Бутстрэп

Наивный бутстрэп

Краткий план:

- Общая идея бутстрэпа.
- Наивный бустрэп.

Спасение утопающих

Бутстрэп позволяет не думать о том, как распределены статистики!

Вы всё ещё выбираете степени свободы?

Тогда мы идёт к вам!

Общая логика проверки гипотез

1. Теорема. При верной H_0 , идеальных условиях и $n \to \infty$ статистика $S \to \chi^2$.

$$S = \{$$
Ужасная формула пугающая студентов $\}$

- 2. По имеющимся данным рассчитываем значение S_{obs} .
- 3. Рассчитываваем P-значение вероятность $\mathbb{P}(S>S_{obs})$.
- 4. Если P-значение мало, то отвергаем гипотезу H_0 .

А что если...

- 1. Идеальные условия нарушены.
- 2. Наблюдений не достаточно, чтобы считать $S \sim \chi^2$.
- 3. Подходящей теоремы нет.

Вместо χ^2 распределения нужно использовать верное распределение статистики S.

Идея бутстрэпа

При больших n можно оценить закон распределения статистики S!

И вместо обещанного теоремой χ^2 -распределения использовать оценку распределения.

Предупреждение

Бутстрэп является асимптотическим методом и формально требует $n \to \infty$.

Часто оказывается, что для хорошей оценки закона распределения S нужно меньшее n, чем для теоремы с идеальными условиями.

Наивный бутстрэп

Доверительный интервал для медианы

Есть случайная выборка $y_1, ..., y_n$ из непрерывного распределение, n велико.

Посчитали выборочную медиану \hat{m} . Хотим построить доверительный интервал для медианы m.

- 1. Из исходной выборки $y_1, ..., y_n$ построим бутстрэп-выборку $y_1^*, ..., y_n^*$: Выберем случайно n наблюдений с повторениями.
- 2. На базе бутстрэп-выборки посчитаем очередную выборочную медиану \hat{m}_{j}^{*} .
- 3. Повторим первые два шага много раз: $j=1,\ldots,10000$.

Наивный бутстрэп: формула интервала

Хотим доверительный интервал для истинной медианы m и уже раздобыли 10000 бустрэп выборочных медиан $\hat{m}_1^*, \ldots, \hat{m}_{10000}^*.$

Доверительный интервал

$$q_{\mathsf{left}}(\hat{m}^*) \le m \le q_{\mathsf{right}}(\hat{m}^*),$$

где $q_{\mathsf{left}}(\hat{m}^*)$ и $q_{\mathsf{right}}(\hat{m}^*)$ — нужный левый и правый квантили.

Хочу 95% доверительный интервал

- 1. Отбрасываю 2.5% самых маленьких \hat{m}_j^* и 2.5% самых больших \hat{m}_j^* .
- 2. Крайние значения оставшихся \hat{m}_{j}^{*} и будут границами интервала.

Бутстрэп: проверка гипотез

Скалярный параметр

- 1. Гипотеза $H_0: \beta_x = 42$ против $\beta_x \neq 42$.
- 2. Проверяем входит ли 42 в доверительный интервал.

Бутстрэп t-статистики

Краткий план:

- Бутстрэп t-статистики.
- Сравнение с наивным бутстрэпом.

Задача оценивания вероятности

Доверительный интервал для вероятности $p = \mathbb{P}(y_i > 0)$

Есть случайная выборка $y_1, ..., y_n$ из непрерывного распределение, n велико.

Нашли выборочную долю положительных наблюдений \hat{p} .

Теория говорит, что $Var(\hat{p}) = \frac{p(1-p)}{n}$.

Нашли стандартную ошибку $se(\hat{p}) = \sqrt{\frac{\hat{p}(1-\hat{p})}{n}}$.

Бутстрэп t-статистики

- 1. Из исходной выборки $y_1, ..., y_n$ построим бутстрэп-выборку $y_1^*, ..., y_n^*$: Выберем случайно n наблюдений с повторениями.
- 2. На базе бутстрэп-выборки посчитаем:
 - очередную выборочную долю \hat{p}_{j}^{*} ;
 - её стандартную ошибку $se(\hat{p}_{j}^{*})$;
 - *t*-статистику

$$t_j^* = \frac{\hat{p}_j^* - \hat{p}}{se(\hat{p}_j^*)}.$$

3. Повторим первые два шага много раз: $j=1,\ldots,10000$.

Формула доверительного интервала

Хотим доверительный интервал для истинной вероятности p и уже раздобыли 10000 бустрэп t-статистик $t_1^*, ..., t_{10000}^*$.

