Higher order derivatives and applications

Classwork Examples

1.1	Lagrange's Mean Value Theorem
1	Check whether the Mean Value Theorem can be applied to the function
	$2x^2 + 7x + 10$ on the closed interval [2, 5]. If so, find a value of c which satisfies the
	Mean value theorem in (2,5). C.W.
	Answer: $\frac{7}{2}$.
2	Check whether the Mean Value Theorem can be applied to the function
	$4t^3 - 8t^2 + 7t - 2$ on the closed interval [0, 5]. If so, find a value of c which satisfies
	the Mean value theorem in (0, 5). H.W.
	Answer: 3.
3	Check whether the Mean Value Theorem can be applied to the function $f(x) = \log x$
	on the closed interval $[1, e]$. If so, find a value of c which satisfies the Mean value
	theorem in $(1, e)$. H.W.
	Answer: $e-1$.
4	Using Mean Value Theorem for the function $f(x) = \tan^{-1} x, x \in R$,
	prove that $\frac{x}{1+x^2} < \tan^{-1} x < x$. C.W.
	$1+x^2$
5	Check whether the Mean Value Theorem can be applied to the function $f(x) = \sin x$
	on the closed interval $\left[0, \frac{\pi}{2}\right]$. If so, find a value of c which satisfies the Mean value
	theorem in $\left(0, \frac{\pi}{2}\right)$. H.W.
	Answer: $cos^{-1}\left(\frac{2}{\pi}\right)$.
6	Check whether the Mean Value Theorem can be applied to the function

		$f(x) = \frac{6}{x} - 3$ on the closed interval [-1,2]. If so, find a value of c which satisfies the
		Mean value theorem in $(-1,2)$. C.W.
		Answer: Mean Value Theorem does not apply.
	7	A truck travels on a toll road with a speed limit of $80 km/hr$. The truck completes a
		164 km journey in 2 hours. At the end of the toll road the trucker is issued with a
		speed violation notice. Justify this using the Mean Value Theorem. C.W.
	8	A thermometer was taken from a freezer and placed in a boiling water. It took
		22 seconds for the thermometer to raise from -10° C to 100° C. Show that the rate of
		change of temperature at some time t is $5^{\circ}C$ per second. H.W.
1		

1.1 Local Maxima and Minima of function of one variable

1	Show that the function $y = x^x$ is minimum at $x = e^{-1}$. C.W.
2	Show that the function $y = sinx (1 + cosx)$ is maximum when $x = \frac{\pi}{3}$. C.W.
3	Investigate for maxima and minima of the function given by $f(x) = \frac{\log x}{x} \operatorname{in}(0, \infty)$.
	H.W.
	Answer: $\frac{1}{e}$.
4	Find the extreme values of the function $f(x) = 2x^3 - 9x^2 + 12x + 1$. H.W.
	Answer: 6 and 5.
5	The reaction of the body to a doze of medicine can sometimes be represented by an
	equation of the form $R = M^2 \left(\frac{C}{2} - \frac{M}{3}\right)$ where C is a positive constant and M is the
	amount of medicine absorbed in the blood and R is the amount of reaction (either blood
	pressure or temperature in their respective units). Determine the amount of the
	medicine to which the body is most sensitive (rate of change in R with respect to M).
	C.W.
	Answer: $M = \frac{c}{2}$

- 6 P is the perimeter of a rectangle, show that its area is maximum when it is a square.

 C.W.
- A steel plant is capable of producing x tonnes per day of a low-grade steel and y tonnes per day of a high-grade steel, where $y = \frac{40-5x}{10-x}$. If the fixed market price of low-grade steel is half that of high-grade steel, then what should be optimal productions in low-grade steel and high-grade steel in order to have maximum receipts. **H.W.**

Answer: $x = 10 - 2\sqrt{5}$, $y = 5 - \sqrt{5}$.

- **1.2** Successive differentiation: nth derivative of elementary functions: rational, logarithmic, trigonometric, exponential and hyperbolic
- Find the nth order derivative of the function $y = e^{2x+4} + 6^{2x+4}$. C.W.

