WUOLAH

Ej 1 - Junio 2013.pdf *Ej 1 - Junio 2013*

- 2° Algorítmica
- Escuela Técnica Superior de Ingenierías Informática y de Telecomunicación UGR Universidad de Granada

- 1. Responda a las siguientes preguntas (no más de 1 página):
 - a. (0,5 puntos) Definición de orden O y orden Ω .
 - b. (0,5 puntos) ¿Es posible que un algoritmo sea O(n) y $\Omega(n^2)$? Razone su respuesta.
 - c. (0,5 puntos) Similitudes y diferencias entre las técnicas de diseño de algoritmos Divide y Vencerás y Programación Dinámica.
 - a) Se dice que un algoritmo A es de orden O(f(n)), donde f(n) es una función matemática f(n): N → R⁺, cuando existe una implementación del mismo cuyo tiempo de ejecución T_A(n) es menor o igual que K*f(n), donde K es constante, para "tamaños de caso grandes".
 Se dice que un algoritmo A es de orden Ω(f(n)), donde f(n) es una función matemática f(n): N → R⁺, cuando existe una implementación del mismo cuyo tiempo de ejecución T_A(n) es mayor o igual que K*f(n), donde K es constante, para "tamaños de casos grandes".
 - b) $\lim_{n \to \infty} f(n)/g(n) \to 0$, siendo f(n)=n y $g(n)=n^2$, f(n) es más eficiente que g(n). No es posible, porque el caso peor no puede ser más eficiente que el caso mejor.
 - c) Comparación:
 - DyV se aplica cuando los subproblemas son independientes.
 - P.D. se aplica cuando los subproblemas se solapan.
 - DyV utiliza recursividad(+tiempo, -memoria).
 - P.D. intenta evitar recursividad(-tiempo,+memoria)
 - Devuelve la solución óptima, dado que para resolver un DyV repetiría muchos cálculos y P.D. mantiene en memoria las subsoluciones para repetir cálculos.

