ma5259_hw2

Khanh Nguyen

October 2024

1 Q1

Let $\xi_1, \xi_2, ...$ be a sequence of i.i.d coin tosses with bias $P(\xi_1 = H) = p$. (1) Find the probability that we will see HH before seeing TT. (2) Conditioned on $\xi_1\xi_2 = HT$, find the probability that we will see HT again before seeing either HH or TT

1.1 seeing HH before seeing TT

Let $X_1, X_2, ...$ be a stochastic process with state space S = (HH, HT, TH, TT) defined by $X_i = (\xi_i, \xi_{i+1})$. Then $X_1, X_2, ...$ is a Markov chain with transition matrix Π defined by

$$\begin{split} \Pi: S \times S &\to \mathbb{R} \\ (HH, HH) &\mapsto p \\ (HH, HT) &\mapsto 1-p \\ (HT, TH) &\mapsto p \\ (HT, TT) &\mapsto 1-p \\ (TH, HH) &\mapsto p \\ (TH, HT) &\mapsto 1-p \\ (TT, TH) &\mapsto p \\ (TT, TT) &\mapsto 1-p \end{split}$$

For $x \in S$, let $T_x = \min\{n \geq 0 : X_n = x\}$ be the first time seeing x. We want to find $P(T_{HH} < T_{TT})$ We have

$$P_{HH}(T_{HH} < T_{TT}) = 1$$
$$P_{TT}(T_{HH} < T_{TT}) = 0$$

For any $x \in S \setminus \{HH, TT\}$, we have

$$\begin{aligned} P_x(T_{HH} < T_{TT}) &= \sum_{y \in S} P_x(X_1 = y, T_{HH} < T_{TT}) \\ &= \sum_{y \in S} P_x(X_1 = y) P_x(T_{HH} < T_{TT} | X_1 = y) \\ &= \sum_{y \in S} \Pi(x, y) P_y(T_{HH} < T_{TT}) \end{aligned}$$

Then

$$\begin{split} P_{HT}(T_{HH} < T_{TT}) &= \Pi(HT, TH) P_{TH}(T_{HH} < T_{TT}) + \Pi(HT, TT) P_{TT}(T_{HH} < T_{TT}) \\ &= p P_{TH}(T_{HH} < T_{TT}) \\ P_{TH}(T_{HH} < T_{TT}) &= \Pi(TH, HT) P_{HT}(T_{HH} < T_{TT}) + \Pi(TH, HH) P_{HH}(T_{HH} < T_{TT}) \\ &= (1 - p) P_{HT}(T_{HH} < T_{TT}) + p \end{split}$$

Solve the system of two equations, we have

$$P_{HT}(T_{HH} < T_{TT}) = \frac{p^2}{1 - (1 - p)p}$$

$$P_{TH}(T_{HH} < T_{TT}) = \frac{p}{1 - (1 - p)p}$$

Hence

$$P(T_{HH} < T_{TT}) = \sum_{x \in S} P(X_0 = x, T_{HH} < T_{TT}) \tag{1}$$

$$= \sum_{x \in S} P(X_0 = x) P_x(T_{HH} < T_{TT}) \tag{2}$$

$$= P(X_0 = HH) + P(X_0 = HT) \frac{p^2}{1 - (1 - p)p} + P(X_0 = TH) \frac{p}{1 - (1 - p)p}$$
(3)

$$= p^{2} + p(1-p)\frac{p^{2}}{1 - (1-p)p} + p(1-p)\frac{p}{1 - (1-p)p}$$

$$\tag{4}$$

$$=\frac{2p^2 - p^3}{1 - p + p^2} \tag{5}$$

When p = 1/2, $P(T_{HH} < T_{TT}) = 1/2$

1.2 conditioned on $\xi_1 \xi_2 = HT$, seeing HT again before seeing either HH or TT

For $x \in S$, let $T_x = \min\{n > 0 : X_n = x\}$ be the first time seeing x in positive time. Let $A = \{T_{HT} < T_{HH}, T_{TT}\}$, we want to find $P_{HT}(A)$

We have

$$\begin{split} P_{HT}(A) &= \sum_{x \in S} P_{HT}(X_1 = x, A) \\ &= \sum_{x \in S} P_{HT}(X_1 = x) P_{HT}(A|X_1 = x) \\ &= \sum_{x \in S} \Pi(HT, x) P_{HT}(A|X_1 = x) \end{split}$$

As $P_{HT}(A|X_1 = TT) = 0$, then

$$P_{HT}(A) = \Pi(HT, TH)P_{HT}(A|X_1 = TH)$$
$$= pP_{TH}(A)$$

On the other hand,

$$P_{TH}(A) = \sum_{x \in S} P_{TH}(X_1 = x, A)$$

$$= \sum_{x \in S} P_{TH}(X_1 = x) P_{TH}(A|X_1 = x)$$

$$= \sum_{x \in S} \Pi(TH, x) P_{TH}(A|X_1 = x)$$

As $P_{TH}(A|X_1 = HH) = 0$ and $P_{TH}(A|X_1 = HT) = 1$, then

$$P_{TH}(A) = \Pi(TH, HT)P_{TH}(A|X_1 = HT)$$
$$= 1 - p$$

Hence,

$$P_{HT}(A) = pP_{TH}(A) = p(1-p)$$

Remark 1. This question is simple enough that we can enumerate all possible sequences length 4 of coin flips and analyze the probability $\{HTHH, HTHT, HTTT\}$

