

Practice 1: Python Numerical Method

GongYi龚怡

2167570874@qq.com

1.1 Python Numerical computing program

- Features of Python:
 - Simple and efficient expression ability
 - Equipped with various modules
- This course uses software:

https://pan.baidu.com/s/1iXhXryPJG-YNYF-RedTZ1Q

Access code: 57fs

Contents

- Theory Teaching: Python Core Data Type
- Practice1: coding and runing programs 1.1-1.5
- Practice2: Practice to reduce the number of operations
- Practice3: Bisection algorithm for nonlinear equations

Python Build-in Core Data Type

Python Build-in Core Data Type

- Numbers
- Strings
- List
- Tuple
- Dictionary
- Set

Numerical Types

- int (signed int type)
- long (Long integer, It can also represent octal and hexadecimal)
- float (float type)
- complex (complex type)

Python Number(1)

- int: positive or negative whole numbers (without a fractional part) e.g. -10, 10, 456, 4654654.
- float: any real number with a floating-point
 representation in which a fractional component is
 denoted by a decimal symbol or scientific notation e.g.
 1.23, 3.4556789e2.
- complex: a number with a real and imaginary component represented as x + 2y.

Python Number Types

- 1.23, 1., 3.14e-10, 4E210, 4.0e+210 float number
- 0o177, 0x9ff, 0b101010 Two octal, hexadecimal and
- binary literals in Python 3.X
- 0177,00177, 0x9ff, 0b101010 Two octal, hexadecimal and binary literals in Python 2.X
- 3+4j, 3.0+4.0j, 3j complex number
- set('spam'), {1, 2, 3, 4} Sets: Constructions in 2. X and 3. X
- Decimal('1.0'), Fraction(1, 3)
 Decimal and fraction extension types
- bool(X), True, False
 Boolean types and literals

Python Integer

- A string written as a decimal number
- Hexadecimal, octal, binary in the code corresponds to integer objects, but different syntax
 representations of specific values
- build-in functions hex(I), oct(I) and bin(I) conver a integer to a string of hex/oct/binary
- int(str, base) convert a string to a integer base on giving base

Python Float

- Floating point object in the expression will use float number (not integer).
- Floating-point numbers are implemented in standard Cpython using the "double precision" of C language, Its precision is the same as the double precision given by the C compiler used to construct the Python interpreter.

Python Expression Operators

operators		
x if y else z	Ternary selection expression	
x or y	local or	
x and y	logic and	
not x	logic not	
x in y,x not in	member relationship	
У		
x is y,x is not	Object identity test	
У		
X < y, X <= y, X	Size comparison	
y, x >= y		
x == y, x != y	Value equivalence operator	

Python Expression Operators

operators		
x 1 y	bitwise or	
x^y	Bitwise XOR	
x&y	bitwise and	
x< <y, x="">>y</y,>	Move x left or right by y bit	

Python Expression Operators

operator	meaning	priority	Associativity
+	addition	These operators have the	
-	subtraction	same priority, but lower priority than the following operators	
*	multiplication		
/	division		Left commissure
//	Divide by integer	These operators have the same priority, but higher	
**	exponentiation	priority than the above operators	
%	Modular		

Python Operators

- X / Y execute true division (keep the fractional part of the quotient)
- X // Y execute round-down division (remove fractional part of the quotient)

Python Operators

example:

>>> 6 / 2.5

2.4

>>> 6 // 2.5

2.0

Python Operators

- Comparison operators can be used in chain, for example:
- \blacksquare X < Y < Z Equivalent to X < Y and Y < X
- In Python3.X, Comparing the relative size of non-numeric mixed types is not allowed, and an exception will be thrown.

Display Format of Numerical Value

Display of decimal places

using print() display

```
>>> print("num = ",num)

num = 0.333333333333333
```


Display Format of Numerical Value

Formatted display of decimals

```
>>> '%e' % num

'3.333333e-01'

>>> '%.2f' % num  #Display 2 decimal places

'0.33'
```


Convert to operations based on complex data types

Adding integer and floating point numbers
 Automatically convert to operations based on complex data types

43.14

Convert to operations based on complex data types

Call built-in function to cast type Python - generally not required

```
>>> int(3.1415)
3
>>> float(3)
3.0
```

- Automatic conversion is limited to numeric types.
- Adding strings and integers will produce errors unless you manually convert the type.

Very large integer (Unlimited precision long integer)

2100

```
>>> 2 ** 100
```

1267650600228229401496703205376

21000000

```
>>> 2 ** 1000000 #Wait, are you sure you want to output this value? ?
```

>>> len(str(2 ** 1000000)) #Let's take a look how many numbers there are.

