Circuitos Electrónicos I

Amplificadores Operacionales Realimentados

AMPLIFICADORES DE GANANCIA INFINITA REALIMENTADOS

$$A_r \equiv \frac{Xo}{Xs} = \frac{A}{1+T} = \frac{A}{1+\beta \cdot A}$$

$$\frac{A}{A_r} = 1 + T = 1 + \beta \cdot A$$

Si utilizamos un amplificador A con una ganancia mucho mayor a la Ar que deseamos:

$$\frac{A}{A_r} = 1 + T = 1 + \beta \cdot A \gg 1$$

$$1 \ll 1 + \beta \cdot A \cong \beta \cdot A$$

De lo que resulta:

$$\beta\cong\frac{1}{A_r}$$

$$A_r \cong \frac{1}{\beta}$$

Es decir, la ganancia realimentada pasa a depender casi exclusivamente de β , siendo extremadamente insensible a no linealidades y variaciones paramétricas de A.

AMPLIFICADOR DE TENSIÓN DE GANANCIA INFINITA REALIMENTADO

$$A_{Vr} = \frac{a_V}{1 + a_V \cdot \beta_V}$$

$$Z_{ir} \cong Z_i (1 + a_V \cdot \beta_V)$$

$$Z_{or} \cong \frac{Z_o}{(1 + a_V \cdot \beta_V)}$$

$$Z_{or} = 0$$

$$A_{Vr} = \frac{1}{\beta_V}$$

$$Z_{ir} = \infty$$

$$Z_{or} = 0$$

Si un amplificador de ganancia infinita es realimentado en la topología serie-paralelo, se obtiene un amplificador de tensión ideal (insensible a cargas externas) con ganancia impuesta exclusivamente por la red de realimentación.

AMPLIFICADOR DE TRANS-IMPEDANCIA DE GANANCIA INFINITA REALIMENTADO

$$A_{Zr} = \frac{a_Z}{1 + a_Z \cdot \beta_Y}$$

$$Z_{ir} \cong \frac{Z_i}{(1 + a_Z \cdot \beta_Y)}$$

$$Z_{or} \cong \frac{Z_o}{(1 + a_Z \cdot \beta_Y)}$$

$$Z_{or} = 0$$

$$Z_{or} = 0$$

Si un amplificador de ganancia infinita es realimentado en la topología paralelo-paralelo, se obtiene un amplificador de trans-impedancia ideal (insensible a cargas externas) con ganancia impuesta exclusivamente por la red de realimentación.

AMPLIFICADOR DE CORRIENTE DE GANANCIA INFINITA REALIMENTADO

$$A_{Ir} = \frac{a_I}{1 + a_I \cdot \beta_I}$$

$$Z_{ir} \cong \frac{z_i}{(1 + a_I \cdot \beta_I)}$$

$$Z_{or} \cong z_o (1 + a_I \cdot \beta_I)$$

$$Z_{or} = z_o (1 + a_I \cdot \beta_I)$$

$$Z_{or} = \infty$$

Si un amplificador de ganancia infinita es realimentado en la topología paralelo-serie, se obtiene un amplificador de corriente ideal (insensible a cargas externas) con ganancia impuesta exclusivamente por la red de realimentación.

AMPLIFICADOR DE TRANS-ADMITANCIA DE GANANCIA INFINITA REALIMENTADO

$$Z_{L}$$

$$A_{Yr} = \frac{a_{Y}}{1 + a_{Y} \cdot \beta_{Z}}$$

$$Z_{ir} \cong z_{i}(1 + a_{Y} \cdot \beta_{Z})$$

$$Z_{or} \cong z_{o}(1 + a_{Y} \cdot \beta_{Z})$$

$$Z_{or} = \infty$$

$$Z_{or} = \infty$$

Si un amplificador de ganancia infinita es realimentado en la topología serie-serie, se obtiene un amplificador de trans-admitancia ideal (insensible a cargas externas) con ganancia impuesta exclusivamente por la red de realimentación.

EL AMPLIFICADOR OPERACIONAL DE GANANCIA INFINITA

En muchas aplicaciones, el A.O. trabajará dentro de un lazo con realimentación negativa Su señal de salida vo será finita aún cuando $a = \infty$

En ese caso la tensión de entrada será $V_e = v_0/a \rightarrow 0$

y la corriente de entrada $i_e \rightarrow 0$, dado que R_i es no nula

La entrada del A.O. con a = ∞ representa un cortocircuito para las tensiones y un circuito abierto para las corrientes

Condición de ganancia infinita:

$$Ve=0$$

$$ie = 0$$

LA CONFIGURACIÓN NO INVERSORA (AMPLIFICADOR OPERACIONAL DE TENSIÓN)

