實用數位系統設計

Use the Synopsys Design Vision EDA tool to synthesize my circuits in HW1-1_gatelevel

I. my synthesis procedure:

step1.check setup file:確定要執行設計檔的資料夾中

有 .synopsys_dc.setup 沒有則前往課程的FTP複製並改檔名

step2.invoke design compiler:在putty指令輸入 dv

step3.:check if library is correctly loaded 結果:有

step4.read file:選擇想要合成的檔案並確認沒有errors及warning

结果: 無errors及warning

Step5.symbol view

Step6.schematic view

Step7. Prevent Possible Assign Statement Problem:

在command line 鍵入

set_fix_multiple_port_nets -all -buffer_constants

step9:compile design:結果 Optimization Complete

step10.Area report:

Noncombinational area: 0.000000 Net Interconnect area: undefined

Total cell area: 443.021395
Total area: undefined

***** End Of Report *****

Step11Timing report:

MAX

J38/Y (XOR2X1)	0.13	3.35 f
(out)	0.00	3.35 f
data arrival time		3.35

***** End Of Report *****

MIN

input external delay			0.00	0.0	0 r
Add_ctrl (in)			0.00		
U46/Y (XOR2X1)			0.02	0.0	2 f
S[0] (out)			0.00	0.0	2 f
data arrival time				0.0	2
(Path is unconstrained)					
Cell Internal Power		60.7120	uW	(798)	
Net Switching Power	=	16.2616	uW	(21%)	
Total Dynamic Power		76.9735	uW	(100%)	
Cell Leakage Power	=	600.3915	n₩		
***** End Of Report **	***	*			

Step13.

Save Design - Circuit and Timing Files:

Step14. Rerun Verilog Simulation:修改testbench.v並跑波型觀察

- II. The statistics of your designs including (1) gate count, (2) critical path delay, and (3) power consumption.
 - (1) gate count 由AREA report中的total cell area 443,除以NAND2 gate area約 5um^2

Gate count=443/5

(2)critical path delay

adder.v

Adder_syn.v

(3)power consumption

由power report 知

```
Cell Internal Power = 60.7120 uW (79%)

Net Switching Power = 16.2616 uW (21%)

-----

Total Dynamic Power = 76.9735 uW (100%)

Cell Leakage Power = 600.3915 nW

***** End Of Report *****
```

Ⅲ. 结果分析:

加減法器波型(A 為被加數,B 為加數, C_in 為判斷加法減法) 因為 $C_in=0$ 所以加法,255+255 為 下圖 v=1 所以表示此加法運算會進位到 9bits

(加法溢位)

合成前:

Baseline▼=0 Cursor-Baseline▼=6,553	,571,000ps				TimeA =	6,553,571,000ps
Name ▼	Cursor ▼	L	6,553,400,000ps	6,553,500,000ps		6,553,600,000ps
∰…• ్ answer_int	'd 0	0				
⊕ • i	'd 0	0				1
<u> </u>	'd 255	255				(0
	'd 255	253	254	255		(0
∰ • Fort_A[7:0]	'h FF	FF				00
∰ - № port_B[7:0]	'h FF	FD	(FE	FF		00
	0					
	1					
⊕ • fort_Sum[7:0]	'h FE	FC	(FD	FE		00
□ port_V	1					

合成後:

由下圖可知,訊號數值會有一段時間為不穩定的數值,之後才穩定到正確的數值

減法 當 A+(-B)

因為 $C_{in}=1$,所以為減法器,0+(-0)為下圖,第九 bit 為符號數,將結果減 1 在 01 互换回去加負號即為答案負的 0

0 0000 0000

+ 0 0000 0000

0 0000 0000

由下圖可知,訊號數值會有一段時間為不穩定的數值,之後才穩定到正確的數值,其中在0-1時候delay較長

減法 當 A+(-B)

因為 $C_{in}=1$,所以為減法器,1+(-255)為下圖,第九 bit 為符號數,將結果減 1 在01 互换回去加負號即為答案 負的 254

0 0000 0001

+ 1 0000 0001

1 0000 0010

合成前

由下圖可知,訊號數值會有一段時間為不穩定的數值,之後才穩定到正確的數值,其中訊號數值delay時間不一

減法 當 A+(-B)

