

НАЦІОНАЛЬНИЙ ТЕХНІЧНИЙ УНІВЕРСИТЕТ УКРАЇНИ «Київський політехнічний інститут»

ЕЛЕКТРОНІКИ

(назва факультету (інституту))

РЕКТОРСЬКИЙ КОНТРОЛЬ ВЕСНА '2008

для студентів IV курсу

Звукотехніки та реєстрації інформації
(назва кафедри)
7.091203, 7.092401
(код спеціальності)
(cred cred-managed)
Piwoo ovyjo mo rivomovyjyo Toworowyjyovičivi ovomovy mo monovci
Відео-, аудіо- та кінотехніка, Телекомунікаційні системи та мережі (назва спеціальності)
(назва специявност)
Математика
(назва дисципліни)
Буценко Юрій Павлович, 454-93-54
(розробник дисципліни (ПІБ), конт. телефони)
ЗАТВЕРДЖУЮ
Завідувач кафедри
Пілінський В.В.
(підпис) (прізвище та ініціали)
« <u>19</u> » <u>березня</u> 2008 року
Контактні телефони: <u> 454-90-76</u>

1. Обчислити визначник

$$\Delta = \begin{vmatrix} 2 & 1 & 3 \\ -1 & -2 & 1 \\ 1 & 3 & -5 \end{vmatrix}$$

2. Знайти похідні z'_{u}, z'_{v} , якщо

$$z(x, y) = x^3 y$$
; $x = u \cdot \cos(v)$; $y = u^2 - \sin(2v)$;

3. Знайти критичні точки функції

$$v = x^2 - 0.5x^4$$

4. Електровимірювальне устаткування здатне працювати у трьох режимах: звичайному, автономному та реверсивному. Звичайний режим використовується у 65% всіх випадків роботи приладу, автономний у 25%; реверсивний у 10%. Ймовірність не спрацювання основного керуючого елементу прилада за час напрацювання 330 годин при звичайному режимі -0,1; при автономному -0,3; при реверсивному -0,8. Визначити ймовірність відмови функціонування електровимірювального устаткування за час що дорівнює 330 годин.

Розв'язок:

1.
$$\Delta = \begin{vmatrix} 2 & 1 & 3 \\ -1 & -2 & 1 \\ 1 & 3 & -5 \end{vmatrix} = 2 \cdot (10 - 3) - (5 - 1) + 3 \cdot ((-3) + 2) = 7$$

Відповідь : $\Delta = 7$

2. Використаємо формули похідних складеної функції:

$$z_{u} = \frac{\partial z}{\partial x} \cdot \frac{\partial x}{\partial u} + \frac{\partial z}{\partial y} \cdot \frac{\partial y}{\partial u}; \quad z_{v} = \frac{\partial z}{\partial x} \cdot \frac{\partial x}{\partial v} + \frac{\partial z}{\partial y} \cdot \frac{\partial y}{\partial v};$$

$$z'_{u} = 3x^{2}y \cdot \cos(v) + 2u \cdot x^{3}; \ z'_{v} = -3x^{2}y \cdot u\sin(v) - 2\cos(2v) \cdot x^{3};$$

Відповідь: $z_u = 3x^2y \cdot \cos(v) + 2u \cdot x^3$; $z_v = -3x^2y \cdot u\sin(v) - 2\cos(2v) \cdot x^3$;

3. Критичні точки – це точки в яких похідна рівна 0 або не існує: $y' = 2x - 2x^3$; $2x \cdot (1 - x^2) = 0$;

$$\begin{bmatrix} 2x = 0 \\ 1 - x^2 = 0 \end{bmatrix} \longrightarrow x_1 = 0; \ x_2 = 1; \ x_3 = -1;$$

Відповідь:
$$x_1 = 0$$
; $x_2 = 1$; $x_3 = -1$

4. Приймемо, що подія A — вихід з ладу устаткування під час роботи. Тоді визначимо такі 3 гіпотези, виходячи з формули повної ймовірності: H_1 — робота устаткування при звичайному режимі; H_2 — робота устаткування в реверсивному режимі. Тоді з умов задачі відповідні ймовірності дорівнюють: $P(H_1)$ =0,65; $P(H_2)$ =0,25; $P(H_3)$ =0,1. Умовні ймовірності виходу з ладу устаткування при різних режимах роботи дорівнюють: $P(A/H_1)$ =0,1; $P(A/H_2)$ =0,3; $P(A/H_3)$ =0,8. За допомогою формули повної ймовірності отримаємо ймовірність відмови у функціонуванні електровимірювального устаткування з час 330 годин: P(A)= $P(H_1)$ $P(A/H_1)$ + $P(H_2)$ $P(A/H_2)$ + $P(H_3)$ $P(A/H_3)$ =0,22

Відповідь: P(A)=0,22.

1. Обчислити визначник
$$\Delta = \begin{vmatrix} 1 & 4 & 2 \\ -2 & 3 & 6 \\ 3 & -1 & -3 \end{vmatrix}$$

- 2. Знайти похідні z'_u, z'_v , якщо: $z(x,y) = x^2 5 \cdot (1/y)$; $x = e^u \cdot 5v$; $y = e^v \cdot 5u$;
- 3. Визначити екстремуми функції: $y = x^3 + 5x^2 + 3$.
- 4. Прилад для діагностування системи АРП складається з 2 головних вузлів. Ймовірність виходу з ладу першого вузла становить 0,5; другого 0,7. Прилад після тривалої бездіяльності перевірили на справність в основних режимах, і виявилося що він не працює. Знайти ймовірність того, що причиною відмови є тільки перший вузол з двох.

1.
$$\Delta = \begin{vmatrix} 1 & 4 & 2 \\ -2 & 3 & 6 \\ 3 & -1 & -3 \end{vmatrix} = ((-9) + 6) - 4 \cdot (6 - 18) + 2 \cdot (2 - 9) = -3 + 48 - 14 = 31;$$

Відповідь : $\Delta = 31$;

2. Використаємо формули похідних складеної функції:

$$z_{u} = \frac{\partial z}{\partial x} \cdot \frac{\partial x}{\partial u} + \frac{\partial z}{\partial y} \cdot \frac{\partial y}{\partial u}; \quad z_{v} = \frac{\partial z}{\partial x} \cdot \frac{\partial x}{\partial v} + \frac{\partial z}{\partial y} \cdot \frac{\partial y}{\partial v}; \quad z_{u} = 2x \cdot e^{u} \cdot 5v + \frac{5}{y^{2}} \cdot 5 \cdot e^{v}; \quad z_{v} = 2x \cdot 5 \cdot e^{u} + \frac{5}{y^{2}} \cdot e^{v} \cdot 5u;$$
Відповідь:
$$z_{u} = 10x \cdot e^{u} \cdot v + \frac{25}{v^{2}} \cdot e^{v}; \quad z_{v} = 10x \cdot e^{u} + \frac{25}{v^{2}} \cdot e^{v} \cdot u;$$

3. Знайдемо спочатку критичні точки функції:

$$y' = 3x^2 + 10x$$
; $y' = 0$; $3x^2 + 10x = 0$; $x \cdot (3x + 10) = 0$; $x_1 = 0$; $x_2 = -\frac{10}{3}$;

$$3x^2 + 10x < 0, npu \ x \in \left(-\frac{10}{3}; 0\right) \ 3x^2 + 10x > 0, npu \ x \in \left(-\infty; -\frac{10}{3}\right) \cup \left(0; +\infty\right)$$

При переході через точку $x_1 = -10/3$ похідна змінює свій знак з "+" на"-". Отже,в цій точці маємо максимум. При переході через точку $x_1 = 0$ похідна змінює свій знак з "-" на"+". Отже, це точка мінімуму.

Відповідь:
$$A(0;3)$$
 -- точка мінімуму; $B(-\frac{10}{3};21\frac{14}{27})$

4. Приймемо, що подія A — прилад за результатами перевірки виявився несправним. Тоді сформуємо такі 4 статистичні гіпотези: H_0 — обидва вузли приладу працюють; H_1 — перший вузол відмовив, а другий ні; H_2 — другий вузол відмовив, а перший ні; H_3 — обидва вузли приладу є несправними. З умови задачі позначимо ймовірність виходу з ладу першого вузла як q_1 =0,5; другого - q_2 =0,7.

Тоді $P(H_0)=(1-q_1)(1-q_2)=0,5\cdot0,3=0,15;$ $P(H_1)=(q_1)(1-q_2)=0,5\cdot0,3=0,15;$ $P(H_2)=(1-q_1)q_2=0,5\cdot0,7=0,35;$ $P(H_3)=q_1\cdot q_2=0,5\cdot 0,7=0,35.$ Для того щоб скористатися формулою Байєса треба визначити відповідні умовні ймовірності. Зрозуміло, що $P(A/H_0)=0;$ $P(A/H_1)=P(A/H_2)=P(A/H_3)=1.$ Тоді за формулою Байєса знайдемо шукану ймовірність:

$$P(H_1/A) = \frac{P(H_1)P(A/H_1)}{\sum_{i=0}^{3} P(H_i)P(A/H_i)} = \frac{0.15}{0.15 + 0.35 + 0.35} = 0.176.$$

Відповідь: $P(H_1/A)=0,176$.

1. Обчислити визначник
$$\Delta = \begin{vmatrix} -1 & 5 & 4 \\ 2 & 3 & 1 \\ 4 & -3 & -2 \end{vmatrix}$$
.

- 2. Знайти похідні z_u', z_v' , якщо $z(x, y) = \cos(2x) 5\sin(y)$; x = 5v 2u; y = 5u 2v;
- 3. Визначити екстремуми функції $y = x^2 + 5x 3$;
- 4. Система сигналізації складається з 6 незалежних вузлів. Ймовірність відмови будь-якого вузла дорівнює q = 0.75. Знайти ймовірність того, що внаслідок інтенсивної роботи на граничному режимі вийдуть з ладу не менше 2 вузли системи.

Розв'язок:

1.
$$\Delta = \begin{vmatrix} -1 & 5 & 4 \\ 2 & 3 & 1 \\ 4 & -3 & -2 \end{vmatrix} = (-1) \cdot ((-6) + 3) - 5 \cdot ((-4) - 4) + 4 \cdot ((-6) - 12) = -29$$

Відповідь : $\Delta = -29$;

2. Використаємо формули похідних складеної функції:

$$z'_{u} = \frac{\partial z}{\partial x} \cdot \frac{\partial x}{\partial u} + \frac{\partial z}{\partial y} \cdot \frac{\partial y}{\partial u}; \quad z'_{v} = \frac{\partial z}{\partial x} \cdot \frac{\partial x}{\partial v} + \frac{\partial z}{\partial y} \cdot \frac{\partial y}{\partial v};$$

$$z'_{u} = -2\sin(2x)\cdot(-2) - 5\cdot 5\cos(y); \ z'_{v} = -2\sin(2x)\cdot 5 - 5\cos(y)\cdot(-2);$$

Відповідь: $z_u = 4\sin(2x) - 25\cos(y)$; $z_v = -10\sin(2x) + 10\cos(y)$;

3. Функція $y = x^2 + 5x - 3$ є параболою, вітки якої направлені вгору, отже вона має мінімум -- вершина параболи.

$$x_{\rm B} = -\frac{b}{2a} = -\frac{5}{2}; \ y_{\rm B} = -\frac{37}{4}$$

Відповідь: $A(-\frac{5}{2}; -\frac{37}{4})$ - точка мінімуму.

4. Згідно формули біноміального розподілу ймовірностей знаходимо, що ймовірність виходу з ладу принаймні одного вузла системи сигналізації дорівнює:

$$R_{1.6} = 1 - q^6 = 1 - (0.75)^6 = 0.82.$$

Тоді ймовірність, з якою відмовить рівно один вузол системи за умов того ж розподілу можна знайти за формулою:

$$P_{1,6} = C_6^1 (1-q)q^5 = \frac{6!}{1!5!} 0,25 \cdot (0,75)^5 = 0,355.$$

Отже, ймовірність того, що вийдуть з ладу не менше 2 вузлів системи визначаємо як

$$R_{2,6} = R_{1,6} - P_{1,6} = 0.82 - 0.355 = 0.465.$$

Відповідь : R_{2.6} = 0,465.

1. Обчислити визначник
$$\Delta = \begin{vmatrix} -2 & -4 & 5 \\ 1 & 4 & -2 \\ 3 & 0 & 1 \end{vmatrix}$$
.

- 2. Знайти похідні z_u', z_v' , якщо $z(x, y) = xy^2$; $x = \cos(v) \cdot (u^2 1)$, $y = \sin(u) \cdot (v^2 2)$,
- 3. Знайти скільки точок екстремуму має функція $y = 3x^4 4x^3 + 5$;
- 4. Магнітофони однієї моделі виготовляються двома фірмами-розробниками. Відомо, що перша фірма займає на ринку 75% своєї продукції, друга -25%. Надійність магнітофону під маркою першої фірми складає 0,7; другої фірми -0,85. Знайти за існуючих умов надійність електронного приладу, що надійшов до реалізації на ринок.

Розв'язок:

1.
$$\Delta = \begin{vmatrix} -2 & -4 & 5 \\ 1 & 4 & -2 \\ 3 & 0 & 1 \end{vmatrix} = (-2) \cdot 4 + 4 \cdot (1+6) + 5 \cdot (-12) = -40;$$

Відповідь : $\Delta = -40$

2. Використаємо формули похідних складеної функції:

$$z_{u} = \frac{\partial z}{\partial x} \cdot \frac{\partial x}{\partial u} + \frac{\partial z}{\partial y} \cdot \frac{\partial y}{\partial u}; \quad z_{v} = \frac{\partial z}{\partial x} \cdot \frac{\partial x}{\partial v} + \frac{\partial z}{\partial y} \cdot \frac{\partial y}{\partial v};$$

$$z_{u} = 2u \cdot \cos(v) \cdot y^{2} + 2xy \cdot \cos(u) \cdot (v^{2} - 2); \quad z_{v} = -y^{2} \cdot \sin(v) \cdot (u^{2} - 1) + 2xy \cdot 2v \cdot \sin(u);$$
Відповідь:
$$z_{u} = 2u \cdot \cos(v) \cdot y^{2} + 2xy \cdot \cos(u) \cdot (v^{2} - 2);$$

$$z_{v} = -y^{2} \cdot \sin(v) \cdot (u^{2} - 1) + 4xyv \cdot \sin(u);$$

3. Знайдемо спочатку критичні точки функції:

$$y' = 12x^3 - 12x^2$$
; $y' = 0$;
 $12x^3 - 12x^2 = 0$; $x^2 \cdot (x - 1) = 0$; $x_1 = 0$; $x_2 = 1$;
 $x^2 \cdot (x - 1) \le 0$, $npu \ x \in (-\infty; 1]$; $x^2 \cdot (x + 1) > 0$, $npu \ x \in (1; +\infty)$

В точці $x_1 = 0$ похідна не змінює знак, отже, екстремуму в ній немає. В точці $x_2 = 1$ функція змінює знак з ""-" на "+", отже, в цій точці маємо мінімум.

Відповідь: n=1 (одна точка екстремуму).

4. Визначимо подію A, як те що прилад було виготовлено і він надійшов до реалізації. Тоді можна скласти 2 гіпотези: H_1 — магнітофон першої фірми-розробника; H_2 — магнітофон другої фірми розробника.

Тоді визначимо умовні ймовірності:

 $P(A/H_1)$ – ймовірність появи на ринку магнітофона від першої фірми;

Р(А/Н₂) – ймовірність появи на ринку магнітофона від другої фірми;

Тоді за формулою повної ймовірності знайдемо надійність електронного приладу:

 $P(A)=P(H_1)P(A/H_1)+P(H_2)P(A/H_2)=0,7\cdot0,75+0,85\cdot0,25=0,74.$

Відповідь: P(A)=0,74.

1. Обчислити визначник
$$\Delta = \begin{vmatrix} -2 & 1 & 1 \\ -3 & 4 & 0 \\ -5 & 3 & 6 \end{vmatrix}$$
;

- 2. Знайти похідні z_u', z_v' , якщо: z(x, y) = 5x 3y; $x = \sin v \cdot e^{2u}$; $y = \cos(u) \cdot e^{v^2}$;
- 3. Знайти скільки точок екстремуму має функція: $y = 3x^5 + 5x^3 3$.
- 4. Функція f(x) з періодом $T = 2\pi$ розвинути в ряд Фурє. $f(x) = \begin{cases} 1, -\pi < x < 0 \\ -5, 0 \le x < \pi \end{cases}$

Розв'язок:

1.
$$\Delta = \begin{vmatrix} -2 & 1 & 1 \\ -3 & 4 & 0 \\ -5 & 3 & 6 \end{vmatrix} = (-2) \cdot 24 + 18 + ((-9) + 20) = -19$$

Відповідь : $\Delta = -19$;

2. Використаємо формули похідних складеної функції:

$$z'_{u} = \frac{\partial z}{\partial x} \cdot \frac{\partial x}{\partial u} + \frac{\partial z}{\partial y} \cdot \frac{\partial y}{\partial u}; \quad z'_{v} = \frac{\partial z}{\partial x} \cdot \frac{\partial x}{\partial v} + \frac{\partial z}{\partial y} \cdot \frac{\partial y}{\partial v};$$

$$z'_{u} = 5 \cdot 2\sin(v) \cdot e^{2u} + 3 \cdot \sin(u) \cdot e^{v^{2}}; \quad z'_{v} = 5\cos(v) \cdot e^{2u} - 3\cos(u) \cdot 2v \cdot e^{v^{2}};$$

Відповідь:
$$z_u = 10\sin(v) \cdot e^{2u} + 3\cdot\sin(u) \cdot e^{v^2}$$
; $z_v = 5\cos(v) \cdot e^{2u} - 6\cos(u) \cdot v \cdot e^{v^2}$;

3. Знайдемо спочатку критичні точки функції:

$$y' = 15x^4 + 15x^2$$
; $y' = 0$;
 $15x^4 + 15x^2 = 0$; $x^2 \cdot (x^2 + 1) = 0$; $x = 0$;
 $x^2 \cdot (x^2 + 1) \ge 0$ для всіх $x \in \square$.

Оскільки похідна не змінює знак, то дана функція не має точок екстремуму.

Відповідь: n=0 (точок екстремуму немає).

4. Оскільки функція кусково-монотонною, то за теоремою Дріхле ряд Фурє цієї функції в кожній точці збігається до значення (f(x-0)+f(x+0))/2.

Коефіцієнти ряда Фурє:

$$a_{0} = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) dx = \frac{1}{\pi} \left(\int_{-\pi}^{0} dx - 5 \int_{0}^{\pi} dx \right) = \frac{1}{\pi} \left(x \Big|_{-\pi}^{0} - 5x \Big|_{0}^{\pi} \right) = \frac{1}{\pi} \left(0 + \pi - 5\pi \right) = -4$$

$$a_{n} = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos nx dx = \frac{1}{\pi} \left(\int_{-\pi}^{0} \cos nx dx - 5 \int_{0}^{\pi} \cos nx dx \right) =$$

$$= \frac{1}{\pi} \left(\frac{1}{n} \sin nx \Big|_{-\pi}^{0} - \frac{5}{n} \sin nx \Big|_{0}^{\pi} \right) = \frac{1}{\pi} \left(\frac{-6}{n} \sin \pi n \right) = \frac{6}{n\pi} \sin \pi n = 0$$

$$b_{n} = \frac{1}{\pi} \int_{\pi}^{\pi} f(x) \sin nx dx = \frac{1}{\pi} \left(\int_{-\pi}^{0} \sin nx dx + \int_{0}^{\pi} \sin nx dx \right) =$$

$$= \frac{1}{\pi} \left(-\frac{1}{n} \cos nx \Big|_{-\pi}^{0} + \frac{5}{n} \cos nx \Big|_{0}^{\pi} \right) = \frac{1}{\pi} \left(\frac{6}{n} \cos \pi n - \frac{6}{n} \right) =$$

$$= \frac{1}{\pi} \left(\frac{6}{n} (-1)^{n} - \frac{6}{n} \right)$$

$$f(x) \sim -2 + \sum_{n=1}^{\infty} \frac{1}{\pi} \left(\frac{6}{n} (-1)^{n} - \frac{6}{n} \right) \sin nx$$

Відповідь:
$$f(x) \sim -2 + \sum_{n=1}^{\infty} \frac{1}{\pi} \left(\frac{6}{n} (-1)^n - \frac{6}{n} \right) \sin nx$$

- 1. Для матриці A знайти обернену матрицю A^{-1} : $A = \begin{bmatrix} -2 & 2 \\ 3 & 1 \end{bmatrix}$;
- 2. Знайти розв'язок задачі Коші: y'' + 5y = 0;
- 3. Знайти проміжки зростання функції y = f(x): $f(x) = \cos 2x x$;
- 4. Електронний прилад складається з 4 вузлів. Відомо, що вузли виходять з ладу незалежно один від одного. Ймовірність відмови за час t = 100 год дорівнює q = 0,2. Знайти ймовірність того, що не відмовить рівно один вузол приладу з чотирьох під час роботи приладу.

Розв'язок:

1. Знайдемо транспоновану матрицю алгебраїчних доповнень($A_{i,j} = (-1)^{i+j} \cdot M_{i,j}$, де $M_{i,j}$ - це мінор).

Тоді:
$$\left(A^*\right)^T = \begin{pmatrix} 1 & -2 \\ -3 & -2 \end{pmatrix}$$
; $\det A = -2 - 6 = -8$; $A^{-1} = \frac{1}{8} \cdot \begin{pmatrix} -1 & 2 \\ 3 & 2 \end{pmatrix}$;

Зробимо перевірку, перемноживши ці матриці повинна вийти одинична матриця:

$$A^{-1} \cdot A = \frac{1}{8} \cdot \begin{pmatrix} -1 & 2 \\ 3 & 2 \end{pmatrix} \cdot \begin{pmatrix} -2 & 2 \\ 3 & 1 \end{pmatrix} = \frac{1}{8} \cdot \begin{pmatrix} 8 & 0 \\ 0 & 8 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = E$$

Відповідь:
$$A^{-1} = \frac{1}{8} \cdot \begin{pmatrix} -1 & 2 \\ 3 & 2 \end{pmatrix}$$
.

2. Запишемо характеристичне рівняння:

$$k^2 + 5 = 0$$
; тоді $k = \pm i\sqrt{5}$;

Запишемо розв'язок рівняння: $y = C_1 \cdot \cos(x \cdot \sqrt{5}) + C_2 \cdot \sin(x \cdot \sqrt{5})$

Відповідь:
$$y = C_1 \cdot \cos(x \cdot \sqrt{5}) + C_2 \cdot \sin(x \cdot \sqrt{5})$$
.

