Your Document Title

Your Name

March 23, 2024

Contents

1 Proof Methods 2

Chapter 1

Proof Methods

If then statements

Format: Proof. If A, then B.

- 1. Assume A.
- 2. Show that assuming A leads to B.
- 3. Therefore, B is concluded from A.

Example:

Proof. Proof. If m = 1, then m + 0 = 1.

- 1. Assume m=1.
- 2. Considering m = 1, we have 1 + 0 = 1.
- 3. This simplifies to 1 = 1, which is true.

If then types

Various types of implications and their representations:

• $A \Rightarrow B$: "If it is Wednesday, Dr. Beck will get a cup of coffee from the student union."

- $B \Rightarrow A$ (Converse of the first): "If Dr. Beck got a cup of coffee from the student union, it is Wednesday."
- $A \Leftrightarrow B$ (Bi-conditional, if and only if): "It is Wednesday if and only if Dr. Beck got a cup of coffee from the student union."
- (not B) \Rightarrow (not A) (Contrapositive): "If Dr. Beck did not get a cup of coffee from the student union, then it is not Wednesday."

2

Induction Proof

Format:

Proof. Proof that F(x) is true for all $x \in A$:

- 1. Base case: Show F(a) is true, where a is the smallest element in A.
- 2. **Induction step:** Assume F(k) is true for an arbitrary $k \in A$. Show that $F(k) \Rightarrow F(k+1)$.

3. Therefore, F(x) is true for all $x \in A$.

Example:

Proof. For all $n \in \mathbb{N}$, n = n.

- 1. Base case (n = 1): 1 = 1 is true.
- 2. Induction step: Assume n = n is true for an arbitrary natural number n. Show that this implies n + 1 = n + 1.
- 3. By the induction hypothesis, n = n. Adding 1 to both sides, n+1 = n+1, which holds true.

Proof by contradiction

Format:

Proof. Prove A is true by Contradiction:

- 1. Assume A is false.
- 2. Show that this assumption leads to a contradiction.
- 3. Therefore, A must be true.

Example:

Proof. Prove there is no smallest negative integer.

- 1. Assume, by way of contradiction, that there is a smallest negative integer, call it n.
- 2. Consider n-1. n-1 is also an integer and is smaller than n, contradicting the assumption that n is the smallest negative integer.
- 3. Therefore, there cannot be a smallest negative integer.

Chapter 2

Axioms

Axioms of Integers

The axioms of integers describe the basic properties that define the structure of the set of integers (\mathbb{Z}) .

Axiom 1.1 (Commutativity and Associativity)

- For any integers m, n, the operation of addition is commutative: m + n = n + m.
- For any integers m, n, p, the operation of addition is associative: (m+n) + p = m + (n+p).
- For any integers m, n, p, the distributive property connects the operations of multiplication and addition: $m \cdot (n+p) = m \cdot n + m \cdot p$.
- For any integers m,n, the operation of multiplication is commutative: $m\cdot n=n\cdot m.$
- For any integers m,n,p, the operation of multiplication is associative: $(m\cdot n)\cdot p=m\cdot (n\cdot p).$

Axiom 1.2 (Identity Elements)

- There exists an integer 0 such that for any integer m, adding 0 to m leaves it unchanged: m + 0 = m.
- There exists an integer 1 $(1 \neq 0)$ such that for any integer m, multiplying m by 1 leaves it unchanged: $m \cdot 1 = m$.

Axiom 1.3 (Additive Inverse)

For each integer m, there exists an integer denoted by -m such that their sum is 0: m + (-m) = 0.

Axiom 1.4 (Cancellation Law)

For any integers m, n, p, if $m \neq 0$ and $m \cdot n = m \cdot p$, then n = p.

Proof Example

Proof. If m is an integer and $m \cdot 0 = 0$, then m = m.

- Consider an integer m.
- Multiplying by 0 gives $m \cdot 0 = 0$.
- Since $m \cdot 0 = 0$, by the property of zero in multiplication, we have m = m.

• Thus, the statement is proven.