In [1]: import pandas as pd
import warnings
warnings.filterwarnings("ignore")
data=pd.read_csv("/home/placement/Downloads/fiat500.csv")

In [2]: data.describe()

Out[2]:

	ID	engine_power	age_in_days	km	previous_owners	lat	lon	price
count	1538.000000	1538.000000	1538.000000	1538.000000	1538.000000	1538.000000	1538.000000	1538.000000
mean	769.500000	51.904421	1650.980494	53396.011704	1.123537	43.541361	11.563428	8576.003901
std	444.126671	3.988023	1289.522278	40046.830723	0.416423	2.133518	2.328190	1939.958641
min	1.000000	51.000000	366.000000	1232.000000	1.000000	36.855839	7.245400	2500.000000
25%	385.250000	51.000000	670.000000	20006.250000	1.000000	41.802990	9.505090	7122.500000
50%	769.500000	51.000000	1035.000000	39031.000000	1.000000	44.394096	11.869260	9000.000000
75%	1153.750000	51.000000	2616.000000	79667.750000	1.000000	45.467960	12.769040	10000.000000
max	1538.000000	77.000000	4658.000000	235000.000000	4.000000	46.795612	18.365520	11100.000000

```
In [3]: datal=data.drop(['lat','lon','ID'],axis=1)
    datal
```

\sim			$\overline{}$		
- ()	ш	1	~		
·	u	ı	 J	'	

	model	engine_power	age_in_days	km	previous_owners	price
0	lounge	51	882	25000	1	8900
1	рор	51	1186	32500	1	8800
2	sport	74	4658	142228	1	4200
3	lounge	51	2739	160000	1	6000
4	pop	73	3074	106880	1	5700
1533	sport	51	3712	115280	1	5200
1534	lounge	74	3835	112000	1	4600
1535	pop	51	2223	60457	1	7500
1536	lounge	51	2557	80750	1	5990
1537	pop	51	1766	54276	1	7900

1538 rows × 6 columns

```
In [4]: data1.shape
Out[4]: (1538, 6)
In [5]: data2=data1.loc[(data1.model=='lounge')]
```

In [6]: data2

Out[6]:

	model	engine_power	age_in_days	km	previous_owners	price
0	lounge	51	882	25000	1	8900
3	lounge	51	2739	160000	1	6000
6	lounge	51	731	11600	1	10750
7	lounge	51	1521	49076	1	9190
11	lounge	51	366	17500	1	10990
1528	lounge	51	2861	126000	1	5500
1529	lounge	51	731	22551	1	9900
1530	lounge	51	670	29000	1	10800
1534	lounge	74	3835	112000	1	4600
1536	lounge	51	2557	80750	1	5990

1094 rows × 6 columns

In [7]: data2=pd.get_dummies(data2)
 data2

_			-	
- ()	ш	ıŦ	_/	
·	u	··	•	

	engine_power	age_in_days	km	previous_owners	price	model_lounge
0	51	882	25000	1	8900	1
3	51	2739	160000	1	6000	1
6	51	731	11600	1	10750	1
7	51	1521	49076	1	9190	1
11	51	366	17500	1	10990	1
	•••					
1528	51	2861	126000	1	5500	1
1529	51	731	22551	1	9900	1
1530	51	670	29000	1	10800	1
1534	74	3835	112000	1	4600	1
1536	51	2557	80750	1	5990	1

1094 rows × 6 columns

```
In [8]: data2.shape
```

Out[8]: (1094, 6)

```
In [9]: #adding to seperate dataframe the value, we want to predict
y=data2['price']
#removing the value we want to predict from orginal dataframe
x=data2.drop('price',axis=1)
```

```
In [10]: y
Out[10]: 0
                   8900
                   6000
         3
                 10750
         6
                  9190
         7
         11
                 10990
                  . . .
         1528
                  5500
         1529
                  9900
         1530
                 10800
         1534
                  4600
         1536
                   5990
         Name: price, Length: 1094, dtype: int64
In [11]: #dividing data into testing and training
         from sklearn.model_selection import train_test_split
         x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.33,random_state=42)
```

localhost:8888/notebooks/ridge.ipynb

5/12

6/12

In [12]: x_test

Out[12]:

	engine_power	age_in_days	km	previous_owners	model_lounge
676	51	762	18609	1	1
215	51	701	25000	1	1
146	51	4018	152900	1	1
1319	51	731	20025	1	1
1041	51	640	38231	1	1
		•••			
757	51	4018	102841	1	1
167	51	397	15341	1	1
156	51	1858	35304	1	1
1145	51	456	14970	1	1
1393	51	609	32665	2	1

