KELOMPOK 4 PRAKTIKUM

MONITORING SUHU DAN KELEMBABAN MENGGUNAKAN SIMULATOR ESP8266 DAN SENSOR DHT11

Disusun Guna Memenuhi Tugas Ulangan Tengah Semester

Mata Kuliah: Sistem Berbasis Internet of Thinks

Dosen Pengampu: Solichudin, S.Pd, M.T.

Disusun Oleh:

Wildan Nur Yusufi 2208096045

Muhammad Lukmanul Khakim 2208096068

Irvan Nurmutakim 2208096070

PROGRAM STUDI TEKNOLOGI INFORMASI FAKULTAS SAINS DAN TEKNOLOGI UNIVERSITAS ISLAM NEGERI WALISONGO SEMARANG

2025

A. Tujuan Percobaan

- 1. Mahasiswa mampu menggunakan ESP8266
- 2. Mahasiswa mampu menggunakan DHT11
- 3. Mahasiswa mampu membuat program untuk DHT11 ke ESP8266

B. Desain Circuit

C. Tabel Kabel Jumper

Komponen	Pin ESP8266	Keterangan
DHT11	D5 (GPIO14)	Data DHT11
	3V3	VCC DHT11
	GND	GND DHT11
LCD 16x2 (I2C)	D1 (GPIO5)	SCL (Serial Clock)
	D2 (GPIO4)	SDA (Serial Data)
	5V / 3V3	VCC LCD
	GND	GND LCD

D. Coding

```
//
                                //
//
     PRAKTIKUM IOT MONITORING SUHU DAN KELEMBAPAN
   TEKNOLOGI INFORMASI - FAKULTAS SAINS DAN TEKNOLOGI //
           UIN WALLISONGO SEMARANG
//
                                                  //
//
//
// KELOMPOK: 4
                            //
                           //
// ANGGOTA:
      1. Irvan Nurmutakim
//
      2. M. Lukmanul Khakim
//
      3. Wildan Nur Yusufi
//
#include <DHT.h>
                           // Library untuk sensor DHT11
#include <ESP8266WiFi.h>
                               // Library untuk koneksi WiFi menggunakan
ESP8266
#include <ThingSpeak.h>
                             // Library untuk berkomunikasi dengan
ThingSpeak
#include <Wire.h>
                           // Library I2C untuk komunikasi dengan LCD
#include <LiquidCrystal_I2C.h>
                               // Library untuk mengendalikan LCD dengan
I2C
// GANTI SESUAI DENGAN JARINGAN WIFI
const char* ssid = "Poco F3"; // Ganti dengan SSID WiFi Anda
const char* password = "hallokak"; // Ganti dengan password WiFi Anda
// DHT sensor
#define DHTPIN D5 // DHT11 terhubung dengan PIN D5 pada NodeMCU
DHT dht(DHTPIN, DHT11);
                                 // Inisialisasi sensor DHT11 pada pin D5
// ThingSpeak
```

```
unsigned long myChannelNumber = 2930089; // Ganti dengan Channel ID
ThingSpeak Anda
const char* myWriteAPIKey = "UGXB57Q9X9LYZLY6"; // Ganti dengan API Key
ThingSpeak Anda
WiFiClient client; // Client WiFi untuk menghubungkan ke ThingSpeak
// Inisialisasi LCD 16x2 dengan I2C (alamat default 0x27)
LiquidCrystal_I2C lcd(0x27, 16, 2); // Alamat default 0x27, sesuaikan jika perlu
void setup() {
 Serial.begin(9600); // Mulai komunikasi serial pada baud rate 9600
 delay(10);
 // Inisialisasi DHT sensor
 dht.begin(); // Mulai sensor DHT11 untuk membaca suhu dan kelembapan
 // Inisialisasi LCD
 lcd.init();
             // Menggunakan init() untuk inisialisasi LCD
 lcd.backlight(); // Mengaktifkan lampu latar LCD
 // Menampilkan pesan pembuka pada LCD
 lcd.clear();
 lcd.setCursor(0, 0);
 lcd.print("MONITORING SUHU");
 lcd.setCursor(0, 1);
 lcd.print("DAN KELEMBAPAN");
 delay(3000);
 lcd.clear();
 lcd.setCursor(0, 0);
 lcd.print("KELOMPOK 4");
 lcd.setCursor(0, 1);
 lcd.print("IOT SK");
```

```
delay(2000);
lcd.clear();
lcd.setCursor(0, 0);
lcd.print("IRVAN, WILDAN");
lcd.setCursor(0, 1);
lcd.print("dan LUKMAN");
delay(2000);
lcd.clear();
lcd.setCursor(0, 0);
lcd.print("Prodi TI");
lcd.setCursor(0, 1);
lcd.print("UIN Walisongo");
delay(2000);
// Koneksi ke WiFi
WiFi.begin(ssid, password); // Koneksi ke jaringan WiFi
Serial.println();
Serial.println("Menghubungkan ke WiFi...");
 // Menampilkan pesan di LCD saat menghubungkan ke WiFi
lcd.clear();
lcd.setCursor(0, 0);
lcd.print("Menghubungkan");
lcd.setCursor(0, 1);
lcd.print("ke Wifi.....");
while (WiFi.status() != WL_CONNECTED) { // Tunggu hingga WiFi terhubung
 delay(500);
 Serial.print(".");
}
// Jika WiFi terhubung, tampilkan pesan di LCD
```

```
if (WiFi.status() == WL_CONNECTED) {
  lcd.clear();
  lcd.setCursor(0, 0);
  lcd.print("WiFi Terhubung");
  lcd.setCursor(0, 1);
  lcd.print(WiFi.localIP()); // Tampilkan IP lokal setelah terhubung
  Serial.println("");
  Serial.println("WiFi Terhubung");
  delay(3000); // Menunggu beberapa detik untuk melihat status
 }
 // Jika gagal terhubung ke WiFi, tampilkan pesan di LCD
 else {
  lcd.clear();
  lcd.setCursor(0, 0);
  lcd.print("Gagal Terhubung");
  lcd.setCursor(0, 1);
  lcd.print("Ke WiFi");
  delay(2000);
 }
 // Inisialisasi ThingSpeak
 ThingSpeak.begin(client); // Inisialisasi ThingSpeak dengan client WiFi
}
void loop() {
 // Membaca suhu dan kelembapan dari sensor DHT11
 float kelembapan = dht.readHumidity(); // Membaca kelembapan
 float suhu = dht.readTemperature(); // Membaca suhu
 // Mengecek apakah pembacaan sensor berhasil
 if (isnan(kelembapan) || isnan(suhu)) { // Jika pembacaan gagal
  Serial.println("Sensor DHT Error dan Tidak Terdeteksi!");
```

```
return;
 }
 // Menampilkan data suhu dan kelembapan di serial monitor
 Serial.print("Suhu: ");
 Serial.print(suhu);
 Serial.print(" °C Kelembapan: ");
 Serial.print(kelembapan);
 Serial.println(" %");
 // Menampilkan suhu dan kelembapan di LCD
 lcd.clear(); // Membersihkan layar LCD
 lcd.setCursor(0, 0); // Set cursor pada baris pertama
 lcd.print("Suhu: ");
 lcd.print(suhu);
 lcd.print(" *C");
 lcd.setCursor(0, 1); // Set cursor pada baris kedua
 lcd.print("Humidity: ");
 lcd.print(kelembapan);
 lcd.print("%");
 // Mengirim data ke ThingSpeak
 ThingSpeak.setField(1, suhu); // Field 1 untuk suhu
 ThingSpeak.setField(2, kelembapan); // Field 2 untuk kelembapan
 // Kirim data ke ThingSpeak
 int responseCode = ThingSpeak.writeFields(myChannelNumber, myWriteAPIKey);
// Kirim data ke ThingSpeak
 if (responseCode == 200) { // Cek apakah pengiriman berhasil
  Serial.println("Berhasil Kirim Data ke ThingSpeak!");
 } else { // Jika gagal, tampilkan response code
```

```
Serial.println("Data Gagal Terkirim ke ThingSpeak. Response code: " + String(responseCode));
}

// Menunggu 20 detik sebelum mengirim data berikutnya delay(20000); // Delay 20 detik
}
```

