Datenbanksysteme

Kap 7: Entwurfstheorie - Normalisierung

Übersicht

- Relationale Entwurfstheorie
 - Gute Schemata, schlechte Schemata
 - Funktionale Abhängigkeiten
 - Normalisierung durch Zerlegung
 - Normalformen

- Lernziel
 - Problematik der Redundanzen verstehen
 - Normalformen (er)kennen
 - Zerlegungsalgorithmen kennen und anwenden können

Was ist Normalisierung?

- Ergebnis des Datenbankentwurf ist ein Datenbankschema
 - Besteht aus einer Menge von Relationenschemata
- Bewertung der Qualität eines Relationenschemas
 - Vermeidung von Redundanz
 - Einhaltung von Konsistenzbedingungen
- Ein initiales Relationenschema wird schrittweise umgeformt, um ein "gutes" Schema zu erhalten
 - Es gibt unterschiedliche Normalformen, mit denen bestimmte Arten von Redundanzen verhindert werden können
 - Ob sich ein relationales Schema in einer bestimmten Normalform befindet, kann mithilfe formaler Tests überprüft werden
 - Die Transformation eines relationalen Schemas in unterschiedliche Normalformen nennt man Normalisierung

1. Normalform

- Ein Schema ist in 1. Normalform (1NF), wenn
 - Alle Wertebereiche nur atomare Werte enthalten
 - Ein Attributwert nur einen Einzelwert aus seinem Wertebereich annehmen kann
- Unzulässig in 1NF:

	Hochschule								
<u>HNr</u>	HNr Name Adresse Studienfach								
H1	HS Niederrhein	Reinarzstraße 4	{Informatik,						
		47805 Krefeld BWL, ME							

- Adresse ist komplex strukturiert
 - Besteht aus drei Komponenten
- Studienfach ist Menge von Werten
 - Kann selbst wieder als Relation betrachtet werden

1NF im relationalen Modell

- Die Bedingungen für 1NF sind definitionsgemäß Teil des relationalen Datenmodells
 - Daher ist ein relationales Schema grundsätzlich immer in 1NF
- Es gibt auch Datenmodelle, die diese Eigenschaft nicht unbedingt voraussetzen
 - sog. NF²-Datenmodelle Non-First-Normal-Form-Datenmodelle
 - Erlauben sog. Nested Relations (Relationen als Attributwerte)
 - Objektrelationale DBMS (auch PostgreSQL)
 - Erlauben benutzerdefinierte, zusammengesetzte Datentypen und Arrays
 - Erfordert Möglichkeit, eigene Datentypen und Operationen darauf definieren zu können

Normalisierung in 1NF

	Hochschule								
<u>HNr</u>	HNr Name Adresse Studienfach								
H1	HS Niederrhein	Reinarzstraße 4	19	{Informatik,					
		47805	BWL, MB}						

- Wie kann dieses Schema in 1NF gebracht werden?
- Komplexes Attribut Adresse:
 - Ersetze Adresse durch die drei Felder Straße, PLZ, Ort

	Hochschule									
HNr Name Straße PLZ Ort Studienfach										
H1										

- Mehrfachwerte für Studienfach:
 - Verschiedene Lösungen denkbar

Lösung 1

	Hochschule										
HNr Name Straße PLZ Ort Studienfach											
H1	HS Niederrhein	Reinarzstraße 49	47805	Krefeld	Informatik						
H1	HS Niederrhein	Reinarzstraße 49	47805	Krefeld	BWL						
H1	HS Niederrhein	Reinarzstraße 49	47805	Krefeld	MB						

- Füge pro Studienfach ein Tupel ein
 - für eine Hochschule mit n Studienfächern erhalten wir dann n Tupel
 - Der Primärschlüssel HNr muss um das Attribut Studienfach erweitert werden (Warum?)

Lösung 2

	Hochschule											
<u>HNr</u>	Name	Straße	PLZ	Ort	SF1	SF2	SF3		SFn			
H1	HS Niederrhein	Reinarzstraße 49	47805	Krefeld	Inf.	BWL	MB		NULL			

- Führe für jedes Studienfach eine eigene Spalte ein
 - ersetze das Attribut Studienfach durch SF₁, SF₂, ... SF_n
- Nur möglich, wenn maximale Anzahl n von Studienfächern bekannt
- Bei weniger Studienfächern mit NULL auffüllen
- Schwierige Anfrageformulierung

Lösung 3

Hochschule									
<u>HNr</u>	HNr Name Straße PLZ Ort								
H1	H1 HS Niederrhein Reinarzstraße 49 47805 Krefeld								

