US005552281A

United States Patent [19]

Stashenko et al.

[11] Patent Number:

5,552,281

[45] Date of Patent:

Sep. 3, 1996

[54] HUMAN OSTEOCLAST-SPECIFIC AND -RELATED GENES

[75] Inventors: Philip Stashenko, Norfolk; Yi-Ping Li,

Boston; Anne L. Wucherpfennig,

Brookline, all of Mass.

[73] Assignee: Forsyth Dental Infirmary for

Children, Boston, Mass.

[21] Appl. No.: 392,678

[22] Filed: Feb. 23, 1995

Related U.S. Application Data

[63] Continuation of Ser. No. 45,270, Apr. 6, 1993, abandoned.

[56] References Cited

PUBLICATIONS

Blair, Harry C., et al., "Extracellular-matrix degradation at acid pH. Avian osteoclast acid collagenase isolation and characterization", *Biochemical Journal* 290(3):873-884 (15 Mar. 1993).

Tezuka, Ken-Ichi, et al., "Identification of osteopontin in isolated rabbit osteoclasts", Biochemical and Biophysical Research Communications 186(2):914-916 (31 Jul. 1992). Tezuka, Ken-Ichi, et al., "Molecular cloning of a possible cysteine proteinase predominantly expressed in osteoclasts", Journal of Biological Chemistry 269(2):1106-1108, (14 Jan. 1994).

Horton, Michael A. et al., "Monoclonal Antibodies to Osteoclastomas (Giant Cell Bone Tumors): Definition of Osteoclast-specific Cellular Antigens," Cancer Research 45, 5663-5669 (Nov. 1985). Davies, John et al., "The Osteoclast Functional Antigen, Implicated in the Regulation of Bone Resorption, Is Biochemically Related to the Vitronectin Receptor," The Journal of Cell Biology 109, 1817-1826 (Oct. 1989).

Hayman, Alison, R. et al., "Purification and characterization of a tartrate-resistant acid phosphatase from human osteo-clastomas," *Biochem. J.* 261, 601-609 (1989).

Sandberg, M. et al., "Localization of the Expression of Types I, III, and IV Collagen, TGF-\$\beta\$1 and c-fos Genes in Developing Human Calvarial Bones," Developmental Biology 130, 324-334 (1988).

Sandberg, M. et al., "Enhanced expression of TGF-β and c-fos mRNAs in the growth plates of developing human long bones," *Development* 102, 461-470 (1988).

Ek-Rylander, Barbro et al., "Cloning, Sequence, and Developmental Expression of a Type 5, Tartrate-resistant, Acid Phoshatase of Rat Bone," The Journal of Biological Chemistry 266(36), 24684-24689 (Dec. 25, 1991).

GenBank/EMBL Sequence Search Printout, pp. 1-19 (Jun. 24, 1993).

Primary Examiner—W. Gary Jones
Assistant Examiner—Paul B. Tran
Attorney, Agent, or Firm—Hamilton, Brook, Smith & Reynolds, P.C.

[57] ABSTRACT

The present invention relates to purified DNA sequences encoding all or a portion of an osteoclast-specific or -related gene products and a method for identifying such sequences. The invention also relates to antibodies directed against an osteoclast-specific or -related gene product. Also claimed are DNA constructs capable of replicating DNA encoding all or a portion of an osteoclast-specific or -related gene product, and DNA constructs capable of directing expression in a host cell of an osteoclast-specific or -related gene product.

5 Claims, 1 Drawing Sheet

1	MANAGERET MEDITEMENA TOMORTICIO MEDITECCTO MECTANOSE TECNMONET
41	BODGTOCKET TYTECTECCE COMMONOUS COMPTENED CITEDRATES PRETERMEN
121	CETHICANCE ANTERIORI MEMORINATI ORENCHIDA THEFICIAET BETATIGHTA
383	CPCLDONGLA GONTHOTOC GARNESIEC GENVICATA SENECIATAL LACINELLES
344	COMPRISOR CALLEGEAR GEORGICUS LEVOLLOCY MICHERIOL LAWRENCEN
301	DODINGECO CONNECTION RECORDERE SOURCES CONFERMENT CONFERMENT
361	CHAPTOLOGY CHICKONGS POLICIATED BLITCHANG SECTIONAL SETTINGS
421	SECURICATE SACINGDOCA LACCALACAC CLACACHEL ASSASSINGA AFRONCACA
481	ENCTROUGH (RECHRESCO OCCURSION MACAZOTTE EXPERIENCE EXPERIENCE
341	DESCRIPTION SECURITION REDIGIOUS SECURITION CONTROL CO
404	PRODUCED STREETS ACCOUNTS DESCRIPTOR SASTESSES COLUMNS
461	CONTROL BUTTERS CONTROL CONTROL CONTROL CONTROL AND CONTROL AND CONTROL CONTRO
721	CARTESIAN GRANCHES ACCIDENT CONTRACTOR CONTRACTOR ACCIDENT
761	CHARGE PARTICULAR PERCHANGE CONCRACATE MARCHET CHARGOLIS
	ENDERTH ACCOUNTS SCHOOL PARTIES AND STREET, STREET,
841	CONCURS STREET, STREET
961	CHECKETHER STEAMERS ACTIONS ASSESSED SECTION OF THE SECTION
1871	
6963	
1111	

2764	
1331	
136	
8441	
150	

262	
161	
374	
fac.	
100	
192	
194	
284	
310	
114	
223	
534	HACTION PROPERTY ASSESSED MANAGEM STREET, THE
	•

```
1 AGACACCTCT GCCCTCACCA TGAGCCTCTG GCAGCCCCTG GTCCTGGTGC TCCTGGTGCT
      GGGCTGCTGC TTTGCTGCCC CCAGACAGCG CCAGTCCACC CTTGTGCTCT TCCCTGGAGA
121 CCTGAGAACC AATCTCACCG ACAGGCAGCT GGCAGAGGAA TACCTGTACC GCTATGGTTA
181 CACTCGGGTG GCAGAGATGC GTGGAGAGTC GAAATCTCTG GGGCCTGCGC TGCTGCTTCT
      CCAGAAGCAA CTGTCCCTGC CCGAGACCGG TGAGCTGGAT AGCGCCACGC TGAAGGCCAT
241
      GCGAACCCCA CGGTGCGGG TCCCAGACCT GGGCAGATTC CAAACCTTTG AGGGCGACCT
301
      CAAGTGGCAC CACCACAACA TCACCTATTG GATCCAAAAC TACTCGGAAG ACTTGCCGCG
      GGCGGTGATT GACGACGCCT TTGCCCGCGC CTTCGCACTG TGGAGCGCGG TGACGCCGCT
421
      CACCTTCACT CGCGTGTACA GCCGGGACGC AGACATCGTC ATCCAGTTTG GTGTCGCGGA
481
      GCACGGAGAC GGGTATCCCT TCGACGGGAA GGACGGGCTC CTGGCACACG CCTTTCCTCC
541
      TGGCCCCGGC ATTCAGGGAG ACGCCCATTT CGACGATGAC GAGTTGTGGT CCCTGGGCAA
601
      GGGCGTCGTG GTTCCAACTC GGTTTGGAAA CGCAGATGGC GCGGCCTGCC ACTTCCCCTT
661
      CATCTTCGAG GGCCGCTCCT ACTCTGCCTG CACCACCGAC GGTCGCTCCG ACGGGTTGCC
721
781
      CTGGTGCAGT ACCACGGCCA ACTACGACAC CGACGACCGG TTTGGCTTCT GCCCCAGCGA
      GAGACTCTAC ACCCGGGACG GCAATGCTGA TGGGAAACCC TGCCAGTTTC CATTCATCTT
841
      CCAAGGCCAA TCCTACTCCG CCTGCACCAC GGACGGTCGC TCCGACGGCT ACCGCTGGTG
901
       CGCCACCACC GCCAACTACG ACCGGGACAA GCTCTTCGGC TTCTGCCCGA CCCGAGCTGA
      CTCGACGGTG ATGGGGGGCA ACTCGGCGGG GGAGCTGTGC GTCTTCCCCT TCACTTTCCT
1021
      GGGTAAGGAG TACTCGACCT GTACCAGCGA GGGCCGCGGA GATGGGCGCC TCTGGTGCGC
1081
       TACCACCTCG AACTTTGACA GCGACAAGAA GTGGGGCTTC TGCCCGGACC AAGGATACAG
 1141
       TTTGTTCCTC GTGGCGGCGC ATGAGTTCGG CCACGCGCTG GGCTTAGATC ATTCCTCAGT
1201
       GCCGGAGGCG CTCATGTACC CTATGTACCG CTTCACTGAG GGGCCCCCCT TGCATAAGGA
 1261
       CGACGTGAAT GGCATCCGGC ACCTCTATGG TCCTCGCCCT GAACCTGAGC CACGGCCTCC
       AACCACCACC ACACCGCAGC CCACGGCTCC CCCGACGGTC TGCCCCACCG GACCCCCCAC
       TGTCCACCCC TCAGAGCGCC CCACAGCTGG CCCCACAGGT CCCCCCTCAG CTGGCCCCAC
       AGGTCCCCC ACTGCTGGCC CTTCTACGGC CACTACTGTG CCTTTGAGTC CGGTGGACGA
 1501
       TGCCTGCAAC GTGAACATCT TCGACGCCAT CGCGGAGATT GGGAACCAGC TGTATTTGTT
 1561
       CAAGGATGGG AAGTACTGGC GATTCTCTGA GGGCAGGGGG AGCCGGCCGC AGGGCCCCTT
 1621
       CCTTATCGCC GACAAGTGGC CCGCGCTGCC CCGCAAGCTG GACTCGGTCT TTGAGGAGCC
 1681
       GCTCTCCAAG AAGCTTTTCT TCTTCTCTGG GCGCCAGGTG TGGGTGTACA CAGGCGCGTC
 1741
       GGTGCTGGGC CCGAGGCGTC TGGACAAGCT GGGCCTGGGA GCCGACGTGG CCCAGGTGAC
 1801
       CGGGGCCCTC CGGAGTGGCA GGGGGAAGAT GCTGCTGTTC AGCGGGCGGC GCCTCTGGAG
 1861
       GTTCGACGTG AAGGCGCAGA TGGTGGATCC CCGGAGCGCC AGCGAGGTGG ACCGGATGTT
 1921
       CCCCGGGGTG CCTTTGGACA CGCACGACGT CTTCCAGTAC CGAGAGAAAG CCTATTTCTG
 1981
       CCAGGACCGC TTCTACTGGC GCGTGAGTTC CCGGAGTGAG TTGAACCAGG TGGACCAAGT
 2041
       GGGCTACGTG ACCTATGACA TCCTGCAGTG CCCTGAGGAC TAGGGCTCCC GTCCTGCTTT
 2101
       GCAGTGCCAT GTAAATCCCC ACTGGGACCA ACCCTGGGGA AGGAGCCAGT TTGCCGGATA
 2161
       CAAACTGGTA TTCTGTTCTG GAGGAAAGGG AGGAGTGGAG GTGGGCTGGG CCCTCTCTTC
       TCACCTTTGT TITTTGTTGG AGTGTTTCTA ATAAACTTGG ATTCTCTAAC CTTT
```

35

HUMAN OSTEOCLAST-SPECIFIC AND -RELATED GENES

RELATED APPLICATION

This application is a continuation of application Ser. No. 08/045,270 filed on Apr. 6, 1993 now abandoned.

