Stochastic dynamic models for low count observations (and forecasting from them)

Dr. Jarad Niemi

Iowa State University

April 19, 2016

Overview

- 1 Poisson-binomial state-space model
- Inference and forecasting
- 3 Forecasting with noisy observations
- Forecasting with inference on parameters

$S \rightarrow I \rightarrow R$ stochastic compartment model

Focus on Susceptible (S) - Infectious (I) - Recovered (R) model with Poisson transitions, i.e.

$$\overrightarrow{\mathit{SI}} \sim \mathit{Po}(\lambda_{S \rightarrow I} \mathsf{SI/N}) \qquad \overrightarrow{\mathit{IR}} \sim \mathit{Po}(\lambda_{I \rightarrow R} \mathsf{I})$$

updating the states, i.e.

$$S_{t+1} = S_t - \overrightarrow{SI}, \quad I_{t+1} = I_t + \overrightarrow{SI} - \overrightarrow{IR}, \quad R_{t+1} = R_t + \overrightarrow{IR}$$

and binomial obserations

$$Y_{S \to I} \sim Bin(\overrightarrow{SI}, \theta_{S \to I})$$
 $Y_{I \to R} \sim Bin(\overrightarrow{IR}, \theta_{I \to R})$

A more general stochastic dynamic modeling structure can be used to extended to geographical regions, subpopulations, etc.

SIR modeling simulations

SIR modeling simulations

Forecasting with perfect information

Suppose you know transition rates λ , observation probabilities $\theta=1$, and the states $X_{0:t}$ and your only goal is to forecast the future states $X_{t+1:T}$, i.e.

$$p(X_{t+1:T}|\theta,\lambda,X_{0:t}) = p(X_{t+1:T}|\theta,\lambda,X_t)$$

this distribution is estimated via Monte Carlo simulation.

Delay in data analysis

Suppose you have a one or two week delay in collecting, processing, and analyzing so that when trying to forecast future states you are using "old" data, i.e.

$$p(X_{t+1:T}|\theta,\lambda,X_{t-L})$$

where

- L = 0 indicates up-to-date data
- L=1 indicates one-week old data
- I = 2 indicates two-week old data

Forecasting with noisy observations

Suppose, we know the transition rates (λ) and the observation probabilities (θ) , but we only observe a noisy version of the state transitions, i.e. .

$$\textit{Y}_{S \rightarrow I} \sim \textit{Bin}(\overrightarrow{\textit{SI}}, \theta_{S \rightarrow I}) \qquad \textit{Y}_{I \rightarrow R} \sim \textit{Bin}(\overrightarrow{\textit{IR}}, \theta_{I \rightarrow R})$$

Now the forecast distribution we need is

$$p(X_{t+1:T}|\lambda,\theta,y_{0:t}) = \int p(X_{t+1:T},\lambda,\theta|X_t)p(X_t|\lambda,\theta,y_{0:t})dX_t.$$

Noisily observed state

Forecasting with inference on parameters

In reality, we don't know the transition rates (λ) and the observation probabilities (θ) , and we only observe a noisy version of the state transitions.

Now the forecast distribution we need is

$$p(X_{t+1:T}|y_{0:t}) = \int \int \int p(X_{t+1:T}|\lambda,\theta,X_t)p(X_t,\lambda,\theta|y_{0:t})d\lambda d\theta dX_t.$$

Prior distributions

In order to calculate (or approximate) the integral

$$\int \int \int p(X_{t+1:T}, \lambda, \theta | X_t) p(X_t, \lambda, \theta | y_{0:t}) d\lambda d\theta dX_t$$

we need to assign priors to λ , θ , and X_0 . Suppose, we assume

$$egin{array}{ll} heta_k & \stackrel{\mathit{ind}}{\sim} Be(n_{ heta}p_k, n_{ heta}[1-p_k]) \ \lambda_k & \stackrel{\mathit{ind}}{\sim} Ga(n_{\lambda}c_k, n_{\lambda}) \ X_0 & \sim \mathit{Mult}(N; z_1, \ldots, z_S) \end{array}$$

We can control how informative the priors are with n_{θ} and n_{λ} .

Informative priors

Balance priors and data

We need information

Information can come from

- Data
- Priors

We can quantitatively assess the impact of better information, i.e.

- increasing prior information, e.g. $\lambda \sim \textit{Ga}(n_{\lambda}c_{k},n_{\lambda})$ by increasing n_{λ} ,
- increasing surveillance, e.g. $Y \sim Bin(S \rightarrow I, \theta)$ by increasing θ , and
- increasing timeliness, e.g. $p(X_{t+1:T}|y_{1:t-L})$ by decreasing L.

Then, we can discuss how to assign resources depending on the costs associated with each impact above.