

REPLACEMENT SHEET

Figure 1

MAMSSGGSGGVPEQEDSVLFRRGTQSDDSDIWDDTALIKAYDAVASFKHALKNG
DICETSGKPCTPKPAKKNKSQKKNTAASLQQWKVGDKCSAIWSEDGCIYPATIA
SIDFKRETCVVVTGYGNREEQNLSDLSPICEVANNIEQNAQENENESQVSTDESE
NSRSPGNKSDNIKPKSAPWNSFLPPPPMPGPRLGPGKPGLKFNNGPPPPPPPHL
LSCWLPPFPGPPIIPPPPICPDSSLDDADALGSMLISWYMSGYHTGYYMGFRQNQK
EGRCSHSLN

BEST AVAILABLE COPY

REPLACEMENT SHEET

Figure 2A

REPLACEMENT SHEET

Figure 2B

AATTTTAAATTTGTAGAGACAGGGTCTCATTATGTTGCCAGGGTGGTCAA
GCTCCAGGTCTCAAGTGATCCCCCTACCTCCGCCTCCAAAGTTGTGGGATTGTAGG
CATGAGCCACTGCAAGAAAACCTTAAC TG CAG CCT AATA ATT GT TT CTT GGG ATA
ACTTTAAAGTACATTAAAAGACTATCAACTTAATTCTGATCATATTGTGAAT
AAAATAAGTAAAATGTCTGTGAACAAAATGCTTTAACATCCATATAAAGCTATC
TATATATAGCTATCTATCTATAGCTATTTTTAACCTCCTTTATTCCT
TACAG*GGTTTAGACAAAATCAAAAAGAAGGAAGGTGCTCACATTCTAAATTAA
GGA*GTAAGTCTGCCAGCATTATGAAAGTGAATCTTACTTTGTAAAACCTTATGGT
TTGTGGAAAACAAATGTTTGAAACAGTTAAAAGTTAGATGTTAGAAAGTTGAAA
GGTTAATGTAAAACAATCAATATTAAAGAATTGATGCCAAAACATTAGATAAAA
GGTTAATCTACATCCCTACTAGAATTCTCATACTTAACGGTTGGTTGTGGAAGA
AACATACTTCACAATAAAGAGCTTTAGGATATGATGCCATTATCACTAGTAG
GCAGACCAGCAGACTTTTTATTGTGATATGGGATAACCTAGGCATACTGCACTG
TACACTCTGACATATGAAGTGCTCTAGTCAAGTTAACGGTGTCCACAGAGGACAT
GGTTAACTGGAATTCGTCAAGCCTCTGGTTCTAATTCTCATTGCAG*GAAATGC
TGGCATAGAGCAGCACTAAATGACACCACTAAAGAAACGATCAGACAGATCTGGAAT
GTGAAGCGTTATAGAAGATAACTGGCCTCATTCTCAAAATATCAAGTGTGGAA
AGAAAAAAAGGAAGTGGAATGGTAACCTTCTGATTAAAAGTTATGTAATAACCAA
ATGCAATGTGAAATATTTACTGGACTCTTGAAAAACCATCTGAAAAGACTGAG
GTGGGGGTGGGAGGCCAGCACGGTGGTAGGGCAGTTGAGAAAATTGAATGTGGATT
AGATTGAAATGATATTGGATAATTATTGGAATTATGGTAATTATGGCCTGTGAGAAGGGTGT
TGTAGTTATAAAAGACTGTCTTAATTGCATACTTAAGCATTAGGAATGAAGTGT
TAGAGTGTCTAAATGTTCAAATGGTTAACAAAATGTATGTGAGGCATGTGG
CAAAATGTTACAGAATCTAACTGGTGGACATGGCTGTCATTGTACTGTTTTCT
ATCTTCTATATGTTAAAAGTATATAATAAAATATTAATT

