Analiza numeryczna

Algebra liniowa

Rafał Nowak

 $\mbox{\bf Macierzq nazywamy prostokątną tablicę } m \times n \mbox{ liczb rzeczywistych,} \\ \mbox{ustawionych w } m \mbox{ wierszach i } n \mbox{ kolumnach:} \\$

$$\begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \dots & \dots & \dots & \dots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{bmatrix}. \tag{1}$$

Sumą macierzy $A=[a_{ij}]\in\mathbb{R}^{m\times n}$ i $B=[b_{ij}]\in\mathbb{R}^{m\times n}$ jest macierz $C=[c_{ij}]$ tego samego rozmiaru:

$$C = A + B, \qquad c_{ij} = a_{ij} + b_{ij}.$$

lloczyn macierzy $A=[a_{ij}]$ przez liczbę α jest macierz

$$B = \alpha A, \qquad b_{ij} = \alpha a_{ij}.$$

lloczyn macierzy A i B jest określony tylko wtedy, gdy liczba kolumn macierzy A jest równa liczbie wierszy macierzy B. Iloczyn C=AB macierzy $A=[a_{ij}]\in\mathbb{R}^{m\times n}$ i $B=[b_{ij}]\in\mathbb{R}^{n\times p}$ jest macierzą

$$C = [c_{ij}], c_{ij} = \sum_{k=1}^{n} a_{ik} b_{kj}.$$

Mnożenie macierzy jest łączne i rozdzielne względem dodawania:

$$A(BC) = (AB)C,$$
 $A(B+C) = AB + AC,$

jednak nie jest przemienne.

Wektory $x_1,\ldots,x_k\in\mathbb{R}^n$ są **liniowo niezależne**, jeśli żaden z nich nie jest liniową kombinacją pozostałych, tj. jeśli

$$\sum_{i=1}^{k} \alpha_i \boldsymbol{x}_i = \boldsymbol{\theta} \quad \Rightarrow \quad \alpha_i = 0 \quad (i = 1, 2, \dots, k).$$

Wektory $x_1, \ldots, x_k \in \mathbb{R}^n$ są **liniowo niezależne**, jeśli żaden z nich nie jest liniową kombinacją pozostałych, tj. jeśli

$$\sum_{i=1}^{k} \alpha_i \boldsymbol{x}_i = \boldsymbol{\theta} \quad \Rightarrow \quad \alpha_i = 0 \quad (i = 1, 2, \dots, k).$$

Rząd macierzy A jest liczbą jej liniowo niezależnych kolumn (wierszy). Macierz kwadratowa $A \in \mathbb{R}^{n \times n}$ jest **nieosobliwa** wtedy i tylko wtedy, gdy jej rząd jest równy n. Wówczas istnieje **macierz odwrotna** oznaczana symbolem A^{-1} , o własności

$$A^{-1}A = AA^{-1} = I.$$

Jeśli A i B są nieosobliwe, a iloczyn AB jest określony, to

$$(AB)^{-1} = B^{-1}A^{-1},$$

tj. macierz odwrotna do iloczynu macierzy jest równa iloczynowi odwrotności czynników w odwrotnym porządku. Macierz jest nieosobliwa wtedy i tylko wtedy, gdy $\det A \neq 0$.

Definicja

Normą wektorową nazywamy nieujemną funkcję rzeczywistą $\|\cdot\|$, określoną w przestrzeni \mathbb{R}^n , o następujących własnościach:

$$\bigwedge_{\boldsymbol{x} \in \mathbb{R}^n \setminus \{\theta\}} \{\|\boldsymbol{x}\| > 0\};$$

$$\bigwedge_{\boldsymbol{x} \in \mathbb{R}^n} \bigwedge_{\alpha \in \mathbf{R}} \{\|\alpha \boldsymbol{x}\| = |\alpha| \|\boldsymbol{x}\|\};$$

$$\bigwedge_{\boldsymbol{x}, \boldsymbol{y} \in \mathbb{R}^n} \{\|\boldsymbol{x} + \boldsymbol{y}\| \leqslant \|\boldsymbol{x}\| + \|\boldsymbol{y}\|\}.$$

