AMPLIACIÓN DE SISTEMAS OPERATIVOS Y REDES

Grado en Ingeniería Informática / Doble Grado Universidad Complutense de Madrid

TEMA 1.1. Revisión de IPv4. Protocolo DHCP

PROFESORES:

Rubén Santiago Montero Eduardo Huedo Cuesta Rafael Rodríguez Sánchez

Arquitectura TCP/IP

Protocolo de Internet: IP

Protocolo de red de TCP/IP

- Proporciona un servicio básico de entrega de paquetes
- Protocolo no orientado a conexión (no fiable)
 - No realiza detección ni recuperación de paquetes perdidos o erróneos
 - No garantiza que los paquetes lleguen en orden
 - No garantiza la detección de paquetes duplicados

Funciones básicas del protocolo IP

- Esquema global de direccionamiento
 - Dirección IP
- Encapsulado de datos y formato
 - Datagrama IP
- Fragmentación y reensamblaje de paquetes
 - División del paquete en fragmentos de un tamaño aceptable por la red
- Reenvío de paquetes
 - Retransmisión de paquetes de una red a otra, basada en la información de la tabla de rutas, que se construye con los protocolos de encaminamiento (RIP, OSPF, BGP...)

Estructura y Notación

- Las direcciones IP constan de 4 bytes (32 bits)
- Para expresarlas se utiliza la "notación de punto" (Ej. 10.0.0.1)

CIDR (Classless Inter-Domain Routing)

- Intenta aliviar el problema del agotamiento de direcciones
- Elimina la estructura fija basada en clases
- El espacio de direcciones se divide en bloques de tamaño arbitrarios
- Notación barra (o CIDR) que incluye la longitud del prefijo

Máscara de Red

- Sirve para determinar el prefijo de red de una dirección IP (Y lógica)
- Notación decimal o CIDR

Direcciones de Red

- Se utilizan para representar a una red completa en las tablas de rutas
- Nunca se utilizan como dirección destino ni se asignan a un host concreto

Direcciones de Broadcast

Se utilizan para enviar un paquete a todas las máquinas de la red local

Direcciones de Loopback

- Direcciones de bucle interno
- Red 127.0.0.0/8 (típicamente 127.0.0.1)

Direcciones Privadas

- Conjunto de direcciones reservadas para uso privado
- No son válidas para su uso en Internet
- Los rangos de direcciones IP privadas son los siguientes:

10.0.0.0 - 10.255.255.255 ~ 1 red privada de clase A (/8)

o 172.16.0.0 - 172.31.255.255

~ 16 redes privadas de clase B (/16)

o 192.168.0.0 - 192.168.255.255

~ 256 redes privadas de clase C (/24)

Direcciones Multicast (224.0.0.0/4) - RFC 1112

- Identifican de forma lógica a un grupo de hosts en el segmento de red. Ejemplos
 - 224.0.0.1 (todos los hosts)
 - 224.0.0.2 (todos los routers)
 - 224.0.0.251 (mDNS)
- Relación con la capa de enlace (Ethernet tipo 0x0800, RFC 7042 Sección 2.1.1)
 - IP: 224.0.0.1 23 bits
 - MAC: 01:00:5E:00:00:01

Formato del datagrama IP

Traducción de direcciones: ARP

 ARP (Address Resolution Protocol) establece la correspondencia entre direcciones IP y MAC

Trama Ethernet

 La tabla ARP mantiene las direcciones IP de las últimas máquinas con las que nos hemos comunicado y las direcciones Ethernet asociadas

Formato del mensaje ARP

	8	16	31
Hardwa	re Type	Protocol Type	Hard
Hardware length	Protocol length	Operation Request:1, Reply:2	Prot
	Source har	rdware address	
Source protocol address			
Destination hardware address (Empty in request)			
	Destination p	rotocol address	

Hardware: LAN or WAN protocol Protocol: Network-layer protocol

Reenvio de Paquetes

- Cuando un host tiene que enviar un paquete, lo hace por el enlace adecuado para alcanzar el destino usando la tabla de rutas
- Reenvío basado en dirección destino. Se busca un destino que coincida y se reenvía por esa ruta (no orientado a conexión)
 - Entradas en la tabla (rutas) por host, red o por defecto
 - Las entradas de red pueden ser con o sin clase
- Reenvío basado en etiqueta. Cada paquete se etiqueta y se reenvía según esa etiqueta (orientado a conexión)
 - Reduce la complejidad de la tabla de rutas
 - Se usa siempre el mismo circuito (entrega en orden y tiempo predecible)
 - Campo Flow Label en la cabecera IPv6 y MPLS (Multiprotocol Label Switching)

Reenvío Basado en Dirección Destino

- La tabla de rutas tiene información sobre:
 - Destino
 - Máscara de red o longitud de prefijo (para direccionamiento sin clase)
 - Interfaz (para entrega directa) y/o siguiente salto (para entrega indirecta)
 - Métrica (preferencia de ruta)
- El destino puede ser
 - Un host específico
 - Una red
 - Default (0.0.0.0/0), para paquetes que no encajen en ninguna entrada
- Proceso de selección de destino:
 - Buscar la ruta más específica que encaje con la dirección destino (longest match prefix)
 - Si hay más de una ruta con igual especificidad, elegir la de menor métrica

Reenvío Basado en Dirección Destino

- La tabla de rutas de un host contiene:
 - Ruta por defecto, que se establece en el proceso de autoconfiguración (ver DHCP) o de forma manual (ip route add default)
 - Rutas directas a las redes configuradas en cada interfaz
 - Rutas específicas configuradas de forma manual (ip route add <dest>)

