

Flexutal Report Page 3 of 4

Testing : Flexural Properties Of Plastics
Test Method : ASTM D790-03 Procedure A
Project Number : P20071713

Customer : Acustnet Company
Attention : Troy Lester
Analyst : L. Howland
Date : May 22, 2007

ACCHEDITED COL NO. DERED

Sample Preparation : Tested as received

Sample Dimensions : 0.499" x 0.130" x 6.00" (Average)
Sample Type : ASTM Flex Bar

| Span Length (in) | 2,080 | 2,080 | Cross-Head Speed (in/min) | 0,055 | Span-To- Depth Ratio | 16±1:1 | Radius Of Supports (in) | 0,197 | Radius Of Loading Nose (in) | 0,197 |

Conditioning : 40+ hours at 23°C ± 2°C / 50% ± 5% RH

Test Conditions : 23°C ± 2°C / 50% ± 5% RH

Significance : ASTM D 790 specifies modulus and strength be reported to 3 significant figures

Sample Name	Test Number	Flexural Stress At 5% Strain (PSI)	Flexural Modulus (tangent*') {PSI)
		• •	
Blend 2	1	2380	5680D
	2	2360	54700
	3	2340	54800
	4	2400	55900
	5	2430	57700
	Average	2380	56000
	8ld. Dev.	35	1290
	,		•
Blend 3	1	2330	5450D °
	2	2320	5380 0
	3	2280	52300
	4	2250	51200
	5	2300	52800
	Average	2300	52900
	Std, Dev.	32	1290

^{* =} computer generated curve fit

Plastics Technology Laboratories, Inc. reports are issued for the exclusive use of the clients to whom they are addressed. No quotations from reports or use of the Plastics Technology Laboratories, Inc. name is permitted except as expressly authorized in whiting. Letters and reports apply only to the specific materials, products or processes tested, examined or surveyed and are not necessarily indicative of the qualities of apparently identical or similar materials, products or processes. The liability of Plastics Technology Laboratories, Inc. with respect to services rendered shall be limited to the amount of consideration paid for such services and not include any examples.

50 Pearl Street, Pittsfield, MA 01201 Phone (413) 499-0983, Fax 499-2339 http://www.ptfi.com

AC0131404

Flexural Report Page 4 of 4

Flexural Properties Of Plastics Testing ASTM D790-03 Procedure A Test Method

Project Number P20071713

Acushnet Company Customer Troy Lester Attention Analyst L. Howland ; May 22, 2007 Date

Sample Preparation Tested as received

0,499" x 0,131" x 6.00" (Average) Sample Dimensions **ASTM Flex Ber**

Sample Type Span Length (In) Cross-Head Speed (In/min) 2.080 0.055 Span-To- Depth Ratio 16±1:1 Radius Of Supports (in) 0.197

Radius Of Loading Nose (in) : 0,197

Conditioning 40+ hours at 23°C ± 2°C / 50% ± 5% RH

23°C ± 2°C / 50% ± 5% RH Test Conditions

: ASTM D 790 specifies modulus and strength be reported to 3 significant figures Significance

Sample Name	Test Number	Flexural Stress At 5% Strain (PSI)	Flexural Modulus (tangent *) (PSI)
Blend 4	1	2180	50300
	2	2210	50900
	3	2110	48700
	4	2170	49200
	5	2190	50000
	Average	2170	49800
	Sid, Dev.	38	876

* = computer generated curve fit

Plastics Technology Laboratories, Inc. reports are issued for the exclusive use of the clients to whom they are addressed. No quotations from reports or use of the Plastics Technology Laborationes, Inc. name is permitted except as expressly authorized in writing. Letters and reports apply only to the specific materials, products or processes tested, examined or surveyed and are not necessarily indicative of the qualities of apparently identical or similar materials, products or processes. The liability of Plastics Technology Laboraturies, Inc. with respect to services rendered shall be limited to the amount of consideration paid for such sorvices and not include any consequential damages.

50 Pearl Street, Pittsfield, MA 01201 Phone (413) 499-0983, Fax 499-2339 http://www.ptll.com

AC0131405

Photos Report Page 1 of 1

Testing Test Method

Flexural Properties Of Plastics

Project Number

ASTM D790-03 Procedure A

Customer

P20071713 Acushnet Company

Attention Analyst

Date

Troy Lester L Howland

May 22, 2007

Plastics Technology Laboratories, Inc. reports are lesued for the exclusive use of the clients to whom they ere addressed. No quotations from reports or use of the Plastics Technology Laboratories, Inc. name to permitted except as expressly authorized in witting. Letters and reports apply only to the specific materials, products or processes tested, examined or surveyed and are not necessarily indicative of the qualifies of apparently identical or studier materials, products or processes. The liability of Plastics Technology Laboratories, inc. willi respect to services rendered shall be limited to the emount of consideration paid for such services and not include any consequential damages

50 Pearl Street, Pittsfield, MA 01201 Phone (413) 499-0983, Fax 499-2339 http://www.ptll.com

AC0131406

Durometer Hardness Report Page 1 of 7

Testing Test Method Project Number Customer Rubber Property - Durometer Hardness ASTM D2240-05 - Modified test specimen - golf ball P20071713

Acushnet Company Attention Troy Lester Analyst Date J. McCarthy May 22, 2007

Attachments: 1 Page Of Photos

Specimen Preparation

Test Location Tested Thickness

Durometer Type Indention Time Interval

Indenier Used Condilloning

Test Conditions Significance

Tested as received Tested between dimples

Zwick Digital 7206.07 (Shore D S/N 110129) 1.0 Second "D"

40+ hours at 23°C \pm 2°C / 50% \pm 5% RH 23°C \pm 2°C / 50% \pm 5% RH Per ASTM D2240, readings below 20 or above 90 are not considered reliable.

Set 1			Reading				•	
	1	2	3 -	4	5	Average	Std. Dev.	C.Q.V. (%)
Golf Ball ID						_		
1	60.5	62.5	59.9	58.7	59.7	60.3	1.4	2:3
2	69.9	61.5	61.1	62.1	59.9	69,9	1.0	1.6
2 3	62.3	61.9	62.7	61.3	62,5	62.1	0,6	D,9
4	64.5	64.3	63.5	61.7	63,3	63,5	1_1	1.7
5	64.1	63,1	62.5	63.7	62.5	63.2	0.7	1.1
4 5 6 7 8 9	62.5	64.1	62.5	59.9	60,9	62,0	1.6	2.6
7	64.1	627	63,1	63,3	63.9	63.4	6,0	0:9
B	61.7	623	61.9	5 2.9	625	62.3	0:5	8.0
9	61.9	62.1	59,9	62.1	59,9	61.2	1,2	1.9
10	61,9	62.1	61.5	61.3	61.3	61,6	D.4	0,6
11 .	60.9	62.1	61.7	63.5	60.9	81.8	1.1	1.7
12	60.5	62.3	61.9	61.9	60.5	61.4	0.9	1.4
					Overall Totals	62.0	1.3 .	2.1
. Set 2			Reading					
. Ser z	i	2	17000HB	. 4	5 ·	Average	Std Dev	C.O.V. (%)
Golf Ball ID		4	•	•	•	Arenage	0101.0071	
	56,9	57.5	57,5	57.7	58.5	57.6	0,6	1.0
1 #	56.7	58.1	57.1	56.9	56.9	56.7	0.4	0.7
1 2 3 4 5	56,5	57.3	56.1	56.5	57.5	56.8	0,6	1.0
4	57.7	57.5	57.1	56,3	56.9	57.1	0.5	1.0
1	57.3	56.3	56.9	57.5	56.9	57.0	0.5	0.8
	55.1	65.7	55,9	56.5	55.7	55.B	0.5	0.9
6 , 7 8 9	49.9	50.5	50.7	50.3	51.1	50.5	0.4	0.9
, B	54.5	56,1	55.9	54.9	55.1	65,1	0.5	0.9
0	54.7	53.5	.53,9	54.3	54.1	54.1	0.4	0.8
10	56,3	57.7	58.3	57.5	56.9	67.3	0.8	1.3
	56.1	56,9	57.1	56.3	56.1	56.5	0.5	0.8
11	57.3	56.3	56.7	57.1	56.1 58.9	5 6.9	0.4	0.7
12	07.5	00.0	40.7	37.1	ح.درد	70.0	144	J.,
•					Overall Totals	56.0	20	3.5

Pleasings Tradimology Laboratories, Inc. reports are issued for the exclusive use of the olients to whom they are addressed. No quotetions from reports or use of the Plactics Tectmology Laboratories, Inc. name is permitted except as expressly authorized in writing. Letters and reports apply only to the specific materials, products or processes tested, examined or surveyed and are not necessarily indicative of the qualities of apparently identical or similar materials, products or processes. The liability of Plastice Technology Laboratories, Inc. with respect to services reindered shall be limited to the emount of consideration paid for such services and not include any consequential damages.

> 50 Pearl Street, Pitisfield, MA 01201 Phone (413) 499-0983, Fax 499-2839 http://www.ptli.com

AC0131407

Durometer Hardness Report Page 2 of 7

Testing Test Method Rubber Property - Durometer Hardness ASTM D2240-05 - Modified test specimen - golf ball

Project Number P20071713 Customer **Acushnet Company** Attention Troy Lester Analyst Dale

J. McCarthy May 22, 2007

Specimen Preparation Tested as received Test Location Tested between dimples Tested Thickness

Zwick Digital 7206,07 (Shore D S/N 110129) 1.0 Second Durometer Type Indention Time Interval Indenter Used

Conditioning 40+ hours at 23°C ± 2°C / 50% ± 5% RH Test Conditions 23°C ± 2°C / 50% ± 5% RH

Significance Per ASTM D2240, readings below 20 or above 90 are not considered reliable.

