

Personality classification based on Spending Behavior

for Business Implications | Presented by Team 4

1 2 3 4 5 6 7

- 1 Problem Statement
- 1.1 Problem Statement

1.2 Data: Overview

- 2 Data Preparation
- 2. Data Cleaning
- Req. Information > New data frame
- Removed: "Na", "Savings"
- Separate CTR: area code & categories
- Absolute Spending

- 3 Exploratory Data Analysis
- 3.1 Exploratory Analysis
- State/Spending Histogram

- 4 Model Building
- 4.1 Separating transactions by categories(group by State)
- 4.2 Normalize Spending (Tax)
- 4.3 Category-wise spending

- **5** Modeling
- 5.1 K-means Clustering
- 5.2 Building model by hypothesis (for 3 Ques)
- 5.3 Logistic Regression
- 5.4 Linear Regression
 - 6 Output
- 6. Personality Estimation
 - **7** Business Insights
- 7. Business Insights

1.1 Problem Statement

"Studying consumer behavior is the best way to capture value from your consumer data"

McKinsey

McKinsey & Company

Objective

- Understand transaction pattern of 40 individuals, and classify them into different personality types based on their spending behavior, for business implications.
- Behavioural/Psychographic segmentation

1.2 Data Overview

Oper Dictionary

- 1,2. Checking account debit-main | 3,4. Checking account debit-main
- 5,6. Checking account debit/credit-linked | 7,8. Checking account debit/credit-ext

	TRANSNumber	TimeStamp	DA	Oper	CTR
0	1	2010-05-11	-588.30	3	CT19881_Superfluous
1	2	2010-05-13	661.03	7	NaN
2	3	2010-05-14	980.57	7	NaN
3	4	2010-05-20	-566.35	1	PA11761_Superfluous
4	5	2010-05-23	-770.32	1	NY22638_Investment
5	6	2010-05-25	974.05	7	NaN

CTR Dictionary

1. First two letters: US State

- 4. Three Categories:
 - **Essentials**(utility bills, food)
- Superfluous
 (expensive items, non-business)
- Investment (book, education)
- 2. Five Digits: Machine number
- 3. Underscore (separator)

TRANS Number Time Stamp

Data Preparation

2. Data Preparation

- Removing the missing value("savings" &
 "Spending without CTR info) and blank columns
- Creating new columns for spreated CTR info
- Absolute value of spending.

```
xls = pd.ExcelFile('Personal Financial Example.xlsx')
wb = openpyxl.load_workbook('Personal Financial Example.xlsx')
sheets = wb.get_sheet_names()

for i in range(len(sheets)):
    df = pd.read_excel(xls,sheets[i])
    df = df[['TRANSNumber', 'TimeStamp', 'DA', 'Oper', 'CTR']]
    df = df.dropna()
    df['CTR_1'] = df['CTR'].str[0:2]
    df['CTR_2'] = df['CTR'].str[8:]
    df['DA'] = abs(df['DA'])

tem1 = df.groupby(['CTR_1', 'CTR_2']).describe()
    tem2 = tax_calculate(tem1)
    tem3 = consum_por(tem2)
    portions[i,:] = tem3
```

	TRANSNumber	TimeStamp	DA	Oper	CTR
0	1	2010-05-11	-588.30	3	CT19881_Superfluous
1	2	2010-05-13	661.03	7	NaN
2	3	2010-05-14	980.57	7	NaN
3	4	2010-05-20	-566.35	1	PA11761_Superfluous
4	5	2010-05-23	-770.32	1	NY22638_Investment
5	6	2010-05-25	974.05	7	NaN

