

IBULLSWAP

Smart Contract Review

Deliverable: Smart Contract Audit Report

Security Report

December 2021

Disclaimer

The information and views set out in this publication are those of the author(s) and do not necessarily reflect the official opinion of the Company. The content, conclusions and recommendations set out in this publication are elaborated in the specific for only project.

eNebula Solutions does not guarantee the authenticity of the project or organization or team of members that is connected/owner behind the project or nor accuracy of the data included in this study. All representations, warranties, undertakings and guarantees relating to the report are excluded, particularly concerning – but not limited to – the qualities of the assessed projects and products. Neither the Company nor any personating on the Company's behalf may be held responsible for the use that may be made of the information contained herein.

eNebula Solutions retains the right to display audit reports and other content elements as examples of their work in their portfolio and as content features in other projects with protecting all security purpose of customer. The report containing confidential information can be used internally by the Customer, or it can be disclosed publicly after all vulnerabilities fixed - upon a decision of the Customer.

© eNebula Solutions, 2021.

Report Summary

Title	IBULLSWAP Smart Contract Audit		
Project Owner	IBULLSWAP		
Туре	Public		
Reviewed by	Vatsal Raychura	Revision date	30/12/2021
Approved by	eNebula Solutions Private Limited	Approval date	30/12/2021
		Nº Pages	29

Overview

Background

IBULLSWAP requested that eNebula Solutions perform an Extensive Smart Contract audit of their MasterChef Smart Contract.

Project Dates

The following is the project schedule for this review and report:

- **December 30**: Smart Contract Review Completed (Completed)
- **December 30**: Delivery of Smart Contract Audit Report (Completed)

Review Team

The following eNebula Solutions team member participated in this review:

- Sejal Barad, Security Researcher and Engineer
- Vatsal Raychura, Security Researcher and Engineer

Coverage

Target Specification and Revision

For this audit, we performed research, investigation, and review of the smart contract of IBULLSWAP.

The following documentation repositories were considered in-scope for the review:

• IBULLSWAP Project: https://bscscan.com/address/0x2C6d58a9166E0AA7c3b5850774eCb01C152eB5b9#code

Introduction

Given the opportunity to review IBULLSWAP Project's smart contract source code, we in the report outline our systematic approach to evaluate potential security issues in the smart contract implementation, expose possible semantic inconsistencies between smart contract code and design document, and provide additional suggestions or recommendations for improvement. Our results show that the given version of smart contracts is ready to launch after resolving the mentioned issues, there are no critical or high issues found related to business logic, security or performance.

About IBULLSWAP: -

Item	Description
Issuer	IBULLSWAP
Website	https://www.ibullswap.finan
	<u>ce/</u>
Platform	Solidity
Audit Method	Whitebox
Latest Audit Report	December 30, 2021

The Test Method Information: -

Test method	Description
Black box testing	Conduct security tests from an attacker's perspective externally.
Grey box testing	Conduct security testing on code modules through the scripting tool, observing the internal running status, mining weaknesses.
White box testing	Based on the open-source code, non-open-source code, to detect whether there are vulnerabilities in programs such as nodes, SDK, etc.

The vulnerability severity level information:

Level	Description		
Critical	Critical severity vulnerabilities will have a significant effect on the		
	security of the DeFi project, and it is strongly recommended to fix the		
	critical vulnerabilities.		
High	High severity vulnerabilities will affect the normal operation of the DeFi		
	project. It is strongly recommended to fix high-risk vulnerabilities.		
Medium	Medium severity vulnerability will affect the operation of the DeFi		
	project. It is recommended to fix medium-risk vulnerabilities.		
Low	Low severity vulnerabilities may affect the operation of the DeFi project		
	in certain scenarios. It is suggested that the project party should		
	evaluate and consider whether these vulnerabilities need to be fixed.		
Weakness	There are safety risks theoretically, but it is extremely difficult to		
	reproduce in engineering.		

The Full List of Check Items:

Category	Check Item	
	Constructor Mismatch	
	Ownership Takeover	
	Redundant Fallback Function	
	Overflows & Underflows	
	Reentrancy	
	MONEY-Giving Bug	
Rasic Coding Rugs	Blackhole	
Basic Coding Bugs	Unauthorized Self-Destruct	
	Revert DoS	
	Unchecked External Call	
	Gasless Send	
	Send Instead of Transfer	
	Costly Loop	
	(Unsafe) Use of Untrusted Libraries	
	(Unsafe) Use of Predictable Variables	
	Transaction Ordering Dependence	
	Deprecated Uses	
Semantic Consistency Checks	Semantic Consistency Checks	
	Business Logics Review	

1		
	Functionality Checks	
	Authentication Management	
	Access Control & Authorization	
Advanced DeFi Scrutiny	Oracle Security	
Advanced Bell Scruding	Digital Asset Escrow	
	Kill-Switch Mechanism	
	Operation Trails & Event Generation	
	ERC20 Idiosyncrasies Handling	
	Frontend-Contract Integration	
	Deployment Consistency	
	Holistic Risk Management	
	Avoiding Use of Variadic Byte Array	
	Using Fixed Compiler Version	
Additional Recommendations	Making Visibility Level Explicit	
	Making Type Inference Explicit	
	Adhering To Function Declaration	
	Strictly	
	Following Other Best Practices	

Common Weakness Enumeration (CWE) Classifications Used in This Audit:

Category	Summary
Configuration	Weaknesses in this category are typically introduced during the configuration of the software.
Data Processing Issues	Weaknesses in this category are typically found in functionality that processes data.
Numeric Errors	Weaknesses in this category are related to improper calculation or conversion of numbers.
Security Features	Weaknesses in this category are concerned with topics like authentication, access control, confidentiality, cryptography, and privilege management. (Software security is not security software.)
Time and State	Weaknesses in this category are related to the improper management of time and state in an environment that supports simultaneous or near-simultaneous computation by multiple systems, processes, or threads.
Error Conditions, Return Values, Status Codes	Weaknesses in this category include weaknesses that occur if a function does not generate the correct return/status code, or if the application does not handle all possible return/status codes that could be generated by a function.
Resource Management	Weaknesses in this category are related to improper management of system resources.

