Clinical decision support in the era of genome informed cancer medicine

Mia Levy, MD, PhD

Ingram Assistant Professor of Cancer Research
Director Cancer Health Informatics and Strategy
Assistant Professor of Biomedical Informatics
Assistant Professor of Medicine, Division of Hematology and Oncology
Vanderbilt University

May 25, 2016

Notice of Faculty Disclosure

In accordance with ACCME guidelines, any individual in a position to influence and/or control the content of this ASCP CME activity has disclosed all relevant financial relationships within the past 12 months with commercial interests that provide products and/or services related to the content of this CME activity.

The individual below has disclosed the following financial relationship(s) with commercial interest(s):

Mia Levy, MD, PhD

Personalis Genomoncology

Advisory Board fee Consultant fee

Executive Scientific Advisory Board Consultant

Cancer Care Continuum

Biomarkers in the Cancer Care Continuum

Decision Support Cancer Care Continuum

Predictive Biomarkers

Types of Decision Support:

Which tests to order?

How to interpret and report results?

How to apply results to patient care?

Mode of Decision Support:

When

How

To Whom

Unselected Population

Treat Unselected

No Response

Response

2002

Comparison of 4 Chemotherapy Regimens in Advanced Lung Cancer

2009EGFR mutated lung cancer

Initial phase III first line EGFR TKI trial: "IPASS" EGFR TKI vs. Carboplatin - Paclitaxel in Never- or Light Ex-Smokers

Ref: Mok et al NEJM 2009; updated data Fukuouka et al JCO 2011

Unselected Population

Selected Population

Predictive Biomarker

Predict Treatment Efficacy

Informs
Drug
Selection

Treat Selected

Targeted Therapy

Primary Sensitivity

Primary Resistance

Acquired Resistance

Cost per Genome

Riding the Tsunami of Genomic Data

Evolution of testing strategies

Single mutation -> Hot spot panels -> NGS

Levels of Evidence

Animal Models

Cell Lines

Case Reports Retrospective Cohort Studies

Non-randomized Prospective Studies

Guidelines

Randomized Prospective Studies

Pre-clinical

Clinical Validity

Clinical Utility

Separates one population into two or more groups with distinctly different outcomes

Incorporated into standard of care clinical decision making

2016 Non-small cell lung cancer

Molecular alteration	Drugs	Level of evidence
EGFR mutation	erlotinib, gefitinib, afatinib	FDA approved
ALK rearrangements	crizotinib, ceritinib	FDA approved
EGFR T790M mutation	osimertrinib	FDA approved
PD-L1 expression	pembrolizumab	FDA approved
BRAF mutation	Trametinib, dabrafenib	FDA approved
ROS1 rearrangements	crizotinib	FDA approved
MET amplifications	crizotinib	NCCN
HER2 mutations	trastuzumab, afatinib	NCCN
KRAS mutations	Resistance to TKI's	NCCN

Mission of My Cancer Genome

To curate and disseminate knowledge regarding the clinical significance of genomic alterations in cancer

Content Cancer Generation Genome Content Content Content

Find CI

20 Pathways823 Genes21 Cancers429 Variants552 Drugs

Manually Curated Content

21 Cancers

ALL
ALCL
AML
CML
MDS
GIST
IMT
Breast
Glioma
Gastric
Lung

Colorectal
Basal Cell Carcinoma
Bladder
Medulloblastoma
Melanoma
Neuroblastoma
Ovarian
Rhabdomyosarcoma
Thymic
Thyroid

More...

Find a Cancer Mutation Disease (required): Select Disease Gene (optional): Select Disease First Variant (optional): Select Disease First GO

Find Clinical Trials

Lists trials by Disease or Gene for all national and international trials registered within PDQ and clinicaltrials.gov.

Find a Cancer Mutation

Disease (required): ✓ Select Disease

Acute Lymphoblastic Leukemia

Acute Myeloid Leukemia

Gene (optional): Anaplastic Large Cell Lymphoma

Basal Cell Carcinoma

Bladder Cancer

Variant (optional):

