Package 'SpectroX'

January 10, 2018

Type Package
Title Proteotypic peptide selection and SRM/PRM/HRM panel creation
Version 2.0
Author Erik Ahrne
Maintainer Erik Ahrne <erik.ahrne@unibas.ch></erik.ahrne@unibas.ch>
Description Select proteptypic peptides based on full proteom analysis MaxQuant 1.6 search results or create SRM/PRM/HRM panel/library from MaxQuant 1.6 search results.
License GPL-3
Encoding UTF-8
LazyData true
Suggests testthat
RoxygenNote 6.0.1
R topics documented:

barplotPeptidesPerProtein	2
barplotPetideCountPerProtein	2
createComplementaryIsotopeLibrary	3
	4
createSpectralLibrary	4
digestProteome	5
getCMDLineOptions	6
getEmpiricalIRT	7
getFragmentSequence	8
getIRTModel	8
getPeptides	9
getPTMColors	0
getSearchedModifications	1
getUserOptions	2
parseMaxQuantMSMS	2
parseRange	4
parseTargetsFile	4
plotIRTCalibration	
proteotypicPeptideExport	
skylineExport	
spectroDiveExport	
spectronautExport	8

Index 19

```
barplotPeptidesPerProtein
```

plot ranking metric vs peptide (per protein) barplot

Description

plot ranking metric vs peptide (per protein) barplot

Usage

```
barplotPeptidesPerProtein(df, pepLenTrunc = 12, pepLabCex = 0.7,
  rankingMetric = "rankingMetric", ptmCol = getPTMColors(levels(df$ptm)),
  ...)
```

Arguments

df data.frame

 $pepLenTrunc \qquad integer\ AFADAMEVIPSTLAENAGLNPISTVTELR -> AFADAMEVIPSTLAE..$

pepLabCex default 0.7 rankingMetric character

ptmCol data.frame row.names: ptm col:col

Note

No note

References

NA

Examples

```
print("No examples")
```

barplotPetideCountPerProtein

plot peptide count per protein

Description

plot peptide count per protein

```
barplotPetideCountPerProtein(spectralLibrary, protLabCex = 0.9,
  acLenTrunc = 12, col = "blue", ...)
```

Arguments

spectralLibrary

data.frame

protLabCex default 0.9

acLenTrunc integer default 12 "SOMEVERYLONGAC" -> "SOMEVERY.."

Note

No note

References

NA

Examples

```
print("No examples")
```

createComplementaryIsotopeLibrary

Create complementary isotope (Arg, Lys H/L) spectral library

Description

Create complementary isotope (Arg, Lys H/L) spectral library

Usage

createComplementaryIsotopeLibrary(sl)

Arguments

sl tibble or data frame

Details

No details

Value

data.frame

Note

No note

References

NA

```
print("No examples")
```

createLibrarySpectrum Parse spectrum framgment match information listed in MaxQuant 'Identifications' results

Description

Parse spectrum framgment match information listed in MaxQuant 'Identifications' results

Usage

```
createLibrarySpectrum(psm)
```

Arguments

psm

a row of MaxQuant 'Identifications' data.frame

Details

No details

Value

list with attributes intensity, ionType, charge, mz, isNL

Note

No note

References

NA

Examples

```
print("No examples")
```

createSpectralLibrary Create Spectral Library

Description

Create Spectral Library

```
createSpectralLibrary(tb, minFragNb = 3, minNbTransitions = 5,
  maxNbTransitions = 5, minBasePeakFraction = 0, ionTypeFilter = c("a",
  "b", "x", "y"), includeNL = T, rankingMetric = "adjustedIntensitySum")
```

digestProteome 5

Arguments

tb tibble maxQuant spectrum level search results

minFragNb min frag number default 3 (i.e. b3 and y3 will be kept)

minNbTransitions

minimum number of fragments

minBasePeakFraction

minimum intusity fraction of base peak (most intense kept fragment)

ionTypeFilter selected ion type default a,b,x,y

includeNL include neutral loss peaks defualt TRUE

rankingMetric character. column name, used for ranking peptide, default "adjustedIntensity-

Sum", c("adjustedIntensitySum", "psmScore", "precApexIntensity")

Details

No details

Value

data.frame

Note

No note

References

NA

Examples

```
print("No examples")
```

digestProteome

Get peptide candidates per protein

Description

Get peptide candidates per protein

```
digestProteome(proteins, proteaseRegExp = "[KR](?!P)", dispProgressBar = T, peptideLengthRange = c(6, 21), nbMiscleavages = 0, exclusivePeptides = T, trimAC = T)
```

