

Languages and Machines

L5: Finite State Machines (Part 3)

Jorge A. Pérez

Bernoulli Institute for Math, Computer Science, and Al University of Groningen, Groningen, the Netherlands

Languages and Their Machines

Regular <u>Finite</u> State Machines (FSMs)

Context-free Pushdown Machines

Context-sensitive Linearly-bounded Machines

Decidable Always-terminating Turing Machines

Semi-decidable Turing Machines

Outline

Regular and Non-Regular Sets

The Pumping Lemma

Using the Lemma

Closure Properties

The Many Faces of Regular Languages

Consider a **regular language** L over Σ .

By definition, L has an underlying *regular set*, a subset of Σ^* .

Each of the following is an equivalent characterization of L:

- a **regular expression**, built from \emptyset , ϵ , $a \in \Sigma$ using union, concatenation, power, and Kleene star;
- a **regular grammar** $G = (V, \Sigma, P, S)$, where every production rule is of the form $A \to \epsilon$ or $A \to a$ B (with $A, B \in V, a \in \Sigma$).
- a **DFSM** $M=(Q,\Sigma,\delta,q_0,F)$ where $\delta:Q\times\Sigma\to Q,\,q_0\in Q,\,F\subseteq Q.$ Variants of M can be non-deterministic, with ϵ -steps.

The Many Faces of Regular Languages

Consider a **regular language** L over Σ .

By definition, L has an underlying *regular set*, a subset of Σ^* .

Each of the following is an equivalent characterization of *L*:

- a **regular expression**, built from \emptyset , ϵ , $a \in \Sigma$ using union, concatenation, power, and Kleene star;
- a **regular grammar** $G = (V, \Sigma, P, S)$, where every production rule is of the form $A \to \epsilon$ or $A \to a$ B (with $A, B \in V, a \in \Sigma$).
- a **DFSM** $M = (Q, \Sigma, \delta, q_0, F)$ where $\delta : Q \times \Sigma \to Q$, $q_0 \in Q$, $F \subseteq Q$. Variants of M can be non-deterministic, with ϵ -steps.

Natural questions:

Why do we identify multiple equivalent characterizations?

The Many Faces of Regular Languages

Consider a **regular language** L over Σ .

By definition, L has an underlying *regular set*, a subset of Σ^* .

Each of the following is an equivalent characterization of L:

- a **regular expression**, built from \emptyset , ϵ , $a \in \Sigma$ using union, concatenation, power, and Kleene star;
- a **regular grammar** $G = (V, \Sigma, P, S)$, where every production rule is of the form $A \to \epsilon$ or $A \to a$ B (with $A, B \in V, a \in \Sigma$).
- a **DFSM** $M = (Q, \Sigma, \delta, q_0, F)$ where $\delta : Q \times \Sigma \to Q$, $q_0 \in Q$, $F \subseteq Q$. Variants of M can be non-deterministic, with ϵ -steps.

Natural questions:

- ▶ Why do we identify multiple equivalent characterizations?
- ▶ Is every language a regular language? How to (dis)prove it?

• Example 1:

$$egin{aligned} L_1 &= \{a^nb^n \mid n \geq 1\} \ &= \{ab, aabb, aaabbb \ldots \} \end{aligned}$$

Example 1:

$$egin{aligned} L_1 &= \{a^nb^n \mid n \geq 1\} \ &= \{ab, aabb, aaabbb \ldots \} \end{aligned}$$

 Not accepted by a finite automaton:
 We cannot distinguish between infinitely many cases with finitely many states (unbounded vs bounded information)

Example 1:

$$egin{aligned} L_1 &= \{a^nb^n \mid n \geq 1\} \ &= \{ab, aabb, aaabbb \ldots \} \end{aligned}$$

Example 2:

$$egin{aligned} L_2 &= \{\,a^{2^n} \mid n \geq 0 \} \ &= \{a, a^2, a^4, a^8, \ldots \} \ &= \{x \in \{a\}^* \mid |x| ext{ is a power of 2} \} \end{aligned}$$

