

PG2L100H Full-resource Test Project Description

(V1.4)

Shenzhen Pango Microsystems Co., Ltd.

All Rights Reserved. Any infringement will be subject to legal action.

Revisions History

Document Revisions

Version	Date of Release	Revisions
V1.4		Initial release.
		Example for Reference Only
	Plication	
\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		

(V1.4) 1 / 25

About this Manual

Terms and Abbreviations

Terms and Abbreviations	Meaning
CLM	Configurable Logic Module
DRM	Dedicated RAM Module
PLL	Phase Locked Loop
APM	Arithmetic Process Module
	Arithmetic Process Module

(V1.4) 2 / 25

Table of Contents

Revisions History	1
About this Manual	2
Table of Contents	3
Tables	4
Figures	5
Chapter 1 Overview	\
Chapter 2 Project I	
2.1 System Planning	7
2.2 Functional Module Design	
2.2.1 CLM_LUT_FF Module	
2.2.2 gpll_top Module	9
2.3 PDS Compilation Results	11
2.4 Simulation Results.	
2.5 On-board Test	12
2.6 Warning Descriptions	13
Chapter 3 Project II	14
3.1 System Planning	14
3.2 Functional Module Design	14
3.2.1 CLM_LUT_FF Module	14
3.2.2 ppll_top Module	14
3.3 PDS Compilation Results	15
3.4 Simulation Results.	
3.5 On-board Test	16
3.6 Warning Descriptions	17
Chapter 4 Project III	
4.1 System Planning	18
4.2 Functional Module Design	
4.2.1 drm_top Module	18
4.2.2 gpll_top Module	19
4.2.3 ppll_top Module	19
4.2.4 dram_test Module	20
4.2.5 apm_top Module	21
4.3 PDS Compilation Results	22
4.4 Simulation Results	23
4.5 On-board Test	23
4.6 Warning Descriptions	24
Disclaimer	25

Tables

Table 2-1 Top-level Signals and Descriptions of Project I	7
Table 3-1 Top-level Signals and Descriptions of Project II	. 14
Table 4-1 Top-level Signals and Descriptions of Project III	. 18

Application Example for Reference Only

(V1.4) 4/25

Figures

Figure 2-1 LUT6_DFF Test Circuit Structure		8
Figure 2-2 LUT_DFF Resource Instantiation		9
Figure 2-3 GPLL Test Circuit Structure		10
Figure 2-4 Resource Usage Rate of Project I		11
Figure 2-5 Timing Report of Project I		.,. 12
Figure 2-6 Simulation Results of Project I	Α.Δ.	12
Figure 3-1 Resource Usage Rate of Project II		15
Figure 3-2 Timing Report of Project II	<u> </u>	16
Figure 3-3 Simulation Results of Project II	(7)	16
Figure 4-1 Structure Diagram of Distributed RAM Test Circuit		20
Figure 4-2 Resource Instantiation of Distributed RAMs		21
Figure 4-3 Resource Usage Rate of Project III		22
Figure 4-3 Resource Usage Rate of Project III	<u> </u>	23
Figure 4-5 Simulation Results of Project III)′	23
Figure 4-4 Timing Report of Project III		

Chapter 1 Overview

Ablication.

This document mainly introduces the methods for testing the main core resources of PG2L100H, including 133,200 FFs, 66,600 LUTs (for instantiating 19,900 distributed RAMs), 155 DRMs, 240 APMs, and 12 PLLs (6 GPLLs and 6 PPLLs). The full-resource test project includes three subprojects, covering tests for all the logic resources mentioned above. The resources covered in the tests of each project are as follows.

Project I: Covers CLMA units with smaller vertical coordinates in the Logic Tile, and tests all LUTs, main registers, and additional registers in the units covered. The logic units to be tested account for 50% of the total logic resources. Additionally, 4 GPLL modules are covered in Project I, which VCO frequency reaches the upper limit of 1200MHz.

Project II: Covers CLMA units or CLMS units with larger vertical coordinates in the Logic Tile, and tests all LUTs, main registers, and additional registers in the units covered. The logic units to be tested account for 50% of the total logic resources (the other 50% of units are tested in Project I). Additionally, 4 PPLL modules are covered in Project II, which VCO frequency reaches the upper limit of 2125MHz (near the upper limit).

