[2019–2020] группа: ГеОМ-10 22 октября 2019 г.

Серия 5. Обобщение теоремы Фейербаха

- 1. (Известный факт). Пусть прямая ℓ проходит через ортоцентр H треугольника ABC. Тогда прямые, симметричные ℓ относительно сторон треугольника пересекаются в одной точке P, лежащей на его описанной окружности. Прямая ℓ является прямой Штейнера точки P.
- **2.** Отражения x,y,z прямой OP относительно средних линий B'C',C'A' и A'B' пересекаются в точке L на окружности Эйлера треугольника ABC, где O центр описанной окружности, P произвольная отличная от него точка.

Пусть X', Y', Z' – отражения точки L относительно средних линий B'C', C'A' и A'B', а H_a, H_b, H_c – основания соответствующих высот треугольника.

- **3.** Докажите, что прямые AX', BY' и CZ' перпендикулярны OP.
- **4.** Докажите, что $H_aL = AX'$, $H_bL = BY'$, $H_cL = CZ'$.

Обозначим через X,Y,Z основания перпендикуляров и P на стороны BC,CA,AB, а через X'',Y'',Z'' – отражения X,Y,Z относительно B'C',C'A',A'B' соответственно.

5. Докажите, что точки A, P, Y, Z, X', X'' лежат на одной окружности.

Определим точки $A'' = B'C' \cap YZ$, $B'' = C'A' \cap ZX$, $C'' = A'B' \cap XY$.

- **6.** Докажите, что (a) A'' лежит на окружности (ZX'C'); (b) X'X'', YZ, B'C', LX пересекаются в точке A''.
- **7.** Докажите, что точка L лежит на педальной окружности точки P.
- **8.** Треугольники AH_bH_c , H_aBC , H_aH_bC подобны ABC. Возьмем в них прямые x',y',z', соответствующие прямой OP (как в подобных треугольниках). Докажите, что прямые x',y',z' проходят через L.

Обозначим через D, E и F ортоцентры треугольников AYX, BZX и CXY.

- **9.** Докажите, что D, E и F соответствуют точке P в треугольниках AH_bH_c, H_aBC и H_aH_bC соответственно (как в подобных треугольниках). ¹
- **10.** Докажите, что точки X, E, F, H_a и L лежат на одной окружности.
- **11.** Нарисуйте картинку в случае P = H.
 - (a) Докажите, что если прямая ℓ проходит через центроид ABC, что $d(A,\ell)+d(B,\ell)+d(C,\ell)=0$
 - (b) Докажите, что один из отрезков LH_a, LH_b, LH_c равен сумме двух других.
- 12. Нарисуйте картинку в случае P=I. Докажите, что точка Фейербаха F лежит на окружностях Эйлера треугольников $AIB,\,BIC,\,CIA.$
- 13. (Aiyer's theorem). Для любой точки P ее педальная окружность пересекается с окружностью Эйлера, причем угол между ними равен $90^{\circ} \angle PAB \angle PBC \angle PCA$.

 $^{^{1}}$ Найдите точки, соответствующие точке O.