BACKGROUND OF THE INVENTION

Excessive bone resorption by osteoclasts contributes to the pathology of many human diseases including arthritis, ostcoporosis, periodontitis, and hypercalcemia of malignancy. During resorption, osteoclasts remove both the mineral and organic components of bone (Blair, H. C., et al., J. Cell Biol. 102:1164 (1986)). The mineral phase is solubilized by acidification of the sub-osteoclastic lacuna, thus allowing dissolution of hydroxyapatite (Vaes, G., Clin. Orthop. Relat. 231:239 (1988)). However, the mechanism(s) by which type I collagen, the major structural protein of bone, is degraded remains controversial. In addition, the regulation of osteoclastic activity is only partly understood. The lack of information concerning osteoclast function is due in part to the fact that these cells are extremely difficult to isolate as pure populations in large numbers. Furthermore, 25 there are no osteoclastic cell lines available. An approach to studying ostcoclast function that permits the identification of heretofore unknown osteoclast-specific or -related genes and gene products would allow identification of genes and gene products that are involved in the resorption of bone and in 30 the regulation of osteoclastic activity. Therefore, identification of osteclast-specific or -related genes or gene products would prove useful in developing therapeutic strategies for the treatment of disorders involving aberrant bone resorption.

SUMMARY OF THE INVENTION

The present invention relates to isolated DNA sequences encoding all or a portion of osteoclast-specific or -related gene products. The present invention further relates to DNA constructs capable of replicating DNA encoding osteoclastspecific or -related gene products. In another embodiment, the invention relates to a DNA construct capable of directing expression of all or a portion of the osteoclast-specific or 45 -related gene product in a host cell.

Also encompassed by the present invention are prokaryotic or eukaryotic cells transformed or transfected with a DNA construct encoding all or a portion of an osteoclastspecific or -related gene product. According to a particular 50 embodiment, these cells are capable of replicating the DNA construct comprising the DNA encoding the osteoclastspecific or -related gene product, and, optionally, are capable of expressing the osteoclast-specific or -related gene product. Also claimed are antibodies raised against osteoclast- 55 specific or -related gene products, or portions of these gene

The present invention further embraces a method of identifying osteoclast-specific or -related DNA sequences and DNA sequences identified in this manner. In one 60 embodiment, cDNA encoding osteoclast is identified as follows: First, human giant cell tumor of the bone was used to 1) construct a cDNA library; 2) produce 32P-labelled cDNA to use as a stromal cell; ostcoclast probe, and 3) produce (by culturing) a stromal cell population lacking 65 osteoclasts. The presence of osteoclasts in the giant cell tumor was confirmed by histological staining for the ostco-

clast marker, type 5 tartrate-resistant acid phosphatase (TRAP) and with the use of monoclonal antibody reagents.

The stromal cell population lacking osteoclasts was produced by dissociating cells of a giant cell tumor, then growing and passaging the cells in tissue culture until the cell population was homogeneous and appeared fibroblastic. The cultured stromal cell population did not contain osteoclasts. The cultured stromal cells were then used to produce a stromal cell+, osteoclast- 32P-labelled cDNA probe.

The cDNA library produced from the giant cell tumor of the bone was then screened in duplicate for hybridization to the cDNA probes: one screen was performed with the giant cell tumor cDNA probe (stromal cell+, ostcoclast+), while a duplicate screen was performed using the cultured stromal cell cDNA probe (stromal cell+, osteoclast-). Hybridization to a stromal+, osteoclast+ probe, accompanied by failure to hybridize to a stromal*, osteoclast probe indicated that a clone contained nucleic acid sequences specifically expressed by osteoclasts.

In another embodiment, genomic DNA encoding osteoclast -specific or -related gene products is identified through known hybridization techniques or amplification techniques.

liment, the present invention relates to a ١n ntifying DNA encoding an osteoclast-specific otein, or gene product, by screening a cDNA genomic DNA library with a DNA probe library on . comprising one or more sequences selected from the group consisting if the DNA sequences set out in Table I (SEQ ID NOs: 1-/2). Finally, the present invention relates to an osteoclast-specific or related protein encoded by a nucleotide sequence comprising a DNA sequence selected from the group consisting of the sequences set out in Table I, or their complementary strands.

BRIEF DESCRIPTION OF FIG. 1

The FIG. 1 shows cDNA sequence (SEQ ID NO: 33) of human gelatinase B, and highlights those portions of the sequence represented by the osteoclast-specific or -related cDNA clones of the present invention.

DETAILED DESCRIPTION OF THE INVENTION

As described herein, Applicant has identified osteoclastspecific or osteoclast-related nucleic acid sequences. These sequences were identified as follows: Human giant cell tumor of the bone was used to 1) construct a cDNA library; 2) produce 32P-labelled cDNA to use as a stromal cellosteoclast+probe, and 3) produce (by culturing) a stromal cell population lacking osteoclasts. The presence of osteclasts in the giant cell tumor was confirmed by histological staining for the osteoclast marker, type 5 acid phosphatase (TRAP). In addition, monoclonal antibody reagents were used to characterize the multinucleated cells in the giant cell tumor, which cells were found to have a phenotype distinct from macrophages and consistent with osteoclasts.

The stromal cell population lacking osteoclasts was produced by dissociating cells of a giant cell tumor, then growing the cells in tissue culture for at least five passages. After five passages the cultured cell population was homogeneous and appeared fibroblastic. The cultured population contained no multinucleated cells at this point, tested negative for type 5 acid phosphatase, and tested variably alkaline phosphatase positive. That is, the cultured stromal cell population did not contain osteoclasts. The cultured stromal cells were then used to produce a stromal cell⁺, osteoclast⁻ ³²P-labelled cDNA probe.

The cDNA library produced from the giant cell tumor of the bone was then screened in duplicate for hybridization to the cDNA probes: one screen was performed with the giant 5 cell tumor cDNA probe (stromal cell*, osteroclast*), while a duplicate screen was performed using the cultured stromal cell cDNA probe (stromal cell* osteoclast*) Clones that hybridized to the giant cell tumor cDNA probe (stromal*, osteoclast*), but not to the stromal cell cDNA probe (stromal*, osteoclast*), were assumed to contain nucleic acid sequences specifically expressed by osteoclasts.

As a result of the differential screen described herein, DNA specifically expressed in osteoclast cells characterized as described herein was identified. This DNA, and equivalent DNA sequences, is referred to herein as osteoclast-specific or osteoclast-related DNA. Osteoclast-specific or -related DNA of the present invention can be obtained from sources in which it occurs in nature, can be produced recombinantly or synthesized chemically; it can be cDNA, genomic DNA, recombinantly-produced DNA or chemically-produced DNA. An equivalent DNA sequence is one which hybridizes, under standard hybridization conditions, to an osteoclast-specific or -related DNA identified as described herein or to a complement thereof.

Differential screening of a human osteoclastoma cDNA library was performed to identify genes specifically expressed in osteoclasts. Of 12,000 clones screened, 195 clones were identified which are either uniquely expressed in osteoclasts, or are osteoclast-related. These clones were further identified as osteoclast-specific, as evidenced by failure to hybridize to mRNA derived from a variety of unrelated human cell types, including epithelium, fibroblasts, lymphocytes, myelomonocytic cells, osteoblasts, and neuroblastoma cells. Of these, 32 clones contain novel cDNA sequences which were not found in the GenBank database.

A large number of cDNA clones obtained by this procedure were found to represent 92 kDa type IV collagenase 40 (gelatinase B; E.C. 3.4.24.35) as well as tartrate resistant acid phosphatase. In situ hybridization localized mRNA for gelatinase B to multinucleated giant cells in human osteoclastomas. Gelatinase B immunoreactivity was demonstrated in giant cells from 8/8 osteoclastomas, osteoclasts in normal bone, and in osteoclasts of Paget's disease by use of a polyclonal antisera raised against a synthetic gelatinase B peptide. In contrast, no immunoreactivity for 72 kDa type IV collagenase (gelatinase A; E.C. 3.4.24.24), which is the product of a separate gene, was detected in osteoclastomas or normal osteoclasts.

The present invention has utility for the production and identification of nucleic acid probes useful for identifying osteoclast-specific or -related DNA. Osteoclast-specific or -related DNA of the present invention can be used to 55 produce osteoclast-specific or -related gene products useful in the therapeutic treatment of disorders involving aberrant bone resorption. The osteoclast-specific or -related sequences are also useful for generating peptides which can then be used to produce antibodies useful for identifying 60 osteoclast-specific or -related gene products, or for altering the activity of osteoclast-specific or -related gene products. Such antibodies are referred to as osteoclast-specific antibodies. Osteoclast-specific antibodies are also useful for identifying osteoclasts. Finally, osteoclast -specific or -re- 65 lated DNA sequences of the present invention are useful in gene therapy. For example, they can be used to alter the

expression in osteoclasts of an aberrant osteoclast -specific or -related gene product or to correct aberrant expression of an osteoclast-specific or -related gene product. The sequences described herein can further be used to cause osteoclast-specific or related gene expression in cells in which such expression does not ordinarily occur, i.e., in cells which are not osteoclasts.

Example 1—Osteoclast cDNA Libary Construction

Messenger RNA (mRNA) obtained from a human osteoclastoma ('giant cell tumor of bone'), was used to construct
an osteoclastoma cDNA library. Osteoclastomas are actively
bone resorptive tumors, but are usually non-metastatic. In
15 cryostat sections, osteoclastomas consist of ~30% multinucleated cells positive for tartrate resistant acid phosphatase (TRAP), a widely utilized phenotypic marker specific in vivo for osteoclasts (Minkin, Calcif. Tissue Int.
34:285-290 (1982)). The remaining cells are uncharacterized 'stromal' cells, a mixture of cell types with fibroblastic/
mesenchymal morphology. Although it has not yet been
definitively shown, it is generally held that the osteoclasts in
these tumors are non-transformed, and are activated to
resorb bone in vivo by substance(s) produced by the stromal
25 cell element.

