通訊系統(II)

國立清華大學電機系暨通訊工程研究所 蔡育仁 台達館 821 室

Tel: 62210

E-mail: yrtsai@ee.nthu.edu.tw

Prof. Tsai

Chapter 5 Detection of Signals with Unknown Phase (Non-coherent Detection)

Introduction

Prof. Tsai

Noncoherent Detection

- In previous study, we assume that the receiver is **perfectly** synchronized (in both frequency and phase) to the transmitter
 - The only channel impairment is AWGN
- In practice, there is also uncertainty due to the randomness of certain signal parameters; for example, a **time-variant channel**
 - Including the channel distortion, propagation distance uncertainty, multiple-path propagation, and user velocity
 - Induce carrier phase uncertainty at the receiver
- The **phase** may change in a way that the receiver cannot follow
 - The receiver **cannot estimate** the received carrier phase
 - The carrier phase may change too rapidly for the receiver to track

Noncoherent Detection (Cont.)

- Phase synchronization may be too costly
 - The designer may simply choose to disregard the phase information in the received signal
 - At the expense of some degradation in noise performance
- A digital communication receiver with no provision made for carrier phase recovery is said to be noncoherent
 - Noncoherent detection

Prof. Tsai

Optimum Quadratic Receiver

Optimum Quadratic Receiver

• Consider a binary communication system, in which the transmitted signal is defined by (BFSK)

$$s_i(t) = \sqrt{2E/T} \cos(2\pi f_i t), \quad 0 \le t < T, i = 1, 2$$

- -E is the signal energy
- − *T* is the duration of the signaling interval
- The carrier frequency f_i for symbol i is an integer multiple of 1/2T
- Assuming the receiver operates **noncoherently** with respect to the transmitter, the received signal for an AWGN channel is

$$x(t) = \sqrt{2E/T}\cos(2\pi f_i t + \theta) + w(t), \quad 0 \le t < T, i = 1, 2$$

– where θ is the unknown carrier phase

Prof. Tsai

Optimum Quadratic Receiver (Cont.)

- Assuming that there is **no information** about θ
 - Uniform distribution

$$f_{\Theta}(\theta) = \begin{cases} 1/2\pi, & -\pi < t \le \pi \\ 0, & \text{otherwise} \end{cases}$$

- The binary detection problem to be solved is
 - Given the received signal x(t) with the **unknown carrier** phase θ
 - Design an optimum receiver for detecting symbol s_i represented by the signal component $\sqrt{2E/T}\cos(2\pi f_i t + \theta)$
- The likelihood function of symbol s_i , given the carrier phase θ :

$$L(s_i(\theta)) = \exp\left[\sqrt{E/N_0T} \int_0^T x(t) \cos(2\pi f_i t + \theta) dt\right]$$

Optimum Quadratic Receiver (Cont.)

• Averaging over all possible values of θ , we have

$$L(s_i) = \int_{-\pi}^{\pi} L(s_i(\theta)) f_{\Theta}(\theta) d\theta = I_0 \left(\sqrt{\frac{E}{N_0 T}} l_i \right)$$

– where $I_0(\cdot)$ is the modified Bessel function of the first kind of zero order

$$I_{0}(x) = \int_{0}^{2\pi} \exp(x \cos \psi) \, d\psi / 2\pi$$

$$l_{i} = \left\{ \left[\int_{0}^{T} x(t) \cos(2\pi f_{i}t) \, dt \right]^{2} + \left[\int_{0}^{T} x(t) \sin(2\pi f_{i}t) \, dt \right]^{2} \right\}^{1/2}$$

$$\cos(x+y) = \cos(x) \cos(y) - \sin(x) \sin(y)$$

$$\sin(x+y) = \sin(x) \cos(y) + \cos(x) \sin(y)$$

Prof. Tsai

Optimum Quadratic Receiver (Cont.)

