Runtime Performance Analysis on Multiple Knowledge Graph Embedding Methods

Gustavo Ribeiro Kremer

1. Introduction

What are Knowledge Graphs

"We define a knowledge graph as a graph of data intended to accumulate and convey knowledge of the real world, whose nodes represent entities of interest and whose edges represent potentially different relations between these entities." [1]

- Nodes are entities
- Edges are relations between entities

Image source: Wikipedia.

Ok, and what are Knowledge Graphs

Embeddings?

Knowledge Graph Embeddings

Embeddings are dense representations of a KG in a continuous, low-dimensional vector space [2]. The KG is transformed in a lower dimensional space, while keeping their semantic meaning [3].

Why?

- Compact and efficient: Lower memory use and faster vector operations than direct graph operations [2].
- ML-friendly: Vector spaces integrate easily with ML and NLP models
 [2].
- Enables downstream tasks like: Link prediction, multi-hop reasoning,
 KG alignment, entity classification.
- Can even find missing links: Predict likely but unrecorded relations in KGs [2].

2. Theoretical Background

Some techniques

Types of Models

Evaluations Metrics

MRR: Average of the reciprocal ranks of the correct entities across queries.
 Values ∈ (0,1]; closer to 1 means the model ranks the correct answer near the top.

MRR =
$$(1 / N) * \Sigma (1 / rank_i)$$
 for i = 1..N.

Hits@K: Fraction of queries where the correct entity appears in the top-K predictions. Typical K values: 1, 3, 10 (report multiple). For example, Hits@10 = 0.72 means 72% of correct answers are inside top 10.

Hits@K = $(1 / N) * \Sigma I(rank_i \le K)$, where I() is the indicator function.

3. Proposal

Proposal

Measure training time and inference time of major KGE models, comparing runtime performance across multiple benchmark datasets.

- Training time: report total wall-clock to train with fixed epochs over multiple runs.
- Inference time: report time to perform inference with different inputs, measuring pure forward-pass time.

Metrics to present: total training time, inference latency.

4. Experimental Setup

Frameworks and Tools (subject to modification)

- Python3 as the main language
- Conda for environment management
- Jupyter Notebooks for documenting experiments
- Git + Github for version control management
- PyKEEN for reproducible, facile knowledge graph embeddings
- Seaborn + matplotlib for graphs and visualizations

Models

Name	Model	Citation	Туре		
ComplEx	<pre>pykeen.models.ComplEx</pre>	Trouillon et al., 2016	Semantic Information		
DistMult	<pre>pykeen.models.DistMult</pre>	Yang et al., 2014	Semantic Information		
TransE	<pre>pykeen.models.TransE</pre>	Bordes et al., 2013	Translation		
RotatE	<pre>pykeen.models.RotatE</pre>	Sun <i>et al.</i> , 2019	Translation		
ConvE	<pre>pykeen.models.ConvE</pre>	Dettmers et al., 2018	Neural Network		
ConvKB	<pre>pykeen.models.ConvKB</pre>	Nguyen <i>et al.</i> , 2018	Neural Network		
R-GCN	pykeen.models.RGCN	Schlichtkrull <i>et al.</i> , 2018	Neural Network		

Datasets

Name	Documentation	Citation	Entities	Relations	Triplets
Nations	<pre>pykeen.datasets.N ations</pre>	ZhenfengLei/K GDatasets	14	55	1992
DBpedia50	<pre>pykeen.datasets.D Bpedia50</pre>	Shi <i>et al.</i> , 2017	24624	351	34421
FB15k-237	<pre>pykeen.datasets.F B15k237</pre>	Toutanova et al., 2015	14505	237	310079
WordNet-18	pykeen.datasets.W N18	Bordes <i>et al.</i> , 2014	40943	18	151442
YAGO3-10	pykeen.datasets.Y AGO310	Mahdisoltani et al., 2015	123143	37	1089000

5. Planning

Chronogram

Week	Tasks					
1, 2, 3	Set up experimental environment (hardware/software, frameworks, scripts).					
4	Implement training/inference time measurement (logging, benchmarking functions).					
5	Run pilot experiments on 1–2 models to validate measurement pipeline.					
6	Full experiments — for all selected models and datasets.					
7	Full experiments — for all selected models and datasets.					
8	Aggregate results, compute statistics (mean, std), generate preliminary tables/plots.					
9	Write analysis and discussion: compare models, highlight trade-offs.					
10	Finalize report.					

