# FUNDAMENTOS DE BASES DE DATOS

Dependencias Funcionales y Normalización

#### **Contenido**



#### Contenido



#### Dependencia Funcionales y Normalización

Describe la relación existentes entre atributos de una relación.

Dada una relación **R**, el atributo **Y** de **R** depende funcionalmente del atributo **X** de **R**, si y sólo si, siempre que dos tuplas de **R** concuerden en su valor de **X**, deben concordar en su valor de **Y**.

Si **X** y **Y** son atributos de una relación **R**, **Y** será funcionalmente dependiente de **X**, si cada valor de **X** está asociado con exactamente un valor de **Y**. (**X** y **Y** pueden consistir cada uno de ellos de uno o mas atributos)





| Α  | В  | С  | D  |
|----|----|----|----|
| a1 | b1 | c1 | d1 |
| a1 | b2 | c1 | d2 |
| a2 | b2 | c2 | d2 |
| a2 | b3 | c2 | d3 |
| a3 | b3 | c2 | d4 |

¿Cuáles Dependencias Funcionales identifica en la relación?

| Α  | В  | С  | D  |
|----|----|----|----|
| a1 | b1 | c1 | d1 |
| a1 | b2 | c1 | d2 |
| a2 | b2 | c2 | d2 |
| a2 | b3 | c2 | d3 |
| a3 | b3 | c2 | d4 |

 $D \rightarrow B$   $A \rightarrow C$   $AB \rightarrow C$   $AB \rightarrow D$   $ABC \rightarrow D$   $AD \rightarrow B$   $AD \rightarrow C$   $BCD \rightarrow A$ 

## Dependencia Funcional Trivial

Una dependencia funcional es trivial cuando no existe la posibilidad de que no se cumpla

Una dependencia funcional es trivial si y sólo si, el dependiente es un subconjunto del determinante



#### **Programación**

#### Propiedades de las Dependencias Funcionales

• Reflexibilidad.

Si b  $\underline{c}$  a entonces a  $\rightarrow$  b

Aumentatividad.

Si a  $\rightarrow$  b entonces ac  $\rightarrow$  bc

• Transitividad.

Si a  $\rightarrow$  b y b  $\rightarrow$  c. entonces a  $\rightarrow$  c

• Unión.

Si a  $\rightarrow$  b y a  $\rightarrow$  c. entonces a  $\rightarrow$  bc

• Descomposición.

Si a  $\rightarrow$  bc entonces a  $\rightarrow$  b, a  $\rightarrow$  c

• PseudoTransitividad.

Si a  $\rightarrow$  b y cb  $\rightarrow$  d. entonces ac  $\rightarrow$  d

## Conjunto de Dependencias Irreducibles

Un conjunto **S** de DFs es irreducible, si y sólo si, satisface las siguientes propiedades:

- La parte derecha (dependiente) de toda DF en *S* involucra sólo un atributo.
- No se puede descartar ningún atributo del determinante
- La parte izquierda (determinante) de toda DF es a su vez irreducible
- No es posible descartar de S alguna DF sin modificar a S (convertirlo en un conjunto no equivalente)

## Conjunto de Dependencias Irreducibles

Suponga que se tiene una relación con atributos A, B, C y D, y las Dependencias Funcionales:

 $A \rightarrow BC$ 

 $B \rightarrow C$ 

 $A \rightarrow B$ 

 $AB \rightarrow C$ 

 $AC \rightarrow D$ 

## Conjunto de Dependencias Irreducibles

Suponga que se tiene una relación con atributos A, B, C y D, y las Dependencias Funcionales:

 $A \rightarrow BC$ 

 $B \rightarrow C$ 

 $A \rightarrow B$ 

 $AB \rightarrow C$ 

 $AC \rightarrow D$ 

Por descomposición  $A \rightarrow B$ 

 $A \rightarrow C$ 



#### Conjunto de Dependencias Irreducibles

Suponga que se tiene una relación con atributos A, B, C y D, y las Dependencias Funcionales:

 $A \rightarrow B$ 

 $A \rightarrow C$ 

 $B \rightarrow C$ 

 $AB \rightarrow C$ 

 $AC \rightarrow D$ 

 $A \rightarrow C$  $A C \rightarrow D$ 

por aumentatividad A → A C por transitividad

 $A \rightarrow A C y A C \rightarrow D$  entonces  $A \rightarrow D$ se elimina  $AC \rightarrow D$  y queda  $A \rightarrow C y A \rightarrow D$ 

