Objective 2 Analysis

Chance Robinson 9/27/2019

Contents

Explorato	ry	Da	ata	l P	۱n	$_{ m aly}$	/si	\mathbf{S}																			1
2011																											3
2012																										5	6
Submit .																 				 						10	5

Exploratory Data Analysis

Library Imports

Load the csv data

```
train <- read_csv('../../data/train.csv')
test <- read_csv('../../data/test.csv')</pre>
```

Data Dictionary

Column Name	Type Description	
1. datetime	Date	YYYY-MM-DD HH24 (example: 2011-01-01 04:00:00)
2. season	Integer	(1-4)
3. holiday	Integer	(0 or 1)
4. workingday	Integer	(0 or 1)
5. weather	Integer	(1-4)
6. temp	Float	temparture in Celcius
7. atemp	Float	"feels like" temperature in Celsius
8. humidity	Integer	relative humidity
9. windspeed	Float	wind speed
10. casual	Integer	count of casual users
11. registered	Integer	count of registered users
12. count	Integer	count of total users response variable

Factors

- season
 - $-1 = \text{Dec } 21 \sim \text{March } 20 \text{ (Spring)}$
 - $-2 = March 21 \sim Jun 20 (Summer)$
 - $-3 = \text{June } 21 \sim \text{Sept } 20 \text{ (Fall)}$
 - -4 =Sept $21 \sim$ Dec 20(Winter)
- holiday
 - -0 = No
 - -1 = Yes
- workingday
 - -0 = No
 - -1 = Yes

```
train$season <- factor(train$season, labels = c("Spring", "Summer", "Fall", "Winter"))</pre>
test$season <- factor(test$season, labels = c("Spring", "Summer", "Fall", "Winter"))</pre>
table(train$season)
##
## Spring Summer
                   Fall Winter
     2686
            2733
                   2733
                           2734
train$holiday <- factor(train$holiday, labels = c("No", "Yes"))</pre>
test$holiday <- factor(test$holiday, labels = c("No", "Yes"))</pre>
table(train$holiday)
##
##
      No
           Yes
## 10575
           311
train$workingday <- factor(train$workingday, labels = c("No", "Yes"))</pre>
test$workingday <- factor(test$workingday, labels = c("No", "Yes"))</pre>
table(train$workingday)
##
    No Yes
## 3474 7412
train$weather <- factor(train$weather, labels = c("Great", "Good", "Average", "Poor"))
test$weather <- factor(test$weather, labels = c("Great", "Good", "Average", "Poor"))
table(train$weather)
##
##
     Great
              Good Average
                               Poor
##
      7192
              2834
                        859
Split Date-Time (Both)
  • Year, Month, Day and Hour
# library(lubridate)
train <- train %>%
  mutate(year = as.factor(format(datetime, format = "%Y")),
         month = as.numeric(format(datetime, format = "%m")),
         day = as.factor(format(datetime, format = "%d")),
         hour = as.factor(format(datetime, format = "%H")))
test <- test %>%
  mutate(year = as.factor(format(datetime, format = "%Y")),
         month = as.numeric(format(datetime, format = "%m")),
         day = as.factor(format(datetime, format = "%d")),
         hour = as.factor(format(datetime, format = "%H")))
```

Convert Months to Ordered Factor (Both)

```
train$month <-month(train$datetime, label = TRUE, abbr = FALSE)
test$month <-month(test$datetime, label = TRUE, abbr = FALSE)</pre>
```

Modeling

- psuedo code
- Loop through years (train and test)
- Loop through months (train and test)
- fit AR model
- Forcast x number of observations based on nrow from test dataframe and impute the count from the time

2011

January

Auto Arima

```
trainlarm <- train %>%
    filter(year == '2011' & month == 'January') %>%
    select(datetime, count)

testlarm <- test %>%
    filter(year == '2011' & month == 'January') %>%
    mutate(count = NA) %>%
    select(datetime, count)

### Log the response variable
trainlarm$count = log(trainlarm$count)

# head(train25)
# head(test25)

autoarm <- auto.arima(trainlarm$count, D=1)

# ?auto.arima

number = nrow(testlarm)
acf(autoarm$residuals)</pre>
```

Series autoarm\$residuals

pacf(autoarm\$residuals)

