微积分 A (2)

姚家燕

第 25 讲

在听课过程中,

严禁使用与教学无关的电子产品!

第 25 讲

第6章函数项级数

§1. 函数项级数的收敛性

- 定义 1. 设 $I \subseteq \mathbb{R}$ 为非空集合, 而 $\{v_n\}$ 为定义在 I 上的一列函数, 称为 I 上的函数列.
- (1) 设 $x_0 \in I$. 若数列 $\{v_n(x_0)\}$ 收敛, 则称点 x_0 为上述函数列的收敛点, 否则称为发散点.
- (2) 记 *J* 是由上述函数列的所有收敛点组成的集合, 称为该函数列的收敛域.

(3) $\forall x \in J$, 定义 $v(x) = \lim_{n \to \infty} v_n(x)$. 由此得到的 完义在 I 上的函数 v 称为函数别的极限函数

定义在 J 上的函数 v 称为函数列的极限函数. (4) 称函数列 $\{v_n\}$ 在 J 上一致收敛到它的极限 函数 v, 如果 $\forall \varepsilon > 0$, $\exists N > 0$ 使得 $\forall n > N$ 以及 $\forall x \in J$, 均有 $|v_n(x) - v(x)| < \varepsilon$. 也即 $\forall \varepsilon > 0$, $\exists N > 0$ 使 $\forall n > N$, 均有 $\sup |v_n(x) - v(x)| < \varepsilon$. 而这又等价说 $\lim_{n\to\infty} \sup_{x\in J} |v_n(x) - v(x)| = 0.$

(5) 称函数列 $\{v_n\}$ 在 I 上一致有界, 若 $\exists M > 0$ 使得 $\forall n \ge 1$ 以及 $\forall x \in I$, 均有 $|v_n(x)| \le M$.

例 1. $\forall n \geqslant 1$ 及 $\forall x \in [0,1]$, 令 $v_n(x) = x^n$. 则

$$\lim_{n \to \infty} v_n(x) = v(x) = \begin{cases} 0, & \text{ if } x \in [0, 1), \\ 1, & \text{ if } x = 1. \end{cases}$$

又 $\forall n \geq 1$, 我们有

$$\sup_{x \in [0,1]} |v_n(x) - v(x)| = \sup_{x \in [0,1)} x^n = 1,$$

故函数列 $\{x^n\}$ 在 [0,1] 上收敛, 但非一致收敛.

作业题: 第 6.1 节第 271 页第 7 题.

定义 2. 设 $I \subseteq \mathbb{R}$ 为非空集合, 而 $\{u_n\}$ 为定义 在 I 上的一列函数, 我们称形式和

$$\sum_{n=1}^{\infty} u_n(x) = u_1(x) + u_2(x) + \dots + u_n(x) + \dots$$

为 I 上的函数项级数.

- (1) 设 $x_0 \in I$. 若级数 $\sum_{n=1}^{\infty} u_n(x_0)$ 收敛, 则称 x_0 为上述函数项级数的收敛点, 否则称为发散点.
- (2) 记 *J* 为上述函数项级数所有收敛点组成的集合, 称为该函数项级数的收敛域.

(3)
$$\forall x \in J$$
, 令 $S(x) = \sum_{n=1}^{\infty} u_n(x)$, 由此得到 J 上函数 S , 称为上述函数项级数的和函数.

(4) 称函数项级数 $\sum_{n=1}^{\infty} u_n$ 在 J 上为一致收敛,

如果 $\{S_n\}$ 在 J 上一致收敛, 其中 $S_n = \sum_{k=1}^n u_k$, 即 $\forall \varepsilon > 0$, $\exists N > 0$ 使得 $\forall x \in J$ 以及 $\forall n > N$,

$$|S_n(x) - S(x)| = \left| \sum_{k=1}^n u_k(x) - S(x) \right| = \left| \sum_{k=n+1}^\infty u_k(x) \right| < \varepsilon,$$

而这等价于说 $\lim_{n\to\infty} \sup_{x\in J} \left| \sum_{k=n+1}^{\infty} u_k(x) \right| = 0.$

(5) 若函数项级数 $\sum_{n=1}^{\infty} u_n$ 在 J 上一致收敛, 则 $\{u_n\}$ 在 J 上一致趋于 0.

