ESTADÍSTICA III

TALLER 10: MODELOS ARIMA

Considere la serie en el archivo ARIMA110.SIMUL.txt, un conjunto de N=201 observaciones obtenidas por simulación. La gráfica de la serie, de su primera diferencia y de sus respectivas ACFs son presentadas en la Figura 1:

Figura 1: Serie original, su primera diferencia y sus respectivas ACFs

- a) ¿La serie original proviene de un proceso estacionario? ¿por qué?
- b) ¿La primera diferencia de la serie es estacionaria? ¿por qué? ¿será necesaria una segunda diferencia?
- c) Considerando sólo los primeros n=191 observaciones, realice la identificación de modelos ARIMA usando las siguientes herramientas
 - i. ACF y PACF de la serie de los n=191 primeros datos, diferenciada apropiadamente
 - ii. EACF de la serie de los n=191 primeros datos, diferenciada apropiadamente con máximo p=7, q=13.
 - iii. La función auto.arima() aplicada a la serie de los n=191 primeros datos, diferenciada apropiadamente
 - iv. La función auto.arima() aplicada a la serie de los n=191 primeros datos
 - v. La función autoarmafit() aplicada a la serie de los n=191 primeros datos, diferenciada apropiadamente
 - vi. La función armasubsets() aplicada a la serie de los n=191 primeros datos, diferenciada apropiadamente

- d) Para cada modelo identificado, escriba su ecuación teórica, ajuste el modelo con los n=191 primeros datos y valide supuestos
- e) Pronostique los últimos 10 datos de la serie
- f) Compare los modelos con base en ajuste, pronóstico y validez de supuestos (gráficos residuos, ACF, PACF, Ljung-Box y normalidad con Shapiro Wilk). ¿Cuál modelo se recomienda?

Resultados

Figura 2: Primera diferencia con los n=191 primeros datos, su ACF y PACF

	rsole (64-b Editar		uetes Ver	ntanas Ay	uda	-	1000	(1907)	ASSE	-	_			
>	<pre>> eacf(diff(yt))</pre>													
	R/I					_								
	0	1	2	3	4	5	6	7	8	9	10	11	12	13
0	X	X	X	0	0	0	0	0	0	0	0	0	0	X
1	0	0	0	0	0	0	0	0	0	0	0	0	0	0
2	X	0	0	0	0	0	0	0	0	0	0	0	0	0
3	0	X	0	0	0	0	0	0	0	0	0	0	0	0
4	X	X	X	0	0	0	0	0	0	0	0	0	0	0
5	X	X	X	X	0	0	0	0	0	0	0	0	0	0
6	X	0	X	X	0	0	0	0	0	0	0	0	0	0
7	X	X	0	0	0	0	0	0	0	0	0	0	0	0

Figura 3: EACF de la primera diferencia con los n=191 primeros datos

Observe que la primera diferencia de los primero 191 datos tiene una media muestral que es distinta de cero!!!

> mean(diff(yt)) [1] -0.3400249

```
> auto.arima(diff(yt)) #auto.arima sobre serie diferencia
Series: diff(yt)
ARIMA(1,0,0) with non-zero mean
Coefficients:
        ar1
                mean
      0.6405 -0.3566
0.0558 0.2123
     0.0558
sigma^2 estimated as 1.139: log likelihood=-281.25
AIC=568.51 AICc=568.64 BIC=578.25
> auto.arima(yt) #auto.arima sobre serie sin diferenciar
Series: yt
ARIMA(1,1,0) with drift
Coefficients:
        ar1
                drift
      0.6405 -0.3566
s.e. 0.0558 0.2123
sigma^2 estimated as 1.139: log likelihood=-281.25
AIC=568.51 AICc=568.64 BIC=578.25
```

RESUMEN AJUSTES (Valores P bajo aproximación N(0,1))							
AJUSTE MODELO 1: ARIMA(1,1,0) sin deriva							
Parámetros	Estimación	Error estándar	\mathbf{z}_0	P(Z > Z ₀)			
ф1	0.6616	0.0546	12.12001	< 2.2×10 ⁻¹⁶			

Shapiro-Wilk normality test

W = 0.9953, p-value = 0.8154

AJUSTE MODELO 2: ARIMA(1,1,0) con deriva						
Parámetros	Estimación	Error estándar	$\mathbf{z}_{\scriptscriptstyle{0}}$	P(Z > Z ₀)		
ф1	0.6405	0.0559	11.45301	< 2.2×10 ⁻¹⁶		
δ	-0.3566	0.2129	-1.67490	0.0940		

Shapiro-Wilk normality test

W = 0.9953, p-value = 0.8148

AJU	AJUSTE MODELO 3: ARIMA(2,1,1) sin deriva							
Parámetros	Estimación	Error estándar	\mathbf{z}_0	P(Z > Z ₀)				
ф1	-0.0934	0.2440	-0.38270	0.7019				
φ ₂	0.5539	0.1497	3.69920	0.0002				
$\dot{m{ heta}}_{\mathtt{l}}$	0.7063	0.2629	2.68656	0.0072				

