Data Mining

Lecture 2: data and data preprocessing

Data mining analysis steps CRISP-dm

- 1. Determining the purpose of the analysis,
- 2. Preliminary selection of variables, data cleaning (preprocessing),
- 3. Analytical form selection, on the basis of descriptive data analysis, correlation matrix, and knowledge,
- 4. Final variable and model selection,
- 5. Model parameters estimation,
- 6. Model verification (statistical, substantive),
- 7. Practical model uses (dependence analysis, prediction).

GIGO

Garbage in- Garbage out

Time-consuming data mining phases

Data preprocessing

- Preparation of data variables from the preliminary, raw data and the final data set that will be used in all subsequent phases.
- Cases selection and variables that will be analysed and which are suitable for analysis.
- Variable transformations, if necessary.
- Clear raw data so that it is ready to be used by modelling tools.

Motivation of data preprocessing

- Preparation of data variables from the preliminary, raw data and the final data set that will be used in all subsequent phases.
- Cases selection and variables that will be analysed and which are suitable for analysis.
- Variable transformations, if necessary.
- Clear the raw data so that it is ready to be used by the modelling tools.

Data cleaning

- Analytical and graphical detection of erroneous and unusual observations,
- Handling and replacing missing data,
- Identification and removal of duplicate records.

Descriptive statistics								
	N	Mean	Median	Min.	Max.	Std. Dev.		
Dataset	63	362,1270	338,0000	0,00	2471,000	285,7598		

Extreme values

Extreme values

Missing data

Methods for missing data:

- Omit rows with empty values,
- Replacement of the missing value determined by the analyst,
- Replace with mean or median for numbers,
- Modal value substitution for qualitative variables,
- Generation of a random value from the observed distribution of the variable,
- Link the blank data to the rest of the object data and give the most probable value.

Missing data

Omit rows with empty values- only for "table data", Omit columns with empty values- user criterion, UDL, LDL (ADL, UDL), right censored, left censored.

Missing data

Replacement of the missing value determined by the analyst

Calculation of derived variables:

- Differentiation of time series,
- Logarithms,
- Roots,
- Calculation of indicators.

Change assignment category (transcoding)

Rank assignment

Latent variables

Text variables operations:

- Counting,
- Conversion to numbers (recoding),
- Complete the information,
- Analysis of descriptions.

Data analysis

It is a knowledge discovery about:

- pure data, data type,
- data collection,
- data preparation,
- factors that affect the development of the phenomenon,
- seasonality, trend, events and incidents.

Data in Matrix Form

This data type having one (dependent) variable described by one or many (independent /predictors) variables.

Example: Runners finish time on 100 meters (dependent variable) described by: height, weight, number of workouts, leg length (independent variables).

Regression problems can also be written as binary variables (they replace all variables that are not quantitative).

Time-Series Data

Time-series database

- Consists of sequences of values or events changing with time,
- Data is recorded at regular intervals,
- Characteristic time-series components,
 Trend, cycle, seasonal, irregular.

Applications

- Financial: stock price, inflation,
- Industry: power consumption,
- Scientific: experiment results,
- Meteorological: precipitation.

Categories of Time-Series Movements

- Long-term or trend movements (trend curve): general direction in which a time series is moving over a long interval of time,
- Cyclic movements or cycle variations: long term oscillations about a trend line or curve,
 - e.g., business cycles, may or may not be periodic.
- Seasonal movements or seasonal variations,
 almost identical patterns that a time series appears to follow during corresponding months of successive years.
- Irregular or random movements,

Time series analysis: decomposition of a time series into these four basic movements:

- Additive Modal: TS = T + C + S + I
- Multiplicative Modal: TS = T × C × S × I

- Long-term or trend movements,
- Average level,

 Cyclic movements or cycle variations

Irregular or random movements

Aim of the Time series analysis

- Modelling of a certain phenomenon / process based on observed changes in some measurable quantities describing this process,
- Isolation and measurement of time series components (decomposition of time series),
- Prediction of future values using the obtained model.

How to get information about data?

- Descriptive analysis,
- Data visualizations: graphs, plots, histograms.

Data analysis, what to do?

