MODULE 7

LIMITING DISTRIBUTIONS

LECTURE 39

Topics

7.1 CONVERGENCE IN DISTRIBUTION AND PROBABILITY

Theorem 1.4

Let $\{X_n\}_{n\geq 1}$ be a sequence of random variables with $E(X_n)=\mu_n\in (-\infty,\infty)$, and $Var(X_n)=\sigma_n^2\in (0,\infty), n=1,2,...$ Suppose that $\lim_{n\to\infty}\mu_n=\mu\in\mathbb{R}$ and $\lim_{n\to\infty}\sigma_n^2=0$. Then $X_n\stackrel{p}{\to}\mu$, as $n\to\infty$.

Proof. Fix $\varepsilon > 0$. Using the Markov inequality we have

$$0 \le P(\{|X_n - \mu| \ge \varepsilon\}) \le \frac{E(|X_n - \mu|^2)}{\varepsilon^2} = \frac{E((X_n - \mu)^2)}{\varepsilon^2}.$$

Also,

$$E((X_n - \mu)^2) = E((X_n - \mu_n + \mu_n - \mu)^2)$$

$$= E((X_n - \mu_n)^2) + (\mu_n - \mu)^2$$

$$= \sigma_n^2 + (\mu_n - \mu)^2.$$

Therefore,

$$0 \le P(\{|X_n - \mu| \ge \varepsilon\}) \le \frac{\sigma_n^2 + (\mu_n - \mu)^2}{\varepsilon^2}$$

$$\xrightarrow{n \to \infty} 0.$$

$$\Rightarrow \lim_{n \to \infty} P(\{|X_n - \mu| \ge \varepsilon\}) = 0, \quad \forall \varepsilon > 0.$$

$$\Rightarrow X_n \xrightarrow{p} \mu, \text{ as } n \to \infty \qquad \text{(using Theorem 1.3).} \blacksquare$$

Example 1.7

Let $X_1, X_2, ...$ be a sequence of i.i.d. $U(0, \theta)$ random variables, where $\theta > 0$. Let $X_{n:n} = \max\{X_1, X_2, ..., X_n\}$, n = 1, 2, ... For any real constant s, show that $X_{n:n}^s \xrightarrow{p} \theta^s$, as $n \to \infty$.

Solution. It is easy to verify that a p.d.f. of $X_{n:n}$ is

$$f_n(x) = \begin{cases} \frac{nx^{n-1}}{\theta^n}, & \text{if } 0 < x < \theta \\ 0, & \text{otherwise} \end{cases}$$

Then

$$E(X_{n:n}^s) = \frac{n}{n+s} \theta^s, \quad n > -s$$

$$\to \theta^s, \text{ as } n \to \infty.$$

Also,

$$Var(X_{n:n}^s) = E(X_{n:n}^{2s}) - (E(X_{n:n}^s))^2$$

$$= \frac{n}{n+2s}\theta^{2s} - (\frac{n}{n+s}\theta^s)^2, \quad n > \max(-s, -2s)$$

$$\to 0, \quad \text{as } n \to \infty.$$

Now, using Theorem 1.4, it follows that $X_{n:n}^s \xrightarrow{p} \theta^s$, as $n \to \infty$.

Example 1.8

Let $X_n \sim \text{Bin}(n,\theta), n=1,2,...,\theta \in (0,1)$. If $Y_n = \frac{X_n}{n}, n=1,2,...$, show that $Y_n \stackrel{p}{\to} \theta$, as $n \to \infty$.

Solution. We have

$$E(Y_n) = E\left(\frac{X_n}{n}\right) = \theta, n = 1, 2, ...,$$

and

$$\operatorname{Var}(Y_n) = \operatorname{Var}\left(\frac{X_n}{n}\right) = \frac{\operatorname{Var}(X_n)}{n^2} = \frac{\theta(1-\theta)}{n} \to 0, \text{ as } n \to \infty$$

Using Theorem 1.4 it follows that $Y_n \xrightarrow{p} \theta$, as $n \to \infty$.

Remark 1.2

Theorem 1.3 provides an interpretation of the concept of convergence in probability. Theorem 1.3 suggests that if $X_n \stackrel{p}{\to} c$, as $n \to \infty$, then X_n is stochastically (in probability) very close to c for large values of n. Such an interpretation does not hold for the concept of convergence in distribution. Specifically, if $X_n \stackrel{d}{\to} X$, as $n \to \infty$, (where X is some non-degenerate random variable) then it cannot be inferred that X_n is getting close to X, for large values of n, in any sense. All we know in that case is that, for large values of n, the distribution of X_n is getting close to that of X.

The following example demonstrates that convergence in probability may not imply convergence of moments.

Example 1.9

Let $\{X_n\}_{n\geq 1}$ be a sequence of random variables with

$$1 - P({X_n = 0}) = P({X_n = n}) = \frac{1}{n}, \quad n = 1, 2,$$

Then the d.f. of X_n is

$$F_n(x) = \begin{cases} 0, & \text{if } x < 0 \\ 1 - \frac{1}{n}, & \text{if } 0 \le x < n, n = 1, 2, \dots \\ 1, & \text{if } x \ge n \end{cases}$$

$$\xrightarrow{n \to \infty} \begin{cases} 0, & \text{if } x < 0 \\ 1, & \text{if } x \ge 0 \end{cases}$$

Thus $X_n \stackrel{p}{\to} 0$, as $n \to \infty$. However, for $r \in \{1, 2, ...\}$

$$E(X_n^r) = E(|X_n|^r) = n^{r-1} \nrightarrow 0$$
, as $n \to \infty$.

The following example illustrates that convergence in distribution to a non-degenerate random variable also does not imply convergence of moments.

