

Mémoire de deuxième année de Master de Mathématiques Fondamentales

SUITES SPECTRALES ET HOMOLOGIE PERSISTANTE

VICTORIA CALLET

Mémoire rédigé sous la direction de M. Pierre Guillot

Introduction

L'objectif de ce mémoire est d'étudier le lien entre deux outils de l'algèbre homologique a priori différents : les suites spectrales d'une part et l'homologie persistante d'autre part. Ce lien a été élucidé une première fois dans l'ouvrage [EH09], mais la formule reliant les deux notions comportait une erreur. Cette dernière a été corrigée dans l'article [BP18] datant de 2018 : il s'agit donc d'une découverte récente faisant le lien entre les mathématiques théoriques et les mathématiques appliquées.

Les suites spectrales constituent un outil de l'algèbre homologique et de la topologie algébrique introduit au milieu du $XX^{i\`{\rm em}}$ siècle par le mathématicien français Jean Leray et qui permet de calculer des groupes d'homologie par approximations successives. Le principe est simple : une suite spectrale est constituée d'un certains nombres de pages elles-mêmes constituées d'un certains nombres de modules différentiels, et on passe d'une page à la suivante en calculant l'homologie sur chaque module. En répétant ce processus un certain nombre des fois, on peut tomber sur une page qui se trouve être toujours la même, qu'on appellera page limite de la suite. Dans ce cas, on dira que la suite spectrale converge vers un groupe d'homologie. En pratique, on a un objet mathématique qu'on a du mal à appréhender, et les suites spectrales découpent la difficulté page par page pour finalement parvenir à comprendre l'objet au moyen des groupes d'homologie.

L'homologie persistante est, quant à elle, un outil plus calculatoire à la limite entre la topologie algébrique et les mathématiques appliquées. Comme pour les suites spectrales, le principe est de comprendre un objet de départ par approximations successives. Pour cela, on utilise la théorie des complexes simpliciaux et de l'homologie simpliciale, qu'on supposera connue pour ce mémoire. Notre objet de base sera un complexe simplicial muni d'une filtration, et le principe de l'homologie persistante est de calculer l'homologie à chaque étape de cette filtration. On mesurera alors la durée de vie des classes d'homologie dans la filtration : les classes qui vivent longtemps seront celles qui contiennent des informations intéressantes. En pratique, on se donne un nuage de points duquel on pense pouvoir extraire un objet topologique, on le transforme en complexe simplicial filtré et on applique les techniques de l'homologie persistante pour retrouver la forme de départ. C'est ce qu'on appelle l'analyse topologique des données.

Ce mémoire s'articule naturellement en trois parties : dans un premier temps, on étudiera les suites spectrales en se basant essentiellement sur l'ouvrage [McC00]. On donnera les définitions et propriétés de base puis on se concentrera sur deux constructions : l'une par les filtration et l'autre par les couples exacts. On montrera également que ces deux approches sont équivalentes. On donnera enfin des applications de natures topologiques (CW-complexes) et algébriques (complexe double), pour lesquelles on utilisera [Wei94].

La deuxième partie sera consacrée à l'homologie persistante : on commencera par prendre un point de vue algébrique, en donnant la définition ainsi qu'un théorème de structure, puis on expliquera le lien avec l'analyse topologique des données et la reconnaissance des formes. Pour cette partie, on utilisera principalement les articles [ZC05] et [Ghr07]. On finira par donner une application simple de l'homologie persistante permettant d'en comprendre le fonctionnement.

Dans un troisième et dernier temps, on se penchera sur la relation entre les deux concepts que nous venons de développer en s'appuyant sur l'article [BP18]. On montrera notamment qu'il existe un lien très étroit entre ces deux outils au moyen d'une formule mettant en jeu les dimensions des modules d'une suite spectrale et celles des groupes d'homologie persistante. Pour conclure cette partie, nous reprendrons les exemples et applications vus au cours des sections précédentes afin d'illustrer ce lien.

Je remercie vivement mon directeur de mémoire, Monsieur Pierre Guillot, pour le temps qu'il m'a consacré, ses conseils et le soutien qu'il m'a apporté tout au long de cette année.

Table des matières

1	Suit	Suites spectrales 6										
	1.1	Définitions et premières propriétés										
	1.2	Constructions des suites spectrales										
		1.2.1 Construction par des filtrations										
		1.2.2 Construction par des couples exacts										
		1.2.3 L'équivalence des deux approches										
	1.3	Quelques applications algébriques										
		1.3.1 Suites spectrales associées à un complexe double										
		1.3.2 Foncteurs dérivés										
		1.3.3 Formule de Künneth										
	1.4	Une application topologique : suites spectrales et CW-complexes 20										
2	Homologie persistante 30											
	2.1	Définition algébrique										
	2.2	Structure de l'homologie persistante										
		2.2.1 Modules et complexes persistants										
		2.2.2 Interprétation : le plan indice-persistance										
		2.2.3 Visualisation: les codes barres										
	2.3	Analyse topologique des données										
		2.3.1 Nuages de points et complexes simpliciaux										
		2.3.2 Exemple: l'homologie persistante sur les lettres digitales 38										
3	Lier	entre les suites spectrales et l'homologie persistante 42										
	3.1	Préliminaires										
	3.2	Construction de la suite spectrale										
	3.3	Les théorèmes										
	3.4	Exemples et applications										
		3.4.1 Homologie persistante et CW-complexes										
		3.4.2 Suites spectrales et lettres digitales										

1 Suites spectrales

Dans toute cette partie, A désigne un anneau commutatif unitaire.

1.1 Définitions et premières propriétés

Définition 1.1. Un A-module bigradué est une famille de A-modules $M^{*,*} = (M^{i,j})_{i,j \in \mathbb{Z}}$.

Les morphismes entre modules bigradués possèdent donc un **bidegré**. Par exemple, si $\varphi^{*,*}: M^{*,*} \to N^{*,*}$ est un morphisme de modules bigradués de bidegré (r,s), alors pour tout couple (i,j) on a

$$\varphi^{*,*}:M^{i,j}\to N^{i+r,j+s}.$$

Définition 1.2. Un A-module différentiel bigradué est un couple $(M^{*,*}, d^{*,*})$ où $M = (M^{i,j})_{i,j \in \mathbb{Z}}$ est un A-module bigradué et $d^{*,*} = (d^{i,j})_{i,j \in \mathbb{Z}}$ est une famille de différentielles, c'est à dire de morphismes de A-modules bigradués tels que $d^{*,*} \circ d^{*,*} = 0$.

Le plus souvent on oublie d'écrire la bigraduation pour la différentielle (et plus généralement pour tout morphisme entre deux modules bigradués), qu'on notera simplement d.

Si $(M^{*,*}, d)$ est un module différentiel bigradué, alors comme chaque module $M^{i,j}$ est équipé d'une différentielle, disons de bidegré (r_i, s_i) , on peut considérer la cohomologie :

$$H^{i,j}(M^{*,*},d) = \ker d: M^{i,j} \rightarrow M^{i+r_i,j+s_j} \Big/ \mathrm{im}\, d: M^{i-r_i,j-s_j} \rightarrow M^{i,j}$$

Définition 1.3. Une suite spectrale est la donnée :

- (i) d'une famille de A-modules différentiels bigradués $(E_r^{*,*}, d_r)_{r=1,2,...}$ dont les différentielles sont de bidegrés (-r, r-1) ou (r, 1-r)
- (ii) d'un isomorphisme ϕ_r pour chaque $r \geq 1$ tel que

$$\phi_r: E_{r+1}^{*,*} \xrightarrow{\sim} H^{*,*}(E_r^{*,*}, d_r),$$

autrement dit pour tous r, p et q, il existe un isomorphisme $\phi_r^{p,q}: E_{r+1}^{p,q} \xrightarrow{\sim} H^{p,q}(E_r^{*,*}, d_r)$. On parle de **suites spectrales homologiques** si bideg $d_r = (-r, r-1)$ et de **suites spectrales cohomologiques** si bideg $d_r = (r, 1-r)$.

Le module bigradué $E_r^{*,*}$ est appelé $r^{i\text{\`e}me}$ page de la suite spectrale, que l'on représente par un réseau de points comme ci-dessous :

Exemple de la page 2 d'une suite spectrale cohomologique

Dans cet exemple, les flèches représentent les différentielles d_2 et les \bullet les modules $E_2^{p,q}$ pour chaque couple (p,q). On a en particulier ici $E_2^{p,q} = \{0\}$ dès que $p \leq 0$ ou $q \leq 0$, et une telle suite spectrale est appelée suite spectrale du premier quadrant.

Remarque 1.4. Les suites spectrales homologiques sont généralement notées $(E_{*,*}^r, d^r)$ par dualité, avec chaque $E_{*,*}^r = (E_{p,q}^r)_{p,q \in \mathbb{Z}}$. Si on a une telle suite spectrale, alors en posant $E_r^{p,q} = E_{-p,-q}^r$ on obtient une suite spectrale cohomologique. Dans toute la partie théorique, nous noterons une suite spectrale $E_r^{*,*} = (E_r^{p,q})_{p,q \in \mathbb{Z}}$ et nous énoncerons les théorèmes en version cohomologique, mais il est bon de retenir qu'ils admettront tous un analogue dual pour les applications, dans lesquelles nous passerons en homologie.

Remarque 1.5. On a ainsi une définition des suites spectrales par récurrence, mais la connaissance de $E_r^{*,*}$ et de d_r permet d'obtenir $E_{r+1}^{*,*}$, sans pour autant donner d'informations sur la différentielle d_{r+1} .

Dans la proposition suivante, on définit une suite spectrale par une suite de sous-modules et d'isomorphismes. On oublie provisoirement la bigraduation afin de simplifier les notations.

Proposition 1.6. Soit $(E_r, d_r)_{r=1,2,...}$ une suite spectrale dont la première page est E_1 . Pour tout entier naturel n, il existe Z_n et B_n des sous-modules (bigradués) de E_1 tels qu'on ait :

(i) un isomorphisme

$$Z_n/_{Z_{n+1}} \cong B_{n+1}/_{B_n}$$

(ii) une suite d'inclusion

$$B_1 \subset B_2 \subset ... \subset B_n \subset ... \subset Z_n \subset ... Z_2 \subset Z_1 \subset E_1$$
.

Réciproquement, la donnée d'une telle suite de sous-modules de E_1 avec les isomorphismes (pour chaque n) détermine une suite spectrale.

Démonstration. Soit $(E_r, d_r)_{r=1,2,...}$ une suite spectrale dont le premier terme est donné par E_1 . Posons $Z_1 = \ker d_1$ et $B_1 = \operatorname{im} d_1$. La condition $d_1 \circ d_1 = 0$ donne la double inclusion $B_1 \subset Z_1 \subset E_1$. Posons maintenant $\bar{Z}_2 = \ker d_2$ et $\bar{B}_2 = \operatorname{im} d_2$. Alors, \bar{Z}_2 et \bar{B}_2 sont des sous-modules de $E_2 \cong \ker d_1/\lim d_1 = Z_1/B_1$, donc il existe Z_2 et B_2 deux sous-modules de Z_1 contenant B_1 tels que $\bar{Z}_2 \cong Z_2/B_1$ et $\bar{B}_2 \cong B_2/B_1$. Alors, on a

$$E_3 \cong {\bar{Z}_2}/_{\bar{B_2}} \cong {{{\left({{Z_2}/_{B_1}} \right)}}/_{{\left({{B_2}/_{B_1}} \right)}}} \cong {{{Z_2}/_{B_2}}},$$

ce qui donne la suite d'inclusions de sous-modules

$$B_1 \subset B_2 \subset Z_2 \subset Z_1 \subset E_1$$
.

En répétant ce procédé, on obtient la suite de sous-modules de E_1 attendue

$$B_1 \subset B_2 \subset ... \subset B_n \subset ... \subset Z_n \subset ... Z_2 \subset Z_1 \subset E_1$$
.

avec pour chaque n, $E_{n+1} \cong Z_n/B_n$. En suivant la construction qui vient d'être faite, la différentielle $d_{n+1}: E_{n+1} \to E_{n+1}$ a pour noyau Z_{n+1}/B_n et pour image B_{n+1}/B_n . Ceci nous donne la suite exacte courte

$$0 \longrightarrow {}^{Z_{n+1}}/B_n \longrightarrow {}^{Z_n}/B_n \xrightarrow{d_{n+1}} {}^{B_{n+1}}/B_n \longrightarrow 0$$

et donc l'isomorphisme souhaité

$$B_{n+1}/B_n \cong {\binom{Z_n}{B_n}}/{\binom{Z_{n+1}}{B_n}} \cong {^{Z_n}/Z_{n+1}}.$$

Réciproquement, en remontant la preuve l'isomorphisme fournit la suite exacte courte et donc les différentielles, et la suite de sous-modules donne les modules E_r .

Définitions 1.7.

- (i) On dit d'un élément de E_1 qui apparait encore dans Z_r qu'il survit à la $r^{\text{ième}}$ page.
- (ii) On appelle B_r le sous-module de E_1 constitué des **bords** à la $r^{\text{ième}}$ page.

(iii) On note

$$Z_{\infty} := \bigcap_{n} Z_{n}$$
 et $B_{\infty} := \bigcup_{n} B_{n}$

respectivement l'ensemble des éléments de E_1 qui survivent toujours et qui sont les bords à l'infini. D'après la proposition précédente, $B_{\infty} \subset Z_{\infty}$, ce qui permet de définir la page limite ou page infinie de la suite :

 $E_{\infty} := \frac{Z_{\infty}}{R_{\infty}}$.

Définition 1.8. Soit $N \ge 1$. On dit que la suite spectrale **dégénère** à la $N^{\text{ième}}$ page si $\forall r \ge N, d_r = 0$.

Dans ce cas, la suite exacte courte

$$0 \longrightarrow {}^{Z_r}/{}_{B_{r-1}} \longrightarrow {}^{Z_{r-1}}/{}_{B_{r-1}} \stackrel{d_r}{\longrightarrow} {}^{B_r}/{}_{B_{r-1}} \longrightarrow 0$$

de la proposition 1.6 donne $Z_r = Z_{r-1}$ et $B_r = B_{r-1}$, pour tout $r \ge N$. La suite de sous-modules de E_1 devient alors

$$B_1 \subset B_2 \subset \ldots \subset B_{N-1} = B_N = \ldots = B_\infty \subset Z_\infty = \ldots = Z_N = Z_{N-1} \subset \ldots \subset Z_1 \subset E_1$$

et on obtient finalement

$$E_{\infty} = \frac{Z_{\infty}}{B_{\infty}} = \frac{Z_{N-1}}{B_{N-1}} = E_{N}.$$

Cette définition fournit donc une autre définition de la page infinie E_{∞} . Voyons cela sur deux exemples :

Exemple 1.9. Soit $(E_r^{*,*}, d_r)$ une suite spectrale telle que $E_2^{p,q} = \{0\}$ si p est pair ou si q est impair. Alors, la suite dégénère dès la deuxième page.

Il s'agit donc de montrer que $d_r=0$ pour tout $r\geq 2$. Remarquons d'abord que si $p+q\not\equiv 1$ mod 2, alors $E_2^{p,q} = \{0\}$. En effet, dans ce cas p+q est pair, donc p et q sont soit tous les deux pairs, soit tous les deux impairs et dans les deux cas $E_2^{p,q} = \{0\}$ par hypothèse. Soit maintenant $r \geq 2$ et $d_r: E_r^{p,q} \to E_r^{p+r,q-r+1}$ une différentielle. Alors $(p+r) + (q-r+1) = p+q+1 \equiv 0 \mod 2$, donc par ce qui précède $E_r^{p+r,p-r+1} = \{0\}$, soit $d_r = 0$.

Exemple 1.10. Soient n_1 et n_2 dans \mathbb{N} et $(E_r^{*,*}, d_r)$ une suite spectrale telle que $E_2^{p,q} = \{0\}$ pour $p > n_1$

- et $q > n_2$. Cette suite dégénère à la page N, avec $N = \min(n_1 + 1, n_2 + 2)$. Supposons que $N = n_1 + 1$. Soit $r \ge N$ et $d_r : E_r^{p,q} \to E_r^{p+r,q-r+1}$ une différentielle. On a $p+r \ge p+n_1+1 > n_1$, d'où par hypothèse $E_r^{p+r,q-r+1} = \{0\}$ et $d_r = 0$ pour tout $r \ge N$.
 - Supposons que $N = n_2 + 2$, ie $n_2 + 1 < n_1$. Soit $r \ge N$. Dans ce cas, on a $q r + 1 \le q n_2 1 < 0$, et donc à nouveau $d_r = 0$.

1.2 Constructions des suites spectrales

Dans cette partie, nous établissons deux théorèmes de constructions qui font apparaître les suites spectrales : le théorème de construction par la méthode des filtrations (théorème 1.22) et le théorème de construction par la méthode des couples exacts (théorème 1.30). Nous montrerons dans un troisième temps que ces deux approches sont en fait équivalentes.

Construction par des filtrations

Définitions 1.11. Soit M un A-module.

(i) Une filtration F de M est une famille de sous-modules $F = (F^p M)_{p \in \mathbb{Z}}$ telle que

$$\{0\}\subseteq ...\subseteq F^{p-1}M\subseteq F^pM\subseteq F^{p+1}M\subseteq ...\subseteq M$$
 (filtration croissante)

ou

$$M \supseteq ... \supseteq F^{p-1}M \supseteq F^pM \supseteq F^{p+1}M \supseteq ... \supseteq \{0\}$$
 (filtration décroissante)

On dit alors que M est un A-module filtré par F.

(ii) Une filtration de M est dite **bornée** ou **finie** s'il existe deux entiers s et t tels que

$$F^sM = 0$$
 et $F^tM = M$.

Exemple 1.12. Prenons $A = M = \mathbb{Z}$. On pose $F^p\mathbb{Z} = \left\{ \begin{array}{l} \mathbb{Z} \text{ si } p \leq 0 \\ 2^p\mathbb{Z} \text{ si } p > 0 \end{array} \right.$ et la filtration $F = F^p\mathbb{Z}_p$ ainsi définie est une filtration décroissante de \mathbb{Z} :

$$\mathbb{Z}\supset\ldots\supset\mathbb{Z}\supset2\mathbb{Z}\supset4\mathbb{Z}\supset8\mathbb{Z}\supset16\mathbb{Z}\supset\ldots$$

Définition 1.13. Soit (M, F) un A-module filtré. On pose $E_0^*(M, F)$ le **module gradué associé** à (M, F) (noté simplement $E_0^*(M)$ lorsqu'il n'y a pas d'ambiguïté) défini par

$$E_0^p(M,F) := \left\{ \begin{array}{l} F^p M \big/_{F^{p-1}M} \text{ si la filtration } F \text{ est croissante} \\ F^p M \big/_{F^{p+1}M} \text{ si la filtration } F \text{ est décroissante} \end{array} \right.$$

Exemple 1.14. Dans l'exemple 1.12, le module gradué associé est donné par

$$E_0^p(\mathbb{Z}, F) = \begin{cases} \{0\} \text{ si } p < 0\\ \mathbb{Z}/_{2\mathbb{Z}} \text{ si } p \ge 0 \end{cases}$$

Exemple 1.15. Soit M un A-module filtré dont la filtration (décroissante) F est bornée par s = n > 0 et t = 0, c'est à dire qu'on a

$$M = F^0 M \supseteq F^1 M \supseteq \dots \supseteq F^{n-1} M \supseteq F^n M = \{0\}.$$

Sous ces conditions, $E_0^k(M) = {F^kM}/{F^{k+1}M}$ est trivial sauf pour $k \in \{0,...,n-1\}$. Si on considère les suites exactes courtes

$$0 \longrightarrow F^k M \longrightarrow F^{k-1} M \longrightarrow E_0^{k-1} \longrightarrow 0$$

alors pour k = n on a $F^{n-1}M = E_0^{n-1}(M)$. Autrement dit, si on connait le module gradué associé, on peut retrouver $F^{n-1}M$. On peut continuer ainsi jusqu'à k = 1, où la suite exacte

$$0 \longrightarrow F^1M \longrightarrow M \longrightarrow E_0^0 \longrightarrow 0$$

fournit des informations sur M qui permettent dans certains cas de le reconstruire. L'exemple 1.18 en est une illustration (dans le cas des suites spectrales).

En pratique, on se placera toujours dans le cas où le module admet une filtration bornée par s=n>0 et t=0.

Supposons maintenant qu'à la place d'un A-module filtré M=(M,F), on dispose d'un A-module **gradué** filtré $H^*=(H^*,F)$, avec $F=(F^pH^*)_{p\in\mathbb{Z}}$. On peut alors considérer la filtration en chaque degré de H^* , en posant $F^pH^n=F^pH^*\cap H^n$ pour tous p et n. Un telle filtration est dite **bornée** si pour tout p, il existe s>p et $t\geq 0$ tels que $F^sH^p=H^p$ et $F^tH^p=\{0\}$. Comme souligné plus haut pour les modules fitrés, **on se placera en pratique toujours dans ce cas.**

On définit alors le **module bigradué associé** à un module gradué filtré (H^*, F) par

$$E_0^{p,q}(H^*,F) = \left\{ \begin{array}{l} F^p H^{p+q} \big/_{F^{p-1} H^{p+q}} \text{ si } F \text{ est croissante} \\ F^p H^{p+q} \big/_{F^{p+1} H^{p+q}} \text{ si } F \text{ est décroissante} \end{array} \right.$$

La construction d'un module bigradué associé à un module gradué filtré (H^*, F) est centrale pour les suites spectrales car elle permet d'introduire la notion de convergence :

Définition 1.16.

(i) Une suite spectrale cohomologique $(E_r^{*,*}, d_r)_r$ converge vers un A-module gradué H^* s'il existe une filtration décroissante bornée $F = (F^p H^*)_{p \in \mathbb{Z}}$ de H^* telle que

$$E^{p,q}_{\infty} \cong E^{p,q}_0(H^*,F).$$

(ii) Une suite spectrale homologique $(E_{*,*}^r, d^r)_r$ converge vers un A-module gradué H_* s'il existe une filtration croissante bornée $F = (F_p H_*)$ de H_* telle que

$$E_{p,q}^{\infty} \cong E_{p,q}^{0}(H_*, F).$$

(On a utilisé les notation duales pour le (ii)).

Remarque 1.17. Si une suite spectrale cohomologique du premier quadrant converge vers un Amodule gradué filtré H^* , alors pour tout module H^n , on dispose d'une filtration de longueur n+1

$$H^{n} = F^{0}H^{n} \supset F^{1}H^{n} \supset \dots \supset F^{n}H^{n} \supset F^{n+1}H^{n} = \{0\}$$

avec $E_{\infty}^{n,0}=F^nH^n$ sur l'axe des abscisses et $E_{\infty}^{0,n}={H^n}/{F^1H^n}$ sur l'axe des ordonnées. En particulier,

$$F^0H^* = H^* \text{ et } F^{p+k}H^p = \{0\} \text{ pour tout } k > 0.$$

On peut bien sûr faire la même remarque pour les suites homologiques du premier quadrant.

Nous donnons à présent un exemple de suite spectrale qui converge vers un module gradué H^* et nous allons voir qu'il est possible de retrouver la cible en calculant successivement les pages de la suite.

