

Intelligent Mobility Modeling and Simulation

Dr. P. Jayakumar, S. Arepally Analytics

Dr. D. Gorsich Chief Scientist

4 March 2015

maintaining the data needed, and c including suggestions for reducing	lection of information is estimated to completing and reviewing the collecti this burden, to Washington Headquauld be aware that notwithstanding an OMB control number.	ion of information. Send comments arters Services, Directorate for Info	s regarding this burden estimate or formation Operations and Reports	or any other aspect of the 1215 Jefferson Davis I	is collection of information, Highway, Suite 1204, Arlington		
1. REPORT DATE 04 MAR 2015		2. REPORT TYPE		3. DATES COVE 00-00-2015	red 5 to 00-00-2015		
4. TITLE AND SUBTITLE		5a. CONTRACT NUMBER					
Intelligent Mobility	y Modeling and Sim	5b. GRANT NUMBER					
		5c. PROGRAM ELEMENT NUMBER					
6. AUTHOR(S)		5d. PROJECT NUMBER					
P. Jayakumar; S. A	Arepally; D. Gorsich	5e. TASK NUMBER					
		5f. WORK UNIT NUMBER					
	ZATION NAME(S) AND AD M-TARDEC,6501 E 48397-5000	8. PERFORMING ORGANIZATION REPORT NUMBER					
9. SPONSORING/MONITO	RING AGENCY NAME(S) A	10. SPONSOR/MONITOR'S ACRONYM(S)					
			11. SPONSOR/MONITOR'S REPORT NUMBER(S)				
12. DISTRIBUTION/AVAILABILITY STATEMENT Approved for public release; distribution unlimited							
13. SUPPLEMENTARY NOTES ARC Conference							
14. ABSTRACT No Abstract. Brief	ing charts						
15. SUBJECT TERMS							
16. SECURITY CLASSIFIC	CATION OF:		17. LIMITATION OF ABSTRACT	18. NUMBER OF PAGES	19a. NAME OF RESPONSIBLE PERSON		
a. REPORT unclassified	b. ABSTRACT unclassified	c. THIS PAGE unclassified	Same as Report (SAR)	37	RESPONSIBLE PERSON		

Report Documentation Page

Form Approved OMB No. 0704-0188

Contents

- 1. Mobility Autonomy Latency Relationship
- 2. Machine Human Partnership
- 3. Development of Shared Control Simulation Capability
- 4. Conclusion

1. Mobility - Autonomy - Latency Relationship

Problem Statement

Trade space study of Mobility vs. Autonomy vs. Latency

What is the Relation between:

'Design' Variables:

- Delays
- Communication
- Hardware
- Human
- Autonomy

Objective:

- Mobility
- Cost
- Power
- Weight
- Reliability

Identify means of enhancing mobility

Data Sources

Degree of Autonomy	Teleop	Autonomous		
Data Source	Kiosk	Analytical Simulation		
Vehicle	Talon	HMMWV		
Max Speed	5 mph	67 mph		
Path Length	300 m	500 m		
Latency	0 − 700 ms ← CERDEC provide realistic	0 0000		
Source of Latency	Composite (mostly camera sensor)	Sensor and Controller		

Teleop Performance of Path Following @ < 5 mph

Full Autonomy Performance of Obstacle Avoidance @ 45 mph

- Full autonomy
- Obstacle avoidance
- High speed (45 mph)
- Maintain vehicle stability
- Navigate to minimum time
- Simulation based
- 400 runs

Mobility vs. Autonomy vs. Latency Comparison

^{*}Normalized Mobility = Minimum Possible Time / Actual Completion Time

15 m/s

$20 \, \text{m/s}$

Control Delay

Control Delay

0 100 200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400 1500 1600 1700 1800 1900 2000 1100 41.74 40.51 42.20 43.34 43.39 43.83 44.34 45.29 45.92 45.14 20.74 20.10 20.10 20.77 20.77 22.11 10.05 10.05 10.05 10.05 10.05 1200 41.92 42.26 43.28 43.08 44.15 44.51 45.65 45.83 44.92 20.70 20.10 20.10 20.77 20.77 21.44 1300 42.52 42.61 43.11 43.54 43.78 44.76 44.96 20.77 20.77 20.77 21.44 10.05 10.05 10.0 1400 43.20 43.11 43.46 43.99 44.54 44.92 20.77 20.77 20.77 20.77 21.44 10.05 10.00 2000 20.77 20.77 20.77 21.44 22.78 10.05 10

