Continuous Maths HT 2019: Problem Sheet 4

Advanced Root-Finding and Numerical Optimization

- **4.1** Suppose that $f: \mathbb{R} \to \mathbb{R}$ has three continuous derivatives, and a double root: $f(x^*) = \frac{\mathrm{d}f}{\mathrm{d}x}(x^*) = 0$ and $\frac{\mathrm{d}^2 f}{\mathrm{d}x^2}(x^*) \neq 0$. We can find it using the so-called relaxed Newton iteration $x_{n+1} = x_n \alpha \frac{f(x_n)}{\frac{\mathrm{d}f}{\mathrm{d}x}(x_n)}$, where α is a constant.
 - (a) Show that

$$\epsilon_{n+1} = \frac{\epsilon_n \frac{\mathrm{d}f}{\mathrm{d}x}(x_n) - \alpha f(x_n)}{\frac{\mathrm{d}f}{\mathrm{d}x}(x_n)}.$$

- (b) In the numerator use Taylor's theorem for $\frac{\mathrm{d}f}{\mathrm{d}x}(x_n)$, at x^* with second-order remainder term, and Taylor's theorem for $f(x_n)$, at x^* with third-order remainder term. In the denominator use Taylor's theorem for $\frac{\mathrm{d}f}{\mathrm{d}x}(x_n)$, at x^* with first-order remainder term. Show that for a certain choice of α , $|\epsilon_{n+1}| \leq A|\epsilon_n|^2$, for some A which is finite when x_n is sufficiently close to x^* .
- (c) Deduce that, if x_0 is close to x^* , the relaxed iteration converges quadratically.
- (d) Optional: what about a root of order m, where $\frac{d^n f}{dx^n}(x^*) = 0$ for n < m and $\frac{d^m f}{dx^m}(x^*) \neq 0$?
- **4.2** If $Y \sim \text{Geo}(p)$, i.e. $P[Y = k] = (1 p)^k p$ for $k \geq 0$, recall that the p.g.f. of Y is $G_Y(s) = \frac{p}{1 (1 p)s}$. If you do not recall this, quickly derive it for yourself.
 - (a) In a two-type branching process like **Example 5.7**, let Y_{AA} be the number of type-A offspring of an individual of type A, Y_{AB} the number of type-B offspring of an individual of type A, and so on. Suppose that

$$Y_{AA} \sim \text{Geo}(\frac{1}{2}), \quad Y_{AB} \sim \text{Geo}(\frac{1}{2}), \quad Y_{BA} \sim \text{Geo}(\frac{1}{3}), \quad Y_{BB} \sim \text{Geo}(\frac{2}{3}).$$

Show that the Jacobian for the root-finding problem in **Example 5.7**, which determines the probability of extinction after starting with one type-A individual, x, and after starting with one type-B individual, y, is

$$\begin{pmatrix} \frac{1}{(2-x)^2(2-y)} - 1 & \frac{1}{(2-x)(2-y)^2} \\ \frac{4}{(3-2x)^2(3-y)} & \frac{2}{(3-2x)(3-y)^2} - 1 \end{pmatrix}.$$

- (b) Write a program to implement Newton's method in two dimensions, and use it to find the extinction probabilities for this two-type branching process. If you wish, explore how the parameters to the geometric distributions affect whether extinction is certain.
- **4.3** Prove the Sherman-Morrison formula: if **A** is an invertible $n \times n$ matrix, $\boldsymbol{u}, \boldsymbol{v} \in \mathbb{R}^n$, and $\mathbf{A} + \boldsymbol{u}\boldsymbol{v}^T$ is invertible, then

$$(\mathbf{A} + uv^T)^{-1} = \mathbf{A}^{-1} - \frac{\mathbf{A}^{-1}uv^T\mathbf{A}^{-1}}{1 + v^T\mathbf{A}^{-1}u}.$$

Hint: in your calculation, keep an eye open for scalars.

Use this in Broyden's method to find $\hat{\mathbf{J}}_{n}^{-1}$ in terms of $\hat{\mathbf{J}}_{n-1}^{-1}$, Δx , and Δy . Using big-O notation give the time complexity of an efficient implementation of the iterative step, in terms of the dimension d, explaining your answer.

