24. Projektive Geometrie

24.1. Projektive Räume

Zweck: Störende Ausnahmefälle der affinen Geometrie beseitigen durch geschickte Erweiterung affiner Räume zu sogenannten projektiven Räumen, wo die Ausnahmen nicht mehr auftreten.

Sei K ein beliebiger Körper, V ein K-Vektorraum.

Definition: Die Menge der eindimensionalen Teilräume von V

$$\mathbb{P} := \mathbb{P}(V) := \{Kx \mid x \in V \setminus \{0\}\}\$$

heißt projektiver Raum.

Eine Teilmenge $X\subseteq \mathbb{P}(V)$ heißt **projektiver Teilraum** von $\mathbb{P}(V)$, falls ein Untervektorraum $U_x\leq V$ existiert mit

$$X = \mathbb{P}(U_r) := \{Kx \mid x \in U_r \setminus \{0\}\}\$$

 $\dim(\mathbb{P}) := \dim(U) - 1$ heißt **Dimension** von \mathbb{P} .

$$X$$
 heißt $\begin{cases} \text{Punkt} \\ \text{Gerade} \\ \text{Ebene} \end{cases}$ falls $\dim X = \begin{cases} 0 \\ 1 \\ 2 \end{cases}$.

 $\mathbb{P}^n:=\mathbb{P}^n(K):=\mathbb{P}(K^{n+1})$ heißt der **projektive Standardraum**.

Bemerkung: Die leere Menge \emptyset ist ein projektiver Raum mit $U_{\emptyset} = \{0\}$, also dim $\emptyset = -1$.

Lemma:

Ist I eine beliebige Indexmenge und $\forall i \in X: X_i \subseteq \mathbb{P}(V)$ projektive Teilräume. Dann ist

$$X := \bigcap_{i \in I} X_i \subseteq \mathbb{P}(V)$$

ein projektiver Teilraum.

Insbesondere existiert für jede beliebige Teilmenge $M \subseteq \mathbb{P}(V)$ die **projektive Hülle**

$$[M] := \bigcap_{X \text{ proj. } TR; M \subseteq X} X$$

Speziell:

(1) $X, Y \subseteq \mathbb{P}(V)$ projektive Teilräume

$$[X \cup Y] = \mathbb{P}(U_x + U_y)$$

(2) Für $M = \{P_1, \dots, P_r\}$ setze

$$[M] := [P_1, \dots, P_r]$$

Beweis: Sei $X_i = \mathbb{P}(U_i)$ zu Teilvektorräumen $U_i \leq V$. Damit:

$$X = \bigcap_{i \in I} \{Kx \mid x \in U_i \setminus \{0\}\}$$

$$= \left\{Kx \mid x \in \bigcap_{i \in I} U_i, x \neq 0\right\}$$

$$\stackrel{\text{Def.}}{=} \mathbb{P}\left(\bigcap_{i \in I} U_i\right)$$

Definition: Ein projektiver Teilraum $H \subset \mathbb{P}(V)$ heißt (proj.) Hyperebene, falls ein Punkt $p = Kx \in \mathbb{P}(V)$ existiert mit

$$[H \cup \{p\}] = \mathbb{P}(V)$$

Bemerkung: Falls $n = \dim \mathbb{P}(V) < \infty$ ist, so gilt für projektive Teilräume $H \subseteq \mathbb{P}(V)$:

$$H$$
 Hyperebene \iff dim $H = n - 1$

Satz 40:

Ist dim $\mathbb{P}(V) < \infty$, so gilt:

(1) Für projektive Teilräume $X, Y \subseteq \mathbb{P}$ ist

$$\dim X + \dim Y = \dim[X \cup Y] + \dim X \cap Y$$

(2) Für jede Hyperebene H und jeden projektiven Teilraum $X \not\subseteq H$ ist

$$\dim(X \cap H) = \dim X - 1$$

Insbesondere besitzen zwei verschiedene Geraden in einer projektiven Ebene $\mathbb{P}(V)$ genau einen Schnittpunkt.