Monoclonal antibody reagents were used to partially characterize the surface phenotype of the multinucleated cells in the giant cell tumors of long bone. In frozen sections, all multinucleated cells expressed CD68, which has previously been reported to define an antigen specific for both osteoclasts and macrophages (Horton, M. A. and M. H. Helfrich, In Biology and Physiology of the Osteoclast, B. R. Rifkin and C. V. Gay, editors, CRC Press, Inc. Boca Raton, Fla., 33-54 (1992)). In contrast, no staining of giant cells was observed for CD11b or CD14 surface antigens, which are present on monocyte/macrophages and granulocytes (Arnaout, M. A. et al. J. Cell. Physiol. 137:305 (1988); Haziot, A. et al. J. Immunol. 141:547 (1988)). Cytocentrifuge preparations of human peripheral blood monocytes were positive for CD68, CD11b, and CD14. These results demonstrate that the multinucleated giant cells of osteoclastomas have a phenotype which is distinct from that of macrophages, and which is consistent with that of osteo-

Osteoclastoma tissue was snap frozen in liquid nitrogen and used to prepare poly A⁺ mRA according to standard methods. cDNA cloning into a pcDNAII vector was carried out using a commercially-available kit (Librarian, InVitrogen). Approximately 2.6×10⁶ clones were obtained, >95% of which contained inserts of an average length 0.6 kB.

Example 2-Stromal Cell mRNA Preparation

A portion of each osteoclastoma was snap frozen in liquid nitrogen for mRNA preparation. The remainder of the tumor was dissociated using brief trypsinization and mechanical disaggregation, and placed into tissue culture. These cells were expanded in Dulbecco's MEM (high glucose, Sigma) supplemented with 10% newborn calf serum (MA Bioproducts), gentamycin (0.5 mg/ml), 1-glutamine (2 mM) and non-essential amino acids (0.1 mM) (Gibco). The stromal cell population was passaged at least five times, after which it showed a homogenous, fibroblastic looking cell population that contained no multinucleated cells. The stromal cells were mononuclear, tested negative acid phosphatase, and tested variably alkaline phosphatase positive. These findings indicate that propagated stromal cells (i.e., stromal cells that

are passaged in culture) are non-osteoclastic and non-activated.

Example 3-Identification of DNA Encoding cDNA Library

A total of 12,000 clones drawn from the osteoclastoma cDNA library were screened by differential hybridization, 10 washing in 0.2×SSC/0.2% SDS at 50° C. for 60 minutes. using mixed ³²P labelled cDNA probes derived from (1) giant cell tumor mRNA (stromal cell+, OC+), and (2) mRNA from stromal cells (stromal cell*, OC*) cultivated from the same tumor. The probes were labelled with 32[P]dCTP by random priming to an activity of -10°CPM/µg. Of these 12,000 clones, 195 gave a positive hybridization signal with giant cell (i.e., osteoclast and stromal cell) mRNA, but not with stromal cell mRNA. Additionally, these clones failed to hybridize to cDNA produced from mRNA derived from a variety of unrelated human cell types including epithelial cells, fibroblasts, lymphocytes, myelomonocytic cells, osteoblasts, and neuroblastoma cells. The failure of these clones to hybridize to cDNA produced from mRNA derived from other cell types supports the conclusion that these clones are either uniquely expressed in osteoclasts, or are osteoclast-related.

The osteoclast (OC) cDNA library was screened for differential hybridization to OC cDNA (stromal cell+, OC+) and stromal cell cDNA (stromal cell+, OC+) as follows:

agar plates containing growth medium and ampicillin. Individual bacterial colonies from the OC library were randomly picked and transferred, in triplicate, onto filters with prerulcd grids and then onto a master agar plate. Up to 200 colonies were inoculated onto a single 90-mm filter/plate 35 using these techniques. The plates were inverted and incubated at 37° C. until the bacterial inoculates had grown (on the filter) to a diameter of 0.5-1.0 mm.

The colonies were then lysed, and the DNA bound to the filters by first placing the filters on top of two pieces of Whatman 3 MM paper saturated with 0.5N NaOH for 5 minutes. The filters were neutralized by placing on two pieces of Whatman 3 MM paper saturated with 1M Tris-HCL, pH 8.0 for 3-5 minutes. Neutralization was followed by incubation on another set of Whatman 3 MM papers 45 saturated with 1M Tris-HCL, pH 8.0/1.5M NaCl for 3-5 minutes. The filters were then washed briefly in 2×SSC.

DNA was immobilized on the filters by baking the filters at 80° C. for 30 minutes. Filters were best used immediately, but they could be stored for up to one week in a vacuum jar 50 at room temperature.

Filters were prehybridized in 5-8 ml of hybridization solution per filter, for 2-4 hours in a heat sealable bag. An additional 2 ml of solution was added for each additional filter added to the hybridization bag. The hybridization

buffer consisted of 5xSSC, 5xDenhardt's solution, 1% SDS and 100 µg/ml denatured heterologous DNA.

Prior to hybridization, labeled probe was denatured by heating in 1xSSC for 5 minutes at 100° C., then immediately Osteoclastoma-Specific or -Related Gene Products - chilled on ice. Denatured probe was added to the filters in by Differential screening of an Ostcoclastoma hybridization solution, and the filters hybridized with continuous agitation for 12-20 hours at 65° C.

After hybridization, the filters were washed in 2xSSC/ 0.2% SDS at 50°-60° C. for 30 minutes, followed by

The filters were then air dried and autoradiographed using an intensifying screen at -70° C. overnight.

Example 4—DNA Sequencing of Selected Clones

Clones reactive with the mixed tumor probe, but unreactive with the stromal cell probe, are expected to contain either osteoclast-related, or in vivo 'activated' stromal-cellrelated gene products. One hundred and forty-four cDNA clones that hybridized to tumor cell cDNA, but not to stromal cell cDNA, were sequenced by the dideoxy chain termination method of Sanger et al. (Sanger F., et al. Proc. Natl. Acad. Sci. USA 74:5463 (1977)) using sequenase (US Biochemical). The DNASIS (Hitatchi) program was used to carry out sequence analysis and a homology search in the GenBank/EMBL database.

Fourteen of the 195 tumor stromal clones were identified as containing inserts with a sequence identical to the osteoclast marker, type 5 tartrate-resistant acid phosphatase (TRAP) (GenBank accession number J04430 M19534). The NYTRAN filters (Schleicher & Schuell) were placed on 30 high representation of TRAP positive clones also indicates the effectiveness of the screening procedure in enriching for clones which contain osteoclast-specific or related cDNA sequences.

Interestingly, an even larger proportion of the tumor+ stromal clones (77/195; 39.5%) were identified as human gelatinase B (macrophage-derived gelatinase) (Wilhelm, S. M. J. Biol. Chem. 264:17213 (1989)), again indicating high expression of this enzyme by osteoclasts. Twenty-five of the gelatinase B clones were identified by dideoxy sequence analysis; all 25 showed 100% sequence homology to the published gelatinase B sequence (Genbank accession number J05070). The portions of the gelatinase B cDNA sequence covered by these clones is shown in the FIGURE (SEQ ID NO: 33). An additional 52 gelatinase B clones were identified by reactivity with a 32P-labelled probe for gelati-

Thirteen of the sequenced clones yielded no readable sequence. A DNASIS search of GenBank/EMBL databases revealed that, of the remaining 91 clones, 32 clones contain novel sequences which have not yet been reported in the databases or in the literature. These partial sequences are presented in Table I. Note that three of these sequences were repeats, indicating fairly frequent representation of mRNA related to this sequence. The repeat sequences are indicated by^{a, b} superscripts (Clones 198B, 223B and 32C of Table I).

TABLE I

PARTIAL SEQUENCES OF 32 NOVEL OC-SPECIFIC OR -RELATED EXPRESSED GENES (cDNA CLONES) 34A (SEQ ID NO: 1) 1 GCAAATATCT GGTGATGTCA TOTTGAATTT CTTGGATTTC TAGTGAGAGC AAGTTTATTG TATGCTATAG TATTGAAAAA TITAATTAT AGTTTGTTTT **AATGTTTCTA** GCAGACAACA CTTTGAATAA ACCTATAATA GAAAATAGCA **GTGATATTCT** 4B (SEQ ID NO: 2) TCGGGGTAGG CTGGTTAATG **AAAATGTCAA** AATGCTGCAT **GCATATCCTA** GTGTCAACCT

TABLE I-continued

PARTIAL SEQUENCES OF 32 NOVEL OC-SPECIFIC OR -RELATED EXPRESSED GENES (cDNA CLONES)

