

Clawhammer HT Interface

LAYOUT: Place HT bypass caps on topside near unconnected Clawhammer HT Link

Clawhammer DDR Interface VCCDDR C CU8 CU9 10UF/10V 0.1UF/10V 0CD_CPU OCD_CPU CU54 15 OCD_CPU 10UF/10V OCD_CPU SEC 4 OF 6 MB_CHECK[7] MB_CHECK[6] MB_CHECK[5] MB_CHECK[4] MB_CHECK[2] MB_CHECK[2] MB_CHECK[1] MB_CHECK[1] AH13 MB DATA(AS) AH14 MS DATA(AS) AH15 MB DATA(AS) AH16 MB DATA(AS) AH16 MB DATA(AS) AH16 MB DATA(AS) AH16 MB DATA(AS) AH17 MB DATA(AS) AH18 MB DATA(AS) AH19 MB DATA SEC 3 OF 6 AM2G2 940 K25 J26 G28 G27 L24 K27 H29 H27 AE14 AG14 AG16 AD17 AD13 AE13 MA_CHECK[7] MA_CHECK[6] MA_CHECK[5] MA_CHECK[4] MA_DATA[63] AM2G2 940 MA_D[0:63] MA DATAIS9 MA CHECK[3] MA_DATA[58 MA_DATA[57 MA_CHECK[3] MA_CHECK[1] AG15 AE16 AG17 J29 AJ14 MB_DM[8] MB_DM[7] MB_DQM[0:7] 6 MA DATAIS6 MA CHECKIO MA DATAISS MB_DM[6] 4 AE18 3 AD21 2 AG22 MB_DM[5] MB_DM[4] MA_DM[8] MA_DM[7] MA_DM[6] MA_DM[5] MA_DM[4] MA_DM[3] MA_DM[2] MA_DM[1] MA_DM[0] MA DATAI52 MB DMI31 MA DATAIS MB_DM[2] MB_DM[1] MA DATA[49 MB_DM[0] MA DATA[48 MA_DATA[46 MA_DATA[47 MA_DATA[46 MB_DQS[8] MB_DQS[7] MB_DQS[6] MB_DQS[5] MB_DQS[4] MB_DQS[3] MB_DQS[2] MB_DQS[1] MA DATAI4 AG26 AE22 AG23 AH25 MA_DATA[44 MA_DATA[43 MA_DATA[42 MA_DATA[41] D28 AD15 MA AG18 MA AG24 MA AG27 MA D29 MA C25 MA E19 MA MA_DQS[8] MA_DQS[7] MA_DQS[6] AF25 AJ28 AJ29 AF29 MA_DATA[40] MA_DATA[39] MA DQS[5] MA DATAISE MA DOSIA MA_DATA[36 MA_DATA[36 MA_DQS[3] MA_DQS[2] ΔF26 AJ27 MA DATA[35 MA DOSI11 MB DQS*[8 MB_DQS*[7 MB_DQS*[6 MB_DQS*[5 MA DATAI34 MA DOSIO MA_DQSN[0:7] 6 MA DATA[31 MA DQS*[8] MB DQS*[4 MA_DQS*[8 MA_DQS*[7 MA_DQS*[6 MA_DQS*[4 MA_DQS*[4 MA_DQS*[2 MA_DQS*[1 MA_DQS*[1 MA_DQS*[0 MA DATAI30 MB_DQS*[3 MB_DQS*[2 MB_DQS*[1 MA DATA[28 MA_DATA[28 MA_DATA[27 MA_DATA[26 MA_DATA[25 MA_DATA[24 MB_DQS* LAYOUT: 15MIL TRACE F12 MEM_CPU_VREF M VRFF MB0_CLK[0]/MB_CLK_H5 MB0_CLK*[0]/MB_CLK_L5 MAO_CLK[0]/MA_CLK_H5 MAO_CLK*[0]/MA_CLK_L5 MA DATA[20 E26 C26 G23 F23 E22 MA_DATA[19 MA_DATA[18 MA0_CLK[1]/MA_CLK_H1 