UPGMA/WPGMA

(Un)weighted Pair Group Method with Arithmetic Mean

Julian Löffler

12.11.2018

Motivation for UPGMA / WPGMA

Consider a set of sequences:

A: TCAACTAC

B: ACTGCAAA

C: GGCTGTAA

D: AGTTGCAA

E: TTTGAACT

► The aim is grouping the most similar sequences, regardless of their evolutionary rate or phylogenetic affinities.

Motivation for UPGMA / WPGMA

- Unweighted Pair Group Method with Arithmetic Mean
- ► Weighted Pair Group Method with Arithmetic Mean
- Used for the creation of guide trees.

UPGMA Algorithm

- 1. Compute the distance between each pair of sequences.
- 2. Treat each sequence as a cluster C by itself.
- 3. Merge the two closest clusters. The distance between two clusters is the average distance between all their sequences:

$$d(C_i, C_j) = \frac{1}{|C_i||C_j|} \sum_{r \in C_i, s \in C_j} d(r, s)$$

4. Repeat 2. and 3. until only one cluster remains.vllt

Example

- \blacktriangleright Let A, B, C, D, E be sequences.
- ► Say we have calculated a distance matrix *D*:

	Α	В	С	D	Е
Α	0	8	4	6	8
В	8	0	8	8	4
С	4	8	0	6	8
D	6	8	6	0	8
Е	8	4	8	8	0

Example

► Create guide tree for the sequences

	Α	В	С	D	Ε
Α	0	8	4	6	8
В	8	0	8	8	4
С	4	8	0	6	8
D	6	8	6	0	8
Е	8	4	8	8	0

Example I

- ► {A} and {C} are the closest clusters ⇒ merge {A} and {C} into {A,C}.
- ► Each branch gets a total distance of $\frac{d(\{A\},\{C\})}{2} = \frac{4}{2}$.

	Α	В	С	D	Ε
А	0	8	4	6	8
В	8	0	8	8	4
С	4	8	0	6	8
D	6	8	6	0	8
Е	8	4	8	8	0

Example I

- The distance between $\{A, C\}$ and the other clusters is the average distance between all their sequences.
- **Example:** the new distance between $\{A, C\}$ and $\{B\}$ is:

$$d(\{A,C\},\{B\}) = \frac{1}{|\{A,C\}||\{B\}|} (d(\{A\},\{B\}) + d(\{C\},\{B\}))$$
$$= \frac{1}{2} (8+8) = 8$$

	Α	В	С	D	Е
Α	0	8	4	6	8
В	8	0	8	8	4
С	4	8	0	6	8
D	6	8	6	0	8
Е	8	4	8	8	0

	A,C	В	D	Ε
A,C	0	8	6	8
В	8	0	8	4
D	6	8	0	8
Е	8	4	8	0

Example II

- ► {B} and {E} are the closest clusters ⇒ merge {B} and {E} into {B,E}.
- Assign $\frac{d(\{B\},\{E\})}{2} = \frac{4}{2} = 2$ to each branch.

	A,C	В	D	Ε
A,C	0	8	6	8
В	8	0	8	4
D	6	8	0	8
E	8	4	8	0

Example II

The distance between $\{B, E\}$ and the other clusters is the average distance between all their sequences.

	A,C	В	D	Е
A,C	0	8	6	8
В	8	0	8	4
D	6	8	0	8
Е	8	4	8	0

	A,C	B,E	D
A,C	0	8	6
B,E	8	0	8
D	6	8	0

Example III

- ▶ $\{A,C\}$ and $\{D\}$ are the closest clusters ⇒ merge $\{A,C\}$ and $\{D\}$ into $\{A,C,D\}$.
- ► Assign $\frac{d(\{A,C\},\{D\})}{2} = \frac{6}{2} = 3$ total length to each branch.
- ▶ Observe, that the 1 is obtained calculating 3 2 = 1.

	A,C	B,E	D
A,C	0	8	6
B,E	8	0	8
D	6	8	0

Example III

▶ The distance between $\{A, C, D\}$ and $\{B, E\}$ is the average distance between all their sequences.

	ΔC	B,E	D				
۸ ۵	71,0	٥,٢				A,C,D	B,E
A,C	0	8	б		$\Delta \subset D$	Λ	8
B.E	8	0	8	\longrightarrow	A,C,D	0	0
D,	6	0	_		B,E	8	0
	U	0	U				

Example IV

► $\{A,C,D\}$ and $\{B,E\}$ are remaining. ⇒ merge $\{A,C,D\}$ and $\{B,E\}$ into $\{A,C,D,B,E\}$.

	A,C,D	B,E
A,C,D	0	8
B,E	8	0

Example IV

- Assign $\frac{d(\{A,C,D\},\{B,E\})}{2} = \frac{8}{2} = 4$ total length to each branch.
- ▶ Observe, that the 1 is obtained calculating 4 3 = 1.
- ▶ Observe, that the 2 is obtained calculating 4 2 = 2.

Example V

Our beautiful tree:

WPGMA

In WPGMA the distance between clusters is calculated as a simple average:

$$d(C_i \cup C_j, C_k) = \frac{d(C_i, C_k) + d(C_j, C_k)}{2}$$

- Computationally easier than UPGMA.
- ► Unequal numbers of taxa in the clusters cause problems ⇒ the distances in the original matrix do not contribute equally to the intermediate calculations.
- The branches do not preserve the original distances.
- Final result is therefore said to be weighted.

Final notes

- Clustering works only if the data are ultrametric.
- ► Ultrametric distances are defined by the satisfaction of the three-point condition:
 - For any three taxa it holds:

$$d(A, C) \leq max(d(A, B), d(B, C))$$

- ▶ So we assume that all taxa evolve with the same constant rate
- \triangleright $O(n^3)$ for the trivial approach.
- ▶ $O(n^2 \log(n))$, when using a heap for each cluster
- $O(k3^kn^2)/O(n^2)$ implementations for special cases. (by Fionn Murtagh, by Day and Edelsbrunner)

References

The content of this set of slides, is based on:

- Construction of a distance tree using clustering with the Unweighted Pair Group Method with Arithmatic Mean (UPGMA): https: //www.icp.ucl.ac.be/~opperd/private/upgma.html
- UPGMA Wikipedia article: https://en.wikipedia.org/wiki/UPGMA
- WPGMA: http://www.wikiwand.com/en/WPGMA