- 1. Plots: linear, spot, column, box and whiskers,
- 2. Descriptive statistics (mean, median, max., min., std. dev.,...), tables, crosstabulation tables,
- 3. Histograms, normality graph,
- 4. ACF and PACF graphs, Fourier analysis for time series,
- 5. Correlation matrices,
- 6. Cluster analysis.

Descriptive statistics

Descriptive statistics (chronologie jesiony)										
	N	Mean	Media n	Mode	Min.	Max.	Varian ce	Std. dev.	Variati on coeffici ent	Skewn ess
ry1fr_n	116	0,977	0,961	Wielok r.	0,499	1,650	0,033	0,181	18,486	0,249
ry1fr_r	116	1,002	1,003	Wielok r.	0,547	1,632	0,029	0,172	17,156	0,365
ry1fr_c	116	0,963	0,954	Wielok r.	0,236	1,754	0,106	0,326	33,862	-0,193

Histograms -shapes

Data analysis

Data analysis

Histogram - numbers of bars

Histograms- numer of bars

Juran's Quality Control Handbook provides these guidelines for the number of bars and states that they are not "rigid" and should be adjusted when necessary.

Number of Data Points	Number of Bars	Number of Data Points	Number of Bars
20-50	6	201-500	9
51-100	7	501-1000	10
101-200	8	1000+	11-20

$$k < 5\log n$$
 $k \approx \sqrt{n}$ $k \approx 1 + 3.3\log n$ $k \leq \frac{n}{10}$

Szerokość klasy: $\approx (x_{\text{max}} - x_{\text{min}})/k$

Data analysis

Podsumowanie:QTY: ilość sprzedanyh w tyś.

Statystyki:QTY
N w ażnych=3114,000000
Średnia= 72,865125
Minimum= 4,000000
Maksimum=552,000000
Odch.std= 37,807717

Autocorrelation

Autocorrelation correlogram. Seasonal patterns of time series can be examined via correlograms. The correlogram (autocorrelogram) displays graphically and numerically the autocorrelation function (ACF), that is, serial correlation coefficients (and their standard errors) for consecutive lags in a specified range of lags (e.g., 1 through 30). Ranges of two standard errors for each lag are usually marked in correlograms but typically the size of auto correlation is of more interest than its reliability because we are usually interested only in very strong (and thus highly significant) autocorrelations.

Partial autocorrelations

Partial autocorrelations. Another useful method to examine serial dependencies is to examine the partial autocorrelation function (*PACF*) - an extension of autocorrelation, where the dependence on the intermediate elements (those *within* the lag) is removed. In other words, the partial autocorrelation is similar to autocorrelation, except that when calculating it, the (auto) correlations with all the elements within the lag are partially out.

If a lag of 1 is specified (i.e., there are no intermediate elements within the lag), then partial autocorrelation is equivalent to autocorrelation. In a sense, the partial autocorrelation provides a "cleaner" picture of serial dependencies for individual lags (not confounded by other serial dependencies).

Autocorelation

ACF PACF

TREND

Autocorelation

Autocorelation

PACF

TREND + SEASONALITY

Autocorrelations/ Partial autocorrelations

Brak trendu i sezonowości

Autocorrelations/ Partial autocorrelations

Partial autocorrelations

Partial autocorrelations

Autocorrelations

Partial autocorrelations

Correlation

Correlation is a measure of the relation between two or more variables. The measurement scales used should be at least interval scales, but other correlation coefficients are available to handle other types of data. Correlation coefficients can range from -1.00 to +1.00. The value of -1.00 represents a perfect *negative* correlation while a value of +1.00 represents a perfect *positive* correlation. A value of 0.00 represents a lack of correlation.

Both datasets should have the same numer of observations.

Correlation

Pearson linear correlation coefficient

$$\rho_{X,Y} = corr(X,Y) = \frac{cov(X,Y)}{\sigma_X \sigma_Y} = \frac{E[(X - \mu_X)(Y - \mu_Y)]}{\sigma_X \sigma_Y}$$

$$r_{xy} = \frac{\sum_{i=1}^{n} (x_i - \overline{x})(y_i - \overline{y})}{\sqrt{\sum_{i=1}^{n} (x_i - \overline{x})^2} \sqrt{\sum_{i=1}^{n} (y_i - \overline{y})^2}},$$

Pearson linear correlation coefficient

Nonparametric correlations

- Could be used to find nonlinear dependences in two datasets for many data types.
- Correlation coefficients can range from -1.00 to +1.00.
- The following are three types of commonly used nonparametric correlation coefficients (Spearman R, Kendall Tau, and Gamma coefficients).

