

SEQUENCE LISTING

<110> Bertilson, Goran
Erlandsson, Rikard
Frisen, Jonas
Haegerstrand, Anders
Heidrich, Jessica
Hellstrom, Kristina
Haggblad, Johan
Jansson, Katarina
Kortesmaa, Jarkko
Lindquist, Per
Lundh, Hanna
Mcguire, Jacqueline
Mercer, Alex
Nyberg, Karl
Ossoinak, Amina
Patrone, Cesare
Ronholm, Harriet
Wirkstrom, Lillian
Zachrisson, Olof

<120> COMPOUNDS AND METHODS FOR INCREASING NEUROGENESIS

<130> 21882-517 UTIL

<140> US 10/718,071

<141> 2003-11-20

<150> US 60/427,912

<151> 2002-11-20

<160> 71

<170> PatentIn version 3.2

<210> 1

<211> 38

<212> PRT

<213> Homo sapiens

<400> 1

His Ser Asp Gly Ile Phe Thr Asp Ser Tyr Ser Arg Tyr Arg Lys Gln
1 5 10 15

Met Ala Val Lys Lys Tyr Leu Ala Ala Val Leu Gly Lys Arg Tyr Lys
20 25 30

Gln Arg Val Lys Asn Lys
35

<210> 2

<211> 21

<212> PRT

<213> Homo sapiens

<400> 2

Cys Ser Cys Ser Ser Leu Met Asp Lys Glu Cys Val Tyr Phe Cys His
1 5 10 15

Leu Asp Ile Ile Trp
20

<210> 3
<211> 24
<212> PRT
<213> Homo sapiens

<400> 3

Ser Tyr Ser Met Glu His Phe Arg Trp Gly Lys Pro Val Gly Lys Lys
1 5 10 15

Arg Arg Pro Val Lys Val Tyr Pro
20

<210> 4
<211> 13
<212> PRT
<213> Homo sapiens

<220>
<221> misc_feature
<222> (1)..(1)
<223> acetylserine

<400> 4

Xaa Tyr Ser Met Glu His Phe Arg Trp Gly Lys Pro Val
1 5 10

<210> 5
<211> 12
<212> PRT
<213> Homo sapiens

<400> 5

Tyr Val Met Gly His Phe Arg Trp Asp Arg Phe Gly
1 5 10

<210> 6
<211> 10
<212> PRT
<213> Homo sapiens

<400> 6

His Lys Thr Asp Ser Phe Val Gly Leu Met
1 5 10

<210> 7
<211> 32
<212> PRT
<213> Salmon

<400> 7

Cys Ser Asn Leu Ser Thr Cys Val Leu Gly Lys Leu Ser Gln Glu Leu
1 5 10 15

His Lys Leu Gln Thr Tyr Pro Arg Thr Asn Thr Gly Ser Gly Thr Pro
20 25 30

<210> 8

<211> 22

<212> PRT

<213> Homo sapiens

<400> 8

Ala Glu Lys Lys Asp Glu Gly Pro Tyr Arg Met Glu His Phe Arg Trp
1 5 10 15

Gly Ser Pro Pro Lys Asp
20

<210> 9

<211> 11

<212> PRT

<213> Homo sapiens

<400> 9

Arg Pro Cys Pro Gln Cys Phe Tyr Pro Leu Met
1 5 10

<210> 10

<211> 8

<212> PRT

<213> Homo sapiens

<400> 10

Arg Pro Pro Gly Phe Ser Pro Leu
1 5

<210> 11

<211> 8

<212> PRT

<213> Homo sapiens

<400> 11

Arg Pro Pro Gly Phe Ser Pro Phe
1 5

<210> 12

<211> 5

<212> PRT

<213> Homo sapiens

<220>
<221> misc_feature
<222> (2)..(2)
<223> D-penicillamine

<220>
<221> misc_feature
<222> (5)..(5)
<223> D-penicillamine

<400> 12

Tyr Xaa Gly Phe Xaa
1 5

<210> 13
<211> 10
<212> PRT
<213> Homo sapiens

<220>
<221> misc_feature
<222> (1)..(1)
