PARISHRAM 2025

Mathematics

DPP: 3

Inverse Trigonometric Functions

- Q1 A value of $\tan^{-1} \left\{ \sin \left(\cos^{-1} \sqrt{\frac{2}{3}} \right) \right\}$, is
- (C) $\pi/3$
- (D) $\pi/6$
- **Q2** The value of $\sin\left(2 \ \tan^{-1} \frac{12}{5}\right)$ is equal to (A) $\frac{110}{169}$ (B) $\frac{120}{169}$ (C) $\frac{121}{169}$ (D) $\frac{12}{5}$

- **Q3** The value of $\cos{\left(2\sin^{-1}\frac{3}{5}\right)}$ is equal to (A) $\frac{7}{25}$ (B) $\frac{9}{25}$ (C) $\frac{16}{25}$ (D) 1

- **Q4** The value of $\cos(\sin^{-1}\frac{1}{4} + \sec^{-1}\frac{4}{3})$, is

 - (A) $\frac{3\sqrt{15}-\sqrt{7}}{16}$ (B) $\frac{3\sqrt{15}+\sqrt{7}}{16}$ (C) $\frac{\sqrt{7}-3\sqrt{15}}{16}$ (D) $\frac{3\sqrt{15}-\sqrt{7}}{4}$
- Q5 The value of $an^2ig(\sec^{-1}2ig)+\cot^2ig(\csc^{-1}3ig)$, is
 - (A)5

- (C) 11
- Q6 Given below are two statements: one is labelled as Assertion A and other is

labelled as Reason R.

Assertion A: The value of $cot \left(\cos^{-1} \frac{7}{25}\right)$ is $\frac{7}{24}$

$$\cot^{-1}ig(\cot hetaig) \ = \ heta ext{ for all } heta \ \in \ ig(0,\ \piig)$$

In the light of the above statements, choose the most appropriate answer from the options given

(A) Both A and R are correct and R is the correct explanation of A

- (B) Both A and R are correct but R is NOT the correct explanation of A
- (C) A is correct but R is not correct
- (D) A is not correct but R is correct
- **Q7** The values of $\sin(\cos^{-1}\frac{3}{5}+\csc^{-1}\frac{13}{5})$, is
 - $(\mathsf{A})\,48/65$
- (C) 33/65
- (D) 63/65
- **Q8** The value of $\tan\left(\cos^{-1}\frac{3}{5} + \tan^{-1}\frac{1}{4}\right)$ is (A) $\frac{19}{8}$ (B) $\frac{8}{19}$ (C) $\frac{19}{12}$ (D) $\frac{3}{4}$

- **Q9** The value of $\cos^{-1}(\sin~x) + \sin^{-1}~(\cos~x)$ is:

- $\begin{array}{ll} \text{(A)}\ \frac{\pi}{2} & \text{(B)}\ \pi-\mathrm{x} \\ \text{(C)}\ \pi-2\mathrm{x} & \text{(D)}\ \frac{\pi}{2}-x \end{array}$
- of $\sec^2\left(an^{-1}2
 ight) + \operatorname{cosec}^2\left(\cot^{-1}3
 ight) =$
 - (A)5

- (C) 15
- **Q11** Prove that: $\cos^{-1} \frac{4}{5} + \cos^{-1} \frac{12}{13} = \cos^{-1} \frac{33}{65}$
- Q12 Write in the simplest form: $tan^{-1} \sqrt{\frac{a-x}{a+x}}$.
- **Q13** Prove that: $\tan^{-1} \left(\frac{\cos x}{1+\sin x} \right) = \frac{\pi}{4} \frac{x}{2},$ $x \in (-\frac{\pi}{2}, \frac{\pi}{2}).$
- **Q14** Prove that following: $\left[an^{-1}\left\{\sin\left(cot^{-1}x\right)
 ight\}
 ight]$ $=\sqrt{rac{1+x^2}{2+x^2}}$
- Write $y= an^{-1}\left[rac{\sqrt{1+x^2}-1}{x}
 ight],\; x
 eq 0$ in the simplest form.

Answer Key

Q1	(D)

(B) Q2

Q3 (A)

Q4 (A)

(C) Q5

(B) Q6

Q7 (D)

(A) Q8

(C) Q9

Q10 (C)

Q11 Check the solution

Q12 $\frac{1}{2}\cos^{-1}\left(\frac{x}{a}\right)$

Q13 Check the solution

Q14 Check the solution

Q15 $\frac{1}{2} an^{-1} x$

Android App | iOS App | PW Website