Istruzioni Macchina Esercizi

Corso di Architettura degli elaboratori e laboratorio Modulo Laboratorio

Gabriella Verga

- 1. Data la lista [10,20,12,12,5,1,5,1] contare tutti i numeri diversi da 1 e 10.
- 2. Data la lista [30,10,23,1,17,8,19,10] sommare tutti i numeri compresi tra 10 e 20.
- 3. Data la lista [1,2,3,4,5,6,7,8,9,10,11,12,13] contare tutti i numeri minori di 5, pari a 5 e maggiori di 5.

4. Date le due stringhe T: «Ciao Carla!!» e P: «Ciao» di carattere ASCII, verificare se P è una sottostringa di T e trovare l'indice della prima occorrenza di T.

```
for i \leftarrow 0 to n-m do j \leftarrow 0 while j < m and P[j] = T[i+j] do j \leftarrow j+1 if j = m return i return -1
```

- TSTRING DCB 0x43, 0x49, 0x41, 0x4F, 0x20, 0x43, 0x41, 0x52, 0x4C, 0x41, 0x21, 0x21
- SUBSTR DCB 0x41, 0x49, 0x41, 0x4F https://www.rapidtables.com/convert/number/ascii-to-hex.html

Esempio 5

5. Data la sequenza di numeri 1,2,3,4,5,6,7,8 :

[-16]

[20]

- 1. sommare i numeri di posizione pari.
- 2. sottrarre i numeri in posizione dispari
- 3. salvare i due risultati in memoria
- 6. Moltiplicare i numeri 9,3
- 7. Eseguire la divisione 231 / 13 e salvare il risultato e il resto
- 8. Data la lista [-10,4,23,50,0,40,10,7] trovare il minimo e salvare il risultato in memoria.
- 9. Data la lista [-10,4,23,50,0,40,10,7] sommare i numeri pari e salvare il risultato in memoria.

Algebra Booleana

Dati tre ingressi x, y, z realizzare un circuito che fornisca in uscita tre segnali A è vera se almeno uno degli ingressi è vero B è vera se esattamente due input sono veri C è vera se tutti e tre gli input sono veri.

- 1. Determinare la tabella di verità
- 2. Determinare l'espressione SOP
- 3. Minimizzare le funzioni A, B,C
- 4. Disegnare il circuito corrispondente

Tabella di verità

X	Y	Z	A	В	С
0	0	0	0	0	0
0	0	1	1	0	0
0	1	0	1	0	0
0	1	1	1	1	0
1	0	0	1	0	0
1	0	1	1	1	0
1	1	0	1	1	0
1	1	1	1	0	1

Determinare le espressioni SOP

- $A = \neg x \neg y z + \neg x y \neg z + \neg x y z + x \neg y \neg z + x \neg y z + x y \neg z + x y z$
- $B = \neg x y z + x \neg y z + x y \neg z$
- C = x y z

Funzione Minima A

Funzione Minima B

•
$$\neg x y z + x \neg y z + x y \neg z$$

Circuito di A

Circuito di B

• Determinare forme SOP di costo minimo delle due funzioni a tre variabili in ingresso riportate in tabella. Determinare il valore opportuno delle condizioni di indifferenza.

X1	X2	X3	F1	F2
0	0	0	X	0
0	0	1	1	1
0	1	0	0	1
0	1	1	1	X
1	0	0	X	X
1	0	1	0	X
1	1	0	1	1
1	1	1	1	0

• Espressione di costo minimo è: $f_1 = x_1x_2 + \neg x_1x_3$

x y z	00	01	11	10
0	0	1	1	X
1	1	X	0	X

- Espressione di costo minimo è: $f_2 = x_2 x_3 + -x_2 x_3$
- Un'altra espressione di costo minimo è: $f_2 = x_2 x_3 + -x_1 x_3$

- Data l'equazione:
- $(AB) + (\neg BC)$
- disegnare il circuito corrispondente

Circuito

- Data l'equazione:
- \neg ((AB) + (¬BC))
- disegnare il circuito corrispondente

Circuito

Fine

Corso di Architettura degli elaboratori e laboratorio

Modulo Laboratorio

Gabriella Verga