Arguments

TRUE/FALSE default TRUE splP62258|1433E_HUMAN -> P62258

Value

data.frame peptide,protein

Note

No note

trimAC

References

NA

Examples

```
print("No examples")
```

getCMDLineOptions

Define and User Specified Command Line Options

Description

Define and User Specified Command Line Options

Usage

```
getCMDLineOptions(version = version)
```

Arguments

version SpectroX version number

Details

No details

Value

list() cmd line options

getEmpiricalIRT 7

Note

No note

References

NA

Examples

```
print("No examples")
```

 ${\tt getEmpiricalIRT}$

Add iRT metric to data.frame

Description

Add iRT metric to data.frame

Usage

```
getEmpiricalIRT(tb, fit)
```

Arguments

tb tibble containing colum labelled "Retention time"

fit lm object

Details

No details

Value

vector of normalised rt (empirical irt)

Note

No note

References

Using iRT, a normalized retention time for more targeted measurement of peptides, Escher et al. (2012), http://www.ncbi.nlm.nih.gov/pubmed/22577012

```
print("No examples")
```

8 getIRTModel

getFragmentSequence

Get Fragment Sub Sequnece

Description

Get Fragment Sub Sequnece

Usage

```
getFragmentSequence(peptide = peptide, ionType = ionType,
    fragmentNb = fragmentNb)
```

Arguments

peptide character string ionType c("a","b","x","y")

fragmentNb integer

Details

No details

Value

character string

Note

No note

References

NA

Examples

```
print("No examples")
```

getIRTModel

Get linear model predicting iRT as a function retention time (column name "rt")

Description

Get linear model predicting iRT as a function retention time (column name "rt")

```
getIRTModel(tb)
```

getPeptides 9

Arguments

tb

tibble including column "Retention time" and "Sequence"

Details

Uses Robust Linear Regression. Retention times of at least 3 iRT unique peptides needs to be listed in the input tibble

Value

list including fit rlm object, data.frame peptide,rt,irtRef

Note

No note

References

Using iRT, a normalized retention time for more targeted measurement of peptides, Escher et al. (2012), http://www.ncbi.nlm.nih.gov/pubmed/22577012

Examples

```
print("No examples")
```

getPeptides

Get Mz Shift of complementary peptide/fragment ion

Description

Get Mz Shift of complementary peptide/fragment ion

Usage

```
getPeptides(proteinSeq, proteaseRegExp = "[KR](?!P)", nbMiscleavages = 0)
```

Arguments

proteinSeq protein sequence

proteaseRegExp protease Regular Expression

 ${\tt nbMiscleavages} \ \ {\tt default} \ 0$

aaSeq character string

charge default 1 isHeavy c(T,F)

annotSpectrum Annotated Spectrum object

10 getPTMColors

Details

Calculate mass shift of complimentary spectrum.

```
• PETIDEK (light) -> 8.014199
```

- PETIDEK (heavy) -> -8.014199
- PETIDER (light) -> 10.008269
- PETIDER (heavy) -> -10.008269

No details

No details

Value

```
numeric
```

annotSpectrum Annotated Spectrum object vector of peptides

Note

No note

No note

No note

References

NA

NA

Examples

```
print("No examples")
Created complimentary Heavy/Light annotated spectrum with updates precursor and fragment m/z values.
print("No examples")
Digest protein
print("No examples")
```

getPTMColors

assign colors to ptms

Description

assign colors to ptms

Usage

getPTMColors(ptms)

Arguments

ptms

vector

Value

data.frame

Note

No note

References

NA

Examples

```
print("No examples")
```

getSearchedModifications

Get list of variable modifiections condsidered by MaxQuant

Description

Get list of variable modifiections condsidered by MaxQuant

Usage

```
getSearchedModifications(tb, ignoreArgLysIsoLabel = T)
```

Arguments

```
ignoreArgLysIsoLabel
default T Do not consider Arg Lys C,N heavy isotope label
df tible or data.frame
```

Details

No details

Value

character vector of modification names (does not return "Arg10", "Lys8" labels)

Note

No note

References

NA

```
print("No examples")
```

getUserOptions

check and return User Specified Command Line Options

Description

check and return User Specified Command Line Options

Usage

```
getUserOptions(cmdlineOptions)
```

Arguments

list()

command line options

Details

No details

Value

list() user options

Note

No note

References

NA

Examples

```
print("No examples")
```

 ${\tt parseMaxQuantMSMS}$

Parse MaxQuant msms.txt

Description

Parse MaxQuant msms.txt

```
parseMaxQuantMSMS(file, pepCutoff = 0.05, targetPeptides = NA,
  targetProteins = NA, filterContaminants = T,
  contaminantRegExp = "^CON_", selectedPTMRegExp = NA,
  filterNonExclusivePeptides = T, pepLength = c(1, Inf),
  chargeState = c(1, Inf), label = NA, maxMissedCleavages = 0,
  keepBestSpectrumOnly = T, requiredPepSeqRegExp = ".", ...)
```