Set 3			Reading					
	1	2	3	4	5	Average	Std. Dev.	C.O.V. (%)
Goff Ball ID						-		
1	53.5	51.7	51.7	52,1	52.7	52:3	0.8	1,5
1 2 3	50.5	51.1	51.3	50,3	50.1	50.7	0.5	1.0
3	49,1	49.7	49.5	49.3	49,6	49.4	0.2	0,5
4	53.1	51.3	50.9	51.9	53,9	52,2	1.3	2.4
5	5D.1	49.B	49.7	49.1	48.9	49,5	·0;5·	1.0
5 6	48.5	49,3	48.7	50,1	49,3	49.2	0:5	1.3
7	49.1	49.5	49.7	49.7	48.9	49,4	0,4	0.7
В .	49.7	50.1	49.3	49.5	50.1	49.7	0,4	0.7
B	49.1	49.7	50.1	48.9	50.1	49.6	0,6	1.1
10	50.5	50.3	49.7	49.7	60.5	50.1	0.4	8,0
11	48.7	49,1	48,9	50.7	50.5	49.6	0.9	1.9
12	49.5	49.7	48.9	50.2	49,1	49,5	0.5	1,0
					Overall Totals	50.1	1.2	2.4
Set 4		•	Reading				DL Day	001/00
	1	2	3	4	5	Average	SIG, Dev.	C.O.V. (%)
Golf Bail 1D			#a =		en d	20.0		9.0
1 .	58.9	59.7	59.5	61.5		60.3	1,4	2,3 0.7
2	59.7	59.9	59.7	58.9	59,3	59.5	0.4	
ä	61.3	59,7	59,1	61,3	61. <i>T</i>	60,6	1.1	1.9
4	60,1	61.3	59.7	60.9	59.9	60.4	0.7	1.1
4 5 6	61.1	63,3	61.3	61.5	61.9	61.8	0.9	1.4
6	61.3	62.3	60.3	61.3	64.1	61,9	1.4	2.3
7	59.9	62.5	61.9	63.1	63,7	62.2	1.5	2.3
В	61.1	59,3	61.5	60.9	51.5	60.9	0.9	1.5
þ	61.7	60.1	61.7	62.7	61.5	61,5	0.9	1.5
10	<u>61.1</u>	59.7	61.1	60.1	60.1	50.4	0.6	1.1
11	60.7	60.1	63.3	59.3	59.7	60.6	1.6	2.6
12	63,3	61.7	60.9	61.3	61.7	61.8	0.9	1.5
•					Overall Totals	61.0	1.3	21

Plastics Technology Laboratories, Inc. reports are issued for the exclusive use of the cilians to whom they are addressed. No quotations from reports or use of the Plastics Technology Laboratorics, inc. name is permitted except as expressly authorized in writing, Letters and reports apply only to the specific materials, products or processes tested, examined or surveyed and are not necessarily indicative of the qualities of apparently identical or similar materials, products or processes. The liability of Plastics Technology Laboratories, Inc. with respect to services rendered shall be limited to the amount of consideration peld for such services and not include any consequential damages.

50 Pearl Street, Pittsfield, MA 01201 Phone (413) 499-0983, Fax 499-2339 http://www.ptil.com

AC0131408

Durometer Hardness Report Page 3 of 7

ACCREDITED Cert. No. 0619,01

Testing Test Method Rubber Property - Durometer Hardness ASTM D2240-05 - Modified test specimen - golf ball

Project Number P20071713 Customer Acustmet Company Troy Lester J. McCarthy Attention Analysi Date

May 22, 2007

Specimen Preparation Test Location Tested as received Tested between dimples N/A Tested Thickness

Zwick Digital 7206.07 (Shore D S/N 110129) 1.0 Second Durometer Type
Indention Time Interval
Indenter Used
Conditioning "ם"

Test Conditions

40+ hours at 23°C ± 2°C / 50% ± 5% RH 23°C ± 2°C / 50% ± 5% RH Per ASTM D2240, readings below 20 or above 90 are not considered reliable. Significance

Set 5			Reading					
	1	2	3 ~	4	5	Average	Std. Dev.	C.O.V. (%)
Golf Ball ID	·							
1	52.3	52.5	52,9	52.5	53.1	52.7	0.3	0.6
	56,9	67.7	57.7	57.1	57.3	57.3	0.4	OT6.
3	53.3	53.7	57.5	54.3	52.7	54.3	1,9	3,6
Ā	54.5	55.1	54.9	56.7	55,9	55. 4	0.9.	1.6
Ġ.	54.7	56.3	56.1	57.7	56.5	56,3	1.1	1.9
6	56,7	56.1	56,3	5 0 ,9	56.9	56.G ₋	0.4	-0: 6
2 3 4 6 7 8 9	54.9	52.7	52.9	54.7	52.7	53.6	1,1	-2.1
Ř	57.1	56.9	56,9	54.7	55.9	56.3	1.0	-1:B
9	65.5	55.3	56.7	54.9	55.7	55. 6	0.7	1.2
10	55.9	56.1	57.3	55.7	57.3	56.5	0.8	1.4
iŧ	55.9	56.3	56.1	56,1	56.9	56.3	0.4	0.7
12	56.1	56.7	56.5	56.1	55.9	56.3	0.3	0.6
					Overall Totals	55,6	1.6	2.8
Set 6			Reading					
	1	2	3	٠4	5	Average	Sld, Dev.	C.O.V. (%)
Golf Ball ID								
1	50,3	49.3	50.1	51.3	51.5	50,5	0.9	1.8
	51.0	51.5	50.7	48.7	49.1	50.2	· 1,2	24
2 3	49.7	51.1	49.5	49.1	50.3	49.9	0.8	1.6
4	51.3	49,9	49.7	50.1	50.7	50,3	0.7	1.3
5	48,1	49.9	49.9	48.1	50.7	49.3	1,2	2.4
4 5 6	48,3	48.7	49.1	50.5	48.9	49.1	0.8	1.7
7.	49.1	49.5	49.5	50.1	49.9	49.6	0.4	0.8
8	50.5	50.1	49.3	49.5	49.3	49.7	0.5	1.1
9	49.5	4B.9	49.5	50.3	49, 9	49.6	0.5	1.1
10	48.5	48.5	48.5	46.5	46.5	47.7	1.1	2.3
11	49,5	49.5	51.3	49,7	49.7	49,9	0.8	1.5
12	51.1	50,9	48.1	48.7	49,3	49.6	1.3	2.7
•								
•					Overall Totals	49,6	1.1	22

Plastics Technology Laboratories, Inc. reports are issued for the exclusive use of the ollents to whom they are addressed. No quotallons from reports or use of the Plastics Technology Laboratories, Inc. name to permitted except as expressly authorized in writing. Letters and reports apply only to the specific materials, products or processes tested, examined or surveyed and are not necessarily indicative of the qualifies of appearantly identical or similar materials, products or processes. The tability of Flactics Technology Laboratories, Inc. with respect to services rendered shall be limited to the amount of consideration paid for such services and not include any consequential damages.

50 Pearl Street, Pitisfield, MA 01201 Phone (413) 499-0983, Fax 499-2339 http://www.ptil.com

AC0131409

Durometer Hardness Report Page 4 of 7

Testing : Rubber Property - Durometer Hardness
Test Method : ASTM D2240-05 - Modified test specimen - golf ball

Project Number : P20071713
Customer : Acushnet Company
Attention : Troy Lester
Analyst : J. McCarthy
Date : May 22, 2007

One No. 0619.0

Specimen Preparation : Tested as received
Test Location : Tested between dimples
Tested Thickness : N/A

Durometer Type : Zwick Digital 7206,07 (Shore D S/N 110129)
Indention Time Interval Indenter Used : 1.0 Second Indenter Used : "D" : 40+ hours at 23°C ± 2°C / 50% ± 5% RH

Test Conditions : 40+ hours at 23°C ± 2°C / 50% ± 5% RH
Test Conditions : 23°C ± 2°C / 50% ± 5% RH
Significance : Per ASTM D2240, readings below 20 or above 90 are not considered reliable.

Set 7			Reading					
	1	2	3	4	5	Average	Sid. Dev.	C.O.V. (%)
Golf Ball ID								
1	59,3	59,3	62,3	62.1	63.1	61.2	1.8	2.9
2 3	60.3	60.3	59.5	61.1	58.9	60.0	8.0	1.4
	56.1	57.1	56,9	58.9	57.5	57:3	1.0	1.8
4	61.5	60.9	62.3	60.3	6 0. 5	.61.1	0.8	1.3
4 5 6 7	56.7	55.5	55.5	-55. 9.	57.9	56,3	1:0	1:8-
6	60.7	60.7	60.9	59:5	59.1	60.2_	0,8	1.4
7	59.5	60.3	59,9	6D.7	59.7	60:Q	0:5	10,8
8	60,3	60,5	6011	60.7	59.5	60.2	0.5	OB.
9	58.3	57.9	58.5	58,5	57.9	58.2	0.3	0.5
10	58.9	51.3	62. 5	61.5	60.5	60.9	1.3	2.2
'11	60.3	59,3	57.7	58,5	58,7	58.9	1.0	1.6
12	59.3	60.5	60.1	58.3	58,9	59.4	0.9	1.5
					Overall Totals	59.5	1.7	29
Set 8			Reading					
	1	2	3 _	4	5	Average	Std. Dev.	C,O.V. (%)
Golf Ball ID						_		
1	58.1	66.7	55.5	<i>5</i> 5,9	56.1	55.5	1.0	1.8
2 3	<i>5</i> 5,7	58.3	56,9	57.3	. 55.3	56,7	1.2	21
3	57.1	53,9	5B.7	54.7	5B.1	56,5	2.1	3.7
4 5 6 7 8	56,9	57,3	58,1	58.3	5B.9	57.9	8.0	1.4
5	54.9	55,3	55,5	58.3	56.9	58.2	1.4	2.5
6	56,3	54.3	53.9	53,9	54.9	54,7	1.0	1.8
7	58.1	56.7	56, 9	55.1	5B,5	57.1	1.3	23
8	58.3	55.1	57.1	55,9	55,3	56.5	1,2	2.1
9	58.1	<i>57,</i> 3	57.5	69,1	57,5	57.9	0.7	1.3
10	56,5	57.3	59,5	56,5	56.7	57.3	1.3	22
11	53,9	54.3	54,9	54.1	55,3	54.5	0.6	1.1
12	55,2	5 6 .1	55.3	54.5	55.5	55.3	0.6	1.0
					Overall Totals	56.4	1.5	27

Playing Technology Laboratories, inc. reports are issued for the exclusive use of the clients to whom they are addressed. No quotations from reports or use of the Plastics Technology Laboratories, inc. name is permitted except as expressly authorized in writing. Letters and reports apply only to the specific meterials, products or processes tested, examined or surveyed and are not necessarily indicative of the qualities of apparently identical or similar materials, products or processes. The fiability of Plastics Technology Laboratories, inc. with respect to services randored shall be limited to the amount of consideration paid for such services and not include any consequential damages.

