Computabilità e Algoritmi (Mod. A) 28 Giugno 2011

Esercizio 1

Enunciare e dimostrare il teorema di Rice.

Esercizio 2

Può esistere una funzione non calcolabile $f: \mathbb{N} \to \mathbb{N}$ tale che per ogni altra funzione non calcolabile $g: \mathbb{N} \to \mathbb{N}$ la funzione f+g definita da (f+g)(x)=f(x)+g(x) sia calcolabile? Motivare adeguatamente la risposta (fornendo un esempio di tale f, se esiste, oppure dimostrando che non può esistere).

Esercizio 3

Sia \mathbb{P} l'insieme dei numeri pari. Dimostrare che indicato con $A = \{x \in \mathbb{N} : E_x = \mathbb{P}\}$, si ha che $\bar{K} \leq_m A$.

Esercizio 4

Studiare la ricorsività dell'insieme $B = \{x \in \mathbb{N} : \varphi_x(y) = y^2 \text{ per infiniti } y\}$, ovvero dire se $B \in \bar{B}$ sono ricorsivi/ricorsivamente enumerabili.

Esercizio 5

Enunciare il secondo teorema di ricorsione ed utilizzarlo per dimostrare che, indicato con e_0 un indice della funzione sempre indefinita \emptyset e con e_1 un indice della funzione identità, la funzione $h: \mathbb{N} \to \mathbb{N}$, definita da

$$h(x) = \begin{cases} e_0 & \text{se } \varphi_x \text{ è totale} \\ e_1 & \text{altrimenti} \end{cases}$$

non è calcolabile.