parseMaxQuantMSMS

13

Arguments

file path

pepCutoff numeric default 0.05

targetPeptides character default NA

targetProteins character default NA

 ${\tt filterContaminants}$

TRUE

 ${\tt contaminantRegExp}$

'^CON_'

selectedPTMRegExp

NA

 ${\tt filterNonExclusivePeptides}$

default TRUE

 $\begin{array}{ll} \text{pepLength} & \text{default} \ [1,Inf) \\ \\ \text{chargeState} & \text{default} \ [1,Inf) \\ \end{array}$

label (Arg10 and Lys8 only filter) options NA (deafault,no filter), 'light', 'heavy'

keepBestSpectrumOnly

keep top-scoring spectrum only, per peptidoform, default TRUE

requiredSequenceRegExp

dafualt '.' (no filter)

Details

No details

Value

data.frame of maxQuant psm level results

Note

No note

References

NA

```
print("No examples")
```

14 parseTargetsFile

parseRange

Parse range in format 2:4 and return integer vector. In this case 2,3,4

Description

Parse range in format 2:4 and return integer vector. Inthis case 2,3,4

Usage

```
parseRange(rangeStr)
```

Arguments

```
rangeStr e.g. '2:4'
```

Details

No details

Value

vectot of integers

Note

No note

References

NA

Examples

```
print("No examples")
```

parseTargetsFile

Parse list of target peptides/proteins

Description

Parse list of target peptides/proteins

Usage

```
parseTargetsFile(file)
```

Arguments

file

path

plotIRTCalibration 15

Details

No details

Value

list() peptides, proteins

Note

No note

References

NA

Examples

```
print("No examples")
```

plotIRTCalibration

Plot IRT calibration curve

Description

Plot IRT calibration curve

Usage

```
plotIRTCalibration(irtModel, cex = 1.5, col = "blue", pch = 19, ...)
```

Arguments

irtModel list

Details

No details

Note

No note

References

NA

```
print("No examples")
```

proteotypicPeptideExport

Export top X peptide per protein (ordered by 'adjustedIntensitySum') and add theoretical peptides ranked by length if fewer than X peptides were identified by MaxQuant

Description

Export top X peptide per protein (ordered by 'adjustedIntensitySum') and add theoretical peptides ranked by length if fewer than X peptides were identified by MaxQuant

Usage

```
proteotypicPeptideExport(spectralLibrary, theoPeptides = NA,
  targetProteins = unique(spectralLibrary$protein),
  nbPeptidesPerProtein = 5, outFile = paste0(tempdir(), "/tmp.xls"))
```

Arguments

```
spectralLibrary
```

tibble

theoPeptides data.frame 'peptide' 'protein' 'length'

targetProteins list of protein accesion numbers e.g. P62258. default all proteins in spectralLi-

brary

nbPeptidesPerProtein

number of peptides per protein to be exported

outFile path to output file defult tmp.xls in tmp dir

Note

No note

References

NA

```
print("No examples")
```

skylineExport 17

skylineExport

Write skyline compatible xls file

Description

Write skyline compatible xls file

Usage

```
skylineExport(sl, file)
```

Arguments

sl

tibble or data frame

Details

No details

Note

No note

References

NA

Examples

```
print("No examples")
```

spectroDiveExport

Write SpectroDive compatible xls file

Description

Write SpectroDive compatible xls file

Usage

```
spectroDiveExport(sl, file)
```

Arguments

sl

tibble or data frame

Details

No details

18 spectronautExport

Note

No note

References

NA

Examples

```
print("No examples")
```

spectronautExport

Write Spectronaut compatible xls file

Description

Write Spectronaut compatible xls file

Usage

```
spectronautExport(sl, file)
```

Arguments

sl

tibble or data frame

Details

No details

Note

No note

References

NA

```
print("No examples")
```

Index

```
barplotPeptidesPerProtein, 2
{\tt barplotPetideCountPerProtein, 2}
createComplementaryIsotopeLibrary, 3
createLibrarySpectrum, 4
createSpectralLibrary, 4
{\tt digestProteome}, {\tt 5}
getCMDLineOptions, 6
getEmpiricalIRT, 7
getFragmentSequence, 8
getIRTModel, 8
getPeptides, 9
{\tt getPTMColors}, \textcolor{red}{10}
getSearchedModifications, 11
{\tt getUserOptions}, \\ 12
parseMaxQuantMSMS, 12
parseRange, 14
parseTargetsFile, 14
plotIRTCalibration, 15
proteotypicPeptideExport, 16
skylineExport, 17
spectroDiveExport, 17
spectronautExport, 18
```