50 Pearl Street, Pittsfield, MA 01201 Phone (413) 499-0983, Fax 499-2339 http://www.ptfl.com

AC0131410

Durometer Hardness Report Page 5 of 7

Testing Test Method Project Number Customer Attention

Analysi

Date

Rubber Property - Durometer Hardness ASTM D2240-05 - Modified test specimen - golf ball P20071713

Acushnet Company Troy Lester J. McCarthy

May 22, 2007

Specimen Preparation Test Location Tested Thickness Durometer Type

Indention Time Interval Indenter Used

Conditioning

Test Conditions Significance

Tested as received Tested between dimples

Zwick Digital 7206.07 (Shore D S/N 110129)

1.0 Second

40+ hours at 23°C ± 2°C / 50% ± 5% RH 23°C ± 2°C / 50% ± 5% RH

Per ASTM D2240, readings below 20 or above 90 are not considered reliable.

Set 9			Reading					
	1	2	3 -	4	5	Average	Std. Dev.	C.O.V. (%)
Golf Ball ID								
1	48.5	49.3	50:1	49.5	48.7	49.2	0.6	1.3
	47.5	46,9	47 <i>.7</i>	47.9	46.1"	47.2	0,7	1.5
3	46.5	46.9	49.1	46,7	47.9	47.4	1.1	2.3
4	47.7	47.5	47.1	50.1	49.5.	48.4	1.3	2.8
5	47.9	50,3	48;5	48.7	48.7	48.B	0.9	1.8
6	49,3	49.3	49,9	49,5	50:3°	49.7	0.4	0.9
7	48.9	49,3	49.1	49.3	47;9	48:9	0.6	1.2
2 3 4 5 6 7 8 9	49.1	48.9	47.9	50.1	47:9	48.8	0,9	1.9
9	47.1	44.7	44.5	44.7	45.7	45.3	1.1	2.4
10	46.1	47.1	46,1	48.5	46.7	47,3	1.0	2.1
11	47.1	47.3	48.5	47.9	47.7	47.7	0.5	1.1
12	45.9	46,3	46.5	45.3	47.3	46,3	0,7	1.6
					Overali Totals	47.9	1.5	3.1
Set 10			Reading					
Set 10	1	2	3	4	5	Average	Std. Dev.	C.O.V. (%)
Golf Ball ID	•	-	Ψ,	•	=			
1	5B.1	58.5	59. 5	60.7	69.5	59.3	1.0	1.7 .
	61.5	62.3	60,9	·61,9	61,3	61,6	0.5	e, 0
2 3	59,1	58,5	6D.7	58.3	58.7	59,1	1.0	1.6
	57.3	59,5	56.7	57.7	57.5	57.7	1.1	1.8
r i	58.1	63.1	57.7	59.7	58,3	59.4	2.2	3.7
4 5 6	56.7	58.9	57.3	57.9	56.9	57.1	0.5	8.0
7	58.9	59.3	60.3	58,9	60.5	59,6	0.8	1.3
8	57.3	59.9	56.7	59.3	62,1	59.1	2.2	3.7
9	69.5	57.9	58.1	61.7	57.3	58,9	1.8	3.0
10	60.9	61.1	59,9	61,3	59.7	60. 6	0.7	1.2
ที่ที	61.1	60.7	61.3	60.3	60,3	60.7	0,5	D.8
12	60.5	58.5	60.3	61.1	60.1	60.1	1.0	1.6
					Overall Totals	59,4	1,6	2,8

Plastics Technology Laboratories, Inc., reports are issued for the exclusive use of the allerts to whom they are addressed. No quotations from reports or use of the Plastics Technology Laboratories, inc. name is permitted except as expressly authorized in writing. Letters and reports apply only to the specific materials, products or processes tested, examined or surveyed and are not necessarily indicative of the qualities of apparently identical or similar materials, products or processes. The flability of Plastics Technology Laboralories, inc. with respect to services rendered shall be limited to the emount of consideration paid for such services and not include any consequential damages.

50 Pearl Street, Pittsfield, MA 01201 Phone (413) 499-0983, Fax 499-2339 http://www.ptil.com

AC0131411

Durometer Hardness Report Page 6 of 7

Rubber Property - Durometer Hardness Testina

ASTM D2240-05 - Modified lest specimen - golf ball

Test Method Project Number P20071713 Acushnet Company Troy Lester Customer Attention

J. McCarthy May 22, 2007 Analyst Date

Specimen Preparation Tested as received Tested between dimples N/A Test Location Tested Thickness Zwick Digital 7206.07 (Shore D S/N 110129)

Durometer Type Indention Time Interval Indenter Used 1.0 Second

Conditioning Test Conditions .

40+ hours at 23°C ± 2°C / 50% ± 5% RH 23°C ± 2°C / 50% ± 5% RH Per ASTM D2240, readings below 20 or above 90 are not considered reliable. Significance

Set 11			Reading					
	1	2	3 -	4	5	Average	Std. Dev.	C.O.V. (%)
Golf Bail ID	•	_				_		
1	55,6.	·54.3	58.5	56.5	55.5-	56.1	1:6	2.8
	55.3	54.9	5B:5÷	54:3	55.1	55.0	0.5	8.0
2	56.9	58.1	56.9	57.1	56.5	57.1	0.6	1.1
4	56,5	56.7	55.9	56,3	55.7	56.2	0.4	0.7
* #	55,9	56.1	55:9-	56,3	56.1	56.1	0,2	0.3
2 3 4 6 6 7 8 9	58.5	57.7	57.1	56.3	58.1	57.5	0;9,	1.5
9	59.3	60.7	59.1	58:5	5B.5.	59.2	0,9	1.5
<u>.</u>	57.5	56.6	-56,1	58:5	-58.1	57.3	1.0	1.8
9		56.1	57.1	56.5	56,6	56.4	0.6	1.1
	56.9		56.5	57,5	58.3	56.9	1,0	1.B
10	56.5	55.7			56.7	57.5	0,8	1.3
11	57.3	5B.1	58.5	56.9		56.1	0,5	0,9
12	55.9	56.1	56.7	56.5	55,5	20.1	0.0	U,Q
					Overall Totals	56.8	1.3	2.2
Set 12			Reading					
	1	2	3	4	5	Average	Std. Dev.	C.O.V. (%)
Golf Ball fD								
	48.Đ	49.3	49.5	52.3	51.1	59,2	1.4	2.9
ž	49,9	51.5	51.3	51.1	523	51.2	0.9	1.7
<u> </u>	49.3	53,3	52.1	50.1	49.5	50,9	1.8	3,5
Ã	48.7	47.9	50.3	51,5	52,7	59,2	20	3.9
Š	49.9	51.9	52.9	52.3	50,3	51,5	1.3	2.5
Ř	48.9	51.0	49.3	51.5	51,3	50.4	1,2	2.4
7	52,1	50.1	49.5	61.9	50.5	59.8	1.1	2,2
<u>'</u>	53,5	52.9	52.1	52.5	52.5	52.7	0.5	1.0
123456789	51.9	53.5	51.9	51.1	52.7	52.2	0.9	1.7
10	51.3	52,9	52.5	51.3	52.3	52.1	0.7	1.4
11	51.9	51.1	49.1	50,3	53.5	51.2	1.7	3.2
	51.1	50,9	51.1	50,1		50.7	0.5	0,9
12	91.1	00,0	91.1	ou, r	20,0	40.1		
					Overall Totals	51.2	1.4	27

Plastics Technology Laboratories, Inc. reports are issued for the exclusive use of the clients to whom they are addressed. No quotations from reports or use of the Plastics Technology Laboratories, Inc. name is partitled except as expressly authorized in writing. Letters and reports epply only to the specific materials, products or processes tested, examined or surveyed and are not necessarily indicative of the qualities of apparently identical or similar melerials, products or processes. The liability of Plastics Technology Laboratories, the, with respect to services rendered shall be finited to the amount of consideration paid for such services and not include any consequential damages.

> 50 Pearl Street, Pittsfield, MA 01201 Phone (413) 499-0983, Fax 499-2330 mos.litq.www/;:qtm

AC0131412

Durometer Hardness Report Page 7 of 7

Rubber Property - Durometer Hardness ASTM D2240-05 - Modified test specimen - golf ball P20071713 Testing Test Method Project Number.

