

Tutorial Sheet- Unit -2 (Electromagnetic Field Theory) - (2023-24)

Sub. Name: Engineering Physics Sub. Code: BAS -201
Date of Issue: Date of Submission

- 1. In a material for which $\sigma = 5$ S/m, $\in r = 1$, the electric field intensity is $E = 250 \sin(10^{10} t)$ V/m. Find the conduction and displacement current densities. Ans $J_C = 1250 \sin(10^{10} t)$ A/m², $J_D = 22.125 \cos(10^{10} t)$ A/m². (2018 even).
- 2. Determine the conduction current and displacement current densities in a material having conductivity 10^3 mhos/m and relative permittivity $\in r = 2.45$. The electric field in the material is given by, E=4 X 10^6 sin $(9 \times 10^9 \text{t})$ Volt/m. Ans $J_C = 4 \times 10^9$ sin $(9 \times 10^9 \text{t})$ A/m², $J_D = 780.57 \times 10^3 \cos(9 \times 10^9 \text{t})$ A/m².
- 3. In an electromagnetic wave, the electric and magnetic fields are 100V/m and 0.265 A/m. What is the maximum energy flow? (2022-even) .Ans: $S = 26.5\text{ W/m}^2$.
- **4.** For a medium, conductivity $\sigma = 58 \times 10^6$ Siemen/m, $\in r = 1$. Find out the conduction and displacement current densities if the magnitude of electric field intensity is given by $E = 150 \sin{(10^{10} \text{ t})}$ Volt/m (2021 odd sem). Ans $J_C = 8.7 \times 10^9 \sin{(10^{10} \text{ t})}$ A/m², $J_D = 13.28 \cos{(10^{10} \text{ t})}$ A/m².
- The earth receives 2.0 calorie/cm²-min energy from sun on its surface. Determine the amplitude of electric and magnetic field vector.
 Ans: (1400 watt/m²; E₀= 1026.80 V/m; H₀ = 2.72 amp-turn/m)
- 6. The relative permeability, permittivity and conductivity of aluminum are $\mu_r = 1$, $\epsilon_r = 1$ and $\sigma = 3.5 \times 10^7$ mho/m. Find the skin depth if the wave enter in aluminum with frequency of 71.56 MHz. Ans: (10µm)
- 7. For sea water $\mu = \mu_0$, $\epsilon = 70\epsilon_0$ and conductivity $\sigma = 5$ S/m. Find the skin depth and attenuation constant of sea water. Ans: (0.0089 m; 112.36 Np/m).
- 8. The sunlight strikes the upper atmosphere of earth with energy flux1.38 KW/m². What will be the peak values of electric and magnetic fields at the points? (2019 odd). Ans: (E_0 = 1019.65 V/m; H_0 = 2.706 amp-turn/m)
- 9. Calculate the magnitude of the Poynting Vector on the surface of the Sun. Given power radiated by Sun is 5.4×10^{28} watt and radius of sun is 7×10^{8} m. (2018 odd). Ans: $S = 8.7 \times 10^{9}$ W/m².

- 10. Calculate the amplitude of electric and magnetic fields E_0 and H_0 , at a distance of 5m from an oscillator which radiates energy isotropically at 1000W.Ans: (E_0 = 48.82 V/m; H_0 = 0.128 amp-turn/m). (EVEN 2023)
- 11. Calculate the skin depth for silver at 10^8 Hz frequency. Given- for silver $\mu = \mu o$, $\mu o = 4\pi \times 10^{-7} \text{ N/A}^2$, $\sigma = 3\times 10^7 \text{ mhos/m}$. Ans : 9.19 x 10⁻⁶ m. (EVEN 2023)
- 12. Using Maxwell's equation, $\overrightarrow{div} \overrightarrow{E} = \frac{\rho}{\epsilon_0}$, derive Coulomb's law of electrostatics.
- 13. Using Maxwell's equation, $Curl \vec{B} = \mu_0 \left[\vec{J} + \frac{\partial \vec{D}}{\partial t} \right]$ prove that $div\vec{D} = \rho$
- **14.** If the magnitude of \vec{H} in a plane wave is 1amp/m, find the magnitude of \vec{E} for plane wave in free space. **Ans: E** = **377 V/m**.
- **15.** Assuming that all the energy from a 1000 Watt lamp is radiated uniformly, calculate the average values of the intensities of electric and magnetic fields of radiation at a distance of 2m from the lamp. Ans: 86.59 V/m, H = 0.23 A/m. (ODD 2023-24)