Shapiro-Wilk normality test

W = 0.994, p-value = 0.6343

W - 0.3347	W = 0.334/ P Value = 0.0343								
AJU	AJUSTE MODELO 3b: ARIMA(2,1,1) con deriva								
Parámetros	Estimación	Error estándar	$\mathbf{z}_{\scriptscriptstyle{0}}$	P(Z > Z ₀)					
ϕ_1	-0.12301	0.23245	-0.5292	0.596655					
ф ₂	0.54270	0.13871	3.9124	9.139×10 ⁻⁰⁵					
$\boldsymbol{\theta}_{\mathtt{1}}$	0.71922	0.24844	2.8950	3.792×10 ⁻⁰³					
δ	-0.35972	0.22457	-1.6018	0.109201					

Shapiro-Wilk normality test

W = 0.9944, p-value = 0.6907

AJU	AJUSTE MODELO 4: ARIMA(1,1,1) sin deriva							
Parámetros	Estimación	Error estándar	$\mathbf{z}_{\scriptscriptstyle{0}}$	P(Z > Z ₀)				
ф 1	0.7240	0.0724	9.99915	1.537×10 ⁻²³				
$\dot{m{ heta}}_1$	-0.1083	0.0979	-1.10543	0.2690				

Shapiro-Wilk normality test

W = 0.9936, p-value = 0.574

AJUSTE MODELO 4b: ARIMA(1,1,1) con deriva							
Parámetros	Estimación	Error estándar	$\mathbf{z}_{\scriptscriptstyle 0}$	P(Z > Z ₀)			
ф1	0.697849	0.076279	9.1487	< 2.2×10 ⁻¹⁶			
θ_1	-0.095204	0.099282	-0.9589	0.3376			
δ	-0.361760	0.227633	-1.5892	0.1120			
Chamina Will	Chaning Wills named its toot						

Shapiro-Wilk normality test

W = 0.99382, p-value = 0.61

AJUSTE MODELO 5: ARIMA(2,1,2) sin deriva						
Parámetros	Estimación	Error estándar	$\mathbf{z}_{\scriptscriptstyle{0}}$	P(Z > Z ₀)		
ϕ_1	-0.080769	0.309080	-0.2613	0.79384		
ф 2	0.535567	0.249007	2.1508	0.03149		
$\boldsymbol{\theta}_{\mathtt{1}}$	0.696578	0.318621	2.1862	0.02880		
θ_2	0.013774	0.128256	0.1074	0.91447		
01						

Shapiro-Wilk normality test

W = 0.99406, p-value = 0.6442

AJUSTE MODELO 5b: ARIMA(2,1,2) con deriva						
Parámetros	Estimación	Error estándar	$\mathbf{z}_{\scriptscriptstyle 0}$	P(Z > Z ₀)		
ф 1	-0.094275	0.356065	-0.2648	0.79119		
ϕ_2	0.500985	0.279999	1.7892	0.07358		
$\boldsymbol{\theta}_{\mathtt{1}}$	0.696618	0.364929	1.9089	0.05627		
θ_2	0.031185	0.135208	0.2306	0.81759		
δ	-0.358301	0.220323	-1.6263	0.10390		

Shapiro-Wilk normality test

W = 0.99459, p-value = 0.7205

Criterios de información con $\exp(C_n^*(p))$

	р	AIC	1	BIC
modelo1	1	1.148930	1.168	661
modelo2	2	1.145220	1.184	892
modelo3	3	1.152733	1.213	148
modelo3b	4	1.150442	1.231	529
modelo4	2	1.153581	1.193	544
modelo4b	3	1.151691	1.212	051
modelo5	4	1.164796	1.246	895
modelo5b	5	1.162196	1.265	478

Ecuaciones teóricas y ajustadas

Modelo 1: $(1 - \phi_1 B)(1 - B)Y_t = E_t$, E_t un $RB \sim N(0, \sigma^2)$. Como $(1 - \phi_1 B)(1 - B) = 1 - (1 + \phi_1)B + \phi_1 B^2$, la ecuación final es: $Y_t = (1 + \phi_1)Y_{t-1} - \phi_1Y_{t-2} + E_t$, E_t un $RB \sim N(0, \sigma^2)$. Ecuación ajustada: $\hat{Y}_t = 1.6616Y_{t-1} - 0.6616Y_{t-2}$,

Modelo2: $(1 - \phi_1 B)(1 - B)Y_t = \delta + E_t$, E_t un $RB \sim N(0, \sigma^2)$. La ecuación final es

 $Y_t = \delta + (1 + \phi_1)Y_{t-1} - \phi_1Y_{t-2} + E_t$, E_t un $RB \sim N(0, \sigma^2)$. Ecuación ajustada: $\hat{Y}_t = -0.3566 + 1.6405Y_{t-1} - 0.6405Y_{t-2}$,

Modelo 3: $(1 - \phi_1 B - \phi_2 B^2)(1 - B)Y_t = (1 + \theta_1 B)E_t$, $E_t un RB \sim N(0, \sigma^2)$.