#### Conjunto de Dependencias Irreducibles

Aumentatividad Descomposición

Suponga que se tiene una relación con atributos A, B, C y D, y las Dependencias Funcionales:

Verificación:

Elimina

. L & O D

## Conjunto de Dependencias Irreducibles

Suponga que se tiene una relación con atributos A, B, C y D, y las Dependencias Funcionales:

$$A \rightarrow B$$

 $A \rightarrow C$ 

 $B \rightarrow C$ 

 $AB \rightarrow C$ 

 $A \rightarrow D$ 

por aumentatividad  $A B \rightarrow B C$ se descompone  $A B \rightarrow B$  $A B \rightarrow C$ 

## Conjunto de Dependencias Irreducibles

Suponga que se tiene una relación con atributos A, B, C y D, y las Dependencias Funcionales:

 $A \rightarrow B$ 

 $A \rightarrow C$ 

 $B \rightarrow C$ 

 $AB \rightarrow C$ 

 $A \rightarrow D$ 

por aumentatividad AB → BC

se descompone A B  $\rightarrow$  B

 $AB \rightarrow C$ 

se elimina

## Conjunto de Dependencias Irreducibles

Suponga que se tiene una relación con atributos A, B, C y D, y las Dependencias Funcionales:

 $A \rightarrow B$ 

 $A \rightarrow C$ 

 $B \rightarrow C$ 

 $A \rightarrow D$ 

por transitividad  $A \rightarrow B$  y  $B \rightarrow C$  entonces  $A \rightarrow C$  se elimina  $A \rightarrow C$ 

## Conjunto de Dependencias Irreducibles

Suponga que se tiene una relación con atributos A, B, C y D, y las Dependencias Funcionales:

 $A \rightarrow B$ 

 $B \rightarrow C$ 

 $A \rightarrow D$ 



## **NORMALIZACIÓN**



Una relación R satisface la primera forma normal (1FN) si, y sólo si, todos los dominios subyacentes de la relación R contienen valores atómicos.

Una relación en la que la intersección de toda fila y columna contiene un valor, y sólo un valor

La relación no puede contener grupos repetidos

# Hacia la primera forma normal

| Numero pedido | Fecha    | Numero cliente | Nombre cliente | Ciudad cliente | Numero producto | Producto | cantidad | Precio |
|---------------|----------|----------------|----------------|----------------|-----------------|----------|----------|--------|
| 100           | 04/03/06 | 1001           | А              | Bogotá         | 10              | Raqueta  | 2        | 40000  |
|               |          |                |                |                | 12              | Malla    | 1        | 15000  |
|               |          |                |                |                | 15              | Pelota   | 5        | 50000  |
| 101           | 05/03/06 | 1010           | В              | Bogotá         | 30              | Balón    | 1        | 100000 |
| 102           | 06/03/06 | 1030           | С              | Bogotá         | 12              | Malla    | 2        | 15000  |
|               |          |                |                |                | 20              | Careta   | 2        | 35000  |

# Hacia la primera forma normal

| lumero<br>pedido | Fecha    | Numero<br>cliente | Nombre<br>cliente | Ciudad cliente | Numero producto | Producto | cantidad | Precio |
|------------------|----------|-------------------|-------------------|----------------|-----------------|----------|----------|--------|
| 100              | 04/03/06 | 1001              | А                 | Bogotá         | 10              | Raqueta  | 2        | 40000  |
| 100              | 04/03/06 | 1001              | Α                 | Bogotá         | 12              | Malla    | 1        | 15000  |
| 100              | 04/03/06 | 1001              | А                 | Bogotá         | 15              | Pelota   | 5        | 50000  |
| 101              | 05/03/06 | 1010              | В                 | Bogotá         | 30              | Balón    | 1        | 100000 |
| 102              | 06/03/06 | 1030              | С                 | Bogotá         | 12              | Malla    | 2        | 15000  |
| 102              | 06/03/06 | 1030              | С                 | Bogotá         | 20              | Careta   | 2        | 35000  |