Topológicamente es un amplificador realimentado de tensión. Se espera una ganancia de tensión impuesta x la realimentación R_2 - R_1 , alta resistencia de entrada y baja resistencia de salida

LA CONFIGURACIÓN NO INVERSORA (AMPLIFICADOR OPERACIONAL DE TENSIÓN)

Condición de ganancia infinita:

$$Ve=0$$

$$ie = 0$$

Ganancia de tensión:

$$i_e = 0 \to i_1 = i_2$$

 $v_e = 0 \to v^- = v_i$

$$i_{e} = 0 \to i_{1} = i_{2} \\ v_{e} = 0 \to v^{-} = v_{i}) \qquad \Rightarrow \begin{pmatrix} i_{2} = i_{1} = \frac{v_{i}}{R_{1}} \\ v_{0} = v_{i} + i_{2}R_{2} \end{pmatrix} \Rightarrow \qquad A_{VNI} = \frac{v_{0}}{v_{i}} = 1 + \frac{R_{2}}{R_{1}}$$

$$A_{VNI} = \frac{v_o}{v_i} = 1 + \frac{R_2}{R_1}$$

Resistencia de entrada:

$$i_i = 0 \Rightarrow R_{in} = \frac{v_i}{i_i} = \infty$$

LA CONFIGURACIÓN NO INVERSORA (AMPLIFICADOR OPERACIONAL DE TENSIÓN)

Resistencia de salida:

$$\begin{array}{l} i_e=0 \rightarrow i_1=i_2 \\ v_e=0 \rightarrow i_1=0 \end{array}) \qquad \Rightarrow v_0=-v_e+i_2R_2=0 \Rightarrow$$

Condición de ganancia infinita:

$$Ve=0$$

$$ie = 0$$

$$A_{VNI} = \frac{v_o}{v_i} = 1 + \frac{R_2}{R_1}$$

$$R_{in} = \frac{v_i}{i_i} = \infty$$

$$R_{out} = \frac{v_0}{i_0} = 0$$

Si a= ∞ se tiene un amplificador ideal de tensión aún cuando el A.O. tenga Ri y Ro finitas

EL BUFFER O DESACOPLADOR DE TENSIÓN

$$R_{in} = \frac{v_i}{i_i} = \infty$$

$$R_{out} = \frac{v_0}{i_0} = 0$$

Si a= ∞ se tiene un desacoplador perfecto de impedancias con ganancia de tensión unitaria

EL AMPLIFICADOR OPERACIONAL DE TRANSIMPEDANCIA O CONVERSOR CORRIENTE-TENSIÓN

Ganancia de transimpedancia:

$$\begin{array}{l} i_e = 0 \rightarrow i_i = i_2 \\ v_e = 0 \rightarrow v^- = 0 \\ \end{array}) \quad \Rightarrow v_0 = -i_i R \quad \Rightarrow \quad$$

$$A_Z = \frac{v_o}{i_i} = -R$$

Resistencia de entrada:

$$v_e = 0 \Rightarrow v_i = 0 \Rightarrow$$

$$v_e = 0 \Rightarrow v_i = 0 \Rightarrow \qquad R_{in} = \frac{v_i}{i_i} = 0$$

Resistencia
$$i_e = 0 \rightarrow i_2 = 0$$
 de salida: $v_e = 0$ \Rightarrow $R_{out} = \frac{v_0}{i_0} = 0$

$$R_{out} = \frac{v_0}{i_0} = 0$$

Si a= ∞ se tiene un amplificador ideal de trans-impedancia

LA CONFIGURACIÓN INVERSORA COMO AMPLIFICADOR DE TENSIÓN

Topológicamente es un amplificador realimentado de trans-impedancia que se alimenta con tensión.

La resistencia R₁ se utiliza como impedancia de entrada para enmascarar a la impedancia de la fuente.

Se espera una ganancia impuesta x la realimentación R2 y por la resistencia R1, resistencia de entrada impuesta por R1 y baja resistencia de salida.

LA CONFIGURACIÓN INVERSORA COMO AMPLIFICADOR DE TENSIÓN

El circuito se puede resolver fácilmente sin este análisis como amplificador realimentado