362 rows × 5 columns

In	[13]	:	х	train

_			 -	т.
- ()	11	+	 ı ≺	
U	u	ч.	 LJ	

	engine_power	age_in_days	km	previous_owners	model_lounge
441	51	762	36448	1	1
701	51	701	27100	1	1
695	51	3197	51083	1	1
1415	51	670	33000	1	1
404	51	456	14000	1	1
459	51	397	15628	1	1
654	51	3227	95554	1	1
189	51	1431	81900	1	1
1455	51	701	33942	1	1
1218	51	882	25000	1	1

732 rows × 5 columns

```
In [14]: y_train
```

Out[14]: 441

```
8980
701
        10300
695
         5880
1415
        10490
404
         9499
        10850
459
654
         5900
189
        10000
1455
         9400
1218
         8900
```

Name: price, Length: 732, dtype: int64

```
In [15]: y test
Out[15]: 676
                  10250
                   9790
          215
                   5500
          146
          1319
                   9900
                   8900
          1041
          757
                   6000
          167
                  10950
          156
                   8000
          1145
                  10700
         1393
                   9400
         Name: price, Length: 362, dtype: int64
In [16]: from sklearn.model selection import GridSearchCV
         from sklearn.linear model import Ridge
         alpha=[1e-15,1e-10,1e-8,1e-4,1e-3,1e-2,1,5,10,20,30]
         ridge=Ridge()
         parameters={'alpha':alpha}
         ridge regressor=GridSearchCV(ridge,parameters)
          ridge regressor.fit(x train,y train)
Out[16]: GridSearchCV(estimator=Ridge(),
                        param grid={'alpha': [1e-15, 1e-10, 1e-08, 0.0001, 0.001, 0.01, 1,
                                               5, 10, 20, 30]})
         In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.
         On GitHub, the HTML representation is unable to render, please try loading this page with nbyiewer.org.
In [17]: ridge regressor.best params
Out[17]: {'alpha': 30}
In [18]: ridge=Ridge(30)
          ridge.fit(x train,y train)
         y pred ridge=ridge.predict(x test)
```

```
In [19]: from sklearn.metrics import mean_squared_error#calculating MSE
Ridge_Error=mean_squared_error(y_pred_ridge,y_test)
Ridge_Error
```

Out[19]: 519771.8129989745

In [20]: from sklearn.metrics import r2_score
 r2_score(y_test,y_pred_ridge)

Out[20]: 0.8373030813683994

```
In [21]: Results=pd.DataFrame(columns=['actual','predicted'])
    Results['actual']=y_test
    Results['predicted']=y_pred_ridge
    Results=Results.reset_index()
    Results['Id']=Results.index
    Results.head(15)
```

Out[21]:

	index	actual	predicted	Id
0	676	10250	10045.347779	0
1	215	9790	9989.171535	1
2	146	5500	4769.099603	2
3	1319	9900	10048.683238	3
4	1041	8900	9813.944798	4
5	1425	9500	8678.143561	5
6	409	10450	10173.797921	6
7	617	9790	10180.627008	7
8	1526	9300	9107.315259	8
9	1010	4600	5625.007407	9
10	1301	10000	10565.711088	10
11	923	6900	6776.128155	11
12	1200	9500	9677.360191	12
13	845	10500	10348.971360	13
14	799	7450	8049.201047	14

In [29]: import seaborn as sns
import matplotlib.pyplot as plt
sns.lineplot(x='Id',y='actual',data=Results.head(50))
sns.lineplot(x='Id',y='predicted',data=Results.head(50))
plt.plot()

Out[29]: []

In []: