序号	类别	描述
1	检视规则	原理图需要进行检视,提交集体检视是需要完成自检,确保没有低级问题。
2	检视规则	原理图要和公司团队和可以邀请的专家一起进行检视。
3	检视规则	第一次原理图发出进行集体检视后所有的修改点都需要进行记录。
4	检视规则	正式版本的原理图在投板前需要经过经理的审判。
5	差分网络	原理图中差分线的网络,芯片管脚处的P和N与网络命令的P和N应该——对应。
6	单网络	原理图中所有单网络需要做——确认。
7	空网络	原理图中所有空网络需要做——确认。
8	网格	1、原理图绘制中要确认网格设置是否一致。
9	חוש	2、原理图中没有网格最小值设置不一致造成网络未连接的情况。
10	封装库	1、原理图中器件的封装与手册一致。
11	封衣件	2、原理图器件是否是标准库的symbol。
12	绘制要求	原理图中器件的封装与手册一致。
13	网口连接 器	确认网口连接器的开口方向、是否带指示灯以及是否带PoE
1 1/1	网口变压 器	确认变压器选型是否满足需求,比如带PoE
15	按键	确认按键型号是直按键还是侧按键
16	电阻上下 拉	同一网络避免重复上拉或者下拉
17	CÍDO	芯片的OD门或者OC门的输出管脚需要上拉
18	匹配	高速信号的始端和末端需要预留串阻
19	三极管	三极管电路需要考虑通流能力
20	可测试性	在单板的关键电路和芯片附近增加地孔,便于测试
21	连接器防 呆	连接器选型时需要选择有防呆设计的型号
22	仿真	低速时钟信号,一驱多总线接口下挂器件的驱动能力、匹配方式、接口时序必须经过仿真确认,例如MDC/MDIO、IIC、PCI、Local bus

23	仿真	电路中使用电感、电容使用合适Q值,可以通过仿真。品质因数Q=2π*(一个周期存储的能量/一个
		周期损失的能量)
24	时序	确认上电时序是否满足芯片手册和推荐电路要求。
25	时序	确认下电时序是否满足芯片手册和推荐电路要求。
26	时序	确认复位时序是否满足芯片手册和推荐电路要求。
27	复位开关	<u>中似好姓开大议计,安彻正大好好姓,中似往外问题,连以好姓开大议计大广土一段起脉见似电十</u>
28		复位信号设计
29		(1) 依据芯片要求进行上下拉
30	复位设计	(2) 确认芯片复位的默认状态
31		(3) Peset信号并联几十PF的电容滤波,优化信号质量。
32		(4) 复位信号保证型号完整性。
33	复位	所有接口和光模块默认处于复位状态。
34	电平匹配	不同电平标准互连,关注电压、输入输出门限、匹配方式。TTL,CMOS,LVTTL,LVCMOS,
34		CML, LVDS等
	功耗	详细审查各个芯片的功耗设计,计算出单板各个电压的最大功耗,选择有一定余量的电源。
	缓启	热插拔电路要进行缓启动设计
37	磁珠	小电压大电流(安培级)值电源输出端口的磁珠,需要考虑磁珠压降
	连接器	板间电源连接器通流能力及压降留有裕量
39	标识	扣板与母板插座网络标识是否一致,前后插卡连接器管脚信号要——对应。
40	阻抗匹配	一驱多信号要根据仿真结果进行阻抗匹配,确定是否加始端或末端匹配电阻
41	匹配电平	原理图设计要关注厂家器件资料的说明,输入输出都会有明确的匹配要求。
42	二级管	使用在控制、检测、电源合入等电路中的二极管,必须考虑二极管反向漏电流和二极管的压降是否
72		满足设计要求。
43	MOS	CINOS合件不使用的制入制工目脚需按照合件于加安水处理,于加不安水的必须与广系师外处理力 士
44	温感	关键器件的温度要进行监控
15	244/245	有上、下拉需要的信号在经过没有输出保持功能的总线驱动器后,需要在总线驱动器的输入、输出
		端加上下拉。
46	244/245	244/245如果不带保持功能,则必须将不用的输入管脚上下拉。
47	时钟	晶振管脚直接输出的信号禁止直接1驱多,多个负载会影响信号质量,建议采用1对1的方式。

48	时钟	晶体的xt-out和时钟驱动器相连需要0402串阻,阻值选择不能影响单板起震。
