Izbrana poglavja iz topologije Zapiski predavanj

2023/24

Povzetek

Dokument vsebuje zapiske predavanj predmeta Izbrana poglavja iz topologije v okviru študija prvega letnika magistrskega študija matematike na FNM.

Kazalo

1 Metrizabilnost topoloških prostorov

3

1 Metrizabilnost topoloških prostorov

Za začetek se spomnimo nekaj znanih pojmov s področja topologije. Naj bo X neprazna množica:

- Pravimo, da je topološki prostor (X, \mathcal{T}) <u>metrizabilen</u>, če obstaja metrika $d: X \to \mathbb{R}$, taka, da je $\mathcal{T}_d = \mathcal{T}$, kjer je \mathcal{T}_d topologija na X, ki ima za bazo $\mathcal{B}_d = \{K_d(x,r); \ x \in X \ \& \ r > 0\}.$
- Naj bosta \mathcal{T}_1 in \mathcal{T}_2 topologiji na X in \mathcal{B}_1 ter \mathcal{B}_2 bazi za \mathcal{T}_1 in \mathcal{T}_2 . Tedaj je $\mathcal{T}_1 \subseteq \mathcal{T}_2$, če je $\mathcal{B}_1 \subseteq \mathcal{T}_2$
- Naj bosta d_1 in d_2 metriki na X. Pravimo, da sta d_1 in d_2 ekvivalentni, če je $\mathcal{T}_{d_1} = \mathcal{T}_{d_2}$

Lema 1. Naj bo X_d matrični prostor in naj bo $\rho: X \times X \to \mathbb{R}$ definirana s predpisom

$$\rho(x,y) = \frac{d(x,y)}{1 + d(x,y)}$$

. Tedaj velja:

1. ρ je metrika na X za katero je $\rho(x,y) \in [0,1) \forall x,y \in X$

2.
$$\mathcal{T}_d = \mathcal{T}_\rho$$

Dokaz. 1. Glede na definicijo ρ je očitno, da je $\rho(x,y) < 1$. Preverimo torej, da je ρ metrika na X.

- i) Naj bosta $x,y \in X$ poljubna elementa. Vemo, da je $d(x,y) \geq 0$ ker je d metrika na X). Potem je pa tudi $\rho(x,y) \geq 0$. Posledično je torej $\rho(x,y) \in [0,1) \forall x,y \in X$.
- ii) Velja: $\rho(x,y) = 0 \iff d(x,y) = 0 \iff x = y$.
- iii) Velja: $\forall x,y \in X: \rho(x,y) = \frac{d(x,y)}{1+d(x,y)} = \frac{d(y,x)}{1+d(y,x)} = \rho(y,x).$
- iv) Naj bodo $x,y,z\in X$ poljubni. Preverimo, ali velja $\rho(x,y)\leq \rho(x,z)+\rho(z,y)$:

$$\rho(x,y) \le \rho(x,z) + \rho(z,y) \iff \frac{d(x,y)}{1+d(x,y)} \le \frac{d(x,z)}{1+d(x,z)} + \frac{d(z,y)}{1+d(z,y)}$$

Z množenjem se znebimo ulomkov in tako dobimo neenakost:

$$d(x,y)(1+d(x,z))(1+d(z,y)) \le d(x,z)(1+d(x,y))(1+d(z,y)) + d(z,y)(1+d(x,z))(1+d(x,y))$$

Da bo zapis krajši označimo $d(x,y) = d_{x,y}, d(x,z) = d_{x,z}$ in $d(z,y) = d_{z,y}$. Ko poračunamo faktorje na obeh straneh neenačaja dobimo:

$$\begin{aligned} d_{x,y} + d_{x,y} d_{x,z} + d_{x,y} d_{z,y} + d_{x,y} d_{x,z} d_{z,y} &\leq \\ &\leq d_{x,z} d_{x,y} + d_{x,z} + d_{x,z} d_{z,y} + d_{x,y} d_{x,z} d_{z,y} + \\ &+ d_{z,y} + d_{z,y} d_{x,z} + d_{z,y} d_{x,y} + d_{x,y} d_{x,z} d_{z,y} \end{aligned}$$

Pokrajšamo skupne člene in tako dobimo:

$$d_{x,y} \leq d_{x,z} + d_{x,z}d_{z,y} + d_{z,y} + d_{z,y}d_{x,z} + d_{x,y}d_{x,z}d_{z,y}$$

Ta pogoj pa je izpolnjen, ker je $d(x,y) \leq d(x,z) + d(z,y)$.

