République Tunisienne Ministère de l'Enseignement Supérieur et de la Recherche Scientifique

Université de Gabès Ecole Nationale d'Ingénieurs de Gabès Département Génie Electrique-Automatique

Chapitre 2 Méthodes directes pour la résolution des systèmes linéaires

Réalisé par : DEHRI Khadija

Maitre Assistante en Génie Electrique-Automatique

Membre de Laboratoire de Recherche Commande Numérique des Procédés Industriels (CONPRI)

Méthodes directes pour la résolution des systèmes linéaires

Introduction

Objectif

L'objectif de ce chapitre est la résolution des systèmes linéaires de la forme :

Ax = b

Définition:

On appelle **méthode directe** de résolution Ax=b une méthode qui donne exactement la solution après un nombre fini d'opérations élémentaires (+;-;*;/)

Comme A est inversible, la résolution du système Ax = b est unique et donnée par :

$$x = A^{-1}b = \frac{1}{\det(A)}(com(A))^{T}b$$
 ce suggère le calcul de l'inverse de A.

avec $A \in K^{n \times n}$ est supposée inversible et $b \in K^{n \times 1}$

Exemple

$$\begin{bmatrix} -3 & 4 \\ 2 & -1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 5 \\ -10 \end{bmatrix}$$

$$A^{-1} = \frac{1}{3 - 8} \begin{bmatrix} -1 & -4 \\ -2 & -3 \end{bmatrix} = \begin{bmatrix} \frac{1}{5} & \frac{4}{5} \\ \frac{2}{5} & \frac{3}{5} \end{bmatrix}; \quad x = A^{-1}b = \begin{bmatrix} \frac{1}{5} & \frac{4}{5} \\ \frac{2}{5} & \frac{3}{5} \end{bmatrix} \begin{bmatrix} 5 \\ -10 \end{bmatrix} = \begin{bmatrix} -7 \\ -4 \end{bmatrix} = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$

Introduction

$$x = A^{-1}b = \frac{1}{\det(A)} \left(com(A)\right)^{T} b$$

Cette méthode numérique n'est pas très efficace vu qu'elle nécessite plus de calcul et plus d'espace mémoire

$$\begin{cases} n^2 n! + 2n^2 & \text{additions} \\ (n+1)n! + n(n-1) - 1 & \text{multiplications} \end{cases} \longrightarrow N_{op} = n!(n^2 + n + 1) + 3n^2 - n$$

$$N_{op} = n!(n^2 + n + 1) + 3n^2 - r$$

Théorème de Cramer

ième colonne de A est remplacée par le vecteur b

$$x_i = \frac{\det(A_{i,b})}{\det(A)}; i = 1..n$$

$$A_{i,b} = \begin{bmatrix} a_{11} & \dots & a_{1i-1} & b_1 & a_{1i+1} & \dots & a_{1n} \\ a_{21} & \dots & a_{2i-1} & b_2 & a_{2i+1} & \dots & a_{2n} \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ a_{n1} & \dots & a_{ni-1} & b_n & a_{ni+1} & \dots & a_{nn} \end{bmatrix}$$

Méthodes directes pour la résolution des systèmes linéaires

Introduction

$$\begin{cases} 8x_1 + 5x_2 = 2\\ 2x_1 - 4x_2 = -10 \end{cases} \det(A) = \begin{vmatrix} 8 & 5\\ 2 & -4 \end{vmatrix} = -32 - 10 = -42$$

$$x_{1} = \frac{\begin{vmatrix} 2 & 5 \\ -10 & -4 \end{vmatrix}}{-42} = \frac{-8 - (-50)}{-42} = \frac{42}{-42} = -1$$

$$x_{2} = \frac{\begin{vmatrix} 8 & 2 \\ 2 & -10 \end{vmatrix}}{-42} = \frac{-80 - 4}{-42} = \frac{-84}{-42} = 2$$

Cette méthode numérique aussi n'est pas très efficace vu qu'elle nécessite plus de calcul et plus d'espace mémoire

$$\begin{cases} (n+1)(n!-1) & \text{additions} \\ n(n+1)n! & \text{multiplications} \\ n & \text{divisions} \end{cases}$$

Introduction

La solution de ce problème est l'utilisation des méthodes directes pour la résolution du système linéaire Ax = b, à savoir :

- Méthodes d'élimination de Gauss
 - * Méthode d'élimination de Gauss
 - * Méthode d'élimination de Gauss à pivot partiel
 - * Méthode d'élimination de Gauss à pivot total
 - * Méthode d'élimination de Gauss-Jordan
- Métode de décomposition LU
- Méthode de Choleski

6

Méthodes directes pour la résolution des systèmes linéaires

Introduction

A est une matrice diagonale

solution

$$x_i = \frac{b_i}{a_{ii}} \quad , \quad i \in [1, n]$$

Algorithme

pour i = 1 jusqu'à n faire

$$x_i \leftarrow \frac{b_i}{a_{ii}}$$

fin pour

'

Méthodes d'élimination de Gauss

Principe

L'idée de cette méthode est de ramener un système linéaire quelconque à un système triangulaire (supérieure ou inférieure).