Exemple 1.18. Soit $(E_x^{*,*}, d_r)_r$ la suite spectrale cohomologique sur \mathbb{Z} dont la page 2 est représentée ci-dessous,

Page E_2

où on note C_2 le groupe cyclique à 2 éléments, et $d_2^{0,4}:E_2^{0,4}\to E_2^{2,3}$ l'unique différentielle que l'on suppose

On suppose que cette suite spectrale converge vers un \mathbb{Z} -module gradué H^* . Comme notre suite est dans le premier quadrant, on dispose d'après la remarque 1.17 d'une filtration bornée F de H^* telle que

$$E^{p,q}_\infty \cong E^{p,q}_0(H^*,F) \cong {F^pH^{p+q}}\big/_{F^{p+1}H^{p+q}}.$$

et

$$F^0H^* = H^* \text{ et } F^{p+k}H^p = \{0\} \text{ pour tout } k > 0.$$

On souhaite reconstruire H^* à partir du module bigradué associé. D'abord, puisqu'on a supposé $d_2^{0,4}$ non nulle, on a forcément $d_2^{0,4}=id$ et donc

$$E_3^{0,4} = \ker d_2^{0,4} = \{0\} \text{ et } E_3^{2,3} = \binom{\mathbb{Z}/2\mathbb{Z}}{/\binom{\mathbb{Z}/2\mathbb{Z}}} = \{0\}$$

La troisième page de notre suite spectrale est donc donnée par

Page $E_3 = E_{\infty}$

On voit qu'il n'y a aucune flèche non nulle sur cette page, donc $E_3=E_4$. Par ailleurs, les trois termes restants sur E_r à partir de r=3 ne pourront jamais être relié par une différentielle non nulle, donc en fait la suite dégénère et $E_3=E_4=\ldots=E_\infty=E_0(H^*,F)$. On a alors pour H^0 :

$$H^0 = F^0 H^0 = E_3^{0,0} = E_\infty^{0,0} = \mathbb{Z}/2\mathbb{Z}.$$

Pour H^1 , on a

$$E_{\infty}^{0,1} = F^0 H^1 /_{F^1 H^1} = \{0\} = E_{\infty}^{1,0} = F^1 H^1 /_{F^2 H^1}$$

et donc

$$H^1 = F^0 H^1 = F^1 H^1 = F^2 H^1 = \{0\}.$$

De la même façon on obtient $H^n = \{0\}$ pour n = 1, 2, 3, 4.

Pour H^5 , on a

$$E_3^{2,3} = E_\infty^{2,3} = \mathbb{Z}/2\mathbb{Z} = F^2H^5/F^3H^5$$

donc il existe une suite exacte courte

$$0 \longrightarrow F^3H^5 \longrightarrow H^5 \longrightarrow {\mathbb Z}/{2\mathbb Z} \longrightarrow 0$$

et comme $F^3H^5 = F^4H^5 = F^5H^5 = F^6H^5 = \{0\}$, on obtient par exactitude de la suite $H^5 = \mathbb{Z}/2\mathbb{Z}$. On peut appliquer le même raisonnement sur H^7 , et on trouve finalement

$$H^n = \begin{cases} \mathbb{Z}/2\mathbb{Z} & \text{si } n = 0, 5, 7\\ 0 & \text{sinon} \end{cases}$$

En résumé, on a pu décrire entièrement la cible de notre suite spectrale de départ grâce au bigradué associé.

Remarque 1.19. Dans notre exemple, ces informations pouvaient se lire facilement sur la page limite (ici la page 3) en regardant les seules diagonales non nulles n = 0, 5 et 7 et en calculant directement l'homologie (puisqu'ici il n'y a qu'un seul terme non nul sur chaque diagonale).

Jusqu'à présent nous avons vu ce qu'était un module gradué filtré, et on sait ce qu'est un module différentiel. Pour énoncer le résultat principal de cette partie, nous avons besoin de combiner ces notions, ce qui fait l'objet de la définition suivante :

Définition 1.20. Un module différentiel gradué filtré est un triplet (M^*, d, F) , où (M^*, F) est un A-module gradué filtré et $d: M^* \to M^*$ une différentielle sur M^* vérifiant :

- (i) $d \circ d = 0$
- (ii) $d(M^n) \subset M^{n+1}$ ou $d(M^n) \subset M^{n-1}$ (d est de degré 1 ou -1)
- (iii) $d(F^pM^*) \subset F^pM^*$ (d respecte la filtration).

Remarque 1.21. Si M^* est un A-module différentiel gradué filtré, on note i_p l'inclusion de F^pM^* dans M^* . Alors, pour tout degré n, la cohomologie $H^n(M^*,d)$ hérite d'une filtration donnée par

$$F^p H^n(M^*, d) = \operatorname{im} H^n(i_p) : H^n(F^p M^*, d) \to H^n(M^*, d).$$

Nous arrivons à présent au théorème fondamental de cette partie : le **théorème de construction** des suites spectrales par la méthode des filtrations.

Théorème 1.22. Si (M^*, d, F) est un A-module différentiel gradué filtré, alors ce dernier détermine une suite spectrale cohomologique $(E_r^{*,*}, d_r)_{r=1,2,...}$ dont la première page est donnée par

$$E_1^{p,q} \cong H^{p+q}(F^pM^*/_{F^{p+1}M^*},d).$$

Cette suite est appelé suite spectrale du module filtré (M^*, d, F) .

Si de plus la filtration (décroissante) de M^* est **bornée** avec s = n > 0 et t = 0, c'est à dire

$$M^* = F^0 M^* \supset F^1 M^* \supset \dots \supset F^{n-1} M^* \supset F^n M^* = \{0\},\$$

alors la suite spectrale converge vers le module gradué filtré $H^*(M^*,d)$, c'est à dire que la page limite est donnée par

$$E^{p,q}_{\infty} \;\cong\; E^{p,q}_0 \left(H^*(M^*,d), F^*H^*(M^*,d)\right) \;\cong\; \left. F^p H^{p+q}(M^*,d) \right/_{F^{p+1}H^{p+q}(M^*,d)}.$$

Démonstration. Soit (M^*, d, F) un A-module différentiel gradué filtré. On dispose d'une filtration décroissante $F = (F^p M^*)_{p \in \mathbb{Z}}$ telle que pour tous p et q,

$$\dots \supset F^{p-2}M^{p+q} \supset F^{p-1}M^{p+q} \supset F^pM^{p+q} \supset \dots$$

De plus, par hypothèse d respecte cette filtration et est de degré 1, donc pour tous p et q,

$$d(F^pM^{p+q}) \subset F^pM^{p+q+1}$$
.

On commence par introduire quelques notations : pour tout $r \ge 0$, on définit les modules bigradués $Z_r^{*,*}$ et $B_r^{*,*}$ par

$$Z_r^{p,q} = F^p M^{p+q} \cap d^{-1}(F^{p+r} M^{p+q+1})$$

 $B_r^{p,q} = F^p M^{p+q} \cap d(F^{p-r} M^{p+q-1})$

et pour r = -1,

$$Z_{-1}^{p,q} = F^{p+1}M^{p+q}$$
 et $B_{-1}^{p,q} = d(F^{p+1}M^{p+q-1})$.

Enfin, pour $r = \infty$, on pose

$$Z^{p,q}_{\infty}=\ker d\cap F^pM^{p+q}\quad \text{et}\quad B^{p,q}_{\infty}=\operatorname{im} d\cap F^pM^{p+q}.$$

Remarquons que puisque d respecte la filtration et que celle dernière est décroissante, on a la tour d'inclusions

$$B_0^{p,q} \subset B_1^{p,q} \subset \ldots \subset B_{\infty}^{p,q} \subset Z_{\infty}^{p,q} \subset \ldots \subset Z_1^{p,q} \subset Z_{\infty}^{p,q}$$

ainsi que l'inclusion suivante, que nous noterons (*),

$$d(Z_r^{p-r,q+r-1}) \subset B_r^{p,q}. \tag{*}$$

En effet,

$$d(Z_r^{p-r,q+r-1}) = d(F^{p-r}M^{p+q-1} \cap d^{-1}(F^pM^{p+q}))$$

$$\subset F^pM^{p+q} \cap d(F^{p-r}M^{p+q-1})$$

$$= B_r^{p,q}$$

Il s'agit maintenant, à partir de ces données, de construire une suite spectrale cohomologique vérifiant les égalités du théorème. On a donc quatre étapes à effectuer :

- (i) Définir une famille de modules différentiels bigradués $(E_r^{*,*}, d_r)_{r=0,1,...}$
- (ii) Définir une famille d'isomorphismes $\phi_r: E_{r+1}^{*,*} \xrightarrow{\sim} H^{*,*}(E_r^{*,*}, d_r)$
- (iii) Vérifier que notre suite spectrale définie en (i) et (ii) a bien la première page souhaitée.
- (iv) Vérifier que, si on suppose la filtration F de M^* bornée, alors notre suite spectrale converge vers $H^*(M^*,d)$.

On peut à présent débuter la preuve :

(i) On pose, pour $0 \le r \le \infty$ et pour tous p et q:

$$E_r^{p,q} = \frac{Z_r^{p,q}}{Z_{r-1}^{p,q} + B_{r-1}^{p,q}}.$$

On note $\pi_r^{p,q}:Z_r^{p,q}\to Z_r^{p,q}$ la projection canonique, dont le noyau est donc donné par

$$\ker \pi_r^{p,q} = Z_{r-1}^{p,q} + B_{r-1}^{p,q}.$$

On veut équiper chaque module gradué $E_r^{*,*}$ d'une différentielle d_r , qui sera induite de d. On peut déjà remarquer d'après (*) que

$$d(Z_r^{p,q}) \subset B_r^{p+r,q-r+1} \subset Z_r^{p+r,q-r+1}$$

ce qui permet de voir d comme application de $Z_r^{p,q}$ vers $Z_r^{p+r,q-r+1}$ et donc de construire le diagramme suivant :

$$Z_r^{p,q} \xrightarrow{d} Z_r^{p+r,q-r+1} \xrightarrow{\pi_r^{p+r,q-r+1}} E_r^{p+r,q-r+1}$$

$$\downarrow^{\pi_r^{p,q}}$$

$$E_r^{p,q} \xrightarrow{d} Z_r^{p+r,q-r+1}$$

L'application d_r est bien définie, puisqu'on a toujours d'après (*)

$$\begin{array}{lcl} d(Z_{r-1}^{p+1,q-1}+B_{r-1}^{p,q}) & = & d(Z_{r-1}^{p+1,q-1})+d(B_{r-1}^{p,q}) \\ & \subset & B_{r-1}^{p+r-1,q-r}+0 \\ & \subset & Z_{r-1}^{p+r-1,q-r}+B_{r-1}^{p+q,q-r+1} \\ & = & \ker \pi_{r}^{p+r,q-r+1} \end{array}$$

ce qui implique que $\pi_r^{p+r,q+r-1} \circ d(\ker \pi_r^{p,q}) = 0$. Enfin, comme $d \circ d = 0$, on a aussi $d_r \circ d_r = 0$ et donc d_r est bien une différentielle de bidegré (r, 1-r). On a donc construit notre famille de modules différentiels bigradués $(E_r^{*,*}, d_r)_{r=0,1,...}$.

(ii) Il s'agit maintenant de montrer que, pour tout $r \geq 0$ et tous p, q, il existe un isomorphisme

$$\phi_r^{p,q}: E_{r+1}^{p,q} \xrightarrow{\sim} H^{p,q}(E_r^{*,*}, d_r).$$

Pour cela, on considère le diagramme suivant :

$$Z_r^{p+1,q-1} + B_r^{p,q} \xrightarrow{\subset} Z_{r+1}^{p,q} \xrightarrow{\subset} Z_r^{p,q} \xrightarrow{d} Z_r^{p+r,q-r+1}$$

$$\downarrow^{\pi_r^{p,q}} \qquad \downarrow^{\pi_r^{p,q}} \qquad \downarrow^{\pi_r p+r,q-r+1}$$

$$\ker d_r \xrightarrow{\subset} E_r^{p,q} \xrightarrow{d_r} E_r^{p+r,q-r+1}$$

$$\downarrow^{H^{p,q}(E_r^{*,*},d_r)}$$

$$\downarrow^{0}$$

Commençons par vérifier qu'on a bien $\pi_r^{p,q}(Z_{r+1}^{p,q}) = \ker d_r$. Le carré de droite du diagramme commute par construction de d_r , donc $d_r \circ \pi_r^{p,q} = \pi_r^{p+r,q-r+1} \circ d$. Alors, $d_r \circ \pi_r^{p,q}(z) = 0$ si et seulement si $d(z) \in \ker \pi_r^{p+r,q-r+1} = Z_{r-1}^{p+r+1,q-r}$ si et seulement si $z \in Z_{r+1}^{p,q} + Z_{r-1}^{p+1,q-1}$, d'après les définitions de $Z_*^{*,*}$ et $B_*^{*,*}$. Ainsi, on obtient

$$(\pi_r^{p,q})^{-1} \ker d_r = Z_{r+1}^{p,q} + Z_{r-1}^{p+1,q-1},$$

et comme $Z_{r-1}^{p+1,q-1} \subset \ker \pi_r^{p,q}$, on a bien

$$\ker d_r = \pi \left(Z_{r+1}^{p,q} + Z_{r-1}^{p+1,q-1} \right) = \pi \left(Z_{r+1}^{p,q} \right).$$

Pour construire les isomorphismes ϕ_r , on a besoin de montrer l'égalité suivante :

$$Z_r^{p+1,q-1} + B_r^{p,q} = Z_{r+1}^{p,q} \cap ((\pi_r^{p,q})^{-1}(\operatorname{im} d_r)). \tag{**}$$

On sait déjà, par construction de d_r et par l'inclusion (*), que

$$\operatorname{im} d_r = \pi_r^{p,q} \circ d(Z_r^{p-r,q+r-1}) = \pi_r^{p,q}(B_r^{p,q}),$$

donc en appliquant $(\pi_r^{p,q})^{-1}$ on trouve

$$(\pi_r^{p,q})^{-1}(\operatorname{im} d_r) = B_r^{p,q} + \ker \pi_r^{p,q}$$

$$= B_r^{p,q} + B_{r-1}^{p,q} + Z_{r-1}^{p+1,q-1}$$

$$= B_r^{p,q} + Z_{r-1}^{p+1,q-1}$$

Ensuite, puisqu'on veut intersecter avec $Z_{r+1}^{p,q}$, on peut remarquer que, par décroissance de la filtration F, on a

$$\begin{array}{ll} Z_{r+1}^{p,q} \cap Z_{r-1}^{p+1,q-1} & = & \left(F^{p+1} M^{p+q} \cap d^{-1} (F^{p+r} M^{p+q+1}) \right) \cap \left(F^{p} M^{p+q} \cap d^{-1} (F^{p+r+1} M^{p+q+1}) \right) \\ & = & F^{p+1} M^{p+q} \cap d^{-1} (F^{p+r+1} M^{p+q+1}) \\ & = & Z_{r}^{p+1,q-1} \end{array}$$

Alors, en rassemblant les deux calculs précédents, on obtient bien

$$Z_{r+1}^{p,q} \cap ((\pi_r^{p,q})^{-1}(\operatorname{im} d_r)) = Z_{r+1}^{p,q} \cap (Z_{r-1}^{p+1,q-1} + B_r^{p,q}) = Z_r^{p+1,q-1} + B_r^{p,q}.$$

On peut enfin construire nos isomorphismes ϕ_r : on pose pour chaque $r \geq 0$, ρ_r : $\ker d_r \to H^{p,q}(E_r^{*,*}, d_r)$ la projection canonique, et on définit ϕ_r comme étant la composée de ρ_r avec $\pi_r^{p,q}: Z_{r+1}^{p,q} \to \ker d_r$:

$$\phi_r := \rho_r \circ \pi_r^{p,q} : Z_{r+1}^{p,q} H^{p,q}(E_r^{*,*}, d_r).$$

Alors, le noyau de ϕ_r est donné, grâce à l'égalité (**), par

$$\ker \phi_r = \ker \rho_r \circ \pi_r^{p,q} = Z_{r+1}^{p,q} \cap \left((\pi_r^{p,q})^{-1} (\operatorname{im} d_r) \right) = Z_r^{p+1,q-1} + B_r^{p,q},$$

donc par passage au quotient, ϕ_r définit bien un isomorphisme

$$H^{p,q}(E_r^{*,*},d_r) \cong {Z_{r+1}^{p,q}}\Big/{Z_r^{p+1,q-1}+B_r^{p,q}} = E_{r+1}^{p,q}.$$

(iii) On dispose maintenant d'une suite spectrale bien définie $(E_r^{*,*}, d_r)_{r=0,1,...}$. Nous devons à présent vérifier que cette dernière a bien la page 1 donnée par le théorème, à savoir que

$$E_1^{p,q} \; \cong \; H^{p+q} {{F^p M^*} / {F^{p+1} M^*}}, d \Big).$$

Regardons d'abord la page 0: par définition de $E_*^{*,*}$, $Z_*^{*,*}$ et $B_*^{*,*}$, on a

$$\begin{array}{lcl} E_0^{p,q} & = & Z_0^{p,q} \big/_{Z_{-1}^{p+1,q-1} + B_{-1}^{p,q}} \\ & = & \big(F^p M^{p+q} \cap d^{-1} (F^p M^{p+q+1}) \big) \big/_{\big(F^{p+1} M^{p+q} + d (F^{p+1} M^{p+q-1}) \big)}. \end{array}$$

Alors, comme d respecte la filtration, on a

$$E_0^{p,q} = {F^p M^{p+q}}/{F^{p+1} M^{p+q}}.$$

Par ailleurs, la différentielle $d_0: E_0^{p,q} \to E_0^{p,q+1}$ est induite de $d: Z_0^{p,q} = F^p M^{p+q} \to Z_0^{p,q+1} = F^p M^{p+q+1}$, donc en fait on a bien

$$E_1^{p,q} = H^{p,q}(E_0^{*,*}, d_0) = H^{p+q} {F^p M^*}/{F^{p+1} M^*, d}.$$

(iv) Pour ce dernier point, on suppose que la filtration $F = (F^p M^*)_p$ de M^* est **bornée**, avec s = n > 0 et t = 0. Autrement dit, on dispose d'une filtration décroissante de M^* telle que

$$M^* = F^0 M^* \supset F^1 M^* \supset \dots \supset F^{n-1} M^* \supset F^n M^* = \{0\}.$$

D'après la remarque 1.21, si on note $i_p: F^pM^* \to M^*$ l'inclusion naturelle pour tout p, on dispose également d'une filtration décroissante pour $H^*(M^*, d)$ dont les termes sont donnés par

$$F^pH^{p+q}(M^*,d) = \operatorname{im}\left(H^{p+q}(i_p)\right)$$

pour tous p et q. Alors, comme la filtration de M^* est bornée, il est clair que celle induite sur $H^*(M^*, d)$ l'est aussi. Il reste à vérifier qu'on a bien

$$E^{p,q}_{\infty} \cong F^p H^{p+q}(M^*,d) /_{F^{p+1}H^{p+q}(M^*,d)}.$$

Pour cela, on définit les projections canoniques

$$\pi^{p,q}_{\infty}$$
 : $Z^{p,q}_{\infty} \to E^{p,q}_{\infty}$
 π : $\ker d \to H(M^*, d)$

avec $\ker \pi^{p,q}_{\infty} = Z^{p,q}_{\infty} + B^{p,q}_{\infty}$. Alors, toujours avec les notations de la remarque 1.21, on a

$$F^p H^{p+q}(M^*, d) = \operatorname{im} (H^{p+q}(i_p)) = \pi (F^p M^{p+q} \cap \ker d) = \pi (Z^{p,q}_{\infty}),$$

ce qui permet de voir π comme une application de $Z^{p,q}_{\infty}$ vers $F^pH^{p+q}(M^*,d)$, et donc d'écrire le diagramme suivant :

$$Z^{p,q}_{\infty} \xrightarrow{\pi} F^{p}H^{p+q}(M^{*},d)$$

$$\downarrow^{\pi^{p,q}_{\infty}}_{E^{p,q}_{\infty}}$$

L'application d_{∞} est bien définie, puisque

$$\pi(\ker \pi_{\infty}^{p,q}) = \pi(Z_{\infty}^{p,q} + B_{\infty}^{p,q}) = F^{p+1}H^{p+q}(M^*, d).$$

Enfin, en calculant le noyau de cette nouvelle application, on constate que

$$\ker d_{\infty} = \pi_{\infty}^{p,q} \left(\pi^{-1} \left(F^{p+1} H^{p+q} (M^*, d) \right) \cap Z_{\infty}^{p,q} \right)$$

$$= \pi_{\infty}^{p,q} \left(Z_{\infty}^{p+1,q-1} \cap d(M^*) \cap Z_{\infty}^{p,q} \right)$$

$$\subset \pi_{\infty}^{p,q} \left(Z_{\infty}^{p+1,q-1} + B_{\infty}^{p,q} \right)$$

$$= \{0\}$$

Ainsi, $d_{\infty}: E_{\infty}^{p,q} \to F^p H^{p+q}(M^*,d)/F^{p+1}H^{p+q}(M^*,d)$ est bien un isomorphisme, et ceci achève la preuve.

1.2.2 Construction par des couples exacts

Définition 1.23. Un couple exact $\mathcal C$ est la donnée :

- (i) d'une paire (D, E) de A-modules
- (ii) d'un triplet (i,j,k) de morphismes de A-modules avec $i:D\to D,\,j:D\to E,\,k:E\to D$ tels que

$$\operatorname{im} i = \ker j, \ \operatorname{im} j = \ker k \text{ et } \operatorname{im} k = \ker i.$$

Autrement dit, le diagramme suivant doit être exact en chaque sommet :

On note $C = \{D, E, i, j, k\}$ un tel couple exact.

Exemple 1.24. Considérons la suite exacte courte classique

$$0 \longrightarrow \mathbb{Z} \xrightarrow{\mu_n} \mathbb{Z} \longrightarrow \mathbb{Z}/n\mathbb{Z} \longrightarrow 0$$

où μ_n désigne la multiplication par n. On se donne un \mathbb{Z} -module gradué différentiel (M^*, d) que l'on suppose plat (c'est à dire que, pour tout n, le module M^n est plat). De fait, le foncteur $M^* \otimes -$ est exact, et donc en tensorisant sur \mathbb{Z} par M^* , on obtient la suite exacte courte

$$0 \longrightarrow M^* \xrightarrow{\bar{\mu_n}} M^* \longrightarrow M^* \otimes \mathbb{Z}/_{n\mathbb{Z}} \longrightarrow 0$$

où $\bar{\mu_n}$ désigne l'application induite par μ_n sous l'isomorphisme $M^* \cong M^* \otimes \mathbb{Z}$, qui est encore la multiplication par n. Alors, d'après le théorème des suites exactes longues en (co)homologie, on obtient un couple exact

$$H^{*}(M^{*}) \xrightarrow{H^{*}(\bar{\mu_{n}})} H^{*}(M^{*})$$

$$H^{*}(M^{*} \otimes \mathbb{Z}/_{p\mathbb{Z}})$$

où ∂ désigne le morphisme de connexion.

Lemme 1.25. Si $C = \{D, E, i, j, k\}$ est un couple exact, alors E muni de $d = j \circ k$ est un A-module différentiel.

Démonstration. Comme C est un couple exact, $\ker k = \operatorname{im} j$ donc $k \circ j = 0$ et

$$d \circ d = (j \circ k) \circ (j \circ k) = j \circ (k \circ j) \circ k = 0.$$

Lemme 1.26. Soit $C = \{D, E, i, j, k\}$ un couple exact, avec (E, d) le A-module différentiel équipé de $d = j \circ k$. On pose

$$D' = i(D) = \operatorname{im} i$$
 et $E' = H(E, d) = \frac{\ker d}{\dim d}$

Alors, les trois applications suivantes sont bien définies :

 $D\'{e}monstration.$ • Pour i' il n'v a évidemment rien à vérifier.

- Soit $y \in D'$ tel que y = i(x) = i(x') avec $x, x' \in D$. Alors, $x x' \in \ker i = \operatorname{im} k$ donc il existe $z \in E$ tel que k(y) = x x' et $j \circ k(z) = d(z) = j(x) j(x')$, donc $j(x) \in j(x') + d(E)$ soit j'(i(x)) = j'(i(x')). Ainsi j' ne dépend pas de l'antécédent choisi, donc j' est bien définie.
- Soit $x + d(E) = x' + d(E) \in E'$. Il existe $e \in E$ tel que x' = x + d(e) et donc on a $k(x') = k(x) + k \circ d(e) = k(x) + k \circ j \circ k(e) = k(x)$ puisque im $j = \ker k$. Ainsi, k' ne dépend pas du représentant choisi. De plus, si $x + d(E) \in E'$, alors $x \in \ker d$ et $d(x) = j \circ k(x) = 0$, d'où $k(x) \in \ker j = \operatorname{im} i = D'$, et donc k' est bien définie.