The state of the	·				
61 GGG 12B (SEQ ID NO: 3)					ACCGCCACCA
	TTGCTTCCCT	TTCCCAAGCA	GAGGTGCTCA	CTCCATGGCC	CAGGGAGTCT
61. CAGGCCCACA	GGGAGTACTG	CCAGACTACT	GCTGATGTTC		CAGGONGICI
121 CAACCAGCTG	GTGGTGAATG	CTGCCTGGCA	CGGGACCCCC	CCC	•
28B (SEQ ID NO: 4)		,		ATTOCK COAT	TTTCCCTCCT
I TITIATTIGT	AAATATATGT	ATTACATCCC	TAGAAAAAGA	ATCCCAGGAT	CAGTACAATG
61 GTGTGTTTTC	GTCTTGCTTC.	TTCATGGTCC	ATGATGCCAG	CTGAGGTTGT	TIT
121 AAACCAAACT	GGCGGGATGG	AAGCAGATTA	TTCTGCCATT	TTTCCAGGTC	***
37B (SEQ ID NO: 5)			· · · · · · · · · · · · · · · · · · ·	and the effect of	GCCTCAGGTT
	GCGTGCCCTC	CACGTCCCTC	ATATCCCCAG	GCACACTCTG	TTGAATCAAA
61 TTGCCCTGGC	CATGTCATCT	ACCTGGAGTG	GCCCTCCCC	TTCTTCAGCC	TATTTTGAAA
121 AGCCACTTTG	TTAGGCGAGG	ATTTCCCAGA	CCACTCATCA	CATTAAAAAA	IAIIIIO
181 ACAAAAAAAA	AAAAAA			•	
55B (SEQ ID NO: 6)				TGATTGGGGT	TTCTATTTAT
1 TTGACAAAGC	TGTTTATTTC	CACCAATAAA	TAGTATATGG		CATATCTACT
61 AAGAGTAGTG	GCTATTATAT	GGGGTATCAT	GTTGATGCTC	ATAAATAGTT	China o inioi
121 TAATTTGCCT	TC		•		
60B (SEQ ID NO: 7)				AAATGCAGAG	GGTACAGAGA
1 GAAGAGAGTT	GTATGTACAA	CCCCAACAGG	CAAGGCAGCT	AAAIGCAGAG	GGTACACACA
61 GATCCCGAGG	GAATT				
86B (SEQ ID NO: 8)					AAAAGTTACG
	ATGTAGAAGT	CCAGAGAAAA	ACAATITTAA	AAAAAGGTGG	AGAGGGAGGC
	GATTTCAGCA	TAAAATCTTT	AGTTAGAAGT	GAGAGAAAGA	AUAUGUAGUE
	TGCACGTATC	AATAGGTTAT	C		•
					AAATAAAATG
87B (SEQ ID NO: 9) 1 TTCTTGATCT	TTAGAACACT	ATGAATAGGG	AAAAAAGAAA	AAACTGTTCA	CCCAAGAAAG
	GCTTTTGGAA	TGCTTGAGTG	AGGAGCTCAA	CAAGTCCTCT	CCCAAGAAAO
	ACTTGACAAA	A	· ·	-	
181 CAATGATAAA 98B (SEQ ID NO: 10)	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		•		TTA ATCACAT
	AACAATTTTT	ACTGTAAAAT	TTTTGGTCAA	AGITCTAAGC	TTAATCACAT
	AGAGGCAATA	TATAGCCCAT	CTTACTAGAC	ATACAGTATT	AAACTGGACT
61 CTCAAAGAAT 121 GAATATGAGG	ACAAGCTCTA	GTGGTCATTA	AACCCCTCAG	AA	•
110B (SEQ ID NO: 11)	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,				
	ACAGCATTCA	TTTGGCCAAA	ATCTACACGT	TTGTAGAATC	CTACTGTATA
1 ACATATATTA 61 TAAAGTGGGA	ATGTATCAAG	TATAGACTAT	GAAAGTGCAA	ATAACAAGTC	AAGGTTAGAT
•••••	TITITACATT	AATTAAATA	CTTGTTT	•	
121 TAACTTTTTT	iiiiii.	• • • • • • • • • • • • • • • • • • • •	•		
118B (SEQ ID NO: 12) 1 CCAAATTTCT	CTGGAATCCA	TCCTCCCTCC	CATCACCATA	GCCTCGAGAC	GTCATTTCTG
• • • • • • • • • • • • • • • • • • • •	CCAGC				
61 TTTGACTACT	CONOC				
133B (SEQ ID NO: 13)	CTCGGACCCC	TGCCTCACTC	ATTTACACCA	ACCACCCAAC	TATCTATAAA
1 AACTAACCTC	GGCCATCCCT	TATGAGCGGC	GCAGTGATTA	TAGGCTTTCG	CTCTAAGATA
61 CCTGAGCCAT	gacchi ccci	2	-		
121 AAAT					
140B (SEQ ID NO: 14)	TTTTTTTATG	TTAGCTTAGC	CATGCAAAAT	TTACTGGTGA	AGCAGTTAAT
1 ATTATTATTC	TCCCATTGAA	GGGTTTTGTA	CATTTCAGTC	CITACAAATA	ACAAAGCAAT
61 AAAACACACA	GCACGTCCTG	ATAGGAAATT	C		
121 GATAAACCCCG	OCACGICCIO	12.100			
1448 (SEQ ID NO: 15)	ACATGCATTC	GTTTTATTCA	TAAAACAGCC	TGGTTTCCTA	AAACAATACA
1 CGTGACACAA	TCATCAGCAG	GAAGCTGGCC	GTGGGCAGGG	GGGCC	
61 AACAGCATGT	ICAICAGCAG	0.5.00.000		•	
198B* (SEQ ID NO: 16)	TTCTCATTCA	CGGGACTAGT	TAGCITTAAG	CACCCTAGAG	GACTAGGGTA
1 ATAGGTTAGA		AGTICCCICT	TATATCCTCA	AGGTAGAAAT	GTCTATGTTT
61 ATCTGACTTC	TCACTTCCTA	TATTCATAAG	TCTTTGGTAC	AAGTTACATG	ATAAAÀAGAA
121 TCTACTCCAA	TTCATAAATC	TTTGCACTTT	TRAAATAAAG	TATTTATCTC	CTGTCTACAG
181 ATGTGATTTG	TCTTCCCTTC	1110000111			
241 TITAAT					
212B (SEQ ID NO: 17)		TTAAGTCGGT	AAGCTAGAGG	ATTGTAAATA	TCTTTTATGT
1 GTCCAGTATA	AAGGAAAGCG	TTAACAGATG	TTAACCTTTT	ATGTTTTGAT	TTGCTTTAAA
61 CCTCTAGATA	AAACACCCGA		AAAGACACAT	TGAGAGCTTA	GAGGATAGTC
121 AATGGCCTTC	TACACATTAG	CTCCAGCTAA	7001011011011		
181 TCTGGAGC				*	•
223Bb (SEQ ID NO: 18)	00010000	GTGCTATTTT	TGAAGCAGAT	GTGGTGATAC	TGAGATTGTC
1 GCACTTGGAA	GGGAGTTGGT	TIGTGCTTCA	AATGATCCTT	CCTACTITGC	TTCTCTCCAC
61 TGTTCAGTTT	CCCCATTTGT	GCCATCAAGG	ACTITICA	CAGCTTGTGT	ACTCTTAGGC
121 CCATGACCTT	TTTCACTGTG		TG		
181 TAAGAGATGT	GACTACAGCC	TGCCCCTGAC			
241B (SEQ ID NO: 19)	m. 00: 10052	TGTCTTCTGG	GAGTGAGGTT	TATTAGTCCA	CTTCTTGGAG
1 _ TGTTAGTTTT	TAGGAAGGCC		GGTGAAAGAG	GGAGAAGAGG	AAGGGCGAAG
61 CTAGACGTCC	TATAGTTAGT	CACTGGGGAT	TAGAAGATGG	TITAGATGAT	AACCACAGGT
121 GGAAGGGCTC	TTTGCTAGTA	TCTCCATTTC	MOUVOUS	• • • • • • • • • • • • • • • • • • • •	•
181 CTATATGAGC	ATAGTAAGGC	TGT		•	
32C* (SEQ ID NO: 20)			CCTTCAGCCA	GAAGACTGAC	AAAGTCATCC
1 CCTATTTCTG	ATCCTGACTT	TGGACAAGGC	TAAAATAAGC	TTCATCTCCG	GCTGTGCCTT
121 TCCGTCTACC	AGAGCGTGCA	CTTGTGATCC		TCTTCCTAAA	TTTCATT
161 GGGTGGAAGG	GGCAGGATTC	TGCAGCTGCT	TTTGCATTTC	10110011221	

		EAFRESSED GENES (CDAN CLOSSES		
	· ·				• • • •
34C (SEQ ID NO: 21)	"GTGTGTTIAT	TCCTGTACAA	ATCATTACAA	AACCAAGTCT '''	GGGGCAGTCA
1 CGGAGCGTAG	CCATCACCCC	AGTGCAATGG	CTAGCTGCTG	GCCTTT	
61 COGCCCCCAC	CONTENCECC	Adiocabilos	0		
47C (SEQ ID NO: 22)	· · · · · · · · · · · · · · · · · · ·	AACCCCCTTT	GGCACTGCTG	CCACTGGGGT	CATGGCGGTT
1 TTAGTTCAGT	CAAAGCAGGC	CCCAACACCC	TOCTCTGCTT	CCCTGTGTGT	CGGGGTCTCA
61 GTGGCAGCTG	GGGAGGTTTC	CCCAACACCC	1001010011		
121 GGAGCTGACC	CAGACITGGA	÷ .			
65C (SEQ ID NO: 23)		TITGGTCITA	AAGGCTTCAT	CATGAAAGTG	TACATGCATA
1 GCTGAATGTT	TAAGAGAGAT	TATGGATGGT	TGCTTGTTTA	TTAACTAAAG " "	ATGTACAGCA
61 TGCAAGTGTG	AATTACGTGG	CTTAATATTG	ATGTOCTAAC	ACTGGGTCTG	CTTATGC
121 AACTGCCCGT	TTAGAGTCCT	CHAMMIN	AIGICCIANC		
79C (SEQ ID NO: 24)		AGAAGGGAAA	CAAGCACTGG	AAAATTAATA	ACAGCTGGGG
1 GGCAGTGGGA	TATGGAATCC	GATATATOCT	CATGGCTCGA	AATAAGAACA	ACGCCTGTGG
61 AGAAAACTGG.	GGAAACAAAG		GTGACTCCAG	CCAGAAA	***************************************
121 CATTGCCAAC	CTGGCCAGCT	TCCCCAAGAT	GIGACICCAG	CCAGAIO	
84C (SEQ ID NO: 25)		<u>:</u> .		TCAGGAAGGA	GGTCTGGCAG
1 GCCAGGGCGG	ACCGTCTTTA	TTCCTCTCCT	GCCTCAGAGG	AAGGGACTCA	CCTTGTCGCC
61 GACCTGCAGT	GGGCCCTAGT	- CATCTGTGGC	AGCGAAGGTG	AAGGGALICA	CCITOTCCC
121 CGTGCCTGAG	TAGAACTTGT	TCTGGAATTC	С		
86C (SEQ ID NO: 26)				GTGTTGTGTC	TTGGAAATTA
1 AACTCTTTCA	CACTCTGGTA	TTTTTAGTTT	AACAATATAT	AATGGTCATA	TACAGTAGTA
61 GTTCATATCA	ATTCATATTG	AGCTGTCTCA	TICITITITI .	ANIGGICAIA	IACAGIAGIA
121 TTCAATTATA	AGAATATATC	CTAATACTTT	TTAAAA		
87C (SEQ ID NO: 27)					AGTCCTGGGA
I GGATAAGAAA	GAAGGCCTGA	GGCCTAGGGG	CCGRGGCTGG	CCTGCGTCTC	TGAGGATCTG
61 CGCAGCAGCC	CGCACAGGTT	GAGAGGGGCA	CITCCTCTTG	CTTAGGTTGG	IGAGGAICIG
121 GTCCTGGTTG	GCCGGTGGAG	: AGCCACAAAA			-
88C (SEQ ID NO: 28)			 .	CCGCTATGAC	TCGGTCAGCG
1 CTGACCTTCG	AGAGTTTGAC	CTOGAGCCGG	ATACCTACTG	TCTGCGGCGA	T
61 TGTTCAACGG	AGCCGTGAGC	GACGACTCCG	GTGGGGAAGT .	TCTGCGGCGA	
89C (SEO ID NO: 29)				CCTCCTTAAG	GTTATAGGGC
1 ATCCCTGGCT	GTGGATAGTG	CITITGIGIA	GCAAATGCTC		GCTGTOGTTA
6) TCCCTGAGTT	TGGGAGTGTG	GAAGTACTAC	TTAACTGTCT	GTCCTGCTTG	. GCIGIOGIIA
121 TCGTTTTCTG	GTGATGTTGT	GCTAACAATA	AGAATAC		
101C (SEQ ID NO: 30)	•				TITACAAACG
GGCTGGGCAT	CCCTCTCCTC -	CTCCATCCCC	ATACATCACC	AGGTCTAATG	AGTATTCCTC
61 GTGCCAGCCC	GGCTCTGAAG	CCAAGGGCCG	TCCGTGCCAC	GGTGGCTGTG	AGIATICEIC
121 CGTTAGCTTT	CCCATAAGGT	TGGAGTATCT	GC		-
112C (SEQ ID NO: 31)					C+CCCTCCC
1 CCAACTCCTA	CCGCGATACA	GACCCACAGA	GTGCCATCCC	TGAGAGACCA	GACCGCTCCC
161 CAATACTCTC	CTAAAATAAA	CATGAAGCAC			
114C (SEQ ID NO: 32)					
1 CATGGATGAA	TGTCTCATGG	TGGGAAGGAA	CATGGTACAT	TTC	
, Chiodhidhin					

Repeated 3 times Repeated 2 times

Sequence analysis of the OC+ stromal cell- cloned DNA sequences revealed, in addition to the novel sequences, a 45 number of previously-described genes. The known genes identified (including type 5 acid phosphatase, gelatinase B, cystatin C (13 clones), Alu repeat sequences (11 clones), creamine kinase (6 clones) and others) are summarized in Table II. In situ hybridization (described below) directly 50 demonstrated that gelatinase B mRNA is expressed in multinucleated osteoclasts and not in stromal cells. Although gelatinase B is a well-characterized protease, its expression at high levels in osteoclasts has not been previously described. The expression in osteoclasts of cystatin C, a 55 cysteine protease inhibitor, is also unexpected. This finding has not yet been confirmed by in situ hybridization. Taken together, these results demonstrate that most of these identified genes are osteoclast-expressed, thereby confirming the effectiveness of the differential screening strategy for identifying DNA encoding osteoclast-specific or -related gene products. Therefore, novel genes identified by this method have a high probability of being OC-specific or related.