Beweis: (1)

$$\dim X + \dim Y \stackrel{\text{Def.}}{=} \dim U_x - 1 + \dim U_y - 1$$
$$= \dim(U_x + U_y) + \dim(U_x \cap U_y) - 2$$
$$= \dim[X \cup Y] + \dim(X \cap Y)$$

(2) $X \subseteq H$ impliziert $[X \cup H] = \mathbb{P}(V)$. Damit folgt:

$$\dim[X \cup H] = \dim \mathbb{P}(V) = \dim H + 1$$
$$\dim X \cap H \stackrel{\text{(1)}}{=} \dim H + \dim X - \dim[X \cup H] = \dim X - 1$$

24.2. projektive Koordinaten

Definition: Die Punkte $p_0, p_1, \ldots, p_k \in \mathbb{P}$ heißen **unabhängig**, wenn gilt

$$\dim[p_0, p_1, \dots, p_k] = k$$

Lemma:

Für $p_{\varkappa} = K \cdot v_{\varkappa} \quad (v_{\varkappa} \in V)$ gilt:

 p_0, p_1, \ldots, p_k unabhängig \iff dim $(Kv_0 + \ldots + Kv_k) = k + 1$ linear unabhängig

Beweis:

$$p_0, \ldots, p_k$$
 unabhängig $\iff \dim(Kv_0, \ldots, Kv_k) = k+1$

Definition: Sei dim $\mathbb{P} = n < \infty$ und seien $p_0, \dots, p_k, e \in \mathbb{P}$.

Das n+2-Tupel $(e; p_0, \ldots, p_n)$ heißt ein **Koordinatensystem** von \mathbb{P} , wenn je n+1 Punkte hiervon linear unabhängig sind.

Beachte: Ein Koordinatensystem legt eine (bijektive) Koordinatenabbildung

$$D: \mathbb{P} \stackrel{\sim}{\to} \mathbb{P}(K^{n+1})$$

fest wie folgt:

(1) Jede Wahl von Erzeugern v'_{\varkappa} der p_{\varkappa} ergibt eine Basis $\{v'_0, \ldots, v'_n\}$ von V.

Insbesondere hat jedes $v \in V$ mit e = Kv die Darstellung

$$v = \sum_{\nu=0}^{n} \underbrace{x'_{\nu} v'_{\nu}}_{=:v_{\nu}}$$

mit $x'_{\nu} \neq 0 \,\forall \nu$ (wegen der Voraussetzung über lineare Unabhängigkeit). Dabei sind die v_{ν} unabhängig von der Wahl der v'_{ν} .

- (2) Zu festem v existiert also eine eindeutig bestimmte Basis $\{v_0, \ldots, v_n\}$ mit $v = \sum_{\nu=0}^{n} v_{\nu}$. Zu einem beliebigen anderen $v' = \lambda \cdot v \in K \cdot v$ gehört die Basis $\{\lambda v_0, \ldots, \lambda v_n\}$.
- (3) Für einen beliebigen Punkt $p = K \cdot w$ mit Basisdarstellung

$$w = \sum_{\nu=0}^{n} x_{\nu} v_{\nu}$$

setze $D(p) := K \cdot (x_0, \dots, x_n) =: (x_0 : \dots : x_n).$

Das ist wohldefiniert, da für $w' = \lambda \cdot w$ mit $\lambda \neq 0$ gilt:

$$w' = \sum_{\nu=0}^{n} \underbrace{\lambda x_{\nu}}_{=:x'_{\nu}} v_{\nu}$$

Daher:

$$K(x_0',\ldots,x_n')=K(x_0,\ldots,x_n)$$

D(p) ist unabhängig von der speziellen Wahl von v.

 $(x_0:\ldots:x_n)$ heißen homogene Koordinaten von \mathbb{P} .

