

HEXFET® Power MOSFET

V _{DSS}	100	V
$R_{DS(on)}$ max (@ V_{GS} = 10 V)	6.0	mΩ
Q _{g (typical)}	33	nC
R _{g (typical)}	0.92	Ω
I _D (@T _{C (Bottom)} = 25°C)	105	A

 $\stackrel{\text{results in}}{\Rightarrow}$

Applications

- Primary Switch for High Frequency 48V/60V Telecom DC-DC Power Supplies
- Secondary Side Synchronous Rectifier
- Hot Swap and Active O-Ring

Features

Low $R_{DS(ON)}$ (< 6.0 m Ω)
Low Thermal Resistance to PCB (<0.95°C/W)
100% Rg Tested
Low Profile (<1.05 mm)
Industry-Standard Pinout
Compatible with Existing Surface Mount Techniques
RoHS Compliant, Halogen-Free
MSL1

Benefits

Dellellis
Lower Conduction Losses
Increased Power Density
Increased Reliability
Increased Power Density
Multi-Vendor Compatibility
Easier Manufacturing
Environmentally Friendlier
Increased Reliability

Base part number	Package Type	Standard Pack		Orderable Part Number
		Form Quantity		
IRFH7188PbF	PQFN 5mm x 6 mm	Tape and Reel	4000	IRFH7188TRPbF

Absolute Maximum Ratings

	Parameter	Max.	Units
V_{GS}	Gate-to-Source Voltage	± 20	V
I _D @ T _A = 25°C	Continuous Drain Current, V _{GS} @ 10V	18	
I _D @ T _{C(Bottom)} = 25°C	Continuous Drain Current, V _{GS} @ 10V	105	
I _D @ T _{C(Bottom)} = 100°C	Continuous Drain Current, V _{GS} @ 10V	66	A
I _{DM}	Pulsed Drain Current ①	210	
P _D @T _A = 25°C	Power Dissipation	3.8	W
P _D @T _{C(Bottom)} = 25°C	Power Dissipation	132	
Linear Derating Factor		0.03	W/°C
T _J	Operating Junction and	-55 to + 150	°C
T _{STG}	Storage Temperature Range		

Notes ① through ⑥ are on page 9

Static @ T_J = 25°C (unless otherwise specified)

	Parameter	Min.	Тур.	Max.	Units	Conditions
BV _{DSS}	Drain-to-Source Breakdown Voltage	100			V	$V_{GS} = 0V, I_D = 250\mu A$
$\Delta BV_{DSS}/\Delta T_{J}$	Breakdown Voltage Temp. Coefficient		61		mV/°C	Reference to 25°C, I _D = 1mA
R _{DS(on)}	Static Drain-to-Source On-Resistance		5.0	6.0	mΩ	$V_{GS} = 10V, I_D = 50A$ ③
$V_{GS(th)}$	Gate Threshold Voltage	2.0		3.6	V	$V_{DS} = V_{GS}, I_{D} = 150 \mu A$
$\Delta V_{GS(th)}$	Gate Threshold Voltage Coefficient		-5.6		mV/°C	
I _{DSS}	Drain-to-Source Leakage Current			1.0	μA	$V_{DS} = 80V, V_{GS} = 0V$
I _{GSS}	Gate-to-Source Forward Leakage			100	nA	V _{GS} = 20V
	Gate-to-Source Reverse Leakage			-100		$V_{GS} = -20V$
gfs	Forward Transconductance	109			S	$V_{DS} = 25V, I_{D} = 50A$
Q_g	Total Gate Charge		33	50		
Q_{gs1}	Pre-Vth Gate-to-Source Charge		6.5			$V_{DS} = 50V$
Q_{gs2}	Post-Vth Gate-to-Source Charge		2.1		nC	$V_{GS} = 10V$
Q_{gd}	Gate-to-Drain Charge		11			I _D = 50A
Q_{godr}	Gate Charge Overdrive		13.4			
Q_{sw}	Switch Charge (Q _{gs2} + Q _{gd})		13.1			
Q _{oss}	Output Charge		101		nC	$V_{DS} = 50V$, $V_{GS} = 0V$
R_G	Gate Resistance		0.92		Ω	
$t_{d(on)}$	Turn-On Delay Time		6.7			$V_{DD} = 50V, V_{GS} = 10V$
t _r	Rise Time		14		ns	I _D = 50A
$t_{\text{d(off)}}$	Turn-Off Delay Time		12			$R_G = 1.0\Omega$
t _f	Fall Time		4.5			
C _{iss}	Input Capacitance		2116			V _{GS} = 0V
C _{oss}	Output Capacitance		1074		pF	$V_{DS} = 50V$
C_{rss}	Reverse Transfer Capacitance		18			f = 1.0MHz

