

Reducing Number of Candidates

 Apriori principle holds due to the following property of the support measure:

$$\forall X, Y : (X \subseteq Y) \Rightarrow s(X) \ge s(Y)$$

- Support of an itemset never exceeds the support of its subsets
- This is known as the anti-monotone property of support

TID	Items
1	Bread, Milk
2	Beer, Bread, Diaper, Eggs
3	Beer, Coke, Diaper, Milk
4	Beer, Bread, Diaper, Milk
5	Bread, Coke, Diaper, Milk

Items (1-itemsets)

Item	Count	
Bread	4	
Coke	2	
Milk	4	
Beer	3	
Diaper	4	
Eggs	1	

Minimum Support = 3

If every subset is considered, ${}^6C_1 + {}^6C_2 + {}^6C_3$ 6 + 15 + 20 = 41With support-based pruning, 6 + 6 + 1 = 13

TID	Items
1	Bread, Milk
2	Beer, Bread, Diaper, Eggs
3	Beer, Coke, Diaper, Milk
4	Beer, Bread, Diaper, Milk
5	Bread, Coke, Diaper, Milk

Items (1-itemsets)

Item	Count
Bread	4
Coke	2
Milk	4
Beer	3
Diaper	4
Eggs	1

Minimum Support = 3

If every subset is considered, ${}^6C_1 + {}^6C_2 + {}^6C_3$ 6 + 15 + 20 = 41With support-based pruning, 6 + 6 + 1 = 13

Item	Count
Bread	4
Coke	2
Milk	4
Beer	3
Diaper	4
Eggs	1

Items (1-itemsets)

Itemset
{Bread,Milk}
{Bread, Beer }
{Bread,Diaper}
{Beer, Milk}
{Diaper, Milk}
{Beer,Diaper}

Pairs (2-itemsets)

(No need to generate candidates involving Coke or Eggs)

Minimum Support = 3

If every subset is considered, ${}^6C_1 + {}^6C_2 + {}^6C_3$ 6 + 15 + 20 = 41With support-based pruning, 6 + 6 + 1 = 13

Item	Count	
Bread	4	
Coke	2	
Milk	4	
Beer	3	
Diaper	4	
Eggs	1	

Items (1-itemsets)

Itemset	Count
{Bread,Milk}	3
{Bread, Beer}	2
{Bread,Diaper}	3
{Beer,Milk}	2
{Diaper,Milk}	3
{Beer,Diaper}	3

Pairs (2-itemsets)

(No need to generate candidates involving Coke or Eggs)

Minimum Support = 3

If every subset is considered, ${}^6C_1 + {}^6C_2 + {}^6C_3$ 6 + 15 + 20 = 41With support-based pruning, 6 + 6 + 1 = 13

Item	Count	
Bread	4	
Coke	2	
Milk	4	
Beer	3	
Diaper	4	
Eggs	1	

Items (1-itemsets)

Itemset	Count
{Bread,Milk}	3
{Bread,Beer}	2
{Bread,Diaper}	3
{Milk,Beer}	2
{Milk,Diaper}	3
{Beer,Diaper}	3

Pairs (2-itemsets)

(No need to generate candidates involving Coke or Eggs)

Minimum Support = 3

Triplets (3-itemsets)

If every subset is considered,		
${}^{6}C_{1} + {}^{6}C_{2} + {}^{6}C_{3}$		
6 + 15 + 20 = 41		
With support-based pruning,		
6 + 6 + 1 = 13		

Itemset	Count
{Bread,Milk,Diaper}	2

Apriori Principle

Figure 6.5. Illustration of frequent itemset generation using the Apriori algorithm.

