Happy Feet : A Brand New Communication Method Using Feet Position

Team 16
Jio Oh, Donghyeon Lee, Jihyeong Hong

Problems in Life

버튼-문고리 맨손 접촉 피해야...코로나19 '숨은 감염' 막으려면

공중화장실 문고리 등서 병원균 13종 발견

손을 타고 퍼진다... 얼굴 안만지기, 버튼 누른 뒤 손씻기

"엘리베이터 버튼은 세균 덩어리"

미 대학 연구팀 "화장실 변기보다 40배 많아

Elevator buttons have 40x more bacteria than the toilet

이짜나..

Motivations

Data Generation

Feet Position Selection

- (1) Easily Done by Users
 - (a) Existing feet positions like ballet position
- (2) Well Classified

30 Candidates -> 15 Classes

Ballet Position

Data Generation

Handmade 400 variations per class

Input Data Overview

Model

Classification model: Efficient-Net

Table 1. EfficientNet-B0 baseline network – Each row describes a stage i with \hat{L}_i layers, with input resolution $\langle \hat{H}_i, \hat{W}_i \rangle$ and output channels \hat{C}_i . Notations are adopted from equation 2.

Stage i	Operator $\hat{\mathcal{F}}_i$	Resolution $\hat{H}_i \times \hat{W}_i$	#Channels \hat{C}_i	\hat{L}_i #Layers
1	Conv3x3	224×224	32	1
2	MBConv1, k3x3	112×112	16	1
3	MBConv6, k3x3	112×112	24	2
4	MBConv6, k5x5	56×56	40	2
5	MBConv6, k3x3	28×28	80	3
6	MBConv6, k5x5	28×28	112	3
7	MBConv6, k5x5	14×14	192	4
8	MBConv6, k3x3	7×7	320	1
9	Conv1x1 & Pooling & FC	7×7	1280	1

depth:
$$d=\alpha^{\phi}$$
 width: $w=\beta^{\phi}$ resolution: $r=\gamma^{\phi}$ s.t. $\alpha\cdot\beta^2\cdot\gamma^2\approx 2$ $\alpha>1, \beta>1, \gamma>1$

- STEP 1: we first fix $\phi=1$, assuming twice more resources available, and do a small grid search of α,β,γ based on Equation 2 and 3. In particular, we find the best values for EfficientNet-B0 are $\alpha=1.2,\beta=1.1,\gamma=1.15$, under constraint of $\alpha\cdot\beta^2\cdot\gamma^2\approx2$.
- STEP 2: we then fix α , β , γ as constants and scale up baseline network with different ϕ using Equation 3, to obtain EfficientNet-B1 to B7 (Details in Table 2).

Model

Classification model: Efficient-Net

Model	Top-1 Acc.	Top-5 Acc.	#Params	Ratio-to-EfficientNet	#FLOPs	Ratio-to-EfficientNet
EfficientNet-B0	77.1%	93.3%	5.3M	1x	0.39B	1x
ResNet-50 (He et al., 2016)	76.0%	93.0%	26M	4.9x	4.1B	11x
DenseNet-169 (Huang et al., 2017)	76.2%	93.2%	14M	2.6x	3.5B	8.9x
EfficientNet-B1	79.1%	94.4%	7.8M	1x	0.70B	1x
ResNet-152 (He et al., 2016)	77.8%	93.8%	60M	7.6x	11B	16x
DenseNet-264 (Huang et al., 2017)	77.9%	93.9%	34M	4.3x	6.0B	8.6x
Inception-v3 (Szegedy et al., 2016)	78.8%	94.4%	24M	3.0x	5.7B	8.1x
Xception (Chollet, 2017)	79.0%	94.5%	23M	3.0x	8.4B	12x
EfficientNet-B2	80.1%	94.9%	9.2M	1x	1.0B	1x
Inception-v4 (Szegedy et al., 2017)	80.0%	95.0%	48M	5.2x	13B	13x
Inception-resnet-v2 (Szegedy et al., 2017)	80.1%	95.1%	56M	6.1x	13B	13x
EfficientNet-B3	81.6%	95.7%	12M	1x	1.8B	1x
ResNeXt-101 (Xie et al., 2017)	80.9%	95.6%	84M	7.0x	32B	18x
PolyNet (Zhang et al., 2017)	81.3%	95.8%	92M	7.7x	35B	19x
EfficientNet-B4	82.9%	96.4%	19M	1x	4.2B	1x
SENet (Hu et al., 2018)	82.7%	96.2%	146M	7.7x	42B	10x
NASNet-A (Zoph et al., 2018)	82.7%	96.2%	89M	4.7x	24B	5.7x
AmoebaNet-A (Real et al., 2019)	82.8%	96.1%	87M	4.6x	23B	5.5x
PNASNet (Liu et al., 2018)	82.9%	96.2%	86M	4.5x	23B	6.0x
EfficientNet-B5	83.6%	96.7%	30M	1x	9.9B	1x
AmoebaNet-C (Cubuk et al., 2019)	83.5%	96.5%	155M	5.2x	41B	4.1x
EfficientNet-B6	84.0%	96.8%	43M	1x	19B	1x
EfficientNet-B7	84.3%	97.0%	66M	1x	37B	1x
GPipe (Huang et al., 2018)	84.3%	97.0%	557M	8.4x	-	-

We omit ensemble and multi-crop models (Hu et al., 2018), or models pretrained on 3.5B Instagram images (Mahajan et al., 2018).

Model - Transfer Learning

Fine-tuning (Lecture Slide)

Transfer the weights from the models trained on other tasks (with larger data)

General layers (feature extractor)

Task-specific layers (depends on output)

Size of output

Pre-Trained Efficient-b0 (w/ ImageNet)

Tuning with Footsteps

Results

Accuracy for Training / Validation Sets

```
Epoch 0/9
train Loss: 0.77 Acc: 71.0
valid Loss: 0.49 Acc: 83.2
==> best model saved - 0 / 83.2
Epoch 1/9
____
train Loss: 0.06 Acc: 97.9
valid Loss: 0.01 Acc: 100.0
==> best model saved - 1 / 100.0
Epoch 2/9
train Loss: 0.03 Acc: 99.0
valid Loss: 0.13 Acc: 94.8
Epoch 3/9
train Loss: 0.01 Acc: 99.6
valid Loss: 0.01 Acc: 99.9
Epoch 4/9
-----
train Loss: 0.01 Acc: 99.8
valid Loss: 0.01 Acc: 99.8
Epoch 5/9
train Loss: 0.01 Acc: 99.6
valid Loss: 0.01 Acc: 99.7
Epoch 6/9
-----
train Loss: 0.01 Acc: 99.8
valid Loss: 0.00 Acc: 100.0
Epoch 7/9
train Loss: 0.00 Acc: 100.0
valid Loss: 0.00 Acc: 100.0
Epoch 8/9
train Loss: 0.00 Acc: 99.9
valid Loss: 0.00 Acc: 99.9
Epoch 9/9
train Loss: 0.00 Acc: 100.0
valid Loss: 0.00 Acc: 100.0
Training complete in 13m 52s
Best valid Acc: 1 - 100.0
model saved
```

Validation Set Prediction Results

Results

Prediction Results for Newly Generated Data

Simple Demo

Food & Drink Orders

Drinks

Red Wine

Convenient & Save Labor Cost

Crosswalk Assistance for Blind People

Hard to Find

Foot Sensors on Braille Blocks

- Answering Questions in Classes
- Simple Polls in Discussions

- Simple Communications/Signals in Orchestra for Musicians
 - Mostly Out of Hands
 - Need of Water, Change of Songs/Sheets

- Expansion to Games
 - Pump Games
 - VR Games

Discussions/Further Development

- Filtering Wrong Shapes
 - Currently, wrong shapes are evaluated as valid

Discussions/Further Development

- Classification of Multiple Footprints
 - Multiple Users
 - Bounding Box Regression

Thank You