第2节函数零点小题策略:含参(★★★☆)

强化训练

1. (2022 • 赤峰模拟 • ★★)已知函数 $f(x)=3x-ae^x$ 有两个零点,则实数 a 的取值范围为()

(A)
$$(-\infty, \frac{3}{-})$$

(B)
$$(0, \frac{3}{2})$$

(C)
$$(0,\frac{e}{3})$$

(A)
$$(-\infty, \frac{3}{e})$$
 (B) $(0, \frac{3}{e})$ (C) $(0, \frac{e}{3})$ (D) $(-\infty, \frac{e}{3})$

答案:B

解法 1: $f(x) = 0 \Leftrightarrow 3x - ae^x = 0 \Leftrightarrow 3x = ae^x$, 两端同除以 e^x , 即可全分离,

 $3x = ae^x \Leftrightarrow a = \frac{3x}{e^x}$,所以问题等价于直线 y = a 与函数 $y = \frac{3x}{e^x}$ 的图象有 2 个交点,

设 $g(x) = \frac{3x}{e^x}(x \in \mathbf{R})$,则 $g'(x) = \frac{3(1-x)}{e^x}$,所以 $g'(x) > 0 \Leftrightarrow x < 1$, $g'(x) < 0 \Leftrightarrow x > 1$,

从而 g(x) 在 $(-\infty,1)$ 上 \nearrow ,在 $(1,+\infty)$ 上 \searrow ,

又 $g(1) = \frac{3}{e}$, $\lim_{x \to -\infty} g(x) = -\infty$, $\lim_{x \to +\infty} g(x) = 0$, 所以g(x)的大致图象如图 1,

由图可知当且仅当 $0 < a < \frac{3}{e}$ 时,直线 $y = a = \frac{1}{2}$ 与g(x)的图象有2个交点,故 $a \in (0, \frac{3}{e})$.

解法 2: f(x)的两部分都能作图,故用半分离也行, $f(x)=0 \Leftrightarrow 3x-ae^x=0 \Leftrightarrow 3x=ae^x$,

为了作图方便,两端同除以a,先考虑a=0的情形,

当a=0时,方程 $3x=ae^x$ 即为3x=0,所以x=0,故f(x)只有1个零点,不合题意;

当 $a \neq 0$ 时, $3x = ae^x \Leftrightarrow \frac{3}{x} = e^x$,注意到直线 y = ex 与函数 $y = e^x$ 的图象相切,如图 2,

由图可知当且仅当 $\frac{3}{a}$ > e时, $y = \frac{3}{a}x$ 与 $y = e^x$ 有两个交点,所以 $0 < a < \frac{3}{e}$.

能是(

(A) 0 (B)
$$\frac{1}{2}$$
 (C) 1 (D) 2

答案: BC

解析: 先将参数 b 全分离出来, 便于作图研究交点, $g(x) = 0 \Leftrightarrow f(x) = b$,

当 $x \le 0$ 时, $f(x) = (x+1)e^x$, $f'(x) = (x+2)e^x$,所以 $f'(x) < 0 \Leftrightarrow x < -2$, $f'(x) > 0 \Leftrightarrow -2 < x \le 0$,

故 f(x) 在 $(-\infty, -2)$ 上〉,在 (-2,0]上〉, f(0)=1, $f(-2)=-\frac{1}{e^2}$,且当 $x \to -\infty$ 时, $f(x) \to 0$,

据此可作出 f(x) 的草图如图, g(x)有 3 个零点等价于直线 y=b与 f(x)的图象有 3 个交点,

由图可知 $0 < b \le 1$, 故选 B、C.

3. $(2019 \cdot 天津卷 \cdot ★★★)$ 已知函数 $f(x) = \begin{cases} 2\sqrt{x}, 0 \le x \le 1 \\ 1, x > 1 \end{cases}$,若关于x的方程 $f(x) = -\frac{1}{4}x + a$ 恰有两个互异