E. Hasil Uji Coba


```
Serial Monitor ×
Message (Enter to send message to 'NodeMCU
Menghubungkan ke WiFi...
Suhu: 30.20 °C
               Kelembapan: 87.00 %
Berhasil Kirim Data ke ThingSpeak!
Suhu: 30.20 °C Kelembapan: 87.00 %
Berhasil Kirim Data ke ThingSpeak!
Suhu: 30.20 °C Kelembapan: 87.00 %
Berhasil Kirim Data ke ThingSpeak!
Suhu: 30.20 °C Kelembapan: 87.00 %
Berhasil Kirim Data ke ThingSpeak!
Suhu: 30.20 °C Kelembapan: 87.00 %
Berhasil Kirim Data ke ThingSpeak!
Suhu: 30.20 °C Kelembapan: 87.00 %
Berhasil Kirim Data ke ThingSpeak!
```


F. Kesimpulan

- **ESP8266** berhasil digunakan untuk membaca data dari sensor DHT11 dan menampilkannya ke layar LCD maupun mengirimkannya ke platform **ThingSpeak**.
- **Sensor DHT11** dapat mendeteksi suhu dan kelembapan dengan cukup baik, dan datanya bisa diakses secara langsung dan jarak jauh.
- Layar LCD 16x2 menampilkan informasi suhu dan kelembapan secara real-time, sehingga memudahkan pemantauan secara langsung.
- Sistem ini juga mampu terhubung dengan WiFi dan mengirim data secara berkala ke internet, memungkinkan kita memantau kondisi lingkungan dari mana saja.
- Secara keseluruhan, praktikum ini membantu kami memahami cara kerja perangkat keras dan lunak dalam sistem Internet of Things, serta bagaimana semua komponen bisa saling terhubung dan bekerja sama dengan baik.