Maladaptive plastic responses of flowering time to geothermal heating

Code for analyses in the paper (revised)

Alicia Valdés

Contents

Read data	2
Correlation between instant measures of soil temperature and mean soil temperature during the period April 1st $-$ June 5th recorded by loggers	3
Is soil temperature more weakly correlated with air temperature in warmer soils?	4
May	4
Appendix S2 (part 1)	
April-May_june	6
Appendix S2 (part 2)	6
Appendix S1: Correlations soil-air temperature vs soil temperature	7
Hypothesis 1: Effect of temperature on FFD	ē
Hypothesis 2: Effect of temperature on fitness	11
Figure 2: Effects of temperature on ffd and fitness	12
Hypothesis 3: Effect of temperature on selection on FFD	14
BCa intervals	15
Figure 3: Effects of temperature on selection	16
Appendix S4	18
Effect of temperature on the relationship absolute fitness-FFD	23
BCa intervals	25
2017	25
2018	26

Tests of residual spatial autocorrelation	27
Hypothesis 1	27
Spatial correlograms	28
Moran's I	30
Moran's eigenvector mapping	31
Tests of residual spatial autocorrelation	31
AppS6 - Figure S1	35
Hypothesis 2	37
Spatial correlograms	38
Moran's I	40
Moran's eigenvector mapping	41
Tests of residual spatial autocorrelation	41
AppS6 - Figure S2	43
Hypothesis 3	45
BCA intervals	46
2017	47
2018	48
Spatial correlograms	49
Moran's I	50
Moran's eigenvector mapping	51
BCA intervals	52
Tests of residual spatial autocorrelation	53
App S6 - Figure S3	54
Effect of temperature on the relationship absolute fitness-FFD $$	56
Spatial correlograms	56
Moran's I	58
Moran's eigenvector mapping	59
BCA intervals	60
Tests of residual spatial autocorrelation	61
AppS6 - Figure S4	62
R Session Info	64
	O I

Read data

The location of these files would need to be changed.

```
data_plants<-read_csv("data/clean/data_plants_coords.csv")
logger_data<-read_csv("data/clean/logger_data.csv")
logger_data_pairs<-read_csv("data/clean/logger_data_pairs.csv")</pre>
```

```
#Defining coordinates and coordinate system####
coordinates(data_plants) <- c("x", "y")
project1<-"+proj=utm +zone=27 +ellps=WGS84 +datum=WGS84 +units=m +no_defs"
proj4string(data_plants) = CRS(project1) #assign CRS with projected coordinates

#A plot of all the plants, colored by temperature
spplot(data_plants, "temp", do.log=T, colorkey = TRUE)</pre>
```


Correlation between instant measures of soil temperature and mean soil temperature during the period April 1st – June 5th recorded by loggers

For each logger_nr, get mean temperature during April-June and compare with temp_term (which was measured with a thermometer at 10 cm depth on May 2017):

```
with(logger_data%>%
    mutate(month = month(datetime)) %>%
    filter(month==4|month==5|month==6)%>%
```

```
filter(above_below=="B")%>%
mutate(date=date(datetime))%>%
filter(!is.na(date))%>% # remove records with no info on date
filter(datetime<"2018-06-06")%>% # keep only data until June 5
group_by(logger_nr) %>%
summarize(mean_logger=mean(temp),temp_term=mean(temp_term)),
cor.test(mean_logger,temp_term))
```

```
##
## Pearson's product-moment correlation
##
## data: mean_logger and temp_term
## t = 21.901, df = 139, p-value < 2.2e-16
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
## 0.8370572 0.9129479
## sample estimates:
## cor
## 0.8805259</pre>
```

Is soil temperature more weakly correlated with air temperature in warmer soils?

For each date and logger pair, calculate mean, max and min of air and soil temperature (from, respectively, the above and belowground logger). Then, calculate the correlation coefficient for air and soil temperatures over the period May or April-May-June. Finally, regress these correlation coefficients on mean soil temperature (from the belowground logger) for the same period (April-May-June).

May

```
data_corr<-(logger_data_pairs%>%
     mutate(month = month(datetime), date=date(datetime))%>%
              # new variables "month" and "date"
     filter(month==5)%>% # keep data from may
     group_by(date,pair,above_below)%>%
     summarise(mean=mean(temp, na.rm=T), max=max(temp), min=min(temp))%>%
   #calculate mean, max and min of air and soil temperature
     pivot_wider(names_from="above_below", values_from=c("mean", "max", "min"))%>%
     group_by(pair)%>%
     summarise(corr_airsoil_mean=cor(mean_A,mean_B,use="pairwise.complete.obs"),
               corr_airsoil_max=cor(max_A,max_B,use="pairwise.complete.obs"),
               corr_airsoil_min=cor(min_A,min_B,use="pairwise.complete.obs"))%>%
   # Calculate correlations air-soil temperatures
     pivot_longer(cols=corr_airsoil_mean:corr_airsoil_min,
                  names_to="measure",values_to="corr")%>%
  left_join(logger_data_pairs%>%
                 mutate(month = month(datetime))%>%
                 filter(month==5)%>%
                 filter(above below=="B")%>%
```

```
group_by(pair)%>%
    summarise(meansoiltemp=mean(temp))))
# calculate mean soil temperature for may
```

Predictions of correlations for minimum and maximum temperatures:

```
ggpredict(model_mean,terms="meansoiltemp[minmax]")
## # Predicted values of corr
##
## meansoiltemp | Predicted |
## -----
                0.83 | [0.80, 0.86]
         6.14 l
##
        30.55 |
                  0.61 | [0.55, 0.68]
ggpredict(model_max,terms="meansoiltemp[minmax]")
## # Predicted values of corr
##
## meansoiltemp | Predicted |
## -----
##
                  0.74 | [0.69, 0.79]
        6.14 |
##
        30.55 |
                  0.37 | [0.26, 0.48]
ggpredict(model_min,terms="meansoiltemp[minmax]")
## # Predicted values of corr
##
## meansoiltemp | Predicted |
                               95% CI
##
         6.14 |
                   0.75 | [0.73, 0.78]
##
        30.55 |
                  0.59 | [0.53, 0.65]
```

Appendix S2 (part 1)

Linear models testing the effect of soil temperature on correlations between soil and air temperature (part of table in Appendix S3):

```
summarise(mean=mean(temp,na.rm=T),max=max(temp),min=min(temp))%>%
 #calculate mean, max and min of air and soil temperature
   pivot_wider(names_from="above_below", values_from=c("mean", "max", "min"))%>%
   group_by(pair)%>%
   summarise(corr_airsoil_mean=cor(mean_A,mean_B,use="pairwise.complete.obs"),
             corr_airsoil_max=cor(max_A,max_B,use="pairwise.complete.obs"),
             corr_airsoil_min=cor(min_A,min_B,use="pairwise.complete.obs"))%>%
 # Calculate correlations air-soil temperatures
   pivot_longer(cols=corr_airsoil_mean:corr_airsoil_min,
                names to="measure", values to="corr")%>%
left_join(logger_data_pairs%>%
               mutate(month = month(datetime))%>%
               filter(month==5)%>%
               filter(above_below=="B")%>%
               group_by(pair)%>%
            summarise(meansoiltemp=mean(temp))))%>%
# calculate mean soil temperature for may
group_by(measure)%>%
do(fitcorr = tidy(lm(corr~meansoiltemp, data = .))) %>%
unnest(fitcorr)%>%
kable(digits=5)
```

measure	term	estimate	std.error	statistic	p.value
corr_airsoil_max	(Intercept)	0.83528	0.04012	20.81870	0e+00
corr_airsoil_max	meansoiltemp	-0.01521	0.00287	-5.29894	1e-05
corr_airsoil_mean	(Intercept)	0.88734	0.02275	39.00495	0e+00
corr_airsoil_mean	meansoiltemp	-0.00897	0.00163	-5.50910	0e+00
corr_airsoil_min	(Intercept)	0.79583	0.02147	37.06454	0e+00
corr_airsoil_min	meansoiltemp	-0.00684	0.00154	-4.44851	7e-05

April-May_june

Appendix S2 (part 2)

Linear models testing the effect of soil temperature on correlations between soil and air temperature (part of table in Appendix S3):

measure	term	estimate	std.error	statistic	p.value
corr_airsoil_max	(Intercept)	0.77449	0.03184	24.32387	0
corr_airsoil_max	meansoiltemp	-0.01552	0.00236	-6.57111	0
corr_airsoil_mean	(Intercept)	0.91574	0.02391	38.29900	0
corr_airsoil_mean	meansoiltemp	-0.01752	0.00177	-9.88060	0
corr_airsoil_min	(Intercept)	0.75246	0.02361	31.87482	0
corr_airsoil_min	meansoiltemp	-0.01679	0.00175	-9.59056	0

Appendix S1: Correlations soil-air temperature vs soil temperature

```
cbPalette <- c("#E69F00", "#56B4E9", "#009E73", "#F0E442", "#0072B2",
               "#D55E00", "#CC79A7")
AppS1A<-(logger data pairs%>%
          mutate(month = month(datetime), date=date(datetime))%>%
         # new variables "month" and "date"
          filter(month==5)%>% # keep data from may
          group_by(date,pair,above_below)%>%
          summarise(mean=mean(temp,na.rm=T),max=max(temp),min=min(temp))%>%
          #calculate mean, max and min of air and soil temperature
          pivot_wider(names_from="above_below",
                      values_from=c("mean","max","min"))%>%
          group_by(pair)%>%
          summarise(corr_airsoil_mean=cor(mean_A,mean_B,
                                          use="pairwise.complete.obs"),
                    corr_airsoil_max=cor(max_A,max_B,
                                         use="pairwise.complete.obs"),
                    corr_airsoil_min=cor(min_A,min_B,
                                         use="pairwise.complete.obs"))%>%
          # Calculate correlations air-soil temperatures
          pivot longer(cols=corr airsoil mean:corr airsoil min,
                       names_to="measure",values_to="corr")%>%
          left_join(logger_data_pairs%>%
                      mutate(month = month(datetime))%>%
                      filter(month==5)%>%
                      filter(above_below=="B")%>%
                      group_by(pair)%>%
                      summarise(meansoiltemp=mean(temp))))%>%
  # calculate mean soil temperature for may
  ggplot(.,aes(x=meansoiltemp,y=corr,color=measure,fill=measure,shape=measure))+
```

```
geom_smooth(method="lm",size=1)+geom_point(size=2,alpha=0.5)+
 xlab("Mean soil temperature (°C)")+
 vlab(NULL)+
 my_theme()+scale_fill_manual(values=cbPalette)+
 scale_colour_manual(values=cbPalette)+
 scale_shape_manual(values=c(15,16,17)) +
 geom_text_repel(data=. %>% filter(corr<0),aes(label=pair))+</pre>
 ggtitle("A)")
AppS1B<-(logger_data_pairs%>%
          mutate(month = month(datetime), date=date(datetime))%>%
          # new variables "month" and "date"
         filter(month==4|month==5|month==6)%>% # keep data from april-june
          group_by(date,pair,above_below)%>%
          summarise(mean=mean(temp, na.rm=T), max=max(temp), min=min(temp))%>%
          #calculate mean, max and min of air and soil temperature
         pivot_wider(names_from="above_below",
                      values_from=c("mean","max","min"))%>%
          group_by(pair)%>%
          summarise(corr_airsoil_mean=cor(mean_A,mean_B,
                                          use="pairwise.complete.obs"),
                    corr_airsoil_max=cor(max_A,max_B,
                                         use="pairwise.complete.obs"),
                    corr_airsoil_min=cor(min_A,min_B,
                                         use="pairwise.complete.obs"))%>%
          # Calculate correlations air-soil temperatures
         pivot longer(cols=corr airsoil mean:corr airsoil min,
                       names to="measure", values to="corr")%>%
         left_join(logger_data_pairs%>%
                      mutate(month = month(datetime))%>%
                      filter(month==4|month==5|month==6)%>%
                      filter(above_below=="B")%>%
                      group_by(pair)%>%
                      summarise(meansoiltemp=mean(temp))))%>%
 # calculate mean soil temperature for april-june
 ggplot(.,aes(x=meansoiltemp,y=corr,color=measure,fill=measure,shape=measure))+
 geom_smooth(method="lm",size=1)+geom_point(size=2,alpha=0.5)+
 xlab("Mean soil temperature (°C)")+
 vlab(NULL)+
 my_theme()+scale_fill_manual(values=cbPalette)+
 scale colour manual(values=cbPalette)+
 scale_shape_manual(values=c(15,16,17)) +
 geom_text_repel(data=. %>% filter(corr<0),aes(label=pair))+</pre>
 ggtitle("B)")
AppS1<-grid.arrange(AppS1A,AppS1B,ncol=2,
                    left=textGrob("Correlation coefficient\nsoil-air temperature", just="center",
                      hjust=0.42,
                      gp=gpar(fontsize=16,fontfamily="serif"),
                      rot = 90))
```