Series autoarm\$residuals

checkresiduals(autoarm)


```
##
## Ljung-Box test
##
## data: Residuals from ARIMA(4,0,4) with non-zero mean
## Q* = 10.049, df = 3, p-value = 0.01816
##
## Model df: 9. Total lags used: 12
fcst <- forecast(autoarm, h=number)
autoplot(fcst)</pre>
```



```
# point estimate (mean)
test1arm$count <- fcst$mean
RMSLE(y_pred = fcst$fitted, y_true = train1arm$count)
## [1] 0.2418941
summary(autoarm)
## Series: train1arm$count
## ARIMA(4,0,4) with non-zero mean
##
## Coefficients:
##
            ar1
                     ar2
                             ar3
                                      ar4
                                               ma1
                                                        ma2
                                                                 ma3
                                                                         ma4
##
         2.7868
                -2.9306 1.3916
                                 -0.2738
                                           -1.8234
                                                                      0.3398
                                                    1.1141
                                                             -0.5814
                  0.3497 0.3333
                                   0.1123
                                            0.1228
                                                    0.2204
                                                              0.1350 0.0625
##
         0.1292
##
           mean
         3.3896
##
## s.e. 0.0535
## sigma^2 estimated as 0.3541: log likelihood=-385.78
                              BIC=832.23
## AIC=791.57
                AICc=792.09
##
## Training set error measures:
                                 RMSE
                                            MAE MPE MAPE
## Training set -0.00352749 0.5888569 0.4286433 NaN Inf 0.7797332
##
                       ACF1
```

Training set 0.005790901

AR 25

```
train1 <- train %>%
  filter(year == '2011' & month == 'January') %>%
  select(datetime, count)

test1 <- test %>%
  filter(year == '2011' & month == 'January') %>%
  mutate(count = NA) %>%
  select(datetime, count)

### Log the response variable
train1$count = log(train1$count)

# head(train1)
# head(test1)

AR25 <- arima(train1$count, order=c(25,0,0))

number = nrow(test1)

acf(AR25$residuals)</pre>
```

Series AR25\$residuals

Lag


```
##
##
## Ljung-Box test
##
## data: Residuals from ARIMA(25,0,0) with non-zero mean
## Q* = 11.131, df = 3, p-value = 0.01104
##
## Model df: 26. Total lags used: 29
fcst <- forecast(AR25, h=number)
autoplot(fcst)</pre>
```

residuals


```
# point estimate (mean)
test1$count <- fcst$mean</pre>
RMSLE(y_pred = fcst$fitted, y_true = train1$count)
## [1] 0.2265693
summary(AR25)
##
## arima(x = train1$count, order = c(25, 0, 0))
##
##
  Coefficients:
##
            ar1
                      ar2
                               ar3
                                        ar4
                                                 ar5
                                                          ar6
                                                                    ar7
                                                                            ar8
                                                                         0.0083
##
         0.8974
                 -0.0200
                           -0.3072
                                    -0.0068
                                             0.1252
                                                                -0.1243
                                                      -0.0417
## s.e.
         0.0483
                  0.0644
                            0.0639
                                     0.0656
                                             0.0663
                                                       0.0663
                                                                 0.0665
                                                                         0.0667
##
            ar9
                     ar10
                              ar11
                                      ar12
                                                ar13
                                                         ar14
                                                                  ar15
                                                                         ar16
##
         0.0568
                 -0.0293
                           -0.0557
                                    0.0395
                                             -0.0611
                                                      -0.0674
                                                               0.0715
                                                                        0.018
                  0.0664
                            0.0661
                                    0.0663
                                              0.0659
                                                       0.0659
                                                               0.0659
                                                                        0.066
## s.e.
         0.0663
##
            ar17
                     ar18
                             ar19
                                      ar20
                                               ar21
                                                       ar22
                                                                ar23
                                                                         ar24
                  0.0035
##
         -0.1017
                          0.0501
                                  -0.0692
                                             0.0555
                                                     0.1176
                                                             0.1545
                                                                      -0.1514
          0.0659
## s.e.
                  0.0661 0.0660
                                   0.0661 0.0659 0.0664 0.0656
                                                                       0.0664
##
           ar25
                 intercept
                    3.3852
##
         0.0543
## s.e. 0.0499
                     0.0683
```