Definicja

Normą wektorową nazywamy nieujemną funkcję rzeczywistą || · ||, określoną w przestrzeni \mathbb{R}^n , o następujących własnościach:

$$\bigwedge_{\boldsymbol{x} \in \mathbb{R}^n \setminus \{\theta\}} \{\|\boldsymbol{x}\| > 0\};$$

$$\bigwedge_{\boldsymbol{x} \in \mathbb{R}^n} \bigwedge_{\alpha \in \mathbf{R}} \{\|\alpha \boldsymbol{x}\| = |\alpha| \|\boldsymbol{x}\|\};$$

$$\bigwedge_{\boldsymbol{x}, \boldsymbol{y} \in \mathbb{R}^n} \{\|\boldsymbol{x} + \boldsymbol{y}\| \leqslant \|\boldsymbol{x}\| + \|\boldsymbol{y}\|\}.$$

Najczęściej używane są trzy normy wektorów, zwane normami Hoeldera, definiowane następująco ($\boldsymbol{x}=(x_1,\ldots,x_n)$):

$$\|\mathbf{x}\|_1 := |x_1| + \dots, |x_n|,$$

 $\|\mathbf{x}\|_2 := (x_1^2 + \dots, x_n^2)^{1/2},$

Analiza numeryczna

Definicja

Normą macierzy nazywamy nieujemną funkcję rzeczywistą $\|\cdot\|$, określoną w przestrzeni liniowej $\mathbb{R}^{n\times n}$ wszystkich macierzy kwadratowych stopnia n, o następujących własnościach:

$$\bigwedge_{A \in \mathbb{R}^{n \times n} \setminus \{\Theta\}} \{ ||A|| > 0 \};$$

$$\bigwedge_{A \in \mathbb{R}^{n \times n}} \bigwedge_{\alpha \in \mathbf{R}} \{ ||\alpha A|| = |\alpha| ||A|| \};$$

$$\bigwedge_{A,B \in \mathbb{R}^{n \times n}} \{ ||A + B|| \leq ||A|| + ||B|| \};$$

$$\bigwedge_{A,B \in \mathbb{R}^{n \times n}} \{ ||AB|| \leq ||A|| ||B|| \}.$$

Macierze
Normy wektorowe i macierzowe
Układy trójkątne
Metoda eliminacji Gaussa
Metody iteracyjne
Ortogonalizacja macierzy

Przyjęcie jakiejś normy wektora pozwala na wprowadzenie odpowiedniej normy macierzy, zdefiniowanej równością

$$||A|| := \sup_{\boldsymbol{x} \in \mathbb{R}^n \setminus \{\theta\}} \frac{||A\mathbf{x}||}{||\boldsymbol{x}||}.$$

Mówimy, że ta norma macierzy jest <mark>indukowana</mark> przez normę wektora. Można sprawdzić, że

$$||A||_1 = \max_{1 \le j \le n} \sum_{i=1}^n |a_{ij}|,$$

$$||A||_{\infty} = \max_{1 \le i \le n} \sum_{j=1}^{n} |a_{ij}|,$$

$$||A||_2 = \left(\text{największa wartość własna macierzy}A^TA\right)^{1/2},$$

gdzie A^T oznacza macierz transponowaną do A. Normę $\|\cdot\|_2$ nazywamy niekiedy normą spektralną. Zauważmy, że $\|I\|=1$ dla dowolnej normy macierzy, indukowanych przez normy wektorów. Symbol I oznacza macierz jednostkową, $I=\mathrm{diag}\,(1,\ldots,1)$.

