

N-Channel 200-V (D-S) MOSFETs

PRODUCT SUMMARY							
Part Number	V _{(BR)DSS} Min (V)	$r_{DS(on)}$ Max (Ω)	V _{GS(th)} (V)	I _D (A)			
VN2010L	200	10 @ V _{GS} = 4.5 V	0.8 to 1.8	0.19			
BS107	200	28 @ V _{GS} = 2.8 V	0.8 to 3	0.12			

- Low On-Resistance: 6 Ω
- Secondary Breakdown Free: 220 V Full-Voltage Operation
- Low Power/Voltage Driven
- Low Input and Output Leakage
- Excellent Thermal Stability
- Low Offset Voltage
- Easily Driven Without Buffer
- Low Error Voltage
- No High-Temperature "Run-Away"
- High-Voltage Drivers: Relays, Solenoids, Lamps, Hammers, Displays, Transistors, etc.
- Telephone Mute Switches, Ringer Circuits
- Power Supply, Converters
- Motor Control

ABSOLUTE MAXIMUM RATINGS ($T_A = 25^{\circ}$ C UNLESS OTHERWISE NOTED)								
Parameter		Symbol	VN2010L	BS107	Unit			
Drain-Source Voltage		V _{DS}	200	200	V			
Gate-Source Voltage		V_{GS}	±30	±25	T '			
0 1 0 1 4 7 4 7 1000)	T _A = 25°C		0.19	0.12				
Continuous Drain Current (T _J = 150°C)	T _A = 100°C	- ID	0.12		Α			
Pulsed Drain Current ^a	•	I _{DM}	0.8					
Power Dissipation	T _A = 25°C	-	0.8	0.5	10/			
	T _A = 100°C	P _D	0.32		W			
Thermal Resistance, Junction-to-Ambient	•	R _{thJA}	156	250	°C/W			
Operating Junction and Storage Temperature Range		T _J , T _{stg}	–55 to	°C				

a. Pulse width limited by maximum junction temperature.

Vishay Siliconix

			Typ ^a	Limits					
		Test Conditions		VN2010L		BS107			
Parameter	Symbol			Min	Max	Min	Max	Unit	
Static							<u>.</u>	ı	.4
Drain-Source Breakdown Voltage	V _{(BR)DSS}	$V_{GS} = 0 \text{ V}, I_D = 100 \mu\text{A}$		220	200		200		,,
Gate-Threshold Voltage	V _{GS(th)}	$V_{DS} = V_{GS}$, $I_D = 1 \text{ mA}$		1.2	0.8	1.8	0.8	3	· V
Gate-Body Leakage		$V_{DS} = 0 \text{ V}, V_{GS} = \pm 20 \text{ V}$ $V_{DS} = 0 \text{ V}, V_{GS} = \pm 15 \text{ V}$				±10			nA
	IGSS							±10	
Drain Leakage Current	I _{DSV}	V _{DS} = 70 V, V _{GS} = 0.2 V						1	
Zero Gate Voltage Drain Current	I _{DSS}	V _{DS} = 130 V, V _{GS} = 0 V				0.03			
		$V_{DS} = 160 \text{ V}, V_{GS} = 0 \text{ V}$				1			μΑ
			T _J = 125°C			100]
On-State Drain Current ^b	I _{D(on)}	V _{DS} = 10 V, V _{GS} = 10 V		0.7	0.1				Α
	r _{DS(on)}	$V_{GS} = 2.8 \text{ V}, I_D =$: 0.02 A	6				28	
Drain-Source On-Resistance ^b		$V_{GS} = 4.5 \text{ V}, I_D =$	0.05 A	6		10			Ω
			T _J = 125°C	11		20			
Forward Transconductance ^b	9 _{fs}	V _{DS} = 15 V, I _D = 0.1 A		180	125				
Common Source Output Conductance ^b	gos	V _{DS} = 15 V, I _D = 0.05 A		0.15					mS
Dynamic									
Input Capacitance	C _{iss}			35		60			
Output Capacitance	C _{oss}	$V_{DS} = 25 \text{ V}, V_{GS} = 0 \text{ V}, f = 1 \text{ MHz}$		9		30			pF
Reverse Transfer Capacitance	C _{rss}			1		15			
Switching ^c					•	•			
Turn-On Time	t _{ON}	V _{DD} = 25 V, R _L =	= 250 Ω	5		20			
Turn-Off Time	toff	$I_D \cong 0.1 \text{ A}, V_{GEN} = 10 \text{ V}$ $R_G = 25 \Omega$		21		30			ns

VNDQ20

Notes a. For DESIGN AID ONLY, not subject to production testing. b. Pulse test: PW \leq 300 μ s duty cycle \leq 2%. c. Switching time is essentially independent of operating temperature.

Vishay Siliconix

TYPICAL CHARACTERISTICS (TA = 25°C UNLESS OTHERWISE NOTED)

Vishay Siliconix

TYPICAL CHARACTERISTICS (TA = 25°C UNLESS OTHERWISE NOTED)