REPLACEMENT SHEET

Figure 3A

1 CGGGGGCCCCACGCTGCGCATCCGGGGTTGCTATGGCGATGAGCAGCAGCAGCAGT
GGTGGCGGCCTCCGGAGCAGGAGGATTCCGTGCTGTTCCGGCGCCACAGGCCAG
2 *AGCGATGATTCTGACATTGGATGATACTGACTGATAAAAGCATATGATAAAGC
TGTGGCTTCATTAAGCATGCTCTAAAGAACGGTACATTGTGAAACTTCGGGTAA
ACCAAAAACCACACCTAAAAGAAAACCTGCTAAGAAGAATAAAAGCCAAAAGAAGAA
3 TACTGCAGCTCCTTACAACAG*TGGAAAGTTGGGACAAATGTTCTGCCATTGGT
CAGAAGACGGTTGCATTACCCAGCTACCATTGCTCAATTGATTAAAGAGAGAAA
CCTGTGTTGGTTACACTGGATATGAAATAGAGAGGAGCAAATCTGCCGATC
4 TACTTCCCCAATCTGTGAAGTAGCTAATAATATAGAACAGAACGATGCTCAAGAG*AAT
GAAAATGAAAGCCAAGTTCAACAGATGAAAGTGAGAACTCCAGGTCTCCTGGAAAT
AAATCAGATAACATCAAGCCAAATCTGCTCCATGAACTCTTCTCCCTCCACCA
5 CCCCCCATGCCAGGGCCAAGACTGGGACCAGGAAAG*CCAGGTCTAAAATTCAATGG
CCCACCACCGCCACCGCCACCACCAACCCCCACTTACTATCATGCTGGCTGCCTCC
6 ATTTCTTCTGGACCACCA*ATAATTCCCCACCACTCCATATGTCCAGATTCTC
TTGATGATGCTGATGCTTGGAAAGTATGTTAATTGATGGTACATGAGTGGCTATC
7 ATACTGGCTATTATATG*GGTTCAAGACAAAATCAAAAAGAAGGAAGGTGCTCACAT
8 TCCTTAAATTAAAGGA*GAAATGCTGGCATAGAGCAGCAGCACTAAATGACACCAACTAAAG
AAACGATCAGACAGATCTGGAATGTGAAGCGTTATAGAACATAACTGGCCTCATTTC
TTCAAAATATCAAGTGTGGAAAGAAAAAGGAAGTGGAAATGGTAACCTTCTTG
ATTAAAAGTTATGTAATAACCAATGCAATGTGAAATATTACTGGACTCTTGA
AAAACCATCTGTAAAAGACTGGGGTGGGGTGGGAGGCCAGCACGGTGGTGGCAG
TTGAGAAAATTGAATGTGGATTAGATTGAAATGATATTGATAATTATTGTAAT
TTTATGGCCTGTGAGAAGGGTGTGAGTTATAAAAGACTGTCTTAATTGCATAC
TTAACGCATTAGGAATGAAGTGTAGAGTGTCTTAAATGTTCAAATGGTTAACAA
AAATGTATGTGAGGCCTATGTGGCAAAATGTTACAGAACATCTAAACTGGTGGACATGGC
TGTTCATGTACTGTTCTATCTTATGTTAAAAGTATATAATAAAAAT
ATTTAATTGTTAAAAAAGAAAAAAGAAAAAAGAAAAAAGAAAAAAGAAAAAAGAAAA
AAAAAAGAAAAAAGAAAAAAGAAAAAAGAAAAAAGAAAAAAGAAAAAAGAAAAAAG

