TL;DR (Abzählbarkeit und Äquivalenzrelationen)

Anton Zakrewski

November 1, 2024

1 Abzählbarkeit

- Eine Menge X ist abzählbar, falls $X = \emptyset$ oder eine surjektive Abbildung $f : \mathbb{N} \to X$ existiert.
- \bullet Eine Menge X heißt überabzählbar, falls sie nicht abzählbar ist.

1.1 wichtige Fälle abzählbarer Mengen

- \bullet $\mathbb{N}, \mathbb{Z}, \mathbb{Q}$
- beliebige Teilmengen abzählbarer Mengen
- \bullet abzählbare Vereinigungen abzählbarer Mengen, d.h. für abzählbare $X_n, n \in \mathbb{N}$ ist $\bigcup_{n \in \mathbb{N}} X_n$ abzählbar
- endliche Produkte abzählbarer Mengen, d.h. $\prod_{i=1}^{n} X_i$

1.2 wichtige Fälle überabzählbarer Mengen

- \bullet die reellen Zahlen $\mathbb R$
- \bullet überabzählbare Vereinigungen, z.B. $\bigcup_{r\in\mathbb{R}}\{r\}=\mathbb{R}$
- Potenzmengen unendlicher Mengen, z.B. $\mathcal{P}(\mathbb{N})$
- unendliche Produkte, z.B. schon $\prod_{n\in\mathbb{N}}\{0,1\}$

2 Äquivalenzrelationen

- Gegeben eine Menge X, so ist eine Relation \sim eine Äquivalenzrelation gdw.
 - 1. \sim ist reflexiv, d.h. $x \sim x$ für $x \in X$
 - 2. \sim ist symmetrisch, d.h. $x \sim y \Rightarrow y \sim x$
 - 3. \sim ist transitiv, d.h. $x \sim y, y \sim z \Rightarrow x \sim z$
- wichtigstes Beispiel einer Äquivalenzrelation: =
- Die Äquivalenzklasse eines Repräsentanten $x \in X$ ist definiert als

$$[x] \coloneqq \{y \in X | x \sim y\}$$

- für $x, y \in x$ gilt entweder [x] = [y] oder $[x] \cap [y] = \emptyset$
- $\bullet~X$ ist die Vereinigung aller Äquivalenzklassen, d.h. $X = \bigcup_{x \in X} [x]$
- \bullet eine Abbildung $f:X\to Y$ induziert eine Äquivalenz
relation, nämlich

$$x \sim y \Leftrightarrow f(x) = f(y)$$

 \bullet Eine Menge X und Äquivalenz
relation \sim induziert eine surjektive Abbildung

$$\pi_{\sim}: X \to X/\sim$$
 $x \mapsto [x]$