Processus de Markov

January 25, 2014

Soit (Ω, \mathcal{F}) , (E, \mathcal{E}) des espaces mesurés.

On appelle noyau de transition sur $\Omega \times \mathcal{E}$ toute application N sur $\Omega \times \mathcal{E}$ telle que

(a) Pour tout ω , $N(\omega, \cdot)$ est une mesure sur \mathcal{E} .

Soit (Ω, \mathcal{F}) , (E, \mathcal{E}) des espaces mesurés.

On appelle noyau de transition sur $\Omega\times\mathcal{E}$ toute application N sur $\Omega\times\mathcal{E}$ telle que

- (a) Pour tout ω , $N(\omega, \cdot)$ est une mesure sur \mathcal{E} .
- (b) Pour tout $A \in \mathcal{E}$, $N(\cdot, A)$ est \mathcal{F} -mesurable.

Soit (Ω, \mathcal{F}) , (E, \mathcal{E}) des espaces mesurés.

On appelle noyau de transition sur $\Omega \times \mathcal{E}$ toute application N sur $\Omega \times \mathcal{E}$ telle que

- (a) Pour tout ω , $N(\omega, \cdot)$ est une mesure sur \mathcal{E} .
- (b) Pour tout $A \in \mathcal{E}$, $N(\cdot, A)$ est \mathcal{F} -mesurable.

On parle de probabilité de transition si au (a), $N(\omega, \cdot)$ est une probabilité pour tout $\omega \in \Omega$.

Soit (Ω, \mathcal{F}) , (E, \mathcal{E}) des espaces mesurés.

On appelle noyau de transition sur $\Omega \times \mathcal{E}$ toute application N sur $\Omega \times \mathcal{E}$ telle que

- (a) Pour tout ω , $N(\omega, \cdot)$ est une mesure sur \mathcal{E} .
- (b) Pour tout $A \in \mathcal{E}$, $N(\cdot, A)$ est \mathcal{F} -mesurable.

On parle de probabilité de transition si au (a), $N(\omega, \cdot)$ est une probabilité pour tout $\omega \in \Omega$.

Définition (Composition des noyaux)

Soit M et N des noyaux sur $E \times \mathcal{E}$. On définit un noyau noté MN sur $E \times \mathcal{E}$, par

Soit (Ω, \mathcal{F}) , (E, \mathcal{E}) des espaces mesurés.

On appelle noyau de transition sur $\Omega \times \mathcal{E}$ toute application N sur $\Omega \times \mathcal{E}$ telle que

- (a) Pour tout ω , $N(\omega, \cdot)$ est une mesure sur \mathcal{E} .
- (b) Pour tout $A \in \mathcal{E}$, $N(\cdot, A)$ est \mathcal{F} -mesurable.

On parle de probabilité de transition si au (a), $N(\omega, \cdot)$ est une probabilité pour tout $\omega \in \Omega$.

Définition (Composition des noyaux)

Soit M et N des noyaux sur $E \times \mathcal{E}$. On définit un noyau noté MN sur $E \times \mathcal{E}$, par

$$MN(x, A) = \int_{\mathcal{F}} M(x, dy) N(y, A) \qquad \forall (x, A) \in \mathcal{E} \times \mathcal{E}.$$

En prenant, $M(x, dy) = \nu(dy)$, pour tout $x \in E$, avec ν une mesure sur \mathcal{E} , on constate que les noyaux de transition agissent sur l'ensemble des mesures positives, et mème sur l'ensemble des probabilités si M est une probabilité de transition.

En prenant, $M(x, dy) = \nu(dy)$, pour tout $x \in E$, avec ν une mesure sur \mathcal{E} , on constate que les noyaux de transition agissent sur l'ensemble des mesures positives, et mème sur l'ensemble des probabilités si M est une probabilité de transition.

Un noyau de transition sur $E \times \mathcal{E}$ agit naturellement (à gauche) sur l'ensemble des fonctions \mathcal{E} -mesurables positives (et même sur les fonctions \mathcal{E} -mesurables bornées lorsque l'on a une probabilité de transition) par

En prenant, $M(x, dy) = \nu(dy)$, pour tout $x \in E$, avec ν une mesure sur \mathcal{E} , on constate que les noyaux de transition agissent sur l'ensemble des mesures positives, et mème sur l'ensemble des probabilités si M est une probabilité de transition.

