

DS023 (v1.6) June 27, 2002

XCR3032XL 32 Macrocell CPLD

Preliminary Product Specification

Features

- Lowest power 32 macrocell CPLD
- 5.0 ns pin-to-pin logic delays
- System frequencies up to 200 MHz
- 32 macrocells with 750 usable gates
- Available in small footprint packages
 - 48-ball CS BGA (36 user I/O pins)
 - 44-pin VQFP (36 user I/O)
 - 44-pin PLCC (36 user I/O)
- Optimized for 3.3V systems
 - Ultra-low power operation
 - 5V tolerant I/O pins with 3.3V core supply
 - Advanced 0.35 micron five layer metal EEPROM process
 - Fast Zero Power[™] (FZP) CMOS design technology
- Advanced system features
 - In-system programming
 - Input registers
 - Predictable timing model
 - Up to 23 available clocks per function block
 - Excellent pin retention during design changes
 - Full IEEE Standard 1149.1 boundary-scan (JTAG)
 - Four global clocks
 - Eight product term control terms per function block
- Fast ISP programming times
- Port Enable pin for dual function of JTAG ISP pins
- 2.7V to 3.6V supply voltage at industrial temperature range
- Programmable slew rate control per macrocell
- Security bit prevents unauthorized access
- Refer to XPLA3 family data sheet (<u>DS012</u>) for architecture description

Description

The XCR3032XL is a 3.3V, 32-macrocell CPLD targeted at power sensitive designs that require leading edge programmable logic solutions. A total of two function blocks provide 750 usable gates. Pin-to-pin propagation delays are 5.0 ns with a maximum system frequency of 200 MHz.

TotalCMOS Design Technique for Fast Zero Power

Xilinx offers a TotalCMOS CPLD, both in process technology and design technique. Xilinx employs a cascade of CMOS gates to implement its sum of products instead of the traditional sense amp approach. This CMOS gate implementation allows Xilinx to offer CPLDs that are both high performance and low power, breaking the paradigm that to have low power, you must have low performance. Refer to Figure 1 and Table 1 showing the I_{CC} vs. Frequency of our XCR3032XL TotalCMOS CPLD (data taken with two resetable up/down, 16-bit counters at 3.3V, 25°C).

Figure 1: I_{CC} vs. Frequency at V_{CC} = 3.3V, 25°C

Table 1: I_{CC} vs. Frequency ($V_{CC} = 3.3V, 25^{\circ}C$)

Frequency (MHz)	0	1	5	10	20	50	100	200
Typical I _{CC} (mA)	0.02	0.13	0.54	1.06	2.09	5.2	10.26	20.3

© 2002 Xilinx, Inc. All rights reserved. All Xilinx trademarks, registered trademarks, patents, and disclaimers are as listed at http://www.xilinx.com/legal.htm.
All other trademarks and registered trademarks are the property of their respective owners. All specifications are subject to change without notice.

DC Electrical Characteristics Over Recommended Operating Conditions⁽¹⁾

Symbol	Parameter	Test Conditions		Min.	Max.	Unit
V _{OH} ⁽²⁾	Output High voltage	$V_{CC} = 3.0 \text{V to } 3.6 \text{V, I}$	$_{OH}$ = -8 mA	2.4	-	V
		$V_{CC} = 2.7V \text{ to } 3.0V, I$	$_{OH}$ = -8 mA	2.0 ⁽³⁾	-	V
		$I_{OH} = -500 \mu A$		90% V _{CC}	-	V
V _{OL}	Output Low voltage		I _{OL} = 8 mA	-	0.4	V
I _{IL} ⁽⁴⁾	Input leakage current		$V_{IN} = GND \text{ or } V_{CC}$	-10	10	μΑ
I _{IH} ⁽⁴⁾	I/O High-Z leakage current		$V_{IN} = GND \text{ or } V_{CC}$	-10	10	μΑ
I _{CCSB}	Standby current		V _{CC} = 3.6V	-	100	μΑ
I _{CC}	Dynamic current ^(5,6)		f = 1 MHz	-	0.25	mA
			f = 50 MHz	-	7.5	mA
C _{IN}	Input pin capacitance ⁽⁷⁾		f = 1 MHz	-	8	pF
C _{CLK}	Clock input capacitance ⁽⁷⁾		f = 1 MHz	-	12	pF
C _{I/O}	I/O pin capacitance ⁽⁷⁾		f = 1 MHz	-	10	pF

Notes:

- 1. See XPLA3 family data sheet (DS012) for recommended operating conditions
- 2. See Figure 2 for output drive characteristics of the XPLA3 family.
- 3. This parameter guaranteed by design and characterization, not by testing.
- 4. Typical leakage current is less than 1 μ A.
- 5. See Table 1, Figure 1 for typical values.
- This parameter measured with a 16-bit, resetable up/down counter loaded into every function block, with all outputs disabled and unloaded. Inputs are tied to V_{CC} or ground. This parameter guaranteed by design and characterization, not testing.
- 7. Typical values, not tested.

