2

- 자신이 선택한 유형('가'형/'나'형)의 문제지인지 확인하시오.
- 문제지에 성명과 수험 번호를 정확히 써 넣으시오.
- 답안지에 성명과 수험 번호를 써 넣고, 또 수험 번호, 문형(홀수/짝수),
 답을 정확히 표시하시오.
- 단답형 답의 숫자에 '0'이 포함되면 그 '0'도 답란에 반드시 표시 하시오.
- 문항에 따라 배점이 다르니, 각 물음의 끝에 표시된 배점을 참고하시오.
 배점은 2점, 3점 또는 4점입니다.
- 계산은 문제지의 여백을 활용하시오.
- 1. $3^{\frac{2}{3}} \times 9^{\frac{3}{2}} \div 27^{\frac{8}{9}}$? [2]

 1 $\sqrt{3}$ 3 $3\sqrt{3}$ 9

2. $A = \begin{pmatrix} 1 & 2 \\ 2 & 5 \end{pmatrix}, B = \begin{pmatrix} 2 & -3 \\ 1 & -2 \end{pmatrix}$ A X = B $X \qquad ? [2]$ $-2 \qquad -1 \qquad 0 \qquad 1 \qquad 2$

3. $\frac{x+2}{\sqrt{x^2-4x+3}} \ge 0$ $\frac{9}{x-8} \le -1$ x ? [2] 10 9 8 7 6

'가'

$$A$$
 , B , C t

7.
$$2^{\log_2 1 + \log_2 2 + \log_2 3 + \dots + \log_2 10} = 10!$$

 \vee . $\log_2 (2^1 \times 2^2 \times 2^3 \times \dots \times 2^{10})^2 = 55^2$

A (1, 2, 3)
$$l: x - 1 = \frac{y - 2}{-2} = \frac{z - 3}{3}$$

$$\alpha$$

$$\alpha$$
 $m: x - 2 = y = \frac{z - 6}{5}$ B ,

$$\sqrt{19}$$
 $\sqrt{17}$ $\sqrt{15}$ $\sqrt{13}$ $\sqrt{11}$

7.

 $\overline{DP} = \overline{BQ} = \overline{GR} = 1$

$$\theta ,$$

$$\cos \theta ? (, 0 < \theta < \frac{\pi}{2}) [3]$$

$$\frac{\sqrt{10}}{5} \qquad \frac{\sqrt{10}}{10} \qquad \frac{\sqrt{11}}{11}$$

$$2\sqrt{11} \qquad 3\sqrt{11}$$

$$\frac{\sqrt{10}}{10}$$

8.

$$y = f(x)$$

P(a, f(a)), Q(b, f(b))

$$F(x)$$
 $\nearrow F'(x) = f(x)$, $<$ >

? [4]

7.
$$F(x)$$
 $[a, b]$ 7. .

1. $\frac{F(b) - F(a)}{b - a}$ PQ .

1. $\int_{a}^{b} \{f(x) - f(b)\} dx \le \frac{(b - a)\{f(a) - f(b)\}}{2}$

レ フ, に

1, **Γ** 7, **L**, **Γ**

9. 가

가

? [3]

10.

$$y = f(x)$$

[0, 1]

$$g(x)$$
가

,

$$\lim_{n \to \infty} \sum_{k=1}^{n} \left\{ g\left(\frac{k}{n}\right) - g\left(\frac{k-1}{n}\right) \right\} \frac{k}{n}$$
? [4]

$$\int_{0}^{1} g(x) dx$$

$$\int_{0}^{1} x g(x) dx$$

$$\int_{0}^{1} x f(x) dx$$

$$\int_{0}^{1} x f(x) dx$$

$$\int_{0}^{1} x f(x) dx$$

11.

$$\left[\frac{n}{1}\right], \left[\frac{n}{2}\right], \left[\frac{n}{3}\right], \cdots, \left[\frac{n}{n}\right]$$

 $\begin{array}{cccc}
n & 1 & n \\
(& , & [x] & x
\end{array}$

.)

