Homework 4 Solution

Question 1

Proof.

$$\mathbb{P}_{\text{null}}\left(\max_{1\leq j\leq p} \left| \frac{\left(\overline{X}_{1j} - \overline{X}_{2j}\right) - \delta_{0j}}{S_{\text{pooled},j}\sqrt{\frac{1}{n_1} + \frac{1}{n_2}}} \right| \geq t_{n_1+n_2-2}\left(\frac{\alpha}{2p}\right) \right) \\
= \mathbb{P}_{\text{null}}\left(\bigcup_{j=1}^{p} \left\{ \left| \frac{\left(\overline{X}_{1j} - \overline{X}_{2j}\right) - \delta_{0j}}{S_{\text{pooled},j}\sqrt{\frac{1}{n_1} + \frac{1}{n_2}}} \right| \geq t_{n_1+n_2-2}\left(\frac{\alpha}{2p}\right) \right\} \right) \\
\leq \sum_{j=1}^{p} \mathbb{P}_{\text{null}}\left(\left\{ \left| \frac{\left(\overline{X}_{1j} - \overline{X}_{2j}\right) - \delta_{0j}}{S_{\text{pooled},j}\sqrt{\frac{1}{n_1} + \frac{1}{n_2}}} \right| \geq t_{n_1+n_2-2}\left(\frac{\alpha}{2p}\right) \right\} \right)$$

We know that under the null hypothesis, for any $j=1,\ldots,p,\,\frac{\left(\overline{X}_{1j}-\overline{X}_{2j}\right)-\delta_{0j}}{S_{\text{pooled},j}\sqrt{\frac{1}{n_1}+\frac{1}{n_2}}}$ follows $t_{n_1+n_2-2}$ distribution. Therefore,

$$\mathbb{P}_{\text{null}}\left(\left\{\left|\frac{\left(\overline{X}_{1j}-\overline{X}_{2j}\right)-\delta_{0j}}{S_{\text{pooled},j}\sqrt{\frac{1}{n_1}+\frac{1}{n_2}}}\right| \geq t_{n_1+n_2-2}\left(\frac{\alpha}{2p}\right)\right\}\right) = \frac{\alpha}{p}, \quad j=1,\ldots,p.$$

Then we can finish the proof as follows

$$\mathbb{P}_{\text{null}}\left(\max_{1\leq j\leq p}\left|\frac{\left(\overline{X}_{1j}-\overline{X}_{2j}\right)-\delta_{0j}}{S_{\text{pooled},j}\sqrt{\frac{1}{n_1}+\frac{1}{n_2}}}\right|\geq t_{n_1+n_2-2}\left(\frac{\alpha}{2p}\right)\right)\leq \sum_{j=1}^p\frac{\alpha}{p}=\alpha.$$

Question 2

1. We have the pooled sample covariance matrix

$$\boldsymbol{S}_{\text{pooled}} = \frac{n_1 - 1}{n_1 + n_2 - 2} S_1 + \frac{n_2 - 1}{n_1 + n_2 - 2} S_2 = \frac{1}{2} \begin{bmatrix} 16 & 8 \\ 8 & 16 \end{bmatrix} + \frac{1}{2} \begin{bmatrix} 16 & 8 \\ 8 & 16 \end{bmatrix} = \begin{bmatrix} 16 & 8 \\ 8 & 16 \end{bmatrix}$$

Moreover, we have $\bar{\vec{x}}_1 - \bar{\vec{x}}_2 = \begin{bmatrix} 0 \\ -4 \end{bmatrix}$. Then

$$T^2 = (\bar{\vec{x}}_1 - \bar{\vec{x}}_2)^{\top} \left(\left(\frac{1}{n_1} + \frac{1}{n_2} \right) S_{\text{pooled}} \right)^{-1} (\bar{\vec{x}}_1 - \bar{\vec{x}}_2) = \frac{4}{3}$$

In contrast, the critical value is

$$\frac{(n_1 + n_2 - 2)p}{n_1 + n_2 - 1 - p}F_{p,n_1 + n_2 - 1 - p}(\alpha) = \frac{68}{33}F_{2,33}(0.05) = 6.7689$$

Here $T^2 < \frac{(n_1+n_2-2)p}{n_1+n_2-1-p}F_{p,n_1+n_2-1-p}(\alpha)$. Therefore, we do not reject H_0 at the level of $\alpha = 0.05$.