Hypothesis 1: Effect of temperature on FFD

Models including quadratic effects of ffd.

```
data_plants$year_fct<-as.factor(data_plants$year)
FFD_1<-lm(ffd~(temp+I(temp^2))*year_fct,data_plants)
summ(FFD_1,vif=T)</pre>
```

Observations	349
Dependent variable	ffd
Type	OLS linear regression

F(5,343)	28.500
\mathbb{R}^2	0.294
$Adj. R^2$	0.283

	Est.	S.E.	t val.	p	VIF
(Intercept)	183.736	2.052	89.536	0.000	NA
temp	-0.779	0.254	-3.065	0.002	17.405
$I(temp^2)$	0.012	0.007	1.832	0.068	16.329
$year_fct2018$	18.016	4.167	4.323	0.000	16.426
$temp:year_fct2018$	-1.383	0.595	-2.322	0.021	76.002
I(temp^2):year_fct2018	0.021	0.017	1.219	0.224	35.733

Standard errors: OLS

Quadratic terms of ffd not significant. Refit models without quadratic terms of ffd.

```
FFD_1<-lm(ffd~temp*year_fct,data_plants)
summ(FFD_1,vif=T)</pre>
```

Observations	349
Dependent variable	ffd
Type	OLS linear regression

F(3,345)	44.212
\mathbb{R}^2	0.278
$Adj. R^2$	0.271

	Est.	S.E.	t val.	р	VIF
(Intercept)	180.626	1.162	155.505	0.000	NA
temp	-0.332	0.072	-4.620	0.000	1.369
$year_fct2018$	14.478	2.082	6.955	0.000	4.033
$temp:year_fct2018$	-0.738	0.140	-5.250	0.000	4.164

Predictions of ffd for minimum and maximum temperatures:

```
range(subset(data_plants,year==2017)$temp)
```

```
## [1] 4.1 45.5
```

```
range(subset(data_plants,year==2018)$temp)
```

```
## [1] 3.5 34.0
```

```
ggpredict(FFD_1,terms=c("temp[4.1,45.5]","year_fct[2017]"))
```

```
## # Predicted values of ffd
##
## temp | Predicted | 95% CI
## -----
## 4.10 | 179.26 | [177.47, 181.06]
## 45.50 | 165.52 | [160.97, 170.08]
```

```
# 179.26-165.52=14 days earlier on warmer soils
ggpredict(FFD_1,terms=c("temp[3.5,34.0]","year_fct[2018]"))
```

```
## # Predicted values of ffd
##
## temp | Predicted | 95% CI
## ------
## 3.50 | 191.36 | [188.66, 194.06]
## 34.00 | 158.74 | [153.35, 164.13]
```

Hypothesis 2: Effect of temperature on fitness

Observations	349
Dependent variable	n_seed_round
Type	Generalized linear model
Family	Negative $Binomial(2.0752)$
Link	\log

2()	0.747	0.007	4.470.005	4F00 00F
$\chi^2()$	0.747	0.097	4472.025	4502.865
Pseudo-R ² (Cragg-Uhler)	0.747	0.097	4472.025	4502.865
Pseudo-R ² (McFadden)	0.747	0.097	4472.025	4502.865
AIC	0.747	0.097	4472.025	4502.865
BIC	0.747	0.097	4472.025	4502.865

	Est.	S.E.	z val.	p	VIF
(Intercept)	4.227	0.168	25.104	0.000	NA
temp	-0.051	0.021	-2.498	0.012	17.929
$I(temp^2)$	0.001	0.001	1.064	0.287	16.480
$year_fct2018$	-1.158	0.334	-3.464	0.001	16.560
$\log(nfl)$	0.983	0.036	27.345	0.000	1.102
$temp:year_fct2018$	0.088	0.048	1.829	0.067	76.148
$I(temp^2):year_fct2018$	-0.003	0.001	-2.142	0.032	35.522

Standard errors: MLE

Predictions of fitness for minimum and maximum temperatures:

```
range(subset(data_plants,year==2017)$temp)
```

```
## [1] 4.1 45.5
```

range(subset(data_plants,year==2018)\$temp)

```
## [1] 3.5 34.0
```

```
ggpredict(fitness_1,terms=c("temp[4.1,45.5]","year_fct[2017]"))
```

```
## # Predicted counts of n_seed_round
##
```

```
## temp | Predicted |
## ----
             810.91 | [659.59, 996.93]
## 4.10 |
## 45.50 |
             311.40 | [142.72, 679.46]
##
## Adjusted for:
## * nfl = 15.17
ggpredict(fitness_1,terms=c("temp[3.5,34.0]","year_fct[2018]"))
## # Predicted counts of n_seed_round
##
## temp | Predicted |
                                 95% CI
## ----
## 3.50 |
           343.18 | [246.14, 478.48]
## 34.00 | 63.33 | [ 29.27, 137.00]
##
## Adjusted for:
## * nfl = 15.17
```

Figure 2: Effects of temperature on ffd and fitness

```
Model prediction ffd: based on model FFD_1 (without quadratic term of ffd)
```

```
predict_FFD<-ggpredict(FFD_1,terms=c("temp [all]","year_fct"))</pre>
```

Model prediction fitness: based on model fitness 1

```
predict_fitness<-ggpredict(fitness_1,terms=c("temp [all]","year_fct"))</pre>
```

```
fig2<-
 grid.arrange(
    # ffd
    ggplot(data.frame(data_plants),aes(x=temp,y=ffd))+
  xlab("Soil temperature (°C)")+ylab("FFD\n(Day of year)")+my_theme()+
  geom_point(aes(color=year_fct), size=2, alpha=0.2)+
  geom_ribbon(data=subset(predict_FFD,group==2017&
                          x>=min(subset(data_plants,year==2017)$temp)&
                          x<=max(subset(data_plants,year==2017)$temp)),
              aes(x=x,y=predicted,ymin=conf.low,ymax=conf.high,fill=group),
              alpha=0.5)+
  geom_line(data=subset(predict_FFD,group==2017&
                          x>=min(subset(data_plants,year==2017)$temp)&
                          x<=max(subset(data_plants,year==2017)$temp)),
            aes(x=x,y=predicted,color=group),size=1)+
  geom_ribbon(data=subset(predict_FFD,group==2018&
                            x>=min(subset(data_plants,year==2018)$temp)&
                            x<=max(subset(data_plants,year==2018)$temp)),
              aes(x=x,y=predicted,ymin=conf.low,ymax=conf.high,fill=group),
              alpha=0.5)+
  geom_line(data=subset(predict_FFD,group==2018&
```

```
x>=min(subset(data_plants,year==2018)$temp)&
                        x<=max(subset(data_plants,year==2018)$temp)),
          aes(x=x,y=predicted,color=group),size=1)+
ggtitle("A)")+theme(plot.title=element_text(hjust=-0.35,vjust=-3))+
theme(plot.margin = unit(c(-0.6,0.3,0,0.3), "cm"))+
scale_fill_manual(values=cbPalette)+scale_color_manual(values=cbPalette),
  # fitness
 ggplot(data.frame(data plants),aes(x=temp,y=nseed))+
    xlab("Soil temperature (°C)")+ylab("Fitness\n(number of seeds)")+
    my theme()+
    geom_point(aes(color=year_fct), size=2, alpha=0.2)+
    geom_ribbon(data=subset(predict_fitness,group==2017&
                        x>=min(subset(data plants, year==2017)$temp)&
                        x<=max(subset(data_plants,year==2017)$temp)),
                aes(x=x,y=predicted,ymin=conf.low,ymax=conf.high,fill=group),
                alpha=0.5)+
    geom_line(data=subset(predict_fitness,group==2017&
                        x>=min(subset(data_plants,year==2017)$temp)&
                        x<=max(subset(data_plants,year==2017)$temp)),</pre>
              aes(x=x,y=predicted,color=group),size=1)+
  geom_ribbon(data=subset(predict_fitness,group==2018&
                        x>=min(subset(data_plants,year==2018)$temp)&
                        x<=max(subset(data_plants,year==2018)$temp)),
                aes(x=x,y=predicted,ymin=conf.low,ymax=conf.high,fill=group),
                alpha=0.5)+
    geom_line(data=subset(predict_fitness,group==2018&
                        x>=min(subset(data plants, year==2018)$temp)&
                        x<=max(subset(data_plants,year==2018)$temp)),
              aes(x=x,y=predicted,color=group),size=1)+
    ggtitle("B)")+theme(plot.title=element_text(hjust=-0.35,vjust=-3))+
    theme(plot.margin = unit(c(-0.6,0.3,0,0.3), "cm"))+
    scale_fill_manual(values=cbPalette)+scale_color_manual(values=cbPalette)+
    scale_y_continuous(trans='log10'),
  ncol=2)
```


Hypothesis 3: Effect of temperature on selection on FFD

Models including quadratic effects of temp.