> Condición de ganancia infinita:

$$Ve=0$$

$$i_e = 0$$

Ganancia de tensión:

$$\begin{aligned} i_e &= 0 \to i_1 = i_2 \\ v_e &= 0 \to v^- = 0 \end{aligned} \Rightarrow \begin{pmatrix} i_2 &= i_1 = -\frac{v_i}{R_1} \\ v_0 &= i_2 R_2 \end{pmatrix} \Rightarrow A_{VI} = \frac{v_o}{v_i} = -\frac{R_2}{R_1}$$

$$A_{VI} = \frac{v_o}{v_i} = -\frac{R_2}{R_1}$$

Resistencia de entrada:

$$v_e = 0 \Rightarrow v^- = 0 \Rightarrow$$

$$R_{in} = \frac{v_i}{-i_1} = R_1$$

LA CONFIGURACIÓN INVERSORA COMO AMPLIFICADOR DE TENSIÓN

Resistencia de salida:

$$\begin{array}{l} i_e=0 \rightarrow i_1=i_2 \\ v_e=0 \rightarrow i_1=0 \end{array}) \qquad \Rightarrow v_0=v_e+i_2R_2=0 \Rightarrow$$

$$\Rightarrow v_0 = v_e + i_2 R_2 = 0 \Rightarrow$$

Condición de ganancia infinita:

$$Ve=0$$

$$ie = 0$$

$$A_{VI} = \frac{v_o}{v_i} = -\frac{R_2}{R_1}$$

$$R_{in} = \frac{v_i}{-i_1} = R_1$$

$$R_{out} = \frac{v_0}{i_0} = 0$$

Si a= ∞ se tiene un amplificador de tensión con resistencia de entrada R₁ y resistencia de salida nula, independientemente de las Ri y Ro del A.O.

LA CONFIGURACIÓN INVERSORA / NO INVERSORA

Para pasar de la configuración inversora a la no inversora, sólo se intercambia la posición de la fuente y de la tierra.

La resistencia R2 **SIEMPRE** se conecta desde la salida al borne inversor del A.O. (Realimentación negativa)

No podemos aplicar tierra virtual. Se puede resolver empleando teoría de circuitos clásica, o conceptos de realimentación

Nodo de entrada *N*: $i_1 = i_2 + i_i$

Malla de entrada \boldsymbol{E} : $v_i = -(i_2 + i_i)R_1 - i_iR_i$

Malla de salida S: $v_0 = ai_iR_i - i_2R_0$

Malla de realimentación R: $v_0 = i_2 R_2 - i_i R_i$

Igualando en
$$Vo: ai_iR_i - i_2R_0 = i_2R_2 - i_iR_i \Rightarrow i_2(R_0 + R_2) = (1+a)i_iR_i \Rightarrow i_2 = \frac{(1+a)i_iR_i}{(R_0 + R_2)}$$

Ganancia de tensión:

$$v_i = -(i_2 + i_i)R_1 - i_iR_i = -\left[\frac{(1+a)R_i}{(R_0 + R_2)}R_1 + (R_1 + R_i)\right]i_i$$

$$v_0 = i_2 R_2 - i_i R_i = -\left[1 - \frac{(1+a)}{(R_0 + R_2)} R_2\right] R_i i_i$$

$$A_{VI} = \frac{v_0}{v_i} = \frac{\left[1 - \frac{(1+a)}{(R_0 + R_2)} R_2\right]}{\left[\frac{(1+a)}{(R_0 + R_2)} R_1 + \left(\frac{R_1}{R_i} + 1\right)\right]}$$

No podemos aplicar tierra virtual. Se puede resolver empleando teoría de circuitos clásica, o conceptos de realimentación

Nodo de entrada *N*: $i_1 = i_2 + i_i$

Malla de entrada E: $v_i = -(i_2 + i_i)R_1 - i_iR_i$

$$i_2 = \frac{(1+a)i_i R_i}{(R_0 + R_2)}$$

Resistencia de entrada:

$$R_{in} = \frac{v_i}{-i_1} = \frac{v_i}{-(i_i + i_2)}$$

$$R_{in} = \frac{v_i}{-i_1} = \frac{v_i}{-(i_i + i_2)} = R_1 + R_i \frac{i_i}{i_i + i_2} = R_1 + R_i \frac{1}{1 + \frac{(1+a)R_i}{(R_0 + R_2)}}$$

$$R_{in} = R_1 + \frac{1}{\frac{1}{R_i} + \frac{(1+a)}{(R_0 + R_2)}} \Rightarrow \qquad R_{in} = R_1 + R_i || \frac{(R_0 + R_2)}{(1+a)}$$

$$R_{in} = R_1 + R_i || \frac{(R_0 + R_2)}{(1+a)}$$

Resistencia de salida:

$$R_{out} = \frac{v_0}{i_0}$$

$$i_0 = i_2 + \frac{v_0 - a \cdot v_e}{R_0} = v_0 \left[\frac{1}{R_2 + R_i || R_1} + \frac{1}{R_0} + \frac{a \cdot R_i || R_1}{R_0 (R_2 + R_i || R_1)} \right] = \frac{v_0}{R_0} \left[1 + \frac{R_0 + a \cdot R_i || R_1}{R_2 + R_i || R_1} \right]$$

$$= \frac{v_0}{R_0} \left[1 + \frac{R_0 + a \cdot R_i || R_1}{R_2 + R_i || R_1} \right]$$

