Exercícios

2005/2006

- 1. Relativamente ao circuito da figura:
 - 1.1 Determine o número de correntes que existem neste circuito.
 - 1.2 Determine o número de tensões que existem neste circuito.
 - 1.3 Determine a tensão, a corrente e a potência em jogo em cada componente do circuito.
 - 1.4 Verifique se a potência em jogo em cada componente é absorvida ou fornecida por esse componente.

- 2. Relativamente ao circuito da figura:
 - 2.1 Com o interruptor **K aberto**, determine:
 - 2.1.1 o sentido e o valor da corrente I;
 - 2.1.2 a tensão e a potência em jogo em cada componente do circuito.
 - 2.2 Com o interruptor **K fechado**, determine:
 - 2.2.1 o sentido e o valor da corrente I;
 - 2.2.2 a tensão e a potência em jogo em cada componente do circuito.

- 3. Relativamente ao circuito da figura:
 - 3.1 Com o interruptor **K aberto**, determine:
 - 3.1.1 o sentido e o valor da corrente **I**;
 - 3.1.2 a tensão e a potência em jogo em cada componente do circuito.
 - 3.2 Com o interruptor **K fechado**, determine:
 - 3.2.1 o sentido e o valor da corrente **I**;
 - 3.2.2 a tensão e a potência em jogo em cada componente do circuito.

4. Preencha os quadros anexos às figuras.

 $\begin{array}{c|c} \mathbf{U_A} = & \mathbf{U_G} = \\ \\ \mathbf{U_B} = & \mathbf{U_H} = \\ \\ \mathbf{U_C} = & \mathbf{E} = \\ \\ \mathbf{U_D} = & \mathbf{U} = \\ \\ \mathbf{U_F} = & \mathbf{I} = \\ \end{array}$

$U_A =$	$U_G =$
$U_B =$	$U_H = 20V$
$U_C = -7V$	$U_R =$
$U_D =$	U =
$\mathbf{U_E} =$	I =
$U_F = 30V$	$P_{8V} =$

A fonte ideal de tensão de 8V fornece ou recebe energia?

 $\begin{array}{c|c} \mathbf{U_A} = & \mathbf{U_G} = \\ \\ \mathbf{U_B} = & \mathbf{U_H} = \\ \\ \mathbf{U_C} = & \mathbf{E} = \\ \\ \mathbf{U_D} = & \mathbf{U} = \\ \\ \mathbf{U_F} = & \mathbf{P_{2A}} = \\ \end{array}$

A fonte ideal de corrente fornece ou recebe energia?

5. A tensão U_2 é medida recorrendo a um voltímetro de resistência interna R_V .

$$U = 50V \quad \text{(cons tan te)}$$

$$R_1 = 100kΩ$$

$$R_2 = 100kΩ$$

5.1 Calcule o valor de U_2 quando

5.1.1
$$R_V = 1\Omega$$

5.1.2
$$R_V = 1k\Omega$$

5.1.3
$$R_V = 10k\Omega$$

5.1.4
$$R_V = 100k\Omega$$

$$5.1.5 \quad R_V = 1M\Omega$$

6. A corrente I_2 é medida recorrendo a um amperímetro de resistência interna $R_{\rm A}$.

$$I = 10$$
A (constante)
 $R_1 = 10$ Ω
 $R_2 = 10$ Ω

6.1 Calcule o valor de I_2 quando

6.1.1
$$R_A = 0.1 \Omega$$

6.1.2
$$R_A = 1\Omega$$

6.1.3
$$R_A = 10\Omega$$

6.1.4
$$R_A = 100\Omega$$

6.1.5
$$R_A = 1k\Omega$$

7. Calcule os valores das resistências indicadas junto de cada figura.

 $R_{AB} =$

 $R_{AC} =$

 $R_{AB} =$

 $R_{BD} =$

 $R_{AC} =$

8. O gráfico apresenta a evolução da tensão presente nos terminais de uma fonte de energia, em função da corrente debitada por essa fonte.