Behavioral Issues	Weaknesses in this category are related to unexpected behaviors from code that an application uses.	
Business Logics	Weaknesses in this category identify some of the underlying problems that commonly allow attackers to manipulate the business logic of an application. Errors in business logic can be devastating to an entire application.	
Initialization and Cleanup	Weaknesses in this category occur in behaviors that are used for initialization and breakdown.	
Arguments and Parameters	Weaknesses in this category are related to improper use arguments or parameters within function calls.	
Expression Issues	Weaknesses in this category are related to incorrectly written expressions within code.	
Coding Practices	Weaknesses in this category are related to coding practices that are deemed unsafe and increase the chances that an ex pilotable vulnerability will be present in the application. They may not directly introduce a vulnerability, but indicate the product has not been carefully developed or maintained.	

Findings

Summary

Here is a summary of our findings after analyzing the IBULLSWAP's Smart Contract. During the first phase of our audit, we studied the smart contract source code and ran our in-house static code analyzer through the Specific tool. The purpose here is to statically identify known coding bugs, and then manually verify (reject or confirm) issues reported by tool. We further manually review business logics, examine system operations, and place DeFi-related aspects under scrutiny to uncover possible pitfalls and/or bugs.

Severity	No. of Issues
Critical	0
High	0
Medium	0
Low	3
Total	3

We have so far identified that there are potential issues with severity of **0 Critical**, **0 High**, **0 Medium**, **and 3 Low**. Overall, these smart contracts are well- designed and engineered.

Functional Overview

(\$) = payable function	[Pub] public
# = non-constant function	[Ext] external
	[Prv] private
	[Int] internal

- + [Int] IBEP20
 - [Ext] totalSupply
 - [Ext] decimals
 - [Ext] symbol
 - [Ext] name
 - [Ext] getOwner
 - [Ext] balanceOf
 - [Ext] transfer #
 - [Ext] allowance
 - [Ext] approve #
 - [Ext] transferFrom #
- + [Lib] SafeMath
 - [Int] tryAdd
 - [Int] trySub
 - [Int] tryMul
 - [Int] tryDiv
 - [Int] tryMod
 - [Int] add
 - [Int] sub
 - [Int] mul
 - [Int] div

- [Int] mod - [Int] sub - [Int] div - [Int] mod + [Lib] Address - [Int] isContract - [Int] sendValue # - [Int] functionCall # - [Int] functionCall # - [Int] functionCallWithValue # - [Int] functionCallWithValue # - [Int] functionStaticCall - [Int] functionStaticCall - [Int] functionDelegateCall # - [Int] functionDelegateCall # - [Prv] _verifyCallResult + [Lib] SafeBEP20 - [Int] safeTransfer # - [Int] safeTransferFrom # - [Int] safeApprove # - [Int] safeIncreaseAllowance # - [Int] safeDecreaseAllowance # - [Prv] _callOptionalReturn # + [Int] IIBullSwapReferral - [Ext] recordReferral # - [Ext] recordReferralCommission # - [Ext] getReferrer

+ Context - [Int] _msgSender - [Int] _msgData + Ownable (Context) - [Int] <Constructor> # - [Pub] owner - [Pub] renounceOwnership # - modifiers: onlyOwner - [Pub] transferOwnership # - modifiers: onlyOwner + ReentrancyGuard - [Pub] <Constructor> # + BEP20 (Context, IBEP20, Ownable) - [Pub] <Constructor> # - [Ext] getOwner - [Pub] name - [Pub] decimals - [Pub] symbol - [Pub] totalSupply - [Pub] balanceOf - [Pub] transfer # - [Pub] allowance - [Pub] approve # - [Pub] transferFrom # - [Pub] increaseAllowance # - [Pub] decreaseAllowance # - [Pub] mint # - modifiers: onlyOwner

- [Int] _transfer # - [Int] _mint # - [Int] _burn # - [Int] _approve # - [Int] _burnFrom # + IBullSwap (BEP20) - [Pub] <Constructor> # - [Pub] mint # - modifiers: onlyOwner - [Ext] delegates - [Ext] delegate # - [Ext] delegateBySig # - [Ext] getCurrentVotes - [Ext] getPriorVotes - [Int] _delegate # - [Int] _moveDelegates # - [Int] _writeCheckpoint # - [Int] safe32 - [Int] getChainId + MasterChef (Ownable, ReentrancyGuard) - [Pub] <Constructor> # - [Ext] poolLength - [Pub] add # - modifiers: onlyOwner - [Pub] set # - modifiers: onlyOwner - [Pub] getMultiplier - [Ext] pendingIbull - [Pub] canHarvest

