8. Übung zur Vorlesung

Differential- und Integralrechnung für Informatiker

(A 29) (Häufungspunkte)

Es sei $A \subseteq \mathbb{R}^2$. Man bestimme A' in den folgenden Fällen:

a)
$$A = \mathbb{Q} \times \{1\}$$
, b) $A = \mathbb{N} \times \mathbb{N}$.

(A 30) (Partielle Ableitungen erster Ordnung)

Sei $f \colon \mathbb{R}^* \times \mathbb{R}^2 \to \mathbb{R}$ definiert durch $f(x, y, z) = \frac{z^2 e^y}{x}$. Man bestimme:

- a) alle partiellen Ableitungen erster Ordnung von f,
- b) die Vektoren $u := \nabla f(1,0,2), v := \nabla f(2,1,1)$ und deren Skalarprodukt $\langle u,v \rangle$.

(A 31) (Grenzwerte reellwertiger Funktionen von mehreren Variablen)

Gegeben seien die Funktionen $f, g: \mathbb{R}^2 \setminus \{0_2\} \to \mathbb{R}$ definiert durch

$$f(x,y) = \frac{y^2}{x^2 + y^2}$$
 und $g(x,y) = \frac{x^2y^2}{x^2 + y^2}$.

- a) Man zeige, dass die Funktion f keinen Grenzwert in 0_2 hat.
- b) Man zeige, dass die Funktion g einen Grenzwert in 0_2 hat und bestimme diesen Grenzwert.

(A 32) (Partielle Differenzierbarkeit)

Für die Funktion $f \colon \mathbb{R}^2 \to \mathbb{R}$, erklärt als $f(x,y) = \begin{cases} \frac{x^4 - y^4}{2(x^4 + y^4)}, & (x,y) \neq 0_2 \\ 0, & (x,y) = 0_2 \end{cases}$, untersuche man die partielle Differenzierbarkeit (nach beiden Variablen) in 0_2 .

(A 33) (Stetigkeit reellwertiger Funktionen von mehreren Variablen)

Man untersuche die Stetigkeit der Funktion $f \colon \mathbb{R}^2 \to \mathbb{R}$, definiert durch

$$f(x,y) = \begin{cases} \frac{x^4 - y^4}{2(x^4 + y^4)}, & (x,y) \neq 0_2 \\ 0, & (x,y) = 0_2. \end{cases}$$

(A 34) (Für Schlaufüchse)

Man beweise **S5** in der 8. Vorlesung: Für $S \subseteq \mathbb{R}^n$ gelten int $S \subseteq S$ und int $S \subseteq S'$.