MATH 425b ASSIGNMENT 3 SOLUTIONS SPRING 2016 Prof. Alexander

Chapter 7

(20) Let $\epsilon > 0$. There exists a polynomial with $||P - f|| < \epsilon$ (sup norm), say $P(x) = \sum_{n=0}^{N} c_n x^n$. f is bounded since it is continuous on the compact set [0,1], so there exists M such that $|f(x)| \leq M$ for all x. Therefore

$$\int_0^1 f(x)P(x) \ dx = \sum_{n=0}^N c_n \int_0^1 f(x)x^n \ dx = 0$$

and

$$0 \le \int_0^1 f(x)^2 dx = \left| \int_0^1 f(x)^2 dx - \int_0^1 f(x) P(x) dx \right|$$
$$= \left| \int_0^1 f(x) (f(x) - P(x)) dx \right|$$
$$\le \int_0^1 |f(x)| |(f(x) - P(x))| dx$$
$$\le \int_0^1 M\epsilon dx$$
$$= M\epsilon.$$

Since ϵ is arbitrary, this shows $\int_0^1 f(x)^2 dx = 0$. By Exercise 2 of chapter 6, this means $f(x)^2 = 0$ for all x, so f(x) = 0 for all x.

(21) The constant function $f(e^{i\theta}) \equiv 1$ for all θ is in \mathcal{A} , and vanishes nowhere, so \mathcal{A} vanishes at no point of K. The identity function $f(e^{i\theta}) = e^{i\theta}$ is in \mathcal{A} , and is one-to-one, so \mathcal{A} separates points.

To prove Rudin's hint, for any function $f(e^{i\theta}) = \sum_{n=0}^{N} c_n e^{in\theta}$ in \mathcal{A} we have

$$\int_0^{2\pi} f(e^{i\theta})e^{i\theta} d\theta = \sum_{n=0}^N c_n \int_0^{2\pi} e^{i(n+1)\theta} d\theta = 0.$$
 (1)

For $f \in \overline{\mathcal{A}}$ there exists a sequence $\{f_n\} \subset \mathcal{A}$ with $f_n \to f$ uniformly. Hence applying (1) to

 f_n ,

$$\left| \int_{0}^{2\pi} f(e^{i\theta})e^{i\theta} d\theta \right| = \left| \int_{0}^{2\pi} (f(e^{i\theta}) - f_n(e^{i\theta}))e^{i\theta} d\theta \right|$$

$$\leq \int_{0}^{2\pi} |f(e^{i\theta}) - f_n(e^{i\theta})| |e^{i\theta}| d\theta$$

$$\leq 2\pi ||f - f_n||_{\infty} \quad (\text{sup norm})$$

$$\to 0 \quad \text{as } n \to \infty,$$
(2)

so we must have $\int_0^{2\pi} f(e^{i\theta})e^{i\theta} d\theta = 0$, for all $f \in \overline{\mathcal{A}}$. But for the particular choice $f(e^{i\theta}) = e^{-i\theta}$ we have $\int_0^{2\pi} f(e^{i\theta})e^{i\theta} d\theta = \int_0^{2\pi} 1 d\theta = 2\pi$, so $f \notin \overline{\mathcal{A}}$, though f is continuous on K.

Chapter 8

(4)(a) Let $f(x) = b^x = e^{(\log b)x}$, so $f'(x) = (\log b)e^{(\log b)x}$. Then

$$\lim_{x \to 0} \frac{b^x - 1}{x} = \lim_{x \to 0} \frac{f(x) - f(0)}{x - 0} = f'(0) = \log b.$$

(b) Use L'Hospital's Rule:

$$\lim_{x \to 0} \frac{\log(1+x)}{x} = \lim_{x \to 0} \frac{\frac{1}{1+x}}{1} = 1.$$

(c) Use (b):

$$\lim_{x \to 0} (1+x)^{1/x} = \lim_{x \to 0} e^{\frac{\log(1+x)}{x}} = e^1 = e.$$

(d) By (c), $\lim_{n\to\infty} \left(1+\frac{x}{n}\right)^{n/x} = e$. Since y^x is a continuous function of y, this shows

$$\lim_{n \to \infty} \left(1 + \frac{x}{n} \right)^n = \lim_{n \to \infty} \left(\left(1 + \frac{x}{n} \right)^{n/x} \right)^x = e^x.$$

(6)(a) Taking x = y = 0 shows $f(0)^2 = f(0)$ so f(0) = 0 or 1 for all x. But f(x) = f(x+0) = f(x)f(0) so if f(0) = 0 then f(x) would be 0 for all x. Therefore f(0) = 1.

