Math 110 HW3

Neo Lee

09/16/2023

Problem 1

Let
$$U := \{ p \in \mathcal{P}_2(\mathbb{R}) : \int_{-1}^1 (xp''(x) + p'(x)) dx = 0 \}.$$

- (a) Find a basis for U.
- (b) Extend your basis in part (a) to a basis of $\mathcal{P}_3(\mathbb{R})$.
- (c) Find a subspace W of $\mathcal{P}_3(\mathbb{R})$ such that $\mathcal{P}_3(\mathbb{R}) = U \oplus W$.

Suppose v_1, \ldots, v_m are linearly independent in V and $w \in V$. Prove that

$$\dim span(v_1-w,v_2-w,\ldots,v_m-w)\geq m-1.$$

Does the 'inclusion-exclusion formula' hold for three subspaces, i.e., is it always true that

$$\dim(U_1 + U_2 + U_3) = \dim(U_1) + \dim(U_2) + \dim(U_3)$$
$$-\dim(U_1 \cap U_2) - \dim(U_1 \cap U_3) - \dim(U_2 \cap U_3)$$
$$+ \dim(U_1 \cap U_2 \cap U_3)?$$

Prove this formula or provide a counterexample.

What is the dimension and the 'canonical' basis of:

- (a) \mathbb{C} as a vector space over \mathbb{C} ?
- (b) \mathbb{C} as a vector space over \mathbb{R} ?
- (c) \mathbb{C}^5 as a vector space over \mathbb{C} ?
- (d) \mathbb{C}^7 as a vector space over \mathbb{R} ?

Suppose U and W are subspaces of V such that U+W=V, suppose u_1, \ldots, u_m is a basis of U and w_1, \ldots, w_n is a basis of W. Disprove that $u_1, \ldots, u_m, w_1, \ldots, w_n$ is necessarily a basis of V. What additional condition on the sum U+W makes this implication true? Explain.