证明: 由题设以及 Cauchy 准则立刻知, $\forall \varepsilon > 0$, $\exists N > 0$ 使得 $\forall m \geq n > N$ 以及 $\forall x \in J$, 均有

$$\left|\sum_{k=n}^{m} u_k(x)\right| < \varepsilon.$$

特别地, $\forall n > N$ 以及 $\forall x \in J$, 均有 $|u_n(x)| < \varepsilon$, 这表明函数列 $\{u_n\}$ 在 J 上一致趋于 0.

例 2. 求 $\sum_{n=1}^{\infty} \frac{(-1)^n}{n} \left(\frac{1}{2x+1}\right)^n$ 的收敛域.

解: $\forall x \in \mathbb{R} \setminus \{-\frac{1}{2}\}$, 我们均有

$$\lim_{n \to \infty} \left| \frac{(-1)^n}{n} \left(\frac{1}{2x+1} \right)^n \right|^{\frac{1}{n}} = \lim_{n \to \infty} \frac{1}{\sqrt[n]{n}|2x+1|} = \frac{1}{|2x+1|}.$$

由根值判别法可知, 原级数在 |2x+1| > 1 也即 x > 0 或 x < -1 时收敛, 而 $x \in (-1, 0)$ 时发散. 当 x=0 时, 原级数变为 $\sum_{n=0}^{\infty} \frac{(-1)^n}{n}$, 则由 Leibniz 判别法可知它收敛. 当x = -1 时, 原级数变为 $\sum_{n=1}^{\infty} \frac{1}{n}$, 发散. 故收敛域为 $(-\infty, -1) \cup [0, +\infty)$.

例 3. 几何级数 $\sum_{n=1}^{\infty} x^{n-1}$ 为 \mathbb{R} 上的函数项级数,

它的收敛域为 (-1,1), 而和函数为 $S(x) = \frac{1}{1-x}$.

另外, $\forall n \geq 1$, 我们有

$$\sup_{x \in (-1,1)} \left| \sum_{k=1}^{n} x^{k-1} - S(x) \right| = \sup_{x \in (-1,1)} \left| \frac{1 - x^n}{1 - x} - \frac{1}{1 - x} \right|$$
$$= \sup_{x \in (-1,1)} \frac{|x|^n}{|1 - x|} = +\infty.$$

由此可知几何级数 $\sum_{n=1}^{\infty} x^{n-1}$ 在 (-1,1) 上收敛, 但在 (-1,1) 上不为一致收敛.

函数列, 函数项级数与含参广义积分

由定义立刻知, 研究函数项级数 $\sum_{n=1}^{\infty} u_n(x)$ 其实就等同于研究它的部分和函数列 $\{S_n(x)\}$, 其中 $S_n(x) = \sum_{k=1}^n u_k(x)$. $\forall n \geq 1$ 以及 $\forall y \in [n-1,n)$, 令 $f(x,y) = u_n(x)$, 则我们有

$$\sum_{n=1}^{\infty} u_n(x) = \lim_{N \to +\infty} \sum_{n=1}^{N} u_n(x) = \lim_{N \to +\infty} \sum_{n=1}^{N} \int_{n-1}^{n} f(x, y) \, dy$$
$$= \lim_{N \to +\infty} \int_{0}^{N} f(x, y) \, dy = \int_{0}^{+\infty} f(x, y) \, dy.$$

三者关系

上述关系式表明:

函数列, 函数项级数, 以及无穷限含参广义积分三者统一!

其中一个收敛或绝对收敛或一致收敛, 相应的 另外两个也是如此. 于是关于上述理论的任何 定理均有三种不同表述, 例如 Cauchy 准则.