- **4.4** Consider the following improvement to golden section search, called *successive parabolic interpolation*: given a bracket (a, b, c), find the quadratic function \hat{f} which interpolates (a, f(a)), (b, f(b)), (c, f(c)); set z to be the minimum of this parabola; if f(b) < f(z) the new bracket is (a, b, z), otherwise it is (b, z, c). Repeat until the bracket is small enough.
- Derive the details of this method. How many ways can you find in which it might fail?
- **4.5** Consider the problem of finding $\arg\min_{\boldsymbol{x}} f(\boldsymbol{x})$, where the Hessian of f is positive definite everywhere. Generally, gradient descent has linear convergence, and the ratio of successive errors depends on the *condition number* $\kappa(\mathbf{H}(f)) = \frac{\lambda_{\max}}{\lambda_{\min}}$ where λ_{\min} and λ_{\max} are the smallest and largest eigenvalues of $\mathbf{H}(f)$. Lower condition numbers give faster convergence.

Speed of convergence can often be improved by a linear change of variables: for a symmetric positive definite matrix \mathbf{M} , use gradient descent for $\min_{\boldsymbol{y}} f(\mathbf{M}\boldsymbol{y})$ to generate the sequence (y_0, y_1, \dots, y_n) , then recover $x_n = \mathbf{M}y_n$.

(a) Explain why $\frac{\mathrm{d}f(\mathbf{M}y)}{\mathrm{d}y}(y_n) = \mathbf{M}\frac{\mathrm{d}f}{\mathrm{d}x}(x_n)$, and show that x_n can be computed directly, without any need to find the sequence y_n , using the so-called *preconditioned* iteration

$$x_{n+1} = x_n - \alpha_n \mathbf{M}^2 \frac{\mathrm{d}f}{\mathrm{d}x}(x_n). \tag{*}$$

- (b) Find the Hessian of $f(\mathbf{M}y)$ at y_n in terms of $\mathbf{H}(f)(x_n)$.
- (c) Find a choice of **M** that leads to the lowest possible condition number for the first step of the iteration (*). Explain the connection with Newton's method.

Hint: Since $\mathbf{H}(f)(\mathbf{x_0})$ is positive definite, it can be written $\mathbf{Q}^{-1}\mathbf{\Delta}^2\mathbf{Q}$, where $\mathbf{\Delta}$ is diagonal.

4.6 A method for 'loosely optimizing' the step size α_n is as follows. Given a direction \boldsymbol{d} and preliminary choice of step size α' , find a quadratic function $g(\alpha)$ that (i) interpolates $(0, f(\boldsymbol{x_n}))$ and $(\alpha', f(\boldsymbol{x_n} + \alpha' \boldsymbol{d}))$, and (ii) satisfies $\frac{\mathrm{d}g}{\mathrm{d}\alpha}(0) = \frac{\mathrm{d}f(\boldsymbol{x_n} + \alpha \boldsymbol{d})}{\mathrm{d}\alpha}(0)$. Then α_n is the minimum of g.

Why is this a good choice? What should be the conditions on d and/or α' ? Find a formula for α_n .

- **4.7** If $f: \mathbb{R}^d \to \mathbb{R}^m$, with m > d, then finding the $w \in \mathbb{R}^d$ such that f(w) is as close as possible to $\mathbf{0}$ is called an *overdetermined system*. This means finding $\arg\min_{\boldsymbol{w}} l(\boldsymbol{w})$ where $l(\boldsymbol{w}) = \|f(\boldsymbol{w})\|^2 = f(\boldsymbol{w})^T f(\boldsymbol{w})$.
 - (a) Express $\frac{dl}{d\boldsymbol{w}}$ in terms of $\mathbf{J}(\boldsymbol{f})$. Approximating $\mathbf{H}(l)$ by $2\mathbf{J}(\boldsymbol{f})^T\mathbf{J}(\boldsymbol{f})$ (challenge problem: justify this approximation), write down the quasi-Newton iterative step for the overdetermined system, where the step length is fixed to 1. (This is called the *Gauss-Newton method.*)

In the case of linear regression, f(w) = Xw - y, where X is a $m \times d$ matrix and $y \in \mathbb{R}^m$. This overdetermined system can be solved exactly using linear algebra.

- (b) Derive an algebraic solution. Under what circumstances is your answer well-defined? How do you know that your answer is a minimum (as opposed to any other kind of stationary point)?
- (c) Under the further constraint that $\|\boldsymbol{w}\| \leq 1$, the system always has a well-defined answer. (This is called *ridge regression*.) Find \boldsymbol{w} in terms of \mathbf{X} , \boldsymbol{y} , and a Lagrange multiplier μ , and explain why the formula is well-defined.