Autómatas y Lenguajes Formales, 2020-2 Tarea 6

Noé Salomón Hernández S. Aide Itzel García Hernández

Fecha de entrega: martes 12 de mayo

Nota 1: La tarea se entrega por equipos de dos integrantes.

Nota 2: El puntaje máximo para esta tarea es de 11.

1. (1.5 pts.) Describa el lenguaje que es aceptado por el PDA dado por la tabla de transición siguiente, donde q_0 es el estado inicial y q_2 es el único estado de aceptación.

Estado	Símbolo de en- trada	Símbolo de la pila	Movimientos
q_0	a	Z_0	(q_1, aZ_0)
q_0	b	Z_0	(q_1, bZ_0)
q_1	a	a	$(q_1, a), (q_2, a)$
q_1	b	a	(q_1,a)
q_1	a	b	(q_1,b)
q_1	b	b	$(q_1,b),(q_2,b)$
	cualquier otra combinación		ninguno

- 2. (2 pts.) Obtenga el PDA determinista, DPDA, para el lenguaje $L = \{w \in \{a,b\}^* \mid n_a(w) = n_b(w)\}$. Muestre la secuencia de configuraciones, relacionadas por \vdash , para la ejecución de aceptación de dicho PDA sobre la cadena abbbaa.
- 3. (2 pts.) Suponga que M_1 es un PDA que reconoce el lenguaje L_1 . Describa un método para construir un PDA que acepte el lenguaje L_1^* . Asegúrese de precisar cómo es que la pila funciona en el nuevo PDA.
- 4. (2 pts.) Suponga que $L \subseteq \Sigma^*$ es aceptado por un PDA M. Suponga también que existe una k (fija), tal que para toda $x \in L$ se tiene una ejecución de aceptación en M, de modo que la pila jamás contenga más de k elementos. Demuestre que L es regular, para lo cual describa cómo construir un autómata finito que reconozca a L, y explique porqué su autómata funciona.
- 5. (1.5 pts.) A partir de la gramática que aparece abajo, obtenga el respectivo PDA que reconoce el mismo lenguaje, y muestre una ejecución de aceptación de tal PDA para la cadena *aabb*.

$$\begin{array}{ccc} S & \rightarrow & aB \mid bA \mid \varepsilon \\ A & \rightarrow & aS \mid bAA \\ B & \rightarrow & bS \mid aBB \end{array}$$

6. (2 pts.) Transforme la siguiente gramática a su Forma Normal de Greibach

$$\begin{array}{ccc} S & \longrightarrow & AB \,|\, AC \,|\, SS \\ C & \longrightarrow & SB \\ A & \longrightarrow & a \\ B & \longrightarrow & b \end{array}$$

1