Notes about Modular Forms

Notes taken by 89hao

May 15, 2020

Abstract

This is a learning note about Zhang Yitang's lectures on modular forms.

Contents

1	Modular Group, Congruence Subgroup and Modular Forms	1
2	Case $\Gamma = \mathrm{SL}_2(\mathbb{Z})$, Eisenstein Series	5
3	Complex Tori	16
4	The Congruence Subgroup Case: Basic Results	25
5	Hecke Operators	28

1 Modular Group, Congruence Subgroup and Modular Forms

Definition 1.1. The *modular group* is the group of 2-by-2 matrices with integer entries and determinant 1:

$$\mathrm{SL}_2(\mathbb{Z}) := \left\{ egin{bmatrix} a & b \\ c & d \end{bmatrix} : a, b, c, d \in \mathbb{Z}, ad - bc = 1 \right\}.$$

The principal congruence subgroup of level N is

$$\Gamma(N) := \left\{ \begin{bmatrix} a & b \\ c & d \end{bmatrix} \in \operatorname{SL}_2(\mathbb{Z}) : a \equiv d \equiv 1 \pmod{N}, b \equiv c \equiv 0 \pmod{N} \right\}.$$

 Γ is a congruence subgroup if

$$\Gamma(N) \subset \Gamma \subset \mathrm{SL}_2(\mathbb{Z})$$
 for some N .

Example 1.1. $\forall N \in \mathbb{N}$,

$$\Gamma_0(N) = \left\{ \begin{bmatrix} a & b \\ c & d \end{bmatrix} \in \mathrm{SL}_2(\mathbb{Z}) : c \equiv 0 \pmod{N} \right\}$$

and

$$\Gamma_1(N) = \left\{ \begin{bmatrix} a & b \\ c, d \end{bmatrix} \in \operatorname{SL}_2(\mathbb{Z}) : a \equiv d \equiv 1 \pmod{N}, c \equiv 0 \pmod{N} \right\}$$

are congruence subgroups. Their relations are

$$\Gamma(N) \subset \Gamma_1(N) \subset \Gamma_2(N) \subset \mathrm{SL}_2(\mathbb{Z}).$$

Definition 1.2. \mathcal{H} is the upper half plane defined by

$$\mathcal{H} := \{ \tau \in \mathbb{C} : \operatorname{Im}(\tau) > 0 \}.$$

Action of $SL_2(\mathbb{Z})$ on \mathcal{H} is defined by

$$\gamma(\tau) = \frac{a\tau + b}{c\tau + d}$$

for arbitrary $\gamma \in \mathrm{SL}_2(\mathbb{Z})$ and $\tau \in \mathcal{H}$.

$$\gamma(\tau) = \frac{a\tau + b}{c\tau + d} = \frac{(a\tau + b)(c\overline{\tau} + d)}{|c\tau + d|^2} = \frac{ac|\tau|^2 + bd + ad\tau + bc\overline{\tau}}{|c\tau + d|^2},$$

then

$$\operatorname{Im} \gamma(\tau) = \frac{\operatorname{Im}(ad\tau + bc\overline{\tau})}{|c\tau + d|^2} = \frac{(ad - bc)\operatorname{Im} \tau}{|c\tau + d|^2} > 0.$$

Hence
$$\gamma(\tau) \in \mathcal{H}$$
 if $\tau \in \mathcal{H}$.
Let $\gamma = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$ and $\gamma' = \begin{bmatrix} a' & b' \\ c' & d' \end{bmatrix}$, then

$$\gamma \gamma' = \begin{bmatrix} aa' + bc' & ab' + bd' \\ ca' + dc' & cb' + dd' \end{bmatrix}.$$

It's easy to verify

$$\gamma(\gamma'(\tau)) = \gamma \gamma'(\tau).$$

Now we consider actions of $SL_2(\mathbb{Z})$ on functions $f: \mathcal{H} \to \mathbb{C}$. Write

$$\gamma = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \in \operatorname{SL}_2(\mathbb{Z}), \quad \tau \in \mathcal{H}.$$
$$j(\gamma, \tau) := c\tau + d.$$

For $k \in \mathbb{Z}$, define $[\gamma]_k :=$ the weight-k operator acting on functions $\mathcal{H} \to \mathbb{C}$ such that

$$(f[\gamma_k])(\tau) = j(\gamma,\tau)^{-k} f(\gamma(\tau)) = (c\tau + d)^{-k} f\left(\frac{a\tau + b}{c\tau + d}\right).$$

Lemma 1.3. $\forall \gamma, \gamma' \in \mathrm{SL}_2(\mathbb{Z}), \forall \tau \in \mathcal{H}$, we have

a.
$$j(\gamma \gamma', \tau) = j(\gamma, \gamma'(\tau))j(\gamma', \tau);$$

b.
$$[\gamma \gamma']_k = [\gamma]_k [\gamma']_k$$
;

c.
$$\frac{\mathrm{d}\gamma(\tau)}{\mathrm{d}\tau} = \frac{1}{j(\gamma,\tau)^2}$$
.

Proof.

a.

$$\gamma \begin{bmatrix} \tau \\ 1 \end{bmatrix} = \begin{bmatrix} \gamma(\tau) \\ 1 \end{bmatrix} j(\gamma, \tau)
\gamma \gamma' \begin{bmatrix} \tau \\ 1 \end{bmatrix} = \begin{bmatrix} \gamma \gamma'(\tau) \\ 1 \end{bmatrix} j(\gamma \gamma', \tau)$$

Also

$$\gamma \gamma' \begin{bmatrix} \tau \\ 1 \end{bmatrix} = \gamma \begin{bmatrix} \gamma'(\tau) \\ 1 \end{bmatrix} j(\gamma', \tau)$$

$$= \begin{bmatrix} \gamma \gamma'(\tau) \\ 1 \end{bmatrix} j(\gamma, \gamma'(\tau)) j(\gamma', \tau).$$

$$\Rightarrow j(\gamma \gamma', \tau) = j(\gamma, \gamma'(\tau)) j(\gamma', \tau).$$

b.

$$(f[\gamma\gamma']_k)(\tau)$$

$$=j(\gamma\gamma',\tau)^{-k}f(\gamma\gamma'(\tau))$$

$$=j(\gamma,\gamma'(\tau))^{-k}j(\gamma',\tau)^{-k}f(\gamma\gamma'(\tau))$$

$$=j(\gamma',\tau)f([\gamma]_k)(\gamma'(\tau))$$

$$=(f[\gamma]_k[\gamma']_k)(\tau).$$

c.

$$\frac{d\gamma(\tau)}{d\tau} = \frac{a(c\tau + d) - (a\tau + b)c}{(c\tau + d)^2}$$
$$= \frac{1}{(c\tau + d)^2}$$
$$= \frac{1}{j(\gamma, \tau)^2}.$$

Definition 1.4. Let $\Gamma = \text{congruence subgroup and } k \in \mathbb{Z} \ f : \mathcal{H} \to \mathbb{C} \text{ is a weakly}$ modular form function of weight k with repect to Γ if f is meromorphic on \mathcal{H} and

$$f[\gamma]_k = f,$$

i.e.,

$$(c\tau + d)^{-k} f\left(\frac{a\tau + b}{c\tau + d}\right) = f.$$

Suppose f is a weakly modular function of weight k with respect to Γ .

$$\Gamma \supset \Gamma(N) \Rightarrow \begin{bmatrix} 1 & N \\ 0 & 1 \end{bmatrix} \in \Gamma$$

$$f \begin{bmatrix} 1 & N \\ 0 & 1 \end{bmatrix}_k = f(\tau + N) = f(\tau)$$

$$\Rightarrow \exists \text{ minimal } h \in \mathbb{N} \text{ such that } f(\tau + h) = f(\tau)$$

$$\Rightarrow f(\tau) = g(e^{2\pi i \tau/h}) \text{ for some } g.$$

$$\tau \in \mathcal{H} \Leftrightarrow |e^{2\pi i \tau/h}| < 1$$

$$\operatorname{Im}(\tau) \to \infty \Rightarrow e^{2\pi i \tau/h} \to 0.$$

$$g(z)$$
 is meromorphic on $0 < |z| < 1$.
 $z \to 0$: $g(z) = \sum_{n=-\infty}^{\infty} a_n z^n$.
 $z = e^{2\pi i \tau/h} \Rightarrow \operatorname{Im}(\tau) \to \infty$

$$f(\tau) = g(e^{2\pi i\tau/h}) = \sum_{n=-\infty}^{\infty} a_n e^{2\pi i n\tau/h}.$$
 (1)

We say $f(\tau)$ is holomorphic at ∞ if $a_n = 0$ for all n < 0 in (1). In this case we write $f(\infty) = a_0$.