HS_SF						
HNr Studienfach						
H1	H1 Informatik					
H1	H1 BWL					
H1	MB					

- Entferne Studienfach aus Relation Hochschule
- Bilde neue Relation HS_SF, die Studienfach und den Primärschlüssel von Hochschule (als FK) enthält
- Für jedes Studienfach ein Tupel in HS_SF

Vergleich der Lösungen

- Nachteile der Lösung 1
 - führt zu Redundanzen durch überflüssige
 Mehrfachspeicherung der Attribute Straße, PLZ, Ort:
 - Speicherplatzverschwendung
 - Gefahr von Inkonsistenzen bei Änderungen
- Nachteile der Lösung 2
 - begrenzt maximale Anzahl von Studienfächern
 - NULL-Werte bei Hochschulen mit weniger als n Studienfächern
 - Schwierige Anfrageformulierung
- Lösung 3 ist unbedingt vorzuziehen!

Redundanzen und Anomalien

- Die in Lösung 1 eingeführten Redundanzen sind besonders unangenehm, weil sie leicht zu Inkonsistenzen und Anomalien führen können
- Bei einer Änderung müssen in der Regel mehrere Tupel verändert werden, um Inkonsistenzen zu verhindern
- Alle Arten von Änderungsoperationen sind betroffen
 - Einfüge-Anomalien
 - Lösch-Anomalien
 - Update-Anomalien

Einfüge-Anomalien

	Hochschule										
<u>HNr</u>	Name	Straße	PLZ	Ort	Studienfach						
H1	HS Niederrhein	Reinarzstraße 49	47805	Krefeld	Informatik						
H1	HS Niederrhein	Reinarzstraße 49	47805	Krefeld	BWL						
H1	HS Niederrhein	Reinarzstraße 49	47805	Krefeld	МВ						
H1	?	?	?	?	Gesundheitswesen						

- Wenn für Hochschule H1 ein neues Studienfach eingefügt werden soll, müssen Name, Straße, PLZ, Ort passend belegt werden → sonst Inkonsistenz
- Lässt sich in SQL nicht über Integrity Constraints erzwingen (außer über Trigger)

Einfüge-Anomalien

- Ein weiteres Beispiel:
 - was passiert, wenn ein neuer Professor ohne Vorlesungen eingefügt werden soll?

	ProfVorI										
PersNr	Name	Rang	Raum	VorINr	Titel	sws					
2125	Sokrates	C4	226	5041	Ethik	4					
2125	Sokrates	C4	226	5049	Mäeutik	2					
2125	Sokrates	C4	226	4052	Logik	4					
2132	Popper	C3	52	5259	Der Wiener Kreis	2					
2137	Kant	C4	7	4630	Die 3 Kritiken	4					
2138	Bacon	C3	17	?	?	?					

Lösch-Anomalien

- Wenn eine Hochschule gelöscht wird, die zufälligerweise als einzige ein bestimmtes Studienfach anbietet, werden alle Informationen über dieses Studienfach mitgelöscht
- Lösung 3 leidet ebenfalls unter diesem Problem
 - Kann aber durch einen Zwischentabelle gelöst werden
 - Letztendlich entspricht die Zuordnung von Hochschulen und Studienfächern einer N:M-Beziehung

Studienfächer können dadurch auch unabhängig von Hochschulen

existieren

			Hochschule							
	HS_SF	3	<u>HNr</u>	Name	Straße	PLZ	Ort			
<u>HNr</u>	<u>SFNr</u>	1	H1	HS Nieder.	Reinarzstraße 49	47805	Krefeld			
H1	SF N	1								
H1	SF2				Studienfach		1			
H1	SF3			→ SFNr	Name					
				SF1	Informatik		1			
				SF2	BWL]			
				_			7			

SF3

MB

Lösch-Anomalien

- Ein weiteres Beispiel
 - Angenommen, Kant liest als einziger die Vorlesung "Die 3 Kritiken"
 - Wenn Kant gelöscht wird, verschwindet auch die Information zu "Die 3 Kritiken" (z.B. SWS)

	ProfVorI										
PersNr	Name	Rang	Raum	VorINr	Titel	sws					
2125	Sokrates	C4	226	5041	Ethik	4					
2125	Sokrates	C4	226	5049	Mäeutik	2					
2125	Sokrates	C4	226	4052	Logik	4					
2132	Popper	C3	52	5259	Der Wiener Kreis	2					
2137	Kant	C4	7	4630	Die 3 Kritiken	4					

Update-Anomalien

- Wenn sich die Adresse von Hochschule H1 ändert, muss sie in allen drei Tupeln geändert werden
- Eine ungleiche bzw. nur teilweise Änderung lässt sich auf SQL-Ebene nicht abfangen

