FOCS Notes 2/4/2020

Lecture 7 Recursion: Recursive Functions, Sets, Recurrences

- Recursive functions
 - Analysis using induction
 - Recurrences
 - Recursive programs/algorithms
- Recursive sets
 - natural numbers
 - The Finite Binary Strings Σ^*
- Recursive structures
 - Rooted binary trees (RBT)

Contents

	Examples of Recursion	1
	1.1 Factorial	
	1.2 More examples	1
	1.3 Fibonacci Sequence	2
2	Checklist for Analyzing Recursion	2
3	Recursively Defined Sets	3
4	Recursive Structures	3
	4.1 Trees	3

1 Examples of Recursion

1.1 Factorial

$$f(n) = n! = \begin{cases} 1 & n = 0 \\ n * f(n-1) = n * (n-1)! & n \ge 1 \end{cases}$$

1.2 More examples

$$f(n) = \begin{cases} 0 & n \le 0 \\ f(n-1) + 2n - 1 & n > 0 \end{cases}$$

Proof.
$$f(n) = n^2, \forall n \ge 0$$

By induction:

Base case $f(0) = 0^2$ is true

Induction By direct proof. Assume $f(n) = n^2$::

$$f(n+1) = f(n) + 2(n+1) - 1$$
$$= n^{2} + 2n + 1$$
$$= (n+1)^{2}$$

$$f(n) = \begin{cases} 0 & n \le 0 \\ f(n-1) + 2n - 1 & n > 0 \end{cases}$$

Induction	Recurstion
$P(0)$ is true; $P(n) \to P(n+1)$ conclude $P(n)$ is true, $\forall n \in \mathbb{N}_0$	$f(0) = 0; \ f(n+1) = f(n) + 2n - 1 $ conclude that we can
	compute $f(n) \ \forall n \geq 0$
$P(0) \to P(1) \to P(2) \dots$	$f(0) \to f(1) \to \dots$

1.3 Fibonacci Sequence

$$f(n) = \begin{cases} 1 & n = 1 \\ 1 & n = 2 \\ f(n-1) + f(n-2) & n > 2 \end{cases}$$

$$F_0 = 0$$

$$F_1 = 1$$

$$F_n = F_{n-1} + F_n - 2, \ n \ge 2$$

Everything relies on all points before it, so this is similar to strong induction.

Claim $f(n) \leq 2^n$

Proof. By strong induction

Base cases $f(1) = f(2) = 1 \le 2^1$ true

Inductive Step Assume $F(k) \leq 2^k$ for all $k \leq n$. Then we want to show this implies $f(n+1) \leq 2^{n+1}$.

Direct proof. $f(n+1) = f(n-1) + f(n-2) \le$? $2^{n+1} \le 2^n + 2^{n-1} \le 2^n + 2^n = 2 * 2^n = 2^{n+1}$ true by strong inductive hypothesis.

Claim $f(n) \geq (\frac{3}{2})^n$ when $n \geq 11$

Ex prove this claim via strong induction.

2 Checklist for Analyzing Recursion

- 1) Tinker. Plug in a few values for n and see:
 - \bullet does f have a well-defined set of implications and base cases
 - can you form a hypothesis about f(n)?
- 2) Prove your conjecture about f using a form of induction.
 - \bullet the particular type of induction will depend on how exactly recursion is used in the definition of f

$$\begin{aligned} & \text{out=Big(n);} \\ & \text{if (n==0) out=1;} \\ & \text{else out} = 2 * \text{Big(n-1);} \\ & \text{Big(n)=2}^n \end{aligned}$$

2

Let $T_n = f(n)$ be the runtime for Big(n)

$$T_n = \begin{cases} 2 & n = 0\\ 3 + T_{n-1} & n > 0 \end{cases}$$

The operations for n > 0 are: evaluate if (n==0), evaluate Big(n-1) in T_{n-1} time, multiply by 2, and assign to output $T_0 \to T_1 \to \dots$

$$T_n = 3n + 2$$

Ex: prove this

3 Recursively Defined Sets

 $\mathbb{N} = \{1, 2, 3, \dots\}$

Recursive definition of \mathbb{N}

- 1. $1 \in \mathbb{N}$
- 2. $x \in \mathbb{N} \to x + 1 \in \mathbb{N}$
- 3. Minimality: these are the only elements of \mathbb{N} \leftarrow very important for recursive definitions of sets; usually implicit

Finite Binary String Σ^*

Let ϵ be the empty string

- 1. $\epsilon \in \Sigma^*$
- 2. if $x \in \Sigma^* \to x \cdot 0 \in \Sigma^*$ and $x \cdot 1 \in \Sigma^*$. · means concatenation

Question: $x \in \Sigma^* \to 0 \cdot x \in \Sigma^*$? $1 \cdot x \in \Sigma^*$?

4 Recursive Structures

4.1 Trees

Rooted Binary Trees (RBT)

- 1. the empty binary tree (ϵ) is a RBT
- 2. If T_1 and T_2 are disjoint RBTs with roots r_1 and r_2 , then linking r_1 and r_2 to a <u>new</u> root r gives a new RBT with root r
 - Can we recognize (i.e. prove or disprove) RBTs?
 - Is there more than one way to construct a RBT?
 - Properties/definitions of trees:
 - A tree is a connected graph with n vertices and n-1 edges
 - A tree is a connected graph with no cycles
 - A tree is a graph in which any two nodes are connected by exactly one path
 - Are RBTs trees? That is, do they have these properties?