Conditional Probability

DEFINITION 1 (CONDITIONAL PROBABILITY)

For any two events A and B with P(A) > 0, the conditional probability of B given that A has occurred is defined by

$$P(B|A) = \frac{P(A \cap B)}{P(A)}.$$

The Multiplication Rule

$$P(A \cap B) = P(A)P(B|A)$$

or

$$P(A \cap B) = P(B)P(A|B)$$

Independence

DEFINITION 1 (INDEPENDENCE)

Two events A and B are independent if and only if

$$P(A \cap B) = P(A)P(B)$$
.

Two events A and B that are not independent are said to be dependent.

CHECK FOR INDEPENDENCE

The properties of independence, unlike the mutually exclusive property, cannot be shown on a Venn diagram. This means you can't trust your intuition.

In general, the only way to check for independence for events A and B is by checking if

$$P(AB) = P(A)P(B).$$

Rule of Total Probability

THEOREM 2 (RULE OF TOTAL PROBABILITY OR BAYES FORMULA 1) If B_1, \ldots, B_n is a partition of S, then for any A,

$$P(A) = \sum_{i=1}^{n} P(B_i A) = \sum_{i=1}^{n} P(B_i) P(A|B_i)$$

= $P(B_1) P(A|B_1) + \dots + P(B_n) P(A|B_n)$.

Bayes' Theorem

THEOREM 8 (BAYES' THEOREM)

Let $B_1,...,B_n$ be a partition of S. For any event A, and any $k \in {1,...,n}$

$$P(B_k|A) = \frac{P(B_k)P(A|B_k)}{P(B_1)P(A|B_1) + \dots + P(B_n)P(A|B_n)} = \frac{P(B_k)P(A|B_k)}{\sum_{i=1}^n P(B_i)P(A|B_i)}.$$