Unsupervised Learning-K-means Clustering

Tujuan Pembelajaran

- ☐ Mahasiswa dapat memahami konsep pembelajaran tidak tersupervisi (unsupervised learning), khususnya menggunakan metode K-Means clustering
- Mahasiswa dapat menjelaskan beberapa penerapan algoritma klastering dalam menyelesaikan berbagai masalah.

Outline

- Pengantar Clustering
- Penerapan Algoritma Clustering
- Macam-macam Algoritma Clustering
- Langkah Algoritma K-Means Clustering
- ☐ Contoh Perhitungan Algoritma K-Means
- Optimasi Nilai k pada K-Means

Supervised vs Unsupervised Learning

- Supervised
 - Classification
 - Regression
- Unsupervised
 - Clustering
 - Association
 - Dimension Reduction

Pengantar

Diberikan data profil pelanggan (customer), bagaimana memilih data pelanggan yang potensial untuk ditawarkan produk tertentu?

	Customer I	d	Age	Edu	Years Employed	Income	Card Debt	Other Debt	Defaulted	Address	DebtIncomeRatio
0		1	41	2	6	19	0.124	1.073	0.0	NBA001	6.3
1		2	47	1	26	100	4.582	8.218	0.0	NBA021	12.8
2		3	33	2	10	57	6.111	5.802	1.0	NBA013	20.9
3		4	29	2	4	19	0.681	0.516	0.0	NBA009	6.3
4		5	47	1	31	253	9.308	8.908	0.0	NBA008	7.2
845	84	6	27	1	5	26	0.548	1.220	NaN	NBA007	6.8
846	84	7	28	2	7	34	0.359	2.021	0.0	NBA002	7.0
847	84	18	25	4	0	18	2.802	3.210	1.0	NBA001	33.4
848	84	19	32	1	12	28	0.116	0.696	0.0	NBA012	2.9
849	85	50	52	1	16	64	1.866	3.638	0.0	NBA025	8.6
850 ro	ws × 10 colur	mns	S								

Kita diminta untuk mengelompokkan data customer di samping, berdasarkan kesamaan profil pelanggan

Customer Segmentation

Clustering

Pengantar

☐ Contoh hasil clustering / segmentasi pelanggan

	Customer I	d	Age	Edu	Years Employed	Income	Card Debt	Other Debt	Defaulted	DebtIncomeRatio	Cluster
0		1	41	2	6	19	0.124	1.073	0.0	6.3	2
1		2	47	1	26	100	4.582	8.218	0.0	12.8	0
2		3	33	2	10	57	6.111	5.802	1.0	20.9	2
3		4	29	2	4	19	0.681	0.516	0.0	6.3	2
4		5	47	1	31	253	9.308	8.908	0.0	7.2	1
845	84	16	27	1	5	26	0.548	1.220	NaN	6.8	2
846	84	7	28	2	7	34	0.359	2.021	0.0	7.0	2
847	84	18	25	4	0	18	2.802	3.210	1.0	33. <mark>4</mark>	2
848	84	19	32	1	12	28	0.116	0.696	0.0	2.9	2
849	85	50	52	1	16	64	1.866	3.638	0.0	8.6	0

Setiap pelanggan berhasil dikelompokkan

Apa itu Clustering?

Cluster adalah sekumpulan data / object yang memiliki kesamaan (similarity) diantara setiap anggota klaster, atau ketidaksamaan (dissimilarity) dengan data pada klaster yang lain

Contoh Penerapan Clustering

- Retail / Marketing
 - Analisis pola transaksi yang dilakukan pelanggan
 - Rekomendasi buku, film atau produk baru untuk pelanggan baru
- Perbankan
 - Deteksi fraud dalam transaksi perbankan
 - Pengelompokan nasabah (program loyalitas nasabah)
- Asuransi
 - Deteksi fraud dalam klaim asuransi
 - Analisis resiko asuransi bagi pelanggan
- Berita dan Penerbitan
 - Kategorisasi berita secara otomatis
 - Rekomendasi artikel / berita baru

Penggunaan Algoritma Clustering

- Exploratory Data Analysis (EDA)
- Generate Rangkuman (summary generation)
- Deteksi pencilan (outlier detection)
- Mencari duplikat (finding duplicates)
- Tahap pra-pemrosesan data (Data pre-processing)
- Kompresi data / image
- Optimasi algoritma k-NN
- ☐ dII