Acushnet Company Customer Troy Lester Attention J. McCarthy

Analyst Date May 22, 2007

Tested as received Tested between dimples Specimen Preparation Test Location Tested Thickness Zwick Digital 7206.07 (Shore D S/N 110129) Durometer Type Indention Time Interval 1.D Second

Indenter Used Conditioning

40+ hours at 23°C \pm 2°C / 50% \pm 5% RH 23°C \pm 2°C / 50% \pm 5% RH Per ASTM D2240, readings below 20 or above 90 are not considered reliable. **Test Conditions** Significance

Wilson Ultra Tour Balata 90 Box 93007		Reading					ALI Down	
	1	2	3	4	5	Average	Std. Dev.	C.O.V. (%)
Golf Ball ID Sample #1 Sample #2: 1 3-1 3-2: 3-3	61.9 56.3 55.1 62.1 64.7 60.7	62.3 54.9 56.1 62.1 61.7 62.3	62.1 55.1 56.9 60.1 62.7 63.3	63:1 56:1 57;3 50:7 61:7 60:7	61.9 56.3 55.6 61.7 62.1 62.5	62.3 65.7 56,2 61,3 62.9 61.9	0.5 0.7 0.9 0.9 0.4 1.2	0.8 1.2 1.6 1.5 0.7 1.9
					Overali Totals	59.9	2.9	4.9

Wilson Ultra Tour Balata 90 -	New Box		Reading		_	Average	Std Dev	C.O.V. (%)
	1	2	3	4	5	Average	SECT THEAT	C.C.V. (70)
Golf Ball ID 2-1 2-2 2-3 3-1 3-2 3-3 4-1 4-2	63.3 59.7 59.3 61.5 62.1 60.5 60.1	61.7 60.3 59.1 61.3 60.3 61.1 60.5 60.1	60.7 60.1 58.7 61.9 63.1 62.1 61.1 59.9	60.7 60.1 59.9 62.1 63.3 60.5 60.9 61.3	61.5 59.7 60.1 60.5 62.9 61.3 60.1 59.9	61.6 60.0 59.4 61.5 62.3 61.1 60.5 60.1 60.9	1.1 0.3 0.6 1.2 0.7 0.5 0.7	1.7 0.4 1.0 1.0 2.0 1.1 0.8 1.1
4-3	61.1	UVI	00.0	01.4	01.1			
					Overall Totals	60.8	1.1	1.8

Plastics Technology Laboratories, Inc. reports are issued for the exclusive use of the alterds to whom they are addressed. No quotations from reports or use of the Plastics Technology Laboratories, Inc. name is permitted except as expressly authorized in writing. Letters and reports apply only to the specific materials, products or processes tested, examined or surveyed and are not necessarily indicative of the qualities of apparently identical or similar materials, products or processes. The liability of Plasfics Technology Laboratories, inc. with respect to services rendered shall be finited to the amount of consideration paid for such services and not include any consequential damages.

> 50 Pearl Street, Pittsfield, MA 01201 . -Phone (413) 499-0988, Fax 499-2339 http://www.ptd.com

AC0131413

Durometer Hardness Report Page 1 of 1

Testing Test Method Project Number Customer Attention Analyst Date

Rubber Property - Durometer Hardness ASTM D2240-05

P20071713 **Acushnet Company** Troy Lester-J. McCarthy May 22, 2007

Specimen Preparation

Sample Plied Tested Thickness

Sample Type Duromeler Type Indention Time Interval

Indenter Used Conditioning

Test Conditions Significance

Tested as received - One reading per disk, five disks per sample

Νo See Below Disk

Zwick Digital 7206,07 (Shore D S/N 110129)

1.0 Second "D"

40+ hours at 23°C ± 2°C / 50% ± 5% RH

23°C ± 2°C / 50% ± 5% RH

Per ASTM D2240, readings below 20 or above 90 are not considered reliable.

			Reading					
Sample ID	1	2	3	4	5	Average	Std. Dev.	C.D.V, (%)
MDI Prepolymer	51:9	52.1	52.1	51.9	50.1	51.6	0.9	1.7
Estonia Blend	57.3	56.3	56.3	56.7	56.1	56.5	0.5	8.0
8940·	63:1	63.5	.64.5	63.1	65.1	63.9	0,9	1.4
Texin Blend.	39.9.	40.7	38.9	38.5	39.7	39,5	0,9	2,2
Blend 2	63.5	64.1	64.9	65.9	65,3	64.7	1.0	1.5
Blend 3	64:5	64.5	64.5	64.1	64.1	64.3	0.2	0.3
Blend 4	64.1	63.3	65.5	64.1	64.9	64,4	0.8	1.3
					Overelli Totalis	57.9	9.0	15.5

Thickness (in)

•	
MDI Prepolymer	0.349
Estonia Blend	0.259
8940	0,259
Texin Bland .	0.259
Blend 2	0.260
Blend 3	0,261
Blend 4	0.249

Plastics Technology Leboratories, Inc. reports are issued for the exclusive use of the clients to whom they are addressed. No quotations from reports or use of the Plastics Technology Laboratorites, this, name is permitted except as expressly authorized in writing. Letters and reports apply only to the specific materials, products or processes tested, examined or surveyed and are not necessarily indicative of the qualities of apparently identical or surveyed and are not necessarily indicative of the qualities of apparently identical or surveyed and are not necessarily indicative of the qualities of apparently identical or surveyed and are not necessarily indicative of the qualities of apparently identical or surveyed and are not necessarily indicative of the qualities of apparently identical or surveyed and are not necessarily indicative of the qualities of apparently identical or surveyed and are not necessarily indicative of the qualities of apparently identical or surveyed and are not necessarily indicative of the qualities of apparently identical or surveyed and are not necessarily indicative of the qualities of apparently identical or surveyed and are not necessarily indicative of the qualities of apparently identical or surveyed and are not necessarily indicative of the qualities of apparently identical or surveyed and are not necessarily indicative of the qualities of apparently identical or surveyed and are not necessarily indicative of the qualities of apparently identical or surveyed and are not necessarily indicative of the qualities of apparently identical or surveyed and are not necessarily indicative.

> 50 Pearl Street; Pittsfield, MA 01201 Phone (413) 499-0983, Fax 499-2339 http://www.ptll.com

AC0131414

Photos Report Page 1 of 1

Testing Test Method Project Number Customer Attention

Analysi Date

Rubber Property - Durometer Hardness ASTM D2240-05

P20071713
Acushnet Company
Troy Lester
J. McCarthy

May 22, 2007

Plestics Technology Laboratories, Inc. reports are issued for the exclusive use of the clients to whom they are addressed. No quotations from reports or use of the Plastics Technology Laboratories, Inc. name is permitted except as expressly authorized in writing. Letters and reports apply only to the specific materials, products or processes lected, examined or surveyed and are not necessarily indicative of the qualities of appetently identical or similar materials, products or processes. The liability of Plastics Technology Laboratories, Inc. with respect to services rendered shall be finited to the amount of consideration paid for such services and not include any consequential damages.

50-Pearl Street, Pittsfield, MA 01201 Phone (413) 499-0983, Fax 499-2339 http://www.ptil.com

AC0131415

THE AMERICAN ASSOCIATION FOR LABORATORY ACCREDITATION

ACCREDITED LABORATORY

A2LA has accredited

PLASTICS TECHNOLOGY LABORATORIES, INC. Pittsfield, MA

for technical competence in the field of

Mechanical Testing

This laboratory is Accredited in accordance with the recognized International Standard ISO/IEC 17025;2005 General Requirements for the Competence of Texting and Calibration Laboratories. This Accreditation demonstrates technical competence for a defined scope and the operation of a laboratory quality management system (refer to joint ISO-ILAC-IAF Presented this 22^{nd} day of February 2007. Communiqué dated 18 June 2005).

TOWNOR LABORITY TOWNOR LABORAL LABORAL LABORAL LABORAL LABORAL LABORAL CONTORAL CO

For the Accreditation Council Certificate Number 619.01 Valid to February 28, 2009 For the tests or types of tests to which this Accreditation applies, please refer to the laboratory's Mechanical Scope of Accreditation.

HIGHLY CONFIDENTIAL SUBJECT TO PROTECTIVE ORDER

SCOPE OF ACCREDITATION TO ISO/IEC 17025:2005

PLASTICS TECHNOLOGY LABORATORIES, INC. 50 Pearl Street Pittsfield, MA 01201 James Koehler Phone: 413 499 0983 Web address: www.pfil.com

MECHANICAL

Valid To: February 28, 2009

Certificate Number: 0619-01

In recognition of the successful completion of the AZLA evaluation process, accreditation is granted to this laboratory to perform the following tests on plastics and polymers, rubber and rubber products, composites films, packaging:

Test Standard	Test Description				
ASTM D149	Dielectric Strength, Dielectric Breakdown: Standard Test Method for Dielectric Breakdown Voltage and Dielectric Strength of Solid Electrical Insulating Materials at Commercial Power Frequencies				
ASTM D150	Dielectric Constant, Dissipation Factor, Loss Factor, Dc/Df: Standard Test Methods for AC Loss Characteristics and Permittivity (Dielectric Constant) of Solid Electrical Insulation				
ASTM D256	Notched Lead Impact: Standard Test Methods for Determining the Izod Pendulum Impact Resistance of Plastics				
ASTM D257	Volume / Surface Resistivity: Standard Test Methods for DC Resistance or Conductance of Justilating Meterials				
ASTM D395	Compression Set: Standard Test Methods for Rubber Property—Compression Set Method B				
ASTM D412	Tensile Strength Of Rubber, Elastomer Tensile: Standard Test Methods for Vulcanized Rubber and Theunoplastic Elastomers—Tension				
ASTM D471	Volume Change, Fluid Resistance, Swell: Standard Test Method for Rubber Property-Effect of Liquids				
ASTM D523	60° Gloss, 60 Degree Gloss, Sheen: Standard Test Method for Specular Gloss				
ASTM D542	Refractive Index. Standard Test Method for Index of Refraction of Transparent Organic Plastics				
ASTM D543	Chemical Computibility: Standard Practices for Evaluating the Resistance of Plastics to Chemical Reagents				
ASTM D570	Water Absorption, 24 Hour H_2O Absorption: Standard Test Method for Water Absorption of Plastics				
ASTM D573	Oven Aging: Standard Test Method for Rubber-Deterioration in an Air Oven				
ASTM D618	Conditioning of Plastics: Standard Practice for Conditioning Plastics for Testing				

