Truba Institute of Engineering & Information Technology, Bhopal

A PRESENTATION ON

Crop Yield Prediction

Guided By Geeta Guwalani CSE

Presented By

Suman Kumar Saurabh 0114AD233D09 Lalit Kumar 0114AD233D05 Rahul Kumar 0114AD233D07

Department of Computer Science & Engineering

Contents

- Introduction
- Objective & Motivation
- > Problem Identification
- Proposed Work
- > Implementation Details
- > Result/Expected Outcomes
- > Conclusion

Introduction

Agriculture is the backbone of the global economy, yet farmers face increasing challenges due to unpredictable weather conditions, changing environmental factors, and the need for efficient resource allocation.

Project Area:

 The project focuses on the integration of Machine Learning into agriculture to predict crop yields accurately.

Objective & Motivation

Objectives:

- 1. Build a system that predicts crop yields based on environmental and agricultural factors.
- 2. Provide actionable insights to farmers to optimize resource utilization.
- Promote sustainable agricultural practices using technology.

Motivation:

- Address challenges of traditional prediction methods.
- Improve agricultural efficiency and profitability.
- Support food security through data-driven decisionmaking.

Problem Identification

Current Problems:

- Traditional methods rely on static historical averages a nd lack precision.
- Inefficient use of resources like water and fertilizers.
- Inability to predict yield accurately due to changing e nvironmental conditions.

Solution:

 A machine learning model that integrates multiple en vironmental and agricultural factors to provide accurat e crop yield predictions.

Proposed Work

- Proposed System:
 - A web-based platform that predicts crop yield based on inputs like region, crop type, year, rainfall, tempera ture, and pesticide usage.
- Flowchart: (Insert a flowchart here, showing the process from data input to yield prediction result.)

Implementation Details

- Techniques Used:
 - Machine Learning Model: Random Forest Regressor for yield prediction.
 - Categorical Data Encoding: OrdinalEncoder for region and crop type.
 - Frameworks & Tools:
 - Python, Scikit-learn, Flask, Pickle (model serialization).
 - Frontend: HTML, CSS, JavaScript.
 - Software Requirements:
 - Python 3.9+, Flask, and compatible web browsers.
 - Hardware Requirements:
 - Minimum 4GB RAM and 20GB storage.

Result/Expected Outcomes

Screenshot

Conclusion

- The **Crop Yield Prediction System** demonstrates how machine learning can optimize agricultural practices.
- By accurately predicting crop yields, the system helps farmers allocate resources effectively and plan cultivation strategies.
- With high accuracy and usability, the project showcases the transformative potential of technology in agriculture, promoting sustainability and efficiency.

