Exercise 1

Checking equivalence relation axioms for any paths $f, g, h : [a, b] \to Y$ from x to y in Y: Reflexivity:

For f, we define $H:[a,b]\times I\to Y$ as H(s,t)=f(s). H is continous since it is equal to the composition of the continous maps $\mathrm{id}_{[a,b]}:[a,b]\times I\to [a,b]$ and $f:[a,b]\to Y$. We have that H is a path homotopy from f to f since $H(s,0)=f(s)=H(s,1),\ H(a,t)=f(a)=x, H(b,t)=f(b)=y$ and thus $f\sim f$ Symmetry:

If $f \sim g$ then there exists $H:[a,b] \times I \to Y$ where H(s,0)=f(s) and H(s,1)=g(s), H(a,t)=x, H(b,t)=y. We can define $H':[a,b] \times I \to Y$ where $H'=H \circ (\mathrm{id}_{[a,b]},1-\mathrm{id}_I)$. H' is continous since $(\mathrm{id}_{[a,b]},1-\mathrm{id}_I)$ is component-wise continous and so continous and thus H' is the composition of continous functions. We have that H' is a path homotopy from g to f since H'(s,0)=H(s,1-0)=g(s), H'(s,1)=H(s,1-1)=f(s) and H'(a,t)=H(a,1-t)=x, G'(b,t)=H(b,1-t)=y. Thus $g \sim f$ Transitivity:

If there exists a path homotopy H from f to g and path homotopy G from g to h ($f \sim g, g \sim h$) we can define the homotopy $F:[a,b] \times I \to Y$ using the pasting lemma as follows. Consider $H':[a,b] \times [0,1/2] \to Y$ as $H'=H\circ (\mathrm{id}_{[a,b]},\frac{1}{2}\mathrm{id}_I)$ and $G':[a,b] \times [1/2,1] \to Y$ as $G'=G\circ (\mathrm{id}_{[a,b]},\frac{1}{2}+\frac{1}{2}\mathrm{id}_I)$. Both these mappings are continous since they are the composition of continous mappings, and their domains intersect on $S=[a,b] \times \{1/2\}$. We have that H'(S)=G'(S) since H'(s,1/2)=H(s,1)=g(s)=G(s,0)=G'(s,1/2). Thus we define $F:[a,b] \times I \to Y$ using the pasting lemma. F is a path homotopy from f to h since F(s,0)=H'(s,0)=H(s,0)=f(s) and F(s,1)=G'(s,1)=G(s,1)=h(s). Also F(a,t)=H(a,1/2t)=x or =G(a,1/2+1/2t)=x and F(b,t)=F(b,t)=H(b,1/2t)=y or =G(b,1/2+1/2t)=y. Thus $f\sim h$

Exercise 2

If there exists $\theta: S^1 \to \mathbb{R}$ such that $p \circ \theta = \mathrm{id}_{S^1}$, from Exercise §24, 2 we know there exists $t \in S^1$ such that $\theta(t) = \theta(-t)$. Then we have $p(\theta(t)) = p(\theta(-t))$ which is a contradiction since that implies t = -t.

Exercise 3

We have the map $f:[0,2\pi]\to S^1$ with $f(\theta)=(\cos(\theta),\sin(\theta))$. We know that f is continous, and $[0,2\pi]$ is simply connected, however S^1 is not simply connected. Conversly we have the constant map $g:S^1\to\{0\}$ where g(s)=0. g is continous and $\{0\}$ is simply connected, while S^1 is not.

Exercise 4

We can assume S_1 is the circle with center $\{(0,0)\}$ not in the set since shifting and scaling \mathbb{R}^2 are homeomorphisms, thus A is homeomorphic to such a set. We have the inclusion

mapping $i:S^1\to A$ which is the the continous identity mapping of $S^1\subset A$. There exists the retraction $\rho:A\to S^1$ with $\rho(x)=\frac{x}{|x|}$. ρ satisfies $\rho\circ i=$ id since every $x\in S^1$ has norm 1 so $\frac{x}{|x|}=x$. We have that any loop $f:[a,b]\to S^1$ based at $x\in S^1$ that is not null homotopic invokes a loop based at i(x) that is not null homotopic in A and thus A is multiply connected since S^1 multiply connected implies there exists non null homotopic loops in A. We get this loop in A as $f'=i\circ f$. We have that f' cannot be null homotopic since if there existed a homotopy $H':[a,b]\times I\to A$ from f' to the constant loop, then we would have the homotopy $H:[a,b]\times I\to S^1$ from f to the constant loop defined as $H(s,t)=\rho(H'(s,t))$ which would be a contradiction. Checking H is the described homotopy:

$$H(a,t) = \rho(H'(a,t)) = x = H(b,t) = \rho(H'(b,t)) = H(b,t)$$

 $H(s,0) = \rho(H'(s,0)) = \rho(i(f(s))) = f(s)$
 $H(s,1) = \rho(H'(s,1)) = \rho(i(x)) = x$
And thus we are done

Exercise 7

We already know the direct product of connected spaces is connected, thus $X_1 \times \cdots \times X_n$ is connected.

For any loop $f: I \to X_1 \times \cdots \times X_n$ based at $x = (x_1, \dots x_n)$, we will show f is null homotopic and thus $X_1 \times \cdots \times X_n$ is simply connected. If we consider the compotents of $f: f_1, f_2, \dots f_n$, these are loops in $X_1, X_2, \dots X_n$ based at $x_1, x_2, \dots x_n$ respectively. Thus since $X_1, X_2, \dots X_n$ are simply connected there exists path homotopies $H_1, H_2, \dots H_n: [a, b] \times I \to X_1, X_2, \dots X_n$ from $f_1, f_2 \dots f_n$ to the constant loops. We have that $H = (H_1, H_2, \dots H_n):$ is a path homotopy from f to the constant loop and thus f is null homotopic. Checking H is a path homotopy:

$$H(a,t) = (H_1(a,t), H_2(a,t), \dots H_n(a,t)) = x = (H_1(b,t), H_2(b,t), \dots H_n(b,t)) = H(b,t),$$

 $H(s,0) = (H_1(s,0), H_2(s,0), \dots H_n(s,0)) = (f_1(s), f_2(s), \dots f_n(s)) = f(s)$
 $H(s,1) = (H_1(s,1), H_2(s,1), \dots H_n(s,1)) = (x_1, x_2, \dots x_n) = x$

Exercise 8

We can define the continous map $f: S^{n-1} \times \mathbb{R}^+ \to R^n \setminus \{0\}$ with f(x,r) = rx. Notice this mapping is the same as the polar coordinate representation of R^n . f has the continous inverse $f^{-1}(x) = (\frac{x}{|x|}, |x|)$ and thus is a homeomorphism. Thus since S^{n-1} and \mathbb{R}^+ are simply connected for $n \geq 3$ we know that \mathbb{R}^n is simply connected.

Exercise 9

If we have some homeomorphism $f: \mathbb{R}^2 \to \mathbb{R}^n$ for $n \geq 3$, we can consider the restriction $f': \mathbb{R}^2 \setminus \{0\} \to \mathbb{R}^n \setminus \{f(0)\}$. This restriction must be a homeomorphism, however this is not possible since $\mathbb{R}^2 \setminus \{0\}$ is not simply connected yet $\mathbb{R}^n \setminus \{f(0)\} \cong \mathbb{R}^n \setminus \{0\}$ is simply connected as proven in Exercise 8.