て

フ レ フ, レ フ, レ, C

$$\sum_{i=1}^{2n+1} \frac{1}{n+i} = \frac{1}{n+1} + \frac{1}{n+2} + \dots + \frac{1}{3n+1} > 1$$

$$a_n = \frac{1}{n+1} + \frac{1}{n+2} + \dots + \frac{1}{3n+1}$$

(1)
$$n = 1$$
 $a_1 = \frac{1}{2} + \frac{1}{3} + \frac{1}{4} > 1$.
(2) $n = k$ $a_k > 1$ $7 \nmid k$

(2)
$$n = k$$
 $a_k > 1$

$$a_{k+1} = \frac{1}{k+2} + \frac{1}{k+3} + \dots + \frac{1}{3k+4}$$

$$= a_k + \left(\frac{1}{3k+2} + \frac{1}{3k+3} + \frac{1}{3k+4}\right) - \boxed{(7\dagger)}$$

$$(3k+2)(3k+4)$$
 $(3k+3)^2$

$$\frac{1}{3k+2} + \frac{1}{3k+4} > \boxed{()}$$

$$a_{k+1} > a_k + \left(\frac{1}{3k+3} + \left(\frac{1}{3k+3} + \left(\frac{7}{3k+3} + \frac{1}{3k+3} + \frac{1}{3k$$

(1), (2)

 $a_n > 1$.

(7[†]), (), () ? [3]

<u>(가)</u>	
1	

$$\frac{2}{3k+3}$$

$$\frac{2}{3k+3}$$

$$\frac{1}{k+1} \qquad \qquad < \qquad \frac{4}{3k+3}$$

$$\frac{4}{3k+3}$$

$$\frac{2}{k+1}$$

$$\frac{4}{3k+3}$$

$$\frac{2}{k+1}$$

$$\frac{1}{k+1}$$

$$f'(x) = \boxed{ (7\dagger) } \qquad a > 1$$

$$f(x) \qquad x = 1 \qquad \boxed{ () } \qquad 7\dagger \qquad .$$

$$f(1) < 0 \qquad f(b) = 0$$

$$a \boxed{ () } \qquad b \qquad .$$

$$+ \alpha (m + 1)$$

$$6(x+a)(x+1)$$

$$6(x + a)(x + 1)$$

 $6(x - a)(x - 1)$

$$6(x - a)(x - 1)$$

6(x - a)(x - 1)

6 7t

14. a b 12

[4]

 15. A(3, 1, 1), B(1, -3, -1) . $x - y + z = 0 P | \overrightarrow{PA} + \overrightarrow{PB} |$? [4]

 $\frac{4\sqrt{3}}{3} \qquad \frac{5\sqrt{3}}{3} \qquad 2\sqrt{3} \qquad \frac{7\sqrt{3}}{3} \qquad \frac{8\sqrt{3}}{3}$

16.

•

	A	В	C	D	
(%)	20	28	25	27	100

192

, C

? [3]

 0.5
 0.1915

 1.0
 0.3413

 1.5
 0.4332

 2.0
 0.4772

0.6915

0.7745

0.8256

0.8332

0.8413

17. 가 65 20 % 2000 1000 65 50 0.3% 가 65 가 4 % 가 '가 $P (0 \le Z \le z)$ (, $\log 1.003 = 0.0013$, $\log 1.04 = 0.0170$, $\log 2 = 0.3010$)[4]

 2048
 2050

 2028
 2030

2038 20402018 2020

2008 2010

18.
$$a, b \ne \lim_{x \to 2} \frac{\sqrt{x^2 + a - b}}{x - 2} = \frac{2}{5}$$

. [3] a + b

20.
$$x^{2} + 7x + 10 + \sqrt{x^{2} + 7x + 12} = 0$$

$$\cdot [3]$$

$$\begin{cases} \log_3 |x - 3| < 4 \\ \log_2 x + \log_2 (x - 2) \ge 3 \end{cases}$$

x . [3]

21.
$$C(0, 1, 1)$$
 $7 + 2\sqrt{2}$ $\frac{x}{2} = y = -z 7 + A, B$.

CAB S, S^2 .

[4]

[4]

- 22. $\frac{x^2}{36} + \frac{y^2}{20} = 1$ F F'
- F 7 7 7 A .

