HANDS-ON ALL

Convolutional Neural Networks

Andreas Schörgenhumer Institute for Machine Learning

Copyright Statement

This material, no matter whether in printed or electronic form, may be used for personal and non-commercial educational use only. Any reproduction of this material, no matter whether as a whole or in parts, no matter whether in printed or in electronic form, requires explicit prior acceptance of the authors.

Content of Unit 6

- Short recap on neural networks.
- Introduction to Convolutional Neural Networks (CNNs):
 - Image data properties, receptive field
 - Convolution, kernels
 - □ Building blocks and structure of CNNs

Recap: Neural Network Components

Input layer, hidden layers, output layer

Recap: Weight Matrices

- x_2 h_2^2
 - x_3
 - h_4^1
 - h_5^1

Output h_1^1 of first node/neuron (layer 1):

$$z = b_1 + \sum_{i=1}^{4} w_{1i} x_i$$
 $h_1^1 = f(z)$

with some activation function f

Output of entire layer 1:

CONVOLUTIONAL NEURAL NETWORKS (CNNS)

Neural Nets for Image Recognition

- ImageNet Large Scale Visual Recognition Competition (ILSVRC):
 - □ 1.2M images, 1,000 different classes.
 - Yearly challenge to find the "State of the Art" in image recognition.

Neural Nets for Image Recognition

ImageNet Large Scale Visual Recognition Competition (ILSVRC):

 1.2M images, 1,000 different classes.
 Yearly challenge to find the "State of the Art" in image recognition.
 ILSVRC 2012: Won by the only CNN-based solution.
 ILSVRC 2013: Best 5 participants were all CNNs (9 of the top 10 were CNNs).
 ILSVRC 2014: Everyone uses CNNs.

Neural Nets for Image Recognition

■ ImageNet Large Scale Visual Recognition Competition
(ILSVRC):
□ 1.2M images, 1,000 different classes.
 Yearly challenge to find the "State of the Art" in image recognition.
□ ILSVRC 2012: Won by the only CNN-based solution.
☐ ILSVRC 2013: Best 5 participants were all CNNs (9 of the
top 10 were CNNs).
☐ ILSVRC 2014: Everyone uses CNNs.
■ CNNs are useful whenever there is "local structure" in the
data:
☐ Pixel data
☐ Audio data
□ Voxel data
□

ILSVRC 2012: CNNs Classify Images Far Better Than Any Other Methods

[Source: Alex Krizhevsky, Ilya Sutskever, Geoffrey E. Hinton. ImageNet Classification with Deep Convolutional Neural Networks. Advances in Neural Information Processing Systems (NIPS). 2012.]

AlexNet

Figure 2: An illustration of the architecture of our CNN, explicitly showing the delineation of responsibilities between the two GPUs. One GPU runs the layer-parts at the top of the figure while the other runs the layer-parts at the bottom. The GPUs communicate only at certain layers. The network's input is 150,528-dimensional, and the number of neurons in the network's remaining layers is given by 253,440–186,624–64,896–64,896–43,264–4096–1000.

- Won ILSVRC 2012 by a landslide
- After Krizhevsky et al. won ILSVRC 2012, "everyone" started using CNNs for image tasks.

[Source: Alex Krizhevsky, Ilya Sutskever, Geoffrey E. Hinton. ImageNet Classification with Deep Convolutional Neural Networks. Advances in Neural Information Processing Systems (NIPS). 2012.]

- Images are extremely high-dimensional.
 - □ Example: 250 x 250 pixels · 3 color channels = 187.5k input dimensions

- Images are extremely high-dimensional.
 - ☐ Example: 250 x 250 pixels · 3 color channels = 187.5k input dimensions
- Pixels that are near each other are highly correlated.

- Images are extremely high-dimensional.
 - ☐ Example: 250 x 250 pixels · 3 color channels = 187.5k input dimensions
- Pixels that are near each other are highly correlated.
- Same basic patches (e.g., edges, corners) appear on all positions of the image.

- Images are extremely high-dimensional.
 - ☐ Example: 250 x 250 pixels · 3 color channels = 187.5k input dimensions
- Pixels that are near each other are highly correlated.
- Same basic patches (e.g., edges, corners) appear on all positions of the image.
- Often, invariances to certain variations are desired (e.g., translation invariance).