2 Q2

Consider a 3-state Markov chain with transition $\Pi(1,1)=1-\Pi(1,2)=p,\ \Pi(2,1)=1-\Pi(2,3)=q$ and $\Pi(3,3)=1.$ Let

$$G(x,y) = \mathbb{E}\left[\sum_{n=0}^{\infty} 1_{\{X_n = y\}} \middle| X_0 = x\right] = \sum_{n=0}^{\infty} \Pi^n(x,y)$$

denote the expected number of visits to state y given that the Markov chain starts at x. Find G(1,2) and G(2,1) Transition matrix

$$\Pi = \begin{bmatrix} p & 1-p & 0 \\ q & 0 & 1-q \\ 0 & 0 & 1 \end{bmatrix}$$

We have

$$G(x,y) = \Pi^{0}(x,y) + \sum_{n=1}^{\infty} \Pi^{n}(x,y) = \Pi^{0}(x,y) + \Pi(x,y) + \sum_{n=2}^{\infty} \Pi^{n}(x,y)$$

We have

$$G(x,y) - \Pi^{0}(x,y) - \Pi(x,y)$$

$$= \sum_{n=2}^{\infty} \Pi^{n}(x,y)$$

$$= \sum_{n=2}^{\infty} P(X_{n} = y | X_{0} = x)$$

$$= \sum_{n=2}^{\infty} \sum_{z \in S} P(X_{n} = y, X_{1} = z | X_{0} = x)$$
 (marginalize)
$$= \sum_{n=2}^{\infty} \sum_{z \in S} P(X_{1} = z | X_{0} = x) P(X_{n} = y | X_{1} = z, X_{0} = x)$$
 (conditional probability)
$$= \sum_{n=2}^{\infty} \sum_{z \in S} \Pi(x,z) P(X_{n} = y | X_{1} = z)$$
 (Markov)
$$= \sum_{z \in S} \Pi(x,z) \sum_{n=2}^{\infty} P(X_{n} = y | X_{1} = z)$$
 (Tonelli)
$$= \sum_{z \in S} \Pi(x,z) \sum_{m=1}^{\infty} \Pi^{m}(z,y)$$
 ($m = n - 1$)
$$= \sum_{z \in S} \Pi(x,z) (G(z,y) - \Pi^{0}(z,y))$$

If x = y, we have

$$(1 - \Pi(x, x))G(x, x) = 1 + \sum_{z \in S - \{x\}} \Pi(x, z)G(z, x)$$

If $x \neq y$, we have

$$(1 - \Pi(x, x))G(x, y) = \Pi(x, y)G(y, y) + \sum_{z \in S - \{x, y\}} \Pi(x, z)G(z, y)$$

Given that G(3,1) = G(3,2) = 0, we have the following equations

$$(1-p)G(1,1) = 1 + (1-p)G(2,1)$$
$$(1-p)G(1,2) = (1-p)G(2,2)$$
$$G(2,1) = qG(1,1)$$
$$G(2,2) = 1 + qG(1,2)$$

Solve the system of equations, we have

$$G(2,1) = \frac{q}{(1-p)(1-q)}$$
$$G(1,2) = \frac{1}{1-q}$$

3 Q3

Consider a random walk on $\{0, 1, ..., L\}$ with transition matrix $\Pi(i, i+1) = \Pi(i, i-1) = \frac{1}{2}$ for each $i \in \{1, ..., L-1\}$ and $\Pi(0, 0) = \Pi(L, L) = 1$. For each $i \in \{0, 1, ..., L\}$, find the return probability $f_{ii} = P(X_n = i \text{ for some } n \in \mathbb{N} \mid X_0 = i)$

Let $A_i^m = \{X_n = i \text{ for some } n \in \mathbb{N} : n \geq m\}$. It is clear that $f_{00} = f_{LL} = 1$, for any $i \in \{1, ..., L-1\}$, note that $\{A_i^1, X_1 = i \pm 1\} = \{A_i^2, X_1 = i \pm 1\}$, we have

$$f_{ii} = P(A_i^1|X_0 = i)$$

$$= P(A_i^1, X_1 = i - 1|X_0 = i) + P(A_i^1, X_1 = i + 1|X_0 = i)$$

$$= P(A_i^2, X_1 = i - 1|X_0 = i) + P(A_i^2, X_1 = i + 1|X_0 = i)$$

$$= P(A_i^2|X_1 = i - 1, X_0 = i)P(X_1 = i - 1|X_0 = i)$$

$$+ P(A_i^2|X_1 = i + 1, X_0 = i)P(X_1 = i + 1|X_0 = i)$$

$$= P(A_i^2|X_1 = i - 1)\Pi(i, i - 1) + P(A_i^2|X_1 = i + 1)\Pi(i, i + 1)$$

$$= P(A_i^1|X_0 = i - 1)\Pi(i, i - 1) + P(A_i^1|X_0 = i + 1)\Pi(i, i + 1)$$
(Markov property)
$$= P(A_i^1|X_0 = i - 1)\Pi(i, i - 1) + P(A_i^1|X_0 = i + 1)\Pi(i, i + 1)$$

For any $a, b, c \in \{0, 1, ..., L\}$ such that a < b < c. Starting from a, probability of visiting a before visiting c is $\frac{c-b}{c-a}$, probability of visiting c before visiting a is $\frac{b-a}{c-a}$, therefore

$$P(A_i^1|X_0 = i - 1) = \frac{i - 1}{i}$$

$$P(A_i^1|X_0 = i + 1) = \frac{L - i - 1}{L - i}$$

Hence, for $i \in \{1, ..., L\}$

$$f_{ii} = \frac{1}{2} \left(\frac{i-1}{i} + \frac{L-i-1}{L-i} \right) = 1 - \frac{L}{2i(L-i)}$$

