Ánh xạ tuyến tính

Hà Minh Lam hmlam@math.ac.vn

2021-2022

Tóm tắt

Ánh xạ tuyến tính

2 Nhân và ảnh của ánh xạ tuyến tính

Tóm tắt

Ánh xạ tuyến tính

2 Nhân và ảnh của ánh xạ tuyến tính

Ánh xạ tuyến tính

Định nghĩa

Cho V,W là các không gian vector. Một ánh xạ $T:V\to W$ được gọi là một ánh xạ tuyến tính (hay một đồng cấu) từ V vào W nếu với mọi $\mathbf{u},\mathbf{v}\in V$ và với mọi $c\in\mathbb{R}$:

- $T(\mathbf{u} + \mathbf{v}) = T(\mathbf{u}) + T(\mathbf{v})$
- $T(c\mathbf{v}) = cT(\mathbf{v})$

Ánh xạ tuyến tính

Định nghĩa

Cho V, W là các không gian vector. Một ánh xạ $T:V\to W$ được gọi là một ánh xạ tuyến tính (hay một đồng cấu) từ V vào W nếu với mọi $\mathbf{u},\mathbf{v}\in V$ và với mọi $c\in\mathbb{R}$:

- $T(\mathbf{u} + \mathbf{v}) = T(\mathbf{u}) + T(\mathbf{v})$
- $T(c\mathbf{v}) = cT(\mathbf{v})$

Chú ý: Các phép toán ở vế trái là các phép toán trong V, các phép toán ở vế phải là các phép toán trong W.

- Xét $T_1: \mathbb{R}^2 \to \mathbb{R}^2$ được cho bởi $T_1(x,y) = (2x,x+y)$. Xét $\mathbf{v}_1 = (x_1,y_1), \mathbf{v}_2 = (x_2,y_2)$ và $c \in \mathbb{R}$. Ta có: • $T_1(\mathbf{v}_1 + \mathbf{v}_2) = T_1(x_1 + x_2, y_1 + y_2) = (2x_1 + 2x_2, x_1 + x_2 + y_1 + y_2)$ và
 - $T_1(\mathbf{v}_1 + \mathbf{v}_2) = T_1(x_1 + x_2, y_1 + y_2) = (2x_1 + 2x_2, x_1 + x_2 + y_1 + y_2) \text{ và}$ $T_1(\mathbf{v}_1) + T_1(\mathbf{v}_2) = (2x_1, x_1 + y_1) + (2x_2, x_2 + y_2) = (2x_1 + 2x_2, x_1 + x_2 + y_1 + y_2).$
 - $T_1(c\mathbf{v}_1) = T_1(cx_1, cy_1) = (2cx_1, cx_1 + cy_1),$ $cT_1(\mathbf{v}_1) = c(2x_1, x_1 + y_1) = (2cx_1, cx_1 + cy_1).$

Vậy \mathcal{T}_1 là một ánh xạ tuyến tính từ \mathbb{R}^2 vào \mathbb{R}^2 .

- Xét $T_1: \mathbb{R}^2 \to \mathbb{R}^2$ được cho bởi $T_1(x,y) = (2x,x+y)$. Xét $\mathbf{v}_1 = (x_1,y_1), \mathbf{v}_2 = (x_2,y_2)$ và $c \in \mathbb{R}$. Ta có:
 - $T_1(\mathbf{v}_1 + \mathbf{v}_2) = T_1(x_1 + x_2, y_1 + y_2) = (2x_1 + 2x_2, x_1 + x_2 + y_1 + y_2) \text{ và}$ $T_1(\mathbf{v}_1) + T_1(\mathbf{v}_2) = (2x_1, x_1 + y_1) + (2x_2, x_2 + y_2) = (2x_1 + 2x_2, x_1 + x_2 + y_1 + y_2).$
 - $T_1(c\mathbf{v}_1) = T_1(cx_1, cy_1) = (2cx_1, cx_1 + cy_1),$ $cT_1(\mathbf{v}_1) = c(2x_1, x_1 + y_1) = (2cx_1, cx_1 + cy_1).$

Vây T_1 là một ánh xa tuyến tính từ \mathbb{R}^2 vào \mathbb{R}^2 .

