Algoritmos de Classificação

K-Vizinhos mais Próximos

- Todas as instâncias correspondem a pontos em um espaço n-dimensional
- Vizinhança definida por uma função de distância, ou por uma função de similaridade
 - Menor distância = maior similaridade

 Classe de um novo exemplo é definida a partir dos vizinhos mais próximos

Algoritmo k-NN - Exemplo

Espaço de instâncias

- Exemplos da classe negativa
- Exemplos da classe positiva
- Exemplos a ser classificado

 Com k = 3, exemplo xq recebe classe positiva

Algoritmo k-NN usa comumente a *Distância Euclidiana* para definição de vizinhança

$$d(x_i, x_j) = \sqrt{\sum_{r=1}^{n} (a_r(x_i) - a_r(x_j))^2}$$

- Atributos de maior escala numérica podem dominar função de distância
 - Usualmente, os atributos são normalizados para intervalo entre 0 e 1

$$a_{NORM}(x) = \frac{a(x) - \min_{i}(a(x_i))}{\max_{i} a(x_i) - \min_{i}(a(x_i))}$$

- O dilema da escolha do parâmetro k
 - Valores muito baixos podem aumentar a contribuição de exemplos ruidosos

- O *dilema* da escolha do parâmetro k
 - Valores muito altos podem aumentar a contribuição de exemplos pouco similares, e assim, menos relevantes

- O valor do parâmetro k é escolhido comumente através de tentativa-e-erro
 - Avaliação empírica com diferentes valores de k
 - Validação cruzada

Algoritmo k-NN - Discussão

- K-NN é um método lazy
 - I.e., não gera um modelo durante o treinamento
 - Métodos eager, como as árvores de decisão, geram modelos de dados
 - Consequências para o k-NN:
 - Treinamento rápido
 - Resposta lenta durante uso

Algoritmo k-NN - Discussão

- Vantagens
 - É capaz de gerar boas respostas mesmo com poucos exemplos de treinamento
 - Algoritmos, como árvores de decisão, precisam de mais dados para gerar um bom modelo
 - Fácil de implementar

Algoritmo k-NN - Discussão

- Desvantagens
 - É muito sensível a presença de atributos irrelevantes e/ou redundantes
 - Curse of Dimensionality
 - Tempo de resposta em alguns contextos é impraticável
 - Reduzir o número de exemplos de treinamento pode amenizar esse problema
 - Algoritmos baseados em protótipos também podem ajudar

Algoritmo k-NN no WEKA

Algoritmo k-NN no WEKA

Algoritmos de Classificação

Regressão Logística

Regressão Logística

 Retorna a probabilidade de classe dado o conjunto de variáveis dependentes

 Retorna um modelo interpretável onde cada atributo preditor é associado a um peso numérico (importância do atributo)

Regressão Logística

• Exemplo: https://en.wikipedia.org/wiki/Logistic_regression

$$P(Pass \mid Hours) = \frac{1}{1 + \exp(-(-4.07 + 1.50 Hours))}$$

Regressão Logística - Modelo

$$P(Y = 1 | X) = \frac{1}{1 + \exp(-(\beta + \alpha X))}$$

$$P(Y=1 \mid x_1,...,x_p) = \frac{1}{1 + \exp(-(\beta + \alpha_1 x_1 + ... + \alpha_p x_p))}$$

Importância da variável

Regressão Logística - WEKA

Regressão Logística – WEKA - Problemas Multi-Classe

Regressão Logística – WEKA - Problemas Multi-Classe

Algoritmos de Classificação

Naive Bayes

Aprendizagem Bayesiana

- Fornece probabilidades para suas respostas
- Permite combinar facilmente conhecimento a priori com dados de treinamento
- Métodos práticos e bem sucedidos para aprendizagem
 - Aprendizagem Bayesiana Ingênua
 - Aprendizagem de Redes Bayesianas