- [Pub] massUpdatePools #
- [Pub] updatePool #
- [Pub] deposit #
 - modifiers: nonReentrant
- [Pub] withdraw #
 - modifiers: nonReentrant
- [Pub] emergencyWithdraw #
 - modifiers: nonReentrant
- [Int] payOrLockupPendingIbull #
- [Pub] approve #
 - modifiers: onlyOwner
- [Int] safeIbullTransfer #
- [Pub] setDevAddress #
- [Pub] setFeeAddress #
- [Pub] updateEmissionRate #
 - modifiers: onlyOwner
- [Pub] setIbullReferral #
 - modifiers: onlyOwner
- [Pub] setReferralCommissionRate #
 - modifiers: onlyOwner
- [Int] payReferralCommission #

Detailed Results

Issues Checking Status

1. Floating Pragma

- SWC ID:103Severity: Low
- Location: MasterChef.sol
- Relationships: CWE-664: Improper Control of a Resource Through its Lifetime
- Description: A floating pragma is set. The current pragma Solidity directive is ""^0.4.0"". It is recommended to specify a fixed compiler version to ensure that the bytecode produced does not vary between builds. This is especially important if you rely on bytecode-level verification of the code.

```
4
5 //SPDX-License-Identifier: None
6 pragma solidity >=0.4.0;
7
```

• Remediations: Lock the pragma version and also consider known bugs (https://github.com/ethereum/solidity/releases) for the compiler version that is chosen.

2. Block values as a proxy for time

- SWC ID:116Severity: Low
- Location: MasterChef.sol
- Relationships: CWE-829: Inclusion of Functionality from Untrusted Control Sphere
- Description: A control flow decision is made based on The block.timestamp environment variable. The block.timestamp environment variable is used to determine a control flow decision. Note that the values of variables like coinbase, gaslimit, block number and timestamp are predictable and can be manipulated by a malicious miner. Also keep in mind that attackers know hashes of earlier blocks. Don't use any of those environment variables as sources of randomness and be aware that use of these variables introduces a certain level of trust into miners.

```
address signatory = ecrecover(digest, v, r, s);

require(signatory != address(0), "IBULL::delegateBySig: invalid signature");

require(nonce == nonces[signatory]++, "IBULL::delegateBySig: invalid nonce");

require(now <= expiry, "IBULL::delegateBySig: signature expired");

return _delegate(signatory, delegatee);
```

• Remediations: Developers should write smart contracts with the notion that block values are not precise, and the use of them can lead to unexpected effects. Alternatively, they may make use oracles.

3. Weak Sources of Randomness from Chain Attributes

- SWC ID:120
- Severity: Low
- Location: MasterChef.sol
- Relationships: CWE-330: Use of Insufficiently Random Values
- Description: Potential use of "block.number" as source of randonmness. The environment variable "block.number" looks like it might be used as a source of randomness. Note that the values of variables like coinbase, gaslimit, block number and timestamp are predictable and can be manipulated by a malicious miner. Also keep in mind that attackers know hashes of earlier blocks. Don't use any of those environment variables as sources of randomness and be aware that use of these variables introduces a certain level of trust into miners.

```
708
                require(blockNumber < block.number, "IBULL::getPriorVotes: not yet determined");</pre>
             uint32 blockNumber = safe32(block.number, "IBULL::_writeCheckpoint: block number exceeds 32 bits");
781
793
            function safe32(uint n, string memory errorMessage) internal pure returns (uint32) {
                require(n < 2**32, errorMessage);</pre>
794
795
                return uint32(n);
902
                uint256 lastRewardBlock = block.number > startBlock ? block.number : startBlock;
938
              if (block.number > pool.lastRewardBlock && lpSupply != 0) {
939
                 uint256 multiplier = getMultiplier(pool.lastRewardBlock, block.number);
                  uint256 ibullReward = multiplier.mul(ibullPerBlock).mul(pool.allocPoint).div(totalAllocPoint);
940
                  accIbullPerShare = accIbullPerShare.add(ibullReward.mul(1e12).div(lpSupply));
941
              }
942
962
          function updatePool(uint256 _pid) public {
              PoolInfo storage pool = poolInfo[_pid];
963
              if (block.number <= pool.lastRewardBlock) {</pre>
964
                  return;
965
966
              }
              uint256 lpSupply = pool.lpToken.balanceOf(address(this));
967
              if (lpSupply == 0 | pool.allocPoint == 0) {
968
                  pool.lastRewardBlock = block.number;
969
970
                  return;
971
972
              uint256 multiplier = getMultiplier(pool.lastRewardBlock, block.number);
973
              uint256 ibullReward = multiplier.mul(ibullPerBlock).mul(pool.allocPoint).div(totalAllocPoint);
974
              ibull.mint(devAddress, ibullReward.div(10));
975
              ibull.mint(address(this), ibullReward);
976
              pool.accIbullPerShare = pool.accIbullPerShare.add(ibullReward.mul(1e12).div(lpSupply));
977
              pool.lastRewardBlock = block.number;
978
          }
```

- Remediations:
 - Using commitment scheme, e.g. RANDAO.
 - Using external sources of randomness via oracles, e.g. Oraclize. Note that this approach requires trusting in oracle, thus it may be reasonable to use multiple oracles.
 - Using Bitcoin block hashes, as they are more expensive to mine.

