

8.1 组件位置索引

8.1.1 前悬架

本车型的前悬架采用的是麦弗逊式独立悬架,其结构如图 8.1-1 所示。这种结构的特点是筒式减振器作为悬架杆系的一部分兼起主销作用,滑柱在作为主销的圆筒内上下移动,前支柱

上托盘与车身连接,取消了上摇臂。这种悬架结构简单,布置紧凑,横向刚度高,操纵稳定性好。

图 8.1-1 前悬架

- 1-前副车架总成
- 2-前副车架前安装螺栓
- 3-摆臂总成
- 4-球头连接螺栓
- 5-球头连接杆螺母
- 6-法兰盘开口螺母
- 7-开口销
- 8-前副车架后安装螺栓

- 9-法兰盘螺母
- 10-横向稳定杆拉杆及球头总成
- 11-前横向稳定杆
- 12-前横向稳定杆连接螺栓
- 13-前横向稳定杆压板
- 14-前减振器支柱总成
- 15-全金属六角法兰面锁紧螺母
- 16-螺母压板

- 17-六角法兰面螺栓
- 18-六角法兰面螺母
- 19-六角法兰面螺栓
- 20-发动机纵梁焊接总成
- 21-六角法兰面螺栓
- 22-全金属六角法兰面防转螺母
- 23-六角法兰面螺栓
- 24-发动机纵梁焊接总成
- 25-六角法兰面螺栓
- 26-全金属六角法兰面防转螺母

注: 19—22 为 CVT 纵梁; 23—26 为 MT/AT 纵梁 8.1.2 后悬架

本车型的后悬架采用的是拖曳臂附扭力杆悬架,如图 8.1-2 所示,拖曳臂式悬架的结构为车身部的主轴直接结合于车身,然后将主轴结合于悬架系统,再将此构件安装于车身,弹簧与减振器直立安装于车轴附近。悬架系统本身的运动,支臂以垂直车身中心线的轴,亦即平行于车轴的

轴为中心进行运动,车轴不倾斜于车身,在任一上下运动位置,车轴平行于车身,对车身外倾角变化为零。其最大的优点乃在于左右两轮的空间较大,而且车身的外倾角没有变化,减振器不发生弯曲应力,所以摩擦小,乘坐性佳,当其刹车时除了车头较重会往下沉外,拖曳臂悬架的后轮

- 1-后扭转梁总成
- 2-后稳定杆总成
- 3-法兰面螺栓
- 4-法兰面锁紧螺母
- 5-后扭转梁托架衬套总成
- 6-后扭转梁托架衬套总成
- 7-六角头螺栓和平垫圈组合件
- 8-六角法兰面螺母

- 9-后减振器总成 17-左上连接支架总成
- 10-平垫圈
- 11-六角加大法兰面螺母
- 12-防尘罩与限位块
- 13-后螺旋弹簧
- 14-限位盖
- 15-减振垫
- 16-弹簧橡胶垫

- 18-右上连接支架总成
- 19-六角法兰面螺栓
- 20-六角法兰面螺母
- 21-缓冲定位管
- 22-缓冲块
- 23-缓冲限位座
- 24-锁紧螺母

8.2 车轮定位参数说明

如果车轮的几何定位良好,车辆的燃油经济 性和轮胎的使用寿命都会得到改善。

1、 主销后倾角:

主销后倾角是从车辆侧面观察,转向轴最高 点偏离垂直方向的倾角,如图 8.2-1 所示。顶点 向后的倾角为正(+),而向前的倾角为负(-)。主 销后倾影响转向机构的方向控制,但不影响轮胎 磨损。若一个车轮较其他车轮的正主销后倾角 大,会使该车轮朝车辆中心线行驶,车辆将向正 主销后倾角最小的一侧偏向行驶。

2、 车轮外倾角:

外倾是从车辆前方观察的。车轮偏离垂直方 向的倾角,如图 8.2-2 所示。若车轮倾角顶点向

比亚迪泛车 BYD AUTO 则外倾为正(+);若车轮倾角向内,则外倾 为负(-)。外倾既影响方向控制,又影响轮胎磨 损。过量外倾会导致轮胎磨损,并使车辆朝最大 外倾行驶或侧偏行驶。

图 8.2-2 车轮外倾角

3、 车轮前束:

车轮前束是车轮偏离几何中心线 / 推力线向 里偏转,而负前束则是车轮向外偏转,如图 8.2-3 所示。设置前束的目的是保证车轮平行滚动。 前束也可补偿车辆向前行驶时, 车轮支架系统产 生的少量偏移。只有车轮设置前束合适时,车辆 行驶时车轮才能在路上平行滚动。

底盘

图 8.2-3

4、 推力角:

前轮引导或转向车辆,后车轮控制同辙。同 辙作用与推力角有关。推力角(如 8.2-4 所示)是 后轮行驶的轨迹与车身中心线的夹角。

图 8.2-4 推力角

8.3 车轮定位参数标准

本车型的车轮定位规格如表 8.3-1 所示

表 2 2-1 车轮完位卸权

车轮定位	前轮外倾	—0° 17	′± 45′			
	前轮前束	总前束: -0.5~3mm(左、右单侧 -0.25~1.5mm) 单侧前束角度: -0.02° ~0.14°				
	主销内倾	12° ± 45′				
	主销后倾	2° 36′ ± 45′				
	后轮外倾	—0.6° ± 30′				
	后轮前束	1.1 ± 3mm				
	车轮最大转角 内侧 39° 12′±3° 外侧 33° 04					

8.4 故障诊断

8.4.1 转矩转向

转矩转向指的是汽车在驱动时, 发动机传给

驱动轮的转矩在车辆高速行驶时引起跑偏/滑移 的现象。车辆转矩转向的故障诊断步骤如表 8.4-1 所示。

			衣 8.4-1	特
と 骤		操	作	
1	是否进行这车辆路试?			

\$4 0. 1 1 1(7E1(1)11(\$K) + 75K)					
步骤	操作	数值	是	否	
1	是否进行这车辆路试?		至步骤2	车辆路试	
2	检查驱动轮轮胎 驱动轮轮胎尺寸是否相同,胎面深度是否相等。		至步骤3	至步骤18	
3	调整轮胎压力至规定值 操作是否完成?		至步骤4		
4	检查前悬架		至步骤17	至步骤5	

BYD HUTO

D)		と 四 之 年			隹修手册
	BYD	人以下 前悬架是否有磨损或损坏的零件?			
	5	1. 在平直路面 (无隆起)路面上,以64~97km/h的速度驾驶车辆 2. 将变速器挂在空档,使车辆滑行 3. 暂时松开转向盘,并注意行进过程中的方向变化 4. 在各方向重复这种道路试验,以消除逆风影响。由路面隆起和逆风引起跑偏/滑移是正常的 变速器在空档时,车辆是否跑偏/滑移?		至步骤16	至步骤6
	6	1. 将变速器置于前进档 2. 在平直路面 (无隆起) 上将车辆平稳加速至64~97km/h。暂时放开转向盘 3. 在不同方向上重复这一路试, 以消除逆风影响。由路面隆起和逆风导致跑偏/滑移是正常的 行驶中车辆是否明显偏离直路?		至步骤7	车辆正常
	7	1. 调换前轮胎/车轮总成 2. 在平直路面(无隆起)上车辆以64~97km/h稳定加速。暂时放开转向 盘 3. 在不同方向上重复路试,以消除逆风影响。由路面隆起和逆风导致跑偏/ 滑移是正常的 车辆转矩转向是否在相反方向?	W	至步骤8	至步骤12
	8	1. 用左后轮胎总成调换左前轮胎总成 2. 车辆在平直路面(无隆起)以64~97km/h稳定加速。暂时放开转向盘 3. 在不同方向上重复路试,以消除逆风影响。由路面隆起和逆风导致跑偏/滑移是正常的 车辆是否仍有转矩转向?		至步骤9	车辆正常
	9	1. 用右后轮胎总成调换右前轮胎总成 2. 车辆在平直路面(无隆起)上以64~97kmA稳定加速。暂时放开转向盘 3. 在不同方向上重复路试,以消除逆风影响。由路面隆起和逆风导致跑偏/滑移是正常的 车辆是否仍有转矩转向?		至步骤10	车辆正常
	10	1. 将轮胎/车轮组件装固其原来的位置 2. 测量车轮中心到翼子板(后侧围)2向高度 左右差值是否低于规定值?	6mm	至步骤11	至步骤13
	11	测量变速器驱动机构的高度 左右差值是否低于规定值?	6mm	至步骤14	至步骤15
	12	测量车轮中心到翼子板(后侧围)Z向高度 左右差值是否低于规定值?	6mm	至步骤11	至步骤13
	13	1. 校正车轮中心到翼子板(后侧围)Z向高度 2. 校正外倾 3. 校正前束 4. 车辆在平直路面(无隆起)上以64~97km/h稳定加速。暂时松开转向盘 5. 在不同方向上重复路试,以消除逆风影响。由路面隆起和逆风导致跑偏/滑移是正常的 车辆是否仍有转矩转向?		至步骤11	车辆正常
	14	产生扭短转向的原因可能是车轮定位超出规范 操作是否完成?		车辆正常	
	15	1. 通过垫片调整或更换动力系安装来校正高度差 2. 车辆在平直路面(无隆起)上以64~97km/h稳定加速。暂时松开转向盘 3. 在不同方向上重复路试,以消除逆风影响。由路面隆起和逆风导致跑偏/滑移是正常的 车辆是否仍有转矩转向。		至步骤14	车辆正常
	16	进行跑偏/滑移的诊断 操作是否完成?		车辆正常	
	17	必要时,维修前悬架部件 操作是否完成?		至步骤5	
	18	安装相同尺寸、相同型号和相同胎面深度的驱动轮胎 操作是否完成?		至步骤3	