La solution est obtenue par les algorithmes de remontée ou de descente

L'étape de mise à zéro d'une partie des coefficients de la matrice est qualifiée d'élimination

MA

 $Ax = b \implies MAx = Mb$

Forme échelonnée = Forme Triangulaire

La méthode d'élimination est basée deux étapes :

- 1. Factorisation (Triangularisation)
- 2. Résolution du système triangulaire (Remontée ou descente)

12

Méthodes directes pour la résolution des systèmes linéaires

Méthodes d'élimination de Gauss

Factorisation: n-1 pas

$$\begin{bmatrix} a_{11} & \cdots & a_{1i} & \cdots & a_{1n} \\ \vdots & \ddots & \vdots & & \vdots \\ a_{i1} & \cdots & a_{ii} & \cdots & a_{in} \\ \vdots & & \vdots & \ddots & \vdots \\ a_{n1} & \cdots & a_{ni} & \cdots & a_{nn} \end{bmatrix} \begin{bmatrix} x_1 \\ \vdots \\ x_i \\ \vdots \\ x_n \end{bmatrix} = \begin{bmatrix} b_1 \\ \vdots \\ b_i \\ \vdots \\ b_n \end{bmatrix} \qquad \Rightarrow \begin{bmatrix} a_{11} & \cdots & a_{1i} & \cdots & a_{1n} \\ \vdots & \ddots & \vdots & & \vdots \\ 0 & \cdots & \widetilde{a}_{ii} & \cdots & \widetilde{a}_{in} \\ \vdots & \vdots & \ddots & \vdots \\ \vdots & \vdots \\ \widetilde{b}_n \end{bmatrix} \begin{bmatrix} x_1 \\ \vdots \\ \widetilde{b}_i \\ \vdots \\ \widetilde{b}_n \end{bmatrix}$$

Pas 1 Premier Pivot du Gauss

$$\begin{bmatrix} a_{11}^{(1)} & a_{12}^{(1)} & a_{13}^{(1)} & \cdots & a_{1n}^{(1)} \\ a_{21}^{(1)} & a_{22}^{(1)} & a_{23}^{(1)} & \cdots & a_{2n}^{(1)} \\ a_{31}^{(1)} & a_{32}^{(1)} & a_{33}^{(1)} & \cdots & a_{3n}^{(1)} \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ a_{n1}^{(1)} & a_{n2}^{(1)} & a_{n3}^{(1)} & \cdots & a_{nn}^{(1)} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ \vdots \\ x_n \end{bmatrix} = \begin{bmatrix} b_1^{(1)} \\ b_2^{(1)} \\ b_3^{(1)} \\ \vdots \\ b_n^{(1)} \end{bmatrix}$$

$$m_{21}^{(1)} = a_{21}^{(1)} / a_{11}^{(1)} \begin{vmatrix} a_{11}^{(1)} & a_{12}^{(1)} & a_{13}^{(1)} & \cdots & a_{1n}^{(1)} \\ 0 & a_{22}^{(2)} & a_{23}^{(2)} & \cdots & a_{2n}^{(2)} \\ a_{22}^{(1)} & a_{23}^{(1)} & a_{23}^{(1)} & a_{23}^{(2)} & a_{23}^{(2)} & \cdots & a_{2n}^{(2)} \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ m_{n1}^{(1)} = a_{n1}^{(1)} / a_{11}^{(1)} & 0 & a_{n2}^{(2)} & a_{n3}^{(2)} & \cdots & a_{nn}^{(2)} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ \vdots \\ x_n \end{bmatrix} = \begin{bmatrix} b_{11}^{(1)} \\ b_{22}^{(2)} \\ b_{33}^{(2)} \\ \vdots \\ b_{n}^{(2)} \end{bmatrix}$$

Méthodes d'élimination de Gauss

Pas 1

Pour annuler l'élément en position (i,1) il faut soustraire de la ième ligne, la première ligne multipliée par $m_{..}^{(1)} = a_{i1}^{(1)}/a_{11}^{(1)}$

Annuler tous les éléments de la première colonne de A, sous $a_{11}^{(1)}$, revient à pré-multiplier la matrice A

par la matrice identité dans laquelle les éléments de la première colonne, à partir du deuxième élément, sont remplacés par $-m^{(1)}$ soit $M^{(2)}$ ette matrice

$$M^{(1)} = \begin{pmatrix} 1 & 0 & 0 & \cdots & 0 \\ -m_{21}^{(1)} & 1 & 0 & \cdots & 0 \\ -m_{31}^{(1)} & 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ -m_{n1}^{(1)} & 0 & 0 & \cdots & 1 \end{pmatrix} \qquad \begin{pmatrix} M^{(1)} \end{pmatrix}^{-1} = \begin{pmatrix} 1 & 0 & {}^{10} & \cdots & 0 \\ 1 & 0 & {}^{10} & \cdots & 0 \\ m_{21}^{(1)} & 1 & 0 & \cdots & 0 \\ m_{31}^{(1)} & 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ m_{n1}^{(1)} & 0 & 0 & \cdots & 1 \end{pmatrix}$$

Les seuls éléments à calculer sont les $a_{ii}^{(2)}$, i, j=2,3,...,n; et $b_i^{(2)}$, i=2,3,...,n.

On a

$$\begin{cases}
m_{i1}^{(1)} = a_{i1}^{(1)} / a_{11}^{(1)}, & i = 2,3,...,n \\
b_{i}^{(2)} = b_{i}^{(1)} - m_{i1}^{(1)} b_{1}^{(1)}, & i = 2,3,...,n \\
a_{ij}^{(2)} = a_{ij}^{(1)} - m_{i1}^{(1)} a_{1j}^{(1)}, & i,j = 2,3,...,n
\end{cases}$$

14

Méthodes directes pour la résolution des systèmes linéaires

Méthodes d'élimination de Gauss

Pas 2

Deuxième pivot du Gauss 0

$$\begin{bmatrix} a_{11}^{(1)} & a_{12}^{(1)} & a_{13}^{(1)} & \cdots & a_{1n}^{(1)} \\ 0 & a_{22}^{(2)} & a_{23}^{(2)} & \cdots & a_{2n}^{(2)} \\ 0 & a_{32}^{(2)} & a_{33}^{(2)} & \cdots & a_{3n}^{(2)} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & a_{n2}^{(2)} & a_{n3}^{(2)} & \cdots & a_{nn}^{(2)} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ \vdots \\ x_n \end{bmatrix} = \begin{bmatrix} b_1^{(1)} \\ b_2^{(2)} \\ b_2^{(2)} \\ \vdots \\ b_n^{(2)} \end{bmatrix}$$

$$A^{(3)} = \begin{pmatrix} a_{11}^{(1)} & a_{12}^{(1)} & a_{13}^{(1)} & a_{14}^{(1)} & \cdots & a_{1n}^{(1)} \\ 0 & a_{22}^{(2)} & a_{23}^{(2)} & a_{24}^{(2)} & \cdots & a_{2n}^{(2)} \\ 0 & 0 & a_{32}^{(3)} & a_{34}^{(3)} & \cdots & a_{3n}^{(3)} \\ 0 & 0 & a_{43}^{(3)} & a_{44}^{(3)} & \cdots & a_{4n}^{(3)} \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & a_{n3}^{(3)} & a_{n4}^{(3)} & \cdots & a_{nn}^{(3)} \end{pmatrix} \qquad b^{(3)} = \begin{pmatrix} b_1^{(1)} \\ b_2^{(2)} \\ b_3^{(3)} \\ \vdots \\ b_n^{(3)} \end{pmatrix}$$

