Entwicklung eines Konzepts und Konstruktion einer Versuchseinrichtung zur zeitlich synchronisierten Generierung von Partikel-Testsignalen

Advanced Design Project Nr. 123456

Alexander Sonnleitner, Dinh-Van Vo, Kim-Khanh Vo, Gia Thi Ngo, Felix Sternkopf Betreuer: M.Sc. Hartmut Niemann

Entwicklung eines Konzepts und Konstruktion einer Versuchseinrichtung zur zeitlich synchronisierten Generierung von Partikel-Testsignalen

Advanced Design Project

Nr. 123456

Eingereicht von Alexander Sonnleitner, Dinh-Van Vo, Kim-Khanh Vo, Gia Thi Ngo, Felix Sternkopf Tag der Einreichung: 13. Februar 2018

Gutachter: Prof. Dr. rer. nat. Hermann Winner

Betreuer: M.Sc. Hartmut Niemann

Technische Universität Darmstadt Fachbereich Maschinenbau

Fachgebiet Fahrzeugtechnik und Dynamik Prof. Dr. rer. nat. Hermann Winner

Ehrenwörtliche Erklärung		

i

Kurzzusammenfassung

Inhaltsverzeichnis

1	Einf	ührung 1	1
	1.1	Motivation	1
	1.2	Voraussetzungen	1
2	Proj	ektdefinition und Zeitmanagement	
	2.1	Projektziele	
	2.2	Anforderungen	
		2.2.1 Aerosole	
		2.2.2 Versuchsaufbau	3
	2.3	Aufgaben 3	3
	2.4	Zeitmanagement	3
3	Tecl	hnische Grundlagen	5
	3.1	Strömungsmechanik	5
		3.1.1 Strömungseigenschaften	5
	3.2	Reinraumtechnik	5
		3.2.1 Eigenschaften von Partikeln	5
		3.2.2 Partikelmessverfahren	5
		3.2.3 Aerosole	5
	3.3	Mechanische Grundlagen	5
		3.3.1 Ventile (Noch nicht fest)	5
		3.3.2 Luftfiltersysteme (Noch nicht fest)	5
4	Vers	suchsplattform	7
	4.1	Partikelmessgeräte	7
		4.1.1 OPS-3330	7
		4.1.2 FMPS-3091	7
	4.2	Simulation (Unsicher)	7
		4.2.1 SpaceClaim (Unsicher)	7
		4.2.2 Fluent (Unsicher)	7
	4.3	Partikelgeneratoren	7
		4.3.1 Topas ATM 220	7
		4.3.2 Palas 2000H	7
5	Ana	llyse von Prüf-Aerosole	9
	5.1	Di-Ethyl-Hexyl-Sebacat (DEHS)	9
	5.2	Di-N-Octylphtalat (DOP)	9
	5.3	Emery 3004 (PAO-4)	9
	5.4	Poly Styrene Latex Spheres (PSL)	9
	5.5	Auswertung der Analyse	9
		5.5.1 Anforderungsvergleich der Aerosole	3

6	Konzepte für den Versuchsaufbau	11
	6.1 Konzept 1	11
	6.1.1 Aufbau	
	6.2 Konzept 2	11
	6.3 Konzept 3	11
	6.4 Konzept 4	
	6.5 Konzept 5	
7	Evaluation	13
	7.1 Analyse der Konzepte	13
	7.2 Evaluation der Ergebnisse	13
8	Fazit	15
Αk	pildungsverzeichnis	15

iv Inhaltsverzeichnis

1 Einführung		
<u> </u>		
1.1 Motivation		
1.2 Voraussetzungen		

2 Projektdefinition und Zeitmanagement	
2.1 Projektziele	
2.2 Anforderungen	
2.2.1 Aerosole	
2.2.2 Versuchsaufbau	
2.3 Aufgaben	
2.4 Zeitmanagement	

3 Technische Grundlagen	
3.1 Strömungsmechanik	
3.1.1 Strömungseigenschaften	
Reynolds- und Prandtlzahl	
3.2 Reinraumtechnik	
3.2.1 Eigenschaften von Partikeln	
Bremsemissionspartikel	
3.2.2 Partikelmessverfahren	
3.2.3 Aerosole	
3.3 Mechanische Grundlagen	
3.3.1 Ventile (Noch nicht fest)	
3.3.2 Luftfiltersysteme (Noch nicht fest)	

4 Versuchsplattform	
4.1 Partikelmessgeräte	
4.1.1 OPS-3330	
4.1.2 FMPS-3091	
4.2 Simulation (Unsicher)	
4.2.1 SpaceClaim (Unsicher)	
4.2.2 Fluent (Unsicher)	
4.3 Partikelgeneratoren	
4.3.1 Topas ATM 220	
4.3.2 Palas 2000H	

5 Analyse von Prüf-Aerosole	
5.1 Di-Ethyl-Hexyl-Sebacat (DEHS)	
5.2 Di-N-Octylphtalat (DOP)	
F 2 Emony 2004 (BAO 4)	
5.3 Emery 3004 (PAO-4)	
5.4 Poly Styrene Latex Spheres (PSL)	
5.5 Auswertung der Analyse	
5.5.1 Anforderungsvergleich der Aerosole	

6 Konzepte für den Versuchsaufbau		
6.1 Konzept 1		
6.1.1 Aufbau		
6.2 Konzept 2		
6.3 Konzept 3		
6.4 Konzept 4		
6.5 Konzept 5		

7 Evaluation		
7.1 Analyse der Konzepte		
7.2 Evaluation der Ergebnisse		