Un noyau de transition sur $E \times \mathcal{E}$ agit naturellement (à gauche) sur l'ensemble des fonctions \mathcal{E} -mesurables positives (et même sur les fonctions \mathcal{E} -mesurables bornées lorsque l'on a une probabilité de transition) par

$$Mf = \int_{E} f(y)M(x, dy) \quad \forall (x, A) \in E \times \mathcal{E}.$$

$$\mathbb{P}(X_t \in A | \sigma\{X_u, u \leq s\}) = P_{s,t}(X_s, A) \qquad \forall A \in \mathcal{E}.$$

$$\mathbb{P}(X_t \in A | \sigma\{X_u, u \leq s\}) = P_{s,t}(X_s, A) \qquad \forall A \in \mathcal{E}.$$

En particulier pour tout fonction \mathcal{E} -mesurable positive ou bornée f, on aurait

$$\mathbb{P}(X_t \in A | \sigma\{X_u, u \leq s\}) = P_{s,t}(X_s, A) \qquad \forall A \in \mathcal{E}.$$

En particulier pour tout fonction \mathcal{E} -mesurable positive ou bornée f, on aurait

$$\mathbb{E}(f(X_t)|\sigma\{X_u,u\leq s\})=P_{s,t}f(X_s).$$

$$\mathbb{P}(X_t \in A | \sigma\{X_u, u \leq s\}) = P_{s,t}(X_s, A) \qquad \forall A \in \mathcal{E}.$$

En particulier pour tout fonction \mathcal{E} -mesurable positive ou bornée f, on aurait

$$\mathbb{E}(f(X_t)|\sigma\{X_u,u\leq s\})=P_{s,t}f(X_s).$$

$$\mathbb{P}(X_t \in A | \sigma\{X_u, u \leq s\}) = P_{s,t}(X_s, A) \qquad \forall A \in \mathcal{E}.$$

En particulier pour tout fonction \mathcal{E} -mesurable positive ou bornée f, on aurait

$$\mathbb{E}(f(X_t)|\sigma\{X_u,u\leq s\})=P_{s,t}f(X_s).$$

$$P_{s,v}(X_s,A) = P(X_v \in A | \sigma\{X_u, u \le s\})$$

$$\mathbb{P}(X_t \in A | \sigma\{X_u, u \leq s\}) = P_{s,t}(X_s, A) \qquad \forall A \in \mathcal{E}.$$

En particulier pour tout fonction \mathcal{E} -mesurable positive ou bornée f, on aurait

$$\mathbb{E}(f(X_t)|\sigma\{X_u,u\leq s\})=P_{s,t}f(X_s).$$

$$P_{s,v}(X_s, A) = P(X_v \in A | \sigma\{X_u, u \le s\})$$

= $P(X_v \in A | \sigma\{X_u, u \le t\} | \sigma\{X_u, u \le s\})$

$$\mathbb{P}(X_t \in A | \sigma\{X_u, u \leq s\}) = P_{s,t}(X_s, A) \qquad \forall A \in \mathcal{E}.$$

En particulier pour tout fonction \mathcal{E} -mesurable positive ou bornée f, on aurait

$$\mathbb{E}(f(X_t)|\sigma\{X_u,u\leq s\})=P_{s,t}f(X_s).$$

$$P_{s,v}(X_s, A) = P(X_v \in A | \sigma\{X_u, u \le s\})$$

$$= P(X_v \in A | \sigma\{X_u, u \le t\} | \sigma\{X_u, u \le s\})$$

$$= \mathbb{E}(P_{t,v}(X_t, A) | \sigma\{X_u, u \le s\}) = \int_E P_{s,t}(X_s, dy) P_{t,v}(y, A),$$

$$\mathbb{P}(X_t \in A | \sigma\{X_u, u \leq s\}) = P_{s,t}(X_s, A) \qquad \forall A \in \mathcal{E}.$$

En particulier pour tout fonction \mathcal{E} -mesurable positive ou bornée f, on aurait

$$\mathbb{E}(f(X_t)|\sigma\{X_u,u\leq s\})=P_{s,t}f(X_s).$$

$$\begin{split} P_{s,v}(X_s,A) &= P(X_v \in A | \sigma\{X_u, \ u \leq s\}) \\ &= P(X_v \in A | \sigma\{X_u, \ u \leq t\} | \sigma\{X_u, \ u \leq s\}) \\ &= \mathbb{E}(P_{t,v}(X_t,A) | \sigma\{X_u, \ u \leq s\}) = \int_E P_{s,t}(X_s,dy) P_{t,v}(y,A), \\ &\text{i.e. } P_{s,v} = P_{s,t} P_{t,v}. \end{split}$$

Définition (Equations de Chapman-Kolmogorov)

Une famille $(P_{s,t})_{0 \le s < t}$ de noyaux de transition sur (E, \mathcal{E}) est appelé une fonction de transition si pour tous s < t < u,

$$P_{s,t}P_{t,u}=P_{s,u}.$$

Définition (Equations de Chapman-Kolmogorov)

Une famille $(P_{s,t})_{0 \le s < t}$ de noyaux de transition sur (E, \mathcal{E}) est appelé une fonction de transition si pour tous s < t < u,

$$P_{s,t}P_{t,u}=P_{s,u}.$$

Définition

Une fonction de transition $(P_{s,t})_{0 \le s < t}$ est dite homogène si $P_{s,t}$ ne dépend de s et t que par la différence t-s. Alors, si l'on note $P_t := P_{0,t}$, les équations de Chapman-Kolmogorov se réécrivent

$$P_{s+t} = P_s P_t$$

en particulier $(P_t)_{t\geq 0}$ est un semi-groupe.

