Ricerca operativa

Ollari Ischimji Dmitri

4 ottobre 2023

Indice

1	Modelli									
	1.1	Flusso	a costo minimo	2						
		1.1.1	Matrice dei vincoli	2						
		1.1.2	Esempio	3						
	1.2	Flusso	<u>massimo</u>	4						
		1.2.1	Modello matematico	4						
		1.2.2	Esempio	5						

Capitolo 1

Modelli

1.1 Flusso a costo minimo

Tipico problema di calcolo computazionale che ha le seguenti caratteristiche per i nodi:

- Nodi sorgente: nodi che producono il flusso
- Nodi destinazione: nodi che consumano il flusso
- Nodi transito: nodi che non sono né sorgenti né destinazioni

Per ogni arco $(i, j) \in A$ sono associati dei costi unitari c_{ij} per unità di flusso che si spostano da i a j, è possibile la presenza di d_{ij} che indica la capacità massima dell'arco (i, j).

Il prodotto trasmesso lungo un'arco del grafo è il flusso x_{ij} , che deve essere minore o uguale alla capacità ma non negativo.

Per calcolare il flusso uscente dal nodo i:

$$\sum_{j:(i,j)\in A} x_{ij} \tag{1.1}$$

Mentre il flusso uscente dal nodo i:

$$\sum_{j:(j,i)\in A} x_{ji} \tag{1.2}$$

I vincoli del problema derivanti dalla conservazione del flusso sono:

$$\sum_{j:(i,j)\in A} x_{ij} - \sum_{j:(j,i)\in A} x_{ji} = b_i \quad \forall i \in V$$

$$\tag{1.3}$$

Il modello matematico completo è:

$$\min \sum_{(i,j)\in A} c_{ij} x_{ij} \tag{1.4}$$

$$\sum_{j:(i,j)\in A} x_{ij} - \sum_{j:(j,i)\in A} x_{ji} = b_i \quad \forall i \in V$$

$$\tag{1.5}$$

$$0 \le x_{ij} \le d_{ij} \quad \text{interi} \quad \forall (i,j) \in A$$
 (1.6)

1.1.1 Matrice dei vincoli

La matrice cha ha tante **righe** quanti sono i **vincoli** e tante **colonne** quante sono le **variabili**.

La matrice dei vincoli di uguaglianza per i problemi di flusso a costo minimo coincide con la matrice di incidenza **nodo-arco** della rete.

	x_{12}	x_{13}	x_{15}	x_{23}	x_{42}	x_{34}	x_{53}	x_{45}
1	1	1	1	0	0	0	0	0
2	-1	0	0	1	-1	0	0	0
3	0	-1	0	-1	0	1	-1	0
4	0	0	0	0	0	-1	0	1
5	0	0	-1	0	0	0	0	-1

1.1.2 Esempio

Rete
$$G = (V, A)$$
 con $V = \{1, 2, 3, 4, 5\}$ e
$$A = \{(1, 2); (1, 3); (1, 5); (2, 3); (3, 4); (4, 2); (4, 5); (5, 3)\}$$

(i,j)	(1,2)	(1,3)	(1,5)	(2,3)	(3,4)	(4,2)	(4,5)	(5,3)
c_{ij}	5	-2	2	-4	0	6	3	4

i	1	2	3	4	5
b_i	2	5	1	-4	-4

Figura 1.1: Matrice dei vincoli

Il modello matematico dell'esempio è:

$$\min 5x_{12} - 4x_{23} + 6x_{42} - 2x_{13} + 0x_{34} + 3x_{15} + 4x_{53} + 3x_{45} \tag{1.7}$$

$$x_{12} + x_{13} + x_{15} = 2 (1.8)$$

$$x_{23} - x_{12} - x_{42} = 5 (1.9)$$

$$x_{34} - x_{13} - x_{23} - x_{53} = 1 (1.10)$$

$$x_{42} + x_{45} - x_{34} = -4 (1.11)$$

$$x_{53} + x_{15} - x_{45} = -4 (1.12)$$

$$x_{ij} \ge 0 \quad \forall (i,j) \in A \tag{1.13}$$

La matrice dei vincoli è:

Il modello matematico per la risoluzione scritto in **ampl** è:

```
### INSIEMI ###
set NODI;
set ARCHI within NODI cross NODI;
### PARAMETRI ###
param b{NODI};
param c{ARCHI};
param d{ARCHI} >= 0, default Infinity;
### VARIABILI ###
var x{(i, j) in ARCHI} >= 0, <= d[i,j], integer;
### VINCOLI ###
subject to bilancio{i in NODI}: sum{j in NODI: (i, j) in ARCHI} x[i,j] -
    sum{j in NODI:
    (j, i) in ARCHI} x[j,i] = b[i];
### OBIETTIVO ###
minimize costo_totale: sum{(i, j) in ARCHI} c[i,j]*x[i,j];</pre>
```

I dati del problema sono:

```
### INSIEMI ###
   set NODI := n1 n2 n3 n4 n5;
   set ARCHI := (n1,n2) (n1,n3) (n1,n5) (n2,n3) (n3,n4) (n4,n2) (n4,n5)
### PARAMETRI ###
   param b :=
   n1 2
   n2 5
   n3 1
   n4 -4
   n5-4;
   param c :=
   n1 n2 5
   n1 n3 -2
   n1 n5 2
   n2 n3 -4
   n3 n4 0
   n4 n2 6
   n4 n5 3
   n5 n3 4;
```

1.2 Flusso massimo

Simile al problema di flusso a costo minimo, ma senza i costi unitari c_{ij} , quindi si vuole massimizzare il flusso che attraversa la rete.