Contiene grupos repetidos

# Hacia la primera forma normal

| Numero<br>pedido | Fecha    | Numero cliente | Nombre cliente | Ciudad cliente | Numero<br>producto | Producto | cantidad | Precio |
|------------------|----------|----------------|----------------|----------------|--------------------|----------|----------|--------|
| 100              | 04/03/06 | 1001           | А              | Bogotá         | 10                 | Raqueta  | 2        | 40000  |
| 100              | 04/03/06 | 1001           | А              | Bogotá         | 12                 | Malla    | 1        | 15000  |
| 100              | 04/03/06 | 1001           | Α              | Bogotá         | 15                 | Pelota   | 5        | 50000  |
| 101              | 05/03/06 | 1010           | В              | Bogotá         | 30                 | Balón    | 1        | 100000 |
| 102              | 06/03/06 | 1030           | С              | Bogotá         | 12                 | Malla    | 2        | 15000  |
| 102              | 06/03/06 | 1030           | С              | Bogotá         | 20                 | Careta   | 2        | 35000  |

Contiene grupos repetidos

## Primera forma normal

| Numero<br>pedido | Fecha    | Numero<br>Cliente | Nombre<br>cliente | Ciudad<br>cliente |
|------------------|----------|-------------------|-------------------|-------------------|
| 100              | 04/03/06 | 1001              | Α                 | Bogotá            |
| 101              | 05/03/06 | 1010              | В                 | Bogotá            |
| 102              | 06/03/06 | 1030              | С                 | Bogotá            |

| Numero<br>pedido | Numero<br>Producto | Producto | Cantidad | Precio |
|------------------|--------------------|----------|----------|--------|
| 100              | 10                 | Raqueta  | 2        | 40000  |
| 100              | 12                 | Malla    | 1        | 15000  |
| 100              | 15                 | Pelota   | 5        | 50000  |
| 101              | 30                 | Balón    | 1        | 100000 |
| 102              | 12                 | Malla    | 2        | 15000  |
| 102              | 20                 | Careta   | 2        | 35000  |

Una relación **R** satisface la segunda forma normal (2FN) si, y sólo si, satisface la primera forma normal y cada atributo no clave de la relación depende funcionalmente de la clave primaria en forma completa

#### Dependencia Funcional Completa

Si X y Y son atributos de una relación R, Y depende funcionalmente de manera completa de X si Y depende funcionalmente de X pero no de ningún subconjunto propio de X

# Hacia la Segunda forma normal

| Numero<br>pedido | Fecha    | Numero<br>Cliente | Nombre<br>cliente | Ciudad |
|------------------|----------|-------------------|-------------------|--------|
| 100              | 04/03/06 | 1001              | А                 | Bogotá |
| 101              | 05/03/06 | 1010              | В                 | Bogotá |
| 102              | 06/03/06 | 1030              | С                 | Bogotá |

| Numero<br>pedido | Numero<br>Producto | Producto | Cantidad | Precio |
|------------------|--------------------|----------|----------|--------|
| 100              | 10                 | Raqueta  | 2        | 40000  |
| 100              | 12                 | Malla    | 1        | 15000  |
| 100              | 15                 | Pelota   | 5        | 50000  |
| 101              | 30                 | Balón    | 1        | 100000 |
| 102              | 12                 | Malla    | 2        | 15000  |
| 102              | 20                 | Careta   | 2        | 35000  |

# Hacia la Segunda forma normal

# Dependen funcionalmente

| Numero<br>pedido | Fecha    | Numero<br>Cliente | Nombre<br>cliente | Ciudad<br>cliente |
|------------------|----------|-------------------|-------------------|-------------------|
| 100              | 04/03/06 | 1001              | Α                 | Bogotá            |
| 101              | 05/03/06 | 1010              | В                 | Bogotá            |
| 102              | 06/03/06 | 1030              | С                 | Bogotá            |

| Numero<br>pedido | Numero<br>Producto | Producto | Cantidad | Precio |
|------------------|--------------------|----------|----------|--------|
| 100              | 10                 | Raqueta  | 2        | 40000  |
| 100              | 12                 | Malla    | 1        | 15000  |
| 100              | 15                 | Pelota   | 5        | 50000  |
| 101              | 30                 | Balón    | 1        | 100000 |
| 102              | 12                 | Malla    | 2        | 15000  |
| 102              | 20                 | Careta   | 2        | 35000  |

