Московский физико-технический институт

Лабораторная работа по общей физике

2.2, 2.3 Изучение спектров атомов водорода и молекулярного спектра йода

выполнила студентка Б01-907 Юлия Прохорова

1. Цель работы

Исследование спектральных закономерностей в оптическом спектре водорода, спектра поглощения паров йода в видимой области; вычисление постоянной Ридберга для водорода по результатам измерения, энергии колебательного кванта молекулы йода и энергию диссоциации в основном и возбужденном состояниях.

2. В работе используются

Стеклянно-призменный монохроматор-спектрометр УМ-2, неоновая лампа, ртутная лампа ПРК-4 для градуировки, водородная лампа, кювета с кристаллами йода.

3. Теоретические положения

3.1. Водород

Длины волн спектральных линий водородоподобного атома описываются формулой

$$\frac{1}{\lambda_{mn}} = RZ^2(\frac{1}{n^2} - \frac{1}{m^2}),\tag{1}$$

где R - постоянная Ридберга, а m, n - целые числа.

Использование постулатов Бора с учётом кулоновского взаимодействия между ядром и электроном позволяет легко определить возможные энергетические состояния водородоподобного атома. Если считать ядро неподвижным, то эти энергетические состояния определяются выражением

$$E_n = -\frac{2\pi^2 m_e e^4 Z^2}{h^2} \frac{1}{n^2} \tag{2}$$

Знание энергетических состояний атома позволяет в соответствии с формулой (2) определить возможные частоты его излучения и объяснить наблюдаемые закономерности.

В данной работе изучается серия Бальмера, линии которой лежат в видимой области, и изотопический сдвиг между линиями водорода. Для серии Бальмера в формуле (1) n=2. Величина m для первых четырёх линий этой серии принимает значение 3, 4, 5, 6.

Рис. 1

Боровский радиус (радиус первой орбиты) для электрона в поле ядра с зарядом Z:

$$r_B = \frac{\hbar^2}{Zm_e e^2} \tag{3}$$

Энергия основного состояния:

$$E = -\frac{m_e e^4}{2\hbar^2} Z^2 = -RZ^2 \tag{4}$$

Аналогичным образом могут быть найдены энергии возбуждённых состояний. Дискретные значения энергии электрона в атоме получаются из того условия, что на длине орбиты, по которой движется электрон, должно укладываться целое число волн де Бройля. Если радиус орбиты равен r, то n-му состоянию электрона соответствует условие

$$2\pi r = \lambda n(n \in \mathbb{N}); m_e v_n = \frac{nh}{2\pi r}$$
(5)

Аналогично пп. (3)-(4):

$$r_B = \frac{n^2 \hbar^2}{Z m_e e^2} \tag{6}$$

$$E = -\frac{m_e e^4}{2\hbar^2} \frac{1}{n^2} Z^2 = -R \frac{Z^2}{n^2} \tag{7}$$

3.2. Йод

Молекулы обладают более багатым спектром возбужденных состояний, чем изолированные атомы:

$$E = E_{\text{эл}} + E_{\text{колеб}} + E_{\text{вращ}}$$

Соотношения соответствующих частот:

$$\omega_{\text{эл}}:\omega_{\text{колеб}}:\omega_{\text{вращ}}pprox 1:\sqrt{rac{m}{M}}:rac{m}{M}pprox 1:10^{-3}:10^{-6}$$

Оптические переходы связаны с излучением/поглощением квантов света сопровождаются изменением вращательного и колебательного состояний. Идет наложение колебательного спектра на электронный:

Рис. 2: Электронные и электронно-колебательные энергиетические уровни

 E_A - энергия возбуждения атома возникающая при переходе молекулы из состояния 1 в область непрерывного спектра 2.

Энергия чисто электронного перехода $h\nu_{\text{эл}}=E_2-E_1$

Граница схождения спектра, где происзодит переход молекулы в облатсь непрерывного спектра $h\nu_{{\scriptscriptstyle \Gamma}{\scriptscriptstyle D}}$

Все возможные линии поглощения для переходов между колебательными уровнями, налагающихся на два соседних электронных состояния можно на серии , соответствующие одному и тому же начальному состоянию. Эти серии называются сериями Деландра.

Рис. 3: Структура электронно-колебательного спеткра поглощения молекулы йода

Для наблюдения таких серий необходимо достаточно много молекул в начальном состоянии. Соотношения интенсивностей серий деландра пропорционально количеству молекул:

$$N_0: N_1: N_2 \approx 1: 1/3: 1/10$$

Энергетическое положение линий полгощения описывается выражением:

$$h\nu_{0,n_2} = (E_2 - E_1) + h\nu_2(n_2 + 1/2) - 1/2h\nu_1$$

Здесь пренебрегли ангармонизмом, для начальных серий можно пренебреч и энерг. расстояние между сериями:

$$h\nu_{0,n_2} - h\nu_{0,(n_2-1)} \approx h\nu_2$$

То есть равны колебательному кванту в возбужденном электронном состоянии.