Définition 1.27. Avec les notations du lemme précédent, on obtient un nouveau diagramme

$$i(D) \xrightarrow{i'} i(D)$$

$$H(E,d)$$

et l'ensemble $C' = \{D', E', i', j', k'\}$ ainsi défini est appelé **couple dérivé** de C.

Proposition 1.28. Si $C = \{D, E, i, j, k\}$ est un couple exact, alors le couple dérivé C' l'est aussi.

Démonstration. On doit montrer que le diagramme

• Comme $D' = \operatorname{im} i = D/\ker i$ on a

$$\begin{aligned} \ker j' &= \{x \in D' \mid j(x) \in d(E)\} = j^{-1} \left(\operatorname{im} d\right) \big/_{\ker i} = j^{-1} \left(j \left(\operatorname{im} k\right)\right) \big/_{\ker i} \\ &= \left(\operatorname{im} k + \ker j\right) \big/_{\ker i} = \left(\ker i + \ker j\right) \big/_{\ker i} = i \left(\ker j\right) = i \left(\operatorname{im} i\right) = \operatorname{im} i' \end{aligned}$$

$$\bullet \ \ker i' = \operatorname{im} i \cap \ker i = \ker j \cap \operatorname{im} k = k \Big(k^{-1} \big(\ker j \big) \Big) = k \big(\ker d \big) = k' \Big(\ker d \big/_{\operatorname{im} d} \Big) = k'(E) = \operatorname{im} k'$$

•
$$\ker k' = \frac{\ker k}{\lim d} = \frac{\operatorname{im} j}{\lim d} = \frac{\operatorname{im} j}{\lim d} = \operatorname{im} j'$$

Nous allons maintenant réitérer ce processus, et ainsi construire par récurrence le $n^{\text{ième}}$ couple dérivé de \mathcal{C} : pour n=0, on pose $\mathcal{C}^{(0)}:=\mathcal{C}$ avec $D^{(0)}=D$ et $E^{(0)}=E$, et pour $n\geq 1$,

$$\mathcal{C}^{(n)} := \{ D^{(n)}, E^{(n)}, i^{(n)}, j^{(n)}, k^{(n)} \} = (\mathcal{C}^{(n-1)})'$$

avec les $n^{\text{ièmes}}$ modules dérivés

$$D^{(n)} = \operatorname{im} i^{(n-1)} \text{ et } E^{(n)} = H(E^{(n-1)}, d^{(n-1)})$$

la différentielle

$$d^{(n)} = i^{(n)} \circ k^{(n)}$$

et les applications $i^{(n)},\,j^{(n)}$ et $k^{(n)},\,$ qui sont induites par $i,\,j$ et k comme suit :

Le $n^{\text{ième}}$ couple dérivé de $\mathcal{C} = \{D, E, i, j, k\}$ est donc donné par le diagramme suivant :

$$i^{(n-1)}(D) \xrightarrow{i^{(n)}} i^{(n)} \longrightarrow i^{(n-1)}(D)$$
 $H(E^{(n-1)}, d^{(n)})$

La proposition 1.28 s'applique : par récurrence, si $C^{(n-1)}$ est exact, alors $C^{(n)}$ l'est aussi. On voit maintenant apparaître les suites spectrales, puisqu'on a la relation $E^{(n+1)} = H(E^{(n)}, d^{(n)})$. Avant de pouvoir formaliser cela, on a besoin d'une dernière définition :

Définition 1.29. Un couple exact bigradué $C^{*,*}$ est la donnée :

- (i) d'une paire $(D^{*,*}, E^{*,*})$ de A-modules bigradués
- (ii) d'un triplet (i, j, k) de morphismes de A-modules bigradués de degrés respectifs (-1, 1), (0, 0) et (1, 0), tels que le diagramme suivant

est exact en chaque sommet et en tout degré.

Pour alléger les notations, on oubliera la bigraduation sur les morphismes lorsque celle-ci n'est pas indispensable pour la compréhension. On peut représenter un couple exact bigradué $\mathcal{C}^{*,*}$ de deux manières : la première est donnée par le diagramme suivant

où si on se déplace d'une flèche verticale puis de deux à l'horizontale on a une suite exacte. La deuxième est "d'oublier" un des degrés, ce qui donne

et c'est ce qu'on appelle couple exact déroulé.

On peut à présent énoncer le résultat fondamental de cette partie : le **théorème de construction** des suites spectrales par la méthode des couples exacts.

Théorème 1.30. Si $C^{*,*} = \{D^{*,*}, E^{*,*}, i, j, k\}$ est un couple exact bigradué, alors ce dernier détermine une suite spectrale cohomologique $(E_r^{*,*}, d_r)_{r=1,2,...}$ en posant :

$$E_1^{*,*} = (E^{*,*})^{(0)} = E^{*,*}, \text{ avec } d_1 = d = j \circ k$$

 $E_2^{*,*} = (E^{*,*})^{(1)} = (E^{*,*})' = H(E_1^{*,*}, d_1), \text{ avec } d_2 = d' = j' \circ k'$

et par récurrence

$$E_r^{*,*} = (E^{*,*})^{(r-1)} = H(E_{r-1}^{*,*}, d_{r-1}), \text{ avec } d_r = d^{(r-1)} = j^{(r-1)} \circ k^{(r-1)} = j_r \circ k_r$$

où $(E^{*,*})^{(r-1)}$ désigne le $(r-1)^{\text{ième}}$ module dérivé du module bigradué $E^{*,*}$.

 $D\'{e}monstration.$ On montre le résultat par récurrence sur $r \geq 1$. Vérifions que d_r ainsi définie ait le bon degré, c'est à dire que bideg $d_r = (r, 1-r)$. On a $E_1^{*,*} = E^{*,*}$ muni de $d_1 = j^{(0)} \circ k^{(0)} = j \circ k$, donc bideg $d_1 = (1,0) + (0,0) = (1,0)$. Supposons que pour $r \geq 1$, on ait bideg $j_{r-1} = \text{bideg } j^{(r-2)} = (r-2,2-r)$, bideg $k_{r-1} = \text{bideg } k^{(r-2)} = (1,0)$ et donc que bideg $d_{r-1} = \text{bideg } j_{r-1} \circ k_{r-1} = (r-1,2-r)$. Alors, par définition on a directement bideg $k_r = \text{bideg } k^{(r-1)} = (1,0)$. Ensuite, on a $j^{(r-1)}(i^{(r-2)}(x)) = j^{(r-2)}(x) + d^{(r-2)}(E^{(r-2)})$ donc si $j^{(r-2)}(x) \in (E^{p,q})^{(r-2)}$, alors par hypothèse de récurrence $x \in (D^{p-r+3,q+r-3})^{(r-3)}$. Or par définition de $i^{(r)}$ on a bideg $i^{(r-2)} = (-1,1)$, donc $i^{(r-2)}(D^{p-r+3,q+r-3})^{(r-2)} = (D^{p-r+2,q+r-2})^{(r-1)}$, d'où bideg $i^{(r-2)}(x) = (p-r+2,q+r-2)$, et finalement bideg $j^{(r-1)} = (r-1,1-r) = \text{bideg } j_r$. Ainsi, on a bien

bideg
$$d_r$$
 = bideg $d^{(r-1)} = (r-1, 1-r) + (1, 0) = (r, 1-r)$

et par construction

$$E_r^{*,*} = (E^{*,*})^{(r-1)} = H\big((E^{*,*})^{(r-2)}, d^{(r-2)}\big) = H(E_{r-1}^{*,*}, d_{r-1})$$

donc on a bien une suite spectrale cohomologique.

Remarque 1.31. On fera attention à la convention qui vient d'être posée (sans le dire) sur les applications, à savoir que $i_r = i^{(r-1)}$, $j_r = j^{(r-1)}$ et $k_r = k^{(r-1)}$ avec bideg $i_r = (-1,1)$, bideg $k_r = (1,0)$ et bideg $j_r = \text{bideg } j^{(r-1)} = (r-1,1-r)$. De même, on a $d_r = d^{(r-1)}$ de bidegré (r,1-r).

Le théorème qui vient d'être démontré affirme qu'un couple exact bigradué détermine une suite spectrale; on va maintenant voir que l'on peut donner une description explicite de cette dernière. On utilisera pour cela les notations du couple exact déroulé ainsi que le lemme suivant :

Lemme 1.32. Soit $C^{*,*} = \{D^{*,*}, E^{*,*}, i, j, k\}$ un couple exact bigradué. Il existe pour chaque p une description du module dérivé $(E^{p,*})'$, donnée par

$$(E^{p,*})' = k^{-1} (\operatorname{im} i : D^{p+2,*} \to D^{p+1,*}) / j(\ker i : D^{p,*} \to D^{p-1,*})$$

Démonstration. On a $k^{-1}(\operatorname{im} i) = k^{-1}(\ker j) = \ker j \circ k = \ker d$ et $j(\ker i) = j(\operatorname{im} k) = \operatorname{im} j \circ k = \operatorname{im} d$, et donc $(E^{p,*})' = \frac{\ker d}{\operatorname{im} d} = \frac{k^{-1}(\operatorname{im} i)}{j(\ker i)}$.

Proposition 1.33. Soit $C^{*,*} = \{D^{*,*}, E^{*,*}, i, j, k\}$ un couple exact bigradué. Pour tous p et r, on pose

$$\begin{array}{lcl} Z^{p,*}_r & = & k^{-1}(\operatorname{im}^{r-1}:D^{p+r,*}\to D^{p+1,*}) \\ B^{p,*}_r & = & j(\ker i^{r-1}:D^{p,*}\to D^{p-r+1,*}) \end{array}$$

où i^{r-1} désigne la composée de i avec elle-même r-1 fois (qui coïncide en fait avec $i^{(r-1)}$). Ces sous-modules de $E_r^{p,*}$ fournissent une description de la suite spectrale associée à $\mathcal{C}^{*,*}$:

$$E_r^{p,*} = (E^{p,*})^{(r-1)} \cong Z_r^{p,*} / B_r^{p,*}$$

Démonstration. On va appliquer le lemme précédent à $(E_2^{p,*})' = H(E_2^{p,*}, d_2) = E_3^{p,*}$ avec $d_2 = j' \circ k'$. En faisant cela, on obtient

$$\begin{split} (E_2^{p,*})' &= k^{-1} \left(\operatorname{im} i' : (D^{p+2,*})' \to (D^{p+1,*})' \right) \Big/ j \left(\ker i' : (D^{p,*})' \to (D^{p-1,*})' \right) \\ &= k^{-1} \left(\operatorname{im} i' : i (D^{p+3,*}) \to i (D^{p+2,*}) \right) \Big/ j \left(\ker i' : i (D^{p+1,*}) \to i (D^{p,*}) \right) \\ &= k^{-1} \left(\operatorname{im} i^2 : D^{p+3,*} \to D^{p+1,*} \right) \Big/ j \left(\ker i^2 : D^{p,*} \to D^{p-2,*} \right) \\ &= Z_3^{p,*} \Big/ B_3^{p,*} \\ &= E_3^{p,*} \end{split}$$

Ensuite, comme l'application $i^{(r)}$ est induite de i, on obtient la bonne description de $E_r^{p,*}$ en répétant ce même procédé.

Corollaire 1.34. Pour tout $r \geq 1$, il existe une suite exacte courte

$$0 \longrightarrow D^{p,*}/(\ker(i^r: D^{p,*} \to D^{p-r,*}) + i(D^{p+1,*})) \xrightarrow{\bar{j}} E^{p,*}_{r+1}$$
$$\xrightarrow{\bar{k}} \operatorname{im}(i^r: D^{p+r+1,*} \to D^{p+1,*}) \cap \ker(i: D^{p+1,*} \to D^{p,*}) \longrightarrow 0$$

 $D\acute{e}monstration$. Pour cette démonstration, on reprend la proposition précédente en allégeant les notations. On commence par définir \bar{k} en utilisant le diagramme suivant :

La suite verticale est exacte d'après la proposition précédente et comme $k \circ j = 0$, par propriété universelle du quotient \bar{k} est bien définie. De plus, k est surjective donc \bar{k} aussi, et le diagramme est bien exact en chaque sommet.

Pour définir \bar{j} , on commence par construire \hat{j} comme sur le diagramme suivant, où les deux lignes sont exactes :

$$0 \longrightarrow i(D^{p+1,*}) + \ker i^r \longrightarrow D^{p,*} \longrightarrow D^{p,*} / i(D^{p+1},*) + \ker i^r \longrightarrow 0$$

$$\downarrow^j \qquad \qquad \downarrow^{\hat{j}} \qquad \qquad \downarrow^{\hat{j}}$$

$$0 \longrightarrow j(\ker i^r) \longrightarrow \operatorname{im} j / \ker i^r \longrightarrow 0$$

Comme ici j est surjective, par le lemme des cinq \hat{j} l'est aussi. Alors, puisque im $j = \ker k = k^{-1}(0) \subset k^{-1}(\operatorname{im} i^r)$, on pose

$$\bar{j} : \frac{D^{p,*}}{i(D^{p+1},*) + \ker i^r} \to \frac{\ker k}{\ker i^r}$$

$$[x] \mapsto [j(x)] = j(x) + j(\ker i^r)$$

 $ar{j}$ ainsi définie est surjective, et puisque $E^{p,*}_{r+1} = k^{-1} (\operatorname{im} i^r) / j (\ker i^r)$, on va montrer qu'elle est injective. Soient [x] et [y] deux classes dans $D^{p,*} / i (D^{p+1},*) + \ker i^r$ telles que $ar{j}[x] = ar{j}[y]$. Alors, $ar{j}[x-y] = [j(x-r)] = 0$, donc $j(x-y) \in j (\ker i^r)$, et donc $x-y \in \ker j + \ker i^r = \operatorname{im} i + \ker i^r$, d'où [x] = [y]. On obtient donc que $ar{j} : D^{p,*} / i (D^{p+1},*) + \ker i^r \to E^{p,*}_{r+1}$ est injective, et comme par définition $ar{j} = \ker \bar{k}$, la suite énoncée est bien exacte.

1.2.3 L'équivalence des deux approches

On a vu au cours des deux parties précédentes deux façons d'obtenir une suite spectrale : en prenant une **filtration** sur un module différentiel gradué et en prenant un **couple exact** bigradué. Dans les deux cas, les théorèmes 1.22 et 1.30 font apparaître une suite spectrale, et le but de cette partie est de montrer que, dans certains cas, ces deux suites coïncident.

Pour ce faire, nous allons considérer (M^*, d, F) un A-module différentiel gradué filtré, dont la filtration est décroissante, et construire un couple exact bigradué particulier à partir de ce dernier. On sait que pour chaque degré p de la filtration, on a une suite exacte courte

$$0 \longrightarrow F^{p+1}M^* \stackrel{i}{\longrightarrow} F^pM^* \stackrel{j}{\longrightarrow} F^pM^*/_{F^{p+1}M^*} \longrightarrow 0$$

avec i et j respectivement l'inclusion naturelle et la projection canonique. Alors, comme d respecte la filtration, cette suite est une suite exacte courte de modules gradués différentiels. Alors, d'après le théorème des suites exactes longues en cohomologie, on a

$$\dots \xrightarrow{\partial^{p+q-1}} H^{p+q}(F^{p+1}M) \xrightarrow{\quad H^{p+q}(i) \quad} H^{p+q}(F^{p}M) \xrightarrow{\quad H^{p+q}(j) \quad} H^{p+q}\left(F^{p}M\big/_{F^{p+1}M}\right) \xrightarrow{\partial^{p+q}} \dots$$

avec ∂^* est le morphisme de connexion. On définit maintenant deux modules bigradués $D^{*,*}$ et $E^{*,*}$ par

$$D^{p,q}:=H^{p+q}(F^pM^*)$$
 et $E^{p,q}:=H^{p+q}{F^pM^*}/{F^{p+1}M^*}$

et les morphismes bigradués correspondants

$$i^{p,q} := H^{p+q}(i), \ i^{p,q} := H^{p+q}(i) \text{ et } k^{p,q} := \partial^{p+q}.$$

Avec les notations précédentes, on obtient bien un couple exact bigradué

avec

$$\dots \xrightarrow{k} D^{p+1,q-1} \xrightarrow{i} D^{p,q} \xrightarrow{j} E^{p,q} \xrightarrow{k} D^{p+1,q} \xrightarrow{i} \dots$$

En particulier, on voit avec la suite exacte longue que bideg i = (-1,1), bideg j = (0,0) et bideg k = (1,0), donc d'après le théorème 1.30, ce couple exact bigradué détermine bien une suite spectrale. La proposition suivante montre que cette dernière coïncide avec celle associée au module filtré (M^*,d,F) donnée par le théorème 1.22.

Proposition 1.35. Si (M^*, d, F) est un A-module différentiel gradué filtré, alors la suite spectrale associée coïncide avec la suite spectrale donnée par le couple exact construit comme ci-dessus.

Démonstration. On va montrer que la $r^{\text{ième}}$ de la suite spectrale associée au couple exact, dont une expression a été donnée à la proposition 1.33 par $E_r^{p,q} = \frac{k^{-1}(\operatorname{im} i^r)}{j(\ker i^{r-1})}$, coïncide avec celle donnée dans la preuve du théorème 1.22, c'est à dire

$$E_r^{p,q} = \frac{Z_r^{p,q}}{Z_{r-1}^{p+1,q-1}} + B_{r-1}^{p,q}$$

avec $Z_r^{p,q} = F^p M^{p+q} \cap d^{-1}(F^{p+r} M^{p+q+1})$ et $B_r^{p,q} = F^p M^{p+q} \cap d(F^{p-r+1} M^{p+q-1})$.

Soit $[x+F^{p+1}M] \in E_1^{p,q} = H^{p+q} {F^pM}/{F^{p+1}M}$, avec $x \in F^pM^{p+q}$ et $d(x) \in F^pM^{p+q+1}$ (où d est la différentielle associée à $E_1^{*,*}$ qui respecte la filtration). Les morphismes k et j de la suite exacte longue en cohomologie peuvent être décrit explicitement sur cette classe par

$$k([x+F^{p+1}M]) = [d(x)]$$
 et $j([x]) = [x+F^{p+1}M]$.

On va maintenant montrer que $k^{-1}(\operatorname{im} i^r) = \frac{Z_r^{p,q}}{F^{p+1}M^{p+q}}$ et $j(\ker i^{r-1}) = \frac{B_{r-1}^{p,q}}{F^{p+1}M^{p+q}}$. D'abord, $[x+F^{p+1}M] \in k^{-1}(\operatorname{im} i^{r-1})$ si et seulement si $[d(x)] \in \operatorname{im} i^{r-1}$ si et seulement si $d(x) \in F^{p+r}M^{p+q+1}$, puisque bideg i=(-1,1). Ainsi, $x \in F^pM^{p+q} \cap d^{-1}(F^{p+r}M^{p+q+1}) = Z_r^{p,q}$, d'où

$$k^{-1}(\operatorname{im} i^r) = \frac{Z_r^{p,q}}{F^{p+1}M^{p+q}}.$$

Ensuite, on regarde ker i^{r-1} comme sous-module de $H^{p+q}(F^pM)$, et alors une classe [x] de $H^{p+q}(F^pM)$ est dans ker i^{r-1} si et seulement si $x \in F^pM^{p+q}$ et $d(x) \in F^{p-r+1}M^{p+q-1}$. Ainsi, $x \in F^pM^{p+q} \cap d(F^{p-r+1}M^{p+q-1}) = B^{p,q}_{r-1}$ et donc par définition de j, on obtient

$$j(\ker i^{r-1}) = \frac{B_{r-1}^{p,q}}{F^{p+1}M^{p+q}}.$$

Grâce à ces deux égalités, on obtient finalement

$$\begin{split} E_r^{p,q} &= {k^{-1}(\operatorname{im} i^r)}/{j(\ker i^{r-1})} \\ &= {{{\left({Z_r^{p,q}}/{F^{p+1}M^{p+q}} \right)}}/{\left({B_{r-1}^{p,q}/{F^{p+1}M^{p+q}} \right)}} \\ &= {{{\left({Z_r^{p,q}}/{F^{p+1}M^{p+q}} \right)}}/{\left({Z_{r-1}^{p+1,q-1} + B_{r-1}^{p,q}/{F^{p+1}M^{p+q}} \right)}} \\ &= {{Z_r^{p,q}}/{Z_{r-1}^{p+1,q-1} + B_{r-1}^{p,q}}} \end{split}$$

et donc les deux suites spectrales coïncident.

1.3 Quelques applications algébriques

L'objectif de cette partie est de construire deux suites spectrales à partir d'un complexe double qui convergent vers la cohomologie du complexe total associé. On utilisera ensuite ces suites afin de démontrer deux résultats classiques en algèbre homologique. Nous passerons en notations duales (homologiques) pour les applications.

1.3.1 Suites spectrales associées à un complexe double

Définition 1.36. Un **complexe double** est un triplet $(C^{*,*}, d', d'')$ où $C^{*,*}$ est un A-module bigradué muni de deux applications A-linéaires $d': C^{*,*} \to C^{*,*}$ et $d'': C^{*,*} \to C^{*,*}$ de bidegrés respectifs (1,0) et (0,1) et telles que $d' \circ d' = d'' \circ d'' = d' \circ d'' + d'' \circ d' = 0$.

On représente un complexe double $(C^{*,*}, d', d'')$ par le diagramme suivant :

$$\begin{array}{cccc}
& \cdots & \cdots & \cdots \\
\uparrow & & \uparrow & & \uparrow \\
& \cdots & \longrightarrow C^{n,m+1} & \longrightarrow C^{n+1,m+1} & \longrightarrow \cdots \\
& d'' \uparrow & & \uparrow & & \uparrow \\
& \cdots & \longrightarrow C^{n,m} & \xrightarrow{d'} & C^{n+1,m} & \longrightarrow \cdots \\
\uparrow & & & \uparrow & & & \\
& \cdots & & & \cdots & & \\
\end{array}$$

Dans toute la suite, d' désignera la différentielle horizontale du complexe double considéré, et d'' la différentielle verticale.

Définition 1.37. Un complexe double $(C^{*,*}, d', d'')$ est dit **borné** s'il n'y a qu'un nombre fini de termes non nuls sur chaque diagonale n = p + q.

Définition 1.38. Le **complexe total** $(\text{Tot}(C^{*,*})^*, d)$ associé à un complexe double $(C^{*,*}, d', d'')$ borné est un module différentiel gradué donné par

Tot
$$(C^{*,*}) = (\text{Tot } (C^{*,*})^n)_{n \in \mathbb{Z}}$$
 et $d = (d^n)_{n \in \mathbb{Z}}$,

où pour chaque n

Tot
$$(C^{*,*})^n := \bigoplus_{p+q=n} C^{p,q}$$
 et $d^n := \sum_{p+q=n} (d'^{p,q} + d''^{p,q}).$

La question est de savoir comment calculer la cohomologie de ce complexe. Pour cela, on va construire deux suites spectrales qui convergeront toutes deux vers cette dernière. Dans toute la suite, on considère un complexe double $(C^{*,*}, d', d'')$ du premier quadrant, c'est à dire que $C^{p,q} = \{0\}$ pour tous p, q < 0 (il est donc en particulier borné). Pour alléger les notations, on notera souvent C pour $C^{*,*}$.

Nous allons commencer par construire deux filtrations **décroissantes** du complexe total Tot(C): pour tous n et p, on pose

$$_{\mathrm{I}}F^{p}\operatorname{Tot}(C)^{n}=\bigoplus_{r\geq p}C^{r,n-r}$$
 et $_{\mathrm{II}}F^{p}\operatorname{Tot}\left(C\right)^{n}=\bigoplus_{r\geq p}C^{n-r,r}.$

Intuitivement, la première filtration filtre le complexe par les colonnes, et la deuxième par les lignes. Ces deux filtrations sont bien sûr bornées $(C^{*,*}$ est dans le premier quadrant) et il est clair que $d({}_{\rm I}F^p\big(\operatorname{Tot}(C)^*\big)\subset {}_{\rm I}F^p\big(\operatorname{Tot}(C)^*\big)$ pour tout p (de même pour ${}_{\rm II}F^p)$, donc que d respecte ces deux filtrations. Par ailleurs, ces dernières donnent au complexe $\operatorname{Tot}(C)^*$ une structure de **module différentiel gradué filtré**, ce qui sera indispensable pour en extraire une suite spectrale (Cf théorème 1.22). Posons enfin

$$_{\mathrm{I}}H^{*,*}(C) = H(C^{*,*}, d') \text{ et }_{\mathrm{II}}H^{*,*}(C) = H(C^{*,*}, d'')$$

respectivement la cohomologie du complexe horizontal et vertical de $C^{*,*}$.