Observations	349
Dependent variable	$nseed_rel$
Type	OLS linear regression

F(12,336)	26.559
\mathbb{R}^2	0.487
$Adj. R^2$	0.468

	Est.	S.E.	t val.	p	VIF
(Intercept)	1.612	0.277	5.812	0.000	NA
ffd_std	0.430	0.359	1.200	0.231	36.292
temp	-0.062	0.033	-1.845	0.066	18.854
$I(temp^2)$	0.001	0.001	1.040	0.299	17.109
year_fct2018	-0.227	0.716	-0.317	0.751	30.420
nfl_std	1.155	0.071	16.333	0.000	1.411
$ffd_std:temp$	-0.030	0.042	-0.718	0.473	174.924
$ffd_std:I(temp^2)$	0.001	0.001	0.581	0.562	76.286
$ffd_std:year_fct2018$	-0.851	0.738	-1.153	0.250	45.614
$temp:year_fct2018$	0.037	0.111	0.336	0.737	165.435
$I(temp^2):year_fct2018$	-0.001	0.004	-0.180	0.857	96.685
$ffd_std:temp:year_fct2018$	0.090	0.101	0.890	0.374	248.539
$ffd_std:I(temp^2):year_fct2018$	-0.002	0.003	-0.503	0.615	132.433

Standard errors: OLS

Quadratic terms of temp not significant. Refit models without quadratic terms of temp

Observations	349
Dependent variable	$nseed_rel$
Type	OLS linear regression

F(8,340)	39.925
\mathbb{R}^2	0.484
$Adj. R^2$	0.472

	Est.	S.E.	t val.	p	VIF
(Intercept)	1.392	0.154	9.043	0.000	NA
ffd_std	0.285	0.189	1.510	0.132	10.148
temp	-0.029	0.010	-3.045	0.003	1.563
year_fct2018	-0.116	0.299	-0.388	0.699	5.357
nfl_std	1.146	0.070	16.436	0.000	1.382
$ffd_std:temp$	-0.008	0.009	-0.819	0.414	8.727
$ffd_std:year_fct2018$	-0.466	0.312	-1.496	0.136	8.189
$temp:year_fct2018$	0.016	0.022	0.721	0.472	6.547
ffd_std:temp:year_fct2018	0.035	0.018	1.909	0.057	8.373

BCa intervals

Used for assessing significance.

```
# ffd
slp <- function(selection_1) coef(selection_1)[2]</pre>
b <- car::Boot(selection_1,slp, R=10000) # note the capital B
b1 <- boot::boot.ci(b,type="bca")</pre>
ffd_ci <- as.data.frame(b1$bca[1,4:5])</pre>
rm(slp, b, b1)
# temp
slp <- function(selection_1) coef(selection_1)[3]</pre>
b <- car::Boot(selection_1,slp, R=10000) # note the capital B
b1 <- boot::boot.ci(b,type="bca")</pre>
temp_ci <- as.data.frame(b1$bca[1,4:5])</pre>
rm(slp, b, b1)
# year
slp <- function(selection_1) coef(selection_1)[4]</pre>
b <- car::Boot(selection_1,slp, R=10000) # note the capital B
b1 <- boot::boot.ci(b,type="bca")</pre>
year_ci <- as.data.frame(b1$bca[1,4:5])</pre>
rm(slp, b, b1)
# nfl
slp <- function(selection_1) coef(selection_1)[5]</pre>
b <- car::Boot(selection_1,slp, R=10000) # note the capital B
b1 <- boot::boot.ci(b,type="bca")</pre>
nfl_ci <- as.data.frame(b1$bca[1,4:5])</pre>
rm(slp, b, b1)
# ffd:temp
slp <- function(selection_1) coef(selection_1)[6]</pre>
b <- car::Boot(selection_1,slp, R=10000) # note the capital B
b1 <- boot::boot.ci(b,type="bca")</pre>
ffd_temp_ci <- as.data.frame(b1$bca[1,4:5])</pre>
rm(slp, b, b1)
```

```
# ffd:year
slp <- function(selection_1) coef(selection_1)[7]</pre>
b <- car::Boot(selection_1,slp, R=10000) # note the capital B
b1 <- boot::boot.ci(b,type="bca")</pre>
ffd_year_ci <- as.data.frame(b1$bca[1,4:5])</pre>
rm(slp, b, b1)
# temp:year
slp <- function(selection_1) coef(selection_1)[8]</pre>
b <- car::Boot(selection 1,slp, R=10000) # note the capital B
b1 <- boot::boot.ci(b,type="bca")</pre>
temp_year_ci <- as.data.frame(b1$bca[1,4:5])</pre>
rm(slp, b, b1)
# ffd:temp:year
slp <- function(selection_1) coef(selection_1)[9]</pre>
b <- car::Boot(selection 1,slp, R=10000) # note the capital B
b1 <- boot::boot.ci(b,type="bca")</pre>
ffd_temp_year_ci <- as.data.frame(b1$bca[1,4:5])</pre>
rm(slp, b, b1)
# Save confidence intervals as a table
BCIs_selection_1 <- cbind(</pre>
 rbind(ffd_ci[1,] ,temp_ci[1,], year_ci[1,], nfl_ci[1,], ffd_temp_ci[1,],
        ffd_year_ci[1,],temp_year_ci[1,],ffd_temp_year_ci[1,]),
 rbind(ffd_ci[2,] ,temp_ci[2,], year_ci[2,], nfl_ci[2,], ffd_temp_ci[2,],
        ffd_year_ci[2,],temp_year_ci[2,],ffd_temp_year_ci[2,])
colnames(BCIs_selection_1)<-c("lower", "upper")</pre>
rownames(BCIs_selection_1) <- c("ffd","temp","year","nfl","ffd:temp",</pre>
                                 "ffd:year", "temp:year", "ffd:temp:year")
save(BCIs_selection_1,file="output/BCIs_selection_1.RData")
BCIs_selection_1
                        lower
                                     upper
## ffd
               -0.02091869 0.656360362
               -0.05206476 -0.012639518
## temp
               -0.80886531 0.420408148
## year
## nfl
                0.92081413 1.524992693
                 -0.02352751 0.006110947
## ffd:temp
## ffd:year
               -1.05684449 0.101172982
## temp:year -0.01556584 0.059183120
## ffd:temp:year 0.00606531 0.065951760
```

Figure 3: Effects of temperature on selection

```
quantile(subset(data_plants,year==2017)$temp,probs=c(0.05,0.95))
```

```
##
      5%
           95%
## 6.32 26.90
quantile(subset(data_plants, year==2018)$temp,probs=c(0.05,0.95))
             95%
##
       5%
## 5.060 25.825
pred_fitness_17<-ggpredict(selection_1,</pre>
                            terms = c("ffd_std[all]","temp[6.32:26.90]",
                                      "year fct[2017]"))
pred_fitness_18<-ggpredict(selection_1,</pre>
                            terms = c("ffd_std[all]","temp[5.060:25.825]",
                                      "year_fct[2018]"))
fig3<-cowplot::plot grid(ggplot(data.frame(data plants),</pre>
                                 aes(x=ffd_std,y=nseed_rel))+
                            facet_grid(~year,scales="fixed")+
                            geom_point(size=1.5,alpha=0.3)+
                            my_theme()+ggtitle("A)")+
                            xlab("Standardized FFD")+ylab("Relative fitness")+
                            theme(plot.title=element_text(hjust=-0.1,vjust=-5))+
                            theme(plot.margin = unit(c(-0.6,0.3,0,0.3), "cm")),
                          ggplot(rbind(data.frame(pred_fitness_17),
                                       data.frame(pred_fitness_18)),
                                 aes(x,predicted,colour=group,fill=group))+
                            facet grid(~facet,scales="free")+
                            geom_line(aes(color=as.numeric(as.character(group))),
                                      size=0.5)+
                            my_theme_legend()+
                            theme(legend.position="right")+ggtitle("B)")+
                            scale_color_viridis()+
                            labs(colour="Soil\ntemperature\n(\overline{C})")+
                            xlab("Standardized FFD")+ylab("Relative fitness")+
                            theme(plot.title=element_text(hjust=-0.1,vjust=-5))+
                            theme(plot.margin = unit(c(-0.6,0.3,0,0.3), "cm"))+
                            scale_y_continuous(limits=c(-0.4,2.8),
                                               breaks=c(0,0.5,1,1.5,2,2.5)),
                         ncol=1,align="v",axis="lr")
fig3
```


ggsave(filename="output/figures/fig3.tiff",plot=fig3 width=18,height=16,units="cm",dpi=300)

Appendix S4

```
quantile(subset(data_plants,year==2017)$temp)

## 0% 25% 50% 75% 100%
## 4.1 7.4 10.7 20.6 45.5

mean(subset(data_plants,year==2017&temp<=7.4)$temp)

## [1] 6.714286

# Mean cat 1 = 6.714286
mean(subset(data_plants,year==2017&temp>7.4&temp<=10.7)$temp)

## [1] 8.748333</pre>
```

```
# Mean cat 2 = 8.748333
mean(subset(data_plants,year==2017&temp>10.7&temp<=20.6)$temp)</pre>
## [1] 16.2129
# Mean\ cat\ 3 = 16.2129
mean(subset(data_plants,year==2017&temp>20.6)$temp)
## [1] 25.10667
# Mean cat 4 = 25.10667
quantile(subset(data_plants,year==2018)$temp)
       0%
             25%
                    50%
                            75%
                                  100%
## 3.500 6.875 9.300 17.075 34.000
mean(subset(data_plants,year==2018&temp<=6.875)$temp)
## [1] 5.784615
# Mean cat 1 = 5.784615
mean(subset(data_plants,year==2018&temp>6.875&temp<=9.300)$temp)</pre>
## [1] 7.95
# Mean cat 2 = 7.95
mean(subset(data_plants,year==2018&temp>9.300&temp<=17.075)$temp)</pre>
## [1] 12.45
# Mean\ cat\ 3 = 12.45
mean(subset(data_plants,year==2018&temp>17.075)$temp)
## [1] 23.28846
# Mean cat 4 = 23.28846
pred_fitness_17_cats<-rbind(</pre>
  (data.frame(ggpredict(selection_1,
                            terms = c("ffd_std[all]","temp[6.714286]",
                                      "year_fct[2017]")))%>%
     mutate(temp_cat=1)%>%
     dplyr::rename(FFD_std=x, fitness=predicted,temp=group)),
  (data.frame(ggpredict(selection_1,
                         terms = c("ffd_std[all]","temp[8.748333]",
                                      "year fct[2017]")))%>%
     mutate(temp_cat=2)%>%
```

```
dplyr::rename(FFD_std=x, fitness=predicted,temp=group)),
  (data.frame(ggpredict(selection_1,
                        terms = c("ffd_std[all]","temp[16.2129]",
                                      "year_fct[2017]")))%>%
     mutate(temp_cat=3)%>%
     dplyr::rename(FFD_std=x, fitness=predicted,temp=group)),
  (data.frame(ggpredict(selection_1,
                        terms = c("ffd std[all]","temp[25.10667]",
                                      "year fct[2017]")))%>%
     mutate(temp cat=4)%>%
     dplyr::rename(FFD_std=x, fitness=predicted,temp=group)))
pred_fitness_18_cats<-rbind(</pre>
  (data.frame(ggpredict(selection_1,
                           terms = c("ffd_std[all]","temp[5.784615]",
                                      "year_fct[2018]")))%>%
     mutate(temp_cat=1)%>%
     dplyr::rename(FFD_std=x, fitness=predicted,temp=group)),
  (data.frame(ggpredict(selection_1,
                        terms = c("ffd_std[all]","temp[7.95]",
                                      "year fct[2018]")))%>%
     mutate(temp_cat=2)%>%
     dplyr::rename(FFD_std=x, fitness=predicted,temp=group)),
  (data.frame(ggpredict(selection_1,
                        terms = c("ffd std[all]", "temp[12.45]",
                                      "year fct[2018]")))%>%
     mutate(temp cat=3)%>%
     dplyr::rename(FFD_std=x, fitness=predicted,temp=group)),
  (data.frame(ggpredict(selection_1,
                        terms = c("ffd_std[all]","temp[23.28846]",
                                      "year_fct[2018]")))%>%
     mutate(temp_cat=4)%>%
     dplyr::rename(FFD_std=x, fitness=predicted,temp=group)))
label_names1 <- list(</pre>
  '1'="First quarter\nMean temperature = 6.7°C",
  '2'="Second quarter\nMean temperature = 8.7°C",
  '3'="Third quarter\nMean temperature = 16.2°C",
  '4'="Fourth quarter\nMean temperature = 25.1°C"
labeller_function1 <- function(variable, value){</pre>
 return(label names1[value])
}
leg <- as_ggplot(get_legend(ggplot(subset(data.frame(data_plants),</pre>
                                           year==2017)%>%
         # Define 4 temp categories based on quartiles
         mutate(temp_cat=as.factor(
           ifelse(temp\leq 7.4,1,
                  ifelse(temp>7.4&temp<=10.7,2,
                         ifelse(temp>10.7&temp<=20.6,3,4))))),
```

```
aes(x=ffd_std,y=nseed_rel))+
 facet_grid(~temp_cat,scales="free",
             labeller=labeller(temp_cat=labeller_function1))+
 geom_jitter(size=1.5,alpha=0.3,width=0.05)+
 geom_line(data=pred_fitness_17_cats,
            aes(x=FFD_std,y=fitness,color=temp_cat),size=1)+
 geom_ribbon(data=pred_fitness_17_cats,aes(x=FFD_std,y=fitness,
                                     ymin=conf.low,ymax=conf.high,
                                     fill=temp_cat),alpha=0.3)+
 my theme()+scale color viridis(labels=NULL)+scale fill viridis(labels=NULL)+
 theme(legend.position="top")+labs(colour="Temperature (°C)
 xlab("Standardized FFD")+
 ylab("Relative fitness")+
 \#scale_x\_continuous(breaks=c(-4,-2,0,2,4,6,8))+
 theme(strip.text.x=element_text(margin=margin(2,0,2,0)))+
 guides(fill=FALSE)+ggtitle("A) 2017")))
AppS4<-grid.arrange(leg,
            ggplot(subset(data.frame(data_plants),year==2017)%>%
         # Define 4 temp categories based on quartiles
         mutate(temp_cat=as.factor(
           ifelse(temp\leq 7.4,1,
                  ifelse(temp>7.4&temp<=10.7,2,
                         ifelse(temp>10.7&temp<=20.6,3,4))))),
       aes(x=ffd std,y=nseed rel))+
 facet grid(~temp cat,scales="free",
            labeller=labeller(temp cat=labeller function1))+
 geom_jitter(size=1.5,alpha=0.3,width=0.05)+
 geom_line(data=pred_fitness_17_cats,
            aes(x=FFD_std,y=fitness,color=temp_cat),size=1)+
 geom_ribbon(data=pred_fitness_17_cats,aes(x=FFD_std,y=fitness,
                                     ymin=conf.low,ymax=conf.high,
                                     fill=temp_cat),alpha=0.3)+
 my_theme()+scale_color_viridis(labels=NULL)+scale_fill_viridis(labels=NULL)+
                                     ")+
 labs(colour="Temperature (°C)
 xlab("Standardized FFD")+
 ylab("Relative fitness")+
  \#scale_x\_continuous(breaks=c(-4,-2,0,2,4,6,8))+
 theme(strip.text.x=element_text(margin=margin(2,0,2,0)))+
 guides(fill=FALSE)+ggtitle("A) 2017"),
 ggplot(subset(data.frame(data_plants),year==2018)%>%
         # Define 4 temp categories based on quartiles
         mutate(temp cat=as.factor(
           ifelse(temp<=6.875,1,
                  ifelse(temp>6.875&temp<=9.300,2,
                         ifelse(temp>9.300&temp<=17.075,3,4))))),
       aes(x=ffd_std,y=nseed_rel))+
 facet_grid(~temp_cat,scales="free",
             labeller=labeller(temp_cat=labeller_function1))+
 geom_jitter(size=1.5,alpha=0.3,width=0.05)+
 geom_line(data=pred_fitness_18_cats,
            aes(x=FFD_std,y=fitness,color=temp_cat),size=1)+
 geom_ribbon(data=pred_fitness_18_cats,aes(x=FFD_std,y=fitness,
```

