ESO204A, Fluid Mechanics and Rate Processes

Boundary layer and related topics

Chapter 7 of F M White Chapter 9 of Fox McDonald

Boundary layer thickness $u_{y=\delta} = .99u_{\text{free stream}}$

Displacement thickness $\delta^* = \int_0^\infty \left(1 - \frac{u}{U}\right) dy$

Momentum thickness $\delta^{**} = \int_{0}^{\infty} \frac{u}{U} \left(1 - \frac{u}{U}\right) dy$

Important results for laminar boundary layer flow over a flat plate

$$F_D = \rho b U^2 \delta^{**}$$
 Momentum $\tau_w = \rho U^2 \frac{d \delta^{**}}{dx}$

$$F_D =
ho b U^2 \delta^{**}$$
 Momentum $\tau_w =
ho U^2 \frac{d \delta^{**}}{dx}$ $C_D = \frac{2\delta^{**}}{L}$ $C_D = \frac{1}{L} \int_0^L C_{f,x} dx$

Approximate solution
$$\tau_{w} = \rho U^{2} \frac{d\delta^{**}}{dx} \qquad \frac{u}{U} = f\left(\frac{y}{\delta}\right) \implies u^{*} = f(\eta)$$

$$\delta^{**} = \int_0^\delta u^* \left(1 - u^*\right) dy = \int_0^\delta f \left(1 - f\right) dy = \delta \int_0^1 f \left(1 - f\right) d\eta = c_1 \delta$$

$$\tau_{w} = \mu \left(\frac{\partial u}{\partial y} \right)_{y=0} = \mu \left[\frac{\partial \left(U u^{*} \right)}{\partial \left(\delta \eta \right)} \right]_{\eta=0} = \mu \frac{U}{\delta} f' \left(\eta = 0 \right) = c_{2} \mu \frac{U}{\delta}$$

$$\tau_w = \rho U^2 \frac{d\delta^{**}}{dx} \implies c_2 \mu \frac{U}{\delta} = \rho U^2 c_1 \frac{d\delta}{dx} \qquad \delta(x=0) = 0$$

$$c_{2}\mu \frac{U}{\delta} = \rho U^{2}c_{1}\frac{d\delta}{dx} \qquad \delta(x=0) = 0$$

$$\Rightarrow \frac{c_{2}\mu U}{\rho U^{2}c_{1}}dx = \delta d\delta \qquad \Rightarrow \delta^{2} = \frac{2c_{2}}{c_{1}}\frac{\mu x}{\rho U} + 2c_{3}$$

$$\delta^{2} = \frac{2c_{2}}{c_{1}} \frac{\mu x}{\rho U} = \frac{2c_{2}}{c_{1}} \frac{\mu}{\rho U x} x^{2} = \frac{2c_{2}}{c_{1}} \frac{x^{2}}{Re_{x}} \implies \frac{\delta^{2}}{x^{2}} = \frac{2c_{2}}{c_{1}} \frac{1}{Re_{x}}$$

$$\frac{\delta}{x} = \sqrt{\frac{2c_2}{c_1}} \operatorname{Re}_x^{-\frac{1}{2}} \qquad \text{Recall} \quad \delta^{**} = c_1 \delta \qquad \frac{\delta^{**}}{x} = \sqrt{2c_1c_2} \operatorname{Re}_x^{-\frac{1}{2}}$$

Evaluate
$$au_w = \rho U^2 \frac{d\delta^{**}}{dx} ag{F_D} = \rho b U^2 \delta^{**}$$

We can find important quantities if we know the velocity profile

Simplest example:
$$\frac{u}{U} = f\left(\frac{y}{\delta}\right) = f(\eta) = a + b\eta = \eta$$

$$u(y=0) = 0; u(y=\delta) = U$$
 $a = 0, b = 1$

$$\frac{u}{U} = \frac{y}{\delta} \text{ for } y \le \delta$$
$$= 1 \text{ for } y > \delta$$

 $\frac{u}{U} = \frac{y}{s}$ for $y \le s$ Let us use this velocity profile

$$\frac{u}{U} = \frac{y}{\delta} \text{ for } y \le \delta$$

$$= 1 \text{ for } y > \delta$$

$$c_1 = \int_0^1 f(1-f) d\eta \qquad c_2 = f'(\eta = 0)$$

$$\frac{\delta}{x} = \sqrt{\frac{2c_2}{c_1}} \operatorname{Re}_x^{\frac{1}{2}} \qquad \frac{\delta^{**}}{x} = \sqrt{2c_1c_2} \operatorname{Re}_x^{\frac{1}{2}}$$

$$c_1 = \int_0^1 \eta(1-\eta) d\eta = \frac{1}{6} \qquad c_2 = 1$$

$$\sqrt{\frac{2c_2}{c_1}} = 3.46 \qquad \sqrt{2c_1c_2} = .58$$

$$4.91 \qquad \text{exact solution}$$

Exact vs. Approximate solution

Profile Character	$\delta \mathrm{Re}_x^{1/2}/x$	$c_f \mathrm{Re}_x^{1/2}$	$C_{Df}\mathrm{Re}_{\ell}^{1/2}$
a. Blasius solution	5.00	0.664	1.328
b. Linear $u/U = y/\delta$	3.46	0.578	1.156
c. Parabolic $u/U = 2y/\delta - (y/\delta)^2$	5.48	0.730	1.460
d. Cubic $u/U = 3(y/\delta)/2 - (y/\delta)^3/2$	4.64	0.646	1.292
e. Sine wave $u/U = \sin[\pi(y/\delta)/2]$	4.79	0.655	1.310

Blasius (exact) solution: exact solution of N-S Eq. after applying boundary layer approximation

Flow over cylinder and sphere

Boundary layer theory can be extended to all geometries including cylinder and sphere

Boundary layer theory accurately predicts the onset of flow separation, transition, drag/lift forces; potential flow theory fails here

Boundary layer approximation fails when flow separates, approximate solutions (such as flow over flat plate) are not possible in such cases

Flow Separation Viscous forces important throughout Re = UDNy = 0.1 Boundary layer separates from the solid surface Viscosity not important Viscous effects important Visco