

Regresja jądrowa Nadaraya-Watsona

Jakub Koral

Wrocław, 8 grudnia 2021

Estymacja gęstości

Rozpiszmy gęstość jako pochodną dystrybuanty

$$f(x) = F'(x) = \lim_{h \to 0} \frac{F(x+h) - F(x-h)}{2h}$$

$$= \lim_{h \to 0} \frac{\mathbb{P}[x-h \le X \le x+h]}{2h}.$$
(1)

Teraz wystarczy oszacować prawdopodobieństwo, by otrzymać jądrowy estymator gęstości

$$\widehat{f}(x,h) = \frac{1}{2nh} \sum_{i=1}^{n} \mathbb{1}_{\{x - h \leqslant x_i \leqslant x + h\}}$$

$$= \frac{1}{nh} \sum_{i=1}^{n} \frac{1}{2} \cdot \mathbb{1}_{\{\left|\frac{x - x_i}{h}\right| \leqslant 1\}} = \frac{1}{nh} \sum_{i=1}^{n} K\left(\frac{x - x_i}{h}\right)$$
(2)

Widać, że $K(z) = \frac{1}{2} \cdot \mathbb{1}_{\{|z| \leq 1\}} = f_U(z)$, gdzie $U \sim \mathcal{U}(-1, 1)$.

Formalne definicje

Definicja (Jądrowy estymator gęstości)

Jądrowy estymator gęstości dla próbki $\{x_i\}_{i=1}^n$ zadany jest wzorem

$$\widehat{f}(x,h) = \frac{1}{nh} \sum_{i=1}^{n} K\left(\frac{x-x_i}{h}\right),$$

gdzie $K(\cdot)$ to jądro, a h to parametr wygładzenia.

Definicja (Jądro)

Funkcję $K:\mathbb{R}\longrightarrow [0,\infty)$, która spełnia następujące warunki

- 1. $\int_{\mathbb{R}} K(z) dz = 1$ (normalizacja),
- 2. K(-z) = K(z) (symetria),

nazywamy jądrem. Często stosujemy zapis $K_h(z) := \frac{1}{h}K\left(\frac{z}{h}\right)$.

Nazwa	Wzór
jądro jednostajne (prostokątne)	$rac{1}{2}\cdot \mathbb{1}_{\{ z \leqslant 1\}}$
jądro trójkątne	$(1- z)\cdot \mathbb{1}_{\{ z \leqslant 1\}}$
jądro normalne	$\phi(z) = \frac{1}{\sqrt{2\pi}} e^{-\frac{z^2}{2}}$
jądro Epanecznikowa	$\frac{3}{4}\left(1-z^2\right)\cdot\mathbb{1}_{\left\{ z \leqslant 1\right\}}$
jądro cosinusowe	$\frac{\pi}{4}\cos\frac{\pi z}{2}\cdot\mathbb{1}_{\{ z \leqslant 1\}}$

Wybór jądra ma niewielkie znaczenie (w porównaniu do wyboru parametru h). Najlepsze pod względem scałkowanego błędu średniokwadratowego jest jądro Epanecznikowa.

Dlaczego parametr wygładzenia jest istotny?

Effect of various bandwidth values
The larger the bandwidth, the smoother the approximation becomes

Rysunek: Porównanie estymatorów gęstości jądrowej dla różnych parametrów h (ang. bandwidth).

Dobór parametru wygładzenia

Nie da się wyznaczyć optymalnego (w sesnie średniokwadratowym) estymatora parametru h bez znajomości postaci funkcji gęstości f. Można jednak znaleźć dobre jego przybliżenie metodą cross-validation. Zdefiniujmy

LSCV(h) :=
$$\int \widehat{f}(x,h)^2 dx - \frac{2}{n(n-1)} \sum_{i=1}^n \sum_{\substack{j=1 \ j \neq i}}^n K_h(x_i - x_j), (3)$$

który nazywamy selektorem cross-validation o najmniejszym błędzie średniokwadratowym. Wtedy możemy oszacować *h* przy pomocy wzoru

$$\widehat{h}_{\mathsf{LSCV}} := \operatorname*{argmin}_{h>0} \mathsf{LSCV}(h). \tag{4}$$

Regresja nieparametryczna

W przypadku regresji nieparametrycznej będziemy estymować funkcję

$$m(x) = \mathbb{E}[Y|X=x] = \int yf(y|x) \,\mathrm{d}\,y = \int y\frac{f(x,y)}{f(x)} \,\mathrm{d}\,y. \tag{5}$$

Skorzystamy z jądrowego estymatora gęstości

$$\widehat{\mathbb{E}}[Y|X=x] = \int y \frac{\sum_{i=1}^{n} K_h(x-x_i) K_h(y-y_i)}{\sum_{j=1}^{n} K_h(x-x_j)} \, \mathrm{d} y$$

$$= \frac{\sum_{i=1}^{n} K_h(x-x_i) \int y K_h(y-y_i) \, \mathrm{d} y}{\sum_{j=1}^{n} K_h(x-x_j)}$$

$$= \frac{\sum_{i=1}^{n} K_h(x-x_i) y_i}{\sum_{j=1}^{n} K_h(x-x_j)}.$$
(6)

Estymator jądrowy Nadaraya-Watsona dany jest wzorem

$$\widehat{m}_{NW}(x,h) = \frac{\sum_{i=1}^{n} K_h(x - x_i) y_i}{\sum_{i=1}^{n} K_h(x - x_i)}.$$
 (7)

Kod

Implementacją regresji jądrowej Nadaraya-Watsona w R jest chociażby funkcja ksmooth:

```
require(graphics)
library(MASS)
n < -100
X \leftarrow rnorm(n, sd = 3)
m \leftarrow function(x) x^2 * cos(x)
eps < - rnorm(n, sd = 10)
Y \leftarrow m(X) + eps
h_LSCV \leftarrow ucv(X, nb = n)
xGrid \leftarrow seq(min(X), max(X), 1 = 500)
plot(X, Y)
lines(xGrid, m(xGrid))
lines(ksmooth(X, Y, "normal", bandwidth = 0.5),
col = "blue", lwd = 2)
lines(ksmooth(X, Y, "normal", bandwidth = h_LSCV),
col = "red", lwd = 2)
title("Przykład wykorzystania regresji jądrowej\n
Nadraya-Watsona")
legend(x="topright", c("m(x)=x^2 * cos(x)", "h = 0.5",
paste("h =", toString(round(h_LSCV, 3))), lty = 1,
col=c("black","blue", "red"), lwd = 2)
```

Przykład

Przyklad wykorzystania regresji jadrowej Nadraya-Watsona

Rysunek: Zależność dla próbki $\{x_i\}_{i=1}^{100}$ z rozkładu $\mathcal{N}(0,3)$ i $y_i = x_i^2 \cos(x_i) + \varepsilon_i$, gdzie $\varepsilon_i \sim \mathcal{N}(0,10)$. Dorysowane krzywe regresji jądrowej Nadaraya-Watsona dla parametrów h = 0.5 i $h = \widehat{h}_{\text{LSCV}}$.

Literatura:

Portugués E.G., Notes for Predictive Modeling:

- ▶ Jądrowy estymator gęstości: https://bookdown.org/egarpor/PM-UC3M/npregnpdens.html
- Regresja Nadaraya-Watsona: https://bookdown.org/egarpor/PM-UC3M/npregkre.html

Rysunek:

https://deepai.org/machine-learning-glossary-andterms/kernel-density-estimation