Temperature (°C)

A) 2017

B) 2018

Predictions of fitness:

In 2018, the model predicted that selection favoured earlier flowering at soil temperatures up to 6.5 $^{\circ}$ C, while later flowering was favoured at higher soil temperatures.

Effect of temperature on the relationship absolute fitness-FFD

Keep separate models for both years here!

Observations	245
Dependent variable	nseed
Type	OLS linear regression

F(6,238)	34.508
\mathbb{R}^2	0.465
$Adj. R^2$	0.452

	Est.	S.E.	t val.	p
(Intercept)	-6682.670	4879.792	-1.369	0.172
ffd	35.520	27.405	1.296	0.196
temp	394.423	560.245	0.704	0.482
$I(temp^2)$	-8.887	15.022	-0.592	0.555
$\log(\mathrm{nfl})$	625.843	45.793	13.667	0.000
ffd:temp	-2.451	3.181	-0.770	0.442
$ffd:I(temp^2)$	0.054	0.086	0.627	0.531

summ(selectionabs_2018_1)

Observations	104
Dependent variable	nseed
Type	OLS linear regression

F(6,97)	22.809
\mathbb{R}^2	0.585
$Adj. R^2$	0.560

	Est.	S.E.	t val.	p
(Intercept)	1263.606	1411.947	0.895	0.373
ffd	-7.074	7.767	-0.911	0.365
temp	-134.639	192.293	-0.700	0.485
$I(temp^2)$	1.104	5.710	0.193	0.847
$\log(nfl)$	197.641	20.943	9.437	0.000
ffd:temp	0.676	1.101	0.614	0.541
$ffd:I(temp^2)$	-0.005	0.033	-0.146	0.884

Standard errors: OLS

Quadratic terms of ffd not significant. Refit models withouth quadratic terms of ffd.

 $selectionabs_2017_2 < -lm(nseed~ffd*temp+log(nfl), subset(data_plants, year==2017)) \\ selectionabs_2018_2 < -lm(nseed~ffd*temp+log(nfl), subset(data_plants, year==2018)) \\ summ(selectionabs_2017_2)$

Observations	245
Dependent variable	nseed
Type	OLS linear regression

F(4,240)	51.549
\mathbb{R}^2	0.462
$Adj. R^2$	0.453

	Est.	S.E.	t val.	p
(Intercept)	-4647.341	2606.895	-1.783	0.076
ffd	23.284	14.531	1.602	0.110
temp	88.601	124.771	0.710	0.478
$\log(\mathrm{nfl})$	619.124	45.314	13.663	0.000
ffd:temp	-0.601	0.709	-0.848	0.397

summ(selectionabs_2018_2)

Observations	104
Dependent variable	nseed
Type	OLS linear regression

F(4,99)	34.660
\mathbb{R}^2	0.583
$Adj. R^2$	0.567

	Est.	S.E.	t val.	p
(Intercept)	755.873	607.739	1.244	0.217
ffd	-4.561	3.188	-1.431	0.156
temp	-81.835	33.624	-2.434	0.017
$\log(nfl)$	198.339	20.492	9.679	0.000
ffd:temp	0.425	0.190	2.241	0.027

Standard errors: OLS

BCa intervals

Used for assessing significance.

2017

```
# ffd
slp <- function(selectionabs_2017_2) coef(selectionabs_2017_2)[2]
b <- car::Boot(selectionabs_2017_2,slp, R=10000) # note the capital B
b1 <- boot::boot.ci(b,type="bca")
ffd_ci_17_abs <- as.data.frame(b1$bca[1,4:5])
rm(slp, b, b1)</pre>
```

```
# temp
slp <- function(selectionabs_2017_2) coef(selectionabs_2017_2)[3]
b <- car::Boot(selectionabs_2017_2,slp, R=10000) # note the capital B
b1 <- boot::boot.ci(b,type="bca")
temp_ci_17_abs <- as.data.frame(b1$bca[1,4:5])
rm(slp, b, b1)</pre>
```

```
# nfl
slp <- function(selectionabs_2017_2) coef(selectionabs_2017_2)[4]</pre>
b <- car::Boot(selectionabs_2017_2,slp, R=10000) # note the capital B
b1 <- boot::boot.ci(b,type="bca")</pre>
nfl_ci_17_abs <- as.data.frame(b1$bca[1,4:5])</pre>
rm(slp, b, b1)
# ffd:temp
slp <- function(selectionabs_2017_2) coef(selectionabs_2017_2)[5]</pre>
b <- car::Boot(selectionabs_2017_2,slp, R=10000) # note the capital B
b1 <- boot::boot.ci(b,type="bca")</pre>
ffd_temp_ci_17_abs <- as.data.frame(b1$bca[1,4:5])</pre>
rm(slp, b, b1)
# Save confidence intervals as a table
BCIs_selection_2017_abs <- cbind(</pre>
  rbind(ffd_ci_17_abs[1,] ,temp_ci_17_abs[1,], nfl_ci_17_abs[1,],
        ffd_temp_ci_17_abs[1,]),
  rbind(ffd_ci_17_abs[2,] ,temp_ci_17_abs[2,], nfl_ci_17_abs[2,],
        ffd_temp_ci_17_abs[2,])
colnames(BCIs_selection_2017_abs)<-c("lower", "upper")</pre>
rownames(BCIs_selection_2017_abs) <- c("ffd","temp","nfl","ffd:temp")</pre>
save(BCIs_selection_2017_abs,file="output/BCIs_selection_2017_abs.RData")
BCIs_selection_2017_abs
##
                   lower
                               upper
## ffd
             0.5810225 54.7350047
## temp
           -77.8599588 299.5825479
## nfl
           463.9592583 860.4155048
## ffd:temp -1.7992499 0.3743141
2018
# ffd
slp <- function(selectionabs_2018_2) coef(selectionabs_2018_2)[2]</pre>
b <- car::Boot(selectionabs_2018_2,slp, R=10000) # note the capital B
b1 <- boot::boot.ci(b,type="bca")</pre>
ffd_ci_18_abs <- as.data.frame(b1$bca[1,4:5])</pre>
rm(slp, b, b1)
# temp
slp <- function(selectionabs_2018_2) coef(selectionabs_2018_2)[3]</pre>
b <- car::Boot(selectionabs_2018_2,slp, R=10000) # note the capital B
b1 <- boot::boot.ci(b,type="bca")</pre>
temp ci 18 abs <- as.data.frame(b1$bca[1,4:5])
rm(slp, b, b1)
```

```
slp <- function(selectionabs_2018_2) coef(selectionabs_2018_2)[4]</pre>
b <- car::Boot(selectionabs_2018_2,slp, R=10000) # note the capital B
b1 <- boot::boot.ci(b,type="bca")</pre>
nfl_ci_18_abs <- as.data.frame(b1$bca[1,4:5])</pre>
rm(slp, b, b1)
# ffd:temp
slp <- function(selectionabs_2018_2) coef(selectionabs_2018_2)[5]</pre>
b <- car::Boot(selectionabs_2018_2,slp, R=10000) # note the capital B
b1 <- boot::boot.ci(b,type="bca")</pre>
ffd_temp_ci_18_abs <- as.data.frame(b1$bca[1,4:5])</pre>
rm(slp, b, b1)
# Save confidence intervals as a table
BCIs_selection_2018_abs <- cbind(
  rbind(ffd_ci_18_abs[1,] ,temp_ci_18_abs[1,], nfl_ci_18_abs[1,],
        ffd temp ci 18 abs[1,]),
 rbind(ffd_ci_18_abs[2,] ,temp_ci_18_abs[2,], nfl_ci_18_abs[2,],
        ffd_temp_ci_18_abs[2,])
)
colnames(BCIs_selection_2018_abs)<-c("lower", "upper")</pre>
rownames(BCIs_selection_2018_abs) <- c("ffd","temp","nfl","ffd:temp")</pre>
save(BCIs_selection_2018_abs,file="output/BCIs_selection_2018_abs.RData")
BCIs_selection_2018_abs
##
                    lower
                                upper
## ffd
             -11.7641534
                            3.1112504
## temp
            -153.4487867 -12.8579565
## nfl
             149.9824774 256.8988748
## ffd:temp
               0.0577084
                            0.8070981
```

Tests of residual spatial autocorrelation

Run separate models for each year and test for residual spatial autocorrelation in those.

