

אלגברה ב' (104168) חורף 2022-2023 רשימות תרגולים

אלן סורני

2022 בנובמבר 15־ה בתאריך לאחרונה לאחרונה בתאריך ה־15

תוכן העניינים

1	2															זבים שמורים							חלק ראשון - מרחו				J																
2																																					7	גרר	מייצ	צות	זרי:	מכ	1
2																					 														. 1	ייור	סיכ	ב ב	דרוח	הג	1	.1	
8					•	•	•			•	•	•	•	•		•	•	•	•	•		•	•		•	•	•		•	•	•					i	ורנד	תמ	עין ו	גר	1	.2	
12																																							מריב				2
12																					 																שרי	יק	ומים	סכ	2	.1	
14																					 															רים	זמו	ם ע	חבינ	מר	2	.2	
14																					 																		סינוו	לכ	2	.3	

חלק I חלק ראשון - מרחבים שמורים

פרק 1

מטריצות מייצגות

1.1 הגדרות בסיסיות

יהי V מרחב בסיס של $B=(v_1,\ldots,v_n)$ יהי $\mathbb F$, יהי מעל שדה דוקטורי מרחב וקטורי יהי V יהי יהי V יהי ויהי וקטור קואורדינטות).

$$v = \sum_{i \in [n]} \alpha_i v_i := \alpha_1 v_1 + \ldots + \alpha_n v_n$$

הערה 1.1.2. ההעתקה

$$\rho_B \colon V \to \mathbb{F}^n$$
$$v \mapsto [v]_B$$

היא איזומורפיזם לינארי.

הגדרה \mathbb{F} עם בסיסים על אותו שדה מעל סוף־מימדיים וקטורים ער מרחבים יהיו עם יהיו עם מריצה אותו ייהיו עם מריצה אותו יהיו על מרחבים וקטורים וונסמן ונסמן

$$B = (v_1, \ldots, v_n)$$

נגדיר $T\in \operatorname{Hom}_{\mathbb{F}}(V,W)$ עבור $m\coloneqq \dim{(W)}$ י וי $n\coloneqq \dim{(V)}$ נגדיר

$$.[T]_{C}^{B} = \begin{pmatrix} | & | & | \\ [T(v_{1})]_{C} & \cdots & [T(v_{n})]_{C} \end{pmatrix} \in \operatorname{Mat}_{m \times n} (\mathbb{F})$$

 \mathbb{F}^n אז: $E=(e_1,\ldots,e_m)$ ויהי ו $A\in \operatorname{Mat}_{m imes n}(\mathbb{F})$ משפט 1.1.4 (כפל מטריצות). תהי

 Ae_i מתקיים כי מתקיים היז של $i \in [m]$ לכל (i)

$$.AB = \begin{pmatrix} | & & | \\ Ab_1 & \cdots & Ab_\ell \\ | & & | \end{pmatrix}$$
אז $B = \begin{pmatrix} | & & | \\ b_1 & \cdots & b_\ell \\ | & & | \end{pmatrix} \in \operatorname{Mat}_{n \times \ell} (\mathbb{F})$ לכל (ii)

תרגיל 1. הראו שניתן לשחזר את ההגדרה של כפל מטריצות משתי התכונות במשפט.

הערה 1.1.5. ההעתקה

$$\eta_C^B \colon \operatorname{Hom}_{\mathbb{F}}(V, B) \to \operatorname{Mat}_{m \times n}(\mathbb{F})$$

$$T \mapsto [T]_C^B$$

היא איזומורפיזם לינארי.

טענה W בסיס U בסיס של U בסיס $B=(v_1,\ldots,v_n)$ ויהיי $T\in\operatorname{Hom}_{\mathbb{F}}(V,W)$ תהי 1.1.6. מענה

$$[T\left(v\right)]_{C} = [T]_{C}^{B}\left[v\right]_{B}$$

 $.v \in V$ לכל

. ההגדרה. עבור $[T\left(v_i\right)]_C$ מתקיים $[T]_C^B$ מתקיים וואת העמודה ה־i של $[T]_C^B$ וואת העמודה $[T]_C^B$ וואת מתקיים $[T]_C^B$ מתקיים עבור $[T]_C^B$ מתקיים של $[T]_C^B$ מתקיים של $[T]_C^B$ מתקיים של האריות של עבור ווא של מלינאריות של מתקיים של האריות של מתקיים של מתקיים של מתקיים של האריות של מתקיים ש

$$\begin{split} [T\left(v\right)]_{C} &= \left[T\left(\sum_{i \in [n]} \alpha_{i} v_{i}\right)\right]_{C} \\ &= \left[\sum_{i \in [n]} \alpha_{i} T\left(v_{i}\right)\right]_{C} \\ &= \sum_{i \in [n]} \alpha_{i} \left[T\left(v_{i}\right)\right]_{C} \\ &= \sum_{i \in [n]} \alpha_{i} \left[T\right]_{C}^{B} \left[v_{i}\right]_{B} \\ &= \left[T\right]_{C}^{B} \left(\sum_{i \in [n]} \alpha_{i} v_{i}\right]_{B} \\ &= \left[T\right]_{C}^{B} \left[\sum_{i \in [n]} \alpha_{i} v_{i}\right]_{B} \\ , &= \left[T\right]_{C}^{B} \left[v\right]_{B} \end{split}$$

כנדרש.

סימון ונקרא למטריצה $[T]_B:=[T]_B^B$, נסמן המין ואם עורי סוף־מימדי ונקרא למטריצה אם בסיס של בסיס של בסיס של מרחב וקטורי ואם B בסיס של דפי המטריצה המייצגת של T לפי הבסיס בסיס ונקרא המטריצה המייצגת של דער המייצגת ווער המייצגת ווע

 $M_C^B \coloneqq [\operatorname{Id}_V]_C^B$ נסמן נסמים א סוף סוף וקטורי מרחב ע מרחב והי 1.1.8. יהי 1.1.8. סימון

