Numerical Analysis & Scientific Computing II

Lesson 4

Numerical Solution of PDE

- 4.1 BVP for 2nd Order Elliptic PDE
 - Finite Difference Method
 - More Stability Analysis Fourier Analysis

Stability Analysis using Fourier Analysis

Stability Analysis using Fourier Analysis

First we consider the one dimensional case. With
$$h=1/N$$
, let $I_h=\{h,2h,\dots,(N-1)h\}$ and let $L(I_h)=\{u:\overline{I}_h\to\mathbb{R}:u(0)=0,u(1)=0\}.$

Clearly, $L(I_h)$ is isomorphic to \mathbb{R}^{N-1} .

Stability Analysis using Fourier Analysis

First we consider the one dimensional case. With h=1/N, let $I_h=\{h,2h,\dots,(N-1)h\}$ and let $L(I_h)=\{u\colon\overline{\rm I}_h\to\mathbb{R}:u(0)=0,u(1)=0\}.$

Clearly, $L(I_h)$ is isomorphic to \mathbb{R}^{N-1} . On $L(I_h)$, we define the inner product

$$\langle u, v \rangle_h = h \sum_{k=1} u(kh)v(kh)$$

with the corresponding norm $||v||_h$.

Stability Analysis using Fourier Analysis

First we consider the one dimensional case. With h=1/N, let $I_h=\{h,2h,\dots,(N-1)h\}$ and let $L(I_h)=\{u:\overline{I}_h\to\mathbb{R}:u(0)=0,u(1)=0\}.$

Clearly, $L(I_h)$ is isomorphic to \mathbb{R}^{N-1} . On $L(I_h)$, we define the inner product

$$\langle u, v \rangle_h = h \sum_{k=1} u(kh)v(kh)$$

with the corresponding norm $||v||_h$.

Define $\varphi_m \in L(I_h)$ by $\varphi_m(x) = \sin \pi mx$.

Stability Analysis using Fourier Analysis

First we consider the one dimensional case. With
$$h=1/N$$
, let $I_h=\{h,2h,\dots,(N-1)h\}$ and let $L(I_h)=\{u\colon\overline{\rm I}_h\to\mathbb{R}:u(0)=0,u(1)=0\}.$

Clearly, $L(I_h)$ is isomorphic to \mathbb{R}^{N-1} . On $L(I_h)$, we define the inner product

$$\langle u, v \rangle_h = h \sum_{k=1}^{\infty} u(kh)v(kh)$$

with the corresponding norm $||v||_h$.

Define
$$\varphi_m \in L(I_h)$$
 by $\varphi_m(x) = \sin \pi m x$. Then
$$D_h^2 \varphi_m(x) = \frac{\sin \pi m (x+h) - 2\sin \pi m x + \sin \pi m (x-h)}{h^2}$$

Stability Analysis using Fourier Analysis

First we consider the one dimensional case. With h=1/N, let $I_h=\{h,2h,\dots,(N-1)h\}$ and let $L(I_h)=\{u\colon\overline{\rm I}_h\to\mathbb{R}:u(0)=0,u(1)=0\}.$

Clearly, $L(I_h)$ is isomorphic to \mathbb{R}^{N-1} . On $L(I_h)$, we define the inner product

$$\langle u, v \rangle_h = h \sum_{k=1}^{\infty} u(kh)v(kh)$$

with the corresponding norm $||v||_h$.

Define
$$\varphi_m \in L(I_h)$$
 by $\varphi_m(x) = \sin \pi m x$. Then
$$D_h^2 \varphi_m(x) = \frac{\sin \pi m (x+h) - 2\sin \pi m x + \sin \pi m (x-h)}{h^2} = \frac{2}{h^2} (\cos \pi m h - 1) \sin \pi m x \,.$$

Stability Analysis using Fourier Analysis

First we consider the one dimensional case. With h=1/N, let $I_h=\{h,2h,\dots,(N-1)h\}$ and let $L(I_h)=\{u\colon\overline{\rm I}_h\to\mathbb{R}:u(0)=0,u(1)=0\}.$

Clearly, $L(I_h)$ is isomorphic to \mathbb{R}^{N-1} . On $L(I_h)$, we define the inner product

$$\langle u, v \rangle_h = h \sum_{k=1}^{N-1} u(kh)v(kh)$$

with the corresponding norm $||v||_h$.