Test Standard	Test Description
ASTM D624	Tear Strength, Die C Tear: Standard Test Method for Tear Strength of Conventional Vulcanized Rubber and Thermoplastic Blastomers
ASTM D635	Flammability, Horizontal Burn: Standard Test Method for Rate of Burning and/or Extent and Time of Burning of Plastics in a Horizontal Position.
ASTM D638	Tensile Test of Plastics, ASTM Tensile Properties, Tensile Modulus, Elongation, Tensile Strength: Standard Test Method for Tensile Properties of Plastics
ASTM D648	Heat Deflection Temperature, HDT, DTUL, Deflection Temperature Under Load: Standard Test Method for Deflection Temperature of Plastics Under Flexural Load in the Edgewise Position
ASTM D695	Compression Test, Compressive Properties, Compression Strength, Compression Modulus: Standard Test Method for Compressive Properties of Rigid Plastics
ASTM D696	Coefficient Of Linear Thermal Expansion —30°C To +30°C, CTE, Dilatometer: Standard Test Method for Coefficient of Linear Thermal Expansion of Plastics Between -30°C and 30°C With a Vitreous Silica Dilatometer
ASTM D732	Shear Strength, Shear Strength By Puncture: Standard Test Method for Shear Strength of Plastics by Punch Tool
ASTM D785	Rockwell Hardness (M, R, E Scales): Standard Test Method for Rockwell Hardness of Plastics and Electrical Insulating Materials
ASTM-D789	Relative Viscosity, Nylon: Standard Test Methods for Determination of Relative Viscosity of Polyamide (PA)
ASTM-D790	Flexural Test, Three Point Bending, Four Point Bending: Standard Test Methods for Flexural Properties of Unreinforced and Reinforced Plastics and Electrical Insulating Materials
ASTM D792	Specific Gravity, Relative Density, Density, Apparent Density: Standard Test Methods for Density and Specific Gravity (Relative Density) of Plastics by Displacement
ASTM D882	Tensile Test — Thin Sheeting, Film Tensile, Film Modulus: Standard Test Method for Tensile Properties of Thin Plastic Sheeting
ASTM D903	Peel Strength, 180 Degree Peel: Standard Test Method for Peel or Stripping Strength of Adhesive Bonds
ASTM D955	Mold Shrinkage: Standard Test Method of Measuring Shrinkage from Mold Dimensions of Thermoplastics, (Type A & B)
ASTM D1002	Lap Shear, Bond Strength: Standard Test Method for Apparent Shear Strength of Single-Lap-Joint Adhesively Bonded Metal Specimens by Tension Loading (Metal-to-Metal)
ASTM D1003	Haze and Luminous Transmittance, Diffuse Transmittance: Standard Test Method for Haze and Luminous Transmittance of Transparent Plastics
ASTM D1004	Tear Resistance, Film Tear: Standard Test Method for Initial Tear Resistance of Plastic Film and Sheeting

Test Standard	Test Description
ASTM D1204	Dimensional Stability, Linear Dimensional Stability: Standard Test Method for Linear Dimensional Changes of Nonrigid Thermoplastic Sheeting or Film at Elevated Temperature
ASTM D1238	Melt Flow Rate, MFR, Melt Index, MI: Standard Test Method for Melt Flow Rates of Thermoplestics by Extrusion Plastometer
ASTM D1243	Dilute Solution Viscosity: Standard Test Method for Dilute Solution Viscosity of Vinyl Chloride Polymers
ASTM D1525	Vicat Softening Temperature, VST: Standard Test Method for Vicat Softening Temperature of Plastics
ASTM D1603	Carbon Black Content: Standard Test Method for Carbon Black in Olefin. Plastics
ASTM D1622	Apparent Density: Standard Test Method for Apparent Density of Rigid Cellular Plastics
ASTM D1693	Stress-Cracking, ESCR Of Polyethylene; Standard Test Method for Environmental Stress-Cracking of Ethylene Plastics
ASTM D1708	Tensile Test, Micro Tensile: Standard Test Method for Tensile Properties of Plastics By Use of Microtensile Specimens
ASTM D1709	Drop-Dart Test, Film Impact, Film Dart Drop: Standard Test Methods for Impact Resistance of Plastic Film by the Free-Falling Dart Method
ASTM D1822	Tensile Impact: Standard Test Method for Tensile-Impact Energy to Break. Plastics and Electrical Insulating Materials
ASTM D1894	Coefficient of Friction, COF, Static COF, Kinetic COF: Standard Test Method for Static and Kinetic Coefficients of Friction of Plastic Film and Sheeting
ASTM D1922	Tear Resistance, Elmendorf Tear: Standard Test Method for Propagation Tear Resistance of Plastic Film and Thin Sheeting by Pendulum Method
ASTM D1938	Trouser Tear: Standard Test Method for Tear-Propagation Resistance (Trouser Tear) of Plastic Film and Thin Sheeting by a Single-Tear Method
ASTM D2240	Durometer Hardness (A & D), Shore Hardness, Shore Durometer: Standard Test Method for Rubber Property—Durometer Hardness
ASTM D2244	Color, CIE Hunter: Standard Practice for Calculation of Color Tolerances and Color Differences from Instrumentally Measured Color Coordinates
ASTM D2344	Short Beam Shear, Interlaminar Shear: Standard Test Method for Short-Bessu Strength of Polymet Matrix Composite Materials and Their Laminates
ASTM D2565	Xenon Arc Accelerated Weathering Artificial Weathering: Standard Practice for Xenon Arc Exposure of Plastics Intended for Outdoor Applications
ASTM D2583	Barcol Hardness, Indenter Hardness: Standard Test Method for Indentation Hardness of Rigid Plastics by Means of a Barcol Impressor
ASTM D2584	Ignition Loss, Glass Content, Fiber Content, Ash Content, Resin Content: Standard Test Method for Ignition Loss of Cured Reinforced Resins
ASTM D2734	Void Content, Method A: Standard Test Methods for Void Content of Reinforced Plastics

Test Standard	Test Description
ASTMED2857	Viscosity, Dilute Solution Viscosity, Intrinsic Viscosity, Inherent Viscosity: Standard Practice for Dilute Solution Viscosity of Polymers
ASTM D2863	Oxygen Index, OI, Limiting Oxygen Index, LOI: Standard Test Method for Measuring the Minimum Oxygen Concentration to Support Candle-Like Combustion of Plastics (Oxygen Index)
ESIECI MTZA	Lap-Shear, Bond Strength: Standard Test Method for Determining Strength of Adhesively Bonded Rigid Plastic Lap-Shear Joints in Shear, by Tension Loading
ASTM D3167	Peel Test, Floating Roller Peel: Standard Test Method for Floating Roller Peel Resistance of Adhesives
ASTM D3170	Chip Resistance, Gravelometer: Standard Test Method for Chipping Resistance of Coatings
ASTM D3171	Acid Digestion, Void Content By Acid Digestion: Standard Test Methods for Constituent Content of Composite Materials, Procedures A, B, C, D, E, G
ASTM D3359	Cross Hatch Adhesion: Standard Test Methods for Measuring Adhesion by Tape Test
ASTM D3418	Tg, Glass Transition Temperature by DSC: Standard Test Method for Transition Temperatures of Polymers By Differential Scanning Calorimetry
ASTM D3574-A	Density: Standard Test Methods for Flexible Cellular Materials—Slab, Bouded, and Molded Urethane Foams
ASTM D3574-E	Tensile Properties: Standard Test Methods for Flexible Cellular Materials—Slab, Bonded, and Molded Urethane Foams
ASIM D3574-F	Tear Resistance: Standard Test Methods for Flexible Cellular Materials—Slab, Bonded, and Molded Urethane Foams
ASTM D3763	Dynatup, Instrumented Impact, Standard Test Method for High Speed Puncture Properties of Plastics Using Load and Displacement Sensors
ASTM D3801	Flammability, Vertical Burn: Standard Test Method for Measuring the Comparative Burning Characteristics of Solid Plastics in a Vertical Position
ASTM D3835	Capillary Rheometry, Melt Viscosity, Thermal Stability, Apparent Viscosity: Standard Test Method for Determination of Properties of Polymeric Materials by Means of a Capillary Rheometer
ASTM D4060	Taber Abrasion: Standard Test Method for Abrasion Resistance of Organic Coatings by the Taber Abraser
ASTM D4226	Impact Resistance, Gardner Impact, Drop Dart Impact: Standard Test Methods for Impact Resistance of Rigid Poly(Vinyl Chloride) (PVC) Building Products
ASTM D4329	UV Exposure, QUV Exposure: Standard Practice for Fluorescent UV Exposure of Plastics
ASTM D4440	Dynamic Mechanical Analysis, DMA, Parallel Plate Rheology, Steady State Shear: Standard Test Method for Plastics: Dynamic Mechanical Properties: Melt Rheology
ASTM D4459	Xenon-Arc: Indoor Accelerated Sunlight Exposure: Standard Practice for Xenon-Arc Exposure of Plastics Intended for Indoor Applications