301030

PI and Square Root

■ Pi (圆周率)

```
>>> import math
>>> math.pi

3.141592653589793
```

Square root

```
>>> import math
>>> math.sqrt(2) # Equivalent to 2**0.5

1.4142135623730951
```


Differences in division between Python 3 and Python 2

Python3. X

Python2. X

```
C:\Python33\python
                              C:\Python27\python
>>> 10 / 4
                              >>> 10 / 4
2.5
                              >>> 10 / 4.0
>>> 10 / 4.0
2.5
                              2.5
>>> 10 // 4 #Round-down
                              >>> 10 // 4 #Round-down
division
                              division
>>> 10 // 4.0
                              >>> 10 // 4.0
2.0
                              2.0
                                                         23
```


Differences in division between Python 3 and Python 2

- In Python 2.X, "/" like integer division in C language
- In Python3.X change to true division, i.e. floating point number

Differences in division between Python3 and Python2

- Aftermath: In Python3.X, Non-truncated behavior may affect a large number of Python 2.X programs.
- Solution: If your program depends on truncating integer division, use // operation in Python both 2.X and 3.X

Strange Calculation Result

■ What's wrong with addition? ?

```
>>> 1.1 + 2.2
3.3000000000000000
```

- Rounding error is the basic problem of numerical programming, not only in Python
- In Python, decimal numbers (fixed precision floating point numbers) and fractions are used to deal with this problem

```
>>> from decimal import *
>>> Decimal("1.1") + Decimal("2.1")

Decimal('3.2')
```


Python's Variables

- The variables is created at the first assignment
- When variables are used in an expression, they are replaced with their values
- Variables must be assigned before being used in an expression
- Variables refer to objects and never need to be declared beforehand

Contents

- Theory Teaching: Python Core Data Type
- Practice1: coding and runing programs 1.1-1.5
- Practice2: Practice to reduce the number of operations
- Practice3: Bisection algorithm for nonlinear equations

1.2 Python Example1- Significant bit loss

Numerical error analysis1 - significant bit loss

$$\sqrt{x+1} - \sqrt{x}$$

When goes wrong?

program 1.1 using module math to take a square root import math

x = float(input("input the number: ")) #input

print("sqrt(", x, ") = ", math.sqrt(x)) #output

result1 = math.sqrt(x+1) - math.sqrt(x)

print("general calculation method", result1) #output

• when x = 1e15

output: 1.862645149230957e-08

• when x = 1e16

output: 0.0

The approximate value should be 5e-09!!?

1.2 Python Example 1

 Solution: avoid subtraction of numbers with nearly identical values

$$\sqrt{x+1} - \sqrt{x} = (\sqrt{x+1} - \sqrt{x}) \frac{\sqrt{x+1} + \sqrt{x}}{\sqrt{x+1} + \sqrt{x}}$$
$$= \frac{1}{\sqrt{x+1} + \sqrt{x}}$$

result2 = 1 / (math.sqrt(x+1) + math.sqrt(x))

print("method of transformation formula", result2)
#output

• When x = 1e16, output: 5e-09

1.3 Python Example 2 - Rounding error

- Example analysis of numerical error2 rounding error
- Add 0.1 million times

```
# program 1.2
x = 0.0

for i in range (1000000):
x = x + 0.1

print("sum result = ", x) #output
```

output: 100000.0000133288

Why not 100000?

1.3 Python Example 2 - Rounding error

- Rounding error
 - If numeric values are stored in a computer with binary significant digits, the real number has rounding error inevitable

1.3 Python Example 2 - Rounding error

Rounding error

Decimal 0.1 converts to binary, it becomes infinite loop decimals.

- \bullet (0.1)10 = (0.0001100110011...)2
- It is rounded, and slightly larger than 0.1.
- In the calculation process, algorithms can generate the rounding error above should not be used.

1.3 Python Example 3 – mantissa loss

■ Example analysis 3 — mantissa loss

$$10^{10} + 10^{-8} + \dots + 10^{-8} = 10^{10} + 0.1$$

Add 10,000,000 times

```
# program 1.3

x = 1e10

y = 1e-8

for i in range (10000000):

x = x + y Why not1000000000.1?

print(x) #output 10000000000.0
```


1.3 Python Example 3 – mantissa loss

■ Example analysis 3 — mantissa loss

$$10^{10} + 10^{-8} + \dots + 10^{-8} = 10^{10} + 0.1$$

Add 10,000,000 times

1.3 Python Example3 – mantissa loss

Example analysis 3 - mantissa loss

1.4 Python Example4 – module **to r**esolve errors

- Decimal module Efficient management of binary floating-point numbers
- Add 0.1 one million times

```
# program 1.4

from decimal import * result is 100000.0

Not affected by

x = Decimal("0.0") rounding error

for i in range (1000000):

x = x + Decimal("0.1") #decimal 's 0.1

print("sum result = ", x) #output
```