OCT 19 2004

Figure 3B

AATTTTAAATTTTAGAGACAGGGTCTCATTATGTTGCCAGGGTGGTGTCAA
GCTCCAGGTCTCAAGTGATCCCCCTACCTCCGCCTCCAAAGTTGTGGGATTGTAGG
CATGAGCCACTGCAAGAAAACCTTAAC TG CAG CCT AATA ATT GT TT CTT GGG ATA
ACTTTAAAGTACATTAAAAGACTATCAACTTAATTCTGATCATATTGTGAAT
AAAATAAGTAAAATGTCTTGTGAACAAAATGCTTTAACATCCATATAAAGCTATC
TATATATAGCTATCTATGTCTATATAGCTATTTCACATTCCCTTATTTCCT
TACAG*GGTTTCAGACAAAATCAAAAAGAAGGAAGGTGCTCACATTCTAAATTAA
GGA*GTAAGTCTGCCAGCATTATGAAAGTGAATCTTACTTTGTAAAACATTATGGT
TTGTGGAAAACAAATGTTTGAACAGTTAAAAGTTCAAGATGTTAAAAGTTGAAA
GGTTAATGTAAAACAATCAATATTAAAGAATTGATGCCAAAACATTAGATAAAA
GGTTAATCTACATCCCTACTAGAATTCTCATACTTAACGGTGGTTATGTGGAAGA
AACATACTTCACAATAAAGAGCTTAGGATATGATGCCATTATACACTAGTAG
GCAGACCAGCAGACTTTTTATTGTGATATGGGATAACCTAGGCATACTGCACTG
TACACTCTGACATATGAAGTGCTCTAGTCAAGTTAACTGGTGTCCACAGAGGACAT
GGTTAACTGGAATT CGT CAAGC CTG GTT CTA ATT CTC ATT GCAG *GAAATGC
TGGCATAGAGCAGCACTAAATGACACCACTAAAGAAACGATCAGACAGATCTGGAAT
GTGAAGCGTTATAGAAGATAACTGGCCTCATTCTCAAATATCAAGTGTGGAA
AGAAAAAAAGGAAGTGGAAATGGGTAACTCTTCTGATTAAAAGTTATGTAATAACCAA
ATGCAATGTGAAATATTTACTGGACTCTTGAAAAACCATCTGTAAGACTGGG
GTGGGGGTGGGAGGCCAGCACGGTGGTGGCAGTTGAGAAAATTGAATGTGGATT
AGATTGAAATGATATTGGATAATTATTGGTAATTGATGGCTGTGAGAAGGGTGT
TGTAGTTATAAAAGACTGTCTTAATTGCATACTTAAGCATTAGGAATGAAGTGT
TAGAGTGTCTAAATGTTCAAATGGTTAACAAAATGTATGTGAGGCGTATGTGG
CAAAATGTTACAGAATCTAAGTGGACATGGCTGTCATTGTACTGTTTTCT
ATCTTCTATATGTTAAAAGTATATAATAAAAATATTAAATT

Figure 4**C212**

ACCTGANCCCAGANGTCAAGGCTGCAGTGAGACGAGATTGCNCCACTGCCCTCAC
 CCTGGGTGATAAGAGTGGGACCCTGNTAAAACATACACACACACACACACA
 CACACACACACACACACACACTCTCTCTCTCTCTCTCTCTCTCTCTCTC
 TCTCTCTCAAAAACACTGGTCTGTTATTTNCGAAATTGTCAGTCATAGTTATCT
 GTTAGACCAAAGCTGN GTAAGNACATTATTACATTGCCTCACAACATTCA
 TAATGTATTTGCTATATAGCAATTACATATNGGNATATATTATCTNAGGGGATGGC
 CANGTNATAAAACTGTCACTGAGGAAAGGA

C272

CCTCCCACCTNAGCCTCCCCAGTAGCTAGGACTATAGCGTGCNCCACCAAGCTCAG
 CTATTNTNTATTAGTAGAGACGGGTTTCCGGCANGCTAGGCCTCGTNTCGAAC
 TCCAGTGA
 GATATTATTCCCCCTCCCCCTGGAAAAGTAAGTAAGCTCCTACTAGGAATTAAA
 ACCTGCTTGATCTATATAAGACAAACAAGGAAAGACAAACATGGGGCAGGAAGGA
 AGGCAGATC

AFM157xd10

TCGAGGTAGATTGTATTATATCCATGTACACACACACACACACACACACACAC
 ACACACACACAGACTTAATCTGTTACAGAAATAAAAGGAATAAAATACCGTTCTA
 CTATACACCAAAACTAGCCATCTTGAC

C161

CCCTGAGAAGGCTCCTGAGTATGCATAAACATTACAGCTTGCATGCGTGTGT
 GTGTGTGTGTGTGTATGTTGCTTGCAGTGTAAAAACAATTGCAACATCAACA
 GAAATAAAATTAAAGGAATAATTCTCCTCCGACTCTGCCGTTCCATCCAGTGAAC
 TCTTCATTCTGGGGTAAAGTTCCTTCAGTTCTTCATAGATAGGTATATACTTCATA
 AGTCAAACAATCAGGCTGGGTGCAGTAGCTCATGCCTGTAATCCCAGCCCTTGGGA
 GGCGAGCTGGGCAGATCGA

C171

TCCACCCGCCTGGCCTCCAAAGCNCTGGGATTACAGGCGTGACTGCCGCACCCAG
 CTGTAAACTGGNTNTAAATGGTAGATTTNAGGTATTAACAATAGATAAAAAGATA
 CTTTNGGCATACTGTGTATTGGGATGGGTTAGAACAGGTGTNCTACCCAAGACAT
 TTACTTAAATGCCCTCGAAATGCTATGTGAGCTGTGTGTGTGTGTGTGT
 GTGTATTAAGGAAAGCATGAAAGTATTTATGCTTGTGATTTTTTTNACTCATAG
 CTTCATAGTGGANCAGATACTAGTCTAAATGTTAAACTTTTATGTCAC
 TTGCTGTC

OCT 1 9 2004

REPLACEMENT SHEET

5
E/G

Restriction map of the 5q13 region for EagI(Ea), SacII(SacII), Sfi(Sfi).Numbers under parenthesis indicate the restriction fragment detected by He3; Telomeric element (E Tel),centromeric element (E cen), Centromer(Cent.),Telomere(Tel.).Probes are indicated above the restriction map.YACS are below the restriction map.

FIG.6

Telomeric element (E Tel) containing the survival motor-neuron gene (SMN gene). Genetic map shows polymorphic markers C212, C272 and C171. Physical map shows location and direction of transcription of SMN gene; phage clones used for assembling physical map. Restriction map for EcoRI(E), XbaI(X), HindIII(H), BglII(B), SacII(S) are shown. Cent. and Tel. indicate centromere and telomere respectively. The position of genomic rearrangements found in SMA patients are also indicated.

F M A

GENE DOSAGE ANALYSIS OF THE 5q13 REGION WITH THE 132SE11 PLASMID CONE IN SMA TYPE I PATIENT. TOTAL HUMAN DNA FROM SMA FAMILY WAS DIGESTED WITH HindIII FOR SOUTHERN BLOTTING. FILTER WAS CONSECUTIVELY HYBRIDIZED WITH 132SE11 (A) AND JK53 PROBES (B). A SIGNIFICANT DECREASE IN 132SE11 BAND INTENSITY, WHICH INDICATED THE DELETION, COMPARED WITH THEIR PARENTS. F/FATHER, M/MOTHER, A/AFFECTED

A

B

FIG. 7

REPLACEMENT SHEET

Figure 8

MAMSSGGSGGGVPEQEDSVLFRRGTQSDDSDIWDDTALIKAYDKAVASFKHALKNG
DICETSGKPKTTPKRKPAKKNKSQKKNTAASLQQWKVGDKCSAIWSEDCIYPATIA
SIDFKRETCVVVYTGYGNREEQNLSDLSPICEVANNIEQNAQENENESQVSTDESE
NSRSPGNKSDNIKPKSAPWNSFLPPPPMPGPRLGPGKPGKGLKFNGPPPPPPPHL
LSCWLPPFPGPPIIPPPPICPDSDLDDADALGSMLISWYMSGYHTGYYM

FIG.9

REPLACEMENT SHEET

Figure 10A

1

cctccgggaccgtactgttccgtcccagaagccccgggcgccggaagtcgta
tcttaagaaggacggggccccacgctgcgcacccgcggggttgc ATG GCG

M A

ATG AGC AGC GGC GGC AGT GGT GGC GGC GTC CCG GAG CAG GAG
M S S G G S G G V P E Q E
GAT TCC GTG CTG TTC CGG CGC GGC ACA GGC CAG gtgaggtcgac
D S V L F R R G T G Q

cagtgcagtctccatttagcgcttcagcacccttcttccggccaactctccttc
cgca

2a

gtgtaatttttatgtgtggattaagatgactcttggtaactaacatacatttctg
attaaacctatctgnacatgagtttttatttacccttccag AGC GAT

S D

GAT TCT GAC ATT TGG GAT GAT ACA GCA CTG ATA AAA GCA TAT
D S D I W D D T A L I K A Y

GAT AAA GCT GTG GCT TCA TTT AAG gtatgaaatgcttgnttagtcgtt
D K A V A S F K

tcttattttctcgatttcatttgaaaaggattgataacatacgataaaagtgttaa

2b

aggcgcttctgaggtgacggagcctttagacttagttatgtactgggttat
gtcgtagtttattctgtgcaccaccctgttaacatgtacattttattcctatttt
cgtag CAT GCT CTA AAG AAT GGT GAC ATT TGT GAA ACT TCG GGT

H A L K N G D I C E T S G

AAA CCA AAA ACC ACA CCT AAA AGA AAA CCT GCT AAG AAG AAT
K P K T T P K R K P A K K N

AAA AGC CAA AAG AAG AAT ACT GCA GCT TCC TTA CAA CAG gttat
K S Q K K N T A A S L Q Q

tttaaaatgtgaggatttaacttcaaaggatgtctcattagtccttatttaatagt
gtaaaatgtctttaact

3

gcctgcaggcgatcaaaacgagatgatgtttgcctcttcaaaagaaatgtgtgc
atgtatatatcttgatttcttttag TGG AAA GTT GGG GAC AAA TGT

W K V G D K C

TCT GCC ATT TGG TCA GAA GAC GGT TGC ATT TAC CCA GCT ACC
S A I W S E D G C I Y P A T

ATT GCT TCA ATT GAT TTT AAG AGA GAA ACC TGT GTT GTG GTT
I A S I D F K R E T C V V V

TAC ACT GGA TAT GGA AAT AGA GAG GAG CAA AAT CTG TCC GAT
Y T G Y G N R E E Q N L S D

CTA CTT TCC CCA ATC TGT GAA GTA GCT AAT AAT ATA GAA CAG
L L S P I C E V A N N I E Q

REPLACEMENT SHEET

Figure 10B

AAT GCT CAA GAG gtaaggataaaaaaaaaaaaaattcaatttctggaaagcag
N A Q E
agactagatgagaaactgttaaacagtatacaca
4
ccaccgaggcattaattttcttaatcacacccttataacaaaaacctgcataattt
tttcttttaaag AAT GAA AAT GAA AGC CAA GTT TCA ACA GAT GAA
N E N E S Q V S T D E
AGT GAG AAC TCC AGG TCT CCT GGA AAT AAA TCA GAT AAC ATC
S E N S R S P G N K S D N I
AAG CCC AAA TCT GCT CCA TGG AAC TCT TTT CTC CCT CCA CCA
K P K S A P W N S F L P P P
CCC CCC ATG CCA GGG CCA AGA CTG GGA CCA GGA AAG gtaaacctt
P P M P G P R L G P G K
ctatgaaagtttccagaaaatagttaatgtcgacattaacctctgttaact
aattttagctctccca
5
caaatatctggtaatttttatcctttggggtagtcctttattcctat
catattgaaattggtaagttaatttccttgaaatattccttata CCA GGT
P G
CTA AAA TTC AAT GGC CCA CCA CCG CCA CCG CCA CCA CCA CCA
L K F N G P P P P P P P P P P
CCC CAC TTA CTA TCA TGC TGG CTG CCT CCA TTT CCT TCT GGA
P H L L S C W L P P F P S G
CCA CCA gtaagaaaaagagtataggttagatttgcacataatttga
P P
taatta
6
ccagactttactttgttactggatataacaatatctttctgtctccag
ATA ATT CCC CCA CCA CCT CCC ATA TGT CCA GAT TCT CTT GAT
I I P P P P I C P D S L D
GAT GCT GAT GCT TTG GGA AGT ATG TTA ATT TCA TGG TAC ATG
D A D A L G S M L I S W Y M
AGT GGC TAT CAT ACT GGC TAT TAT ATG gtaagtaatcactcagcatct
S G Y H T G Y Y M
tttcctgacaattttttgttagttatgtgactttgttggtaaatttataaaaact
acttg
7
aactgcagcctaataattgtttcttggataactttaaagtacattaaaagact
atcaacttaatttctgatcatatttgtgaataaaaataagtaaaatgtcttgtaa

REPLACEMENT SHEET

Figure 10C

→ a

acaaaatgcttttaacatccatataaagctatctatatatagttatgttat

→ T

atagctatttttaacttccttttatttccttacag GGT TTC AGA CAA

G F R Q

AAT CAA AAA GAA GGA AGG TGC TCA CAT TCC TTA AAT taaggaga

N Q K E G R C S H S L N *

aagtctgccagcattatgaaagtgaatcttactttgtaaaaactttatggttgtgg

→ g

aaaacaaaatgttttgaacagttaaaaagttcagatgttaaaaagttgaaaggtaa
tgtaaaaacaatcaatattaagaattttgatgccaaaactattagataaaaaggtaa

→ g

tctacatccctactagaattctcatacttaactgggtggtatgtggaagaaacata
ctttcacaataaagagctttaggatatgatgccatttatatactacttaggcagac
cagcagacttttttattgtgatatgggataacctaggcatactgcactgtacact
ctgacatatgaagtgcttagtcaagtttaactgggtccacagaggacatggutta