Test Standard	Test Description
ASTM D4587	UV Exposure, QUV: Standard Practice for Fluorescent UV-Condensation Exposures of Paint and Related Coatings
ASTM D4812	Unnotched Impact, Unnotched Izod: Standard Test Method for Unnotched Capitlever Beam Impact Strength of Plastics
ASTM D5048-B	Burning Characteristics and Resistance to Burn Through of Solid Plastics: Standard Test Method for Measuring the Comparative Burning Characteristics and Resistance to Burn-Through of Solid Plastics Using 125-num Flame
ASTM D5132	Horizontal Burn Rate: Standard Test Method for Horizontal Burning Rate of Polymeric Materials Used in Occupant Compartments of Motor Vehicles
ASTM D5279	DMA in Torsion, Shear Modulus, Storage Modulus, Tan Delta, Tg: Standard Test Method for Plastics: Dynamic Mechanical Properties: In Torsion
ASTM D5379	Shear of Composite, V-Notch Shear, Iosipescu Shear: Standard Test Method for Shear Properties of Composite Materials by the V-Notched Beam Method.
ASTM D5420	Impact Resistance, Gardner Impact, Drop Dart Impact: Standard Test Method for Impact Resistance of Flat, Rigid Plastic Specimen by Means of a Striker Impacted by a Falling Weight (Gardner Impact)
ASTM D5628	Impact Resistance, Gardner Impact, Drop Dart Impact: Standard Test Method for Impact Resistance of Flat, Rigid Plastic Specimens by Means of a Falling Dart (Tup or Falling Mass)
ASTM D5630	Ash Content: Standard Test Method for Ash Content in Thermoplastics
ASTM D6110	Charpy Impact of Notched Samples: Standard Test Method for Determining the Charpy Impact Resistance of Notched Specimens of Plastics
ASIM D6272	Flexural Property, Four Point Flex, Four Point Bending: Standard Test Method for Flexural Properties of Unreinforced and Reinforced Plastics and Electrical Insulating Materials by Four-Point Bending
ASTM D6290	Color Analysis: Standard Test Method for Color Determination of Plastic Pellets
ASTM D6869	Karl Fischer, Water Content, Moisture Content By Karl Fischer Titration: Standard Test Method for Coulometric and Volumetric Determination of Moisture in Plastics Using the Karl Fischer Reaction (the Reaction of Iodine with Water)
ASTM E96	Water Vapor Transmission, WYTR: Standard Test Methods for Water Vapor Transmission of Materials
ASTM B313	Yellowness Index: Standard Practice for Calculating Yellowness and Whiteness Indices from Instrumentally Measured Color Coordinates
ASTM E793	DSC, Delta H, Heat of Fusion, Crystallinity: Standard Test Method for Buthalpies of Fusion and Crystallization by Differential Scanning Calorimetry
ASTM E831	TMA, CTE, Coefficient Of Thermal Expansion, Tg By TMA: Standard Test Method for Linear Thermal Expansion of Solid Materials by Thermomechanical Analysis
ASTM E1131	TGA, Carbon Black Content By TGA, Ash Content: Standard Test Method for Compositional Analysis by Thermogravimetry

Test Standard	Test Description			
ASTM E1252	FTIR, Material ID, Basic Material Identification: Standard Practice for General Techniques for Obtaining Infrared Spectra for Qualitative Analysis			
ASTM E1269	DSC, Specific Heat: Standard Test Method for Determining Specific Heat Capacity by Differential Scanning Calorimetry			
ASTM E1347	Color Analysis, Tristimulus Color: Standard Test Method for Color and Color- Difference Measurement by Tristimulus (Filter) Colorimetry			
ASTM E1356	DSC, Tg, Glass Transition Temperature By DSC: Standard Test Method for Assignment of the Glass Transition Temperatures by Differential Scanning Calorimetry			
ASTM E1545	TMA, Tg By TMA, Glass Transition Temperature By TMA: Standard Test Method for Assignment of the Glass Transition Temperature by Thermomechanical Analysis			
ASTM E1868	LOD By TGA, Weight Loss: Standard Test Method for Loss-On-Drying by Thermogravimetry			
ASTM F1306	Slow Rate Penetration: Standard Test Method for Slow Rate Penetration. Resistance of Flexible Barrier Films and Laminates			
ASTM G151	QUV UV Exposure: Standard Practice for Exposing Nonnetallic Materials in Accelerated Test Devices that Use Laboratory Light Sources			
ASTM G154	QUV: UV Exposure; Standard Practice for Operating Fluorescent Light Apparatus for UV Exposure of Nonmetallic Materials			
ASTM G155	Xenon Arc, Accelerated Weathering. Standard Practice for Operating Xenon Arc Light Apparatus for Exposure of Non-Metallic Materials			
ISO 34-1	Tear Strength: Rubber, Vulcanized or Thermoplastic — Determination of Tear Strength — Part 1: Method B Using an Angle Test Piece With or Without a Nick of Specified Depth			
ISO 37	Tensile Strength: Rubber, Vulcanized or Thermoplastic — Determination of Tensile Stress-Strain Properties			
ISO 62	Water Absorption, H_2O Absorption, Plastics — Determination of Water Absorption			
ISO 75	Heat Deflection Temperature, HDT: Plastics — Determination of Temperature of Deflection Under			
ISO 178	Flexural Properties, Flexural Stress, Flexural Modulus: Determination of Flexural Properties			
ISO 179-1	Charpy Impact Strength: Plastics — Determination of Charpy Impact Properties — Part 1: Non-Instrumented Impact Test			
ISO 180	Izod Impact: Plastics Determination of Izod Impact Strength			
ISO 188	Accelerated Aging in an Oven: Rubber, vulcanized or thermoplastic - Accelerated ageing and heat resistance tests			
ISO 291	Conditioning of Plastics: Plastics – Standard Atmospheres for Conditioning and Testing			
ISO 306	Vicat Softening Temperature, VST: Plastics — Thermoplastic Materials — Determination of Vicat Softening Temperature (VST)			

Test Standard-	Test Description			
ISO 489	Refractive Index, RI, Index of Refraction: Plastics Determination of Refractive Index			
ISO 527	Tensile Properties, Tensile Modulus, Tensile Strength: Plastics — Determination of Tensile			
ISO 604	Compression Properties, Compressive Strength, Compressive Modulus: Plastics — Determination of Compressive Properties			
ISO 815	Compression Set: Rubber, Vulcanized or Thermoplastic — Determination of Compression Set At Ambient, Elevated or Low Temperatures			
ISO 868	Hardness, Shore A & D. Plastics and Ebonite — Determination of Indentation Hardness by Means of A Durometer (Shore Hardness)			
ISO 1133	Melt Flow Rate, Melt Volume Rate: Plastics — Determination of The Melt Mass-Flow Rate (MFR) and The Melt Volume-Flow Rate (MVR) of Thermoplastics			
ISO 1183-1	Density, Specific Gravity: Plastics - Methods for Determining The Density of Non-Cellular Plastics Part 1: Method A Immersion Method			
ISO 1817	Volume Swell: Rubber, Vulcanized Determination of The Effect of Liquids			
ISO 2039-2	Hardness, Rockwell: Plastics — Determination of Hardness — Part 2: Rockwell Hardness (M, R, E Scales)			
ISO 3451	Ash Content, Percent Ash: Plastics - Determination of Ash			
ISO 3795	Flammability: Road Vehicles, and Tractors and Machinery for Agriculture and Forestry Determination of Burning Behaviour of Interior Materials			
ISO 4589-2	Oxygen Index: Plastics - Determination of Burning Behaviour by Oxygen Index Part 2: Ambient-Temperature Test			
ISO 4892-3	QUV, UV Exposure: Plastics — Methods of Exposure To Laboratory Light Sources — Part 3: Fluorescent UV Lamps			
ISO 6383-2	Tear Resistance of Film: Determination of tear resistance — Part 2: Elmendorf method			
ISO 6452	Fogging: Rubber or Plastics Coated Fabrics — Determination of Fogging Characteristics of Trim Materials In The Interior Of Automobiles			
ISO 6603-2	Dynatup, Multiaxial Impact: Plastics — Determination of Puncture Impact Behaviour of Rigid Plastics — Part 2: Instrumented Impact Testing			
ISO 7765	Drop Dart, Dynatup: Plastics Film and Sheeting — Determination of Impact Resistance by The Free-Falling Dart Method — Part 1: Staircase Methods; Pert 2: Instrumented Puncture Test			
ISO 8009-9	Tensile Properties of Contraceptives: Mechanical contraceptives — Reusable natural and silicone rubber contraceptive diaphragms — Section 9 of requirements and tests			
ISO 11357	DSC, Glass Transition Temperature, Tg, Crystallinity, Delta H, Heat of Fusion: Plastics — Differential Scanning Calorimetry (DSC)			
ISO 11358	TGA, Change in Mass, Thermal Residue: Plastics — Thermogravimetry (TG) of Polymers — General Principles			

