Information Retrieval 1 Term-based Retrieval

Ilya Markov

i.markov@uva.nl

University of Amsterdam

Document representation and matching

Evaluation

Document representation & matching

Learning to rank

IR—user interaction

Recommender systems

Outline

- 1 Vector space model
- 2 Language modeling in IR
- **BM25**

Outline

- 1 Vector space model
- 2 Language modeling in IR
- 3 BM25

Documents as vectors

		Anthony and Cleopatra	Julius Caesar	The Tempest	Hamlet	Othello	Macbeth	
Antho	ny	1	1	0	0	0	1	
Brutu	S	1	1	0	1	0	0	
Caesa	r	1	1	0	1	1	1	
Calpu	rnia	0	1	0	0	0	0	
Cleop	atra	1	0	0	0	0	0	
mercy		1	0	1	1	1	1	
worse	r	1	0	1	1	1	0	

. . .

Manning et al., "Introduction to Information Retrieval"

Match using cosine similarity

$$sim(d,q) = \cos(\vec{v}(d), \vec{v}(q)) = \frac{\vec{v}(d) \cdot \vec{v}(q)}{\|\vec{v}(d)\| \cdot \|\vec{v}(q)\|}$$

$$= \frac{\sum_{i=1}^{|V|} d_i \cdot q_i}{\sqrt{\sum_{i=1}^{|V|} d_i^2} \cdot \sqrt{\sum_{i=1}^{|V|} q_i^2}}$$

Manning et al., "Introduction to Information Retrieval"

Term frequency

	Anthony and Cleopatra	Julius Caesar	The Tempest	Hamlet	Othello	Macbeth	
Anthony	157	73	0	0	0	1	
Brutus	4	157	0	2	0	0	
Caesar	232	227	0	2	1	0	
Calpurnia	0	10	0	0	0	0	
Cleopatra	57	0	0	0	0	0	
mercy	2	0	3	8	5	8	
worser	2	0	1	1	1	5	

. . .

Manning et al., "Introduction to Information Retrieval"

Term frequency

Raw term frequency
$$tf(t,d)$$

Log term frequency $\begin{cases} 1 + \log t f(t,d) & \text{if } t f(t,d) > 0 \\ 0 & \text{otherwise} \end{cases}$

Vector space model Language modeling in IR BM25 Summary

Inverse document frequency

$$idf(t) = \log \frac{N}{df(t)}$$

- df(t) document frequency of term t
- N total number of documents in a collection

Inverse document frequency

Term	df(t)	idf(t)
calpurnia	1	6
animal	100	4
sunday	1000	3
fly	10,000	2
under	100,000	1
the	1,000,000	0

for N = 1,000,000 and log_{10}

Manning et al., "Introduction to Information Retrieval"

TF-IDF

$$\mathsf{TF}\mathsf{-}\mathsf{IDF}(t,d) = tf(t,d) \cdot idf(t)$$

Term frequency

•
$$tf(t,d)$$

•
$$\begin{cases} 1 + \log tf(t,d) & \text{if } tf(t,d) > 0 \\ 0 & \text{otherwise} \end{cases}$$

Inverse document frequency

•
$$\log \frac{N}{df(t)}$$

• $\max\{0, \log \frac{N - df(t)}{df(t)}\}$

Vector space model summary

- Documents and queries as vectors
- Match using cosine similarity
- Weights can be
 - binary
 - 2 term frequency
 - 3 TF-IDF

Outline

- 1 Vector space mode
- 2 Language modeling in IR
 - Method
 - Smoothing
- 3 BM2!

Outline

- 2 Language modeling in IR
 - Method
 - Smoothing

Language model

A statistical language model is a probability distribution over sequences of words.

