

### ${\bf RTL\_MINI\_PROJECT\_ALU}$

| Author  | Nguyễn Khánh Nam |
|---------|------------------|
| Date    | 2024/04/16       |
| Version | 1.0              |

## RTL\_MiniProject ALU

#### Contents

| 1. Interface                 | 2 |
|------------------------------|---|
| 2. Functional implementation | 3 |
|                              | 0 |
| 3. Internal implementation.  | 4 |
| 3.1. Overall.                | 4 |
| 4. History                   | E |

#### 1. Interface



Figure 1: The figure of ALU Block.

| Signal  | Width | In/Out | Description          |  |
|---------|-------|--------|----------------------|--|
| A       | 8     | In     | A signal input       |  |
| В       | 8     | In     | B signal input       |  |
| Control | 4     | In     | Control signal input |  |
| Result  | 8     | Out    | System output        |  |
| Zero    | 1     | Out    | Zero output signal   |  |

Table 1: Description of signals in ALU Block.

#### RTL\_MiniProject ALU

#### 2. Functional implementation.

- Implement an Arithmetic Logic Unit ALU.
- System's Operation base on three input signal
  - A
  - B
  - Control
- The system specification
  - The ALU block is capable of performing 8-bit arithmetic operations, including addition, subtraction, and bitwise AND and OR operations.
  - The ZERO flag is activated when the output result is '0'.
  - The Control signal determines the ALU operation based on the following table, with other cases treated as **don't cares**:

| Operation | Control value |
|-----------|---------------|
| ADD       | 0010          |
| SUB       | 0110          |
| AND       | 0000          |
| OR        | 0001          |

### 3. Internal implementation.

#### 3.1. Overall.



Figure 3.1: Block diagram of Bound Flasher

| Block                 | Description                                                   |  |
|-----------------------|---------------------------------------------------------------|--|
| Controlling Operation | The block has three input signal which is A, B and Control    |  |
|                       | signal. It is used to define which operation need to be used. |  |
| Logic Process         | This is where the logic of the module are operated.           |  |

Table 3.1: Block diagram of ALU Description

## RTL\_MiniProject ALU

# 4. History

| Date       | Author           | Modified part | Description           |
|------------|------------------|---------------|-----------------------|
| 2024/04/16 | Nguyễn Khánh Nam | All           | New creation          |
| 2024/04/17 | Nguyễn Khánh Nam | Overall       | Add new block diagram |