因為 $C_{in}=1$,所以為減法器,14+(-1)為下圖,第九 bit 為符號數, 忽略掉第 10bit 結果為 13

11 1111 111 0 0000 1110

+ 1 1111 1111

10 00001101

合成前

由下圖可知,訊號數值會有一段時間為不穩定的數值,之後才穩定到正確的數值,其中訊號數值delay時間不一

Use the Synopsys Design Vision EDA tool to synthesize my circuits in HW1-1_RTL

1. my synthesis procedure:

step1.check setup file:確定要執行設計檔的資料夾中

有 .synopsys_dc.setup 沒有則前往課程的FTP複製並改檔名

step2.invoke design compiler:在putty指令輸入 dv

step3.:check if library is correctly loaded 結果:有

step4.read file:選擇想要合成的檔案並確認沒有errors及warning

結果: 無errors及warning

Step5.symbol view

Step6.schematic view


```
Step7. Prevent Possible Assign Statement Problem:
```

在command line 鍵入

```
set_fix_multiple_port_nets -all -buffer_constants
```

step9:compile design:結果 Optimization Complete

step10.Area report:

```
Information: Updating design information... (UID-85)
Library(s) Used:
```

slow (File: /mnt2/CBDK_IC_Contest_v2.1/SynopsysDC/db/slow.db)

Number of ports: 27
Number of nets: 55
Number of cells: 20
Number of references: 6

Combinational area: 560.142010 Noncombinational area: 0.000000

Net Interconnect area: undefined (No wire load specified)

Total cell area: 560.142010
Total area: undefined

**** End Of Report ****

Step11Timing report: MAX

Point	Incr	Path
input external delay	0.00	0.00 r
B[1] (in)	0.00	0.00 r
U32/Y (CLKINVX1)	0.03	0.03 f
add_10/A[1] (Add_DW01_inc_0)	0.00	0.03 f
add_10/U1_1_1/s (ADDHXL)	0.22	0.25 f
add_10/SUM[1] (Add_DW01_inc_0)	0.00	0.25 f
U41/Y (CLKMX2X2)	0.18	0.43 f
r311/B[1] (Add_DW01_add_0)	0.00	0.43 f
r311/U1_1/CO (ADDFXL)	0.61	1.04 f
r311/U1_2/CO (ADDFXL)	0.38	1.41 f
r311/U1_3/CO (ADDFXL)	0.38	1.79 f
r311/U1_4/CO (ADDFXL)	0.38	2.16 f
r311/U1_5/CO (ADDFXL)	0.38	2.54 f
r311/U1_6/CO (ADDFXL)	0.38	2.92 f
r311/u1_7/co (ADDFXL)	0.37	3.29 f
r311/U2/Y (XOR2X1)	0.16	3.45 f
r311/sum[8] (Add_DW01_add_0)	0.00	3.45 f
U25/Y (NOR2BX1)	0.16	3.61 f
v (out)	0.00	3.61 f
data arrival time		3.61

(Path is unconstrained)

MIN

Startpoint: Ac (input port) Endpoint: v (output port)

Path Group: (none) Path Type: min

Point	Incr	Path
input external delay	0.00	0.00 r
Ac (in)	0.00	0.00 r
U25/Y (NOR2BX1)	0.02	0.02 f
v (out)	0.00	0.02 f
data arrival time		0.02

(Path is unconstrained)

Step12.power report:

```
Global Operating Voltage = 1.08
Power-specific unit information :
   Voltage Units = 1V
   Capacitance Units = 1.000000pf
   Time Units = 1ns
   Dynamic Power Units = 1mW
                               (derived from V,C,T units)
   Leakage Power Units = 1pW
  Cell Internal Power = 62.3304 uW
                                   (87%)
 Net Switching Power = 9.5161 uW
                                    (13%)
                      Total Dynamic Power = 71.8464 uW (100%)
Cell Leakage Power = 630.9841 nW
**** End Of Report ****
```

Step13.

