SYLLABUS / FIŞA DISCIPLINEI

1. Information on the study programme / Date despre programul de studii

1. Information on the study programme / Date despre programmi de studii			
1.1. Institution / Instituția de învățământ	Universitatea de Vest din Timișoara		
superior			
1.2. Faculty / Facultatea	Matematică și Informatică		
1.3. Department / Departamentul	Computer Science (Informatică)		
1.4. Study program field	Computer Science (Informatică)		
1.5. Study cycle/ Ciclul de studii	Bachelor / licență		
1.6. Study programme / Programul de	Computer Science / Informatică în limba engleză / Database		
studii / calificarea*	administration / Administrator baze de date - 252101;		
	Computer network administration / Administrator de retea de		
	calculatoare - 252301; Analyst / Analist - 251201; Research		
	assistant in computer science / Asistent de cercetare în		
	informatica - 214918; Teacher in secondary schools / Profesor		
	în învatamântul gimnazial - 233002; Programmer /		
	Programator - 251202; Software systems designers /		
	Proiectant sisteme informatice - 251101		

2. Information on the course / Date despre disciplină

2. Information on the course, but despite disciplina						
2.1. Title of the cor	urse / Denumirea	Formal Methods in Software Development				
disciplinei						
2.2. Teacher in charg	e of the course /	e course / Madalina Erascu				
Titularul activităților de	Titularul activităților de curs					
2.3. Teacher in charge of the seminar /		/ Madalina Erascu				
Titularul activităților de	Titularul activităților de seminar					
2.4. Study year / 3	3 2.5. Semester /	ster / 1 2.6. Examination type C 2.7. Course type / D				
Anul de studii	Semestrul	/ Tipul de evaluare: Regimul disciplinei: O				
		/C(olloquim) E(lective)				

3. Estimated study time (number of hours per semester) /Timpul total estimat (ore pe semestru al activităților didactice)

3.1. Attendance hours per week /	3	out of which din	2	3.3. seminar/laborator	1
Număr de ore pe săptămână		care: 3.2 lecture/			
		curs			
3.4. Attendance hours per semester /	42	out of which: 3.5	28	3.6. seminar/laborator	14
Total ore din planul de învățământ		lecture / curs			
Distribution of the allocated amount of	ftime	/ Distribuția fondului	de tii	np*	hours
Distribution of the allocated amount of	f time	/ Distribuția fondului	de tii	np*	hours / ore
Distribution of the allocated amount of Individual study /Studiu după ma		,		•	
	anual,	suport de curs, bibliogr	afie ș	i notițe	/ ore

1 0	es, homework, reports etc. /Pregătire seminarii/laboratoare, teme,	20
referate, portofolii și eseu	ırı	
Exams / Examinări		2
Tutoring / Tutorat		2
3.7. Total number of hours of	130	
individual study / Total ore		
studiu individual		
3.8. Total number of hours per	60	
semester / Total ore pe		
semestru		
3.9. Number of credits (ECTS)	5	
/ Număr de credite		

4. Prerequisites (if it is the case) / Precondiții (acolo unde e cazul)

4.1. curriculum / de curriculum	Computational logic, algorithmics
4.2. skills / de competențe	Mathematical knowledge and problem solving skills

5. Requirements (if it is the case) / Condiții (acolo unde e cazul)

5.1. for the lecture / de desfășurare a cursului	Classroom with blackboard and video projector		
5.2. for the seminar, laboratory / de desfășurare	Classroom with blackboard, video projector and		
a seminarului/laboratorului	computers. If needed, we will install a virtual machine		
	with the needed software.		

6. Acquired skills / Competente specifice acumulate

Professional skills / Competențe profesionale	Presentation and understanding of (1) the importance			
	of logical theories in the verification of programs, with			
	(2) application to use-cases using emerging			
	technologies (IoT, AI).			
Transversal skills / Competențe transversale	The ability of communicating knowledge about the usage of logical methods for different problems (optimization, verification of certain program properties, etc.)			

7. Objectives of the course / Obiectivele disciplinei (reieşind din grila competențelor specifice acumulate)

7.1. General objective / Objectivul	Understanding how logical methods are useful for verifying
general al disciplinei	different properties of software.
7.2. Specfic objectives / Objectivele	Knowledge objectives: understanding and usage propositional
specifice	and predicate logic in program analysis and verification
	(optimization, loop invariants, termination terms, program
	specification).

Abilitation objectives: basic and advanced usage of dedicated
software SAT solvers, SMT solvers, Mathematica.
Atitudinal objectives: motivation and argumentation of the
importance of logical methods in modelling, verifying and
optimizing the software.