Algoritma Clustering

- Partitioning-based clustering
 - K-Means,
 - K-Medoid,
 - K-Medians,
 - Fuzzy C-Means, dll
- ☐ Hierarchical Clustering
 - Agglomerative
 - Divisive, dll
- Density-based Clustering
 - DBSCAN, dll

Partitioning-based Clustering

Algoritma K-means

K-Means Clustering

- Algoritma K-Means adalah salah satu algoritma clustering yang bersifat iteratif yang mencoba untuk mempartisi dataset menjadi subkelompok non-overlapping berbeda yang ditentukan oleh K (cluster) yang mana setiap titik data hanya dimiliki oleh satu kelompok.
- ☐ K-Means mencoba membuat titik data intra-cluster semirip mungkin dengan titik data yang lain pada satu cluster.
- ☐ K-Means menetapkan poin data ke cluster sedemikian rupa sehingga jumlah jarak kuadrat antara titik data dan pusat massa cluster (centroid) adalah minimal.
- ☐ Semakin sedikit variasi dalam sebuah cluster, semakin homogen (serupa) titik data dalam cluster yang sama.

K-Means Clustering: Similarity / Dissimilarity

☐ Intra-cluster:

- Memaksimalkan similarity (kesamaan) di dalam klaster
- Meminimalkan dissimilarity di dalam klaster

☐ Inter-cluster:

- Meminimalkan similarity antarklaster
- Memaksimalkan dissimilarity antar-klaster

K-Means Clustering: Metode Perhitungan Similarity

- Jarak Euclidean
- Jarak City-Block
- □ Jarak Kotak Catur (Chebychef)
- Jarak Minkowski
- Jarak Canberra
- ☐ Jarak Bray-Curtis (Sorensen)
- Divergensi Kullback Leibler
- ☐ Divergensi Jensen Shannon
- dll

(b) Jarak city-block

(c) Jarak Chebychef

$$y_2 - y_1$$
 $\sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$

Langkah / Algoritma K-Means Clustering

- 1. Tentukan jumlah klaster (nilai k)
- 2. Inisialisasi nilai centroid awal setiap klaster secara acak
- 3. Hitung jarak setiap titik data dengan setiap centroid
- 4. Masukkan setiap titik data ke dalam klaster berdasarkan jarak terdekat dengan pusat klaster
- 5. Untuk setiap klaster, tentukan nilai centroid baru berdasarkan rerata (means) dari setiap data di dalam klaster
- 6. Ulangi langkah 3-5 sedemikian hingga tidak ada perubahan anggota klaster.

Ilustrasi Cara Kerja Algoritma K-Means

Data Pelanggan

CustID	Age	Income
1	41	19
2	47	100
3	33	57
4	29	19
5	47	253
6	40	81
7	38	56
8	42	64
9	26	18
10	47	115

Diketahui data pelanggan sebagaimana tabel di samping, kita diminta mengelompokkan data pelanggan menjadi 2 (dua) kelompok.

1. Tentukan jumlah klaster. Dalam contoh kasus ini kita gunakan nilai k=2

CustID	Age	Income
1	41	19
2	47	100
3	33	57
4	29	19
5	47	253
6	40	81
7	38	56
8	42	64
9	26	18
10	47	115

2. Inisialisasi nilai centroid awal setiap klaster secara acak

CustID	Age	Income
1	41	19
2	47	100
3	33	57
4	29	19
5	47	253
6	40	81
7	38	56
8	42	64
9	26	18
10	47	115

Cara penentuan centroid awal:

- Memilih salah satu data untuk atribut "Age" dan "Income" secara acak
- 2. Membangkitkan bilangan acak sesuai rentang nilai "Age" dan "Income"

Dalam contoh ini kita memilih centroid awal dengan cara 1, kita tentukan C1 = (41,19) dan C2 = (47,100)

2. Inisialisasi nilai centroid awal setiap klaster secara acak

CustID	Age	Income
1	41	19
2	47	100
3	33	57
4	29	19
5	47	253
6	40	81
7	38	56
8	42	64
9	26	18
10	47	115