סימון $A\in\operatorname{Mat}_{n imes n}\left(\mathbb{F}
ight)$ אם $A\in\operatorname{Mat}_{n imes n}\left(\mathbb{F}
ight)$ נסמן

$$T_A \colon \mathbb{F}^n \to \mathbb{F}^n$$

. $v \mapsto Av$

תהי א לכל היותר ממשיים הפולינום מרחב ערחב ערחב א היותר 15. יהי יהי ערגיל היותר א מרחב הפולינום מרחב ערחב ערחב א יהי ווער $V=\mathbb{R}_3\left[x\right]$

$$T: \mathbb{R}_3[x] \to \mathbb{R}_3[x]$$

 $p(x) \mapsto p(x+1)$

 $[T]_B$ את כיתבו V בסיס של $B=\left(1,x,x^2,x^3
ight)$ ויהי

פתרון. לפי הגדרת המטריצה המייצגת, עמודות $\left[T\left(x^{i}\right)\right]_{B}$ הן ה $\left[T\right]_{B}$ מתקיים מחליצה המייצגת, מחליצה המייצגת, עמודות

$$T(1) = 1$$

$$T(x) = x + 1 = 1 + x$$

$$T(x^{2}) = (x + 1)^{2} = 1 + 2x + x^{2}$$

$$T(x^{3}) = (x + 1)^{3} = 1 + 3x + 3x^{2} + x^{3}$$

ולכן

$$\begin{split} &[T(1)]_B = e_1 \\ &[T(x)]_B = e_1 + e_2 \\ &[T(x^2)]_B = e_1 + 2e_2 + e_3 \\ &[T(x^3)]_B = e_1 + 3e_2 + 3e_3 + e_4 \end{split}$$

ואז

$$.[T]_B = \begin{pmatrix} 1 & 1 & 1 & 1 \\ 0 & 1 & 2 & 3 \\ 0 & 0 & 1 & 3 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

תהי , $V=\operatorname{Mat}_{2 imes2}\left(\mathbb{C}
ight)$ תהי $V=\operatorname{Mat}_{2 imes2}\left(\mathbb{C}
ight)$

$$T \colon V \to V$$

$$A \mapsto \frac{1}{2} \left(A - A^t \right)$$

ויהי

$$E = (E_{1,1}, E_{1,2}, E_{2,1}, E_{2,2}) := \left(\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \right)$$

 $[T]_{\scriptscriptstyle E}$ הבסיס הסטנדרטי של V. כיתבו את

מתקיים . $[T]_E$ ממודות שאלו כיוון כיוון את גחשב את נחשב מקודם, כמו הוכחה.

$$T(E_{1,1}) = \frac{1}{2} (E_{1,1} - E_{1,1}) = 0$$

$$T(E_{1,2}) = \frac{1}{2} \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} - \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix} \end{pmatrix} = \frac{1}{2} E_{1,2} - \frac{1}{2} E_{2,1}$$

$$T(E_{2,1}) = \frac{1}{2} (E_{2,1} - E_{1,2}) = \frac{1}{2} E_{2,1} - \frac{1}{2} E_{1,2} T(E_{2,2}) = \frac{1}{2} (E_{2,2} - E_{2,2}) = 0$$

לכן

$$\begin{split} \left[T\left(E_{1,1}\right)\right]_{E} &= 0 \\ \left[T\left(E_{1,2}\right)\right]_{E} &= \frac{1}{2}e_{2} - \frac{1}{2}e_{3} \\ \left[T\left(E_{2,1}\right)\right]_{E} &= -\frac{1}{2}e_{2} + \frac{1}{2}e_{3} \\ \left[T\left(E_{2,2}\right)\right]_{E} &= 0 \end{split}$$

ואז

,
$$[T]_E = \begin{pmatrix} 0 & 0 & 0 & 0 \\ 0 & \frac{1}{2} & -\frac{1}{2} & 0 \\ 0 & -\frac{1}{2} & \frac{1}{2} & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

כנדרש.

כאשר $B=(f_1,f_2)$ עם הבסיס $V=\operatorname{Hom}_{\mathbb{R}}\left(\mathbb{R}^2,\mathbb{R}
ight)$ יהי יהי

$$f_1\left(\begin{pmatrix} x \\ y \end{pmatrix}\right) = x$$
, $f_2\left(\begin{pmatrix} x \\ y \end{pmatrix}\right) = y$

ותהי

$$A = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix} \in \operatorname{Mat}_{2 \times 2} (\mathbb{R})$$

 $\left.[T\right]_{B}=A$ עבורו $T\in\operatorname{End}_{\mathbb{R}}\left(V\right)$ מיצאו

פתרון. מתקיים

$$[T]_{B} = \begin{pmatrix} | & | \\ [T(f_{1})]_{B} & [T(f_{2})]_{B} \\ | & | \end{pmatrix}$$

לכן נדרוש

$$[T(f_1)]_B = \begin{pmatrix} 1\\2 \end{pmatrix}$$
$$.[T(f_2)]_B = \begin{pmatrix} 3\\4 \end{pmatrix}$$

אז

$$T(f_1) = f_1 + 2f_2$$

 $T(f_2) = 3f_1 + 4f_2$

לכן, אם $f \in V$ איבר כללי, נכתוב

$$f\begin{pmatrix} x \\ y \end{pmatrix} = \alpha x + \beta y$$

ונקבל כי

$$(T(f)) \begin{pmatrix} x \\ y \end{pmatrix} = (T(\alpha f_1 + \beta f_2)) \begin{pmatrix} x \\ y \end{pmatrix}$$

$$= \alpha T(f_1) \begin{pmatrix} x \\ y \end{pmatrix} + \beta T(f_2) \begin{pmatrix} x \\ y \end{pmatrix}$$

$$= \alpha (f_1 + 2f_2) \begin{pmatrix} x \\ y \end{pmatrix} + \beta (3f_1 + 4f_2) \begin{pmatrix} x \\ y \end{pmatrix}$$

$$= \alpha (x + 2y) + \beta (3x + 4y)$$

A=B או Av=Bv מתקיים $v\in\mathbb{F}^n$ מענה כי לכל $A,B\in\operatorname{Mat}_{m imes n}(\mathbb{F})$ או 1.1.10. מענה

.0-הוכחה. מהנתון, מתקיים e_i שהינה הוה לכל A-B לכל העמודה ה־ $v\in\mathbb{F}^n$ לכל לכל האינה A-B שווה ל-0. בפרט העמודה ה-A-B=0 לכן לכן האינה ה-

טענה B,C,D בסיסים עם $\mathbb F$ אותו שדה מעל סוף-מימדיים וקטוריים וקטוריים מרחבים U,V,W יהיי 1.1.11. מענה

$$S \in \operatorname{Hom}_{\mathbb{F}}(U, V)$$

 $T \in \operatorname{Hom}_{\mathbb{F}}(V, W)$

Хĭ

,
$$[T \circ S]_D^B = [T]_D^C [S]_C^B$$

הוכחה. לכל $u \in U$ מתקיים

$$\begin{split} \left[T\right]_{D}^{C}\left[S\right]_{C}^{B}\left[u\right]_{B} &= \left[T\right]_{D}^{C}\left[S\left(u\right)\right]_{C} \\ &= \left[T\circ S\left(u\right)\right]_{D} \\ &= \left[T\circ S\right]_{D}^{B}\left[u\right]_{B} \end{split}$$