Project III: Covers all CLMS units which work as distributed RAMs, all APM units, all DRM units, 2 GPLL modules and 2 PPLL modules, which GPLL's VCO frequency reaches the lower limit of 600MHz, and the PPLL's VCO Frequency reaches lower limit of 1350MHz.

(V1.4) 6/25

Chapter 2 Project I

2.1 System Planning

This project is divided into two submodules, namely CLM_LUT_FF (testing the LUTs and registers in CLM) and gpll_top (testing the GPLLs). The top-level module mainly performs signal synchronisation and debounce. There are a total of 6 top-level signals, as shown in Table 2-1.

No. Signal Name Input/Output Signal Description clk Input System clock, 25MHz rst n Input Asynchronous reset signal, active-low error in Input Error injection signal, active-high LUT6 DFF test state indicator. Low indicates pass, and high clm led Output indicates fail. GPLL output frequency lock signal. High indicates pass, and 5 gpll lock led Output low indicates fail. GPLL output frequency test signal, Low indicates pass, and high gpll led Output indicates fail.

Table 2-1 Top-level Signals and Descriptions of Project I

2.2 Functional Module Design

2.2.1 CLM LUT FF Module

Based on the SSA failure model, build LUT6_DFF pair, traverse the input combinations through the counter signal, and perform an XOR comparison on the outputs and chain the results in series. The test circuit structure is shown in Figure 2-1.

(V1.4) 7/25

APPlications

Figure 2-1 LUT6_DFF Test Circuit Structure

(V1.4) 8 / 25

Error injection is supported. When the error injection signal is valid, if the highest-bit input of the first-stage LUT differs from the other LUTs, the XOR comparison logic

outputs high, indicating a testing error.

The resource instantiation is shown in Figure 2-2.

Figure 2-2 LUT_DFF Resource Instantiation

2.2.2 gpll top Module

Test objective: This module instantiates 4 GPLL modules, which VCO frequency reaches the upper limit of 1200MHz, for testing the output frequency and lock signals.

Test method: Count the input reference clock and output clock separately, and test the output clock

(V1.4) 9/25

frequency based on its multiplication relationship with the input reference clock.

If the output frequency deviation exceeds the expected frequency by $\pm 5\%$, the testing result is fail.

In the design, the calculation method for the GPLL output clock count range is as follows: Suppose the input reference clock cycle is tref, and the pll output clock clkout cycle is t0, then cnt_min = (10000 * tref/t0) * 0.95 and cnt max = (10000 * tref/t0) * 1.05.

When the error injection signal is valid, the PLL is reset, the GPLL will not be locked, and the output clock counter will also be reset, indicating a clock frequency test failure.

The GPLL module test circuit is as shown in the figure below.

Application

Figure 2-3 GPLL Test Circuit Structure

(V1.4) 10 / 25

2.3 PDS Compilation Results

In Project I, the resource usage rate after placement and routing based on PDS2021.1-SP2.1 compilation is shown in the figure below.

Logic Utilization	Used	Available	Utilization(%)
Use of ADC	0	1	0
Use of ANALOG	0	1	0
Use of APM	0	240	0
Use of BKCL	3	6	50
Use of CCS	1	1	100
□ Use of CLMA	11623	11675	100
FF FF	75165	93400	81
LUT	41861		90
LUT-FF pairs	41734		90
□ Use of CLMS	4874	4975	98
FF FF	11959		31
LUT	12206	19900	62
LUT-FF pairs	11838	19900	60
Distributed RAM		19900	0
Use of DDRPHY_CPD		12	0
Use of DDRPHY IOCLK DIV		6	0
Use of DDR_PHY	0	24	0
Use of DRM	0	155	0
Use of GPLL	4	6	67
Use of GSEB	0	218	0
Use of HARDO	1239	10550	12
Use of HCKB	14	96	15
Use of HCKMUX TEST	0	8	0
Use of HSSTLP	0	2	0
Use of IO	6	300	2
Use of IOCKB	0	24	0
Use of IOCKMUX TEST	0	6	0
- 026 OI TOCKMON 1F21	U	0	U

Figure 2-4 Resource Usage Rate of Project I

(V1.4) 11/25

The timing report is shown in the figure below.