2. The $(1-\alpha)$ confidence ellipse of $\vec{\mu}_1 - \vec{\mu}_2$ is

$$((\bar{\vec{x}}_1 - \bar{\vec{x}}_2) - (\vec{\mu}_1 - \vec{\mu}_2))^{\top} ((\frac{1}{n_1} + \frac{1}{n_2}) S_{\text{pooled}})^{-1} ((\bar{\vec{x}}_1 - \bar{\vec{x}}_2) - (\vec{\mu}_1 - \vec{\mu}_2))$$

$$\leq \frac{(n_1 + n_2 - 2)p}{n_1 + n_2 - 1 - p} F_{p, n_1 + n_2 - 1 - p}(\alpha)$$

The spectral decomposition of $((\frac{1}{n_1} + \frac{1}{n_2})S_{\text{pooled}})$ is

$$((\frac{1}{n_1} + \frac{1}{n_2})S_{\text{pooled}}) = \frac{8}{3} \begin{bmatrix} \frac{\sqrt{2}}{2} \\ \frac{\sqrt{2}}{2} \end{bmatrix} \begin{bmatrix} \frac{\sqrt{2}}{2} \\ \frac{\sqrt{2}}{2} \end{bmatrix}^\top + \frac{8}{9} \begin{bmatrix} \frac{-\sqrt{2}}{2} \\ \frac{\sqrt{2}}{2} \end{bmatrix} \begin{bmatrix} \frac{-\sqrt{2}}{2} \\ \frac{\sqrt{2}}{2} \end{bmatrix}^\top$$

Also,
$$\bar{\vec{x}}_1 - \bar{\vec{x}}_2 = \begin{bmatrix} 0 \\ -4 \end{bmatrix}$$
, $c = \sqrt{\frac{(n_1 + n_2 - 2)p}{n_1 + n_2 - 1 - p}} F_{p, n_1 + n_2 - 1 - p}(\alpha) = 2.6017$.

Therefore, the ellipse has center $\begin{bmatrix} 0 \\ -4 \end{bmatrix}$, with axes of directions $\begin{bmatrix} \frac{\sqrt{2}}{2} \\ \frac{\sqrt{2}}{2} \end{bmatrix}$ and $\begin{bmatrix} -\frac{\sqrt{2}}{2} \\ \frac{\sqrt{2}}{2} \end{bmatrix}$, and half axis lengths $c\sqrt{\lambda_1} = 4.2486$ and $c\sqrt{\lambda_2} = 2.4529$.

3. The simultaneous confidence intervals for $\mu_{1j} - \mu_{2j}$, $j = 1, \ldots, p$ based on T^2 are

$$(\bar{x}_{1j} - \bar{x}_{2j}) - s_{\text{pooled},j} \sqrt{\left(\frac{1}{n_1} + \frac{1}{n_2}\right) \frac{(n_1 + n_2 - 2)p}{n_1 + n_2 - 1 - p}} F_{p,n_1 + n_2 - 1 - p}(\alpha)$$

$$\leq \mu_{1j} - \mu_{2j}$$

$$\leq (\bar{x}_{1j} - \bar{x}_{2j}) + s_{\text{pooled},j} \sqrt{\left(\frac{1}{n_1} + \frac{1}{n_2}\right) \frac{(n_1 + n_2 - 2)p}{n_1 + n_2 - 1 - p}} F_{p,n_1 + n_2 - 1 - p}(\alpha)$$

We have $\bar{x}_{11} - \bar{x}_{21} = 0$, $s_{\text{pooled},1} = \sqrt{(S_{\text{pooled}})_{11}} = 4$, $\bar{x}_{12} - \bar{x}_{22} = -4$, $s_{\text{pooled},2} = \sqrt{(S_{\text{pooled}})_{22}} = 4$. The resulting simultaneous confidence intervals are

$$-3.4690 \le \mu_{11} - \mu_{21} \le 3.4690, \quad -7.4690 \le \mu_{12} - \mu_{22} \le -0.5310$$