לכן

,
$$\left[T\right]_{D}^{C}\left[S\right]_{C}^{B}=\left[T\circ S\right]_{D}^{B}$$

כנדרש

שענה $T\in \mathrm{Hom}_{\mathbb{F}}\left(V,W\right)$ ותהי שדה \mathbb{F} ותהי מעל שדה דיחד וקטוריים וקטוריים מרחבים ערכית. 1.1.12. יהיו

$$B = (v_1, \dots, v_n)$$
$$C = (u_1, \dots, u_n)$$

בסיסים של V ויהיו

$$B' = (T(v_1), ..., T(v_n))$$

 $C' = (T(u_1), ..., T(u_n))$

 $M_{C}^{B}=M_{C'}^{B'}$ גם $\operatorname{Im}\left(T\right)=\left\{ T\left(v\right)\mid v\in V
ight\}$ אז אז B',C' אז

פתרון. כיום שולח ערכית על התמונה, צמצום הטווח נותן איזומורפיזם $T\colon V \xrightarrow{\sim} \mathrm{Im}\,(T)$ בסיסים. בסיסים. בסיסים. בסיסים.

כעת, לכל $i \in [n]$ נכתוב

$$v_i = \sum_{j \in [n]} \alpha_{i,j} u_i$$

ואז

$$.M_C^B e_i = [v_i]_C = \begin{pmatrix} \alpha_{i,1} \\ \vdots \\ \alpha_{i,n} \end{pmatrix}$$

כמו כן,

$$T(v_i) = T\left(\sum_{i \in [n]} \alpha_{i,j} u_j\right)$$
$$= \sum_{i \in [n]} \alpha_{i,j} T(u_j)$$

ולכן גם

$$.M_{C'}^{B'}e_{i} = [T(v_{i})]_{C'} = \begin{pmatrix} \alpha_{i,1} \\ \vdots \\ \alpha_{i,n} \end{pmatrix}$$

קיבלנו כי כל עמודות המטריצות שוות, ולכן יש שוויון.

תרגיל 5. תהי $A\in \mathrm{Mat}_{n imes n}\left(\mathbb{F}
ight)$ הפיכה.

- $A=M_E^B$ עבורו \mathbb{F}^n של B בסיס מיצאו מיצא של של הסטנדרטי הבסיס הבסיס .1
 - $A=M_C^E$ עבורו \mathbb{F}^n של C סיס.
 - $A=M_C^B$ עבורו \mathbb{F}^n של C בסיס מיצאו מיצאו \mathbb{F}^n מיצאו .3
- בסיס של $B=(v_1,\dots,v_n)$ ויהי ויהי $T\in\mathrm{End}_{\mathbb F}(V)$ יהי $\mathbb F$ מעל $\mathbb F$, מעל ממימד ויהי מימוד N מעל $T\in\mathrm{End}_{\mathbb F}(V)$ יהי $\mathbb F$ מעבורו $\mathbb F$ עבורו $\mathbb F$ איזומורפיזם ויהי ויהי $\mathbb F$ איזומורפיזם מעל מעל עבורו $\mathbb F$ איזומורפיזם ויהי $\mathbb F$ איזומורפיזם ויהי $\mathbb F$ מעל עבורו $\mathbb F$ בסיס של $\mathbb F$

בתרון. אם $B=(v_1,\ldots,v_n)$ מתקיים מההגדרה כי

$$.M_E^B = \begin{pmatrix} | & & | \\ [v_1]_E & \cdots & [v_n]_E \\ | & & | \end{pmatrix} = \begin{pmatrix} | & & | \\ v_1 & \cdots & v_n \\ | & & | \end{pmatrix}$$

. הסדר, A לפי להיות עמודות (v_1,\ldots,v_n) את לכן ניקח את

מתקיים $v\in\mathbb{F}^n$ מתקיים.

$$M_E^C M_C^E v = M_E^C \left[v\right]_C = \left[v\right]_E = v$$

ולכן A^{-1} של A^{-1} של iיה העמודה היiי באשר ביא כר אם ניקח ניקח. אם ניקח $M_C^E=\left(M_E^C\right)^{-1}$ ולכן $M_C^E=\left(A^{-1}\right)^{-1}=A$ ולכן $M_C^C=\left(A^{-1}\right)^{-1}=A$ ולכן אם ניקח, כלומר ניקח, כלומר ניקח,

 $M_C^E=A\left(M_E^B
ight)^{-1}=AM_E^B$ או במילים או במילים שיתקיים שיתקיים לכן נרצה שיתקיים לכן נרצה או לכן נרצה שיתקיים $M_C^B=M_C^EM_E^B$ או במילים אחרות $M_C^B=M_C^BM_E^B$ כאשר היסעיף הקודם, נרצה (AM_E^B) כאשר העמודה היש שית העמודה ביש לכן נרצה לכן נרצה בישר או העמודה ביש העמודה ביש לכן נרצה בישר או העמודה בישר הע

$$.u_i = M_E^B A^{-1} e_i$$

עבור כל בסיס C' מתקיים $M_C^B[T]_B^B=A$ לכן נרצה $[T]_{C'}^B=M_{C'}^B[T]_B^B$ מתקיים, המטריצה C' מתקיים $M_C^B=M_C^E$ כאשר $C=(v_1,\ldots,v_n)$ בעבור $C=(v_1,\ldots,v_n)$ בעבור $C=(v_1,\ldots,v_n)$ בעבור $C=(v_1,\ldots,v_n)$ עבורו $C=(v_1,\ldots,v_n)$ לפי הסעיף השני, נרצה $C=(v_1,\ldots,v_n)$ כלומר, נחפש $C=(v_1,\ldots,v_n)$ עבורו $C=(v_1,\ldots,v_n)$ לפי הסעיף השני, נרצה $C=(v_1,\ldots,v_n)$ עבור $C=(v_1,\ldots,v_n)$

$$.u_i = \left(A\left[T\right]_B^{-1}
ight)^{-1}e_i = \left[T\right]_BA^{-1}e_i$$
לכן $.v_i =
ho_B^{-1}\left(\left[T\right]_BA^{-1}e_i
ight)$

תהי ג $V=\mathbb{C}_3\left[x
ight]$ יהי הי

,
$$T\colon V\to V$$

$$p\left(x\right)\mapsto p\left(x+1\right)$$

עבורו V של C כיתבו מפורשות בסיס $A=\begin{pmatrix}0&1&0&0\\1&0&0&0\\0&0&0&1\\0&0&1&0\end{pmatrix}$ אבורו הבסיס הסטנדרטי ותהי הבסיס הסטנדרטי ותהי