MAIN CONCEPTS OF CNNS

- Pixels that are near each other are highly correlated.
- Same basic patches (e.g., edges, corners) appear on all positions of the image.

- Pixels that are near each other are highly correlated.
- Same basic patches (e.g., edges, corners) appear on all positions of the image.
- We can detect those basic patches by only viewing a small part of the image.
- → We can use a network with a small receptive field!

- Pixels that are near each other are highly correlated.
- Same basic patches (e.g., edges, corners) appear on all positions of the image.
- We can detect those basic patches by only viewing a small part of the image.
- → We can use a network with a small receptive field!
- Receptive field: Connect network to patch of image using weight matrix (=kernel or filter)

- FNN: In a feed-forward neural network, each hidden neuron is connected to all neurons of the previous layer.
- CNN: In a convolutional neural network, a hidden neuron is only connected to a few neurons in the previous layer.

Mathematical operations on two functions:

$$(h*k)(a,b) = \sum_{i} \sum_{j} h(a+i,b+j)k(i,j)$$

- Technically, it is a cross-correlation or sliding dot product (the visual example when talking about weight sharing later on should convey this more clearly).¹
- By convention, we refer to it as convolution.

¹Also, the formula only shows the 2D case. While this is the typical scenario (and in this course, we keep it that way), we are not limited to 2D.

In a neural network, the convolution is performed on the input (image) matrix.

- In a neural network, the convolution is performed on the input (image) matrix.
- Applying the kernel W to all image positions (weight sharing) can be viewed as convolution.

- In a neural network, the convolution is performed on the input (image) matrix.
- Applying the kernel W to all image positions (weight sharing) can be viewed as convolution.
- We get an output value for each time we apply the kernel.

- In a neural network, the convolution is performed on the input (image) matrix.
- Applying the kernel W to all image positions (weight sharing) can be viewed as convolution.
- We get an output value for each time we apply the kernel.
- We apply an activation function to those outputs afterwards (usually ReLU).

- In a neural network, the convolution is performed on the input (image) matrix.
- Applying the kernel W to all image positions (weight sharing) can be viewed as convolution.
- We get an output value for each time we apply the kernel.
- We apply an activation function to those outputs afterwards (usually ReLU).
- Applying the kernel and the activation function is one layer in a Convolutional Neural Network (CNN).

- Same basic patches (e.g., edges, corners) appear on all positions of the image.
- Often, invariances to certain variations are desired (e.g., translation invariance).

- Same basic patches (e.g., edges, corners) appear on all positions of the image.
- Often, invariances to certain variations are desired (e.g., translation invariance).
- → We can reuse the receptive field at all positions of the image to produce the new output (=feature/activation map).

- Same basic patches (e.g., edges, corners) appear on all positions of the image.
- Often, invariances to certain variations are desired (e.g., translation invariance).
- → We can reuse the receptive field at all positions of the image to produce the new output (=feature/activation map).
- Reusing the kernel weight matrix is called weight sharing.

- Same basic patches (e.g., edges, corners) appear on all positions of the image.
- Often, invariances to certain variations are desired (e.g., translation invariance).
- → We can reuse the receptive field at all positions of the image to produce the new output (=feature/activation map).
- Reusing the kernel weight matrix is called weight sharing.
 - We apply our kernel to all image positions while keeping the weights the same.

- Same basic patches (e.g., edges, corners) appear on all positions of the image.
- Often, invariances to certain variations are desired (e.g., translation invariance).
- → We can reuse the receptive field at all positions of the image to produce the new output (=feature/activation map).
- Reusing the kernel weight matrix is called weight sharing.
 - We apply our kernel to all image positions while keeping the weights the same.
 - ☐ This significantly reduces the number of model parameters.

