Interpreting Log Error

James Chen

March 5, 2018

Let \hat{P} be an estimate of the target value P. Say in the training we have obtained

$$\log(1+P) = \log(1+\hat{P}) \pm \hat{\epsilon} \tag{1}$$

where $\hat{\epsilon}$ is some estimate ¹ of the test error and

$$\hat{\epsilon} \ll 1 \ll \hat{P},$$
 (2)

then

$$P \approx \hat{P} (1 \pm \hat{\epsilon}), \quad \hat{P} \approx P (1 \pm \hat{\epsilon}).$$
 (3)

In other words, the error $\hat{\epsilon}$ for $\log(1+\hat{P})$ translates ² to the percentage-error $100\hat{\epsilon}$ % for \hat{P} .

Proof. From (1), we have $\log \left[\left(1 + P \right) / (1 + \hat{P}) \right] = \pm \hat{\epsilon}$, that is,

$$P = -1 + e^{\pm \hat{\epsilon}} \left(1 + \hat{P} \right) \tag{4}$$

Since $\hat{\epsilon}$ is relatively small, e.g. $\hat{\epsilon} \approx 0.01$ (see (2)), by Taylor series,

$$e^{\pm\hat{\epsilon}} \approx 1 \pm \hat{\epsilon}$$
 (5)

Substitue (5) into (4), we have

$$P \approx \hat{P} \pm \hat{\epsilon} \hat{P} \pm \hat{\epsilon}$$
$$\approx \hat{P} (1 \pm \hat{\epsilon}) \tag{6}$$

Notice that in the last step leading to (6), we drop the term $\pm \hat{\epsilon}$ since $\hat{\epsilon} \ll \hat{P}$ and $\hat{\epsilon} \ll \hat{\epsilon} \hat{P}$ (see (2)). This proves the first approximation in (3).

Next, from (6), we estimate that

$$\hat{P} \approx P\left(1 \pm \hat{\epsilon}\right),\tag{7}$$

which can be derived by substituting the following approximation into (6):

$$\frac{1}{1 \mp \hat{\epsilon}} = 1 \pm \hat{\epsilon} + \hat{\epsilon}^2 \pm \hat{\epsilon}^3 + \dots \approx 1 \pm \hat{\epsilon}.$$

This proves the second approximation in (3).

¹For example, we may take $\hat{\epsilon}$ to be the worst (largest) root mean square error from cross validations.

²By the way, (3) also hold for the case when $\log P = \pm \hat{\epsilon} + \log \hat{P}$ under the same assumption (2). The proof is similar.