Beyond CFGs Computational Learning of Syntax

Alexander Clark

Department of Philosophy King's College, London

LSA Summer Institute 2015, Chicago

Topics for today

- Some computational experiments on CFGs.
- Inadequacies of CFGs
- MCFGs as a representative MCS formalism
- Generalizing the notion of context
- Learning results
- Copying
- Learning copying

Overview

Maintain a set of contexts F and a set of strings K: construct a grammar $\mathcal{G}(K, L, F)$:

- Define nonterminals using small sets of contexts.
- Use strings to eliminate incorrect rules.

Overview

Maintain a set of contexts F and a set of strings K: construct a grammar $\mathcal{G}(K, L, F)$:

- Define nonterminals using small sets of contexts.
- Use strings to eliminate incorrect rules.

Monotonicity wrt contexts

If $F \subseteq G$ are two sets of contexts then $\mathcal{L}(\mathcal{G}(K,L,F)) \subseteq \mathcal{L}(\mathcal{G}(K,L,G))$

Anti-Monotonicity with strings

If $J \subseteq K$ then $\mathcal{L}(\mathcal{G}(J, L, F)) \supseteq \mathcal{L}(\mathcal{G}(K, L, F))$

Primal

Representation

Each nonterminal in the grammar is represented by a small $(\leq k)$ set of strings:

- Small set of strings W
- defines a nonterminal \[\mathbb{W} \]
- which we want to generate all the strings in W^{▷⊲}

Primal

Representation

Each nonterminal in the grammar is represented by a small $(\leq k)$ set of strings:

- Small set of strings W
- defines a nonterminal $[\![W]\!]$
- which we want to generate all the strings in W^{▷⊲}

The larger the set W, the larger the set of strings $W^{\triangleright \triangleleft}$. Use contexts to eliminate incorrect rules.

Primal algorithms

$$[\![A]\!] \to [\![B]\!][\![C]\!]$$

$$A^{
hd}\supseteq B^{
hd}C^{
hd}$$

Primal algorithms

$$\llbracket A \rrbracket \to \llbracket B \rrbracket \llbracket C \rrbracket$$

$$A^{\triangleright \triangleleft} \supseteq B^{\triangleright \triangleleft} C^{\triangleright \triangleleft}$$

Incorrect if there is some context $I\Box r\in A^{\triangleright}$ and strings $u\in B, v\in C$ such that

luvr is not in L,

Theorem

This algorithm learns all context-free languages that have the FCP:

- Efficiently
- Correctly
- Weakly
- Using MQs.

Theorem

This algorithm learns all context-free languages that have the FCP:

- Efficiently
- Correctly
- Weakly
- Using MQs.

Discussion

Is this really how children learn language?

Learnable languages

Weak learning, with MQs

- · All finite languages
- All regular languages
- Not quite all context-free languages

Diagram

Unlearnable languages

Example

```
L = \{a^n b^m \mid n \neq m\} 
 \{a, b, aab, abbb, aaaaabbb, \dots\}
```

Unlearnable languages

Example

```
L = \{a^n b^m \mid n \neq m\}
{a, b, aab, abbb, aaaaabbb, . . . }
```

Why?

To represent this we need to use concepts that cannot be referred to by a finite number of contexts, or a finite number of strings.

Do these occur in natural language?

Inequality languages

 $\{a^nb^m \mid n < m\}$

- (either) syntax or semantics
- · (both) phonology and logic
- either either syntax or semantics or both phonology and logic
- either syntax or semantics or both phonology and logic
- syntax or semantics or both phonology and logic
- · *either either syntax or semantics

Number of "either"s must be at most the number of "or"s.

Shibata 2014

- · Non-parametric Bayesian model
- Finite context property.
- Tested on the Brown Corpus

Shibata, 2014

Shibata, 2014

Table 1: Comparing proposed methods with a baseline algorithm (modified Kneser-Ney). "Score" represents the average of $\log P(\text{sentence})$ in the test data. The average of 4 trials is taken in the row of "(1,0)-context". Type-0 and type-2 nonterminals represent those which have a terminal and two nonterminals in the left-hand side of rules, respectively.

		The num. of	The num. of
Method name	Score	type-0 nonterminals	type-2 nonterminals
(0, 0)-context(blocked sampler)	27.043	60	37
(0,0)-context(proposed sampler)	25.775	122	94
(1,0)-context(proposed sampler)	25.596	46.0	6.75
modified Kneser-Ney(unigram)	39.407	-	-
modified Kneser-Ney(bigram)	27.067	-	-
modified Kneser-Ney(trigram)	25.802	-	-
modified Kneser-Ney(4-gram)	25.675	-	-
modified Kneser-Ney(5-gram)	25.823	-	-
modified Kneser-Ney(6-gram)	25.902	-	-

Scicluna, 2014

UC1: a^nb^n UC2: $a^nb^nc^md^m$ UC3: a^nb^m $n \ge m$ **UC4**: $a^p b^q$, $p \neq q$ **UC5**: Palindromes over alphabet $\{a, b\}$ with a central marker **UC6**:Palindromes over alphabet $\{a, b\}$ without a central marker **UC7**: Lukasiewicz language $(S \rightarrow aSS|b)$

and 4 described by ambiguous grammars:

AC1: $|w|_a = |w|_b$ **AC2**: $2|w|_a = |w|_b$ **AC3**: Dyck language AC4: Regular expressions.

The 9 artificial natural language grammars are:

NL1: Grammar 'a', Table 2 in (Langley and Stromsten, 2000) NL2: Grammar 'b', Table 2 in (Langley and Stromsten, 2000) NL3: Lexical categories and constituency, pg 96 in (Stolcke, 1994) NL4: Recursive embedding of constituents, pg 97 in (Stolcke, 1994) NL5: Agreement, pg 98 in (Stolcke, 1994) NL6: Singular/plural NPs and number agreement, pg 99 in (Stolcke, 1994) NL7: Experiment 3.1 grammar in (Adriaans et al., 2000) NL8: Grammar in Table 10 (Adriaans et al.,

Scicluna, 2014

		Relative I	Entropy	UF ₁	
Ex.	S	COMINO ADIOS		COMINO	ABL
UC1	10	0.029	1.876	100	100
UC2	50	0.0	1.799	100	100
UC5	10	0.111	7.706	100	100
UC7	10	0.014	1.257	100	27.86
AC1	50	0.014	4.526	52.36	35.51
AC2	50	0.098	6.139	46.95	14.25
AC3	50	0.057	1.934	99.74	47.48
AC4	100	0.124	1.727	83.63	14.58
NL7	100	0.0	0.124	100	100
NL1	100	0.202	1.646	24.08	24.38
NL2	200	0.333	0.963	45.90	45.80
NL3	100	0.227	1.491	36.34	75.95
NL5	100	0.111	1.692	88.15	79.16
NL6	400	0.227	0.138	36.28	100
ŪC3	100	0.411	0.864	61.13	100
UC4	100	0.872	2.480	42.84	100
UC6	100	1.449	1.0	20.14	8.36
NL4	500	1.886	2.918	65.88	52.87
NL8	1000	1.496	1.531	57.77	50.04
NL9	800	1.701	1.227	12.49	28.53

Table 2: Relative Entropy and UF₁ results of our system COMINO vs ADIOS and ABL respectively. Best results are highlighted, close results (i.e. with a difference of the most 0.1 for relative

Top down

Top down

Top down

Chomsky hierarchy

Bottom up: learning results

Chomsky hierarchy Bottom up

Representation

[Stabler, 2013]

This consensus is stable and rather well understood.

- MCFGs are weakly and strongly equivalent to MInimalist Grammars (Stablerian)
- Caveat: the MCFGs may be much bigger than the equivalent MG.

Bottom up notation for CFGs

Top down notation

$$S \rightarrow aSb$$

Bottom up

$$S(axb) \leftarrow S(x)$$

Swiss German Shieber (1985)

... das mer d'chind em Hans es huus lönd hälfe aastriiche ... that we the children-ACC Hans-DAT house-ACC let help paint

'... that we let the children help Hans paint the house'

Proof by intersection with regular language

$$\{a^nb^mc^nd^m|m,n\geq 0\}$$

MCFGs

A neutral extension of CFGs.

Example grammar

One nonterminal of dimension 2: P

$$P(\lambda, \lambda)$$

$$P(xu, yv) \leftarrow P(x, y)B(u)D(v)$$

$$P(ux, vy) \leftarrow A(u)C(v)P(x, y)$$

- Lexical rules introducing the terminal symbols: A(a), B(b), C(c), D(d)
- Start symbols S always has dimension 1. $S(xy) \leftarrow P(x,y)$

derivation

derivation

derivation

Derivation contexts of nonterminals of dimension two have two gaps $\Box bb\Box dd$.

Hierarchy

$\mathbb{G}(p,q)$ where

- p is the maximal dimension
- *r* is the maximal number of symbols on the right hand side of a rule.

Hierarchy

$\mathbb{G}(p,q)$ where

- p is the maximal dimension
- r is the maximal number of symbols on the right hand side of a rule.
- $\mathbb{G}(1,2)$ is CFGs in Chomsky normal form; $\mathbb{G}(1,*)$ is CFGs.