- Same basic patches (e.g., edges, corners) appear on all positions of the image.
- Often, invariances to certain variations are desired (e.g., translation invariance).
- → We can reuse the receptive field at all positions of the image to produce the new output (=feature/activation map).
- Reusing the kernel weight matrix is called weight sharing.
 - We apply our kernel to all image positions while keeping the weights the same.
 - This significantly reduces the number of model parameters.
 - Interactive kernel demo: https://setosa.io/ev/image-kernels/

$$0 \cdot 0 + 0 \cdot 0 + 0.5 \cdot 0 + 0 \cdot 0 + 0.5 \cdot 1.0 + 0 \cdot 0 + 0 \cdot 0 + 0 \cdot 0 + 0.5 \cdot 0 = 0.5$$

input

kernel

$$0 \cdot 0 + 0 \cdot 0 + 0.5 \cdot 0 + 0 \cdot 1.0 + 0.5 \cdot 0 + 0 \cdot 0 + 0 \cdot 0 + 0 \cdot 0 + 0.5 \cdot 0.4 = 0.2$$

 0
 0
 0
 0
 0

 0
 1.0
 0
 0
 0.4
 0

 0
 0
 0
 0.4
 0
 0

 0
 0
 0
 0.4
 0
 0

 0
 0
 0
 0.4
 0
 0

 0
 0
 0
 0
 0.4
 0

input

0	0	0	0	0	0
0	1.0	0	0	0.4	0
0	0	0	0.4	0	0
0	0	0	0	0.4	0
0	0	0	0.4	0	0
0	0	0	0	0.4	0

input

$0 \cdot 0 +$	$0 \cdot 0$	$+0.5 \cdot 0$
+ 0.0 + 0	$0.5\cdot 0.4$	$4 + 0 \cdot 0$
$+ 0 \cdot 0.4 +$	$0 \cdot 0$	$+0.5 \cdot 0$
= 0.2		

input

Weight Sharing (k: 3×3 , i: 6×6 , o: 4×4)

$$0 \cdot 0 + 0 \cdot 1.0 + 0.5 \cdot 0 + 0 \cdot 0 + 0.5 \cdot 0 + 0 \cdot 0 + 0 \cdot 0 + 0 \cdot 0 + 0.5 \cdot 0 = 0$$

input

Weight Sharing (k: 3×3 , i: 6×6 , o: 4×4)

kernel

$$0 \cdot 1.0 + 0 \cdot 0 + 0.5 \cdot 0 + 0 \cdot 0 + 0.5 \cdot 0 + 0 \cdot 0.4 + 0 \cdot 0 + 0 \cdot 0 + 0.5 \cdot 0 = 0$$

 0
 0
 0
 0
 0

 0
 1.0
 0
 0
 0.4
 0

 0
 0
 0
 0.4
 0
 0

 0
 0
 0
 0.4
 0
 0

 0
 0
 0
 0.4
 0
 0

 0
 0
 0
 0.4
 0
 0

input

output

Weight Sharing (k: 3×3 , i: 6×6 , o: 4×4)

0	0	0.5
0	0.5	0
0	0	0.5

kernel

0	0	0	0	0	0
0	1.0	0	0	0.4	0
0	0	0	0.4	0	0
0	0	0	0	0.4	0
0	0	0	0.4	0	0
0	0	0	0	0.4	0

input

output

0.5	0.2	0	0.2
0	0	0.6	0
0	0.4	0	0.2
0	0	0.6	0

We saw how the convolution with kernels can be applied. But how do we know which kernels/kernel values to choose?

- We saw how the convolution with kernels can be applied. But how do we know which kernels/kernel values to choose?
- We can pick **existing kernels**. Examples:
 - □ **Sobel filter**/operator for detecting edges
 - Gaussian blur filter for blurring

Sobel Filter: Vertical Edge Detection

$$\rightarrow \begin{bmatrix} -1 & 0 & 1 \\ -2 & 0 & 2 \\ -1 & 0 & 1 \end{bmatrix} \rightarrow$$

Sobel Filter: Horizontal Edge Detection

$$\rightarrow \begin{bmatrix} -1 & -2 & -1 \\ 0 & 0 & 0 \\ 1 & 2 & 1 \end{bmatrix} \rightarrow$$

Gaussian Blur Filter

$$\rightarrow \frac{1}{256} \begin{bmatrix} 1 & 4 & 6 & 4 & 1 \\ 4 & 16 & 24 & 16 & 4 \\ 6 & 24 & 36 & 24 & 6 \\ 4 & 16 & 24 & 16 & 4 \\ 1 & 4 & 6 & 4 & 1 \end{bmatrix} \rightarrow$$

- We saw how the convolution with kernels can be applied. But how do we know which kernels/kernel values to choose?
- We can pick existing kernels. Examples:
 - Sobel filter/operator for detecting edges
 - Gaussian blur filter for blurring

- We saw how the convolution with kernels can be applied. But how do we know which kernels/kernel values to choose?
- We can pick existing kernels. Examples:
 - □ Sobel filter/operator for detecting edges
 - Gaussian blur filter for blurring
- In convolutional neural networks, however, we actually want to **learn** the kernels ourselves!