- For binary transmission, there are two hypotheses:
 - Hypothesis H_1 , that signal $s_1(t)$ was sent
 - Hypothesis H_2 , that signal $s_2(t)$ was sent
- The binary-hypothesis test may be formulated as follow:

$$I_0 \left(\sqrt{\frac{E}{N_0 T}} l_1 \right)_{\stackrel{<}{H_1}}^{H_1} I_0 \left(\sqrt{\frac{E}{N_0 T}} l_2 \right)$$

• Because the modified Bessel function $I_0(\cdot)$ is a **monotonically** increasing function, we may simplify the hypothesis test as

$$l_1^2 \stackrel{H}{\underset{H}{\gtrless}} l_2^2$$

10

- This decision rule is known as the quadratic receiver
 - It is independent of the symbol energy E

Implementation of the Quadratic Receiver

• According to the definition of l_i , the implementation of the quadratic receiver is shown as follows:

Prof. Tsai

Equivalent Forms of the Quadratic Receiver

- One equivalent form of the quadrature receiver
 - Replace each correlator with an equivalent matched filter
 - In one branch, a filter matched to the signal $\cos(2\pi f_i t)$
 - In the other branch, a filter matched to $\sin(2\pi f_i t)$
 - Both of which are defined for the signaling interval $0 \le t \le T$

Equivalent Forms of the Quad. Receiver (Cont.)

- One equivalent form of the quadrature receiver
 - Use noncoherent matched filter
- A filter that is matched to $s(t) = \cos(2\pi f_i t + \theta)$ for $0 \le t \le T$
 - The **envelope** of the matched filter output is **unaffected** by the value of phase $\theta \Rightarrow$ Choose a matched filter with impulse response $\cos[2\pi f_i(T-t)]$ corresponding to $\theta = 0$
- The output (at time T) of the filter followed by an envelope detector is the same as the quadrature receiver's output l_i

Prof. Tsai

Noncoherent Orthogonal Modulation Techniques

Noncoherent Orthogonal Modulation

- With the noncoherent receiver structures, we may now proceed to study the noise performance of noncoherent orthogonal modulation
 - Noncoherent binary FSK
 - **Differential PSK** (called DPSK)

Prof. Tsai

Noncoherent Orthogonal Modulation (Cont.)

- Consider a binary signaling scheme that involves the use of two **orthogonal** signals $s_1(t)$ and $s_2(t)$
 - Having the same energy E for the signaling interval $0 \le t \le T$
- Let $g_1(t)$ and $g_2(t)$ denote the **phase-shifted versions** of $s_1(t)$ and $s_2(t)$ that result from this transmission, respectively.
- It is assumed that the signals $g_1(t)$ and $g_2(t)$ remain orthogonal and have the same energy E
- In addition to carrier-phase uncertainty, the channel also introduces **AWGN** w(t) of zero mean and PSD $N_0/2$
 - The received signal is

$$x(t) = \begin{cases} g_1(t) + w(t), & s_1(t) \text{ sent for } 0 \le t \le T \\ g_2(t) + w(t), & s_2(t) \text{ sent for } 0 \le t \le T \end{cases}$$

Noncoherent Orthogonal Modulation (Cont.)

- At the receiver, the quadrature receiver is used for detection
 - If the output amplitude l_1 greater (smaller) than the output amplitude l_2 , the receiver decides in favor of $s_1(t)$ ($s_2(t)$)
 - When they are equal, a random decision is made

Prof. Tsai

Noncoherent Orthogonal Modulation (Cont.)

- The **upper** (in-phase) path: x(t) is correlated with $\psi_i(t)$
 - A scaled version of $s_i(t)$ with zero carrier phase
- The **lower** (quadrature) path: x(t) is correlated with $\hat{\psi}_i(t)$

Noncoherent Orthogonal Modulation (Cont.)

- The signal $\hat{\psi}_i(t)$ is the **Hilbert transform** of $\psi_i(t)$
- Let $\psi_i(t) = m(t) \cos(2\pi f_i t)$
 - where m(t) is a band-limited message signal
- Then the Hilbert transform is defined by

$$\hat{\psi}_i(t) = m(t)\sin(2\pi f_i t)$$

$$\cos(2\pi f_i t - \pi/2) = \sin(2\pi f_i t)$$

• An important property of Hilbert transformation is that a signal and its Hilbert transform are **orthogonal** to each other.

Prof. Tsai

Probability of Error for Noncoherent Receiver

- Based on the quadrature receiver, **noise** at the output of each matched filter has **two degrees of freedom**:
 - In-phase and quadrature
- Given the phase θ , there are four noisy parameters that are conditionally independent, and also identically distributed.
 - $-(x_{I1},x_{Q1})$ in the upper path, and (x_{I2},x_{Q2}) in the lower path
- The receiver has a **symmetric structure**: the error probability of transmitting $s_1(t)$ is the same as that of transmitting $s_2(t)$
- Suppose that signal $s_1(t)$ is transmitted for the interval $0 \le t \le T$,
 - If the channel noise w(t) makes that $l_2 > l_1$
 - \Rightarrow The receiver decides in favor of $s_2(t)$ rather than $s_1(t)$
 - ⇒ An error occurs

Prob. of Error for Noncoherent Receiver (Cont.)