Save Design - Circuit and Timing Files:

Step14. Rerun Verilog Simulation:修改testbench.v並跑波型觀察

- 2. The statistics of your designs including (1) gate count, (2) critical path delay, and (3) power consumption.
 - (1) gate count 由AREA report中的total cell area 560,除以NAND2 gate area約 5um^2

Gate count=560/5=112

(2) critical path delay add.v

add_syn.v

(3) power consumption

```
Global Operating Voltage = 1.08
Power-specific unit information :
    Voltage\ Units = 1V
    Capacitance Units = 1.000000pf
    Time Units = 1ns
    Dynamic Power Units = 1mW
                               (derived from V,C,T units)
    Leakage Power Units = 1pW
  Cell Internal Power = 62.3304 uW
                                     (87\%)
  Net Switching Power = 9.5161 uW
                                    (13%)
Total Dynamic Power
                      = 71.8464 uW (100%)
Cell Leakage Power = 630.9841 nW
***** End Of Report *****
```

3. 結果分析

結果分析:

沒有 overflow 的加法

00 000 000

0

0 000 0000

0

+0 000 0010

0

0 000 0010

0

合成前

合成後

Output有delay不會因INPUT改變馬上改變

合成前 0 111 1111

1

合成後

可能code寫不好,delay太久

無 overflow 但是運算完為正數的減法

1 111 000

1

0 000 1001

0

+ 1 111 1010

1

合成前 0 000 0011

0

合成後

Delay時間都偏長

無overflow 但是運算完為負數的減法 將結果減一再 1 跟O 互換再加上負號 即為所求

00 000 000 0 000 0000 0 + 1 000 0001 0 1 000 0001

合成前

合成後

波型正確但delay相對HW1_1 長

Use the Synopsys Design Vision EDA tool to synthesize my circuits in HW1- 2_Vote

1. my synthesis procedure:

step1.check setup file:確定要執行設計檔的資料夾中

有 .synopsys_dc.setup 沒有則前往課程的FTP複製並改檔名

step2.invoke design compiler:在putty指令輸入 dv

step3.:check if library is correctly loaded 結果:有

step4.read file:選擇想要合成的檔案並確認沒有errors及warning

结果: 無errors及warning

Step5.symbol view

Step6.schematic view

Step7. Prevent Possible Assign Statement Problem: 在command line 鍵入

set_fix_multiple_port_nets -all -buffer_constants

step9:compile design:結果 Optimization Complete step10.Area report:

***** End Of Report *****

```
Information: Updating design information... (UID-85)
Library(s) Used:

slow (File: /mnt2/CBDK_IC_Contest_v2.1/SynopsysDC/db/slow.db)

Number of ports:
18
Number of nets:
31
Number of cells:
4
Number of references:
4

Combinational area:
1537.844365
Noncombinational area:
0.000000
Net Interconnect area:
undefined (No wire load specified)

Total cell area:
1537.844365
Total area:
undefined
```

Step11Timing report: MAX

Point	Incr	Path
input external delay	0.00	0.00 f
B[0] (in)	0.00	0.00 f
m1/B[0] (fa4_0)	0.00	0.00 f
m1/f0/B[0] (rca3_0)	0.00	0.00 f
m1/f0/fa1/b (fa_0)	0.00	0.00 f
m1/f0/fa1/U3/Y (XOR2X1)	0.14	0.14 f
m1/f0/fa1/U2/Y (A022X1)	0.34	0.48 f
m1/f0/fa1/cout (fa_0)	0.00	0.48 f
m1/f0/fa2/cin (fa_35)	0.00	0.48 f
m1/f0/fa2/U2/Y (A022X1)	0.36	0.84 f
m1/f0/fa2/cout (fa_35)	0.00	0.84 f
m1/f0/fa3/cin (fa_34)	0.00	0.84 f
m1/f0/fa3/U2/Y (A022X1)	0.36	1.19 f
m1/f0/fa3/cout (fa_34)	0.00	1.19 f
m1/f0/Cout (rca3_0)	0.00	1.19 f
ml/f1/C_in (rca3_11)	0.00	1.19 f
ml/fl/fal/cin (fa_33)	0.00	1.19 f
m1/f1/fa1/U2/Y (A022X1)	0.36	1.55 f
ml/fl/fal/cout (fa_33)	0.00	1.55 f
m1/f1/fa2/cin (fa_32)	0.00	1.55 f
m1/f1/fa2/U2/Y (A022X1)	0.36	1.91 f
m1/f1/fa2/cout (fa_32)	0.00	1.91 f
ml/fl/fa3/cin (fa_31)	0.00	1.91 f
m1/f1/fa3/U2/Y (A022X1)	0.36	2.26 f
ml/f1/fa3/cout (fa_31)	0.00	2.26 f
ml/fl/Cout (rca3_11)	0.00	2.26 f
m1/f2/C_in (rca3_10)	0.00	2.26 f

