回帰分析

モデルの評価

村田 昇

講義の内容

- 第1回: 回帰モデルの考え方と推定
- ・ 第 2 回: モデルの評価
- ・ 第3回: モデルによる予測と発展的なモデル

回帰分析の復習

線形回帰モデル

- 目的変数 を 説明変数 で説明する関係式を構成:
 - 説明変数: $x_1, ..., x_p$ (p 次元)
 - 目的変数: y (1 次元)
- 回帰係数 $\beta_0, \beta_1, ..., \beta_p$ を用いた一次式:

$$y = \beta_0 + \beta_1 x_1 + \dots + \beta_p x_p$$

・ 誤差項 を含む確率モデルで観測データを表現:

$$y_i = \beta_0 + \beta_1 x_{i1} + \dots + \beta_p x_{ip} + \epsilon_i \quad (i = 1, \dots, n)$$

簡潔な表現のための行列

• デザイン行列 (説明変数):

$$X = \begin{pmatrix} 1 & x_{11} & x_{12} & \cdots & x_{1p} \\ 1 & x_{21} & x_{22} & \cdots & x_{2p} \\ \vdots & \vdots & \vdots & & \vdots \\ 1 & x_{n1} & x_{n2} & \cdots & x_{np} \end{pmatrix}$$

簡潔な表現のためのベクトル

• ベクトル (目的変数・誤差・回帰係数):

$$\mathbf{y} = \begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{pmatrix}, \quad \boldsymbol{\epsilon} = \begin{pmatrix} \epsilon_1 \\ \epsilon_2 \\ \vdots \\ \epsilon_n \end{pmatrix}, \quad \boldsymbol{\beta} = \begin{pmatrix} \beta_0 \\ \beta_1 \\ \vdots \\ \beta_n \end{pmatrix}$$

問題の記述

確率モデル:

$$y = X\beta + \epsilon$$

• 回帰式の推定: 残差平方和 の最小化

$$S(\boldsymbol{\beta}) = (\boldsymbol{y} - X\boldsymbol{\beta})^{\mathsf{T}} (\boldsymbol{y} - X\boldsymbol{\beta})$$

解の表現

• 解の条件: 正規方程式

$$X^{\mathsf{T}}X\boldsymbol{\beta} = X^{\mathsf{T}}\boldsymbol{y}$$

• 解の一意性: **Gram 行列** *X*^T*X* が正則

$$\hat{\boldsymbol{\beta}} = (X^{\mathsf{T}}X)^{-1}X^{\mathsf{T}}\mathbf{v}$$

最小二乗推定量の性質

- **あてはめ値** $\hat{\mathbf{y}} = X\hat{\boldsymbol{\beta}}$ は X の列ベクトルの線形結合
- 残差 $\hat{\epsilon} = y \hat{y}$ はあてはめ値 \hat{y} と直交

$$\hat{\boldsymbol{\epsilon}}^{\mathsf{T}}\hat{\boldsymbol{y}} = 0$$

• 回帰式は説明変数と目的変数の 標本平均 を通過

$$\bar{y} = (1, \bar{x}^{\mathsf{T}})\hat{\boldsymbol{\beta}}, \quad \bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i, \quad \bar{y} = \frac{1}{n} \sum_{i=1}^{n} y_i,$$

寄与率

• 決定係数 (R-squared):

$$R^2 = 1 - \frac{\sum_{i=1}^{n} \hat{\epsilon}_i^2}{\sum_{i=1}^{n} (y_i - \bar{y})^2}$$

• 自由度調整済み決定係数 (adjusted R-squared):

$$\bar{R}^2 = 1 - \frac{\frac{1}{n-p-1} \sum_{i=1}^{n} \hat{\epsilon}_i^2}{\frac{1}{n-1} \sum_{i=1}^{n} (y_i - \bar{y})^2}$$

