2. Číselné posloupnosti

2.1. Pojem posloupnosti

D: Každé zobrazení **N** do **R** nazýváme *číselná posloupnost*. Zápis: $\{a_n\}_{n=1}^{+\infty}$ nebo jen $\{a_n\}$; a_n se nazývá n-tý člen posloupnosti.

Definici číselné posloupnosti lze založit i na pojmu (reálné) funkce; pak je to funkce definovaná na množině **N** všech přirozených čísel.

Způsoby zadání posloupnosti

Číselná posloupnost bývá zadána *několika prvními členy* (tak, aby bylo patrné pravidlo, jak vytvářet další členy, *n*-tým členem nebo rekurentně.

Úloha 2.1.1. Je dána posloupnost $\frac{1}{1.4}$, $\frac{3}{4.7}$, $\frac{5}{7.10}$, $\frac{7}{10.13}$, ... Určete její *n*-tý člen.

$$a_n = \frac{2n-1}{(3n-2).(3n+1)}$$

Při zadání *n-tým členem* zase naopak lze z příslušného vzorce počítat jednotlivé členy posloupnosti.

Úloha 2.1.2. Příklady číselných posloupností zadaných *n*-tým členem: $\left\{\frac{n}{n+1}\right\}$, $\{(-1)^n \cdot n\}$,

$$\left\{\left(1+\frac{1}{n}\right)^{n}\right\}, \{a\cdot q^{n-1}\}, \{a+(n-1)d\}.$$
 Vypočtěte členy $a_1, a_2, a_3, a_4.$

Rekurentní definice obsahuje zpravidla 1. člen (nebo několik prvních členů) a pravidlo, jak vytvořit další člen ze členů předcházejících.

Rekurentní definice aritmetické posloupnosti: $a_1 = a$, $a_{n+1} = a_n + d$.

Rekurentní definice geometrické posloupnosti: $a_1 = a$, $a_{n+1} = a_n$. $q \notin \{0, 1, -1\}$.

Úlohy:

- **2.1.3.** Posloupnost $\{a_n\}$ je zadána rekurentně takto: $a_1 = 1$, $a_{n+1} = \frac{1}{2} \left(a_n + \frac{10}{a_n} \right)$; je to posloupnost aproximací čísla $\sqrt{10}$. Vypočtěte první 4 aproximace.
- **2.1.4.** Fibonacciova posloupnost $\{b_n\}$ je definována takto: $b_1 = 1$, $b_2 = 1$, $b_{n+2} = b_{n+1} + b_n$. Vypočtěte prvních 10 členů této posloupnosti.

Posloupnost $\{a_n\}$ je třeba odlišovat od množiny (všech) jejích členů (kdy se též užívají složené závorky). Např. množina (všech) členů posloupnosti $\left\{\frac{1}{n}\right\}$ je $\left\{1,\frac{1}{2},\frac{1}{3},...,\frac{1}{n},...\right\}$, množina (hodnot) členů posloupnosti $\left\{(-1)^n\right\}$ je $\left\{-1,1\right\}$.

D: Posloupnost $\{b_n\}$ se nazývá *vybraná* z *posloupnosti* $\{a_n\}$ (nebo též *podposloupnost*) \Leftrightarrow \exists posloupnost přirozených čísel $k_1 < k_2 < k_3 < ...$ tak, že $\forall n \in \mathbf{N}$ je $b_n = a_{k_n}$.

Např. posloupnost všech prvočísel je vybraná z posloupnosti $\{n\}$ všech čísel přirozených, ale není vybraná z posloupnosti $\{2n-1\}$ všech čísel lichých.

2.2. Základní vlastnosti číselných posloupností

V této kapitole se dále zabýváme jen číselnými posloupnostmi.

D: Posloupnost se nazývá (*shora, zdola*) *omezená* \Leftrightarrow tuto vlastnost má množina všech jejích členů.

Např. posloupnost $\{2n-1\}$ je zdola omezená, není omezená shora, není omezená. Posloupnost $\{(-1)^n\}$ je omezená shora i zdola, je omezená. Stacionární posloupnost $\{c\}$ je omezená.

