

(19) RU (11) 2048869 (13) C1

(51) 6 B01D67/00, B01D71/00

РОССИЙСКОЕ АГЕНТСТВО ПО ПАТЕНТАМ И ТОВАРНЫМ ЗНАКАМ

(12) ОПИСАНИЕ ИЗОБРЕТЕНИЯ

к патенту Российской Федерации

- (14) Дата публикации: 1995.11.27
- (21) Регистрационный номер заявки: 93014656/26
- (22) Дата подачи заявки: 1993.03.22
- (46) Дата публикации формулы изобретения: 1995.11.27
- (56) Аналоги изобретения: Патент США N 4466931, кл. В 29D 27/04, 1984.
- (71) Имя заявителя: Внедренческое научнопроизводственное предприятие "ИВ+К°"
- (72) Имя изобретателя: **Авдеев И.В.; Дуфлот В.Р.; Заболуев И.А.**; **Чикин Ю.А.**
- (73) Имя патентообладателя: Внедренческое научнопроизводственное предприятие "ИВ+К°"

(54) СПОСОБ ИЗГОТОВЛЕНИЯ МЕМБРАН

Изобретение относится к производству фильтрующих мембран, в частности асимметричных полупроницаемых мембран, например, для разделения смесей газов, фракционирования растворов, обессоливания воды. Способ изготовления мембран включает в себя смешивание с растворителем олигомера, мономера или их комбинации, формирование смеси в тонкий слой, проведение полимеризации при инициирующем воздействии, удаление растворителя. Новизна способа заключается в том, что формирование смеси в тонкий слой осуществляют между двумя подложками, при этом для подложки со стороны заданного барьерного слоя используют материал с поверхностным натяжением на границе материал подложки составляющая смеси меньшим, чем на границе материал подложки растворитель. Положительный эффект заключается в обеспеченнии получения асимметричных мембран с тонким рабочим слоем, повышении производительности мембран. 1 табл.

Изо вретение относится к производству фильтрующих мембран, в частности асимметричных полупроницаемых мембран, например, для разделения смесей газов, фракционирования растворов высоко- и низкомолекулярных веществ, обессоливания воды.

Известен способ изготовления мембран, включающий смешивание с растворителем полимера, формирование смеси в тонкий слой, выдержку на воздухе, охлаждение смеси до уровня ниже температуры стеклования, удаление растворителя испарением.

Недостатками такого способа являются длительность и сложность технической реализации серийного изготовления мембран, невоспроизводимость их физических параметров.

Наиболее близким к изобретению по технической сущности является способ изготовления микропористых мембран, включающий смешивание с растворителем олигомера или мономера, или их комбинации, формирование смеси в тонкий слой, проведение полимеризации при инициирующем воздействии, удаление растворителя.

Недостатком этого способа является получение мембран с порами, размеры которых одного порядка по всей ее толщине, что резко снижает производительность таких мембран.

Задача изобретения обеспечение получения асимметричных мембран с тонким мелкопористым барьерным рабочим слоем, увеличение производительности мембран и повышение воспроизводимости.

Сущность изобретения заключается в том, что в способе изготовления мембран, включающем смешивание с растворителем олигомера или мономера или их комбинации, формирование смеси в тонкий слой, проведение полимеризации при инициирующем воздействии, удаление растворителя, согласно изобретению формирование смеси в тонкий слой осуществляют между двумя подложками, при этом для подложки со стороны заданного барьерного слоя используют материал с поверхностным натяжением на границе материал подложки олигомерная или мономерная, или олигомер мономерная составляющая смеси меньшим, чем на границе материал подложки растворитель, а для подложки со стороны заданного пористого слоя используют материал с поверхностным натяжением на границе материал подложки олигомерная или мономерная, или олигомер мономерная составляющая смеси большим, чем на границе материал подложки растворитель.

Мерой взаимодействия поверхности с жидкостью является поверхностное натяжение, при этом чем выше энергия взаимодействия, тем ниже поверхностное натяжение на границе поверхность-жидкость.