Macierze
Normy wektorowe i macierzowe
Układy trójkątne
Metoda eliminacji Gaussa
Metody iteracyjne
Ortogonalizacja macierzy

Definicja

Będziemy mówili, że normy macierzy i wektora są zgodne, jeśli

$$\bigwedge_{A \in \mathbb{R}^{n \times n}} \bigwedge_{x \in \mathbb{R}^n} \{ ||Ax|| \leqslant ||A|| ||x|| \}.$$

Definicja (Macierz trójkątna dolna)

Macierz $L=[l_{ij}]\in\mathbb{R}^{n\times n}$ nazywamy trójkątną dolną, jeśli $l_{ij}=0$ dla i< j:

$$L = \begin{bmatrix} l_{11} & & & & \\ l_{21} & l_{22} & & & \\ l_{31} & l_{32} & l_{33} & & & \\ & \ddots & \ddots & \ddots & \\ l_{n1} & l_{n2} & l_{n3} & \dots & l_{n,n-1} & l_{nn} \end{bmatrix}.$$

Zbiór wszystkich macierzy trójkątnych dolnych stopnia n oznaczamy symbolem \mathbb{L}_n . Podzbiór zbioru \mathbb{L}_n , zawierający macierze o elementach $l_{ii}=1$ $(i=1,2,\ldots,n)$, oznaczamy symbolem $\mathbb{L}_n^{(1)}$.

Definicja (Macierz trójkątna górna)

Macierz $U=[u_{ij}]\in\mathbb{R}^{n\times n}$ nazywamy trójkątną górną, jeśli $u_{ij}=0$ dla i>j:

$$U = \begin{bmatrix} u_{11} & u_{12} & u_{13} & \dots & u_{1n} \\ & u_{22} & u_{23} & \dots & u_{2n} \\ & & u_{33} & \dots & u_{3n} \\ & & & & \dots & \dots \\ & & & & & u_{nn} \end{bmatrix}.$$

Zbiór wszystkich macierzy trójkątnych górnych stopnia n oznaczamy symbolem \mathbb{U}_n .

$$Ux = b, \qquad \mathbb{U}_n \ni U = [u_{ij}];$$

$$\sum_{j=i}^n u_{ij} x_j = b_i \qquad (i = 1, 2, \dots, n).$$

$$x_i = \frac{1}{u_{ii}} \left\{ b_i - \sum_{j=i+1}^n u_{ij} x_j \right\} \qquad (i = n, n-1, \dots, 2, 1).$$

$$Ux = b, \qquad \mathbb{U}_n \ni U = [u_{ij}];$$

$$\sum_{j=i}^n u_{ij}x_j = b_i \qquad (i = 1, 2, \dots, n).$$

$$x_i = \frac{1}{u_{ii}} \left\{ b_i - \sum_{j=i+1}^n u_{ij}x_j \right\} \qquad (i = n, n-1, \dots, 2, 1).$$

$$Lx = b, \qquad \mathbb{L}_n \ni L = [l_{ij}];$$

$$\sum_{j=1}^i l_{ij}x_j = b_i \qquad (i = 1, 2, \dots, n).$$

$$x_i = \frac{1}{l_{ii}} \left\{ b_i - \sum_{j=1}^{i-1} l_{ij}x_j \right\} \qquad (i = 1, 2, \dots, n)$$

Rozkłady trójkątne

Twierdzenie (Rozkład trójkątny macierzy)

Niech macierz $A = [a_{ij}] \in \mathbb{R}^{n \times n}$ będzie taka, że

$$\det A_k \neq 0 \qquad (k = 1, 2, \dots, n),$$

gdzie

$$A_k := \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1k} \\ a_{21} & a_{22} & \dots & a_{2k} \\ \dots & \dots & \dots & \dots \\ a_{k1} & a_{k2} & \dots & a_{kk} \end{bmatrix} \qquad (k = 1, 2, \dots, n).$$

Wówczas istnieje dokładnie jedna para macierzy $L \in \mathbb{L}_n^{(1)}$, $U \in \mathbb{U}_n$, spełniających równość LU = A. Ponadto, $\det A = u_{11}u_{22} \cdots u_{nn}$.

