Lecture 4

Multivariate Normal Distribution and Copula

Readings: Zelterman, 2015 Chapters 5, 6, 7

DSA 8070 Multivariate Analysis September 6 - September 10, 2021

> Whitney Huang Clemson University

Notes

Agenda

- Multivariate Normal Distribution
- Quantity of the Multivariate Normal Density
- Copula

The Multivariate Normal Distribution

Just as the univariate normal distribution tends to be the most important distribution in univariate statistics, the multivariate normal distribution is the most important distribution in multivariate statistics

- Mathematical Simplicity: It is easy to obtain multivariate methods based on the multivariate normal distribution
- Central Limit Theorem: The sample mean vector is going to be approximately multivariate normally distributed when the sample size is sufficiently large
- Many natural phenomena may be modeled using this distribution (perhaps after transformation)

Multivariate Normal Distribution and Copula	
CLEMS#N	
Multivariate Normal Distribution	

lotes			

Review: Univariate Normal Distributions

The probability density function of the normal distribution

 $f(x) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left\{-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^2\right\},$

where μ and σ^2 are its mean and variance, respectively.

 $\left(\frac{x-\mu}{\sigma}\right)^2=(x-\mu)(\sigma^2)^{-1}(x-\mu)$ is the squared statistical distance between x and μ in standard deviation units

Notes

Multivariate Normal Distributions

If we have a p-dimensional random vector that is distributed according to a multivariate normal distribution with mean vector $\boldsymbol{\mu}$ = $(\mu_1, \mu_2, \cdots, \mu_p)^T$ and covariance matrix $\Sigma = \{(\sigma_{ij})\}\$, the probability density function is

$$f(\boldsymbol{x}) = \frac{1}{2\pi^{\frac{p}{2}}|\boldsymbol{\Sigma}|^{\frac{1}{2}}} \exp\left\{-\frac{1}{2}(\boldsymbol{x} - \boldsymbol{\mu})^T \boldsymbol{\Sigma}^{-1} (\boldsymbol{x} - \boldsymbol{\mu})\right\}.$$

Notes

Review: Central Limit Theorem (CLT)

The sampling distribution of the mean will become approximately normally distributed as the sample size becomes larger, irrespective of the shape of the population distribution!

Let $X_1, X_2, \cdots, X_n \overset{i.i.d.}{\sim} F$ with $\mu = \mathrm{E}[X_i]$ and $\sigma^2 = \mathrm{Var}[X_i]$. Then $\bar{X}_n = \frac{\sum_{i=1}^n X_i}{n} \overset{d}{\to} \mathrm{N}(\mu, \frac{\sigma^2}{n})$ as $n \to \infty$.

Notes

CLT In Action

- Generate 100 (n) random numbers from an Exponential distribution (population distribution)
- Compute the sample mean of these 100 random numbers
- Repeat this process 120 times

Notes

Properties of the Multivariate Normal Distribition

• If $X \sim \mathrm{N}(\mu, \Sigma)$, then any subset of X also has a multivariate normal distribution

Example: Each single variable $X_i \sim N(\mu_i, \sigma_i^2), \quad i = 1, \dots, p$

• If $X \sim \mathrm{N}(\mu, \Sigma)$, then any linear combination of the variables has a univariate normal distribution

Example: If $Y = a^T X$. Then $Y \sim N(a^T \mu, a^T \Sigma a)$

 Any conditional distribution for a subset of the variables conditional on known values for another subset of variables is a multivariate distribution

Example:
$$X_1|X_2 = x_2 \sim N(\mu_1 + \Sigma_{12}\Sigma_{22}^{-1}(x_2 - \mu_2), \Sigma_{11} - \Sigma_{12}\Sigma_{22}^{-1}\Sigma_{21})$$

Notes

Example: Linear Combination of the Cholesterol Measurements [source: Penn State Univ. STAT 505]

