Amendments to the Claims:

This listing of claims will replace all prior versions, and listings of claims in the application:

Listing of Claims:

(currently amended) A system for identifying a scrambling code from 1 1. 2 signals received from a base station, comprising: a scrambling code generator configured to generate a plurality of scrambling code 3 segments in a sequential manner, the plurality of scrambling code segments making up a master 4 5 scrambling code; and 6 a plurality of correlators arranged in a sequential manner, each correlator maintaining a corresponding scrambling code segment and configured to correlate a set of 7 8 received signals with its corresponding scrambling code segment and generate corresponding 9 correlation results, the plurality of correlators collectively performing their correlations in a 10 parallel manner in one or more iterations; 11 wherein after each performed iteration, all but one of the plurality of correlators 12 shift their corresponding scrambling code segments to their respective neighboring correlators and a new scrambling code segment is generated by the scrambling code generator and fed to 13 14 one of the plurality of correlators, 15 wherein a mobile terminal incorporates the system. (previously presented) The system according to claim 1 wherein the 1 2. number of iterations performed by the plurality of correlators depends on a selected correlation 2 3 length and a predetermined chip offset; and wherein the length of each correlator depends on the predetermined chip offset. 4 3. (previously presented) The system according to claim 1 wherein after 1 each performed iteration, a new set of received signals is received by each correlator. 2

1	4. (previously presented) The system according to claim 1 wherein the
2	correlation results generated by the plurality of correlators are evaluated to identify the
3	scrambling code from the received signals thereby allowing the identity of the base station which
4	transmitted the received signals to be identified.
1	5. (previously presented) The system according to claim 1 wherein the
2	plurality of correlators perform their correlations in a real-time manner.
1	6. (canceled)
1	7. (previously presented) The system according to claim 1 wherein the base
2	station is located in a W-CDMA communication network.
1	8. (currently amended) A system for identifying a scrambling code from
2	signals received from a base station, the base station belonging to one of a plurality of base
3	station groups in a communication network, the system comprising:
4	a scrambling code generator configured to generate a plurality of scrambling code
5	segments in a sequential manner, the plurality of scrambling code segments making up a master
6	scrambling code; and
7	a plurality of correlators arranged in a sequential manner, each correlator
8	maintaining a corresponding scrambling code segment and configured to correlate a set of
9	received signals with its corresponding scrambling code segment and generate corresponding
10	correlation results, the plurality of correlators collectively performing their correlations in a
11	parallel manner in one or more iterations;
12	wherein after each performed iteration, all but one of the plurality of correlators
13	shift their corresponding scrambling code segments to their respective neighboring correlators
14	and a new scrambling code segment is generated by the scrambling code generator and fed to
15	one of the plurality of correlators,
16	wherein a mobile terminal incorporates the system.

1	(previously presented) The system according to claim 8 wherein the
2	number of iterations performed by the plurality of correlators depends on a selected correlation
3	length and a predetermined chip offset; and
4	wherein the length of each correlator depends on the predetermined chip offset.
1	10. (previously presented) The system according to claim 8 wherein after
2	each performed iteration, a new set of received signals is received by each correlator.
1	11. (previously presented) The system according to claim 8 wherein the
2	correlation results generated by the plurality of correlators are evaluated to identify the
3	scrambling code from the received signals thereby allowing the identity of the base station which
4	transmitted the received signals to be identified.
1	12. (previously presented) The system according to claim 8 wherein the
2	master scrambling code has a period determined by a selected correlation length and a
3	predetermined group chip offset.
1	13. (previously presented) The system according to claim 12 wherein the
2	predetermined group chip offset is determined by the number of base stations within a base
3	station group and a predetermined chip offset.
1	14. (previously presented) The system according to claim 8 wherein the
2	number of the plurality of correlators depends on the number of base stations within a base
3	station group.
1	15. (previously presented) The system according to claim 8 wherein the
2	plurality of correlators perform their correlations in a real-time manner.
1	16. (canceled)
1	17. (previously presented) The system according to claim 8 wherein the
2	communication network is a W-CDMA communication network.

