Construction de \mathbb{R}

Suites de Cauchy, coupures de Dedekind, théorèmes fondamentaux pour l'analyse

0.1 Motivation et suites de Cauchy

0.1.1 Pourquoi \mathbb{R} ?

Qu'est ce que l'ensemble des réels? Intuitivement, c'est l'ensemble des nombres rationnels dont on a "rempli les trous". Mais que sont donc ces trous? Par exemple, une solution de $x^2 = 2$:

Une preuve de l'irrationnalité de $\sqrt{2}$

On suppose qu'il existe deux entiers p,q premiers entre eux tels que $\left(\frac{p}{q}\right)^2=2$.

Alors $p^2 = 2q^2$, donc p^2 est pair. Mais tout entier ayant la même parité que son carré, p est également pair. Avec p = 2k, il vient $4k^2 = 2q^2$, d'où $2k^2 = q^2$, et rebelote : q est pair.

On avait supposé la fraction irréductible, et pour tant $\mathrm{PGCD}(p,q)\geq 2....$ C'est impossible, donc $\sqrt{2}$ est irrationnel.

Comment faire sens alors d'une telle solution?

Peut être d'une façon approchée : par exemple, en construisant une suite de rationnels dont le carré converge vers 2.

Exercice 1 (Méthode de Héron pour l'approximation de $\sqrt{2}$)

Help