Prof. Sauer

Kleine Welt große Welt

Bayes-Statistik als Zählen

Hinweis

Thema 2: Bayes-Modelle einer kleinen Welt QM2, ReThink_v1, Kap. 2

Prof. Sauer

AWM, HS Ansbach

WiSe 21

Prof. Sauer

Kleine Welt große Welt

Statistik als Zählen

- 1 Kleine Welt, große Welt
- 2 Bayes-Statistik als Zählen
- 3 Hinweise

Prof. Sauer

Kleine Welt, große Welt

Bayes-Statistik als Zählen

Hinweise

Kleine Welt, große Welt

Behaims Globus, Kolumbus glücklicher Fehler

Thema 2: Bayes-Modelle einer kleinen Welt

Prof Sauer

Kleine Welt, große Welt

Statistik al Zählen

Hinweis

Quelle

Kleine Welt, große Welt

Thema 2: Bayes-Modelle einer kleinen Welt

Prof. Sauer

Kleine Welt, große Welt

Bayes-Statistik als Zählen

Hinwei

Kleine Welt

- Die Welt, wie sie der Golem sieht
- entspricht dem Modell

Große Welt

- Die Welt, wie sie in Wirklichkeit ist
- entspricht nicht (zwangsläufig) dem Modell
- Die kleine Welt ist nicht die große Welt.
- Was in der kleinen Welt funktioniert, muss nicht in der großen Welt funktionieren.
- Modelle zeigen immer nur die kleine Welt: Vorsicht vor schnellen Schlüssen und vermeintlicher Gewissheit.

Prof. Sauer

Kleine Welt, große Welt

Bayes-Statistik als Zählen

Hinweise

Bayes-Statistik als Zählen

Murmeln im Säckchen

Thema 2: Bayes-Modelle einer kleinen Welt

Prof. Sauer

Kleine Welt große Welt

Bayes-Statistik als Zählen

Hinweise

- Sie haben ein Säckchen mit vier Murmeln darin.
- Sie wissen nicht, welche Farben die Murmeln haben.
- Murmeln gibt's in zwei Farben: weiß (W) oder blau (B).
- Es gibt daher fünf Hypothesen zur Farbe der Murmeln im Säckchen: WWWW, BWWW, BBWW, BBBB.
- Unsere Aufgabe ist, die Wahrscheinlichkeiten der Hypothesen nach Ziehen von Murmeln zu bestimmen.

(Kurz 2021)

Unsere Daten

Thema 2: Bayes-Modelle einer kleinen Welt

Prof. Sauer

Kleine Welt große Welt

Bayes-Statistik als Zählen

Hinweis

■ Wir ziehen eine Murmel, merken uns die Farbe und legen sie zurück. Das wiederholen wir noch zwei Mal (Ziehen mit Zurücklegen). Wir erhalten: BWB. Voilà: unsere Daten.

Zugmöglichkeiten laut Hypothese [BWWW], 1. Zug

Thema 2: Bayes-Modelle einer kleinen Welt

Prof. Saue

Kleine Wel große Welt

Bayes-Statistik als Zählen

Zanien

Wenn Hypothese [BWWW] der Fall sein sollte, dann können wir im *ersten* Zug entweder die eine blaue Murmel erwischen oder eine der drei weißen.

Nachdem wir die Murmel gezogen haben (und die Farbe gemerkt haben), legen wir sie wieder ins Säckchen: Ziehen mit Zurücklegen.

Zugmöglichkeiten laut Hypothese [BWWW], 1. und 2. Zug

Thema 2: Bayes-Modelle einer kleinen Welt

Prof. Sauer

Kleine Wel große Welt

Bayes-Statistik als Zählen

Hinweise

Wenn Hypothese [BWWW] der Fall sein sollte, dann haben wir im zweiten Zug natürlich die gleichen Möglichkeiten.

Zug 1 und Zug 2 zusammen genommen, gibt es also $16 = 4 \cdot 4 = 4^2$ Kombinationen, welche zwei Murmeln wir ziehen:

Die ersten vier Kombinationen sind: BB, BW, BW, BW

Zugmöglichkeiten laut Hypothese [BWWW], 1.-3. Zug

Thema 2: Bayes-Modelle einer kleinen Welt

Prof. Sauer

Kleine Welt große Welt

Bayes-Statistik als Zählen

Hinweise

Zug 1, Zug 2 und Zug 3 zusammen genommen, gibt es dann $4 \cdot 4 \cdot 4 = 4^3 = 64$ Kombinationen, drei Murmeln zu ziehen.