February

```
train2 <- train %>%
  filter(year == '2011' & month == 'February') %>%
  select(datetime, count)

test2 <- test %>%
  filter(year == '2011' & month == 'February') %>%
  mutate(count = NA) %>%
  select(datetime, count)

### Log the response variable
train2$count = log(train2$count)

# head(train2)
# head(test2)

AR25 <- arima(train2$count,order=c(25,0,0))
number = nrow(test2)

acf(AR25$residuals)</pre>
```


pacf(AR25\$residuals)

Residuals from ARIMA(25,0,0) with non-zero mean


```
##
## Ljung-Box test
##
## data: Residuals from ARIMA(25,0,0) with non-zero mean
## Q* = 12.022, df = 3, p-value = 0.007309
##
## Model df: 26. Total lags used: 29
fcst <- forecast(AR25, h=number)
autoplot(fcst)</pre>
```



```
# point estimate (mean)
test2$count <- fcst$mean

RMSLE(y_pred = fcst$fitted, y_true = train2$count)</pre>
```

[1] 0.190118

March

```
train3 <- train %>%
  filter(year == '2011' & month == 'March') %>%
  select(datetime, count)

test3 <- test %>%
  filter(year == '2011' & month == 'March') %>%
  mutate(count = NA) %>%
  select(datetime, count)

### Log the response variable
train3$count = log(train3$count)

# head(train3)
# head(test3)
AR25 <- arima(train3$count, order=c(25,0,0))
```

```
number = nrow(test3)
acf(AR25$residuals)
```


pacf(AR25\$residuals)


```
##
## Ljung-Box test
##
## data: Residuals from ARIMA(25,0,0) with non-zero mean
## Q* = 18.587, df = 3, p-value = 0.0003327
##
## Model df: 26. Total lags used: 29
fcst <- forecast(AR25, h=number)
autoplot(fcst)</pre>
```



```
# point estimate (mean)
test3$count <- fcst$mean

RMSLE(y_pred = fcst$fitted, y_true = train3$count)</pre>
```

[1] 0.2105017

\mathbf{April}

```
train4 <- train %>%
  filter(year == '2011' & month == 'April') %>%
  select(datetime, count)

test4 <- test %>%
  filter(year == '2011' & month == 'April') %>%
  mutate(count = NA) %>%
  select(datetime, count)

### Log the response variable
train4$count = log(train4$count)

# head(train4)
# head(test4)

AR25 <- arima(train4$count, order=c(25,0,0))</pre>
```

```
number = nrow(test4)
acf(AR25$residuals)
```


pacf(AR25\$residuals)

Residuals from ARIMA(25,0,0) with non-zero mean


```
##
## Ljung-Box test
##
## data: Residuals from ARIMA(25,0,0) with non-zero mean
## Q* = 26.129, df = 3, p-value = 8.961e-06
##
## Model df: 26. Total lags used: 29
fcst <- forecast(AR25, h=number)
autoplot(fcst)</pre>
```



```
# point estimate (mean)
test4$count <- fcst$mean

RMSLE(y_pred = fcst$fitted, y_true = train4$count)</pre>
```

[1] 0.1956949

May

```
train5 <- train %>%
  filter(year == '2011' & month == 'May') %>%
  select(datetime, count)

test5 <- test %>%
  filter(year == '2011' & month == 'May') %>%
  mutate(count = NA) %>%
  select(datetime, count)

### Log the response variable
train5$count = log(train5$count)

# head(train5)
# head(test5)
AR25 <- arima(train5$count, order=c(25,0,0))
```

```
# tsdisplay(residuals(AR25), lag.max=25, main="AR(24) Resid. Diagnostics")
number = nrow(test5)
acf(AR25$residuals)
```


pacf(AR25\$residuals)


```
##
## Ljung-Box test
##
## data: Residuals from ARIMA(25,0,0) with non-zero mean
## Q* = 24.97, df = 3, p-value = 1.566e-05
##
## Model df: 26. Total lags used: 29
fcst <- forecast(AR25, h=number)
autoplot(fcst)</pre>
```



```
# point estimate (mean)
test5$count <- fcst$mean

RMSLE(y_pred = fcst$fitted, y_true = train5$count)</pre>
```