MA0_CLK*[1]/MA_CLK_L1 MB0_CLK[1]/MB_CLK_H1 MB0_CLK*[1]MB_CLK_L1 MA DATAI17 MA DATAI1 AJ19 AK19 MA_DATA[16 MA_DATA[15 MA_DATA[14 MA0_CLK[2]/MA_CLK_H7 MA0_CLK*[2]/MA_CLK_L7 MB0_CLK[2]/MB_CLK_H7 MB0_CLK*[2]/MB_CLK_L7 MA DATAI11 MA_DATA[13 MA_DATA[12] MA_DATA[11] MA_DATA[10] MA_DATA[8] MA_DATA[7] MB1_CLK[0]/MB_CLK_H4 MB1_CLK*[0]/MB_CLK_L4 MA1_CLK[0]/MA_CLK_H4 MA1_CLK*[0]/MA_CLK_L4 MB1_CLK[1]/MB_CLK_H0 D19 × D19 MA1_CLK[1]/MA_CLK_H0 MA1_CLK*[1]/MA_CLK_L0 G20 CG21 MA1_CLK*[1]/MA_CLK_L0 MA_DATA[7] MA_DATA[6] MA_DATA[5] MA_DATA[4] MA_DATA[3] MA1_CLK[2]/MA_CLK_H6 MA1_CLK*[2]/MA_CLK_L6 MB1_CLK[2]/MB_CLK_H6 MB1_CLK*[2]/MB_CLK_L6 MA_DATA[2] MA_DATA[1] MBAI0:151 < N28 MB_ADD[15] AE31 MB_ADD[14] N30 MB_ADD[13] P29 MB_ADD[12] AA29 MB_ADD[10] P31 MB_ADD[10] P31 MB_ADD[10] R29 MB_ADD[8] R29 MB_ADD[8] R20 MB_ADD[8] R30 MB_ADD[6] R30 MB_ADD[6] MB BANK[2] MB_BANK[1] MA DATAIO MA BANKI1 MB BANKIO AA27 MA BANKIO AB29 MB_RAS MEMORY CLOCK TRANSLATION MAA[0:15] MAA15 M27 M2, 14 N24 413 AC26 2 N26 P25 AA26 MA RAS MA_RAS MA_CAS MA_WE MA ADDI15 MA_RAS* MB CAS* DDR3 Memory Signal CPU Signal MA_ADD[13] MA_ADD[14] MA_ADD[13] MA_ADD[12] MA_ADD[11] MA CAS* MB WE* DIMM A0 MEM MA0 CLK1 MA CLK2 MA0 CS*[1 R30 MB_ADD[6] T31 MB_ADD[5] T29 MB_ADD[4] U29 MB_ADD[3] U28 MB_ADD[2] WB_ADD[1] MB_ADD[0] MA ADDI10 MAO CS*IO MEM MAO CLKO MA CLK4 MA_ADD[10 MA_ADD[8] MA_ADD[7] MA_ADD[6] MA_ADD[5] MA_ADD[4] MA1_CS*[1] MA1_CS*[0] DIMM A1 MEM MA1 CLK1 MA CLK5 MA_CKE1 MA_CKE0 M25 MA_CKE[0] MB0_ODT0 MB0_ODT0 6 MEM MA1 CLK0 MA CLK3 MA_ADD[3 MA_ADD[2 MA_ADD[1 OCD CP MA0_ODT[0] MA1_ODT[0] MA0 ODTO 6 AH11 M_ZN M_ZP E12 × VTT_SENSE DIMM B0 MA ADDIO MEM MB0 CLK1 MB CLK2 Socket AMD AM3 941 Pin Lotes SMT CU59 Socket AMD AM3 941 Pin Lotes SMT MEM MB0 CLK0 MB_CLK4 10UF/10V LAYOUT: 5MIL TRACE 10 MIL SPACE LAYOUT: PLACE WITHIN 1 INCH OF CPU MEM MB1 CLK1 MB CLK5 MEM MB1 CLK0 MB CLK3 J&W AM2+ DDRII I/F Document Number 1.0 RS880+SB850+AM3 Date: Wednesday, September 15, 2010

