المعادلات و المتراجحات من الدرجة الاولى والثانية بمجهول واحد القدرات المنتظرة

*- حل معادلات أو متراجحات تؤول في حلّها إلى معادلات أو متراجحات من الدرجة 1 أو 2

*- تُريِيضٌ وضعيات تتضمن مقادير متغيرة باستعمال تعابير أو معادلات أو متراجحات.

$$x\in\mathbb{N}$$
 $2x+4=5x-rac{1}{2}$ K $x\in\mathbb{R}$ $2x+4=5x-rac{1}{2}$ حل المعادلتن التاليتين -1

$$x \in \mathbb{R}$$
 5 $x - 7 \le \frac{11}{2}x + 4$ حل المتراجحة -2

تعریف1

جميع حلول معادلة (أو متراجحة) تكون مجموعة تسمى مجموعة حلول المعادلة (أو المتراجحة) S'نرمز لها بـ S أو 'S او.....

تعریف2

نقول ان معادلتين (أو متراجحين) متكافئتان إذا كانت للمعادلتين (أو للمتراجحتين) نفس مجموعة الحلول.

II) المعادلة التالفية

1- مفهوم معادلة تالفية

. کل معادلة يمكن كتابتها على شكل $x \in \mathbb{R}$ تسمى معادلة تالفية $a \neq 0$ و تسمى معادلة من الدرجة الأولى بمجهول واحد إذا كان

2- حل معادلة تالفية

 $x \in \mathbb{R}$ ax + b = 0 نحل المعادلة

$$S=\mathbb{R}$$
 فان $a=b=0$ إذا كان

$$S=arnothing$$
 إذا كان $a=0$ و $b
eq 0$

$$S = \left\{ \frac{-b}{a} \right\}$$
 این $a \neq 0$ فان $a \neq 0$ تکافئ $a \neq 0$ تکافئ $a \neq 0$

$$c \neq 0$$
 و $a \neq 0$ حيث $x \in \mathbb{R}$ حيث $a \neq 0$ و $a \neq 0$ حيث $a \neq 0$ حيث $a \neq 0$ حيث $a \neq 0$ حيث $a \neq 0$

$$cx+d=0$$
 آو $ax+b=0$ تکافئ $ax+b=0$ تکافئ

إذن مجموعة حلول المعادلة $x \in \mathbb{R}$ (ax+b)(cx+d)=0 هي اتحاد مجموعة حلول المعادلة

$$x \in \mathbb{R}$$
 $cx + d = 0$ g $x \in \mathbb{R}$ $ax + b = 0$

$$x \in \mathbb{R}$$
 (2x+1)(-3x-5) = 0 تمرين: حل المعادلة

III) المتراجحات التالفية بمجهول واحد

1- تعریف

کل متراجحة یمکن کتابتها علی شـکل $x\in\mathbb{R}$ $ax+b\leq 0$ او $x\in\mathbb{R}$ $ax+b\leq 0$ او $a \neq 0$ و تسمى متراجحة من الدرجة الأولى بمجهول واحد إذا كان

2- حل متراجحة تالفية بمجهول واحد

أ- إشارة الحدانية ax + b

b فان إشارة a = 0 هي إشارة a = 0

 $x+\frac{b}{a}$ و ax+b مرتبطة بإشارة ax+b و بالتالي إشارة ax+b مرتبطة بإشارة ax+b

$$x \succ -\frac{b}{a}$$
 تكافئ $x + \frac{b}{a} \succ 0$

$$x \prec -\frac{b}{a}$$
 تكافئ $x + \frac{b}{a} \prec 0$

ax+b نلخص هذه الدراسة في جدول يسمى جدول إشارة

х	∞		$-\frac{b}{a}$		+∞
ax + b		a عكس إشارة	0	a إشـارة	

 $x \in \mathbb{R}$ 2x + 3 < 0 حلّ المتراجحتين ; بطریقتین مختلفتین. $x \in \mathbb{R}$ $-3x + 4 \le 0$