3. Функція зростає на проміжку при умові, що похідна цієї функції більша нуля на цьому проміжку, тоді:

$$f'(x) = -2 \cdot \sin(2x) - 1;$$

$$-2 \cdot \sin(2x) - 1 > 0$$
; тобто $\sin(2x) < -\frac{1}{2}$;

$$2x \in (-\frac{5\pi}{6} + 2\pi n; -\frac{\pi}{6} + 2\pi n), \quad n \in \mathbb{Z}; \text{ A отже } x \in (-\frac{5\pi}{12} + \pi n; -\frac{\pi}{12} + \pi n), \quad n \in \mathbb{Z}$$

Відповідь: функція зростає на
$$x \in (-\frac{5\pi}{12} + \pi n; -\frac{\pi}{12} + \pi n), n \in \mathbb{Z}$$

4. За формулою біноміального розподілу ймовірностей можемо знайти ймовірність відмови одного вузла системи: $P_{1,4} = C_4^1 (1-q) q^3 = 4 \cdot 0.8 \cdot (0.2)^3 = 0.025$

Відповідь: $P_{1.4} = 0.025$.

- 1. Для матриці A знайти обернену матрицю A^{-1} : $A = \begin{vmatrix} 4 & 2 \\ -1 & -2 \end{vmatrix}$;
- 2. Знайти розв'язок задачі Коші: y'' 2y = 0;
- 3. Знайти проміжки спадання функції y = f(x): $f(x) = \sin 2x + x\sqrt{2}$;
- 4. Розвинути в ряд Фур'є за косинусами функцію f(x) з періодом $T=2\pi$. $f(x)=\begin{cases} 0, 0 < x < \frac{\pi}{2}; \\ 10, \frac{\pi}{2} < x < \pi; \end{cases}$

1. Знайдемо транспоновану матрицю алгебраїчних доповнень($A_{i,j} = (-1)^{i+j} \cdot M_{i,j}$, де $M_{i,j}$ - це мінор). Тоді:

$$(A^*)^T = \begin{pmatrix} -2 & -2 \\ 1 & 4 \end{pmatrix}; \det A = -8 + 2 = -6; \quad A^{-1} = \frac{1}{6} \cdot \begin{pmatrix} 2 & 2 \\ -1 & -4 \end{pmatrix};$$

Зробимо перевірку, перемноживши ці матриці повинна вийти одинична матриця:

$$A^{-1} \cdot A = \frac{1}{6} \cdot \begin{pmatrix} 2 & 2 \\ -1 & -4 \end{pmatrix} \cdot \begin{pmatrix} 4 & 2 \\ -1 & -2 \end{pmatrix} = \frac{1}{6} \cdot \begin{pmatrix} 6 & 0 \\ 0 & 6 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = E$$

Відповідь:
$$A^{-1} = \frac{1}{6} \cdot \begin{pmatrix} 2 & 2 \\ -1 & -4 \end{pmatrix}$$

2. Запишемо характеристичне рівняння: $k^2 - 2 = 0$; звідси $k = \pm \sqrt{2}$;

Запишемо розв'язок рівняння: $y = C_1 \cdot e^{x \cdot \sqrt{2}} + C_2 \cdot e^{-x \cdot \sqrt{2}}$

Відповідь:
$$y = C_1 \cdot e^{x \cdot \sqrt{2}} + C_2 \cdot e^{-x \cdot \sqrt{2}}$$

3. Функція спадає на проміжку при умові, що похідна цієї функції менша нуля на цьому проміжку, тоді: $f'(x) = 2 \cdot \cos(2x) + \sqrt{2}$;

$$2 \cdot \cos(2x) + \sqrt{2 < 0}$$
; тобто $\cos(2x) < -\frac{\sqrt{2}}{2}$;

$$2x \in (\frac{3\pi}{4} + 2\pi n; \frac{5\pi}{4} + 2\pi n), \quad n \in \mathbb{Z};$$

$$x \in (\frac{3\pi}{8} + \pi n; \frac{5\pi}{8} + \pi n), \quad n \in \mathbb{Z}$$

Відповідь: функція спадає на
$$x \in (\frac{3\pi}{8} + \pi n; \frac{5\pi}{8} + \pi n), \quad n \in \mathbb{Z}$$

4. Оскільки функція кусково-монотонна то за теоремою Дріхле ряд Фурє цієї функції у кожній точці збігаеться до значення $\frac{f(x-0)+f(x+0)}{2}$.

Коефіціенти Фурє:

$$a_n = \frac{2}{\pi} \int_0^{\pi} f(x) dx = \frac{2}{\pi} \int_0^{\frac{\pi}{2}} 0 dx + \frac{2}{\pi} \int_{\frac{\pi}{2}}^{\pi} 10 dx = \frac{2}{\pi} \left(10x \Big|_{\frac{\pi}{2}}^{\pi} \right) = \frac{2}{\pi} \cdot 5\pi = 10;$$

$$a_n = \frac{2}{\pi} \int_0^{\pi} f_n(x) \cos nx dx = \frac{2}{\pi} \left(\int_0^{\frac{2}{\pi}} 0 \cos nx dx + \int_0^{\frac{2}{\pi}} 10 \cos nx dx \right) =$$

$$= \frac{2}{\pi} \left(10 \int_{\frac{2}{\pi}}^{0} \cos nx dx \right) = \frac{20}{\pi n} \left(\sin \pi n - \sin \frac{\pi n}{2} \right) = -\frac{20}{\pi n} \sin \frac{\pi n}{2}$$

$$b = 0$$

$$f(x) \sim 5 + \sum_{n=1}^{\infty} -\frac{20}{n\pi} \sin \frac{\pi n}{2} \cos nx$$

Відповідь:
$$f(x) \sim 5 + \sum_{n=1}^{\infty} -\frac{20}{n\pi} \sin \frac{\pi n}{2} \cos nx$$

- 1. Для матриці A знайти обернену матрицю A^{-1} : $A = \begin{vmatrix} -4 & 2 \\ 1 & -3 \end{vmatrix}$;
- 2. Знайти розв'язок задачі Коші: y'' 5y' = 0;
- 3. Знайти проміжки зростання функції y = f(x): $f(x) = 4\sin x/2 + x$;
- 4. Розвинути в ряд Фур'є функцію f(x) з періодом $T = 2\pi$, $f(x) = \begin{cases} 9, & -\pi < x < 0, \\ -2, & 0 \le x < \pi \end{cases}$

Розв'язок:

1. Знайдемо транспоновану матрицю алгебраїчних доповнень ($A_{i,j} = (-1)^{i+j} \cdot M_{i,j}$, де $M_{i,j}$ - це мінор). Тоді:

$$(A^*)^T = \begin{pmatrix} -3 & -2 \\ -1 & -4 \end{pmatrix}$$
; det $A = 12 - 2 = 10$; $A^{-1} = \frac{1}{10} \cdot \begin{pmatrix} -3 & -2 \\ -1 & -4 \end{pmatrix}$;

Зробимо перевірку, перемноживши ці матриці повинна вийти одинична матриця:

$$A^{-1} \cdot A = \frac{1}{10} \cdot \begin{pmatrix} -3 & -2 \\ -1 & -4 \end{pmatrix} \cdot \begin{pmatrix} -4 & 2 \\ 1 & -3 \end{pmatrix} = \frac{1}{10} \cdot \begin{pmatrix} 10 & 0 \\ 0 & 10 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = E$$

Відповідь:
$$A^{-1} = \frac{1}{10} \cdot \begin{pmatrix} -3 & -2 \\ -1 & -4 \end{pmatrix}$$
.

2. Запишемо характеристичне рівняння:

$$k^2 - 5k = 0$$
; тоді $k_{1,2} = 0$;5; Далі запишемо розв'язок рівняння:

$$y = C_1 + C_2 \cdot e^{5 \cdot x}.$$

Відповідь: $y = C_1 + C_2 \cdot e^{5 \cdot x}$.

3. Функція зростає на проміжку при умові, що похідна цієї функції більша нуля на цьому проміжку,

тоді:
$$f'(x) = 2 \cdot \cos(\frac{x}{2}) + 1$$
; Тоді $2 \cdot \cos(\frac{x}{2}) + 1 > 0$; Звідси $\cos(\frac{x}{2}) > -\frac{1}{2}$;

$$\frac{x}{2} \in (-\frac{2\pi}{3} + 2\pi n; \frac{2\pi}{3} + 2\pi n), \quad n \in \mathbb{Z}$$
; also $x \in (-\frac{4\pi}{3} + 4\pi n; \frac{4\pi}{3} + 4\pi n), \quad n \in \mathbb{Z}$

Відповідь: функція зростає на
$$x \in (-\frac{4\pi}{3} + 4\pi n; \frac{4\pi}{3} + 4\pi n), n \in \mathbb{Z}$$

4. Оскільки функція кусково-монотонна, то за теоремою Діріхле ряд Фур'є цієї функції в кожній точці збігається до значення: (f(x-0)+f(x+0))/2

Коефіцієнти ряду:

$$a_{0} = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) dx = \frac{1}{\pi} \left(\int_{-\pi}^{0} dx - 2 \int_{0}^{\pi} dx \right) \frac{1}{\pi} \left(9x \Big|_{-\pi}^{0} - 2x \Big|_{0}^{\pi} \right) = \frac{1}{\pi} \left(0 + 9\pi - 2\pi \right) = \frac{1}{\pi} \cdot 7\pi = 7$$

$$a_{n} = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos nx dx = \frac{1}{\pi} \left(9 \int_{-\pi}^{0} \cos nx dx - 2 \int_{0}^{\pi} \cos nx dx \right) = \frac{1}{\pi} \left(\frac{9}{n} \sin nx \Big|_{-\pi}^{0} - \frac{2}{n} \sin nx \Big|_{0}^{\pi} \right) = \frac{1}{\pi} \left(-\frac{9}{n} \sin \pi n - \frac{2}{n} \sin \pi n \right) = \frac{1}{\pi} \left(-\frac{11}{n} \sin \pi n \right) = -\frac{11}{\pi} \sin \pi n = 0$$

$$b_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin nx dx = \frac{1}{\pi} \left(9 \int_{-\pi}^{0} \sin nx dx - 2 \int_{0}^{\pi} \sin nx dx \right) = \frac{1}{\pi} \left(-\frac{9}{n} \cos nx \Big|_{-\pi}^{0} + \frac{2}{n} \cos nx \Big|_{0}^{\pi} \right) = \frac{1}{n} \left(-\frac{9}{n} \cos nx \Big|_{0}^{0} + \frac{2}{n} \cos nx \Big|_{0}^{\pi} \right) = \frac{1}{n} \left(-\frac{9}{n} \cos nx \Big|_{0}^{0} + \frac{2}{n} \cos nx \Big|_{0}^{\pi} \right) = \frac{1}{n} \left(-\frac{9}{n} \cos nx \Big|_{0}^{0} + \frac{2}{n} \cos nx \Big|_{0}^{\pi} \right) = \frac{1}{n} \left(-\frac{9}{n} \cos nx \Big|_{0}^{0} + \frac{2}{n} \cos nx \Big|_{0}^{\pi} \right) = \frac{1}{n} \left(-\frac{9}{n} \cos nx \Big|_{0}^{0} + \frac{2}{n} \cos nx \Big|_{0}^{\pi} \right) = \frac{1}{n} \left(-\frac{9}{n} \cos nx \Big|_{0}^{0} + \frac{2}{n} \cos nx \Big|_{0}^{\pi} \right) = \frac{1}{n} \left(-\frac{9}{n} \cos nx \Big|_{0}^{0} + \frac{2}{n} \cos nx \Big|_{0}^{\pi} \right) = \frac{1}{n} \left(-\frac{9}{n} \cos nx \Big|_{0}^{\pi} + \frac{2}{n} \cos nx \Big|_{0}^{\pi} \right) = \frac{1}{n} \left(-\frac{9}{n} \cos nx \Big|_{0}^{\pi} + \frac{2}{n} \cos nx \Big|_{0}^{\pi} \right) = \frac{1}{n} \left(-\frac{9}{n} \cos nx \Big|_{0}^{\pi} + \frac{2}{n} \cos nx \Big|_{0}^{\pi} \right) = \frac{1}{n} \left(-\frac{9}{n} \cos nx \Big|_{0}^{\pi} + \frac{2}{n} \cos nx \Big|_{0}^{\pi} + \frac{2}{n} \cos nx \Big|_{0}^{\pi} \right) = \frac{1}{n} \left(-\frac{9}{n} \cos nx \Big|_{0}^{\pi} + \frac{2}{n} \cos nx \Big|_{0}^{\pi} \right) = \frac{1}{n} \left(-\frac{9}{n} \cos nx \Big|_{0}^{\pi} + \frac{2}{n} \cos nx \Big|_{0}^{\pi} \right) = \frac{1}{n} \left(-\frac{9}{n} \cos nx \Big|_{0}^{\pi} + \frac{2}{n} \cos nx \Big|_{0}^{\pi} \right) = \frac{1}{n} \left(-\frac{9}{n} \cos nx \Big|_{0}^{\pi} + \frac{2}{n} \cos nx \Big|_{0}^{\pi} \right) = \frac{1}{n} \left(-\frac{9}{n} \cos nx \Big|_{0}^{\pi} + \frac{2}{n} \cos nx \Big|_{0}^{\pi} \right) = \frac{1}{n} \left(-\frac{9}{n} \cos nx \Big|_{0}^{\pi} + \frac{2}{n} \cos nx \Big|_{0}^{\pi} \right) = \frac{1}{n} \left(-\frac{9}{n} \cos nx \Big|_{0}^{\pi} + \frac{2}{n} \cos nx \Big|_{0}^{\pi} \right) = \frac{1}{n} \left(-\frac{9}{n} \cos nx \Big|_{0}^{\pi} + \frac{2}{n} \cos nx \Big|_{0}^{\pi} \right) = \frac{1}{n} \left(-\frac{9}{n} \cos nx \Big|_{0}^{\pi} + \frac{2}{n} \cos nx \Big|_{0}^{\pi} \right) = \frac{1}{n} \left(-\frac{9}{n} \cos nx \Big|_{0}^{\pi} + \frac{2}{n} \cos nx \Big|_{0}^{\pi} \right) = \frac{1}{n} \left(-\frac{9}{n} \cos nx \Big|_{0}^{\pi} + \frac{2}{n} \cos nx \Big|_{0}^{\pi} \right) = \frac{1}{n} \left(-\frac{9}{n} \cos nx \Big|_{0}^{\pi} + \frac{2}{n} \cos nx \Big|_{0}^{\pi} \right) = \frac{1}{n} \left(-\frac{9}{n} \cos nx \Big|_{0}^{\pi} + \frac{2}{n} \cos nx \Big|_{0}^{\pi} \right) = \frac{1}{n} \left(-\frac{9}{n} \cos nx \Big|_{0}^{\pi} + \frac{2}{n} \cos nx \Big|_{0}^{\pi} \right) = \frac{1}{n} \left(-\frac{9}{n} \cos nx \Big|_{0}^{\pi} + \frac{2}{n} \cos nx \Big|_{0}^{\pi} \right) = \frac{1}{n} \left(-\frac{9}{n} \cos nx \Big|_{0}^{\pi} + \frac{2}{n} \cos nx \Big|_{0}^{\pi} \right) = \frac{1}{n} \left(-\frac{9}{n} \cos nx \Big|_{0}^{\pi} + \frac{2}$$

$$= \frac{1}{\pi} \left(-\frac{9}{n} + \frac{9}{n} \cos \pi n + \left(-\frac{2}{n} + \frac{2}{n} \cos \pi n \right) \right) = \frac{1}{\pi} \left(-\frac{11}{n} + \frac{11}{n} \cos \pi n \right) = \frac{1}{\pi} \left(-\frac{11}{n} + \frac{11}{n} (-1)^n \right)$$

$$f(x) \sim \frac{a_0}{0} + \sum_{n=1}^{\infty} a_n \cos nx + b_n \sin nx$$

$$f(x) \sim \frac{7}{2} + \frac{1}{\pi} \left(-\frac{11}{n} + \frac{11}{n} (-1)^n \right) \sin nx$$

Відповідь:
$$f(x) \sim \frac{7}{2} + \frac{1}{\pi} \left(-\frac{11}{n} + \frac{11}{n} (-1)^n \right) \sin nx$$

- 1. Для матриці A знайти обернену матрицю A^{-1} : $A = \begin{vmatrix} 3 & 2 \\ -4 & 1 \end{vmatrix}$.
- 2. Знайти розв'язок задачі Коші: y'' 3y = 0;
- 3. Знайти проміжки зростання функції y = f(x): $f(x) = 4\cos x/2 x$;
- 4. Розвинути в ряд Фур'є функцію f(x) з періодом $T = 2\pi$ $f(x) = \begin{cases} 17 & -\pi < x < 0 \\ -2 & 0 \le x < \pi \end{cases}$

Розв'язок:

1. Знайдемо транспоновану матрицю алгебраїчних доповнень($A_{i,j} = (-1)^{i+j} \cdot M_{i,j}$, де $M_{i,j}$ - це мінор).

Тоді:
$$\begin{pmatrix} A^* \end{pmatrix}^T = \begin{pmatrix} 1 & -2 \\ 4 & 3 \end{pmatrix}$$
; det $A = 3 + 8 = 11$; $A^{-1} = \frac{1}{11} \cdot \begin{pmatrix} 1 & -2 \\ 4 & 3 \end{pmatrix}$;

Зробимо перевірку, перемноживши ці матриці повинна вийти одинична матриця:

$$A^{-1} \cdot A = \frac{1}{11} \cdot \begin{pmatrix} 1 & -2 \\ 4 & 3 \end{pmatrix} \cdot \begin{pmatrix} 3 & 2 \\ -4 & 1 \end{pmatrix} = \frac{1}{11} \cdot \begin{pmatrix} 11 & 0 \\ 0 & 11 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = E;$$

Відповідь:
$$A^{-1} = \frac{1}{11} \cdot \begin{pmatrix} 1 & -2 \\ 4 & 3 \end{pmatrix}$$
.

2. Запишемо характеристичне рівняння:

$$k^2-3=0$$
; Тоді $k_{1,2}=\pm\sqrt{3}$; далі запишемо розв'язок рівняння:

$$y = C_1 \cdot e^{\sqrt{3} \cdot x} + C_2 \cdot e^{-\sqrt{3} \cdot x}$$

Відповідь:
$$y = C_1 \cdot e^{\sqrt{3} \cdot x} + C_2 \cdot e^{-\sqrt{3} \cdot x}$$

3. Функція зростає на проміжку при умові, що похідна цієї функції більша нуля на цьому проміжку,

тоді:
$$f'(x) = -2 \cdot \sin(\frac{x}{2}) - 1$$
; і $-2 \cdot \sin(\frac{x}{2}) - 1 > 0$;

Звідки
$$\sin(\frac{x}{2}) < -\frac{1}{2}$$
;

$$\frac{x}{2} \in (-\frac{5\pi}{6} + 2\pi n; -\frac{\pi}{6} + 2\pi n), \quad n \in \mathbb{Z};$$

$$x \in (-\frac{5\pi}{3} + 4\pi n; -\frac{\pi}{3} + 4\pi n), \quad n \in \mathbb{Z}$$

Відповідь: функція зростає на
$$x \in (-\frac{5\pi}{3} + 4\pi n; -\frac{\pi}{3} + 4\pi n), n \in \mathbb{Z}$$

4. Оскільки функція кусково-монотонна, то за теоремою Діріхле ряд Фур'є цієї функції в кожній точці збігається до значення (f(x-0)+f(x+0))/2

$$a_0 = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) dx = \frac{1}{\pi} \left[\int_{-\pi}^{0} 17 dx + \int_{0}^{\pi} (-2) dx \right] = \frac{1}{\pi} \left[17x \Big|_{-\pi}^{0} - 2x \Big|_{0}^{\pi} \right] = \frac{1}{\pi} \left[17(0 - (-\pi)) - 2(\pi - 0) \right] = \frac{1}{\pi} \cdot 15\pi = 15$$

$$\frac{17}{\pi n} \left(\sin 0 - \sin(-n\pi) \right) - \frac{2}{\pi n} \left(\sin 0 - \sin \pi n \right) = 0$$

$$b_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin nx dx = \frac{1}{\pi} \left[\int_{-\pi}^{0} 17 \sin nx dx - \int_{0}^{\pi} 2 \sin nx dx \right] = -\frac{17}{\pi n} (\cos 0 - \cos(-\pi n)) + \frac{1}{\pi} \left[\int_{-\pi}^{\pi} f(x) \sin nx dx - \int_{0}^{\pi} 2 \sin nx dx \right] = -\frac{17}{\pi n} (\cos 0 - \cos(-\pi n)) + \frac{1}{\pi} \left[\int_{-\pi}^{\pi} f(x) \sin nx dx - \int_{0}^{\pi} 2 \sin nx dx \right] = -\frac{17}{\pi n} (\cos 0 - \cos(-\pi n)) + \frac{1}{\pi} \left[\int_{-\pi}^{\pi} f(x) \sin nx dx - \int_{0}^{\pi} 2 \sin nx dx \right] = -\frac{17}{\pi n} (\cos 0 - \cos(-\pi n)) + \frac{1}{\pi} \left[\int_{-\pi}^{\pi} f(x) \sin nx dx - \int_{0}^{\pi} 2 \sin nx dx \right] = -\frac{17}{\pi n} (\cos 0 - \cos(-\pi n)) + \frac{1}{\pi} \left[\int_{-\pi}^{\pi} f(x) \sin nx dx - \int_{0}^{\pi} 2 \sin nx dx \right] = -\frac{17}{\pi n} (\cos 0 - \cos(-\pi n)) + \frac{1}{\pi} \left[\int_{-\pi}^{\pi} f(x) \sin nx dx - \int_{0}^{\pi} 2 \sin nx dx \right] = -\frac{17}{\pi n} (\cos 0 - \cos(-\pi n)) + \frac{1}{\pi} \left[\int_{-\pi}^{\pi} f(x) \sin nx dx - \int_{0}^{\pi} 2 \sin nx dx \right] = -\frac{17}{\pi n} (\cos 0 - \cos(-\pi n)) + \frac{1}{\pi} \left[\int_{0}^{\pi} f(x) \sin nx dx - \int_{0}^{\pi} f(x) \sin nx dx \right] = -\frac{17}{\pi} \left[\int_{0}^{\pi} f(x) \sin nx dx - \int_{0}^{\pi} f(x) \sin nx dx - \int_{0}^{\pi} f(x) \sin nx dx \right] = -\frac{17}{\pi} \left[\int_{0}^{\pi} f(x) \sin nx dx - \int_$$

$$+\frac{2}{\pi n}(\cos(\pi n)-\cos 0)=\frac{2}{\pi n}\left(\left((-1)^n-1\right)-\frac{17}{\pi n}\left(1-(-1)^n\right)\right)=\frac{19}{\pi n}\left((-1)^n-1\right)$$

$$f(x) \Box \frac{15}{2} + \sum_{n=1}^{\infty} \frac{19}{\pi n} ((-1)^n - 1) \sin nx$$

Відповідь:
$$f(x) \Box \frac{15}{2} + \sum_{n=1}^{\infty} \frac{19}{\pi n} ((-1)^n - 1) \sin nx$$

- 1. Для матриці A знайти обернену матрицю A^{-1} , $A = \begin{bmatrix} -2 & 2 \\ 3 & 4 \end{bmatrix}$
- 2. Знайти розв'язок задачі Коші y'' + 3y' = 0
- 3. Знайти найменше значення функції y = f(x) на відрізку [-1,2] $f(x) = x^3 + (3/2)x^2$
- 4. Розвинути в ряд Фур'є функцію f(x) з періодом $T=2\pi$ $f(x)=\begin{cases} 9, & -\pi < x < 0, \\ -7, & 0 \le x \le \pi. \end{cases}$

1. Знайдемо транспоновану матрицю алгебраїчних доповнень($A_{i,j} = (-1)^{i+j} \cdot M_{i,j}$, де $M_{i,j}$ - це мінор).