 Not accepted by a finite automaton:
 We cannot distinguish between infinitely many cases with finitely many states (unbounded vs bounded information)

Example 1:

$$egin{aligned} L_1 &= \{a^nb^n \mid n \geq 1\} \ &= \{ab, aabb, aaabbb \ldots \} \end{aligned}$$

Example 2:

$$egin{aligned} L_2 &= \{ \, a^{2^n} \mid n \geq 0 \} \ &= \{ a, \, a^2, \, a^4, \, a^8, \ldots \} \ &= \{ x \in \{ a \}^* \mid |x| ext{ is a power of 2} \} \end{aligned}$$

- Not accepted by a finite automaton:
 We cannot distinguish between infinitely many cases with finitely many states (unbounded vs bounded information)
- Today: A tool for proving that sets are not regular.

A proof by contradiction that L_1 is not regular:

- If L_1 were regular, it would be accepted by a DFSM M
- Machine M has a finite number of states, say k

A proof by contradiction that L_1 is not regular:

- If L_1 were regular, it would be accepted by a DFSM M
- Machine M has a finite number of states, say k
- Consider the action of M on input $a^n b^n$, with $n \gg k$:

A proof by contradiction that L_1 is not regular:

- If L_1 were regular, it would be accepted by a DFSM M
- Machine M has a finite number of states, say k
- Consider the action of M on input $a^n b^n$, with $n \gg k$:

 By the pigeonhole principle, there is a state q_i that is visited more than once in processing the sequence of as:

• Let's split $a^n b^n$ into three pieces (u, v, w) according to q_i :

We have:
$$\hat{\underline{\delta}}(q_0,u)=q_i,\;\hat{\underline{\delta}}(q_i,v)=q_i$$
, and $\hat{\underline{\delta}}(q_i,w)=q_f\in F$.

• Let's split $a^n b^n$ into three pieces (u, v, w) according to q_i :

We have:
$$\underbrace{\hat{\delta}(q_0,u)=q_i}_{\circlearrowleft}$$
, $\underbrace{\hat{\delta}(q_i,v)=q_i}_{\circlearrowleft}$, and $\underbrace{\hat{\delta}(q_i,w)=q_f\in F}_{\circlearrowleft}$.

• Let's split $a^n b^n$ into three pieces (u, v, w) according to q_i :

We have:
$$\underbrace{\hat{\delta}(q_0,u)=q_i}_{\circlearrowleft}$$
, $\underbrace{\hat{\delta}(q_i,v)=q_i}_{\circlearrowleft}$, and $\underbrace{\hat{\delta}(q_i,w)=q_f\in F}_{\circlearrowleft}$.

What does () mean?

• Let's split $a^n b^n$ into three pieces (u, v, w) according to q_i :

We have:
$$\underbrace{\hat{\delta}(q_0,u)=q_i}_{\circlearrowleft}$$
, $\underbrace{\hat{\delta}(q_i,v)=q_i}_{\circlearrowleft}$, and $\underbrace{\hat{\delta}(q_i,w)=q_f\in F}_{\circlearrowleft}$.

What does () mean?

ullet We could erase v and the obtained string would be accepted!

This is wrong: $uw = a^{n-j}b^n \in L(M)$ but $uw \notin L_1$

• Let's split $a^n b^n$ into three pieces (u, v, w) according to q_i :

We have:
$$\underbrace{\hat{\delta}(q_0,u)=q_i}_{\frown}$$
, $\underbrace{\hat{\delta}(q_i,v)=q_i}_{\frown}$, and $\underbrace{\hat{\delta}(q_i,w)=q_f\in F}_{\frown}$.

What does 0 mean?

ullet We could erase v and the obtained string would be accepted!

This is wrong: $uw = a^{n-j}b^n \in L(M)$ but $uw \notin L_1$

• We could even insert extra copies of v (say, uv^3w), and the resulting string would be wrongly accepted too!

