

Multi-task Active Learning in Entity Resolution

	Title	Director	Country	Cast
A1	Battleship Potemkin	Sergei Eisenstein	Soviet Union	Aleksandr Antonov Vladimir Barksy Grigori Aleksandrov
A2	The Hateful Eight	Quentin Tarantino	US	Samuel L. Jackson, Kurt Russell,
A3	Frozen	Adam Green	US	Emma Bell, Shawn Ashmore, Kevin Zegers

Title	Director	Country	Cast
The Battleship Potemkin	S. Eisenstein	USSR	A. Antonov V. Barksy G. Aleksandrov
The <i>H8ful</i> Eight	Q. Tarantino	USA	K. Russell, W. Goggins, S. L. Jackson, J. Jason Leigh

Frozen	C. Buck	USA	K. Bell, I. Menzel, J. Groff

Rogerbert.com

3k records

Imdb.com

3k records

Identificano la stessa entità nel mondo reale (Match)

Non Identificano la stessa entità nel mondo reale (non Match)

Quantificare la somiglianza della coppia

Title	Director	Country	Cast
Battleship Potemkin	Sergei Eisenstein	Soviet Union	Aleksandr Antonov Vladimir Barksy Grigori Aleksandrov

B1

Title	Director	Country	Cast
The Battleship Potemkin	S. Eisenstein	USSR	A. Antonov V. Barksy G. Aleksandrov

A1 e B1 sono match

id1	id2	Js(title)	Lev(title)	 Js(cast)	Lev(cast)	Label
A1	B1	0.82	0.76	 0.57	0.64	1
A1	B2	0.21	0.29	 0.3	0.1	0
А3	ВЗ	1	1		0.29	0

Attraverso i risultati delle similarità il classificatore è capace di fare previsioni

$$\bigcirc$$
 0 = non match

Come identificare se sono match?

Title	Director	Country	Cast
Battleship Potemkin	Sergei Eisenstein	Soviet Union	Aleksandr Antonov Vladimir Barksy Grigori Aleksandrov

	Title	Director	Country	Cast
B2	The <i>H8ful</i> Eight	Q. Tarantino	USA	K. Russell, W. Goggins, S. L. Jackson, J. Jason Leigh

A1 e B2 non sono match

id1	id2	Js(title)	Lev(title)	·	Js(cast)	Lev(cast)	Label
A1	B1	0.82	0.76		0.57	0.64	1
A1	B2	0.21	0.29		0.3	0.1	0
А3	ВЗ	1	1			0.29	0

Attraverso i risultati delle similarità il classificatore è capace di fare previsioni

$$1 = match$$

$$0 = non match$$

Come identificare se sono match?

Title	Director	Country	Cast	-
Frozen	Adam Green	US	Emma Bell, Shawn Ashmore, Kevin Zegers	
				ILOZIN

	Title	Director	Country	Cast	FRO
B3	Frozen	C. Buck	USA	K. Bell, I. Menzel, J. Groff	
					a 60

A3 e B3 non sono match (anche se hanno lo stesso nome)

id1	id2	Js(title)	Lev(title)	 Js(cast)	Lev(cast)	Label
A1	B1	0.82	0.76	 0.57	0.64	1
A1	B2	0.21	0.29	 0.3	0.1	0
А3	В3	1	1		0.29	0

Attraverso i risultati delle similarità il classificatore è capace di fare previsioni

$$\bigcirc$$
 0 = non match

Entity resolution: Scalabilità

Come evitare di comparare coppie molto diverse?

- Troppe coppie da comparare:
 ex: 3000 x 3000 = 9 M (n²)
- Comparazioni approfondite richiedono molte risorse
- Coppie molto diverse non necessitano di comparazioni esaustive

Blocking

Filtrare possibili coppie

- Il blocking utilizza funzioni con meno costo computazionale per attuare come filtro
 - Crea multipli blocchi che rappresentano certe similarità e inserisce i profili in uno o più blocchi
 - Coppie non presenti in almeno un stesso blocco sono scartate
- Utilizzato un modello di Meta-Blocking
 - Si utilizza di Machine Learning per creare blocchi
 - Impiega un classificatore binario

Flusso di Lavoro

Allenamento iniziale

Come massimizare l'utilita delle coppie etichettate

- Etichettare dati è un processo dispendioso
 - L'utente non ha tempo infinito
 - Molte volte ha costi economici
- Quali coppie etichettare per l'allenamento?
 - Scegliere coppie simili per allenare il classificatore porta a risultati migliori
 - Evitare non match ovvi

Active Learning

Quali coppie utilizzare per l'allenamento iniziale?