Breast Cancer

Chronic Myeloid Leukemia

Colorectal Cancer

Gastric Cancer

GIST

Glioma

Inflammatory Myofibroblastic Tumor

Lung Cancer

Medulloblastoma

Melanoma

Myelodysplastic Syndromes

Neuroblastoma

Ovarian Cancer

Rhabdomyosarcoma

Thymic Carcinoma

Thyroid Cancer

Find Clinical Tria

Lists trials by Distrials registered

Find a Cancer Mutation Disease (required): Lung Cancer Gene (optional): **EGFR** Variant (optional): ✓ Select Variant EGFR Status Unknown EGFR No Mutation Detected EGFR c.2156G>C (G719A) EGFR c.2155G>T (G719C) EGFR c.2155G>A (G719S) EGFR Exon 19 Deletion EGFR Exon 19 Insertion EGFR Exon 20 Insertion EGFR c.2290_2291ins (A763_Y764insFQEA) Find Clinical Tria EGFR c.2369C>T (T790M) EGFR c.2573T>G (L858R) EGFR c.2582T>A (L861Q) Lists trials by Disease or Gene for all national and international trials registered within PDQ and clinicaltrials.gov.

Find a Cancer Mutation

Gene (optional): EGFR \$

Variant (optional): EGFR c.2369C>T (T790M)

GO

Find Clinical Trials

Lists trials by Disease or Gene for all national and international trials registered within PDQ and clinicaltrials.gov.

EGFR c.2369C>T (T790M) Mutation in Non-Small Cell Lung Cancer

Biomarker Classification & Prioritization

Biomarker Representation

Types of Biomarkers

- Gene Variant (point mutations, insertions, deletions)
- Exon
- Fusions/Rearrangements
- Gene Amplification
- Protein Expression

Logical Combinations of Alterations

- AND/OR/NOT

Therapy Assertion Lung Cancer & Erlotinib

(single alteration)

EGFR L858R
mutation

Response: Primary Sensitivity
Line of Therapy: Metastatic

Therapy Assertions Lung Cancer & Erlotinib

(co-occuring alterations)

Therapy Assertion Colon Cancer & Cetuximab

(Alteration NOT detected in Variant Group)

Response: Primary Sensitivity

Line of Therapy: Metastatic

Source: FDA (KRAS Exon 2)

Source: NCCN (KRAS Exon 2, 3, 4)

Source: ASCO (KRAS Exon 2)

Prognostic Assertion Acute Myeloid Leukemia

(single alteration)

Prognostic Assertion Acute Myeloid Leukemia

(co-occuring alterations)

Prognostic Assertion Acute Myeloid Leukemia

(co-occuring alterations)

Clinical Trial Annotation

Clinical Trial A

Example: NCI Match

Biomarker Group(s)

Include:

BRAF V600E/K/R/D Mutation

Exclude:

KRAS, NRAS, HRAS mutations

Content Growth

1544

diagnosis
variant
drug sensitivity
(experimental)

Contributor Network

Contributing Editors

Section Editors

Core Curation Staff

Mia Levy, MD, PhD
Co-editor in-chief

Core Team

Christine Lovly, MD, PhD
Co-editor in-chief

Christine M. Micheel, PhD
Managing Editor

Kate Mittendorf, PhD
Research Analyst

Ingrid A. Anderson, PhDProgram Coordinator

Worldwide Collaboration

Content Cancer Generation Genome Content Content Content

Dissemination

Publically Available Resources

Website

>2.5M page views, 201 countries

Mobile App My Cancer Genome Clinically Integrated Solutions

Vanderbilt EHR

>5800 patients

Laboratory Reporting Tool

>3200 specimens

>3634 Downloads, 22K sessions

MR#		Patient Name	Actions	Tumor Gene Mutations H-SMP Tumor Gene Mutations RAS RAS
03	81	A, B M.	Actions	
03	56	A, P	Actions	
03	35	B, J A	Actions	
01	80	B, S A	Actions	
02	29	E, J E	Actions	
02	27	F, R M	Actions	
02	77	G, T	Actions	
02	73	H, A	Actions	
03	64	S, C	Actions	A
02	79	S, A S	Actions	R
02	40	W, JE I	Actions	
03	74	W, CL	Actions	

New Method for Reporting Mutation Results in the EHR

```
BRAF c.1798_1799GT>AG (V600R) Not Detected
BRAF c.1798_1799GT>AA (V600K) Not Detected

BRAF c.1799T>A (V600E) Detected
BRAF c.1799_1800TG>AA (V600E) Not Detected
BRAF c.1798G>A (V600M) Not Detected
BRAF c.1799T>G (V600G) Not Detected
BRAF c.1799_1800TG>AT (V600D) Not Detected
```