In addition, a minority of the genes identified by this screen are probably not expressed by OCs (Table II). For & example, type III collagen (6 clones), collagen type I (1 clone), dermatansulfate (1 clone), and type VI collagen (1

clone) are more likely to originate from the stromal cells or from osteoblastic cells which are present in the tumor. These cDNA sequences survive the differential screening process either because the cells which produce them in the tumor in vivo die out during the stromal cell propagation phase, or because they stop producing their product in vitro. These clones do not constitute more than 5-10% of the all sequences selected by differential hybridization.

TABLE II

SEQUENCE ANALYSIS OF CLONES ENCODING KNOWN SEQUENCES FROM AN OSTEOCLASTOMA cDNA LIBRARY

	20,000	
	Clones with Sequence Homology	25 total
	to Collagenase Type IV	14 total
o	Clones with Sequence Homology to	, 14 1000
	Type 5 Tartrate Resistant Acid Phosphatase	13 total
	Clones with Sequence Homology to	13 1000
	Cystatin C: Clones with Sequence Homology to	11 total
	Alu-repeat Sequences	•
	Clones with Sequence Homology to	6 total
55	Creatmine Kinase	
	Clones with Sequence Hamplogy to	6 total

TYPES OF CLONES ENCODING KNO

SEQUENCE ANALYSIS OF CLONES ENCODING KNOW SEQUENCES FROM AN OSTEOCLASTOMA CDNA	Ν¥
LIBRARY	

LIDKAKI		•
Type III Collagen Clones with Sequence Homology to	5 total	٠
MHC Class I y Invariant Chain Clones with Sequence Homology to	3 total	
MHC Class II B Chain One or Two Clone(s) with Sequence Homology to Each	10 total	10
of the Following: al collagen type I		
y interferon inducible protein osteopontin		
Human chondroitin/dermatansulfate		15
α globin β glucosidose/sphingolipid activator		
Human CAPL protein (Ca binding) Human EST 01024		
Type VI collagea Human EST 00553		20

Example 5—In situ Hybridiation of OC-Expressed

In situ hybridization was performed using probes derived from novel cloned sequences in order to determine whether the novel putative OC-specific or -related genes are differentially expressed in osteoclasts (and not expressed in the stromal cells) of human giant cell tumors. Initially, in situ hybridization was performed using antisense (positive) and sense (negative control) cRNA probes against human type IV collagenase/gelatinase B labelled with ³⁵S-UTP.

A thin section of human giant cell tumor reacted with the antisense probe resulted in intense labelling of all OCs, as indicated by the deposition of silver grains over these cells, but failed to label the stromal cell elements. In contrast, only minimal background labelling was observed with the sense (negative control) probe. This result confirmed that gelatinase B is expressed in human OCs.

In situ hybridization was then carried out using cRNA probes derived from 11/32 novel genes, labelled with digoxigenin UTP according to known methods.

The results of this analysis are summarized in Table III. Clones 28B, 118B, 140B, 198B, and 212B all gave positive 45 reactions with OCs in frozen sections of a giant cell tumor, as did the positive control gelatinase B. These novel clones therefore are expressed in OCs and fulfill all criteria for OC-relatedness. 198B is repeated three times, indicating relatively high expression. Clones 4B, 37B, 88C and 98B produced positive reactions with the tumor tissue; however the signal was not well-localized to OCs. These clones are therefore not likely to be useful and are eliminated from further consideration. Clones 86B and 87B failed to give a positive reaction with any cell type, possibly indicating very 55 low level expression. This group of clones could still be useful but may be difficult to study further. The results of this analysis show that 5/11 novel genes are expressed in OCs, indicating that -50% of novel sequences likely to be OC-

To generate probes for the in situ hybridizations, cDNA derived from novel cloned osteoclast-specific or -related cDNA was subcloned into a BlueScript II SK(-) vector. The orientation of cloned inserts was determined by restriction analysis of subclones. The T7 and T3 promoters in the BlueScriptII vector was used to generate ³⁵S-labelled (³⁵S-UTP 850 Ci/mmol, Amersham, Arlington Heights, Ill.), or

TABLE III

In Situ	HYE	RIDIZ	MONTA	using Pf	OBES
DERI	VED	FROM	NOVE	L SEQUE	NCES

		Reactivity with:	
	Clone	Osteoclasts Stromal Cells	.·
-	4B	+ +	
•	28B*	+ -	
	37B	+ +	
	86B	- · · · · · · · · · · · · · · · · · · ·	
	87B	ere e la 🚅 e la sale la companya e la compa	
	88C	• • • • • • • • • • • • • • • • • • •	
_	98B	+ • • • • •	
5	118B*	+ -	
	140B*	+ -	
	198B*	+	
-	212B*	+ "	
	Gelatinase B*	-	

• OC-expressed, as indicated by reactivity with antisense probe and lack of reactivity with sense probe on OCs only.

In situ hybridization was carried out on 7 micron cryostat sections of a human osteoclastoma as described previously (Chang, L.-C. et al. Cancer Res. 49:6700 (1989)). Briefly, tissue was fixed in 4% paraformaldehyde and embedded in OCT (Miles Inc., Kankakee, Ill.). The sections were rehydrated, postfixed in 4% paraformaldehyde, washed, and pretreated with 10 mM DTT, 10 mM iodoacetamide, 10 mM N-ethylmaleimide and 0.1 triethanolamine-HCL. Prehybridization was done with 50% deionized formamide, 10 mM Tris-HCl, pH 7.0, 1x Denhardt's, 500 mg/ml tRNA, 80 mg/ml salmon sperm DNA, 0.3M NaCl, mM EDTA, and 100 mM DTT at 45° C. for 2 hours. Fresh hybridization solution containing 10% dextran sulfate and 1.5 ng/ml 35S-labelled or digoxygenin labelled RNA probe was applied after heat denaturation. Sections were coverslipped and then incubated in a moistened chamber at 45°-50° C. overnight. Hybridized sections were washed four times with 50% formamide, 2x SSC, containing 10 mM DTT and 0.5% Triton X-100 at 45° C. Sections were treated with RNase A and RNase T1 to digest single-stranded RNA, washed four times in 2x SSC/10 mM DTT.

In order to detect ³⁵S-labelling by autoradiography, slides were dehydrated, dried, and coated with Kodak NTB-2 emulsion. The duplicate slides were split, and each set was placed in a black box with desiccant, sealed, and incubated at 4° C. for 2 days. The slides were developed (4 minutes) and fixed (5 minutes) using Kodak developer D19 and Kodak fixer. Hematoxylin and eosin were used as counterstains.

In order to detect digoxygenin-labelled probes, a Nucleic Acid Detection Kit (Boehringer-Mannheim, Cal. #1175041) was used. Slides were washed in Buffer 1 consisting of 100 mM Tris/150 mM NaCl, pH7.5, for 1 minute. 100 µl Buffer 2 was added (made by adding 2 mg/ml blocking reagent as provided by the manufacturer) in Buffer 1 to each slide. The slides were placed on a shaker and gently swirled at 20° C.

Antibody solutions were diluted 1:100 with Buffer 2 (as provided by the manufacturer). 100 µl of diluted antibody solution was applied to the slides and the slides were then incubated in a chamber for 1 hour at room temperature. The slides were monitored to avoid drying. After incubation with antibody solution, slides were washed in Buffer 1 for 10 minutes, then washed in Buffer 3 containing 2 mM levamisole for 2 minutes.

After washing, 100 µl color solution was added to the slides. Color solution consisted of nitroblue/tetrazolium salt

(NBT) (1:225 dilution) 4.5 µl, 5-bromo-4-chloro-3-indolyl phosphate (1:285 dilution) 3.5 µl, levamisole 0.2 mg in Buffer 3 (as provided by the manufacturer) in a total volume of 1 ml. Color solution was prepared immediately before use.

After adding the color solution, the slides were placed in a dark, humidified chamber at 20° C. for 2-5 hours and monitored for color development. The color reaction was stopped by rinsing slides in TE Buffer.

The slides were stained for 60 seconds in 0.25% methyl .10 green, washed with tap water, then mounted with water-based Permount (Fisher).

Example 6—Immunohistochemistry

Immunohistochemical staining was performed on frozen and paraffin embedded tissues as well as on cytospin preparations (see Table IV). The following antibodies were used: polyclonal rabbit anti-human gelatinase antibodies; Ab110 for gelatinase B; monoclonal mouse anti-human CD68 antibody (clone KP1) (DAKO, Denmark); Mol (anti-CD11b) and Mo2 (anti-CD14) derived from ATCC cell lines HB CRL 8026 and TIB 228/HB44. The anti-human gelatinase B antibody Ab110 was raised against a synthetic peptide with the amino acid sequence EALMYPMYRFTEGPPLHK 25 (SEQ ID NO: 34), which is specific for human gelatinase B (Corcoran, M. L. et al. J. Biol. Chem., 267:515 (1992)).

Detection of the immunohistochemical staining was achieved by using a goat anti-rabbit glucose oxidase kit (Vector Laboratories, Burlingame Calif.) according to the manufacturer's directions. Briefly, the sections were rehydrated and pretested with either acetone or 0.1% trypsin. Normal goat serum was used to block nonspecific binding. Incubation with the primary antibody for 2 hours or overnight (Abl10:1/500 dilution) was followed by either a glucose oxidase labeled secondary anti-rabbit serum, or, in the case of the mouse monoclonal antibodies, were reacted with purified rabbit anti-mouse Ig before incubation with the secondary antibody.

