Generalized Data Thinning using Sufficient Statistics

Netra Prabhu, Ananya Roy

NC State University

December 3,2024

What is Data Thinning?

A statistical technique where a single data point is split into multiple independent parts.

► Key Principles:

- ▶ Independence: The thinned random variables $X^{(1)}, \dots, X^{(K)}$ must be mutually independent.
- ▶ Sufficiency: The function $T(X^{(1)},...,X^{(K)})$ must retain all the information about the unknown parameter(s).
- Flexibility: Works with a broad set of families including exponential and non-exponential distributions.

Need of Data Thinning

Applications:

- Hypothesis Testing: Use the data both to generate and to test a hypothesis.
- Model Validation: Use the data both to fit a complicated model, and to obtain an accurate estimate of the expected prediction error.
- Bias/Prediction Error Reduction: Mitigates biases in scenarios like cross-validation and error estimation.

Existing Methods:

- Sample Splitting (Cox, 1975):[1] Divides data into subsets for model fitting and validation but lacks flexibility for complex dependencies.
- ▶ Convolution-Closed Thinning (Neufeld et al., 2023)[3]: They consider splitting, or thinning, a random variable X drawn from a convolution-closed family into K independent random variables $X^{(1)}, \ldots, X^{(K)}$ such that:

$$X = \sum_{k=1}^K X^{(k)},$$

and $X^{(1)}, \ldots, X^{(K)}$ come from the same family of distributions as X.

Generalized Thinning

- Splits a random variable X into K independent random variables $X^{(1)}, \ldots, X^{(K)}$.
- Ensures the following two properties:
 - 1. $X = T(X^{(1)}, \ldots, X^{(K)})$
 - 2. $X^{(1)}, \ldots, X^{(K)}$ are mutually independent.
- Simultaneously encompass both convolution-closed data thinning and sample splitting.

Sample splitting

Generalized data thinning

Figure: Left: Sample splitting assigns each observation to either a training or a test set. Right: Generalized data thinning splits each observation into two parts that are independent and that can be used to recover the original observation $T(X^{(1)}, X^{(2)}) = X$. Source: pg 5, paper [2]

Key Contributions:

- ightharpoonup Sufficiency is the key property underlying the choice of the function T().
- Generalizes thinning beyond convolution-closed families to broader distribution classes.
- Extends applicability to non-exponential families like Beta and Uniform distributions.
- Demonstrates use cases in scenarios unsuitable for traditional sample splitting.
- Preserves independence and sufficiency, enabling robust model validation and inference.

Generalized Thinning Procedure

Definition 1:

- ▶ Consider a family of distributions $P = \{P_{\theta} : \theta \in \Omega\}$.
- Suppose that there exists a distribution G_t , not depending on θ , and a deterministic function $T(\cdot)$ such that when we sample $(X^{(1)}, \ldots, X^{(K)})|X$ from G_X , for $X \sim P_\theta$, the following properties hold:
 - 1. $X^{(1)},\ldots,X^{(K)}$ are mutually independent (with distributions depending on θ), and
 - 2. $X = T(X^{(1)}, \ldots, X^{(K)}).$

Then we say that P is **thinned** by the function $T(\cdot)$.

Theorem: Suppose P is thinned by a function $T(\cdot)$ and, for $X \sim P_{\theta}$, let $Q_{\theta}^{(1)} \times \cdots \times Q_{\theta}^{(K)}$ denote the distribution of the mutually independent random variables $(X^{(1)}, \dots, X^{(K)})$, sampled as in Definition 1. Then, the following hold:

- 1. $T(X^{(1)},...,X^{(K)})$ is a sufficient statistic for θ based on $(X^{(1)},...,X^{(K)})$.
- 2. The distribution G_t in Definition 1 is the conditional distribution: $(X^{(1)}, \ldots, X^{(K)}) \mid T(X^{(1)}, \ldots, X^{(K)}) = t$, where $(X^{(1)}, \ldots, X^{(K)}) \sim Q_{\theta}^{(1)} \times \cdots \times Q_{\theta}^{(K)}$.

Algorithm for Finding distributions that can be thinned:

- 1. Choose K families of distributions, $Q^{(k)} = \{Q_{\theta}^{(k)} : \theta \in \Omega\}$ for $k = 1, \dots, K$.
- 2. Let $(X^{(1)}, \dots, X^{(K)}) \sim Q_{\theta}^{(1)} \times \dots \times Q_{\theta}^{(K)}$, and let $T(X^{(1)}, \dots, X^{(K)})$ denote a sufficient statistic for θ .
- 3. Let P_{θ} denote the distribution of $T(X^{(1)}, \dots, X^{(K)})$.

By construction, the family $P = \{P_{\theta} : \theta \in \Omega\}$ is thinned by $T(\cdot)$.

Thinning Natural Exponential Families(NEF)

- ▶ NEF starts with a known probability distribution *H*
- ▶ Forms a family of distributions $P_H = \{P_H^{\theta} : \theta \in \Omega\}$ based on H, as follows:

$$dP_H^{\theta}(x) = e^{x^{\top}\theta - \psi_H(\theta)}dH(x).$$

• $\psi_H(\theta)$: Normalizing constant ensuring P_{θ} is a valid probability distribution.