Hypothesis 1

```
FFD_2017<-lm(ffd~temp, subset(data_plants, year==2017))
FFD_2018<-lm(ffd~temp, subset(data_plants, year==2018))
summ(FFD_2017)</pre>
```

Observations	245
Dependent variable	ffd
Type	OLS linear regression

F(1,243)	29.049
\mathbb{R}^2	0.107
$Adj. R^2$	0.103

	Est.	S.E.	t val.	p
(Intercept)	180.626	0.996	181.397	0.000
$_{\mathrm{temp}}$	-0.332	0.062	-5.390	0.000

summ(FFD_2018)

Observations	104
Dependent variable	ffd
Type	OLS linear regression

F(1,102)	48.102
\mathbb{R}^2	0.320
$Adj. R^2$	0.314

	Est.	S.E.	t val.	p
(Intercept)	195.104	2.206	88.424	0.000
$_{\text{temp}}$	-1.070	0.154	-6.936	0.000

Standard errors: OLS

Spatial correlograms

```
res_FFD_2017<-residuals(FFD_2017)
res_FFD_2018<-residuals(FFD_2018)
```

10 of 100 20 of 100 30 of 100 40 of 100 50 of 100 60 of 100 70 of 100 80 of 100 90

10 of 100 20 of 100 30 of 100 40 of 100 50 of 100 60 of 100 70 of 100 80 of 100 90 plot(correlog_FFD_2017)

Correlogram

plot(correlog_FFD_2018)

Correlogram

Moran's I

Calculation of global Moran's I with a permutation test (1000 random permutations), based on a connectivity matrix of pairwise Euclidean distances among the plants up to a distance of 30 m.

moran_FFD_2017 # Significant autocorrelation in the residuals

```
##
## Monte-Carlo simulation of Moran I
##
## data: res_FFD_2017
## weights: data_plants.listw_2017
## number of simulations + 1: 1000
##
## statistic = 0.04303, observed rank = 985, p-value = 0.015
## alternative hypothesis: greater
```

```
##
    Monte-Carlo simulation of Moran I
##
##
## data: res_FFD_2018
## weights: data_plants.listw_2018
## number of simulations + 1: 1000
## statistic = 0.082696, observed rank = 956, p-value = 0.044
## alternative hypothesis: greater
Moran's eigenvector mapping
ME.FFD_2017 <-ME(FFD_2017, listw=data_plants.listw_2017,
                data=subset(data_plants,year==2017),
                alpha=0.1,verbose=T)
## eV[,11], I: 0.01463088 ZI: NA, pr(ZI): 0.18
ME.FFD_2018 <-ME(FFD_2018, listw=data_plants.listw_2018,
                data=subset(data_plants,year==2018),
                alpha=0.1,verbose=T)
## eV[,4], I: 0.02947613 ZI: NA, pr(ZI): 0.21
vector1_2017_FFD<-ME.FFD_2017$vectors[,1]</pre>
vector1_2018_FFD<-ME.FFD_2018$vectors[,1]</pre>
FFD_2017_ME<-lm(ffd~temp+vector1_2017_FFD,
                 subset(data_plants,year==2017))
FFD_2018_ME<-lm(ffd~temp+vector1_2018_FFD,subset(data_plants,year==2018))
summ(FFD_2017_ME)
                            Observations
                                                                245
                            Dependent variable
                                                                 ffd
                                                OLS linear regression
                            Type
                                        F(2,242)
                                                  18.245
                                        \mathbb{R}^2
                                                   0.131
                                        Adj. R<sup>2</sup>
                                                   0.124
summ(FFD_2018_ME)
```

moran_FFD_2018 # Significant autocorrelation in the residuals

Tests of residual spatial autocorrelation

	Est.	S.E.	t val.	p
(Intercept)	180.866	0.988	182.973	0.000
temp	-0.349	0.061	-5.700	0.000
$vector1_2017_FFD$	19.614	7.548	2.599	0.010

Observations	104
Dependent variable	ffd
Type	OLS linear regression

F(2,101)	28.531
\mathbb{R}^2	0.361
$Adj. R^2$	0.348

	Est.	S.E.	t val.	р
(Intercept)	193.920	2.200	88.129	0.000
temp	-0.974	0.155	-6.284	0.000
$vector1_2018_FFD$	28.781	11.368	2.532	0.013

Standard errors: OLS

```
res_FFD_2017_ME<-residuals(FFD_2017_ME)
res_FFD_2018_ME<-residuals(FFD_2018_ME)
```

Spatial correlograms

10 of 100 20 of 100 30 of 100 40 of 100 50 of 100 60 of 100 70 of 100 80 of 100 90

10 of 100 20 of 100 30 of 100 40 of 100 50 of 100 60 of 100 70 of 100 80 of 100 90 plot(correlog_FFD_2017_ME)

Correlogram

plot(correlog_FFD_2018_ME)

Correlogram

Moran's I Calculation of global Moran's I with a permutation test (1000 random permutations), based on a connectivity matrix of pairwise Euclidean distances among the plants up to a distance of 30 m.

moran_FFD_2017_ME # No significant autocorrelation in the residuals

```
##
## Monte-Carlo simulation of Moran I
##
## data: res_FFD_2017_ME
## weights: data_plants.listw_2017
## number of simulations + 1: 1000
##
## statistic = 0.014631, observed rank = 831, p-value = 0.169
## alternative hypothesis: greater

moran_FFD_2018_ME # No significant autocorrelation in the residuals
```

```
##
## Monte-Carlo simulation of Moran I
##
## data: res_FFD_2018_ME
## weights: data_plants.listw_2018
## number of simulations + 1: 1000
##
## statistic = 0.029476, observed rank = 795, p-value = 0.205
## alternative hypothesis: greater
```

AppS6 - Figure S1

```
# FFD 2017
corr_FFD_2017<-data.frame(cbind(distance=
                                 as.vector(correlog_FFD_2017$mean.of.class[1:31]),
                      correlation=as.vector(correlog FFD 2017$correlation[1:31]),
                      p=as.vector(correlog_FFD_2017$p[1:31])))
corr FFD 2017 ME<-data.frame(cbind(distance=</pre>
                                    as.vector(
                                      correlog_FFD_2017_ME$mean.of.class[1:31]),
                                  correlation=
                                    as.vector(correlog FFD 2017 ME$correlation[1:31]),
                                   p=as.vector(correlog_FFD_2017_ME$p[1:31])))
corr_FFD_2017$type<-"FFD_2017"
corr_FFD_2017_ME$type<-"FFD_2017_ME"
corr_FFD_2017<-rbind(corr_FFD_2017,corr_FFD_2017_ME)</pre>
corr_FFD_2017$sig<-as.factor(ifelse(corr_FFD_2017$p<0.05,1,0))
# FFD 2018
corr_FFD_2018<-data.frame(cbind(distance=</pre>
                                 as.vector(correlog_FFD_2018$mean.of.class[1:31]),
                      correlation=as.vector(correlog_FFD_2018$correlation[1:31]),
                      p=as.vector(correlog FFD 2018$p[1:31])))
corr FFD 2018 ME<-data.frame(cbind(distance=</pre>
                                      correlog_FFD_2018_ME$mean.of.class[1:31]),
                                  correlation=
                                    as.vector(correlog_FFD_2018_ME$correlation[1:31]),
                                   p=as.vector(correlog FFD 2018 ME$p[1:31])))
corr FFD 2018$type<-"FFD 2018"
corr_FFD_2018_ME$type<-"FFD_2018_ME"
corr_FFD_2018<-rbind(corr_FFD_2018,corr_FFD_2018_ME)</pre>
corr_FFD_2018$sig<-as.factor(ifelse(corr_FFD_2018$p<0.05,1,0))</pre>
AppS6_FigS1<-grid.arrange(
  ggplot(corr_FFD_2017,aes(x=distance, y=correlation)) +
    geom_point(aes(colour=type, shape=sig), size=2) +
    geom_line(aes(colour=type)) + ylab(NULL)+
    scale_x_continuous("Distance (mean of class)",limits=c(0,30),
                       breaks=c(0,5,10,15,20,25,30)) +
```

breaks = seq(-2,1,0.5))+

scale y continuous(limits=c(-2,1),

```
scale_shape_manual(values=c(1,19))+
  scale_color_manual(values=c("black","darkgrey"))+
  geom_hline(aes(yintercept=0), colour="grey",linetype=3)+
 my_theme()+ggtitle("2017")+
  annotation_custom(grobTree(textGrob("Global Moran's I = 0.043, p = 0.025",
                                      x=0.1, y=0.97, hjust=0,
                                      gp=gpar(col="black",fontsize=14,
                                              fontfamily="serif"))))+
 annotation_custom(grobTree(textGrob("Global Moran's I = 0.015, p = 0.156",
                                      x=0.1, y=0.92, hjust=0,
                                      gp=gpar(col="darkgrey",fontsize=14,
                                              fontfamily="serif")))),
ggplot(corr_FFD_2018,aes(x=distance, y=correlation)) +
  geom_point(aes(colour=type,shape=sig),size=2) +
  geom_line(aes(colour=type)) + ylab(NULL)+
  scale_x_continuous("Distance (mean of class)",limits=c(0,30),
                     breaks=c(0,5,10,15,20,25,30)) +
  scale_y_continuous(limits=c(-2,1),
                     breaks = seq(-2,1,0.5))+
  scale_shape_manual(values=c(1,19))+
  scale_color_manual(values=c("black","darkgrey"))+
  geom_hline(aes(yintercept=0), colour="grey",linetype=3)+
 my theme()+ggtitle("2018")+
  annotation_custom(grobTree(textGrob("Global Moran's I = 0.083, p = 0.043",
                                      x=0.1, y=0.97, hjust=0,
                                      gp=gpar(col="black",fontsize=14,
                                              fontfamily="serif"))))+
  annotation_custom(grobTree(textGrob("Global Moran's I = 0.029, p = 0.213",
                                      x=0.1,y=0.92,hjust=0,
                                      gp=gpar(col="darkgrey",fontsize=14,
                                              fontfamily="serif")))),
ncol=2,left=textGrob("Correlation (Moran's I)",just="center",
                    hjust=0.42,
                    gp=gpar(fontsize=16,fontfamily="serif"),
                    rot = 90))
```


Hypothesis 2

Observations	245
Dependent variable	n_seed_round
Type	Generalized linear model
Family	Negative Binomial(2.0993)
Link	log

$\chi^2()$	0.722	0.088	3273.106	3287.112
Pseudo-R ² (Cragg-Uhler)	0.722	0.088	3273.106	3287.112
Pseudo-R ² (McFadden)	0.722	0.088	3273.106	3287.112
AIC	0.722	0.088	3273.106	3287.112
BIC	0.722	0.088	3273.106	3287.112

	Est.	S.E.	z val.	p	VIF
(Intercept)	4.079	0.113	36.029	0.000	NA
$_{ m temp}$	-0.030	0.006	-5.117	0.000	1.094
$\log(\mathrm{nfl})$	0.982	0.042	23.377	0.000	1.094

Standard errors: MLE

summ(fitness_2018, vif=T)

Observations	104
Dependent variable	n_seed_round
Type	Generalized linear model
Family	Negative Binomial(1.9313)
Link	log

$\chi^2()$	0.684	0.091	1203.369	1213.947
Pseudo-R ² (Cragg-Uhler)	0.684	0.091	1203.369	1213.947
Pseudo-R ² (McFadden)	0.684	0.091	1203.369	1213.947
AIC	0.684	0.091	1203.369	1213.947
BIC	0.684	0.091	1203.369	1213.947

	Est.	S.E.	z val.	p	VIF
(Intercept)	3.543	0.188	18.878	0.000	NA
temp	-0.042	0.010	-4.166	0.000	1.003
$\log(nfl)$	0.981	0.069	14.202	0.000	1.003

Standard errors: MLE

Spatial correlograms

```
res_fitness_2017<-residuals(fitness_2017)
res_fitness_2018<-residuals(fitness_2018)
```

10 of 100 20 of 100 30 of 100 40 of 100 50 of 100 60 of 100 70 of 100 80 of 100 90