Diode Characteristics

	Parameter	Min.	Тур.	Max.	Units	Conditions
Is	Continuous Source Current			105	Α	MOSFET symbol
	(Body Diode)					showing the
I _{SM}	Pulsed Source Current			210		integral reverse
	(Body Diode) ①					p-n junction diode.
V_{SD}	Diode Forward Voltage		0.8	1.3	V	$T_J = 25^{\circ}C, I_S = 50A, V_{GS} = 0V$ ③
t _{rr}	Reverse Recovery Time		50	75	ns	$T_J = 25^{\circ}C$, $I_F = 50A$, $V_{DD} = 50V$
Q_{rr}	Reverse Recovery Charge		75	113	nC	di/dt = 100A/μs ③

Avalanche Characteristics

	Parameter	Тур.	Max.	Units
E _{AS (Thermally limited)}	Single Pulse Avalanche Energy ②		493	mJ
I _{AR}	Avalanche Current ①		18	Α

Thermal Resistance

	Parameter	Тур.	Max.	Units
$R_{\theta JC}$ (Bottom)	Junction-to-Case ④		0.95	
R _{θJC} (Top)	Junction-to-Case 4		21	°C/W
$R_{\theta JA}$	Junction-to-Ambient ⑤		33	
R _{θJA} (<10s)	Junction-to-Ambient ®		22	

Fig 1. Typical Output Characteristics

Fig 3. Typical Transfer Characteristics

Fig 5. Typical Capacitance vs. Drain-to-Source Voltage

Fig 2. Typical Output Characteristics

Fig 4. Normalized On-Resistance vs. Temperature

Fig 6. Typical Gate Charge vs. Gate-to-Source Voltage

Fig 7. Typical Source-Drain Diode Forward Voltage

Fig 9. Maximum Drain Current vs. Case Temperature

Fig 8. Maximum Safe Operating Area

Fig 10. Threshold Voltage vs. Temperature

Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Case

Fig 12. Typical Avalanche Current vs. Pulse Width

Fig 13. On-Resistance vs. Gate Voltage

Fig 14. Maximum Avalanche Energy vs. Drain Current

Fig 15. Peak Diode Recovery dv/dt Test Circuit for N-Channel HEXFET® Power MOSFETs

Fig 16a. Unclamped Inductive Test Circuit

Fig 17a. Switching Time Test Circuit

Fig 18. Gate Charge Test Circuit

Fig 16b. Unclamped Inductive Waveforms

Fig 17b. Switching Time Waveforms

Fig 19. Gate Charge Waveform

PQFN 5x6 Outline "B" Package Details

DIM	DIM MILLIMITERS			ICH	
SYMBOL	MIN	MAX	MIN	MAX	
А	0.800	0.900	0.0315	0.0543	
A1	0.000	0.050	0.0000	0.0020	
A3	0.20	0 REF	0.007	9 REF	
ь	0.350	0.470	0.0138	0.0185	
b1	0.025	0.125	0.0010	0.0049	
b2	0.210	0.410	0.0083	0.0161	
b3	0.150	0.450	0.0059	0.0177	
D	5.00	O BSC	0.1969 BSC		
D1	4.75	O BSC	0.1870 BSC		
D2	D2 4.100		0.1614	0.1693	
E	6.00	O BSC	0.2362 BSC		
E1	5.75	O BSC	0.2264 BSC		
E2	3.380	3.780	0.1331 0.14		
е	1.27	0 REF	0.0500 RE		
e1	2.80	O REF	0.1102 REF		
K	1.200	1.420	0.0472	0.0559	
L	0.710	0.900	0.0280	0.0354	
Р	0°	12°	0°	12°	
R	0.200	REF	0.0079 REF		
R2	0.150	0.200	0.0059	0.0079	

