STAT115 Content Speed-Run

Self-Study Pack (Active Recall + Micro Practice + R Mini-Kit)

Prepared for catch-up after a six-week absence

How to use this pack (learning-science built-in)

- Active recall first, reread last: answer from memory before checking. Speaking your answer out loud improves retention.
- **Dual coding:** sketch tiny diagrams (axes, curves, residual plots) alongside formulas and code.
- Spacing & interleaving: tick the review boxes (Day 0/2/7/14) and mix topics during review.
- Error log: when you miss a recall item, write why and how you will avoid it next time.

Contents

1	Orientation & What Statistics Is	3
2	Statistical Software (R focus)	3
3	Contingency Tables & Basic Probability	4
4	Populations, Parameters, Normal Model (First Look)	4
5	Confidence Intervals (CIs), Confidence Level, SE, Sample Size	5
6	Two Independent Means (Welch Two-Sample t)	5
7	Paired Data (Within-Subject)	6
8	Simple Linear Regression (fit -> diagnose)	6
9	Checking SLR Assumptions (LINE) with Residuals	7
10	Sampling Distributions and Central Limit Theorem (CLT)	7
11	Proportions and the Binomial Model	8
12	One-Sample Proportion: Confidence Interval and Test	8
13	Two Proportions: Difference, CI, and Test	g
14	Association in 2x2 Tables: Risk Difference, Risk Ratio, Odds Ratio	g
15	Study Design: Experiments vs Observational, Bias and Confounding	10
16	Errors, Power, and Planning	10

STAT115	Content	Speed-Run
---------	---------	-----------

17 Correlation (Pearson r) and Scatterplots	11
18 Transformations and Nonlinearity	11
19 Outliers, Leverage, and Influence	12
20 Prediction and Intervals in Regression	12
21 ANOVA (Concept) and Categorical Predictors	13
Fast Review Sheet	13
How to schedule your catch-up	13

Lecture 1 Orientation & What Statistics Is

 Statistics is learning from data and about describing and quantifying Tutorials are highly recommended; R is available on lab machines. 	variability.
• Final exam: 3 hours , about 90 multiple-choice questions. Final grade: $Exam + 0.3 \times Assignments$.	$F = 0.7 \times$
Active Recall (cover Core Content above; answer	from memory)
 Complete: "Statistics is" Besides learning from data, what two words describe the focus of statistics? What is the final-exam format and duration? How is the final mark calculated? One reason tutorials add value? 	
Micro Practice Find two tutorial slots you can attend and write them here. Commit on paper	(5–10 min) as well.
R Mini-Kit	(copy & run)
No code yet—just ensure you can open RStudio and run: 1 + 1.	
Lecture 2 Statistical Software (R focus)	
Core Content	(2–6 min skim)
 We will use R via RStudio. Excel is common but limited for robust statistical analysis. Minimal R toolkit suffices: read data, summarise, tabulate, test, model, diagnose. 	
Active Recall (cover Core Content above; answer	from memory)
 Why is R preferred over pure spreadsheets for analysis? What does RStudio add on top of base R? 	
3. Name two other statistical packages you know.	
Micro Practice	(5–10 min)
Create a new R script. Type the commands below and run them without errors.	
<pre># Reading and peeking at data D <- read.csv("yourfile.csv") head(D); summary(D) # Categorical tabulation T <- table(D\$A, D\$B); T prop.table(T) # overall proportions prop.table(T, 1) # row proportions prop.table(T, 2) # column proportions</pre>	
Spaced Review: Day 0 Day 2 Day 7 Day 14	

Lecture 3 Contingency Tables & Basic Probability

Core Content (2-	6 min skim) `
 Contingency tables show counts and proportions; treat proportions as probabilities for practice. Marginal probabilities are in the margins; joint inside cells; conditional restrict to a row/column. Independence fails if Pr(Survival Sex) ≠ Pr(Survival). 	
Active Recall (cover Core Content above; answer fro	m memory)
 Where do marginal probabilities live? If total = 2092 and female-survivors = 316, compute Pr(female ∧ survived). Explain in words why survival and sex are not independent in Titanic data. How do you convert a count table to proportions? Define "joint" vs "conditional" probability in one sentence each. 	
Micro Practice	(5–10 min)
Using Titanic counts, calculate $\Pr(S), \Pr(M), \Pr(S \land M), \Pr(S \mid M)$, then check independence.	
R Mini-Kit (c	copy & run)
<pre># titanic: 2x2 table of counts, rows=sex, cols=survival Total <- sum(titanic) P <- titanic / Total; P # Marginals Pr_S <- margin.table(P, 2)["yes"] Pr_M <- margin.table(P, 1)["male"] # Conditional Pr_S_given_M <- P["male","yes"] / Pr_M</pre> Spaced Review: Day 0 Day 2 Day 7 Day 14 Lecture 4 Populations, Parameters, Normal Model (First	t Look)
Core Content (2-	6 min skim)
 Population vs sample; parameter (μ, σ) vs statistic (ȳ, s). Estimation targets parameters; the Normal distribution often models quantitative data. 	
Active Recall (cover Core Content above; answer fro	om memory)
1. Give one parameter and its sample-statistic counterpart. 2. Why introduce a distributional model like the Normal? 3. What do \bar{y} and s estimate?	
Micro Practice	(5–10 min)
Sketch a bell curve; mark μ and $\pm 2\sigma$. Write what "about 95%" means under Normal.	
<pre>x <- rnorm(100, mean=0, sd=1) mean(x); sd(x) hist(x) # quick visual</pre>	
Spaced Review: Day 0 Day 2 Day 7 Day 14	

