Rotations and Translations

7 questions

1

What is the determinant of a rotation matrix?

1 point

2.

What is the rotation cR_w such that $\mathbf{X}_c = {}^cR_w\mathbf{X}_w + {}^cT_w$ for a point \mathbf{X}_w expressed in the world coordinate frame?

$${}^{c}R_{w} = \begin{pmatrix} -1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{pmatrix}$$

$${}^{c}R_{w} = \begin{pmatrix} -1 & 0 & 0 \\ 0 & 0 & -1 \\ 0 & -1 & 0 \end{pmatrix}$$

$${}^{c}R_{w} = \begin{pmatrix} 0 & -1 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & -1 \end{pmatrix}$$

$${}^{c}R_{w} = \begin{pmatrix} -1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}$$

1 point

3.

What is the corresponding translation cT_w ?

$$C T_w = (2, 0, 0)$$

$$^{c}T_{w}=(0,2,0)$$

$$^{c}T_{w} = (0,0,2)$$

$$C_w = (0, 0, -2)$$

$$C_{W} = (-2, 0, 0)$$

4. What is wR_c ?

$${}^{w}R_{c} = \begin{pmatrix} -1 & 0 & 0 \\ 0 & 0 & -1 \\ 0 & -1 & 0 \end{pmatrix}$$

$${}^{w}R_{c} = \begin{pmatrix} -1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}$$

$${}^{w}R_{c} = \begin{pmatrix} -1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{pmatrix}$$

$${}^{w}R_{c} = \begin{pmatrix} 0 & -1 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & -1 \end{pmatrix}$$

5.

What is wT_c ?

$$W_{c} = (0, 2, 0)$$

$$WT_c = (0, 0, -2)$$

$$\bigcap^{w} T_c = (0,0,2)$$

$$WT_c = (0, -2, 0)$$

point

6.

For the quadrotor configuration in the two images below (top view and side view), what is the transformation from the body (imu) coordinate system to the camera?

In particular, what is the rotation cR_b such that $\mathbf{X}_c = {}^cR_b\mathbf{X}_b + {}^cT_b$ for a point \mathbf{X}_b expressed in the body coordinate frame?

[Top View]

[Side View]

$${}^{c}R_{b} = \begin{pmatrix} \frac{\sqrt{2}}{2} & 0 & -\frac{\sqrt{2}}{2} \\ 0 & -1 & 0 \\ -\frac{\sqrt{2}}{2} & 0 & \frac{\sqrt{2}}{2} \end{pmatrix}$$

$${}^{c}R_{b} = \begin{pmatrix} \frac{\sqrt{2}}{2} & -\frac{\sqrt{2}}{2} & 0\\ -\frac{\sqrt{2}}{2} & -\frac{\sqrt{2}}{2} & 0\\ 0 & 0 & -1 \end{pmatrix}$$

$${}^{c}R_{b} = \begin{pmatrix} \frac{\sqrt{2}}{2} & -\frac{\sqrt{2}}{2} & 0\\ 0 & 0 & -1\\ -\frac{\sqrt{2}}{2} & -\frac{\sqrt{2}}{2} & 0 \end{pmatrix}$$

$${}^{c}R_{b} = \begin{pmatrix} \frac{\sqrt{2}}{2} & 0 & -\frac{\sqrt{2}}{2} \\ 0 & -1 & 0 \\ -\frac{\sqrt{2}}{2} & 0 & -\frac{\sqrt{2}}{2} \end{pmatrix}$$

1 point

7.

What is the corresponding translation cT_b ?

$$^{c}T_{b} = (0.04, 0, 0.03)$$
m

$$^{c}T_{b} = (-0.03, 0, -0.04)$$
m

$$^{c}T_{b} = (-0.04, 0, -0.03)$$
m

$$^{c}T_{b} = (0.03, 0, 0.04)$$
m

7 questions unanswered

Submit Quiz

