Challenges in RL Environment: size, action space, and state space

- In Q-learning, a Q-table is implemented:
 - From the robot in the grid example:
 - 3x3x4 = 36 total states -> The robot can be at any location in any orientation
 - 4 different states per 3x3 grid
 - Actions = Left, right, fwd. Location = (orientation) up/down/left/right
 - The state of the world is the robot's position + orientation

	Target		
source			†
		(1,1, facing up)	
		(0,1,facing up)	

- Moving from (0,1) to (1,1) and obtaining a Q-value:
 - Select an action from the pool
 - Execute selected action
 - Approximate a new q-value: $Q(S_t, A_t) \leftarrow Q(S_t, A_t) + \alpha \left[R_{t+1} + \gamma \max_{a} Q(S_{t+1}, a) \right]$
 - Save Q-values in table:
 - Here, the complexity increases:
 - Q-Table needs to contain:
 - Combination of: actions, state, and what q-values were given for the combination of (action, state) pair
 - The Q-table is now an n-dimensional list.

- State: What it's observed
- State space: All possible states for a system
- Action space: set of actions. Has to be finite.

• To train a RL agent to create a model that will predict stopping parameters to prevent side collision:

Some Actions	Other factors	
Increase breaking force	Speed of the vehicle,	
Automatic deceleration (no brake, engine deceleration)	Distance to next obstacle, Feedback from ABS system(correction s on-the-fly if needed) Increase sampling speed, etc.	
Automatic deceleration(brake s, engine deceleration)		

- Training the agent:
 - Combination of (action, state):
 - Increases as the agent explores
 - Growth of the Q-table becomes "stable" after training
 - Related to the explore-exploit ratio
 - However, at this point, the Q-table will be extremely big
 - Training is complete: now save and deploy the model:
 - What are some problems?

- If using Q-learning:
 - For the model to make an effective response to avoid a collision:
 - Needs to look for the proper Q-value:
 - Needs to match sampled scenario with Q-value
 - The model saves parameters according to what it was configured to save:
 - Defined limits

- Some problems:
 - Action space and state space are large
 - The environment contains "other factors"
 - Regardless of the approach (SARSA, Q-Learning):
 - Problems with generalization
 - Generalization:
 - the ability of the same developed model to predict given multiple environments.
 - the ability of the same developed model to identify irregularities and make corrections "on the fly"
- Can excel in:
 - Industry Automation, why?
 - Trading and Finance, why?

- To remedy these challenges:
 - Deep Learning (DL)
 - Increases the processing scope
 - Instead of prediction, an approximation is calculated
 - Can handle the larger environment
 - "other factors"
 - Deep Reinforcement Learning (DRL):
 - More powerful than a DL approach by itself
 - Implements RL Q-learning to increase the processing scope