Welche Züge sind logisch möglich?

Thema 2: Bayes-Modelle einer kleinen Welt

Prof. Sauer

Kleine Wel große Welt

Bayes-Statistik als Zählen

Hinweise

- Bei 3 Zügen (mit jeweils 4 möglichen Murmeln) gibt es 4³
 Kombinationen an Murmeln.
- Aber einige Kombinationen lassen sich nicht mit unseren Daten (BWB) vereinbaren.
- Z.B. alle Kombinationen die mit W beginnen, sind nicht mit unseren Daten zu vereinbaren, denn in unseren Daten ist die erste Murmel vom Typ B.

Nur 3 der 64 "Pfade" (Kombinationen) sind mit unseren $\mathsf{Daten}_{\mathsf{12}/25}$

Kombinationen pro Hypothese

Thema 2: Bayes-Modelle einer kleinen Welt

Prof. Saue

Kleine Welt große Welt

Bayes-Statistik als Zählen

Нур	Häufigkeit WBW				
[W W W W]	0 * 4 * 0 = 0				
[B W W W]	1 * 3 * 1 = 3				
[5 ** ** **]					
[B B W W]	2 * 2 * 2 = 8				
[D D D \\/\]	3 * 1 * 3 = 9				
[B B B W]	$\begin{bmatrix} 2 & 1 & 2 & 3 & 3 & 4 \end{bmatrix}$				
[B B B B]	4 * 0 * 4 = 0				

- Die Häufigkeiten der Kombinationen ist proportional zur Plausibilität einer Hypothese.
- Zusätzlich müssten wir noch beachten, ob bestimmte Hypothesen *per se* bzw. *a priori* wahrscheinlicher sind. So könnten blaue Murmeln selten sein. Dann wäre die Hypothese [BBBB] entsprechend unwahrscheinlich.
- Gehen wir der Einfachheit halber zunächst davon aus, dass alle Hypothesen apriori gleich wahrscheinlich sind.

Pfadbaum für alle vier Hypothesen

Thema 2: Bayes-Modelle einer kleinen Welt

Prof Sauer

Kleine Welt große Welt

Bayes-Statistik als Zählen

Wir ziehen einer vierte Murmel: B

Thema 2: Bayes-Modelle einer kleinen Welt

Prof. Saue

Kleine Welt große Welt

Bayes-Statistik als Zählen

- Gehen wir davon aus, dass alle Hypothesen apriori gleich wahrscheinlich sind.
- Wir ziehen wieder eine Murmel. Sie ist blau (B)!
- Jetzt könnten wir den Pfadbaum für vier (statt drei) Züge aufmalen.
- Oder wir machen ein *Update*: Wir aktualisieren die bisherigen Kombinationshäufigkeiten um die neuen Daten. Die *alten* Daten dienen dabei als *Priori-Informationen* für die *neuen* Daten.

Priori-Information nutzen

Thema 2: Bayes-Modelle einer kleinen Welt

Prof. Saue

Kleine Welt große Welt

Bayes-Statistik als Zählen

Hinweis

Mit den Daten BWBB ist die Hypothese [BBBW] am wahrscheinlichsten:

Нур	PB	НА	HN
[W W W W]	0	0	0 * 0 = 0
[B W W W]	1	3	1 * 3 = 3
[B B W W]	2	8	2 * 8 = 16
[B B B W]	3	9	3 * 9 = 27
[B B B B]	4	0	4 * 0 = 0

Hyp: Hypothese

PB: Anzahl von Pfaden für B

HA: alte (bisherige) Häufigkeiten

HN: neue (geupdatete) Häufigkeiten

Murmelfabrik streikt: Blaue Murmeln jetzt sehr selten!

Thema 2: Bayes-Modelle einer kleinen Welt

Prof Saue

Kleine Welt große Welt

Bayes-Statistik als Zählen

Hinwei

- Berücksichtigen wir die Information, dass apriori (bevor wir die Daten gesehen haben), einige Hypothesen wahrscheinlicher (plausibler) sind.
- Dann ist die Hypothese [BBWW] am wahrscheinlichsten.

Нур	HA	HF	HN
[W W W W]	0	0	0 * 0 = 0
[B W W W]	3	3	3 * 3 = 9
[B B W W]	16	2	16 * 2 = 32
[B B B W]	27	1	27 * 1 = 27
[B B B B]	0	0	0 * 0 = 0

HF: Häufigkeit des Säckchentyps laut Fabrik

Zählen mit großen Zahlen nervt

Thema 2: Bayes-Modelle einer kleinen Welt

Prof. Sauer

Kleine Welt große Welt

Bayes-Statistik als Zählen

. .