Teoria da Probabilidade

- Associa às sentenças um grau de crença numérico entre 0 e 1
 - Contudo, cada sentença ou é verdadeira ou é falsa
- Grau de crença (probabilidade):
 - <u>a priori</u> (incondicional): calculado antes do agente receber percepções
 - ♦ Ex. P(cárie= true) = P(cárie) = 0.5
 - <u>condicional</u>: calculado de acordo com as <u>evidências</u> disponíveis (permite a <u>inferência</u>)
 - evidências: percepções que o agente recebeu até agora
 - Ex: P(cárie | dor de dente) = 0.8
 P(cárie | ~dor de dente) = 0.3

Probabilidade Condicional

- Regra do produto:
 - $P(A|B) = \underline{P(A^{\wedge}B)}$, quando P(B) > 0. P(B)
- Regra de Bayes

$$P(A/B) = \frac{P(B/A)P(A)}{P(B)}$$

considerando que
$$P(B|A)$$

= $P(A^B)/P(A)$

Aplicação da Regra de Bayes: Diagnóstico Médico

Seja

M=doença meningite

S= rigidez no pescoço

•Um Doutor sabe:

P(S/M) = 0.5

P(M)=1/50000

P(S)=1/20

$$P(M/S)=P(S/M)P(M)$$

$$P(S)$$

$$=0,5*(1/50000)=0,002$$

$$1/20$$

•A probabilidade de uma pessoa ter meningite dado que ela está com rigidez no pescoço é 0,02% ou ainda 1 em 5000.

Classificador Bayesiano Ingênuo

- Suponha uma função de classificação f: X → V, onde cada instância x é descrita pelos atributos {a₁, ..., a_n}
- O valor mais provável de f(x) é

$$v_{NB} = \underset{v_j \in V}{\operatorname{argmax}} P(v_j) \prod_{i} P(a_i / v_j)$$

Classificador Bayesiano Ingênuo: Exemplo

• Dia	Tempo	Temp.	Humid.	Vento	Jogar
· D1	Sol	Quente	Alta	Fraco	Não
• D2	Sol	Quente	Alta	Forte	Não
• D3	Coberto	Quente	Alta	Fraco	Sim
· D4	Chuva	Normal	Alta	Fraco	Sim
· D5	Chuva	Frio	Normal	Fraco	Não
• D6	Chuva	Frio	Normal	Forte	Não
· D7	Coberto	Frio	Normal	Forte	Sim
• D8	Sol	Normal	Alta	Fraco	Não
· D9	Sol	Frio	Normal	Fraco	Sim
· D10	Chuva	Normal	Normal	Fraco	Sim
• D11	Sol	Frio	Alta	Forte	?

```
P(Sim) = 5/10 = 0.5
P(Não) = 5/10 = 0.5
P(Sol/Sim) = 1/5 = 0.2
P(Sol/Não) = 3/5 = 0.6
P(Frio/Sim) = 2/5 = 0.4
P(Frio/Não) = 2/5 = 0.4
P(Alta/Sim) = 2/5 = 0.4
P(Alta/Não) = 3/5 = 0.6
P(Forte/Sim) = 1/5 = 0.2
P(Forte/Não) = 2/5 = 0.4
P(Sim)P(Sol/Sim) P(Frio/Sim)
P(Alta/Sim) P(Forte/Sim) =
= 0.0032
P(Não)P(Sol/Não)P(Frio/Não)
P(Alta/Não) P(Forte/Não) =
= 0.0288
```

⇒ Jogar_Tenis (D11) = Não

Material de Estudo

- I. Witten, E. Frank, 2000. Data Mining Practical Machine Learning Tools and Techniques with Java Implementations.
- T. Mitchell, 1997. Machine Learning.
- D. Aha, D. Kibler, M. Albert, ,1991. Instance-based learning algorithms. *Machine Learning*, 6:37--66.
- C. Burges, A Tutorial on Support Vector Machines for Pattern Recognition.
- S. Gunn, Support Vector Machines for Classification and Regression.