Thinning by Addition: The natural exponential family P_H can be thinned by $T(x^{(1)},\ldots,x^{(K)})=\sum_{k=1}^K x^{(k)}$ into K NEFs P_{H_1},\ldots,P_{H_K} if and only if H is the K-way convolution of H_1,\ldots,H_K .

K-way Convolution: A probability distribution H is the K-way convolution of distributions H_1, \ldots, H_K if $\sum_{k=1}^K Y_k \sim H$ for $(Y_1, \ldots, Y_K) \sim H_1 \times \cdots \times H_K$.

Example: Gaussian distributions.

$$N(\mu, \sigma^2) \to {\sf Split}$$
 into $N(\epsilon_k \mu, \epsilon_k \sigma^2)$, with $\sum \epsilon_k = 1$.

Thinning Natural into General Exponential Families

- ▶ Allows for more flexibility in the sufficient statistic and thinning function.
- Uses the previously defined algorithm.

Proposition:

- Let $X^{(1)}, \ldots, X^{(K)}$ be independent random variables with $X^{(k)} \sim Q_{\theta}^{(k)}$ for $k=1,\ldots,K$, from any (i.e., possibly non-natural) exponential families $Q^{(k)}$ with sufficient statistic $T^{(k)}(X^{(k)})$.
- ▶ P_{θ} : the distribution of $\sum_{k=1}^{K} T^{(k)}(X^{(k)})$. (sufficient statistic for θ based on $(X^{(1)}, \dots, X^{(K)}) \sim Q_{\theta}^{(1)} \times \dots \times Q_{\theta}^{(K)}$.)

Then, $P=\{P_{\theta}:\theta\in\Omega\}$ is a natural exponential family, and we can thin it into $X^{(1)},\ldots,X^{(K)}$ using the function:

$$T(x^{(1)},...,x^{(K)}) = \sum_{k=1}^{K} T^{(k)}(x^{(k)}).$$

Implies that many natural exponential families can be thinned by a function of the above form.

Indirect Thinning of General Exponential Families

Key Concept: Consider $X \sim P_{\theta} \in P$. Suppose we thin a sufficient statistic S(X) for θ by a function $T(\cdot)$. Then, we say that the family P is **indirectly thinned** through $S(\cdot)$ by $T(\cdot)$.

Indirect Thinning of General Exponential Families:

- Let $P = \{P_{\theta} : \theta \in \Omega\}$ be a general exponential family. That is, $dP_{\theta}(x) = \exp\{[S(x)]^{\top} \eta(\theta) \psi(\theta)\} dH(x),$
- ▶ S(X): sufficient for θ , S(X) belongs to a NEF (Lehmann & Romano 2005).

Thus, indirectly thinning X through $S(\cdot)$ as follows:

- 1. We now consider $X^{(1)}, \ldots, X^{(K)}$ that belong to a general exponential family, where $T^{(k)}(\cdot)$ is not necessarily the identity. Suppose further that: $S(X) \stackrel{D}{=} \sum_{k=1}^K T^{(k)}(X^{(k)})$.
- 2. Then, indirectly thinning X through $S(\cdot)$ into $X^{(1)}, \ldots, X^{(K)}$, by:

$$T(x^{(1)},...,x^{(K)}) = \sum_{k=1}^{K} T^{(k)}(x^{(k)}).$$

Simulation

1. Optimal value of ϵ for Normal Distribution Thinning:

 $X \sim N(\mu, \sigma^2)$ thinned into -

- **2.** $X^{(1)} \sim N(\epsilon \mu, \epsilon \sigma^2)$
- 2. $X^{(2)} \sim N((1-\epsilon)\mu, (1-\epsilon)\sigma^2)$

2. Comparison of Thinned Cross-Validation and Regular Cross-Validation methods:

Response variable y = sin(x) + E, $E \sim N(0, 1)$ (noisy sinusoidal time-series).

- Regular CV: with k=5 folds
- Thinned CV: Thin data into K = 3 subsets using the datathin package, ensuring independence. Perform an 80-20 train-test split within each subset and average MSE across all subsets.

Data Analysis - Change-point detection

LGA Airline Passenger Dataset: Gives the number of passengers arriving and departing at LGA.

GDP of Japan Dataset : Historic GDP of Japan in the Local Currency Unit (LCU)

Limitations

- NEF that is based on a distribution that cannot be written as the convolution of two distributions.
- Convolution-closed family outside of the NEF in which addition is not sufficient.

Examples:

- ightharpoonup Bernoulli family cannot be thinned by any function T().
- Cauchy family cannot be thinned by addition.

Conclusions

Generalized Framework:

- ▶ Thins random variables X into independent components $X^{(1)}, \ldots, X^{(K)}$.
- Preserves all information about unknown parameters using sufficiency.

Unified Perspective:

- Links sample splitting and data thinning as special cases of a broader framework.
- Expands to new distributions, including beta, uniform, and shifted exponential.

► Applications:

- Improves model validation, selective inference, and changepoint detection.
- Provides robust solutions for dependent or small datasets.

References I

- [1] D R Cox. "A note on data-splitting for the evaluation of significance levels". In: *Biometrika* 62.2 (Aug. 1975), p. 441.
- [2] Ameer Dharamshi et al. "Generalized data thinning using sufficient statistics". In: Journal of the American Statistical Association just-accepted (2024), pp. 1–26.
- [3] Anna Neufeld et al. "Data thinning for convolution-closed distributions". In: Journal of Machine Learning Research 25.57 (2024), pp. 1–35.

Thank you!