Pour annuler les éléments de la deuxième colonne de $\mathbf{M}^{(1)} \mathbf{A}^{(1)} = \mathbf{A}^{(2)}$ qui sont sous le deuxième pivot,

il suffit d'appliquer le procédé utilisé pour obtenir $\mathbf{M}^{(1)} \mathbf{A}^{(1)}$.

Méthodes d'élimination de Gauss

De chaque ligne i (i=3,4,...,n) il faut soustraire la deuxième ligne multipliée par

$$m_{i2}^{(2)} = a_{i2}^{(2)} / a_{22}^{(2)}$$

$$M^{(2)} = \begin{pmatrix} 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & -m_{32}^{(2)} & 1 & 0 & 0 & 0 \\ 0 & -m_{42}^{(2)} & 0 & 1 & 0 & 0 \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & -m^{(2)} & 0 & 0 & 0 & 1 \end{pmatrix}$$

$$M^{(2)} = \begin{pmatrix} 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & -m_{z}^{(2)} & 1 & 0 & 0 & 0 \\ 0 & -m_{z}^{(2)} & 0 & 1 & 0 & 0 \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & -m_{z^{2}}^{(2)} & 0 & 0 & 0 & 1 \end{pmatrix} \qquad \qquad (M^{(2)})^{-1} = \begin{pmatrix} 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & m_{z}^{(2)} & 1 & 0 & 0 & 0 \\ 0 & m_{z}^{(2)} & 0 & 1 & 0 & 0 \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & m_{z^{2}}^{(2)} & 0 & 0 & 0 & 1 \end{pmatrix}$$

On obtient le nouveau système équivalent : $\mathbf{M}^{(2)} \mathbf{M}^{(1)} \mathbf{A} \mathbf{x} = \mathbf{M}^{(2)} \mathbf{M}^{(1)} \mathbf{b}$

Les seuls éléments à cal<u>culer sont cette fois</u> : $a_{ii}^{(3)}$, i, j = 3, 4, ..., n; et $b_i^{(3)}$, i = 3, 4, ..., n.

Selon les formules

$$\begin{bmatrix}
m_{i2}^{(2)} = a_{i2}^{(2)} / a_{22}^{(2)}, & i = 3, 4, ..., n \\
b_{i}^{(3)} = b_{i}^{(2)} - m_{i2}^{(2)} b_{2}^{(2)}, & i = 3, 4, ..., n \\
a_{ij}^{(3)} = a_{ij}^{(2)} - m_{i2}^{(2)} a_{2j}^{(2)}, & i, j = 3, 4, ..., n
\end{bmatrix}$$

Méthodes directes pour la résolution des systèmes linéaires

Méthodes d'élimination de Gauss

$$\begin{bmatrix} a_{11}^{(1)} & a_{12}^{(1)} & a_{13}^{(1)} & \cdots & a_{1i}^{(1)} & \cdots & a_{1j}^{(1)} & \cdots & a_{1n}^{(1)} \\ 0 & a_{22}^{(2)} & a_{23}^{(2)} & \cdots & a_{2i}^{(2)} & \cdots & a_{2j}^{(2)} & \cdots & a_{2n}^{(2)} \\ 0 & 0 & a_{33}^{(3)} & \cdots & a_{3i}^{(3)} & \cdots & a_{3j}^{(3)} & \cdots & a_{3n}^{(3)} \\ \vdots & \vdots & \vdots & \ddots & \vdots & \ddots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & a_{ik}^{(k)} & \cdots & a_{ij}^{(k)} & \cdots & a_{in}^{(k)} \\ \vdots & \vdots & \vdots & \ddots & \vdots & \ddots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & a_{nk}^{(k)} & \cdots & a_{nj}^{(k)} & \cdots & a_{nn}^{(k)} \end{bmatrix}$$

$$pour \quad i = k+1, \dots, n$$

$$egin{aligned} oldsymbol{b}^{(k)} &= egin{array}{c} oldsymbol{b}_k^{(k)} \ oldsymbol{b}_i^{(k)} \ oldsymbol{b}_i^{(k)} \ oldsymbol{b}_i^{(k)} \ oldsymbol{b}_i^{(k)} \ \end{array}$$

pour
$$i = k + 1, ..., n$$

$$a_{ij}^{(k+1)} \leftarrow a_{ij}^{(k)} - \frac{a_{ik}^{(k)}}{a_{kk}^{(k)}} a_{kj}^{(k)}; \ j = k+1,...,n$$

$$b_i^{(k+1)} \leftarrow b_i^{(k)} - \frac{a_{ik}^{(k)}}{a_{kk}^{(k)}} b_k^{(k)}$$

matriciellement :
$$A^{(k+1)} = M^{(k)}A^{(k)}; \quad b^{(k+1)} = M^{(k)}b^{(k)}$$

