Quantentheorie I

(Kompendium)

Herausgegeben von

Jeffrey Kelling Felix Lemke Stefan Majewsky

Stand: 23. Oktober 2008

Inhaltsverzeichnis

Grundlagen der Quantentheorie	3
Kommutatorrelationen	
Statistische Aussagen	
Darstellung in den Eigenräumen der Fundamentaloperatoren	
Fundamentalbeispiel: Eindimensionaler harmonischer Oszillator	
Bewegungsgleichungen der Quantenmechanik	4
Grundlegende Zeitabhängigkeiten	
Schrödingerbild	
Heisenbergbild	
Diracbild (Wechselwirkungsbild)	
Wahrscheinlichkeitsamplitude	
Störungstheorie	5
Dirac-Theorie	
Schrödinger-Theorie	
Ritzsches Variationsverfahren	
Symmetrien und Erhaltungsgrößen, Drehimpulse	6
Transformationen	
Darstellung von Transformationen	
Grundlagen des Drehimpulses	
Wichtige Beispiele für Drehimpulse	

Kommutatorrelationen

- Orts- und Impulsoperator: $[\hat{x}_i, \hat{x}_j] = [\hat{p}_i, \hat{p}_j] = 0$ und $[\hat{p}_i, \hat{x}_j] = \hbar/i \cdot \delta_{ij} \cdot \mathbf{1}$
- beliebiger Operator $\mathcal{F}(\hat{\vec{x}},\hat{\vec{p}})$: $[\mathcal{F},\hat{x}_k] = \hbar/i \cdot \partial \mathcal{F}/\partial \hat{p}_k$ und $[\mathcal{F},\hat{p}_k] = -\hbar/i \cdot \partial \mathcal{F}/\partial \hat{x}_k$
- Bahndrehimpulsoperator $\hat{\vec{l}} = \hat{\vec{x}} \times \hat{\vec{p}}$: $[\hat{l}_i, \hat{x}_k] = \hbar/i \cdot \varepsilon_{ijk} \cdot \hat{x}_j$ und $[\hat{l}_i, \hat{p}_j] = \hbar/i \cdot \varepsilon_{ijk} \cdot \hat{p}_k$ $[\hat{l}_i, \hat{l}_j] = -\hbar/i \cdot \varepsilon_{ijk} \cdot \hat{l}_k$ und $[\hat{\vec{l}}^2, \hat{l}_i] = 0$

Statistische Aussagen

Sei \mathcal{F} der (hermitesche) Operator zur Observablen F.

- Erwartungswert: $\overline{F} = \langle \mathcal{F} \rangle = \langle \varphi | \mathcal{F} \varphi \rangle = \operatorname{Sp}(\mathcal{P}_{|\varphi\rangle} \mathcal{F}) = \operatorname{Sp}(\mathcal{F} \mathcal{P}_{|\varphi\rangle})$ mit $\langle \varphi | \varphi \rangle = 1$
- Eigendarstellung des Erwartungswertes: $\langle \mathcal{F} \rangle = \int_{\lambda} \lambda \cdot |\varphi(\lambda)|^2 d\lambda$

Durch Messung der Observablen F geht das System in einen Eigenzustand von \mathcal{F} über. Kommutierende Observablen haben dieselben Eigenvektoren, können also gleichzeitig interferenzfrei gemessen werden.

- Messwahrscheinlichkeit des Eigenwertes λ : $w_{\lambda} = |\langle u_{\lambda} | \varphi \rangle|^2 = \operatorname{Sp}(\mathcal{P}_{|\varphi\rangle} \mathcal{P}_{|\mathcal{U}_{\lambda}\rangle})$
- Streuung: Str $\mathcal{F} = \langle \mathcal{F}^2 \rangle \langle \mathcal{F} \rangle^2 = \langle [\mathcal{F} \langle \mathcal{F} \rangle]^2 \rangle$ verschwindet, wenn $|\varphi\rangle$ Eigenvektor von \mathcal{F} ist
- Unschärfe: $\Delta F = \sqrt{\operatorname{Str} \mathcal{F}}$
- Unschärferelation: $\Delta F \cdot \Delta G \geq \frac{1}{2} \cdot |\langle [\mathcal{F}, \mathcal{G}] \rangle|$
- Energie-Zeit-Unschärfe: $\Delta E \cdot \Delta t_F \ge \hbar/2$ mit $\Delta t_F = \Delta F / \left| \frac{\mathrm{d}}{\mathrm{d}t} \left\langle \mathcal{F} \right\rangle \right|$ (Zeit, in der sich die Observable F um ihre Unschärfe ändert)