# Segunda forma normal

| Numero<br>pedido | Fecha    | Numero<br>Cliente | Nombre<br>cliente | Ciudad<br>cliente |
|------------------|----------|-------------------|-------------------|-------------------|
| 100              | 04/03/06 | 1001              | Α                 | Bogotá            |
| 101              | 05/03/06 | 1010              | В                 | Bogotá            |
| 102              | 06/03/06 | 1030              | С                 | Bogotá            |

| Numero<br>producto | Producto | Precio |
|--------------------|----------|--------|
| 10                 | Raqueta  | 40000  |
| 12                 | Malla    | 15000  |
| 15                 | Pelota   | 50000  |
| 30                 | Balón    | 100000 |
| 20                 | careta   | 35000  |

| Numero<br>pedido | Numero<br>producto | cantidad |
|------------------|--------------------|----------|
| 100              | 10                 | 2        |
| 100              | 12                 | 1        |
| 100              | 15                 | 5        |
| 101              | 30                 | 1        |
| 102              | 12                 | 2        |
| 102              | 20                 | 2        |

Una relación **R** satisface la tercera forma normal (3FN) si, y sólo si, satisface la segunda forma normal y todos los atributos no claves dependen de manera no transitiva de la clave primaria (no existen dependencias entre atributos que no forman parte de la clave primaria de la relación).

#### Dependencia Transitiva

Si X, Y y Z son atributos de una relación R, si  $X \rightarrow Y$  y  $Y \rightarrow Z$  entonces Z depende transitivamente de X a través de Y (supuesto que X no sea funcionalmente dependiente de Y o Z)

## Hacia la Tercera forma normal

| Numero<br>pedido | Fecha    | Numero<br>Cliente | Nombre<br>cliente | Ciudad<br>cliente |
|------------------|----------|-------------------|-------------------|-------------------|
| 100              | 04/03/06 | 1001              | Α                 | Bogotá            |
| 101              | 05/03/06 | 1010              | В                 | Bogotá            |
| 102              | 06/03/06 | 1030              | С                 | Bogotá            |

| Numero<br>producto | Producto | Precio |
|--------------------|----------|--------|
| 10                 | Raqueta  | 40000  |
| 12                 | Malla    | 15000  |
| 15                 | Pelota   | 50000  |
| 30                 | Balón    | 100000 |
| 20                 | careta   | 35000  |

| Numero<br>pedido | Numero<br>producto | cantidad |
|------------------|--------------------|----------|
| 100              | 10                 | 2        |
| 100              | 12                 | 1        |
| 100              | 15                 | 5        |
| 101              | 30                 | 1        |
| 102              | 12                 | 2        |
| 102              | 20                 | 2        |

## Hacia la Tercera forma normal



| Numero<br>producto | Producto | Precio |
|--------------------|----------|--------|
| 10                 | Raqueta  | 40000  |
| 12                 | Malla    | 15000  |
| 15                 | Pelota   | 50000  |
| 30                 | Balón    | 100000 |
| 20                 | careta   | 35000  |

| Numero<br>pedido | Numero<br>producto | cantidad |
|------------------|--------------------|----------|
| 100              | 10                 | 2        |
| 100              | 12                 | 1        |
| 100              | 15                 | 5        |
| 101              | 30                 | 1        |
| 102              | 12                 | 2        |
| 102              | 20                 | 2        |

## Tercera forma normal

| Numero<br>pedido | Fecha    | Numero<br>Cliente |
|------------------|----------|-------------------|
| 100              | 04/03/06 | 1001              |
| 101              | 05/03/06 | 1010              |
| 102              | 06/03/06 | 1030              |

| Numero<br>producto | Producto | Precio |
|--------------------|----------|--------|
| 10                 | Raqueta  | 40000  |
| 12                 | Malla    | 15000  |
| 15                 | Pelota   | 50000  |
| 30                 | Balón    | 100000 |
| 20                 | careta   | 35000  |

| Numero<br>Cliente | Nombre<br>cliente | Ciudad<br>cliente |
|-------------------|-------------------|-------------------|
| 1001              | Α                 | Bogotá            |
| 1010              | В                 | Bogotá            |
| 1030              | С                 | Bogotá            |

| Numero<br>pedido | Numero<br>producto | cantidad |
|------------------|--------------------|----------|
| 100              | 10                 | 2        |
| 100              | 12                 | 1        |
| 100              | 15                 | 5        |
| 101              | 30                 | 1        |
| 102              | 12                 | 2        |
| 102              | 20                 | 2        |

#### FORMA NORMAL BOYCE-CODD (FNBC)

Una relación **R** satisface la FNBC si, y sólo si, se encuentra en 1FN, y cada determinante funcional es una clave candidata de la relación **R** 

#### **Determinante Funcional**

Se denomina determinante funcional a uno, o un conjunto de atributos de una relación **R** del cual depende funcionalmente de forma completa algún otro atributo de la misma relación.

