SUPPORT VECTOR MACHINE

References

- Easy to read materials (to form this PPT file)
 - http://www.robots.ox.ac.uk/~az/lectures/ml/lect2.pdf
 - http://www.robots.ox.ac.uk/~az/lectures/ml/lect3.pdf
- Math-oriented material
 - http://cs229.stanford.edu/notes/cs229-notes3.pdf

Binary classifiers

- Binary classification problem: want to classify test samples into two classes
- Suppose we have training dataset

$$\{(\mathbf{x}_{(k)}, d_{(k)}) | 1 \le k \le M\}$$
, with $d_{(k)} \in \{1, -1\}$

 \square We want to train a classifier $y_{(k)} = f(\mathbf{x}_{(k)})$ such that

$$\begin{cases} y_{(k)} > 0 \text{ if } d_{(k)} = +1 \\ y_{(k)} < 0 \text{ if } d_{(k)} = -1 \end{cases}$$

Linear separability

If we can use a linear function to separate two classes, the data are linearly separable

Linear separability

Not linearly separable case

Linear classifier

- □ A linear classifier has the following math form $f(\mathbf{x}) = \mathbf{w}^T \mathbf{x} + b$ (b is a scalar)
- lacktriangle **W** is called weight vector and is **normal** to the separating hyperplane and b is called bias
- If we want, we can also use gradient descent method to find W

Linear classifier

- Want to find a good w for classification
- □ How to define "good"
- □ We want maximum margin (shown below)

Support vectors

 Data points closest to the decision boundary are called support vectors (circled below)

Support vectors

- In the above description, we know all support vectors have equal distance to the boundary
- $lue{}$ We are free to scale $oldsymbol{w}$ and b so that the distance is 1
- □ For supporting vectors \mathbf{X}_+ and \mathbf{X}_- (belonging to +1 and -1 classes), we then have

$$\mathbf{w}^T \mathbf{x}_+ + b = 1$$
$$\mathbf{w}^T \mathbf{x}_- + b = -1$$

Support vectors

- \Box Therefore, the margin is $\frac{\mathbf{w}}{\|\mathbf{w}\|}\cdot(\mathbf{x}_+-\mathbf{x}_-)=\frac{\mathbf{w}^T\mathbf{x}_+-\mathbf{w}^T\mathbf{x}_-}{\|\mathbf{w}\|}=\frac{2}{\|\mathbf{w}\|}$
- The above is the inner product of the unit normal vector and the vector difference

Optimal margin classifier

 With the above reasoning, we have the following optimization problem: For all k

$$\max_{\mathbf{w}} \frac{2}{\|\mathbf{w}\|} \text{ subject to } f(\mathbf{x}_{(k)}) : \begin{cases} \geq 1 \text{ if } d_{(k)} = +1 \\ \leq -1 \text{ if } d_{(k)} = -1 \end{cases}$$

□ The above problem is equivalent to

$$\min_{\mathbf{w}} \frac{1}{2} \|\mathbf{w}\|^2$$

subject to $d_{(k)}(\mathbf{w}^T\mathbf{x}_{(k)}+b) \geq 1$ for all k

It is a quadratic programming problem

Optimal margin classifier

We can use Lagrange multipliers to solve this problem

$$\mathcal{L}(\mathbf{w}, b, \lambda) = \frac{1}{2} \|\mathbf{w}\|^2 - \sum_{k=1}^{N} \lambda_{(k)} \left[d_{(k)} (\mathbf{w}^T \mathbf{x}_{(k)} + b) - 1 \right]$$

- Stationary points satisfy the following
 - □ If $d_{(k)}(\mathbf{w}^T\mathbf{x}_{(k)} + b 1) = 0$ then $\lambda_{(k)} \ge 0$ (boundary case, opposite gradient direction)
 - □ If $d_{(k)}(\mathbf{w}^T\mathbf{x}_{(k)} + b 1) > 0$ then $\lambda_{(k)} = 0$ (constraint inactive)
 - Therefore, $\nabla_{\mathbf{w}} \mathcal{L}(\mathbf{w}, b, \lambda) = 0$; $\nabla_b \mathcal{L}(\mathbf{w}, b, \lambda) = 0$; $\nabla_{\lambda} \mathcal{L}(\mathbf{w}, b, \lambda) = 0$ if $\lambda \neq 0$

 What if we encounter linearly non-separable dataset

- We may allow for some data points not having margin greater than 1
- \square Define the distance between support vector and the violating data $\mathbf{X}_{(k)}$ is $\xi_{(k)}$
- □ We know $\xi_{(k)} \ge 0$
- Want to add penalty term in the cost function

Thus, the new optimization problem becomes

$$\min_{\mathbf{w}} \frac{1}{2} \|\mathbf{w}\|^2 + C \sum_{k} \xi_{(k)}$$

subject to $d_{(k)}(\mathbf{w}^T\mathbf{x}_{(k)} + b) \ge 1 - \xi_{(k)}$ for all k

- \square In the equation, C is a regularization parameter
- Large C implies stronger "margin" requirement
- Small C allows soft "margin"

- $\ \square$ The term $\xi_{(k)}$ appears only if data point $\mathbf{x}_{(k)}$ does not have enough marine
- We may formulate it in another form

$$\xi_{(k)} = \max(0, 1 - d_{(k)}y_{(k)})$$

$$= \max(0, 1 - d_{(k)}(\mathbf{w}^T \mathbf{x}_{(k)} + b))$$

This function is called hinge (loss) function

□ If we modify the max function as

$$\xi_{(k)} = \max(0, \Delta - d_{(k)}y_{(k)})$$

we can determine when penalty starts

- We consider some cases
 - $\square \Delta = 1$
 - $\square \Delta = 0$
- You can check other cases