out\$p.value

Lecture 5 Confidence Intervals (CIs), Confidence Level, SE, Sample Size

Core Content (2–6 min skim) • t.test() yields CIs for a mean; increasing conf.level widens the CI. • Standard error of \bar{y} : s/\sqrt{n} . Larger s widens; larger n narrows (all else fixed). Design question: choose n to hit a target margin of error (MOE). Active Recall 1. How does raising conf.level affect CI width? 2. Write $SE(\bar{y})$. 3. Two levers to narrow a CI? 4. Plain-English meaning of a 95% CI? 5. Why is it unethical to overstate n? Micro Practice (5-10 min)Run t.test(GAG\$conc, conf.level = 0.90/0.95/0.99). Which is widest? Why? out95 <- t.test(GAG\$conc, conf.level = 0.95)</pre> out99 <- t.test(GAG\$conc, conf.level = 0.99)</pre> out90 <- t.test(GAG\$conc, conf.level = 0.90)</pre> # Sample-size sketch for MOE (xi) using a pilot s $z \leftarrow qnorm(1-0.05/2); s \leftarrow sd(GAG\$conc); xi \leftarrow 0.04$ n_needed <- ceiling((z*s/xi)^2)</pre> Day 0 Day 2 Day 7 Lecture 6 Two Independent Means (Welch Two-Sample t) **Core Content** (2–6 min skim) • Use t.test(x, y) for independent groups (Welch by default): outputs t, df, p, CI, and group means. • Interpretation: p-value measures incompatibility with H_0 ; CI indicates plausible effect size. • With small samples, normality matters more; be cautious. **Active Recall** (cover *Core Content* above; answer from memory) 1. State H_0 and H_A for comparing two means. 2. What does Welch guard against vs pooled-variance t? 3. Why doesn't the p-value tell "how big" the effect is? 4. Which parameter does the CI estimate here (write $\mu_1 - \mu_2$)? 5. One assumption to check in each group? Micro Practice (5-10 min)Given control\$Freq and solitary\$Freq, run t.test(control\$Freq, solitary\$Freq) and interpret: Is 0 inside the CI? Which group mean is higher and by how much (roughly)? out <- t.test(control\$Freq, solitary\$Freq)</pre> # group means (mind the order) out\$estimate out\$conf.int # CI for mu_control - mu_solitary

Spaced Review: Day 0 Day 2 Day 7 Day 14
Lecture 7 Paired Data (Within-Subject)
Core Content (2–6 min skim)
 Paired design: each observation in A corresponds to one in B; analyze differences. Two equivalent paths: (1) compute differences and one-sample t; (2) t.test(A,B, paired=TRUE). The CI from both approaches is identical; wording differs.
Active Recall (cover Core Content above; answer from memory)
 Why analyze paired data via differences? What parameter is tested in paired t (write μ_d)? How do the two outputs differ in wording but not numbers? Give a real-world example that should be analyzed as paired. What goes wrong if you treat paired observations as independent?
Micro Practice (5–10 min)
For auditory/visual reaction times, create a difference variable and run both analyses. Confirm the same CI.
R Mini-Kit (copy & run)
AV <- read.csv("AV.csv") AV\$differ <- AV\$visual - AV\$auditory # Option 1 one <- t.test(AV\$differ) # Option 2 (equivalent CI) two <- t.test(AV\$visual, AV\$auditory, paired=TRUE) one\$conf.int; two\$conf.int
Spaced Review: Day 0 Day 2 Day 7 Day 14 Lecture 8 Simple Linear Regression (fit -> diagnose)
Core Content (2–6 min skim)
 Model: y = β₀ + β₁x + ε. Fitted by least squares (minimise squared residuals). Interpret β₁ as expected change in y per 1-unit increase in x (when sensible). Be cautious interpreting β₀ if x = 0 lies outside observed range.
Active Recall (cover Core Content above; answer from memory)
 In words, what are fitted values and residuals? Explain β₁ in your own words. Why might β₀ be uninterpretable in some data sets?
Micro Practice (5–10 min)
Fit a line predicting possum head length from total length. Write one sentence interpreting β_1 .
R Mini-Kit (copy & run)
<pre>m <- lm(head_l ~ total_l, data=possum) coef(m); fitted(m); residuals(m)</pre>
Spaced Review: Day 0 Day 2 Day 7 Day 14

