Data Integrity Algorithms

Jiuqin ZHOU

Outline

- 1. Cryptographic Hash Functions
 - i. Examples & Requirements
 - ii. SHA-512: A variant of the SHA-2 family
- 2. Message Authentication Codes
 - i. MAC Overview
 - ii. Hash-based vs. Cipher-based MAC
- 3. Digital Signature
 - i. Signature Scheme Overview
 - ii. Elgamal Digital Signature Scheme

A Simple Hash Function

Security Requirements

General Principle

The input (message, file, etc.) is viewed as a sequence of n -bit blocks. The input is processed one block at a time in an iteration to produce an n-bit hash function.

A Simple Hash Function

Security Requirements

One of the simplest hash functions is the bit-by-bit exclusive-OR (XOR) of every block. This can be expressed as

$$C_i = b_{i1} \oplus b_{i2} \oplus \ldots \oplus b_{im}$$

where C_i is the i-th bit of the hash code, $1 \leq i \leq n$, m is the number of n-bit blocks in the input, b_{ij} is the i-th bit in the j-th block, and \oplus is the XOR operation.

A Simple Hash Function

Security Requirements

- Consider the case when n=8, then the hash function is the same as the byte-wise XOR operation over all input bytes.
- For a given hash value $0000001_{(2)}$, it is easy to find two preimage $00000000,0000001_{(2)}$ and $0000001,00000000_{(2)}$ that have the same bit length.
- Therefore, this hash function cannot be called a secure cryptographic hash function.

A Simple Hash Function

Security Requirements

Requirement	Description	
Variable input size	H can be applied to a block of data of any size.	
Fixed output size	H produces a fixed-length output.	
Efficiency	H(x) is relatively easy to compute for any given x , making both hardware and software implementations practical.	
Preimage resistant (one-way property)	For any given hash value h , it is computationally infeasible to find y such that $H(y) = h$.	
Second preimage resistant (weak collision resistant)	For any given block x , it is computationally infeasible to find $y \neq x$ with $H(y) = H(x)$.	
Collision resistant (strong collision resistant)	It is computationally infeasible to find any pair (x, y) with $x \neq y$, such that $H(x) = H(y)$.	
Pseudorandomness	Output of H meets standard tests for pseudorandomness.	

Overall Structure

Block Operation

Word Generation

Round Function

Input and Output

• The algorithm takes as input a message with a maximum length of less than 2^{128} bits and produces as output a 512-bit message digest. The input is processed in 1024-bit blocks.

Overall Structure

Block Operation

Word Generation

S1: Append Padding

- The message is padded so that its length is congruent to 896 modulo 1024.
- Padding is always added, even if the message is already of the desired length.
 Thus, the number of padding bits is in the range of 1 to 1024.
- The padding consists of a single 1 bit followed by the necessary number of 0 bits.

Overall Structure

Block Operation

Word Generation

S2: Append Length

- A block of 128 bits is appended to the message.
- This block is treated as an unsigned 128-bit integer and contains the length of the original message in bits before the padding.

Overall Structure

Block Operation

Word Generation

Outcome of First
Two Steps

- The outcome of the first two steps yields a message that is an integer multiple of 1024 bits in length.
- In the picture, the expanded message is represented as the sequence of 1024-bit blocks M_1,M_2,\ldots,M_N , so that the total length of the expanded message is N*1024 bits.

Overall Structure

Block Operation

Word Generation

Round Function

S3: Initialize Hash Buffer

• A 512-bit buffer is used to hold intermediate and final results of the hash function. The buffer can be represented as eight 64-bit registers (a,b,c,d,e,f,g,h).

Overall Structure

Block Operation

Word Generation

Round Function

S4: Process Message in Blocks

• The heart of the algorithm is a module that consists of 80 rounds; this module is labeled ${\cal F}$ in the picture.

Overall Structure

Block Operation

Word Generation

Round Function

S5: Output Message Digest

• After all N 1024-bit blocks have been processed, the output from the N-th stage is the 512-bit message digest.

