

# Fecomércio Sesc

**Big Data** 

**Prof. Marco Mialaret** 

Março

2024



#### Onde me encontrar:

https://www.linkedin.com/in/marco-mialaret-junior/

e

https://github.com/MatmJr



## Na aula passada...

#### Eita, já esqueci ...

- A disciplina foi apresentada.
- Aprendemos a configurar um ambiente para trabalhar com Python.





## O cenário atual e as oportunidades



Em 2016 a IBM publicou um estudo mostrando que aproximadamente 2,5 quintilhões de bytes (2,5 exabytes) de dados são criados diariamente, e que naquela época 90% dos dados do mundo foram criados nos anos de 2015 e 2016.

Segundo a International Data Corporation (IDC), o fornecimento global de dados atingirá 175 zettabytes (equivalente a 175 trilhões de gigabytes ou 175 bilhões de terabytes) anualmente até 2025.



- Um **megabyte** é cerca de um milhão (na verdade, 2^20) de bytes. Arquivos de áudio MP3 de alta qualidade variam de 1 a 2,4 MB por minuto.
- Um **gigabyte** é cerca de 1000 megabytes (na verdade, 2^30 bytes). Equivale a aproximadamente 141 horas de áudio MP3.
- Um **terabyte** é cerca de 1000 gigabytes (na verdade, 2^40 bytes). Equivale a aproximadamente 28 anos de áudio MP3.
- Um **petabyte** é cerca de 1000 terabytes, o que equivale a aproximadamente 141 milhões de horas de áudio MP3.
- Um **exabyte** é cerca de 1000 petabytes, o que equivale a aproximadamente 141 bilhões de horas de áudio MP3.



Hoje existem mais dispositivos IoT (Internet das coisas), do que aparelhos que não possuem essa tecnologia. O número de dispositivos conectados em Internet das Coisas (IoT) no mundo deve atingir o volume de 41,7 bilhões até o final de 2023.

Observação: Dispositivos IoT são todas e quaisquer tecnologias que possibilitam que os mais diferentes objetos se conectem à internet e interajam com ela de maneira autônoma.



Em 2023, estima-se que cerca de 328 milhões de terabytes de dados foram gerados. Em dados mais corretos, são 330 Exabytes de dados diariamente.





A explosão de big data provavelmente continuará exponencialmente nos próximos anos. Com 50 bilhões de dispositivos computacionais no horizonte, só podemos imaginar quantos mais haverá nas próximas décadas. É crucial para empresas, governos, militares e até indivíduos conseguirem lidar com todos esses dados.



O apelo do big data para o grande empresariado é inegável, dada as realizações que estão acelerando rapidamente. Muitas empresas estão fazendo investimentos significativos e obtendo resultados valiosos. Isso está forçando os concorrentes a investir também, aumentando rapidamente a necessidade de profissionais de computação com experiência em ciência de dados e ciência da computação.



#### Referências:

https://www.linkedin.com/pulse/o-n%C3%BAmero-de-dispositivos-conectados-em-iot-mundo-deve-atingir/?originalSubdomain=pt





# O que é big data?



Big Data é um conjunto de dados maior e mais complexo, especialmente de novas fontes de dados. Esses conjuntos de dados são tão volumosos que o software tradicional de processamento de dados simplesmente não consegue gerenciá-los. No entanto, esses grandes volumes de dados podem ser usados para resolver problemas de negócios que você não conseguiria resolver antes.









A análise de dados é uma disciplina acadêmica e profissional madura e bem desenvolvida. O termo "análise de dados" foi cunhado em 1962, embora as pessoas já analisassem dados usando estatísticas há milhares de anos, remontando aos antigos egípcios. A análise de big data é um fenômeno mais recente — o termo "big data" foi cunhado por volta de 2000.



Considere quatro dos V's do big data:

- 1. Volume a quantidade de dados que o mundo está produzindo está crescendo exponencialmente.
- 2. Velocidade a rapidez com que esses dados estão sendo produzidos, a velocidade com que se movem pelas organizações e a rapidez com que as alterações de dados estão crescendo rapidamente.



3. Variedade — os dados costumavam ser alfanuméricos (ou seja, consistindo de caracteres alfabéticos, dígitos, pontuação e alguns caracteres especiais) — hoje também incluem imagens, áudios, vídeos e dados de um número explosivo de sensores da Internet das Coisas em nossas casas, empresas, veículos, cidades e mais.



- 4. Veracidade a validade dos dados eles são completos e precisos? Podemos confiar nesses dados ao tomar decisões cruciais? Eles são reais?
- 5. Valor capacidade de extrair insights significativos a partir dos dados. Se refere à capacidade de transformar dados em benefícios concretos. É o processo de identificar partes de dados que são mais úteis e, assim, têm mais valor para ajudar organizações a tomar decisões mais informadas e eficazes.