 $A = [T]_C^E$

פתרון. $u_i = [T]_E\,A^{-1}e_i$ כאשר כ־2 כיל הקודם, נרצה קודם, נרצה לפי התרגיל לפי

$$[T]_E = \begin{pmatrix} 1 & 1 & 1 & 1 \\ 0 & 1 & 2 & 3 \\ 0 & 0 & 1 & 3 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

וניתן לראות כי $A^{-1}=A$ כלומר לב לב ניים לב כי

$$Ae_1 = e_2$$

$$Ae_2 = e_1$$

$$Ae_3 = e_4$$

$$Ae_4 = e_3$$

ואז נקבל

$$u_{1} = [T]_{E} A^{-1}e_{1} = [T]_{E} e_{2} = \begin{pmatrix} 1\\1\\0\\0 \end{pmatrix}$$

$$u_{2} = [T]_{E} A^{-1}e_{2} = [T]_{E} e_{1} = \begin{pmatrix} 1\\0\\0\\0 \end{pmatrix}$$

$$u_{3} = [T]_{E} A^{-1}e_{3} = [T]_{E} e_{4} = \begin{pmatrix} 1\\3\\3\\1 \end{pmatrix}$$

$$u_{4} = [T]_{E} A^{-1}e_{4} = [T]_{E} e_{3} = \begin{pmatrix} 1\\2\\1\\0 \end{pmatrix}$$

כלומר

$$\hat{C} = \left(\begin{pmatrix} 1\\1\\0\\0 \end{pmatrix}, \begin{pmatrix} 1\\0\\0\\0 \end{pmatrix}, \begin{pmatrix} 1\\3\\3\\1 \end{pmatrix}, \begin{pmatrix} 1\\2\\1\\0 \end{pmatrix} \right)$$

ולבסוף

$$C = (v_1, v_2, v_3, v_4) := (1 + x, 1, 1 + 3x + 3x^2 + x^3, 1 + 2x + x^2)$$

מתקיים A מתקיים הייצגת היא אכן ליתר ליתר מחון, נבדוק שהמטריצה ליתר

$$T(1) = 1 = v_2$$

 $T(x) = x + 1 = v_1$
 $T(x^2) = (x+1)^2 = 1 + 2x + x^2 = v_4$
 $T(x^3) = (x+1)^3 = 1 + 3x + 3x^2 + x^3 = v_3$

ולכן

$$[T]_{C}^{E} = \begin{pmatrix} | & | & | & | & | \\ [T(1)]_{C} & [T(x)]_{C} & [T(x^{2})]_{C} & [T(x^{3})]_{C} \\ | & | & | & | & | \end{pmatrix}$$

$$= \begin{pmatrix} | & | & | & | & | \\ [v_{2}]_{C} & [v_{1}]_{C} & [v_{4}]_{C} & [v_{3}]_{C} \\ | & | & | & | & | \end{pmatrix}$$

$$= \begin{pmatrix} | & | & | & | \\ [v_{2}]_{C} & [v_{1}]_{C} & [v_{4}]_{C} & [v_{3}]_{C} \\ | & | & | & | & | \end{pmatrix}$$

$$= \begin{pmatrix} | & | & | & | \\ e_{2} & e_{1} & e_{4} & e_{3} \\ | & | & | & | & | \end{pmatrix}$$

$$= A$$

כנדרש.

גרעין ותמונה 1.2

$$.\ker\left(T\right)\coloneqq\left\{ v\in V\mid T\left(v\right)=0\right\}$$

התמונה $T \in \operatorname{Hom}(V,W)$ ותהי שדה ותהי מעל אותו מרחבים וקטורים V,W יהיו יהיו לנארית). הגדרה 1.2.2 (תמונה של העתקה לינארית). יהיו T

$$.\operatorname{Im}(T) := \{T(v) \mid v \in V\}$$

הדרגה $T \in \mathrm{Hom}\,(V,W)$ ותהי שדה ותהי מעל אותו מרחבים וקטורים V,W יהיו יהיו לינארי). דרגה של 1.2.3 הדרגה של T היא

$$.\operatorname{rank}(T) := \dim(\operatorname{Im}(T))$$

הערה B,C בסיסים עם סוף־מימדיים V,W אם 1.2.4. הערה

$$\operatorname{.rank}(T) = \operatorname{rank}\left([T]_C^B\right)$$

משפט 1.2.5 (משפט המימדים). יהי V מרחב יהי (משפט המימדים) משפט 1.2.5 משפט

$$. \dim V = \dim \operatorname{Im} (T) + \dim \ker (T)$$

 $[v]_B = egin{pmatrix} 1 \ dots \ 1 \end{pmatrix}$ עבורו V של B פסיס V מיצאו יוהי V מיצאו פסיס ויהי V מרחב וקטורי סוף־מימדי ויהי יוהי V

תהי $v_1=v$ באשר V של $B_0=(v_1,\ldots,v_n)$ לבסיס (v) את נשלים את פתרון.

$$.A := \begin{pmatrix} 1 & & & & \\ 1 & 1 & & & 0 \\ \vdots & & \ddots & & \\ 1 & & & 1 \\ 1 & 0 & \cdots & 0 & 1 \end{pmatrix} \in M_n(\mathbb{F})$$

נקבל גקבים אבורו עבורו עבורו של $B=(u_1,\ldots,u_n)$ בסים קיים מתרגיל מתרגיל הפיכה, ולכן הפיכה A

מפורשות, ראינו כי ניתן לקחת

$$.u_i = \rho_{B_0}^{-1} ([\mathrm{Id}]_B A^{-1} e_i) = \rho_{B_0}^{-1} (A^{-1} e_i)$$

תרגיל 8. יהי T=1 אם ורק אם יש בסיסים $\operatorname{rank} T=1$. הראו כי $T=\operatorname{End}_{\mathbb{F}}(V)$ ותהי "דה שבה שנה מעל שדה תרגיל 8. יהי T=1 הראו מקדמי T=1 הם בסיסים ליש בסיסים ליש בסיסים ליש בסיסים ורק שבל מקדמי ורק שבי ורק שבל מקדמי ורק שבל מקדמי ורק שבל מקדמי ורק שבי ורק שבל מקדמי ורק שבי ורק שבי

