Propagación en medios dispersivos

Los ejercicios con (*) entrañan una dificultad adicional. Son para investigar después de resolver los demás.

Transformada de Fourier

- 1. Se quiere investigar la relación entre el ancho de un paquete y el desfasaje de las frecuencias que lo componen. Ayuda: $\int_{-\infty}^{\infty} e^{-\alpha x^2} dx = \sqrt{\frac{\pi}{\alpha}}, \int_{-\infty}^{\infty} e^{-(x+a)^2} dx = \sqrt{\pi}.$
 - a) Tome el siguiente pulso con un espectro Gaussiano de ancho Δk centrado en k_0 (note que las frecuencias están en fase):

$$F(k) = A e^{-\frac{(k-k_0)^2}{4\Delta k^2}}$$
.

Calcule $f(x) = \mathcal{F}^{-1}[F(k)]$ y vea que tiene una envolvente Gaussiana que modula una portadora de frecuencia k_0 . Note que el pulso está centrado en x = 0 y que se cumple la relación $\Delta x \Delta k = 1/2$ (el paquete Gaussiano es el de mínima incerteza).

b) Ahora desfase las distintas frecuencias en forma lineal, tal que:

$$F(k) = A e^{-\frac{(k-k_0)^2}{4\Delta k^2}} e^{i\alpha(k-k_0)}$$
.

Calcule f(x) y vea que es el mismo pulso que en la parte a), pero desplazado en α hacia la derecha (una fase lineal sólo corre la función).

c) Ahora agregue una fase cuadrática, es decir:

$$F(k) = A e^{-\frac{(k-k_0)^2}{4\Delta k^2}} e^{i\beta(k-k_0)^2}$$
.

Calcule f(x) y vea que es un pulso Gaussiano centrado en x=0 pero con un ancho Δx que cumple:

$$\Delta x \Delta k = \frac{1}{2} \sqrt{1 + 16\beta^2 \Delta k^4}.$$

¿Es cierto que si se quiere disminuir el ancho de un paquete siempre se debe aumentar Δk ? Derive Δx con respecto a Δk de la expresión anterior y analice lo pedido.

2. (*) Muestre que si $\phi(t) \in \mathcal{R}$ y $\psi(\omega) = \mathcal{F}[\phi(t)]$ es su transformada de Fourier, esta última cumple que $\overline{\psi}(\omega) = \psi(-\omega)$, es decir, que para obtener su conjugada basta con invertir el signo de ω . Aproveche esto para escribir a $\phi(t)$ como superposición de senos y cosenos.

Propagación en un medio dispersivo

3. Pulso cuadrado en un medio dispersivo

Se tiene un pulso de ancho Δk centrado en k_0 tal que la siguiente es una buena aproximación para la relación de dispersión:

$$\omega(k) = \omega_0(k_0) + \omega'(k_0)(k - k_0) + \frac{1}{2}\omega''(k_0)(k - k_0)^2,$$

donde $\omega' = \frac{\partial \omega}{\partial k}$ y $\omega'' = \frac{\partial^2 \omega}{\partial k^2}$. Si en t=0 el pulso se propaga hacia x<0, y se escribe

$$\psi(x,0) = A \int_{-\infty}^{+\infty} e^{-\frac{(k-k_0)^2}{4\Delta k^2}} e^{ikx} dk + \text{c.c.}$$

Calcule $\psi(x,t)$. Vea cuál es la posición y el ancho del paquete como función del tiempo. ¿Es cierto que al viajar por un medio dispersivo cualquier paquete se ensancha?