D: Posloupnost a se nazývá

- klesající $\Leftrightarrow \forall n \in \mathbb{N} \text{ platí } a_n > a_{n+1}$,
 nerostoucí $\Leftrightarrow \forall n \in \mathbb{N} \text{ platí } a_n \geq a_{n+1}$ neklesající $\Leftrightarrow \forall n \in \mathbb{N} \text{ platí } a_n \geq a_{n+1}$

Společný název pro všechny tyto druhy posloupností: posloupností monotonní a pro první

D: Operace s posloupnostmi jsou definovány takto:

- násobení reálným číslem c: $c \cdot \{a_n\} = \{c \cdot a_n\};$
- aritmetické operace (součet, rozdíl, součin, podíl): $\{a_n\} + \{b_n\} = \{a_n + b_n\}, \{a_n\} \{b_n\} = \{a_n b_n\}, \{a_n\} \cdot \{b_n\} = \{a_n \cdot b_n\}, \{a_n\}/\{b_n\} = \{a_n / b_n\} \text{ (pro } b_n \neq 0);}$ opačná posloupnost k $\{a_n\}$ je $\{-a_n\}$;
 reciproká posloupnost k $\{a_n\}$ je $\{1/a_n\}$ (pro $a_n \neq 0$).

2.3. Limita posloupnosti

D: Říkáme, že posloupnost $\{a_n\}$ má limitu $a \Leftrightarrow \forall U(a) \exists n_0 \in \mathbb{N}$ tak, že $\forall n \in \mathbb{N}$: $n \geq n_0 \Rightarrow$ $a_n \in U(a)$. Je-li $a \in \mathbb{R}$, nazývá se a vlastní limita a posloupnost $\{a_n\}$ se nazývá konvergentní, pokud $a=\pm\infty$, nazývá se a nevlastní limita. Neexistuje-li vlastní limita, nazývá se posloupnost $\{a_n\}$ divergentní.

Zápisy: $\lim_{n \to \infty} a_n = a$; $\lim_{n \to \infty} a_n = a$;

Posloupnost tedy buď konverguje nebo diverguje. V tomto druhém případě buď diverguje $k + \infty$ nebo $k - \infty$ nebo osciluje (tj. nemá limitu vlastní ani nevlastní).

Např. posloupnost $\left\{\frac{n}{n+1}\right\}$ je konvergentní, má limitu 1, stacionární posloupnost $\{c\}$

je konvergentní a má limitu c, posloupnost $\left\{\frac{n}{100}\right\}$ je divergentní, má nevlastní limitu $+\infty$, posloupnost $\{q^n\}$ je pro $q \le -1$ divergentní, nemá limitu (osciluje).

Je-li V(n) nějaká výroková forma a platí-li, že výrok $(\exists n_0 \in \mathbf{N} \text{ tak, že } \forall n \in \mathbf{N} : n \ge n_0 \Rightarrow V(n)$) je pravdivý, pak říkáme, že V(n) platí **pro skoro všechna n**.

Pomocí tohoto vyjádření lze vyslovit definici limity posloupnosti např. takto: Říkáme, že posloupnost $\{a_n\}$ má limitu $a \Leftrightarrow v$ každém okolí U(a) leží skoro všechny členy této posloupnosti.

Věty o limitách:

V: Každá posloupnost má nejvýše jednu limitu.

 $D\mathring{u}kaz$ (sporem): Kdyby existovaly dvě limity a, b, pak by existovala disjunktní okolí U(a), U(b) tak, že pro skoro všechna n by mělo platit současně $a_n \in U(a)$, $a_n \in U(b)$, což je spor. \square

V: Má-li posloupnost $\{a_n\}$ limitu, pak každá posloupnost $\{b_n\}$ vybraná z posloupnosti $\{a_n\}$ má tutéž limitu.

 $D\mathring{u}kaz$: Označme tuto limitu a; pak $\forall U(a) \exists n_0 \in \mathbf{N}$ tak, že $\forall n \in \mathbf{N} : n \ge n_0 \Rightarrow a_n \in U(a)$; pro $k_n > n_0$ je ovšem též $b_m = a_{k_n} \in U(a)$, takže $b_m \in U(a)$ pro skoro všechna m. \square

Limita posloupnosti se tedy nezmění, vynecháme-li nebo pozměníme-li libovolný konečný počet členů posloupnosti.