Graças ao avanço tecnológico, especialmente refletido na Lei de Moore, a capacidade de armazenar, processar e transferir esses dados se tornou econômica e eficiente, com capacidades que aumentam exponencialmente. O armazenamento digital evoluiu a ponto de ser possível manter de forma prática e acessível a vasta quantidade de dados que produzimos, fenômeno conhecido como big data.





# Infraestruturas de Big Data



Vamos discutir as infraestruturas de hardware e software populares para trabalhar com big data e desenvolvimento de aplicações de big data, tanto em desktops quanto baseadas na nuvem.



#### Bancos de dados

- Bancos de dados são infraestruturas críticas para armazenar e manipular grandes volumes de dados que criamos.
- Eles são essenciais para manter esses dados de maneira segura e confidencial, especialmente com leis de privacidade rigorosas, como LGPD no Brasil, HIPAA nos EUA e GDPR na UE.



- A maioria dos dados produzidos hoje é não estruturada, como posts do Facebook ou tweets, ou semi-estruturada, como documentos JSON e XML.
- Bancos de dados relacionais não são adequados para dados não estruturados ou semi-estruturados usados em aplicações de big data.



- Com a evolução do big data, novos tipos de bancos de dados foram criados para lidar eficientemente com esses dados, incluindo NoSQL e NewSQL.
- Os NewSQL combinam benefícios dos bancos de dados relacionais e NoSQL.



#### **Apache Hadoop**

- Muitos dos dados atuais são tão grandes que não cabem em um único sistema.
- Com o crescimento do big data, surgiram necessidades de armazenamento de dados distribuídos e capacidades de processamento paralelo para processar os dados mais eficientemente.



#### **Apache Hadoop**

 Isso levou ao desenvolvimento de tecnologias complexas, como o Apache Hadoop, para processamento de dados distribuídos com paralelismo massivo em clusters de computadores, onde os detalhes intrincados são automaticamente e corretamente gerenciados.



#### **Apache Spark**

 Apache Spark foi desenvolvido como uma solução para melhorar o desempenho do processamento de big data, executando tarefas em memória, ao contrário do Hadoop, que realiza muitas operações de I/O em disco em vários computadores.



#### **Apache Spark**

 O Spark streaming é usado para processar dados em fluxo contínuo em mini-lotes. O Spark streaming coleta dados durante um intervalo de tempo especificado e, em seguida, fornece esse lote de dados para processamento.



#### Big Data na Nuvem

Os fornecedores de nuvem focam em tecnologia de arquitetura orientada a serviços (SOA), na qual eles fornecem capacidades "como um Serviço" que as aplicações se conectam e usam na nuvem. Serviços comuns fornecidos por fornecedores de nuvem incluem:

Big data as a Service (BDaaS)

Hadoop as a Service (HaaS)

Hardware as a Service (HaaS)

Infrastructure as a Service (IaaS)

Platform as a Service (PaaS)

Software as a Service (SaaS)

Storage as a Service (SaaS)





# Criação do Ambiente de Trabalho



Após criar a pasta chamada BigData, clicar com o botão do lado direito e selecionar a opção abrir no terminal



egamento de perfis pessoais e do sistema levou 729ms. PS E:\Senac\Aulas\Slides\BigData\BigData> <mark>code</mark> .





#### No VSCode:







#### Criando o ambiente:

E:\Senac\Aulas\CursoBigData>python -m venv venv

#### Ativando o ambiente:

E:\Senac\Aulas\CursoBigData>.\venv\Scripts\activate

(venv) E:\Senac\Aulas\CursoBigData>











Crie um arquivo chamado aula01.ipynb.

No terminal, instale o pandas no ambiente virtual:

```
(venv) E:\Senac\Aulas\CursoBigData>pip install pandas
Collecting pandas
  Using cached pandas-2.2.1-cp311-cp311-win_amd64.whl.metadata (19 kB)
Collecting numpy<2,>=1.23.2 (from pandas)
  Using cached numpy-1.26.4-cp311-cp311-win_amd64.whl.metadata (61 kB)
```





#### Ativando o ambiente virtual no notebook Jupyter











# O conjunto de Dados



A lavagem de dinheiro é um problema que movimenta bilhões de dólares, com sua detecção sendo notoriamente difícil devido à alta taxa de falsos positivos e negativos em algoritmos automatizados. Criminosos constantemente buscam maneiras de ocultar suas atividades.



O acesso a dados reais de transações financeiras é fortemente restrito por questões de propriedade e privacidade, complicando a tarefa de classificar corretamente cada transação como legítima ou de lavagem.



Para contornar esses problemas, a IBM oferece dados sintéticos de transações baseados em um mundo virtual com interações financeiras entre indivíduos, empresas e bancos, facilitando o estudo e a detecção de atividades suspeitas sem as limitações dos dados reais.