	TRANSNumber	TimeStamp	DA	Oper	CTR	CTR_1	CTR_2
8	9	2016-12-10	67.63	1	PA77402_Investment	PA	Investment
9	10	2016-12-14	46.78	5	CT28315_Investment	СТ	Investment
10	11	2016-12-15	20.92	5	NJ73559_Essencials	NJ	Essencials
11	12	2016-12-16	37.09	5	NJ13624_Investment	NJ	Investment
15	16	2016-12-17	31.59	1	NY22389_Investment	NY	Investment
17	18	2016-12-22	48.89	1	NY42686_Investment	NY	Investment
19	20	2016-12-25	10.99	5	NY15737_Superfluous	NY	Superfluous
23	24	2017-01-02	23.70	3	NJ53834_Essencials	NJ	Essencials
26	27	2017-01-07	66.17	3	PA26119_Investment	PA	Investment
27	28	2017-01-09	4.95	5	NJ68810_Superfluous	NJ	Superfluous
33	34	2017-01-16	15.21	1	CT19366_Essencials	СТ	Essencials

3.1 EDA-Overall Data distribution

	TRANSNumber	TimeStamp	DA	Oper	CTR	CTR_1	CTR_2	
8	9	2016-12-10	67.63	1	PA77402_Investment	PA	Investment	
9	10	2016-12-14	46.78	5	CT28315_Investment	СТ	Investment	
10	11	2016-12-15	20.92	5	NJ73559_Essencials	NJ	Essencials	
11	12	2016-12-16	37.09	5	NJ13624_Investment	NJ	Investment	nq 🌓
15	16	2016-12-17	31.59	1	NY22389_Investment	NY	Investment	Spending
17	18	2016-12-22	48.89	1	NY42686_Investment	NY	Investment	S
19	20	2016-12-25	10.99	5	NY15737_Superfluous	NY	Superfluous	
23	24	2017-01-02	23.70	3	NJ53834_Essencials	NJ	Essencials	
26	27	2017-01-07	66.17	3	PA26119_Investment	PA	Investment	
27	28	2017-01-09	4.95	5	NJ68810_Superfluous	NJ	Superfluous	
33	34	2017-01-16	15.21	1	CT19366_Essencials	СТ	Essencials	

3.3 Variables correlations

```
df.corr()
pd.scatter_matrix(df, figsize=(6, 6))
plt.show()
```


© 2016 Jetfabrik Multipur pose meme. Am Nignia Neser ved.

WWW.

4.1 Separating Transaction by categories

```
for i in range(len(sheets)):
    df = pd.read_excel(xls,sheets[i])
    df = df[['TRANSNumber','TimeStamp','DA','Oper','CTR']]
    df = df.dropna()
    df['CTR_1'] = df['CTR'].str[0:2]
    df['CTR_2'] = df['CTR'].str[8:]
    df['DA'] = abs(df['DA'])

tem1 = df.groupby(['CTR_1','CTR_2']).describe()
    tem2 = tax_calculate(tem1)
    tem3 = consum_por(tem2)
    portions[i,:] = tem3
```

```
tem1
                   TRANSNumber
                                                                                                                 Oper
                   count mean
                                                                         max count mean
            CTR 2
                    14.0 245.285714 150.457471 34.0 150.00 202.5 359.75 498.0
                                                                               14.0 30.162857
                                                                                                  38.8175 60.84
                                                                                                                  14.0 3.428571 1.785165
       Essencials
                     16.0 282.562500 146.022358 10.0 196.50 293.5 393.75 526.0
                                                                                16.0 35.284375
                    20.0 339.100000 183.504740 47.0 173.25 387.0 490.00 568.0 20.0 30.107000 ...
                    28.0 288.428571 187.162917 11.0 141.00 280.0 452.50 569.0
                                                                               28.0 33.856071 ...
                     19.0 280.789474 136.796515 12.0 185.00 296.0 388.00 491.0
                                                                               19.0 32.962105 ...
                                                                                                  48.2850 68.30
                    23.0 314.304348 164.632493 28.0 197.00 371.0 448.00 551.0
                                                                               23.0 33.490435
                                                                                                  46.4100 68.68
                     17.0 293.352941 172.696606 75.0 172.00 244.0 410.00 554.0
                                                                               17.0 37.996471 ...
                    17.0 325.294118 184.205308 16.0 211.00 350.0 468.00 556.0
                                                                               17.0 36.475882 ... 51.0300 60.44
                                                                                                                 17.0 2.647059 1.617914
                     19.0 305.631579 167.211181 20.0 202.50 286.0 440.00 559.0
                                                                               19.0 34.098947 ...
                                                                                                  54.4550 69.42
                                                                                                                  19.0 2.789474 1.750522
                     14.0 272.500000 150.875777 68.0 154.00 255.5 354.00 550.0
                                                                                14.0 41.303571
                                                                                                  54.1900 66.54
                                                                                                                  14.0 3.428571 1.603567
                    23.0 264.347826 167.887031 9.0 145.50 235.0 423.00 548.0
                                                                               23.0 39.024348
                                                                                                  57.6400 69.34
                    18.0 292.500000 159.576738 54.0 206.50 246.5 421.25 566.0 18.0 41.185556 ... 59.6800 69.21
12 rows × 24 columns
```

