Полховский А.Ф - гр.950503

Канонический метод структурного синтеза автомата Мура.

Память автомата реализована на: б) Т-триггерах.

В качестве элементного базиса использовать: 5). ИЛИ-НЕ;

Таблина 1

λ	\mathbf{w}_1	\mathbf{w}_2	W ₃	W ₄
δ	a_1	a_2	a_3	a_4
z_1	a_2	a_4	a_2	a_2
\mathbf{z}_2	a_4	_	a_4	a_3
Z ₃	_	a_2	a_1	_
\mathbf{Z}_4	a_3	a_1	_	a_1

Структурная схема автомата

Таблица 2

$Z\backslash X$	X ₁	\mathbf{X}_2
\mathbf{z}_1	0	0
\mathbf{z}_2	0	1
\mathbf{Z}_3	1	0
\mathbf{Z}_4	1	1

Таблица 3

$W \setminus Y$	\mathbf{x}_1	X 2
\mathbf{w}_1	0	0
W ₂	0	1
W ₃	1	0
W ₄	1	1

Таблица 4

$A \setminus T$	\mathbf{x}_1	\mathbf{X}_2
a_1	0	0
\mathbf{a}_2	0	1
a_3	1	0
a_4	1	1

На основании полученных значений L, N и R выполним кодирование входного, выходного алфавита и внутренних состояний автомата.

По результатам кодирования строим таблицы переходов и выходов структурного автомата (табл. 5).

Табл. 5

V ₁ V ₂	00	01	10	11
y ₁ y ₂	\mathbf{w}_1	\mathbf{w}_2	W3	W_4
τ1τ2	00	01	10	11
x1x2	a_1	a_2	a_3	a_4
00	01	11	01	01
\mathbf{z}_1	O1	11	01	
01	11	_	11	10
\mathbf{Z}_2	11		11	10
10	_	01	00	_
Z 3		01	00	
11	10	00		00
Z 4	10			

Табл. 6

Q_t	T			
	0	1		
0	0	1		
1	1	0		

Табл. 7

X1.X1.	00	01	10	11
y ₁ y ₂	\mathbf{w}_1	\mathbf{w}_2	\mathbf{w}_3	W_4
τ1τ2	00	01	10	11
x1x2	a_1	a_2	a_3	a_4
00	01	10	11	10
\mathbf{z}_1	01	10	11	10
01	11	_	01	01
\mathbf{Z}_2				
10	_	00	10	_
\mathbf{Z}_3				
11	10	01	_	11
\mathbf{Z}_4				

На основании полученной табл. 7, которую можно рассматривать как таблицу истинности, может быть записана система булевых функций для построения комбинационной схемы автомата.

x_1x_2	00	01	11	10
00				1
01		*		1
11				*
10	*		*	1

$$y_{1=}\tau_1\overline{\tau_2}$$

$$x_1x_2$$
 00 01 11 10

00		1	1	
01		*	1	
11		1	1	*
10	*	1	*	

$$y_{2=} \tau_2$$

$$x_1x_2$$
 00 01 11 10

00		1	1	1
01		*		
11	1		1	*
10	*		*	1

$$\mathrm{d}_{1=} x_2 \overline{\tau_1} \overline{\tau_2} + \overline{x_1} \overline{x_2} \tau_2 + \overline{x_1} \overline{x_2} \tau_1 + x_1 \tau_1$$

$$x_1x_2 - 00 \quad 01 \quad 11 \quad 10$$

$$\mathbf{d}_{2} = \overline{x_1}\overline{\tau_2} + \overline{x_1}x_2 + x_2\tau_2 + x_2\tau_1$$