Note:

- Dimensions and toleranceing confirm to ASME Y14.5M-1994
- Dimension L represents terminal full back from package edge up to 0.1mm is acceptable
- Coplanarity applies to the expose Heat Slug as well as the terminal
- 4. Radius on terminal is Optional

For more information on board mounting, including footprint and stencil recommendation, please refer to application note AN-1136: http://www.irf.com/technical-info/appnotes/an-1136.pdf

For more information on package inspection techniques, please refer to application note AN-1154:

PQFN 5x6 Part Marking

Note: For the most current drawing please refer to IR website at http://www.irf.com/package/

PQFN 5x6 Tape and Reel

REEL DIMENSIONS Reel Diameter Reel Width (WI)

TAPE DIMENSIONS

CODE	DESCRIPTION
Ao	Dimension design to accommodate the component width
Во	Dimension design to accommodate the component lenght
Ko	Dimension design to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

Note: All dimension are nominal

Package Type	Reel Diameter (Inch)	QTY	Reel Width W1 (mm)	Ao (mm)	Bo (mm)	Ko (mm)	P1 (mm)	W (mm)	Pin 1 Quadrant
5 X 6 PQFN	13	4000	12.4	6.300	5.300	1.20	8.00	12	Q1

Note: For the most current drawing please refer to IR website at http://www.irf.com/package/

Qualifiction Information[†]

Qualification Level	Industrial (per JEDEC JESD47F ^{††} guidelines)		
Moisture Sensitivity Level	PQFN 5mm x 6mm	MSL1 (per JEDEC J-STD-020D ^{††)}	
RoHS Compliant	Yes		

- † Qualification standards can be found at International Rectifier's web site: http://www.irf.com/product-info/reliability/
- †† Applicable version of JEDEC standard at the time of product release.

Notes:

- ① Repetitive rating; pulse width limited by max. junction temperature.
- ② Starting $T_J = 25$ °C, L = 3.0mH, $R_G = 50\Omega$, $I_{AS} = 18$ A.
- 3 Pulse width \leq 400 μ s; duty cycle \leq 2%.
- \P R₀ is measured at T_J of approximately 90°C.
- When mounted on 1 inch square PCB (FR-4). Please refer to AN-994 for more details: http://www.irf.com/technical-info/appnotes/an-994.pdf

Revision History

Date		Comments		
12/12/14	•	Diode Charact. Table— Corrected Typ and Max values for Trr/Qrr on page 2.		
12/19/14	•	Updated POD for PQFN 5X6-OPTION B to match IR Web site on page 7 and Tape & Reel on page 8		
04/29/15	•	Static Table—Gate Charge—Qgodr—Corrected typo error from 24nC to 13.4nC and Switch Time—All Typical values (Tdon, Trise, Tdoff & Tfall) are revised— page 2 Fig 10—Vgsth vs Temp — Replaced with corrected curve—page 4 Updated POD for PQFN 5X6-OPTION B to match IR Web site on page 7 and Tape & Reel on page 8		

IR WORLD HEADQUARTERS: 101 N. Sepulveda Blvd., El Segundo, California 90245, USA

To contact International Rectifier, please visit http://www.irf.com/whoto-call/

IMPORTANT NOTICE

The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics ("Beschaffenheitsgarantie").

With respect to any examples, hints or any typical values stated herein and/or any information regarding the application of the product, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation warranties of non-infringement of intellectual property rights of any third party.

In addition, any information given in this document is subject to customer's compliance with its obligations stated in this document and any applicable legal requirements, norms and standards concerning customer's products and any use of the product of Infineon Technologies in customer's applications.

The data contained in this document is exclusively intended for technically trained staff. It is the responsibility of customer's technical departments to evaluate the suitability of the product for the intended application and the completeness of the product information given in this document with respect to such application.

For further information on the product, technology, delivery terms and conditions and prices please contact your nearest Infineon Technologies office (www.infineon.com).

WARNINGS

Due to technical requirements products may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies office.

Except as otherwise explicitly approved by Infineon Technologies in a written document signed by authorized representatives of Infineon Technologies, Infineon Technologies' products may not be used in any applications where a failure of the product or any consequences of the use thereof can reasonably be expected to result in personal injury.