Při výpočtu limit využíváme také tohoto postupu: 1) zjistíme, že daná posloupnost je konvergentní a 2) najdeme limitu *a* nějaké vhodné vybrané posloupnosti. Pak toto *a* je i limitou dané posloupnosti. Když naopak zjistíme, že nějaká vybraná posloupnost je divergentní, znamená to podle předchozí věty, že je divergentní i daná posloupnost. Podobně zjistíme-li, že dvě vybrané posloupnosti mají různou limitu, je daná posloupnost divergentní.

V: Každá konvergentní posloupnost je omezená.

 $D\mathring{u}kaz$: Označme limitu a; zvolme $\varepsilon = 1$. Pak množina M těch členů posloupnosti, které neleží v okolí U(a,1), je konečná. $\forall n \in N$ pak platí $a \ge \min\{\min M, a-1\}, a \le \max\{\max M, a+1\}.$

Tato věta ovšem neplatí obráceně, neboť např. posloupnost $\{(-1)^n\}$ je omezená, ale je divergentní. Větší hloubku pohledu do vztahu mezi omezeností a konvergencí dává následující věta.

V (věta Bolzano - Weierstrassova): Z každé omezené posloupnosti lze vybrat konvergentní podposloupnost.

Princip důkazu (Bolzanova metoda půlení intervalů): Je dána posloupnost $\{a_n\}$; ježto je omezená, $\exists \langle K_1, L_1 \rangle$ tak, že $\forall n \in \mathbb{N}$ je $a_n \in \langle K_1, L_1 \rangle$. Konstrukce vybrané posloupnosti: Za b_1 zvolíme libovolný člen dané posloupnosti $\{a_n\}$, nechť v ní má index k_1 . Interval $\langle K_1, L_1 \rangle$ rozpůlíme a označíme $\langle K_2, L_2 \rangle$ tu část, do níž je zobrazeno nekonečně mnoho členů posloupnosti $\{a_n\}$. V $\langle K_2, L_2 \rangle$ vybereme za b_2 libovolný takový člen posloupnosti $\{a_n\}$, který má index $k_2 > k_1$. Interval $\langle K_2, L_2 \rangle$ rozpůlíme, atd. Označíme a (jediný) společný bod všech intervalů $\langle K_n, L_n \rangle$ (podle věty o vložených intervalech). Pak $\forall U(a)$ pro skoro všechna n platí inkluze $\langle K_n, L_n \rangle \subset U(a)$, takže též $b_n \in U(a)$, tedy $b_n \to a$. \square

V: Každá neklesající shora omezená posloupnost je konvergentní.

Princip důkazu: Mějme dánu posloupnost $\{a_n\}$; z omezenosti množiny $M = \{a_1, a_1, ...\}$ plyne existence vlastního suprema $a = \sup M$. Ze druhé vlastnosti suprema plyne, že v libovolném levém okolí U(a-) leží alespoň jedno a_n , takže vzhledem k monotónnosti $\{a_n\}$ leží v U(a-) skoro všechny členy posloupnosti $\{a_n\}$. \square

V (o limitách součtu, rozdílu, součinu a podílu): Nechť lim $a_n = a$, lim $b_n = b$. Pak platí, pokud výrazy na pravých stranách mají v \mathbf{R}^* smysl:

1°
$$\lim (a_n + b_n) = a + b$$
, $\lim (a_n - b_n) = a - b$,

 $2^{\circ} \lim (a_n \cdot b_n) = a \cdot b$,

 3° pro $b_n \neq 0, b \neq 0$ je $\lim (a_n / b_n) = a / b$,

 $4^{\circ} \lim |a_n| = |a|$.

Důkaz - ukázka pro součet, kde a, b jsou vlastní limity:

 $\forall \varepsilon > 0 \ \exists n_1, n_2 \in \mathbb{N} \ \text{tak, \check{z}e: } n \ge n_1 \Rightarrow a_n \in U(a, \varepsilon/2), : n \ge n_2 \Rightarrow b_n \in U(b, \varepsilon/2). \text{ Necht'}$ $n_0 = \max\{n_1, n_2\} \ \text{a} \ n \ge n_0 \text{. Pak}$

 $a - \varepsilon/2 < a_n < a + \varepsilon/2$,

 $b - \varepsilon/2 < b_n < b + \varepsilon/2$ a po sečtení obou nerovností máme

 $(a_n + b_n) \in U(a+b,\varepsilon).$

Úloha 2.3.1. Dokažte větu pro součet, kde *a* je vlastní limita a $b = +\infty$.

