CS320 Fall 2014

Homework#1 Solutions

Problem 1: Use DeMorgan's Law to write an expression for F' where

a)
$$F(x, y, z) = x(y' + z)$$

b)
$$F(x, y, z) = xy + x'z + yz'$$

c)
$$F(w, x, y, z) = xyz'(y'z + x)' + (w'yz + x')$$

Solution: a)
$$F(x, y, z) = x(y' + z)$$

 $F' = (x(y' + z))' = x' + (y' + z)' = x' + yz'$

b)
$$F(x,y,z) = xy + x'z + yz'$$

 $F' = (xy + x'z + yz')' = (xy)'(x'z)'(yz')' = (x' + y')(x + z')(y' + z)$

c)
$$F(w, x, y, z) = xyz'(y'z + x)' + (w'yz + x')$$

 $F' = (xyz'(y'z + x)' + (w'yz + x'))'$
 $F' = (xyz'(y'z)'x' + (w'yz + x'))'$

$$F' = (w'yz)'(x')' = (w + y' + z')x$$

Problem 2: Functions F, G, and H are defined in the following way:

$$F = A'C' + A'B'C$$

$$G = A'B' + A'C'$$

$$H = A'B'C' + A'C' + B'C$$

Which of the functions are equivalent?

Solution:

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	A	B	$C \mid$	F	\mathbf{G}	H
	0	0	0	1	1	1
0 1 0 1 1 1	0	0	1	1	1	1
	0	1	0	1	1	1
0 1 1 0 0 0	0	1	1	0	0	0
1 0 0 0 0 0	1	0	0	0	0	0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	0	1	0	0	1
1 1 0 0 0 0	1	1	0	0	0	0
1 1 1 0 0 0	1	1	1	0	0	0

Functions F and G are equivalent.

By Algebra:

$$F = A'C' + A'B'C F = A'B'C + A'C' = G$$

$$H = A'B'C' + A'C' + B'C$$
 ?= $A'C' + A'B'C = F$
 $H = A'C'(B+1) + (A'+A)B'C$?= $A'C' + A'B'C = F$
 $H = A'C' + A'B'C + AB'C$!= $A'C' + A'B'C = F$

Can not simplify anymore. To ensure that, you can't simplify anymore, the best way is to write out each side to minterms or maxterms and compare minterms.

$$J = ((A' + B)' + C')' + DC' + AB'$$

$$K = x(y + w'z) + (w' + x' + z')'$$

- a) Create the truth table for each expression.
- b) Name the minterms $(\Sigma m(?))$ and maxterms $(\Pi M(?))$ for each expression.
- c) Simplify each expression using boolean logic.
- d) Draw a 2-level gate network (AND-OR or OR-AND) for the expression in c), whichever form uses the fewest gates. DO NOT SIMPLIFY the expression first.
- e) How many literals in each expression from (c)? How many terms in the expression from (c)?
- f) Draw 2-level gate networks for the simplified expressions in NAND-NAND or NOR-NOR form.
- g) Write the Boolean expressions for the complement of each expression (eg. J') in product of sums form. DO NOT SIMPLIFY.

\sim	olr	. 4. 3	·	
	γ_{11}	1 T. 1	1	Ν.

	Teror	OII			
	A	B	C	$D \mid$	J
	0	0	0	0	0
	0	0	0	1	1
	0	0	1	0	1
	0	0	1	1	1
	0	1	0	0	0
	0	4	0	1	1
	0	1	1	0	1
a)	0	1	1	1	1
,	1	0	0	0	1
	1	0	0	1	$\frac{1}{1}$
	1	0	1	0	1
	1	0	1	1	1
	1	1	0	0	0
	1	1	0	1	1
	1	1	1	0	1
	1	1	1	1	1

