Categoria Condensada

Luiz Felipe Andrade Campos

23 de setembro de 2022

Resumo

Em construção. Caveat Lector. Notas sobre um seminário apresentado sobre *Conjuntos Condensados*, introduzido nas notas de aula "Lectures on Condensed Mathematics", por Peter Scholze e Dustin Clausen.

Sumário

1	Rev	
	1.1	Sites e Topoi
	1.2	Conjuntos Profinitos
2	O s	ite de conjuntos profinitos
	2.1	Esquemas
	2.2	Site pro-étale de um esquema
	2.3	$\mathbf{ProFinSet} = \star_{\mathrm{pro\acute{e}t}}$
3	Cat	egoria Condensada
	3.1	Primeira definição
		Problemas com tamanho
	3.3	Cardinais de limite forte
		Segunda definição

1 Revisão

1.1 Sites e Topoi

Definition 1.1 (Topologia de Grothendieck e Site). Seja C uma categoria.

- 1. Uma **topologia de Grothendieck** sobre **C** consiste de um conjunto Cov(X), para cada objeto $X \in Ob(\mathbf{C})$, cujos elementos são coleções de morfismos $\{X_i \to X\}_{i \in \mathcal{A}}^1$ satisfazendo
 - (a) (Isomorfismos) Se $U \to X$ é um isomorfismo, então $\{U \to X\} \in \text{Cov}(X)$;
 - (b) (Existência de pullbacks)
 - (c) (Estabilidade por pullbacks/mudança de base) Se $\{X_i \to X\}_{i \in I} \in \text{Cov}(X)$ e $Y \to X$ é qualquer morfismo em \mathbb{C} , então a coleção

$${X_i \times_X Y \to Y}_{i \in I} \in Cov(Y).$$

(d) (Estabilidade por refinamentos) Se $\{X_i \in X\}_{i \in I} \in \text{Cov}(X)$ e para cada $i \in I$ são dados $\{U_{ij} \to X_i\}_{j \in J_i} \in \text{Cov}(X_i)$, então

$${U_{ij} \to X_i \to X}_{i \in I, j \in J_i} \in Cov(X).$$

 Uma categoria munida de uma topologia de Grothendieck é chamada de site.

1.2 Conjuntos Profinitos

Definition 1.2. Um **conjunto profinito** é um limite inverso, na categoria **HTOP**, de um sistema inverso de conjuntos finitos discretos. □

Vamos denotar por **ProFinSet** como sendo a categoria cujos objetos são conjuntos profinitos e morfismos mapas contínuos.

 $^{^1\}text{Aqui},\,\mathcal{A}$ é um conjunto de índices que não é necessariamente o mesmo para todos os elementos de Cov(X).

2 O site de conjuntos profinitos

- 2.1 Esquemas
- 2.2 Site pro-étale de um esquema
- 2.3 ProFinSet = $\star_{pro\acute{e}t}$

Definimos uma topologia de Grothendieck em **ProfiniteSet** da seguinte forma: se X é um conjunto profinito, então Cov(X) são as famílias finitas de morfismos com codomínio X conjuntamente sobrejetivas², i.e.,

$$Cov(X) := \{ \{ X_i \stackrel{\alpha_i}{\to} X \}_{i \in I} \mid |I| < \infty \text{ e } \coprod_{i \in I} \alpha_i(X_i) = X \}.$$

Vamos estudar esse site e essa topologia em detalhes semana que vem.

²Aqui, fiz uma tradução literal de jointly surjective.

3 Categoria Condensada

3.1 Primeira definição

Definition 3.1. Um conjunto/anel/grupo/... condensado é um feixe

$$T: \mathbf{ProFinSet}^{op} \to \mathbf{Set}$$

 $S \mapsto T(S).$

Dado um conjunto condensado T, nos referimos a $T(\star)$ como o seu **conjunto** subjacente.

Aqui temos que a condição de feixe é equivalente às seguintes condições:

- 1. $T(\emptyset) = \star$;
- 2. para quaisquer conjuntos profinitos S_1, S_2 , o mapa natural

$$T(S_1 \sqcup S_2) \to T(S_1) \times T(S_2)$$

é uma bijeção;

3. para qualquer sobrejeção $S' \to S$ de conjuntos profinitos com produto fibrado $S' \times_S S'$ e suas duas projeções p_1, p_2 em S, o mapa

$$T(S) \to \{x \in T(S') \mid p_1^*(x) = p_2^*(x) \in T(S' \times_S S')\}$$

é uma bijeção.

A condição 1. apenas diz que o funtor T mapeia objeto inicial em objeto terminal. Ela segue da condição 2. se considerar objetos inicial/terminal como colomite/limite de um diagrama vazio.

Lembre a condição de feixe: para todo objeto U e cobertura $\{U_i \to U\}_{i \in I}$,

$$TU \to \Pi_i TU_i \stackrel{pr_1^*}{\underset{pr_2^*}{\Longrightarrow}} \Pi_{i,j} T(U_i \times_U U_j)$$

é um equalizador. Vejamos que as condições 2. e 3. são equivalentes à condição de T ser um feixe.

3.2 Problemas com tamanho

A definição apresentada acima é problemática do ponto de vista da teoria de conjuntos, uma vez que a categoria de conjuntos profinitos é *grande*. Mais precisamente, a coleção de conjuntos profinitos **não** é um conjunto. Vejamos a seguir algumas propriedades de pre-feixes sobre sites que dependem da categoria domínio ser pequena:

- Existência de feixeficação: não é tão problemática pois estamos definimos a categoria condensada como uma categoria de feixes.
- Existência de colimites na categoria de feixes:
- Categoria de Feixes ser cartesiana fechada: ainda mais, a bijeção entre hom-sets

$$hom(X \times Y, Z) \simeq hom(X, Z^Y)$$

só faz sentido para categorias localmente pequenas.