4 Q4

Let $X=(X_n)_{n\in\mathbb{N}_0}$ be a symmetric random walk on \mathbb{Z} . For $x\in\mathbb{Z}$, let $P_x(\cdot)$ respectively $\mathbb{E}_x[\cdot]$ denote the probability and expectation for X with initial condition $X_0=x$. Let $T_y=T_y(X)=\min\{n\geq 0: X_n=y\}$ be the first time X visits the point $y\in\mathbb{Z}$. Let $L\in\mathbb{N}$ and define $T=\min\{T_0,T_L\}$ the first time hitting either 0 or L. Show that for $0\leq x\leq L$, $P_x(T<\infty)=1$ and furthermore, $\mathbb{E}_x[T]<\infty$.

When X starts at either 0 or L, T=0. Suppose $F=\mathbb{Z}\cap[1,L-1]$ is non-empty and X starts at $x\in F$. Let $T_{F^c}=\min\{n\geq 0: X_n\notin F\}$. Since the only transition from a state in F to a state in F^c is transitioning to 0 or L. Hence, $T=T_{F^c}$. Therefore, there exists constant C>0 and $\rho\in(0,1)$ such that

$$P_x(T > n) < C\rho^n$$

Then.

$$P_x(T < \infty) = 1 - P_x(T = \infty) = 1 - \lim_{n \to \infty} P_x(T \ge n) = 1$$

Moreover, we have

$$\mathbb{E}_x[T] = \sum_{n=0}^{\infty} n P_x(T=n)$$

$$= \sum_{n=1}^{\infty} P_x(T \ge n)$$

$$\leq \sum_{n=1}^{\infty} C \rho^n$$

$$= \frac{C\rho}{1-\rho} < \infty$$

5 Q5

Let X be a simple symmetric random walk on \mathbb{Z} with $X_0 = 0$. Let $a \in \mathbb{N}$

(a) By conditioning on the Markov chain's first visit to a and using the symmetry of the random walk, show that

$$P_0\left(\max_{0\le i\le n} X_i \ge a\right) = P_0(X_n = a) + 2P_0(X_n \ge a + 1) = P_0(X_n \notin [-a, a - 1])$$

(b) Deduce from the above identity that for any $a \in \mathbb{N}$

$$P_a(T_0 > n) = P_0\left(\max_{0 \le i \le n} X_i \le a - 1\right) = P_0(X_n \in [-a, a - 1])$$

- (c) Deduce from ?? that $E_a[T_0] = \infty$ for all $a \in \mathbb{N}$
- (d) Deduce from ?? for all $n \in \mathbb{N}$

$$P_0(X_1,...,X_{2n} \neq 0) = P_0(X_{2n} = 0)$$

5.1 a

Let $T_a = \min\{n \ge 0 : X_n = a\}$ be the first time X visits a. Then,

$$\left\{ \max_{0 \le i \le n} X_i \ge a \right\} = \left\{ T_a \le n \right\}$$

Moreover, we can write $\{T_a \leq n\}$ as a disjoint union of events

$$\begin{split} & \{T_a \le n\} \\ & = \{T_a \le n, X_n = a\} \coprod \{T_a \le n, X_n > a\} \coprod \{T_a \le n, X_n < a\} \\ & = \{X_n = a\} \coprod \{X_n > a\} \coprod \{T_a \le n, X_n < a\} \end{split}$$

We can write $\{T_a \leq n, X_n < a\}$ as a disjoint union of events

$$\{T_a \le n, X_n < a\} = \prod_{i=0}^{n} \{T_a = i, X_n < a\}$$

We have

$$P_0(T_a \leq n, X_n < a) = \sum_{i=0}^n P_0(T_a = i, X_n < a)$$

$$= \sum_{i=0}^n P_0(X_n < a | T_a = i) P_0(T_a = i) \qquad \text{(conditional probability)}$$

$$= \sum_{i=0}^n P_0(X_n < a | X_i = a) P_0(T_a = i) \qquad \text{(Markov property)}$$

$$= \sum_{i=0}^n P_0(X_n > a | X_i = a) P_0(T_a = i) \qquad \text{(symmetric random walk)}$$

$$= \sum_{i=0}^n P_0(X_n > a | T_a = i) P_0(T_a = i) \qquad \text{(Markov property)}$$

$$= \sum_{i=0}^n P_0(X_n > a, T_a = i) \qquad \text{(conditional probability)}$$

$$= P_0(X_n > a) \qquad \text{(conditional probability)}$$

Therefore,

$$P_0\left(\max_{0 \le i \le n} X_i \ge a\right) = P_0(T_a \le n) = P_0(X_n = a) + 2P_0(X_n > a)$$

5.2 b

In previous part, $P_0(T_a \le n)$ is the probability of visiting a within n steps starting from 0. By symmetry, let $P_a(T_0 \le n)$ be the probability of visiting 0 within n steps starting from 0, then $P_a(T_0 \le n) = P_0(T_a \le n)$. We have

$$P_a(T_0 > n) = 1 - P_a(T_0 \le n) = 1 - P_0(T_a \le n) = 1 - P_0\left(\max_{0 \le i \le n} X_i \ge a\right)$$