Apriori Algorithm

- F_k: frequent k-itemsets
- C_k: candidate k-itemsets
- Algorithm
 - Let k=1
 - Generate F₁ = {frequent 1-itemsets}
 - Repeat until F_k is empty
 - ◆ Candidate Generation: Generate C_{k+1} from F_k
 - Candidate Pruning: Prune candidate itemsets in C_{k+1}
 containing subsets of length k that are infrequent
 - ◆ Support Counting: Count the support of each candidate in C_{k+1} by scanning the DB
 - ◆ Candidate Elimination: Eliminate candidates in C_{k+1} that are infrequent, leaving only those that are frequent => F_{k+1}

Apriori Algorithm

Outline of Apriori

(level-wise, candidate generation and test)

- Initially, scan DB once to get frequent 1-itemset
- Repeat
 - ◆Generate length-(k+1) candidate itemsets from length-k frequent itemsets
 - ◆Test the candidates against DB to find frequent (k+1)-itemsets
 - ◆Set k := k +1
- Until no frequent or candidate set can be generated
- Return all the frequent itemsets derived

Candidate Generation

- Requirements for an effective candidate generation procedure
 - Avoid generating too many unnecessary candidate
 - Ensure the candidate set is complete
 - Should not generate the same candidate itemset more than once

Candidate Generation: Brute-force method

Figure 6.6. A brute-force method for generating candidate 3-itemsets.

Candidate Generation: Merge Fk-1 and F1 itemsets

Extend each frequent (k-1)-itemset with other frequent items

Figure 6.7. Generating and pruning candidate k-itemsets by merging a frequent (k-1)-itemset with a frequent item. Note that some of the candidates are unnecessary because their subsets are infrequent.

Candidate Pruning

- A candidate k-itemset $X = \{i_1, i_2, ..., i_k\}$
 - Determine whether all of its proper subsets, $X \{i_j\}$, are frequent.
 - If m of the k subsets were used to generate a candidate, we only need to check the reminding k-m subsets

Candidate Generation: Merge Fk-1 and F1 itemsets

Limitations

- May generate the same candidate more than once
- Still can produce a large number of unnecessary candidates

Candidate Generation: Fk-1 x Fk-1 Method

Merge a pair of frequent (k-1)-itemsets only if their first k-2 items are identical

Figure 6.8. Generating and pruning candidate k-itemsets by merging pairs of frequent (k-1)-itemsets.

Candidate Generation: $F_{k-1} \times F_{k-1}$ Method

 Merge two frequent (k-1)-itemsets if their first (k-2) items are identical

- F₃ = {ABC,ABD,ABE,ACD,BCD,BDE,CDE}
 - Merge($\underline{AB}C$, $\underline{AB}D$) = $\underline{AB}CD$
 - Merge($\underline{AB}C$, $\underline{AB}E$) = $\underline{AB}CE$
 - Merge($\underline{AB}D$, $\underline{AB}E$) = $\underline{AB}DE$
 - Do not merge(<u>ABD</u>,<u>ACD</u>) because they share only prefix of length 1 instead of length 2

Candidate Generation: $F_{k-1} \times F_{k-1}$ Method

- Let F₃ = {ABC,ABD,ABE,ACD,BCD,BDE,CDE} be the set of frequent 3-itemsets
- L₄ = {ABCD,ABCE,ABDE} is the set of candidate
 4-itemsets generated (from previous slide)
- Candidate pruning
 - Prune ABCE because ACE and BCE are infrequent
 - Prune ABDE because ADE is infrequent
- After candidate pruning: L₄ = {ABCD}

Alternate $F_{k-1} \times F_{k-1}$ Method

- Merge two frequent (k-1)-itemsets if the last (k-2) items of the first one is identical to the first (k-2) items of the second.
- $F_3 = \{ABC,ABD,ABE,ACD,BCD,BDE,CDE\}$
 - Merge(ABC, BCD) = ABCD
 - Merge(ABD, BDE) = ABDE
 - Merge(ACD, CDE) = ACDE
 - Merge(BCD, CDE) = BCDE

