Devoir Surveillé

Durée 2h.

Documents, calculatrices et téléphones portables interdits. Il sera tenu compte de la clarté de la rédaction et du soin apporté à la copie.

Exercice I (2 points)

Soit $A \in \mathcal{M}_n(\mathbb{R})$.

- 1. Définir ce qu'est une valeur propre de A.
- 2. Définir ce qu'est un vecteur propre de A.
- 3. Définir ce qu'est le polynôme caractéristique de A.
- 4. Définir ce qu'est un sous-espace propre de A.

Exercice II(10 points)

On considère les suites de nombres réels $(u_n)_{n\in\mathbb{N}}$, $(v_n)_{n\in\mathbb{N}}$ et $(w_n)_{n\in\mathbb{N}}$ telles que u_0 , v_0 , w_0 sont trois nombres réels positifs ou nuls vérifiant $u_0 + v_0 + w_0 = 1$ et telles que

$$\begin{cases} u_n = \frac{v_n + w_n}{2} \\ v_n = \frac{u_n + w_n}{2} \\ w_n = \frac{u_n + v_n}{2} \end{cases}$$

Le but du problème est de déterminer les limites respectives u, v et w de $(u_n)_{n\in\mathbb{N}}, (v_n)_{n\in\mathbb{N}}$ et $(w_n)_{n\in\mathbb{N}}$.

Pour cela, on pose $X_0 = \begin{pmatrix} u_0 \\ v_0 \\ w_0 \end{pmatrix}$ et

$$A = \begin{pmatrix} 0 & \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & 0 & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} & 0 \end{pmatrix}$$

On note également pour tout $n \in \mathbb{N}^*, \ X_n = \begin{pmatrix} u_n \\ v_n \\ w_n \end{pmatrix}$ la matrice colonne définie par la relation de

récurrence : $X_n = A X_{n-1}$.

- 1. Montrer, sans calcul, que A est diagonalisable.
- 2. Déterminer les valeurs propres de A.
- 3. Déterminer une matrice diagonale D et une matrice inversible P, de première ligne $\begin{pmatrix} 1 & 1 \end{pmatrix}$ et de deuxième ligne $\begin{pmatrix} 1 & -1 & 0 \end{pmatrix}$, telles que $A = P D P^{-1}$.
- 4. Calculer P^{-1} .
- 5. Déterminer, pour tout $n \in \mathbb{N}^*$, la matrice A^n par ses éléments.

- 6. Montrer, pour tout $n \in \mathbb{N} : X_n = A^n X_0$
- 7. En déduire, pour tout $n \in \mathbb{N}$:

$$\begin{cases} u_n = \frac{1}{3} + \left(u_0 - \frac{1}{3}\right) \left(-\frac{1}{2}\right)^n \\ v_n = \frac{1}{3} + \left(v_0 - \frac{1}{3}\right) \left(-\frac{1}{2}\right)^n \\ w_n = \frac{1}{3} + \left(w_0 - \frac{1}{3}\right) \left(-\frac{1}{2}\right)^n \end{cases}$$

8. Déterminer les limites respectives u, v, w de u_n, v_n, w_n lorsque le nombre entier n tend vers l'infini.

Exercice III(8 points)

Soit f l'endomorphisme de \mathbb{R}^3 dont la matrice dans la base canonique de \mathbb{R}^3 est :

$$A = \begin{pmatrix} 1 & 0 & 0 \\ 1 & 2 & 1 \\ 2 & -2 & -1 \end{pmatrix}$$

On considère les vecteurs u et v de \mathbb{R}^3 définis par :

$$u = (0, 1, -2)$$
 et $v = (0, 1, -1)$

Si λ est une valeur propre de f (donc de A), on désigne par $E_{\lambda}(f)$ l'espace propre de f (donc de A) associé à la valeur propre λ .

- 1. Justifier que f n'est pas bijectif (c'est-à-dire A non inversible). En déduire, sans le moindre calcul, une valeur propre de f.
- 2. Prouver que u et v sont deux vecteurs propres de f.

Préciser la valeur propre λ (respectivement μ) associée à u (respectivement à v).

Donner la dimension de l'espace propre $E_{\lambda}(f)$ (respectivement $E_{\mu}(f)$).

- 3. L'endomorphisme f est-il diagonalisable?
- 4. Rechercher tous les vecteurs t = (x, y, z) de \mathbb{R}^3 vérifiant l'équation :

$$f(t) = t + v$$

5. Déterminer un vecteur w de \mathbb{R}^3 , dont la troisième coordonnée (dans la base canonique de \mathbb{R}^3) est nulle, telle que la famille C=(u,v,w) soit une base de \mathbb{R}^3 et que la matrice de f dans la base C soit la matrice

$$T = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix}$$