Soit $(\Omega, \mathcal{F}, (\mathcal{G}_t)_{t\geq 0}, \mathbb{P})$ un espace de probabilité filtré. Un processus $(X_t)_{t\geq 0}$ à valeurs dans (E,\mathcal{E}) est un processus de Markov par rapport à la filtration $(\mathcal{G}_t)_{t\geq 0}$ de fonction de transition $(P_{s,t})0 \leq s < t$, si pour toute fonction \mathcal{E} -mesurable positive et pour tout $0 \leq s < t$,

Soit $(\Omega, \mathcal{F}, (\mathcal{G}_t)_{t\geq 0}, \mathbb{P})$ un espace de probabilité filtré. Un processus $(X_t)_{t\geq 0}$ à valeurs dans (E,\mathcal{E}) est un processus de Markov par rapport à la filtration $(\mathcal{G}_t)_{t\geq 0}$ de fonction de transition $(P_{s,t})_0 \leq s < t$, si pour toute fonction \mathcal{E} -mesurable positive et pour tout $0 \leq s < t$,

$$\mathbb{E}(f(X_t)|\sigma\{X_u,\ u\leq s\})=P_{s,t}f(X_s)\qquad \mathbb{P}\text{-a.s.} \tag{1}$$

Soit $(\Omega, \mathcal{F}, (\mathcal{G}_t)_{t\geq 0}, \mathbb{P})$ un espace de probabilité filtré. Un processus $(X_t)_{t\geq 0}$ à valeurs dans (E,\mathcal{E}) est un processus de Markov par rapport à la filtration $(\mathcal{G}_t)_{t\geq 0}$ de fonction de transition $(P_{s,t})_0 \leq s < t$, si pour toute fonction \mathcal{E} -mesurable positive et pour tout $0 \leq s < t$,

$$\mathbb{E}(f(X_t)|\sigma\{X_u,\ u\leq s\})=P_{s,t}f(X_s)\qquad \mathbb{P}\text{-a.s.}$$
 (1)

La mesure de probabilité $X_0(\mathbb{P})$ est appelée loi initiale de $(X_t)_{t\geq 0}$. Le processus est dit homogène si la fonction de transition l'est, et dans de cas, l'égalité précédente s'écrit

Soit $(\Omega, \mathcal{F}, (\mathcal{G}_t)_{t\geq 0}, \mathbb{P})$ un espace de probabilité filtré. Un processus $(X_t)_{t\geq 0}$ à valeurs dans (E,\mathcal{E}) est un processus de Markov par rapport à la filtration $(\mathcal{G}_t)_{t\geq 0}$ de fonction de transition $(P_{s,t})0 \leq s < t$, si pour toute fonction \mathcal{E} -mesurable positive et pour tout $0 \leq s < t$,

$$\mathbb{E}(f(X_t)|\sigma\{X_u,\ u\leq s\})=P_{s,t}f(X_s)\qquad \mathbb{P}\text{-a.s.} \tag{1}$$

La mesure de probabilité $X_0(\mathbb{P})$ est appelée loi initiale de $(X_t)_{t\geq 0}$. Le processus est dit homogène si la fonction de transition l'est, et dans de cas, l'égalité précédente s'écrit

$$\mathbb{E}(f(X_t)|\sigma\{X_u,\ u\leq s\})=P_{t-s}f(X_s)\qquad \mathbb{P}\text{-a.s.}$$

Proposition

Un processus $(X_t)_{t\geq 0}$ est un processus de Markov (sur (E,\mathcal{E})) de mesure initiale ν et de fonction de transition $(P_{s,t})$, si et seulement si pour tous $0=t_0<\ldots< t_k$ et toutes fonctions \mathcal{E} -mesurables positives f_0,\ldots,f_k ,

Proposition

Un processus $(X_t)_{t\geq 0}$ est un processus de Markov (sur (E,\mathcal{E})) de mesure initiale ν et de fonction de transition $(P_{s,t})$, si et seulement si pour tous $0=t_0<\ldots< t_k$ et toutes fonctions \mathcal{E} -mesurables positives f_0,\ldots,f_k ,

$$\mathbb{E}\left(\prod_{i=0}^{k} f_i(X_i)\right) = \int_{E} \nu(dx_0) f_0(x_0) \int_{E} P_{0,t_1}(x_0, dx_1) f_1(x_1) \dots \int_{E} P_{t_{k-1},t_k}(x_{k-1}, dx_k) f_k(x_k).$$