Darstellung in den Eigenräumen der Fundamentaloperatoren

- Orts-Translations operator: $\mathcal{T}(\xi) = e^{-\frac{i}{\hbar} \cdot \xi \cdot \hat{p}}$ mit $\mathcal{T}(\xi) |u_x\rangle = |u_{x+\xi}\rangle$
- Ortsdarstellung der Fundamentaloperatoren: $\hat{x}\varphi(x) = x \cdot \varphi(x)$ und $\hat{p}\varphi(x) = \hbar/i \cdot \varphi'(x)$
- Impuls-Translationsoperator: $S(\xi) = e^{\frac{i}{\hbar} \cdot \xi \cdot \hat{x}}$ mit $S(\xi)|u_n\rangle = |u_{n+\xi}\rangle$
- Impulsdarstellung der Fundamentaloperatoren: $\hat{x}\varphi(p) = -\hbar/i\cdot\varphi'(p)$ und $\hat{p}\varphi(p) = p\cdot\varphi(p)$
- Zusammenhang beider Darstellungen: $\varphi(p) = (2\pi\hbar)^{-1/2} \cdot \int_{-\infty}^{\infty} e^{-\frac{i}{\hbar} \cdot px} \cdot \varphi(x) dx$ $\varphi(x) = (2\pi\hbar)^{-1/2} \cdot \int_{-\infty}^{\infty} e^{\frac{i}{\hbar} \cdot px} \cdot \varphi(p) dp$

Fundamentalbeispiel: Eindimensionaler harmonischer Oszillator

- Hamilton-Operator: $\mathcal{H} = \frac{1}{2m} \cdot \hat{p}^2 + \frac{m\omega}{2} \cdot \hat{x}^2 = \hbar\omega \cdot (\hat{b}^+ \cdot \hat{b} + \frac{1}{2} \cdot \mathbf{1}) \equiv \hbar\omega \cdot (\hat{n} + \frac{1}{2} \cdot \mathbf{1})$ (Eigenvektoren von \mathcal{H} und \hat{n} stimmen überein)
- Hebungs- und Senkungsoperator: $\hat{b} = \frac{1}{\sqrt{2\hbar}} \cdot \left[\sqrt{m\omega} \cdot \hat{x} + \frac{i}{\sqrt{m\omega}} \cdot \hat{p} \right]$ und $\hat{b}^+ = \frac{1}{\sqrt{2\hbar}} \cdot \left[\sqrt{m\omega} \cdot \hat{x} \frac{i}{\sqrt{m\omega}} \cdot \hat{p} \right]$
- Kommutatoren der neuen Operatoren: $[\hat{b}, \hat{b}^+] = \mathbf{1}$ und $[\hat{b}^q, \hat{n}] = q \cdot \hat{b}^q$ und $[(\hat{b}^+)^q, \hat{n}] = -q \cdot (\hat{b}^+)^q$
- Zusammenhang zwischen den Eigenvektoren: $\hat{b}|u_n\rangle = \sqrt{n}\cdot|u_{n-1}\rangle$ und $\hat{b}^+|u_n\rangle = \sqrt{n+1}\cdot|u_{n+1}\rangle$
- Generierung aller Eigenvektoren aus dem Grundzustand: $|u_n\rangle=(n!)^{-1/2}\cdot(\hat{b}^+)^n|u_0\rangle$ mit $n=0,1,2,3,\ldots$
- Energieeigenwerte: $E_n = (n + \frac{1}{2}) \cdot \hbar \omega$