• Xét $T_2: \mathbb{R} \to \mathbb{R}$ được cho bởi $T_2(x) = x^2$. Vì nói chung $(x_1 + x_2)^2 \neq x_1^2 + x_2^2$ (chẳng hạn lấy $x_1, x_2 \neq 0$) nên T_2 không phải là một ánh xạ tuyến tính. (T_2 có thỏa mãn tính chất thứ hai không?)

- Xét $T_1: \mathbb{R}^2 \to \mathbb{R}^2$ được cho bởi $T_1(x,y) = (2x,x+y)$. Xét $\mathbf{v}_1 = (x_1,y_1), \mathbf{v}_2 = (x_2,y_2)$ và $c \in \mathbb{R}$. Ta có:
 - $T_1(\mathbf{v}_1 + \mathbf{v}_2) = T_1(x_1 + x_2, y_1 + y_2) = (2x_1 + 2x_2, x_1 + x_2 + y_1 + y_2)$ và $T_1(\mathbf{v}_1) + T_1(\mathbf{v}_2) = (2x_1, x_1 + y_1) + (2x_2, x_2 + y_2) = (2x_1 + 2x_2, x_1 + x_2 + y_1 + y_2).$
 - $T_1(c\mathbf{v}_1) = T_1(cx_1, cy_1) = (2cx_1, cx_1 + cy_1),$ $cT_1(\mathbf{v}_1) = c(2x_1, x_1 + y_1) = (2cx_1, cx_1 + cy_1).$

Vậy T_1 là một ánh xạ tuyến tính từ \mathbb{R}^2 vào \mathbb{R}^2 .

- Xét $T_2: \mathbb{R} \to \mathbb{R}$ được cho bởi $T_2(x) = x^2$. Vì nói chung $(x_1 + x_2)^2 \neq x_1^2 + x_2^2$ (chẳng hạn lấy $x_1, x_2 \neq 0$) nên T_2 không phải là một ánh xạ tuyến tính. (T_2 có thỏa mãn tính chất thứ hai không?)
- Xét $T_3: \mathbb{R} \to \mathbb{R}$ được cho bởi $T_3(x) = x + 2$. Với $c \neq 1$, $T_3(cx) = cx + 2 \neq c(x + 2) = cT_3(x)$, nên T_3 không phải là một ánh xa tuyến tính.

- Xét $T_1: \mathbb{R}^2 \to \mathbb{R}^2$ được cho bởi $T_1(x, y) = (2x, x + y)$. Xét $\mathbf{v}_1 = (x_1, y_1), \mathbf{v}_2 = (x_2, y_2) \text{ và } c \in \mathbb{R}. \text{ Ta có:}$
 - $T_1(\mathbf{v}_1 + \mathbf{v}_2) = T_1(x_1 + x_2, y_1 + y_2) = (2x_1 + 2x_2, x_1 + x_2 + y_1 + y_2) \text{ và}$ $T_1(\mathbf{v}_1) + T_1(\mathbf{v}_2) = (2x_1, x_1 + y_1) + (2x_2, x_2 + y_2) = (2x_1 + 2x_2, x_1 + x_2 + y_1 + y_2).$
 - $T_1(c\mathbf{v}_1) = T_1(cx_1, cy_1) = (2cx_1, cx_1 + cy_1),$ $cT_1(\mathbf{v}_1) = c(2x_1, x_1 + v_1) = (2cx_1, cx_1 + cv_1).$

Vây T_1 là một ánh xa tuyến tính từ \mathbb{R}^2 vào \mathbb{R}^2 .

- Xét $T_2: \mathbb{R} \to \mathbb{R}$ được cho bởi $T_2(x) = x^2$. Vì nói chung $(x_1 + x_2)^2 \neq x_1^2 + x_2^2$ (chẳng han lấy $x_1, x_2 \neq 0$) nên T_2 không phải là một ánh xa tuyến tính. $(T_2 \text{ có thỏa mãn tính chất thứ hai không?})$
- Xét $T_3: \mathbb{R} \to \mathbb{R}$ được cho bởi $T_3(x) = x + 2$. Với $c \neq 1$, $T_3(cx) = cx + 2 \neq c(x + 2) = cT_3(x)$, nên T_3 không phải là một ánh xa tuyến tính. $(T_3 \text{ có thỏa mãn tính chất thứ nhất không?})$

