CS101 (Fall 2012): Problem Set #3 Bayesian Networks

Chuan

December 2, 2012

1 Problem 1

a. (c)

b. (a)

c. (a)

d. The CPT for the G_{child} :

G_{mother}	G_{father}	$P(G_{child} = l)$	$P(G_{child} = r)$
l	l	1-m	m
l	r	0.5	0.5
r	l	0.5	0.5
r	r	m	1-m

e.

$$P(G_{child} = l) = \sum_{G_{mother}, G_{father}} P(G_{child} = l, G_{father}, G_{mother})$$

$$= P(G_{child} = l, G_{father} = l, G_{mother} = l) + P(G_{child} = l, G_{father} = l, G_{mother} = r) + P(G_{child} = l, G_{father} = r, G_{mother} = l) + P(G_{child} = l, G_{father} = r, G_{mother} = r)$$

$$= P(G_{child} = l \mid G_{father} = l, G_{mother} = l)P(G_{father} = l, G_{mother} = l) + P(G_{child} = l \mid G_{father} = l, G_{mother} = r)$$

$$= P(G_{child} = l \mid G_{father} = r, G_{mother} = l)P(G_{father} = r, G_{mother} = l) + P(G_{child} = l \mid G_{father} = r, G_{mother} = r)$$

$$= P(G_{child} = l \mid G_{father} = r, G_{mother} = r)P(G_{father} = r, G_{mother} = l) + P(G_{child} = l \mid G_{father} = r, G_{mother} = r)$$

$$= P(G_{child} = l \mid G_{father} = r, G_{mother} = r)P(G_{father} = r, G_{mother} = r)$$

$$= P(G_{child} = l \mid G_{father} = r, G_{mother} = r)$$

$$= P(G_{child} = l \mid G_{father} = r, G_{mother} = r)$$

$$= P(G_{child} = l \mid G_{father} = r, G_{mother} = r)$$

$$= P(G_{child} = l \mid G_{father} = r, G_{mother} = r)$$

$$= P(G_{child} = l \mid G_{father} = r, G_{mother} = r)$$

$$= P(G_{child} = l \mid G_{father} = r, G_{mother} = r)$$

$$= P(G_{child} = l \mid G_{father} = r, G_{mother} = r)$$

$$= P(G_{child} = l \mid G_{father} = r, G_{mother} = r)$$

$$= P(G_{child} = l \mid G_{father} = r, G_{mother} = r)$$

$$= P(G_{child} = l \mid G_{father} = r, G_{mother} = r)$$

$$= P(G_{child} = l \mid G_{father} = r, G_{mother} = r)$$

$$= P(G_{child} = l \mid G_{father} = r, G_{mother} = r)$$

$$= P(G_{child} = l \mid G_{father} = r, G_{mother} = r)$$

$$= P(G_{child} = l \mid G_{father} = r, G_{mother} = r)$$

$$= P(G_{child} = l \mid G_{father} = r, G_{mother} = r)$$

$$= P(G_{child} = l \mid G_{father} = r, G_{mother} = r)$$

$$= P(G_{child} = l \mid G_{father} = r, G_{mother} = r)$$

$$= P(G_{child} = l \mid G_{father} = r, G_{mother} = r)$$

$$= P(G_{child} = l \mid G_{father} = r, G_{mother} = r)$$

$$= P(G_{child} = l \mid G_{father} = r, G_{mother} = r)$$

$$= P(G_{child} = l \mid G_{father} = r, G_{father} = r)$$

$$= P(G_{child} = l \mid G_{father} = r, G_{father} = r)$$

$$= P(G_{child} = l \mid G_{father} = r, G_{father} = r)$$

$$= P$$

f. According to e., we get:

$$P(G_{child} = l) = P(G_{father}) = P(G_{mother}) = q$$

 $(1 - m)q^2 + q(1 - q) + m(1 - q)^2 = q$
 $q = 0.5$

As we know about the handedness in humans, a variety of studies suggest that 70-90% of the world population is right-handed(1). But according to the hypothesis, the distribution of handedness is same as the gene, which means 50% of the world population is right-handed. This is not true. So the hypothesis is wrong.

References

[1] Handedness. From Wikipedia, the free encyclopedia.