Physical Activity Classification

Dương Đức Khải - 21110775 Thái Minh Bằng - 21110008 Phạm Anh Khoa - 21110776

Data Source: https://archive.ics.uci.edu/static/public/231/pamap2+physical+activity+monitoring.zip

Milestone presentation: https://youtu.be/nZcVQI0BaDY

Final report presentation: https://youtu.be/kDZoi9pfJyw

Goals:

Analyze the data in PAMAP2 dataset

- 1. Classify which activities a person is performing (walking, running, lying, ...)
- 2. Determine important features for physical activity recognition

Classification methods

- 1. Logistic regression
- 2. Random forest
- 3. K-NN
- 4. Other algorithms

Motivations

 Monitor seniors, and the mentally disabled from performing harmful or unusual activities

• Gaming: track the player's activities in real life and translate into actions in virtual reality games

Problems Addressed

- 1. Filtering noise data
- 2. Selecting important data for model training
- 3. Train models with different algorithms
- 4. Evaluate models' performance
- 5. Hyperparameters tuning models

DATA

Subject Information

Subject ID	Sex	Age (years)	Height (cm)	Weight (kg)	Resting HR (bpm)	Max HR (bpm)	Dominant hand
101	Male	27	182	83	75	193	right
102	Female	25	169	78	74	195	right
103	Male	31	187	92	68	189	right
104	Male	24	194	95	58	196	right
105	Male	26	180	73	70	194	right
106	Male	26	183	69	60	194	right
107	Male	23	173	86	60	197	right
108	Male	32	179	87	66	188	left
109	Male	31	168	65	54	189	right

DATA

- 1.timestamp
- 2.activityID
- 3.heartrate
- 4.handTempeture
- 5-54. Other raw sensory data

```
colNames = ["timestamp", "activityID", "heartrate"]
IMUhand = ['handTemperature',
           'handAcc16_1', 'handAcc16_2', 'handAcc16_3',
           'handAcc6 1', 'handAcc6 2', 'handAcc6 3',
           'handGyro1', 'handGyro2', 'handGyro3',
           'handMagne1', 'handMagne2', 'handMagne3',
           'handOrientation1', 'handOrientation2', 'handOrientation3', 'handOrientation4']
IMUchest = ['chestTemperature',
           'chestAcc16_1', 'chestAcc16_2', 'chestAcc16_3',
           'chestAcc6 1', 'chestAcc6 2', 'chestAcc6 3',
           'chestGyro1', 'chestGyro2', 'chestGyro3',
           'chestMagne1', 'chestMagne2', 'chestMagne3',
           'chestOrientation1', 'chestOrientation2', 'chestOrientation3', 'chestOrientation4']
IMUankle = ['ankleTemperature',
           'ankleAcc16_1', 'ankleAcc16_2', 'ankleAcc16_3',
           'ankleAcc6 1', 'ankleAcc6 2', 'ankleAcc6 3',
           'ankleGyro1', 'ankleGyro2', 'ankleGyro3',
           'ankleMagne1', 'ankleMagne2', 'ankleMagne3',
           'ankleOrientation1', 'ankleOrientation2', 'ankleOrientation3', 'ankleOrientation4']
```

DATA

- 1 lying
- 2 sitting
- 3 standing
- 4 walking
- 5 running
- 6 cycling
- 7 Nordic walking
- 9 watching TV
- 10 computer work
- 11 car driving
- 12 ascending stairs
- 13 descending stairs
- 16 vacuum cleaning
- 17 ironing
- 18 folding laundry
- 19 house cleaning
- 20 playing soccer
- 24 rope jumping
- other (transient activities)

- There were some wireless disconnections in data collection. Therefore the
 missing data has to be accounted for and made up in a way that our data
 analysis will not be impacted.
- activityID 0 must be removed completely from our dataset since this is transient period where the subject was not doing any particular activity.

Activities performed by subjects (in seconds)