49	时钟	锁相环电路及参数的选取必须经过专项计算。
50	时钟	时钟环路滤波陶瓷电容优选NPO介质电容。
51	时钟	确认信号摆幅,jitter等是否超出器件要求。
52	时钟	确认时钟器件在中心频率、工作电压、输出电平、占空比、相位等各项指标上能完全满足要求。
53	DDR	DDR等存储器接口都要有时钟频率降额设计。
54	DDR	对于可靠性要求较高的单板建议在RAM开发中满足ECC设计规则要求。
55	DDR	DDR的VTT电源滤波要做到Vtt电阻和电容的搭配。
56	PHY	MDC/MDIO采用一驱多的匹配方式,主器件经过串阻-》上拉电阻-》串阻到从器件,串阻要放置在两端。
57	PHY	1对多的控制,PHY需要预留地址信号,用于控制。
EO	PHY	有些芯片功耗根据访问条件和温度,功耗变化较大,设计时要要仔细查询器件手册,明确功耗和厂
30	PHY	家芯片的关系。
59	PHY	设备有光模块接口是,光模块内部串接10nf电容,链路不需要进行重复设计。
60	散热器	选择散热器时,要考虑到散热器的重量和与设备的结合方式。
61	I2C	设备通过I2C进行互联时,可以使用芯片内I2C模块,也可以通过I2C模块。
62	电容	单板中射频相关部分设计的时候,需要旁路,滤波电容,针对不同的干扰频率要选择不同容值的滤
02		波电容。
63	电容	电容并联设计时,要计算或通过仿真分析谐振点,避免可能会出现的谐振问题。
64	电容	滤波电容的设计要关注对控制管脚的影响。
65	电容	没有使用的管脚如何使用需要参考芯片手册和demo板的设计去关注这些管脚的设计是否合理。
66	特征阻抗	X)PCD仰线的特征阻抗有特殊安水的,需安任原理图以有给互连工程则的需求又付甲进行特殊说明
67	复位设计	关键功能器件应该预留独立的复位设计。
68	复位设计	很多Flash都有rst的管脚,为满足启动阶段的软件功能实现要求,在
69	射频滤波	视频放大器的电源设计时要添加合适的滤波电容,防止电源噪声对射频信号质量造成本良影响。
70	射频滤波	电源、功率电路设计是应用电需要考虑电阻的功率特性的选择。
71	可测试性	部分功能模块要保持可以长工状态,利于进行硬件测试。
72	射频电路	直流偏置电路是否需要使能控制,控制电压精度是否满足放大器的要求。

73	射频电路	保证前级可能输出的最大RF峰值功率小于后级级联器件的最大极限输入功率3dB左右,需要关注信
		号峰值和过冲对器件过功率的影响。
74	射频电路	射频器件功率放大器的中心散热焊盘在原理图上必须接地。
75	射频电路	具备on/off的射频器件功能,在off状态下隔离度有问题,隔离度影响收发的干扰情况,干扰信号需
/ 5		要保持在合理电平内,否则影响套片正常工作。
76	射频电路	PA的RF发送端链路PA外围电路正价负反馈设计防止烧PA。
77	射频电路	射频接收电路,需要在接收机和套片之间预留PI型位置,调试接收灵敏度。
78	电源	确保所有的电源转换模块OCP/OVP点(过流保护点和过压保护点)设定正确
70	电源	电源的带负载能力是否足够,相数是否足够,能提供足够大的电流、功率給CPU,Chipset等(1相按
19	七 /尽 	最大20A计算,保守15A)
80	电源	PWM单相频率范围是200K-600K;集成MOS的可以达到1MHz
81	电源	输入电容的Ripple current(参考2700mA);电容Ripple Current小会导致电容发热,影响寿命
82	电源	输出电容的ESR是否足够小
83	电源	电容的耐压是否满足,同时满足降额
84	电源	H-MOS导通时间短; L-MOS导通时间长
85	电源	H-Side MOSFET要选择导通速度快的
86	电源	L-Side MOSFET要选择Rds(on)低的
87	电源	线性电源的损耗P=Δv*i,一般,1颗LDO可承受的功率损耗Pmax*Junction=器件Temp,保证器件