Levy, ASCO 2011

Levy, Genome Research 2012

MR#		Patient Name	Actions	Tu	mo	r G	ene	M	utat	ions
				H-SMP	BRAF	CINNB1	GNA11	GNAQ	KIT	NRAS
03	81	A, B M.	Actions							
03	56	A, P	Actions							
03	35	B, J A	Actions							
01	80	B, S A	Actions							
02	29	E, J E	Actions							
02	27	F, R M	Actions							
02	77	G, T	Actions							
02	73	H, A	Actions							
03	64	S, C	Actions	A						
02	79	S, A S	Actions	R						
02	40	W, JE I	Actions							
03	74	W, C L	Actions							

New Method for Reporting Mutation Results in the EHR

- Primary Sensitivity
- Primary Resistance
- Secondary Resistance

```
BRAF c.1798_1799GT>AG (V600R) Not Detected
BRAF c.1798_1799GT>AA (V600K) Not Detected

BRAF c.1799T>A (V600E) Detected

BRAF c.1799_1800TG>AA (V600E) Not Detected
BRAF c.1798G>A (V600M) Not Detected
BRAF c.1799T>G (V600G) Not Detected
BRAF c.1799_1800TG>AT (V600D) Not Detected
```

Levy, ASCO 2011 Levy, Genome Research 2012

Scale Reporting

1 Variant1 Gene

Name:	Sex:	Laboratory Number:	VUH#:
Referral Source:			
Reason for Request:	DNA Analysis	for EGFR Mutations	
Type of Specimen:		(Block #)	
Date Received:			
Date of Report:			
Interpretation:	EGFR Mutation	on Detected: Exon 19 deletion	
		ns Tested Include: on, Exon 21 (L858R), Exon 20 insert	ion
	ERBB2 Mutati Exon 20 inser		
that is a member of the	protein kinase super	R) gene, mapped to 7p12, encodes a family. EGFR protein is expressed (GF). The protein-ligand interaction in	on the cell surface and as

The epidermal growth factor receptor (EGFR) gene, mapped to 7p12, encodes a transmembrane glycoprotein that is a member of the protein kinase superfamily. EGFR protein is expressed on the cell surface and as a receptor, binds to epidermal growth factor (EGF). The protein-ligand interaction induces receptor dimerization and tyrosine autohopsohyroidation resulting in cell profileration. Somatic mutations in the tyrosine kinase-bind domain of the EGFR gene are associated with non-small cell lung carcinoma, primarily moderately to well-differentiated aedenocarcinoma. EGFR mutations have been observed in approximately 10% of lung adenocarcinomas in patients from the United States and are significantly associated with Asian ethnicity, female gender and never-amokers.

gender and never-snokers. ETRB2P is a member of the EGF family of receptor tyrosine kinases and plays important roles in the pathogenesis of several human cancers. Somatic mutations in the form of in-frame duplications and/or insertions in a small stetch of exor 20 have been reported in non-small cell lung carcinomas. Of interest, exon 20 insertion mutations in ERB82 or EGFR are significantly more prevalent in the same subpopulations in which other EGFR mutations occur.

Progressive and/or metastatic non-small cell lung carcinomas can be treated with inhibitors of the EGFR receptor. Somatin mutations in the tyorane knase domain of the EGFR gene present in lung adenocarcinomas can affect a patient's response to EGFR inhibitors. 90% of EGFR mutations in this population include short infame deletions in exon 19 and a 1-5 Q point mutation in exon 21 at a close 0. The presence of either mutation correlates with sensitivity to EGFR inhibitors. Conversely, insertion mutations in exon 20 of either ERBB2 or EGFR one appear to be less responsives to therapy.

DNA extracted from this patient's tumor was amplified for *EGFR* exons 19 and 20 and *ERB82* exon 20 using untilipies funcescent PCR to detect small deletions or insertions. Detection of mutation L85R was performed using fluorescent PCR ocupied with restriction endomuclease digestion with *Sub981*. All amplicons were analyzed using capillary electrophoresis. An in frame deletion in exon 19 of the *EGFR* given sex selection.

analyzed using capitary electrophoresis. An in trame deletion in exon 19 of the LOFH gene was detected. In summary, the results of this study demonstrate that this patient does have an exon 19 deletion of the EGFR gene. The presence of this mutation indicates that this turnor will likely be responsive to EGFR inhibitors. It is important to note that this assay is specific for these four mutations and does not note out the presence of other EGFR or ERBIZ mutations that may be present but not detected by this assay and which may affect treatment response.