Automated Tools Results

Slither: -

```
HasterChef.pendingIbull(uint256,address) (MasterChef_New.sol#933-945) performs a multiplication on the result of a division:
-tbullReward = multiplier.mul(ibullPerBlock).mul(pool.sllocPoint).div(totalAllocPoint) (MasterChef_New.sol#940)
-accIbullPerShare = accIbullPerShare.add(ibullReward.mul(iei2).div(ipSupply)) (MasterChef_New.sol#941)
MasterChef_updatePool(uint256) (MasterChef_New.sol#962-978) performs a multiplication on the result of a division:
-bullReward = multiplier.mul(ibullPerBlock).mul(pool.sllocPoint).div(totalAllocPoint) (MasterChef_New.sol#973)
-pool.accIbullPerShare = pool.accIbullPerShare.add(ibullReward.mul(iei2).div(lpSupply)) (MasterChef_New.sol#976)
Reference: https://github.com/crytic/slither/wiki/Detector-Documentation#divide-before-multiply
Reentrancy in MasterChef.add(uint250,IBEP20,uint10,uint250,bool) (MasterChef_New.sol#896-912);
External calls:
- massupdatePools() (MasterChef_New.sol#906)
- bull.mint(devAddress, bullReward.div(10)) (MasterChef_New.sol#974)
- bull.mint(address(this),lbullReward) (MasterChef_New.sol#975)
- State variables written after the call(s):
- poolInfo_push(PoolInfo(_IpToReon, allocPoint,lastNewardSlock,0_depositFee8P,_harvestInterval)) (MasterChef_New.sol#904-911)
- totalAllocPoint = totalAllocPoint.add(_allocPoint) (MasterChef_New.sol#903)
- Reentrancy in MasterChef.deposit(uint256,uint256,address) (MasterChef_New.sol#981):
- External calls:
                           ncy in MasterChef.deposit(uint256,uint256,address) (MasterChef_New.sol#981-1884):

External calls:

- updatePool(ptd) (MasterChef_New.sol#984)

- tbull.mint(devAddress,lbullRemard.dlv(18)) (MasterChef_New.sol#974)

- tbull.mint(address(this),tbullRemard) (MasterChef_New.sol#974)

- tbull.mint(address(this),tbullRemard) (MasterChef_New.sol#986)

- payOrLockupPendingIbul(_ptd) (MasterChef_New.sol#988)

- tbull.mint(referral(massender_referrer) (MasterChef_New.sol#988)

- tbull.transfer(_to_anount) (MasterChef_New.sol#1875)

- tbull.mint(referrer,corwitsstonAnount) (MasterChef_New.sol#117)

- tbullReferral.recordReferralCorwitsstonChef_rer.corwitsstonAnount) (MasterChef_New.sol#118)

State variables written after the call(s):

- payOrLockupPendingIbul(_ptd) (MasterChef_New.sol#988)

- user.nextMarvestUnt() + block.timestamp.add(pool.harvestInterval) (MasterChef_New.sol#1861)

- user.rewardLockedUp = 0 (MasterChef_New.sol#980)

- user.rewardLockedUp = user.rewardLockedUp.add(pending) (MasterChef_New.sol#1858)

mcy in MasterChef.deposit(uint256,uint256,uddress) (MosterChef_New.sol#985-1864):
   eentrancy in Masterchef.deposit(uint236,uint236,address) (Masterchef_New.sol#981-1864):
External calls:
   External calls:

- updatePool(_pid) (MasterChef_New.sol#984)

- tbull.mint(devAddress, tbullReward div(18)) (MasterChef_New.sol#974)

- tbull.mint(devAddress, tbullReward) (MasterChef_New.sol#975)

- tbullReferral.recordReferral(nsg.sender, referrer) (MasterChef_New.sol#986)

- payOrLockupPendInglibul(_pid) (MasterChef_New.sol#9780)

- tbull.transfer(_to,_tbullBal) (MasterChef_New.sol#1873)

- tbull.transfer(_to,_anount) (MasterChef_New.sol#1875)

- tbull.mint(referrer,commissionAnount) (MasterChef_New.sol#1117)

- tbullReferral.recordReferralCommission(referrer,commissionAnount) (MasterChef_New.sol#1118)

- pool.lpToken.safeTransferfor(address(ng.sender),address(th)_amount) (MasterChef_New.sol#991)

- pool.lpToken.safeTransfer(feeAddress,depositFee) (MasterChef_New.sol#996)

State variables written after the call(s):

- user_amount = user_amount,add(_amount).sub(depositFee) (MasterChef_New.sol#997)

teentrancy in MasterChef_deposit(uint256,uint256,address) (MasterChef_New.sol#981-1804):

External calls:
```

```
in MasterChef undateFelssionEate(wint256) (MasterChef New sols:093-1097):
          External calls:

- massUpdatePools() (MasterChef_New.sol#1894)

- bull.mint(devAddress,tbullReward.dlv(18)) (MasterChef_New.sol#974)

- tbull.mint(address(this),tbullReward) (MasterChef_New.sol#975)

State variables written after the call(s):

- tbullPerBlock = tbullPerBlock (MasterChef_New.sol#1896)

Beentrancy in MasterChef.updatePool(uint256) (MasterChef_New.sol#982-978):
thullPerBlock = [thulPerBlock (MasterChef_New.sol#1990)
thentracy in MasterChef updateNowl(vint250) (MasterChef_New.sol#962-978):
External calls:

Littl Init(devMddress,thulNeward.dtv(18)) (MasterChef_New.sol#974)
thull.init(devMddress,thulNeward.dtv(18)) (MasterChef_New.sol#974)
thull.init(devMddress,thulNeward.dtv(18)) (MasterChef_New.sol#974)
thull.init(devMddress,thulNeward.dtv(18)) (MasterChef_New.sol#974)
toul.init(devMddress,thulNeward.dtv(18)) (MasterChef_New.sol#977)
state variables written after the call(2)
pool.acctbulPerShare = pool.acctbulPerShare.add(thulNeward.mul(1212).dtv(lpSupply)) (MasterChef_New.sol#976)
pool.acctbulPerShare = pool.acctbulPerShare.add(thulNeward.dtv)
pool.acctbulPerShare = pool.acctbulPerShare.add(thulNeward.dtv)

Reentracy in MasterChef_withdraw(uin1256.puin1256) (MasterChef_New.sol#1097)

Reentracy in MasterChef_withdraw(uin1256.puin1256) (MasterChef_New.sol#1097)

- updatePool(_pid) (MasterChef_New.sol#101)
- thull.init(devMddress,thulNeward.dtv(10)) (MasterChef_New.sol#975)
- payOrlockupPendingDbull(_pid) (MasterChef_New.sol#1017)
- thulNeward.acdersolward.dtv(10)
- payOrlockupPendingDbull(_pid) (MasterChef_New.sol#1017)
- thulNeward.acced.dtv(10)
- payOrlockupPendingDbull(_pid) (MasterChef_New.sol#1017)
- payOrlockupPendingDbull(_pid) (MasterChef_New.sol#1012)
- user.nextHarvestHatil = block.timestamp.add(pool.harvestInterval) (MasterChef_New.sol#1058)
- user.nextHarvestHatil = block.timestamp.add(pool.harvestInterva
           MasterChef.approve(address,address,uint256) (MasterChef_New.sol#1864-1867) ignores return value by 186P28(tokenAddress).approve(spender,amount) (Maste