 $(1 - \phi_1 B - \phi_2 B^2)(1 - B) = 1 - (1 + \phi_1)B - (\phi_2 - \phi_1)B^2 + \phi_2 B^3$, la ecuación final es:

 $\begin{array}{l} Y_t = (1+\phi_1)Y_{t-1} + (\phi_2 - \phi_1)Y_{t-2} - \phi_2Y_{t-3} + E_t + \theta_1E_{t-1}, E_t \ un \ RB \sim \\ N(0,\sigma^2). \end{array}$

Ecuación ajustada: $\hat{Y}_t = 0.9066Y_{t-1} + 0.6473Y_{t-2} - 0.5539Y_{t-3} + 0.7063\hat{E}_{t-1}$

Modelo3b: $(1-\phi_1B-\phi_2B^2)(1-B)Y_t=\delta+(1+\theta_1B)E_t, E_t \ un \ RB\sim N(0,\sigma^2).$ La ecuación final es:

 $Y_t = \delta + (1 + \phi_1)Y_{t-1} + (\phi_2 - \phi_1)Y_{t-2} - \phi_2Y_{t-3} + E_t + \theta_1E_{t-1}, E_t \ un \ RB \sim N(0, \sigma^2).$

Ecuación ajustada: $\hat{Y}_t = -0.35972 + 0.87699Y_{t-1} + 0.66571Y_{t-2} - 0.54270Y_{t-3} + 0.71922\hat{E}_{t-1}.$

Modelo4: $(1 - \phi_1 B)(1 - B)Y_t = (1 + \theta_1 B)E_t$, E_t un $RB \sim N(0, \sigma^2)$. Como $(1 - \phi_1 B)(1 - B) = 1 - (1 + \phi_1)B + \phi_1 B^2$,

la ecuación final es:

 $\begin{array}{l} Y_t = (1+\phi_1)Y_{t-1} - \phi_1Y_{t-2} + E_t + \theta_1E_{t-1}, \;\; E_t \; un \; RB \sim N(0,\sigma^2). \\ \text{Ecuación ajustada:} \; \hat{Y}_t = 1.7240Y_{t-1} - 0.7240Y_{t-2} - 0.1083\hat{E}_{t-1}. \end{array}$

Modelo 4b: $(1 - \phi_1 B)(1 - B)Y_t = \delta + (1 + \theta_1 B)E_t$, E_t un $RB \sim N(0, \sigma^2)$. La ecuación final es

 $Y_t = \delta + (1 + \phi_1)Y_{t-1} - \phi_1Y_{t-2} + E_t + \theta_1E_{t-1}$, E_t un $RB \sim N(0, \sigma^2)$. Ecuación ajustada: $\hat{Y}_t = -0.361760 + 1.697849Y_{t-1} - 0.697849Y_{t-2} - 0.095204\hat{E}_{t-1}$.

Modelo 5: $(1 - \phi_1 B - \phi_2 B^2)(1 - B)Y_t = (1 + \theta_1 B + \theta_2 B^2)E_t$, E_t un $RB \sim N(0, \sigma^2)$. Como

 $(1 - \phi_1 B - \phi_2 B^2)(1 - B) = 1 - (1 + \phi_1)B - (\phi_2 - \phi_1)B^2 + \phi_2 B^3$, la ecuación final es:

 $Y_{t} = (1 + \phi_{1})Y_{t-1} + (\phi_{2} - \phi_{1})Y_{t-2} - \phi_{2}Y_{t-3} + E_{t} + \theta_{1}E_{t-1} + \theta_{2}E_{t-2},$ $E_{t} un RB \sim N(0, \sigma^{2}).$

Ecuación ajustada: $\hat{Y}_t=0.919231Y_{t-1}+0.616336Y_{t-2}-0.535567Y_{t-3}+0.696578\hat{E}_{t-1}+0.013774\hat{E}_{t-2}$

Modelo5b: $(1 - \phi_1 B - \phi_2 B^2)(1 - B)Y_t = \delta + (1 + \theta_1 B + \theta_2 B^2)E_t$, $E_t \ un \ RB \sim N(0, \sigma^2)$. La ecuación final es:

 $Y_t = \delta + (1 + \phi_1)Y_{t-1} + (\phi_2 - \phi_1)Y_{t-2} - \phi_2Y_{t-3} + E_t + \theta_1E_{t-1} + \theta_2E_{t-2},$ $E_t \text{ un } RB \sim N(0, \sigma^2).$

Ecuación ajustada: $\hat{Y}_t=-0.358301+0.905725Y_{t-1}+0.59526Y_{t-2}-0.500985Y_{t-3}+0.696618\hat{E}_{t-1}+0.031185\hat{E}_{t-2}$

Nota: En las ecuaciones ajustadas de los modelos que tienen parte MA, \hat{E}_{t-j} es el residuo del ajuste para el tiempo t-j y los residuos de ajuste para cualquier tiempo t corresponden a $\hat{E}_t = Y_t - \hat{Y}_t$ y con base en estos residuos se construyen las gráficas y tests para validar supuestos sobre el error de ajuste E_t : Proceso Ruido Blanco distribuido $N(0, \sigma^2)$

