Extending Bayesian analysis of circular data for comparison of multiple groups

Kees Mulder

Utrecht University

k.t.mulder@uu.nl

September 19, 2014

What is circular data?

Can we analyze it?

Three available methods
What's missing?

von Mises distribution
Three algorithms

Conclusion

What is circular data?

Can we analyze it?

Difference with linear
Three available methods
What's missing?

von Mises distribution

Results

Conclusion

What is circular data?

Can we analyze it?

Three available method What's missing?

von Mises distribution
Three algorithms
Results

Managers	46°	92°	102°	122°
Teachers	80°	47°	5°	355°

What is circular data?

Can we analyze it?

Difference with linear Three available methods What's missing?

Contributions
von Mises distribution
Three algorithms
Results

Managers 46° 92° 102° 122° Teachers 80° 47° 5° 355°

What is circular data?

Can we analyze it?

Difference with linear Three available method What's missing?

von Mises distribution
Three algorithms
Results

Managers 46° 92° 102° 122° Teachers 80° 47° 5° 355°

What is circular data?

Can we analyze

Difference with linear
Three available methods
What's missing?

von Mises distribution
Three algorithms
Results

Managers	46°	92°	102°	122°
Teachers	80°	4 7 °	5°	355°

What is circular data?

Can we analyze it?

Three available methods What's missing?

von Mises distribution
Three algorithms
Results

Managers 46° 92° 102° 122° Teachers 80° 47° 5° 355°

What is circular data?

Can we analyze it?

Difference with linear Three available methods What's missing?

von Mises distribution
Three algorithms
Results

Mean direction = 91.262 degrees

Teachers O degrees

Mean direction = 31.072 degrees

What is circular

Can we analyze

Difference with linear

Three available methods What's missing?

Contributions

von Mises distribution Three algorithms Results

What is circular data?

Can we analyze

Difference with linear

What's missing?

von Mises distribution
Three algorithms
Results

▶ Teacher with score 5°

What is circular

Can we analyze it?

Difference with linear

Three available method What's missing?

von Mises distribution
Three algorithms
Results

Conclusion

Mean direction = 91.262 degrees

Mean direction = 31.072 degrees

- Teacher with score 5°
- ► Teacher with score 355°

What is circular

Can we analyze it?

Difference with linear

Three available method What's missing?

von Mises distribution
Three algorithms
Results

- ▶ Teacher with score 5°
- Teacher with score 355°
- ▶ Linear methods: difference of 350°

What is circular

Can we analyze it?

Difference with linear Three available method:

Contributions
von Mises distribution
Three algorithms

Conclusion

Conclusion

Mean direction = 91.262 degrees

Mean direction = 31.072 degrees

- Teacher with score 5°
- Teacher with score 355°
- Linear methods: difference of 350°
- Difference is really only 10°

What is circular

Can we analyze it?

Difference with linear

Three available method What's missing?

von Mises distribution Three algorithms Results

Mean direction = 91.262 degrees

Mean direction = 31.072 degrees

- Teacher with score 5°
- Teacher with score 355°
- Linear methods: difference of 350°
- Difference is really only 10°
- Linear methods can not be used

What is circular data?

Can we analyze it?

Difference with linear

Three available method: What's missing?

von Mises distribution
Three algorithms
Results

Conclusion

What is circular data?

it?

Difference with linear
Three available methods

What's missing?

von Mises distribution
Three algorithms
Results

Conclusion

► Inherently difficult to analyse

- it?
- Difference with linear
- Three available method What's missing?
- von Mises distribution
 Three algorithms
 - Conclusion

- Inherently difficult to analyse
- ▶ Bayesian methods may prove useful → flexible

data?

Can we analyze it?

Difference with linear

Three available method What's missing?

von Mises distribution Three algorithms

- Inherently difficult to analyse
- lacktriangle Bayesian methods may prove useful ightarrow flexible
- ► Three approaches are used

Define distributions on the circle

What is circular

Can we analyze it?

Difference with linea

Three available methods What's missing?

Contribution

von Mises distribution
Three algorithms
Results

- Define distributions on the circle
- ▶ Sample space: S¹

What is circular data?

Can we analyze it?

Difference with linear

Three available methods What's missing?

Contributions
von Mises distributio

Results

Define distributions on the circle

▶ Sample space: S¹

What is circular

Can we analyze it?

Difference with linear

Three available methods What's missing?

Contribution

Three algorithms
Results

- Define distributions on the circle
- ▶ Sample space: S¹

Example: von Mises distribution

What is circular

it?

Difference with linear

Three available methods What's missing?

Contributions
von Mises distribution

Three algorithms
Results

- Define distributions on the circle
- ► Sample space: S¹

Example: von Mises distribution

$$\mathsf{VM}(heta|\mu,\kappa) = rac{\mathsf{exp}\{\kappa \cos(heta-\mu)\}}{2\pi I_0(\kappa)}, 0 \leq heta < 2\pi, \kappa \geq 0$$

What is circular data?

Can we analyze it?