- Sub campo di Machine Learning
- AL permette al classificatore *scegliere* quali dati vorrebbe fossero utilizzati per il suo allenamento
 - obbiettivo: etichettare coppie più utili all'apprendimento del modello
- Strategia Uncertainty sampling
 - o Identifica i dati dove l'algoritmo ha meno fiducia nella sua previsione
 - Dati di questo tipo permettono al classificatore di imparare piu velocemente

Blocking e Matching : Allenamento

Due classificatori binari per un unico problema di ER

- I dati labellati utilizzati per allenare il blocker possono allenare anche il matcher
 - Possibilità di labellare meno dati
 - Spendere meno risorse

id1	id2	ND		CFIBF	Label
A1	B1	0.65	•••	0.43	1
A1	B2	0.83		0.37	0
А3	ВЗ	0.95			0

id1	id2	Js(title)	Lev(title)	 Js(cast)	Lev(cast)	Label
A1	В1	0.82	0.76	 0.57	0.64	1
A1	B2	0.21	0.29	 0.3	0.1	0
А3	В3	1	1		0.29	0

Blocker Matcher

Blocking e Matching: Allenamento

Quantità di dati etichettati utilizzati da ogni learner

- La quantità totale di dati etichettati utilizzati nel problema è chiamata di **Budget**
 - x% budget = coppie scelte dal AL del blocker
 - (100-x)% budget = coppie scelte dal AL del matcher
- Il blocker è allenato con solo con x% budget
- Il matcher è allenato con tutte le coppie del budget

Blocking e Matching : Allenamento Obbiettivi

- Massimizzare precision e recall
- Identificare trade-offs al variare delle percentuali di budget utilizzate nel blocker e nel matcher
- Comparare il nostro approccio multi task a soluzioni allo stato dell'arte

Dettagli implementativi

Nome	subdataset1	subdataset2	matches	tipo
DblpAcm	2.6k	2.3k	2.2k	Strutturato
ScholarDblp	2.5k	61.3k	2.3k	Strutturato
AbtBuy	1.1k	1.1k	1.1k	Sporco
Amazon Google Prod.	1.4k	3.3k	1.3k	Sporco

- Esperimenti realizzati in 4 dataset distinti
- Algoritmi di similarità diversi a seconda del dataset
- Budget
 - Due budget diversi: 100 e 500
 - budget ratio (%blocking: %matching)
 - Esempi di distribuzione di budget : 10:90, 20: 80...100:0
- Classificatori random forest sia per il matcher che per il blocker
 - Interpretabilità

Risultati: Dataset strutturati

Recall, Precision e f1-score al variare del budget-ratio

10:90

100:0

F1 Maggiore all'aumentare del %matching

Risultati: Dataset sporchi Recall, Precision e f1-score al variare del budget-ratio

10:90

Trade-off tra recall e precision al variare dell'allocazione

100:0

Risultati

Comparazione con soluzioni allo stato dell'arte

- Una configurazione 40:60 di distribuzione del budget funziona bene in tutti i dataset
- In **dataset strutturati** è stato possibile ottenere f-score prossimi alle soluzioni allo stato dell'arte che utilizzano più di 9k coppie etichettate
- In dataset sporchi risultati prossimi alle soluzioni di Magellan che utilizzano più di 6k coppie etichettate

Dataset	Budget ratio	AL-100	AL-500	DeepMatcher	Magellan
abtBuy	40:60	41.3	50.0	62.8	43.6
amazon-google	40:60	44.6	47.4	69.3	49.1
DBLP-ACM	40:60	98.6	99.5	98.4	98.4
DBLP-Scholar	40:60	88.1	91.2	94.7	92.3

Tabella 3.3: F1-score ottenuti con budget ratio 40:60

Considerazioni Finali

- AL può essere facilmente implementato per raggiungere performance prossime a soluzioni allo stato dell'arte
- Un' allocazione del budget 40:60 (blocking:matching) ha dimostrato di funzionare bene con tipi diversi di dataset
- In lavori futuri sarebbe interessante identificare dinamicamente la configurazione dell' allocazione del budget più performante per ogni dataset

Referenze

G. Simonini, H. <u>Saccani</u>, L. Gagliardelli, L. Zecchini, D. Beneventano and S. Bergamaschi: The Case for Multi-task Active Learning Entity Resolution (2021).

In 29th Italian Symposium on Advanced Database Systems.