		temp与环境Temp之和小于MOS的最大工作温度的80%。
88	电源	单板上同一电源和地名称要统一
89	电源	单相PWM driver 的BOOT Pin与phase端接0.1uF电容.核对BOOT电容,是否耐压值为50V。H-
		MOS导通之后,BOOT Pin电压达24V,Phase端12V。
90	电源	H-side Gate上预留0ohm电阻,防止High side MOS因Vgs过大被击穿
91	电源	Feedback电路设置是否准确;在电路上注释反馈电压计算公式。
92	电源	GND和AGND电路要分开,但最后要通过一点进行连接。如果是chipset的 AGND电流很大,可直
		接与GND相连,不需要连接0OHM,否则通流不够。
93	电源	PWROK的上拉要用对应的电源去上拉。
94	电源	有些模块线路copy过来后,需要注意AGND属性要更改,最好能赋予net名字,比如经常会遇到两个
		P1V1的AGND起的名字一样。

95 电源 确认和感封装,核对饱和电流是否满足电路需求。电感封装越大,过电流能力越强,电感的饱和电流应该大于电路的OCP电流。 确认补偿线路,保证足够的穿越频率,以及相位裕度。 97 电源 核对LD的的最大压差是否满足器件的要求(输入的电压范围和输出的电压范围) 48 FPGA			
### 1966	95	电源	
97 电源 核对LDO的最大压差是否满足器件的要求(输入的电压范围和输出的电压范围)			流应该大于电路的OCP电流。
98 FPGA	96	电源	确认补偿线路,保证足够的穿越频率,以及相位裕度。
世界の おけれてPLD/FPGA之间的逻辑电平是否匹配,避免两边电平不一致。 PFGA CPLD的GPIO信号作为输出管脚控制时序时,需要将此Pin通过4.7K至10K电阻做下拉处理 CPLD的JTAG接口需要连至Header上,注意Header的Pin脚定义符合烧录器要求,JTAG信号预留 ESD保护电路。 101 FPGA 空余的没有使用的GPIO Pin接到LED上,一般3-4个LED即可。 102 FPGA 对于同一功能的GPIO尽量只选用同一个Pin (Reset信号除外) 103 FPGA 不同bank的电平跟这个bank的VCCIO电平有关 FPGA外接ROM时,需在原理图里面标注1,2,3顺序(顺序不对会出现烧录不了的问题)。确保信号连接之间接口电平是否正确,是否需要采用levelshift设计 CPLD core电和IO电时序,一般要求core电要早于IO电,否则,输出信号需要加下拉电阻。(一般情况下core电都P于IO电压,Core起来之后IO状态就可以固定了。具体要求参考厂家器件资料) 106 FPGA FPGA的MGT Bank如果不用时,RX信号需要接地处理。 107 FPGA INTT Dallik指中间电影响压发口间可以用于,可以接口Dallik,小用时受不对内和自身。 108 FPGA 在CPLD需求文件必须指定每个管脚的输入和输出状态。 110 FPGA 对于CPLD尽可能的少用时序逻辑,多使用组合逻辑,尽可能用简单逻辑代替复杂逻辑 111 FPGA 设计人员提供的逻辑需求要避免竞争和冒险,即用CPLD输出的信号做其他逻辑的输入判定 12 FPGA 有支持12C的设计需求,要事先规划好系统12C拓扑,在芯片选型时要考虑预留逻辑空间。(BMC如果12C资源够用,CPLD单独占用一组12C总线) 113 连接器 确认connector在PCB上的Pin定义方式 两块对插板connector的对应Pin脚信号定义是否一致,对于多块单板互连,需要确认对应连接器的物理位置是否正确。	97	电源	核对LDO的最大压差是否满足器件的要求(输入的电压范围和输出的电压范围)
