Introduction to C programming Basic examples for the chipkit mx4 board

Dimitri de Smet

UCL

22 septembre 2017

Reminders

- Computer architecture
- Code/compile/program
- Your computer board

Today's plan

- C language examples
- Tools installation and exercices

Softwares

- MPLAB X IDE
- XC32 compiler

Download and intall the last version under the "Download Archive" tab.

```
#include "main.h"
#include <stdio.h>
#include "delay.h"
#include "PmodCLP.h"
#include "analogInputs.h"
void main (void)
    ex16(); // Change it from ex01 to ex17
```

- ① Comments : //
- Main function : void main(void)
- 3 An instruction line ends with ';'
- 4 Functions and levels of abstraction
 - Hierarchy

```
void ex01(void)
{
    initIO();
    setLeds(0xa);
}
```

- ① Digital outputs
- 2 Arguments of a function between '()'
- 3 Hexa notation
- 4 Levels of abstraction
 - Modularity
- 5 Function initIO()

```
void ex02(void)
{
    initlO();
    if(getButton1())
       setLeds(0b0011);
    else
       setLeds(0b1100);
}
```

- Digital intputs
- **2** if(...) ... else
- 3 Binary notation
- 4 The main function is executed once

```
void ex03(void)
{
    initlO();
    while(1){
        if(getButton1())
            setLeds(0b0011);
        else
            setLeds(getButton2());
    }
}
```

- $\mathbf{0}$ while $\mathbf{(1)} = \mathbf{infinite}$ loop
- 2 setLeds(getButton2());

```
void ex04(void)
    char even Bits = 0 \times 0a:
    char oddBits = 0 \times 05;
    initIO();
    while (1) {
         if( getButton1() && getButton2() )
              setLeds(evenBits);
         else
              setLeds (oddBits);
```

- 1 Variable declaration (here type *char*)
- 2 Logic operators

Opérations logiques									
& &	AND	res	=	op1	& &	op2;			
11	OR	res	=	op1	\Box	op2;			
!	NOT	res	=	!op;					

Opérations conditionnelles									
==	Est égal à	res = op1 == op2;							
>=	Plus grand ou égal à	res = op1 >= op2;							
<=	Plus petit ou égal à	res = op1 <= op2;							
!=	Pas égal à	res = op1 != op2;							
>	Plus grand que (strict.)	res = op1 > op2;							
<	Plus petit que (strict.)	res = op1 < op2;							

• ? If((x > 4) && (x < 10))

```
void ex05(void){
    char leds = 0xa;

    initlO();
    while(1){
        leds = leds^0x3;
        setLeds(leds);
    }
}
```

- 1 Typical structure of our programs
- 2 CPU frequency : 10 MHz
- 3 Bitwise operators

Opérations bit-à-bit									
&	Bitwise AND	res = op1 & op2;							
- 1	Bitwise OR	res = op1 op2;							
~	Bitwise NOT	res = ~op;							
^	Bitwise XOR	res = op1 ^ op2;							
>>	Logical right shift	res = op1 >> int1;							
<<	Logical left shift	res = op1 << int1;							

- ??
 - leds = 0xaa & 0xf0
 - leds = 0xaa && 0xf0

```
void ex06(void){
    char leds = 0b1010;
    long cpt;
    initIO();
    while (1) {
             leds = leds^0b0011;
             setLeds(leds);
             for (cpt = 0; cpt < 200000; cpt++)
```

Execution time

Example 7 (1/2)

```
void ex07(void){
    char leds = 0;
    initlO();
    while(1){
        leds = leds^0xf;
        setLeds(leds);
        loseSomeTime(200000);
    }
```

Example 7 (2/2)

```
void loseSomeTime(long cptMax)
{
          long cpt;
          for(cpt = 0; cpt<cptMax; cpt++){ }
}</pre>
```

Modularity

```
void ex08(void){
    char leds = 0:
    initIO();
    init Delay();
    leds = 0:
    while (1) {
         leds = leds^0xf;
         setLeds(leds);
         DelayMs (300);
```

- 1 New functions provided by delay.h
 - initDelay()
 - DelayMs(int tms)
 - DelayUs(short tus)

```
void ex09(void){
   unsigned short adc;
   initlO();
   initAnalogInputs(0x01);

while(1){
    adc = readADC(0);
    setLeds(adc/64);
  }
}
```

