Departamento de Matemática da Universidade de Aveiro

Cálculo II - agr. 4

2013/14

exame final Duração: 2h30

• Todos os raciocínios devem ser convenientemente justificados e todas as respostas devem ser cuidadosamente redigidas. O formulário de transformadas de Laplace encontra-se no verso.

- 1. Classifica e resolve a equação diferencial ordinária $(1 + e^x)yy' = e^x$.
- 2. Considera o seguinte PVI: y'' + y' = t, y(0) = 0, y'(0) = 1.
 - (a) Resolve-o começando por resolver a respetiva EDO pelo método dos coeficientes indeterminados.
 - (b) Resolve-o através do uso de transformadas de Laplace.
- 3. Estuda a natureza (divergência, convergência simples ou convergência absoluta) das seguintes séries numéricas:

(a)
$$\sum_{n=2}^{\infty} \frac{1+\sqrt{n}}{n^2-n}$$
; (b) $\sum_{n=1}^{\infty} \left(\frac{1}{n} - e^{-n^2}\right)$.

4. Obtém uma representação em série de potências para a função f real de variável real x definida por $f(x) = \int_0^x e^{-t^2} dt$.

[<u>Informação</u>: Podes raciocinar a partir de uma representação em série de potências para a função exponencial natural que já conheças.]

5. Sabendo que a série de Fourier de $g(x)=x,\ x\in[-\pi,\pi]$, é $\sum_{n=1}^{\infty}\frac{2}{n}(-1)^{n+1}\sin(nx)$, determina a série de Fourier de $f(x)=x\sin x,\ x\in[-\pi,\pi]$.

 $[\underline{\text{Sugest\~ao}}:$ No cálculo dos coeficientes de Fourier, tira partido das fórmulas trigonométricas

$$2\sin a \sin b = \cos(a-b) - \cos(a+b), \quad 2\sin a \cos b = \sin(a-b) + \sin(a+b).$$

- 6. Considera uma série de potências $\sum_{n=0}^{\infty} a_n(x-c)^n$.
 - (a) Define raio de convergência, intervalo de convergência e domínio de convergência de uma tal série.
 - (b) Mostra que se todos os coeficientes a_n forem diferentes de zero e se existir $\lim_{n\to\infty} \frac{|a_n|}{|a_{n+1}|}$ então o raio de convergência daquela série é igual ao valor desse limite.

Cotação:

1. 2; 2. 6; 3. 4; 4. 3; 5. 2; 6. 3.

Universidade de Aveiro Departamento de Matemática

CÁLCULO II - Agrupamento 4 - 2013/14

Formulário (Transformada de Laplace)

$$F(s) = \mathcal{L}\lbrace f(t)\rbrace(s), \quad s > s_f; \qquad G(s) = \mathcal{L}\lbrace g(t)\rbrace(s), \quad s > s_g$$

função	transformada
$t^n \ (n \in \mathbb{N}_0)$	$\frac{n!}{s^{n+1}}, \ s > 0$
$e^{at} \ (a \in \mathbb{R})$	$\frac{1}{s-a}$, $s>a$
$\operatorname{sen}(at) \ (a \in \mathbb{R})$	$\frac{a}{s^2 + a^2}, \ s > 0$
$\cos(at) \ (a \in \mathbb{R})$	$\frac{s}{s^2 + a^2}, \ s > 0$
$senh(at) \ (a \in \mathbb{R})$	$\frac{a}{s^2 - a^2}, \ s > a $
$\cosh(at) \ (a \in \mathbb{R})$	$\frac{s}{s^2 - a^2}, \ s > a $
f(t) + g(t)	$F(s) + G(s), \ s > s_f, s_g$
$\alpha f(t) \ (\alpha \in \mathbb{R})$	$\alpha F(s), \ s > s_f$
$e^{\lambda t} f(t) \ (\lambda \in \mathbb{R})$	$F(s-\lambda), s > s_f + \lambda$
$H_a(t)f(t-a) (a>0)$	$e^{-as}F(s), s > s_f$
$f(at) \ (a>0)$	$\frac{1}{a} F\left(\frac{s}{a}\right), \ s > a s_f$
$t^n f(t) \ (n \in \mathbb{N})$	$(-1)^n F^{(n)}(s)$, $s > $ ordem exp. de f
f'(t)	s F(s) - f(0), $s > $ ordem exp. de f
f''(t)	$s^2F(s)-sf(0)-f'(0)$, $s>$ ordens exp. de f,f'
$f^{(n)}(t) \ (n \in \mathbb{N})$	$s^n F(s) - \sum_{k=1}^n s^{n-k} f^{(k-1)}(0)$, onde $f^{(0)} \equiv f$,
	$s > $ ordens exp. de $f, f', \dots, f^{(n-1)}$

Nota: O facto de se indicarem restrições numa dada linha do quadro acima não significa que não haja restrições adicionais a considerar para que a fórmula indicada nessa linha seja válida.