100m Lidar Range, 10m update spacing

- Green = successful run with numerical value indicating travel time
- Symmetric pattern of results indicates that combined latency value is relevant parameter
- Increased vehicle speed results in decreased region of success

Latency Compensation to Improve Fully Autonomous Mobility

- Latency can be compensated for within the algorithm
- Compensated latent system recovers majority of the performance of a zero-latency system

Without Delay Compensation

With Delay Compensation

Control Delay

0 100 200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400 1500 1600 1700 1800 1900 2000
0 33.85 33.89 33.97 34.08 34.24 34.67 35.00 35.30 40.15 40.64 40.79 41.16 41.62 42.09 42.33 43.03 43.42 44.22 45.03 45.29 45.16
100 33.97 34.01 34.10 34.41 34.61 34.88 35.31 35.59 35.50 41.02 41.22 41.45 43.64 43.47 43.83 44.09 44.81 45.07 47.38 46.02 45.68
100 34.10 34.37 34.49 34.67 34.95 35.53 55.27 40.54 40.90 41.30 42.02 46.54 43.00 43.93 44.54 44.85 45.04 44.92 46.02 45.99 45.33
100 34.16 34.46 34.65 34.91 39.80 36.64 40.54 41.29 42.01 42.14 43.12 43.50 43.87 44.18 44.31 44.72 44.96 45.61 46.65 46.27 46.07
100 34.61 34.77 35.39 35.93 35.93 40.74 36.34 41.55 41.98 42.08 43.15 43.38 43.60 44.13 44.69 44.73 45.84 45.76 47.16 46.48 46.10 20.77
100 39.52 39.85 36.17 40.92 41.37 41.90 41.71 42.76 42.67 43.08 42.36 43.82 44.73 45.04 45.99 20.77 10.05 10.05 10.05
100 39.52 39.85 36.17 40.92 41.37 41.90 41.71 42.76 42.67 43.08 42.36 43.82 44.73 45.04 45.39 20.77 10.05 10.05 10.05
100 41.74 40.51 42.20 43.24 33.22 43.55 43.60 43.95 44.30 45.93 45.24 44.86 45.64 25.63 20.77 20.77 20.77 20.77 20.77 20.77 20.77 20.77 20.77 20.77 20.77 20.70 20.77
11.00 41.74 40.51 42.20 43.34 43.39 43.83 44.52 45.83 44.92 44.30 45.93 45.43 45.84 45.64 45.64 40.05 10.

Control Delay

0 100 200 30.0 400 500 600 700 800 900 1100 1100 1200 1300 1400 1500 1600 1700 1800 1900 2000 33.79 33.82 33.63 33.63 33.74 33.81 33.80 34.00 33.94 33.73 33.83 33.93 33.98 34.01 34.12 34.14 34.43 34.04 34.09 34.35 34.35 33.99 33.97 34.13 34.12 34.21 33.76 33.99 34.20 34.06 34.43 34.25 34.06 34.38 34.39 33.97 34.13 34.12 34.21 33.76 33.99 34.20 34.06 34.43 34.45 34.85 33.09 33.84 33.86 33.86 33.86 33.87 33.87 33.85 33.73 33.85 33.97 34.13 34.12 34.23 34.03 34.10 34.06 34.16 34.38 34.45 34.85 34.00 34.00 34.02 33.97 33.37 33.85 33.97 34.13 34.12 34.23 34.03 33.76 34.08 34.22 34.06 34.36 34.38 34.45 34.85 34.00 34.00 34.02 33.97 33.75 33.73 33.74 33.85 33.95 34.05 34.10 34.17 33.86 33.86 34.12 34.23 34.38 34.23 34.28 34.47 38.81 35.02 35.17 34.18 34.19 33.85 33.97 34.13 34.29 34.48 34.59 34.49 34.85 34.99 34.19 34.20 34.88 34.29 34.89 33.99 34.10 34.06 34.46 34.26 34.47 34.81 35.02 35.17 34.18 34.19 34.28 34.89 34.99 34.89 34.89 34.89 34.89 34.89 34.89 34.89 34.89 34.89 34.89 34.89 34.89 34.89 34.89 34.89 34.89 34.99 34

