Skript Mathe 2

17. Juni 2018

Inhaltsverzeichnis

1	Folg	en 3
	1.1	Definition
	1.2	Beispiele
	1.3	Definition: Beschränkte und alternierende Folgen 5
	1.4	Beispiele
	1.5	Definition: Konvergente Folgen 6
	1.6	Bemerkung
	1.7	Beispiele
	1.8	Satz
	1.9	Bemerkung
	1.10	Beispiel: Geometrische Folge
		Beispiel
		Bemerkung: Dreiecksungleichung
	1.13	Rechenregeln für Folgen
		Beispiele: Rechenregeln
	1.15	Satz: Einschließungsregel
		Beispiele
	1.17	Satz
	1.18	Definition: Landau Symbole, \mathcal{O} -Notation
		Beispiele
		Definition: Monotonie
	1.21	Beispiele
	1.22	Definition
		Satz: Monotone Konvergenz
		Bernoulli-Ungleichung
		Beispiel: Folgen mit Grenzwert e
		Satz: Intervallschachtelung
		Beispiel
		Definition: Eulersche Zahl
		Bemerkung
		Definition: Teilfolge
		Beispiel
		Bemerkung
		Definition: Häufungspunkt (HP)
		Beispiel
	1 25	Satz: Rongano Wojorstraß

		Definition: Limes inferior/superior	8
	1.37	Bemerkung	8
	1.38	Beispiel	9
	1.39	Definition: Cauchy-Folgen	9
		Satz: Cauchy-Kriterium	9
		Beispiel	0
		Definition: Kontraktion	
		Banachscher Fixpunktsatz	
		r	
2	Reil	nen 2	1
	2.1	Definition: Reihe	1
	2.2	Bemerkung	1
	2.3	Beispiele	1
	2.4	Satz: Rechenregeln für Reihen	3
	2.5	Satz: Konvergenz und Divergenzkriterien für Reihen 2	
	2.6	Cauchy-Kriterium	
	$\frac{2.0}{2.7}$	Satz: Absolute Konvergenz	
	2.8	Korollar: Dreiecksungleichung für Reihen	
	2.9		
		Majorantenkriterium	
		Bemerkung: Minorantenkriterium	
		Beispiele	
		Satz: Leibniz-Kriterium	
		Satz: Wurzelkriterium	
		Beispiele	
		Satz: Quotientenkriterium	6
	2.17	Beispiele	7
	2.18	Bemerkung	7
	2.19	Umordnung von Reihen: Beispiel	7
		Definition: Umordnung	8
	2.21	Umordnungssatz	8
		Riemannscher Umordnungssatz	8
		Ŭ	
3	Pote	enzreihen 2	8
	3.1	Grundbegriffe und Beispiel $\ \ldots \ \ldots \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	8
	3.2	Definition: Potenzreihen	8
	3.3	Bemerkung	9
	3.4	Satz	9
	3.5	Definition: Konvergenzradius und Intervall	9
	3.6	Beispiel	0
	3.7	Korollar	0
	3.8	Satz: Formel von Cauchy-Hademard	
	3.9	Beispiel	
		Satz: Formel von Euler	
		Beispiel: Exponentialfunktion	
		Bemerkung	
	0.12	Domoraung	_
4	Ree	lle Funktionen 3	3
	4.1	Definition: Abbildung	
	4.2	Definition: Reelle Funktion	
	_		

	4.3	Beispiel	4
	4.4	Definition: Injektiv, Surjektiv, Bijektiv	4
	4.5	Beispiele	4
	4.6	Definition: Umkehrfunktion, Bild, Urbild	4
	4.7	Beispiel	4
	4.8	Definition: Symmetrie	5
	4.9	Definition: Monotonie	5
	4.10	Elementare Funktionen	
5	Gre	nzwerte von Funktionen und Stetigkeit 40	n
•	5.1	Definition: Grundbegriffe und Beispiele 4	
	5.2	Beispiele	-
	5.3	Bemerkung	-
	5.4	Definition Grenzwert I	-
	5.5	Beispiele	
	5.6	ϵ - φ -Kriterium	
	5.7	Beispiel	
	5.8	Definition: Grenzwert II	
	5.9	Beispiele	
	5.10	Definition: Rechts-/Linksseitiger Grenzwert 4	
		Beispiel	
		Bemerkung	
		Beispiele	_
		Definition: Stetigkeit	_
		Bemerkung	4
		Beispiele	4
		Satz	4
		Bemerkung	5
		Beispiel	5
		Satz: Rechenregeln für stetige Funktionen 4	6
		Bemerkung	6
		Beispiele und Bemerkung zu Definitionslücken 4	6
		Satz: Zwischenwertsatz von Bolzano (Nullstellensatz) 4	8
	5.24	Satz: Zwischenwertsatz allgemein	9
		Satz	9
	5.26	Satz	0
		Bemerkung	1
	5.28	Satz: $\exp(1) = e$	1

1 Folgen

1.1 Definition

Eine Folge $(a_n)_{n\in\mathbb{N}}$ ist eine Abbildung von den natürlichen Zahlen (\mathbb{N}) in eine beliebige Menge M (oft $M\subseteq\mathbb{R}$).

 a_n : n-tes Folgenglied

n: Index

Oft ist das erste Folgenglied nicht a_1 , sondern z.B: a_7 .

Schreibweise: $(a_n)_{n\in\mathbb{N}}$, $(a_n)_{n\geq n_0}$ oder (a_n)

1.2 Beispiele

- a) $a_n = c \ \forall n \in \mathbb{N}$ (konstante Folge)
- b) $a_n = n$ (Ursprungsgerade)

c) $a_n = (-1)^n, n \in \mathbb{N}$ (alternierend)

d) $a_n = \frac{1}{n}$ (Nullfolge)

e) Rekursive Folgen, z.B: Fiboacci-Folge.

$$f_1 = 1, f_2 = 1, \underbrace{f_{n+1} = f_n + f_{n-1}}_{\text{Rekursions formel}}$$

 $f_3 = 1 + 1 = 2, f_4 = 3, f_5 = 5, \dots$

f) Exponentielles Wachstum (z.B von Bakterienstämmen)

q: Wachstumsfaktor

 X_0 : Startpopulation

Explizit: $X_n = q^n * X_0$

z.B:
$$X_0 = 5, q = 2$$

$$\rightarrow X_1 = 10, X_2 = 20, X_3 = 40, \dots$$

g) Logistisches Wachstum

$$X_{n+1} = r \cdot X_n \cdot (1 - X_n)$$

 $r \in [0, 4]$: Wachstums-/Sterbefaktor

 $X_n \in [0,1]$: Relative Anzahl der Individuen in Generation n

Anzahl der Individuen in Generation n+1 hängt ab von der aktuellen Populationsgröße X_n und den vorhandenen natürlichen Ressourcen, charakterisiert durch $(1-X_n)$

1.3 Definition: Beschränkte und alternierende Folgen

Sei $(a_n)_{n\in\mathbb{N}}$ mit $a_n\in\mathbb{R} \ \forall n\in\mathbb{N}$.

a) (a_n) heißt beschränkt : $\Leftrightarrow |a_n| \leq K$ für ein $K \geq 0$.

b) (a_n) heißt alternierend, falls die Folgenglieder abwechselnd positiv und negativ sind.

1.4 Beispiele

Aus 1.2):

- a, c, d, g) sind beschränkt
- b, e) sind unbeschränkt
- c) ist alternierend

1.5 Definition: Konvergente Folgen

a) Eine Folge $(a_n)_{n\in\mathbb{N}}$ reeller Zahlen konvergiert gegen $a\in\mathbb{R}$, wenn es zu jedem $\epsilon>0$ ein $N\in\mathbb{N}$ gibt (das von ϵ abhängig sein darf), so dass:

$$|a_n - a| < \epsilon \quad \forall n \ge N$$

Kurz:

$$\forall \epsilon > 0 \ \exists N \in \mathbb{N} \ \forall n \ge N : |a_n - a| < \epsilon$$

- b) $a \in \mathbb{R}$ heißt Grenzwert oder Limes der Folge. Man schreibt: $\lim_{n \to \infty} a_n = a \text{ oder } a_n \to a \text{ für } n \to \infty \text{ oder } a_n \xrightarrow[n \to \infty]{} a \text{ oder } a_n \to a.$
- c) Eine Folge (a_n) mit Limes 0 heißt Nullfolge.
- d) Eine Folge die nicht konvergent ist, heißt divergent.

1.6 Bemerkung

 $a_n \to a$ bedeutet anschaulich: Gibt man eine Fehlerschranke $\epsilon > 0$ vor, so sind ab einem bestimmten $N \in \mathbb{N}$ alle Folgenglieder weniger als ϵ von a entfernt. Je kleiner ϵ gewählt wird, desto größer muss im allgemeinen N gewählt werden.

Solch ein N muss sich für jedes noch so kleine ϵ finden lassen. Ansonsten ist (a_n) divergent.

1.7 Beispiele

- a) Behauptung: $a_n = \frac{1}{n}, (a_n)_{n \in \mathbb{N}}$ ist Nullfolge Beweis:
 - Wähle $\epsilon = \frac{1}{10}$. Dann ist für N > 10

$$|a_n - 0| = \left| \frac{1}{n} \right| = \frac{1}{n} \le \frac{1}{N} \le \frac{1}{N} \le \frac{1}{10} \quad \forall n \ge N$$

• Allgemein (beliebiges ϵ) Sei $\epsilon > 0$. Dann ist für $N > \frac{1}{\epsilon}$

$$|a_n - 0| = \frac{1}{n} \underset{N \ge n}{\leq} \frac{1}{N} \underset{N > \frac{1}{\epsilon}}{<} \frac{1}{\frac{1}{\epsilon}} \quad \forall n \ge N$$

b) Behauptung: $(a_n)_{n\in\mathbb{N}}$ mit $a_n=\frac{n+1}{3n}$ hat Limes $a=\frac{1}{3}$. Beweis: Sei $\epsilon>0$. Dann ist für $N\geq\frac{1}{3\epsilon}$

$$|a_n - n| = \left| \frac{n+1}{3n} \right| = \frac{n+1-n}{3n} = \frac{1}{3n} \le \sqrt{\frac{1}{3N} < \epsilon} \quad \forall N \ge n$$

c) N muss nicht immer optimal gewählt werden.

$$\frac{1}{n^3 + n + 5} \xrightarrow[n \to \infty]{} 0$$

Sei $\epsilon > 0$, für $N > \frac{1}{\epsilon}$

$$|a_n - a| = \frac{1}{n^3 + n + 5} \le \frac{1}{N > n} \frac{1}{N^3 + N + 5} < \frac{1}{N} < \epsilon$$

1.8 Satz

Jede konvergente Folge ist beschränkt.

Beweis: Sei (a_n) eine konvergente Folge mit Limes $a \in \mathbb{R}$.

Zu zeigen: $|a_n| \leq K \ \forall a \in \mathbb{N}$, für ein $K \geq 0$.

Sei $\epsilon = 1$, (a_n) konvergent.

$$\Rightarrow |a_n| = |a_n - a + a| \le \underbrace{|a_n - a| + |a|}_{\text{Dreiecksungleichung}} < 1 + |a| \ \forall n \ge N$$

Setze $K = max\{1 + |a|, |a_1|, |a_2|, ..., |a_{N-1}|\}$

$$\Rightarrow |a_n| \leq K \ \forall n \in \mathbb{N} \quad \Box$$

1.9 Bemerkung

Wegen 1.8: (a_n) unbeschränkt $\Rightarrow (a_n)$ divergent.

Unbeschränkte Folgen sind also immer divergent.

1.10 Beispiel: Geometrische Folge

Für
$$q \in \mathbb{R} : \lim_{n \to \infty} q^n = \begin{cases} 0, \text{falls } |q| < 1 \\ 1, \text{falls } q = 1 \end{cases}$$

Für |q| > 1 oder q = -1 ist (q^n) divergent.

Beweis:

1.) |q| < 1. Sei $\epsilon > 0$ beliebig. Dann ist

$$(q^{n} - 0) = |q|^{n} < \epsilon \Leftrightarrow n \cdot \ln |q| < \ln(e) \quad |: \ln(q) < 0$$

$$\Leftrightarrow n > \frac{\ln(\epsilon)}{\ln |q|}$$

Für
$$N > \frac{\ln(\epsilon)}{\ln |q|} : |q|^n < \epsilon \quad \forall n \geq N$$

- 2.) q = 1. $q^n = 1$ $\forall n \in \mathbb{N} \Rightarrow q^n \to 1$
- 3.) $|q|>1 \Rightarrow (q^n)$ unbeschränkt $\underset{1.9}{\Rightarrow} (q^n)$ divergent
- 4.) $q=-1 \Rightarrow q^n=(-1)^n.$ Beweis der Divergenz später (Cauchyfolgen)

1.11 Beispiel

Wegen 1.10 sind $(\frac{1}{2^n})_{n\in\mathbb{N}}$ und $((\frac{-7}{8})^n)_{n\in\mathbb{N}}$ Nullfolgen.

Bemerkung: Dreiecksungleichung

Um Rechenregeln für Folgen in 1.13 beweisen zu können, braucht man folgende Version der Δ -Ungleichung:

$$||a| - |b|| \le |a - b| \quad \forall a, b \in \mathbb{R}, da:$$

$$\bullet |a - b + b| \le |a - b| + |b| \qquad \qquad |-b|$$

$$\Leftrightarrow |a| - |b| \le |a - b|$$

$$\bullet |b - a + a| \le |b - a| + |a| \qquad |-a|$$

$$\Leftrightarrow |b| - |a| \le |b - a|$$

$$\Rightarrow ||a| - |b|| \le |a - b|$$

1.13 Rechenregeln für Folgen

Seien $(a_n), (b_n)$ konvergente Folgen mit $\lim_{n \to \infty} (a_n) = a$ und $\lim_{n \to \infty} (b_n) = b$.

Dann gilt:

1.)
$$\lim_{n \to \infty} (a_n + b_n) = a + b$$

2.)
$$\lim_{n \to \infty} (\lambda \cdot a_n) = \lambda \cdot a \quad \forall \lambda \in \mathbb{R}$$

3.)
$$\lim_{n \to \infty} (a_n \cdot b_n) = a \cdot b$$

4.)
$$b \neq 0 \Rightarrow \bullet \exists k \in \mathbb{N} : b_n \neq 0 \, \forall n \geq k$$

$$\bullet \left(\frac{a_n}{b_n}\right)_{n\geq k}$$
 konvergiert gegen $\frac{a}{b}$

5.)
$$\lim_{n \to \infty} |a_n| = |a|$$

Seien weiter $(d_n), (e_n)$ reelle Folgen, (d_n) ist Nullfolge

6.)
$$(e_n)$$
 beschränkt $\Rightarrow (d_n \cdot e_n)$ ist Nullfolge

7.)
$$|e_n| \le d_n \Rightarrow |e_n|$$
 ist Nullfolge

Beweis:

1.)