Example 2: $L_2 = \{a^{2^n} \mid n \geq 0\}$ (1/2)

- A DFSM M with k states, with $L(M) = L_2$ and start state q_0
- Let $n \gg k$ and consider the action of M on scanning string a^{2^n}
- By the pigeonhole principle, M must repeat a state q while scanning the first n symbols of a^{2^n}
- Now let i, j, m be such that $2^n = i + j + m$, with $0 < j \le n$ and

$$\hat{\delta}(q_0,a^i)=q \qquad \hat{\delta}(q,a^j)=q \qquad \hat{\delta}(q,a^m)=q_f \in F$$

Example 2: $L_2 = \{a^{2^n} \mid n \geq 0\}$ (1/2)

- A DFSM M with k states, with $L(M) = L_2$ and start state q_0
- Let $n\gg k$ and consider the action of M on scanning string a^{2^n}
- By the pigeonhole principle, M must repeat a state q while scanning the first n symbols of a^{2^n}
- Now let i, j, m be such that $2^n = i + j + m$, with $0 < j \le n$ and

$$\hat{\delta}(q_0,a^i)=q \qquad \hat{\delta}(q,a^j)=q \qquad \hat{\delta}(q,a^m)=q_f \in F$$

Alternatively:

Example 2: $L_2 = \{a^{2^n} \mid n \geq 0\}$ (1/2)

- A DFSM M with k states, with $L(M) = L_2$ and start state q_0
- Let $n \gg k$ and consider the action of M on scanning string a^{2^n}
- By the pigeonhole principle, M must repeat a state q while scanning the first n symbols of a^{2^n}
- Now let i, j, m be such that $2^n = i + j + m$, with $0 < j \le n$ and

$$\hat{\delta}(q_0,a^i)=q \qquad \hat{\delta}(q,a^j)=q \qquad \hat{\delta}(q,a^m)=q_f \in F$$

Alternatively:

$$[q_0] \underbrace{\overbrace{aaaaaaaaaa}^{2^n} [q] \underbrace{aaaa}_{j} [q] \underbrace{aaaaaaaaaaaaaaaaa}_{m} [q_f]}_{l}$$

Example 2: $L_2 = \{a^{2^n} \mid n \geq 0\}$ (2/2)

• Now, given $\hat{\delta}(p, a^j) = p$, we could insert an extra a^j , to get a^{2^n+j} , and the resulting string would be erroneously accepted:

$$[q_0] \underbrace{aaaaaaaaaaa}_i [q] \underbrace{aaaa}_j [q] \underbrace{aaaaa}_j [q] \underbrace{aaaaaaaaaaaaaaaaaa}_m [q_f]$$

Indeed, we can derive $\hat{\delta}(q_0, a^{2^n+j}) = q_f \in F$.

Example 2: $L_2 = \{a^{2^n} \mid n \geq 0\}$ (2/2)

• Now, given $\hat{\delta}(p, a^j) = p$, we could insert an extra a^j , to get a^{2^n+j} , and the resulting string would be erroneously accepted:

$$[q_0]\underbrace{aaaaaaaaaaa}_i[q]\underbrace{aaaa}_j[q]\underbrace{aaaaa}_j[q]\underbrace{aaaaa}_j[q]\underbrace{aaaaaaaaaaaaaaaaaaa}_m[q_f]$$

Indeed, we can derive $\hat{\delta}(q_0, a^{2^n+j}) = q_f \in F$.

• But this is wrong, because $2^n + j$ is not a power of 2:

$$2^{n} + j \le 2^{n} + n$$

 $2^{n} + j < 2^{n} + 2^{n}$
 $= 2^{n+1}$

 2^{n+1} is the next power of 2 greater than 2^n

Pumping Strings

Pump a string v: Construct new strings by repeating substrings in v. Let z=ababbaaab be a string accepted by the following machine:

- z can be split as $z = \underbrace{a}_{y} \underbrace{bab}_{y} \underbrace{baaab}_{y}$
- Strings $a(bab)^i baaab$ are obtained by pumping v = bab in z. The pumped strings uv^iw are accepted (for all $i \ge 0$)