Proposition 1.39. $({}_{\rm I}H^{*,*}(C),\bar{d}'')$ et $({}_{\rm II}H^{*,*}(C),\bar{d}')$ sont deux modules différentiels bigradués, avec \bar{d}' et \bar{d}'' les applications induites de d' et d''.

Démonstration. Vérifions que \bar{d}' et \bar{d}'' sont bien définies. On a

Prenons x et x+d'(a) deux représentants de la classe [x], avec $x \in \ker d'$. Alors, $d' \circ d''(x) = -d'' \circ d'(x) = 0$ et $d'(d''(x)+d'' \circ d'(a)) = -d'' \circ d'(x) - d'' \circ d'(a) = 0$ donc d''(x) et d''(x+d'(a)) sont dans le noyau de d'. De plus, $d''(x)+d'' \circ d'(a) = d''(x)-d' \circ d''(a)$, donc [d''(x)] = [d''(x+d'(a))]. Ainsi, \bar{d}'' est bien défini. On fait de même pour \bar{d}' . Par ailleurs, \bar{d}' et \bar{d}'' sont des différentielles par construction, avec bideg $\bar{d}' = (1,0)$ et bideg $\bar{d}'' = (0,1)$.

Nous pouvons à présent construire nos deux suites spectrales associées au complexe double $C^{*,*}$:

Théorème 1.40. Soit $(C^{*,*}, d', d'')$ un complexe double du premier quadrant. Alors, il existe deux suites spectrales $(_{\rm I}E^{*,*}_r, _{{\rm I}}d_r)_{r=1,2,\ldots}$ et $(_{\rm II}E^{*,*}_r, _{{\rm II}}d_r)_{r=1,2,\ldots}$ qui convergent toutes deux vers $H^*({\rm Tot}\,(C)^*, d)$ et dont les deux premières pages sont données respectivement par

$$\left\{ \begin{array}{l} {}_{\rm I}E_1^{*,*} \cong {}_{\rm II}H^{*,*}(C) \\ {}_{\rm I}E_2^{*,*} \cong {}_{\rm I}H^{*,*} {}_{\rm II}H(C) \end{array} \right. \quad et \left\{ \begin{array}{l} {}_{\rm II}E_1^{*,*} \cong {}_{\rm I}H^{*,*}(C) \\ {}_{\rm II}E_2^{*,*} \cong {}_{\rm II}H^{*,*} {}_{\rm I}H(C) \end{array} \right.$$

Démonstration. Nous avons construit plus haut deux modules différentiels gradués filtrés, $(\operatorname{Tot}(C)^*,d, {}_{{}_{\operatorname{I}}\!F})$ et $(\operatorname{Tot}(C)^*,d, {}_{{}_{\operatorname{I}}\!F})$, dont les filtrations sont bornées. Le théorème 1.22 s'applique : il existe deux suites spectrales cohomologiques $({}_{{}_{\operatorname{I}}\!F}^{*,*}, {}_{{}_{\operatorname{I}}\!d}_r)_{r=1,2,\ldots}$ et $({}_{{}_{\operatorname{I}}\!F}^{*,*}, {}_{{}_{\operatorname{I}}\!d}_r)_{r=1,2,\ldots}$ dont la première page est donnée respectivement par

$${}_{\mathsf{I}}E_{1}^{p,q} \;\cong\; H^{p+q} \Big({}_{\mathsf{I}}F^{p}\operatorname{Tot}\left(C\right)^{*}\big/{}_{\mathsf{I}}F^{p+1}\operatorname{Tot}\left(C\right)^{*},d\Big)\; \mathrm{et}\; {}_{\mathsf{II}}E_{1}^{p,q} \;\cong\; H^{p+q} \Big({}_{\mathsf{II}}F^{p}\operatorname{Tot}\left(C\right)^{*}\big/{}_{\mathsf{II}}F^{p+1}\operatorname{Tot}\left(C\right)^{*},d\Big)$$

et qui convergent vers $H^*(\text{Tot}(C)^*, d)$. Il ne reste plus qu'à montrer que les deux premières pages sont bien celles données par le théorème. On le fait pour $({}_{\scriptscriptstyle \rm I}E^{*,*}_{r}, {}_{\scriptscriptstyle \rm I}d_{r})_{r=1,2,\ldots}$, la deuxième suivra par symétrie. Pour ${}_{\scriptscriptstyle \rm I}E_1$, remarquons d'abord que, par constructions de la filtration ${}_{\scriptscriptstyle \rm I}F$, on a

$${}_{\mathbf{I}}F^{p}\operatorname{Tot}\left(C\right)^{p+q}/{}_{\mathbf{I}}F^{p+1}\operatorname{Tot}\left(C\right)^{p+q}\cong C^{p+q}$$

pour tous p et q. De plus, on a d = d' + d'' par définition, et $d'({}_{1}F^{p}\operatorname{Tot}(C)^{*}) \subset {}_{1}F^{p+1}\operatorname{Tot}(C)^{*}$, donc la différentielle induite par cet isomorphisme est bien d''. Ainsi, on obtient ${}_{1}E_{1}^{p,q} = H^{p,q}(C,d'') = {}_{\Pi}H^{p,q}(C)$, ce qui donne la première page.

Pour simplifier les notations, on notera à partir de maintenant ${}_{\rm I}F^p$ pour ${}_{\rm I}F^p$ Tot $(C)^*$.

Passons à $_{1}E_{2}$: on sait que $_{1}E_{2}^{p,q}=H^{p,q}(_{1}E_{1}^{*,*},_{1}d_{1})=H(_{11}H^{p,q}(C),_{1}d_{1})$, donc il suffit de montrer que $_{1}d_{1}=\bar{d}'$. Pour cela, on pose

$$i : H^{p+q}({}_{\scriptscriptstyle 1}F^{p+1}) \to H^{p+q}({}_{\scriptscriptstyle 1}F^p)$$

$$[x] \mapsto [x]$$

$$j : H^{p+q}({}_{\scriptscriptstyle 1}F^p) \to H^{p+q}({}_{\scriptscriptstyle 1}F^p/{}_{{}_{\scriptscriptstyle 1}F^{p+1}})$$

$$[x] \mapsto [x + {}_{\scriptscriptstyle 1}F^{p+1}]$$

$$k : H^{p+q}({}_{\scriptscriptstyle 1}F^p/{}_{{}_{\scriptscriptstyle 1}F^{p+1}}) \to H^{p+q}({}_{\scriptscriptstyle 1}F^{p+1})$$

$$[x + {}_{\scriptscriptstyle 1}F^{p+1}] \mapsto [d(x)]$$

où i et j sont les applications induites en homologie respectivement de l'inclusion et de la surjection naturelle, et k est le morphisme de connexion dans la suite exacte longue associée à la suite exacte courte

$$0 \longrightarrow {}_{\rm I} F^{p+1} \longrightarrow {}_{\rm I} F^p \longrightarrow {}_{\rm I} F^p / {}_{\rm I} F^{p+1} \longrightarrow 0$$
 . D'après ce qui précède, on a

$$_{\text{II}}H^{p,q}(C) =_{\text{I}} E_{1}^{p,q} \cong H^{p+q} \left({}_{\text{I}}F^{p} \operatorname{Tot}(C)^{*} / {}_{\text{I}}F^{p+1} \operatorname{Tot}(C)^{*}, d \right)$$

donc on a le diagramme suivant :

où l'on voit apparaître le même couple exact que celui donné dans la partie 1.2.3. La proposition 1.35 de cette dernière nous donne déjà que $_{\mathbf{I}}d_{1}=j\circ k$. D'autre part, en définissant j et k sur une classe [z] de $_{\mathbf{I}}H^{p+q}$, avec $z\in\ker d'':C^{p,q}\to C^{p,q+1}$, on obtient alors que k[z]=[d(z)]=[d'(z)], et donc $j\circ k[z]=j[d'(z)]=[d'(z)+F^{p+2}]=\bar{d}'[z]$. On a donc bien $d_{1}=\bar{d}'$.

Pour obtenir le résultat sur $_{\rm II}E_2^{*,*}$, on applique le même raisonnement au complexe transposé $^tC^{p,q}=C^{q,p}$, avec $^td'=d''$ et $^td''=d'$. Alors ${\rm Tot}\,(^tC)^*={\rm Tot}\,(C)^*$ et donc $_{\rm II}F^p{\rm Tot}\,(C)^*={}_{\rm I}F^p{\rm Tot}\,(^tC)^*$ et la même preuve s'applique.

1.3.2 Foncteurs dérivés

Dans cette partie et celle qui suit, nous allons utiliser la remarque 1.4 faite au tout début de la section 1 pour passer en homologie : nous utiliserons donc les notations duales et en particulier la version homologique du théorème 1.40.

Soient M un A-module à droite et N un A-module à gauche. On note $L_n(M \otimes -)(-)$ le $n^{\text{ième}}$ foncteur dérivé à gauche du foncteur $M \otimes -$. Nous allons démontrer, en utilisant le théorème 1.40 de la partie précédente (et donc les suites spectrales associées à un complexe double), le résultat d'algèbre homologique classique suivant :

Proposition 1.41. Pour tout
$$n$$
, $L_n(M \otimes -)(N) = L_n(-\otimes N)(M)$.

Démonstration. Prenons deux résolutions projectives $P_* \to M$ et $Q_* \to N$ de M et N respectivement. On peut considérer le complexe double formé par ces deux résolutions $(C_{*,*},d) = (P_*,d') \otimes (Q_*,d'')$, puis le complexe total associé $(\operatorname{Tot}(C)_*,d) = ((P \otimes Q)_*,d)$. La version homologique du théorème 1.40 nous donne l'existence de deux suites spectrales ${}_{\mathrm{I}}E_{*,*}^r$ et ${}_{\mathrm{II}}E_{*,*}^r$ qui convergent toutes deux vers l'homologie $H_*((P \otimes Q)_*,d)$. Ce même théorème nous dit aussi que

$$_{\mathrm{I}}E_{p,q}^{1} = _{\mathrm{II}}H_{p,q}(P_{*}\otimes Q_{*})$$

et comme pour tout p, P_p est projectif et donc $P_p \otimes -$ est exact, on obtient

$$_{\mathrm{I}}E_{p,q}^{1} = _{\mathrm{II}}H_{p,q}(P_{*} \otimes Q_{*}) = H_{q}(P_{p} \otimes Q_{*}, d'') = P_{p} \otimes H_{q}(Q_{*}).$$

De même, on a

$$_{\text{II}}E_{p,q}^1 = H_p(P_*) \otimes Q_q.$$

Alors, la deuxième page de ${}_{\rm I}E^r_{*,*}$ est donnée par

$$_{\mathrm{I}}E_{p,q}^{2} = {_{\mathrm{I}}H_{p,q}}_{\mathrm{II}}H_{p,q}(P_{*}\otimes Q_{*}) = H_{p}(P_{p}\otimes H_{q}(Q_{*}),d') = \begin{cases} H_{p}(P_{*}\otimes N,d') = L_{p}(-\otimes N)(M) \text{ si } q = 0 \\ 0 \text{ sinon} \end{cases}$$

puisque $Q_{\bullet} \to N$ est une résolution projective de N. Cette deuxième page est constituée d'une seule ligne non nulle, donc la suite dégénère et ${}_{\rm I}E^2_{*,*} = {}_{\rm I}E^\infty_{*,*}$, donc en particulier ${}_{\rm I}E^r_{*,*}$ converge vers $L_*(-\otimes N)(M) = H_*((P\otimes Q)_*)$ (la suite n'a qu'une seule ligne non nulle, donc la cible coïncide avec le bigradué associé). De la même manière, la deuxième page de ${}_{\rm II}E^r_{*,*}$ est donnée par

$${}_{^{\text{II}}}E^2_{p,q} = {}_{^{\text{II}}}H_{p,q} {}_{^{\text{I}}}H_{p,q}(P_* \otimes Q_*) = H_q \big(H_p(P_*) \otimes Q_q, d'' \big) = \left\{ \begin{array}{l} H_q \big(M \otimes Q_*, d'' \big) = L_q(M \otimes -)(N) \text{ si } p = 0 \\ 0 \text{ sinon} \end{array} \right.$$

donc $_{\mathrm{II}}E_{*,*}^r$ dégénère et $_{\mathrm{II}}E_{*,*}^2 = _{\mathrm{II}}E_{*,*}^\infty$, donc à nouveau $_{\mathrm{II}}E_{*,*}^r$ converge vers $L_*(M\otimes -)(N) = H_*((P\otimes Q)_*)$ (la suite n'a qu'une seule colonne non nulle). En comparant les cibles de chaque suite, on obtient bien l'égalité souhaitée :

$$L_*(M \otimes -)(N) = H_*((P \otimes Q)_*) = L_*(- \otimes N)(M).$$

1.3.3 Formule de Künneth

Comme pour la partie précédente, nous allons donner une preuve utilisant les suites spectrales d'un résultat classique de l'algèbre homologique : la formule de Künneth.

Théorème 1.42. Soit (C_*, d) un complexe de A-modules plats tel que pour tout n, les modules $B_n := \operatorname{im} d_n$ et $Z_n := \operatorname{ker} d_n$ soient plats. Alors, pour tout A-module M, on a la suite exacte courte

$$0 \longrightarrow H_n(C_*) \otimes M \longrightarrow H_n(C_* \otimes M) \longrightarrow \operatorname{Tor}_1^A (H_{n-1}(C_*), M) \longrightarrow 0$$

Pour démontrer ce résultat, nous avons besoin du lemme suivant, dont la preuve utilise les suites spectrales associées à un complexe double :

Lemme 1.43. Soit (C_*, d) un complexe positif de A-modules plats et M un A-module. Alors, il existe une suite spectrale homologique du premier quadrant $(E_{*,*}^r, d^r)_r$ qui converge vers $H_{p+q}(C_* \otimes M)$ et dont la deuxième page est donnée par

$$E_{p,q}^2 = \operatorname{Tor}_p^A (H_q(C_*), M).$$

Démonstration. Soit $P_* \to M$ une résolution projective de M et $C_{*,*} = C_* \otimes P_*$ le complexe double (borné) associé. Comme pour tout p le module C_p est plat, on peut imiter la preuve de la proposition 1.41 et ainsi obtenir

$$_{1}E_{2}^{p,q} = \begin{cases} {}_{1}H_{p}(C_{*} \otimes M) \text{ si } q = 0\\ 0 \text{ sinon} \end{cases}$$

avec les notations du théorème 1.40. Cette suite spectrale dégénère et ${}_{1}E_{*,*}^{2} = {}_{1}E_{*,*}^{\infty} = H_{*}(C_{*} \otimes P) = H_{*}(C_{*} \otimes M)$ (la suite n'a qu'une seule ligne non nulle). De même, P_{n} est projectif pour tout n donc $H_{q}(C_{*} \otimes P_{n}) = H_{q}(C_{*}) \otimes P_{n}$, et donc à nouveau selon la preuve de la proposition 1.41

$$_{\text{II}}E_{p,q}^2 = H_p(H_q(C_*) \otimes P_*) = \operatorname{Tor}_p^A(H_q(C_*), M).$$

En combinant ces deux résultats, on obtient bien la suite spectrale souhaitée.

Passons maintenant à la preuve du théorème 1.42 :

Démonstration. On va utiliser la suite spectrale donnée par le lemme précédent, dont la deuxième page est

$$E_{p,q}^2 = \operatorname{Tor}_p^A (H_q(C_*), M).$$

Par hypothèse, B_n et Z_n sont plats pour tout n, donc on dispose d'une résolution plate pour $H_n(C)$:

$$0 \longrightarrow B_{n+1} \longrightarrow Z_n \longrightarrow H_n(C_*) \longrightarrow 0$$

On a de fait $\operatorname{Tor}_p^A(H_q(C_*), M) = 0$ sauf pour p = 0 et p = 1, autrement dit la deuxième page de la suite $E_{*,*}^r$ est constituée de seulement deux colonnes non nulles et est donnée par :

... 0 ... 0 ... 0 ... 0 ... 0 ...
... 0
$$H_q(C_*) \otimes M$$
 $\operatorname{Tor}_1^A(H_q(C_*), M)$ 0 ...
... 0 $H_{q-1}(C_*) \otimes M$ $\operatorname{Tor}_1^A(H_{q-1}(C_*), M)$ 0 ...
... 0 ... 0 ... 0 ...

Cette suite dégénère et on a, pour $p \ge 1$,

$$E_{p,q}^2 = E_{p,q}^{\infty} = F_p H_{p+q}(C_* \otimes M) / F_{p-1} H_{p+q}(C_* \otimes M) = 0$$

(attention, ici la filtration est **croissante** puisqu'on a une suite spectrale **homologique**). Considérons la suite exacte courte

$$0 \longrightarrow F_0H_q(C_* \otimes M) \longrightarrow F_1H_q(C_* \otimes M) \longrightarrow F_1H_q(C_* \otimes M)/F_0H_q(C_* \otimes M) \longrightarrow 0$$

Le but est de retrouver la formule de Künneth à partir de cette suite et du travail précédent. Comme la filtration est bornée, on a déjà que $F_nH_n(C_*\otimes M)=H_n(C_*\otimes M)$ pour n assez grand, donc en fait

$$F_1H_n(C_*\otimes M)=F_2H_n(C_*\otimes M)=\ldots=H_n(C_*\otimes M)$$

D'autre part, on sait d'après la description de la deuxième page que

$$E_{1,q-1}^2 = \operatorname{Tor}_1(H_{q-1}(C_*), M) = \frac{F_1 H_q(C_* \otimes M)}{F_0 H_q(C_* \otimes M)}$$

et de même,

$$E_{0,q}^2 = H_q(C_*) \otimes M = {F_0 H_q(C_* \otimes M)}/{F_{-1} H_q(C_* \otimes M)} = F_0 H_q(C_* \otimes M).$$

En identifiant les termes dans la suite exacte courte précédente, on obtient bien celle attendue :

$$0 \longrightarrow H_q(C_*) \otimes M \longrightarrow H_q(C_* \otimes M) \longrightarrow \operatorname{Tor}_1^A(H_{q-1}(C_*), M) \longrightarrow 0$$

1.4 Une application topologique : suites spectrales et CW-complexes

L'objectif de cette partie est d'appliquer le théorème de construction des suites spectrales par des filtrations aux CW-complexes. On notera k un corps et les calculs d'homologie se feront à coefficients dans ce dernier (on noter $H_*(-)$ pour $H_*(-,k)$). On utilisera également les notations homologiques pour les suites spectrales, et donc en particulier la version homologique du théorème 1.22.

Tout d'abord, commençons par quelques rappels de notations et de définitions : on écrit respectivement B^i et B^i_o la boule unité fermée et ouverte dans \mathbb{R}^i . Si X est un espace topologique, alors une **structure** cellulaire sur X est une application continue et surjective f telle que

$$f: \coprod_{i=0}^{n} (B^{i} \times \{1, 2, ..., r_{i}\}) \to X.$$

On dit que les images de la forme $f(B^i \times \{j\})$ et $f(B^i_o \times \{j\})$ sont respectivement les **cellules fermées** et les **cellules ouvertes** de dimension i de X. On note r_i le nombre de i-cellules fermées de X, et l'union des cellules fermées de dimensions inférieures ou égales à i forme le i-squelette de X, noté X_i .

Définition 1.44. Un CW-complexe \mathfrak{X} est la donnée d'un espace topologique séparé $|\mathfrak{X}|$ appelé **réalisation topologique** de \mathfrak{X} (et noté généralement X) et d'une **structure de CW-complexe** f sur $|\mathfrak{X}|$, c'est à dire que f est une structure cellulaire sur $|\mathfrak{X}|$ vérifiant :

- (i) $f|_{B_o^i \times \{1,2,\dots,r_i\}}$ est un homéomorphisme sur son image
- (ii) $f|_{S^{i-1}\times\{j\}}$ est à valeurs dans le (i-1)-squelette de X.

Le *i*-squelette de \mathfrak{X} est le CW-complexe $\mathfrak{X}^{(i)}$ dont la réalisation est $|\mathfrak{X}^{(i)}| = |\mathfrak{X}|_i = X_i$ par restriction.

Soit \mathfrak{X} un CW-complexe, dont la réalisation topologique est notée X. On peut définir un espace de chaîne sur \mathfrak{X} permettant de calculer son homologie : pour cela, on considère une homologie ordinaire $H_*(-)$, par exemple l'homologie singulière, et on définit le module gradué $D_*(\mathfrak{X})$ par

$$D_n(\mathfrak{X}) = H_n(X_n, X_{n-1})$$

pour tout n. On munit ce module d'une différentielle

$$\beta_{n+1}: D_{n+1}(\mathfrak{X}) \to D_n(\mathfrak{X})$$

construite comme suit : on applique d'abord l'axiome d'exactitude à l'homologie singulière et au couple (X_{n+1}, X_n) , ce qui donne une suite exacte longue

$$\dots \xrightarrow{\partial_{n+1}} H_n(X_n) \xrightarrow{H_n(i)} H_n(X_{n+1}, X_n) \xrightarrow{\partial_n} H_{n-1}(X_n) \xrightarrow{H_{n-1}(i)} \dots$$

et donc un morphisme de connexion

$$\partial_{n+1}: H_{n+1}(H_{n+1}, X_n) \to H_n(X_n).$$

Ensuite, on considère l'application induite en homologie de l'inclusion de (X_n, \emptyset) dans (X_n, X_{n-1}) , que l'on note simplement j_* :

$$j_n: H_n(X_n,\emptyset) \to H_n(X_n,X_{n-1}).$$

Notons que le morphisme j_n coïncide avec le morphisme $H_n(j)$ dans la suite exacte longue de la paire (X_n, X_{n-1}) . On définit alors notre différentielle β par composition :

$$\beta_{n+1} = i_n \circ \delta_{n+1} : H_{n+1}(X_{n+1}, X_n) \to H_n(X_n, X_{n-1})$$

et on vérifie aisément qu'on a bien une différentielle en calculant

$$\beta_n \circ \beta_{n+1} = (j_{n-1} \circ \partial_n) \circ (j_n \circ \partial_{n+1}) = j_{n-1} \circ 0 \circ \partial_{n+1} = 0$$

puisque ∂_n et $j_n = H_n(j)$ apparaissent consécutivement dans la suite exacte longue du couple (X_n, X_{n-1}) . Le module différentiel gradué $(D_*(\mathfrak{X}), \beta)$ est donc un complexe de chaîne et l'homologie de \mathfrak{X} , notée $H_*^{CW}(\mathfrak{X})$, est naturellement donnée par

$$H_n^{CW}(\mathfrak{X}) := H_n(D_*(\mathfrak{X}), \beta).$$

Nous énonçons à présent deux propriétés sur les CW-complexes qui seront utiles pour la suite, mais que nous ne démontrons pas ici.

Proposition 1.45. Soit \mathfrak{X} un CW-complexe et X sa réalisation topologique.

- (i) Pour tout $n \ge 1$, l'espace X_n/X_{n-1} est homéomorphe à l'union pointée de sphères $\bigvee_{j=1}^{r_n} S^n$.
- (ii) Si A est la réalisation topologique d'un sous-complexe de \mathfrak{X} , alors on a l'isomorphisme $H_*(X,A) \cong \widetilde{H}_*(X/A)$, avec $\widetilde{H}_*(-)$ l'homologie réduite.