Overall Structure

Block Operation

Word Generation

Round Function

• We can summarize the behavior of SHA-512 as follows:

$$\circ H_0 = IV.$$

$$\circ \ Hi = F(H_{i-1}, M_{i-1})$$
, for $0 \leq i \leq N$.

$$\circ MD = H_N.$$

Overall Structure

Block Operation

Word Generation

80 Rounds

- Each round takes as input the 512-bit buffer value, (a,b,c,d,e,f,g,h), and updates the contents of the buffer. At input to a round, the buffer has the value of the intermediate hash value, H_{i-1} .
- \bullet Each round t makes use of a 64-bit value W_t , derived from the current 1024-bit block being processed $M_i.$
- Each round also uses an additive constant K_t , where $0 \le t \le 79$ indicates one of the 80 rounds.

Overall Structure

Block Operation

Word Generation

Addition in 2^{64}

- ullet The output of the eightieth round is added to the input to the first round (H_{i-1}) to produce H_i .
- The addition is done independently for each of the eight words in the buffer with each of the corresponding words in H_{i-1} , using addition modulo 2^{64} .

Overall Structure

Block Operation

Word Generation

Round Function

First 16 Bytes

• The first 16 values of W_t are taken directly from the 16 words of the current block.

Overall Structure

Block Operation

Word Generation

Round Function

The remaining values are defined as:

$$\circ \ W_t = \sigma_1^{512}(W_{t-2}) + W_{t-7} + \sigma_0^{512}(W_{t-15}) + W_{t-16}$$

where

•
$$\sigma_0^{512}(x) = ROTR^1(x) \oplus ROTR^8(x) \oplus SHR^7(x)$$

•
$$\sigma_1^{512}(x) = ROTR^{19}(x) \oplus ROTR^{61}(x) \oplus SHR^6(x)$$

- ullet $ROTR^n(x) = {
 m circular\ right\ shift\ (rotation)\ of\ the\ 64-bit\ argument\ x\ by\ n\ bits$
- $SHR^n(x) = \text{right shift of the 64-bit argument } x \text{ by } n$ bits with padding by zeros on the left.
- ullet All add operations are performed under module 2^{64} .

Overall Structure

Block Operation

Word Generation

Logic of Round Function

•
$$T_1 = h + Ch(e, f, g) + (\Sigma_1^{512}e) + W_t + K_t$$
.

$$ullet T_2=(\Sigma_0^{512}a)+Maj(a,b,c).$$

•
$$h=g$$
, $g=f$, $f=e$, $e=d+T_1$, $d=c$, $c=b$, $b=a$, $a=T_1+T_2$

Overall Structure

Block Operation

Word Generation

- $Ch(e, f, g) = (e \text{ AND } f) \oplus (\text{NOT } e \text{ AND } g).$
- $Maj(a, b, c) = (a \text{ AND } b) \oplus (a \text{ AND } c) \oplus (b \text{ AND } c)$.
- $(\Sigma_0^{512}a) = ROTR^{28}(a) \oplus ROTR^{34}(a) \oplus ROTR^{39}(a)$.
- $(\Sigma_1^{512}) = ROTR^{14}(e) \oplus ROTR^{18}(e) \oplus ROTR^{41}(e)$.
- $ROTR^n(x) = \text{circular right shift (rotation) of the 64-bit argument } x \text{ by } n \text{ bits.}$
- $W_t =$ a 64-bit word derived from the current 1024-bit input block.
- $K_t =$ a 64-bit additive constant.
- t is the step number, for $0 \le t \le 79$.
- ullet The addition is moded by 2^{64} .

Message authentication

MAC General Structure

- Message authentication is a procedure to verify that received messages have not been altered.
- There are three classes of functions that may serve as authenticators: Hash Function, Message Encryption, and Message Authentication Code (MAC).

Message authentication

MAC General Structure

- **Hash function** is a function that maps a message of any length into a fixed-length hash value, which serves as the authenticator, because of its property of second preimage resistant.
- Message Encryption uses the ciphertext of the entire message serves as its authenticator, which takes extra space equal to the plaintext.
- Message authentication code (MAC) is A function of the message and a secret key that produces a fixed-length value that serves as the authenticator.

