Assignment1.md 2025-03-05

Assignment 1

Problem 1

Solution:

Given:

- ullet Probability of motherboard (MB) problems, P(MB)=0.4
- Probability of hard drive (HD) problems, P(HD)=0.3
- ullet Probability of both MB and HD problems, $P(MB\cap HD)=0.15$

To find the probability that a computer has **no MB or HD problems**, we first calculate the probability of having **at least one problem** using the principle of inclusion-exclusion:

$$P(MB \cup HD) = P(MB) + P(HD) - P(MB \cap HD)$$

 $P(MB \cup HD) = 0.4 + 0.3 - 0.15 = 0.55$

The probability of **no problems** is the complement of the union:

$$P(\text{No MB/HD problems}) = 1 - P(MB \cup HD)$$

$$P(\text{No MB/HD problems}) = 1 - 0.55 = 0.45$$

Answer: The probability of a fully functioning MB and HD is $\boxed{0.45}$.

Problem 2

Solution:

Given:

- ullet Probability a programmer knows Java, P(J)=0.7
- ullet Probability a programmer knows Python, P(P)=0.6
- ullet Probability a programmer knows both, $P(J\cap P)=0.5$

1. Probability of not knowing Python and not knowing Java:

First, calculate the probability of knowing at least one language using inclusion-exclusion:

$$P(J \cup P) = P(J) + P(P) - P(J \cap P)$$

$$P(J \cup P) = 0.7 + 0.6 - 0.5 = 0.8$$

The probability of knowing **neither** language is the complement:

$$P(\text{Neither}) = 1 - P(J \cup P) = 1 - 0.8 = 0.2$$

Answer: 0.20

2. Probability of knowing Java but not Python:

This is the probability of knowing Java minus the overlap with Python:

$$P(J\setminus P)=P(J)-P(J\cap P)$$

$$P(J \setminus P) = 0.7 - 0.5 = 0.2$$

Answer: 0.20

3. Probability of knowing Java given they know Python:

Use the definition of conditional probability:

$$P(J \mid P) = rac{P(J \cap P)}{P(P)}$$

$$P(J \mid P) = \frac{0.5}{0.6} \approx 0.8333$$

Answer: $\boxed{\frac{5}{6}}$ (or approximately 0.8333)

Problem 3

Solution:

When selecting k elements from n distinct elements with replacement, the number of permutations and combinations are derived as follows:

1. Permutations (Order Matters):

Each selection is ordered, and elements can be repeated. For each of the k positions, there are n choices. Thus:

Number of permutations
$$= n \times n \times \cdots \times n = n^k$$

Example: For n=3, k=2: Permutations = $3^2=9$ (e.g., AA, AB, AC, BA, BB, BC, CA, CB, CC).

2. Combinations (Order Does Not Matter):

Elements can repeat, but order is irrelevant. This is equivalent to distributing k identical items into n distinct bins (stars and bars method). The formula is:

Number of combinations
$$= \binom{n+k-1}{k} = \frac{(n+k-1)!}{k! (n-1)!}$$

Example: For n=3, k=2: Combinations = $\binom{3+2-1}{2}=\binom{4}{2}=6$ (e.g., {AA, AB, AC, BB, BC, CC}).

Final Answer:

Problem 4

Solution:

We need to compute the probability that at least one couple is paired together when 4 male-female couples are randomly paired for a dance.

Total Pairings: There are 4! = 24 ways to pair 4 males with 4 females.

Using the Principle of Inclusion-Exclusion:

Let A_i be the event that the *i*-th couple is paired together. The probability of at least one A_i is:

$$P\left(igcup_{i=1}^4 A_i
ight) = \sum P(A_i) - \sum P(A_i\cap A_j) + \sum P(A_i\cap A_j\cap A_k) - P(A_1\cap A_2\cap A_3\cap A_4)$$

1. Single Couple Pairing:

- \circ $\binom{4}{1}$ ways to choose 1 couple.
- Probability: $\frac{3!}{4!} = \frac{1}{4}$.

2. Two Couples Paired:

- \circ $\binom{4}{2} = 6$ ways to choose 2 couples.
- Probability: $\frac{2!}{4!} = \frac{1}{12}$.
- Total: $6 \cdot \frac{1}{12} = 0.5$.

3. Three Couples Paired:

- \circ $\binom{4}{3} = 4$ ways to choose 3 couples.
- Probability: $\frac{1!}{4!} = \frac{1}{24}$. Total: $4 \cdot \frac{1}{24} = \frac{1}{6}$.

4. All Four Couples Paired:

• Probability: $\frac{1}{4!} = \frac{1}{24}$.

Combining these:

$$P(\text{At least one couple}) = 1 - 0.5 + \frac{1}{6} - \frac{1}{24} = \frac{15}{24} = \frac{5}{8}.$$

Alternative Derangement Approach: The number of derangements (no couple paired) for n=4 is !4=9. Thus:

$$P(\text{No couples}) = \frac{9}{24} = \frac{3}{8} \implies P(\text{At least one couple}) = 1 - \frac{3}{8} = \frac{5}{8}.$$

Final Answer: $\frac{5}{8}$

Problem 5

Solution:

We need to find the probability that the sum of two randomly chosen numbers X and Y from the interval [0,1] is less than $\frac{7}{5}=1.4$.

Geometric Interpretation: The problem is equivalent to finding the area of the region $X+Y<\frac{7}{5}$ within the unit square $[0,1]\times[0,1]$.

- 1. Breakdown of the Region:
 - $\circ \ \ \mbox{ For } 0 \leq X \leq 0.4, Y \mbox{ can range from } 0 \mbox{ to } 1 \mbox{ (since } \frac{7}{5} X \geq 1).$
 - $\circ \ \ \text{For} \ 0.4 < X \leq 1 \text{, } Y \text{ can range from } 0 \text{ to } \frac{7}{5} X.$
- 2. Area Calculation:
 - First Region (Rectangle):

$$Area_1 = 0.4 \times 1 = 0.4$$

• Second Region (Integral): \$\$ \text{Area}2 = \int{0.4}^1 \left(\frac{7}{5} - X\right) dX \$\$

$$= \left[\frac{7}{5}X - \frac{1}{2}X^2\right]_{0.4}^1$$

$$= \left(\frac{7}{5}(1) - \frac{1}{2}(1)^2\right) - \left(\frac{7}{5}(0.4) - \frac{1}{2}(0.4)^2\right)$$

$$= (1.4 - 0.5) - (0.56 - 0.08) = 0.9 - 0.48 = 0.42$$

3. Total Area:

Total Area =
$$0.4 + 0.42 = 0.82$$

Probability: The probability is the total area divided by the unit square area (1):

$$P\left(X+Y<rac{7}{5}
ight)=rac{41}{50}=0.82$$

Final Answer: $\frac{41}{50}$

Problem 6

Assignment1.md 2025-03-05

See screenshot after the Problem 7 solution.

Problem 7

- 1. Satisfy the requirements of the Introductory Course
- 2. Review the theroy of Probability and Combinatorics
- 3. Our teacher is beautiful and kind !!!