Grundlegende Zeitabhängigkeiten

- zeitliche Änderung einer Observable: $\mathring{\mathcal{F}} = \frac{i}{\hbar} \cdot [\mathcal{H}, \mathcal{F}] + \frac{\partial}{\partial t} \mathcal{F}$
- Axiom: $\mathring{\mathcal{P}}_{|\varphi\rangle} = 0$, also $\frac{\partial}{\partial t} \mathcal{P}_{|\varphi\rangle} = -\frac{i}{\hbar} \cdot \left[\mathcal{H}, \mathcal{P}_{|\varphi\rangle} \right]$
- unitäre Transformation: $\mathcal{F}^B(\hat{x}(t), \hat{p}(t), t) = \mathcal{A}(t, t_0) \cdot \mathcal{F}(\hat{x}(t_0), \hat{p}(t_0), t) \cdot \mathcal{A}^{-1}(t, t_0)$
- Eigenschaften der Transformation: $\mathcal{A}(t_0, t_0) = 1$ und $\mathcal{A}(t, t_0) = \mathcal{A}(t, t_1) \cdot \mathcal{A}(t_1, t_0)$ und $\mathcal{A}^+(t, t_0) = \mathcal{A}(t_0, t)$
- Ehrenfest-Theorem: $\frac{d}{dt} \langle \mathcal{F} \rangle (t) = \langle \mathring{\mathcal{F}} \rangle (t)$ (Erhaltungsgrößen: $\mathring{\mathcal{F}} = 0$)

Schrödingerbild

- definierende Transformation: $\mathcal{A}^S(t,t_0) = \mathbf{1}$
- Observable: $\frac{\mathrm{d}}{\mathrm{d}t}\mathcal{F}^S(t) = \left(\frac{\partial}{\partial t}\mathcal{F}\right)^S$
- Projektionsoperator: $\frac{\mathrm{d}}{\mathrm{d}t}\mathcal{P}^S_{|\varphi\rangle}(t) = \left(\frac{\partial}{\partial t}\mathcal{P}_{|\varphi\rangle}\right)^S = -\frac{i}{\hbar}\cdot\left[\mathcal{H}^S,\mathcal{P}^S_{|\varphi\rangle}\right]$
- Zustandsvektor: $\frac{\mathrm{d}}{\mathrm{d}t}|\varphi^S(t)\rangle = -\frac{i}{\hbar}\cdot\mathcal{H}^S(t)|\varphi^S(t)\rangle$
- formale Lösung der Bewegungsgleichung: $|\varphi^S(t)\rangle = \mathcal{U}^S(t,t_0)|\varphi^S(t_0)\rangle$ Hierbei ist \mathcal{U}^S unitär, $\frac{\mathrm{d}}{\mathrm{d}t}\mathcal{U}^S(t,t_0) = -\frac{i}{\hbar}\cdot\mathcal{H}^S(t)\cdot\mathcal{U}^S(t,t_0)$ und $\mathcal{U}^S(t_0,t_0) = \mathbf{1}$.
- → Die Zeitabhängigkeit liegt ausschließlich beim Zustandsvektor, die Observablen bleiben zeitunabhängig.

Heisenbergbild

- definierende Transformation: $\frac{d}{dt} \mathcal{A}^H(t,t_0) = \frac{i}{\hbar} \cdot \mathcal{H}^H(t) \cdot \mathcal{A}^H(t,t_0)$
- Observable: $\frac{d}{dt}\mathcal{F}^H = \frac{i}{\hbar} \cdot \left[\mathcal{H}^H(t), \mathcal{F}^H(t)\right] + \left(\frac{\partial}{\partial t}\mathcal{F}\right)^H(t)$, also $\mathcal{F}^H(t) = \mathcal{F}(\hat{x}^H(t), \hat{p}^H(t), t)$
- Projektions operator: $\frac{\mathrm{d}}{\mathrm{d}t}\mathcal{P}^H_{|\varphi\rangle}=0$
- Zustandsvektor: $|\varphi^H(t)\rangle = |\varphi^H(t_0)\rangle$
- → Die Zeitabhängigkeit liegt ausschließlich bei den Observablen, der Zustandsvektor ist zeitunabhängig.