Define $\varphi_m \in L(I_h)$ by $\varphi_m(x) = \sin \pi m x$. Then $D_h^2 \varphi_m(x) = \frac{\sin \pi m (x+h) - 2\sin \pi m x + \sin \pi m (x-h)}{h^2} = \frac{2}{h^2} (\cos \pi m h - 1) \sin \pi m x.$

Thus,

$$D_h^2 \varphi_m = -\lambda_m \varphi_m$$
, $\lambda_m = \frac{2}{h^2} (1 - \cos \pi m h) = \frac{4}{h^2} \sin^2 \frac{\pi m h}{2}$.

Stability Analysis using Fourier Analysis

First we consider the one dimensional case. With h=1/N, let $I_h=\{h,2h,\dots,(N-1)h\}$ and let $L(I_h)=\{u\colon\overline{\rm I}_h\to\mathbb{R}:u(0)=0,u(1)=0\}.$

Clearly, $L(I_h)$ is isomorphic to \mathbb{R}^{N-1} . On $L(I_h)$, we define the inner product

$$\langle u, v \rangle_h = h \sum_{k=1}^{N-1} u(kh)v(kh)$$

with the corresponding norm $||v||_h$.

Define $\varphi_m \in L(I_h)$ by $\varphi_m(x) = \sin \pi mx$. Then

$$D_h^2 \varphi_m(x) = \frac{\sin \pi m(x+h) - 2\sin \pi mx + \sin \pi m(x-h)}{h^2} = \frac{2}{h^2} (\cos \pi mh - 1) \sin \pi mx.$$

Thus,

$$D_h^2 \varphi_m = -\lambda_m \varphi_m, \qquad \lambda_m = \frac{2}{h^2} (1 - \cos \pi m h) = \frac{4}{h^2} \sin^2 \frac{\pi m h}{2}.$$

Note that $0 < \lambda_1 < \lambda_2 < \dots < \lambda_{N-1} < 4/h^2$.

Stability Analysis using Fourier Analysis

First we consider the one dimensional case. With h=1/N, let $I_h=\{h,2h,\dots,(N-1)h\}$ and let $L(I_h)=\{u\colon\overline{\rm I}_h\to\mathbb{R}:u(0)=0,u(1)=0\}.$

Clearly, $L(I_h)$ is isomorphic to \mathbb{R}^{N-1} . On $L(I_h)$, we define the inner product

$$\langle u, v \rangle_h = h \sum_{k=1}^{N-1} u(kh)v(kh)$$

with the corresponding norm $||v||_h$.

Define $\varphi_m \in L(I_h)$ by $\varphi_m(x) = \sin \pi m x$. Then

$$D_h^2 \varphi_m(x) = \frac{\sin \pi m(x+h) - 2\sin \pi mx + \sin \pi m(x-h)}{h^2} = \frac{2}{h^2} (\cos \pi mh - 1) \sin \pi mx.$$

Thus,

$$D_h^2 \varphi_m = -\lambda_m \varphi_m, \qquad \lambda_m = \frac{2}{h^2} (1 - \cos \pi m h) = \frac{4}{h^2} \sin^2 \frac{\pi m h}{2}.$$

Stability Analysis using Fourier Analysis

First we consider the one dimensional case. With h=1/N, let $I_h=\{h,2h,\dots,(N-1)h\}$ and let $L(I_h)=\{u\colon\overline{\rm I}_h\to\mathbb{R}:u(0)=0,u(1)=0\}.$

Clearly, $L(I_h)$ is isomorphic to \mathbb{R}^{N-1} . On $L(I_h)$, we define the inner product

$$\langle u, v \rangle_h = h \sum_{k=1} u(kh)v(kh)$$

with the corresponding norm $||v||_h$.

Define $\varphi_m \in L(I_h)$ by $\varphi_m(x) = \sin \pi mx$. Then

$$D_h^2 \varphi_m(x) = \frac{\sin \pi m(x+h) - 2\sin \pi mx + \sin \pi m(x-h)}{h^2} = \frac{2}{h^2} (\cos \pi mh - 1) \sin \pi mx.$$

Thus,

$$D_h^2 \varphi_m = -\lambda_m \varphi_m, \qquad \lambda_m = \frac{2}{h^2} (1 - \cos \pi m h) = \frac{4}{h^2} \sin^2 \frac{\pi m h}{2}.$$

$$\langle \varphi_m, \varphi_n \rangle_h = h \sum_{k=1}^{\infty} \sin \pi m k h \sin \pi n k h$$

