词法分析作业

丁元杰 17231164 2019 年 9 月 24 日

11.1

(1)

设A的正则集合是L,则A|A的正则集合是 $L \cup L = L$,所以

$$A|A = A$$

(2)

设A的正则集合为L,则A*的正则集合是

$$L^* = \bigcup_{i \ge 0} L^i$$

那么(A*)*的正则集合就是

$$(L^*)^* = \bigcup_{j \ge 0} \left(\bigcup_{i \ge 0} L^i\right)^j$$

$$= \bigcup_{j \ge 0} \bigcup_{i_0, i_1, \dots, i_j \ge 0} L^{i_0 + i_1 + \dots + i_j}$$

$$= \bigcup_{j \ge 0} L^*$$

$$= L^*$$

从而有

$$(A^*)^* = A^*$$

(3)

设A的正则集合为L,则A*的正则集合是

$$L^* = \bigcup_{i \ge 0} L^i$$

那么 $\varepsilon | AA^*$ 的正则集合就是

$$\begin{split} L' &= \{\varepsilon\} \cup L \times \bigcup_{i \geq 0} L^i \\ &= \{\varepsilon\} \cup \bigcup_{i \geq 1} L^i \\ &= L^0 \cup \bigcup_{i \geq 1} L^i \\ &= \bigcup_{i \geq 0} L^i = L^* \end{split}$$

从而有

$$A* = \varepsilon |AA^*$$

(4)

设A的正则集合为 L_a ,B的正则集合为 L_b ,则 $(AB)^*A$ 的正则集合为

$$L_1 = \bigcup_{i>0} \left(L_a L_b \right)^i \times L_a$$

同理, (AB)*A的正则集合为

$$L_2 = L_a \times \bigcup_{i>0} (L_b L_a)^i$$

那么

$$L_1 = \left(\bigcup_{i \ge 0} (L_a L_b)^i\right) \times L_a$$

$$= \bigcup_{i \ge 0} \left((L_a L_b)^i \times L_a\right)$$

$$= \bigcup_{i \ge 0} L_a \times (L_b L_a)^i$$

$$= L_a \times \bigcup_{i \ge 0} (L_b L_a)^i$$

$$= L_2$$

从而有

$$(AB)^*A = (AB)^*A$$

(5)

设A的正则集合为 L_a , B的正则集合为 L_b , 则(A|B)*的正则集合为

$$L_1 = \bigcup_{i>0} \left(L_a \cup L_b \right)^i$$

同理,(A*B*)*的正则集合为

$$L_2 = \bigcup_{i>0} \left(\bigcup_{j>0} L_a^j \times \bigcup_{j>0} L_b^j \right)^i$$

 $(A^*|B^*)^*$ 的正则集合为

$$L_3 = \bigcup_{i \ge 0} \left(\bigcup_{j \ge 0} L_a^j \cup \bigcup_{j \ge 0} L_b^j \right)^i$$

那么,先证 $L_1 \subseteq L_3$

$$\Rightarrow L_a \subseteq L_a^* \text{ and } L_b \subseteq L_b^*$$

$$\Rightarrow L_a \cup L_b \subseteq L_a^* \cup L_b^*$$

$$\Rightarrow \bigcup_{i \ge 0} (L_a \cup L_b)^i \subseteq \bigcup_{i \ge 0} \left(\bigcup_{j \ge 0} L_a^j \cup \bigcup_{j \ge 0} L_b^j \right)^i$$

$$\Rightarrow L_1 \subseteq L_3$$

再证 $L_3 \subseteq L_2$

$$\begin{split} &\Rightarrow \{\varepsilon\} \subseteq L_a^*, L_b^* \\ &\Rightarrow L_a^*, L_b^* \subseteq L_a^* \times L_b^* \\ &\Rightarrow L_a^* \cup L_b^* \subseteq L_a^* \times L_b^* \\ &\Rightarrow \bigcup_{i \geq 0} \left(L_a^* \cup L_b^* \right)^i \subseteq \bigcup_{i \geq 0} \left(L_a^* \times L_b^* \right)^i \\ &\Rightarrow L_3 \subseteq L_2 \end{split}$$

最后证 $L_2 \subseteq L_1$

$$\forall S \in L_2, \exists n_0 \geq 0, \text{ s.t. } S \in (L_a^* \times L_b^*)_0^n$$

那么可以将S写成如下形式:

$$S = a_1 b_1 a_2 b_2 \dots a_{n_0} b_{n_0}$$
, where $a_i \in L_a^*$, and $b_i \in L_b^*, i = 1, 2, \dots, n_0$

由于单位正则表达式 $\varepsilon \in L_a^*, L_b^*$,满足 $\varepsilon A = A\varepsilon = A$,所以将 a_i 与 b_i 中的 ε 选出,即可得到

$$S = c_1 c_2 \dots c_l$$
, where $l \leq 2n_0$, and $c_i \in L_a^+$ or $L_b^+, i = 1, 2, \dots, l$

更进一步地, L_a^+ 中的任意一个元素 s_a 均可以表示为 $d_1d_2\dots d_k$,其中 $d_i\in L_a, i=1,2,\dots,k$,对 L_b^+ 同理 所以原式最终可化为

$$S = d_1^{(c_1)} d_2^{(c_1)} \dots d_{k_{c_1}}^{(c_1)} \dots d_l^{(c_l)} \dots d_{k_{c_l}}^{(c_l)}, \text{ where } d_i^{(c_j)} \in L_a \text{ or } L_b$$
i.e. $d_i^{(c_j)} \in L_a \cup L_b$

也即

$$S \in (L_a \cup L_b)^*$$

所以有

$$L_2 \subseteq L_1$$

综上所述

$$L_1 \subseteq L_3 \subseteq L_2 \subseteq L_1$$

可以得到

$$L_1 = L_2 = L_3$$

即

$$(A|B)^* = (A^*B^*)^* = (A^*|B^*)^*$$

11.2

(1)

化简后的状态机

$$M = (\{s_0, s_1, s_2\}, \{0, 1\}, \delta, s_0, \{s_1, s_2\})$$

状态转移参见

状态	输入	
	0	1
s_0	s_2	s_1
s_1	s_1	s_1
s_2	Ø	Ø

表 1: 11.2(1)的状态机转移表

(2)

化简后的状态机

$$M = (\{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16\}, \{0, 1\}, \delta, 1, \{3, 7, 8, 10, 12\})$$

状态转移参见

(3)

$$M = (\{1, 2, 3, 4, 5\}, \{0, 1\}, \delta, 1, \{5\})$$

状态转移参见

11.4

(a)

确定化、最小化后如图1

(b)

确定化、最小化后如图2

状态	输入	
	0	1
1	-	2
2	3	4
3	-	-
4	5	2
5	-	6
6	7	4
7	8	9
8	10	11
9	12	9
10	10	4
11	13	2
12	-	6
13	14	6
14	-	15
15	16	-
16	14	2

表 2: 11.2(2)的状态机转移表

状态	输入	
	0	1
1	-	2
2	2	3
3	4	3
4	2	5
5	4	3

表 3: 11.2(3)的状态机转移表

图 1: 11.4(a) 状态图

图 2: 11.4(b) 状态图

11.5

确定化、最小化后如图3

图 3: 11.4(b) 状态图