 $(ax+b)(cx+d) \le 0$ حل المتراجحة -3 $(ax+b)(cx+d) \succ 0$ أو من نوع $x \in \mathbb{R}$ حل هذا النوع من المتراجحات يعتمد على دراسة إشارة (ax+b)(cx+d) بتوظيف إشارة كل (cx+d) و (ax+b)

 $x \in \mathbb{R}$ (2x+1)(-3x+1) < 0 :حل المتراجحتين $x \in \mathbb{R} \quad (-2x-1)(-5x+1) \ge 0$

IV) المعادلات من الدرجة الثانية بمجهول واحد

<u>1- تعرىف</u>

c نسمي معادلة من الدرجة الثانية في $\mathbb R$ كل معادلة على الشكل $ax^2+bx+c=0$ حيث a و a غير منعدم.

2- أمثلة

حل في
$$\mathbb{R}$$
 المعادلات $x^2-2x+3=0$ ، $x^2-6x-7=0$ ، $2x^2+1=0$ ، $x^2-5=0$ ، $3x^2-\sqrt{3}x=0$

$$a \neq 0$$
عيث $x \in \mathbb{R}$ $ax^2 + bx + c = 0$ عيث (a

$$ax^{2} + bx + c = a \left[\left(x + \frac{b}{2a} \right)^{2} - \frac{b^{2} - 4ac}{4a^{2}} \right]$$
 Levi

$$ax^2+bx+c$$
 الكتابة $a\left[\left(x+rac{b}{2a}
ight)^2-rac{b^2-4ac}{4a^2}
ight]$ الكتابة

لنحل المعادلة

$$\left(x + \frac{b}{2a}\right)^2 - \frac{b^2 - 4ac}{4a^2} = 0$$
 تکافئ $ax^2 + bx + c = 0$

من خلال هذا يتبين أن حل المعادلة يتوقف على إشارة العدد b^2-4ac الذي يسمى مميز $\Delta = b^2 - 4ac$ نرمز له يـ Δ نكتب $ax^2 + bx + c = 0$

$$\mathbb{R}$$
 و بالتالي المعادلة لا تقبل حلا في $\left(x+rac{b}{2a}
ight)^2-rac{\Delta}{4a^2}\succ 0$ فان $\Delta\prec 0$ فان *

$$x = -\frac{b}{2a}$$
 اذا کان $\Delta = 0$ فان $\Delta = 0$ اذا کان *

$$\left(x+\frac{b}{2a}\right)^2-\frac{\Delta}{4a^2}=0$$
 تكافئ $ax^2+bx+c=0$ فان $\Delta\succ 0$ فان *

$$\left(x + \frac{b + \sqrt{\Delta}}{2a}\right)\left(x + \frac{b - \sqrt{\Delta}}{2a}\right) = 0$$
 تكافئ $x = \frac{-b - \sqrt{\Delta}}{2a}$ أو $x = \frac{-b + \sqrt{\Delta}}{2a}$ تكافئ

<u>مىرھنة</u>

 \mathbb{R} نعتبر المعادلة $ax^2+bx+c=0$ حيث $a\neq 0$ و $a\neq 0$ مجوعة حلولها في $ax^2+bx+c=0$ العدد b^2-4ac يسـمى مميز المعادلة أو ثلاثية الحدود ax^2+bx+c نرمز له بـ ax^2+bx+c فان ax^2+bx+c

$$S = \left\{ -\frac{b}{2a} \right\}$$
 فان $\Delta = 0$ إذا كان $\Delta = 0$

$$S = \left\{ \begin{array}{c} -b + \sqrt{\Delta} \\ \overline{2a} \end{array}; \frac{-b - \sqrt{\Delta}}{2a} \right\}$$
 فان $\Delta \succ 0$ فان $\Delta \succ 0$

<u>اصطلاح</u>

إذا كان $\Delta=0$ فان $\Delta=0$ في هذه الحالة نقول إن $\Delta=0$ فان $\Delta=0$ إذا كان أ

ملاحظة إذا كان a و c لهما إشارتين مختلفتين فان للمعادلة حلين.