Тоді:
$$\begin{pmatrix} A^* \end{pmatrix}^T = \begin{pmatrix} 4 & -2 \\ -3 & -2 \end{pmatrix}$$
; det $A = -8 - 6 = -14$; та $A^{-1} = \frac{1}{14} \cdot \begin{pmatrix} -4 & 2 \\ 3 & 2 \end{pmatrix}$;

Зробимо перевірку, перемноживши ці матриці повинна вийти одинична матриця:

$$A^{-1} \cdot A = \frac{1}{14} \cdot \begin{pmatrix} -4 & 2 \\ 3 & 2 \end{pmatrix} \cdot \begin{pmatrix} -2 & 2 \\ 3 & 4 \end{pmatrix} = \frac{1}{14} \cdot \begin{pmatrix} 14 & 0 \\ 0 & 14 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = E$$

Відповідь:
$$A^{-1} = \frac{1}{14} \cdot \begin{pmatrix} -4 & 2 \\ 3 & 2 \end{pmatrix}$$

2. Запишемо характеристичне рівняння:

$$k^2 + 3k = 0$$
; тоді $k_{1,2} = 0$; -3. Запишемо розв'язок рівняння: $y = C_1 + C_2 \cdot e^{-3 \cdot x}$

Відповідь:
$$y = C_1 + C_2 \cdot e^{-3 \cdot x}$$
.

3. Щоб знайти найменше значення функції на проміжку достатньо провірити значення функції на кінцях проміжку та в критичних точках, які належать цьому проміжку, тобто в таких токах в яких похідна рівна нулю або не існує, та порівняти значення функції в цих точках. Отже: $f(-1) = -1 + \frac{3}{2} = 0.5$; та

$$f(2) = 8 + 6 = 14$$
; $f'(x) = 3 \cdot x^2 + 3 \cdot x$; Тоді $x^2 + x = 0$; Звідси $x_{1,2} = 0$; -1; $f(0) = 0$; $\min_{x \in [-1,2]} f(x) = f(0) = 0$

Відповідь:
$$\min_{x \in [-1,2]} f(x) = f(0) = 0$$

4. Оскільки ф-ція Кусково-монотонна, то за теоремою Діріхлє, ряд Фур'є цієї ф-ції в кожній точці збігається до значення (f(x-0)+f(x+0))/2

Коефіцієнти ряду Фур'є:
$$a_0 = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) dx$$

$$a_0 = \frac{1}{\pi} \left(\int_{-\pi}^{0} 9 dx - 7 \int_{0}^{\pi} dx \right) = \frac{1}{\pi} (9\pi - 7\pi) = \frac{2\pi}{\pi} = 2$$

$$a_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos nx dx = \frac{1}{\pi} (9 \int_{-\pi}^{0} \cos nx dx - 7 \int_{0}^{\pi} \cos nx dx) = \frac{1}{\pi} (\frac{9}{n} \sin(nx) \Big|_{-\pi}^{0} - \frac{7}{n} \sin(nx) \Big|_{0}^{\pi}) =$$

$$= \frac{1}{\pi} (-\frac{9}{n} \sin \pi n - \frac{7}{n} \sin \pi n) = \frac{1}{\pi} (-\frac{16}{n} \sin \pi n) = 0$$

$$b_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin nx dx = \frac{1}{\pi} (9 \int_{-\pi}^{0} \sin nx dx - 7 \int_{0}^{\pi} \cos nx dx) = \frac{1}{\pi} (-\frac{9}{n} \cos nx \Big|_{-\pi}^{0} + \frac{7}{n} \cos x_n \Big|_{0}^{\pi}) =$$

$$f(x) \sim 1 + \sum_{n=1}^{\infty} \frac{1}{\pi} \left(-\frac{16}{n} + \frac{16}{n} \cos n\pi \right) \sin nx$$

Відповідь:
$$f(x) \sim 1 + \sum_{n=1}^{\infty} \frac{1}{\pi} (-\frac{16}{n} + \frac{16}{n} \cos n\pi) \sin nx$$

1. Розв'язати систему рівнянь
$$\begin{cases} 4x - 2y = 20 \\ 2x + y = 10 \end{cases}$$
;

- 2. На координатній площині XOY зобразити множину точок M(x,y), координати яких задовольняють умовам: |x|-|y|=1;
- 3. Знайти найменше значення функції y = f(x) на відрізку [-1,2] $f(x) = \frac{x^4}{4} \frac{x^2}{2}$;
- 4. Розвинути в ряд Фур'є синусами f(x) з періодом $T=2\pi$

$$f(x) = \begin{cases} 8, & 0 < x < \frac{\pi}{2}, \\ 11, & \frac{\pi}{2} < x < \pi. \end{cases}$$

1.
$$\begin{cases} 4x - 2y = 20 & (1) \\ 2x + y = 10 & (2) \end{cases}$$

Помножимо рівняння (2) на 2 отримаємо: $\begin{cases} 4x - 2y = 20 \\ 4x + 2y = 20 \end{cases}$

Віднімемо отримані рівняння: $-4y = 0 \Rightarrow y = 0$; $x = \frac{1}{2}y + 5 = 5$

Відповідь:
$$\begin{cases} x = 5 \\ y = 0 \end{cases}$$

$$|x| - |y| = 1$$

2.
$$|y| = |x| - 1$$

$$\begin{cases} y = |x| - 1, y \ge 0 \\ y = -|x| + 1, y \le 0 \end{cases}$$

Відповідь:

3.
$$f(x) = \frac{x^4}{4} - \frac{x^2}{2}$$
 Тоді $f'(x) = x^3 - x \ge 0 \Longrightarrow x(x-1)(x+1) \ge 0$

$$f(1) = f(-1) = -1/4; f(0) = 0; f(2) = 2$$

Відповідь: *m*=-1/4

4. Кусково-монотонна, то за теоремою Діріхлє ряд Фур'є цієї функції в кожній точці збігається до значення $\frac{f(x-0)+f(x+0)}{2}$

Продовжимо функцію на проміжок ($-\pi$;0) непарним чином Коефіцієнти Фур'є знаходяться за формулами:

$$a_0 = 0; b_0 = 0$$

$$b_n = \frac{2}{\pi} \int_0^{\pi} f(x) \sin nx dx = \frac{2}{\pi} \int_0^{\frac{\pi}{2}} 8 \sin nx dx + \frac{2}{\pi} \int 11 \sin nx dx = \frac{2}{\pi} \left(-\frac{8}{n} \cos nx \right|_0^{\frac{\pi}{2}} - \frac{11}{n} \cos nx \Big|_{\frac{\pi}{2}}^{\frac{\pi}{2}} \right) = \frac{2}{\pi} \int_0^{\pi} f(x) \sin nx dx = \frac{2}{\pi} \int_0^{\frac{\pi}{2}} 8 \sin nx dx + \frac{2}{\pi} \int_0^{\pi} 11 \sin nx dx = \frac{2}{\pi} \left(-\frac{8}{n} \cos nx \right|_0^{\frac{\pi}{2}} - \frac{11}{n} \cos nx \Big|_0^{\frac{\pi}{2}} = \frac{1}{n} \int_0^{\pi} 8 \sin nx dx + \frac{2}{n} \int_0^{\pi} 11 \sin nx dx = \frac{2}{n} \int_0^{\pi} 8 \sin nx dx + \frac{2}{n} \int_0^{\pi} 11 \sin nx dx = \frac{2}{n} \int_0^{\pi} 8 \sin nx dx + \frac{2}{n} \int_0^{\pi} 11 \sin nx dx = \frac{2}{n} \int_0^{\pi} 8 \sin nx dx + \frac{2}{n} \int_0^{\pi} 11 \sin nx dx = \frac{2}{n} \int_0^{\pi} 8 \sin nx dx + \frac{2}{n} \int_0^{\pi} 11 \sin nx dx = \frac{2}{n} \int_0^{\pi} 8 \sin nx dx + \frac{2}{n} \int_0^{\pi} 11 \sin nx dx = \frac{2}{n} \int_0^{\pi} 8 \sin nx dx + \frac{2}{n} \int_0^{\pi} 11 \sin nx dx = \frac{2}{n} \int_0^{\pi} 8 \sin nx dx + \frac{2}{n} \int_0^{\pi} 11 \sin nx dx = \frac{2}{n} \int_0^{\pi} 8 \sin nx dx + \frac{2}{n} \int_0^{\pi} 11 \sin nx dx = \frac{2}{n} \int_0^{\pi} 8 \sin nx dx + \frac{2}{n} \int_0^{\pi} 11 \sin nx dx = \frac{2}{n} \int_0^{\pi} 8 \sin nx dx + \frac{2}{n} \int_0^{\pi} 11 \sin nx dx = \frac{2}{n} \int_0^{\pi} 8 \sin nx dx + \frac{2}{n} \int_0^{\pi} 11 \sin nx dx = \frac{2}{n} \int_0^{\pi} 8 \sin nx dx + \frac{2}{n} \int_0^{\pi} 11 \sin nx dx = \frac{2}{n} \int_0^{\pi} 8 \sin nx dx + \frac{2}{n$$

$$f(x) \sim \sum_{n=1}^{\infty} -\frac{2\sin nx}{\pi n} (3(\cos \frac{\pi n}{2} - 1) + 11((-1)^n - \cos \frac{\pi n}{2}))$$

Відповідь:
$$f(x) \sim \sum_{n=1}^{\infty} -\frac{2\sin nx}{\pi n} (3(\cos \frac{\pi n}{2} - 1) + 11((-1)^n - \cos \frac{\pi n}{2}))$$

1. Розв'язати систему рівнянь

$$\begin{cases} x + 5y = 10 \\ x - 3y = 15 \end{cases}$$

2. На координатній площині XOY зобразити множину точок M(x,y), координати яких задовольняють умовам:

$$|x| + |y| = 1$$

3. Знайти найбільше значення функції y = f(x) на відрізку [-3,0]

$$f(x) = -x^3 + 3x^2 - 5$$

4. Розвинути в ряд Фур'є функцію $f\left(x\right)$ з періодом $T=2\pi$

$$f(x) = -\begin{cases} 5, -\pi < x < 0 \\ -6, 0 \le x < \pi \end{cases} T = 2\pi$$

1.
$$\begin{cases} x + 5y = 10 & (1) \\ x - 3y = 15 & (2) \end{cases}$$

Віднімемо від рівняння (1) рівняння (2)

$$8y = -5 \Rightarrow y = -\frac{5}{8}$$
; $x = -5y + 10$; $x = 10 - 5(-\frac{5}{8}) = \frac{105}{8}$

Відповідь:
$$\begin{cases} x = \frac{105}{8} \\ y = -\frac{5}{8} \end{cases}$$
.

$$|x| + |y| = 1$$

2.
$$|y = -|x| + 1, y \ge 0$$
$$|y = |x| - 1, y < 0$$

Відповідь:

3.
$$f(x) = -x^3 + 3x^2 - 5$$
; $f'(x) = -3x^2 + 6x = 0$. Тоді $-3x^2 + 6x \ge 0$ тоді $x(x-2) \le 0$ Отже $\begin{bmatrix} x = 0 \\ x = 2 \end{bmatrix}$. $f(0) = -5$; $f(2) = -1$; $f(-3) = 103$

Відповідь: *M* = 103

4. Оскільки функція кусково-монотонна , то за теоремою Діріхлє ряд Фур'є цієї функції в кожній точці збігається до значення $\frac{f(x-0)+f(x+0)}{2}$.

Коефіцієнт ряду Фур'є:

$$a_0 = \frac{1}{\pi} \int_{-\pi}^{0} 5dx + \frac{1}{\pi} \int_{0}^{\pi} (-6) dx = +5 - 6 = -1$$

$$a_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos(nx) dx = \frac{1}{\pi} \left(\int_{-\pi}^{0} 5 \cos(nx) dx + \int_{0}^{\pi} (-6) \cos(nx) dx \right) =$$

$$= \frac{1}{\pi} \left(5 \int_{-\pi}^{0} \cos(nx) d(nx) - 6 \int_{0}^{\pi} \cos(nx) d(nx) \right) = \frac{1}{\pi n} \left(5 \sin(nx) \Big|_{-\pi}^{0} - 6 \sin(nx) \Big|_{0}^{\pi} \right) = \frac{1}{\pi n} \left(0 + 0 \right) = 0$$

$$b_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin(nx) dx = \frac{1}{\pi} \left(\int_{-\pi}^{0} 5 \sin(nx) d(nx) + \int_{0}^{\pi} (-6) \sin(nx) d(nx) \right) = \frac{1}{\pi n} \left(5 \left(-\cos(nx) \right) \Big|_{-\pi}^{0} - 6 \left(-\cos(nx) \right) \Big|_{0}^{\pi} \right) = \frac{1}{\pi n} \left(5 \left(-\cos(nx) \right) \Big|_{-\pi}^{0} - 6 \left(-\cos(nx) \right) \Big|_{0}^{\pi} \right) = \frac{1}{\pi n} \left(5 \left(-\cos(nx) \right) \Big|_{-\pi}^{0} - 6 \left(-\cos(nx) \right) \Big|_{0}^{\pi} \right) = \frac{1}{\pi n} \left(5 \left(-\cos(nx) \right) \Big|_{0}^{\pi} - 6 \left(-\cos(nx) \right) \Big|_{0}^{\pi} \right) = \frac{1}{\pi n} \left(5 \left(-\cos(nx) \right) \Big|_{0}^{\pi} - 6 \left(-\cos(nx) \right) \Big|_{0}^{\pi} \right) = \frac{1}{\pi n} \left(5 \left(-\cos(nx) \right) \Big|_{0}^{\pi} - 6 \left(-\cos(nx) \right) \Big|_{0}^{\pi} \right) = \frac{1}{\pi n} \left(5 \left(-\cos(nx) \right) \Big|_{0}^{\pi} - 6 \left(-\cos(nx) \right) \Big|_{0}^{\pi} \right) = \frac{1}{\pi n} \left(5 \left(-\cos(nx) \right) \Big|_{0}^{\pi} - 6 \left(-\cos(nx) \right) \Big|_{0}^{\pi} \right) = \frac{1}{\pi n} \left(5 \left(-\cos(nx) \right) \Big|_{0}^{\pi} - 6 \left(-\cos(nx) \right) \Big|_{0}^{\pi} \right) = \frac{1}{\pi n} \left(-\cos(nx) \right) \left(-\cos(nx) \right$$

$$= \frac{1}{\pi n} \left(+5 \left((-1) + (-(-1))^n \right) - 6 \left(-(-1)^n - (-1) \right) \right) =$$

$$\frac{5}{\pi n} \Big((-1) + (-(-1))^n \Big) + \frac{6}{\pi n} \Big((-1)^n + (-1) \Big) = \frac{11}{\pi n} \Big((-1)^n + (-1) \Big)$$

$$f(x) \Box -\frac{1}{2} + \sum_{n=1}^{\infty} \frac{11}{\pi n} ((-1)^n + (-1)) \sin(nx).$$

Відповідь:
$$f(x) \Box -\frac{1}{2} + \sum_{n=1}^{\infty} \frac{11}{\pi n} \Big((-1)^n + (-1) \Big) \sin(nx).$$

- 1. Розв'язати систему рівнянь $\begin{cases} x + 3y = 15 \\ 2x 4y = 10 \end{cases}$
- 2. На координатній площині ХОУ зобразити множину точок М(х,у), координати яких задовольняють умовам: |x + y| = 1;
- 3. Знайти найбільше значення функції y = f(x) на відрізку [-3,0]: $f(x) = 2x^3 9x^2 + 4$ 4. Розвинути в ряд Фур'є синусами f(x) з періодом $T = 2\pi$, $f(x) = \begin{cases} 8, & 0 < x < \frac{\pi}{2}, \\ 11, & \frac{\pi}{2} < x < \pi. \end{cases}$

1.
$$\begin{cases} x + 3y = 15 & (1) \\ 2x - 4y = 10 & (2) \end{cases}$$

Помножимо перше рівняння на 2 та віднімемо від (2):

$$\begin{cases} 2x + 6y = 30 \\ 2x - 4y = 10 \end{cases}$$
$$10y = 20 \Rightarrow y = 2$$
$$x = 15 - 3y = 15 - 6 = 9$$

Відповідь:
$$\begin{cases} x = 9 \\ y = 2 \end{cases}$$
.

2.
$$|x+y| = 1$$
; $\begin{bmatrix} x+y=1, x \ge -y \\ x+y=-1, x < -y \end{bmatrix}$; $\begin{bmatrix} y=-x+1, x \ge -y \\ y=-x-1, x < -y \end{bmatrix}$

Відповідь:

3.
$$f(x) = 2x^3 - 9x^2 + 4$$
; $f'(x) = 6x^2 - 18x = 0 \Rightarrow x(x-3) \ge 0$

$$f(-3) = -131$$
; $f(3) = -23$; $f(0) = 4$

Відповідь: M = f(0) = 4

4. функція Кусково-монотонна, то за теоремою Діріхлє ряд Фур'є цієї функції в кожній точці збігається до значення $\frac{f(x-0)+f(x+0)}{2}$

Продовжимо функцію на проміжок ($-\pi$;0) непарним чином Коефіцієнти Фур'є знаходяться за формулами:

$$a_0 = 0$$

$$b_0 = 0$$

$$f(x) \sim \sum_{n=1}^{\infty} -\frac{2\sin nx}{\pi n} (3(\cos \frac{\pi n}{2} - 1) + 11((-1)^n - \cos \frac{\pi n}{2}))$$

Відповідь:
$$f(x) \sim \sum_{n=1}^{\infty} -\frac{2\sin nx}{\pi n} (3(\cos \frac{\pi n}{2} - 1) + 11((-1)^n - \cos \frac{\pi n}{2}))$$

1. Розв'язати систему рівнянь

$$\begin{cases} x - 4y = 8 \\ 2x - y = 5 \end{cases}$$

2. На координатній площині XOY зобразити множину точок M(x,y), координати яких задовольняють умовам:

$$|x-y|=1$$

3. Знайти найбільше M та найменше m значення функції y = f(x) на даному відрізку [a,b]

$$f(x) = 2 \cdot 2^{3x} - 9 \cdot 2^{2x} + 12 \cdot 2^x$$
 [-1;1]

4. Електронний прилад складається з 4 вузлів. Відомо, що вузли виходять з ладу незалежно один від одного. Ймовірність відмови за час t=100 год дорівнює q=0,2. Знайти ймовірність того, що не відмовить рівно один вузол приладу з чотирьох під час роботи приладу.

1.
$$\begin{cases} x - 4y = 8 & (1) \\ 2x - y = 5 & (2) \end{cases}$$

Помножимо рівняння (1) на 2 і віднімемо від нього (2) $\begin{cases} 2x - 8y = 16 \\ 2x - y = 5 \end{cases}$ \Rightarrow $-7y = 11 \Rightarrow y = -\frac{11}{7}$

Виразимо з першого рівняння х: $x = 4y + 8 \Rightarrow x = 4(-\frac{11}{7}) + 8 = \frac{12}{7}$.