data arrival time		5.40
out[2] (out)	0.00	5.40 f
com/out[2] (compare)	0.00	5.40 f
com/U1/Y (A022X1)	0.30	5.40 f
com/U2/Y (OAI2BB1X1)	0.07	5.10 f
com/U3/Y (OAI21XL)	0.18	5.03 r
com/U4/Y (NOR2X1)	0.08	4.85 f
com/U5/Y (A0I32X1)	0.23	4.77 r
com/U38/Y (XOR2X1)	0.18	4.54 f
com/U39/Y (CLKINVX1)	0.14	4.36 f
com/A[2] (compare)	0.00	4.22 r
m1/out[2] (fa4_0)	0.00	4.22 r
m1/f3/Sum[2] (rca3_9)	0.00	4.22 r
m1/f3/fa3/s (fa_25)	0.00	4.22 r
m1/f3/fa3/U1/Y (XOR2X1)	0.17	4.22 r
m1/f3/fa3/cin (fa_25)	0.00	4.05 f
m1/f3/fa2/cout (fa_26)	0.00	4.05 f
m1/f3/fa2/U2/Y (A022X1)	0.36	4.05 f
m1/f3/fa2/cin (fa_26)	0.00	3.69 f
m1/f3/fa1/cout (fa_27)	0.00	3.69 f
m1/f3/fa1/U2/Y (A022X1)	0.36	3.69 f
m1/f3/fa1/cin (fa_27)	0.00	3.34 f
m1/f3/C_in (rca3_9)	0.00	3.34 f
m1/f2/Cout (rca3_10)	0.00	3.34 f
m1/f2/fa3/cout (fa_28)	0.00	3.34 f
m1/f2/fa3/U2/Y (A022X1)	0.36	3.34 f
m1/f2/fa3/cin (fa_28)	0.00	2.98 f
m1/f2/fa2/cout (fa_29)	0.00	2.98 f
m1/f2/fa2/U2/Y (AO22X1)	0.36	2.98 f
m1/f2/fa2/cin (fa_29)	0.00	2.62 f
m1/f2/fa1/cout (fa_30)	0.00	2.62 f
m1/f2/fa1/U2/Y (A022X1)	0.36	2.62 f
m1/f2/fa1/cin (fa_30)	0.00	2.26 f

(Path is unconstrained)

MIN

input external delay	0.00	0.00 r
E[0] (in)	0.00	0.00 r
m1/E[0] (fa4_0)	0.00	0.00 r
m1/f3/B[0] (rca3_9)	0.00	0.00 r
m1/f3/fa1/b (fa_27)	0.00	0.00 r
m1/f3/fa1/U2/Y (AO22X1)	0.16	0.16 r
m1/f3/fa1/cout (fa_27)	0.00	0.16 r
m1/f3/fa2/cin (fa_26)	0.00	0.16 r
m1/f3/fa2/U1/Y (XOR2X1)	0.09	0.25 f
m1/f3/fa2/s (fa_26)	0.00	0.25 f
m1/f3/Sum[1] (rca3_9)	0.00	0.25 f
m1/out[1] (fa4_0)	0.00	0.25 f
com/A[1] (compare)	0.00	0.25 f
com/U16/Y (OAI22XL)	0.13	0.39 r
com/U15/Y (NOR3BXL)	0.11	0.50 f
com/U14/Y (A0I211X1)	0.13	0.63 r
com/out[1] (compare)	0.00	0.63 r
out[1] (out)	0.00	0.63 r
data arrival time		0.63

(Path is unconstrained)

***** End Of Report *****

Step12.power report:

Step13.

Save Design - Circuit and Timing Files:

Step14. Rerun Verilog Simulation:修改testbench.v並跑波型觀察2.The statistics of your designs including (1) gate count, (2) critical path delay, and (3) power consumption.