Cholesterol levels were taken $0,\,2,\,{\rm and}\,4$ days following the heart attack on n patients. The mean vector is:

$$ar{x} = egin{array}{c|c} & \mbox{Variable} & \mbox{Mean} \ \hline X_1 \ (\mbox{0-day}) & 259.5 \ X_2 \ (\mbox{2-day}) & 230.8 \ X_3 \ (\mbox{4-day}) & 221.5 \ \hline \end{array}$$

and the covariance matrix

$$\mathbf{S} = \begin{bmatrix} 2276 & 1508 & 813 \\ 1508 & 2206 & 1349 \\ 813 & 1349 & 1865 \end{bmatrix}$$

Suppose we are interested in Δ = X_2 – X_1 , the difference between the 2-day and the 0-day measurements. We can write the linear combination of interest as

$$\Delta = \boldsymbol{a}^T \boldsymbol{X} = \begin{bmatrix} -1 & 1 & 0 \end{bmatrix} \begin{bmatrix} X_1 \\ X_2 \\ X_3 \end{bmatrix}$$

Multivariate Normal Distribution and Copula
CLEMS N
Multivariate Normal Distribution

Notes			

Cholesterol Measurements Example Cont'd

ullet The mean value for the difference Δ is

$$\begin{bmatrix} -1 & 1 & 0 \end{bmatrix} \begin{bmatrix} 259.5 \\ 230.8 \\ 221.5 \end{bmatrix} = -28.7$$

ullet The variance for Δ is

$$\begin{bmatrix} -1 & 1 & 0 \end{bmatrix} \begin{bmatrix} 2276 & 1508 & 813 \\ 1508 & 2206 & 1349 \\ 813 & 1349 & 1865 \end{bmatrix} \begin{bmatrix} -1 & 1 & 0 \end{bmatrix}$$
$$= \begin{bmatrix} -768 & 698 & 536 \end{bmatrix} \begin{bmatrix} -1 \\ 1 \\ 0 \end{bmatrix}$$
$$= 1466$$

• If we assume these three variables together follows a multivariate normal distribution, then Δ follows a univariate normal distribution

Notes

Bivariate Normal Distribution

Let's focus bivariate normal distributions first as we can visualize them to facilitate our understanding. Suppose we have X_1 and X_2 jointly follows a bivariate normal distribution:

$$\left(\begin{array}{c} X_1 \\ X_2 \end{array}\right) \sim \mathcal{N} \left[\left(\begin{array}{cc} \mu_1 \\ \mu_2 \end{array}\right), \left(\begin{array}{cc} \sigma_1^2 & \rho \sigma_1 \sigma_2 \\ \rho \sigma_1 \sigma_2 & \sigma_2^2 \end{array}\right) \right]$$

Let's fix μ_1 = μ_2 = 0 and σ_1^2 = σ_2^2 = 1

Multivariate Normal Distribution and Copula

Multivariate Normal Distribution

Geometry of the Multivariate Normal Density

Notes

Exponent of Multivariate Normal Distribution

Recall the multivariate normal density:

$$f(\boldsymbol{x}) = \frac{1}{2\pi^{\frac{p}{2}} |\boldsymbol{\Sigma}|^{\frac{1}{2}}} \exp \left\{ -\frac{1}{2} (\boldsymbol{x} - \boldsymbol{\mu})^T \boldsymbol{\Sigma}^{-1} (\boldsymbol{x} - \boldsymbol{\mu}) \right\}.$$

This density function only depends on x through the squared Mahalanobis distance: $(x-\mu)^T \Sigma^{-1} (x-\mu)$

- For bivariate normal, we get an ellipse whose equation is $(x \mu)^T \Sigma^{-1} (x \mu) = c^2$ which gives all $x = (x_1, x_2)$ pairs with constant density
- \bullet These ellipses are call contours and all are centered around μ
- A constant probability contour equals
 - = all x such that $(x \mu)^T \Sigma^{-1} (x \mu) = c^2$
 - = surface of ellipsoid centered at μ