10 of 100 20 of 100 30 of 100 40 of 100 50 of 100 60 of 100 70 of 100 80 of 100 90 plot(correlog_fitness_2017)

Correlogram

plot(correlog_fitness_2018)

Moran's I

Calculation of global Moran's I with a permutation test (1000 random permutations), based on a connectivity matrix of pairwise Euclidean distances among the plants up to a distance of 30 m.

```
moran_fitness_2017 # Significant autocorrelation in the residuals
```

```
##
## Monte-Carlo simulation of Moran I
##
## data: res_fitness_2017
## weights: data_plants.listw_2017
## number of simulations + 1: 1000
##
## statistic = 0.12186, observed rank = 1000, p-value = 0.001
## alternative hypothesis: greater
```

moran_fitness_2018 # No significant autocorrelation in the residuals

```
##
## Monte-Carlo simulation of Moran I
##
## data: res_fitness_2018
## weights: data_plants.listw_2018
## number of simulations + 1: 1000
##
## statistic = 0.054454, observed rank = 888, p-value = 0.112
## alternative hypothesis: greater
```

Moran's eigenvector mapping

Observations	245
Dependent variable	n_seed_round
Type	Generalized linear model
Family	Negative $Binomial(2.2191)$
Link	\log

$\chi^2()$	0.739	0.092	3261.922	3282.929
Pseudo-R ² (Cragg-Uhler)	0.739	0.092	3261.922	3282.929
Pseudo-R ² (McFadden)	0.739	0.092	3261.922	3282.929
AIC	0.739	0.092	3261.922	3282.929
BIC	0.739	0.092	3261.922	3282.929

Tests of residual spatial autocorrelation

```
res_fitness_2017_ME<-residuals(fitness_2017_ME)
```

	Est.	S.E.	z val.	p
(Intercept)	4.102	0.112	36.788	0.000
temp	-0.029	0.006	-5.027	0.000
$\log(nfl)$	0.960	0.042	22.870	0.000
$vector1_2017_fitness$	-2.297	0.684	-3.360	0.001
$vector2_2017_fitness$	-1.418	0.693	-2.046	0.041

Standard errors: MLE

Spatial correlograms

```
## 10 of 100 20 of 100 30 of 100 40 of 100 50 of 100 60 of 100 70 of 100 80 of 100 90 plot(correlog_fitness_2017_ME)
```

Correlogram

Moran's I Calculation of global Moran's I with a permutation test (1000 random permutations), based on a connectivity matrix of pairwise Euclidean distances among the plants up to a distance of 30 m.

```
moran_fitness_2017_ME<- moran.mc(res_fitness_2017_ME,
                                  listw=data_plants.listw_2017,nsim=999)
moran_fitness_2017_ME # STILL significant autocorrelation in the residuals
##
## Monte-Carlo simulation of Moran I
##
## data: res_fitness_2017_ME
## weights: data plants.listw 2017
## number of simulations + 1: 1000
## statistic = 0.098683, observed rank = 1000, p-value = 0.001
## alternative hypothesis: greater
AppS6 - Figure S2
# fitness_2017
corr_fitness_2017<-data.frame(cbind(distance=</pre>
                                as.vector(correlog fitness 2017\mathbb{mean.of.class[1:31]),
                      correlation=as.vector(correlog_fitness_2017$correlation[1:31]),
                      p=as.vector(correlog fitness 2017$p[1:31])))
corr_fitness_2017_ME<-data.frame(cbind(distance=</pre>
                                    as.vector(
                                      correlog_fitness_2017_ME$mean.of.class[1:31]),
                                    as.vector(correlog_fitness_2017_ME$correlation[1:31]),
                                   p=as.vector(correlog_fitness_2017_ME$p[1:31])))
corr_fitness_2017$type<-"fitness_2017"
corr_fitness_2017_ME$type<-"fitness_2017_ME"
corr_fitness_2017<-rbind(corr_fitness_2017,corr_fitness_2017_ME)</pre>
corr_fitness_2017$sig<-as.factor(ifelse(corr_fitness_2017$p<0.05,1,0))
# fitness 2018
corr_fitness_2018<-data.frame(cbind(distance=</pre>
                                as.vector(correlog_fitness_2018$mean.of.class[1:31]),
                      correlation=as.vector(correlog fitness 2018$correlation[1:31]),
                      p=as.vector(correlog_fitness_2018$p[1:31])))
corr_fitness_2018$sig<-as.factor(ifelse(corr_fitness_2018$p<0.05,1,0))
AppS6_FigS2<-grid.arrange(
  ggplot(corr_fitness_2017,aes(x=distance, y=correlation)) +
   geom_point(aes(colour=type,shape=sig),size=2) +
    geom_line(aes(colour=type)) + ylab(NULL)+
    scale_x_continuous("Distance (mean of class)",limits=c(0,30),
                       breaks=c(0,5,10,15,20,25,30)) +
    scale_y_continuous(limits=c(-2,1),
                       breaks = seq(-2,1,0.5))+
    scale_shape_manual(values=c(1,19))+
```

scale color manual(values=c("black", "darkgrey"))+

geom_hline(aes(yintercept=0), colour="grey",linetype=3)+

```
my_theme()+ggtitle("2017")+
  annotation_custom(grobTree(textGrob("Global Moran's I = 0.122, p = 0.001",
                                      x=0.1, y=0.97, hjust=0,
                                      gp=gpar(col="black",fontsize=14,
                                              fontfamily="serif"))))+
  annotation_custom(grobTree(textGrob("Global Moran's I = 0.099, p = 0.001",
                                      x=0.1,y=0.92,hjust=0,
                                      gp=gpar(col="darkgrey",fontsize=14,
                                              fontfamily="serif")))),
ggplot(corr_fitness_2018,aes(x=distance, y=correlation)) +
 geom_point(aes(shape=sig),size=2,color="black") +
 geom_line(color="black") + ylab(NULL)+
 scale_x_continuous("Distance (mean of class)",limits=c(0,30),
                     breaks=c(0,5,10,15,20,25,30)) +
  scale_y_continuous(limits=c(-2,1),
                     breaks = seq(-2,1,0.5))+
  scale_shape_manual(values=c(1,19))+
 geom_hline(aes(yintercept=0), colour="grey",linetype=3)+
 my_theme()+ggtitle("2018")+
  annotation_custom(grobTree(textGrob("Global Moran's I = 0.054, p = 0.109",
                                      x=0.1, y=0.97, hjust=0,
                                      gp=gpar(col="black",fontsize=14,
                                              fontfamily="serif")))),
ncol=2,left=textGrob("Correlation (Moran's I)",just="center",
                    hjust=0.42,
                    gp=gpar(fontsize=16,fontfamily="serif"),
                    rot = 90)
```


Hypothesis 3

Observations	245
Dependent variable	$nseed_rel$
Type	OLS linear regression

F(4,240)	51.549
\mathbb{R}^2	0.462
$Adj. R^2$	0.453

	Est.	S.E.	t val.	р	VIF
(Intercept)	1.408	0.166	8.460	0.000	NA
ffd_std	0.331	0.206	1.602	0.110	7.311
temp	-0.030	0.010	-2.937	0.004	1.151
nfl_std	1.213	0.089	13.663	0.000	1.354
$ffd_std:temp$	-0.009	0.010	-0.848	0.397	6.682

Standard errors: OLS

summ(selection_2018, vif=T)

Observations	104
Dependent variable	$nseed_rel$
Type	OLS linear regression

F(4,99)	34.660
\mathbb{R}^2	0.583
$Adj. R^2$	0.567

	Est.	S.E.	t val.	p	VIF
(Intercept)	1.374	0.201	6.825	0.000	NA
ffd_std	-0.293	0.205	-1.431	0.156	5.999
temp	-0.021	0.016	-1.368	0.174	1.805
nfl_std	0.976	0.101	9.679	0.000	1.453
$ffd_std:temp$	0.027	0.012	2.241	0.027	5.976

Standard errors: OLS

BCA intervals

Used for assessing significance.

```
# ffd
slp <- function(selection_2017) coef(selection_2017)[2]
b <- car::Boot(selection_2017,slp, R=10000) # note the capital B
b1 <- boot::boot.ci(b,type="bca")
ffd_ci_17 <- as.data.frame(b1$bca[1,4:5])
rm(slp, b, b1)</pre>
```

```
# temp
slp <- function(selection_2017) coef(selection_2017)[3]
b <- car::Boot(selection_2017,slp, R=10000) # note the capital B
b1 <- boot::boot.ci(b,type="bca")
temp_ci_17 <- as.data.frame(b1$bca[1,4:5])
rm(slp, b, b1)</pre>
```

```
# nfl
slp <- function(selection_2017) coef(selection_2017)[4]
b <- car::Boot(selection_2017,slp, R=10000) # note the capital B
b1 <- boot::boot.ci(b,type="bca")
nfl_ci_17 <- as.data.frame(b1$bca[1,4:5])
rm(slp, b, b1)</pre>
```

```
# ffd:temp
slp <- function(selection_2017) coef(selection_2017)[5]
b <- car::Boot(selection_2017,slp, R=10000) # note the capital B
b1 <- boot::boot.ci(b,type="bca")
ffd_temp_ci_17 <- as.data.frame(b1$bca[1,4:5])
rm(slp, b, b1)</pre>
```

```
BCIs_selection_2017
```

$\boldsymbol{2017}$

```
## lower upper
## ffd 0.02385641 0.798458215
## temp -0.05521903 -0.012722425
## nfl 0.90770421 1.694343153
## ffd:temp -0.02624749 0.005367757
```

```
# ffd
slp <- function(selection_2018) coef(selection_2018)[2]
b <- car::Boot(selection_2018,slp, R=10000) # note the capital B
b1 <- boot::boot.ci(b,type="bca")
ffd_ci_17 <- as.data.frame(b1$bca[1,4:5])
rm(slp, b, b1)</pre>
```

```
# temp
slp <- function(selection_2018) coef(selection_2018)[3]</pre>
b <- car::Boot(selection_2018,slp, R=10000) # note the capital B
b1 <- boot::boot.ci(b,type="bca")</pre>
temp_ci_17 <- as.data.frame(b1$bca[1,4:5])</pre>
rm(slp, b, b1)
# nfl
slp <- function(selection_2018) coef(selection_2018)[4]</pre>
b <- car::Boot(selection_2018,slp, R=10000) # note the capital B
b1 <- boot::boot.ci(b,type="bca")</pre>
nfl_ci_17 <- as.data.frame(b1$bca[1,4:5])</pre>
rm(slp, b, b1)
# ffd:temp
slp <- function(selection_2018) coef(selection_2018)[5]</pre>
b <- car::Boot(selection_2018,slp, R=10000) # note the capital B
b1 <- boot::boot.ci(b,type="bca")</pre>
ffd_temp_ci_17 <- as.data.frame(b1$bca[1,4:5])</pre>
rm(slp, b, b1)
# Save confidence intervals as a table
BCIs_selection_2018 <- cbind(</pre>
 rbind(ffd_ci_17[1,] ,temp_ci_17[1,], nfl_ci_17[1,],
        ffd_temp_ci_17[1,]),
 rbind(ffd_ci_17[2,] ,temp_ci_17[2,], nfl_ci_17[2,],
        ffd temp ci 17[2,])
)
colnames(BCIs_selection_2018)<-c("lower", "upper")</pre>
rownames(BCIs_selection_2018) <- c("ffd","temp","nfl","ffd:temp")</pre>
save(BCIs_selection_2018,file="output/BCIs_selection_2018.RData")
BCIs_selection_2018
2018
##
                    lower
                                  upper
## ffd
            -0.746581836 0.225209947
           -0.041135154 -0.001714171
## temp
## nfl
            0.734937706 1.261393143
## ffd:temp 0.004130652 0.051821909
```

