In [1]:

```
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
import warnings
warnings.filterwarnings('ignore')
```

In [2]:

```
data = pd.read_csv('salary.csv')
```

In [3]:

data.head()

Out[3]:

	timestamp	company	level	title	totalyearlycompensation	location	yearsofexperien
0	06-07- 2017 11:33	Oracle	L3	Product Manager	127000	Redwood City, CA	1
1	06-10- 2017 17:11	eBay	SE 2	Software Engineer	100000	San Francisco, CA	Ę
2	06-11-2017 14:53	Amazon	L7	Product Manager	310000	Seattle, WA	8
3	6/17/2017 0:23:14	Apple	M1	Software Engineering Manager	372000	Sunnyvale, CA	7
4	6/20/2017 10:58:51	Microsoft	60	Software Engineer	157000	Mountain View, CA	Ę
5 rows × 29 columns							

localhost:8888/notebooks/Data Science and Tech Company.ipynb

In [4]:

```
data.tail()
```

Out[4]:

	timestamp	company	level	title	totalyearlycompensation	location	yearsofexperi
62637	09-09- 2018 11:52	Google	T4	Software Engineer	327000	Seattle, WA	
62638	9/13/2018 8:23:32	Microsoft	62	Software Engineer	237000	Redmond, WA	
62639	9/13/2018 14:35:59	MSFT	63	Software Engineer	220000	Seattle, WA	
62640	9/16/2018 16:10:35	Salesforce	Lead MTS	Software Engineer	280000	San Francisco, CA	
62641	1/29/2019 5:12:59	apple	ict3	Software Engineer	200000	Sunnyvale, CA	
5 rows	× 29 columr	ıs					
4							•

In [5]:

data.shape

Out[5]:

(62642, 29)

In [6]:

data.columns

Out[6]:

In [7]:

```
data.duplicated().sum()
```

Out[7]:

0

In [8]:

data.isnull().sum()

Out[8]:

timestamp	0
company	5
level	119
title	0
totalyearlycompensation	0
location	0
yearsofexperience	0
yearsatcompany	0
tag	854
basesalary	0
stockgrantvalue	0
bonus	0
gender	19540
otherdetails	22505
cityid	0
dmaid	2
rowNumber	0
Masters_Degree	0
Bachelors_Degree	0
Doctorate_Degree	0
Highschool	0
Some_College	0
Race_Asian	0
Race_White	0
Race_Two_Or_More	0
Race_Black	0
Race_Hispanic	0
Race	40215
Education	32272
dtype: int64	

In [9]:

```
data.info()
```

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 62642 entries, 0 to 62641
Data columns (total 29 columns):

# #	Column (total 29 Columns	Non-Null Count	Dtype
	 timostamn	62642 non-null	object
0 1	timestamp	62637 non-null	object
2	company level	62523 non-null	object
3	title	62642 non-null	-
3 4		62642 non-null	object int64
5	totalyearlycompensation location		
		62642 non-null	object
6	yearsofexperience	62642 non-null	float64
7	yearsatcompany	62642 non-null	float64
8	tag	61788 non-null	object
9	basesalary	62642 non-null	int64
10	stockgrantvalue	62642 non-null	float64
11	bonus	62642 non-null	float64
12	gender	43102 non-null	object
13	otherdetails	40137 non-null	object
14	cityid	62642 non-null	int64
15	dmaid	62640 non-null	float64
16	rowNumber	62642 non-null	int64
17	Masters_Degree	62642 non-null	int64
18	Bachelors_Degree	62642 non-null	int64
19	Doctorate_Degree	62642 non-null	int64
20	Highschool	62642 non-null	int64
21	Some_College	62642 non-null	int64
22	Race_Asian	62642 non-null	int64
23	Race_White	62642 non-null	int64
24	Race_Two_Or_More	62642 non-null	int64
25	Race_Black	62642 non-null	int64
26	Race_Hispanic	62642 non-null	int64
27	Race	22427 non-null	object
28	Education	30370 non-null	object
	C7 1 C4 (F) 1 1 C4 (4 4)	1 * 1/40\	

dtypes: float64(5), int64(14), object(10)

memory usage: 13.9+ MB

In [10]:

data.describe()

