Теорема. Для прямой l: Ax + By + C = 0 в аффинной системе координат угловой коэффициент равен отношению коэффициентов A и B c противоположным знаком: $k = -\frac{A}{B}$.

Доказательство. Если \vec{a} — направляющий вектор прямой l, то согласно условию параллельности вектора и прямой на плоскости будет верно равенство $Aa_1 + Ba_2 = 0 \Leftrightarrow \frac{a_2}{a_1} = -\frac{A}{B} \Leftrightarrow k = -\frac{A}{B}$.

Теорема. Пусть на плоскости дана аффинная система координат \varkappa и прямая l, не параллельная координатной прямой OY. Пусть $M_0(x_0; y_0)$ — начальная точка прямой l и k — угловой коэффициент l относительно \varkappa . Тогда уравнение l в может быть записано в следующем виде:

$$y - y_0 = k(x - x_0).$$

Доказательство. Пусть \vec{a} направляющий вектор прямой $l,\,M(x;y)$ точка плоскости. Тогда

$$M \in l \Leftrightarrow \overrightarrow{M_0M} || \overrightarrow{a} \Leftrightarrow \frac{x-x_0}{a_1} = \frac{y-y_0}{a_2} \Leftrightarrow y-y_0 = \frac{a_2}{a_1}(x-x_0) \Leftrightarrow y-y_0 = k(x-x_0).$$

Теорема. Пусть на плоскости заданы: декартова система координат, вектор $\vec{n}(n_1; n_2)$ и прямая l общим уравнением Ax + By + C = 0. Тогда \vec{n} перпендикулярен l тогда и только тогда, когда его коэффициенты пропорциональны соответствующим коэффициентам при переменных уравнения l:

$$\vec{n} \perp l \Leftrightarrow \frac{n_1}{A} = \frac{n_2}{B}.$$

Доказательство. Рассмотрим вектор $\vec{p} \perp \vec{n}, \ \vec{p}(-n_2; n_1)$. Тогда

$$\vec{n} \perp l \Leftrightarrow \vec{p} \mid \mid l \Leftrightarrow -n_2 A + n_1 B = 0 \Leftrightarrow \frac{n_1}{A} = \frac{n_2}{B}.$$