UNIT 4:POLAR PLOTs

Frequency domain analysis:Introduction

- One of the most commonly used test functions for a circuit or system is the sine wave.
- Reason: Any signal going into a circuit can be represented by a sum of sine waves of varying frequency and amplitude (often an infinite sum)
- Arbitrarily complex functions can be represented using only these very simple function(Fourier Series)
- The frequency response of a system is defined as the steady-state response of the system to a sinusoidal input signal. The sinusoid is a unique input signal, and the resulting output signal for a linear system, as signals throughout the system, is sinusoidal in the steady-state; it differs form the input waveform only in amplitude and phase..
- The amount of difference is a function of the input frequency

• Output is also a sinusoidal signal having the same frequency as the input. But the magnitude and phase angle of output is different.

Magnitude is given by $A|G(j\omega)|$ and phase angle is given by $\delta = |G(j\omega)|$

- Consider input r(t) to be purely sinusoidal, i.e $r(t) = A \sin \omega t$ We get the steady state output as $Css(t) = A |G(j\omega)| \sin (\omega t + \delta)$
- To get the frequency response means to sketch the variation in magnitude and phase angle of G(jω), when ω is varied from 0 to ∞.
- If the transfer function of a system is T(s), the frequency response function is obtained by simply replacing 's' by 'j\omega' i.e. $T(j\omega)$.

Advantages of Frequency domain

- The transfer function can be experimentally determined.
- GM and PM can be estimated.
- It can be extended for non-linear systems.
- It can be used to design lag or lead compensators for steady state requirements and transient response specifications.

Frequency domain methods:

Variations in magnitude and phase angle of $G(j\omega)$ as input frequency is varied from 0 to ∞ can be obtained by a number of methods. The commonly used methods to sketch frequency response are,

- 1. Polar plot
- 2. Bode plot
- 3. Nyquist plot

1.Polar plot:

✓ In polar plot, the magnitude of G(jω) is plotted against the phase angle of G(jω) for various values of ω, in a polar Co-ordinate system.

✓ Thus, polar plot is the locus of tips of phasors of various magnitude plotted at the corresponding phase angles for different values of frequencies from 0 to ∞ .

Example

For example consider, $G(s) = \frac{100}{s+5}$

$$G(j\omega) = \frac{100}{j\omega + 5} = \frac{100}{\sqrt{25 + \omega^2}} \angle - \tan^{-1} \frac{\omega}{5}$$

The magnitude is, $G(\omega) = \frac{100}{\sqrt{25 + \omega^2}}$ and the phase angle is, $\phi(\omega) = -\tan^{-1}\frac{\omega}{5}$

The values of $G(\omega)$ and $\phi(\omega)$ for different values of ω are tabulated as shown below.

ox radians	$G(\omega)$	φ(ω), degrees
0	20	0
0.2	19.984	-2.27
0.4	19.363	-4.57
0.6	19.8575	-6.84
0.8	19.7488	-9.09
1.0	19.6116	-11.31
1.5	19.1565	-16.70
2.0	18.5695	-21.80
4.0	15.6174	-38.66
5.0	14.1421	-45
10.0	8.9943	-63.43
20.0	4.8507	-75.96
		-73.96
_		
000	O	-90

Vectors are drawn at the respective angles from the real axis. The locus is then drawn which i

Polar curve

Polar curve

- The polar plot of sinusoidal transfer function $G(j\omega)$ is a plot of the magnitude of $G(j\omega)$ verses the phase angle of $G(j\omega)$ on polar coordinates as ω is varied from zero to infinity.
- Therefore it is the locus of $|G(j\omega)| \angle G(j\omega)$ as ω is varied from zero to infinity.
- In the polar plot the magnitude of $G(j\omega)$ is plotted as the distance from the origin while phase angle is measured from positive real axis.
- Positive angle is taken in anticlockwise direction.

Properties of Polar Plots

- For transfer function, $G(s)=1/s^n$ (s+a), polar curve starts at an angle $-n(90^\circ)$ and terminates at origin at $\omega=\infty$ through an angle $-(n+1)(90^\circ)$.
- For every additional factor of the form 1/(s+b), polar plot enters the origin through an additional angle of 90°.
- Polar plots of $M(j\omega)=A+G(j\omega)$ where A=x+jy is identical to polar plot of $G(j\omega)$ but coordinates of origin is shifted to -A.
- Polar plot of a transfer function of an LTI system exhibits conjugate symmetry , i.e $M(j\omega)$ for $-\infty < \omega < 0$ is the mirror image of $M(j\omega)$ for $0 < \omega < \infty$.