[1] 0.1216449

June

```
train6 <- train %>%
  filter(year == '2011' & month == 'June') %>%
  select(datetime, count)

test6 <- test %>%
  filter(year == '2011' & month == 'June') %>%
  mutate(count = NA) %>%
  select(datetime, count)

### Log the response variable
train6$count = log(train6$count)

# head(train6)
# head(test6)

AR25 <- arima(train6$count, order=c(25,0,0))
# tsdisplay(residuals(AR25), lag.max=25, main="AR(24) Resid. Diagnostics")</pre>
```

```
number = nrow(test6)
acf(AR25$residuals)
```


pacf(AR25\$residuals)

Residuals from ARIMA(25,0,0) with non-zero mean


```
##
## Ljung-Box test
##
## data: Residuals from ARIMA(25,0,0) with non-zero mean
## Q* = 43.898, df = 3, p-value = 1.587e-09
##
## Model df: 26. Total lags used: 29
fcst <- forecast(AR25, h=number)
autoplot(fcst)</pre>
```



```
# point estimate (mean)
test6$count <- fcst$mean

RMSLE(y_pred = fcst$fitted, y_true = train6$count)</pre>
```

[1] 0.09993809

July

```
train7 <- train %>%
  filter(year == '2011' & month == 'July') %>%
  select(datetime, count)

test7 <- test %>%
  filter(year == '2011' & month == 'July') %>%
  mutate(count = NA) %>%
  select(datetime, count)

### Log the response variable
train7$count = log(train7$count)

# head(train7)
# head(test7)

AR25 <- arima(train7$count, order=c(25,0,0))</pre>
```

```
number = nrow(test7)
acf(AR25$residuals)
```


pacf(AR25\$residuals)

Lag


```
##
## Ljung-Box test
##
## data: Residuals from ARIMA(25,0,0) with non-zero mean
## Q* = 46.28, df = 3, p-value = 4.944e-10
##
## Model df: 26. Total lags used: 29
fcst <- forecast(AR25, h=number)
autoplot(fcst)</pre>
```

residuals


```
# point estimate (mean)
test7$count <- fcst$mean

RMSLE(y_pred = fcst$fitted, y_true = train7$count)</pre>
```

[1] 0.09859652

August

```
train8 <- train %>%
  filter(year == '2011' & month == 'August') %>%
  select(datetime, count)

test8 <- test %>%
  filter(year == '2011' & month == 'August') %>%
  mutate(count = NA) %>%
  select(datetime, count)

### Log the response variable
train8$count = log(train8$count)

# head(train8)
# head(test8)
```

```
AR25 <- arima(train8$count,order=c(25,0,0))
number = nrow(test8)
acf(AR25$residuals)</pre>
```



```
##
## Ljung-Box test
##
## data: Residuals from ARIMA(25,0,0) with non-zero mean
## Q* = 35.14, df = 3, p-value = 1.138e-07
##
## Model df: 26. Total lags used: 29
fcst <- forecast(AR25, h=number)
autoplot(fcst)</pre>
```



```
# point estimate (mean)
test8$count <- fcst$mean

RMSLE(y_pred = fcst$fitted, y_true = train8$count)</pre>
```

[1] 0.1118663

September

```
train9 <- train %>%
  filter(year == '2011' & month == 'September') %>%
  select(datetime, count)

test9 <- test %>%
  filter(year == '2011' & month == 'September') %>%
  mutate(count = NA) %>%
  select(datetime, count)

### Log the response variable
train9$count = log(train9$count)

# head(train9)
# head(test9)
```

```
AR25 <- arima(train9$count,order=c(25,0,0))
number = nrow(test9)
acf(AR25$residuals)</pre>
```



```
##
## Ljung-Box test
##
## data: Residuals from ARIMA(25,0,0) with non-zero mean
## Q* = 16.133, df = 3, p-value = 0.001065
##
## Model df: 26. Total lags used: 29
fcst <- forecast(AR25, h=number)
autoplot(fcst)</pre>
```



```
# point estimate (mean)
test9$count <- fcst$mean

RMSLE(y_pred = fcst$fitted, y_true = train9$count)</pre>
```