تمرين

حل في ℝ المعادلات

$$x^{2} - \left(1 + \sqrt{3}\right)x + 1 + \frac{\sqrt{3}}{2} = 0$$

$$5x^{2} - 4x + 2 = 0$$

$$x^{2} - \left(1 + \sqrt{2}\right)x + \sqrt{2} = 0$$

$$4x^{2} + 3x - 1 = 0$$

<u>تمرين</u>

D و E حدد موضع نقطتین A و A حدد موضع نقطتین A و نعتبر A و نقطتین A و تنتمیان

BCDE على التوالي لـADE و مساحة AD = BE و مساحة AD = BE على التوالي لـAD = BE الرباعي AD = BE = x اختيار المجهول نضع

$$\frac{x(9-x)}{2}$$
 مساحة ADE مساحة

$$\frac{4\times9}{2}$$
 مساحة الرباعي $BCDE$ هي مساحة الرباعي

$$\frac{4\times 9}{2} - \frac{x(9-x)}{2} = \frac{x(9-x)}{2}$$
 لدينا

 $.....18 - 9x + x^2 = 0$ ease

<u>b) نتىحة</u>

 $a \neq 0$ و $ax^2 + 2b$ 'x + c = 0 نعتبر معادلة من شـكل

$$\Delta' = b'^2 - ac$$
 نضع $\Delta = 4(b'^2 - ac)$ لدينا

$$\Delta$$
' اشارة Δ هي اشارة

$$S = \varnothing$$
إذا كان $0 \prec 0$ فان

$$S = \left\{ -\frac{b'}{a} \right\}$$
اذا کان $\Delta' = 0$ فان

$$S = \left\{ \begin{array}{c} -b' + \sqrt{\Delta'} \\ \overline{a}; \frac{-b' - \sqrt{\Delta'}}{a} \end{array} \right\}$$
فان $\Delta' \succ 0$ فان $\Delta' \succ 0$

العدد ' Δ يسمى المميز المختصر للمعادلة

تمرين

$$x \in \mathbb{R}$$
 $6x^2 - 2\sqrt{3}x - 1 = 0$

4- تعميل ثلاثية الحدود

$$a \neq 0$$
 / $T(x) = ax^2 + bx + c$ نعتبر ثلاثية الحدود

لیکن ∆ ممیزها

 $\mathbb R$ إذا كان $0 \prec 0$ فان $T\left(x\right)$ لا تقبل جدرا و بالتالي $T\left(x\right)$ لا يمكن تعميلها في

$$T\left(x\right)=a\left(x+rac{b}{2a}
ight)^{2}$$
 وبالتالي $\frac{-b}{2a}$ الها جدر وحيد $\Delta=0$ فان $\Delta=0$

 x_2 و ان T(x) وان $\Delta \succ 0$ الها خدرین مختلفین *

$$T(x) = a(x - x_1)(x - x_2)$$
 وبالتالي

<u>تمرين</u>

$$Q(x) = x^2 - (1 + \sqrt{3})x + 1 + \frac{\sqrt{3}}{2}$$

$$P\left(x\right) = 3x^2 - 4x - 4$$

عمل

<u>5- معادلات تؤول في حلها الى معادلات من الدرجة الثانية</u>

 $x \in \mathbb{R}$ $x^4 - 7x^2 + 12 = 0$

<u>مثال1</u> حل

$$x \in \mathbb{R}$$
 $2x - 7\sqrt{x} - 4 = 0$ حل عثال 2

 $P(x) = 2x^3 - 3x^2 - x + 1$ مثال نعتبر

$$P\left(\frac{1}{2}\right)$$
 أحسب

P(x) = 0 حل المعادلة

6- محموع و جداء جدري ثلاثية الحدود

 $a \neq 0$ نعتبر $x \in \mathbb{R}$ $ax^2 + bx + c = 0$ نعتبر

 x_2 و أن جذريها هما $\Delta\succ 0$ و أن جذريها

 \mathbb{R} لدينا لكل x من

$$ax^{2} + bx + c = a(x - x_{1})(x - x_{2})$$

$$= ax^{2} - a(x_{1} + x_{2})x + ax_{1}x_{2}$$

$$x_1 x_2 = \frac{c}{a}$$
 ; $x_1 + x_2 = \frac{-b}{a}$ jذن

<u>خاصىة</u>

يحققان العلاقتين $x \neq 0$ حيث $x \neq 0$ حيث $x \neq 0$ عيد العلاقتين $x \neq 0$ عيد العلاقتين العلاقتين

$$x_1 x_2 = \frac{c}{a}$$
 ; $x_1 + x_2 = \frac{-b}{a}$

تمرين

 x_{2} و x_{1} دون حساب يه و x_{2} و x_{1} ثأكد أن للمعادلة x_{2} عأكد أن للمعادلة x_{2} عران x_{3} جدران x_{2} و x_{1} خون حساب يه و x_{2}