Three available methods

Contributions

von Mises distribution Three algorithms Results

Conclusion

- Define distributions on the circle
- ▶ Sample space: S¹

Example: von Mises distribution

$$\mathsf{VM}(heta|\mu,\kappa) = rac{\mathsf{exp}\{\kappa \cos(heta-\mu)\}}{2\pi \mathit{I}_0(\kappa)}, 0 \leq heta < 2\pi, \kappa \geq 0$$

Pro Straightforward

What is circular

Can we analyze it?

Three available methods

Contributions

von Mises distribution Three algorithms Results

Conclusion

- Define distributions on the circle
- ▶ Sample space: S¹

Example: von Mises distribution

$$\mathsf{VM}(heta|\mu,\kappa) = rac{\mathsf{exp}\{\kappa \cos(heta-\mu)\}}{2\pi I_0(\kappa)}, 0 \leq heta < 2\pi, \kappa \geq 0$$

Pro Straightforward
Con Bessel function

What is circular data?

Can we analyze it?

Three available methods

Contributions
von Mises distribution
Three algorithms

Conclusion

- 'Wrap' distribution on the real line to the circle
- ▶ Map: $\mathbb{S}^1 \to \mathbb{R}^1$

What is circular

Can we analyze it?

Difference with linear

Three available methods What's missing?

von Mises distribution
Three algorithms
Results

- 'Wrap' distribution on the real line to the circle
- ▶ Map: $\mathbb{S}^1 \to \mathbb{R}^1$

What is circular

Can we analyze it?

Difference with linear

Three available methods What's missing?

von Mises distribution
Three algorithms

- 'Wrap' distribution on the real line to the circle
- ▶ Map: $\mathbb{S}^1 \to \mathbb{R}^1$

What is circular

Can we analyze it?

Difference with linear

Three available methods What's missing?

Contributions
von Mises distribution

Conclusion

- 'Wrap' distribution on the real line to the circle
- ▶ Map: $\mathbb{S}^1 \to \mathbb{R}^1$

What is circular

Can we analyze it?

Difference with linear

Three available methods What's missing?

von Mises distribution
Three algorithms

Conclusion

Results

- 'Wrap' distribution on the real line to the circle
- ▶ Map: $\mathbb{S}^1 \to \mathbb{R}^1$

Pro May use linear methods

What is circular

it?

Difference with linear

Three available methods What's missing?

von Mises distribution
Three algorithms

- 'Wrap' distribution on the real line to the circle
- ▶ Map: $\mathbb{S}^1 \to \mathbb{R}^1$

Pro May use linear methods
Con Wrapping process

What is circular

Can we analyze it?

Difference with linear

Three available methods What's missing?

von Mises distribution
Three algorithms

- 'Project' distribution in two-dimensional space to the circle
- Map: $\mathbb{S}^1 \to \mathbb{R}^2$

What is circular

Can we analyze it?

Difference with lines

Three available methods What's missing?

Contributions
von Mises distributio

0 1 .

- 'Project' distribution in two-dimensional space to the circle
- Map: $\mathbb{S}^1 \to \mathbb{R}^2$

What is circular

Can we analyze it?

Difference with linear

Three available methods What's missing?

von Mises distribution
Three algorithms

- 'Project' distribution in two-dimensional space to the circle
- Map: $\mathbb{S}^1 \to \mathbb{R}^2$

What is circular

Can we analyze it?

Difference with linear

Three available methods What's missing?

Contributions
von Mises distribution

Three algorithms Results

- 'Project' distribution in two-dimensional space to the circle
- Map: $\mathbb{S}^1 \to \mathbb{R}^2$

What is circular

Can we analyze it?

Difference with linea

Three available methods What's missing?

Contributions
von Mises distribution

Results

- 'Project' distribution in two-dimensional space to the circle
- ▶ Map: $\mathbb{S}^1 \to \mathbb{R}^2$

Pro May use bivariate linear methods

What is circular

Can we analyze it?

ifference with linear

Three available methods What's missing?

Contributions
von Mises distribution

Results

Embedding Approach

- 'Project' distribution in two-dimensional space to the circle
- ▶ Map: $\mathbb{S}^1 \to \mathbb{R}^2$

Pro May use bivariate linear methods Con Complex, heteroscedasticity What is circular

Can we analyze it?

ifference with linear

Three available methods What's missing?

von Mises distribution
Three algorithms
Results

Which approach?

- Wrapping, embedding: practical solutions
- Intrinsic: most natural, direct

What is circular data?

it?

Difference with line

Three available methods
What's missing?

Contributions

von Mises distribution Three algorithms

Intrinsic approach: what's missing?

Methods analyze a single group of data

What is circular

Can we analyze it?

Three available method What's missing?

von Mises distribution
Three algorithms
Results

Conclusion

Universiteit Utrecht

Intrinsic approach: what's missing?

- Methods analyze a single group of data
- We need multiple groups

What is circular data?

Can we analyze it?

Three available method: What's missing?

von Mises distribution
Three algorithms

Intrinsic approach: what's missing?

