MAU22C00: TUTORIAL 19 SOLUTIONS TURING MACHINES

- 1) Consider the language over the binary alphabet $A = \{0, 1\}$ given by $L = \{0^m 1^{2m} \mid m \in \mathbb{N}\}.$
- (a) Write down the algorithm of a Turing machine that recognizes L. Process the following strings according to your algorithm: ϵ , 01, 011, and 010.
- (b) Draw the transition diagram of the Turing machine from part (a) carefully labelling the initial state, the accept state, the reject state, and all the transitions specified in your algorithm.

Solution: 1) (a) Here is the algorithm for recognising $L = \{0^m 1^{2m} : m \in \mathbb{N}\}.$

- (1) If there is a blank in the first cell, ACCEPT. If there is anything else, apart from 0, then REJECT.
- (2) If 0 is in the current cell, delete it, then move right to the first 1.
- (3) If there is no first 1, REJECT. Otherwise change 1 to x.
- (4) Move to the leftmost non blank symbol. If 0, go to step 2. If 1, REJECT. If x, go to step 5. If y, go to step 6.
- (5) Delete x, move right to the nearest 1. If none, REJECT. Otherwise change it to y and go to step 4.
- (6) Move right to the rightmost non blank character. If anything but y is found, REJECT. Otherwise, ACCEPT.

Here is how the following strings are treated:

- ϵ is accepted immediately.
- $01 \rightarrow 1 \rightarrow x \rightarrow REJECT$.
- $011 \rightarrow 111 \rightarrow x1 \rightarrow 11 \rightarrow y \rightarrow ACCEPT$.
- $010 \rightarrow 10 \rightarrow x0 \rightarrow 0 \rightarrow REJECT$.
- (b) Here is transition diagram for

 $T = (\{i, s_1, s_2, s_3, s_4, s_5, s_{\text{acc}}, s_{\text{rej}}\}, \{0, 1\}, \{0, 1, x, y, \bot\}, t, i, s_{\text{acc}}, s_{\text{rej}})$ along with an example of an accepted string:

