Seat No.:	E 1 4 NI -
Sear NO:	Enrolment No.
scat 110	Linding 110.

GUJARAT TECHNOLOGICAL UNIVERSITY

BE - SEMESTER-III (NEW) EXAMINATION – WINTER 2021 Subject Code:3130702

Date:19-02-2022

Subject Name:Data Structures					
		:30 AM TO 01:00 PM Total Marks:	70		
Instru					
	1.	<u> </u>			
	2.	Make suitable assumptions wherever necessary.			
		Figures to the right indicate full marks.			
	4.	Simple and non-programmable scientific calculators are allowed.			
Q.1	(a)	What is time complexity? Explain with example.	03		
	(b)	Explain malloc and free functions in 'C'. Also discuss advantages of	04		
		dynamic over static memory allocation.			
	(c)	·	07		
	(-)	(i) priority queue (ii) primitive data structures (iii) non-primitive data			
		structures (iv) linear data structures (v) nonlinear data structures (vi)			
		applications of stack (vii) sparse matrix			
Q.2	(a)	Write an algorithm for infix to postfix conversion.	03		
	(b)	Write an algorithm to evaluate postfix expression. Explain working of the	04		
		algorithm using appropriate example.			
	(c)	Write a 'C' program to reverse a string using stack.	07		
		OR			
	(c)	Write algorithm to (i) insert, and (ii) delete elements in circular queue.	07		
Q.3	(a)		03		
		linked list.			
	(b)		04		
		list.	۰		
	(c)		07		
0.1	()	OR	0.2		
Q.3	(a)		03		
	(b)	ī	04		
	(.)	doubly linked list.	0.5		
	(c)	Write a 'C' program to implement stack using linked list.	07		
ΩA	(a)	Construct a binary tree from the traversals given below:	03		
Q.4	(a)	Inorder: D, B, A, E, G, C, H, F, I	U.		
		Preorder: A, B, D, C, E, G, F, H, I			
	(b)		04		
	(c)		07		
	(C)	OR	07		
Q.4	(a)		03		
ζ	(4)	38, 13, 51, 10, 12, 40, 84, 25, 89, 37, 66, 95	•		
	(b)		04		
	(c)	Explain B+ tree with example.	07		
		r =	<i>J</i> 1		
Q.5	(a)	Explain Prim's algorithm.	03		
~	(b)		04		
	(c)		07		

07

OR

Q.5	(a) Define terms with respect to file: fields, records, database		03
	(b)	Compare sequential and binary search methods.	04
	(c)	Apply quick sort for the following data:	07
		9, 7, 5, 11, 12, 2, 14, 3, 10, 6	