Stability Analysis using Fourier Analysis

First we consider the one dimensional case. With h = 1/N, let $I_h = \{h, 2h, ..., (N-1)h\}$ and let $L(I_h) = \{u: \overline{I}_h \to \mathbb{R} : u(0) = 0, u(1) = 0\}.$

Clearly, $L(I_h)$ is isomorphic to \mathbb{R}^{N-1} . On $L(I_h)$, we define the inner product

$$\langle u, v \rangle_h = h \sum_{k=1}^{N-1} u(kh)v(kh)$$

with the corresponding norm $||v||_h$.

Define $\varphi_m \in L(I_h)$ by $\varphi_m(x) = \sin \pi mx$. Then

$$D_h^2 \varphi_m(x) = \frac{\sin \pi m(x+h) - 2\sin \pi mx + \sin \pi m(x-h)}{h^2} = \frac{2}{h^2} (\cos \pi mh - 1) \sin \pi mx.$$

Thus,

$$D_h^2 \varphi_m = -\lambda_m \varphi_m, \qquad \lambda_m = \frac{2}{h^2} (1 - \cos \pi m h) = \frac{4}{h^2} \sin^2 \frac{\pi m h}{2}.$$

Note that
$$0 < \lambda_1 < \lambda_2 < \cdots < \lambda_{N-1} < 4/h^2$$
. Also, $\lambda_1 = 8$ for $N = 2$ and λ_1 increases with N . Moreover, for $m \neq n$, $\langle \varphi_m, \varphi_n \rangle_h = h \sum_{k=1}^{N-1} \sin \pi m k h \sin \pi n k h = \frac{h}{2} \sum_{k=1}^{N-1} \cos \pi (m-n) k h - \frac{h}{2} \sum_{k=1}^{N-1} \cos \pi (m+n) k h$

Akash Anand MATH, IIT KANPUR

Numerical Methods for PDE: 2nd Order Elliptic PDE

Define
$$\varphi_m \in L(I_h)$$
 by $\varphi_m(x) = \sin \pi m x$. Then
$$D_h^2 \varphi_m(x) = \frac{\sin \pi m (x+h) - 2\sin \pi m x + \sin \pi m (x-h)}{h^2} = \frac{2}{h^2} (\cos \pi m h - 1) \sin \pi m x \,.$$

Thus,

$$D_h^2 \varphi_m = -\lambda_m \varphi_m, \qquad \lambda_m = \frac{2}{h^2} (1 - \cos \pi m h) = \frac{4}{h^2} \sin^2 \frac{\pi m h}{2}.$$

$$\langle \varphi_m, \varphi_n \rangle_h = h \sum_{k=1}^{N-1} \sin \pi m k h \sin \pi n k h = \frac{h}{2} \sum_{k=1}^{N-1} \cos \pi (m-n) k h - \frac{h}{2} \sum_{k=1}^{N-1} \cos \pi (m+n) k h$$

Akash AnandMATH, IIT KANPUR

Numerical Methods for PDE: 2nd Order Elliptic PDE

Define
$$\varphi_m \in L(I_h)$$
 by $\varphi_m(x) = \sin \pi m x$. Then
$$D_h^2 \varphi_m(x) = \frac{\sin \pi m (x+h) - 2\sin \pi m x + \sin \pi m (x-h)}{h^2} = \frac{2}{h^2} (\cos \pi m h - 1) \sin \pi m x.$$

Thus,

$$D_h^2 \varphi_m = -\lambda_m \varphi_m, \qquad \lambda_m = \frac{2}{h^2} (1 - \cos \pi m h) = \frac{4}{h^2} \sin^2 \frac{\pi m h}{2}.$$

$$\langle \varphi_m, \varphi_n \rangle_h = h \sum_{k=1}^{N-1} \sin \pi m k h \sin \pi n k h = \frac{h}{2} \sum_{k=1}^{N-1} \cos \pi (m-n) k h - \frac{h}{2} \sum_{k=1}^{N-1} \cos \pi (m+n) k h$$

$$= \frac{h}{2} \sum_{k=0}^{N-1} \cos \pi (m-n)kh - \frac{h}{2} \sum_{k=0}^{N-1} \cos \pi (m+n)kh$$

Define
$$\varphi_m \in L(I_h)$$
 by $\varphi_m(x) = \sin \pi m x$. Then
$$D_h^2 \varphi_m(x) = \frac{\sin \pi m (x+h) - 2\sin \pi m x + \sin \pi m (x-h)}{h^2} = \frac{2}{h^2} (\cos \pi m h - 1) \sin \pi m x \, .$$

Thus,

$$D_h^2 \varphi_m = -\lambda_m \varphi_m, \qquad \lambda_m = \frac{2}{h^2} (1 - \cos \pi m h) = \frac{4}{h^2} \sin^2 \frac{\pi m h}{2}.$$

$$\langle \varphi_m, \varphi_n \rangle_h = h \sum_{k=1}^{N-1} \sin \pi m k h \sin \pi n k h = \frac{h}{2} \sum_{k=1}^{N-1} \cos \pi (m-n) k h - \frac{h}{2} \sum_{k=1}^{N-1} \cos \pi (m+n) k h$$

$$= \frac{h}{2} \sum_{k=0}^{N-1} \cos \pi (m-n)kh - \frac{h}{2} \sum_{k=0}^{N-1} \cos \pi (m+n)kh = \frac{h}{2} \operatorname{Re} \left[\sum_{k=0}^{N-1} e^{i\pi(m-n)kh} - \sum_{k=0}^{N-1} e^{i\pi(m+n)kh} \right]$$

Define
$$\varphi_m \in L(I_h)$$
 by $\varphi_m(x) = \sin \pi m x$. Then
$$D_h^2 \varphi_m(x) = \frac{\sin \pi m (x+h) - 2\sin \pi m x + \sin \pi m (x-h)}{h^2} = \frac{2}{h^2} (\cos \pi m h - 1) \sin \pi m x \,.$$

Thus,

$$D_h^2 \varphi_m = -\lambda_m \varphi_m$$
, $\lambda_m = \frac{2}{h^2} (1 - \cos \pi m h) = \frac{4}{h^2} \sin^2 \frac{\pi m h}{2}$.

$$\langle \varphi_m, \varphi_n \rangle_h = h \sum_{k=1}^{N-1} \sin \pi m k h \sin \pi n k h = \frac{h}{2} \sum_{k=1}^{N-1} \cos \pi (m-n) k h - \frac{h}{2} \sum_{k=1}^{N-1} \cos \pi (m+n) k h$$

$$= \frac{h}{2} \sum_{k=0}^{N-1} \cos \pi (m-n)kh - \frac{h}{2} \sum_{k=0}^{N-1} \cos \pi (m+n)kh = \frac{h}{2} \operatorname{Re} \left[\sum_{k=0}^{N-1} e^{i\pi(m-n)kh} - \sum_{k=0}^{N-1} e^{i\pi(m+n)kh} \right]$$

$$= \frac{h}{2} \operatorname{Re} \left[\frac{e^{i\pi(m-n)Nh} - 1}{e^{i\pi(m-n)h} - 1} - \frac{e^{i\pi(m+n)Nh} - 1}{e^{i\pi(m+n)h} - 1} \right]$$

Define
$$\varphi_m \in L(I_h)$$
 by $\varphi_m(x) = \sin \pi m x$. Then
$$D_h^2 \varphi_m(x) = \frac{\sin \pi m (x+h) - 2\sin \pi m x + \sin \pi m (x-h)}{h^2} = \frac{2}{h^2} (\cos \pi m h - 1) \sin \pi m x \,.$$

Thus,

$$D_h^2 \varphi_m = -\lambda_m \varphi_m$$
, $\lambda_m = \frac{2}{h^2} (1 - \cos \pi m h) = \frac{4}{h^2} \sin^2 \frac{\pi m h}{2}$.

$$\langle \varphi_m, \varphi_n \rangle_h = h \sum_{k=1}^{N-1} \sin \pi m k h \sin \pi n k h = \frac{h}{2} \sum_{k=1}^{N-1} \cos \pi (m-n) k h - \frac{h}{2} \sum_{k=1}^{N-1} \cos \pi (m+n) k h$$

$$= \frac{h}{2} \sum_{k=0}^{N-1} \cos \pi (m-n)kh - \frac{h}{2} \sum_{k=0}^{N-1} \cos \pi (m+n)kh = \frac{h}{2} \operatorname{Re} \left[\sum_{k=0}^{N-1} e^{i\pi(m-n)kh} - \sum_{k=0}^{N-1} e^{i\pi(m+n)kh} \right]$$

$$= \frac{h}{2} \operatorname{Re} \left[\frac{e^{i\pi(m-n)Nh} - 1}{e^{i\pi(m-n)h} - 1} - \frac{e^{i\pi(m+n)Nh} - 1}{e^{i\pi(m+n)h} - 1} \right] = \frac{h}{2} \operatorname{Re} \left[\frac{(-1)^{(m-n)} - 1}{e^{i\pi(m-n)h} - 1} - \frac{(-1)^{(m-n)} - 1}{e^{i\pi(m+n)h} - 1} \right]$$

