Correction Examen UV Des données aux modèles Partie - Problèmes inverses

I/ Exercices de chauffe

1. Rappelez au moins deux caractérisations des matrices symétriques définies positives (SDP).

Correction : Les matrices SDP réelles de taille n sont les matrices symétriques $A \in \mathbb{R}^{n \times n}$ qui satisfont une des quatres conditions suivantes :

- $-\langle Ax, x \rangle \ge 0, \ \forall x \in \mathbb{R}^n.$
- Toutes les valeurs propres de A sont strictement positives.
- L'application $(x,y) \mapsto \langle Ax,y \rangle$ définit un produit scalaire.
- Il existe une matrice $B \in \mathbb{R}^{n \times n}$ inversible (souvent notée $A^{1/2}$ ou \sqrt{A}) telle que $A = B^2$.
- 2. Soit $J(x) = \langle Ax, x \rangle$ où $A \in \mathbb{R}^{n \times n}$ est une matrice arbitraire. Déterminez $\nabla J(x)$.

Correction: On a

$$J(x+h) = \langle A(x+h), (x+h) \rangle$$

= $\langle Ax, x \rangle + \langle Ax, h \rangle + \langle Ah, x \rangle + \langle Ah, h \rangle$
= $J(x) + \langle Ax, h \rangle + \langle h, A^*x \rangle + o(\|h\|_2^2).$

Par identification de la partie linéaire en h, on obtient $\nabla J(x) = Ax + A^*x$.

3. Soit $A \in \mathbb{R}^{m \times n}$ une matrice arbitraire. Calculez les valeurs singulières de la matrice B suivante en fonction de celles de A.

$$B = \begin{pmatrix} 0_{m,m} & A \\ A^* & 0_{n,n} \end{pmatrix}$$

Correction : On a $B^* = B$, d'où :

$$\begin{split} B^*B &= \begin{pmatrix} 0 & U\Sigma V^T \\ V\Sigma^T U & 0 \end{pmatrix} \begin{pmatrix} 0 & U\Sigma V^T \\ V\Sigma^T U & 0 \end{pmatrix} \\ &= \begin{pmatrix} U\Sigma \Sigma^T U^T & 0 \\ 0 & V\Sigma^T \Sigma V^T \end{pmatrix} \\ &= \begin{pmatrix} U & 0 \\ 0 & V \end{pmatrix} \begin{pmatrix} \Sigma\Sigma^T & 0 \\ 0 & \Sigma^T \Sigma \end{pmatrix} \begin{pmatrix} U^T & 0 \\ 0 & V^T \end{pmatrix}. \end{split}$$

La matrix $W = \begin{pmatrix} U & 0 \\ 0 & V \end{pmatrix}$ est une matrice orthogonale. Dans la dernière égalité, on a donc obtenu une diagonalisation de B^*B . Les valeurs propres de B^*B se lisent sur la matrice diagonale $\begin{pmatrix} \Sigma \Sigma^T & 0 \\ 0 & \Sigma^T \Sigma \end{pmatrix}$ Elles sont égales à σ_k^2 , le carré des valeurs singulières de A. Les valeurs singulières de B sont égales à la racine des valeurs propres de B^*B . Donc les valeurs propres de B ordonnées sont donc : $(\sigma_1, \sigma_1, \sigma_2, \sigma_2, \dots, \sigma_n \geq \sigma_n)$.

II/ Problème inverse

On pose

$$A = \begin{pmatrix} 3 & 1 & 2 \\ 1 & 0 & 0 \\ 2 & 1 & 2 \\ 4 & 0 & 0 \end{pmatrix}$$

1. Déterminez l'image de A.

Correction: On a
$$\operatorname{Im}(A) = \operatorname{vect} \left(\begin{pmatrix} 3 \\ 1 \\ 2 \\ 4 \end{pmatrix}, \begin{pmatrix} 1 \\ 0 \\ 1 \\ 0 \end{pmatrix} \right).$$

2. Déterminez le rang de A.

Correction : On a rang(A) = dim(Im(A)) = 2, car les deux dernières colonnes sont linéairement dépendantes.

3. On pose $E=\mathbb{R}^3$ et $F=\mathrm{vect}\left(\begin{pmatrix} 3\\1\\2\\4 \end{pmatrix}, \begin{pmatrix} 1\\0\\1\\0 \end{pmatrix}\right)$. On considère le problème inverse suivant :

"Etant donné $b \in F$, trouver $x \in E$ tel que Ax = b".

Est-ce que le problème suivant est bien pos'e pour des perturbations du second membre dans F ?

Correction : Non. La solution n'est pas unique car deux colonnes sont linéairement dépendantes.

4. Est-ce que le problème suivant est bien posé pour des perturbations du second membre dans \mathbb{R}^4 ?

Correction: Le problème n'est pas bien posé car pour des perturbations dans \mathbb{R}^4 , la solution du problème perturbé peut ne pas exister.

III/ Courant-Fischer

Le théorème de Courant-Fischer est un résultat fondamental qui caractérise les valeurs propres d'une matrice symétrique. Soit $A \in \mathbb{R}^{n \times n}$ une matrice symétrique et soit S_k l'ensemble de tous les sous-espaces vectoriels de \mathbb{R}^n de dimension k. Comme A est symétrique, elle est diagonalisable et on note $\lambda_1 \geq \lambda_2 \geq \ldots \geq \lambda_n$ ses valeurs propres. Le théorème de Courant-Fischer est le suivant :

$$\forall k \in \{1, \dots, n\}, \ \lambda_k = \sup_{V \in S_k} \inf_{x \in V, \|x\|_2 = 1} \langle Ax, x \rangle. \tag{1}$$

L'équation (1) devient ainsi

$$\lambda_1 = \sup_{V = \text{vect}(x), \|x\|_2 = 1} \langle Ax, x \rangle. \tag{2}$$

1. Vérifiez la formule pour k = 1.

Correction : Si V est un sous-espace de dimension 1, il s'écrit $V = \{\alpha x, \alpha \in \mathbb{R}\}$ pour un certain $x \neq 0$ de norme 1. Ainsi,

$$\inf_{x \in V, ||x||_2 = 1} \langle Ax, x \rangle = \langle Ax, x \rangle. \tag{3}$$

 et

$$\sup_{x \in \mathbb{R}^n, \|x\|_2 = 1} \langle Ax, x \rangle. \tag{4}$$

qui est une caractérisation des valeurs propres.

2. Soit $M \in \mathbb{R}^{m \times n}$ une matrice arbitraire dont la k-ième valeur singulière est notée σ_k . Montrez que :

$$\sigma_k = \sup_{V \in S_k} \inf_{x \in S_k, ||x||_2 = 1} ||Mx||_2.$$

Correction: On pose

$$\alpha_k = \sup_{V \in S_k} \inf_{x \in S_k, ||x||_2 = 1} ||Mx||_2^2$$

$$\sup_{V \in S_k} \inf_{x \in S_k, ||x||_2 = 1} \langle Mx, Mx \rangle$$

$$\sup_{V \in S_k} \inf_{x \in S_k, ||x||_2 = 1} \langle M^*Mx, x \rangle.$$

La matrice M^*M est une matrice symétrique, donc $\alpha_k = \lambda_k(M^*M) = \sigma_k^2(M)$.