• For the probability density function of the random variable L_2 (represented by sample value l_2), we have

$$l_2 = \sqrt{x_{I2}^2 + x_{Q2}^2} \Longrightarrow L_2 = \sqrt{X_{I2}^2 + X_{Q2}^2}$$

- The output of this matched filter is due to **noise alone**

- The random variables X_{I2} and X_{Q2} are both **Gaussian** distributed with zero mean and variance $N_0/2$

$$f_{X_{I2}}(x_{I2}) = \frac{1}{\sqrt{\pi N_0}} \exp\left(-\frac{x_{I2}^2}{N_0}\right)$$
$$f_{X_{Q2}}(x_{Q2}) = \frac{1}{\sqrt{\pi N_0}} \exp\left(-\frac{x_{Q2}^2}{N_0}\right)$$

Prof. Tsai

Prob. of Error for Noncoherent Receiver (Cont.)

- The **envelope** of a Gaussian process represented in polar form is **Rayleigh distributed** and independent of the phase θ
 - Therefore, the random variable L_2 has the following **probability density function**:

$$f_{L_2}(l_2) = \frac{2l_2}{N_0} \exp\left(-\frac{l_2^2}{N_0}\right), \quad l_2 \ge 0$$

• The **conditional** probability of error, **given** l_1 , is the conditional probability that $l_2 > l_1$

$$P(l_2 > l_1 | l_1) = \int_{l_1}^{\infty} f_{L_2}(l_2) dl_2 = \exp\left(-\frac{l_1^2}{N_0}\right)$$

Prob. of Error for Noncoherent Receiver (Cont.)

• For the random variable L_1 , we have

$$l_1 = \sqrt{x_{I1}^2 + x_{Q1}^2} \Longrightarrow L_1 = \sqrt{X_{I1}^2 + X_{Q1}^2}$$

- The output of this matched filter is due to signal plus noise
- For simplification, we assume that the signal is within X_{I1}
- The random variable X_{I1} is **Gaussian distributed** with mean \sqrt{E} and variance $N_0/2$, where E is the symbol energy

• The random variable X_{Q1} is **Gaussian distributed** with zero mean and variance $N_0/2$

with zero mean and variance
$$N_0/2$$

$$f_{X_{I1}}(x_{I1}) = \frac{1}{\sqrt{\pi N_0}} \exp\left[-\frac{(x_{I1} - \sqrt{E})^2}{N_0}\right] \qquad l_1$$
 (noise)
$$f_{X_{Q1}}(x_{Q1}) = \frac{1}{\sqrt{\pi N_0}} \exp\left(-\frac{x_{Q1}^2}{N_0}\right) \qquad (signal plus noise)$$

Prof. Tsai

Prob. of Error for Noncoherent Receiver (Cont.)

- The standard approach is to find the probability density function of L_1 due to signal plus noise
 - However, this leads to rather complicated calculations involving the use of Bessel functions
- Given x_{I1} and x_{Q1} , the conditional probability of error is

$$P(l_2 > l_1 | x_{I1}, x_{Q1}) = \exp\left(-\frac{l_1^2}{N_0}\right) = \exp\left(-\frac{x_{I1}^2 + x_{Q1}^2}{N_0}\right)$$

- Since X_{I1} and X_{Q1} are **statistically independent**, their joint pdf equals the **product** of their individual pdf
- Then, the average probability of error is represented as

$$P_{e} = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} P(l_{2} > l_{1} | x_{I1}, x_{Q1}) f_{X_{I1}}(x_{I1}) f_{X_{Q1}}(x_{Q1}) dx_{I1} dx_{Q1}$$

Prob. of Error for Noncoherent Receiver (Cont.)

