

WHAT IS CLAIMED IS:

1. A system for evaluating M modulo J, where J is an integer and M is an integer expressed in binary form ($M = \sum_{i=0}^N \alpha_i 2^i$), where α_i is 0 or 1, and $N+1$ is the number of digits in a binary word) comprising:

4 a first circuit for decomposing M into two integers A and B = M - A;

 a second circuit for evaluating (A modulo J);

6 a third circuit for evaluating $M' = (A \text{ modulo } J) + B$; and

8 a fourth circuit for outputting M' or feeding M' back to the first means to evaluate M' modulo J.

2. The system of Claim 1, wherein the first circuit includes a multiplexer M1

2 which passes $B_N = (M - \alpha_N 2^N)$ to the second circuit on a first iteration, and passes $B_i = (M' - \alpha_i 2^i)$ on all subsequent iterations, where i is an iteration counter starting with N and counting down.

3. The system of Claim 1, wherein the second circuit includes a look-up table

2 that stores $C_i = 2^i$ modulo J for i = 0 to N.

4. The system of Claim 3, wherein the second circuit further includes a

2 multiplexer M2 that passes 0 to the third circuit when ($\alpha_i = 0$), and passes C_i when ($\alpha_i = 1$).

5. The system of Claim 1, wherein the third circuit includes an adder A1 whose
2 inputs are B_i and $(\alpha_i C_i)$ and which passes its output $M' = B_i + (\alpha_i C_i)$ to the fourth circuit.

6. The system of Claim 1, wherein the fourth circuit includes a multiplexer M4
2 that passes M' as a final output if $(M' < J)$; otherwise i is set to $i-1$, and M' is fed back to
the first circuit.

7. The system of Claim 1, wherein the circuit further includes fifth circuit for
2 ensuring convergence.

8. The system of Claim 7, wherein the fifth circuit includes a multiplexer M3
2 that passes J when the bitwise AND of M' and J equals J , otherwise it passes 0.

9. The system of Claim 8, wherein the output of the multiplexer M3 is subtracted
2 from M' by an adder A2 and the result is passed to the fourth circuit.

10. A deinterleaver comprising:

- 2 a demultiplexer;
 a multiplexer; and
4 a circuit for connecting the outputs of the demultiplexer to the inputs of the
multiplexer, wherein the circuit includes a system for evaluating M modulo J
6 comprising:

a first circuit for decomposing M into two integers A and B = M - A;

8 a second circuit for evaluating (A modulo J);

a third circuit for evaluating $M' = (A \text{ modulo } J) + B$; and

10 a fourth circuit for outputting M' or feeding M' back to the first circuit to evaluate
 M' modulo J.

11. A method for evaluating M modulo J including the steps of:

2 decomposing M into two integers A and B = M - A;

evaluating (A modulo J);

4 evaluating $M' = (A \text{ modulo } J) + B$; and,

determining whether to output M' as the final answer, or to feedback M' to the

6 decomposing step to evaluate M' modulo J.

12. The method of Claim 11, wherein the decomposing involves passing $B_N =$

2 $(M - \alpha_N 2^N)$ to the evaluating (A modulo J) step on a first iteration, and passing $B_i = (M' -$
 $\alpha_i 2^i)$ on all subsequent iterations, where i is an iteration counter starting with N and

4 counting down.

13. The method of Claim 11, wherein evaluating (A modulo J) involves using a

2 look-up table that stores $C_i = 2^i \text{ modulo } J$ for $i = 0$ to N.

14. The method of Claim 13, wherein the evaluating (A modulo J) further

- 2 includes passing 0 to the evaluating $M' = (A \text{ modulo } J) + B$ step when ($\alpha_i = 0$), and passes C_i when ($\alpha_i = 1$).

15. The method of Claim 11, wherein the evaluating $M' = (A \text{ modulo } J) + B$ step

- 2 involves using an adder A1 whose inputs are B_i and $(\alpha_i C_i)$ and which passes its output $M' = B_i + (\alpha_i C_i)$ to the determining step.

16. The method of Claim 11, wherein the determining involves passing M' as a

- 2 final output when ($M' < J$); otherwise i is set to $i-1$, and M' is fed back to the decomposing step.

17. The method of Claim 12, further comprising ensuring convergence has

- 2 occurred.

18. The method of Claim 17, wherein ensuring convergence includes passes J

- 2 when the bitwise AND of M' and J equals J , otherwise passing 0.