Лабораторная работа № 1.1.4

Изучение статистических закономерностей на примере флуктуаций интенсивности космического излучения

Каменская Елизавета

19 октября 2020 г.

Цель работы

Применение методов обработки данных для изучения статистических закономерностей при измерении интенсивности радиационного фона.

Оборудование

Счетчик Гейгера-Мюллера (СТС-6), блок питания, компьютер с интерфейсом связи со счетчиком.

Теоретическая справка

Экспериментальная установка

Схема экспериментальной установки изображена на Рис. 1. В данной работе для регистрации космического излучения используется счетчик Гейгера-Мюллера, который представляет собой наполненный газом металлический цилиндр с двумя электродами. Одним из электродов (катодом) служит корпус, анодом - тонкая нить, натянутая вдоль оси цилиндрического корпуса. Необходимое напряжение (400B) подается на счетчик автоматически с блока питания при включении компьютера.

Космические частицы ионизируют газ, которым наполнен счетчик, а также выбивают электроны из его стенок. Двигаясь в сильном электрическом поле между электродами счетчика, образовавшиеся электроны соударяются с молекулами газа, выбивая из них новые - вторичные электроны. Ускоряясь полем, первичный и вторичные электроны снова ионизируют газ, и т.д. В результате через счетчик протекает кратковременный импульс тока, который и регистрирует установка.

Рис. 1: Блок-схема устнановки для измерения интенсивности космических частиц.

Напряжение на счетчик подается от блока питания через резистор R, выполняющий сразу две функции. Во-первых, этот резистор ограничивает величину тока, который может протекать через счетчик. Во-вторых, ток счетчика, проходя через резистор, вызывает на нем падение напряжения IR. Если до начала разряда напряжение на нити было равно напряжению питания (400B), то после появления тока оно оказывается на IR меньше. После прекращения разряда напряжение на счетчике восстанавливается. Кратковременные понижения напряжения на нити счетчика проходят через конденсатор C и поступают на усилитель-формирователь (на рисунке не показан), а затем на вход встроенной в компьютер специальной электронной схемы.

Число зарегистрированных частиц зависит от времени измерения, размеров счетчика, от давления и состава газа и от материала стенок счетчика.

Список формул

Используемые формулы

Среднее значение измеряемой велечины

$$\overline{n} = \frac{1}{N} \sum_{i=1}^{N} n_i \tag{1}$$

Стандартная ошибка отдельного измерения

$$\sigma_{\text{отд}} = \sqrt{\frac{1}{N} \sum_{i=1}^{N} (n_i - \overline{n})^2}$$
 (2)

Приближенная стандартная ошибка отдельного измерения

$$\sigma_{\text{отд}} \approx \sqrt{\overline{n}}$$
 (3)

Стандартная ошибка среднего значения от истиного

$$\sigma_{\overline{n}} = \frac{1}{N} \sqrt{\sum_{i=1}^{N} (n_i - \overline{n})^2} = \frac{\sigma_{\text{отд}}}{\sqrt{N}}$$
(4)

Относительная ошибка отдельного измерения

$$\epsilon_{\text{отд}} = \frac{\sigma_{\text{отд}}}{n_i} \approx \frac{1}{\sqrt{n_i}}$$
(5)

Относительная ошибка в определении среднего для всех измерений

$$\epsilon_{\overline{n}} = \frac{\sigma_{\overline{n}}}{\overline{n}} = \frac{\sigma_{\text{отд}}}{\overline{n}\sqrt{N}} \approx \frac{1}{\sqrt{\overline{n}N}}$$
 (6)

Ход работы

- 1. В результате демонстрационного эксперимента убеждаемся, что при увеличении числа измерений:
 - измеряемая величина флуктурирует;
 - флуктуация среднего значения измеряемой величины уменьшается, и среднее значение выходит на постоянную величину;
 - флуктуации величины погрешности отдельного измерения уменьшаются, и погрешность отдельного измерения (погрешность метода) выходит на постоянную величину;
 - флуктуации величины погрешности среднего значения уменьшаются, а сама величина убывает.
- 2. Измеряем плотность потока космического излучения за 10 секунд. Результаты приведены в таблицах 1 и 3

Таблица 1: Число срабатываний счетчика за 20 сек.