Steps to draw Polar Plot

- Step 1: Determine the T.F G(s)
- Step 2: Put $s=j\omega$ in the G(s)
- Step 3: At $\omega=0$ & $\omega=\infty$ find $|G(j\omega)|$ by $\lim_{\omega\to 0} |G(j\omega)|$ & $\lim_{\omega\to \infty} |G(j\omega)|$
- Step 4: At $\omega=0$ & $\omega=\infty$ find $\angle G(j\omega)$ by $\lim_{\omega\to 0} \angle G(j\omega)$ & $\lim_{\omega\to \infty} \angle G(j\omega)$
- Step 5: Rationalize the function $G(j\omega)$ and separate the real and imaginary parts
- Step 6: Put Re $[G(j\omega)]=0$, determine the frequency at which plot intersects the Im axis and calculate intersection value by putting the above calculated frequency in $G(j\omega)$

Steps to draw Polar Plot

- Step 7: Put Im $[G(j\omega)]=0$, determine the frequency at which plot intersects the real axis and calculate intersection value by putting the above calculated frequency in $G(j\omega)$
- Step 8: Sketch the Polar Plot with the help of above information

Polar Plot for Type 0 System

• Let
$$G(s) = \frac{K}{(1+sT_1)(1+sT_2)}$$

• Step 1: Put s=jω

$$G(j\omega) = \frac{K}{(1+j\omega T_1)(1+j\omega T_2)}$$

$$= \frac{K}{\sqrt{1+(\omega T_1)^2}\sqrt{1+(\omega T_2)^2}} \angle -\tan^{-1}\omega T_1 - \tan^{-1}\omega T_2$$

• Step 2: Taking the limit for magnitude of $G(j\omega)$

$$\lim_{\omega \to 0} |G(j\omega)| = \frac{K}{\sqrt{1 + (\omega T_1)^2} \sqrt{1 + j(\omega T_2)^2}} = K$$

$$\lim_{\omega \to \infty} |G(j\omega)| = \frac{K}{\sqrt{1 + (\omega T_1)^2} \sqrt{1 + j(\omega T_2)^2}} = 0$$

• Step 3: Taking the limit of the Phase Angle of $G(j\omega)$

$$\lim_{\omega \to 0} \angle G(j\omega) = \angle - \tan^{-1} \omega T_1 - \tan^{-1} \omega T_2 = 0$$

$$\lim_{\omega \to \infty} \angle G(j\omega) = \angle - \tan^{-1} \omega T_1 - \tan^{-1} \omega T_2 = -180$$

Step 4: Separate the real and Im part of G(jω)

$$G(j\omega) = \frac{K(1-\omega^2 T_1 T_2)}{1+\omega^2 T_1^2 + \omega^2 T_2^2 + \omega^4 T_1 T_2} - j \frac{K\omega(T_1 + T_2)}{1+\omega^2 T_1^2 + \omega^2 T_2^2 + \omega^4 T_1 T_2}$$

• Step 5: Put Re $[G(j\omega)]=0$

$$\frac{K(1-\omega^2 T_1 T_2)}{1+\omega^2 T_1^2 + \omega^2 T_2^2 + \omega^4 T_1 T_2} = 0 \Rightarrow \omega = \frac{1}{\sqrt{T_1 T_2}} \& \omega = \infty$$

So When

$$\omega = \frac{1}{\sqrt{T_1 T_2}} \Rightarrow G(j\omega) = \frac{K\sqrt{T_1 T_2}}{T_1 + T_2} \angle -90^{\circ}$$

&
$$\omega = \infty$$
 $\Rightarrow G(j\omega) = 0 \angle -180^{\circ}$

• Step 6: Put Im $[G(j\omega)]=0$

$$\frac{K\omega(T_1 + T_2)}{1 + \omega^2 T_1^2 + \omega^2 T_2^2 + \omega^4 T_1 T_2} = 0 \Rightarrow \omega = 0 \& \pm \infty$$

$$So When$$

$$\omega = 0 \Rightarrow G(j\omega) = K \angle 0^0$$

$$\omega - 0 \Rightarrow O(j\omega) - K \succeq 0$$

$$\omega = \infty \Rightarrow G(j\omega) = 0 \angle 180^{\circ}$$

$$G(s) = \frac{K}{(1 + sT_1)(1 + sT_2)}$$

Figure 1: Polar Plot of Type 0 System

Polar curves for certain typical TFs

Type 1 System

Consider Type 1 system with transfer function
 G(s)=1 / s(1+Ts)

The frequency domain transfer function is

$$G(j\omega)=1 \ / \ j(1+jT\ \omega)$$

$$=1+j0 \ / \ (0+j\ \omega)(1+jT\omega)$$

$$|G(j\omega)|=1 \ / \ \omega \ (1+\omega^2T^2)^{.5}=M$$

$$Arg(G(j\omega))=tan^{-1}(0/1) \ / \ (tan^{-1}(\omega\ /0).tan^{-1}(\omega\ T/1))$$

$$\Phi=-90^{\circ}-tan^{-1}\ \omega T$$

• When $\omega = 0$

• When $\omega = \infty$

M=0

Ф= -180°

Rotation of plot=

-180°-(-90°)= -90° clockwise

Typical Type1 system TFs

$$G(s)=K/s(s+a)(s+b)(s+c)$$

$$G(s)=K/s(s+a)(s+b)$$

Type 2 System

Consider Type 2 system with transfer function
 G(s)=1 / s²(1+Ts)

The frequency domain transfer function is $G(j\omega) \ 1 \ / \ j\omega.j\omega.(1+jT\omega) \\ = 1+j0 \ / \ (0+j\omega) \ (0+j\omega)(1+jT\omega) \\ |G(jw)| = 1 \ / \ \omega^2 \times (1+\omega^2 T^2)^{.5} = M \\ Arg(G(j\omega)) = tan^{-1}(0/1) \ / \ (tan^{-1}(\omega/0). \ (tan^{-1}(\omega/0).tan^{-1}(\omega T/1)) \\ = 0^{\circ} \ / \ 90^{\circ}.90^{\circ}.tan^{-1}\omega T \\ \Phi = -180^{\circ}-tan^{-1}\omega T$

• When $\omega=0$

• When ω=∞

$$M=0$$

$$\Phi = -270^{\circ}$$

Rotation of plot= -270° -(-180°) = -90° clockwise

Gain Margin, Phase Margin & Stability

- Phase Crossover Frequency (ω_p): The frequency where a polar plot intersects the –ve real axis is called phase crossover frequency
- Gain Crossover Frequency ($\omega_{\rm g}$): The frequency where a polar plot intersects the unit circle is called gain crossover frequency So at $\omega_{\rm g}$ $|G(j\omega)| = Unity$

Phase Margin (PM):

 Phase margin is that amount of additional phase lag at the gain crossover frequency required to bring the system to the verge of instability (marginally stabile)

$$\Phi_{\rm m} = 180^{\circ} + \Phi$$

Where

$$\Phi = \angle G(j\omega_g)$$

if

$$\Phi_{\rm m}>0 => +PM$$

(Stable System)

if

$$\Phi_{\rm m}$$
<0 => -PM

(Unstable System)

GM

Gain Margin (GM):

– The gain margin is the reciprocal of magnitude $|G(j\omega)|$ at the frequency at which the phase angle is - 180° .

$$GM = \frac{1}{|G(j\omega c)|} = \frac{1}{x}$$

In terms of dB

GM in
$$dB = 20\log_{10} \frac{1}{|G(j\omega c)|} = -20\log_{10} |G(j\omega c)| = -20\log_{10}(x)$$

Stability

• **Stable:** If critical point (-1+jo) is outside the plot as shown, Both GM & PM are +ve

 $GM = 2olog_{10}(1/x) dB$

 $\omega gc < \omega pc$

• **Unstable:** If critical point (-1+jo) is within the plot as shown, Both GM & PM are negative.

 $GM = 2olog_{10}(1/x) dB$

 ω gc> ω pc

 Marginally Stable System: If critical point (-1+j0) is on the plot as shown, Both GM & PM

Marginally stable system: GM=0 dB, PM=0°

IllustrativeExample

For Unity feedback system with

$$G(s) = \frac{40}{(s+4)(s^2+4s+8)}$$

Sketch the polar plot. Find GM and PM

Solution

Magnitude:

When $\omega = 0$, it is 40/32 = 1.25

When $\omega = \infty$, it is 0

Angle:

When $\omega=0$, it is 0

When $\omega = \infty$, it is -270°

Point of intersection with Im & Real Axis

Point of intersection with Im Axis:

Equating Re{G(j ω)}=0, Re{(4-j ω)(8- ω ² - 4j ω)}=0 We get ω 1 = $\sqrt{4}$, take -2 (C1)

Point of intersection with Re Axis:

Equating Im{G(j ω)}=0, Im{(4-j ω)(8- ω ² - 4j ω)}=0 We get ω 2 = $\sqrt{24}$ (C2)

Polar plot

PM

$$G(j\omega) = \frac{40}{(j\omega+4)(-\omega^2+4j\omega+8)}$$

$$|G(j\omega)| = 1 \Rightarrow \sqrt{16+\omega^2} \sqrt{(8-\omega^2)^2+16\omega^2} = 40 = \sqrt{1600}$$

$$\sqrt{16+\omega^2} \sqrt{(8-\omega^2)^2+16\omega^2} = \sqrt{16+\omega^2} \sqrt{64+\omega^4-16\omega^2+16\omega^2}$$

$$\therefore \sqrt{16+\omega^2} \sqrt{64+\omega^4} = 40 = \sqrt{1600} = \sqrt{20}\sqrt{80} = \sqrt{16+2^2}\sqrt{64+2^4}$$

$$\therefore \omega = 2$$

At ω_{1} , the magnitude of $G(j\omega_{1})$ is unity. Hence, this is the gain crossover frequency.

$$\phi(\omega_1) = -90^{\circ}$$
.

$$PM = -90^{\circ} + 180^{\circ} = 90^{\circ}$$
.

GM

$$G(j\omega) = \frac{40}{(j\omega+4)(-\omega^2+4j\omega+8)}$$

$$|G(j\omega)| = \frac{40}{\sqrt{16 + \omega^{2^2}} \sqrt{(8 - \omega^2)^2 + 16\omega^2}}$$

At
$$\omega = \sqrt{24}$$
, $|G(j\omega)| = 0.25$

$$GM = \frac{1}{0.25} = 4 = 12.04dB$$