Відповідь: $\begin{cases} x = 12/7 \\ y = -11/7 \end{cases}$

2.
$$|x - y| = 1$$

$$\begin{vmatrix} x - y = 1, x \ge y \\ x - y = -1, x < y \end{vmatrix}$$

$$\begin{bmatrix} y = x - 1, x \ge y \\ y = x + 1, x < y \end{bmatrix}$$

3.
$$f(x) = 2 \cdot 8^{x} - 9 \cdot 4^{x} + 12 \cdot 2^{x}$$
$$f'(x) = 2 \cdot 8^{x} \ln 8 - 9 \cdot 4^{x} \ln 4 + 12 \cdot 2^{x} \ln 2 = 6 \cdot 8^{x} \ln 2 - 18 \cdot 4^{x} \ln 2 + 12 \cdot 2^{x} \ln 2 = 0$$

$$8^x - 3 \cdot 4^x + 2 \cdot 2^x = 0$$

$$2^{3x} - 3 \cdot 2^{2x} + 2 \cdot 2^x = 0$$

Заміна:
$$2^x = t > 0$$

$$(t^2 - 3 \cdot t + 2) \cdot t = 0$$

$$t \neq 0$$

$$t^2 - 3 \cdot t + 2 = 0$$

$$\begin{bmatrix} t = 1 \\ t = 2 \end{bmatrix}$$

$$t=2$$

$$(t-1)(t-2)\geq 0$$

$$\left| \int_{0}^{\infty} 2^{x} \ge 1 \right|$$

$$\left| \left(2^{x} \geq 2 \right) \right|$$

$$\begin{cases} 2^n \leq 1 \end{cases}$$

$$\left[2^{x} \le 2\right]$$

$$\int \int x \ge 0$$

$$| x \ge 1$$

$$\int x \leq 0$$

$$\begin{cases} x \leq 0 \\ x \leq 1 \end{cases}$$

$$f(-1) = 4; f(0) = 5; f(1) = 4$$

Відповідь: M = 5; m = 4

4. За формулою біноміального розподілу ймовірностей можемо знайти ймовірність відмови одного вузла системи: $P_{1,4} = C_4^1 (1-q)q^3 = 4 \cdot 0.8 \cdot (0.2)^3 = 0.025$

Відповідь: $P_{1.4} = 0.025$

1. Розв'язати систему рівнянь

$$\begin{cases} 2x - 5y = 30 \\ 5x - 2y = 10 \end{cases}$$

- 2. Обчислити $\log_4 a$, якщо $a = \sin \pi/6$
- 3. Знайти первісну функції y(x), графік якої проходить через точку А

$$y = 4x^2 - 12x + 9 \qquad A(0;1)$$

4. Розвинути в ряд Фур'є синусами f(x) з періодом $T=2\pi$

$$f(x) = \begin{cases} 8, & 0 < x < \frac{\pi}{2}, \\ 11, & \frac{\pi}{2} < x < \pi. \end{cases}$$

1.
$$\begin{cases} 2x - 5y = 30 & (1) \\ 5x - 2y = 10 & (2) \end{cases}$$

Помножимо рівняння (1) на 5 та (2) на 2:

$$\begin{cases} 10x - 25y = 150 \\ 10x - 4y = 20 \end{cases}$$

Віднімемо отримані ці рівняння. Отримаємо: $-21y = 130 \Rightarrow y = -130/21$

Виразимо x з першого рівняння:

$$x = \frac{5y + 30}{2}$$
$$x = \frac{15 \cdot 42 - 130 \cdot 5}{2 \cdot 21} = -\frac{10}{21}$$

Відповідь:
$$\begin{cases} x = -10/21 \\ y = -130/21 \end{cases}$$

2.
$$a = \sin \pi / 6 = \frac{1}{2}$$

$$\log_4 a = \log_{2^2} a = \frac{1}{2} \log_2 a = \frac{1}{2} \log_2 2^{-1} = -\frac{1}{2}$$

Відповідь: $\log_4 a = -1/2$

3.
$$F(x) = \int y dx = \int (4x^2 - 12x + 9) dx = \frac{4}{3}x^3 - \frac{12}{2}x^2 + 9x + C$$

 $F(x) = \frac{4}{3}x^3 - 6x^2 + 9x + C$

Підставимо в останнє рівняння координати точки A(0;1). Отримаємо: C=1

Тоді рівняння первісної матиме вигляд: $F(x) = \frac{4}{3}x^3 - 6x^2 + 9x + 1$

Відповідь:
$$F(x) = \frac{4}{3}x^3 - 6x^2 + 9x + 1$$

4. Кусково-монотонна, то за теоремою Діріхлє ряд Фур'є цієї функції в кожній точці збігається до значення $\frac{f(x-0)+f(x+0)}{2}$

Продовжимо функцію на проміжок ($-\pi$;0) непарним чином Коефіцієнти Фур'є знаходяться за формулами:

$$a_0 = 0$$

$$b_0 = 0$$

$$b_n = \frac{2}{\pi} \int_0^{\pi} f(x) \sin nx dx = \frac{2}{\pi} \int_0^{\frac{\pi}{2}} 8 \sin nx dx + \frac{2}{\pi} \int 11 \sin nx dx = \frac{2}{\pi} \left(-\frac{8}{n} \cos nx \right|_0^{\frac{\pi}{2}} - \frac{11}{n} \cos nx \right|_{\frac{\pi}{2}}^{\pi} = \frac{1}{\pi} \int_0^{\pi} f(x) \sin nx dx = \frac{2}{\pi} \int_0^{\pi}$$

$$=\frac{2}{\pi}\left(-\frac{8}{n}(\cos\frac{\pi n}{2}-1)-\frac{11}{n}((-1)^n-\cos\frac{\pi n}{2})\right)=-\frac{2}{\pi n}\left(8(\cos\frac{\pi n}{2}-1)+11((-1)^n-\cos\frac{\pi n}{2})\right)$$

$$f(x) \sim \sum_{n=1}^{\infty} -\frac{2\sin nx}{\pi n} (3(\cos \frac{\pi n}{2} - 1) + 11((-1)^n - \cos \frac{\pi n}{2}))$$

Відповідь:
$$f(x) \sim \sum_{n=1}^{\infty} -\frac{2\sin nx}{\pi n} (3(\cos \frac{\pi n}{2} - 1) + 11((-1)^n - \cos \frac{\pi n}{2}))$$

- 1. Знайдіть похідну від функції y(x): $y(x) = e^{2x} 1/x$;
- 2.Обчислити визначник: $\Delta = \begin{vmatrix} 3 & 0 \\ -3 & 2 \end{vmatrix}$
- 3. Знайти первісну функції y(x), графік якої проходить через точку А: $y = 6x^2 8x + 3$ A(-2;10)
- 4. Розвинути в ряд Фур'є функцію f(x) з періодом $T=2\pi$, $f(x)=-\begin{cases} 5, -\pi < x < 0 \\ -6, 0 \le x < \pi \end{cases} T=2\pi$

Розв'язок:

1. Похідна по x відповідно до правил диференціювання: $y'(x) = 2e^{2x} + 1/x^2$

Відповідь:
$$y'(x) = 2e^{2x} + 1/x^2$$

2.
$$\Delta = \begin{vmatrix} 3 & 0 \\ -3 & 2 \end{vmatrix} = 6 - 0 = 6$$

Відповідь:
$$\Delta = 6$$

$$3. Y(x) = \int y(x)dx = 2x^3 - 4x^2 + 3x + C$$

Знайдемо сталу C використовуючи координати точки : $10=-2\cdot8-4\cdot4-6+C$

Звідси
$$C = 48$$
.

Відповідь:
$$Y(x) = \int y(x)dx = 2x^3 - 4x^2 + 3x + 48$$

4. Оскільки функція кусково-монотонна , то за теоремою Діріхлє ряд Фур'є цієї функції в кожній точці збігається до значення $\frac{f(x-0)+f(x+0)}{2}$.

Коефіцієнт ряду Фур'є:

$$a_{0} = \frac{1}{\pi} \int_{-\pi}^{0} 5dx + \frac{1}{\pi} \int_{0}^{\pi} (-6) dx = +5 - 6 = -1$$

$$a_{n} = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos(nx) dx = \frac{1}{\pi} \left(\int_{-\pi}^{0} 5 \cos(nx) dx + \int_{0}^{\pi} (-6) \cos(nx) dx \right) =$$

$$= \frac{1}{\pi} \left(5 \int_{-\pi}^{0} \cos(nx) d(nx) - 6 \int_{0}^{\pi} \cos(nx) d(nx) \right) = \frac{1}{\pi} \left(5 \sin(nx) \Big|_{-\pi}^{0} - 6 \sin(nx) \Big|_{0}^{\pi} \right) =$$

$$= \frac{1}{\pi} (0 + 0) = 0$$

Відповідь:
$$f(x) \Box -\frac{1}{2} + \sum_{n=1}^{\infty} \frac{11}{\pi n} ((-1)^n + (-1)) \sin(nx)$$
.

- 1. Знайдіть похідну від функції y(x): $y(x) = 5x + \cos(3x)$;
- 2. Знайти модуль вектора $\vec{a} = \{5; -3\};$
- 3. Знайти первісну функції y(x), графік якої проходить через точку А: $y = 2x^3 + 3x^2 + 4x + 5$ А(-1;1)
- 4. Розвинути в ряд Фур'є функцію f(x) з періодом $T=2\pi$, $f(x)=\begin{cases} 11, -\pi < x < 0 \\ -6, 0 \le x < \pi \end{cases} T=2\pi$

1. Похідна за змінною
$$x: y'(x) = 5 - 3\sin 3x$$

Відповідь: $y'(x) = 5 - 3\sin 3x$

$$2. |\vec{a}| = \sqrt{(5)^2 + (3)^2} = \sqrt{34}$$

Відповідь:
$$|\vec{a}| = \sqrt{34}$$

3. Первісна

$$Y = \int y dx = \frac{x^4}{2} + x^3 + 2x^2 + 5x + c$$

Тоді
$$1 = \frac{1}{2} - 1 + 2 - 5 + c$$
. Звідси $c = 4,5$.

Отже первісна матиме вигляд $Y = (x^4/2) + x^3 + 2x^2 + 5x + 4,5$.

Відповідь:
$$Y = (x^4/2) + x^3 + 2x^2 + 5x + 4\frac{1}{2}$$
.

4. Оскільки функція кусково-монотонна , то за теоремою Діріхлє ряд Фур'є цієї функції в кожній точці збігається до значення $\frac{f(x-0)+f(x+0)}{2}$.

Коефіцієнти ряду Фур'є:

$$a_0 = \frac{1}{\pi} \int_{-\pi}^{0} 11 dx + \frac{1}{\pi} \int_{0}^{\pi} (-6) dx = \frac{1}{\pi} \left(11x \Big|_{-\pi}^{0} - 6x \Big|_{0}^{\pi} \right) = \frac{1}{\pi} \left(11\pi - 6\pi \right) = \frac{5\pi}{\pi} = 5$$

$$a_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos(nx) dx = \frac{1}{\pi} \left[\int_{-\pi}^{0} 11 \cos(nx) dx + \int_{0}^{\pi} (-6) \cos(nx) dx \right] =$$

$$= \frac{1}{\pi} \left(\frac{11}{n} \sin(nx) \Big|_{-\pi}^{0} - \frac{6}{n} \sin(nx) \Big|_{0}^{\pi} \right) = \frac{11}{\pi n} \left(\sin(0) - \sin(-n\pi) \right) - \frac{6}{\pi n} \left(\sin(0) - \sin(n\pi) \right) = 0$$

$$b_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin(nx) dx = \frac{1}{\pi} \left(\int_{-\pi}^{0} 11 \sin(nx) dx + \int_{0}^{\pi} (-6) \sin(nx) dx \right) =$$

$$= \frac{1}{n} \left(-\frac{11}{n} (\cos(nx)) \Big|_{-\pi}^{0} + \frac{6}{n} (-\cos(nx)) \Big|_{0}^{\pi} \right) =$$

$$= -\frac{11}{\pi n} (\cos(0) - \cos(-n\pi)) + \frac{6}{\pi n} (\cos(n\pi) - \cos(0)) =$$

$$= -\frac{11}{\pi n} \left(1 - (-1)^n \right) + \frac{6}{\pi n} \left((-1)^n - 1 \right) = \frac{17}{\pi n} \left((-1)^n - 1 \right)$$

$$f(x) \Box \frac{5}{2} + \sum_{n=1}^{\infty} \frac{17}{\pi n} ((-1)^n - 1) \sin(nx).$$

Відповідь:
$$f(x) \Box \frac{5}{2} + \sum_{n=1}^{\infty} \frac{17}{\pi n} ((-1)^n - 1) \sin(nx)$$
.

- 1. Знайдіть похідну від функції y(x): $y(x) = x^3 3x\sin(x) + \ln(x)$;
- 2. Знайти відстань між двома точками A і B, якщо A(3;2) та B(-4;1);
- 3. Знайти невизначений інтеграл $\int e^{3x} dx$;
- 4. розвинути в ряд Фур'є за косинусами функції f(x) з періодом $T=2\pi$. $f(x)=\begin{cases} 9,0 < x < \frac{\pi}{2}, \\ 0,\frac{\pi}{2} \le x < \pi. \end{cases}$

Розв'язок:

1. Похідна
$$y'(x) = 3x^2 - 3\sin x - 3x\cos x + \frac{1}{x}$$

Відповідь:
$$y'(x) = 3x^2 - 3\sin x - 3x\cos x + \frac{1}{x}$$

2. Відстань між двома точками визначається як:

$$d = \sqrt{(7)^2 + (1)^2} = \sqrt{50}$$

Відповідь:
$$d = \sqrt{50}$$

3.
$$\int e^{3x} dx = \frac{1}{3} \int e^{3x} d(3x) = (1/3)e^{3x} + C$$

Відповідь:
$$(1/3)e^{3x} + C$$
.

4. Оскільки функція Кусково-монотонна, та за теоремою діріхле ряд Фур'є цієї функції в кожній точці збігається до значення

$$\frac{f(x-0)+f(x+0)}{2}$$

Проводимо функцію на проміжок парним чином.

Знайдемо коефіцієнти:
$$a^0 = \frac{2}{\pi} \int_0^{\pi} f(x) dx = \frac{2}{\pi} \int_0^{\frac{\pi}{2}} 9 dx + \frac{2}{\pi} \int_{\frac{\pi}{2}}^{\pi} 0 dx = \frac{2}{\pi} \cdot 9 \cdot \frac{\pi}{2} = 9$$

$$a_n = \frac{2}{\pi} \int_0^{\pi} f(x) \cos nx dx = \frac{2}{n\pi} \int_0^{\frac{\pi}{2}} 9 \cdot \cos(nx) d(nx) + \frac{2}{n\pi} \int_{\frac{\pi}{2}}^{\pi} 0 \cos nx d(nx) =$$

$$= \frac{18}{n\pi} \cdot \sin nx \Big|_{0}^{\frac{\pi}{2}} = \frac{18}{n\pi} \sin \frac{n\pi}{2} - 0 = \frac{18}{n\pi} \sin \frac{n\pi}{2}$$

$$bn = 0$$

$$f(x) \sim \frac{9}{2} + \sum_{n=1}^{\infty} \left(\frac{18}{n\pi} \sin \frac{n\pi}{2} \cdot \cos nx \right)$$

Відповідь:
$$f(x) \sim \frac{9}{2} + \sum_{n=1}^{\infty} \left(\frac{18}{n\pi} \sin \frac{n\pi}{2} \cdot \cos nx \right)$$

- 1. Знайдіть похідну від функції y(x): $y(x) = \frac{x^5 4x^3 + x^2}{x^2}$
- 2. Знайти середину між двома точками A і B, якщо A(1;2) та B(2;4)
- 3. Обчислити площу фігури, обмеженої лініями: $y = x^2 + x$; y = x + 1.
- 4. Розвинути в ряд Фур'є функцію f(x) з періодом $T = 2\pi$ $f(x) = \begin{cases} 17 & -\pi < x < 0 \\ -2 & 0 \le x < \pi \end{cases}$

Розв'язок:

1. Вихідну функцію можемо дещо спростити, тобто $y(x) = x^3 - 4x + 1$. Тоді похідна від цієї функції буде:

$$y'(x) = 3x^2 - 4$$

Відповідь: $y'(x) = 3x^2 - 4$

2. Знайдемо точку середини між двома заданими точками A і B:

$$x_{cep} = \frac{1+2}{2} = 3/2; \quad y_{cep} = \frac{2+4}{2} = 3$$

Відповідь: Середина — це точка з координатами $x_{cep} = 3/2$; $y_{cep} = 3$

3. Знайдемо точки перетину функцій: $x^2 + x = x + 1 \implies x = \pm 1$. Графічне зображення має вигляд

Тоді
$$S = \int_{-1}^{1} (x+1-(x^2+x))dx = \int_{-1}^{1} (x+1-x^2-x)dx = \int_{-1}^{1} (-x^2+1)dx = (-\frac{x^3}{3}+x) = -\frac{1}{3}+1-\frac{1}{3}+1 = \frac{4}{3}$$

Відповідь: S = 4/3.

4. функція кусково-монотонна, то за теоремою Діріхле ряд Фур'є цієї функції в кожній точці збігається до значення (f(x-0)+f(x+0))/2

Коефіцієнти ряду Фур'є:

$$a_0 = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) dx = \frac{1}{\pi} \left[\int_{-\pi}^{0} 17 dx + \int_{0}^{\pi} (-2) dx \right] = \frac{1}{\pi} \left[17x \Big|_{-\pi}^{0} - 2x \Big|_{0}^{\pi} \right] = \frac{1}{\pi} \left[17(0 - (-\pi)) - 2(\pi - 0) \right] = \frac{1}{\pi} \cdot 15\pi = 15$$

$$a_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos nx dx = \frac{1}{\pi} \left[\int_{-\pi}^{0} 17 \cos nx dx + \int_{0}^{\pi} (-2) \cos nx dx \right] = \frac{1}{\pi} \left[\frac{17}{n} \sin nx \Big|_{-\pi}^{0} - \frac{2}{n} \sin nx \Big|_{0}^{\pi} \right] = \frac{1}{\pi} \left[\frac{17}{n} \sin nx \Big|_{-\pi}^{0} - \frac{2}{n} \sin nx \Big|_{0}^{\pi} \right] = \frac{1}{\pi} \left[\frac{17}{n} \sin nx \Big|_{-\pi}^{0} - \frac{2}{n} \sin nx \Big|_{0}^{\pi} \right] = \frac{1}{\pi} \left[\frac{17}{n} \sin nx \Big|_{-\pi}^{0} - \frac{2}{n} \sin nx \Big|_{0}^{\pi} \right] = \frac{1}{\pi} \left[\frac{17}{n} \sin nx \Big|_{-\pi}^{0} - \frac{2}{n} \sin nx \Big|_{0}^{\pi} \right] = \frac{1}{\pi} \left[\frac{17}{n} \sin nx \Big|_{-\pi}^{0} - \frac{2}{n} \sin nx \Big|_{0}^{\pi} \right] = \frac{1}{\pi} \left[\frac{17}{n} \sin nx \Big|_{-\pi}^{0} - \frac{2}{n} \sin nx \Big|_{0}^{\pi} \right] = \frac{1}{\pi} \left[\frac{17}{n} \sin nx \Big|_{-\pi}^{0} - \frac{2}{n} \sin nx \Big|_{0}^{\pi} \right] = \frac{1}{\pi} \left[\frac{17}{n} \sin nx \Big|_{-\pi}^{0} - \frac{2}{n} \sin nx \Big|_{0}^{\pi} \right] = \frac{1}{\pi} \left[\frac{17}{n} \sin nx \Big|_{-\pi}^{0} - \frac{2}{n} \sin nx \Big|_{0}^{\pi} \right] = \frac{1}{\pi} \left[\frac{17}{n} \sin nx \Big|_{-\pi}^{0} - \frac{2}{n} \sin nx \Big|_{0}^{\pi} \right] = \frac{1}{\pi} \left[\frac{17}{n} \sin nx \Big|_{-\pi}^{0} - \frac{2}{n} \sin nx \Big|_{0}^{\pi} \right] = \frac{1}{\pi} \left[\frac{17}{n} \sin nx \Big|_{0}^{\pi} - \frac{2}{n} \sin nx \Big|_{0}^{\pi} \right] = \frac{1}{\pi} \left[\frac{17}{n} \sin nx \Big|_{0}^{\pi} - \frac{2}{n} \sin nx \Big|_{0}^{\pi} \right] = \frac{1}{\pi} \left[\frac{17}{n} \sin nx \Big|_{0}^{\pi} - \frac{2}{n} \sin nx \Big|_{0}^{\pi} \right] = \frac{1}{\pi} \left[\frac{17}{n} \sin nx \Big|_{0}^{\pi} - \frac{2}{n} \sin nx \Big|_{0}^{\pi} \right] = \frac{1}{\pi} \left[\frac{17}{n} \sin nx \Big|_{0}^{\pi} - \frac{2}{n} \sin nx \Big|_{0}^{\pi} \right] = \frac{1}{\pi} \left[\frac{17}{n} \sin nx \Big|_{0}^{\pi} - \frac{2}{n} \sin nx \Big|_{0}^{\pi} \right] = \frac{1}{\pi} \left[\frac{17}{n} \sin nx \Big|_{0}^{\pi} - \frac{2}{n} \sin nx \Big|_{0}^{\pi} \right] = \frac{1}{\pi} \left[\frac{17}{n} \sin nx \Big|_{0}^{\pi} - \frac{2}{n} \sin nx \Big|_{0}^{\pi} \right] = \frac{1}{\pi} \left[\frac{17}{n} \sin nx \Big|_{0}^{\pi} - \frac{2}{n} \sin nx \Big|_{0}^{\pi} \right] = \frac{1}{\pi} \left[\frac{17}{n} \sin nx \Big|_{0}^{\pi} - \frac{2}{n} \sin nx \Big|_{0}^{\pi} \right] = \frac{1}{\pi} \left[\frac{17}{n} \sin nx \Big|_{0}^{\pi} - \frac{2}{n} \sin nx \Big|_{0}^{\pi} - \frac{2}{n} \sin nx \Big|_{0}^{\pi} \right] = \frac{1}{\pi} \left[\frac{17}{n} \sin nx \Big|_{0}^{\pi} - \frac{2}{n} \sin nx \Big|_{0}^{\pi} \right] = \frac{1}{\pi} \left[\frac{17}{n} \sin nx \Big|_{0}^{\pi} - \frac{2}{n} \sin nx \Big|_{0}^{\pi} \right] = \frac{1}{\pi} \left[\frac{17}{n} \sin nx \Big|_{0}^{\pi} - \frac{2}{n} \sin nx \Big|_{0}^{\pi} \right] = \frac{1}{\pi} \left[\frac{17}{n} \sin nx \Big|_{0}^{\pi} - \frac{2}{n} \sin nx \Big|_{0}^{\pi} \right] = \frac{1}{\pi} \left[\frac{17}{n} \sin nx \Big|_{0}^{\pi} - \frac{2}{n} \sin nx \Big|_{0}^{\pi} \right] = \frac{1}{\pi} \left[\frac{17}{n} \sin nx \Big|$$

$$\frac{17}{\pi n} \left(\sin 0 - \sin(-n\pi) \right) - \frac{2}{\pi n} \left(\sin 0 - \sin \pi n \right) = 0$$

$$b_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin nx dx = \frac{1}{\pi} \left[\int_{-\pi}^{0} 17 \sin nx dx - \int_{0}^{\pi} 2 \sin nx dx \right] = -\frac{17}{\pi n} (\cos 0 - \cos(-\pi n)) + \frac{2}{\pi n} (\cos(\pi n) - \cos 0) = \frac{2}{\pi n} \left((-1)^n - 1 \right) - \frac{17}{\pi n} (1 - (-1)^n) \right) = \frac{19}{\pi n} ((-1)^n - 1)$$

Графік суми ряду Фур'є

Відповідь: $f(x) \Box \frac{15}{2} + \sum_{n=1}^{\infty} \frac{19}{\pi n} ((-1)^n - 1) \sin nx$

- 1. Знайдіть похідну від функції y(x): $y(x) = tg(2x) \cos^2(4x)$.
- 2. Чи паралельні прямі, що описуються рівняннями 6x + 4y + 1 = 0 та 3x + 2y 7 = 0?
- 3. Обчислити площу фігури, обмеженої лініями $y = 4x x^2$; y = x
- 4. Розвинути в ряд Фур'є функцію f(x) з періодом $T = 2\pi$, $f(x) = \begin{cases} 9, & -\pi < x < 0, \\ -2, & 0 \le x < \pi. \end{cases}$

Розв'язок:

1.
$$y'(x) = \frac{2}{\cos^2 2x} + 2 \cdot 4\cos 4x \sin 4x = \frac{2}{\cos^2 2x} + 4\sin 8x$$

Відповідь: $\frac{2}{\cos^2 2x} + 4\sin 8x$.