Ánh xa tuyến tính 2021-2022

- Xét $T_1: \mathbb{R}^2 \to \mathbb{R}^2$ được cho bởi $T_1(x,y) = (2x,x+y)$. Xét $\mathbf{v}_1 = (x_1,y_1), \mathbf{v}_2 = (x_2,y_2)$ và $c \in \mathbb{R}$. Ta có:
 - $T_1(\mathbf{v}_1 + \mathbf{v}_2) = T_1(x_1 + x_2, y_1 + y_2) = (2x_1 + 2x_2, x_1 + x_2 + y_1 + y_2)$ và $T_1(\mathbf{v}_1) + T_1(\mathbf{v}_2) = (2x_1, x_1 + y_1) + (2x_2, x_2 + y_2) = (2x_1 + 2x_2, x_1 + x_2 + y_1 + y_2).$
 - $T_1(c\mathbf{v}_1) = T_1(cx_1, cy_1) = (2cx_1, cx_1 + cy_1),$ $cT_1(\mathbf{v}_1) = c(2x_1, x_1 + y_1) = (2cx_1, cx_1 + cy_1).$

Vậy T_1 là một ánh xạ tuyến tính từ \mathbb{R}^2 vào \mathbb{R}^2 .

- Xét $T_2: \mathbb{R} \to \mathbb{R}$ được cho bởi $T_2(x) = x^2$. Vì nói chung $(x_1 + x_2)^2 \neq x_1^2 + x_2^2$ (chẳng hạn lấy $x_1, x_2 \neq 0$) nên T_2 không phải là một ánh xạ tuyến tính. (T_2 có thỏa mãn tính chất thứ hai không?)
- Xét $T_3: \mathbb{R} \to \mathbb{R}$ được cho bởi $T_3(x) = x + 2$. Với $c \neq 1$, $T_3(cx) = cx + 2 \neq c(x + 2) = cT_3(x)$, nên T_3 không phải là một ánh xạ tuyến tính.

 $(T_3 \text{ c\'o th\'oa m\~an t\'inh chất thứ nhất không?})$

• Ánh xạ không $0: V \to W, 0(\mathbf{v}) = \mathbf{0}$ là một ánh xạ tuyến tính.

H.-T. Nguyen Ánh xạ tuyến tính 2021-2022 5/18

- Xét $T_1: \mathbb{R}^2 \to \mathbb{R}^2$ được cho bởi $T_1(x,y) = (2x,x+y)$. Xét $\mathbf{v}_1 = (x_1,y_1), \mathbf{v}_2 = (x_2,y_2)$ và $c \in \mathbb{R}$. Ta có:
 - $T_1(\mathbf{v}_1 + \mathbf{v}_2) = T_1(x_1 + x_2, y_1 + y_2) = (2x_1 + 2x_2, x_1 + x_2 + y_1 + y_2)$ và $T_1(\mathbf{v}_1) + T_1(\mathbf{v}_2) = (2x_1, x_1 + y_1) + (2x_2, x_2 + y_2) = (2x_1 + 2x_2, x_1 + x_2 + y_1 + y_2).$
 - $T_1(c\mathbf{v}_1) = T_1(cx_1, cy_1) = (2cx_1, cx_1 + cy_1),$ $cT_1(\mathbf{v}_1) = c(2x_1, x_1 + y_1) = (2cx_1, cx_1 + cy_1).$

Vậy T_1 là một ánh xạ tuyến tính từ \mathbb{R}^2 vào \mathbb{R}^2 .

- Xét $T_2: \mathbb{R} \to \mathbb{R}$ được cho bởi $T_2(x) = x^2$. Vì nói chung $(x_1 + x_2)^2 \neq x_1^2 + x_2^2$ (chẳng hạn lấy $x_1, x_2 \neq 0$) nên T_2 không phải là một ánh xạ tuyến tính. (T_2 có thỏa mãn tính chất thứ hai không?)
- Xét $T_3: \mathbb{R} \to \mathbb{R}$ được cho bởi $T_3(x) = x + 2$. Với $c \neq 1$, $T_3(cx) = cx + 2 \neq c(x + 2) = cT_3(x)$, nên T_3 không phải là một ánh xạ tuyến tính. (T_3 có thỏa mãn tính chất thứ nhất không?)
- Ánh xạ không $0: V \to W, 0(\mathbf{v}) = \mathbf{0}$ là một ánh xạ tuyến tính.
- Ánh xạ đồng nhất $id: V \to V, id(\mathbf{v}) = \mathbf{v}$ là một ánh xạ tuyến tính.