<u>VI- المتراجحات من الدرجة الثانية بمحهول واحد</u>

1- اشارة ثلاثية الحدود من الدرجة الثانية

 $a \neq 0$ / $T(x) = ax^2 + bx + c$ نعتبر ثلاثية الحدود

لیکن ∆ ممیزها

$$T(x) = a \left[\left(x + \frac{b}{2a} \right)^2 - \frac{\Delta}{4a^2} \right]$$
 الشكل القانوني

a إذا كان $\Delta \prec 0$ فان إشارة $\Delta \prec 0$ هي إشارة $\Delta \prec 0$

يكون منعدما من أجل $x=rac{-b}{2a}$ و إشارتها إشارة ax^2+bx+c فان $\Delta=0$ فان $\Delta=0$

$$\mathbb{R} - \left\{ \frac{-b}{2a} \right\}$$

 ax^2+bx+c و x_2 و x_1 و x_2 عنث x_1 و x_2 عندري x_1 عندري x_2 عندري x_1 عندري x_2

 $x_1 \prec x_2$ نفترض أن

	- ∞ = 3	r _i ;	χ ₂ +∞
$x - X_{\perp}$	- 1	+	+
× - X 2	-	_ 0	+
T(x)) اشارة بص	ا عكس اشارة ص (اشارة ص (

a إذا كان $\Delta \prec 0$ فان إشارة $ax^2 + bx + c$ هي إشارة

$$\mathbb{R} - \left\{ \frac{-b}{2a} \right\}$$
 نه کان $\Delta = 0$ فان إشارة $ax^2 + bx + c$ هي إشارة $\Delta = 0$

إذا كان
$$x_1 \prec x_2$$
 و $x_2 \in x_2$ جدري $x_2 + bx + c$ فان $\Delta \prec 0$ فان

х	- ∞	<i>x</i> ₁	X 2	+∞
$\Gamma(x)$	اشارة 🖸	لزة 🛭 🕽	م عکس الش	الثارة ۾

<mark>2- المتراجحات</mark> أ- حل في ℝ المتراجحات

$$3x^{2} - 2x - 8 < 0 \qquad -2x^{2} + 5x - 3 \le 0$$
$$4x^{2} - 2x + 1 > 0 \qquad -3x^{2} + \sqrt{3}x - 1 \ge 0$$

<u>ب- متراجحات تؤول في حلها الى متراجحات من الدرجة الثانية</u>

مثا<u>ل</u>1 حل في \mathbb{R} المتراجحتين $2x^4 - 9x^2 + 4 > 0$

$$\frac{x^2 - (1 + \sqrt{2})x + \sqrt{2}}{x^2 - x - 2} \ge 0$$

مثال2

$$p(x) = 6x^3 - 13x^2 + 4$$
 is in its integral $p(x) = 6x^3 - 13x^2 + 4$

$$p\left(x\right)$$
 تأكد أن 2 جدر للحدودية -1

$$p(x) \le 0$$
 \mathbb{R} حل في -2

$$p(x) \le 3x^2(x-2)$$
 \mathbb{R} حل في

$$p(x) = -x^3 + (3+a)x^2 - (2+3a)x + 2a$$

$$p(x)$$
 بين أن a جدر للحدودية -1

$$p(x) = (x - a)Q(x)$$
 حدد حدودیة $Q(x)$ حیث -2

$$-x^{2} + 3x - 2$$
 أ- أدرس إشارة 3

$$Q(a) \succ 0$$
 حیث $p(x) \succ 0$ -4