Figure 2: Typical I/V Curve for the XPLA3 Family, 3.3V, 25°C

AC Electrical Characteristics Over Recommended Operating Conditions^(1,2)

			-5	-	7	-10		
Symbol	Parameter	Min.	Max.	Min.	Max.	Min.	Max.	Unit
T _{PD1}	Propagation delay time (single p-term)		4.5	-	7.0	-	9.1	ns
T _{PD2}	Propagation delay time (OR array) ⁽³⁾		5.0	-	7.5	-	10.0	ns
T _{CO}	Clock to output (global synchronous pin clock)		3.5		5.0	-	6.5	ns
T _{SUF}	Setup time (fast input register)	2.5	-	3.0	-	3.0	-	ns
T _{SU1} ⁽⁴⁾	Setup time (single p-term)	3.0	-	4.3	-	5.4	-	ns
T _{SU2}	Setup time (OR array)	3.5	-	4.8	-	6.3	-	ns
T _H ⁽⁴⁾	Hold time	0	-	0	-	0	-	ns
T _{WLH} ⁽⁴⁾	Global Clock pulse width (High or Low)	2.5	-	3.0	-	4.0	-	ns
T _{PLH} ⁽⁴⁾	P-term clock pulse width	4.0	-	5.0	-	6.0	-	ns
T _R ⁽⁴⁾	Input rise time	-	20	-	20	-	20	ns
T _L ⁽⁴⁾	Input fall time	-	20	-	20	-	20	ns
f _{SYSTEM} ⁽⁴⁾	Maximum system frequency	-	200	-	119	-	95	MHz
T _{CONFIG} ⁽⁴⁾	Configuration time ⁽⁵⁾	-	30	-	30	-	30	μs
T _{INIT} ⁽⁴⁾	ISP initialization time	-	30	-	30	-	30	μs
T _{POE} ⁽⁴⁾	P-term OE to output enabled	-	7.2	-	9.3	-	11.2	ns
T _{POD} ⁽⁴⁾	P-term OE to output disabled ⁽⁶⁾	-	7.2	-	9.3	-	11.2	ns
T _{PCO} ⁽⁴⁾	P-term clock to output	-	6.0	-	8.3	-	10.7	ns
T _{PAO} ⁽⁴⁾	P-term set/reset to output valid	-	6.5	-	9.3	-	11.2	ns

Notes:

- 1. Specifications measured with one output switching.
- 2. See XPLA3 family data sheet (DS012) for recommended operating conditions.
- 3. See Figure 4 for derating.
- 4. These parameters guaranteed by design and/or characterization, not testing.
- 5. Typical current draw during configuration is 3 mA at 3.6V.
- 6. Output $C_L = 5 pF$.

Internal Timing Parameters^(1,2)

			-5	-	7	-1	10	
Symbol	Parameter	Min.	Max.	Min.	Max.	Min.	Max.	Unit
Buffer Del	ays		:	:	:	:		
T _{IN}	Input buffer delay	-	0.7	-	1.6	-	2.2	ns
T _{FIN}	Fast Input buffer delay	-	2.2	-	3.0	-	3.1	ns
T _{GCK}	Global Clock buffer delay	-	0.7	-	1.0	-	1.3	ns
T _{OUT}	Output buffer delay	-	1.8	-	2.7	-	3.6	ns
T _{EN}	Output buffer enable/disable delay	-	4.5	-	5.0	-	5.7	ns
Internal R	egister, Product Term, and Combinatorial	Delays	•					
T _{LDI}	Latch transparent delay	-	1.3	-	1.6	-	2.0	ns
T _{SUI}	Register setup time	1.0	-	1.0	-	1.2	-	ns
T _{HI}	Register hold time	0.3	-	0.5	-	0.7	-	ns
T _{ECSU}	Register clock enable setup time	2.0	-	2.5	-	3.0	-	ns
T _{ECHO}	Register clock enable hold time	3.0	-	4.5	-	5.5	-	ns
T _{COI}	Register clock to output delay	-	1.0	-	1.3	-	1.6	ns
T _{AOI}	Register async. S/R to output delay	-	2.0	-	2.3	-	2.1	ns
T _{RAI}	Register async. recovery	-	3.5	-	5.0	-	6.0	ns
T _{PTCK}	Product term clock delay	-	2.5	-	2.7	-	3.3	ns
T _{LOGI1}	Internal logic delay (single p-term)	-	2.0	-	2.7	-	3.3	ns
T _{LOGI2}	Internal logic delay (PLA OR term)	-	2.5	-	3.2	-	4.2	ns
Feedback	Feedback Delays							
T _F	ZIA delay	-	0.5	-	2.9	-	3.5	ns
Time Add	ers							
T _{LOGI3}	Fold-back NAND delay	-	2.0	-	2.5	-	3.0	ns
T _{UDA}	Universal delay	-	1.2	-	2.0	-	2.5	ns
T _{SLEW}	Slew rate limited delay	-	4.0	-	5.0	-	6.0	ns

Notes:

- 1. These parameters guaranteed by design and characterization, not testing.
- 2. See XPLA3 family data sheet (DS012) for timing model.