Message authentication

MAC General Structure

Message authenticators	Space Consumption	Extra Secrets
Hash Function	Low	No
Encryption	High	Yes
MAC	Low	Yes

Comparison between Message Authenticators

• From the Table, we can see that Message Authentication Code are most competitive in the field of message authentication.

Message authentication

MAC General Structure

MAC on Symmetric Key

 $\hbox{ Two communicating parties, A and B, share a common secret } \\ \hbox{key K}.$

Message authentication

MAC General Structure

S1: Calculated Mac by A

• When A has a message to send to B, it calculates the MAC as a function of the message and the key: $\mathrm{MAC} = C(K, M)$ where M is the input message, C is the MAC function, K is the shared secret key, and MAC is the message authentication code.

Message authentication

MAC General Structure

S2: Calculated MAC by B

 The message plus MAC are transmitted to the intended recipient. The recipient performs the same calculation on the received message, using the same secret key, to generate a new MAC.

Message authentication

MAC General Structure

S3: MAC Comparison

 The received MAC is compared to the calculated MAC. If the received MAC matches the calculated MAC The receiver is assured that the message has not been altered.

HMAC

CMAC

HMAC Structure

- H is embedded hash function, for example, MD5, or SHA-1. IV is initial value input to hash function.
- ullet M is message input to HMAC (including the padding specified in the embedded hash function).
- Y_i is i-th block of M, $0 \leq i \leq (L-1)$.
- L is number of blocks in M.
- b is number of bits in a block. n is length of hash code produced by embedded hash function.

HMAC

CMAC

HMAC Structure

- K is secret key whose recommended length is $\geq n$. if key length is greater than b, the key is input to the hash function to produce an n-bit key.
- ullet K^+ is K padded with zeros on the right so that the result is b bits in length.
- ipad is $00110110_{(2)}$ (36 in hexadecimal) repeated b/8 times.
- opad is $010111100_{(2)}$ (5C in hexadecimal) repeated b/8 times.

HMAC

CMAC

Algorithm Representation

 $HMAC(K, M) = H[(K^+ \oplus \text{opad})||H[(K^+ \oplus \text{ipad})||M]]$

HMAC

CMAC

CMAC with K_1

• When the message is an integer multiple n of the cipher block length b, The algorithm makes use of a k-bit encryption key K and a b-bit constant, K_1 .

HMAC

CMAC

We have the following:

$$\circ \ C_1 = E(K, M_1),$$

$$\circ \ C_i = E(K, C_{i-1} \oplus M_i) \ ext{for} \ 2 \leq n-1$$

$$\circ \ C_n = E(K, C_{n-1} \oplus M_{n-1} \oplus K_1)$$

$$\circ \ T = MSB_{T_{len}}(C_n)$$

- where:
 - ullet T is the message authentication code
 - T_{len} is bit length of T
 - $MSB_s(X)$ is the s leftmost bits of the bit string X.

CMAC with K_2

HMAC

CMAC

- If the message is not an integer multiple of the cipher block length, then the final block is padded to the right (least significant bits) with a 1 and as many 0s as necessary so that the final block is also of length b.
- The CMAC operation then proceeds as before, except that a different b-bit key K_2 is used instead of K_1 .

HMAC

CMAC

Key Generation

- The two b-bit keys are derived from the k-bit encryption key as follows. $L=E(K,\underbrace{0...0}_b)$, $K_1=L\cdot x$, and $K_2=L\cdot x^2$.
- Note that multiplication is done in the finite field $GF(2^b)$.

Simplified Model

Security Requirements

Purpose of Digital Signature

• Suppose that B wants to send a message to A. Although it is not important that the message be kept secret, he wants A to be certain that the message is indeed from him.

Simplified Model

Security Requirements

S1: Calculated Signature by B

- For this purpose, B uses a secure hash function, such as SHA-512, to generate a hash value for the message. That hash value, together with B's private key serves as input to a digital signature generation algorithm, which produces a short block that functions as a digital signature.
- *B* sends the message with the signature attached.

