1.

Teorema 1.1 (Teorema de Ceva sobre la circunferencia). Sean ABC y DEF dos triángulos sobre la misma circunferencia. Entonces las rectas AD, BE y CF son concurrentes si y sólo si

$$\frac{BD}{DC} \cdot \frac{CE}{EA} \cdot \frac{AF}{FB} = 1.$$

Definición 1.1 (Triángulo circunceviano). A todo punto que no esté sobre alguno de los lados de un triángulo dado es posible asignarle un nuevo triángulo, que surge a partir de la intersección de las cevianas con el circuncírculo del triángulo.

Teorema 1.2.

Teorema 1.3 (**Teorema de Jacobi**). Sea ABC un triángulo, y sean X, Y, Z tres puntos en el plano tales que $\angle YAC = \angle BAZ, \angle ZBA = \angle CBX, \angle XCB = \angle ACY$. Entonces las rectas AX, BY y CZ son concurrentes.

Definición 1.2 (**Puntos isotómicos**). Dos puntos son isotómicos si estos coinciden al ser reflejados por el punto medio del segmento al que pertenecen.

Definición 1.3 (Conjugados isotómicos). Dado un triángulo ABC se tienen tres cevianas AD, BE y CF las cuales son concurrentes en un punto P. Sean D', E' y F' las reflexiones de D, E y F sobre los puntos medios de BC, CA y AB respectivamente. Entonces las rectas AD', BE' y CF' son concurrentes.

Definición 1.4 (Cevianas isogonales). Dos cevianas son isogonales del $\triangle ABC$ si ambas parte del mismo vértice del triángulo y una es la reflexión de la otra con respecto a la bisectriz interna de $\triangle ABC$.

Definición 1.5 (Conjugados isogonales). Dado un triángulo ABC se tienen tres cevianas AD, BE y CF las cuales son concurrentes en un punto P. Sean AD', BE' y CF' las reflexiones de AD, BE y CF sobre las bisectrices de $\angle A$, $\angle B$ y $\angle C$ respectivamente. Entonces las rectas AD', BE', CF' son concurrentes.

2.

3.

Problema 3.1. Sea ABC un triángulo rectángulo en A, y sea D un punto en el lado AC. Denotemos por E la reflexión de A en la recta BD, y por F la intersección de CE con la perpendicular a BC por D. Probar que AF, DE y BC son concurrentes.

Problema 3.2. En el $\triangle ABC$, sea M el punto medio del lado AB. Sea P un punto arbitrario en el segmento CM ($P \neq C$, $P \neq M$). Sea $AP \cap BC = D$ y $BP \cap AC = E$. Probar que $ED \parallel AB$.