Homework 2

Problem 1 (1)

```
clear; clc;
syms x
f(x) = sqrt(x) - cos(x);
a_1 = 0;
b_1 = 1;
p_1 = (a_1 + b_1)/2
p_1 = 0.5000
vpa(f(a_1), 4)
ans = -1.0
vpa(f(b_1), 4)
ans = 0.4597
vpa(f(p_1), 4)
ans = -0.1705
a_2 = p_1;
b_2 = b_1;
p_2 = (a_2 + b_2)/2
p_2 = 0.7500
vpa(f(a_2), 4)
ans = -0.1705
vpa(f(b_2), 4)
ans = 0.4597
vpa(f(p_2), 4)
ans = 0.1343
a_3 = a_2;
b_3 = p_2;
```

```
p_3 = (a_3 + b_3)/2
```

 $p_3 = 0.6250$

Problem 2 (14)

```
clear; clc;
syms n x

TOL = 10^-4
```

TOL = 1.0000e-04

```
f(x) = x^2 - 3;

n = log2(1/TOL)
```

n = 13.2877

bisectionMethod(f, 1, 2, TOL)

n	a	b	р	f(p)
1	1	2	1.5	-0.75
2	1.5	2	1.75	0.0625
3	1.5	1.75	1.625	-0.35938
4	1.625	1.75	1.6875	-0.15234
5	1.6875	1.75	1.7188	-0.045898
6	1.7188	1.75	1.7344	0.0080566
7	1.7188	1.7344	1.7266	-0.018982
8	1.7266	1.7344	1.7305	-0.0054779
9	1.7305	1.7344	1.7324	0.0012856
10	1.7305	1.7324	1.7314	-0.0020971
11	1.7314	1.7324	1.7319	-0.00040603
12	1.7319	1.7324	1.7322	0.0004397
13	1.7319	1.7322	1.7321	1.6823e-05
ans = 1.7321				

Problem 3 (10)

```
clear; clc;

syms \times n

g(x) = 2^{-x}
```

```
g(x) = \frac{1}{2^x}
```

fplot(g)


```
vpa(g(1/3), 4)
```

ans = 0.7937

vpa(g(1), 4)

ans = 0.5

```
vpa(subs(diff(g, x), x, 1/3), 4)
```

ans(x) = -0.5502

 $n_{sol} = vpasolve(0.551^n*(2/3)==10^-4, n)$

 $n_sol = 14.772773267990065312154981867054$

fixedPoint(g, 2/3, 10^-4);

n	p_n	p_n-p_{n-1}
1	0.62996	0.036706
2	0.64619	0.016234
3	0.63896	0.0072304
4	0.64217	0.0032103
5	0.64075	0.0014274

```
6 0.64138 0.00063427
7 0.6411 0.00028192
8 0.64122 0.00012529
9 0.64117 5.5684e-05
```

Problem 4 (1)

```
clear; clc;
syms x

p_0 = 1;
f(x) = x^2 - 6
```

$$f(x) = x^2 - 6$$

```
f_prime(x) = diff(f, x)
```

 $f_{prime}(x) = 2x$

```
p_1 = p_0 - f(p_0)/f_prime(p_0)
```

 $p_1 = \frac{7}{2}$

$$p_2 = p_1 - f(p_1)/f_prime(p_1)$$

p_2 = 73

Problem 5 (12a)

```
clear; clc;

syms x

f(x) = x^2 - 4*x + 4 - log(x)
```

$$f(x) = x^2 - \log(x) - 4x + 4$$

$$g = @(x) x^2 - 4*x + 4 - log(x)$$

g = function_handle with value: $@(x)x^2-4*x+4-\log(x)$

NewtonMethod(f, 1.5, 10^-7);

```
    n
    p_n
    |p_n-p_{n-1}|

    1
    1.406721
    0.09327906

    2
    1.41237
    0.005649022

    3
    1.412391
    2.121447e-05

    4
    1.412391
    2.988791e-10
```

```
secantMethod(g, 1, 2, 10^-7);
```

```
n
               p_n
                              |p_n-p_{n-1}|
2
               1.590616
                              0.4093839
3
               1.284548
                              0.3060683
               1.427966
                              0.1434183
               1.413635
5
                              0.01433147
                              0.001256454
6
               1.412378
7
               1.412391
                              1.299672e-05
               1.412391
                              1.073098e-08
```

NewtonMethod(f, 3, 10^-7);

n	p_n	p_n-p_{n-1}
1	3.059167	0.05916737
2	3.057106	0.002061319
3	3.057104	2.504693e-06
4	3.057104	3.698235e-12

secantMethod(g, 2, 4, 10^-7);

p_n	p_n-p_{n-1}
2.419219	1.580781
2.75604	0.3368211
3.317023	0.5609828
3.009769	0.3072535
3.050671	0.04090175
3.057289	0.006618332
3.057103	0.0001861977
3.057104	7.059887e-07
3.057104	7.719825e-11
	2.419219 2.75604 3.317023 3.009769 3.050671 3.057289 3.057103 3.057104

Problem 6 (4b)

```
clear; clc;
syms x

coeffs = [1 -2 -12 16 -40];

f(x) = poly2sym(coeffs)
```

```
f(x) = x^4 - 2x^3 - 12x^2 + 16x - 40
```

```
vpa(f(0.5835597))
```

ans = -35.031032165320712500205913895326

```
fplot(poly2sym(coeffs))
```


MuellerMethod(coeffs, 1, 2, 3, 10^-5);

```
f(p)
n
3
              -0.7047 +0
                                  -56.288
              0.65918 +3.214 i
4
                                  209.54
5
              0.27268 +0.53586i
                                  -32.695
              0.38851 +1.3029 i
                                 -10.019
6
7
              0.542 +1.4709 i
                                 -1.2194
8
              0.58457 +1.4936 i
                                 -0.035052
9
                                  5.8656e-05
              0.58356 +1.4942 i
              0.58356 +1.4942 i
10
                                 -3.4301e-10
```

MuellerMethod(coeffs, -1, -2, -3, 10^-5);

```
f(p)
n
3
              -3.8366 +0
                             i 51.588
4
              -3.5245 +0
                             i -3.5838
5
              -3.5478 +0
                             i -0.058736
6
              -3.5482 +0
                             i -4.3176e-05
7
              -3.5482 +0
                             i 4.1489e-11
```

MuellerMethod(coeffs, 5, 6, 7, 10^-5);

```
f(p)
3
             4.3964 -0.56232i
                                -22.392
             3.8375 -0.59332i
                               -70.125
5
             4.4484 -0.099854i 8.445
6
             4.3801 -0.0058419i -0.13351
7
             4.3811 -6.0609e-05i -0.0030177
8
             4.3811 -5.4476e-09i 4.1537e-08
9
             4.3811 -2.1934e-16i -7.1054e-14
```

Problem 7 (6)

```
clear; clc;
n = 1/(5e-2)
```

n = 20