Table 1: Dry, bulk rock compositions for various volcanoes (wt%). Two different lavas were erupted at

Unzen in the 1991-1995 eruption.

Volcano	Eruption	SiO_2	Al_2O_3	TiO_2	FeO	Fe_2O_3	MnO	MgO	CaO	K_2O	Na ₂ O	P_2O_5
$Unzen^1$	1991-1995	64.27	16.13	0.71	0.00	5.10	0.10	2.47	4.69	2.54	3.81	0.17
$Unzen^2$	1991-1995	51.84	18.19	1.28	0.00	10.27	0.18	4.62	9.43	1.22	2.79	0.17
Kilauea	1992	49.78	12.79	2.37	0.00	12.40	0.17	8.75	10.59	0.41	2.14	0.22
MORB	N/A	50.47	14.70	1.68	10.43	0.00	0.18	7.58	11.39	0.16	2.79	0.18
Novarupta	1912	77.19	12.28	0.18	1.3	0.0	0.05	0.19	0.87	3.17	4.32	0.05

Table 2: Liquidus tempertaures for rocks show in Table 1 at 200 MPa for dry and wet (4 wt% water) compositions.

Volcano	Eruption	Dry Liquidus T /°C	Wet Liquidus T /°C
Unzen ¹	1991-1995	1148	1043
$\mathrm{Unzen^2}$	1991-1995	1226	1079
Kilauea	1992	1237	1172
MORB	N/A	1215	1145
Novarupta	1912	1123	826.56

Magma viscosity and density

Paul A. Jarvis

- 1. Table 1 lists bulk rock compositions as measured for erupted lavas from various volcanoes.
 - (a) Use Figure 1 to classify the composition of the rocks in Table 1.
 - (b) Create a new table listing the compositions shown in Table 1, but presenting the data in mol%

Table 2 shows the liquidus temperatures of the magmas in Table 1 for both dry composition and 4 wt% water at 200 MPa.

(c) For the Novarupta volcano, determine the wet melt composition at the wet liquidus temperature at 200 MPa.

Furthermore, the volume $V_{\rm m}$ of 1 mol of melt of composition **X** as a function of pressure P and temperature T is given by

$$V_{m}(T, P, \mathbf{X}) = \sum_{i} X_{i} \left[\frac{\bar{V}_{i}(T = T_{R}, P = P_{R})}{\partial T} + \frac{\partial \bar{V}_{i}(T, P = P_{R})}{\partial T} \Big|_{T = T_{R}} (T - T_{R}) + \frac{\partial \bar{V}_{i}(T = T_{R}, P)}{\partial P} \Big|_{P = P_{R}} (P - P_{R}) \right], \tag{1}$$

where $T_{\rm R} = 1673$ K and $P_{\rm R} = 10^{-4}$ GPa. Values for the red, blue and green quantities can be found in Table 3.

- (d) For the Novarupta volcano, determine the density of the **dry** melt composition at the **dry** liquidus temperature, at 200 MPa. Take care with units and show your method clearly (it may be helpful to draw a table).
- (e) For the same volcano, determine the density of the **wet** melt composition at the **dry** liquidus temperature, at 200 MPa.

Figure 1: Total Alkali-Silica (TAS) diagram for characterisation of volcanic rocks.

Table 3: Partial molar volume, thermal expansions and compressibilities of oxide components

	$\bar{V}_i(T=T_{\mathrm{R}},P=P_{\mathrm{R}})$	$\left. \frac{\partial \bar{V}_i(T,P=P_{\mathrm{R}})}{\partial T} \right _{T=T_{\mathrm{R}}}$	$\left. \frac{\partial \bar{V}_i(T=T_R,P)}{\partial P} \right _{P=P_R}$
	$/10^{-6} \text{ m}^3 \text{ mol}^{-1}$	$/10^{-9} \text{ m}^3 \text{ mol}^{-1} \text{ K}$	$/10^{-6} \text{ m}^3 \text{ mol}^{-1} \text{ GPa}$
SiO_2	26.86	0.0	-1.89
TiO_2	23.16	7.24	-2.31
Al_2O_3	37.42	0.0	-2.31
Fe_2O_3	42.13	9.09	-2.53
FeO	13.65	2.92	-0.45
MgO	11.69	3.27	0.27
CaO	16.53	3.74	0.34
Na ₂ O	28.88	7.68	-2.40
K ₂ O	45.07	12.08	-6.75
Li ₂ O	16.85	5.25	-1.02
H_2O	26.27	9.46	-3.15
CO_2	33.0	0.0	0.0

- (f) Again for Novarupta, determine the density of the **wet** melt composition at the **wet** liquidus temperature, at 200 MPa.
- (g) Describe the effect of both temperature and water content on the density of the magmatic melt at Novarupta. Be as quantitative as you can.
- 2. At a temperature of 767 °C and pressure of 200 MPa, the equilibrium crystal assemblage of the wet Novarupta magma is feldspar ($\phi_{\rm fld} = 0.5$, $\rho_{\rm fld} = 2.5$ g cm⁻³), quartz ($\phi_{\rm qz} = 0.3$, $\rho_{\rm qz} = 2.5$ g cm⁻³), spinel ($\phi_{\rm sp} = 0.007$, $\rho_{\rm sp} = 4.9$ g cm⁻³) and biotite ($\phi_{\rm bio} = 0.5$, $\rho_{\rm bio} = 2.75$ g cm⁻³) whilst the melt density is 2.21 g cm⁻³ and the melt viscosity is 147910.8 Pa s. Additionally, the gravitational settling velocity of a crystal of size d and density $\rho_{\rm c}$ in melt of density $\rho_{\rm m}$ and viscosity $\eta_{\rm m}$ is given by

$$v_{\rm s} = \frac{(\rho_{\rm c} - \rho_{\rm m})gd^2}{18\eta_{\rm m}},\tag{2}$$

where $q = 9.81 \text{ m s}^{-1}$ is the gravitational acceleration.

(a) Calculate the settling velocities of each crystal phase in the Novarupta magma.

For the wet Kilauea composition, the equilibrium assemblage at the same pressure is olivine ($\phi_{\rm ol} = 0.03$, $\rho_{\rm ol} = 3.37~{\rm g~cm^{-3}}$), orthopyroxene ($\phi_{\rm opx} = 0.006$, $\rho_{\rm fld} = 3.28~{\rm g~cm^{-3}}$), clinopyroxene ($\phi_{\rm cpx} = 8.21$, $\rho_{\rm cpx} = 3.29~{\rm g~cm^{-3}}$) and spinel ($\phi_{\rm sp} = 0.02$, $\rho_{\rm sp} = 4.9~{\rm g~cm^{-3}}$), with a melt density of 2.31 g cm⁻³ and a melt viscosity of 28.1 Pa s.

- (a) Calculate the settling velocities of each crystal phase in the Kilauea magma.
- (b) It has been suggested that crystal cumulates can form at the base of magma chambers of sills by gravitational settling of crystals. Consider 10 m thick sills of both the Novarupta and Kilauea compositions. If the sills were maintained at constant temperatures, how long would it take for such a cumulate to form in each case?
- (c) What are the most important parameters in determining whether such cumulates can form? Also consider processes which have been neglected here.