* 解答 ([] 内の数字は配点)

(?):	y	[4]	(イ):	$\frac{2kqy}{\left(a^2+y^2\right)^{\frac{3}{2}}}$	[5]
(ウ):	$-\frac{4kq^2y}{(a^2+y^2)^{\frac{3}{2}}}$	[5]	(工):	周期	[5]
(計算) F_y 中の y^2 の項を無視すると $a^2+y^2\approx a^2$ となるので、 F_y の近似式は $F_y\approx -\frac{4kq^2}{a^3}y$ となる。よって、電荷 P は F_y を復元力とした単振動をする。					
よって、求める	S周期 T は $T=rac{\pi a}{q}$	$\sqrt{\frac{ma}{k}}$	_		
			設問 (1):	(答) $\frac{\pi a}{q} \sqrt{\frac{ma}{k}}$	[8]
設問 (2):	$\frac{4qd}{5ma}\sqrt{\frac{6k}{a}}$				[5]
(才):	qv_0B	[4]	(カ):	$rac{mv_0}{qB_0}$	[5]
(キ):	ma = -kv	[5]	(ク):	(f)	[5]
設問 (3):	$\frac{k}{m}$				[5]
(計算) 軌道の半径 r は $r=\frac{mv_0}{qB_0}$ であり、電荷に働くローレンツ力は $qvB(t)=qe^{-\frac{k}{m}t}B(t)$ である。よって円運動の運動方程式から $m\frac{v^2}{r}=qe^{-\frac{k}{m}t}B(t)$ 。 よって、求める磁束密度 $B(t)$ は $B(t)=\frac{B_0}{v_0}e^{-\frac{k}{m}t}$					
			設問 (4):	(答) $\frac{B_0}{v_0}e^{-\frac{k}{m}t}$	[8]
設問 (5):	Nk	[2]	設問 (6):	$\frac{Nk}{R}$	[2]
設問 (7):	$\frac{N^2R^2}{R}$	[3]	設問 (8):	Nk	[3]
設問 (9):	-Nk	[2]	設問 (10):	$\frac{1}{2}C(Nk)^2$	[2]
設問 (11):	$-\frac{k}{m}\left(x-\frac{VBl}{Rk}\right)$	F0.7			
	$-\frac{1}{m}\left(x-\frac{1}{Rk}\right)$	[3]	設問 (12):	$2\pi\sqrt{\frac{k}{m}}$	[3]
設問 (13):	$\frac{-\frac{1}{m}\left(x - \frac{1}{Rk}\right)}{a = \pm i\sqrt{\frac{k}{m}}}$	[3]	設問 (12): 設問 (13):	$2\pi\sqrt{\frac{k}{m}}$ $B = 2\pi\sqrt{\frac{m}{k}}$	[3]
設問 (13): 設問 (14):			1 /	•	
	$a = \pm i\sqrt{\frac{k}{m}}$	[3]	設問 (13):	$B = 2\pi \sqrt{\frac{m}{k}}$	[3]
設問 (14):	$a = \pm i\sqrt{\frac{k}{m}}$ $-\left(\frac{VBl}{Rk} + d\right)$	[3]	設問 (13): 設問 (15):	$B = 2\pi \sqrt{\frac{m}{k}}$ $\cos at$	[3]
設問 (14): (ケ):	$a = \pm i\sqrt{\frac{k}{m}}$ $-\left(\frac{VBl}{Rk} + d\right)$ $r_n \omega B \Delta r$	[3] [3] [4]	設問 (13): 設問 (15): (コ):	$B = 2\pi \sqrt{\frac{m}{k}}$ $\cos at$ $r_k \omega B \Delta r$ $(b^2 - a^2) \omega B$	[3] [3] [5]
設問 (14): (ケ): (サ):	$a = \pm i\sqrt{\frac{k}{m}}$ $-\left(\frac{VBl}{Rk} + d\right)$ $r_n \omega B \Delta r$ $\frac{1}{2} \left(b^2 - a^2\right) \omega B$	[3] [3] [4] [5]	設問 (13): 設問 (15): (コ): (シ):	$B = 2\pi \sqrt{\frac{m}{k}}$ $\cos at$ $r_k \omega B \Delta r$ $\frac{(b^2 - a^2)\omega B}{2R}$ $(b^2 - a^2)^2 \omega B$	[3] [3] [5] [5]
設問 (14): (ケ): (サ): (ス):	$a = \pm i\sqrt{\frac{k}{m}}$ $-\left(\frac{VBl}{Rk} + d\right)$ $r_n \omega B \Delta r$ $\frac{1}{2} \left(b^2 - a^2\right) \omega B$ $\frac{\left(b^2 - a^2\right)(b - a)\omega B}{2R}$ $\sqrt{R^2 + \left(\omega L - \frac{1}{\omega C}\right)}$	[3] [3] [4] [5]	設問(13): 設問(15): (コ): (シ): (セ): 設問(17):	$B = 2\pi \sqrt{\frac{m}{k}}$ $\cos at$ $r_k \omega B \Delta r$ $\frac{(b^2 - a^2)\omega B}{2R}$ $\frac{(b^2 - a^2)^2 \omega B}{4R}$	[3] [3] [5] [5]