- We saw how the convolution with kernels can be applied. But how do we know which kernels/kernel values to choose?
- We can pick existing kernels. Examples:
 - Sobel filter/operator for detecting edges
 - Gaussian blur filter for blurring
- In convolutional neural networks, however, we actually want to learn the kernels ourselves!
- The kernels are just small weight matrices W which we can learn the same way as in regular neural networks.

- We saw how the convolution with kernels can be applied. But how do we know which kernels/kernel values to choose?
- We can pick existing kernels. Examples:
 - Sobel filter/operator for detecting edges
 - Gaussian blur filter for blurring
- In convolutional neural networks, however, we actually want to **learn** the kernels ourselves!
- The kernels are just small weight matrices *W* which we can learn the same way as in regular neural networks.
- Hopefully, we learn useful kernels, e.g., to detect edges, corners, color patches, body parts, ...

PADDING

Padding

■ When applying a convolution with a kernel of size > 1, the output will be smaller than the input (see examples before).

Padding

- When applying a convolution with a kernel of size > 1, the output will be smaller than the input (see examples before).
- Padding is used to keep the input and output size the same:
 - Zero-Padding: Add zeros at borders of input
 - Repeat-Padding: Duplicate the border values
 - Other padding methods: Mean, weighted sum, ...

Padding

- When applying a convolution with a kernel of size > 1, the output will be smaller than the input (see examples before).
- Padding is used to keep the input and output size the same:
 - Zero-Padding: Add zeros at borders of input
 - ☐ Repeat-Padding: Duplicate the border values
 - ☐ Other padding methods: Mean, weighted sum, ...
- Can be applied to input image or in between layers to keep the original input size

Zero-Padding (k: 3×3 , **i:** 4×4 , **o:** 2×2)

0	0	0.5
0	0.5	0
0	0	0.5

kernel

input

1.0	0	0	0.4
0	0	0.4	0
0	0	0	0.4
0	0	0.4	0

Zero-Padding (k: 3×3 , **i:** 4×4 , **o:** 2×2)

Zero-Padding (k: 3×3 , **i:** $4+1 \times 4+1$, **o:** 4×4)

STRIDING

Striding controls how much the kernels/filters are moved.

- **Striding** controls how much the kernels/filters are moved.
- The smaller the stride, the more the receptive filters overlap.

- **Striding** controls how much the kernels/filters are moved.
- The smaller the stride, the more the receptive filters overlap.
- Striding is one way of downsampling images.

- Striding controls how much the kernels/filters are moved.
- The smaller the stride, the more the receptive filters overlap.
- Striding is one way of downsampling images.
- A stride > 1 will lead to loss of information (no problem if we keep the essential information) but will also reduce computational load and memory requirements.

- Striding controls how much the kernels/filters are moved.
- The smaller the stride, the more the receptive filters overlap.
- Striding is one way of downsampling images.
- A stride > 1 will lead to loss of information (no problem if we keep the essential information) but will also reduce computational load and memory requirements.
- A stride > 1 will increase the receptive field through depth of network.

0	0	0.5
0	0.5	0
0	0	0.5

kernel

0	0	0	0	0	0
0	1.0	0	0	0.4	0
0	0	0	0.4	0	0
0	0	0	0	0.4	0
0	0	0	0.4	0	0
0	0	0	0	0.4	0

input

output

0.5	0.2
0	0

POOLING

■ Another way of **downsampling** images is **pooling**.

- Another way of downsampling images is pooling.
- There are different ways to perform pooling. Most popular:
 - \square Average Pooling: take the average value in a $k \times k$ field
 - \square Max Pooling: take the maximum value in a $k \times k$ field
 - □ N-Max Pooling: take the mean over the n maximum values in a $k \times k$ field

- Another way of downsampling images is pooling.
- There are different ways to perform pooling. Most popular:
 - Average Pooling: take the average value in a $k \times k$ field
 - ☐ Max Pooling: take the maximum value in a $k \times k$ field
 - □ N-Max Pooling: take the mean over the n maximum values in a $k \times k$ field
- Pooling will lead to loss of information (no problem if we keep the essential information) but will also reduce computational load and memory requirements.