8

actggaattcgtcaagcctctggttctaatttctcattgcagggaaatgctggcata
gagcagcactaaatgacaccactaaagaaacgatcagacagatctggaatgtgaagc
gttatagaagataactggcctcattcttcaaaatatacaagtgttggaaagaaaaa
aggaagtggaaatggtaactcttcttgattaaaagttatgtaataaccataatgcaat

→ a

gtgaaatatttactggactctttgaaaaaccatctagaaaagactgggggggg
gtgggaggccagcacggtggtgaggcagttgagaaaaattgaatgtggattagatt
tgaatgatattggataatttggtaattttatggcctgtgagaagggttgttagt
ttataaaagactgtcttaatttgcatacttaagcatttaggaatgaagtgttagat
gtcttaaaatgtttcaaattggtaacaaaatgtatgtgaggcgtatgtggaaaaat
gttacagaatctaactggtgacatggctgttcatgtactgttttttatcttc
tatatgtttaaaagtataataaaaaatattta

REPLACEMENT SHEET

Figure 11

REPLACEMENT SHEET

Figure 12A

cggcgtggtagcaggcc	ATG GCG ATG GGC AGT GGC GGA GCG	41
	Met Ala Met Gly Ser Gly Gly Ala	
GGC TCC GAG CAG GAA GAT ACG GTG CTG TTC CGG CGT GGC		80
Gly Ser Glu Gln Glu Asp Thr Val Leu Phe Arg Arg Gly		
ACC GGC CAG AGT GAT GAT TCT GAC ATT TGG GAT GAT ACA		119
Thr Gly Gln Ser Asp Asp Ser Asp Ile Trp Asp Asp Thr		
GCA TTG ATA AAA GCT TAT GAT AAA GCT GTG GCT TCC TTT		158
Ala Leu Ile Lys Ala Tyr Asp Lys Ala Val Ala Ser Phe		
AAG CAT GCT CTA AAG AAC GGT GAC ATT TGT GAA ACT CCA		197
Lys His Ala Leu Lys Asn Gly Asp Ile Cys Glu Thr Pro		
GAT AAG CCA AAA GGC ACA GCC AGA AGA AAA CCT GCC AAG		236
Asp Lys Pro Lys Gly Thr Ala Arg Arg Lys Pro Ala Lys		
AAG AAT AAA AGC CAA AAG AAG AAT GCC ACA ACT CCC TTG		275
Lys Asn Lys Ser Gln Lys Lys Asn Ala Thr Thr Pro Leu		
AAA CAG TGG AAA GTT GGT GAC AAG TGT TCT GCT GTT TGG		314
Lys Gln Trp Lys Val Gly Asp Lys Cys Ser Ala Val Trp		
TCA GAA GAC GGC TGC ATT TAC CCA GCT ACT ATT ACG TCC		353
Ser Glu Asp Gly Cys Ile Tyr Pro Ala Thr Ile Thr Ser		
ATT GAC TTT AAG AGA GAA ACC TGT GTC GTG GTT TAT ACT		392
Ile Asp Phe Lys Arg Glu Thr Cys Val Val Val Tyr Thr		
GGA TAT GGA AAC AGA GAG GAG CAA AAC TTA TCT GAC CTA		431
Gly Tyr Gly Asn Arg Glu Glu Gln Asn Leu Ser Asp Leu		
CTT TCC CCG ACC TGT GAA GTA GCT AAT AGT ACA GAA CAG		470
Leu Ser Pro Thr Cys Glu Val Ala Asn Ser Thr Glu Gln		
AAC ACT CAG GAG AAT GAA AGT CAA GTT TCC ACA GAC GAC		509
Asn Thr Gln Glu Asn Glu Ser Gln Val Ser Thr Asp Asp		
AGT GAA CAC TCC TCC AGA TCG CTC AGA AGT AAA GCA CAC		548
Ser Glu His Ser Ser Arg Ser Leu Arg Ser Lys Ala His		