           rChef New.sol#1865)
Referance: https://glthub.com/crytic/slither/wiki/Detector-Documentation#unused-return
    BEP20.constructor(string,string).name (MasterChef_New.sol#300) shadows:

- BEP20.name() (MasterChef_New.sol#310-338) (function)

- IBEP20.name() (MasterChef_New.sol#31) (function)

BEP20.constructor(string,string).symbol (MasterChef_New.sol#300) shadows:

- BEP20.symbol() (MasterChef_New.sol#330-332) (function)

- IBEP20.symbol() (MasterChef_New.sol#320 (function)

BEP20.symbol() (MasterChef_New.sol#320 (function)

BEP20.symbol() (MasterChef_New.sol#320 (function)

BEP20.symbol() (MasterChef_New.sol#320-243) (function)
       MosterChef.add(utnt256,IBEP26,utnt16,utnt256,bool) (MasterChef New.sol#886.912) should exit an event for:
- totalAllocPaint = totalAllocPaint.add(_allocPaint) (MasterChef New.sol#983)
MosterChef.set(utnt256,utnt256,utnt16,utnt256,bool) (MasterChef Mew.sol#915.935) should exit an event for:
- totalAllocPoint = totalAllocPoint.sub(poolInfo[_ptd]_allocPoint),add(_allocPoint) (MasterChef New.sol#921)
MosterChef.setReferralCommissionRate(utnt36) (MasterChef New.sol#105.1108) should exit an event for:
- referralCommissionRate = _referralCommissionRate (MasterChef_New.sol#107)
Reference: https://github.com/crytic/slither/wiki/Detector-Documentation#missing-events-arithmetic
                                                   External calls:
    updatePool(_ptd) (MasterChef_New.sol#984)
    tbull.mint(devAddress_tbullNeward.div(i0)) (MasterChef_New.sol#974)
    tbull.mint(address(this)_thulNeward) (MasterChef_New.sol#975)
    tbullReferral.recordReferral(nsg.sender_referrer) (MasterChef_New.sol#986)
    payOrtockupPendingtbull(_ptd) (MasterChef_New.sol#980)
    tbull.transfer(_to_tbullSal) (MasterChef_New.sol#993)
    tbull.transfer(_to_,unount) (MasterChef_New.sol#993)
    tbull.nint(referrar_commissionAnount) (MasterChef_New.sol#9177)
    tbull.nint(referrar_commissionAnount) (MasterChef_New.sol#91177)
    tbullNeferral.recordReferralCommission(referrer_commissionAnount) (MasterChef_New.sol#9118)

Event entited after the call(s):
    ReferralCommissionFald(_user_referrer_commissionAnount) (MasterChef_New.sol#9119)
    payOrtockupPendingbull(_ptd) (MasterChef_New.sol#986)

    PayOrtockupPendingtbull(_ptd) (MasterChef_New.sol#986)
                                                        External calls:
```

```
rrChef.deposit(uint250,uint250,address) (MasterChef_New.sol#981-1004)
                                External calis:
- updatePool( pld) (MasterChef_New.sol#984)
- tbull.mint(dewAddress_tbullMeward.div(18)) (MasterChef_New.sol#974)
- tbull.mint(dewAddress_tbullMeward) (MasterChef_New.sol#974)
- tbullEmeferral.recordNeferral(esg.sender__referrer) (MasterChef_New.sol#980)
- payorLockupRendIng2bult(_pld) (MasterChef_New.sol#3073)
- tbull.transfer(_to_tbullWal) (MasterChef_New.sol#3073)
- tbull.transfer(_to_massalon) (MasterChef_New.sol#3073)
- tbull.mint(referrer_townsisslonAnount) (MasterChef_New.sol#3117)
- tbullReferral.recordReferralCornNisslon(referrer_townsisslonAnount) (MasterChef_New.sol#3117)
- pool.lpToken.safeTransfer(feeAddress_deg.sender).address[this]_anount) (MasterChef_New.sol#991)
- pool.lpToken.safeTransfer(feeAddress_depositFee) (MasterChef_New.sol#996)
- Event emitted after the call(s)
- Deposit(ng_sender__pld__anount) (MasterChef_New.sol#1822-1832):
- External_calls_
- pool.lpToken.safeTransfer(address(ng_sender),anount) (MasterChef_New.sol#1838)
             | Reentrancy in MasterChef, payOrLockupMendlogIbull(uint256) (MasterChef_New.sol#1855-1863):
| External calls:
| safeIbullTransfer(mag.sender,totalNewards) (MasterChef_New.sol#1854)
| - tbull.transfer(to,(bullBal) (MasterChef_New.sol#1875)
| - tbull.transfer(to, anount) (MasterChef_New.sol#1875)
| - tbull.transfer(to, anount) (MasterChef_New.sol#1875)
| - payMeferralConnission(msg.sender,totalRewards) (MasterChef_New.sol#1855)
| - tbull.mint(referrer.commissionAmount) (MasterChef_New.sol#1875)
| - tbullReferral.recordMeferralConnission(referrer,commissionAmount) (MasterChef_New.sol#188)
| Event emitted after the call(s):
| ReferralConnissionPaid(_user,referrer,commissionAmount) (MasterChef_New.sol#188)
| payMeferralConnission(msg.sender,totalNewards) (MasterChef_New.sol#1811)
| Reentrancy in MasterChef_NayWeferralConmission(address_uint256) (MasterChef_New.sol#18111-1822):
                                 ncy in mastercher, paywererralcommission, address; units) (Mastercher, New. 20181111-1122):
External rails:

thull.mint(referrer, commission/Annunt) (Mastercher, New. 20181117)

thullReferral recording for railcommission (referrer, commission/Annunt) (Mastercher_New. 20181110)

Event emitted after the call(s):

Referralcommission/aid(_user_referrer, commission/Annunt) (Mastercher_New. 20181119)

most in Mastercher_undetermissionMate(utmi256) (Mastercher_New. 20181093-1897))

External calls:

Residentered (Mastercher New. 20181093)
                                 External calls:

- MassUpdatePools() (MasterChef_New.solW1094)

- tbull.nint(devAddress_tbullNeward.dtv(10)) (MasterChef_New.sol#974)

- tbull.nint(address(this),1bullNeward) (MasterChef_New.sol#975)

Event emitted after the call(s):

- ExissionRateUpdated(Msg.sender,1bullPerBlock_tbullPerBlock) (MasterChef_New.sol#1895)
Reentrancy in MasterChef.Withdraw(uint256, uint256) (MasterChef_New.sol#1007-1019):

External calls:

- updetePool(_pid) (MasterChef_New.sol#1013)

- tbull.nint(devAddress,tbullReward.div(10)) (MasterChef_New.sol#974)

- lbull.mint(address(this).tbullReward) (MasterChef_New.sol#975)

- pay@rLockupPenstupplot((_pid) (MasterChef_New.sol#1012)

- bbull.transfar(_to_tbullReal) (MasterChef_New.sol#1075)

- tbull.transfar(_to_tanuont) (MasterChef_New.sol#1017)

- tbull.mint(referrer_commissionAnnunt) (MasterChef_New.sol#1117)