Méthodes d'élimination de Gauss

Par application de n-1 transformations du type de $\mathbf{M}^{(1)}$ et $\mathbf{M}^{(2)}$ on obtient finalement, pour autant que les pivots successifs soient non nuls, le système :

$$M^{(n-1)}...M^{(k)}...M^{(1)}A = M^{(n-1)}...M^{(k)}...M^{(1)}b$$

équivalent au système Ax = b, mais dont la matrice est triangulaire supérieure

Algorithme de remonté

ithme de remonté
$$\begin{bmatrix} a_{11}^{(1)} & a_{12}^{(1)} & a_{13}^{(1)} & \cdots & a_{1n}^{(1)} \\ 0 & a_{22}^{(2)} & a_{23}^{(2)} & \cdots & a_{2n}^{(2)} \\ 0 & 0 & a_{33}^{(3)} & \cdots & a_{3n}^{(3)} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & a_{n-1n-1}^{(n)} & a_{n-1n}^{(n)} \\ 0 & 0 & 0 & 0 & a_{nn}^{(n)} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ \vdots \\ x_{n-1} \\ x_n \end{bmatrix} = \begin{bmatrix} b_1^{(1)} \\ b_2^{(2)} \\ b_3^{(3)} \\ \vdots \\ b_{n-1}^{(n-1)} \\ b_n^{(n)} \end{bmatrix}$$

$$x_{n} = \frac{b_{n}^{(n)}}{a_{nn}^{(n)}} \qquad x_{n-1} = \frac{1}{a_{n-1,n-1}^{(n-1)}} \left[b_{n-1}^{(n-1)} - a_{n-1,n}^{n-1} x_{n} \right]$$
$$x_{i} = \frac{1}{a_{ii}^{(i)}} \left[b_{i}^{(i)} - \sum_{k=i+1}^{n} a_{ik}^{(i)} x_{k} \right] \quad i = n-1, n-2, \dots, 1$$

Méthodes directes pour la résolution des systèmes linéaires

Méthodes d'élimination de Gauss

$$\begin{bmatrix} 25 & 5 & 1 \\ 64 & 8 & 1 \\ 144 & 12 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 106.8 \\ 177.2 \\ 279.2 \end{bmatrix} \Rightarrow \begin{bmatrix} 25 & 5 & 1 & \vdots & 106.8 \\ 64 & 8 & 1 & \vdots & 177.2 \\ 144 & 12 & 1 & \vdots & 279.2 \end{bmatrix}$$

$$\frac{64}{25} = 2.56 \qquad \begin{bmatrix} 25 & 5 & 1 & \vdots & 106.8 \\ 0 & -4.8 & -1.56 & \vdots & -96.208 \\ 0 & -16.8 & -4.76 & \vdots & -335.968 \end{bmatrix} \frac{144}{25} = 5.76$$

$$\frac{-16.8}{-4.8} = 3.5 \begin{bmatrix} 25 & 5 & 1 & \vdots & 106.8 \\ 0 & -4.8 & -1.56 & \vdots & -96.208 \\ 0 & 0 & 0.7 & \vdots & 0.76 \end{bmatrix}$$

$$x_3 = \frac{0.76}{0.7} = 1.08571$$

$$x_2 = \frac{-96.208 + 1.56x_3}{-4.8} = 19.6905$$

$$x_1 = \frac{106.8 - 5x_2 - x_3}{25} = 0.290472$$

Méthodes d'élimination de Gauss

Méthodes directes pour la résolution des systèmes linéaires

Méthodes d'élimination de Gauss

Coût de la méthode - Nombre d'opérations à effectuer

A l'étape k il faut calculer les

(n-k) termes
$$m_{ik}^{(k)} \implies$$
 (n-k) divisions

(n-k) termes
$$b_i^{(k)} \Rightarrow$$
 (n-k) additions

$$\begin{array}{ll} \text{(n-k) termes} & m_{ik}^{(k)} & \Rightarrow \text{(n-k) divisions} \\ \text{(n-k) termes} & b_i^{(k)} & \Rightarrow \text{(n-k) additions} \\ & \Rightarrow \text{(n-k) multiplications} \\ \text{(n-k)}^2 \text{ termes} & a_{ij}^{(k)} & \Rightarrow \text{(n-k)}^2 \text{ additions} \\ & \Rightarrow \text{(n-k)}^2 \text{multiplications} \\ \end{array}$$

Pour l'ensemble des n-1 étapes, il faut faire $\sum_{k=1}^{n-1} (2(n-k)(n-k+1)+n-k) = \sum_{i=1}^{n-1} (2i(i+1)+i)$ opérations soit $\frac{2}{3}n^3 + \frac{1}{2}n^2 - \frac{7}{6}n$ auxquelles

il faut encore ajouter n^2 opérations pour l'élimination ascendante.

La méthode de Gauss exige donc finalement le calcul

de
$$\frac{2}{3}n^3 + \frac{3}{2}n^2 - \frac{7}{6}n$$
 opérations en tout.

Tout ceci n'est évidemment valable que si les pivots successifs des transformations sont non nuls.

Méthodes d'élimination de Gauss

L'algorithme de Gauss

Pour
$$k=1$$
 jusqu'à $n-1$ faire
$$\sin a_{kk}=0$$
 arrêter l'algorithme et donner un message d'erreur sinon

pour i = k + 1 jusqu'à n faire

algorithme de factorisation $b_i \leftarrow b_i - \frac{a_{ik}}{a_{ik}} b_k$ pour j = k + 1 jusqu'à n faire $a_{ij} \leftarrow a_{ij} - \frac{a_{ik}}{a_{ij}} a_{kj}$

fin pour $a_{ik} \leftarrow 0$ fin pour fin si

fin pour

algorithme de remontée

$$x_n \leftarrow \frac{b_n}{a_{nn}}$$

pour i = n - 1 jusqu'à 1 faire $somme \leftarrow 0$ pour j = i + 1 jusqu'à n faire

 $somme \leftarrow somme + a_{ii}x_i$

 $x_i \leftarrow \frac{b_i - somme}{a_{ii}}$

fin pour

Méthodes directes pour la résolution des systèmes linéaires

Méthodes d'élimination de Gauss

problème

$$\begin{pmatrix} 10^{-4} & 1 \\ 1 & 1 \end{pmatrix} x = \begin{pmatrix} 1 \\ 2 \end{pmatrix}$$

Trouver x en ne gardant que 4 chiffres significatifs après la virgule

premier pivot:
$$10^{-4}$$
, $L_2^{(2)} \leftarrow L_2^{(1)} - \frac{1}{10^{-4}} L_1^{(1)} \begin{pmatrix} 10^{-4} & 1\\ 0 & 1 - 10^4 \end{pmatrix} x = \begin{pmatrix} 1\\ 2 - 10^4 \end{pmatrix}$

$$\begin{pmatrix} 10^{-4} & 1 \\ 0 & -10^4 \end{pmatrix} x = \begin{pmatrix} 1 \\ -10^4 \end{pmatrix} \Leftrightarrow x = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

La solution obtenue par la méthode d'élimination de Gauss est :

$$x = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$
 Différente de l'exacte!!!