Spatial correlograms

```
res_selection_2017<-residuals(selection_2017)</pre>
res_selection_2018<-residuals(selection_2018)</pre>
correlog_selection_2017 <- correlog(x=subset(data_plants,year==2017)$x,</pre>
                             y=subset(data_plants,year==2017)$y,
                             res_selection_2017,increment=1, resamp=100,quiet=F)
          100 20 of
                      100 30
                                   100 40
                                               100 50 of 100 60 of 100 70 of
                                                                                      100 80
## 10
       of
                               of
                                            of
                                                                                                  100 90
correlog_selection_2018 <- correlog(x=subset(data_plants, year==2018)$x,</pre>
                             y=subset(data_plants, year==2018)$y,
                             res_selection_2018,increment=1, resamp=100,quiet=F)
```

10 of 100 20 of 100 30 of 100 40 of 100 50 of 100 60 of 100 70 of 100 80 of 100 90

plot(correlog_selection_2017)

Correlogram

plot(correlog_selection_2018)

Moran's I

Calculation of global Moran's I with a permutation test (1000 random permutations), based on a connectivity matrix of pairwise Euclidean distances among the plants up to a distance of 30 m.

moran_selection_2017 # Significant autocorrelation in the residuals

```
##
## Monte-Carlo simulation of Moran I
##
## data: res_selection_2017
## weights: data_plants.listw_2017
## number of simulations + 1: 1000
##
## statistic = 0.097925, observed rank = 1000, p-value = 0.001
## alternative hypothesis: greater
```

moran_selection_2018 # No significant autocorrelation in the residuals

```
##
## Monte-Carlo simulation of Moran I
##
## data: res_selection_2018
## weights: data_plants.listw_2018
## number of simulations + 1: 1000
##
## statistic = 0.025308, observed rank = 792, p-value = 0.208
## alternative hypothesis: greater
```

Moran's eigenvector mapping

Observations	245
Dependent variable	$nseed_rel$
Type	OLS linear regression

F(6,238)	41.275
\mathbb{R}^2	0.510
$Adj. R^2$	0.498

	Est.	S.E.	t val.	p
(Intercept)	1.377	0.163	8.456	0.000
ffd_std	0.422	0.200	2.113	0.036
temp	-0.029	0.010	-2.848	0.005
nfl_std	1.150	0.086	13.326	0.000
$vector1_2017_selection$	-4.244	1.158	-3.666	0.000
vector2_2017_selection ffd_std:temp	-3.725 -0.012	1.188 0.010	-3.135 -1.284	0.002 0.200

Standard errors: OLS

```
# ffd
slp <- function(selection_2017_ME) coef(selection_2017_ME)[2]</pre>
b <- car::Boot(selection_2017_ME,slp, R=10000) # note the capital B
b1 <- boot::boot.ci(b,type="bca")</pre>
ffd_ci_17 <- as.data.frame(b1$bca[1,4:5])</pre>
rm(slp, b, b1)
# temp
slp <- function(selection_2017_ME) coef(selection_2017_ME)[3]</pre>
b <- car::Boot(selection_2017_ME,slp, R=10000) # note the capital B
b1 <- boot::boot.ci(b,type="bca")</pre>
temp_ci_17 <- as.data.frame(b1$bca[1,4:5])</pre>
rm(slp, b, b1)
# nfl
slp <- function(selection 2017 ME) coef(selection 2017 ME)[4]</pre>
b <- car::Boot(selection_2017_ME,slp, R=10000) # note the capital B
b1 <- boot::boot.ci(b,type="bca")</pre>
nfl_ci_17 <- as.data.frame(b1$bca[1,4:5])</pre>
rm(slp, b, b1)
# vector1
slp <- function(selection_2017_ME) coef(selection_2017_ME)[5]</pre>
b <- car::Boot(selection_2017_ME,slp, R=10000) # note the capital B
b1 <- boot::boot.ci(b,type="bca")</pre>
vector1_ci_17 <- as.data.frame(b1$bca[1,4:5])</pre>
rm(slp, b, b1)
# vector2
slp <- function(selection 2017 ME) coef(selection 2017 ME)[6]</pre>
b <- car::Boot(selection_2017_ME,slp, R=10000) # note the capital B
b1 <- boot::boot.ci(b,type="bca")</pre>
vector2_ci_17 <- as.data.frame(b1$bca[1,4:5])</pre>
rm(slp, b, b1)
# ffd:temp
slp <- function(selection_2017_ME) coef(selection_2017_ME)[7]</pre>
b <- car::Boot(selection_2017_ME,slp, R=10000) # note the capital B
b1 <- boot::boot.ci(b,type="bca")</pre>
ffd temp ci 17 <- as.data.frame(b1$bca[1,4:5])
rm(slp, b, b1)
```

```
BCIs_selection_2017_ME
```

2017

```
## lower upper
## ffd 0.08341493 0.924404464
## temp -0.05060868 -0.012215293
## nfl 0.88013003 1.512195683
## vector1 -6.95502029 -2.348393244
## vector2 -9.17287152 -0.337324697
## ffd:temp -0.03097270 0.001702003
```

Tests of residual spatial autocorrelation

```
res_selection_2017_ME<-residuals(selection_2017_ME)</pre>
```

Spatial correlograms

```
## 10 of 100 20 of 100 30 of 100 40 of 100 50 of 100 60 of 100 70 of 100 80 of 100 90 plot(correlog_selection_2017_ME)
```


Moran's I Calculation of global Moran's I with a permutation test (1000 random permutations), based on a connectivity matrix of pairwise Euclidean distances among the plants up to a distance of 30 m.

moran_selection_2017_ME # No significant autocorrelation in the residuals

```
##
## Monte-Carlo simulation of Moran I
##
## data: res_selection_2017_ME
## weights: data_plants.listw_2017
## number of simulations + 1: 1000
##
## statistic = 0.019028, observed rank = 883, p-value = 0.117
## alternative hypothesis: greater
```

App S6 - Figure S3

```
# selection_2017
corr_selection_2017<-data.frame(cbind(distance=
                                 as.vector(correlog_selection_2017$mean.of.class[1:31]),
                      correlation=as.vector(correlog_selection_2017$correlation[1:31]),
                      p=as.vector(correlog_selection_2017$p[1:31])))
corr_selection_2017_ME<-data.frame(cbind(distance=</pre>
                                    as.vector(
                                      correlog selection 2017 ME$mean.of.class[1:31]),
                                  correlation=
                                    as.vector(correlog_selection_2017_ME$correlation[1:31]),
                                   p=as.vector(correlog_selection_2017_ME$p[1:31])))
corr_selection_2017$type<-"selection_2017"</pre>
corr_selection_2017_ME$type<-"selection_2017_ME"</pre>
corr selection 2017 <- rbind(corr selection 2017,corr selection 2017 ME)
corr_selection_2017$sig<-as.factor(ifelse(corr_selection_2017$p<0.05,1,0))</pre>
# selection_2018
corr_selection_2018<-data.frame(cbind(distance=</pre>
                                 as.vector(correlog_selection_2018$mean.of.class[1:31]),
                      correlation=as.vector(correlog_selection_2018$correlation[1:31]),
                      p=as.vector(correlog_selection_2018$p[1:31])))
corr_selection_2018$sig<-as.factor(ifelse(corr_selection_2018$p<0.05,1,0))</pre>
AppS6_FigS3<-grid.arrange(</pre>
  ggplot(corr selection 2017,aes(x=distance, y=correlation)) +
    geom_point(aes(colour=type,shape=sig),size=2) +
    geom_line(aes(colour=type)) + ylab(NULL)+
    scale_x_continuous("Distance (mean of class)",limits=c(0,30),
                       breaks=c(0,5,10,15,20,25,30)) +
    scale_y_continuous(limits=c(-2,1),
                       breaks = seq(-2,1,0.5))+
    scale_shape_manual(values=c(1,19))+
    scale_color_manual(values=c("black", "darkgrey"))+
    geom_hline(aes(yintercept=0), colour="grey",linetype=3)+
    my theme()+ggtitle("2017")+
    annotation custom(grobTree(textGrob("Global Moran's I = 0.098, p = 0.001",
                                         x=0.1, y=0.97, hjust=0,
                                         gp=gpar(col="black",fontsize=14,
                                                 fontfamily="serif"))))+
    annotation_custom(grobTree(textGrob("Global Moran's I = 0.019, p = 0.124",
                                         x=0.1, y=0.92, hjust=0,
                                         gp=gpar(col="darkgrey",fontsize=14,
                                                 fontfamily="serif")))),
  ggplot(corr_selection_2018,aes(x=distance, y=correlation)) +
    geom_point(aes(shape=sig),size=2,color="black") +
    geom_line(color="black") + ylab(NULL)+
    scale_x_continuous("Distance (mean of class)",limits=c(0,30),
                       breaks=c(0,5,10,15,20,25,30)) +
    scale_y_continuous(limits=c(-2,1),
                       breaks = seq(-2,1,0.5))+
    scale_shape_manual(values=c(1,19))+
    geom hline(aes(yintercept=0), colour="grey",linetype=3)+
    my_theme()+ggtitle("2018")+
```


Effect of temperature on the relationship absolute fitness-FFD

Spatial correlograms

```
res_selectionabs_2017,increment=1, resamp=100,
quiet=F)
```

10 of 100 20 of 100 30 of 100 40 of 100 50 of 100 60 of 100 70 of 100 80 of 100 90 plot(correlog_selectionabs_2017)

Correlogram

plot(correlog_selectionabs_2018)

Moran's I

Calculation of global Moran's I with a permutation test (1000 random permutations), based on a connectivity matrix of pairwise Euclidean distances among the plants up to a distance of 30 m.

moran_selectionabs_2017 # Significant autocorrelation in the residuals

```
##
## Monte-Carlo simulation of Moran I
##
## data: res_selectionabs_2017
## weights: data_plants.listw_2017
## number of simulations + 1: 1000
##
## statistic = 0.097925, observed rank = 1000, p-value = 0.001
## alternative hypothesis: greater
```

```
##
## Monte-Carlo simulation of Moran I
##
## data: res_selectionabs_2018
## weights: data_plants.listw_2018
## number of simulations + 1: 1000
##
## statistic = 0.025308, observed rank = 798, p-value = 0.202
## alternative hypothesis: greater
```

Moran's eigenvector mapping

Observations	245
Dependent variable	nseed
Type	OLS linear regression

F(6,238)	78.796
\mathbb{R}^2	0.665
$Adj. R^2$	0.657

	Est.	S.E.	t val.	p
(Intercept)	2075.105	1998.064	1.039	0.300
ffd	-9.859	11.230	-0.878	0.381
temp	-137.335	99.447	-1.381	0.169
nfl	28.109	1.461	19.241	0.000
vector1_2017_selectionabs	-1924.663	542.057	-3.551	0.000
vector2_2017_selectionabs ffd:temp	-965.923 0.683	563.339 0.564	-1.715 1.210	$0.088 \\ 0.227$