*解説

問題 I: 点電荷には以下のような E_A, E_B の電界ベクトルが存在する。

続き: ベクトルのx成分は、打ち消し合うので、y成分のみ考える。 クーロンの法則から、電界 E_A,E_B は、+y正として

$$E_A = k \frac{q}{(a^2 + y^2)} \times \frac{y}{\sqrt{a^2 + y^2}}, \qquad E_B = -k \frac{q}{(a^2 + y^2)} \times \frac{y}{\sqrt{a^2 + y^2}}$$

よって、求める電界 $E_A + E_B$ は、

$$E_A+E_B=rac{2kqy}{(a^2+y^2)^{rac{3}{2}}}$$

電荷Pが受ける力 F_y は、電界に電気量2qをかけて、

$$F_y = -\frac{4kq^2y}{(a^2 + y^2)^{\frac{3}{2}}}$$

電荷には y=0 を中心とした対称な力 (奇関数) が働くので、導体棒は 間期運動をする。

設問 (1): F_y 中の y^2 の項を無視すると、

$$a^2 + y^2 \approx a^2$$

となるので、 F_y の近似式は、

$$F_y \approx -\frac{4kq^2}{a^3}y$$

よって、電荷Pは、 F_y を復元力とした単振動をするので、求める周期Tは、

$$T = rac{\pi a}{q} \sqrt{rac{ma}{k}}$$

設問 (2): 単振動の力学的エネルギー保存則から、速さをvとして、

$$\frac{1}{2}\left(\frac{4kq^2}{ma^3}\right)d^2\left(\frac{d}{5}\right)^2 + \frac{1}{2}mv^2$$

これを整理して、

$$v = \frac{4qd}{5ma}\sqrt{\frac{6k}{a}}$$

問題Ⅱ: 電荷には、ローレンツ力がはたらくので、

$$F = qv_0B_0$$

であり、フレミングの法則から、電荷は力Fを向心力とする円軌道を描く。よって、円運動の運動方程式から、

$$m\frac{v_0^2}{r} = qv_0B_0 \qquad \therefore r = \frac{mv_0}{qB_0}$$

また円軌道は次のようになる。

続き: 速度方向の運動方程式は抗力 ƒ を考えて、

$$ma = -kv$$

また、速度ベクトルとは逆向きの加速度ベクトルで、終端速度は0になるので速度は単調に減少して0に収束する、(f)である。

設問(3): 運動方程式から、 $a = \frac{dv}{dt}$ として、

$$m\frac{dv}{dt} = -kv \qquad - \quad (1)$$

と表される。 $v=Ce^{-\alpha t}$ について、 $\frac{dv}{dt}=-\alpha e^{-\alpha t}$ であるから、(1) の運動方程式に代入すると、

$$m\alpha e^{-\alpha t} = -ke^{\alpha t}$$
 $\therefore \alpha = \frac{k}{m}$

よって、求める α の値は、

$$\alpha = \frac{k}{m}$$

設問(4): 軌道の半径 r は

$$r = \frac{mv_0}{qB_0}$$

であり、電荷にはたらくローレンツ力は、

$$qvB(t) = qe^{-\frac{k}{m}t}B(t)$$

よって、円運動の運動方程式から、

$$m\frac{v^2}{r} = qe^{-\frac{k}{m}t}B(t)$$

よって、求める磁束密度 B(t) は、

$$B(t) = \frac{B_0}{v_0} e^{-\frac{k}{m}t}$$

問題 III:

設問(5): ファラデーの電磁誘導の法則から、

$$E = N \frac{d\Phi}{dt} = \mathbf{N}\mathbf{k}$$

設問(6): オームの法則から、から、流れる電流iは、

$$Nk = Ri$$
 $\therefore i = \frac{Nk}{R}$

設問(7): 抵抗での消費電力は、

$$Ei = \frac{N^2k^2}{R}$$

設問(8)(9): スイッチを開いた瞬間、コンデンサは充電されていたので、コンデン サの電圧は

$$V_C = Nk$$

であり、この時回路には電流が流れず、抵抗での電圧降下は 0 である。 よって、回路方程式より、

$$V_R + V_L + V_C = 0$$
 $\therefore V_L = -Nk$

設問 (10): コンデンサに蓄えられていた静電エネルギーが全てジュール熱に変換 されるので、求めるジュール熱Wは、

$$W = \frac{1}{2}C(Nk)^2$$

問題 IV:

設問 (11): 導体棒に流れる電流 I はオームの法則から、

$$I = \frac{V}{R}$$

よって、導体棒が磁界から受ける力の Fは、+x方向を正として、

$$F = BIl = \frac{VBl}{R}$$

導体棒の加速度は、 $\frac{d^2x}{dt^2}$ であり、導体棒は、ばねからも-kxの力を受けるので、運動方程式は、

$$m\frac{d^2x}{dt^2} = \frac{VBl}{R} - kx = -k\left(x - \frac{VBl}{Rk}\right)$$

したがって、加速度は、

$$\frac{d^2x}{dt^2} = \frac{VBl}{mR} - \frac{kx}{m} = -\frac{\mathbf{k}}{\mathbf{m}} \left(\mathbf{x} - \frac{\mathbf{VBl}}{\mathbf{Rk}} \right)$$

設問 (12): 設問 (11) の式から、導体棒は $\frac{VBl}{Rk}$ を中心とする単振動をする。復元力は、 $-k\left(x-\frac{VBl}{Rk}\right)$ なので、求める周期 T は、

$$T=\mathbf{2\pi}\sqrt{rac{oldsymbol{m}}{k}}$$

設問 (13): $x = Ae^{at} + B$ であるから、加速度 $\frac{d^2x}{dt^2}$ は、

$$\frac{d^2x}{dt^2} = a^2 A e^{at}$$

これを方程式に代入して、

$$ma^2Ae^{at} = -k\left(Ae^{at} + B - \frac{VBl}{Rk}\right)$$

この式を整理して、

$$(ma^2 + k)Ae^{at} + \frac{VBl}{R} - Bk = 0$$

この恒等式が成立するには、

$$ma^2 + k = 0,$$
$$\frac{VBl}{R} - Bk = 0$$

したがって、求める a,B は、

$$a = \pm i\sqrt{\frac{k}{m}}$$
$$B = \frac{VBl}{Bk}$$

設問(14) 設問(13)から、位置 x は、

$$x = Ae^{\pm i\sqrt{\frac{k}{m}}t} + \frac{VBl}{Rk}$$

ここで、初期条件から、t=0 で x=-d であるから、これらを代入して、

$$-d = A + \frac{VBl}{Rk} \qquad \therefore A = -\left(\frac{VBl}{Rk} + d\right)$$

設問 (15): 解xは、a,A,B を代入して

$$x = -\left(\frac{VBl}{Rk} + d\right)e^{\pm i\sqrt{\frac{k}{m}}t} + \frac{VBl}{Rk}$$