1	18. (previously presented) A system for identifying a scrambling code from
2	signals received from a base station, the base station belonging to one of a plurality of base
3	station groups in a communication network, the system comprising:
4	a scrambling code generator configured to generate a plurality of scrambling code
5	segments in a sequential manner, the plurality of scrambling code segments making up a master
6	scrambling code; and
7	a plurality of correlators coupled in a sequential manner and having a first
8	correlator, a last correlator and a plurality of intermediate correlators coupled between the first
9	correlator and the last correlator, the plurality of correlators configured to perform correlations in
10	a parallel manner in one or more iterations;
11	wherein:
12	the plurality of correlators are each populated with corresponding scrambling
13	code segments generated by the scrambling code generator;
14	each of the plurality of correlators receives a set of received data samples;
15	the plurality of correlators correlate the set of received data samples with their
16	corresponding scrambling code segments in parallel in one iteration;
17	after the one iteration is completed, the plurality of intermediate correlators and
18	the last correlator shift their corresponding scrambling code segments to their respective
19	neighboring correlator, the corresponding scrambling code segment of the first correlator is
20	discarded, and a new scrambling code segment is generated by the scrambling code generator
21	and fed to the last correlator.
1	19. (previously presented) The system according to claim 18 wherein after
2	the one iteration is completed, a new set of received data samples is received by the plurality of
3	correlators.
3	Concrators.
1	20. (previously presented) The system according to claim 18 wherein the
2	master scrambling code has a period determined by a selected correlation length and a
3	predetermined group chip offset.

segment in a sequential manner;

8

1		21.	(previously presented)	The system according to claim 20 wherein the
2	predetermined	group	chip offset is determined	d by the number of base stations within a base
3	station group a	and a pr	edetermined chip offset	
		00		T1
1		22.	,	The system according to claim 18 wherein the
2		pluralit	y of correlators depends	s on the number of base stations within a base
3	station group.			
1		23.	(previously presented)	The system according to claim 18 wherein the
2	plurality of co	rrelator	s perform their correlation	ons in a real-time manner.
1		24.	(previously presented)	The system according to claim 18 wherein the new
2	scrambling co	de segm	ent follows the correspondent	onding scrambling code segment which was in the
3	last correlator	before t	that corresponding scrar	nbling code segment was shifted.
				A 111 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1		25.	(previously presented)	A mobile terminal incorporating the system as
2	recited in clair	n 18.		
1		26.	(previously presented)	The system according to claim 18 wherein the
2	communicatio	n netwo	ork is a W-CDMA comm	nunication network and the system is used in
3	connection wi	th acqui	sition of a downlink of	a 3GPP W-CDMA cell during stage 3 of a cell
4	search procedu	ıre.		
1		27.	(previously presented)	A method for identifying a scrambling code from
2	signals receive	ed from	a base station, comprisi	
3	C		ng a correlation length;	
4			•	g code using the selected correlation length, the
5	master scramb	·		y of scrambling code segments arranged in a
6	sequential man			
7	ooquomaa ma	•	ting each of a plurality o	of correlators with a corresponding scrambling code
,		popula	ung cach of a plurality	or corretators with a corresponding seramoning code

9	providing a set of received data samples to each of the plurality of correlators;
10	causing each of the plurality of correlators to correlate the set of received data
11	samples with its corresponding scrambling code segment and store corresponding correlation
12	results;
13	shifting the corresponding scrambling code segments of all but one of the
14	plurality of correlators to their respective neighboring correlators;
15	populating one of the plurality of correlators with a new scrambling code
16	segment, the new scrambling code segment sequentially following the corresponding scrambling
17	code segments which have previously been used to populate the plurality of correlators; and
18	repeating the providing step, the causing step, the shifting step and the populating
19	step with the new scrambling code segment with successive sets of received data samples until
20	the selected correlation length is achieved.
1	29 (manipusky maganted) The method of claim 27 forther comprising:
1	28. (previously presented) The method of claim 27 further comprising:
2	evaluating the stored correlation results generated by the plurality of correlators to
3	identify the scrambling code from the signals received from the base station thereby allowing the
4	identity of the base station to be identified.
1	29. (previously presented) The method of claim 27 wherein the causing step
2	further comprises:
3	causing each of the plurality of correlators to correlate in a concurrent and real-
4	time manner.
1	30. (previously presented) A mobile terminal utilizing the method as recited
2	in claim 27.
1	31. (previously presented) The method according to claim 27 wherein the
1	
2	base station is located in a W-CDMA communication network and the method is used in
3	connection with acquisition of a downlink of a 3GPP W-CDMA cell during stage 3 of a cell
4	search procedure.