 $\forall \sigma \in \mathrm{SL}_2(\mathbb{Z}), \ f[\sigma]_k \text{ is a weakly modular function of weight } k \text{ with respect to } \sigma^{-1}\Gamma\sigma. \text{ Indeed, let } \gamma \in \Gamma,$

$$f[\gamma]_k(\tau) = f(\tau)$$

$$j(\gamma,\tau)^{-k} f(\gamma(\tau)) = f(\tau)$$

$$j(\gamma,\sigma(\tau))^{-k} f(\gamma\sigma(\tau)) = f(\sigma(\tau))$$

$$((f[\sigma]_k)[\sigma^{-1}\gamma\sigma]_k)(\tau) = j(\sigma^{-1}\gamma\sigma,\tau)^{-k} (f[\sigma]_k)(\sigma^{-1}\gamma\sigma(\tau))$$

$$= j(\sigma^{-1}\gamma\sigma,\tau)^{-k} j(\sigma,\sigma^{-1}\gamma\sigma(\tau))^{-k} f(\gamma\sigma(\tau))$$

$$= j(\sigma^{-1}\gamma\sigma,\tau)^{-k} j(\sigma,\sigma^{-1}\gamma\sigma(\tau))^{-k} j(\gamma,\sigma(\tau))^{k} f(\sigma(\tau))$$

$$= j(\sigma,\tau)^{-k} f(\sigma(\tau))$$

$$= f[\sigma]_k.$$

Definition 1.5.

- a. $f: \mathcal{H} \to \mathbb{C}$ is a modular formof weight k with respect to Γ if f is weakly modular function and $f\sigma_k$ is holomorphic at $\infty \forall \sigma \in \mathrm{SL}_2(\mathbb{Z})$.
- b. f is a cusp form if f is a modular form and $f\sigma_k$ vanishes at $\infty \, \forall \sigma \in \mathrm{SL}_2(\mathbb{Z})$.

Proposition 1.6. Assume k = odd, Then any modular form $f \equiv 0$.

Proof.
$$\gamma = \begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix} \in \Gamma$$
, for arbitrary $\tau \in \mathcal{H}$,
$$j(\gamma, \tau)^{-k} f(\gamma(\tau)) = (-1)^{-k} f(\frac{-\tau + 0}{0 + (-1)}) = (-1)^{-k} f(\tau) = -f(\tau).$$

2 Case $\Gamma = \mathrm{SL}_2(\mathbb{Z})$, Eisenstein Series

In this section assume $\Gamma = \mathrm{SL}_2(\mathbb{Z})$. Γ is generated by $\begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$ and $\begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}$.

$$\left(f \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}_k\right)(\tau) = f(\tau + 1)$$

since
$$j\left(\begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}, \tau\right) = 1.$$

$$\left(f \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}_k \right) = \frac{1}{\tau^k} f \left(-\frac{1}{\tau} \right)$$

since $j\left(\begin{bmatrix}0 & -1\\1 & 0\end{bmatrix}, \tau\right) = \tau$. Let f be a modular form of weight k, then

$$f(\tau+1) = f(\tau)$$
$$f\left(-\frac{1}{\tau}\right) = \tau^k f(\tau).$$

(to find a nontrivial modular form, k must be even.)

Definition 2.1 (Eisenstein Series). Assume k = even > 2. Define

$$G_k(\tau) = \sum_{(c,d) \in \mathbb{Z}^2 \setminus (0,0)} \frac{1}{(c\tau + d)^k}.$$

 $G_k(\tau)$ is called Eisenstein series.

 $\tau \in \mathcal{H} \Rightarrow G_k(\tau)$ is absolutely convergent and holomorphic.

$$\begin{bmatrix} a & b \\ c & d \end{bmatrix} \in \operatorname{SL}_{2}(\mathbb{Z}) \Rightarrow G_{k} \left(\frac{a\tau + b}{c\tau + d} \right)$$

$$= \sum_{(c',d')\neq(0,0)} \frac{1}{\left(c'\frac{a\tau + b}{c\tau + d} + d'\right)^{k}}$$

$$= \left(c\tau + d\right)^{k} \sum_{(c',d')\neq(0,0)} \frac{1}{\left(\left(c'a + cd'\right)\tau + \left(c'b + dd'\right)\right)^{k}}.$$

As (c', d') walks through all $\neq (0, 0)$, so does (c'a + cd', c'b + dd'). Hence

$$G_k\left(\frac{a\tau+b}{c\tau+d}\right) = (c\tau+d)^k G_k(\tau).$$

When $\text{Im}(\tau) \to \infty$,

$$\frac{1}{(c\tau+d)^k} \to \begin{cases} 0 & \text{if } c \neq 0, \\ d^{-k} & \text{if } c = 0. \end{cases}$$

$$\Rightarrow G_k(\infty) = \lim_{\mathrm{Im}(\tau) \to \infty} G_k(\tau)$$
$$= \sum_{d=-\infty, d \neq 0}^{\infty} \frac{1}{d^k} = 2\zeta(k).$$

Assume f is a modular form of weight k, k = even > 2. Define

$$D = \{ q \in \mathbb{C} : |q| < 1 \}$$

$$D' = D - \{ 0 \}.$$

Construct the mapping

$$\mathcal{H} \to D'$$
$$\tau \mapsto e^{2\pi i \tau} = q$$

and

$$g: D' \to \mathbb{C}$$

 $q \mapsto f(\log(q)/(2\pi i)).$

g is well defined even though the logarithm is only determined up to $2\pi i\mathbb{Z}$. Then

$$f(\tau) = g(e^{2\pi i \tau}).$$

At
$$\tau = \infty$$
, $G_k(\tau) = \sum_{n=0}^{\infty} a_n e^{2\pi i n \tau} = 2\zeta(k) \Rightarrow a_0 = 2\zeta(k)$. $a_n = ?$

Proposition 2.2. Let $\tau \in \mathcal{H}$, we have

$$\frac{1}{\tau} + \sum_{d=1}^{\infty} \left(\frac{1}{\tau - d} + \frac{1}{\tau + d} \right) = \pi \cot \pi \tau.$$

Proof.

$$\sin \pi \tau = \pi \tau \prod_{n=1}^{\infty} \left(1 - \frac{\tau^2}{n^2} \right).$$

$$\log \sin \pi \tau = \log \pi + \log \tau + \sum_{n=1}^{\infty} \log \left(1 - \frac{\tau^2}{n^2} \right).$$

Taking the derivative, we obtain

$$\pi \cot \pi \tau = \frac{1}{\tau} + \sum_{n=1}^{\infty} \frac{-2\tau/n^2}{1 - \tau^2/n^2} = \frac{1}{\tau} + \sum_{n=1}^{\infty} \left(\frac{1}{\tau - n} + \frac{1}{\tau + n} \right).$$

$$\begin{split} \frac{1}{\tau} + \sum_{d=1}^{\infty} \left(\frac{1}{\tau - d} + \frac{1}{\tau + d} \right) = &\pi i \frac{e^{i\pi\tau} + e^{-i\pi\tau}}{e^{i\pi\tau} - e^{-i\pi\tau}} \\ = &- \pi i \frac{1 + e^{2\pi i\tau}}{1 - e^{2\pi i\tau}} \\ = &- \pi i - 2\pi i \sum_{m=0}^{\infty} e^{2\pi i m\tau}. \end{split}$$

Differentiating (k-1) times we get

$$(-1)^{k-1}(k-1)! \sum_{d=-\infty}^{\infty} \frac{1}{(\tau+d)^k} = -2\pi i \sum_{m=0}^{\infty} (2\pi i m)^{k-1} e^{2\pi i m \tau}.$$

$$\Rightarrow \sum_{d=-\infty}^{\infty} \frac{1}{(\tau+d)^k} - \frac{(2\pi i)^k}{(k-1)!} \sum_{m=1}^{\infty} m^{k-1} e^{2\pi i m \tau} = 0.$$

$$\Rightarrow G_k(\tau) = \sum_{c\neq 0} \sum_{d=-\infty}^{\infty} \frac{1}{(c\tau+d)^k} + \sum_{d\neq 0}^{\infty} \frac{1}{d^k}$$

$$= 2\sum_{c=1}^{\infty} \sum_{d=-\infty}^{\infty} \frac{1}{(c\tau+d)^k} + 2\zeta(k)$$

$$= 2\sum_{c=1}^{\infty} \frac{(2\pi i)^k}{(k-1)!} \sum_{m=1}^{\infty} m^{k-1} e^{2\pi i m c \tau} + 2\zeta(k)$$

$$= 2\sum_{n=1}^{\infty} \frac{(2\pi i)^k}{(k-1)!} \left(\sum_{m|n} m^{k-1}\right) e^{2\pi i n \tau} + 2\zeta(k).$$

Then we get the following conclusion:

Proposition 2.3. Let $k = \text{ even } > 2, G_k(\tau) = \sum_{n=0}^{\infty} a_n e^{2\pi i n \tau}$, then

$$a_0 = 2\zeta(k)$$

$$a_n = \frac{2(2\pi i)^k}{(k-1)!} \sigma_{k-1}(n)$$

where n > 0 and $\sigma_{k-1}(n) = \sum_{m|n} m^{k-1}$.

