Problem Set 2 - Thomas Boyko - 30191728

1. (a) Solve $5x \equiv 11 \pmod{37}$ and $11y \equiv 5 \pmod{37}$.

First we will solve for x. Note that this equation has a solution since GCD(5,37)=1. Transform the equivalence into a Diophantine equation. We have 5x+37a=11. We now can use the Euclidean algorithm to find x,a.

This gives the equation 1 = -2(37) + 15(5), which we can multiply by 11 to obtain 11 = -22(37) + 165(5).

We can take this $\pmod{37}$ to give us $11 \equiv 165(5) \equiv 17(5) \pmod{37}$.

So $x \equiv 17 \pmod{37}$.

Now we can find y. Note that this equation is solvable since GCD(11, 37) = 1 and it provides the Diophantine equation 11y + 37b = 5.

Solving this equation gives the solution 1 = 3(37) - 10(11), which can be multiplied by 5 to give us 5 = 15(37) - 50(11). Reducing this (mod 3)7 again gives $5 \equiv -50(11) \equiv 24(11)$ (mod 37), which shows that $x \equiv 24 \pmod{37}$.

- (b) Suppose your solutions are x_0 and y_0 . What is the relationship between $[x_0]$ and $[y_0]$ in \mathbb{Z}_{37} ? We can see computationally that $[x_0][y_0] = [x_0y_0] = [408] = [1]$. So x_0 and y_0 are multiplicative inverses for each other in \mathbb{Z}_{37} .
- 2. Use repeated squaring method to simplify 12^{149} (mod 15).

First we will calculate repeated squares, until we obtain 12^{128} (mod 15).

$$12 \equiv 12 \pmod{15}$$

$$12^{2} \equiv 144 \equiv 9 \pmod{15}$$

$$12^{4} \equiv 81 \equiv 6 \pmod{15}$$

$$12^{8} \equiv 36 \equiv 6 \pmod{15}$$

$$12^{16} \equiv 36 \equiv 6 \pmod{15}$$

$$12^{32} \equiv 36 \equiv 6 \pmod{15}$$

$$12^{64} \equiv 36 \equiv 6 \pmod{15}$$

$$12^{128} \equiv 36 \equiv 6 \pmod{15}$$

.

We can see from above that 6^n for any positive n is equivalent to 6 (mod 15).

Now we must find the binary representation for 149. We find that 149 = 128 + 16 + 4 + 1.

So we may write $12^{149} \equiv 12^{128}12^{16}12^412^1 \equiv (6)(6)(6)(12) \equiv (6)(12) \equiv 72 \equiv 12 \pmod{15}$.

So $12^{149} \equiv 12 \pmod{15}$.

- 3. Let p be a prime number.
 - (a) Show that $\binom{p}{k} \equiv 0 \pmod{p}$ for all $k \in \mathbb{Z}$ with $1 \leq k < p$.

Proof. Consider:

$$\binom{p}{k} = \frac{p!}{k!(p-k)!} = \frac{p(p-1)!}{k!(p-k)!}$$
$$\binom{p}{k}k!(p-k)! = p(p-1)!$$

.

Since $\binom{p}{k}$ is an integer, k!(p-k)!|p(p-1)!. So k!(p-k)! must divide (p-1)! since p is prime. This means $\frac{(p-1)!}{k!(p-k)!} \in \mathbb{Z}$, and $p|\binom{p}{k}$ which means $\binom{p}{k} \equiv 0 \pmod{p}$.

(b) Show that for all integers $x, y, (x+y)^p \equiv x^p + y^p \pmod{p}$.

Proof. We begin by writing $(x+y)^p$ according to the binomial expansion.

$$(x+y)^{p} = \sum_{k=0}^{p} \binom{p}{k} x^{p-k} y^{k}$$
$$= x^{p} + y^{p} + \sum_{k=1}^{p-1} \binom{p}{k} x^{p-k} y^{k}$$

 \pmod{p} , this gives us:

$$(x+y)^p \equiv x^p + y^p + \sum_{k=1}^{p-1} \binom{p}{k} x^{p-k} y^k \pmod{p}.$$

And since we know that $\binom{p}{k} \equiv 0$ for $1 \le k \le p-1$, we can say that

$$(x+y)^p \equiv x^p + y^p \pmod{p}$$
.

4. Deduce from the previous problem : for all integers $a, a^p \equiv a \pmod{p}$.

Proof. Argue by induction. Let p be prime and suppose $(a+b)^p \equiv a^p + b^p \pmod{p}$.

Base case: $a \equiv 0 \pmod{p}$: $a^p w \equiv 0^p \equiv 0 \equiv a \pmod{p}$.

So the base case holds.

Inductive Hypothesis: Let $k \in \mathbb{Z}_p$ and suppose $k^p \equiv k \pmod{p}$. We must show that $(k+1)^p \equiv k+1 \pmod{p}$.

$$(k+1)^p \equiv k^p + 1^p \equiv k + 1 \pmod{p}.$$

So for a prime p and any integer a, $a^p \equiv a \pmod{p}$.

5. Show that the polynomial $x^6 + 45x^4 - 10x^2 + 5x - 2$ has no integer solution.

Proof. Consider $f(x) \pmod{5}$

$$x^6 + 45x^4 - 10x^2 + 5x - 2 \equiv x^6 - 2 \pmod{5}$$
.

So we have

$$x^6 \equiv 2 \pmod{5}$$
.

We can check by cases:

$$0^6 \equiv 0 \pmod{5}$$

$$1^6 \equiv 1 \pmod{5}$$

$$2^6 \equiv 4 \pmod{5}$$

$$3^6 \equiv 4 \pmod{5}$$

$$4^6 \equiv 1 \pmod{5}.$$

And since $\exists m \in \mathbb{Z}$ so that $f(x) \pmod{m}$ has no integer solutions, f has no integer solutions.