Diracbild (Wechselwirkungsbild)

Betrachte einen Hamilton-Operator $\mathcal{H}(t) = \mathcal{H}_0(t) + \mathcal{H}_1(t)$ (mit einem Störungsanteil $\mathcal{H}_1(t)$).

- definierende Transformation: $\frac{d}{dt} \mathcal{A}^W(t, t_0) = \frac{i}{\hbar} \cdot \mathcal{H}_0^W(t) \cdot \mathcal{A}^W(t, t_0)$
- Observable: $\frac{\mathrm{d}}{\mathrm{d}t}\mathcal{F}^{W} = \frac{i}{\hbar}\cdot\left[\mathcal{H}_{0}^{W}(t),\mathcal{F}^{W}(t)\right] + \left(\frac{\partial}{\partial t}\mathcal{F}\right)^{W}(t)$
- Projektionsoperator: $\frac{\mathrm{d}}{\mathrm{d}t}\mathcal{P}^W_{|\varphi\rangle} = -\frac{i}{\hbar} \cdot \left[\mathcal{H}^W_1(t), \mathcal{P}^W_{|\varphi\rangle}(t)\right]$
- Zustandsvektor: $\frac{\mathrm{d}}{\mathrm{d}t}|\varphi^W(t)\rangle = -\frac{i}{\hbar}\cdot\mathcal{H}_1^W(t)|\varphi^W(t)\rangle$ (formale Lösung wie beim Schrödingerbild möglich)
- formale Lösung der Bewegungsgleichung: $|\varphi^W(t)\rangle = \mathcal{U}(t,t_0)|\varphi^W(t_0)\rangle$ Hierbei ist \mathcal{U}^W unitär, $\frac{\mathrm{d}}{\mathrm{d}t}\mathcal{U}^W(t,t_0) = -\frac{i}{\hbar}\cdot\mathcal{H}_1^W(t)\cdot\mathcal{U}^W(t,t_0)$ und $\mathcal{U}^W(t_0,t_0) = \mathbf{1}$.
- \rightarrow Die Dynamik der Observablen wird durch \mathcal{H}_0 , die des Zustandsvektors durch \mathcal{H}_1 bestimmt.

Wahrscheinlichkeit samplitude

Betrachte einen nicht explizit zeitabhängigen Operator \mathcal{F} mit den Eigenwerten λ und Eigenvektoren $|u_{\lambda}\rangle$.

- Die Wahrscheinlichkeitsamplitude ist als Skalarprodukt (d.h. als $\varphi(\lambda, t) = \langle u_{\lambda} | \varphi(t) \rangle$) bildunabhängig.
- Zeitabhängige Schrödingergleichung: $\frac{d}{dt}\varphi(\lambda,t) = -\frac{i}{\hbar}\cdot\mathcal{H}\varphi(\lambda,t)$

Dirac-Theorie

Der Hamiltonoperator enthalte einen Störungsterm: $\mathcal{H}(t) = \mathcal{H}_0 + \mathcal{H}_1(t)$ – Es sollen im Wechselwirkungsbild Aussagen über die Veränderung des Zustandsvektors getroffen werden.

- iterative Lösung der Bew.gleichung: $\mathcal{U}_{(n)}^W(t,t_0) = \mathbf{1} \frac{i}{\hbar} \cdot \int_{t_0}^t \mathcal{H}_1^W(t_1) \cdot \mathcal{U}_{(n-1)}^W(t_1,t_0) \, dt_1 \text{ mit } \mathcal{U}_{(0)}^W(t,t_0) = \mathbf{1}$ Zum Zeitpunkt t_0 befinde sich das System im Zustand $|\varphi^W(t_0)\rangle = |u_a\rangle$ (Eigenzustand von \mathcal{H}_0).
- Übergangswahrscheinlichkeit durch Störung: $w_{a\to b}(t) = \left| \langle u_b | \varphi^W(t) \rangle \right|^2$
- Lösung in erster Ordnung: $w_{a\to b}(t) = \frac{1}{\hbar^2} \cdot \left| \int_{t_0}^t \exp\left[\frac{i}{\hbar} \cdot (E_b^0 E_a^0) \cdot (t_1 t_0)\right] \cdot \langle u_b | \mathcal{H}_1(t_1) u_a \rangle \, dt_1 \right|^2$ Sei der Störungsterm nicht explizit zeitabhängig. Für hinreichend große Zeiten t gilt asymptotisch:
- Goldene Regel der Quantentheorie: $w_{a\to b}(t) = \frac{|\langle u_b|\mathcal{H}_1 u_a\rangle|^2}{\hbar^2} \cdot 2\pi t \cdot \delta(\omega_{ba})$ mit $\omega_{ba} = (E_b^0 E_a^0)/\hbar$