- Analog inputs
- 2 10-bits conversion
- 4-bits display

```
void ex10(void)
{
    char strA[16] = "____LLSMF2018____";
    char strB[16] = "____Demo__code___";

    initlO();
    initLCD();
    writeLine(strA, 0);
    writeLine(strB, 1);
}
```

- 10 16 x 2 characters screen
- 2 Table of variable (here table of char)
- 3 functions provided by *PmodCLP.h*
 - void initLCD();
 - void writeLine(char * string, char line);
 - void clearScreen();
 - void shiftScreen(unsigned char right);

```
void ex11(void){
                                       unsigned short adc;
                                      char txt [16];
                                       initIO():
                                       initAnalogInputs(0×01);
                                       initLCD();
                                      while (1) {
                                                                            adc = readADC(0);
                                                                             setLeds(adc/64);
                                                                             sprintf(txt, "ADC<sub>\ullet</sub>: \ullet %4d\ullet\ullet\ullet\ullet\ullet\ullet\ullet\ullet\ullet\ullet\ullet\ullet\ullet\ullet\ullet\ullet\ullet\ullet\ullet\ullet\ullet\ullet\ullet\ullet\ullet\ullet\ullet\ullet\ullet\ullet\ullet\ullet\ullet\ullet\ullet\ullet\ullet\ullet\ullet\ullet\ullet\ullet\ullet\ullet\ullet\ullet\ullet\ullet\ullet\ullet\ullet\ullet\ullet\ullet\ullet\ullet\ullet\ullet\ullet\ullet\ullet\ullet\ullet\ullet\ullet\ullet\ullet\ullet\ullet\ullet\ullet\ullet\ullet\ullet\ullet\ullet\ullet\ullet\ullet\ullet\ullet\ullet\ullet\ullet\ullet\ullet\ullet\ullet\ullet\ullet\ullet\ullet\ullet\ullet\ullet\ullet\ullet\ullet\ullet\ullet\ullet\ullet\ullet\ullet\ullet\ullet\ullet\ullet\ullet\ullet\ullet\ullet\ullet\ullet\ullet\ullet\ullet\ullet\ullet\ullet\ullet\ullet\ullet\ullet\ullet\ullet\ullet\ullet\ullet\ullet\ullet\ullet\ullet\ullet\ullet\ullet\ullet\ullet\ullet\ullet\ullet\ullet\ullet\ullet\ullet\ullet\ullet\ullet\ullet\ullet\ullet\ullet\ullet\ullet\ullet\ullet\ullet\ullet\ullet\ullet\ullet\ullet\ullet\ullet\ullet\ullet\ullet\ullet\ullet\ullet\ullet\ullet\ullet\ullet\ullet\ullet\ullet\ullet\ullet\ullet\ullet\ullet\ullet\ullet\ullet\ullet\ullet\ullet\ullet\ullet\ullet\ullet\ullet\ullet\ullet\ullet\ullet\ullet\ullet\ullet\ullet\ullet\ullet\ullet\ullet\ullet\ullet\ullet\ullet\ullet\ullet\ullet\ullet\ullet\ullet\ullet\ullet\ullet\ullet\ullet\ullet\ullet\ullet\ullet\ullet\ullet\ullet\ullet\ullet\ullet\ullet\ullet\ullet\ullet\ullet\ullet\ullet\ullet\ullet\ullet\ullet\ullet\ullet\ullet\ullet\ullet\ullet\ullet\ullet\ullet\ullet\ullet\ullet\ullet\ullet\ullet\ullet\ullet\ullet\ullet\ullet\ullet\ullet\ullet\ullet\ullet\ullet\ullet\ullet\ullet\ullet\ullet\ullet\ullet\ullet\ullet\ullet\ullet\ullet\ullet\ullet\ullet\ullet\ullet\ullet\ullet\ullet\ullet\ullet\ullet\ullet\ullet\ullet\ullet\ullet\ullet\ullet\ullet\ullet\ullet\ullet\ullet\ullet\ullet\ullet\ullet\ullet\ullet\ullet\ullet\ullet\ullet\ullet\ullet\ullet\ullet\ullet\ullet\ullet\ullet\ullet\ullet\ullet\ullet\ullet\ullet\ullet\ullet\ullet\ullet\ullet\ullet\ullet\ullet\ulle
                                                                             writeLine(txt,0);
                                                                             sprintf(txt, "_{\sqcup \sqcup}U_{\sqcup}=_{\sqcup \sqcup}\%1.1f_{\sqcup}Volts_{\sqcup}", (float)
                                                                             writeLine(txt,1);
```