	J&W					
Title	AM2+ CNTL/MI	SC I/F				
Size Custom	Document Number RS880+SB850+AM	3				1.0
Date:	Wednesday, September 15, 2010	Sheet	4	of	30	

RS740/RX780/RS780 POWER DIFFERENCE TABLE

PIN NAME	RS740	RX780	RS780	PIN NAME	RS740	RX780	RS780
VDDHT	NC	+1.1V	+1.1V	IOPLLVDD	+1.2V	NC	+1.1V
VDDHTRX	NC	+1.1V	+1.1V	AVDD	+3.3V	NC	+3.3V
VDDHTTX	+1.2V	+1.2V	+1.2V	AVDDDI	+1.8V	NC	+1.8V
VDDA18PCIE	NC	+1.8V	+1.8V	AVDDQ	+1.8V	NC	+1.8V
VDD18	+1.8V	+1.8V	+1.8V	PLLVDD	+1.2V	NC	+1.1V
VDD18_MEM	NC	NC	+1.8V	PLLVDD18	+1.8V	NC	+1.8V
VDDPCIE	+1.2V	+1.1V	+1.1V	VDDA18PCIEPLL	+1.2V	+1.8V	+1.8V
VDDC	+1.2V	+1.1V	+1.1V	VDDA18HTPLL	+1.8V	+1.8V	+1.8V
VDD_MEM	+1.8V	NC	+1.8V(DDR2) +1.5V(DDR3)	VDDLTP18	+1.8V	NC	+1.8V
VDD33	+3.3V	NC	+3.3V	VDDLT18	+1.8V	NC	+1.8V
IOPLLVDD18	+1.8V	NC	+1.8V	VDDLT33	+3.3V	NC	NC

	J&W				
Title	RS740/780 POV	/ER			
Size Custom	Document Number RS880+SB850+AM	3			1.0
Date:	Wednesday, September 15, 2010	Sheet	40	 30	