• The integrand of the average probability of error is

$$P(l_{2} > l_{1} | x_{I1}, x_{Q1}) f_{X_{I1}, X_{Q1}}(x_{I1}, x_{Q1}) = \frac{1}{\pi N_{0}} \exp \left[-\frac{x_{I1}^{2} + 2x_{Q1}^{2} + (x_{I1} - \sqrt{E})^{2}}{N_{0}} \right]$$

$$= \frac{1}{\pi N_{0}} \exp \left[-\frac{2(x_{I1} - \sqrt{E}/2)^{2} + 2x_{Q1}^{2} + E/2}{N_{0}} \right]$$

• Hence, the average probability of error is = 1

$$P_{e} = \frac{1}{2} \exp \left[-\frac{E}{2N_{0}} \right] \times \frac{1}{\sqrt{\pi N_{0}/2}} \int_{-\infty}^{\infty} \exp \left[-\frac{2}{N_{0}} \left(x_{I1} - \sqrt{E}/2 \right)^{2} \right] dx_{I1}$$

$$= 1 \times \frac{1}{\sqrt{\pi N_0/2}} \int_{-\infty}^{\infty} \exp\left[-\frac{2}{N_0} x_{Q1}^2\right] dx_{Q1} = \frac{1}{2} \exp\left[-\frac{E}{2N_0}\right]$$

Prof. Tsai

Noncoherent Binary Frequency-Shift Keying

Noncoherent Binary Frequency-Shift Keying

• In binary FSK, the transmitted signal is

$$s_i(t) = \begin{cases} \sqrt{2E_b/T_b} \cos(2\pi f_i t), & 0 \le t < T_b \\ 0, & \text{elsewhere} \end{cases}, i = 1, 2$$

- To maintain **orthogonality**, the **transmitted frequency** is set at $f_i = (n_c + i)/T_b$ for some fixed integer n_c
- For the **noncoherent detection**
 - If $l_1 > l_2$: in favor of **symbol 1**
 - If $l_1 < l_2$: in favor of **symbol 0**

Prof. Tsai

Probability of Error for Noncoherent BFSK

- The noncoherent binary FSK is a special case of noncoherent orthogonal modulation with $T = T_b$ and $E = E_b$
- Hence, the BER for noncoherent binary FSK is

$$P_e = \frac{1}{2} \exp \left[-\frac{E_b}{2N_0} \right]$$

- It is not necessary that the FSK signal is a **continuous-phase** signal
 - Using **different** phases for symbol 1 and symbol 0 is possible

Differential Phase-Shift Keying

Prof. Tsai

Differential Phase-Shift Keying (DPSK)

- DPSK is the "noncoherent" version of binary PSK.
 - DPSK eliminates the need for synchronizing the receiver to the transmitter
 - By combining two basic operations at the **transmitter**:
 - Differential encoding of the input binary sequence
 - PSK of the encoded sequence

Differential Encoding of DPSK

- **Differential encoding** starts with an **arbitrary first bit**, serving as the **reference bit**
 - Symbol 1 is used as the reference bit
- Generation of the **differentially encoded sequence**:
 - Input bit is "1": leave the differentially encoded symbol unchanged with respect to the current bit
 - Input bit is "0": **change** the differentially encoded symbol with respect to the current bit $(0 \rightarrow 1 \text{ or } 1 \rightarrow 0)$
- The differentially encoded sequence $\{d_k\}$ is used to shift the sinusoidal carrier phase by **zero** and **180°** Relative Phase
 - Symbol 1: the phase of the signal remains unchanged
 - Symbol 0: the phase of the signal is shifted by 180°

Prof. Tsai

Generation of DPSK

- Consider that the input binary sequence $\{b_k\}$ is "10010011"
- The reference bit used for differentially encoding is "1"
- Let $\{d_k\}$ denote the differentially encoded sequence and $\{d_{k-1}\}$ denote its **delayed version** by **one bit**
- The **complement** of the modulo-2 sum of $\{b_k\}$ and $\{d_{k-1}\}$ defines the desired $\{d_k\}$
- The binary symbols 1 and 0 are represented by the transmitted phase 0 and π

Input binary sequence $\{b_k\}$		1	0	0	1	0	0	1	1
Delayed version $\{d_{k-1}\}$, 1	1	0	1	1	0	1	1
Differentially encoded sequence $\{d_k\}$	1	1	0	1	1	0	1	1	1
Transmitted phase	0	0	π	0	0	π	0	0	0

Probability of Error for DPSK

- DPSK is also noncoherent orthogonal modulation
 - It's **orthogonal** only when its behavior is considered over **successive two-bit intervals**; that is, $0 \le t \le 2T_h$
- Let the transmitted DPSK signal in the **first**-bit interval be $\sqrt{2E_b/T_b}\cos(2\pi f_c t)$, corresponds to symbol 1 for $0 \le t < T_b$
- If the input symbol for the second-bit interval is also symbol 1

$$s_{1}(t) = \begin{cases} \sqrt{2E_{b}/T_{b}} \cos(2\pi f_{c}t), & \text{for } 0 \le t < T_{b} \\ \sqrt{2E_{b}/T_{b}} \cos(2\pi f_{c}t), & \text{for } T_{b} \le t < 2T_{b} \end{cases}$$