- Methods analyze a single group of data
- ▶ We need multiple groups with common variance

What is circular

Can we analyze it?

Three available method What's missing?

von Mises distribution
Three algorithms
Results

Conclusion

Universiteit Utrecht

Previous methods

Method	Prior	Multiple groups
Gibbs sampler	✓	×
Rejection sampler	×	×

What is circular

Can we analyze it?

Difference with linear Three available methods What's missing?

Contributions

von Mises distribution Three algorithms Results

Extensions

Method	Prior	Multiple groups
Gibbs sampler	✓	✓
Rejection sampler	✓	✓
Metropolis-Hastings	✓	✓

What is circular

Can we analyze it?

Difference with linear Three available methods What's missing?

Contributions

von Mises distribution Three algorithms Results

Circular summary statistics

data?

Can we analyze it?

Three available method: What's missing?

Contributions

von Mises distribution

Results

- \blacktriangleright $\bar{\theta}$: Unbiased estimate of μ
- R: Resultant length

von Mises posterior

We can use a conjugate prior:

$$p(\mu, \kappa) \propto \frac{\exp\{R_0 \kappa \cos(\mu - \mu_0)\}}{I_0(\kappa)^c},$$

The posterior for multiple groups with a common $\boldsymbol{\kappa}$ is given by

$$f(\mu, \kappa | \theta) \propto \{I_0(\kappa)\}^{-m_l} \exp \left[\kappa \sum_{j=1}^J R_{nj} \cos(\mu_j - \mu_{nj})
ight],$$

where $\mu = (\mu_1, \dots, \mu_J)$ denotes the mean directions of the groups.

What is circular data?

Can we analyze it?

Three available methods What's missing?

Contributions

von Mises distribution

Results

Gibbs sampler

- Damien & Walker, 2000
- Add latent variables w, v, x, and $u = (u_1, u_2, ...)$ to the joint posterior density to obtain

$$\begin{split} f(\mu,\kappa,w,v,u,x|\theta) &\propto \\ e^{-R_n\kappa} I(v < e^{R_n\kappa\{1+\cos(\mu-\mu_n)\}}, x < w^{m-1}) \times \\ \left(e^{-w} \prod_{k=1}^{\infty} I(u_k < e^{-w\lambda_k \kappa^{2k}})\right), \end{split}$$

- Fairly complex, contains sampling within Gibbs-step, which needs tuning
- Computationally intensive
- ► High autocorrelations

What is circular

Can we analyze

Difference with linear Three available methods What's missing?

von Mises distribution
Three algorithms

MH sampler

- 1. Draw each μ_j from VM($\mu_j | \mu_{nj}, R_n \kappa_{cur}$).
- 2. Draw a candidate κ_{can} from $\chi^2(\kappa_{can}|\kappa_{cur})$.
- 3. Calculate the MH ratio as

$$a = \ln f(\kappa_{can}|\mu, \theta) + \ln \chi^{2}(\kappa_{cur}|\kappa_{can}) - \ln f(\kappa_{cur}|\mu, \theta) - \ln \chi^{2}(\kappa_{can}|\kappa_{cur}).$$

- 4. Draw a value u from U(0, 1).
- 5. If $a > \ln u$, set $\kappa_{cur} = \kappa_{can}$.
- 6. Repeat
 - Acceptance ratio mostly reasonable
 - Computationally fast in most cases
 - Some autocorrelation

What is circular data?

Can we analyze it?

Difference with linear Three available methods What's missing?

von Mises distribution
Three algorithms

Results

Rejection sampler

- Forbes & Mardia, early 2014
 - 1. Draw each μ_j from VM($\mu_j | \mu_{nj}, R_n \kappa_{cur}$).
 - 2. Calculate

$$\beta_t = -\frac{\sum_{j=1}^J R_{nj} \cos(\mu - \mu_{nj})}{m_t}.$$

- 3. Tweak parameters of a Gamma proposal for κ using β_t
- Draw values from Gamma proposal until accepted
- 5. Repeat
- Acceptance ratio great
- Computationally fast
- Low autocorrelation

What is circular data?

Can we analyze it?

Difference with linear Three available methods What's missing?

von Mises distribution
Three algorithms

Results

Simulation study

- Simulation study comparing the methods
- Vary single or multiple groups, and spread

What is circular data?

Can we analyze it?

Difference with linear
Three available method
What's missing?

Contributions
von Mises distribution

Results

Results

All methods: some upwards bias in κ .

Method	Performance	Ease of use
Gibbs sampler	Bad	Complex
Metropolis-Hastings Rejection sampler	Fairly good Good	Straightforward Complex

What is circular data?

Can we analyze it?

Difference with linear Three available methods What's missing?

Contributions
von Mises distribution

Results

.....

Conclusion

What's new?

We can now compare groups of circular data using Bayesian analysis

What's missing?

Conclusion

What's new?

- We can now compare groups of circular data using Bayesian analysis
- Differences between the methods have become clear

Conclusion

What's new?

- We can now compare groups of circular data using Bayesian analysis
- Differences between the methods have become clear

Up next: Extensions to more complex models