5.3 c

We have

$$\mathbb{E}_{a}[T_{0}] = \sum_{n=0}^{\infty} n P_{a}(T_{0} = n)$$

$$= \sum_{n=1}^{\infty} P_{a}(T_{0} \ge n)$$

$$= \sum_{n=0}^{\infty} P_{a}(T_{0} > n)$$

$$= \sum_{n=0}^{\infty} P_{0}(X_{n} \in [-a, a - 1])$$

$$= \mathbb{E}_{0} \left[\sum_{n=0}^{\infty} 1_{\{X_{n} \in [-a, a - 1]\}} \right]$$

$$\geq \mathbb{E}_{0} \left[\sum_{n=0}^{\infty} 1_{\{X_{n} = 0\}} \right]$$

Since symmetric random walk is recurrent, starting from 0, X visits 0 infinitely many times. Therefore, $\mathbb{E}_a[T_0] \ge \mathbb{E}_0\left[\sum_{n=0}^{\infty} 1_{\{X_n=0\}}\right] = \infty$

5.4 d

Starting at 0, at time 1, $X_1 = 1$ or $X_1 = -1$. By symmetry,

$$P_0(X_1, ..., X_{2n} \neq 0) = P_1(X_2, ..., X_{2n} \neq 0) = P_1(T_0 > 2n) = P_0(X_{2n} \in [-1, 0])$$

Since, 2n is even X_{2n} cannot be -1, $P_0(X_{2n} \in [-1,0]) = P_0(X_{2n} = 0)$. Hence

$$P_0(X_1, ..., X_{2n} \neq 0) = P_0(X_{2n} = 0)$$

6 Q6

A general random walk X on \mathbb{Z} is a Markov chain on \mathbb{Z} with transition probability $\Pi(x,y) = \Pi(0,y-x) = \mu(y-x)$ for all $x,y \in \mathbb{Z}$ where μ is a probability measure on \mathbb{Z} . In particular, the increment $X_1 - X_0$, $X_2 - X_1$, ... are i.i.d with distribution μ . Find a stationary measure for X. Can X be positive recurrent?

6.1 a stationary measure for X

Let $\nu: \mathbb{Z} \to [0, \infty)$ be a stationary measure on \mathbb{Z} satisfying $\sum_{x \in \mathbb{Z}} \nu(x) > 0$. By stationary, we must have $\nu = \nu \Pi$, that is, for every $y \in \mathbb{Z}$,

$$\nu(y) = \sum_{x \in \mathbb{Z}} \nu(x) \Pi(x, y)$$

We have

$$\sum_{x\in\mathbb{Z}}\nu(0)\mu(-x)=\nu(0)=\sum_{x\in\mathbb{Z}}\nu(x)\Pi(x,0)=\sum_{x\in\mathbb{Z}}\nu(x)\mu(-x)$$

Therefore,

$$\sum_{x \in \mathbb{Z}} (\nu(x) - \nu(0))\mu(-x) = 0$$

A stationary measure for x is one so that $x \mapsto \nu(x) - \nu(0)$ is orthogonal to $x \mapsto \mu(-x)$. In particular, one choice of ν is the uniform measure, that is $\nu(x) = 1$ for all $x \in \mathbb{Z}$

6.2 can X be positive recurrent?

No in general. Because suppose X is positive recurrent, then there exists a unique stationary distribution. Let $p: S \to \mathbb{R}$ be a non-zero vector that is orthogonal to $x \mapsto \mu(-x)$, then we can construct two stationary measures. Let $x \in S$ such that p(x) > 0, and take $\nu_1(0) = \nu_2(0) = 1$

$$\nu_1(x) - \nu_1(0) = p(x)$$
$$\nu_2(x) - \nu_2(0) = 2p(x)$$

then.

$$\nu_2(x) = 1 + 2(\nu_1(x) - 1)$$

which is not linear.

7 Q7

Let X be a random walk on $\{0, 1, ..., L\}$ with transition matrix Π such that $\Pi(0, 1) = \Pi(L, L - 1) = 1$, $\Pi(i, i + 1) = 1 - \Pi(i, i - 1) = p$ for all $1 \le i \le L - 1$. Find the stationary distribution of this random walk. If $X_0 = 0$, find the expected number of visits to L before returning 0 as well as the expected time of returning.

We can assume that $p \in (0,1)$ as if p = 0 or p = 1, the answers are trivial. We can also assume that $L \ge 3$ as if L = 1 or L = 2, the answers are trivial.

It is clear that X is irreducible since for any pair of states, there exists a path with positive probability connecting them. As the number of states are finite, therefore, X is recurrent. Therefore, there exists a unique stationary distribution for X

7.1 stationary distribution of X

Let $\mu: \{0,1,...,L\} \to \mathbb{R}$ be the stationary measure of X. Then, we have $\mu = \mu\Pi$, that is, for every $y \in \{0,1,...,L\}$,

$$\mu_y = \sum_{x \in \{0,1,\dots,L\}} \mu_x \Pi(x,y)$$

We have the following

$$\mu_{0} = \mu_{1}\Pi(1,0) = \mu_{1}(1-p)$$

$$\mu_{1} = \mu_{0}\Pi(0,1) + \mu_{2}\Pi(2,1) = \mu_{0} + \mu_{2}(1-p)$$

$$\mu_{L} = \mu_{L-1}\Pi(L-1,L) = \mu_{L-1}p$$

$$\mu_{L-1} = \mu(L-2)\Pi(L-2,L-1) + \mu_{L}\Pi(L,L-1) = \mu_{L-2}p + \mu_{L}$$

$$\mu_{i} = \mu_{i-1}\Pi(i-1,i) + \mu_{i+1}\Pi(i+1,i) = \mu_{i-1}p + \mu_{i+1}(1-p)$$
(if $i \in \{2,...,L-2\}$)

