Simulated Test of Fit for Two Normal Populations

jdt

2/2/2022

Contents

heory	1
Goodness-of-Fit Tests	
χ^2 Procedure	
QQ and PP Plots	3
Tests Based on the Empirical Distribution Function (EDF)	6
R	8
AS	16
Code	16

Theory

Goodness-of-Fit Tests

In this section the test of hypothesis concerns the CDF for the random variable X rather than its parameters; (location and scale). The test can be stated as

$$H_0: F_X(x) = F_{X_0}(x)$$

when $F_{X_0}(x)$ is completely specified.¹

SAS provides the following goodness of fit tests:

- · Shapiro-Wilk test
- Kolmogorov-Smirnov test
- Anderson-Darling test
- Cramer-von Mises test

¹When you specify the NORMAL option in the PROC UNIVARIATE statement or you request a fitted parametric distribution in the HISTOGRAM statement, the procedure computes goodness-of-fit tests for the null hypothesis that the values of the analysis variable are a random sample from the specified theoretical distribution.

The Kolmogorov-Smirnov test D statistic, the Anderson-Darling statistic, and the Cramer-von Mises statistic are based on the empirical distribution function (EDF).

If you want to test the normality assumptions for analysis of variance methods, beware of using a statistical test for normality alone. A test's ability to reject the null hypothesis (known as the power of the test) increases with the sample size. As the sample size becomes larger, increasingly smaller departures from normality can be detected. Because small deviations from normality do not severely affect the validity of analysis of variance tests, it is important to examine other statistics and plots to make a final assessment of normality. The skewness and kurtosis measures and the plots that are provided by the PLOTS option, the HISTOGRAM statement, the PROBPLOT statement, and the QQPLOT statement can be very helpful. For small sample sizes, power is low for detecting larger departures from normality that may be important. To increase the test's ability to detect such deviations, you may want to declare significance at higher levels, such as 0.15 or 0.20, rather than the often-used 0.05 level. Again, consulting plots and additional statistics can help you assess the severity of the deviations from normality.

χ^2 Procedure

Perhaps you are beginning to wonder why I haven't mentioned the Ch1 Square Goodness of Fit procedure? Good question! Answer it is not very good when you have continuous data. It is much better (not good) when doing contingency tables. Consider the following figure

QQ and **PP** Plots

Probability plots can be used to assess normality of data, especially normality of the residuals in linear regression. Let $z_{(1)} \leq z_{(2)} \leq \ldots \leq z_{(n)}$ represent the ordered values of n independent and identically distributed N(0,1) random variables. It can be shown that the expected value of $z_{(i)}$ is

$$E(z_{(i)}) \approx \gamma_i = \Phi^{-1}[(i-3/8)/(n+1/4)]$$

where Φ is the cdf for the standard normal given by

$$\Phi(x) = (2\pi)^{-1/2} \int_{-\infty}^{x} e^{-1/2t^2} dt.$$

The QQ plot consists of plotting of the ordered data (standardized residuals), $z_{(i)}$ versus γ_i , i.e. $(z_{(i)}, \gamma_i)$. If the data are normal then the resulting scatterplot should fall on the diagonal degree line $(z_{(i)} = \gamma_i)$. The PP plot is obtained when plotting of the ordered pairs $(\Phi(z_{(i)}), [i/n])$.

Shapiro-Wilk Statistic

The Shapiro-Wilk statistic, W (also denoted as W_n to emphasize its dependence on the sample size n) is the ratio of the best estimator of the variance (based on the square of a linear combination of the order statistics) to the usual corrected sum of squares estimator of the variance (Shapiro and Wilk, 1965). The statistic W is always greater than zero and less than or equal to one $(0 < W \le 1)$. When the data are normally distributed, one would expect the ratio of these two estimators for the variance to be close to one, in which case, small values of W lead to the rejection of the null hypothesis of normality. The distribution of W is highly skewed. Seemingly large values of W (such as 0.90) may be considered small and lead you to reject the null hypothesis. The method for computing the p-value (the probability of obtaining a W statistic less than or equal to the observed value) depends on p. For p = 3, the probability distribution of W is known and is used to determine the p-value. For p > 4, a normalizing transformation is computed:

$$Z_n = \begin{cases} (-\log(\gamma - \log(1 - W_n)) - \mu)/\sigma & \text{if } 4 \le n \le 11\\ (\log(1 - W_n) - \mu)/\sigma & \text{if } n \ge 12 \end{cases}$$

