Lecture 11 Digital Circuits (I) THE INVERTER

Outline

- Introduction to digital circuits
 - -The inverter
- NMOS inverter with resistor pull-up

Reading Assignment:

Howe and Sodini; Chapter 5, Sections 5.1-5.3

1. Introduction to digital circuits: the inverter

In digital circuits, digitally-encoded information is represented by means of two distinct voltage ranges:

The Static Definition

• Logic 0: $V_{MIN} \le V \le V_{OL}$

• Logic 1: $V_{OH} \le V \le V_{MAX}$

• *Undefined logic value:* $V_{OL} \le V \le V_{OH}$

Logic operations are performed using *logic gates*.

Simplest logic operation of all: *inversion* ⇒ inverter

Ideal inverter

Circuit representation and ideal transfer function:

Define switching point or logic threshold:

- $V_{M} \equiv \text{input voltage for } \underline{\text{which } V_{OUT} = V_{IN}}$
 - For $0 \le V_{IN} < V_{M}$ $\Rightarrow V_{OUT} = V^{+}$
 - For $V_M < V_{IN} \le V^+ \implies V_{OUT} = 0$

Ideal inverter returns well defined logical outputs (0 or V^+) even in the presence of considerable noise in V_{IN} (from voltage spikes, crosstalk, etc.)

⇒ signal is regenerated!

"Real" inverter

In a real inverter, valid logic levels defined as follows:

- Logic 0:
 - $V_{MIN} \equiv$ output voltage for which $V_{IN} = V^{+}$
 - $V_{OL} \equiv \text{smallest ou} \underline{\text{tput voltage where slope}} = -1$
- Logic 1:
 - $V_{OH} = largest output voltage where slope = -1$
 - $V_{MAX} \equiv$ output voltage for which $V_{IN} = 0$

Two other important voltages:

Define:

 $V_{IL} \equiv$ smallest input voltage where slope = -1 $V_{IH} \equiv$ highest input voltage where slope = -1

If range of output values V_{OL} to V_{OH} is *wider* than the range of input values V_{IL} to V_{IH} , then the inverter exhibits some noise immunity. (|Voltage gain| > 1)

Quantify this through noise margins.

Chain of two inverters:

inverter M inverter N output input

Define noise margins:

$$\begin{split} NM_{H} &\equiv V_{OH} \text{ - } V_{IH} \\ NM_{L} &\equiv V_{IL} \text{ - } V_{OL} \end{split}$$

noise margin high noise margin low

Simplifications for hand calculations: Logic levels and noise margins

It is hard to compute points in transfer function with slope = -1.

Approximate in the following way:

- Assume $V_{OL} \approx V_{MIN}$ and $V_{OH} \approx V_{MAX}$
- Trace tangent of transfer function at $V_{\rm M}$
 - Slope = small signal voltage gain (A_v) at V_M
- $V_{IL} \approx \text{intersection of tangent with } V_{OUT} = V_{MAX}$
- $V_{IH} \approx \text{intersection of tangent with } V_{OUT} = V_{MIN}$

Transient Characteristics

Inverter switching in the time domain:

 $t_R \equiv \underline{\textit{rise time}}$ between 10% and 90% of total swing $t_F \equiv \underline{\textit{fall time}}$ between 90% and 10% of total swing $t_{PHL} \equiv \underline{\textit{propagation delay from high-to-low}}$ between 50% points

 $t_{PLH} \equiv propagation delay from low-to-high between 50% points$

Propagation delay:
$$t_P = \frac{1}{2}(t_{PHL} + t_{PLH})$$

Simplifications for hand calculations: Propagation delay

- Consider input waveform is an ideal square wave
- Propagation delay times = delay times to 50% point

• SPICE essential for accurate delay analysis

2. NMOS inverter with "pull-up" resistor

Essential features:

- $V_{BS} = 0$ (typically not shown)
- C_L summarizes capacitive loading of the following stages (other logic gates, interconnect lines, etc.)

Basic Operation:

• If $V_{IN} < V_{T}$, MOSFET is **OFF**

$$- \Rightarrow V_{OUT} = V_{DD}$$

• If $V_{IN} > V_T$, MOSFET is **ON**

- $\Rightarrow V_{OUT}$ small
- Value set by resistor / nMOS divider

Transfer function obtained by solving:

$$I_{R} = I_{D}$$

Can solve graphically: I–V characteristics of load:

Overlap I–V <u>characteristics of resistor pull-up</u> on I–V characteristics of transistor:

Transfer function:

Logic levels:

For V_{MAX} , transistor is cut-off, $I_D = 0$:

$$V_{MAX} = V_{DD}$$

For V_{MIN}, transistor is in linear regime; solve:

$$\mathbf{I_D} = \frac{\mathbf{W}}{\mathbf{L}} \, \mu_{\mathbf{n}} \mathbf{C_{ox}} \left(\mathbf{V_{DD}} - \frac{\mathbf{V_{MIN}}}{2} - \mathbf{V_T} \right) \mathbf{V_{MIN}} = \mathbf{I_R} = \frac{\mathbf{V_{DD}} - \mathbf{V_{MIN}}}{\mathbf{R}}$$

For V_M , transistor is in saturation; solve:

$$\mathbf{I}_{\mathbf{D}} = \frac{\mathbf{W}}{2\mathbf{L}} \,\mu_{\mathbf{n}} \mathbf{C}_{\mathbf{o}\mathbf{x}} \left(\mathbf{V}_{\mathbf{M}} - \mathbf{V}_{\mathbf{T}} \right)^2 = \mathbf{I}_{\mathbf{R}} = \frac{\mathbf{V}_{\mathbf{D}\mathbf{D}} - \mathbf{V}_{\mathbf{M}}}{\mathbf{R}}$$

Noise Margins:

Small signal equivalent circuit model at V_M (transistor in saturation):

What did we learn today?

Summary of Key Concepts

- Logic circuits must exhibit immunity to noise in the input signal
 - Noise margins
- Logic circuits must be regenerative
 - Able to restore clean logic values even if input is noisy.
- **Propagation delay**: time for logic gate to perform its function.
- Concept of *load line*: graphical technique to visualize transfer characteristics of inverter.
- First-order solution (by hand) of inverter figures-of-merit easy if *regions of operation* of transistor are correctly identified.
- For more accurate solutions, use SPICE (or other CAD tool).