Sledi, da je ρ res metrika na X.

2. Naj bo $x \in X$ in r > 0. Označimo $K_d(x,r) = \{y \in X; \ d(x,y) < r\}$. Ker je $\rho(x,y) = \frac{d(x,y)}{1+d(x,y)}$, je potem $\rho(x,y)(1+d(x,y)) = d(x,y)$ oz. $d(x,y) = \frac{\rho(x,y)}{1-\rho(x,y)}$. Ko to vstavimo v definicijo $K_d(x,r)$ dobimo:

$$K_d(x,r) = \{ y \in X; \ \frac{\rho(x,y)}{1 - \rho(x,y)} < r \} = \{ y \in X; \ \rho(x,y) < r - r\rho(x,y) \}$$

Pogoj $\rho(x,y) < r - r\rho(x,y)$ je pa ekvivalenten pogoju $\rho(x,y)(1+r) < r$ oziroma $\rho(x,y) < \frac{r}{1+r}.$ Potem pa velja:

$$K_d(x,r) = \{ y \in X; \ \rho(x,y) < \frac{r}{1+r} \} = K_\rho(x,\frac{r}{1+r})$$

Iz zgornje enakosti potem sledi, da je $K_d(x,r) \in \mathcal{T}_\rho$, torej je $\mathcal{T}_d \subseteq \mathcal{T}_\rho$. Na podoben način lahko vidimo tudi, da je $K_\rho(x,r) = K_d(x,\frac{r}{1-r})$, torej je $\mathcal{T}_\rho \subseteq \mathcal{T}_d$. Sledi, da je $\mathcal{T}_d = \mathcal{T}_\rho$.

Opomba 1: Naj bo (X, \mathcal{T}) metrizabilen prostor. Tedaj lahko brez škode za splošnost predpostavimo, da je metrika d na X taka, da je $\mathcal{T}_d = \mathcal{T}$ in $\forall x, y \in X : d(x, y) < 1$.

Izrek 1. Naj bo $\forall n \in \mathbb{N}(X_n, d_n)$ metrični prostor, tak, da je $\forall x, y \in X_n d_n(x, y) < 1$. Tedaj je $D: \prod_{n=1}^{\infty} X_n \times \prod_{n=1}^{\infty} X_n \to \mathbb{R}$, ki je definirana s predpisom $D((x_1, x_2, \ldots), (y_1, y_2, \ldots)) = \max\{\frac{d_n(x_n, y_n)}{2^n; n \in \mathbb{N}}\}$ za poljubne $(x_1, x_2, \ldots), (y_1, y_2, \ldots) \in \prod_{n=1}^{\infty} X_n$ metrika na $\prod_{n=1}^{\infty} X_n$.

Dokaz. Preverili bomo najprej, da je D dobro definirana, nato pa še, da je metrika. Pri tem bomo uporabili zapis $X = \prod_{n=1}^{\infty} X_n$ in za poljuben $(x_1, x_2, \ldots) \in X : \underline{x} = (x_1, x_2, \ldots)$.

