MA1200

Practice Exercise for Ch. 4 Trigonometric Functions and Inverse Trigonometric Functions **Solutions**

- (a) Convert the following angles to radians. 1.
 - (i) $\frac{4\pi}{15}$ rad
- $\frac{2\pi}{3}$ rad (ii)
- $\frac{7\pi}{4}$ rad (iii)
- (b) Convert the following angles to degree.
- (i) 30°

123° (ii)

-72° (iii)

- (ii) Domain: IR Range = [-4,6]
 - (iii) Since f(x+211) = 5 sin(x+211)+1 = tsinx+1 = f(x) i, f(x) is periodic with T=211
- (b).(i) vf(x)= cos x
- Domain: 1R Range: [-1,1] (iī)
- (iii) Since $f(x+4\pi) = \cos\left(\frac{x+4\pi}{2}\right)$ $= \cos\left(\frac{x}{2} + 2\pi\right) = \cos\frac{x}{2} = f(x)$ in f(x) is periodic with T=411

- (ti) Domain = IR
- (ii) Domain ...

 Range = [-2,2]

 (iii) Since $f(x+2n) = 2\sin(x+2n-\frac{\pi}{3})$ $= 2\sin(x-\frac{\pi}{3}) = f(x)$
 - in f(x) is periodic with T=27

- (ii) Domain = R\{x|x=nπ, n∈Z} Range = R
- (iii) Since $f(x+\pi) = tan(x+\pi+\frac{\pi}{2})$ $= tan(x+\frac{\pi}{2}) = f(x)$ i. f(x) is periodic with $T = \pi$
- (e) (i) $f(x) = |-2\sin x|$ $\frac{1}{-\frac{\pi}{2}} \quad 0 \quad \frac{\pi}{2} \quad \pi \quad 2\pi$
- (ii) Domain: IR Range: [0,2]
- (iii) Since $f(x+\pi) = |-2\sin(x+\pi)|$ = $|-2\cdot(-\sin x)| = |-2\sin x| = f(x)$: f(x) is periodic with $T=\pi$

- (ii) Domain: IR Range: (-2,0)
- (iii) Since $f(x+\pi) = -2|\sin(x+\pi)|$ = $-2|-\sin x| = -2|\sin x| = f(x)$ $\therefore f(x)$ is periodic with $T=\pi$

(3) (a) (i)
$$f(x) = u_{\pi}(x) \cos x$$

$$\frac{1}{2} \quad \frac{1}{2} \quad \frac{1}{2} \quad \frac{1}{2} \quad x$$

- $f(x) = U_{\pi}(x)\cos x$ $= \begin{cases} 0 & x < \pi \\ \cos x & x > \pi \end{cases}$
- (ii) Domain= IR Range= [-1,1]

$$f(x) = \lim_{x \to \infty} (x) + \sin x$$

$$= \begin{cases} \sin x & x < \frac{\pi}{2} \\ 1 + \sin x & x > \frac{\pi}{2} \end{cases}$$

$$f(x) = \frac{x}{x} + \cos x$$

$$= 1 + \cos x \quad \text{for } x \neq 0$$

$$f(x) \text{ is undefined for } x = 0$$

Range: [-1,2]

(4). (a) LHS=
$$\frac{1-\cos^2\theta}{\cos\theta} = \frac{\sin^2\theta}{\cos\theta} = \frac{\sin^2\theta}{\cos\theta} = \tan^3\theta = RHS$$
 $\frac{1-\sin^2\theta}{\sin\theta} = \frac{\cos^2\theta}{\sin\theta} = \frac{\sin^2\theta}{\cos\theta} = \tan^3\theta = RHS$

(b)
$$LHS = \frac{csc^2\theta}{1+tan^2\theta} = \frac{csc^2\theta}{sec^2\theta} = \frac{cos^2\theta}{sin^2\theta} = cot^2\theta = csc^2\theta - 1 = RHS$$

$$\cos \theta = -\frac{4}{5}$$
 θ in Quadrant III.