- Given a sequence of length m
- A language model assigns probability $P(w_1, ..., w_m)$ to this sequence
- Unigram language model

$$P(w_1,\ldots,w_m)=P(w_1)\ldots P(w_m)$$

Bi-gram language model

$$P(w_1, \ldots, w_m) = P(w_1)P(w_2 \mid w_1)P(w_3 \mid w_2) \ldots P(w_m \mid w_{m-1})$$

https://en.wikipedia.org/wiki/Language_model

Unigram language model example

Model M	1	Model M	2
the	0.2	the	0.15
a	0.1	a	0.12
frog	0.01	frog	0.0002
toad	0.01	toad	0.0001
said	0.03	said	0.03
likes	0.02	likes	0.04
that	0.04	that	0.04
dog	0.005	dog	0.01
cat	0.003	cat	0.015
monkey	0.001	monkey	0.002

Manning et al., "Introduction to Information Retrieval"

Ilya Markov i.markov@uva.nl Information Retrieval 1 16

Documents as distributions

Unigram language model

$$P(t \mid M_d) = \frac{tf(t,d)}{dI(d)}$$

- A document is a multinomial distribution over words
- If some vocabulary terms do not appear in document d, then $P(t \mid M_d) = 0$
- This is addressed by smoothing

Match using query likelihood model (QLM)

Likelihood of a document given a query

$$P(d \mid q) = \frac{P(q \mid d)P(d)}{P(q)}$$

The prior distribution over queries P(q) does not affect matching for a particular query

$$P(d \mid q) \stackrel{rank}{=} P(q \mid d)P(d)$$

lacktriangle Usually, the prior distribution over documents P(d) is assumed to be uniform

$$P(d \mid q) \stackrel{rank}{=} P(q \mid d) = P(q \mid M_d)$$

"Bag of words" assumption: terms are independent

$$P(q \mid M_d) = \prod_{t \in q} P(t \mid M_d) = \prod_{t \in q} \frac{tf(t, d)}{dl(d)}$$

Match using KL-divergence

$$KL(M_d || M_q) = \sum_{t \in V} P(t \mid M_q) \log \frac{P(t \mid M_q)}{P(t \mid M_d)}$$

Ilya Markov i.markov@uva.nl Information Retrieval 1 19

Outline

- 2 Language modeling in IR
 - Method
 - Smoothing

Jelinek-Mercer smoothing

$$P_s(t \mid M_d) = \lambda P(t \mid M_d) + (1 - \lambda)P(t \mid M_c)$$
$$= \lambda \frac{tf(t, d)}{dl(d)} + (1 - \lambda)\frac{cf(t)}{cl}$$

- cf(t) collection frequency of term t
- cl collection length

Conjugate prior

$$\overbrace{p(\theta \mid x)}^{posterior} = \frac{\overbrace{p(x \mid \theta)}^{likelihood} \overbrace{p(\theta)}^{prior}}{\int p(x \mid \theta') p(\theta') d\theta'}$$

- The likelihood function $p(x \mid \theta)$ is usually well-determined from a statement of the data-generating process
- For certain choices of the prior distribution $p(\theta)$, the posterior distribution $p(\theta \mid x)$ is in the same family of distributions
- Such distribution $p(\theta)$ is a conjugate prior for the likelihood function $p(x \mid \theta)$

https://en.wikipedia.org/wiki/Conjugate_prior

Conjugate prior for Bernoulli and binomial

- Bernoulli distribution
 - A random variable takes the value 1 with success probability p and the value 0 with failure probability q=1-p
- Binomial distribution
 - The number of successes in a sequence of n independent yes/no experiments, each of which yields success with probability p (Bernoulli trial)
- Beta distribution conjugate prior for Bernoulli and binomial

$$\frac{x^{\alpha-1}(1-x)^{\beta-1}}{B(\alpha,\beta)}$$

Conjugate prior for Bernoulli and binomial

- Consider n = s + f Bernoulli trials with success probability p
- Likelihood function

$$\mathcal{L}(s, f \mid p = x) = \binom{s+f}{s} x^{s} (1-x)^{f} = \binom{n}{s} x^{s} (1-x)^{n-s}$$

Prior probability

$$P_{prior}(p=x;\alpha_{pr},\beta_{pr}) = \frac{x^{\alpha_{pr}-1}(1-x)^{\beta_{pr}-1}}{B(\alpha_{pr},\beta_{pr})}$$