Outline

Regular and Non-Regular Sets

The Pumping Lemma

Using the Lemma

Closure Properties

The Pumping Lemma: Essence


```
egin{aligned} orall L: (L 	ext{ is regular} \Rightarrow \ (\exists k \geq 1: orall z: z \in L \wedge |z| \geq k \Rightarrow \ (\exists u,v,w: z = uvw \wedge |uv| \leq k \wedge v 
eq \epsilon \ \wedge (orall i \geq 0: uv^iw \in L)))). \end{aligned}
```

Intuitively:

- k is the # of states of a DFSM accepting L (depends on L)
- $|z| \ge k$ ensures that at least one state is visited twice
- Reading u gets you to the repeated state, v gets you there again
- Since v traverses a loop, using uv^iw we can omit it (if i=0) or repeat it (if i>1)

The Pumping Lemma: Essence

$$egin{aligned} orall L: & (L ext{ is regular} \Rightarrow \ & (\exists k \geq 1: orall z: z \in L \wedge |z| \geq k \Rightarrow \ & (\exists u,v,w: z = uvw \wedge |uv| \leq k \wedge v
eq \epsilon \ & \wedge (orall i \geq 0: uv^iw \in L)))). \end{aligned}$$

Note the three conditions on u, v, w:

- C1 $uv^iw \in L$
- C2 $v \neq \epsilon$ (although u and w can be ϵ)
- C3 $|uv| \leq k$

$L_1 = \{a^nb^n \mid n \geq 1\}$ is Not Regular (V1)

Claim. $L_1 = \{a^n b^n \mid n \ge 1\}$ is not regular.

Key steps in a proof by contradiction:

- Suppose, for the sake of contradiction, that L_1 is regular
- ullet Then, the pumping lemma must apply to all suitably long $z\in L_1$
- Consider, in particular, $z=a^kb^k\in L_1$ (cf. $\exists k\geq 1\ldots$)
- Let uvw be a decomposition of z (cf. $\exists u, v, w : z = uvw ...$). We consider different possibilities for $v \neq \epsilon$

$L_1 = \{a^nb^n \mid n \geq 1\}$ is Not Regular (V1)

Claim. $L_1 = \{a^n b^n \mid n \ge 1\}$ is not regular.

Key steps in a proof by contradiction:

- Suppose, for the sake of contradiction, that L₁ is regular
- ullet Then, the pumping lemma must apply to all suitably long $z\in L_1$
- Consider, in particular, $z=a^kb^k\in L_1$ (cf. $\exists k\geq 1\ldots$)
- Let uvw be a decomposition of z (cf. $\exists u, v, w : z = uvw ...$). We consider different possibilities for $v \neq \epsilon$ (C2):
 - a) Suppose v contains only a's. uvvw will have more a's than b's, violating (C1): contradiction
 - b) Suppose v contains only b's. uvvw will have more b's than a's, violating (C1): contradiction
 - Suppose v contains both a's and b's.
 uvvw may have the same number of a's and b's but in an incorrect sequence, as in aaa ababab bbbbb. This violates (C1).
- A contradiction is unavoidable in all cases: L₁ is not regular.

$L_1 = \{a^nb^n \mid n \geq 1\}$ is Not Regular (V2)

Claim. $L_1 = \{a^n b^n \mid n \ge 1\}$ is not regular.

Another proof by contradiction, now selecting z more carefully:

- Suppose, for the sake of contradiction, that L_1 is regular
- ullet Then, the pumping lemma must apply to all suitably long $z\in L_1$
- Consider, in particular, $z=a^kb^k\in L_1$ (cf. $\exists k\geq 1\ldots$). Let uvw be a decomposition of z
- Since $|uv| \le k$ (C3) any split uv will contain only a's. Because $v \ne \epsilon$ (C2), v contains at least one a. Moreover, we should have $uw \in L_1$.
- However, the string uw contains less a's than z (i.e., those in v), while keeping the same number of b's
- Since $n_a(uw) < n_b(uw)$, we have that uw it cannot be in L_1 . This contradicts the pumping lemma, and we conclude that L_1 is not regular.