Sei
$$\epsilon > 0 \Rightarrow \exists N_a, N_b \in \mathbb{N} :$$

$$\bullet |a_n - a| \le \frac{\epsilon}{2} \quad \forall n \ge N_{\epsilon}$$

$$\bullet |a_n - a| \le \frac{\epsilon}{2} \quad \forall n \ge N_a$$

$$\bullet |b_n - b| \le \frac{\epsilon}{2} \quad \forall n \ge N_b$$

$$\Rightarrow |a_n + b_n - (a+b)| \le \underbrace{|a_n - a|}_{\le \frac{\epsilon}{2}} + \underbrace{|b_n - b|}_{\le \frac{\epsilon}{2}} < \epsilon$$

$$\forall n \ge \max\{N_a, N_b\}$$

2.) • Für
$$\lambda = 0$$
 gilt auch $\lambda \cdot a_n \to 0 = \lambda \cdot a \checkmark$

• Für
$$\lambda \neq 0$$
: Sei $\epsilon > 0$

$$\Rightarrow \exists N \in \mathbb{N} : |a_n - a| \le \frac{\epsilon}{|x|} \quad \forall n \ge N$$
$$\Rightarrow |\lambda a_n - \lambda a| = |\lambda| \cdot |a_n - a| < \epsilon \quad \forall n > N \checkmark$$

Satz 1.8
$$\Rightarrow$$
 (b_n) beschränkt.

$$\Rightarrow \exists k \ge 0 : |b_n| \le k \quad \forall n \in \mathbb{N}$$

$$\Rightarrow |a_n b_n - ab| = |(a_n - a)b_n + a(b_n - b)|$$

$$\leq |a_n - a| \cdot k + |a| \cdot |b_n - b| \quad (*)$$

Sei
$$\epsilon > 0 \Rightarrow \exists N_a, N_b \in \mathbb{N} : |a_n - a| < \frac{\epsilon}{2k} \quad \forall n \ge N_a$$

$$|b_n - b| < \frac{\epsilon}{2|a|} \quad \forall n \ge N_b$$

$$\underset{(*)}{\Rightarrow} |a_n b_n - ab| < \frac{\epsilon}{2k} \cdot k + |a| \cdot \frac{\epsilon}{|a|} = \epsilon$$

$$\forall n \ge \max\{N_a, N_b\}$$

4.) • Z.z:
$$\exists k \in \mathbb{N} : b_n \neq 0 \quad \forall n \geq k$$

Es ist $b \neq 0$ und |b| > 0.

$$\Rightarrow \exists l \in \mathbb{N}: \ \underbrace{|b_n - b|}_{\geq |b| - |b_n|} < \frac{|b|}{2} \quad \forall n \geq b$$

$$\Rightarrow \exists |b| - |b_n| < \frac{|b|}{2} \quad \forall n \ge k$$

$$\Rightarrow \frac{|b|}{2} < |b_n| > 0 \quad \forall n \ge k \ (**)$$

$$\Rightarrow b_n \neq 0 \quad \forall n > k$$

• Z.z:
$$\left(\frac{a_n}{b_n}\right)_{n>k}$$
 hat $\frac{a}{b}$ als Limes.

Da $\frac{a_n}{b_n}=a_n\cdot\frac{1}{b_n},$ genügt es wegen 3.) zu zeigen, dass $\frac{1}{b_n}\to\frac{1}{b}.$

Sei
$$\epsilon > 0 \Rightarrow \exists N \in \mathbb{N} : |b_n - b| < \frac{\epsilon}{2} \cdot |b|^2$$

Sei
$$\epsilon > 0 \Rightarrow \exists N \in \mathbb{N} : \underline{|b_n - b| < \frac{\epsilon}{2} \cdot |b|^2}$$

$$\Rightarrow \left| \frac{1}{b_n} - \frac{1}{b} \right| = \left| \frac{b - b_n}{b \cdot b_n} \right| \underset{(**)}{<} \frac{2}{|b|^2} \cdot |b - b_n| < \epsilon \quad \forall n \ge N$$

- 5.) mit 1.12
- 6,7.) Übung

1.14 Beispiele: Rechenregeln

a)
$$\frac{(-1)^n + 5}{n} = ((-1)^n + 5) \cdot \frac{1}{n} \xrightarrow[n \to \infty]{} 0 \text{ wegen } 1.13/6$$

$$\bullet \frac{1}{n} \to 0$$

$$\bullet |(-1)^n + 5| < |(-1)|^n + 5 = 6$$

 $\Rightarrow (-1)^n + 5$ beschränkt

b)
$$\frac{3n^2 + 1}{-n^2 + n} \to -3, \text{ denn } \lim_{n \to \infty} \frac{3n^2 + 1}{-n^2 + n} = \lim_{n \to \infty} \frac{\varkappa^2 \left(3 + \frac{1}{n^2}\right)}{\varkappa^2 \left(-1 + \frac{1}{n}\right)}$$

$$\stackrel{=}{=} \frac{\lim 3 + \frac{1}{n^2}}{\lim -1 + \frac{1}{n}} \stackrel{=}{=} \frac{3 + \lim \frac{1}{n^2}}{-1 + \lim \frac{1}{n}} = \frac{3}{-1} = -3$$

c) Sei $x \in \mathbb{R}$ mit |x| > 1 und $k \in \mathbb{N}_0$.

Dann: kte Potenz
$$\overbrace{n^k} {n^k} \xrightarrow[n \to \infty]{} 0$$
 exponentielles Wachstum

Beweis: Es ist |x| = 1 + t für t > 0.

Für n > k:

$$|x|^{n} = (1+t)^{n} = \sum_{j=0}^{n} \underbrace{\binom{n}{j} 1^{n-j} t^{j}}_{\geq 0}$$

$$\geq \sum_{j=k+1} \binom{n}{k+1} t^{k+1} = \frac{n(n-1) \cdot \dots \cdot (n-k)}{(k+1)!}$$

$$= n^{k+1} \cdot \frac{t^{k+1}}{(k+1)!} \pm \dots$$

$$\Rightarrow \left| \frac{n^{k}}{x^{n}} \right| = \frac{n^{k}}{(1+t)^{n}} \leq \underbrace{\cancel{n^{k}(k+1)!}}_{n^{k+1}t^{k+1} \pm \dots} \xrightarrow{n \to \infty} 0$$

d) Sei $x\in\mathbb{R}_+$. $\left(\frac{x^n}{n!}\right)$ ist Nullfolge, d.h. Fakultät wächst schneller als exponentiell: Sei $m\in\mathbb{N}$ und n>m+1>x

$$\Rightarrow \frac{x^n}{n!} = \frac{x^{n-m}}{n(n-1) \cdot \dots \cdot (m+1)} \cdot \left[\frac{x^m}{m!} \right] = c > 0$$

$$\leq c \cdot \frac{x^{n-m}}{(m+1)^{n-m}} = c \cdot \underbrace{\left(\frac{x}{m+1} \right)}_{\text{geom. Folge, } < 1} \xrightarrow{\text{1.13/6, } \atop 1.13/7} 0$$

1.15 Satz: Einschließungsregel

Seien $(a_n), (b_n), (c_n)$ reelle Folgen mit

- 1. $\exists k \in \mathbb{N} : a_n \le b_n \le c_n \quad \forall n \ge k$
- 2. $(a_n), (c_n)$ konvergent und $\lim_{n \to \infty} (a_n) = \lim_{n \to \infty} (c_n)$

Dann ist auch (b_n) konvergent und $\lim_{n\to\infty}(b_n)=\lim_{n\to\infty}(a_n)$

Beweis: Sei $a := \lim_{n \to \infty} a_n = \lim_{n \to \infty} c_n$ und $\epsilon > 0$.

$$\underset{2.}{\Longrightarrow} N_a, N_c : \bullet |a_n - a| < \frac{\epsilon}{3} \quad \forall n \ge N_a$$

$$\bullet |c_n - a| < \frac{\epsilon}{3} \quad \forall n \ge N_c$$

Aus 1.:

$$|b_n - a_n| = b_n - a_n \le c_n - a_n = |c_n - a_n|$$

$$\forall n \ge k$$

$$\Rightarrow |b_n - a| \le \sum_{\Delta - Ungleichung} |b_n - a_n| + |a_n - a| \le |c_n - a_n| + |a_n - a|$$

$$\le \underbrace{|c_n - a|}_{\le \frac{\epsilon}{3}} + \underbrace{|a - a|}_{\le \frac{\epsilon}{3}} + \underbrace{|a_n - a|}_{\le \frac{\epsilon}{3}} < \epsilon \quad \forall \max\{k, N_a, N - c\} \quad \Box$$

1.16 Beispiele

a) $\sqrt[n]{n} \xrightarrow[n \to \infty]{} 1$, denn:

Sei
$$\epsilon > 0$$
. Da $\frac{n}{(1+\epsilon)^n} \to 0$ (1.14/c),

gibt es $N \in \mathbb{N}$ mit $\frac{n}{(1+\epsilon)^n} < 1 \quad \forall n \ge N$.

$$\Rightarrow (1+\epsilon)^n > n \quad \forall n \ge N$$
$$\Rightarrow 1+\epsilon > \sqrt[n]{n}$$

Da einerseits $\sqrt[n]{n} \ge 1 > 1 - \epsilon \ \forall n \in \mathbb{N}$, ist

$$1+\epsilon > \sqrt[n]{n} > 1-\epsilon \Leftrightarrow \left|\sqrt[n]{n}-1\right| < \epsilon \quad \forall n \geq N$$

b) $\sqrt[n]{x} \to 1 \quad \forall x > 0$

Sei
$$x > 0 \Rightarrow \exists N \in \mathbb{N} : \boxed{\frac{1}{n} \le x \le n} \quad \forall n \ge N$$

$$\Rightarrow \frac{1}{\sqrt[n]{n}} \le \sqrt[n]{x} \le \sqrt[n]{n} \quad \forall n \ge N$$

$$\Rightarrow \frac{1}{\sqrt[n]{n}} \to 1 \text{ und } \sqrt[n]{n} \to 1 \Rightarrow \sqrt[n]{x} \to 1$$

1.17 Satz

Sei (a_n) eine Folge nicht negativeer reeller Zahlen mit $a_n \to a$. Dann:

- 1. $\lim_{n \to \infty} \sqrt[m]{a_n} = \sqrt[m]{a_n} \quad \forall m \in \mathbb{N}$
- 2. $\lim_{n\to\infty}a_n^q=a^q\ \forall q\in\mathbb{Q}$ mit q>0 (ohne Beweis)

1.18 Definition: Landau Symbole, \mathcal{O} -Notation

Sei (a_n) eine reelle Folge mit $a_n > 0 \quad \forall n \in \mathbb{N}$. Dann ist

a)
$$\mathcal{O}(A_n) = \left\{ (b_n) \left| \left(\frac{b_n}{a_n} \right) \text{beschränkt} \right. \right\}$$

b)
$$o(A_n) = \left\{ (b_n) \mid \left(\frac{b_n}{a_n}\right) \text{Nullfolge} \right\}$$

 $[a_n$ wächst schneller als $b_n]$

c)
$$a_n \sim b_n$$
, falls $\frac{a_n}{b_n} \to 1$

 \mathcal{O}, o heißen Landau-Symbole

1.19 Beispiele

- $(2n^2 + 3n + 1) \in O(n^2)$
- $(2n^2 + 3n + 1) \in o(n^3)$
- $(n_3) \in o(2^n)$
- $n! \sim \sqrt{2\pi n} \left(\frac{n}{e}\right)^n$ (Stirlingsche Formel)
- $\bullet~\mathcal{O}(1)$ Menge aller beschränkten Folgen
- o(1) Menge aller Nullfolgen

1.20 Definition: Monotonie

Eine Folge reeller Zahlen (a_n) heißt

a) (streng) monoton steigend/wachsend, falls

$$a_{n+1} \ge (>) \ a_n \quad \forall n \in \mathbb{N}$$

Schreibweise: $(a_n) \nearrow (\text{monoton wachsend})$

b) (streng) monoton fallend, falls

$$a_{n+1} \le (<) \ a_n \quad \forall n \in \mathbb{N}$$

Schreibweise: $(a_n) \searrow (\text{monoton fallend})$

1.21 Beispiele

- (a_n) mit $a_n = \frac{1}{n}$ streng monoton fallend
- (a_n) mit $a_n = 1$ monoton steigend und fallend
- (a_n) mit $a_n = (-1)^n$ nicht monoton

1.22 Definition

Eine reelle Folge (a_n) heißt nach oben (unten) beschränkt, falls $\{a_n|n\in\mathbb{N}\}$ von oben (unten) beschränkt ist.

1.23 Satz: Monotone Konvergenz

Sei (a_n) reelle Folge:

- Falls $(a_n) \nearrow$ und nach oben beschränkt, so konvergiert (a_n) gegen $\sup\{a_n | n \in \mathbb{N}\}$
- Falls $(a_n) \searrow$ und nach unten beschränkt, so konvergiert (a_n) gegen $\inf\{a_n|n\in\mathbb{N}\}$

Beweis:

1. Sei $(a_n) \nearrow$ und nach oben beschränkt

und seien $a = \sup\{a_n | n \in \mathbb{N}\}$ und $\epsilon > 0$.

$$\Rightarrow a_n \le a \quad \forall n \in \mathbb{N}$$

a kleinste obere Schranke

 $\Rightarrow a - \epsilon$ keine obere Schranke.

$$\Rightarrow \exists N \in \mathbb{N} : a - \epsilon < a_N \le a$$

$$\underset{\substack{a_n \geq a_N \\ \forall n \geq N}}{\Rightarrow} |a_n - a| = a - a_n \leq a - a_N$$

$$\Rightarrow a_n \to a$$

2. analog \square

1.24 Bernoulli-Ungleichung

Im folgenden Beispiel wird die Bernoulli-Ungleichung benötigt:

$$(1+h)^n \ge 1 + nh \quad \forall h \ge -1 \forall n \in \mathbb{N}$$

Beweis mit vollständiger Induktion

1.25 Beispiel: Folgen mit Grenzwert e

• $a_n = (1 + \frac{1}{n})^n = (1 + \frac{n+1}{n})$ ist monoton.