- Another way of downsampling images is pooling.
- There are different ways to perform pooling. Most popular:
 - □ Average Pooling: take the average value in a $k \times k$ field □ Max Pooling: take the maximum value in a $k \times k$ field
 - Max Pooling, take the maximum value in a $k \times k$ field
 - □ N-Max Pooling: take the mean over the n maximum values in a $k \times k$ field
- Pooling will lead to loss of information (no problem if we keep the essential information) but will also reduce computational load and memory requirements.
- Pooling will increase the receptive field through depth of network.

- Another way of downsampling images is pooling.
- There are different ways to perform pooling. Most popular:
 - \square Average Pooling: take the average value in a $k \times k$ field
 - \square Max Pooling: take the maximum value in a $k \times k$ field
 - □ N-Max Pooling: take the mean over the n maximum values in a $k \times k$ field
- Pooling will lead to loss of information (no problem if we keep the essential information) but will also reduce computational load and memory requirements.
- Pooling will increase the receptive field through depth of network.
- Pooling is a fixed operation compared to "strided" convolutions, i.e., there are no parameters to learn.

input

0.5	0.2	0	0.2
0	0	0.6	0
0	0.4	0	0.2
0	0	0.6	0

input

0.5	0.2	0	0.2
0	0	0.6	0
0	0.4	0	0.2
0	0	0.6	0

input

0.5	0.2	0	0.2
0	0	0.6	0
0	0.4	0	0.2
0	0	0.6	0

input

0.5	0.2	0	0.2
0	0	0.6	0
0	0.4	0	0.2
0	0	0.6	0

input

0.5	0.2	0	0.2
0	0	0.6	0
0	0.4	0	0.2
0	0	0.6	0

INPUTS AND OUTPUTS

Until now, we assumed grayscale images with 1 channel.

- Until now, we assumed grayscale images with 1 channel.
- RGB images have 3 channels for red, green, blue, typically stored in a shape of (width, height, 3).

- Until now, we assumed grayscale images with 1 channel.
- RGB images have 3 channels for red, green, blue, typically stored in a shape of (width, height, 3).
- After the convolutional operations, channels are also called feature maps or activation maps.

- Until now, we assumed grayscale images with 1 channel.
- RGB images have 3 **channels** for red, green, blue, typically stored in a shape of (width, height, 3).
- After the convolutional operations, channels are also called feature maps or activation maps.
- We need to make sure our kernel matches the number of channels (e.g., if the input is 3D, the kernel must be 3D as well).

- Until now, we assumed grayscale images with 1 channel.
- RGB images have 3 **channels** for red, green, blue, typically stored in a shape of (width, height, 3).
- After the convolutional operations, channels are also called feature maps or activation maps.
- We need to make sure our kernel matches the number of channels (e.g., if the input is 3D, the kernel must be 3D as well).
- Regardless of the number of channels, a single feature map/channel will be produced (it just computes the sum of the channel-wise convolutions).

input (3 channels)

■ We usually want to apply multiple kernels to the image.

- We usually want to apply **multiple kernels** to the image.
- For each (multi-dimensional) kernel, we create a feature map/channel in the CNN output.

CREATING A COMPLETE CNN

- A typical CNN architecture has several layers of:
 - 1. Convolution
 - 2. Non-linearity
 - 3. Pooling (optional)

- A typical CNN architecture has several layers of:
 - 1. Convolution
 - Non-linearity
 - 3. Pooling (optional)
- Each kernel produces a new feature map for the next layer.

- A typical CNN architecture has several layers of:
 - Convolution
 - Non-linearity
 - 3. Pooling (optional)
- Each kernel produces a new feature map for the next layer.
- The complexity of detected features tends to increase layer by layer (e.g., first feature map does edge detection, later ones combine it to complex shapes).

- A typical CNN architecture has several layers of:
 - Convolution
 - Non-linearity
 - 3. Pooling (optional)
- Each kernel produces a new feature map for the next layer.
- The complexity of detected features tends to increase layer by layer (e.g., first feature map does edge detection, later ones combine it to complex shapes).
- Interactive CNN visualization demo:

https://poloclub.github.io/cnn-explainer/

[Adapted from: https://www.nature.com/articles/505146a (image credit: Andrew Ng). Also see: Honglak Lee et al. Unsupervised Learning of Hierarchical Representations with Convolutional Deep Belief Networks. Communications of the ACM, 54(10). 2011.]