(4) Es gilt offenbar:

$$D(p_{\nu} = (0 : \dots : \overset{\nu}{1} : 0 : \dots : 0)$$

 $D(e) = (1 : \dots : 1)$

24.3. Projektivitäten

Vorbemerkung: Jede injektive lineare Abbildung $\phi:V\to W$ von K-Vektorräumen definiert eine Abbildung der zugehörigen projektiven Räume.

$$\tilde{\phi}:\,\mathbb{P}(V)\to\mathbb{P}(W),\,p=K\cdot v\mapsto\tilde{\phi}(p):=\phi(Kv)=K\phi(v)$$

Definition: Eine Permutation φ von \mathbb{P} heiß t **Projektivität**, wenn ein Vektorraumautomorphismus $\phi \in \operatorname{Aut}(V)$ existiert mit $\tilde{\phi} = \varphi$.

Lemma:

Für $\phi_1, \phi_2 \in Aut(V)$ gilt:

$$\tilde{\phi}_1 = \tilde{\phi}_2 \Longleftrightarrow \exists c \in K, c \neq 0 : \phi_1 = c \cdot \phi_2$$

Beweis: \Longrightarrow : klar

 \Leftarrow : Für alle x gilt: $\phi_1(Kx) = \phi_2(Kx)$, d.h. es existiert ein $c_x \in K$ mit $\phi_1(x) = c_x \cdot \phi_2(x)$.

Für x, y linear unabhängig setze z := x + y.

$$\phi_1(z) = c_z \cdot \phi_2(z) = c_z \left(\phi_2(x) + \phi_2(y) \right)$$

$$\phi_1(z) = \phi_1(x) + \phi_1(y) = c_x \phi_2(x) + c_y \phi_2(y)$$

Da x, y linear unabhängig und ϕ_i Automorphismus folgt: $\phi_2(x), \phi_2(y)$ linear unabhängig.

Koeffizientenvergleich liefert $c_x = c_z = c_y$. Damit sind alle c_x gleich =: c.

Bemerkung: (1) Die Projektivitäten von \mathbb{P} bilden eine Gruppe, wobei $\tilde{\phi}_1 \circ \tilde{\phi}_2 = \phi_1 \circ \phi_2$ und $\tilde{\phi}_1^{-1} = \tilde{\phi}_1^{-1}$ ist.

(2) Jede Projektivität bildet einen projektiven Teilraum auf einen projektiven Teilraum gleicher Dimension ab.

Satz 41:

Zu verschiedenen Koordinatensystemen $(e; p_0, \ldots, p_n)$ und $(e'; p'_0, \ldots, p'_n)$ von \mathbb{P} existiert genau eine Projektivität φ , die sie ineinander überführt, d.h.

$$\varphi(p_{\nu}) = p'_{\nu}$$
$$\varphi(e) = e'$$

Beweis: Übung.

24.4. Der Zusammenhang zwischen affinen und projektiven Räumen

Sei $\mathbb{P} = \mathbb{P}(V)$, fixiere eine Hyperebene $H \subseteq \mathbb{P}$ und $a = Ky \in \mathbb{P} \setminus H$. Also $\mathbb{P} = [H, a]$ und $V = U_H \oplus Ky$.

Vorbemerkung: Jedes $p \in \mathbb{P} \setminus H$ ist von der Form $p = K(u_p + y)$ mit $u_p \in U_H$ eindeutig.

Für $p = Kx \in \mathbb{P}$ gilt:

$$p \in H \iff p = Kx \le U_H$$

Also gilt: $p \in \mathbb{P} \setminus H \iff p = Kx \not\leq U_H$.

Wegen direkter Summe ist x eindeutig zerlegbar:

$$x = u'_p + \lambda y \qquad (u'_p \in U_H)$$
$$x \notin U_H \iff \lambda \neq 0 \implies Kx = K(\underbrace{\lambda^{-1} u'_p}_{=:u_p} + y)$$

Satz 42:

Die Menge $\mathbb{A} := \mathbb{P} \setminus H$ ist ein affiner Raum mit U_H als Translationsvektorraum bezüglich der Operation

$$(u,p) \mapsto K(u+u_p+y)$$

wobei $p = K(u_p + y)$ gilt, mit eindeutig bestimmtem $u_p \in U_H$. Dabei ist die Translation $\overrightarrow{pq} = u_q - u_p$.