	Clock	Fmax	Requested Frequency	Slack
1	clk	72.480MHz	50.000MHz	6.203
2	clk u_gpl1_top/GPLL[0].u_GPLL/u_gpl1/CLKOUT0_Inferred	372.162MHz	40.000MHz	22.313
3	clk u_gpl1_top/GPLL[0].u_GPLL/u_gpl1/CLKOUT1_Inferred	313.578MHz	80.000MHz	9.311
4	clk u_gpll_top/GPLL[0].u_GPLL/u_gpl1/CLKOUT2_Inferred	444.444MHz	150.015MHz	4.416
5	clk u_gpll_top/GPLL[0].u_GPLL/u_gpl1/CLKOUT3_Inferred	471.476MHz	240.038MHz	2.045
6	clk u_gpll_top/GPLL[0].u_GPLL/u_gpl1/CLKOUT4_Inferred	492.368MHz	240.038MHz	2.135
7	clk u_gpll_top/GPLL[1].u_GPLL/u_gpl1/CLKOUT0_Inferred	347.222MHz	40.000MHz	22.120
8	clk u_gpll_top/GPLL[1].u_GPLL/u_gpll/CLKOUT1_Inferred	384.763MHz	80.000MHz	9.901
9	clk u_gpll_top/GPLL[1].u_GPLL/u_gpl1/CLKOUT2_Inferred	467.508MHz	150.015MHz	4.527
10	clk u_gpll_top/GPLL[1].u_GPLL/u_gpll/CLKOUT3_Inferred	492.368MHz	240.038MHz	2.135
11	clk u_gpll_top/GPLL[1].u_GPLL/u_gpl1/CLKOUT4_Inferred	504.032MHz	240.038MHz	2.182
12	clk u_gpll_top/GPLL[2].u_GPLL/u_gpl1/CLKOUT0_Inferred	338.181MHz	40.000MHz	22.043
13	clk u_gpll_top/GPLL[2].u_GPLL/u_gpll/CLKOUT1_Inferred	456.204MHz	80.000MHz	10.308
14	clk u_gpll_top/GPLL[2].u_GPLL/u_gpl1/CLKOUT2_Inferred	512.033MHz	150.015MHz	4.713
15	clk u_gpll_top/GPLL[2].u_GPLL/u_gpl1/CLKOUT3_Inferred	480.769MHz	240.038MHz	2.086
16	clk u_gpl1_top/GPLL[2].u_GPLL/u_gpl1/CLKOUT4_Inferred	478.240MHz	240.038MHz	2.075
17	clk u_gpl1_top/GPLL[3].u_GPLL/u_gpl1/CLKOUT0_Inferred	447.427MHz	40.000MHz	22.765
18	clk u_gpl1_top/GPLL[3].u_GPLL/u_gpl1/CLKOUT1_Inferred	492.611MHz	80.000MHz	10.470
19	clk u_gpll_top/GPLL[3].u_GPLL/u_gpll/CLKOUT2_Inferred	500.250MHz	150.015MHz	4.667
20	clk u_gpll_top/GPLL[3].u_GPLL/u_gpll/CLKOUT3_Inferred	522.193MHz	240.038MHz	2.251
21	clk u_gpll_top/GPLL[3].u_GPLL/u_gpll/CLKOUT4_Inferred	513.084MHz	240.038MHz	2.217

Figure 2-5 Timing Report of Project I

2.4 Simulation Results

The simulation results of Project I are shown in the figure below.

Figure 2-6 Simulation Results of Project I

2.5 On-board Test

- 1. Configure the bitstream, and repeatedly perform reset and un-reset tests for 1000 cycles, pass.
- 2. Repeatedly configure the bitstream without power-down and test for 1000 cycles, pass.
- 3. Configure the bitstream upon power-up, test and then power down, repeatedly test for 1000 cycles, pass.

(V1.4) 12 / 25

2.6 Warning Descriptions

- 1. LUT and FF are merged by the tool into LUT-FF pairs. This warning can be ignored;
- 2. IO has no timing constraints, and users can make modifications as needed. This warning can be ignored;
- et will be over.

 Application France 4. If constraints are applied using fdc, the previously generated pcf in the project will be overridden.

(V1.4) 13 / 25

Chapter 3 Project II

3.1 System Planning

This project is divided into two submodules, namely CLM_LUT_FF (testing the LUTs and registers in CLM) and ppll_top (testing the PPLLs). The top-level module mainly performs signal synchronisation and debounce. There are a total of 6 top-level signals, as shown in Table 3-1.

