Leveraging Differentiable Programming in the Inverse Problem of Neutron Stars

Thibeau Wouters, Peter T. H. Pang, Rahul Somasundaram, Ingo Tews, Tim Dietrich, and Chris Van Den Broeck

t.r.i.wouters@uu.nl

() in y

Extreme Matter 17/03/2025

Introduction – Motivation

Neutron stars (NSs) offer unique probes of the high-density regime of the equation of state (EOS) of dense nuclear matter.

Inverse problem of NSs: infer the EOS from observations of NSs (masses, radii, tidal deformabilities, . . .)

Introduction – Differentiable programming with JAX

Main bottleneck: solving Tolman-Oppenheimer-Volkoff equations

Solution: differentiable programming with JAX [1]

- Automatic differentiation to compute gradients of functions
- Use efficient MCMC algorithm and GPU accelerators

Our contributions:

- \bullet Fast inference: \sim 0.24 ms per TOV call, ~ 1 h for full MCMC run
- Novel tool to study EOS: gradient descent on NS observables

Available open source: JESTER (Stsunhopang/jester)

Methods – Equation of state parametrization

Lower density ($< 1 - 2 n_{sat}$): metamodel [2, 3]

- Taylor expansion of energy per nucleon E/A
- ullet Nuclear empirical parameters $(extit{E}_{ ext{sym}}, extit{L}_{ ext{sym}}, \, \ldots, \, extit{E}_{ ext{sat}}, extit{K}_{ ext{sat}}, \, \ldots)$

Higher density: parametrize $c_s^2(n)$ with grid points and interpolation [4]

Methods – Bayesian inference

Bayesian inference: get posterior of EOS parameters $\theta_{\rm EOS}$ with Markov chain Monte Carlo (MCMC) and NS data d

$$p(\theta_{\rm EOS}|d) \propto p(d|\theta_{\rm EOS})p(\theta_{\rm EOS})$$

Computationally expensive: solve TOV equations for many $\theta_{\rm EOS}!$

- JAX: compile code, run on GPU
- flowMC [5, 6]: MCMC with normalizing flows as proposal distributions

With this, we achieve (on NVIDIA H100 GPU)

- ullet \sim 0.24 ms per TOV call
- Complete MCMC run in ~ 1 h

Results – Validation and scaling

- EOS constraints: nuclear theory ($\chi_{\rm EFT}$), NS observations (heavy PSRs, NICER, GW170817)
- Extend Koehn+ [7] with complete EOS sampling
- Scales well with number of parameters (more $c_s^2(n)$ grid points)

Constraint	$R_{1.4} [\mathrm{km}]$	
	Koehn+	This work
χeft	$12.11^{+1.69}_{-3.39}$	$12.59^{+2.24}_{-3.51}$
Radio timing	$13.70^{+1.41}_{-2.17}$	$13.71^{+1.19}_{-1.88}$
PSR J0030+0451	$13.17^{+1.65}_{-2.24}$	$13.48^{+1.42}_{-2.15}$
PSR J0740+6620	$13.39^{+1.57}_{-1.72}$	$13.79^{+1.26}_{-1.73}$
$\mathrm{GW}170817^\dagger$	$11.98^{+1.08}_{-1.09}$	$12.40^{+1.33}_{-1.49}$
All	$12.26^{+0.80}_{-0.91}$	$12.62^{+1.04}_{-1.11}$

Results – Measure $\chi_{\rm EFT}$ breakdown

Theory predicts $\chi_{\rm EFT}$ to break down at a density $n_{\rm break}$, around 1-2 $n_{\rm sat}$ – can we determine this with NSs?

- Wide, agnostic prior on $n_{\rm break}$: U(1,4) $n_{\rm sat}$
- Only consider heavy PSRs, NICER, GW170817

Methods – Variational inference

Alternative to Bayesian inference: optimization with gradients

- $\hat{R}_i, \hat{\Lambda}_i$: "target" tidal deformabilities at masses M_i
- Loss function $L(heta_{\mathrm{EOS}})$: relative error in tidal deformability Λ
- Gradient descent: $\boldsymbol{\theta}^{(i+1)} \leftarrow \boldsymbol{\theta}^{(i)} \gamma \nabla L(\boldsymbol{\theta}^{(i)})$
- Efficiently invert a complete NS family to find the EOS

$$L(\boldsymbol{\theta}_{\text{EOS}}) = \frac{1}{N} \sum_{i=1}^{N} \left| \frac{\Lambda_i(\boldsymbol{\theta}_{\text{EOS}}) - \hat{\Lambda}_i}{\hat{\Lambda}_i} \right|$$

$$\begin{array}{c} 2.75 \\ 2.50 \\ 2.25 \\ 2.25 \\ 2.75 \\ 2.75 \end{array}$$

Results – degeneracy in metamodel parametrization

Only consider metamodel parameters (no $c_s^2(n)$ extension)