Lecture 9 Checking SLR Assumptions (LINE) with Residuals

Assumptions: LINE - Linearity Indone	
	endence, Normality, Equal variance of errors. uals vs fitted to diagnose trend (linearity), funnel (variance), outliers.
Active Recall	(cover Core Content above; answer from memory)
 Expand LINE. Which plot do you look at first to check High-level meaning of a studentised resi Name one worrying pattern in residuals Why check assumptions after fitting? 	dual?
Micro Practice	(5–10 min)
Make the residual plot for the possum mod	lel; add a horizontal line at 0. Note any trends or funnels.
R Mini-Kit	(copy & run)
fit <- lm(head_l ~ total_l, da	ata=possum)
<pre>rvf <- rstudent(fit) plot(fitted(fit), rvf); abline</pre>	
(CLT)	istributions and Central Limit Theorem
Core Content	(2–6 min skim)
• CLT (informal): for large n , the sampling regardless of the population shape (mild	on of a statistic (for example, \bar{y}) under repeated sampling. In a distribution of \bar{y} is approximately Normal with mean μ and SE s/\sqrt{n} , a conditions). It variability: larger n leads to smaller SE and tighter CIs.
Active Recall	(cover Core Content above; answer from memory)
 Define sampling distribution in one sent State the CLT informally for the sample How does SE(\(\bar{y}\)) scale with n? 	
Micro Practice	(510~min)
Micro Practice	(5–10 min) d distribution (for example, Exponential). Make a histogram and compare
Micro Practice Simulate 2000 sample means from a skewed	
Micro Practice Simulate 2000 sample means from a skewed with a Normal curve. R Mini-Kit set.seed(1) means <- replicate(2000, mean)	d distribution (for example, Exponential). Make a histogram and compare (copy & run)