Paraffin embedded and frozen sections from osteoclastomas (GCT) were reacted with a rabbit antiserum against gelatinase B (antibody 110) (Corcoran, M. L. et al. J. Biol. chem. 267:515 (1992)), followed by color development with glucose oxidase linked reagents. The osteoclasts of a giant cell tumor were uniformly strongly positive for gelatinase B, whereas the stromal cells were unreactive. Control sections reacted with rabbit preimmune serum were negative. Identical findings were obtained for all 8 long bone giant cell tumors tested (Table IV). The osteoclasts present in three out of four central giant cell granulomas (GCG) of the mandible 50 were also positive for gelatinase B expression. These neoplasms are similar but not identical to the long bone giant cell tumors, apart from their location in the jaws (Shafer, W. G. et al., Textbook of Oral Pathology, W. B. Saunders Company, Philadelphia, pp. 144-149 (1983)). In contrast, 55 the multinucleated cells from a peripheral giant cell tumor, which is a generally non-resorptive tumor of oral soft tissue,

were unreactive with antibody (Shafer, W. G. et. al., Textbook of Oral Pathology, W. B. Saunders Company, Philadelphia, pp. 144-149 (1983)).

Antibody 110 was also utilized to assess the presence of gelatinase B in normal bone (n=3) and in Paget's disease, in which there is elevated bone remodeling and increased osteoclastic activity. Strong staining for gelatinase B was observed in osteoclasts both in normal bone (mandible of a 2 year old), and in Paget's disease. Staining was again absent in controls incubated with preimmune serum. Osteoblasts did not stain in any of the tissue sections, indicating that gelatinase B expression is limited to osteoclasts in bone. Finally, peripheral blood monocytes were also reactive with antibody 110 (Table IV).

TABLE IV

	Sample:	•	Antibodics tested Ab 110 gelatinase B
<u>.</u>	GCT frozen (n = 2)	` .	
	giant cells stromal cells GCT paraffin (n = 6)		<u> </u>
	giant cells stromal cells central GCG (n = 4)		
•	giant cells stromal cells peripheral GCT (n - 4)		+(%)
•	giant cells stromal cells Paget's disease (n = 1)		<u> </u>
	osteoclasts osteoblasts normal bone (n = 3)		<u> </u>
	osteoclasts osteoblasts monocytes (cytosnin)		. . -

Distribution of gelatinase B in multimucleated giant cells, osteoclasts, osteoblasts and stromal cells in various tissues. In general, paraffin embedded tissues were used for these experiments; exceptions are indicated.

Equivalents

Those skilled in the art will recognize, or be able to ascertain using no more than routine experimentation, many equivalents to the specific embodiments described herein. Such equivalents are intended to be encompassed by the following claims.

(2) INFORMATION FOR	SEQ IO NO:1:	•	`			
(i) SEQUENC	E CHARACTERISTICS	: -				
(B)	LENGTH: 170 base put TYPE: nucleic acid					
(C)	STRANDEDNESS: dou TOPOLOGY: linear	ble				
(i i) MOLECUI	E TYPE: DNA (genomi	c)				
(x i) SEQUENC	E DESCRIPTION: SEQ	ID NO:1:		i.		
GCAAATATCT AA	GTTTATTG C	TTGOATTTC	TAGTGAGAGC	TGTTGAATTT.	GGTGATGTCA	. 60
AATGTTTCTA GO	GTTTTTT.	CTTTGTTTT	TATTGAAAAA	TTAATTATT	TATGCTATAG	120
GTGATATTCT C	TTGAATAA	CCTATAATA	GAAAATAGCA	GCAGACAACA		~ 170
(2) INFORMATION FOR	SEQ ID NO:2:		,			
	E CHARACTERISTICS				•	
) LENGTH: 63 base pair) TYPE: aucleic acid	3			•	
) STRANDEDNESS: do) TOPOLOGY: linear	uble .				
(ii) MOLECU	LE TYPE: DNA (genom	k) `				
(x i) SEQUENC	E DESCRIPTION: SEQ	ED NO:2:	•		•	
GTGTCAACCT G	CATATCCTA	AAATGTCAA	AATGCTGCAT	CTGGTTAATG	TCGGGGTAGG	60
CGG						6.3
		. *	•	• • • • •	•	•
(2) INFORMATION FOR	SEQ ID NO:3:					
A) B) C)	CE CHARACTERISTIC) LENGTH: 163 base po) TYPE: mucleic acid) STRANDEDNESS: de	airs				
) TOPOLOGY: linear					
-	TLE TYPE: DNA (genom					
	CE DESCRIPTION: SE					60
сттссстстс т						120
CAGGCCCACA G					CAGGGAGTE	163
CAACCAGCTG G	STGGTGAATG	CTGCCTGGCA	EGGGACCCCC		•	
(2) INFORMATION FO	R SEQ ID NO:4:					
() () ()	ICE CHARACTERISTIC LENGTH: 173 base p TYPE: nucleic seid STRANDEDNESS: 6 TOPOLOGY: linear	pairs	·			
(ii) MOLEC	ULE TYPE: DNA (geno	mic)				
(xi) SEQUE	NCE DESCRIPTION: SE	EQ ID NO:4;	•			
TTTTATTTGT A	AAATATATGT	ATTACATCC	TAGAAAAGA	ATCCCAGGAT	TTTCCCTCCT	6 0
GTGTGTTTTC (этсттосттс	TTCATGGTCC	ATGATGCCAG	CTGAGGTTGT	CAGTACAATG	120
AAACCAAACT	GCGGGATGG	AAGCAGATTA	TTCTOCCATT	TTTCCAGGTC	TTT	173
(2) INFORMATION FO	or seq id no.5:		•		٠.	
	NOT ON A BACTERIST	·				

QUENCE CHARACTERISTICS:

(A) LENGTH: 197 base pairs
(B) TYPE: muchoic send
(C) STRANDEDNESS: double

(i i) MOLECULE TYPE: DNA (ge

-continued

•		· · · · · · · · · · · · · · · · · · ·				
(1	D) TOPOLOGY: linear				en de la Santa de la Santa La compania de la Carta de la Santa de	
(ii) MOLEC	CULE TYPE: DNA (genom	ic)				
(x i) SEQUE	NCE DESCRIPTION: SEQ	ID NO:5:				
GGCTGGACAT	GGGTGCCCTC	CACGTCCCTC	ATATCCCCAG	GCACACTCTG	GCCTCAGGTT	60
TTGCCCTGGC -	CATGTCATCT	ACCTGGAGTG	ооссстсссс	TTCTTCAGCC	TTGAATCAAA	120
AGCCACTTTG	TTAGGCGAGG	ATTTCCCAGA.	CCACTCATCA	CATTAAAAAA	TATTTTGAA	180
ACAAAAAAA	****		5.3			197
(2) INFORMATION F				·		
	ENCE CHARACTERISTIC: A) LENGTH: 132 base pa					
	B) TYPE sucleic soid					
	C) STRANDEDNESS: de	mble			•	5 -
(D) TOPOLOGY: linear	•				•
(ii) MOLE	CULE TYPE: DNA (genom	ic)		•		•
(xi)SEQUI	ENCE DESCRIPTION: SEC) ID NO:6:	•			
					TTCTATTTAT	
AAGAGTAGTG	GCTATTATAT	GGGGTATCAT	GTTGATGCTC	ATAAATAGTT	CATATCTACT	120
TAATTTGCCT	TC			•		. 1 3 2
(2) INFORMATION F	OR SEQ ID NO:7:					
(ENCE CHARACTERISTIC A) LENGTII: 75 base pa B) TYPE: medicia scid C) STRANDEDNESS: d D) TOPOLOGY: linear	in	· · · · · · · · · · · · · · · · · · ·			
(ii) MOLE	ECULE TYPE: DNA (genor	nic)				
(x i) SEQU	ENCE DESCRIPTION: SE	Q ID NO:7:		•		
GAAGAGAGTT	GTATGTACAA	CCCCAACAGG	CAAGGCAGCT	AAATGCAGAG	GGTACAGAGA	. 60
GATCCCGAGG	GAATT				_	7 5
(2) INFORMATION I	FOR SEQ ID NO:8:					
	JENCE CHARACTERISTIC (A) LENGTH: 151 base; (B) TYPE: mackete seid (C) STRANDEDNESS: 6 (D) TOPOLOGY: linear	pairs				
(ii) MOL	ECULE TYPE: DNA (grano	mic)				
(xi)SEQ	JENCE DESCRIPTION: SI	EQ ED NO:3:		•		
GGATGGAAAC	ATOTAGAAGT	CCAGAGAAAA	ACAATTTTAA	AAAAAGGTGG	AAAAGTTACG	6.0
GCAAACCTGA	GATTTCAGCA	TAAAATCTTT	AGTTAGAAGT	GAGAGAAAGA	AGAGGGAGGC	1 2 0
TGOTTGCTGT	TGCÀCGTATC	AATAGGTTAT	C	•		151
(2) INFORMATION	FOR SEQ ID NO-9:			•		
(i)SEQ	UENCE CHARACTERISTI (A) LENGTH: 141 base (B) TYPE: modele acid (C) STRANDEDNESS: (D) TOPOLOGY: Encar	pairs double				

		•				
(xi)SEQUEN	CE DESCRIPTION: SE	Q ID NO.9:		·	-	
TTCTTGATCT T	TAGAACACT	ATGAATAGGG	*****	AAACTGTTCA	AAATAAAATG	. 60
TAGGAGCCGT C	CTTTTGGAA	TGCTTGAGTG	AGGAGCTCAA	CAAGTCCTCT	CCCAAGAAAG	.1 2 0
CAATGATAAA A	CTTGACAAA	A	.'			1 4 1
(2) INFORMATION FO	R SEO ID NO:10:					
	CE CHARACTERISTIC			,	•	
(A (E	(a) LENGTH: 162 base; (b) TYPE: nucleic acid (c) STRANDEDNESS: (d) (d) TOPOLOGY: linear	pairs				· . ··.
, '. '.	ULE TYPE: DNA (geno	mic)		•		*.
• •	NCE DESCRIPTION: SE	•				•
ACCCATTICT			TTTTGGTCAA	AGTTCTAAGC	TTAATCACAT	60
CTCAAAGAAT A	.GAGGCAATA	TATAGCCCAT	CTTACTAGAC	ATACAGTATT	AAACTGGACT	120
GAATATGAGG A		-				162
•	,				٠	
(2) INFORMATION FO	R SEQ ID NO:11:	•	•		•	
	NCE CHARACTERISTIC					
· (I) TYPE: nuclcic scid				*.	
) TOPOLOGY: linear				• •	
(ii) MOLEC	ULE TYPE: DNA (geno	mic)	• " ,		•	(
(z i) SEQUE	NCE DESCRIPTION: SE	EQ ID NO:11:				
ACATATATTA A	ACAGCATTCA	TTTGGCCAAA	ATCTACACGT	TTGTAGAATC	CTACTGTATA	6 0
TAAAGTGGGA A	ATGTATCAAG	TATAGACTAT	GAAAGTGCAA	ATAACAAGTC	AAGGTTAGAT	1 2 0
TAACTTTTT	TTTTACATT	*********	CTTGTTT			157)
(2) INFORMATION FO	R SEQ ID NO:12:		·			
. (1	NCE CHARACTERISTI A) LENGTH: 75 base p B) TYPE: nucleic acid C) STRANDEDNESS: O) TOPOLOGY: linear	airs				
(ii) MOLEC	TULE TYPE: DNA (goad	· mic)		•	t.	
(1) SEQUE	NCE DESCRIPTION: \$1	EQ ID NO:12:				
CCAAATTTCT (CTGGAATCCA	тсстссстсс	CATCACCATA	GCCTCGAGAC	GTCATTTCTG	6 0
TTTGACTACT	CCAGC			•		7 5
(2) INFORMATION FO	R SEQ ED NO:12		-			
(1	NCE CHARACTERISTI A) LENGTH: 124 base B) TYPE: suckic acid C) STRANDEDNESS: D) TOPOLOGY: linear	pairs .			·	
(ii) MOLEC	CULE TYPE: DNA (gene	omic)				
(: i) SEQUE	NCE DESCRIPTION: \$	EQ ID NO:13:		•		•
AACTAACCTC	CTCGGACCCC	TGCCTCACTC	ATTTACACCA	ACCACCCAAC	TATCTATAAA	6 0
CCTGAGCCAT	GGCCATCCCT	TATGAGCGGC	GCAGTGATTA	TAGGCTTTCG	CTCTAAGATA	120