- 8.1 Determine o valor da tensão presente nos terminais da fonte quando esta se encontra em vazio.
- 8.2 Determine o valor da corrente de curto-circuito da fonte.
- 8.3 Determine o valor da resistência interna da fonte.
- 8.4 Determine o Equivalente de Thévenin da fonte.
- 8.5 Determine o Equivalente de Norton da fonte.
- 8.6 Determine o valor da tensão presente nos terminais da fonte quando esta alimenta uma resistência de 15Ω .
- 8.7 Determine o valor da corrente debitada pela fonte quando esta alimenta uma resistência de 3Ω .
- 8.8 Determine o valor da resistência de carga quando a tensão presente nos terminais da fonte é de 37V.
- 8.9 Determine o valor da resistência de carga quando a corrente debitada pela fonte é de 18A.
- 8.10 Verifique se esta fonte se aproxima mais de uma fonte ideal de tensão ou de uma fonte ideal de corrente, quando alimenta uma carga que pode variar
 - entre 80Ω e 90Ω .
 - entre 0.1Ω e 0.7Ω .
- 8.11 Determine o valor máximo de potência que esta fonte pode entregar a uma carga resistiva.

9. Uma resistência cujo valor pode variar entre 1Ω e 50Ω foi ligada aos terminais de uma fonte linear de energia. Após vários ensaios, verificou-se que a potência na resistência atinge um máximo de 5W quando o seu valor se encontra ajustado para 20Ω .

- 9.1 Determine o Equivalente de Thévenin da fonte de energia.
- 10. Uma fonte de energia apresenta aos seus terminais uma tensão de 15V quando se encontra em vazio. Se curto-circuitada, a fonte debita uma corrente de 7,5A.
 - 10.1 Determine o valor da resistência interna da fonte.
 - 10.2 Determine o valor da tensão presente nos terminais da fonte quando esta alimenta uma resistência de 8Ω .
 - 10.3 Determine o valor máximo da potência entregue por esta fonte a uma carga resistiva.
 - 10.4 Verifique se esta fonte se aproxima mais de uma fonte ideal de tensão ou de uma fonte ideal de corrente, quando alimenta uma carga que pode variar entre 50Ω e 100Ω .
- 11. Uma fonte linear de energia possui uma resistência interna de 10Ω . O valor máximo da potência que esta fonte pode entregar a uma carga resistiva é 1000W.
 - 11.1 Determine o valor da tensão presente nos terminais da fonte quando esta se encontra em vazio.
 - 11.2 Determine o valor da corrente de curto-circuito desta fonte.
 - 11.3 Determine o valor da resistência de carga quando a tensão presente nos terminais da fonte é de 160V.
 - 11.4 Determine o valor da resistência de carga quando a corrente debitada pela fonte é de 5A.

12. Relativamente ao circuito da figura:

- 12.1 Indique os componerntes que fornecem energia ao circuito.
- 12.2 Indique os componerntes que recebem energia do circuito.
- 12.3 Calcule o valor da potência em jogo em cada componente do circuito.

13. Recorrendo ao Método das Correntes Fictícias:

- 13.1 Verifique se a fonte de 10V recebe ou fornece energia ao circuito.
- 13.2 Determine o valor da potência em jogo na fonte de 10V.
- 13.3 Compare o método de resolução adoptado com outros aos quais poderia recorrer, indicando vantagens e inconvenientes que resultariam da sua utilização neste exemplo concreto.

14. Utilize o Método das Correntes Fictícias para verificar se a fonte ideal de corrente de **4A** gera ou recebe potência. Calcule o valor dessa potência.

- 15. Utilizando o Método das Correntes Fictícias:
 - 15.1 Verifique se a fonte de 4A gera ou recebe potência.
 - 15.2 Calcule o valor da potência em jogo na fonte de 4A.
 - 15.3 Compare o método de resolução adoptado com outros aos quais poderia recorrer, indicando vantagens e inconvenientes que resultariam da sua utilização neste exemplo concreto.

13

16. Utilize o Método das Tensões Nodais para verificar se a fonte ideal de corrente gera ou recebe potência. Calcule o valor dessa potência. Compare o método de resolução adoptado com outros aos quais poderia recorrer, indicando vantagens e inconvenientes que resultariam da sua utilização neste exemplo concreto.