H.-T. Nguyen Ánh xạ tuyến tính 2021-2022 5/18

Tính chất của ánh xạ tuyến tính

Định lý

Cho $T: V \to W$ là một ánh xạ tuyến tính. Khi đó:

- T(0) = 0.
- ② Với mọi $\mathbf{v} \in V$, $T(-\mathbf{v}) = -T(\mathbf{v})$.
- **9** Nếu $\mathbf{v} = c_1 \mathbf{v}_1 + c_2 \mathbf{v}_2 + \cdots + c_k \mathbf{v}_k$ thì

$$T(\mathbf{v}) = c_1 T(\mathbf{v}_1) + c_2 T(\mathbf{v}_2) + \cdots + c_k T(\mathbf{v}_k).$$

Tính chất của ánh xạ tuyến tính

Định lý

Cho $T: V \to W$ là một ánh xạ tuyến tính. Khi đó:

- T(0) = 0.
- ② Với mọi $\mathbf{v} \in V$, $T(-\mathbf{v}) = -T(\mathbf{v})$.

$$T(\mathbf{v}) = c_1 T(\mathbf{v}_1) + c_2 T(\mathbf{v}_2) + \cdots + c_k T(\mathbf{v}_k).$$

Nhận xét: Một ánh xạ tuyến tính được xác định hoàn toàn bởi ảnh của một cơ sở.

Tính chất của ánh xạ tuyến tính

Định lý

Cho $T: V \to W$ là một ánh xạ tuyến tính. Khi đó:

- **1** T(0) = 0.
- ② Với mọi $\mathbf{v} \in V$, $T(-\mathbf{v}) = -T(\mathbf{v})$.

$$T(\mathbf{v}) = c_1 T(\mathbf{v}_1) + c_2 T(\mathbf{v}_2) + \cdots + c_k T(\mathbf{v}_k).$$

Nhận xét: Một ánh xạ tuyến tính được xác định hoàn toàn bởi ảnh của một cơ sở.

Định lý

Ánh x_i $T:V \to W$ là một ánh x_i tuyến tính khi và chỉ khi với mọi $\mathbf{u},\mathbf{v} \in V$ và với mọi $\mathbf{a},\mathbf{b} \in \mathbb{R}$:

$$T(a\mathbf{u} + b\mathbf{v}) = aT(\mathbf{u}) + bT(\mathbf{v}).$$

H.-T. Nguyen Ánh xạ tuyến tính 2021-2022 6 / 18

Ví dụ

• Xét ánh xạ tuyến tính $T:\mathbb{R}^3 \to \mathbb{R}^3$ sao cho

$$T(\mathbf{e}_1) = (2, -1, 4), T(\mathbf{e}_2) = (1, 5, -2), T(\mathbf{e}_3) = (0, 3, 1).$$

Khi đó với mọi $(x, y, z) \in \mathbb{R}^3$:

$$T(x,y,z) = xT(\mathbf{e}_1) + yT(\mathbf{e}_2) + zT(\mathbf{e}_3)$$

= $x(2,-1,4) + y(1,5,-2) + z(0,3,1)$
= $(2x + y, -x + 5y + 3z, 4x - 2y + z)$.

Ví dụ

• Xét ánh xạ tuyến tính $T:\mathbb{R}^3 o \mathbb{R}^3$ sao cho

$$T(\mathbf{e}_1) = \left(2, -1, 4\right), T(\mathbf{e}_2) = \left(1, 5, -2\right), T(\mathbf{e}_3) = \left(0, 3, 1\right).$$

Khi đó với mọi $(x, y, z) \in \mathbb{R}^3$:

$$T(x,y,z) = xT(\mathbf{e}_1) + yT(\mathbf{e}_2) + zT(\mathbf{e}_3)$$

= $x(2,-1,4) + y(1,5,-2) + z(0,3,1)$
= $(2x + y, -x + 5y + 3z, 4x - 2y + z).$

• Xét $A = \begin{pmatrix} 3 & 0 \\ 2 & 1 \\ -1 & -2 \end{pmatrix}$ và $T_2 : \mathbb{R}^2 \to \mathbb{R}^3$, $T_2(\mathbf{v}) = A\mathbf{v}$.

