On the Pitfalls of Using High-Throughput Multicast Metrics in Adversarial Wireless Mesh Networks

Jing Dong, Reza Curtmola, Cristina Nita-Rotaru Department of Computer Science and CERIAS **Purdue University**

Multicast in Wireless Mesh

Multimedia conferencing

Video/audio broadcasting

Online gaming

Distance learning

They all need high-throughput multicast

High-Throughput Multicast

 Use high-throughput metrics to build high quality multicast paths

• • Our Contributions

- Identify attacks against high-throughput multicast protocols
- Propose a lightweight scheme for secure and high-throughput wireless multicast
- o Show experimentally:
 - The attacks are extremely damaging
 - Our defense scheme effectively mitigates the attacks and preserves the advantage of highthroughput metrics

• • • Related Work

- Secure multicast
 - Authentication framework [Roy '05]
 - Insider and outsider [Curtmola '07]
- Secure unicast routing
 - Authentication framework for route discovery, e.g. SEAD, Ariadne [Hu '02]
 - Local monitoring against packet dropping e.g. watchdog [Marti '00]
 - End-to-end acknowledgment based e.g.
 ODSBR [Awerbuch '05]

• • • High-Throughput Metrics

- Link metric
 - Link delivery probability

- Path metric
 - Path delivery probability (SPP [Roy '06])

$$pm = \prod m_i$$

$$pm(S \rightarrow A \rightarrow B \rightarrow R) = 0.73 = 0.9*0.9*0.9$$

ODMRP-HT: ODMRP with High-Throughput Multicast

- Join Query flooding
 - Establishes metrics
- Join Reply
 - Selects best metric paths for data delivery

ODMRP with High-Throughput Multicast

- Join Query flooding
 - Establishes metrics
- o Join Reply
 - Selects best metric paths for data delivery

0.8 0.3 0.9 0.3 0.8 0.3 0.5 R_3 0.9 8.0 0.9 R_1 R_2

The correctness of path establishment requires the cooperation of nodes

- Local Metric Manipulation
 - Attacker lies about link metric

- Global Metric Manipulation
 - Attacker lies about path metric

Impact of Metric Manipulation Attacks

- Metric poisoning
- Attacker controlled paths
 - With packet dropping, can cause significant damage
- Facilitate other attacks
 - Traffic analysis, network partition, etc

Very easy to mount!

S-ODMRP: Secure High-Throughput Multicast

- Goal: Ensure data delivery in the presence of attackers
 - Metric manipulation
 - Packet dropping
- o Do not address traffic analysis

Security and Adversarial Model

- o Security assumptions
 - Existence of public-key infrastructure
 - Secure neighbor discovery
 - Source data authentication
- Adversarial model
 - Insider or outsider attackers
 - Individual or colluding attackers

- o Measurement-based attack detection
 - Derive expected PDR (ePDR)
 - Monitor perceived PDR (pPDR)
 - If ePDR-pPDR > δ, then declare attack detected
- Accusation-based attack reaction
 - Accuse suspected node for a time duration
 - Flood accusation in the network
 - Accused nodes are avoided in future path selection until the accusation expires

• • • Challenges

- o How to prevent affected honest nodes from being mistakenly accused?
- o How to deal with false accusation attacks?

o How to deal with transient network variations?

S-ODMRP in Stages (1/3): Mesh Creation

Attack: Attacker C advertises metric 1

Attacker has not been detected

- Build data paths as usual
 - Many attacker controlled paths

S-ODMRP in Stages (2/3): Attack Detection

S-ODMRP in Stages (3/3): Attack Reaction

- B, C, R all start a reaction timer with timeout β(1-ePDR)
 - ePDR_B > ePDR_C > ePDR_R
- B times out first
 - Flood accusation message
 - Unicast RecoveryMsg downstream
- o On receiving RecoveryMsg, node C
 - Cancels its reaction timer
 - Forwards RecoveryMsg downstream
- On receiving RecoveryMsg, R cancels its reaction timer

Staggered reaction timeout prevents honest nodes from being mistakenly accused

S-ODMRP: Mesh Creation – revisited

After attacker C has been detected and accused

- Build data paths
 - Attacker C is ignored

- o Attacker can accuse any honest node
 - Mass false accusation
 - Strategic false accusation
- o Countermeasures
 - Controlled Accusation one active accusation per node
 - Always activate the neighbor with best metric as a forwarder node, even if it is accused

- Transient network variations can cause false-positive accusations
- Temporary accusation
 - Accusation duration = α(ePDR-pPDR)
 - PDR discrepancy due to transient network variations is small
 - False-positive accusation duration is small

- Glomosim Simulator
- o 802.11 radio, 2Mbps bandwidth, 250m range
- 100 nodes randomly placed in 1500m x 1500m area
- Group members are randomly selected
 - 20 group members, one source node
- o Data rate 20 pkts/sec, 512 bytes per packet
- Attackers are randomly selected

• • • Attacker Scenarios and Metric

- Attack Scenarios
 - No-Attack
 - Drop-only
 - LMM-Drop: Local Metric Manipulation and dropping
 - GMM-Drop: Global Metric Manipulation and dropping
 - False-Accusation
- Metric
 - Packet delivery ratio $PDR = \frac{n_r}{n_s}$

Attack Impact

Attack on ODMRP

Mesh is resilient to attacks

High-throughput metric improves performance

High-throughput metrics are a double-edged sword

Effectiveness of S-ODMRP

Our defense successfully mitigates all three types of attacks

Resiliency to Attack

False-Accusation Attack

S-ODMRP is resilient to False-Accusation attacks

- High-throughput multicast is an important service for wireless mesh networks
- Aggressive path selection is a double-edged sword
 - It improves performance
 - But it introduces severe security vulnerability
- We proposed an effective and lightweight scheme for achieving secure high-throughput wireless multicast

• • • Thank You!

Contact: dongj@cs.purdue.edu