Beachte:

$$\dim \mathbb{A} = \dim U_H = \dim V - 1 = \dim \mathbb{P}(V)$$

Definition: Die Punkte von \mathbb{A} heiß en **eigentliche Punkte**, die von H **uneigentlich**.

Umgekehrt lässt sich jeder affine Raum \mathbb{A} erweitern zu einem projektiven Raum durch disjunkte Vereinigung mit einer projektiven Hyperebene H gleicher Dimension: ohne Einschränkung sei $\mathbb{A} = K^n$. Zum Beispiel haben wir die injektive Abbildung

$$j_1: \mathbb{A} \to \mathbb{P}(K^{n+1}), (x_1, \dots, x_n) \mapsto (1: x_1: \dots: x_n)$$

$$H := \mathbb{P}(\underbrace{0 \times K^n}_{\leq K^{n+1}}).$$

Für eigentliche Punkte $p=(y_0:y_1:\ldots:y_n)$, d.h. $p\not\in H$, gilt: $y_0\neq 0$, also $p=\left(1:\frac{y_1}{y_0}:\ldots:\frac{y_n}{y_0}\right)$, d.h. p hat die affinen Koordinaten $\left(\frac{y_1}{y_0},\ldots,\frac{y_n}{y_0}\right)$ in \mathbb{A} .

Es gilt: $j_1(\mathbb{A}) \stackrel{\cdot}{\cup} H = \mathbb{P}(K^{n+1})$

Ferner gilt mit den den Einbettungen

$$j_{\nu}: K^n \to \mathbb{P}(K^{n+1}), (x_1, \dots, x_n) \mapsto (x_1: \dots : x_{\nu-1}: 1: x_{\nu+1}: \dots : x_n)$$

folgende Gleichheit:

$$\mathbb{P}(K^{n+1}) = \bigcup_{\nu=1}^{n+1} j_{\nu}(\mathbb{A})$$

Aber: nicht disjunkt.

Beispiel: (1) Die reelle projektive Gerade $\mathbb{P}^1(\mathbb{R})$

Es gibt zwei Modelle:

$$\left\{\mathbb{R}\cdot x \leq \mathbb{R}^2 \mid x \neq 0\right\} \longleftrightarrow \left\{G \subseteq \mathbb{R}^2 \mid G \text{ affine Gerade mit } 0 \in G\right\}$$

Dies ist das sogenannten **Büschelmodell** von \mathbb{P}^1 .

Fixiere g (die Hyperebene besteht hier aus einem Punkt)

$$\mathbb{P}^1 \setminus \{g\} \underset{\text{bliekt.}}{\longleftrightarrow} g' \quad (\text{affine Gerade } \neq g, g' \parallel g)$$

eigentliche Punkte $g_a \mapsto g_a \cap g'$

g ist der einzige uneigentliche Punkt; das entspricht anschaulich einem unendlich fernen Punkt F auf g'. Sprich: **Fernpunkt**.

Wir erhalten das **Punktmodell** von \mathbb{P}^1 : $g' \stackrel{\cdot}{\cup} \{F\}$.

