In [1]:

```
import pandas as pd
import numpy as np
```

In [2]:

```
df = pd.read_csv("Lending_Data.csv")
print("Shape of lending df: ",df.shape)
df.head()
```

Shape of lending df: (97, 14)

Out[2]:

	Name of Lending Institution	HQ State	Rank	TA Ratio1	TBL Ratio1	Amount (\$1,000)	Number	Lender Asset Size	Amount (\$1,000).1	Num
0	NaN	NaN	(1)	(2)	(3)	(4)	(5)	(6)	(7)	
1	American Express Co.	NY	1	0.238	1.000	1,63,50,038	36,03,226	>\$50B	1,63,18,089	36,03,
2	First Citizens Banchares	NC	2	0.187	0.491	39,14,507	1,17,702	10 <i>B</i> -50B	3,78,394	1,05,
3	Wintrust Financial Corp.	IL	3	0.169	0.384	28,42,793	1,36,801	10 <i>B</i> -50B	8,00,526	1,26,
4	Zions Bancorp	UT	4	0.118	0.261	62,31,770	52,612	>\$50B	5,26,206	32,
4										•

In [3]:

df.columns

Out[3]:

In [4]:

```
df.rename(columns = {'Amount ($1,000)':'Amount_in_1000$'}, inplace = True)
df.rename(columns = {'Amount ($1,000).1':'Amount_in_1000$_1'}, inplace = True)
df.rename(columns = {'Amount ($1,000).2':'Amount_in_1000$_2'}, inplace = True)

df.rename(columns = {'Number ':'Number'}, inplace = True)

df.rename(columns = {'Number .1':'Number_1'}, inplace = True)

df.rename(columns = {'Number .2':'Number_2'}, inplace = True)

df.rename(columns = {'Lender Asset Size':'Lender_Asset_Size'}, inplace = True)

df.rename(columns = {'CC Amount/TA1':'CC_Amount_BY_TA1'}, inplace = True)
```

In [5]:

```
df['Amount_in_1000$'] = df['Amount_in_1000$'] .str.replace(',', '')
df['Amount_in_1000$_1'] = df['Amount_in_1000$_1'] .str.replace(',', '')
df['Amount_in_1000$_2'] = df['Amount_in_1000$_2'] .str.replace(',', '')

df['Number'] = df['Number'] .str.replace(',', '')
df['Number_1'] = df['Number_1'] .str.replace(',', '')
df['Number_2'] = df['Number_2'] .str.replace(',', '')
```

In [6]:

```
df=df.drop(df.index[0])
```

In [7]:

```
print("Shape of lending df: ",df.shape)
df.head()
```

Shape of lending df: (96, 14)

Out[7]:

	Name of Lending Institution	HQ State	Rank	TA Ratio1	TBL Ratio1	Amount_in_1000\$	Number	Lender_Asset_Size	Amo
1	American Express Co.	NY	1	0.238	1.000	16350038	3603226	>\$50B	
2	First Citizens Banchares	NC	2	0.187	0.491	3914507	117702	10 <i>B</i> -50B	
3	Wintrust Financial Corp.	IL	3	0.169	0.384	2842793	136801	10 <i>B</i> -50B	
4	Zions Bancorp	UT	4	0.118	0.261	6231770	52612	>\$50B	
5	Synovus Financial Corp.	GA	5	0.162	0.381	4227168	22675	10 <i>B</i> -50B	
4									•

```
In [8]:
```

```
df.columns
```

Out[8]:

```
'Number_2', 'CC_Amount_BY_TA1'],
  dtype='object')
```

In [9]:

```
df.info()
```

```
<class 'pandas.core.frame.DataFrame'>
Int64Index: 96 entries, 1 to 96
Data columns (total 14 columns):
```

