Synthesis

Input Image

- Question: What is the function's equation?
- Original Answer: Step 1: Substitute the point $(\frac{\pi}{10}, 5)$ into the function: $5 = a \cdot \sin(-5 \cdot \frac{\pi}{10})$. Step 2: Simplify the equation: $5 = a \cdot \sin(\frac{-\pi}{2})$. Step 3: Since $\sin(\frac{-\pi}{2}) = -1$, we have: 5 = -a. Step 4: Solve for a : a = -5. Step 5: Substitute the value of a back into the original function: $y = -5 \cdot \sin(-5 \cdot x)$. Answer:

 $y = -5 \cdot \sin(-5 \cdot x).$

VL-Thinking

First, I recognize that the function given is $y = a \cdot \sin(-5x)$, and it passes through the point $\left(\frac{\pi}{10}, 5\right)$

To find the value of a, I'll substitute the coordinates of the point into the equation

Substituting $x = \frac{\pi}{10}$ and y = 5, the equation becomes: $5 = a \cdot \sin\left(-5 \cdot \frac{\pi}{10}\right)$

$$5 = a \cdot \sin\left(-5 \cdot \frac{10}{\pi}\right)$$

Simplifying the argument of the sine function: $-5 \cdot \frac{\pi}{10} = -\frac{\pi}{2}$

Simplifying the
$$-5 \cdot \frac{\pi}{10} = -\frac{\pi}{2}$$

So, the equation now is:

$$5 = a \cdot \sin\left(-\frac{\pi}{2}\right)$$

I know that $\sin\left(-\frac{\pi}{2}\right) = -1$, so substituting this value in: $5 = a \cdot (-1)$

$$5 = a \cdot (-1)$$

Solving for *a*:

$$5 = a \cdot (-1)$$

Finally, substituting a = -5 back into the original function gives:

$$y = -5 \cdot \sin(-5x)$$

</think>

To determine the equation of the function $y = a \cdot \sin(-5x)$ that passes through the point $\left(\frac{\pi}{10}, 5\right)$, follow these

1. Substitute the Point into the Equation:

Plug $x = \frac{\pi}{10}$ and y = 5 into the equation: $5 = a \cdot \sin\left(-5 \cdot \frac{\pi}{10}\right)$

$$5 = a \cdot \sin\left(-5 \cdot \frac{\pi}{10}\right)$$

2. Simplify the Argument of the Sine Function: $-5 \cdot \frac{\pi}{10} = -\frac{\pi}{2}$

$$-5 \cdot \frac{\pi}{10} = -\frac{\pi}{2}$$

So, the equation becomes:

$$5 = a \cdot \sin\left(-\frac{\pi}{2}\right)$$

3. Evaluate the Sine Function:

$$\sin\left(-\frac{\pi}{2}\right) = -1$$

Substituting this back into the equation:

$$5 = a \cdot (-1)$$

4. Solve for a:

$$a = -5$$

5. Write the Final Equation:

Substitute a = -5 back into the original function:

$$y = -5 \cdot \sin(-5x)$$

6. Simplify the Negative Sign (Optional):

Since $\sin(-\theta) = -\sin(\theta)$, the equation can also be written as:

$$y = 5 \cdot \sin(5x)$$

Final Answer:

 $y = -5\sin(-5x)$