La solution exacte de ce système est :

$$x = \begin{pmatrix} 1.0001 \\ 0.9999 \end{pmatrix}$$

Méthodes d'élimination de Gauss

Remarque

Il peut arriver que lors de l'élimination, dans l'ordre naturel de calcul, un pivot nul.

En outre, pour des raisons de stabilité de l'algorithme, on a intêret à chaque étape de l'élimination à choisir le pivot tel que $\left|a_{kk}^{(k)}\right|$ soit le plus grand possible.

Pour cela, deux stratégies d'élimination sont possibles :

- Stratégie d'élimination de Gauss à pivot partiel
- Stratégie d'élimination de Gauss à pivot total

Choix du pivot : minimiser les erreurs d'arrondis si un pivot est nul, on permute deux lignes pour minimiser les erreurs d'arrondis : on choisi le plus grand pivot possible (en valeur absolue) et donc on permute les lignes (voir les colonnes associées) c'est la stratégie du pivot maximal (partiel (lignes) ou total)

24

Méthodes directes pour la résolution des systèmes linéaires

Méthodes d'élimination de Gauss

Pivot partiel

$a_{11}^{(1)}$	$a_{12}^{(1)}$	$a_{13}^{(1)}$		$a_{1i}^{(1)}$	• • •	$a_{1j}^{(1)}$		$a_{1n}^{(1)}$	
0	$a_{22}^{(2)}$	$a_{23}^{(2)}$	•••	$a_{2i}^{(2)}$	•••	$a_{2j}^{(2)}$	•••	$a_{2n}^{(2)}$	
0	0	$a_{33}^{(3)}$	•••	$a_{3i}^{(3)}$	•••	$a_{3j}^{(3)}$	•••	$a_{3n}^{(3)}$	
:	:			:	٠.	÷	٠.	÷	
0	0	0		$a_{kk}^{(k)}$	•••	$a_{kj}^{(k)}$		$a_{kn}^{(k)}$	Ligne d
:	÷	:	٠٠.	:	٠.	÷	٠.	÷	pivot
0	0	0		$a_{ik}^{(k)}$	•••	$a_{ij}^{(k)}$	•••	$a_{in}^{(k)}$	
:	÷	:	٠٠.	:	٠٠.	÷	٠٠.	÷	
0	0	0	•••	$a_{nk}^{(k)}$	•••	$a_{nj}^{(k)}$	•••	$a_{nn}^{(k)}$	

Colonne du pivot

Au $k^{ième}$ pas de l'élimination, on choisit comme ligne de pivot celle qui, parmi les (n-k+1) restantes, l'élément de module maximum en colonne k et on permute dans $A^{(k)}$ la $k^{ième}$ ligne naturelle et celle qui réalise ce maximum :

$$\left|a_{kk}^{(k)}\right| = \max\left\{\left|a_{ik}^{(k)}\right|; \ i \ge k\right\}$$

Méthodes directes pour la résolution des systèmes linéaires Méthodes d'élimination de Gauss

Exemple
$$\begin{bmatrix} 2 & -1 & -1 \\ -1 & 3 & -1 \\ -1 & -1 & 2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 1 \\ 6 \\ -5 \end{bmatrix}$$

$$\begin{bmatrix} 3 & -1 & -1 \\ -1 & 2 & -1 \\ -1 & -1 & 2 \end{bmatrix} \begin{bmatrix} x_2 \\ x_1 \\ x_3 \end{bmatrix} = \begin{bmatrix} 6 \\ 1 \\ -5 \end{bmatrix} L_2 \leftarrow L_2 + \frac{1}{3}L_1 \begin{bmatrix} 0 & \frac{5}{3} & -\frac{4}{3} \\ 0 & \frac{5}{3} & -\frac{4}{3} \\ 0 & -\frac{4}{3} & \frac{5}{3} \end{bmatrix} \begin{bmatrix} x_2 \\ x_1 \\ x_3 \end{bmatrix} = \begin{bmatrix} 6 \\ 3 \\ -3 \end{bmatrix}$$

$$L_3 \leftarrow L_3 + \frac{4}{5}L_2 \begin{bmatrix} 0 & \frac{5}{3} & -\frac{4}{3} \\ 0 & 0 & \frac{3}{5} \end{bmatrix} \begin{bmatrix} x_2 \\ x_1 \\ x_3 \end{bmatrix} = \begin{bmatrix} 1 \\ 2 \\ x_3 \end{bmatrix}$$

$$L_3 \leftarrow L_3 + \frac{4}{5}L_2 \begin{bmatrix} 0 & \frac{3}{3} & -\frac{4}{3} \\ 0 & 0 & \frac{3}{5} \end{bmatrix} \begin{bmatrix} x_2 \\ x_1 \\ x_3 \end{bmatrix} = \begin{bmatrix} 1 \\ 2 \\ x_3 \end{bmatrix}$$

Méthodes directes pour la résolution des systèmes linéaires

Méthodes d'élimination de Gauss-Jordon

Principe

Le principe de la méthode d'élimination de Gauss – Jordon consiste à mettre la matrice sous forme diagonale.