Faktoryzacja LU

Dla $i = 1, 2, \ldots, n$ obliczamy

$$u_{ij} = a_{ij} - \sum_{k=1}^{i-1} l_{ik} u_{kj} \qquad (j = i, i+1, \dots, n),$$
$$l_{ji} = \left(a_{ji} - \sum_{k=1}^{i-1} l_{jk} u_{ki}\right) / u_{ii} \qquad (j = i+1, i+2, \dots, n).$$

Jeśli znany jest rozkład macierzy układu równań

$$Ax = b$$

na czynniki trójkątne:

$$A = LU$$
,

to zadanie sprowadza się do rozwiązania kolejno dwóch układów o macierzy trójkątnej:

$$\begin{cases} L\mathbf{y} = \mathbf{b}, \\ U\mathbf{x} = \mathbf{y} \end{cases}$$

Eliminacja Gaussa

Rozważmy układ równań

$$Ax = b$$
 $(A \in \mathbb{R}^{n \times n}, b \in \mathbb{R}^n).$ (2)

Eliminacja Gaussa

Rozważmy układ równań

$$Ax = b$$
 $(A \in \mathbb{R}^{n \times n}, b \in \mathbb{R}^n).$ (2)

Niech

$$A^{(1)} = [a_{ij}^{(1)}] := A, \quad \boldsymbol{b^{(1)}} = [b_1^{(1)}, \dots, b_n^{(1)}]^T := \boldsymbol{b}.$$

Eliminacja Gaussa

Rozważmy układ równań

$$Ax = b$$
 $(A \in \mathbb{R}^{n \times n}, b \in \mathbb{R}^n).$ (2)

Niech

$$A^{(1)} = [a_{ij}^{(1)}] := A, \quad \boldsymbol{b^{(1)}} = [b_1^{(1)}, \dots, b_n^{(1)}]^T := \boldsymbol{b}.$$

Układ (2) przekształcamy w sposób równoważny do układu

$$\sum_{j=k}^{n} a_{kj}^{(k)} x_j = b_k^{(k)} \qquad (k = 1, 2, \dots, n),$$
(3)

gdzie
$$a_k^{(k)} \neq 0 \; (k=1,2,\ldots,n)$$
 oraz

$$\begin{cases} a_{ij}^{(k)} = a_{ij}^{(k-1)} + m_{i,k-1} a_{k-1,j}^{(k-1)}, \\ b_i^{(k)} = b_i^{(k-1)} + m_{i,k-1} b_{k-1}^{(k-1)}, \\ m_{i,k-1} = -\frac{a_{i,k-1}^{(k-1)}}{a_{k-1,k-1}^{(k-1)}} \end{cases}$$
 $(k = 2, 3, \dots, n; i, j = k, k+1, \dots, n).$

Macierze
Normy wektorowe i macierzowe
Układy trójkątne
Metoda eliminacji Gaussa
Metody iteracyjne

Współczynniki $a_{kk}^{(k)}$ $(k=1,2,\ldots,n)$ nazywamy elementami głównymi.

Współczynniki $a_{kk}^{(k)}$ $(k=1,2,\ldots,n)$ nazywamy elementami głównymi. Z układu (3) łatwo otrzymać rozwiązanie wg wzorów

$$x_k = \left(b_k^{(k)} - \sum_{i=k+1}^n a_{kj}^{(k)} x_j\right) / a_{kk}^{(k)} \qquad (k = n, n-1, \dots, 2, 1)$$
 (4)

Zdefiniujmy stałą g_n , zwaną współczynnikiem wzrostu, wzorem

$$g_n := \max_{1 \le i, j, r \le n} |a_{ij}^{(r)}| / \max_{1 \le i, j \le n} |a_{ij}|.$$

Dla eliminacji z częściowym wyborem elem. gł. zachodzi nierówność

$$g_n \leqslant 2^{n-1}.$$

Zdefiniujmy stałą g_n , zwaną **współczynnikiem wzrostu**, wzorem

$$g_n := \max_{1 \le i, j, r \le n} |a_{ij}^{(r)}| / \max_{1 \le i, j \le n} |a_{ij}|.$$