A group G acting on a set S gives rise to an equivalent relation \sim on S:

$$s_1 \sim s_2 \Leftrightarrow \exists g \in G \text{ such that } s_2 = gs_1.$$

The quotient space S/G = the set of the equivalent class.

Question. $SL_2(\mathbb{Z})$ acts on \mathcal{H} , what is the quotient space?

Theorem 2.4. Let $D = \{ \tau \in \mathcal{H} : |\operatorname{Re} \tau| \leq \frac{1}{2}, |\tau| \geq 1 \}$. Then D is a fundamental domain for $\operatorname{SL}_2(\mathbb{Z})$ in the sense such that

a. $\forall \tau \in \mathcal{H}, \exists \gamma \in \mathrm{SL}_2(\mathbb{Z}) \text{ such that } \gamma(\tau) \in D;$

Figure 1: Domain D

b. If $\tau_1, \tau_2 \in D$, $\tau_1 \neq \tau_2$ and $\tau_2 = \gamma(\tau_1)$ for some $\gamma \in SL_2(\mathbb{Z})$, then either $Re(\tau_1) = \pm \frac{1}{2}, \tau_2 = \tau_1 \mp 1$ or $|\tau_1| = 1, \tau_2 = -\frac{1}{\tau_1}$.

Proof. Write $\gamma = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \in \mathrm{SL}_2(\mathbb{Z}), \ \gamma_1 = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} \in \mathrm{SL}_2(\mathbb{Z}), \ \gamma_2 = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} \in \mathrm{SL}_2(\mathbb{Z}).$ Then

$$\gamma_1^n(\tau) = \tau + n$$

$$\gamma_2(\tau) = -\frac{1}{\tau}.$$

a. $\forall \tau \in \mathcal{H}$, $\operatorname{Im} \gamma(\tau) = \frac{\operatorname{Im}(\tau)}{|c\tau + d|^2}$. There exists only finite (c,d) such that $|c\tau + d| < a$ given volume. $\Rightarrow (\exists \gamma \text{ such that } |c\tau + d| = \min \Rightarrow \operatorname{Im} \gamma(\tau) = \max \text{ and } \exists n \in \mathbb{Z} \text{ such that } |\operatorname{Re} \gamma_1^n(\gamma(\tau))| \leq \frac{1}{2})$.

Write $\tau_1 = \gamma_1^n(\gamma(\tau)), \tau_2 = \gamma_2(\tau_1).$

Im
$$\tau_2 = \frac{\operatorname{Im} \tau_1}{|\tau_1|^2}$$
 and Im $\tau_2 \leq \operatorname{Im} \gamma(\tau) = \operatorname{Im} \tau_1$
 $\Rightarrow |\tau_1| \geq 1 \Rightarrow \tau_1 \in D.$

b. Suppose $\tau_1, \tau_2 \in D, \tau_1 \neq \tau_2, \gamma(\tau_1) = \tau_2$ for some $\gamma \in SL_2(\mathbb{Z})$. We assume

 $\operatorname{Im} \tau_1 \leq \operatorname{Im} \tau_2$, then

$$\operatorname{Im} \tau_1 \leq \frac{\operatorname{Im} \tau_1}{|c\tau_1 + d|^2}$$
$$\Rightarrow |c\tau_1 + d| \leq 1.$$

Since Im $\tau_1 \geq \frac{\sqrt{3}}{2}$, then $c = 0, \pm 1$.

Case 1: $c = 0, a = d = \pm 1$

$$\Rightarrow \tau_2 = \tau_1 \pm b$$

$$\Rightarrow \begin{cases} \operatorname{Re} \tau_1 = \pm \frac{1}{2} \\ \tau_2 = \tau_1 \mp 1 \end{cases}.$$

Case 2: $c = 1, |\tau_1 + d| \le 1$

$$\Rightarrow \begin{cases} d = 0 \Rightarrow |\tau_1| = 1, \tau_2 = -\frac{1}{\tau_1} \\ \text{or } \tau_1 = \rho, d = 1 \\ \text{or } \tau_1 = -\overline{\rho}, d = -1 \end{cases}.$$

Case 3: c = -1, similar to Case 2.

Here
$$\rho := e^{2\pi i/3} = -\frac{1}{2} + \frac{\sqrt{3}}{2}i$$
.

The quotient space $\mathcal{H}/_{\mathrm{SL}_2(\mathbb{Z})}$ is obtained by identifying the left side and right side of D and identifying the left and right parts of the bottom circle of D.

Assume f is holomorphic on \mathcal{H} and $\infty(\operatorname{Im} \tau \to \infty)$.

At $p \in \mathcal{H}$, m = order of f at p means

$$\lim_{\tau \to p} \frac{f(\tau)}{(\tau - p)^m}$$

exists and not equals 0. We use $v_p(f)=m$ to represent this meanning. At ∞ , if $a_m \neq 0$ in $f(\tau) = \sum_{n=m}^{\infty} a_n e^{2\pi i n \tau}$, write $v_{\infty}(f) = m$. If p_1, p_2 are equivalent ($p_2 = \gamma p_1$ for some $\gamma \in \mathrm{SL}_2(\mathbb{Z})$), then $v_{p_1}(f) = v_{p_2}(f)$.

Theorem 2.5. Suppose f is a (non-zero) modular form of weight k (k even), $\rho = e^{\frac{2\pi i}{3}}$. Then

$$v_{\infty}(f) + \frac{1}{2}v_{i}(f) + \frac{1}{3}v_{\rho}(f) + \sum_{p \in \mathcal{H}/\mathrm{SL}_{2}(\mathbb{Z})}^{*} v_{p}(f) = \frac{k}{12}$$
 (2)

where \sum^* means the sum is over $p \in H/\mathrm{SL}_2(\mathbb{Z})$ and $p \not\sim i, \rho, i.e., \sum_{p \in H/\mathrm{SL}_2(\mathbb{Z})}^* :=$ $\sum_{p \in D \setminus \{i, \rho\}}$.

k=2: right side $=\frac{1}{6}$, left side either =0 or $\geq \frac{1}{3}$. Hence modular forms of weight 2 don't exist.

$$k = 4$$
: right side $= \frac{1}{3}$, $f = G_4$, $v_{\rho}f = 1$, $v_{\infty}(f) = v_i(f) = 0$, $\sum_{p \in \mathcal{H}/\mathrm{SL}_2(\mathbb{Z})}^* v_p(f) = 0$

 $k=12: G_4^3, G_6^2, \exists linear combination$

$$\Delta = c_1 G_4^3 + c_2 G_6^2, \Delta$$
: weight = 12

such that $\Delta(\infty) = 0$. Since

$$v_{\infty}(\Delta) + \frac{1}{2}v_i(\Delta) + \frac{1}{3}v_{\rho}(\Delta) + \sum^* = \frac{12}{12} = 1$$

and $v_{\infty}(\Delta) = 1$, we have $\Delta(\tau) \neq 0 \ \forall \tau \in \mathcal{H}$.

Definition 2.6. Define

 $\mathcal{M}_k := \text{space of modular forms of weight } k$ $\mathcal{S}_k := \text{space of cusp}(f(\infty) = 0) \text{ forms of weight } k.$

If $\dim \mathcal{M}_k > 0$, then

$$\dim \mathcal{S}_k = \dim \mathcal{M}_k - 1.$$

In fact, $\mathcal{M}_k = \mathcal{S}_k \oplus \mathbb{C}$

If $f \in \mathcal{M}_k$, then $\Delta f \in S_{k+12}$, then we establish an isomorphism

$$\mathcal{M}_k \to S_{k+12}$$

 $f \mapsto \Delta f$.

If we know dim \mathcal{M}_k for all $k \leq 12$, then we know all the conditions.