On se place dans la situation suivante :

- (i) $\Omega := E^{\mathbb{R}^+}$,
- (ii) $\mathcal{F} = \mathcal{E}^{\otimes \mathbb{R}^+}$,
- (iii) $(X_t)_{t\geq 0}$ est le processus coordonnées sur Ω ,
- (iv) $(\mathcal{F}_t)_{t\geq 0}$ est la filtration naturelle asoociée à $(X_t)_{t\geq 0}$.

On se place dans la situation suivante :

- (i) $\Omega := E^{\mathbb{R}^+}$,
- (ii) $\mathcal{F} = \mathcal{E}^{\otimes \mathbb{R}^+}$,
- (iii) $(X_t)_{t\geq 0}$ est le processus coordonnées sur Ω ,
- (iv) $(\mathcal{F}_t)_{t\geq 0}$ est la filtration naturelle asoociée à $(X_t)_{t\geq 0}$.

On suppose également que E est un espace polonais muni de sa tribu borélienne \mathcal{E} .

On se place dans la situation suivante :

- (i) $\Omega := E^{\mathbb{R}^+}$,
- (ii) $\mathcal{F} = \mathcal{E}^{\otimes \mathbb{R}^+}$,
- (iii) $(X_t)_{t\geq 0}$ est le processus coordonnées sur Ω ,
- (iv) $(\mathcal{F}_t)_{t\geq 0}$ est la filtration naturelle asoociée à $(X_t)_{t\geq 0}$.

On suppose également que E est un espace polonais muni de sa tribu borélienne \mathcal{E} .

Théorème

Soit ν une mesure de probabilité sur \mathcal{E} et $(P_{s,t})_{0 \leq s < t}$ une fonction de transition sur $(\mathcal{E}, \mathcal{E})$. Il existe une unique probabilité \mathbb{P}_{ν} sur \mathcal{F} tel que $(X_t)_{t \geq 0}$ soit un processus de Markov sur $(\mathcal{E}, \mathcal{E})$ de fonction de transition $(P_{s,t})_{0 \leq s < t}$ et de loi initiale ν .

Notons \mathbb{E}_{ν} l'espérance sous \mathbb{P}_{ν} . Lorsque $\nu:=\delta_{\mathsf{x}}$ avec $\mathsf{x}\in E$, on note plutot $\mathbb{P}_{\mathsf{x}}:=\mathbb{P}_{\delta_{\mathsf{x}}}$ et $\mathbb{E}_{\mathsf{x}}:=\mathbb{E}_{\delta_{\mathsf{x}}}$.

Notons \mathbb{E}_{ν} l'espérance sous \mathbb{P}_{ν} . Lorsque $\nu:=\delta_{x}$ avec $x\in E$, on note plutot $\mathbb{P}_{x}:=\mathbb{P}_{\delta_{x}}$ et $\mathbb{E}_{x}:=\mathbb{E}_{\delta_{x}}$.

Proposition

Soit Z une variable \mathcal{F} -mesurable positive. L'application $x \mapsto \mathbb{E}_x(Z)$ est \mathcal{E} -mesurable est pour toute mesure ν sur \mathcal{E} , on a :

$$\mathbb{E}_{\nu}(Z) = \int_{E} \nu(dx) \mathbb{E}_{x}(Z).$$

Notons \mathbb{E}_{ν} l'espérance sous \mathbb{P}_{ν} . Lorsque $\nu := \delta_{x}$ avec $x \in E$, on note plutot $\mathbb{P}_{x} := \mathbb{P}_{\delta_{x}}$ et $\mathbb{E}_{x} := \mathbb{E}_{\delta_{x}}$.

Proposition

Soit Z une variable \mathcal{F} -mesurable positive. L'application $x \mapsto \mathbb{E}_x(Z)$ est \mathcal{E} -mesurable est pour toute mesure ν sur \mathcal{E} , on a :

$$\mathbb{E}_{\nu}(Z) = \int_{E} \nu(dx) \mathbb{E}_{x}(Z).$$

Proposition (Propriété de Markov)

Soit Z une variable \mathcal{F} -mesurable positive. Pour tout t>0 et toute mesure initiale ν ,

$$\mathbb{E}_{\nu}(Z \circ \theta_t | \mathcal{F}_t) = \mathbb{E}_{X_t}(Z)$$
 \mathbb{P}_{ν} -a.s.

