Subarray

$$A = \begin{bmatrix} 2 & 4 & 9 & 5 & 7 & 8 & -3 \end{bmatrix}$$

$$\begin{bmatrix} 9 & 3 & 7 \end{bmatrix} \rightarrow \checkmark$$

$$\begin{bmatrix} 9 & 3 & 8 \end{bmatrix} \rightarrow \times$$

- i) a signe ele is also a subarray.
- ii) a complete array is also a subarray.
- iii) order matter (s <= e)

$$A = \begin{bmatrix} 2 & 4 & 4 & 5 & 7 & 8 & -3 \end{bmatrix}$$

A particular subgrovay is defined using start and end

$$A = \begin{bmatrix} 3 & 4 & -2 & 5 \\ 0 & 1 & 2 & 3 \end{bmatrix}$$

$$S=0$$
, $e=0$ 1 2 3

$$S=0$$
, $e=0$ 1 2 3 $S=1$, $e=1$ 2 3 $S=2$, $e=2$
 $0,0 \rightarrow 3$
 $0,1 \rightarrow 3$ 4
 $1,1 \rightarrow 4$
 $1,2 \rightarrow 4 - 2$
 $2,3 \rightarrow -2$
 $3 \rightarrow 3 \rightarrow 3 \rightarrow 4 - 2$
 $1,3 \rightarrow 4 - 2 \rightarrow 5$

$$2,3\rightarrow -25$$

how many subarray starting from oth index -> n how many subarray starting from 1st index - 1-1

how many subarray starting from (n-1) index -)]

$$n + (n-1) + (n-2) + \dots + 1$$

Q.1 Print a subarray of Ald from 5 to e.

void print (int []A, int s, int e) ? for (int K=5; K <= e', 1(+4) &

SOP (A (KJ);

3

3

a. 2 Print all subarrays of a given array.

 $A = \begin{bmatrix} 3 & -2 & 4 \end{bmatrix}$

S=0, e=0 3 S=0, e=1 3 -2 S=0, e=2 3 -2 4

S=2, e=2 4

A- 3 1 5

int n= A-length;

3

for (int s= 0; s <n; s++)="" th="" {<=""><th>S</th><th>و</th><th>IC</th></n;>	S	و	IC
1	0	٥	6,0 → 3
dor (int e=s; ecn; e++) ?		1	6,1 -> 3 1
11 point subarray from 5 to e			$\begin{array}{cccccccccccccccccccccccccccccccccccc$
(for (int K=5) K <= e', K++) }	1	1	1,1 -> 1
SOP (A [K] 7 "");			」,ı → 1 」,2 → 1 5
3	2	2	² , ² -> 5
SIPUN()			
] ' ₅			

Tc: 0 (n3)

0-3 Niven an array point sum of every subarray of AD. $A = \begin{bmatrix} 3 & -2 & 6 \end{bmatrix}$

i) to: 0(N3), Sc: 0(1)

s e	subarray	sum
0,0	[3]	3
۱ر0	[3 -27	1
0,2	[3 -2 6]	7
١ر١	[-27	- 2
1,2	(-2 67)	4
2,2	C 6 3	6

ii) Improvisation -> predix sum

F (ACI tint solve lint solve

introps = predix sum (A);

int n= A-length;

7c: 0(n2)

for (int s = 0; s < n; s++) {

sc: o(n)

iii) Justher improvisation

$$A = \begin{bmatrix} 3 & -2 & 4 & 5 & 1 \\ 0 & 1 & 2 & 3 & 4 \end{bmatrix}$$

void solve (int []A) }

int n= A-length;

3

for (int s = 0; s < n; s++) }	1
int sum = 0;	
Jox (int e=8; ecn; e	1 (++
Sumt= A [e];	
sopan (sum);	
3	

S	હ	Sum	OIP
0	0	3	3
	1	3+(-2)	1
	2	3+(-2)+4	5
1	1	- 2	-2
	2	-2 + 4	2
2	2	Ч	4

 $TC: O(N^2), SC: O(I)$

s e	subarray	sun
0,0	[37	3
۱ر0	[3 -27	1
0,2	[3-2 6]	7
۱ر۱	[-27	- 2
1,2	[-2 6]	ч
2,2	E 6 J	6
		19

F (ACI thi) solve biou

return ts;

 $TC: O(n^2), SC: O(1)$

Expected TC: O(n)

s e	subarray	sum
0,0	[37]	3
۱ ر ٥	[3 -27	1
0,2	[3-2 6]	7
١٦١	[-27	- 2
1,2	[-2 6]	ч
2,2	C 6 J	C
		19

A[0]
A[0] + A[1]
A[0] + A[2]
A[1]
A[1]
A[2]
A[2]

$$\frac{3}{1}$$
A[0] + $\frac{3}{1}$ A[1] + $\frac{3}{1}$ A[2]
 $\frac{3}{1}$ A[0] + $\frac{3}{1}$ A[1] + $\frac{3}{1}$ A[2]

Ario is coming in how many subarrays?

Count = 8

rount -- 12

•

SP

ep)

int solve (int [) A)
$$\frac{1}{2}$$

int ans = 0;

int n = A - length;

for (int i = 0; i < n; i + 1) $\frac{1}{2}$

and += A[i] " ((i+1) " (n-i));

 $\frac{1}{2}$
 $\frac{1}{2}$

TC: 0(n)

Sum
$$(1,2) =)$$
 $PS[2] - PS[0]$

$$A[0] + A[1] + A[2] - A[0]$$

$$=) A[1] + A[2]$$

$$1 - (-2) = 3$$

101 (int i=0; i <n; i+4)="" th="" {<=""><th>í</th><th><i>خ</i></th><th>148</th></n;>	í	<i>خ</i>	148
Jor (int j= i-i, j>=0; j++) {	٥	-1	٥
SOP(),	1	\$ 7 X 84	in divide
3		25,	

Array product puzzle

$$A = \begin{bmatrix} 1 & 4 & 2 & 3 & 5 \\ 0 & 1 & 2 & 3 & 4 \end{bmatrix}$$

cossi) - product of all elements of All, except
ith element.

prod = 1 4 = 2 = 3 = 5

anssij =
$$\frac{\rho \circ od}{A (i)}$$
 $\frac{1}{2}$ manage edge cases (val-10)

Note: don't use division.

$$A = \begin{bmatrix} 1 & 4 & 2 & 3 & 5 \\ 0 & 1 & 2 & 3 & 4 \end{bmatrix}$$

$$\rho M = \begin{bmatrix} 1 & 4 & 8 & 24 & 120 \end{bmatrix}$$

$$SM = \begin{bmatrix} 120 & 120 & 30 & 15 & 5 \end{bmatrix}$$

$$ans = \begin{bmatrix} 120 & 30 & 60 & 40 & 24 \end{bmatrix}$$

anslig =
$$mut(0, i-1)$$
 x $mut(i+1, n-1)$
 $pm[i-1]$ Sm(i+1)