De ces deux propriétés, on tire le lemme suivant :

Lemme 1.46. Soit \mathfrak{X} un CW-complexe et X sa réalisation topologique. Pour tous m et n, on a

$$H_m(X_n, X_{n-1}) = \begin{cases} D_n(\mathfrak{X}) \text{ si } m = n \\ 0 \text{ sinon} \end{cases}$$

 $D\acute{e}monstration$. D'après la proposition 1.45, l'axiome d'additivité et l'axiome de dimension vérifiés par une homologie ordinaire, on a pour tous m et n

$$H_m(X_n, X_{n-1}) = \widetilde{H}_m\left(\frac{X_n}{X_{n-1}}\right) = \widetilde{H}_m\left(\bigvee_{j=1}^{r_n} S^n\right) = \bigoplus_{j=1}^{r_n} \widetilde{H}_m(S^n) = \begin{cases} k^{r_n} & \text{si } m = n \\ 0 & \text{sinon} \end{cases}$$

En particulier, $H_n(X_n, X_{n-1}) = D_n(\mathfrak{X}) = k^{r_n}$ donc l'espace des chaînes sur \mathfrak{X} s'identifie au k-module libre sur les n-cellules de \mathfrak{X} .

Rappelons aussi que, pour un espace topologique X, on note $S_*(X,k) = S_*(X)$ l'espace des chaînes singulières sur X et $\delta_n : S_n(X) \to S_{n-1}(X)$ la différentielle associée (on ne rappelle pas les constructions ici). Enfin, si X est un espace topologique et $A \subset X$, on a

$$S_*(X,A) = \frac{S_*(X)}{S_*(A)}$$

et par définition de l'homologie singulière (notée $H_n^{sing}(-)$) du couple (X, A),

$$H_n^{sing}(X,A) := H_n(S_n(X,A)).$$

Il s'agit à présent d'appliquer le théorème 1.22 (en version homologique) au CW-complexe \mathfrak{X} . Plus précisément, on va l'appliquer à l'espace des chaînes singulières sur sa réalisation topologique X. Pour cela, on a besoin de mettre une filtration (croissante) sur le module différentiel gradué $S_*(X)$. D'abord, il existe une filtration naturelle de l'espace topologique X donnée par les i-squelettes :

$$\emptyset \subseteq X_0 \subseteq X_1 \subseteq ... \subseteq X_{N-1} \subseteq X_N = X$$

ce qui induit une filtration $F = (F_p S_*(X))_p$ sur le module $S_*(X)$ par

$$F_p S_*(X) = S_*(X_p).$$

Ainsi, $(S_*(X), \delta, F)$ est un module différentiel gradué filtré, donc d'après le théorème 1.22 il induit une suite spectrale homologique qui converge vers l'homologie singulier $H_*^{sing}(X)$ et dont la première page $E^1_{*,*}$ est donnée pour tous p et q par

$$E_{p,q}^1 = H_{p+q} \left({F_p S_*(X)} /_{F_{p-1} S_*(X)} \right).$$

En utilisant le lemme 1.46, on obtient à partir de cette expression

$$\begin{split} E_{p,q}^1 &= H_{p+q} \Big(S_*(X_p) \big/ S_*(X_{p-1}) \Big) \\ &= H_{p+q} \Big(S_*(X_p, X_{p-1}) \Big) \\ &= H_{p+q}^{sing} (X_p, X_{p-1}) \\ &= \begin{cases} D_p(\mathfrak{X}) & \text{si } p+q=p \iff q=0 \\ \{0\} & \text{sinon} \end{cases} \end{split}$$

La première page de la suite spectrale associée au complexe $S_*(X)$ ne possède donc qu'une seule ligne non nulle, celle où q=0, et on retrouve le complexe de chaîne $D_*(\mathfrak{X})$. On a donc montré que pour tout p,

$$E_{p,0}^1 = D_p(\mathfrak{X}).$$

Il reste à montrer que ces deux modules coı̈ncident en tant que complexe de chaı̂nes, c'est à dire qu'ils ont bien les même différentielles. Le module $E^1_{*,*}$ est construit à partir du module différentiel gradué filtré $(S_*(X), \delta, F)$, donc d'après la preuve du théorème 1.22, la différentielle d^1 sur $E^1_{*,*}$ est induite de δ , dont la construction est longue et n'est pas détaillée ici. En reprenant cette construction et en écrivant toutes les définitions, on aboutit bien à $d^1_{p,0} = \beta_p$ pour tous p, et donc $E^1_{*,0}$ coı̈ncide bien avec $D_*(\mathfrak{X})$ en tant que complexe de chaı̂ne.

Reprenons la première page que l'on vient de calculer : celle-ci ne possède qu'une seule ligne non nulle, donc dégénère immédiatement à la deuxième page et on a

$$E_{p,q}^{\infty} = E_{p,q}^2 = H_{p+q}(E_{*,*}^1, d^1) = \begin{cases} H_p(D_*(\mathfrak{X})) = H_p^{CW}(\mathfrak{X}) \text{ si } q = 0\\ 0 \text{ sinon} \end{cases}$$

On voit ici que la page limite de notre suite spectrale ne possède qu'une seule ligne non nulle qui n'est autre que l'homologie CW de \mathfrak{X} . On peut aller encore un plus loin : en effet, on a pour tout $q \neq 0$

$$E_{p,q}^{\infty} = \frac{F_p H_{p+q}(S_*(X))}{F_{p-1} H_{p+q}(S_*(X))} = \{0\}$$

et comme la filtration est bornée (par -1 et N), on a $F_{-1}H_n(S_*(X)) = \{0\}$ et $F_NH_n(S_*(X)) = H_n(S_*(X))$ pour tout n. En mettant tout ceci ensemble, on a d'une part $F_kH_q(X) = \{0\}$ pour tout q > k donc

$$E_{p,0}^{\infty} = {^F_pH_p}\big(S_*(X)\big) \Big/_{F_{p-1}H_p\big(S_*(X)\big)} = F_pH_p\big(S_*(X)\big)$$

et d'autre part

$$F_p H_p(S_*(X)) = F_{p+1} H_p(S_*(X)) = \dots = F_N H_p(S_*(X)) = H_p(S_*(X))$$

donc en fait

$$E_{p,0}^{\infty} = F_p H_p(S_*(X)) = H_p(S_*(X)) = H_p^{sing}(X)$$

(on a en fait montré ici que, lorsque la suite ne possède qu'une seule ligne ou colonne non nulle, la module bigradué associé et donc la page limite coı̈ncide avec la cible). Ainsi, la page infinie est finalement donnée par l'homologie singulière de X, et on a en particulier montré que l'homologie CW coı̈ncide avec l'homologie singulière.

Nous avons en somme démontré le théorème suivant :

Théorème 1.47. Soit \mathfrak{X} un CW-complexe et X sa réalisation topologique. Il existe une suite spectrale associée à l'espace des chaînes singulières sur X qui converge vers l'homologie singulière de X et dont la deuxième page calcule l'homologie CW de \mathfrak{X} . En particulier, on a pour tout p

$$E_{p,0}^2 = H_p^{CW}(\mathfrak{X}) = H_p^{sing}(X) = E_{p,0}^{\infty}.$$

2 Homologie persistante

Dans toute cette partie, k désigne un corps commutatif et A un anneau commutatif unitaire. Les calcules d'homologie se feront à coefficients dans k, et on notera $H_*(-)$ pour $H_*(-,k)$.

2.1 Définition algébrique

On suppose connues les notions fondamentales de la théorie simpliciale. L'objet de base utilisé en homologie persistante est le suivant :

Définition 2.1. Un complexe simplicial filtré est un complexe simplicial K muni d'une filtration, c'est à dire d'une suite croissante de sous-complexes de K, notés K^i :

$$\emptyset \subset K^0 \subset K^1 \subset \ldots \subset K^N = K$$

On rappelle que tout complexe simplicial K peut être **ordonné**, c'est à dire que l'ensemble de ses sommets est un ensemble partiellement ordonné (muni d'une relation \leq qui est réflexive, transitive et antisymétrique). En effet, il suffit pour cela de choisir une numérotation sur les sommets, disons $\{v_1, ..., v_n\}$ et de définir la relation

$$v_i \le v_j \iff i \le j.$$

On ne le dira jamais dans la suite, mais on supposera toujours que les complexes avec lesquels on travaille sont ordonnés.

Pour K un complexe simplicial, on note $C_n(K,k) = C_n(K)$ le k-module libre engendré par les nsimplexes orientés de K, c'est à dire les simplexes $\langle v_0,...,v_n\rangle$ avec $v_i \leq v_{i+1}$ vérifiant les relations suivantes :

$$\langle v_0, ..., v_n \rangle = \epsilon(s) \langle v_{s(0)}, ..., v_{s(n)} \rangle,$$

où s est une permutation de \mathfrak{S}_{n+1} et ϵ l'application signature.

Exemple 2.2. On considère le complexe $K = \{\langle 0 \rangle, \langle 1 \rangle, \langle 2 \rangle, \langle 3 \rangle, \langle 01 \rangle, \langle 02 \rangle, \langle 03 \rangle, \langle 12 \rangle, \langle 23 \rangle, \langle 012 \rangle, \langle 023 \rangle \}$. Une filtration de K est donnée par :

Pour K un complexe simplicial **filtré**, on note $C_n^i := C_n(K^i) = C_n(K^i, k)$ le k-modules libre engendré par les n-simplexes orientés de K^i et ∂_n^i l'opérateur bord associé. Enfin, on pose

$$Z_n^i(K) = Z_n(K^i) := \ker \partial_n^i, \quad B_n^i(K) = B_n(K^i) := \operatorname{im} \partial_{n+1}^i \quad \text{et} \quad H_n^i(K) = H_n(K^i) := \frac{Z_n^i}{B_n^i}.$$

Définitions 2.3. Soit K un complexe simplicial filtré.

(i) Le $j^{\text{ième}}$ groupe d'homologie persistante (ou $j^{\text{ième}}$ groupe de persistance) de degré n associé à K^i est le groupe

$$H_n^{i,j}(K) := \frac{Z_n^i(K)}{B_n^j(K) \cap Z_n^i(K)}.$$

(ii) Le $j^{\text{ième}}$ nombre de Betti persistant de degré n associé à K^i est le nombre

$$\beta_n^{i,j}(K) := \dim H_n^{i,j}(K) = \dim Z_n^i(K) - \dim B_n^j(K) \cap Z_n^i(K).$$

On notera simplement Z_n^i , B_n^i , H_n^i , $H_n^{i,p}$ et $\beta_n^{i,p}$ lorsqu'il n'y a pas d'ambiguïtés.

Remarques 2.4.

(i) $H_n^{i,j}$ est bien défini : en effet, B_n^j et Z_n^i sont des sous-groupes de C_n^j , donc $B_n^j \cap Z_n^i$ est bien un sous-groupe de Z_n^i . De plus, on a

$$H_n^{i,j} \subset H_n(K^j)$$
 et $H_n^{i,i} = H_n(K^i)$.

(ii) Une manière équivalente de définir les groupes d'homologie persistante est la suivante : pour toute paire (i,j), on considère les inclusions naturelles de complexes simpliciaux $\eta^{i,j}: K^i \to K^j$. En prenant, pour chaque degré n, l'application induite en homologie (notée simplement $\eta_n^{i,j}$ pour tout n), on obtient une suite de groupes d'homologies :

$$\{0\} = H_n(K^0) \xrightarrow{\eta_n^{0,1}} H_n(K^1) \xrightarrow{\eta_n^{1,2}} \dots \xrightarrow{\eta_n^{N-1,N}} H_n(K^N) = H_n(K)$$

L'application $\eta_n^{i,j}$ est en fait celle qui envoie une classe d'homologie sur une classe qui la contient. Alors, le $j^{\text{ième}}$ groupe d'homologie persistante de degré n associé à K^i est donné par

$$H_n^{i,j} = \operatorname{im} \eta_n^{i,j}$$

Cette définition servira surtout dans la partie 3 de ce mémoire.

(iii) Intuitivement, $H_n^{i,j}$ est le groupe dont les éléments sont **les** n-classes d'homologie de K^i qui existent encore dans K^j : en effet, une n-classe [z] existe au temps i de la filtration si c'est un n-cycle qui n'est pas un bord, donc si $z \in Z_n^i$. Cette même classe disparait au temps j si elle devient un bord, donc si $z \in B_n^j$. En quotientant par $B_n^j \cap Z_n^i$, on est donc certain de n'avoir que des classes encore "vivantes" j-i complexes plus loin dans la filtration. De même, le nombre $\beta_n^{i,j}$ correspond aux n-classes présentes au temps i et qui n'ont pas encore disparu au temps j.

Avec l'homologie persistante, on s'intéresse donc à la durée de vie des classes d'homologie au cours d'un filtration donnée. Considérons un complexe filtré K: si z est un n-cycle qui n'est pas un bord que l'on suppose créé au complexe K^i avec l'apparition d'un simplexe $\sigma \in K$, alors on dit que la classe d'homologie [z] est née au temps i et que σ est le créateur de [z]. Si maintenant $z' \in [z]$ est un n-cycle de K^i tel que z' devienne un bord au temps j avec l'apparition de $\tau \in K$, alors on dit que [z] meurt au temps j et que τ est le destructeur de [z]. Les créateurs sont les simplexes positifs et les destructeurs les simplexes négatifs.

Définition 2.5. Soit $[z] \in H_n^i$ telle que [z] soit née au temps i et morte au temps j ($z \in Z_n^i \cap B_n^j$). La **persistance** de [z] (et du n-cycle z) est le nombre p[z] = j - i - 1. Si un simplexe n'admet pas de destructeur, alors on dit que sa persistance est infinie : $p[z] = \infty$.

Exemple 2.6. Reprenons l'exemple 2.2 et considérons le 1-cycle $z = \langle 01 \rangle + \langle 12 \rangle + \langle 23 \rangle - \langle 03 \rangle$ de K_1^2 . La classe [z] a été créée au temps 2, avec l'apparition des arêtes $\langle 03 \rangle$ et $\langle 23 \rangle$. En avançant dans la filtration, on observe que l'arête $\langle 02 \rangle$ est créée au temps 3, puis que les deux triangles $\langle 012 \rangle$ et $\langle 023 \rangle$ sont créés au temps 4 et 5 respectivement. Alors, on remarque que

$$\partial_2^5 (\langle 012 \rangle + \langle 023 \rangle) = \langle 01 \rangle + \langle 12 \rangle - \langle 02 \rangle + \langle 02 \rangle + \langle 23 \rangle - \langle 03 \rangle = z$$

donc z est devenu un bord au temps 5 avec l'apparition du 2-simplexe $\langle 023 \rangle$. Ainsi, le créateur de [z] est le 1-simplexe positif $\langle 23 \rangle - \langle 03 \rangle$, le destructeur de [z] est le 2-simplexe négatif $\langle 023 \rangle$ et enfin la persistance de [z] est p[z] = 5 - 2 - 1 = 2.

2.2 Structure de l'homologie persistante

Dans cette partie, nous allons essayer de comprendre la structure de l'homologie persistante et d'en donner une description simple sur le corps k. Cette dernière sera donnée par le théorème de structure 2.12, qui fournit une formule de calcul de l'homologie prenant en compte toute la filtration et dont une visualisation sera faite au moyen des codes barres.

2.2.1 Modules et complexes persistants

Définitions 2.7.

(i) Un **complexe persistant** $C = (C_*^i, f^i)_{i \geq 0}$ est la donnée d'une famille de complexe de chaînes $(C_*^i)_{i \geq 0}$ et d'une famille d'applications $(f^i)_{i \geq 0}$ telles que $f^i : C_*^i \to C_*^{i+1}$.

(ii) Un complexe persistant C est dit **de type fini** si chaque complexe C_*^i est un k-espace vectoriel de type fini et si les applications f^i sont des isomorphismes à partir d'un certain rang.

Un complexe persistant peut être représenté par le diagramme suivant :

Exemple 2.8. Le complexe de chaîne associé à un complexe simplicial filtré muni des inclusions naturelles est un complexe persistant. Sur la représentation précédente, on aurait verticalement le complexe associé à K^i et horizontalement le complexe engendré par les n-simplexes au cours de la filtration.

Définitions 2.9.

- (i) Un module persistant $\mathcal{M}=(M^i,\varphi^i)_{i\geq 0}$ est la donnée d'une famille de A-modules $(M^i)_{i\geq 0}$ et d'une famille d'applications $(\varphi^i)_{i\geq 0}$ telles que $\varphi^i:M^i\to M^{i+1}$.
- (ii) Un module persistant \mathcal{M} est dit **de type fini** si chaque module M^i est de type fini et si les applications φ^i sont des isomorphismes à partir d'un certain rang.

Exemple 2.10. L'homologie d'un complexe persistant est un module persistant, où les applications sont celles qui envoient une classe d'homologie sur celle qui la contient (les applications $\eta_*^{*,*}$ définies dans la première partie). Toujours sur la représentation d'un complexe persistant, en passant à l'homologie on obtient verticalement l'espace vectoriel H_n^i et horizontalement les applications $\varphi^i = \eta_n^{i,1}: H_n^i \to H_n^{i+1}$. En prenant le point (iii) de la remarque 2.4, on retrouve l'homologie persistante $H_n^{i,i+1} = \operatorname{im} \varphi^i = \operatorname{im} \eta_n^{i,i+1}$.

On va maintenant, à partir de ces définitions, établir une correspondance qui donne une description simple de l'homologie persistante sur le corps k.

On commence formellement par prendre $\mathcal{M} = (M^i, \varphi^i)_{i \geq 0}$ un module persistant sur k. On munit k[t] de la graduation standard (c'est à dire celle donnée par le degré des polynômes), et on définit un foncteur α de la catégorie des k-modules persistants vers la catégorie des k[t]-modules gradués :

$$\alpha(\mathcal{M}) := \bigoplus_{i=0}^{\infty} M^i.$$

La structure de k-modules gradués est induite par l'action de k sur chaque composante, et on étend à k[t] en définissant l'action suivante :

$$t \cdot (m^0, m^1, m^2, ...) = (0, \varphi^0(m^0), \varphi^1(m^1), \varphi^2(m^2), ...).$$

Théorème 2.11. α définit une équivalence de catégories entre la catégorie des k-modules persistants de type fini et la catégorie des k[t]-modules gradués de type fini.

Pour \mathcal{M} un module persistant sur le corps k, $\alpha(\mathcal{M})$ est donc un **module gradué sur l'anneau principal intègre** k[t]. Ainsi, le théorème de structure des modules gradués s'applique, ce qui fournit une décomposition de $\alpha(\mathcal{M})$:

$$\alpha(\mathcal{M}) = \bigoplus_{i=0}^{\infty} M^i \cong \left(\bigoplus_j t^{a_j} \cdot k[t] \right) \oplus \left(\bigoplus_l t^{b_l} \cdot k[t] / (t^{c_l}) \right)$$

où la multiplication par t^{α_j} représente un décalage de α_j dans la graduation de k[t]. En appliquant cette description à l'homologie d'un complexe persistant (et donc en particulier à l'homologie d'un complexe simplicial filtré), on obtient le théorème suivant :

Théorème 2.12. Pour un complexe persistant $C = (C_*^i, f^i)_{i \geq 0}$, l'homologie $H_*(C)$ est décrite au moyen du foncteur α par l'isomorphisme suivant :

$$\alpha(H_*(\mathcal{C})) = \bigoplus_i H_*(C_*^i) \cong \left(\bigoplus_j t^{a_j} \cdot k[t]\right) \oplus \left(\bigoplus_l t^{b_l} \cdot k[t]/(t^{c_l})\right) \tag{*}$$

L'interprétation de ce théorème est simple : les parties libres correspondent aux générateurs d'homologie qui apparaissent au temps de filtration a_j et ne disparaissent jamais, tandis que la partie de droite correspond aux générateurs qui apparaissent au temps b_l de la filtration et qui disparaissent au temps $b_l + c_l$.

Pour une dimension donnée, le théorème précédent fournit une formule qui calcule l'homologie en prenant en compte toute la filtration. Afin d'illustrer cela, reprenons le complexe filtré de l'exemple 2.2 et appliquons cette formule en degré 0. En notant \mathcal{C} le complexe de chaînes associé au complexe simplicial filtré K, on obtient alors

$$\bigoplus_{i=0}^{5} H_0(C_*^i) = k[t] \oplus {k[t] \choose t} \oplus {t \cdot k[t] \choose t}$$

En effet, au temps 0 de la filtration, on dispose de deux composantes connexes données par les sommets $\langle 0 \rangle$ et $\langle 1 \rangle$: l'une d'elle disparait au temps 1 avec l'apparition d'une première arête, tandis qu'une nouvelle apparait au même moment, pour ensuite disparaitre au temps suivant, lorsque le premier 1-cycle est créé. On a donc trois termes dans notre formule : le premier correspond à la composante connexe qui ne disparait jamais, et donc au module k[t]. Les deux autres sont des classes qui ne vivent qu'un temps de filtration, l'une commençant au temps 0 et correspondant ainsi au module k[t]/t, l'autre commençant au temps 1, ce qui est signifié par le décalage $t \cdot k[t]/t$.

On souhaite maintenant paramétrer les classes d'isomorphismes de k[t]-modules. Pour cela, on utilise la notion de \mathcal{P} -intervalles :

Définition 2.13. Un \mathcal{P} -intervalle est une paire ordonnée (i, j) avec $0 \le i < j$ et $j \in \mathbb{Z}^{\infty} = \mathbb{Z} \cup \{+\infty\}$.

On peut alors associer à tout k[t]-module gradué un ensemble de \mathcal{P} -intervalles, via la bijection Q suivante : pour (i, j) un \mathcal{P} -intervalle, on pose

$$Q(i,j) = \begin{cases} t^i \cdot k[t] / (t^{j-i}) & \text{si } j \in \mathbb{Z} \\ t^i \cdot k[t] & \text{si } j = +\infty \end{cases}$$

et pour $S = \{(i_1, j_1), (i_2, j_2), ..., (i_n, j_n)\}$ un ensemble de \mathcal{P} -intervalles, on pose

$$Q(\mathcal{S}) = \bigoplus_{l=1}^{n} Q(i_l, j_l).$$

On peut résumer tout ce qui vient d'être fait par le théorème suivant :

Théorème 2.14. La correspondance $S \to Q(S)$ ainsi construite définie une bijection entre les ensembles finis de P-intervalles et les k[t]-modules gradués de type fini. En particulier, les classes d'isomorphismes de modules persistants de type fini sur k sont en bijection avec les ensembles finis de P-intervalles.

2.2.2 Interprétation : le plan indice-persistance

Le théorème de structure 2.12 assure l'existence d'une base compatible avec une filtration donnée pour un complexe K, tandis que le théorème de correspondance 2.14 assure que chaque \mathcal{P} -intervalle (i,j) décrit une élément de base pour l'homologie persistante. En effet, cet élément de base est un n-cycle qui apparait au temps i en formant une nouvelle classe d'homologie, qui n'est pas un bord avant le temps j-1 et qui le devient au temps j.

On peut représenter ces données dans ce qu'on appelle un **plan indice-persistance**, comme sur la figure 1. Fixons une dimension n: si σ est un n-simplexe qui apparait au temps i et qui meurt au temps j, on peut lui associer un \mathcal{P} -intervalle (i,j), qu'on appellera alors n-intervalle. Ce n-intervalle détermine un triangle, dont les sommets sont les points (i,0), (j,0) et (i,j-i). On note \mathcal{T}_n l'ensemble des triangles définis par l'ensemble des n-simplexes d'un complexe filtré.

Rappelons que, pour tous l et p, on a par définition

$$H_n^{l,p} = \frac{Z_n^l}{B_n^p \cap Z_n^l}$$

Soit $z \in Z_n^i$ tel que z ne soit pas un bord avant j > i, et tel que $z \in B_n^j$. Alors, $z \notin B_n^p$ pour tout p < j. Pour que $[z] = z + B_n^l$ soit encore un élément de base pour $H_n^{l,p}$, on a donc besoin de $l \ge i$ et $p \ge 0$.

Ces trois inégalités définissent une région triangulaire dans le plan indice-persistance, et cette région nous indique lorsque le n-cycle z est encore un élément de base dans $H_n^{l,p}$. En résumer, on obtient le lemme suivant :

Lemme 2.15. Pour une dimension n donnée et avec les notations ci-dessus, le nombre $\beta_n^{l,p} = \dim H_n^{l,p}$ correspond au nombre de triangles dans \mathcal{T}_n qui contiennent le point de coordonnées (l,p), pour tous l et p.

