Studiengang Molekulare Biotechnologie Mathematik A Wintersemester 2019/2020 Carl Herrmann

- Übungsblatt 5 - Matrizen und lineare Gleichungssysteme

Aufgabe 1

Gegeben sei ein Satz von linear unabhängigen Vektoren $\vec{v_1},..,\vec{v_r}$. Zeigen Sie, dass wenn ein weiterer Vektor $\vec{v_0}$ mit allen Vektoren $\vec{v_1},..,\vec{v_r}$ orthogonal ist, der Satz $\vec{v_0},\vec{v_1},..,\vec{v_r}$ auch linear unabhängig ist.

Hinweis: zeigen Sie, dass gilt: $\lambda_0 \vec{v_0} + \lambda_1 \vec{v_1} + \ldots + \lambda_r \vec{v_r} = \vec{0} \Rightarrow \lambda_0 = \lambda_1 = \ldots = \lambda_r = 0$ unter Benutzung der Eigenschaft $\vec{v_0} \cdot \vec{v_i} = 0 (i = 1, \ldots, r)$

Aufgabe 2

Welche Dimension hat der Unterraum von \mathbb{R}^3 , der von folgenden Vektoren aufgespannt wird :

$$1. \left(\begin{array}{c} 1\\1\\-1 \end{array}\right), \left(\begin{array}{c} -1\\-1\\1 \end{array}\right)$$

$$2. \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$$

3. alle Vektoren mit positiven Komponenten

Aufgabe 3

Das lineare Gleichungssystem Ax = b (A ist eine 3×3 Matrix) hat die Vektoren $\begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}$ und $\begin{pmatrix} 1 \\ -1 \\ 0 \end{pmatrix}$ als Lösungen. Finden Sie eine weitere Lösung!

(Hinweis: dazu sollte man benutzen, dass die Abbildung $f: \mathbb{R}^3 \to \mathbb{R}^3, x \to Ax$, also die Multiplikation eines Vektors mit einer Matrix, eine lineare Abbildung ist. Was ist dann $A(\lambda x + \mu y)$?