No. Signal Name Input/Output Description clk System clock, 25MHz Input rst n Input Asynchronous reset signal, active-low error in Input Error injection signal, active-high LUT6 DFF test state indicator. Low indicates pass, and high clm led Output indicates fail. PPLL output frequency lock signal. High indicates pass, and low 5 ppll lock led Output indicates fail. PPLL output frequency test signal. High indicates pass, and low ppll led Output indicates fail.

Table 3-1 Top-level Signals and Descriptions of Project II

3.2 Functional Module Design

3.2.1 CLM LUT FF Module

Test objective: This module tests the LUT6_DFF pairs in CLMs, testing 50% of the resources by each of Project I and Project II.

Test method: Same as Project I.

3.2.2 ppll top Module

Test objective: This module instantiates 4 PPLL modules, which VCO frequency reaches the upper limit of 2125MHz, for testing the output frequency and the lock signal.

Test method: Count the input reference clock and output clock separately, and test the output clock frequency based on its multiplication relationship with the input reference clock.

If the output frequency deviation exceeds the expected frequency by $\pm 5\%$, the testing result is fail.

(V1.4) 14 / 25

In the design, the PPLL output clock count range is calculated as follows: Suppose the input reference clock cycle is tref, and the pll output clock clkout cycle is t0, then cnt_min = (10000 * tref / t0) * 0.95, and cnt_max = (10000 * tref / t0) * 1.05.

When the error injection signal is valid, the PPLL is reset, the PPLL will not be locked, and the output clock counter will also be reset, indicating a clock frequency test failure.

The PPLL module test circuit is the same as GPLL.

3.3 PDS Compilation Results

In Project II, the resource usage rate after placement and routing based on PDS2021.1-SP2.1 compilation is shown in the figure below.

Logic Utilization	Used	Available	Utilization(%)	Logic Utilization	Used	Available	Utilization(%)
Use of ADC	0	1	0	- IOBD	3	144	3
Use of ANALOG	0	1	0	IOBS	3	156	2
Use of APM	0	240	0	Use of IOCKB	0	24	0
Use of BKCL	3	6	50	Use of IOCKMUX_TEST	0	6	0
Use of CCS	1	1	100	Use of IOLHR	6	300	2
Use of CLMA	9529	11675	82	Use of KEYRAM	0	1	0
FF	47324	93400	51	Use of MFG_TEST	0	1	0
LUT	34127	46700	74	Use of MRCKB	0	12	0
LUT-FF pairs	33701	46700	73	Use of MRCKMUX_TEST	0	6	0
Use of CLMS	4975	4975	100	Use of MRPOSTMUX_TEST	0	6	0
FF	39800	39800	100	Use of PCIE	0	1	0
LUT	19900	19900	100	Use of PCKMUX_TEST	0	12	0
LUT-FF pairs	19900	19900	100	Use of PLLMRMUX_TEST	0	6	0
Distributed RAM	0	19900	0	Use of PLLREFMUX_TEST	0	6	0
Use of DDRPHY_CPD	0	12	0	Use of PPLL	4	6	67
Use of DDRPHY_IOCLK_DIV	0	6	0	- Use of PREGMUXC_TEST	0	4	0
Use of DDR_PHY	0	24	0	Use of PREGMUXLR_TEST	0	6	0
Use of DRM	0	155	0	Use of RCKB	16	24	67
Use of GPLL	0	6	0	Use of RCKMUX_TEST	0	6	0
Use of GSEB	0	218	0	Use of SCANCHAIN	0	1	0
Use of HARDO	1214	10550	12	Use of SCKMUX_TEST	0	12	0
Use of HCKB	12	96	13	Use of SFB	0	2225	0
Use of HCKMUX_TEST	0	8	0	Use of SPAD	0	8	0
Use of HSSTLP	0	2	0	Use of TSERDES	0	48	0
Use of IO	6	300	2	Use of USCM	5	32	16
IOBD	3	144	3	Use of USCMMUX_TEST	0	32	0
IOBS	3	156	2				

Figure 3-1 Resource Usage Rate of Project II

(V1.4) 15 / 25

The timing report of Project II is shown in the figure below.

