

MATHEMATICS: SPECIALIST 1 & 2 2017

TEST 5

Calculator Free

Time Allowed: 35 minutes

Total Marks: 28

Reading time: 2 minutes

1. [4 marks]

Find the equation of the function graphed below:

$y = \frac{1}{2} \csc \left(x - \frac{\pi}{3}\right)$

2.

[5 marks]
Solve the following equation
$$\sqrt{2}\sec(x+\frac{\pi}{3})=-2$$
, $0 \le x \le 2\pi$

Sec
$$(n + \frac{\pi}{3}) = -\frac{2}{\sqrt{2}}$$

$$\cos(n + \frac{\pi}{3}) = -\frac{1}{\sqrt{2}}$$

$$2 + \frac{\pi}{3} = \frac{3\pi}{4} \text{ of } \frac{\pi}{4}$$

$$2 = \frac{5\pi}{12} \text{ of } \frac{11\pi}{12}$$

$$2 = \frac{5\pi}{12} \text{ of } \frac{11\pi}{12}$$

3. [3,
$$\frac{3}{3} = 6$$
 marks]

(a) Draw a sketch of y = cos 2(x -
$$\frac{\pi}{3}$$
) 0 \leq x \leq 2 π

Vasympiotes VTP'S I shape

(b) Hence draw a sketch (on the same set of axis as part 'a') of
$$y = 2 \sec 2(x - \frac{\pi}{3})$$
 $0 \le x \le 2\pi$

4. [4 marks]

Prove the identity $\cot A + \tan A = \sec A \csc A$.

5. [2, 4 – 6 marks]

(a) Show how to express $5.\overline{25}$ as a rational number.

(2 marks)

$$\chi = 5.25$$
 $100 \pi = 525.2525$
 $\chi = 5.2525...$
 $99 \chi = 520$
 $\chi = \frac{520}{99}$ which is varioual.

(b) Prove by contradiction that $\sqrt[3]{4}$ is an irrational number.

(4 marks)

Assume that cube not of 4 is raharal so that
$$34 = \frac{a}{b}$$
, where a,b integers with no lommon factors $\sqrt{4 = \frac{a^3}{b^3}}$ $a^3 = 4b^3 = \lambda(2b^3) \sqrt{4b^3 = (24)^3}$ Hence a must be even \Rightarrow $a = 2n$, $n \in \mathbb{Z}$ $4b^3 = 8n^3$ $4b^3 = 8n^3$ \Rightarrow b must be even But $a = 2n^3 \Rightarrow b$ must be even But $a = 2n^3 \Rightarrow b$ must be even that they have no common factors that they have no common factors $a = 2n^3 \Rightarrow b =$

6. [2, 2 = 4 marks]

Find <u>all</u> the solutions to the following equations for x in radians

(a)
$$\sin x = \frac{\sqrt{3}}{2}$$

$$\chi = \begin{cases} \frac{1}{3} + 2\pi n & n \in \mathcal{Y} \\ \frac{2T}{3} + 2\pi n & n \in \mathcal{Y} \end{cases}$$

(b)
$$\cot x = \frac{1}{\sqrt{3}}$$

$$x = \frac{\pi}{3} + \pi n \cdot n \in \mathcal{U}$$

MATHEMATICS:SPECIALIST 1 & 2 2017

TEST 5

Calculator Assumed

Reading time: 2 minutes Time Allowed: 25 minutes

Total Marks: 22

7. [1, 3, 1 = 5 marks]

For the sequence 4, 13, 22, 31, ...,

(a) Find an expression (in simplest form) for the general term $\,T_n$, the nth term, of this sequence.

$$T_n = 4 + (n-1)9$$

= $9n - 5$

(b) Prove that the sum of any two consecutive terms of this sequence is always odd.

Let
$$T_n, T_{n+1}$$
 be consecutive terms of sequence
 $T_n + T_{n+1} = 9n - 5 + 9(n+1) - 5$
 $= 9n - 5 + 9n + 9 - 5$
 $= 18n - 1$

(c) Use a counter example to disprove that "The sum of any three terms of this sequence is always even."

8. [3, 3, 2, 3 = 11 marks]

The motion of a small body moving along a straight track was recorded by a video camera for 20 seconds. An analysis of the motion showed the distance, x cm, of the body from a fixed point O on its path t seconds after recording began was given by $x(t) = 3cos\frac{\pi t}{4} - 4sin\frac{\pi t}{4}$.

(a) The distance can also be given by $x(t) = a\sin(\frac{\pi t}{4} + b)$, where a and b are real constants. Determine the values of a and b.

$$asin \frac{\pi t}{4} cosb + acos \frac{\pi t}{4} sinb = 3 cos \frac{\pi t}{4} - 4 sin \frac{\pi t}{4}$$

 $acosb = -4$ $asinb = 3$ $\sqrt{2}$

(b) Graph y = x(t) on the axes below for $0 \le t \le 20$

(c) State the period and the amplitude of the graph of y = x(t)

$$P = \frac{2iT}{T_{\phi}} = 8 \text{ seconds } \sqrt{\frac{1}{2}}$$
 $\alpha = 5 \text{ cm}$

(d) Determine the percentage of the first 20 seconds that the body was at least four cm away from the point O. 7 - 6387 - 6 = (-6387)

9. [3, 3 = 6 marks]

(a) Use an appropriate product-to-sum identity to show that $(\sin 105^\circ) \times (\sin 15^\circ) = 0.25$.

$$LMS = SIN 10S \times SIN 15$$

$$= \frac{1}{2} (\omega S 90 - \omega S 1720)$$

$$= \frac{1}{2} (0 - (-\frac{1}{2}))$$

$$= \frac{1}{4} (0 - (-\frac{1}{2}))$$

(b) Use an appropriate product-to-sum identity to show that the equation below has two solutions in the domain $0^{\circ} \le x \le 180^{\circ}$.

$$\cos(x + 15^{\circ})\cos(x - 15^{\circ}) = \frac{\sqrt{3}}{4}$$

$$\frac{1}{2} \left(\cos(x + 15 + x - 15) + \cos(x + 15 - x + 15) \right)$$

$$= \frac{1}{2} \left(\cos 2x + \cos 30 \right) \sqrt{3}$$

$$= \frac{1}{2} \cos 2x + \frac{1}{2} \frac{\sqrt{3}}{2}$$

$$0 = \frac{1}{2} \cos 2x + \frac{1}{2} \frac{\sqrt{3}}{2}$$

$$0 = \frac{1}{2} \cos 2x + \frac{1}{2} \cos 2x +$$