Pour cela, on procède comme l'algorithme d'élimination de Gauss mais en annulant à chaque pas tout les éléments de la colonne considérée situés au dessous et au dessus de la diagonale.

$$\begin{bmatrix} a_{11}^{(1)} & a_{12}^{(1)} & \cdots & a_{1n}^{(1)} & b_{1}^{(1)} \\ a_{21}^{(1)} & a_{22}^{(1)} & \cdots & a_{2n}^{(1)} & b_{2}^{(1)} \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ a_{n1}^{(1)} & a_{n2}^{(1)} & \cdots & a_{nn}^{(1)} & b_{n}^{(1)} \end{bmatrix} \longrightarrow \begin{bmatrix} a_{11}^{(1)} & a_{12}^{(1)} & \cdots & a_{1n}^{(1)} & b_{1}^{(1)} \\ 0 & a_{22}^{(2)} & \cdots & a_{2n}^{(2)} & b_{2}^{(2)} \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & a_{n2}^{(2)} & \cdots & a_{nn}^{(2)} & b_{n}^{(2)} \end{bmatrix}$$

$$\begin{bmatrix} a_{11}^{(1)} & 0 & \cdots & a_{1n}^{(n)} & b_{1}^{(n)} \\ 0 & a_{n2}^{(2)} & \cdots & a_{nn}^{(n)} & b_{n}^{(2)} \end{bmatrix}$$

$$\begin{bmatrix} a_{11}^{(1)} & 0 & \cdots & 0 & b_{1}^{(n-1)} \\ 0 & a_{22}^{(2)} & \cdots & 0 & b_{2}^{(n-1)} \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & \cdots & a_{nn}^{(n)} & b_{n}^{(n)} \end{bmatrix}$$

Méthodes d'élimination de Gauss-Jordon

Cette méthode est moins efficace pour la résolution des systèmes linéaires par rapport à a méthode d'élimination de Gauss.

Alors qu'elle est utile pour calculer l'inverse d'une matrice carrée.

Exemple
$$A = \begin{bmatrix} A & I \end{bmatrix} \begin{bmatrix} I & A^{-1} \\ 4 & -2 & 3 \\ 8 & -3 & 5 \\ 7 & -2 & 4 \end{bmatrix} \begin{bmatrix} 1 & 0 & 1/4 & -3/4 & 1/2 & 0 \\ 0 & 1 & -1 & -2 & 1 & 0 \\ 0 & 0 & 1/4 & 5/4 & -3/2 & 1 \\ -2 & 2 & -1 & 3 & -5 & 4 \\ 5 & -6 & 4 \end{bmatrix}$$

$$\begin{bmatrix} 4 & -2 & 3 & 1 & 0 & 0 \\ 8 & -3 & 5 & 0 & 1 & 0 \\ 7 & -2 & 4 & 0 & 0 & 1 \\ 1 & -1/2 & 3/4 & 1/4 & 0 & 0 \\ 0 & 1 & -1 & -2 & 1 & 0 \\ 0 & 3/2 & -5/4 & -7/4 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & -2 & 2 & -1 \\ 0 & 1 & 0 & 3 & -5 & 4 \\ 0 & 0 & 1 & 5 & -6 & 4 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 0 & 0 & -2 & 2 & -1 \\ 0 & 1 & 0 & 3 & -5 & 4 \\ 0 & 0 & 1 & 5 & -6 & 4 \end{bmatrix}$$

Méthodes directes pour la résolution des systèmes linéaires

Décomposition LU

Theorème 1 Soit $A = \left(a_{ij}\right)_{i=1,\dots,n}$, si tous les $a_{kk}^{(k)} \neq 0$

alors A peut être décomposée sous la forme : A = LU

héorème 2Soit $A = (a_{ij})_{i=1,...n}$, telles que toutes les sous matrices d'ordre k $(k \le n)$

sont inversibles et notées
$$\Delta_k$$
 tel que $\Delta_k = \begin{pmatrix} a_{11} & \dots & a_{1k} \\ \vdots & \ddots & \vdots \\ a_{k1} & \dots & a_{kk} \end{pmatrix}$

Alors il existe une matrice triangulaire inférieure L avec $l_{ii} = 1$ (i = 1,...,n)

et une matrice triangulaire supérieure U telle que A = LU. Cette factorisation est unique. Résolution

La factorisation LU est particulièrement avantageuse lorsqu'on doit résoudre plusieurs systèmes d'équations linéaires ayant tous la même matrice A mais des seconds membres différents.

En effet, il suffit de conserver les matrices L et U obtenues à l'issue de la factorisation pour ramener ensuite la résolution de chaque système linéaire AX = b à celle de deux systèmes triangulaires :

 $\int LY = b \text{ résolution par descente pour déterminer Y}$

UX = y résolution par remontée pour déterminer X

Décomposition LU

Matriciellement :
$$A^{(k+1)} = M^{(k)}A^{(k)}$$
; $b^{(k+1)} = M^{(k)}b^{(k)}$;

Comment construire Let U ?

 $id\acute{e}$: reprendre l'étape de

La factorisation de la méthode de Gauss

 $M^{(k)} = -\frac{a_{ik}^{(k)}}{a_{ik}^{(k)}}$;

 $M^{(k)} = -\frac{a_{ik}^{(k)}}{a_{ik}^{(k)}}$;