Таким образом, в зависимости от энергии взаимодействия на поверхности подложки может происходить концентри- рование или олигомера (мономера или олигомер мономера) или растворителя. В случае, когда поверхностное натяжение на границе раздела материал подложки олигомерная составляющая смеси меньше поверхностного натяжения на границе раздела материал подложки растворитель, происходит концентрирование олигомера на границе раздела. Это приводит при полимеризации к образованию на границе раздела плотного мелкопористого барьерного слоя.

В противоположном случае на границе раздела концентрируется растворитель и образуется относительно толстый крупнопористый слой.

Проведение формирования смеси между двумя подложками с разной энергией взаимодействия обеспечивает получение асимметричной мембраны с тонким мелкопористым барьерным слоем.

Величину поверхностного натяжения оценивают по капиллярному поднятию жидкости, между параллельными пластинами, используемых материалов, с одной стороны, из выражения

h
$$\mathbf{z}_{\mathbf{r}_{-\mathbf{x}}}^{\bullet_{\mathbf{c}_{\mathbf{o}}} = \mathbf{\theta}}$$
 (1) где об общество поверхностное натяжение на границе газ-жидкость; общество обществ общес

d расстояние между пластинами;

угол смачивания материала жидкостью;

р плотность жидкости;

о∘ плотность газа;

д ускарение свободного падения

С другой стороны, поверхностное натяжение на границе материал-воздух $_{\mathbf{C}^{\mathbf{M}-\Gamma}}$ связано с углом смачивания жидкостью материала и поверхностным натяжением на границах воздух-жидкость $_{\mathbf{O}^{\mathsf{r-ж}}}$ и материал-жидкость $_{\mathbf{O}^{\mathsf{m-ж'}}}$ законом Юнга

$$\sigma_{\text{M-r}} \sigma_{\text{M--}} + \sigma_{\text{r--}} \cos \Theta^{(2)}$$

Из соотношений (1) и (2) вытекает выражение для определения величины поверхностного натяжения на границе материал-жидкость

$$\sigma^{\text{M-r}}\sigma^{\text{M-w}} \frac{1}{z} \stackrel{h}{\bullet} {}^{d}(\rho \bar{\rho}^{\circ}) g^{\circ}(3)$$

Для конкретного материала величина поверхностного натяжения на границе раздела материал-воздух постоянна, поэтому возможно сравнение поверхностного натяжения на границе раздела материал-жидкость для одного материала по высоте капиллярного поднятия различных жидкостей.

Чем меньше величина ($_{\mathbf{O}^{\mathsf{M-r}}}$ - $_{\mathbf{O}^{\mathsf{M-x}}}$), тем выше $_{\mathbf{O}^{\mathsf{M-x}}}$ и, соответственно увеличение ($_{\mathbf{O}^{\mathsf{M-r}}}$ - $_{\mathbf{O}^{\mathsf{M-x}}}$) говорит об уменьшении $\sigma_{\mathsf{M-ж}}$

Предлагаемый способ изготовления асимметричных мембран реализуется следующим образом.

Готовят композицию смешением 55 об. α,ω диметакрилат бисэтиленгликолькарбонат диэтиленгликоля ТУ-113-03-617-87 и 45 об. этилового спирта. После перемешивания смесь отливают между полиэтиленовой и полиэтилентерефталатной подложками и формируют равномерный тонкий слой. После этого проводят полимеризацию олигомерной составляющей смеси при инициирующем воздействии, например, облучают пучком ускоренных электронов с энергией 5 мэВ и током 100 мкА в течение 3 мин (поглощенная доза 3,3 М рад). Затем испарением удаляют этиловый спирт. В результате получают асимметричную мембрану с плотным барьерным поверхностным слоем толщиной 1 мкм со стороны полиэтилентерефталатной пленки и пористой основой со стороны полиэтилена.

Для наглядности соотношения по поверхностным натяжениям на границах используемых в примере материалов сведены в таблицу.

В целях улучшения механической прочности мембраны формирование в тонкий слой осуществляют пропиткой выбранной смесью стеклосетки. В этом случае также получают асимметричную мембрану с барьерным слоем, но армированную сеткой.

