ふの74& - 高等数学一(上)期末试卷 A 共 2 页 考试形式:闭卷

院系	年级	专业	
学号	姓名	成绩	
特别提醒:请	将答案填写在答题	逐纸上,若填写	生试卷纸上无效.
一. 选择题:	(每小题3分, 井	共15分)	
1. 求下列极限,	能直接使用洛必达法	达则的是()	1
A. $\lim_{x \to \infty} \frac{\sin x}{x}$	B. $\lim_{x \to 0} \frac{\sin x}{x}$	C. $\lim_{x \to \frac{\pi}{2}} \frac{\tan 5x}{\sin 3x}$	D. $\lim_{x \to 0} \frac{x^2 \sin \frac{1}{x}}{\sin x}$
2. 设函数 f(x):	$= x\sin x + \cos x, \top \mathcal{F}$	河命题正确的是 (·)
A. f(0)是极大	值, $f(\frac{\pi}{2})$ 也是极大	值 B. $f(0)$ 是极	小值, $f(\frac{\pi}{2})$ 也是极小值
C. f(0)是极大	值, $f(\frac{\pi}{2})$ 是极小值	D. f(0)是极	小值, $f(\frac{\pi}{2})$ 是极大值
3. 下列等式正确	角的是()		
A. $\int f'(x) dx =$	= f(x)	B. $\frac{\mathrm{d}}{\mathrm{d}x} \int f(x) dx$) dx = f(x) + C
C. $\frac{\mathrm{d}}{\mathrm{d}x} \int_a^b f(x) \mathrm{d}x$	dx = f(x)	D. $\frac{\mathrm{d}}{\mathrm{d}x}\int_a^b f(x)$	(x) dx = 0
4. 函数 $f(x) = $	$x-\frac{3}{2}x^{\frac{1}{3}}$ 在下列区间	上 <u>不满足</u> 拉格朗日	中值定理条件的是()
A. [0,1]	в. [-1,1]	c. $[0, \frac{27}{8}]$	D. [-1,0]
5.	$\frac{\sin x}{+x^2}\cos^4 x dx, N =$	$\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} (\sin^3 x + \cos^4 x)$	(x)dx
$P = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} (x^2 \sin x)$	$^3x - \cos^4x) dx$,则有(()	
. D . M . M	D. W. D.	M O M D	. N D N . M . I

填空题: (每小题 3 分, 共 15 分)

- 1. 函数 $f(x) = \ln(4-x^2)$ 在区间_______ 上是连续的.
- 2. 已知 f(x) 具有任意阶导数,且 $f'(x) = [f(x)]^2$,则当 n 为大于 2 的正整数时,

$$f^{(n)}(x) = \underline{\qquad}.$$

4. 设
$$\int x f(x) dx = \arcsin x + C$$
, 则 $\int \frac{1}{f(x)} dx = \underline{\qquad}$

三. 解下列各题: (每小题 10 分, 共 40 分)

1. 求下列极限

(1)
$$\lim_{x\to 0} \left(\frac{1}{x^2} - \frac{1}{x\tan x}\right)$$
. (2) $\lim_{x\to 0} \frac{x \int_0^{x^2} \ln(1+t) dt}{\tan^5 x}$.

- 2. 求摆线 $\begin{cases} x = 1 \cos t, \\ y = t \sin t \end{cases}$ 一拱 $(0 \le t \le 2\pi)$ 的弧长.
- 3. 设函数 $f(x) = x \int_0^\pi f(x) \cos x dx$, 求 f(x).
- 4. 求函数 $f(x) = \ln x \frac{x}{e} + 2\sqrt{2}$ 的单调区间、最值及零点的个数.

四. 解下列各题: (共30分)

- 1. (12 分) 已知曲线 $y = e^x$, $y = \sin x$, x = 0, x = 1 围成平面图形,
- (1) 求该平面图形的面积 S;
- (2) 求该平面图形分别绕x轴和y轴旋转一周所得的旋转体的体积 V_x,V_y .
- 2. (12分)设f(x)在[-a,a](a>0)上连续,
- (1) 证明: $\int_{-a}^{a} f(x) dx = \int_{0}^{a} [f(x) + f(-x)] dx$;
- (2) 利用上述结论计算定积分 $\int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} \frac{\cos^2 x}{1 + e^{-x}} dx.$
- 3. (6 分) 已知 f(x) 在 [0,1] 上具有连续导数,试证明: $\left|\int_0^1 f(x) dx\right| + \int_0^1 |f'(x)| dx \ge \max_{0 \le x \le 1} \{f(x)\}.$

2017级高数上期末答案

一、选择

1. B 2. D 3.D 4. B 5. A

二、填空

1. (-2,2) 2. $n![f(x)]^{n+1}$ 3. $2e^2$ 4. $-\frac{(1-x^2)^{\frac{3}{2}}}{3}+C$ 5. 2

三、解答

1. (1) $\frac{1}{3}$ (2) $\frac{1}{2}$ 2. $s = \int_0^{2\pi} \sqrt{2 - 2\cos t} dt = 8$ 3. f(x) = x + 2

4. (0,e) 单调增; $(e,+\infty)$ 单调减;最大值 $2\sqrt{2}$;无最小值;零点个数 2

四、解答

1. (1) $S = \int_0^1 (e^x - \sin x) dx = e - 2 + \cos 1$

(2)
$$V_x = \pi \int_0^1 e^{2x} - \sin^2 x dx = \frac{e^2}{2} + \frac{\sin 2}{4} - \frac{1}{2}$$

$$V_{y} = \pi \int_{0}^{\sin 1} \arcsin^{2} y dy + (1 - \sin 1)\pi + \pi \int_{1}^{e} (1 - \ln^{2} y) dy$$
$$= \pi \int_{0}^{1} x^{2} \cos x dx + (e - \sin 1)\pi - \pi \int_{0}^{1} x^{2} e^{x} dx$$
$$= \pi (2 - 2\sin 1 + 2\cos 1)$$

2. (1) PS (2)
$$I = \int_0^{\pi/4} \cos^2 x dx = \frac{\pi}{8} + \frac{1}{4}$$

3. 由连续函数最值存在定理有,存在 $x_1, x_2 \in [0,1]$ 有

$$f(x_1) = M = \max_{[0,1]} f(x)$$
 $\not\boxtimes f(x_2) = m = \min_{[0,1]} f(x)$.

不妨设 $x_1 \le x_2$,则有

$$\int_0^1 |f'(x)| dx \ge \int_{x_1}^{x_2} |f'(x)| dx \ge |\int_{x_1}^{x_2} f'(x) dx| = M - m,$$

及

$$\int_0^1 |f(x)| dx \ge \int_0^1 f(x) dx \ge \int_0^1 m dx = m,$$

故
$$\int_0^1 |f(x)| dx + \int_0^1 |f'(x)| dx \ge M = \max_{[0,1]} f(x).$$