- Used groupby to separate transactions by different areas and different categories.
- Found the values by location of State and expenditure category.

4.2 Normalizing Spending using tax rates

```
for i in range(len(sheets)):
    df = pd.read_excel(xls,sheets[i])
    df = df[['TRANSNumber','TimeStamp','DA','Oper','CTR']]
    df = df.dropna()
    df['CTR_1'] = df['CTR'].str[0:2]
    df['CTR_2'] = df['CTR'].str[8:]
    df['DA'] = abs(df['DA'])

tem1 = df.groupby(['CTR_1','CTR_2']).describe()
    tem2 = tax_calculate(tem1)
    tem3 = consum_por(tem2)
    portions[i,:] = tem3
```

- Aim to eliminate external influence on spending behaviour.
- Taxes can hinder spending that an individual would actually spend.
- Therefore, there is a need to remove influence of taxes on spending so that actual spending behaviour can be determined.

4.3 Catergory Wise Spending

```
for i in range(len(sheets)):
    df = pd.read_excel(xls,sheets[i])
    df = df[['TRANSNumber','TimeStamp','DA','Oper','CTR']]
    df = df.dropna()
    df['CTR_1'] = df['CTR'].str[0:2]
    df['CTR_2'] = df['CTR'].str[8:]
    df['DA'] = abs(df['DA'])

    tem1 = df.groupby(['CTR_1','CTR_2']).describe()
    tem2 = tax_calculate(tem1)
    tem3 = consum_por(tem2)
    portions[i,:] = tem3
```

```
tem3

array([0.05206454, 0.06960556, 0.07424017, 0.11718112, 0.07741615, 0.09376525, 0.0815313, 0.08164723, 0.07886565, 0.07106005, 0.11238057, 0.09024242])
```

 Spending percentage of each category, which will be later used in modeling.

5.1 K-means clustering

```
from sklearn.cluster import KMeans
kmeans_q1 = KMeans(n_clusters=5, random_state=1).fit(portions)
kmeans_q1.labels_

plt.figure(figsize=(10,8))
plt.scatter(portions[:, 0], portions[:, 1], c=kmeans_q1.labels_, s=50, cmap='viridis')
centers = kmeans_q1.cluster_centers_
plt.scatter(centers[:, 0], centers[:, 1], c='r', s=800, alpha=0.5);
plt.title("K-means Clustering Visualization for Problem One")
```

- "Portions" matrix with 12 columns
- Different random state

5.1 K-means clustering

5.2 Building Model by Hypothesis

This is how each customer spends on each category based on cluster separation. Figure on the right shows the total portions to the first question: I am a life of party. The second question is: I like order. The third one is: I have vivid imagination.

Based on the question, our group thinks people who love party will spend more on superfluous rather than others. So we assign a 0.5 wight to superfluous spending and 0.25 to the others. Figure on the right will show the result of weighted values after assigning weights.