#	Column	Non-Null Count	Dtype
0	Name of Lending Institution	96 non-null	object
1	HQ State	93 non-null	object
2	Rank	93 non-null	object
3	TA Ratio1	93 non-null	object
4	TBL Ratio1	93 non-null	object
5	Amount_in_1000\$	93 non-null	object
6	Number	93 non-null	object
7	Lender_Asset_Size	93 non-null	object
8	Amount_in_1000\$_1	93 non-null	object
9	Number_1	93 non-null	object
10	Unnamed: 10	0 non-null	float64
11	Amount_in_1000\$_2	93 non-null	object
12	Number_2	93 non-null	object
13	CC_Amount_BY_TA1	93 non-null	object
dtvn	es: float64(1), object(13)		

dtypes: float64(1), object(13) memory usage: 11.2+ KB

In [10]:

```
df.pop('Unnamed: 10')
```

Out[10]:

```
NaN
1
```

- 2 NaN
- 3 NaN
- 4 NaN 5 NaN
- 92 NaN
- 93 NaN
- NaN 95 NaN

94

96 NaN

Name: Unnamed: 10, Length: 96, dtype: float64

In [11]:

df.shape

Out[11]:

(96, 13)

In [12]:

```
dict(df['Rank'].value_counts())
Out[12]:
{'NR': 5,
 '19': 3,
 '13': 2,
 '40': 2,
 '67': 2,
 '34': 2,
 '8': 2,
 '11': 2,
 '88': 1,
 '10': 1,
 '59': 1,
 '48': 1,
 '80': 1,
 '54': 1,
 '63': 1,
 '4': 1,
 '71': 1,
 '45': 1,
 '7': 1,
 '49': 1,
 '58': 1,
 '1': 1,
 '27': 1,
 '29': 1,
 '79': 1,
 '53': 1,
 '51': 1,
 '46': 1,
 '55': 1,
 '42': 1,
 '6': 1,
 '43': 1,
 '66': 1,
 '31': 1,
 '56': 1,
 '65': 1,
 '22': 1,
 '38': 1,
 '69': 1,
 '78': 1,
 '33': 1,
 '52': 1,
 '60': 1,
 '76': 1,
 '18': 1,
 '30': 1,
 '77': 1,
 '50': 1,
 '26': 1,
 '47': 1,
 '15': 1,
 '73': 1,
```

'70': 1,
'25': 1,
'16': 1,

```
'5': 1,
 '28': 1,
 '32': 1,
 '24': 1,
 '86': 1,
 '75': 1,
 '17': 1,
 '85': 1,
 '37': 1,
 '72': 1,
 '61': 1,
 '64': 1,
 '44': 1,
 '82': 1,
 '36': 1,
 '2': 1,
 '3': 1,
 '83': 1,
 '57': 1,
 '23': 1,
 '39': 1,
 '84': 1,
 '62': 1,
 '74': 1,
 '81': 1,
 '87': 1}
In [13]:
df.isnull().sum()
Out[13]:
Name of Lending Institution
                                 0
HQ State
                                 3
Rank
                                 3
TA Ratio1
                                 3
TBL Ratio1
                                 3
Amount_in_1000$
                                 3
                                 3
Number
Lender_Asset_Size
                                 3
Amount_in_1000$_1
                                 3
Number_1
                                 3
Amount_in_1000$_2
                                 3
                                 3
Number 2
CC_Amount_BY_TA1
                                 3
dtype: int64
In [14]:
df['Rank'].replace({'NR':0,np.nan:0},inplace = True)
In [15]:
df['Rank'] = pd.to_numeric(df['Rank'])
In [16]:
df['TA Ratio1'].replace({'-':0,np.nan:0},inplace = True)
```

```
In [17]:
df['TA Ratio1'] = pd.to_numeric(df['TA Ratio1'])
In [18]:
df['TBL Ratio1'].replace({'-':0,np.nan:0},inplace = True)
In [19]:
df['TBL Ratio1'] = pd.to_numeric(df['TBL Ratio1'])
In [20]:
df['Amount_in_1000$'].replace({'-':0,np.nan:0,' - ':0},inplace = True)
In [21]:
df['Amount_in_1000$'] = pd.to_numeric(df['Amount_in_1000$'])
In [22]:
df['Number'].replace({'-':0,np.nan:0},inplace = True)
In [23]:
df['Number'] = pd.to_numeric(df['Number'])
In [24]:
df['Amount_in_1000$_1'].replace({'-':0,np.nan:0,' - ':0},inplace = True)
In [25]:
df['Amount_in_1000$_1'] = pd.to_numeric(df['Amount_in_1000$_1'])
In [26]:
df['Number_1'].replace({'-':0,np.nan:0,' - ':0},inplace = True)
In [27]:
df['Number_1'] = pd.to_numeric(df['Number_1'])
In [28]:
df['Amount_in_1000$_2'].replace({'-':0,np.nan:0,' - ':0},inplace = True)
In [29]:
df['Amount_in_1000$_2'] = pd.to_numeric(df['Amount_in_1000$_2'])
```

```
In [30]:
```

```
df['Number_2'].replace({'-':0,np.nan:0,' - ':0},inplace = True)
```

