To facilitate the application of the phase-type method in Wang et al. (2023), we provide a general-purpose R function phase_type_estimation which can be used to estimate the lifetime distribution for general warranty datasets with two-layer censoring. The detailed description of phase_type_estimation is shown as follows.

Usage

```
phase_type_estimation(ts, lags, ncensor, end_of_study, warranty_length, m1 = NULL, m2
= NULL, epsilon = 5e-3, maximum_order = 5, GoF_plot = TRUE)
```

Input

- ts: a vector of the observed product lifetimes;
- lags: a vector of the observed sales lags, and it should be of the same length with ts;
- ncensor: number of censored products;
- end_of_study: end-of-study censoring time;
- warranty_length: length of the warranty period;
- m1: optional; the order of the phase-type distribution for the product lifetime T; if not specified, m1 will be selected via cross-validation;
- m2: optional; the order of the phase-type distribution for the sales lag X; if not specified, m2 will be selected via cross-validation;
- epsilon: the convergence threshold for the EM algorithm; the EM algorithm is terminated when the increment in log-likelihood is smaller than epsilon;
- maximum_order: this argument will be used if m1 and m2 are not provided; in this case, we would select m1 and m2 from {1,2,3,...,maximum_order} using 5-fold cross-validation;
- GoF_plot: logical; if GoF_plot = TRUE, then a plot will be displayed to check the goodness-of-fit of the phase-type model.

Output

Given the required input, phase_type_estimation generates a list of nine components:

- m1: the order of the phase-type distributions for the product lifetime T;
- pi_T: ML estimate for the initial probability vector $\boldsymbol{\pi}$ of the phase-type distribution for T;
- xi_T: ML estimate for the exit vector $\boldsymbol{\xi}$ of the phase-type distribution for T;
- Lambda_T: ML estimate for the intensity matrix Λ of the phase-type distribution for T;
- m2: the order of the phase-type distributions for the sales lag X;

- pi_X: ML estimate for the initial probability vector $\tilde{\pi}$ of the phase-type distribution for X;
- xi X: ML estimate for the exit vector $\tilde{\boldsymbol{\xi}}$ of the phase-type distribution for X;
- Lambda_X: ML estimate for the intensity matrix $\widetilde{\Lambda}$ of the phase-type distribution for X;
- loglikelihood_max: maximum of the log-likelihood function.

The R function phase_type_estimation is developed for general two-layer censored warranty datasets. Given a generic dataset, phase_type_estimation can yield the phase-type sieve estimator for the distributions of product lifetime and sales lag. Moreover, it can also generate a plot to check the goodness-of-fit of the phase-type model. Please see toy example.R for some examples,