

РУКОВОДСТВО ПО ЭКСПЛУАТАЦИИ

Сумматор ДУТ light

Оглавление

OΓ	лавление	2
1.	Назначение	3
	Технические характеристики и условия эксплуатации	
3.	Комплект поставки	5
4.	Принцип работы	<i>6</i>
5.	Правила эксплуатации	10
6.	Настройка и конфигурирование сумматора	12
7.	Техническое обслуживание	18
8.	Маркировка	18
9.	Транспортирование и хранение	18
ГА	РАНТИЙНЫЙ ТАЛОН №	19

1. Назначение

ДУТ light (далее Сумматор сумматор) предназначен ДЛЯ суммирования до четырёх частотных сигналов датчиков уровня топлива (далее ДУТ) и передачи полученного результата в виде частотного сигнала устройство сигнала напряжения на регистрации. Сумматоры выпускаются в двух модификациях: частотные и аналоговые. Сумматор частотный формирует на выходе частотный сигнал. Сумматор аналоговый формирует на выходе сигнал напряжения.

Рисунок 1 – Внешний вид сумматора

2. Технические характеристики и условия эксплуатации

Сумматор ДУТ частотный			
Наименование	Значение		
Питание			
Напряжение питания, В	1030		
Ток потребления, мА	до 50		
Характеристики частотного выхо	ода		
Тип выходного сигнала	частотный		
Тип выхода	с открытым стоком		
Внутренняя подтяжка	отсутствует		
Номинальный ток нагрузки, мА	5		
Максимальный ток нагрузки, мА	500		
Коэффициент заполнения, %	50		
Минимальная формируемая частота, Гц	200		
Максимальная формируемая частота, Гц	1500		
Интерфейс UART			
Скорость передачи данных, бит/с	19200		
Четность	нет		
Стоп бит	1		
Протокол	Omnicomm		
Измерение частоты			
Диапазон измеряемых частот, Гц	от 200 до 1500		
Абсолютная погрешность измерения	±1 Γ ₁₁		
в диапазоне от 200 до 1500 Гц	±1 Гц		
Пороговое напряжение, В	2,5		
Время измерения, с	1		
Общие характеристики			
Габаритные размеры, мм	40x25x85		
Масса, кг	не более 0,3		
Время непрерывной работы	не ограничено		
Диапазон рабочих температур, °С	от -40 до +60		
Относительная влажность окружающего воздуха при температуре не более +40 °C, %	не более 95		

Сумматор ДУТ аналоговый			
Наименование	Значение		
Питание			
Напряжение питания, В	1030		
Ток потребления, мА	до 50		
Характеристики аналогового выхо	да		
Тип выходного сигнала	Напряжение		
Минимальное формируемое напряжение, В	0		
Максимальное формируемое напряжение, В	10		
Интерфейс UART			
Скорость передачи данных, бит/с	19200		
Четность	нет		
Стоп бит	1		
Протокол	Omnicomm		
Измерение частоты			
Диапазон измеряемых частот, Гц	от 200 до 1500		
Абсолютная погрешность измерения в диапазоне от 200 до 1500 Гц	±1 Гц		
Пороговое напряжение, В	2,5		
Время измерения, с	1		
Общие характеристики			
Габаритные размеры, мм	40x25x85		
Масса, кг	не более 0,3		
Время непрерывной работы	не ограничено		
Диапазон рабочих температур, °С	от -40 до +60		
Относительная влажность окружающего воздуха при температуре не более +40 °C, %	не более 95		

3. Комплект поставки

Наименование	Количество
Сумматор ДУТ light V3.0*	1 шт.
Руководство по эксплуатации (паспортные данные, гарантийный талон)	1 шт.
Упаковочная коробка	1 шт.

^{*} Модификация согласовывается при заказе

4. Принцип работы

 $[*]U_{max}$ — максимальное выходное напряжение, задаётся при конфигурировании сумматора в ПО BridgeToolBox (рис. 12,2);

Рисунок 2 – Алгоритм работы сумматора

К сумматору подключается от 1 до 4 частотных ДУТ (рис. 2). На первом этапе происходит измерение частоты в каждом ДУТ: если при этом ошибки нет, происходит вычисление объема топлива согласно тарировочной таблице, заданной в ПО; если зафиксирована ошибка объем по данному датчику принимается равный 0. Значения объемов суммируются и вычисляется процент заполнения по всем бакам: $\% = \frac{V_{\text{сумм}}}{V}$.