1.2.1 Modello matematico

Le variabili del modello matematico per questo problema sono:

- $x_{ij} \ge 0$: flusso lungo l'arco (i, j)
- d_{ij} : capacità massima dell'arco (i, j)
- $x_{ij} \leq d_{ij} \quad \forall (i,j) \in A$
- $\sum_{j:(i,j)\in A} x_{ij} = \sum_{j:(j,i)\in A} x_{ji} \quad \forall i\in V\setminus\{S,D\}$ equivalente a dire che il flusso entrante in un nodo è uguale al flusso uscente dal nodo

L'obiettivo del problema è quello di massimizzare la quantità di flusso che esce dal nodo sorgente S:

$$\sum_{j:(S,j)\in A} x_{Sj} \tag{1.14}$$

Che corrisponde al'aumentare il flusso del nodo destinazione D:

$$\sum_{j:(j,D)\in A} x_{jD} \tag{1.15}$$

Il modello matermatico completo è:

$$\max \sum_{j:(S,j)\in A} x_{Sj} \tag{1.16}$$

$$\sum_{j:(i,j)\in A} x_{ij} = \sum_{j:(j,i)\in A} x_{ji} \quad \forall i \in V \setminus \{S,D\}$$
(1.17)

$$0 \le x_{ij} \le d_{ij} \quad \forall (i,j) \in A \tag{1.18}$$

OSS: La matrice dei vincoli di uguaglianza del problema di flusso massimo coincide con la matrice di incidenza node-arco della rete senza i nodi sorgente e destinazione.

1.2.2 Esempio

La rete ha le seguenti caratteristiche:

Arco	(S, 1)	(S,2)	(1, 3)	(1, 4)	(2, 3)	(2, 1)	(3, D)	(4, D)
Capacità	3	2	1	4	1	1	1	7

Il modello matematico per l'esempio è:

$$\max x_{S1} + x_{S2} \qquad (1.19)$$

$$x_{13} + x_{14} - x_{S1} = 0 \qquad (1.20)$$

$$x_{23} + x_{24} - x_{S2} = 0 \qquad (1.21)$$

$$x_{3D} - x_{13} - x_{23} = 0 \qquad (1.22)$$

$$x_{4D} - x_{14} - x_{24} = 0 \qquad (1.23)$$

$$0 \le x_{S1} \le 3 \qquad (1.24)$$

$$0 \le x_{S2} \le 2 \qquad (1.25)$$

$$0 \le x_{13} \le 1 \qquad (1.26)$$

$$0 \le x_{14} \le 4 \qquad (1.27)$$

$$0 \le x_{23} \le 1 \qquad (1.28)$$

$$0 \le x_{24} \le 1 \qquad (1.29)$$

$$0 \le x_{3D} \le 1 \qquad (1.30)$$

$$0 \le x_{4D} \le 7 \qquad (1.31)$$

$$x_{ij} \ge 0 \quad \text{interi} \quad \forall (i, j) \in A \qquad (1.32)$$

La matrice dei vincoli che ne consegue è:

	x_{S1}	x_{S2}	x_{13}	x_{14}	x_{23}	x_{24}	x_{3D}	x_{4D}
1	-1	0	1	1	0	0	0	0
2	0	-1	0	0	1	1	0	0
3	0	0	-1	0	-1	0	1	0
4	0	0	0	-1	0	-1	0	1

Il modello matematico per la risoluzione scritto in **ampl** è:

```
### INSIEMI ###
   set NODI ;
   set ARCHI within NODI cross NODI ;
### PARAMETRI ###
   param Sorgente symbolic in {NODI};
   param Destinazione symbolic in {NODI} , != Sorgente ;
   param d{ARCHI} >= 0, default Infinity ;
### VARIABILI ###
   var x{(i, j) in ARCHI} >= 0, <= d[i,j], integer ;
### VINCOLI ###
   subject to equilibrio{i in NODI diff {Sorgente, Destinazione}} : sum{j
        in NODI : (i, j) in</pre>
```

```
ARCHI} x[i,j] - sum{j in NODI : (j, i) in ARCHI} x[j,i] = 0 ;
### OBIETTIVO ###
maximize flusso_uscente : sum{j in NODI : (Sorgente,j) in ARCHI}
    x[Sorgente,j] ;
```