- 不偏分散で補正

実データによる例

• 気象庁より取得した東京の気候データ

	month	day	day_of_week	temp	rain	solar	snow	wdir	wind	press	humid	cloud
214	8	1	Sat	26.1	0.5	19.79	0	NE	2.6	1009.3	77	7.8
215	8	2	Sun	26.3	0.0	19.53	0	SSE	2.4	1011.0	75	5.5
216	8	3	Mon	27.2	0.0	24.73	0	SSE	2.4	1011.0	74	3.8
217	8	4	Tue	28.3	0.0	24.49	0	SSE	2.9	1012.2	77	4.3
218	8	5	Wed	29.1	0.0	24.93	0	S	2.9	1013.4	76	3.3
219	8	6	Thu	28.5	0.0	24.02	0	SSE	3.9	1010.5	79	7.8
220	8	7	Fri	29.5	0.0	22.58	0	S	3.4	1005.0	71	7.5
221	8	8	Sat	28.1	0.0	15.49	0	SE	2.7	1006.1	79	8.3
222	8	9	Sun	28.7	0.0	19.96	0	SSE	2.4	1006.9	77	9.5
223	8	10	Mon	30.5	0.0	20.26	0	SE	2.4	1010.3	73	10.0
224	8	11	Tue	31.7	0.0	25.50	0	S	4.0	1009.7	67	2.8
225	8	12	Wed	30.0	0.5	18.24	0	SSE	2.5	1009.0	79	6.8
226	8	13	Thu	29.4	21.5	19.01	0	N	2.2	1006.4	82	5.0
227	8	14	Fri	29.4	0.0	19.85	0	SE	2.8	1005.5	78	2.0

- 気温を説明する4つの線形回帰モデルを検討する
 - モデル 1: 気温 = F(気圧)
 - モデル 2: 気温 = F(気圧, 日射)
 - モデル 3: 気温 = F(気圧, 日射, 湿度)
 - モデル 4: 気温 = F(気圧, 日射, 雲量)
- 関連するデータの散布図

図 1: 散布図

• 観測値とあてはめ値の比較

図 2: モデルの比較

- 決定係数・自由度調整済み決定係数の比較
 - モデル 1: 気温 = F(気圧)
 - [1] "R2: 0.0169; adj. R2: -0.017"
 - モデル 2: 気温 = F(気圧, 日射)
 - [1] "R2: 0.32; adj. R2: 0.271"
 - モデル 3: 気温 = F(気圧, 日射, 湿度)
 - [1] "R2: 0.422; adj. R2: 0.358"
 - モデル 4: 気温 = F(気圧, 日射, 雲量)
 - [1] "R2: 0.32; adj. R2: 0.245"

残差の性質

あてはめ値

• さまざまな表現:

$$\hat{\mathbf{y}} = X\hat{\boldsymbol{\beta}}$$

$$(\hat{\boldsymbol{\beta}} = (X^{\mathsf{T}}X)^{-1}X^{\mathsf{T}}\mathbf{y} \stackrel{\star}{\sim} \uparrow \uparrow \stackrel{\star}{\wedge})$$

$$= X(X^{\mathsf{T}}X)^{-1}X^{\mathsf{T}}\mathbf{y}$$

$$(\mathbf{y} = X\boldsymbol{\beta} + \boldsymbol{\epsilon} \stackrel{\star}{\sim} \uparrow \uparrow \stackrel{\star}{\wedge})$$

$$= X(X^{\mathsf{T}}X)^{-1}X^{\mathsf{T}}X\boldsymbol{\beta} + X(X^{\mathsf{T}}X)^{-1}X^{\mathsf{T}}\boldsymbol{\epsilon}$$

$$= X\boldsymbol{\beta} + X(X^{\mathsf{T}}X)^{-1}X^{\mathsf{T}}\boldsymbol{\epsilon} \qquad (B)$$

- (A) あてはめ値は **観測値の重み付けの和** で表される
- (B) あてはめ値と観測値は 誤差項 の寄与のみ異なる

あてはめ値と誤差

• 残差と誤差の関係:

$$\hat{\epsilon} = y - \hat{y}$$

$$= \epsilon - X(X^{\mathsf{T}}X)^{-1}X^{\mathsf{T}}\epsilon$$

$$= (I - X(X^{\mathsf{T}}X)^{-1}X^{\mathsf{T}})\epsilon \qquad (C)$$

- (C) 残差は 誤差の重み付けの和 で表される

ハット行列

• 定義:

$$H = X(X^{\mathsf{T}}X)^{-1}X^{\mathsf{T}}$$

ハット行列 H による表現:

$$\hat{y} = Hy$$

$$\hat{\epsilon} = (I - H)\epsilon$$

- あてはめ値や残差は H を用いて簡潔に表現される

ハット行列の性質

- ・ 観測データ (デザイン行列) のみで計算される
- 観測データと説明変数の関係を表す
- 対角成分 (テコ比; leverage) は観測データが自身の予測に及ぼす影響の度合を表す

$$\hat{y}_i = (H)_{ij}y_i + (それ以外のデータの寄与)$$

- (A)_{ij} は行列 A の (i, j) 成分
- テコ比が小さい: 他のデータでも予測が可能
- テコ比が大きい: 他のデータでは予測が困難

演習

問題

- ハット行列 H について以下を示しなさい
 - *H* は対称行列である
 - **-** *H* は累等である

$$H^2 = H$$
, $(I - H)^2 = I - H$

- 以下の等式が成り立つ

$$HX = X$$
, $X^{\mathsf{T}}H = X^{\mathsf{T}}$

ヒント

• いずれも H の定義にもとづいて計算すればよい

$$H^{\mathsf{T}} = (X(X^{\mathsf{T}}X)^{-1}X^{\mathsf{T}})^{\mathsf{T}}$$

$$H^{2} = (X(X^{\mathsf{T}}X)^{-1}X^{\mathsf{T}})(X(X^{\mathsf{T}}X)^{-1}X^{\mathsf{T}})$$

$$(I - H)^{2} = I - 2H + H^{2}$$

$$HX = (X(X^{\mathsf{T}}X)^{-1}X^{\mathsf{T}})X$$

$$X^{\mathsf{T}}H = (HX)^{\mathsf{T}}$$

推定量の統計的性質

最小二乗推定量の性質

• 推定量と誤差の関係:

$$\hat{\boldsymbol{\beta}} = (X^{\mathsf{T}}X)^{-1}X^{\mathsf{T}}\boldsymbol{y}$$

$$= (X^{\mathsf{T}}X)^{-1}X^{\mathsf{T}}(X\boldsymbol{\beta} + \boldsymbol{\epsilon})$$

$$= (X^{\mathsf{T}}X)^{-1}X^{\mathsf{T}}X\boldsymbol{\beta} + (X^{\mathsf{T}}X)^{-1}X^{\mathsf{T}}\boldsymbol{\epsilon}$$

$$= \boldsymbol{\beta} + (X^{\mathsf{T}}X)^{-1}X^{\mathsf{T}}\boldsymbol{\epsilon}$$

• 正規分布の重要な性質:

正規分布に従う独立な確率変数の和は正規分布に従う

推定量の分布

- 誤差の仮定: 独立、平均 0 分散 σ^2 の正規分布
- 推定量は以下の多変量正規分布に従う

$$\mathbb{E}[\hat{\boldsymbol{\beta}}] = \boldsymbol{\beta}$$

$$\operatorname{Cov}(\hat{\boldsymbol{\beta}}) = \sigma^{2} (X^{\mathsf{T}} X)^{-1}$$

$$\hat{\boldsymbol{\beta}} \sim \mathcal{N}(\boldsymbol{\beta}, \sigma^{2} (X^{\mathsf{T}} X)^{-1})$$

演習

問題

- 誤差が独立で、平均 0 分散 σ^2 の正規分布に従うとき、最小二乗推定量 $\hat{\pmb{\beta}}$ について以下を示しなさい
 - 平均は **β**(真の母数) となる
 - 共分散行列は $\sigma^2(X^TX)^{-1}$ となる

解答例

• 定義にもとづいて計算する

$$\mathbb{E}[\hat{\boldsymbol{\beta}}] = \mathbb{E}[\boldsymbol{\beta} + (X^{\mathsf{T}}X)^{-1}X^{\mathsf{T}}\boldsymbol{\epsilon}]$$
$$= \boldsymbol{\beta} + (X^{\mathsf{T}}X)^{-1}X^{\mathsf{T}}\mathbb{E}[\boldsymbol{\epsilon}]$$
$$= \boldsymbol{\beta}$$

