

spatial statistical inference

Statistical inference

Statistical inference is the act of generalizing from a sample to a population with calculated degree of certainty.

we want to learn about population parameters

using statistics calculated in the sample

Statistical inference main concepts

- Population
- Population parameters
- Sample
- Sample statistics
- Hypothesis testing
- Sampling distribution of a statistic
- Statistical significance test

Spatial Statistical Inference:

Null and Alternative Hypotheses

Null Hypothesis:

- The observed spatial pattern is random
- Usually called Complete Spatial Randomness (CSR) hypothesis
- Not very interesting!

Alternative Hypothesis:

- The spatial pattern is not random
- It may be clustered or dispersed

What do we mean by

spatially random?

Random

- An event is equally likely to occur at any location
- The position of an event is not affected by the position of any other event

Clustered

every event is close to other event

Dispersed/Uniform

 every event is as far from other events as possible

RANDOM CLUSTERED DISPERSED

High Peak district biomass index: ratio of remotely sensed data spectral bands B3 and B4

SPATIALLY CLUSTERED

GEOGRAPHICALLY RANDOM

first order or second order effect? example of bank robberies

- Bank robberies are clustered
 - First order
 - because banks are clustered
 - we call this the effect of "non-uniformity of space"
 - Second order
 - because one robbery influences nearby robberies
- In practice, it is very difficult to distinguish these two effects merely by the analysis of spatial data

spatial statistical hypothesis testing: simulation approach

- Because of the complexity of spatial processes, it is often difficult to derive theoretically a test statistic with known probability distribution
- Instead, we often use computer simulations
 - We take multiple samples from a random spatial pattern, the spatial statistic we are using is calculated for each sample, and then a frequency distribution is drawn
- This simulated sampling distribution is used to measure the probability of obtaining our actual observed spatial statistic

spatial autocorrelation

spatial autocorrelation

- Measures the correlation of a variable with itself through space
- Related to Tobler's first law of geography
 - Everything is related to everything else, but near things are more related than distant things.

positive = clustered

negative = dispersed

why is spatial autocorrelation important?

It implies the existence of a spatial process

- Why are near-by areas similar to each other?
- Why do high income people live close each other?
- These are geographical questions.
 - They are about location

It invalidates most traditional statistical inference tests

- If spatial autocorrelation exists, the results of standard statistical inference tests may be incorrect
- We need to use spatial statistical inference tests

For example

- You are more likely to incorrectly conclude a relationship exists when it does not
- You believe that the relationship is stronger than it really is

Why are standard statistical tests wrong?

- Statistical tests are based on the assumption that the values of observations in each sample are independent of one another
- spatial autocorrelation violates this
 - samples taken from nearby areas are related to each other and are not independent

Values near each other are <u>similar in</u> <u>magnitude.</u>

Implies a <u>relationship</u> between nearby observations

contiguity REGULAR GRID

Contiguity Polygons

Contiguity + Distance Polygons

K-Nearest Neighbors N=1

K-Nearest-Neighbors N=2

K-Nearest-Neighbors N=5

spatial autocorrelation:

spatial weights matrix

- Different methods of calculating \mathbf{w}_{ij} can result in different values for autocorrelation and different conclusions from statistical significance tests!
- Often we use row standardized weights $(\sum_{i} \sum_{i} w_{ii} = 1)$
- Problematic situations for irregular polygons

global measures of spatial autocorrelation

Global Measures and Local Measures

Global Measures

- A single value which applies to the entire data set
 - The same pattern or process occurs over the entire geographic area
 - An average for the entire area

Local Measures

- A value calculated for each observation unit
 - Different patterns or processes may occur in different parts of the region
 - A unique number for each location

Joins Count Statistic

- Polygons only
- binary (1,0) data only
 - Polygon has or does not have a characteristic
 - For example, a candidate won or lost an election
- Based on examining polygons which share a border
 - Do they have the same characteristic or not?
- Requires a contiguity matrix for polygons
- Measures the number of borders ("joins") of each type (1,1),
 (0,0), (1,0 or 0,1) relative to total number of borders

Moran's I statistic

- The most common measure of spatial autocorrelation
- Use for points or polygons
 - Join Count statistic only for polygons
- Use for a continuous variable (any value)
 - Join Count statistic only for binary variable (1,0)

Moran's I statistic:

formulation

$$I = \frac{\frac{\sum_{i} \sum_{j} w_{ij} (x_{i} - \bar{x})(x_{j} - \bar{x})}{\sum_{i} \sum_{j} w_{ij}}}{\frac{\sum_{i} (x_{i} - \bar{x})^{2}}{N}}$$

If W_{ij} is row standardized

$$\sum_{i} \sum_{j} w_{ij} = N$$

then

$$I = \frac{\sum_{i} \sum_{j} w_{ij} (x_i - \bar{x})(x_j - \bar{x})}{\sum_{i} (x_i - \bar{x})^2}$$

N # observations

 \mathcal{X}_i variable of interest at i

 \overline{x} mean of the variable of interest

Need adjustment for short or zero distances

Moran Scatterplot

Moran Scatterplot for Poverty in San Antonio. I=.655

Moran Scatterplot

bivariate

Moran Scatterplot for Property Crime and Poverty in San Antonio. I=.12

Statistical significant tests for Moran's I

- How to assess whether computed value of Moran's I is significantly different from a spatially random distribution?
- Analytically

$$E[I] = \frac{-1}{N-1} \qquad V[I] = E[I^2] - E[I]^2 \qquad z_I = \frac{I - E[I]}{\sqrt{V[I]}}$$

In many cases is difficult!

- Computationally
 - Randomly reshuffling observations and recomputing Moran's I each time (building an empirical reference distribution)
 - Compare observed value to the reference distribution

Montecarlo test

permutation bootstrap test

- pseudo p-value $\frac{N_{extreme}+1}{N+1}$
- N_{extreme} is the number of simulated
 Moran's I values more extreme than our observed statistic and N is the total number of simulations
- This is interpreted as "there is a 1% probability that we would be wrong in rejecting the null hypothesis H_o"

example

Frequency

p = 0.0453

Moran's I: tips

- Raw Moran's I are not comparable across variables and spatial weights
 - Use standardized z-values instead
- Other measures
 - Geary's C
 - inversely related to Moran's I
 - more sensitive to local spatial autocorrelation
 - High/Low Clustering (Getis-Ord General G)
 - detect clusters of low or high values (hot/cold spots)

local measures of spatial autocorrelation

LISA

Local Indicators of Spatial Association (Anselin 1995)

- The statistic is calculated for each areal unit
- For each polygon, the index is calculated based on neighbouring polygons with which it shares a border
- Can be mapped to indicate how spatial autocorrelation varies over the study region
- Each index has an associated test statistic
- Local version of
 - Moran's I
 - Geary's C
 - Getis-Ord G

Calculating LISA

The local Moran statistic for areal unit i is:

$$I_i = z_i \sum_j w_{ij} z_j$$

where \mathbf{z}_{i} is the original variable \mathbf{x}_{i} in standardized form

$$z_i = \frac{x_i - \bar{x}}{SD_x}$$

or it can be in deviation form

$$x_i - \bar{x}$$

and w_{ii} is the spatial weight

example

San Antonio poverty rates

Local Moran's I

Local Moran Clusters (red)

example

percentage of Asian people in Auckland City (geoDa)

LISA Significance Map map the statistical

significance level and use it as a measure of the **strength** of the spatial autocorrelation

- @rschifan
- schifane@di.unito.it
- http://www.di.unito.it/~schifane