The values of σ , γ , and μ are functions of n obtained from simulation results. Large values of Z_n indicate departure from normality, and because the statistic Z_n has an approximately standard normal distribution, this distribution is used to determine the p-values for n > 4.

EDF Goodness-of-Fit Tests

The EDF tests offer advantages over traditional chi-square goodness-of-fit test, including improved power and invariance with respect to the histogram midpoints. For a thorough discussion, refer to D'Agostino and Stephens (1986).

The **Empirical Distribution Function (EDF)** is defined for a set of n independent observations X_1, \ldots, X_n with a common distribution function F(x). Denote the observations ordered from smallest to largest as $X_{(1)}, \ldots, X_{(n)}$. The EDF, $F_n(x)$, is,

$$F_n(x) = 0, \quad x < X_{(1)}$$

 $F_n(x) = \frac{i}{n}, \quad X_{(i)} \le x < X_{(i+1)} \quad i = 1, \dots, n-1$.
 $F_n(x) = 1, \quad X_{(n)} \le x$

Note: $F_n(x)$ is a step function that takes a step of height $\frac{1}{n}$ at each observation. This function estimates the distribution function F(x). At any value x, $F_n(x)$ is the proportion of observations less than or equal to x, while F(x) is the probability of an observation less than or equal to x. EDF statistics measure the discrepancy between $F_n(x)$ and F(x).

 $^{^2}$ The Shapiro-Wilks procedure is based upon "moment-type" estimators and would not be as powerful as the procedures that are based upon the estimated CDF for X. It should probably not be used without considering the other procedures.

³The computational formulas for the EDF statistics are based upon the probability integral transformation U = F(X). That is, if $X \sim F(X)$ then $U \sim U(0,1)$. In the test of fit problems, F(X) is the null (or specified) distribution function.

Kolmogorov D Statistic

The Kolmogorov-Smirnov statistic (D) is defined as

$$D = \sup_{x} |F_n(x) - F(x)|$$

The Kolmogorov-Smirnov statistic is computed as the maximum of D^+ and D^- , where D^+ is the largest vertical distance between the EDF and the distribution function when the EDF is greater than the distribution function, and D^- is the largest vertical distance when the EDF is less than the distribution function⁴.

$$D^{+} = \max_{i} \left(\frac{i}{n} - U_{(i)}\right)$$

$$D^{-} = \max_{i} \left(U_{(i)} - \frac{i-1}{n}\right)$$

$$D = \max\left(D^{+}, D^{-}\right)$$

Quadratic EDF Statistics

The Anderson-Darling statistic and the Cramer-von Mises statistic are special cases of the general quadratic class of EDF statistics. This class of statistics is based on the squared difference $(F_n(x) - F(x))^2$. The general form of the quadratic class of EDF statistics is

$$Q = n \int_{-\infty}^{+\infty} (F_n(x) - F(x))^2 \psi(x) dF(x)$$
(1)

where $\psi(x)$ is a weight function defined on the squared difference $(F_n(x) - F(x))^2$.

Anderson-Darling Statistic

The Anderson-Darling statistic considers $\psi(x) = \left[F(x)\left(1 - F(x)\right)\right]^{-1}$ in which case equation (1) is

$$A^{2} = -n - \frac{1}{n} \sum_{i=1}^{n} \left[(2i - 1) \log U_{(i)} + (2n + 1 - 2i) \log(1 - U_{(i)}) \right].$$

where $U_{(i)} = F_X(X_{(i)})$.