- \bullet Naj bosta y in y poljubna elementa X. Obravnavamo možnosti:
 - i) Denimo, da je $\underline{x} = \underline{y}$ in označimo $A = \{\frac{d_n(x_n, y_n)}{2^n}; n \in \mathbb{N}\}$. Po predpostavki za vsak $n \in \mathbb{N}$ velja, da je $x_n = y_n$. Potem je pa $A = \{0\}$ in $D(\underline{x}, y) = \max(A) = 0$.
 - ii) Naj bosta sedaj \underline{x} in \underline{y} različna. Potem $\exists n_0 \in \mathbb{N}$, da je $x_{n_0} \neq y_{n_0}$ in označimo $r_0 = \frac{d_{n_0}(x_{n_0},y_{n_0})}{2^{n_0}} > 0$. Ker je A neprazna množica in v \mathbb{R} navzgor omejena z 1, obstaja $\sup(A)$. Opazimo tudi, da je zaporedje $\frac{d_n(x_n,y_n)}{2^n}$ navzdol omejeno z 0 in navzgor omejeno z zaporedjem $\frac{1}{2^n}$. Ker je $\lim_{n\to\infty}\frac{1}{2^n}=0$ po izreku o sendviču potem velja, da je $\lim_{n\to\infty}\frac{d_n(x_n,y_n)}{2^n}=0$. Naj bo $n_1\in\mathbb{N}$ tak, da $\forall n\in\mathbb{N}; n\geq n_1:\frac{d_n(x_n,y_n)}{2^n}< r_0$. Dodatno, ker je (očitno) $\sup(A)\geq r_0$, je $\sup(A)=\sup\{\frac{d_n(x_n,y_n)}{2^n}; n\in\{1,2,\ldots,n_1\}\}=\max\{\frac{d_n(x_n,y_n)}{2^n}; n\in\{1,2,\ldots,n_1\}\}=\max\{\frac{d_n(x_n,y_n)}{2^n}; n\in\{1,2,\ldots,n_1\}\}=\max(A)$. Drugače povedano, za vsak par $\underline{x},\underline{y}\in X$ za pripadajočo množico A obstaja maksimum, torej je D dobro definirana.
 - iii) Preverimo še, da je D res metrika.

- a) Za poljubna $\underline{x},y\in X$ je $D(\underline{x},y)\geq 0$ in $D(\underline{x},y)\iff \underline{x}=y$
- b) Za poljubna $\underline{x},y\in X$ je $D(\underline{x},y)=D(y,\underline{x})$
- c) Premislimo, da velja trikotniška neenakost: Naj bodo $\underline{x}, \underline{y}, \underline{z} \in X$ poljubni elementi. Potem $\exists n_0 \in \mathbb{N}$, tak, da velja:

$$\begin{split} D(\underline{x},\underline{y}) &\leq \max\{\frac{d_n(x_n,z_n) + d_n(z_n,y_n)}{2^n}; \ n \in \mathbb{N}\} \\ &= \frac{d_{n_0}(x_{n_0},z_{n_0}) + d_{n_0}(z_{n_0},y_{n_0})}{2^{n_0}} \\ &= \frac{d_{n_0}(x_{n_0},z_{n_0})}{2^{n_0}} + \frac{d_{n_0}(z_{n_0},y_{n_0})}{2^{n_0}} \\ &\leq \max\{\frac{d_n(x_n,z_n)}{2^n}; n \in \mathbb{N}\} + \max\{\frac{d_n(z_n,y_n)}{2^n}; n \in \mathbb{N}\} \\ &= D(\underline{x},\underline{z}) + D(\underline{z},y) \end{split}$$

Definicija 1: Prostor $(\prod_{n=1}^{\infty} X_n, D)$, kjer je D definirana kot v izreku 1, pravimo produkt metričnih prostorov $(X_1, d_1), (X_2, d_2), \ldots$ Metriki D pravimo produktna metrika na $\prod_{n=1}^{\infty} X_n$, ki je dobljena iz metrik d_1, d_2, \ldots

Definicija 2: Naj bo Λ poljubna indeksna množica in naj bo za $\forall \lambda \in \Lambda(X_{\lambda}, \mathcal{T}_{\lambda})$ topološki prostor. Topologiji \mathcal{U} na $X = \prod_{\lambda \in \Lambda} X_{\lambda}$ pravimo produktna topologija na X, dobljena iz topologij $\{\mathcal{T}_{\lambda}\}_{\lambda \in \Lambda}$, če je $\mathcal{P} = \{p_{\lambda}^{-1}(U_{\lambda}); \ \lambda \in \Lambda \ \& \ U_{\lambda} \in \mathcal{T}_{\lambda}\}$ njena podbaza. Pri tem je $\forall \lambda \in \Lambda p_{\lambda} : X \to X_{\lambda}$ projekcija na λ -ti faktor.