Schrödinger-Theorie

Der Hamiltonoperator enthalte eine kleine Störung $\mathcal{H} = \mathcal{H}_0 + \lambda \cdot \mathcal{H}_1$ – Wie verändern sich die Energieeigenwerte $|u_n^{(0)}\rangle$ durch die Störung?

• Ansatz: $E_n = E_n^{(0)} + \lambda \cdot E_n^{(1)} + \lambda^2 \cdot E_n^{(2)} + \dots$ und $|u_n\rangle = |u_n^{(0)}\rangle + \lambda \cdot |u_n^{(1)}\rangle + \lambda^2 \cdot |u_n^{(2)}\rangle + \dots$ Das Eigenwertproblem liefert nach Koeffizientenvergleich für Potenzen von λ das Gleichungssystem:

$$\mathcal{H}_{0}|u_{n}^{(0)}\rangle = E_{n}^{(0)} \cdot |u_{n}^{(0)}\rangle
\mathcal{H}_{0}|u_{n}^{(1)}\rangle + \mathcal{H}_{1}|u_{n}^{(0)}\rangle = E_{n}^{(0)} \cdot |u_{n}^{(1)}\rangle + E_{n}^{(1)} \cdot |u_{n}^{(0)}\rangle
\mathcal{H}_{0}|u_{n}^{(2)}\rangle + \mathcal{H}_{1}|u_{n}^{(1)}\rangle = E_{n}^{(0)} \cdot |u_{n}^{(2)}\rangle + E_{n}^{(1)} \cdot |u_{n}^{(1)}\rangle + E_{n}^{(2)} \cdot |u_{n}^{(0)}\rangle
\vdots$$

Die Orthonormierungsbedingung liefert auf ähnliche Weise:

$$\delta_{mn} = \langle u_m^{(0)} | u_n^{(0)} \rangle
0 = \langle u_m^{(0)} | u_n^{(1)} \rangle + \langle u_m^{(1)} | u_n^{(0)} \rangle
0 = \langle u_m^{(0)} | u_n^{(2)} \rangle + \langle u_m^{(1)} | u_n^{(1)} \rangle + \langle u_m^{(2)} | u_n^{(0)} \rangle
\vdots$$

- \bullet iterative Lösung der Energie
eigenwerte: $E_n^{(m)} = \langle u_n^{(m-1)} | \mathcal{H}_1 u_n^{(m-1)} \rangle$
- Energieeigenvektor in erster Ordnung: $|u_n\rangle = |u_n^{(0)}\rangle + \sum_{m\neq n} |u_m^{(0)}\rangle \cdot \frac{\langle u_m^{(0)}|\mathcal{H}_1u_n^{(0)}\rangle}{E_n^{(0)} E_m^{(0)}}$
- Energiekorrekturen in erster und zweiter Ordnung: $E_n^{(1)} = \langle u_n^{(0)} | \mathcal{H}_1 u_n^{(0)} \rangle$ und $E_n^{(2)} = \sum_{m \neq n} \frac{\left| \langle u_n^0 | \mathcal{H}_1 u_m^0 \rangle \right|^2}{E_n^{(0)} E_m^{(0)}}$ Bei entarteten Energien muss diese Summe alle Eigenvektoren zu anderen Eigenwerten enthalten.

Ritzsches Variationsverfahren

Gesucht ist die Energie E_0 des Grundzustandes $|u_0\rangle$ für ein System mit dem Hamiltonoperator \mathcal{H} .