Ein einheitliches Modell liefert der Einheitskreis um $(0,1) \in \mathbb{R}^2$

$$S := \left\{ y \in \mathbb{R}^2 \mid ||y - (0, 1)|| = 1 \right\}$$

$$\left\{ \mathbb{R}x \le \mathbb{R}^2 \mid x \ne 0 \right\} \stackrel{\text{bij.}}{\longleftrightarrow} S$$

$$\mathbb{R}x \mapsto \mathbb{R}x \cap S \rightsquigarrow \left\{ s_x \right\} \quad (s_x \ne (0,0))$$

(2) Die projektive Ebene $\mathbb{P}^2(\mathbb{R})$ Bündelmodell:

$$\left\{\mathbb{R}x \leq \mathbb{R}^2 \mid x \neq 0\right\} \stackrel{\text{bij.}}{\longleftrightarrow} \left\{\text{affine Gerade } g \leq \mathbb{R}^3, \ 0 \in g\right\}$$

Fixiere die affine Ebene $E\subseteq \mathbb{R}^3$ mit $0\not\in E$ und eine dazu parallele E' mit $0\in E'$.

Dabei entsteht eine Bijektion

$$\mathbb{P}^2 \setminus \{g' \subseteq E'\} \longleftrightarrow E$$
$$g \mapsto g \cap E$$
$$A \mapsto g = 0A$$

Jedem $g' \in E'$ ordnet man genau einen **Fixpunkt** $F_{g'} \in \mathbb{P}^2$ zu.

 $\{g' \in E'\}$ ist projektive Gerade. $f := \{F_{g'} \mid g' \subseteq E'\}$ heißt **Ferngerade**.

 $E \stackrel{\cdot}{\cup} f$ ist das Punktmodell des \mathbb{P}^2 .

Analog lassen sich generell Bündel- und Punktmodell des \mathbb{P}^n mittels \mathbb{A}^{n+1} beschreiben.

Stichwortverzeichnis

Abbildung	Dimension, 107		
affine, 71	diskrete Metrik, 25		
kanonische, 23	Drehachse, 59		
orthogonale, 51	verallgemeinerte, 59		
unitäre, 51	Drehebene, 59		
Abbildungseigenschaft	Drehkästchennormalform, 58		
universelle (UAE), 21	Drehung, 59, 88		
Abstand, 25, 37, 85	Dreiecksungleichung, 25		
Adjungierte, 41			
adjungierter Homomorphismus, 41	E. Schmidt		
affin	Orthogonalisierungsverfahren, 32		
Abbildung, 71	Ebene, 62		
Automorphismus, 72	projektive, 108		
Gruppe, $\frac{72}{}$	Einheitskreis, 113		
Hülle, 65	Endomorphismus		
Koordinatensystem, 71	nilpotenter, 11		
Raum, 61	normaler, 41		
Standardraum, 62	Normalform, 7		
Teilraum, 62	selbstadjungierter, 47		
Affinität, 72, 100–102	euklidischer Raum, 85		
allgemeine Lage, 66	E		
Approximation, 102	Fern-		
ausgeartete Paarung, 17	Gerade, 113		
Automorphismengruppe, 51	Punkt, 113 Fix-		
Automorphismus, 51			
affiner, 72	Gerade, 81		
	Punkt, 79, 81, 113		
Büschelmodell, 112	Raum, 79		
Basiswechsel	Richtung, 79		
unitärer, <mark>55</mark>	Form		
Bewegung, 85, 89	hermitesche, 26		
bilineare Fortsetzung, 18	Fortsetzung		
Bilinearform, 17	bilineare, 18		
symmetrische, 26	Fourierformel, 21		
Blockdiagonalmatrix, 13	Fundamentalmatrix, 18		
cartesisches Koordinatensystem, 85	gemeinsames Lot, 86		
Chauchy-Schwarzsche Ungleichung, 27	Gerade, 62		
Chadeny-Denwarzbene Ongretenung, 21	Geradentreue, 81		
Darstellungsmatrix, 27	Gram-Schmidt, 32		
Diagonalmatrix, 7	Gruppe		
Block-, 13	affine, 72		

