You have a pile of n stones that you want to split into multiple piles, as well as a set, S, of m distinct integers. We define a move as follows:

- First, choose a pile of stones. Let's say that the chosen pile contains y stones.
- ullet Next, look for some $oldsymbol{x} \in oldsymbol{S}$ such that $oldsymbol{x}
 eq oldsymbol{y}$ and $oldsymbol{y}$ is divisible by $oldsymbol{x}$ (i.e., $oldsymbol{x}$ is a factor of $oldsymbol{y}$); if such an \boldsymbol{x} exists, you can split the pile into $\frac{\boldsymbol{y}}{\boldsymbol{x}}$ equal smaller piles.

You are given q queries where each query consists of n and S. For each query, calculate the maximum possible number of moves you can perform and print it on a new line.

Input Format

The first line contains an integer, q, denoting the number of queries. The $2 \cdot q$ subsequent lines describe each query in the following format:

- 1. The first line contains two space-separated integers describing the respective values of n (the size of the initial pile in the query) and m (the size of the set in the query).
- 2. The second line contains m distinct space-separated integers describing the values in set S.

Constraints

- $1 \le q \le 10$

- $1 \le n \le 10^{12}$ $1 \le m \le 1000$ $1 \le s_i \le 10^{12}$

Subtask

• $1 \le m \le 10$ for 30% of the maximum score.

Output Format

For each query, calculate the maximum possible number of moves you can perform and print it on a new line.

Sample Input 0

12 3 2 3 4

Sample Output 0

4

Explanation 0

Initially there is a pile with **12** stones:

You can make a maximal 4 moves, described below:

• Select x=4 from S and split it into $\frac{12}{4}=3$ equal piles of size 4 to get:

• Select x=2 from S and split a pile of size 4 into $\frac{4}{2}=2$ equal piles of size 2 to get:

• Repeat the previous move again on another pile of size 4 to get:

• Repeat the move again on the last pile of size 4 to get:

As there are no more available moves, we print 4 (the number of moves) on a new line.