Ruta por defecto

Ruta instalada por DHCP (servidor 192.168.0.249)

```
$ ip route
default via 192.168.0.1 dev enp0s31f6 proto dhcp src 192.168.0.249 metric 202
default via 192.168.0.1 dev wlp3s0 proto dhcp src 192.168.0.223 metric 303
10.3.0.0/16 dev enp0s31f6 proto kernel scope link src 10.0.0.24
192.168.0.0/24 dev enp0s31f6 proto dhcp scope link src 192.168.0.249 metric 202
192.168.0.0/24 dev wlp3s0 proto dhcp scope link src 192.168.0.223 metric 303
```

Ruta directa al configurar el interfaz

Dos rutas a la red 192.168.0.0/24 se prefiere la de menor métrica (LAN > WiFi)

Reenvío: Ejemplo

Dada la siguiente topología de red:

- Determine la tabla de rutas para el encaminador R1
- Describir el procesamiento de dos paquetes con dirección destino 201.4.22.35 y 18.24.32.78, respectivamente

Protocolo de mensajes de control: ICMP

Características

- Es un protocolo para el intercambio de mensajes de control en la red
- Los mensajes ICMP se pueden clasificar en dos tipos:
 - Error: para informar de situaciones de error en la red
 - Informativos: sobre la presencia o el estado de un determinado sistema

0	
8	Tipo ICMP
	Código
16	
32	·····Checksum ····
-	
	ICMP Datos (Opcionales)

Mensajes Error			
Tipo	Significado		
3	Destination Unreachable		
4	Source Quench		
11	Time Exceeded		
12	Parameter Problem		

Mensajes Informativos		
Tipo	Significado	
0	Echo Reply	
5	Redirect	
8	Echo Request	
9	Router Solicitation	
10	Router Advertisement	

ICMP: Echo Request/Reply

- Se utilizan para ver si un computador es alcanzable
- Formato de los mensajes Echo Request/Echo Reply
 - Identificador: Permite establecer la correspondencia entre solicitud (Request) y respuesta (Reply); ambos con el mismo identificador.
 - Secuencia: También se utiliza para establecer la correspondencia entre solicitud y respuesta, cuando se envían varios Echo Requests consecutivos con el mismo identificador.
 - Datos: Un número determinado de bytes aleatorios.
- La orden ping envía mensajes ICMP Echo Request y espera la recepción de mensajes ICMP Echo Reply

Configuración dinámica: DHCP

- DHCP (Dynamic Host Configuration Protocol) proporciona configuración automática de los parámetros de la red
 - Dirección IP y máscara de red
 - Router predeterminado
 - Servidores DNS
 - Otros parámetros y servicios de red

Antecedentes

- RARP (Reverse ARP): Sólo es útil en el segmento de red. Únicamente provee la dirección IP
- BOOTP (Bootstrap Protocol): Soluciona los problemas de RARP pero sólo soporta configuraciones estáticas (similar a DHCP en configuración estática)

Características (RFC 2131)

- Protocolo cliente/servidor sobre UDP en los puertos 67 (servidor) y 68 (cliente). Nota: el puerto cliente no es un puerto efímero
- Control de errores basado en sumas de comprobación, temporizadores y retransmisiones
- Protocolo TFTP para la transferencia de ficheros con información adicional o imágenes de arranque
- DHCP Relay Agent para servidores/clientes en diferentes redes

DHCP: Diagrama de estados y mensajes

- DHCPDISCOVER: Mensaje del cliente (broadcast) para descubrir los servidores disponibles (puede contener la última dirección IP asignada).
- **DHCPOFFER:** Respuesta de los servidores, con una oferta de parámetros de configuración (puede recibirse más de una).
- DHCPREQUEST: Petición de oferta del cliente (broadcast, para notificar a todos los servidores) o extensión del tiempo de cesión. El servidor seleccionado se especifica en una opción.
- DHCPACK: Mensaje de confirmación del servidor (broadcast) con parámetros definitivos.
- DHCPRELEASE: Mensaje del cliente para informar al servidor de que ha finalizado el uso de la dirección IP (no es obligatorio).

DHCP: Formato del mensaje

Length in byted defined in the length field.

Code: 0x01 (request), 0x02 (reply)

Hw type - length: 1 - 6 para Ethernet

Trans. ID: Correspondencia entre solicitud y respuesta

Your IP: ofrecida por el servidor

Server name - Boot filename: compatibilidad con BOOTP

Options: Información de configuración (RFC 2132)

- Servidores DNS
- Host name
- TCP/IP (MTU, TTL...)
- Servidores NTP, SMTP, POP3...
- DHCP extensions (tipo mensaje, servidor TFTP, tiempo de cesión, Id. servidor, Id. cliente...)

Ejemplos de Preguntas Teóricas

¿Cuál de los siguientes parámetros NO se puede configurar usando DHCP? □ Dirección física (MAC) □ Dirección de red (IP) □ Router predeterminado	
¿Qué mensaje DHCP se usa para realizar una petición de oferta por parte del cliente? DHCPDISCOVER DHCPOFFER DHCPREQUEST	
Con la introducción de CIDR, se pretende □ampliar el espacio total de direcciones. □dividir el espacio de direcciones en bloques de tamaño fijo. □aliviar el problema del agotamiento de direcciones.	