表 8.4-2 方向稳定性不良故障诊断

步骤	操作	是	否
1	车辆路面测试用于确认用户的报告 车辆是否表现为方向不稳?	至步骤2	系统正常
2	 确保所有轮胎的规格、制造厂家相同,螺线深度合适。必要时予以修理 确保所有轮胎充气到正确的压力 对车辆进行路试以证实用户的报告 车辆是否仍表现为方向不稳? 	至步骤3	系统正常
3	1. 检查前横向稳定杆和隔板的磨损和损坏。必要时予以修理 2. 参见前悬架中前横向稳定杆的更换 3. 对车辆进行路试以证实用户的报告 车辆是否仍表现为方向不稳?	至步骤4	系统正常
4	1. 检查左、右摆臂焊接总成、球接头和转向横拉杆的磨损和损坏,必要时予以修理 2. 对车辆进行路试以证实用户的报告 车辆是否仍表现为方向不稳?	至步骤5	系统正常
5	1. 检查车轮轴承/轮毂是否松动或有过大的径向跳动 2. 对车辆进行路试以证实用户的报告 车辆是否仍表现为方向不稳?	至步骤6	系统正常
6	1. 检查车辆翘头高度, 必要时予以修理 2. 对车辆进行路试以证实用户的报告 车辆是否仍表现为方向不稳?	至步骤7	系统正常
7	1. 检查车轮定位, 必要时予以调整 2. 对车辆进行路试以证实用户的报告 车辆是否仍表现为方向不稳?	至步骤8	系统正常
8	1. 检查转向齿轮和转向管柱是否松动 2. 对车辆进行路试以证实用户的报告 车辆是否仍表现为方向不稳?	至步骤1	系统正常

8.4.3 噪声诊断

从车辆前部或后部发出的由于车辆速度或行 悬架噪声的诊断如表 8.4-3所示。 驶路面所引起的车架有关的噪声称为悬架噪声。

表 8.4-3 悬架噪声诊断

步骤	操作	是	否
1	对车辆进行路试,努力再现车辆的噪声。必要时与相同的车辆进行比较, 以确定用户的报告是不是车辆正常运作特性 是否出现异常噪声?	至步骤2	系统正常
2	1. 将换档杆置于空档位置 2. 关断点火 3. 上下摇动车辆前部, 再现噪声 能否听到噪声?	至步骤3	至步骤4
3	1. 上下摇动车辆前部,用听筒确定发出噪声的位置 2. 必要时,维修或更换悬架部件 是否完成维修?	至步骤1	
4	1. 提升车辆并用合适的工具支撑 2. 检查所有前悬架部件是否有任何损坏 是否有零件损坏?	至步骤5	至步骤6
5	修理所有损坏的零件 是否完成维修?	至步骤1	

