Cluster Analytics

Definition: Given a collection of data objects group them so that

- ➤ Similar to the objects within the same cluster(group)
- ➤ Dissimilar to the objects in other clusters(groups)

Data objects can be set of web pages, set of emails or set of states in India

Definition: Given a collection of data objects group them so that

- ➤ Similar to the objects within the same cluster(group)
- ➤ Dissimilar to the objects in other clusters(groups)

DBSCAN: Density-based algorithm

Density Based Clustering

- ➤ Clusters are dense regions in the data space, separated by regions of lower object density
- ➤ A cluster is defined as a maximal set of density connected points
- > Discovers clusters of arbitrary shape and size

- ➤ We need to provide two parameters *Eps, MinPts* for this algorithm
- > Density of a point is defined as the number points within a specified radius(Eps).
- This algorithm divides the points into three groups based on density
- Core point: A point is a core point if it's density is more than or equal to specified number of points (MinPts)
- Border point: A point is a border point if it's density is less than MinPts, but is in the neighborhood of a core point
- Noise point: A point is a noise point, if it is not a core point or a border point.

DBSCAN Algorithm

- 1: Label all points as core, border, or noise points.
- 2: Eliminate noise points.
- 3: Put an edge between all core points that are within Eps of each other.
- 4: Make each group of connected core points into a separate cluster.
- 5: Assign each border point to one of the clusters of its associated core points.

DBSCAN Algorithm

- 1: Label all points as core, border, or noise points.
- 2: Eliminate noise points.
- 3: Put an edge between all core points that are within Eps of each other.
- 4: Make each group of connected core points into a separate cluster.
- 5: Assign each border point to one of the clusters of its associated core points.

Determining EPS and MinPts

- ➤ Idea is that for points in a cluster, their kth nearest neighbors are at roughly the same distance
- ➤ Noise points have the kth nearest neighbor at farther distance
- > So, plot sorted distance of every point to its kth nearest neighbor

Point Number	Distance
1	4
2	3
3	8
4	40
5	6
6	36
7	8
8	30
9	4
10	3

Determining EPS and MinPts

- ➤ Idea is that for points in a cluster, their kth nearest neighbors are at roughly the same distance
- ➤ Noise points have the kth nearest neighbor at farther distance
- > So, plot sorted distance of every point to its kth nearest neighbor

Point Number	Distance	X Value	
2	3	1	
10	3	2	
1	4	3	
9	4	4	
5	6	5	
3	8	6	
7	8	7	
8	30	8	
6	36	9	
4	40	10	

Determining EPS and MinPts

- ➤ Idea is that for points in a cluster, their kth nearest neighbors are at roughly the same distance
- ➤ Noise points have the kth nearest neighbor at farther distance
- > So, plot sorted distance of every point to its kth nearest neighbor