[1] 0.1544213

October

```
train10 <- train %>%
  filter(year == '2011' & month == 'October') %>%
  select(datetime, count)

test10 <- test %>%
  filter(year == '2011' & month == 'October') %>%
  mutate(count = NA) %>%
  select(datetime, count)

### Log the response variable
train10$count = log(train10$count)

# head(train10)
# head(test10)
```

```
AR25 <- arima(train10$count,order=c(25,0,0))
number = nrow(test10)
acf(AR25$residuals)</pre>
```



```
##
## Ljung-Box test
##
## data: Residuals from ARIMA(25,0,0) with non-zero mean
## Q* = 32.663, df = 3, p-value = 3.793e-07
##
## Model df: 26. Total lags used: 29
fcst <- forecast(AR25, h=number)
autoplot(fcst)</pre>
```



```
# point estimate (mean)
test10$count <- fcst$mean

RMSLE(y_pred = fcst$fitted, y_true = train10$count)</pre>
```

[1] 0.1022587

November

```
train11 <- train %>%
  filter(year == '2011' & month == 'November') %>%
  select(datetime, count)

test11 <- test %>%
  filter(year == '2011' & month == 'November') %>%
  mutate(count = NA) %>%
  select(datetime, count)

### Log the response variable
train11$count = log(train11$count)

# head(train11)
# head(test11)
```

```
AR25 <- arima(train11$count,order=c(25,0,0))
number = nrow(test11)
acf(AR25$residuals)</pre>
```


-0.10 -

Ö

5

10

20

25

15

Lag


```
##
##
## Ljung-Box test
##
## data: Residuals from ARIMA(25,0,0) with non-zero mean
## Q* = 39.617, df = 3, p-value = 1.285e-08
##
## Model df: 26. Total lags used: 29
fcst <- forecast(AR25, h=number)
autoplot(fcst)</pre>
```

0

residuals


```
# point estimate (mean)
test11$count <- fcst$mean

RMSLE(y_pred = fcst$fitted, y_true = train11$count)</pre>
```

[1] 0.1204845

December

```
train12 <- train %>%
  filter(year == '2011' & month == 'December') %>%
  select(datetime, count)

test12 <- test %>%
  filter(year == '2011' & month == 'December') %>%
  mutate(count = NA) %>%
  select(datetime, count)

### Log the response variable
train12$count = log(train12$count)

# head(train12)
# head(test12)
```

```
AR25 <- arima(train12$count,order=c(25,0,0))
number = nrow(test12)
acf(AR25$residuals)</pre>
```



```
##
## Ljung-Box test
##
## data: Residuals from ARIMA(25,0,0) with non-zero mean
## Q* = 22.855, df = 3, p-value = 4.33e-05
##
## Model df: 26. Total lags used: 29
fcst <- forecast(AR25, h=number)
autoplot(fcst)</pre>
```



```
# point estimate (mean)
test12$count <- fcst$mean

RMSLE(y_pred = fcst$fitted, y_true = train12$count)</pre>
```

[1] 0.1716392

2012

January

```
train13 <- train %>%
  filter(year == '2012' & month == 'January') %>%
  select(datetime, count)

test13 <- test %>%
  filter(year == '2012' & month == 'January') %>%
  mutate(count = NA) %>%
  select(datetime, count)

### Log the response variable
train13$count = log(train13$count)

# head(train13)
# head(test13)
```

```
AR25 <- arima(train13$count,order=c(25,0,0))

number = nrow(test13)

acf(AR25$residuals)
```



```
##
## Ljung-Box test
##
## data: Residuals from ARIMA(25,0,0) with non-zero mean
## Q* = 44.308, df = 3, p-value = 1.298e-09
##
## Model df: 26. Total lags used: 29
fcst <- forecast(AR25, h=number)
autoplot(fcst)</pre>
```



```
# point estimate (mean)
test13$count <- fcst$mean

RMSLE(y_pred = fcst$fitted, y_true = train13$count)</pre>
```

[1] 0.1433694

February

```
train14 <- train %>%
  filter(year == '2012' & month == 'February') %>%
  select(datetime, count)

test14 <- test %>%
  filter(year == '2012' & month == 'February') %>%
  mutate(count = NA) %>%
  select(datetime, count)

### Log the response variable
train14$count = log(train14$count)

# head(train14)
# head(test14)
```

```
AR25 <- arima(train14$count,order=c(25,0,0))

number = nrow(test14)

acf(AR25$residuals)
```



```
##
## Ljung-Box test
##
## data: Residuals from ARIMA(25,0,0) with non-zero mean
## Q* = 32.137, df = 3, p-value = 4.897e-07
##
## Model df: 26. Total lags used: 29
fcst <- forecast(AR25, h=number)
autoplot(fcst)</pre>
```



```
# point estimate (mean)
test14$count <- fcst$mean

RMSLE(y_pred = fcst$fitted, y_true = train14$count)</pre>
```

