

Art of Problem Solving 2013 USAMO

USAMO 2013

Day 1	April 30th
1	In triangle ABC , points P, Q, R lie on sides BC, CA, AB respectively. Let ω_A , ω_B , ω_C denote the circumcircles of triangles AQR , BRP , CPQ , respectively. Given the fact that segment AP intersects ω_A , ω_B , ω_C again at X, Y, Z , respectively, prove that $YX/XZ = BP/PC$.
2	For a positive integer $n \geq 3$ plot n equally spaced points around a circle. Label one of them A , and place a marker at A . One may move the marker forward in a clockwise direction to either the next point or the point after that. Hence there are a total of $2n$ distinct moves available; two from each point. Let a_n count the number of ways to advance around the circle exactly twice, beginning and ending at A , without repeating a move. Prove that $a_{n-1} + a_n = 2^n$ for all $n \geq 4$.
3	Let n be a positive integer. There are $\frac{n(n+1)}{2}$ marks, each with a black side and a white side, arranged into an equilateral triangle, with the biggest row containing n marks. Initially, each mark has the black side up. An operation is to choose a line parallel to the sides of the triangle, and flipping all the marks on that line. A configuration is called $admissible$ if it can be obtained from the initial configuration by performing a finite number of operations. For each admissible configuration C , let $f(C)$ denote the smallest number of operations required to obtain C from the initial configuration. Find the maximum value of $f(C)$, where C varies over all admissible configurations.
Day 2	May 1st
4	Find all real numbers $x,y,z\geq 1$ satisfying $\min(\sqrt{x+xyz},\sqrt{y+xyz},\sqrt{z+xyz})=\sqrt{x-1}+\sqrt{y-1}+\sqrt{z-1}.$
5	Given positive integers m and n , prove that there is a positive integer c such that the numbers cm and cn have the same number of occurrences of each non-zero digit when written in base ten.

Art of Problem Solving 2013 USAMO

6

Let ABC be a triangle. Find all points P on segment BC satisfying the following property: If X and Y are the intersections of line PA with the common external tangent lines of the circumcircles of triangles PAB and PAC, then

$$\left(\frac{PA}{XY}\right)^2 + \frac{PB \cdot PC}{AB \cdot AC} = 1.$$

These problems are copyright © Mathematical Association of America (http://maa.org).