#### Fonte dos dados:

https://www.kaggle.com/datasets/ealtman2019/ibmtransactions-for-anti-money-launderingaml?resource=download



Subi o menor arquivo no meu drive:

https://drive.google.com/file/d/1aosoxH9p2Jg3YwqtzQdC6Ut WStSEc92G/view?usp=sharing





```
import gdown
import os

url = 'https://drive.google.com/uc?id=1aosoxH9p2Jg3YwqtzQdC6UtWStSEc92G'
output = 'data/dataset.csv'

os.makedirs(os.path.dirname(output), exist_ok=True)

gdown.download(url, output, quiet=False)

v 13.1s

Downloading...
From (original): https://drive.google.com/uc?id=1aosoxH9p2Jg3YwqtzQdC6UtWStSEc92G
From (redirected): https://drive.usercontent.google.com/download?id=1aosoxH9p2Jg3YwqtzQdC6UtWStSEc92G&confirm=t&uuid=b72a632f-c3de-428b-af56-b45c33c8b4e3
To: e:\Senac\Aulas\CursoBigData\Semana-82\data\dataset.csv
100%| 650M/650M [00:10<00:00, 60.5MB/s]</pre>
```



## Carregando o conjunto de dados:

```
import pandas as pd

data = pd.read_csv('data/dataset.csv')

$\sim$ 8.7s
```

|                           | Timestamp        | From Bank | Account   | To Bank | Account.1 | Amount Received | Receiving Currency | Amount Paid  | Payment Currency | Payment Format | Is Laundering |
|---------------------------|------------------|-----------|-----------|---------|-----------|-----------------|--------------------|--------------|------------------|----------------|---------------|
| 0                         | 2022/09/01 00:08 | 11        | 8000ECA90 | 11      | 8000ECA90 | 3.195403e+06    | US Dollar          | 3.195403e+06 | US Dollar        | Reinvestment   | 0             |
| 1                         | 2022/09/01 00:21 | 3402      | 80021DAD0 | 3402    | 80021DAD0 | 1.858960e+03    | US Dollar          | 1.858960e+03 | US Dollar        | Reinvestment   | 0             |
| 2                         | 2022/09/01 00:00 | 11        | 8000ECA90 | 1120    | 8006AA910 | 5.925710e+05    | US Dollar          | 5.925710e+05 | US Dollar        | Cheque         | 0             |
| 3                         | 2022/09/01 00:16 | 3814      | 8006AD080 | 3814    | 8006AD080 | 1.232000e+01    | US Dollar          | 1.232000e+01 | US Dollar        | Reinvestment   | 0             |
| 4                         | 2022/09/01 00:00 | 20        | 8006AD530 | 20      | 8006AD530 | 2.941560e+03    | US Dollar          | 2.941560e+03 | US Dollar        | Reinvestment   | 0             |
|                           |                  |           |           |         |           |                 |                    |              |                  |                |               |
| 6924044                   | 2022/09/10 23:39 | 71696     | 81B2518F1 | 71528   | 81C0482E1 | 3.346900e-02    | Bitcoin            | 3.346900e-02 | Bitcoin          | Bitcoin        | 0             |
| 6924045                   | 2022/09/10 23:48 | 271241    | 81B567481 | 173457  | 81C0DA751 | 1.313000e-03    | Bitcoin            | 1.313000e-03 | Bitcoin          | Bitcoin        | 0             |
| 6924046                   | 2022/09/10 23:50 | 271241    | 81B567481 | 173457  | 81C0DA751 | 1.305800e-02    | Bitcoin            | 1.305800e-02 | Bitcoin          | Bitcoin        | 0             |
| 6924047                   | 2022/09/10 23:57 | 170558    | 81A2206B1 | 275798  | 81C1D5CA1 | 4.145370e-01    | Bitcoin            | 4.145370e-01 | Bitcoin          | Bitcoin        | 0             |
| 6924048                   | 2022/09/10 23:31 | 170558    | 81A2206B1 | 275798  | 81C1D5CA1 | 3.427700e-02    | Bitcoin            | 3.427700e-02 | Bitcoin          | Bitcoin        | 0             |
| 6924049 rows × 11 columns |                  |           |           |         |           |                 |                    |              |                  |                |               |



## Informações do Dataset:

```
data.info()
✓ 0.0s
```



### Verificação de dados faltantes:



#### Selecionar variáveis de interesse:

```
currency = data['Payment Currency']
  received = data['Amount Received']
  paid = data['Amount Paid']

    0.0s
```



### Resumo estatístico

```
paid.describe()
✓ 0.3s
```





### Mudar formatação dos números

```
import locale

# Configura o locale para o padrão brasileiro
locale.setlocale(locale.LC_ALL, 'pt_BR.UTF-8')

# Ajusta a função de formatação para limitar a duas casas decimais
pd.options.display.float_format = lambda x: locale.format_string("%.2f", x, grouping=True, monetary=True)
```



## **Dúvidas?**







#### Marco Mialaret, MSc

**Telefone:** 

81 98160 7018

E-mail:

marcomialaret@gmail.com