Do các tính chất của phép nhân ma trận, T_2 là một ánh xạ tuyến tính. Cụ thể, $T_2(x,y)=(3x,2x+y,-x-2y)$.

H.-T. Nguyen Ánh xạ tuyến tính 2021-2022 7 / 18

Ánh xạ tuyến tính xác định bởi phép nhân ma trận

Đinh lý

Cho A là một ma trận m × n. Khi đó ánh xạ $T : \mathbb{R}^n \to \mathbb{R}^m$ được xác định bởi $T(\mathbf{v}) = A\mathbf{v}$ là một ánh xạ tuyến tính.

Ánh xạ tuyến tính xác định bởi phép nhân ma trận

Định lý

Cho A là một ma trận m × n. Khi đó ánh xạ $T : \mathbb{R}^n \to \mathbb{R}^m$ được xác định bởi $T(\mathbf{v}) = A\mathbf{v}$ là một ánh xạ tuyến tính.

Ví dụ:

• Xét
$$B = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$
. Ánh xạ tuyến tính $P_z : \mathbb{R}^3 \to \mathbb{R}^3$, $P_z(\mathbf{v}) = B\mathbf{v}$ là phép chiếu lên mặt phẳng Oxy .

Một số ánh xạ tuyến tính trong \mathbb{R}^2

Tóm tắt

Ánh xạ tuyến tính

2 Nhân và ảnh của ánh xạ tuyến tính

Định nghĩa

Nhân (hay hạt nhân, hạch) của một ánh xạ tuyến tính $T:V\to W$, ký hiệu là $\ker(T)$, là tập hợp tất cả các vector $\mathbf{v}\in V$ sao cho $T(\mathbf{v})=\mathbf{0}$:

$$\ker(T) = \{ \mathbf{v} \in V \mid T(\mathbf{v}) = \mathbf{0} \} .$$

Định nghĩa

Nhân (hay hạt nhân, hạch) của một ánh xạ tuyến tính $T:V\to W$, ký hiệu là $\ker(T)$, là tập hợp tất cả các vector $\mathbf{v}\in V$ sao cho $T(\mathbf{v})=\mathbf{0}$:

$$\ker(T) = \{ \mathbf{v} \in V \mid T(\mathbf{v}) = \mathbf{0} \} .$$

Ví dụ:

ullet Nhân của ánh xạ 0:V o W là toàn bộ V.

Định nghĩa

Nhân (hay hạt nhân, hạch) của một ánh xạ tuyến tính $T:V\to W$, ký hiệu là $\ker(T)$, là tập hợp tất cả các vector $\mathbf{v}\in V$ sao cho $T(\mathbf{v})=\mathbf{0}$:

$$\ker(T) = \{\mathbf{v} \in V \mid T(\mathbf{v}) = \mathbf{0}\} .$$

Ví dụ:

- Nhân của ánh xạ $0:V \to W$ là toàn bộ V.
- Nhân của ánh xạ đồng nhất id là $ker(id) = \{0\}$.

Dinh nghĩa

Nhân (hay hat nhân, hach) của một ánh xa tuyến tính $T: V \to W$, ký hiệu là $\ker(T)$, là tập hợp tất cả các vector $\mathbf{v} \in V$ sao cho $T(\mathbf{v}) = \mathbf{0}$:

$$\ker(T) = \{\mathbf{v} \in V \mid T(\mathbf{v}) = \mathbf{0}\} .$$

Ví du:

- Nhân của ánh xa $0: V \to W$ là toàn bô V.
- Nhân của ánh xạ đồng nhất id là $ker(id) = \{0\}$.
- Phép chiếu P_z trong \mathbb{R}^3 lên mặt phẳng O_{XY} có nhân là $ker(P_z) = \{(0, 0, z) \mid z \in \mathbb{R}\}.$

Định nghĩa

Nhân (hay hạt nhân, hạch) của một ánh xạ tuyến tính $T:V\to W$, ký hiệu là $\ker(T)$, là tập hợp tất cả các vector $\mathbf{v}\in V$ sao cho $T(\mathbf{v})=\mathbf{0}$:

$$\ker(T) = \{\mathbf{v} \in V \mid T(\mathbf{v}) = \mathbf{0}\} .$$

Ví dụ:

- Nhân của ánh xạ $0:V \to W$ là toàn bộ V.
- ullet Nhân của ánh xạ đồng nhất id là $\ker(id)=\{oldsymbol{0}\}.$ Kernel of au
- Phép chiếu P_z trong \mathbb{R}^3 lên mặt phẳng Oxy có nhân là $\ker(P_z) = \{(0,0,z) \mid z \in \mathbb{R}\}.$

11 / 18

• Cho $A = \begin{pmatrix} 1 & -1 & -2 \\ -1 & 2 & 3 \end{pmatrix}$. Nhân của $T : \mathbb{R}^3 \to \mathbb{R}^2$, $T(\mathbf{v}) = A\mathbf{v}$ là không gian nghiệm của hệ phương trình tuyến tính $A\mathbf{v} = \mathbf{0}$:

$$\begin{cases} x - y - 2z = 0 \\ -x + 2y + 3z = 0 \end{cases}$$

Định lý

Với mọi ánh xạ tuyến tính $T: V \to W$, ker(T) là một không gian con của V.

Định lý

Với mọi ánh xạ tuyến tính $T:V \to W$, $\ker(T)$ là một không gian con của V.

Ví dụ: Cho
$$A = \begin{pmatrix} 1 & 2 & 0 & 1 & -1 \\ 2 & 1 & 3 & 1 & 0 \\ -1 & 0 & -2 & 0 & 1 \\ 0 & 0 & 0 & 2 & 8 \end{pmatrix}$$
 và $T : \mathbb{R}^5 \to \mathbb{R}^4$, $T(\mathbf{v}) = A\mathbf{v}$.

Nhân của T là không gian nghiệm của hệ $A\mathbf{v} = \mathbf{0}$.

Nghiệm của hệ là (-2s+t,s+2t,s,-4t,t), suy ra

$$\ker(T) = \{(-2s+t, s+2t, s, -4t, t) \mid s, t \in \mathbb{R}\}$$
$$= span\{(-2, 1, 1, 0, 0), (1, 2, 0, -4, 1)\}.$$

Định lý

Với mọi ánh xạ tuyến tính $T:V \to W$, $\ker(T)$ là một không gian con của V.

Ví dụ: Cho
$$A = \begin{pmatrix} 1 & 2 & 0 & 1 & -1 \\ 2 & 1 & 3 & 1 & 0 \\ -1 & 0 & -2 & 0 & 1 \\ 0 & 0 & 0 & 2 & 8 \end{pmatrix}$$
 và $T : \mathbb{R}^5 \to \mathbb{R}^4$, $T(\mathbf{v}) = A\mathbf{v}$.

Nhân của T là không gian nghiệm của hệ $A\mathbf{v} = \mathbf{0}$.

Nghiệm của hệ là (-2s+t, s+2t, s, -4t, t), suy ra

$$\ker(T) = \{(-2s+t, s+2t, s, -4t, t) \mid s, t \in \mathbb{R}\}$$
$$= span\{(-2, 1, 1, 0, 0), (1, 2, 0, -4, 1)\}.$$

Hê quả

Cho ánh xa tuyến tính $T: \mathbb{R}^n \to \mathbb{R}^m$ được xác định bởi $T(\mathbf{v}) = A\mathbf{v} \ (A: m \times n)$. Nhân của T là không gian nghiệm của hệ phương trình tuyến tính $A\mathbf{x} = \mathbf{0}$.

Định nghĩa

 $m ilde{A}nh$ của ánh xạ tuyến tính T:V o W, ký hiệu là Im(T), được định nghĩa bởi:

$$\textit{Im}(\textit{T}) = \{\textit{T}(\textbf{v}) \mid \textbf{v} \in \textit{V}\} \ .$$

Định nghĩa

 $m extstyle{A}$ nh của ánh xạ tuyến tính T:V o W, ký hiệu là Im(T), được định nghĩa bởi:

$$Im(T) = \{T(\mathbf{v}) \mid \mathbf{v} \in V\} .$$

Định lý

Ånh của ánh xạ tuyến tính $T:V \to W$ là một không gian con của W.