<223> D-pyroglutamic acid

<220>
<221> misc_feature
<222> (2)..(2)
<223> D-conformation

<220>
<221> misc_feature
<222> (3)..(3)
<223> D-conformation

<220>
<221> misc_feature
<222> (6)..(6)
<223> D-conformation

<400> 13

Xaa Phe Trp Ser Tyr Trp Leu Arg Pro Gly
1 5 10

<210> 14
<211> 34
<212> PRT
<213> Homo sapiens

<220>
<221> misc_feature
<222> (8)..(8)
<223> norleucine

<220>
<221> misc_feature
<222> (18)..(18)
<223> norleucine

<400> 14

Ser Val Ser Glu Ile Gln Leu Xaa His Asn Leu Gly Lys His Leu Asn
1 5 10 15

Ser Xaa Glu Arg Val Glu Trp Leu Arg Lys Lys Leu Gln Asp Val His
20 25 30

Asn Tyr

<210> 15

<211> 39

<212> PRT

<213> Homo sapiens

<400> 15

Ser Tyr Ser Met Glu His Phe Arg Trp Gly Lys Pro Val Gly Lys Lys
1 5 10 15

Arg Arg Pro Val Lys Val Tyr Pro Asn Gly Ala Glu Asp Glu Ser Ala
20 25 30

Glu Ala Gly Pro Leu Glu Phe
35

<210> 16

<211> 52

<212> PRT

<213> Homo sapiens

<400> 16

Tyr Arg Gln Ser Met Asn Asn Phe Gln Gly Leu Arg Ser Phe Gly Cys
1 5 10 15

Arg Phe Gly Thr Cys Thr Val Gln Lys Leu Ala His Gln Ile Thr Gln
20 25 30

Phe Thr Asp Lys Asp Lys Asp Asn Val Ala Pro Arg Ser Lys Ile Ser
35 40 45

Pro Gln Gly Tyr
50

<210> 17

<211> 31

<212> PRT

<213> Homo sapiens

<400> 17

Thr Val Gln Lys Leu Ala His Gln Ile Thr Gln Phe Thr Asp Lys Asp
1 5 10 15

Lys Asp Asn Val Ala Pro Arg Ser Lys Ile Ser Pro Gln Gly Tyr
20 25 30

<210> 18

<211> 27

<212> PRT

<213> Homo sapiens

<400> 18

Leu Ala His Gln Ile Tyr Gln Phe Thr Asp Lys Asp Lys Asp Asn Val
1 5 10 15

Ala Pro Arg Ser Lys Ile Ser Pro Gln Gly Tyr
20 25

<210> 19

<211> 10

<212> PRT

<213> porcine

<400> 19

Thr Gly Gly Phe Leu Arg Lys Tyr Pro Lys
1 5 10

<210> 20

<211> 28

<212> PRT

<213> Homo sapiens

<400> 20

Ser Leu Arg Arg Ser Ser Cys Phe Gly Gly Arg Met Asp Arg Ile Gly
1 5 10 15

Ala Gln Ser Gly Leu Gly Cys Asn Ser Phe Arg Tyr
20 25

<210> 21

<211> 32

<212> PRT

<213> Homo sapiens

<400> 21

Cys Gly Asn Leu Ser Thr Cys Met Leu Gly Thr Tyr Thr Gln Asp Phe
1 5 10 15

Asn Lys Phe His Thr Phe Pro Gln Thr Ala Ile Gly Val Gly Ala Pro
20 25 30

<210> 22
<211> 42
<212> PRT
<213> Homo sapiens

<400> 22

Lys Tyr Gly Gln Val Pro Met Cys Asp Ala Gly Glu Gln Cys Ala Val
1 5 10 15

Arg Lys Gly Ala Arg Ile Gly Lys Leu Cys Asp Cys Pro Arg Gly Thr
20 25 30

Ser Cys Asn Ser Phe Leu Leu Lys Cys Leu
35 40

<210> 23
<211> 8
<212> PRT
<213> Homo sapiens

<400> 23

Asp Tyr Met Gly Trp Met Asp Phe
1 5

<210> 24
<211> 9
<212> PRT
<213> Homo sapiens

<220>