Depending on the task, we might need to perform some additional operations after the convolutions.

- Depending on the task, we might need to perform some additional operations after the convolutions.
- Example: image classification:
 - □ We want to employ the same strategy we already know from regular neural networks.

- Depending on the task, we might need to perform some additional operations after the convolutions.
- Example: image classification:
 - ☐ We want to employ the same strategy we already know from regular neural networks.
 - □ This means that we would like to have a flat vector of size K with all the class probabilities.

- Depending on the task, we might need to perform some additional operations after the convolutions.
- Example: image classification:
 - ☐ We want to employ the same strategy we already know from regular neural networks.
 - \square This means that we would like to have a flat vector of size K with all the class probabilities.
 - □ We know that the softmax function can produce the probabilities, but the current output of our CNN is a multi-dimensional feature map, which is incompatible.

- Depending on the task, we might need to perform some additional operations after the convolutions.
- Example: image classification:
 - ☐ We want to employ the same strategy we already know from regular neural networks.
 - \square This means that we would like to have a flat vector of size K with all the class probabilities.
 - □ We know that the softmax function can produce the probabilities, but the current output of our CNN is a multi-dimensional feature map, which is incompatible.
 - □ We somehow need to transform this output to a flat vector of size *K*.

Solution: Reshape the multi-dimensional output into a vector (a.k.a. flatten), and then apply a regular fully connected layer that maps the flattened size to K.

[Source: Min Peng et al. Dual Temporal Scale Convolutional Neural Network for Micro-Expression Recognition. Frontiers in Psychology 8. 2017.]

Assume our CNN ultimately produces 2 feature maps m^i , each of size $3 \times 3 \Rightarrow 2 \cdot 3 \cdot 3 = 18$ flat elements.

- Assume our CNN ultimately produces 2 feature maps m^i , each of size $3 \times 3 \Rightarrow 2 \cdot 3 \cdot 3 = 18$ flat elements.
- For each map, run through all elements from left to right and top to bottom and put the corresponding element into our flat vector of size 18

Feature Map 2: m2

Feature Map 1: m1

- Assume our CNN ultimately produces 2 feature maps m^i , each of size $3 \times 3 \Rightarrow 2 \cdot 3 \cdot 3 = 18$ flat elements.
- For each map, run through all elements from left to right and top to bottom and put the corresponding element into our flat vector of size 18

- Assume our CNN ultimately produces 2 feature maps m^i , each of size $3 \times 3 \Rightarrow 2 \cdot 3 \cdot 3 = 18$ flat elements.
- For each map, run through all elements from left to right and top to bottom and put the corresponding element into our flat vector of size 18

- Assume our CNN ultimately produces 2 feature maps m^i , each of size $3 \times 3 \Rightarrow 2 \cdot 3 \cdot 3 = 18$ flat elements.
- For each map, run through all elements from left to right and top to bottom and put the corresponding element into our flat vector of size 18

- Assume our CNN ultimately produces 2 feature maps m^i , each of size $3 \times 3 \Rightarrow 2 \cdot 3 \cdot 3 = 18$ flat elements.
- For each map, run through all elements from left to right and top to bottom and put the corresponding element into our flat vector of size 18

- Assume our CNN ultimately produces 2 feature maps m^i , each of size $3 \times 3 \Rightarrow 2 \cdot 3 \cdot 3 = 18$ flat elements.
- For each map, run through all elements from left to right and top to bottom and put the corresponding element into our flat vector of size 18

- Assume our CNN ultimately produces 2 feature maps m^i , each of size $3 \times 3 \Rightarrow 2 \cdot 3 \cdot 3 = 18$ flat elements.
- For each map, run through all elements from left to right and top to bottom and put the corresponding element into our flat vector of size 18

- Assume our CNN ultimately produces 2 feature maps m^i , each of size $3 \times 3 \Rightarrow 2 \cdot 3 \cdot 3 = 18$ flat elements.
- For each map, run through all elements from left to right and top to bottom and put the corresponding element into our flat vector of size 18 ⇒ ready for regular NN input!

Feature Map 2: m2

Feature Map 1: m1

1

1