BYD	AUTO	3D 47[-	<u> </u>
6	1. 检查轮胎充气压力是否正常 2. 检查轮胎是否有不正常磨损 轮胎是否有不正常的胎面磨损?	至步骤7	至步骤9
7	1. 旋转轮胎 2. 进行车辆路试 现在噪声是否从车辆后部发出。	至步骤8	至步骤9
8	更换发出噪声的轮胎 维修是否完成?	至步骤1	
9	确保球接头和转向拉杆的润滑 维修是否完成?	至步骤1	至步骤10
10	确保所有车轮螺母锁紧到正确的规定值 是否紧固了车轮螺母?	至步骤1	至步骤11
11	确保减振器紧固件力矩达到正确的规定值 是否有松动的紧固件?	至步骤12	至步骤13
12	使用规定工具,按照力矩要求打紧紧固件 维修是否完成?	至步骤1	
13	1. 原地打方向盘 2. 上下晃动车辆 对比正常车辆,减振器是否有异响?	至步骤14	至步骤15
14	更换存在异响部位减振器 重复步骤13,判定是否存在异响?	至步骤17	至步骤1
15	按照用户报告,依25、30、40km/h的速度在颠簸路面低速行驶, 努力再现异响故障 听取减振器是否有异响?	至步骤16	至步骤1
16	更换存在异响部位减振器 重复步骤15,判定是否存在异响?	至步骤17	至步骤1
17	改变思路,从其他部位查找异响原因,排除减振器异响可能。		
18	用手推拉前横向稳定杆 前横向稳定杆是否松动?	至步骤19	至步骤23
19	1. 检查前横向稳定杆的所有紧固件,必要时紧固 2. 用于推拉前横向稳定杆 前横向稳定杆是否松动?	至步骤22	至步骤1
20	查看前横向稳定杆松动的位置 是否查出前横向稳定杆连接松动?	至步骤21	至步骤24
21	更换前横向稳定杆连杆 维修是否完成?	至步骤1	

	-
_	+++
11—	/
/KV	ш

(13 1 12)	BYD AUTO	121	1 -1 12 4 74
22	更换前横向稳定杆隔套和托架 维修是否完成。	至步骤1	
23	检查控制臂是否松动或移动 是否查到松动或移动?	至步骤24	至步骤26
24	1. 检查左、右摆臂焊接总成紧固件是否达到正确的紧固力 2. 检查左、右摆臂焊接总成是否松动 左、右摆臂焊接总成是否松动。	至步骤25	至步骤1
25	更换磨损或松动的左、右摆臂焊接总成衬套 维修是否完成。	至步骤1	
26	1. 使驱动轮离开地面, 起动发动机 2. 挂到传动档(车速不要高于55km/h) 3. 增加传动轮的转速直到噪声达到最高水平 4. 用听筒确定噪声源的位置 是否有齿轮轴承发出噪声?	至步骤27	至步骤7
27	更换车轮轴承维修是否完成。	至步骤1	

8.5 维修作业

8.5.1 车轮定位的调整

日子口 比亚迪汽车

1、 前轮外倾调整

前轮外倾的调整如图 8.5-1 所示。

举升车辆,从车辆上拆卸支柱。将支柱固 定在台钳上,并在侧面上锉孔。锉支柱与转向 节之间的螺栓孔可调节车轮外倾。

图 8.5-1 前轮外倾的调整

- 1 外倾角
- 2 锉上螺栓孔
- 3 锉下螺栓孔
- 2、 前轮前束调整

前轮前束的调整步骤如下:

- (1) 将转向盘调整到正前位置。
- (2) 如图 8.5-2 所示,松开拉杆上的六角 螺母,旋转转向横拉杆轴以得到合适的 前束角。

图 8.5-2 前轮前束的调整

- 转向横拉杆轴
- 锁紧六角螺母
- 转向横拉杆球头
- (3) 确认每个转向横拉杆端的转动圈数大 致相同。
- (4) 紧固锁紧螺母。

3B 轿车维修手册

BYD AUTO

8.5.2 零部件总成的更换

1、 前轮毂总成的更换

前轮毂总成的拆卸:

- (1) 升起并适当支撑车辆,拆卸车轮总成。
- (2) 如图 8.5-3 所示,断开车轮速传感器 插接器,从托架上拆卸车轮速度传感器。
- (3) 拆卸制动钳托架及制动钳拆下制动钳 体,并将制动钳固定在车身上,使得制动管 路不会因为的制动钳重量而弯曲甚至被损 坏拆卸制动盘。
- (4) 拆卸传动轴螺母。
- (5) 如图 8.5-4 所示,用三颗车轮螺母将 轮毂芯轴拆卸工具连接到车轮轴承/轮毂 上分离传动轴与车轮轴承。

图 8.5-4 分离车轮轴承 (6) 如图 8.5-5 所示,拆下车轮轴承。

图 8.5-5 车轮轴承的拆卸

前轮毂总成的安装与拆卸:

前轮毂总成轴承的安装按与拆卸相反的顺序进行。在安装前轮车速传感器时,确保接头 夹子与托架正确啮合。

2、 前横向稳定杆的更换

前横向稳定杆的拆卸:

断开相应连接。将前副车架整体落下,示 意图如图 8.5-6 所示。

图 8.5-3 分离车轮速度传感器

图 8.5-6

BYD AUTO (1) 拆下前横向稳定杆,如图 8.5-7:

(2) 安装:前横向稳定杆的安装按与拆卸相反顺序进行。

3、 转向节的更换

转向节的更换随制动器总成一起更换,参 照制动器相关章节。

4、 下摆臂总成的更换

下摆臂总成的拆卸:

- (1) 旋转转向盘以便移动相应前轮至最小侧位置。
- (2) 如图 8.5-8 所示,从球头螺柱上拆卸 开口销。拆下开槽螺母,敲动转向节使下 摆臂球头销从转向节上脱落。

拧下开槽螺母后, 敲动转向节使下 摆臂球头错从转向节上脱落

图 8.5-8

(3) 拆下 2 个螺栓和螺母,拆下前悬下摆臂总成,如图 8.5-9 所示。注意不要转动螺母,螺母为锁紧螺母,转动螺母会使其损坏。

底盘

3B 轿车维修手册

图 8.5-9

(4) 检查下摆臂总成

如图 8.5-10 所示,在安装螺母前,前后摇动球头销螺栓 5 次。

图 5.5-10

用扭力扳手,以 $2\sim4s$ 动一圈的转速连续转动螺母,在第五圈时记下拧紧力矩读数。拧紧力矩: $0.05\sim1.98$ Nm。

(5) 安装

临时拧紧前悬下摆臂总成。用 2 个螺栓和螺母,暂时紧固前悬下摆臂总成。不用打力矩,见图 8.5-11 所示。

图 8.5-11

用螺母将前悬下摆臂安装到转向节上,拧紧力矩: 120N。

图 8.5-12

安装开口销。注意:如果开口销的孔没有 对准,应进一步紧固螺母对准开口销的孔。

充分紧固前悬下摆臂总成。用 2 个螺栓紧固下摆臂,如上图 8.5-11 所示,拧紧力矩 218Nm。

注意: 不要转动螺母。

- 5、 减振器的更换 前减振器总成的拆卸:
- (1) 拆卸前轮。
- (2) 拆离制动软管。从减振器支架 (带 ABS 车型) 上拆螺栓、制动软管和 ABS 车 速传感器线束夹箍。如图 8.5-13 所示。

(3) 拆下带螺旋弹簧的前减振器。

拆下前横向稳定杆连杆与前减振器总成连接的螺母。拆卸前减振器总成与转向节连接的2个螺母和螺栓后 , 将减振器从转向节上拆下 , 如图 8.5-14 所示。

图 8.5-14

(4) 拆下带螺旋弹簧的前减振器,拆下安 装悬架支架的3个螺母,如图8.5-15所 示。

8.5-1

后减振器总成的拆卸:

- (1) 拆卸后轮。
- (2) 拆卸左右后减振器总成。如图 8.5-16。

用千斤顶顶起后桥车架。从后副车架上拆卸下连接后减振器总成的加厚法兰面螺母。拆下后减振器总成连接至车身的一个螺栓和2个螺母。将后减振器从车身上拆卸下来。

图 8.5-16

检查减振器总成:

压紧并拉长减振器推杆,在此期间检查有 无异常阻力或不正常响声。如有异常,更换新 的减振器。

安装:

安装的过程与拆卸过程相反, 拧紧力矩见 拆卸示意图上所标。