect on sensor performance			10000	gauss
M_DF	Magnetic disturbance field	Sensitivity starts to degrade. Use S/R pulse to restore sensitivity			20	gauss
Тор	Operating temperature range		-40		+85	°C

20 pav. Sensoriaus tikslumo charakteristikos

Pasirinktas FS = b00, GN = b100.

Matome, kad akselerometro paklaidos priklauso nuo temperatūros, +-0.01%/°C, taip pat yra pastovus 60mg offsetas.

Nuo nuskaitymo greičio kuris nustatytas į 400Hz kyla paklaida:

$$P = \frac{220}{\sqrt{400}} = 11ug$$

Magnetometras turi 1% mg/gauss paklaidą.

Iš viso gaunama 0.001% +- 11u gauss paklaida.

Symbol	Parameter	Test conditions	Min.	Typ. ⁽¹⁾	Max.	Unit
		FS bit set to 00		±2		
LA_FS Linear acceleration measurement range ⁽²⁾	Linear acceleration	FS bit set to 01		±4		1 _
	FS bit set to 10		±8		g	
	FS bit set to 11		±16		1	
		GN bits set to 001		±1.3		
		GN bits set to 010		±1.9		
		GN bits set to 011		±2.5		1
M_FS	Magnetic measurement range	GN bits set to 100		±4.0		gauss
		GN bits set to 101		±4.7		1
		GN bits set to 110		±5.6		1
		GN bits set to 111		±8.1		1
		FS bit set to 00		1		
I A O-		FS bit set to 01		2		mg/LSE
LA_So	Linear acceleration sensitivity	FS bit set to 10		4		
		FS bit set to 11		12		
		GN bits set to 001 (X,Y)		1100		
		GN bits set to 001 (Z)		980		1
		GN bits set to 010 (X,Y)		855		1
		GN bits set to 010 (Z)		760		1
		GN bits set to 011 (X,Y)		670		LSB/ gauss
	Magnetic gain setting	GN bits set to 011 (Z)		600		
		GN bits set to 100 (X,Y)		450		
M_GN		GN bits set to 100 (Z)		400		
		GN bits set to 101 (X,Y)		400		
		GN bits set to 101 (Z)		355		
		GN bits set to 110 (X,Y)		330		
		GN bits set to 110 (Z)		295		
		GN bits set to 111(2)(X,Y)		230		
		GN bits set to 111 ⁽²⁾ (Z)		205		

21 pav. Sensoriaus rezoliucijos charakteristikos

Sensoriaus LA_So ir LA_TyOff vertės yra individualiai sukalibruotos gamykloje.

Išvados

- 1. Sudarę įrenginio schemą, apjungę sensorių, ekraną ir USB-TTL modulį, suprogramavę vartotojo bei mikrokontrolerio programas sukūrėme savo, elektroninio kompaso duomenų surinkimo bei perdavimo įterptinę sistemą.
- 2. Sukurta kompiuterio programa sugeba priimdama informaciją ją išsaugoti tekstinio failo pavidalu su laiko momentais. Turint papildomų greičio sensoriaus duomenų apskaičiavus kiek laiko, kokiu vidutiniu greičiu, kokia kryptimi keliavo objektas galima būtų atkurti jo kelionės maršrutą ir dabartinę poziciją 3D erdvėje, todėl toks įrenginys galėtų būti naudojamas transporto priemonių navigacijai, jų sekimui ar lėktuvų juodosiose dėžėse.
- 3. Konfigūravimo vertė kuri pakeičia galutinį apskaičiuotą kampo reikšmę gali būti skirta arba kompaso rodymo paklaidoms kompensuoti (dirbant stipriai pašalinių magnetinių laukų veikiamose teritorijose), arba magnetinės šiaurės rodmenis pakeisti geografinės šiaurės rodmenimis. Deklinacijos kampas prie tam tikros platumos rodo kampo skirtumą tarp geografinės ir magnetinės šiaurės, jį įrašę į konfigūravimo reikšmę galime iš magnetinės šiaurės kompaso paversti jį į geografinės šiaurės kompasą.

Šaltiniai

- 1. https://www.st.com/en/evaluation-tools/stm32f3discovery.html#documentation
- 2. https://www.st.com/en/mems-and-sensors/lsm303dlhc.html
- $3. \ \ \frac{https://www.sparkfun.com/datasheets/Sensors/Magneto/Tilt%20Compensated%20Compass.}{pdf}$
- 4. https://controllerstech.com/oled-display-using-i2c-stm32/
- 5. https://controllerstech.com/flash-programming-in-stm32/