| COMP     | 282 - | MIDTERM        | 1 | (Fall, | 2018) |
|----------|-------|----------------|---|--------|-------|
| 0 0 1.11 |       | 1.112 1 2101.1 | _ | (,     |       |

Name:

**Question 1** Provide a short answer to the following questions.

(a) What is the benefit to using a binary tree over other data structures?

(b) Give an example of when you would use a graph?

(c) What is a clique?

(d) What is one quality that all trees exhibit, that graphs, in general, do not?

(e) What is the balance property all AVL Trees seek to maintain?

Question 2 Build a proper AVL Tree given the following inputs. Show all steps. Include – at each step – the balance factor of each node.

3, 2, 1, 4, 5, 6

Question 3 Provide all of the listed traversals for the following binary tree. Be sure to label them.

- Pre-order traversal.
- In-order traversal.
- Breadth-first traversal.



**Question 4** Insert the value 5 into the following *Red-Black Tree*. Denote red nodes with a dashed outline, black nodes with a solid circle, and double-black nodes with a double-solid circle. Show all steps.



## Question 5 Build a proper 2-3-4 Tree from the following input. Show all steps, including rotations.

insert 1,3,4,6
delete 3
insert 2, 7, 8, 9
delete 6

Question 6 Delete the I node from the following *Red-Black Tree*. Denote red nodes with a dashed outline, black nodes with a solid circle, and double-black nodes with a double-solid circle. Show all steps.



Question 7 Given the following adjacency matrix, draw the weighted, undirected graph with  $V = \{v_0, v_1, v_2, v_3, v_4, v_5\}$ .

## NO ILLUSTRATIONS

Question 8 Given the following graph G = (V, E), list the vertices that form a connected component with  $v_3$ .

$$V = \{v_0, v_1, v_2, v_3, v_4, v_5, v_6, v_7, v_8, v_9\}$$
 
$$E = \{\{v_0, v_1\}, \{v_1, v_3\}, \{v_0, v_3\}, \{v_3, v_4\}, \{v_4, v_6\}, \{v_2, v_5\}, \{v_5, v_7\}, \{v_5, v_8\}, \{v_7, v_8\}, \{v_7, v_9\}, \{v_8, v_9\}\}$$

## No Illustrations

Question 9 Use Kruskal's Algorithm to calculate the minimum spanning forest of the following graph G = (V, E, w). Show all steps. List all vertices in a particular spanning tree, and give its final cost.

$$V = \{v_0, v_1, v_2, v_3, v_4, v_5, v_6, v_7, v_8, v_9\}$$

| E          | w   |
|------------|-----|
| $v_1, v_2$ | 1   |
| $v_1, v_4$ | 2.5 |
| $v_2, v_3$ | 1.5 |
| $v_5, v_0$ | 7   |
| $v_0, v_7$ | 0.2 |
| $v_6, v_3$ | 8.4 |
| $v_8, v_9$ | 2.6 |

## No Illustrations

Question 10 Given the graph G = (V, E, w), below, find the shortest path between  $v_2$  and  $v_6$ .

$$V = \{v_0, v_1, v_2, v_3, v_4, v_5, v_6, v_7\}$$

| Е          | w   |  |
|------------|-----|--|
| $v_0, v_1$ | 0.5 |  |
| $v_0, v_3$ | 1.2 |  |
| $v_0, v_4$ | 0.3 |  |
| $v_1, v_2$ | 1.9 |  |
| $v_1, v_3$ | 2.2 |  |
| $v_1, v_5$ | 1.3 |  |
| $v_2, v_3$ | 4.7 |  |
| $v_2, v_7$ | 9.1 |  |
| $v_4, v_6$ | 2.7 |  |
| $v_5, v_6$ | 3.1 |  |
| $v_6, v_7$ | 2.8 |  |