Out[10]:

	totalyearlycompensation	yearsofexperience	yearsatcompany	basesalary	stockgrantval
count	6.264200e+04	62642.000000	62642.000000	6.264200e+04	6.264200e+
mean	2.163004e+05	7.204135	2.702093	1.366873e+05	5.148608e+
std	1.380337e+05	5.840375	3.263656	6.136928e+04	8.187457e+
min	1.000000e+04	0.000000	0.000000	0.000000e+00	0.000000e+
25%	1.350000e+05	3.000000	0.000000	1.080000e+05	0.000000e+
50%	1.880000e+05	6.000000	2.000000	1.400000e+05	2.500000e+
75%	2.640000e+05	10.000000	4.000000	1.700000e+05	6.500000e+
max	4.980000e+06	69.000000	69.000000	1.659870e+06	2.800000e+

In [11]:

data.nunique()

Out[11]:

timestamp	61755
company	1631
level	2916
title	15
totalyearlycompensation	893
location	1050
yearsofexperience	65
yearsatcompany	81
tag	3058
basesalary	482
stockgrantvalue	612
bonus	335
gender	4
otherdetails	12839
cityid	1045
dmaid	149
rowNumber	62642
Masters_Degree	2
Bachelors_Degree	2
Doctorate_Degree	2
Highschool	2
Some_College	2
Race_Asian	2
Race_White	2
Race_Two_Or_More	2
Race_Black	2 2 5
Race_Hispanic	2
Race	
Education	5
dtype: int64	

In [12]:

In [13]:

```
for i in data_cat.columns:
     print(data_cat[i].unique())
['Product Manager' 'Software Engineer' 'Software Engineering Manager'
 'Data Scientist' 'Solution Architect' 'Technical Program Manager'
 'Human Resources' 'Product Designer' 'Marketing' 'Business Analyst'
 'Hardware Engineer' 'Sales' 'Recruiter' 'Mechanical Engineer'
 'Management Consultant']
[nan 'Male' 'Female' 'Other' 'Title: Senior Software Engineer']
[0 1]
[0 1]
[0 1]
[0 1]
[0 1]
[0 1]
[0 1]
[0 1]
[0 1]
[0 1]
[nan 'White' 'Asian' 'Black' 'Two Or More' 'Hispanic']
[nan 'PhD' "Master's Degree" "Bachelor's Degree" 'Some College'
 'Highschool']
```

In [14]:

```
for i in data cat.columns:
     print(data_cat[i].value_counts())
Software Engineer
                                  41231
Product Manager
                                   4673
Software Engineering Manager
                                   3569
Data Scientist
                                   2578
Hardware Engineer
                                   2200
Product Designer
                                   1516
Technical Program Manager
                                   1381
Solution Architect
                                   1157
Management Consultant
                                   976
Business Analyst
                                    885
Marketing
                                    710
Mechanical Engineer
                                    490
                                    461
Sales
Recruiter
                                    451
Human Resources
                                    364
Name: title, dtype: int64
                                     35702
Male
Female
                                      6999
0ther
                                       400
Title: Senior Software Engineer
                                         1
Name: gender, dtype: int64
     47251
0
1
     15391
Name: Masters_Degree, dtype: int64
0
     50037
1
     12605
Name: Bachelors_Degree, dtype: int64
0
     60839
1
      1803
Name: Doctorate_Degree, dtype: int64
     62322
0
1
       320
Name: Highschool, dtype: int64
0
     62287
       355
1
Name: Some_College, dtype: int64
0
     50870
1
     11772
Name: Race_Asian, dtype: int64
0
     54610
1
      8032
Name: Race_White, dtype: int64
0
     61838
1
       804
Name: Race_Two_Or_More, dtype: int64
0
     61952
1
       690
Name: Race_Black, dtype: int64
0
     61512
1
      1130
Name: Race_Hispanic, dtype: int64
Asian
               11772
                 8032
White
                 1129
Hispanic
Two Or More
                  804
```

Black 690
Name: Race, dtype: int64
Master's Degree 15391
Bachelor's Degree 12601
PhD 1703
Some College 355
Highschool 320
Name: Education, dtype: int64

In [15]:

```
for i in data_cat.columns:
   plt.figure(figsize = (15,6))
   sns.countplot(data_cat[i], data = data_cat, palette = 'hls')
   plt.xticks(rotation = 90)
   plt.show()
```


In [16]:

```
for i in data_cat.columns:
    plt.figure(figsize = (15,6))
    data_cat[i].value_counts().plot(kind = 'pie', autopct = '%1.1f%%')
    plt.xticks(rotation = 90)
    plt.show()
```


In [17]:

In [18]:

```
data_salaries = pd.DataFrame(data_salaries)
```

In [19]:

data_salaries.head()