Switching Characteristics

Figure 3: AC Load Circuit

Figure 4: Derating Curve for T_{PD2}

Measurements:

All circuit delays are measured at the +1.5V level of inputs and outputs, unless otherwise specified.

DS023_06_042800

Figure 5: Voltage Waveform

Pin Descriptions

Table 2: XCR3032XL User I/O Pins

	PC44	VQ44	CS48
Total User I/O Pins	36	36	36

Table 3: XCR3032XL I/O Pins

Function Block	Macrocell	PC44	VQ44	CS48
1	1	4	42	A2
1	2	5	43	A1
1	3	6	44	C4
1	4	7 ⁽¹⁾	1 ⁽¹⁾	B1 ⁽¹⁾
1	5	8	2	C2
1	6	9	3	C1
1	7	11	5	D3
1	8	12	6	D1
1	9	13 ⁽¹⁾	7 ⁽¹⁾	D2 ⁽¹⁾
1	10	14	8	E1
1	11	16	10	F1
1	12	17	11	G1
1	13	18	12	E4
1	14	19	13	F2
1	15	20	14	G2
1	16	21	15	F3
2	1	41	35	C5
2	2	40	34	A6
2	3	39	33	В6
2	4	38 ⁽¹⁾	32 ⁽¹⁾	B7 ⁽¹⁾
2	5	37	31	D4
2	6	36	30	C6
2	7	34	28	D6
2	8	33	27	D7
2	9	32 ⁽¹⁾	26 ⁽¹⁾	E5 ⁽¹⁾
2	10	31	25	E7
2	11	29	23	F7
2	12	28	22	G7
2	13	27	21	G6
2	14	26	20	F5

Table 3: XCR3032XL I/O Pins

Function Block	Macrocell	PC44	VQ44	CS48
2	15	25	19	G5
2	16	24	18	F4

Notes:

1. JTAG pins

Table 4: XCR3032XL Global, JTAG, Port Enable, Power, and No Connect Pins

Pin Type	PC44	VQ44	CS48
IN0 / CLK0	2	40	А3
IN1 / CLK1	1	39	B4
IN2 / CLK2	44	38	A4
IN3 / CLK3	43	37	B5
TCK	32	26	E5
TDI	7	1	B1
TDO	38	32	B7
TMS	13	7	D2
PORT_EN	10 ⁽¹⁾	4(1)	C3 ⁽¹⁾
V _{CC}	3, 15, 23, 35	9, 17, 29, 41	B3, C7, E2, G4
GND	22, 30, 42	16, 24, 36	A5, E3, E6
No Connects	-	-	A7, B2, F6, G3

Notes:

 Port Enable is brought High to enable JTAG pins when JTAG pins are used as I/O. See family data sheet (<u>DS012</u>) for full explanation.

Ordering Information

Device Ordering Options

	Speed				
-10	10 ns pin-to-pin delay				
-7	7.5 ns pin-to-pin delay				
-5	5 ns pin-to-pin delay				

Package				
PC44	44-pin Plastic Lead Chip Carrier (PLCC)			
VQ44	44-pin Very Thin Quad Flat Pack (VQFP)			
CS48	48-ball Chip Scale Package			

Temperature			
C = Commercial	$T_A = 0$ °C to +70°C $V_{CC} = 3.0$ V to 3.6V		
I = Industrial	$T_A = -40$ °C to +85°C $V_{CC} = 2.7$ V to 3.6V		

Component Availability

Pins	3	44	44	48
Туре)	Plastic PLCC	Plastic VQFP	Plastic BGA
Code	Э	PC44	VQ44	CS48
XCR3032XL	-5	С	С	С
	-7	C,I	C,I	C,I
	-10	C, I	C, I	C, I

Revision History

The following table shows the revision history for this document.

Date	Version	Revision
11/18/00	1.0	Initial Xilinx release.
02/05/01	1.1	Removed Timing Model.
04/11/01	1.2	Update TSUF spec to meet UMC characterization data. Added Icc vs. Freq. numbers, Table 1 and updated Figure 1. Added Typical I/V curve, Figure 2; added Table 2: Total User I/O; changed V _{OH} spec.
04/19/01	1.3	Updated Typical I/V curve, Figure 2: added voltage levels.
08/27/01	1.4	Changed from Advance to Preliminary; updated DC Electrical Characteristics; AC Electrical Characteristics; Internal Timing Parameters; added Derating Curve; added -10 industrial packages. Added 200 MHz to Figure 1 and Table 1. changed -5 F _{SYSTEM} to 200 MHz, -5 T _F to 0.5 ns.
01/08/02	1.5	Updated T_{HI} spec to correct a typo. Added single p-term setup time (T_{SU1}) to AC Table, renamed T_{SU} to T_{SU2} for setup time through the OR array. Updated AC Load Circuit diagram to more closely resemble true test conditions, added note for T_{POD} delay measurement. Updated note 5 in AC Characteristics table lowering typical current draw during configuration.
06/27/02	1.6	Added voltage and temperature to Figure 2. Increased -5 T _{PCO} to 6.0 (from 5.5 ns) by adding T _{PTCK} parameter to internal timing model.