15 m/s, 100m Lidar Range, 10m update spacing

Delay

Sensor

- Green = successful run with numerical value indicating travel time
- Symmetric pattern of uncompensated results indicates that combined latency value is relevant parameter
- Compensating for delays expands region of success
- Travel time for 4s composite compensated delay is equivalent to ~800ms of uncompensated delay

Trade Space Summary

- Teleop is inferior to full autonomy
 - Teleop completion time increases with latency
 - Teleop speed decreases with latency
 - Full autonomy speed & time are robust against latency
 - Full autonomy can compensate for latency
 - Full autonomy can work at high speeds
 - However, full autonomy may not be realizable
- Hence, a high degree of (semi-) autonomy recommended

2. Machine – Human Partnership

Problem: Machine – Human Partnership

- Q1: Can a remote human in conjunction with a machine beat a human or human team in their environment?
- Q2: How do we identify those military skills that are possible?
- Q3: What feedback (visual: direct, birdseye view, audio) does the remote human need for adequate SA?

Experiment Description

- Investigate the mobility performance of a HMMWV driven by
 - an on-board driver
 - a remote driver
- Drive the vehicle on smooth and rough roads and evaluate limiting performance corresponding to each driving mode
- Compare remote-driver mobility vs. on-board driver mobility over each of the two roads

Smooth Road

Rough Road (3 in rms)

Assumptions

 Vehicles driven by on-board driver and remote driver are identical

- Remote driver mode has ideal
 - Sensor suite
 - Perception / Processor capability
 - Communication network
 - Situational awareness
 - Zero latency
 - Wide bandwidth

CERDEC models can inform changes to these assumptions

OR

CERDEC research can provide these conditions in the future or under certain scenarios?

- Benefit
 - Vehicle design elements in manned vehicles can be modified or eliminated in unmanned vehicles

Mobility Limiting Conditions

- Vehicle limiting conditions applicable to both driving modes
 - Engine limit
 - Brake limit
 - Tire limit
 - Stability limit
 - Structural durability limit
- Driver limiting condition applicable to on-board driver mode only
 - Human vibration limit

Speed Profiles of On-Board and Remote Drivers

- On-board driver mode is significantly hampered by vibration limit on rough road
- Therefore, remote driver mode performs significantly better than on-board driver mode

Rough Road Driving: On-Board vs. Remote Driver

On-Board Driver (16 mph)

Movies

Remote Driver (50 mph)

Machine – Human Partnership Summary

- It is hypothesized that a remote human in conjunction with a machine can beat a human or human team in their environment.
- On smooth roads, remote driver mobility is shown to be equal or better than on-board driver mobility.
- On rough roads, remote driver mode is shown to perform significantly better than on-board driver mode.
- In addition, remotely driven vehicle design can be modified and light weighted resulting in further performance enhancement.
- These results have been derived under **ideal** remote operating conditions such as adequate situational awareness, latency-free communication network, and others as listed.

3. Development of Shared Control Simulation Capability

Semi-Autonomous UGV Simulation

- Proof-of-concept software being created at TARDEC
 - Intent is to test feasibility of computer simulation of all components of a semi-autonomous UGV
 - Simulation Components: human operator model, autonomous control algorithm, shared-control algorithm, vehicle and sensor modeling
 - Components being integrated obtained from currently and previously funded work as well as open source software / models
- JPL ROAMS being modified to TARDEC specifications as potential production software for high-fidelity semi-autonomous system research
 - Incorporating new terramechanics models, human operator modeling, autonomous control, and shared-control algorithms tested in the TARDEC proof-of-concept software

Proof-of-Concept Semi-Autonomous Simulation

Sensor Data Models

Items in red are areas where CERDEC can inform TARDEC simulations

NASA/JPL ROAMS Capabilities Summary

- Vehicle Platforms: Single and multi-vehicle simulations; parameterized model templates
- Motion: Vehicle mobility, arm models, wheel/soil dynamics slippage/sinkage
- Hardware models: Kinematics, dynamics, motors, encoders, IMU, inertial sensors
- Camera sensors: Image synthesis for cameras with non-idealities, rover and terrain shadows
- Environment: SimScape synthetic, empirical & analytic terrains, ephemerides interface for sun position
- Closed-loop visualization: Dspace 3D graphics (CAD/auto-generated vehicle models), data monitoring
- Workstation/embedded use: C++ & Python interface for configuring and closing the loop with software; Stand-alone Monte-Carlo capability.
- Faster than real-time: 6x dynamics, sub-second camera image synthesis
- White and black box simulation modes

Driver Cognitive Model in ACT-R

ACT-R Cognitive Architecture

- High-level computational model of human cognition
- Developed at Carnegie Mellon University by group led by John Anderson
- Almost 40 years of continuous development
- Validated and updated based on human experimentation, brain imaging, and other studies
- Broad base of users
 - US Govt users include: AFRL, ARL, NASA Ames, NRL, NUWC, NIST, ONR, Sandia Natl Lab

Driver Model

- Existing driver model being leveraged for current effort
- Developed by Salvucci, et al. at Drexel University (http://cog.cs.drexel.edu/act-r/index.html)
- Models sensory/motor performance of human driver or teleoperator

Model Details

- Driver model incorporates processing of changing visual locations with empirically derived vehicle control laws
 - Visual processing controlled by base ACT-R cognitive model parameters
 - Vehicle control laws part of Highway Driving Task Model

Cognitive Model Path Following with Latency

- Cognitive model can incorporate latency
 - Can incorporate camera link quality in future
- Latency effects on cognitive model performance mirror human test results

Vehicle speed: 20 m/s

Assume ideal teleop camera quality

Black = goal path

Blue = Cog. w/o delay

Green = Cog. w/ 250 ms delay Red = Cog. w/ 500 ms delay

Deviations from goal path increase nonlinearly with delay

UMich (ARC) Autonomy Algorithm Overview

Effect of Sensor Modeling on Autonomy

Accurate algorithm assessment and optimization require good sensor models

Mobility Scenarios and Metrics

NATO Double Lane Change

Off-Road Mobility

Urban Navigation

Mobility metrics

- Minimum time
- Maximum speed
- Go/NoGo

Failure modes

- Rollover
- Immobilization
- Collision

Intelligent Vehicle Mobility Simulation Roadmap

4. Conclusion

CERDEC Expertise

	Communication Network Modeling	Sensor Modeling
Teleoperation Simulation	For use in cognitive modeling and potential mitigation techniques such as predictive displays Communication link parameters Latency distribution Bandwidth (i.e. video quality) Incorporate scenario (urban, off-road)	For use in cognitive modeling and potential mitigation techniques such as predictive displays Sensor Data Parameters Camera model IMU / GPS models Sensor Processing Delays
Autonomy Simulation	For use if autonomous algorithm is using cloud-based computation or needs to be sent changed mission goals Communication link parameters Latency distribution Bandwidth (i.e. max data rate) Incorporate scenario (urban, off-road)	To accurately model inputs to autonomous algorithm and allow for possible mitigation Sensor Data Parameters LIDAR / Camera / Radar models IMU / GPS models Sensor Processing Delays

Near Term

- CERDEC runs communication network models for current mobility scenarios of interest and provides latency statistics for incorporation into TARDEC models
 - LOS and beyond-LOS links for teleoperation in urban and off-road environments; single operator / single vehicle
 - Latency statistics
- Determine what/whether appropriate CERDEC sensor models can be provided in a form usable by current TARDEC simulation software

Longer Term

- Investigate possibility for co-simulation between CERDEC and TARDEC software for mobility simulation
- Develop complex scenarios and vehicle teaming for mobility simulation