

CONTENIDO

- ✓ Usando...
- Triángulo rectángulo
- Teorema de Pitágoras
- Aplicaciones analíticas
- Semejanza en triángulos rectángulos
- Actividades

Usando un triángulo rectángulo

El área del triángulo permite:

- Medir la longitud de la avenida principal (modo seguro!).
- Determinar el área superficial de la cuadra.

Triángulo rectángulo

- <u>Identificación</u>: triángulo con un ángulo recto.
- <u>Denominación:</u> relativa al ángulo agudo.
- <u>Ángulos:</u> dos agudos y uno recto.
- Comparación de lados: hipotenusa > cateto
- Clases: isósceles, escaleno.
- Perímetro: suma catetos + hipotenusa
- <u>Área:</u> producto catetos / 2

Teorema de Pitágoras

- Demostración. $a^2 + b^2 = c^2$
- <u>Teorema</u>

En todo triángulo rectángulo, el cuadrado de la hipotenusa es igual a la suma de los cuadrados de los catetos

 Historia: conocido desde el siglo VI a.C. por el filósofo y matemático griego Pitágoras.

Teorema de Pitágoras

Consecuencias

Aplica solamente en un triángulo rectángulo.

 Permite identificar la clase de triángulo. Si c es la hipotenusa y a, b catetos,

> $a^2 + b^2 = c^2$, el triángulo es rectángulo. $a^2 + b^2 < c^2$, el triángulo es obtusángulo. $a^2 + b^2 > c^2$, el triángulo es acutángulo.

Ejemplos y Aplicaciones

- Determinar el lado desconocido de un triángulo rectángulo.
- Calcular altura de un triángulo isósceles.
- Calcular la apotema de in hexágono regular.
- Cálculo de la altura de un objeto vertical a partir de su sombra (semejanza triángulos).

Ejemplos

 Determina, sin dibujarlo, si un triángulo cuyos lados miden 7, 8 y 9 cm es rectángulo.

Halla la apotema de un hexágono de 5 cm de lado.

. Calcula la altura de un triángulo isósceles cuyos lados iguales miden 16 cm y el lado desigual 10 cm.

Aplicaciones analíticas del t. Pitágoras

Uso del teorema mediante cantidades conocidas y desconocidas (requiere conceptos algebraicos). Metodología: 1) planteamiento, 2) despeje de cantidades.

Problema 1. Hallar el cateto desconocido.

Aplicaciones analíticas del t. Pitágoras

Uso del teorema mediante cantidades conocidas y desconocidas (requiere conceptos algebraicos). Metodología: 1) planteamiento, 2) despeje de cantidades.

Problema 2. La escalera de 15 metros se apoya en la pared; el pie de la escalera está a 9 metros de esa pared. Calcular la altura.

Aplicaciones analíticas del t. Pitágoras

Uso del teorema mediante cantidades conocidas y desconocidas (requiere conceptos algebraicos). Metodología: 1) planteamiento, 2) despeje de cantidades.

Problema 3. Encontrar el valor de x (por factorización)

• ¿Qué altura tiene la pirámide de Keops?

Tomado de https://soymatematicas.com/teorema-de-tales/

Aquellos que tienen iguales ángulos correspondientes y lados homólogos proporcionales.

Para recordar, en un triángulo rectángulo:

cateto: lado menor

hipotenusa: lado opuesto al ángulo recto

Criterio LLL

Si dos triángulos tienen sus ángulos correspondientes iguales, sus lados son proporcionales.

$$\frac{a}{a'} = \frac{b}{b'} = \frac{c}{c}$$

Método

- Realizar las respectivas asociaciones entre lados.
- Despeje de ecuaciones y solución numérica.

<u>Usos y aplicaciones</u>

- Cálculo de la altura de un objeto vertical a partir de su sombra.
- Cálculo de la altura de un objeto vertical con un espejo.

Actividad 1

Averigua cómo son los triángulos de lados:

a) 7 cm, 8 cm, 11 cm

b) 11 cm, 17 cm, 15 cm

c) 34 m, 16 m, 30 m

d) 65 m, 72 m, 97 m

$$r_1 = 15 \text{ cm}, r_2 = 6 \text{ cm},$$

$$\overline{O_1O_2} = 41 \text{ cm}$$

Halla la longitud

del segmento T_1T_2 .

. Calcula la altura de un triángulo isósceles cuyos lados iguales miden 16 cm y el lado desigual 10 cm. . Un futbolista entrena corriendo la diagonal del terreno de juego de un campo de fútbol, ida y vuelta, 30 veces todos los días. ¿Qué distancia total recorre? El terreno de juego tiene unas medidas de 105 x 67 m.