Out[19]:

	company	title	totalyearlycompensation	location	yearsofexperience	yearsatcompan
0	Oracle	Product Manager	127000	Redwood City, CA	1.5	1.
1	eBay	Software Engineer	100000	San Francisco, CA	5.0	3.
2	Amazon	Product Manager	310000	Seattle, WA	8.0	0.
3	Apple	Software Engineering Manager	372000	Sunnyvale, CA	7.0	5.
4	Microsoft	Software Engineer	157000	Mountain View, CA	5.0	3.
4						•

In [20]:

data_salaries.tail()

Out[20]:

	company	title	totalyearlycompensation	location	yearsofexperience	yearsatcomp
62637	Google	Software Engineer	327000	Seattle, WA	10.0	
62638	Microsoft	Software Engineer	237000	Redmond, WA	2.0	
62639	MSFT	Software Engineer	220000	Seattle, WA	14.0	
62640	Salesforce	Software Engineer	280000	San Francisco, CA	8.0	
62641	apple	Software Engineer	200000	Sunnyvale, CA	0.0	
4						•

In [21]:

```
data_salaries['title'].value_counts()
```

Out[21]:

Software Engineer	41231
Product Manager	4673
Software Engineering Manager	3569
Data Scientist	2578
Hardware Engineer	2200
Product Designer	1516
Technical Program Manager	1381
Solution Architect	1157
Management Consultant	976
Business Analyst	885
Marketing	710
Mechanical Engineer	490
Sales	461
Recruiter	451
Human Resources	364
Name: title, dtype: int64	

In [22]:

undesired_titles = ['Marketing', 'Mechanical Engineer', 'Sales', 'Recruiter', 'Human Resour
data_salaries_original = data_salaries.copy()
data_salaries = data_salaries[data_salaries['title'].apply(lambda x: x not in undesired_tit
data_salaries['title'].value_counts()

Out[22]:

Software Engineer	41231
Product Manager	4673
Software Engineering Manager	3569
Data Scientist	2578
Hardware Engineer	2200
Product Designer	1516
Technical Program Manager	1381
Solution Architect	1157
Management Consultant	976
Business Analyst	885
Name: title, dtype: int64	

In [23]:

data_salaries.shape

Out[23]:

(60166, 9)

In [24]:

```
data_salaries.info()
<class 'pandas.core.frame.DataFrame'>
Int64Index: 60166 entries, 0 to 62641
Data columns (total 9 columns):
    Column
                              Non-Null Count Dtype
                              -----
0
    company
                              60161 non-null object
 1
    title
                              60166 non-null
                                              object
 2
    totalyearlycompensation 60166 non-null
                                             int64
 3
    location
                              60166 non-null
                                             object
 4
    yearsofexperience
                              60166 non-null
                                             float64
 5
    yearsatcompany
                              60166 non-null
                                             float64
 6
                              41614 non-null object
    gender
 7
    Race
                              21160 non-null
                                              object
    Education
 8
                              28922 non-null
                                              object
dtypes: float64(2), int64(1), object(6)
memory usage: 4.6+ MB
```

In [25]:

```
data_salaries.isnull().sum()
```

Out[25]:

5
0
0
0
0
0
18552
39006
31244

In [26]:

```
null_data = pd.DataFrame(data_salaries.isnull().sum(), columns = ['Count of Nulls'])
null_data.index.name = 'Column Name'
null_data[null_data ['Count of Nulls'] > 0].sort_values('Count of Nulls', ascending=False)
```

Out[26]:

Count of Nulls

Column Name

Race	39006
Education	31244
gender	18552
company	5

In [27]:

```
data_salaries.fillna({'company':'NA', 'gender':'NA', 'Race': 'NA', 'Education': 'NA'}, inpla
```

In [28]:

data_salaries.isnull().sum()

Out[28]:

company	0
title	0
totalyearlycompensation	0
location	0
yearsofexperience	0
yearsatcompany	0
gender	0
Race	0
Education	0
dtype: int64	

In [29]:

<Figure size 1080x432 with 0 Axes>

In [30]:

```
top_jobs = data_salaries['title'].value_counts()
plt.figure(figsize = (15,6))
plt.style.use('fivethirtyeight')
top_jobs.plot.bar()
plt.title("Number of Workers in Each Job Title", size=17)
plt.xlabel('Number of Workers', size = 15)
plt.ylabel('Job Title', size = 15)
plt.show();
```