Before tge proof of Theorem 2.5, we introduce the following lemma in complex analysis:

Lemma 2.7.

$$\frac{1}{2\pi i} \int_C \frac{\mathrm{d}\tau}{\tau - \rho} = -\frac{\theta}{2\pi} \tag{3}$$

where C is given by

Proof of Theorem 2.5. Assume $f \neq 0$ on the boundary of D, except at $\tau = \rho, i - \overline{\rho}$, consider the countour L in Figure 3. Residue Theorem \Rightarrow

$$\frac{1}{2\pi i} \int_{L} \frac{\mathrm{d}f}{f} = \sum_{p}^{*} v_{p}(f). \tag{4}$$

Figure 2: Argument principle

Recall $f(\tau)=g(e^{2\pi i\tau})$ and let $z=e^{2\pi i\tau}$. Set ${\rm Im}\,A'=T$. Then $z=-e^{-2\pi T}\to -e^{-2\pi T}$ along a circle ω :

$$\frac{1}{2\pi i} \int_{A'}^{A} \frac{\mathrm{d}f}{f} = \frac{1}{2\pi i} \int_{\omega} \frac{\mathrm{d}g}{g} = -v_{\infty}(f). \tag{5}$$

Since

$$\frac{1}{2\pi i} \int_{A}^{B} \frac{\mathrm{d}f}{f} = \frac{1}{2\pi i} \int_{A}^{B} \frac{\mathrm{d}f(\tau+1)}{f(\tau+1)}$$

and $\tau + 1 : A' \to E'$, we get

$$\frac{1}{2\pi i} \left(\int_A^B + \int_{E'}^{A'} \right) \frac{\mathrm{d}f(\tau)}{f(\tau)} = 0. \tag{6}$$

 $\tau: B \to B'$:

$$\frac{\mathrm{d}f}{f} \sim \frac{v_{\rho}(f)}{\tau - \rho},$$

hence

$$\frac{1}{2\pi i} \int_{B}^{B'} \frac{\mathrm{d}f}{f} \to -\frac{1}{6} v_{\rho}(f). \tag{7}$$

Figure 3: Countour L

 $\tau: B' \to C \Rightarrow -\frac{1}{\tau}: E \to C'$:

$$\frac{\mathrm{d}f(\tau)}{f(\tau)} = \frac{\mathrm{d}\tau^{-k}}{\tau^{-k}} + \frac{\mathrm{d}f(-\frac{1}{\tau})}{f(-\frac{1}{\tau})}$$
$$= -k\frac{\mathrm{d}\tau}{\tau} + \frac{\mathrm{d}f(-\frac{1}{\tau})}{f(-\frac{1}{\tau})}.$$

$$\frac{1}{2\pi i} \int_{B'}^{C} \frac{\mathrm{d}f}{f} = \frac{1}{2\pi i} \int_{B'}^{C} \frac{k}{\tau} \mathrm{d}\tau + \frac{1}{2\pi i} \int_{E}^{C'} \frac{\mathrm{d}f(\tau)}{f(\tau)} = \frac{k}{12} - \frac{1}{2\pi i} \int_{C'}^{E} \frac{\mathrm{d}f(\tau)}{f(\tau)}.$$
 (8)

 $\tau:C\to C'$:

$$\frac{\mathrm{d}f}{f} \sim \frac{v_i(f)}{\tau - i}$$

$$\frac{1}{2\pi i} \int_C^{C'} \frac{\mathrm{d}f}{f} \to -\frac{1}{2} v_i(f). \tag{9}$$

 $\tau: E \to E'$: Similarly

$$\frac{1}{2\pi i} \int_{E}^{E'} \frac{\mathrm{d}f}{f} \to -\frac{1}{6} v_{\rho}(f). \tag{10}$$

By $(5) \rightarrow (10)$ we obtain the conclusion.

If f has a zero $(\neq \rho, -\overline{\rho}, i)$ on the boundary of D, modify L as Figure 4

Figure 4: Modified conuntour

As vector space over \mathbb{C} , let

 \mathcal{M}_k = the space of modular form of weight k

 S_k = the space of cusp form of weight k.

In case $\dim \mathcal{M}_k > 1$ say $d = \dim \mathcal{M}_k$, f_1, f_2, \dots, f_d a basis of \mathcal{M}_k . i.e.,

$$\mathcal{M}_k = \{c_1 f_1 + c_2 f_2 + \dots + c_d f_d : c_1, \dots, c_d \in \mathbb{C}\}.$$

$$c_1 f_1 + \cdots c_d f_d \in S_k \Leftrightarrow c_1 f_1(\infty) + c_d f_d(\infty) = 0$$

 $\Rightarrow \dim S_k = \dim \mathcal{M}_k - 1.$

In general $\dim \mathcal{M}_k \leq \dim \mathcal{S}_k + 1$.

Write

$$g_2 = 60G_4$$

 $g_3 = 140G_6$.

Define $\Delta = g_2^3 - 27g_3^2$, notice that g_2^3 and g_3^2 are both modular forms of weight 12. Then $\Delta \in \mathcal{M}_k$.

$$\Delta(\infty) = 0 \Rightarrow \Delta \in \mathcal{S}_k.$$

$$(2) \stackrel{f=\Delta}{\Longrightarrow} v_{\infty}(\Delta) + \frac{1}{2}v_{i}(\Delta) + \frac{1}{3}v_{\rho}(\Delta) + \sum^{*} v_{p}(\Delta) = 1$$

$$\Delta(\infty) = 0 \Longrightarrow v_{oo}(\Delta) \ge 1$$

$$\stackrel{\text{combine with the above}}{\Longrightarrow} v_{\infty}(\Delta) = 1, \quad v_{i}(\Delta) = v_{\rho}(\Delta) = v_{p}(\Delta) = 0$$

$$\Longrightarrow \Delta(\tau) \ne 0, \forall \tau \in \mathcal{H}.$$

Theorem 2.8.

- a. When k < 0 and k = 2, $\mathcal{M}_k = 0$.
- b. The map: $\mathcal{M}_k \to \mathcal{S}_{k+12}$ is an isomorphism.
- c. When $k = 0, 4, 6, 8, 10, \dim \mathcal{M}_k = 1$, $\dim S_k = 0$, Their basis are $1, G_4, G_6, G_8, G_{10}$ respectively.

Proof.

- a. Suppose \exists non-zero modular $f \in \mathcal{M}_k$. Left side of $(2) \geq 0 \Rightarrow k \geq 0$. For k = 2, $v_{\infty}(f)$, $v_i(f)$, $v_{\rho}(f)$, $v_p(f)$ are non-negative integers. If one of them ≥ 1 , the left side of $(2) \geq \frac{1}{3}$. But the right side $= \frac{1}{6}$.
- b. It suffices to prove that $f \mapsto \Delta f$ is surjective. $\forall g \in S_{k+12}$, consider $h = \frac{g}{\Delta}$. $\begin{cases} v_{\infty}(g) \geq 1 \\ v_{\infty}(\Delta) = 1 \end{cases} \Rightarrow v_{\infty}(h) \geq 1 \Rightarrow h \text{ is holomorphic at } \infty.$

 $\begin{cases} g \text{ is holomorphic on } \mathcal{H} \\ \Delta^{-1} \text{ is holomorphic and } \Delta \neq 0 \text{ on } \mathcal{H} \end{cases} \Rightarrow h \text{ is holomorphic on } \mathcal{H}.$

$$h\left(\frac{a\tau+b}{c\tau+d}\right) = \frac{g\left(\frac{a\tau+b}{c\tau+d}\right)}{\Delta\left(\frac{a\tau+b}{c\tau+d}\right)} = \frac{(c\tau+d)^{k+12}g(\tau)}{(c\tau+d)^{12}\Delta(\tau)} = (c\tau+d)^k h(\tau)$$
$$\Rightarrow h \in \mathcal{M}_k.$$

c. For $k = 0, 4, 6, 8, 10, \exists$ non-zero $f \in \mathcal{M}_k$

$$\begin{cases}
f \equiv 1 \text{ for } k = 0 \\
f = G_k \text{ for } k \ge 4
\end{cases} \Rightarrow \dim \mathcal{M}_k \ge 1.$$

By b we have $S_k \simeq \mathcal{M}_{k-12}$, but $k-12 \leq 0 \Rightarrow \mathcal{M}_{k-12} = 0 \Rightarrow S_k = 0$.

Corollary 2.9. For $k \geq 0$, we have

$$\dim \mathcal{M}_k = \begin{cases} \left[\frac{k}{12}\right] & \text{if } k \equiv 2 \pmod{12}, \\ \left[\frac{k}{12}\right] + 1 & \text{if } k \not\equiv 2 \pmod{12}. \end{cases}$$

Proof. $0 \le k \le 10$ can be directly verified.