Cramer-von Mises Statistic

The Cramer-von Mises statistic considers $\psi(x) = 1$ in which case equation (1) is

$$W^{2} = \sum_{i=1}^{n} \left(U_{(i)} - \frac{2i-1}{2n} \right)^{2} + \frac{1}{12n}.$$

 $^{^4}$ PROC UNIVARIATE uses a modified Kolmogorov D statistic to test the data against a normal distribution with mean and variance equal to the sample mean and variance.

Tests Based on the Empirical Distribution Function (EDF)

I have previously indicated that the EDF is the best estimate for the population CDF for a random variable X. Therefore, it follows that tests based upon the EDF should be superior to those that are not. Consider the following Figure

This section describes three nonparametric tests that are based on the empirical distribution function⁵. The procedures are; the Kolmogorov-Smirnov and Cramer-von Mises tests, and also the Kuiper test for two-sample data.⁶ The null hypothesis is $H_0: F_X(\cdot) = F_Y(\cdot) = F(\cdot)$. The (EDF) of a sample $\{x_j\}, j=1,2,\ldots,n$ is defined as

$$\hat{F}(x) = \frac{1}{n} (\text{number of } x_j \le x) = \frac{1}{n} \sum_{i=1}^n I(x_i \le x)$$

where $I(\cdot)$ is an indicator function. Let \hat{F}_i denote the sample EDF for the i^{th} group. The EDF for the overall sample, pooled over groups, can also be expressed as

$$\hat{F}(x) = \frac{1}{n} \sum_{i} \left(n_i \hat{F}_i(x) \right)$$

where n_i is the number of observations in the i^{th} group, and n is the total number of observations.

⁵[PROC NPAR1WAY - EDF option].

⁶For further information about the formulas and the interpretation of EDF statistics, see Hollander and Wolfe (1999) and Gibbons and Chakraborti (2010). For details about the k-sample analogs of the Kolmogorov-Smirnov and Cramer-von Mises statistics, see Kiefer (1959).

Kolmogorov-Smirnov Test

The Kolmogorov-Smirnov statistic measures the maximum deviation of the EDF within the groups from the pooled EDF. The Kolmogorov-Smirnov statistic is computed as,

$$KS = \max_{j} \sqrt{\frac{1}{n} \sum_{i} n_{i} \left(\hat{F}_{i}(x_{j}) - \hat{F}(x_{j})\right)^{2}}$$
 for $j = 1, 2, ..., n$

The asymptotic Kolmogorov-Smirnov statistic is computed as, $KS_a = KS \times \sqrt{n}$. If there are only two class levels, the two-sample Kolmogorov-Smirnov test statistic D is

$$D = \max_{j} \left| \hat{F}_{1}(x_{j}) - \hat{F}_{2}(x_{j}) \right| \quad \text{for } j = 1, 2, \dots, n$$

The p-value for this test is the probability that D is greater than the observed value d under the null hypothesis of no difference between class levels (samples). The asymptotic p-value for D is approximated as,

$$Pr(D > d) = 2 \sum_{i=1}^{\infty} (-1)^{(i-1)} e^{(-2i^2z^2)}$$

where

$$z = d\sqrt{n_1 n_2/n}$$

See Hodges (1957) for information about this approximation.

Cramer-von Mises Test

The Cramer-von Mises statistic is

$$CM = \frac{1}{n^2} \sum_{i} \left(n_i \sum_{j=1}^{p} t_j \left(\hat{F}_i(x_j) - \hat{F}(x_j) \right)^2 \right)$$

where t_j is the number of ties at the j^{th} distinct value and p is the number of distinct values. The asymptotic value is computed as

$$CM_{\alpha} = CM \times n.$$

Kuiper Test

For data with two class levels, the Kuiper statistic is

$$K = \max_{j} \left(\hat{F}_{1}(x_{j}) - \hat{F}_{2}(x_{j}) \right) - \min_{j} \left(\hat{F}_{1}(x_{j}) - \hat{F}_{2}(x_{j}) \right)$$
 where $j = 1, 2, \dots, n$

The asymptotic value is

$$K_a = K\sqrt{n_1 n_2/n}$$

The p-value for the Kuiper test is the probability of observing a larger value of K_a under the null hypothesis of no difference between the two classes Owen (1962, p 441).

