

ACADEMICS

MATEMÁTICA III

8

Jhonatan Jose Acalón Ajanel

Mostrar una página cada vez

Finalizar revisión

← Back to course

Comenzado el

viernes, 7 de julio de 2023, 19:16

Estado

Finalizado

Finalizado en

viernes, 7 de julio de 2023, 20:21

Tiempo empleado

1 hora 5 minutos

Calificación

10,00 de 10,00 (**100**%)

Correcta

Se puntúa 1,00 sobre 1,00

Resuelva la siguiente integral y encuentre su resultado numérico

$$\int_{4}^{6} (3-6x)^2 dx$$

El cuadrado del binomio desarrollado que de la siguiente forma $\int_4^6 = (9-36*x+36*x^2)dx$

Una posible respuesta correcta sería: (9 - 36*x + 6*6*x^2)dx

Al resolver la integral queda $f(x) = 9*x-18*x^2+12*x^3$

Una posible respuesta correcta sería: $9*x - 6*3*x^2 + 6*6/3*x^3$

El resultado numérico de la integral definida queda: 1482

Una posible respuesta correcta sería: 1482

Correcta

Se puntúa 1,00 sobre 1,00

Resuelva la siguiente integral, debe dejar constancia paso a paso de como la fue resolviendo

$$\int (x+\sqrt{x})dx$$

Nota: Para indicar la constante, escriba C mayúscula. También debe de dejar separada la "dx"

2: Si le quedara en la respuesta final un exponente con fracción impropia, no la simplifica. Pej. $x^{3/2}$ así se queda.

Paso 1: Pasando a forma exponencial

$$\int (x+\sqrt{x})dx = \int (x+x^{(1/2)})dx$$

~

Una posible respuesta correcta sería: $(x + x^0.5)dx$

Paso 2:Aplicando las reglas de derivada:

$$\int x dx + \int x^{1/2} dx$$

Una posible respuesta correcta sería: x dx, x^(1/2)dx

Una posible respuesta correcta sería: $x^2/2 + x^3/2/(3/2) + C$

La respuesta final queda (1/2)*x^2+(2/3)*x^(3/2)

Una posible respuesta correcta sería: $x^2/2 + 2/3*x^3/2) + C$

Correcta

Se puntúa 1,00 sobre 1,00

Resuelva la siguiente integral, debe dejar costancia paso a paso de como la fue $\ resolviendo$ $\int{(2x^2+6x)dx}$

Nota: Para indicar la constante, escriba C mayúscula. También debe de dejar separada la "dx"

La integral quedaría $f(x) = (2/3)*x^3+3*x^2 + C$

Una posible respuesta correcta sería: 2*x^3/3 + 6*x^2/2 + C

Correcta

Se puntúa 1,00 sobre 1,00

Resuelva la siguiente integral y encuentre su resultado numérico

$$\int_{1}^{3} x(4+3x)^{2} dx$$

Resolviendo las operaciones indicadas, queda de la siguiente forma $\int_1^3 = (16*x+24*x^2+9*x^3)d$

Una posible respuesta correcta sería: (16*x + 24*x^2 + 3*3*x^3)dx

Al resolver la integral queda $f(x) = 8*x^2+8*x^3+(9/4)*x^4$

Una posible respuesta correcta sería: $(16/2*x^2 + 24/3*x^3 + 3*3/4*x^4)$

Al evaluar la integral con el límite superior se obtiene 1881/4

Una posible respuesta correcta sería: 470.25

Al evaluar con el límite inferior se obtiene 73/4

Una posible respuesta correcta sería: 18.25

El resultado numérico de la integral definida queda: 452

Una posible respuesta correcta sería: 452

Correcta

Se puntúa 1,00 sobre 1,00

Resuelva la siguiente integral y encuentre su resultado numérico

$$\int_2^4 (1+8x)^2 dx$$

El cuadrado del binomio desarrollado que de la siguiente forma $\int_2^4 = (1+16*x+64*x^2)dx$

