$C\Delta LCULUS$

Ethan Soh

October 2023

Presentation 1

Contents

Introduction

Preliminaries

Limits

Differential Calculus

Welcome!

Expectations for Thursday Sessions

- Arrive on time
- Do not miss sessions (Or notify us beforehand if absolutely necessary)
- Try to pay attention
- Attempt the examples
- Make notes
- Respect the people speaking
- ASK questions if there is anything that you do not quite understand!

Link to docs:

- $1. \ https://docs.google.com/document/d/1QooSTfNWN7uFu0g9hI0kyp6EAMFBn0lUIsuqLFKnkkg/edit$
- 2. https://github.com/ethanolex/Calculus-Society.git

Please also feel free to suggest any topics to cover in the future on the docs!

Also:

Follow Calculus Society on IG!

Functions

We first formally understand what functions are.

Definition 1: A function f consists of a set of inputs, a set of outputs, and a rule for assigning each input to exactly one output.

The set of inputs is called the **domain** of the function, whereas the set of outputs is called the **range** of the function.

Functions

Theorem 1 (Vertical line test): Given a function f, every vertical line that may be drawn will intersect the graph of f **no more than once.**

If any vertical line intersects the graph of f more than once, then the set of points does not represent a function.

Functions

Definition 2:

- 1. If f(x) = f(-x) for all x in the domain of f, then f is an **even function**. An even function is symmetric about the y-axis.
- 2. If f(-x) = -f(x) for all x in the domain of f, then f is an **odd function**. An odd function is symmetric about the origin.

Limits

Let f(x) be a function defined everywhere in an open interval containing a, with the possible exception of a itself, and let L be a real number.

Definition 3: If all values of the function f(x) approach L as the values of x approach the number a ($x \neq a$), then we say that the limit of f(x) as x approaches a is L.

$$\lim_{x \to a} f(x) = L$$

Limits

Definition 4:

1. Left sided limits: If the values of the function f(x) approach L as the values of x (where x < a) approach the number a, then

$$\lim_{x \to a^+} f(x) = L$$

2. Right sided limits: If the values of the function f(x) approach the real number L as the values of x (where x > a) approach the number a, then

$$\lim_{x \to a^{-}} f(x) = L$$

Theorem 2:

$$\lim_{x\to a} f(x) = L \Longleftrightarrow \lim_{x\to a^+} f(x) = L \text{ and } \lim_{x\to a^-} f(x) = L$$

Continuity

Finally, lets take a look at continuity

Definition 5: A function f(x) is **continuous** at a point a if and only if the following three conditions are satisfied:

- f(a) is defined
- $\lim_{x\to a} f(x)$ exists
- $\lim_{x \to a} f(x) = f(a)$

A function is discontinuous at a point a if it fails to be continuous at a.

Continuity

Definition 6: If f(x) is discontinuous at a, then:

- f(x) has a removable discontinuity at a if $\lim_{x\to a} f(x)$ exists
- f(x) has a jump discontinuity at a if $\lim_{x\to a^+} f(x)$ and $\lim_{x\to a^-} f(x)$ exist, but are not equal to each other
- f(x) has an infinite discontinuity at a if $\lim_{x\to a^+} f(x) = \pm \infty$ or $\lim_{x\to a^-} f(x) = \pm \infty$, but are not equal to each other.

Basic Principles

The derivative is defined to be the rate of change of functions.

Basic Principles

The derivative is defined to be the rate of change of functions.

Definition 9: Let f(x) be a function defined in an open interval containing a. The tangent line to f(x) at a is the line passing through the point (a, f(a)) having gradient:

$$m_{\tan} = \lim_{h \to 0} \frac{f(a+h) - f(a)}{h}$$

Basic Principles

The derivative is defined to be the rate of change of functions.