2. Умова паралельності прямих має вигляд:

$$\frac{6}{3} = \frac{4}{2}$$

Рівність справджується, отже прямі паралельні.

Відповідь: паралельні

3. Знайдемо точки перетину функцій $x = 4x - x^2 \implies x_1 = 0$ $x_2 = 3$

Тоді
$$S = \int_{0}^{3} (4x - x^2 - x) dx = \int_{0}^{3} (-x^2 + 3x) dx = (-\frac{x^3}{3} + \frac{3}{2}x^2) + -\frac{27}{3} + \frac{3}{2} \cdot 9 = \frac{1}{2}$$

Відповідь: S = 1/2.

4. Оскільки функція кусково-монотонна, то за теоремою Діріхле ряд Фур'є цієї функції в кожній точці збігається до значення: (f(x-0)+f(x+0))/2

$$a_{n} = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos nx dx = \frac{1}{\pi} \left(9 \int_{-\pi}^{0} \cos nx dx - 2 \int_{0}^{\pi} \cos nx dx \right) = \frac{1}{\pi} \left(\frac{9}{n} \sin nx \Big|_{-\pi}^{0} - \frac{2}{n} \sin nx \Big|_{0}^{\pi} \right) = \frac{1}{\pi} \left(\frac{9}{n} \sin nx \Big|_{0}^{0} - \frac{2}{n} \sin nx \Big|_{0}^{\pi} \right) = \frac{1}{\pi} \left(\frac{9}{n} \sin nx \Big|_{0}^{0} - \frac{2}{n} \sin nx \Big|_{0}^{\pi} \right) = \frac{1}{\pi} \left(\frac{9}{n} \sin nx \Big|_{0}^{0} - \frac{2}{n} \sin nx \Big|_{0}^{\pi} \right) = \frac{1}{\pi} \left(\frac{9}{n} \sin nx \Big|_{0}^{\pi} - \frac{2}{n} \sin nx \Big|_{0}^{\pi} \right) = \frac{1}{\pi} \left(\frac{9}{n} \sin nx \Big|_{0}^{\pi} - \frac{2}{n} \sin nx \Big|_{0}^{\pi} \right) = \frac{1}{\pi} \left(\frac{9}{n} \sin nx \Big|_{0}^{\pi} - \frac{2}{n} \sin nx \Big|_{0}^{\pi} \right) = \frac{1}{\pi} \left(\frac{9}{n} \sin nx \Big|_{0}^{\pi} - \frac{2}{n} \sin nx \Big|_{0}^{\pi} \right) = \frac{1}{\pi} \left(\frac{9}{n} \sin nx \Big|_{0}^{\pi} - \frac{2}{n} \sin nx \Big|_{0}^{\pi} \right) = \frac{1}{\pi} \left(\frac{9}{n} \sin nx \Big|_{0}^{\pi} - \frac{2}{n} \sin nx \Big|_{0}^{\pi} \right) = \frac{1}{\pi} \left(\frac{9}{n} \sin nx \Big|_{0}^{\pi} - \frac{2}{n} \sin nx \Big|_{0}^{\pi} \right) = \frac{1}{\pi} \left(\frac{9}{n} \sin nx \Big|_{0}^{\pi} - \frac{2}{n} \sin nx \Big|_{0}^{\pi} \right) = \frac{1}{\pi} \left(\frac{9}{n} \sin nx \Big|_{0}^{\pi} - \frac{2}{n} \sin nx \Big|_{0}^{\pi} \right) = \frac{1}{\pi} \left(\frac{9}{n} \sin nx \Big|_{0}^{\pi} - \frac{2}{n} \sin nx \Big|_{0}^{\pi} \right) = \frac{1}{\pi} \left(\frac{9}{n} \sin nx \Big|_{0}^{\pi} - \frac{2}{n} \sin nx \Big|_{0}^{\pi} - \frac{2}{n} \sin nx \Big|_{0}^{\pi} \right) = \frac{1}{\pi} \left(\frac{9}{n} \sin nx \Big|_{0}^{\pi} - \frac{2}{n} \sin nx \Big|_{0}^{\pi} \right) = \frac{1}{\pi} \left(\frac{9}{n} \sin nx \Big|_{0}^{\pi} - \frac{2}{n} \sin nx \Big|_{$$

$$=\frac{1}{\pi}\left(-\frac{9}{n}\sin\pi n - \frac{2}{n}\sin\pi n\right) = \frac{1}{\pi}\left(\frac{-11}{n}\sin\pi n\right) = -\frac{11}{\pi n}\sin\pi n = 0$$

$$b_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin nx dx = \frac{1}{\pi} \left(9 \int_{-\pi}^{0} \sin nx dx - 2 \int_{0}^{\pi} \sin nx dx \right) = \frac{1}{\pi} \left(-\frac{9}{n} \cos nx \Big|_{-\pi}^{0} + \frac{2}{n} \cos nx \Big|_{0}^{\pi} \right) = \frac{1}{n} \left(-\frac{9}{n} \cos nx \Big|_{0}^{0} + \frac{2}{n} \cos nx \Big|_{0}^{\pi} \right) = \frac{1}{n} \left(-\frac{9}{n} \cos nx \Big|_{0}^{0} + \frac{2}{n} \cos nx \Big|_{0}^{\pi} \right) = \frac{1}{n} \left(-\frac{9}{n} \cos nx \Big|_{0}^{0} + \frac{2}{n} \cos nx \Big|_{0}^{\pi} \right) = \frac{1}{n} \left(-\frac{9}{n} \cos nx \Big|_{0}^{0} + \frac{2}{n} \cos nx \Big|_{0}^{\pi} \right) = \frac{1}{n} \left(-\frac{9}{n} \cos nx \Big|_{0}^{0} + \frac{2}{n} \cos nx \Big|_{0}^{\pi} \right) = \frac{1}{n} \left(-\frac{9}{n} \cos nx \Big|_{0}^{0} + \frac{2}{n} \cos nx \Big|_{0}^{\pi} \right) = \frac{1}{n} \left(-\frac{9}{n} \cos nx \Big|_{0}^{0} + \frac{2}{n} \cos nx \Big|_{0}^{\pi} \right) = \frac{1}{n} \left(-\frac{9}{n} \cos nx \Big|_{0}^{\pi} + \frac{2}{n} \cos nx \Big|_{0}^{\pi} \right) = \frac{1}{n} \left(-\frac{9}{n} \cos nx \Big|_{0}^{\pi} + \frac{2}{n} \cos nx \Big|_{0}^{\pi} \right) = \frac{1}{n} \left(-\frac{9}{n} \cos nx \Big|_{0}^{\pi} + \frac{2}{n} \cos nx \Big|_{0}^{\pi} \right) = \frac{1}{n} \left(-\frac{9}{n} \cos nx \Big|_{0}^{\pi} + \frac{2}{n} \cos nx \Big|_{0}^{\pi} + \frac{2}{n} \cos nx \Big|_{0}^{\pi} \right) = \frac{1}{n} \left(-\frac{9}{n} \cos nx \Big|_{0}^{\pi} + \frac{2}{n} \cos nx \Big|_{0}^{\pi} \right) = \frac{1}{n} \left(-\frac{9}{n} \cos nx \Big|_{0}^{\pi} + \frac{2}{n} \cos nx \Big|_{0}^{\pi} \right) = \frac{1}{n} \left(-\frac{9}{n} \cos nx \Big|_{0}^{\pi} + \frac{2}{n} \cos nx \Big|_{0}^{\pi} \right) = \frac{1}{n} \left(-\frac{9}{n} \cos nx \Big|_{0}^{\pi} + \frac{2}{n} \cos nx \Big|_{0}^{\pi} \right) = \frac{1}{n} \left(-\frac{9}{n} \cos nx \Big|_{0}^{\pi} + \frac{2}{n} \cos nx \Big|_{0}^{\pi} \right) = \frac{1}{n} \left(-\frac{9}{n} \cos nx \Big|_{0}^{\pi} + \frac{2}{n} \cos nx \Big|_{0}^{\pi} \right) = \frac{1}{n} \left(-\frac{9}{n} \cos nx \Big|_{0}^{\pi} + \frac{2}{n} \cos nx \Big|_{0}^{\pi} \right) = \frac{1}{n} \left(-\frac{9}{n} \cos nx \Big|_{0}^{\pi} + \frac{2}{n} \cos nx \Big|_{0}^{\pi} \right) = \frac{1}{n} \left(-\frac{9}{n} \cos nx \Big|_{0}^{\pi} + \frac{2}{n} \cos nx \Big|_{0}^{\pi} \right) = \frac{1}{n} \left(-\frac{9}{n} \cos nx \Big|_{0}^{\pi} + \frac{2}{n} \cos nx \Big|_{0}^{\pi} \right) = \frac{1}{n} \left(-\frac{9}{n} \cos nx \Big|_{0}^{\pi} + \frac{2}{n} \cos nx \Big|_{0}^{\pi} \right) = \frac{1}{n} \left(-\frac{9}{n} \cos nx \Big|_{0}^{\pi} + \frac{2}{n} \cos nx \Big|_{0}^{\pi} \right) = \frac{1}{n} \left(-\frac{9}{n} \cos nx \Big|_{0}^{\pi} + \frac{2}{n} \cos nx \Big|_{0}^{\pi} \right) = \frac{1}{n} \left(-\frac{9}{n} \cos nx \Big|_{0}^{\pi} + \frac{2}{n} \cos nx \Big|_{0}^{\pi} \right) = \frac{1}{n} \left(-\frac{9}{n} \cos nx \Big|_{0}^{\pi} + \frac{2}{n} \cos nx \Big|_{0}^{\pi} \right) = \frac{1}{n} \left(-\frac{9}{n} \cos nx \Big|_{0}^{\pi} + \frac{2}{n} \cos nx \Big|_{0}^{\pi} \right) = \frac{1}{n} \left(-\frac{9}{n} \cos nx \Big|_{0}^{\pi} + \frac{2}$$

 $f(x) \sim \frac{7}{2} + \frac{1}{\pi} \left(-\frac{11}{n} + \frac{11}{n} (-1)^n \right) \sin nx$ Графік суми ряду Фур'є:

Відповідь: $f(x) \sim \frac{7}{2} + \frac{1}{\pi} \left(-\frac{11}{n} + \frac{11}{n} (-1)^n \right) \sin nx$

1. Знайти невизначений інтеграл

$$\int \sin^2(2x) dx$$

2. Розв'язати систему рівнянь

$$\begin{cases} x + 5y - z = 10 \\ x + y - 2z = 6 \\ 2x - y + 3z = -8 \end{cases}$$

- 3. Обчислити площу фігури, обмеженої лініями $y = 4x x^2$; y = 4 x.
- 4. Електронний прилад складається з 4 вузлів. Відомо, що вузли виходять з ладу незалежно один від одного. Ймовірність відмови за час t = 100 год дорівнює q = 0,2. Знайти ймовірність того, що не відмовить рівно один вузол приладу з чотирьох під час роботи приладу.

Розв'язок:

1. Знайдемо інтеграл $\int \sin^2(2x) dx = \int (1-\cos(4x))/2 dx = 0.5x - 0.5 \int (\cos(4x)) dx = 0.5x - (\sin(4x))/8 + C$.

Відповідь: $0.5x-(\sin(4x))/8+C$.

Bigliobids:
$$0.3x - (\sin(4x))/6 + C$$
.

2 . $\begin{vmatrix} 1 & 5 & -1 \\ 1 & 1 & -2 \end{vmatrix} = 1(3-2) - 5(3+4) - 1(-1-2) = -31$
 $2 - 1 & 3$

$$\Delta x = \begin{vmatrix} 10 & 5 & -1 \\ 6 & 1 & -2 \end{vmatrix} = 10(3-2) - 5 \cdot 2 - 1 \cdot 2 = -2;$$
 $-8 - 1 & 3$

$$\begin{vmatrix} 1 & 10 & -1 \\ 1 & 6 & -2 \end{vmatrix} = 1(18-16) - 10(3+4) - 1(-8-12) = -48$$
 $2 - 8 & 3$

$$\begin{vmatrix} 1 & 5 & 10 \\ 1 & 1 & 6 \end{vmatrix} = -8 - 10 + 60 - 20 + 40 + 6 = 68.$$

$$2 - 1 - 8 \qquad OTike: x = \Delta x/\Delta = 2/31; y = \Delta y/\Delta = 48/31; z = \Delta z/\Delta = -68/31$$

Відповідь: x = 2/31; y = 48/31; z = -68/31.

3. Знайдемо точки перетину функцій $4x-x^2=4-x$; $\Rightarrow x=1$;x=4

$$4x-x^{2} - 4 - 4$$

$$S=\int dy \int dx = \int (5x-x^{2}-4) dx = (5x^{2}/2-x^{3}/3-4\cdot x) = 9/2$$

$$4-x - 1 - 1$$

Відповідь: S = 9/2

4. За формулою біноміального розподілу ймовірностей можемо знайти ймовірність відмови одного вузла системи: $P_{1,4} = C_4^1 (1-q) q^3 = 4 \cdot 0.8 \cdot (0.2)^3 = 0.025$

Відповідь: $P_{1,4} = 0.025$.

1. Знайти невизначений інтеграл $\int (\cos(5x) - 4) dx$;

2. Розв'язати систему рівнянь
$$\begin{cases} x - 2y - 2z = 6 \\ -2x + y - z = 9; \\ x + y + z = 12 \end{cases}$$

- 3. Знайти первісну функції y(x), графік якої проходить через точку А: $y = 3x^3 + 2x^2 x 1$ A(0;1)
- 4. Магнітофони однієї моделі виготовляються двома фірмами-розробниками. Відомо, що перша фірма займає на ринку 75% своєї продукції, друга -25%. Надійність магнітофону під маркою першої фірми складає 0,7; другої фірми -0,85. Знайти за існуючих умов надійність електронного приладу, що надійшов до реалізації на ринок.

Розв'язок:

1. $\int (\cos(5x)-4)dx = (\sin(5x))/5-4x+C$

Відповідь: $(\sin(5x))/5-4x+C$

2.
$$\Delta = \begin{vmatrix} 1 & -2 & -2 \\ -2 & 1 & -1 \\ 1 & 1 & 1 \end{vmatrix} = 1 + 2 + 4 + 2 + 1 - 4 = 6$$

$$\Delta \mathbf{x} = \begin{vmatrix} 6 & -2 & -2 \\ 9 & 1 & -1 \\ 12 & 1 & 1 \end{vmatrix} = 60$$

$$\Delta y = \begin{vmatrix} 1 & 6 & 2 \\ -2 & 9 & -1 \\ 1 & 12 & 1 \end{vmatrix} = 93$$

$$\Delta z = \begin{vmatrix} 1 & -2 & 6 \\ -2 & 1 & 9 \\ 1 & 1 & 12 \end{vmatrix} = -81$$

 $x=\Delta x/\Delta=10$; $y=\Delta y/\Delta=31/2$; $z=\Delta z/\Delta=-27/2$;

Відповідь: x = 10; y = 31/2; z = -27/2

3. $F(x) = \int (3x^3 + 2x^2 - x - 1) dx = 3 \cdot x^4 / 4 + 2x^3 / 3 - x^2 / 2 - x + C$; Визначимо сталу $C : F(0) = 1 \Rightarrow C = 1$; Тоді $F(x) = 3 \cdot x^4 / 4 + 2x^3 / 3 - x^2 / 2 - x + 1$

Відповідь: $F(x) = 3 \cdot x^4 / 4 + 2x^3 / 3 - x^2 / 2 - x + 1$

4. Визначимо подію A, як те що прилад було виготовлено і він надійшов до реалізації. Тоді можна скласти 2 гіпотези: H_1 — магнітофон першої фірми-розробника; H_2 — магнітофон другої фірми розробника.

Тоді визначимо умовні ймовірності:

Р(А/Н₁) – ймовірність появи на ринку магнітофона від першої фірми;

Р(А/Н₂) – ймовірність появи на ринку магнітофона від другої фірми;

Тоді за формулою повної ймовірності знайдемо надійність електронного приладу:

 $P(A)=P(H_1)P(A/H_1)+P(H_2)P(A/H_2)=0,7\cdot0,75+0,85\cdot0,25=0,74.$

Відповідь : P(A)=0,74.

- 1. Знайти невизначений інтеграл $\int e^{5x-1} dx$;
- 2. Обчислити $3\log_{1/3} a$, якщо $a = 2\cos(\pi/6)$;
- 3. Знайти первісну функції y(x), графік якої проходить через точку A, $y = 3\sin(x) 4\sin^3 x 1$, A($\pi/3$;2);
- 4. Розвинути в ряд Фур'є за синусами функції f(x) з періодом $T=2\pi$. $f(x)=\begin{cases} 3,0 < x < \frac{\pi}{2}, \\ 0, \frac{\pi}{2} \le x < \pi. \end{cases}$

Розв'язок:

1.
$$\int e^{5x-1} dx = 0.2 \int e^{5x-1} d(5x-1) = 0.2 \cdot e^{5x-1} + C$$

Відповідь: $0.2 \cdot e^{5x-1} + C$

2.
$$a = 2\cos(\frac{\pi}{6}) = \sqrt{3}$$
 тоді

$$3\log_{\frac{1}{3}} a = -3\log_3 a = -3\log_3(3)^{\frac{1}{2}} = -\frac{3}{2}$$

Відповідь: -3/2

3.
$$F(x) = \int (\sin(x) - 4 \cdot \sin^3(x) - 1) dx = -\cos(x) - 4 (0.5) \sin(x) dx - 0.25 \int (\sin(3x) - \sin(x)) dx = -x - \cos(3x) / 3 + 2\cos(x) + C$$

Визначимо сталу $C: F(\pi/3)=2; \Rightarrow C=(\pi+2)/3$

Тоді $F(x) = -x - \cos(3x)/3 + 2\cos(x) + (\pi + 2)/3$

Відповідь: $-x-\cos(3x)/3+2\cos(x)+(\pi+2)/3$.

4. Оскільки функція Кусково монотонна, то за теоремою Діріхле ряд Фур'є цієї функції в кожній точці збігається до значення $\frac{f(x-o)+f(x+0)}{2}$

Продовжимо функцію на проміжку $(-\pi;0)$ непарним чином.

Коефіцієнти Фур'є:

$$a_0 = 0$$

$$a_n = 0$$

$$b_{n} = \frac{2}{\pi} \int_{0}^{\pi} f(x) \sin nx dx = \frac{2}{\pi} \left(\int_{0}^{\frac{\pi}{2}} 3 \sin nx dx + \int_{\frac{\pi}{2}}^{\pi} 0 \cdot \sin nx dx \right) =$$

$$= \frac{2}{\pi} \left(-\frac{3}{n} \cos nx \Big|_{0}^{\frac{\pi}{2}} \right) = -\frac{6}{\pi n} \left(\cos \frac{\pi n}{2} - \cos 0 \right) =$$

$$6 \left(-\frac{\pi n}{2} \right) = 6 \left(-\frac{\pi n}{2} \right)$$

$$= -\frac{6}{\pi n} \left(\cos \frac{\pi n}{2} - 1 \right) = \frac{6}{\pi n} \left(1 - \cos \frac{\pi n}{2} \right)$$

$$f(x) \sim \sum_{n=1}^{\infty} \frac{6}{\pi n} \left(1 - \cos \frac{\pi n}{2} \right) \sin nx$$

Відповідь:
$$f(x) \sim \sum_{n=1}^{\infty} \frac{6}{\pi n} \left(1 - \cos \frac{\pi n}{2} \right) \sin nx$$

$$-\frac{\pi}{2} \oint_{3} f(x)$$

$$-\pi \oint_{3} \frac{\pi}{2} \pi$$

$$-\frac{\pi}{2} \xrightarrow{\delta} f(x)$$

$$-\pi \xrightarrow{\pi} \frac{\pi}{2} \xrightarrow{\pi}$$

1. Знайти невизначений інтеграл

$$\int \frac{x^3 + 5}{x^2} dx$$

2. Порівняти числа

$$a = \cos 55^{\circ}$$
 ta $b = \cos 1$

3. Розв'язати задачу Коші

$$y'' - y' = t$$
 $y(0) = 0, y'(0) = 2$

4. Прилад для діагностування системи АРП складається з 2 головних вузлів. Ймовірність виходу з ладу першого вузла становить 0,5; другого - 0,7. Прилад після тривалої бездіяльності перевірили на справність в основних режимах, і виявилося що він не працює. Знайти ймовірність того, що причиною відмови є тільки перший вузол з двох.

Розв'язок:

1.
$$\int (x^3+5)/x^2 dx = \int (x+5/x^2)dx = x^2/2 - 5/x + C$$

Відповідь: $x^2/2 - 5/x + C$

2. 1 приблизно дорівнює 57°

Так як функція косинує на відрізку $[0;90^{\circ}]$ спадна ,то $\cos(55^{\circ}) > \cos(57^{\circ})$

Тобто a>b

Відповідь: а>b

3.
$$y'' - y' = t$$
; Заміна $z(t) = y'$ та $z' = y''$

Тоді
$$z' - z = t \Rightarrow z(t) = (\int t \cdot e^{-t} dt + C) \cdot e^{t}$$

Інтегруючи частинами $\int \mathbf{t} \cdot \mathbf{e}^{-\mathbf{t}} dt$, отримаємо: $\mathbf{z}(\mathbf{t}) = (-\mathbf{t}\mathbf{e}^{-\mathbf{t}} + \int \mathbf{e}^{-\mathbf{t}} dt + \mathbf{C}) \cdot \mathbf{e}^{\mathbf{t}} = -t - 1 + Ce^{t}$

$$z(0) = 2 \Rightarrow C = 3$$
;

$$z(t) = -t - 1 + 3e^{-t}$$

$$y(t) = \int (3e^{t} - t - 1)dt = 3e^{t} - \frac{t^{2}}{2} - t + C$$

$$y(0) = 0 \Rightarrow C = -3;$$

$$y(t) = 3e^t - \frac{t^2}{2} - t - 3$$

Відповідь: $y(t) = 3e^t - \frac{t^2}{2} - t - 3$.

4. Приймемо, що подія A — прилад за результатами перевірки виявився несправним. Тоді сформуємо такі 4 статистичні гіпотези: H_0 — обидва вузли приладу працюють; H_1 — перший вузол відмовив, а другий ні; H_2 — другий вузол відмовив, а перший ні; H_3 — обидва вузли приладу є несправними. З умови задачі позначимо ймовірність виходу з ладу першого вузла як q_1 =0,5; другого - q_2 =0,7.