Another Example

Claim. $L_3 = \{x \in \{a, b\}^* \mid n_a(x) = n_b(x)\}$ is not regular.

Key steps in a proof by contradiction:

- Suppose, for the sake of contradiction, that L_3 is regular
- The pumping lemma applies to all $z \in L_3$, in particular to $z = a^k b^k \in L_3$ (cf. $\exists k \geq 1 \ldots$)
- Note: by defining $u=w=\epsilon$ and $v=a^kb^k$, then the string z seems like a good candidate: $u\ v^i\ w\in L_3$.
- Here $|uv| \le k$ (C3) is crucial. Any split uv will contain only a's. Thus, $u\ vv\ w \not\in L_3$ (C1). This contradicts the pumping lemma, and we conclude that L_3 is not regular.

Another Example

Claim. $L_3 = \{x \in \{a, b\}^* \mid n_a(x) = n_b(x)\}$ is not regular.

Key steps in a proof by contradiction:

- Suppose, for the sake of contradiction, that L₃ is regular
- The pumping lemma applies to all $z \in L_3$, in particular to $z = a^k b^k \in L_3$ (cf. $\exists k > 1 \dots$)
- Note: by defining $u=w=\epsilon$ and $v=a^kb^k$, then the string z seems like a good candidate: $u\ v^i\ w\in L_3$.
- Here $|uv| \le k$ (C3) is crucial. Any split uv will contain only a's. Thus, $u\ vv\ w \not\in L_3$ (C1). This contradicts the pumping lemma, and we conclude that L_3 is not regular.

The selection of *z* **matters**. Some strings are not good candidates:

• Take $z' = (ab)^k$. This string can be pumped by defining

$$u = \epsilon$$
 $v = ab$ $w = (ab)^{k-1}$

You can check that $u v^i w \in L_3$, for any i > 0.

The Pumping Lemma (General Form)

Lemma (Pumping)

Let A be a regular set. Then the following property holds of A:

(P) There exists $k \geq 0$ such that for any strings x, y, z with $xyz \in A$ and $|y| \geq k$, there exist strings u, v, w such that y = uvw, $v \neq \epsilon$, and for all $i \geq 0$, the string $xuv^iwz \in A$.

Notice:

- Slightly more general than in the reader
 The string to be split (i.e., y) is "surrounded" by x, z
- Intuition: For any string in a regular set A we can find a non-null substring $v \neq \epsilon$ that can be freely "pumped" and the resulting string is still in A

Outline

Regular and Non-Regular Sets

The Pumping Lemma

Using the Lemma

Closure Properties

The Pumping Lemma

The pumping lemma is used to prove that sets are non-regular.

Two strategies for devising a proof:

- Proofs by contradiction (as we have seen)
- Use the contrapositive form, and **play a game** (presented next) (Contrapositive means that to prove $Q \to P$ we prove $\neg P \to \neg Q$.)

Also: we could exploit the **closure properties** of regular languages to avoid using the pumping lemma.

The Pumping Lemma

Lemma (Pumping, **Standard Form** $(Q \rightarrow P)$)

Let A be a regular set (Q). **Then** the following property holds of A:

(P) There exists $k \geq 0$ such that for any strings x, y, z with $xyz \in A$ and $|y| \geq k$, there exist strings u, v, w such that y = uvw, $v \neq \epsilon$, and for all $i \geq 0$, the string $xuv^iwz \in A$.

Notice the alternating sequence: $\exists - \forall - \exists - \forall$.

The Pumping Lemma

Lemma (Pumping, **Standard Form** $(Q \rightarrow P)$)

Let A be a regular set (Q). **Then** the following property holds of A:

(P) There exists $k \geq 0$ such that for any strings x, y, z with $xyz \in A$ and $|y| \geq k$, there exist strings u, v, w such that y = uvw, $v \neq \epsilon$, and for all $i \geq 0$, the string $xuv^iwz \in A$.

Notice the alternating sequence: $\exists - \forall - \exists - \forall$.