40 Variants 6 Genes

MR#		Patient Name	Actions	Tumor Gene Mutation					ions	
				H-SMP	BRAF	CTNNB1	GNA11	GNAQ	KIT	NRAS
03	81	A, B M.	Actions							
03	56	A, P	Actions							
03	35	B, J A	Actions							
01	80	B, S A	Actions							
02	29	E, J E	Actions							
02	27	F, R M	Actions							
02	77	G, T	Actions							
02	73	H, A	Actions							
03	64	S, C	Actions	A						
02	79	S, A S	Actions	R						
02	40	W, JE I	Actions							
03	74	W, CL	Actions							

1000s Variants 100s Genes

Next Generation Sequencing

Multi-modal testing

Decision Support for Variant Analysis

Actionable for Tumor Type Actionable for Other Tumor Type

Not Actionable

QC Metrics	Actionable for Tumor Type	Actionable Other	Non-Actionable	Clinical Trials	Patient	REPORT			
Variant	Info	Ref:Alt		M Info			PGM Alignment (Click for BAM Pileup)	PGM Call	PGM Decisio
) Total (0 Confirmed) re Information		•	30010. (070)					
G Chang AA Char Mutation Missen Count: 0	: 7:55249071-55249071 ge: c.2369C>T nge: T790M n Type: Substitution -	C:T	Var VA QU	al Reads: 500 riant Reads: 40 F: 0.802 AL: 100 Score: (80/80))1		CAÇGC	Detected	Detected
G Chang AA Char Mutation Missen Count: 0	: 7:55259515-55259515 ge: c.2573T>G nge: L858R n Type: Substitution -	T:G	Var VA QU	al Reads: 550 riant Reads: 50 F: 0.909 AL: 100 Score: (80/80)	00		ւ չ <mark>գ</mark> ւ ւ	Detected	Detected

Patient Information

Name: Charles F Bingley

DOB: 4/12/75 Gender: Male MRN: 10101

Pathologic Diagnosis:

Specimen Information

Specimen Type: primary Collection Date: 11/1/14 Date Received: 11/2/14

Decision Support for Variant Interpretation & Reporting

NGS RESULTS

Detected Alterations With Therapeutic Implications						
Gene	Alteration	Type of Mutation				
EGFR	T790M	Substitution - Missense				
EGFR	L858R	Substitution - Missense				

Genes With Potentially Relevant Targeted Clinical Trials: EGFR

Genes With Other Non-Synonymous Alterations: None

Alterations that Failed Testing: EGFR (L861Q)

Therapeutic Implications of Genomic Analysis, For Patient's Tumor Type - Level 1

Approved Drugs	Variants Detected	Response to Therapy	Condition	Line of Therapy	Level of Evidence
I Atatinin I	/		Non-Small Cell Lung Cancer; When resistance mutation occurs secondary to primary sensitizing mutation in EGFR	Metastatic	NCCN
Erlotinib	/		Non-Small Cell Lung Cancer; When resistance mutation occurs secondary to primary sensitizing mutation in EGFR	Metastatic	NCCN
	/		Non-Small Cell Lung Cancer; When resistance mutation occurs secondary to primary sensitizing mutation in EGFR	Metastatic	NCCN

Potentially Relevant Targeted Clinical Trials - Level 3 (see note)

Trial Title	Conditions	Relevant Genes
Trial of Erlotinib and BKM120 in Patients With Advanced Non Small Cell Lung Cancer Previously Sensitive to Erlotinib (NCT01487265)	Non Small Cell Lung Cancer	EGFR
Phase II AZD9291 Open Label Study in NSCLC After Previous EGFR TKI Therapy in EGFR and T790M Mutation Positive Tumours (NCT02094261)	Non Small Cell Lung Cancer	EGFR
BATTLE-2 Program: A Biomarker-Integrated Targeted Therapy Study (NCT01248247)	Lung Cancer	EGFR
LAZD9291 in Combination With Ascending Doses of Novel Therapolitics (NCT02143466)	Advanced Non Small Cell Lung Cancer	EGFR

Patient Information Name: Charles F Bingley DOB: 4/12/75 Gender: Male MRN: 10101 Pathologic Diagnosis: Specimen Information Specimen Type: primary Collection Date: 11/1/14 Date Received: 11/2/14

