Departamento de Matemáticas $1^{\underline{0}}$ Bachillerato

Derivadas

1. p80e16 - Calcula las siguientes derivadas:

(a)
$$y = 2x$$

Sol:
$$y' = 2$$

(b)
$$y = 3x - 5$$

Sol:
$$y' = 3$$

(c)
$$y = 7x^5 - 3x^2 + x + 2345$$

Sol:
$$y' = 35x^4 - 6x + 1$$

(d)
$$y = x(x+2)$$

Sol:
$$y' = 2x + 2$$

(e)
$$y = (x-1)(x+1)$$

Sol:
$$y' = 2x$$

(f)
$$y = \frac{5x^4}{7} - \frac{x^3}{55} - \frac{3x^2}{4} + x - 1255$$

Sol:
$$y' = \frac{20x^3}{7} - \frac{3x^2}{55} - \frac{3x}{2} + 1$$

(g)
$$y = (x+1)^3$$

Sol:
$$y' = 3(x+1)^2$$

(h)
$$y = (x^3 + x + 1)^4$$

Sol:
$$y' = (12x^2 + 4)(x^3 + x + 1)^3$$

(i)
$$y = -(3x-1)^2 + (3x+1)^2$$

Sol:
$$y' = 12$$

$$(j) \quad y = \frac{1}{x^2}$$

Sol:
$$y' = -\frac{2}{x^3}$$

$$(k) \quad y = \frac{1}{x+1}$$

Sol:
$$y' = -\frac{1}{(x+1)^2}$$

(l)
$$y = \frac{x^2 - 3}{x^3 + x}$$

Sol:
$$y' = \frac{-x^4 + 10x^2 + 3}{x^2(x^4 + 2x^2 + 1)}$$

(m)
$$y = \frac{x+1}{x}$$

Sol:
$$y' = -\frac{1}{x^2}$$

(n)
$$y = \frac{xx^2(x^2-1)}{3} - 3$$

Sol:
$$y' = \frac{5x^4}{3} - x^2$$

$$(\tilde{\mathbf{n}}) \quad y = \frac{1}{x^3}$$

Sol:
$$y' = -\frac{3}{r^4}$$

(o)
$$y = x^{\frac{1}{2}}$$

Sol:
$$y' = \frac{1}{2\sqrt{x}}$$

(p)
$$y = x^{\frac{2}{3}}$$

Sol:
$$y' = \frac{2}{3\sqrt[3]{x}}$$

(q)
$$y = x^{\frac{-2}{3}}$$

Sol:
$$y' = -\frac{2}{3r^{\frac{5}{3}}}$$

(r)
$$y = x^{\frac{1}{2}} + x^{\frac{1}{5}} + x^{\frac{1}{6}}$$

Sol:
$$y' = \frac{\frac{x\frac{49}{30}}{2} + \frac{x\frac{13}{10}}{6} + \frac{x^{\frac{4}{3}}}{5}}{x^{\frac{32}{15}}}$$

(s)
$$y = \sqrt{3}\sqrt{x}$$

Sol:
$$y' = \frac{\sqrt{3}}{2\sqrt{x}}$$

2. p80e16-cont - Calcula las siguientes derivadas:

(a)
$$y = \frac{x^3}{\sqrt{x}}$$

Sol:
$$y' = \frac{5x^{\frac{3}{2}}}{2}$$

(b)
$$y = x^3 x^{\frac{1}{3}}$$

Sol:
$$y' = \frac{10x^{\frac{7}{3}}}{3}$$

(c)
$$y = \frac{\sqrt{x}}{x}$$

Sol:
$$y' = -\frac{1}{2x^{\frac{3}{2}}}$$

(d)
$$y = (1 - x^2)^3$$

Sol:
$$y' = -6x(x^2 - 1)^2$$

(e)
$$y = \sqrt{2x - 4}$$

Sol:
$$y' = \frac{\sqrt{2}}{2\sqrt{x-2}}$$

(f)
$$y = \sqrt{2-x}$$

Sol:
$$y' = -\frac{1}{2\sqrt{2-x}}$$

(g)
$$y = \sqrt[3]{2}\sqrt[3]{x^2}$$

Sol:
$$y' = \frac{2\sqrt[3]{2} \operatorname{sign}(x)}{3\sqrt[3]{|x|}}$$

(h)
$$y = \sqrt{3x^2 - 1}$$

Sol:
$$y' = \frac{3x}{\sqrt{3x^2 - 1}}$$

(i)
$$y = \frac{2x}{\sqrt{x-1}}$$

Sol:
$$y' = \frac{x-2}{(x-1)^{\frac{3}{2}}}$$

$$(j) \quad y = \sqrt{\frac{1-x}{x+1}}$$

Sol:
$$y' = \frac{\sqrt{\frac{1-x}{x+1}}}{x^2-1}$$

$$(k) \quad y = e^{2x}$$

Sol:
$$y' = 2e^{2x}$$

(1)
$$y = 2^{5x}$$

Sol:
$$y' = 5 \cdot 32^x \log(2)$$

(m)
$$y = 8^{3x^2 - 1}$$

Sol:
$$y' = 9 \cdot 2^{9x^2 - 2} x \log(2)$$

(n)
$$y = a^x x^a$$

Sol:
$$y' = a^x x^{a-1} (a + x \log(a))$$

$$(\tilde{\mathbf{n}}) \quad y = e^{\sqrt{x}}$$

Sol:
$$y' = \frac{e^{\sqrt{x}}}{2\sqrt{x}}$$

(o)
$$y = \frac{\log(2x-1)}{\log(10)}$$

Sol:
$$y' = \frac{2}{(2x-1)\log(10)}$$

$$(p) \quad y = \log(x+3)$$

Sol:
$$y' = \frac{1}{x+3}$$

$$(a) \quad y = \log\left(3x^2 - 7\right)$$

Sol:
$$y' = \frac{6x}{3x^2 - 7}$$

(b)
$$y = \log\left(\left(x - 2\right)^2\right)$$

Sol:
$$y' = \frac{2}{x-2}$$

(c)
$$y = \frac{\log(x^2 - 2x)}{\log(10)}$$

Sol:
$$y' = \frac{2(x-1)}{x(x-2)\log(10)}$$

(d)
$$y = \frac{\log(2x^3 + 3x^2)}{\log(2)}$$

Sol:
$$y' = \frac{6(x+1)}{x(2x+3)\log(2)}$$

(e)
$$y = \sqrt{\log(x)}$$

Sol:
$$y' = \frac{1}{2x\sqrt{\log(x)}}$$

(f)
$$y = \frac{\log(x)}{x}$$

Sol:
$$y' = \frac{1 - \log(x)}{x^2}$$

(g)
$$y = \log\left(\frac{1-x}{x+1}\right)$$

Sol:
$$y' = \frac{2}{x^2 - 1}$$

$$(h) \quad y = \log\left(x^{\frac{3}{4}}\right)$$

Sol:
$$y' = \frac{3}{4x}$$

(i)
$$y = \frac{\log(2x+1)}{\log(4)}$$

Sol:
$$y' = \frac{1}{(2x+1)\log(2)}$$

$$(\mathbf{j}) \quad y = \log\left(\frac{e^x}{e^x - 1}\right)$$

Sol:
$$y' = \frac{1}{1 - e^x}$$

$$(k) \quad y = \frac{1 - \log(x)}{\log(x) + 1}$$

Sol:
$$y' = -\frac{2}{x(\log(x)+1)^2}$$

(l)
$$y = \frac{e^x}{x-1}$$

Sol:
$$y' = \frac{(x-2)e^x}{x^2 - 2x + 1}$$