Zeigen dazu: $a_n \ge a_{n-1} \left(\Leftrightarrow \frac{a_n}{a_{n-1}} \ge 1 \right)$

$$\frac{a_n}{a_{n-1}} = \left(\frac{n+1}{n}\right)^n \cdot \left(\frac{n-1}{n}\right)^{n-1}$$

$$= \left(\frac{n+1}{n}\right)^n \cdot \left(\frac{n-1}{n}\right)^n \cdot \frac{n}{n-1} = \left(\frac{n^2-1}{n^2}\right)^n \cdot \frac{n}{n-1}$$

$$= \left(1 - \frac{1}{n^2}\right)^n \left(\frac{n}{n-1}\right) \underset{1.24}{\geq} \underbrace{\left(1 - \frac{1}{n}\right) \cdot \frac{n}{n-1}} = 1$$

•
$$b_n = \left(1 + \frac{1}{n}\right)^{1+n} = \left(\frac{n+1}{n}_{n+1}\right)$$
 ist monoton fallend.

Zeige dazu:
$$b_n \leq b_{n-1} \left(\Leftrightarrow \frac{b_{n-1}}{b_n} \leq 1 \right)$$
Analog: $\frac{b_{n-1}}{b_n} = \left(1 + \frac{1}{n^2 - 1} \right)^n \left(\frac{n}{n+1} \right)$
Wegen $\left(1 + \frac{1}{n^2 - 1} \right)^n \geq 1 + \frac{n}{n^2 - 1} \geq 1 + \frac{1}{n}$ ist
$$\frac{b_{n-1}}{b_n} \geq \frac{n+1}{n} \cdot \frac{n}{n+1} = 1$$

In Beispiel 1.27 werden wir sehen, dass

 $h = \frac{1}{n^2}$

$$\lim_{n \to \infty} a_n = \lim_{n \to \infty} b_n$$

Der Limes wird als Eulerische Zahl e bezeichnet. Dazu zunächst:

1.26 Satz: Intervallschachtelung

Seien $(a_n), (b_n)$ reelle Folgen mit

- $(a_n) \nearrow, (b_n) \searrow$
- $a_n \le b_n \quad \forall n \in \mathbb{N}$
- $b_n a_n \to 0$

Dann sind $(a_n),(b_n)$ konvergent und besitzen den selben Limes.

Beweis: Es ist $a_1 \le a_n \le b_n \le b_1 \quad \forall n \in \mathbb{N}$

- \Rightarrow (a_n) hat obere Schranke b_1
 - (b_n) hat untere Schranke a_1
- \Rightarrow $(a_n), (b_n)$ konvergent.

Da $(b_n - a_n)$ Nullfolge, sind auch die Grenzwerte gleich.

1.27 Beispiel

- $(a_n) \nearrow, (b_n) \searrow (\text{siehe } 1.25)$
- $(a_n) = (1 + \frac{1}{n})^n \le (1 + \frac{1}{n}) \cdot a_n = (1 + \frac{1}{n})^{n+1} = \underline{b_n}$
- $\lim_{n \to \infty} b_n = \lim_{n \to \infty} \underbrace{\left(1 + \frac{1}{n}\right)} a_n = \lim_{1.13/3} a_n = \lim_{n \to \infty} a_n$

1.28 Definition: Eulersche Zahl

$$e := \lim_{n \to \infty} \left(1 + \frac{1}{n} \right)^n \left(= \lim_{n \to \infty} \left(1 + \frac{1}{n} \right)^{n+1} \right)$$

1.29 Bemerkung

 (a_n) konvergent $\Rightarrow (a_n)$ beschränkt. **Die Umkehrung gilt nicht!** z.B besitzt jedoch $a_n = (-1)^n$ zwei konvergente Teilfolgen mit Limes +1 und -1.

1.30 Definition: Teilfolge

Sei $(a_n)_{n\in\mathbb{N}}$ eine Folge und $(n_k)_{k\in\mathbb{N}}$ eine streng monoton steigende Folge von Indizes. Dann heißt die Folge $(a_{n_k})_{k\in\mathbb{N}}$ Teilfolge von $(a_n)_{n\in\mathbb{N}}$.

1.31 Beispiel

$$a_n = (-1)^n$$

- $n_k = 2k \Rightarrow a_{n_k} = a_{2k} = (-1)^{2k} = 1 \quad \forall k \in \mathbb{N}$
- $n_k = 2k + 1 \Rightarrow a_{n_k} = a_{2k+1} = (-1)^{2k+1} = -1 \quad \forall k \in \mathbb{N}$

1.32 Bemerkung

 (a_n) konvergiert gegen $a \Rightarrow$ Jede Teilfolge von (a_n) konvergiert gegen a.

1.33 Definition: Häufungspunkt (HP)

Sei (a_n) reelle Folge. $h \in \mathbb{R}$ heißt Häufungspunkt von (a_n) , wenn es eine Teilfolge von (a_n) gibt, die gegen h konvergiert.

1.34 Beispiel

 (a_n) mit $a_n = (-1)^n + \frac{1}{n}$ hat zwei Häufungspunkte: -1 und 1.

1.35 Satz: Bonzano-Weierstraß

Sei (a_n) reelle Folge. (a_n) beschränkt $\Rightarrow (a_n)$ besitzt konvergente Teilfolge

Beweis: Konstruiere konvergente Teilfolge $(a_{nk})_{k \in \mathbb{N}}$,

 (a_n) beschränkt $\Rightarrow |a_n| \leq K \quad \forall n \in \mathbb{N} \text{ (K geeignet)}$

$$\Rightarrow a_n \in \underbrace{[-K,K]}_{=[A_0,B_0]} \quad \forall n \in \mathbb{N}$$

- $\underline{k} = \underline{1}$: Halbiere $[A_0, B_0]$
 - Falls in der linken Folgenhälfte unendlich viele Folgeglieder liegen, wähle eines davon aus.
 - Falls nicht, liegen in der rechten Hälfte unendlich viele. Wähle eines davon aus.

Das ausgewählte Folgenglied nennen wir a_{n1} , die Intervallhälfte aus der es stammt $[A_1, B_1]$.

- $\underline{k} = \underline{2}$: Halbiere $[A_1, B_1]$. Wende obiges Verfahren an, um $a_{n2} \in [A_2, B_2]$ zu bestimmen.
- usw ...

Erhalte Intervallschachtelung mit

- $(A_k) \nearrow, (B_k) \searrow$
- $A_k \leq B_k$

•
$$A_k = B_k = \frac{K}{2^{k-1}} \to 0$$

$$\Rightarrow \lim_{1.26} A_k = \lim_{k \to \infty} B_k$$
Da $A_k \le a_{nk} \le B_k$, ist $\lim_{n \to \infty} A_k = \lim_{1.15} (a_{nk})$

1.36 Definition: Limes inferior/superior

 (a_n) reelle folge, beschränkt. Dann gibt es einen größten und einen kleinsten Häufungspunkt, den

- Limes superior von (a_n) : $\limsup_{n\to\infty}(a_n)$, $\overline{\lim}_{n\to\infty}(a_n)$
- Limes inferior von (a_n) : $\liminf_{n\to\infty} (a_n)$, $\underset{n\to\infty}{\underline{\lim}} (a_n)$

Ist (a_n) nicht beschränkt, setzt man

$$\bullet \underset{n \to \infty}{\overline{\lim}} \begin{cases} +\infty : (a_n) \text{ nicht nach oben beschränkt} \\ -\infty : (a_n) \ \forall K > 0 \ \exists N \in \mathbb{N} : a_n \le -K \ \forall n \ge N \end{cases}$$

$$\bullet \underset{n \to \infty}{\underline{\lim}} \begin{cases} -\infty : (a_n) \text{ nicht nach oben beschränkt} \\ +\infty : (a_n) \ \forall K > 0 \ \exists N \in \mathbb{N} : a_n \ge K \ \forall n \ge N \end{cases}$$

$$\bullet \underset{n \to \infty}{\underline{\lim}} \begin{cases} -\infty : (a_n) \ \forall K > 0 \ \exists N \in \mathbb{N} : a_n \ge K \ \forall n \ge N \end{cases}$$

1.37 Bemerkung

a) $a_n \to \pm \infty$ in obriger Definition bedeutet, dass (a_n) (bestimmt) gegen $\pm \infty$ divergiert. (d.h. es gibt keine weiteren endlichen Häufungspunkte)

z.B. divergiert
$$(a_n)$$
 mit $a_n = (-1)^n$ nicht bestimmt, aber (a_n) mit $(a_n) = n$ divergiert bestimmt gegen ∞

- b) $-\infty, \infty$ sind keine reellen Zahlen. Man setzt $\overline{\mathbb{R}} = \mathbb{R} \cup \{\infty, -\infty\}$ mit $-\infty < x < \infty \quad \forall x \in \mathbb{R}$
- c) In $\overline{\mathbb{R}}$ besitzt jede Folge sowohl \limsup als auch \liminf .

1.38 Beispiel

$$a_n = n \cdot (1 + (-1)^n) = \begin{cases} 2n, & \text{n gerade} \\ 2n + 1, & \text{n ungerade} \end{cases}$$

 $\lim\inf(a_n)=0$ $\lim\sup(a_n)=\infty$

1.39 Definition: Cauchy-Folgen

Sei
$$(a_n)$$
 eine Folge. (a_n) heißt Cauchy-Folge (C-F)
: $\Leftrightarrow \forall \epsilon > 0 \ \exists M \in \mathbb{N} : |a_n - a_k| < \epsilon \ \forall n, k \geq M$

1.40 Satz: Cauchy-Kriterium

Sei (a_n) eine Folge in \mathbb{R} (a_n) konvergiert $:\Leftrightarrow (a_n)$ ist Cauchy-Folge

Beweis: (\Rightarrow) : klar (\Leftarrow) :

1. Zeige (a_n) beschränkt

Sei
$$(a_n)$$
 C-F: $\Rightarrow \exists R \in \mathbb{N} : |a_n - a_k| < 1$
 $\forall n, k \geq R$

$$\underset{k=R}{\Rightarrow} |a_n - a_R| < 1 \quad \forall n \ge \mathbb{R}$$

$$\Rightarrow a_R - 1 < a_n < a_R + 1 \quad \forall n \ge R$$

$$\Rightarrow \min\{a_r - 1, a_1, ..., a_{R-1}\} \le a_n \le \max\{a_R + 1, a_1, ..., a_{R-1}\} \quad \forall n \in \mathbb{N}$$

 $\Rightarrow (a_n)$ ist beschränkt und besitzt konvergente Teilfolge (a_{n_j}) (1.35) mit $a=\lim_{j\to\infty}a_{n_j}$

2. (a_n) ist konvergent mit $\lim_{n\to\infty} a_n = a$

Sei $\epsilon > 0$

$$\Rightarrow \quad \bullet \ \exists M \in \mathbb{N} : |a_n - a_k| < \frac{\epsilon}{2} \forall n, k \ge M$$

•
$$\exists J \in \mathbb{N} : \left| a_{n_j} - a_k \right| < \frac{\epsilon}{2} \forall j \ge J$$

Wähle a_{n_j} so, dass $j \geq J$ und $n_j \geq M$.

$$\Rightarrow |a_n - a| \le \underbrace{\left| a_n - a_{n_j} \right|}_{< \frac{\epsilon}{2}} + \underbrace{\left| a_{n_j} - a \right|}_{< \frac{\epsilon}{2}} < \epsilon \quad \forall n \ge M$$

1.41 Beispiel

$$(a_n)$$
 mit $a_n = (-1)^n$ ist divergent,
denn $|a_{n+1} - a_n| = |(-1)^{n+1} - (-1)^n|$
 $= |(-1)^n| - |-1 - 1| = 2$

z.B ist für $\epsilon = 1 \quad |a_{n+1} - a_n| \ge \epsilon \quad \forall n \in \mathbb{N},$ was im Widerspruch zu 1.39 steht.

1.42 Definition: Kontraktion

Eine Abbildung $f:[a,b] \to [a,b]$ heißt Kontraktion, falls $\alpha \in (0,1)$ existiert, so dass

$$|f(x) - f(y)| \le \alpha |x - y|$$

z.B: $f(x) = \frac{1}{2}x$ ist Kontraktion mit Kontraktionsfaktor $\frac{1}{2}$.

1.43 Banachscher Fixpunktsatz

Sei $f[a,b] \rightarrow [a,b]$ eine Kontraktion. Dann:

- 1. f hat genau einen Fixpunkt $\hat{x} \in \mathbb{R}$, d.h. es git genau ein $\hat{x} \in \mathbb{R} : f(\hat{x} = \hat{x})$
- 2. Für jeden beliebigen Startwert $X_0 \in [a, b]$ konvergiert die durch $X_n := f(X_n + 1)$ definierte Folge (X_n) gegen \hat{x} .

(Ohne Beweis)

2 Reihen

Grundbegriffe und Beispiele

2.1 Definition: Reihe

1. Sei $(a_n)_{n\in\mathbb{N}}$ eine reelle Folge. Die Folge $(S_k)_{k\in\mathbb{N}}$ mit

$$S_k = \sum_{i=1}^k \delta_i = \delta_1 + \dots + \delta_k$$

heißt (unendliche) Reihe, mit Schreibweise $\sum_{i=1}^\infty \delta_i.$

Die Zahl $S_k \in \mathbb{R}$ heißt k-te <u>Partialsumme</u> der Reihe.

2. Falls (S_k) gegen $s \in \mathbb{R}$ konvergiert, heißt die Reihe konvergent gegen s. Man schreibt:

$$\lim_{k \to \infty} (S_k) = \lim_{k \to \infty} \left(\sum_{i=1}^k a_i \right) = \sum_{i=1}^\infty a_i = s$$

Andernfalls heißt die Reihe divergent.

- 3. Entsprechend kann man für eine Folge $(a_n)_{n\geq n_o}$ die Reihe $\sum_{i=n_o}^{\infty} a_i$ definieren.
- 4. $\sum_{i=1}^{\infty}$ heißt absolut konvergent, falls $\sum_{i=1}^{\infty} |a_i|$ konvergiert.

2.2 Bemerkung

Falls die Folgen der Partialsummen von $\sum_{i=n_o}^{\infty} a_i$ bestimmt gegen $+\infty(-\infty)$ divergiert, so schreiben wir: $\sum_{i=n_o}^{\infty} a_i = \infty(-\infty)$

2.3 Beispiele

a)
$$\sum_{k=1}^{\infty} k = 1 + 2 + 3 + \dots = \infty$$

b)

$$\underbrace{\sum_{k=1}^{n} (-1)^k}_{S_n} = \begin{cases} -1 & \text{n ungerade} \\ 1 & \text{n gerade} \end{cases}$$

$$\Rightarrow \sum_{k=1}^{\infty} (-1)^k \text{ divergent}$$

c) Harmonische Reihe
$$\sum_{k=1}^{\infty} \frac{1}{k}$$
 ist divergent.

$$S_n = 1 + \frac{1}{2} + \boxed{\frac{1}{3} + \frac{1}{4}} + \boxed{\frac{1}{5} + \dots + \frac{1}{8}} + \boxed{\frac{1}{9} + \dots + \frac{1}{16}} + \dots + \frac{1}{n}$$

$$> 2 \cdot \frac{1}{4} = \frac{1}{2} > 4 \cdot \frac{1}{8} = \frac{1}{2} > 8 \cdot \frac{1}{16} = \frac{1}{2}$$

$$\Rightarrow S_n > 1 + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \dots$$

Per Induktion: $S_{2^m} \geq 1 + \frac{m}{2} \xrightarrow[m \to \infty]{} \infty \Rightarrow (S_{2^m})$ divergent.

d)
$$\sum_{k=0}^{\infty} \frac{1}{2^k} = 1 + \frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \dots$$
 konvergent

$$\text{und } \sum_{k=0}^{\infty} \frac{1}{2^k} = 2$$

e) Geometrische Reihe

Für
$$g \in \mathbb{R}, |q| < 1$$
 gilt $\sum_{k=0}^{\infty} q^k = \frac{1}{1-q}$,

denn $S_n = \sum_{k=0}^{\infty} q^k = \frac{1-q^{n+1}}{1-q}$ (Beweis mit vollständiger Induktion)

Da
$$q^{n+1} \xrightarrow[n \to \infty]{} 0$$
 für $|q| < 1$ (1.10), folgt $S_n \to \frac{1}{1-q}$.

Andererseits ist $\sum_{k=0}^{\infty} q^k$ divergent für $|q| \ge 1$ (2.9)

• In Beispiel d) is
$$q = \frac{1}{2}$$
 und $\sum_{k=0}^{\infty} \frac{1}{2^k} = \frac{1}{1 - \frac{1}{2}} = 2$

$$\bullet \ \sum_{k=0}^{\infty} \left(-\frac{1}{2}\right)^k = \frac{1}{1 - \frac{1}{2}} = \frac{2}{3}$$

Diese Reihe ist sogar absolut konvergent.

$$\bullet \ \sum_{k=3}^{\infty} \left(\frac{2}{3}\right)^k = \sum_{k=0}^{\infty} \left(\frac{2}{3}\right)^{k+3} = \left(\frac{2}{3}\right)^3 \cdot \sum_{k=0}^{\infty} \left(\frac{2}{3}\right)^k = \left(\frac{2}{3}\right)^3 \cdot \underbrace{\frac{1}{1-\frac{2}{3}}}_{3} = \frac{8}{9}$$

Achtung bei Index-Verschiebung!

2.4 Satz: Rechenregeln für Reihen

Gegeben seien zwei konvergente Reihen mit $\sum_{k=1}^{\infty} a_k = a, \sum_{k=1}^{\infty} b_k = b$ und $c \in \mathbb{R}$. Dann gilt:

a)
$$\sum_{k=1}^{\infty} (a_k + b_k) = \sum_{k=1}^{\infty} (a_k) + \sum_{k=1}^{\infty} (b_k) = a + b$$

b)
$$\sum_{k=1}^{\infty} c - a_k = c \cdot \sum_{k=1}^{\infty} a_k = c \cdot a$$

Beweis folgt direkt aus 1.13.

2.5 Satz: Konvergenz und Divergenzkriterien für Reihen

Ist (S_n) mit $S_n = \sum_{k=1}^{\infty} a_k$ nach oben beschränkt und $a_k > 0 \ \forall k \in \mathbb{N}$, so ist $\sum_{k=1}^{\infty} a_k$ konvergent. (Folgt direkt aus 1.23)

2.6 Cauchy-Kriterium

 $\sum_{i=1}^{\infty} a_i \text{ konvergient} \Leftrightarrow \forall \epsilon > 0 \ \exists N \in \mathbb{N} :$

$$\underbrace{|a_n + \dots + a_k|} < \epsilon \quad \forall k \ge n \ge N$$

$$\left[= |S_k - S_{n-1}| = \left| \sum_{i=1}^k a_i - \sum_{i=1}^{n-1} a_i \right| \right]$$

(Folgt aus 1.40)

2.7 Satz: Absolute Konvergenz

Ist $\sum_{i=1}^{\infty} a_i$ absolut konvergent, so ist $\sum_{i=1}^{\infty}$ auch konvergent.

Beweis: Sei $\epsilon > 0$. $\Rightarrow \exists N \in \mathbb{N}$: $|a_n| + ... + |a_k| < \epsilon \quad \forall k \ge N$.

Da
$$|a_n|+\ldots+|a_k|\leq |a_n|+\ldots+|a_k|<\epsilon\quad \forall k\geq n\geq N,$$
 ist 2.6 für $\sum_{i=1}^\infty a_i$ erfüllt.

2.8 Korollar: Dreiecksungleichung für Reihen

Für jede absolut konvergente Reihe $\sum_{i=1}^{\infty} a_i$ gilt:

$$\Big|\sum_{i=1}^{\infty} a_i\Big| \le \sum_{i=1}^{\infty} a_i |a_i|$$

Beweis: Sei $\sum_{i=1}^{\infty} a_i$ absolut konvergent. Dann:

$$\bullet \lim_{k \to \infty} (S_k) = \lim_{k \to \infty} \left(\sum_{i=1}^K a_i \right)$$
Da $\lim_{k \to \infty} |S_k| = \left| \lim_{k \to \infty} \right| \quad \begin{bmatrix} C_i \to c \\ \Rightarrow |C_i| \to |c| \end{bmatrix}$
ist $\lim_{k \to \infty} \left| \sum_{i=1}^k a_i \right| = \left| \sum_{i=1}^\infty a_i \right|$ (*)

$$\bullet \lim_{k \to \infty} \left(\sum_{i=1}^{k} |a_i| \right) = \sum_{i=1}^{\infty} |a_i| \ (**)$$

Insgesamt:
$$\left| \sum_{i=1}^{k} a_i \right| \le \sum_{i=1}^{k} |a_i| \quad \left| \lim_{k \to \infty} \right|$$

$$\underset{(*),(**)}{\Leftrightarrow} \left| \sum_{i=1}^{\infty} a_i \right| \le \sum_{i=1}^{\infty} |a_i| \quad \Box$$

2.9 Satz: Divergenzkriterium

Ist $\sum_{i=1}^{\infty} a_i$ konvergent, so ist (a_n) eine Nullfolge. D.h. Ist (a_i) keine Nullfolge, so divergiert $\sum_{i=1}^{\infty} a_i$.

Beweis: $\sum_{i=1}^{\infty} a_i$ konvergiert $\Rightarrow \forall \epsilon > 0 \ \exists N \in \mathbb{N}$:

$$|a_n + \dots + a_k| < \epsilon \ \forall k \ge n \ge N.$$

Wähle $k = 1 \Rightarrow |a_n| < \epsilon \ \forall n \ge N \Rightarrow (a_n)$ Nullfolge. \square

2.10 Majorantenkriterium

Seien $(a_n), (b_n)$ Folgen in \mathbb{R} mit $0 \le a_n \le b_n$ $n \in \mathbb{N}$. Ist dann $\sum_{i=1}^{\infty} b_i$ konvergent, so ist auch $\sum_{i=1}^{\infty} a_i$ konvergent.

Beweis: Sei
$$\epsilon > 0 \Rightarrow \exists N \in \mathbb{N} : |a_n + ... + a_k|$$

$$\leq |b_n + \dots + b_k| < \epsilon \quad \forall k \geq n \geq N \quad \Box$$

$$0 \leq a_1 \leq b_i \ \forall i$$

2.11 Bemerkung: Minorantenkriterium

Unter den selben Voraussetzungen wie in 2.10 erhält man anhand von Kontraposition: Ist $\sum_{i=1}^{\infty} a_i$ divergent, so ist auch $\sum_{i=1}^{\infty} b_i$ divergent.

2.12 Beispiele

a)
$$\sum_{i=1}^{\infty} \underbrace{\left(1 - \frac{1}{i}\right)}_{\text{Keine Nullfolge}}$$
 ist divergent. (2.9)

b)
$$\sum_{i=1}^{\infty} \frac{1}{\sqrt{i}}$$
 ist divergent, da $0 \le \frac{1}{i} \le \frac{1}{\sqrt{i}}$ und $\sum_{i=1}^{\infty} \frac{1}{i}$ divergent. (2.11)

c)
$$\sum_{i=1}^{\infty} \frac{(-1)^i}{2^i}$$
 ist konvergent, weil absolut konvergent. (2.3e, 2.7)

d)
$$\sum_{i=0}^{\infty} \frac{(-1)^i}{i+1} = 1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} \pm \dots$$
 (alternierende harmonische Reihe) ist konvergent, aber nicht absolut konvergent. Die Konvergenz zeigt man mit

2.13 Satz: Leibniz-Kriterium

Sei (a_n) monoton fallende Nullfolge reeller Zahlen. Dann ist $\sum_{i=0}^{\infty} (-1)^i a_i$ konvergent. **Beweis:** Intervallschachtelung (1.26)

$$A_n := \sum_{i=0}^{2n-1} (-1)^i a_i \quad B_n := \sum_{i=0}^{2n} (-1)^i a_i$$

•
$$(A_n)$$
 \nearrow : $A_{n+1} - A_n = \sum_{i=0}^{2n+1} (-1)^i a_i - \sum_{i=0}^{2n-1} (-1)^n a_i$

$$= (-1)^{2n+1} a_{2n+1} + (-1)^{2n} a_{2n}$$

$$= a_{2n} - a_{2n+1} \ge 0, \text{ da } (a_n) \searrow$$

• Analog:
$$(B_n) \searrow \bullet B_n - A_n = a_{2n} \ge 0 \Leftrightarrow A_n \le B_n \quad \forall n \in \mathbb{N}$$

• $B_n - A_n = a_{2n} \to 0$

$$(A_n), (B_n)$$
 konvergiert mit $\lim_{n\to\infty} A_n = \lim_{n\to\infty} B_n \Rightarrow \sum_{i=1}^{\infty} (-1)^i a_i$ konvergent.

2.14 Satz: Wurzelkriterium

Sei $(a_n)_{n\geq 1}$ mit $a_n\in\mathbb{R}$. Dann:

•
$$\overline{\lim}_{n \to \infty} \sqrt[n]{|a_n|} < 1 \Rightarrow \sum_{k=1}^{\infty} |a_k|$$
 konvergent

•
$$\overline{\lim}_{n\to\infty} \sqrt[n]{|a_n|} > 1 \Rightarrow \sum_{k=1}^{\infty} |a_k| \text{ divergent}$$

•
$$\varlimsup_{n\to\infty}\sqrt[n]{|a_n|}=1$$
 \leadsto keine allgemeine Aussage für $\sum_{k=1}^\infty a_k$ möglich.

Beweis:

Sei
$$\overline{\lim}_{n\to\infty} \sqrt[n]{|a_n|}$$

•
$$a < 1 : \Rightarrow \exists \epsilon > 0 : a + \epsilon < 1$$

 $\Rightarrow \exists N \in \mathbb{N} : \sqrt[n]{|a_n|} \le a + \epsilon \quad \forall n \ge N,$
da a größter HP von $\sqrt[n]{|a_n|}$
 $\Rightarrow |a_n| \le (a + \epsilon)^n \quad \forall n \ge N$
 $\Rightarrow \sum_{k=N}^{\infty} \underbrace{(a + \epsilon)^n}_{\le 1}$ (geometrische Reihe)

ist konvergente Majorante der Reihe $\sum_{k=N}^{\infty} |a_k|$.

Damit konvergiert auch
$$\sum_{k=1}^{\infty} |a_k| = \left[\sum_{k=1}^{N-1} |a_k|\right] + \sum_{k=1}^{\infty} |a_n|$$

•
$$a > 1 : \Rightarrow \sqrt[n]{|a_n|} > 1$$
 unendlich oft
 $\Rightarrow |a_n| > 1$ unendlich oft
 $\Rightarrow (a_n)$ keine Nullfolge $\Rightarrow \sum_{k=1}^{\infty} a_k$ divergent. \square

2.15 Beispiele

a)
$$\sum_{k=0}^{\infty} \boxed{\frac{k^3}{3^k}} \text{ konvergent, da } \overline{\lim_{n\to\infty}} \frac{\sqrt[n]{n^3}}{\sqrt[n]{3^n}} = \overline{\lim_{n\to\infty}} \frac{\left(\sqrt[n]{n^3}\right)}{3} = \frac{1}{3} < 1$$

b)
$$\sum_{k=0}^{\infty} \frac{1}{k^{\alpha}}$$
 (all
gemeine harminische Reihe) liefert
$$\overline{\lim_{n\to\infty}} \frac{1}{\left(\sqrt[n]{n}^{\alpha}\right)} = 1 \quad (\alpha>0) \to \text{keine Aussage m\"{o}glich}.$$

2.16 Satz: Quotientenkriterium

Sei $(a_n)_{n\geq 1}$ eine Folge in \mathbb{R} mit $a_n\neq 0 \quad \forall n\in\mathbb{N}$. Dann:

•
$$\overline{\lim}_{n\to\infty} \left| \frac{a_{n+1}}{a_n} \right| < 1 \Rightarrow \sum_{k=1}^{\infty} a_k$$
 absolut konvergent

•
$$\overline{\lim}_{n\to\infty} \left| \frac{a_{n+1}}{a_n} \right| > 1 \Rightarrow \sum_{k=1}^{\infty} a_k \text{ divergent}$$

$$\bullet \ \ \overline{\lim_{n \to \infty}} \left| \frac{a_{n+1}}{a_n} \right| \ge 1 \ \text{und} \ \underline{\lim_{n \to \infty}} \left| \frac{a_{n+1}}{a_n} \right| \le 1 \sim \text{ keine allgemeine Aussage m\"{o}glich}$$

Beweis:

$$\begin{split} \bullet & \overline{\lim}_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| < a < 1 \quad a \in \mathbb{R} \\ \Rightarrow & \exists N \in \mathbb{N} : \left| \frac{a_{n+1}}{a_n} \right| \le a \quad \forall n \ge \mathbb{N} \\ \Rightarrow & |a_n| \le a \cdot |a_{n-1}| \le a^2 \cdot |a_{n-2}| \le \dots \le a^{n-N} \cdot |a_N| \quad \forall n \ge \mathbb{N} \end{split}$$

$$\operatorname{Da} \sum_{n=N}^{\infty} a^{n-N} |a_N| = \frac{|a_N|}{a^N} \sum_{n=N}^{\infty} a^n \text{ konvergiert (geometrische Reihe), folgt mit}$$

Majorantenkriterium, dass $\sum_{n=N}^{\infty} |a_n|$ und somit $\sum_{n=1}^{\infty} |a_n|$ konvergent ist.