Ví dụ: Cho
$$A = \begin{pmatrix} 1 & 2 & 0 & 1 & -1 \\ 2 & 1 & 3 & 1 & 0 \\ -1 & 0 & -2 & 0 & 1 \\ 0 & 0 & 0 & 2 & 8 \end{pmatrix}$$
 và $T : \mathbb{R}^5 \to \mathbb{R}^4$, $T(\mathbf{v}) = A\mathbf{v}$.

Với $\mathbf{v} = (x_1, x_2, x_3, x_4, x_5) \in \mathbb{R}^5$, ta có:

$$A\mathbf{v} = x_1 \begin{pmatrix} 1 \\ 2 \\ -1 \\ 0 \end{pmatrix} + x_2 \begin{pmatrix} 2 \\ 1 \\ 0 \\ 0 \end{pmatrix} + x_3 \begin{pmatrix} 0 \\ 3 \\ -2 \\ 0 \end{pmatrix} + x_4 \begin{pmatrix} 1 \\ 1 \\ 0 \\ 2 \end{pmatrix} + x_5 \begin{pmatrix} -1 \\ 0 \\ 1 \\ 8 \end{pmatrix},$$

suy ra

$$Im(T) = span\{(1, 2, -1, 0), (2, 1, 0, 0), (0, 3, -2, 0), (1, 1, 0, 2), (-1, 0, 1, 8)\}.$$

H.-T. Nguyen

Ví dụ: Cho
$$A = \begin{pmatrix} 1 & 2 & 0 & 1 & -1 \\ 2 & 1 & 3 & 1 & 0 \\ -1 & 0 & -2 & 0 & 1 \\ 0 & 0 & 0 & 2 & 8 \end{pmatrix}$$
 và $T : \mathbb{R}^5 \to \mathbb{R}^4$, $T(\mathbf{v}) = A\mathbf{v}$.

Với $\mathbf{v} = (x_1, x_2, x_3, x_4, x_5) \in \mathbb{R}^5$, ta có:

$$A\mathbf{v} = x_1 \begin{pmatrix} 1 \\ 2 \\ -1 \\ 0 \end{pmatrix} + x_2 \begin{pmatrix} 2 \\ 1 \\ 0 \\ 0 \end{pmatrix} + x_3 \begin{pmatrix} 0 \\ 3 \\ -2 \\ 0 \end{pmatrix} + x_4 \begin{pmatrix} 1 \\ 1 \\ 0 \\ 2 \end{pmatrix} + x_5 \begin{pmatrix} -1 \\ 0 \\ 1 \\ 8 \end{pmatrix},$$

suy ra $\mathit{Im}(T) = \mathit{span}\,\{(1,2,-1,0),(2,1,0,0),(0,3,-2,0),(1,1,0,2),(-1,0,1,8)\}.$

Mệnh đề

 \mathring{A} nh của ánh xạ tuyến tính $T: \mathbb{R}^n \to \mathbb{R}^m$, $T(\mathbf{v}) = A\mathbf{v}$ là không gian cột của ma trận A.

H.-T. Nguyen Ánh xa tuyến tính 2021-2022

Xét ánh xạ tuyến tính $T: V \rightarrow W$.

Định nghĩa

Hạng của T, ký hiệu là rank(T), là số chiều của không gian ảnh của T:

$$rank(T) = dim(Im(T))$$
.

Xét ánh xạ tuyến tính $T: V \to W$.

Định nghĩa

Hạng của T, ký hiệu là rank(T), là số chiều của không gian ảnh của T:

$$rank(T) = dim(Im(T))$$
.

Định lý (Hạng của ánh xạ tuyến tính)

Nếu V là một không gian hữu hạn chiều thì

$$\dim (\ker(T)) + rank(T) = \dim(V).$$

Xét ánh xạ tuyến tính $T: V \to W$.

Định nghĩa

Hạng của T, ký hiệu là rank(T), là số chiều của không gian ảnh của T:

$$rank(T) = dim(Im(T))$$
.

Định lý (Hạng của ánh xạ tuyến tính)

Nếu V là một không gian hữu hạn chiều thì

$$\dim (\ker(T)) + rank(T) = \dim(V).$$

Nhận xét: Khi $T(\mathbf{v}) = A\mathbf{v}$, ta tìm lại định lý hạng của ma trận.

Định nghĩa

Một đơn cấu là một ánh xạ tuyến tính đồng thời là một đơn ánh.

Định nghĩa

Một đơn cấu là một ánh xạ tuyến tính đồng thời là một đơn ánh.

