

Esta obra está bajo una Licencia Creative Commons Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0).

Eres libre de compartir y redistribuir el contenido de esta obra en cualquier medio o formato, siempre y cuando des el crédito adecuado a los autores originales y no persigas fines comerciales.

Ecuaciones Diferenciales I Examen III

Los Del DGIIM, losdeldgiim.github.io
Arturo Olivares Martos

Granada, 2024-2025

Asignatura Ecuaciones Diferenciales I

Curso Académico 2023-24.

Grado Doble Grado en Ingeniería Informática y Matemáticas.

Grupo Único.

Profesor Rafael Ortega Ríos.

Descripción Primer parcial.

Fecha 31 de octubre de 2023.

Ejercicio 1. Pruebe que la siguiente ecuación define una única función implícita $x : \mathbb{R} \to \mathbb{R}, t \mapsto x(t)$:

$$e^x + x^3 + t = 0$$

Pruebe además que la función x(t) es decreciente.

Para que la ecuación anterior defina una única función implícita, hemos de ver que, para cada $t \in \mathbb{R}$, la ecuación $e^x + x^3 + t = 0$ tiene una única solución. Demostremos por tanto la existencia y unicidad de la solución de la ecuación anterior.

Existencia Definimos:

$$f_t: \mathbb{R} \longrightarrow \mathbb{R}$$

$$x \longmapsto e^x + x^3 + t$$

Tenemos que:

$$\lim_{x \to -\infty} f_t(x) = -\infty, \quad \lim_{x \to +\infty} f_t(x) = +\infty$$

Como f_t es continua, por el Teorema de Bolzano tenemos que existe $x_t \in \mathbb{R}$ tal que $f_t(x_t) = 0$. Por tanto, la ecuación $e^x + x^3 + t = 0$ tiene solución para cada $t \in \mathbb{R}$.

Unicidad Como f_t es derivable, tenemos que:

$$f'_t(x) = e^x + 3x^2 > 0, \quad \forall x \in \mathbb{R}$$

Por tanto, f_t es estrictamente creciente, por lo que es inyectiva. Por tanto, la ecuación $e^x + x^3 + t = 0$ tiene una única solución x_t para cada $t \in \mathbb{R}$.

Sea entonces la función implícita la siguiente:

$$x: \mathbb{R} \longrightarrow \mathbb{R}$$

$$t \longmapsto x_t$$

Para probar que x(t) es decreciente, podemos hacerlo de dos formas:

Opción 1 Sea $t_1, t_2 \in \mathbb{R}$ tales que $t_1 < t_2$. Hemos de probar que $x(t_1) > x(t_2)$.

Como $x(t_1)$ y $x(t_2)$ son las soluciones de las ecuaciones $e^x + x^3 + t_1 = 0$ y $e^x + x^3 + t_2 = 0$, respectivamente, tenemos que:

$$e^{x(t_1)} + (x(t_1))^3 + t_1 = 0, \quad e^{x(t_2)} + (x(t_2))^3 + t_2 = 0$$

Restando ambas ecuaciones, obtenemos:

$$e^{x(t_1)} + (x(t_1))^3 - e^{x(t_2)} - (x(t_2))^3 + t_1 - t_2 = 0$$

Como $t_1 - t_2 < 0$, tenemos que:

$$e^{x(t_1)} + (x(t_1))^3 - e^{x(t_2)} - (x(t_2))^3 > 0 \Longrightarrow e^{x(t_1)} + (x(t_1))^3 > e^{x(t_2)} + (x(t_2))^3$$

Definimos ahora la siguiente función:

$$g: \mathbb{R} \longrightarrow \mathbb{R}$$
$$x \longmapsto e^x + x^3$$

Como g es suma de una función estrictamente creciente y otra función creciente, tenemos que g es estrictamente creciente. Por tanto, usando g, tenemos que:

$$g(x(t_1)) > g(x(t_2))$$

Como g es estrictamente creciente, esto solo será posible si $x(t_1) > x(t_2)$, por lo que hemos probado que x(t) es decreciente.