•
$$\overline{\lim}_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| > 1 \Rightarrow \exists N \in \mathbb{N} : \left| \frac{a_{n+1}}{a_n} \right| \ge 1 \quad \forall n \ge N$$

$$\Rightarrow |a_n| \ge |a_{n-1}| \ge \dots \ge |a_N| > 0$$

$$\Rightarrow (a_n) \text{ keine Nullfolge} \quad \square$$

2.17 Beispiele

a)
$$\sum_{k=1}^{\infty} \frac{2^k}{k!} \text{ konvergiert, da } \left| \frac{a_{n+1}}{a_n} \right| = \frac{2^{n+1}}{(n+1)!} \cdot \frac{\cancel{N}}{2^n} = \frac{2}{n+1} \xrightarrow[n \to \infty]{} 0$$

$$\Rightarrow \lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = 0 < 1$$

b) Wie in 2.15b ist für
$$\sum_{k=1}^{\infty} \frac{1}{k^{\alpha}}$$
 $(\alpha > 0)$ keine Aussage möglich,
$$\operatorname{da} \left| \frac{a_{n+1}}{a_n} \right| = \frac{n^{\alpha}}{(n+1)^{\alpha}} = \left(\frac{n}{n+1} \right)^{\alpha} \xrightarrow[n \to \infty]{} 1$$
 und somit $\overline{\lim}_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = \underline{\lim}_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = 1$

2.18 Bemerkung

Mit dem Verdichtungssatz von Cauchy (den wir hier nicht zitieren), kann man zeigen, dass die allgemeine harmonische Reihe $\sum_{k=1}^{\infty} \frac{1}{k^{\alpha}}$ für $0 < \alpha < 1$ divergiert und für $\alpha > 1$ konvergiert.

2.19 Umordnung von Reihen: Beispiel

Man kan Reihen nicht bedenkenlos umordnen:

•
$$1 - 1 + \frac{1}{\sqrt{2}} - \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{3}} - \frac{1}{\sqrt{3}} \pm \dots$$

$$Sn = \begin{cases} 0 & \text{falls gerade} \\ \sqrt{\frac{2}{n+1}} & \text{falls n ungerade} \xrightarrow[n \to \infty]{} 0 \end{cases}$$

•
$$1 + \frac{1}{\sqrt{2}}\underbrace{-1}_{3} + \frac{1}{\sqrt{3}} + \frac{1}{\sqrt{4}} - \underbrace{\frac{1}{\sqrt{2}}}_{6} + \frac{1}{\sqrt{5}} + \frac{1}{\sqrt{6}} - \underbrace{\frac{1}{\sqrt{3}}}_{9} \pm \dots$$

$$S_{3n} = \frac{1}{\sqrt{n+1}} + \frac{1}{\sqrt{n+2}} + \dots + \frac{1}{\sqrt{2n}} \ge \frac{n}{\sqrt{2n}} = \sqrt{\frac{n}{2}} \xrightarrow[n \to \infty]{} \infty$$

2.20 Definition: Umordnung

 $\sum_{k=1}^{\infty}b_k$ heißt Umordnung von $\sum_{k=1}^{\infty}a_k,$ falls eine bijektive Abbildung $\rho:\mathbb{N}\to\mathbb{N}$ existiert mit $b_k=a_{\rho(k)}\quad\forall k\in\mathbb{N}$

2.21 Umordnungssatz

Jede Umordnung $\sum_{k=1}^{\infty} b_k$ einer absolut konvergenten Reihe $\sum_{k=1}^{\infty} a_k$ in \mathbb{R} ist ebenfalls absolut konvergent und es gilt $\sum_{k=1}^{\infty} b_k = \sum_{k=1}^{\infty} a_k$ (ohne Beweis)

2.22 Riemannscher Umordnungssatz

Ist $\sum_{k=1}^{\infty} a_k$ konvergent, aber nicht absolut konvergent, dann existiert zu jedem $s \in \mathbb{R}$ eine Umordnung $\sum_{k=1}^{\infty} b_k$, mit $\sum_{k=1}^{\infty} b_k = s$ (ohne Beweis)

3 Potenzreihen

3.1 Grundbegriffe und Beispiel

a) $P(x) = \sum_{k=0}^{\infty} x^k$ ist für |x| < 1 absolut konvergent (geometrische Reihe), d.h für $x \in \underbrace{(-1,1)}$.

Konvergenzintervall (3.5)

Für |x| > 1 ist P(x) divergent.

b) $P(X) = \sum_{k=0}^{\infty} k!(x-1)^k$ ist für $x \neq 1$ divergent:

Quotientenkriterium liefert:

$$\left| \frac{(x+1)!(x-1)^{k+1}}{k!(x-1)^k} \right| = (k+1)(x-1) \xrightarrow[k \to \infty]{} \infty \quad \text{für } x \neq 1$$

3.2 Definition: Potenzreihen

Sei $(a_n)_{n\geq 0}$ reelle Folge und seien $x, x_0 \in \mathbb{R}$.

$$P(x) := \sum_{k=0}^{\infty} a_k (x - x_0)^k$$

heißt Potenzreihe mit Zentrum x_0 und Koeffizienten a_k

3.3 Bemerkung

- a) In Bsp 3.1a) ist $x_0 = 0$ und $a_k = 1 \ \forall k \in \mathbb{N}$. In 3.1b) ist $x_0 = 1$ und $a_k = k!$
- b) In 3.1a) konvergiert P(x) für $x \in (-1,1)$, in 3.1b) lediglich für $x = x_0 = 1$. Es wird sich heraussstellen, dass es für eine Potenzreihe P(x) mit Zentrum x_0 einen Konvergenzradius $\rho \in \overline{\mathbb{R}}_+ = [0,\infty) \cup \{\infty\}$ gibt (3.5), so dass P(x) absolut konvergent für $x \in (x_0 \rho, x_0 + \rho)$, (d.h. $|x x_0| < \rho$) und divergent für $|x x_0| > \rho$ ist. (3.7)

Dazu zeigt man zunächst:

3.4 Satz

Sei $P(x) = \sum_{k=0}^{\infty} a_k (x - x_0)^k$ und $x \in \mathbb{R} \setminus \{x_o\}$.

Dann

- 1. $P(x_1)$ konvergent $\Rightarrow P(x)$ ist absolut konvergent $\forall x \in \mathbb{R}$ mit $|x x_0| < |x_1 x_0|$
- 2. $P(x_1)$ divergent $\Rightarrow P(x)$ ist divergent $\forall x \in \mathbb{R}$ mit $|x x_0| > |x_1 x_0|$

Beweis:

1. P(x) konvergent $\Rightarrow_{2,0} (a_k(x_1-x_0)^k)$ Nullfolge

 $\Rightarrow \exists K \geq 0 : |a_k(x_1 - x_0)| \leq K \forall k \in \mathbb{N}_0$

$$\Rightarrow |a_k(x - x_0)^k| = |a_k(x_1 - x_0)^k| \cdot \left| \frac{x - x_0}{x_1 - x_0} \right|^k \le K \cdot \underbrace{\left| \frac{x - x_0}{x_1 - x_0} \right|^k}_{\le 1}$$

 $\Rightarrow_{2.10} P(x)$ absolut konvergent für $|x - x_0| < |x_1 - x_0|$ (Majorantenkriterium)

2. Sei $P(x_1)$ divergent und $|x - x_0| > |x_1 - x_0|$. Wäre P(x) konvergent, so wäre wegen 1. auch $P(x_1)$ konvergent. 4

Also: P(x) divergent \square

3.5 Definition: Konvergenzradius und Intervall

Sei P(x) Potenzreihe mit Zentrum x_0 .

$$\rho = \sup\{|x - x_0| : P(x) \text{ mit } x \in \mathbb{R} \text{ konvergent}\} \in [0, \infty) \cup \{\infty\}$$

heißt Konvergenzradius von P(x).

Für $\rho \in \mathbb{R}_+$ heißt $(x_0 - \rho, x_0 + \rho)$ Konvergenzintervall von P(x). Ist $\rho = \infty$, so konvergiert $P(x) \ \forall x \in \mathbb{R} \ (3.7)$

3.6 Beispiel

- a) Für $P(x) = \sum_{k=0}^{\infty} x^k$ ist $\rho = 1$, denn (-1,1) ist Konvergenzintervall von
- b) Für $P(x) = \sum_{k=0}^{\infty} k! (x-x_0)^k$ ist $\rho = 0$, denn P(x) ist nur für $x = x_0 = 1$ konvergent.

Aus 3.4 ergibt sich direkt 3.7

3.7 Korollar

Sei P(X) Potenzreihe mit Zentrum x_0 und Konvergenzradius ρ .

Dann:

- 1. P(X) absolut konvergent $\forall x \in \mathbb{R}$ mit $|x x_0| < \rho$.
- 2. P(X) divergent $\forall x \in \mathbb{R}$ mit $|x x_0| > \rho$.
- 3. [Falls $|x x_0| = \rho \sim$ keine allgemeine Aussage möglich]

Berechnung von Konvergenzradien

3.8 Satz: Formel von Cauchy-Hademard

Sei $(a_k)_{k\geq 0}$ Folge in \mathbb{R} und $\lambda:=\overline{\lim_{k\to\infty}}\sqrt[k]{|a_k|}$. ρ sei der Konvergenzradius von $P(x) = \sum_{k=0}^{\infty} a_k (x - x_0)^k$.

Dann:

$$\rho = \begin{cases} \frac{1}{\lambda} & \text{, falls } \lambda \in \mathbb{R} > 0 \\ 0 & \text{, falls } \lambda = \infty \\ \infty & \text{, falls } \lambda = 0 \end{cases}$$

Beweis: Wurzelkriterium: $\lambda := \overline{\lim}_{k \to \infty} \sqrt[k]{|a_k| \cdot |x - x_0|^k} = \lambda \cdot |x - x_0|$

$$\underbrace{\lambda \cdot |x - x_0|}_{\text{D.h. } P(x) \text{ konvergiert}} < 1 \Leftrightarrow |x - x_0| < \frac{1}{\lambda} \quad (= \rho)$$

D.h.
$$P(x)$$
 konvergiert
$$\underbrace{\lambda \cdot |x - x_0|}_{\text{D.h. } P(x) \text{ divergiert}} > 1 \Leftrightarrow |x - x_0| > \frac{1}{\lambda} \quad (= \rho)$$

 $\Rightarrow \rho$ Konvergenzradius von P(x)

3.9 Beispiel

Für welche $x \in \mathbb{R}$ ist $\sum_{k=1}^{\infty} \frac{x^k}{k}$ konvergent?

$$\bullet \overline{\lim}_{k \to \infty} \sqrt[k]{\left|\frac{1}{k}\right|} = \overline{\lim}_{k \to \infty} \frac{1}{\sqrt[k]{k}} = 1 = \lambda$$

$$\Rightarrow \rho = \frac{1}{\lambda} = 1$$

$$\Rightarrow P(x)$$
konvergent für $x\in\overbrace{(-1,1)}^{x_0-\rho,x_0+\rho}$ und divergiert für $|x|>1$

Untersuche Randwerte für $x = \pm 1$

•
$$x = 1$$
: $P(1) = \sum_{k=1}^{\infty} \frac{1}{k}$ divergent (harmonische Reihe)

•
$$x = -1$$
: $P(-1) = \sum_{k=1}^{\infty} \frac{(-1)^k}{k} = \sum_{k=0}^{\infty} \frac{(-1)^{k+1}}{k+1}$
$$= -\left(\sum_{k=0}^{\infty} \frac{(-1)^k}{k+1}\right)$$

$$\Rightarrow P(-1)$$
 konvergent

Insgesamt: P(x) konvergent für [-1,1), divergent für |x| > 1 und x = 1.

3.10 Satz: Formel von Euler

Sei $(a_k)_{k>0}$ Folge in $\mathbb{R}, a_k \neq 0 \quad \forall k \in \mathbb{N}_0,$ ρ Konvergenzradius von $P(x) = \sum_{k=0}^{\infty} a_k (x - x_0)^k.$

Ist $\left(\left|\frac{a_k}{a_{k-1}}\right|\right)_{k\geq 0}$ konvergent oder bestimmt gegen $+\infty$ divergent, so ist $\rho=\lim_{k\to\infty}\left|\frac{a_k}{a_{k+1}}\right|$

Beweis: Wende auf P(x) das Quotientenkriterium 2.16 an.

3.11 Beispiel: Exponentialfunktion

$$\begin{split} &\sum_{k=0}^{\infty} \frac{x^k}{k!} \text{ konvergent } \forall x \in \mathbb{R}: \\ &\left|\frac{a_k}{a_{k+1}}\right| = \frac{1}{k!} \cdot \frac{(k+1)!}{1} = k+1 \xrightarrow[k \to \infty]{} \infty \\ &\underset{3 \downarrow 0}{\Rightarrow} \rho = \infty \end{split}$$

Man definiert: $\exp : \mathbb{R} \to \mathbb{R}$ mit $\exp(x) = \sum_{k=0}^{\infty} \frac{x^k}{k!}$ (Exponentialreihe)

Man kann zeigen:

- 1. $\exp(x+y) = \exp(x) + \exp(y) \quad \forall x, y \in \mathbb{R} \text{ (mit Cauchy-Produkt, hier nicht)}$
- 2. $\exp(x) = e^x, e \approx 2{,}718$ (Eulersche Zahl)

Aus 2.:
$$e = \exp(1) = \sum_{k=0}^{\infty} \frac{1}{k!} = 1 + 1 + \frac{1}{2!} + \frac{1}{3!} + \dots$$

Exkurs: Wie erhält man $\exp(x) = e^x$?

- 1. Definiere: $e := \lim_{n \to \infty} (1 + \frac{1}{n})^n$ (1.28)
- 2. Zeige: $\exp(1) = e = \lim_{n \to \infty} \left(1 + \frac{1}{n}\right)^n$ (später)
- 3. Zeige, dass Exponentialgesetze für $\exp(x)$ gelten:

$$\exp(x+y) = \exp(x) + \exp(y) \quad \forall x, y \in \mathbb{R} \text{ (hier nicht)}$$

4. Definiere: $e^x = \exp(x) \quad \forall x \in \mathbb{R}$

Dies stimmt dann wegen 3. mit den bekannten Rechenregeln für Potenzen und Wurzen überein:

- $e^n = (\exp(1))^n = \exp(n)$
- $\left(\exp\left(\frac{n}{m}\right)\right)^m = exp(n) = e^n \quad | \quad \sqrt[n]{n}$

 $\Rightarrow \exp\left(\frac{n}{m}\right) = (e^n)^{\frac{1}{m}} = e^{\frac{n}{m}} \quad \forall n, m \in \mathbb{N}$

Für irrationale Zahlen wird e^x dann mit Hilfe von $e^x = \exp(x)$ berechnet.