In [31]:

```
df['Number_2'] = pd.to_numeric(df['Number_2'])
```

In [32]:

```
df.info()
```

<class 'pandas.core.frame.DataFrame'>
Int64Index: 96 entries, 1 to 96
Data columns (total 13 columns):

#	Column	Non-Null Count	Dtype
0	Name of Lending Institution	96 non-null	object
1	HQ State	93 non-null	object
2	Rank	96 non-null	int64
3	TA Ratio1	96 non-null	float64
4	TBL Ratio1	96 non-null	float64
5	Amount_in_1000\$	96 non-null	int64
6	Number	96 non-null	int64
7	Lender_Asset_Size	93 non-null	object
8	Amount_in_1000\$_1	96 non-null	int64
9	Number_1	96 non-null	int64
10	Amount_in_1000\$_2	96 non-null	int64
11	Number_2	96 non-null	int64
12	CC_Amount_BY_TA1	93 non-null	object
44	C1+C4/2\ :+C4/7\		

dtypes: float64(2), int64(7), object(4)

memory usage: 10.5+ KB

In [33]:

df.head()

Out[33]:

	Name of Lending Institution	HQ State	Rank	TA Ratio1	TBL Ratio1	Amount_in_1000\$	Number	Lender_Asset_Size	Amo
1	American Express Co.	NY	1	0.238	1.000	16350038	3603226	>\$50B	
2	First Citizens Banchares	NC	2	0.187	0.491	3914507	117702	10 <i>B</i> -50B	
3	Wintrust Financial Corp.	IL	3	0.169	0.384	2842793	136801	10 <i>B</i> -50B	
4	Zions Bancorp	UT	4	0.118	0.261	6231770	52612	>\$50B	
5	Synovus Financial Corp.	GA	5	0.162	0.381	4227168	22675	10 <i>B</i> -50B	
4									•

In [34]:

```
df.describe()
```

Out[34]:

	Rank	TA Ratio1	TBL Ratio1	Amount_in_1000\$	Number	Amount_in_1000\$_1	
count	96.000000	96.000000	96.000000	9.600000e+01	9.600000e+01	9.600000e+01	9
mean	40.697917	0.045094	0.230313	2.952567e+06	2.006384e+05	9.712989e+05	1
std	27.446837	0.045020	0.230731	5.812881e+06	6.639000e+05	2.792406e+06	6
min	0.000000	0.000000	0.000000	0.000000e+00	0.000000e+00	0.000000e+00	С
25%	16.750000	0.011000	0.087250	2.437332e+05	1.676250e+03	1.676275e+04	4
50%	40.000000	0.036000	0.185500	1.120101e+06	1.232800e+04	1.134570e+05	6
75%	64.250000	0.065250	0.261250	2.840470e+06	4.831825e+04	5.269600e+05	3
max	88.000000	0.238000	1.000000	3.457039e+07	3.603226e+06	1.631809e+07	3
4							>