<221> misc_feature
<222> (1)..(1)
<223> mercaptopropanoic acid

<220>
<221> misc_feature
<222> (9)..(9)
<223> D-conformation

<400> 24

Xaa Thr Phe Gln Asn Cys Pro Arg Gly
1 5

<210> 25
<211> 6
<212> PRT
<213> Homo sapiens

<400> 25

Tyr Thr Gly Phe Leu Thr
1 5

<210> 26

<211> 11
<212> PRT
<213> Homo sapiens

<400> 26

Glu Pro Ser Lys Asp Ala Phe Ile Gly Leu Met
1 5 10

<210> 27
<211> 20
<212> PRT
<213> Homo sapiens

<400> 27

Gly Trp Thr Leu Asn Ser Ala Gly Tyr Leu Leu Gly Pro Pro Pro Ala
1 5 10 15

Leu Ala Leu Ala
20

<210> 28
<211> 31
<212> PRT
<213> Homo sapiens

<400> 28

His Ala Glu Gly Thr Phe Thr Ser Asp Val Ser Ser Tyr Leu Glu Gly
1 5 10 15

Gln Ala Ala Lys Glu Phe Ile Ala Trp Leu Val Lys Gly Arg Gly
20 25 30

<210> 29
<211> 39
<212> PRT
<213> Homo sapiens

<400> 29

His Ser Asp Gly Thr Phe Thr Ser Asp Leu Ser Lys Gln Met Glu Glu
1 5 10 15

Glu Ala Val Arg Leu Phe Ile Glu Trp Leu Lys Asn Gly Gly Pro Ser
20 25 30

Ser Gly Ala Pro Pro Pro Ser
35

<210> 30
<211> 39
<212> PRT
<213> Homo sapiens

<400> 30

His Gly Glu Gly Thr Phe Thr Ser Asp Leu Ser Lys Gln Met Glu Glu
1 5 10 15

Glu Ala Val Arg Leu Phe Ile Glu Trp Leu Lys Asn Gly Gly Pro Ser
20 25 30

Ser Gly Ala Pro Pro Pro Ser
35

<210> 31
<211> 11
<212> PRT
<213> Homo sapiens

<220>
<221> misc_feature
<222> (9)..(9)
<223> sarcosine

<400> 31

Arg Pro Lys Pro Gln Gln Phe Phe Xaa Leu Met
1 5 10

<210> 32
<211> 21
<212> PRT
<213> Homo sapiens

<400> 32

Cys Ser Cys Lys Asp Met Thr Asp Lys Glu Cys Leu Asn Phe Cys His
1 5 10 15

Gln Asp Val Ile Trp
20

<210> 33
<211> 21
<212> PRT
<213> Homo sapiens

<400> 33

Cys Ser Cys Lys Asp Met Thr Asp Lys Glu Cys Leu Thr Phe Cys His
1 5 10 15

Gln Asp Val Ile Trp
20

<210> 34
<211> 21
<212> PRT

<213> Homo sapiens

<400> 34

Cys Thr Cys Asn Asp Met Thr Asp Glu Glu Cys Leu Asn Phe Cys His
1 5 10 15

Gln Asp Val Ile Trp
20

<210> 35

<211> 12

<212> PRT

<213> Homo sapiens

<400> 35

Ala Gly Thr Ala Asp Cys Phe Trp Lys Tyr Cys Val
1 5 10

<210> 36

<211> 28

<212> PRT

<213> Homo sapiens

<400> 36

His Ser Asp Ala Val Phe Thr Asp Asn Tyr Thr Arg Leu Arg Lys Gln
1 5 10 15

Met Ala Val Lys Lys Tyr Leu Asn Ser Ile Leu Asn
20 25

<210> 37

<211> 10

<212> PRT

<213> Homo sapiens

<220>

<221> misc_feature

<222> (1)..(1)

<223> D-conformation

<220>

<221> misc_feature

<222> (4)..(4)

<223> hydroxyproline

<220>

<221> misc_feature

<222> (6)..(6)

<223> alpha-amino-2-indanacetic acid

<220>

<221> misc_feature

<222> (8)..(8)