### FORMA NORMAL BOYCE-CODD (FNBC)



#### FORMA NORMAL BOYCE-CODD (FNBC)

### Esquema de Tablas

Producto = (<u>NúmeroProducto</u>, NombreProducto, Precio)

Cliente = (<u>NúmeroCliente</u>, NombreCliente, CiudadCliente)

Pedido = (NúmeroPedido, NúmeroCliente, Fecha)

DetallePedido = (<u>NúmeroPedido</u>, <u>NúmeroProducto</u>, Cantidad)

### Dependencia Multivaluada (DMV)

Si X, Y y Z son atributos de una relación R, la dependencia multivaluada X  $\rightarrow$  Y existe si y sólo si el conjunto de valores de Y que se obtiene para un par de valores de (X,Z) depende sólo del valor de A y es independiente de los valores para Z

DMV representa una dependencia entre atributos (X. Y. Z) en una relación **R** de modo que para cada valor de X hay un conjunto de valores de Y y un conjunto de valores de Z, sin embargo, los conjuntos de valores Y y Z son independientes entre si.

#### Dependencia Multivaluada (DMV) y la Cuarta Forma Normal

Una DMV puede ser trivial o no trivial. Una dependencia A  $\rightarrow$  B en la relación R será trivial si:

- (a) B es un subconjunto de A, ó
- (b)  $A \cup B = R$

Las dependencias DMV no triviales no cumplen las condiciones (a) ni (b)

Una relación que está en 5FN cuando está en FNBC y no contiene dependencias multivaluadas no triviales

| ESTUDIANTE | ASIGNATURA          | DEPORTE    |
|------------|---------------------|------------|
| Pedro      | Base de Datos       | Baloncesto |
| Pedro      | Base de Datos       | Futbol     |
| Pedro      | Ingeniería Software | Baloncesto |
| Pedro      | Ingeniería Software | Futbol     |
| María      | Física              | Tenis      |
| María      | Química             | Tenis      |
| Juan       | Física              | Futbol     |
| Juan       | Física              | Tenis      |
| Juan       | Ingeniería Software | Tenis      |
| Juan       | Ingeniería Software | Futbol     |

Estudiante  $\longrightarrow$  Asignatura Estudiante  $\longrightarrow$  Deporte

Dependencia multivaluada

### Inscribe

| ESTUDIANTE | ASIGNATURA          |
|------------|---------------------|
| Pedro      | Bases de Datos      |
| Pedro      | Ingeniería Software |
| María      | Física              |
| María      | Química             |
| Juan       | Ingeniería Software |

### Practica

| ESTUDIANTE | DEPORTE    |
|------------|------------|
| Pedro      | Baloncesto |
| Pedro      | Futbol     |
| María      | Tenis      |
| Juan       | Futbol     |
| Juan       | Tenis      |

| PROFESORES | CARRERAS    | ASIGNATURAS        |
|------------|-------------|--------------------|
| Profesor 1 | Sistemas    | Programación       |
| Profesor 1 | Sistemas    | P. O. O.           |
| Profesor 2 | Electrónica | Programación       |
| Profesor 2 | Electrónica | Circuitos Lógicos  |
| Profesor 2 | Electrónica | P. O. O.           |
| Profesor 3 | Electrónica | Lógica Matemática  |
| Profesor 3 | Industrial  | Logística          |
| Profesor 3 | Industrial  | Sistema Producción |
| Profesor 3 | Ambiental   | Gestión Proyectos  |

| PROFESORES | CARRERAS    | ASIGNATURAS        |
|------------|-------------|--------------------|
| Profesor 1 | Sistemas    | Programación       |
| Profesor 1 | Sistemas    | P. O. O.           |
| Profesor 2 | Electrónica | Programación       |
| Profesor 2 | Electrónica | Circuitos Lógicos  |
| Profesor 2 | Electrónica | P. O. O.           |
| Profesor 3 | Electrónica | Lógica Matemática  |
| Profesor 3 | Industrial  | Logística          |
| Profesor 3 | Industrial  | Sistema Producción |
| Profesor 3 | Ambiental   | Gestión Proyectos  |
| Profesor 3 | Sistemas    | P. O. O.           |
| Profesor 3 | Electrónica | P. O. O.           |
| Profesor 3 | Ambiental   | P. O. O.           |

?