(1) gate count 由AREA report中的total cell area 1537,除以NAND2 gate area約 5um^2 Gate count=1537/5

(2) critical path delay Vote1.v

Vote1 syn.v

3. 結果分析

结果分析:

當 A 為 1、B 為 4、C 為 4、D 為 2、E 為 1 時,a、b、c 分別為第 1bit 和、第 2bit 和、第 3bit, a=1+0+0+0+1=2,

b=0+0+0+1+0=1, c=0+1+1+0+0=2,

其因為 a=c 代表兩個數出現次數多為最多,故輸出為 000。

當A為2、B為2、C為4、D為2、E為1時, a=0+0+0+0+1=1,

b=1+1+0+1+0=3 , c=0+0+1+0+0=1 ,

其中b大於a跟c,故輸出為010。合

成前

```
0 A=001, B=100, C=100, D=010, E=001, out=000

10 A=010, B=100, C=100, D=010, E=001, out=000

20 A=010, B=010, C=100, D=010, E=001, out=010

30 A=010, B=010, C=010, D=010, E=001, out=010

40 A=010, B=010, C=010, D=001, E=001, out=010
```

Baseline▼=0 Cursor-Baseline▼=26ns		Baseline = 0			TimeA = 26ns	
Name ▼	Cursor ▼	0	10ns	20ns	30ns	40ns
₽ 4[2:0]	'h 2	(1	(2			
⊕ ®[2:0]	'h 2	4		2		
⊕ ©[2:0]	'h 4	4			(2	
□ • D[2:0]	'h 2	(2				(1
∰ ™ E[2:0]	'h 1	(1				,
∰ • out[2:0]	'h 2	0		(2		

合成後 波型出現明顯的delay,而因為monitor是A,B,C,D,E,out有改變就印一次,所以 putty結果比合成前多印好幾次

Use the Synopsys Design Vision EDA tool to synthesize my circuits in HW1-2_Mid

2. my synthesis procedure:

step1.check setup file:確定要執行設計檔的資料夾中有 .synopsys_dc.setup 沒有則前往課程的FTP複製並改檔名

step2.invoke design compiler:在putty指令輸入 dv

step3.:check if library is correctly loaded 結果:有

step4.read file:選擇想要合成的檔案並確認沒有errors及warning

結果: 無errors及warning

Step5.symbol view

Step6.schematic view

Step7. Prevent Possible Assign Statement Problem:

在command line 鍵入

set_fix_multiple_port_nets -all -buffer_constants

step9:compile design:結果 Optimization Complete

step10.Area report:

Information: Updating design information... (UID-85)
Library(s) Used:

slow (File: /mnt2/CBDK_IC_Contest_v2.1/SynopsysDC/db/slow.db)

Number of ports: 32
Number of nets: 118
Number of cells: 45
Number of references: 14

Combinational area: 3700.332067 Noncombinational area: 0.000000

Net Interconnect area: undefined (No wire load specified)

Total cell area: 3700.332067 Total area: undefined

***** End Of Report *****

Step11Timing report: MAX		
Point	Incr	Path
input external delay	0.00	0.00 1
B[1] (in)	0.00	0.00 1
sub1/B[1] (Add_0)	0.00	0.00 1
sub1/U12/Y (CLKINVX1)	0.03	0.03
sub1/add_28/A[1] (Add_0_DW01_inc_0)	0.00	0.03
sub1/add_28/U1_1_1/S (ADDHXL)	0.22	0.25
sub1/add_28/SUM[1] (Add_0_DW01_inc_0)	0.00	0.25
sub1/U21/Y (CLKMX2X2)	0.18	0.43
sub1/r311/B[1] (Add_0_DW01_add_0)	0.00	0.43
sub1/r311/U1_1/CO (ADDFXL)	0.61	1.04
sub1/r311/U1_2/CO (ADDFXL)	0.38	1.41
sub1/r311/U1_3/CO (ADDFXL)	0.38	1.79
subl/r311/U1_4/CO (ADDFXL)	0.38	2.16
sub1/r311/U1_5/CO (ADDFXL)	0.38	2.54
sub1/r311/U1_6/CO (ADDFXL)	0.38	2.92
sub1/r311/U1_7/CO (ADDFXL)	0.37	3.29
sub1/r311/U2/Y (XOR2X1)	0.18	3.47
sub1/r311/SUM[8] (Add_0_DW01_add_0)	0.00	3.47 f
subl/Cout (Add_0)	0.00	3.47 £
U77/Y (AO21X1)	0.26	3.73 £
U76/Y (MXI2X1)	0.33	4.06 r
U60/Y (NOR3BXL)	0.32	4.38 £
U45/Y (AOI222XL)	0.45	4.83 r
U44/Y (CLKINVX1)	0.06	4.89 f
M[7] (out)	0.00	4.89 f
data arrival time		4.89

