

Contents

- Project Objectives
- Dataset Overview
- Data Cleaning
- Exploratory Data Analysis
- Models Tested

- Model Performance
- Predicted vs Actual
- Feature Importance
- Key Insights
- Recommendations

Project Objectives

- Analyse factors influencing average temperature using regression.
- Apply regression techniques in **Python** (Linear, Ridge, Lasso).
- Develop collaboration & reproducibility (GitHub, Trello, Jupyter).
 - https://github.com/ADP777/2401PTDS Regression Project ADP
 - Trello not used as individual project
 - C:\Users\aduplooy\OneDrive Ninety
 One\Documents\GitHub\2401PTDS_Regression_Project_ADP
- Deliver insights & presentation-ready results.

Dataset Overview

- Source: FAO & IPCC climate/agriculture data.
- Records: ~7,000 (1990-2020).
- Features: 30+ (agriculture, population, emissions, country).
- Target: Average Temperature (°C)

	Area	Year	Savanna fires	Forest fires	Crop Residues	Rice Cultivation	Drained organic soils (CO2)	Pesticides Manufacturing	Food Transport	Forestland	
0	Afghanistan	1990	14.7237	0.0557	205.6077	686.00	0.0	11.807483	63.1152	-2388.803	
1	Afghanistan	1991	14.7237	0.0557	209.4971	678.16	0.0	11.712073	61.2125	-2388.803	
2	Afghanistan	1992	14.7237	0.0557	196.5341	686.00	0.0	11.712073	53.3170	-2388.803	
3	Afghanistan	1993	14.7237	0.0557	230.8175	686.00	0.0	11.712073	54.3617	-2388.803	
4	Afghanistan	1994	14.7237	0.0557	242.0494	705.60	0.0	11.712073	53.9874	-2388.803	
5 rc	5 rows × 31 columns										

Data Cleaning

- Checked missing values (0–20%).
- Dropped features with high missingness & weak correlation: Crop Residues, Manure Mgmt, Forestland, etc.
- Imputed remaining missing values (median)
- Created cleaned dataset
 - co2_emissions_from_agri_clean.csv.

Check for missing values df.isnull().sum()

Area	0	
Year	ø	
Savanna fires	31	
Forest fires	93	
Crop Residues	1389	
Rice Cultivation	θ	
Drained organic soils (CO2)	0	
Pesticides Manufacturing	ø	
Food Transport	ø	
Forestland	493	
Net Forest conversion	493	
Food Household Consumption	473	
Food Retail	ø	
On-farm Electricity Use	ø	
Food Packaging	θ	
Agrifood Systems Waste Disposal	0	
Food Processing	ø	
Fertilizers Manufacturing	9	
IPPU	743	
Manure applied to Soils	928	
Manure left on Pasture	θ	
Manure Management	928	
Fires in organic soils	0	
Fires in humid tropical forests	155	
On-farm energy use	956	
Total Population - Male	0	
Total Population - Female	0	
total_emission	0	
Average Temperature °C	ө	
dtype: int64		

Exploratory Data Analysis

- Distributions: Most features right-skewed, population extremely large.
- Correlations:
 - Strongest: Year vs Temperature (r ≈ 0.55).
 - Most other features weakly correlated.
- Heatmap: Clear multicollinearity among agricultural & population variables.
- Scatterplots: Upward trend over time; weak drifts for agri features.

Models Tested

- Linear Regression baseline.
- Ridge Regression handles multicollinearity
- Lasso Regression feature selection.

Model Performance

- Linear Regression: $R^2 \approx 0.52$, RMSE ≈ 0.38
- Ridge Regression: $R^2 \approx 0.52$, RMSE ≈ 0.38 (best performer)
- Lasso Regression: $R^2 \approx 0.32$, RMSE ≈ 0.46 (underperformed)
- Residuals: Normal, centered at 0 → good fit assumptions.

	Model	R2	RMSE	MAE
1	Ridge Regression	0.517782	0.384491	0.285076
0	Linear Regression	0.516700	0.384923	0.284975
2	Lasso Regression	0.322793	0.455644	0.345162

Predicted vs Actual

- Linear & Ridge → follow 45° line,
 small bias at extremes
- Lasso → underestimates variation.

Feature Importance

- Ridge: Area dominates (country effect), then Year & weak agri features
- Lasso: Year dominates, small contributions from:
 - Manure applied to Soils
 - Rice Cultivation
 - Food Transport

Key Insights

- Year is the strongest predictor of average temperature (time trend)
- Agricultural features provide weak additional signals
- Evidence of global warming pattern: clear upward trend from 1990–2020
- Ridge Regression balances accuracy & stability best.

Recommendations

- Use Ridge Regression as final model
- Consider non-linear models (Polynomial features, Random Forest, Gradient Boosting)
- Improve encoding of Area (collapse rare countries into "Other")
- Explore feature interactions for deeper insights.

Appendix: Trello

