ZUJO

Session 1: Introduction to Machine Learning Part 1

Index

- Introduction to machine learning
- Comparing with human
- Understanding of supervised learning
- Linear Regression

What is Machine Learning?

Machine learning is field of study that gives computers the ability to learn without being explicitly programmed.

- Arthur Samuel (1959)

What is Machine Learning?

A computer program is said to learn from experience E with respect to some class of tasks T and performance measure P, if its performance at tasks in T, as measured by P, improves with experience E.

- Tom Mitchell (1998)

In simple terms

1st Attempt: You have to put too much force.

2nd Attempt: You realise you are closer to target but you need to increase your throw angle.

What is happening here is basically after every throw we are learning something and improving the end result.

We are programmed to learn from our experience.

Learning Process

Compare it with Humans

Human Speak & Listen

Αl

Statistical Learning Speech Recognition

Write and Read

Al

Statistical Learning

Speech Recognition

NLP

London is the capital and most populous city of England and the United Kingdom. Standing on the River Thames in the south east of the island of Great Britain, London has been a major settlement for two millennia. It was founded by the Romans, who named it Londinium. London's ancient core, the City of London, largely retains its 1.12-square-mile (2.9 km2) medieval boundaries.

See

ΑI

Statistical Learning

Speech Recognition NLP

Symbolic Learning

Computer Vision

Process and Visualise

Αl

Statistical Learning

Speech Recognition NLP

Image Processing

Symbolic Learning
Computer Vision

Understand Environment

ΑI

Image Processing

Statistical Learning

Symbolic Learning

Speech Recognition

NLP

Computer Vision

Robotics

Human Recognise Patterns

Machine Learning

Pattern Recognition Αl

Image Processing

Symbolic Learning

Robotics Computer Vision

Statistical Learning

Speech Recognition NLP

Brain

Αl

Pattern Recognition Machine Learning

Image Processing

Statistical Learning

Symbolic Learning

Robotics

Computer Vision

Speech Recognition

NLP

Deep Learning Neural Networks

Human Remember Scene

Pattern Recognition

Machine Learning

NN

Αl

Statistical Learning Deep L

NLP

Deep Learning

Image Processing

Symbolic Learning

Robotics

Computer Vision

Speech Recognition

CNN

Human Remember Past

Pattern Recognition AI

Machine Learning

NN Symbolic Learning

Statistical Learning Deep Learning

Speech Recognition NLP CNN

Image Processing

Symbolic Learning

Robotics Computer Vision

RNN

Human Dream

Pattern Recognition

NLP

Statistical Learning

Speech Recognition

ΑI

Machine Learning

CNN

NN

Deep Learning

Image Processing

Symbolic Learning

Robotics

Computer Vision

GAN

RNN

Pattern Recognition Αl Machine Learning Statistical Learning Deep Learning Speech CNN RNN GAN NLP Recognition Classification Prediction

Symbolic Learning

Robotics Computer Vision

Supervised Learning

Unsupervised Learning

Reinforcement Learning

Understanding each type

- Supervised Learning
- Unsupervised Learning
- Semi-supervised Learning
- Reinforcement Learning

Supervised Learning

Classification

Regression

Supervised Learning Example

Semi-supervised Learning

Labeled and Unlabeled data

Semi-supervised Learning

Unsupervised Learning

Unsupervised Learning Example

Reinforcement Learning

Supervised Learning

- Linear regression
- Logistic regression
- Naive bayes
- Support vector machine
- Linear discriminant analysis
- Decision trees
- K-nearest neighbor
- Neural networks (Multi-layer perceptron)
- Similarity learning

Unsupervised Learning Algorithms

- K-means clustering
- KNN (k-nearest neighbors)
- Hierarchical clustering
- Anomaly detection
- Neural Networks
- Principal Component Analysis
- Independent Component Analysis
- Apriori algorithm
- Singular value decomposition

Semi-supervised Learning Algorithms

- Generative models
- Low-density separation
- Graph-based methods
- Heuristic approaches

Reinforcement Learning Algorithms

- Monte Carlo
- Q-learning
- SARSA (State-action-reward-state-action)

Linear Regression

Dataset

Total Area	No of bedrooms	Prices (Lakh)
1056	2 BHK	39.07
2600	4 Bedroom	120
1440	3 BHK	62
1521	3 BHK	95
1200	2 BHK	51
1170	2 BHK	38
2732	4 BHK	204
3300	4 BHK	600

Dataset

Hypothesis

$$egin{aligned} h(x) &= heta_0 + heta x_1 + heta x_2 \ x_1 &= Size \ x_2 &= Bedrooms \end{aligned}$$

Hypothesis¹

$$h(x) = \sum_{j=1}^2 heta_j x_j$$

Where, $x_0=1$

$$heta = egin{bmatrix} heta_0 \ heta_1 \ heta_2 \end{bmatrix} & x = egin{bmatrix} x_0 \ x_1 \ x_2 \end{bmatrix}$$

$$egin{aligned} heta &= parameters \ m = \# \ training \ examples \ x &= inputs \ y &= output \ (x,y) &= training \ example \ (x^{(i)},y^{(i)}) &= n^{th} \ training \ example \end{aligned}$$

 $n=\#\ features$

How to choose theta?

$$h_{ heta}(x) = heta_0 + heta_1 x$$
 Parameters $(heta_0 + heta_1)$ Hypothesis Simplified Math Predicted Output Actual Output Row Index Function $J(heta) = rac{1}{2m} \sum_{i=1}^m (h_{ heta}(x^{(i)}) - y^{(i)})^2$ Summation of all the samples Total Squared Error

Gradient Descent

Gradient descent is an iterative optimization algorithm for finding the local minimum of a function.

The goal of the gradient descent algorithm is to minimize the given function (say cost function). To achieve this goal, it performs two steps iteratively:

- Compute the gradient (slope), the first order derivative of the function at that point
- 2. Make a step (move) in the direction opposite to the gradient, opposite direction of slope increase from the current point by alpha times the gradient at that point

```
egin{aligned} repeat \ until \ convergence \{ \ 	heta_j := 	heta_j - \overset{\smile}{lpha} & \dfrac{\partial}{\partial 	heta_j} J(	heta_0, 	heta_1) \ & \ (for \ j=1 \ and \ j=0) \end{aligned} 
ight.
```


Q & A

Gradient Descent Algorithm Hands On

- Visualization
 - https://bl.ocks.org/EmilienDupont/aaf429be5705b219aaaf8d691e27ca87
- Example
 - https://github.com/arjun-kava/linear-regression-with-gradient-descent
- Notebook
 - https://colab.research.google.com/drive/1Dxs5fu3ELxF3B4P_Our6hO-pi7UQbLOH?usp=sharing