Тоді $P(H_0)=(1-q_1)(1-q_2)=0,5\cdot0,3=0,15;$ $P(H_1)=(q_1)(1-q_2)=0,5\cdot0,3=0,15;$ $P(H_2)=(1-q_1)q_2=0,5\cdot0,7=0,35;$ $P(H_3)=q_1\cdot q_2=0,5\cdot 0,7=0,35.$ Для того щоб скористатися формулою Байєса треба визначити відповідні умовні ймовірності. Зрозуміло, що $P(A/H_0)=0;$ $P(A/H_1)=P(A/H_2)=P(A/H_3)=1.$ Тоді за формулою Байєса знайдемо шукану ймовірність:

$$P(H_1/A) = \frac{P(H_1)P(A/H_1)}{\sum_{i=0}^{3} P(H_i)P(A/H_i)} = \frac{0.15}{0.15 + 0.35 + 0.35} = 0.176.$$

Відповідь: $P(H_1/A)=0,176$.

1. Знайти невизначений інтеграл

$$\int \frac{1}{5x-3} dx$$

2. Порівняти числа

$$a = \sin 1^{\circ}$$
 та $b = \sin 1$

3. Розв'язати задачу Коші

$$y'' - 5y' = t^3$$
 $y(0) = 2, y'(0) = -1$

4. Система сигналізації складається з 6 незалежних вузлів. Ймовірність відмови будь-якого вузла дорівнює q = 0.75. Знайти ймовірність того, що внаслідок інтенсивної роботи на граничному режимі вийдуть з ладу не менше 2 вузли системи.

Розв'язок:

1.
$$\int 1/(5x-3)dx=0.2 \int 1/(5x-3)d(5x-3)=0.2 \cdot \ln|5x-3| + C$$

Відповідь: $0.2 \cdot \ln|5x-3| + C$

2. 1 приблизно дорівнює 57°

Так як функція сінус на відрізку $[0;90^\circ]$ зростаюча ,то $\sin(1^\circ) < \sin(1)$

Тобто a < b

Відповідь: а<b

3.
$$y'' - 5y' = t^3$$
 Заміна $z(t) = (\int t^3 e^{-5t} dt + C)e^{5t}$

Інтегруючи частинами $\int t^3 e^{-5t} dt$ отримаємо: $z(t) = -\frac{1}{5}(t^3 + \frac{3}{5}t^2 + \frac{6}{25}t + \frac{6}{125}t + Ce^{5t})$

$$y'(0) = -1 \Rightarrow C = \frac{619}{125}$$

$$y(t) = \int z(t)dt = -\frac{1}{5}(\frac{t^4}{4} + \frac{t^3}{5} + \frac{3t^2}{25} + \frac{6}{125}t + \frac{619}{625}e^{5t}) + C$$

$$y(0) = 2 \Rightarrow C = 2 + \frac{619}{625 \cdot 5}$$

$$y(t) = -\frac{1}{5} \left(\frac{t^4}{4} + \frac{t^3}{5} + \frac{3t^2}{25} + \frac{6}{125}t + \frac{619}{625}e^{5t} \right) + 2 + \frac{619}{625 \cdot 5}$$

Відповідь:
$$y(t) = -\frac{1}{5}(\frac{t^4}{4} + \frac{t^3}{5} + \frac{3t^2}{25} + \frac{6}{125}t + \frac{619}{625}e^{5t}) + 2 + \frac{619}{625 \cdot 5}.$$

4. Згідно формули біноміального розподілу ймовірностей знаходимо, що ймовірність виходу з ладу принаймні одного вузла системи сигналізації дорівнює:

$$R_{1.6} = 1 - q^6 = 1 - (0.75)^6 = 0.82.$$

Тоді ймовірність, з якою відмовить рівно один вузол системи за умов того ж розподілу можна знайти за формулою:

$$P_{1,6} = C_6^1 (1-q)q^5 = \frac{6!}{1!5!} 0.25 \cdot (0.75)^5 = 0.355.$$

Отже, ймовірність того, що вийдуть з ладу не менше 2 вузлів системи визначаємо як

$$R_{2.6} = R_{1.6} - P_{1.6} = 0.82 - 0.355 = 0.465.$$

Відповідь: R_{2,6}=0,465.

- 1. Обчислити визначений інтеграл $\int_{0}^{\pi} (\sin 3x 5) dx$
- 2. Обчислити значення похідної у вказаній точці f''(-2), якщо $f(x) = x^3 + 2x^2 + x 3$
- 3. Розв'язати задачу Коші $y'' 5y' = t^2 5$ y(0) = 1, y'(0) = 2;
- 4. Функція f(x) з періодом $T = 2\pi$ розвинути в ряд Фурє. $f(x) = \begin{cases} 1, -\pi < x < 0 \\ -5, 0 \le x < \pi \end{cases}$

Розв'язок

1.
$$\int_{0}^{\pi} (\sin(3x) - 5) dx = \int_{0}^{\pi} \sin(3x) dx - \int_{0}^{\pi} 5 dx = -\frac{\cos(3x)}{3} - 5x = -\frac{\cos(3\pi)}{3} + \frac{\cos(0)}{3} - 5\pi = \frac{1}{3} + \frac{1}{3} - 5\pi = \frac{2}{3} - 5\pi$$

Відповідь: $(2/3) - 5\pi$

2.
$$y' = 3x^2 + 4x + 1$$
, $y'' = (y')$

$$y'' = 6x + 4 \implies y''(-2) = -8$$

Відповідь: -8

3.
$$y'' - 5y' = t^2 - 5$$
 зробимо заміну $y' = z(t)$, $y'' = z'(t) \rightarrow z' - 5z = t^2 - 5$ це лінійне рівняння першого роду з

формули
$$z(t) = e^{5\int dt} (\int (t^2 - 5)e^{-\int 5dt} dt + c) = e^{5t} (\int (t^2 - 5)e^{-5t} dt + c) = \int t^2 dt + \frac{c}{e^t} = \frac{t^3}{3} - 5t + ce^{5t}$$

$$y = \int z(t)dt = \int \frac{t^3}{3}dt - \int 5tdt + \int ce^{5t}dt = \frac{t^4}{12} - \frac{5t^2}{2} + 5ce^{5t} + c1.$$

Тепер знайдемо константи підставивши аргумент 0

$$\begin{cases} 5c + c1 = 2 \\ c = 1 \end{cases} \Rightarrow \begin{cases} c1 = -3 \\ c = 1 \end{cases}$$

Відповідь:
$$y = \frac{t^4}{12} - \frac{5t^2}{2} + 5e^{5t} - 3$$

4. Оскільки функція кусково-монотонною, то за теоремою Дріхле ряд Фурє цієї функції в кожній точці збігається до значення (f(x-0)+f(x+0))/2.

Коефіцієнти ряда Фурє:

$$a_0 = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) dx = \frac{1}{\pi} \left(\int_{-\pi}^{0} dx - 5 \int_{0}^{\pi} dx \right) = \frac{1}{\pi} \left(x \Big|_{-\pi}^{0} - 5x \Big|_{0}^{\pi} \right) = \frac{1}{\pi} \left(0 + \pi - 5\pi \right) = -4$$

$$a_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos nx dx = \frac{1}{\pi} \left(\int_{-\pi}^{0} \cos nx dx - 5 \int_{0}^{\pi} \cos nx dx \right) =$$

$$= \frac{1}{\pi} \left(\frac{1}{n} \sin nx \Big|_{-\pi}^{0} - \frac{5}{n} \sin nx \Big|_{0}^{\pi} \right) = \frac{1}{\pi} \left(\frac{-6}{n} \sin \pi n \right) = \frac{6}{n\pi} \sin \pi n = 0$$

$$b_n = \frac{1}{\pi} \int_{\pi}^{\pi} f(x) \sin nx dx = \frac{1}{\pi} \left(\int_{-\pi}^{0} \sin nx dx + \int_{0}^{\pi} \sin nx dx \right) =$$

$$= \frac{1}{\pi} \left(-\frac{1}{n} \cos nx \Big|_{-\pi}^{0} + \frac{5}{n} \cos nx \Big|_{0}^{\pi} \right) = \frac{1}{\pi} \left(\frac{6}{n} \cos \pi n - \frac{6}{n} \right) =$$

$$=\frac{1}{\pi}\left(\frac{6}{n}\left(-1\right)^n-\frac{6}{n}\right)$$

$$f(x) \sim -2 + \sum_{n=1}^{\infty} \frac{1}{\pi} \left(\frac{6}{n} (-1)^n - \frac{6}{n} \right) \sin nx$$

Відповідь:
$$f(x) \sim -2 + \sum_{n=1}^{\infty} \frac{1}{\pi} \left(\frac{6}{n} (-1)^n - \frac{6}{n} \right) \sin nx$$

1. Обчислити визначений інтеграл
$$\int_{0}^{3\pi/2} (\sin^2 2x - 5x) dx$$

- 2. Обчислити значення похідної у вказаній точці f'(5), якщо $f(x) = (2x+1)^3$
- 3. Розв'язати задачу Коші $y'' + y' = t^2$ y(0) = 0, y'(0) = 2
- 4. Розвинути в ряд Фур'є функцію f(x) з періодом $T=2\pi$ $f(x)=\begin{cases} 17 & -\pi < x < 0 \\ -2 & 0 \le x < \pi \end{cases}$

Розв'язок:

1.
$$\int_{0}^{\frac{3\pi}{2}} (\sin^{2}(2x) - 5x) dx = \int_{0}^{\frac{3\pi}{2}} (\frac{1 - \cos(4x)}{2} - 5x) dx = \frac{1}{2}x - \frac{\sin(4x)}{8} - \frac{5}{2}x^{2} = \frac{3\pi}{4} - \frac{\sin(6\pi)}{8} + \frac{\sin(0)}{8} - \frac{\pi^{2}45}{8} = \frac{3\pi}{4} - \frac{\pi^{2}45}{8} =$$

Відповідь: $3\pi/4 - \frac{\pi^2 45}{8}$.

2.
$$f'(x) = 3 \cdot (2x+1)^2 = y'$$

Тоді
$$y'(5) = 3(11)^2 = 121 \cdot 3 = 363$$

Відповідь: 363

3.
$$y'' + 5y' = t^2$$

зробимо заміну $y'=z(t), y''=z'(t) \rightarrow z'+5z=t^2$ це лінійне рівняння першого роду з формули

$$z(t) = e^{-\int dt} \left(\int t^2 e^{\int dt} dt + c \right) = e^{-t} \left(\int t^2 e^t dt + c \right) = \int t^2 dt + \frac{c}{e^t} = \frac{t^3}{3} + \frac{c}{e^t}$$
$$y = \int z(t) dt = \int \frac{t^3}{3} dt + \int c e^{-t} dt = \frac{t^4}{12} - c e^{-t} + c1$$

Тепер знайдемо константи підставивши аргумент 0

$$\begin{cases} -c + c1 = 0 \\ c = 2 \end{cases} \Rightarrow \begin{cases} c1 = 2 \\ c = 2 \end{cases}$$

Відповідь:
$$\frac{t^4}{12} - 2e^{-t} + 2$$

4. Оскільки функція кусково-монотонна, то за теоремою Діріхле ряд Фур'є цієї функції в кожній точці збігається до значення (f(x-0)+f(x+0))/2 Коефіцієнти ряду Фур'є:

$$\frac{17}{\pi n} \left(\sin 0 - \sin(-n\pi) \right) - \frac{2}{\pi n} \left(\sin 0 - \sin \pi n \right) = 0$$

$$b_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin nx dx = \frac{1}{\pi} \left[\int_{-\pi}^{0} 17 \sin nx dx - \int_{0}^{\pi} 2 \sin nx dx \right] = -\frac{17}{\pi n} (\cos 0 - \cos(-\pi n)) + \frac{2}{\pi n} (\cos(\pi n) - \cos 0) = \frac{2}{\pi n} \left((-1)^n - 1 \right) - \frac{17}{\pi n} (1 - (-1)^n) \right) = \frac{19}{\pi n} ((-1)^n - 1)$$

Відповідь:
$$f(x) \Box \frac{15}{2} + \sum_{n=1}^{\infty} \frac{19}{\pi n} ((-1)^n - 1) \sin nx$$

1. Обчислити визначений інтеграл
$$\int_{0}^{\pi} e^{x+5} dx$$

- 2. Обчислити значення похідної у вказаній точці f'(3), якщо $f(x) = (x+3)^2 + 1$
- 3. Розв'язати задачу Коші $y'' + 5y' = t^4$ y(0) = 1, y'(0) = 2
- 4. Розвинути в ряд Фур'є функцію f(x) з періодом $T = 2\pi$, $f(x) = \begin{cases} 9, & -\pi < x < 0, \\ -2, & 0 \le x < \pi \end{cases}$

1.
$$\int_{0}^{\pi} e^{x+5} dx = \int_{0}^{\pi} e^{x+5} d(x+5) = e^{\pi+5} - e^{5}$$

Відповідь: $e^{\pi+5} - e^5$

2.
$$f'(x) = 2(x+3) = y'$$

$$y'(3) = 0$$

Відповідь: y'(3) = 0

3. $y'' + 5y' = t^4$ зробимо заміну y' = z(t), $y'' = z'(t) \rightarrow z' + 5z = t^4$ це лінійне рівняння першого роду з

формули
$$z(t) = e^{-\int 5dt} (\int t^4 e^{\int 5dt} dt + c) = e^{-5t} (\int t^4 e^{5t} dt + c) = \int t^4 dt + \frac{c}{e^{5t}} = \frac{t^5}{5} + \frac{c}{e^{5t}}$$

$$y = \int z(t)dt = \int \frac{t^5}{5}dt + \int ce^{-5t}dt = \frac{t^6}{30} - 5ce^{-5t} + c1$$

Тепер знайдемо константи підставивши аргумент 0

$$\begin{cases} -5c + c1 = 1 \\ c = 2 \end{cases} \Rightarrow \begin{cases} c = 2 \\ c1 = 11 \end{cases}$$

Відповідь:
$$\frac{t^6}{30} - 10e^{-5t} + 11$$

4. Оскільки функція кусково-монотонна, то за теоремою Діріхле ряд Фур'є цієї функції в кожній точці збігається до значення: (f(x-0)+f(x+0))/2 Коефіцієнти ряду:

$$a_0 = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) dx = \frac{1}{\pi} \left(\int_{-\pi}^{0} dx - 2 \int_{0}^{\pi} dx \right) \frac{1}{\pi} \left(9x \Big|_{-\pi}^{0} - 2x \Big|_{0}^{\pi} \right) = \frac{1}{\pi} \left(0 + 9\pi - 2\pi \right) = \frac{1}{\pi} \cdot 7\pi = 7$$

$$a_{n} = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos nx dx = \frac{1}{\pi} \left(9 \int_{-\pi}^{0} \cos nx dx - 2 \int_{0}^{\pi} \cos nx dx \right) = \frac{1}{\pi} \left(\frac{9}{n} \sin nx \Big|_{-\pi}^{0} - \frac{2}{n} \sin nx \Big|_{0}^{\pi} \right) = \frac{1}{\pi} \left(\frac{9}{n} \sin nx \Big|_{-\pi}^{0} - \frac{2}{n} \sin nx \Big|_{0}^{\pi} \right) = \frac{1}{\pi} \left(\frac{9}{n} \sin nx \Big|_{-\pi}^{0} - \frac{2}{n} \sin nx \Big|_{0}^{\pi} \right) = \frac{1}{\pi} \left(\frac{9}{n} \sin nx \Big|_{-\pi}^{0} - \frac{2}{n} \sin nx \Big|_{0}^{\pi} \right) = \frac{1}{\pi} \left(\frac{9}{n} \sin nx \Big|_{-\pi}^{0} - \frac{2}{n} \sin nx \Big|_{0}^{\pi} \right) = \frac{1}{\pi} \left(\frac{9}{n} \sin nx \Big|_{-\pi}^{0} - \frac{2}{n} \sin nx \Big|_{0}^{\pi} \right) = \frac{1}{\pi} \left(\frac{9}{n} \sin nx \Big|_{-\pi}^{0} - \frac{2}{n} \sin nx \Big|_{0}^{\pi} \right) = \frac{1}{\pi} \left(\frac{9}{n} \sin nx \Big|_{-\pi}^{0} - \frac{2}{n} \sin nx \Big|_{0}^{\pi} \right) = \frac{1}{\pi} \left(\frac{9}{n} \sin nx \Big|_{-\pi}^{0} - \frac{2}{n} \sin nx \Big|_{0}^{\pi} \right) = \frac{1}{\pi} \left(\frac{9}{n} \sin nx \Big|_{0}^{\pi} - \frac{2}{n} \sin nx \Big|_{0}^{\pi} \right) = \frac{1}{\pi} \left(\frac{9}{n} \sin nx \Big|_{0}^{\pi} - \frac{2}{n} \sin nx \Big|_{0}^{\pi} \right) = \frac{1}{\pi} \left(\frac{9}{n} \sin nx \Big|_{0}^{\pi} - \frac{2}{n} \sin nx \Big|_{0}^{\pi} \right) = \frac{1}{\pi} \left(\frac{9}{n} \sin nx \Big|_{0}^{\pi} - \frac{2}{n} \sin nx \Big|_{0}^{\pi} - \frac{2}{n} \sin nx \Big|_{0}^{\pi} \right) = \frac{1}{\pi} \left(\frac{9}{n} \sin nx \Big|_{0}^{\pi} - \frac{2}{n} \sin nx \Big|_{0}^{\pi} -$$

$$=\frac{1}{\pi}\left(-\frac{9}{n}\sin\pi n - \frac{2}{n}\sin\pi n\right) = \frac{1}{\pi}\left(\frac{-11}{n}\sin\pi n\right) = -\frac{11}{\pi n}\sin\pi n = 0$$

$$b_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin nx dx = \frac{1}{\pi} \left(9 \int_{-\pi}^{0} \sin nx dx - 2 \int_{0}^{\pi} \sin nx dx \right) = \frac{1}{\pi} \left(-\frac{9}{n} \cos nx \Big|_{-\pi}^{0} + \frac{2}{n} \cos nx \Big|_{0}^{\pi} \right) = \frac{1}{n} \left(-\frac{9}{n} \cos nx \Big|_{0}^{0} + \frac{2}{n} \cos nx \Big|_{0}^{\pi} \right) = \frac{1}{n} \left(-\frac{9}{n} \cos nx \Big|_{0}^{0} + \frac{2}{n} \cos nx \Big|_{0}^{\pi} \right) = \frac{1}{n} \left(-\frac{9}{n} \cos nx \Big|_{0}^{0} + \frac{2}{n} \cos nx \Big|_{0}^{\pi} \right) = \frac{1}{n} \left(-\frac{9}{n} \cos nx \Big|_{0}^{0} + \frac{2}{n} \cos nx \Big|_{0}^{\pi} \right) = \frac{1}{n} \left(-\frac{9}{n} \cos nx \Big|_{0}^{0} + \frac{2}{n} \cos nx \Big|_{0}^{\pi} \right) = \frac{1}{n} \left(-\frac{9}{n} \cos nx \Big|_{0}^{0} + \frac{2}{n} \cos nx \Big|_{0}^{\pi} \right) = \frac{1}{n} \left(-\frac{9}{n} \cos nx \Big|_{0}^{0} + \frac{2}{n} \cos nx \Big|_{0}^{\pi} \right) = \frac{1}{n} \left(-\frac{9}{n} \cos nx \Big|_{0}^{0} + \frac{2}{n} \cos nx \Big|_{0}^{\pi} \right) = \frac{1}{n} \left(-\frac{9}{n} \cos nx \Big|_{0}^{\pi} + \frac{2}{n} \cos nx \Big|_{0}^{\pi} \right) = \frac{1}{n} \left(-\frac{9}{n} \cos nx \Big|_{0}^{\pi} + \frac{2}{n} \cos nx \Big|_{0}^{\pi} \right) = \frac{1}{n} \left(-\frac{9}{n} \cos nx \Big|_{0}^{\pi} + \frac{2}{n} \cos nx \Big|_{0}^{\pi} + \frac{2}{n} \cos nx \Big|_{0}^{\pi} \right) = \frac{1}{n} \left(-\frac{9}{n} \cos nx \Big|_{0}^{\pi} + \frac{2}{n} \cos nx \Big|_{0}^{\pi} \right) = \frac{1}{n} \left(-\frac{9}{n} \cos nx \Big|_{0}^{\pi} + \frac{2}{n} \cos nx \Big|_{0}^{\pi} \right) = \frac{1}{n} \left(-\frac{9}{n} \cos nx \Big|_{0}^{\pi} + \frac{2}{n} \cos nx \Big|_{0}^{\pi} \right) = \frac{1}{n} \left(-\frac{9}{n} \cos nx \Big|_{0}^{\pi} + \frac{2}{n} \cos nx \Big|_{0}^{\pi} \right) = \frac{1}{n} \left(-\frac{9}{n} \cos nx \Big|_{0}^{\pi} + \frac{2}{n} \cos nx \Big|_{0}^{\pi} \right) = \frac{1}{n} \left(-\frac{9}{n} \cos nx \Big|_{0}^{\pi} + \frac{2}{n} \cos nx \Big|_{0}^{\pi} \right) = \frac{1}{n} \left(-\frac{9}{n} \cos nx \Big|_{0}^{\pi} + \frac{2}{n} \cos nx \Big|_{0}^{\pi} \right) = \frac{1}{n} \left(-\frac{9}{n} \cos nx \Big|_{0}^{\pi} + \frac{2}{n} \cos nx \Big|_{0}^{\pi} \right) = \frac{1}{n} \left(-\frac{9}{n} \cos nx \Big|_{0}^{\pi} + \frac{2}{n} \cos nx \Big|_{0}^{\pi} \right) = \frac{1}{n} \left(-\frac{9}{n} \cos nx \Big|_{0}^{\pi} + \frac{2}{n} \cos nx \Big|_{0}^{\pi} \right) = \frac{1}{n} \left(-\frac{9}{n} \cos nx \Big|_{0}^{\pi} + \frac{2}{n} \cos nx \Big|_{0}^{\pi} \right) = \frac{1}{n} \left(-\frac{9}{n} \cos nx \Big|_{0}^{\pi} + \frac{2}{n} \cos nx \Big|_{0}^{\pi} \right) = \frac{1}{n} \left(-\frac{9}{n} \cos nx \Big|_{0}^{\pi} + \frac{2}{n} \cos nx \Big|_{0}^{\pi} \right) = \frac{1}{n} \left(-\frac{9}{n} \cos nx \Big|_{0}^{\pi} + \frac{2}{n} \cos nx \Big|_{0}^{\pi} \right) = \frac{1}{n} \left(-\frac{9}{n} \cos nx \Big|_{0}^{\pi} + \frac{2}{n} \cos nx \Big|_{0}^{\pi} \right) = \frac{1}{n} \left(-\frac{9}{n} \cos nx \Big|_{0}^{\pi} + \frac{2}{n} \cos nx \Big|_{0}^{\pi} \right) = \frac{1}{n} \left(-\frac{9}{n} \cos nx \Big|_{0}^{\pi} + \frac{2}$$

$$= \frac{1}{\pi} \left(-\frac{9}{n} + \frac{9}{n} \cos \pi n + \left(-\frac{2}{n} + \frac{2}{n} \cos \pi n \right) \right) = \frac{1}{\pi} \left(-\frac{11}{n} + \frac{11}{n} \cos \pi n \right) = \frac{1}{\pi} \left(-\frac{11}{n} + \frac{11}{n} (-1)^n \right)$$

$$f(x) \sim \frac{7}{2} + \frac{1}{\pi} \left(-\frac{11}{n} + \frac{11}{n} (-1)^n \right) \sin nx$$

Відповідь:
$$f(x) \sim \frac{7}{2} + \frac{1}{\pi} \left(-\frac{11}{n} + \frac{11}{n} (-1)^n \right) \sin nx$$

1. Обчислити визначений інтеграл

$$\int_{0}^{2} \frac{x^2 + 5x}{x^2} dx$$

2. Обчислити значення похідної

$$y'(x_0)$$
, якщо $y = 4\cos 2x$ де $x_0 = \pi/12$

3. Розв'язати задачу Коші

$$y'' + 5y' = t^4$$
 $y(0) = 0, y'(0) = 2$

4. Електровимірювальне устаткування здатне працювати у трьох режимах: звичайному, автономному та реверсивному. Звичайний режим використовується у 65% всіх випадків роботи приладу, автономний у 25%; реверсивний у 10%. Ймовірність не спрацювання основного керуючого елементу прилада за час напрацювання 330 годин при звичайному режимі -0,1; при автономному -0,3; при реверсивному -0,8. Визначити ймовірність відмови функціонування електровимірювального устаткування за час що дорівнює 330 годин.