4. The formulas for simultaneous $1 - \alpha$ confidence intervals for $\mu_{1j} - \mu_{2j}$, $j = 1, \ldots, p$ with Bonferroni correction are

$$(\bar{x}_{1j} - \bar{x}_{2j}) - s_{\text{pooled},j} \sqrt{\frac{1}{n_1} + \frac{1}{n_2}} t_{n_1 + n_2 - 2} (\frac{\alpha}{2p})$$

$$\leq \mu_{1j} - \mu_{2j}$$

$$\leq (\bar{x}_{1j} - \bar{x}_{2j}) + s_{\text{pooled},j} \sqrt{\frac{1}{n_1} + \frac{1}{n_2}} t_{n_1 + n_2 - 2} (\frac{\alpha}{2p})$$

We have $t_{n_1+n_2-2}(\frac{\alpha}{2p}) = t_{34}(0.0125) = 2.345$. The resulting simultaneous confidence intervals are

$$-3.1267 \le \mu_{11} - \mu_{21} \le 3.1267, \quad -7.1267 \le \mu_{12} - \mu_{22} \le -0.8733$$

Question 3 Rearrange the equalities in the null hypothesis then we can see that it is equivalent to

$$H_0: \begin{bmatrix} \mu_{12} - \mu_{11} \\ \mu_{13} - \mu_{12} \end{bmatrix} = \begin{bmatrix} \mu_{22} - \mu_{21} \\ \mu_{23} - \mu_{22} \end{bmatrix},$$

which can be written as $H_0: C\vec{\mu}_1 = C\vec{\mu}_2$ where $C = \begin{bmatrix} -1 & 1 & 0 \\ 0 & -1 & 1 \end{bmatrix}$. Conduct the linear transformations $\vec{y}_{lj} = C\vec{x}_{lj}$ for all l = 1, 2 and $j = 1, \ldots, n$. Then we have

$$ar{ec{y}}_1 = oldsymbol{C}ar{ec{x}}_1 = egin{bmatrix} 0 \ 0 \end{bmatrix}, \quad oldsymbol{S}_{y,1} = oldsymbol{C}oldsymbol{S}_1oldsymbol{C}^ op = egin{bmatrix} 16 & -8 \ -8 & 16 \end{bmatrix},$$

$$ar{ec{y}}_2 = oldsymbol{C}ar{ec{x}}_2 = egin{bmatrix} 2 \ 2 \end{bmatrix}, \quad oldsymbol{S}_{y,2} = oldsymbol{C}oldsymbol{S}_2oldsymbol{C}^ op = egin{bmatrix} 16 & -8 \ -8 & 16 \end{bmatrix}.$$

The pooled sample covariance of the new sample is

$$\boldsymbol{S}_{y,pooled} = \frac{n_1 - 1}{n_1 + n_2 - 2} \boldsymbol{S}_{y,1} + \frac{n_2 - 1}{n_1 + n_2 - 2} \boldsymbol{S}_{y,2} = \frac{1}{2} \begin{bmatrix} 16 & -8 \\ -8 & 16 \end{bmatrix} + \frac{1}{2} \begin{bmatrix} 16 & -8 \\ -8 & 16 \end{bmatrix} = \begin{bmatrix} 16 & -8 \\ -8 & 16 \end{bmatrix}.$$

1. The test statistic for $H_0: C\vec{\mu}_1 = C\vec{\mu}_2$ is

$$T^{2} = (\bar{\vec{y}}_{1} - \bar{\vec{y}}_{2})^{\top} \left(\left(\frac{1}{n_{1}} + \frac{1}{n_{2}} \right) S_{y,pooled} \right)^{-1} (\bar{\vec{y}}_{1} - \bar{\vec{y}}_{2}) = 9$$

The critical values is

$$\frac{(n_1 + n_2 - 2)p}{n_1 + n_2 - 1 - p} F_{p,n_1 + n_2 - 1 - p}(\alpha) = \frac{2(18 + 18 - 2)}{18 + 18 - 1 - 2} F_{2,18 + 18 - 1 - 2}(0.05) = 6.7689$$

So the T^2 statistic is greater than the critical value. We reject H_0 at the level of $\alpha = 0.05$.

