#### 2.2.3 The Classification Settina

Thus far, our discussion of model accuracy has been focused on the regression setting. But many of the concepts that we have encountered, such as the bias-variance trade-off, transfer over to the classification setting with only some modifications due to the fact that  $y_i$  is no longer numerical. Suppose that we seek to estimate f on the basis of training observations  $\{(x_1, y_1), \dots, (x_n, y_n)\}$ , where now  $y_1, \dots, y_n$  are qualitative. The most common approach for quantifying the accuracy of our estimate  $\hat{f}$  is the training error rate, the proportion of mistakes that are made if we apply our estimate  $\hat{f}$  to the training observations:

$$\frac{1}{n} \sum_{i=1}^{n} I(y_i \neq \hat{y}_i). \tag{2.8}$$

Here  $\hat{y}_i$  is the predicted class label for the *i*th observation using  $\hat{f}$ . And  $I(y_i \neq \hat{y}_i)$  is an *indicator variable* that equals 1 if  $y_i \neq \hat{y}_i$  and zero if  $y_i = \hat{y}_i$ . If  $I(y_i \neq \hat{y}_i) = 0$  then the *i*th observation was classified correctly by our classification method; otherwise it was misclassified. Hence Equation 2.8 computes the fraction of incorrect classifications.

Equation 2.8 is referred to as the training error rate because it is computed based on the data that was used to train our classifier. As in the error regression setting, we are most interested in the error rates that result from applying our classifier to test observations that were not used in training. The test error rate associated with a set of test observations of the form  $(x_0, y_0)$  is given by

$$Ave\left(I(y_0 \neq \hat{y}_0)\right),\tag{2.9}$$

where  $\hat{y}_0$  is the predicted class label that results from applying the classifier to the test observation with predictor  $x_0$ . A good classifier is one for which the test error (2.9) is smallest.

#### The Bayes Classifier

It is possible to show (though the proof is outside of the scope of this book) that the test error rate given in (2.9) is minimized, on average, by a very simple classifier that assigns each observation to the most likely class, given its predictor values. In other words, we should simply assign a test observation with predictor vector  $x_0$  to the class j for which

$$\Pr(Y = j|X = x_0) \tag{2.10}$$

is largest. Note that (2.10) is a *conditional probability*: it is the probability that Y = j, given the observed predictor vector  $x_0$ . This very simple classifier is called the *Bayes classifier*. In a two-class problem where there are only two possible response values, say class 1 or class 2, the Bayes classifier classifier



FIGURE 2.13. A simulated data set consisting of 100 observations in each of two groups, indicated in blue and in orange. The purple dashed line represents the Bayes decision boundary. The orange background grid indicates the region in which a test observation will be assigned to the orange class, and the blue background grid indicates the region in which a test observation will be assigned to the blue class.

#### corresponds to predicting class one if $Pr(Y=1|X=x_0)>0.5$ , and class two otherwise.

Figure 2.13 provides an example using a simulated data set in a twodimensional space consisting of predictors  $X_1$  and  $X_2$ . The orange and blue circles correspond to training observations that belong to two different classes. For each value of  $X_1$  and  $X_2$ , there is a different probability of the response being orange or blue. Since this is simulated data, we know how the data were generated and we can calculate the conditional probabilities for each value of  $X_1$  and  $X_2$ . The orange shaded region reflects the set of points for which Pr(Y = orange|X) is greater than 50%, while the blue shaded region indicates the set of points for which the probability is below 50 %. The purple dashed line represents the points where the probability is exactly 50%. This is called the Bayes decision boundary. The Bayes classifier's prediction is determined by the Bayes decision boundary; an decision observation that falls on the orange side of the boundary will be assigned to the orange class, and similarly an observation on the blue side of the boundary will be assigned to the blue class.

boundary

The Bayes classifier produces the lowest possible test error rate, called the Bayes error rate. Since the Bayes classifier will always choose the class for which (2.10) is largest, the error rate at  $X = x_0$  will be  $1 - \max_j \Pr(Y = x_0)$  $j|X=x_0$ ). In general, the overall Bayes error rate is given by

$$1 - E\left(\max_{j} \Pr(Y = j|X)\right),\tag{2.11}$$

where the expectation averages the probability over all possible values of X. For our simulated data, the Bayes error rate is 0.1304. It is greater than zero, because the classes overlap in the true population so  $\max_j \Pr(Y = j|X = x_0) < 1$  for some values of  $x_0$ . The Bayes error rate is analogous to the irreducible error, discussed earlier.