For k = 12, $S_{12} \simeq \mathcal{M}_0 \Rightarrow \dim S_1 = 1 \Rightarrow \dim \mathcal{M}_{12} = 2$. By $S_{k+12} \simeq \mathcal{M}_k$ we get

$$\dim \mathcal{M}_{k+12} = \dim \mathcal{S}_{k+12} + 1 = \dim \mathcal{M}_k + 1,$$

then use induction. \Box

Corollary 2.10. For $k \geq 12$, the set $\left\{G_4^{\alpha}G_6^{\beta}: 4\alpha + 6\beta = k, \alpha, \beta \geq 0\right\}$ is a basis of \mathcal{M}_k .

Proof. The elements of $i\left\{G_4^{\alpha}G_6^{\beta}: 4\alpha+6\beta=k, \alpha, \beta\geq 0\right\}$ are linearly independent and the number of $G_4^{\alpha}G_6^{\beta}$ is $\dim \mathcal{M}_k$ by Corollary 2.9.

3 Complex Tori

A Riemann surface is an 1-dimensional connected complex manifold.

Proposition 3.1. If $f: S_1 \to S_2$ is a holomorphic map of compact Riemann surfaces, then either the image of f is a point, or f is surjective.

Proof. Suppose X and Y are compact Riemann surfaces and $f: X \to Y$ is holomorphic. Since f is continuous and X is compact and connected, so is the image f(X), making f(X) closed. Unless f is constant f is open by the Open Mapping Theorem of complex analysis, applicable to Riemann surfaces since it is a local result, making f(X) open as well. So f(X) is either a single point or a connected, open, closed subset of the connected set Y, i.e., all of Y.

Assume $\omega_1, \omega_2 \in \mathbb{C}$, linearly independent over \mathbb{R} (for normalization, set Im $\frac{\omega_1}{\omega_2} > 0$).

Let $\Lambda = \omega_1 \mathbb{Z} \oplus \omega_2 \mathbb{Z} = \{\omega_1 n_1 + \omega_2 n_2 : n_1, n_2 \in \mathbb{Z}\}$, Λ is a lattice and a discrete subgroup fo \mathbb{C} .

Figure 5: Relation between two numbers

Lemma 3.2. Let

$$\Lambda = \omega_1 \mathbb{Z} \oplus \omega_2 \mathbb{Z},$$

$$\Lambda' = \omega_1' \mathbb{Z} \oplus \omega_2' \mathbb{Z}.$$

Then $\Lambda = \lambda' \Leftrightarrow \exists \begin{bmatrix} a & b \\ c & d \end{bmatrix} \in \mathrm{SL}_2(\mathbb{Z})$ such that

$$\begin{bmatrix} \omega_1' \\ \omega_2' \end{bmatrix} = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \begin{bmatrix} \omega_1 \\ \omega_2 \end{bmatrix}.$$

Definition 3.3 (Complex Tori). A *complex tori* is a quotien of \mathbb{C} by Λ :

$$\mathbb{C}/_{\Lambda} = \{ z + \Lambda : z \in \mathbb{C} \}.$$

In algebra: \mathbb{C}/Λ = an abelian group,

$$(z_1 + \Lambda) + (z_2 + \Lambda) = (z_1 + z_2) + \Lambda.$$

In topology: \mathbb{C}/Λ = the parallelogram on identifying the opposite side (see Figure 6).

$$z_1 + \Lambda = z_2 + \Lambda \Leftrightarrow z_1 - z_2 \in \Lambda.$$

Proposition 3.4. Suppose $\varphi: \mathbb{C}/\Lambda \to \mathbb{C}/\Lambda'$ is holomorphic. $\exists m, b \in \mathbb{C}$ such that

$$m\Lambda\subset\Lambda',\quad (m\Lambda=\{mz:z\in\Lambda\})$$

and

$$\varphi(z+\Lambda)=mz+b+\Lambda'.$$

 φ is invertable $\Leftrightarrow m\Lambda = \Lambda'$.

Figure 6: The parallelogram \mathbb{C}/Λ

Proof. Let

$$\begin{array}{ccc} p: \mathbb{C} & \to & \mathbb{C}/\Lambda \\ z & \mapsto & z + \Lambda \end{array}$$

and

$$p': \mathbb{C} \to \mathbb{C}/\Lambda'$$

$$z \mapsto z + \Lambda'$$

By universal cover lifting: $\exists \widetilde{\varphi} : \mathbb{C} \to \mathbb{C}$ holomorphic such that the diagram

$$\begin{array}{ccc}
\mathbb{C} & \xrightarrow{\widetilde{\varphi}} & \mathbb{C} \\
\downarrow^{p} & & \downarrow^{p'} \\
\mathbb{C}/\Lambda & \xrightarrow{\varphi} & \mathbb{C}/\Lambda'
\end{array}$$

is commutative: $p' \circ \widetilde{\varphi} = \varphi \circ p$. $\forall \lambda \in \Lambda$,

$$\begin{split} &p'\left(\widetilde{\varphi}(z+\lambda)-\widetilde{\varphi}(z)\right)\\ =&\varphi\left(p(z+\lambda)\right)-\varphi\left(p(z)\right)\\ =&\varphi\left(p(z)\right)-\varphi\left(p(z)\right)\\ =&0+\Lambda'\\ \Rightarrow&\widetilde{\varphi}\left(z+\lambda\right)-\widetilde{\varphi}(z)\in\Lambda'. \end{split}$$

Left side = holomorphic function in z taking values in discrete $\Lambda' \Rightarrow$ it is constant

$$\Rightarrow \widetilde{\varphi}'(z+\lambda) - \widetilde{\varphi}'(z) = 0$$
 (here the prime symbol means taking derivative)

 $\widetilde{\varphi}' = \text{ entire function and period } = \lambda \in \Lambda$

 $\Rightarrow \widetilde{\varphi}'$ is bounded

 $\Rightarrow \widetilde{\varphi} = mz + b$ for some $m,b \in \mathbb{C}$

 $\Rightarrow \varphi(z + \Lambda) = mz + b + \Lambda'.$

To prove $m\Lambda \subset \Lambda', \forall z \in \Lambda$,

$$\varphi(z+\Lambda) = mz + b + \Lambda' \\ \varphi(0+\Lambda) = b + \Lambda'$$
 $\Rightarrow mz \in \Lambda' \text{ since } \varphi(z+\Lambda) = \varphi(0+\Lambda).$

 φ is invertable \Leftrightarrow directly verified.

Corollary 3.5. Suppose $\varphi: \mathbb{C}/\Lambda \to \mathbb{C}/\Lambda'$ is holomorphic:

$$\varphi(z + \Lambda) = mz + b + \Lambda', \quad m\Lambda \subset \Lambda'.$$

Then φ is a group homomorphism $\Leftrightarrow b \in \Lambda'$.

Definition 3.6. A nonzero holomorphic homomorphism:

$$\mathbb{C}/\Lambda \to \mathbb{C}/\Lambda'$$

is called an isogeny.

Isogeny is surjective, its kernel is finite (it is discrete, otherwise the map is zero). A curve C (in \mathbb{R}^2) means \exists polynomial F(x,y) such that

$$(x,y) \in C \Leftrightarrow F(x,y) = 0.$$

Assume $\Lambda = \omega_1 \mathbb{Z} \oplus \omega_2 \mathbb{Z}$, then $\mathbb{C}/\Lambda =$ a complex curve, why? Define (Weierstrass-p function)

$$p = p_{\Lambda} : \mathbb{C} \to \mathbb{C} \cup \{\infty\}$$

by

$$p(z) = \frac{1}{z^2} + \sum_{\substack{\omega \in \Lambda \\ \omega \neq 0}} \left(\frac{1}{(z+\omega)^2} - \frac{1}{\omega^2} \right).$$

At each $z \in \Lambda$, p(z) has a double pole, otherwise p(z) is holomorphic. $\forall \lambda \in \Lambda, \ \lambda \neq 0$,

$$p(z-\lambda) = \frac{1}{(z-\lambda)^2} + \sum_{\substack{\omega \in \Lambda \\ \omega \neq 0 \\ \omega \neq -\lambda}} \left(\frac{1}{(z-\lambda-\omega)^2} - \frac{1}{\omega^2} \right) + \left(\frac{1}{z^2} - \frac{1}{\lambda^2} \right).$$

By the virtue of

$$\lim_{z \to \infty} \left(\sum_{\substack{\omega \in \Lambda \\ |\omega| < z \\ \omega \neq 0, -\lambda}} \frac{1}{\omega^2} - \sum_{\substack{\omega \in \Lambda \\ |\omega| < z \\ \omega \neq 0, -\lambda}} \frac{1}{(\omega + \lambda)^2} \right) = 0$$

$$\Rightarrow p(z)$$
 is Λ -periodical,

i.e., $p(z - \lambda) = p(z), \forall \lambda \in \Lambda$.