Let $g(x) = \log f(x)$, so g(0) = 0 and g(x + y) = g(x) + g(y). Then

$$g'(x) = \lim_{h \to 0} \frac{g(x+h) - g(x)}{h} = \lim_{h \to 0} \frac{g(h)}{h} = \lim_{h \to 0} \frac{g(h) - g(0)}{h} = g'(0) \quad \text{for all } x.$$

Letting c = g'(0), this shows that g(x) = cx + c' for some c'. Since g(0) = 0 we must have c' = 0, so g(x) = cx, which means $f(x) = e^{cx}$.

(b) Rudin is a bit unclear—we still assume f is not 0, we just replace differentiability with continuity.

Since g(x + y) = g(x) + g(y), taking x = y shows g(2x) = 2g(x), and then by easy induction on m,

$$q(mx) = q((m-1)x + x) = q((m-1)x) + q(x) = (m-1)q(x) + q(x) = mq(x),$$

for all m and x. Hence also

$$g(x) = g\left(n \cdot \frac{x}{n}\right) = ng\left(\frac{x}{n}\right)$$

for all n, x, so $g(\frac{x}{n}) = \frac{1}{n}g(x)$. Therefore for all m, n,

$$g\left(\frac{m}{n}\right) = g\left(m \cdot \frac{1}{n}\right) = mg\left(\frac{1}{n}\right) = mg\left(\frac{1}{n} \cdot 1\right) = \frac{m}{n}g(1).$$

Letting a = g(1) we thus have g(x) = ax for all rational x. Since g is continuous, for irrational x we can take a sequence of rationals $x_k \to x$ and

$$g(x) = \lim_{k} g(x_k) = \lim_{k} ax_k = ax.$$

Thus $f(x) = e^{ax}$.

(A) ((a) \Longrightarrow (b)) Suppose $\sum_{n=0}^{\infty} a_n$ converges. Then the radius of convergence is at least 1, so f is defined at least on [0,1]. For $x \in [0,1]$ we have

$$|f(x) - \sum_{n=1}^{N} a_n x^n| \le \sum_{n=N+1}^{\infty} |a_n| |x|^n \le \sum_{n=N+1}^{\infty} |a_n|.$$

The last sum does not depend on x, and approaches 0 as $N \to \infty$. Thus the series converges uniformly to f(x) on [0,1].

- ((b) \Longrightarrow (c)) Suppose $\sum_{n=1}^{\infty} a_n x^n$ converges uniformly on [0, 1]. Then the limit f(x) is a continuous function, so f is bounded on [0, 1], hence also on [0, 1).
- $((c) \implies (a))$ Suppose $\sum_{n=0}^{\infty} a_n = \infty$. Given M > 0 there exists N such that $\sum_{n=0}^{N} a_n > M$. Then for x sufficiently close to 1 we have $f(x) \ge \sum_{n=0}^{N} a_n x^n > M$. This shows that f is unbounded on [0,1].
- (B) Let $f(x) = \sum_{n=1}^{\infty} x^n/n$. Since $(1/n)^{1/n} \to 1$, the radius of convergence is 1 for this series, and plugging in x=0 shows f(0)=0. By Theorem 8.1 we can differentiate term-by-term for |x|<1: $f'(x)=\sum_{n=1}^{\infty} x^{n-1}=\sum_{m=0}^{\infty} x^m=(1-x)^{-1}$, since f'(x) is a geometric series. Integrating gives $f(x)=f(x)-f(0)=\int_0^x f'(t)\,dt=\int_0^x (1-t)^{-1}\,dt=-\log(1-x)$ for all |x|<1.