<223> D-alpha-amino-2-indanacetic acid

<220>
<221> misc_feature
<222> (9)..(9)
<223> octahydroindole-2-carboxylic acid

<400> 37

Arg Arg Pro Xaa Gly Xaa Ser Xaa Xaa Arg
1 5 10

<210> 38
<211> 46
<212> PRT
<213> Homo sapiens

<400> 38

Thr Pro Leu Ser Ala Pro Cys Val Ala Thr Arg Asn Ser Cys Lys Pro
1 5 10 15

Pro Ala Pro Ala Cys Cys Asp Pro Cys Ala Ser Cys Gln Cys Arg Phe
20 25 30

Phe Arg Ser Ala Cys Ser Cys Arg Val Leu Ser Leu Asn Cys
35 40 45

<210> 39
<211> 47
<212> PRT
<213> Homo sapiens

<400> 39

Arg Cys Val Arg Leu His Glu Ser Cys Leu Gly Gln Gln Val Pro Cys
1 5 10 15

Cys Asp Pro Cys Ala Thr Cys Tyr Cys Arg Phe Phe Asn Ala Phe Cys
20 25 30

Tyr Cys Arg Lys Leu Gly Thr Ala Met Asn Pro Cys Ser Arg Thr
35 40 45

<210> 40
<211> 8
<212> PRT
<213> Homo sapiens

<400> 40

Asp Arg Val Tyr Ile His Pro Phe
1 5

<210> 41
<211> 28
<212> PRT
<213> Homo sapiens

<400> 41

Ser Leu Arg Arg Ser Ser Cys Phe Gly Gly Arg Met Asp Arg Ile Gly
1 5 10 15

Ala Gln Ser Gly Leu Gly Cys Asn Ser Phe Arg Tyr
20 25

<210> 42

<211> 5

<212> PRT

<213> Homo sapiens

<220>

<221> misc_feature

<222> (2)..(2)

<223> D-penicillamine

<220>

<221> misc_feature

<222> (5)..(5)