Dla eliminacji z częściowym wyborem elem. gł. zachodzi nierówność

$$g_n \leqslant 2^{n-1}.$$

Najlepsze ze znanych oszacowań dla pełnego wyboru elem. gł.,

$$g_n \leqslant \varphi(n),$$

gdzie $\varphi(n):=n^{1/2}\left(2^13^{1/2}4^{1/3}\dots n^{1/(n-1)}\right)^{1/2}<1.8n^{1/2+\log n/4}$, wydaje się natomiast poważnie zawyżone. Np. $\varphi(10)=19,\ \varphi(50)=530,\ \varphi(100)=3570,$

Niech \tilde{x} oznacza rozwiązanie układu Ax=b, obliczone w t-cyfrowej arytmetyce fl za pomocą metody eliminacji z wyborem (częściowym lub pełnym) elementów głównych. Wówczas istnieje macierz $\delta A \in \mathbb{R}^{n \times n}$, spełniająca nierówność

$$\|\delta A\|_{\infty} \leqslant C n^3 g_n 2^{-t} \|A\|_{\infty} \qquad (C - \text{const})$$
 (5)

i taka, że

$$(A + \delta A)\tilde{\boldsymbol{x}} = \boldsymbol{b}.$$

Wniosek

Metoda eliminacji z wyborem elem. gł. jest algorytmem numerycznie poprawnym (o ile współczynnik g_n nie jest zbyt duży).

Niech x będzie rozwiązaniem układu równań liniowych

$$Ax = b \tag{6}$$

i niech wektor $oldsymbol{x} + \delta oldsymbol{x}$ spełnia zaburzony układ

$$(A + \delta A)(\boldsymbol{x} + \delta \boldsymbol{x}) = \boldsymbol{b} + \delta \boldsymbol{b}, \tag{7}$$

gdzie $\delta A \in \mathbb{R}^{n \times n}$ i $\delta b \in \mathbb{R}^n$ są zaburzeniami macierzy A i wektora b. Załóżmy, że $\eta = \|\delta A\| \|A^{-1}\| = \operatorname{cond}(A) \|\delta A\| / \|A\| < 1$ i $\|I\| = 1$. Wówczas dla dowolnej pary norm zgodnych zachodzi nierowność

$$\frac{\|\delta \boldsymbol{x}\|}{\|\boldsymbol{x}\|} \leqslant \frac{\operatorname{cond}(A)}{1 - \eta} \left(\frac{\|\delta \boldsymbol{b}\|}{\|\boldsymbol{b}\|} + \frac{\|\delta A\|}{\|A\|} \right), \tag{8}$$

gdzie

$$\operatorname{cond}(A) := ||A|| \cdot ||A^{-1}||.$$

$$\boldsymbol{x}^{(1)}, \boldsymbol{x}^{(2)}, \ldots \in \mathbb{R}^n.$$

Niech będzie $\boldsymbol{x}^{(k)} = [x_1^{(k)}, x_2^{(k)}, \dots, x_n^{(k)}]^T.$

Definicja

Ciąg wektorów $\{ {m x}^{(k)} \}$ jest zbieżny do wektora ${m x} \in \mathbb{R}^n$, ${m x} = [x_1, x_2, \dots, x_n]^T$, gdy $k \to \infty$ (tj. ${m x}^{(k)} \to {m x}$ $(k \to \infty)$ lub $\lim_{k \to \infty} {m x}^{(k)} = {m x}$) wtedy i tylko wtedy gdy dla $i = 1, 2, \dots, n$ jest

$$x_i^{(k)} \to x_i \qquad (k \to \infty).$$

Analogicznie, jeśli

$${A^{(k)}} = A^{(1)}, A^{(2)}, \dots$$

jest ciągiem macierzy klasy $\mathbb{R}^{n \times n}$, $A^{(k)} = [a_{ij}^{(k)}]$, to

Definicja

Ciąg macierzy $\{A^{(k)}\}$ jest zbieżny do macierzy $A=[a_{ij}]\in\mathbb{R}^{n\times n}$ (tj. $A^{(k)}\to A$ $(k\to\infty)$ lub $\lim_{k\to\infty}A^{(k)}=A$) wtedy i tylko wtedy gdy dla $i,j=1,2,\ldots,n$ jest

$$a_{ij}^{(k)} \to a_{ij} \qquad (k \to \infty).$$

Lemat

- $A^{(k)} \to A \quad (k \to \infty) \iff \|A^{(k)} A\| \to 0 \quad (k \to \infty)$ dla każdej normy macierzowej.