Candidate Pruning for Alternate $F_{k-1} \times F_{k-1}$ Method

- Let F₃ = {ABC,ABD,ABE,ACD,BCD,BDE,CDE} be the set of frequent 3-itemsets
- L₄ = {ABCD,ABDE,ACDE,BCDE} is the set of candidate 4-itemsets generated (from previous slide)
- Candidate pruning
 - Prune ABDE because ADE is infrequent
 - Prune ACDE because ACE and ADE are infrequent
 - Prune BCDE because BCE
- After candidate pruning: L₄ = {ABCD}

Apriori Algorithm

- F_k: frequent k-itemsets
- C_k: candidate k-itemsets
- Algorithm
 - Let k=1
 - Generate F₁ = {frequent 1-itemsets}
 - Repeat until F_k is empty
 - ◆ Candidate Generation: Generate C_{k+1} from F_k
 - ◆ Candidate Pruning: Prune candidate itemsets in C_{k+1} containing subsets of length k that are infrequent
 - ◆ Support Counting: Count the support of each candidate in C_{k+1} by scanning the DB
 - ◆ Candidate Elimination: Eliminate candidates in C_{k+1} that are infrequent, leaving only those that are frequent => F_{k+1}

Support counting

Apriori Algorithm

```
Algorithm 6.1 Frequent itemset generation of the Apriori algorithm.
 1: k = 1
 2: F_k = \{ i \mid i \in I \land \sigma(\{i\}) \geq N \times minsup \}. {Find all frequent 1-itemsets}
 3: repeat
      k = k + 1.
 5: C_k = \operatorname{apriori-gen}(F_{k-1}). {Generate candidate itemsets}
      for each transaction t \in T do
 6:
      C_t = \text{subset}(C_k, t). {Identify all candidates that belong to t}
 7:
         for each candidate itemset c \in C_t do
 8:
            \sigma(c) = \sigma(c) + 1. {Increment support count}
 9:
         end for
10:
      end for
11:
      F_k = \{ c \mid c \in C_k \land \sigma(c) \ge N \times minsup \}. {Extract the frequent k-itemsets}
12:
13: until F_k = \emptyset
14: Result = \bigcup F_k.
```

Subset Operation

Reducing Number of Comparisons

- Candidate counting:
 - Scan the database of transactions to determine the support of each candidate itemset
 - To reduce the number of comparisons, store the candidates in a hash structure
 - Instead of matching each transaction against every candidate, match it against candidates contained in the hashed buckets

Transactions Hash Structure TID Items 1 Bread, Milk 2 Bread, Diaper, Beer, Eggs 3 Milk, Diaper, Beer, Coke 4 Bread, Milk, Diaper, Beer 5 Bread, Milk, Diaper, Coke Buckets

Generate Hash Tree

Suppose you have 15 candidate itemsets of length 3:

You need:

- Hash function
- Max leaf size: max number of itemsets stored in a leaf node (if number of candidate itemsets exceeds max leaf size, split the node)

Association Rule Discovery: Hash tree

Association Rule Discovery: Hash tree

Association Rule Discovery: Hash tree

Subset Operation

Subset Operation Using Hash Tree

Subset Operation Using Hash Tree

Subset Operation Using Hash Tree

Factors Affecting Complexity

- Choice of minimum support threshold
 - Lowering support threshold results in more frequent itemsets
 - This may increase number of candidates and max length of frequent itemsets

(a) Number of candidate itemsets.

(b) Number of frequent itemsets.

Factors Affecting Complexity

- Dimensionality (number of items) of the data set
 - More space is needed to store support count of each item
 - If number of frequent items also increases, both computation and I/O costs may also increase

- Size of database
 - Since Apriori makes multiple passes, run time of algorithm may increase with a large number of transactions

Factors Affecting Complexity

- Average transaction width
 - Transaction width increases with denser data sets
 - This may increase max length of frequent itemsets and traversals of hash tree (number of subsets in a transaction increases with its width)

(a) Number of candidate itemsets.