• Categoria de feixes ser um topos:

3.3 Cardinais de limite forte

Uma forma de resolver o problema de tamanho da definição 3.1 é primeiro considerar uma versão truncada dela, nos restringindo a conjuntos profinitos de cardinalidade limitada. Vamos antes revisar alguns conceitos sobre cardinais.

Definition 3.2.

1. Um cardinal κ é um cardinal de limite forte se

$$\lambda < \kappa \implies 2^{\lambda} < k$$

Em palavras, a cardinalidade κ não pode ser alcançada por tomadas sucessivas de potências de conjuntos.

Barwick e Heine usam cardinais inacessíveis. Um cardinal κ é inacessível se é um cardinais de limite forte é não pode ser obtido por somas de uma quantidade menor que κ cardinais menores que κ . Eles chamam a construção de Pyknotic sets.

Example 3.1. O primeiro cardinal infinito \aleph_0 , aleph-zero, é um cardinal de limite forte.

Example 3.2. Defina \beth_{α} indutivamente para todos os ordinais α por

- $\beth_0 = \aleph_0$,
- $\beth_{\alpha^+} = 2^{\beth_{\alpha}}$ para um ordinal sucessor.
- união de todos os \beth_{α} 's menores, para um ordinal limite.

3.4 Segunda definição

Se κ é um cardinal denotaremos por κ -**ProFinSet** a categoria de conjuntos profinitos de cardinalidade menor que κ .

Definition 3.3. Seja κ um cadinal de limite forte não enumerável. Um κ -conjunto/anel/grupo/... condensado é um feixe

$$T: \kappa - \mathbf{ProFinSet}^{op} \to \mathbf{Set}$$

 $S \mapsto T(S)$

Agora, é preciso uma definição que independa da escolha de um cardinal auxiliar κ . O primeiro passo

Proposition 3.1. Sejam k' > k cardinal de limite forte não enumeráveis. Então existe um funtor natural

$$\{K\text{-}conjuntos\ condensados}\} \rightarrow \{K'\text{-}conjuntos\ condensados}\}$$

$$T \mapsto T_{k'},$$

onde

$$T_{k'} := \left(\tilde{S} \mapsto \lim_{\substack{\tilde{S} \to S}} T(S) \right)^{sh}$$

Este funtor é fully faithful.

Ideia da Prova:

1. Primeiro, precisamos de uma caracterização dos κ -conjuntos condensados como sendo feixes

 $T: \{\kappa\text{-conjuntos extremamente desconexos}\}^{op} \to \mathbf{Set}.$

Um espaço é extremamente desconexo se o fecho de um conjunto aberto é aberto. Para entender isso bem, precisaríamos saber antes sobre a compactificação de Stone-Cech. Essa equivalência ainda será abordada em outros seminários, pois é usada pra provar que a categoria de κ -conjuntos condensados é uma categoria abeliana.

7

- 2. Agora, o funtor $T \mapsto T_{\kappa'}$ corresponde à extensão de Kan à esquerda ao longo da inclusão plena da categoria de κ -conjuntos extremamente desconexos em κ' -conjuntos extremamente desconexos e, consequentemente, é a adjunta à esquerda do funtor de esquecimento da categoria de κ' -conjuntos extremamente desconexos para κ -conjuntos extremamente desconexos.
- 3. Conclui-se que of funtor $T \mapsto T_{\kappa'}$ é fully faithful e comuta com todos os colimites.
- 4. O fato anterior é um argumento comum e não exclusivo para esse caso. Se $\alpha: C_2 \to C_1$ é qualquer funtor entre categorias pequenas, então $\alpha_*: \hat{C}_1 \to \hat{C}_2$ tem uma adjunta à esquerda α^* . Isso é consequência direta do

Teorema de Freyd para Funtor Adjunto: Dada uma categoria pequena e completa A, um funtor $G:A\to X$ tem adjunta à esquerda se e somente se preserva limites pequenos e satisfaz Solution Set Condition: for cada objeto $x\in X$ existe um conjunto pequeno I e uma família I-indexada de morfimos $f_i:x\to Ga_i$ tal quer qualquer mapa $h:x\to Ga$ pode ser escrito como uma composição $h=Gt\circ f_i$ para algum indice i e algum $t:a_i\to a$.

Neste caso, explicitamente, a adjunta à esquerda mapeia o pre-feixe $G \in \hat{C}_2$ à extensão de Kan à esquerda $G: C_2^{op} \to Set$ ao longo de α^{op} , i.e.

$$\alpha^*(G)(x) = colim_{x \to a(y)}G(y)$$

Definition 3.4. A categoria condensada é dado pelo limite direto na categoria de κ -conjuntos condensados ao longo o poset de cardinais de limite forte κ .

Example 3.3. Seja T um espaço topológico. Existe um conjunto condensado \underline{T} associado que mapeia qualquer conjunto profinito S con conjunto de mapas contínuos C(S,T). Isso satisfaz as condições de feixe

- 2., claramente;
- 3., pois qualquer sobrejeção $S' \to S$ de espaços de Hausdorff compactos é um mapa quociente, de forma que qualquer mapa $S \to T$, tal que a composição $S' \to S \to T$ é contínua, é contínuo.