

Success Factors of Social Media Content– The Case Of Accenture Facebook Posts

RPV: Data Science Methods and Technologies for Data-driven Business Models

St. Gallen, 21.12.2016

Valentin Kahn, 12-613-378

Agenda

01

Method

02

Results

03

Conclusions & Challenges

04

Discussion

Method

- Research Question
- Dataset & Subsets
- Research Process
- Key Queries

Research Question & Hypotheses

What do Accenture posts that create the most attention, the biggest discussion and the best emotions have in common?

Dataset & Subsets

Correlation Analysis I

Analysis of all posts and comments (11'352 rows)

Analysis and correlation between:

- Length of posts
- Time tense of posts
- Links
- Questions or calls to action
- Brand-related content

and

- Likes
- Shares

Correlation Analysis II

Analysis of posts that have comments (2'140 rows)

Analysis and correlation between:

- Length of posts
- Time tense of posts
- Links
- Questions or calls to action
- Brand-related content

and

- Likes
- Shares
- Comments
- Emotions of comments

Best-in-Class Analysis

Analysis of «best-in-class» posts (and their comments; 168 rows)

Analysis and identification of success factors based on commonalities in:

- Content (words) of posts
- Length of posts
- Time tense of posts
- Questions and call to actions
- Brand-related content
- Links

Research Process & Key Queries

Results

Research Results (1/2)

Content

Top Key Words	Occurrence	Top 168
1. Accenture	3'260	62
2. IT	1'347	
3. Business	993	21
4. Companies	865	23

With Key Words

- 32.13 likes $(\sigma = 114.36)$
- 2.768 shares $(\sigma = 25.39)$

Without Key Words

36.32 likes
 (σ = 117.07)
 2.717 shares
 (σ = 11.01)

Questions & Calls to Action

With Question Mark

24 likes ($\sigma = 24.45$)

Without Question Mark

35 likes ($\sigma = 130.45$)

Research Results (2/2)

No clear correlation
between these
factors and
comments, shares or
likes

Optimal post length seems to be 80 to 250 characters

- Clear correlation between media elements and number of likes, especially photos
- Same applies for comments
- From the 25 posts that received more than 400 likes, 16 were a photo

Element	Likes	Comments
Links	28	0.72
Photos	127	1.60
Videos	55	1.27

Conclusions & Challenges

Conclusions & Challenges

Conclusions

- Brand-related key words could not trigger success
- Calls to action: Only exclamation marks have a clear positive (but unclear) effect
- Links, post length and time focus do not trigger success either
- Media elements (videos and especially photos) are successful

Challenges

- Setup of virtual machine
- Speed of Hadoop
- Iterative process of building and abandoning hypotheses
- Word count query
- From key words to conclusions

Discussion

Thank you for your attention!

St. Gallen, 21.12.2016

Valentin Kahn, 12-613-378

Further Selected Key Queries

```
SELECT status_message as Content FROM accenture
   WHERE type = "post"
   and num_likes > 5
   and num_comments > 0
   and num_shares > 0
   and posemo > 5
   and negemo = 0
   and post_id

IN

   (SELECT Distinct original_post_id from accenture
        where posemo > 5
        and negemo = 0
        and type = "comment");
```

Selection of "best-in-class" posts

```
SELECT SUM(total count) as total, value
       (SELECT count(*) AS total_count, REPLACE(REPLACE(REPLACE(x.value, '?',''), '.',''), as value
               (SELECT SUBSTRING INDEX(SUBSTRING INDEX(t.status message, ' ', n,n), ' ', -1) value
                       (SELECT status_message FROM accenture
                           WHERE type = "post"
                           and num_likes > 5
                           and num_comments > 0
                           and num_shares > 0
                           and posemo > 5
                           and negemo = 8
                           and post id IN
                                (SELECT Distinct original_post_id from accenture
                                    where posemo > 5
                                    and negemo = 0
                                   and type = "comment")) t
   CROSS JOIN
       (SELECT a.N + b.N * 10 + 1 n
                (SELECT @ AS N UNION ALL SELECT 1 UNION ALL SELECT 2 UNION ALL SELECT 3 UNION ALL SELECT 4
               UNION ALL SELECT 5 UNION ALL SELECT 6 UNION ALL SELECT 7 UNION ALL SELECT 8 UNION ALL SELECT 9) a
               (SELECT @ AS N UNION ALL SELECT 1 UNION ALL SELECT 2 UNION ALL SELECT 3 UNION ALL SELECT 4
               UNION ALL SELECT 5 UNION ALL SELECT 6 UNION ALL SELECT 7 UNION ALL SELECT 8 UNION ALL SELECT 9) b
               ORDER BY n) n
                   WHERE n.n <= 1 + (LENGTH(t.status message) - LENGTH(REPLACE(t.status message, ' ', '')))
                    ORDER BY value) AS x
                   GROUP BY x.value) AS y
                       GROUP BY value
                       ORDER BY total
                       DESC LIMIT 50;
```

word count (top 50) in "best-in-class" posts

```
select avg(num_comments) from accenture where type = "post" and status_message not like "%!%" and status_message not like "%?%" and status_message not like "%ead%" and status_message not like "%learn%" union select avg(num_comments) from accenture where type = "post" and status_message like "%!%" and status_message like "%?%" union select avg(num_comments) from accenture where type = "post" and status_message like "%?%" and status_message not like "%!%" union select avg(num_comments) from accenture where type = "post" and status_message like "%!%" and status_message not like "%?%" union select avg(num_comments) from accenture where type = "post" and status_message like "%!%" and status_message not like "%?%" union select avg(num_comments) from accenture where type = "post" and status_message like "%Read%" union select avg(num_comments) from accenture where type = "post" and status_message like "%Read%" union select avg(num_comments) from accenture where type = "post" and status_message like "%learn%";
```

exploring the relation between questions, calls to actions and user engagement

Further Statistics

Success Factors of Accenture Facebook Posts

RPV: Data Science Methods and Technologies for Data-driven Business Models

St. Gallen, 21.12.2016

Valentin Kahn, 12-613-378