Test Lossless Join property

This previous test works on **binary** decompositions, below is the general solution to testing lossless join property

Algorithm TEST_LJ:

- 1. Create a **matrix** S_i , each element $s_{i,j} \in S$ corresponds the relation R_i and the attribute A_j , such that: $s_{j,i} = a$ if $A_i \in R_j$, otherwise $s_{j,i} = b$.
- 2. Repeat the following process until (1) S has no change OR (2) one row is made up entirely of "a" symbols.
 - i. For each $X \rightarrow Y$, choose the rows where the elements corresponding to X take the value a.
 - ii. In those chosen rows (must be at least two rows), the elements corresponding to Y also take the value a if one of the chosen rows take the value a on Y.

Verdict: Decomposition is *lossless* if one row is entirely made up by "a" values.

Example 1

R = (A,B,C,D), F = { $A \rightarrow B$, $A \rightarrow C$, $C \rightarrow D$ }. Let R₁ = (A,B,C), R₂ = (C,D).

	А	В	С	D
R ₁	а	а	а	b
R_2	b	b	а	а

Note: rows 1 and 2 of S agree on $\{C\}$, which is the left-hand side of $C \rightarrow D$. Therefore, change the D value on rows 1 to a, matching the value from row 2.

CHEAT SHEET: Algorithm TEST_LJ

- 1. Create a matrix S, each element $s_{i,j} \in S$ corresponds the relation R_i and the attribute A_j , such that: $s_{i,j} = a$ if $A_i \in R_i$, otherwise $s_{i,j} = b$.
- Repeat the following process till S has no change or one row is made up entirely of "a" symbols.
- For each X→ Y , choose the rows where the elements corresponding to X take the value a.
- 2. In those chosen rows (must be at least two rows), the elements corresponding to Y also take the value a if one of the chosen rows take the value a on Y.

Example 1

R = (A,B,C,D), F = { $A \rightarrow B$, $A \rightarrow C$, $C \rightarrow D$ }. Let R₁ = (A,B,C), R₂ = (C,D).

	А	В	С	D
R ₁	а	а	а	b a
R_2	b	b	а	а

Note: rows 1 and 2 of S agree on $\{C\}$, which is the left-hand side of $C \rightarrow D$. Therefore, change the D value on rows 1 to a, matching the value from row 2.

Now row 1 is entirely a's, so the decomposition is lossless.

CHEAT SHEET: Algorithm TEST LJ

- 1. Create a matrix S, each element $s_{i,j} \in S$ corresponds the relation R_i and the attribute A_j , such that: $s_{i,j} = a$ if $A_i \in R_i$, otherwise $s_{i,j} = b$.
- Repeat the following process till S has no change or one row is made up entirely of "a" symbols.
- For each X→ Y , choose the rows where the elements corresponding to X take the value a.
- 2. In those chosen rows (must be at least two rows), the elements corresponding to Y also take the value a if one of the chosen rows take the value a on Y.

Example 2:

$$R = (A,B,C,D,E),$$

$$F = \{AB \rightarrow CD, A \rightarrow E, C \rightarrow D\}.$$

Let
$$R_1 = (A, B, C)$$
,
 $R_2 = (B, C, D)$ and
 $R_3 = (C, D, E)$.

$$A$$
 B C D E R_1 a a a b b R_2 b a a a b b a a a a

CHEAT SHEET: Algorithm TEST_LJ

- 1. Create a matrix S, each element $s_{i,j} \in S$ corresponds the relation R_i and the attribute A_j , such that: $s_{j,i} = a$ if $A_i \in R_j$, otherwise $s_{j,i} = b$.
- Repeat the following process till S has no change or one row is made up entirely of "a" symbols.
- For each X→ Y , choose the rows where the elements corresponding to X take the value a.
- 2. In those chosen rows (must be at least two rows), the elements corresponding to Y also take the value a if one of the chosen rows take the value a on Y.

30

Example 2:

R = (A,B,C,D,E),
F =
$$\{AB \rightarrow CD, A \rightarrow E, C \rightarrow D\}$$
.

Let
$$R_1 = (A, B, C)$$
,
 $R_2 = (B, C, D)$ and
 $R_3 = (C, D, E)$.

$$R_2$$
 b a a a b \leftarrow

Not lossless join

CHEAT SHEET: Algorithm TEST_LJ

- 1. Create a matrix S, each element $s_{i,j} \in S$ corresponds the relation R_i and the attribute A_j , such that: $s_{i,i} = a$ if $A_i \in R_j$, otherwise $s_{i,i} = b$.
- Repeat the following process till S has no change or one row is made up entirely of "a" symbols.
- For each X→ Y , choose the rows where the elements corresponding to X take the value a.
- 2. In those chosen rows (must be at least two rows), the elements corresponding to Y also take the value a if one of the chosen rows take the value a on Y.