導体棒は $\frac{VBl}{Rk}$ を中心とする単振動をし、初期位置は x=-d であるため、-cos 型の振動をする。(初期位相が $\frac{3}{2}\pi$) したがって、

$$Re(e^{at}) = \cos at$$

問題 V: 半径 r_n の円運動の速さは、 Δr 中の電荷の速さはどれも等しいので、近似的に $r_n\omega$ であり、l は今回 Δr なので、誘導機電力の式 vBl から、

$$\Delta E = r_n \omega B \Delta r$$

回路全体ではこれら起電力 (電位) の k=1 から k=n までの和を取るので、近似的に、

$$\sum_{k=1}^{n} r_k \omega B \Delta r$$

また、区分求積法から、 $n \to \infty$ の時、 $r_k \to r$ 、 $\Delta r \to dr$ とすると、 $(a \le r \le b)$ で、

$$E = \lim_{n \to \infty} \sum_{k=1}^{n} r_k \omega B \Delta r = \int_a^b \omega B r dr = \frac{1}{2} \left(b^2 - a^2 \right) \omega B$$

回路を流れる電流 I は、 $E = \frac{1}{2} \left(b^2 - a^2 \right) \omega B$ と、オームの法則から、

$$I = \frac{\left(b^2 - a^2\right)\omega B}{2R}$$

これより、微小距離 Δr で磁界から受ける力 ΔF は、BII から、

$$\Delta F = BI\Delta r$$

であるので、区分求積法から、 $\Delta r \rightarrow dr$ として $(a \le r \le b)$ において、

$$F = \lim_{n \to \infty} \sum_{b=1}^{n} BI\Delta r = \int_{a}^{b} BIdr = \frac{\left(b^{2} - a^{2}\right)\left(b - a\right)\omega B}{2R}$$

力のモーメントについては、 Δr 中の導体棒において、半径は一律 r_n であるから、中心まわりの微小の力のモーメント ΔM は、

$$\Delta M = \Delta F \cdot r_n = BIr_n \Delta r$$

ここでも区分求積法によって求めていくと、 $r_k \to r$ 、 $\Delta r \to dr$ として $(a \le r \le b)$ において、

$$M = \lim_{n \to \infty} \sum_{k=1}^{n} BIr_n \Delta r = \int_a^b BIr dr = \frac{\left(b^2 - a^2\right)^2 \omega B}{4R}$$

問題 VI:

設問 (16): 合成インピーダンスの大きさ Z は、同一電流に対する sin 型、cos(-cos) 型の係数に着目して、

$$Z = \sqrt{R^2 + \left(\omega L - rac{1}{\omega C}
ight)^2}$$

設問 (17): 電流の振幅が最大になる時、合成インピーダンスの大きさ Z は最小となるので、条件は、

$$\omega L - \frac{1}{\omega C} = 0$$
 $\therefore \omega = \frac{1}{\sqrt{LC}}$

したがって、求める周波数は、

$$\frac{\omega}{2\pi} = \frac{\mathbf{1}}{\mathbf{2}\pi\sqrt{LC}}$$

設問 (18): 設問 (16) から、電流が最大振幅の時の合成インピーダンスの大きさは $\omega = \frac{1}{2\pi\sqrt{LC}} \ \,$ を代入して、Z=R なので、最大の電流振幅 i_{max} は、

$$i_{max} = \frac{V_0}{R}$$

よって、最大振幅の $\frac{1}{\sqrt{2}}$ 倍は、

$$\frac{1}{\sqrt{2}}i_{max} = \frac{\mathbf{V_0}}{\sqrt{2}\mathbf{R}}$$

また、この時インピーダンス大きさは、オームの法則から、電流が最大振幅の時の $\sqrt{2}$ 倍なので、 $\sqrt{2}R$ 隣、この時の電源の周波数は、

$$\omega L - \frac{1}{\omega C} = R^2$$

 ω についてとくと、 $\omega > 0$ から、

$$\omega = \frac{RC + \sqrt{(RC)^2 + 4LC}}{2LC}$$

したがって、求める周波数は、

$$rac{2\pi}{\omega} = rac{1}{\pi} \cdot rac{LC}{RC + \sqrt{(RC)^2 + 4LC}}$$