Lecture 11 Proportions and the Binomial Model

 Binary outcomes (success or failure) can be modelled with Binomial(n, p). Sample proportion p̂ = X/n estimates p; SE(p̂) ≈ √p̂(1-p̂)/n. 	
• Sample proportion $p = X/n$ estimates p ; $SE(p) \approx \sqrt{p(1-p)/n}$.	
· ·	
• Normal approximation works when np and $n(1-p)$ are not too small.	
Active Recall (cover Core Content above; answer from memory	у)
1. Define \hat{p} and its approximate SE.	
2. When is the Normal approximation to the Binomial reasonable?	
3. Give a real example where a proportion is the right summary.	
5. Give a real example where a proportion is the right summary.	
Micro Practice (5–10 mir	n)
	-)
From 250 patients, 37 show a side effect. Compute \hat{p} and an approximate 95% CI.	,
D. Mini Vit	
x <- 37; n <- 250	
phat <- x/n	
se <- sqrt(phat*(1-phat)/n)	
ci <- phat + c(-1,1)*qnorm(0.975)*se	
phat; ci	
Spaced Review: Day 0 Day 2 Day 7 Day 14 Lecture 12 One-Sample Proportion: Confidence Interval and Tracet	
Core Content (2-6 min skim) CI for p: prop.test(x, n) gives an approximate (Wilson-like) CI; binom.test gives an exact CI. Hypothesis test for p with null p ₀ : z (approximate) or exact binomial test.	
Core Content (2-6 min skim • CI for p: prop.test(x, n) gives an approximate (Wilson-like) CI; binom.test gives an exact CI.	
 Core Content (2-6 min skim) CI for p: prop.test(x, n) gives an approximate (Wilson-like) CI; binom.test gives an exact CI. Hypothesis test for p with null p₀: z (approximate) or exact binomial test. 	n)
 Core Content CI for p: prop.test(x, n) gives an approximate (Wilson-like) CI; binom.test gives an exact CI. Hypothesis test for p with null p₀: z (approximate) or exact binomial test. Report both p̂ and the CI; p-value addresses compatibility with H₀. Active Recall (cover Core Content above; answer from memory)	n)
 Core Content CI for p: prop.test(x, n) gives an approximate (Wilson-like) CI; binom.test gives an exact CI. Hypothesis test for p with null p₀: z (approximate) or exact binomial test. Report both p̂ and the CI; p-value addresses compatibility with H₀. Active Recall (cover Core Content above; answer from memory) 1. Which R function gives an exact binomial test and CI?	n)
 Core Content CI for p: prop.test(x, n) gives an approximate (Wilson-like) CI; binom.test gives an exact CI. Hypothesis test for p with null p₀: z (approximate) or exact binomial test. Report both p̂ and the CI; p-value addresses compatibility with H₀. Active Recall (cover Core Content above; answer from memory Which R function gives an exact binomial test and CI? In words, what does a small p-value tell you about H₀? 	n)
 Core Content CI for p: prop.test(x, n) gives an approximate (Wilson-like) CI; binom.test gives an exact CI. Hypothesis test for p with null p₀: z (approximate) or exact binomial test. Report both p̂ and the CI; p-value addresses compatibility with H₀. Active Recall (cover Core Content above; answer from memory) 1. Which R function gives an exact binomial test and CI?	n)
 Core Content CI for p: prop.test(x, n) gives an approximate (Wilson-like) CI; binom.test gives an exact CI. Hypothesis test for p with null p₀: z (approximate) or exact binomial test. Report both p̂ and the CI; p-value addresses compatibility with H₀. Active Recall (cover Core Content above; answer from memory 1. Which R function gives an exact binomial test and CI? 2. In words, what does a small p-value tell you about H ₀ ? 3. Why can an exact method be preferable with small n?	n) y)
 Core Content CI for p: prop.test(x, n) gives an approximate (Wilson-like) CI; binom.test gives an exact CI. Hypothesis test for p with null p₀: z (approximate) or exact binomial test. Report both p̂ and the CI; p-value addresses compatibility with H₀. Active Recall (cover Core Content above; answer from memory Which R function gives an exact binomial test and CI? In words, what does a small p-value tell you about H₀? Why can an exact method be preferable with small n? Micro Practice (5-10 min 	n) y)
 Core Content CI for p: prop.test(x, n) gives an approximate (Wilson-like) CI; binom.test gives an exact CI. Hypothesis test for p with null p₀: z (approximate) or exact binomial test. Report both p̂ and the CI; p-value addresses compatibility with H₀. Active Recall (cover Core Content above; answer from memory 1. Which R function gives an exact binomial test and CI? 2. In words, what does a small p-value tell you about H ₀ ? 3. Why can an exact method be preferable with small n?	n) y)
 Core Content CI for p: prop.test(x, n) gives an approximate (Wilson-like) CI; binom.test gives an exact CI. Hypothesis test for p with null p₀: z (approximate) or exact binomial test. Report both p̂ and the CI; p-value addresses compatibility with H₀. Active Recall (cover Core Content above; answer from memory Which R function gives an exact binomial test and CI? In words, what does a small p-value tell you about H₀? Why can an exact method be preferable with small n? Micro Practice (5-10 min 	n) y)
Core Content Core Content CI for p : prop.test(x, n) gives an approximate (Wilson-like) CI; binom.test gives an exact CI. Hypothesis test for p with null p_0 : z (approximate) or exact binomial test. Report both \hat{p} and the CI; p-value addresses compatibility with H_0 . Active Recall (cover Core Content above; answer from memory 1. Which R function gives an exact binomial test and CI? In words, what does a small p-value tell you about H_0 ? Which R function gives an exact binomial test and CI? In words, what does a small p-value tell you about H_0 ? Which R function gives an exact method be preferable with small n ? Micro Practice Test whether the true adverse-event rate differs from 10% when $x = 37, n = 250$.	n) y)
Core Content Core Content CI for p : prop.test(x, n) gives an approximate (Wilson-like) CI; binom.test gives an exact CI. Hypothesis test for p with null p_0 : z (approximate) or exact binomial test. Report both \hat{p} and the CI; p-value addresses compatibility with H_0 . Active Recall (cover Core Content above; answer from memory 1. Which R function gives an exact binomial test and CI? In words, what does a small p-value tell you about H_0 ? Which R function gives an exact method be preferable with small n ? Micro Practice (5–10 min skin 1. Which R function gives an exact CI. (cover Core Content above; answer from memory 2. In words, what does a small p-value tell you about H_0 ? Which R function gives an exact binomial test and CI? Test whether the true adverse-event rate differs from 10% when $x = 37, n = 250$.	n) y)
Core Content Core Content CI for p : prop.test(x, n) gives an approximate (Wilson-like) CI; binom.test gives an exact CI. Hypothesis test for p with null p_0 : z (approximate) or exact binomial test. Report both \hat{p} and the CI; p-value addresses compatibility with H_0 . Active Recall (cover Core Content above; answer from memory 1. Which R function gives an exact binomial test and CI? In words, what does a small p-value tell you about H_0 ? Which R function gives an exact binomial test and CI? In words, what does a small p-value tell you about H_0 ? Which R function gives an exact method be preferable with small n ? Micro Practice Test whether the true adverse-event rate differs from 10% when $x = 37, n = 250$.	n) y)
Core Content Core Content CI for p : prop.test(x, n) gives an approximate (Wilson-like) CI; binom.test gives an exact CI. Hypothesis test for p with null p_0 : z (approximate) or exact binomial test. Report both \hat{p} and the CI; p-value addresses compatibility with H_0 . Active Recall (cover Core Content above; answer from memory 1. Which R function gives an exact binomial test and CI? In words, what does a small p-value tell you about H_0 ? Which R function gives an exact method be preferable with small n ? Micro Practice (5–10 min skin 1. Which R function gives an exact CI. (cover Core Content above; answer from memory 2. In words, what does a small p-value tell you about H_0 ? Which R function gives an exact binomial test and CI? Test whether the true adverse-event rate differs from 10% when $x = 37, n = 250$.	n) y)
Core Content Core Content CI for p : prop.test(x, n) gives an approximate (Wilson-like) CI; binom.test gives an exact CI. Hypothesis test for p with null p_0 : z (approximate) or exact binomial test. Report both \hat{p} and the CI; p-value addresses compatibility with H_0 . Active Recall (cover Core Content above; answer from memory 1. Which R function gives an exact binomial test and CI? In words, what does a small p-value tell you about H_0 ? Which R function gives an exact method be preferable with small n ? Micro Practice (5–10 min skin 1. Which R function gives an exact CI. (cover Core Content above; answer from memory 2. In words, what does a small p-value tell you about H_0 ? Which R function gives an exact binomial test and CI? Test whether the true adverse-event rate differs from 10% when $x = 37, n = 250$.	n) y)