Далее, если у сумматора с частотным выходом не зафиксировано ошибок по входам сконфигурированных ДУТ, или если это сумматор с аналоговым выходом (отсутствуют коды диагностики в выходном сигнале) происходит вычисление выходного значения:

- ✓ Для **аналогового** сумматора вычисляется выходное напряжение: $U_{ ext{вых}} = \% \cdot U_{max}$, где U_{max} – максимальное выходное напряжение, задаётся при конфигурировании сумматора ПО BridgeToolBox (см. пункт 6.4).
- ✓ Для **частотного** сумматора вычисляется выходная частота: $F_{\text{вых}} = \%$ · 1000 + 500.

Если же на сумматоре с частотным выходом ошибки обнаружены, выходное значение частоты будет зависеть от номера ДУТ, на котором произошла ошибка:

Ошибка по входу 1.

- Если значение частоты по входу 1 меньше 200 Гц, выходное значение частоты принимается равным 220 Гц.
- Если значение частоты по входу 1 находится в диапазоне от 200 до 450 Гц, выходное значение частоты принимается равным входному.
- Если ошибки нет, проверяется наличие ошибок по входу 2.

Ошибка по входу 2.

- Если значение частоты по входу 2 меньше 200 Гц, выходное значение частоты принимается равным 240 Гц.
- Если значение частоты по входу 2 находится в диапазоне от 200 до 450 Гц, выходное значение частоты принимается равным входному.
- Если ошибки нет, проверяется наличие ошибок входу 3.

Ошибка по входу 3.

- Если значение частоты по входу 3 меньше 200 Гц, выходное значение частоты принимается равным 260 Гц.
- Если значение частоты по входу 3 находится в диапазоне от 200 до 450 Гц, выходное значение частоты принимается равным входному.
- Если ошибки нет, проверяется наличие ошибок по входу 4.

Ошибка по входу 4.

- Если значение частоты по входу 4 меньше 200 Гц, выходное значение частоты принимается равным 280 Гц.
- Если значение частоты по входу 4 находится в диапазоне от 200 до 450 Гц, выходное значение частоты принимается равным входному.

Модуль виртуальных датчиков Omnicomm служит для формирования выходных значений по интерфейсу UART в зависимости от входных частот (см. таблицу ниже).

Omnicom адрес	адрес Значение регистров		
1	N — значение частоты на первом входе; $F = N*1000;$ $t = 0.$		
2	N — значение частоты на втором входе; $F = N*1000;$ $t = 0.$		
3	N — значение частоты на третьем входе; $F = N*1000;$ $t = 0.$		
4	N — значение частоты на четвертом входе; $F = N*1000;$ $t = 0.$		
5	$N-$ значение частоты на первом входе; $F=N*1000;$ $t-0-$ соответствует 500 Γ ц на втором входе; $t-250-$ соответствует 1500 Γ ц на втором входе; $t-251-$ соответствует 0 Γ ц на втором входе (датчик не подключен); $t-252-$ соответствует 340 Γ ц на втором входе (частота генератора датчика равна 0); $t-253-$ соответствует 400 Γ ц на втором входе (выход за диапазон сверху $F>$ (F max+ 10%)); $t-254-$ соответствует 420 Γ ц на втором входе (выход за диапазон сверху $F<$ (F min- 10%)); $t-255-$ соответствует оставшимся кодам ошибки частотного датчика на втором входе.		
6	$N-3$ начение выходной частоты. (500-1500 Γ ц). $F=3$ начение выходной частоты. (500-1500 Γ ц). t=0.		
99 (настраиваемый)	N- Общий процент по всем настроенным входам * 1023; $F-$ Общий процент по всем настроенным входам * 1000; $t=0$.		

Сумматор содержит информационный светодиод зеленого цвета, который служит для контроля функционирования и первичной диагностики неисправностей сумматора (рис.3).

Рисунок 3 – Внутренняя конструкция сумматора

Назначение сигналов светодиода приведено в таблице ниже.