Define
$$\varphi_m \in L(I_h)$$
 by $\varphi_m(x) = \sin \pi m x$. Then
$$D_h^2 \varphi_m(x) = \frac{\sin \pi m (x+h) - 2\sin \pi m x + \sin \pi m (x-h)}{h^2} = \frac{2}{h^2} (\cos \pi m h - 1) \sin \pi m x \, .$$

Thus,

$$D_h^2 \varphi_m = -\lambda_m \varphi_m, \qquad \lambda_m = \frac{2}{h^2} (1 - \cos \pi m h) = \frac{4}{h^2} \sin^2 \frac{\pi m h}{2}.$$

$$\langle \varphi_m, \varphi_n \rangle_h = h \sum_{k=1}^{N-1} \sin \pi m k h \sin \pi n k h = \frac{h}{2} \sum_{k=1}^{N-1} \cos \pi (m-n) k h - \frac{h}{2} \sum_{k=1}^{N-1} \cos \pi (m+n) k h$$

$$= \frac{h}{2} \sum_{k=0}^{N-1} \cos \pi (m-n)kh - \frac{h}{2} \sum_{k=0}^{N-1} \cos \pi (m+n)kh = \frac{h}{2} \operatorname{Re} \left[\sum_{k=0}^{N-1} e^{i\pi(m-n)kh} - \sum_{k=0}^{N-1} e^{i\pi(m+n)kh} \right]$$

$$= \frac{h}{2} \operatorname{Re} \left[\frac{e^{i\pi(m-n)Nh} - 1}{e^{i\pi(m-n)h} - 1} - \frac{e^{i\pi(m+n)Nh} - 1}{e^{i\pi(m+n)h} - 1} \right] = \frac{h}{2} \operatorname{Re} \left[\frac{(-1)^{(m-n)} - 1}{e^{i\pi(m-n)h} - 1} - \frac{(-1)^{(m-n)} - 1}{e^{i\pi(m+n)h} - 1} \right]$$

$$= \frac{h}{2} \Big((-1)^{(m-n)} - 1 \Big) \left[\frac{\cos \pi (m-n)h - 1}{2 - 2\cos \pi (m-n)h} - \frac{\cos \pi (m+n)h - 1}{2 - 2\cos \pi (m+n)h} \right]$$

Define
$$\varphi_m \in L(I_h)$$
 by $\varphi_m(x) = \sin \pi m x$. Then
$$D_h^2 \varphi_m(x) = \frac{\sin \pi m (x+h) - 2\sin \pi m x + \sin \pi m (x-h)}{h^2} = \frac{2}{h^2} (\cos \pi m h - 1) \sin \pi m x \, .$$

Thus,

$$D_h^2 \varphi_m = -\lambda_m \varphi_m, \qquad \lambda_m = \frac{2}{h^2} (1 - \cos \pi m h) = \frac{4}{h^2} \sin^2 \frac{\pi m h}{2}.$$

$$\langle \varphi_m, \varphi_n \rangle_h = h \sum_{k=1}^{N-1} \sin \pi m k h \sin \pi n k h = \frac{h}{2} \sum_{k=1}^{N-1} \cos \pi (m-n) k h - \frac{h}{2} \sum_{k=1}^{N-1} \cos \pi (m+n) k h$$

$$= \frac{h}{2} \sum_{k=0}^{N-1} \cos \pi (m-n)kh - \frac{h}{2} \sum_{k=0}^{N-1} \cos \pi (m+n)kh = \frac{h}{2} \operatorname{Re} \left[\sum_{k=0}^{N-1} e^{i\pi(m-n)kh} - \sum_{k=0}^{N-1} e^{i\pi(m+n)kh} \right]$$

