Nome	Cognome	Numero di matricola

Secondo Appello di Fisica del 24/06/2024.

Istruzioni per la consegna: Consegnare il presente foglio compilato, marcando le risposte corrette; per lo svolgimento, usare solo fogli bianchi forniti dai docenti; scrivere solo su un lato di ogni foglio; scrivere il proprio nome su ogni foglio consegnato; indicare chiaramente a quale domanda si riferisce ogni parte dello svolgimento; motivare i passaggi svolti.

Costanti numeriche: intensità dell'accelerazione gravitazionale in prossimità della superficie terrestre: $g = 10.0 \text{ m/s}^2$.

Problema 1: Un punto materiale di massa m si muove su un piano lungo la seguente traiettoria, in coordinate cartesiane: $y(x) = d(1 - e^{-x/d})$ con velocità di modulo v_0 costante.

Si utilizzino i seguenti valori numerici: m = 1.10 kg, d = 2.10 m, $v_0 = 2.50$ m/s.

X 0.00

All'istante di tempo in cui x = d, determinare:

1.1) la componente x d $v_x \text{ [m/s]} =$	ella velocità; A 4.07	B 2.19	C 2.68	X 2.35	E 4.57	
1.2) la componente y d v_y [m/s] =	ella velocità; X 0.863	B 1.42	C 2.84	D 2.21	E 2.08	
1.3) la componente x d $F_x [N] =$	ella forza risultante X 0.344	agente sul punto r $ B \boxed{1.00} $	materiale; C 0.524	D 0.737	E 0.626	
1.4) il modulo $L_{\rm O}$ del m $L_{\rm O}$ [kg m ² /s] =	nomento angolare r A 2.35	ispetto al polo $\vec{r}_{O} = B \boxed{1.89}$	$= d\hat{x};$ C 4.51	X 3.43	E 3.22	
1.5) il lavoro \mathcal{L} compiuto sul punto materiale tra le posizioni $x=0$ e $x=d$.						

B 6.88

Problema 2: Un cilindro di massa M e raggio R rotola senza strisciare all'interno di un contenitore rettangolare. Al suo asse è vincolata una molla orizzontale, di costante elastica k e lunghezza a riposo ℓ_0 , il cui altro estremo è vincolato alla parete destra del contenitore (si veda Figura 1). Il contenitore ha massa m, è libero di scivolare senza attrito su un piano orizzontale ed è soggetto ad una forza costante di modulo F diretta verso destra. E' presente la forza peso, ortogonale al piano orizzontale. Sia t_1 l'istante di tempo in cui la forza di attrito statico tra cilindro e fondo del contenitore ha modulo F_a .

D 3.44

E 1.72

Si utilizzino i seguenti valori numerici: M=1.30 kg, R=0.160 m, k=2.40 N/m, $\ell_0=2.30$ m, m=11.0 kg, F=23.0 N, $F_a=0.540$ N.

All'istante t_1 , determinare:

 $\mathcal{L}\left[J\right] =% {\displaystyle\int\limits_{0}^{\infty}} dx dx$

Figura 1