Назначение сигналов светодиода				
Состояние	Значение светового сигнала			
Горит постоянно	Нормальное функционирование сумматора. Питание включено, сигналы поступают на все частотные входы.			
Не горит	Нет питания (питание ниже нормы).			
Моргает 2 раза	Сигнал не поступает на частотный вход 1.			
Моргает 3 раза	Сигнал не поступает на частотный вход 2.			
Моргает 4 раза	Сигнал не поступает на частотный вход 3.			
Моргает 5 раз	Сигнал не поступает на частотный вход 4.			

5. Правила эксплуатации

При установке сумматора необходимо опираться на руководство по эксплуатации.

Подключение питания, сигнальных и управляющих цепей осуществляется посредством проводов выходящих из корпуса. Назначения и цвета проводов приведены на рисунке 4.

Рисунок 4 – Назначение и цвета проводов сумматора

№ ВНИМАНИЕ!!! При работе с сумматором необходимо выполнять следующие ограничения:

- 1. не подавать на сумматор напряжение питания, превышающее 30 В;
- 2. не допускать нарушения полярности подключаемых питающих напряжений.

Подключение сумматора на транспортное средство производить в соответствии с рисунком 5.

Рисунок 5 – Схема подключения сумматора

Для подключения сумматора необходимо:

- 1. Выключить зажигание машины.
- 2. Установить сумматор в кабину транспортного средства.
- 3. Подключить сумматор и частотные датчики ДУТ №1, ДУТ №2, ДУТ №3 и ДУТ №4 согласно схеме электрических подключений, представленной на рис. 5.
- 4. Произвести запись тарировочных таблиц соответствующих данному транспортному средству в сумматор (см. главу 6).
 - 5. Проверить функционирование сумматора. Для этого:
- 1) убедиться, что светодиод внутри сумматора горит постоянно (не моргает, см. табл. «Назначение сигналов светодиода»);
- 2) измерить частоту выходного сигнала и убедиться, что она соответствует суммарному объему топлива находящегося в баках транспортного средства: $V_{\text{сумм}} = \frac{F_{\text{вых}} 500}{1000} \cdot V_{\text{общ}}$, где $V_{\text{сумм}}$ объем топлива, находящегося в баках; $V_{\text{общ}}$ объем всех баков.

Если нет возможности измерить выходную частоту, то взять значение суммарного объема топлива из программного обеспечения **BridgeToolBox** (см. пункт 6.3).

6. Устройство готово к работе.

6. Настройка и конфигурирование сумматора

Для настройки сумматора ДУТ необходимо:

- 1. Скачать архив с программой **BridgeToolBox** на сайте <u>www.ets-by.ru</u>, установить ПО **BridgeToolBox**.
 - 2. Подключить сумматор к ПК в соответствии с рис. 6.

Рисунок 6 – Схема подключения сумматора к ПК

В качестве устройства для подключения прибора к ПК использовать универсальный сервисный адаптер УСА 2.2 (рис. 7), выпускаемый нашим предприятием (для подключения необходим кабель УСА - сумматор 14-ти контактный).

Рисунок 7 – Внешний вид УСА

Для подключения сумматора к ПК необходимо:

- а) снять верхнюю крышку корпуса сумматора (рис. 8);
- б) подключить интерфейсный кабель УСА сумматор 14-ти контактный к разъему сумматора и к универсальному сервисному адаптеру УСА 2.2;
- в) на УСА выбрать режим работы RS-232, TTL UART (горит первый светодиод, рис. 9, a) или RS-485, TTL UART (горит центральный светодиод, рис. 9, δ).
 - г) через УСА 2.2. подключиться к ПК.

Рисунок 8 – Внутренняя конструкция сумматора

б) режим RS-485, TTL UART

Рисунок 9 – Индикация работы УСА в режимах TTL UART

Подключение УСА к сумматору				
DR	DRB-9F		Сумматор	
Контакт разъема	Назначение контакта		Контакт разъема	Назначение контакта
1	+12 B		14	Питание «+»
2	Общий		10	Питание «-»
4	Rx UART		2	Tx UART
8	Tx UART		1	Rx UART

- 3. Запустить программу BridgeToolBox, в меню «COM Порт» главного окна программы (рис. 10) указать номер последовательного порта, к которому подключен сумматор.
- 4. Нажать кнопку [Подключить], убедиться, что связь с сумматором установлена (рис. 10,1). При успешном подключении в главном окне программы (рис.10,2) появится название устройства и версия прошивки.

