Devoir surveillé n°06

- ► La présentation, la lisibilité, l'orthographe, la qualité de la rédaction et la précision des raisonnements entreront pour une part importante dans l'appréciation des copies.
- ▶ On prendra le temps de vérifier les résultats dans la mesure du possible.
- ► Les calculatrices sont interdites.

EXERCICE 1.

On définit la suite (F_n) en posant $F_0=0$, $F_1=1$ et $F_{n+2}=F_n+F_{n+1}$ pour tout $n\in\mathbb{N}$.

- **1.** Montrer que $F_n > F_{n-1}$ pour tout entier $n \ge 3$.
- **2.** Soit un entier $n \ge 3$. Quel est le reste de la division euclidienne de F_{n+1} par F_n ?
- 3. On note φ l'unique racine positive du polynôme X^2-X-1 . Calculer φ .
- **4.** Montrer que pour tout $n \in \mathbb{N}$, $F_{n+2} \geqslant \phi^n$.

A partir de maintenant, on se donne deux entiers naturels non nuls α et b tels que $\alpha > b$. On note $r_0 = \alpha$, $r_1 = b$ et r_2, \ldots, r_N la suite des restes dans l'algorithme d'Euclide appliqué à α et b. On rappelle que $r_{N-1} = \alpha \wedge b$, $r_N = 0$ et que pour tout $k \in [0, N-2]$, r_{k+2} est le reste de la division euclidienne de r_k par r_{k+1} .

- 5. Dans cette question uniquement, on suppose que a = 169 et b = 104.
 - Donner les valeurs des r_k.
 - Donner la valeur de n.
 - Donner le PGCD de a et b.
- **6.** Dans cette question uniquement, on se donne un entier $n \ge 2$ et l'on suppose que $a = F_{n+1}$ et $b = F_n$. A l'aide de la question 2,
 - exprimer les r_k à l'aide des termes de la suite (F_n) ;
 - exprimer N en fonction de n;
 - déterminer le PGCD de F_{n+1} et F_n .

On revient maintenant au cas général.

- 7. Montrer que la suite finie $(r_k)_{0 \le k \le N}$ est strictement décroissante.
- **8.** Montrer que $r_{N-1} \ge 1$ et que $r_{N-2} \ge 2r_{N-1}$.
- **9.** Montrer que pour tout $k \in [2, N]$, $r_{N+1-k} \ge F_k$.
- **10.** En déduire que $N \leqslant \left| \frac{ln(b)}{ln(\phi)} \right| + 2$.

EXERCICE 2.

On pose $f(x) = x + \ln(x)$ pour $x \in \mathbb{R}_+^*$.

- **1.** Montrer que f est une bijection de \mathbb{R}_+^* sur \mathbb{R} .
- 2. Que peut-on dire du sens de variation de sa bijection réciproque f^{-1} ainsi que des limites de f^{-1} en $-\infty$ et en $+\infty$?
- **3.** Montrer que pour tout $n \in \mathbb{N}^*$, l'équation f(x) = n admet une unique solution sur \mathbb{R}_+^* . On notera x_n cette unique solution.
- **4.** Montrer que la suite (x_n) est croissante.
- **5.** Déterminer la limite de (x_n) en $+\infty$.
- **6.** Montrer que $x_n \sim n$.
- 7. Déterminer la limite de la suite de terme général $x_{n+1} x_n$.
- 8. On pose $u_n = \frac{n x_n}{\ln(n)}$ pour $n \in \mathbb{N}^*$.
 - a. Montrer que

$$\forall n \in \mathbb{N}^*, \ u_n \text{-}1 = \frac{\ln(x_n/n)}{\ln(n)}$$

- **b.** Déterminer la limite de (u_n) .
- c. Montrer que

$$1-u_n \sim \frac{1}{n}$$

9. En déduire que

$$x_n \underset{n \to +\infty}{=} n - \ln(n) + \frac{\ln(n)}{n} + o\left(\frac{\ln(n)}{n}\right)$$

EXERCICE 3.

On considère la fonction $f: x \in \mathbb{R}_+ \mapsto 1 - \sqrt{x}$ ainsi la suite $(u_n)_{n \in \mathbb{N}}$ telle que $u_0 = \frac{1}{4}$ et $u_{n+1} = f(u_n)$ pour tout $n \in \mathbb{N}$.