For convenient, let $\nu: \{0,1,...,L\} \to \mathbb{R}$ be defined by

$$\nu_i = \begin{cases} \frac{\mu_0}{p} & \text{if } y = 0\\ \mu_i & \text{if } y \in \{1, ..., L - 1\}\\ \frac{\mu_L}{1 - p} & \text{if } y = L \end{cases}$$

We have the relation, for all $i \in \{1, ..., L-1\}$,

$$\nu_i = \nu_{i-1}p + \nu_{i+1}(1-p)$$

Let r^i be a basic solution for ν_i , then

$$1 = \frac{1}{r}p + r(1 - p)$$

Solve for r we have

$$r_1 = 1 \text{ or } r_2 = \frac{p}{1-p}$$

Hence, general solution for ν_i is

$$\nu_i = ar_1^i + br_2^i = a + b \left(\frac{p}{1-p}\right)^i$$

Since, $\mu_0 = \mu_1(1-p)$ and $\mu_L = \mu_{L-1}p$, then

$$p\nu_0 = \nu_1(1-p)$$
 and $(1-p)\nu_L = \nu_{L-1}p$

We must have a=0, then $\nu_i=br_2^i$. As $\mu:\{0,1,...,L\}\to\mathbb{R}$ is a distribution, we must have

$$1 = \mu_0 + \mu_L + \sum_{i=1}^{L-1} \mu_i$$

$$= p\nu_0 + (1-p)\nu_L + \sum_{i=1}^{L-1} \nu_i$$

$$= pb + (1-p)br_2^L + \sum_{i=1}^{L-1} br_2^i$$

$$= b\left(p + (1-p)r_2^L + \sum_{i=1}^{L-1} r_2^i\right)$$

$$= b\left(p + (1-p)r_2^L + \frac{r_2 - r_2^L}{1 - r_2}\right)$$

$$= b\frac{2p(1-p)(1-r_2^L)}{1 - 2p}$$

Therefore,

$$b = \frac{1 - 2p}{2p(1 - p)(1 - r_2^L)} \text{ and } \nu_i = br_2^i$$

$$\int pb \qquad \text{if } i = 0$$

$$\mu_i = \begin{cases} pb & \text{if } i = 0\\ br_2^i & \text{if } i \in \{1, ..., L - 1\}\\ (1 - p)br_2^L & \text{if } i = L \end{cases}$$

7.2 find the expected number of visits to L before returning to 0, as well as the expected time of returning

Let $T_x = \min\{n > 0 : X_n = x\}$ be the first time X visits $x \in S$ in positive time, then the cycle trick construction states that if x is recurrent then, $\mu_x : S \to [0, \infty)$ defined by

$$\mu_x(y) = \mathbb{E}_x \left[\sum_{n=0}^{T_x - 1} 1_{\{X_n = y\}} \right] = \sum_{n=0}^{\infty} P_x(X_n = y, n < T_x)$$

is a stationary measure and if $\mathbb{E}_x[T_x] < \infty$, then $\frac{\mu_x(y)}{\mathbb{E}_x[T_x]}$ is a stationary distribution. Since X is recurrent, then stationary distribution exists and unique. That is, $\frac{\mu_x(y)}{\mathbb{E}_x[T_x]}$ coincides with the stationary distribution calculated in the previous part. Hence, we need to calculate $\mu_0(L)$ and $\mathbb{E}_0[T_0]$. We have

$$\mathbb{E}_{0}[T_{0}] = \sum_{n=1}^{\infty} n P_{0}(T_{0} = n)$$
$$= \sum_{n=1}^{\infty} P_{0}(T_{0} \ge n)$$

if n = 1, $P_0(T_0 \ge 1) = 1$ and if n = 2

$$P_0(T_0 > 2) = P_0(X_1 \neq 0) = 1$$

if $n \geq 3$, without loss of generality, let X_i distributed according to the stationary distribution

$$P_0(T_0 \ge n) = P_0(X_1 \ne 0, ..., X_{n-2} \ne 0, X_{n-1} \ne 0)$$

$$= P(X_{n-1} \ne 0 | X_{n-2} \ne 0) P_0(X_1 \ne 0, ..., X_{n-2} \ne 0)$$

$$= P(X_1 \ne 0 | X_0 \ne 0) P_0(T_0 > n - 1)$$
(Markov property)
$$= P(X_1 \ne 0 | X_0 \ne 0) P_0(T_0 > n - 1)$$
(stationary)

We will calculate the constant $P(X_1 \neq 0 | X_0 \neq 0)$

$$\begin{split} P(X_1 \neq 0 | X_0 \neq 0) &= \frac{P(X_1 \neq 0, X_0 \neq 0)}{P(X_0 \neq 0)} \\ &= \frac{P(X_1 \neq 0) - P(X_1 \neq 0, X_0 = 0)}{P(X_0 \neq 0)} \\ &= \frac{P(X_1 \neq 0) - (P(X_0 = 0) - P(X_1 = 0, X_0 = 0))}{P(X_0 \neq 0)} \\ &= \frac{P(X_1 \neq 0) - P(X_0 = 0)}{P(X_0 \neq 0)} \\ &= \frac{1 - 2pb}{1 - pb} \end{split}$$