FIGURE 1 – Le plan indice-persistance

En conséquence, calculer l'homologie persistante sur un corps k est équivalent à trouver l'ensemble des \mathcal{P} -intervalles pour chaque dimension. Cette description est particulièrement utile pour l'implémentation d'algorithmes de calculs de l'homologie persistante.

2.2.3 Visualisation: les codes barres

Le théorème de structure 2.12 nous donne une formule de calcul de l'homologie persistante, faisant ainsi apparaître toute la filtration du complexe. Il existe une façon simple de visualiser toutes les informations données par cette formule sur un seul et même diagramme appelé **code barre**; il s'agit de représentations graphiques qui permettent de visualiser l'homologie persistante au moyen des nombres de Betti persistants. Reprenons la formule (*):

$$\bigoplus_i H_*(C^i_*) \cong \left(\bigoplus_j t^{a_j} \cdot k[t]\right) \oplus \left(\bigoplus_l t^{b_l} \cdot {}^{k[t]}/_{(t^{c_l})}\right)$$

On définit alors :

Définition 2.16. Soit K un complexe simplicial filtré. Le **code barre** de $H_*(K)$ noté $CB_*(K)$ est les graphique dont l'abscisse décrit le temps de filtration et l'ordonnée les classes d'homologie (placées selon un ordre arbitraire) tel que :

- \cdot une classe qui naît au temps a_j et qui ne meurt jamais est représentée par une barre infinie.
- une classe qui naît au temps b_l et qui meurt au temps $b_l + c_l$ est représentée par une barre allant de b_l jusqu'à $b_l + c_l$.

Les codes barres constituent une bonne représentation de l'homologie persistante, car ils permettent de voir immédiatement quelles classes sont importantes et lesquelles peuvent être ignorées, et ce en regardant les "barres les plus longues" sur le diagramme. Cette interprétation sera détaillée dans l'exemple de la couronne de la partie 2.3. Avant cela, voyons ce que donnent les codes barres sur un exemple simple :

Exemple 2.17. Reprenons le complexe simplicial K de l'exemple 2.2 muni de la filtration que nous avions choisie :

Pour synthétiser les données de la filtration, on représente dans le tableau suivant les différents simplexes qui composent K ainsi que leurs temps d'apparition dans la filtration choisie :

Simplexe	$\langle 0 \rangle$	$\langle 1 \rangle$	$\langle 2 \rangle$	$\langle 3 \rangle$	$\langle 01 \rangle$	$\langle 02 \rangle$	$\langle 03 \rangle$	$\langle 12 \rangle$	$\langle 23 \rangle$	$\langle 012 \rangle$	$\langle 023 \rangle$
Temps d'apparition	0	0	1	1	1	1	2	2	3	4	5

L'idée des codes barres est de pouvoir visualiser et résumer la formule (*) du théorème 2.12 sur un diagramme. On avait déjà appliqué cette formule dans le cas de notre exemple à la dimension 0, ce qui avait donné

$$\bigoplus_{i=0}^{5} H_0(C_*^i) = k[t] \oplus {k[t]/t} \oplus {t \cdot k[t]/t}.$$

Le premier terme représente la composante connexe qui ne disparait jamais, disons qu'il s'agit de la classe du sommet $\langle 0 \rangle$. Cette classe sera représenté par une barre "infinie" sur le diagramme. Au temps 0, on a une deuxième composante connexe $\langle 1 \rangle$, donc une deuxième barre part du temps 0 sur le code barre de $H_0(K)$. En revanche, celle-ci s'arrête au temps 1, puisque le sommet $\langle 1 \rangle$ tombe dans la classe de $\langle 0 \rangle$ avec l'apparition de l'arête $\langle 01 \rangle$. On représente cet arrêt par le symbole] au bout de la barre correspondante, signifiant ainsi que la classe dure jusqu'au temps 1 exclu. Deux autres sommets apparaissent dans le même temps : le sommet $\langle 2 \rangle$ fait également parti de la classe de $\langle 0 \rangle$, tandis que le sommet $\langle 3 \rangle$ définit une nouvelle composante connexe qui engendre $H_0(K^1)$. Cette nouvelle classe fait apparaître une troisième barre sur le code barre de $H_0(K)$ au temps de filtration 1, qui s'arrête immédiatement au temps suivant avec l'apparition des arêtes $\langle 23 \rangle$ et $\langle 03 \rangle$. A cet instant, tous les sommets sont reliés entre eux et on n'a plus qu'une composante connexe, et ce jusqu'à la fin de la filtration, ce qui confirme la barre infinie qui représente la classe de $\langle 0 \rangle$. On peut enfin résumer toutes ces informations sur le code barre de $H_0(K)$:

Regardons maintenant en dimension 1 : le premier cycle (noté z dans l'exemple 2.6) apparaît au temps 2 de la filtration, lorsque tous les points sont reliés deux à deux. Ce cycle engendre ainsi $H_1(K^2)$, et on a alors une première barre qui débute au point d'abscisse 2 sur le diagramme. Au temps suivant, deux nouveaux cycles apparaissent : $z_1 = \langle 02 \rangle + \langle 23 \rangle - \langle 03 \rangle$ et $z_2 = \langle 01 \rangle + \langle 12 \rangle - \langle 02 \rangle$. Cependant, il est clair que les trois cycles présents au temps 3 sont reliés entre eux par $z_2 = z - z_1$, et donc en fait seuls deux d'entre eux engendrent $H_1(K^3)$, disons z et z_1 . Alors, une deuxième barre apparaît sur le code barre de $H_1(K)$, mais cette barre s'arrête immédiatement au temps 4 lorsque le triangle $\langle 012 \rangle$ apparaît : en effet, z_2 devient alors un bord mettant ainsi z et z_1 dans la même classe d'homologie. Enfin, on a déjà vu lors de l'exemple 2.6 que le cycle z est tué au temps 5 de la filtration, stoppant ainsi la barre dans le diagramme. Finalement, la formule (*) donne en degré 1

$$\bigoplus_{i=0}^{5} H_1(C_*^i) = \left(t^2 \cdot {}^{k[t]}/_{t^3}\right) \oplus \left(t^3 \cdot {}^{k[t]}/_{t}\right)$$

et on a le code barre de $H_1(K)$:

Les codes barres donnent donc une visibilité sur l'homologie persistante au moyen des nombres de Betti persistants et cette visualisation est essentielle pour l'analyse topologique des données, que nous développerons dans la partie suivante. Par ailleurs, il existe une version "codes barres" du lemme 2.15:

Lemme 2.18. Soit K un complexe simplicial filtré. Le nombre de Betti persistant $\beta_n^{i,j}(K) = \dim H_n^{i,j}(K)$ est égal au nombre d'intervalles du code barre de $H_n(K)$ qui recouvrent l'intervalle [i,j].

2.3 Analyse topologique des données

Lors de la partie précédente, nous avons adopté un point de vue théorique pour pouvoir comprendre la structure de l'homologie persistante. L'objectif de cette partie est, à partir du travail fait préalablement, de comprendre comment utiliser cet outil dans l'analyse topologique des données, c'est à dire dans le fait d'extraire des informations de nature topologique à partir d'un ensemble discret de données.

Dans toute cette partie, E^n désigne un espace euclidien (en particulier muni d'une **distance**).

2.3.1 Nuages de points et complexes simpliciaux

Le principe de l'homologie persistante est de formaliser l'idée suivante : lorsqu'on est face à un ensemble discret de données, par exemple une image pixelisée, notre cerveau connecte les éléments de telle sorte à reconstruire une image. En pratique, si on se donne un ensemble de points, on va le remplacer par une famille de complexes simpliciaux, ce qui permettra de convertir dans un premier temps l'ensemble discret en objets topologiques. Ensuite, on prendra le point de vue de l'homologie persistante pour analyser ces nouveaux objets.

Définition 2.19. On appelle nuage de points toute collection de points dans E^n .

Il existe plusieurs façons de passer d'un nuage de points à un complexe simplicial : nous donnons ici un moyen de le faire à travers la **méthode du complexe de Rips**. Soit $X = \{x_i\}_i$ une collection de points dans E^n : on se donne un paramètre ϵ positif, et on place une boule fermée de rayon $\frac{\epsilon}{2}$ autour de chaque point.

Définition 2.20. Le complexe de Vietoris-Rips (ou complexe de Rips) associé à X et noté $\mathcal{R}_{\epsilon}(X)$ est le complexe simplicial dont les sommets sont les points de X et un n-simplexe est obtenu lorsque n+1 points sont à distance inférieure à ϵ les uns des autres.

La figure 2 donne un exemple de complexe de Rips obtenu à partir d'un nuage de points quelconque. On peut remarquer que le complexe de Rips \mathcal{R}_{ϵ} construit dans cet exemple a le même type d'homotopie que $S^2 \vee S^1$.

L'idée générale est de retrouver un objet de départ représenté par un certain nuage de points donné. Pour cela, on a besoin de **faire varier le paramètre** ϵ et de comparer les différents complexes de

FIGURE 2 – Exemple d'un complexe de Rips

Rips obtenus. Voyons cela sur un exemple : prenons la figure 3, où l'on part d'un nuage de points censé représenter une couronne $\mathfrak C$ dans le plan. On construit différents complexes de Rips en faisant varier ϵ : on obtient alors naturellement une filtration de complexes simpliciaux (ce qui permet d'appliquer l'homologie persistante!). On peut établir un premier constat : plus le paramètre ϵ est grand, plus le complexe simplicial obtenu est dense et de dimension élevée alors qu'à l'inverse, plus ce paramètre est petit, plus le complexe est allégé et constitué de simplexes de petites dimensions. Toute la question est de choisir le paramètre juste au sens où le complexe simplicial obtenu contient des informations caractéristiques et pertinentes sur l'espace topologique de départ. Dans notre exemple, on voudrait retrouver par exemple le trou au centre de la figure, ou encore le fait que l'objet soit connexe et dans le plan.

Figure 3 – Complexe de Rips sur un couronne ${\mathfrak C}$

L'homologie persistante intervient à cet endroit : comme on l'a déjà évoqué au début de cette partie, on s'intéresse à la durée de vie des classes d'homologie. Plus précisément, on regarde quelles sont les classes qui persistent au fur et à mesure qu'on avance dans la filtration et quelles sont celles qui disparaissent. Les classes qui durent pourront alors être considérées comme des informations caractéristiques de l'espace qu'on souhaite retrouver, tandis que celles qui meurent rapidement pourront être ignorées.

Les codes barres introduits dans la partie 2.2.3 sont un bon moyen de lire et synthétiser toutes ces informations sur un seul diagramme. Dans la figure 4, on a représenté les codes barres de $H_*(\mathfrak{C})$ en dimension 0, 1 et 2. On va donc regarder, pour chaque dimension, les barres qui persistent au fur et à mesure que le paramètre ϵ augmente. On peut par exemple lire sur le code barre de \mathfrak{C} que le nuage de points représente un objet connexe (partie $H_0(\mathfrak{C})$) avec deux cycles caractéristiques (partie $H_1(\mathfrak{C})$) et rien de significatif en dimension plus grande (partie $H_2(\mathfrak{C})$).

FIGURE 4 – Code barre de $H_*(\mathfrak{C})$

En combinant cette partie avec les résultats théoriques de la section 2.2, on peut à partir d'un nuage de points demander à un ordinateur de reconnaître l'objet topologique caché derrière : en effet, on peut implémenter des algorithmes permettant le calcul de l'homologie persistante et donc des codes barres puis lire sur ces derniers quelles sont les barres les plus longues, autrement dit celles qui permettent la reconnaissance de la forme de départ.

2.3.2 Exemple: l'homologie persistante sur les lettres digitales

Dans cette partie, nous allons illustrer le fonctionnement de l'homologie persistante et des codes barres dans un exemple simple, celui des *lettres digitales*. L'objectif va être de prendre deux de ces lettres qui seraient *a priori* identiques (reste à voir en quel sens) et de montrer qu'elles sont en fait bien distinctes, et ce en utilisant l'homologie persistante. L'espace dans lequel on travaille est toujours un espace euclidien sur lequel on a donc une **distance**.

Commençons par définir (grossièrement) notre objet de base : une lettre digitale (comme on peut en trouver sur des réveils par exemple) est une lettre (de l'alphabet français) construite à l'aide de "bâtons", disons **de taille** 1 pour fixer les idées, comme ci-dessous :

L'idée est de voir ces lettres comme des complexes simpliciaux formés de simplexes de dimensions 0 et 1 (dans la représentation ci-dessus, les sommets sont représentés par des espaces blancs). On désignera par la lettre elle-même le complexe simplicial obtenu à partir de la lettre digitale. Par exemple, on notera A le complexe simplicial obtenu à partir de la lettre digitale de A. Considérons maintenant deux de ces lettres, disons A et B:

On peut faire une première remarque : ces deux lettres sont identiques au sens où ce sont les mêmes espaces topologiques vus à homotopie près (elles ont le même type d'homotopie que le cercle S^1). Par ailleurs, l'homologie simpliciale ne permet pas non plus de les distinguer : en effet, A et R sont connexes par arcs donc $H_0(A) = H_0(R) = k$, les groupes $H_1(A)$ et $H_1(R)$ sont chacun engendrés par une seule classe correspondant au 1-cycle et enfin $H_n(A) = H_n(R) = 0$ pour $n \ge 2$. On a donc $H_n(A) = H_n(R)$ pour chaque degré n. Nous allons donc appliquer les techniques de l'homologie persistante pour tenter de les différencier.

Pour cela, nous allons commencer par extraire pour chacune de ces lettres un nuage de points. Ces derniers sont obtenus en prenant un point au milieu de chaque bâton qui constitue la lettre (il s'agit ici d'une méthode arbitraire, en pratique on a le nuage de points avant de connaître l'objet qu'il représente). Nous obtenons donc les deux échantillons suivants :

Pour chaque nuage de points, nous allons créer une filtration de complexe simpliciaux, en utilisant la méthode décrite plus haut du complexe de Rips. Commençons par la lettre A: on se donne un paramètre ϵ positif, et on place une boule fermée de rayon ϵ autour de chacun des points, et on fait varier ce paramètre (on a choisi ici des boules de rayon ϵ et non $\frac{\epsilon}{2}$, ce qui n'a pas vraiment d'importance). Comme les lettres sont constituées de bâtons est de taille 1, on a trois distinctions à faire : si $\epsilon \in \left[0, \frac{\sqrt{2}}{2}\right]$, si $\epsilon \in \left[\frac{\sqrt{2}}{2}, 1\right]$ et si $\epsilon \geq 1$. Pour simplifier un peu, admettons que l'on discrétise le temps de la filtration de cette façon : le temps 0 correspond à l'instant où le paramètre ϵ vaut 0, le temps 1 celui où $\epsilon = \frac{\sqrt{2}}{2}$ et le temps 2 celui où $\epsilon = 1$. On obtient donc trois complexes simpliciaux $\epsilon = 1$ 0 et la filtration suivante :

Regardons maintenant ce qu'il se passe en terme d'homologie : pour $\epsilon=0$, on a simplement six composantes connexes, et donc $H_0(A^0)$ est engendré par 6 classes d'homologie. En terme de code barre, on aura donc six segments qui partent du temps 0. Pour $\epsilon=\frac{\sqrt{2}}{2}$, les boules s'intersectent deux à deux, reliant les six points entre eux deux à deux. Ceci rend A^1 connexe par arcs et fait apparaître un premier cycle, qui engendre le H_1 . Ainsi, $H_0(A^1)=H_1(A^1)=k$. Sur le code barre de $H_0(A)$, cinq des six segments qui engendraient $H_0(A^0)$ s'arrêtent donc au temps 1 et rejoignent la classe du sixième, tandis qu'une barre apparaît au temps 1 sur le code de $H_1(A)$. Enfin, pour $\epsilon=1$, toutes les boules s'intersectent entre elles, reliant tous les points entre eux, ce qui recouvre le complexe et tue le 1-cycle existant. L'unique barre sur le code de $H_1(A)$ s'arrête donc au temps 2, et une barre persiste toujours sur celui de $H_0(A)$. On peut maintenant résumer toutes ces informations dans le code barre de $H_*(A)$:

On peut effectuer le même travail sur la lettre R, en faisant attention aux temps de filtration : en effet, au vu du nuage de point extrait de R, il est nécessaire de considérer le moment où $\epsilon = \frac{1}{2}$, puisqu'à ce moment déjà trois points sont reliés deux à deux, faisant ainsi disparaitre deux composantes connexes, comme on peut le voir ci-dessous :

On a donc discrétisé la filtration en quatre temps : pour $\epsilon = 0$, on a six composantes connexes, pour $\epsilon = \frac{1}{2}$ deux d'entre elles disparaissent et pour $\epsilon \geq \sqrt{2}/2$, il n'y en a plus qu'une. On en déduit le code barre de $H_0(R)$. De même pour celui de $H_1(R)$: avant $\epsilon = \frac{\sqrt{2}}{2}$, il n'y a pas de cycles et deux sont créés à partir du temps 2, qui disparaissent aussitôt lorsque ϵ dépasse 1. On obtient les codes barres suivant :

Nous avons donc les codes barres de $H_*(A)$ et $H_*(R)$, et on aimerait les exploiter pour pouvoir affirmer que les lettres A et R ne sont pas les mêmes. On peut déjà observer que les codes barres sont différents et pour le formaliser, une façon de procéder est de définir une distance sur l'ensemble des codes barres. C'est l'objet de la définition suivante :

Définition 2.21. Soit K et L deux complexes simpliciaux filtrés, et $CB_*(K)$ et $CB_*(L)$ leurs codes barres respectifs. Pour chaque degré n, on définit la distance d_n entre $CB_n(K)$ et $CB_n(L)$ comme étant la somme des longueurs des barres se situant sur un diagramme et pas sur l'autre, selon le paramètre ϵ (c'est à dire que la longueur d'une barre est donnée par le rayon des boules et non les temps de filtration). La distance d entre les codes barres $CB_*(K)$ et $CB_*(L)$ est alors définie par

$$d(CB_*(K), CB_*(L)) := \sum_n d_n(CB_n(K), CB_n(L)).$$

Appliquons cette définition aux codes barres de A et R, notés $CB_*(A)$ et $CB_*(R)$: en dimension 0, on a

$$d_0(CB_0(A), CB_0(R)) = \frac{1}{2} + (\frac{\sqrt{2}}{2} - \frac{1}{2}) + \frac{\sqrt{2}}{2} = \sqrt{2}$$

puis en dimension 1

$$d_1(CB_1(A), CB_1(R)) = 1 - \frac{\sqrt{2}}{2}.$$

Ainsi, la distance entre $CB_*(A)$ et $CB_*(R)$ est donnée par

$$d(CB_*(A), CB_*(R)) = \sqrt{2} + 1 - \frac{\sqrt{2}}{2} = 1 + \frac{\sqrt{2}}{2} \neq 0.$$

Finalement, les techniques de l'homologie persistante ont permis de montrer que les lettres A et R, qui sont les mêmes en tant qu'espaces topologiques vus à homotopie près et que l'homologie simpliciale ne permet pas de différencier, sont bien différentes.

3 Lien entre les suites spectrales et l'homologie persistante

Au cours des deux premières parties de ce mémoire, nous avons étudié deux outils de la topologie algébrique : d'un côté les suites spectrales, outil théorique basé sur l'algèbre homologique, et de l'autre l'homologie persistante, outil plus proche des mathématiques appliquées. Dans les deux cas, il s'agit de retrouver un objet par approximations successives. L'objectif de cette troisième et dernière partie est de montrer que ces deux outils a priori différents sont en fait très liés : ce lien est explicité pour la première fois en 2009 dans [EH09] page 171 dans une formule reliant les dimensions des modules $E_{p,q}^r$ d'une suite spectrale homologique et les nombres de Betti persistants $\beta_n^{i,j}$. Cependant la formule en question comporte une erreur et est corrigée dans l'article [BP18] datant de 2018 : la version corrigée de cette formule est présentée dans le corollaire 3.5. Dans cet article, le lien entre les suites spectrales et l'homologie persistante est d'abord explicité à travers la suite exacte longue du théorème 3.3 qui met en jeu les groupes d'homologie persistante et les modules gradués d'une suite spectrale bien définie et qui nous permettra d'aboutir à une liste de résultats mettant en relation les deux concepts.

Notre objet de base est un CW-complexe \mathfrak{X} , qui nous permet de parler d'homologie persistante (partie 3.1) et de construire une certaine suite spectrale par la méthode des couples exacts (partie 3.2). La partie 3.3 est une liste de résultats découlant du lemme fondamental 3.2 et mettant en lumière le lien entre nos deux outils. Enfin, nous reprendrons les exemples vus au cours des sections précédentes afin d'illustrer ce lien.

Dans toute cette partie, les calculs d'homologie se font sur un corps commutatif k. En particulier, pour tous n, p, q et r, le groupe d'homologie H_n et le module $E_{p,q}^r$ sont des espaces vectoriels. Notons que nous passons en notations homologiques pour les suites spectrales. On reprendra aussi les notations de la partie 1.4; en particulier, $H_n(-)$ désigne l'homologie singulière et $H_n^{CW}(-)$ l'homologie des CW-complexes.

3.1 Préliminaires

Nous commençons par quelques notations et rappels qui permettront de construire notre suite spectrale. Soit $\mathfrak{X}=(|\mathfrak{X}|,f)$ un CW-complexe fini, avec $X=|\mathfrak{X}|$ la réalisation topologique de \mathfrak{X} que l'on munit d'une filtration $F=(F_pX)_{p\in\mathbb{Z}}$ (par exemple celle donnée par les *i*-squelettes). On notera X_i pour F_iX le $i^{\text{ième}}$ terme de la filtration de X, quelle que soit la filtration choisie pour X:

$$\emptyset = ... = X_{-1} = X_0 \subseteq X_1 \subseteq ... \subseteq X_N = X_{N+1} = ... = X.$$

Cette filtration induit une filtration naturelle sur l'espace des chaînes singulières sur X donnée par

$$F_p S_*(X) = S_*(X_p).$$

On rappelle qu'on a démontré par le biais du théorème 1.47 que $H_*^{CW}(\mathfrak{X}) = H_*(X)$, donc pour simplifier les notations on désignera par X le CW-complexe \mathfrak{X} , et on parlera plutôt de l'homologie singulière de X (que l'on notera ici simplement $H_*(-)$).

Dans cette partie, on utilisera pour l'homologie persistante la définition donnée par le point (iii) de la remarque 2.4, c'est à dire

$$H_n^{i,j}(X) = H_n^{i,j} = \text{im } \eta_n^{i,j}$$

où $\eta_n^{i,j}$ désigne l'application induite par l'inclusion naturelle de X_i dans X_j .

L'homologie persistante fournit pour chaque degré n une filtration naturelle de l'espace vectoriel $H_n(X)$: en effet, en posant

$$F_p H_n(X) := H_n^{p,N} = \operatorname{im} \left(\eta_n^{p,N} : H_n(X_p) \to H_n(X) \right)$$

avec N l'indice de filtration de X tel que $X_N = X_{N+1} = \dots = X$, on obtient la suite croissante

$$\{0\} = F_0 H_n(X) \subset F_1 H_n(X) \subset ... \subset F_p H_n(X) = H_n(X).$$

Remarquons qu'il s'agit de la même filtration que celle donnée par la remarque 1.21 de la première partie.

Pour chaque paire (X_p, X_{p-1}) de la filtration de X, on considère $C_*(X_p, X_{p-1})$ le complexe de chaînes défini par

$$C_*(X_p, X_{p-1}) := {C_*(X_p) / C_*(X_{p-1})}$$

L'homologie de ce complexe est appelée **homologie relative** de X_{p-1} par rapport à X_p , que l'on note $H_n(X_p, X_{p-1})$. On a alors une suite exacte courte de complexes de chaînes

$$0 \longrightarrow C_*(X_{p-1}) \xrightarrow{i_{*,p-1}} C_*(X_p) \xrightarrow{j_{*,p}} C_*(X_p, X_{p-1}) \longrightarrow 0$$

induisant par le théorème des suites exactes longues en homologie la suite

$$\dots \longrightarrow H_n(X_{p-1}) \xrightarrow{H_n(i_{*,p-1})} H_n(X_p) \xrightarrow{H_n(j_{*,p})} H_n(X_p, X_{p-1}) \xrightarrow{\partial_{n,p}} H_{n-1}(X_{p-1}) \longrightarrow \dots$$

avec $\partial_{n,p}$ le morphisme de connexion. Cette suite exacte longue est au cœur de la construction de notre suite spectrale.