- 定義にもとづいて計算する

$$\begin{aligned} \operatorname{Cov}(\hat{\boldsymbol{\beta}}) &= \mathbb{E}[(\hat{\boldsymbol{\beta}} - \boldsymbol{\beta})(\hat{\boldsymbol{\beta}} - \boldsymbol{\beta})^{\mathsf{T}}] \\ &= \mathbb{E}[(X^{\mathsf{T}}X)^{-1}X^{\mathsf{T}}\boldsymbol{\epsilon}\boldsymbol{\epsilon}^{\mathsf{T}}X(X^{\mathsf{T}}X)^{-1}] \\ &= (X^{\mathsf{T}}X)^{-1}X^{\mathsf{T}}\mathbb{E}[\boldsymbol{\epsilon}\boldsymbol{\epsilon}^{\mathsf{T}}]X(X^{\mathsf{T}}X)^{-1} \\ &= (X^{\mathsf{T}}X)^{-1}X^{\mathsf{T}}(\sigma^{2}I)X(X^{\mathsf{T}}X)^{-1} \\ &= \sigma^{2}(X^{\mathsf{T}}X)^{-1} \end{aligned}$$

誤差の評価

各係数の推定量の分布

- 推定された回帰係数の精度を評価:
 - 誤差の分布は平均 0 分散 σ² の正規分布
 - **β**の分布:

$$\hat{\boldsymbol{\beta}} \sim \mathcal{N}(\boldsymbol{\beta}, \sigma^2 (X^\mathsf{T} X)^{-1})$$

- * p+1 変量正規分布
- $-\hat{\beta}_i$ の分布:

$$\begin{split} \hat{\beta}_j &\sim \mathcal{N}(\beta_j, \sigma^2((X^\mathsf{T} X)^{-1})_{jj}) = \mathcal{N}(\beta_j, \sigma^2 \zeta_j^2) \\ * & (A)_{jj} は行列 A の (j, j) (対角) 成分 \end{split}$$

標準誤差

• 標準誤差 (standard error): $\hat{\beta}_i$ の標準偏差の推定量

$$\hat{\sigma}\zeta_j = \sqrt{\frac{1}{n - p - 1}\sum_{i = 1}^n \hat{\epsilon}_i^2} \cdot \sqrt{((X^\intercal X)^{-1})_{jj}}$$

- 未知母数 σ^2 は不偏分散 $\hat{\sigma}^2$ で推定
- $-\hat{\beta}_i$ の精度の評価指標

演習

問題

- 以下を示しなさい
 - 不偏分散 $\hat{\sigma}^2$ が母数 σ^2 の不偏な推定量となる 以下が成り立つことを示せばよい

$$\mathbb{E}\left[\sum_{i=1}^{n}\hat{\epsilon}_{i}^{2}\right]=(n-p-1)\sigma^{2}$$

解答例

• ハット行列 H を用いた表現を利用する

$$\hat{\boldsymbol{\epsilon}} = (I_n - H)\boldsymbol{\epsilon}$$

$$\mathbb{E}\left[\sum_{i=1}^n \hat{\boldsymbol{\epsilon}}_i^2\right] = \mathbb{E}[\hat{\boldsymbol{\epsilon}}^\mathsf{T}\hat{\boldsymbol{\epsilon}}]$$

$$= \mathbb{E}[\operatorname{tr}(\hat{\boldsymbol{\epsilon}}\hat{\boldsymbol{\epsilon}}^\mathsf{T})]$$

$$= \mathbb{E}[\operatorname{tr}(I_n - H)\boldsymbol{\epsilon}\boldsymbol{\epsilon}^\mathsf{T}(I_n - H)]$$

$$= \operatorname{tr}(I_n - H)\mathbb{E}[\boldsymbol{\epsilon}\boldsymbol{\epsilon}^\mathsf{T}](I_n - H)$$

$$= \operatorname{tr}(I_n - H)(\sigma^2 I_n)(I_n - H)$$

$$= \sigma^2 \operatorname{tr}(I_n - H)$$

- I_n は $n \times n$ 単位行列
- さらに以下が成立する

$$trH = trX(X^{\mathsf{T}}X)^{-1}X^{\mathsf{T}}$$
$$= tr(X^{\mathsf{T}}X)^{-1}X^{\mathsf{T}}X$$
$$= trI_{p+1}$$
$$= p+1$$

