Assignment1: Trapezoidal Rule using MPI

Objective

- Implement the trapezoidal rule using MPI to estimate the integral of given functions across multiple processes.
- Measure and analysis execution time using MPI Wtime () and perform scalability and precision tests.

Introduction

- 1. Base Code: You have been provided with a basic implementation of the trapezoidal rule using MPI for the function $f(x) = x^2$ over the interval [0, 1]. The code is similar to what was covered in class. You are expected to modify this code to complete the tasks outlined in this assignment.
- 2. MPI Timing: The code includes timing functionality using MPI_Wtime() to measure the execution time of the MPI program. Please note that the placement of MPI_Wtime() is crucial for accurate timing, and you should not change its location within the code.

Instructions

Part 1 - Serial vs Parallel Execution Time Comparison

- **Setup** For both functions
 - $f(x) = x^2$ over the interval [0, 2].
 - $f(x) = x^4 3x^2 + x + 4$ over the interval [0, 2].
- Task
 - Run the program with **4096 trapezoids** in two configurations:
 - 1. Serial execution.
 - 2. **Parallel execution** with **4 processes** using MPI.
 - Measure the execution time for both configurations using MPI Wtime () and compare the results.
- Deliverables
 - Report the estimated integral for both functions in serial and parallel execution.
 - o Include the **execution time** for each configuration.
 - Discuss the performance differences between the serial and parallel versions.

Part 2 - Scalability Test

- **Setup** Run the trapezoidal rule MPI program for both functions
 - o $f(x) = x^2$ over the interval [0, 2].
 - o $f(x) = x^4 3x^2 + x + 4$ over the interval [0, 2].
- Task
 - Increase the number of processes and trapezoids to observe how well your program scales.
- Test Scenarios
 - Use 1, 2, 4, and 8 processes.
 - o For each number of processes, test the trapezoidal rule with 256, 1024, 4096, and 16384 trapezoids.
 - Perform these tests for both $f(x) = x^2$ and $f(x) = x^4 3x^2 + x + 4$.
- Metrics

Measure the **speedup**: $Speedup = \frac{T_{serial}}{T_{parallel}}$

Measure the **efficiency**: $Efficiency = \frac{SpecialP}{Number of Processes}$

Deliverables

- Submit the measured **speedup** and **efficiency** for each function.
- Include a table and graph showing speedup and efficiency as a function of the number of processes and trapezoids for the functions: $f(x) = x^2$.
- Include a table and graph showing speedup and efficiency as a function of the number of processes and trapezoids for the functions: $f(x) = x^4 - 3x^2 + x + 4$.
- Discuss the performance of the results on both functions.
- Note Refer to Lecture 5: Performance Metrics for details on how to compute and analyze speedup and efficiency.
 - For example,

	p	1	2	4	8	16
Half	S	1.0	1.9	3.1	4.8	6.2
	E	1.0	0.95	0.78	0.60	0.39
Original	S	1.0	1.9	3.6	6.5	10.8
	E	1.0	0.95	0.90	0.81	0.68
Double	S	1.0	1.9	3.9	7.5	14.2
	\boldsymbol{E}	1.0	0.95	0.98	0.94	0.89

Part 3 - Precision Test

- **Setup** For both functions

 - $f(x) = x^2$ over the interval [0, 2]. $f(x) = x^4 3x^2 + x + 4$ over the interval [0, 2].
- Task
 - Run the program with 2 processes and increase the number of trapezoids: 10, 40, 160, and 640.
 - Compare the estimated integral with the **exact integral values**:

 - For $f(x) = x^2$, the exact value is $\frac{8}{3} \approx 2.6667$. For $f(x) = x^4 3x^2 + x + 4$, the exact value is $\frac{42}{5} = 8.4$.
- **Deliverables**
 - Submit a precision report comparing your estimated results with the exact values for both functions.
 - Discuss how the number of trapezoids affects precision for both functions.

Submission Deadline

23:59:59 - October 28, 2024.