	subject101	subject102	subject103	subject104	subject105	subject106	subject107	subject108	subject109	Sum	Nr. of subjects
1 – lying	271.86	234.29	220.43	230.46	236.98	233.39	256.1	241.64	0	1925.15	8
2 – sitting	234.79	223.44	287.6	254.91	268.63	230.4	122.81	229.22	0	1851.8	8
3 – standing	217.16	255.75	205.32	247.05	221.31	243.55	257.5	251.59	0	1899.23	8
4 – walking	222.52	325.32	290.35	319.31	320.32	257.2	337.19	315.32	0	2387.53	8
5 – running	212.64	92.37	0	0	246.45	228.24	36.91	165.31	0	981.92	6
6 – cycling	235.74	251.07	0	226.98	245.76	204.85	226.79	254.74	0	1645.93	7
7 – Nordic walking	202.64	297.38	0	275.32	262.7	266.85	287.24	288.87	0	1881	7
9 – watching TV	836.45	0	0	0	0	0	0	0	0	836.45	1
10 – computer work	0	0	0	0	1108.82	617.76	0	687.24	685.49	3099.31	4
11 – car driving	545.18	0	0	0	0	0	0	0	0	545.18	1
12 – ascending stairs	158.88	173.4	103.87	166.92	142.79	132.89	176.44	116.81	0	1172	8
13 – descending stairs	148.97	152.11	152.72	142.83	127.25	112.7	116.16	96.53	0	1049.27	8
16 – vacuum cleaning	229.4	206.82	203.24	200.36	244.44	210.77	215.51	242.91	0	1753.45	8
17 – ironing	235.72	288.79	279.74	249.94	330.33	377.43	294.98	329.89	0	2386.82	8
18 – folding laundry	271.13	0	0	0	0	217.85	0	236.49	273.27	998.74	4
19 – house cleaning	540.88	0	0	0	284.87	287.13	0	416.9	342.05	1871.83	5
20 – playing soccer	0	0	0	0	0	0	0	181.24	287.88	469.12	2
24 – rope jumping	129.11	132.61	0	0	77.32	2.55	0	88.05	63.9	493.54	6
Labeled total	4693.07	2633.35	1743.27	2314.08	4117.97	3623.56	2327.63	4142.75	1652.59	27248.27	
Total	6957.67	4469.99	2528.32	3295.75	5295.54	4917.78	3135.98	5884.41	2019.47	38504.91	

	timestamp	activityID	heartrate
0	37.66	1	NaN
1	37.67	1	NaN
2	37.68	1	NaN
3	37.69	1	NaN
4	37.70	1	100.0
5	37.71	1	100.0
6	37.72	1	100.0
7	37.73	1	100.0
8	37.74	1	100.0
9	37.75	1	100.0

heartrate still has NaN values

```
for i in range(0,4):
   dataCol["heartrate"].iloc[i]=100
```


	timestamp	activityID	heartrate	handTemperature	handAcc16_1
count	479488.000000	479488.000000	479488.000000	479488.000000	479488.000000 4
mean	1899.408018	9.144890	114.700567	32.507942	-5.079252
std	1175.267993	6.852498	30.977854	2.008550	6.745207
min	31.200000	1.000000	57.000000	24.875000	-106.957000
25%	834.097500	3.000000	89.000000	31.062500	-9.049547
50%	1804.400000	6.000000	113.000000	33.062500	-5.472365
75%	2951.350000	13.000000	133.000000	33.937500	-0.823944
max	4245.670000	24.000000	202.000000	35.500000	60.912600

**Null Hypothesis: **

- h0: The mean heart rate of the cumbersome activities has no mass difference from the mean of all activities
- **Non Null Hypothesis: **
 - h1: The mean heart rate of the cumbersome activities has mass difference from the mean of all activities

```
running_data = train_df.loc[(train_df["activityID"] == 5)]
  ropejumping data = train df.loc[(train df["activityID"] == 24)]
  cumbersome data = running data + ropejumping data
   import scipy.stats
   p = train df['heartrate'].mean() / (running data['heartrate'].std() / math.sqrt( running data['heartrate'].count() ))
   pValue = 1 - scipy.stats.norm.cdf(p)
   if pValue > 0.1:
      print("The p_value is ", pValue, " and h1 is rejected. There is no mass difference between the means of cumbersome activities and all activities."
   else:
       print("The p_value is ", pValue, " and h0 is rejected. There is mass difference between the means of cumbersome activities and all activities.")
The p_value is 0.0 and h0 is rejected. There is mass difference between the means of cumbersome activities and all activities.
```

Algorithms selection

Logistic Regression

```
# Create and train the Logistic Regression model
log_reg = LogisticRegression()
log_reg.fit(X_train, y_train)
```

Random Forest Classification

```
from sklearn.ensemble import RandomForestClassifier
rfc = RandomForestClassifier(n_jobs =4)
rfc.fit(X_train,y_train)
```

Algorithms selection

KNN

```
from sklearn.neighbors import KNeighborsClassifier
neightbor_scenario = [1, 2, 3, 5, 10, 50, 100, 500, 1000]
for neighbor in neightbor_scenario:
    knc = KNeighborsClassifier(n_neighbors=neighbor)
    knc.fit(X_train, y_train)
    y_pred_kn = knc.predict(X_test)
    print("Neighbor: " + str(neighbor))
    get_metrics(y_test, y_pred_kn)
```