Розв'язок:

1.
$$\int_{0}^{2} \frac{x^{2} + 5x}{x^{2}} dx = \int_{0}^{2} dx + \int_{0}^{2} \frac{5}{x} dx = x + 5\ln(x) = 2 + 5\ln(2) - \ln(0) = 2 + 5\ln(2).$$

Відповідь: 2+5ln(2)

2. $y' = 8\sin(2x)$

$$y'(\frac{\pi}{12}) = 8\sin(\frac{\pi}{6}) = 4$$
.

Відповідь: 4

3. $y'' + 5y' = t^4$ зробимо заміну y' = z(t), $y'' = z'(t) \rightarrow z' + 5z = t^4$ це лінійне рівняння першого роду з

формули
$$z(t) = e^{-\int 5dt} (\int t^4 e^{\int 5dt} dt + c) = e^{-5t} (\int t^4 e^{5t} dt + c) = \int t^4 dt + \frac{c}{e^{5t}} = \frac{t^5}{5} + \frac{c}{e^{5t}}$$

$$y = \int z(t)dt = \int \frac{t^5}{5}dt + \int ce^{-5t}dt = \frac{t^6}{30} - 5ce^{-5t} + c1$$

Тепер знайдемо константи підставивши аргумент0

$$\begin{cases} -5c + c1 = 0 \\ c = 2 \end{cases} \Rightarrow \begin{cases} c = 2 \\ c1 = 10 \end{cases}$$

Відповідь: $\frac{t^6}{30} - 10e^{-5t} + 10$

4. Приймемо, що подія A — вихід з ладу устаткування під час роботи. Тоді визначимо такі 3 гіпотези, виходячи з формули повної ймовірності: H_1 — робота устаткування при звичайному режимі; H_2 — робота устаткування при звичайному режимі. Тоді з умов задачі відповідні ймовірності дорівнюють: $P(H_1)$ =0,65; $P(H_2)$ =0,25; $P(H_3)$ =0,1. Умовні ймовірності виходу з ладу устаткування при різних режимах роботи дорівнюють: $P(A/H_1)$ =0,1; $P(A/H_2)$ =0,3; $P(A/H_3)$ =0,8. За допомогою формули повної ймовірності отримаємо ймовірність відмови у функціонуванні електровимірювального устаткування з час 330 годин: P(A)= $P(H_1)$ P (A/H_1) + $P(H_2)$ P (A/H_2) + $P(H_3)$ P (A/H_3) =0,22 **Відповідь:** P(A)=0,22.

1. Обчислити визначений інтеграл

$$\int_{0}^{2\pi} (\cos 3x - 5) dx$$

2. Знайти критичні точки функції

$$y = 3x^4 - 4x^3$$

3. Розв'язати рівняння

$$\frac{1}{2}\sin(x) - \int_{0}^{x}\cos 2tdt = 0$$

4. Прилад для діагностування системи АРП складається з 2 головних вузлів. Ймовірність виходу з ладу першого вузла становить 0,5; другого - 0,7. Прилад після тривалої бездіяльності перевірили на справність в основних режимах, і виявилося що він не працює. Знайти ймовірність того, що причиною відмови є тільки перший вузол з двох.

Розв'язок:

1.
$$\int_{0}^{2\pi} (\cos(3x) - 5) dx = \int_{0}^{2\pi} \cos(3x) dx - \int_{0}^{2\pi} 5 dx = \frac{\sin(3x)}{3} - 5x = \frac{\sin(6\pi)}{3} - \frac{\sin(0)}{3} + 10\pi - 0 = 10\pi$$

Відповідь: 10π

2. Критичні точки це внутрішні точки області визначення в яких похідна перетворюється

в 0 або не існує
$$y' = 12x^3 - 12x^2$$
, тоді $12x^3 - 12x^2 = 0$, $x^2(x-1) = 0$

Отже x = 0, x = 1

Відповідь: x = 0, x = 1

3.
$$\frac{1}{2}\sin(x) - \int_{0}^{x}\cos(2t)dt \Rightarrow \frac{1}{2}\sin(x) - \frac{1}{2}\sin(2t) \rightarrow \frac{1}{2}\sin(x) - \frac{1}{2}\sin(2x)$$

Тоді
$$\frac{1}{2}\sin(x) - \frac{1}{2}\sin(2x) = 0$$
. Отже $\sin(x) - \sin(2x) = 0$.

Таким чином
$$\sin(x)(1-2\cos(x)) = 0$$
. Звідси $\sin(x) = 0, \cos(x) = \frac{1}{2}$ $x = \pi n, n \in \mathbb{Z}$

Aбо
$$x = \pm \frac{\pi}{3} + 2\pi n, n \in \mathbb{Z}$$

Відповідь:
$$x = \pm \frac{\pi}{3} + 2\pi n, n \in \mathbb{Z}$$
.

4. Приймемо, що подія A — прилад за результатами перевірки виявився несправним. Тоді сформуємо такі 4 статистичні гіпотези: H_0 — обидва вузли приладу працюють; H_1 — перший вузол відмовив, а другий ні; H_2 — другий вузол відмовив, а перший ні; H_3 — обидва вузли приладу є несправними. З умови задачі позначимо ймовірність виходу з ладу першого вузла як q_1 =0,5; другого - q_2 =0,7.

Тоді $P(H_0)=(1-q_1)(1-q_2)=0,5\cdot0,3=0,15$; $P(H_1)=(q_1)(1-q_2)=0,5\cdot0,3=0,15$; $P(H_2)=(1-q_1)q_2=0,5\cdot0,7=0,35$; $P(H_3)=q_1\cdot q_2=0,5\cdot 0,7=0,35$. Для того щоб скористатися формулою Байєса треба визначити відповідні умовні ймовірності. Зрозуміло, що $P(A/H_0)=0$; $P(A/H_1)=P(A/H_2)=P(A/H_3)=1$. Тоді за формулою Байєса знайдемо шукану ймовірність:

$$P(H_1/A) = \frac{P(H_1)P(A/H_1)}{\sum_{i=0}^{3} P(H_i)P(A/H_i)} = \frac{0.15}{0.15 + 0.35 + 0.35} = 0.176.$$

Відповідь: $P(H_1/A)=0,176$.

1. Обчислити визначник
$$\Delta = \begin{vmatrix} 1 & 4 & 2 \\ -2 & 3 & 6 \\ 3 & -1 & -3 \end{vmatrix}$$

- 2. Знайти критичні точки функції $y = 3x^4 4x^3$
- 3. Знайти критичні точки функції

$$v = x^2 - 0.5x^4$$

4. Система сигналізації складається з 6 незалежних вузлів. Ймовірність відмови будь-якого вузла дорівнює q = 0.75. Знайти ймовірність того, що внаслідок інтенсивної роботи на граничному режимі вийдуть з ладу не менше 2 вузли системи.

Розв'язок:

1.
$$\Delta = \begin{vmatrix} 1 & 4 & 2 \\ -2 & 3 & 6 \\ 3 & -1 & -3 \end{vmatrix} = ((-9) + 6) - 4 \cdot (6 - 18) + 2 \cdot (2 - 9) = -3 + 48 - 14 = 31;$$

Відповідь : $\Delta = 31$;

2. Критичні точки це внутрішні точки області визначення в яких похідна перетворюється в 0 або не існують

$$y' = 12x^3 - 12x^2$$

Тоді
$$12x^3 - 12x^2 = 0$$

$$x^2(x-1) = 0$$

Отже
$$x = 0, x = 1$$

Відповідь: x = 0, x = 1

3. Критичні точки – це точки в яких похідна рівна 0 або не існує: $y' = 2x - 2x^3$; $2x \cdot (1 - x^2) = 0$;

$$\begin{bmatrix} 2x = 0 \\ 1 - x^2 = 0 \end{bmatrix} \longrightarrow x_1 = 0; \ x_2 = 1; \ x_3 = -1;$$

Відповідь:
$$x_1 = 0$$
; $x_2 = 1$; $x_3 = -1$

4. Згідно формули біноміального розподілу ймовірностей знаходимо, що ймовірність виходу з ладу принаймні одного вузла системи сигналізації дорівнює:

$$R_{1.6} = 1 - q^6 = 1 - (0.75)^6 = 0.82.$$

Тоді ймовірність, з якою відмовить рівно один вузол системи за умов того ж розподілу можна знайти за формулою:

$$P_{1,6} = C_6^1 (1-q)q^5 = \frac{6!}{1!5!} 0,25 \cdot (0,75)^5 = 0,355.$$

Отже, ймовірність того, що вийдуть з ладу не менше 2 вузлів системи визначаємо як

$$R_{2,6} = R_{1,6} - P_{1,6} = 0.82 - 0.355 = 0.465.$$

Відповідь: R_{2.6}=0,465.

1. Обчислити визначник
$$\Delta = \begin{vmatrix} -2 & -4 & 5 \\ 1 & 4 & -2 \\ 3 & 0 & 1 \end{vmatrix}$$
.

2. Обчислити значення похідної

$$y'(x_0)$$
, якщо $y = 4\cos 2x$ де $x_0 = \pi/12$

3. Розв'язати рівняння

$$\frac{1}{2}\sin(x) - \int_{0}^{x}\cos 2tdt = 0$$

4. Електронний прилад складається з 4 вузлів. Відомо, що вузли виходять з ладу незалежно один від одного. Ймовірність відмови за час t=100 год дорівнює q=0,2. Знайти ймовірність того, що не відмовить рівно один вузол приладу з чотирьох під час роботи приладу.

Розв'язок:

1.
$$\Delta = \begin{vmatrix} -2 & -4 & 5 \\ 1 & 4 & -2 \\ 3 & 0 & 1 \end{vmatrix} = (-2) \cdot 4 + 4 \cdot (1+6) + 5 \cdot (-12) = -40;$$

Відповідь : $\Delta = -40$

2.
$$y' = 8\sin(2x)$$

$$y'(\frac{\pi}{12}) = 8\sin(\frac{\pi}{6}) = 4$$
.

Відповідь: 4

3.
$$\frac{1}{2}\sin(x) - \int_{0}^{x}\cos(2t)dt \Rightarrow \frac{1}{2}\sin(x) - \frac{1}{2}\sin(2t) \rightarrow \frac{1}{2}\sin(x) - \frac{1}{2}\sin(2x)$$

Тоді
$$\frac{1}{2}\sin(x) - \frac{1}{2}\sin(2x) = 0$$
. Отже $\sin(x) - \sin(2x) = 0$.

Таким чином
$$\sin(x)(1-2\cos(x)) = 0$$
. Звідси $\sin(x) = 0, \cos(x) = \frac{1}{2}$ $x = \pi n, n \in \mathbb{Z}$

Aбо
$$x = \pm \frac{\pi}{3} + 2\pi n, n \in \mathbb{Z}$$

Відповідь:
$$x = \pm \frac{\pi}{3} + 2\pi n, n \in z$$
.

4. За формулою біноміального розподілу ймовірностей можемо знайти ймовірність відмови одного вузла системи: $P_{1,4} = C_4^1 (1-q) q^3 = 4 \cdot 0.8 \cdot (0.2)^3 = 0.025$

Відповідь: $P_{1.4} = 0.025$.

1. Обчислити визначник
$$\Delta = \begin{vmatrix} -2 & 1 & 1 \\ -3 & 4 & 0 \\ -5 & 3 & 6 \end{vmatrix}$$
;

2. Обчислити значення похідної у вказаній точці

$$f''(-2)$$
, якщо $f(x) = x^3 + 2x^2 + x - 3$

3. Розв'язати задачу Коші

$$y'' - y' = t$$
 $y(0) = 0, y'(0) = 2$

4. Електровимірювальне устаткування здатне працювати у трьох режимах: звичайному, автономному та реверсивному. Звичайний режим використовується у 65% всіх випадків роботи приладу, автономний у 25%; реверсивний у 10%. Ймовірність не спрацювання основного керуючого елементу прилада за час напрацювання 330 годин при звичайному режимі – 0,1; при автономному – 0,3; при реверсивному – 0,8. Визначити ймовірність відмови функціонування електровимірювального устаткування за час що дорівнює 330 годин.

Розв'язок:

1.
$$\Delta = \begin{vmatrix} -2 & 1 & 1 \\ -3 & 4 & 0 \\ -5 & 3 & 6 \end{vmatrix} = (-2) \cdot 24 + 18 + ((-9) + 20) = -19$$

Відповідь : $\Delta = -19$;

2.
$$y' = 3x^2 + 4x + 1$$
, $y'' = (y')'$

$$y'' = 6x + 4 \Rightarrow y''(-2) = -8$$

Відповідь: -8

3.
$$y'' - y' = t$$
; Заміна $z(t) = y'$ та $z' = y''$

Тоді
$$z' - z = t \Rightarrow z(t) = (\int t \cdot e^{-t} dt + C) \cdot e^{t}$$

Інтегруючи частинами $\int \mathbf{t} \cdot \mathbf{e}^{-\mathbf{t}} dt$, отримаємо: $\mathbf{z}(\mathbf{t}) = (-\mathbf{t}\mathbf{e}^{-\mathbf{t}} + \int \mathbf{e}^{-\mathbf{t}} dt + \mathbf{C}) \cdot \mathbf{e}^{\mathbf{t}} = -t - 1 + Ce^{t}$

$$z(0) = 2 \Rightarrow C = 3$$
;

$$z(t) = -t - 1 + 3e^{-t}$$

$$y(t) = \int (3e^t - t - 1)dt = 3e^t - \frac{t^2}{2} - t + C$$

$$y(0) = 0 \Rightarrow C = -3;$$

$$y(t) = 3e^t - \frac{t^2}{2} - t - 3$$

Відповідь:
$$y(t) = 3e^t - \frac{t^2}{2} - t - 3$$
.

4. Приймемо, що подія A — вихід з ладу устаткування під час роботи. Тоді визначимо такі 3 гіпотези, виходячи з формули повної ймовірності: H_1 — робота устаткування при звичайному режимі; H_2 — робота устаткування в реверсивному режимі. Тоді з умов задачі відповідні ймовірності дорівнюють: $P(H_1)$ =0,65; $P(H_2)$ =0,25; $P(H_3)$ =0,1. Умовні ймовірності виходу з ладу устаткування при різних режимах роботи дорівнюють: $P(A/H_1)$ =0,1; $P(A/H_2)$ =0,3; $P(A/H_3)$ =0,8. За допомогою формули повної ймовірності отримаємо ймовірність відмови у функціонуванні електровимірювального устаткування з час 330 годин: P(A)= $P(H_1)$ $P(A/H_1)$ + $P(H_2)$ $P(A/H_2)$ + $P(H_3)$ $P(A/H_3)$ =0,22

Відповідь: P(A)=0,22.

1. Для матриці
$$A$$
 знайти обернену матрицю A^{-1} : $A = \begin{vmatrix} 4 & 2 \\ -1 & -2 \end{vmatrix}$;

2. Порівняти числа

$$a = \cos 55^{\circ}$$
 ta $b = \cos 1$

- 3. Знайти первісну функції y(x), графік якої проходить через точку А: $y = 3x^3 + 2x^2 x 1$ A(0;1)
- 4. Магнітофони однієї моделі виготовляються двома фірмами-розробниками. Відомо, що перша фірма займає на ринку 75% своєї продукції, друга 25%. Надійність магнітофону під маркою першої фірми складає 0,7; другої фірми 0,85. Знайти за існуючих умов надійність електронного приладу, що надійшов до реалізації на ринок.

Розв'язок:

1. Знайдемо транспоновану матрицю алгебраїчних доповнень($A_{i,j} = (-1)^{i+j} \cdot M_{i,j}$, де $M_{i,j}$ - це мінор). Тоді:

$$\begin{pmatrix} A^* \end{pmatrix}^T = \begin{pmatrix} -2 & -2 \\ 1 & 4 \end{pmatrix}; \det A = -8 + 2 = -6; \quad A^{-1} = \frac{1}{6} \cdot \begin{pmatrix} 2 & 2 \\ -1 & -4 \end{pmatrix};$$

Зробимо перевірку, перемноживши ці матриці повинна вийти одинична матриця:

$$A^{-1} \cdot A = \frac{1}{6} \cdot \begin{pmatrix} 2 & 2 \\ -1 & -4 \end{pmatrix} \cdot \begin{pmatrix} 4 & 2 \\ -1 & -2 \end{pmatrix} = \frac{1}{6} \cdot \begin{pmatrix} 6 & 0 \\ 0 & 6 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = E$$

Відповідь:
$$A^{-1} = \frac{1}{6} \cdot \begin{pmatrix} 2 & 2 \\ -1 & -4 \end{pmatrix}$$

2. 1 приблизно дорівнює 57°

Так як функція косинує на відрізку $[0;90^{\circ}]$ спадна ,то $\cos(55^{\circ}) > \cos(57^{\circ})$

Тобто a>b

Відповідь: а>b

3.
$$F(x) = \int (3x^3 + 2x^2 - x - 1) dx = 3 \cdot x^4 / 4 + 2x^3 / 3 - x^2 / 2 - x + C$$
; Визначимо сталу $C : F(0) = 1 \Rightarrow C = 1$;

Тоді
$$F(x) = 3 \cdot x^4 / 4 + 2x^3 / 3 - x^2 / 2 - x + 1$$

Відповідь:
$$F(x) = 3 \cdot x^4 / 4 + 2x^3 / 3 - x^2 / 2 - x + 1$$

4. Визначимо подію A, як те що прилад було виготовлено і він надійшов до реалізації. Тоді можна скласти 2 гіпотези: H_1 — магнітофон першої фірми-розробника; H_2 — магнітофон другої фірми розробника.

Тоді визначимо умовні ймовірності:

Р(А/Н₁) – ймовірність появи на ринку магнітофона від першої фірми;

Р(А/Н₂) – ймовірність появи на ринку магнітофона від другої фірми;

Тоді за формулою повної ймовірності знайдемо надійність електронного приладу:

 $P(A)=P(H_1)P(A/H_1)+P(H_2)P(A/H_2)=0,7\cdot0,75+0,85\cdot0,25=0,74.$

Відповідь: P(A)=0,74.

- 1. Для матриці A знайти обернену матрицю A^{-1} : $A = \begin{bmatrix} 3 & 2 \\ -4 & 1 \end{bmatrix}$.
- 2. Чи паралельні прямі, що описуються рівняннями 6x + 4y + 1 = 0 та 3x + 2y 7 = 0?
- 3. Обчислити площу фігури, обмеженої лініями

$$y = 4x - x^2$$

$$y = 4 - x$$

4. Прилад для діагностування системи АРП складається з 2 головних вузлів. Ймовірність виходу з ладу першого вузла становить 0,5; другого - 0,7. Прилад після тривалої бездіяльності перевірили на справність в основних режимах, і виявилося що він не працює. Знайти ймовірність того, що причиною відмови є тільки перший вузол з двох.

Розв'язок:

1. Знайдемо транспоновану матрицю алгебраїчних доповнень($A_{i,j} = (-1)^{i+j} \cdot M_{i,j}$, де $M_{i,j}$ - це мінор).

Тоді:
$$\begin{pmatrix} A^* \end{pmatrix}^T = \begin{pmatrix} 1 & -2 \\ 4 & 3 \end{pmatrix}$$
; $\det A = 3 + 8 = 11$; $A^{-1} = \frac{1}{11} \cdot \begin{pmatrix} 1 & -2 \\ 4 & 3 \end{pmatrix}$;

Зробимо перевірку, перемноживши ці матриці повинна вийти одинична матриця:

$$A^{-1} \cdot A = \frac{1}{11} \cdot \begin{pmatrix} 1 & -2 \\ 4 & 3 \end{pmatrix} \cdot \begin{pmatrix} 3 & 2 \\ -4 & 1 \end{pmatrix} = \frac{1}{11} \cdot \begin{pmatrix} 11 & 0 \\ 0 & 11 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = E;$$

Відповідь:
$$A^{-1} = \frac{1}{11} \cdot \begin{pmatrix} 1 & -2 \\ 4 & 3 \end{pmatrix}$$
.

2. Умова паралельності прямих має вигляд:

$$\frac{6}{3} = \frac{4}{2}$$

Рівність справджується, отже прямі паралельні.

Відповідь: паралельні

3. Знайдемо точки перетину функцій $4x-x^2=4-x$; $\Rightarrow x=1$; x=4

$$4x-x^{2} - 4 - 4$$

$$S=\int dy \int dx = \int (5x-x^{2}-4) dx = (5x^{2}/2-x^{3}/3-4\cdot x) = 9/2$$

$$4-x - 1 - 1$$

Відповідь:

4. Приймемо, що подія A — прилад за результатами перевірки виявився несправним. Тоді сформуємо такі 4 статистичні гіпотези: H_0 — обидва вузли приладу працюють; H_1 — перший вузол відмовив, а другий ні; H_2 — другий вузол відмовив, а перший ні; H_3 — обидва вузли приладу є несправними. З умови задачі позначимо ймовірність виходу з ладу першого вузла як q_1 =0,5; другого - q_2 =0,7.

