Math 5050 – Special Topics: Manifolds– Fall 2025 w/Professor Berchenko-Kogan

Paul Carmody Section 8: The Tangent Space – May 30, 2025

Problems

9.1. Regular values

Define $f: \mathbb{R}^2 \to \mathbb{R}$ by

$$f(x,y) = x^3 - 6xy + y^2$$
.

Fine all values $c \in \mathbb{R}$ for which the level $f^{-1}(c)$ is a regular submanifold of \mathbb{R}^2 .

9.2. Solution set of one equation.

Let x, y, z, w be the standard coordinates on \mathbb{R}^4 . Is teh solution set of $x^5 + y^5 + z^5 + w^5 = 1$ in \mathbb{R}^4 a smooth manifold? Explain why or why not. (Assume that the subset is given the subspace topology).

9.3. Solution set of two equations.

Is the solution set of the sysemt of equations

$$x^3 + y^3 + z^3 = 1, z = xy$$

in \mathbb{R}^3 a smooth manifold? Prove your answer.

9.4. Regular submanifolds

Suppose that a subset S of \mathbb{R}^2 hat eh property that locally on S one of the coordinates is C^{∞} function of the other coordinate. Show that S is qa regular submanifold of \mathbb{R}^2 . (Note that the unit circle defined by $x^2 + y^2 = 1$ has this property. AT every point of the circle, there is a neighborhood in which y is a C^{∞} function of x or x is a C^{∞} function of y.)

9.5. Graph of a smooth function

Show that the graph $\Gamma(f)$ of a smooth function $f: \mathbb{R}^2 \to \mathbb{R}$.

$$\Gamma(f) = \left\{ \left(x, y, f(x, y) \right) \in \mathbb{R}^3 \right\}$$

is a regular submanifold of \mathbb{R}^3 .

9.6. **Euler's formula** A polynomial $F(x_0, ..., x_n) \in \mathbb{R}[x_0, ..., x_n]$ is homogenous of degree k if it is a linear combination of monomials $x_9^{i_0} \cdots x_n^{i_n}$ of degree $\sum_{j=0}^n i+j=k$. Let $F(x_0, ..., x_n)$ be a homogenous polynomial of degree k. Clearly, for any $t \in \mathbb{R}$,

$$F(tx_0, \dots, tx_n) = t^k F(x_0, \dots, x_n).$$

Show that

$$\sum +i = 0^n x_i \frac{\partial F}{\partial x_i} = kF.$$

9.7. Smooth projective hypersurface

On the projective space $\mathbb{R}P^n$ a hmogenous polynomial $F(x_0, \ldots, x_n)$ of degree k is not a function, since its value at a point $[a_0, \ldots, a_n]$ is not unique. However, the zer set in $\mathbb{R}P^n$ of a homogenous polynomial $F(x_0, \ldots, x_n)$ is well defined, since $F(a_0, \ldots, a_n) = 0$ if and only if

$$F(ta_0, ..., ta_n) = t^k F(a_0, ..., a_n) = 0, \forall t \in \mathbb{R}^\times : \mathbb{R} - \{0\}$$

The zero set of finitely many homogenous polynomials in $\mathbb{R}P^q$ is called a real projective variety. A projective variety defined by a single homogeneous polynomial of degree k is called a hypersurface of degree k. Show that the hypersurface Z(F) defined by $F(x_0, x_1, x_2) = 0$ is smoot if $\partial F/\partial x_0$, $\partial F/\partial x_1$ and $\partial F/\partial x_2$ are simultaneously zero on Z(F). (Hint: The standard coordinates on U_0 which is homeomorpic to \mathbb{R}^2 , are $x = x_1/x_0$, $y = x_2/x_0$ (see Subsection 7.7). In U_0 , $F(x_0, x_1, x_2) = x_0^t F(1, x_1/x_0, x_2/x_0) = x_0^k F(1, x, y)$. Defein f(x, y) = F(1, x, y). Then f and F ahve the same zero set in U_0 .)

9.8. Product of regular submanifolds

If S_1 is a regular submanifold of the manifold M_i for i=1,2, prove that $S_1 \times S_2$ is a regular submanifold of $M_1 \times M_2$.