 $\operatorname{rank} T = \operatorname{rank} \left[T\right]_C^B = 1$ בתרון. אז בסיסים B,C כמתואר. אז היש בסיסים לניח כי $\operatorname{rank} T = \operatorname{rank} \left[T\right]_C^B = 1$ ממשפט המימדים מתקיים $\operatorname{rank} T = 1$. כלומר, $\operatorname{rank} T = 1$ ממשפט המימדים מתקיים לכו

 $.\dim \ker T = \dim V - \dim \operatorname{Im} T = \dim V - 1$

יהי $n \coloneqq \dim V$ יהי

$$\tilde{B} \coloneqq (u_1, \dots, u_{n-1})$$

 $\ker T$ בסים של

יהי $[w]_C = egin{pmatrix} 1 \\ \vdots \\ 1 \end{pmatrix}$ כך שמתקיים $[w]_C = egin{pmatrix} 1 \\ \vdots \\ 1 \end{pmatrix}$, שקיים לפי התרגיל הקודם. יהי

$$\begin{pmatrix} | & & | \\ [v]_{\tilde{B}} & \cdots & [v+u_{n-1}]_{\tilde{B}} \\ | & & | \end{pmatrix} = \begin{pmatrix} 1 & 1 & \cdots & 1 & 1 \\ 0 & 1 & & 0 & 0 \\ \vdots & & \ddots & & \vdots \\ 0 & & 1 & 0 \\ 0 & & \cdots & 0 & 1 \end{pmatrix}$$

הפיכה.

נסמן $C=(w_1,\ldots,w_m)$ מתקיים

 $T\left(v\right) = w = w_1 + \ldots + w_m$

ולכל $i \in [n-1]$ מתקיים

 $T(v + u_i) = T(v) + T(u_i)$ = T(v) + 0 = T(v) $= w_1 + \dots + w_m$

.1 מטריצה שכל מקדמיה מטריצה [$T]_C^B$

תרגיל 9. תהי

$$T: \mathbb{R}_3[x] \to \mathbb{R}_3[x]$$

 $p(x) \mapsto p(-1)$

עבורם $\mathbb{R}_3\left[x\right]$ של B,C עבורם מיצאו

פתרון. ניקח בסיס לאשר זהו בסיס כי את ($Ker\left(T\right)$ של $ilde{B}=(b_1,b_2,b_3):=\left(x+1,x^2-1,x^3+1\right)$ בסיס כי את פתרון. ניקח בסיס לי את בסיס לי את בסיס לי את בסיס לי את בלתי-תלוייה לינארית מגודל מקסימלי (הגרעין לכל היותר T מימדי כי T מימדי כי לינארית מגודל מקסימלי (הגרעין לכל היותר בי אותר בי אותר בי אתרי-תלוייה לינארית מגודל מקסימלי (הגרעין לכל היותר בי אתרי-תלוייה לוותר בי אתרי-תלויה בי אתרי-

$$.C_0 = (v_1, v_2, v_3, v_4) := (-1, x, x^2, x^3)$$

המטריצה

$$X = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 \\ 1 & 0 & 1 & 0 \\ 1 & 0 & 0 & 1 \end{pmatrix}$$

ביכה ולכן קיים בסיס $[w]_C=egin{pmatrix}1\\1\\1\\1\end{pmatrix}$ כשראינו שאז $M_C^{C_0}=X$ עבורו $C=(u_1,u_2,u_3,u_4)$ כפי שראינו, ניתן לחשב הפיכה ולכן קיים בסיס

מתקיים . $u_i =
ho_{C_0}^{-1}\left(X^{-1}e_i
ight)$ את לפי C את

$$X^{-1} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ -1 & 1 & 0 & 0 \\ -1 & 0 & 1 & 0 \\ -1 & 0 & 0 & 1 \end{pmatrix}$$

ולכן

$$u_{1} = \rho_{C_{0}}^{-1} \begin{pmatrix} 1 \\ -1 \\ -1 \\ -1 \end{pmatrix} = -1 - x - x^{2} - x^{3}$$

$$u_{2} = \rho_{C_{0}}^{-1} \begin{pmatrix} 0 \\ 1 \\ 0 \\ 0 \end{pmatrix} = x$$

$$u_{3} = \rho_{C_{0}}^{-1} \begin{pmatrix} 0 \\ 0 \\ 1 \\ 0 \end{pmatrix} = x^{2}$$

$$u_{4} = \rho_{C_{0}}^{-1} \begin{pmatrix} 0 \\ 0 \\ 0 \\ 1 \end{pmatrix} = x^{3}$$

$$.C=\left(-1-x-x^2-x^3,x,x^2,x^3\right)$$
 כלומר, כלומר, $T\left(v\right)=-1=w$ שיתקיים ער $v=x\in V$ ואז ניקח

$$B = (v, v + b_1, v + b_2, v + b_3) = (x, 2x + 1, x^2 + x - 1, x^3 + x + 1)$$

כמו בתרגיל הקודם. אכן, מתקיים

$$T(x) = -1$$

$$T(2x+1) = -2 + 1 = -1$$

$$T(x^{2} + x - 1) = (-1)^{2} - 1 - 1 = 1 - 2 = -1$$

$$T(x^{3} + x + 1) = (-1)^{3} - 1 + 1 = -1$$

$$\left[-1
ight]_C = egin{pmatrix} 1 \\ 1 \\ 1 \\ 1 \end{pmatrix}$$
 לכן

כפי שרצינו.

פרק 2

סכומים ישרים ולכסינות

2.1 סכומים ישרים

הגדרה 2.1.1 (סכום ישר). יהי V מרחב וקטורי סוף-מימדי מעל $\mathbb F$ ויהיו ויהי א מרחב וקטורי יהי V יהי יהי יהי $V_1,\ldots,V_k\leq V$

$$V_1 + \ldots + V_k := \{v_1 + \ldots + v_k \mid \forall i \in [k] : v_i \in V_i\}$$

 $v_i\in V_i$ נגיד שהסכום הזה הוא סכום ישר אם כל $v\in V_1+\ldots+V_k$ ניתן לכתיבה $v\in V_1+\ldots+V_k$ במקרה הוא סכום הזה הסכום במקרה החסכום $\bigoplus_{i\in [k]}V_i=V_1\oplus\ldots\oplus V_k$

לכל $v_i=0$ גורר עבור עבור $v_i\in V_i$ עבור עבור אם ורק אם ורק אם ישר אישר אורר הסכום שקול, הסכום באופן באופן ישר $v_i=0$ ישר אם ורק אורר $v_i=0$ אורר באופן ישר לכל $v_i=0$ ישר אם ורק אורר באופן ישר אורר ישר אורר וורך ישר אורר וורך אורר וורך ישר אורר וו

