Karl Düsing (1883) → first general mathematical treatment of sex-ratio evolution

Population of z individuals

Assumption:

All males together → will produce z offspring All females together → will produce z offspring

Each will produce
$$\frac{Z}{n \cdot X}$$
 offspring

Each will produce $\frac{Z}{X}$ offspring

Karl Düsing (1883) → first general mathematical treatment of sex-ratio evolution

Population of z individuals

Assumption:

All males together → will produce z offspring All females together → will produce z offspring

Each will produce
$$\frac{Z}{n \cdot x}$$
 offspring Each will produce $\frac{Z}{x}$ offspring

Karl Düsing (1883) → first general mathematical treatment of sex-ratio evolution

Population of z individuals

Assumption:

All males together → will produce z offspring All females together → will produce z offspring

Each will produce
$$\frac{Z}{n \cdot x}$$
 offspring Each will produce $\frac{Z}{x}$ offspring

Each will produce
$$\frac{Z}{n.X}$$
 offspring

Each
$$\frac{Z}{X}$$
 will produce $\frac{Z}{X}$ offspring

Suppose 2 strategies among : Fem_1 = more sons; Fem_2 = more daughters

Karl Düsing (1883)

Each will produce
$$\frac{Z}{n.X}$$
 offspring

Each
$$\frac{Z}{X}$$
 will produce $\frac{Z}{X}$ offspring

Suppose 2 strategies among : Fem_1 = more sons; Fem_2 = more daughters

children

children

grandchildren

$$ba. \frac{1^{st} \text{ generation}}{ba. \frac{Z}{n. x} + a. \frac{Z}{x}}$$
 $ba. \frac{Z}{n. x} + a. \frac{Z}{x}$

$$a.\frac{z}{n}+ba.\frac{z}{x}$$

Karl Düsing (1883)

Each will produce
$$\frac{Z}{n.X}$$
 offspring

Each
$$\frac{Z}{X}$$
 will produce $\frac{Z}{X}$ offspring

Suppose 2 strategies among : Fem_1 = more sons; Fem_2 = more daughters

Karl Düsing (1883)

Suppose 2 strategies among

grandchildren

$$ba\frac{z}{nx} + a\frac{z}{x} = \frac{az}{x} \left[\frac{b}{n} + 1 \right]$$

$$a\frac{z}{nx}+ba\frac{z}{x}=\frac{az}{x}\left[\frac{1}{n}+b\right]$$

Number of grandchildren produced by

Number of grandchildren produced by

Suppose 2 strategies among

grandchildren

$$\frac{\text{2 generations}}{} ba \frac{z}{nx} + a \frac{z}{x} = \frac{az}{x} \left[\frac{b}{n} + 1 \right]$$

$$a\frac{z}{nx}+ba\frac{z}{x}=\frac{az}{x}\left[\frac{1}{n}+b\right]$$

Number of grandchildren produced by

Number of grandchildren produced by

$$\frac{1+bn}{b+n}$$

If sex-ratio is **originally balanced**:

Ratio of produced grandchildren Fem_2 / Fem_1:

$$\frac{1+bn}{b+n} = \frac{1+b}{b+1} = 1$$

All strategies among females lead to the same number of grandchildren

If sex-ratio is **originally unbalanced**:

Ratio of produced grandchildren Fem_2 / Fem_1:

$$\frac{1+bn}{b+n}$$
>1 (for all b >1)

If sex-ratio is originally unbalanced:

Ratio of produced grandchildren Fem_2 / Fem_1:

$$\frac{1+bn}{b+n} > 1 \text{ (for all } b > 1)$$

Production of the minority sex is favoured

Why sex-ratios are sometimes unbalanced in nature?

Models explaining balanced sex-ratio always assume: panmixia

unlimited mating opportunities

A few number of can fertilize all

Why sex-ratios are sometimes unbalanced in nature?

Models explaining balanced sex-ratio always assume: panmixia

unlimited mating opportunities

A few number of can fertilize all

Why sex-ratios are sometimes unbalanced in nature?

Models explaining balanced sex-ratio always assume: panmixia

unlimited mating opportunities

A few number of can fertilize all → local mate competition

Male reproductive capacity k = 3

6 mothers

5 mothers

4 mothers

Male reproductive capacity k = 3

Example: male reproductive capacity k = 3

Strong LMC → bias toward daughters

Strong LMC → bias toward daughters

Strong LMC → bias toward daughters

Weaker LMC → increased production of sons

The case of fig wasps

Effect of inbreeding on sex-ratio

Effect of inbreeding on sex-ratio

Sex-ratio adjustment Inbreeding: min The case of fig wasps (foundresses are from different figs) 50 40 30 % of males 20 Inbreeding: max (foundresses are 10 from the same fig) 0 0 2 10 6 8

number of foundresses

Sex ratios in gonochoristic species

Balanced for panmictic populations

Female biased if competition between brothers is strong

Sex ratios in gonochoristic species

Balanced for panmictic populations

Female biased if competition between brothers is strong

