

KNN Algorithm Machine Learning Classification Parallel Implementation

LUIS BALAREZO

Software Engineering Student

February 2024

Contents

- **01** Introduction & Motivation
- 02 KNN Fundamentals
- 03 Problem to solve
- 04 Code
- 05 Benchmarking
- 06 Conclusions
- 07 Future Work

Introduction

Classification is an important technique of Machine Learning in which a model will be trained on a data set with labels to predict a label for a new object. An algorithm, namely K nearest neighbors (KNN), is grouped into Classification problem with a purpose for producing the class label for a new instance by a major voting on KNN category

Motivation

Although KNN is quite simple and can produce good results in some cases, it is still inefficient when working with large, multiple featured data. The reason is that KNN might take a huge cost of computation for the distances between the instance data point to all training data points. Therefore, parallel computation is essential to solve the above disadvantage. This is also the major motivation and goal of the project

KNN Fundamentals

How KNN works?

• K Nearest Neighbors (KNN) is known as one of basic supervised Machine Learning algorithms. It is an instance-based algorithm to solve the Classification problem in Machine Learning

• The algorithm assigns a class to an instance based on the majority of the classes of its k nearest neighbors.

KNN Fundamentals

 KNN does not train the model based on the training set. Instead, KNN predicts the class that a new instance (from the test set) belongs to by major voting on K nearest neighbors of that instance, found by calculating the distance between the instance and all data points in the training set

Problem to solve

Model training

Training the model does not involve any complications

Making the model predictions

High computational cost

- We have to look for the points closest to a certain given point.
- This apparently implies searching linearly through all the data.
- This is not good, it really is not good.

Dataset

Dataset

Credit Card Fraud

 To perform the experiment for KNN, a real data with a relatively huge number of records and many features should be loaded. The following table demonstrates a brief overview of data samples:

V20	V21	V22	V23	V24	V25	V26	V27	V28	Amount	Class
-0.492436622	-0.444294985	-0.703718469	0.020491339	0.550057163	0.403225511	0.337179761	-0.012798239	0.008153787	28.0	'0'
0.257127128	0.024524687	0.025444184	-0.360068196	-0.243699799	0.554992306	-0.064088600	-0.015909852	0.041901701	285.27	'0'
-0.148027873	0.026555774	0.125002197	-0.097595299	0.397102217	0.686940178	-0.328229693	0.013751854	0.020123148	3.3	'0'
0.163595302	0.010666348	-0.359297428	0.072184007	-0.014728305	-0.703372946	0.173464643	0.024653440	-0.034414492	0.89	'0'
-0.109301482	0.136174347	0.497670612	-0.061487402	0.428082411	0.587319726	-0.290666714	0.040006232	0.025359899	14.9	'0'
-0.225664477	0.002391110	0.274488164	0.149108265	0.005004020	-0.638925799	-0.390307160	0.179927122	0.192461363	40.55	'0'
-0.462966485	-0.239152946	-0.488354252	0.020490313	0.946254981	0.116278912	0.895636551	-0.154244997	-0.015252710	64.99	'0'
-0.047476882	0.311646886	1.169289555	-0.475623415	-1.295743292	0.792816558	-0.326966375	0.016123023	-0.071237306	110.66	'0'
1.001139929	0.253919672	-0.053795796	0.914809572	0.657063766	-0.420317155	-0.484449724	0.017995760	0.175233238	358.78	'0'
-0.102392261	-0.181962430	-0.587933020	0.073176116	0.365951952	0.363419227	-0.190414687	-0.011470737	0.028100258	15.14	'0'
-0.276117672	-0.157002749	0.054384565	-0.122802784	-0.004488174	0.293222006	-0.045168301	0.079546037	0.030842562	96.0	'0'
0.645941078	0.172562550	-0.178900722	-0.408434258	-0.164318061	0.272792578	1.464831240	-0.178880361	0.032804755	364.11	'0'
0.020002871	0.088235280	0.264397066	-0.200764707	-1.309175371	0.458071351	-0.237440647	0.073607522	0.032122571	50.0	'0'
-0.127347120	-0.109585097	-0.332864205	-0.125077258	-0.476077444	0.632100741	-0.386151209	0.015875365	0.017701025	13.99	'0'
-0.256134173	0.137767674	0.500125276	0.007130828	0.826924367	0.336715484	0.660079497	-0.126411140	-0.089595096	0.76	'0'
-0.236838920	0.041577291	0.438153673	-0.406087759	-0.080000876	0.483439690	0.285433028	-0.326417473	0.022492698	10.0	'0'

Dataset

Credit Card Fraud

 The data are stored in csv-format files, and these data are about detection of credit fraud and is divided into training data and test data in prior. There are 227,845 training entries and 56,962 test entries

• For a specific entry, there are 29 float-datatype features/columns which will challenge the Euclidean distance computation and its last column shows up the class that the entry is credit fraud ('1') or not ('0').