Example 3:

R = (A,B,C,D,E,G),
F = {
$$C \rightarrow DE, A \rightarrow B, AB \rightarrow G$$
}.
Let R₁ = (A,B), R₂ = (C,D,E) and
R₃ = (A,C,G).

 R_2 b b a a a b \leftarrow R_3 a b a b b a \leftarrow

CHEAT SHEET: Algorithm TEST LJ

- 1. Create a matrix S, each element $s_{i,j} \in S$ corresponds the relation R_i and the attribute A_j , such that: $s_{j,i} = a$ if $A_i \in R_j$, otherwise $s_{j,i} = b$.
- Repeat the following process till S has no change or one row is made up entirely of "a" symbols.
- For each X→ Y , choose the rows where the elements corresponding to X take the value a.
- 2. In those chosen rows (must be at least two rows), the elements corresponding to Y also take the value a if one of the chosen rows take the value a on Y.

Example 3:

R = (A,B,C,D,E,G),
F = {
$$C \rightarrow DE, A \rightarrow B, AB \rightarrow G$$
}.
Let R₁ = (A,B), R₂ = (C,D,E) and
R₃ = (A,C,G).

CHEAT SHEET: Algorithm TEST_LJ

- 1. Create a matrix S, each element $s_{i,j} \in S$ corresponds the relation R_i and the attribute A_j , such that: $s_{j,i} = a$ if $A_i \in R_j$, otherwise $s_{j,i} = b$.
- Repeat the following process till S has no change or one row is made up entirely of "a" symbols.
 - For each $X \rightarrow Y$, choose the rows where the elements corresponding to X take the value a.
- In those chosen rows (must be at least two rows), the elements corresponding to Y also take the value a if one of the chosen rows take the value a on Y.

Example 3:

R = (A,B,C,D,E,G),
F = {
$$C \rightarrow DE, A \rightarrow B, AB \rightarrow G$$
}.
Let R₁ = (A,B), R₂ = (C,D,E) and
R₃ = (A,C,G).

Lossless join

CHEAT SHEET: Algorithm TEST LJ

- 1. Create a matrix S, each element $s_{i,j} \in S$ corresponds the relation R_i and the attribute A_j , such that: $s_{j,i} = a$ if $A_i \in R_j$, otherwise $s_{j,i} = b$.
- Repeat the following process till S has no change or one row is made up entirely of "a" symbols.
 - For each $X \rightarrow Y$, choose the rows where the elements corresponding to X take the value a.
 - In those chosen rows (must be at least two rows), the elements corresponding to Y also take the value a if one of the chosen rows take the value a on Y.

Checkpoint

Previous:

- 1. The test for lossless join property
- 2. The dependency preservation property

Next:

- The method to decompose to BCNF and 3NF
- 2. Minimal Cover and Equivalence
- 3. The method to decompose to 3NF

Testing for BCNF

Testing of a relation schema R to see if it satisfies BCNF can be simplified in **some** cases (but **not** all cases):

- ➤ To check if a nontrivial dependency α → β causes a violation of BCNF, compute α+ (the attribute closure of α), and verify that it includes all attributes of R; that is, it is a superkey for R.
- ➤ To check if a relation schema R is in BCNF, it suffices to check only the dependencies in the given set F for violation of BCNF, rather than check all dependencies in F +.

Testing for BCNF

NOTE: We cannot use F to test relations R_i (decomposed from R) for violation of

BCNF. It may not suffice.

Consider R(A, B, C, D, E) with $F = \{A \rightarrow B, BC \rightarrow D\}$.

Suppose R is decomposed into R1 = (A, B) and R2 = (A, C, D, E).

Neither of the dependencies in F contains only attributes from R2. So R2 is in BCNF? No, AC -> D is in F+.

Example above : $X \rightarrow Y$ violating BCNF is not always in F. It passing with respect to the projection of F on R_i

Testing Decomposition for BCNF

An alternative BCNF test is sometimes easier than computing every dependency in F+. To check if a relation schema R_i in a decomposition of R is truly in BCNF, we apply this test: For each subset X of R_i , computer X⁺.

- $\rightarrow X \rightarrow (X^+|_{R_i} X)$ violates BCNF, if $X^+|_{R_i} X \neq \emptyset$ and $R_i X^+ \neq \emptyset$.
- ➤ This will show if *R*_i violates BCNF.