·		<u></u>	conunaca	<u> </u>		
AAAT						124
(2) INFORMATION	I FOR SEQ ID NO:14:				ta et a	
(i) SE(QUENCE CHARACTERISTIC C A) LENGTH: 151 bas:					
it was the	(B) TYPE: mucleic acid	*				
	(C) STRANDEDNESS: (D) TOPOLOGY: linear			. 1		* .
(ii)M0	LECULE TYPE: DNA (geno	mic)				
(zi)SEC	QUENCE DESCRIPTION: SE	2Q ID NO:14:		الرباء فتتناها عادا أوبت		
ATTATTATT	TTTTTTATG	TTAGCTTAGC	CATGCAAA	AT TTACTOGTGA	AGCAGTTAAT	6.0
AAAACACACA	. TCCCATTGAA	GGGTTTTGTA	CATTTCAG	C CTTACAAATA	ACAAAGCAAT	120
GATAAACCC	GCACGTCCTG	ATAGGAAATT	· ·		•	151
	3 00001.001.0		• .	•		
(2) INFORMATION	N FOR SEQ ID NO:15:			,		
(i) SE(QUENCE CHARACTERISTI					
	(A) LENGTH: 105 bass (B) TYPE: sucleic acid	pairs			•	
	(C) STRANDEDNESS: (D) TOPOLOGY: Encar	double				•
(ii)MO	LECULE TYPE: DNA (geno	mic)				
. (zi)\$E(QUENCE DESCRIPTION: SE	EQ ID NO:15:				
. CGTGACACA	A ACATGCATTC	OTTTTATTCA.	TAAAACAG	C TGGTTTCCTA	AAACAATACA	. 60
AACAGCATG	T TCATCAGCAG	GAAGCTGGCC	GTGGGCAG	36 000CC		105
		•.				
(2) INFORMATION	n for seq ID No:16:					
(i)SE	QUENCE CHARACTERISTI (A) LENGTH: 246 base				•	
•	(B) TYPE: mucleic acid	-				
•	(C) STRANDEDNESS: (D) TOPOLOGY: linear	BOUGE		_		
(ii) MO	LECULE TYPE: DNA (grace)	mic)				
(x i) SE(QUENCE DESCRIPTION: SE	EQ ID NO:16:				
ATAGGTTAG	A TTCTCATTCA	COOGACTAGT	TAGCTTTA	AG CACCCTAGAG	GACTAGGGTA	6 0
ATCTGACTT	C TCACTTCCTA	AGTTCCCTCT	TATATECT	CA AGGTAGAAAT	GTCTATGTTT	120
TCTACTCCA	A TTCATAAATC	TATTCATAAG	TCTTTGGT	AC AAGTTACATG	ATAAAAAGAA	180
ATGTGATTT	TCTTCCCTTC	TTTGCACTTT	TGAAATAA	AG TATTTATCTC	CTOTCTACAG	2 4 0
TAATŢ		•		•		246
(2) INFORMATIO	N FOR SEQ ID NO:17:					
	QUENCE CHARACTERISTI	cs:				
(.,2	(A) LENGTH: 188 base				•	
	(B) TYPE: nucleic acid (C) STRANDEDNESS:	double				
	(D) TOPOLOGY: linear	•		•		
(ii) MC	DLECULE TYPE: DNA (gene	omic)				
(a i) SE	QUENCE DESCRIPTION: S	EQ ID NO:17:	.*			
GTCCAGTAT	A AAGGAAAGCG	TTAAGTCOGT	AAGCTAGA	GĠ ATTGTAAATA	TCTTTTATGT	6 0
CCTCTAGAT	A AAACACCCGA	TTAACAGATG	TTAACCTT	TT ATGTTTTGAT	TTGCTTTAAA	1 2 0
AATGGCCTT	C TACACATTAG	CTCCAGCTAA	AAAGACAC	AT TGAGAGCTTA	GAGGATAGTC	180

	-continued			•.
TCTGGAGC				188
(2) INFORMATION FOR SEQ ID NO:18:	•	•		
() SEQUENCE CHARACTERISTICS:	•		i .	
(A) LENGTH: 212 base pairs (B) TYPE: nucleic acid				
(C) STRANDEDNESS: double (D) TOPOLOGY: linear	•		•	
			•	
(i i) MOLECULE TYPE: DNA (genomic)			1	
(x i) SEQUENCE DESCRIPTION: SEQ ID NO:18:	•			
GCACTTGGAA GGGAGTTGGT GTGCTATTTT	TGAAGCAGAT	GTGGTGATAC	TGAGATTGTC	· 60
TGTTCAGTTT CCCCATTTGT TTGTGCTTCA	AATGATCCTT	CCTACTTTGC	TTCTCTCCAC	1 2 0 -
CCATGACCTT TTTCACTGTG GCCATCAAGG	ACTTTCCTGA	CAGCTTGTGT	ACTCTTAGGC	180
TAAGAGATGT GACTACAGCC TGCCCCTGAC	TG			2 1 2
(2) Information for SEQ ID NO.19:				
(I) SEQUENCE CHARACTERISTICS:				
(A) LENOTH: 203 base pairs			•	
" (B) TYPE; suckie seid (C) STRANDEDNESS; double	. ,			
(D) TOPOLOGY: Hecar				
(i i) MOLECULE TYPE: DNA (genomic)	,			
(x i) SEQUENCE DESCRIPTION: SEQ ID NO:19:	•			
TGTTAGTTTT TAGGAAGGCC TGTCTTCTGG	GAGTGAGGTT	TATTAGTCCA	CTTCTTGGAG	112 46 O V
CTAGACGTCC TATAGTTAGT CACTGGGGAT	GGTGAAAGAG	GGAGAAGAGG	AAGGGCGAAG	1 2 0
GGAAGGGCTC TTTGCTAGTA TCTCCATTTC	TAGAAGATGG	TTTAGATGAT	AACCACAGGT	180
CTATATGAGC ATAGTAAGGC TGT		•		203
(2) INFORMATION FOR SEQ ID NO:20:				
(i) SEQUENCE CHARACTERISTICS:				
(A) LENGTH: 177 base pairs				-
(B) TYPE: mackie acid (C) STRANDEDNESS: double			•	*
(D) TOPOLOGY: linear				
(i i) MOLECULE TYPE: DNA (genomic)				
(x i) SEQUENCE DESCRIPTION: SEQ ID NO:20:				
CCTATTTCTG ATCCTGACTT TGGACAAGGC	CCTTCAGCCA	GAAGACTGAC	AAAGTCATCC	6 0
TCCOTCTACC ADAGCGTGCA CTTGTGATCC	TAAAATAAGC	TTCATCTCCG	GCTGTGCCTT	120
GGGTGGAAGG GGCAGGATTC TGCAGCTGCT	TTTGCATTTC	TCTTCCTAAA	TTTCATT	177
(2) INFORMATION FOR SEQ ID NO.21:	•			
(i) SEQUENCE CHARACTERISTICS:				
(A) LENGTH: 106 base pairs				
(B) TYPE: mckie seid (C) STRANDEDNESS: double (D) TOPOLOGY; linear				
(i i) MOLECULE TYPE: DNA (genomic)				•
(a i) SEQUENCE DESCRIPTION: SEQ ID NO.21:				
CGGAGCGTAG GTGTGTTTAT TCCTGTACAA	ATCATTACAA	AACCAAGTCT	OOGGCAGTCA	60
CCGCCCCAC CCATCACCCC AGTGCAATGG				106
	• -			

					_	
(2) INFORMATION FOR SEQ ID NO:22:	·				5.	•
(i) SEQUENCE CHARACTERISTIC (A) LENGTH: 139 base p						
(B) TYPE; makin scid	PARTS					1
(C) STRANDEDNESS: d	louble		•	•		*.
(D) TOPOLOGY: linear	•	٠			,	•
(i i) MOLECULE TYPE: DNA (genoc	nic)					
(x I) SEQUENCE DESCRIPTION: SE	-	-				
TTAGTTCAGT CAAAGCAGGC	AACCCCCTTT	GGCACTO	CTG CC	CACTGGGGT	CATGGCGGT	T - 6 0
GTGGCAGCTG GGGAGGTTTC	CCCVVCVCC	TCCTCTC	CTT. C	CTGTGTGT	-CGGGGTCTC	A 1 120
GGAGCTGACC CAGAGTGGA				·		1 3 9
(2) Information for seq 10 no.23:			•			
(i) SEQUENCE CHARACTERISTIC (A) LENGTH: 177 base p						
(B) TYPE: nucleic acid	en s		•			
(C) STRANDEDNESS; &	ouble					
(i i) MOLECULE TYPE: DNA (genom	nic)					
(x i) SEQUENCE DESCRIPTION: SE	•					
CTGAATGTT TAAGAGAGAT	•	AAGGCTT	CAT! CA	ATGAAAGTG	TACATGCAT	A 60
GCAAGTOTG AATTACGTGG	TATGGATGGT:	TGCTTGT	TTA TT	DAKETAAAG	ATGTACAGC	A 120
ACTGCCCGT TTAGAGTCCT	CTTAATATTG	ATGTCCT.	AACHAC	TGGGTCTG	CTTATGC .	177
(2) INFORMATION FOR SEQ ID NO:24:						
(i) SEQUENCE CHARACTERISTIC	S:					
(A) LENGTH: 167 besc p						
(B) TYPE: muchic acid (C) STRANDEDNESS: do	ouble	•				
(D) TOPOLOGY: linear						
(i i) MOLECULE TYPE: DNA (genom	nic)					
(a i) SEQUENCE DESCRIPTION: SEC	Q ID NO24:					
GCAGTGGGA TATOGAATCC .	AGAAGGGAAA	CAAGCAC	TGG AT	AAATTAA	ACAGCTGGG	G 60
GAAAACTGG GGAAACAAAG	GATATATCCT	CATGGCT	CGA AA	TAAGAACA	ACGCCTGTG	G 120
ATTGCCAAC CTGGCCAGCT	TCCCCAAGAT	GTGACTO	CAG CC	AGAAA	•	167
2) Information for SEQ ID NO:25:				•	·	
(i) SEQUENCE CHARACTERISTIC	S :	•				
(A) LENGTH: 151 base pa (B) TYPE: muchic soid	uis					
(C) STRANDEDNESS: do (D) TOPOLOGY: linear	ouble					
(i i) MOLECULE TYPE: DNA (genom	ůc)					
(x i) SEQUENCE DESCRIPTION: SEC	ID NO:25:	-				
CCAGGGCGG ACCOTCTTA	ттестетест	GCCTCAG	AGG TC	AGGAAGGA	GGTCTGGCA	G 60
ACCTOCAGT GGGCCCTAGT (
OTGCCTOAO TAGAACTTOT					•	151
				•		
2) INFORMATION FOR SEQ ID NO:26:			-			