Answer: $y_n = 2^n [e^{2x+4} + (\log 6)^n 6^{2x+4}].$

Find the nth order derivative of the function $y = \log[(4x + 3) \cdot e^{6x+7}]$. C.W.

Answer: $y_n = \frac{(-1)^{n-1}(n-1)!4^n}{(4x+3)^n}$.

Find the nth order derivative of the function $y = \frac{x}{2x+5}$. C.W.

Answer: $y_n = \frac{(-5)(-1)^n n! 2^n}{2(2x+5)^{n+1}}$

Show that the nth order derivative of the function $y = \frac{x}{(x-1)(2x+3)}$ is

 $y_n = \frac{(-1)^n n!}{5} \left[\frac{1}{(x-1)^{n+1}} + \frac{3(2)^n}{(2x+3)^{n+1}} \right]$. C.W.

Find the nth order derivative of the function $y = \frac{x^{n}-1}{x-1}$. C.W.

Answer: $y_n = 0$.

6 Find the nth order derivative of the function $y = e^x \sin x \cos 2x$. C.W.

Answer: $y_n = \frac{1}{2} \left[10^{\frac{n}{2}} e^x sin(3x + ntan^{-1}3) - 2^{\frac{n}{2}} e^x sin(x + ntan^{-1}1) \right].$

7 Find the nth order derivative of the function $y = \sin 2x \cos 2x$. **H.W.**

Answer: $y_n = \frac{4^n}{2} sin\left(4x + \frac{n\pi}{2}\right)$.

Find the nth order derivative of the function $y = \frac{2}{(x-1)(x-2)}$. **H.W.**

Answer:
$$y_n = 2(-1)^n n! \left[\frac{1}{(x-2)^{n+1}} - \frac{1}{(x-1)^{n+1}} \right].$$

1.3 Leibnitz rule for the nth order derivatives of product of two functions

1 Find the nth order derivative of
$$y = x^3 \cdot \log(2x + 1)$$
. C.W.

2 Find the nth derivative of the function
$$y = x^3 e^{3x}$$
. **H.W.**

Answer:
$$y_n = x^3 3^n e^{3x} + 3nx^2 3^{n-1} e^{3x} + 3n(n-1)x 3^{n-1} e^{3x} + n(n-1)(n-2)3^{n-2} e^{3x}$$
.

3 If
$$y = tan^{-1}x$$
, prove that $(1 + x^2)y_{n+1} + 2nxy_n + n(n-1)y_{n-1} = 0$. C.W.

4 If
$$y = \sin \log(x^2 + 2x + 1)$$
, show that
$$(x+1)^2 y_{n+2} + (2n+1)(x+1)y_{n+1} + (n^2+4)y_n = 0. \text{ C.W.}$$

If
$$y = \sqrt{\frac{1+x}{1-x}}$$
, show that

$$(1-x^2)y_n - [2(n-1)x+1]y_{n-1} - (n-1)(n-2)y_{n-2} = 0.$$
 C.W.

6 If
$$y = (\sin^{-1}x)^2$$
, show that $(1 - x^2)y_{n+2} - (2n+1)xy_{n+1} - n^2y_n = 0$. C.W.

7 If
$$y = (cos^{-1}x)^2$$
, show that $(1 - x^2)y_{n+2} - (2n+1)xy_{n+1} - n^2y_n = 0$. **H.W.**

8 If
$$y^{\frac{1}{m}} + y^{-\frac{1}{m}} = 2x$$
, prove that $(x^2 - 1)y_{n+2} + (2n+1)xy_{n+1} + (n^2 - m^2)y_n = 0$.

1.4 Power series expansion of a function: Maclaurin's and Taylor's series expansion.

Use Taylor's series to find the expansion of $\log_e x$ in powers of (x-1). Find the value of $\log 1.1$. **C.W.**

Answer:
$$\log_e x = (x-1) - \frac{(x-1)^2}{2} + \frac{(x-1)^3}{3} - \frac{(x-1)^4}{4} + \dots, \log_e 1.1 \approx 0.09531$$