3. Hitung jarak setiap titik data dengan setiap centroid. Contoh: Euclidean Distance

CustID	Ago	Income	Jarak ke C1(41,19)	Jarak ke C2(47,100)
Custib	Age	THEOTHE	Jaiak Re C1(41,19)	Jarak Re C2(47,100)
1	41	19	$\sqrt{(41-41)^2+(19-19)^2}=0$	$\sqrt{(41-47)^2+(19-100)^2} = 81,22$
2	47	100	$\sqrt{(47-41)^2+(100-19)^2}=81,22$	$\sqrt{(47-47)^2+(100-100)^2}=0$
3	33	57	$\sqrt{(33-41)^2+(57-19)^2}=38,83$	$\sqrt{(33-47)^2+(57-100)^2}=45{,}22$
4	29	19	$\sqrt{(29-41)^2+(19-19)^2}=12.0$	$\sqrt{(29-47)^2+(19-100)^2}=82,98$
5	47	253	$\sqrt{(47-41)^2+(253-19)^2}=234{,}08$	$\sqrt{(47-47)^2+(253-100)^2}=153,0$
6	40	81	$\sqrt{(40-41)^2+(81-19)^2}=62{,}01$	$\sqrt{(40-47)^2+(81-100)^2}=20{,}25$
7	38	56	$\sqrt{(38-41)^2+(56-19)^2}=37{,}12$	$\sqrt{(38-47)^2+(56-100)^2}=44,91$
8	42	64	$\sqrt{(42-41)^2+(64-19)^2}=45{,}01$	$\sqrt{(42-47)^2+(64-100)^2} = 36{,}35$
9	26	18	$\sqrt{(26-41)^2+(18-19)^2}=15{,}03$	$\sqrt{(26-47)^2+(18-100)^2}=84,65$
10	47	115	$\sqrt{(47-41)^2+(115-19)^2}=96{,}19$	$\sqrt{(47-47)^2+(115-100)^2}=15.0$

4. Masukkan setiap titik data ke dalam klaster berdasarkan jarak terdekat dengan centroid

CustID	Age	Income	Jarak ke C1(41,19)	Jarak ke C2(47,100)	Klaster
1	41	19	$\sqrt{(41-41)^2+(19-19)^2}=0$	$\sqrt{(41-47)^2+(19-100)^2} = 81,22$	1
2	47	100	$\sqrt{(47-41)^2+(100-19)^2}=81,22$	$\sqrt{(47-47)^2+(100-100)^2}=0$	2
3	33	57	$\sqrt{(33-41)^2+(57-19)^2}=38,83$	$\sqrt{(33-47)^2+(57-100)^2}=45{,}22$	1
4	29	19	$\sqrt{(29-41)^2+(19-19)^2}=12.0$	$\sqrt{(29-47)^2+(19-100)^2}=82,98$	1
5	47	253	$\sqrt{(47-41)^2+(253-19)^2}=234{,}08$	$\sqrt{(47-47)^2+(253-100)^2}=153.0$	2
6	40	81	$\sqrt{(40-41)^2+(81-19)^2}=62,01$	$\sqrt{(40-47)^2+(81-100)^2}=20{,}25$	2
7	38	56	$\sqrt{(38-41)^2+(56-19)^2}=37,12$	$\sqrt{(38-47)^2+(56-100)^2}=44,91$	1
8	42	64	$\sqrt{(42-41)^2+(64-19)^2}=45{,}01$	$\sqrt{(42-47)^2+(64-100)^2} = 36,35$	2
9	26	18	$\sqrt{(26-41)^2+(18-19)^2}=15{,}03$	$\sqrt{(26-47)^2+(18-100)^2}=84,65$	1
10	47	115	$\sqrt{(47-41)^2+(115-19)^2}=96{,}19$	$\sqrt{(47-47)^2+(115-100)^2}=15,0$	2