Definition 11: Let f(x) be a function defined in an open interval containing a. The tangent line to f(x) at a is the line passing through the point (a, f(a)) having gradient:

$$m_{\tan} = \lim_{h \to 0} \frac{f(a+h) - f(a)}{h}$$

Definition 12: The derivative of f(x) is:

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

Continuity and differentiability

Theorem 3: Let f(x) be a function and a be in its domain. If f(x) is differentiable at a, then f is continuous at a.

f is differentiable $\Rightarrow f$ is continuous

BUT

f is continuous $\Leftarrow f$ is differentiable

Counter examples:

- f(x) = |x|
- Weierstrass function

Proof:

Differential Calculus

Theorem 4 (Contant rule): Let c be a constant. Then,

$$\frac{d}{dx}(c) = 0$$

Theorem 6 (Contant rule): Let c be a constant. Then,

$$\frac{d}{dx}(c) = 0$$

Theorem 7 (Power rule): Let n be a constant. Then,

$$\frac{d}{dx}(x^n) = nx^{n-1}$$

Proof of power rule

Theorem 8: The derivative is *linear*, which means that:

$$\frac{d}{dx}(f(x) + g(x)) = \frac{d}{dx}(f(x)) + \frac{d}{dx}(g(x))$$

And, for k being a constant,

$$\frac{d}{dx}(kf(x)) = k\frac{d}{dx}(f(x))$$

Theorem 9: The derivative is *linear*, which means that:

$$\frac{d}{dx}(f(x) + g(x)) = \frac{d}{dx}(f(x)) + \frac{d}{dx}(g(x))$$

And, for k being a constant,

$$\frac{d}{dx}(kf(x)) = k\frac{d}{dx}(f(x))$$

Example 2: Find the derivative of the following:

1.
$$y = \frac{1}{x^2}$$

$$2. \ y = \sqrt{x}$$

$$3. \ f(x) = 1$$

3.
$$f(x) = 1$$

4. $f(x) = \frac{x^4 - 3x^2 + 4}{x^2}$

Let u(x) and v(x) be functions. Then,

Theorem 10 (Product rule):

$$\frac{d}{dx}(uv) = u\frac{dv}{dx} + v\frac{du}{dx}$$

Let u(x) and v(x) be functions. Then,

Theorem 12 (Product rule):

$$\frac{d}{dx}(uv) = u\frac{dv}{dx} + v\frac{du}{dx}$$

Theorem 13 (Quotient rule):

$$\frac{d}{dx}\left(\frac{u}{v}\right) = \frac{v\frac{du}{dx} - u\frac{dv}{dx}}{v^2}$$

Example 3: Find the derivative of the following:

1.
$$f(x) = \frac{2x+5}{3x-4}$$

$$2. \ \ y = (3x+2)\sqrt{4x-1}$$

Example 4: Find the derivative of the following:

1.
$$f(x) = \frac{2x+5}{3x-4}$$

$$2. \ \ y = (3x+2)\sqrt{4x-1}$$

Answers:

$$\frac{1. -\frac{23}{(3x-4)^2}}{2. \frac{18x+1}{\sqrt{4x-1}}}$$

2.
$$\frac{18x+1}{\sqrt{4x-1}}$$

Theorem 14: If y(u) and u(x), then:

$$\frac{dy}{dx} = \frac{dy}{du} \cdot \frac{du}{dx}$$

Theorem 15: If y(u) and u(x), then:

$$\frac{dy}{dx} = \frac{dy}{du} \cdot \frac{du}{dx}$$

Example 6: Find the derivative at x = 3:

$$y = \frac{1}{(x-2)^5}$$

Theorem 16: If y(u) and u(x), then:

$$\frac{dy}{dx} = \frac{dy}{du} \cdot \frac{du}{dx}$$

Example 7: Find the derivative at x = 3:

$$y = \frac{1}{(x-2)^5}$$

 $\underline{Answer:} -5$

Higher order derivatives

The function $\frac{dy}{dx}$ is the *first derivative* of y with respect to x.

Definition 13: Differentiating the first derivative with respect to x gives the $second\ derivative$ of y:

$$\frac{d}{dx}\left(\frac{dy}{dx}\right) = \frac{d^2y}{dx^2}$$

Remark 1: Note that:

$$\frac{d^2y}{dx^2} \neq \left(\frac{dy}{dx}\right)^2$$

Higher order derivatives

Example 8: Given that

$$y = \frac{2x^2}{x - 3}$$

Find its second order derivative.

