Neural and Pre-trained MT

- Neural MT systems were already dominant even before pre-training came along
- Pre-training helps...but because systems like GPT-4 do less well on languages other than English, LLMs haven't revolutionized MT as much as other subtasks

Transformer MT

Madal	BLEU			
Model	EN-DE	EN-FR		
ByteNet [18]	23.75			
Deep-Att + PosUnk [39]		39.2		
GNMT + RL [38]	24.6	39.92		
ConvS2S [9]	25.16	40.46		
MoE [32]	26.03	40.56		
Deep-Att + PosUnk Ensemble [39]		40.4		
GNMT + RL Ensemble [38]	26.30	41.16		
ConvS2S Ensemble [9]	26.36	41.29		
Transformer (base model)	27.3	38.1		
Transformer (big)	28.4	41.8		

- Big = 6 layers, 1000 dim for each token, 16 heads, base = 6 layers + other params halved
- ► GNMT: Large LSTM system with attention; even the first version of Transformers already beat this!

Vaswani et al. (2017)

Frontiers in MT: Small Data

		BLEU			
ID	system	100k	3.2M		
1	phrase-based SMT	15.87 ± 0.19	26.60 ± 0.00		
2	NMT baseline	0.00 ± 0.00	25.70 ± 0.33		
3	2 + "mainstream improvements" (dropout, tied embeddings, layer normalization, bideep RNN, label smoothing)	7.20 ± 0.62	31.93 ± 0.05		
4	3 + reduce BPE vocabulary (14k \rightarrow 2k symbols)	12.10 ± 0.16	_		
5	4 + reduce batch size (4k \rightarrow 1k tokens)	12.40 ± 0.08	31.97 ± 0.26		
6	5 + lexical model	13.03 ± 0.49	31.80 ± 0.22		
7	5 + aggressive (word) dropout	15.87 ± 0.09	33.60 ± 0.14		
8	7 + other hyperparameter tuning (learning rate, model depth, label smoothing rate)	16.57 ± 0.26	32.80 ± 0.08		
9	8 + lexical model	16.10 ± 0.29	33.30 ± 0.08		

- Synthetic small data setting: German -> English
- Even with 100,000 examples, a well-tuned neural system can do on par with phrase-based models

Sennrich and Zhang (2019)

RIFII

Frontiers in MT: Low-Resource

 Lots of interest in deploying MT systems for languages with little or no parallel data

- BPE allows us to transfer models even without training on a specific language
- Pre-trained models can help further

Burmese, Indonesian, Turkish BLEU

Transfer	$My \rightarrow En$	Id→En 7	Γr→En
baseline (no transfer)	4.0	20.6	19.0
transfer, train	17.8	27.4	20.3
transfer, train, reset emb, train	13.3	25.0	20.0
transfer, train, reset inner, train	3.6	18.0	19.1

Table 3: Investigating the model's capability to restore its quality if we reset the parameters. We use $En \rightarrow De$ as the parent.

Frontiers in MT: Low-Resource

		BLEU							
Transf	ferring	De	→En pare	nt	En-				
Emb.	Inner	My→En	$Id \rightarrow En$	$Tr \rightarrow En$	My→En	$Id \rightarrow En$	$Tr \rightarrow En$	avg.	
$\overline{\mathbf{Y}}$	Y	17.8	27.4	20.3	17.5	27.5	20.2	21.7	
N	Y	13.6	25.3	19.4	10.8	24.9	19.3	18.3	
Y	N	3.0	18.2	19.1	3.4	18.8	18.9	13.7	
N	N	4.0	20.6	19.0	4.0	20.6	19.0	14.5	

Table 2: Transfer learning performance by only transferring parts of the network. Inner layers are the non-embedding layers. N = not-transferred. Y = transferred.

 Very important to transfer the basic Transformer "skills", but re-learning the embeddings seems fine in many cases

Multilingual Models

Multilingual Denoising Pre-Training (mBART)

 mBART: pre-trained model using the BART objective, where inputs and outputs are augmented with language codes and many languages are learned in a single model
 Yinhan Liu et al. (2020)

Multilingual Models

Multilingual Denoising Pre-Training (mBART)

Fine-tuning on Machine Translation

mBART Results

Languages Data Source Size Direction	WM	-Gu IT19)K →	WM	-Kk IT19 K →	IWS	-Vi LT15 3K →	WM	-Tr [T17 7K →	IWS	-Ja LT17 3K →	En- IWS 230 ←	
Random mBART25	0.0 0.3	0.0 0.1	0.8 7.4	0.2 2.5	23.6 36.1	24.8 35.4	12.2 22.5	9.5 17.8	10.4 19.1	12.3 19.4	15.3 24.6	16.3 22.6
Languages Data Source Size Direction	Data Source IWSLT17 Size 237K		IWS 25	0K	IWS 25	0K	WA 25	My T19 9K →	FLo 56	-Ne Res 4K →	WM 60	-Ro [T16 8K →
Random mBART25	34.6	29.3	27.5	16.9	31.7 39.8	28.0	23.3	34.9	7.6	4.3	34.0	34.3

- Random = random initialization of Transformer
- mBART does much better, but still doesn't solve MT in lowresource languages (Gujarati, Kazakh)

mBART Results

SOURCE

针对政府的沉默态度,初级医生委员会执行委员会已于今日正式要求英国医学协会理事会召开特别会议批准旨在从九月初开 始升级劳工行动的一项长期计划。

TARGET

In response to the government's silence, JDC exec has today made a formal request for a special meeting of BMA Council to authorise a rolling programme of escalated industrial action beginning in early September.

mBART25 Ja-En

In response to the government's silence, the Council of Chief Medical Officers has formally requested today the Royal College of Physicians to hold a special meeting to approve a long-term workforce action that starts in September.

mBART25 Ko-En

In response to the government's silence, the Chief Medical Officers' Council is calling today for a special session at the Council of the British Medical Association, which is a long-term initiative to upgrade labor from September.

mBART25 Zh-En

In response to the government's silence, the Board of Primary Doctors has today formally asked the British Medical Association to hold a special meeting to approve a long-term plan that starts in the beginning of September.

Evaluating Translations with LLMs

```
Score the following translation from {source_lang} to {target_lang} with respect to the human reference on a continuous scale from 0 to 100, where score of zero means "no meaning preserved" and score of one hundred means "perfect meaning and grammar". {source_lang} source: "{source_seg}" {target_lang} human reference: {reference_seg} {target_lang} translation: "{target_seg}" Score:
```

Figure 1: The best-performing prompt based on Direct Assessment expecting a score between 0–100. Template **portions in bold face** are used only when a human reference translation is available.

 Outperforms many learned MT metrics, like Transformers trained over (source, target, reference) triples to reproduce human judgments