R

Simulated normal data


```
with(cert, hist(y, main="", freq=FALSE))
with(cert, lines(density(y), main="", lty=2, lwd=2))
xvals = with(cert, seq(from=min(y), to=max(y), length=100))
with(cert, lines(xvals, dnorm(xvals, mean(y), sd(y)), lwd=2))
```


Descriptive statistics

```
if (!require("vcd")) install.packages("vcd", dep=TRUE)
## Loading required package: vcd
## Loading required package: grid
library("vcd")
#favstats(x)
mean(x, trim=.05)
## [1] 10.04904
quantile(x, seq(from=.025, to= .975, by=.1))
##
        2.5%
                 12.5%
                           22.5%
                                     32.5%
                                               42.5%
                                                         52.5%
                                                                   62.5%
                                                                             72.5%
   3.091728 4.865886 7.821566 8.595344 9.309669 10.373080 11.350422 12.250111
##
       82.5%
                 92.5%
## 13.090933 15.725539
t.test(x, mu=12, conf.level=.9) #test for mu=12 and 90 percent ci
##
##
   One Sample t-test
##
## data: x
## t = -4.4143, df = 74, p-value = 3.395e-05
## alternative hypothesis: true mean is not equal to 12
```

```
## 90 percent confidence interval:
## 9.347699 10.800978
## sample estimates:
## mean of x
## 10.07434
#favstats(y)
mean(y, trim=.05)
## [1] 12.45752
quantile(y, seq(from=.025, to= .975, by=.1))
##
                           22.5%
                                     32.5%
                                               42.5%
                                                         52.5%
        2.5%
                 12.5%
                                                                   62.5%
                                                                              72.5%
## 5.029569 8.070631 9.650323 10.552400 11.745636 12.940976 13.577305 14.965538
       82.5%
                 92.5%
## 16.073867 17.267639
t.test(y, mu=12, conf.level=.9) #test for mu=12 and 90 percent ci
##
## One Sample t-test
##
## data: y
## t = 0.94589, df = 74, p-value = 0.3473
## alternative hypothesis: true mean is not equal to 12
## 90 percent confidence interval:
## 11.69285 13.11439
## sample estimates:
## mean of x
## 12.40362
if (!require("coin")) install.packages("coin", dep=TRUE)
## Loading required package: coin
## Loading required package: survival
library("coin")
wilcox.test(x,y)
##
## Wilcoxon rank sum test with continuity correction
##
## data: x and y
## W = 1846, p-value = 0.0002824
\#\# alternative hypothesis: true location shift is not equal to 0
t.test(x,y)
##
## Welch Two Sample t-test
```

```
##
## data: x and y
## t = -3.817, df = 147.93, p-value = 0.000198
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -3.535179 -1.123386
## sample estimates:
\#\# mean of x mean of y
## 10.07434 12.40362
ks.test(x,y)
## Two-sample Kolmogorov-Smirnov test
##
## data: x and y
\#\# D = 0.29333, p-value = 0.002994
## alternative hypothesis: two-sided
Univariate Test of Fit for Normality
if (!require("nortest")) install.packages("nortest", dep=TRUE)
## Loading required package: nortest
library("nortest")
ad.test(x)
## Anderson-Darling normality test
##
## data: x
\#\# A = 0.28646, p-value = 0.6142
cvm.test(x)
##
## Cramer-von Mises normality test
##
## data: x
## W = 0.036008, p-value = 0.7499
lillie.test(x)
## Lilliefors (Kolmogorov-Smirnov) normality test
##
## data: x
## D = 0.06015, p-value = 0.7211
```

```
pearson.test(x)
##
##
    Pearson chi-square normality test
##
## data: x
## P = 10.28, p-value = 0.3283
sf.test(x)
##
##
    Shapiro-Francia normality test
##
## data: x
\#\# W = 0.98948, p-value = 0.7056
with(cert, hist(x, main="", freq=FALSE))
with(cert, lines(density(x), main="X", lty=2, lwd=2))
xvals = with(cert, seq(from=min(x), to=max(x), length=100))
with (cert, lines (xvals, dnorm (xvals, mean (x), sd(x)), lwd=2))
     0.08
Density
     0.04
```

qqnorm(x)