In [31]:

```
plt.figure(figsize = (15,6))
plt.style.use('fivethirtyeight')
companies_with_most_tech_workers = data_salaries['company'].value_counts()[:10].plot.bar();
plt.title('Top 10 companies with the highest number of tech workers', size=17)
plt.xlabel('Number of Workers', size = 15)
plt.ylabel('Company', size = 15)
plt.show();
```


In [32]:

<Figure size 1080x432 with 0 Axes>

In [33]:

```
data_salaries['gender'].replace('Title: Senior Software Engineer', 'NA', inplace = True)
```

In [34]:

```
pay_by_gender = data_salaries[['totalyearlycompensation', 'gender']].groupby(['gender']).me
plt.figure(figsize = (15,6))
plt.style.use('fivethirtyeight')
pay_by_gender.sort_values('totalyearlycompensation', ascending = False).head(10).plot.bar(1
plt.title('Compensation by Gender', size=20)
plt.xlabel('Compensation ($)', size = 15)
plt.ylabel('Gender', size = 15)
plt.show();
```

<Figure size 1080x432 with 0 Axes>

In [35]:

```
male_salaries = data_salaries[data_salaries.gender == 'Male'].copy()
top4_male_salaries = male_salaries.nlargest(4,'totalyearlycompensation')
plt.figure(figsize = (15,6))
plt.style.use('fivethirtyeight')
top4_male_salaries.plot.bar(x = 'title', y = 'totalyearlycompensation', legend = False);
plt.title('Top 4 Male Salaries', size=20)
plt.xlabel('Compensation in Millions ($)', size = 15)
plt.ylabel('Title', size = 15)
plt.show();
```

<Figure size 1080x432 with 0 Axes>

In [36]:

```
female_salaries = data_salaries[data_salaries.gender == 'Female'].copy()
top4_female_salaries = female_salaries.nlargest(4,'totalyearlycompensation')
plt.figure(figsize = (15,6))
plt.style.use('fivethirtyeight')
top4_female_salaries.plot.bar(x = 'title', y = 'totalyearlycompensation', legend = False);
plt.title('Top 4 Female Salaries', size=20)
plt.xlabel('Compensation in Millions ($)', size = 15)
plt.ylabel('Title', size = 15)
plt.show();
```

<Figure size 1080x432 with 0 Axes>

In [37]:

```
plt.figure(figsize = (15,6))
plt.style.use('fivethirtyeight')
gender_distribution = data_salaries['gender'].value_counts().plot.bar(figsize = (12,8));
plt.title('Gender Distribution', size=20)
plt.xlabel('Count', size = 15)
plt.ylabel('Gender', size = 15)
plt.show();
```


In [38]:

<Figure size 1080x432 with 0 Axes>

In [39]:

```
plt.figure(figsize = (15,6))
plt.style.use('fivethirtyeight')
race_distribution = data_salaries['Race'].value_counts().plot.pie();
plt.title('Race Distribution', size=20)
plt.show();
```


In [40]:

```
plt.figure(figsize = (15,6))
plt.style.use('fivethirtyeight')
pay_by_education = data_salaries[['totalyearlycompensation','Education']].groupby(['Education'])
plt.title('Compensation By Education', size=20)
plt.xlabel('Compensation ($)', size = 15)
plt.ylabel('Education', size = 15)
plt.show();
```

<Figure size 1080x432 with 0 Axes>

In [41]:

```
plt.figure(figsize = (15,6))
plt.style.use('fivethirtyeight')
education_distribution = data_salaries['Education'].value_counts().plot.bar()
plt.title('Distribution of Education', size=20)
plt.xlabel('Count', size = 15)
plt.ylabel('Education', size = 15)
plt.show();
```


In [42]:

```
plt.figure(figsize = (15,6))
plt.style.use('fivethirtyeight')
years_of_experience = data_salaries[['title', 'totalyearlycompensation','yearsofexperience'

plt.title('Years of Experience VS Compensation', size=17)
plt.xlabel('Compensation ($)', size = 15)
plt.ylabel('Years of Experience', size = 15)
plt.show();
```

<Figure size 1080x432 with 0 Axes>

In [43]:

```
plt.figure(figsize = (15,6))
plt.style.use('fivethirtyeight')
location = data_salaries['location'].value_counts().iloc[:20].plot.bar()
plt.title('Top 20 locations of tech jobs', size=17)
plt.xlabel('Number of workers', size = 15)
plt.ylabel('Company', size = 15)
plt.show();
```