	Category	Cluster 1	Cluster 2	Cluster 3	Cluster 4	Cluster 5
0	Essentials Spending Average Portion	0.338962	0.326538	0.352287	0.333563	0.441820
1	Investment Spending Average Portion	0.349952	0.360666	0.323983	0.305061	0.314466
2	Superfluous Spending Average Portion	0.301064	0.310877	0.358272	0.345600	0.273029

	Category	Cluster 1	Cluster 2	Cluster 3	Cluster 4	Cluster 5
0	Weighted Values for Question 1	0.322760	0.327244	0.348203	0.332456	0.325586
1	Weighted Values for Question 2	0.332234	0.331157	0.346707	0.329446	0.367784
2	Weighted Values for Question 3	0.334982	0.339689	0.339631	0.322321	0.335945

5.2 Building Model by Hypothesis

Based on the weighted values for each question, we have created the answer sheet by sorting out the values, and assigned them with options A, B, C, D, E. The figure on the right shows a quick look of the answer sheet.

Later we will use this answer sheet to find the five attributes in the personality test by SAS

	Q1	Q2	Q3
0	В	D	E
1	E	A	E
2	A	C	A
3	C	E	D
4	D	Α	E
5	В	В	E
6	В	D	В
7	В	D	E
8	D	C	D
9	A	C	Α
10	В	В	E
11	В	В	Α
12	A	С	Α
13	E	Α	E
14	С	C	D
15	D	Α	С
16	E	В	E
17	Α	C	Α
18	A	Α	Α
19	A	C	Α
20	D	Α	D

5.4 Linear Regression

Based on previous assignments, we generate the linear regression model for predicting the outcomes for five personality attributes.

```
** So we have the linear regression model for the five personalities:

**Percentage of Openness = -0.02158 *Answer1 + 0.00724 * Answer2 + 0.00927* Answer2 + 0.52174;

** Percentage of Concientiousness = -0.00239 *Answer1 - 0.00528 * Answer2 + 0.00644* Answer2 + 0.42196;

** Percentage of Extraversion = -0.01409 *Answer1 - 0.0001538 * Answer2 - 0.00010867* Answer2 + 0.60706;

** Percentage of Agreebleness = 0.0077 *Answer1 + 0.00553 * Answer2 - 0.00655* Answer2 + 0.21775;

** Percentage of Neuroticism = 0.00955 *Answer1 + 0.00589 * Answer2 - 0.01142* Answer2 + 0.59424;
```

5.3 Logistic Regression

В	C	D	Е	F	G	Н	I	J	K	L	M	N	0	P
0_A	0_B	0_C	0_D	0_E	1_A	1_B	1_C	1_D	1_E	2_A	2_B	2_C	2_D	2_E
0	1	0	0	0	0	0	0	1	0	0	0	0	0	1
0	0	0	0	1	1	0	0	0	0	0	0	0	0	1
1	0	0	0	0	0	0	1	0	0	1	0	0	0	0
0	0	1	0	0	0	0	0	0	1	0	0	0	1	0
0	0	0	1	0	1	0	0	0	0	0	0	0	0	1
0	1	0	0	0	0	1	0	0	0	0	0	0	0	1
_	-	_		_		_	-			- L			2	-

```
data new_test;
set new_test;
if Openness < 0.5 and Openness > 0
then op = 0;
if Openness > 0.5 and Openness < 1
then op = 1;</pre>
```

5.3 Logistic Regression

We split the outcomes for five personality attributes as binary outcomes and the answers for the three questions as 15 binary options.

```
** Here we genrate the logistic regression for personality tests. beta_n are the intercepts

**logit(Openness) = -0.0256 * beta1 ;

**logit(Extraversion) = 2.2336 * as05 - 3.3322* beta1;

**logit(Conscientiousness) = -2.9022 * as05 + 4.4427 *beta1;

** logit(Agreebleness) = -1 * as12 -2.2618 * as15 + 3.4657* beta1;

**logit(Neuroticism) = 0.3943 * as01 + 0.1519 * as02 + 0.6967 * as04 - 0.5485 * as05 + 0.1554 * as11 - 0.2161 * as12 - 0.3924 * as15 -
```