5

10

Χ

15

20

Normal Q-Q Plot

Repeating above with lognormal simulated data

```
x = 2*rlnorm(75, mean=0, sd = 1) + 10
cert = data.frame(x, y)
                         #redefined data.frame with new x
ad.test(x)
##
##
   Anderson-Darling normality test
##
## data: x
\#\# A = 7.8903, p-value < 2.2e-16
cvm.test(x)
## Warning in cvm.test(x): p-value is smaller than 7.37e-10, cannot be computed
## more accurately
##
   Cramer-von Mises normality test
##
## data: x
## W = 1.4108, p-value = 7.37e-10
```

```
lillie.test(x)
## Lilliefors (Kolmogorov-Smirnov) normality test
##
## data: x
\#\# D = 0.24428, p-value = 4.709e-12
pearson.test(x)
##
## Pearson chi-square normality test
##
## data: x
\#\# P = 107.24, p-value < 2.2e-16
sf.test(x)
##
##
   Shapiro-Francia normality test
##
## data: x
## W = 0.52418, p-value = 3.574e-12
with(cert, hist(x, main="", freq=FALSE))
with(cert, lines(density(x), main="X", lty=2, lwd=2))
xvals = with(cert, seq(from=min(x), to=max(x), length=100))
with (cert, lines (xvals, dnorm (xvals, mean (x), sd(x)), lwd=2))
```


Normal Q-Q Plot

SAS

Code

```
title 'Simulated Normal Data';
%let n=50;
data cert;
  do group = 1 to 2;
     do i = 1 to &n;
       x = rand('normal', 0, 1);
      output;
      end;
  end;
run;
data cert; set cert;
   if group = 1 then x = 2*x + 10;
   else x = 2*x + 14;
run;
proc sgplot data=cert;
density x /group=group;
run;
title2 'Descriptive Statistics';
proc univariate data=cert normal trim=.05 winsor=.05 mu0=12;
var x;
run;
title2 'Nonparametric Test of Hypothesis';
proc npar1way data=cert wilcoxon edf ;
class group;
var x;
run;
title2 'T Test';
proc ttest data=cert ;
class group;
var x;
run;
title2 'Fit for 2 populations';
proc univariate data=cert normal;
class group;
var x;
run;
```


Simulated Normal Data Descriptive Statistics The UNIVARIATE Procedure

COMVAINALETTOO

Variable: x

Moments					
N	100	100 Sum Weights			
Mean	11.9984529	Sum Observations	1199.84529		
Std Deviation	2.75347943	Variance	7.58164898		
Skewness	-0.0855179	Kurtosis	-0.7284714		
Uncorrected SS	15146.8705	Corrected SS	750.583249		
Coeff Variation	22.9486205	Std Error Mean	0.27534794		

	Basic Statistical Measures				
Location Variability					
Mean	11.99845	Std Deviation	2.75348		
Median	12.15610	Variance	7.58165		
Mode		Range	11.55031		
		Interquartile Range	4.13781		

Tests for Location: Mu0=12				
Test	Statistic p Value			ue
Student's t	t	-0.00562	Pr > t	0.9955
Sign	M	2	Pr >= M	0.7644
Signed Rank	S	18	Pr >= S	0.9510

Tests for Normality					
Test	Sta	atistic	p Val	ue	
Shapiro-Wilk	W 0.984332		Pr < W	0.2840	
Kolmogorov-Smirnov	D	0.050788	Pr > D	>0.1500	
Cramer-von Mises	W-Sq	0.05193	Pr > W-Sq	>0.2500	
Anderson-Darling	A-Sq	0.347208	Pr > A-Sq	>0.2500	

