مرحباً طلابی:

أردت توضيح بعض النقاط في الدرس السابق وهي:

- طريقة عمل الدالة linspace:
 درسنا في المرحلة الثانوية المتتابعة الحسابية وعلمنا كيفية التمييز بينها وبين المتتابعة الهندسية إلخ...
 وعملنا أن الحد العام للمتتابعة الحسابية هو أ + (ن 1) x د
 حيث أن:
 - أ تمثل الحد الأول من المتتابعة
 - ن تمثل عدد حدود المتتابعة
 - د تمثل الفرق بین حد من حدود المتتابعة والحد الذي یسبقة

وعلمنا أن ل تمثل الحد الأخير من المتتابعة وهي تساوي الحد العام للمتتابعة أي ل = أ + (ن - 1) x (1 -

ففى الدالة linsapce:

- المدخل الأول هو عبارة عن الحد الأول من المتتابعه وبنرمز ليه بالحرف (أ)
- المدخل الثانى هو عبارة عن الحد الأخير من المتتابعة وبنرمز ليه بالحرف (ل)
- المدخل الثالث عبارة عن عدد حدود المتتابعة الحسابية وبنرمز ليها بالحرف (ن)

فسترجع لنا الدالة مصفوفة أو ممكن نقول هنا متتابعة حدها الأول المدخل الأول وحدها الأخير المدخل الثاني وعدد حدودها المدخل الثالث ويتم حساب قيمة ال د التي تمثل الفرق بين حدين متتاليين عن طريق العلاقة التالية:

د = ل - أ مقسومة على ن - 1

سأعطيك بعض الأمثلة السهلة البسيطة لتبين لك طريقة عملها

```
In [1]: import numpy as np
np.linspace(2,3,5)
Out[1]: array([2. , 2.25, 2.5 , 2.75, 3. ])
```

كما تلاحظ في المثال السابق الحد الأول هو المدخل الأول والحد الأخير هو المدخل الثاني وتم حساب قيمة د من العلاقة د = ل - أ مقسومة على ن - 1 وهنا تساوي ربع فتلاحظ الزيادة بمقدار ربع عن الحد الذي يسبقه

• توضيح في الدالة np.eye•

من الممكن تحديد عدد الصفوف والأعمدة أي شكل المصفوفة وتحديد موضع ظهور الوحايد أنظر الأمثلة التالية:

المدخل الأول هو عدد الصفوف والمدخل الثاني عدد الأعمدة

وتأخذ أيضاً مدخل ثالث يحدد موضع الوحايد

```
In [4]: np.eye(4,4,0)
Out[4]: array([[1., 0., 0., 0.],
               [0., 1., 0., 0.],
               [0., 0., 1., 0.],
               [0., 0., 0., 1.]
                                                                                      فمثلا
In [5]: np.eye(4,4,1)
Out[5]: array([[0., 1., 0., 0.],
               [0., 0., 1., 0.],
               [0., 0., 0., 1.],
               [0., 0., 0., 0.]])
In [6]: np.eye(4,4,3)
Out[6]: array([[0., 0., 0., 1.],
               [0., 0., 0., 0.]
               [0., 0., 0., 0.],
               [0., 0., 0., 0.]])
In [7]: np.eye(4,4,-2)
Out[7]: array([[0., 0., 0., 0.],
```

[0., 0., 0., 0.], [1., 0., 0., 0.], [0., 1., 0., 0.]])

الصورة التاية توضح ما يمثله المدخل الثالث

مرحباً طلابی:

أردت توضيح بعض النقاط في هذا الدرس:

طريقة الحصول على قطعة من المصفوفة علمنا أنها بهذه الطريقة

هذه الصوره توضح فكرة أخذ قطعة من المصفوفة

```
In [31]: | arr = np.arange(50).reshape(5,10)
         arr
                           2,
                                   4,
                                            6,
         array(([ 0,
                       1,
                                        5,
                                                7,
               1[10, 11, 12,
                                       15, 16, 17, 18,
                              13, 14
               2[20, 21, 22, 23
                                       25, 26, 27, 28, 29]
               3[30, 31, 32, 33, 34, 35, 36, 37, 38, 39]
                                      45, 46, 47, 48, 49]])
               4 [40, 41, 42,
                              43, 44,
```

مرحباً طلابی:

أردت توضيح بعض النقاط في هذا الدرس:

• طريقة عمل الدالة np.exp)

وظيفتها أنها تقوم بأخذ كل عنصر أو حد من حدود المصفوفة وترفعة كأس لعدد أويلر 2.718281828 وهو ثابت رياضي يرمز له بالحرف العربي هـ أو e بالأنجليزية للمزيد عن عدد أويلر

((https://en.wikipedia.org/wiki/E_(mathematical_constant_(https://en.wikipedia.org/wiki/E_(mathematical_constant_

وبالتالى ترجع لنا النمو الأسي

<u>(نصو_أسي /https://ar.wikipedia.org/wiki)</u> انمو_أسي /https://ar.wikipedia.org/wiki

Out[3]: 20.085536913011932

وال e+01 معناها أنه قسم الناتج على 10

وال e+02 معناها قسم الناتج على 100

وال e+03 معناها قسم الناتج على 1000

وهكذا...

مرحباً طلابى

أردت توضيح بعض النقاط قبل البدء في حل الواجب

أولاً : الميثود sum

وظيفة هذه الميثود إرجاع مجموع المصفوفة

هناك مدخل يسمى axis قيمته الأفتراضية None وفي حالة إذا كان هذا المدخل None يتم حساب المجموع الكلي وإذا كان 0 يرجع لنا مصفوفة تحتوى على مجموع كل عمود هكذا

```
In [3]: arr.sum(axis=0)
Out[3]: array([50, 55, 60, 65, 70])
```

حتي تتأكد

وإذا كانت axis تساوي 1 يتم جمع كل صف هكذا

```
In [5]: arr.sum(axis=1)
Out[5]: array([ 10, 35, 60, 85, 110])
```

ثانياً: الميثود std

وظيفتها أرجاع الأنحراف المعياري للمصفوفة

للمزيد عن الأنحراف المعياري

(انحراف معیاري/https://ar.wikipedia.org/wiki/انحراف معیاری/https://ar.wikipedia.org/wiki/

مثال:

In [6]: arr.std()

Out[6]: 7.211102550927978