- 行列のサイズに注意

係数の評価

t-統計量

• 回帰係数の分布 に関する定理:

t-統計量

$$t = \frac{\hat{\beta}_j - \beta_j}{\hat{\sigma}\zeta_i}$$

は自由度 n-p-1 の t 分布に従う

- 証明には以下の性質を用いる
 - $\hat{\sigma}^2$ と $\hat{\beta}$ は独立となる
 - $-(\hat{\beta}_i \beta_i)/(\sigma \zeta_i)$ は標準正規分布に従う
 - $(n-p-1)\hat{\sigma}^2/\sigma^2 = S(\hat{\beta})/\sigma^2$ は自由度 n-p-1 の χ^2 -分布に従う

t-統計量による検定

- 回帰係数 β_i が回帰式に寄与するか否かを検定:
 - 帰無仮説 H_0 : $β_i = 0$ (t-統計量が計算できる)
 - 対立仮説 H_1 : $β_i ≠ 0$
- p-値: 確率変数の絶対値が |t| を超える確率

$$(p$$
-値) = $2\int_{|t|}^{\infty} f(x)dx$ (両側検定)

- f(x) は自由度 n-p-1 の t 分布の確率密度関数
- 帰無仮説 H_0 が正しければ p-値は小さくならない

モデルの評価

F-統計量

・ばらつきの比に関する定理:

$$\beta_1 = \cdots = \beta_p = 0$$
 ならば F -統計量

$$F = \frac{\frac{1}{p}S_r}{\frac{1}{n-p-1}S} = \frac{n-p-1}{p} \frac{R^2}{1-R^2}$$

は自由度 p, n-p-1 の F-分布に従う

- 証明には以下の性質を用いる
 - S_r と S は独立となる
 - S_r/σ^2 は自由度 p の χ^2 -分布に従う
 - S/σ^2 は自由度 n-p-1 の χ^2 -分布に従う

F-統計量を用いた検定

- ・ 説明変数のうち1つでも役に立つか否かを検定:
 - 帰無仮説 H_0 : $\beta_1 = \cdots = \beta_p = 0$ (S_r が χ^2 分布になる)
 - 対立仮説 H_1 : ∃j $β_i ≠ 0$
- p-値: 確率変数の値が F を超える確率

$$(p-値) = \int_{F}^{\infty} f(x)dx$$
 (片側検定)

- -f(x) は自由度 p,n-p-1 の F-分布の確率密度関数
- 帰無仮説 H_0 が正しければ p-値は小さくならない

解析の事例

データについて

- 気象庁より取得した東京の気候データ
 - 気象庁 https://www.data.jma.go.jp/gmd/risk/obsdl/index.php
 - データhttps://noboru-murata.github.io/multivariate-analysis/data/tokyo_weather.csv

東京の8月の気候の分析

• 気候 (気温, 降雨, 日射, 降雪, 風速, 気圧, 湿度, 雲量) に関するデータ (の一部)

	month	day	day_of_week	temp	rain	solar	snow	wdir	wind	press	humid	cloud
214	8	1	Sat	26.1	0.5	19.79	0	NE	2.6	1009.3	77	7.8
215	8	2	Sun	26.3	0.0	19.53	0	SSE	2.4	1011.0	75	5.5
216	8	3	Mon	27.2	0.0	24.73	0	SSE	2.4	1011.0	74	3.8
217	8	4	Tue	28.3	0.0	24.49	0	SSE	2.9	1012.2	77	4.3
218	8	5	Wed	29.1	0.0	24.93	0	S	2.9	1013.4	76	3.3
219	8	6	Thu	28.5	0.0	24.02	0	SSE	3.9	1010.5	79	7.8

220	8	7	Fri	29.5	0.0	22.58	0	S	3.4	1005.0	71	7.5
221	8	8	Sat	28.1	0.0	15.49	0	SE	2.7	1006.1	79	8.3
222	8	9	Sun	28.7	0.0	19.96	0	SSE	2.4	1006.9	77	9.5
223	8	10	Mon	30.5	0.0	20.26	0	SE	2.4	1010.3	73	10.0
224	8	11	Tue	31.7	0.0	25.50	0	S	4.0	1009.7	67	2.8
225	8	12	Wed	30.0	0.5	18.24	0	SSE	2.5	1009.0	79	6.8
226	8	13	Thu	29.4	21.5	19.01	0	N	2.2	1006.4	82	5.0
227	8	14	Fri	29.4	0.0	19.85	0	SE	2.8	1005.5	78	2.0

