Problem Set #4

MACS 40000, Dr. Evans

Due Thursday, Oct. 27 at 10:30am

1. Fitting elliptical disutility of labor to CFE function (2 points). Assume that an individual's time endowment each period is one $\tilde{l} = 1$. Let the period utility of a household be an additively separable function of consumption and leisure,

$$U(c,l) = u(c) + v(l)$$

where the utility of leisure function v(l) is the constant Frisch elasticity (CFE) disutility of labor functional form.

$$v_{cfe}(l) = -\frac{(1-l)^{1+\frac{1}{\theta}}}{1+\frac{1}{\theta}} = -\frac{(n)^{1+\frac{1}{\theta}}}{1+\frac{1}{\theta}}$$

Assume that an approximation to this disutility of labor function is the following elliptical disutility of labor function.

$$v_{elp}(l) = b \left[1 - (1 - l)^{\mu} \right]^{\frac{1}{\mu}} = b \left[1 - (n)^{\mu} \right]^{\frac{1}{\mu}}$$
 for $\tilde{l}, b, \mu > 0$

- (a) The marginal utility of leisure $\frac{\partial v(l)}{\partial l}$ governs the household decision of how much to work. Give the expression for the marginal utility of leisure for the CFE specification $v_{cfe}(l)$ and for the elliptical specification $v_{elp}(l)$.
- (b) Assume that the Frisch elasticity of labor supply in v_{cfe} is $\theta=0.8$. Using 1,000 evenly spaced points from the support of leisure between 0.05 and 0.95, estimate the elliptical disutility of labor parameters b and μ that minimize the sum of squared deviations between the two marginal utility of leisure functions $v'_{cfe}(l)$ and $v'_{elp}(l)$ from part (i). Plot the two marginal utility of leisure functions.
- 2. Checking feasibility in the steady-state (2 points). Using the calibration of the S-period-lived agent model described in Section 7.7 of Chapter 7 setting S = 10, write a Python function named feasible() that has the following form,

where the inputs are a tuple f_params = (\tilde{l} , A, alpha, delta), and a guess for the steady-state labor supply vector bvec_guess = np.array([n_1 , n_2 ,... n_S]) and savings vector bvec_guess = np.array([b_2 , b_3 ,... b_S]). The outputs should be Boolean (True or False, 1 or 0) vectors of lengths S and 1, respectively. K_cnstr should be a singleton Boolean that equals True if $K \leq 0$ for

the given f_params, nvec_guess, and bvec_guess. The object c_cnstr should be a length-S Boolean vector in which the sth element equals True if $c_s \leq 0$ given f_params, nvec_guess, and bvec_guess. The objects n_low and n_high are length-S Boolean vectors in which the sth element equals True if $n_s \leq 0$ for n_low or if $n_s \geq \tilde{l}$ for n_high.

- (a) Which, if any, of the constraints is violated if you choose an initial guess for steady-state savings of nvec_guess = 0.95 * np.ones(S) and bvec_guess = np.ones(S-1)?
- (b) Which, if any, of the constraints is violated if you choose an initial guess for steady-state savings of nvec_guess = 0.95 * np.ones(S) and bvec_guess = np.append([0.0], np.ones(S-2)?
- (c) Which, if any, of the constraints is violated if you choose an initial guess for steady-state savings of nvec_guess = 0.95 * np.ones(S) and bvec_guess = np.append([0.5], np.ones(S-2)?
- (d) Which, if any, of the constraints is violated if you choose the following initial guess for steady-state labor supply and savings?

- (e) What is a principle or a rule that might help you in this problem to choose a good initial guess? That is, what properties should a feasible initial guess have? [Hint: What values of n_s and b_{s+1} will likely keep the consumption constraints satisfied $c_s > 0$ for all periods.]
- 3. Solve for the steady-state equilibrium (4 points). Use the calibration from Section 7.7 and the steady-state equilibrium Definition 7.1. Write a function named get_SS() that has the following form,

```
ss_output = get_SS(params, nvec_guess, bvec_guess, SS_graphs)
```

where the inputs are a tuple of the parameters for the model params = (beta, sigma, l_tilde, chi_n_vec, b_ellip, upsilon, A, alpha, delta, SS_tol, EulDiff), an initial guess of the steady-state labor supply nvec_guess and savings bvec_guess, and a Boolean SS_graphs that generates a figure of the steady-state distribution of consumption and savings and a figure of the distribution of labor supply if it is set to True.