Trimmed Means								
% Trimmed # Trimmed Mean SE Trimmed 95% CI DF t for H0 F			Pr > t					
5.00	5	12.00690	0.294375	11.42198	12.59181	89	0.023428	0.9814

Winsorized Means								
% Winsor	# Winsor	Winsor Mean	SE Winsor	/insor 95% CI DF t for H0 Pr >		Pr > t		
5.00	5	11.98844	0.294540	11.40320	12.57369	89	-0.03923	0.9688

Quantiles (Definition 5)				
Level	Quantile			
100% Max	17.90617			
99%	17.47536			
95%	16.59441			
90%	15.53162			
75% Q3	13.94750			
50% Median	12.15610			
25% Q1	9.80969			
10%	8.06803			
5%	7.21831			
1%	6.39296			
0% Min	6.35587			

Extreme Observations				
Lowe	Lowest		est	
Value Obs		Value	Obs	
6.35587	24	16.7632	86	
6.43005	43	16.7768	79	
6.69599	5	16.9643	71	
7.07019	20	17.0445	51	
7.21752	41	17.9062	73	

Simulated Normal Data Nonparametric Test of Hypothesis

The NPAR1WAY Procedure

Wilcoxon Scores (Rank Sums) for Variable x				Classified by Varial	ble group
group	N	Sum of Scores	Expected Under H0	Std Dev Under H0	Mean Score
1	50	1490.0	2525.0	145.057460	29.80
2	50	3560.0	2525.0	145.057460	71.20

Wilcoxon Two-Sample Test					
Statistic $Z Pr < Z Pr > Z t Approximation$					
				Pr < Z	Pr > Z
1490.000 -7.1317 <.0001 <.0001 <.0001 <.0001					
Z includes a continuity correction of 0.5.					

Kruskal-Wallis Test				
Chi-Square	DF	Pr > ChiSq		
50.9097	1	<.0001		

Simulated Normal Data Nonparametric Test of Hypothesis The NPAR1WAY Procedure

Kolmogorov-Smirnov Test for Variable x Classified by Variable group						
group	group N EDF at Maximum Deviation from Mean at Maximum					
1	50	0.840	2.474874			
2	50	0.140	-2.474874			
Total	100	0.490				
Maximum Deviation Occurred at Observation 31						
Value of x at Maximum = 12.113502						

Kolmogorov-Smirnov Two-Sample Test (Asymptotic)					
KS 0.350000 D 0.700000					
KSa	3.500000	Pr > KSa	<.0001		

Cramer-von Mises Test for Variable x Classified by Variable group						
group	N	Summed Deviation	from Mean			
1	50		2.69790			
2	50		2.69790			

Cramer-von Mises Statistics (Asymptotic)					
CM	0.053958	CMa	5.395800		

Kuiper Test for Variable x Classified by Variable group						
group	N	Deviation	from Mean			
1	50		0.70			
2	50		0.00			

Kuiper Two-Sample Test (Asymptotic)					
K	0.700000	Ka	3.500000	Pr > Ka	<.0001

Simulated Normal Data T Test

The TTEST Procedure

Variable: x

group	Method	N	Mean	Std Dev	Std Err	Minimum	Maximum
1		50	10.0858	2.0409	0.2886	6.3559	15.2884
2		50	13.9111	1.9201	0.2715	8.1772	17.9062
Diff (1-2)	Pooled		-3.8254	1.9814	0.3963		
Diff (1-2)	Satterthwaite		-3.8254		0.3963		

group	Method	Mean	95% CL Mean		Std Dev	95% CL	Std Dev
1		10.0858	9.5058	10.6658	2.0409	1.7048	2.5432
2		13.9111	13.3654	14.4568	1.9201	1.6039	2.3927
Diff (1-2)	Pooled	-3.8254	-4.6118	-3.0390	1.9814	1.7386	2.3037
Diff (1-2)	Satterthwaite	-3.8254	-4.6118	-3.0389			

Method	Variances	DF	t Value	Pr > t
Pooled	Equal	98	-9.65	<.0001
Satterthwaite	Unequal	97.638	-9.65	<.0001