Рецепт

Находим p из неравенства

$$q_{\mathsf{left}}(t^*) \le \frac{\hat{p} - p}{se(\hat{p})} \le q_{\mathsf{right}}(t^*)$$

Получаем

$$\hat{p} - se(\hat{p})q_{\mathsf{right}}(t^*) \le p \le \hat{p} - se(\hat{p})q_{\mathsf{left}}(t^*)$$

Не пугайтесь минуса справа!

Скорее всего $q_{\mathsf{left}}(t^*)$ меньше нуля.

Аналогия

Классика	Бутстрэп
Параметр p	Оценка \hat{p}
Исходная выборка	Бутстрэп выборки
Оценка \hat{p}	Бутстрэп оценки \hat{p}_{j}^{*}
Стандартная ошибка $se(\hat{p})$	Стандартные ошибки $se(\hat{p}_{j}^{*})$
Статистика $t=(\hat{p}-p)/se(\hat{p})$	Статистики $t_j^* = (\hat{p}_j^* - \hat{p})/se(\hat{p}_j^*)$

Сравнение с наивным бутстрэпом

- 1. Любой бутстрэп лучше, чем отсутствие.
- 2. Бутстрэп t-статистики лучше, чем наивный.
- 3. Бутстрэп t-статистики требует формулы для $se(\hat{\theta})$.
- 4. В качестве $se(\hat{\theta})$ можно использовать приближение.
- 5. Можно рассчитать $se(\hat{\theta})$ с помощью бутстрэпа в бутстрэпе.

Рекомендация

- 1. Используйте бутстрэп t-статистики.
- 2. Если нет готовой формулы для $se(\hat{\theta})$, придумайте приближенную бутстрэп сам поправит!

Пример приближения стандартной ошибки

Хочу использовать бутстрэп t-статистики при построении интервала для медианы m. Не знаю никакой формулы для $se(\hat{m})$.

Я: Выборочная медиана примерно похожа на выборочное среднее. Возьму в t-статистике стандартную ошибку среднего!

$$t_j^* = \frac{\hat{m}_j^* - \hat{m}}{se(\bar{y}^*)}, \quad se(\bar{y}^*) = \sqrt{\frac{1}{n} \sum_{i=1}^n (y_i^* - \bar{y}^*)^2 / (n-1)}.$$

Бутстрэп:

Это неправильная формула, но я сам подправлю квантили!

Бутстрэп в бутстрэпе

Краткий план:

- Как оценить $se(\hat{\theta}_j^*)$, если нет готовой формулы?
- Свойства бутстрэпа в бутстрэпе.

Пример бутстрэп-стандартной ошибки

Хочу использовать бутстрэп t-статистики при построении интервала для медианы m. Не знаю никакой формулы для $se(\hat{m})$.

Сформировали на базе исходной выборки $y_1, ..., y_n$ очередную бутстрэп-выборку $y_1^*, ..., y_n^*$.

Нашли бутстрэп выборочную медиану \hat{m}_{j}^{*} .

Как бы найти её стандартную ошибку $se(\hat{m}_j^*)$?

Запустим бутстрэп второго уровня!

Бутстрэп второго уровня

Перед нами очередная бутстрэп-выборка y_1^*, \dots, y_n^* .

Алгоритм:

- 1. Из бутстрэп выборки $y_1^*, ..., y_n^*$ построим бутстрэп-выборку второго уровня $y_1^{**}, ..., y_n^{**}$: Выберем случайно n наблюдений с повторениями.
- 2. Посчитаем бутстрэп медиану второго уровня \hat{m}_k^{**} .
- 3. Повторим первые два шага много раз: $k=1,\dots,1000$.
- 4. Имея выборку \hat{m}_1^{**} , ..., \hat{m}_{1000}^{**} оценим стандартную ошибку

$$se(\hat{m}_{j}^{*}) = \sqrt{\sum_{k=1}^{1000} (\hat{m}_{k}^{**} - \bar{\hat{m}}^{**})^{2}/(1000 - 1)}.$$

Резюме про бутстрэп в бутстрэпе

- Минус: медленный. Если огранизовать 10000 бутстрэп-выборок первого уровня, а для каждой из них 1000 бутстрэп-выборок второго уровня, то получится 10 000 000 выборок.
- Плюс: Чаще точнее наивного. При том же n номинальная доверительная вероятность ближе к фактической.

Параметрический бутстрэп

Краткий план:

- Добавим модель и предикторы!
- Вариации параметрического бутстрэпа.

Постановка задачи

Модель $y_i = \beta_1 + \beta_x x_i + \beta_w w_i + u_i$ и сомнения в предпосылках на распределение u_i .