3.2 Construction de la suite spectrale

On va maintenant définir une suite spectrale à partir de X en utilisant la méthode des couples exacts et de telle sorte que cette suite coïncide avec celle associée à l'espace des chaînes singulières sur X. Rappelons que, si $F_pX = X_p$ désigne le $p^{\text{ième}}$ terme de la filtration de X, alors $F_pS_*(X) = S_*(X_p)$ désigne celui de $S_*(X)$. On part de la suite exacte longue faisant intervenir l'homologie relative et on pose pour tous n et p

$$D_{p,n-p} := H_n(X_p)$$
 et $E_{p,n-p} := H_n(X_p, X_{p-1}) = H_n(S_*(X_p)/S_*(X_{p-1}))$

ainsi que les applications

$$\begin{split} i_{p,n-p} &:= H_n(i_{*,p}) &: D_{p,n-p} \to D_{p+1,n-p-1} \\ j_{p,n-p} &:= H_n(j_{*,p}) &: D_{p,n-p} \to E_{p,n-p} \\ k_{p,n-p} &:= \partial_{n,p} &: E_{p,n-p} \to D_{p-1,n-p} \end{split}$$

Alors, on peut considérer, pour n = p + q, les espaces et applications bigradués associés

$$E_{*,*} = (E_{p,q})_{p,q}, D_{*,*} = (D_{p,q})_{p,q}, i_{*,*} = (i_{p,q})_{p,q}, j_{*,*} = (j_{p,q})_{p,q} \text{ et } k_{*,*} = (k_{p,q})_{p,q}, j_{*,*} = (k$$

avec par définition bideg $i_{*,*} = (1, -1)$, bideg $j_{*,*} = (0, 0)$ et bideg $k_{*,*} = (-1, 0)$ (on oublie à partir de maintenant la bigraduation sur les applications). On obtient ainsi un couple exact de k-espaces vectoriels bigradués $C_{*,*} = \{D_{*,*}, E_{*,*}, i, j, k\}$:

$$D_{*,*} \xrightarrow{i} D_{*,*}$$

$$E_{*,*}$$

Enfin, on pose $C_{*,*}^{(0)} = C_{*,*}$ et en dérivant n fois (avec $n \ge 1$) comme dans la partie 1.2.2, on obtient $C_{*,*}^{(n)}$ le $n^{\text{ième}}$ couple dérivé de $C_{*,*}$. En imitant la preuve du théorème 1.30, on a pour les applications

bideg
$$i^{(r)} = (1, -1)$$
, bideg $j^{(r)} = (-r, r)$ et bideg $k^{(r)} = (-1, 0)$.

D'après la version duale du théorème 1.30, ce couple exact détermine donc une suite spectrale homologique $(E_{*,*}^r,d^r)_{r=1,2,\ldots}$ avec $E_{*,*}^r=(E_{*,*})^{(r-1)}$ le $(r-1)^{\text{ième}}$ module dérivé de $E_{*,*}$ (où $E_{*,*}^1=E_{*,*}^0=E_{*,*}$) et $d^r=j^{(r-1)}\circ k^{(r-1)}=j^r\circ k^r$ (en reprenant les conventions de la remarque 1.31 et en passant aux notations homologiques). Alors, d'après la proposition 1.35 et par construction du couple exact, la suite spectrale ainsi définie coı̈ncide avec la suite spectrale de l'espace des chaı̂nes singulières sur X. On en déduit le premier résultat suivant :

Théorème 3.1. La suite spectrale $(E_{*,*}^r, d^r)_{r=1,2,...}$ ainsi définie converge vers l'homologie singulière $H_*(X)$ et la page infinie est donnée par

$$E_{p,q}^{\infty} = E_{p,q}^{\max{(p,N-p+1)}} = \frac{H_n^{p,N}}{H_n^{p-1,N}}$$

avec p et q dans \mathbb{Z} , n = p + q et N l'indice de filtration de X tel que $X_N = X_{N+1} = ... = X$.

Démonstration. Comme $E_{p,q}^1 = E_{p,q} = H_{p+q}(X_p, X_{p-1}) = 0$ sauf pour un nombre fini de paires (p,q), la suite spectrale dégénère donc pour r assez grand, on a $E_{p,q}^r = E_{p,q}^{\infty}$. La description de la page limite découle immédiatement du théorème 1.22 : en effet, la filtration de X étant bornée (par 0 et N), celle de $S_*(X)$ l'est également et donc on sait que :

$$E_{p,q}^{\infty} = {^F_p H_{p+q}(S_*(X))} / {_{F_{p-1} H_{p+q}(S_*(X))}} = {^F_p H_{p+q}(X)} / {_{F_{p-1} H_{p+q}(X)}}$$

et puisque par définition $H_n^{p,N}(X) = H_n^{p,N} = F_p H_n(X)$, on obtient bien le quotient souhaité. Pour connaître le rang à partir duquel la suite spectrale dégénère, on peut remarquer d'une part que

$$d_{p,q}^r = 0$$
 pour $r \ge p$.

En effet, on a une suite spectrale homologique donc bideg $d_{p,q}^r = (-r,r-1)$, soit $d_{p,q}^r : E_{p,q}^r \to E_{p-r,p+r-1}^r$, et si $p-r \le 0$, alors $E_{p-r,p+r-1}^r = H_{p+q-r}(X_{p-r},X_{p-r-1}) = 0$ puisque $X_i = \emptyset$ pour $i \le 0$. D'autre part, pour $p-1 \ge N$, on sait que $X_{p-1} = X_p = X$ et donc que $E_{p,n-p} = H_n(X_p,X_{p-1}) = H_n(X,X) = 0$. Ceci implique que

$$E^r_{p,q}=0 \text{ pour } p-1\geq N \text{ et } r\geq 1.$$

Finalement, en rassemblant ces deux constats on obtient que $d_{p,n-p}^r=0$ pour $r\geq p$ ou $r\geq 1$ et $p-1\geq N$, soit

$$d_{p,n-p}^{r} = 0 \text{ pour } r \ge \max(p, N - p + 1),$$

et de même pour $d_{p+r,n-p-r+1}^r$. Ainsi, toutes les différentielles sont nulles pour les pages numérotées après le $\max{(p,N-p+1)}$, donc on a bien $E_{p,q}^{\infty}=E_{p,q}^{\max{(p,N-p+1)}}$.

3.3 Les théorèmes

Dans la partie précédente, nous avons construit une suite spectrale dont la page limite fait intervenir les groupes d'homologie persistante. Cette suite provenant d'un couple exact, nous pouvons en déduire une suite exacte longue permettant d'établir les formules reliant les dimensions des modules de la suite spectrale aux dimensions des groupes d'homologie.

On commence par démontrer le lemme fondamental suivant : il relie le couple exact dérivé et l'homologie persistante. De ce lemme découleront tous les résultats énoncés dans cette partie. On rappelle qu'on a toujours les conventions suivantes (en faisant attention aux notations homologiques) :

$$D^r_{*,*} = D^{(r-1)}, \ E^r_{*,*} = E^{(r-1)}$$

$$i^r = i^{(r-1)}, \ j^r = j^{(r-1)}, \ k^r = k^{(r-1)} \text{ et } d^r = d^{(r-1)} = j^{(r-1)} \circ k^{(r-1)} = j^r \circ k^r.$$

Lemme 3.2. Pour r, p et q dans \mathbb{Z} , avec $r \ge 1$ et n = p + q, on a les deux égalités

$$D^r_{p-1,q+1} = \operatorname{im} \eta^{p-r,p-1}_n = H^{p-r,p-1}_n$$

et

$$i_{p-1,q+1}^r = \eta_n^{p-1,p}|_{D_{p-1,q+1}^r}$$

où $\eta_n^{i,j}$ désigne toujours l'application de $H_n(X_i)$ dans $H_n(X_j)$.

Démonstration. On démontre ces deux formules par récurrence sur $r \geq 1$. Pour r = 1, on a par définition

$$D_{p-1,q+1}^1 = D_{p-1,q+1}^{(0)} = D_{p-1,q+1} = H_n(X_{p-1}) = H_n^{p-1,p-1} = \operatorname{im} \eta_n^{p-1,p-1}$$

et

$$i_{p-1,q+1}^1 = i_{p-1,q+1}^{(0)} = i_{p-1,q+1} = H_n(i_{p-1}) = \eta_n^{p-1,p} : H_n(X_{p-1}) \to H_n(X_p).$$

Supposons le lemme vérifié jusqu'au rang r-1. Remarquons que

$$D^r_{p-1,q+1} = i^{r-1}_{p-2,q+2} \big(D^{r-1}_{p-2,q+2} \big),$$

donc par hypothèse de récurrence, on a

$$D^r_{p-1,q+1} = i^{r-1}_{p-2,q+2} \left(\operatorname{im} \eta^{p-r,p-2}_n\right) = \eta^{p-2,p-1}_n \big|_{\operatorname{im} \eta^{p-r,p-2}_n} \left(\operatorname{im} \eta^{p-r,p-2}_n\right) = \operatorname{im} \eta^{p-r,p-1}_n = H^{p-r,p-1}_n$$

De même,

$$i_{p-1,q+1}^r = i_{p-1,q+1}^1|_{D_{p-1,q+1}^r} = \eta_n^{p-1,p}|_{D_{p-1,q+1}^r}.$$

Le théorème suivant établit la suite exacte longue attendue qui permettra de relier les dimensions de $E_{*,*}^r$ et $H_n^{*,*}$.

Théorème 3.3. Pour r, p et q dans \mathbb{Z} , avec $r \geq 1$ et n = p + q, on a la suite exacte longue

$$\dots \longrightarrow H_n^{p,p+r-1} \xrightarrow{j_{p+r-1,q-r+1}^r} E_{p,q}^r \xrightarrow{k_{p,q}^r} H_{n-1}^{p-r,p-1} \xrightarrow{i_{p-1,q}^r} H_{n-1}^{p-r+1,p} \longrightarrow \dots$$

De plus, on a im $i_{p+r-1,q-r+1}^r = H_n^{p,p+r}$.

Démonstration. On a construit le couple exact dérivé

$$D^r_{*,*} \xrightarrow{i^r} D^r_{*,*}$$

$$E^r_{*,*}$$

En déroulant ce couple exact, on obtient la suite exacte longue

$$\dots \longrightarrow D^r_{p+r-1,q-r+1} \xrightarrow{j^r_{p+r-1,q-r+1}} E^r_{p,q} \xrightarrow{k^r_{p,q}} D^r_{p-1,q} \xrightarrow{i^r_{p-1,q}} D^r_{p,q-1} \longrightarrow \dots$$

et avec le lemme précédent, on a $D^r_{p+r-1,q-r+1}=H^{p,p+r-1}_n,$ $D^r_{p-1,q}=H^{p-r,p-1}_{n-1}$ et $D^r_{p,q-1}=H^{p-r+1,p}_{n-1}$, ce qui donne bien la suite exacte longue attendue.

Pour la deuxième égalité, on utilise encore le lemme 3.2 :

$$\begin{split} & \text{im } i_{p+r-1,q-r+1}^r & = \text{im } \eta_n^{p+r-1,p+r} \big|_{D_{p+r-1,q-r+1}^r} \\ & = \text{im } \eta_n^{p+r-1,p+r} \big|_{\text{im } \eta_n^{p,p+r-1}} \\ & = \text{im } \eta_n^{p+r-1,p+r} \circ \eta_n^{p,p+r-1} \\ & = \text{im } \eta_n^{p,p+r} \\ & = H_n^{p,p+r} \end{split}$$

Rappelons que l'on désigne par $\beta_n^{i,j}$ le $j^{\text{ième}}$ nombre de Betti persistant, c'est à dire $\beta_n^{i,j} = \dim H_n^{i,j}$. Du théorème précédent, on déduit une première égalité de dimensions :

Corollaire 3.4. Pour tous r, p et q dans \mathbb{Z} avec $r \geq 1$ et n = p + q, on a

$$\dim_k E^r_{p,q} = \left(\beta^{p,p+r-1}_n - \beta^{p-1,p+r-1}_n\right) + \left(\beta^{p-r,p-1}_{n-1} - \beta^{p-r,p}_{n-1}\right)$$

 $\label{lem:definition} D\'{e}monstration. Il suffit de reprendre la suite exacte longue donnée par le th\'eor\`{e}me pr\'ec\'{e}dent et d'utiliser l'exactitude ainsi que le th\'eor\`{e}me du rang :$

$$\begin{split} \dim_k E^r_{p,q} &= \dim_k \ker k^r_{p,q} + \dim_k \operatorname{im} k^r_{p,q} \\ &= \dim_k \operatorname{im} j^r_{p+r-1,q-r+1} + \dim_k \ker i^r_{p-1,q} \\ &= \left(\dim_k H^{p,p+r-1}_n - \dim_k \ker j^r_{p+r-1,q-r+1} \right) + \left(\dim_k H^{p-r,p-1}_{n-1} - \dim_k \operatorname{im} i^r_{p-1,q} \right) \\ &= \left(\beta^{p,p+r-1}_n - \dim_k \operatorname{im} i^r_{p+r-2,q-r+2} \right) + \left(\beta^{p-r,p-1}_{n-1} - \dim_k \operatorname{im} i^r_{p-1,q} \right) \\ &= \left(\beta^{p,p+r-1}_n - \dim_k H^{p-1,p+r-1}_n \right) + \left(\beta^{p-r,p-1}_{n-1} - \dim_k H^{p-r,p}_{n-1} \right) \\ &= \left(\beta^{p,p+r-1}_n - \beta^{p-1,p+r-1}_n \right) + \left(\beta^{p-r,p-1}_{n-1} - \beta^{p-r,p}_{n-1} \right) \end{split}$$

La formule de ce corollaire est celle qu'on utilisera dans les applications, pour passer de l'homologie persistante aux suites spectrales et vice-versa. On peut cependant montrer deux autres résultats reliant les deux outils.

Si $\beta_n^{i,j}$ désigne le $j^{\text{ième}}$ nombre de Betti persistant, soit le nombre de classe d'homologie qui sont présentes au temps i et qui existent toujours au temps j, on peut noter $\mu_n^{i,j}$ le nombre de classes qui sont nées en i et qui ont **mortes** en j, soit

$$\mu_n^{i,j} = (\beta_n^{i,j-1} - \beta_n^{i,j}) - (\beta_n^{i-1,j-1} - \beta_n^{i-1,j}).$$

On appelle le nombre $\mu_n^{i,j}$ la **multiplicité persistante** associée au triplet (n,i,j). Le corollaire suivant relie cette dernière aux dimensions du module bigradué $E_{*,*}^r$ (il s'agit de la version corrigée par [BP18] de la formule présentée dans [EH09]).

Corollaire 3.5. Pour tous $r \ge 1$ et $n \ge 0$, on a

$$\sum_{p+q=n} \dim_k E^r_{p,q} = \sum_{j-i \geq r} \left(\mu^{i,j}_n + \mu^{i,j}_{n-1} \right) + \beta_n$$

Démonstration. Commençons par introduire les notations suivantes :

$$\begin{array}{ll} \gamma_n^{s,t} & := \beta_n^{s-t,s-1} - \beta_n^{s-t,s} \\ \nu_n^{s,t} & := \beta_n^{s,s+t-1} - \beta_n^{s-1,s+t-1} \end{array}$$

Remarquons que ces deux quantités sont nulles pour $s \leq 0$ et $s \geq N+1$, où N désigne l'indice de filtration de X tel que $X_N = X_{N+1} = \dots = X$. Alors, en sommant sur l'égalité donnée par le corollaire précédent, on obtient une première égalité

$$\sum_{s \in \mathbb{Z}} \dim_k E^r_{s,n-s} = \sum_{s=0}^{N+1} \left(\nu^{s,t}_n + \gamma^{s,r}_{n-1} \right) \tag{*}$$

Reprenons maintenant l'expression de la multiplicité persistante, écrite de deux façons différentes :

$$\mu_n^{i,j} = \left(\beta_n^{i,j-1} - \beta_n^{i,j}\right) - \left(\beta_n^{i-1,j-1} - \beta_n^{i-1,j}\right) \tag{1}$$

et

$$\mu_n^{i,j} = \left(\beta_n^{i,j-1} - \beta_n^{i-1,j-1}\right) - \left(\beta_n^{i,j} - \beta_n^{i-1,j}\right) \tag{2}$$

(1) et (2) permettent alors d'obtenir deux expressions de $\sum_{j-1>r} \mu_n^{i,j}$:

$$\sum_{j-1 > r} \mu_n^{i,j} = \sum_{j-1 > r} \left(\left(\beta_n^{i,j-1} - \beta_n^{i,j} \right) - \left(\beta_n^{i-1,j-1} - \beta_n^{i-1,j} \right) \right) \tag{1}$$

et

$$\sum_{j-1 \ge r} \mu_n^{i,j} = \sum_{j-1 \ge r} \left(\left(\beta_n^{i,j-1} - \beta_n^{i-1,j-1} \right) - \left(\beta_n^{i,j} - \beta_n^{i-1,j} \right) \right) \tag{2}$$

En faisant les changements de variables respectifs $\{s=j, t=j-i\}$ et $\{s=i, t=j-i\}$, on obtient

$$\sum_{j-1 \ge r} \mu_n^{i,j} = \sum_{t=r}^{N+1} \sum_{s=0}^{N+1} \left(\beta_n^{s-t,s-1} - \beta_n^{s-t,s} \right) - \left(\beta_n^{s-t-1,s-1} - \beta_n^{s-t-1,s} \right)$$

$$= \sum_{t=r}^{N+1} \sum_{s=0}^{N+1} \left(\gamma_n^{s,t} - \gamma_n^{s,t+1} \right)$$

et

$$\sum_{j-1 \ge r} \mu_n^{i,j} = \sum_{t=r}^{N+1} \sum_{s=0}^{N+1} \left(\beta_n^{s,s+t-1} - \beta_n^{s-1,s+t-1} \right) - \left(\beta_n^{s,s+t} - \beta_n^{s-1,s+t} \right)$$

$$= \sum_{t=r}^{N+1} \sum_{s=0}^{N+1} \left(\nu_n^{s,t} - \nu_n^{s,t+1} \right)$$

On change ensuite l'ordre de sommation et par une somme télescopique, on trouve pour chacune des expressions

$$\begin{split} \sum_{j-1 \geq r} \mu_n^{i,j} &= \sum_{s=0}^{N+1} \sum_{t=r}^{N+1} \left(\gamma_n^{s,t} - \gamma_n^{s,t+1} \right) \\ &= \sum_{s=0}^{N+1} \left(\gamma_n^{s,r} - \gamma_n^{s,N+1} \right) \\ &= \sum_{s=0}^{N+1} \gamma_n^{s,r} - \sum_{s=0}^{N+1} \left(\beta_n^{s-N-1,s-1} - \beta_n^{s-N-1,s} \right) \\ &= \sum_{s=0}^{N+1} \gamma_n^{s,r} \end{split}$$

et

$$\begin{split} \sum_{j-1 \geq r} \mu_n^{i,j} &= \sum_{s=0}^{N+1} \sum_{t=r}^{N+1} \left(\nu_n^{s,t} - \nu_n^{s,t+1} \right) \\ &= \sum_{s=0}^{N+1} \left(\nu_n^{s,r} - \nu_n^{s,N+1} \right) \\ &= \sum_{s=0}^{N+1} \nu_n^{s,r} - \sum_{s=0}^{N+1} \left(\beta_n^{s,s+N} - \beta_n^{s-1,s+N} \right) \\ &= \sum_{s=0}^{N+1} \nu_n^{s,r} - \beta_n \end{split}$$

Enfin, en reprenant (*) et les deux dernières égalités obtenues, on trouve bien

$$\sum_{s \in \mathbb{Z}} \dim_k E^r_{s,n-s} = \sum_{p+q=n} \dim_k E^r_{p,q} = \sum_{s=0}^{N+1} \left(\nu^{s,t}_n + \gamma^{s,r}_{n-1} \right) = \sum_{j-i \ge r} \left(\mu^{i,j}_n + \mu^{s,r}_{n-1} \right) + \beta_n$$

Le théorème suivant et dernier résultat de cette partie permet, à l'inverse du corollaire 3.4, d'exprimer la dimension du groupe d'homologie persistante en fonction des dimensions des éléments d'une suite spectrale. En revanche, cela nécessite de définir toute une nouvelle **famille de suites spectrales** à partir de $(E_{*,*}^r, d^r)_r$: les suites spectrales associées à un espace tronqué.

Soit $F_{\leq t}$ la filtration tronquée à l'instant t de F, c'est à dire la filtration qu'on arrête à X_t :

$$\emptyset = \dots = X_{-1} = X_0 \subset X_1 \subset \dots \subset X_t = X_{t+1} = \dots$$

Alors, on note $({}_{t}E^{r}_{*,*}, {}_{t}d^{r})$ la suite spectrale associée à la filtration tronquée $F_{\leq t}$.

Théorème 3.6. Pour tous n, s et t dans \mathbb{N} avec s < t, on a

$$\beta_n^{s,t} = \sum_{i=0}^s \dim_k {}_t E_{i,n-i}^{\max(i,t-i+1)}$$

Démonstration. D'après le théorème 3.1, on a

$$\dim_k E_{p,q}^{\infty} = \dim_k \frac{H_{p+q}^{p,N}}{H_{p+q}^{p-1,N}} = \beta_{p+q}^{p,N} - \beta_{p+q}^{p-1,N}.$$

En appliquant cette égalité à la filtration tronquée $F_{\leq t}$, on obtient

$$\dim_k \, _t E_{i,n-i}^{\infty} = \beta_n^{i,t} - \beta_n^{i-1,t}$$

et en sommant sur $i \in \{0, ..., s\}$, on trouve

$$\sum_{i=0}^{s} \dim_{k} _{t} E_{i,n-i}^{\infty} = \sum_{i=0}^{s} \beta_{n}^{i,t} - \beta_{n}^{i-1,t} = \beta_{n}^{s,t}$$

puisque $\beta_n^{i,t} = \dim H_n^{i,t} = 0$ pour $i \leq 0$. Enfin, toujours d'après le théorème 3.1, ${}_t E_{p,q}^{\infty} = {}_t E_{p,q}^{\max(p,N-p+1)}$, ce qui donne bien l'égalité attendue.

3.4 Exemples et applications

3.4.1 Homologie persistante et CW-complexes

Le but de cette partie est d'appliquer l'homologie persistante sur les CW-complexes, puis de faire le lien avec le théorème 1.47 de la section 1.4 et les théorèmes de la section précédente. Les calculs d'homologie se feront toujours sur le corps k, et on note $H_*^{sing}(-)$ l'homologie singulière et H_*^{CW} l'homologie CW.