Simplified Model

Security Requirements

S2: Calculated Signature by A

- $\hbox{ When A receives the message plus } \\ \hbox{ signature, she} \\$
 - calculates a hash value for the message;
 - \circ provides the hash value and B's public key as inputs to a digital signature verification algorithm.
- If the algorithm returns the result that the signature is valid, A is assured that the message must have been signed by B.

Simplified Model

Security Requirements

Outcome of Digital Signature

- No one else has B's private key and therefore no one else could have created a signature that could be verified for this message with B's public key.
- $\bullet\,$ In addition, it is impossible to alter the message without access to B 's private key.
- So the message is authenticated both in terms of **source** and in terms of **data integrity**.

From Digital Signature's Application

Simplified Model

Requirements

- 1. The signature must be a bit pattern that depends on the message being signed.
- 2. The signature must use some information only known to the sender to prevent both forgery and denial.
- 3. It must be practical to retain a copy of the digital signature in storage.

From Digital Signature's Security

Simplified Model

Requirements

- 4. It must be relatively easy to produce the digital signature.
- 5. It must be relatively easy to recognize and verify the digital signature.
- 6. It must be computationally infeasible to forge a digital signature,
 - i. either by constructing a new message for an existing digital signature
 - ii. or by constructing a fraudulent digital signature for a given message.

Signature Generation & Verification

Proof of Scheme Correctness

- The global elements of ElGamal digital signature are a prime number q and a, which is a primitive root of q.
- User A generates a private/public key pair as follows:
 - \circ Generate a random integer X_A , such that $1 < X_A < q-1$.
 - \circ Compute $Y_A = a^{X_A} \mod q$.
 - \circ A's private key is X_A ; A's public key is $\{q,a,Y_A\}$.
- To sign a message M, user A first computes the hash m=H(M), such that m is an integer in the range $0\leq m\leq q-1$.

Signature Generation & Verification

Proof of Scheme Correctness

- A then forms a digital signature as follows:
 - \circ Choose a random integer K such that $1 \leq K \leq q-1$ and $\gcd(K,q-1)=1.$ That is, K is relatively prime to q-1.
 - \circ Compute $S_1 = a^K \mod q$. Note that this is the same as the computation of C1 for ElGamal encryption.
 - \circ Compute $K^{-1} \mod (q-1)$. That is, compute the inverse of K modulo q 1.
 - \circ Compute $S_2=K^{-1}(m-X_A^{S_1})\mod (q-1).$
 - \circ The signature consists of the pair (S1,S2).

Signature Generation & Verification

Proof of Scheme Correctness

- Any user B can verify the signature as follows:
 - \circ Compute $V_1 = a^m \mod q$.
 - \circ Compute $V_2=(Y_A)^{S_1}(S_1)^{S_2}\mod q$.

Signature Generation & Verification

Proof of Scheme Correctness

- For a prime number q, if a is a primitive root of q, then $a^1, a^2, \ldots, a^{q-1} \mod q$ are distinct. Therefore, we have the following properties:
 - \circ For any integer m, $a^m \equiv 1 \mod q$ if and only if $m \equiv 0 \mod (q-1)$.
 - \circ For any integers, i, j, $a^i \equiv a^j \mod q$ if and only if $i \equiv j \mod (q-1).$

Signature Generation & Verification

Proof of Scheme Correctness

$$a^m \mod q = (Y_A)^{S_1}(S_1)^{S_2} \mod q$$
 assume $V_1 = V_2$ $a^m \mod q = a^{X_AS_1}a^{KS_2} \mod q$ substituting for Y_A and S_1 $a^{m-X_AS_1} \mod q = a^{KS_2} \mod q$ rearranging terms $m-X_AS_1 \equiv KS_2$ property of primitive roots $m-X_AS_1 \equiv KK^{-1}(m-X_A^{S_1})$ substituting for S_2

assume $V_1 = V_2$ rearranging terms property of primitive roots substituting for S_2