

Curso "Electromagnetismo"

Tema 2: Electrostática

Movimiento de cargas en un campo eléctrico *E*

J.E. Prieto

Fuente principal de figuras: "Physics for scientists and engineers" (5th edition), P.A. Tipler, G. Mosca

Movimiento de cargas en un campo eléctrico

- \boldsymbol{E} ejerce \boldsymbol{F} sobre carga q: $\boldsymbol{F} = q \boldsymbol{E}$ \boldsymbol{F} produce una aceleración \boldsymbol{a} de q: $\boldsymbol{a} = \boldsymbol{F}/m$

$$a = \begin{bmatrix} F & -eE \\ m & m \end{bmatrix}$$

Movimiento de una carga paralelo a un campo eléctrico

• Ejemplo 21.10 de Tipler: electrón moviéndose paralelamente

a un campo *E uniforme:*

$$v = v_0 + at$$

$$x = x_0 + v_0 t + \frac{1}{2} a t^2, \dots$$

$$a = \begin{bmatrix} F \\ m \end{bmatrix} = \begin{bmatrix} -eE \\ m \end{bmatrix}$$

- Si *E* es constante, *a* es constante:
- → Movimiento uniformemente acelerado
- → válidas las fórmulas "usuales" para a constante

Pero ¡ojo!: ¡ **E** no siempre cte. ! Ejemplo: campo de *Coulomb* ; no lo es !

Movimiento de una carga perpendicular a un campo eléctrico

• Ejemplo 21.11 de Tipler: electrón moviéndose perpendicular-

mente a un campo *E uniforme:*

$$a = \begin{bmatrix} F \\ m \end{bmatrix} = \begin{bmatrix} -eE \\ m \end{bmatrix}$$

- Si \boldsymbol{E} es constante, \boldsymbol{a} es constante y perpendicular a v_0 :
- → Composición de movimiento uniformemente acelerado en y con movimiento uniforme en x:
 "Tiro parabólico"

$$v_{y} = a_{y}t$$

$$y = y_{0} + \frac{1}{2}a_{y}t^{2}$$

$$v_{x} = v_{0x}$$

$$x = x_{0} + v_{0x} t$$

También aquí: ¡ *E* debe ser cte. !

Importante: Movimiento de cargas en campos eléctricos

- El campo electrostático es conservativo:
 - SIEMPRE es válida la Ley de la Conservación de la Energía

$$E_{tot} = E_{kin} + U = \frac{1}{2}mv^2 + U = cte$$

con una energía potencial U:

$$U(r) = qV(r)$$