Agenda

PROBLEM DOMAIN: NUMBER THEORY

-APPLICATION DOMAIN: CRYPTOGRAPHY

- PUBLIC KEY ENCRYPTION: RSA

SECURITY OF RSA

RSA: Security

- Protocol RSA: (Public Key Encryption)
 - Offline Steps (i.e. pre-processing) by B or a third party trusted by B:
 - Choose n = p * q for large primes p and q
 - Choose **k** in $\mathbf{Z}^*_{\phi(n)}$ and publish (\mathbf{n}, \mathbf{k}) as public key for B
 - Compute B's private key k', the inverse of k in $(Z^*_{\phi(n)}, *\phi(n))$
 - Online Steps (i.e. at communication time):
 - Let E(M) = M^k (mod n)
 - A sends M' = E(M) to B
 - B receives M'
 - B computes $E^{-1}(M') = (M')^{k'} \pmod{n}$
- Security Requirement:
 - Given **n** (but not **p** nor **q**), and k
 - an attacker cannot get M in polynomial time

RSA: Security

- (Provable) Security Correctness Requirement:
 - Given n (but not p nor q), and k
 - an attacker cannot get any of these:
 - p or q
 - because factoring is "hard"
 - φ(n)
 - because computing $\phi(n)$ is as "hard" as factoring
 - k', the inverse of k in $(Z^*_{\phi(n)}, *n)$
 - because if k' is known, then the attacker knows $\phi(n) \mid (k*k'-1)$
 - i.e. attacker knows $j*\phi(n)$ for some +ve integer j
 - Then n can be factorized efficiently.
 - · (claim w/o proof).

RSA: Security - Pragmatics

- (Provable) Security Property for RSA:
 - Given n (but not p nor q), and k
 - an attacker cannot get any of these:
 - p or q
 - φ(n)
 - k', the inverse of k in $(Z^*_{\phi(n)}, *n)$
- The above statement states the hardness of breaking RSA scheme completely by computing the private key
 - Alternatively, is there a way to infer (i.e. decrypt) messages without the decryption key?
 - i.e. we want a guarantee of the form:
 - It is not possible to decode more than a small fraction of encrypted messages

RSA: Security - Pragmatics

- We want a guarantee of the form:
 - It is not possible to decode more than a small fraction of encrypted messages
- Given an attacker's algorithm A that knows only n and k, define
 - □ $C(A) = \{x \text{ in } Z_n^* \mid A \text{ can compute } x^{k'} \text{ (mod n) given } x\}$
 - where k' is the inverse of k in $(Z^*_{\phi(n)}, *n)$
 - i.e. C(A) is the set of messages in Z*_n that can be recovered using A.

RSA: Security - Pragmatics

Theorem:

- □ Suppose there exists a (possibly randomized) polynomial time algorithm A_1 for which $|C(A_1)| >= \epsilon * |Z_n^*|$ for some $\epsilon > 0$.
- Then there exists a Las Vegas algorithm A₂ for which
 - $|C(A_2)| = |Z_n^*|$ and
 - the expected running time of A_2 is polynomial in log(n) and $1/\epsilon$.

Implications:

- If RSA can be broken (i.e. a more than a small number of messages decrypted) then it can be broken almost completely:
 - Note that $|Z_n^*| = p * q + 1 (p + q) = \Theta(|Z_n|)$
 - for n = p * q where p and q are large primes.
- If ϵ is vanishingly small, say for instance o(1/n), then the expected time complexity is exponential in size of n
 - i.e. the attack using A₂ may not be practical.