2. The $(1-\alpha)$ confidence ellipse of $\vec{d_1} - \vec{d_2}$ is

$$((\bar{y}_1 - \bar{y}_2) - (\bar{d}_1 - \bar{d}_2))^{\top} ((\frac{1}{n_1} + \frac{1}{n_2}) S_{y,pooled})^{-1} ((\bar{y}_1 - \bar{y}_2) - (\bar{d}_1 - \bar{d}_2))$$

$$\leq \frac{(n_1 + n_2 - 2)p}{n_1 + n_2 - 1 - p} F_{p,n_1 + n_2 - 1 - p}(\alpha)$$

The spectral decomposition of $((\frac{1}{n_1} + \frac{1}{n_2})S_{y,pooled})$ is

$$((\frac{1}{n_1} + \frac{1}{n_2})S_{y,\text{pooled}}) = \frac{8}{3} \begin{bmatrix} -\frac{\sqrt{2}}{2} \\ \frac{\sqrt{2}}{2} \end{bmatrix} \begin{bmatrix} -\frac{\sqrt{2}}{2} \\ \frac{\sqrt{2}}{2} \end{bmatrix}^{\top} + \frac{8}{9} \begin{bmatrix} \frac{\sqrt{2}}{2} \\ \frac{\sqrt{2}}{2} \end{bmatrix} \begin{bmatrix} \frac{\sqrt{2}}{2} \\ \frac{\sqrt{2}}{2} \end{bmatrix}^{\top}$$

Also,
$$\bar{\vec{y}}_1 - \bar{\vec{y}}_2 = \begin{bmatrix} -2 \\ -2 \end{bmatrix}$$
, $c = \sqrt{\frac{(n_1 + n_2 - 2)p}{n_1 + n_2 - 1 - p}} F_{p, n_1 + n_2 - 1 - p}(\alpha) = 2.6017$.

Therefore, the ellipse has center $\begin{bmatrix} -2 \\ -2 \end{bmatrix}$, with axes of directions $\begin{vmatrix} \frac{-\sqrt{2}}{2} \\ \frac{\sqrt{2}}{2} \end{vmatrix}$ and $\begin{vmatrix} \frac{\sqrt{2}}{2} \\ \frac{\sqrt{2}}{2} \end{vmatrix}$, and half axis lengths $c\sqrt{\lambda_1} = 4.2486$ and $c\sqrt{\lambda_2} = 2.4529$.

3. The simultaneous confidence intervals for $d_{1j}-d_{2j},\,j=1,\ldots,p$ based on T^2 are

$$(\bar{y}_{1j} - \bar{y}_{2j}) - s_{y,\text{pooled},j} \sqrt{\left(\frac{1}{n_1} + \frac{1}{n_2}\right) \frac{(n_1 + n_2 - 2)p}{n_1 + n_2 - 1 - p}} F_{p,n_1 + n_2 - 1 - p}(\alpha)$$

 $\leq d_{1j} - d_{2j}$

$$\leq (\bar{y}_{1j} - \bar{y}_{2j}) + s_{y,\text{pooled},j} \sqrt{(\frac{1}{n_1} + \frac{1}{n_2}) \frac{(n_1 + n_2 - 2)p}{n_1 + n_2 - 1 - p}} F_{p,n_1 + n_2 - 1 - p}(\alpha)$$

We have $\bar{y}_{11} - \bar{y}_{21} = -2$, $s_{y,pooled,1} = \sqrt{(S_{y,pooled})_{11}} = 4$, $\bar{y}_{12} - \bar{y}_{22} = -2$, $s_{y,pooled,2} = \sqrt{(S_{y,pooled})_{22}} = 4$. The resulting simultaneous confidence intervals are

$$-5.4690 \le d_{11} - d_{21} \le 1.4690, \quad -5.4690 \le d_{12} - d_{22} \le 1.4690$$

4. The formulas for simultaneous $1 - \alpha$ confidence intervals for $d_{1j} - d_{2j}$, $j = 1, \ldots, p$ with Bonferroni correction are

$$(\bar{y}_{1j} - \bar{y}_{2j}) - s_{y,\text{pooled},j} \sqrt{\frac{1}{n_1} + \frac{1}{n_2}} t_{n_1 + n_2 - 2} (\frac{\alpha}{2p})$$

$$\leq d_{1j} - d_{2j}$$

$$\leq (\bar{y}_{1j} - \bar{y}_{2j}) + s_{y,\text{pooled},j} \sqrt{\frac{1}{n_1} + \frac{1}{n_2}} t_{n_1 + n_2 - 2} (\frac{\alpha}{2p})$$