algebraische, 105	Lage	
orthogonale, 51	allgemeine, 66	
unitäre, <mark>51</mark>	linear	
	Abbildung, 41	
Hülle	Varietät, 62	
affine, 65	Lorenzgruppe, 51	
projektive, 107	Lot, 37	
Halb-	gemeinsames, 86	
Achse, 99	Lotfußpunkt, 37, 86	
Achsenlänge, 99	1 , ,	
Haupt-	Matrix	
Achse, 99	hermitesche, 47	
Achsentransformation, 99	Jacobi-, 103	
Raum, 7	Matrizengruppe	
hermitesche Form, 26	algbraische, 105	
Hermitezität, 27	Metrik, 25	
Homogenität, 25	diskrete, 25	
Hyperebene, 59, 62, 100, 103, 108	Minimalpolynom, 8	
Durchschnitt, 103	Mittelpunkt, 97	
projektive, 108	Morphismus, 51	
Hyperfläche, 99, 100	affiner Räume, 71	
71	Multi-	
Invariante	Index, 93	
affine, 102	Linearität, 21	
Isometrie, 51, 85	,	
Isomorphismus	Näherung, 102	
affiner Räume, 72	Nilpotenz, 11	
Iwasawa-Zerlegung, 36	Norm, 25	
<i>3 3</i> ,	normaler Endomorphismus, 41	
Jacobi-Matrix, 99, 103	Normalform, 55, 88	
Jordan-	Jordansche, 13, 14	
Block, 14	normierter Raum, 25	
Kästchen, 12–14		
Normalform, 13, 14	orthogonal, 31	
	Abbildung, 51	
Komplement	Gruppe, 51	
orthogonales, 36, 38	Teilräume, 86	
Koordinaten	Orthogonal-	
homogene, 110	Basis (OGB), 20	
projektive, 109	Raum, 38	
Koordinaten-	System, 31	
Abbildung, 109	Orthonormalbasis (ONB), 20	
Darstellung, 71		
System, 109	Paarung, 17	
Vektor, 71	ausgeartete, 17	
Koordinatensystem	Parallelität, 67	
affines, 71	Parallelogrammgleichung, 29	
cartesisches, 85	Partition, 13	
Kurve, 100	Polynom	
,	charakteristisches, 8	
Längentreue, 52, 85	Positivdefinitheit, 25, 27	

Projektion	Teilraum
orthogonale, 36 , 37	affiner, 62
Projektivität, 110	projektiver, 107
Punkt, 61	Torus, 102
eigentlicher, 112	Torusfläche, 102
regulärer, 102, 103	Trägheitssatz von Sylvester, 96
singulärer, 102	Translation, 61, 80, 88
unabhängiger, 109	Translationsvektor, 61
9 9 7	•
uneigentlicher, 112	Transversalität, 103
Punktmodell, 113	unitär
Pythagoras	
Satz von, 36	Abbildung, 51
	Basiswechsel, 55
Quadrik, 93	Gruppe, 51
Mittelpunkt der, 97	universell
oskulierend, 102	Abbildungseigenschaft (UAE), 21
Schmieg-, 102	Untervektorraum, 7
	invarianter, 7
Raum	Ursprung, 71
affin, 111	Cispiung, 11
affiner, 61	Varietät
euklidischer, 85	lineare, 62
normierter, 25	Vektorraumpaarung, 17
,	Verbindungsgerade, 62
projektiv, 111	verbindungsgerade, 02
projektiver, 107	Winkel, 31
Regularität, 100	Winkeltreue, 52
Richtungsvektorraum, 61	Willkeitlede, 52
Cabiafarmanatria 26	
Schiefsymmetrie, 26	
Schnittpunkt, 108	
Sesqilinearform, 26	
Singularität, 100, 101	
Skalarprodukt, 26	
Spektral-	
Radius, 47	
Satz, 43	
Spektrum, 43	
Spiegelung, 59, 88	
Standardraum	
affiner, 62	
projektiver, 107	
Standardskalarprodukt, 27	
Streckung, 80	
Summenzerlegung, 13	
symmetrisch	
Bilinearform, 26	
Paarung, 20	
O 7	
Tangente, 99, 103	
Tangentialraum, 99, 100, 102, 103	
Taylorentwicklung, 100	