CS148: Introduction to Computer Graphics and Imaging

Splines and Curves

Topics

Splines

- **■** Cubic Hermite interpolation
- Matrix representation of cubic polynomials
- Catmull-Rom interpolation

Curves

- **■** Bezier curve
- Chaiken's subdivision algorithm
- Properties of Bezier curves

CS148 Lecture 8

Cubic Hermite Interpolation

Cubic Hermite Interpolation

Given: values and derivatives at 2 points

CS148 Lecture 8 Pat Hanrahan, Fall 2009

Cubic Hermite Interpolation

Assume cubic polynomial

$$P(t) = a t^{3} + b t^{2} + c t + d$$
$$P'(t) = 3a t^{2} + 2b t + c$$

Solve for coefficients:

$$P(0) = h_0 = d$$

 $P(1) = h_1 = a + b + c + d$
 $P'(0) = h_2 = c$
 $P'(1) = h_3 = 3a + 2b + c$

CS148 Lecture 8

Pat Hanrahan, Fall 2009

Matrix Representation

$$h_0 = d$$

$$h_1 = a + b + c + d$$

$$h_2 = c$$

$$h_3 = 3a + 2b + c$$

$$\begin{bmatrix} h_0 \\ h_1 \\ h_2 \\ h_3 \end{bmatrix} = \begin{bmatrix} 0 & 0 & 0 & 1 \\ 1 & 1 & 1 & 1 \\ 0 & 0 & 1 & 0 \\ 3 & 2 & 1 & 0 \end{bmatrix} \begin{bmatrix} a \\ b \\ c \\ d \end{bmatrix}$$

CS148 Lecture 8

Matrix Representation of Polynomials

$$\begin{bmatrix} a & b & c & d \end{bmatrix} \begin{bmatrix} 0 & 1 & 0 & 3 \\ 0 & 1 & 0 & 2 \\ 0 & 1 & 1 & 1 \\ 1 & 1 & 0 & 0 \end{bmatrix} \begin{bmatrix} 2 & -3 & 0 & 1 \\ -2 & 3 & 0 & 0 \\ 1 & -2 & 1 & 0 \\ 1 & -1 & 0 & 0 \end{bmatrix} \begin{bmatrix} t^3 \\ t^2 \\ t \\ 1 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

CS148 Lecture 8

Pat Hanrahan, Fall 2009

Hermite Basis Matrix

$$\begin{bmatrix} H_0(t) \\ H_1(t) \\ H_2(t) \\ H_3(t) \end{bmatrix} = \begin{bmatrix} 2 & -3 & 0 & 1 \\ -2 & 3 & 0 & 0 \\ 1 & -2 & 1 & 0 \\ 1 & -1 & 0 & 0 \end{bmatrix} \begin{bmatrix} t^3 \\ t^2 \\ t \\ 1 \end{bmatrix}$$

$$H_0(t) = 2t^3 - 3t^2 + 1$$
 $H_1(t) = -2t^3 + 3t^2$ $M_{\mathbf{H}} = \begin{bmatrix} 2 & -3 & 0 & 1 \ -2 & 3 & 0 & 0 \ 1 & -2 & 1 & 0 \ 1 & -1 & 0 & 0 \end{bmatrix}$ $H_2(t) = t^3 - 2t^2 + t$

$$H_3(t) = t^3 - t^2$$

CS148 Lecture 8

Catmull-Rom Interpolation

Catmull-Rom To Hermite Interpolation

$$egin{aligned} \mathbf{P_0} &= \mathbf{P_1} \\ \mathbf{P_1} &= \mathbf{P_2} \\ \mathbf{T_0} &= rac{1}{2} (\mathbf{P_2} - \mathbf{P_0}) \\ \mathbf{T_1} &= rac{1}{2} (\mathbf{P_3} - \mathbf{P_1}) \end{aligned}$$

CS148 Lecture 8

Bezier Curves

Paths

Capabilities
1.Smooth curves
2.Line and curve segments
3.Sharp corners

CS148 Lecture 8

Cubic Bezier Curve

CS148 Lecture 8

Pat Hanrahan, Fall 2009

Bezier To Hermite Interpolation

$${f P_0} = {f P_0}$$
 ${f P_1} = {f P_3}$ ${f T_0} = 3({f P_1} - {f P_0})$ ${f T_1} = 3({f P_3} - {f P_2})$