All Power Rails except VDDIO_33_S: 50 μs ≤ Power Rail Ramp time ≤ 40 ms. VDDIO_33_S: 100 μs ≤ Power Rail Ramp time ≤ 40 ms. +3.3V **SB810** VDDIO 33 PCIGP VDDCR VDDIO 33_PCIGP_1
VDDIO 33_PCIGP_3
VDDIO 33_PCIGP_3
VDDIO 33_PCIGP_4
VDDIO 33_PCIGP_5
VDDIO 33_PCIGP_6
VDDIO 33_PCIGP_6 VDDCR Y14 Y16 AB16 AC14 AE12 AE14 AF9 AF11 SSIO SATA 1 VSS_ VSS_ VSSIO_SATA_1 VSSIO_SATA_2 VSSIO_SATA_3 C158 10UF/10V C159 0.1UF/25V OCD_SB 0.1UF/25V 0.1UF, 0CD_SB 0CD_SE C160 a C155 III 1UF/10V 0CD_SB C161 10UF/10V OCD_SB C156 10UF/10V 0CD_SB VSS_ VSS_ VSS_ VSS_ VSS_ VSS_ VSS_ 0.1UF/25V VDDCR 0.1UF/25V VDDCR SSIO SATA AA2 AB4 AC8 AA7 OCD SB OCD SB OCD SB VDDCR VDDCR VSSIO_SATA_5 VSSIO_SATA_6 E6 F24 VDDIO_33_PCIGP_8 VDDIO_33_PCIGP_9 VDDIO_33_PCIGP_1 VDDCR VSSIO SATA W18 AF11 AF13 AF16 AG8 AH7 AH11 AH13 AH16 AJ7 AJ11 AJ13 AJ16 VSSIO_SATA_8 VSSIO_SATA_9 VSS_1 VSS_1 VSS_1 VSS_1 VSS_1 VSS_1 VSS_1 VDDIO_33_PCIGP_11 VDDIO_33_PCIGP_12 VSSIO_SATA_10 VSSIO_SATA_11 VSSIO_SATA_12 FB14 0805 600hm/1.5A ocd_s8 VDDAN_11, VDDAN_11, VDDAN_11 +1.1V SB K29 J28 K26 CLK CLK SSIO SATA 13 VDDPL 33 PCIE C162 C162 C163 0.1UF/25V 0.1UF/25V 0CD_SB 0CD_SB VDDAN_11_CLK_4 VDDAN_11_CLK_5 VSSIO_SATA_14 VSSIO_SATA_15 1UF/10V OCD_SB 10UF/10V OCD_SB CLKGEN I/O +3.3V FB13 077 2000hm/400m VDDIO 18 FC 1 VDDAN 11 CLK 6 VSSIO SATA 16 VDDIO_18_FC_: VDDIO_18_FC_: VDDAN_11_CLK VDDAN_11_CLK VSSIO_SATA_17 VSSIO_SATA_18 C167 0.1UF/25V 0.1UF/25V 0.0D_S8 0.0D_S8 VSS_17 VSS_18 VSS_19 VSS_29 VSS_21 VSS_22 VSS_24 VSS_25 VSS_26 VSS_27 VSS_30 VSS_31 VSS_34 VSS_34 VSS_36 VSS_36 VSS_38 VSS_39 VSS_39 VSS_39 C165 C166 2.2UF/10V 0.1UF/25V 0CD_SB 0CD_SB L12 L18 VDDIO_18_FC_4 /SSIO_SATA_19 VDDRF_GBE_ F12 F10 F10 F12 F12 F14 F15 F12 F14 F16 C9 G11 F18 D9 H12 H14 H16 H18 **POWER** VSSIO USB 2 V4 AD6 AD4 AB7 AC9 V8 W9 W10 AJ28 M10 VDDIO 33 GBE S VSSIO LISB 3 Not Enab VDDPL_33_SATA AE28 VDDPL 33 PCIE VDDPL 33 PCIE SSIO USB /SSIO_USB +3.3V FB15 0603 2000hm/400m/ 0CD_SB /SSIO_USB_ VDDAN_11_PCIE VDDCR 11 GBE S S5 SHORT_90MIL OCD_SB VDDAN 11 PCIE 1 VSSIO USB 8 VDDAN_11_PCIE_1 VDDAN_11_PCIE_2 VDDAN_11_PCIE_3 VDDAN_11_PCIE_4 VDDAN_11_PCIE_5 VDDAN_11_PCIE_6 0.1UF/25V 0.00_sB VDDCR 11 GBE S VSSIO LISB 9 C170 +1.1V SB **Not Enabl** 2.2UF/10V 0CD_SB SSIO USB 11 V28 V29 W22 W26 0.1UF/25V 0.1UF/2 0CD_SB 0.1UF/2 VDDIO_GBE_S_1 VDDIO_GBE_S_2 SSIO USB C172 C173 10UF/10V OCD_SB 1UF/10V OCD_SB Y18 Y10 VDDAN 11 PCIE VSSIO USB 14 VDDAN 11 PCIE 8 VSSIO LISB 15 VSSIO_USB_16 VSSIO_USB_17 NO NO SSIO USB 18 VDDAN_11_SATA AA12 G4 J4 AD14 VDDPL_33_SATA VDDPL_33_SATA /SSIO_USB_19 /SSIO_USB_20 VDDIO_33_S_ +3.3VSB FB16,0805 600hm/1.5A ocd_sb VSS_40 VSS_41 VSS_42 VSS_43 VSS_44 VSS_45 