8. Content / Continuturi*

8.1. Lecture / Curs	Teaching strategies / Metode de predare	Remarks, details / Observații
C0. Organizational matters and course motivation		
C1 (2h). Propositional logic (refreser)	Lecture, conversation, illustration	References: • M. Erascu slides
C2 (2h). SAT solving	Same as above	Same as above
C3 (2h). First-Order Theories	Same as above	Same as above
C4 (2h). Decidability	Same as above	Same as above
C5 (2h). Eager SMT solving (Equality logic, Bit vectors)	Same as above	Same as above
C6 (2h). Lazy SMT solving (Equality logic)		Material: C1 - C5
C7 (2h). Midterm		
C8-10 (6h). Linear real arithmetic: Fourier Motzkin elimination, Simplex, Simplex in SMT	Same as above	Same as above
C11 (2h). Midterm		
C12-14 (6h). Nonlinear real arithmetic: Interval constraint propagation, Groebner bases, Cylindrical algebraic decomposition	Same as above	Same as above
	1	1

Recommended bibliography / Bibliografie

- [1] C.-L. Chang, R. C. T. Lee. *Symbolic Logic and Mechanical Theorem Proving*. Computer Science Classics
- [4] L. de Moura, N. Bjorner. Satisfiability Modulo Theories: Introduction and Applications.
- [5] J. Woodcock et al. Formal Methods: Practice and Experience
- [6] Formal Verification of Object-Oriented Software: http://www.cost-ic0701.org/
- [7] A. Biere, M. Heule, H. Van Maaren, T. Walsh. Handbook of Satisfability. IOS Press 2009
- [8] A. Bradley, Z. Manna. The Calculus of Computation. Decision procedures with Applications to Verification. Springer 2007
- [9] D. Kroening, O. Strichman. *Decision Procedures An Algorithmic Point of View*. Springer 2008 [10] J.-C. Régin and M. Rezgui. *Discussion about Constraint Programming Bin Packing Models*. AI for Data Center Management and Cloud Computing: Papers from the 2011 AAAI Workshop (WS-11-08) [11] Edited by Francesca Rossi, Peter van Beek, Toby Walsh. Handbook of Constraint Programming, 2006, Elsevier. In particular Chapter 10.
- [12] E. Abraham. SAT-checking. Lecture Notes, RWTH Aachen, https://ths.rwth-aachen.de/teaching/ws14/lecture-sat-checking/

8.2. Seminar, lab / Seminar, laborator	Teaching/learning strategies / Metode de predare/ invățare	Remarks, details / Observații
L1-7 (2h). Exercises on the topics presented as well as formalization of problems and application of SAT/SMT solvers for different practical problems.	· · · · · · · · · · · · · · · · · · ·	The labs will be available on the website before the lecture and students have to work on those subjects during the lab.

Recommended bibliography / Bibliografie

- same as for the lecture
- SAT solvers
- Z3 SMT solver (https://github.com/Z3Prover/z3), OptiMathSAT (https://optimathsat.disi.unitn.it)

9. Correlations between the content of the course and the requirements of the IT field / Coroborarea conținuturilor disciplinei cu așteptările reprezentanților comunității epistemice, asociațiilor profesionale și angajatorilor reprezentativi din domeniul aferent programului

The content of the lecture is similar to others, on the same topic, from other universities. It covers the fundamental notions for understanding why formal methods for software development are so important. Currently, the lecture seems to be not that useful for ordinary IT companies in Romania. However, formal methods are necessary for safety-critical systems (avionics, cars, medical devices) becoming mandatory. We foresee a need of them in the next decade in Romania, too.

Activity / Tip de	10.1. Evaluation criteria / Criterii de	10.2. Evaluation	10.3. Weight in
activitate	evaluare**	methods / Metode de	the averaged
		evaluare***	mark / Pondere
			din nota finală
10.4. Lecture /	Knowledge and application of	Midterm	20%
Curs	notions from C1 - C5.		
	Knowledge and application of	Written exam in the	30%
	notions from C7 - C14.	exam session	
10.5. Seminar/ lab	The ability to learn and apply	Homeworks and	30%
	concepts presented during the	activity (oral	
	lectures.	examination)	
10.6. Projects	Solve a project from the list of	homeworks and	30%
	projects	projects	

10.6. Minimal knowledge for passing / Standard minim de performanță

Minimal knowledge for passing (grade 5): acquiring fundamental understanding of the knowledge of propositional logic, first order logic, program analysis and verification.

The final grade is computed as a weighted average of the grades given for the components specified in 10.4- 10.6, however it does not have negative impact on the grade if this activity is not fulfilled. The exam is passed if the average is equal or greater than 4.1 (not necessary that each grade to be greater than 4.1). The start at Midterm and Final Exam is 0. If the final grade is greater than equal to 4.1 means 5, greater than equal to 5.1 means 6, ..., greater than equal to 9.1 means 10.

At each exam sessions (including reexamination and improvements), the score is computed by the same rule. Midterm can be retaken a single time and that is in the first exam session, but in a time framework of 90 minutes.

There is no mandatory presence requirement, however, note that your lab grade is based on your activity during the semester (you will be graded at the end of each lab).

Note: Students may attend office hours (2 modules / week according to the schedule set out at the beginning of the semester) where the lecturer (course/seminar) answers questions students and provides further explanations related to course content, applications from seminary themes.

Date/ Data completării	Signature (lecture) /	Signature (seminar)
	Semnătura titularului de curs	Semnătura titularului de seminar
25 09 2018	Madalina Erascu	Madalina Erascu

Signature (director of the department) Semnătura directorului de departament Conf.dr. Victoria Iordan