Code

```
class KNN:
    def __init__(self, k):
        self.k = k
    def fit(self, X, y):
        self.X_train = X
        self.y_train = y
        valid = self.k <= len(X)</pre>
        if not valid:
            raise Exception('El valor de k debe ser menor que el tamaño de los datos de entrenamiento.')
    def predict(self, X):
        predicted_labels = [self._predict(x) for x in X]
        return predicted_labels
```

```
def _predict(self, x):
    # compute distance
    distances = [euclidean_distance(x, x_train) for x_train in self.X_train]
    # get k nearest samples, labels
    k_indices = np.argsort(distances)[0:self.k]
    k_nearest_labels = [self.y_train[i] for i in k_indices]
    # majority vote, most common label
    most_common_label = Counter(k_nearest_labels).most_common(1)[0][0]
    return most_common_label
```

```
def getLocalSortedDistances(self, X):
    k_local_sorted_distances = [self._getLocalSortedDistances(x) for x in X]
    return k_local_sorted_distances

def _getLocalSortedDistances(self, x):
    # array of tuples (distance, label)
    distances = []
    for i in range(0, len(self.X_train)):
        distance = (euclidean_distance(x, self.X_train[i]), self.y_train[i])
        distances.append(distance)
    # sort the array in ascending order by distance and pick k first elements
    k_local_sorted_distances = sorted(distances, key=lambda t: t[0])[0:self.k]
    return k_local_sorted_distances
```

```
def euclidean_distance(p, q):
    return np.sqrt(np.sum((p-q)**2))
```

$\langle N^{o} \rangle$

```
def load_data():
    training_path = os.getcwd() + '/data/credit_train.csv'
    test_path = os.getcwd() + '/data/credit_test.csv'
    training_data = pd.read_csv(training_path)
    test_data = pd.read_csv(test_path)
    return training_data, test_data
```

```
def extract_data(data_records, training_data, test_data):
    # Extract a number of records according to testing cases
    X_train = training_data.iloc[:data_records,:5]
    y_train = training_data.iloc[:data_records,(training_data.shape[1]-1)]
    X_test = test_data.iloc[:500,:5]
    y_test = test_data.iloc[:500,(test_data.shape[1]-1)]
    # transform into numpy array for faster computation
    X_train = np.array(X_train)
    y_train = np.array(y_train)
    X_test = np.array(y_test)
    y_test = np.array(y_test)
    return X_train, y_train, X_test, y_test
```


Sequential Version

Fitting the model

Making predictions

Returning accuracy and predictions

```
def run_sequential_KNN(k, X_train, y_train, X_test, y_test):
    knn = KNN(k)
    knn.fit(X_train, y_train)
    local_predictions = knn.predict(X_test)
    accuracy = accuracy_score(y_test, local_predictions)
    return accuracy, local_predictions
```

Parallel Version

Fitting the model

Making predictions (parallel)

Returning accuracy and predictions

```
def run_parallel_KNN(n_jobs, k, X_train, y_train, X_test, y_test):
    knn = KNN(k)
    knn.fit(X_train, y_train)

def calculate_local_distances(x):
    return knn.predict(np.array([x]))[0] # Utilizando predict para predecir la etiqueta para x

local_predictions = Parallel(n_jobs=n_jobs)(delayed(calculate_local_distances)(x) for x in X_test)

accuracy = accuracy_score(y_test, local_predictions)

return accuracy, local_predictions
```

Parallelization strategies used

Task Parallelism

- Task parallelism is a type of parallelism where different tasks or operations are executed simultaneously on separate processing units or threads.
- Each task can be executed concurrently without dependency on the completion of other tasks.

The independent tasks are the calculations of the local distances between the test points and the training points for each test point.

run_parallel_KNN

These tasks are distributed across multiple cores or processors using the joblib library by executing calls to the calculate_local_distances function in paralle

Benchmarking

Execution Time - Speedup - Efficiency Comparison

n	=2

cant_filas	n_jobs	Tiempo de Ejecución Paralelo	Tiempo de Ejecución Secuencial	Speedup	Eficiencia
200000	2	499,103	544,581	1,091	54,56 %
50000	2	118,925	131,455	1,105	55,20 %
20000	2	29,708	54,401	1,831	91,56 %
2000	2	3,333	5,564	1,669	83,46 %

n=6

cant_filas ▼	n_jobs	Tiempo de Ejecución Paralelo	Tiempo de Ejecución Secuencial	Speedup	Eficiencia
200000	6	241,520	558,149	2,311	38,52 %
50000	6	52,383	133,832	2,555	42,58 %
20000	6	13,997	55,399	3,958	65,97 %
2000	6	1,373	5,527	4,024	67,07 %

n=12

cant_filas ▼	n_jobs	Tiempo de Ejecución Paralelo	Tiempo de Ejecución Secuencial	Speedup	Eficiencia
200000	12	207,037	589,411	2,847	23,72 %
50000	12	48,145	141,227	2,933	24,44 %
20000	12	11,132	56,963	5,117	42,64 %
2000	12	1,141	5,708	5,002	41,68 %

Parallel Execution Time & Speedup 2k

Parallel Execution Time & Speedup 20k

Parallel Execution Time & Speedup - 50K

Parallel Execution Time & Speedup 200k

Parallel (n=12) VS Sequential Comparison Time

Conclusions

Conclusions

- The aim of this project is to give a general view of parallel programming and implementation of KNN algorithm to reach the boost of performance
- Applying parallelism to algorithms instead of doing sequential implementation, which saves execution time, optimizes the use of available resource, and gives out many solutions to problems.

• Execution times decrease significantly as we increase the number of workers when running it in parallel, as we increase the number of records in our dataset

Future Work

Future Work

- Parallel implementation of hyperparameter tuning
- Parallel implementation for finding the most optimal model.

Hyperparameter Tuning in Parallel

Thank you for your attention.