Вся 1-я серия сдвинута в сторону меньших энергий на величину $h\nu_1$ на величину колебательного кванта основног состояния.

Рис. 4: Спектр поглощения паров йода

4. Экспериментальная установка

Для измерения длин волн спектральных линий в работе используется стеклянно-призменный монохроматорспектрометр УМ-2, предназначенный для спектральных исследований в диапазоне от 0,38 до 1 мкм

Спектрометр нуждается в дополнительной градуировке, проводящейся по спектрам неоновой и ртутной ламп с известными длинами волн спектральных линий.

Рис. 6: Установка для Йода

Рис. 5: Установка для Водорода

5. Выполнение работы

1) Выполним градуировку по неоновой и ртутной лампе:

Neon λ , \mathring{A}	Neon, °C	Neon λ , \mathring{A}	Neon, °C
5331	2182	6267	2690
5341	2193	6305	2705
5401	2232	6334	2716
5852	2498	6383	2736
5882	2515	6402	2741
5945	2548	6507	2780
5976	2561	6533	2792
6030	2587	6599	2814
6074	2606	6678	2842
6096	2616	6717	2856
6143	2635	6929	2919
6164	2644	7032	2948
6217	2670		

Таблица 1: Градуировка по неоновой лампе

Hg, A	Hg
4047	620
4358	1169
4916	1845
5461	2272
5770	2452
5791	2463
6234	2673
6907	2910

Таблица 2: Градуировка по ртутной лампе

2) Построим градуировочную кривую и запишем полученную зависимость:

$$\lambda = 8, 4 \cdot 10^{-17} \cdot \phi^6 - 8, 8 \cdot 10^{-13} \cdot \phi^5 + 3, 8 \cdot 10^{-9} \cdot \phi^4 - 8, 5 \cdot 10^{-6} \cdot \phi^3 + 10^{-2} \cdot \phi^2 - 5, 7 \cdot \phi + 5, 2 \cdot 10^3$$

Рис. 7: Градуировка по неону и ртути

3) По градуировочным графикам определим длины волн $H_{\alpha}, H_{\beta}, H_{\gamma}, H_{\delta}$

H line	H angle $^{\circ}$	$\lambda, \ \mathring{A}$
H_{α}	2800	6558,1
H_{β}	1790	4860,0
H_{γ}	1142	4339,1
H_{δ}	716	4078,0

4) По формуле $\frac{1}{\lambda_{mn}}=RZ^2(\frac{1}{n^2}-\frac{1}{m^2})$ определим постоянные Ридберга:

$$R_{\alpha} = 109787, 9 \text{cm}^{-1}$$

 $R_{\alpha} = 109739, 4 \text{cm}^{-1}$
 $R_{\alpha} = 109744, 1 \text{cm}^{-1}$

 $R_{\alpha} = 110348, 2 \text{cm}^{-1}$

Усредним $R = 109904, 9 \pm 256, 6$ см⁻¹

5) По градуировочной кривой определим длины волн поглащения йода

$$n_{1,0}-2656^{\circ}-6187,6$$
 \mathring{A} - самая длиноволновая $n_{1,5}-2551^{\circ}-5958,0$ \mathring{A} - 6-я по счету слева

 $n_{\rm rp} - 1973^{\circ} - 5057, 9 \ \mathring{A}$ - граница схождения спектра

6) Вычислим в электронвольтах энергию колебательного кванта возбужденного состояния молекулы йода: $h\nu_2 = (h\nu_{1.5} - h\nu_{1.0})/5 = 0.0155$ (эВ)

- 7) Используя $h\nu_1=0.027(\mathrm{9B})$ и энергию возбуждения атома $E_A=0.94(\mathrm{9B})~h\nu_{\mathrm{rp}}\approx 2.45(\mathrm{9B})~h\nu_{1,0}\approx 1.93(\mathrm{9B})$ вычислим:
 - Энергию электронного перехода $h\nu_{\text{эл}} = h\nu_{1,0} + h\nu_1 \approx 2,03$ (эВ)
 - Энергия диссоциации из основного состояния $D_1 = h \nu_{\rm rp} E_A \approx 1.52~({
 m pB})$
 - Энергия диссоциации из возбужденного состояния $D_2 = h \nu_{\rm rp} h \nu_{\rm эл} \approx 0.42~({
 m pB})$

6. Вывод

В данной работе исследованы сериальные закономерности в оптических спектрах водорода и йода. Вычислена постоянная Ридберга для водорода по результатам измерения. Вычислена энергия колебательного кванта молекулы йода и энергия диссоциации в основном и возбужденном состояниях.