Opomba 2: Seveda obstaja natanko ena topologija \mathcal{U} na $\prod_{\lambda \in \Lambda}$, ki ima \mathcal{P} za podbazo.

Naj bo $B \in \mathcal{B}$ bazna množica za produktno topologijo \mathcal{U} . Potem obstajajo taki indeksi $\lambda_1, \lambda_2, \ldots, \lambda_n \in \Lambda$, da je $B = p_{\lambda_1}^{-1}(U_{\lambda_1}) \cap p_{\lambda_2}^{-1}(U_{\lambda_2}) \cap \ldots \cap p_{\lambda_n}^{-1}(U_{\lambda_n})$ za neke množice $U_{\lambda_1} \in \mathcal{T}_{\lambda_1}, U_{\lambda_2} \in \mathcal{T}_{\lambda_2}, \ldots, U_{\lambda_n} \in \mathcal{T}_{\lambda_n}$. Z določeno mero zlorabe notacije potem sledi:

$$B = \left(U_{\lambda_1} \times \prod_{\lambda \in \Lambda \setminus \{\lambda_1\}} X_{\lambda} \right) \cap \left(U_{\lambda_2} \times \prod_{\lambda \in \Lambda \setminus \{\lambda_2\}} X_{\lambda} \right) \cap \ldots \cap \left(U_{\lambda_n} \times \prod_{\lambda \in \Lambda \setminus \{\lambda_n\}} X_{\lambda} \right)$$
$$= \left(U_{\lambda_1} \times U_{\lambda_2} \times \ldots \times U_{\lambda_n} \right) \times \prod_{\lambda \in \Lambda \setminus \{\lambda_1, \lambda_2, \ldots, \lambda_n\}} X_{\lambda}$$

To nam bo pomagalo pri dokazu naslednjega izreka.

Izrek 2. Za poljuben $n \in \mathbb{N}$ naj bo (X_n, d_n) metrični prostor in naj bo D produktna metrika na $X = \prod_{n=1}^{\infty} X_n$, dobljena iz d_1, d_2, \ldots Naj bo \mathcal{U} produktna topologija na X, ki je dobljena iz topologij $\mathcal{T}_{d_1}, \mathcal{T}_{d_2}, \ldots$ Tedaj je $\mathcal{U} = \mathcal{T}_D$.

Dokaz. Pokazali bomo, da obe topologiji vsebujeta drugo.

 $\mathcal{U} \supseteq \mathcal{T}_D$): Baza topologije \mathcal{T}_D je $\mathcal{B}_D = \{K_D(\underline{x},r); \underline{x} \in X \& r > 0\}$. Dovolj bo, če pokažemo, da je $\mathcal{B}_D \subseteq \mathcal{U}$. To bomo storili tako, da za vsako kroglo

 $K_D(\underline{x},r) \in \mathcal{B}_D$ in vsak element $\underline{y} \in K_D(\underline{x},r)$ najdemo okolico $U_{\underline{y}} \in \mathcal{U}$, da bo $K_D(\underline{x},r) = \bigcup_{y \in K_D(\underline{x},r)} U_{\underline{y}}$.

Naj bo torej \underline{x} poljubna točka iz X in naj bo r>0. Naj bo $\underline{y}\in K_D(\underline{x},r)$ in označimo $r_0=\frac{r-D(\underline{x},\underline{y})}{2}>0$. Ker je $\lim_{n\to\infty}\frac{1}{2^n}=0$ obstaja nek $n_0\in\mathbb{N},$ da bo $\forall n\geq n_0\frac{1}{2^n}< r_0.$ Označimo:

$$U_{\underline{y}} = K_{d_1}(y_1, \frac{r_0}{2}) \times K_{d_2}(y_2, \frac{r_0}{2}) \times \dots K_{d_{n_0}}(y_{n_0}, \frac{r_0}{2}) \times \prod_{k=n_0+1}^{\infty} X_k$$