Therefore, for $n \geq 3$,

$$P_0(T_0 \ge n) = \left(\frac{1 - 2pb}{1 - pb}\right)^{n-2}$$

Then,

$$\mathbb{E}_0[T_0] = 1 + 1 + \sum_{n=3}^{\infty} \left(\frac{1 - 2pb}{1 - pb}\right)^{n-2} = \frac{1}{pb} = \frac{2(1 - p)(1 - r_2^L)}{1 - 2p}$$

Then,

$$\mu_0(L) = \mathbb{E}_0[T_0](1-p)br_2^L = r_2^{L-1} = \left(\frac{p}{1-p}\right)^{L-1}$$

8 Q8

At each time $n \in \mathbb{N}$, we light up ξ_n many candles where $(\xi_n)_{n \in \mathbb{N}}$ are i.i.d Poisson random variables with mean 1. The lifetimes of candles are assume to be i.i.d integer-valued with a common probability mass function $f = (f_k)_{k \in \mathbb{N}}$. Assume that the mean lifetime $\lambda = \sum_{k=1}^{\infty} k f(k) < \infty$. Let X_n denote the number of candles burning at time n. Is X a Markov chain? Is it irreducible? Is it aperiodic? Find the stationary distribution if it exists.

8.1 is X a Markov chain?

Let A_t be the number of new candles at time $t \in \mathbb{N}_0$. At time n, let z be the lifetime of a candle (z = 0 means that a candle does not last until next time step), then the number of candles burning at time t is

$$X_t = \sum_{i=1}^{A_0} 1_{\{z_i^0 \ge t\}} + \dots + \sum_{i=1}^{A_n} 1_{\{z_i^n \ge t - n\}} + \dots + \sum_{i=1}^{A_t} 1_{\{z_i^t \ge 0\}}$$

$$X_{t+1} = \sum_{i=1}^{A_0} 1_{\{z_i^0 \ge t + 1\}} + \dots + \sum_{i=1}^{A_n} 1_{\{z_i^n \ge t - n + 1\}} + \dots + \sum_{i=1}^{A_t} 1_{\{z_i^t \ge 1\}} + \sum_{i=1}^{A_{t+1}} 1_{\{z_i^{t+1} \ge 0\}}$$

Then,

$$X_{t+1} = X_t - \left(\sum_{i=1}^{A_0} 1_{\{z_i^0 = t\}} + \dots + \sum_{i=1}^{A_n} 1_{\{z_i^n = t - n\}} + \dots + \sum_{i=1}^{A_t} 1_{\{z_i^t = 0\}}\right) + \sum_{i=1}^{A_{t+1}} 1_{\{z_i^{t+1} \ge 0\}}$$

That is, the number of burning candles at time t + 1 is the number of candles at time t that have positive remaining times plus a random variable. It is generally not a Markov chain unless we can infer the number of candles at time t that have positive remaining times from the total number of candles at time t.

Let's construct a counterexample. Suppose distribution of candle lifetime is

$$f(k) = \begin{cases} 0 & \text{if } k = 0\\ 1 & \text{if } k = 1 \end{cases}$$

Then,

$$P(X_2 = \cdot | X_1 = 1, X_0 = 0) = 1 + Pois(1)$$

 $P(X_2 = \cdot | X_1 = 1, X_0 = 1) = Pois(1)$

8.2 is it irreducible?

Yes, it is possible to go from a state to any other state. Let $X_n = N$, there is a positive probability such that $X_{n+1} = N + k$ for $k \in \mathbb{N}$ equals to probability of burning k plus the number of candles at time n with 0 remaining time. To go to 0, there is a finite number of steps so that all burning candles turn off, that's a positive probability transition $((e^{-1})^{\text{time}})$

8.3 is it aperiodic?

Yes, it is aperiodic since there is a positive probability of staying at the same state by burning exactly the number of candles with 0 remaining time in the next time step.

8.4 find the stationary distribution if it exists

We have

$$X_t = \sum_{i=1}^{A_0} 1_{\{z_i^0 \ge t\}} + \dots + \sum_{i=1}^{A_n} 1_{\{z_i^n \ge t - n\}} + \dots + \sum_{i=1}^{A_t} 1_{\{z_i^t \ge 0\}}$$

Since $\infty > \lambda = \sum_{k=1}^{\infty} k f(k) = \sum_{k=1}^{\infty} P(z \ge k)$. Therefore, $P(z \ge k) \to 0$ as $k \to \infty$.

9 Q9

A birth-death chain is a Markov chain with state space \mathbb{N}_0 and transition probabilities $\Pi(0,1) = p_0$, $\Pi(0,0) = r_0 = 1 - p_0$ and for each $k \in \mathbb{N}$, we have $\Pi(k,k+1) = p_k$, $\Pi(k,k-1) = q_k$, $\Pi(k,k) = r_k$ with $p_k + q_k + r_k = 1$. Find a necessary and sufficient condition for this Markov chain to be irreducible. Show that when X is irreducible, it is in fact reversible and identify the reversible measure. Find a necessary and sufficient condition for this Markov chain to be positive recurrent.