	Clock	Fmax	Requested Frequency	Slack
1	clk	75.177MHz	50.000MHz	6.698
2	clk u_ppll_top/PPLL[0].u_PPLL/u_ppl1/CLKOUT0_Inferred	450.045MHz	40.095MHz	22.719
3	clk u_ppll_top/PPLL[0].u_PPLL/u_ppl1/CLKOUT1_Inferred	440.141MHz	78.709MHz	10.433
4	clk u_ppll_top/PPLL[0].u_PPLL/u_ppl1/CLKOUT2_Inferred	410.678MHz	163.479MHz	3.682
5	clk u_ppll_top/PPLL[0].u_PPLL/u_ppl1/CLKOUT3_Inferred	524.109MHz	265.675MHz	1.856
6	clk u_ppll_top/PPLL[0].u_PPLL/u_ppl1/CLKOUT4_Inferred	483.793MHz	265.675MHz	1.697
7	clk u_ppll_top/PPLL[1].u_PPLL/u_ppl1/CLKOUT0_Inferred	265.745MHz	40.095MHz	21.178
8	clk u_ppll_top/PPLL[1].u_PPLL/u_ppll/CLKOUT1_Inferred	426.076MHz	78.709MHz	10.358
9	clk u_ppll_top/PPLL[1].u_PPLL/u_ppl1/CLKOUT2_Inferred	330.251MHz	163.479MHz	3.089
10	clk u_ppll_top/PPLL[1].u_PPLL/u_ppl1/CLKOUT3_Inferred	499.750MHz	265.675MHz	1.763
11	clk u_ppll_top/PPLL[1].u_PPLL/u_ppl1/CLKOUT4_Inferred	504.286MHz	265.675MHz	1.781
12	clk u_ppll_top/PPLL[2].u_PPLL/u_ppl1/CLKOUT0_Inferred	358.551MHz	40.095MHz	22.152
13	clk u_ppll_top/PPLL[2].u_PPLL/u_ppll/CLKOUT1_Inferred	399.521MHz	78.709MHz	10.202
14	clk u_ppll_top/PPLL[2].u_PPLL/u_ppl1/CLKOUT2_Inferred	424.628MHz	163.479MHz	3.762
15	clk u_ppll_top/PPLL[2].u_PPLL/u_ppl1/CLKOUT3_Inferred	502.008MHz	265.675MHz	1.772
16	clk u_ppll_top/PPLL[2].u_PPLL/u_ppl1/CLKOUT4_Inferred	533.333MHz	265.675MHz	1.889
17	clk u_ppll_top/PPLL[3].u_PPLL/u_ppl1/CLKOUT0_Inferred	351.247MHz	40.095MHz	22.094
18	clk u_ppll_top/PPLL[3].u_PPLL/u_ppll/CLKOUT1_Inferred	360.750MHz	78.709MHz	9.933
19	clk u_ppll_top/PPLL[3].u_PPLL/u_ppl1/CLKOUT2_Inferred	455.166MHz	163.479MHz	3.920
20	clk u_ppll_top/PPLL[3].u_PPLL/u_ppl1/CLKOUT3_Inferred	490.918MHz	265.675MHz	1.727
21	clk u_ppll_top/PPLL[3].u_PPLL/u_ppll/CLKOUT4_Inferred	490.436MHz	265.675MHz	1.725

Figure 3-2 Timing Report of Project II

3.4 Simulation Results

The top-level signal simulation results of Project II are shown in the figure below.

Figure 3-3 Simulation Results of Project II

3.5 On-board Test

- 1. Configure the bitstream, and repeatedly perform reset and un-reset tests for 1000 cycles, pass.
- 2. Repeatedly configure the bitstream without power-down and test for 1000 cycles, pass.
- 3. Configure the bitstream upon power-up, test and then power down, repeatedly test for 1000 cycles, pass.

(V1.4) 16 / 25

3.6 Warning Descriptions

- 1. LUT and FF are merged by the tool into LUT-FF pairs. This warning can be ignored;
- 2. IO has no timing constraints, and users can make modifications as needed. This warning can be ignored;
- et will be overri 4. If constraints are applied using fdc, the previously generated pcf in the project will be overridden.