The output object ss_output is a Python dictionary with the steady-state solution values for the following endogenous objects.

```
ss_output = {
'n_ss': n_ss, 'b_ss': b_ss, 'c_ss': c_ss, 'w_ss': w_ss,
'r_ss': r_ss, 'K_ss': K_ss, 'L_ss': L_ss, 'Y_ss': Y_ss,
```

```
'C_ss': C_ss, 'n_err_ss': n_err_ss, 'b_err_ss': b_err_ss, 'RCerr_ss': RCerr_ss, 'ss_time': ss_time}
```

Let ss_time be the number of seconds it takes to run your steady-state program. You can time your program by importing the time library. And let the objects n_err_ss and b_err_ss be the respective steady-state vectors of Euler errors for the labor supply and savings decisions given in ratio form $\frac{\beta(1+\bar{r})u_1(\bar{c}_{s+1},\bar{n}_{s+1})}{u_1(\bar{c}_s,\bar{n}_s)}-1$ or difference form $\beta(1+\bar{r})u_1(\bar{c}_{s+1},\bar{n}_{s+1})-u_1(\bar{c}_s,\bar{n}_s).$ The object RCerr_ss is a resource constraint error which should be close to zero. It is given by $\bar{Y}-\bar{C}-\delta\bar{K}$.

- (a) Solve numerically for the steady-state equilibrium values of $\{\bar{n}_s\}_{s=1}^S$, $\{\bar{c}_s\}_{s=1}^S$, $\{\bar{b}_s\}_{s=2}^S$, \bar{w} , \bar{r} , \bar{K} , \bar{L} , \bar{Y} , \bar{C} , the 2S-1 Euler errors and the resource constraint error. List those values. Time your function. How long did it take to compute the steady-state?
- (b) Generate a figure that shows the steady-state distribution of consumption and savings by age $\{\bar{c}_s\}_{s=1}^S$ and $\{\bar{b}_s\}_{s=2}^S$. Generate another figure that shows the steady-state distribution of labor supply by age $\{\bar{n}_s\}_{s=1}^S$.
- (c) What happens to the steady-state distributions of labor supply $\{\bar{n}_s\}_{s=1}^S$ and wealth $\{\bar{b}_s\}_{s=2}^S$ and the wage \bar{w} and interest rate \bar{r} if labor becomes more valuable in the production function as evidenced by a decrease in α to $\alpha = 0.25$?
- 4. Solve for the non-steady-state equilibrium time path (4 points). Use time path iteration (TPI) to solve for the non-steady state equilibrium transition path of the economy. Let the initial state of the economy be given by the following distribution of savings,

$$\{b_{s,1}\}_{s=2}^{S} = \{x(s)\bar{b}_s\}_{s=2}^{S} \text{ where } x(s) = \frac{(1.5 - 0.87)}{78}(s - 2) + 0.87$$

where the function of age x(s) is simply a linear function of age s that equals 0.87 for s=2 and equals 1.5 for s=S=10. This gives an initial distribution where there is more inequality than in the steady state. The young have less than their steady-state values and the old have more than their steady-state values. You'll have to choose a guess for T and a time path updating parameter $\xi \in (0,1)$, but I can assure you that T<50. Use an L^2 norm for your distance measure (sum of squared percent deviations), and use a convergence parameter of $\varepsilon=10^{-9}$. Use a linear initial guess for the time path of the aggregate capital stock from the initial state K_1^1 to the steady state K_T^1 at time T.

- (a) Plot the equilibrium time paths of the aggregate capital stock $\{K_t\}_{t=1}^{T+5}$, wage $\{w_t\}_{t=1}^{T+5}$, and interest rate $\{r_t\}_{t=1}^{T+5}$.
- (b) Also plot the equilibrium time path for labor supply $\{n_{3,t}\}$ and savings $\{b_{3,t}\}$ of every person age s=3 in every period.