9.1 Find a necessary and sufficient condition for this Markov chain to be irreducible

Let $0 \le m < n$, since the Markov chain can only transition to the adjacent natural numbers, a valid transition from m to n must go through n-1, therefore, $\Pi(n-1,n)=p_{n-1}>0$ for all n>0. Similarly, let $0 \le n < m$, all valid transition from m to n must go through n+1, therefore, $\Pi(n+1,n)=q_{n+1}>0$ for all $n\ge 0$. Hence, there necessary condition is

$$p_k > 0$$
 for all $k \ge 0$
 $q_k > 0$ for all $k \ge 1$

Moreover, it is also the sufficient condition. If $0 \le m < n$, there exists a path with positive probability

$$\Pi(m, m+1)\Pi(m+1, m+2)...\Pi(n-1, n) = p_m p_{m+1}...p_{n-1} > 0$$

If $0 \le n < m$, there exists a path with positive probability

$$\Pi(n, n-1)\Pi(n-1, n-2)...\Pi(m+1, m) = q_n q_{n-1}...q_{m+1} > 0$$

9.2 Show that when X is irreducible, it is in fact reversible and identify the reversible measure

When X is irreducible, it satisfies the loop condition since probability of every loop is a product of terms $\Pi(k, k + 1)\Pi(k, k - 1)$. If we reverse direction, the probability stays the same.

Detailed balance condition for reversible measure $\nu: \mathbb{N}_0 \to \mathbb{R}$

$$\nu(k)\Pi(k, k+1) = \nu(k+1)\Pi(k+1, k)$$

therefore $\frac{\nu(k+1)}{\nu(k)} = \frac{\Pi(k,k+1)}{\Pi(k+1,k)} = \frac{p_k}{q_{k+1}}$. Let $\nu(0) = 1$, then

$$\nu(n) = \prod_{k=0}^{n} \frac{p_k}{q_{k+1}}$$

9.3 Find a necessary and sufficient condition for this Markov chain to be positive recurrent

In order to avoid confusion, we define the following definitions:

- 1. **irreducible**: there exists a positive probability path from any state to any state
- 2. **recurrent**: starting from any state, the probability of returning in finite time is 1
- 3. positive recurrent: for all $x \in S$, $\mathbb{E}_x[T_x] < \infty$

It easy to see that **positive recurrent** implies **recurrent**, since if there exists a probability of escaping, $\mathbb{E}_x[T_x] = \infty$. Moreover, **recurrent** does not imply **irreducible** as we can make probability of staying in state being 1, so that $\mathbb{E}_x[T_x] = 1$. The question is to find the necessary and sufficient condition so that X is all of **irreducible** and **positive recurrent**.

9.3.1 necessary part

If X is **irreducible** and **recurrent**, then it has a stationary distribution, since the reversible measure is stationary, then it can be normalized. i.e. $\sum_{n \in \mathbb{N}_0} \nu(v) < \infty$. Let $\mu : \mathbb{N}_0 \to \mathbb{R}$ be the stationary distribution

$$\mu(v) = \frac{\nu(v)}{\sum_{n \in \mathbb{N}_0} \nu(v)}$$

We have

$$\mathbb{E}_x[T_x] = \sum_{n=1}^{\infty} n P_x(T_x = n) = \sum_{n=1}^{\infty} P_x(T_x \ge n)$$

Note that $P_x(T_x \ge 2m - 1) = P_x(T_x \ge 2m)$, then

$$\mathbb{E}_x[T_x] = 2\sum_{m=1} P_x(T_x \ge 2m)$$

We will calculate $P_x(T_x \geq 2m)$,

$$P_x(T_x > 2) = 1 - P_x(T_x < 2) = P_x(T_x = 0) = r_0$$

If $m \geq 2$, suppose X is distributed according to the stationary distribution, we have

$$P_x(T_x \ge 2m) = P_x(T_x \ge 2m - 1)$$

$$= P_x(X_1 \ne 0, ..., X_{2m-2} \ne 0)$$

$$= P(X_{2m-2} \ne 0 | X_{2m-3} \ne 0) P_x(X_1 \ne 0, ..., X_{2m-3} \ne 0)$$

$$= P(X_{2m-2} \ne 0 | X_{2m-3} \ne 0) P_x(T_x \ge 2m - 2)$$

$$= P(X_{2m-2} \ne 0) P_x(T_x \ge 2m - 2)$$

$$= (1 - \mu(0)) P_x(T_x \ge 2m - 2)$$

$$= (1 - \mu(0)) P_x(T_x \ge 2m - 2)$$
({ $X_{2m-3} \ne 0$ } is a sure event)

Therefore,

$$\mathbb{E}_x[T_x] = 2\sum_{m=1} P_x(T_x \ge 2m) = 2\sum_{m=1} r_0(1 - \mu(0))^{m-1}$$

As long as $\mu(0) < 1$, the series converges. Therefore, the necessary condition is all of (1) X is **irreducible** (2) $\sum_{n \in \mathbb{N}_0} \nu(v) < \infty$ and (3) $\mu(0) < 1$.

9.3.2 sufficient part

On the other hand, if X is (1) **irreducible** and (2) $\sum_{n \in \mathbb{N}_0} \nu(v) < \infty$, the stationary distribution is defined. Moreover, if (3) $\mu(0) < 1$ is true, for all $x \in \mathbb{N}_0$, $\mathbb{E}_x[T_x] < 0$, then X is positive recurrent. Therefore, (1) (2) (3) is the sufficient condition.

10 Question 10

Consider a knight jumping randomly on a 5×5 square. At each step, it picks one of the admissible moves with equal probability. Find the stationary distribution for this Markov chain by identifying Markov chain as a random walk on a graph.

The Markov chain is finite state and irreducible, therefore, there exists a stationary distribution. Construct the graph and set all conductances to 1. So that the reversible measure of a node is the number edges on that node.