定理 1. (Weierstrass 判别法) 若存在非负常数项收敛级数 $\sum_{n=1}^{\infty} M_n$ 使得 $\forall n \geq 1$ 以及 $\forall x \in J$,均有 $|u_n(x)| \leq M_n$,那么函数项级数 $\sum_{n=1}^{\infty} u_n$ 在 J 上绝对收敛且一致收敛.

注: 通常称 $\sum_{n=1}^{\infty} M_n$ 为 $\sum_{n=1}^{\infty} u_n(x)$ 的控制级数.

证明: 方法 1. 直接应用关于广义含参积分一致收敛性的 Weierstrass 判别法.

方法 2. $\forall x \in J$, 由比较判别法知级数 $\sum_{n=1}^{\infty} u_n(x)$

绝对收敛.
$$\sum_{n=1}^{\infty} M_n$$
 收敛, 则 $\lim_{n\to\infty} \sum_{k=n+1}^{\infty} M_k = 0$.

但 $\forall n \geq 1$, 我们有

$$0 \leqslant \sup_{x \in J} \left| \sum_{k=n+1}^{\infty} u_k(x) \right| \leqslant \sum_{k=n+1}^{\infty} \sup_{x \in J} |u_k(x)| \leqslant \sum_{k=n+1}^{\infty} M_k,$$

于是由夹逼原理可得
$$\lim_{n\to\infty} \sup_{x\in J} \left| \sum_{k=n+1}^{\infty} u_k(x) \right| = 0.$$

因此所证结论成立.

例 4. 问 $\sum_{n=1}^{\infty} x^2 e^{-nx}$ 是否在 $[0,+\infty)$ 上一致收敛?

解: $\forall n \ge 1$ 以及 $\forall x \in \mathbb{R}$, 令 $u_n(x) = x^2 e^{-nx}$, 则 $u'_n(x) = 2xe^{-nx} - nx^2 e^{-nx} = (2 - nx)xe^{-nx}$.

故 u'_n 在 $(0,\frac{2}{n})$ 上严格正而在 $(\frac{2}{n},+\infty)$ 上严格负,则 u_n 在 $[0,+\infty)$ 上的最大值点为 $x=\frac{2}{n}$,也即 $\forall x \geqslant 0$,我们有 $0 \leqslant u_n(x) \leqslant \frac{4}{n^2}e^{-2}$. 而 $\sum\limits_{n=1}^{\infty}\frac{4}{n^2}e^{-2}$ 收敛,于是由 Weierstrass 判别法可知原函数项

级数在 $[0,+\infty)$ 上一致收敛.

定理 2. (Dirichlet 判别准则) 如果函数项级数

 $\sum\limits_{n=1}^{\infty}u_n$ 的部分和函数列为一致有界, 而函数列 $\{v_n\}$ 单调且一致趋于 0, 则 $\sum\limits_{n=1}^{\infty}u_nv_n$ 一致收敛.

定理 3. (Abel 判别准则) 若函数项级数 $\sum_{n=1}^{\infty} u_n$ 为一致收敛, 而函数列 $\{v_n\}$ 单调并且一致有界,则函数项级数 $\sum_{n=1}^{\infty} u_n v_n$ 一致收敛.

例 5. 证明: $\sum_{n=1}^{\infty} \frac{\sin(nx)}{n}$ 在 $[\delta, 2\pi - \delta]$ 上一致收敛, 其中我们假设 $\delta \in (0, \pi)$.

证明: $\forall n \ge 1$ 以及 $\forall x \in [\delta, 2\pi - \delta]$, 我们有

$$\left|\sum_{k=1}^{n} \sin(kx)\right| \leqslant \left|\frac{\cos(n+\frac{1}{2})x - \cos\frac{x}{2}}{2\sin\frac{x}{2}}\right| \leqslant \frac{1}{\sin\frac{x}{2}} \leqslant \frac{1}{\sin\frac{\delta}{2}},$$

而 $\{\frac{1}{n}\}$ 单调且一致趋于 0, 于是由 Dirichlet 判别准则知原函数项级数在 $[\delta, 2\pi - \delta]$ 上一致收敛.