$$p'(z) = -2\sum_{\omega \in \Lambda} \frac{1}{(z-\omega)^3}, p'(z-\lambda) = p'(z), \forall \lambda \in \Lambda.$$

Identify \mathbb{C}/Λ with the parallelogram (see Figure 6), consider

$${\mathbb{C}/\Lambda \brace z \neq 0} \to \mathbb{C}^2$$

$$z \mapsto (p(z), p'(z)).$$

For k = even > 2,

$$G_k(\Lambda) = \sum_{\substack{\omega \in \Lambda \\ \omega \neq 0}} \frac{1}{\omega^k} = \sum_{(c,d) \neq (0,0)} \frac{1}{(c\omega_1 + d\omega_2)^k}.$$

Laurent expansion of p(z) and p'(z) at $z = 0, \omega \neq 0, \omega \in \Lambda, |z| < |\omega| \Rightarrow \frac{1}{(z-\omega)^2} - \frac{1}{\omega^2} = \frac{1}{\omega^2} \left(\frac{1}{\left(1 - \frac{z}{\omega}\right)^2} - 1 \right) = \cdots \Rightarrow \text{when } z \to 0$:

$$p(z) = \frac{1}{z^2} + 3G_4(\Lambda)z^2 + 5G_6(\Lambda)z^4 + \mathcal{O}(|z|^6)$$
(11)

$$p'(z) = -\frac{2}{z^3} + 6G_4(\Lambda)z + 20G_6(\Lambda)z^3 + \mathcal{O}(|z|^5).$$
 (12)

Write

$$g_2(\Lambda) = 60G_4(\Lambda)$$

 $g_3(\Lambda) = 140G_6(\Lambda)$.

 $(11),(12) \Rightarrow$ the function

$$F(z) = p'^{2}(z) - \left[4p^{3}(z) - g_{2}(\Lambda)p(z) - g_{3}(\Lambda)\right]$$

is holomorphic and $F(0) = 0 \Rightarrow F(z) \equiv 0$ (bounded entire function) \Rightarrow the point (p(z), p'(z)) lies in the curve

$$E: y^{2} = 4x^{3} - g_{2}(\Lambda)x - g_{3}(\Lambda). \tag{13}$$

Proposition 3.7. The map $\varphi : \mathbb{C}/\Lambda \setminus \{0\} \to E$ $\mapsto (p(z), p'(z))$ is bijective.

Proof. (i) We prove $\forall s \in \mathbb{C}$, the function p(z) - s has exactly two roots on \mathbb{C}/Λ . First assume $\varphi(z) - s \neq 0$ on boundary of \mathbb{C}/Λ .

of roots =
$$\frac{1}{2\pi i} \int_L \frac{p'(z)}{p(z) - s} ds$$

where L is the countour in Figure 7.

Figure 7: Countour L on boundary of \mathbb{C}/Λ

$$p(z + \omega_2) = p(z) \Rightarrow \int_{L_1} + \int_{L_2} = 0,$$
$$p(z + \omega_1) = p(z) \Rightarrow \int_{L_3} + \int_{L_4} = 0.$$

$$z \to o, \begin{array}{ccc} p(z) - s & \sim & \frac{1}{z^2} \\ p'(z) & \sim & -\frac{2}{z^3} \end{array} \Rightarrow \frac{p'(z)}{p(z) - s} \sim -\frac{2}{z}$$

$$\Rightarrow \frac{1}{2\pi i} \int_{C_1} \rightarrow -2 \frac{-\theta}{2\pi} = \frac{\theta}{\pi}.$$

Similarly,

$$\frac{1}{2\pi i} \int_{C_3} \to \frac{\pi - \theta}{\pi}.$$

$$\Rightarrow \frac{1}{2\pi i} \left(\int_{C_1} + \int_{C_3} \right) \to 1.$$

Similarly,

$$\frac{1}{2\pi i} \left(\int_{C_2} + \int_{C_4} \right) \to 1.$$

Hence

$$\frac{1}{2\pi i} \int_{L} \frac{p'(z)}{p(z) - s} \mathrm{d}s = 2.$$

Remark. If

$$p(z) - s = 0$$
$$z \neq -z + \Lambda \in \mathbb{C}/\Lambda$$

then p(z)-s=0 has two distinct roots (if z is the root of p(z)-s=0, then $-z+\lambda, \lambda\in\Lambda$ is also the root).

If $z = \frac{\omega_1}{2}, \frac{\omega_2}{2}, \frac{\omega_1 + \omega_2}{2}$, then

$$-z + \Lambda = z$$

$$\Rightarrow p'(z) = p'(-z) = -p'(z)$$

$$\Rightarrow p'(z) = 0$$

$$\Rightarrow z \text{ is a double root.}$$

If p(z) = 0 ont the boundary, then modify L.

(ii) φ is surjective.

 $\forall (x,y) \in E, (i) \Rightarrow \exists z \text{ such that } p(z) = x. \text{ Let } y' = p'(z), \text{ then }$

$$(x,y) \in E, (x,y') \in E \Rightarrow y'^2 = y^2 \Rightarrow y' = \pm y.$$

If $y' = -y \neq 0$, then:

 $\exists \lambda \in \Lambda \text{ such that } -z + \lambda \neq z \Rightarrow \text{and} :$

$$\begin{cases} p(-z+\lambda) = x, \\ p'(-z+\lambda) = -y' = y \quad (\text{ recall } p'(-z+\lambda) = -p'(z)). \end{cases}$$

(iii) φ is injective.

Suppose $\varphi(z_1) = \varphi(z_2) = (x, y)$

$$\Rightarrow p(z_1) = p(z_2) = x \Rightarrow z_2 = z_1 \text{ or } z_2 = -z_1 + \lambda.$$

In case $z_2 = -z_1 + \lambda$,

$$\Rightarrow y = p'(z_2) = p'(-z_1 + \lambda) = -p'(z_1) = -y$$

 $\Rightarrow p'(z_1) = 0$

 $\Rightarrow p'(z_1) = 0$, z_1 is a double root of $p(z) - x = 0 \Rightarrow z_2 = z_1$. \square Recall

$$G_k(\Lambda) = \sum_{(c,d)\neq(0,0)} \frac{1}{(c\omega_1 + d\omega_2)^k}$$

and

$$G_k(\tau) = \sum_{(c,d)\neq(0,0)} \frac{1}{c\tau + d)^k}$$

$$\Rightarrow G_k(\Lambda) = \frac{1}{\omega_2^k} G_k \left(\frac{\omega_1}{\omega_2}\right).$$

$$\begin{split} &\delta(\tau) = g_2^3(\tau) - 27g_3^2(\tau) \\ \Rightarrow & g_2^3(\Lambda) - 27g_3^2(\Lambda) = \delta\left(\frac{\omega_1}{\omega_2}\right)\frac{1}{\omega_2^{12}} \neq 0. \, (\text{ Recall } \delta(\infty) = 0, \delta(\tau) \neq 0 \forall \tau \in \mathcal{H}) \end{split}$$

Definition 3.8. Suppose C: F(x,y) is a curve. If $\forall (x_0,y_0) \in C$ we have

$$\frac{\partial F}{\partial x}|_{(x_0,y_0)} \neq 0 \text{ or } \frac{\partial F}{\partial y}|_{(x_0,y_0)} \neq 0,$$

then C is a non-singular curve.

Let
$$E: y^2 - (4x^3 - g_2(\Lambda)x - g_3(\Lambda)) = 0$$
, then

E is non-singular $\Leftrightarrow 4x^3 - g_2(\Lambda)x - g_3(\Lambda) = 0$ has no multiple roots

$$\Leftrightarrow g_2^3(\tau) - 27g_3^2(\tau) \neq 0.$$

Given $E: y = 4x^3 - C_2x - C_3$, $\Delta = C_2^3 - C_3^2$. If $\exists \Lambda$ such that

$$\begin{cases} C_2 = g_2(\Lambda) \\ C_3 = g_3(\Lambda) \end{cases}$$

then $\Delta \neq 0$, E is a non-singular curve. Let

$$j(\tau) := \frac{1728g_2^3(\tau)}{\Delta(\tau)}.\tag{14}$$

It is easy to verify that

$$j\left(\frac{a\tau+b}{c\tau+d}\right)=j(\tau), \forall \begin{bmatrix} a & b\\ c & d\end{bmatrix} \in \mathrm{SL}_2(\mathbb{Z}),$$

 $j(\tau)$ is holomorphic on \mathcal{H} ($\Delta(\tau) \neq 0$ on \mathcal{H}) and $j(\tau)$ has a simple pole at ∞ .