Metoda Richardsona

Metodę iteracyjną Richardsona definiuje wzór

$$\boldsymbol{x}^{(k+1)} = B_{\tau} \boldsymbol{x}^{(k)} + \boldsymbol{c} \qquad (k \geqslant 0).$$

gdzie

$$B_{\tau} := I - \tau A, \qquad c := \tau \boldsymbol{b}.$$
 (9)

Równoważnie, dla $k = 0, 1, \ldots$ obliczamy

$$x_i^{(k+1)} = x_i^{(k)} + \tau \left(b_i - \sum_{j=1}^n a_{ij} x_j^{(k)} \right).$$
 (10)

Metoda Jacobiego

W metodzie Jacobiego mamy następującą macierz przekształcenia:

$$B \equiv B_J := -D^{-1}(L+U). \tag{11}$$

Wersję skalarną metody opisują wzory

$$x_i^{(k+1)} = \frac{1}{a_{ii}} \left(b_i - \sum_{j=1, j \neq i}^n a_{ij} x_j^{(k)} \right)$$
$$= x_i^{(k)} + \frac{1}{a_{ii}} \left(b_i - \sum_{j=1}^n a_{ij} x_j^{(k)} \right). \quad (12)$$

 $\emph{Jeśli}\ \emph{A}\ \emph{jest macierzą}\ \emph{ze}\ \emph{ściśle dominującą}\ \emph{przekątną},\ \emph{tj}.$

$$|a_{ii}| > \sum_{j=1, j \neq i}^{n} |a_{ij}|$$
 $(i = 1, 2, \dots, n),$

to $||B_J||_{\infty} < 1$ i metoda Jacobiego jest zbieżna.

Metoda Gaussa-Seidela

W metodzie (Gaussa-)Seidela mamy następującą macierz przekształcenia:

$$B \equiv B_S := -(D+L)^{-1}U. \tag{13}$$

Wersję skalarną metody opisują wzory

$$x_i^{(k+1)} = \frac{1}{a_{ii}} \left(b_i - \sum_{j=1}^{i-1} a_{ij} x_j^{(k+1)} - \sum_{j=i+1}^n a_{ij} x_j^{(k)} \right)$$
$$= x_i^{(k)} + \frac{1}{a_{ii}} \left(b_i - \sum_{j=1}^{i-1} a_{ij} x_j^{(k+1)} - \sum_{j=i}^n a_{ij} x_j^{(k)} \right). \tag{14}$$

Metoda relaksacji

W metodzie relaksacji mamy następującą macierz przekształcenia:

$$B_{\omega} := (I - \omega M)^{-1} \left(\omega N + (1 - \omega)I \right) \tag{15}$$

gdzie

$$M := -D^{-1}L, \qquad N := -D^{-1}U.$$

Wersję skalarą metody relaksacji można zapisać w następujący sposób:

$$x_i^{(k+1)} = x_i^{(k)} + \frac{\omega}{a_{ii}} \left(b_i - \sum_{j=1}^{i-1} a_{ij} x_j^{(k+1)} - \sum_{j=i}^n a_{ij} x_j^{(k)} \right)$$
 (16)