- 17. Relativamente ao circuito da figura:
 - 17.1 Assinale e numere, na figura, todos os nós do circuito.
 - 17.2 Coloque a referência dos potenciais eléctricos no nó mais indicado, tendo em vista o cálculo das tensões nos nós do circuito usando o Método das Tensões Nodais.
 - 17.3 Escreva a equação de correntes (funções das tensões nodais) para o nó comum à fonte de 9A e à resistência de 6Ω .
 - 17.4 Assinale na figura todas as correntes consideradas ao escrever a equação referida no ponto anterior.

18. Relativamente ao circuito da figura:

18.1 Apresente um sistema de equações que permita determinar as tensões de todos os nós do circuito relativamente à referência que escolher (<u>não resolva o sistema!</u>).

18.2 Apresente uma expressão que permita, em função das tensões nodais, calcular o valor da potência **absorvida** pela fonte ideal de tensão de 5V.

- 19. Recorrendo ao Princípio da Sobreposição:
 - 19.1 Verifique se a fonte de 5V gera ou recebe potência. Calcule o valor dessa potência.
 - 19.2 Justifique todas as afirmações, cálculos e eventuais simplificações que efectuar.

20. Calcule os equivalentes de Thévenin e de Norton, relativamente aos pontos A e B, de cada um dos circuitos apresentados.

21. Uma fonte de energia apresenta, em aberto, uma tensão de **10V** nos seus terminais. Se curtocircuitada, a mesma fonte debita uma corrente de **1mA**.

21.1 Utilize o teorema de Thévenin para determinar se esta fonte recebe ou fornece potência quando ligada nos terminais **A** e **B** do circuito da figura.

21.2 De acordo com a figura seguinte, entre a fonte e o circuito já estudado coloca-se uma resistência ajustável **Rv**, cujo valor pode variar entre **0Ω** e **5Ω**. Do ponto de vista da nova carga assim constituída, verifique se a fonte de energia se aproxima mais de uma fonte ideal de tensão ou de corrente.

22. Relativamente ao circuito da figura:

- 22.1 Calcule **R** de modo a que a potência dissipada nesta resistência seja de **2W**.
- 22.2 Calcule o valor de **R** de modo a que a potência que o circuito lhe fornece tenha o maior valor possível. Determine o valor dessa potência.

23. Relativamente ao circuito da figura:

- 23.1 Calcule o valor da potência dissipada por $R=7\Omega$.
- 23.2 Calcule o valor de **R** por forma a que **I=0,25A**.
- 23.3 Justifique a escolha do método de resolução adoptado, bem como eventuais simplificações que efectuar.

- 24. Relativamente ao circuito da figura (que é simétrico relativamente à fonte de 1V):
 - 24.1 Indique os componerntes que fornecem energia ao circuito.
 - 24.2 Indique os componerntes que recebem energia do circuito.
 - 24.3 Calcule o valor da potência em jogo em cada componente do circuito.
 - 24.4 Justifique a escolha do método de resolução adoptado, bem como eventuais simplificações que efectuar

- 25. Relativamente ao circuito da figura:
 - 25.1 Verifique se a fonte de **5V** gera ou recebe potência. Calcule o valor dessa potência.
 - 25.2 Justifique a escolha do método de resolução adoptado, bem como eventuais simplificações que efectuar.

26. Relativamente ao circuito da figura:

26.1 Verifique se a fonte ideal de corrente gera ou recebe potência.

Calcule o valor dessa potência.

26.2 Justifique a escolha do método de resolução adoptado, bem como eventuais simplificações que efectuar.

27. Sabendo que U_A =12V determine o valor de $U_{B_{\bullet}}$ Justifique todos os cálculos que efectuar.

28. Determine, para cada um dos sinais representados:

- 28.1 o período;
- o valor máximo; 28.3
- o valor médio; 28.5

a frequência; 28.2

28.4 o valor mínimo;

15s

15s

i(t) ♠

7A

29. Relativamente ao sinal da figura, calcule:

- 29.1 O período;
- 29.2 A frequência;
- 29.3 O valor máximo;
- 29.4 O valor mínimo;
- 29.5 O valor médio.

30. Relativamente ao sinal da figura, calcule:

- 30.1 O período;
- 30.2 A frequência;
- 30.3 O valor máximo;
- 30.4 O valor mínimo;
- 30.5 O valor médio.

