WHAT STRUCTURE DOES $W_{1+\infty}$ -Mod AND Y_{\hbar} -Mod HAVE?

ALEXEI LATYNTSEV

The answer is that Y_{\hbar} -Mod is a factorisation \mathbf{E}_2 -category over $\mathrm{Ran}^{ch}\mathbf{C}$. By Dunn additivity, this is equivalent to there being two factorisation monoidal structures \otimes_1 and \otimes_2 along with an equivalence

$$(\otimes_1)\otimes_2(\otimes_1)\stackrel{\sim}{\to} (\otimes_2)\otimes_1(\otimes_2)$$

where we have suppressed the implicit σ_{23} . This is an equivalence of functors of sheaves of categories over

$$((Ran\mathbf{C} \times Ran\mathbf{C})_{\circ} \times (Ran\mathbf{C} \times Ran\mathbf{C})_{\circ})_{\circ} \simeq (Ran\mathbf{C})_{\circ}^{4}.$$

Restricting to $(\varnothing \times Ran\mathbf{C} \times Ran\mathbf{C} \times \varnothing)_{\circ}$ gives

$$\bigotimes_2 \stackrel{\sim}{\to} \bigotimes_1$$

with σ suppressed again.

1.1. In other words, for every $M_2, M_3 \in \mathcal{A}$ -Mod, where \mathcal{A} -Mod is the putative factorisation \mathbf{E}_2 -category and \mathcal{A} an \otimes -algebra, we have

$$M_2 \otimes_1 M_3 \xrightarrow{\sim} M_3 \otimes_2 M_2$$

as sections of $(\cup j)^*(A\text{-Mod})$.

1.1.1. One way of getting such an isomorphism is to multiply by an element

$$R_{12} \ = \ \sigma R_{21}^{-1} \sigma \ \in \ \Gamma \big((\mathrm{Ran} \mathbf{C})_{\circ}^2, \mathcal{A} \boxtimes \mathcal{A} \big)$$

which we should require to be invertible to give a natural *isomorphism* above. We expect to be able to use a Barr-Beck-Lurie argument to show that this gives all possible \mathbf{E}_2 structures.

1.1.2. Likewise, we have

$$R_{21}: \otimes_1 \stackrel{\sim}{\to} \otimes_2$$

and moreover,

$$M_{2} \otimes_{1} M_{3} \xrightarrow{R_{21}} M_{3} \otimes_{2} M_{2}$$

$$\downarrow R_{1} \qquad \downarrow R_{2}$$

$$M_{3} \otimes_{1} M_{2} \xrightarrow{R_{12}} M_{2} \otimes_{2} M_{3}$$

a commuting diagram in $\Gamma({\rm RanC},(\cup j)^*(\mathcal{A}\operatorname{-Mod}))$, where $R_{12}=R_{21}^{-1}.$

1.1.3. Note that a factorisation monoidal structure \otimes_i is equivalent to giving a factorisation coproduct

$$\Delta_i : (\cup j)^* \mathcal{A} \to j^* (\mathcal{A} \boxtimes \mathcal{A})$$

compatible with the algebra structure. The above then says that

$$R_{21} \cdot \Delta_2(a) = \Delta_1(a) \cdot R_{21}$$

and likewise, $R_2\cdot\Delta_2(a)=\Delta_2^{op}(a)\cdot R_2$ and $R_1\cdot\Delta_1(a)=\Delta_1^{op}(a)\cdot R_1$, and

$$R_{12} \cdot \Delta_1^{op}(a) = \Delta_2^{op}(a) \cdot R_{12}$$

1.2. Recall that an E_2 -object is equivalent to a factorisation algebra over \mathbf{R}^2 . In particular, if we give an E_2 -structure to \mathcal{A} -Mod, we get a set of coproducts on \mathcal{A} parametrised by a line ℓ :

$$\Delta_{\ell}(z) : (\cup j)^* \mathcal{A} \to j^* (\mathcal{A} \boxtimes \mathcal{A})$$

We have an identification given by $R_{\ell,\ell'}(z)$ of any pair of coproducts, given by including them into a bigger circle:

$$R_{\ell,\ell'}(z) \cdot \Delta_{\ell}(z) = \Delta_{\ell'}(z) \cdot R_{\ell,\ell'}(z)$$

In the notation of [GTW] this is $R_{\ell,\ell'}(z) = A(z+\theta\hbar)$, where $\theta = \theta(\ell,\ell')$, and only countably many are nontrivial, with

$$R_1 = \prod_{n \ge 0} A(z + \theta_n \hbar)$$

where $\theta_n = \theta(\ell_n, \ell_{n+1})$. The obvious question is:

Question. Can these A(z) be expressed as Stokes factors?

 $^{^{1}}$ (The op might be the wrong way round here.)

References

[GTW] Gautam, S., Laredo, V.T. and Wendlandt, C., 2021. *The meromorphic R-matrix of the Yangian*. In Representation Theory, Mathematical Physics, and Integrable Systems: In Honor of Nicolai Reshetikhin (pp. 201-269). Cham: Springer International Publishing.