Trabajo práctico

Etapas típicas en procesamiento digital de señales

1. Escriba un programa en MATLAB que grafique una función senoidal con las siguientes especificaciones:

• Frecuencia: 100 Hz.

Frecuencia de muestreo: 1000 Hz.

• Tiempo inicio: 0 s.

Tiempo final: 1 s.

- 2. Escriba un programa en MATLAB que permita agregar a la señal del Ejercicio 1 cierta cantidad de ruido blanco gaussiano.
 - 1. Obtenga la varianza del ruido a partir de la relación:

$$SNR = 10 \log \frac{\sigma_{signal}^2}{\sigma_{noise}^2}$$

- 2. Utilice la función randn () para simular el ruido (help randn).
- 3. El propotipo de la función debe ser $signal_n = my_awgn(signal, snr)$. Los datos de entrada son el vector signal y el escalar snr.
- 4. La varianza de signal se puede calcular con la función var (help var).
- 7. Compare las salidas de las funciones my_awgn y awgn (help awgn).
- 3. Ejecute el modelo de Simulink provisto, aliasing_demo.mdl. En este modelo se genera una señal de 100 Hz muestreada a 10 kHz. El bloque ZOH la vuelve a muestrear. Finalmente se grafica su respuesta en frecuencia con un analizador de espectro.
 - 1. Observe la pantalla del analizador de espectro. ¿Qué se debería ver?
 - 2. ¿A qué frecuencia está trabajando el bloque ZOH?
 - 3. ¿Qué debe modificar en el modelo para evitar el efecto de aliasing?
- 4. Ejecute el modelo de Simulink provisto, adc_demo.mdl. El objetivo del ejercicio es representar la señal de entrada aguas abajo del ADC con los mismos valores de la señal original.
 - 1. ¿Observa algún error en la salida del ADC? ¿Cómo solucionaría el problema?
 - 2. Analice el error de cuantización. ¿Es correcto su valor? De no ser así, ¿qué solución propone?
 - 3. ¿Qué propone para disminuir este error?

- 4. Implemente en el modelo la ecuación de la teoría ${\it SNR}_{\it ADC}$ y compare su resultado para diferentes cantidad de bits del ADC.
- 5. Suponga que tenemos un ADC de 12 bits que opera sobre un rango de ± 5 V. Asuma que el ADC es ideal y que su función de transferencia está dada por la siguiente figura,

- a) ¿Cuál es el nivel de cuantización q del ADC, dado en voltios?
- b) Si se aplica una señal sinusoidal de 7 V pico a pico, ¿qué nivel de $^{SNR}_{ADC}$ se puede esperar? Desarrolle la respuesta.