

Arquitetura em camadas Modelo em camadas

A internet é um conjunto de redes de computadores que permite a troca de informações entre dispositivos computacionais. Para que essa troca seja realizada de forma eficiente, devem ser estabelecidas regras de comunicação. **Essas regras são os protocolos de rede**, que devem garantir que a comunicação ocorra de forma confiável, segura, eficaz, no momento certo e para a pessoa certa.

De maneira intuitiva, percebemos que satisfazer a todos esses requisitos não é uma tarefa fácil. São muitas regras que devem ser implementadas para garantir a efetividade da comunicação, tornando o processo de troca de dados entre computadores uma tarefa extremamente complexa.

Por causa dessa complexidade, os engenheiros e projetistas de redes do passado pensaram em formas de facilitar o desenvolvimento das regras nos dispositivos computacionais. Eles utilizaram um princípio básico de resolução de diversos outros problemas: a técnica de **dividir para conquistar**.

Na técnica dividir para conquistar, os projetistas dividem o problema em problemas menores e resolvem cada um de forma isolada. Se cada pequeno problema for resolvido, o grande problema será resolvido.

Para que essa divisão ocorresse de forma simplificada, os projetistas dividiram a organização das redes de computadores em camadas, sendo cada camada responsável por cuidar de determinada regra ou protocolo necessário ao processo de comunicação.

A quantidade de camadas utilizadas depende de como as funcionalidades são divididas. Quanto maior a divisão, maior o número de camadas que serão empilhadas, numerando da mais baixa, camada 1, para a mais alta, camada n.

As camadas se inter-relacionam da seguinte maneira: a camada superior utiliza os serviços oferecidos por outra imediatamente inferior, portanto, a **camada** 3 utiliza os serviços oferecidos pela **camada** 2.

De forma contrária, podemos dizer que a camada inferior oferece serviços para outra imediatamente superior, logo, a **camada 2** oferece serviços para a **camada 3**.

Elementos da camada

As camadas são formadas por três elementos principais:

Serviço

É o conjunto de funcionalidades que uma determinada camada oferece. Por exemplo, uma camada pode ser responsável pela verificação de erros na transmissão, por determinar o endereço de um computador, entre outras funcionalidades. O serviço diz o que a camada faz e não como ela faz.

Protocolo

Responsável por como a camada faz. Assim, o protocolo é a implementação do serviço da camada, ou seja, executa as regras para que os erros possam ser corrigidos ou para que um computador possa ser identificado. "Um conjunto de camadas e protocolos é a arquitetura de rede e o conjunto de protocolos utilizados por determinado sistema é uma pilha de protocolos." (TANENBAUM, 2011, p. 38)

Interface

Para que uma camada possa utilizar a camada imediatamente inferior, é necessário que haja um ponto de comunicação entre ambas, chamado interface. Por meio dela, uma camada pode utilizar o serviço de outra, passando informações para a camada vizinha.

Os elementos da camada

Onde, exatamente, tudo isso é implementado no computador?

O que está implementado são os **protocolos e interfaces**, que podem estar desenvolvidos em um hardware, como uma placa de rede, ou em um software, como no sistema operacional da máquina.

Agora que os elementos da camada foram apresentados, é possível entender dois conceitos importantes da arquitetura de redes: **Comunicação Vertical e Comunicação Horizontal**.

Comunicações horizontal e vertical

Já vimos que uma camada utiliza os serviços de outra imediatamente inferior, sucessivamente, até chegar à camada mais baixa. Como estão empilhadas, podemos fazer analogia à comunicação vertical, uma vez que o dado original, no topo do conjunto de camadas, desce até a camada 1, caracterizando a verticalidade desse processo.

Na origem

Na origem, o dado a ser transmitido desce pelas camadas até o nível mais baixo, a camada 1. Essa camada está conectada ao meio de transmissão, por exemplo, uma fibra ótica, um cabo de rede metálico ou o ar, possíveis caminhos para o dado fluir até o destino.

No destino

No destino, o processo ocorrerá de modo contrário, pois o dado sobe pelas camadas até o nível mais alto da arquitetura. Podemos, assim, associar a comunicação vertical aos serviços das camadas.

Conforme o dado passa por determinada camada, o hardware ou o software, responsável por implementar o protocolo, irá preparar esse dado para que a regra (para a qual ele foi projetado) possa ser executada.

Se a camada 2 é responsável pela verificação de erro, o dado será preparado na origem por essa camada para que, ao passar pela camada 2 do destino, seja verificado se houve erro ou não.

No exemplo anterior, vimos que a camada 2 de origem preparou o dado para que a camada 2 de destino verificasse se a informação está correta, caracterizando a existência de uma conversa entre as duas camadas de mesmo nível em computadores distintos. Essa conversa é a comunicação horizontal, realizada pelos protocolos que implementarão a regra.

Relação entre camadas, protocolos e interfaces.

Encapsulamento

Ainda pode estar um pouco abstrata a forma como realmente a comunicação vertical e, principalmente, a horizontal funcionam.

Como a camada 2 da máquina de origem consegue conversar com a mesma camada na máquina de destino?

A comunicação horizontal ocorre de forma virtual. A camada 2 da máquina de origem, ao preparar o dado para ser enviado, adiciona informações que serão

lidas e tratadas única e exclusivamente pela mesma camada do dispositivo de destino. Essas informações são denominadas **cabeçalhos**.

Comunicação horizontal por meio de cabeçalho.

Cada camada adicionará um novo cabeçalho ao dado que será enviado, e esse processo é chamado de **encapsulamento**.

Cada camada receberá o dado da camada superior, através da interface, e adicionará seu próprio cabeçalho, encapsulando o dado recebido.

Processo de encapsulamento de dados.

Nesse processo, quando determinada camada recebe os dados, ela não se preocupa com o conteúdo que recebeu, apenas adiciona o seu cabeçalho para permitir que o protocolo execute as regras necessárias à comunicação.

Esse procedimento acontece, repetidamente, até alcançar a camada 1 e a informação ser transmitida ao destino, onde ocorrerá o processo inverso. A informação subirá, desencapsulando as informações, da camada 1 até o usuário do serviço.

Atenção!

Ao realizar o encapsulamento, a unidade de dados do protocolo ou PDU (Protocol Data Unit, na sigla em inglês) é criada.

A PDU é constituída pela informação que vem da camada superior (PDU da camada superior) e o cabeçalho da própria camada.

Entendendo na prática sobre encapsulamento

Compreenda o conceito de encapsulamento e a comunicação entre as camadas da rede.

Após analisar o conceito de arquitetura de camadas e ver o processo de encapsulamento, é possível deduzir que a grande desvantagem é o acréscimo de informações ao dado original, aumentando o volume de tráfego.

Entretanto, essa desvantagem é mínima comparada às vantagens que temos de modularização, facilidade de manutenção e atualização dos protocolos, que permitiram uma enorme evolução na área de redes.