Sample of TeX writing

Daiji Tsutsui

July 2, 2020

Abstract

One can write a brief explain of his paper. Blah-blah-.

Contents

1 Mathematical statement	1
1.1 Definition	1
1.2 Theorem	1
2 Environments for equations	2
1 Mathematical statement	
1.1 Definition	
The first sentence does not need an indent.	
Definition 1.1 (First definition). The symbol \mathbb{R} denotes the set of real numbers.	
To our best knowledge, this notation is standard.	
1.2 Theorem	
The following theorem is well-known	

The following theorem is well-known.

Theorem 1.2. The set \mathbb{N} is countable.

Proof. It is obvious by definition of \mathbb{N}^{1} .

Due to the theorem above, we obtain an important corollary.

Corollary 1.3. Any subset of \mathbb{N} is countable.

Remark 1.4. It is known that \mathbb{Q} is also a countable set; however, this margin is too narrow to contain the proof.

In his work [1], Fujiwara showed the next fact.

Proposition 1.5. Fujiwara likes walking.

¹The expression "by definition" does not need "the", since it is an idiom.

2 Environments for equations

In this section, we compare some environments for presenting mathematical equations. The *equation* environment can present a single equation.

Example 2.1 (equation). The geodesic equation on a Riemannian manifold (M,g) is given by

$$\frac{d^2c^k}{dt^2} + \Gamma^k_{ij}\frac{dc^i}{dt}\frac{dc^j}{dt} = 0. {1}$$

In order to write several equations, we can use the *equatray* environment.

Example 2.2 (eqnarray). The symbols (Γ_{ij}^k) in (1) denote functions defined by

$$\Gamma_{ij}^k := g^{kl} \Gamma_{ij;l}, \tag{2}$$

$$\Gamma_{ij;l} := \frac{1}{2} \left(\frac{\partial g_{jl}}{\partial x_i} + \frac{\partial g_{li}}{\partial x_j} - \frac{\partial g_{ij}}{\partial x_l} \right). \tag{3}$$

We can also use the align environment. The author prefer this one to the equarray environment.

Example 2.3 (align). The functions defined by (2) and (3) are called the coefficients of the Levi-Civita connection. They are characterized by the conditions

$$\Gamma_{ij}^k = \Gamma_{ji}^k,\tag{4}$$

$$\frac{\partial g_{jk}}{\partial x^i} = \Gamma_{ij;k} + \Gamma_{ik;j}. \tag{5}$$

Finally, we introduce a simple way to write an equation like

$$1 + 1 = 2$$
.

This command is useful to describe a series of calculation.

References

[1] A. Fujiwara, Foundations of information geometry, (Makino Shoten, Tokyo, 2015); in Japanese.