7.2.3 电路如图 7.2.2 所示的源极耦合差分式放大电路中 $+V_{DD}=+5$ $V_{s}-V_{ss}=-5$ $V_{s}/I_{o}=0.2$ mA, 电流源量出电阻 $r_{s}=100$ k Ω (图中未画出), $R_{dl}=R_{dl}=R_{dl}=10$ k Ω , FET 的 $K_{o}'\left(\frac{W}{L}\right)=3$ mA/ V^{2} , 且 $r_{o}>>r_{do}$, 计算时电路中 $r_{d}(r_{do}>>R_{d})$ 可忽略,求单端输出时的 A_{vd} , A_{vol} 和 $K_{CMR,o}$

解:
$$k_n = \frac{1}{2}k_n(\frac{W}{L}) = 1.5 \text{ mA/V}^2$$

$$I_{D2} = \frac{1}{2} = 0.1 \text{ mA}$$

$$\therefore g_m = 2\sqrt{k_n}I_{D2} \approx 0.78 \text{ mS}$$

$$\therefore Avd_2 = \frac{g_m p_d}{2} = 3.9$$

$$Avc_2 = -\frac{k_d}{2r_o} = -0.05$$
单端输出 $k_{cmp} = \left| \frac{Avd_2}{Avc_2} \right| = 78$

7.2.8 电路如图题 7.2.8 所示,设 BJT 的 $\beta_1 = \beta_2 = 30$, $\beta_3 = \beta_4 = 100$, $V_{BE1} = V_{BE2} = 0.6$ V, $V_{BE3} = V_{BE4} = 0.7$ V。试计算双端输入、单端输出时的 R_{id} 、 A_{sel} A_{sel} K_{CMRI} 的值。

解: 青花時, 即心: = 心: = 0、
$$V_{E3} = V_{E4} = 0 - 0.6V - 0.7V = -1.3V$$

$$I_{E3} = I_{E4} = \frac{1}{2}I_{E} = \frac{1}{2} \frac{-1.3V - (-6V)}{Re} = 0.5 mA$$

$$I_{E1} = I_{E2} = \frac{I_{E3}}{\beta_{3}} = 0.05 mA$$
∴ the 3 = $I_{be4} = 200\Omega + (H\beta_{3}) \frac{V_{T}}{I_{E3}} \approx 5.45 k\Omega$

$$I_{be1} = I_{be2} = 200\Omega + (H\beta_{1}) \frac{V_{T}}{I_{E3}} \approx 161.4 k\Omega$$

英美-铁铁大路: β~BB, Noe=You+(1+B1) Noe3.

: Ava, = $-\frac{\beta P_c}{2 \ln e} = -\frac{\beta_1 \beta_3 R_c}{2 \ln e_1 + (H\beta_1) \ln e_3} \approx -28$ Ava = $-\frac{\beta P_c}{r_{be} + (H\beta_1) 2Re} = -\frac{\beta_1 \beta_3 P_c}{r_{be_1} + (H\beta_1) r_{be_3} + (H\beta_1 \beta_2) 2Re} \approx -0.65$ $|R_c = \frac{A_{WU}}{A_{WU}}| \approx 44.4$ $|R_c = 2 \ln e = 2 \ln e_1 + (H\beta_1) \ln e_3| = 660.7 \ln 2$ 7.6.2 运放 741 的 I_{io} = 20 nA, I_{IB} = 100 nA, V_{io} = 5 mV, 当 I_{Io} 、 I_{IB} 和 V_{Io} 为不同取值时, 试回答下列问题: (1) 设反相输入运算放大电路如图题 7.6.2a 所示(未加输入信号 v_i), 若 V_{Io} = 0,求由于偏置电流 I_{IB} = I_{BN} = I_{BP} 而引起的输出直流电压 V_{O} ; (2) 怎样消除偏置电流 I_{IB} 的影响, 如图题 7.6.2b 所示, 电阻 R_2 应如何选择以使 V_O = 0? (3) 在(2)问的改进电路(图题 7.6.2b)中,若 I_{BP} – I_{BN} = I_{IO} \neq 0,试计算 V_O 的值; (4) 若 I_{IO} = 0,则由 V_{IO} 引起的 V_O = ?(5) 若 I_{IO} \neq 0 及 V_{IO} \neq 0,求 V_O 。

制: (1)当Yo=OH, 由ITB引起的Vo为: (多约向加图所示) Vo=+ITBPT=+0.1V

(2) 为消除 Ize的影响, 需使已 = P1 1/12f = 90.9KD

(b)
$$I_{BP} = I_{TB} - \frac{I_{To}}{2}$$
, $I_{BN} = I_{TB} + \frac{I_{To}}{2}$

$$V_{P} = -(I_{2B} - \frac{I_{2o}}{2})P_{2}$$

$$V_{N} = V_{O} \left(\frac{P_{1}}{P_{1} + P_{1}}\right) - (I_{2B} + \frac{I_{2o}}{2})(P_{1} //P_{1})$$

$$P_{P} \approx V_{N}, P_{2} = P_{1} //P_{1}, \text{ The } V_{O} = I_{TO}P_{1} = +20 \text{ mV}$$

(4) 当
$$I_{20}=0$$
时, $V_p=-I_{28}P_2$, $V_N=V_0\frac{P_1}{P_1+P_2}-I_{28}P_1(IP_1)-V_{20}$ 得: $V_0=(1+\frac{P_1}{P_1})V_{20}=\pm55mV$

(5) 查孔20, V20年10时,由的份量加可得 Vo=(20±55)mV

7.6.7 运放的单位增益带宽 $f_{\rm T}=1$ MHz,转换速率 $S_{\rm R}=1$ V/ μ s,当运放接成反相放大电路的闭环增益 A_{μ} s -10,确定小信号闭环带宽 $f_{\rm H}$;当输出电压不失真最大幅度 $V_{\rm om}=10$ V 时,求全功率带宽 $BW_{\rm P}$ 。

解:
$$f_H = \frac{f_T}{|Aua|} = 100 \text{ FHz}$$

$$BWp = \frac{Sp}{2\pi Vom} \approx 15.9 \text{ EHz}.$$