	Hochschule										
<u>HNr</u>	Studienfach										
H1	HS Niederrhein	Reinarzstraße 49	47829	Krefeld	Informatik						
H1	HS Niederrhein	Reinarzstraße 19	47805	Krefeld	BWL						
H1	HS Niederrhein	Reinarzstraße 49	47805	Krefeld	MB						

Design-Richtlinien

Informelle Qualitätsmaße

- Inhaltliche Bedeutung der Relationen und Attribute sollte leichtverständlich sein
- Schema sollte Ergebnis eines "vernünftigen" Entwurfs sein
 - Jede Relation sollte nur Informationen über einen Sachverhalt ("Entity") enthalten plus evt. Fremdschlüssel für N:1-Beziehung
 - Siehe auch ER-Modellierung (Kap. 8)
- Reduzierung redundanter Werte in Tupeln
- Reduzierung von Nullwerten
- Verhinderung der Erzeugung "unechter" Tupel

Güte von Relationenschemata

- Bei Normalisierung in 1NF entstanden Modelle mit selbem Informationsgehalt, aber unterschiedlicher "Güte"
 - Variante 1 führt zu unerwünschten Redundanzen

	Hochschule						
<u>HNr</u>	Name	Straße	PLZ	Ort	<u>Studienfach</u>		

Variante 2 hat diesen Nachteil nicht

Hochschule							HS_
<u>HNr</u>	Name	Straße	PLZ	Ort		<u>HNr</u>	Stud

SF ientach

- Ziele
 - Formale Definition von Redundanzen
 - Kriterien für Redundanzfreiheit

Redundanz eines Attributs

 Ein Attribut ist redundant, wenn einzelne Attributwerte ohne Informationsverlust weggelassen werden können.

	Hochschule							
HNr Name Straße PLZ Ort Studienfach								
H1	HS Niederrhein	Reinarzstraße 49	47805	Krefeld	Informatik			
H1	HS Niederrhein	Reinarzstraße 49	47805	Krefeld	BWL			
H1	HS Niederrhein	Reinarzstraße 49	47805	Krefeld	MB			

- überflüssige Werte
- Die "roten" Attributwerte sind durch das erste H1-Tupel schon eindeutig festgelegt, also eigentlich überflüssig
- Wie kann man Redundanz formal definieren?

Funktionale Abhängigkeiten

Gegeben

- ein relationales Schema $R = (A_1,...,A_n)$ und r eine gültige, aber beliebige Ausprägung von R
- X, Y seien Attributmengen von R
- Eine funktionale Abhängigkeit (FA) zwischen X und Y besteht genau dann, wenn gilt für beliebige Tupel t₁, t₂ gilt:

$$t_1[X] = t_2[X] \Rightarrow t_1[Y] = t_2[Y]$$

- Mit anderen Worten:
 - In allen möglichen Ausprägungen von R bestimmen die X-Werte eindeutig die Y-Werte
 - Die Y-Werte sind eine Funktion der X-Werte: t[Y] = f(t[X])

Beispiel zu funktionalen Abhängigkeiten

Hochschule								
<u>HNr</u>	Name	Straße	PLZ	Ort	<u>Studienfach</u>			
H1	HS Niederrhein	Reinarzstraße 49	47805	Krefeld	Informatik			
H1	HS Niederrhein	Reinarzstraße 49	47805	Krefeld	BWL			
H1	HS Niederrhein	Reinarzstraße 49	47805	Krefeld	MB			

- Folgende FAs gelten (u.a.)
 - {HNr, Studienfach} → {Name, Straße, PLZ, Ort}
 - {HNr} → {Name, Straße, PLZ, Ort}
 - $\{HNr\} \rightarrow \{Straße, Ort\}$
 - $\{HNr, Name\} \rightarrow \{PLZ\}$
- Folgende FAs gelten nicht:
 - {HNr} → {Studienfach}
 - {Studienfach} → {Name, PLZ}

Anmerkungen zu funktionalen Abhängigkeiten (1)

Hochschule								
HNrNameStraßePLZOrtStudienfac								
H1	HS Niederrhein	Reinarzstraße 49	47805	Krefeld	Informatik			
H1	HS Niederrhein	Reinarzstraße 49	47805	Krefeld	BWL			
H1	HS Niederrhein	Reinarzstraße 49	47805	Krefeld	MB			

FA ist semantische Eigenschaft eines Relationenschemas

- Lässt sich nicht an einer einzelnen Ausprägung ablesen
 - In obiger Ausprägung könnte geschlossen werden: {Straße} → {Ort}
 - Ist trotzdem keine sinnvolle FA (warum?)
- Ergibt sich aus Bedeutung der Attribute in der realen Welt
- Nicht beweisbar, sondern wird auf Grund von Intuition und Anwendungswissen des Schema-Designers/Fachexperten festgelegt