Lemma 3.9. The map $\begin{array}{ccc} \mathcal{H} & \to & \mathbb{C} \\ \tau & \mapsto & j(\tau) \end{array}$ is surjective.

Proof. $\forall s \in \mathbb{C}$, let $f = f_s = 1728g_2^3 - s\Delta$, i.e.,

$$f(\tau) = 1728g_2^3(\tau) - s\Delta(\tau).$$

f is of weight 12 modular form.

$$f(\infty) \neq 0$$

$$\Rightarrow \frac{1}{2}v_i(f) + \frac{1}{3}v_\rho(f) + \sum^* v_p(f) = 1$$

$$\Rightarrow \text{ one of } v_i(f), v_\rho(f), v_p(f) > 0.$$

Proposition 3.10. If $a_2^3 - 27a_3^2 \neq 0$ then $\exists \Lambda$ such that

$$\begin{cases} g_2(\Lambda) = a_2 \\ g_3(\Lambda) = a_3. \end{cases}$$

Proof. Lemma $3.9 \Rightarrow \exists \tau \in \mathcal{H}$ such that

$$j(\tau) = \frac{1728g_2^3(\tau)}{\Delta(\tau)}$$

$$\Rightarrow \frac{g_2(\tau)^3}{g_2^3(\tau) - 27g_3^2(\tau)} = \frac{a_2^3}{a_2^3 - 27a_3^2}$$

$$\Rightarrow \frac{a_2^3}{g_2^3(\tau)} = \frac{a_3^2}{g_3^2(\tau)}.$$

Choose $\omega_2 \neq 0$ such that $\frac{a_2}{g_2(\tau)} = \omega_2^4$, let $\omega_1 = \tau \omega_2 \Rightarrow \frac{a_2}{g_2(\Lambda)} = \frac{a_2}{g_2(\tau)\omega_2^4} = 1 \Rightarrow \frac{a_3^2}{g_3^2(\Lambda)} = \frac{a_2^3}{g_2^3(\tau)\omega_2^6} = 1 \Rightarrow \frac{a_3}{g_3(\Lambda)} = \pm 1$. Replace ω_2 by $i\omega_2$ if necessary $\Rightarrow \frac{a_3}{g_2(\Lambda)} = 1$. \square

Remark. \exists a surjection between { complex tori } and { curves $E: y^2 = 4x^3 - a_2x - a_3, a_2^3 - 27a_3^2 \neq 0$ }. Write

$$\Lambda = \omega_1 \mathbb{Z} \oplus \omega_2 \mathbb{Z} \quad \tau = \frac{\omega_1}{\omega_2} \in \mathcal{H},$$
$$\Lambda' = \omega_1' \mathbb{Z} \oplus \omega_2' \mathbb{Z} \quad \tau' = \frac{\omega_1'}{\omega_2'} \in \mathcal{H}.$$

Recall that

 $\varphi: \mathbb{C}/\Lambda \to \mathbb{C}/\Lambda'$ is holomorphically group-homomorphism $\Leftrightarrow \exists m \in \mathbb{C}$ such that $\varphi(z+\Lambda) = mz + \Lambda', m\Lambda \subset \Lambda'.$ φ is isomorphic $\Leftrightarrow m\Lambda = \Lambda'.$

 $\mathbb{C}/\Lambda \simeq \mathbb{C}/\Lambda' \Leftrightarrow m \in \mathbb{C} \text{ such that } m\Lambda = \Lambda' \Leftrightarrow \begin{bmatrix} m\omega_1 \\ m\omega_2 \end{bmatrix} = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \begin{bmatrix} \omega_1' \\ \omega_2' \end{bmatrix} \text{ for some } m$

$$\begin{bmatrix} a & b \\ c & d \end{bmatrix} \in \mathrm{SL}_2(\mathbb{Z})$$

$$\frac{m\omega_1}{m\omega_2} = \frac{a\omega_1' + b\omega_2'}{c\omega_1' + d\omega_2'}$$

$$\Leftrightarrow \tau = \frac{a\tau' + b}{c\tau' + d}$$

$$\Leftrightarrow \tau, \tau' \text{ are } SL_2(\mathbb{Z})\text{-equivalent}$$

 $\Rightarrow \exists$ a bijection between $\{$ isomorphism class of $\mathbb{C}/\Lambda \}$ and $\{SL_2(\mathbb{Z})\text{-equivalence class of }\mathcal{H}\}.$ $\mathbb{C}/\Lambda \to \tau.$

4 The Congruence Subgroup Case: Basic Results

Let

$$\Gamma := \text{ a congruence subgroup,}$$

$$s, s' \in \mathbb{Q} \cup \{\infty\}, \infty := \lim_{\operatorname{Im} \tau \to \infty} \tau, \tau \in \mathcal{H},$$

$$\gamma = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \in \Gamma$$

$$\gamma(s) := \frac{as + b}{cs + d}.$$

Then

$$\gamma(\infty) = \begin{cases} \frac{a}{c} & \text{if } c \neq 0\\ \infty & \text{if } c = 0 \end{cases} \quad \text{and} \quad \gamma(s) = \infty \text{ if } cs + d = 0, s \in \mathcal{H}.$$

If $s' = \gamma(s), \gamma \in \Gamma$, $s' \neq s$ are Γ -equivalent, denoted by $s' \sim s$.

Definition 4.1. A cusp of Γ is a Γ -equivalence class of points in $\mathbb{Q} \cup \{\infty\}$.

Exercise 4.1.

- a. Let $\Gamma = \mathrm{SL}_2(\mathbb{Z})$, only one cusp $= \{\infty\}$.
- b. Let p be prime, $\Gamma_0(p) = \left\{ \begin{bmatrix} a & b \\ c & d \end{bmatrix} \in \operatorname{SL}_2(\mathbb{Z}) : c \equiv 0 \pmod{p} \right\}$. How many cusps?

Solution. The first is obvious. Consider $\frac{m}{n} \in \mathbb{Q}$, (m, n) = 1, n > 0.

$$\frac{m}{n} \sim \infty$$

$$\Leftrightarrow c\frac{m}{n} + d = 0 \Leftrightarrow n \equiv 0 \pmod{p}.$$

Hence one cusp = $\left\{\frac{m}{n}, n \equiv 0 \pmod{p}\right\} \cup \{\infty\}$ and another cusp = $\left\{\frac{m}{n}: (m, n) = (n, p) = 1\right\}$.

Proposition 4.2. Let Γ be a congruent subgroup, \mathbb{C}/Λ , $\Gamma\backslash\mathcal{H}$ be the quotient space of Γ acting on \mathcal{H} . Let

$$X(\Gamma) = \Gamma \backslash \mathcal{H} \cup [\text{ cusps of } \Gamma].$$

Then $X(\Gamma)$ has a natural structure as a compact Riemann surface.

Definition 4.3 (Elliptic points w.r.t Γ). $\tau \in \mathcal{H}$ is an *elliptic point* of Γ if $\exists \gamma \in \Gamma, \gamma \neq \pm I$ such that $\gamma(\tau) = \tau$.

$$\gamma(\tau) = \tau \Leftrightarrow \sigma \gamma \sigma^{-1} (\sigma(\tau)) = \sigma(\tau).$$

 γ is an elliptic point of $\Gamma \Rightarrow \tau$ is an elliptic point of $\mathrm{SL}_2(\mathbb{Z})$.

Lemma 4.4. Let $\gamma \in \mathrm{SL}_2(\mathbb{Z})$.

a. If $\gamma^2 = -I$, then γ is conjugate to $\begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}^{\pm 1}$, i.e.,

$$\sigma\gamma\sigma^{-1} = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}^{\pm 1}.$$

b. If $\gamma^2 + \gamma + I = 0$, then γ is conjugate to $\begin{bmatrix} 0 & 1 \\ -1 & -1 \end{bmatrix}^{\pm 1}$.

c. If
$$\gamma^2 - \gamma + I = 0$$
, then γ is conjugate to $\begin{bmatrix} 0 & -1 \\ 1 & 1 \end{bmatrix}^{\pm 1}$.

Lemma 4.5. Any elliptic point of $SL_2(\mathbb{Z})$ is equivalent to i or $\rho = e^{\frac{2\pi i}{3}}$.

