For all homework throughout the semester you must do the following:

- 1. Explain in your own words what is being asked.
- 2. State your strategy for arriving at the solution.
- 3. Execute your strategy noting the steps.
- 4. Write legibly and in a logical order.

For each problem, we provide the approximate percentage of points.

Problem 1 [40 %]

We consider an FIR low-pass filter G(z) with the following specifications :

- the order of the filter is N=2K-1, $G(z)=\sum_{n=0}^N g[n]z^{-n}$
- the filter is symmetric: g[n] = g[N n]
- the amplitude $A(\omega)$ in the pass band $[0, \omega_p)$ satisfies

$$1 - \delta_p \le A(\omega) \le 1 + \delta_p, \quad \omega \in [0, \omega_p)$$
 (1)

with $\omega_p < \pi$,

• there is no stop band.

Such a filter is called *one-band* filter. We define a new filter by

$$H(z) = \frac{z^{-1}}{2} \left[G(z^2) + z^{-N} \right]$$
 (2)

1. Prove that

$$H(z) + H(-z) = z^{-2K}$$
 (3)

- 2. Is *H* a low-pass, band-pass, or high-pass filter?
- 3. What are the passband, and stop-band tolerances, and the band-edge frequencies of H(z) ?

Problem 2 [40 %]

Let H(z) be a finite impulse response filter (not necessarily linear phase).

1. Prove that H(z) can be expressed as the sum of two FIR filters

$$H(z) = G_1(z) + G_2(z)$$

where $G_1(z)$ and $G_2(z)$ have linear phase (exact or generalized). Furthermore, the orders of $G_1(z)$ and $G_2(z)$ are smaller or equal than the order of H(z).

- 2. Of what types are $G_1(z)$ and $G_2(z)$? express your answer as a function of the parity of the order H(z) (even vs odd).
- 3. Express $|H(e^{j\omega})|$ as a function of the amplitudes of $G_1(z)$ and $G_2(z)$.

Problems from the textbook $[2 \times 10 \% = 20\%]$

Solve the following problems from the textbook:

- 5.26
- 5.31

For graduate students:

• 5.36