Применили обычный МНК и получили оценки $\hat{\beta}=(\hat{\beta}_1,\hat{\beta}_x,\hat{\beta}_w)$ и наивную оценку дисперсии $\hat{\sigma}_u^2=RSS/(n-k)$.

Хотим доверительный интервал для β_x с корректной вероятностью накрытия.

Параметрический бутстрэп

- 1. Для бутстрэп выборки сохраняем полностью исходную матрицу регрессоров X.
- 2. Генерируем бутстрэп выборку для ошибок:

$$u_i^* \sim \mathcal{N}(0; \hat{\sigma}_u^2);$$

3. Генерируем бутстрэп выборку для зависимой переменной:

$$y_i^* = \hat{\beta}_1 + \hat{\beta}_x x_i + \hat{\beta}_w w_i + u_i^*$$

Используем \hat{eta} и $\hat{\sigma}_u^2$ исходной регрессии.

- 4. Считаем очередную бутстрэп оценку коэффициента $\hat{\beta}_{xj}^*$ или t-статистику $t_j^* = (\hat{\beta}_{xj}^* \hat{\beta}_x)/se(\hat{\beta}_{xj}^*)$.
- 5. Повторяем шаги два, три и четыре много раз: $j=1,\ldots,10000$.

Интервал: наивный вариант

Хотим доверительный интервал для β_x .

Есть 10000 штук бутстрэп оценок $\hat{\beta}_{x,1}^*$, ..., $\hat{\beta}_{x,10000}^*$.

Наивный вариант

$$q_{\mathsf{left}}(\hat{\beta}_x^*) \le \beta_x \le q_{\mathsf{right}}(\hat{\beta}_x^*)$$

Интервал: вариант с t-статистикой

Хотим доверительный интервал для β_x .

Есть 10000 штук бутстрэп t-статистик t_1^* , ..., t_{10000}^* .

Вариант с *t*-статистикой

Находим β_x из неравенства

$$q_{\mathsf{left}}(t^*) \leq \frac{\hat{\beta}_x - \beta_x}{se(\hat{\beta}_x)} \leq q_{\mathsf{right}}(t^*)$$

Получаем

$$\hat{\beta}_x - se(\hat{\beta}_x)q_{\mathsf{right}}(t^*) \le \beta_x \le \hat{\beta}_x - se(\hat{\beta}_x)q_{\mathsf{left}}(t^*)$$

Дикий бутстрэп

Краткий план:

- Добавим модель и предикторы!
- Вариации дикого бутстрэпа.

Постановка задачи

Модель $y_i = \beta_1 + \beta_x x_i + \beta_w w_i + u_i$ и сомнения в предпосылках на распределение u_i .

Применили обычный МНК и получили оценки $\hat{\beta}=(\hat{\beta}_1,\hat{\beta}_x,\hat{\beta}_w)$ и наивную оценку дисперсии $\hat{\sigma}_u^2=RSS/(n-k)$.

Хотим доверительный интервал для β_x с корректной вероятностью накрытия.

Дикий бутстрэп

- 1. Для бутстрэп выборки сохраняем полностью исходную матрицу регрессоров X.
- 2. Генерируем бутстрэп выборку ошибок:

$$u_i^* \sim \dots$$

3. Генерируем бутстрэп выборку зависимой переменной:

$$y_i^* = \hat{\beta}_1 + \hat{\beta}_x x_i + \hat{\beta}_w w_i + u_i^*$$

Используем $\hat{\beta}$ исходной регрессии.

- 4. Считаем очередную бутстрэп оценку коэффициента $\hat{\beta}_{xj}^*$ или t-статистику $t_j^* = (\hat{\beta}_{xj}^* \hat{\beta}_x)/se(\hat{\beta}_{xj}^*)$.
- 5. Повторяем шаги два, три и четыре много раз: $j=1,\dots,10000$.

Дикий бутстрэп: детали

Генерирование бутстрэп выборки ошибок $u_1^*, ..., u_n^*$.

1. Рассчитываем отмасштабированные остатки исходной регрессии

$$\hat{u}_i^{sc} = \frac{\hat{u}_i}{\sqrt{1 - H_{ii}}}, \quad H = X(X'X)^{-1}X'.$$

Это действие приравнивает дисперсии остатков при гомоскедастичности.

2. Домножаем отмасштабированные ошибки на плюс или минус единицу

$$u_i^* = \hat{u}_i^{sc} \cdot v_i^*, \quad v_i^* \in \{-1, +1\}$$
 равновероятно.

Теорема. При гомоскедастичности ошибок u_i дисперсия остатка \hat{u}_i пропорциональна $1-H_{ii}$.

Интервал: наивный вариант

Хотим доверительный интервал для β_x .

