

Federated Learning for 5G Base Station Traffic Forecasting

Vasileios Perifanis

PhD Student
Dept. of Electrical and Computer Engineering
Democritus University of Thrace
Greece

Team Euclid

Joint work Nikolaos Pavlidis, Remous-Aris Koutsiamanis and Pavlos Efraimidis

November 30, 2022

2022 ITU AI/ML in 5G Challenge Play-offs

Challenge Overview

- Traffic prediction is of great importance towards the 5G era.
 - Smart and efficient infrastructure planning
- Suitable Deep Learning models: MLPs, RNNs, CNNs.
- Traditional approaches build forecasting models using combined base station data.
 - Privacy violations
 - Business competitiveness and confidentiality issues
 - Solution: Collaborative Learning without exchanging data
- Challenge:
 - Goal: Build a Federated Model Architecture
 - Input: 10 past observations (11 measurements/observation)
 - Output: Next-step prediction (5 measurements)

- Collection of measurements from three base stations in the metropolitan area of Barcelona, Spain.
 - ElBorn: 5421 samples (7 days)
 - LesCorts: 8615 samples (12 days)
 - PobleSec: 19909 samples (28 days)

- Collection of measurements from three base stations in the metropolitan area of Barcelona, Spain.
 - ElBorn: 5421 samples (7 days)
 - LesCorts: 8615 samples (12 days)
 - PobleSec: 19909 samples (28 days)

- Collection of measurements from three base stations in the metropolitan area of Barcelona, Spain.
 - ElBorn: 5421 samples (7 days)
 - LesCorts: 8615 samples (12 days)
 - PobleSec: 19909 samples (28 days)

- Collection of measurements from three base stations in the metropolitan area of Barcelona, Spain.
 - ElBorn: 5421 samples (7 days)
 - LesCorts: 8615 samples (12 days)
 - PobleSec: 19909 samples (28 days)

- Feature and target distribution skew
- Quantity skew
- Temporal skew

- Feature and target distribution skew
- Quantity skew
- Temporal skew

- Feature and target distribution skew
- Quantity skew
- Temporal skew

- Feature and target distribution skew
- Quantity skew
- Temporal skew

- Feature and target distribution skew
- Quantity skew
- Temporal skew

Learning Setting

- Deep Learning models
 - MLP, RNN, LSTM, GRU, 3D-CNN
- Aggregation Algorithms
 - Avg, Median, FedAvg, FedProx, FedAvgM, FedNova, FedAdagrad, FedYogi, FedAdam
- Evaluation Metrics
 - NRMSE regarding the uplink and downlink measurements

$$NRMSE = \frac{1}{\overline{y}}RMSE = \frac{1}{\overline{y}}\sqrt{\frac{\sum_{i=1}^{n}(\hat{y_i} - y_i)^2}{n}}$$

- Energy and CO₂ consumption
- Simulation
 - Python programming language with PyTorch [GitHub].

Results – Influence of Pre-processing

Averaged validation and test NRMSE using the raw data and with outliers handling.

Averaged validation and test NRMSE using the global and local scaling.

Results – Influence of Pre-processing

Averaged validation and test NRMSE using the raw data and with outliers handling.

Averaged validation and test NRMSE using the global and local scaling.

Results – Influence of Pre-processing

Averaged validation and test NRMSE using the raw data and with outliers handling.

Averaged validation and test NRMSE using the global and local scaling.

Results – Federated Learning

Model	NRMSE (Cen)	NRMSE (FL)		
MLP	<u>0.6705</u> ±0.013	0.6797±0.015		
RNN	0.6852±0.0085	0.6856±0.0081		
LSTM	0.6927±0.0058	<u>0.6776</u> ±0.0049		
GRU	0.6734±0.0057	0.6747 ±0.0079		
CNN	0.6701 ±0.0219	0.6836±0.0198		

Results – Aggregation & Energy Consumption

Averaged test NRMSE per aggregation algorithm using the federated LSTM model.

Setting	Measure	MLP	RNN	LSTM	GRU	CNN
Centralized-1	Energy	0.0029	0.0032	0.0033	0.0033	0.0051
	CO_{2eq}	0.8414	0.9415	0.9788	0.9803	1.4975
Federated	Energy	0.0011	0.0012	0.00135	0.0012	0.0019
	CO_{2eq}	0.3216	0.3429	0.3975	0.3645	0.5640

Results – Forecasting

Results – Forecasting

Conclusion

- Pre-processing hugely affects the forecasting error
 - Outlier handling leads to lower error
 - Global scaling results in higher accuracy than local scaling
- Federated Learning is on par with the centralized setting
 - Privacy
 - Dynamic execution
 - Fine-Tuning
- Aggregation algorithms do not heavily influence the learning performance
- Future Direction: Temporal Models & Aggregators

Thank you

Any questions?