- (C)(a) Since f is never 0, \mathcal{A}_1 vanishes at no point of [0,1]. If $(x_1,y_1) \neq (x_2,y_2)$ then either $x_1 \neq x_2$ or $y_1 \neq y_2$. If $x_1 \neq x_2$ then $g(x_1,y_1) \neq g(x_2,y_2)$. If $y_1 \neq y_2$ then $f(x_1,y_1) \neq g(x_2,y_2)$. This shows that \mathcal{A}_1 separates points. By the Stone-Weierstrass Theorem, the uniform closure of \mathcal{A}_1 is all of $C([0,1]^2)$, so in particular it includes h.
- (b) Every polynomial of form $c + (x \frac{1}{2})^2 R(x)$, with R a polynomial and c a constant, is in \mathcal{A}_2 . In particular the strictly increasing function $(x \frac{1}{2})^3 \in \mathcal{A}_2$, which shows that \mathcal{A}_2 separates points. Taking c > 0 and $R \equiv 1$ we see that \mathcal{A}_2 vanishes at no point. By the Stone-Weierstrass Theorem, \mathcal{A}_2 is dense in C[0,1].
- (D)(a) Fix x and let $a_n = \binom{\alpha}{n} x^n$. Then

$$\frac{|a_{n+1}|}{|a_n|} = \left| \frac{\binom{\alpha}{n+1} x^{n+1}}{\binom{\alpha}{n} x^n} \right| = \frac{|\alpha - n|}{n+1} |x| \to |x| \quad \text{as } n \to \infty.$$

Hence by the ratio test, the series S(x) converges if |x| < 1, and diverges if |x| > 1. This shows the radius of convergence is 1.

(b) By Theorem 8.1 we can differentiate term-by-term for |x| < 1:

$$(*) S'(x) = \sum_{n=0}^{\infty} n \binom{\alpha}{n} x^{n-1} = \sum_{n=1}^{\infty} n \binom{\alpha}{n} x^{n-1}.$$

From the formulas,

$$n\binom{\alpha}{n} = \frac{\alpha(\alpha - 1)\cdots(\alpha - n + 1)}{(n - 1)!} = (\alpha - n + 1)\binom{\alpha}{n - 1},$$

SO

$$S'(x) = \alpha \sum_{n=1}^{\infty} {\alpha \choose n-1} x^{n-1} - \sum_{n=1}^{\infty} (n-1) {\alpha \choose n-1} x^{n-1}.$$

Changing the index to n = m - 1 and using (*) gives

$$S'(x) = \alpha \sum_{m=0}^{\infty} {\alpha \choose m} x^m - \sum_{m=0}^{\infty} m {\alpha \choose m} x^m = \alpha S(x) - xS'(x).$$

(c) Rearranging the conclusion of part (b) we get for |x| < 1:

(**)
$$S'(x) = \frac{\alpha}{1+x}S(x)$$
 so $\frac{d}{dx}\log|S(x)| = \frac{S'(x)}{S(x)} = \frac{\alpha}{1+x}$ wherever $S(x) \neq 0$.

We claim that in fact S(x) > 0 in the whole interval (-1,1). If not, then since S(1) = 1 > 0, there must be a point $x_0 \in (-1,1)$ where $S(x_0) = 0$, so we must have $\log |S(x)| \to \infty$ as

 $x \to x_0$. But our formula (**) shows that the derivative of $\log |S(x)|$ remains bounded as $x \to x_0$, a contradiction. Thus there is no $x_0 \in (-1,1)$ where $S(x_0) = 0$, and therefore S(x) > 0 in the whole interval (-1,1). Therefore by (**),

$$\frac{d}{dx}\log S(x) = \frac{\alpha}{1+x}$$
 for all $x \in (-1,1)$.

Integrating gives $\log S(x) = \alpha \log(1+x) + C$, and then S(0) = 1 shows that C = 0, so $S(x) = (1+x)^{\alpha}$.