100 FPGA CPLD的JTAG接口需要连至Header上,注意Header的Pin脚定义符合烧录器要求,JTAG信号预留 ESD保护电路。 101 FPGA 空余的没有使用的GPIO Pin接到LED上,一般3-4个LED即可。 102 FPGA 对于同一功能的GPIO尽量只选用同一个Pin(Reset信号除外) 103 FPGA 不同bank的电平跟这个bank的VCCIO电平有关 104 FPGA FPGA的特殊ROM时,需在原理图里面标注1,2,3顺序(顺序不对会出现烧录不了的问题)。确保信号连接之间接口电平是否正确,是否需要采用levelshift设计 105 FPGA CPLD core电和IO电时序,一般要求core电要早于IO电,否则,输出信号需要加下拉电阻。(一般情况下core电都早于IO电压,Core起来之后IO状态就可以固定了。具体要求参考厂家器件资料) 106 FPGA FPGA的MGT Bank如果不用时,RX信号需要接地处理。 107 FPGA FPGA的MGT Bank如果不用时,RX信号需要接地处理。 108 FPGA 在原理设计期间必须向CPLD编程人员提供规范的CPLD需求文件 109 FPGA 在原理设计期间必须向CPLD编程人员提供规范的CPLD需求文件 109 FPGA 在CPLD需求文件必须指定每个管脚的输入和输出状态。 110 FPGA 对于CPLD尽可能的少用时序逻辑,多使用组合逻辑,尽可能用简单逻辑代替复杂逻辑 111 FPGA 设计人员提供的逻辑需求要避免竞争和冒险,即用CPLD输出的信号做其他逻辑的输入判定 112 FPGA 有支持12C的设计需求,要事先规划好系统12C拓扑,在芯片选型时要考虑预留逻辑空间。(BMC如果12C资源够用,CPLD单独占用一组12C总线) 113 连接器 商认connector在PCB上的Pin定义方式 两块对插板connector的对应Pin脚信号定义是否一致,对于多块单板互连,需要确认对应连接器的物理位置是否正确。	98	FPGA	
FPGA ESD保护电路。	99	FPGA	CPLD的GPIO信号作为输出管脚控制时序时,需要将此Pin通过4.7K至10K电阻做下拉处理
102 FPGA 对于同一功能的GPIO尽量只选用同一个Pin(Reset信号除外) 103 FPGA 不同bank的电平跟这个bank的VCCIO电平有关 104 FPGA FPGA的接ROM时,需在原理图里面标注1,2,3顺序(顺序不对会出现烧录不了的问题)。确保信号连接之间接口电平是否正确,是否需要采用levelshift设计 105 FPGA CPLD core电和IO电时序,一般要求core电要早于IO电,否则,输出信号需要加下拉电阻。(一般情况下core电都早于IO电压,Core起来之后IO状态就可以固定了。具体要求参考厂家器件资料) 106 FPGA FPGA的MGT Bank如果不用时,RX信号需要接地处理。 107 FPGA CPLD需求可能是为同处理的证据,例如证据对的证据,不用的要对的ALTER 在原理设计期间必须向CPLD编程人员提供规范的CPLD需求文件 109 FPGA 在CPLD需求文件必须指定每个管脚的输入和输出状态。 110 FPGA 对于CPLD尽可能的少用时序逻辑,多使用组合逻辑,尽可能用简单逻辑代替复杂逻辑 111 FPGA 设计人员提供的逻辑需求要避免竞争和冒险,即用CPLD输出的信号做其他逻辑的输入判定 112 FPGA 有支持I2C的设计需求,要事先规划好系统I2C拓扑,在芯片选型时要考虑预留逻辑空间。(BMC如果I2C资源够用,CPLD单独占用一组I2C总线) 113 连接器 商速连接器的带宽要按照1.5-2倍选择 114 连接器 确认connector在PCB上的Pin定义方式 两块对插板connector的对应Pin脚信号定义是否一致,对于多块单板互连,需要确认对应连接器的物理位置是否正确。	100	FPGA	
