This question paper contains 4+1 printed pages

16/5/17

G

Roll No.	
----------	--

S. No. of Question Paper : 1126

Unique Paper Code

235203

Name of the Paper

: Analysis-II [MAHT-202]

Name of the Course

: B.Sc. (Hons.) Mathematics

Semester

: **I**I

Duration: 3 Hours

Maximum Marks: 75

(Write your Roll No. on the top immediately on receipt of this question paper.)

Attempt any three parts of each question.

All questions are compulsory.

1. (a) Use the $\in -\delta$ definition of the limit to show that :

$$\lim_{x \to c} x^2 = c^2, c \in \mathbb{R}.$$

(b) Let $A \subseteq R$, let $f : A \to R$ and let c be a cluster point of A. If

$$\lim_{x\to c} f(x) < 0$$

then prove that there exists a neighbourhood $V_{\delta}(c)$ of c such that $f(x) \sim 0$ for all $x \in A \cap V_{\delta}(c)$, $x \neq c$.

(c) Using Sequantial Criterion for limits, prove that :

$$\lim_{x \to 0} \sin(1/x^2)$$

does not exist in R.

(d) Using definition, prove that:

(i)
$$\lim_{x \to 0} \left(\frac{1}{x^2} \right) = \infty$$

(ii)
$$\lim_{x \to \infty} 1/x = 0.$$
 5,5,5,5

- 2. (a) Prove that a function $f: A \to R$ is continuous at a point $c \in A$ if and only if for every sequence (x_n) in A that converges to c, the sequence $(f(x_n))$ converges to f(c).
 - (b) Let $A \subseteq R$, let $f: A \to R$ be continuous at a point $c \in R$. Show that for any $\epsilon > 0$ there exists a neighbourhood $\delta(c)$ of c such that if $x, y \in A \cap V_{\delta}(c)$ then:

$$|f(x)-f(y)|\leq \epsilon.$$

- (c) Let f and g be continuous from R to R and suppose that $f(r) \ge g(r)$ for every rational numbers then prove that $f(x) \ge g(x)$ for all $x \in R$.
- (d) State Bolzano's Intermediate value theorem and hence prove that $xe^x = 2$ for some x in [0, 1]. 5,5,5,5
- 3. (a) Let I = [a, b] be an interval and let $f: I \to R$ be continuous on I. Then prove that f is uniformly continuous on I.
 - Show that the function f(x) = 1/x is uniformly continuous on $[a, \infty[, a > 0 \text{ but is not uniformly continuous}]$ on $[0, \infty[$.
 - Given that the function $f(x) = x^3 + 2x + 1$ for $x \in \mathbb{R}$ has an inverse f^{-1} on \mathbb{R} , find the value of $(f^{-1})'(y)$ e^x the points corresponding to x = 0, 1.
 - (d) Prove that if $f: I \to R$ has a derivative at $c \in I$, then f is continuous at c. Is the converse true? Justify your answer. 5,5,5,5

4. (a) Let c be an interior point of the interval I at which $f: I \to R$ has a relative extremum. If the derivative of f at c exists then prove that:

$$f'(c)=0.$$

Can f has a relative extremum at 'c' without being differentiable at 'c'? Justify.

(b) Using the mean value theorem, prove that:

$$\frac{x-1}{x} < \log(x) < x-1 \text{ for } x > 1.$$

(c) Find the point of relative extrema of the function:

$$f(x) = x(x - 8)^{1/3}$$
 for $0 \le x < 9$.

State Darboux theorem. Let $f:[0,2] \to \mathbb{R}$ is continuous on [0,2] and differentiable on]0,2[and that f(0)=0, f(1)=2, f(2)=2 then show that there exists $c \in]0,2[$, such that

$$f'(c) = 3/2.$$

- 5. (a) Obtain Maclaurin's series expansion for the function $\sin(4x)$.
 - (b) Using Taylor's theorem prove that:

$$1 + \frac{x}{2} - \frac{x^2}{8} < \sqrt{1 + x} < 1 + \frac{x}{2}$$
 for $x > 0$.

(c) Define Radius of convergence of the power series:

$$\sum_{n=0}^{\infty} a_n x^n.$$

Find the Radius of convergence and the exact interval of convergence for the power series :

$$\sum_{n=1}^{\infty} \frac{x^n}{n^2}.$$

- (d) Check which of the following functions are convex:
 - (i) $|x|, x \in [-2, 5]$
 - (ii) $ax^3 + 2x + 3, a < 0, x \in [-1, 1].$ 5,5,5,5

