MAT 311 Abstract Algebra

Peter Schaefer

Spring 2024

Contents

1	Sets and Relations	2
	1.1 Sets	2

1 Sets and Relations

Definition: What is Abstract Algebra

- Algebra: procedures for performing operations, i.e. $+, -, \times, \div$, and methods for solving equations. It uses bldspecific operations on **specific** objects.
- Abstract Algebra: discuss **general** structures and the relationships between the elements of these structures.

1.1 Sets

Definition: Set

A set is a collection of objects. These objects are called "elements". A set is typically uppercase, and elements are typically lowercase.

Set Notation

1. List Notation:

$$B = \{\text{John}, \text{Paul}, \text{Ringo}, \text{George}\}$$

$$\mathbb{N} = \{1, 2, 3, \dots\}$$

2. Set-builder Notation:

$$B = \{b : b \text{ is a Beatle}\}\$$

Well-Defined Sets

Sets must be **well-defined**. That is, given set S and any element x, either $x \in S$ or $x \notin S$.

Definition: Subset

A set A is a subset of set B, written as $A \subseteq B$, if every element of A is also in B. Note: every non-empty set has at least two subsets:

- The set itself
- Ø

Definition: Proper Subset

If $A \subseteq B$ but $A \neq B$, then A is a **proper subset** of B, written $A \subset B$ or $A \subsetneq B$. Note: A set B is an *improper subset* of itself.

Definition: Cartesian Product

Let A and B be sets. The set $A \times B = \{(a,b) : a \in A \text{ and } b \in B\}$ is the cartesian product of A and B. Note: $A \times B = B \times A \iff A = B$, or $A \times B = \emptyset$.

Example

Let $A = \{c : c \text{ is a primary color}\}\$ and let $B = \{\epsilon, \delta\}$. Find:

- 1. $B \times B = \{(\epsilon, \epsilon), (\epsilon, \delta), (\delta, \epsilon), (\delta, \delta)\}$
- 2. $A \times \emptyset = \emptyset$