Lemma (Pumping, Contrapositive Form $(\neg P \rightarrow \neg Q)$)

Let A be a set of strings, which enjoys the following property:

 $(\neg P)$ For all $k \ge 0$ there exist strings x, y, z such that $xyz \in A$ and $|y| \ge k$, and for all u, v, w with y = uvw and $v \ne \epsilon$, there exists an $i \ge 0$ such that the string $xuv^iwz \not\in A$.

Then, A is not regular $(\neg Q)$.

Notice the (inverted) sequence: $\forall - \exists - \forall - \exists$.

Games with The Pumping Lemma

Lemma (Pumping, Contrapositive Form)

Let A be a set of strings, which enjoys the following property:

 $(\neg P)$ For all $k \geq 0$ there exist strings x, y, z such that $xyz \in A$ and $|y| \geq k$, and for all u, v, w with y = uvw and $v \neq \epsilon$, there exists an $i \geq 0$ such that the string $xuv^iwz \notin A$.

Then, A is not regular $(\neg Q)$.

A game against the demon

The demon wants to show A is regular; you want to show it is not:

- The demon picks k (what is his best strategy for choosing?)
- 2. You pick x, y, z such that $xyz \in A$ and $|y| \ge k$
- 3. The demon picks u, v, w such that y = uvw and $v \neq \epsilon$
- 4. You pick $i \geq 0$

If $xuv^iwz \notin A$, you win. Otherwise, the demon wins if $xuv^iwz \in A$.

Playing with the demon: Example

We show that the language $L_4 = \{a^n b^m \mid n \geq m\}$ is not regular:

- 1. The demon picks k
- 2. We pick x, y, z such that $xyz \in L_4$ and $|y| \ge k$ Let's pick $x = a^k, y = b^k$, and $z = \epsilon$. (We'll split only b's.)
- 3. The demon picks u, v, w such that y = uvw and $v \neq \epsilon$ Let k = j + m + n, with m > 0. The demon picks $u = b^j$, $v = b^m$, and $w = b^n$.
- 4. We pick $i \ge 0$ No matter the demon's choice, we can take i = 2 to win:

$$xuv^2wz = a^k b^j b^m b^m b^n$$

= $a^k b^{k+m}$

Clearly, $a^k b^{k+m} \not\in L_4$.

- The lemma gives a necessary condition for regularity, i.e. a condition that necessarily holds for all regular languages.
- But it does not give a **sufficient condition**, i.e., a condition that suffices to guarantee that the language is regular.

- The lemma gives a **necessary condition** for regularity, i.e. a condition that necessarily holds for all regular languages.
- But it does not give a sufficient condition, i.e., a condition that suffices to guarantee that the language is regular.
- In other words:

language is regular $\Rightarrow C$ (i.e., C is a necessary condition)

 $C \Rightarrow$ language is regular (i.e., C is a sufficient condition)

- The lemma gives a **necessary condition** for regularity, i.e. a condition that necessarily holds for all regular languages.
- But it does not give a **sufficient condition**, i.e., a condition that suffices to guarantee that the language is regular.
- In other words:

```
language is regular \Rightarrow C (i.e., C is a necessary condition) C \Rightarrow language is regular (i.e., C is a sufficient condition)
```

- In the game formulation, each non regular set determines a different game
- There exist non regular sets that satisfy the hypotheses of the pumping lemma
- To show that a set is regular, we must construct a corresponding FSM or a regular expression

- The lemma gives a necessary condition for regularity, i.e. a condition that necessarily holds for all regular languages.
- But it does not give a **sufficient condition**, i.e., a condition that suffices to guarantee that the language is regular.
- In other words:

```
language is regular \Rightarrow C (i.e., C is a necessary condition) C \Rightarrow language is regular (i.e., C is a sufficient condition)
```

- In the game formulation, each non regular set determines a different game
- There exist non regular sets that satisfy the hypotheses of the pumping lemma
- To show that a set is regular, we must construct a corresponding FSM or a regular expression
- Another characterization of regular languages, not covered here: the Myhill-Nerode theorem (related to Section 3.8)

Outline

Regular and Non-Regular Sets

The Pumping Lemma

Using the Lemma

Closure Properties

Closure Properties

Closure properties state that when one (or several) languages are in a given class C, then certain related languages are also in C.

