A Systematic Review on Al-Powered Methods for Assessing Attention and Focus in the Digital Age

Arfatul Islam Asif arfatulislam2001@gmail.com

Ibnul Mansib ibnulmansib@gmail.com

May 17, 2025

Table of Contents

- Introduction
- Methodologies
 - Paper searching
 - Prisma Steps for paper filtering
- Data extraction
- Result analysis
- Discussion
 - Challenges and limitations
 - Future research direction
- Conclusion

Introduction

The idea for this research originated from personal observation:

Our younger selves found it easier to focus and pay attention to learning, understanding, and problem solving.

However, in the digital age, distractions have increased, making it harder to maintain focus.

This inspired us to explore Al-powered methods for determining attention levels effectively.

Methodology: Paper Searching (Condensed Table)

We used broad search categories with targeted keywords to capture relevant papers.

Main Area	Search Keywords (Summary)	Paper Count
1. AI/ML-focused (Generic)	Al attention, machine learning, deep learning, neural networks, transformers	70
2. AI/ML + Human Factors	Cognitive psychology, cognitive load, HCI, education, focus monitoring	32
3. Computer Science + Non-Al Methods	Software tools, sensor-based detection, EEG (non-ML), vision (non-AI)	28
4. Al + Tech Usage (Social Media, Apps)	Social media attention, smartphone distraction, digital well-being, behavioral data	24
5. Tech Usage Only (No AI)	Smartphone impact, screen time, cognitive load, digital distraction	63
6. Education / Learning + AI	E-learning, intelligent tutoring, MOOCs, student engagement prediction	66
7. Healthcare / Mental Health + Al	ADHD detection, attention disorders, neurodivergent focus, cognitive load	63

Methodology: PRISMA Steps for Paper Filtering

PRISMA Log Table

Stage	Criteria	Included/Excluded	Remaining Papers
1. Identification	Records identified using search terms across 7 CSV files from 5 databases	Included	346
2. Deduplication (DOI link)	Removed exact duplicates based on DOI using Python script	Excluded	340
3. Deduplication (Title)	Removed duplicates using normalized titles	Excluded	337
4. Al, ML, DL Relevance Filter	Filtered papers mentioning AI, ML, DL	Excluded	140
5. Attention & Mental Health Filter	Included papers mentioning attention, focus, cognitive load	Excluded	102
6. Al-Driven Method Filter	Included papers with AI method terms (detection, prediction)	Included	84
7. Contextual/Digital Setting Filter	Included papers mentioning digital context (learning, social media)	Included	73
8. Manual Title Screening	Manually excluded irrelevant papers	Excluded	38
9. Abstract Screening	Retained highly relevant papers after abstract review	Included	25
10. PDF Retrieval	Retrieved full text for in-depth review	Included	19

Data Extraction

We extracted key data from the final 19 papers using this table structure:

No. Paper	Title A	I Techniques	Dataset	Evaluation Met-	Accuracy	Key Challenges	Future Directions
				rice	•	, ,	

Data Extraction Example

No.	Paper Title	AI Techniques	Dataset	Metrics	Accuracy	Challenges	Future Directions
1	Student's Attention Monitoring System [1]	YOLO v3, DL, CV	Facial expressions, head pose	Accuracy, At- tention %	High	Virtual learning limits	Multi-modal, real- time analysis
2	Predicting Visual Focus Using ML [2]	LR, SVM, DT, KNN	Survey + eyeball tracking	Accuracy	95-96%	Small sample, bias	Larger diverse sam- ples
3	EEG for Cognitive Load Estimation [3]	SDAE+MLP, LSTM+MLP, SVM	EEG (64-channel)	Accuracy	85.4%	Small dataset, noise	Larger, personalized datasets

Result Analysis: Al Techniques

Question 1: What Al techniques are commonly used for assessing attention and focus in digital environments?

Result Analysis: Al Techniques Table

Al Subfield	Techniques Used	No. of Papers	Paper Numbers
Computer Vision	YOLO v3, Deep Learning, CV	2	[1], [8]
Machine Learning	Logistic Regression, SVM, Decision Tree, KNN, AdaBoost, MLP	7	[2], [3], [7], [9], [10], [12], [13]
Deep Learning	SDAE+MLP, LSTM+MLP, CNN, BiL- STM, DNN	8	[3], [4], [6], [8], [11], [12], [18], [19]
Hybrid Models	Hybrid clustering, 1D CNN	1	[4]
NLP	Whisper API, GPT-4	1	[6]
Feature Extraction	DeepFace, VGG-Face, MediaPipe	1	[6]
Multimodal Fusion	Multiple ML techniques integrated	1	[7]
Reinforcement Learning	None	0	-

Result Analysis: Datasets and Metrics

Question 2: What datasets and evaluation metrics are used?

Datasets:

- EEG datasets (e.g., ADHD-200)
- Eye-tracking datasets (CEW, OULAD)
- Facial expression datasets
- SPECT brain scans

Evaluation Metrics:

- Accuracy, Precision, Recall, F1-score, AUC
- Homogeneity score, Silhouette coefficient

Result Analysis: Effectiveness of Models

Question 3: How effective are ML models at detecting attention shifts?

- Real-time monitoring: YOLOv3/v5 with high accuracy from video
- EEG + cognitive load: SDAE+MLP, LSTM+MLP up to 85.4% accuracy
- ADHD detection: SVM, Random Forest, CNN up to 99.6%
- Facial and eye-tracking models: 85–93% accuracy

Challenges and Limitations

Question 4: What challenges and limitations exist in Artificial Intelligence powered attention assessment?

Key Limitation	No. of Papers	Papers
Small sample size	8	[2], [3], [4], [7], [10], [12], [14], [15]
Data imbalance	3	[9], [11], [13]
Subject variability	1	[3]
Privacy concerns	2	[6], [8]
Overfitting risk	1	[13]
Comorbidities and diagnosis accuracy	2	[5], [15]
Limited feature sets	2	[7], [8]
Lack of ecological validity	1	[16]
No control for confounders	1	[15]

Future Research Directions

Question 4: What are the future research directions for Artificial Intelligence based attention analysis?

Future Research Directions Table

Future Direction Suggested	No. of Papers	Papers
Real-time systems and processing	4	[1], [3], [4], [18]
Multimodal data integration	5	[2], [5], [8], [11], [15]
Larger, more diverse datasets	4	[2], [3], [5], [11]
Personalized models	3	[2], [5], [3]
Improved accuracy and robustness	4	[5], [6], [9], [17]
Use of new tech (VR, AI, XAI)	4	[1], [6], [16], [5]
Integration with education/real-	3	[1], [7], [6]
life tasks		
Addressing privacy concerns	2	[6], [8]

Discussion

Our research highlights:

- The rise of multimodal AI systems for better attention assessment.
- Effectiveness varies by dataset and model type.
- Challenges like privacy, overfitting, and hardware constraints remain.

Conclusion

- Al techniques show great promise in attention assessment and monitoring.
- Multimodal and deep learning approaches improve accuracy and robustness.
- Future work should emphasize generalizability, ethics, and practical deployment.
- Integrating with educational and clinical systems can maximize impact.

Thank You

Questions?