• If the input symbol for the **second**-bit interval is also **symbol 0**

$$s_{2}(t) = \begin{cases} \sqrt{2E_{b}/T_{b}} \cos(2\pi f_{c}t), & \text{for } 0 \le t < T_{b} \\ \sqrt{2E_{b}/T_{b}} \cos(2\pi f_{c}t + \pi), & \text{for } T_{b} \le t < 2T_{b} \end{cases}$$

Prof. Tsai

Probability of Error for DPSK (Cont.)

- The DPSK signals $s_1(t)$ and $s_2(t)$ are indeed **orthogonal** over the **two-bit interval** $0 \le t \le 2T_b$
 - A special form of noncoherent orthogonal modulation
 - In comparison with the binary FSK, the difference is $T = 2T_b$ and $E = 2E_b$
- Hence, the BER for DPSK is given by

$$P_e = \frac{1}{2} \exp \left[-\frac{E_b}{N_0} \right]$$

- DPSK provides a gain of 3 dB over binary FSK using noncoherent detection for the same E_b/N_0

DPSK Transmitter

- The DPSK transmitter consists of two functional blocks:
 - Logic network and one-bit delay (storage) element: convert the raw input binary sequence $\{b_k\}$ into the differentially encoded sequence $\{d_k\}$
 - Binary PSK modulator: the output of which is the desired DPSK signal.

Prof. Tsai

DPSK Receiver

- To deal with the unknown phase θ , the receiver equips with an **in-phase** path and a **quadrature** path
- Over the **two-bit** interval $0 \le t \le 2T_b$, we define the signal-space as $(A \cos \theta, A \sin \theta)$ and $(-A \cos \theta, -A \sin \theta)$, A: carrier amplitude

DPSK Receiver (Cont.)

- The receiver measures the coordinates (x_{I0}, x_{Q0}) at time $t = T_b$ and then measures (x_{I1}, x_{Q1}) at time $t = 2T_b$
 - $\mathbf{x}_0 = [x_{I0}, x_{O0}]^T$ and $\mathbf{x}_1 = [x_{I1}, x_{O1}]^T$
- The issue to be resolved is whether these two points map to the same signal point or different ones
- If $\mathbf{x}_0^T \mathbf{x}_1 = x_{I0} x_{I1} + x_{Q0} x_{Q1} > 0$
 - The two points are roughly in the same direction ⇒ Symbol 1

 The two points are roughly in different direction ⇒ Symbol 0

Prof. Tsai

DPSK Receiver (Cont.)

• Because the following identity:

$$\mathbf{x}_{0}^{\mathrm{T}}\mathbf{x}_{1} = x_{I0}x_{I1} + x_{Q0}x_{Q1}$$

$$= \left[\left(x_{I0} + x_{I1} \right)^{2} - \left(x_{I0} - x_{I1} \right)^{2} + \left(x_{Q0} + x_{Q1} \right)^{2} - \left(x_{Q0} - x_{Q1} \right)^{2} \right] / 4$$

• The **decision-making** process is based on the binary-hypothesis test rule:

Distance to
$$(-x_{I1}, -x_{Q1})$$
 Distance to (x_{I1}, x_{Q1})
$$\left[\left(\left(x_{I0} + x_{I1} \right)^2 + \left(x_{Q0} + x_{Q1} \right)^2 \right) - \left(\left(x_{I0} - x_{I1} \right)^2 - \left(x_{Q0} - x_{Q1} \right)^2 \right) \right]_{0}^{1} = 0$$

- To test whether the point (x_{I0}, x_{Q0}) is **closer to** (x_{I1}, x_{Q1}) or its image $(-x_{I1}, -x_{Q1})$ (i.e., same direction or different direction)
- Closer to (x_{I1}, x_{Q1}) : the phase **unchanged** \Rightarrow **Symbol 1**
- Closer to $(-x_{I1}, -x_{O1})$: the phase shifted by **180°** \Rightarrow **Symbol 0**

Homework

- You must give detailed derivations or explanations, otherwise you get no points.
- Communication Systems, Simon Haykin (4th Ed.)
- 6.26;
- 6.33;