- Rayleigh-Ritz-Prinzip: $E_0 \leq \langle \mathcal{H} \rangle = \frac{\langle \varphi | \mathcal{H} \varphi \rangle}{\langle \varphi | \varphi \rangle}$ für alle Zustandsvektoren $| \varphi \rangle$
- Ritzsches Variationsverfahren: Man wählt $|\varphi\rangle$ als Funktion eines Parameters und sucht das Minimum der Energie $E(\mu) = \frac{\langle \varphi(\mu) | \mathcal{H} \varphi(\mu) \rangle}{\langle \varphi(\mu) | \varphi(\mu) \rangle}$.

Transformationen

- Transformation: g (Struktur a priori unbekannt) mit zugehörigem unitären Operator $\mathcal{D}(g)$
- Anwendung auf eine Observable: $\mathcal{F}' = \mathcal{D}(g) \cdot \mathcal{F} \cdot \mathcal{D}^{-1}(g)$
- Die Menge der Transformationen bildet mit der Verkettung (bzw. Operatormultiplikation) eine Gruppe.
- Transformationsgruppe des Hamilton-Operators: $\mathcal{D}(g)$ mit $[\mathcal{D}(g),\mathcal{H}]=0$ Nicht explizit zeitabhängige $\mathcal{D}(g)$ aus der Transformationsgruppe von \mathcal{H} sind Erhaltungsgrößen.
- Struktur einer kontinuierlichen Symmetrieoperation: $\mathcal{D}(g) = e^{-\frac{i}{\hbar} \cdot g \cdot \mathcal{F}}$ mit Generator $\mathcal{F} = \mathcal{F}^+$ Die $\mathcal{D}(g)$ sind genau dann in der Transformationsgruppe von \mathcal{H} , wenn \mathcal{F} eine Erhaltungsgröße ist.

Darstellung von Transformationen

Betrachte eine Transformation $\mathcal{D}(q)$ aus der Transformationsgruppe des Hamilton-Operators \mathcal{H} . Ist $|u_{\lambda}\rangle$ ein Eigenvektor von \mathcal{H} , dann auch $\mathcal{D}(g)|u_{\lambda}\rangle$ (zum selben Eigenwert).

• Beschreibung der Transformation im Falle der Entartung: $\mathcal{D}(g)|u_{\lambda}^{\mu}\rangle = \sum_{\mu'=1}^{t_{\lambda}} D_{\lambda}^{\mu'\mu}(g) \cdot |u_{\lambda}^{\mu'}\rangle$ Die entstehende Matrix $\mathbf{D}_{\lambda}(g)$ heißt reduzibel, wenn sie in Untermatrizen in Blockgestalt zerfällt. Die minimalen Untermatrizen entsprechenden irreduziblen Unterdarstellungen.

Grundlagen des Drehimpulses

- allgemeiner Drehimpulsoperator: $\vec{\mathcal{J}}$ generiert eine kontinuierliche Transformationsgruppe (Kommutatoren zwischen den \mathcal{J}_i und mit $\vec{\mathcal{J}}^2$ in Analogie zum Bahndrehimpuls)
- Transformationen: $\mathcal{R}_{\vec{e}}(\alpha) = e^{-\frac{i}{\hbar} \cdot \alpha \cdot (\vec{e} \cdot \vec{\mathcal{J}})}$ (Drehung um Achse entlang Einheitsvektor \vec{e})
- Eigenwertproblem: $\vec{\mathcal{J}}^2|u_j^m\rangle=j(j+1)\cdot\hbar^2\cdot|u_j^m\rangle$ und $\mathcal{J}_z|u_j^m\rangle=m\cdot\hbar\cdot|u_j^m\rangle$ mit $m=-j,\ldots,j$
- Hebungs- und Senkungsoperatoren: $\mathcal{J}_{\pm} = \mathcal{J}_x \pm i \cdot \mathcal{J}_y$ mit $\vec{\mathcal{J}}^2 = \mathcal{J}_- \cdot \mathcal{J}_+ + \hbar \cdot \mathcal{J}_z + \mathcal{J}_z^2$
- Kommutatorrelationen: $[\mathcal{J}_+, \mathcal{J}_-] = 2\hbar \cdot \mathcal{J}_z$ und $[\mathcal{J}_z, \mathcal{J}_{\pm}^n] = \pm n\hbar \cdot \mathcal{J}_{\pm}^n$
- Zusammenhang zwischen den Eigenvektoren: $\mathcal{J}_{\pm}|u_{j}^{m}\rangle = \sqrt{j(j+1) m(m\pm1)} \cdot \hbar \cdot |u_{j}^{m\pm1}\rangle$ mit $\mathcal{J}_{\pm}|u_{j}^{\pm j}\rangle = 0$ Erzeugung aus Extremalzuständen: $|u_{j}^{m}\rangle = \sqrt{\frac{(j\mp m)!}{(2j)!\cdot(j\pm m)!}} \cdot \left(\frac{\mathcal{J}_{\pm}}{\hbar}\right)^{j\pm m} |u_{j}^{\mp j}\rangle$
- Beschreibung des unitären Raumes benötigt man noch mindestens eine weitere kommutierende Observable