- tbullReferrel.recordMeferralCommission(referrer_commissionAnnunt) (MasterChef_New.sol#1118)

Event enitted after the call(a)!

- ReferralCommissionFaid(_user_referrer_commissionAnnunt) (MasterChef_New.sol#1119)

- payOrLockupPendIngIbull(_pid) (MasterChef_New.sol#1000)

- payOrLockupPendIngIbull(_pid) (MasterChef_New.sol#1000)

- payOrLockupPendIngIbull(_pid) (MasterChef_New.sol#1000)

- payOrLockupPendIngIbull(_pid) (MasterChef_New.sol#1007-1019):

External calls:

- updatePool(_pid) (MasterChef_New.sol#1001)

- updatePool(_pid) (MasterChef_New.sol#1001)
  Reentrancy (n MasterChef.withdraw(uint256,vint256) (MasterChef_New.solW1007-1019):
External calls:

- updatePool(_pid) (MasterChef_New.sol#1811)

- bull.rint(devaddress,tbollReward.div(18)) (MasterChef_New.tol#974)

- bull.rint(devaddress,tbollReward) (MasterChef_New.tol#975)

- payOrLockupPenotnpIbull(_pid) (MasterChef_New.sol#1012)

- bull.transfer(_to,tbull881) (MasterChef_New.sol#1073)

- bull.transfer(_to_anount) (MasterChef_New.sol#1073)

- bull.rint(referrer.commissionAnount) (MasterChef_New.sol#1117)

- bullReferral.recordReferralCommission(referrer.commissionAnount) (MasterChef_New.sol#118)

- pool.lpToken.safeTransfer(address(msp.sender)__anount) (MasterChef_New.sol#105)

- vent envited after the call(s):

- Withdraw(msg.sender__pid__anount) (MasterChef_New.sol#1018)

Reference: https://github.com/crytic/silther/wiki/betector-DocumentationBreentrancy-vulnerabilities-3
                            Dangerous compartsons:
- require(bool,string)(now <= expiry,IBbLL::delegateMySig: signature expired) (MasterChef_New.sol#87%)
Chef.canHarvest(uint250,address) (MasterChef_New.sol#988-951) uses timestamp for compartsons
  Dungerous comparisons:
- block.timestamp -- user.nextHarvestUntil (MasterChef_New.sol#950)
heference: bttps://github.com/crytic/slither/wiki/Detector-Documentation#block-timestamp
   ddress.lsContract(address) (MasterChef_New.sol#88-92) uses assembly
 - INLINE ASM (MasterChef_New.sol#80 92) uses assembly
- INLINE ASM (MasterChef_New.sol#90)
Address_verKfyCalThesult(bool,bytes,string) (MasterChef_New.sol#129-142) uses assembly
- INLINE ASM (MasterChef_New.sol#134-137)
IBullSwap_getChainId() (MasterChef_New.sol#398-802) uses assembly
- INLINE ASM (MasterChef_New.sol#806)
```

```
Address.functionCall(address.bytes) (MasterChef.New.sal893-100) is never used and should be removed Address.functionCallWithValue(address.bytes.uint250) (MasterChef.New.sal893-100) is never used and should be removed Address.functionDelegateCall(address.bytes) (MasterChef.New.sal8121-123) is never used and should be removed Address.functionDelegateCall(address.bytes.string) (MasterChef.New.sal8121-123) is never used and should be removed Address.functionStaticCall(address.bytes.string) (MasterChef.New.sal813-115) is never used and should be removed Address.sendValue(address.uint250) (MasterChef.New.sal813-17) is never used and should be removed Address.sendValue(address.uint250) (MasterChef.New.sal813-17) is never used and should be removed SEP2D.burnFrom(address.uint250) (MasterChef.New.sal858-565) is never used and should be removed SEP2D.burnFrom(address.uint250) (MasterChef.New.sal858-565) is never used and should be removed SafeSEP2D.safeDecreaseAllowance(IREP2D.address.uint250) (MasterChef.New.sal813-177) is never used and should be removed SafeSEP2D.safeDecreaseAllowance(IREP2D.address.uint250) (MasterChef.New.sal813-177) is never used and should be removed SafeSEP2D.safeDecreaseAllowance(IREP2D.address.uint250) (MasterChef.New.sal813-179) is never used and should be removed SafeMath.nod(uint250.uint250) (MasterChef.New.sal83-18) is never used and should be removed SafeMath.nod(uint250.uint250) (MasterChef.New.sal83-83) is never used and should be removed SafeMath.nod(uint250.uint250) (MasterChef.New.sal83-83) is never used and should be removed SafeMath.trypAdd(uint250.uint250) (MasterChef.New.sal83-83) is never used and should be removed SafeMath.trypAdd(uint250.uint250) (MasterChef.New.sal83-83) is never used and should be removed SafeMath.trypAdd(uint250.uint250) (MasterChef.New.sal83-83) is never used and should be removed SafeMath.trypAdd(uint250.uint250) (MasterChef.New.sal83-83) is never used and should be removed SafeMath.trypAdd(uint250.uint250) (MasterChef.New.sal83-83) is never used and shoul
         Pragna versions=6.4.6 (HesterChef_New.sol#6) allows old versions
Reference: https://github.com/crytic/slither/wiki/Detector-Documentation#incorrect-versions-of-solidity
     (Success, returndata) = target.delegatedalidata) (AssterChef New.sol812)

Reference: https://github.com/cryttc/sltther/wiki/Detector-DocumentationFlow-level-calls

Parameter Intulisium, introduces, unit256, j. to (MasterChef New.sol805) is not in mixedCase

Parameter Intulisium, introduces, unit250, amount (MasterChef New.sol805) is not in mixedCase

Constant IBULISMap, introduces, unit250, amount (MasterChef New.sol805) is not in mixedCase

Constant IBULISMap, introduces, unit250, amount (MasterChef New.sol805) is not in mixedCase

Parameter MasterChef, add(unit250, IBEP20, unit26, unit250, bool), allocefort (MasterChef New.sol895) is not in mixedCase

Parameter MasterChef, add(unit250, IBEP20, unit26, unit250, bool), allocefort (MasterChef New.sol8996) is not in mixedCase

Parameter MasterChef, add(unit250, IBEP20, unit26, bool), allocefort (MasterChef New.sol8996) is not in mixedCase

Parameter MasterChef, add(unit250, IBEP20, unit26, unit250, bool), allocefort (MasterChef New.sol8996) is not in mixedCase

Parameter MasterChef, add(unit250, unit250, unit260, unit250, unit2
       Redundant expression "this (MasterChef_New.sol#223)" inContext (MasterChef_New.sol#218-220)
Reference: https://github.com/crytic/slither/wiki/Detector-Documentation#redundant-statemen
```