(Path is unconstrained)

MIN

Startpoint: A[7] (input port)
Endpoint: M[7] (output port)

Path Group: (none) Path Type: min

Point	Incr	Path
input external delay	0.00	0.00 r
A[7] (in)	0.00	0.00 r
U45/Y (A0I222XL)	0.07	0.07 f
U44/Y (CLKINVX1)	0.04	0.11 r
M[7] (out)	0.00	0.11 r
data arrival time		0.11

(Path is unconstrained)

```
**** End Of Report *****
```

Step12.power report:

Step13.

Save Design - Circuit and Timing Files:

Step14. Rerun Verilog Simulation:修改testbench.v並跑波型觀察

- 2. The statistics of your designs including (1) gate count, (2) critical path delay, and (3) power consumption.
 - (1) gate count 由AREA report中的total cell area 3700,除以NAND2 gate area約 5um^2 Gate count=3700/5=740
 - (2) critical path delay Mid.v

Mid syn.v

3. 結果分析

合成前

如下圖

第一行:當A為*h80,B為'hO1,C為'h08時,因為B符合[(B-C>0且B-A<0)或(B-C<0且B-A>0)](即B大小位於A、C之間),故輸出B。第二行:當A為*h01,B為'hO1,C為*h08時,因為有輸入相同,故無法符合[(A-B>0且A-C<0)或(A-B<0且A-C>0)]或[(B-C>0且B-A<0)或(B-C<0且B-A>0)]或[(C-B>0且C-A<0)或(C-B<0且C-A>0)],於是輸出為8*b00000000。

0 A=10000000, B=00000001, C=00001000, M=00001000 5 A=00000001, B=00000001, C=00001000, M=0000000 10 A=00000001, B=01000000, C=00001000, M=00001000 15 A=00000001, B=01000000, C=10000000, M=01000000 20 A=00000001, B=10000000, C=10000000, M=00000000

波型出現明顯的delay,而因為monitor是A,B,C,D,E,out有改變就印一次,所以putty結果比合成前多印好幾次

```
0 A=10000000, B=00000001, C=00001000, M=xxxxxxxx
 0 A=10000000, B=00000001, C=00001000, M=x000x00x
 3 A=10000000, B=00000001, C=00001000, M=0000x00x
 4 A=10000000, B=00000001, C=00001000, M=0000x000
 4 A=10000000, B=00000001, C=00001000, M=00001000
 5 A=00000001, B=00000001, C=00001000, M=00001000
 6 A=00000001, B=00000001, C=00001000, M=00001001
 7 A=00000001, B=00000001, C=00001000, M=00000001
 7 A=00000001, B=00000001, C=00001000, M=00000000
 8 A=00000001, B=00000001, C=00001000, M=00001000
 9 A=00000001, B=00000001, C=00001000, M=00000000
10 A=00000001, B=01000000, C=00001000, M=00000000
11 A=00000001, B=01000000, C=00001000, M=01000000
11 A=00000001, B=01000000, C=00001000, M=01000001
12 A=00000001, B=01000000, C=00001000, M=00000001
12 A=00000001, B=01000000, C=00001000, M=00000000
13 A=00000001, B=01000000, C=00001000, M=00001000
15 A=00000001, B=01000000, C=10000000, M=00001000
15 A=00000001, B=01000000, C=10000000, M=10001000
15 A=00000001, B=01000000, C=10000000, M=10000000
17 A=00000001, B=01000000, C=10000000, M=00000000
17 A=00000001, B=01000000, C=10000000, M=01000000
20 A=00000001, B=10000000, C=10000000, M=01000000
20 A=00000001, B=10000000, C=10000000, M=11000000
20 A=00000001, B=10000000, C=10000000, M=10000000
22 A=00000001, B=10000000, C=10000000, M=00000000
```


討論:

再跑模擬合成軟體時,遇到一個問題,那就是所謂的求critical path 好像是跑你當前讀入的.V檔,也就是為合成的電路,於是我要找critical path 時讀入_syn.V檔,