4. Masukkan setiap titik data ke dalam klaster berdasarkan jarak terdekat dengan centroid

5. Untuk setiap klaster, hitung nilai centroid baru berdasarkan rerata (means) dari setiap data di dalam klaster

CustID	Age	Income	Jarak ke C1(41,19)	Jarak ke C2(47,100)	Klaster
1	41	19	$\sqrt{(41-41)^2+(19-19)^2}=0$	$\sqrt{(41-47)^2+(19-100)^2} = 81,22$	1
2	47	100	$\sqrt{(47-41)^2+(100-19)^2}=81,22$	$\sqrt{(47-47)^2+(100-100)^2}=0$	2
3	33	57	$\sqrt{(33-41)^2+(57-19)^2} = 38,83$	$\sqrt{(33-47)^2+(57-100)^2}=45{,}22$	1
4	29	19	$\sqrt{(29-41)^2+(19-19)^2}=12,0$	$\sqrt{(29-47)^2+(19-100)^2}=82,98$	1
5	47	253	$\sqrt{(47-41)^2+(253-19)^2}=234{,}08$	$\sqrt{(47-47)^2+(253-100)^2}=$ 153,0	2
6	40	81	$\sqrt{(40-41)^2+(81-19)^2}=62{,}01$	$\sqrt{(40-47)^2+(81-100)^2}=20,25$	2
7	38	56	$\sqrt{(38-41)^2+(56-19)^2}=37,12$	$\sqrt{(38-47)^2+(56-100)^2}=44,91$	1
8	42	64	$\sqrt{(42-41)^2+(64-19)^2}=45{,}01$	$\sqrt{(42-47)^2+(64-100)^2} = 36,35$	2
9	26	18	$\sqrt{(26-41)^2+(18-19)^2}=15,03$	$\sqrt{(26-47)^2+(18-100)^2}=84,65$	1
10	47	115	$\sqrt{(47-41)^2+(115-19)^2}=96,19$	$\sqrt{(47-47)^2+(115-100)^2}=15,0$	2

5. Untuk setiap klaster, hitung nilai centroid baru berdasarkan rerata (means) dari setiap data di dalam klaster

CustID	Age	Income	Jarak ke C1(41,19)	Jarak ke C2(47,100)	Klaster
1	41	19	$\sqrt{(41-41)^2+(19-19)^2}=0$	$\sqrt{(41-47)^2+(19-100)^2}=81,22$	1
2	47	100	$\sqrt{(47-41)^2+(100-19)^2}=81,22$	$\sqrt{(47-47)^2+(100-100)^2}=0$	2
3	33	57	$\sqrt{(33-41)^2+(57-19)^2} = 38,83$	$\sqrt{(33-47)^2+(57-100)^2}=45{,}22$	1
4	29	19	$\sqrt{(29-41)^2+(19-19)^2}=$ 12,0	$\sqrt{(29-47)^2+(19-100)^2}=82,98$	1
5	47	253	$\sqrt{(47-41)^2+(253-19)^2}=234{,}08$	$\sqrt{(47-47)^2+(253-100)^2}=$ 153,0	2
6	40	81	$\sqrt{(40-41)^2+(81-19)^2}=62{,}01$	$\sqrt{(40-47)^2+(81-100)^2}=20,25$	2
7	38	56	$\sqrt{(38-41)^2+(56-19)^2}=37,12$	$\sqrt{(38-47)^2+(56-100)^2}=44{,}91$	1
8	42	64	$\sqrt{(42-41)^2+(64-19)^2} = 45,01$	$\sqrt{(42-47)^2+(64-100)^2} = 36,35$	2
9	26	18	$\sqrt{(26-41)^2+(18-19)^2}=15{,}03$	$\sqrt{(26-47)^2+(18-100)^2}=84,65$	1
10	47	115	$\sqrt{(47-41)^2+(115-19)^2}=96{,}19$	$\sqrt{(47-47)^2+(115-100)^2}=15.0$	2

Centroid Baru

C2 = (mean(47;47;40;42;47), mean(100;253;81;64;115)) = (44,6; 122,6)

Pergeseran Centroid setiap klaster. C1 = (33,4; 33,8) dan C2 = (44,6; 122,6)

6. Ulangi langkah 3-5 menggunakan centroid baru

CustID	Age	Income	Jarak ke C1(33,4; 33,8)	Jarak ke C2(44,6; 122,6)	Klaster
1	41	19	16,64	103,66	1
2	47	100	67,58	22,73	2
3	33	57	23,20	66,62	1
4	29	19	15,44	104,77	1
5	47	253	219,62	130,42	2
6	40	81	47,66	41,85	2
7	38	56	22,67	66,93	1
8	42	64	31,40	58,66	1
9	26	18	17,45	106,24	1
10	47	115	82,33	7,97	2

6. Ulangi langkah 3-5 menggunakan centroid baru

CustID	Age	Income	Jarak ke C1(33,4; 33,8)	Jarak ke C2(44,6; 122,6)	Klaster
1	41	19	16,64	103,66	1
2	47	100	67,58	22,73	2
3	33	57	23,20	66,62	1
4	29	19	15,44	104,77	1
5	47	253	219,62	130,42	2
6	40	81	47,66	41,85	2
7	38	56	22,67	66,93	1
8	42	64	31,40	58,66	1
9	26	18	17,45	106,24	1
10	47	115	82,33	7,97	2

Apakah hasil klasterisasinya sama dengan tahap sebelumnya?