Explanation:

- $X^+|_{Ri} X = \emptyset$ means each F.D with X as the left-hand side is trivial;
- $ightharpoonup R_i X^+ = \emptyset$ means X is a superkey of R_i

Lossless Decomposition into BCNF

Algorithm TO_BCNF

- \rightarrow D := { $R_1, R_2, ...R_n$ }
- > While (there exists a R_i ∈ D and R_i is not in BCNF) **Do**
 - 1. find a $X \rightarrow Y$ in R_i that violates BCNF;
 - 2. replace R_i in D by ($R_i Y$) and ($X \cup Y$);

Lossless Decomposition into BCNF

Example:

Find a BCNF decomposition of the relation scheme below:

SHIPPING (Ship , Capacity , Date , Cargo , Value)

F consists of:

Ship → Capacity {Ship , Date} → Cargo {Cargo , Capacity} → Value

We know this relation is not in BCNF

Algorithm TO_BCNF

D :=
$$\{R_1, R_2, ...R_n\}$$

While (there exists a $R_i \in D$ and R_i is not in

BCNF) **Do**

- 1 . find a $X \rightarrow Y$ in R_i that violates BCNF;
- 2. replace R_i in D by ($R_i Y$) and ($X \cup Y$);

Lossless Decomposition into BCNF (V1)

From Ship→ Capacity, we decompose SHIPPING into R_{1A} and R _{2A}

R_{1A}(Ship, Date, Cargo, Value) with Key: {Ship, Date}

A nontrivial FD in F⁺ violates BCNF: {Ship, Cargo} → Value

and

R_{2A}(Ship, Capacity) with Key: {Ship}

Only one nontrivial FD in F^+ : $Ship \rightarrow Capacity$

SHIPPING (Ship , Capacity , Date , Cargo , Value)
F consists of: Ship → Capacity, {Ship , Date}→ Cargo, {Cargo , Capacity}→ Value

Lossless Decomposition into BCNF (V1)

R₁ is not in BCNF so we must decompose it further into R_{11A} and R_{12A}

```
R<sub>11A</sub> (Ship, Date, Cargo) with Key: {Ship, Date}
```

Only one nontrivial FD in F $^+$ with single attribute on the right side: $\{Ship, Date\} \rightarrow Cargo$

and

```
R<sub>12A</sub> (Ship, Cargo, Value) with Key: {Ship, Cargo}
```

Only one nontrivial FD in F⁺ with single attribute on the right side: {Ship,Cargo} → Value

This is in BCNF, and the decomposition is lossless but not dependency preserving (the FD {Capacity, Cargo} \rightarrow Value) has been lost.

```
SHIPPING (Ship , Capacity , Date , Cargo , Value)
F consists of: Ship → Capacity, {Ship , Date}→ Cargo, {Cargo , Capacity}→ Value
```

Lossless Decomposition into BCNF (V2)

Or we could have chosen {Cargo, Capacity} → Value, which would give us:

```
R<sub>1B</sub> (Ship, Capacity, Date, Cargo) with Key: {Ship,Date}
```

A nontrivial FD in F⁺ violates BCNF: Ship → Capacity

and

R_{2B} (Cargo, Capacity, Value) with Key: {Cargo, Capacity}

Only one nontrivial FD in F $^+$ with single attribute on the right side: {Cargo, Capacity} \rightarrow Value

Once again, R_{1B} is not in BCNF so we must decompose it further...

```
SHIPPING (Ship , Capacity , Date , Cargo , Value)

F consists of: Ship → Capacity, {Ship , Date}→ Cargo, {Cargo , Capacity}→ Value
```

Lossless Decomposition into BCNF (V2)

 R_1 is not in BCNF so we must decompose it further into R_{11B} and R_{12B}

```
R<sub>11B</sub> (Ship, Date, Cargo) with Key: {Ship, Date}
```

Only one nontrivial FD in F⁺ with single attribute on the right side: $\{Ship, Date\} \rightarrow Cargo$

and

```
R<sub>12B</sub> (Ship, Capacity) with Key: {Ship}
```

Only one nontrivial FD in F^+ : Ship \rightarrow Capacity

This is in BCNF, and the decomposition is both lossless and dependency preserving.

```
SHIPPING (Ship , Capacity , Date , Cargo , Value)
F consists of: Ship → Capacity {Ship , Date} → Cargo, {Cargo , Capacity} → Value 44
```

Lossless Decomposition into BCNF

With this algorithm from the previous slide...

We get a decomposition *D* of *R* that does the following:

- > May **not** preserves dependencies
- Has the lossless join property
- > Is such that each resulting relation schema in the decomposition is in BCNF

Lossless decomposition into BCNF

Review: Algorithm TO_BCNF

D :=
$$\{R_1, R_2, ...R_n\}$$

While \exists a R_i ∈ D and R_i is not in BCNF **Do**

{ find a X \rightarrow Y in R_i that violates BCNF; replace R_i in D by (R_i - Y) and (X \cup Y); }

Since a $X \rightarrow Y$ violating BCNF is not always in F, the main difficulty is to verify if R_i is in BCNF;

Computing a Minimal Cover (Step 1)

Step 1: Reduce Right: For each FD $X \rightarrow Y \in F$ where Y = $\{A_1, A_2, ..., A_k\}$, we use all $X \rightarrow \{A_i\}$ (for $1 \le i \le k$) to replace $X \rightarrow Y$.