Opción 2 Aplicar el Teorema de la Función Implícita. Para ello, definimos:

$$F: \quad \mathbb{R}^2 \quad \longrightarrow \quad \mathbb{R}$$
$$(t,x) \quad \longmapsto \quad e^x + x^3 + t$$

Calculamos las derivadas parciales:

$$\frac{\partial F}{\partial x}(t,x) = e^x + 3x^2, \quad \frac{\partial F}{\partial t}(t,x) = 1, \quad \forall (t,x) \in \mathbb{R}^2$$

Por tanto, $F \in C^1(\mathbb{R}^2)$. Además, tenemos que $\frac{\partial F}{\partial x}(t,x) > 0$ para todo $(t,x) \in \mathbb{R}^2$ (en particular, no se anula). Por tanto, podemos aplicar el Teorema de la Función Implícita en cualquier punto (t_0, x_0) tal que $F(t_0, x_0) = 0$, obteniendo así que la función implícita x(t) es derivable. Calculamos su derivada mediante derivación implícita:

$$\frac{d}{dt}F(t,x(t)) = \frac{\partial F}{\partial t}(t,x(t)) + \frac{\partial F}{\partial x}(t,x(t)) \cdot x'(t) = 0$$

Despejando, tenemos que:

$$x'(t) = -\frac{\frac{\partial F}{\partial t}(t, x(t))}{\frac{\partial F}{\partial x}(t, x(t))} = -\frac{1}{e^{x(t)} + 3(x(t))^2} < 0 \quad \forall t \in \mathbb{R}$$

Por tanto, hemos probado que x(t) es decreciente.

Ejercicio 2. Se considera la siguiente función:

$$F:]0, +\infty[\longrightarrow \mathbb{R}$$

$$t \longmapsto \int_0^{\sqrt{t}} e^{s^2} ds$$

¿Es F de clase C^1 ? En caso afirmativo, calcula la derivada.

Definimos las siguientes funciones:

$$\varphi: \mathbb{R}^+ \longrightarrow \mathbb{R}^+$$

$$t \longmapsto \sqrt{t}$$

$$\psi: \mathbb{R}^+ \longrightarrow \mathbb{R}$$

$$x \longmapsto \int_0^x e^{s^2} ds$$

Tenemos que $\varphi \in C^1(\mathbb{R}^+)$ de forma directa, y $\psi \in C^1(\mathbb{R}^+)$ por el Teoremema Fundamental del Cálculo. Sus respectivas derivadas son:

$$\varphi'(t) = \frac{1}{2\sqrt{t}}$$
$$\psi'(x) = e^{x^2}$$

Por tanto, como $F = \psi \circ \varphi$, tenemos que $F \in C^1(\mathbb{R}^+)$. Para calcular su derivada, aplicamos la regla de la cadena:

$$F'(t) = \psi'(\varphi(t)) \cdot \varphi'(t) = e^{(\sqrt{t})^2} \cdot \frac{1}{2\sqrt{t}} = \frac{e^t}{2\sqrt{t}}$$

Ejercicio 3. Encuentra la solución del problema de valores iniciales siguiente:

$$\dot{x} = \left(\frac{x}{t}\right)^3 + \frac{x}{t} - 1, \quad x(1) = 1$$

¿En qué intervalo está definida?

Ejercicio 4. Demuestra que las fórmulas

$$s = -e^t, \quad y = (t^2 + 1)x$$

definen un difeomorfismo que va de $D = \mathbb{R}^2$ a un dominio \hat{D} que se especificará. Prueba que se trata de un cambio admisible para la ecuación x' = x + t y encuentra la ecuación transformada.

Ejercicio 5. Se considera la transformación en el plano

$$\psi(\theta,r) = (t,x), \quad t = r\cos\theta, \quad x = r\sin\theta, \quad (\theta,r) \in \Omega =]^{-\pi/2}, \pi/2[\times]0, +\infty[$$

Determina $\Omega = \psi(\Omega)$ y prueba que ψ es un difeomorfismo de Ω a Ω . Dada una ecuación $\frac{dx}{dt} = f(t,x)$ con $f:\Omega \to \mathbb{R}$, ¿bajo qué condiciones se puede asegurar que el difeomorfismo $\varphi = \psi^{-1}$ es admisible?