טענה $\sum_{i \in [k]} V_i \coloneqq V_1 + \ldots + V_k$ ישר אם ורק מענה 2.1.3.

$$V_i \cap \left(\sum_{j \neq i} V_j\right) = \{0\}$$

 $i \in [k]$ לכל

את המקרה באינדוקציה, והטענה הכללית נובעת באינדוקציה. k=2

הגדרה 2.1.4 (שרשור קבוצות סדורות). תהיינה

$$A_{1} = (v_{1,1}, \dots, v_{1,\ell_{1}})$$

$$A_{2} = (v_{2,1}, \dots, v_{2,\ell_{2}})$$

$$\vdots$$

$$A_{k} = (v_{k,1}, \dots, v_{k,\ell_{k}})$$

קבוצות סדורות. נגדיר את השרשור שלהן

$$A_1 \cup \ldots \cup A_\ell := (v_{1,1}, \ldots, v_{1,\ell_1}, v_{2,1}, \ldots, v_{2,\ell_2}, \ldots, v_{k,1}, \ldots, v_{k,\ell_k})$$

הסדר. לפי הסדורה הסדורה איברי איברי שרשור איברי לפי הסדורה איברי אחרשור איברי לפי הסדורה איברי אות הסדורה שהיא

. מענה V התנאים של יהי של יהי ויהיו ענה הבאים ויהיו אחרוב וקטורי סוף-מימדי ויהיו יהי מרחב ענה 2.1.5. יהי ענה אחרוב וקטורי סוף-מימדי ויהיו

- $V = V_1 \oplus \ldots \oplus V_k$.1
- V של בסיסים היא בסיסים איז $B_1 \cup \ldots \cup B_k$ הסדורה הקבוצה איז של פיסיים היא בסיסים.
- V של בסיס של $B_i \cup \ldots \cup B_k$ הסדורה הסדורה על של של מיסים בסיסים. 3

וגם
$$V = \sum_{i \in [k]} V_i$$
 .4

$$.\dim V = \sum_{i \in [k]} \dim (V_i)$$

 $P^2=P$ אם הטלה הטלה נקראת נקראת יהי $P\in \mathrm{End}_{\mathbb{F}}\left(V
ight)$ נוזכיר מעל שדה \mathbb{F} , ונזכיר מעל מרחב וקטורי סוף־מימדי מעל

- $V=\ker\left(P
 ight)\oplus\operatorname{Im}\left(P
 ight)$ כי $P\in\operatorname{End}_{\mathbb{F}}\left(V
 ight)$.1
- עבורו V של B כיים בסיס אם ורק אם הטלה $T\in \mathrm{End}_{\mathbb{F}}\left(V
 ight)$.2

$$. [T]_B = \begin{pmatrix} 0 & & & & & \\ & \ddots & & & & \\ & & 0 & & & \\ & & & 1 & & \\ & & & \ddots & \\ & & & & 1 \end{pmatrix}$$

. כמו כן, $P\left(v
ight)\in\mathrm{Im}\left(P
ight)$ כאשר $v=\left(v-P\left(v
ight)
ight)+P\left(v
ight)$ מתקיים $v\in V$ כמו כן.

$$P(v - P(v)) = P(v) - P^{2}(v) = P(v) - P(v) = 0$$

 $V = \ker(P) + \operatorname{Im}(P)$ נקבל כי $v - P(v) \in \ker(P)$ ולכן

עבורו $u\in V$ שנורו $v\in {
m Im}\,(P)$ בפרט $v\in {
m ker}\,(P)\cap {
m Im}\,(P)$ אז אם כעת, אם

$$v = P(u) = P^{2}(u) = P(P(u)) = P(v) = 0$$

ישר. ישר ונקבל כי ונקבל $\ker(P) \cap \operatorname{Im}(P) = 0$ ולכן

עבור בסיסים . $V=\ker\left(T\right)\oplus\operatorname{Im}\left(T\right)$ זה במקרה הטלה. במקרה לניח כי T

$$C = (c_1, \dots, c_m)$$
$$D = (d_{m+1}, \dots, d_{\ell})$$

 $\dim\left(\ker\left(T
ight)\right)$ לכן לכן , $T\left(c_{i}
ight)=0$ מתקיים $c_{i}\in C$ מתקיים בסיס של כל בסיס בהתאמה, נקבל כי בהתאמה, נקבל כי $C\cup D$ בסיס של עבורו $u_{i}\in V$ של מודות אפסים. לכל $u_{i}\in D$ העמודות הראשונות של בחרון הן עמודות אפסים.

,
$$d_{i}=T\left(u_{i}\right)=T^{2}\left(u_{i}\right)=T\left(T\left(u_{i}\right)\right)=T\left(d_{i}\right)$$

לכן

$$[T(d_i)]_{C \cup D} = [d_i]_{C \cup D} = e_i$$

. תבררש. עבור היז ונקבל את הנדרש. iבור את הנדרש. ולכן העמודה היi

. הטלה. $T^2=T$ ולכן $T^2=T$ ולכן ולכן $T^2=T$ ונקבל כי אז הטלה. בסיס בייס $B=(v_1,\dots,v_n)$ הטלה. להיפך, נניח

עבורו ער איז א הוא תת־מרחב של U של שלים ישר משלים משלים ויהי עובורו ויהי עוקטורי ויהי ער מרחב משלים ישר ער משלים משלים ישר ער מרחב וקטורי ויהי ער א מרחב וקטורי ויהי ער א עבורו V מרחב ישר מרחב של עבורו V עבורו V

V בסיס של C יהי B בסיס עם בחרמרחב עם ויהי עויהי $U \leq V$ ויהי שדה שדה מעל שדה וקטורי סוף-מימדי מעל מרחב ויהי

- C-מ וקטורים הוספת על ידי על על לבסיס את השלים את שניתן השלים .1
 - Cם משלים של עם בסיס של של U של של משלים משלים .2

m=n-|B| נסמן באינדוקציה את ונוכיח את ונוכיח ונוכיח ונוכיח ונוכיח ונוכיח ונוכיח $n\coloneqq\dim_{\mathbb{F}}(V)$

m עבור אותה עבור אותה לכל לכל נניח שהטענה ננים ולכן ולכן ולכן ולכן אותה עבור עבור ולכן ולכן ולכן ווכיח אותה עבור M=0