Lecture 13 Two Proportions: Difference, CI, and Test

Core Content (2–6 min s	kim)
 Compare p₁ - p₂ with a two-sample test for proportions; use prop.test(x = c(x1,x2), n = c(n1,n2)). Report the CI for p₁ - p₂ and interpret direction and magnitude. Avoid over-interpreting p-values without effect-size context. 	
Active Recall (cover Core Content above; answer from men	nory)
 Write the parameter of interest for two proportions. Name one assumption that justifies the Normal approximation here. What does it mean if 0 is inside the CI for p₁ - p₂? 	
Micro Practice (5–10	min)
Group A: 18/120 successes; Group B: 29/150. Test for a difference and give the 95% CI.	
R Mini-Kit (copy &	run)
prop.test(x = c(18,29), n = c(120,150))	
Spaced Review: Day 0 Day 2 Day 7 Day 14	
Lecture 14 Association in 2x2 Tables: Risk Difference, Risk tio, Odds Ratio	Ra-
Core Content (2–6 min s	skim)
 Risk difference (RD): p₁ - p₂. Risk ratio (RR): p₁/p₂. Odds ratio (OR): p₁/(1-p₁)/p₂/(1-p₂). Interpretation depends on design (cohort vs case-control). OR approximates RR when outcomes are rare. Always report context and time frame. 	
Active Recall (cover Core Content above; answer from men	nory)
 Define RD, RR, and OR. When is OR approximately equal to RR? Give one pitfall when interpreting ratios. 	
Micro Practice (5–10	min)
From a 2x2 table, compute RD, RR, and OR. Which is most interpretable for patients in your context?	
R Mini-Kit (copy &	run)
# Suppose tab is matrix(c(a,b,c,d), nrow=2, byrow=TRUE) prop <- prop.table(tab, 1) p1 <- prop[1,2]; p2 <- prop[2,2] RD <- p1 - p2 RR <- p1 / p2 OR <- (p1/(1-p1)) / (p2/(1-p2))	
c(RD=RD, RR=RR, OR=OR)	