Distr	Normal ribution and Copula
CLE	EMS # N
Multiv Norma Distrib	al

Notes	S			

Multivariate Normality and Outliers

The variable $d^2=(X-\mu)^T\Sigma^{-1}(X-\mu)$ has a chi-square distribution with p degrees of freedom , i.e., $d^2\sim\chi_p^2$ if $X\sim \mathrm{N}(\mu,\Sigma)\Rightarrow$ we can exploit this result to check multivariate normality and to detect outliers

- Sort $(x_i \bar{x})^T S^{-1}(x_i \bar{x})$ in an increasing order to get sample quantiles
- Calcaute the theoretical quantiles using the chi-square quantiles with $p=\frac{i-0.5}{n}, \quad i=1,\cdots,n$

Eigenvalues and Eigenvectors of Σ and the Geometry of the Multivariate Normal Density

Let $X \sim N(\mu, \Sigma)$, where $\mu = (10, 5)^T$ and $\Sigma = \begin{bmatrix} 64 & 16 \\ 16 & 9 \end{bmatrix}$.

The 95% probability contour is shown below

Next, we talk about how to "draw" this contour

N	Λt	Δ.
ıν	OI	H.

Notes

Probability Contours

ullet The solid ellipsoid of values x satisfy

$$(\boldsymbol{x} - \boldsymbol{\mu})^T \boldsymbol{\Sigma}^{-1} (\boldsymbol{x} - \boldsymbol{\mu}) \leq c^2 = \chi^2_{df = p, \alpha}$$
 Here we have $p = 2$ and $\alpha = 0.05 \Rightarrow c = \sqrt{\chi^2_{2.0.05}} = 2.4478$

• Major axis: $\mu \pm c\sqrt{\lambda_1 e_1}$, where (λ_1, e_1) is the first eigenvalue/eigenvector of Σ .

$$\Rightarrow \lambda_1 = 68.316, \quad e_1 = \begin{bmatrix} -0.9655 \\ -0.2604 \end{bmatrix}$$

• Minor axis: $\mu \pm c\sqrt{\lambda_2 e_2}$, where (λ_2, e_2) is the second eigenvalue/eigenvector of Σ .

$$\Rightarrow \lambda_2 = 4.684, \quad \boldsymbol{e}_2 = \begin{bmatrix} 0.2604 \\ -0.9655 \end{bmatrix}$$

Normal Distribution and Copula
CLEMS N
Geometry of the Multivariate Normal Density

Multivariate

Notes			
-			

Graph of 95% Probability Contour

Notes

Example: Wechsler Adult Intelligence Scale [source: Penn State Univ. STAT 505]

We have data (wechslet.txt) on 37 subjects (n = 37) taking the Wechsler Adult Intelligence Test, which consists four different components: 1) Information; 2) Similarities; 3) Arithmetic; 4) Picture Completion.

- $igothermal{igothermal{O}}$ Compute the eigenvalues and eigenvectors of S and give a geometry interpretation
- Oiagnostic the multivariate normal assumption

Notes

Beyond Normality: Copula

A copula is a multivariate cumulative distribution function for which the marginal probability distribution of each variable is uniform on the interval [0,1]

$$\begin{split} F\big(x_1, \cdots, x_p\big) &= \mathbb{Pr}\big(X_1 \leq x_1, \cdots, X_p \leq x_p\big) \\ &= \mathbb{Pr}\big(F_1^{-1}(U_1) \leq x_1, \cdots, F_p^{-1}(U_p) \leq x_p\big) \\ &= \mathbb{Pr}\big(U_1 \leq F_1(x_1), \cdots, U_p \leq F_p(x_p)\big) \\ &= C\left(F_1(x_1), \cdots, F_p(x_p)\right) \end{split}$$

- Copulas are used to model the dependence between random variables
- Copula approach has becomes popular in many areas, e.g., quantitative finance as it allows for separate modeling of marginal distributions and dependence structure

Multivariate Normal Distribution Geometry of the Multivariate Normal Density

Notes	
	_
	_

An Illustration of a Gaussian Copula

More Examples

Notes			

Notes			