	AmplitudI.P	Cobertura	RMSE	MAE	MAPE
modelo1	19.71	100	1.38	1.13	1.60
modelo2	18.99	100	0.69	0.61	0.88
modelo3	19.98	100	0.93	0.75	1.08
modelo3b	19.27	100	1.10	0.93	1.35
modelo4	19.94	100	0.83	0.64	0.92
modelo4b	19.22	100	1.26	1.10	1.58
modelo5	20.02	100	0.97	0.81	1.16
modelo5b	19.29	100	0.95	0.79	1.14

Ecuaciones de pronóstico con origen en t=191: En las siguientes ecuaciones, $\hat{Y}_{191}(L)$ es el pronóstico L períodos después de t=191;

$$\widehat{Y}_{191}(L-j) = \begin{cases} \text{Observación } Y_{191+L-j}, \text{ si } L-j \leq 0 \\ \text{Pronóstico } L-j \text{ períodos después de } t = 191, \text{ si } L-j > 0 \end{cases}$$

 $\widehat{E}_{191}(L-i) = \begin{cases} \text{Residuo } \widehat{E}_{191+L-i}, \text{ si } L-i \leq 0 \\ 0, \text{ si } L-i > 0 \end{cases}$

Modelo 1:

 $\hat{Y}_{191}(L) = 1.6616\hat{Y}_{191}(L-1) - 0.6616\hat{Y}_{191}(L-2).$

Modelo 2:

 $\hat{Y}_{191}(L) = -0.3566 + 1.6405 \hat{Y}_{191}(L-1) - 0.6405 \hat{Y}_{191}(L-2).$

Modelo 3:

 $\hat{Y}_{191}(L) = 0.9066 \hat{Y}_{191}(L-1) + 0.6473 \hat{Y}_{191}(L-2) - 0.5539 \hat{Y}_{191}(L-3) +$ $0.7063\hat{E}_{191}(L-1)$.

Modelo 3b:

 $\begin{aligned} \hat{Y}_{191}(L) &= -0.35972 + 0.87699 \hat{Y}_{191}(L-1) + 0.66571 \hat{Y}_{191}(L-2) + \\ &-0.54270 \hat{Y}_{191}(L-3) + 0.71922 \hat{E}_{191}(L-1). \end{aligned}$

Modelo 4:

 $\hat{Y}_{191}(L) = 1.7240\hat{Y}_{191}(L-1) - 0.7240\hat{Y}_{191}(L-2) - 0.1083\hat{E}_{191}(L-1).$

 $\hat{Y}_{191}(L) = -0.361760 + 1.697849 \hat{Y}_{191}(L-1) - 0.697849 \hat{Y}_{191}(L-2) +$ $-0.095204\hat{E}_{191}(L-1)$.

Modelo 5:

$$\begin{split} \widehat{Y}_{191}(L) &= 0.919231 \widehat{Y}_{191}(L-1) + 0.616336 \widehat{Y}_{191}(L-2) - 0.535567 \widehat{Y}_{191}(L-3) + 0.696578 \widehat{E}_{191}(L-1) + 0.013774 \widehat{E}_{191}(L-2). \end{split}$$

Modelo 5b:

 $\begin{aligned} \hat{\mathbf{Y}}_{191}(L) &= -0.358301 + 0.905725 \hat{\mathbf{Y}}_{191}(L-1) + 0.59526 \hat{\mathbf{Y}}_{191}(L-2) + \\ &-0.500985 \hat{\mathbf{Y}}_{191}(L-3) + 0.696618 \hat{\mathbf{E}}_{191}(L-1) + 0.031185 \hat{\mathbf{E}}_{191}(L-2). \end{aligned}$

En la validación de supuestos recuerde que es sobre el error de ajuste, en este caso, E_t y por tanto, definimos en tests ACF y Ljung-Box, $\rho(k) = corr(E_t, E_{t+k})$ y en tests PACF definimos $\phi_{kk} = corr(E_t, E_{t+k}|E_{t+1}, ..., E_{t+k-1})$, siendo los estimadores de estas funciones, respectivamente, $\hat{\rho}(k) = \widehat{corr}(E_t, E_{t+k}) = \frac{\sum_{t=1}^{191} \hat{E}_t \hat{E}_{t+k}}{\sum_{t=1}^{191} \hat{E}_t^2} \sim aprox$. $N\left(0, \frac{1}{191}\right)$ y $\hat{\phi}_{kk} = \widehat{corr}(E_t, E_{t+k}|E_{t+1}, ..., E_{t+k-1}) \sim aprox$. $N\left(0, \frac{1}{191}\right)$. Para tests ACF y PACF se consideró k = 1, 2, ..., 22, y para Ljung-Box m = 6, 12, 18, 24, 30, 36. También test Shapiro es sobre el error de ajuste E_t .