Lecture 15 Study Design: Experiments vs Observational, Bias and Confounding

Core Content	(2–6 min skim)
 Randomisation, control, and blinding reduce bias; observational studies at Always state the unit of analysis, sampling frame, and inclusion or exclusion. Association is not causation; consider DAG-like thinking to name potential 	on criteria.
Active Recall (cover Co	re Content above; answer from memory)
1. One difference between experimental and observational designs.	
2. Define confounding in one sentence.	
3. Name two common sources of bias.	
Micro Practice	(5–10 min)
Take a claim from news or social media. Identify whether the underlying stulist likely confounders.	dy is experimental or observational and
R Mini-Kit	(copy & run)
# Simple random sample indices	
i <- sample.int(nrow(D), size = 100)	
D_s <- D[i,]	
Spaced Review: Day 0 Day 2 Day 7 Day 14 Lecture 16 Errors, Power, and Planning	
Lecture 10 Errors, 1 ower, and 1 lamming	
Core Content	(2–6 min skim)
, ,	, , , , , , , , , , , , , , , , , , ,
Core Content • Type I error (false positive) rate is set by α ; Type II error relates to 1–pe • Power increases with larger effects, larger n , smaller variability, and higher	ower.
Core Content • Type I error (false positive) rate is set by α ; Type II error relates to 1–po	ower.
 Core Content Type I error (false positive) rate is set by α; Type II error relates to 1-pe Power increases with larger effects, larger n, smaller variability, and higher Pre-specify hypotheses and primary outcomes to avoid p-hacking. 	ower.
 Core Content Type I error (false positive) rate is set by α; Type II error relates to 1-pe Power increases with larger effects, larger n, smaller variability, and higher Pre-specify hypotheses and primary outcomes to avoid p-hacking. 	ower. r $lpha$ (trade-offs apply).
 Core Content Type I error (false positive) rate is set by α; Type II error relates to 1-pe Power increases with larger effects, larger n, smaller variability, and highe Pre-specify hypotheses and primary outcomes to avoid p-hacking. Active Recall Cover Co Define power in words. Name two knobs that increase power (holding others fixed). 	ower. r $lpha$ (trade-offs apply).
Core Content • Type I error (false positive) rate is set by α ; Type II error relates to 1-pe • Power increases with larger effects, larger n , smaller variability, and highe • Pre-specify hypotheses and primary outcomes to avoid p-hacking. Active Recall (cover Co	ower. r $lpha$ (trade-offs apply).
 Core Content Type I error (false positive) rate is set by α; Type II error relates to 1-pe Power increases with larger effects, larger n, smaller variability, and highe Pre-specify hypotheses and primary outcomes to avoid p-hacking. Active Recall Cover Co Define power in words. Name two knobs that increase power (holding others fixed). 	ower. r α (trade-offs apply).
 Core Content Type I error (false positive) rate is set by α; Type II error relates to 1-pe Power increases with larger effects, larger n, smaller variability, and highe Pre-specify hypotheses and primary outcomes to avoid p-hacking. Active Recall (cover Co Define power in words. Name two knobs that increase power (holding others fixed). Why is multiple testing dangerous without correction? 	ower. The α (trade-offs apply). The α (trade-offs apply). The α (trade-offs apply). The α (5–10 min)
 Core Content Type I error (false positive) rate is set by α; Type II error relates to 1-pe Power increases with larger effects, larger n, smaller variability, and highe Pre-specify hypotheses and primary outcomes to avoid p-hacking. Active Recall (cover Co Define power in words. Name two knobs that increase power (holding others fixed). Why is multiple testing dangerous without correction? Micro Practice Sketch how the required n changes when the target effect size halves (qualitate) 	ower. The α (trade-offs apply). The α (trade-offs apply). The α (trade-offs apply). The α (5–10 min)
 Core Content Type I error (false positive) rate is set by α; Type II error relates to 1-pe Power increases with larger effects, larger n, smaller variability, and highe Pre-specify hypotheses and primary outcomes to avoid p-hacking. Active Recall (cover Co Define power in words. Name two knobs that increase power (holding others fixed). Why is multiple testing dangerous without correction? Micro Practice Sketch how the required n changes when the target effect size halves (qualitat fixed? 	ower. The α (trade-offs apply). The Content above; answer from memory) $(5-10 \text{ min})$ ively). What happens to power if n stays $(\operatorname{copy} \& \operatorname{run})$
 Core Content Type I error (false positive) rate is set by α; Type II error relates to 1-pe Power increases with larger effects, larger n, smaller variability, and highe Pre-specify hypotheses and primary outcomes to avoid p-hacking. Active Recall (cover Co Define power in words. Name two knobs that increase power (holding others fixed). Why is multiple testing dangerous without correction? Micro Practice Sketch how the required n changes when the target effect size halves (qualitate fixed? R Mini-Kit # Crude simulation of power for a one-sample t under delta <- 0.3; n <- 40; B <- 1000 	ower. The $lpha$ (trade-offs apply). The Content above; answer from memory) (5-10 min) ively). What happens to power if n stays (copy & run) the mean $shift$
 Core Content Type I error (false positive) rate is set by α; Type II error relates to 1-pe Power increases with larger effects, larger n, smaller variability, and highe Pre-specify hypotheses and primary outcomes to avoid p-hacking. Active Recall (cover Co Define power in words. Name two knobs that increase power (holding others fixed). Why is multiple testing dangerous without correction? Micro Practice Sketch how the required n changes when the target effect size halves (qualitate fixed? R Mini-Kit # Crude simulation of power for a one-sample t under delta <- 0.3; n <- 40; B <- 1000 pvals <- replicate(B, t.test(rnorm(n, mean=delta, sd= 	ower. The $lpha$ (trade-offs apply). The Content above; answer from memory) (5-10 min) ively). What happens to power if n stays (copy & run) the mean $shift$
 Core Content Type I error (false positive) rate is set by α; Type II error relates to 1-pe Power increases with larger effects, larger n, smaller variability, and highe Pre-specify hypotheses and primary outcomes to avoid p-hacking. Active Recall (cover Co Define power in words. Name two knobs that increase power (holding others fixed). Why is multiple testing dangerous without correction? Micro Practice Sketch how the required n changes when the target effect size halves (qualitate fixed? R Mini-Kit # Crude simulation of power for a one-sample t under delta <- 0.3; n <- 40; B <- 1000 	ower. The $lpha$ (trade-offs apply). The Content above; answer from memory) (5-10 min) ively). What happens to power if n stays (copy & run) the mean $shift$
 Core Content Type I error (false positive) rate is set by α; Type II error relates to 1-pe Power increases with larger effects, larger n, smaller variability, and highe Pre-specify hypotheses and primary outcomes to avoid p-hacking. Active Recall (cover Co Define power in words. Name two knobs that increase power (holding others fixed). Why is multiple testing dangerous without correction? Micro Practice Sketch how the required n changes when the target effect size halves (qualitate fixed? R Mini-Kit # Crude simulation of power for a one-sample t under delta <- 0.3; n <- 40; B <- 1000 pvals <- replicate(B, t.test(rnorm(n, mean=delta, sd= 	ower. The $lpha$ (trade-offs apply). The Content above; answer from memory) (5-10 min) ively). What happens to power if n stays (copy & run) the mean $shift$

