n-e+f=Z using induction 1) Prove $8 = 7 e = 1 = 7 1 - 1 + 2 = 2 \checkmark$ 5 = 2one Base: P(1) 0-0 => n=2 => 2-1+1=2 \lambda [.H.: Assume for some P(k) k>1 that the formula holds, P(k) connected I. S.: Consider graph G=P(N) n>k Case 1: G has no cycles = 7 G is a tree $e = h - 1 = h - (h - 1) + 1 = 2 \sqrt{$ 5=1 Case Z: G has at least one cycle Select e from a cycle -H=G-e, I.H. on H -50 nH+ eH+5H=2 holds - Add back the edge to e - We note that creating a cycle on a planar embedding also creates a face sign si 60 eg = eH+1=>NH+eH+SH=2 $NG-(e_{G}-1)+(s_{G}-1)=Z$ 8G= SH+1 NG-eg+SG=2D

2 G minimal non-planar
H=G-e for some eEEG)
Je s.t. H is maximal planor?
- Removing any edge from G makes the
resulting graph planar
- The smallest such nonplanar graphs
must necessarily be a Ks or K3,3
so bdivision
- For H to be maximally planor, adding any single edge needs to create a
any single edge needs to create a
Ks or K3,3 subdivision
- On a planar embedding of H, we
- On a planar embedding of H, we can naively add edges from a vertex
von a subdivided edge to neighbors of
its 'hub' without crossing by following a
back to the hub then to a neighbor new edges
new edges
- Hence, & must not
e edges
hove any subdivided edges - Tonly holdswhen F=K- AMMAN []
G=K5 AMALAD
\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
Ks-e subdivision edges within set

(4) Show k-regular graph with cutvertex 2- must have X'(G) > k - We & consider that X'(G)=k - We note that each edge color will form a matching on F -As X'(G)=d(v) \vertex => Each edge color forms a perfect match - Consider Hias a component of G-v - We note from uEV(H) there are some x < k vertrees in N(w), hence there exists at least one color with a perfect match on H, =7 |V(H)| = even - We make the same orgument on the other component of G-v=7Hz - So G-v as well as Gitselfall have perfect matches => contradiction, as the parity of the set court be even for vertex both both D

5	Prove for what n on a 4xn chess board a knight's tour is possible
	board a knight's tour is possible
- (ve note a "knight's tour" is just
	a tricky way to say "Hamiltonian sycle" on groph constructed from
Ha	possible movements on the board
- r	Recall that c(G-S) = S \USEV(G)
	For a Hamiltonian cycle to exist
_ (See how we define 5 below

	X		X		×	
	5		5		5	
5		S		S		
X		X		X		

- Note that each x will be disconnected from G-S as a single vertex - We have |S|'x' components plus at least one larger component, so $C(G-S)=|S|+1 \leq |S|$ doesn't hold => No such n allows a tour \Box