- 31. Relativamente ao sinal da figura, calcule:
 - 31.1 O período;
 - 31.2 A frequência;
 - 31.3 O valor máximo;
 - 31.4 O valor mínimo;
 - 31.5 O valor médio.

- 32. Determine o valor eficaz da tensão u(t) tal que $u(t) = U_{M\acute{a}x}$ sen ωt
- 33. Determine o valor eficaz da tensão u(t) tal que $u(t) = U_{Máx} sen(\omega t + \theta)$.
- 34. Relativamente ao sinal $u(t) = 325 \cdot sen(314t + 0.524)$ (V), calcule:
 - 34.1 O período;
 - 34.2 A frequência;
 - 34.3 O valor da tensão no instante t = 0;
 - 34.4 O valor máximo;
 - 34.5 O valor mínimo;
 - 34.6 O valor médio;
 - 34.7 O valor eficaz.

- 35. Relativamente ao sinal $u(t) = 325 \cdot sen(314t + 0.524) + 108 \cdot sen(942t + 0.524)$ (V), calcule:
 - 35.1 O período;
 - 35.2 A frequência;
 - 35.3 O valor da tensão no instante t = 0;
 - 35.4 O valor médio;
- 36. Determinar a frequência fundamental (em Hz) do sinal periódico s(t) tal que

$$s(t) = 25 - 16 \cdot \left[sen(157 \cdot t) - 0.5 \cdot sen(314 \cdot t) - 0.3 \cdot sen(471 \cdot t) \right]$$

37. Determine a frequência (em Hz) do terceiro harmónico do sinal periódico s(t) tal que

$$s(t) = \frac{35}{\pi^2} \cdot \left[sen(100\pi \cdot t) - \frac{1}{9} \cdot sen(300\pi \cdot t) + \frac{1}{25} \cdot sen(500\pi \cdot t) - \frac{1}{49} \cdot sen(700\pi \cdot t) + \dots \right]$$

38. Determine o valor médio do sinal periódico s(t) tal que

$$s(t) = 70 \cdot \left(\frac{1}{2} - \frac{1}{\pi} \cdot \left[\operatorname{sen}(5\pi \cdot t) - \frac{1}{2} \cdot \operatorname{sen}(10\pi \cdot t) - \frac{1}{3} \cdot \operatorname{sen}(15\pi \cdot t) \right] \right)$$

39. Determine a frequência (em Hz) do terceiro harmónico do sinal periódico s(t) tal que

$$s(t) = 70 \cdot \left(\frac{1}{2} - \frac{1}{\pi} \cdot \left[\operatorname{sen}(5\pi \cdot t) - \frac{1}{2} \cdot \operatorname{sen}(10\pi \cdot t) - \frac{1}{3} \cdot \operatorname{sen}(15\pi \cdot t) \right] \right)$$

40. Determine o espectro de amplitudes e o espectro de fases do sinal periódico s(t) tal que

$$s(t) = \frac{S_{m\acute{a}x}}{2} - \frac{S_{m\acute{a}x}}{\pi} \sum_{n=1}^{\infty} \left[\frac{1}{n} \cdot sen(n\omega_0 t) \right]$$

41. Considere o seguinte sinal periódico:

$$i(t) = \frac{8 \cdot S_{\text{máx}}}{\pi^2} \sum_{n=1,3,5,\dots}^{\infty} \left[\frac{1}{n^2} \cdot \text{sen} \left(\frac{n\pi}{2} \right) \cdot \text{sen} \left(n\omega_0 t \right) \right]$$
 (A)

- 41.1 Determine as amplitudes dos harmónicos de ordem inferior a 7.
- 41.2 Determine o período do sinal.
- 41.3 Desenhe o espectro de fases deste sinal, para todos os harmónicos de ordem inferior a 7.

42. No circuito da figura, o interruptor K encontra-se inicialmente fechado. No instante $t=t_0$, verifica-se que $u_c=0$ V. O interruptor é aberto nesse instante e novamente fechado 5ms depois. Determine:

- 42.1 o primeiro instante depois de t_0 em que u_C =100V.
- 42.2 o valor máximo de u_C.
- 42.3 o valor de u_C no instante $t=t_0+7ms$.
- 42.4 o valor de i no instante $t=t_0+7ms$.

- 43. No circuito da figura, o interruptor K encontra-se inicialmente aberto. No instante $t=t_0$, verifica-se que $i_L=0$ A. O interruptor é fechado nesse instante e novamente aberto 0,3ms depois. Determine:
 - 43.1 o equivalente de Thévenin do circuito que alimenta a bobina quando K está fechado.
 - 43.2 *o primeiro instante depois de t*⁰ *em que i*_L = 1A.
 - 43.3 o valor de i_L no instante $t=t_0+0.3ms$.
 - 43.4 o valor de u_L no instante $t=t_0+0.45ms$.

44. No circuito da figura, o interruptor K encontra-se inicialmente aberto. No instante $t=t_0$, verifica-se que $i_L=0$ A. O interruptor é fechado nesse instante e novamente aberto 10ms depois. Determine:

- 44.1 *o primeiro instante depois de t*⁰ *em que i*^L = 10A.
- 44.2 o valor máximo de i_L.
- 44.3 o valor de i_L no instante $t=t_0+11,5ms$.
- 44.4 o valor da tensão na resistência no instante $t=t_0+11,5ms$ (<u>marque na figura</u> o sentido desta tensão).

- 45. No circuito da figura, o interruptor K encontra-se inicialmente fechado. No instante t=t₀, verificase que u_C=0V. O interruptor é aberto nesse instante e novamente fechado 6,6ms depois. Determine:
 - 45.1 o equivalente de Thévenin do circuito que alimenta o condensador quando K está aberto.
 - 45.2 o primeiro instante depois de t_0 em que $u_C = 1V$.
 - 45.3 o valor de u_C no instante $t=t_0+6,6ms$.
 - 45.4 o valor de i no instante $t=t_0+8,8ms$.

46. Esboce o gráfico da tensão $u_R(t)$.

47. No instante t=0 o condensador encontra-se carregado com uma tensão de 5mV. Esboce o gráfico da tensão $u_{R}(t)$.

48. O condensador **C** carrega-se quando se fecha o interruptor **INT** e descarrega-se quando se abre esse interruptor. O gráfico mostra a corrente na resistência **R**₂ em função do tempo.

- 48.1 No mesmo sistema de eixos desenhe o gráfico da corrente i_c no condensador.
- 48.2 Suponha que:

$$E = 12V$$

$$R_1 = 10k\Omega$$

$$R_2 = 5k\Omega$$

$$C = 1000 \mu F$$

- 48.2.1 Calcule o valor inicial de i_{R2} (imediatamente antes de se abrir o interruptor).
- 48.2.2 Calcule o valor da tensão presente nos terminais do condensador 8 segundos depois de o interruptor ter sido aberto.

49. Desenhe os gráficos da variação no tempo das tensões uxy e uyz, indicando os valores máximos e mínimos.

A - Interruptor aberto.

F - Interruptor fechado.

50. Complete o quadro com o valor da impedância de cada receptor monofásico, para as frequências e os valores de R, L e C que estão indicados.

Ū			R=10Ω	L:	=1,59mH	C=1	5,9µF	
$\overline{\overline{I}}$ $\overline{\overline{Z}}$	$Z = \frac{U}{I}$	1Hz	10Hz	100Hz	1kHz	10kHz	100kHz	1MHz
	Z = R							
	$Z = \omega L$							
C	$Z = \frac{1}{\omega C}$							
R L	$Z = \sqrt{R^2 + (\omega L)^2}$							
R C C → W →	$Z = \sqrt{R^2 + \left(\frac{1}{\omega C}\right)^2}$							
	$Z = \left \omega L - \frac{1}{\omega C} \right $							

