

Oliver KASTNER-HAULER

BBC micro:bit
Temperaturmessung

GET CREATIVE GET CONNECTED GET CODING

micro:bit is a tiny programmable computer, designed to make learning and teaching easy and fun!

http://microbit.org

I'm a teacher

How do I use micro:bit in school?

Learn more

I've got my micro:bit

What do I need to get started?

Get started

"Was ist ein micro:bit?"

- ambitionierteste Education Initiative der letzen 30 Jahre
 - **BBC Micro** (1981 Acorn BBC Microcomputer)
 - 6502 Prozessor (2 MHz) 16, 21 od. 64 KB Speicher
 - Heimcomputer und vor allem in Schulen eingesetzt
 - vergleichbar mit Commodore C64, Sinclair ZX-Spectrum, etc.
- BBC Initiative in UK
- > 30 Partner
- kids für *coding* zu interessieren
- digitale Kreativität
- neue Generation an Technik Pionieren

FRONT BACK

Programmieren

Code Editoren

- PXT Editor
 - → makecode.microbit.org
 - Programming Experience Toolkit
 - Microsoft
 - JavaScript / block-based
- MicroPython
 - → python.microbit.org
 - Python Language Subset

```
dauerhaft

    zeige LEDs
    zeige LEDs
    in the second secon
                                                                                                                                                                               zeige LEDs
```

```
basic.forever(() => {
        basic.showLeds(`
             . # . # .
            # . . . #
             . # # # .
        basic.showLeds(`
11
12
13
14
15
16
   })
17
```

makecode.com

- 🗸 🖳 Dieser PC
 - > 🔤 Bilder
 - > Desktop
 - > 🖺 Dokumente
 - > Up Downloads
 - > 🚺 Musik
 - > Wideos
 - > La BOOTCAMP (C:)
 - > _ DATA Win (D:)
 - > a Data OSx (E:)
 - OSX SSD (F:)
 - > amsung_T1 (G:)
 - MICROBIT (H:)

ung Ø N N

Steckkontakte mit Edge Connector

einfachst erweiterbar

Breadboard

mit internen Verbindungen

Breadboard + Edge Connector

einfache Schaltungen OHNE Löten herstellbar

Microbit Inventors-Kit

 https://www.youtube.com/ watch?v=lmdzM74XyHw

Beispiel: Temperaturmessung (1)

- Widerstand –
 elektronisches Bauteil
- NTC Thermistor
- temperaturabhängige Änderung des Widerstands →
 Spannung verändert sich
- +10 kOhm Widerstand

Messpunkte

- Glättung und Annäherung der Kurve an eine Gerade
- Widerstand gleicher Stärke dazwischen
- Gute Annäherung im mitteleren Bereich

Schaltung - Schematisch

Schema A (PTC)

Schema B (NTC)

U

U

GND

Schema B (NTC)

The simplest way to connect thermistor to a MCU (or an ADC IC).

To minimize measurement error, the R_A value should be close to thermistor resistance value in the measurement range – that makes ADC values changing closer to linear, and consequently, allows to minimize error while linear interpolation.

Schaltung für Temp-Messung

Messpunkte: Ergebnis -> Umrechnung

- Starter-Thermistor-Overview-Handout → Link im Anhang
- Read Pin \rightarrow 0 bis 1023 \approx 0 bzw. 3 V

$$y = m * x + c$$

$$\rightarrow$$
c = (-12*23,4)+482=201,2

$$\rightarrow$$
c = (-12*8,4)+302=201,2

Korrkete Umrechnung im gemessenen Bereich!

Umrechnung

Programm (fertig)

Bildnachweis

- S. 1 Michael Semeliker (PH NÖ)
- S. 2, 6, 18, 21, 22 http://microbit.org
- S. 4, 13, 14 Gereth Halfacree https://www.flickr.com/photos/120586634@N05/
- S. 7 SparkFun Electronics https://www.flickr.com/photos/sparkfun/
- S. 8 Fotero <u>https://www.flickr.com/photos/fotero/</u>
- S. 10 https://os.mbed.com/platforms/Microbit/#pinout
- S. 15 https://de.wikipedia.org/wiki/User:Ulfbastel https://commons.wikimedia.org/wiki/File:Heissleiter2.jpg
- S. 17 http://aterlux.ru/article/ntcresistor-en
- restliches Bildmaterial (ohne Seitenangabe): Oliver Kastner-Hauler (PH NÖ)

Links

- Microbit
 http://microbit.org und http://microbit.co.uk
- Kitronik Microbit Inventorskit <u>https://www.kitronik.co.uk/5603-inventors-kit-for-the-bbc-microbit.html</u>
- Makecode PXT https://makecode.microbit.org/
- Thermistor Funktionsweise Handout <u>https://microbit0.blob.core.windows.net/pub/njbelwlw/Starter-Thermistor-Overview-Handout.pdf</u> aus dem Projekt https://www.microbit.co.uk/iet/temperature-monitoring
- Thermistor Conrad.at Best.Nr. 500622 → siehe Bild
 https://www.conrad.at/de/heissleiter-k164-10-k-epcos-b57164k103j-1-st-500622.html
 Thermistor = PTC 10kOhm
 Widerstand = 10 kOhm
- Folien http://link.ph-noe.ac.at/a