References

- [1] Hogan, A., Blomqvist, E., Cochez, M., D'amato, C., Melo, G. D., Gutierrez, C., Kirrane, S., Gayo, J. E. L., Navigli, R., Neumaier, S., Ngomo, A.-C. N., Polleres, A., Rashid, S. M., Rula, A., Schmelzeisen, L., Sequeda, J., Staab, S., & Zimmermann, A. (2022). Knowledge Graphs. ACM Computing Surveys, 54(4), 1–37. https://doi.org/10.1145/3447772
- [2] Ge, X., Wang, Y.-C., Wang, B., & Kuo, C.-C. J. (2023). Knowledge Graph Embedding: An Overview (arXiv:2309.12501). arXiv. https://doi.org/10.48550/arXiv.2309.12501
- [3] Ji, S., Pan, S., Cambria, E., Marttinen, P., & Yu, P. S. (2022). A Survey on Knowledge Graphs: Representation, Acquisition and Applications. IEEE Transactions on Neural Networks and Learning Systems, 33(2), 494–514. https://doi.org/10.1109/TNNLS.2021.3070843
- [4] Ferrari, I., Frisoni, G., Italiani, P., Moro, G., & Sartori, C. (2022). Comprehensive Analysis of Knowledge Graph Embedding Techniques Benchmarked on Link Prediction. Electronics, 11(23), 3866. https://doi.org/10.3390/electronics11233866

Part 2

What are we measuring?

- Training time (s): Time to train with fixed epochs over multiple runs.
- Evaluation time (s): Time taken to obtain main metrics over the trained model
- Inference time (s): Time to infer with different inputs, measuring pure forward-pass time.
- Power Consumption (w): Total power used by GPU in the training and evaluation.
- GPU usage (%): GPU usage metrics

Training vs Evaluation Time

Figure 9. Training and evaluation times (stacked) for each model on OGB-BioKG.

Where are we measuring?

CPU: Intel Core I7 10700 16Mb cache

16 core (8 physical)

2.9GHz (up to 4.8GHz)

Ram: 32Gb DDR4 2933 mt/s

Disk: 512gb NVMe

GPU: RTX 3060 12gb

3584 Cuda Cores

Clock Boost: 1320 MHz (up to 1777 MHz)

How are we measuring?

- Training time (s): PyKEEN default library
- Evaluation time (s): PyKEEN framework
- Inference time (s): Python time framework
- Power Consumption (w): pyNVML (wrapper around the NVML library)
- GPU usage (%): pyNVML

Experimental Setup

Algorithms	["ConvE","DistMult","TransE","RotatE","ComplEx","ConvKB","R-GCN"]				
Datasets	["Nations", "DBpedia50"]				
Epochs	50				
Batch Size	1024				
Replicata	5				
Inference Batch Size	1				