1.5 Python Example5—module fractions

Fractions module—Direct fractions calculation

$$\frac{1}{3} \rightarrow \text{Fraction}(1,3)$$
 $\frac{5}{4} \rightarrow \text{Fraction}(5,4)$

```
# program 1.5
from fractions import Fraction

#out put 5/10 and 3/15
print(Fraction(5, 10), Fraction(3, 15))

# 1/3 + 1/7
print(Fraction(1, 3) + Fraction(1, 7))

# 5/3 * 6/7 * 3/2
print(Fraction(5, 3) * Fraction(6, 7) * Fraction(3, 2))
```


Contents

- Theory Teaching: Python Core Data Type
- Practice1: coding and runing programs 1.1-1.5
- Practice2: Practice to reduce the number of operations
- Practice3: Bisection algorithm for nonlinear equations

Purpose:

Compare the polynomial operation numbers and times among different algorithms.

```
from time import *
                        #import time lib
              #record starting time
startT = time()
# your code is here . . .
endT = time()
                        #record ending time
print("time = %.2g secs\n" % (endT - startT))
countMul = 0
                 #Statistical multiplication times
countAdd = 0 #Statistical addition times
print("multiplication times",countMul)
print("addition times",countAdd)
                                                      41
```

Example: Calculate function value (x=0.1, 1, 2)

$$f_n(x) = 1 + 2x + 3x^2 + \dots + 100001x^{100000}$$

Algorithm1:

direct method

```
#program 1.6
x = 1  #variable x
f = 1  #the value of f

for i in range (100000): # i start from 0
f = f + your code here  #function

print("result = ", f)  #output
```

Example: Calculate function value (x=0.1, 1, 2)

$$f_n(x) = 1 + 2x + 3x^2 + \dots + 100001x^{100000}$$

Fill in the following form in your report

X	algorithm	result of f	Multiplicat ions	Additions	Time(se cs)
0.1	algorithm1				
	algorithm2				
1	algorithm1				
	algorithm2				
2	algorithm1				
	algorithm2				

Example: Calculate function value (x=0.1, 1, 2)

$$f_n(x) = 1 + 2x + 3x^2 + \dots + 100001x^{100000}$$

■ Algorithm2 (秦九韶法):

$$f_n(x) = a_0 + a_1 x + a_2 x^2 + \dots + a_n x^n$$

$$\begin{cases} S_n = a_n \\ S_k = xS_{k+1} + a_k, & k = n-1, n-2, \dots, 1, 0 \\ f_n(x) = S_0 \end{cases}$$

range() in for-loop

```
for i in range (10):
```

#here range (10) as range(0, 10, 1), Generate a sequence from 0 to (10-1) in steps of 1, using list(range(0, 10)) can output: [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

```
for i in range (4,0,-1):
```

#Generate a sequence of numbers starting from 4 and ending at 0 - (- 1) in steps of - 1 using list(range(4,0,-1)) can output: [4, 3, 2, 1]

■ Algorithm 2 (秦九韶法):

#program 1.7

$$f_n(x) = 1 + 2x + 3x^2$$
$$+ \dots + 100001x^{100000}$$

```
from time import * #时间统计库
     # 自 变量 x
x = 1
powN = 100000 #最后一个数的幂次
aN = powN + 1 #最后一个系数值
countMul = 0 #统计乘法次数
countAdd = 0 #统计加法次数
startT = time() #记录起始时间
      #函数值
S = aN
for i in range Your codes # i从powN开始到1
                   #迭代函数
   S = Your codes
                   #此处只统计算法的加法,忽略i的计数
   countAdd += 1
   countMul += 1 #每次增加的乘法次数
endT = time() #记录结束时间
print("result = ", S) #輸出
print("乘法次数",countMul)
print("加法次数",countAdd)
                                        47
print("time = %.2g 秒\n" % (endT - startT))
```


Contents

- Theory Teaching: Python Core Data Type
- Practice1: coding and runing programs 1.1-1.5
- Practice2: Practice to reduce the number of operations
- Practice3: Bisection algorithm for nonlinear equations

3 Practice 3: Bisection algorithm for nonlinear equations

Example: bisection method applied to f(x) on [1.3, 1.5]

$$f(x) = x^2 - 2 = 0$$

• step1: draw the graph of f(x)

Drawing:

- call drawing lib: matplotlib
- call numerical computing lib: NumPy

#program 1.8

```
#使用NumPv科学计算程序包
import numpy as np
#用plt输入matplotlib的pyplot
import matplotlib.pyplot as plt
#设定x轴的范围和精度,生成一组等间距的数据
x = linspace(-5, 5, 100)
                         #获得x坐标数组
\#x = np.arange(-5, 5+step, step) #获得x坐标数组
y = x * x - 2 # x - 2 # x - 2 # x - 2
plt.figure() #创建figure对象
#设定为1个图表表示
#plt.subplot(1,1,1)
#线形图
plt.plot(x, y, label = 'line') #绘制关于x和y的折线图
plt.plot([-4,4], [0,0]) #绘制点(-4,0)到点(4,0)的直线
#绘制符合要求的方程解
plt.plot(2 ** 0.5, 0, marker = 'o', markersize = 10)
```

Bisection method

Assume $f \in C[a, b]$, with $f(a) \cdot f(b) < 0$, then it follows that there exists a root $\alpha \in (a, b)$.