Una posible respuesta correcta sería: $(1 + 16*x + 8*8*x^2)dx$

Al resolver la integral queda $f(x) = x+8*x^2+(64/3)*x^3$

Una posible respuesta correcta sería: $1*x + 8*1*x^2 + 8*8/3*x^3$

El resultado numérico de la integral definida queda: 3878/3

Una posible respuesta correcta sería: 1292.666666667

Respuesta correcta

PREGUNTA 6

Correcta

Se puntúa 1,00 sobre 1,00

Resuelva la siguiente integral, debe dejar constancia paso a paso de como la fue resolviendo

$$\int 6x^3 dx$$

Nota: Para indicar la constante, escriba C mayúscula

La integral queda

$$f(x) = (3/2)*x^4 + C$$

Una posible respuesta correcta sería: 1.5*x^4 + C

Correcta

Se puntúa 1,00 sobre 1,00

Resuelva la siguiente integral, debe dejar costancia paso a paso de como la fue resolviendo

$$\int (x-3)^2 dx$$

Nota: Para indicar la constante, escriba C mayúscula. También debe de dejar separada la "dx".

Por ejemplo en donde quede xdx, debe dejar espacio x dx

En la respuesta final, debe escribir + C mayúscula

Paso 1: desarrollar el cuadrado del binomio, recuerde escribir el "dx", debe dejar una separación con espacio entre las operaciones y los paréntesis si los utilizó.

$$\int (x-3)^2 dx = \int (x^2-6x+9) dx$$

~

Una posible respuesta correcta sería: $(x^2 - 6x + 9) dx$

Paso 2: Aplicando las reglas de derivada. Recuerde colocar signos donde corresponda.

Al resolver la integral queda f(x) (1/3)*x^3-3*x^2+9*x +

~

Una posible respuesta correcta sería: $1/3x^3 - 3*x^2 + 9*x + C$

Correcta

Se puntúa 1,00 sobre 1,00

Resuelva la siguiente integral, debe dejar costancia paso a paso de como la fue resolviendo $\int x^9 dx$

Nota: Para indicar la constante, escriba C mayúscula

La integral queda $f(x) =: (1/10)*x^10 + C$

Una posible respuesta correcta sería: $x^{(9+1)/(9+1)} + C$

Respuesta correcta

PREGUNTA 9

Correcta

Se puntúa 1,00 sobre 1,00

Resuelva la siguiente integral y encuentre su resultado numérico

 $(\int_{2}^{3}{(1 + 2x)dx})$

La integral queda de la siguiente forma $f(x) = x+x^2$

Una posible respuesta correcta sería: 1*x + 1*x^2

El resultado numérico de la integral definida es: 6

Una posible respuesta correcta sería: 6

Correcta

Se puntúa 1,00 sobre 1,00

Resuelva la siguiente integral y encuentre su resultado numérico

 $\int \int_{-2}^{0}{(3 + 3x)^2dx}$

El cuadrado del binomio desarrollado que de la siguiente forma $(\int_{-2}^{0}) = (9+18*x+9*x^2) dx$

Una posible respuesta correcta sería: (9 + 18*x + 3*3*x^2)dx

Al resolver la integral queda $f(x) = 9*x+9*x^2+3*x^3$

Una posible respuesta correcta sería: $9*x + 3*3*x^2 + 3*3/3*x^3$

Al evaluar la integral con el límite superior se obtiene 0

Una posible respuesta correcta sería: 0

Al evaluar con el límite inferior se obtiene -6

Una posible respuesta correcta sería: -6

El resultado numérico de la integral definida queda: 6

Una posible respuesta correcta sería: 6

Respuesta correcta

← Back to course

www.kinal.edu.gt

Copyright ${\hbox{$\mathbb C$}}$ 2022 Fundación Kinal todos los derechos reservados.