| PROFESORES | CARRERAS    | ASIGNATURAS        |
|------------|-------------|--------------------|
| Profesor 1 | Sistemas    | Programación       |
| Profesor 1 | Sistemas    | P. O. O.           |
| Profesor 2 | Electrónica | Programación       |
| Profesor 2 | Electrónica | Circuitos Lógicos  |
| Profesor 2 | Electrónica | P. O. O.           |
| Profesor 3 | Electrónica | Lógica Matemática  |
| Profesor 3 | Industrial  | Logística          |
| Profesor 3 | Industrial  | Sistema Producción |
| Profesor 3 | Ambiental   | Gestión Proyectos  |

| PROFESOR   | ASIGNATURA         |
|------------|--------------------|
| Profesor 1 | Programación       |
| Profesor 1 | P. O. O.           |
| Profesor 2 | Programación       |
| Profesor 2 | Circuitos Lógicos  |
| Profesor 2 | P. O. O.           |
| Profesor 3 | Lógica Matemática  |
| Profesor 3 | Logística          |
| Profesor 3 | Sistema Producción |
| Profesor 3 | Gestión Proyectos  |

| PROFESOR   | CARRERA     |
|------------|-------------|
| Profesor1  | Sistemas    |
| Profesor 2 | Electrónica |
| Profesor 3 | Electrónica |
| Profesor 3 | Industrial  |
| Profesor 3 | Ambiental   |

| ASIGNATURA         |
|--------------------|
| Programación       |
| P. O. O.           |
| Programación       |
| Circuitos Lógicos  |
| P. O. O.           |
| Lógica Matemática  |
| Logística          |
| Sistema Producción |
| Gestión Proyectos  |
|                    |

| PROFESOR   | ASIGNATURA         |
|------------|--------------------|
| Profesor 1 | Programación       |
| Profesor 1 | P. O. O.           |
| Profesor 2 | Programación       |
| Profesor 2 | Circuitos Lógicos  |
| Profesor 2 | P. O. O.           |
| Profesor 3 | Lógica Matemática  |
| Profesor 3 | Logística          |
| Profesor 3 | Sistema Producción |
| Profesor 3 | Gestión Proyectos  |
| Profesor 3 | P. O. O.           |

| PROFESOR   | CARRERA     |
|------------|-------------|
| Profesor1  | Sistemas    |
| Profesor 2 | Electrónica |
| Profesor 3 | Electrónica |
| Profesor 3 | Industrial  |
| Profesor 3 | Ambiental   |

| CARRERA     | ASIGNATURA         |
|-------------|--------------------|
| Sistemas    | Programación       |
| Sistemas    | P. O. O.           |
| Electrónica | Programación       |
| Electrónica | Circuitos Lógicos  |
| Electrónica | P. O. O.           |
| Electrónica | Lógica Matemática  |
| Industrial  | Logística          |
| Industrial  | Sistema Producción |
| Ambiental   | Gestión Proyectos  |
|             |                    |

| PROFESOR   | ASIGNATURA         |
|------------|--------------------|
| Profesor 1 | Programación       |
| Profesor 1 | P. O. O.           |
| Profesor 2 | Programación       |
| Profesor 2 | Circuitos Lógicos  |
| Profesor 2 | P. O. O.           |
| Profesor 3 | Lógica Matemática  |
| Profesor 3 | Logística          |
| Profesor 3 | Sistema Producción |
| Profesor 3 | Gestión Proyectos  |
| Profesor 3 | P. O. O.           |

| PROFESOR   | CARRERA     |
|------------|-------------|
| Profesor1  | Sistemas    |
| Profesor 2 | Electrónica |
| Profesor 3 | Electrónica |
| Profesor 3 | Industrial  |
| Profesor 3 | Ambiental   |

| CARRERA     | ASIGNATURA         |
|-------------|--------------------|
| Sistemas    | Programación       |
| Sistemas    | P. O. O.           |
| Electrónica | Programación       |
| Electrónica | Circuitos Lógicos  |
| Electrónica | P. O. O.           |
| Electrónica | Lógica Matemática  |
| Industrial  | Logística          |
| Industrial  | Sistema Producción |
| Ambiental   | Gestión Proyectos  |

### **BIBLIOGRAFÍA**

C. J. Date, *An Introduction to Database Systems*, 8 edition. Boston: Pearson, 2003.

A. Silbershatz, H. F. Korth, y S. Sudarshan, *Fundamentos de bases de datos*, 6.ª ed. Mc. Graw Hill, 2014.

T. M. Connolly y C. E. Begg, *Sistemas de bases de datos*, 4.ª ed. Pearson, 2005.