

1 / KBTs / Two processes affect spin temperature () Einst- processes by CMB phote-2) Inchrectly by Lynnen-a photons Ts = Ts (Tcmb, TK) Encapsules détails of astrophysical Differential brightness 21cm bristleys the intervening cloud

No

A standard model for the global 21-cm signal

Primordial black holes are interesting dark matter candidates

Dark Energy 71.4%

Possible candidates

- · WIMP
- Axion
- · Primordial black holes

(T)

Shikbar Mitta

SER/SC-140

IISE

epeating the analysis for a range of masses we obtain our constraints $M_{
m PBH}\,({
m M}_{\odot})$ 10^{-17} 10-18 10^{-16} 10^{0} 10^{-2} 10^{-4} 10^{-6} $f_{\text{PBH}} \le 10^{-9.73} \left(\frac{M_{\text{PBH}}}{10^{15} \text{g}} \right)$ 10^{-8} EDGES (Mittal et al. 2021) 10^{-10} 10^{15} 1016 M_{PBH} Mittal et al. (SC-140

Understanding the excess radio background **ARCADE2 observed a per

- ARCADE2 observed a nonthermal low-frequency sky spectrum in 2011
- Later independently confirmed by LWA1 in 2018
- $T_{\rm r} = T_{\rm cmb} + T_{\rm ERB}$
- The origin of this radio background is unknown

en et al (2011), Dowell & Taylor (2018)