$$i_2 = \frac{v_0}{R_2 + R_i || R_1}$$

$$R_{out} = \frac{R_0}{1 + \frac{R_0 + a \cdot R_i || R_1}{R_2 + R_i || R_1}}$$

$$v_e = -\frac{R_i||R_1}{R_2 + R_i||R_1}v_0$$

Ejemplo utilizando el A.O. 741, cuyos datos son los siguientes: $\begin{cases} a = 324000 \\ Ri = 2,7M\Omega \\ R_0 = 47\Omega \end{cases}$

$$\begin{cases} a = 324000 \\ Ri = 2,7M\Omega \\ R_0 = 47\Omega \end{cases}$$

y sean además: $\begin{cases} R_2 = 50K \\ R_1 = 1K \end{cases}$

$$A_{VI} = \frac{\left[1 - \frac{(1+a)}{(R_0 + R_2)}R_2\right]}{\left[\frac{(1+a)}{(R_0 + R_2)}R_1 + (\frac{R_1}{R_i} + 1)\right]} = \frac{\left[1 - \frac{(324001)}{(47 + 50K)}50K\right]}{\left[\frac{324001}{(47 + 50K)}1K + (\frac{1K}{2,7M} + 1)\right]} = \frac{-323695}{6,474 + 1,00037} = -49,9997$$

$$R_{in} = R_1 + R_i || \frac{(R_0 + R_2)}{(1+a)} = 1K + 2.7M || \frac{(47+50K)}{(324001)} = 1K + 0.134 = 1.000134K$$

$$R_{out} = \frac{R_0}{1 + \frac{R_0 + a \cdot R_i || R_1}{R_2 + R_i || R_1}} \frac{47}{1 + \frac{47 + 324000 \cdot 1K || 2,7M}{50K + 1K || 2,7M}} = \frac{47}{298289} = 0,157m\Omega$$

EL AMPLIFICADOR OPERACIONAL DE CORRIENTE

Condición de ganancia infinita:

$$ie = 0$$

Ganancia de corriente:

$$\begin{aligned} i_e &= 0 \rightarrow i_i = i_2 \\ v_e &= 0 \rightarrow v^- = 0 \end{aligned} \Rightarrow -i_i R_2 = (i_0 + i_i) R_1 \Rightarrow$$

$$) \Rightarrow -i_i R_2 = (i_0 + i_i) R_1 \Rightarrow$$

$$A_I = \frac{i_o}{i_i} = -\frac{R_1 + R_2}{R_1}$$

$$v_e = 0 \Rightarrow v_i = 0 \Rightarrow$$

Resistencia de entrada:
$$v_e = 0 \Rightarrow v_i = 0 \Rightarrow$$
 $R_{in} = \frac{v_i}{i_i} = 0$

Resistencia de salida: $i_e = 0 \rightarrow i_2 = 0 \\ v_e = 0 \rightarrow i_1 = 0 \Rightarrow R_{out} = \frac{v_0}{i_0} = \infty$

Si a= ∞ se tiene un amplificador ideal de corriente

Un inconveniente de este circuito es que la carga RL no tiene ningún punto a tierra

EL BUFFER O DESACOPLADOR DE CORRIENTE

Condición de ganancia infinita:

$$Ve=0$$
 ie = 0

Si en amplificador de corriente hacemos R₁= ∞ y R₂=0, tenemos un buffer de corriente:

$$i_0 = i_S \frac{R_S}{R_S + R_L}$$

$$i_0 = i_S$$

Si a= ∞ se tiene un desacoplador perfecto de impedancias con ganancia de corriente unitaria

EL AMPLIFICADOR OPERACIONAL DE TRANS-ADMITANCIA O **CONVERSOR TENSIÓN-CORRIENTE**

Condición de ganancia infinita:

$$ve=0$$
 $ie=0$

Ganancia de transconductancia:

$$i_e = 0 \to i_1 = i_0 \ v_e = 0 \to v^- = v_i$$
 $i_0 = \frac{v_i}{R} \Rightarrow A_Y = \frac{i_o}{v_i} = \frac{1}{R}$

Resistencia de entrada:

$$i_e = 0 \Rightarrow$$

$$i_e = 0 \Rightarrow R_{in} = \frac{v_i}{i_i} = \infty$$

Resistencia de salida:

$$i_e = 0 \rightarrow i_1 = i_0$$

$$v_e = 0 \rightarrow i_1 = 0$$

$$\Rightarrow$$

$$R_{out} = \frac{v_0}{i_0} = \infty$$

Si a= ∞ se tiene un amplificador ideal de trans-admitancia

Un inconveniente de este circuito es que la carga RL no tiene ningún punto a tierra