Decision Support for Variant Interpretation & Reporting

NGS RESULTS

Patient Information Name: Charles F Bingley DOB: 4/12/75 Gender: Male MRN: 10101 Pathologic Diagnosis: Specimen Information Specimen Type: primary Collection Date: 11/1/14 Date Received: 11/2/14

Decision Support for Variant Interpretation & Reporting

NGS RESULTS

Potentially Relevant Targeted Clinical Trials - Level 3 (1997)		
Trial Title	Conditions	Relevant Genes
Trial of Erlotinib and BKM120 in Patients With Advanced Non Small Cell Lung Cancer Previously Sensitive to Erlotinib (NCT01487265)	Non Small Cell Lung Cancer	EGFR
	Non Small Cell Lung Cancer	EGFR
BATTLE-2 Program: A Biomarker-Integrated Targeted Therapy Study (NCT01248247)	Lung Cancer	EGFR
LAZDQ2Q1 in Combination With According Docce of Novel Therapolitics (NCTD2143466)	Advanced Non Small Cell Lung Cancer	EGFR

Detailed Summary of Alteration In Disease

Detected Alterations With Therapeutic Implications in Patient's Tumor Type - Level 1 (see note)

Gene: EGFR Nucleotide: c.2369C>T Condition: Non-Small Cell Lung Cancer

Alteration Detected: T790M Variation Type: Substitution - Missense

About this Gene

EGFR (epidermal growth factor receptor, also known as ERBB1 and HER1) is a gene that encodes for the epidermal growth factor receptor protein. Missense mutations, deletions, and insertions are observed in cancers such as lung cancer and glioblastoma. Activating EGFR mutations increase the kinase activity of EGFR, leading to hyperactivation of downstream pro-survival signaling pathways (Sordella et al. 2004).

Pathways

Receptor tyrosine kinase

Mutation Location in Gene and/or Protein

Kinase domain (exon 20)

Mutation Prevalence

Frequency of EGFR mutations in NSCLC: 10% in the USA and 35% in Asia (Lynch et a

Content from My Cancer Genome

Frequency of T790M mutations in EGFR-mutated NSCLC: < 5% of untreated EGFR mutant tumors (<u>Inukai et al. 2006</u>); 50% of EGFR mutant tumors with acquired resistance to erlotinib/gefitinib (<u>Kobayashi et al. 2005</u>; <u>Pao et al. 2005</u>)

Response to Drugs

Response to anti-EGFR antibodies: Currently no role for EGFR mutation in predicting response in NSCLC Response to anti-EGFR antibodies: Currently no role for EGFR mutation in predicting response in NSCLC Response to EGFR TKIs: Confers decreased sensitivity

Reference

http://www.mycancergenome.org/content/disease/lung-cancer/egfr/4

Link to MyCancerGenome.org

Trial Matching Decision Support

NCI Match
21 trial arms

861 cases with NGS testing at Vanderbilt

Next Steps: Extend trial annotation & integrate algorithm into clinical workflow

Challenges & Future Directions

Content Cancer Cancer Dissemination Genome

Small Sub-populations

Targeted Therapy

Primary Sensitivity

Primary Resistance

Acquired Resistance

Only 5% of cancer patients participate in clinical trials

Learning Cancer System

Learning Cancer System

Many Are Looking at Different Parts of the Same Problem

ONCOLOGY RESEARCH INFORMATION EXCHANGE NETWORK

President Obama's State of the Union Address pushes for precision medicine

- 2015 1 Million person precision medicine cohort
- 2016 Moonshot to "cure" cancer (Biden named "Cancer Czar"

Evolution of Clinical Decision Support

Evidence Driven
Protocol Driven
Pathway Driven
Data Driven?

Summary

- Rise of genomic profiling in cancer
- My Cancer Genome knowledge base provides decision support for clinical utility of alterations in cancer
- Strategies for content generation and dissemination
- Strategies for clinical decision support

Acknowledgements

Mia Levy Lucy Wang Tracy Shields

Christine Lovly Danny Wenner

Christine Micheel Mikhail Zemmel Hassan Naqv

Ingrid Anderson

Kate Mittendorf Nunzia Giuse MCG Contributors

Taneya Koonce MCG Alumni

Scott Sobecki Sheila Kusnoor

Joey Schneider John Clark

Mik Cantrell Katy Justiss

Daniel Carbone Batia Karabel

Ross Oreto Patricia Lee

Melissa Stamm Helen Naylor

Hassan Naqvi

And many more...

Thank You

mia.levy@vanderbilt.edu