(i) SEQUENCE CHARACTERISTICS:

, 				
(A) LENGTH: 156 base pairs (B) TYPE: noticle acid (C) STRANDEDNESS: doubte (D) TOPOLOGY: linear				
(i i) MOLECULE TYPE: DNA (genomic)				٠
(x i) SEQUENCE DESCRIPTION: SEQ ID NO:26:			1 1 1	
AACTCTTTCA CACTCTGGTA TTTTTAGTTT	AACAATATAT	GTGTTGTGTC	TTGGAAATTA	. 60
GTTCATATCA ATTCATATTG AGCTGTCTCA	* TTCTTTTTT	AATGGTCATA	TACAGTAGTA	120
TTCAATTATA AGAATATATC CTAATACTTT	TTAAAA			1 5 6
(2) INFORMATION FOR SEQ ID NO.27:				
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 150 base pairs (B) TYPE: auchic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear		•		
(i i) MOLECULE TYPE: DNA (genemic)				
(* i) SEQUENCE DESCRIPTION: SEQ ID NO:27:		•		
GGATAAGAAA GAAGGCCTGA GGGCTAGGGG	CCGGGGCTGG	CCTGCGTCTC	AGTCCTGGGA	6 0
CGCAGCAGCC CGCACAGGTT GAGAGGGGCA	CTTCCTCTTG	CTTAGGTTGG	TGAGGATCTG	120
GTCCTGGTTG GCCGGTGGAG AGCCACAAAA	,			150
(2) INFORMATION FOR SEQ ID NO:28:				
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 212 base pairs (B) TTPE: muchic acid (C) STRANDEDMESS: double (D) TOPOLOGY: linear			•	
(i i) MOLECULE TYPE: DNA (genomic)				
(x i) SEQUENCE DESCRIPTION: SEQ ID NO:28:				
GCACTTGGAA GGGAGTTGGT GTGCTATTTT	TGAAGCAGAT	GTGGTGATAC	TGAGATTGTC	60
$\textbf{TGTTCAGTTT.} \ \textbf{CCCCATTTGT.} \ \textbf{TTGTGCTTCA}$	AATGATCCTT	CCTACTTTGC	TTCTCTCCAC	120
CCATGACCTT TTTCACTGTG GCCATCAAGG	ACTTTCCTGA	CAGCTTGTGT	ACTCTTAGGC	1 8 0
TAAGAGATGT GACTACAGCC TGCCCCTBAC	TG			212
(2) INFORMATION FOR SEQ ID NO:29:				
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 157 base pairs (B) TYPE: nucleic seid (C) STRANDEDNESS: double (D) TOPOLOGY: linear		·		
(i i) MOLECULE TYPE: DNA (genomic)				
(* i) SEQUENCE DESCRIPTION: SEQ ID NO.29:				
ATCCCTGGCT GTGGATAGTG CTTTTGTGTA	GCAAATGCTC	CCTCCTTAAG	GTTATAGGGC	6 0
TCCCTGAGTT TGGGAGTGTG GAAGTACTAC	TTAACTGTCT	GTCCTGCTTG	GC.TGTCGTTA	120
TCGTTTTCTG GTGATGTTGT GCTAACAATA	AGAATAC			. 157

(2) INFORMATION FOR SEQ ID NO:30:

(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 152 base pairs (B) TYPE: nucleic acid

4 8 0

5 4 0

600

660

			-continued			
•	(C) STRANDEDNESS (D) TOPOLOGY: linea					
(ii) MOI	LECULE TYPE: DNA (per	nomic)				
(xi)SEQ	UENCE DESCRIPTION:	SEQ ID NO:30:		· · ·		
GGCTGGGCAT	ссстстсстс	CTCCATCCC	ATACATCACC	AGGTCTAATG	TTTACAAACG	6 0
GTGCCAGCCC	GGCTCTGAAG	CCAAGGGCCG	TCCGTGCCAC	остаестата	AGTATTCCTC	120
COTTAGCTTT	CCCATAAGGT	TGGAGTATCT	GC	٠	·	152
(2) INFORMATION	FOR SEQ ID NO:31:		• • • • • • • • • • • • • • • • • • • •		•••	•
	UENCE CHARACTERIST (A) LENGTH: 90 base (B) TYPE: machic acid (C) STRANDEDNESS: (D) TOPOLOGY: linear	p ales double				
(ii) MOL	LECULE TYPE: DNA (gen	omic)	•	•		•
(x i) SEQ	UENCE DESCRIPTION: S	EQ ID NO:31:				
CCAACTCCTA	CCGCGATACA	GACCCACAGA	GTGCCATCCC	TGAGAGACCA	GACCGCTCCC	60
CAATACTCTC	CTAAAATAAA	CATGAAGCAC				9 0
(2) INFORMATION	FOR SEQ ID NO:12:	•				
(ii) MOL	UENCE CHARACTERIST (A) LENGTH: 45 hase (B) TYPE: mackie acid (C) STRANDEDNESS: (D) TOPOLOGY: Encer ECULE TYPE: DNA (gen UENCE DESCRIPTION: S	double				
		TGGGAAGGAA	C170071017			
(2) INFORMATION		ICS: z pairs doubic				
(ii) MOL	SCULE TYPE: DNA (gran	omic)		-		
	JENCE DESCRIPTION: 5			•		
AGACACCTCT	GCCCTCACCA	TGAGCCTCTG	GCAGCCCCTG	GTCCTGGTGC	тсстастост	. 60
OGGCTGCTGC	TTTGCTGCCC	CCAGACAGCG	CCAGTCCACC	CTTGTGCTCT	TCCCTGGAGA	120
					GCTATGGTTA	180
		GTOGAGAGTC				2 4 0
•		CCGAGACCGG				300
GCGAACCCCA	CGGTGCGGG	TCCCAGACCT	GGGCAGATTC	CAAACCTTTG	AGGGCGACCT	360
CAAOTGOCAC	CACCACAACA	TCACCTATTG	OATCCAAAAC	TACTCGGAAG	ACTTGCCGCG	4 2 0

GOCGGTGATT GACGACGCCT TTGCCCGCGC CTTCGCACTG TGGAGCGCGG TGACGCCGCT

CACCTTCACT COCGTGTACA GCCGGGACOC AGACATCGTC ATCCAGTTTG GTGTCGCGGA

GCACGGAGAC GGGTATCCCT TCGACGGGAA GGACGGGCTC CTGGCACACG CCTTTCCTCC

TOOCCCCOOC ATTCAGGGAG ACGCCCATTT CGACGATGAC GAGTTGTGGT CCCTGGGCAA

٠.,							
	GGGCOTCGT	GTTCCAACTC	GGTTTGGAA	CGCAGATGGC	GCGGCCTGCC	ACTTCCCCTT	720
	CATCTTCGAC	GGCCGCTCCT	ACTCTGCCTC	CACCACCGAC	GGTCGCTCCG	ACGGGTTGCC	780
						GCCCAGCGA	
						CATTCATCTT	900
						ACCOCTOGTG	
						CCCGAGCTGA	
						TCACTTTCCT	<1010
						TCTGGTGCGC	
						AAGGATACAG	1200
		GTGGCGGCGC					1260
						TGCATAAGGA	
-		GGCATCCGGC					1380
						GACCCCCAC	
		TCAGAGCGCC					1500
						CGGTGGACGA	1560
		GTGAACATCT					1620
		AAGTACTGGC					1680
		GACAAGTGGC					. 1740
						CAGGCGCGTC	
		CCOAGGCGTC					1800
		CGGAGTGGCA					1860
		AAGGCGCAGA					1920
		CCTTTGGACA					2040
	CCAGGACCGC	TTCTACTGGC	GCGTGAGTTC	CCGGAGTGAG	TTGAACCAGG	TOGACCAAGT	
						GTCCTGCTTT	2100
		GTAAATCCCC					
		ттстсттстс					2220
		TTTTTGTTGG					2334
					;		4334

(2) INFORMATION FOR SEQ ID NO:34:

- (i) SEQUENCE CHARACTERISTICS:
 (A) LENGTH: 18 amino acid:
 (B) TYPE: amino acid:
 (C) STRANDEDNESS: single:
 (D) TOPOLOGY: unknown
- (i i) MOLECULE TYPE: populae
- (a i) SEQUENCE DESCRIPTION: SEQ ID NO:34:

His Lys

- 1. An isolated osteoclast-specific or -related DNA sequence, or its complementary sequence, the DNA 65 sequence comprising a nucleic acid sequence selected from the group consisting of:
- a) DNA sequences set forth in the group consisting of SEQ ID NOS. 12, 14, 16 and 17, or their complementary strands; and

- b) DNA sequences which hybridize under standard conditions to the DNA sequences defined in a).

 a) a DNA sequence of claim 2; and
 ditions to the DNA sequences defined in a).

 b) sequences, in addition to said DN
- b) sequences, in addition to said DNA sequence, necessary for transforming or transfecting a host cell, and for replicating, in a host cell, said DNA sequence.

 3. A DNA construct capable or replicating and expressing, in a host cell, osteoclast-specific or -related DNA, said construct comprising: construct comprising:
- amons to the DNA sequences defined in a).

 2. A DNA construct capable of replicating, in a host cell, osteoclast-specific or -related DNA, said construct comprisreplicating and expressing, in a host cell, said DNA sequence.

This Edge Blan...

This Page Blank (uspto)

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

☐ BLACK BORDERS	
☐ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES	
FADED TEXT OR DRAWING	
BLURRED OR ILLEGIBLE TEXT OR DRAWING	
☐ SKEWED/SLANTED IMAGES	
☐ COLOR OR BLACK AND WHITE PHOTOGRAPHS	
☐ GRAY SCALE DOCUMENTS	
☐ LINES OR MARKS ON ORIGINAL DOCUMENT	
REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY	·
OTHER:	

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.

This Page Blank (uspto)