Examenul național de bacalaureat 2022 Proba E. c) Matematică *M_mate-info*

BAREM DE EVALUARE ȘI DE NOTARE

Varianta 1

Filiera teoretică, profilul real, specializarea matematică-informatică Filiera vocațională, profilul militar, specializarea matematică-informatică

- Pentru orice soluție corectă, chiar dacă este diferită de cea din barem, se acordă punctajul corespunzător.
- Nu se acordă fracțiuni de punct, dar se pot acorda punctaje intermediare pentru rezolvări parțiale, în limitele punctajului indicat în barem.
- Se acordă zece puncte din oficiu. Nota finală se calculează prin împărțirea la zece a punctajului total acordat pentru lucrare.

SUBIECTUL I (30 de puncte)

1.	$8-6\sqrt{6}+6(\sqrt{6}-1)=8-6\sqrt{6}+6\sqrt{6}-6=$	3 p
	=8-6=2	2p
2.	$f(0) = m, (f \circ f)(0) = 4m$	3p
	4m = 4, de unde obţinem $m = 1$	2p
3.	$3 \cdot 4^x + 4^x = 4$, deci $4 \cdot 4^x = 4$	3 p
	x = 0	2 p
4.	Mulțimea numerelor naturale de două cifre are 90 de elemente, deci sunt 90 de cazuri posibile	2p
	Deoarece cifra zecilor poate fi 1, 2, 3 sau 6, în mulțimea numerelor naturale de două cifre sunt $4 \cdot 10 = 40$ de numere care au cifra zecilor divizor al numărului 6, deci sunt 40 de cazuri favorabile, de unde obținem $p = \frac{40}{90} = \frac{4}{9}$	3 p
5.	a = 3a - 2	3 p
	a=1	2p
6.	$A = \frac{\pi}{2}$	2p
	$AC = AB \Rightarrow \mathcal{A}_{\Delta ABC} = \frac{10 \cdot 10}{2} = 50$	3p

SUBIECTUL al II-lea (30 de puncte)

1.a)	$A(1) = \begin{pmatrix} 1 & -1 & 1 \\ 0 & 1 & -2 \\ 0 & 0 & 1 \end{pmatrix} \Rightarrow \det(A(1)) = \begin{vmatrix} 1 & -1 & 1 \\ 0 & 1 & -2 \\ 0 & 0 & 1 \end{vmatrix} =$	2p
	=1+0+0-0-0-0=1	3 p
b)	$A(x) \cdot A(y) = \begin{pmatrix} 1 & -y - x & y^2 + 2xy + x^2 \\ 0 & 1 & -2y - 2x \\ 0 & 0 & 1 \end{pmatrix} = \begin{bmatrix} 1 & -(x+y) & (x+y)^2 \\ 0 & 1 & -2(x+y) \\ 0 & 0 & 1 \end{bmatrix} = A(x+y), \text{ pentru orice numere reale } x \text{ și } y$	3p 2p
c)	$A(n) \cdot A(n+1) \cdot A(n+2) \cdot A(n+3) = A(4n+6)$, pentru orice număr natural n	3р
	$4n+6=2n^2 \Leftrightarrow n^2-2n-3=0$ şi, cum n este număr natural, obținem $n=3$	2p
2.a)	$1*0 = \frac{2 \cdot 1}{0+2} + \frac{2 \cdot 0}{1+2} =$	3 p
	=1+0=1	2p

	, , , , , , , , , , , , , , , , , , , ,	
b)	$x*0 = \frac{2x}{0+2} + \frac{2 \cdot 0}{x+2} = x$, pentru orice $x \in M$	2p
	$0*x = \frac{2 \cdot 0}{x+2} + \frac{2x}{0+2} = x$, pentru orice $x \in M$, deci $e = 0$ este elementul neutru al legii de	3 p
	compoziție "*"	
c)	$x * \frac{4}{x} = \frac{2x}{\frac{4}{x} + 2} + \frac{\frac{8}{x}}{x + 2} = \frac{x^2}{x + 2} + \frac{8}{x(x + 2)} = \frac{x^3 + 8}{x(x + 2)}, \text{ pentru orice } x \in M, x \text{ nenul}$	3p
	$\frac{x^3 + 8}{x(x+2)} = x \text{ si, cum } x \in M, x \text{ nenul, obținem } x = 2$	2p

SUBIECTUL al III-lea

(30 de puncte)

DCDI	COUL at III-lea (50 de pl	incic)
1.a)	$f'(x) = \frac{e^x - x - x(e^x - 1)}{(e^x - x)^2} =$	3p
	$=\frac{e^x - xe^x}{\left(e^x - x\right)^2} = \frac{e^x \left(1 - x\right)}{\left(e^x - x\right)^2}, \ x \in \mathbb{R}$	2p
b)	$f'(x) = 0 \Leftrightarrow x = 1$; pentru orice $x \in (-\infty, 1]$, $f'(x) \ge 0 \Rightarrow f$ este crescătoare pe $(-\infty, 1]$	3p
	Pentru orice $x \in [1, +\infty)$, $f'(x) \le 0 \Rightarrow f$ este descrescătoare pe $[1, +\infty)$	2p
c)	$\lim_{x \to -\infty} f(x) = 1, \ f(1) = 2 + \frac{1}{e - 1}, \ \lim_{x \to +\infty} f(x) = 2$	3p
	Cum f este continuă, f este strict crescătoare pe $(-\infty,1)$ și f este strict descrescătoare pe $(1,+\infty)$, obținem că, pentru orice $m \in (1,2]$, ecuația $f(x) = m$ are soluție unică	2p
2.a)	$\int_{1}^{5} \left(f(x) - \sqrt{x^2 + 9} \right) dx = \int_{1}^{5} (3 - x) dx = \left(3x - \frac{x^2}{2} \right) \Big _{1}^{5} =$	3 p
	$=15 - \frac{25}{2} - 3 + \frac{1}{2} = 0$	2p
b)	$\int_{0}^{4} \frac{x}{f(x) + x - 3} dx = \int_{0}^{4} \frac{x}{\sqrt{x^{2} + 9}} dx = \int_{0}^{4} \frac{(x^{2} + 9)'}{2\sqrt{x^{2} + 9}} dx = \sqrt{x^{2} + 9} \bigg _{0}^{4} =$	3 p
	=5-3=2	2p
c)	$I_n = \int_0^1 \frac{x^n}{f(x)} dx = \int_0^1 \frac{x^n}{3 - x + \sqrt{x^2 + 9}} dx$, pentru orice număr natural nenul n	2p
	$0 \le x \le 1 \Rightarrow 3 - x + \sqrt{x^2 + 9} \ge 3 - x \ge 2 \Rightarrow 0 \le \frac{x^n}{3 - x + \sqrt{x^2 + 9}} \le \frac{x^n}{2}, \text{ deci } 0 \le I_n \le \frac{1}{2(n+1)},$ $\text{pentru orice număr natural nenul } n \text{ și, cum } \lim_{n \to +\infty} \frac{1}{2(n+1)} = 0, \text{ obținem } \lim_{n \to +\infty} I_n = 0$	3 p