Metoda relaksacji

W metodzie relaksacji mamy następującą macierz przekształcenia:

$$B_{\omega} := (I - \omega M)^{-1} \left(\omega N + (1 - \omega)I\right) \tag{15}$$

gdzie

$$M := -D^{-1}L, \qquad N := -D^{-1}U.$$

Wersję skalarą metody relaksacji można zapisać w następujący sposób:

$$x_i^{(k+1)} = x_i^{(k)} + \frac{\omega}{a_{ii}} \left(b_i - \sum_{j=1}^{i-1} a_{ij} x_j^{(k+1)} - \sum_{j=i}^n a_{ij} x_j^{(k)} \right)$$
(16)

Twierdzenie (Kahan)

Dla dowolnej nieosobliwej macierzy A i dowolnej liczby ω zachodzi nierówność

$$\varrho(B_{\omega}) \geqslant |\omega - 1|. \tag{17}$$

Metoda relaksacji

W metodzie relaksacji mamy następującą macierz przekształcenia:

$$B_{\omega} := (I - \omega M)^{-1} \left(\omega N + (1 - \omega)I\right) \tag{15}$$

gdzie

$$M := -D^{-1}L, \qquad N := -D^{-1}U.$$

Wersję skalarą metody relaksacji można zapisać w następujący sposób:

$$x_i^{(k+1)} = x_i^{(k)} + \frac{\omega}{a_{ii}} \left(b_i - \sum_{j=1}^{i-1} a_{ij} x_j^{(k+1)} - \sum_{j=i}^n a_{ij} x_j^{(k)} \right)$$
 (16)

Twierdzenie (Ostrowski, 1954)

Jeśli macierz A jest symetryczna i dodatnio określona, to metoda relaksacji jest zbieżna dla każdego $\omega \in (0, 2)$.

Niech A będzie macierzą symetryczną, dodatnio określoną i niech ma postać blokowo-trójprzekątniową:

$$A = \begin{bmatrix} D_1 & U_1 \\ L_2 & D_2 & U_2 \\ & \dots & & \dots \\ & & L_{m-1} & D_{m-1} & U_{m-1} \\ & & & L_m & D_m \end{bmatrix},$$

gdzie D_i są kwadratowymi macierzami przekątniowymi. Wtedy $\varrho(B_S)=\varrho^2(B_J)$ i optymalny czynnik relaksacji wyraża się wzorem

$$\omega_{\rm opt} = \frac{2}{1 + \sqrt{1 - \varrho(B_S)}}.$$

Optymalną wartością $\varrho(B_\omega)$ jest

$$\varrho(B_{\omega_{\text{opt}}}) = \omega_{\text{opt}} - 1.$$

Jeśli $A \in \mathbb{R}^{n \times n}$ oraz $A = A^T$, to istnieje macierz ortogonalna $U \in \mathbb{R}^{n \times n}$, że

$$U^T A U = \Lambda = \operatorname{diag}(\lambda_1, \lambda_2, \dots, \lambda_n) \in \mathbb{R}^{n \times n},$$

przy czym $\lambda_1, \lambda_2, \dots, \lambda_n$ są wartościami własnymi macierzy A.

Jeśli $A \in \mathbb{R}^{n \times n}$ oraz $A = A^T$, to istnieje macierz ortogonalna $U \in \mathbb{R}^{n \times n}$, że

$$U^T A U = \Lambda = \operatorname{diag}(\lambda_1, \lambda_2, \dots, \lambda_n) \in \mathbb{R}^{n \times n},$$

przy czym $\lambda_1, \lambda_2, \dots, \lambda_n$ są wartościami własnymi macierzy A.

Twierdzenie (Schur)

Jeli $A \in \mathbb{R}^{n \times n}$, to istnieje macierz unitarna $U \in \mathbb{C}^{n \times n}$, że

$$U^H A U = R \in \mathbb{C}^{n \times n},$$

gdzie $R \in \mathbb{C}^{n \times n}$ jest macierzą górną trójkątną. Jeśli wszystkie wartości własne macierzy A są rzeczywiste, to $U, R \in \mathbb{R}^{n \times n}$.