 $\Delta = 0$ (x means $\xi > 0$, V means $\xi = 0$)

Why called hinge function

Hinge function used in SVM

Intuition of hinge function

- □ Which boundary line is better (R,G, or B)?
 - □ Without hinge function, we choose R
 - □ With hinge function, we choose B

- To deal with non-linearly separable problem, we may map data points to higher dimensional space
- Data points below are not linearly separable

 Transform into higher dimensional space, and they are linearly separable

- \square With this idea, what we can do is to use a function $\phi(\cdot)$ to perform the mapping
- Therefore, we use the following equation instead $f(\mathbf{x}) = \mathbf{w}^T \phi(\mathbf{x}) + b$

XOR problem

□ Truth table of exclusive OR (XOR)

x_1	x_2	y
0	0	0
0	1	1
1	0	1
1	1	0

XOR problem

- Not possible for linear separation in original 2-D domain (obvious)
- If we map the data points to higher dim space,
 linear separation becomes possible
- □ Want to do it from 2-D to 3-D

Simple kernel trick

$$\ \, \Box \, \operatorname{Let} \, \begin{bmatrix} z_1 \\ z_2 \\ z_3 \end{bmatrix} = \phi \left(\begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \right) = \begin{bmatrix} x_1 x_2 \\ x_1 \\ x_2 \end{bmatrix}$$

■ We then have four data points as

$$\begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$$

We can have a linear function to separate samples

Simple kernel trick

- □ Let $f(\mathbf{x}) = [-2 \ 1 \ 1] \cdot \phi(\mathbf{x}) 0.5$
- We then have

 \square As $f(\mathbf{x})$ is a linear function, it is linearly separable

 In our previous example, we use the following equation to perform classification

$$f(\mathbf{x}) = \mathbf{w}^T \phi(\mathbf{x}) + b$$

- □ However, we want
 - lacksquare Not to computing $oldsymbol{\phi}(\mathbf{x})$ and \mathbf{w}^T explicitly
 - It can be solved by dual form
 - A systematic way to find kernels (Mercer's theorem, omitted)

Dual form

Recall the original problem (primal form)

$$\min_{\mathbf{w}} \frac{1}{2} \|\mathbf{w}\|^2 + C \sum_{\mathbf{w}} \max(0, 1 - d_{(k)} y_{(k)})$$

This is equivalent to the following dual form

$$\max_{\lambda} \sum_{i=1}^{N} \lambda_{(k)} - \frac{1}{2} \sum_{i=1}^{N} \sum_{j=1}^{N} \lambda_{(i)} \lambda_{(j)} d_{(i)} d_{(j)} \left(\mathbf{x}_{(i)}^{T} \ \mathbf{x}_{(j)} \right)$$

Subject to
$$0 \le \lambda_{(k)} \le \mathcal{C}$$
 and $\sum_k \lambda_{(k)} d_{(k)} = 0$

The math details of dual form is omitted (KKT condition)

Dual form

- lacksquare When using kernels, we use $\phi(\mathbf{x})$ in place of \mathbf{x}
- $exttt{ iny Therefore, in dual form we need to deal with the term <math>\left(\phi(\mathbf{x}_{(i)})^T\phi(\mathbf{x}_{(j)})
 ight)$
- Some functions have special properties

$$\phi(\mathbf{x}_{(i)})^T \phi(\mathbf{x}_{(j)}) = \kappa(\mathbf{x}_{(i)}, \mathbf{x}_{(j)})$$

 $\ \square$ Thus, the computation is simplified even if $\phi(\mathbf{x})$ is in a very high dimensional space

Radical basis function

One widely used kernel is radical basis function

$$\kappa(\mathbf{x}_{(i)}, \mathbf{x}_{(j)}) = \exp\left(-\frac{\|\mathbf{x}_{(i)} - \mathbf{x}_{(j)}\|^2}{2\sigma^2}\right)$$

- Theoretically, $\phi(\mathbf{x}_{(j)})$ with exponential function has infinitely many dimensions (Taylor expansion for exponential function, or more mathematically Hilbert space)
- □ Recall $\phi(\mathbf{x}_{(j)})^T \phi(\mathbf{x}_{(j)})$ is computing inner product, and thus it is a scalar

Support vector machine

- Recall in dual form we do not compute the weights
- How to use SVM if we find the optimal solution in the dual form

Computing SVM

- It is not too difficult to find the optimal solution with linear kernel using Lagrange multipliers (for small problems)
- For complicated problems, we can find numerical solution by SMO method
- You can read the following paper to have some ideas about how it is done

https://www.csie.ntu.edu.tw/~cjlin/papers/libsvm.pdf

- One widely used SVM library is Libsvm developed by an NTU professor
- To use SVM with RBF (radical basis function) kernel,
 we need to determine following hyperparameters
 - σ^2 (sometimes use $\gamma = \frac{1}{2\sigma^2}$)
 - C in the cost function
- Therefore, again, use validation to fine-tune parameters

- One possible method to find hyperparameters is through grid search
 - To reduce the search space, use exponential increment in parameter values
 - For example: $C = 2^{-5}, 2^{-3}, ..., 2^{15},$ $\gamma = 2^{-15}, 2^{-13}, ..., 2^3$

- If training data are class imbalanced, need to adjust other parameters to reduce its impact
- One more thing: sometimes it is useful to perform normalization on training (and then testing) data

- The original SVM is a binary classifier
 - Able to classify two classes
- We may extend SVM to Multiclass classification (used in sklearn SVM tool)
 - One vs all
 - One vs one
- Don't have time to cover the detail
 - Refer to supplementary material (multiclass classification)

What is not covered

- SVM for regression
- SVM for multiple classes
- SMO algorithm
- Variations of SVM (read textbook or other reference materials)