- b) Minterms: $J(A,B,C,D) = \sum m(1, 2, 3, 5, 6, 7, 8, 9, 10, 11, 13, 14, 15)$ Maxterms: $J(A,B,C,D) = \prod M(0, 4, 12)$
- c) J = (A + B + C + D)(A + B' + C + D)(A' + B' + C + D)

$$J = (A + B + C + D)(A + B' + C + D)(A + B' + C + D)(A' + B' + C + D)$$

$$J = ((B+B')(A+C+D))((A+A')(B'+C+D))$$

$$J = (A+C+D)(B'+C+D)$$

e) J has 6 literals and 2 terms.

g) J'(A, B, C, D) = A'B'C'D' + A'BC'D' + ABC'D'

	w	x	y	z	l V
	0	0	0	0	0
	0	0	0	1	0
	0	0	1	0	0
	0	0	1	$egin{array}{c c} 0 \\ 1 \\ 0 \end{array}$	0
	0	1	0	0	0
	0	1	0	1	1
	0	1	1	0	1
a)	0 0 0 0 0 0 0	1	1	1	1
	1	0	0		0
	1 1 1	0	0	$\begin{bmatrix} 0 \\ 1 \\ 0 \\ 1 \end{bmatrix}$	0
	1	0	1	0	0
	1	0	1	1	0
	1	1	0		0
	1	1	0	$0 \\ 1$	1
	1	1	1	0	1
	1	1	1	1	0 0 0 0 1 1 1 0 0 0 1 1 1 1 xx.v
b)	Min	tern	as: .	K(w)	,x.v

- b) Minterms: $K(w,x,y,z) = \sum m(5, 6, 7, 13, 14, 15)$ Maxterms: $K(w,x,y,z) = \prod M(0, 1, 2, 3, 4, 8, 9, 10, 11, 12)$
- c) K = x(y + w'z) + (w' + x' + z')' K = xy + w'xz + wxz K = xy + (w' + w)xzK = xy + xz

- e) K has 4 literals and 2 terms.
- g) K'(w, x, y, z) = (w + x' + y + z')(w + x' + y' + z)(w + x' + y + z')(w' + x' + y + z')(w' + x' + y' + z')

Problem 4: For each of the following functions:

\boldsymbol{x}	y	z	P	Q
0	0	0	0	1
0	0	1	1	1
0	1	0	0	0
0	1	1	0	0
1	0	0	0	1
1	0	1	1	1
1	1	0	1	1
1	1	1	1	0

- a) Name the minterms (Σ m(?)) and maxterms (Π M(?)) for P and Q.
- b) Draw a 2-level gate network (AND-OR or OR-AND). Do NOT simplify the expression first.
- c) Write the minterm and maxterm expression in boolean logic.
- d) Simplify each expression from (c) using boolean logic.
- e) Draw 2-level gate networks for the simplified expressions in NAND-NAND or NOR-NOR form.
- f) Write the Boolean expressions for the complement of each P and Q (ie. P' and Q') in product of sums form. DO NOT SIMPLIFY.

Solution:

 \mathbf{a}

$$\begin{array}{ll} \mathbf{P}(\mathbf{x},\mathbf{y},\mathbf{z}) = \sum m(1,\,5,\,6,\,7) & \mathbf{P}(\mathbf{x},\mathbf{y},\mathbf{z}) = \prod M(0,\,2,\,3,\,4) \\ \mathbf{Q}(\mathbf{x},\mathbf{y},\mathbf{z}) = \sum m = (0,\,1,\,4,\,5,\,6) & \mathbf{Q}(\mathbf{x},\mathbf{y},\mathbf{z}) = \prod M = (2,\,3,\,7) \end{array}$$

c)

minterm:
$$P = x'y'z + xy'z + xyz' + xyz$$

 $Q = x'y'z' + x'y'z + xy'z' + xy'z + xyz'$

maxterm:
$$P = (x + y + z)(x + y' + z)(x + y' + z')(x' + y + z)$$

 $Q = (x + y' + z)(x + y' + z')(x' + y' + z')$

d)

$$P = x'y'z + xy'z + xyz' + xyz$$

 $P = (x' + x)y'z + xy(z + z')$
 $P = y'z + xy$

$$Q = x'y'z' + x'y'z + xy'z' + xy'z + xyz'$$

$$Q = x'y'z' + x'y'z + xy'z + xy'z'(1+1) + xyz'$$

$$Q = (x'y'z' + x'y'z + xy'z + xy'z') + (xy'z' + xyz')$$

$$Q = y'(x'z' + x'z + xz' + xz) + xz'(y+y')$$

$$Q = y'(x+x')(z+z') + xz'$$

f)

$$P' = (x + y + z')(x' + y + z')(x' + y' + z)(x' + y' + z')$$

$$Q' = (x + y + z)(x + y + z')(x' + y + z)(x' + y + z')(x' + y' + z)$$

d)

Problem 5: For the following diagrams, give boolean expressions. Simplify and redraw the system.

Solution:

Circuit Function:

Simplified Circuits:

$$F = D(AB + C)^{\prime}$$

$$B \longrightarrow G = B$$

Problem 6: Convert the following truth table to a switching expression (Boolean Algebra) and simplify the expression as much as possible.

x	y	z	F
0	0	0 1	1
0	0	1	1
0	1	0	1
0	1	1	0
1	0	0	0
1	0	1	1
1	1	0	0
1	1	1	0

Solution:

$$F = x'y'z' + x'y'z + x'yz' + xy'z$$

$$F = x'z'(y' + y) + y'z(x' + x)$$

$$F = x'z' + y'z$$

Problem 7: Using the postulates of Boolean algebra, prove the following formulae:

- a) x'y'z' + x'y'z + x'yz + xy'z + xyz = x'y' + z
- b) ABC' + A'C'D + AB'C' + BC'D + A'D = AC' + A'D
- c) wxy + w'xy + x'(zw + zy') + z(x'w' + y'x) = xy + z

Solution:

a)
$$x'y'z' + x'y'z + x'yz + xy'z + xyz = x'y' + z$$

$$\begin{array}{lcll} x'y'z' + x'y'z(1+1) + x'yz + xy'z + xyz & = & x'y' + z \\ x'y'z' + x'y'z + x'y'z + x'yz + xy'z + xyz & = & x'y' + z \\ x'y'(z'+z) + z(x'y' + x'y + xy' + xy) & = & x'y' + z \\ x'y' + z((x+x')y' + (x+x')y) & = & x'y' + z \\ x'y' + z(y'+y) & = & x'y' + z \\ x'y' + z & = & x'y' + z \end{array}$$

b)
$$ABC' + A'C'D + AB'C' + BC'D + A'D = AC' + A'D$$

```
ABC' + A'C'D + AB'C' + BC'D + A'D
                                            AC' + A'D
 ABC' + AB'C' + BC'D + A'D(C + C')
                                            AC' + A'D
 ABC' + AB'C' + BC'D + A'D
                                            AC' + A'D
 AC'(B+B') + BC'D + A'D
                                            AC' + A'D
 AC' + BC'D(A + A') + A'D
                                           AC' + A'D
 AC' + ABC'D + A'BC'D + A'D
                                            AC' + A'D
 AC'(1+BD) + A'D(1+BC')
                                            AC' + A'D
                                           AC' + A'D
 AC' + A'D
c) wxy + w'xy + x'(zw + zy') + z(x'w' + y'x) = xy + z
 (w + w')xy + x'(zw + zy') + z(x'w' + y'x)
                                             xy + z
 xy + z(x'w + x'y') + z(x'w' + y'x)
                                             xy + z
 xy + z(x'w + x'y' + x'w' + y'x)
                                             xy + z
 xy + z(x'(w + w') + y'(x + x'))
                                             xy + z
 xy + z(x' + y')
                                             xy + z
 xy + z(xy)'
                                             xy + z
 xy(1+z) + z(xy)'
                                             xy + z
 xy + xyz + z(xy)'
                                             xy + z
 xy + z(xy + (xy)')
                                             xy + z
 xy + z
                                             xy + z
```