The Spectrum of Mutation Effects

Visual Guide to Mutation Classification

Neutral

Mutation Effects Continuum Deleterious

Advantageous

Neutral Mutations

No effect on organismal fitness. Most common type of mutation.

Examples: Synonymous substitutions, mutations in non-coding regions, changes that don't affect protein function

Deleterious Mutations

Reduce organismal fitness. Subject to negative selection.

Examples: Nonsense mutations, frameshifts, mutations causing genetic disorders, loss-of-function mutations

Advantageous Mutations

Increase organismal fitness. Basis of evolutionary adaptation.

Examples: Antibiotic resistance in bacteria, lactase persistence in humans, pesticide resistance in insects

Mutation Rate

 10^{-8} to 10^{-11} per base pair per generation

Evolutionary Impact

Raw material for natural selection

Frequency Distribution

Most mutations are neutral or slightly deleterious

Selection Pressure

Removes deleterious, preserves advantageous mutations

Mutation Statistics

Neutral Mutations:	~70%
Deleterious Mutations:	~28%
Advantageous Mutations:	~2%
Human Genome Mutations/Generation:	~70
Typical Mutation Rate (μ):	10 ⁻⁵ to 10 ⁻⁶ per locus

Fitness Consequences

		~
Neutral	Deleterious	Advantageous
w = 1.0	w < 1.0	w > 1.0
No selection	Negative selection	Positive selection

Key Evolutionary Concepts

Neutral mutations accumulate at a constant rate, used for dating evolutionary events

Mutation-Selection Balance

Equilibrium between new deleterious mutations and their removal by selection

III Genetic Load

Reduction in population fitness due to deleterious mutations

BGEN 55 - Advanced Genetics II The Spectrum of Mutation Effects				
Developed by CAE Cadorna © 2025				