[1] 0.1921697

March

```
train15 <- train %>%
  filter(year == '2012' & month == 'March') %>%
  select(datetime, count)

test15 <- test %>%
  filter(year == '2012' & month == 'March') %>%
  mutate(count = NA) %>%
  select(datetime, count)

### Log the response variable
train15$count = log(train15$count)

# head(train15)
# head(test15)
```

```
AR25 <- arima(train15$count,order=c(25,0,0))

number = nrow(test15)

acf(AR25$residuals)
```



```
##
## Ljung-Box test
##
## data: Residuals from ARIMA(25,0,0) with non-zero mean
## Q* = 27.515, df = 3, p-value = 4.592e-06
##
## Model df: 26. Total lags used: 29
fcst <- forecast(AR25, h=number)
autoplot(fcst)</pre>
```



```
# point estimate (mean)
test15$count <- fcst$mean

RMSLE(y_pred = fcst$fitted, y_true = train15$count)</pre>
```

[1] 0.1794584

\mathbf{April}

```
train16 <- train %>%
   filter(year == '2012' & month == 'April') %>%
   select(datetime, count)

test16 <- test %>%
   filter(year == '2012' & month == 'April') %>%
   mutate(count = NA) %>%
   select(datetime, count)

### Log the response variable
train16$count = log(train16$count)

# head(train16)
# head(test16)
```

```
AR25 <- arima(train16$count,order=c(25,0,0))
number = nrow(test16)
acf(AR25$residuals)</pre>
```


Lag


```
##
## Ljung-Box test
##
## data: Residuals from ARIMA(25,0,0) with non-zero mean
## Q* = 42.662, df = 3, p-value = 2.903e-09
##
## Model df: 26. Total lags used: 29
fcst <- forecast(AR25, h=number)
autoplot(fcst)</pre>
```

0 -

-2

residuals


```
# point estimate (mean)
test16$count <- fcst$mean

RMSLE(y_pred = fcst$fitted, y_true = train16$count)</pre>
```

[1] 0.1338244

May

```
train17 <- train %>%
  filter(year == '2012' & month == 'May') %>%
  select(datetime, count)

test17 <- test %>%
  filter(year == '2012' & month == 'May') %>%
  mutate(count = NA) %>%
  select(datetime, count)

### Log the response variable
train17$count = log(train17$count)

# head(train17)
# head(test17)
AR25 <- arima(train17$count, order=c(25,0,0))
```

```
number = nrow(test17)
acf(AR25$residuals)
```



```
##
## Ljung-Box test
##
## data: Residuals from ARIMA(25,0,0) with non-zero mean
## Q* = 16.911, df = 3, p-value = 0.0007372
##
## Model df: 26. Total lags used: 29
fcst <- forecast(AR25, h=number)
autoplot(fcst)</pre>
```



```
# point estimate (mean)
test17$count <- fcst$mean

RMSLE(y_pred = fcst$fitted, y_true = train17$count)</pre>
```

[1] 0.1279052

June

```
train18 <- train %>%
  filter(year == '2012' & month == 'June') %>%
  select(datetime, count)

test18 <- test %>%
  filter(year == '2012' & month == 'June') %>%
  mutate(count = NA) %>%
  select(datetime, count)

### Log the response variable
train18$count = log(train18$count)

# head(train18)
# head(test18)
```

```
AR25 <- arima(train18$count,order=c(25,0,0))
number = nrow(test18)
acf(AR25$residuals)</pre>
```



```
##
## Ljung-Box test
##
## data: Residuals from ARIMA(25,0,0) with non-zero mean
## Q* = 20.769, df = 3, p-value = 0.0001176
##
## Model df: 26. Total lags used: 29
fcst <- forecast(AR25, h=number)
autoplot(fcst)</pre>
```



```
# point estimate (mean)
test18$count <- fcst$mean

RMSLE(y_pred = fcst$fitted, y_true = train18$count)</pre>
```

[1] 0.08421316

July

```
train19 <- train %>%
  filter(year == '2012' & month == 'July') %>%
  select(datetime, count)

test19 <- test %>%
  filter(year == '2012' & month == 'July') %>%
  mutate(count = NA) %>%
  select(datetime, count)

### Log the response variable
train19$count = log(train19$count)

# head(train19)
# head(test19)
```

```
AR25 <- arima(train19$count,order=c(25,0,0))
number = nrow(test19)
acf(AR25$residuals)</pre>
```


