TABLE V: The order of magnitude estimates for $(\delta_{ij}^{d,u})_A$, A = LL, RR and $\langle \delta_{ij}^{d,u} \rangle$ in the models defined by Eq. (5.3). The numerical estimates are obtained using quark masses at the scale m_Z [20] and for $r_3 = 3$. All numerical estimates scale as $(3/r_3)$.

q ij	$(\delta^q_{ij})_{LL}$	$(\delta^q_{ij})_{RR}$	$\langle \delta^q_{ij} angle$
			$r/r_3 \sim 0.3r$
			$\sqrt{\hat{r}_1^u r}/r_3 \sim 0.3 \sqrt{\hat{r}_1^u r}$
			$\sqrt{\hat{r}_2^u r}/r_3 \sim 0.3 \sqrt{\hat{r}_2^u r}$
			$r/r_3 \sim 0.3r$
			$\sqrt{\hat{r}_1 r}/r_3 \sim 0.3\sqrt{\hat{r}_1 r}$
			$\sqrt{\hat{r}_2 r}/r_3 \sim 0.3\sqrt{\hat{r}_2 r}$

TABLE VI: The order of magnitude upper bounds on $(\delta_{ij}^{d,u})_{LL,RR}$ and $\langle \delta_{ij}^{d,u} \rangle$ corresponding to $r/r_3 \lesssim 0.006$ and the bounds of Eqs. (5.8,5.9). Entries with an r_3 dependence are indicated so.

q ij	$(\delta^q_{ij})_{LL}$	$(\delta^q_{ij})_{RR}$	$\langle \delta^q_{ij} angle$
d 12	0.006	0.006	0.006
d 13	$\max\{0.006, 0.003(3/r_3)\}$	0.006	$\max\{0.006, 0.004\sqrt{3/r_3}\}$
d 23	$\max\{0.006, 0.01(3/r_3)\}$	0.006	$\max\{0.006, 0.009\sqrt{3/r_3}\}$
u 12	0.006	0.006	0.006
u 13	$\max\{0.006, 0.001y_b^2(3/r_3)\}$	0.006	$\max\{0.006, 0.003 y_b \sqrt{3/r_3}\}$
u 23	$\max\{0.006, 0.01y_b^2(3/r_3)\}$	0.006	$\max\{0.006, 0.009 y_b \sqrt{3/r_3}\}$

and

$$\hat{r}_1^u = \max\{r, y_t^2 V_{td}^* V_{tb}\} \sim \max\{r, 0.009\},$$

$$\hat{r}_2^u = \max\{r, y_t^2 V_{ts}^* V_{tb}\} \sim \max\{r, 0.04\}.$$
(5.9)

Inserting the bounds (5.7), (5.8) and (5.9) into the predictions of Table V, we obtain the upper bounds on the δ_{ij}^q given in Table VI.

We learn that the maximal possible effects in the neutral B_d , B_s and D systems are as