2nd degré - Fiche d'exercices 1

Exercice 1

On considère la fonction f définie sur $\mathbb R$ dont l'image d'un nombre x est définie par la relation algébrique :

$$f(x) = 4x^2 + 4x - 3$$

- a. Démontrer que pour tout $x \in \mathbb{R}$, on a : f(x) = (2x-1)(2x+3)
 - b. Démontrer que pour tout $x \in \mathbb{R}$, on a : $f(x) = (2x+1)^2 - 4$
- Pour chacune des questions suivantes, utiliser la forme la plus adaptée:
 - a. Déterminer les antécédents de 0 par la fonction f.
 - b. Sachant que le carré d'un nombre est toujours positif ou nul, établir que la fonction f est minorée par -4.
 - c. Déterminer le signe de la fonction f sur \mathbb{R} .
 - d. Résoudre l'inéquation : $f(x) \ge 5$.

Exercice 2

On considère la fonction f définie sur \mathbb{R} par la relation :

$$f(x) = 6x^2 - 9x - 6$$

1. a. Montrer que l'expression de f(x) peut s'écrire :

$$f(x) = 6\left[\left(x - \frac{3}{4}\right)^2 - \frac{25}{16}\right]$$

- b. En déduire que la fonction f est minorée par $-\frac{75}{\circ}$
- c. Soit a et b deux nombres réels, établir l'implication

suivante :
$$a < b < \frac{3}{4} \implies f(a) > f(b)$$

(Cette implication établit que, sur $]-\infty; \frac{3}{4}]$, la fonction f est décroissante.)

a. Déduire de la question 1. a. la factorisation sui-

$$f(x) = 6\left(x + \frac{1}{2}\right)\left(x - 2\right)$$

- b. Donner les antécédents de 0 par la fonction f.
- c. Déterminer la partie de \mathbb{R} sur laquelle la fonction f est strictement positive.

Exercice 3

Donner la forme canonique de chacun des trinômes du second degré ci-dessous :

a.
$$2x^2 + 8x - 6$$

b.
$$3x^2 + 3x + 6$$

c.
$$9x^2 + 18x + 27$$
 d. $5x^2 + 10x + 2$

d.
$$5x^2 + 10x + 2$$

e.
$$2x^2 + 5x - 4$$

f.
$$\sqrt{2}x^2 - 3x + 1$$

Exercice 4

On définit la fonction f sur \mathbb{R} dont l'image de $x \in \mathbb{R}$ est définie par la relation:

$$f(x) = 8x^2 - 2x + 1$$

1. Donner la forme canonique de la fonction f.

- 2. Etablir que la fonction f est minorée par $\frac{7}{9}$.
- 3. a. Etablir, sans justification, le tableau de variation de la fonction f.
 - b. En déduire que la fonction f n'admet pas de zéro sur

Exercice 5

Résoudre les équations suivantes :

a.
$$x^2 + 4x - 5 = 0$$

a.
$$x^2 + 4x - 5 = 0$$

b. $2x^2 - 13x + 15 = 0$

c.
$$x^2 + x + 1 = 0$$
 d. $x^2 + 5x + 2 = 0$

d.
$$x^2 + 5x + 2 = 1$$

e.
$$-3x^2 + 6x - 2 = 0$$
 f. $3x^2 - 2x + 1 = 0$

f.
$$3x^2 - 2x + 1 = 0$$

Exercice 6

Résoudre les équations suivantes :

a.
$$3x^2 - 5x + 6 = 0$$

a.
$$3x^2 - 5x + 6 = 0$$
 b. $3x^2 - 24x + 48 = 0$

c.
$$x(x-2)(x+1) = (x-2)(-7-3x)$$

Exercice 7

Déterminer les racines, sous forme simplifiée, des polynômes

a.
$$2x^2 - 3x - 9$$
 b. $5x^2 - 8x + 5$

$$5x^2 - 8x + 5$$

c.
$$2x^2 - 8x + 8$$
 d. $x^2 + 2x - 1$

$$r^2 + 2r - 1$$

Exercice 8

On considère la figure ci-dessous :

Quel doit-être la valeur de x pour que la figure grisée ait une aire de $25 \, cm^2$?

Exercice 9

Factoriser les expressions suivantes :

a.
$$5x^2 - x - 4$$

b.
$$-2x^2 - 3x - 1$$

c.
$$-x^2 + 2x - 1$$

d.
$$4x^2 + x - 3$$

e.
$$4x^2 + 4x - 5$$

f.
$$x^2 - 2x - 4$$

Exercice 10

1. Factoriser les expressions suivantes :

$$2r^2 - 3r - 9$$

a.
$$2x^2 - 3x - 2$$
 b. $12x^2 - 12x + 3$

$$\frac{x^2 - x - 2}{2x^2 - 3x - 2}$$

Exercice 11

Simplifiez l'expression des fractions rationnelles ci-dessous :

a.
$$\frac{3x-1}{3x^2+2x-1}$$
 b. $\frac{6x^2-5x+1}{1-4x^2}$

b.
$$\frac{6x^2 - 5x + 1}{1 - 4x^2}$$

c.
$$\frac{3x^2 - 6x - 6}{x^2 - (\sqrt{3} + 2)x + (\sqrt{3} + 1)}$$

Exercice 12

On considère la fonction polynome P de degré 3 définie par : $P(x) = 3x^3 + x^2 - 8x + 4$

- 1. Déterminer les valeurs de a, b, c tel que : $P(x) = (x+2)(a \cdot x^2 + b \cdot x + c)$
- 2. En déduire l'ensemble des zéros du polynôme P.

Exercice 13

Etablir le tableau de signes des polynomes du second degré suivant:

a.
$$x^2 + 3x + 4$$

b.
$$-8x^2 + 32x + 32$$

c.
$$4x^2 + 3x - 10$$

d.
$$-5x^2 - 3x - 1$$

e.
$$4x^2 - 16x + 16$$

f.
$$2x^2 + 11x + 5$$

Exercice 14

- 1. a. Etablir que le polynôme $P(x)=2x^2-x+1$ est strictement positif sur \mathbb{R} .
 - b. En déduire le signe du polynôme :

$$Q(x) = (2x^2 - x + 1)^2 + 3 \cdot (2x^2 - x + 1) + 1$$

2. Justifier que l'équation ci-dessous n'admet aucune solu-

$$4x^4 - 4x^3 + 11x^2 - 5x + 5 = 0$$

Exercice 15

On considère le polynôme du troisième degré :

$$\mathcal{P} = 3x^3 + 5x^2 - 5x + 1$$

On sait que le polynôme P admet une factorisation de la forme:

$$\mathcal{P} = (3x - 1)(a \cdot x^2 + b \cdot x + c)$$

- 1. Déterminer les valeurs de a, b, c vérifiant cette factorisation.
- En déduire l'ensemble des racines du polynôme \mathcal{P} .
- 3. Dresser le tableau de signe de \mathcal{P} .