103 FPGA 不同bank的电平跟这个bank的VCCIO电平有关 104 FPGA FPGA的接ROM时,需在原理图里面标注1,2,3顺序(顺序不对会出现烧录不了的问题)。确保信号连接之间接口电平是否正确,是否需要采用levelshift设计 105 FPGA CPLD core电和IO电时序,一般要求core电要早于IO电,否则,输出信号需要加下拉电阻。(一般情况下core电都早于IO电压,Core起来之后IO状态就可以固定了。具体要求参考厂家器件资料) 106 FPGA FPGA的MGT Bank如果不用时,RX信号需要接地处理。 107 FPGA ALTER TOTAL TOTA	101	FPGA	空余的没有使用的GPIO Pin接到LED上,一般3-4个LED即可。
FPGA FPGA FPGA外接ROM时,需在原理图里面标注1,2,3顺序(顺序不对会出现烧录不了的问题)。确保信号连接之间接口电平是否正确,是否需要采用levelshift设计 CPLD core电和IO电时序,一般要求core电要早于IO电,否则,输出信号需要加下拉电阻。(一般情况下core电都早于IO电压,Core起来之后IO状态就可以固定了。具体要求参考厂家器件资料) 106 FPGA FPGA的MGT Bank如果不用时,RX信号需要接地处理。 107 FPGA FPGA 在原理设计期间必须向CPLD编程人员提供规范的CPLD需求文件 108 FPGA 在原理设计期间必须向CPLD编程人员提供规范的CPLD需求文件 109 FPGA 在CPLD需求文件必须指定每个管脚的输入和输出状态。 110 FPGA 对于CPLD尽可能的少用时序逻辑,多使用组合逻辑,尽可能用简单逻辑代替复杂逻辑 111 FPGA 设计人员提供的逻辑需求要避免竞争和冒险,即用CPLD输出的信号做其他逻辑的输入判定 12 FPGA 有支持I2C的设计需求,要事先规划好系统I2C拓扑,在芯片选型时要考虑预留逻辑空间。(BMC如果I2C资源够用,CPLD单独占用一组I2C总线) 13 连接器 高速连接器的带宽要按照1.5-2倍选择 14 连接器 确认connector在PCB上的Pin定义方式 两块对插板connector的对应Pin脚信号定义是否一致,对于多块单板互连,需要确认对应连接器的物理位置是否正确。	102	FPGA	对于同一功能的GPIO尽量只选用同一个Pin(Reset信号除外)
连接之间接口电平是否正确,是否需要采用levelshift设计 CPLD core电和IO电时序,一般要求core电要早于IO电,否则,输出信号需要加下拉电阻。(一般情况下core电都早于IO电压,Core起来之后IO状态就可以固定了。具体要求参考厂家器件资料) 106 FPGA FPGA的MGT Bank如果不用时,RX信号需要接地处理。 107 FPGA INGT Dating可以同途该口的Dating,为效果不用的,RX信号需要接地处理。 108 FPGA 在原理设计期间必须向CPLD编程人员提供规范的CPLD需求文件 109 FPGA 在CPLD需求文件必须指定每个管脚的输入和输出状态。 110 FPGA 对于CPLD尽可能的少用时序逻辑,多使用组合逻辑,尽可能用简单逻辑代替复杂逻辑 111 FPGA 设计人员提供的逻辑需求要避免竞争和冒险,即用CPLD输出的信号做其他逻辑的输入判定 112 FPGA 有支持I2C的设计需求,要事先规划好系统I2C拓扑,在芯片选型时要考虑预留逻辑空间。(BMC如果I2C资源够用,CPLD单独占用一组I2C总线) 113 连接器 高速连接器的带宽要按照1.5-2倍选择 114 连接器 确认connector在PCB上的Pin定义方式 两块对插板connector的对应Pin脚信号定义是否一致,对于多块单板互连,需要确认对应连接器的物理位置是否正确。	103	FPGA	不同bank的电平跟这个bank的VCCIO电平有关
股情况下core电都早于IO电压,Core起来之后IO状态就可以固定了。具体要求参考厂家器件资料) 106 FPGA FPGA的MGT Bank如果不用时,RX信号需要接地处理。 107 FPGA INTO DATE PICTURE	104	FPGA	