VSS_46 +1.1V_SB VDDIO 33 S 2 VDDIO 33 S 3 VDDIO 33 S 4 VDDAN 11 SATA /SSIO LISB 21 VDDAN_11_SATA_4 VDDAN_11_SATA_2 VSSIO_USB_22 VSSIO_USB_23 C182 C183 C184 1UF/10V 1UF/10V 2.2UF/10V 0CD_SB 0CD_SB 0CD_SB C177 C178 C179 3.3V_S5 I/O VDDAN_11_SATA_3 VDDAN_11_SATA_5 VDDAN_11_SATA_6 VDDIO 33 S VDDIO 33 S VDDIO 33 S VSSIO_USB_24 VSSIO_USB_25 VSSIO_USB_26 10UF/10V 1UF/10V OCD_SB 1UF/10V 0.1UF/25V 0.1UF/25V OCD_SB OCD_SB OCD SB OCD_SB AD18 AE16 AH29 VSS_47 VSS_48 VSS_49 VSS_50 VDDAN 11 SATA 7 VDDIO 33 S VSSIO LISB 27 H19 VDDAN_33_USB_S S9 SHORT_90MIL OCD_SB VDDCR_11_S_ VDDCR_11_S_ +1.1VALW EFUSE +3.3VSB VDDAN_33_USB_S_1 VDDAN_33_USB_S_2 VSSAN HWM M8 C185 C186 1UF/10V 1UF/10V VDDAN_33_USB_S_3 VDDAN_33_USB_S_4 +3.3VSB 幸 C189 C187 M19 M20 1UF/10V OCD_SB 1UF/10V 0CD_SB OCD_SB OCD_SB VDDCR 11 USB S VDDAN 33 USB S 5 C191 C191 C192 — 0.1UF/25V 2.2UF/10V OCD_SB OCD_SB VDDAN_33_USB_S_6 VDDAN_33_USB_S_7 VDDAN_33_USB_S_7 VDDAN_33_USB_S_8 VDDAN_33_USB_S_9 VDDAN_33_USB_S_10 VDDAN_33_USB_S_11 VDDCR_11_USB_S P21 P20 M22 M24 M26 P22 P24 P26 T20 T22 T24 V20 /SSIO_PCIECLK_1 /SSIO_PCIECLK_2 /SSIO_PCIECLK_3 VSSIO_PCIECLK VSSIO_PCIECLK VSSIO_PCIECLK M21 VDDPL_33_SYS →VDDPL 33 SYS ΔΔ23 SSIO_PCIECLK_4 AB23 VDDPL_11_SYS_S VDDPL 11 SYS S VSSIO PCIECLK 5 VSSIO PCIECLK VSSIO_PCIECLK_6
VSSIO_PCIECLK_7
VSSIO_PCIECLK_8
VSSIO_PCIECLK_9 VDDAN_11_USB_S VDDAN 33 USB S 12-VSSIO POIECLK VSSIO_PCIECLK VSSIO_PCIECLK VDDPL_33_USB_ FB17,0603 2000hm/400mA C11 D11 +1.1VALW VDDAN_11_USB_S_1 VDDAN_11_USB_S_2 VDDAN_33_HWM_S VDDAN_33_HWM_5 L20 VDDXL 33 S FB18 06 W20 AE26 VDDXL 33 S VSSIO PCIECLK 11 VSSIO PCIECLK 2 SSIO PCIECLK 12 VSSIO PCIECLK 25 /SSIO_PCIECLK_13 VSSIO_PCIECLK_26 Wake on LAN supported: Tied to a +3.3V_S5 rail. Wake on LAN not supported: Tied to a +3.3V_S0 rai VSSIO PCIECLK 2 2.2UF/ Part 5 of 5 +3.3VSB +3.3VSB OCD_SB Wake on LAN supported: Tied to a +1.1V_S5 rail. **TIE PIN D8 AND C7 TOGETHER** Wake on LAN not supported: Tied to a +1.1V_S0 rail THEN TO A DEDICATED GND VIA VDDCR_11_USB_S VDDAN_33_HWM_S VDDPL_11_SYS_S FB19,0503 2000hm/400m/ OCD_SB +3.3VSB +1.1VALW 2.2UF/10V 0.1UF/2 C197 C198 G201 C202 2.2UF/10V OCD_SB 0.1UF/25V 0CD_SB 0.1UF/25V 0CD_SB 10UF/10V OCD_SB 0.1UF/25V OCD_SB 0.1UF/25V 0CD_SB VDDPL_33_SYS VDDPL_33_USB_S S12 SHORT_20MIL VDDAN_33_USB_S -VDDPL_33_USB_S and VDDAN-33_USB_S_[12:1] can be tied together and share one ferrite bead C204 C205 2.2UF/10V 0.1UF/25V 0CD_SB 0CD_SB C206 C207 2.2UF/10V 0.1UF/25V 0CD_SB 0CD_SB J&W VDDAN_11_USB_S_[2:1] and VDDCR_11_USB_S_[2:1] can be tied together and share one ferrite bead **SB810-POWER & DECOUPLING** 1.0 RS880+SB850+AM3 Wednesday, September 15, 2010