作业题: 第6.1 节第 270 页第 2 题第 (3), (4) 题,

第 271 页第 3 题第 (1), (3) 题.

§2. 一致收敛的函数项级数的和函数的性质

定理 1. 设 $I \subseteq \mathbb{R}$ 为非空集合, 而 $\{v_n\}$ 为定义 在 I 上的连续函数列, 并且在 I 上一致收敛到 函数 v, 则 v 在 I 上连续.

证明: 固定 $x_0 \in I. \forall \varepsilon > 0$, 由一致收敛性可知, $\exists N > 0$ 使得 $\forall n \geqslant N$ 以及 $\forall x \in I$, 均有

$$|v_n(x) - v(x)| < \frac{\varepsilon}{3}.$$

由于 v_N 在点 x_0 连续, 则 $\exists \delta > 0$ 使得 $\forall x \in I$, 当 $|x - x_0| < \delta$ 时, 均有 $|v_N(x) - v_N(x_0)| < \frac{\varepsilon}{3}$.

由此我们立刻可得

$$|v(x) - v(x_0)| \le |v(x) - v_N(x)| + |v_N(x) - v_N(x_0)| + |v_N(x_0) - v(x_0)| < \varepsilon,$$

故v在点 x_0 连续.由 x_0 的任意性知所证成立.

注:一致收敛的连续函数序列的极限函数连续,即在一定条件下,数列极限与函数极限可交换:

$$\lim_{I\ni x\to x_0} \lim_{n\to\infty} v_n(x) = \lim_{I\ni x\to x_0} v(x) = v(x_0)$$
$$= \lim_{n\to\infty} v_n(x_0) = \lim_{n\to\infty} \lim_{I\ni x\to x_0} v_n(x).$$

推论. 如果定义在 (a,b) 上的连续函数列 $\{v_n\}$ 在 (a,b) 的任意闭子区间上一致收敛到函数 v,则函数 v 在区间 (a,b) 上连续且为上述函数列在 (a,b) 上的极限函数.

证明: 任取 $x \in (a,b)$, 则存在 (a,b) 的闭子区间 [c,d] 使得 $x \in (c,d)$. 又由于连续函数序列 $\{v_n\}$ 在 [c,d] 上一致收敛到函数 v, 则 v 在 [c,d] 上连续. 特别地, v 在点 x 处连续且数列 $\{v_n(x)\}$ 收敛到 v(x). 故所证结论成立.

定理 2. (极限与级数求和可交换性)

假设 $I \subseteq \mathbb{R}$ 为非空集合, 而 $\{u_n\}$ 为 I 上的连续函数组成的函数列使函数项级数 $\sum_{n=1}^{\infty} u_n$ 在 I 上一致收敛到函数 S, 则 S 在 I 上连续.

证明: $\forall n \geq 1$ 以及 $\forall x \in I$, $\diamondsuit S_n(x) = \sum_{k=1}^n u_k(x)$. 则函数列 $\{S_n\}$ 在 I 上连续且在 I 上一致收敛 到函数 S, 故 S 在 I 上连续.

注: 只需假设在每点邻域上有一致收敛性.

例 1. 证明: $S(x) = \sum_{n=1}^{\infty} \frac{\sin(nx)}{n}$ 在 $(0, 2\pi)$ 上连续.

证明: 取 $\delta \in (0,\pi)$. $\forall n \geqslant 1$ 以及 $\forall x \in [\delta, 2\pi - \delta]$,

令 $u_n(x) = \frac{\sin(nx)}{n}$, 则 u_n 在 $[\delta, 2\pi - \delta]$ 上连续.

又函数项级数 $\sum_{n=1}^{\infty} \frac{\sin(nx)}{n}$ 在 $[\delta, 2\pi - \delta]$ 上为一致收敛, 于是由极限与级数求和的可交换性可知

和函数S在 $[\delta, 2\pi - \delta]$ 上连续, 进而 $S \in \mathscr{C}(0, 2\pi)$.

