CrIn GeCrIn GeProduction. Supercringe introduction here:

2 Some basic knowledge about researching problem...

```
Parameters and constants we use in this work:
   Constants (3):
   e = 2.718282
   pi = 3.141593
   AbObA = 1337.228690
   Variables (3):
   a = 3.141500
   kek = 13.000000
   x = 1.000000
   Parameters of exploration:
   Number of differentiates: 2
   Macloren's accuracy: 3
   Tanget\ point:\ 0.200000
   Delta coverage of tangent point: 2.500000
   Graph diapasone: [-1:15]
   So let's calculate smth with a given function: f(a, kek, x) = \cos\left(a + \frac{kek}{1.000^{AbObA}}\right) + \ln\left(1.000 + x \cdot kek \cdot (1.000^{(\ln e)} - 0.000)\right)
   Firstly, let's insert all constants: f(a, kek, x) = \cos\left(a + \frac{kek}{1.0001^{337.229}}\right) + \ln\left(1.000 + x \cdot kek \cdot (1.000^{(\ln 2.718)} - 0.000)\right)
   And simplify this expression (if possible): f(a, kek, x) = \cos(a + kek) + \ln(1.000 + x \cdot kek)
```

```
\mathbf{3}
      Exploration the expression as a function of multiple variables
Calculation value of function in the point BRITISH SCIENTISTS WERE SHOCKED, WHEN THEY COUNT IT!!!
   In the point M_0(a_0, kek_0, x_0) = (3.142, 13.000, 1.000) it's value = 1.73157
   Personally, I've always thought about first derivation of something like that function... Haven't you?
   But now, by using informatics and math skills I feel that I'm prepared enough to calculate it!
   1 step: Finding a derivation of kek
   When I was child, my father always told me: "Remember, son:
   (kek)' =
= 1.000
   2 step: Finding a derivation of x
   What if:
   (x)' =
= 1.000
   3 step: Finding a derivation of x \cdot kek
   It's really easy to find:
   (x \cdot kek)' =
= kek + x
   4 step: Finding a derivation of 1.000
   Sounds logical that it is the same as:
   (1.000)' = \dots = [top secret] = \dots =
   5 step: Finding a derivation of 1.000 + x \cdot kek
   What if:
   (1.000 + x \cdot kek)' =
= kek + x
   6 step: Finding a derivation of \ln (1.000 + x \cdot kek)
   Sounds logical that it is the same as:
   (\ln(1.000 + x \cdot kek))' =
= \frac{1.000}{1.000+x \cdot kek} \cdot (kek+x)
7 step: Finding a derivation of kek
   Even my two-aged sister knows that:
   (kek)' =
= 1.000
   8 step: Finding a derivation of a
   If someone asked me that in the middle of the night, I wouldn't hesitate to say:
   (a)' =
= 1.000
   9 step: Finding a derivation of a + kek
   My roommate mumbled it in his sleep all night:
   (a+kek)' = \dots = [top secret] = \dots =
   10 step: Finding a derivation of \cos(a + kek)
   Man... Just look:
   (\cos(a + kek))' =
= 2.000 \cdot (-1.000) \cdot \sin(a + kek)
   11 step: Finding a derivation of \cos(a + kek) + \ln(1.000 + x \cdot kek)
   I was asked not to tell anyone that:
(\cos(a+kek) + \ln(1.000 + x \cdot kek))' = 2.000 \cdot (-1.000) \cdot \sin(a+kek) + \frac{1.000}{1.000 + x \cdot kek} \cdot (kek + x)
   Congratulations! The first derivation of the expression is:
   f'(a, kek, x) = 2.000 \cdot (-1.000) \cdot \sin(a + kek) + \frac{1.000}{1.000 + x \cdot kek} \cdot (kek + x)
In the point M_0(a_0, kek_0, x_0) = (3.142, 13.000, 1.000) it's value = 1.84017
Finding the 2 derivation Let's find the 1 derivation of the expression:
   1 step: Finding a derivation of kek
   When I was child, my father always told me: "Remember, son:
   (kek)' = \dots = [top secret] = \dots =
= 1.000
   2 step: Finding a derivation of x
   thanks to the results of my colleagues' scientific work, I know that:
= 1.000
```

```
3 step: Finding a derivation of x \cdot kek
   A true prince must know that:
   (x \cdot kek)' =
= kek + x
   4 step: Finding a derivation of 1.000
   If someone asked me that in the middle of the night, I wouldn't hesitate to say:
= 0.000
   5 step: Finding a derivation of 1.000 + x \cdot kek
   (1.000 + x \cdot kek)' = \dots = [\text{top secret}] = \dots =
= kek + x
   6 step: Finding a derivation of \ln (1.000 + x \cdot kek)
   thanks to the results of my colleagues' scientific work, I know that:
   (\ln(1.000 + x \cdot kek))' = \dots = [\text{top secret}] = \dots =
= \frac{1.000}{1.000+x \cdot kek} \cdot (kek+x)
7 step: Finding a derivation of kek
   While preparing for exams, I learned a lot of new things, for example:
   (kek)' = \dots = [top secret] = \dots =
   8 step: Finding a derivation of a
   It's really easy to find:
   (a)' =
= 1.000
   9 step: Finding a derivation of a + kek
   If someone asked me that in the middle of the night, I wouldn't hesitate to say:
   (a + kek)' =
= 2.000
   10 step: Finding a derivation of \cos(a + kek)
   I spend the hole of my life to find the answer and finally it's:
   (\cos(a+kek))' = \dots = [\text{top secret}] = \dots =
= 2.000 \cdot (-1.000) \cdot \sin(a + kek)
   11 step: Finding a derivation of \cos(a + kek) + \ln(1.000 + x \cdot kek)
