Unit IV: Complexity CISC 380 Algorithms

Dr. Miracle

$SAT \rightarrow 3SAT$

Given f for SAT create a new formula f' as follows:

For each clause C in f,

- ▶ If C has ≤ 3 literals, keep it the same.
- ▶ If it has > 3 literals replace C by C' as described below:

$$C = (a_1 \vee a_2 \vee \ldots \vee a_k)$$

Add k-3 new variables y_1, \ldots, y_{k-3} and replace C by k-2 clauses:

$$(a_1 \lor a_2 \lor y_1) \land (\overline{y}_1 \lor a_3 \lor y_2) \land (\overline{y}_2 \lor a_4 \lor y_3) \land \dots$$
$$\land (\overline{y}_{k-4} \lor a_{k-2} \lor y_{k-3}) \land (\overline{y}_{k-3} \lor a_{k-1} \lor a_k)$$

► Use f' as input for 3SAT

Claim: f is satisfiable iff f' is satisfiable.

Example: SAT \rightarrow 3SAT

$$(x_1) \wedge (\overline{x_1} \vee \overline{x_2} \vee \overline{x_3} \vee x_4) \wedge (\overline{x_5} \vee x_3 \vee x_2 \vee \overline{x_1} \vee \overline{x_4}) \wedge (x_4 \vee x_5)$$

Procedure for converting input f to SAT to an input to 3SAT

For each clause C in f,

- ▶ If C has ≤ 3 literals, keep it the same.
- ▶ If it has > 3 literals replace C by C' as described below:

$$C = (a_1 \vee a_2 \vee \ldots \vee a_k)$$

Add k-3 variables y_1, \ldots, y_{k-3} and replace C by k-2 clauses:

$$(a_1 \lor a_2 \lor y_1) \land (\overline{y}_1 \lor a_3 \lor y_2) \land (\overline{y}_2 \lor a_4 \lor y_3) \land \dots$$
$$\land (\overline{y}_{k-4} \lor a_{k-2} \lor y_{k-3}) \land (\overline{y}_{k-3} \lor a_{k-1} \lor a_k)$$

Example: $3SAT \rightarrow Independent Set$

$$f = (x) \land (\bar{x} \lor y \lor w) \land (\bar{y} \lor \bar{w} \lor z) \land (x \lor y) \land (\bar{y} \lor w \lor \bar{z})$$

- 1. Create the corresponding input to IS (i.e., a graph G, goal g).
- 2. Find an IS set and from this create a satisfying assignment.
- Find a satisfying assignment and from this create an IS in G of size g.

Example 2: $3SAT \rightarrow Subset Sum$

$$f = \left(\overline{x_1} \vee \overline{x_2} \vee \overline{x_3}\right) \wedge \left(\overline{x_1} \vee \overline{x_2} \vee x_3\right) \wedge \left(x_1 \vee \overline{x_2} \vee x_3\right) \wedge \left(x_1 \vee x_2\right)$$

Procedure for converting input f to 3SAT to an input to SubsetSum

- 1. In the *i*th digit of v_i and v'_i put a 1.
- 2. If x_i appears in c_i put a 1 in v_i in digit n + j.
- 3. If $\bar{x_i}$ appears in c_j put a 1 in v_i' in digit n+j.
- 4. Put a 1 in digit n + j of s_j and s'_j (these function as buffers).
- 5. All other digits get 0.
- 6. t contains n 1's followed by m 3's.

Example 1: $3SAT \rightarrow Subset Sum$

$$f = (\overline{x_1} \vee \overline{x_2} \vee \overline{x_3}) \wedge (\overline{x_1} \vee \overline{x_2} \vee x_3)$$
$$\wedge (x_1 \vee \overline{x_2} \vee x_3) \wedge (x_1 \vee x_2)$$

Examples:

$$v_1 = 1000011$$
 $v'_1 = 1001100$
 $t = 1113333$

	<i>x</i> ₁	<i>x</i> ₂	<i>X</i> 3	<i>c</i> ₁	<i>c</i> ₂	<i>c</i> ₃	C4
v_1	1	0	0	0	0	1	1
$\overline{v_1'}$	1	0	0	1	1	0	0
	0	1	0	0	0	0	1
$\frac{v_2}{v_2'}$	0	1	0	1	1	1	0
<i>V</i> ₃	0	0	1	0	1	1	0
$\frac{v_3}{v_3'}$	0	0	1	1	0	0	0
s_1	0	0	0	1	0	0	0
$\overline{s'_1}$	0	0	0	1	0	0	0
<i>s</i> ₂	0	0	0	0	1	0	0
s_2'	0	0	0	0	1	0	0
<i>s</i> ₃	0	0	0	0	0	1	0
s_3'	0	0	0	0	0	1	0
<i>S</i> ₄	0	0	0	0	0	0	1
s_4'	0	0	0	0	0	0	1
t	1	1	1	3	3	3	3

Example 2: $3SAT \rightarrow Subset Sum$

$$f = (x) \land (\bar{x} \lor y \lor w) \land (\bar{y} \lor \bar{w} \lor z) \land (x \lor y) \land (\bar{y} \lor w \lor \bar{z})$$

Procedure for converting input f to 3SAT to an input to SubsetSum

- 1. In the *i*th digit of v_i and v'_i put a 1.
- 2. If x_i appears in c_j put a 1 in v_i in digit n + j.
- 3. If $\bar{x_i}$ appears in c_j put a 1 in v_i' in digit n+j.
- 4. Put a 1 in digit n + j of s_j and s'_j (these function as buffers).
- 5. All other digits get 0.
- 6. t contains n 1's followed by m 3's.