We denote the symmetry by the matrix below:

$$\begin{bmatrix} d & e & f & e & d \\ e & b & c & b & e \\ f & c & a & c & f \\ e & b & c & b & e \\ d & e & f & e & d \end{bmatrix}$$

The reversible measure $\nu: \{a, b, c, d, e, f\} \to \mathbb{R}$ is as follows

$$\nu(a) = 8$$

$$\nu(b) = 4$$

$$\nu(c) = 6$$

$$\nu(d) = 2$$

$$\nu(e) = 3$$

$$\nu(f) = 4$$

The stationary distribution $\mu: \{a, b, c, d, e, f\} \to \mathbb{R}$ is as follows with $s = \nu(a) + 4\nu(b) + 4\nu(c) + 4\nu(d) + 8\nu(e) + 4\nu(f) = 96$

$$\mu(a) = \frac{\nu(a)}{s} = \frac{1}{12}$$

$$\mu(b) = \frac{\nu(b)}{s} = \frac{1}{24}$$

$$\mu(c) = \frac{\nu(c)}{s} = \frac{1}{16}$$

$$\mu(d) = \frac{\nu(d)}{s} = \frac{1}{48}$$

$$\mu(e) = \frac{\nu(e)}{s} = \frac{1}{32}$$

$$\mu(f) = \frac{\nu(f)}{s} = \frac{1}{24}$$

11 Question 11

Suppose that the knight starts at the center

- 1. Find the probability that the knight will reach one of the corners before returning to the center
- 2. Find the expected time it takes for the knight to reach one of the corners

11.1 the knight will reach one of the corners before returning to the center

Let D be the set of corners, a the center, and $A = \{a\}$. Let $T_A = \min\{n \geq 0 : X_n \in A\}$ be the first time X visits A, $T_D = \min\{n \geq 0 : X_n \in D\}$ be the first time X visits D. Since starting from a, it must go to one of the 8 squares labelled by e, then the probability of hitting D before A is

$$\phi(e) = P_e(T_D < T_A)$$

We have, for any $x \notin A \cup D$,

$$\begin{split} \phi(x) &= P_x(T_D < T_A) = \sum_{y \in S} P_x(X_1 = y, T_D < T_A) \\ &= \sum_{y \in S} P_x(T_D < T_A | X_1 = y) P(X_1 = y | X_0 = x) \\ &= \sum_{y \in S} \phi(y) \Pi(x, y) \end{split}$$

We have the following system of equations

$$\begin{split} \phi(a) &= 0 \\ \phi(b) &= 2\phi(e)\Pi(b,e) + 2\phi(c)\Pi(b,c) = \frac{1}{2}\phi(e) + \frac{1}{2}\phi(c) \\ \phi(c) &= 2\phi(d)\Pi(c,d) + 2\phi(f)\Pi(c,f) + 2\phi(b)\Pi(c,b) = \frac{1}{3}\phi(d) + \frac{1}{3}\phi(f) + \frac{1}{3}\phi(b) \\ \phi(d) &= 1 \\ \phi(e) &= \phi(b)\Pi(e,b) + \phi(a)\Pi(e,a) + \phi(f)\Pi(e,f) = \frac{1}{3}\phi(b) + \frac{1}{3}\phi(a) + \frac{1}{3}\phi(f) \\ \phi(f) &= 2\phi(e)\Pi(f,e) + 2\phi(c)\Pi(f,c) = \frac{1}{2}\phi(e) + \frac{1}{2}\phi(c) \end{split}$$

Solving the system of equations, we have $\phi(e) = \frac{1}{3}$

11.2 the expected time it takes for the knight to reach one of the corners

Let D be the set of corners, $T_D = \min\{n \geq 0 : X_n \in D\}$ be the first time X visits D. We want to find

$$\mathbb{E}_a[T_D]$$

We have, for any $x \notin D$,

$$\begin{split} \psi(x) &= \mathbb{E}_x[T_D] \\ &= \sum_{y \in S} \mathbb{E}_x[T_D 1_{\{X_1 = y\}}] \\ &= 1 + \sum_{y \in S} \mathbb{E}_x[(T_D - 1) 1_{\{X_1 = y\}}] \\ &= 1 + \sum_{y \in S} P(X_1 = y | X_0 = x) \mathbb{E}_x[\mathbb{E}_x[T_D - 1 | X_1 = y]] \\ &= 1 + \sum_{y \in S} P(X_1 = y | X_0 = x) \mathbb{E}_y[T_D] \\ &= 1 + \sum_{y \in S} \Pi(x, y) \psi(y) \end{split}$$

We have the following system of equations

$$\begin{split} &\psi(a) = 1 + 8\psi(e)\Pi(a,e) = 1 + \psi(e) \\ &\psi(b) = 1 + 2\psi(e)\Pi(b,e) + 2\psi(c)\Pi(b,c) = 1 + \frac{1}{2}\psi(e) + \frac{1}{2}\psi(c) \\ &\psi(c) = 1 + 2\psi(d)\Pi(c,d) + 2\psi(f)\Pi(c,f) + 2\psi(b)\Pi(c,b) = 1 + \frac{1}{3}\psi(d) + \frac{1}{3}\psi(f) + \frac{1}{3}\psi(b) \\ &\psi(d) = 0 \\ &\psi(e) = 1 + \psi(b)\Pi(e,b) + \psi(a)\Pi(e,a) + \psi(f)\Pi(e,f) = 1 + \frac{1}{3}\psi(b) + \frac{1}{3}\psi(a) + \frac{1}{3}\psi(f) \\ &\psi(f) = 1 + 2\psi(e)\Pi(f,e) + 2\psi(c)\Pi(f,c) = 1 + \frac{1}{2}\psi(e) + \frac{1}{2}\psi(c) \end{split}$$

Solving the system of equations, we have $\psi(a) = 18$