Actividad 2

- 1. Un muro proyecta una sombra de 32 m al mismo tiempo que un bastón de 1,2 m proyecta una sombra de 97 cm. Calcular la altura del muro.
- 2. Un observador, cuya altura hasta los ojos es de 1,67 m, observa, erguido, en un espejo la parte más alta de un objeto vertical. Calcular la altura de éste, sabiendo que el espejo se encuentra situado a 10 m de la base del edificio y a 3 m del observador.
- 3. Encontrar los valores de

DE y BC si AC=14, DC=3,

EC=2 y AB=12.

- 4. Calcular la apotema de un hexágono regular de 10 cm de lado.
- 5. Encontrar el valor de x.

Actividad 2.1

- 1. Hallar la medida de la altura de un rectángulo, cuya base mide 35 cm y su diagonal 37 cm.
- 2. Hallar la altura de un triángulo isósceles cuya base mide 10 centímetros y sus lados iguales 13 centímetros (fig. izq.).
- 3. Calcular el perímetro del trapecio isósceles (fig. der.).

Anexo 1

Tabla de raíces cuadradas										
N	Raíz	N	Raíz	N	Raíz	N	Raíz			
1	1,000	26	5,099	51	7,141	76	8,718			
2	1,414	27	5,196	52	7,211	77	8,775			
3	1,732	28	5,292	53	7,280	78	8,832			
4	2,000	29	5,385	54	7,348	79	8,888			
5	2,236	30	5,477	55	7,416	80	8,944			
6	2,449	31	5,568	56	7,483	81	9,000			
7	2,646	32	5,657	57	7,550	82	9,055			
8	2,828	33	5,745	58	7,616	83	9,110			
9	3,000	34	5,831	59	7,681	84	9,165			
10	3,162	35	5,916	60	7,746	85	9,220			
11	3,317	36	6,000	61	7,810	86	9,274			
12	3,464	37	6,083	62	7,874	87	9,327			
13	3,606	38	6,164	63	7,937	88	9,381			
14	3,742	39	6,245	64	8,000	89	9,434			
15	3,873	40	6,325	65	8,062	90	9,487			
16	4,000	41	6,403	66	8,124	91	9,539			
17	4,123	42	6,481	67	8,185	92	9,592			
18	4,243	43	6,557	68	8,246	93	9,644			
19	4,359	44	6,633	69	8,307	94	9,695			
20	4,472	45	6,708	70	8,367	95	9,747			
21	4,583	46	6,782	71	8,426	96	9,798			
22	4,690	47	6,856	72	8,485	97	9,849			
23	4,796	48	6,928	73	8,544	98	9,899			
24	4,899	49	7,000	74	8,602	99	9,950			
25	5,000	50	7,071	75	8,660	100	10,000			

Tabla de cuadrados										
N	Cuad.	N	Cuad.	N	Cuad.	N	Cuad.			
1	1	26	676	51	2601	76	5776			
2	4	27	729	52	2704	77	5929			
3	9	28	784	53	2809	78	6084			
4	16	29	841	54	2916	79	6241			
5	25	30	900	55	3025	80	6400			
6	36	31	961	56	3136	81	6561			
7	49	32	1024	57	3249	82	6724			
8	64	33	1089	58	3364	83	6889			
9	81	34	1156	59	3481	84	7056			
10	100	35	1225	60	3600	85	7225			
11	121	36	1296	61	3721	86	7396			
12	144	37	1369	62	3844	87	7569			
13	169	38	1444	63	3969	88	7744			
14	196	39	1521	64	4096	89	7921			
15	225	40	1600	65	4225	90	8100			
16	256	41	1681	66	4356	91	8281			
17	289	42	1764	67	4489	92	8464			
18	324	43	1849	68	4624	93	8649			
19	361	44	1936	69	4761	94	8836			
20	400	45	2025	70	4900	95	9025			
21	441	46	2116	71	5041	96	9216			
22	484	47	2209	72	5184	97	9409			
23	529	48	2304	73	5329	98	9604			
24	576	49	2401	74	5476	99	9801			
25	625	50	2500	75	5625	100	10000			

Anexo 2

Método para calcular una raíz cuadrada (método de Newton)

Una muy sencilla que da una respuesta más exacta cuantas más veces se usa:

- a) empieza adivinando (digamos 4 para la raíz cuadrada de 10)
- b) divide entre tu aproximación (10/4 3/2.5)
- c) suma eso a la aproximación (2.5+4=6.5)
- d) y divide eso entre 2, o sea calcula la mitad. (6.5/2 = 3.25)
- e) ahora, esa es tu nueva aproximación, empieza otra vez en b)