Código R 1.0: Cargando librerías y definiendo funciones de usuario

```
library(forecast); library(timsac); library(TSA); library(lmtest)
#Creando función usuario para obtener test Box-Pierce y Ljung-Box
BP.LB.test=function(serie, maxlag, type="Box") {
aux=floor(maxlag/6);
X.squared=c(rep(NA,aux))
df=c(rep(NA,aux))
p.value=c(rep(NA,aux))
for(i in 1:aux){
\texttt{test=Box.test(serie,lag=(6*i),type=type)}
X.squared[i]=test[[1]]
df[i]=test[[2]]
p.value[i]=test[[3]]
lag=6*c(1:aux)
teste=as.data.frame(cbind(X.squared,df,p.value))
rownames(teste)=lag
teste
\#Creando función usuario crit.inf.resid() para calcular C_n^*(p)
crit.inf.resid=function(residuales,n.par,AIC="TRUE"){
if (AIC=="TRUE") {
#Calcula AIC
CI=log(mean(residuales^2))+2*n.par/length(residuales)
if (AIC=="FALSE") {
#Calcula BIC
CI=log(mean(residuales^2))+n.par*log(length(residuales))/length(residuales)
CI
#Función para calcular la amplitud de los I.P
amplitud=function(LIP, LSP) {
a=LSP-LTP
am=mean(a)
am
#Función para calcular la cobertura de los I.P
```

achertura-function (real LTD LCD) (

cobertura=function(real,LIP,LSP) {
 I=ifelse(real>=LIP & real<=LSP,1,0)
 p=mean(I)
 p
}</pre>

Código R 2.0: Lectura datos y gráficos serie, primera diferencia y sus ACF's muestrales

ARIMA1.1.0=ts(scan(file.choose(),skip=1),freq=1) #leer ARIMA110.SIMUL.txt layout(rbind(c(1,1,2,2),c(3,3,4,4))) plot(ARIMA1.1.0) acf(ARIMA1.1.0),ci.type="ma") plot(diff(ARIMA1.1.0)) abline(h=mean(diff(ARIMA1.1.0))) abline(h=c(-2*sd(diff(ARIMA1.1.0)),2*sd(diff(ARIMA1.1.0))),lty=2) acf(diff(ARIMA1.1.0)),ci.type="ma")

Código R 3.0: Identificación de modelos ARIMA usando sólo los primeros n=191 datos

```
n=length(ARIMA1.1.0)-10
t=1:n
yt=ts(ARIMA1.1.0[t],freq=1) #serie con sólo 191 datos
layout (rbind (c(1,1,2,2),c(3,3,4,4)))
plot(diff(yt))
abline(h=mean(diff(ARIMA1.1.0)))
abline (h=c(-2*sd(diff(ARIMA1.1.0)),2*sd(diff(ARIMA1.1.0))),1ty=2)
plot(time(diff(yt)),as.numeric(diff(yt)),xlab="Time")
abline(h=mean(diff(ARIMA1.1.0)))
abline (h=c(-2*sd(diff(ARIMA1.1.0)),2*sd(diff(ARIMA1.1.0))),1ty=2)
acf(diff(yt),ci.type="ma")
pacf(diff(yt))
eacf(diff(yt))
win.graph()
plot(armasubsets(diff(yt), nar=12, nma=12, y.name='test', ar.method='ml'))
autoarmafit(diff(yt)) #identificando ARMA's sobre serie diferencia
auto.arima(diff(yt)) #auto.arima sobre serie diferencia identifica ARIMA(p,0,q)
auto.arima(yt) #auto.arima sobre serie sin diferenciar identifica ARIMA(p,d,q)
mean(diff(yt)) #verificando media
```

Código R 4.0: Ajustes modelos ARIMA usando sólo los primeros n=191 datos (Valores P para significancia de parámetros calculados bajo N(0,1)) 4.1 Modelo 1: ARIMA(1,1,0) sin deriva

```
modelol=Arima(yt,order=c(1,1,0),method="ML")
coeftest(modelol)

layout(rbind(c(1,2),c(3,4)))
plot.ts(residuals(modelol))
abline(h=c(-2*sqrt(modelo1$sigma2),0,2*sqrt(modelo1$sigma2)),col=2)
plot(modelo1$fitted,residuals(modelol))
abline(h=c(-2*sqrt(modelo1$sigma2),0,2*sqrt(modelo1$sigma2)),col=2)
acf(residuals(modelol),ci.type="ma")
pacf(residuals(modelol))
BP.LB.test(residuals(modelol)),maxlag=36,type="Ljung")
shapiro.test(residuals(modelol))
```

4.2. Modelo 2: ARIMA(1,1,0) con deriva

```
modelo2=Arima(yt,order=c(1,1,0),include.drift=TRUE,method="ML")
coeftest(modelo2)
layout(rbind(c(1,2),c(3,4)))
plot.ts(residuals(modelo2))
abline(h=c(-2*sqrt(modelo2$sigma2),0,2*sqrt(modelo2$sigma2)),col=2)
plot(modelo2$fitted,residuals(modelo2))
abline(h=c(-2*sqrt(modelo2$sigma2),0,2*sqrt(modelo2$sigma2)),col=2)
acf(residuals(modelo2),ci.type="ma")
pacf(residuals(modelo2))
BP.LB.test(residuals(modelo2), maxlag=36,type="Ljung")
shapiro.test(residuals(modelo2))
```