=
$$M A \Leftrightarrow A = M^{-1}U$$
 en posant $L = M^{-1}$ on a $A = LU$

$$U = \begin{bmatrix} a_{11}^{(1)} & a_{12}^{(1)} & a_{13}^{(1)} & \cdots & a_{1n}^{(1)} \\ 0 & a_{22}^{(2)} & a_{23}^{(2)} & \cdots & a_{2n}^{(2)} \\ 0 & 0 & a_{33}^{(3)} & \cdots & a_{3n}^{(3)} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & a_{n-1n-1}^{(n)} & a_{n-1n}^{(n)} \\ 0 & 0 & 0 & 0 & a_{nn}^{(n)} \end{bmatrix} \quad l_{\underline{a}} = \underbrace{a_{\underline{a}}^{(k)}}_{a_{\underline{k}}}; \quad L = \begin{bmatrix} 1 & 0 & 0 & \cdots & 0 \\ l_{\underline{a}} & 1 & 0 & \cdots & 0 \\ l_{\underline{a}} & 1 & 0 & \cdots & 0 \\ l_{\underline{a}} & 1 & \vdots & \ddots & l_{\underline{a}} \\ \vdots & \ddots & l_{\underline{a}+\underline{a}} & \vdots & \ddots & l_{\underline{a}+\underline{a}} \\ l_{\underline{a}} & 1 & \vdots & \ddots & l_{\underline{a}+\underline{a}} \\ l_{\underline{a}} & 1 & 1 & \vdots & \ddots & l_{\underline{a}+\underline{a}} \\ l_{\underline{a}} & 1 & 1 & 1 & 1 \\ \vdots & \ddots & l_{\underline{a}+\underline{a}} & 1 & 1 \\ l_{\underline{a}} & 1 & 1 & 1 \\ \vdots & \ddots & l_{\underline{a}+\underline{a}} & 1 & 1 \\ l_{\underline{a}} & 1 & 1 & 1$$

$$I_{ik} = \frac{a_{ik}^{(k)}}{a_{ik}^{(k)}}; \quad \mathbf{L} = \begin{pmatrix} 1 & 0 & 0 & \cdots & 0 \\ l_{21} & 1 & 0 & \cdots & 0 \\ l_{31} & 1 & \ddots & \vdots \\ \vdots & \ddots & l_{k+1k} & \ddots & 0 \\ l_{n1} & & & & 1 \end{pmatrix}$$

Méthodes directes pour la résolution des systèmes linéaires

Décomposition LU

$$A = LU$$
; $Ax = b \Leftrightarrow \begin{cases} Ly = b \\ Ux = y \end{cases}$

Remarque

La décomposition LU est une méthode économique de calcul de déterminant de A, soit :

$$\det(A) = \det(LU) = \det(U) \det(L) = \det(U) = \prod_{k=1}^{n} a_{kk}^{(k)}$$

pour
$$k = 1$$
 jusqu'à $n - 1$

$$pivot \leftarrow a_{kk}$$
 (* stratégie de pivot *)
si $pivot \neq 0$ alors

Algorithme de décomposition LU

$$\begin{array}{c} \ell_{kk} \leftarrow 1 \\ \text{pour } i = k+1 \text{ jusqu'à } n \\ \ell_{ik} \leftarrow \frac{a_{ik}}{pivot} \end{array}$$

pour
$$j = k + 1$$
 jusqu'à n

$$a_{ij} \leftarrow a_{ij} - \ell_{ik} a_{kj}$$

fait sinon "problème"

Décomposition LU

$\begin{array}{rcl} x_1 & -3x_2 & = & -5 \\ x_2 & +3x_3 & = & -1 \\ 2x_1 & -10x_2 & +2x_3 & = & -20 \end{array}$ Exemple

$$A = \begin{bmatrix} 1 & -3 & 0 \\ 0 & 1 & 3 \\ 2 & -10 & 2 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 2 & -4 & 1 \end{bmatrix} \begin{bmatrix} 1 & -3 & 0 \\ 0 & 1 & 3 \\ 0 & 0 & 14 \end{bmatrix} = LU$$

(1) Let y = Ux, and solve Ly = b

$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 2 & -4 & 1 \end{bmatrix} \begin{bmatrix} y_1 \\ y_2 \\ y_3 \end{bmatrix} = \begin{bmatrix} -5 \\ -1 \\ -20 \end{bmatrix} \Rightarrow \begin{cases} y_1 = -5 \\ y_2 = -1 \\ y_3 = -20 - 2y_1 + 4y_2 \\ = -20 - 2(-5) + 4(-1) = -14 \end{cases}$$

(2) Solve the following system Ux = y

Three tile following system:
$$0x - y$$

$$\begin{bmatrix} 1 & -3 & 0 \\ 0 & 1 & 3 \\ 0 & 0 & 14 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} -5 \\ -1 \\ -14 \end{bmatrix} \qquad \begin{aligned} x_3 &= -1 \\ x_2 &= -1 - 3x_3 = -1 - (3)(-1) = 2 \\ x_1 &= -5 + 3x_2 = -5 + 3(2) = 1 \end{aligned}$$

$$x_3 = -1$$

 $x_2 = -1 - 3x_3 = -1 - (3)(-1) = 2$

$$x_1 = -5 + 3x_2 = -5 + 3(2) = 1$$

Méthodes directes pour la résolution des systèmes linéaires

Décomposition LU

Four l'ensemble des n-1 étapes, il faut faire $\sum_{k=1}^{n-1} (n-k)^2$ opérations d'addition et de multiplication, soit $\frac{1}{3}n(n-1)(n-\frac{1}{2}) \approx \frac{1}{3}n^3$ auxquelles

il faut encore ajouter $\sum_{n=1}^{n-1} (n-k) = \frac{1}{2}n(n-1)$ divisions.

La méthode LU exige donc finalement le calcul de $\approx \frac{1}{3}n^3$ opérations.

Tout ceci n'est évidemment valable que si les pivots successifs des transformations sont non nuls.

