

(Post lecture notes in purple) (Impt equations boxed in green)

Used Taylor expansion to prove Euler's Formula

$$e^{j\omega t} = \cos(\omega t) + j\sin(\omega t)$$
 conjugate
$$\frac{a+jb}{a+jb} = a-jb$$

Navigating the complex plane using Phasors

Useful for defining magnitude and phase of our input function e^jwt

Learned useful linear combinations of e^jwt

$$rcos(\omega + + b) = \frac{1}{z} \left(re^{j\phi} e^{j\omega t} + re^{j\phi} e^{j\omega t} \right)$$

$$rsin(\omega + + b) = \frac{1}{zj} \left(re^{j\phi} e^{j\omega t} - re^{j\phi} e^{j\omega t} \right)$$

Work phasor domain

Reactance and Resistance of Complex Impedance

Today:

- 0. Phasor Application Tangent
- I. Transfer Function Example
- II. Frequency Response
 - a. RC circuit example
 - b. Passive devices over frequency
 - i. Voltage divider reminder
 - ii. Low Pass Filter
 - iii. High Pass Filter
 - iv. Active Filter
- III. Bode Plots
 - a. Design and plot a filter
 - b. Bode plot rules
 - c. Application tangent: Headphone Freq Resp

I. Transfer Function Examples

Solve for H(jw)

Parallel/ Series Imp Combination Thevenin and Norton KVL/KCL Voltage Divider

Z, = (R,+ jwc) || Rz

Thevenin and Norton KVL/KCL Voltage Divider

$$Z_{1} = \frac{\left(R_{1} + \frac{1}{3}\omega C\right) \| R_{2}}{\left(R_{1} + \frac{1}{3}\omega C\right) R_{2}}$$

$$= \frac{\left(R_{1} + \frac{1}{3}\omega C\right) R_{2}}{\left(R_{1} + \frac{1}{3}\omega C\right) + R_{2}}$$

II. Frequency Response

a. RC Circuit Example

I Frank

of:

$$V_n = \underline{l}e^{i\omega_1 t}$$
 $\longrightarrow \overline{l}_{1+j\omega_1 RC}$. 1. $e^{i\omega_1 t}$

Input 2:

$$V_{in} = \sqrt[n]{200(\omega_{i}+1)} \rightarrow \sqrt[n]{1+\sqrt[n]{n}} \rightarrow \sqrt[n]{1+\sqrt[n]{n}} \sqrt[n]{1+\sqrt[n]{$$

$$V_{m} = V(e^{\omega_{1}t} + e^{\omega_{2}t}) \rightarrow I_{w} \rightarrow V(e^{\omega_{1}t} + e^{\omega_{2}t})$$

Zz

$$R = 100 \quad C = | x 10^{-6} \quad W_{3} = | \quad W_{2} = | x 10^{9}$$

$$H(\mathcal{J}_{\mathcal{U}}) = \frac{1}{1 + \mathcal{J}_{\mathcal{U}}(1 \times 10^{2})} = \frac{1}{1 + \mathcal{J}_{\mathcal{U}}(1 \times 10^{2})} \cong 1$$

Low Pass Filter

b. Passive devices over frequency

$$Z_{c}O(N=0) = \frac{1}{j \cdot 0 \cdot C} = -jO(short)$$

$$Z_{c}O(N=0) = \frac{1}{j \cdot 0 \cdot C} = -jO(short)$$

$$Z_{L} \otimes (\omega = 0) = j \cdot 0 \cdot L = j \cdot 0 \cdot (short)$$

$$Z_{L} \otimes (\omega = 0) = j \cdot 0 \cdot L = j \cdot 0 \cdot (short)$$

i. Voltage divider reminder

$$\widetilde{V}_{jn} = \frac{\overline{Z}_{1}}{\overline{V}_{22}} = \frac{\overline{Z}_{1}}{\overline{Z}_{2}}$$

$$\frac{\widetilde{V}_{Z1}}{\widetilde{V}_{72}} = \frac{Z_{1}}{Z_{2}}$$

ii. Low Pass Filter

iii. High Pass Filter

iv. Active Filter

$$\widetilde{V}_{0} \qquad A_{V} = \frac{\widetilde{V}_{0}}{\widetilde{V}_{10}} = -\frac{\overline{Z}_{2}}{\overline{Z}_{1}}$$

Active High Pass Filter

III. Bode Plots

a. Design and plot a filter

Filter out freq. above human hearing

b. Bode Plot Rules

Zeros X

 $W_{\mathbf{L}}$

GO TO DICUSSION FOR MORE BODE PLOT PRACTICE

