Submodular meets Spectral:

Greedy Algorithms for Subset Selections, Sparse Approximation and Dictionary Selection

Abhimanyu Das, David Kempe ICML 2011

Presenter: Wonryong Ryou

Subset Selection

Given:
$$V = \{X_1, \dots, X_n\}, k, Z$$

Find:
$$S \subseteq V$$
, $s \cdot t \cdot |S| \leq k$

$$Z' = \sum_{i \in S} \alpha_i X_i$$

subject to:
$$S = \arg \max_{S} R_{Z,S}^2$$

where
$$R_{Z,S}^2 = \frac{\mathbb{V}Z - \mathbb{E}[(Z - Z')^2]}{\mathbb{V}Z}$$

Dictionary Selection

(Krause and Cevher 2010)

and More...

Introduction: and More...

Compressed sensing

Those problems are

"Getting better theoretical bounds for subset selections, with the novel concept of *submodularity ratio*."

Preliminary:

Notations & Definitions

Covariance matrices C, \mathbf{b}

Preliminary:

Prior Works

- Sparse recovery
 - ► L1 relaxation: near-optimal under certain conditions. (Tropp 2006, E.J.Candès et al. 2005)
- Subset selection
 - Greedy: $(1 \Theta(\mu k)) \cdot OPT$ for R^2 under $\mu = O(1/k)$, $(1 + \Theta(\mu^2 k)) \cdot OPT$ for MSE.

(Das and Kempe 2008, Gilbert et al. 2003, Tropp et al. 2003, 2004)

- Dictionary selection
 - ► Greedy: additive approximation guarantee.

 (Krause and Cevher 2010)

Submodular Function

$$f: 2^{\Omega} \to \mathbb{R}$$
 is submodular if
$$\forall A, B \subseteq \Omega, \ A \subseteq B, \ \forall s \not\in B$$

$$f(A \cup \{s\}) - f(A) \ge f(B \cup \{s\}) - f(B)$$

Submodular Function

 $f: 2^{\Omega} \to \mathbb{R}$ is submodular if $\forall A, B \subseteq \Omega, \ A \subseteq B, \ \forall s \notin B$ $f(A \cup \{s\}) - f(A) \ge f(B \cup \{s\}) - f(B)$

Submodular Function

$$f: 2^{\Omega} \to \mathbb{R}$$
 is submodular if
$$\forall A, B \subseteq \Omega, \ A \subseteq B, \ \forall s \notin B$$

$$f(A \cup \{s\}) - f(A) \ge f(B \cup \{s\}) - f(B)$$

Greedy algorithm performs
$$\left(1 - \frac{1}{e}\right) \cdot OPT$$

(Nemhauser et al. 1978)

Submodularity Ratio

$$\gamma_{U,k}(f) = \min_{L \subseteq U, S: |S| \le k, S \cap L = \emptyset} \frac{\sum_{x \in S} \left(f(L \cup \{x\}) - f(L) \right)}{f(L \cup S) - f(L)}$$

Submodularity Ratio

Lemma 2.4

$$\gamma_{U,k}(f) \ge \lambda_{\min}(C, k + |U|) \ge \lambda_{\min}(C)$$

Submodularity Ratio

$$\gamma_{U,k}(f) = \min_{L \subseteq U, S: |S| \le k, S \cap L = \emptyset} \frac{\sum_{x \in S} \left(f(L \cup \{x\}) - f(L) \right)}{f(L \cup S) - f(L)}$$

$$\gamma_{U,k} \geq 1$$

f is submodular

$$\gamma_{U,k} < 1$$

Still works well!