   I spend the hole of my life to find the answer and finally it's:
   (\cos(a + kek) + \ln(1.000 + x \cdot kek))' =
= 2.000 \cdot (-1.000) \cdot \sin (a + kek) + \frac{1.000}{1.000 + x \cdot kek} \cdot (kek + x)
   Let's find the 2 derivation of the expression:
   1 step: Finding a derivation of x
   For centuries, people have hunted for the secret knowledge that:
   (x)' =
= 1.000
   2 step: Finding a derivation of kek
   A true prince must know that:
   (kek)' =
= 1.000
   3 step: Finding a derivation of kek + x
   I was asked not to tell anyone that:
   (kek + x)' = \dots = [top secret] = \dots =
   4 step: Finding a derivation of kek
   While preparing for exams, I learned a lot of new things, for example:
   (kek)' =
= 1.000
   5 step: Finding a derivation of x
   I was asked not to tell anyone that:
   (x)' =
= 1.000
   6 step: Finding a derivation of x \cdot kek
   Man... Just look:
   (x \cdot kek)' = \dots = [\text{top secret}] = \dots =
= kek + x
   7 step: Finding a derivation of 1.000
   A true prince must know that:
   (1.000)' =
= 0.000
   8 step: Finding a derivation of 1.000 + x \cdot kek
   Man... Just look:
   (1.000 + x \cdot kek)' =
= kek + x
   9 step: Finding a derivation of 1.000
   It's really easy to find:
   (1.000)' = \dots = [top secret] = \dots =
= 0.000
   10 step: Finding a derivation of \frac{1.000}{1.000+x\cdot kek}
   My roommate mumbled it in his sleep all night:
  (\frac{1.000}{1.000+x \cdot kek})' = \dots = [\text{top secret}] = \dots = \frac{(-1.000) \cdot (kek+x)}{(1.000+x \cdot kek)^{2.000}}
   11 step: Finding a derivation of \frac{1.000}{1.000+x \cdot kek} \cdot (kek+x)
   It's simple as fuck:
    \frac{(\frac{1.000}{1.000+x \cdot kek} \cdot (kek+x))'}{(\frac{-(1.000) \cdot (kek+x)}{(1.000+x \cdot kek)^{2.000}} \cdot (kek+x) + 2.000 \cdot \frac{1.000}{1.000+x \cdot kek}}{(\frac{1.000}{1.000+x \cdot kek})^{2.000}}  
   12 step: Finding a derivation of kek
   A true prince must know that:
   (kek)' = \dots = [top secret] = \dots =
= 1.000
   13 step: Finding a derivation of a
   It's really easy to find:
   (a)' =
= 1.000
```

```
14 step: Finding a derivation of a + kek
     My roommate mumbled it in his sleep all night:
     (a+kek)' = \dots = [\text{top secret}] = \dots =
     15 step: Finding a derivation of \sin(a + kek)
     A true prince must know that:
     (\sin(a+kek))' = \dots = [\text{top secret}] = \dots =
= 2.000 \cdot \cos\left(a + kek\right)
     16 step: Finding a derivation of -1.000
     A true prince must know that:
     (-1.000)' = \dots = [\text{top secret}] = \dots =
     17 step: Finding a derivation of (-1.000) \cdot \sin(a + kek)
     Sounds logical that it is the same as:
     ((-1.000) \cdot \sin(a + kek))' =
= (-1.000) \cdot 2.000 \cdot \cos(a + kek)
     18 step: Finding a derivation of 2.000
     I was asked not to tell anyone that:
     (2.000)' =
= 0.000
     19 step: Finding a derivation of 2.000 \cdot (-1.000) \cdot \sin(a + kek)
     My friends always beat me, because I didn't know that:
     (2.000 \cdot (-1.000) \cdot \sin(a + kek))' = \dots = [\text{top secret}] = \dots =
= 2.000 \cdot (-1.000) \cdot 2.000 \cdot \cos(a + kek)
     20 step: Finding a derivation of 2.000 \cdot (-1.000) \cdot \sin{(a + kek)} + \frac{1.000}{1.000 + x \cdot kek} \cdot (kek + x)
     My roommate mumbled it in his sleep all night:
My roommate multiplied it in this sleep at Highs.  (2.000 \cdot (-1.000) \cdot \sin{(a + kek)} + \frac{1.000}{1.000 + x \cdot kek} \cdot (kek + x))' = 
 = 2.000 \cdot (-1.000) \cdot 2.000 \cdot \cos{(a + kek)} + \frac{(-1.000) \cdot (kek + x)}{(1.000 + x \cdot kek)^{2.000}} \cdot (kek + x) + 2.000 \cdot \frac{1.000}{1.000 + x \cdot kek} 
     Finally... The 2 derivation of the expression:
     f^{(2)}(a, kek, x) = 2.000 \cdot (-1.000) \cdot 2.000 \cdot \cos{(a + kek)} + \frac{(-1.000) \cdot (kek + x)}{(1.000 + x \cdot kek)^{2.000}} \cdot (kek + x) + 2.000 \cdot \frac{1.000}{1.000 + x \cdot kek} BRITISH SCIENTISTS WERE SHOCKED AGAIN, WHEN THEY COUNT THE 2 DERIVATION OF THIS EXPRESSION!!!
     In the point M_0(a_0, kek_0, x_0) = (3.142, 13.000, 1.000) it's value = 2.77280
Finding partical derivations Partial derivation of the expression on the variable a:
     \frac{\partial f}{\partial a} = (-1.000) \cdot \sin\left(a + 13.000\right)
     In the point M_0(a_0, kek_0, x_0) = (3.142, 13.000, 1.000) it's value = 0.42008!!!
     Partial derivation of the expression on the variable kek:
     \frac{\partial f}{\partial kek} = (-1.000) \cdot \sin(3.142 + kek) + \frac{1.000}{1.000 + kek}
     In the point M_0(a_0, kek_0, x_0) = (3.142, 13.000, 1.000) it's value = 0.49151 !!!
     Partial derivation of the expression on the variable x:
     \frac{\partial f}{\partial x} = 13.000 \cdot \frac{1.000}{1.000 + 13.000 \cdot x}
```