We have $t_{n_1+n_2-2}(\frac{\alpha}{2p}) = t_{34}(0.0125) = 2.345$. The resulting simultaneous confidence intervals are

$$-5.1267 \le d_{11} - d_{21} \le 1.1267, -5.1267 \le d_{12} - d_{22} \le 1.1267$$

Question

$$S_{\text{pooled}} = \begin{bmatrix} 10963.7 & 21505.5 \\ 21505.5 & 63661.3 \end{bmatrix}$$

$$\bar{\vec{x}}_1 - \bar{\vec{x}}_2 = \begin{bmatrix} 74.4\\201.6 \end{bmatrix}$$

Then

$$T^{2} = (\bar{\vec{x}}_{1} - \bar{\vec{x}}_{2})^{\top} \left(\left(\frac{1}{n_{1}} + \frac{1}{n_{2}} \right) S_{pooled} \right)^{-1} (\bar{\vec{x}}_{1} - \bar{\vec{x}}_{2}) = 16.0662$$

The critical values is

$$\frac{(n_1 + n_2 - 2)p}{n_1 + n_2 - 1 - p} F_{p,n_1 + n_2 - 1 - p}(\alpha) = \frac{2(45 + 55 - 2)}{45 + 55 - 1 - 2} F_{2,45 + 55 - 1 - 2}(0.05) = 6.26$$

So the T^2 statistic is greater than the critical value. We reject H_0 at the level of $\alpha = 0.05$. Suppose the coefficient vector that is most responsible for rejection is \vec{a} . Then the linear combinations have sample means $\vec{a}^{\top}\vec{x}_1$ and $\vec{a}^{\top}\vec{x}_2$, and sample covariances $\vec{a}^{\top}S_1\vec{a}$ and $\vec{a}^{\top}S_2\vec{a}$. Therefore, the pooled standard error $s_{\vec{a},\text{pooled}}$ satisfies

$$s_{\vec{a},\text{pooled}}^2 = \frac{n_1 - 1}{n_1 + n_2 - 2} \vec{a}^\top S_1 \vec{a} + \frac{n_2 - 1}{n_1 + n_2 - 2} \vec{a}^\top S_2 \vec{a}$$
$$= \vec{a}^\top (\frac{n_1 - 1}{n_1 + n_2 - 2} S_1 + \frac{n_2 - 1}{n_1 + n_2 - 2} S_2) \vec{a}$$
$$= \vec{a}^\top (S_{\text{pooled}}) \vec{a}$$

To test $H_0: \vec{a}^{\top}(\vec{\mu}_1 - \vec{\mu}_2) = 0$, we can form the following t-statistic

$$t_{\vec{a},\alpha} = \frac{\vec{a}^{\top}(\vec{x}_1 - \vec{x}_2)}{s_{\vec{a},\text{pooled}}\sqrt{\frac{1}{n_1} + \frac{1}{n_2}}}$$

To get the most responsible \vec{a} , we need to find the \vec{a} such that its corresponding $t_{\vec{a},\alpha}$ has the largest absolute value. So we need to find \vec{a} that maximizes $t_{\vec{a},\alpha}^2$.

$$t_{\vec{a},\alpha}^2 = \frac{(\vec{a}^{\top}(\bar{\vec{x}}_1 - \bar{\vec{x}}_2))^2}{\vec{a}^{\top}((\frac{1}{n_1} + \frac{1}{n_2})S_{\text{pooled}})\vec{a}}$$

According to the maximization lemma,

$$t_{\vec{a},\alpha}^2 \le (\bar{\vec{x}}_1 - \bar{\vec{x}}_2)^\top \left(\left(\frac{1}{n_1} + \frac{1}{n_2} \right) S_{pooled} \right)^{-1} (\bar{\vec{x}}_1 - \bar{\vec{x}}_2) = T^2$$

and the equity holds if $\vec{a} = c((\frac{1}{n_1} + \frac{1}{n_2})S_{\text{pooled}})^{-1}(\bar{\vec{x}}_1 - \bar{\vec{x}}_2) = c(S_{\text{pooled}})^{-1}(\bar{\vec{x}}_1 - \bar{\vec{x}}_2)$. Here c can be any nonzero scalar.

So when $\vec{a} = c \begin{bmatrix} 0.0421 \\ 0.0641 \end{bmatrix}$, $t_{\vec{a},\alpha}^2$ is maximized.