MACHINE LEARNING WITH PYTHON

SUPPORT VECTOR MACHINES

Themistoklis Diamantopoulos

Maximum Margin

 Find optimal w, b to maximize the margin

• Minimize $\frac{1}{2}w \cdot w$

Maximum Margin with Noise

Allow misclassification errors

• Minimize $\frac{1}{2}w \cdot w + C \sum_{k} \mathcal{E}_{k}$

controls tolerance of misclassification

Transformation with Kernels

Non-linearly separable data → linearly separable data

- Kernel trick: $K(x,x') = \varphi(x)^T \varphi(x')$
- Linear, Polynomial, tanh

Source: https://www.slideshare.net/pbpimpale/support-vector-machine-24419322

Different types of Kernels

Linear Kernel

$$K(x,x') = x^T x'$$

Polynomial Kernel

 $K(x,x') = (x^Tx'+1)^d$ $K(x,x') = e^{-\frac{1}{2}}$

RBF Kernel

$$K(x,x') = e^{-\|x-x'\|^2}$$

 $2\sigma^2 = \gamma$ controls the width of the RBF kernel

Overfitting

- Parameter C
 - Large C → More error penalization
 - Small C → Allow more errors
- Parameter gamma
 - Large gamma → Exact data fit
 - Small gamma → Generalization

Validation

- Split data in two parts
 - Use 1 part for training and 1 part for testing
 - Compare the errors

Training Validation

- Cross-validation
 - Divide dataset in k-folds
 - Use k-1 parts for training and 1 for testing
 - Repeat for all folds
 - Determine a metric value