 P $\angle PFF' = \frac{\pi}{3}$, \overline{PA}^2
- . [4]

 $a (a > 1) b = \sum_{n=1}^{\infty} \left(\frac{1}{a}\right)^n [1]$ 23. , c $d = 16^c$ [2]

x, y, z $\frac{xz}{y}$

10 (7)

- 24. x $\frac{1}{3}x^3 x = k7$ $\alpha, \beta, \gamma \quad 7$ $m \quad , m^2 \quad . [4]$

 A_3

 $n \qquad A_n$ $\lim_{n\to\infty} S_n = \frac{q}{p} \qquad , p+q \qquad .$ $(, p q \qquad .) [4]$

26 30 .

(가 11

フ,レ

26.
$$\sin \alpha = \frac{1}{3}$$
 , $\cos \left(\frac{\pi}{3} + \alpha\right)$? (, $0 < \alpha < \frac{\pi}{2}$)

[3]

27.
$$\lim_{x \to 0} \frac{e^{2x} - 1}{\tan x}$$
 ? [3]

28.
$$f(x) \nearrow \uparrow x$$
 $f(-x) = -f(x)$, < >
? [3]

7. $f'(-x) = f'(x)$
 $\downarrow \lim_{x \to 0} f'(x) = 0$
 $\downarrow \int f(x) \nearrow \uparrow x = a (a \neq 0)$
 $\downarrow f'(x) \nearrow \uparrow x = a (a \neq 0)$
 $\downarrow f'(x) \nearrow \uparrow x = a (a \neq 0)$
 $\downarrow f'(x) \nearrow \uparrow x = a (a \neq 0)$

7 レ 7, ロ 7, レ, ロ

- 29. $y = 3x^2 (0 \le y \le 10)$ y
- A $y = x^2 (0 \le y \le 10)$ y B 7 .

- A 가 O
 - A B 가 .
- \boldsymbol{A}
- u , A
 - ? [4]
 - -2 -1 $-\frac{1}{2}$ $\frac{1}{2}$

 $y = 3x^2 \qquad y = x^2$

- 30. $y = 3\sqrt{x-9}$ X
- (18, 9)
- . [4]

()

$$m < n < f$$
 $m < f < n$ $f < m < n$ $n < m < f$

27.
$$x \neq 7$$

 $0, 1, 2, 3, 4, 5, 6, 7$ X $\neq 7$

$$P(X = x) = \begin{cases} c, & x = 0, 1, 2 \\ 2c, & x = 3, 4, 5 \end{cases} (, c)$$

$$5c^{2}, & x = 6, 7$$

$$X \neq 6$$

$$B \qquad P(A \mid B) \qquad ? [3]$$

 $\frac{1}{5} \qquad \frac{1}{6} \qquad \frac{1}{7} \qquad \frac{1}{8} \qquad \frac{1}{9}$

14 (7)

28. 5 , 4 , 2 , 9 가 가 .

. , , ,

? [3]

 $\frac{1}{200}$ $\frac{3}{100}$ $\frac{7}{100}$ $\frac{11}{100}$ $\frac{11}{20}$

29.

·

0.5 .

, 0.43

0.56

? [4]

0.7605

1.0

1.2

1.4

1.6

 $P (0 \le Z \le z)$

0.3413

0.3849

0.4192

0.4452

 0.8041
 0.7698

 0.7262
 0.6826

30.

X	1	2	3	
P (X)	0.5	0.3	0.2	1

2 ,

 \overline{X}

\overline{X}	1	1.5	2	2.5	3
	1	a	b	2	1
$P(\overline{X})$	0.25	c	d	0.12	0.04

, 100(b+c) . [4]

* 0 ()

(7t) 15

26. 10

? [3]

25 35 45 55 65

28. {1, 2, 3, 4, 5, 6} A, B
(A, B) ? [3]
729 720 243 64 36

29.

,

	()	
(A)	210	
(B)	20	A
(C)	60	В
(D)	100	В
(E)	50	A
(F)	150	C, D

? [4]

260 370 440 480 530

30. $k = 5^k, f(n)$

f(5n) = f(n) + 3, f(5) = 4

 $\sum_{k=1}^{10} f(5^k) \qquad . [4]$

*

·

·