אם $C \subseteq U$ אם

$$V = \operatorname{Span}_{\mathbb{F}}(C) \subseteq \operatorname{Span}_{\mathbb{F}}(U) = U$$

c כי בלתי־תלויה לינארית, כי $B\cup(c)$ אז $c\in C\setminus U$ שונים. לכן, קיים שונים. לכן בסתירה לכך בסתירה לינארי $U'=\operatorname{Span}_{\mathbb{F}}(B\cup(c))$ אז אינו צירוף לינארי של הוקטורים הקודמים. נגדיר

$$n - \dim(U') = n - |B| - 1 = m - 1 < m$$

של $(B\cup(c))\cup(c_2,\ldots,c_m)$ לבסיס לבסיס את האינדוקציה ולקבל שניתן השלים את ולכן שניתן האינדוקציה האינדוקציה ולקבל שניתן לבסיס את $C,c_2,\ldots,c_m\in C$ אז $C,c_i\in C$ משלימים את שלימים את $C,c_i\in C$ אז אז אינדוקציה ולקבל של השלימים את שלימים את שלימים את אונדים אונדים אינדוקציה ולכני של אינדים אונדים אונדים אינדים אינדים אינדים אינדים אינדים אונדים אונדים אינדים א

 $W=\operatorname{Span}_{mbbF}(D)$ וגם $D=(c,c_2,\ldots,c_m)$ נסמן $U=(c,c_2,\ldots,c_m)$ נסמן $B\cup (c,\ldots,c_m)$ וגם $B\cup C$ אז $A\cup C$ בסים של $B\cup C$ ולכן

$$V = \operatorname{Span}_{\mathbb{F}}(B) \oplus \operatorname{Span}_{\mathbb{F}}(D) = U \oplus W$$

כנדרש.

תהיינה $V=\mathbb{R}_3\left[x
ight]$ יהי יונה $V=\mathbb{R}_3\left[x
ight]$

$$B = (1 + x, x + x^{2})$$
$$C = (1, x, x^{2}, x^{3})$$

 $.U = \mathrm{Span}\,(B)$ יהי .Vים וקטורים של סדורות סדורות יהי

- Cב מוקטורים של עבור W של ובסיס עבור U של W מיצאו משלים מיצאו .1
 - .1 שמצאתם או הוכיחו W שמצאתם שמצאתם W האם .2
- $B'=\left(1+x,x+x^2,1
 ight)$ כדי לקבל U את U את מה"ספת וקטורים מV על ידי הוספת וקטורים מU גוסיף את ואז את $U'=\left(1+x,x+x^2,1,x^3
 ight)$ בסיס U'=U של U'=U אז U'=U אז U'=U אז U'=U וניקת U'=U אז U'=U אז U'=U וניקת U'=U אז U'=U וניקת וניקת U'=U אז U'=U אז אז U'=U ולכן וויקת וניקת U'=U אז אז U'=U אז אז U'=U וויקת וויקת וויקת U'=U אז אז U'=U וויקת וויקת
- במקרה זה היינו . $B''=\left(1+x,x+x^2,x^2,x^3
 ight)$ ואז ואז $B'=\left(1+x,x+x^2,x^2
 ight)$ במקרה במקרה . $B''=\left(1+x,x+x^2,x^3
 ight)$ מקבלים משלים ישר היען "Span $B'=\left(1+x,x+x^2,x^3\right)$ ששונה מ- $B''=\left(1+x,x+x^2,x^3\right)$

מרחבים שמורים 2.2

2.3 לכסינות

 $lpha_1,\dots,lpha_n\in\mathbb{F}$ נקרא של B פיים בסיס אם נקרא לכסין נקרא נקרא אופרטור אופרטור אופרטור נקרא ווקרא $T\in\mathrm{End}_{\mathbb{F}}\left(V
ight)$ אופרטור אופרטור אופרטור פרונת

$$.[T]_B = \begin{pmatrix} \alpha_1 & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & \alpha_n \end{pmatrix}$$

. בסיס אלכסונית מטריצה (Tן נקראת מטריצה עבור בסיס מלכסן נקראת מטריצה לכסונית. מסיס מלכסן נקראת מטריצה אלכסונית

 $T(v)=\lambda v$ נקרא אם קיים T אם עבור עצמי אוקטור נקרא נקרא וקטור $v\in V\setminus\{0\}$. וקטור $T\in \mathrm{End}_{\mathbb{F}}(V)$ יהי יהי 2.3.2. הגדרה זה T עבורו עצמי של די מקרה זה T עבורו עצמי של די מקרה זה T עבורו עצמי של די מקרה זה לייטור עצמי של די מקרה מייטור עצמי של די מקרה זה לייטור עצמי של די מייטור עצמי של די מקרה זה לייטור עצמי של די מייטור עצמי של די מייטור עצמי של די מייטור עצמי של די מייטור עדי מייטור

 $\operatorname{Span}_{\mathbb{F}}(v)=\{\lambda v\mid \lambda\in\mathbb{F}\}$ מתקיים T מתקיים עבמי של T אם ורק אם קיים T אם עבורו T אם הערה . $\alpha\in\mathbb{F}$ לכל באופן שקול T (αv) $=\alpha T$ (v) $\in\operatorname{Span}_{\mathbb{F}}(v)$ ובאופן שקול T שקור T שמור. T שמור עצמי של T אם ורק אם T אם ורק אם T הינו T-שמור.

.T אופרטור עצמיים של שמורכב אם ורק אם ורק אם לכסין אם הינו לכסין הינו ד $T\in \mathrm{End}_{\mathbb{F}}\left(V
ight)$ אופרטור צמיים של

הגדרה 2.3.5 (מרחב עצמי). יהי T עם הערך λ יהי λ ערך עצמי של λ הגדרה T עם הערך λ הגדרה העבמי). הגיר עצמי). יהי

$$V_{\lambda} := \{v \in V \mid T(v) = \lambda v\} = \ker(\lambda \operatorname{Id}_{V} - T)$$

הוא T האופייני של T הפולינום האופייני הברה $T\in \mathrm{End}_{\mathbb{F}}\left(V
ight)$ היי היי פולינום אופייני האופייני.

$$p_T(x) := \det(x \operatorname{Id}_V - T)$$

הערה הדטרמיננטה. בפועל, נסתכל בדרך כלל על פולינום אופייני של מטריצה, כיוון שצריך לבחור בסיס כדי לחשב את הדטרמיננטה. בפועל, נסתכל בדרך כלל על פולינום אופייני של מטריצה, כיוון שצריך לכל בסיס אינו כי הדטרמיננטה לא תלויה בבחירת הבסיס, ולכן $p_{T}\left(x\right)=p_{\left[T\right]_{B}}\left(x\right)$ לכל בסיס אינו כי הדטרמיננטה לא תלויה בבחירת הבסיס, ולכן $p_{T}\left(x\right)=p_{\left[T\right]_{B}}\left(x\right)$ לכל בסיס כדי לחשב את הדטרמיננטה. כאינו כי הדטרמיננטה לא תלויה בבחירת הבסיס, ולכן $p_{T}\left(x\right)=p_{\left[T\right]_{B}}\left(x\right)$