Anmerkungen zu funktionalen Abhängigkeiten (2)

Hochschule								
HNrNameStraßePLZOrtStudienfach								
H1	HS Niederrhein	Reinarzstraße 49	47805	Krefeld	Informatik			
H1	HS Niederrhein	Reinarzstraße 49	47805	Krefeld	BWL			
H1	HS Niederrhein	Reinarzstraße 49	47805	Krefeld	MB			

- Wenn P = {HNr, Studienfach} die Menge der Primärschlüsselattribute ist, dann gilt für jede beliebige Attributmenge X: P → X
- Aus gegebenen funktionalen Abhängigkeiten lassen sich weitere Abhängigkeiten ohne Kenntnis der Attributbedeutung ableiten:
 - Z.B. folgt aus:
 {hnr} → {Straße, Ort} automatisch {HNr} → {Straße}
- Für die Ableitung weiterer Abhängigkeiten gibt es Regeln, die sog. Inferenzregeln (Inference Rules) nach Armstrong

Armstrongs Regeln

IR1 (Reflexivität):

$$Y \subseteq X \Rightarrow X \rightarrow Y$$

IR2 (Augmentation):

$$X \to Y \Rightarrow X \cup Z \to Y \cup Z$$

IR3 (Transitivität)

$$X \to Y \text{ und } Y \to Z \Rightarrow X \to Z$$

Anmerkungen zu Armstrongs Regeln

- Die durch IR1 gegebenen Abhängigkeiten heißen trivial
- Armstrong hat 1974 gezeigt, dass die Regeln IR1-3 vollständig sind:
 - Wenn man diese Regeln solange auf eine Menge F von funktionalen Abhängigkeiten anwendet, bis keine neuen Abhängigkeiten mehr erzeugt werden, so erhält man alle Abhängigkeiten, die aus F herleitbar sind
- Die Menge aller aus F herleitbaren Abhängigkeiten heißt Hülle (Closure) von F (symbolisch F⁺)

Beispiel

	Hochschule								
<u>HNr</u>	<u>Studienfach</u>								
H1	HS Niederrhein	Reinarzstraße 49	47805	Krefeld	Informatik				
H1	HS Niederrhein	Reinarzstraße 49	47805	Krefeld	BWL				
H1	HS Niederrhein	Reinarzstraße 49	47805	Krefeld	MB				

Aus {HNr} → {Name, Straße, PLZ, Ort} lässt sich nur mit Armstrongs Regel folgendes ableiten (Wie?):

{HNr} → {Name}

 {HNr, Studienfach} → {HNr, Name, Straße, PLZ, Ort, Studienfach}

Weitere aus IR1-IR3 ableitbare Inferenzregeln

IR4 (Zerlegung)

$$X \rightarrow Y \cup Z \Rightarrow X \rightarrow Y \ und \ X \rightarrow Z$$

IR5 (Vereinigung)

$$X \rightarrow Y \ und \ X \rightarrow Z \Rightarrow X \rightarrow Y \cup Z$$

IR6 (Pseudotransitivität)

$$X \rightarrow Y \ und \ W \cup Y \rightarrow Z \Rightarrow W \cup X \rightarrow Z$$

IR7 (Komposition)

$$X \rightarrow Y \ und \ V \rightarrow W \Rightarrow X \cup V \rightarrow Y \cup W$$

Erinnerung: Schlüssel

- Relation $r(R) = r(A_1, ..., A_n)$ sei gegeben
- Superschlüssel $S \subseteq R = \{A_1, ..., A_n\}$
 - Superschlüssel ist eine Attribut-Teilmenge, die für jede gültige Ausprägung r ein Tupel eindeutig identifiziert:
 - $-t_1 \neq t_2 \Rightarrow t_1[S] \neq t_2[S] \ bzw. \ t_1[S] = t_2[S] \Rightarrow t_2 = t_2$
 - Funktionale Abhängigkeit: S → R
- Schlüsselkandidat: minimaler Superschlüssel
 - Kein Attribut kann aus S entfernt werden, ohne Eindeutigkeit zu verletzen
 - Mehrere Schlüsselkandidaten pro Relation möglich
- Primärschlüssel(Schlüssel)
 - Ein vom Schemadesigner ausgewählter
 Schlüsselkandidat

Zurück zur Redundanzvermeidung

	Redundante Attribute								
	Hochschule								
<u>HNr</u>	Name	е	PLZ	Ort	<u>Studienfach</u>				
H1	HS Niederrhein	Reinar	Reinarzstraße 49		Krefeld	Informatik			
H1	HS Niederrhein	Reinar	zstraße 49	47805	Krefeld	BWL			
H1	HS Niederrhein	Reinar	zstraße 49	47805	Krefeld	MB			

Frage:

– wodurch entsteht die Redundanz der Attributwerte?