- Jika sama, hentikan proses klasterisasi
- Jika belum sama, ulangi langkah 3-5

Data			ITERASI 1	
CustID	Age	Income	C1(41,19)	C2(47,100)
1	41	19	0,00	81,22
2	47	100	81,22	0,00
3	33	57	38,83	45,22
4	29	19	12,00	82,98
5	47	253	234,08	153,00
6	40	81	62,01	20,25
7	38	56	37,12	44,91
8	42	64	45,01	36,35
9	26	18	15,03	84,65
10	47	115	96,19	15,00
	Centroid Baru		33,4	44,6
			33,8	122,6

38,83

ITERASI 4		
C1	C2	
26,42	137,13	
56,31	56,00	
12,41	99,98	
26,68	138,18	
208,46	97,00	
36,41	75,33	
11,40	100,40	
20,19	92,14	
28,51	139,59	
71,07	41,00	
SELESAI		

Optimasi Nilai k pada K-Means

- □ Salah satu faktor krusial baik tidaknya metode K-Means adalah **jumlah klusternya (nilai K)**. Hasil pengelompokan akan menghasilkan analisa yang berbeda untuk jumlah klaster yang berbeda juga.
- □ Semakin kecil nilai K (misal 2), maka pembagian kluster menjadi cepat, namun mungkin ada informasi tersembunyi yang tidak terungkap.
- Semakin besar nilai K (misal K=10), maka terlalu banyak kluster. Mungkin akan terlalu sulit untuk membuat analisa atau memilih dukungan keputusan dari hasil cluster.

Optimasi Nilai k pada K-Means

- ☐ Penentuan nilai k terbaik dapat dilakukan berdasarkan ukuran kualitas hasil klasterisasi.
- Beberapa ukuran kualitas klaster:
 - Sum Square Error (SSE)
 - Davies-Bouldin Index (DBI)
 - Silhouette Coefficient
 - Rand Index
 - Mutual Information
 - Calinski-Harabasz Index (C-H Index)
 - Dunn Index

Penentuan Nilai k Terbaik dengan Metode Elbow

- ☐ Untuk mengetahui jumlah klaster yang paling baik adalah dengan cara melihat perbandingan kualitas klaster untuk setiap pilihan nilai k (missal k=2, 3, 4, 5, ...).
- Nilai k yang dipilih adalah nilai k yang memiliki perubahan kualitas signifikan, seperti sebuah siku (elbow).

Kesimpulan

- Clustering merupakan salah satu metode pembelajaran tidak tersupervisi
- ☐ Metode clustering dibagi menjadi 3 jenis: partitioning-based, hierarchical, dan density-based.
- Algoritma K-means adalah salah satu algoritma clustering yang bersifat iteratif yang mempartisi dataset menjadi subkelompok non-overlapping berbeda yang ditentukan oleh K (cluster)
- ☐ Algoritma K-Means:
 - Relatif efisien untuk data kecil hingga besar
 - Menghasilkan kelompok klaster
 - Memerlukan inisialisasi nilai k

Latihan

- ☐ Diketahui dataset
- ☐ Lakukan clustering dengn jumlah cluster = 2
- ☐ Dua cluster merepresentasikan :
 - Penyempitan pembuluh darah > 50%
 - Penyempitan kurang dari 50 %

		diameter narrowing	age	cholesterol	max HR	ST by exercise
	1	0	63	233	150	2.3
2	2	1	67	286	108	1.5
	3	1	67	229	129	2.6
	4	0	37	250	187	3.5
	5	0	41	204	172	1.4
	6	0	56	236	178	0.8
	7	1	62	268	160	3.6
	8	0	57	354	163	0.6
	9	1	63	254	147	1.4
	10	1	53	203	155	3.1
	11	0	57	192	148	0.4
	12	0	56	294	153	1.3
	13	1	56	256	142	0.6
	14	0	44	263	173	0.0
	15	0	52	199	162	0.5
	16	0	57	168	174	1.6
	17	1	48	229	168	1.0
	18	0	54	239	160	1.2
	19	0	48	275	139	0.2
	20	0	49	266	171	0.6
	21	0	64	211	144	1.8
	22	0	58	283	162	1.0
	23	1	58	284	160	1.8
	24	1	58	224	173	3.2
	25	1	60	206	132	2.4
	26	0	50	219	158	1.6
	27	0	58	340	172	0.0
	28	0	66	226	114	2.6
	29	0	43	247	171	1.5
	30	1	40	167	114	2.0