	model	dataset	seed	epochs	train_time	eval_time	inference_time	mrr	hits@1	hits@3	hits@5	hits@10	gpu_mem_avg_MB	gpu_mem_peak_MB
0	ConvE	Nations	1	50	11.742623	0.130367	0.000941	0.550424	0.360697	0.664179	0.808458	0.982587	1362,321849	1623.601562
1	ConvE	Nations	2	50	11.373197	0.066880	0.000994	0.584580	0.402985	0.696517	0.848259	0.972637	1351.931751	1368.039062
2	ConvE	Nations	4	50	11.058975	0.079638	0.000879	0.563294	0.373134	0.694030	0.835821	0.987562	1352,982572	1368.289062
3	ConvE	Nations	7	50	11.846289	0.079801	0.000917	0.579798	0.395522	0.699005	0.838308	0.975124	1351.982459	1366.351562
4	ConvE	Nations	11	50	12.271737	0.079694	0.000955	0.559576	0.378109	0.664179	0.820896	0.990050	1354.726562	1368.164062
5	ComplEx	Nations	1	50	10.881930	0.060670	0.000446	0.387280	0.169154	0.460199	0.674129	0.942786	910.161704	916.789062
6	ComplEx	Nations	2	50	11.238427	0.060916	0.000545	0.380474	0.166667	0.450249	0.669154	0.947761	909.803486	916.789062
7	ComplEx	Nations	4	50	11.054577	0.056204	0.000418	0.409685	0.201493	0.492537	0.674129	0.942786	909.304688	917.976562
8	ComplEx	Nations	7	50	11.271754	0.057398	0.000434	0.366122	0.146766	0.417910	0.674129	0.957711	912.185697	918.101562
9	ComplEx	Nations	11	50	10.911720	0.058351	0.000399	0.394540	0.179104	0.485075	0.676617	0.965174	913.930889	924.289062
10	ConvKB	Nations	1	50	14.208464	0.127992	0.000516	0.602457	0.427861	0.738806	0.853234	0.985075	2433.497789	2618.101562
11	ConvKB	Nations	2	50	13.688159	0.122240	0.000611	0.585398	0.400498	0.711443	0.850746	0.995025	2439.734375	2618.101562
12	ConvKB	Nations	4	50	13.737572	0.130478	0.000517	0.604000	0.430348	0.701493	0.855721	0.987562	2439.008413	2618.039062
13	ConvKB	Nations	7	50	13.723423	0.124082	0.000545	0.600457	0.422886	0.718905	0.870647	0.987562	2436.804688	2616.164062
14	ConvKB	Nations	11	50	13.665044	0.130958	0.000509	0.584981	0.405473	0.703980	0.848259	0.987562	2438.020433	2616.164062
15	DistMult	Nations	1	50	9.587991	0.064867	0.000369	0.444842	0.228856	0.554726	0.773632	0.970149	882.105168	886.164062
16	DistMult	Nations	2	50	9.694942	0.065667	0.000348	0.460729	0.253731	0.562189	0.721393	0.947761	881.754207	886.164062
17	DistMult	Nations	4	50	9.777468	0.067981	0.000362	0.475342	0.286070	0.567164	0.723881	0.962687	881.920072	886.164062
18	DistMult	Nations	7	50	9.861570	0.057729	0.000337	0.412890	0.186567	0.512438	0.791045	0.977612	881.754207	886.164062
19	DistMult	Nations	11	50	9.779886	0.055175	0.000323	0.445091	0.231343	0.537313	0.748756	0.967662	881.483774	886.164062
20	TransE	Nations	1	50	9.580193	0.064155	0.000448	0.296620	0.000000	0.467662	0.713930	0.955224	879.768630	884.164062
21	TransE	Nations	2	50	10.049441	0.063962	0.000436	0.302763	0.000000	0.487562	0.713930	0.952736	879.634014	884.164062
22	TransE	Nations	4	50	9.753514	0.060421	0.000532	0.300569	0.000000	0.492537	0.721393	0.967662	879.601562	884.164062
23	TransE	Nations	7	50	9.556728	0.068186	0.000416	0.299261	0.000000	0.475124	0.701493	0.965174	879.459736	884.164062
24	TransE	Nations	11	50	9.689356	0.057434	0.000476	0.302759	0.000000	0.475124	0.713930	0.965174	879.636418	884.164062

Main Challenges

- 1. Training and evaluation time longer than expected
- 2. GPU Ram
- 3. Models taking up ram space

Training and Evaluation

Training and Inference

Energy Consumption

Model Performance

Memory Utilization

Next Steps

- Further investigating on ram memory consumption
- Benchmarking the next datasets
- Ranking models based on cost-benefit

Chronogram

Week	Tasks
1	Investigate and set up experimental environment with new information (hardware/software, frameworks, scripts).
2	Investigate and set up experimental environment with new information (hardware/software, frameworks, scripts).
3	Full experiments — for all selected models and datasets.
4	Full experiments — for all selected models and datasets.
5	Full experiments — for all selected models and datasets. / Write analysis and discussion: compare models, highlight trade-offs.
6	Write analysis and discussion: compare models, highlight trade-offs.
7	Write analysis and discussion: compare models, highlight trade-offs.
8	Finalize report.