Есть 10000 штук бутстрэп оценок $\hat{\beta}_{x,1}^*$, ..., $\hat{\beta}_{x,10000}^*$.

Наивный вариант

$$q_{\mathsf{left}}(\hat{\beta}_x^*) \le \beta_x \le q_{\mathsf{right}}(\hat{\beta}_x^*)$$

Интервал: вариант с t-статистикой

Хотим доверительный интервал для β_x .

Есть 10000 штук бутстрэп t-статистик t_1^* , ..., t_{10000}^* .

Вариант с *t*-статистикой

Находим β_x из неравенства

$$q_{\mathsf{left}}(t^*) \leq \frac{\hat{\beta}_x - \beta_x}{se(\hat{\beta}_x)} \leq q_{\mathsf{right}}(t^*)$$

Получаем

$$\hat{\beta}_x - se(\hat{\beta}_x)q_{\mathsf{right}}(t^*) \le \beta_x \le \hat{\beta}_x - se(\hat{\beta}_x)q_{\mathsf{left}}(t^*)$$

Парный бутстрэп

Краткий план:

- Парный бутстрэп.
- Практические рекомендации.

Парный бутстрэп — это просто!

На примере модели $y_i = \beta_1 + \beta_x x_i + \beta_w w_i + u_i$.

Есть исходные наблюдения (x_i, w_i, y_i) , где $i \in \{1, \dots, n\}$

- 1. Генерируем очередную бутстрэп-выборку (x_i^*, w_i^*, y_i^*) , где $i \in \{1, \dots, n\}$.
 - Случайно выберем n наблюдений из исходной выборки с повторениями.
- 2. Считаем очередную бутстрэп оценку коэффициента $\hat{\beta}_{xj}^*$ или t-статистику $t_j^* = (\hat{\beta}_{xj}^* \hat{\beta}_x)/se(\hat{\beta}_{xj}^*)$.
- 3. Повторим первые два шага много раз: $j=1,\dots,10000$.

Доверительный интервал

Наивный вариант

$$q_{\mathsf{left}}(\hat{\beta}_x^*) \le \beta_x \le q_{\mathsf{right}}(\hat{\beta}_x^*)$$

Вариант с *t*-статистикой

Находим β_x из неравенства

$$q_{\mathsf{left}}(t^*) \leq \frac{\hat{\beta}_x - \beta_x}{se(\hat{\beta}_x)} \leq q_{\mathsf{right}}(t^*)$$

Получаем

$$\hat{\beta}_x - se(\hat{\beta}_x)q_{\mathsf{right}}(t^*) \le \beta_x \le \hat{\beta}_x - se(\hat{\beta}_x)q_{\mathsf{left}}(t^*)$$

Бутстрэп: рекомендации

Общие

- 1. Используйте бутстрэп!
- 2. Берите большое количество (10000) бутстрэп выборок.

Бутстрэп — идея, а не конкретный метод. Какой выбрать?

Без регрессоров

- 1. Смело берите бутстрэп t-статистики.
- 2. Если формулы для стандартных ошибок нет, попробуйте наивный бутстрэп или бутстрэп в бутстрэпе.

С регрессорами

- 1. Смело берите дикий бутстрэп t-статистики.
- 2. Если матрица регрессоров X не фиксирована, попробуйте парный бутстрэп.

Источники мудрости

- 1. Tim Hestenberg, What Teachers Should Know about the Bootstrap.
- 2. James MacKinnon, Bootstrap Methods in Econometrics.

Резюме: бутстрэп до регрессии

- Бутстрэп: оценка распределения вместо теорем.
- Наивный бутстрэп: сгенерируем много значений величины \hat{m}_{j}^{*} .
- Бутстрэп t-статистики: сгенерируем много значений

$$t_j^* = \frac{\hat{m}_j^* - \hat{m}}{se(m_j^*)}$$

• Бутстрэп в бутстрэпе: способ получить $se(m_j^*)$, если нет явной формулы.

Резюме: бутстрэп и регрессия

• Параметрический бутстрэп:

$$y_i^* = \hat{\beta}_1 + \hat{\beta}_x x_i + \hat{\beta}_w w_i + u_i^*, \quad u_i^* \sim \mathcal{N}(0; \hat{\sigma}^2)$$

• Дикий бутстрэп:

$$y_i^* = \hat{\beta}_1 + \hat{\beta}_x x_i + \hat{\beta}_w w_i + \hat{u}_i^{sc} v_i^*, \quad v_i^* \in \{-1, +1\}$$

 Парный бутстрэп: выбираем случайные наблюдения с повторениями.

Следующая лекция: причинно-следственные связи.