2 Expand $\tan^{-1} x$ in powers of $x - \frac{\pi}{4}$. **H.W.**

Answer: $\tan^{-1} x = \tan^{-1} \frac{\pi}{4} + \frac{x - \frac{\pi}{4}}{1 + \frac{\pi^2}{16}} - \frac{\pi}{4} \cdot \frac{\left(x - \frac{\pi}{4}\right)^2}{\left(1 + \frac{\pi^2}{16}\right)^2} + \cdots$
--

Expand $\log \tan \left(\frac{\pi}{4} + x\right)$ in powers of x using the Taylor's series. **C.W.**

Answer: $\log \tan \left(\frac{\pi}{4} + x\right) = 2x + \frac{4}{3}x^3 + \cdots$

Find Maclaurin's series expansion of (i) e^x C. W., (ii) $\sin x$ C. W., (iii) $\cos x$ H. W.,

 $(iv) \log(1+x) \text{ H. W.}, (v) \sinh x \text{ C. W.}, (vi) \cosh x \text{ H. W.}, (vii) \frac{1}{1-x} \text{ C. W.}$

Obtain the Maclaurin's series of $e^{a \sin^{-1} x}$. C.W.

Answer: $e^{a \sin^{-1} x} = 1 + ax + \frac{a^2}{2!}x^2 + \frac{a(1^2 + a^2)}{3!}x^3 + \frac{a^2(2^2 + a^2)}{4!}x^4 + \cdots$

Obtain the Maclaurin's series of $\frac{\sin^{-1} x}{\sqrt{1-x^2}}$. C.W.

Answer: $\frac{\sin^{-1} x}{\sqrt{1-x^2}} = x + \frac{2}{3}x^3 + \frac{8}{15}x^5 + \dots$

7 Obtain the Maclaurin's series of *sinx* and using it show that *sinx* is an odd function.

C.W.

8 Obtain the Maclaurin's series of $\log \sec x$. **H.W.**

Answer: $\log \sec x = \frac{x^2}{2} + \frac{x^4}{12} + \cdots$

1.5 L'Hospital's rule and related applications, Indeterminate forms

1 Evaluate $\lim_{x\to 0} \frac{e^{x} + e^{-x} - x^{2} - 2}{\sin^{2}x - x^{2}}$. C.W.

Answer: $-\frac{1}{4}$.

If $\lim_{x\to 0} \frac{ae^x - b\cos x + ce^{-x}}{x\sin x} = 2$, find the values of a, b, c. C.W.

Answer: a = 1, b = 2, c = 1.

Evaluate $\lim_{x\to\infty} \frac{x(\log x)^3}{1+x+x^2}$. C.W.

Answer: 0.

4	Evaluate $\lim_{x\to 0} \frac{\log(\sin x)}{\log(\tan x)}$. H.W.
	Answer: 1.
5	Evaluate $\lim_{x \to \frac{\pi}{2}} \frac{\log \sin x}{(\pi - 2x)^2}$. H.W.
	Answer: $-\frac{1}{8}$
6	Evaluate $\lim_{x\to\infty} \frac{x^n}{e^x}$. H.W.
	Answer: 0.
7	Evaluate $\lim_{x \to \frac{\pi^{-1}}{2}} cosx \cdot \log tanx$. $(0 \cdot \infty)$ C.W.
	Answer: 0.
8	Evaluate $\lim_{x\to 1} \left[\frac{1}{\log x} - \frac{x}{x-1} \right] \cdot (\infty - \infty)$ C.W.
	Answer: $-\frac{1}{2}$.
9	Evaluate $\lim_{x \to \frac{\pi}{2}^{-1}} (\cos x)^{\frac{\pi}{2} - x}$. (0°) C.W.
	Answer: 1.
10	Evaluate $\lim_{x\to 0} \left(\frac{a^x + b^x + c^x}{3}\right)^{\frac{1}{x}}$. (1^{∞}) C.W.
	Answer: $(abc)^{\frac{1}{3}}$.
11	Prove that $\lim_{x\to 1} (1 + \sec \pi x) \tan \frac{\pi x}{2} = 0$. H.W.
12	Evaluate $\lim_{x\to 0^+} \left(\frac{1}{x}\right)^{1-\cos x}$. C.W.
	Answer: 1.