107 FPGA	105	FPGA	
108 FPGA 在原理设计期间必须向CPLD编程人员提供规范的CPLD需求文件 109 FPGA 在CPLD需求文件必须指定每个管脚的输入和输出状态。 110 FPGA 对于CPLD尽可能的少用时序逻辑,多使用组合逻辑,尽可能用简单逻辑代替复杂逻辑 111 FPGA 设计人员提供的逻辑需求要避免竞争和冒险,即用CPLD输出的信号做其他逻辑的输入判定 112 FPGA 有支持12C的设计需求,要事先规划好系统12C拓扑,在芯片选型时要考虑预留逻辑空间。(BMC如果12C资源够用,CPLD单独占用一组12C总线) 113 连接器 高速连接器的带宽要按照1.5-2倍选择 114 连接器 确认connector在PCB上的Pin定义方式 两块对插板connector的对应Pin脚信号定义是否一致,对于多块单板互连,需要确认对应连接器的物理位置是否正确。	106	FPGA	
109 FPGA 在CPLD需求文件必须指定每个管脚的输入和输出状态。 110 FPGA 对于CPLD尽可能的少用时序逻辑,多使用组合逻辑,尽可能用简单逻辑代替复杂逻辑 111 FPGA 设计人员提供的逻辑需求要避免竞争和冒险,即用CPLD输出的信号做其他逻辑的输入判定 112 FPGA 有支持I2C的设计需求,要事先规划好系统I2C拓扑,在芯片选型时要考虑预留逻辑空间。(BMC如果I2C资源够用,CPLD单独占用一组I2C总线) 113 连接器 高速连接器的带宽要按照1.5-2倍选择 114 连接器 确认connector在PCB上的Pin定义方式 115 连接器 两块对插板connector的对应Pin脚信号定义是否一致,对于多块单板互连,需要确认对应连接器的物理位置是否正确。	107	FPGA	MIGT DATIK指型能量沙局速按口的DATIK,例如MITTATIOTE,GTA按口DATIK,个用的安对KA信号
110 FPGA 对于CPLD尽可能的少用时序逻辑,多使用组合逻辑,尽可能用简单逻辑代替复杂逻辑 111 FPGA 设计人员提供的逻辑需求要避免竞争和冒险,即用CPLD输出的信号做其他逻辑的输入判定 112 FPGA 有支持I2C的设计需求,要事先规划好系统I2C拓扑,在芯片选型时要考虑预留逻辑空间。(BMC如果I2C资源够用,CPLD单独占用一组I2C总线) 113 连接器 高速连接器的带宽要按照1.5-2倍选择 114 连接器 确认connector在PCB上的Pin定义方式 115 连接器 两块对插板connector的对应Pin脚信号定义是否一致,对于多块单板互连,需要确认对应连接器的物理位置是否正确。	108	FPGA	在原理设计期间必须向CPLD编程人员提供规范的CPLD需求文件
111 FPGA 设计人员提供的逻辑需求要避免竞争和冒险,即用CPLD输出的信号做其他逻辑的输入判定 112 FPGA 有支持I2C的设计需求,要事先规划好系统I2C拓扑,在芯片选型时要考虑预留逻辑空间。(BMC如果I2C资源够用,CPLD单独占用一组I2C总线) 113 连接器 高速连接器的带宽要按照1.5-2倍选择 114 连接器 确认connector在PCB上的Pin定义方式 115 连接器 两块对插板connector的对应Pin脚信号定义是否一致,对于多块单板互连,需要确认对应连接器的物理位置是否正确。	109	FPGA	在CPLD需求文件必须指定每个管脚的输入和输出状态。
112 FPGA 有支持I2C的设计需求,要事先规划好系统I2C拓扑,在芯片选型时要考虑预留逻辑空间。(BMC如果I2C资源够用,CPLD单独占用一组I2C总线) 113 连接器 高速连接器的带宽要按照1.5-2倍选择 114 连接器 确认connector在PCB上的Pin定义方式 115 连接器 两块对插板connector的对应Pin脚信号定义是否一致,对于多块单板互连,需要确认对应连接器的物理位置是否正确。	110	FPGA	对于CPLD尽可能的少用时序逻辑,多使用组合逻辑,尽可能用简单逻辑代替复杂逻辑