- function sprintf()
 - doc ==>here<==

```
void ex12(void){
    char leds = 0:
    short adc;
    initIO();
    initDelay();
    initAnalogInputs (1);
    while (1) {
             DelayMs( readADC(0) );
             leds \hat{} = 0xf;
             setLeds(leds);
```

Frequency command

```
void ex13(void){
    initlO(); initDelay();
    while (1) {
        if (getButton2()){
            setLeds(0xff);
            DelayUs (40);
            setLeds(0x00);
            DelayUs(10); }
        else{
            setLeds(0xff);
            DelayUs(10);
            setLeds(0x00);
            DelayUs( 40 ); }
```

1 Duty cycle command

```
void ex14(void){
    initIO();
    initDelay();
    initAnalogInputs (1);
    while (1) {
            setLeds(0xf);
            DelayUs( (long)(readADC(0)) );
            setLeds(0x0);
            DelayUs( 1023-(long)(readADC(0)));
```

- "Analog" output
- 2 Dimmer

```
void ex15(void){
    char leds;
    initlO();
    while(1){
        leds = 'G';
        setLeds(leds+1);
    }
}
```

1 ascii code

_				_			_			_			_	
1	(dc4)	036d	24h	\$	052d	34h	4	068d	44h	D	084d	54h	Т	100d
§	(nak)	037d	25h	%	053d	35h	5	069d	45h	Е	085d	55h	U	101d
	(syn)	038d	26h	&	054d	36h	6	070d	46h	F	086d	56h	v	102d
\$	(etb)	039d	27h	- 1	055d	37h	7	071d	47h	G	087d	57h	W	103d
1	(can)	040d	28h	- (056d	38h	8	072d	48h	н	088d	58h	x	104d
Ţ	(em)	041d	29h	-)	057d	39h	9	073d	49h	1	089d	59h	Y	105d
l	(eof)	042d	2Ah	*	058d	3Ah	:	074d	4Ah	J	090d	5Ah	Z	106d
←-	(esc)	043d	2Bh	+	059d	3Bh	;	075d	4Bh	K	091d	5Bh	[]	107d
_	(fs)	044d	2Ch	,	060d	3Ch	<	076d	4Ch	L	092d	5Ch	١.	108d
	(40)	0454	gnh		0614	2Dh		0774	4Dh	м	0034	5Dh	- 1	1094

Example 16 (1/2)

Example 16 (2/2)

```
setLeds(0);
while(1){
    for (i=0; i<5; i++){
        DelayMs(readADC(0)+100 );
        setLeds(table[i]);
    }
}</pre>
```

- Table
 - declaration and use

Example 17 (1/3)

```
void ex17(void){
    long a = 0, b = 0, c = 0, d = 0, op = 0;
    char selector = 0;
    char formula [16], results [16];
    initIO();
    init Delay();
    initAnalogInputs (1);
    initLCD();
    while (1) {
```

Example 17 (2/3)

```
setLeds(selector);
if (getButton2()){
    selector++:
    if (selector >2)
        selector = 0;
    DelayMs (500);
switch(selector){
    case 0:
        a = (long) readADC(0); break;
    case 1 :
        b = (long) readADC(0); break;
    case 2 :
        c = (long) readADC(0); break;
```

Example 17 (3/3)

```
if (b < 300)
    op = '+':
    d = a+c;
else if (b < 600){
    op = '-':
    d = a-c;
else{
    op = '*':
    d = a*c;
sprintf(formula, "\\d\d\\\cu\\\cdot\d\\\\\\\angle a, op, c);
sprintf(results, " = \sqrt{7}d, d);
writeLine(formula,0);
writeLine(results,1);
```

- A calculator
- Type casting