### K-Nearest Neighbors

In theory we would always like to predict qualitative responses using the Bayes classifier. But for real data, we do not know the conditional distribution of Y given X, and so computing the Bayes classifier is impossible. Therefore, the Bayes classifier serves as an unattainable gold standard against which to compare other methods. Many approaches attempt to estimate the conditional distribution of Y given X, and then classify a given observation to the class with highest estimated probability. One such method is the K-nearest neighbors (KNN) classifier. Given a positive integer K and a test observation  $x_0$ , the KNN classifier first identifies the K points in the training data that are closest to  $x_0$ , represented by  $\mathcal{N}_0$ . It then estimates the conditional probability for class j as the fraction of points in  $\mathcal{N}_0$  whose response values equal j:

K-nearest neighbors

$$\Pr(Y = j | X = x_0) = \frac{1}{K} \sum_{i \in \mathcal{N}_0} I(y_i = j).$$
 (2.12)

# Finally, KNN applies Bayes rule and classifies the test observation $x_0$ to the class with the largest probability.

Figure 2.14 provides an illustrative example of the KNN approach. In the left-hand panel, we have plotted a small training data set consisting of six blue and six orange observations. Our goal is to make a prediction for the point labeled by the black cross. Suppose that we choose K=3. Then KNN will first identify the three observations that are closest to the cross. This neighborhood is shown as a circle. It consists of two blue points and one orange point, resulting in estimated probabilities of 2/3 for the blue class and 1/3 for the orange class. Hence KNN will predict that the black cross belongs to the blue class. In the right-hand panel of Figure 2.14 we have applied the KNN approach with K=3 at all of the possible values for  $X_1$  and  $X_2$ , and have drawn in the corresponding KNN decision boundary.

Despite the fact that it is a very simple approach, KNN can often produce classifiers that are surprisingly close to the optimal Bayes classifier. Figure 2.15 displays the KNN decision boundary, using K=10, when applied to the larger simulated data set from Figure 2.13. Notice that even though the true distribution is not known by the KNN classifier, the KNN decision boundary is very close to that of the Bayes classifier. The test error rate using KNN is 0.1363, which is close to the Bayes error rate of 0.1304.





**FIGURE 2.14.** The KNN approach, using K=3, is illustrated in a simple situation with six blue observations and six orange observations. Left: a test observation at which a predicted class label is desired is shown as a black cross. The three closest points to the test observation are identified, and it is predicted that the test observation belongs to the most commonly-occurring class, in this case blue. Right: The KNN decision boundary for this example is shown in black. The blue grid indicates the region in which a test observation will be assigned to the blue class, and the orange grid indicates the region in which it will be assigned to the orange class.

The choice of K has a drastic effect on the KNN classifier obtained. Figure 2.16 displays two KNN fits to the simulated data from Figure 2.13, using K=1 and K=100. When K=1, the decision boundary is overly flexible and finds patterns in the data that don't correspond to the Bayes decision boundary. This corresponds to a classifier that has low bias but very high variance. As K grows, the method becomes less flexible and produces a decision boundary that is close to linear. This corresponds to a low-variance but high-bias classifier. On this simulated data set, neither K=1 nor K=100 give good predictions: they have test error rates of 0.1695 and 0.1925, respectively.

Just as in the regression setting, there is not a strong relationship between the training error rate and the test error rate. With K=1, the KNN training error rate is 0, but the test error rate may be quite high. In general, as we use more flexible classification methods, the training error rate will decline but the test error rate may not. In Figure 2.17, we have plotted the KNN test and training errors as a function of 1/K. As 1/K increases, the method becomes more flexible. As in the regression setting, the training error rate consistently declines as the flexibility increases. However, the test error exhibits a characteristic U-shape, declining at first (with a minimum at approximately K=10) before increasing again when the method becomes excessively flexible and overfits.





**FIGURE 2.15.** The black curve indicates the KNN decision boundary on the data from Figure 2.13, using K = 10. The Bayes decision boundary is shown as a purple dashed line. The KNN and Bayes decision boundaries are very similar.



**FIGURE 2.16.** A comparison of the KNN decision boundaries (solid black curves) obtained using K=1 and K=100 on the data from Figure 2.13. With K=1, the decision boundary is overly flexible, while with K=100 it is not sufficiently flexible. The Bayes decision boundary is shown as a purple dashed line.



**FIGURE 2.17.** The KNN training error rate (blue, 200 observations) and test error rate (orange, 5,000 observations) on the data from Figure 2.13, as the level of flexibility (assessed using 1/K) increases, or equivalently as the number of neighbors K decreases. The black dashed line indicates the Bayes error rate. The jumpiness of the curves is due to the small size of the training data set.

In both the regression and classification settings, choosing the correct level of flexibility is critical to the success of any statistical learning method. The bias-variance tradeoff, and the resulting U-shape in the test error, can make this a difficult task. In Chapter 5, we return to this topic and discuss various methods for estimating test error rates and thereby choosing the optimal level of flexibility for a given statistical learning method.

## 2.3 Lab: Introduction to R

In this lab, we will introduce some simple R commands. The best way to learn a new language is to try out the commands. R can be downloaded from

http://cran.r-project.org/

### 2.3.1 Basic Commands

R uses functions to perform operations. To run a function called funcname, we type funcname(input1, input2), where the inputs (or arguments) input1

function argument