作业题: 第 6.2 节第 281 页第 4 题.

定理 3. (积分与级数求和可交换性)

假设 $\{u_n\}$ 为 [a,b] 上的连续函数组成的函数列 使得函数项级数 $\sum_{n=1}^{\infty} u_n$ 在 [a,b] 上一致收敛到

函数 S, 则 S 在 I 上连续且 $\forall x \in [a,b]$, 均有

$$\int_a^x S(t) dt = \int_a^x \left(\sum_{n=1}^\infty u_n(t) \right) dt = \sum_{n=1}^\infty \int_a^x u_n(t) dt,$$

并且右边作为变量 x 的函数项级数在 [a,b] 上为一致收敛.

证明: $\forall \varepsilon > 0$, 由题设条件立刻知, $\exists N > 0$ 使得 $\forall m > N$ 以及 $\forall t \in [a, b]$, 我们均有

$$\left| \sum_{n=1}^{m} u_n(t) - S(t) \right| < \frac{\varepsilon}{b - a + 1}.$$

于是 $\forall x \in [a,b]$, 我们有

$$\left| \sum_{n=1}^{m} \int_{a}^{x} u_{n}(t) dt - \int_{a}^{x} S(t) dt \right| = \left| \int_{a}^{x} \left(\sum_{n=1}^{m} u_{n}(t) - S(t) \right) dt \right|$$

$$\leq \int_{a}^{x} \left| \sum_{n=1}^{m} u_{n}(t) - S(t) \right| dt \leq \int_{a}^{x} \frac{\varepsilon}{b - a + 1} dt < \varepsilon.$$

因此所证结论成立.

例 2. 计算 $\sum_{n=1}^{\infty} \int_0^1 (e^x - 1) x^2 e^{-nx} dx$.

解: $\forall n \ge 1$ 以及 $\forall x \in [0,1]$, 我们有

$$0 \leqslant u_n(x) := (e^x - 1)x^2 e^{-nx}$$

$$\leqslant (e - 1)x^2 e^{-nx} \leqslant \frac{4}{n^2} e^{-2} (e - 1).$$

而 $\sum_{n=1}^{\infty} \frac{4}{n^2} e^{-2} (e-1)$ 收敛, 由 Weierstrass 判别法可知, 函数项级数 $\sum_{n=1}^{\infty} u_n$ 在 [0,1] 上一致收敛.

又通项 u_n 均为连续函数,于是由积分与级数

$$\sum_{n=1}^{\infty} \int_{0}^{1} (e^{x} - 1)x^{2}e^{-nx} dx$$

$$= \int_{0}^{1} \sum_{n=1}^{\infty} (e^{x} - 1)x^{2}e^{-nx} dx$$

$$= \int_{0}^{1} (e^{x} - 1)\frac{x^{2}e^{-x}}{1 - e^{-x}} dx = \int_{0}^{1} x^{2} dx = \frac{1}{3}.$$

例 3. 计算 $\sum_{n=0}^{\infty} \int_0^{\frac{\pi}{4}} (\sin^n x) (\cos x) dx$.

解: $\forall n \geq 0$ 以及 $\forall x \in [0, \frac{\pi}{4}]$, 我们有

$$0 \leqslant u_n(x) := (\sin^n x)(\cos x) \leqslant \sin^n x \leqslant \left(\frac{\sqrt{2}}{2}\right)^n.$$

而 $\sum_{n=1}^{\infty} \left(\frac{\sqrt{2}}{2}\right)^n$ 收敛, 由 Weierstrass 判别法可知,

函数项级数 $\sum_{n=0}^{\infty} u_n$ 在 $\left[0, \frac{\pi}{4}\right]$ 上一致收敛.