Proof. For
$$\gamma = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \neq \pm I$$
,

$$\gamma(\tau) = \tau \Leftrightarrow a\tau + b = c\tau^2 + d\tau$$
$$\Leftrightarrow c\tau^2 + (d-a)\tau - b = 0.$$

If c = 0, then $a = d \Rightarrow \gamma = \pm I$. Assume $c \neq 0$, $\tau \notin \mathbb{R} \Rightarrow (d - a)^2 + 4bc < 0$

$$\Rightarrow (d+a)^2 + 4(bc - ad) < 0$$

$$\Rightarrow (d+a)^2 - 4 < 0$$

$$\Rightarrow |d+a| < 2$$

$$\Rightarrow \begin{vmatrix} a-x & b \\ c & d-x \end{vmatrix} = x^2 + 1 \text{ or } x^2 \pm x + 1$$

$$\Rightarrow \gamma^2 + I = 0 \text{ or } \gamma^2 \pm \gamma + I = 0.$$

By Lemma 4.4:

$$\gamma^{2} + I = 0 \Rightarrow \gamma = \sigma \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}^{\pm 1} \sigma^{-1}$$
$$\gamma(\tau) = \tau \Rightarrow \tau \sim i.$$

Similarly $\gamma^2 \pm \gamma + I = 0 \Rightarrow \tau \sim \rho$. Let

 $\mathcal{M}_k(\Gamma) = \text{space of weight } k \text{ modular forms w.r.t. } \Gamma,$ $\mathcal{S}_k(\Gamma) = \text{space of weight } k \text{ cusp forms w.r.t. } \Gamma,$ $g = \text{genus of } X(\Gamma).$

Theorem 4.6. Suppose k is even,

 $\varepsilon_2 = number \ of \ elliptic \ points \ of \ \Gamma \ which \ are \ \mathrm{SL}_2(\mathbb{Z}) \sim i,$ $\varepsilon_3 = number \ of \ elliptic \ points \ of \ \Gamma \ which \ are \ \mathrm{SL}_2(\mathbb{Z}) \sim \rho,$ $\varepsilon_3 \in \Gamma$

Then

$$\dim \mathcal{M}_k(\Gamma) = \begin{cases} (k-1)(g-1) + \left[\frac{k}{4}\right] \varepsilon_2 + \left[\frac{k}{3}\right] \varepsilon_3 + \frac{k}{2} \varepsilon_\infty & k >= 2, \\ 1 & k = 0, \\ k < 0. \end{cases}$$
$$\dim \mathcal{S}_k(\Gamma) = \begin{cases} (k-1)(g-1) + \left[\frac{k}{4}\right] \varepsilon_2 + \left[\frac{k}{3}\right] \varepsilon_3 + \left(\frac{k}{2} - 1\right) \varepsilon_\infty & k >= 4, \\ g & k = 2, \\ 0 & k <= 0. \end{cases}$$

 $X(\Gamma) \stackrel{\text{called}}{=} \text{a modular curve.}$

Modularity Theorem(Version $X_{\mathbb{C}}$). Suppose \mathbb{C}/Λ is a complex elliptic curve with $j(\Lambda) \in \mathbb{Q}$. Then for some $N \in \mathbb{N}$, there exists a surjective holomorphic function $X(\Gamma_0(N)) \to \mathbb{C}/\Lambda$.

5 Hecke Operators

Let Γ_1 and Γ_2 be congruence subgroups,

$$\operatorname{GL}_{2}^{+}(\mathbb{Q}) := \left\{ \begin{bmatrix} a & b \\ c & d \end{bmatrix} : a, b, c, d \in \mathbb{Q}, ad - bc > 0 \right\}.$$

Let $\alpha \in \mathrm{GL}_2^+(\mathbb{Q})$, write

$$\Gamma_1 \alpha \Gamma_2 := \left\{ \gamma_1 \alpha \gamma_2 : \gamma_1 \in \Gamma_1, \gamma_2 \in \Gamma_2 \right\}.$$

 $\Gamma_1 \alpha \Gamma_2$ is called a double coset in $\operatorname{GL}_2^+(\mathbb{Q})$.

Remark. Let G = group, S = set, then G acts on S is denoted by $G \setminus S = \{ \text{ orbits of } G \text{ on } S \} = \{ Gs : s \in S \}$. Indeed, if $S = \text{group } G \lhd S \Rightarrow G \setminus S = \{ Gs : s \in S \} = S / G$.

Fact: $\Gamma_1 \setminus \Gamma_1 \alpha \Gamma_2 = \{\Gamma_1 \alpha_2 \gamma_2 : \gamma_2 \in \Gamma_2\}$ is finite. $\Gamma = \text{congruence subgroup} \Rightarrow [\operatorname{SL}_2(\mathbb{Z})_2(\mathbb{Z}) : \Gamma] < \infty.$

Lemma 5.1. Let Γ be a congruence subgroup and $\alpha \in GL_2^+(\mathbb{Q})$, then $\alpha^{-1}\Gamma\alpha \cap GL_2^+(\mathbb{Q})$ is a congruence subgroup.

Proof. $\exists \widetilde{N} \in \mathbb{N}$ such that $\Gamma(\widetilde{N}) \subset \Gamma$ and

$$\widetilde{N}\alpha \in M_2(\mathbb{Z}) = \left\{ \begin{bmatrix} a & b \\ c & d \end{bmatrix} : a, b, c, d \in \mathbb{Z} \right\}, \widetilde{N}\alpha^{-1} \in M_2(\mathbb{Z}).$$

Let
$$N = \widetilde{N}^3$$
,

$$\alpha\Gamma(N)\alpha^{-1} \subset \alpha(I+NM_2(\mathbb{Z}))\alpha^{-1}$$

$$=I+\widetilde{N}\widetilde{N}\alpha M_2(\mathbb{Z})\widetilde{N}\alpha^{-1}$$

$$\subset I+\widetilde{N}M_2(\mathbb{Z})$$

$$\Rightarrow \alpha\Gamma(N)\alpha^{-1} \subset \operatorname{SL}_2(\mathbb{Z}) \cap \left(I+\widetilde{N}M_2(\mathbb{Z})\right) = \Gamma(\widetilde{N})$$

$$\Leftrightarrow \alpha\Gamma(N)\alpha^{-1} \subset \Gamma(\widetilde{N})$$

$$\Rightarrow \Gamma(N) \subset \alpha^{-1}\Gamma(\widetilde{N})\alpha \subset \alpha^{-1}\Gamma\alpha$$

$$\Rightarrow \Gamma(N) \subset \alpha^{-1}\Gamma\alpha \cap \operatorname{SL}_2(\mathbb{Z})$$

$$\Rightarrow \alpha^{-1}\Gamma\alpha \cap \operatorname{SL}_2(\mathbb{Z})$$
 is a congruence sub group.

Lemma 5.2. Write $\Gamma_3 = \alpha^{-1}\Gamma_1\alpha \cap \Gamma_2$ $(\Gamma_3 \subset \Gamma_2)$,

$$\Gamma_1 \setminus \Gamma_1 \alpha \Gamma_2 = \{ \Gamma_1 \alpha \gamma_2 : \gamma \in \Gamma_2 \}.$$

The map $\varphi: \begin{array}{ccc} \Gamma_2 & \to & \Gamma_1 \backslash \Gamma_1 \alpha \Gamma_2 \\ \gamma_2 & \mapsto & \Gamma_1 \alpha \gamma_2 \end{array}$ induces a bijection

$$\Gamma_3 \backslash \Gamma_2 \to \Gamma_1 \backslash \Gamma_1 \alpha \Gamma_2$$
.

Proof. It is obvious that φ is surjective. Suppose $\varphi(\gamma_2) = \varphi(\gamma_2')$,

$$\Gamma_{1}\alpha\gamma_{2} = \Gamma_{1}\alpha\gamma_{2}'$$

$$\Leftrightarrow \Gamma_{1}\alpha\gamma_{2}\gamma_{2}'^{-1} = \Gamma_{1}\alpha$$

$$\Leftrightarrow \alpha(\gamma_{2}\gamma_{2}'^{-1})\alpha^{-1} \in \Gamma_{1}$$

$$\Leftrightarrow \gamma_{2}\gamma_{2}'^{-1} \in \alpha^{-1}\Gamma_{1}\alpha$$

$$\Leftrightarrow \gamma_{2}\gamma_{2}'^{-1} \in \Gamma_{3}.$$

Zeta function is defined by

$$\zeta(s) = \sum_{n=1}^{\infty} \frac{1}{n^s} = \prod_{n} \left(1 - \frac{1}{p^s} \right)^{-1}, \text{Re } s > 1.$$

Let $f = \text{cusp form at } \infty : f(\tau) = \sum_{n=1}^{\infty} a_n(f) e^{2\pi n\tau}$. Define

$$L(f,s) = \sum_{n=1}^{\infty} a_n(f)n^{-s}$$

for some f. Then

$$L(f,s) = \prod_{p} \left(1 - \frac{a_p(f)}{p^s} + \frac{1}{p^{2s}}\right)^{-1}.$$