Math Q4W2 Practice A

Directions: Given the following data, calculate the value of the indicated quantile.

A. The list shows the grades of 15 students in Mathematics arranged in ascending order.

Determine the value of:

1. *Q*₁

Position of
$$Q_k = \frac{k(n+1)}{4}$$

Position of $Q_1 = \frac{1(15+1)}{4} = \frac{1(16)}{4} = \frac{16}{4} = 4$

The value of the 1st quartile is 80.

2. *D*₅

Position of
$$D_k = \frac{k(n+1)}{10}$$

Position of $D_5 = \frac{5(15+1)}{10} = \frac{5(16)}{10} = \frac{80}{10} = 8$

The value of the 5th decile is 86.

3. *P*₇₅

Position of
$$P_k = \frac{k(n+1)}{100}$$

Position of $P_{75} = \frac{75(15+1)}{100} = \frac{75(16)}{100} = \frac{1200}{100} = 12$

The value of the 12th percentile is 90.

4. Interquartile range

$$IQR = Q_3 - Q_1 = 90 - 80 = 10$$

The value of the interquartile range is 10.

5. Percentile rank of the student with the mathematics grade of 88

$$PR = \frac{(B+0.5 E)(100)}{n} = \frac{[9+0.5(2)](100)}{15} = \frac{(9+1)(100)}{15}$$

$$PR = \frac{(10)(100)}{15} = \frac{1000}{15} \approx 66.667$$

The student with the mathematics grade of 88 is approximately in the 66.667th percentile.

B. The following are the amounts donated in pesos to help the 10 medical front liners:

Php 1500	Php 2000	Php 550	Php 1000	Php 5000
Php 500	Php 3200	Php 600	Php 3100	Php 4500

a. Make an array

- b. Determine the value of:
- 1. P₂₅

Position of
$$P_k = \frac{k(n+1)}{100}$$

Position of $P_{25} = \frac{25(10+1)}{100} = \frac{25(11)}{100} = \frac{275}{100} = 2.75$
value of $P_{25} = L + d(H-L) = 550 + 0.75(600 - 550)$
value of $P_{25} = 550 + 0.75(50) = 550 + 37.5 = 587.5$

The value of the 25th percentile is Php 587.5.

2. D₆

Position of
$$D_k = \frac{k(n+1)}{10}$$

Position of $D_6 = \frac{6(10+1)}{10} = \frac{6(11)}{10} = \frac{66}{10} = 6.6$

value of $D_6 = L + d(H-L) = 2000 + 0.6(3100 - 2000)$

value of $D_6 = 2000 + 0.6(1100) = 2000 + 660 = 2660$

The value of the 6th decile is Php 2660.

3. Q₃

Position of
$$Q_k = \frac{k(n+1)}{4}$$

Position of $Q_3 = \frac{3(10+1)}{4} = \frac{3(11)}{4} = \frac{33}{4} = 8.25$

value of $Q_k = L + d(H - L) = 3200 + 0.25(4500 - 3200)$

value of $Q_k = 3200 + 0.25(1300) = 3200 + 325 = 3525$

The value of the 3th quartile is Php 3525.

4. Interquartile range

$$IQR = Q_3 - Q_1 = 3525 - 587.5 = 2937.5$$

The value of the interquartile range is Php 2937.5.

5. Percentile rank of Php 1500

$$PR = \frac{(B+0.5 E)(100)}{n} = \frac{[4+0.5(1)](100)}{10} = \frac{(4+0.5)(100)}{10}$$

$$PR = \frac{(4.5)(100)}{10} = \frac{450}{10} = 45$$

The data with the value of Php 1500 is in the 45th percentile.

Practice B

Directions: The table shows the number of boxes of alcohol sold in a month of 50 Supermarkets in Pampanga.

A. Complete the table.

No. of Boxes of Alcohol		LB	<cf< th=""></cf<>
70 - 74	5	69.5	50
65 - 69	19	64.5	45
60 - 64	22	59.5	26
55 - 59	3	54.5	4
50 - 54	1	49.5	1

$$N = 50$$

B. Calculate the value of:

1. Q₁

Position of
$$Q_1 class = \frac{kN}{4} = \frac{(1)(50)}{4} = \frac{50}{4} = 12.5$$

$$Q_k = LB_{Q_k} + \left(\frac{\frac{kN}{4} - cf_b}{f_{Q_k}}\right)i$$

$$Q_1 = 59.5 + \left(\frac{12.5 - 4}{22}\right)5 = 59.5 + \left(\frac{8.5}{22}\right)5$$

$$Q_1 \approx 59.5 + 1.932 \approx 61.432$$

The value of the 1st quartile is approximately 61.432.

Position of
$$D_{6}$$
 class = $\frac{kN}{10} = \frac{(6)(50)}{10} = \frac{300}{10} = 30$

$$D_{k} = LB_{D_{k}} + \left(\frac{kN}{10} - cf_{b}\right)i$$

$$D_{6} = 64.5 + \left(\frac{30 - 26}{19}\right)5 = 64.5 + \left(\frac{4}{19}\right)5$$

$$D_{6} \approx 64.5 + 1.053 \approx 65.553$$

The value of the 6th decile is approximately 65.553.

3. P_{95}

Position of
$$P_{g5}$$
 class = $\frac{kN}{100} = \frac{(95)(50)}{100} = \frac{4750}{100} = 47.5$

$$P_{k} = LB_{P_{k}} + \left(\frac{\frac{kN}{100} - cf_{b}}{f_{P_{k}}}\right)i$$

$$P_{g5} = 69.5 + \left(\frac{47.5 - 45}{5}\right)5 = 69.5 + \left(\frac{2.5}{5}\right)5$$

$$P_{g5} = 69.5 + 2.5 = 72$$

The value of the 95th percentile is 72.

4. Percentile rank of 63

$$PR = \frac{100}{N} \left[\frac{(P - LB)f_{p}}{i} + cf_{p} \right]$$

$$PR = \frac{100}{50} \left[\frac{(63 - 59.5)22}{5} + 26 \right]$$

$$PR = \frac{100}{50} \left[\frac{(3.5)22}{5} + 26 \right]$$

$$PR = \frac{100}{50} \left[15.4 + 26 \right]$$

$$PR = \frac{100}{50} \left[41.4 \right] = 82.8$$

The data with the value of 63 is in the 82.8th percentile.