- **1.** Montrer que pour tout $x \in [0, 1]$, $f(x) \in [0, 1]$.
- **2.** Montrer que $u_n \in [0, 1]$ pour tout $n \in \mathbb{N}$.
- **3.** Déterminer le sens de variation de f et de $f \circ f$ sur [0, 1].
- **4.** Montrer que f possède un unique point fixe α sur [0,1] et déterminer celui-ci.
- **5.** Montrer que $u_0 \leq \alpha$.
- **6.** Montrer que pour tout $n \in \mathbb{N}$, $u_{2n} \leq \alpha$.
- 7. Montrer que $u_0 \le u_2$. En déduire que la suite $(u_{2n})_{n \in \mathbb{N}}$ est croissante puis qu'elle converge.
- **8.** Montrer que les points fixes de $f \circ f$ sur [0, 1] sont $[0, \alpha]$ et 1.
- 9. En déduire la limite de la suite $(u_{2n})_{n\in\mathbb{N}}$, puis la convergence et la limite de la suite $(u_{2n+1})_{n\in\mathbb{N}}$ et enfin la convergence et la limite de la suite $(u_n)_{n\in\mathbb{N}}$.

Exercice 4.

On admet l'irrationalité de $\sqrt{2}$ et on introduit l'ensemble

$$\mathbb{Z}[\sqrt{2}] = \left\{\alpha + b\sqrt{2}, \; (\alpha,b) \in \mathbb{Z}^2\right\}$$

1. Montrer que $\mathbb{Z}[\sqrt{2}]$ est un sous-anneau de $(\mathbb{R}, +, \times)$.

 $(\mathbb{Z}[\sqrt{2}], +, \times)$ est donc un anneau.

- **2. a.** Montrer que pour tout $x \in \mathbb{Z}[\sqrt{2}]$, il existe un *unique* couple $(a,b) \in \mathbb{Z}^2$ tel que $x = a + b\sqrt{2}$. On peut alors définir le *conjugué* de x par $\overline{x} = a b\sqrt{2}$.
 - **b.** Montrer que pour $(x,y) \in \mathbb{Z}[\sqrt{2}]^2$, $\overline{x \times y} = \overline{x} \times \overline{y}$.
- **3.** Pour $x \in \mathbb{Z}[\sqrt{2}]$, on pose $N(x) = x\overline{x}$.
 - **a.** Justifier que pour tout $x \in \mathbb{Z}[\sqrt{2}]$, $N(x) \in \mathbb{Z}$.
 - **b.** Montrer que pour tout $(x,y) \in (\mathbb{Z}[\sqrt{2}])^2$, N(xy) = N(x)N(y).
 - **c.** Montrer que $x \in \mathbb{Z}[\sqrt{2}]$ est inversible dans l'anneau $(\mathbb{Z}[\sqrt{2}], +, \times)$ si et seulement si |N(x)| = 1.

On note H l'ensemble des éléments inversibles de l'anneau $\mathbb{Z}[\sqrt{2}]$. On rappelle qu'alors (H, \times) est un groupe. H est notamment stable par produit et par inversion. De plus, d'après la question précédente,

$$H = \left\{ x \in \mathbb{Z}[\sqrt{2}], |N(x)| = 1 \right\}$$

- **4.** Soient $x \in H$ et $(a, b) \in \mathbb{Z}^2$ tel que $x = a + b\sqrt{2}$.
 - **a.** Montrer que si $\alpha \ge 0$ et $b \ge 0$, alors $x \ge 1$.
 - **b.** Montrer que si $a \le 0$ et $b \le 0$, alors $x \le -1$.
 - **c.** Montrer que si $ab \le 0$, alors $|x| \le 1$.
- 5. On note $H^+ = H \cap]1, +\infty[$.
 - **a.** Soient $x \in H^+$ et $(a,b) \in \mathbb{Z}^2$ tel que $x = a + b\sqrt{2}$. Montrer que a > 0 et b > 0.
 - **b.** En déduire que $u = 1 + \sqrt{2}$ est le minimum de H^+ .
- **6.** Soit $x \in H^+$.
 - **a.** Montrer qu'il existe $n \in \mathbb{Z}$ tel que $u^n \le x < u^{n+1}$.
 - **b.** Montrer que $x = u^n$.
- 7. En déduire que $H = \{u^n, n \in \mathbb{Z}\} \cup \{-u^n, n \in \mathbb{Z}\}.$