$$= \frac{h}{2} \operatorname{Re} \left[\frac{e^{i\pi(m-n)Nh} - 1}{e^{i\pi(m-n)h} - 1} - \frac{e^{i\pi(m+n)Nh} - 1}{e^{i\pi(m+n)h} - 1} \right] = \frac{h}{2} \operatorname{Re} \left[\frac{(-1)^{(m-n)} - 1}{e^{i\pi(m-n)h} - 1} - \frac{(-1)^{(m-n)} - 1}{e^{i\pi(m+n)h} - 1} \right]$$

$$= \frac{h}{2} \Big((-1)^{(m-n)} - 1 \Big) \left[\frac{\cos \pi (m-n)h - 1}{2 - 2\cos \pi (m-n)h} - \frac{\cos \pi (m+n)h - 1}{2 - 2\cos \pi (m+n)h} \right] = 0$$

Define
$$\varphi_m \in L(I_h)$$
 by $\varphi_m(x) = \sin \pi m x$. Then
$$D_h^2 \varphi_m(x) = \frac{\sin \pi m (x+h) - 2\sin \pi m x + \sin \pi m (x-h)}{h^2} = \frac{2}{h^2} (\cos \pi m h - 1) \sin \pi m x \, .$$

Thus,

$$D_h^2 \varphi_m = -\lambda_m \varphi_m, \qquad \lambda_m = \frac{2}{h^2} (1 - \cos \pi m h) = \frac{4}{h^2} \sin^2 \frac{\pi m h}{2}.$$

Note that $0 < \lambda_1 < \lambda_2 < \dots < \lambda_{N-1} < 4/h^2$. Also, $\lambda_1 = 8$ for N = 2 and λ_1 increases with N. Moreover, for $m \neq n$,

$$\langle \varphi_m, \varphi_n \rangle_h = 0.$$

Theorem

The functions φ_m , m=1,2,..., N-1 form an orthogonal basis of $L(I_h)$. Consequently, any function $v\in L(I_h)$ can be expanded as $v=\sum_{m=1}^{N-1}a_m\varphi_m$ with

$$a_m = \frac{\langle v, \varphi_m \rangle_h}{\|\varphi_m\|_h^2}, \qquad \|v\|_h^2 = \sum_{m=1}^{N-1} a_m^2 \|\varphi_m\|_h^2.$$

Define
$$\varphi_m \in L(I_h)$$
 by $\varphi_m(x) = \sin \pi m x$. Then
$$D_h^2 \varphi_m(x) = \frac{\sin \pi m (x+h) - 2\sin \pi m x + \sin \pi m (x-h)}{h^2} = \frac{2}{h^2} (\cos \pi m h - 1) \sin \pi m x.$$

Thus,

$$D_h^2 \varphi_m = -\lambda_m \varphi_m, \qquad \lambda_m = \frac{2}{h^2} (1 - \cos \pi m h) = \frac{4}{h^2} \sin^2 \frac{\pi m h}{2}.$$

Note that $0 < \lambda_1 < \lambda_2 < \dots < \lambda_{N-1} < 4/h^2$. Also, $\lambda_1 = 8$ for N = 2 and λ_1 increases with N. Moreover, for $m \neq n$,

$$\langle \varphi_m, \varphi_n \rangle_h = 0.$$

Theorem

The functions φ_m , m=1,2,..., N-1 form an orthogonal basis of $L(I_h)$. Consequently, any function $v\in L(I_h)$ can be expanded as $v=\sum_{m=1}^{N-1}a_m\varphi_m$ with

$$a_m = \frac{\langle v, \varphi_m \rangle_h}{\|\varphi_m\|_h^2}, \qquad \|v\|_h^2 = \sum_{m=1}^{N-1} a_m^2 \|\varphi_m\|_h^2.$$

From this, we obtain the stability result for the one-dimensional Laplacian: if $f=D_h^2v=-\sum_{m=1}^{N-1}\lambda_m a_m \varphi_m$, then

$$||f||_h^2 = \sum_{m=1}^{\infty} \lambda_m^2 a_m^2 ||\varphi_m||_h^2 \ge 8^2 ||v||_h^2$$

Thus, we have the stability estimate

$$||v||_h \le \frac{1}{8} ||f||_h.$$

Thus, we have the stability estimate

$$||v||_h \le \frac{1}{8} ||f||_h.$$

The extension to two-dimensional case is straightforward.

