#0.06
$$\{n \in \mathbb{Z} \mid n^2 < 0\}$$
Ans: \varnothing

- #0.12 Let $A = \{1, 2, 3\}$ and $B = \{2, 4, 6\}$. For each relation between A and B given as a subset of $A \times B$, decide whether it is a function mapping A into B. If it is a function, decide whether it is one-to-one and whether it is onto B.
 - a. $\{(1,2),(2,6),(3,4)\}$ **Ans:** Yes, a one-to-one and onto function
 - b. $\{(1,3)\}$ and $\{(5,7)\}$ **Ans:** Not a function
 - c. $\{(1,6),(1,2),(1,4)\}$ **Ans:** Not a function
 - d. $\{(2,2),(3,6),(1,6)\}$ **Ans:** Yes, onto function
 - e. $\{(1,6),(2,6),(3,6)\}$ **Ans:** Yes, onto function
 - f. $\{(1,2),(2,6)\}$ **Ans:** Not a function
- #0.16 List the elements of the power set of the given set and give the cardinality of the power set:
 - a. \varnothing **Ans:** $\{\varnothing\}$: cardinality 1
 - b. $\{a\}$ **Ans:** $\{\emptyset, a\}$: cardinality 2
 - c. $\{a,b\}$ **Ans:** $\{\emptyset,a,b,ab\}$: cardinality 4
 - d. $\{a,b,c\}$ **Ans:** $\{\varnothing,a,b,c,ab,ac,bc,abc\}$: cardinality 8
- $\#0.30 \bullet x \mathscr{R} y \text{ in } \mathbb{R} \text{ if } x \geq y$

Determine whether the given relation is an equivalence relation on the set. Describe the partition arising from each equivalence relation.

Ans: This is NOT an equivalence relation because it does not satisfy symmetric properities. Example: $2 \ge 1$ but $1 \not\ge 2$.

#1.03 Compute (b*d)*c and b*(d*c). Can you say on the basis of this computation whether * is associative?

Ans: No, because (b*d)*c = e*c = a, but b*(d*c) = b*b = c

#1.10 Let * be defined on \mathbb{Z}^+ by letting $a * b = 2^{ab}$.

Determine whether the operation * is associative, whether the operation is commutative, and whether the set has an identity element.

Ans: It is commutative because $a * b = b * a = 2^{ab}$, but it is not associative because $(a * b) * c = 2^{2^{ab}c}$, but $a * (b * c) = 2^{2^{bc}a}$. There is no identity element for this set.

#1.27 Let H be the subset of $M_2(\mathbb{R})$ consisting of all matrices of the form

$$\begin{bmatrix} a & -b \\ b & a \end{bmatrix}$$

for $a, b \in \mathbb{R}$. Is H closed under:

(a) matrix addition?

Ans: Yes, it is closed under addition
$$\begin{bmatrix} a & -b \\ b & a \end{bmatrix} + \begin{bmatrix} c & -d \\ d & c \end{bmatrix} = \begin{bmatrix} a+c & -(b+d) \\ b+d & a+c \end{bmatrix}$$

(b) matrix multiplication?

Ans: Yes, it is closed under multiplication
$$\begin{bmatrix} a & -b \\ b & a \end{bmatrix} \begin{bmatrix} c & -d \\ d & c \end{bmatrix} = \begin{bmatrix} ac - bd & -(ad + bc) \\ ad + bc & ac - bd \end{bmatrix}$$

#2.02 Let * be defined on $2\mathbb{Z} = \{2n \mid n \in \mathbb{Z}\}$ by letting a * b = a + b. Determine whether the binary operation * gives a group structure on the given set.

 ${\it Ans:}$ Yes, all three axioms, associativity, indentity element and inverse holds for this set.