 $p_T\left(\lambda
ight)=\det\left(\lambda\operatorname{Id}_V-T
ight)=$ אם ורק אם , $\ker\left(\lambda\operatorname{Id}_V-T
ight)
eq0$ אם ורק אם ערך עצמי של א הוא ערך עצמי איבר .0

 p_T של השורשים הם T של העצמיים של כלומר, הערכים

. יש ערך עצמי $T\in \mathrm{End}_{\mathbb{C}}\left(V
ight)$ לכל שורש, לכל פולינום $p\in\mathbb{C}\left[x
ight]$ יש ערך עצמי. 2.3.9. הערה

הגדרה של ערך עצמי $\lambda\in\mathbb{F}$ הוא ערך עצמי הריבוי האלגברי הריבוי שלו כשורש של הריבוי האלגברי). יהי יהי יהי יהי $T\in\mathrm{End}_{\mathbb{F}}(V)$ יהי יהי יהי יהי 2.3.10 הגדרה $r_{a}\left(\lambda\right)$ נסמו $r_{a}\left(\lambda\right)$

 $.r_g\left(\lambda
ight)\coloneqq \dim V_\lambda$ הוא $\lambda\in\mathbb{F}$ עצמי של ערך עצמי הריבוי הריבוי הריבוי. יהי $T\in\mathrm{End}_{\mathbb{F}}\left(V
ight)$ יהי הגדרה 2.3.11 הגדרה הריבוי מתקיים תמיד $.r_a\left(\lambda
ight)\le r_a\left(\lambda
ight)$ מתקיים תמיד 2.3.12.

הגדרה (כלומר, $T=T_A$ ויהי ויהי $A\in \operatorname{Mat}_n\left(\mathbb{F}\right)$. אם אם אופרטור כפל ב־A אופרטור אופרטור אופרטור אופרטור. אופרטור אופרטונית. אז $D:=\left[T\right]_B$ אם אופרטור אופרטורים אלכטונית. אז

$$\begin{split} A &= \left[T \right]_E \\ &= \left[\operatorname{Id} \circ T \circ \operatorname{Id} \right]_E \\ &= M_E^B \left[T \right]_B M_B^E \\ &= M_E^B D \left(M_E^B \right)^{-1} \end{split}$$

 $P^{-1}AP=D$ ואם נסמן $P=M_E^B$ נקבל כי זאת מטריצה הפיכה עבורה $P=M_E^B$ אלכסונית. אלכסונית. אפיכה P=1

 $A\in\mathrm{Mat}_n\left(\mathbb{R}
ight)$ יש לה ת־מרחב שמור ממימד T_A הוכיחו כי אם אין ל- $A\in\mathrm{Mat}_n\left(\mathbb{R}
ight)$ יש לה ת-מרחב שמור ממימד .1 תרגיל

ערך עצמי של גם $\bar{\lambda}$ גם הוכיחו כי אם א הוכיחו ממשיים. מטריצה שכל מטריצה א מטריצה מטריצה א מטריצה א מטריצה ממשיים. א מטריצה שכל מקדמיה מראב מטריצה א מטריצה שכל מקדמיה הוכיחו כי ארך א מטריצה שכל מקדמיה מחשיים. T_A

נגדיר $A=(a_{i,j})\in \mathrm{Mat}_{n,m}$ נגדיר עבור עבור עבור

$$\bar{A} = (\bar{a}_{i,j})$$

 $A\in\mathrm{Mat}_{m,n}\left(\mathbb{C}
ight),B\in$ שמי מטריצה שתי לב כי עבור נשים לאלו ב-A. נשים לאלו ב-A במודים המספרים המספרים מעריים $\mathrm{Mat}_{n,\ell}\left(\mathbb{C}
ight)$

$$(\overline{AB})_{i,j} = \overline{\sum_{k=1}^{n} a_{i,k} b_{k,j}}$$
$$= \sum_{k=1}^{n} \overline{a_{i,k}} \overline{b_{k,j}}$$
$$= (|A||B|)_{i,j}$$

 $.\overline{AB}=ar{A}ar{B}$ ולכן

אבל, אפשר לחשוב על A כעל מטריצה ב־ $\mathrm{Mat}_n\left(\mathbb{C}\right)$ שנסמנה A אז ל־ $T_{ ilde{A}}\in\mathrm{End}_\mathbb{C}\left(\mathbb{C}^n\right)$ אבל, אפשר לחשוב על A כעל מטריצה ב־A עם ערך עצמי של רעם ערך עצמי של A עם ערך עצמי של A עם ערך עצמי של A עם ערך עצמי של A ונכתוב

$$v = \begin{pmatrix} u_1 + iw_1 \\ \vdots \\ u_n + iw_n \end{pmatrix} = u + iw$$

כאשר ב- \mathbb{R}^n . אז בסורים עם מקדמים ממשיים. נוכל לחשוב עליהם כחיים ב $u,w\in\mathbb{C}^n$. אז

$$Au + iAw = A (u + iw)$$

$$= Av$$

$$= \lambda v$$

$$= (\alpha + i\beta) (u + iw)$$

$$= \alpha u + \alpha iw + \beta iu - \beta w$$

$$= (\alpha u - \beta w) + i (\alpha w + \beta u)$$

כאשר מקדמים להשוות גוכל אז, גוכל $Au,Aw\in\mathbb{R}^n$ כאשר

$$T_A(u) = Au = \alpha u - \beta w \in \text{Span}(u, w)$$

 $T_A(w) = Aw = \alpha w + \beta u \in \text{Span}(u, w)$

 \mathbb{R}^n שלו של הינו תרימרחב Span (u,w) לכן

עצמי וקטור עu+iw נסמן בי $\lambda=\alpha+i$ עבור עב כן כי גניח אם כן כי גניח אין מה להוכיח אין מה להוכיח מו ג $\lambda=\bar{\lambda}$ נניח אם כן כי עב אין מל $u,w\in\mathbb{C}^n$ עם ערך עצמי אין עם ערך עצמי אין עם מקדמים ממשיים. או

$$\bar{A}\bar{v} = \overline{Av} = \overline{\lambda v} = \bar{\lambda}\bar{v}$$

עם ערך עצמי ה, כנדרש. עם ערך עצמי של הקטור ולכן ולכן \bar{v}