Antwort:

- Redundante Attribute hängen nur von einem Teil des Primärschlüssels {HNr,Studienfach} funktional ab, nämlich HNr!
- Wie kann diesen Umstand formal definieren?

überflüssige Werte

2. Normalform

- Definition (Annahme: nur ein Schlüsselkandidat)
 - Ein Relationschema ist in 2. Normalform (2NF), wenn jedes nicht-primäre Attribut voll funktional vom Primärschlüssel abhängt

Erläuterungen

- Ein Attribut heißt primär, wenn es zum Primärschlüssel gehört
- Alle anderen Attribute heißen nicht-primär
- Eine Attributmenge Y heißt voll funktional abhängig von einer Attributmenge X, wenn sie von keiner echten Teilmenge von X funktional abhängig ist
- Tut sie es doch, heißt Y partiell abhängig von X

Beispiel zu 2. Normalform

- Relation R1 ist nicht in 2NF Warum?
 - Name hängt bereits nur von HNr ab, aber nicht vom ganzen Primärschlüssel {HNr, Studienfach}, d.h. partielle Abhängigkeit
- Relation R2 ist in 2NF Warum?
 - Primärschlüssel enthält nur ein Attribut, d.h. es kann gar keine partiellen Abhängigkeiten geben.
 - Oder anders ausgedrückt: bzgl. R2 ist HNr eindeutig
- Relation R3 ist in 2NF Warum?
 - Es gibt keine nicht-primären Attribute, die die 2NF verletzen könnten

2NF-Dekomposition

- Ein Relationenschema, das nicht in 2NF ist, kann in mehrere Schemata in 2NF zerlegt werden
 - a) Fasse alle nicht-primären Attribute, die nur von einem Teilschlüssel abhängen, mit diesem Teilschlüssel als Primärschlüssel in einer eigenen Relation zusammen
 - b) Alle Attribute, die vom selben Teilschlüssel abhängen, müssen in derselben Relation zusammengefasst werden
 - c) Entferne die ausgelagerten nicht-primären Attribute aus der Ursprungsrelation und fasse die übriggebliebenen Attribute zu einer neuen Relation zusammen

Rekonstruktion

R1 wurde zerlegt in R2 und R3

Wie lässt sich dieser Vorgang rückgängig machen?

- Wünschenswerte Eigenschaften
 - Kein Informationsverlust (später)
 - Abhängigkeitserhaltung

Abhängigkeitserhaltung

- Wofür brauchen wir Regel b?
- Zerlegung 1: Korrekt gemäß Regeln a-c
- Zerlegung 2: Verletzt Regel b
 - Ort und PLZ hängen vom gleichen Teilschlüssel HNr ab, sind aber nicht in der derselben Relation zusammengefasst
 - FA {PLZ} → {Ort} geht verloren
 - FAs können nicht über Relationgrenzen hinweg definiert werden

Redundanzen trotz 2NF

 2NF verhindert bestimmte Redundanzen, andere aber nicht:

<u>HNr</u>	Name	Straße	PLZ	Ort
H2	FH Aachen	Eupener Straße 70	52066	Aachen
H3	KFH Aachen	Bayernallee	52066	Aachen

redundanter Wert

- Relation ist in 2NF Warum?
- Attribut Ort ist trotzdem redundant
- Ursache:
 - funktionale Abhängigkeit von nicht-primären Attribut PLZ bzw. transitive Abhängigkeit HNr → PLZ → Ort

3. Normalform

- Definition (Annahme: nur ein Schlüsselkandidat)
 - Ein Relationenschema ist in dritter Normalform (3NF), wenn es in 2NF ist und kein nicht-primäres Attribut transitiv vom Primärschlüssel abhängt

Erläuterungen:

- C heißt transitiv von A abhängig, wenn es eine Attributmenge B gibt mit: A → B und B → C
- Die beiden Abhängigkeiten bei der Transitivität dürfen nicht trivial sein: B ⊂ A oder B ⊂ C
- Beispiel für eine triviale transitive Abhängigkeit
 - {HNr} → {Name, Straße} → {Straße}
 - {HNr, Studienfach} → {HNr} → {Name,Straße}

3NF-Dekomposition

- Ein Relationenschema, das nicht in 3NF ist, kann in mehrere Schemata in 3NF zerlegt werden
 - Fasse die transitiv-abhängigen nicht-primären Attribute zusammen mit den Attributen, von denen sie nur direkt abhängen, in einer eigenen Tabelle zusammen
 - Entferne die ausgelagerten <u>abhängigen</u> Attribute aus der Ursprungstabelle und fasse die übriggebliebenen Attribute zu einer neuen Relation zusammen