Rule Generation

- Given a frequent itemset L, find all non-empty subsets f ⊂ L such that f → L − f satisfies the minimum confidence requirement
 - If {A,B,C,D} is a frequent itemset, candidate rules:

```
ABC \rightarrowD, ABD \rightarrowC, ACD \rightarrowB, BCD \rightarrowA, A \rightarrowBCD, B \rightarrowACD, C \rightarrowABD, D \rightarrowABC AB \rightarrowCD, AC \rightarrow BD, AD \rightarrow BC, BC \rightarrowAD, BD \rightarrowAC, CD \rightarrowAB,
```

• If |L| = k, then there are $2^k - 2$ candidate association rules (ignoring $L \to \emptyset$ and $\emptyset \to L$)

Rule Generation

 In general, confidence does not have an antimonotone property

 $c(ABC \rightarrow D)$ can be larger or smaller than $c(AB \rightarrow D)$

- But confidence of rules generated from the same itemset has an anti-monotone property
 - E.g., Suppose {A,B,C,D} is a frequent 4-itemset:

$$c(ABC \rightarrow D) \ge c(AB \rightarrow CD) \ge c(A \rightarrow BCD)$$

 Confidence is anti-monotone w.r.t. number of items on the RHS of the rule

Rule Generation

• Theorem:

If a rule $X \to Y - X$ does not satisfy the confidence threshold, then any rules $X' \to Y - X'$, where $X' \subset X$, must not satisfy the confidence threshold as well.

Example

$$B_1 = \{m, c, b\}$$
 $B_2 = \{m, p, j\}$
 $B_3 = \{m, c, b, n\}$ $B_4 = \{c, j\}$
 $B_5 = \{m, p, b\}$ $B_6 = \{m, c, b, j\}$
 $B_7 = \{c, b, j\}$ $B_8 = \{b, c\}$

- Support threshold s = 3, confidence c = 0.75
- 1) Frequent itemsets:
 - $\{b,m\} \{b,c\} \{c,m\} \{c,j\} \{m,c,b\}$
- 2) Generate rules:

- b→m:
$$c=4/6$$
 b→c: $c=5/6$ b,c→m: $c=3/5$
- m→b: $c=4/5$... b,m→c: $c=3/4$
- b→c,m: $c=3/6$

Rule Generation for Apriori Algorithm

Compact Representation of Frequent Itemsets

TID	A1	A2	A3	A4	A5	A6	A7	A8	A9	A10	B1	B2	B 3	B4	B 5	B6	B7	B8	B9	B10	C1	C2	C3	C4	C5	C6	C7	C8	C9	C10
1	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
2	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
3	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
4	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
5	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
6	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0
7	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0
8	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0
9	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0
10	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0
11	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1
12	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1
13	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1
14	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1
15	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1

• Number of frequent itemsets
$$= 3 \times \sum_{k=1}^{10} {10 \choose k}$$

- Some itemsets are redundant because they have identical support as their supersets
- Need a compact representation

Compacting the Output

- To reduce the number of rules we can post-process them and only output:
 - Maximal frequent itemsets:
 No immediate superset is frequent
 - Gives more pruning

or

– Closed itemsets:

No immediate superset has the same count (> 0)

Stores not only frequent information, but exact counts

Maximal Frequent Itemset

An itemset is maximal frequent if none of its immediate supersets

Items

	Α	В	С	D	Е	F	G	Н	L	J
1										
2										
3										
4										
5										
6										
7										
8										
9										
10										

Transactions

Support threshold (by count): 5
Frequent itemsets: {F}

Support threshold (by count): 5
Frequent itemsets: {F}

Support threshold (by count): 4 Frequent itemsets: ?

Items

Support threshold (by count): 5
Frequent itemsets: {F}

Support threshold (by count): 4
Frequent itemsets: {E}, {F}, {E,F}, {J}

Transactions

Transactions

Support threshold (by count): 5

Frequent itemsets: {F}
Maximal itemsets: ?