(V1.4) 17 / 25

Chapter 4 Project III

4.1 System Planning

This project is divided into 5 submodules, namely drm_top (testing all DRMs), gpll_top (the VCO reaches the lower limit of 600MHz), ppll_top (the VCO reaches the lower limit of 1350MHz), dram_top (testing distributed RAMs), and apm_top (testing all APMs). The top-level module mainly performs signal synchronisation and debounce, There are a total of 10 top-level signals, as shown in the table below.

No. Input/Output Signal Description Signal Name clk System clock, 25MHz Input Input Asynchronous reset signal, active-low rst n error in Input Error injection signal, active-high DRM test state indicator. Low indicates pass, and high indicates drm led Output APM test state indicator. Low indicates pass, and high indicates apm led Output Distributed RAM test state indicator. Low indicates pass, and high dram led Output indicates fail. GPLL output frequency lock signal. High indicates pass, and low gpll lock led Output indicates fail. GPLL output frequency test indicator. Low indicates pass, and high 8 gpll led Output indicates fail. PPLL output frequency lock signal. High indicates pass, and low ppll lock led Output indicates fail. PPLL output frequency test indicator. Low indicates pass, and high 10 ppll led Output indicates fail.

Table 4-1 Top-level Signals and Descriptions of Project III

4.2 Functional Module Design

4.2.1 drm top Module

Test objective: This module tests all core DRMs in the PG2L100H chip.

Test method: Instantiate GTP_DRM36K_E1, and configure the DRMs to true dual-port mode. Controlled by the reset signal, all DRMs are divided into 4 regions, tested serially; sequentially perform read-write verification on port A/B using the MARCH IC algorithm.

Error injection is supported. When the error injection signal is valid, if the expected readout value of the DRM does not match the write-in value, a verification error occurs.

(V1.4) 18 / 25

4.2.2 gpll top Module

Test objective: This module instantiates 2 GPLL modules, which VCO frequency reaches the lower limit of 600MHz, for testing the output frequency and lock signals.

Test method: Count the input reference clock and output clock separately, and test the output clock frequency based on its multiplication relationship with the input reference clock.

If the output frequency deviation exceeds the expected frequency by $\pm 5\%$, the testing result is fail.

In the design, the GPLL output clock count range is calculated as follows: Suppose the input reference clock cycle is tref, and the pll output clock clkout cycle is t0, then cnt_min = (10000 * tref / t0) * 0.95, and cnt_max = (10000 * tref / t0) * 1.05.

When the error injection signal is valid, the PLL is reset, the GPLL will not be locked, and the output clock counter will also be reset, indicating a clock frequency test failure.

The GPLL module test circuit is the same as in Figure 2-3.

4.2.3 ppll top Module

Test objective: This module instantiates 2 PPLL modules, which VCO frequency reaches the lower limit of 1350MHz, for testing the output frequency and the lock signal.

Test method: Count the input reference clock and output clock separately, and test the output clock frequency based on its multiplication relationship with the input reference clock.

If the output frequency deviation exceeds the expected frequency by $\pm 5\%$, the testing result is fail.

In the design, the PPLL output clock count range is calculated as follows: Suppose the input reference clock cycle is tref, and the pll output clock clkout cycle is t0, then cnt_min = (10000 * tref / t0) * 0.95, and cnt_max = (10000 * tref / t0) * 1.05.

When the error injection signal is valid, the PPLL is reset, the PPLL will not be locked, and the output clock counter will also be reset, indicating a clock frequency test failure.

The PPLL module test circuit is the same as in Figure 2-3.

(V1.4) 19 / 25

4.2.4 dram test Module

Test objective: This module tests all distributed RAMs constructed by CLMS in the PG2L100H chip.

Test method: Instantiate GTP_RAM256X1SP, configure the distributed RAMs to single-port mode, with the same DIN for all distributed RAMs, and compare their outputs for consistency. The distributed RAMs use a method of writing to one address and reading from another. The compared register's reset port is valid before writing to the current address and is released after writing, so as to prevent the register from not sampling glitches.

Error injection is supported. When the error injection signal is valid, if the value written to the first distributed RAM is different from those of others, verification fails.

This test circuit structure is shown in the figure below.

Figure 4-1 Structure Diagram of Distributed RAM Test Circuit

(V1.4) 20 / 25

Resource instantiation is shown in the following figure.

Figure 4-2 Resource Instantiation of Distributed RAMs

4.2.5 apm top Module

Test objective: This module tests all core dedicated APMs in the PG2L100H chip.