Рисунок 10 – Главное окно BridgeToolBox

5. Задать количество ДУТ, подключенных к сумматору. Для этого выбрать необходимое число в поле «Число датчиков» (максимум 4).

Каждому ДУТ будет соответствовать вкладка программы «Конфигурация ДУТ №», в которой производится запись тарировочных таблиц баков с ДУТ.Ч, подключенных к соответствующим входам сумматора ДУТ.

- 6. Произвести конфигурирование тарировочных таблиц (см. пункт 6.1, 6.2).
- 7. Для сумматора с аналоговым выходом задать максимальное выходное напряжение (см. пункт 6.3).
 - 8. Проверить заданную конфигурацию (см. пункт 6.4).
 - 9. Настройка и конфигурирование сумматора завершена.

6.1. Режим записи тарировочных таблиц без проливки баков

- 1. Разъединить подключение, если оно было установлено ранее.
- 2. В поле «Число датчиков» выбрать количество ДУТ, подключенных к сумматору (максимум 4).

Тарировка ДУТ №1

- 3. Выбрать вкладку программы «Конфигурация ДУТ №1».
- 4. В поле «Частота, Гц» ввести соответствующее объему топлива значение частоты.
- 5. В поле «Объем, л» ввести соответствующее значение объема топлива.
- 6. Нажать кнопку [Добавить точку]. Если необходимо удалить какуюлибо точку, выбрать нужную и нажать кнопку [Удалить точку].
 - 7. Повторить операции 4-6 для других точек.
- 8. После конфигурирования таблицы нажать кнопку [Записать все в устройство].

ВНИМАНИЕ!!! Можно задать не более 30 точек.

Например. Бак рассчитан на 100 литров, выход ДУТ.Ч находится в диапазоне 500-1500 Гц. Чтобы задать пустой бак заполняем поле «Частота, $\Gamma_{\rm U}$ » - 500 $\Gamma_{\rm U}$, а поле «Объем, л» - 0 л. Соответственно, полный бак задается как 1500 $\Gamma_{\rm U}$ — 100 л и т.д. Добавляем все требуемые точки. Справа от таблицы тарировки ПО построит график зависимости объема топлива от частоты (рис. 11).

Рисунок 11 – Пример конфигурирования ДУТ

Тарировка ДУТ №2, ДУТ №3 и ДУТ №4

Процедура тарировки остальных баков аналогична процедуре тарировке первого бака.

6.2. Режим записи тарировочных таблиц с проливкой баков

ВНИМАНИЕ!!! Перед началом выполнения тарировки баки, в которые установлены ДУТ, необходимо полностью опорожнить.

- 1. Убедиться, что в ПО установлено подключение.
- 2. В поле «Число датчиков» выбрать количество ДУТ, подключенных к сумматору (максимум 4).

Тарировка ДУТ №1 с проливкой

3. Выбрать вкладку программы «Конфигурация ДУТ №1». В этом случае будет доступно только поле «Объем, л».

№ ВНИМАНИЕ!!! Поле «Частота, Гц» заполняется автоматически.

- 4. Пока бак пустой заполнить поле «Объем, л», поставив 0 л и нажать кнопку [Добавить точку].
- 5. Выбрать дозу заливки топлива в бак, залить и заполнить поле «Объем, л» соответствующим значением объема топлива.
- 6. Нажать кнопку [Добавить точку]. Если необходимо удалить какуюлибо точку, выбрать нужную и нажать кнопку [Удалить точку].
 - 7. Повторить операции 5,6 для других точек.
- 8. После конфигурирования таблицы нажать кнопку [Записать все в устройство].
 - **№** ВНИМАНИЕ!!! Можно задать не более 30 точек.

Тарировка ДУТ №2, ДУТ №3 и ДУТ №4

Процедура тарировки остальных баков аналогична процедуре тарировке первого бака.

6.3. Настройка максимального выходного напряжения

ВНИМАНИЕ!!! Настройка максимального выходного напряжения требуется только для сумматора с аналоговым выходом.