Twierdzenie (o rozkładzie SVD)

Dla dowolnej macierzy $A \in \mathbb{R}^{m \times n}$ istnieją takie macierze ortogonalne $U \in \mathbb{R}^{m \times m}$ i $V \in \mathbb{R}^{n \times n}$, że

$$U^{T}AV = \Sigma = \operatorname{diag}(\sigma_{1}, \sigma_{2}, \dots, \sigma_{\ell}) \in \mathbb{R}^{m \times n},$$
(17)

gdzie $\ell = \min(m, n)$. Ponadto, jeśli $\operatorname{rank}(A) = r$, to

$$\sigma_1 \geqslant \sigma_2 \geqslant \ldots \geqslant \sigma_r > 0, \qquad \sigma_{r+1} = \sigma_{r+2} = \ldots = \sigma_\ell = 0.$$

Algorytm 1 Ortogonalizacja Grama-Schmidta

end for

$$\begin{aligned} & \textbf{Require: } A = [\pmb{a}_1, \pmb{a}_2, \dots, \pmb{a}_n] \in \mathbb{R}^{m \times n}, \, \text{rank}(A) = n \\ & \textbf{Ensure: } A = QR, \, Q = [\pmb{q}_1, \pmb{q}_2, \dots, \pmb{q}_n] \in \mathbb{R}^{m \times n}, \, Q^T Q = I_n, \\ & R = [r_{ij}] \in \mathbb{R}^{n \times n}, \, r_{ij} = 0 \quad (i > j) \end{aligned} \qquad \qquad \triangleright \, \text{Obliczamy kolejne wektory } \pmb{q}_k \\ & \textbf{for } k = 1, 2, \dots, k - 1 \, \textbf{do} \\ & \textbf{for } i = 1, 2, \dots, k - 1 \, \textbf{do} \\ & r_{ik} \leftarrow \pmb{q}_i^T \pmb{a}_k \\ & \textbf{end for} \\ & \pmb{p}_k \leftarrow \pmb{a}_k - \sum_{i=1}^{k-1} \pmb{q}_i r_{ik} \\ & r_{kk} \leftarrow \|\pmb{p}_k\| \\ & \pmb{q}_k \leftarrow \pmb{p}_k / r_{kk} \end{aligned} \qquad \triangleright \, \text{Można sprawdzić, że } \langle \pmb{p}_k, \pmb{q}_j \rangle = 0 \, \text{dla } j = 1, 2, \dots, k - 1 \\ & r_{kk} \leftarrow \|\pmb{p}_k\| \\ & \pmb{q}_k \leftarrow \pmb{p}_k / r_{kk} \end{aligned} \qquad \triangleright \, \text{W ten sposób mamy } \|\pmb{q}_k\| = 1$$

Algorytm 2 Zmodyfikowany algorytm ortogonalizacji Grama-Schmidta

end for

Require:
$$A = [\boldsymbol{a}_1, \boldsymbol{a}_2, \dots, \boldsymbol{a}_n] \in \mathbb{R}^{m \times n}$$
, $\operatorname{rank}(A) = n$
Ensure: $A = QR, \ Q = [\boldsymbol{q}_1, \boldsymbol{q}_2, \dots, \boldsymbol{q}_n] \in \mathbb{R}^{m \times n}, \ Q^T Q = I_n,$

$$R = [r_{ij}] \in \mathbb{R}^{n \times n}, \ r_{ij} = 0 \quad (i > j)$$
for $k = 1, 2, \dots, n$ do $\qquad \qquad \triangleright$ Obliczamy kolejne wektory \boldsymbol{q}_k
for $i = 1, 2, \dots, k - 1$ do
$$r_{ik} \leftarrow \boldsymbol{q}_i^T \boldsymbol{q}_k$$

$$q_k \leftarrow \boldsymbol{q}_k - \boldsymbol{q}_i r_{ik}$$
end for
$$r_{kk} \leftarrow \|\boldsymbol{q}_k\|$$

$$q_k \leftarrow \boldsymbol{q}_k / r_{kk}$$
 \triangleright W ten sposób mamy $\|\boldsymbol{q}_k\| = 1$