Workflows for Parameter Studies of Multi-Cell Modeling

Randy Heiland, Maciek Swat, Benjamin Zaitlen, James Glazier, Andrew Lumsdaine

Outline

- Overview of CompuCell3D (for multi-cell modeling)
- Overview of VisTrails (for workflows)
- Overview of TeraGrid (for HPC; parameter study)
- Implicitly promote Python and FOSS
- Use case of parameter study for biological cell sorting

Multi-Cell Modeling: CompuCell3D

- Indiana University (started at Notre Dame)
- Software framework/application
 - Framework: general-purpose cell-based modeling
 - Application: standalone app w/ GUI; run batch (no GUI)
- Cells: biological or other (e.g. foams, grains)

Somite sim (Julio Belmonte, IU)

CompuCell3D: what it isn't/is

- Intracellular model
- Genetic mechanisms: genes, proteins, ...

from genome.gov

- Intercellular model
- Physical mechanisms: elasticity, mitosis, apoptosis, chemotaxis,

. . .

(rf. D'Arcy Thompson: On Growth and Form)

CompuCell3D

- Origin: Cellular Potts Model (now Glazier-Graner-Hogeweg model)
- Energy minimization formalism
- Lattice-based domain (2D or 3D)
- Stochastic algorithm
- C++ code base
- Python interface
- Open source
- Download & try the Demos

Cell defined on a regular lattice

Gallery

the biocomplexity institute

Tumor growth & vascularization

(see accompanying movies)

"3D Multi-Cell Simulation of Tumor Growth and Angiogenesis", Shirinifard, Abbas *et al. PLoS ONE*, Oct. 2009

Cut-away view to reveal the necrotic core

Workflows: VisTrails

- Scientific workflow and provenance mgmt system
 - Workflow: visual representation (pipeline) of dataflow
 - Provenance: recording/annotating data
- Drag & drop pipeline editor, built-in modules (visualization, control, etc)
- Written in Python
- Open source (vistrails.org)
- University of Utah (SCI Institute)

Modules' Methods editor

> plus, a Spreadsheet window

VisTrails GUI

VisTrails: Easy to use and Extensible

Can create/edit Input/output ports

VisTrails → parameter sweeps → CC3D

- Models have many parameters
- Not uncommon to have single simulation run several hours on a workstation
- Let's farm out the simulations to a distributed compute resource
- Where/How?

TeraGrid

- Distributed resources (HPC, storage, etc) w/ high-speed networking
- Common software stack
- NSF-funded
- Open science
- Overkill for our purpose, but convenient

Indiana Univ: a TeraGrid Resource Provider

 IBM PowerPC "Big Red" cluster

Fall 2006 – Mar. 2010 2011

- s/w stack includes Globus
 - Grid certificate
 - Remote job submission

Use case: 2D biological cell sorting

- Different cell types tend to adhere (or not) to neighbor cells
 - → cell sorting
- Parameter study of "contact energies" between cells

2 cell types surrounded by ECM

Cell sorting workflow: version 1

Cell sorting workflow: version 2 (part A)

Cell sorting workflow: version 2 (part B)

Subset of cell sorting results (32/72)

Qualitatively different outcomes

Caution: NOT steady-state solutions, but...

Summary: Basic recipe in 6 EASY steps!

- Install VisTrails (on your workstation)
- Get TeraGrid/Big Red account and Grid certificate
- 3. Install CompuCell3D (remotely; locally for local tests)
- 4. Install Globus client s/w on your workstation
- 5. Workflow for parameter sweep (remotely via Globus)
- 6. Workflow to retrieve results and display in VisTrails

Credits

- NIH NIGMS 1R01 GM076692-01
- Biocomplexity Institute, Indiana University
- Pervasive Technology Institute, Indiana University
- Lilly Endowment, Inc.

Thanks for your attention!

(If anyone has interest/experience in bifurcation analysis of stochastic processes, please email me)