Now lets take a look at some physics applications!

Kinematics

Remember that:

- ullet velocity is the $rate\ of\ change\ of\ displacement$
- acceleration is the *rate of change* of velocity

What does this mean?

Theorem 17 (Kinematics): If the displacement s(t) is a function of time:

$$v(t) = \frac{ds}{dt}$$

$$a(t) = \frac{dv}{dt} = \frac{d^2s}{dt^2}$$

Kinematics

Example 9: A particle P is moving on the x-axis and its displacement s m/s, t s after a given instant, is given by:

$$s(t) = t^3 - \frac{1}{4}t^4$$

- 1. Find the *instantaneous velocity* of the particle at time t=2.
- 2. Find the instantaneous acceleration of the particle at time t=2.

Kinematics

Example 10: A particle P is moving on the x-axis and its displacement s m/s, t s after a given instant, is given by:

$$s(t) = t^3 - \frac{1}{4}t^4$$

- 1. Find the *instantaneous velocity* of the particle at time t=2.
- 2. Find the instantaneous acceleration of the particle at time t=2.

Answer: v(2) = 4 m/s; $a(2) = 0 \text{ m/s}^2$.

Theorem 18:

$$\frac{d}{dx}\sin x = \cos x$$

Theorem 19:

$$\frac{d}{dx}\cos x = -\sin x$$

Example 11: Find the derivative of $y = 5x^3 \sin x$ with respect to x.

Example 13: Find the derivative of $y = 5x^3 \sin x$ with respect to x.

Answer: $5x^3 \cos x + 15x^2 \sin x$

Example 14: Find the derivative of $y = \tan x$. (Hint: $\tan x = \frac{\sin x}{\cos x}$)

Example 15: Find the derivative of $y = 5x^3 \sin x$ with respect to x.

Answer: $5x^3 \cos x + 15x^2 \sin x$

Example 16: Find the derivative of $y = \tan x$. (Hint: $\tan x = \frac{\sin x}{\cos x}$)

Theorem 22:

$$\frac{d}{dx}\tan x = \sec^2 x$$

Theorem 23:

$$\frac{d}{dx}e^x = e^x$$

How can this be applied to differentiate a more general exponential function of the form:

$$f(x) = b^{g(x)}$$

Any ideas?

Theorem 24: If $f(x) = b^{g(x)}$, where b > 0 and g(x) is a differentiable function, $f'(x) = b^{g(x)}g'(x)\ln b$

(looks complicated, but no need to remember, since you know how to derive it!)

Example 17: Find the derivative of $y = e^{x^2+2}$

Example 19: Find the derivative of $y = e^{x^2+2}$

 $\underline{Answer:}\ 2xe^{x^2+2}$

Example 20: Find the derivative of $y = 3^{x^2}$

Example 21: Find the derivative of $y = e^{x^2+2}$

 $\underline{Answer:}\ 2xe^{x^2+2}$

Example 22: Find the derivative of $y = 3^{x^2}$

Answer: $3^{x^2}(2x \ln 3)$

Theorem 25:

$$\frac{d}{dx}\ln x = \frac{1}{x}$$

Once again, how could this rule be applied to find the derivative of functions of the general form:

$$f(x) = \log_a g(x)$$

Theorem 26: If $f(x) = \log_a g(x)$, where b > 0 and g(x) is a differentiable function,

$$f'(x) = \frac{g'(x)}{g(x)\ln b}$$

Theorem 27: If $f(x) = \log_a g(x)$, where b > 0 and g(x) is a differentiable function,

$$f'(x) = \frac{g'(x)}{g(x)\ln b}$$

Example 24:

Find the slope of the line tangent to the graph of $y = \log_2(3x+1)$ at x = 1.

Theorem 28: If $f(x) = \log_a g(x)$, where b > 0 and g(x) is a differentiable function,

$$f'(x) = \frac{g'(x)}{g(x)\ln b}$$

Example 25:

Find the slope of the line tangent to the graph of $y = \log_2(3x+1)$ at x = 1.

Answer: $\frac{3}{\ln 16}$