- 1. Выбрать вкладку программы «Настройка выходов».
- 2. В поле «Максимальное выходное напряжение, В» указать значение напряжения в диапазоне от 0 до 10 В (рис.12,3).

Рисунок 12 – Настройка выходов

6.4. Контроль настроек и измеряемых параметров

Контроль настроек и конфигурации

- 1. Подключить сумматор к ПК.
- 2. В ПО BridgeToolBox нажать кнопку [Прочитать всё из устройства].
- 3. Убедиться, что число указанных в ПО датчиков совпадает с числом подключаемых к сумматору ДУТ.
- 4. Убедиться, что для каждого датчика задана правильная таблица тарировки.
- 5. Для аналогового сумматора проверить значение максимального выходного напряжения.

Контроль измеряемых параметров

ВНИМАНИЕ!!! Контроль измеряемых параметров производится на сумматоре с подключенными датчиками уровня топлива.

- 1. Подключить сумматор к ПК.
- 2. Определить объем топлива, залитого в баки ТС.
- 3. В ПО BridgeToolBox нажать кнопку [Прочитать всё из устройства].
- 4. Измеряемая частота на сконфигурированных ДУТ должна быть в диапазоне 500...1500 Гц (рис. 12,2).
- 5. Суммарный объем, отображаемый в окне программы (рис. 12,1) должен соответствовать залитому в баки объему топлива.

7. Техническое обслуживание

Техническое обслуживание прибора производится обслуживающим персоналом не реже одного раза в шесть месяцев и включает в себя следующие операции:

- очистку корпуса прибора и разъемов от пыли, грязи и посторонних предметов;
- проверку качества подключения кабелей.

8. Маркировка

На прибор наносится следующая информация:

- наименование прибора и вариант его модификации;
- назначение и цвета проводов;
- наименование предприятия-изготовителя;
- год изготовления.

9. Транспортирование и хранение

Транспортирование прибора в упаковке допускается при следующих условиях:

- температура воздуха от -20°C до +75°C;
- относительная влажность воздуха не более 95% при температуре 35°C;
- транспортирование допускается всеми видами закрытого транспорта.

Хранение прибора в упаковке допускается при следующих условиях:

- температура окружающего воздуха от +5 до +40°С;
- относительная влажность воздуха не более 80 % при температуре 25°C.

ГАРАНТИЙНЫЙ ТАЛОН №

Талон действителен при наличии всех штампов и отметок

Сумматор ДУТ light	Дата приобретения:	
Серийный номер:	Ф.И.О. и телефон покупателя:	
Название и юридический адрес продающей организации	Подпись продавца: Печать продающей организации	

Сроки гарантии

Гарантийный срок эксплуатации со дня продажи – 24 месяца.

Условия гарантии

Гарантия действует в случае, если товар признан неисправным в связи с материалами или сборкой при соблюдении следующих условий:

- 1. Товар должен быть использован в строгом соответствии с руководством по эксплуатации и с использованием технических стандартов и требований безопасности.
- 2. Настоящая гарантия не действительна в случаях, когда повреждения или неисправность вызваны пожаром, молнией или другими природными явлениями; попаданием жидкости внутрь изделия; механическими повреждениями; неправильным использованием; ремонтом или наладкой, если они произведены лицом, которое не имеет сертификата на оказание таких услуг, а также эксплуатацией с нарушением технических условий или требований безопасности.
- 3. В том случае, если в течение гарантийного срока часть или части товара были заменены частью или частями, которые не были поставлены или санкционированы изготовителем, а также были неудовлетворительного качества и не подходили для товара, то потребитель теряет все и любые права настоящей гарантии, включая право на возмещение.
- 4. Действие настоящей гарантии не распространяется на программное обеспечение, детали отделки и корпуса, соединительные кабели и прочие детали, обладающие ограниченным сроком использования.

Свидетельство о приемке

Сумматор ДУТ light изготовлен и принят в соответствии с обязательными требованиями государственных стандартов, действующей технической документацией и признан годным к эксплуатации.

		пачальник ОТК	
$M.\Pi$			
	личная подпись		расшифровка подписи
	год, месяц, число		

II OTI