Movement

Movement

Richer derivations need richer sets of contexts Movement

Richer derivations need richer sets of contexts Movement

Some nonterminals can generate pairs of strings

Subderivation

Yields a pair of strings 'eat, what'

Context

'eat, what' \rightarrow 'what did you eat' f(x, y) = y did you x

Contemporary Minimalism

short raising to subject

Contemporary Minimalism

short raising to subject

Problem

derived tree changes

Problem

Make it a tuple

Problem

Make it a tuple

Yields

⟨john, laugh⟩

Contemporary Minimalism short raising to subject

 $\langle John \ will \ laugh \rangle_1 \\ | \\ \langle \ John, \ will \ laugh \ \rangle_2 \\ \langle \ will \ \rangle_1 \qquad \langle \ John, \ laugh \ \rangle_2 \\ | \\ \langle \ laugh \ \rangle_1 \qquad \langle \ John \ \rangle_1$

Extending the notion of contexts

Nonterminals of dimension 1

- Yields are strings u
- Contexts have one gap I□r
- Combine them: $I \square r \odot u = Iur$

Extending the notion of contexts

Nonterminals of dimension 1

- Yields are strings u
- Contexts have one gap I□r
- Combine them: $I \square r \odot u = Iur$

Nonterminals of dimension 2

- Yields are pairs of strings \(\lambda u, \nu \rangle \)
- Contexts have two gaps I□m□r
- Combine them: $I \square m \square r \odot \langle u, v \rangle = Iumvr$

Finite Context Property

Can we find for each nonterminal a finite set of contexts?

Example:
$$\{a^nb^mc^nd^m|m,n>0\}$$

P of dimension 2

$$\mathcal{L}(P) = \{ \langle a^n b^m, c^n d^m \rangle \mid m, n \ge 0 \}$$

Finite Context Property

Can we find for each nonterminal a finite set of contexts?

Example:
$$\{a^nb^mc^nd^m|m,n>0\}$$

P of dimension 2

$$\mathcal{L}(P) = \{ \langle a^n b^m, c^n d^m \rangle \mid m, n \ge 0 \}$$

- $\{a\Box bc\Box d\}^{\triangleleft} = \mathcal{L}(P)$
- $\{a \square bccd\}^{\triangleleft} = \{a\}$
- $\{\Box\}^{\triangleleft} = L$

Extending the learning results

All of the results for CFGs transfer directly to MCFGs.

Result

We can learn all $\mathbb{G}(p,q)$ with the k-context property efficiently from positive data and MQs.

Semilinearity Informally

Semilinearity (Joshi, 1991):

is intended to be an approximate characterization of the linguistic intuition that sentences of a natural language are built from a finite set of clauses of bounded structures using certain simple linear operations.

Standard view: natural languages are semilinear.

Semilinearity

More formally

A language *L* is semilinear iff it is letter equivalent to a regular language.

Semilinear languages

All regular, context-free and multiple context-free languages are semilinear.

Non-semilinear languages

```
\{a^{2^n} \mid n > 0\}
\{a^{n^2} \mid n > 0\}
```

Copying

Kobele, 2006

Copying exists. There are constructions in natural language that require reference to identity of subparts of expressions for their description. This much, at least, is uncontroversial. What is controversial is the proper locus of explanation of these facts; whether copying should be considered syntactic, phonological, semantic, or extra-grammatical.

Copying

Some controversy over whether copying is needed in natural language:

- Chinese number names
- Case-stacking (Suffixaufnahme) in Australian language and Old Georgian
- Relative clauses in Yoruba and Wolof
- Reduplication in morphology

Copying in the grammar

$$N(xyx) \leftarrow P(x), Q(y)$$

x occurs twice on the left hand side of the grammar.

- P(abc)
- Q(e)
- ⇒ N(abceabc)

Parallel Multiple Context-Free Grammars

Example grammar

$$S(a)$$
 $S(xx) \leftarrow S(x)$
 $S(a)$
 $S(a)$

Richer derivations need richer sets of contexts

Reduplication in Dyirbal morphology

Richer derivations need richer sets of contexts

Reduplication in Dyirbal morphology

Suffixaufnahme/Case stacking

- John's cat
- John's father's cat
- John's friend's father's cat

Case stacking in Martuthunira

Sadler and Nordlinger, 2006

- tharnta-a mirtily-marta-a thara-ngka-marta-a
- euro-ACC joey-PROP-ACC pouch-LOC-PROP-ACC
- "I saw the euro with a joey in its pouch."

Suffixaufnahme/Case stacking

If English had case-stacking ...

- John's cat
- John's's father's cat
- John's's's friend's's father's cat
- John's's's's friend's's's father's's cat's tail

Suffixaufnahme/Case stacking

If English had case-stacking ...

