- Components exchange information via buses
 - A bus is a set of shared lines or electrical traces
 - Chips have pins that connect to these shared lines
- Computers use a hierarchy of buses
 - Some are internal to the CPU
 - External buses are used for I/O
- Bus protocols are rules for using the bus
 - specify timing techniques
 - Arbitration rules to resolve conflicting requests
 - Synchronous versus asynchronous communication

- CPU-to-memory buses are parallel synchronous buses
 - Operate at higher rates than I/O buses
 - Clock signals synchronize the exchanges
- I/O buses can be parallel or serial
 - Operate at rates that match slow I/O device speeds
 - Communicate asynchronously using handshake signals

- Buses consist of:
 - data lines
 - control lines
 - address lines
- Data lines convey bits from one device to another
- Signals on control lines determine:
 - the direction of data flow
 - when each device can access the bus
- Address lines determine the location of the source or destination of the data

- Buses may be serial or parallel
 - Bits are sent simultaneously along each parallel bus line
 - Bits are sent one after the other along a serial bus line
- Bus bandwidth = amount of data transferred per unit time
 - Depends on width (number of data lines)
 - Depends on cycle time and number of cycles used
- A common clock signal is used by synchronous buses
 - Transactions adhere to a bus schedule
 - The schedule must accommodate the slowest device
 - Slowest device dictates the cycle time
 - Clock skew can be a problem
 - Different devices may not see the clock signal at the exact same time

Synchronous Bus Read

Data requested from the specified address is available at t_1 If data cannot be provided in time, "wait states" are inserted Wait states are additional complete clock cycles

JOHNS HOPKINS

UNIVERSITY

- Asynchronous buses exchange handshake signals
 - Each step in the transaction requires a signal or response
 - transaction speed varies with the devices involved (self-paced)

Asynchronous Bus Read

Master-ready is asserted to signal valid address and command Slave-ready is asserted when requested data is available master-ready is de-asserted in response to receiving the data Slave-ready is de-asserted to allow next transaction to begin

A positive action is required to proceed to the next step

• Two types of buses are commonly found in computer systems: *point-to-point*, and *multipoint* buses.

These are point-to-point buses:

JOHNS HOPKINS

UNIVERSITY

- A multipoint bus is a shared resource
- Protocols can be built into the hardware
 - They control access to the bus

- Bus transactions:
 - All the actions needed to exchange information
 - Occurs in a "bus cycle"
 - May correspond to multiple clock cycles
- Only one device at a time controls the bus
 - Called an "initiator" or "master"
 - Initiator or master communicates with "target" or "slave"
- Arbitration resolves competing requests for control