Spearman R.

$$r_S = 1 - \frac{6\sum_{i=1}^{n} d_i^2}{n(n^2 - 1)},$$

$$d_i = R x_i - R y_i$$

di is a difference between ranks variables x and y for i observation

Spearman R.

IQ, X _i	Hours of TV per week, Y _i	Rank x _i	Rank y _i	d _i	d _i ²
86	0	1	1	0	0
97	20	2	6	-4	16
99	28	3	8	-5	25
100	27	4	7	-3	9
101	50	5	10	-5	25
103	29	6	9	-3	9
106	7	7	3	4	16
110	17	8	5	3	9
112	6	9	2	7	49
113	12	10	4	6	36

Spearman R.

$$\rho = 1 - \frac{6 \times 194}{10(10^2 - 1)}$$

 $\rho = -29/165 = -0.175757575...$ With p = 0.627188 (using t distribution)

tau Kendal correlation

To calculate Kendal correlations, data should be compiled into all possible pairs and then divide these pairs into three possible categories:

- Concordant pairs- ordered in the same way (P),
- Discordant pairs ordered differently (Q),
- Bonded pairs the same values in pair for both pairs (T).

tau Kendal correlation

$$\tau = \frac{P-Q}{P+Q+T}$$

$$P+Q+T = \binom{N}{2} = \frac{N(N-1)}{2}$$

$$\tau = 2\frac{P - Q}{N(N - 1)}$$

Correlations

	Korelacje (chronologie jesiony) Oznaczone wsp. korelacji są istotne z p < ,05000 N=116 (Braki danych usuwano przypadkami)				
Zmienna	Średnia	Odch.std	ry1fr_ne	ry1fr_rcs	
ry1fr_ne	0,977198	0,180644	1,000000	0,884473	
ry1fr_rcs	1,002135	0,171929	0,884473	1,000000	

	Korelacja porządku rang Spearmana (chronologie jesion BD usuwane parami			
	Oznaczone wsp. korelacji są istotne zp <,05000			
Zmienna	ry1fr_ne	ry1fr_rcs		
ry1fr_ne	1,000000	0,866205		
ry1fr_rcs	0,866205	1,000000		

	Korelacja tau Kendalla (chronologie jesiony) BD usuwane parami		
	Oznaczone wsp. kor <u>elacji są istotne zp <,05000</u>		
Zmienna	ry1fr_ne	ry1fr_rcs	
ry1fr_ne	1,000000	0,731634	
ry1fr_rcs	0,731634	1,000000	

Measures similar to correlation:

- Fi coefficient,
- · V Cramer's coefficient.

Scatter plot- correlation

Scatter plot- correlation

More correlation coefficients

The Point-Biserial Correlation Coefficient is a correlation measure of the strength of association between a continuous-level variable (ratio or interval data) and a binary variable,

The phi coefficient (or mean square contingency coefficient) is a measure of association for two binary variables. It is known as the Matthews correlation coefficient (MCC),

Tetrachoric Correlation: Used to calculate the correlation between binary categorical variables.

Polychoric Correlation: Used to calculate the correlation between ordinal categorical variables.

Cramer's V: Used to calculate the correlation between nominal categorical variables.

NO TREND, SEAS.

- -mode
- -random v.
- -choosen v.

TREND, SEAS. -interpolation from Neighborhood v./seas.

NO TREND, SEAS.

- -mean, median...
- -random v.
- -choosen v.

TREND, SEAS. -interpolation from Neighborhood v./seas.

- -mode
- -random v.
- -choosen v.
- -row deletion

- -mean, median
- -random v.
- -choosen v.
- -row deletion

Pytania?

Do zastanowienia się:

- -Jaki jest wpływ wykonania preprocessingu na dalsze modelowanie
- -Jaką różnicę w wynikach możemy uzyskać pracując z próbą zamiast populacji i czym jest ona spowodowana

Na ćwiczenia wiadomości:

- -Preprocessing w zależności od typu danych i ich formy
- -W jaki sposób analizujemy dane (na co zwracamy uwagę, jakie analizy wykonujemy)

Lecture 3: Regression model