- 作成した線形回帰モデルを検討する
 - モデル 1: 気温 = F(気圧)
 - モデル 2: 気温 = F(気圧, 日射)
 - モデル 3: 気温 = F(気圧, 日射, 湿度)
 - モデル 4: 気温 = F(気圧, 日射, 雲量)
- 観測値とあてはめ値の比較

図 3: モデルの比較

• モデル 1: 係数とモデルの評価

Call:

lm(formula = TW.model1, data = TW.subset, y = TRUE)

Residuals:

Min 1Q Median 3Q Max -3.6478 -0.8208 0.1702 1.1452 2.7664

Coefficients:

Estimate Std. Error t value Pr(>|t|)
(Intercept) 119.56133 128.23971 0.932 0.359

-0.08976 0.12719 -0.706 0.486 press Residual standard error: 1.539 on 29 degrees of freedom Multiple R-squared: 0.01688, Adjusted R-squared: -0.01702 F-statistic: 0.498 on 1 and 29 DF, p-value: 0.486 • モデル 2: 係数とモデルの評価 Call: lm(formula = TW.model2, data = TW.subset, y = TRUE) Residuals: 1Q Median Min 3Q Max -2.50259 -0.73147 0.06766 0.83716 2.18776 Coefficients: Estimate Std. Error t value Pr(>|t|) (Intercept) 273.68079 117.00384 2.339 0.02670 * press -0.24793 0.11661 -2.126 0.04245 * solar 0.26057 0.07379 3.531 0.00145 ** ___ Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' ' 1 Residual standard error: 1.303 on 28 degrees of freedom Multiple R-squared: 0.3198, Adjusted R-squared: 0.2712 F-statistic: 6.582 on 2 and 28 DF, p-value: 0.00454 • モデル 3: 係数とモデルの評価 Call: lm(formula = TW.model3, data = TW.subset, y = TRUE) Residuals: Min 1Q Median Max 3Q -2.44058 -0.50661 0.01425 0.81490 1.94439 Coefficients: Estimate Std. Error t value Pr(>|t|) (Intercept) 262.65623 109.96118 2.389 0.0242 * 0.11012 -2.017 press -0.222100.0537 . 1.614 solar 0.14203 0.08801 0.1182 0.0379 * humid 0.07589 -2.184 -0.16572 Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 Residual standard error: 1.223 on 27 degrees of freedom Multiple R-squared: 0.4219, Adjusted R-squared: 0.3577 F-statistic: 6.568 on 3 and 27 DF, p-value: 0.001772 • モデル 4: 係数とモデルの評価 lm(formula = TW.model4, data = TW.subset, y = TRUE) Residuals: 1Q Median 3Q Max -2.52396 -0.72721 0.07162 0.83623 2.17339

Coefficients:

Estimate Std. Error t value Pr(>|t|)
(Intercept) 274.00410 119.16813 2.299 0.02945 *
press -0.24843 0.11883 -2.091 0.04610 *
solar 0.26598 0.09155 2.905 0.00723 **
cloud 0.01295 0.12509 0.104 0.91829
--Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 1.327 on 27 degrees of freedom Multiple R-squared: 0.3201,Adjusted R-squared: 0.2445 F-statistic: 4.236 on 3 and 27 DF, p-value: 0.0141

- 決定係数と F-統計量
 - モデル 1: 気温 = F(気圧)
 - [1] "R2: 0.0169; adj. R2: -0.017; F-statistic: 0.498"
 - モデル 2: 気温 = F(気圧, 日射)
 - [1] "R2: 0.32; adj. R2: 0.271; F-statistic: 6.58"
 - モデル 3: 気温 = F(気圧, 日射, 湿度)
 - [1] "R2: 0.422; adj. R2: 0.358; F-statistic: 6.57"
 - モデル 4: 気温 = F(気圧, 日射, 雲量)
 - [1] "R2: 0.32; adj. R2: 0.245; F-statistic: 4.24"

次週の予定

- 第1回: 回帰モデルの考え方と推定
- 第2回: モデルの評価
- ・ 第 3 回: モデルによる予測と発展的なモデル