Test method: Instantiate GTP_APM_E2, configure APMs to multiply-accumulate mode, and compare APM output values with the expected value computed by ordinary logic using XOR, with APM input data the same as ordinary logic input data.

Error injection is supported. When the error injection signal is valid, if the expected APM output value changes, verification fails.

(V1.4) 21/25

4.3 PDS Compilation Results

In Project III, the resource usage rate after placement and routing based on PDS2021.1-SP2.1 compilation is shown in the figure below.

Logic Utilization	Used	Available	Utilization(%)	Logic Utilization	Used	Available	Utilization(%)
Use of ADC	0	1	0	IOBD	5	144	4
Use of ANALOG	0	1	0	IOBS	5	156	4
Use of APM	240	240	100	Use of IOCKB	0	24	0
Use of BKCL	5	6	84	Use of IOCKMUX_TEST	0	6	0
Use of CCS	1	1	100	Use of IOLHR	10	300	4
Use of CLMA	4243	11675	37	Use of KEYRAM	0	1	0
FF	3458	93400	4	Use of MFG_TEST	0	1	0
LUT	10742	46700	24	Use of MRCKB	0	12	0
LUT-FF pairs	3104	46700	7	Use of MRCKMUX_TEST	0	6	0
Use of CLMS	4975	4975	100	Use of MRPOSTMUX_TEST	0	6	0
FF	3	39800	1	Use of PCIE	0	1	0
LUT	19900	19900	100	Use of PCKMUX_TEST	0	12	0
LUT-FF pairs	0	19900	0	Use of PLLMRMUX_TEST	0	6	0
Distributed RAM	19900	19900	100	Use of PLLREFMUX_TEST	0	6	0
Use of DDRPHY_CPD	0	12	0	Use of PPLL	2	6	34
Use of DDRPHY_IOCLK_DIV	0	6	0	Use of PREGMUXC_TEST	0	4	0
Use of DDR_PHY	0	24	0	Use of PREGMUXLR_TEST	0	6	0
Use of DRM	155	155	100	Use of RCKB	17	24	71
Use of GPLL	2	6	34	Use of RCKMUX_TEST	0	6	0
Use of GSEB	0	218	0	Use of SCANCHAIN	0	1	0
Use of HARDO	1609	10550	16	Use of SCKMUX_TEST	0	12	0
Use of HCKB	15	96	16	Use of SFB	0	2225	0
Use of HCKMUX_TEST	0	8	0	Use of SPAD	0	8	0
Use of HSSTLP	0	2	0	Use of TSERDES	0	48	0
Use of IO	10	300	4	Use of USCM	6	32	19
IOBD	5	144	4	Use of USCMMUX_TEST	0	32	0
IOBS	5	156	4				

Figure 4-3 Resource Usage Rate of Project III

(V1.4) 22 / 25

The timing report of Project III is shown in the figure below.

