Binary Search Tree Assignment Project Exam Help

https://powcoder.com Juan Zhai Add WeChat powcoder

juan.zhai@rutgers.edu

Watch the videos first and then come back

- BST structure and search:

 https://www.youtube.com/watch?v=J3YY-Ef2xlE&abssignment|

 Projective and search:

 https://www.youtube.com/watch?v=J3YY-Ef2xlE&abssignment|

 Projective and search:

 Outube and se
- BST insert: https://www.youtube.com/watch?v=BVeEmH26PQ4&ab_channel=SeshVenugopal
- BST delete:

https://www.youtube.com/watch?v=3TOl3Fv4 394&ab_channel=SeshVenugopal

```
/** This interface imposes a total ordering on the objects
  * of each class that implements it. */
public interface Comparable<T>{
    /** Compares this object with the specified object for
     * order. Returns a negative integer, zero, or a
     * positive integer as this object is less than,
     * equal to, or greater than the specified object. */
    public int compareTo(T o);
}
Assignment Project Exam Help
```

- An interface is a group of related mothods with amonty box
- An interface is a group of related methods with empty bodies.
 https://powcoder.com

 Interfaces form a contract. Implementing an interface requires a class to have behaviors werified by the interface.

```
public class String implements Comparable<String>{
    public int compareTo(String anotherString){
        ...
}
```

 To implement this interface, use the implements keyword in the class declaration.

Generic Binary Search Tree

```
public class Node<T extends Comparable<T>> {
   private T key;
                              This restricts the type parameter T
   private Node<T> left;
   private Node<T> right;
                              to be a type that implements the
   public Nodessignment Project Exam Helpable T>,
      this.key = key;
      this.right https://powcoder.com that the call to
                              compareTo() is valid, meaning
      this.left = null;
                  Add WeChauppowtoodeparison with other
                              instances of its own type
public class BST<T extends Comparable<T>>{
   Node<T> root;
```

Refer to Sakai Code

Q: Why search returns T?

A: The search is based on key, while Generic Search what is returned is the entire object

```
public T search(T targetKey) {
        Node current = root;
        while Assignment Project Exam Help
            int c = targetKey.compareTo(current.key);
            if(c <del>lit</del>tps://powcoder.com
              return current.key;
            if(c Add WeChat powcoder conditional operator: ?:
                                             (condition) ? a : b
              current = current.left;
                                             is an expression which returns
                                             a when condition is true and
            else
                                             returns b when condition is
              current = current.right;
                                             false
        return null;
         current = (c<0) ? current.left : current.right;</pre>
```

```
156 //Student MUST implement the Comparable interface
157 class Student implements Comparable<Student> {
         String id;
158
         String name;
159
160
         String address;
161
1629
         public Student(String id, String name, String addr) {
163
             this.id = id;
164
             this.name = name;
             this.address = addr;
165
166
         }
167
         public int comassignmenta Project Exam Help
≥168⊜
             return id.compareTo(other.id);
169
170
            135
                        BST<Student> studentBST = new BST<Student>();
                        stude ALL Dissert Control of Control of Jones", "110 Frelinghuysen Rd"));
171
            136
172 }
                        studentBST.insert(new Student("D032","Lucy Smith", "305 Univeristy St"));
            137
                        studentBST.insert(new Student("M016", "Emily Taylor", "77 Massachusetts Ave"));
            138
                                     weChat nowcoder
            139
                        // get address for a student based on the id
            140
                        Student student = studentBST.search(new Student("D032",null,null));
             141
                        System.out.println(student.name + ": " + student.address):
            142
```

- Specific class decides how to compare two objects
 - Implements compareTo() in Comparable
- student-to-be-search is a student with id, and student-to-bereturned has more information

Different shapes

• For the same set of keys, we can have binary search tree in different shapes.

Depends on wightness representations of the tree

https://powcoder.com

Add WeChat powcoder

3

6

1

4

5

4

5

4

5

4

5

4

5

4

5

6

11, 3, 4, 5, 6}

skewed tree:
each node
contains either
only left or only
right sub tree

Skewed Tree

- Worst case running time
 - search: O(n), even worse than binary search in a sorted array which has worst case O(log n)

 - insertion/deletion: O(n)
 https://powcoder.com
 O(n) for search the position-to-insert-into/element-to-bedeleted Add WeChat powcoder
 - O(1) for insertion and deletion
 - $O(n) + O(1) \to O(n)$
 - Reshape

	Unordered List		Ordered Array		Binary Search Tree	
	Best	Worst	Best	Worst	Best	Worst
Search	O(1)	O(n)	O(1)	$O(\log n)$	O(1)	O(n) [5]
Insert	O(1) [0]	O(1) [0]	$O(\log n)$ [2]	O(n) [3]	O(log n) [4]	O(n) [5]
Delete	O(1)	O(n) [1]	$O(\log n)$ [2]	O(n) [3]	O(log <i>n</i>) [6]	O(n) [5]

Best case and worse case for the same algorithm with different situations.

[0] Insertion algorithm always inserts at the front.

- [1] Search to end, the ntest t
- [2] Insert/delete at end, O(1), but search needs $O(\log n)$
- [3] Insert/delete the middle key, Chat, Day Move F1/2 kevs
- [4] Insertion is always done at the leaf level, so the insertion process has to traverse O(log n) distance
- [5] Skewed tree
- [6] Delete a leaf node, O(1), but search needs $O(\log n)$. Deleting root node needs to find the minimum/maximum which takes $O(\log n)$

	Unordered List		Ordered Array		Binary Search Tree	
	Best	Worst	Best	Worst	Best	Worst
Search	O(1)	O(n)	O(1)	$O(\log n)$	O(1)	O(n) [5]
Insert	O(1) [0] A	ssignmen	t Toppe [2]	Exam He	10(log <i>n</i>) [4]	O(n) [5]
Delete	O(1)	O(n) [1]	$O(\log n)$ [2]		$O(\log n)$ [6]	O(n) [5]

https://powcoder.com

It seems that BST performs even worse than sorted array. Add WeChat powcoder Goal: Insertions and deletions should be faster than O(n),

Goal: Insertions and deletions should be faster than O(n), and search time should not be slower than $O(\log n)$.

Solution: Keep the structure of BST balanced, meaning height never exceeds $O(\log n)$. Then the search/insert/delete times would never exceeds $O(\log n)$.

→ Reshape a BST

Get help from CAVE

- The CAVE is available to students no appointment necessary, help with concepts Assignment Project Exam Help and assignments
 - https://resoultes.cspwgersedu/docs/roomsequipment/cave/ WeChat powcoder
 - Monday through Thursday, 1-11PM
 - Friday 1-6PM

https://rutgers.webex.com/meet/cs-the-cave

Sunday 3-11PM

Learning Center

Get help from https://rlc.rutgers.edu/node/95

Assignment Project Exam Help

https://powcoder.com

Add WeChat powcoder