的实数解,则a的取值范围为(

(A)
$$\left[\frac{5}{4}, \frac{9}{4}\right]$$

(B)
$$(\frac{5}{4}, \frac{9}{4}]$$

(C)
$$(\frac{5}{4}, \frac{9}{4}] \cup \{1\}$$

(A)
$$\left[\frac{5}{4}, \frac{9}{4}\right]$$
 (B) $\left(\frac{5}{4}, \frac{9}{4}\right]$ (C) $\left(\frac{5}{4}, \frac{9}{4}\right] \cup \{1\}$ (D) $\left[\frac{5}{4}, \frac{9}{4}\right] \cup \{1\}$

答案: D

解析: 先全分离, 转化为水平直线与函数图象交点问题, $f(x) = -\frac{1}{4}x + a \Leftrightarrow f(x) + \frac{1}{4}x = a$,

$$\Rightarrow g(x) = f(x) + \frac{1}{4}x$$
, 则 $g(x) = \begin{cases} 2\sqrt{x} + \frac{x}{4}, 0 \le x \le 1 \\ \frac{1}{4}(x + \frac{4}{x}), x > 1 \end{cases}$, 作出函数 $y = g(x)$ 的图象如图,

当且仅当a=1或 $\frac{5}{4} \le a \le \frac{9}{4}$ 时,直线y=a与y=g(x)的图象有2个交点,满足题意.

【反思】本题用半分离方法直接作图研究 y = f(x)和 $y = -\frac{1}{4}x + a$ 的交点也行,但模型更复杂,不妨自行尝 试.

4.
$$(2022 \cdot 济宁二模 \cdot \star \star \star \star)$$
 已知函数 $f(x) = \begin{cases} x, x \le 0 \\ a \ln x, x > 0 \end{cases}$,若函数 $g(x) = f(x) - f(-x)$ 有 5 个零点,则实

数 a 的取值范围是 ()

(A)
$$(-e,0)$$
 (B) $(-\frac{1}{e},0)$ (C) $(-\infty,-e)$ (D) $(-\infty,-\frac{1}{e})$

答案: C

解析:观察可得g(x)为奇函数,可先用对称性将研究的范围缩小,

由题意, g(-x) = f(-x) - f(x) = -g(x), 所以 g(x) 为奇函数,

由对称性,g(x)有 5 个零点等价于g(x)在 $(0,+\infty)$ 上有 2 个零点,接下来在 $(0,+\infty)$ 上考虑,

当 $x \in (0,+\infty)$ 时, $g(x) = a \ln x - (-x) = a \ln x + x$,所以 $g(x) = 0 \Leftrightarrow a \ln x + x = 0 \Leftrightarrow a \ln x = -x$,

接下来全分离、半分离均可,我们以半分离为例,两端同除以a,转化为直线 $y=-\frac{x}{2}$ 与 $y=\ln x$ 有2个交点 来研究,

当a=0时, $a \ln x = -x$ 即为0=-x,所以x=0,不满足题意;

当 $a \neq 0$ 时, $a \ln x = -x \Leftrightarrow \ln x = -\frac{x}{a}$, 如图, 曲线 $y = \ln x$ 过原点的切线为 $y = \frac{1}{e}x$,

所以要使 $y = -\frac{x}{a}$ 与 $y = \ln x$ 有 2 个交点,应有 $0 < -\frac{1}{a} < \frac{1}{e}$,故 a < -e.

5. $(2022 \cdot 烟台模拟 \cdot \star \star \star \star \star)$ 已知函数 $f(x) = \begin{cases} |\ln x|, x > 0 \\ x^2 + 2x - 1, x < 0 \end{cases}$, 若方程 f(x) = ax - 1 有 3 个实根,则实

数 a 的取值范围是 ()

(A)
$$(0,1)$$
 (B) $(0,2)$ (C) $(1,+\infty)$ (D) $(2,+\infty)$

$$(C)$$
 $(1,+\infty)$

(D)
$$(2,+\infty)$$

答案: B

解法 1: 观察可得方程 f(x) = ax - 1 中参数 a 可以全分离,故先试试全分离,

由题意, f(0) = -1, 所以 x = 0 是方程 f(x) = ax - 1 的 1 个实根;

当 $x \neq 0$ 时, $f(x) = ax - 1 \Leftrightarrow a = \frac{f(x) + 1}{x}$, 由题意,直线 y = a 与函数 $y = \frac{f(x) + 1}{x}$ 的图象应有 2 个交点,