	Clock	Fmax	Requested Frequency	Slack
1	clk	100.010MHz	50.000MHz	10.001
2	clk u_gpll_top/GPLL[0].u_GPLL/u_gpl1/CLKOUT0_Inferred	513.347MHz	40.000MHz	23.052
3	clk u_gpl1_top/GPLL[0].u_GPLL/u_gpl1/CLKOUT1_Inferred	393.082MHz	75.002MHz	10.789
4	clk u_gpl1_top/GPLL[0].u_GPLL/u_gpl1/CLKOUT2_Inferred	430.478MHz	150.015MHz	4.343
5	clk u_gpl1_top/GPLL[0].u_GPLL/u_gpl1/CLKOUT3_Inferred	556.793MHz	300.030MHz	1.537
6	clk u_gpl1_top/GPLL[0].u_GPLL/u_gpl1/CLKOUT4_Inferred	574.053MHz	300.030MHz	1.591
7	clk u_gpll_top/GPLL[1].u_GPLL/u_gpl1/CLKOUT0_Inferred	468.604MHz	40.000MHz	22.866
8	clk u_gpll_top/GPLL[1].u_GPLL/u_gpl1/CLKOUT1_Inferred	372.995MHz	75.002MHz	10.652
9	clk u_gpll_top/GPLL[1].u_GPLL/u_gpl1/CLKOUT2_Inferred	562.746MHz	150.015MHz	4.889
10	clk u_gpll_top/GPLL[1].u_GPLL/u_gpl1/CLKOUT3_Inferred	573.723MHz	300.030MHz	1.590
11	clk u_gpll_top/GPLL[1].u_GPLL/u_gpl1/CLKOUT4_Inferred	517.331MHz	300.030MHz	1.400
12	clk u_ppll_top/PPLL[0].u_PPLL/u_ppl1/CLKOUT0_Inferred	436.681MHz	45.000MHz	19.932
13	clk u_ppll_top/PPLL[0].u_PPLL/u_ppll/CLKOUT1_Inferred	474.383MHz	90.001MHz	9.003
14	clk u_ppll_top/PPLL[0].u_PPLL/u_ppl1/CLKOUT2_Inferred	452.284MHz	135.007MHz	5.196
15	clk u_ppll_top/PPLL[0].u_PPLL/u_ppl1/CLKOUT3_Inferred	568.828MHz	270.051MHz	1.945
16	clk u_ppll_top/PPLL[0].u_PPLL/u_ppl1/CLKOUT4_Inferred	554.631MHz	270.051MHz	1.900
17	clk u_ppll_top/PPLL[1].u_PPLL/u_ppll/CLKOUT0_Inferred	456.204MHz	45.000MHz	20.030
18	clk u_ppll_top/PPLL[1].u_PPLL/u_ppll/CLKOUT1_Inferred	451.264MHz	90.001MHz	8.895
19	clk u_ppll_top/PPLL[1].u_PPLL/u_ppl1/CLKOUT2_Inferred	440.917MHz	135.007MHz	5.139
20	clk u_ppll_top/PPLL[1].u_PPLL/u_ppll/CLKOUT3_Inferred	515.730MHz	270.051MHz	1.764
21	clk u_ppll_top/PPLL[1].u_PPLL/u_ppll/CLKOUT4_Inferred	474.608MHz	270.051MHz	1.596

Figure 4-4 Timing Report of Project III

4.4 Simulation Results

The top-level signal simulation results of Project III are shown in the figure below.

Figure 4-5 Simulation Results of Project III

4.5 On-board Test

- 1. Configure the bitstream, and repeatedly perform reset and un-reset tests for 1000 cycles, pass.
- 2. Repeatedly configure the bitstream without power-down and test for 1000 cycles, pass.
- 3. Configure the bitstream upon power-up, test and then power down, repeatedly test for 1000 cycles, pass.

(V1.4) 23 / 25

4.6 Warning Descriptions

- 1. Warning for GTP can be ignored;
- 2. Floating signals in drm_top and apm_top modules are optimized. This warning can be ignored;
- 3. IO has no timing constraints, and users can make modifications as needed. This warning can be ignored;
- Application in Application of the second of 4. If constraints are applied using fdc, the previously generated pcf in the project will be overridden.

(V1.4) 24/25

Disclaimer

Copyright Notice

This document is copyrighted by Shenzhen Pango Microsystems Co., Ltd., and all rights are reserved. Without prior written approval, no company or individual may disclose, reproduce, or otherwise make available any part of this document to any third party. Non-compliance will result in the Company initiating legal proceedings.

Disclaimer

- 1. This document only provides information in stages and may be updated at any time based on the actual situation of the products without further notice. The Company assumes no legal responsibility for any direct or indirect losses caused by improper use of this document.
- 2. This document is provided "as is" without any warranties, including but not limited to warranties of merchantability, fitness for a particular purpose, non-infringement, or any other warranties mentioned in proposals, specifications, or samples. This document does not grant any explicit or implied intellectual property usage license, whether by estoppel or otherwise.
- 3. The Company reserves the right to modify any documents related to its series products at any time without prior notice.
- 4. The information contained in this document is intended to assist users in resolving application-related issues. While we strive for accuracy, we cannot guarantee that the document is entirely free from flaws. Should any functional abnormalities and performance degradation arise due to deviation from the prescribed procedures outlined herein, our company will neither be held liable nor concede that such issues stem from product deficiencies. The solutions presented in this document are just one of the feasible options and cannot cover all application scenarios. Consequently, if users encounter functional abnormalities or performance degradation despite adhering to the prescribed procedures outlined herein, we cannot assure that such issues are indicative of product deficiencies.

(V1.4) 25 / 25