Residuals from ARIMA(25,0,0) with non-zero mean


```
##
## Ljung-Box test
##
## data: Residuals from ARIMA(25,0,0) with non-zero mean
## Q* = 29.505, df = 3, p-value = 1.754e-06
##
## Model df: 26. Total lags used: 29
fcst <- forecast(AR25, h=number)
autoplot(fcst)</pre>
```



```
# point estimate (mean)
test19$count <- fcst$mean

RMSLE(y_pred = fcst$fitted, y_true = train19$count)</pre>
```

[1] 0.09721031

August

```
train20 <- train %>%
  filter(year == '2012' & month == 'August') %>%
  select(datetime, count)

test20 <- test %>%
  filter(year == '2012' & month == 'August') %>%
  mutate(count = NA) %>%
  select(datetime, count)

### Log the response variable
train20$count = log(train20$count)

# head(train20)
# head(test20)

AR25 <- arima(train20$count, order=c(25,0,0))</pre>
```

```
number = nrow(test20)
acf(AR25$residuals)
```



```
##
## Ljung-Box test
##
## data: Residuals from ARIMA(25,0,0) with non-zero mean
## Q* = 35.287, df = 3, p-value = 1.06e-07
##
## Model df: 26. Total lags used: 29
fcst <- forecast(AR25, h=number)
autoplot(fcst)</pre>
```



```
# point estimate (mean)
test20$count <- fcst$mean

RMSLE(y_pred = fcst$fitted, y_true = train20$count)</pre>
```

[1] 0.07543401

September

```
train21 <- train %>%
  filter(year == '2012' & month == 'September') %>%
  select(datetime, count)

test21 <- test %>%
  filter(year == '2012' & month == 'September') %>%
  mutate(count = NA) %>%
  select(datetime, count)

### Log the response variable
train21$count = log(train21$count)

# head(train21)
# head(test21)
```

```
AR25 <- arima(train21$count,order=c(25,0,0))

number = nrow(test21)

acf(AR25$residuals)
```


Residuals from ARIMA(25,0,0) with non-zero mean


```
##
## Ljung-Box test
##
## data: Residuals from ARIMA(25,0,0) with non-zero mean
## Q* = 39.388, df = 3, p-value = 1.437e-08
##
## Model df: 26. Total lags used: 29
fcst <- forecast(AR25, h=number)
autoplot(fcst)</pre>
```



```
# point estimate (mean)
test21$count <- fcst$mean

RMSLE(y_pred = fcst$fitted, y_true = train21$count)</pre>
```

[1] 0.08502199

October

```
train22 <- train %>%
  filter(year == '2012' & month == 'October') %>%
  select(datetime, count)

test22 <- test %>%
  filter(year == '2012' & month == 'October') %>%
  mutate(count = NA) %>%
  select(datetime, count)

### Log the response variable
train22$count = log(train22$count)

# head(train22)
# head(test22)
```

```
AR25 <- arima(train22$count,order=c(25,0,0))
number = nrow(test22)
acf(AR25$residuals)</pre>
```



```
##
##
   Ljung-Box test
##
## data: Residuals from ARIMA(25,0,0) with non-zero mean
## Q* = 31.328, df = 3, p-value = 7.251e-07
##
                   Total lags used: 29
## Model df: 26.
fcst <- forecast(AR25, h=number)</pre>
autoplot(fcst)
```

Lag

-1

0 residuals


```
# point estimate (mean)
test22$count <- fcst$mean

RMSLE(y_pred = fcst$fitted, y_true = train22$count)</pre>
```

[1] 0.08617625

November

```
train23 <- train %>%
  filter(year == '2012' & month == 'November') %>%
  select(datetime, count)

test23 <- test %>%
  filter(year == '2012' & month == 'November') %>%
  mutate(count = NA) %>%
  select(datetime, count)

### Log the response variable
train23$count = log(train23$count)

# head(train23)
# head(test23)
AR25 <- arima(train23$count, order=c(25,0,0))
```

```
# tsdisplay(residuals(AR25), lag.max=25, main="AR(24) Resid. Diagnostics")
number = nrow(test23)
acf(AR25$residuals)
```



```
##
## Ljung-Box test
##
## data: Residuals from ARIMA(25,0,0) with non-zero mean
## Q* = 25.308, df = 3, p-value = 1.332e-05
##
## Model df: 26. Total lags used: 29
fcst <- forecast(AR25, h=number)
autoplot(fcst)</pre>
```



```
# point estimate (mean)
test23$count <- fcst$mean

RMSLE(y_pred = fcst$fitted, y_true = train23$count)</pre>
```