	AZ_SDOUT	PCI_CLK1	PCI_CLK2	PCI_CLK3	PCI_CLK4	LPC_CLK0	LPC_CLK1	GPIO200	GPIO199
PULL	LOW POWER MODE	ALLOW PCIE GEN2	WATCHDOG TIMER ON NB_PWRGD ENABLED DEFAULT	USE DEBUG STRAPS	NON-FUSION CPU CLOCK MODE DEFAULT	EC ENABLED	CLKGEN ENABLED	ROM TYPE: H, H = Reserved H, L = SPI ROM	DEFAULT
PULL	PERFORMANCE MODE DEFAULT	FORCE PCIE GEN1 DEFAULT	WATCHDOG TIMER ON NB_PWRGD DISABLED	IGNORE DEBUG STRAPS DEFAULT	FUSION CPU CLOCK MODE	EC DISABLED DEFAULT	CLKGEN DISABLED DEFAULT	L, H = LPC ROM L, L = FWH ROM	

SB810/SB850:

Allow PCle Gen2: 10-k 5% pull-up to +3.3V_S0. Force PCle Gen1: 10-k 5% pull-down.

SB820M: Only provision for pull-down is required, not installed by default.

SB800 DEBUG STRAPS

SB800 HAS 15K INTERNAL PU FOR PCI AD[30:23]

AD27 : Bypass PCI PLL (used in functional test at tester). 0V- Bypass internal PLL clock.

Use xSPciReqB_1 as SPCl33 bypass clock.
Use xSPciReqB_2 as A-Link bypass clock.
Use xSPciGntB_1 as B-Link bypass clock.
Use xSPciGntB_0 as B-Link266 bypass clock.

3.3V - Use internal PLL-generated PLL CLK.

AD26: ILA auto run Enable

0V - ILA auto run enable. 3.3V - ILA auto run disable.

AD25: Bypass FC CLK.

0V - Bypass internal FC Clk (used in functional test at tester). Use xSPciReqB_0_ as FC 1xClk bypass clock. Use xSPciGntB_2_ as FC 2xClk bypass clock.

3.3V – Use internal PLL FC Clk.

AD24 : I2C ROM enable. Load the settings for A-Link Express/PLL/ misc control from I2C ROM

0V - Getting the value from I2C EPROM.

I2C EPROM ADDRESS set to all zeroes

Use REQ3# as SDA. Use GNT3# as SCL.

3.3V - Disable I2C ROM

AD23 : Booting from PCI memory.

0V – Route ROM fetch to PCI bus on the very first boot. Use ROMTYPE to determine the ROM type on subsequent boots.

3.3V - Use ROMTYPE straps to determine the ROM type.