On considère la filtration naturelle sur X donnée par les i-squelettes

$$\emptyset \subseteq X_0 \subseteq X_1 \subseteq ... \subseteq X_N = X_{N+1} = ... = X.$$

Par définition du $j^{\text{ième}}$ groupe d'homologie persistante associé à X_i , on a

$$H_*^{i,j} = \operatorname{im} \eta_*^{i,j} : H_*(X_i) \to H_*(X_j)$$

donc pour comprendre l'homologie persistante, il faut comprendre les applications $\eta_*^{*,*}$. Dans le cas des CW-complexes, on a décidé de considérer la filtration par les i-squelettes, donc on peut aisément décrire ce qu'il se passe : au temps n de la filtration, on a X_n le n-squelette de X, donc toutes les n-cellules sont présentes à ce moment et il suffit de compter les classes de n-cycles. Lorsqu'on passe au temps n+1, on "remplit" les n-cycles, donc on regarde ceux qui deviennent des bords et ceux qui restent des classes non nulles. Autrement dit, l'application $\eta_n^{n,n+1}$ est l'identité sur les cycles qui ne bougent pas et l'application nulle sur ceux qui deviennent des bords. Par ailleurs, si on considère $\eta_n^{i,j}$ pour $i \neq n$ et $j \neq n+1$, alors soit $i < n, j \le n$ et l'application est de toute façon l'application nulle (puisqu'il n'y pas encore de n-cellules), soit i > n, j > n+1 et ce qu'on a dit pour $\eta_n^{n,n+1}$ reste vrai. Ainsi, le code barre de l'homologie en degré n sera de la forme suivante : aucune barre avant le temps n, une barre pour chaque n-classe d'homologie au temps n, et pour chacune de ces barres soit la classe correspondante devient un bord, auquel cas la barre s'arrête en n+1, soit la classe ne meurt pas et la barre persiste à l'infinie.

Exemple 3.7. Considérons le tore \mathfrak{T} dont la réalisation topologique est notée T. Comme CW-complexe, le tore possède quatre cellules : une cellule de dimension 0 (donnée par x), deux de dimensions 1 (données par a et b) et une de dimension 2 (le carré rempli), comme on peut le voir sur les figures ci-dessous :

Figure 5 – Le tore

On rappelle que l'homologie du tore est donnée par

$$H_n(T) = \begin{cases} k \text{ si } n = 0 \text{ ou } 2\\ k^2 \text{ si } n = 1\\ 0 \text{ sinon} \end{cases}$$

Calculons maintenant l'homologie pour chaque i-squelette et chaque degré : en degré 0, le i-squelette n'a toujours qu'une seule composante connexe, donc

$$H_0(T_0) = H_0(T_1) = H_0(T_2) = k.$$

Par ailleurs, on a évidemment

$$H_1(T_0) = H_2(T_0) = H_2(T_1) = 0.$$

Regardons le 1-squelette T_1 : on a le tore "sans la surface", autrement dit les deux cellules de dimension 1 donnée par a et b et recollées au point x, soit $S^1 \vee S^1$. On a donc

$$H_1(T_1) = H_1(S^1 \vee S^1) = \bigoplus_{j=1}^2 H_1(S^1) = k^2.$$

Lorsqu'on ajoute la cellule de dimension 2 pour passer à T_2 , les deux cycles a et b qui engendraient $H_1(T_1)$ ne sont pas "recouverts", autrement dit ils ne deviennent pas des bords et donc engendrent toujours $H_1(T_2)$, d'où $H_1(T_2) = k^2$. Enfin,

$$H_2(T_2) = H_2(T) = k.$$

Résumons tout ceci :

$$\begin{cases} H_1(T_0) = H_2(T_0) = H_2(T_1) = 0 \\ H_0(T_0) = H_0(T_1) = H_0(T_2) = H_2(T_2) = k \\ H_1(T_1) = H_1(T_2) = k^2 \end{cases}$$

On peut donc maintenant voir ce que donne l'homologie persistante en chaque degré : d'abord, on a clairement

$$H_1^{0,1} = H_1^{0,2} = H_2^{0,1} = H_2^{0,2} = H_2^{1,2} = 0.$$

Pour l'homologie en degré 0, l'application $\eta_0^{*,*}$ vaut l'identité entre chaque *i*-squelette (puisqu'on envoie à chaque fois la classe de x qui engendre le H_0 sur elle-même) et de même pour l'homologie en degré 1 où l'on envoie a et b sur eux-mêmes. Ainsi, on a

$$H_0^{0,1} = H_0^{0,2} = H_0^{1,2} = k$$

et

$$H_1^{1,2} = k^2$$
.

On a donc les nombres de Betti persistants correspondants, et on peut finalement tracer le code barre pour chaque degré de l'homologie :

Comparons maintenant avec la suite spectrale associée au CW-complexe \mathfrak{T} . On sait d'après le théorème 1.47 de la partie 1.4 qu'il existe une suite spectrale associée à l'espace des chaînes singulières sur T et dont la deuxième page calcule l'homologie de \mathfrak{T} . Plus précisément, on a

$$E_{p,q}^2 = \left\{ \begin{array}{lll} k \text{ si } (p,q) = (0,0) \text{ ou } (2,0) \\ k^2 \text{ si } (p,q) = (1,0) \\ \{0\} \text{ sinon} \end{array} \right. \quad \left. \begin{array}{llll} 3 & 0 & 0 & 0 & 0 \\ 2 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 \\ 0 & k & k^2 & k & 0 \\ \hline & 0 & 1 & 2 & 3 \end{array} \right.$$

Page 2 de la suite spectrale associée au tore $\mathfrak T$

On peut avec ça vérifier la formule du corollaire 3.4 de la partie précédente : pour $r \ge 1$ et n = p + q, on a

$$\dim_k E_{p,q}^r = \left(\beta_n^{p,p+r-1} - \beta_n^{p-1,p+r-1}\right) + \left(\beta_{n-1}^{p-r,p-1} - \beta_{n-1}^{p-r,p}\right)$$

Prenons r=2 et on le fait pour la première ligne (q=0) : pour n=0 (et p=0), on a d'un côté $\dim_k E_{0,0}^2=1$ et de l'autre

$$\beta_0^{0,1} - \beta_0^{-1,1} + \beta_{-1}^{-2,-1} - \beta_{-1}^{-2,0} = \beta_0^{0,1} = 1.$$

Pour n = 1 (et p = 1), on a

$$\dim_k E_{1,0}^2 = 2 = \beta_1^{1,2} - \beta_1^{0,2} + \beta_0^{-1,0} - \beta_0^{-1,1} = \beta_1^{1,2} = 2$$

et pour n=2 (et p=2),

$$\dim_k E_{2,0}^2 = 1 = \beta_2^{2,3} - \beta_2^{2,3} + \beta_1^{0,1} - \beta_1^{0,2} = \beta_1^{0,1} = 1.$$

Pour n > 2, les nombres de Betti persistants sont nuls, ce qui coïncide avec la suite spectrale. Ainsi, on retrouve bien la première ligne de notre suite spectrale qui calcule l'homologie CW du tore.

3.4.2 Suites spectrales et lettres digitales

Dans cette partie, nous allons reprendre l'exemple des lettres digitales de la section 2.3.2 auquel nous avions appliqué les techniques de l'homologie persistante pour différencier les lettres A et R. Nous avions en particulier utiliser les codes barres associés. L'objectif de cette section est d'utiliser ces codes barres afin d'exploiter la formule du corollaire 3.4 et de calculer la suite spectrale associée aux filtrations données par les complexes de Rips pour chacune des lettres A et R.

Reprenons d'abord la lettre A: nous avions commencé par prendre un nuage de points arbitraire duquel nous avions construit une filtration par la méthode du complexe de Rips :

Nous avions ensuite calculé le code barre de $H_*(A)$:

A partir de ces codes barres, nous pouvons aisément déduire les nombres de Betti persistants correspondants : il est déjà clair que $\beta_n^{*,*}=0$ sauf pour $n\in\{0,1\}$. Regardons maintenant pour chaque dimension:

- Pour n=0, on a déjà $\beta_0^{0,0}=\dim H_0(A^0)=6$ et $\beta_0^{1,1}=\beta_0^{2,2}=1$. Ensuite, la barre qui persiste tout au long de la filtration nous donne que $\beta_0^{0,1}=\beta_0^{0,2}=\beta_0^{1,2}=1$. Pour n=1, on a clairement $\beta_1^{0,0}=\beta_1^{0,1}=0$ et $\beta_1^{1,1}=1$, puis comme tous les 1-cycles sont tous des 2-bords au temps 2, on a $Z_1(K^2)=B_2(K^2)$ et donc $\beta_1^{2,2}=0$. La seule barre du code de $H_1(A)$ nous indique une classe qui nait au temps 1 et meurt immédiatement au temps 2, donc $\beta_1^{1,2} = 0$. En résumer, on obtient

$$\beta_n^{i,j} = \begin{cases} 6 \text{ si } (i,j) = (0,0) \text{ et } n = 0\\ 1 \text{ si } (i,j) = (0,1); (0,2); (1,2); (1,1); (2,2) \text{ et } n = 0\\ 1 \text{ si } (i,j) = (1,1) \text{ et } n = 1\\ 0 \text{ sinon} \end{cases}$$

Nous allons maintenant appliquer la formule du corollaire 3.4 dans le but de retrouver la suite spectrale $(E_{**}^r, d_r)_{r=1,2,...}$ correspondante. Il faut néanmoins faire attention : tout comme les nombres de Betti persistants ne déterminent pas entièrement l'homologie persistante (il y a des homomorphismes), les dimensions des modules $E_r^{*,*}$ à elles-seules ne suffisent pas à déterminer la suite spectrale : il y a des différentielles. Cependant dans notre cas, comme nous n'avons que très peu de nombres de Betti non nuls, on pourra en fait "deviner" où se situent les différentielles et les comprendre pour chaque page. Rappelons la formule : pour $r \ge 1$ et n = p + q, on a

$$\dim_k E^r_{p,q} = \left(\beta_n^{p,p+r-1} - \beta_n^{p-1,p+r-1}\right) + \left(\beta_{n-1}^{p-r,p-1} - \beta_{n-1}^{p-r,p}\right)$$

Calculons la première page de notre suite spectrale (pour r=1):

• Pour n = 0: on a $\beta_{-1}^{*,*} = 0$ et le couple (p,q) = (0,0) donne dim $E_{0,0}^1 = \beta_0^{0,0} = 6$. Ensuite, on a

$$\dim E^1_{1,-1} = \beta_0^{1,1} - \beta_0^{0,1} = 1 - 1 = 0 = \dim E^1_{2,-1} = \beta_0^{2,2} - \beta_0^{1,2}.$$

Pour $p \ge 3$, on a toujours dim $E^1_{p,-p} = \beta_0^{p,p} - \beta_0^{p-1,-p} = 0$, et par ailleurs on a toujours dim $E^r_{p,q} = 0$ pour $p \le -1$. On n'a donc qu'un seul terme non nul pour n = 0.

• Pour n = 1: on calcule

$$\begin{array}{rcl} \dim E^1_{1,0} & = & \beta^{1,1}_1 - \beta^{0,1}_1 + \beta^{0,0}_0 - \beta^{0,1}_0 = 1 - 0 + 6 - 1 = 6 \\ \dim E^1_{0,1} & = & \beta^{0,1}_1 = 0 \\ \dim E^1_{2,-1} & = & \beta^{2,2}_1 - \beta^{1,2}_1 + \beta^{1,1}_0 - \beta^{1,2}_0 = 0 - 0 + 1 - 1 = 0 \\ \dim E^1_{3,-2} & = & \beta^{2,2}_0 = 1 \end{array}$$

et dim $E_{p,q}^1 = 0$ pour $p \ge 4$ et $p \le -1$.

• Pour n=2, comme $\beta_2^{*,*}=0$ et $\beta_1^{i,j}=0$ sauf pour (i,j)=(1,1), le seul terme non nul est donné par le couple (p,q)=(2,0) avec

$$\dim E^1_{2,0} = \beta_2^{2,2} - \beta_2^{1,2} + \beta_1^{1,1} - \beta_1^{1,2} = 0 - 0 + 1 - 0 = 1.$$

• Pour $n \ge 3$, comme $\beta_2^{*,*} = \beta_3^{*,*} = 0$, tous les nombres de Betti persistants dans la formule sont nuls, et donc tous les termes de la suite spectrale le sont également.

De ces calculs, on peut déduire plusieurs choses : la première page de notre suite spectrale n'a de termes non nuls que sur la partie inférieure droite du repère (c'est une suite spectrale homologique du deuxième quadrant), et elle possède quatre termes non triviaux : $E_1^{0,0}$, $E_1^{1,0}$, $E_1^{2,0}$ et $E_1^{3,-2}$. On peut déjà représenter ceci :

Page E^1 associée à la lettre A

Comme on l'a souligné plus haut, les nombres de Betti persistants permettent de connaître les dimensions des espaces vectoriels qui composent une page, mais ne donnent aucune informations sur ses différentielles. Dans notre cas, on peut voir sur le graphique qu'il y a potentiellement deux différentielles non nulles (représentées en pointillés) : $d_{1,0}^1$ et $d_{2,0}^1$, de bidegrés (-1,0). Pour comprendre ces deux applications, on peut, toujours en utilisant le corollaire 3.4, calculer la deuxième page de cette suite spectrale.

Puisqu'on a que quatre termes non nuls sur la première page, on n'a plus qu'un petit nombre de calculs à faire. On peut déjà vérifier que le terme en position (3,-2) avec n=1 survit bien à la page 2 (il n'est a priori pas touché par les différentielles) :

$$\dim E_{3,-2}^2 = \beta_0^{1,2} = 1.$$

Ensuite, on a pour n = 0 et (p, q) = (0, 0),

$$\dim E_{0,0}^2 = \beta_0^{0,1} = 1$$

et pour n=1,

$$\begin{array}{rcl} \dim E^2_{1,0} & = & \beta_1^{1,2} - \beta_1^{0,2} = 0 \\ \dim E^2_{2,0} & = & \beta_0^{0,1} - \beta_0^{0,2} = 1 - 1 = 0 \end{array}$$

donc finalement on n'a plus que deux termes non nuls et on peut représenter la deuxième page :

	0	1	2	3	4
0	$oxed{k}$		0	0	0
-1	0	0	0	0	0
-2	0	0	0	$oxed{k}$	0
-3	0	0	0	0	0

Page E^2 associée à la lettre A

On peut en particulier comprendre les différentielles de la page 1, puisqu'on a

d'où ker $d_{1,0}^1=\operatorname{im} d_{2,0}^1=k$, im $d_{1,0}^1=k^5$ et ker $d_{2,0}^1=0$. L'application $d_{2,0}^1$ est donc un isomorphisme sur son image, tandis que $d_{1,0}^1$ induit un isomorphisme $\bar{d}_{1,0}^1:k^5\to k^5$.

Remarquons que toutes les différentielles sur cette page sont nulles : on a donc $E_2 = E_3$. En revanche, pour r = 3 l'application $d_{3,-2}^3$ est de bidegré (-3,2), donc est potentiellement non nulle. Il faut donc encore répéter la formule pour r = 3 avec les couples (p,q) = (0,0) et (3,-2) afin de connaître cette différentielle. On obtient

$$\dim E^3_{0,0} = \beta_0^{0,2} = 1$$

$$\dim E^3_{3,-2} = \beta_0^{0,2} - \beta_0^{0,3} = 1$$

donc les termes en (0,0) et (3,-2) persistent et $d_{3,-2}$ est l'application nulle. Ainsi, la suite spectrale dégénère et la page infinie est donnée par :

	0	1	2	3	_4
0	$oxed{k}$			0	0
-1	0	0	0	0	0
-1 -2	0	0	0	$oxed{k}$	0
-3	0	0	0	0	0

Page $E^3 = E^{\infty}$ associée à la lettre A

On a ainsi calculer la suite spectrale associée au complexe simplicial construit à partir de la lettre digitale A.

Dans la partie 2.3.2, nous avions comparé les codes barres obtenus pour chacune des lettres A et R. On peut alors se demander comment comparer les suites spectrales correspondantes. Nous allons donc réutiliser la formule du corollaire 3.4 afin de construire la suite spectrale de la lettre R comme nous venons de le faire pour A.

Rappelons que la filtration de R était donnée (en quatre temps) par

Nous avions ensuite établi les codes barres suivants :

On en déduit les nombres de Betti persistants correspondants : on a déjà $\beta_n^{*,*} = 0$ si $n \neq 0$ ou $n \neq 1$, puis en lisant sur les codes barres et en imitant le travail fait avec la lettre A, on obtient aisément

$$\beta_0^{i,j} = \left\{ \begin{array}{l} 6 \text{ si } (p,q) = (0,0) \\ 4 \text{ si } (p,q) = (1,1) \text{ ou } (0,1) \\ 1 \text{ si } (p,q) = (2,2); (3,3); (0,2); (0,3); (1,2); (1,3); (2,3) \end{array} \right. ; \ \beta_1^{i,j} = \left\{ \begin{array}{l} 2 \text{ si } (p,q) = (2,2) \\ 0 \text{ sinon} \end{array} \right.$$

On peut maintenant calculer la suite spectrale. Commençons par r=1:

• Pour n=0, le seul couple qui donne une dimension non nulle est (p,q)=(0,0) avec

$$\dim E_{0,0}^1 = \beta_0^{0,0} = 6$$

• Pour n = 1, on a

$$\begin{array}{lll} \dim E^1_{1,0} & = & \beta^{1,1}_1 - \beta^{0,1}_1 + \beta^{0,0}_0 - \beta^{0,1}_0 = 6 - 4 = 2 \\ \dim E^1_{0,1} & = & \beta^{0,1}_1 = 0 \\ \dim E^1_{2,-1} & = & \beta^{2,2}_1 - \beta^{1,2}_1 + \beta^{1,1}_0 - \beta^{1,2}_0 = 2 + 4 - 1 = 5 \\ \dim E^1_{3,-2} & = & \beta^{3,3}_1 - \beta^{2,3}_1 + \beta^{2,2}_0 - \beta^{2,3}_0 = 1 - 1 = 0 \\ \dim E^1_{4,-3} & = & \beta^{3,3}_0 = 1 \end{array}$$

et on peut remarquer que pour $p \geq 5$ ou $p \leq -1$ la formule est triviale.

• Pour n=2, on n'a qu'un seul terme non nul donné par le couple (p,q)=(3,-1):

$$\dim E_{3,-1}^1 = \beta_1^{2,2} - \beta_1^{2,3} = 2.$$

• Pour $n \ge 3$ tous les termes de la formules sont triviaux.

On en déduit ainsi la première page de la suite spectrale associée à la lettre R, qui comme pour la lettre A est du deuxième quadrant avec potentiellement deux différentielles non nulles qui sont $d_{0,1}^1$ et $d_{3,-1}^1$.

	0	1	2	3	4	5
0	k^6 -	$-k^2$	0	0	0	0
-1	0	0	k^5	$-k^2$	0	0
-2	0	0	0	0	0	0
-3	0	0	0	0	$oxed{k}$	0
-4	0	0	0	0	0	0

Page E^1 associée à la lettre R

Il reste encore à comprendre ces différentielles. Pour cela, on va regarder la deuxième page de cette suite spectrale : là encore, comme on n'a que cinq termes non nuls sur la première page, on n'a que très peu de calculs à effectuer.

• Pour n = 0, on a

$$\dim E_{0,0}^2 = \beta_0^{0,1} = 4$$

$$\dim E_{1,-1}^2 = \beta_0^{1,2} - \beta_0^{0,2} = 1 - 1 = 0$$

• Pour n=1, on a

$$\begin{array}{rcl} \dim E_{1,0}^2 & = & \beta_1^{1,2} - \beta_1^{0,2} = 0 \\ \dim E_{2,-1}^2 & = & \beta_1^{2,3} - \beta_1^{1,3} + \beta_0^{0,1} - \beta_0^{0,2} = 4 - 1 = 3 \\ \dim E_{4,-3}^2 & = & \beta_0^{2,3} - \beta_0^{2,4} = 1 \end{array}$$

• Enfin pour n=2,

$$\dim E_{3,-1}^2 = \beta_1^{1,2} - \beta_0^{1,3} = 0$$

On déduit en particulier que

d'où im $d_{1,0}^1=\operatorname{im} d_{3,-1}^1=k^2$ et $\ker d_{1,0}^1=\ker d_{3,-1}^1=0,$ donc ces deux différentielles sont des isomortes de la company de l phismes sur leurs images respectives. On en déduit également la deuxième page de la suite spectrale associée à R:

Page E^2 associée à la lettre R

On remarque que, contrairement à la suite associée à A, on a encore une différentielle potentiellement non nulle. On doit donc encore appliquer la formule pour r=3:

• Pour n=0, on a dim $E_{0,0}^3=\beta_0^{0,2}=1$.

• Pour n=1, on a dim $E_{2,-1}^3=0$.

• Pour n=2, on a dim $E_{4,-3}^{3}=\beta_{0}^{1,3}=1$. Ainsi, le terme en position (4,-3) survit encore (n'étant pas touché par la différentielle), et on en déduit aussi que

$$\ker d_{2,1}^2 = \{0\} \text{ et } \operatorname{im} d_{2,1}^2 = k^3$$

donc la différentielle $d_{2,1}^2$ réalise aussi un isomorphisme sur son image. La troisième page ne possède plus que deux termes et aucune différentielle non nulle et est donnée par

	0	1	2	3	4	5
0		0	0	0	0	0
-1	0	0	0	0	0	0
-2	0	0	0	0	0	0
-3	0	0	0	0	$\lfloor k \rfloor$	0
-4	0	0	0	0	0	0

Page E^3 associée à la lettre R

Cependant, le même phénomène que pour la suite spectrale associée à A apparait : au rang suivant, le terme en position (0,0) et le terme isolé ici en (4,-3) sont reliés par la différentielle $d_{4,-3}^4$ de bidegré (-4,3). On va donc comme pour A appliquer le corollaire 3.4 aux deux termes restants :

• Pour n=0, on a dim $E_{0,0}^4=\beta_0^{0,3}=1$ • Pour n=1, on a dim $E_{4,-3}^4=\beta_0^{0,3}-\beta_0^{0,4}=1$ Comme pour la suite associée à A, on constate que la différentielle $d_{4,-3}^4$ est en fait l'application nulle,

donc les termes $E_{0,0}^4$ et $E_{4,-3}^4$ survivent toujours et la page infinie est finalement donnée par

_	0	1	2	3	4	_5
0	$\begin{bmatrix} k \\ 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}$	0	0	0	0	0
-1	0	0	0	0	0	0
-2	0	0	0	0	0	0
-3	0	0	0	0	$\lfloor k \rfloor$	0
-4	0	0	0	0	0	0

Page $E^4 = E^{\infty}$ associée à la lettre R

On a ainsi calculé les suites spectrales associées aux lettres A et R. On a pu constater quelques similarités dans la construction : pour commencer les deux suites obtenues sont du deuxième quadrant. La suite spectrale associée à A dégénère à la deuxième page, ce qui peut correspondre aux trois temps de filtrations (en comptant la page 0 de la suite), et de même pour celle associée à R qui dégénère à la troisième page avec une filtration à quatre temps. Ensuite, dans les deux cas nous avions deux différentielles non nulles sur la première page, puis une différentielle qui s'est avérée être l'application nulle sur la page limite (avec une différentielle non nulle en plus pour la suite associée à R). On remarque aussi que, sur chaque suite, on a un terme en (0,0) qui persiste à l'infini (qui correspond en fait aux nombres de composantes connexes à la fin de la filtration) ainsi qu'un terme isolé dans le deuxième quadrant qui survit également (en (3,-2) pour A et (4,-3) pour R). Le terme en position (0,0) correspond en fait au nombre de barres en degré 0 au fur et à mesure qu'on avance dans la suite et dans la filtration (k^6 pour six barres puis k pour une barre pour A, et de même k^6 puis k^4 puis k pour R). On observe donc des ressemblances sur les suites spectrales obtenues ainsi qu'entre les suites et les codes barres, mais on retrouve tout de même des différences par exemple sur le nombre de différentielles non nulles qui peuvent rappeler le nombre de segments différents sur les codes barres.

Références

- [BP18] Saugata Basu and Laxmi Parida. Spectral sequences, exact couples and persistent homology of filtrations. *Expositiones Mathematicae*, 2018.
- [EH09] Herbert Edelsbrunner and John L. Harer. Computational Topology: An Introduction. American Mathematical Society, 2009.
- [Ghr07] Robert Ghrist. Barcodes: The persistent topology of data. Bulletin of the American Mathematical Society, 2007.
- [McC00] John McCleary. A User's guide to spectral sequences. Cambridge University Press, 2000.
- [Wei94] Charles A. Weibel. An introduction to homological algebra. Cambridge University Press, 1994.
- [ZC05] Afra Zomorodian and Gunnar Carlsson. Computing persistent homology. *Discrete and Computational Geometry*, 2005.