MythX: -

Report for MasterChef New.sol https://dashboard.mythx.lo/#/console/analyses/#211fadc-5e75-421d-81e1-e240c8db5296

Line	SMC Title	Severity	Short Description
6	(SMC-103) Floating Pragma	Low	A floating pragma is set,
788	(SMC-120) Weak Sources of Randomness from Chain Attributes	Low	Potential use of "block.number" as source of randomnness.
781	(SMC-120) Weak Sources of Randomness from Chain Attributes	Low	Potential use of "block.number" as source of randomnness.
886	(SMC-123) Requirement Violation	Low	Requirement violation.
902	(SMC-120) Weak Sources of Randonness from Chain Attributes	Low	Potential use of "block.number" as source of randonnness.
937	(SMC-123) Requirement Violation	Low	Regulrement violation.
938	(SMC-120) Weak Sources of Randonness from Chain Attributes	Low	Potential use of "block.number" as source of randonmness.
939	(SMC-120) Weak Sources of Handonness from Chain Attributes	Low	Potential use of "block.number" as source of randomnness.
964	(SMC-120) Weak Sources of Randonness from Chain Attributes	Low	Potential use of "block.number" as source of randomnness.
969	(SMC-120) Weak Sources of Randomness from Chalm Attributes	Low	Potential use of "block.number" as source of randommness.
972	(SWC-120) Weak Sources of Randonness from Chalm Attributes	Low	Potential use of "block.number" as source of randonnness.
977	(SWC-120) Weak Sources of Randomness from Chain Attributes	Low	Potential use of "block.number" as source of randomnness.

