zkouška 26. 1. 2015 (3. termín ve zkouškovém období)

6 otázek, 2 body správná odpověď/1 bod poloviční odpověď/0 bodů špatná odpověď (na E stačí celkově 6 bodů)

#### 1) popsat kódování MLT-3

### Vícepřechodová kódovací schémata – kód MLT-3

#### □ MLT-3 (Multi-Level Transmit, three Level)

- ✓ používá jedna z variant 100Mb Ethernet, 100BASE-TX
- √ analogie NRZ-I, 3 úrovně signálu (+1, 0, −1)
- ✓ přechod z jedné úrovně na příští úroveň se děje na začátku bitu 1: pokud stávající úroveň není 0, je příští úroveň 0, pokud stávající úroveň je 0, je příští úroveň opačná vůči poslední nenulové úrovni
- ✓ žádný přechod na začátku bitu 0 při dlouhé posloupnosti 0 se ztrácí vlastnost samosynchronizace
- ✓ emitace menšího množství energie než bipolární kódování (Manchester, AMI)
- √ nižší nároky na šířku pásma než bipolární kódování při stejné bitové rychlosti

## Vícepřechodová kódovací schémata – kód MLT-3, vlastnosti



a. Typical case



c. Transition states



## 2) nakreslit konstelační diagram, kde je bitová rychlost 4x větší než baudová

- □ Baudová rychlost počet přenesených signálových prvků /s, bitová rychlost – počet přenesených bitů /s
  - √ jestliže každý signálový prvek nese 6 bitů, pak bitová rychlost 3 000 b/s odpovídá baudové rychlosti 500 baud/s

#### 16-OAM



#### 3) velikost okna u Sliding Window, Selective Reject a proč

# Selective Reject, rozměr okna vysílače

- $\square$  rozměr okna musí být nejvýše  $0, 5 \times 2^m$ , tj.  $2^{m-1}$ , kde m je bitová šířka čísla rámce
- $\square$  Proč ? Ilustrace na příkladu m=2, rozměr okna = 2
  - ✓ nechť vysílač vyslal rámce 0 a 1 a přijímač je přijal
  - ✓ přijímač vyšle potvrzení rámců 0 a 1 a očekává rámce 2 a 3
  - ✓ nechť se ztratí potvrzení rámců 0 a 1
  - ✓ po uplynutí časových limitů nechť vysílač znovu vyšle rámce 0, a 1
  - ✓ přijímač chtěl rámec 2 (a 3), rámce 0, 1 potvrdí vyžádáním rámce 2, ale jako duplikáty rámce 0 a 1 ignoruje
- $\square$  Ilustrace na příkladu m=2, rozměr okna = 3
  - ✓ nechť vysílač vyslal rámce 0, 1, a 2 a přijímač je přijal
  - ✓ přijímač vyšle potvrzení rámců 0, 1 a 2 a očekává rámec 3, 0 a 1
  - ✓ nechť se ztratí potvrzení rámců 0, 1 a 2
  - ✓ po uplynutí časových limitů nechť vysílač znovu vyšle rámce 0, 1 a 2
  - $\checkmark$  přijímač chtěl rámec 3 (a 0, 1), rámce 0, 1 přijme jako nové rámce a ne jako duplikáty

#### 4) Hammingova vzdálenost, délka pro detekci chyby + délka pro opravu chyby

# Hammingova vzdálenost

- □ základní koncept detekce a oprav chyb přenosu určení nejbližšího validního kódového slova k přijatému nevalidnímu kódovému slovu
  - nejbližší nejpravděpodobněji odpovídající vyslaným datům
- □ musíme zavést míru vzdálenosti dvou kódových slov
- Hammingova vzdálenost dvou řetězců znaků (stejné délky), d
  počet pozic, na kterých se řetězce znaků liší,
  neboli počet záměn, které je potřeba provést
  pro změnu jednoho z řetězců na druhý

### Hammingova vzdálenost

- □ pro dvě binární slova je Hammingova vzdálenost d daná počtem bitů, ve kterých se tato dvě slova liší
- □ Tento počet získáme jako počet 1 v non-ekvivalenci dvou bitových řetězců kódových slov

1010101010 1100110010

0110011000 Hammingova vzdálenost d=4

# Minimální Hammingova vzdálenost, dmin

- minimální Hammingova vzdálenost v jisté množině (binárních) kódových slov
  - ✓ nejmenší Hammingova vzdálenost mezi všemi možnými dvojicemi slov v takové množině
  - ✓ pokud je v množině kódových slov nulové kódové slovo (000...0), pak je rovna nejmenšímu počtu jedniček v kterémkoliv nenulovém kódovém slovu
- □ Každé kódování lze charakterizovat třemi parametry
  - délkou datového slova k,
  - délkou kódového slova n a
  - $-d_{min}$  v podmnožině  $2^k$  validních kódových slov množiny  $2^n$  kódových slov