So kann auch ein Computer z.B: e^{π} berechnen, indem $\exp(\pi)$ ermittelt wird.

3.12 Bemerkung

a) Außer der Funktion e^x gibt es auch andere Funktionen die sich als Reihe darstellen lassen, z.B wird in Mathe III gezeigt, dass

$$cos(x) = \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n}}{(2n)!}$$

$$sin(x) = \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n+1}}{(2n+1)!}$$

b) Wie Beispiel 3.9 zeigt, ist auf dem Rand des Konvergenzintervalls keine allgemeine Aussage über das Konvergenzverhalten der entsprechenden Potenzreihe möglich. Für $\rho \neq \infty$ müssen die Randwerte gesondert untersucht werden.

4 Reelle Funktionen

Grundbegriffe und Beispiele

4.1 Definition: Abbildung

Eine Abbildung $f: A \to B$ besteht aus

- Dem Definitionsbereich A (Menge A)
- Dem Bildbereich B (Menge B)
- Einer Zuordnungsvorschrift f, die jedem $a \in A$ genau ein Element $b \in B$ zuordnet.

Man schreibt b = f(a), nennt b Bild/Funktionswert von a und a (ein) Urbild von b.

Notation: $f: A \to B, a \mapsto f(a)$

A =Menge aller Studenten von Mathe II

 $B = \{ \text{Raucher}, \text{Nichtraucher} \}$

f = Zuordnungsvorschrift, die jedem Studenten zuordnet, ob er/sie raucht/nicht raucht

4.2 Definition: Reelle Funktion

Eine reelle Funktion einer Veränderlichen ist eine Abbildung $f:D\to\mathbb{R},D\subseteq\mathbb{R}.$

- a) $(f \pm g)(x) := f(x) \pm g(x) \quad \forall x \in D$ Summe/Differenz von f und g
- b) $(f \cdot g) := f(x) \cdot g(x) \quad \forall x \in D$ Produkt von f und g
- c) Für $g(x) \neq 0 \quad \forall x \in D$ heißt

$$\left(\frac{f}{g}\right)(x) := \frac{f(x)}{g(x)} \quad \forall x \in D$$

Quotient von f und g

d) Komposition/Verknüpfung

$$f: D_f \to \mathbb{R}, g: D_g \to \mathbb{R} \text{ mit } f(D_f) \subseteq D_g$$

$$f \circ g: D_f \to \mathbb{R}$$

$$(g \circ f)(x) := g(f(x))$$

$$D_f \xrightarrow{f} f(D_f) \subseteq D_g \xrightarrow{g} g(f(D_f)) \subseteq \mathbb{R}$$

$$g \circ f \text{ ("g nach f")}$$

4.3 Beispiel

$$\begin{split} f,g:\mathbb{R}\to\mathbb{R}, &f(x)=x^2, g(x)=x-1\\ &(f+g)(x)=x^2+x-1, (f\cdot g)(x)=x^2(x-1)\\ &\left(\frac{f}{g}\right)\!(x)=\frac{x^2}{x-1} \text{ für } D=\{x\in\mathbb{R}|x\neq 1\} \text{ Definitionsbereich von } \frac{f}{g}.\\ &(f\circ g)(x)=(x-1)^2\neq\\ &(g\circ f)(x)=x^2-1 \end{split}$$

4.4 Definition: Injektiv, Surjektiv, Bijektiv

Sei $f:X\to Y$ eine Abbildung. fheißt:

- 1. Surjektiv $\Leftrightarrow \forall y \in Y \ \exists x \in X : f(x) = y$
- 2. Injektiv \Leftrightarrow $(f(x_1) = f(x_2) \Rightarrow x_1 = x_2)$
- 3. Bijektiv $\Leftrightarrow f$ ist injektiv und surjektiv

4.5 Beispiele

- a) $f: \mathbb{R} \to \mathbb{R}, f(x) = x^2$ ist
 - nicht surjektiv: z.B gibt es für y=-1 kein $x\in\mathbb{R}$ mit f(x)=-1, da $f(x)=x^2\geq 0 \quad \forall x\in\mathbb{R}$
 - nicht injektiv: f(-1) = f(1) aber $-1 \neq 1$
- b) Jedoch ist $f: \mathbb{R}_{\geq 0} \to \mathbb{R}_{\geq 0}$ mit $f(x) = x^2$ bijektiv, wie man leicht prüfen kann.

4.6 Definition: Umkehrfunktion, Bild, Urbild

Sei $f: X \to Y$ eine Abbildung

- 1. Für $X_0 \subseteq X$ heißt $f(X_0) := \{f(x) | x \in X_0\}$ Bild von X_0
- 2. Für $Y_0 \subseteq Y$ heißt $f^{-1}(Y_0) := \{x \in X | f(x) \in Y_0\}$ Urbild von Y_0
- 3. Ist f bijektiv, so heißt $f^{-1}:Y\to X$ Umkehrfunktion von f, falls $f^{-1}\circ f=\mathrm{id}_x$ und $f\circ f^{-1}=\mathrm{id}_y$

4.7 Beispiel

a) $f: \mathbb{R}_{\geq 0} \to \mathbb{R}_{\geq 0}, f(x) = x^2$ ist bijektiv (4.6b) Umkehrfunktion: $f^{-1}: \mathbb{R}_{\geq 0} \to \mathbb{R}_{\geq 0}, f^{-1}(x) = \sqrt{x}$

da:
$$(f \circ f^{-1})(x) = f(f^{-1}(x)) = (\sqrt{x})^2 = \underbrace{x}_{\text{eid } \mathbb{R}_{\geq 0}}$$

= $f^{-1}(f(x)) = \sqrt{x^2} = (f^{-1} \circ f)(x)$

Bemerkung: Die Umkehrfunktion erhält man durch Spiegelung an der Ursprungsgeraden

b) Achtung: Das Urbild existiert immer, auch wenn f^{-1} als Umkehrfunktion nicht existiert.

Beispiel:
$$f: \mathbb{R} \to \mathbb{R}, f(x) = x^2$$
 $f^{-1}(\{\frac{1}{4}\}) = \{-\frac{1}{2}, +\frac{1}{2}\}$

4.8 Definition: Symmetrie

Sei $f(x): \mathbb{R} \to \mathbb{R}$ heißt:

- Achsensymmetrisch $\Leftrightarrow f(x) = f(-x) \quad \forall x \in \mathbb{R} \text{ (zur y-Achse)}$
- Punktsymmetrisch $\Leftrightarrow f(x) = f(-x) \quad \forall x \in \mathbb{R}$

4.9 Definition: Monotonie

Sei $f: D \to \mathbb{R}, D \subseteq \mathbb{R}$. f heißt (streng) monoton wachsend, falls $f(x_1) \leq f(x_2) \quad \forall x_1 \leq x_2$.

Falls $f(x_1) \geq f(x_2)$ $\forall x_1 \geq x_2$, so heißt f (streng) monoton fallend.

4.10 Elementare Funktionen

- a) Konstante Funktion: Sei $c \in \mathbb{R}$ $f : \mathbb{R} \to \mathbb{R}, x \mapsto c$
- b) Identität: $f: \mathbb{R} \to \mathbb{R}, x \mapsto x$
- c) Betragsfunktion: $f : \mathbb{R} \to \mathbb{R}, x \mapsto |x|$ f ist achsensymmetrisch
- d) Monome/Potenzen: $f: \mathbb{R} \to \mathbb{R}, x \mapsto x^n \quad (n \in \mathbb{N})$
 - n gerade: f achsensymmetrisch, weder injektiv noch surjektiv, nicht monoton, $f(x) \neq 0 \quad \forall x \in \mathbb{R}$
 - n ungerade: f punktsymmetrisch, bijektiv, streng monoton steigend
- e) Wurzelfunktion: Sind Umkehrfunktion von Monomen
 - n ungerade $\Rightarrow f(x) = x^n$ bijektiv \Rightarrow Umkehrfunktion existiert und hat die Form 4.7/3

$$\sqrt[n]{}:\mathbb{R}\to\mathbb{R},x\mapsto\sqrt[n]{x}$$

• n gerade $\Rightarrow f: \mathbb{R}_{\geq 0} \to \mathbb{R}_{\geq 0}, x \mapsto x^n$ bijektiv In diesem Fall hat die Umkehrfunktion die Vorschrift

$$\sqrt[n]{}: \mathbb{R}_{\geq 0} \to \mathbb{R}_{\geq 0}, x \mapsto \underbrace{\sqrt[n]{x}}_{\geq 0}$$

Achtung: Wenn n gerade, dann hat $x^n = a$ für gegebenes $a \in \mathbb{R}$

- keine Lösung, falls a < 0
- genaue eine Lösung, falls a = 0 und zwar x = 0
- genau zwei Lösungen, falls a > 0 und zwar

$$x_1 = \underbrace{\sqrt[n]{a}}_{>0} \quad x_2 = \underbrace{-\sqrt[n]{a}}_{<0}$$

f) Polynome: $p:\mathbb{R}\to\mathbb{R}, x\mapsto a_nx^n+a_{n-1}x^{n-1}+\ldots+a_0x^0=\sum_{k=0}^na_kx^k$ $a_0,\ldots,a_n\in\mathbb{R}$ heißen Koeffizienten

Falls $a_n \neq 0$, so heißt n Grad von p, man schreibt grad(p) = n

Für ein Polynom p von Grad n kann man zeigen:

- 1. p besitzt höchstens n Nullstellen
- 2. Falls n ungerade, ist p surjektiv und besitzt mindestens eine Nullstelle
- 3. Falls n gerade, ist p nicht surjektiv und kann daher auch keine Nullstelle haben

Bekannte Verfahren zur Berechnung von Nullstellen:

- grad(p) = 2: Mitternachtsformel/pq-Formel
- $grad(p) \ge 3$: Polynomdivision (Mathe III), numerische Verfahren (z.B Newton-Verfahren)
- g) Rationale Funktionen:

Quotienten von Polyonmen p,qmit $f:D\to\mathbb{R}$

$$x \mapsto \frac{p(x)}{q(x)}$$
 $D = \{x \in \mathbb{R} \mid q(x) \neq 0\}$

- h) Logarithmen und Exponentialfunktion:
 - 1. der natürliche Logarithmus:

Man kann zeigen, dass für die Exponentialreihe unter 3.11 gilt:

- $\exp(\mathbb{R}) = \mathbb{R}_{>0}$
- $\exp: \mathbb{R} \to \mathbb{R}_{>0}$ ist bijektiv

Die Umkehrfunktion von $\exp(x)$ ist der natürliche Logarithmus:

$$\ln : \mathbb{R}_{>0} \to \mathbb{R}, x \mapsto \ln(x)$$

2. Exponential funktion:

Sei
$$q > 0, q \neq 0$$
. Für $x \in \mathbb{Q}, x = \frac{a}{b}$ ist $q^x = \sqrt[b]{q^a}$ $a \in \mathbb{Z}, b \in \mathbb{N}$

Mit Hilfe der Funktion $\exp(x), \ln(x)$ kann man Exponentialfunktionen zu einer beliebigen gegebenen Basis q und $x \in \mathbb{R}$ definieren:

$$f: \mathbb{R} \to \mathbb{R}_{>0}$$
 $x \mapsto q^x := \exp(x \cdot \ln(q))$

3. Aus 2. ergibt sich die Regel:

$$\ln(q^x) = x \cdot \ln(q) \quad \forall x \in \mathbb{R}$$

- 4. Man kann wegen 2. eine Basis q durch eine beliebige andere Basis ausdrücken, z.B: $q^x = e^{x \cdot \ln(q)}$ (da $\exp(x) = e^x$ (3.11))
- 5. Logarithmus zur Basis $q>0, q\neq 1$: Bilde die Umkehrfunktion von $f(x)=q^x$ (unter 2.)

$$\log_q: \mathbb{R}_{>0} \to \mathbb{R} \quad x \mapsto \log_q(x)$$

6. \log_q lässt sich analog zu 4. durch jeden anderen Logarithmus ausdrücken, z.B ist

$$\ln(x) = \ln(q^{\log_q(x)}) = \log_q(x) \Leftrightarrow \log_q(x) = \frac{\ln(x)}{\ln(y)}$$

7. Rechenregeln:

- für $f(x) = q^x$ ergeben sich aus 2. und den Regeln für $\exp(x)$ (3.11):
 - $q^{x+y} = q^x \cdot q^y \quad \forall x, y \in \mathbb{R}$
 - $q^{-x} = \frac{1}{q^x}$, da $1 = q^{x-x} q^x \cdot q^{-x} \quad \forall x \in \mathbb{R}$
 - $\bullet \ (q^x)^y = q^{x \cdot y}$
- für $\log_a(x)$ ergeben sich aus denen für q^x :
 - $\log_q(xy) = \log_q(x) + \log_q(y)$ $\forall x, y > 0$ denn für $x = q^u, y = q^v$ ist $\log_q(xy) = \log_q(q^{u+v}) = u + v = \log_q(x) + \log_q(y)$

•
$$\log_q\left(\frac{q}{x}\right) = -\log_q(x) \quad \forall x > 0$$

[mit $q^v = \log_q(x^\alpha) \underset{3/6}{=} \alpha \cdot \log_q(x) \quad \forall x > 0, \alpha \in \mathbb{R}$]

i) Trigonometrische Funktionen:

Winkel zwischen x-Achse und Strecke $\overline{0~P_{\varphi}}$

Ankathete an φ in $\Delta(0 A_{\varphi} P_{\varphi})$ $\cos \varphi$:

Gegenka
thete an φ in $\Delta(0\ A_{\varphi}\ P_{\varphi})$

Daraus ergeben sich die Winkelfunktionen:

 $\mathbb{R} \to [-1,1], x \mapsto \cos(x)$

 $\mathbb{R} \to [-1,1], x \mapsto \sin(x)$

 $\tan : \quad \mathbb{R} \setminus \{(k + \frac{1}{2})\pi \mid k \in \mathbb{Z}\} \to \mathbb{R}, x \mapsto \frac{\sin(x)}{\cos(x)}$ $\cot a : \quad \mathbb{R} \setminus \{k\pi \mid k \in \mathbb{Z}\} \to \mathbb{R}, x \mapsto \frac{\cos(x)}{\sin(x)}$

1. Dabei wird der Winkel φ meistens im Bogenmaß angegeben, d.h. $\varphi \in [0, 2\pi].$

Einige wichtige Werte:

Gradmaß:	0°	30°	45°	60°	90°	180°
Bogenmaß:	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$	π
sin:	0	$\frac{1}{2}$	$\frac{1}{\sqrt{2}}$	$\frac{\sqrt{3}}{2}$	1	0
cos:	1	$\frac{\sqrt{3}}{2}$	$\frac{1}{\sqrt{2}}$	$\frac{1}{2}$	0	-1

Daraus können weitere Werte mit Hilfe des Einheitskreises abgeleitet werden:

38

$$\cos\left(\frac{2\pi}{3}\right) = -\frac{1}{2} = -\cos\left(\frac{\pi}{3}\right)$$
$$\sin\left(\frac{2\pi}{3}\right) = \frac{\sqrt{3}}{2} = -\sin\left(\frac{\pi}{3}\right)$$

2. sin und cos sind nicht bijektiv. Jedoch ist $\sin[-\frac{\pi}{2}, \frac{\pi}{2}] \to [-1, 1]$ und $\cos[0, \pi] \to [-1, 1]$ bijektiv. Die Umkehrfunktionen sind:

$$\begin{array}{ll} \text{arcsin:} & [-1,1] \rightarrow [-\frac{\pi}{2},\frac{\pi}{2}] \\ \text{arccos:} & [-1,1] \rightarrow [0,\pi] \\ \end{array}$$

Entsprechend erhält man:

arctan: $\mathbb{R} \to (-\frac{\pi}{2}, \frac{\pi}{2})$ arccotan: $\mathbb{R} \to (0, \pi)$

- 3. Es ist $\sin(x + \frac{\pi}{2}) = \cos(x) \quad \forall x \in \mathbb{R}$
 - \sin , \cos \sin d 2π -periodisch, d.h. $\sin(x + 2\pi) = \sin(x)$, $\cos(x + 2\pi) = \cos(x)$
 - tan, cotan sind π -periodisch
- 4. Symmetrien

$$\cos(x) = \cos(-x) \qquad \forall x \in \mathbb{R}$$
$$\sin(x) = -\sin(-x) \qquad \forall x \in \mathbb{R}$$
$$\tan(x) = -\tan(-x) \qquad \forall x \in \mathbb{R}$$
$$\cot(x) = -\cot(-x) \qquad \forall x \in \mathbb{R}$$

- 5. Rechenregeln
 - a) $\sin x + \cos x = 1 \quad \forall x \in \mathbb{R}$
 - b) Additions theoreme
 - $\sin(x+y) = \sin(x) \cdot \cos(y) + \cos(x) \cdot \sin(y)$
 - $\cos(x+y) = \cos(x) \cdot \cos(y) \sin(x) \cdot \sin(y)$

5 Grenzwerte von Funktionen und Stetigkeit

5.1 Definition: Grundbegriffe und Beispiele

Sei $M \subseteq \mathbb{R}$.

- a) $X_0 \in \mathbb{R}$ heißt Häufungspunkt von M: \Leftrightarrow Es gibt eie Folge (X_n) in $M \setminus \{X_0\}$ mit $X_n \mapsto X_0$
- b) $X_0 \in M$ heißt isolierter Punkt von M : $\Leftrightarrow X_0$ ist kein Häufungspunkt von M

5.2 Beispiele

- a) $M = (0,1) \cup \{2\} \cup (3,4)$
 - Menge der Häufungspunkte von M: $H = [0,1] \cup [3,4]$ denn z.B für $X_0 = \frac{1}{2}$ hat die Folge $(\frac{1}{2} \frac{1}{n})_{n \geq 3}$ den Limes X_0 und liegt in $M \setminus \{X_0\}$.

Auf analoge Weise können für jedes andere $X_0 \in M$ Folgen in $M \setminus \{X_0\}$ konstruiert werden.

- Einziger isolierter Punkt in M ist 2, denn es gibt in $M \setminus \{2\} = (0,1) \cup (3,4)$ keine Folge mit Grenzwert 2.
- b) $M = \{\frac{1}{n} \mid n \in \mathbb{N}\}$
 - Menge der HP von M: $\{0\}$
 - Menge der isolierten Punkte: M

5.3 Bemerkung

Ein isolierter Punkt X_0 von M liegt vor, wenn es ein $\epsilon > 0$ gibt, so dass $|X - X_0| \ge \epsilon \quad \forall x \in M \setminus \{X_0\}$, z.B ist in 5.2a $|X - 2| \ge 1 \quad \forall x \in M \setminus \{2\}$

5.4 Definition Grenzwert I

Sei $f: D \to \mathbb{R}$ reelle Funktion und $a \in \mathbb{R}$. Ist X_0 ein Häufungspunkt von D, so sagt man f hat in X_0 den Grenzwert a, oder f(x) konvergiert gegen a für $x \to a :\Leftrightarrow \lim_{n \to \infty} f(X_n) = a$, für jede beliebige Folge (X_n) in $D \setminus \{X_0\}$ mit $X_n \to X_0$.

Schreibweise: $\lim_{x\to X_0}f(x)=a$ oder $f(x)\to a$ für $x\to X_0$

Beispiele

a) $f: \mathbb{R} \to \mathbb{R}, x \mapsto x^2, X_0 = 1$

Für
$$(X_n)$$
 in $\mathbb{R} \setminus \{1\}$ mit $X_n \to 1$ ist $f(X_n) = X_n^2 \xrightarrow[n \to \infty]{} 1$ $(1.13/3)$

b) Es muss für jede Folge (X_n) in $D \setminus \{X_0\}$ mit $X_n \to X_0$ gelten: $f(X_n) \to a$

Gegenbeispiel:
$$f: \mathbb{R} \to \mathbb{R}$$
 $f(x) = \begin{cases} -1 & x < 0 \\ +1 & x > 0 \end{cases}$

$$f(-\frac{1}{\pi}) = -1 \xrightarrow{\circ} -1$$
 und

Grenzwert in
$$X_0=0$$
 existiert nicht, denn $f(-\frac{1}{n})=-1 \xrightarrow[n \to \infty]{} -1$ und $f(\frac{1}{n})=1 \xrightarrow[n \to \infty]{} 1$, obwohl $\frac{-1}{n} \to X_0$ und $\frac{1}{n} \to X_0$

5.6 ϵ – φ –Kriterium

Sei $f: D \to \mathbb{R}$ reelle Funktion, X_0 HP in $D, a \in \mathbb{R}$. Dann:

$$\lim_{x \to X_0} f(x) = a \Leftrightarrow \forall \epsilon > 0 \ \forall x \in D \setminus \{X_0\} :$$

$$\underbrace{|x - X_0| < \delta \Rightarrow |f(x) - a| < \epsilon}_{(*)}$$

Existenz von a bedeutet: Wenn x nahe genug bei X_0 ist, so ist auch f(x) sehr nahe an a.

Beweis:

$$(\Leftarrow)$$
: Gelte (*). Sei (X_n) in $D \setminus \{X_0\}, X_n \to X_0$. Z.z.: $f(X_n) \to a$

Da
$$X_n \to X_0$$
, gibt es $N \in \mathbb{N}$ mit $|X_n - X_0| < \delta$ $\forall n \ge N$ (1.5) $(*) \Rightarrow |f(X_n) - a| < \epsilon$ $\forall n \ge N$ $\Rightarrow f(X_n) \xrightarrow[n \to \infty]{} q$

$$(*) \Rightarrow |f(X_n) - a| < \epsilon \quad \forall n \ge N$$

$$\Rightarrow J(\Lambda_n) \xrightarrow[n \to \infty]{} q$$

(⇒): Mit Kontraposition: Gelte (*) nicht. ⇒ $\exists \epsilon > 0$ derart, dass für jedes $n \in \mathbb{N}$ ein $X_n \in D \setminus \{X_0\}$ existiert mit $|X_n - X_0| < \delta$ und $|f(X_n) - a| \ge \epsilon$. ⇒ $f(X_n) \not\to n$ für $X_n \to X_0$. \square

5.7 Beispiel

$$f: \mathbb{R} \to \mathbb{R}, f(x) = ax + b \text{ mit } a, b \in \mathbb{R}. \text{ Es ist } \lim_{x \to X_0} f(x) = f(X_0).$$

Prüfe mit ϵ – δ –Kriterium:

Sei
$$\epsilon > 0$$
. Für $\delta = \frac{\epsilon}{|a|}$ ist
$$|f(x) - f(X_0)| = ax + b - aX_0 - b = |a| \cdot \underbrace{|x - X_0|}_{<\delta} < |a| \cdot \frac{\epsilon}{|a|} = \epsilon$$

5.8 Definition: Grenzwert II

Sei X_0 HP von $D \subseteq \mathbb{R}$ und $f: D \to \mathbb{R}$.

1. f hat in X_0 den Grenzwert $+\infty$ $(-\infty)$: $\Leftrightarrow f(X_n) \to +\infty(-\infty)$ für jede Folge (X_n) in $D \setminus \{X_0\}$ mit $X_n \to X_0$.

Schreibweise:
$$\lim_{x \to X_0} f(x) = +\infty \ (-\infty)$$

2. Ist $\sup D = \infty$ (inf $D = -\infty$), so hat f(x)Limes $a \in \mathbb{R}$ für $x \to \infty$ $(x \to -\infty)$: $\Leftrightarrow f(X_n) \to a$ für jede Folge in Dmit $X_n \to \infty$ $(X_n \to -\infty)$

5.9 Beispiele

a)
$$f: \mathbb{R} \setminus \{0\} \to \mathbb{R}, f(x) = \frac{1}{x^2}$$

1.
$$\lim_{x\to 0} \frac{1}{x^2} = \infty$$
, da für jede Nullfolge (X_n) in $\mathbb{R} \setminus \{0\}$ gilt: $\underbrace{\frac{1}{X_n^2}}_{=0} \xrightarrow[n\to 0]{} +\infty$

2.
$$\lim_{x \to \infty} \frac{1}{x^2} = 0$$
, da für jedes (X_n) in \mathbb{R} mit $X_n \to \infty : \frac{1}{X_n^2} \xrightarrow[n \to \infty]{} 0$

b) Es gilt für jedes $m \in \mathbb{N}_0$:

1.
$$\lim_{x \to \infty} \frac{\exp(x)}{x^m} = \infty$$

$$2. \lim_{x \to -\infty} x \cdot \exp(x) = 0$$

Beweis:

Beweis:
1.
$$\exp(x) = \sum_{k=0}^{\infty} \frac{x^k}{k!} \ge \frac{X^{m+1}}{(k+1)!} \quad \forall x \ge 0$$

$$\Rightarrow \frac{\exp(x)}{x^m} \ge \frac{x^{p\ell+1}}{(k+1)x^{p\ell}} = \frac{x}{(k+1)!} \to \infty$$
für $x \to \infty$
2. $x^m \cdot \exp(x) = \frac{(-1)^m (-x)^m}{\exp(-x)} = (-1)^m \cdot \frac{1}{\frac{\exp(-x)}{(-x)^m}} \xrightarrow{1} \infty$

Definition: Rechts-/Linksseitiger Grenzwert

- 1. Ist X_0 HP von $D \cap (X_0, \infty)$, so hat f in X_0 den rechtsseitigen Grenzwert $a \in \mathbb{R} : \Leftrightarrow f(X_n) \to a$ für jede Folge (X_n) in $D \cap (X_0, \infty)$ mit $X_n \to X_0$. Schreibweise: $\lim_{x \to X_0^+} f(x) = a$
- 2. Ist X_0 HP von $D\cap (-\infty, X_0)$, so hat f in X_0 den linksseitigen Grenzwert $a \in \mathbb{R} : \Leftrightarrow f(X_n) \to a$ für jede Folge (X_n) in $D \cap (-\infty, X_0)$ mit $X_n \to X_0$. Schreibweise: $\lim_{x \to X_0^-} f(x) = a$

5.11Beispiel

$$f: \mathbb{R} \to \mathbb{R} \quad x \mapsto \begin{cases} -1 & x < 0 \\ 1 & x \ge 0 \end{cases}$$

- $\lim_{x\to 0^+} f(x) = 1$, da $f(X_n) = 1 \to 1$ für (X_n) in $(0,\infty)$ und $(X_n) \to 0$
- $\lim_{x\to 0^-} f(x) = -1$, da $f(X_n) = -1 \to -1$ für (X_n) in $(-\infty, 0)$ und $(X_n) \to 0$

5.12Bemerkung

Aus 5.11 ist ersichtlich: Der Grenzwert einer Funktion f in X_0 existiert \Leftrightarrow Der Links- und Rechtsseitige Grenzwert von f in X_0 existieren und übereinstimmen.

5.13Beispiele

a) $\lim_{x\to 0} \frac{1}{|x|} = \infty$, aber $\lim_{x\to 0} \frac{1}{x}$ existient nicht, da $\lim_{x\to 0^+}\frac{1}{x}=+\infty\neq \lim_{x\to 0^-}\frac{1}{x}=-\infty$

b) $\lim_{x\to\infty} x = \infty$, $\lim_{x\to-\infty} x = -\infty$

5.14 Definition: Stetigkeit

Sei $f: D \to \mathbb{R}, D \subseteq \mathbb{R}$

a) f heißt stetig in $X_0 \in D$, falls

$$\underbrace{\lim_{x \to X_0} f(x)}_{A} \underbrace{= f(X_0)}_{B}$$

b) f heißt stetig, falls f in jedem Punkt $X_0 \in D$ stetig ist.

5.15 Bemerkung

- a) In 5.15a prüft man zwei Bedingungen: A) Der Grenzwert von f in X_0 existiert und B) ist gleich $f(X_0)$.
- b) Wegen 5.6 ist f in $X_0 \in D$ stetig \Leftrightarrow

$$\forall \epsilon > 0 \ \exists \delta > 0 \ \forall x \in D : |x - X_0| < \delta \Rightarrow |f(x) - f(X_0)| < \epsilon$$

5.16 Beispiele

a) $f: \mathbb{R} \to \mathbb{R}, f(x) = x^2$ ist in jedem $X_0 \in D$ stetig:

$$\lim_{x\to X_0} f(x) = f(X_0), \text{ da für } (X_n) \text{ in } D\setminus \{X_0\} \text{ gilt:}$$

$$\underbrace{f(X_n) = X_n^2 \to X_n^2 \to X_0^2}_{A} = \underbrace{f(x)}_{B}$$

b) Wegen 5.4 ist $f: \mathbb{R} \to \mathbb{R}$ mit f(x) = ax + b stetig.

5.17 Satz

Sei $f: D \to \mathbb{R}, D \subseteq \mathbb{R}$.

Gibt es ein k > 0 mit $|f(x) - f(X_0)| \le k \cdot |x - X_0| \quad \forall x \in D$, so ist f stetig in X_0 .