Step1, let $[a_{\theta}, b_{\theta}] = [a, b], x_0 = (a_{\theta} + b_{\theta})/2$, if $f(x_0) = 0$, then $p = x_0$ is the root, stops. Otherwise, if $f(a_{\theta})f(x_0) < 0$, let $a_{1=}a_{0}$, $b_{1=}x_{\theta}$; if $f(x_{\theta})f(b_{0}) < 0$, let $a_{1=}x_{0}$, $b_{1=}b_{\theta}$, the interval becomes $[a_{1}, b_{1}]$

Step2, midpoint of $[a_1, b_1]$ is $x_1 = (a_1 + b_1)/2$, if $f(x_1) = 0$, then $p = x_1$ is the root, stops. Otherwise, if $f(a_1)f(x_1) < 0$, let $a_2 = a_1, b_2 = x_1$; if $f(x_1)f(b_1) < 0$, let $a_2 = x_1$, $b_2 = b_1$, the interval becomes $[a_2, b_2]$

Repeat above steps, the interval will be scaled down until the root satisfied the accuracy (left figure)

Program of bisection algorithm

#program 1.9

```
\# f(x) = x^*x - a
LIMIT = 1e-20 #终止条件
#方程函数f()定义
def f(x):
   """函数值的计算"""
   return x * x - a
# f()函数结束
#---- 主执行部分-----
   #初始设置
xlow = float(input("请输入x值下限:"))
xup = float(input("请输入x值上限:"))
#循环处理
iter = 0 #迭代计数
while (xup - xlow) * (xup - xlow) > LIMIT: #满足终止条件前循环
                          #计算新的中值点
                          #迭代计数加1
                          #中点函数值为正
      Fill in your code
                          #更新xup
                          #中点函数值为负
                          #更新xLow
   print("{:.15g} {:.15g}".format(iter,xlow, xup));
```

3 Practice 3: Bisection algorithm for nonlinear equations

■ Fill out the following form in your report

Iterations	Lower limit x_{low}	upper limit $x_{\rm up}$	$\frac{(x_{\rm up} - x_{\rm low})}{2}$	Sign of $f((x_{up} - x_{low})/2)$
0	1.3	1.5	1.4	< 0

Practise:

■ Perform program1.1-1.9

■ Complete document "Practice 1.docx",

submit it to CG in pdf format

Example: calculate the value of the function

$$(x=0.1, 1, 10)$$

$$f_n(x) = 1 + 2x + 3x^2 + \dots + 100001x^{100000}$$

computer configuration

Intel(R) Core(TM) i7-7920HQ CPU @ 3.10GHz 3.10 GHz 4.00 GB

64 位操作系统

Keys

x	Algorithm	Value of f	Multiplications	additions	time(secs)
0.1	Algorithm 1	1.23456790123456 8	5000050000	100000	0.062
	Algorithm 2	1.23456790123456	100000	100000	0.034
1	Algorithm 1	5000150001	5000050000	100000	0.084
	Algorithm 2	5000150001	100000	100000	0.034
2	Algorithm 1	长度30109	5000050000	100000	13
	Algorithm 2	长度30109	100000	100000	0.36

Source Code 1.6:

```
from time import * #时间统计库
x = 1 #自变量 x
countMul = 0 #统计乘法次数
countAdd = 0 #统计加法次数
startT = <u>time()</u> #记录起始时间
for i in range (100000): # i从0开始
  f = f + (i+2) * x**(i+1) #函数
  countMul += i+1 #每次增加的乘法次数
print("result = ", f)  #輸出
print("乘法次数",countMul)
print("加法次数",countAdd)
print("time = %.2g 秒\n" % (endT - startT))
```


Source code 1.7:

```
from time import * #时间统计库
    #自变量 x
x = 1
powN = 100000 #最后一个数的幂次
aN = powN + 1 #最后一个系数值
countMul = 0 #统计乘法次数
countAdd = 0 #统计加法次数
startT = time() #记录起始时间
S = aN #函数值
for i in range (powN,0,-1): # i从powN开始到1
  countAdd += 1 #此处只统计算法的加法,忽略i的计数
  countMul += 1 #每次增加的乘法次数
endT = time() #记录结束时间
print("result = ", S) #輸出
print("乘法次数",countMul)
print("加法次数",countAdd)
print("time = %.2g 秒\n" % (endT - startT))
```