16 / 18

Định lý

Ánh xạ tuyến tính $T:V \to W$ là một đơn cấu khi và chỉ khi $\ker(T) = \{\mathbf{0}\}.$

Định nghĩa

Một đơn cấu là một ánh xạ tuyến tính đồng thời là một đơn ánh.

Định lý

Ánh xạ tuyến tính $T:V\to W$ là một đơn cấu khi và chỉ khi $\ker(T)=\{\mathbf{0}\}.$

Ví du:

- Ánh xa đồng nhất là một đơn cấu.
- Ánh xạ không không phải là một đơn cấu nếu $V \neq \{0\}$.

Định nghĩa

Một đơn cấu là một ánh xạ tuyến tính đồng thời là một đơn ánh.

Định lý

Ánh xạ tuyến tính $T: V \to W$ là một đơn cấu khi và chỉ khi $\ker(T) = \{\mathbf{0}\}.$

Ví du:

- Ánh xa đồng nhất là một đơn cấu.
- Ánh xạ không không phải là một đơn cấu nếu $V \neq \{\mathbf{0}\}$.
- Phép quay R_{θ} trong \mathbb{R}^2 là một đơn cấu.

Định nghĩa

Một đơn cấu là một ánh xạ tuyến tính đồng thời là một đơn ánh.

Định lý

Ánh xạ tuyến tính $T:V\to W$ là một đơn cấu khi và chỉ khi $\ker(T)=\{\mathbf{0}\}.$

Ví dụ:

- Ánh xa đồng nhất là một đơn cấu.
- ullet Ánh xạ không không phải là một đơn cấu nếu $V
 eq \{ oldsymbol{0} \}.$
- Phép quay R_{θ} trong \mathbb{R}^2 là một đơn cấu.
- ullet Phép chiếu P_z trong \mathbb{R}^3 không phải là một đơn cấu.

H.-T. Nguyen

Toàn cấu

Định nghĩa

Một toàn cấu là một ánh xạ tuyến tính đồng thời là một toàn ánh.

Toàn cấu

Định nghĩa

Một toàn cấu là một ánh xạ tuyến tính đồng thời là một toàn ánh.

Định lý

Nếu W là một không gian hữu hạn chiều thì ánh xạ tuyến tính $T:V\to W$ là một toàn cấu khi và chỉ khi rank $(T)=\dim(W)$.

Toàn cấu

Dinh nghĩa

Một toàn cấu là một ánh xạ tuyến tính đồng thời là một toàn ánh.

Định lý

Nếu W là một không gian hữu hạn chiều thì ánh xa tuyến tính $T:V\to W$ là một toàn cấu khi và chỉ khi rank $(T)=\dim(W)$.

Hê quả

Nếu $\dim(V) = \dim(W) = n$ thì ánh xạ tuyến tính $T: V \to W$ là một đơn cấu khi và chỉ khi nó là một toàn cấu.

Đẳng cấu

Định nghĩa

Một đẳng cấu là một ánh xạ tuyến tính vừa là đơn cấu, vừa là toàn cấu. Nếu tồn tại một đẳng cấu $T:V\to W$ thì ta nói rằng các không gian V và W đẳng cấu với nhau.

Đẳng cấu

Định nghĩa

Một đẳng cấu là một ánh xạ tuyến tính vừa là đơn cấu, vừa là toàn cấu. Nếu tồn tại một đẳng cấu $T:V\to W$ thì ta nói rằng các không gian V và W đẳng cấu với nhau.

Định lý

Hai không gian hữu hạn chiều V và W là đẳng cấu với nhau khi và chỉ khi $\dim(V) = \dim(W)$.

Đẳng cấu

Định nghĩa

Một đẳng cấu là một ánh xạ tuyến tính vừa là đơn cấu, vừa là toàn cấu. Nếu tồn tại một đẳng cấu $T:V\to W$ thì ta nói rằng các không gian V và W đẳng cấu với nhau.

Định lý

Hai không gian hữu hạn chiều V và W là đẳng cấu với nhau khi và chỉ khi $\dim(V) = \dim(W)$.

Ví dụ: Các không gian sau đẳng cấu với nhau:

- ℝ⁴
- M_{2,2}
- M_{1.4}
- P₃ (các đa thức bậc không quá 3)