Posterior probability

$$P_{post}(p = x \mid s, f) = \frac{P_{prior}(p = x; \alpha_{pr}, \beta_{pr})\mathcal{L}(s, f \mid p = x)}{\int_0^1 P_{prior}(p = x; \alpha_{pr}, \beta_{pr})\mathcal{L}(s, f \mid p = x)dx}$$

https://en.wikipedia.org/wiki/Beta_distribution#Bayesian_inference

IIva Markov

Conjugate prior for Bernoulli and binomial

$$P_{post}(p = x \mid s, f) = \frac{1}{Z} P_{prior}(p = x; \alpha_{pr}, \beta_{pr}) \cdot \mathcal{L}(s, f \mid p = x)$$

$$= \frac{1}{Z} \binom{n}{s} x^{s} (1 - x)^{n-s} \cdot \frac{x^{\alpha_{pr}-1} (1 - x)^{\beta_{pr}-1}}{B(\alpha_{pr}, \beta_{pr})}$$

$$= \frac{1}{Z} \binom{n}{s} \frac{x^{s+\alpha_{pr}-1} (1 - x)^{n-s+\beta_{pr}-1}}{B(\alpha_{pr}, \beta_{pr})}$$

$$= \frac{\binom{n}{s} x^{s+\alpha_{pr}-1} (1 - x)^{n-s+\beta_{pr}-1} / B(\alpha_{pr}, \beta_{pr})}{\int_{0}^{1} \binom{n}{s} x^{s+\alpha_{pr}-1} (1 - x)^{n-s+\beta_{pr}-1} / B(\alpha_{pr}, \beta_{pr})) dx}$$

$$= \frac{x^{s+\alpha_{pr}-1} (1 - x)^{n-s+\beta_{pr}-1}}{\int_{0}^{1} (x^{s+\alpha_{pr}-1} (1 - x)^{n-s+\beta_{pr}-1}) dx}$$

$$= \frac{x^{s+\alpha_{pr}-1} (1 - x)^{n-s+\beta_{pr}-1}}{B(s+\alpha_{pr}, n-s+\beta_{pr})}$$

$$\sim Beta(s+\alpha_{pr}, n-s+\beta_{pr})$$

Conjugate prior for multinomial

- Multinomial distribution
 - The probability of counts for rolling a k-sided dice n times
 - Probability mass function

$$\mathcal{L}(n_1,\ldots,n_k \mid p_1 = x_1,\ldots,p_k = x_k) = \frac{n!}{n_1!\ldots n_k!} x_1^{n_1}\ldots x_k^{n_k}$$

- Bernoulli is multinomial with k = 2, n = 1
- Binomial is multinomial with k = 2
- Dirichlet distribution conjugate prior for multinomial

$$P_{prior}(p_1 = x_1, \ldots, p_k = x_k; \alpha_1^{pr}, \ldots, \alpha_k^{pr}) = \frac{1}{B(\alpha)} \prod_{i=1}^k x_i^{\alpha_i^{pr}-1}$$

- Beta is Dirichlet with k = 2
- Posterior

$$P_{post}(p_1 = x_1, \dots, p_k = x_k \mid n_1, \dots, n_k) = \frac{1}{B(\alpha + \mathbf{n})} \prod_{i=1}^k x_i^{\alpha_i^{pr} + n_i - 1}$$

Dirichlet smoothing

• A unigram language model can be seen as a multinomial distribution over words $\mathcal{L}_d(n_1, \ldots, n_k \mid p_1, \ldots, p_k)$

•
$$n_i = tf(t_i, d)$$

• $p_i = P(t_i \mid M_d)$

• The conjugate prior for multinomial is the Dirichlet distribution $P_{prior}(p_1, \ldots, p_k; \alpha_1^{pr}, \ldots, \alpha_k^{pr})$