又因通项 u_n 均为连续函数,于是由积分与级数

求和可交换性立刻可得

$$\sum_{n=0}^{\infty} \int_0^{\frac{\pi}{4}} (\sin^n x) (\cos x) \, dx = \int_0^{\frac{\pi}{4}} \sum_{n=0}^{\infty} (\sin^n x) (\cos x) \, dx$$
$$= \int_0^{\frac{\pi}{4}} \frac{\cos x}{1 - \sin x} \, dx = -\log(1 - \sin x) \Big|_0^{\frac{\pi}{4}}$$
$$= -\log\left(1 - \frac{\sqrt{2}}{2}\right).$$

作业题: 第 6.2 节第 281 页第 2 题.

定理 4. (求导与级数求和可交换性)

设 $\{u_n\}$ 为 (a,b) 上的连续可导函数列. 假设

- (1) $\exists x_0 \in (a,b)$ 使得级数 $\sum_{n=1}^{\infty} u_n(x_0)$ 收敛,
- (2) 函数项级数 $\sum_{n=1}^{\infty} u'_n$ 在 (a,b) 上一致收敛,

那么 $\sum_{n=1}^{\infty} u_n$ 在 (a,b) 上内闭一致收敛, 和函数 S

在 (a,b) 上连续可导且 $\forall x \in (a,b)$, 我们有

$$\sum_{n=1}^{\infty} u'_n(x) = S'(x).$$

证明: 由于 $\{u'_n\}$ 为区间 (a,b) 上的连续函数列, 而函数项级数 $\sum_{n=1}^{\infty} u'_n$ 在 (a,b) 上一致收敛, 于是 由极限与级数求和可交换性可知,它的和函数 σ 在 (a, b) 上连续, 进而再利用积分与级数求和 可交换性可知, $\forall x \in (a,b)$, 我们有

$$\int_{x_0}^x \sigma(t) dt = \sum_{n=1}^\infty \int_{x_0}^x u'_n(t) dt = \sum_{n=1}^\infty (u_n(x) - u_n(x_0)),$$

且右边的函数项级数在(a,b)上内闭一致收敛.

又由题设可知级数 $\sum_{n=1}^{\infty} u_n(x_0)$ 收敛, 则由级数的 线性性可知 $\sum_{n=1}^{\infty} u_n(x)$ 也收敛, 设其和为 S(x). 故 $\int_{x_0}^x \sigma(t) dt = S(x) - S(x_0)$. 又 σ 连续, 于是 S 可导且 $S'(x) = \sigma(x) = \sum_{n=1}^{\infty} u'_n(x)$, 从而 S 为 连续可导函数, 故所证结论成立.

注: 为保证和函数为连续可导, 只需假设相关的级数在 (a,b) 的任意的闭子区间上为一致收敛, 也即 内闭一致收敛.

例 4. 证明: $S(x) = \sum_{n=1}^{\infty} \frac{\cos(nx)}{n^2} \in \mathscr{C}^{(1)}(0, 2\pi)$.

证明: $\forall n \geqslant 1$ 以及 $\forall x \in (0, 2\pi)$, $\diamondsuit u_n(x) = \frac{\cos(nx)}{n^2}$,

则 u_n 在 $(0, 2\pi)$ 上连续可导, 且 $u'_n(x) = -\frac{\sin(nx)}{n}$.

又 $\sum_{n=1}^{\infty} u'_n$ 在 $(0, 2\pi)$ 上内闭一致收敛并且常数项级数 $\sum_{n=1}^{\infty} \frac{\cos(n\pi)}{n^2} = \sum_{n=1}^{\infty} \frac{(-1)^n}{n^2}$ 收敛, 由此知和函数 S 在 $(0, 2\pi)$ 上连续可导.

作业题: 第 6.2 节第 281 页第 6 题.

§3. 幂级数, 函数的幂级数展开

定义 1. 设 $\{a_n\}$ 为常数项数列, 而 $x_0 \in \mathbb{R}$. 我们 称如下形式的函数项级数

$$\sum_{n=0}^{\infty} a_n (x - x_0)^n$$

为幂级数. 出于简便, 我们通常取 $x_0 = 0$, 一般情形可由此特殊情形通过平移而得到.