Support threshold (by count): 4

Frequent itemsets:

{E}, {F}, {E,F}, {J}

Maximal itemsets: ?

Support threshold (by count): 3

Frequent itemsets:

All subsets of {C,D,E,F} + {J}

Maximal itemsets: ?

Transactions

Items

Maximal Frequent Itemset

- Maximal frequent itemsets provide a compact representation of frequent itemsets
 - Form the smallest set of itemsets from which all frequent itemsets can be derived

- Do not contain the support information of their subsets
 - Max-pattern is a lossy compression!

Closed Itemset

- An itemset is closed if none of its immediate supersets has the same support as the itemset
- X is not closed if at least one of its immediate supersets has the same support count as X.

TID	Items
1	{A,B}
2	$\{B,C,D\}$
3	$\{A,B,C,D\}$
4	{A,B,D}
5	$\{A,B,C,D\}$

Itemset	Support
{A}	4
{B}	5
{C}	3
{D}	4
{A,B}	4
{A,C}	2
{A,D}	3
{B,C}	3
{B,D}	4
{C,D}	3

Itemset	Support
$\{A,B,C\}$	2
$\{A,B,D\}$	3
$\{A,C,D\}$	2
$\{B,C,D\}$	2
$\{A,B,C,D\}$	2

What are the Closed Itemsets in this Data?

TID	A 1	A2	A3	A4	A5	A6	A7	A8	A9	A10	B1	B2	B 3	B4	B5	B6	B7	B8	B9	B10	C1	C2	C3	C4	C5	C6	C7	C8	C9	C10
1	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
2	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
3	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
4	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
5	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
6	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0
7	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0
8	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0
9	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0
10	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0
11	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1
12	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1
13	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1
14	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1
15	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1

Closed Itemset

Removing redundant association rules

An association rule $X \to Y$ is redundant if there exists another rule $X' \to Y'$, where $X \subset X'$ and $Y \subset Y'$, such that the support and confidence for both rules are identical.

{b,c} is closed, {b}->{d,e} is redundant, as it has the same support and confidence as {b,c}->{d,e}

 Closed pattern is a lossless compression of frequent patterns

Maximal vs Closed Itemsets

Maximal vs Closed Frequent Itemsets

Example: Maximal/Closed

Su	pport	Maximal(s=3)	Closed	Frequent, but superset BC
A	4	No	No	also frequent.
В	5	No	Yes	Frequent, and
C	3	No	No	its only superset, ABC, not freq.
AB	4	Yes	Yes	Superset BC
AC	2	No	No	has same count.
BC	3	Yes	Yes ←	Its only super- – set, ABC, has smaller count.
ABC	2	No	Yes	Silialiei Coulit.

Maximal vs Closed Itemsets

Maximal vs Closed Itemsets

Figure 5.18. Relationships among frequent, closed, closed frequent, and maximal frequent itemsets.

Quiz

 The Apriori algorithm uses a hash tree data structure to efficiently count the support of candidate itemsets. Consider the hash tree for candidate 3-itemsets shown below.

- (a) Given a transaction that contains items {1,3,4,5,8}, which of the hash tree leaf nodes will be visited when finding the candidates of the transaction?
- (b) Use the visited leaf nodes in part (a) to determine the candidate itemsets that are contained in the transaction {1,3,4,5,8}.

Quiz

List (a) all maximal frequent itemsets;

- (b) all closed frequent itemsets;
- (c) frequent but neither maximal nor closed itemsets. (s=0.3)

Transaction ID	Items Bought
1	$\{a,b,d,e\}$
2	$\{b,c,d\}$
3	$\{a,b,d,e\}$
4	$\{a,c,d,e\}$
5	$\{b,c,d,e\}$
6	$\{b,d,e\}$
7	$\{c,d\}$
8	$\{a,b,c\}$
9	$\{a,d,e\}$
10	$\{b,d\}$