Let
$$L(\Omega_h) = \{u : \overline{\Omega}_h \to \mathbb{R} : u(x) = 0, x \in \Gamma_h\}$$
 so that $L(\Omega_h)$ is isomorphic to \mathbb{R}^M , $M = (N-1)^2$.

Thus, we have the stability estimate

$$||v||_h \le \frac{1}{8} ||f||_h.$$

The extension to two-dimensional case is straightforward.

Let
$$L(\Omega_h) = \{u : \overline{\Omega}_h \to \mathbb{R} : u(x) = 0, x \in \Gamma_h\}$$
 so that $L(\Omega_h)$ is isomorphic to \mathbb{R}^M , $M = (N-1)^2$.

We use the basis

$$\varphi_{mn}(x_1, x_2) = \varphi_m(x_1)\varphi_n(x_2), \qquad m, n = 1, ..., N - 1.$$

Thus, we have the stability estimate

$$||v||_h \le \frac{1}{8} ||f||_h.$$

The extension to two-dimensional case is straightforward.

Let
$$L(\Omega_h) = \{u : \overline{\Omega}_h \to \mathbb{R} : u(x) = 0, x \in \Gamma_h\}$$
 so that $L(\Omega_h)$ is isomorphic to \mathbb{R}^M , $M = (N-1)^2$.

We use the basis

$$\varphi_{mn}(x_1, x_2) = \varphi_m(x_1)\varphi_n(x_2), \qquad m, n = 1, ..., N - 1.$$

It is easy to check (exercise) that these $(N-1)^2$ functions form an orthogonal basis for $L(\Omega_{\rm h})$ equipped with the inner product

$$\langle u, v \rangle_h = h^2 \sum_{m=1}^{N-1} \sum_{n=1}^{N-1} u(mh, nh) v(mh, nh)$$

and the corresponding norm $\|\cdot\|_h$.

Thus, we have the stability estimate

$$||v||_h \le \frac{1}{8} ||f||_h.$$

The extension to two-dimensional case is straightforward.

Let
$$L(\Omega_h) = \{u : \overline{\Omega}_h \to \mathbb{R} : u(x) = 0, x \in \Gamma_h\}$$
 so that $L(\Omega_h)$ is isomorphic to \mathbb{R}^M , $M = (N-1)^2$.

We use the basis

$$\varphi_{mn}(x_1, x_2) = \varphi_m(x_1)\varphi_n(x_2), \qquad m, n = 1, ..., N - 1.$$

It is easy to check (exercise) that these $(N-1)^2$ functions form an orthogonal basis for $L(\Omega_{\rm h})$ equipped with the inner product

$$\langle u, v \rangle_h = h^2 \sum_{m=1}^{N-1} \sum_{n=1}^{N-1} u(mh, nh) v(mh, nh)$$

and the corresponding norm $\|\cdot\|_h$. Moreover, we have

$$\Delta_{\rm h}\varphi_{mn} = -\lambda_{mn}\varphi_{mn}$$

where
$$\lambda_{mn} = \lambda_m + \lambda_n \ge 16$$
.

Thus, we have the stability estimate

$$||v||_h \le \frac{1}{8} ||f||_h.$$

The extension to two-dimensional case is straightforward.

Let
$$L(\Omega_h) = \{u : \overline{\Omega}_h \to \mathbb{R} : u(x) = 0, x \in \Gamma_h\}$$
 so that $L(\Omega_h)$ is isomorphic to \mathbb{R}^M , $M = (N-1)^2$.

We use the basis

$$\varphi_{mn}(x_1, x_2) = \varphi_m(x_1)\varphi_n(x_2), \qquad m, n = 1, ..., N - 1.$$

It is easy to check (exercise) that these $(N-1)^2$ functions form an orthogonal basis for $L(\Omega_{\rm h})$ equipped with the inner product

$$\langle u, v \rangle_h = h^2 \sum_{m=1}^{N-1} \sum_{n=1}^{N-1} u(mh, nh) v(mh, nh)$$

and the corresponding norm $\|\cdot\|_h$. Moreover, we have

$$\Delta_{\rm h}\varphi_{mn}=-\lambda_{mn}\varphi_{mn}$$

where
$$\lambda_{mn} = \lambda_m + \lambda_n \ge 16$$
.

Theorem

We have $||v||_h \le \frac{1}{16} ||f||_h$ as the stability estimate where v solves the discrete problem $\Delta_h v = f$, on Ω_h , v = 0, on Γ_h .