Verallgemeinerung: mehr als 1 Schlüsselkandidat

- Bisher haben wir angenommen, dass es genau einen Schlüsselkandidaten gibt (der dann Primärschlüssel ist)
 - Jetzt: Verallgemeinerung auf mehr als einen SK

Zwei Varianten

- Normalform nach Codd (2NF-Codd):
 Jedes Attribut, das zu keinem Schlüsselkandidaten gehört, ist von jedem Schlüsselkandidaten voll-funktional abhängig
- Normalform nach Kent (2NF-Kent):
 Jedes Attribut im Komplement eines Schlüsselkandidaten ist von diesem Schlüsselkandidaten voll-funktional abhängig

Beispiel

- Relation Buch hat mehrere Schlüsselkandidaten
- Relation ist in 2NF-Codd Warum?
 - es gibt gar keine Attribute, die zu keinem SK gehören
- Relation ist nicht 2NF-Kent Warum?
 - Sprache ist partiell abhängig vom Schlüsselteil ISBN1

Unterschied 2NF-Codd/2NF-Kent

- 2NF-Codd betrachtet alle Schlüsselkandidaten auf einmal
- 2NF-Kent betrachtet jeden Schlüsselkandidaten für sich
- Im allgemeinen Fall ist 2NF-Codd schwächer, d.h. lässt mehr Redundanzen zu als 2NF-Kent
- Definitionen identisch, wenn es nur 1 Schlüsselkandidaten gibt

Verallgemeinerung 3NF auf mehrere SK

3NF-Codd

 Die Relation ist in 2NF-Codd und kein Attribut, das zu keinem Schlüsselkandidaten gehört, ist von einem Schlüsselkandidaten transitiv abhängig

3NF-Kent

 Die Relation ist in 2NF-Kent und kein Attribut im Komplement eines Schlüsselkandidaten ist von diesem Schlüsselkandidaten transitiv abhängig

Bemerkung:

- Definition nur für einen Schlüsselkandidaten identisch
- 3NF-Kent betrachtet jeden Schlüsselkandidaten für sich
- 3NF-Codd ist wieder schwächer als 3NF-Kent
- Wenn wir keine Angabe machen, gehen wir immer von der Codd'schen Definition aus (bei 2NF und 3NF)

Boyce/Codd-Normalform

- Definition Boyce/Codd-Normalform
 - Für jede nicht-triviale Abhängigkeit X → A gilt:
 X ist ein Superschlüssel der Relation
- Bemerkung
 - Erfordert keine Überprüfung von 2NF
 - Ursprünglich als einfachere Definition von 3NF vorgeschlagen; später hat sich herausgestellt, dass BCNF strenger als 3NF ist

Beispiel: Relation ist in 3NF, aber nicht in BCNF –
 Warum?

Noch ein Beispiel für 3NF vs. BCNF

- Relation Stadt(Ort, BLand, Ministerpräsident, EW)
- Geltende FAs:
 - $\{Ort, BLand\} \rightarrow \{EW\}$
 - {BLand} → {Ministerpräsident}
 - {Ministerpräsident} → {BLand}
- Schlüsselkandidaten
 - {Ort, BLand}
 - {Ort, Ministerpräsident}
- Stadt ist in 3NF, aber nicht in BCNF
 - EW ist das einzige Attribut, das nicht zu einem SK gehört, aber wir haben keine transitiven FAs zu EW, daher in 3NF
 - BLand und Ministerpräsident sind keine Superschlüssel, daher nicht in BCNF

Weitere Normalformen

- Es gibt noch weitere Normalformen 4NF und 5NF, die nicht auf funktionalen Abhängigkeiten basieren, sondern auf sogenannten mehrwertigen Abhängigkeiten bzw. Verbundabhängigkeiten
- In der Praxis beschränkt man sich auf 3NF und BCNF
 - Die 4NF wird nur in seltenen Fällen verletzt
 - Verletzungen der 5NF sind nur schwer zu erkennen
- Weitere exotische Normalformen
 - z.B. Domain-Key-NF
 - Umformung beruht jedoch nicht ausschließlich Projektion für die Zerlegung und Join für die Rekonstruktion

Übersicht: Normalformen

Jede Stufe definiert echt strengere Kriterien

Zerlegung vs. Rekonstruktion

- Wir haben Algorithmen kennen gelernt, mit deren Hilfe man ein nicht-normalisiertes Ausgangsschema in eine Menge von normalisierten Schemata zerlegen kann
 - Zerlegungsregeln führen zu weniger redundanten Schemata
 - Projektive Dekomposition
- Stillschweigende Annahme
 - Die zerlegten Schemata sind von ihrem Informationsgehalt gleichwertig zum Ausgangsschema
 - Das Ausgangsschema lässt sich durch Joins rekonstruieren
 - Ist dies tatsächlich der Fall?