1	32. (previously presented) A method for identifying a scrambling code from
2	signals received from a base station, the base station belonging to one of a plurality of base
3	station groups in a communication network, the method comprising:
4	identifying a master scrambling code, the master scrambling code comprising a
5	plurality of scrambling code segments arranged in a sequential manner;
6	performing a series of successive correlation iterations using a number of
7	scrambling code segments taken from the plurality of scrambling code segments and
8	corresponding sets of received data samples; and
9	for each correlation iteration:
10	providing a new set of received data samples;
11	correlating the new set of received data samples with the number of
12	scrambling code segments and storing correlation results; and
13	refreshing the number of scrambling code segments in a first-in-first-out
14	basis by discarding one scrambling code segment and adding another scrambling code segment
1	33. (previously presented) The method of claim 32 further comprising:
1	
2	evaluating the collectively stored correlation results to identify the scrambling
3	code from the signals received from the base station thereby allowing the identity of the base
4	station to be identified.
1	34. (previously presented) The method of claim 32 wherein for each
2	correlation iteration, the correlating step further comprises:
3	correlating the new set of received data samples with each of the number of
4	scrambling code segments in a concurrent manner.
1	25 (marrianaly measured). The method of claim 22 further comprisings
1	35. (previously presented) The method of claim 32 further comprising:
2	selecting a correlation length; and
3	wherein the period of the master scrambling code depends on the correlation
4	length and a predetermined group chip offset.

1	36. (previously presented) The method of claim 35 wherein the
2	predetermined group chip offset depends on the number of base stations within a base station
3	group and a predetermined chip offset between two adjacent base stations within the base station
4	group.
	27 (
1	37. (previously presented) The method of claim 35 wherein the number of
2	successive correlation iterations depends on the selected correlation length and the number of
3	scrambling code segments being correlated during each correlation iteration.
1	38. (previously presented) A mobile terminal utilizing the method as recited
2	in claim 32.
1	39. (previously presented) The method according to claim 32 wherein the
2	communication network is a W-CDMA communication network and the method is used in
	connection with acquisition of a downlink of a 3GPP W-CDMA cell during stage 3 of a cell
3	
4	search procedure.
1	40. (previously presented) A method for identifying a scrambling code from
2	signals received from a base station, the base station belonging to one of a plurality of base
3	station groups in a communication network, the method comprising:
4	identifying a master scrambling code, the master scrambling code comprising a
5	plurality of scrambling code segments arranged in a sequential manner;
6	configuring a scrambling code generator to generate the plurality of scrambling
7	code segments one scrambling code segment at a time;
8	configuring a plurality of correlators in a sequential manner to perform
9	correlations, the plurality of correlators having a first correlator, a last correlator and a plurality
10	of intermediate correlators coupled between the first correlator and the last correlator;
11	populating each of the plurality of correlators with a corresponding scrambling
12	code segment generated from the scrambling code generator;

13	causing the plurality of correlators to perform a series of successive correlation		
14	iterations using their corresponding scrambling code segments and corresponding sets of		
15	received data samples; and		
16	for each correlation iteration:		
17	providing a new set of received data samples;		
18	causing the plurality of correlators to respectively correlate the new set of		
19	received data samples with their corresponding scrambling code segments and store respective		
20	correlation results;		
21	shifting the corresponding scrambling code segments of the plurality of		
22	intermediate correlators and the last correlator to their respective neighboring correlators;		
23	transferring a new scrambling code segment generated by the scrambling		
24	code generator to the last correlator, the new scrambling code segment is in sequence with the		
25	corresponding scrambling code segment which was previously present in the last correlator.		
1	41. (previously presented) The method of claim 40 further comprising:		
2	for each correlation iteration, discarding the corresponding scrambling code		
3	segment of the first correlator.		
1	42. (previously presented) The method of claim 40 wherein the causing step		
2	further comprises:		
3	causing the plurality of correlators to correlate in a concurrent manner.		
1	43. (previously presented) The method of claim 40 further comprising:		
2	selecting a correlation length; and		
3	wherein the period of the master scrambling code depends on the correlation		
4	length and a predetermined group chip offset.		
1	44. (previously presented) The method of claim 43 wherein the		
2	predetermined group chip offset depends on the number of base stations within a base station		

PATENT

- group and a predetermined chip offset between two adjacent base stations within the base station
 group.
- 1 45. (previously presented) The method of claim 43 wherein the number of 2 successive correlation iterations depends on the selected correlation length and the length of each 3 scrambling code segment.
- 1 46. (previously presented) A mobile terminal utilizing the method as recited 2 in claim 40.
- 1 47. (previously presented) The method according to claim 40 wherein the 2 communication network is a W-CDMA communication network and the method is used in 3 connection with acquisition of a downlink of a 3GPP W-CDMA cell during stage 3 of a cell 4 search procedure.