设
$$g(x) = \frac{f(x)+1}{x}(x \neq 0)$$
,则 $g(x) = \begin{cases} \frac{|\ln x|+1}{x}, x > 0\\ x + 2, x < 0 \end{cases}$,要画 $g(x)$ 的图象,需将 $x > 0$ 的部分去绝对值、求导,

当
$$0 < x < 1$$
 时, $g(x) = \frac{1 - \ln x}{x}$, 所以 $g'(x) = \frac{\ln x - 2}{x^2} < 0$, 故 $g(x)$ 在 $(0,1)$ 上 \(\),

当
$$x > 1$$
时, $g(x) = \frac{\ln x + 1}{x}$,所以 $g'(x) = -\frac{\ln x}{x^2} < 0$,故 $g(x)$ 在 $(1, +\infty)$ 上〉,

又 $\lim_{x\to 0^+} g(x) = +\infty$, g(1) = 1, $\lim_{x\to +\infty} g(x) = 0$, 所以 g(x) 的大致图象如图 1,

由图可知当且仅当0 < a < 2时,直线y = a与函数 $y = \frac{f(x)+1}{x}$ 的图象有 2 个交点.

解法 2: 本题半分离也可行,但模型较复杂,下面直接作图研究直线 y = ax - 1 和 y = f(x) 的图象的交点,以 切线1,和水平线作为临界状态讨论,

如图 2, 直线 l_1 是 f(x) 的图象在点 (0,-1) 处的切线,当 x < 0 时, f'(x) = 2x + 2,所以该切线的斜率为 2, 由图可知 l_1 与f(x)的图象有2个交点,不合题意;

当 a > 2 时,直线 y = ax - 1 如图中的 l_3 , l_3 与 f(x)的图象有 2 个交点,不合题意;

当0 < a < 2时,如图中的 l_2 ,两图象有3个交点,满足题意;

当a≤0时,如图中的 l_4 ,两图象有2个交点,不合题意;

综上所述,实数a的取值范围是(0,2).

6.(2022・安徽模拟・★★★★)已知函数 $f(x)=ax-\ln x(a\in \mathbf{R})$ 有两个零点,分别为 x_1 , x_2 ,且 $2x_1< x_2$, 则 a 的取值范围是 ()

(A)
$$(-\infty, \frac{\ln 2}{2})$$
 (B) $(0, \frac{\ln 2}{2})$ (C) $(\frac{\ln 2}{2}, \frac{1}{e})$ (D) $(\frac{\ln 2}{2}, +\infty)$

(B)
$$(0, \frac{\ln 2}{2})$$

(C)
$$(\frac{\ln 2}{2}, \frac{1}{e})$$

(D)
$$(\frac{\ln 2}{2}, +\infty)$$

答案: B

解析: 先将 f(x)=0 半分离, $f(x)=0 \Leftrightarrow ax=\ln x$, 注意到直线 $y=\frac{1}{2}x$ 与曲线 $y=\ln x$ 相切于 x=e 处, 如图, 所以当且仅当 $0 < a < \frac{1}{2}$ 时,直线y = ax与曲线 $y = \ln x$ 有 2 个交点,

那怎样才能满足题干规定的 $2x_1 < x_2$ 呢?可以这么看,当 $0 < a < \frac{1}{2}$ 时,若a增大,则 x_1 增大, x_2 减小,所以

 $\frac{x_2}{a}$ 减小,故只需求出 a 在 $\frac{x_2}{a}$ = 2 时的临界值即可,

设此时 y = ax 与 $y = \ln x$ 的两个交点分别为 A 和 B, 如图,

因为 $x_2 = 2x_1$,且A,B都在直线y = ax上,所以 $A(x_1, ax_1)$, $B(2x_1, 2ax_1)$,

又 A, B 两点也都在曲线 $y = \ln x$ 上,所以 $\begin{cases} ax_1 = \ln x_1 & \text{①} \\ 2ax_1 = \ln(2x_1) & \text{②} \end{cases}$

②-①可得: $ax_1 = \ln 2$,代入①可得 $x_1 = 2$,所以 $a = \frac{\ln 2}{2}$,

由图可知 a 越小, $\frac{x_2}{x_1}$ 越大,所以 $0 < a < \frac{\ln 2}{2}$ 满足题意.

《一数•高考数学核心方法》