4.3. Modelo3: ARIMA(2,1,1) sin deriva

```
modelo3=Arima(yt,order=c(2,1,1),method="ML")
coeftest(modelo3)

layout(rbind(c(1,2),c(3,4)))
plot.ts(residuals(modelo3))
abline(h=c(-2*sqrt(modelo3$sigma2),0,2*sqrt(modelo3$sigma2)),col=2)
plot(modelo3$fitted,residuals(modelo3))
abline(h=c(-2*sqrt(modelo3$sigma2),0,2*sqrt(modelo3$sigma2)),col=2)
acf(residuals(modelo3),ci.type="ma")
pacf(residuals(modelo3))
BP.LB.test(residuals(modelo3))

BP.LB.test(residuals(modelo3))
```

4.4. Modelo3b: ARIMA(2,1,1) con deriva

```
modelo3b=Arima(yt,order=c(2,1,1),include.drift=TRUE,method="ML")
coeftest(modelo3b)

layout(rbind(c(1,2),c(3,4)))
plot.ts(residuals(modelo3b))
abline(h=c(-2*sqrt(modelo3b$sigma2),0,2*sqrt(modelo3b$sigma2)),col=2)
plot(modelo3b$fitted,residuals(modelo3b))
abline(h=c(-2*sqrt(modelo3b$sigma2),0,2*sqrt(modelo3b$sigma2)),col=2)
acf(residuals(modelo3b),ci.type="ma")
pacf(residuals(modelo3b))
BP.LB.test(residuals(modelo3b),maxlag=36,type="Ljung")
shapiro.test(residuals(modelo3b))
```

4.5. Modelo4: ARIMA(1,1,1) sin deriva

```
modelo4=Arima(yt,order=c(1,1,1),method="ML")
coeftest(modelo4)

layout(rbind(c(1,2),c(3,4)))
plot.ts(residuals(modelo4))
abline(h=c(-2*sqrt(modelo4$sigma2),0,2*sqrt(modelo4$sigma2)),col=2)
plot(modelo4$fitted,residuals(modelo4))
abline(h=c(-2*sqrt(modelo4$sigma2),0,2*sqrt(modelo4$sigma2)),col=2)
acf(residuals(modelo4),ci.type="ma")
pacf(residuals(modelo4))

BP.LB.test(residuals(modelo4), maxlag=36,type="Ljung")
shapiro.test(residuals(modelo4))
```

4.6. Modelo4b: ARIMA(1,1,1) con deriva

```
modelo4b=Arima(yt,order=c(1,1,1),include.drift=TRUE,method="ML")
coeftest(modelo4b)
layout(rbind(c(1,2),c(3,4)))
plot.ts(residuals(modelo4b))
abline(h=c(-2*sqrt(modelo4b$sigma2),0,2*sqrt(modelo4b$sigma2)),col=2)
plot(modelo4b$fitted,residuals(modelo4b))
abline(h=c(-2*sqrt(modelo4b$sigma2),0,2*sqrt(modelo4b$sigma2)),col=2)
acf(residuals(modelo4b),ci.type="ma")
pacf(residuals(modelo4b))
```

```
BP.LB.test(residuals(modelo4b), maxlag=36, type="Ljung")
shapiro.test(residuals(modelo4b))
```

4.7. Modelo5: ARIMA(2,1,2) sin deriva

```
modelo5=Arima(yt,order=c(2,1,2),method="ML")
coeftest (modelo5)
layout(rbind(c(1,2),c(3,4)))
plot.ts(residuals(modelo5))
abline(h=c(-2*sqrt(modelo5$sigma2),0,2*sqrt(modelo5$sigma2)),col=2)
plot(modelo5$fitted, residuals(modelo5))
abline(h=c(-2*sqrt(modelo5$sigma2),0,2*sqrt(modelo5$sigma2)),col=2)
acf(residuals(modelo5),ci.type="ma")
pacf(residuals(modelo5))
BP.LB.test(residuals(modelo5), maxlag=36, type="Ljung")
shapiro.test(residuals(modelo5))
```

4.8. Modelo5b: ARIMA(2,1,2) con deriva

criterios

```
modelo5b=Arima(yt,order=c(2,1,2),include.drift=T,method="ML")
coeftest (modelo5b)
layout (rbind (c(1,2),c(3,4)))
plot.ts(residuals(modelo5b))
abline (h=c(-2*sqrt(modelo5b$sigma2),0,2*sqrt(modelo5b$sigma2)),col=2)
plot (modelo5b$fitted, residuals (modelo5b))
abline (h=c(-2*sqrt(modelo5b$sigma2),0,2*sqrt(modelo5b$sigma2)),col=2)
acf(residuals(modelo5b),ci.type="ma")
pacf(residuals(modelo5b))
BP.LB.test(residuals(modelo5b), maxlag=36, type="Ljung")
shapiro.test(residuals(modelo5b))
```