6 Personality type Estimation

Openness	Extraversion	Conscientiousness	Agreebleness	Neuroticism
-0.0256	-3. 3322	4.4427	3. 4657	0.6053
-0.0256	-1.0986	1.5405	3.4657	0.0603
-0.0256	-3. 3322	4. 4427	3. 4657	-2. 2886
-0.0256	-3.3322	4. 4427	1. 2039	-0.3924
-0.0256	-3.3322	4. 4427	3. 4657	1. 3058
-0.0256	-3, 3322	4. 4427	1. 9924	0.3892
-0.0256	-3, 3322	4. 4427	3. 4657	-2.506
-0.0256	-3.3322	4. 4427	3.4657	0.6053
-0.0256	-3. 3322	4. 4427	3. 4657	0.6967
-0.0256	-3. 3322	4. 4427	3.4657	-2. 2886
-0.0256	-3. 3322	4. 4427	1. 9924	0.3892
-0.0256	-3.3322	4. 4427	1. 9924	-2.747
-0.0256	-3.3322	4. 4427	3. 4657	-2. 2886
-0.0256	-1.0986	1.5405	3. 4657	0.060
-0.0256	-3. 3322	4. 4427	3. 4657	
-0.0256	-3.3322	4. 4427	3.4657	0. 9532
-0.0256	-1.0986	1.5405	1.9924	-0.3112
-0.0256	-3. 3322	4. 4427	3.4657	-2. 2886
-0.0256	-3. 3322	4. 4427	3. 4657	-2. 1333
-0.0256	-3, 3322	4. 4427	3. 4657	-2. 2886
-0.0256	-3.3322	4. 4427	3. 4657	0.852
-0.0256	-3. 3322	4. 4427	1. 2039	-0.392
-0.0256	-3. 3322	4. 4427	3. 4657	-1. 9862
-0.0256	-3.3322	4. 4427	3.4657	-2.375
-0.0256	-3.3322	4. 4427	3. 4657	0.852
-0.0256	-3. 3322	4. 4427	1. 9924	0.3892
-0.0256	-3.3322	4. 4427	3. 4657	0.1519
-0.0256	-3.3322	4. 4427	3.4657	-2.500
-0.0256	-3.3322	4. 4427	3. 4657	-2.53
-0.0256	-3 3333	4 4497	3 4657	-2 2886

JPENNESS	Conclentiousness	Extraversion	Agreebleness	Neuroticism
55.39%	36. 39%	57. 22%	22. 25%	57. 98%
46.74%	37. 25%	53.45%	22.90%	59.08%
53.12%	39. 73%	58. 82%	23. 55%	61.00%
53. 03%	36. 26%	55. 67%	24. 23%	60.67%
48.90%	37.49%	54. 86%	22. 13%	58. 12%
53. 94%	37.44%	57. 53%	21.15%	56. 80%
52.61%	38. 32%	57. 25%	24. 22%	61.41%
53.74%	37. 56%	57. 38%	22. 35%	58. 53%
49.42%	37.08%	54. 57%	23. 89%	60.44%
53. 12%	39. 73%	58. 82%	23. 55%	61.00%
53.94%	37.44%	57. 53%	21. 15%	56.80%
50. 23%	40.02%	57. 57%	23.77%	61.37%
53.12%	39. 73%	58. 82%	23. 55%	61.00%
46.74%	37. 25%	53. 45%	22. 90%	59.08%
51.58%	37. 32%	55. 97%	23. 12%	59.49%
47.05%	38. 78%	54. 88%	23.44%	60.41%
47.47%	36. 73%	53. 30%	23. 46%	59.67%
53.12%	39. 73%	58. 82%	23. 55%	61.00%
51.67%	40. 79%	59. 13%	22. 44%	59.83%
53. 12%	39. 73%	58, 82%	23, 55%	61.00%

7 Business Applications

- **Content Marketing:** Produce more valuable, targeted content by focusing on your audience's unique interests and needs.
- **Display Ads:** Choosing to advertise on the sites you know the target customers visit, based on their behaviour.
- **Real-life example:** This is some real bank data, so when we have each customer's personality, we can focus on recommending him specific products. For instance, if the customer is mainly a investing guy, the bank will recommend more financing products to him.