<223> D-penicillamine

<400> 42

Thr Xaa Gly Phe Xaa
1 5

<210> 43

<211> 52

<212> PRT

<213> Homo sapiens

<400> 43

Tyr Arg Gln Ser Met Asn Asn Phe Gln Gly Leu Arg Ser Phe Gly Cys
1 5 10 15

Arg Phe Gly Thr Cys Thr Val Gln Lys Leu Ala His Gln Ile Tyr Gln
20 25 30

Phe Thr Asp Lys Asp Asp Asn Val Ala Pro Arg Ser Lys Ile Ser
35 40 45

Pro Gln Gly Tyr
50

<210> 44

<211> 25

<212> PRT

<213> salmon

<400> 44

Val Leu Gly Lys Leu Ser Gln Glu Leu His Lys Leu Gln Thr Tyr Pro
12

1 5 10 15

Arg Thr Asn Thr Gly Ser Gly Thr Pro
20 25

<210> 45
<211> 30
<212> PRT
<213> Homo sapiens

<400> 45

Val Thr His Arg Leu Ala Gly Leu Leu Ser Arg Ser Gly Gly Val Val
1 5 10 15

Lys Asn Asn Phe Val Pro Thr Asn Val Gly Ser Lys Ala Phe
20 25 30

<210> 46
<211> 27
<212> PRT
<213> Homo sapiens

<400> 46

Ser Asp Thr Cys Trp Ser Thr Ser Phe Gln Lys Lys Thr Ile His
1 5 10 15

Cys Lys Trp Arg Glu Lys Pro Leu Met Leu Met
20 25

<210> 47
<211> 6
<212> PRT
<213> Homo sapiens

<220>
<221> misc_feature
<222> (1)..(1)
<223> pyroglutamic acid

<400> 47

Xaa Phe Phe Pro Leu Met
1 5

<210> 48
<211> 28
<212> PRT
<213> Homo sapiens

<400> 48

Ser Ala Asn Ser Asn Pro Ala Met Ala Pro Arg Glu Arg Lys Ala Gly
1 5 10 15

Cys Lys Asn Phe Phe Trp Lys Thr Phe Thr Ser Cys
20 25

<210> 49
<211> 21
<212> PRT
<213> Homo sapiens

<400> 49

Cys Ser Cys Ser Ser Leu Met Asp Lys Glu Cys Val Tyr Phe Cys His
1 5 10 15

Leu Asp Ile Ile Trp
20

<210> 50
<211> 44
<212> PRT
<213> Homo sapiens

<400> 50

Tyr Ala Asp Ala Ile Phe Thr Asn Ser Tyr Arg Lys Val Leu Gly Gln
1 5 10 15

Leu Ser Ala Arg Lys Leu Leu Gln Asp Ile Met Ser Arg Gln Gln Gly
20 25 30

Glu Ser Asn Gln Glu Arg Gly Ala Arg Ala Arg Leu
35 40

<210> 51
<211> 37
<212> PRT
<213> Homo sapiens

<400> 51

Lys Cys Asn Thr Ala Thr Cys Ala Thr Gln Arg Leu Ala Asn Phe Leu
1 5 10 15

Val His Ser Ser Asn Asn Phe Gly Ala Ile Leu Ser Ser Thr Asn Val
20 25 30

Gly Ser Asn Thr Tyr
35

<210> 52
<211> 19
<212> DNA
<213> Artificial

<220>

<223> Primer
<400> 52
caatgtgctg gtgtgctgg 19

<210> 53
<211> 20
<212> DNA
<213> Artificial

<220>
<223> Primer
<400> 53
tagacaccca gcatgagcag 20

<210> 54
<211> 19
<212> DNA
<213> Artificial

<220>
<223> Primer
<400> 54
caggatcatt taccagaac 19

<210> 55
<211> 19
<212> DNA
<213> Artificial

<220>
<223> Primer
<400> 55
gacgctgctt aagatgttc 19

<210> 56
<211> 20
<212> DNA
<213> Artificial

<220>
<223> Primer
<400> 56
agagcctaag ttgccaaagg 20

<210> 57
<211> 20
<212> DNA
<213> Artificial

<220>
<223> Primer
<400> 57
gaatcagcac aaattcaatg 20

<210> 58	
<211> 18	
<212> DNA	
<213> Artificial	
<220>	
<223> Primer	
<400> 58	
gaaccggaac ctgcactc	18
<210> 59	
<211> 19	
<212> DNA	
<213> Artificial	
<220>	
<223> Primer	
<400> 59	
tgcccagcag gatggtag	19
<210> 60	
<211> 20	
<212> DNA	
<213> Artificial	
<220>	
<223> Primer	
<400> 60	
gagaacatct tggcatagg	20
<210> 61	
<211> 20	
<212> DNA	
<213> Artificial	
<220>	
<223> Primer	
<400> 61	
agcattaaag tgagatgaag	20
<210> 62	
<211> 19	
<212> DNA	
<213> Artificial	
<220>	
<223> Primer	
<400> 62	
gctacaccat tggctacgg	19
<210> 63	
<211> 20	

<212> DNA
<213> Artificial

<220>
<223> Primer

<400> 63
gactgctgtc actcttcctg

20

<210> 64
<211> 21
<212> DNA
<213> Artificial

<220>
<223> Primer

<400> 64
gatgtctt gcaacaggaa g

21

<210> 65
<211> 20
<212> DNA
<213> Artificial

<220>
<223> Primer

<400> 65
gcaaacacca tggtagtgac

20

<210> 66
<211> 25
<212> DNA
<213> Artificial

<220>
<223> Primer

<400> 66
gggaactcta tggcatcta cgtga

25

<210> 67
<211> 23
<212> DNA
<213> Artificial

<220>
<223> Primer

<400> 67
gaaatgtgta caaacacgaag ccc

23

<210> 68
<211> 25
<212> DNA
<213> Artificial

<220>

<223> Primer

<400> 68
ggcaacacac ttgtcattta tgtca

25

<210> 69
<211> 25
<212> DNA
<213> Artificial

<220>
<223> Primer

<400> 69
agtagcaaa gacagatgtat ggtga

25

<210> 70
<211> 22
<212> DNA
<213> Artificial

<220>
<223> Primer

<400> 70
tactttgatg acacaggctg ct

22

<210> 71
<211> 22
<212> DNA
<213> Artificial

<220>
<223> Primer

<400> 71
agtacagcca ccacaaagcc ct

22