4.9 Gráficas de los ajustes y medidas de bondad de ajuste

```
win.graph(width=16,height=8)
layout(rbind(c(1,2,3,4),c(5,6,7,8)))plot(ARIMA1.1.0)
lines (modelo1$fitted, co1=2, lwd=2)
legend("bottomleft",legend=c("Original","Ajuste modelo 1"),col=1:2,lty=1)
plot(ARIMA1.1.0)
lines (modelo2$fitted, co1=2, lwd=2)
legend("bottomleft",legend=c("Original","Ajuste modelo 2"),col=1:2,lty=1)
plot(ARIMA1.1.0)
lines (modelo3$fitted, co1=2, lwd=2)
legend("bottomleft",legend=c("Original","Ajuste modelo 3"),col=1:2,lty=1)
plot (ARIMA1.1.0)
lines(modelo3b$fitted,co1=2,lwd=2)
legend("bottomleft",legend=c("Original","Ajuste modelo 3b"),col=1:2,lty=1)
plot(ARIMA1.1.0)
lines (modelo4$fitted, col=2, lwd=2)
legend("bottomleft",legend=c("Original","Ajuste modelo 4"),col=1:2,lty=1)
plot(ARIMA1.1.0)
lines (modelo4b$fitted,co1=2,lwd=2)
legend("bottomleft",legend=c("Original","Ajuste modelo 4b"),col=1:2,lty=1)
plot(ARIMA1.1.0)
lines(modelo5$fitted,col=2,lwd=2)
legend("bottomleft",legend=c("Original","Ajuste modelo 5"),col=1:2,lty=1)
plot(ARIMA1.1.0)
lines (modelo5b$fitted,col=2,lwd=2)
legend("bottomleft",legend=c("Original","Ajuste modelo 5b"),col=1:2,lty=1)
aicl=exp(crit.inf.resid(residuals(modelol),n.par=1))
aic2=exp(crit.inf.resid(residuals(modelo2),n.par=2))
aic3=exp(crit.inf.resid(residuals(modelo3),n.par=3))
aic3b=exp(crit.inf.resid(residuals(modelo3b),n.par=4))
aic4=exp(crit.inf.resid(residuals(modelo4),n.par=2))
aic4b=exp(crit.inf.resid(residuals(modelo4b),n.par=3))
aic5=exp(crit.inf.resid(residuals(modelo5),n.par=4))
aic5b=exp(crit.inf.resid(residuals(modelo5b),n.par=5))
bic1=exp(crit.inf.resid(residuals(modelo1),n.par=1,AIC="FALSE"))
bic2=exp(crit.inf.resid(residuals(modelo2),n.par=2,AIC="FALSE"))
bic3=exp(crit.inf.resid(residuals(modelo3),n.par=3,AIC="FALSE"))
bic3b=exp(crit.inf.resid(residuals(modelo3b),n.par=4,AIC="FALSE"))
bic4=exp(crit.inf.resid(residuals(modelo4),n.par=2,AIC="FALSE"))
bic4b=exp(crit.inf.resid(residuals(modelo4b),n.par=3,AIC="FALSE"))
bic5=exp(crit.inf.resid(residuals(modelo5),n.par=4,AIC="FALSE"))
bic5b=exp(crit.inf.resid(residuals(modelo5b),n.par=5,AIC="FALSE"))
criterios=data.frame (p=c(1,2,3,4,2,3,4,5), AIC=c(aic1,aic2,aic3,aic3b,aic4,aic4b,aic5,aic5b), BIC=c(bic1,bic2,bic3,bic3b,bic4,bic4
b,bic5,bic5b),row.names=c("modelo1","modelo2","modelo3","modelo3b","modelo4","modelo4b","modelo5","modelo5b"))
```