REPLACEMENT SHEET

Figure 12B

AGC AAG TCC AAA GCT GCT CCG TGG ACC TCA TTT CTT CCT	587
Ser Lys Ser Lys Ala Ala Pro Trp Thr Ser Phe Leu Pro	
CCA CCA CCC CCA ATG CCA GGG TCA GGA TTA GGA CCA GGA	626
Pro Pro Pro Pro Met Pro Gly Ser Gly Leu Gly Pro Gly	
AAG CCA GGT CTA AAA TTC AAC GGC CCG CCG CCG CCT	665
Lys Pro Gly Leu Lys Phe Asn Gly Pro Pro Pro Pro	
CCA CTA CCC CCT CCC CCC TTC CTG CCG TGC TGG ATG CCC	704
Pro Leu Pro Pro Pro Phe Leu Pro Cys Trp Met Pro	
CCG TTC CCT TCA GGA CCA CCA ATA ATC CCG CCA CCC CCT	743
Pro Phe Pro Ser Gly Pro Pro Ile Ile Pro Pro Pro Pro	
CCC ATC TCT CCC GAC TGT CTG GAT GAC ACT GAT GCC CTG	782
Pro Ile Ser Pro Asp Cys Leu Asp Asp Thr Asp Ala Leu	
GGC AGT ATG CTA ATC TCT TGG TAC ATG AGT GGC TAC CAC	821
Gly Ser Met Leu Ile Ser Trp Tyr Met Ser Gly Tyr His	
ACT GGC TAC TAT ATG GGT TTC AGA CAA AAT AAA AAA GAA	860
Thr Gly Tyr Tyr Met Gly Phe Arg Gln Asn Lys Lys Glu	
GGA AAG TGC TCA CAT ACA AAT taag	885
Gly Lys Cys Ser His Thr Asn *	

REPLACEMENT SHEET

Figure 13

20 30 40 50 60 70
 GSGGGVPEQEDSVLFRRGTGQSDDSDIWDDTALIKAYDKAVASFKHALKNGDICETS
 =====
 GSGGAGSEQEDTVLFRRGTGQSDDSDIWDDTALIKAYDKAVASFKHALKNGDICETP
 20 30 40 50 60
 80 90 100 110 120 130
 GKPKTTPKRKPAKKNKSQKKNTAASLQQWKVGDKCSAIWSEDGCIYPATIASIDFKR
 =====
 DKPKGTARRKPAKKNKSQKKNATTPLKQWKVGDKCSAVWSEDGCIYPATITSIDFKR
 70 90 100 110 120
 140 150 160 170 180 1
 ETCVVVYTGYGNREEQNLSDLLSPICEVANNIEQNAQENENESQVSTDESENSRSPG
 =====
 ETCVVVYTGYGNREEQNLSDLLSPTCEVANSTEQNTQENE--SQVSTDDSEHSSRSL
 130 140 160 170 1
 90 200 210 220 230 240
 NKSDNIKPKSAPWNSFLPPPPMPGPRLGPGKPGLKFNGLNGPPPPPPPHLLSCWLP
 =====
 RSKAHSKSKAAPWTSFLPPPPMPGSGLGPGKPGLKFNGLNGPPPPPLPPPFLLPCWMP
 80 190 200 210 220 230
 250 260 270 280 290 300
 PFPSGPPIIPPPPICPDSDLDDADALGSMLISWYMSGYHTGYMGFRQNQKEGRCSH
 =====
 PFPSGPPIIPPPPICPDCLDDTDALGSMLISWYMSGYHTGYMGFRQNQKEGKCSH
 240 250 260 270 280 290

SL
—
TN

F M A

F M A

F M A

FIG. 14(A)

FIG. 14(B)

FIG. 14(C)

SSCP ANALYSIS

▼ SMN
▽ C-BCD541

▼ ▽

121B8 YAC
595CII YAC
HUMAN 1 CONTROL
HUMAN 2 CONTROL
HUMAN 3 CONTROL
HUMAN 4 SMA

FIG. 15

**This Page is Inserted by IFW Indexing and Scanning
Operations and is not part of the Official Record**

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

- BLACK BORDERS**
- IMAGE CUT OFF AT TOP, BOTTOM OR SIDES**
- FADED TEXT OR DRAWING**
- BLURRED OR ILLEGIBLE TEXT OR DRAWING**
- SKEWED/SLANTED IMAGES**
- COLOR OR BLACK AND WHITE PHOTOGRAPHS**
- GRAY SCALE DOCUMENTS**
- LINES OR MARKS ON ORIGINAL DOCUMENT**
- REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY**
- OTHER: _____**

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.