In [35]:

```
Rm = df['Rank'].mean()
TAm = df['TA Ratio1'].mean()
TBLm = df['TBL Ratio1'].mean()
Am = df['Amount_in_1000$'].mean()
Nm = df['Number'].mean()
A_1m = df['Amount_in_1000$_1'].mean()
N_1m = df['Number_1'].mean()
A_2m = df['Amount_in_1000$_2'].mean()
N_2m = df['Number_2'].mean()
```

In [36]:

```
#df['Rank'] = df['Rank'].replace(0,Rm)
```

In [37]:

In [38]:

```
df.head()
```

Out[38]:

	Name of Lending Institution	HQ State	Rank	TA Ratio1	TBL Ratio1	Amount_in_1000\$	Number	Lender_Asset_Size	Ar
1	American Express Co.	NY	1	0.238	1.000	16350038.0	3603226.0	>\$50B	
2	First Citizens Banchares	NC	2	0.187	0.491	3914507.0	117702.0	10 <i>B</i> -50B	
3	Wintrust Financial Corp.	IL	3	0.169	0.384	2842793.0	136801.0	10 <i>B</i> -50B	
4	Zions Bancorp	UT	4	0.118	0.261	6231770.0	52612.0	>\$50B	
5	Synovus Financial Corp.	GA	5	0.162	0.381	4227168.0	22675.0	10 <i>B</i> -50B	

```
In [39]:
```

```
dict(df['Lender_Asset_Size'].value_counts())
# df['Lender_Asset_Size'].replace({'NR':0,np.nan:0},inplace = True)
```

Out[39]:

```
{' $10B-$50B ': 43, '>$50B ': 31, '>$10B ': 15, '>$10B ': 3, ': 3}
```

In [40]:

```
0 == >$10B,
1 == $10B - $50B,
2 == >$50B == 2
. . .
                                                                                ' or
# df['Lender_Asset_Size'].loc[df['Lender_Asset_Size'] == '>$10B
                           # df['Lender_Asset_Size'] == ' >$10B
                                                      '), 'Lender_Asset_Size'] = '0'
df.loc[(df.Lender_Asset_Size == '>$10B
                                                         '), 'Lender_Asset_Size'] = '0'
df.loc[(df.Lender_Asset_Size == ' >$10B
df.loc[(df.Lender_Asset_Size == ' $10B-$50B
                                                        '), Lender_Asset_Size'] = '1'
df.loc[(df.Lender_Asset_Size == '>$50B
                                                      '), 'Lender_Asset_Size'] = '2'
df.loc[(df.Lender_Asset_Size == ' >$50B
                                                         '), 'Lender_Asset_Size'] = '2'
In [41]:
dict(df['Lender_Asset_Size'].value_counts())
Out[41]:
{'1': 43, '2': 32, '0': 18}
In [42]:
dict(df['CC_Amount_BY_TA1'].value_counts())
Out[42]:
{' . ': 47,
 '0': 30,
 '0.01': 7,
 '0.03': 2,
 '0.25': 1,
 '0.06': 1,
 '0.02': 1,
 '0.07': 1,
 '0.1': 1,
 '0.05': 1,
 '0.28': 1}
In [43]:
df['CC_Amount_BY_TA1'].replace({'-':0,np.nan:0,' - ':0,' . ':0},inplace = True)
In [44]:
df['CC_Amount_BY_TA1'] = pd.to_numeric(df['CC_Amount_BY_TA1'])
In [45]:
CC_m = df['CC_Amount_BY_TA1'].mean()
```

```
In [46]:

df['CC_Amount_BY_TA1'] = df['CC_Amount_BY_TA1'].replace(0,CC_m)

In [47]:

df.to_csv('lending_cleaned.csv', index=False)

In []:

In []:
```