V (limita nerovnosti): Nechť lim $a_n = a$, lim $b_n = b$ a pro nekonečně mnoho n platí $a_n \le b_n$. Pak $a \le b$.

 $D\mathring{u}kaz$ sporem: Kdyby bylo a > b, existovala by disjunktní okolí U(a), U(b) tak, že $\forall x \in U(a)$ $\forall y \in U(b)$ by platilo x > y. Pro skoro všechna n je však $a_n \in U(a)$, $b_n \in U(b)$, tedy by platilo $a_n > b_n$, což dává spor s předpokladem věty. \square

Pro konvergentní posloupnosti $\{a_n\}$, $\{b_n\}$ zřejmě platí, že když pro nekonečně mnoho členů je $a_n \le b_n$ a pro nekonečně mnoho členů je $a_n > b_n$, pak a = b.

V (věta o třech limitách): Nechť lim $a_n = a$, lim $b_n = a$ a nechť pro skoro všechna n je $a_n \le c_n \le b_n$. Pak lim $c_n = a$.

Princip důkazu: Podle definice limity patří do libovolného okolí U(a) skoro všechny členy posloupnosti $\{a_n\}$ a také skoro všechny členy posloupnosti $\{b_n\}$. Proto do U(a) patří také skoro všechny členy posloupnosti $\{c_n\}$.

Pro nevlastní limity má věta o třech limitách (zvaná též věta o třech posloupnostech) speciální tvar. Je-li totiž lim $a_n = +\infty$, lze brát za b_n posloupnost $\{+\infty\}$, proto z nerovnosti $a_n \le c_n$ plyne lim $c_n = +\infty$. Podobně lze větu o třech limitách upravit pro nevlastní limitu $-\infty$.

2.4. Nulové posloupnosti

Jsou to posloupnosti, kde lim $a_n = 0$. Nulové posloupnosti fakticky nejsou jen zvláštním případem konvergentních posloupností, ale i naopak, konvergenci bychom mohli definovat užitím nulových posloupností podle věty:

$$V: a_n \to a \iff (a_n - a) \to 0.$$

Uvádíme některé věty, které mají vztah k nulovým posloupnostem.

V: Jestliže $a_n \to a$, pak $|a_n| \to |a|$.

Tato věta neplatí pro $a \neq 0$ naopak, ale pro a = 0 ano.

V: Jestliže $|a_n| \to +\infty$, je $1/a_n$ posloupnost nulová.

Jestliže jmenovatel zlomku konverguje k nule, je situace složitější:

V: Je-li
$$\forall n \in \mathbb{N}$$
 $a_n > 0$, $a_n \to 0$, pak $1/a_n \to +\infty$, $a_n < 0$, $a_n \to 0$, pak $1/a_n \to -\infty$, $a_n \neq 0$, $a_n \to 0$, pak $1/|a_n| \to +\infty$.

Nulových posloupností se s výhodou využívá při výpočtech limit.

Úlohy:

2.4.1. Vypočtěte
$$\lim_{n \to +\infty} \frac{6n^2 + n}{4n^2 + 5}$$
.

2.4.2. Vypočtěte
$$\lim_{n\to+\infty} \frac{6 \cdot 2^{2n} + 5 \cdot 2^n - 4}{2^{2n+1} - 2^n + 15}$$
.

2.4.3. Vypočtěte
$$\lim_{n\to+\infty} \frac{7n+150}{n^2-0.25}$$
.

2.4.4. Vypočtěte
$$\lim_{n\to +\infty} \frac{n^3 - 8n}{9n^2 + 10}$$
.

2.5. Posloupnost aritmetická a posloupnost geometrická

Někdy se pro uspořádané n-tice používá název konečné posloupnosti, který zčásti navozuje použití posloupností v praxi. V praxi je mnoho situací, kdy známe několik prvních členů $a_1, a_2, a_3, ..., a_n$ nějaké posloupnosti a pomocí této znalosti chceme zjistit, zkonstruovat nebo předpovědět její další člen a_{n+1} . Může jít o posloupnost peněžních částek, (časovou) posloupnost údajů o objemu výroby, posloupnost časových termínů nebo intervalů ad. Problémem je, jak určit další člen (nebo alespoň jeho přibližnou hodnotu) ze znalosti předchozích. Může jít o nalezení vzorce pro n-tý člen, rekurentního pravidla nebo i o jiný postup.

Zvláštní pozornosti si zaslouží posloupnost aritmetická a posloupnost geometrická, které se v praxi vyskytují poměrně často..

Aritmetická posloupnost je (definována jako) posloupnost, která je dána svým prvním členem a_1 , konstantní diferencí d a rekurentním pravidlem $\forall n \in \mathbb{N}$: $a_{n+1} = a_n + d$. Aritmetickou posloupnost lze rovněž definovat jako posloupnost, u níž rozdíl libovolných dvou po sobě jdoucích členů je konstantní. Z rekurentního pravidla dostaneme vzorec pro n-tý člen :

$$a_n = a_1 + (n-1).d$$
.

(Dokazuje se jednoduše např. matematickou indukcí). Vidíme, že aritmetická posloupnost má pro d > 0 limitu $+\infty$, pro d < 0 limitu $-\infty$.

Úloha 2.5.1. V posledních třech měsících činil celkový objem zakázek přibližně $a_1 = 325$ tis. Kč, $a_2 = 354$ tis. Kč a $a_3 = 383$ tis. Kč. Jaký objem lze očekávat ve 4. měsíci ?

[Lze vyslovit hypotézu, že objem zakázek tvoří aritmetickou posloupnost, kde $a_1 = 325$, d = 29 (tis. Kč). Pak $a_4 = a_3 + d = 412$ (tis. Kč). Lze očekávat objem zakázek za 412 tis. Kč. (Samozřejmě korektnost vyslovení takové hypotézy závisí na praktických okolnostech.)]

Praktický význam může mít i součet s_n prvních n členů aritmetické posloupnosti. Vzorec pro s_n lze odvodit např. takto: Vyjádříme s_n dvěma způsoby:

$$s_n = a_1 + (a_1 + d) + (a_1 + 2d) + \dots + (a_1 + (n-1)d),$$

 $s_n = a_n + (a_n - d) + (a_n - 2d) + \dots + (a_n - (n-1)d)$

a po sečtení máme $2 s_n = n.(a_1 + a_n)$, takže $s_n = \frac{1}{2n}(a_1 + a_n)$.

Úloha 2.5.2. Na skládce jsou uloženy roury tak, že v dolní vrstvě jich je 26 a každá roura v každé vyšší vrstvě vždy zapadá mezi dvě roury ve vrstvě nižší; vrstev je celkem 12. Kolik je na skládce rour?

[Položíme $a_1 = 26$; pak d = -1. V horní vrstvě je $a_{12} = 26 + 11 \cdot (-1) = 15$ rour a celkem $s_{12} = 6 \cdot (26 + 15) = 246$ rour.]

Geometrická posloupnost je (definována jako) posloupnost, která je dána svým 1. členem a_1 , konstantním kvocientem $q \neq 0$ a rekurentním pravidlem $\forall n \in N: a_{n+1} = a_n \cdot q$. Geometrickou posloupnost lze tedy rovněž definovat jako posloupnost, u níž podíl libovolných dvou po sobě jdoucích členů je konstantní. Z rekurentního pravidla dostaneme vzorec pro n-tý člen:

$$a_n = a_1 \cdot q^{n-1}.$$

(Dokazuje se jednoduše např. matematickou indukcí).

Úloha 2.5.3. V prvním měsíci roku činil obrat 300 tis. Kč a v každém dalším měsíci byl o 5 % větší než v měsíci předchozím. Určete předpokládaný listopadový obrat.

[Jde o geometrickou posloupnost, kde $a_1 = 300$, q = 1,05, n = 11. Pak $a_{11} = 300 \cdot 1,05^{10} \approx 300 \cdot 1,629 = 489$ tis.Kč. Viz poznámku za úlohou 2.5.1.]

Je-li $a_1 > 0$, pak geometrická posloupnost $\{a_1 \cdot q^{n-1}\}$ má limitu 0 (pro |q| < 1) nebo a_1 (pro q = 1) nebo $+\infty$ (pro q > 1) a nebo nemá limitu (pro q < -1).

Praktický význam může mít opět součet prvních n členů geometrické posloupnosti (tj. n-tý částečný součet geometrické řady). Vzorec pro s_n lze odvodit takto: Vyjádříme s_n a $q \cdot s_n$:

$$s_n = a_1 + a_1 \cdot q + a_1 \cdot q^2 + \dots + a_1 \cdot q^{n-1}$$

 $q \cdot s_n = a_1 \cdot q + a_1 \cdot q^2 + \dots + a_1 \cdot q^{n-1} + a_1 \cdot q^n$.

Po odečtení je $s_n \cdot (1-q) = a_1 \cdot (1-q^n)$, takže

$$s_n = a_1 \frac{1-q^n}{1-q}$$
 tj. též $s_n = a_1 \frac{q^n - 1}{q - 1}$.

Úloha 2.5.4. Vynálezce šachové hry požadoval podle pověsti odměnu za každé ze 64 polí šachovnice takto: za 1. pole jedno obilní zrno, za 2. pole 2 zrna, za 3. pole 4 zrna, atd., za každé další vždy dvojnásobek. Kolik zrnek obilí měl dostat?

[Jde o geometrickou posloupnost, kde $a_1 = 1$, q = 2, n = 64. Proto $s_{64} = 1 \cdot \frac{2^{64} - 1}{2 - 1} = 2^{64} - 1 \approx 1,845 \cdot 10^{19}$ a to je více obilí, než se kdy na Zemi urodilo.]

2.6. Některé významné limity

V:
$$\forall a > 0$$
: $\lim_{n \to +\infty} \sqrt[n]{a} = 1$.

Princip důkazu: Pro a > 1 položíme $\sqrt[n]{a} = 1 + u_n$, tedy $u_n > 0$. Podle Bernoulliovy nerovnosti

je $a = (1 + u_n)^n > 1 + n \cdot u_n$, odkud $0 < u_n < \frac{a-1}{n}$ a podle věty o třech limitách je $u_n \to 0$. Pro a < 1 použijeme předchozí výsledek na číslo 1/a, pro a = 1 je výsledek zřejmý. \square

Podobně lze užitím vhodných odhadů odvodit následující limity:

$$\mathbf{V:} \lim_{n \to +\infty} \sqrt[n]{n} = 1.$$

V: $\lim_{n\to +\infty} \sqrt[n]{n} = 1$. V: $\forall a > 1, \ \forall k > 0$: $\lim_{n\to +\infty} \frac{a^n}{n^k} = +\infty$. (Říkáme, že exponenciála a^n roste k $+\infty$ rychleji než mocnina n^k .)

Úloha 2.6.1. Dokažte, že
$$\forall a > 1$$
: $\lim_{n \to +\infty} \frac{\log_a n}{n} = 0$.

[Pro $\forall \varepsilon > 0\,$ je $\,a^{\varepsilon} > 1\,$, takže pro skoro všechna n platí $\,1 < \sqrt[n]{n}\, < a^{\varepsilon}\,$, odkud po zlogaritmování nerovnosti při základu a plyne uvedené tvrzení.]

Úloha 2.6.2. Vypočtěte
$$\lim_{n\to+\infty} \frac{q^n}{n!}$$
, kde $q>0$.

[Pro $q \le 1$ je tato limite rovna 0. Pro $q \ge 1$ má čitatel i jmenovatel limitu $+\infty$, takže nelze použít větu o limitě podílu. Uvedený výraz označme a_n ; pak

$$(*) \quad a_{n+1} = \frac{q}{n+1} a_n,$$

proto pro skoro všechna n je posloupnost $\{a_n\}$ klesající a zdola omezená (nulou), takže má limitu; označme ji a. Přejdeme-li v rovnosti (*) k limitě, máme a = 0. Ríkáme, že faktoriál roste k + ∞ rychleji než exponenciála q^n .]

Úloha 2.6.3. Ukažte, že každé iracionální číslo je limitou neklesající posloupnosti racionálních čísel; najděte tyto posloupnosti pro $r = \pi$, $s = \sqrt{2}$.

[Lze uvažovat např. posloupnost dolních desetinných aproximací.]

Poznámka. Kromě číselných posloupností pracujeme v matematické analýze i s dalšími typy posloupností; uvažují se třeba posloupnosti množin (např. intervalů), posloupnosti funkcí, ad. Definice těchto posloupností vytvoříme podle stejného schématu. Např. posloupnost funkcí definujeme jako zobrazení množiny N do množiny všech funkcí. Pracujeme-li s jinými posloupnostmi než s posloupnostmi číselnými, je třeba dbát na korektnost definice posloupnosti, případně její limity.