Očitno je $\underline{y} \in U_{\underline{y}}$. Naj bo sedaj $\underline{z} \in U_{\underline{y}}$. Vemo, da je za vsak $n \in \mathbb{N}$ $d_n(z_n, y_n) < \frac{r_0}{2}$. Potem je pa:

$$D(\underline{x}, \underline{z}) = \max\{\frac{d_n(x_n, z_n)}{2^n}; n \in \mathbb{N}\}$$

$$= \max\left(\{\frac{d_1(x_1, z_1)}{2}, \dots, \frac{d_{n_0}(x_{n_0}, z_{n_0})}{2^{n_0}}\} \cup \{\frac{d_n(x_n, z_n)}{2^n}; n > n_0\}\right)$$

$$\leq \max\left(\{\frac{d_n(x_n, y_n) + d_n(y_n, z_n)}{2^n}; n \in \{1, 2, \dots, n_0\}\} \cup \{\frac{1}{2^n}\}_{n=n_0+1}^{\infty}\right)$$

Vemo, da je $d_i(x_i, z_i) < \frac{r_0}{2}$ za vse $i \in \{1, 2, \dots, n_0\}$ in iz prejšnje definicije r_0 izrazimo $D(\underline{x}, \underline{y}) = r - 2r_0$. Potem je pa $\frac{d_i(x_i, y_i)}{2^i} \leq D(\underline{x}, \underline{y}) = r - 2r_0$. Za vask $i \in \{1, 2, \dots, n_0\}$ sledi ocena:

$$\frac{d_i(x_i, y_i)}{2^i} \le \frac{d_i(x_i, z_i)}{2^i} + \frac{d_i(z_i, y_i)}{2^i} < r - 2r_0 + \frac{r_0}{2^{i+1}}$$
$$< r - 2r_0 + r_0 < r - r_0 < r$$

Posledično je $D(\underline{x},\underline{z}) < r$, torej je $\underline{z} \in K_D(\underline{x},r)$. Ker to velja za vsak $\underline{z} \in U_{\underline{y}}$, je potem $U_{\underline{y}} \subseteq K_D(\underline{x},r)$. Ker je to res za vsak $\underline{y} \in K_D(\underline{x},r)$, je potem res $K_D(\underline{x},r) = \bigcup_{\underline{y} \in K_D(\underline{x},r)} U_{\underline{y}}$, torej je $\mathcal{T}_D \subseteq \mathcal{U}$.

 $\mathcal{U} \subseteq \mathcal{T}_D$): Naj bo $B = U_1 \times U_2 \times \ldots \times U_n \times \prod_{k=1}^{\infty} X_{n+k}$ bazna množica \mathcal{U} in naj bo $\underline{x} \in B$. Potem je $x_1 \in U_1, x_2 \in U_2, \ldots, x_n \in U_n$. Za vsak $i \in \{1, 2, \ldots, n\}$ je torej $U_i \in \mathcal{T}_i$, torej $\exists r_i; K_{d_i}(x_i, r_i) \subseteq U_i$.

Določimo $r = \min\{\frac{r_i}{2^i}; i \in \{1, 2, \dots, n\}\}$ in naj bo $\underline{y} \in K_D(\underline{x}, r)$. Potem je $D(\underline{y}, \underline{x}) = \max\{\frac{d_i(y_i, x_i)}{2^i}; i \in \mathbb{N}\} < r$. Obstaja nek $i_0 \in \mathbb{N}$, da je $D(\underline{y}, \underline{x}) = \frac{d_{i_0}(y_{i_0}, x_{i_0})}{2^{i_0}} = r_0$. Vemo že, da je $r_0 < r = \min\{\frac{r_i}{2^i}; i \in \{1, 2, \dots, n\}\}$. Potem pa za vsak $i \in \{1, 2, \dots, n\}$ velja $\frac{d_i(y_i, x_i)}{2^i} \le r_0 < r \le \frac{r_i}{2^i}$, torej je $\forall i \in \{1, 2, \dots, n\}$ $d_i(y_i, x_i) < r_i$ oz. $y_i \in K_{d_i}(x_i, r_i)$. Potem je pa $\underline{y} \in B$. Ker to velja, sledi, da je $K_D(\underline{x}, r) \subseteq B \ \forall \underline{x} \in B$ in posledično je $\overline{B} = \bigcup_{x \in B} K_D(\underline{x}, r_{\underline{x}}) \in \mathcal{T}_D$, torej je $\mathcal{U} \subseteq \mathcal{T}_D$.