Personal Loan Acquisition using Naive Bayes Classifier based Learning Model

Sarthak Sablania

April 2025

1 Problem Statement

The objective is to identify customers who are likely to accept a personal loan. By doing so, the bank can selectively target these individuals in marketing campaigns, increasing conversion while reducing cost.

2 Dataset Overview

The dataset contains 11 input features and 1 target variable (Personal Loan).

Feature Types

- Continuous Features (5/11):
 - Age
 - Experience
 - Income
 - CCAvg
 - Mortgage
- Binary Categorical Features (4/11):
 - Securities Account
 - CD Account
 - Online
 - CreditCard
- Ordinal Features (2/11):
 - Family
 - Education

Target

Personal Loan: 0 or 1

Analysis

I performed exploratory analysis to understand feature distributions, class imbalance, and feature correlations.

• Data Size: 5000 Rows

• Feature Independence and Correlations: Since Experience is highly correlated with Age, I removed the Experience column and checked the performance of the classifier, but it was the same with and without the column.

Figure 1: Correlation Matrix of Features and Target. Only Experience and Age are highly correlated, so I removed Experience column.

• Class Imbalance: 9.6% of the data is labelled as 1, rest labelled as 0.

3 Results and Threshold Tuning for Business Context

Motivation

The bank prefers **high recall** (capturing as many potential loan-takers as possible) over precision. Missing a potential customer is more costly than targeting an uninterested one.

Strategy

I lowered the classification threshold from the default of 0.5 to 0.02 to increase recall. Therefore, we classify a person as a potential personal loan customer if their predicted probability exceeds 0.02 instead of 0.5.

Results at Different Thresholds

$\underline{\text{Threshold} = 0.}$	02	$\underline{\text{Threshold} = 0.}$	<u>05</u>	$\underline{\text{Threshold} = 0.}$	<u> 16</u>
Metric	Value	Metric	Value	Metric	Value
Recall (Class 1)	0.94	Recall (Class 1)	0.89	Recall (Class 1)	0.80
Precision (Class 1)	0.43	Precision (Class 1)	0.45	Precision (Class 1)	0.50
F1 Score	0.59	F1 Score	0.60	F1 Score	0.62
Accuracy	86%	Accuracy	88%	Accuracy	90%
Customers Targeted	23%	Customers Targeted	20%	Customers Targeted	17%

$\underline{\text{Threshold} = 0}$.50	$\underline{\hspace{1cm}}$ Threshold = 0.	.93
Metric	Value	Metric	Value
Recall (Class 1)	0.61	Recall (Class 1)	0.46
Precision (Class 1)	0.50	Precision (Class 1)	0.59
F1 Score	0.55	F1 Score	0.52
Accuracy	89%	Accuracy	91%
Customers Targeted	13%	Customers Targeted	8%

- As threshold decreases, recall increases but precision decreases.
- At threshold ≈ 0.02 , recall reaches ~ 0.94 , while only $\sim 23\%$ of the population is targeted.
- At threshold ≈ 0.93 , recall ≈ 0.46 , while only $\sim 8\%$ of the population is targeted.

If we choose the threshold of 0.02, we successfully identify 94% of actual positive cases while only targeting 23% of the population, making it a highly focused and cost-effective strategy.

Alternatively, a higher threshold (e.g., 0.93) could be chosen to precisely target the most probable potential customers, depending on business goals.

Results from Various Implementations

Results from all three types of implementations — from scratch, using scikit-learn, and AI-generated — were consistent.

Figure 2: Precision, Recall, and Proportion of Label 1 Predictions vs. Threshold

Figure 3: Confusion Matrices for From-Scratch Implementation: (a) Threshold = 0.5 and (b) Threshold = 0.02. We correctly identify 99 out of 105 of the potential PL customers if we choose 0.02 as threshold.

4 Conclusion

In this project, we demonstrated the effectiveness of Gaussian Naive Bayes (GNB) for personal loan classification. Despite the presence of categorical and non-Gaussian features, GNB delivered competitive results, underscoring its robustness and computational simplicity.

Through threshold tuning, we aligned model behavior with business objectives — particularly the emphasis on recall. By lowering the classification threshold, we were able to identify 94% of potential loan customers while only targeting 23% of the total population. This strategy significantly enhances campaign efficiency by minimizing missed opportunities without overwhelming marketing resources.

The consistency of results across different implementations — from-scratch, scikit-learn, and AI-assisted — validates the reliability of our modeling approach. Overall, this analysis provides a strong foundation for a targeted marketing strategy that balances business impact

Figure 4: Model Evaluation Plots: (a) Precision-Recall Curve and (b) ROC Curve with operational efficiency.

GitHub Repository

The code and analysis for this project are available at: github.com/sablania-dev/Personal-Loan--Naive-Bayes