Проведенные экспериментальные работы по изготовлению мембран с различными подложками, олигомерными, мономерными, олигомер-мономерными составляющими смеси, растворителями и при различных инициирующих полимеризацию воздействиях показывают устойчивый эффект образования асимметричных мембран с мелкопористым барьерным слоем толщиной около 1 мкм, только при соблюдении условия соотношений поверхностных натяжений на границах подложка составляющая смеси и подложка растворитель.

Этим условием является то, что для подложки со стороны заданного барьерного слоя используют материал с поверхностным натяжением на границе материал подложки составляющая смеси меньшим, чем на границе материал подложки растворитель, а для подложки со стороны заданного пористого слоя используют материал с поверхностным натяжением на границе материал подложки составляющая смеси большим, чем на границе материал подложки растворитель.

Полученные по предлагаемому способу асимметричные мембраны обладают такой структурой барьерного слоя и размером ее пор, которые позволяют использовать их для разделения смесей газов, фракционирования растворов, обессоливания воды.

Благодаря уменьшению толщины рабочего слоя мембраны обеспечивается увеличение пропускной способности.

ФОРМУЛА ИЗОБРЕТЕНИЯ

СПОСОБ ИЗГОТОВЛЕНИЯ МЕМБРАН, включающий смешение олигомера и/или мономера с растворителем, формирование смеси, проведение полимеризации при инициирующем воздействии и удаление растворителя, слоев, при этом для первой подложки, расположенной со стороны барьерного слоя, используют материал с поверхностным натяжением на границе материал подложки олигомерная и/или мономерная составляющая смеси меньшим, чем на границе материал подложки - растворитель, а для второй подложки, расположенной со стороны пористого слоя, используют материал с поверхностным натяжением на границе материал подложки - олигомерная и/или мономерная составляющая смеси большим, чем на границе материал подложки растворитель.

Материал подложки	Составляющая смеси (смачивающая жид- кость)	<i>σ</i> _{м-г} – <i>σ</i> _{м-ж} , Дж/м ²	Наличие барьерного слоя
Полиэтилентерефта- лат	$lpha$, ω -диметакрилат бис- этиленгликолькарбонат	3,3 · 10 ⁻²	Присутствует
Полиэтилен	диэтиленгликоля этиловый спирт α , ω -диметакрилат бис-этиленгликолькарбонат	$2.6 \cdot 10^{-2}$ $2.0 \cdot 10^{-2}$	Отсутствует
	диэтиленгликоля этиловый спирт	$2.7 \cdot 10^{-2}$	

(19) **RU** (11) **2048869** (13) **C1** (51) 6 B01D 67/00, B01D 71/00

RUSSIAN AGENCY FOR PATENTS AND TRADEMARKS

(12) SPECIFICATION

to Russian Federation Patent

(14) Date of publication: 1995.11.27

(21) Registration No. of the Application: 93014656/26

(22) Filing date of the Application: 1993.03.22

(46) Date of publication of the set of claims: 1995.11.27

(56) Analogs of the invention: US Patent No. 4466931, Cl. B29D 27/04, 1984.

(71) Applicant(s): Vnedrencheskoe Nauchno-Proizvodstvennoe Predpriyatie

(72) Inventor(s): Avdeev I.V.; Duflot V.R.; Zaboluev I.A.; Chikin Yu.A.

(54) MEMBRANE MANUFACTURE METHOD

The invention relates to the production of filtration membranes, particularly asymmetrical semi-permeable membranes, for example, for the separation of gas mixtures, fractionation of solutions, desalination of water. The method of manufacturing membranes comprises mixing an oligomer, monomer or their mixture with a solvent, shaping the mixture into a thin layer, carrying out initiated polymerization, and removing the solvent. The novelty of the method is that the shaping of the mixture into a thin layer is carried out between two substrates, for the substrate from the side of a preset barrier layer use being made of a material with the surface tension at the substrate material/mixture component substrate mateat the than boundary being smaller

rial/solvent boundary. Positive effect consists in ensuring the provision of asymmetrical membranes with a thin working layer and in increasing the throughput capacity of membranes. 1 table.

Переводчик: Дрю л.г. Пурто. Число слов: 1133

Количество символов с пробелами: 7672