Standard errors: OLS

```
# ffd
slp <- function(selectionabs_2017_ME) coef(selectionabs_2017_ME)[2]</pre>
b <- car::Boot(selectionabs_2017_ME,slp, R=10000) # note the capital B
b1 <- boot::boot.ci(b,type="bca")</pre>
ffd_ci_17 <- as.data.frame(b1$bca[1,4:5])</pre>
rm(slp, b, b1)
# temp
slp <- function(selectionabs_2017_ME) coef(selectionabs_2017_ME)[3]</pre>
b <- car::Boot(selectionabs_2017_ME,slp, R=10000) # note the capital B
b1 <- boot::boot.ci(b,type="bca")</pre>
temp_ci_17 <- as.data.frame(b1$bca[1,4:5])</pre>
rm(slp, b, b1)
# nfl
slp <- function(selectionabs 2017 ME) coef(selectionabs 2017 ME)[4]</pre>
b <- car::Boot(selectionabs_2017_ME,slp, R=10000) # note the capital B
b1 <- boot::boot.ci(b,type="bca")</pre>
nfl_ci_17 <- as.data.frame(b1$bca[1,4:5])</pre>
rm(slp, b, b1)
# vector1
slp <- function(selectionabs_2017_ME) coef(selectionabs_2017_ME)[5]</pre>
b <- car::Boot(selectionabs_2017_ME,slp, R=10000) # note the capital B
b1 <- boot::boot.ci(b,type="bca")</pre>
vector1_ci_17 <- as.data.frame(b1$bca[1,4:5])</pre>
rm(slp, b, b1)
# vector2
slp <- function(selectionabs 2017 ME) coef(selectionabs 2017 ME)[6]</pre>
b <- car::Boot(selectionabs_2017_ME,slp, R=10000) # note the capital B
b1 <- boot::boot.ci(b,type="bca")</pre>
vector2_ci_17 <- as.data.frame(b1$bca[1,4:5])</pre>
rm(slp, b, b1)
# ffd:temp
slp <- function(selectionabs_2017_ME) coef(selectionabs_2017_ME)[7]</pre>
b <- car::Boot(selectionabs_2017_ME,slp, R=10000) # note the capital B
b1 <- boot::boot.ci(b,type="bca")</pre>
ffd temp ci 17 <- as.data.frame(b1$bca[1,4:5])
rm(slp, b, b1)
```

```
BCIs_selectionabs_2017_ME
```

2017

```
##
                   lower
                                upper
## ffd
             -24.9035001
                            13.791561
                            29.314151
            -286.6793309
## temp
              20.7376721
                            34.045376
## nfl
## vector1 -3210.7847577 -1060.425022
## vector2 -2256.1513349
                           213.254205
## ffd:temp
              -0.3372933
                             1.471582
```

Tests of residual spatial autocorrelation

```
res_selectionabs_2017_ME<-residuals(selectionabs_2017_ME)
```

Spatial correlograms

```
## 10 of 100 20 of 100 30 of 100 40 of 100 50 of 100 60 of 100 70 of 100 80 of 100 90 plot(correlog_selectionabs_2017_ME)
```


Moran's I Calculation of global Moran's I with a permutation test (1000 random permutations), based on a connectivity matrix of pairwise Euclidean distances among the plants up to a distance of 30 m.

moran_selectionabs_2017_ME # Still significant autocorrelation in the residuals

```
##
## Monte-Carlo simulation of Moran I
##
## data: res_selectionabs_2017_ME
## weights: data_plants.listw_2017
## number of simulations + 1: 1000
##
## statistic = 0.065462, observed rank = 996, p-value = 0.004
## alternative hypothesis: greater
```

AppS6 - Figure S4

```
# selectionabs_2017
corr_selectionabs_2017<-data.frame(cbind(distance=</pre>
```

```
as.vector(correlog_selectionabs_2017$mean.of.class[1:31]),
                      correlation=as.vector(correlog_selectionabs_2017$correlation[1:31]),
                      p=as.vector(correlog_selectionabs_2017$p[1:31])))
corr_selectionabs_2017_ME<-data.frame(cbind(distance=
                                    as.vector(
                                      correlog_selectionabs_2017_ME$mean.of.class[1:31]),
                                  correlation=
                                   as.vector(correlog selectionabs 2017 ME$correlation[1:31]),
                                  p=as.vector(correlog_selectionabs_2017_ME$p[1:31])))
corr_selectionabs_2017$type<-"selectionabs_2017"
corr_selectionabs_2017_ME$type<-"selectionabs_2017_ME"
corr_selectionabs_2017<-rbind(corr_selectionabs_2017,corr_selectionabs_2017_ME)</pre>
corr_selectionabs_2017$sig<-as.factor(ifelse(corr_selectionabs_2017$p<0.05,1,0))</pre>
# selectionabs_2018
corr_selectionabs_2018<-data.frame(cbind(distance=</pre>
                                 as.vector(correlog_selectionabs_2018$mean.of.class[1:31]),
                      correlation=as.vector(correlog_selectionabs_2018$correlation[1:31]),
                      p=as.vector(correlog_selectionabs_2018$p[1:31])))
corr_selectionabs_2018$sig<-as.factor(ifelse(corr_selectionabs_2018$p<0.05,1,0))</pre>
AppS6_FigS4<-grid.arrange(</pre>
  ggplot(corr_selectionabs_2017,aes(x=distance, y=correlation)) +
   geom_point(aes(colour=type,shape=sig),size=2) +
    geom_line(aes(colour=type)) + ylab(NULL)+
    scale x continuous ("Distance (mean of class)", limits=c(0,30),
                       breaks=c(0,5,10,15,20,25,30)) +
    scale_y_continuous(limits=c(-2,1),
                       breaks = seq(-2,1,0.5))+
    scale_shape_manual(values=c(1,19))+
    scale_color_manual(values=c("black", "darkgrey"))+
    geom_hline(aes(yintercept=0), colour="grey",linetype=3)+
   my_theme()+ggtitle("2017")+
    annotation_custom(grobTree(textGrob("Global Moran's I = 0.098, p = 0.001",
                                        x=0.1,y=0.97,hjust=0,
                                         gp=gpar(col="black",fontsize=14,
                                                 fontfamily="serif"))))+
    annotation_custom(grobTree(textGrob("Global Moran's I = 0.065, p = 0.001",
                                        x=0.1, y=0.92, hjust=0,
                                        gp=gpar(col="darkgrey",fontsize=14,
                                                 fontfamily="serif")))),
  ggplot(corr_selectionabs_2018,aes(x=distance, y=correlation)) +
   geom_point(aes(shape=sig),size=2,color="black") +
    geom_line(color="black") + ylab(NULL)+
    scale_x_continuous("Distance (mean of class)",limits=c(0,30),
                       breaks=c(0,5,10,15,20,25,30)) +
    scale_y_continuous(limits=c(-2,1),
                       breaks = seq(-2,1,0.5))+
    scale_shape_manual(values=c(1,19))+
    geom_hline(aes(yintercept=0), colour="grey",linetype=3)+
    my_theme()+ggtitle("2018")+
    annotation_custom(grobTree(textGrob("Global Moran's I = 0.025, p = 0.228",
                                         x=0.1,y=0.97,hjust=0,
```


R Session Info

```
## R version 4.1.2 (2021-11-01)
## Platform: x86_64-w64-mingw32/x64 (64-bit)
## Running under: Windows 10 x64 (build 19043)
##
## Matrix products: default
##
## locale:
```

```
## [1] LC_COLLATE=English_Sweden.1252 LC_CTYPE=English_Sweden.1252
## [3] LC_MONETARY=English_Sweden.1252 LC_NUMERIC=C
## [5] LC_TIME=English_Sweden.1252
##
## attached base packages:
## [1] grid
                           graphics grDevices utils
                 stats
                                                          datasets methods
## [8] base
##
## other attached packages:
  [1] spatialreg_1.2-1
                           Matrix_1.4-0
                                               spdep_1.2-1
                                                                  sf_1.0-5
  [5] spData_2.0.1
                           ncf_1.2-9
                                               sp_1.4-6
                                                                  foreign_0.8-82
## [9] ggrepel_0.9.1
                           viridis_0.6.2
                                               viridisLite_0.4.0
                                                                  car_3.0-12
## [13] lmtest_0.9-39
                           zoo_1.8-9
                                               ggforce_0.3.3
                                                                  lubridate_1.8.0
                                               segmented_1.3-4
                                                                  MASS_7.3-54
## [17] effects_4.2-1
                           carData_3.0-5
## [21] MuMIn_1.43.17
                           ggeffects_1.1.1
                                               kableExtra_1.3.4
                                                                  jtools_2.1.4
## [25] ggpubr_0.4.0
                           broom_0.7.11
                                               RColorBrewer_1.1-2 DHARMa_0.4.5
## [29] gridExtra_2.3
                           knitr_1.37
                                               ggthemes_4.2.4
                                                                  forcats_0.5.1
## [33] stringr 1.4.0
                           dplvr 1.0.6
                                               purrr 0.3.4
                                                                  readr 2.1.1
                                               ggplot2_3.3.5
                           tibble_3.1.2
## [37] tidyr_1.1.4
                                                                  tidyverse_1.3.1
## loaded via a namespace (and not attached):
## [1] readxl_1.3.1
                           backports_1.4.1
                                               systemfonts_1.0.3
                                                                  splines_4.1.2
                           htmltools_0.5.2
                                                                  fansi_0.4.2
##
   [5] digest_0.6.27
                                               gdata_2.18.0
## [9] magrittr 2.0.1
                           tzdb 0.2.0
                                               modelr 0.1.8
                                                                  gmodels_2.18.1
## [13] vroom_1.5.7
                           svglite_2.0.0
                                               colorspace_2.0-1
                                                                  rvest_1.0.2
                           haven_2.4.3
## [17] mitools 2.4
                                               xfun 0.29
                                                                  rgdal_1.5-28
## [21] crayon_1.4.2
                           jsonlite_1.7.3
                                               lme4_1.1-27.1
                                                                  survival_3.2-13
## [25] glue_1.4.2
                           polyclip_1.10-0
                                               gtable_0.3.0
                                                                  webshot_0.5.2
## [29] abind_1.4-5
                           scales_1.1.1
                                               DBI_1.1.2
                                                                  rstatix_0.7.0
## [33] Rcpp_1.0.8
                           units_0.7-2
                                               bit_4.0.4
                                                                  proxy_0.4-26
## [37] stats4_4.1.2
                           survey_4.1-1
                                               httr_1.4.2
                                                                  wk_0.6.0
## [41] ellipsis_0.3.2
                           pkgconfig_2.0.3
                                               farver_2.1.0
                                                                  nnet_7.3-17
## [45] dbplyr_2.1.1
                           deldir_1.0-6
                                               utf8_1.2.1
                                                                  labeling_0.4.2
                                               munsell_0.5.0
                                                                  cellranger_1.1.0
## [49] tidyselect_1.1.1
                           rlang_0.4.10
## [53] tools 4.1.2
                           cli_3.1.1
                                               generics_0.1.1
                                                                  silabelled 1.1.8
                                                                  bit64_4.0.5
## [57] evaluate_0.14
                           fastmap_1.1.0
                                               yaml_2.2.2
## [61] fs 1.5.2
                           pander 0.6.4
                                               s2 1.0.7
                                                                  nlme 3.1-155
## [65] xml2_1.3.3
                           compiler_4.1.2
                                               rstudioapi_0.13
                                                                  e1071_1.7-9
## [69] ggsignif_0.6.3
                           reprex_2.0.1
                                               tweenr_1.0.2
                                                                  stringi_1.7.6
## [73] highr_0.9
                                               classInt_0.4-3
                                                                  nloptr_1.2.2.3
                           lattice_0.20-45
                           pillar 1.6.1
                                               LearnBayes 2.15.1
## [77] vctrs 0.3.8
                                                                  lifecycle 1.0.1
## [81] cowplot 1.1.1
                           insight_0.15.0
                                               raster 3.4-10
                                                                  R6 2.5.1
                                                                  gtools_3.9.2
## [85] KernSmooth_2.23-20 codetools_0.2-18
                                               boot_1.3-28
## [89] assertthat_0.2.1
                           withr_2.4.3
                                               mgcv_1.8-38
                                                                  expm_0.999-6
## [93] parallel_4.1.2
                           hms_1.1.1
                                               coda_0.19-4
                                                                  class_7.3-20
## [97] minga_1.2.4
                           rmarkdown_2.11
```