Application Serial No. Unassigned Preliminary Amendment dated October 5, 2004 Not responsive to Office Action

Claim Amendments:

The following claim listing replaces all prior versions and listings of claims in the Application:

Claim listing:

Claims 1-7 (Cancelled).

1 Claim 8 (New) A method for desorption and recovery of desorbed compounds from 2 a material, comprising: 3 generating a recirculation stream of inert gas, which passes through the 4 material to be desorbed: 5 heating the recirculation stream of inert gas to a temperature sufficient to 6 cause a desorption process; 7 yielding a gas effluent from the recirculation stream of inert gas in such a 8 manner that the recirculation stream of inert gas maintains constant pressure; 9 delivering the gas effluent to cooling means adapted for cooling the gas 10 effluent; 11 cooling the gas effluent to cause condensation of the desorbed compounds 12 contained in the gas effluent, said cooling being obtained at least partly by pressure 13 vaporization of a cryogenic fluid; and 14 feeding the vaporized cryogenic fluid into the recirculation stream of inert gas; 15 wherein the cryogenic fluid is liquid nitrogen. 1 Claim 9 (New) The method of claim 8, wherein the gas effluent is from the 2 recirculation stream of inert gas with a flow rate that is below 1/50 of a flow rate of 3 the recirculation stream of inert gas.

1	Claim 10 (New) The method of claim 8, wherein said cooling of the gas effluent is
2	performed by way of a cryogenic condenser.
1	Claim 11 (New) The method of claim 9, wherein said cooling of the gas effluent is
2	performed by way of a cryogenic condenser.
1	Claim 12 (New) The method of claim 8, wherein said cooling of the gas effluent is
2	performed by way of an internal fractionation column.
1	Claim 13 (New) The method of claim 9, wherein said cooling of the gas effluent is
2	performed by way of an internal fractionation column.
1	Claim 14 (New) The method of claim 8, further comprising:
2	stopping feeding of the vaporized cryogenic fluid, which is used to cool at
3	least a part of the gas effluent, into the recirculation stream of inert gas;
4	stopping the circulation of the recirculation stream of inert gas;
5	sucking in the recirculation stream of inert gas to generate a negative
6	pressure in a bed of the material to be desorbed and regenerated; and
7	delivering sucked gas to the cooling means.
1	Claim 15 (New) The method of claim 14, wherein said cooling of the gas effluent is
2	performed by way of a cryogenic condenser.
1	Claim 16 (New) The method of claim 14, wherein said cooling of the gas effluent is
2	performed by way of an internal fractionation column.

1	Claim 17 (New) A method for desorption and recovery of desorbed compounds from
2	a material, comprising:
3	generating a recirculation stream of inert gas which passes through the
4	material to be desorbed;
5	heating the recirculation stream of inert gas to a temperature sufficient to
6	cause a desorption process;
7	yielding a gas effluent from the recirculation stream of inert gas in such a
8	manner that the recirculation stream of inert gas maintains constant pressure;
9	delivering the gas effluent to cooling means adapted for cooling the gas
10	effluent;
11	cooling the gas effluent to cause condensation of the desorbed compounds
12	contained in the gas effluent, said cooling being obtained at least partly by pressure
13	vaporization of a cryogenic fluid;
14	feeding the vaporized cryogenic fluid into the recirculation stream of inert gas,
15	the cryogenic fluid being liquid nitrogen;
16	stopping feeding of the vaporized cryogenic fluid, which is used to cool at
17	least a part of the gas effluent, into the recirculation stream of inert gas;
18	stopping circulation of the recirculation stream of inert gas;
19	sucking in the recirculation stream of inert gas to generate a negative
20	pressure in a bed of the material to be desorbed and regenerated; and
21	delivering sucked gas to the cooling means.
1	Claim 18 (New) The method of claim 17, wherein said cooling of the gas effluent is
2	performed by way of a cryogenic condenser.
_	·
1	Claim 19 (New) The method of claim 17, wherein said cooling of the gas effluent is
2	performed by way of an internal fractionation column.

1	Claim 20 (New) A system for carrying out the method of claim 8, comprising:
2	a closed loop including a vessel that contains a bed of adsorbent material;
3	gas generating means for generating a recirculation stream of inert gas in
4	said closed loop with said vessel;
5	heating means for heating the recirculation stream of inert gas in said closed
6	loop;
7	a cryogenic condenser, which is at least partly circulated and cooled by a
8	cryogenic fluid that is pressure vaporized;
9	a duct for connecting said closed loop to said cryogenic condenser to feed a
10	gas effluent coming from said closed loop to said cryogenic condenser; and
11	feeding means for feeding a part of the vaporized cryogenic fluid from said
12	cryogenic condenser to said closed loop, the cryogenic fluid being liquid nitrogen.
1	Claim 21 (New) The system of claim 20, further comprising:
2	cutoff means for stopping feed of vaporized cryogenic fluid to said closed
3	loop; and
4	suction means for sucking in the recirculation stream of inert gas in said
5	closed loop to generate a negative pressure in said vessel.

1	Claim 22 (New) A system for carrying out the method of claim 8, comprising:
2	a closed loop including a vessel that contains a bed of adsorbent material;
3	gas generating means for generating a recirculation stream of inert gas in
4	said closed loop with said vessel;
5	heating means for heating the recirculation stream of inert gas in said closed
6	loop;
7	an internal reflux fractionation column, which is at least partially cooled by a
8	cryogenic fluid that is pressure vaporized;
9	a duct for connecting said closed loop to said internal reflux fractionation
10	column to feed a gas effluent coming from said closed loop to said internal reflux
11	fractionation column ; and
12	feeding means for feeding a part of the vaporized cryogenic fluid from said
13	internal reflux fractionation column to said closed loop, the cryogenic fluid being
14	liquid nitrogen.
1	Claim 23 (New) The system of claim 22, further comprising:
2	cutoff means for stopping feed of vaporized cryogenic fluid to said closed
3	loop; and
4	suction means for sucking in the recirculation stream of inert gas in said
5	closed loop to generate a negative pressure in said vessel.