Test Standard	Test Description				
ISO 11359	TMA, CTE, Coefficient of Thermal Expansion, Glass Transition Temperature by TMA, Tg by TMA, Penetration Temperature by TMA: Plastics — Thermomechanical Analysis (TMA)				
ISO 11443	Shear Viscosity: Plastics — Determination of The Fluidity of Plastics Using Capillary and Slit-Die Rheometers				
ISO 15512	Karl Fischer, Water Content, Moisture Content By Karl Fischer Titration: Plastics — Determination of Water Content Method B Water Vaporization				
	Test Standards Other Than ASTM And ISO Methods				
49 CFR 571.302	Flammability: Code of Federal Regulations Tifle 49: Transportation CFR Part . 571 Federal Motor Vehicle Standards Section 302 Flammability of Interior Materials Also Identified As FMVSS 302				
DIN 75 201	Fogging: Determination of the Windscreen Fogging Characteristics of Trim Materials in Motor Vehicles				
EIA 564	Polycarbonate Chemical Compatibility				
GM9059P	Thermal Oxidative Stability: Test for Thermal-Oxidative Stability Characteristics of Plastics				
GM9305P	Fogging: Criteria for Determining Acceptable/Nonacceptable Materials				
GM9900P	Solvent Resistance, Chemical Compatibility: Cleaning/Solvent Resistance of Automotive Components During Normal Customer Use				
IEC 60093	Volume and Surface Resistivity: Methods of Test for Volume Resistivity and Surface Resistivity of Solid Electrical Insulating Materials.				
IEC 60243	Dielectric Strength: Electrical Strength of Insulating Materials — Test Methods — Part 1: Tests at Power Frequencies				
IEC 60250	Dielectric Constant, Dissipation Factor, Loss Factor: Recommended Methods for The Determination of The Permittivity and Dielectric Dissipation Factor of Electrical Insulating Materials At Power, Audio and Radio Frequencies Including Metre Wavelengths				
MIL-STD -3010A	Test Method 2065 Puncture Resistance: Supercedes Canceled Document - FTMS 101C-2065.1 Puncture Resistance and Elongation Test (1/8 Inch Radius Probe Method)				
SAE J369	Horizontal Flame Test: Flammability of Polymeric Interior Materials— Horizontal Test Method				
SAE J400	Chip Resistance, Gravelometer: Test for Chip Resistance of Surface Coatings				
SAE J1756	Fogging: Test Procedure To Determine The Fogging Characteristics of Interior Automotive Materials				
SAB J1885	Xenon Arc Accelerated Weathering, Artificial Weathering: Accelerated Exposure of Automotive Interior Trim, Components Using A Controlled Irradiance Water Cooled Xenon-Arc Apparatus				

Test Standard	Test Description
SAE J1960	Xenon Arc Accelerated Weathering, Artificial Weathering: Accelerated Exposure of Automotive Exterior Materials Using a Controlled Irradiance Water-Cooled Xenon Arc Apparatus
SAE J2020	QUV: Accelerated Exposure of Automotive Exterior Materials Using a Fluorescent UV and Condensation Apparatus
SAB J2236	Temperature Resistance: Standard Method for Determining Continuous Upper Temperature Resistance of Blastomers
UL-94	Flammability: Tests For Flammability of Plastic Materials for Parts in Devices and Appliances

EXHIBIT 39

1 (Pages 1 to 4)

	1		
L	UNITED STATES DISTRICT COURT	1	INDEX
2	FOR THE DISTRICT OF DELAWARE	2	WITNESS: DIRECT CROSS REDIRECT RECROS
5	CALLAWAY GOLF COMPANY, Plaintiff,	3	SHENSHEN WU
6 7	v. Civil Action No. 06-91 (SLR) ACUSHNET COMPANY,	4	(By Mr. Shuman) 5 122
	Defendant.	5	(By MR. Rosenthal) 121
		6	(by Wife Rosential) 121
		7	EXHIBITS
	VIDEOTAPED DEPOSITION OF SHENSHEN WU	8	
	Friday, March 23, 2007 Boston, Massachusetts	9	
]	
		10	2 U.S. Patent No. 4,431,193 70
	Reporter by: Lisa A. Moreira	11	3 U.S. Patent No. 5,314,187 73
	RDR/CRR	12	4 U.S. Patent No. 5,885,172 74
	JOB No. 62717	13	5 U.S. Patent No. 4,274,637 78
		14	6 Bates AC0020415.UR 98
		15	7 Bates AC0040820 through AC0040822 101
		16	8 Bates AC0020462 108
		17	9 Bates AC0019566 110
		18	10 Bates AC0004942 through AC0004944 115
		19	
		20	
		21	•
		22	
		23	
		24	
		25	
	2		
	APPEARANCES	1	PROCEEDINGS
		2	THE VIDEOGRAPHER: Here begins Videotap
	FISH & RICHARDSON P.C.	3	No. 1 in the deposition of Shenshen Wu in the matter
	(BY: DAVID S. SHUMAN, ESQ.)	4	of Callaway Gold Company vs. Acushnet Company in
	12390 El Camino Real	5	United States District Court for the District of
	San Diego, California 92130-2081	6	Delaware, Case No. 06-91 (SLR). Today's date is
	858.678.4307	7	March 23, 2007. The time on the video monitor is
	shuman@fr.com	8	9:28 a.m.
	Counsel for the Plaintiff	9	The video operator today is Jason
	Compositor mo raminis	10	Lachapelle, a notary public, contracted by Jones
	HOWREY LLP	11	Reporting Company, Boston, Massachusetts. This
		12	deposition is taking place at 225 Franklin Street,
	IRY REIAN A KUNDNUDAL DAVI	L	± ~ × ×
	(BY: BRIAN A. ROSENTHAL, ESQ.)	13	Boston, Massachusetts, and was noticed by Fish &
	1299 Pennsylvania Avenue, NW	13 14	Boston, Massachusetts, and was noticed by Fish & Richardson for the plaintiff.
	1299 Pennsylvania Avenue, NW Washington, D.C. 20004-2402	14	Richardson for the plaintiff.
	1299 Pennsylvania Avenue, NW Washington, D.C. 20004-2402 202.383.7108	14 15	Richardson for the plaintiff. Counsel, please voice-identify
	1299 Pennsylvania Avenue, NW Washington, D.C. 20004-2402 202.383.7108 RosenthalB@howrey.com	14 15 16	Richardson for the plaintiff. Counsel, please voice-identify yourselves and state whom you represent.
	1299 Pennsylvania Avenue, NW Washington, D.C. 20004-2402 202.383.7108	14 15 16 17	Richardson for the plaintiff. Counsel, please voice-identify yourselves and state whom you represent. MR. SHUMAN: David Shuman, Fish &
	1299 Pennsylvania Avenue, NW Washington, D.C. 20004-2402 202.383.7108 RosenthalB@howrey.com Counsel for the Defendant	14 15 16 17	Richardson for the plaintiff. Counsel, please voice-identify yourselves and state whom you represent. MR. SHUMAN: David Shuman, Fish & Richardson, for plaintiff, Callaway Golf.
	1299 Pennsylvania Avenue, NW Washington, D.C. 20004-2402 202.383.7108 RosenthalB@howrey.com Counsel for the Defendant ALSO PRESENT:	14 15 16 17 18 19	Richardson for the plaintiff. Counsel, please voice-identify yourselves and state whom you represent. MR. SHUMAN: David Shuman, Fish & Richardson, for plaintiff, Callaway Golf. MR. ROSENTHAL: Brian Rosenthal from
	1299 Pennsylvania Avenue, NW Washington, D.C. 20004-2402 202.383.7108 RosenthalB@howrey.com Counsel for the Defendant ALSO PRESENT: Troy R. Lester, Esq Acushnet Company	14 15 16 17 18 19	Richardson for the plaintiff. Counsel, please voice-identify yourselves and state whom you represent. MR. SHUMAN: David Shuman, Fish & Richardson, for plaintiff, Callaway Golf. MR. ROSENTHAL: Brian Rosenthal from Howrey on behalf of Acushnet Company and the
	1299 Pennsylvania Avenue, NW Washington, D.C. 20004-2402 202.383.7108 RosenthalB@howrey.com Counsel for the Defendant ALSO PRESENT:	14 15 16 17 18 19 20 21	Richardson for the plaintiff. Counsel, please voice-identify yourselves and state whom you represent. MR. SHUMAN: David Shuman, Fish & Richardson, for plaintiff, Callaway Golf. MR. ROSENTHAL: Brian Rosenthal from Howrey on behalf of Acushnet Company and the witness. With me today is Troy Lester from Acushnet
	1299 Pennsylvania Avenue, NW Washington, D.C. 20004-2402 202.383.7108 RosenthalB@howrey.com Counsel for the Defendant ALSO PRESENT: Troy R. Lester, Esq Acushnet Company	14 15 16 17 18 19 20 21	Richardson for the plaintiff. Counsel, please voice-identify yourselves and state whom you represent. MR. SHUMAN: David Shuman, Fish & Richardson, for plaintiff, Callaway Golf. MR. ROSENTHAL: Brian Rosenthal from Howrey on behalf of Acushnet Company and the witness. With me today is Troy Lester from Acushnet Company.
	1299 Pennsylvania Avenue, NW Washington, D.C. 20004-2402 202.383.7108 RosenthalB@howrey.com Counsel for the Defendant ALSO PRESENT: Troy R. Lester, Esq Acushnet Company	14 15 16 17 18 19 20 21 22 23	Richardson for the plaintiff. Counsel, please voice-identify yourselves and state whom you represent. MR. SHUMAN: David Shuman, Fish & Richardson, for plaintiff, Callaway Golf. MR. ROSENTHAL: Brian Rosenthal from Howrey on behalf of Acushnet Company and the witness. With me today is Troy Lester from Acushnet Company. THE VIDEOGRAPHER: The reporter today is
	1299 Pennsylvania Avenue, NW Washington, D.C. 20004-2402 202.383.7108 RosenthalB@howrey.com Counsel for the Defendant ALSO PRESENT: Troy R. Lester, Esq Acushnet Company	14 15 16 17 18 19 20 21	Richardson for the plaintiff. Counsel, please voice-identify yourselves and state whom you represent. MR. SHUMAN: David Shuman, Fish & Richardson, for plaintiff, Callaway Golf. MR. ROSENTHAL: Brian Rosenthal from Howrey on behalf of Acushnet Company and the witness. With me today is Troy Lester from Acushnet

5 (Pages 17 to 20)

