

PROBLEMÁTICA

CONTEXTO SOCIAL

En la actualidad, cerca a 80% de las aguas residuales sin tratar son usadas para riego agrícola (Latinoamerica)

CONTEXTO ECONÓMICO

El costo promedio de construcción de un humedal de flujo horizontal subsuperficial en Estados Unidos es de US\$ 27 por metro cuadrado, y el costo promedio anual de operación y mantenimiento es de US\$ 0.22 por metro cúbico tratado.

Definición del problema

La necesidad de optmizar la desnitrificación en un humedal de flujo superficial horizontal en un sistema recirculado para así aprovechar las características del humedal y de la configuración de nitrificación preanóxica.

ESTADO DE ARTE

"Es muy importante incorporar metodologías de diseño que aseguran el comportamiento del flujo a esperar y remoción de contaminantes" (Larriva Vásquez & González Díaz, 2017).

LISTA DE REQUERIMIENTOS

Funcionales

- Medir: Concentración de N
- Controlar: Tiempo de tratamiento.

No Funcionales

• Escalar: Adecuarse a grandes cantidades de agua.

ESTRATEGIA DE SOLUCIÓN

Optimización en el tratamiento de aguas residuales con alta concentración de nitrógeno en humedales de flujo superficial

 horizontal mediante un sistema de recirculación favorecido por control de válvulas y así cuidar la estabilidad de los humedales.

MATRIZ MORFOLOGICA

FUNCIÓN	OPCIÓN 1	OPCIÓN 2	OPCIÓN 3
TRANSFORMAR	Red Electrica	Bioenergía	Combustible microbiana
CONTROLAR	Fuente de alimentación regulable 0V-30V.	Controlador de carga tp4056	PH-4502C Interface
ALMACENAR		Bateria de plomo AGM Premium Battery RB12-5 12V 5Ah	Bateria Lipo 102050 3.7v 1000mah
INTERRUMPIR		Módulo relé 5V	
SENSOR		Sensor Ultrasónico	
BOMBEAR	Minibomba de agua	Bomba de agua para Arduino	
PROCESAR	Arduino mega 2560	Arduino Nano	Arduino Esp32

TRACCIÓN I

Optmización de humedales artificiales, con válvulas de control de flujo y sistema recirculado, en la reduccion de concentraciones de nitrogeno.

MODELADO 3D

PROYECTO GANADOR

TABLA DE COMPONENTES

1	Manguera 1	
2	Balde 1	
3	Servomotor	
4	Tubo(adaptador)	
5	Válvula solenoide	The same
6	Manguera 2	
7	Balde 2	
8	Manguera y adaptador	
9	Válvula selenoide	0.00
10	Manguera 2	
11	Balde 3	/ W
12	Potenciómetro	1

La invención consiste en la implementación de un control de válvulas en un sistema de humedal artificial con el objetivo de mejorar la calidad del agua al optimizar los niveles de nitrógeno. El concepto inventivo central radica en regular el flujo de agua y aplicar los procesos de nitrificación y desnitrificación durante la recirculación, lo que conduce a una mayor eficiencia en la eliminación del nitrógeno y, por lo tanto, a una mejora en la calidad del agua tratada.

TRACCIÓN 2

ESQUÉMATICO DEL PROTOTIPO ELECTRÓNICO

LISTADE MATERIALES PARA EL PROYECTO

40 Cables Jumper Dupont M -M (Macho - Macho) de 15 cm

Válvula de Solenoide 1/2" 12V DC, 0.6A, 0.8 MPa, normalmente cerrada(NC)

ESP32-DevKitC V4, antena incorporada en placa, serial CP2102, conector micro USB, WiFi

Módulo TP4056 18650 una celda 3.7V, con chip de proteccion. Corriente de carga 1A maximo. Tensión de Entrada: 4.5V - 5.5V

FUENTE DE ALIMENTACIÓN REGULABLE OV-30V /0A-10A ZIFCONN HY-3010B

Sensor Ultrasónico

Potenciómetro

PRUEBA DE LA VÁLVULA DE SOLENOIDE CON EL RELÉ

```
const int TIEMPO DE LLENADO = 2000;
const int TIEMPO ESPERA = 3000;
void setup()
    pinMode (RELE, OUTPUT); //Define el pin RELE como salida
    digitalWrite(RELE, HIGH); //Relé inicia apagado
void loop()
    digitalWrite (RELE, LOW); //Enciende el relé
   delay(TIEMPO DE LLENADO); //Espera el tiempo de llenado
    digitalWrite(RELE, HIGH); //Apaga el relé
    delay(TIEMPO ESPERA);
```


PRUEBA DEL SENSOR ULTRASÓNICO

```
int echoFin = 10 // Echo
long duration, cm, inches;
 Serial begin (
 pinMode(trigPin, OUTFUT);
 pinMode(echoPin, INPUT);
void loop() {
 digitalWrite(trigPin, 100);
 digitalWrite(trigPin, HIGH);
 digitalWrite(trigPin, 100):
 pinMode(schofin, INFUT);
 duration = pulseIn (schoFin, HIGH);
  Serial print(inches):
  Serial println():
```

TENEMOS QUE MEDIR DESDE EL SENSOR HASTA EL NIVEL DEL AGUA EN QUE SE ENGUENTRA.

AHORA ACERCAMOS EL SENSOR PARA QUE ASÍ NOS DE RESULTADOS.

HAGEMOS MULTIPLES PRUEBAS Para obtener un resultado Gasi fijo ya que puede variar.

3

COMPROBAMOS LOS DATOS OBTENIDOS

4

PROTOTIPADO 1 HETERACIÓN

REFERENCIAS

<u>Larriva Vásquez, J. B., & González Díaz, O. A. (2017). Modelación hidráulica de humedales artificiales de flujo subsuperficial horizontal. Ingeniería Hidráulica y Ambiental</u>

Vista de Uso potencial de las aguas residuales en la agricultura. (s/f). Gob.mx. Recuperado el 6 de julio de 2023, de https://cienciasagricolas.inifap.gob.mx/index.php/agricolas/article/view/2789/3857

El tratamiento de aguas residuales en el Perú aumentó en 11 %, entre el 2016 y el 2020. (s.f.). Sunass - Superintendencia Nacional de Servicios de Saneamiento. https://www.sunass.gob.pe/lima/el-tratamiento-de-aguas-residuales-en-el-peru-aumento-en-11-entre-el-2016-y-el-2020/