CS148 Lecture 8

Chaiken's Algorithm

$$\mathbf{P_0^1} = (1-t)\mathbf{P_0} + t\mathbf{P_1}$$

$$\mathbf{P_0^1} = (1-t)\mathbf{P_0} + t\mathbf{P_1}$$

$$\mathbf{P_0^1} = (1-t)\mathbf{P_0} + t\mathbf{P_1}$$

CS148 Lecture 8

Pat Hanrahan, Fall 2009

Chaiken's Algorithm

$$\mathbf{P_0^1} = (1-t)\mathbf{P_0} + t\mathbf{P_1}$$

$$\mathbf{P_1^1} = (1-t)\mathbf{P_1} + t\mathbf{P_2}$$

$$\mathbf{P_0^1}$$

$$\mathbf{P_0^1}$$

CS148 Lecture 8

Chaiken's Algorithm

$$\mathbf{P_0^1} = (1 - t)\mathbf{P_0} + t\mathbf{P_1}$$
$$\mathbf{P_1^1} = (1 - t)\mathbf{P_1} + t\mathbf{P_2}$$

$$\mathbf{P_0^2} = (1-t)\mathbf{P_0^1} + t\mathbf{P_1^1}$$

CS148 Lecture 8

Pat Hanrahan, Fall 2009

Chaiken's Algorithm

$$\mathbf{P_0^1} = (1-t)\mathbf{P_0} + t\mathbf{P_1}
\mathbf{P_1^1} = (1-t)\mathbf{P_1} + t\mathbf{P_2}$$
 $\mathbf{P_0^2}$

$$\mathbf{P_0^2} = (1 - t)\mathbf{P_0^1} + t\mathbf{P_1^1}$$

$$\mathbf{P}(t) = \mathbf{P_0^2}$$

CS148 Lecture 8

Bezier Curve

CS148 Lecture 8

Pat Hanrahan, Fall 2009

Properties

Property 1: Interpolate end points

$$\mathbf{P}(0) = \mathbf{P_0}$$

$$\mathbf{P}(1) = \mathbf{P_3}$$

Property 2: Tangents

$$\mathbf{P}'(0) = 3(\mathbf{P_1} - \mathbf{P_0})$$

$$\mathbf{P}'(1) = 3(\mathbf{P_3} - \mathbf{P_2})$$

Property 3: Convex hull property

$$\mathbf{P}(t)$$
 inside chull $(\mathbf{P_0}, \mathbf{P_1}, \mathbf{P_2}, \mathbf{P_2})$

CS148 Lecture 8

Extrapolation and Subdivision

Bezier Curve

New Bezier Curve
Can run the algorithm in reverse to get the original control points. Can prove that the original curve is a piece of the new curve

CS148 Lecture 8 Pat Hanrahan, Fall 2009

Bezier Curve

Evaluate the algorithm at t=1/2
This subdivides the curve into two pieces

Left Bezier Curve

Right Bezier Curve

CS148 Lecture 8

Applications of Subdivision

Drawing Bezier curve

??

Intersect two Bezier curves

??

CS148 Lecture 8

Pat Hanrahan, Fall 2009

Continuity between 2 Bezier Curves

 3^{rd} point of the 1^{st} curve is the same as the 1^{st} point of the 2^{nd} curve

CS148 Lecture 8

Continuity between 2 Bezier Curves

Tangent of the 1^{st} curve is equal to the tangent of the 2^{nd} curve

CS148 Lecture 8 Pat Hanrahan, Fall 2009

Demo of Bezier Curves

TrueType Quadratic Bezier Splines

Successive control points are marked as either on or off the curve

two successive on points form a line segment.

a *conic off* point between two *on* points forms a conic bezier arc

two successive conic off points define a virtual on point at their exact middle. It is used to join two conic arcs

http://freetype.sourceforge.net/freetype2/docs/glyphs/glyphs-6.html

CS148 Lecture 8

Pat Hanrahan, Fall 2009

Pyramid Algorithm

$$P(t) = \sum_{i}^{n} P_i B_i^n(t)$$

CS148 Lecture 8

Pyramid Algorithm

CS148 Lecture 8 Pat Hanrahan, Fall 2009

Pyramid Algorithm

CS148 Lecture 8 Pat Hanrahan, Fall 2009

Pyramid Algorithm

CS148 Lecture 8

Pat Hanrahan, Fall 2009

Pyramid Algorithm

CS148 Lecture 8

Bernstein Polynomials

Pyramid Algorithm

CS148 Lecture 8

Things to Remember

Splines

- **■** Cubic Hermite interpolation
- Matrix representation of cubic polynomials
- Catmull-Rom (CR) splines
- How to think of CR in terms of Hermite spline

Curves

- Bezier curve (BC)
- How to think of BC in terms of Hermite spline
- Chaiken's algorithm
- Subdivision algorithm including applications
- Properties of Bezier curves

CS148 Lecture 8 Pat Hanrahan, Fall 2009