Wichtige Beispiele für Drehimpulse

• Beim Bahndrehimpuls \vec{l} ist j (bzw. l) ganzzahlig. Ortsdarstellung der entsprechenden Operatoren:

$$\hat{l}_{\pm} = \hbar \cdot e^{\pm i\varphi} \cdot \left[\pm \frac{\partial}{\partial \vartheta} + i \cdot \cot\vartheta \cdot \frac{\partial}{\partial \varphi} \right]$$

$$\hat{l}_{z} = \frac{\hbar}{i} \cdot \frac{\partial}{\partial \varphi}$$

$$\hat{l}^{2} = -\hbar^{2} \cdot \left[\frac{1}{\sin\vartheta} \cdot \frac{\partial}{\partial \vartheta} \left(\sin\vartheta \cdot \frac{\partial}{\partial \vartheta} \right) + \frac{1}{\sin^{2}\vartheta} \cdot \frac{\partial^{2}}{\partial \varphi^{2}} \right]$$

$$\Delta\psi(\vec{r}) = \frac{1}{r} \cdot \frac{\partial^{2}}{\partial r^{2}} \left[r \cdot \psi(\vec{r}) \right] - \frac{1}{r^{2} \cdot \hbar^{2}} \cdot \hat{l}^{2} \psi(\vec{r})$$

• Der Spin $\hat{\vec{s}}$ ist nicht im gewöhnlichen Orts-Impuls-Raum beschreibbar. Es sind $j \to s = 1/2$ und $m = \pm 1/2$. Im neuen zweidimensionalen Spin-Raum gibt es die folgenden Spinoperatoren (in Matrixdarstellung):

$$\langle u^{m} | \hat{s}^{2} u^{m'} \rangle = \frac{3}{4} \cdot \hbar^{2} \cdot \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \qquad \langle u^{m} | \hat{s}_{+} u^{m'} \rangle = \hbar \cdot \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} \qquad \langle u^{m} | \hat{s}_{x} u^{m'} \rangle = \frac{\hbar}{2} \cdot \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$

$$\langle u^{m} | \hat{s}_{z} u^{m'} \rangle = \frac{\hbar}{2} \cdot \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \qquad \langle u^{m} | \hat{s}_{-} u^{m'} \rangle = \hbar \cdot \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix} \qquad \langle u^{m} | \hat{s}_{y} u^{m'} \rangle = \frac{\hbar}{2} \cdot \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}$$

- Pauli-Spinmatrizen: Matrixdarstellungen der Operatoren $\hat{\sigma}_i = \frac{2}{\hbar} \cdot \hat{s}_i$ mit i = x, y, z
- Rechenregeln: $\hat{s}_{+}^2 = 0$ und $\hat{s}_{i}^2 = \frac{1}{3} \cdot \hat{\vec{s}}^2 = \frac{1}{4} \cdot \hbar^2 \cdot \mathbf{1}$

$$\hat{s}_x \cdot \hat{s}_y = -\hat{s}_y \cdot \hat{s}_x = -\frac{\hbar}{2i} \cdot \hat{s}_z \text{ und } \hat{s}_x \cdot \hat{s}_y \cdot \hat{s}_z = -\frac{\hbar^3}{8i} \cdot \mathbf{1}$$