Beweis: Sei $\epsilon > 0$. Wähle $\delta = \frac{\epsilon}{\delta}$

$$\Rightarrow |f(x) - f(X_0)| \le k \cdot |\underbrace{x - X_0}_{<\delta}| < k \cdot \delta = \epsilon \quad \Box$$

5.18 Bemerkung

Wähle
$$\delta = \frac{\epsilon}{k}$$

$$\Rightarrow |f(x) - f(X_0)| \le k \cdot |\underbrace{x - X_0}_{<\delta}| < k \cdot \delta = \epsilon \quad \Box$$

5.19 Beispiel

a) Anschauung zu 5.14a

Es gibt 4 Fälle:

 $\lim_{x \to X_0} f(x)$ existiert nicht

b) Schule: fist stetig, wenn man f "ohne Absetzen" zeichnen kann.

Gegenbeispiel: $f: \mathbb{R} \setminus \{0\} \to \mathbb{R}, f(x) = \frac{1}{x}$ stetig auf $\mathbb{R} \setminus \{0\}$

c) Dirichlet–Funktion:

$$f: \mathbb{R} \to \mathbb{R}, f(x) = \begin{cases} 1 & x \in \mathbb{R} \\ 0 & x \in \mathbb{R} \setminus \mathbb{Q} \end{cases}$$

unstetig in jedem $X_0 \in \mathbb{R}$.

Mit ϵ - δ -Kriterium:

Sei $\delta > 0$.

1.
$$X_0 \in \mathbb{Q} \Rightarrow \exists x \in \mathbb{R} \setminus \mathbb{Q} : |x - X_0| < \delta$$

2.
$$X_0 \in \mathbb{R} \setminus \mathbb{Q} \Rightarrow \exists x \in \mathbb{R} : |x - X_0| < \delta$$

Eigenschaften stetiger Funktionen

5.20 Satz: Rechenregeln für stetige Funktionen

- a) Seien $f,g:D\to\mathbb{R}$ stetig in $X_0\in D,D\subseteq\mathbb{R},c\in\mathbb{R}$. Dann sind auch $c\cdot f,f\pm g,f\cdot g$ und $\frac{f}{g}$ (für $g(x)\neq 0\ \forall x\in D$) stetig.
- b) Seien $D, D' \subseteq \mathbb{R}, f: D \to IR, g: D' \to \mathbb{R}, f(D) \subseteq D'.$ f, g stetig $\Rightarrow g \circ f$ stetig.

Beweis:

- a) Folgt direkt aus 5.14
- b) Mit 1.14 □

5.21 Bemerkung

Wegen 5.16b und 5.20

- a) sind Monome und Polynome stetig
- b) Wegen a und 5.20a sind rationale Funktionen stetig
- c) Potenzreihen sind auf ihrem Konvergenzintervall stetig (zeigen wir hier nicht). Daher sind exp, sin, cos, tan, cotan (vgl. 3.11, 3.12) auch stetig.

5.22 Beispiele und Bemerkung zu Definitionslücken

a) Hebbare Definitionslücke:

Sei $f: D \to \mathbb{R}$ und X_0 HP von $X_0 \notin D$. Ist $\lim_{x \to X_0} f(x) = a$, so heißt X_0 stetig hebbare Definitionslücke von f.

$$f: D \cup \{X_0\} \to \mathbb{R}$$
 $\tilde{f}(x) = \begin{cases} f(x) & x \in D \\ a & x = X_0 \end{cases}$

heißt Fortsetzung von f auf $D \cup \{X_0\}$.

Beispiel:
$$f: \mathbb{R} \setminus \{1\} \to \mathbb{R}$$
 $f(x) = \frac{x^2 - 1}{x - 1}$

$$\lim_{x \to 1} f(x) = \lim_{x \to 1} \frac{(x-1) \cdot (x+1)}{(x-1)} = 2$$

$$\tilde{f}: \mathbb{R} \to \mathbb{R}$$
 $\tilde{f}(x) = \begin{cases} f(x) & x \neq 1 \\ 2 & x = 1 \end{cases} = x + 1$

b) Polstelle:

Gilt für die Nullstelle X_0 des Nenners einer rationalen Funktion, dass $f(x) \to \pm \infty$, für $x \to X_0^-$ oder $x \to X_0^+$, so heißt X_0 Polstelle.

Beispiel: $f(x) = \frac{1}{x}$ hat Polstelle bei $X_0 = 0$.

c) $f: \mathbb{R} \setminus \{0\} \to \mathbb{R}, f(x) = \sin\left(\frac{1}{x}\right)$ hat in $X_0 = 0$ keinen Grenzwert.

Man nennt X_0 Oszillationsstelle:

•
$$X_n = \frac{1}{n\pi} \to 0$$
 und $f(X_n) = \sin(n\pi) = 0$

•
$$Y_n = \frac{1}{n \cdot 2\pi + \frac{\pi}{2}} \to 0$$
 und $f(Y_n) = \sin(2\pi n + \frac{\pi}{2}) = 1$

$$\Rightarrow f(Y_n) \to 1$$

 $\Rightarrow \lim_{x\to 0} f(x)$ existiert nicht.

d) $f: \mathbb{R} \setminus \{0\} \to \mathbb{R}$ $f(x) = x \cdot \sin\left(\frac{1}{x}\right)$ hat in $X_0 = 0$ eine hebbare Definitionslücke

$$f(X_n) = \underbrace{X_n}_{\to 0} \cdot \underbrace{\sin\left(\frac{1}{X_n}\right)}_{\text{beschränkt}} \text{ für jede Nullfolge } (X_n) \text{ in } \mathbb{R} \setminus \{0\}$$

$$\Rightarrow \tilde{f}(x) = \begin{cases} x \cdot \sin(\frac{1}{x}) & x \neq 0 \\ 0 & x = 0 \end{cases}$$
 stetige Fortsetzung.

e) $f: \mathbb{R} \setminus \{0\} \to \mathbb{R}$ $f(x) = \sin(x) \cdot \frac{1}{x}$

Wir zeigen später mit L'Hopital, dass $\lim_{x\to 0} f(x) = 1$

5.23 Satz: Zwischenwertsatz von Bolzano (Nullstellensatz)

 $f:[a,b]\to\mathbb{R}$ stetig, $f(a)\cdot f(b)<0$. Dann: Es gibt $c\in[a,b]$ mit f(c)=0.

Beweis: $f(a) \cdot f(b) < 0$ bedeutet, dass f(a) und f(b) unterschiedliche Vorzeichen haben.

Beweis für f(a) < 0, f(b) > 0 (Anderer Fall analog)

Anschaulich klar, da f keine Sprungstelle hat.

Bisektionsverfahren:

Start $[a_1, b_1] := [a, b]$

- 1. Schritt: Halbiere $[a_1, b_1]$
 - Berechne $y_1 = f(\frac{a_1+b_1}{2})$
 - Fallunterscheidung:
 - $-y_1=0$: Fertig
 - $y_1 > 0$: Neues Intervall $[a_2, b_2] := [a_1, \frac{a_1 + b_1}{2}]$
 - $-y_1 < 0$: Neues Intervall $[a_2, b_2] := [fraca_1 + b_1 2, b_1]$
 - Es gilt:
 - $[a_2,b_2]$ halb so groß wie $[a_1,b_1]$
 - $-f(a_2) < 0, f(b_2) > 0$
- 2. Schritt: Wende Schritt 1 auf $\left[a_2,b_2\right]$ an, erhalte y_2 und $\left[a_3,b_3\right]$

Usw...

Erhalte Intervallschachtelung $[a_n, b_n]$ mit

- $a_n \nearrow, b_n \searrow$
- $\bullet \ b_n a_n \to 0$
- $a_n \leq b_n$

$$\Rightarrow \lim_{1.26} \lim_{n \to \infty} a_n = \lim_{n \to \infty} b_n = c$$

Es ist $f(a_n) \leq 0, f(b_n) \geq 0 \ \forall n \in \mathbb{N}$. Da f stetig, gilt:

$$\underbrace{\lim_{n \to \infty} f(a_n)}_{\leq 0} = f(c)$$

$$\underbrace{\lim_{n \to \infty} f(b_n)}_{\geq 0} = f(c)$$

$$\Rightarrow f(c) = 0 \quad \Box$$

Dieses Verfahren verwendet man auch zur Nullstellenberechnung.

5.24 Satz: Zwischenwertsatz allgemein

 $f: [a,b] \to \mathbb{R}$ stetig, y sei eine Zahl zwischen f(a) und f(b).

Dann gibt es $\overline{x} \in [a, b]$ mit $f(\overline{x}) = y$.

Beweis:

Ohne Beschränkung der Allgemeinheit (o.B.d.A)

$$f(a) \ge y \ge f(b)$$

Setze $g:[a,b]\to\mathbb{R}, x\to f(x)-y\Rightarrow$

- $g(a) = f(a) y \ge 0$
- $g(b) = f(b) y \ge 0$
- q stetig

$$\Rightarrow \exists \ \overline{x} \in [a, b] : y(\overline{x}) = 0 \Rightarrow f(\overline{x}) = g \quad \Box$$

5.25 Satz

Sei D ein Intevall, $f:D\to\mathbb{R}$ stetig. Dann gilt:

- 1. f(D) Intervall oder enthält genau ein Element
- 2. f injektiv $\Leftrightarrow f$ streng monoton

Beweis:

1. Falls f(D) nur ein Element enthält: fertig \checkmark

Enthalte f(D) mindestens 2 Elemente $y_1 < y_2$.

$$\Rightarrow \exists x_1, x_2 \in D: \quad f(x_1) = y_1$$
$$f(x_2) = y_2$$
$$\Rightarrow x_1 \neq x_2$$

Zeige: Jedes $y \in [y_1, y_2]$ ist in f(D):

Falls $x_1 < x_2$, gibt es wegen 5.24 ein $x \in \underbrace{[x_1, x_2]}_{\subseteq D}$ mit f(x) = y.

Analog für $x_2 < x_1$.

$$\Rightarrow y \in f(D) \Rightarrow f(D)$$
 Intervall.

2. (⇐): Hierzu braucht man die Stetigkeit nicht:

fstreng monoton wachsend (fallend). Sei x=y. O.B.d.A: x < y

$$\Rightarrow f(x) < f(y) \Rightarrow f(x) \neq f(y)$$

 (\Rightarrow) : Hierzu braucht man die Stetigkeit:

Kontraposition: Sei f nicht streng monoton.

$$\Rightarrow \exists x < y < z \in D : f(x) < f(y) \text{ und } f(y) \ge f(z)$$
 (oder $f(x) \ge f(y)$ und $f(y) \le f(z)$).

 \Rightarrow 5.24

- f nimmt in [x, y] jeden Wert zwischen f(x) und f(y) an.
- f nimmt in [y, z] jeden Wert zwischen f(y) und f(z) an.
- \Rightarrow Mindestens ein Wert wird doppelt getroffen. \square

5.26 Satz

Sei $D \subseteq \mathbb{R}$ Intervall und $f: D \to f(D)$ bijektiv und stetig.

Dann gilt für die Umkehrfunktion f^{-1}

- 1. f^{-1} ist im selben Sinne streng monoton wie f
- 2. f^{-1} ist stetig

Beweis:

1. f stetig und injektiv $\Rightarrow f$ streng monoton. Zeige Aussage für f streng monoton wachsend:

Für $y_1 < y_2$; $y_1, y_2 \in f(D)$ gibt es $x_1 \neq x_2$ mit

$$f(x_1) = y_1, f(x_2) = y_2.$$

Es gilt:
$$\underbrace{y_1}_{=f(x_1)} < \underbrace{y_2}_{=f(x_2)} \underset{\text{wachsend}}{\Leftrightarrow} x_1 < x_2$$

$$\Leftrightarrow f^{-1}(y_1) < f^{-1}(y_2)$$

 $\Rightarrow f^{-1}$ streng monoton wach send

2. f stetig und injektiv $\underset{5.25}{\Rightarrow} f(D)$ Intervall, f streng monoton.

Annahme: f streng monoton waschend.

Sei $y_0 \in f(D)$. z.Z: f^{-1} stetig in y_0 . Setze $x_0 := f^{-1}(y_0)$.

1. Fall: x_0 kein Randpunkt von D.

Mit ϵ - δ -Kriterium: Sei $\epsilon > 0$, so dass $(x_0 - \epsilon, x_0 + \epsilon) \subseteq D$.

f streng monoton wachsend

$$\Rightarrow f(x_0 - \epsilon) < y_0 < f(x_0 + \epsilon)$$

$$\Rightarrow (f(x_0 - \epsilon), f(x_0 + \epsilon)) \subseteq f(D)$$

da f(D) Intevall.

Sei
$$\delta := \min\{|y_0 - f(x_0 + \delta)|, |y_0 - f(x_0 - \epsilon)|\}$$

 $\Rightarrow f^{-1}((y_0 - \delta, y_0 + \delta)) \subseteq (x_0 - \epsilon, x_0 + \epsilon)$
D.h.: $|y - y_0| < \delta \Rightarrow |\underbrace{f^{-1}(y)}_{x} - \underbrace{f^{-1}(y_0)}_{x_0}| < \epsilon$

Analog für streng monoton fallend.

2. Fall: x_0 linker Randpunkt von D: Analog zu Fall 1 mit $[x_0, x_0 + \epsilon] \subseteq D$

3. Fall: x_0 rechter Randpunkt von D: Analog zu Fall 2. \square

5.27 Bemerkung

Wegen 5.26 und 5.21 sind Wurzelfunktionen, arcsin, arccos, arccotan und Logarithmen stetig.

5.28 Satz: $\exp(1) = e$

Beweis: Es ist $\lim_{x\to 0} \frac{\exp(x)-1}{x} = 1$

(Beweis der Gleichung zeigen wir nicht)

Substitution:

$$y = \exp(x) - 1 \Leftrightarrow$$

$$x = \ln(y+1)$$

$$\underset{\text{stetig ist}}{\Rightarrow} \lim_{y \to 0} \ln((y+1)^{\frac{1}{y}}) = \lim_{y \to 0} \frac{1}{y} \ln(y+1)$$

$$[y \to 0 \Leftrightarrow x \to y]$$

$$= \lim \frac{x}{\exp(x) - 1} = 1$$

Wende auf Gleichung exp an

Da exp stetig: $\lim_{y\to 0} (y+1)^{\frac{1}{y}} = \exp(1)$

Insbesondere für
$$Y_n = \frac{1}{n} : \underbrace{\lim_{n \to \infty} \left(1 + \frac{1}{n}\right)^n}_{=e \ (1.28)} = \exp(1) \quad \Box$$