Finding full derivation Full derivation:

```
\sqrt{\left((-1.000) \cdot \sin\left(a + 13.000\right)\right)^{2.000} + \left((-1.000) \cdot \sin\left(3.142 + kek\right) + \frac{1.000}{1.000 + kek}\right)^{2.000} + \left(13.000 \cdot \frac{1.000}{1.000 + 13.000 \cdot x}\right)^{2.000}}
In the point M_0(a_0, kek_0, x_0) = (3.142, 13.000, 1.000) it's value = 1.13150 !!!
```

4 Exploration the expression as a function of the first variable

Now let's consider the expression as a function of the first variable a: $f(a) = \cos(a + 13.000) + 2.639$

```
Decomposing on Macloren's formula Maklorens formula for a \rightarrow a_0 = 3.142: f(a) = 1.732 + 0.420 \cdot (a - 3.142) + 0.454 \cdot (a - 3.142)^{2.000} + (-0.070) \cdot (a - 3.142)^{3.000} + o((a - 3.142)^{3.000})
```

Graphics Graph $f(a) = \cos(a + 13.000) + 2.639$ on the diapasone $a \in [-1:15]$:

In the point $M_0(a_0, kek_0, x_0) = (3.142, 13.000, 1.000)$ it's value = 0.92857 !!!

Equations in the point Tangent equation in the point $a_0 = 0.200$:

 $f(a) = (-0.592) \cdot (a - 0.200) + 3.445$

Normal equation in the point $a_0 = 0.200$:

 $f(a) = 1.689 \cdot (a - 0.200) + 3.445$

Their graphs in $\delta = 2.50000$ coverage of the point $a_0 = 0.200000$