定理 1. (Abel 定理) 设 $x_0 \in \mathbb{R} \setminus \{0\}$, 而 $\{a_n\}$ 为 常数项数列使得 $\{a_n x_0^n\}$ 有界, 则幂级数 $\sum_{n=0}^{\infty} a_n x^n$ 在 $(-|x_0|,|x_0|)$ 内绝对收敛且内闭一致收敛.

证明: 由题设可知, $\exists M > 0$ 使得 $\forall n \geq 1$, 均有 $|a_n x_0^n| \leq M$. 从而 $\forall x \in (-|x_0|, |x_0|)$, 我们有

$$|a_n x^n| = |a_n x_0^n| \left| \frac{x}{x_0} \right|^n \le M \left| \frac{x}{x_0} \right|^n.$$

又 $\left|\frac{x}{x_0}\right| < 1$,则由比较判别法知 $\sum_{n=0}^{\infty} |a_n x^n|$ 收敛.

固定 $r \in (0, |x_0|)$. $\forall x \in [-r, r]$, 我们有

一致收敛, 故所证结论成立.

$$|a_n x^n| = |a_n x_0^n| \left| \frac{x}{x_0} \right|^n \leqslant M \left| \frac{r}{x_0} \right|^n.$$

又因为 $|\frac{r}{x_0}| < 1$,于是由 Weierstrass 判别法可知 幂级数 $\sum_{n=0}^{\infty} a_n x^n$ 在 [-r,r] 上一致收敛,进而知 该幂级数在 $(-|x_0|,|x_0|)$ 的任意的闭子区间上

推论 1. 如果幂级数 $\sum_{n=0}^{\infty} a_n x^n$ 在点 $x_0 \in \mathbb{R} \setminus \{0\}$ 收敛, 那么它在 $(-|x_0|, |x_0|)$ 内绝对收敛, 并且 在 $(-|x_0|, |x_0|)$ 的任意闭子区间上一致收敛.

推论 2. 如果幂级数 $\sum_{n=0}^{\infty} a_n x^n$ 在点 $x_0 \in \mathbb{R} \setminus \{0\}$ 发散, 那么它在 $[-|x_0|, |x_0|]$ 外发散, 即 $\forall x \in \mathbb{R}$, 若 $|x| > |x_0|$, 则级数 $\sum_{n=0}^{\infty} a_n x^n$ 发散.

评注

- (1) 幂级数 $\sum_{n=0}^{\infty} a_n x^n$ 在点 x_0 处收敛并不意味着它在点 $-x_0$ 处收敛. 例如, 由 Leibniz 判别准则立刻知幂级数 $\sum_{n=1}^{\infty} (-1)^n \frac{x^n}{n}$ 在点 x=1 处收敛,但它却在点 x=-1 处发散.
- (2) 由前面讨论可知, 幂级数 $\sum_{n=0}^{\infty} a_n x^n$ 的收敛域是一个区间. 事实上, 只能有以下三种可能性:

- (a) 仅在点 x = 0 处收敛;
- (b) 在任意点 $x \in \mathbb{R}$ 收敛;
- (c) $\exists R > 0$ 使得当 |x| < R 时,幂级数在点x 处收敛;而当 |x| > R 时,幂级数在点x 处发散;至于在点 $x = \pm R$ 处,幂级数可为收敛或发散.我们将幂级数收敛域的半径称为它的收敛半径.在上述三种情形.幂级数的收敛半径分别为:

 $0, +\infty, \pi R.$

(3) 由幂级数的收敛半径的定义, 我们立刻可得, $R \in [0, +\infty]$ 恰好为幂级数 $\sum_{n=0}^{\infty} a_n x^n$ 的收敛半径 当且仅当下列性质成立:

- (a) 当 |x| < R 时, 级数 $\sum_{n=0}^{\infty} a_n x^n$ 收敛;
- (b) 当 |x| > R 时, 级数 $\sum_{n=0}^{\infty} a_n x^n$ 发散.
- 我们称 (-R, R) 为收敛开区间. 为得到收敛域, 还需讨论幂级数在点 $x = \pm R$ 处的收敛性.

谢谢大家!