51. Aplica-se uma tensão alternada sinusoidal u(t), de frequência f, ao circuito da figura. Complete o quadro.

$\begin{array}{c} u_{R} \\ \\ u \\ \end{array}$	Valor eficaz de u(t): U=100V R=10kΩ C=8nF				
	f=200Hz	f=2kHz	f=20kHz		
Valor eficaz de $\mathbf{u}_{\mathbf{R}}$ ($\mathbf{U}_{\mathbf{R}}$)					
Valor eficaz de $\mathbf{u}_{\mathbf{C}}$ ($\mathbf{U}_{\mathbf{C}}$)					
Valor eficaz de i (I)					
Desfasamento angular entre \mathbf{u} e \mathbf{u}_{C} ($\Delta \theta_{C}$)					
Desfasamento temporal entre \mathbf{u} e \mathbf{u}_{C} ($\Delta \mathbf{t}_{\mathrm{C}}$)					
Desfasamento angular entre \mathbf{u} e \mathbf{u}_{R} $(\Delta \theta_{R})$					
Desfasamento temporal entre \mathbf{u} e \mathbf{u}_R (Δt_R)					

52. Complete o quadro.

Nota: a resolução de cada problema deve basear-se na análise do respectivo diagrama fasorial.

T Z U=230V I=10A f=50Hz	Circuito equivalente com o número mínimo de componentes em série	Circuito equivalente com o número mínimo de componentes em paralelo
Ī		
Ī 60° Ū		
Ī		
<u>U</u> 60°		
Ī		

53. Aplica-se uma tensão alternada sinusoidal u(t), de frequência f, ao circuito da figura. Complete o quadro.

i		Valor eficaz de u(t): U=230V		
\downarrow \mathbf{i}_{R} \downarrow \mathbf{i}_{L}		R=10Ω	L=31,8mH	C=318μF
u R L C		f=5Hz	f=50Hz	f=500Hz
Valor da corrente na resistência	I_R			
Valor da corrente na bobina	I_{L}			
Valor da corrente no condensador	I_{C}			
Valor da corrente debitada pela fonte	I			
Valor da impedância de R	$\mathbf{Z}_{\mathbf{R}}$			
Valor da impedância de L	\mathbf{Z}_{L}			
Valor da impedância de C	Z _C			
Valor da impedância equivalente do conjunto	Z			
Potência activa em R	P _R			
Potência reactiva em R	Q_R			
Potência aparente em R	S_R			
Potência activa em L	$P_{\rm L}$			
Potência reactiva em L	\mathbf{Q}_{L}			
Potência aparente em L	S_{L}			
Potência activa em C	P _C			
Potência reactiva em C	Qc			
Potência aparente em C	S_{C}			
Potência activa total	P			
Potência reactiva total	Q			
Potência aparente total	S			

54. O receptor representado na figura, constituído por uma resistência em série com uma bobina, é alimentado por uma tensão alternada sinusoidal u, que tem um valor eficaz U=15V e uma frequência f=1kHz. Determine:

- 54.1 a indutância da bobina.
- 54.2 o valor da impedância do receptor.
- 54.3 o valor eficaz de i.
- 54.4 o valor eficaz de u_L .
- 54.5 a potência activa consumida pelo receptor.
- 54.6 o desfasamento temporal entre u e u_L.

55. O receptor representado na figura, constituído por um condensador em série com uma bobina, é percorrido por uma corrente alternada sinusoidal i, que tem um valor eficaz I=2A e uma frequência f=2kHz. Determine:

- 55.1 a indutância da bobina.
- 55.2 a capacitância do condensador.
- 55.3 o valor da impedância do receptor.
- 55.4 o valor eficaz de u_C .
- 55.5 a potência activa consumida pelo receptor.
- 55.6 o desfasamento temporal entre u e u_C .

56. O receptor representado na figura absorve uma corrente alternada sinusoidal i, que tem um valor eficaz I=0,5A e uma frequência f=10kHz. Determine:

- 56.1 a capacitância do condensador.
- 56.2 o valor da impedância do receptor.
- 56.3 o valor eficaz de u.
- 56.4 o valor eficaz de u_R .
- 56.5 a potência aparente consumida pelo receptor.
- 56.6 o desfasamento temporal entre u e i.

57. O receptor representado na figura possui uma impedância de 40Ω e absorve uma corrente alternada sinusoidal i, que tem um valor eficaz I=3A e uma frequência f=50Hz. Determine:

- 57.1 o coeficiente de auto-indução da bobina.
- 57.2 o factor de potência do receptor.
- 57.3 o valor eficaz de u_L .
- 57.4 o valor eficaz de u.
- 57.5 a potência reactiva consumida pelo receptor.
- 57.6 o desfasamento temporal entre u e i.