112 FPGA 果I2C资源够用,CPLD单独占用一组I2C总线) 113 连接器 高速连接器的带宽要按照1.5-2倍选择 114 连接器 确认connector在PCB上的Pin定义方式 115 连接器 两块对插板connector的对应Pin脚信号定义是否一致,对于多块单板互连,需要确认对应连接器的物理位置是否正确。	111	FPGA	设计人员提供的逻辑需求要避免竞争和冒险,即用CPLD输出的信号做其他逻辑的输入判定
114 连接器 确认connector在PCB上的Pin定义方式 115 连接器 两块对插板connector的对应Pin脚信号定义是否一致,对于多块单板互连,需要确认对应连接器的物理位置是否正确。	112	FPGA	
115 连接器 两块对插板connector的对应Pin脚信号定义是否一致,对于多块单板互连,需要确认对应连接器的物理位置是否正确。	113	连接器	高速连接器的带宽要按照1.5-2倍选择
物理位置是否正确。	114	连接器	确认connector在PCB上的Pin定义方式
116 连接器 根据板厚来确定是否可以选用焊接件和压接器件	115	连接器	
	116	连接器	根据板厚来确定是否可以选用焊接件和压接器件

117	连接器	一般连接器应注意母端有长短针,因此需母端定义电源和GND
118	连接器	高速信号连接器,高速信号周围的GND Pin一定接地
119	连接器	高速信号连接器,定义信号时,注意TX,RX在连接器上的分布,避免TX/RX混在一起(避免cross talk)
120	连接器	作为一个由两个连接器拼成的接口,需选择同一厂商,同一类型连接器
121	连接器	SMD连接器选择时,其上面要有一个平面,便于工程的高速机吸嘴吸取不易脱落。Packing优先选择盘装,不用管状的。
122	连接器	尽量能够统一为焊接器件或压接器件
123	连接器	注意管脚长度的选择
124	连接器	在进入layout布局之前务必提供各连接器位置顺序图
125	连接器	连接器选型时尽可能选择通用的物料(两家以上Source的),保证一定的可替代性
126	连接器	连接器选型时需要考虑PCB的厚径比 (不能超过10:1)
127	连接器	网口连接器选择时要关注连接器颜色,颜色不同会影响产品的外观感知。
128	连接器	对于不同速率、种类的接口,如10GE、GE口、FE口、控制口、调试口的鞥可以通过面膜不同颜色 进行区分。
129	连接器	连接器选择时需要关注是否有定位管脚,没有定位管脚生产加工时可能会出现偏位。
130	连接器	连接器选择时需要关注引脚长度和PCB板厚的关系,引脚过长在单板生产加工完成时需要减脚处理,引脚过短(如定位管脚)在单板加工时会出现上翘等现象。
131	时钟	clock signal (除differential Signal外) ,要预留可调节EMI 的电容位置,一般为10pF.
132	时钟	PCI-E2.0 slot的clock signal 建议与控制芯片同源。
133	时钟	当Clockgen或Clock Buffer使用SYS供电时,应注意网卡、CPLD等芯片的时钟信号是否需要单独 的时钟源
134	时钟	所有Clockgen和Clock Buffer的SMbus接口上拉的电压应与IC的供电一致
135	时钟	当晶振或clock buffer输出的电平和IC需要的电平不一致时需要加AC耦合和阻抗匹配电路,同时要注意SWING和CROSSPOINT设置是否正确。
136	时钟	注意Ossilater的clock信号输出电平,如果是LVPECL,外部需要加对地150ohm电阻。对于发射级耦合逻辑电路,需要在外围提供地回流路径。
137	时钟	CPU的晶振应尽量排布在晶振输入引脚附近。无源晶振要加几十皮法的电容;有源晶振可直接将信号引至CPU的晶振输入脚。