[1] 0.1179183

December

```
train24 <- train %>%
  filter(year == '2012' & month == 'December') %>%
  select(datetime, count)

test24 <- test %>%
  filter(year == '2012' & month == 'December') %>%
  mutate(count = NA) %>%
  select(datetime, count)

### Log the response variable
train24$count = log(train24$count)

# head(train24)
# head(test24)

AR25 <- arima(train24$count, order=c(25,0,0))</pre>
```

```
number = nrow(test24)
acf(AR25$residuals)
```



```
##
## Ljung-Box test
##
## data: Residuals from ARIMA(25,0,0) with non-zero mean
## Q* = 25.753, df = 3, p-value = 1.074e-05
##
## Model df: 26. Total lags used: 29
fcst <- forecast(AR25, h=number)
autoplot(fcst)</pre>
```



```
# point estimate (mean)
test24$count <- fcst$mean
RMSLE(y_pred = fcst$fitted, y_true = train24$count)
## [1] 0.1124551
summary(AR25)
##
## Call:
## arima(x = train24$count, order = c(25, 0, 0))
##
## Coefficients:
##
            ar1
                                      ar4
                                              ar5
                                                      ar6
                                                               ar7
                                                                       ar8
                     ar2
                              ar3
##
         1.0452
                -0.2584
                         -0.1778
                                  0.0355
                                           0.0058
                                                   0.0160
                                                          -0.0903
                                                                    0.0397
## s.e.
        0.0464
                  0.0674
                           0.0668
                                  0.0670
                                           0.0675
                                                  0.0677
                                                            0.0676
                                                                    0.0677
##
             ar9
                    ar10
                             ar11
                                      ar12
                                               ar13
                                                        ar14
                                                                 ar15
##
         -0.0476
                  0.0199
                         -0.0489
                                  -0.0039
                                            -0.0262
                                                    -0.0168
                                                             -0.0182
                                                               0.0674
                  0.0675
                           0.0676
                                    0.0677
                                                      0.0675
## s.e.
         0.0677
                                             0.0672
##
                    ar17
                             ar18
                                      ar19
                                              ar20
                                                      ar21
                                                               ar22
                                                                       ar23
            ar16
                         -0.0461
                                  -0.0234 0.0072 0.0113 -0.1163 0.3276
##
         -0.0501
                 0.0483
## s.e.
         0.0675 0.0675
                          0.0675
                                    0.0674 0.0674 0.0676 0.0682 0.0680
##
           ar24
                    ar25 intercept
                             4.7708
##
         0.0745 -0.1376
## s.e. 0.0688
                  0.0472
                             0.0411
```

```
##
## sigma^2 estimated as 0.1441: log likelihood = -211, aic = 475.99
## Training set error measures:
##
                                  RMSE
                                             MAE MPE MAPE
## Training set -0.002368542 0.3795712 0.2678918 -Inf Inf 0.5288532
## Training set 0.01503052
Combine all of the individual data frames
combined <- data.frame(datetime=character(),</pre>
                count=double(),
                 stringsAsFactors=FALSE)
combined <- bind_rows(test1, test2, test3, test4, test5, test6, test7, test8, test9, test10, test11, te
                      test13, test14, test15, test16, test17, test18, test19, test20, test21, test22, t
combined <- combined %>%
 mutate(count = round(exp(count)))
# combined
\# write.csv(combined, file = "C:\\Users\\Chance\\Desktop\\ts_kaggle_submission.csv", row.names = F)
RMSLE: Root Mean Squared Logarithmic Error Loss
\# RMSLE(y_pred = floor(ifelse(fcst$fitted < 0, 0, round(fcst$fitted))), y_true = train2$count)
```

Submit

```
# Kaggle Score: RMSLE = 1.01847
score = (1 - (2776 / 3246)) * 100

# We only beat ~14% of all submissions
score
```

[1] 14.47936