Korrektheitskriterien für die Dekomposition

Annahme:

- ein Relationenschema R soll in die Relationschemata
 R₁,..., R_n zerlegt werden
- r, r₁,...,r_n seien Ausprägungen von R, R₁,...,R_n

Abhängigkeitserhaltung

 Die für R geltenden FAs müssen auf R₁,...,R_n übertragbar sein und dort jeweils isoliert überprüft werden können

Verlustlosigkeit

 Der Verbund (Join) der zerlegten Relationen r₁,...,r_n muss wieder die ursprüngliche Relation r ergeben, d.h. die in r enthaltenen Informationen müssen wieder komplett aus r₁,...,r_n rekonstruierbar sein

Kriterium für Verlustlosigkeit

- $R = (X,Y,Z), R_1 = (X,Y), R_2 = (Y,Z), R = R_1 \cup R_2$
 - r sei eine Ausprägung von R
 - $r_1 := SELECT X, Y FROM R (Projektion auf X, Y-Attribute)$
 - r₂ := SELECT Y, Z FROM R (Projektion auf Y, Z-Attribute)
- Die Zerlegung von R in R1 und R2 ist verlustlos, wenn für jede (gültige) Ausprägung r von R gilt
 - $-r = r1 \bowtie r2$
- Bemerkung
 - ⋈ ist der Relationale Algebra-Operator für Join

Theorem von Heath

- Hinreichende Bedingung für Verlustlosigkeit (Theorem von Heath)
 - $Y := (R_1 \cap R_2), Y \rightarrow R_1 \text{ oder } Y \rightarrow R_2$
 - Zerlege R so in R₁ und R₂, dass eine Attributmenge Y in beiden
 Zerlegungen enthalten ist und (zumindest) für eine Zerlegung R₁ oder
 R₂ Schlüsselfunktion hat

 Die Zerlegungsregeln von 2NF und 3NF (und BCNF) sind so gewählt, dass die Voraussetzung des Theorems von Heath erfüllt ist

Heath-Bedingung bei 2NF

Heath-Bedingung bei 3NF

Nicht-verlustfreie Zerlegung

Biertrinker			
Kneipe Gast Bier			
Zum alten Krug	Müller	Pils	
Zum alten Krug Schmitz Weizen			
Schluckspecht	Müller	Weizen	

Besucht		
Kneipe Gast		
Zum alten Krug	Müller	
Zum alten Krug	Schmitz	
Schluckspecht Müller		

Trinkt		
Gast	Bier	
Müller	Pils	
Schmitz	Weizen	
Müller	Weizen	

Informationsverlust

Biertrinker		
Kneipe	Gast	Bier
Zum alten Krug	Müller	Pils
Zum alten Krug	Schmitz	Weizen
Schluckspecht	Müller	Weizen
	7	

Zerlegung

Besucht		
Kneipe Gast		
Zum alten Krug	Müller	
Zum alten Krug	Schmitz	
Schluckspecht Müller		

Trinkt	
Gast Bier	
Müller	Pils
Schmitz	Weizen
Müller	Weizen

Join

Zusätzliche Tupel =
Informationsverlust!

Biertrinker		
Kneipe	Bier	
Zum alten Krug	Müller	Pils
Zum alten Krug	Müller	Weizen
Zum alten Krug	Schmitz	Weizen
Schluckspecht	Müller	Pils
Schluckspecht	Müller	Weizen

Warum ist die Zerlegung im Beispiel nicht verlustfrei?

- Die hinreichende Bedingung für eine verlustfreie Zerlegung war verletzt:
 - Einzige (nicht-triviale) FA:
 - {Kneipe,Gast} → {Bier}
 - Die beiden möglichen, die Verlustlosigkeit garantierenden FAs gelten nicht:
 - {Gast} → {Bier}
 - {Gast} → {Kneipe}
- Das liegt daran, dass die Gäste (hier: Müller) in unterschiedlichen Kneipen verschiedene Biere trinken
 - In derselben Kneipe trinkt ein Gast allerdings immer das gleiche Bier
 - Diese Information geht in der Zerlegung verloren.
 - Informations-"Verlust" = zusätzliche unerwünschte Tupel