Remarque

Si A est inversible, il existe une matrice de permutation P telle que PA soit factorisable sous la forme LU: c'est la méthode d'élimination du Gauss à pivot partiel

Si A est inversible, la méthode d'élimination du Gauss à pivot total consiste à trouver deux matrices P et Q telles que PAQ soit factorisable sous la forme LU

Méthode de Cholesky

Soit $A = (a_{ij})_{i=1,\dots,n}$, une matrice symétrique et définie positive,

existe une matrice inversible C triangulaire inférieure telle que : $A = CC^T$ les éléments diagonaux de C sont strictement positifs

alors la décomposition est unique

$$A = LU = LDD^{-1}U \Leftrightarrow A = LDL^{T}$$

$$D = \begin{bmatrix} d_{11} & 0 & \dots & \dots & 0 \\ 0 & \ddots & \ddots & & \vdots \\ \vdots & \ddots & d_{ii} & \ddots & \vdots \\ & & \ddots & \ddots & 0 \\ 0 & \dots & & 0 & d_{nn} \end{bmatrix}; d_{ii} = \sqrt{u_{ii}}$$

$$D = \begin{bmatrix} I_{11}^{T} & 0 & \dots & 0 \\ 0 & \ddots & \ddots & 0 \\ 0 & \dots & 0 & d_{nn} \end{bmatrix}$$

matrice triangulaire inférieure matrice diagonale à termes à diagonale unité strictement positifs

 $A = CC^T$: factorisation de Cholesky $C = L\sqrt{D}$

Méthodes directes pour la résolution des systèmes linéaires

Méthode de Cholesky

 ${1 \hspace{-0.1cm} 1\hspace{-0.1cm} 1\hspace{-0.1cm} 1\hspace{-0.1cm} 2\hspace{-0.1cm} 1\hspace{-0.1cm} 2\hspace{-0.1cm} 1\hspace{-0.1cm} 2\hspace{-0.1cm} 1\hspace{-0.1cm} 2\hspace{-0.1cm} 2\hspace{-0.1$ telle que : $A = CC^T$

$$c_{11} = \sqrt{a_{11}}$$
 $c_{jj} = \sqrt{a_{jj} - \sum_{k=1}^{j-1} (c_{jk}^2)}; j = 2..n$

$$c_{i1} = \frac{a_{i1}}{c_{11}}; i = 2..n_{c_{ij}} = \frac{a_{ij} - \sum_{k=1}^{j-1} \left(c_{jk}c_{ik}\right)}{c_{jj}}; j = 2..n; i = j+1..n$$

Résolution

$$A = CC^{T}; \quad Ax = b \Leftrightarrow \begin{cases} Cy = b \\ C^{T}x = y \end{cases}$$

Méthode de Cholesky

Pour l'ensemble des n-1 étapes, il faut faire $\frac{n^3}{6}$ additions et $\approx \frac{1}{6}n^3$ multiplication $\approx \frac{1}{2}n^2$ divisions et $\approx n$ extractions racine carré.

La méthode de Choesky exige donc finalement le calcul de $\approx \frac{1}{3}n^3$ opérations.

Tout ceci n'est évidemment valable que si la matrice A est symétrique et défini positive.

Remarque

La méthode de Cholesky est une méthode économique de calcul de déterminant de A, soit :

$$\det(A) = \det(LDL^{T}) = \det(D) = \prod_{i=1}^{n} d_{ii}$$
$$= \det(CC^{T}) = \left(\det(C)\right)^{2} = \prod_{i=1}^{n} \left(c_{ii}\right)^{2}$$

Méthodes directes pour la résolution des systèmes linéaires

Méthode de Cholesky

Exemple
$$\begin{bmatrix} 4 & 2 & -2 \\ 2 & 5 & 1 \\ -2 & 1 & 6 \end{bmatrix} = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{12} & a_{22} & a_{23} \\ a_{13} & a_{23} & a_{33} \end{bmatrix} \Rightarrow \begin{bmatrix} c_{11} & 0 & 0 \\ c_{21} & c_{22} & 0 \\ c_{31} & c_{32} & c_{33} \end{bmatrix} \begin{bmatrix} c_{11} & c_{21} & c_{31} \\ 0 & c_{22} & c_{32} \\ 0 & 0 & c_{33} \end{bmatrix}$$

$$c_{11}^{2} = a_{11} = 4 \implies c_{11} = \sqrt{a_{11}} = 2 \qquad \begin{bmatrix} 4 & 2 & -2 \\ 2 & 5 & 1 \\ -2 & 1 & 6 \end{bmatrix} = \begin{bmatrix} 2 & 0 & 0 \\ 1 & 2 & 0 \\ -1 & 1 & 2 \end{bmatrix} \begin{bmatrix} 2 & 1 & -1 \\ 0 & 2 & 1 \\ 0 & 0 & 2 \end{bmatrix}$$

$$c_{11}c_{21} = a_{12} = 2 \implies c_{21} = \frac{a_{12}}{c_{11}} = 1$$

$$c_{11}c_{31} = a_{13} = -2 \implies c_{31} = \frac{a_{13}}{c_{11}} = -1$$

$$c_{21}^{2} + c_{22}^{2} = a_{22} = 5 \implies c_{22} = \sqrt{a_{22} - c_{21}^{2}} = 2$$

$$\begin{bmatrix} 1 & 0 & 0 \\ \frac{1}{2} & 1 & 0 \\ -\frac{1}{2} & \frac{1}{2} & 1 \end{bmatrix} \begin{bmatrix} 4 & 0 & 0 \\ 0 & 4 & 0 \\ 0 & 0 & 4 \end{bmatrix} \begin{bmatrix} 1 & \frac{1}{2} & -\frac{1}{2} \\ 0 & 0 & 1 \end{bmatrix}$$

$$c_{21}^{2} + c_{22}^{2} = a_{22} = 5 \implies c_{22} = \sqrt{a_{22} - c_{21}^{2}} = 2 \qquad \left[-\frac{1}{2} \quad \frac{1}{2} \quad 1 \right] \begin{bmatrix} 0 & 0 & 4 \end{bmatrix} \begin{bmatrix} 0 & 0 & 4 \end{bmatrix} \begin{bmatrix} 0 & 0 & 4 \end{bmatrix}$$

$$c_{21}c_{31} + c_{22}c_{32} = a_{23} = 1 \implies c_{32} = \frac{a_{23} - c_{21}c_{31}}{c_{22}} = 1$$

$$\left|c_{31}^2 + c_{32}^2 + c_{33}^2 = a_{33} = 6\right| \Rightarrow \left|c_{33}^2 - \left(c_{31}^2 - c_{32}^2\right)^2 = 2\right|$$