19 17 was working by myself, one person, yes. started out with it, I had no idea whether it would 2 Q. To whom did you first make the suggestion 2 be successful or not, but as I mentioned before, I 3 that the Professional should have a urethane cover? 3 had experience in the polyurethane chemistry; 4 A. I did not make any suggestion other than I 4 therefore, I chose to use that material. 5 started to work on the polyurethane, and it turned 5 Q. So when you started working with 6 6 into a viable product. That's when I say, "Well, we polyurethane as a cover material, you didn't know 7 7 whether or not it would be an acceptable substitute probably have a cover material here." Q. Okay. So whose decision was it to use your 8 urethane cover material on the Titleist 9 A. Correct. 10 10 Professional? Q. Did you eventually decide that it was an 11 A. That I don't know. At that time my boss --11 acceptable substitute for balata? 12 I told my boss, and he probably made a decision with 12 A. Yes. 13 13 higher-ups somewhere that I don't know. Q. Around what time? Q. You created the polyurethane cover for the 14 A. Around -- don't quote me with this date --15 ProV1, correct? 15 '87 to '88 or '89. Q. Okay. 16 A. Yes. 16 17 17 Q. Do you know whose decision it was to include A. Thereabouts, yes. 18 Q. So by that time, you'd been working on 18 your polyurethane cover on the ProV1? 19 polyurethane golf ball covers for approximately how A. I don't know. 20 Q. So when you started working on polyurethane 20 long? 21 21 covers at Titleist, was that in relation to any A. About two or three years. particular project or ball? 22 Q. When you began your work with polyurethane A. The balata cover have - is lacking in cut-23 golf ball covers, did you have any expectation that 24 it would be a substitute for Surlyn golf ball 24 and-shear resistance, so I was trying to improve the 25 25 durability of the balata cover. That was the reason covers; that is, ionomeric golf ball covers, I 20 18 I started working on the balata cover, the balls 1 should say more generally? 1 2 2 A. I suppose if the polyurethane have good with the urethane material. 3 3 property as a golf ball layer, it can be substituted Q. In other words, you were thinking polyurethane might be -- well, strike that question. 4 for all layers. You don't think about it, but you 5 When you started working on polyurethane would suspect it could be cover material for any 6 6 golf ball covers at Titleist, did you have any kind of constructions. 7 7 Q. As a ball cover material, what advantages, knowledge of previous examples of polyurethane golf 8 8 if any, does polyurethane offer compared to balata? ball covers? 9 9 A. Balata is a soft material. In fact, it's A. No. Q. You didn't know of any balls at the time 10 10 around 42 Shore D. Using polyurethane, it allows 11 you to deliver soft cover with good click and feel 11 that had used a polyurethane cover? MR. ROSENTHAL: Objection. What time? 12 that the professional player like to have. 12 13 13 Q. At the time -- let me start the question O. What is "click"? 14 A. It's that sound when you impart your club 14 over. 15 15 When you started working on polyurethane against a golf ball. golf ball covers, did you have any knowledge of any 16 Q. And there's good click and there's --16 **17** 17 previous balls that had used polyurethane covers? A. Yes. 18 18 A. No. Q. -- poor click? 19 A. Yes. I mean, when you hit that golf ball -19 Q. So you were considering polyurethane as a replacement for balata as a cover material? 20 20 I mean, are you a golfer? 21 21 A. Not so much as a replacement, but an Q. I am. 22 22 improvement in the cover material. A. Okay. When you hit, you hear click, you 23 know, a sharp click, crispy click. But there are 23 Q. Why did you think polyurethane might be an improvement over balata as a cover material? 24 some golf ball you hit, it's a thump. Thump. Give 24 A. Just to try. I did not know. When I first you a very heavy feeling. 25

6 (Pages 21 to 24)

21 23 O. Okay. So one of the things that made balata 1 polyurethane one will have better shear and cut balls desirable is they had good click? resistance? 2 3 3 A. That's my understanding, yes. 4 Q. Did you find that polyurethane covers also 4 Q. Okay. Is there any performance distance offered good click? 5 you're aware -- excuse me. Let me start that 6 6 question again. A. Yes. In fact, I'm laughing because I 7 Is there any performance distance you're 7 remember when I first put this polyurethane cover on aware of between covers made of thermoset the wound ball, many of the co-workers was click and polyurethane versus thermoplastic polyurethane? feel the golf balls. Oh, click, or thump, you know. A. You are talking about golf ball performance? 10 10 And I'm quite sure that click is an important 11 Q. Correct. factor, yes. Q. And what is the property you described as 12 12 A. That I do not know. 13 Q. Can you explain, from a chemical 13 "feel"? perspective, what it is about polyurethane that 114 14 A. "Feel" is that feeling that when you impart your club on a golf ball -- just like I said, when 15 makes it a better golf ball cover than an ionomer 15 16 you have a good click, it feels lighter - it feels 16 A. Yes. When the ionomer cover becomes softer 17 good. But if the golf ball cover is -- like give 17 and softer and softer from all the way from 70 Shore 18 18 you this dull thump sound, it feels heavy, that kind 19 D down to below 60 Shore D, I say -- I'm using 60 19 20 20 Shore D as an example - it starts to lose its cut Q. Compared to balata, does a polyurethane 21 and shear resistance and resiliency, which is 21 cover have better click? A. For equal material hardness, I would say 22 relating to the velocity of the golf ball. 22 23 23 Q. Is there something about the chemical about the same. 24 structure of an ionomer layer that, relative to Q. Does a polyurethane cover have better feel 24 25 polyurethane, makes it more susceptible to cut and 25 than a balata cover? 24 22 A. That I cannot answer. I'm not too much of a 1 shear? 1 2 A. You cannot figure out from the chemistry, 2 golfer. 3 but from the inherent property of this material, 3 Q. Does polyurethane, as a cover material, 4 that's why you see - when you make the ionomer offer any advantages relative to ionomeric covers? 5 softer and softer, you start to see -- start to lose A. In the softer cover, yes. 5 6 velocity, start to lose cut and shear resistance. Q. What do you mean by "softer"? 6 7 These are the facts, not - not so much 7 A. That's a - you know, around a balata cover hardness of 40 Shore D to around 50 Shore D, that 8 by argument or chemistry. 8 Q. In other words, it's something that you have 9 polyurethane golf ball cover delivers excellent 10 properties over the ionomers such as shear and cut to observe empirically? 10 11 A. That's right. Well, with my experience. I 12 don't know - with some other people, I don't know 12 O. In other words -- let me see if I've 13 what they would say, but this is my opinion. 113 understood your testimony -- for covers of equal 14 Q. Would you consider polyurethane a substitute hardness, a polyurethane cover will have better cut 14 15 for balata as a cover material? resistance and shear resistance than an ionomer 1.5 16 MR. ROSENTHAL: Objection, vague. 16 cover? 17 A. Not initially, but later on we did know that 17 MR ROSENTHAL: Objection. That 18 the polyurethane cover that we have developed at 18 misstates. 19 Titleist have superior performance material property 19 Go ahead. 20 20 MR. SHUMAN: Okay. Maybe it does. than balata. 21 Q. In other words, when you started working on 21 A. In the softer range, yes; in the softer 22 polyurethane golf ball covers, you didn't realize 22 Q. Okay. So if I'm trying to make a soft golf 23 that it could be a substitute for balata? 23 24 A. That's correct. 24 ball cover out of polyurethane and out of ionomers, if I make the covers with the same hardness, the Q. How long did it take for you to realize that 25

32 (Pages 125 to 127)

Γ			-
	125		127
1	Q. Okay. If you applied a thinner layer of	1	Commonwealth of Massachusetts
2	polyurethane to the ProV1 ionomer layer, could the	2	Suffolk, ss.
3	Shore D hardness measured then on the outside of the	3	·
4	ball be above 64?	4	I, Lisa A. Moreira, Registered Diplomate
5	A. That I would not know.	5	Reporter, Certified Real-Time Reporter and Notary
6	Q. Okay.	6	Public in and for the Commonwealth of Massachusetts,
7	A. It might be higher, but I would not know how	7	do hereby certify that SHENSHEN WU, the witness
8	high it's going to get.	8	whose deposition is hereinbefore set forth, was duly
9	MR. SHUMAN: No further questions.	9	
10	THE VIDEOGRAPHER: This marks the end of	10	sworn by me and that such deposition is a true
11	Videotape No. 2 in the deposition of Shenshen Wu.	11	record of the testimony given by the witness.
12	We're going off the record. The time is 1:50.	12	I further certify that I am neither related to or
13		1	employed by any of the parties in or counsel to this
1	(Whereupon the deposition was concluded	13	action, nor am I financially interested in the
14	at 1:50 p.m.)	14	outcome of this action.
15		15	In witness whereof, I have hereunto set my hand
16		16	and seal this 23rd day of March, 2007.
17		17	
18		18	
19		19	
20		20	Lisa A. Moreira, RDR, CRR
21		21	Notary Public
22		22	CSR No. 146299
23		23	My commission expires
24		24	December 25, 2009
25	· i	25	
	126		, , , , , , , , , , , , , , , , , , ,
	120		
1			·
2	•		
3			
4			
5 6		ļ	j
7			
8			
9	I, SHENSHEN WU, do hereby declare under		
10	penalty of perjury that I have read the foregoing		
11	transcript; that I have made any corrections as appear		
12	noted, in ink, initialed by me, or attached hereto; that		
13	my testimony as contained herein, as corrected, is true		
14	and correct.		
15	EXECUTED this day of,		
16	20, at		
Ì	(City) (State)		
17	}		
18			
19			
20	CYTENTON TON TON		
21	SHENSHEN WU		
21 22			
23	1		
24	İ		
25			
ì			