- John's cat 1
- John's's father's cat 3
- John's's's friend's's father's cat 6
- John's's's's friend's's's father's's cat's tail 10

Suffixaufnahme in Old Georgian

Michaelis and Kracht

```
Alphabet
{n, g, v}

Language
{nv, nngv, nngnggv, nngnggngggv, ...}.

• nn g n gg n ggg v
```

Yoruba relative clauses

Kobele, 2006

Recursive copying in Yoruba

'rira NP ti Ade ra NP ko da'
The fact that Ade bought NP is not good.

- NP must be copied
- It can contain relative clauses that must also be copied.

Copying

Trivial example of a non-semilinear language

```
L = \{a^{2^n} \mid n > 0\}
S(x_1x_1) \leftarrow S(x_1)
S(a) \leftarrow
 S(aaaaaaaa)
    S(aaaa)
      S(aa)
      S(a)
```

$$S(x_1x_2v) \leftarrow N(x_1, x_2)$$

$$N(x_1x_2n, x_2g) \leftarrow N(x_1, x_2)$$

$$N(n, \lambda) \leftarrow .$$

The Chomsky Hierarchy

Context in a CFG derivation

Function

 $f(x_1) = bcx_1d$ The context (bc, d) or $bc\Box d$

Generalised Context

Generalised Context

Contexts

1-context: CFG

 lx_1r

2-context:MCFG

 $lx_1 mx_2 r$

2-copying 2-context:PMCFG

 $lx_1mx_1x_2r$ or $x_1x_1px_2x_2$

We need *r*-copying *d*-contexts for nonterminals of dimension *d*.

Generalised distribution

• We say that u occurs in the context Ix_1x_1r if $Iuur \in L_*$

Generalised distribution

- We say that *u* occurs in the context lx_1x_1r if $luur \in L_*$
- We say that the *d*-word \vec{v} occurs in the *r*-copying *d*-context c if $c[\vec{v}] \in L_*$.

Copy language

```
W(a) \leftarrow;
W(b) \leftarrow;
W(x_1x_2) \leftarrow W(x_1), W(x_2).
S(x_1x_1) \leftarrow W(x_1)
```

- Consider the 2-copying 1-context x₁x₁
- v occurs in x_1x_1 iff $\vdash_G W(v)$.
- $C_W = \{x_1 x_1\}$
- $\mathcal{L}(G, W) = \{ v \in \Sigma^* \mid C_W[v] \subset \mathcal{L}(G) \}$

We can find a context that picks out exactly $\mathcal{L}(G, W)$

Learnability constraint

We say that a PMCFG G has the (r, s)-finite context property ((r, s)-FCP) if each nonterminal $A \in N_d$ admits a nonempty set C_A of r-copying d-contexts such that $|C_A| \leq s$ and

$$\mathcal{L}(G, A) = \{ \vec{v} \mid C_A[\vec{v}] \subseteq \mathcal{L}(G) \}.$$

Old Georgian

Context $f_N(x_1, x_2) = x_1 x_2 n x_2 g v$

- $f_N(x_1, x_2) = nngnggngggv$ implies $x_1 = nngn, x_2 = gg$.
- $f_N(x_1, x_2) = nngnggv$ implies $x_1 = nn, x_2 = g$.
- $f_N(x_1, x_2) = nngv$ implies $x_1 = n, x_2 = \lambda$.

We derive $N(x_1, x_2)$ iff $f_N(x_1, x_2) \in L$.

$$C_A = \{x_1 x_2 n x_2 g v\}$$

$$\mathcal{L}(G, A) = \{\vec{v} \mid C_A[\vec{v}] \subseteq \mathcal{L}(G)\}$$

So this has the (2, 1)-FCP.

rnable languages CFG experiments The Chomsky Hierarchy Learning Copying Method

PMCFGs

Parallel Multiple Context-Free Grammars

Clark and Yoshinaka (2013) MLJ

A hierarchy of PMCFGs can be identified in the limit using positive data and membership queries. $\mathbb{G}(p,q,r,s)$.

- This seems to contain all natural languages.
- More precisely: There are no arguments that the class of natural languages does not lie in one of these classes.
- Problems:
 - Only dual learning! combinatorial problems with primal approach.
 - Weak learning only
 - Uses membership queries
 - No notion of "feature"

Discussion

- Is this enough?
- What does learnability mean here?

Bibliography I

The epicenter of linguistic behavior.

In Sanz, M., Laka, I., and Tanenhaus, M. K., editors, Language Down the Garden Path: The Cognitive and Biological Basis of Linguistic Structures, pages 316–323. Oxford University Press.