Lecture 17 Correlation (Pearson r) and Scatterplots

	(2-6 min skim)
 Pearson r measures linear association (from -1 to 1); it is unitless and symmetric in x and y. Nonlinear patterns can yield r near 0 even when variables are strongly related. Outliers can distort r; always inspect the scatterplot. 	
Active Recall (cover Core Content above; answ	wer from memory)
 What does the sign and magnitude of r indicate? Why must you always look at the scatterplot before trusting r? Give one situation where r is inappropriate. 	
Micro Practice	(5–10 min)
Compute r between two quantitative variables and draw the scatterplot. Describe form, strength, a	and outliers.
R Mini-Kit	(copy & run)
<pre>plot(D\$x, D\$y) cor(D\$x, D\$y) cor.test(D\$x, D\$y)</pre>	
Spaced Review: Day 0 Day 2 Day 7 Day 14 Lecture 18 Transformations and Nonlinearity	
Core Content	(2–6 min skim)
 Core Content Log or square-root transforms can stabilise variance and linearise relationships. Interpret coefficients on the transformed scale carefully (for example, log-y implies multiplicative). Compare residual plots before and after transformation. 	, ,
 Log or square-root transforms can stabilise variance and linearise relationships. Interpret coefficients on the transformed scale carefully (for example, log-y implies multiplicative) 	e effects).
 Log or square-root transforms can stabilise variance and linearise relationships. Interpret coefficients on the transformed scale carefully (for example, log-y implies multiplicative). Compare residual plots before and after transformation. 	e effects).
 Log or square-root transforms can stabilise variance and linearise relationships. Interpret coefficients on the transformed scale carefully (for example, log-y implies multiplicative). Compare residual plots before and after transformation. Active Recall (cover Core Content above; answer.) 1. Name one reason to take logs of y. 2. After logging y, how would you interpret a slope of 0.07? 	e effects).
 Log or square-root transforms can stabilise variance and linearise relationships. Interpret coefficients on the transformed scale carefully (for example, log-y implies multiplicative). Compare residual plots before and after transformation. Active Recall (cover Core Content above; answers). 1. Name one reason to take logs of y. 2. After logging y, how would you interpret a slope of 0.07? 3. What visual cue in residuals-versus-fitted suggests a variance problem?	e effects). wer from memory)
 Log or square-root transforms can stabilise variance and linearise relationships. Interpret coefficients on the transformed scale carefully (for example, log-y implies multiplicative). Compare residual plots before and after transformation. Active Recall (cover Core Content above; answers). Name one reason to take logs of y. After logging y, how would you interpret a slope of 0.07? What visual cue in residuals-versus-fitted suggests a variance problem? Micro Practice	e effects). wer from memory)
 Log or square-root transforms can stabilise variance and linearise relationships. Interpret coefficients on the transformed scale carefully (for example, log-y implies multiplicative). Compare residual plots before and after transformation. Active Recall (cover Core Content above; answers). Name one reason to take logs of y. After logging y, how would you interpret a slope of 0.07? What visual cue in residuals-versus-fitted suggests a variance problem? Micro Practice Fit models with y and with log(y); compare residual diagnostics and R output. 	e effects). wer from memory) (5–10 min)

