CHAPTER 1

SEQUENCES AND SERIES

1. SEQUENCES OF NUMBERS

_____ page=b2p1/001

1.1. DEFINITIONS. if $f: D \to R$ is a function whose domain D admits the set I_p of consecutive integers p, p+1, p+2, ..., n, ... as a subset, then the infinitely many numbers

(1.1)
$$f(p), f(p+1), ..., f(n), ...$$

written in this order, is called an infinite sequence or simply a sequence, where f(p), f(p+1), ..., f(n), ... are called the first term, the second term, ..., the general term respectively.

¹ For brevity one denotes f(n) usually by a letter with the subscript n, say a_n , and the sequence (1) by

$$(f(n))_p^{\infty}$$
 or $(a_n)_p^{\infty}$

or more simply by

$$(f(n))_p$$
 or $(a_n)_p$

Examples

 $(n)_1$: 1, 2, 3, ..., n, ...

 $(\frac{n}{n-2})_3$: $3, \frac{4}{2}, \frac{5}{3}, ..., \frac{n}{n-2}, ...$

¹In the book it writes brievity, but it think, it should be brevity