

CBGL: Fast Monte Carlo Passive Global Localisation of 2D LIDAR Sensor

Alexandros Filotheou

School of Electrical and Computer Engineering, Aristotle University of Thessaloniki, Greece

Setup & Motivation

Unknown LIDAR pose $\mathbf{p}(x, y, \theta)$ and estimate $\hat{\mathbf{p}}(\hat{x}, \hat{y}, \hat{\theta})$. $\mathbf{p} - \hat{\mathbf{p}} = (\Delta \hat{\mathbf{l}}, \Delta \hat{\theta})$

Real $S_R(\mathbf{p})$ and virtual $S_V(\hat{\mathbf{p}})$ scans, in the local coordinate frame of each sensor

Definition 1. The Cumulative Absolute Error per Ray (CAER) metric

$$CAER(\mathcal{S}_R, \mathcal{S}_V) \triangleq \sum_{n=0}^{\text{scan rays}-1} \left| \mathcal{S}_R[n] - \mathcal{S}_V[n] \right|$$
 (1)

The gist

The method estimates the pose of a 2D LIDAR given only a single measurement and the map of the environment, while

- being robust against
- -environment repetitions
- -map distortions
- -sensor noise
- -sensor FOV (radial & angular)
- executing at ≈ 1 sec per 100 m² of environment area
- requiring no parameters to be tuned
- making no assumptions about the environment

because CAER (eq. (1) and left-hand bottom figures)

- scales with position and orientation error
- is computationally cheap at $\sim O(\text{sensor rays})$

Experiments with real and synthetic data

	Position Error [m]		Orientation Error [rad]		Execution Time [sec]	
	Mean	std	Mean	std	Mean	std
ALS [1]	0.500	0.265	1.956	1.167	6.15	5.32
CBGL	0.041	$\boldsymbol{0.045}$	0.011	0.019	1.61	0.06

Multiple added uncertainties Repetitive environment struct.

[1] Naoki Akai, "Reliable Monte Carlo Localization for Mobile Robots", Journal of Field Robotics, 2023