Useful to define new languages on ${\it C}$ (say, the regular languages) building upon existing/known ones.

Closure Properties

Closure properties state that when one (or several) languages are in a given class C, then certain related languages are also in C.

Useful to define new languages on \mathcal{C} (say, the regular languages) building upon existing/known ones.

Regular languages are closed under the following operations:

- Union, concatenation, Kleene star
- Complement (recall: the complement \overline{L} of L is $\Sigma^* \setminus L$).
- Intersection
- Reversal (i.e., if $a_1 a_2 \dots a_{n-1} a_n \in L$ then $a_n a_{n-1} \dots a_2 a_1 \in L$).

Union, concatenation, Kleene star:
 Immediate by considering regular expressions

- Union, concatenation, Kleene star:
 Immediate by considering regular expressions
- Complement:
 Obtain a DFSA M of the given language, and define another DFSA M' in which the accepting states of M become non-accepting states of M', and vice versa

- Intersection: Two possibilities
 - 1) Use the law $L_1 \cap L_2 = \overline{L_1} \cup \overline{L_1}$ (and reduce to cases above)
 - 2) Define a construction that runs two DFSAs in "parallel" Given $M_i = (Q_i, \Sigma, \delta_i, q_i, F_i)$ (with $i \in \{1, 2\}$), define

Given
$$M_i = (Q_i, \Sigma, \delta_i, q_i, F_i)$$
 (with $i \in \{1, 2\}$) $M = (Q_1 \times Q_2, \Sigma, \delta, (q_1, q_2), F_1 \times F_2)$, where

$$\delta((p,q),a)=(\delta_1(p,a),\delta_2(q,a)).$$

- Intersection: Two possibilities
 - 1) Use the law $L_1 \cap L_2 = \overline{L_1} \cup \overline{L_1}$ (and reduce to cases above)
 - 2) Define a construction that runs two DFSAs in "parallel" Given $M_i = (Q_i, \Sigma, \delta_i, q_i, F_i)$ (with $i \in \{1, 2\}$), define $M = (Q_1 \times Q_2, \Sigma, \delta, (q_1, q_2), F_1 \times F_2)$, where $\delta((p, q_1, q_2), \delta, (p, q_2))$

$$\delta((p,q),a)=(\delta_1(p,a),\delta_2(q,a)).$$

- Reversal: Given a machine M and create a machine M^R by:
 - reversing all arcs in the state diagram;
 - making the start state the only accepting state;
 - reating a new starting state, with ϵ -transitions to the accepting states

Application of Closure Properties

Claim. If L is a non-regular language, then \overline{L} is non-regular too.

Idea for a proof by contradiction:

- Suppose, for the sake of contradiction, that \overline{L} is regular.
- By the closure properties, $\overline{\overline{L}}$ should be regular as well.
- But $\overline{\overline{L}} = L$, which contradicts our assumption.
- We conclude that \overline{L} must be non-regular.

Using Closure Properties Instead of PL

Claim. Language $L_3 = \{x \in \{a, b\}^* \mid n_a(x) = n_b(x)\}$ is non-regular.

- Suppose, for the sake of contradiction, that L_3 is regular.
- We know a^*b^* is a regular set
- Then the set $L_3 \cap a^*b^*$ would be regular, because of the closure property under intersection
- But $L_3 \cap a^*b^* = \{a^nb^n \mid n \ge 0\}$ is not regular: contradiction.

Taking Stock

Properties of regular languages:

- Pumping lemma: A technique to prove that languages are not regular
- Closure properties:
 Conditions to obtain new regular languages from the operation of existing ones

Next Lecture

FSM minimization
 Not yet in the reader, but you can check the slides, and/or
 Chapter 14 in Kozen's book ('Automata and Computability').