•
$$\mu$$
 is a smoothing parameter $(\lambda = \frac{dl}{dl + \mu})$

- The posterior is the Dirichlet distribution with parameters $\alpha_i^{po} = n_i + \alpha_i^{pr} = tf(t_i, d) + \mu P(t_i \mid M_c)$
- Dirichlet smoothing

$$P_s(t \mid M_d) = \frac{tf(t_i, d) + \mu P(t_i \mid M_c)}{dl(d) + \mu}$$

Experimental comparison

Collection	Method	Parameter	MAP	R-Prec.	Prec@10
Trec8 T	Okapi	Okapi	0.2292	0.2820	0.4380
	BM25				
	JM	$\lambda = 0.7$	0.2310	0.2889	0.4220
			(p=0.8181)	(p=0.3495)	(p=0.3824)
	Dir	$\mu = 2,000$	0.2470	0.2911	0.4560
			(p=0.0757)	(p=0.3739)	(p=0.3710)
	Dis	$\delta = 0.7$	0.2384	0.2935	0.4440
			(p=0.0686)	(p=0.0776)	(p=0.6727)
	Two-Stage	auto	0.2406	0.2953	0.4260
			(p=0.0650)	(p=0.0369)	(p=0.4282)

Figure: TREC-8 Newswire, ad-hoc track, queries 401-450, title-only

G. Bennett, "A Comparative Study of Probabilistic and Language Models for Information Retrieval"

Ilya Markov i.markov@uva.nl Information Retrieval 1

Experimental comparison

Collection	Method	Parameter	MAP	R-Prec.	Prec@10
TREC-	Okapi	Okapi	0.1522	0.2056	0.2918
2001 T	BM25				
	JM	$\lambda = 0.7$	0.1113	0.1505	0.2122
			(p=0.0003)	(p=0.0037)	(p=0.0003)
	Dir	$\mu = 2,000$	0.1774	0.2238	0.3184
			(p=0.0307)	(p=0.3236)	(p=0.3165)
	Dis	$\delta = 0.7$	0.1370	0.1906	0.2653
			(p=0.0511)	(p=0.053)	(p=0.1348)
	Two-Stage	auto	0.1441	0.1934	0.2898
			(p=0.2963)	(p=0.3992)	(p=0.8962)

Figure: TREC-2001 Web data, ad-hoc track, queries 501–550, title-only

G. Bennett, "A Comparative Study of Probabilistic and Language Models for Information Retrieval"

Ilya Markov i.markov@uva.nl Information Retrieval 1 2

Language modeling for IR summary

- Documents and queries as distributions
- Match using QLM or KL-divergence
- Smoothing
 - Jelinek-Mercer smoothing
 - Dirichlet smoothing

BM25

- 1 Vector space mode
- 2 Language modeling in IR
- **3** BM25

BM25

$$BM25 = \sum_{t \in q} \log \left[\frac{N}{df(t)} \right] \cdot \frac{(k_1 + 1) \cdot tf(t, d)}{k_1 \cdot \left[(1 - b) + b \cdot \frac{dI(d)}{dI_{avg}} \right] + tf(t, d)}$$

- k_1 , b parameters
- dI(d) length of document d
- \bullet dl_{avg} average document length

BM25

$$BM25 = \sum_{t \in q} \log \left[\frac{N}{df(t)} \right] \cdot \frac{(k_1 + 1) \cdot tf(t, d)}{k_1 \cdot \left[(1 - b) + b \cdot \frac{dI(d)}{dI_{avg}} \right] + tf(t, d)}$$

- What if $k_1 \in \{0, \infty\}$?
- What of $b \in \{0, 1\}$?
- What if tf(t, d) is small/large? $k_1 \in [1.2, 2], b = 0.75$

BM25 for long queries

Vector space model

$$BM25_d = \sum_{t \in q} \log \left[\frac{N}{df(t)} \right] \cdot \frac{(k_1 + 1) \cdot tf(t, d)}{k_1 \cdot \left[(1 - b) + b \cdot \frac{dI(d)}{dI_{ave}} \right] + tf(t, d)} \cdot \frac{(k_3 + 1)tf(t, q)}{k_3 + tf(t, q)}$$

Ilya Markov i.markov@uva.nl Information Retrieval 1 34

Content-based retrieval summary

- Vector space model
 - Documents and queries as vectors
 - Match using cosine similarity
- Language modeling in IR
 - Documents and queries as discrtibutions
 - Match using QLM or KL-divergence
- BM25

Materials

- Manning et al., Chapters 6, 9, 11, 12
- Croft et al., Chapter 7