Algorithmic patterns Data Structures and Algorithms for Com (ISCL-BA-07) nal Linguistics III Çağrı Çöltekin ccoltekin@sfs.uni-tuebingen.de

Winter Semester 2021/22

the complete code

Recursion

Your task from the first lecture: writing a recursive linear search

- · Recursion is relatively easy: if val -- meq[0]:
 return i
 else:
 return rl_mearch(meq[::], val, i-:)
- . And we need a base case: if not meg: # onp
- the compete come

 | def rl search(seq, val, i=0):
 | if not seq:
 | return None
 | if val = seq[0]:
 | return rl, search(seq[::], val, i=1)
 | return rl, search(seq[::], val, i=1) Can we improve this?

Recursion: practical issues ration depth :

- Each function call requires some bookkeeping
 Compilers/interpreters allocate space on a stack for the bookkeeping for each function call
- · Most environments limit the number of recursive calls: long chains of recursion are likely to cause errors
- * Tail recursion (e.g., our recursive search example) is easy to convert to iteration
- It is also easy to optimize, and optimized by many compilers (not by the Python interpreter)

Brute force

- rate all possible cases (e.g., to find the
- best solution) Common in combinatorial problems
- Often intractable, practical only for small input sizes
- It is also typically the beginning of finding a more efficient approach

Segmentation

. Can you think of a non-recursive solution:

Overview

- Revisiting recursion
 Brute force
 Divide and conque
 Greedy algorithms

How does this recursion work

Another recursive example every algorithm course is required to

Fibonacci numbers are defined as Fo = 0

- $F_1 = 1$ $F_n = F_{n-1} + F_{n-2} \quad \text{for} \quad n > 1$
- · Recursion is common in math, and maps well to the recursive algorithms
- : def fib(n): : if n <= 1: : return n : return fib(n-2) + fib(n-1) . Note that we now have binary
- recursion, each function call creates two calls to self . We follow the math exactly, but is
- this code officiant?

Complexity of (naive) Fibonacci algorithm

Brute force

- · Segmentation is prevalent in CL
- eggmentation is prevaited in CL.

 Examples include finding words: tokenization (particularly for writing sy
 that do not use within space)

 Finding sub-rood units (e.g., morphemes, or more specialized applicatio
 compound splitting)

 Psycholinguistics: how do people extract words from continuous speech?
- We consider the following problem:
 Given a metric or score to determine the "best" segmentation
 We enumerate all possible ways to segment, pick the one with the best score
- . How can we enumerate all possible segmentations of a string?

Segmentation

- Task: find the closest two portions
- Direct solution:
 20 × 20 = 400 comparisons³

- Divide
- * Solve separately (conquer): $10 \times 10 + 10 \times 10 = 200$ comparisons
- Combine: pick the minimum of the individual solutions
- Gain is higher when n is larger, and we di

Greedy algorithms

- · An algorithm is greedy if it optimizes a local co
 - . For some problems, greedy algorithms result in cor . In others they may result in 'good enough' solutions
 - . If they work, they are efficient

 - An important class of graph algorithms fall into this category (e.g., finding shortest paths, scheduling)

Dynamic programming

. Dynamic programming is a method to save earlier results to reduce

- computation . It is sometimes called memoization (it is not a typo)
- Again, a large number of algorithms we use fall into this category, including common parsing algorithms

Complexity of Fibonacci algorithm with dynamic pogramming recursion tree for fib(

. This is probably the most common pattern

- . Divide and conquer does not always yield good results, the cost of merging
- should be less than the gain from the division(s)
- Many of the important algorithms fall into this category:
- menge sert and quick sort (coming soon)
 integer multiplication
 matrix multiplication
 fast Furrier transform (FFT)

Greedy algorithms 'change making

- · We want to produce minimum number of coins for a particular sum s Pick the largest coin c <= s
 - 2. set s = s c 3. repeat 1 & 2 until s = 0
- Is this algorithm correct?

wie Fib

- \star Think about coins of 10, 30, 40 and apply the algorithm for the sum value of 60 . Is it correct if the coin values were limited Euro coins?

Dynamic programming

- : def memofib(n, memo = {0: 0, 1:1}): if n not in memo:
 memo[n] = memofib(n-1) + memofib(n-2)
 return memo[n]
- . We save the results calculated in a dictionary, if the result is already in the dictionary, we return without recursion
- . Otherwise we calculate recursively as before
- The difference is big, but there is also a 'neater' solution without (explicit)
- memoization

Summary

We saw a few general appro ient) ale

- Designing algorithms is not a mechanical procedure: It requires creativity
 There are other common patterns, including
 Backtracking, Branch-and-bound
- - Randomized algorithms
 Distributed algorithms (sometime called swarm optimization)
- Designing algorithm ns is difficult (possibly, not as difficult as analyzing them)
- * Reading: Goodrich, Tamassia, and Goldwasser (2013, chapter 12)

Nearest neighbors an ounter - Defens and implement a divide-and-conquer algorithm for accord neighbor problem, which divide onle implement to the upon the beautiful the solution becomes trivial. - Analyze you algorithm and company to the native vension sketched above (an implementation was provided in the previous locture).	Linear search a little for of operations det (f_mentions, val., v=0)
Better solutions for Fibonacci numbers and times and times	Segmentation with yacid def suppost, y(ma); if less(ma) = 1; y yield (ma) = 1; y yield (ma) = 1; yield
Acknowledgments, credits, references • Some of the slides are based on the previous year's course by Cortina Dima. • Cooderich, Michael T., Roberts Tamassia, and Michael H. Goldwasser (2013). Data Transiers and Algorithms in Paless. john Wiley is Som, Incorporated. same 9781136/5072.	Column St. Column of Column St. Column of Colu
Standards Normanne Seanne Springspring	College McCommander Statement Statement Special Conference (Section 2011)