## Minimální vzdálenost pro detekce / opravy chyb

- Kódování použité pro opravné kódy musí poskytnout jistou minimální vzdálenost mezi validními kódovými slovy, pokud se mají chyby opravovat nebo alespoň detekovat
- □ Lze ukázat, že platí (obecně pro FEC)
  - $\checkmark$  pokud existuje t, pro které je v daném kódu  $d_{min} \geq 2t+1$ , pak lze tímto kódem opravovat až t-bitové chyby,

resp. 
$$t = \lfloor (d_{min} - 1)/2 \rfloor$$
 (pro připomenutí:  $\lfloor 6, 3 \rfloor = 6$  )

- $\checkmark$  pokud existuje t, pro které je v daném kódu  $d_{min} \ge 2t$ , pak lze tímto kódem opravovat až (t-1)-bitové chyby a detekovat, ale ne opravovat, t-bitové chyby (viz kód na předchozím obr.)
- □ dobrý výklad principů např.:

http://en.wikipedia.org/wiki/Hamming\_code

### Minimální vzdálenost pro detekce / opravy chyb

□ Kód (3, 2) definovaný tabulkou

| Datové slovo | Odpovídající validní kódové slovo |                                 |  |
|--------------|-----------------------------------|---------------------------------|--|
| 00           | 000                               |                                 |  |
| 01           | 011                               | je kód $C(3,\ 2)$ s $d_{min}=2$ |  |
| 10           | 101                               | detekující 1-bitové chyby       |  |
| 11           | 110                               |                                 |  |

□ Kód (5, 2) definovaný tabulkou

| Datové slovo | Odpovídající validní kódové slovo |                                 |
|--------------|-----------------------------------|---------------------------------|
| 00           | 00000                             |                                 |
| 01           | 01011                             | je kód $C(5,\ 2)$ s $d_{min}=3$ |
| 10           | 10101                             |                                 |
| 11           | 11110                             | opravující 1-bitové chyby       |

#### 5) řízení přístupu k médiu POLL/SELECT

## Řízený přístup k médiu

- □ Stanice smí vysílat, pouze když k tomu získá právo
- □ Právo vysílat získá od jiné, řídicí stanice (od ostatních stanic)
- □ Probírané metody
  - ✓ rezervace
  - √ vyzývání (polling)
  - ✓ předávání příznaku (token passing)

# Vyzývání, Polling

- □ Existuje centrální řídicí stanice (primární)
- □ Primární stanice vyzývá (poll) sekundární stanici k vysílání
- □ Primární stanice vybírá (select) sekundární stanici, které bude zasílat data
- □ Součástí výzvy i výběru je adresa vyzývané /vybírané sekundární stanice
- sekundární stanice vždy potvrzuje nebo odmítá jak výběr tak i výzvu

### Výběr a výzva



# CSMA, Carrier Sense Multiple Access

- □ Komunikace rovnocenných stanic sdílejících médium
- □ Stanice vysílá jen když zjistí klid v médiu
- □ Počet kolizí se redukuje, ale kolizím se nezabrání
  - ✓ důvod nenulová doba šíření signálu médiem
- CSMA se samostatně nepoužívá,
  vždy se používá ve variantě CSMA/CD nebo CSAM/CA
  - ✓ důvod CSMA neřeší zjištění kolize, nesleduje v mediu výskyt kolizního signálu a

tím pádem neřeší ani reakce na zjištění kolize

## CSMA, strategie naléhání na vysílání

- □ naléhání persistence
- □ CSMA/1-persistent, naléhající, ,,hladový algoritmus"
  - √ stanice zjistí volné médium
    - vysílá rámec okamžitě, tj. s pravděpodobností 1
  - √ stanice zjistí obsazené médium
    - znovu testuje médium
  - ✓ zvyšuje se pravděpodobnost kolize, používá Ethernet

## CSMA, strategie naléhání na vysílání

#### □ CSMA/nonpersistent, nenaléhající

- √ stanice zjistí volné médium vysílá rámec
- √ stanice zjistí obsazené médium
  - vyčká náhodnou dobu před před příštím testováním média
- ✓ snižuje se pravděpodobnost zjištění volného média více stanicemi současně, snižuje se efektivnost, když médium je volné a stanice mají připravené rámce k vysílání
- □ CSMA/p-persistent, naléhající s pravděpodobností p
  - ✓ stanice "hladově" testuje médium, dokud nezjistí volné médium a pak
    - 1.~s pravděpodobností  $oldsymbol{p}$  vysílá rámec okamžitě
    - 2. s pravděpodobností 1-p znovu testuje médium za  $\Delta t$ 
      - a) je volné jde na krok 1
      - b) je obsazené médium znovu testuje médium za  $r\Delta t$  kde r je náhodné číslo z postupně rostoucího intervalu
  - √ redukuje se pravděpodobnost kolize a zvyšuje se efektivnost