PCI_AD23 PCI_AD27 PCI_AD26 PCI_AD25 PCI_AD24 DISABLE PO DISABLE **USE FC USE DEFAULT PULL USE PCI** ILA AUTOR PCIE STRAPS MEM BOOT HIGH PLL PLL DEFAULT DEFAULT DEFAULT DEFAULT DEFAULT **BYPASS** NABLE **BYPASS USE EEPROM ENABLE PC PULL** PCI PLL ILA AUTORUN FC PLL PCIE STRAPS MEM BOOT LOW

LPCCLK0 : Embedded Controller (EC) 0V - Disabled

3.3V - Enabled

This strap has to be enabled to support enhanced hardware monitor features

EC_PWM3, EC_PWM2: ROMTYPE_1 ROMTYPE_0 ROM Type

3.3V SPI ROM 0V 3.3V 3.3V Reserved

0V 3.3V LPC ROM (supports both LPC and PMC ROM types) Configure these two strap pins to the corresponding state that matches the

hardware ROM type installed.

LPCCLK1 : Defines clock generator.

0V – External clock mode: Use 100MHz PCle clock as reference clock and generate internal clocks only. 3.3V - Integrated clock mode: Use 25MHz crystal clock and generate both internal and external clocks.

PCICLK1: Set PCIe to Gen II mode. 0V - Force PCle interface at Gen I mode.

3.3V - PCle interfacce is at Gen II mode.

PCICLK2: Watchdog function.

0V - Disable the boot fail timer function.

3.3V - Enable the boot fail timer function

PCICLK3: Default Debug Straps.

0V - Disable Debug Straps.
3.3V - Select external Debug Straps

PCICLK4: CPU/NB HT Clock Selection.

0V - Reserved

3.3V – Required setting for integrated clock mode
This strap is not used if the strap CLKGEN is configured for external clock generator mode.

AZ_SDOUT : Slow down core clock for low power platform.

0V - Performance mode.

3.3 V - Low Power mode.

This is required as the low power mode is not supported on the SB8xx

J&W SB810-STRAPS 1.0 RS880+SB850+AM3 Wednesday, September 15, 2010

Clock chip has internal serial terminations for differencial pairs, external resistors are reserved for debug purpose.

	OSC_14M_NB
RS740	3.3V 33R serial
RX780	1.8V 82.5R/130F
RS780	1.1V 158R/90.9F
(Single-ended)	

REF0/SEL_HTT66	HTT CLOCK
0	100.00 DIFFERENTIAL
1	66.66 SINGLE END

REF1/SEL_SATA	SRC6/SATA
0	100.00 DIFFERENTIAL SPREADING SRC CLCOK
1	100.00 NON-SPREADING DIFFERENTIAL SATA CLCOK

FSB4	FSB3	FSB2	FSB1	FSB0	CPU	HTT(single) SEL_HTT=1	HTT(Differential) SEL_HTT=0	VCO	SRC	ATiG[3:0]	SB_SR
0	1	1	1	1	200M	66M	100M	600M	100M	100M	100M

NB CLOCK INPUT TABLE

NB CLOCKS	RS740	RX780	RS780			
HT_REFCLKP	66M SE(SE)	100M DIFF	100M DIFF			
HT_REFCLKN	NC	100M DIFF	100M DIFF			
REFCLK_P	14M SE (3.3V)	14M SE (1.8V)	14M SE (1.1V)	100M DIFF		
REFCLK_N	NC	NC	vref	100M DIFF		
GFX_REFCLK*	100M DIFF	100M DIFF	100M DIFF			
GPP_REFCLK	NC	100M DIFF	100M DIFF(OUT)			
GPPSB_REFCLK	100M DIFF	100M DIFF	100M DIFF			

^{*} the GFX_REFCLK input is required for all cases

	J&W									
Title	RTM880N-790 C	LOC	K G	ΕN						
Size Custorr	KOOOUTODOOUTAIWI	-				Rev 1.0				
Date:	Wednesday, September 15, 2010	Sheet	27	of	30	•				