Abhängigkeitserhaltung

- Bei der Zerlegung von R in R_i, i=1..n werden nur solche FAs übernommen, deren beteiligte Attribute jeweils komplett in R_i enthalten sind
- Grund:
 - FAs können nicht Relationenübergreifend definiert werden
- Formale Definition:
 - F_R: Menge der FAs, die auf Relationenschema R definiert sind
 - $-F_{Ri} := \{X \rightarrow Y \in F_R / X \cup Y \in R_i \text{ für ein } i\}$
- Eine Zerlegung von R in R₁,...,R_n ist abhängigkeitserhaltend, wenn gilt:
 - $-F_R = F_{R1} \cup ... \cup F_{Rn}$

Beispiel für Abhängigkeitsverlust

- PLZVerzeichnis (Straße, Ort, BLand, PLZ)
- Annahmen
 - Orte werden durch ihren Namen (Ort) und das Bundesland (BLand) eindeutig identifiziert
 - Innerhalb einer Straße ändert sich die Postleitzahl nicht
 - Postleitzahlengebiete gehen nicht über Ortsgrenzen und Orte nicht über Bundeslandgrenzen hinweg
- Daraus resultieren die FAs
 - $\{PLZ\} \rightarrow \{Ort, BLand\}$
 - {Straße, Ort, BLand} → {PLZ}
- Betrachte die Zerlegung
 - Straßen(PLZ, Straße)
 - Orte(PLZ, Ort, BLand)

Zerlegung der Relation PLZVerzeichnis

PLZverzeichnis			
Ort BLand Straße PLZ		PLZ	
Frankfurt	Hessen	Goethestraße	60313
Frankfurt	Hessen	Galgenstraße	60437
Frankfurt	Brandenburg	Goethestraße	15234

Straßen		
PLZ Straße		
15234	Goethestraße	
60313	Goethestraße	
60437	Galgenstraße	

Orte		
<u>Ort</u>	<u>BLand</u>	<u>PLZ</u>
Frankfurt	Hessen	60313
Frankfurt	Hessen	60437
Frankfurt	Brandenburg	15234

Die FA {Straße, Ort, BLand} → {PLZ} ist im zerlegten Schema nicht mehr enthalten → Einfügen inkonsistenter Tupel möglich

Einfügen zweier Tupel, die die FA verletzen

PLZverzeichnis			
Ort BLand Straße PLZ		PLZ	
Frankfurt	Hessen	Goethestraße	60313
Frankfurt Hessen Galgenstraße 60437		60437	
Frankfurt	Brandenburg	Goethestraße	15234

Straßen	
PLZ Straße	
15234	Goethestraße
60313	Goethestraße
60437	Galgenstraße
15235	Goethestraße

Orte				
<u>Ort</u>	<u>BLand</u>	<u>PLZ</u>		
Frankfurt	Hessen	60313		
Frankfurt	Hessen	60437		
Frankfurt	Brandenburg	15234		
Frankfurt	Brandenburg	15235		

Join verletzt FA {Straße, Ort, BLand} → {PLZ}

PLZverzeichnis					
<u>Ort</u>	<u>BLand</u>	<u>Straße</u>	PLZ		
Frankfurt	Hessen	Goethestraße	60313		
Frankfurt	Hessen	Galgenstraße	60437		
Frankfurt	Brandenburg	Goethestraße	15234		
Frankfurt	Brandenburg	Goethestraße	15235		

Straßen			
<u>PLZ</u>	<u>Straße</u>		
15234	Goethestraße		
60313	Goethestraße		
60437	Galgenstraße		
15235	Goethestraße		

Orte				
<u>Ort</u>	<u>BLand</u>	PLZ		
Frankfurt	Hessen	60313		
Frankfurt	Hessen	60437		
Frankfurt	Brandenburg	15234		
Frankfurt	Brandenburg	15235		

Verlustlosigkeit und Abhängigkeitserhaltung

- Die Verlustlosigkeit ist für alle Zerlegungsalgorithmen in alle Normalformen garantiert (sogar bis 4NF)
- Die Abhängigkeitserhaltung kann leider nur bis zur 3NF garantiert werden

Zusammenfassung

- Beim DB-Entwurf können schlechte Schemata entstehen (Redundanzen)
- Normalformen und FAs definieren ein formal überprüfbares Qualitätsmaß für die Güte eines Schemas, indem bestimmte Redundanzen auf Schemaebene ausgeschlossen werden
- Normalisierung bezeichnet die schrittweise Zerlegung eines Schemas in mehrere Teil-Schemata, die h\u00f6heren Normalformen gen\u00fcgen
- Jedes Schema bis 3NF zerlegbar, so dass Verlustlosigkeit und Abhängigkeitserhaltung gewahrt bleiben
- Abschließende Bemerkung
 - Nicht-normalisierte Schemata entstehen meist bei einem unüberlegten Ad-hoc-Entwurf
 - Fast alle Redundanzprobleme werden von vorneherein verhindert bei sauberem Entwurf nach ER-Methodik → nächstes Kapitel