Solhint: -

```
Linter results:
  MasterChef New.sol:6:1: Error: Compiler version >=0.4.0 does not satisfy the r semver requirement
  MasterChef New.sol:90:9: Error: Avoid to use inline assembly. It is acceptable only in rare cases
  MasterChef New.sol:126:51: Error: Avoid to use low level calls.
  MasterChef New.sol:134:17: Error: Avoid to use inline assembly. It is acceptable only in rare cases
  MasterChef_New.sol:401:59: Error: Use double quotes for string literals
  MasterChef New.sol:441:69: Error: Use double quotes for string literals
  MasterChef New.sol:478:39: Error: Use double quotes for string literals
  MasterChef New.sol:479:42: Error: Use double quotes for string literals
  MasterChef New.sol:481:59: Error: Use double quotes for string literals
  MasterChef_New.sol:497:40: Error: Use double quotes for string literals
  MasterChef_New.sol:520:40: Error: Use double quotes for string literals
  MasterChef New.sol:522:61: Error: Use double quotes for string literals
  MasterChef New.sol:545:38: Error: Use double quotes for string literals
```


Basic Coding Bugs

1. Constructor Mismatch

 Description: Whether the contract name and its constructor are not identical to each other.

Result: PASSEDSeverity: Critical

2. Ownership Takeover

o Description: Whether the set owner function is not protected.

Result: PASSEDSeverity: Critical

3. Redundant Fallback Function

o Description: Whether the contract has a redundant fallback function.

Result: PASSEDSeverity: Critical

4. Overflows & Underflows

 Description: Whether the contract has general overflow or underflow vulnerabilities

Result: PASSEDSeverity: Critical

5. Reentrancy

 Description: Reentrancy is an issue when code can call back into your contract and change state, such as withdrawing ETHs.

Result: PASSEDSeverity: Critical

6. MONEY-Giving Bug

 Description: Whether the contract returns funds to an arbitrary address.

Result: PASSEDSeverity: High

7. Blackhole

 Description: Whether the contract locks ETH indefinitely: merely in without out.

Result: PASSEDSeverity: High

8. Unauthorized Self-Destruct

 Description: Whether the contract can be killed by any arbitrary address.

Result: PASSEDSeverity: Medium

9. Revert DoS

 Description: Whether the contract is vulnerable to DoS attack because of unexpected revert.

Result: PASSEDSeverity: Medium

10. Unchecked External Call

o Description: Whether the contract has any external call without checking the return value.

Result: PASSEDSeverity: Medium

11. Gasless Send

 $\circ \quad \text{Description: Whether the contract is vulnerable to gasless send.}$

Result: PASSEDSeverity: Medium

12. Send Instead of Transfer

 $\circ\quad \text{Description: Whether the contract uses send instead of transfer.}$

Result: PASSEDSeverity: Medium

13. Costly Loop

 Description: Whether the contract has any costly loop which may lead to Out-Of-Gas exception.

Result: PASSEDSeverity: Medium

14. (Unsafe) Use of Untrusted Libraries

o Description: Whether the contract use any suspicious libraries.

Result: PASSEDSeverity: Medium

15. (Unsafe) Use of Predictable Variables

 Description: Whether the contract contains any randomness variable, but its value can be predicated.

Result: PASSEDSeverity: Medium

16. Transaction Ordering Dependence

 Description: Whether the final state of the contract depends on the order of the transactions.

Result: PASSEDSeverity: Medium

17. Deprecated Uses

• Description: Whether the contract use the deprecated tx.origin to perform the authorization.

Result: PASSEDSeverity: Medium

Semantic Consistency Checks

 Description: Whether the semantic of the white paper is different from the implementation of the contract.

Result: PASSEDSeverity: Critical

Conclusion

In this audit, we thoroughly analyzed IBULLSWAP's MasterChef Smart Contract. The current code base is well organized but there are promptly some low-level issues found in the first phase of Smart Contract Audit.

Meanwhile, we need to emphasize that smart contracts as a whole are still in an early, but exciting stage of development. To improve this report, we greatly appreciate any constructive feedbacks or suggestions, on our methodology, audit findings, or potential gaps in scope/coverage.

About eNebula Solutions

We believe that people have a fundamental need to security and that the use of secure solutions enables every person to more freely use the Internet and every other connected technology. We aim to provide security consulting service to help others make their solutions more resistant to unauthorized access to data & inadvertent manipulation of the system. We support teams from the design phase through the production to launch and surely after.

The eNebula Solutions team has skills for reviewing code in C, C++, Python, Haskell, Rust, Node.js, Solidity, Go, and JavaScript for common security vulnerabilities & specific attack vectors. The team has reviewed implementations of cryptographic protocols and distributed system architecture, including in cryptocurrency, blockchains, payments, and smart contracts. Additionally, the team can utilize various tools to scan code & networks and build custom tools as necessary.

Although we are a small team, we surely believe that we can have a momentous impact on the world by being translucent and open about the work we do.

Project Powered By Digiblocks LLC, Usa.