2.7. Číslo e

Funkce $y = e^x$ a funkce $y = \ln x$ (= $\log_e x$) patří k nejdůležitějším funkcím v matematické analýze; v obou případech je základem Eulerovo číslo e..

Číslo e je definováno jako limita posloupnosti
$$\left\{ \left(1 + \frac{1}{n}\right)^n \right\}$$
. Abychom tuto definici

mohli považovat za korektní, je třeba dokázat, že uvedená posloupnost je konvergentní; její členy označujme dále a_n . Důkaz existence limity posloupnosti $\{a_n\}$ lze provést ve dvou krocích: 1. dokážeme, že tato posloupnost je rostoucí, 2. dokážeme, že je shora omezená. Existence konečné limity pak plyne z věty o limitě monotónní posloupnosti.

ad 1) Podle binomické věty je

$$a_n = \left(1 + \frac{1}{n}\right)^n = 1 + \binom{n}{1} \frac{1}{n} + \binom{n}{2} \frac{1}{n^2} + \dots + \binom{n}{k} \frac{1}{n^k} + \dots + \binom{n}{n} \frac{1}{n^n}$$

První dva členy součtu na pravé straně jsou rovny 1, pro každý další člen provedeme úpravu

$$\binom{n}{k} \frac{1}{n^k} = \frac{n(n-1)...(n-k+1)}{n^k} \frac{1}{k!} = \left(1 - \frac{1}{n}\right) \left(1 - \frac{2}{n}\right)...\left(1 - \frac{k-1}{n}\right) \frac{1}{k!}.$$

Pro posloupnost $\{a_n\}$ tak platí, že každý její člen a_n je součtem n+1 kladných výrazů, v nichž jsou činitelé tvaru $\left(1-\frac{j}{n}\right)$. Jestliže nyní přejdeme od n k n+1, je a_{n+1} součtem n+2 výrazů s činiteli tvaru $\left(1-\frac{j}{n+1}\right)$. Jelikož $\left(1-\frac{j}{n+1}\right) > \left(1-\frac{j}{n}\right)$ a navíc v a_{n+1} je o jeden kladný sčítanec víc, je $a_{n+1} > a_n$, posloupnost $\{a_n\}$ je rostoucí.

ad 2) Ve výrazu pro a_n nahradíme všechny "závorky" $\left(1 - \frac{j}{n+1}\right)$ číslem 1, takže platí $a_n < b_n = 1 + 1 + \frac{1}{2!} + \frac{1}{3!} + ... + \frac{1}{n!} < 1 + 1 + \frac{1}{2} + \frac{1}{2^2} + ... + \frac{1}{2^{n-1}} < 3.$

 $Z\acute{a}v\check{e}r$: Podle věty o limitě monotónní posloupnosti existuje limita posloupnosti $\{a_n\}$; nazýváme ji Eulerovo číslo a označujeme ji \mathbf{e} ; z předchozího plyne, že $2 < \mathbf{e} < 3$.

Výpočet čísla e

Hodnotu čísla e lze vcelku snadno určit jako součet číselné řady. Vidíme, že pro konstantní k < n platí

$$a_n > 2 + \left(1 - \frac{1}{n}\right) \frac{1}{2!} + \dots + \left(1 - \frac{1}{n}\right) \left(1 - \frac{2}{n}\right) \dots \left(1 - \frac{k-1}{n}\right) \frac{1}{k!}$$

Odsud pro $n \to +\infty$ máme $e \ge b_k$, takže platí $a_n < b_n \le e$; podle věty o třech limitách pak je $\lim_{n \to +\infty} b_n = e$. Přitom b_n je podle své definice tzv. n-tým částečným součtem řady takže

$$e = \lim_{n \to +\infty} \left(1 + \frac{1}{n}\right)^n = 1 + \frac{1}{1!} + \frac{1}{2!} + \dots + \frac{1}{n!} + \dots = 2,71828 \ 18284 \ 590\dots$$

Tato řada "dosti rychle" konverguje a má jednoduchý algoritmus výpočtu členů, takže výpočet hodnoty čísla e na zadaný počet desetinných míst lze provést vcelku rychle.

_ * _