4.10 Predicciones de las últimas 10 observaciones con I.P del 95% y medidas de precisión pronósticos

round(tablaprec, digits=2)

```
tnuevo=(n+1):length(ARIMA1.1.0) #valor indice de tiempo en los pronósticos
ynuevo=ts(ARIMA1.1.0[tnuevo], freq=1, start=192) #valor serie en las últimos 10 tiempo
pred1=forecast (modelo1.h=10.level=95)
pred1=cbind(Predic=pred1$mean,LIP95=pred1$lower,LSP95=pred1$upper)
pred2=forecast (modelo2, h=10, level=95)
pred2=cbind(Predic=pred2$mean,LIP95=pred2$lower,LSP95=pred2$upper)
pred3=forecast (modelo3, h=10, level=95)
pred3=cbind(Predic=pred3$mean,LIP95=pred3$lower,LSP95=pred3$upper)
pred3b=forecast (modelo3b, h=10, level=95)
pred3b=cbind(Predic=pred3b$mean,LIP95=pred3b$lower,LSP95=pred3b$upper)
pred4=forecast (modelo4, h=10, level=95)
pred4=cbind(Predic=pred4$mean,LIP95=pred4$lower,LSP95=pred4$upper)
pred4b=forecast(modelo4b,h=10,level=95)
pred4b=cbind(Predic=pred4b$mean,LIP95=pred4b$lower,LSP95=pred4b$upper)
pred5=forecast(modelo5,h=10,level=95)
pred5=cbind(Predic=pred5$mean,LIP95=pred5$lower,LSP95=pred5$upper)
pred5b=forecast(modelo5b, h=10, level=95)
pred5b=cbind(Predic=pred5b$mean,LIP95=pred5b$lower,LSP95=pred5b$upper)
#Gráfico comparativo de predicciones puntuales vs. valores reales
plot(ynuevo,col="brown",lwd=2,type="b",pch=19,ylim=c(-73,-65)) lines(pred1[,1],col=2,lwd=2,type="b",pch=1)
lines(pred2[,1],col=3,lwd=2,type="b",pch=2)
lines(pred3[,1],col=4,lwd=2,type="b",pch=3)
lines(pred3b[,1],col=5,lwd=2,type="b",pch=4)
lines(pred4[,1],col=6,lwd=2,type="b",pch=5)
lines(pred4b[,1],col=7,lwd=2,type="b",pch=6)
lines(pred5[,1],col=8,lwd=2,type="b",pch=7)
lines(pred5b[,1],col=9,lwd=2,type="b",pch=8)
legend("topright",legend=c("Original","pred1","Pred2","Pred3","pred3b","Pred4","Pred4b","Pred5b","Pred5b"),col=c("brown",2:9),
pch=c(19,1:8),lty=1,lwd=2)
#Amplitud I.P
amp1=amplitud(LIP=pred1[,2],LSP=pred1[,3])
amp2=amplitud(LIP=pred2[,2],LSP=pred2[,3])
amp3=amplitud(LIP=pred3[,2],LSP=pred3[,3])
amp3b=amplitud(LIP=pred3b[,2],LSP=pred3b[,3])
amp4=amplitud(LIP=pred4[,2],LSP=pred4[,3])
amp4b=amplitud(LIP=pred4b[,2],LSP=pred4b[,3])
amp5=amplitud(LIP=pred5[,2],LSP=pred5[,3])
amp5b=amplitud(LIP=pred5b[,2],LSP=pred5b[,3])
#Cobertura I.P
cob1=cobertura(real=ynuevo,LIP=pred1[,2],LSP=pred1[,3])
cob2=cobertura(real=ynuevo,LIP=pred2[,2],LSP=pred2[,3])
cob3=cobertura(real=ynuevo,LIP=pred3[,2],LSP=pred3[,3])
cob3b=cobertura(real=ynuevo,LIP=pred3b[,2],LSP=pred3b[,3])
cob4=cobertura(real=ynuevo,LIP=pred4[,2],LSP=pred4[,3])
cob4b=cobertura(real=ynuevo,LIP=pred4b[,2],LSP=pred4b[,3])
cob5=cobertura(real=ynuevo, LIP=pred5[,2], LSP=pred5[,3])
cob5b=cobertura(real=ynuevo,LIP=pred5b[,2],LSP=pred5b[,3])
#Tabla con todas las medidas de precisión de pronósticos
tablaprec=data.frame (AmplitudI.P=c(amp1,amp2,amp3,amp3b,amp4,amp4b,amp5,amp5b),Cobertura=c(cob1,cob2,cob3,cob3b,cob3b,cob4b,cob5,
cob5b) *100,
RMSE=c(accuracy(pred1[,1],ynuevo)[2],accuracy(pred2[,1],ynuevo)[2],accuracy(pred3[,1],ynuevo)[2],accuracy(pred3b[,1],ynuevo)[2],
accuracy(pred4[,1],ynuevo)[2],accuracy(pred4b[,1],ynuevo)[2],accuracy(pred5[,1],ynuevo)[2],accuracy(pred5b[,1],ynuevo)[2]),
MAE=c (accuracy (pred1[,1],ynuevo)[3],accuracy (pred2[,1],ynuevo)[3],accuracy (pred3[,1],ynuevo)[3],accuracy (pred3b[,1],ynuevo)[3],accuracy (pred3b[,1],ynuev
ccuracy(pred4[,1],ynuevo)[3],accuracy(pred4b[,1],ynuevo)[3],accuracy(pred5[,1],ynuevo)[3],accuracy(pred5b[,1],ynuevo)[3]),
MAPE=c(accuracy(pred1[,1],ynuevo)[5],accuracy(pred2[,1],ynuevo)[5],accuracy(pred3[,1],ynuevo)[5],accuracy(pred3b[,1],ynuevo)[5],
accuracy(pred4[,1],ynuevo)[5],accuracy(pred4b[,1],ynuevo)[5],accuracy(pred5[,1],ynuevo)[5]),
row.names=c("modelo1", "modelo2", "modelo3", "modelo3b", "modelo4", "modelo4b", "modelo5", "modelo5b"))
```