$$PQ^{2} + 0Q^{2} = 0P^{2}$$

$$PQ = \sqrt{5^{2} - 4^{2}} = 3$$

$$\therefore y - coordinate of P is -3.$$

(a)
$$\sin \theta = \frac{-3}{5}$$
 (b) $\tan \theta = \frac{-3}{4} = \frac{3}{4}$

(c)
$$CSC\theta = \frac{1}{SIN\theta} = -\frac{5}{3}$$

(b) (a)
$$\frac{\sin(\frac{\pi}{2}+\theta)\cos(\frac{3\pi}{2}-\theta)}{\sec(\theta-\pi)} = \frac{\cos\theta(-\sin\theta)}{\sec(\pi-\theta)} = \frac{-\cos\theta\sin\theta}{\sec(\pi-\theta)}$$

$$= \frac{-\cos\theta\sin\theta}{-\cot\theta} = \sin\theta\cos^2\theta$$

(b)
$$\frac{\tan\left(\theta+\frac{3\pi}{2}\right)\cot\left(\frac{2\pi}{2}+\theta\right)}{\csc\left(\theta-\frac{\pi}{2}\right)} = \frac{\left(-\cot\theta\right)\left(-\tan\theta\right)}{\csc\left[-\left(\frac{\pi}{2}-\theta\right)\right]} = \frac{1}{-\csc\left(\frac{\pi}{2}-\theta\right)} = -\sin\left(\frac{\pi}{2}-\theta\right) = -\cos\theta$$

(7) (a)
$$\sin(\sin^{-1}\frac{2}{5}) = \frac{2}{5}$$
 (b) $\sin^{-1}(\sin\frac{\pi}{4}) = \frac{\pi}{4}$

(c)
$$\sin^{-1}\left(\sin\left(-\frac{2\pi}{3}\right)\right) = \sin^{-1}\left(-\frac{12}{2}\right) = -\frac{\pi}{3}$$
 (d) $\sin^{-1}\left(\tan\left(\frac{3\pi}{4}\right)\right) = \sin^{-1}\left(-1\right) = -\frac{\pi}{2}$

(e)
$$\cos(\cos^{-1}\frac{3}{4}) = \frac{3}{4}$$
 (f) $\cos^{-1}(\cos\frac{5\pi}{4}) = \cos^{-1}(-\frac{5\pi}{2}) = \frac{3\pi}{4}$

(9)
$$\cos^{-1}\left(\sin(-\frac{\pi}{6})\right) = \cos^{-1}\left(-\frac{1}{2}\right) = \frac{2\pi}{3}$$
 (h) $\tan^{-1}(\tan \pi) = \tan^{-1}(0) = 0$

(8) (a)
$$\sin 35^{\circ} \cos 25^{\circ} + \sin 25^{\circ} + \cos 35^{\circ}$$

= $\sin (35^{\circ} + 25^{\circ}) = \sin 60^{\circ} = \frac{12}{2}$

(b)
$$\tan 165^{\circ} = \tan (135^{\circ} + 30^{\circ}) = \frac{\tan 135^{\circ} + \tan 30^{\circ}}{1 - \tan 135^{\circ} + \tan 30^{\circ}}$$
 (where $\tan 135^{\circ} = \tan (180^{\circ} - 45^{\circ}) = \tan (180^{\circ} - 45^{\circ}) = -\tan 45^{\circ} = -1$

$$= \frac{1 - \sqrt{3}}{1 + \sqrt{3}} = \frac{1 - \sqrt{3}}{1 + \sqrt{3}} = \frac{1 - 2\sqrt{3} + 3}{1 - 3} = \frac{4 - 2\sqrt{3}}{1 - 3} = \sqrt{3} - 2$$

(9) (a) To prove
$$cos(A+B)cos(A-B) = cos^2A - sin^2B$$

Method 1

LHS =
$$Cos(A+B)Cos(A-B)$$

= $(cosAcosB-sinAsinB)(cosAcosB+sinAsinB)$
= $(cosAcosB)^2-(sinAsinB)^2$
= $cos^2A(1-sin^2B)-sin^2B(1-cos^2A)$
= cos^2A-sin^2B
= khs