Equality of Variances						
Method Num DF Den DF F Value Pr > F						
Folded F	49	49	1.13	0.6711		

Simulated Normal Data Fit for 2 populations

The UNIVARIATE Procedure

Variable: x group = 1

Moments							
N	50	Sum Weights	50				
Mean	10.0857719	Sum Observations	504.288594				
Std Deviation	2.04087326	Variance	4.16516367				
Skewness	0.18932897	Kurtosis	-0.2944267				
Uncorrected SS	5290.23274	Corrected SS	204.09302				
Coeff Variation	20.2351717	Std Error Mean	0.28862306				

	Basic Statistical Measures					
Location Variability						
Mean	10.08577	Std Deviation	2.04087			
Median	9.89483	Variance	4.16516			
Mode		Range	8.93255			
		Interquartile Range	2.91747			

Tests for Location: Mu0=0					
Test	Statistic p Value				
Student's t	t 34.94444		Pr > t	<.0001	
Sign	M	25	Pr >= M	<.0001	
Signed Rank	S	637.5	Pr >= S	<.0001	

Tests for Normality					
Test	Statistic p Value				
Shapiro-Wilk	W	0.98372	Pr < W	0.7155	
Kolmogorov-Smirnov	D	0.056801	Pr > D	>0.1500	
Cramer-von Mises W-Sq 0.03085 Pr > W-Sq >0.250				>0.2500	
Anderson-Darling A-Sq 0.212723 Pr > A-Sq >0.250					

Quantiles (Definition 5)		
Level	Quantile	
100% Max	15.28842	
99%	15.28842	
95%	13.41470	
90%	12.95479	
75% Q3	11.61271	
50% Median	9.89483	
25% Q1	8.69524	
10%	7.21831	
5%	6.69599	
1%	6.35587	
0% Min	6.35587	

Extreme Observations				
Lowest		Highest		
Value	Value Obs		Obs	
6.35587	24	13.0686	50	
6.43005	43	13.1773	30	
6.69599	5	13.4147	44	
7.07019	20	13.4331	9	
7.21752	41	15.2884	8	

Simulated Normal Data Fit for 2 populations

The UNIVARIATE Procedure

Variable: x group = 2

Moments					
N	50	Sum Weights	50		
Mean	13.911134	Sum Observations	695.556699		
Std Deviation	1.92011559	Variance	3.68684387		
Skewness	-0.3436185	Kurtosis	0.46626543		
Uncorrected SS	9856.63778	Corrected SS	180.65535		
Coeff Variation	13.8027251	Std Error Mean	0.27154535		

	Basic Statistical Measures				
Loc	Location Variability				
Mean	13.91113	Std Deviation 1.920			
Median	13.86706	Variance 3.68			
Mode		Range	9.72897		
		Interquartile Range	2.55258		

Tests for Location: Mu0=0					
Test	Statistic p Value				
Student's t	t	51.22951 Pr > t <.		<.0001	
Sign	M	25 Pr >= M <.0		<.0001	
Signed Rank	S	637.5	Pr >= S	<.0001	

Tests for Normality					
Test	Statistic p Value			ue	
Shapiro-Wilk	W 0.985385		Pr < W	0.7880	
Kolmogorov-Smirnov	D	0.054115	Pr > D	>0.1500	
Cramer-von Mises	W-Sq 0.022948		Pr > W-Sq	>0.2500	
Anderson-Darling	A-Sq	0.176737	Pr > A-Sq	>0.2500	

Quantiles (Definition 5)		
Level	Quantile	
100% Max	17.9062	
99%	17.9062	
95%	16.9643	
90%	16.5944	
75% Q3	15.2590	
50% Median	13.8671	
25% Q1	12.7064	
10%	11.4682	
5%	10.9932	
1%	8.1772	
0% Min	8.1772	

Extreme Observations				
Lowest		Highest		
Value	Value Obs		Obs	
8.1772	70	16.7632	86	
10.5000	85	16.7768	79	
10.9932	97	16.9643	71	
11.1300	96	17.0445	51	
11.1654	82	17.9062	73	