Тоді $P(H_0)=(1-q_1)(1-q_2)=0,5\cdot0,3=0,15;$ $P(H_1)=(q_1)(1-q_2)=0,5\cdot0,3=0,15;$ $P(H_2)=(1-q_1)q_2=0,5\cdot0,7=0,35;$ $P(H_3)=q_1\cdot q_2=0,5\cdot 0,7=0,35.$ Для того щоб скористатися формулою Байєса треба визначити відповідні умовні ймовірності. Зрозуміло, що $P(A/H_0)=0;$ $P(A/H_1)=P(A/H_2)=P(A/H_3)=1.$ Тоді за формулою Байєса знайдемо шукану ймовірність:

$$P(H_1/A) = \frac{P(H_1)P(A/H_1)}{\sum_{i=0}^{3} P(H_i)P(A/H_i)} = \frac{0.15}{0.15 + 0.35 + 0.35} = 0.176.$$

Відповідь: $P(H_1/A)=0,176$.

- 1. Розв'язати систему рівнянь $\begin{cases} 4x 2y = 20 \\ 2x + y = 10 \end{cases}$;
- 2. Знайти відстань між двома точками A і B, якщо A(3;2) та B(-4;1);
- 3. Знайти первісну функції y(x), графік якої проходить через точку А: $y = 2x^3 + 3x^2 + 4x + 5$ A(-1;1)
- 4. Система сигналізації складається з 6 незалежних вузлів. Ймовірність відмови будь-якого вузла дорівнює q = 0,75. Знайти ймовірність того, що внаслідок інтенсивної роботи на граничному режимі вийдуть з ладу не менше 2 вузли системи.

Розв'язок:

1.
$$\begin{cases} 4x - 2y = 20 & (1) \\ 2x + y = 10 & (2) \end{cases}$$

Помножимо рівняння (2) на 2 отримаємо: $\begin{cases} 4x - 2y = 20 \\ 4x + 2y = 20 \end{cases}$

$$-4y = 0 \Rightarrow y = 0$$

Віднімемо отримані рівняння: $x = \frac{1}{2}y + 5 = 5$

Відповідь:
$$\begin{cases} x = 5 \\ y = 0 \end{cases}$$

2. Відстань між двома точками визначається як:

$$d = \sqrt{(7)^2 + (1)^2} = \sqrt{50}$$

Відповідь: $d = \sqrt{50}$

3. Первісна

$$Y = \int y dx = \frac{x^4}{2} + x^3 + 2x^2 + 5x + c$$

Тоді
$$1 = \frac{1}{2} - 1 + 2 - 5 + c$$
. Звідси $c = 4\frac{1}{2}$.

Отже первісна матиме вигляд $Y = (x^4/2) + x^3 + 2x^2 + 5x + 4\frac{1}{2}$.

Відповідь:
$$Y = (x^4/2) + x^3 + 2x^2 + 5x + 4\frac{1}{2}$$
.

4. Згідно формули біноміального розподілу ймовірностей знаходимо, що ймовірність виходу з ладу принаймні одного вузла системи сигналізації дорівнює:

$$R_{1,6} = 1 - q^6 = 1 - (0.75)^6 = 0.82.$$

Тоді ймовірність, з якою відмовить рівно один вузол системи за умов того ж розподілу можна знайти за формулою:

$$P_{1,6} = C_6^1 (1-q)q^5 = \frac{6!}{1!5!} 0,25 \cdot (0,75)^5 = 0,355.$$

Отже, ймовірність того, що вийдуть з ладу не менше 2 вузлів системи визначаємо як

$$R_{2.6} = R_{1.6} - P_{1.6} = 0.82 - 0.355 = 0.465.$$

Відповідь: R_{2.6}=0,465.

1. Розв'язати систему рівнянь
$$\begin{cases} 2x - 5y = 30 \\ 5x - 2y = 10 \end{cases}$$

2. Обчислити визначник:
$$\Delta = \begin{vmatrix} 3 & 0 \\ -3 & 2 \end{vmatrix}$$

3. Знайти первісну функції y(x), графік якої проходить через точку А

$$y = 4x^2 - 12x + 9 \qquad A(0;1)$$

4. Магнітофони однієї моделі виготовляються двома фірмами-розробниками. Відомо, що перша фірма займає на ринку 75% своєї продукції, друга – 25%. Надійність магнітофону під маркою першої фірми складає 0,7; другої фірми – 0,85. Знайти за існуючих умов надійність електронного приладу, що надійшов до реалізації на ринок.

Розв'язок:

1.
$$\begin{cases} 2x - 5y = 30 & (1) \\ 5x - 2y = 10 & (2) \end{cases}$$

Помножимо рівняння (1) на 5 та (2) на 2:

$$\begin{cases} 10x - 25y = 150 \\ 10x - 4y = 20 \end{cases}$$

Віднімемо отримані ці рівняння. Отримаємо: $-21y = 130 \Rightarrow y = -130/21$

Виразимо x з першого рівняння:

$$x = \frac{5y + 30}{2}$$
$$x = \frac{15 \cdot 42 - 130 \cdot 5}{2 \cdot 21} = -\frac{10}{21}$$

$$\mathbf{x} = \frac{15 \cdot 42 - 130 \cdot 5}{2 \cdot 21} = -\frac{10}{21}$$

Відповідь: $\begin{cases} x = -10/21 \\ y = -130/21 \end{cases}$

2.
$$\Delta = \begin{vmatrix} 3 & 0 \\ -3 & 2 \end{vmatrix} = 6 - 0 = 6$$

Відповіль: $\Delta = 6$

3.
$$F(x) = \int y dx = \int (4x^2 - 12x + 9) dx = \frac{4}{3}x^3 - \frac{12}{2}x^2 + 9x + C$$

$$F(x) = \frac{4}{3}x^3 - 6x^2 + 9x + C$$

Підставимо в останнє рівняння координати точки A(0;1). Отримаємо: C=1

Тоді рівняння первісної матиме вигляд: $F(x) = \frac{4}{3}x^3 - 6x^2 + 9x + 1$

Відповідь:
$$F(x) = \frac{4}{3}x^3 - 6x^2 + 9x + 1$$

4. Визначимо подію А, як те що прилад було виготовлено і він надійшов до реалізації. Тоді можна скласти 2 гіпотези: H_1 – магнітофон першої фірми-розробника; H_2 – магнітофон другої фірми розробника.

Тоді визначимо умовні ймовірності:

 $P(A/H_1)$ – ймовірність появи на ринку магнітофона від першої фірми;

 $P(A/H_2)$ – ймовірність появи на ринку магнітофона від другої фірми;

Тоді за формулою повної ймовірності знайдемо надійність електронного приладу:

 $P(A)=P(H_1)P(A/H_1)+P(H_2)P(A/H_2)=0,7\cdot0,75+0,85\cdot0,25=0,74.$

Відповідь: P(A)=0,74.

- 1. Знайдіть похідну від функції $y(x) : y(x) = 5x + \cos(3x)$;
- 2. Знайти розв'язок задачі Коші

$$y'' + 3y' = 0$$

3. Знайти найменше значення функції y = f(x) на відрізку [-1,2]

$$f(x) = x^3 + (3/2)x^2$$

4. Розвинути в ряд Фур'є синусами f(x) з періодом $T=2\pi$, $f(x)=\begin{cases} 8, & 0< x<\frac{\pi}{2},\\ 11, & \frac{\pi}{2}< x<\pi. \end{cases}$

Розв'язок:

1. Похідна за змінною $x: y'(x) = 5 - 3\sin 3x$

Відповідь: $y'(x) = 5 - 3\sin 3x$

2. Запишемо характеристичне рівняння:

$$k^2+3k=0$$
; тоді $k_{1,2}=0$;—3. Запишемо розв'язок рівняння: $y=C_1+C_2\cdot e^{-3\cdot x}$

Відповідь: $y = C_1 + C_2 \cdot e^{-3 \cdot x}$.

3. Щоб знайти найменше значення функції на проміжку достатньо провірити значення функції на кінцях проміжку та в критичних точках, які належать цьому проміжку, тобто в таких токах в яких похідна рівна нулю або не існує, та порівняти значення функції в цих точках. Отже:

$$f(-1) = -1 + \frac{3}{2} = 0.5$$
; Ta $f(2) = 8 + 6 = 14$;

$$f'(x) = 3 \cdot x^2 + 3 \cdot x$$
; Тоді $x^2 + x = 0$; Звідси $x_{1,2} = 0$; —1;

$$f(0) = 0;$$

$$\min_{x \in [-1;2]} f(x) = f(0) = 0$$

Відповідь:
$$\min_{x \in [-1;2]} f(x) = f(0) = 0$$

4. Оскільки функція Кусково-монотонна, то за теоремою Діріхлє ряд Фур'є цієї функції в кожній точці збігається до значення $\frac{f(x-0)+f(x+0)}{2}$

Продовжимо функцію на проміжок (- π ;0) непарним чином Коефіцієнти Фур'є знаходяться за формулами:

$$a_0 = 0$$

$$b_0 = 0$$

$$=\frac{2}{\pi}\left(-\frac{8}{n}(\cos\frac{\pi n}{2}-1)-\frac{11}{n}((-1)^n-\cos\frac{\pi n}{2})\right)=-\frac{2}{\pi n}\left(8(\cos\frac{\pi n}{2}-1)+11((-1)^n-\cos\frac{\pi n}{2})\right)$$

$$f(x) \sim \sum_{n=1}^{\infty} -\frac{2\sin nx}{\pi n} (3(\cos \frac{\pi n}{2} - 1) + 11((-1)^n - \cos \frac{\pi n}{2}))$$

Графік суми ряду Фур'є:

Відповідь:
$$f(x) \sim \sum_{n=1}^{\infty} -\frac{2\sin nx}{\pi n} (3(\cos \frac{\pi n}{2} - 1) + 11((-1)^n - \cos \frac{\pi n}{2}))$$

1. Знайти невизначений інтеграл

$$\int \sin^2(2x) dx$$

- 2. Знайти розв'язок задачі Коші: y'' 3y = 0;
- 3. Знайти проміжки зростання функції y = f(x): $f(x) = 4\cos x/2 x$;
- 4. Функція f(x) з періодом $T=2\pi$ розвинути в ряд Фур'є. $f(x)=\begin{cases} 1, -\pi < x < 0 \\ -5, 0 \le x < \pi \end{cases}$

Розв'язок:

1. Знайдемо інтеграл $\int \sin^2(2x) dx = \int (1-\cos(4x))/2 dx = 0.5x - 0.5 \int (\cos(4x)) dx = 0.5x - (\sin(4x))/8 + C.$

Відповідь: $0.5x-(\sin(4x))/8+C$.

2. Запишемо характеристичне рівняння:

$$k^2-3=0$$
; Тоді $k_{1,2}=\pm\sqrt{3}$; Далі запишемо розв'язок рівняння:

$$y = C_1 \cdot e^{\sqrt{3} \cdot x} + C_2 \cdot e^{-\sqrt{3} \cdot x}$$

Відповідь: $y = C_1 \cdot e^{\sqrt{3} \cdot x} + C_2 \cdot e^{-\sqrt{3} \cdot x}$

3. Функція зростає на проміжку при умові, що похідна цієї функції більша нуля на цьому проміжку,

тоді:
$$f'(x) = -2 \cdot \sin(\frac{x}{2}) - 1$$
; і $-2 \cdot \sin(\frac{x}{2}) - 1 > 0$;

Звідки
$$\sin(\frac{x}{2}) < -\frac{1}{2}$$
;

$$\frac{x}{2} \in (-\frac{5\pi}{6} + 2\pi n; -\frac{\pi}{6} + 2\pi n), \quad n \in \mathbb{Z};$$

$$x \in (-\frac{5\pi}{3} + 4\pi n; -\frac{\pi}{3} + 4\pi n), \quad n \in \mathbb{Z}$$

Відповідь: функція зростає на $x \in (-\frac{5\pi}{3} + 4\pi n; -\frac{\pi}{3} + 4\pi n), n \in \mathbb{Z}$

4. Оскільки функція кусково-монотонною, то за теоремою Дріхле ряд Фурє цієї функції в кожній точці збігається до значення (f(x-0)+f(x+0))/2.

Коефіцієнти ряда Фурє:

$$a_0 = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) dx = \frac{1}{\pi} \left(\int_{-\pi}^{0} dx - 5 \int_{0}^{\pi} dx \right) = \frac{1}{\pi} \left(x \Big|_{-\pi}^{0} - 5x \Big|_{0}^{\pi} \right) = \frac{1}{\pi} \left(0 + \pi - 5\pi \right) = -4$$

$$a_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos nx dx = \frac{1}{\pi} \left(\int_{-\pi}^{0} \cos nx dx - 5 \int_{0}^{\pi} \cos nx dx \right) =$$

$$= \frac{1}{\pi} \left(\frac{1}{n} \sin nx \Big|_{-\pi}^{0} - \frac{5}{n} \sin nx \Big|_{0}^{\pi} \right) = \frac{1}{\pi} \left(\frac{-6}{n} \sin \pi n \right) = \frac{6}{n\pi} \sin \pi n = 0$$

$$b_n = \frac{1}{\pi} \int_{\pi}^{\pi} f(x) \sin nx dx = \frac{1}{\pi} \left(\int_{-\pi}^{0} \sin nx dx + \int_{0}^{\pi} \sin nx dx \right) =$$

$$= \frac{1}{\pi} \left(-\frac{1}{n} \cos nx \Big|_{-\pi}^{0} + \frac{5}{n} \cos nx \Big|_{0}^{\pi} \right) = \frac{1}{\pi} \left(\frac{6}{n} \cos \pi n - \frac{6}{n} \right) =$$

$$=\frac{1}{\pi}\left(\frac{6}{n}\left(-1\right)^n-\frac{6}{n}\right)$$

$$f(x) \sim -2 + \sum_{n=1}^{\infty} \frac{1}{\pi} \left(\frac{6}{n} (-1)^n - \frac{6}{n} \right) \sin nx$$

Графік суми ряду Фурє:

Відповідь:
$$f(x) \sim -2 + \sum_{n=1}^{\infty} \frac{1}{\pi} \left(\frac{6}{n} (-1)^n - \frac{6}{n} \right) \sin nx$$

- 1. Знайти невизначений інтеграл $\int \frac{x^3+5}{x^2} dx$
- 2. Знайти розв'язок задачі Коші: y'' 5y' = 0;
- 3. Знайти проміжки зростання функції y = f(x): $f(x) = \cos 2x x$;
- 4. Розвинути в ряд Фур'є функцію f(x) з періодом $T = 2\pi$ $f(x) = \begin{cases} 17 & -\pi < x < 0 \\ -2 & 0 \le x < \pi \end{cases}$

Розв'язок:

1. 1.
$$\int (x^3+5)/x^2 dx = \int (x+5/x^2)dx = x^2/2 - 5/x + C$$

Відповідь: $x^2/2 - 5/x + C$

2. Запишемо характеристичне рівняння:

$$k^2 - 5k = 0$$
; тоді $k_{1,2} = 0$;5; Далі запишемо розв'язок рівняння:

$$y = C_1 + C_2 \cdot e^{5 \cdot x}.$$

Відповідь: $y = C_1 + C_2 \cdot e^{5 \cdot x}$.

3. Функція зростає на проміжку при умові, що похідна цієї функції більша нуля на цьому проміжку, тоді:

$$f'(x) = -2 \cdot \sin(2x) - 1;$$

$$-2 \cdot \sin(2x) - 1 > 0$$
; тобто $\sin(2x) < -\frac{1}{2}$;

$$2x \in (-\frac{5\pi}{6} + 2\pi n; -\frac{\pi}{6} + 2\pi n), \quad n \in \mathbb{Z}; \text{ A отже } x \in (-\frac{5\pi}{12} + \pi n; -\frac{\pi}{12} + \pi n), \quad n \in \mathbb{Z}$$

Відповідь: функція зростає на
$$x \in (-\frac{5\pi}{12} + \pi n; -\frac{\pi}{12} + \pi n), n \in \mathbb{Z}$$

4. Оскільки функція кусково-монотонна, то за теоремою Діріхле ряд Фур'є цієї функції в кожній точці збігається до значення $\frac{f(x-0)+f(x+0)}{2}$

Коефіцієнти ряду Фур'є:

$$a_0 = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) dx = \frac{1}{\pi} \left[\int_{-\pi}^{0} 17 dx + \int_{0}^{\pi} (-2) dx \right] = \frac{1}{\pi} \left[17x \Big|_{-\pi}^{0} - 2x \Big|_{0}^{\pi} \right] = \frac{1}{\pi} \left[17(0 - (-\pi)) - 2(\pi - 0) \right] = \frac{1}{\pi} \cdot 15\pi = 15$$

$$a_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos nx dx = \frac{1}{\pi} \left[\int_{-\pi}^{0} 17 \cos nx dx + \int_{0}^{\pi} (-2) \cos nx dx \right] = \frac{1}{\pi} \left[\frac{17}{n} \sin nx \Big|_{-\pi}^{0} - \frac{2}{n} \sin nx \Big|_{0}^{\pi} \right] = \frac{1}{\pi} \left[\frac{17}{n} \sin nx \Big|_{0}^{\pi} - \frac{2}{n} \sin nx \Big|_{0}^{\pi} \right] = \frac{1}{\pi} \left[\frac{17}{n} \sin nx \Big|_{0}^{\pi} - \frac{2}{n} \sin nx \Big|_{0}^{\pi} \right] = \frac{1}{\pi} \left[\frac{17}{n} \sin nx \Big|_{0}^{\pi} - \frac{2}{n} \sin nx \Big|_{0}^{\pi} \right] = \frac{1}{\pi} \left[\frac{17}{n} \sin nx \Big|_{0}^{\pi} - \frac{2}{n} \sin nx \Big|_{0}^{\pi} \right] = \frac{1}{\pi} \left[\frac{17}{n} \sin nx \Big|_{0}^{\pi} - \frac{2}{n} \sin nx \Big|_{0}^{\pi} \right] = \frac{1}{\pi} \left[\frac{17}{n} \sin nx \Big|_{0}^{\pi} - \frac{2}{n} \sin nx \Big|_{0}^{\pi} \right] = \frac{1}{\pi} \left[\frac{17}{n} \sin nx \Big|_{0}^{\pi} - \frac{2}{n} \sin nx \Big|_{0}^{\pi} \right] = \frac{1}{\pi} \left[\frac{17}{n} \sin nx \Big|_{0}^{\pi} - \frac{2}{n} \sin nx \Big|_{0}^{\pi} \right] = \frac{1}{\pi} \left[\frac{17}{n} \sin nx \Big|_{0}^{\pi} - \frac{2}{n} \sin nx \Big|_{0}^{\pi} \right] = \frac{1}{\pi} \left[\frac{17}{n} \sin nx \Big|_{0}^{\pi} - \frac{2}{n} \sin nx \Big|_{0}^{\pi} - \frac{2}{n} \sin nx \Big|_{0}^{\pi} \right] = \frac{1}{\pi} \left[\frac{17}{n} \sin nx \Big|_{0}^{\pi} - \frac{2}{n} \sin nx \Big|_{0}^{$$

$$\frac{17}{\pi n} (\sin 0 - \sin(-n\pi)) - \frac{2}{\pi n} (\sin 0 - \sin \pi n) = 0$$

$$b_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin nx dx = \frac{1}{\pi} \left[\int_{-\pi}^{0} 17 \sin nx dx - \int_{0}^{\pi} 2 \sin nx dx \right] = -\frac{17}{\pi n} (\cos 0 - \cos(-\pi n)) + \frac{1}{\pi} \left[\int_{-\pi}^{\pi} f(x) \sin nx dx - \int_{0}^{\pi} 2 \sin nx dx \right] = -\frac{17}{\pi n} (\cos 0 - \cos(-\pi n)) + \frac{1}{\pi} \left[\int_{-\pi}^{\pi} f(x) \sin nx dx - \int_{0}^{\pi} 2 \sin nx dx \right] = -\frac{17}{\pi n} (\cos 0 - \cos(-\pi n)) + \frac{1}{\pi} \left[\int_{-\pi}^{\pi} f(x) \sin nx dx - \int_{0}^{\pi} 2 \sin nx dx \right] = -\frac{17}{\pi n} (\cos 0 - \cos(-\pi n)) + \frac{1}{\pi} \left[\int_{-\pi}^{\pi} f(x) \sin nx dx - \int_{0}^{\pi} 2 \sin nx dx \right] = -\frac{17}{\pi n} (\cos 0 - \cos(-\pi n)) + \frac{1}{\pi} \left[\int_{-\pi}^{\pi} f(x) \sin nx dx - \int_{0}^{\pi} 2 \sin nx dx \right] = -\frac{17}{\pi n} (\cos 0 - \cos(-\pi n)) + \frac{1}{\pi} \left[\int_{-\pi}^{\pi} f(x) \sin nx dx - \int_{0}^{\pi} 2 \sin nx dx \right] = -\frac{17}{\pi n} (\cos 0 - \cos(-\pi n)) + \frac{1}{\pi} \left[\int_{-\pi}^{\pi} f(x) \sin nx dx - \int_{0}^{\pi} 2 \sin nx dx \right] = -\frac{17}{\pi n} (\cos 0 - \cos(-\pi n)) + \frac{1}{\pi} \left[\int_{0}^{\pi} f(x) \sin nx dx - \int_{0}^{\pi} f(x) \sin nx dx \right] = -\frac{17}{\pi} \left[\int_{0}^{\pi} f(x) \sin nx dx - \int_{0}^{\pi} f(x) \sin nx dx - \int_{0}^{\pi} f(x) \sin nx dx \right] = -\frac{17}{\pi} \left[\int_{0}^{\pi} f(x) \sin nx dx - \int_$$

$$+\frac{2}{\pi n}(\cos(\pi n)-\cos 0)=\frac{2}{\pi n}\left(\left((-1)^n-1\right)-\frac{17}{\pi n}\left(1-(-1)^n\right)\right)=\frac{19}{\pi n}((-1)^n-1)$$

$$f(x) \Box \frac{15}{2} + \sum_{n=1}^{\infty} \frac{19}{\pi n} ((-1)^n - 1) \sin nx$$

Графік суми ряду Фур'є:

Відповідь:
$$f(x) \Box \frac{15}{2} + \sum_{n=1}^{\infty} \frac{19}{\pi n} ((-1)^n - 1) \sin nx$$