Analysis:

Algorithms

Forward Regression (FR)
Orthogonal Matching Pursuit (OMP)
Oblivious Algorithm (OBL)

Subset Selection

Submodular Dictionary Selection -Modular Approximation (SDS_{MA}) Orthogonal Matching Pursuit (SDS_{OMP})

Dictionary Selection

Analysis - Subset Selection:

Forward Regression

$$R_{Z,S^{FR}}^{2} \ge (1 - e^{-\gamma_{S^{FR},k}}) \cdot OPT$$

$$\ge (1 - e^{-\lambda_{\min}(C,2k)}) \cdot OPT$$

$$\ge (1 - e^{-\lambda_{\min}(C,k)}) \cdot \Theta\left((\frac{1}{2})^{1/\lambda_{\min}(C,k)}\right) \cdot OPT$$

Analysis - Subset Selection:

Orthogonal Matching Pursuit

$$R_{Z,S^{OMP}}^{2} \ge (1 - e^{-(\gamma_{S^{OMP},k} \cdot \lambda_{\min}(C,2k))}) \cdot OPT$$

$$\ge (1 - e^{-\lambda_{\min}(C,2k)^{2}}) \cdot OPT$$

$$\ge (1 - e^{-\lambda_{\min}(C,k)^{2}}) \cdot \Theta\left((\frac{1}{2})^{1/\lambda_{\min}(C,k)}\right) \cdot OPT$$

Analysis - Subset Selection:

Oblivious Algorithm

$$Cov(Z, X_2)$$

$$Cov(Z, X_3)$$

$$Cov(Z, X_4)$$

$$Cov(Z, X_5)$$

$$R_{Z,S^{OBL}}^{2} \ge \frac{\gamma_{\emptyset,k}}{\lambda_{\max}(C,k)} \cdot OPT$$
$$\ge \frac{\lambda_{\min}(C,k)}{\lambda_{\max}(C,k)} \cdot OPT$$

Analysis - Dictionary Selection:

SDSMA

$$F(D^{MA}) \ge \frac{\gamma_{\emptyset,k}}{\lambda_{\max}(C,k)} \left(1 - \frac{1}{e}\right) F(D^{OPT})$$

$$\ge \frac{\lambda_{\min}(C,k)}{\lambda_{\max}(C,k)} \left(1 - \frac{1}{e}\right) F(D^{OPT})$$

$$\ge \left(1 - \frac{1}{e}\right) F(D^{OPT}) - \left(2 - \frac{1}{e}\right) k \cdot \mu(C)$$

Analysis - Dictionary Selection:

SDSOMP

$$G(D) = \sum_{j=1}^{S} R_{Z_{j},OMP(D,Z,k)}^{2}$$

$$F(D^{OMP}) \ge \frac{\gamma_{\emptyset,k}}{\lambda_{\max}(C,k)} \cdot \frac{1 - e^{-(p \cdot \gamma_{\emptyset,k})}}{d - d \cdot p \cdot \gamma_{\emptyset,k} + 1} \cdot F(D^{OPT})$$

$$\ge \left(1 - \frac{1}{e}\right) F(D^{OPT}) - k\left(6n + 2 - \frac{1}{e}\right) \mu(C)$$

$$where \ p = \frac{1 - e^{-\lambda_{\min}(C,2k)^{2}}}{\lambda_{\max}(C,k)}$$

Exhaustive Search (OPT)
Forward Regression (FR)
Orthogonal Matching Pursuit (OMP)
L1-Regularisation/Lasso (L1)
Oblivious Algorithm (OBL)

Boston Housing Data World Development Indicators Synthetic Data

Algorithms

Datasets

Results: Boston Housing

Figure 1: Boston Housing R^2

Figure 2: Boston Housing parameters

Results: World Development Idc

Figure 3: World Bank R^2

Figure 4: World Bank parameters

Results: Synthetic Data

Figure 5: Synthetic Data R^2

Figure 6: Synthetic Data parameters

Pushing the Bounds

$$\gamma_{U,k}(f) = \min_{\substack{L \subseteq U, S: |S| \le k, S \cap L = \emptyset \\ f(L)}} \frac{\sum_{x \in S} \left(f(L \cup \{x\}) - f(L) \right)}{f(L \cup S) - f(L)}$$

Conclusion:

Further Applications

- ► Feature selection
 (Johnson et al. 2015)
- ► Maximum coverage / Minimum cover (Das and Campe 2018)
- ► Generalised Linear Models
 (Elenberg et al. 2016)

Conclusion:

Summary

- Introduced submodularity ratio, γ .
- Analysed greedy algorithms with γ , and got the strongest known bounds for subset selection and dictionary selection.
- Demonstrated the superiority of γ over spectral parameters by experiments.

Questions?

Thank you for your attention!