Example 1.10

Let $\{X_n\}_{n\geq 1}$ be a sequence of random variables with p.m.f.s

$$f_n(x) = \begin{cases} \frac{1}{2} - \frac{1}{2n}, & \text{if } x \in \left\{0, \frac{1}{2}\right\} \\ \frac{1}{n}, & \text{if } x = n, \ n = 1, 2, \dots \end{cases}$$
otherwise

and let *X* be a random variable with p.m.f.

$$f(x) = \begin{cases} \frac{1}{2}, & \text{if } x \in \left\{0, \frac{1}{2}\right\}.\\ 0, & \text{otherwise} \end{cases}$$

Then the distribution function of *X* is

$$F(x) = \begin{cases} 0, & \text{if } x < 0\\ \frac{1}{2}, & \text{if } 0 \le x < \frac{1}{2},\\ 1, & \text{if } x \ge \frac{1}{2} \end{cases}$$

and the distribution function of X_n is

$$F_n(x) = \begin{cases} 0, & \text{if } x < 0\\ \frac{1}{2} - \frac{1}{2n}, & \text{if } 0 \le x < \frac{1}{2}\\ 1 - \frac{1}{n}, & \text{if } \frac{1}{2} \le x < n\\ 1, & \text{if } x \ge n \end{cases}, n = 1, 2, \dots$$

$$\xrightarrow{n\to\infty} \begin{cases} 0, & \text{if } x < 0\\ \frac{1}{2}, & \text{if } 0 \le x < \frac{1}{2}.\\ 1, & \text{if } x \ge \frac{1}{2} \end{cases}$$

It follows that $X_n \stackrel{d}{\to} X$, as $n \to \infty$. Moreover $E(X) = \frac{1}{4}$ and

$$E(X_n) = \frac{1}{2} \left[\frac{1}{2} - \frac{1}{2n} \right] + 1 \xrightarrow{n \to \infty} \frac{5}{4} \neq E(X). \blacksquare$$

We know that, for a real constant $c, X_n \xrightarrow{p} c$, as $n \to \infty \Leftrightarrow X_n - c \xrightarrow{p} 0$, as $n \to \infty$. The following example illustrates that $X_n \xrightarrow{d} X$, as $n \to \infty$ may not imply that $X_n - X \xrightarrow{p} 0$,

as $n \to \infty$ or, equivalently, $X_n \stackrel{d}{\to} X$, as $n \to \infty$, does not imply that $X_n - X$ will converge in distribution to a random variable degenerate at 0 (also see Remark 1.2).

Example 1.11

Let $\{X_n\}_{n\geq 1}$ and X be as defined in Example 1.10. Further suppose that, for each $n\in\{1,2,\ldots\}, X_n$ and X are independent. Then $X_n\stackrel{d}{\to} X$, as $n\to\infty$. However, for $0<\varepsilon<\frac{1}{2}$

$$P(\{|X_n - X| \ge \varepsilon\}) = \frac{1}{2} \left[P(\{|X_n| \ge \varepsilon\}) + P\left(\left\{ \left| X_n - \frac{1}{2} \right| \ge \varepsilon \right\} \right) \right]$$
$$= \frac{1}{2} \left[\left(\frac{1}{2} - \frac{1}{2n} \right) + \frac{1}{n} + \left(\frac{1}{2} - \frac{1}{2n} \right) + \frac{1}{n} \right]$$
$$\xrightarrow{n \to \infty} \frac{1}{2},$$

implying that $X_n - X$ does not converge in distribution to a random variable degenerate at 0.

Definition 1.2

A sequence $\{X_n\}_{n\geq 1}$ of random variables is said to be *bounded in probability* if there exists a positive real constant M (not depending on n) such that

$$P\left(\bigcap_{n=1}^{\infty}\{|X_n|\leq M\}\right)=1. \blacksquare$$

The following theorem relates convergence in distribution of a sequence $\{X_n\}_{n\geq 1}$ of random variables to the convergence of corresponding sequence of moment generating functions (m.g.f.s). We shall not provide the proof of the theorem as it is slightly involved.

Theorem 1.5

Let $\{X_n\}_{n\geq 1}$ be a sequence of random variables and let X be another random variable. Suppose that there exists an h>0 such that the m.g.f.s $M(\cdot)$, $M_1(\cdot)$, $M_2(\cdot)$, ...of X, X_1 , X_2 , ..., respectively, are finite on (-h,h).

- (i) If $\lim_{n\to\infty} M_n(t) = M(t)$, $\forall t \in (-h,h)$, then $X_n \stackrel{d}{\to} X$, as $n \to \infty$;
- (ii) If $X_1, X_2, ...$ are bounded in probability and $X_n \stackrel{d}{\to} X$, as $n \to \infty$, then $\lim_{n \to \infty} M_n(t) = M(t)$, $\forall t \in (-h, h)$.

The following example demonstrates that the conclusion of Theorem 1.5 (ii) may not hold if $X_1, X_2, ...$ are not bounded in probability.

Example 1.12

Let $\{X_n\}_{n\geq 1}$ and X be as defined in Example 1.10. Then the m.g.f. of X is

$$M(t) = \frac{1 + e^{\frac{t}{2}}}{2}, t \in \mathbb{R},$$

and the m.g.f. of X_n is

$$M_n(t) = \left(\frac{1}{2} - \frac{1}{2n}\right) \left(1 + e^{\frac{t}{2}}\right) + \frac{e^{nt}}{n}$$

$$\xrightarrow{n \to \infty} \left\{\frac{1 + e^{\frac{t}{2}}}{2}, & \text{if } t \le 0\\ \infty, & \text{if } t > 0 \right\}$$

$$\neq M(t), \quad \forall t \in \mathbb{R}.$$

However, $X_n \xrightarrow{d} X$, as $n \to \infty$.