Practice:

R = (A, B, C, D, E, G) F = {A ->BCD, B -> CDE, AC -> E}

At the end of step 1 we have : F' = {A -> B, A -> C, A -> D, B -> C, B -> D, B -> E, AC -> E}

Computing a Minimal Cover (Step 2)

Step 2: Reduce Left: For each $X \to \{A\} \in F$ where $X = \{A_i : 1 \le i \le k\}$, do the following. For i = 1 to k, replace X with $X - \{A_i\}$ if $A \in (X - \{A_i\})^+$.

From Step 1, we had: F' = {A -> B, A -> C, A -> D, B -> C, B -> D, B -> E, AC -> E}

AC -> E

 $C^+ = \{C\}$; thus $C \rightarrow E$ is not inferred by F'.

Hence, AC -> E cannot be replaced by C -> E.

 $A^+ = \{A, B, C, D, E\}$; thus, $A \rightarrow E$ is inferred by F'.

Hence, AC -> E can be replaced by A -> E.

We now have $F'' = \{A -> B, A -> C, A -> D, A -> E, B -> C, B -> D, B -> E\}$

Computing a Minimal Cover (Step 3)

Step 3: Reduce_redundancy: For each FD $X \to \{A\} \in F$, remove it from F if: $A \in X^+$ with respect to $F - \{X \to \{A\}\}$.

From Step 2, we had: F" = {A -> B, A -> C, A -> D, A -> E, B -> C, B -> D, B -> E}

 $A+|_{F''-\{A->B\}} = \{A, C, D, E\}$; thus A-> B is not inferred by $F''-\{A->B\}$.

That is, A -> B is not redundant.

 $A+|_{F''-\{A->C\}} = \{A, B, C, D, E\}$; thus, A->C is redundant.

Thus, we can remove A -> C from F" to obtain F".

We find that we can remove A -> D and A -> E but not the others.

Thus, $F_{min} = \{A -> B, B -> C, B -> D, B -> E\}.$

Algorithm 3NF decomposition

- 1. Find a minimal cover G for F.
- 2. For each left-hand-side X of a functional dependency that appears in G, create a relation schema in D with attributes $\{X \cup \{A_1\} \cup \{A_2\} ... \cup \{A_k\}\}\}$, where $X -> A_1, X -> A_2, ..., X -> A_k$ are the only dependencies in G with X as left-hand-side (X is the key to this relation).
- 3. If none of the relation schemas in *D* contains a key of *R*, then create one more relation schema in *D* that contains attributes that form a key of *R*.
- 4. Eliminate redundant relations from the resulting set of relations in the relational database schema. A relation *R* is considered redundant if *R* is a projection of another relation *S* in the schema; alternately, *R* is subsumed by *S*.

With this algorithm from the previous slide...

We get a decomposition *D* of *R* that does the following:

- > Preserves dependencies
- > Has the nonadditive (lossless) join property
- Is such that each resulting relation schema in the decomposition is in 3NF

Example ONE:

$$R = (A, B, C, D, E, G)$$

$$F_{min} = \{A->B, B->C, B->D, B->E\}.$$

Candidate key: (A, G)

$$R_1 = (A, B), R_2 = (B, C, D, E)$$

$$R_3 = (A, G)$$

Example TWO:

Following from the SHIPPING relation. The functional dependencies already form a canonical cover.

- From Ship→Capacity, derive R₁(Ship, Capacity),
- > From $\{Ship, Date\} \rightarrow Cargo$, derive $R_2(\underline{Ship}, Date)$, Cargo),
- From {Capacity, Cargo} → Value, derive R₃(Capacity, Cargo, Value).
- There are no attributes not yet included and the original key $\{Ship, Date\}$ is included in R_2 .

Example THREE: Apply the algorithm to the LOTS example given earlier.

One possible minimal cover is

```
{ Property_Id→Lot_No,
  Property_Id → Area, {City,Lot_No} → Property_Id,
  Area → Price, Area → City, City → Tax_Rate }.
```

This gives the decomposition:

```
R<sub>1</sub> (<u>Property_Id</u>, Lot_No, Area)
R<sub>2</sub> (<u>City, Lot_No</u>, Property_Id)
R<sub>3</sub> (<u>Area</u>, Price, City)
R<sub>4</sub> (<u>City</u>, Tax_Rate)
```