таолица 1	L. TM	ЮЛО	cpao	атыв	ании	1 646	тчик	a sa	20 C	eĸ.
№ опыта:	1	2	3	4	5	6	7	8	9	10
0	33	31	23	34	14	20	28	33	24	28
10	31	28	22	23	28	21	30	26	23	32
20	26	19	29	46	27	30	28	29	34	31
30	24	33	25	34	43	29	30	26	16	22
40	15	26	29	34	23	37	20	29	25	33
50	21	25	34	28	28	35	26	21	24	29
60	28	40	29	17	26	33	27	26	30	23
70	31	17	23	21	24	31	29	25	31	27
80	26	29	27	24	37	29	24	33	28	28
90	26	31	32	34	22	29	21	22	26	27
100	32	26	22	29	20	29	30	24	30	26
110	22	22	22	32	33	33	21	43	28	23
120	22	27	22	23	34	30	30	26	24	26
130	32	28	33	32	22	28	22	26	33	30
140	32	26	26	30	26	31	24	19	28	36
150	24	28	28	31	24	25	18	37	14	26
160	20	30	21	24	27	29	23	24	31	25
170	33	32	35	30	34	22	23	27	26	39
180	20	24	24	23	26	24	29	29	34	31
190	29	32	30	31	22	22	21	28	24	22

- 3. Разбиваем результаты измерений из таблицы 1 в порядке их получения на группы по 2, что соответствует проведению $N_2=100$ измерений числа частиц за интервал времени, равный 40 с. Результаты сведем в таблицу 2.
- 4. Представим результаты последнего распределения в виде, удобном для построения гистограммы в таблице 5. Гистограммы распределений среднего числа

Таблица 2: Число срабатываний счетчика за 40 сек.

№ опыта:	1	2	3	4	5	6	7	8	9	10
0	64	57	34	61	52	59	45	49	56	55
10	45	75	57	57	65	57	59	72	56	38
20	41	63	60	49	58	46	62	63	47	53
30	68	46	59	53	53	48	44	55	54	58
40	55	51	66	57	56	57	66	51	43	53
50	58	51	49	54	56	44	54	66	64	51
60	49	45	64	56	50	60	65	50	48	63
70	58	56	57	43	64	52	59	49	55	40
80	50	45	56	47	56	65	65	56	50	65
90	44	47	50	58	65	61	61	44	49	46

отсчетов за 10 и 40 с строим на одном графике (рис.2). При этом для второго распределения цену деления по оси абсцисс увеличиваем в 4 раза, чтобы положения максимумов распределений совпадали.

5. Используя формулу (1), определим среднее число срабатываний счетчика за 10 с:

$$\overline{n_1} = \frac{1}{N_1} \sum_{i=1}^{N_1} n_i = \frac{5458}{400} = 13.645$$

6. Найдем среднеквадратичную ошибку отдельного измерения по формуле (2):

$$\sigma_1 = \sqrt{\frac{1}{N_1} \sum_{i=1}^{N_1} (n_i - \overline{n_1})^2} = \sqrt{\frac{5505}{400}} \approx 3.71$$

7. Убедимся в справедливости формулы (3):

$$\sigma_1 \approx \sqrt{\overline{n_1}}$$
 $3.71 \approx \sqrt{13.645} = 3.69$

- 8. Определим долю случаев, когда отклонения от среднего значения не превышают $\sigma_1, 2\sigma_1$ и сравним с теоретическими оценками (таблица 4).
- 9. Используя формулу (1), определим среднее число импульсов счетчика за 40 с:

$$\overline{n_2} = \frac{1}{N_2} \sum_{i=1}^{N_1} n_i = \frac{2896}{100} = 28.96$$

10. Найдем среднеквадратичную ошибку отдельного измерения по формуле (2):

$$\sigma_2 = \sqrt{\frac{1}{N_2} \sum_{i=1}^{N_2} (n_i - \overline{n_2})^2} = \sqrt{\frac{2983}{100}} \approx 5.46$$

11. Убедимся в справедливости формулы (3):

$$\sigma_2 \approx \sqrt{\overline{n_2}}$$
 $5.46 \approx \sqrt{28.96} = 5.38$

Таблица 3: Данные для построения гистограммы распределения числа срабатываний счетчика за 10 с.

Число импульсов	Число случаев	Доля случаев
5	1	0.0025
6	6	0.015
7	8	0.02
8	15	0.0375
9	24	0.06
10	28	0.07
11	35	0.0875
12	37	0.0925
13	44	0.11
14	45	0.1125
15	39	0.0975
16	34	0.085
17	24	0.06
18	24	0.06
19	9	0.0225
20	10	0.025
21	9	0.0225
22	5	0.0125
23	1	0.0025
26	2	0.005

Таблица 4: Данные для построения гистограммы распределения числа срабатываний счетчика за 10 с.