Lecture 19 Outliers, Leverage, and Influence

Core Content	(2-6 min skim)
 Leverage points have unusual x; influential points change fit noticeably (for example, large Cool Check hat values and Cook distance; diagnose, then justify any exclusions transparently. Refit with and without suspicious points and compare conclusions. 	k distance).
Active Recall (cover Core Content above; ans	wer from memory)
 Distinguish leverage and influence. Name two diagnostics for influence. Why is pre-specifying exclusion rules important? 	
Micro Practice	(5–10 min)
Identify the top three most influential observations in your regression and inspect their raw record	s.
R Mini-Kit	(copy & run)
<pre>fit <- lm(y ~ x, data=D) h <- hatvalues(fit) cd <- cooks.distance(fit) head(sort(cd, decreasing=TRUE), 3)</pre>	
Spaced Review: Day 0 Day 2 Day 7 Day 14 Lecture 20 Prediction and Intervals in Regression	
Core Content	(2–6 min skim)
 Use predict(, interval="confidence") for mean response; use interval="prediction" for Prediction intervals are wider than confidence intervals. Do not extrapolate far beyond observed x. 	a new individual.
Active Recall (cover Core Content above; ans	swer from memory)
 Difference between a confidence interval for the mean response and a prediction interval. Why are prediction intervals wider? What is extrapolation and why is it risky? 	
Micro Practice	(5–10 min)
Fit an SLR and compute both CI and PI at x values near the center of your data. Compare width	ıs.
R Mini-Kit	(copy & run)
<pre>fit <- lm(y ~ x, data=D) new <- data.frame(x = c(10, 20)) conf <- predict(fit, new, interval = "confidence") pred <- predict(fit, new, interval = "prediction") conf; pred</pre>	
Spaced Review: Day 0 Day 2 Day 7 Day 14	

Lecture 21 ANOVA (Concept) and Categorical Predictors

Core Content (2–6 min skim)

- One-way ANOVA tests equality of k group means; equivalent to regression with k-1 dummy variables.
- · Assumptions mirror SLR errors: independence, Normality within groups, equal variances.
- · Report group means with CIs and the overall F test; follow up with planned contrasts where relevant.

Active Recall

(cover Core Content above; answer from memory)

- 1. What does one-way ANOVA test?
- 2. Name the error assumptions for ANOVA.
- 3. How do you represent a 4-level factor in regression?

Micro Practice

Spaced Review:

(5-10 min)

Run one-way ANOVA for y across a 3-level factor and show group means with 95% CIs.

```
fit <- aov(y ~ group, data=D)</pre>
summary(fit)
aggregate(y ~ group, data=D, FUN=mean)
T <- TukeyHSD(fit)
Τ
                                    Day 7
```

Fast Review Sheet (pin on your wall)

Day 2

Day 0

- **Probability and tables:** marginal / joint / conditional; independence check: $Pr(A \mid B) \stackrel{?}{=} Pr(A)$. For 2x2, also report RD, RR, OR (when events are rare, OR \approx RR).
- Sampling and CLT: the sampling distribution of \bar{y} is approximately Normal for large n; $SE(\bar{y}) = s/\sqrt{n}$.
- CIs and SEs: width increases with conf.level or s; width decreases with n. For a proportion \hat{p} : $SE(\hat{p}) \approx$ $\sqrt{\hat{p}(1-\hat{p})/n}$.
- Means: one-sample t for a mean; Welch two-sample t for independent groups; paired t on differences for within-subject designs. Always report estimate, CI, and a one-sentence practical interpretation.
- SLR: model $y = \beta_0 + \beta_1 x + \varepsilon$. Interpret β_1 as change in y per 1-unit increase in x; β_0 may be non-sensical if x=0 is outside the data. Check **LINE**; inspect residuals, leverage, and Cook distance.
- Prediction vs confidence: predict(..., interval="confidence") is for the mean response; interval="prediction" is for a new individual (wider).
- Power and planning: power increases with larger effects, larger n, smaller variability, and higher α (trade-offs). Pre-specify outcomes; avoid p-hacking.
- Minimal R verbs to remember: t.test(...); prop.test(...) / binom.test(...); table and prop.table; lm(y~x); plot(fitted(), rstudent()); predict(..., interval=).

How to schedule your catch-up (suggested)

- Week 1 (catch-up): two lectures per day (about 35–45 min each).
 - For each lecture: 6 min Core skim \rightarrow 5 min Active Recall (eyes off) \rightarrow 8–10 min Micro Practice \rightarrow 5–8 min R Mini-Kit.
 - End of day: 15 min mixed recall (pick 6–8 questions across the day's lectures).
- Week 2 (consolidate): revisit each lecture on Day 2 and Day 7; do only Active Recall plus one Micro Practice. Tick the review boxes: Day 0 / 2 / 7 / 14.
- Error log protocol: when you miss an item, write the reason and a fix in a one-page sheet you see daily.
- R reps: once per day, retype one Mini-Kit from memory (no copy-paste) to keep commands fluent.

• Exam warm-up: 3 blocks \times 30 MCQs under time; after each block, classify errors (concept vs slip) and fix with one targeted Micro Practice.