- Malen Sie mal den Pfadbaum für 10 Züge . . .
- Eine Umrechnung der Häufigkeiten in Anteile macht das Rechnen einfacher.
- Dazu definieren wir die geupdatete Plausibilität einer Hypothese nach Kenntnis der Daten:

Plausibilität von [BWWW] nach Kenntnis von BWB

 \propto

Anzahl möglicher Pfade bei [BWWWW] für BWB

X

Priori-Plausibilität von [BWWWW]

■ x: proportional zu

Plausibilität berechnen

Thema 2: Bayes-Modelle einer kleinen Welt

Prof. Saue

Kleine Wel große Welt

Bayes-Statistik als Zählen

Hinweise

Sei p der Anteil blauer Murmeln. Bei Hypothese [BWWW] gilt dann: p=1/4=0.25. Sei $D_{neu}=$ BWB, die Daten.

Es gilt:

Plausibilität von p nach Kenntnis von D_{neu}

 \propto

Anzahl Pfade von p für D_{neu}

X

Priori-Plausibilität von *p*

"Für jeden Wert von p beurteilen wir dessen Plausibilität als umso höher (proportional), je mehr Pfade durch den Pfadbaum führen."

Von Plausibilität zur Wahrscheinlichkeit

Thema 2: Bayes-Modelle einer kleinen Welt

Prof. Saue

Kleine Welt große Welt

Bayes-Statistik als Zählen

Hinweis

■ Teilen wir die Anzahl Pfade einer Hypothese durch die Anzahl aller Pfade (aller Hypothesen), so bekommen wir einen Anteil. Damit haben wir eine Wahrscheinlichkeit:

PI von pmit Daten $D_{neu} = \frac{\text{Anzahl Pfade von } p \text{ für } D_{neu} \times \text{Prior-PI von } p}{\text{Summe aller Pfade}}$

PI: Plausibilität

Plausibilität pro Hypothese

Thema 2: Bayes-Modelle einer kleinen Welt

Prof. Saue

Kleine Welt große Welt

Bayes-Statistik als Zählen

Hinwei

Нур	р	AP	PI
[W W W W]	0.00	0	0.00
[B W W W]	0.25	3	0.15
[B B W W]	0.50	8	0.40
[B B B W]	0.75	9	0.45
[B B B B]	1.00	0	0.00

p: Anteil blauer Murmeln (Priori-Information)

AP: Anzahl von möglichen Pfaden

Pl: Plausibilität

```
AP <- c(0, 3, 8, 9, 0)
Pl <- AP / sum(AP)
Pl
```

[1] 0.00 0.15 0.40 0.45 0.00

Fachbegriffe

Thema 2: Bayes-Modelle einer kleinen Welt

Prof. Saue

Kleine Welt große Welt

Bayes-Statistik als Zählen

- Kennwerte laut einer Hypothese, wie den Anteil blauer Murmeln p bezeichnet man als Parameter.
- Den Anteil gültiger Pfade pro Hypothese (bzw. pro p) bezeichnet man als Likelihood.
- Die Priori-Plausibilität nennt man Priori-Wahrscheinlichkeit.
- Die neue, geupdatete Plausibilität für einen bestimmten Wert von p nennt man Posteriori-Wahrscheinlichkeit.

Prof. Sauer

Kleine Welt große Welt

Bayes-Statistik a Zählen

Hinweise

Lehrbuch und Homepage des Lehrbuchs

Thema 2: Bayes-Modelle einer kleinen Welt

Prof. Saue

Kleine Welt große Welt

Bayes-Statistik als Zählen

Hinweise

Dieses Skript bezieht sich auf folgende Lehrbücher:

- Kapitel 2 aus McElreath (2016) ("ReThink_v1")
- R-Code für die Diagramme stammt aus Kurz (2021)

Literatur

Thema 2: Bayes-Modelle einer kleinen Welt

Prof. Saue

Kleine Welt große Welt

Bayes-Statistik als Zählen

Hinweise

Kurz, A. Solomon. 2021. Statistical Rethinking with Brms, Ggplot2, and the Tidyverse: Second Edition. https://bookdown.org/content/4857/.

McElreath, Richard. 2016. *Statistical Rethinking*. 1. Aufl. New York City, NY: CRC Press.