Величина ошибки, σ	Число случаев	Доля случаев, %	Теоретическая оценка, %
$\sigma_1 = \pm 3.71$ $2\sigma_1 = \pm 7.42$	277	69.3	70.5
	364	91.0	92.4

12. Сравним среднеквадратичные ошибки отдельных измерений для двух распределений: $\overline{n_1}=13.645; \sigma_1=3.71$ и $\overline{n_2}=28.96; \sigma_2=5.46$. Легко видеть, что хотя абсолютное значение σ во втором распределении больше, чем в первом, относительная полуширина второго распределения меньше:

$$\frac{\sigma_1}{\overline{n_1}} \cdot 100\% = \frac{3.71}{13.645} \cdot 100\% \approx 27.2, \quad \frac{\sigma_2}{\overline{n_2}} \cdot 100\% = \frac{5.46}{28.96} \cdot 100\% \approx 18.9$$

13. Определим стандартную ошибку величины $\overline{n_1}$ и относительную ошибку нахождения $\overline{n_1}$ для N=400 измерений по 10 с. По формуле (4)

$$\sigma_{\overline{n_1}} = \frac{\sigma_1}{\sqrt{N_1}} = \frac{3.71}{\sqrt{400}} \approx 0.19$$

Найдем относительную ошибку по первому равенству (6):

$$\varepsilon_{\overline{n_1}} = \frac{\sigma_{\overline{n_1}}}{\overline{n_1}} \cdot 100\% = \frac{0.19}{13.645} \cdot 100 \approx 1.39\%;$$

по последнему равенству (6):

$$\varepsilon_{\overline{n_1}} = \frac{100\%}{\sqrt{\overline{n_1}N_1}} \approx 1.35\%$$

Окончательный результат:

$$n_{t=10c} = \overline{n_1} \pm \sigma_{\overline{n_1}} = 13.65 \pm 0.19$$

14. Определим стандартную ошибку величины $\overline{n_2}$ и относительную ошибку нахождения $\overline{n_2}$ для $N_2=100$ измерений по 40 с. По формуле (4)

$$\sigma_{\overline{n_2}} = \frac{\sigma_2}{\sqrt{N_2}} = \frac{5.46}{\sqrt{100}} = 0.546$$

Найдем относительную ошибку по первому равенству (6):

$$\varepsilon_{\overline{n_2}} = \frac{\sigma_{\overline{n_2}}}{\overline{n_2}} \cdot 100\% = \frac{0.546}{28.96} \cdot 100\% \approx 1.89\%$$

по второму равенству (6):

$$\varepsilon_{\overline{n_2}} = \frac{100\%}{\sqrt{\overline{n_2}N_2}} \approx 1.86\%$$

Окончательный результат:

$$n_{t=40c} = \overline{n_2} \pm \sigma_{\overline{n_2}} = 28.96 \pm 0.55$$

15. Запишем все полученные результаты:

$$n_{t=10c} = 13.65 \pm 0.19$$
 $\varepsilon_{\overline{n_1}} = 1.39\%;$

$$n_{t=40c} = 28.96 \pm 0.55$$
 $\varepsilon_{\overline{n_2}} = 1.89\%;$

Таблица 5: Данные для построения гистограммы распределения числа срабатываний счетчика за 40 с.

Число импульсов	Число случаев	Доля случаев
34	1	0.001
35	0	0.000
36	0	0.000
37	0	0.000
38	1	0.001
39	0	0.000
40	1	0.001
41	1	0.001
42	0	0.000
43	2	0.002
44	3	0.003
45	4	0.004
46	3	0.003
47	3	0.003
48	3	0.003
49	5	0.050
50	5	0.050
51	3	0.030
52	2	0.020
53	4	0.040
54	3	0.030
55	5	0.050
56	9	0.090
57	5	0.050
58	4	0.040
59	6	0.060
60	2	0.020
61	5	0.050
62	1	0.010
63	4	0.040
64	4	0.040
65	5	0.050
66	2	0.020
67	0	0.000
68	1	0.010
69	0	0.000
70	0	0.000
71	0	0.000
72	1	0.010
73	0	0.000
74	0	0.000
75	1	0.010
76	0	0.000

Рис. 2: Гистограммы распределений среднего числа отсчетов за 10 и 40 с.

Вывод

В ходе работы было изучено устройство счетчика Гейгера. С его помощью были проведены измерения интенсивности радиационного фона, в ходе которых была получена таблица данных о количестве зарегистрированных частиц по интервалам времени, подчиняющаяся определенным статистическим закономерностям. С помощью методов математической статистики было вычислено, сколько частиц в среднем проходит через установку за 10 и 40 секунд, а также найдены стандартные, среднеквадратичные и относительные ошибки измерений.