Method 2

(b). To prove
$$\frac{\sin 2A}{\cos 2A+1} = \tan A$$

LHS = $\frac{\sin 2A}{\cos 2A+1} = \frac{2 \sin A \cos A}{2 \cos^2 A-1+1} = \frac{\sin A}{\cos A} = \tan A = RHS$

(c) To prove
$$(\sin A - \cos A)^2 = 1 - \sin 2A$$

LHS = $(\sin A - \cos A)^2$
= $\sin^2 A - 2\sin A \cos A + \cos^2 A = 1 - 2\sin A\cos A = 1 - \sin 2A = RHS$

$$\frac{\sin 75^{\circ} - \sin 15^{\circ}}{\cos 75^{\circ} + \cos 15^{\circ}} = \frac{2 \cos \frac{75^{\circ} + 15^{\circ}}{2} \sin \frac{75^{\circ} - 15^{\circ}}{2}}{2 \cos \frac{75^{\circ} + 15^{\circ}}{2} \cos \frac{75^{\circ} + 15^{\circ}}{2}} = \frac{2 \cos 45^{\circ} \sin 30^{\circ}}{2 \cos 45^{\circ} \cos 30^{\circ}}$$

$$= \tan 30^{\circ} = \frac{1}{\sqrt{3}}.$$

(11) To prove
$$4\cos A\cos \left(\frac{2\pi}{3} + A\right)\cos \left(\frac{2\pi}{3} - A\right) = \cos 3A$$

LHS = $4\cos A\cos \left(\frac{2\pi}{3} + A\right)\cos \left(\frac{2\pi}{3} - A\right)$
= $4\cos A\left[\frac{1}{2}\left(\cos\left(\frac{4\pi}{3}\right) + \cos 2A\right)\right]$
= $2\cos A\left[-\frac{1}{2} + \cos 2A\right]$
= $-\cos A + 2\cos A\cos 2A = -\cos A + \cos (A+2A) + \cos (A-2A)$
= $-\cos A + \cos 3A + \cos A = \cos 3A = RHS$

(12). (a)
$$\sin(x+45^\circ) = \sin x \cos 45^\circ + \cos x \sin 45^\circ$$

= $\frac{\sqrt{2}}{2} \sin x + \frac{\sqrt{2}}{2} \cos x = \frac{\sqrt{2}}{2} (\sin x + \cos x)$

(b)
$$y = \cos x + \sin x$$

= $\frac{2}{\sqrt{2}} \left[\frac{\sqrt{2}}{2} \left(\sin x + \cos x \right) \right] = \frac{2}{\sqrt{2}} \sin \left(x + 45^{\circ} \right)$

(13) (a) Notice that
$$\cos^{-1}\left(\frac{\sqrt{3}}{2}\right) = \frac{\pi}{6}$$
, so that

$$\frac{x}{2} = 2n\pi \pm \frac{\pi}{6}$$
 \therefore $x = 4n\pi \pm \frac{\pi}{3}$, where *n* is any integer.

(b)
$$2\sin^2 x + \sin x - 1 = 0$$

 $(2\sin x - 1)(\sin x + 1) = 0$
 $2\sin x - 1 = 0$ or $\sin x + 1 = 0$
 $\sin x = \frac{1}{2}$ or $\sin x = -1$
 $x = n\pi + (-1)^n \frac{\pi}{6}$ or $x = n\pi + 1$

$$x = n\pi + (-1)^n \frac{\pi}{6} \qquad \text{or} \qquad x = n\pi + (-1)^n \left(-\frac{\pi}{2}\right)$$
The solution is $x = n\pi + (-1)^n \frac{\pi}{6}$ or $x = n\pi - (-1)^n \left(\frac{\pi}{2}\right)$, where n is any integer.