Naive Bayes

```
gnbc = GaussianNB()
gnbc.fit(X_train, y_train)
y_pred_gnb = gnbc.predict(X_test)
print("Gaussian Naive Bayes:")
get_metrics(y_test, y_pred_gnb)
```

Algorithms selection

Adaboost

```
#default estimator is decision tree
aboostc = AdaBoostClassifier(n_estimators=100)
aboostc.fit(X_train, y_train)
y_pred_ada = aboostc.predict(X_test)
print("AdaBoost:")
get_metrics(y_test, y_pred_ada)
```

Bagging

```
#default estimator is decision tree
bagc = BaggingClassifier(n_estimators=100)
bagc.fit(X_train, y_train)
y_pred_bag = bagc.predict(X_test)
print("Bagging:")
get_metrics(y_test, y_pred_bag)
```

Model evaluation

• Using accuracy and f-score to compare models' performance

```
def get metrics (y true,y pred):
    acc = accuracy score(y true, y pred)
    err = 1-acc
    p = precision score(y true, y pred,average=None).mean()
    r = recall score(y true, y pred, average=None).mean()
    f1 = f1 score(y true, y pred, average=None).mean()
    print("Accuracy: ",acc)
    print("Error: ",err)
    print("Precision", p)
    print("Recall", r)
    print("F1", f1)
```

Before removing ouliers

Accuracy: 0.1707751986485641

Error: 0.8292248013514358

Precision 0.15265408332808045

Recall 0.16968907491682397

F1 0.15852497628438153

Accuracy: 0.3434691025881666

Error: 0.6565308974118333

Precision 0.40472849443345066

Recall 0.34253447675415866

F1 0.3470570099230174

Logistic Regression

Random Forest

Removing ouliers

```
# Drop any columns that are not relevant for the model, e.g., 'activityID'
X = filtered data.drop(['activityID'], axis=1)
y = filtered data['activityID']
# Split the data into training and testing sets
X_train, X_test, y_train, y_test = train_test_split(x, y, test_size=0.2, random_state=42)
# Standardize the features using StandardScaler
scaler = StandardScaler()
X_train = scaler.fit transform(X train)
X test = scaler.transform(X test)
# Identify and remove outliers based on z-scores
z scores = zscore(X train)
abs_z_scores = np.abs(z_scores)
filtered_entries = (abs_z_scores < 3).all(axis=1)
X_train = X_train[filtered entries]
y_train = y_train[filtered_entries]
```

After removing ouliers

Accuracy: 0.8878887479978644

Error: 0.11211125200213556

Precision 0.8872340738686941

Recall 0.8877075080101632

F1 0.8873513427669546

Accuracy: 0.9844500800854245

Error: 0.01554991991457555

Precision 0.9859331514729814

Recall 0.9843418337059963

F1 0.9844500432869703

Logistic Regression

Random Forest

```
Neighbor: 1
```

Accuracy: 0.9656049786438868

Error: 0.034395021356113165

Precision 0.9665117669265197

Recall 0.965389516957873

F1 0.9652469892138615

Gaussian Naive Bayes:

Accuracy: 0.8443005872931126

Error: 0.15569941270688736

Precision 0.85517015201471

Recall 0.8442515831196534

F1 0.8459131119877021

KNN (neightbor = 1)

Gaussian Naive Bayes

AdaBoost Logistic Regression:

Accuracy: 0.542553723972237

Error: 0.457446276027763

Precision 0.5426036050623587

Recall 0.5418570465359541

F1 0.5050658834621337

AdaBoost:

Accuracy: 0.29548184730379073

Error: 0.7045181526962092

Precision 0.2170094107653123

Recall 0.2935248816324761

F1 0.2163457600405143

Logistic Regression AdaBoost

Decision Tree
AdaBoost

```
Bagging:
```

Accuracy: 0.9796866657768286

Error: 0.020313334223171386

Precision 0.9810165887545729

Recall 0.9795230206803334

F1 0.9795738981979842

Decision Tree
Bagging

Hyperparameter Tuning

Tuning Models:

- Logistic Regression
- KNN
- Random Forest

Tuning Methods:

- GridSearchCV
- RandomSearchCV

Logistic Regression Tuning

Tuned Parameters

```
solvers = ['newton-cg', 'lbfgs', 'liblinear']
penalty = ['l2']
c_values = [100, 10, 1.0, 0.1, 0.01]
```

Implementation

```
grid = dict(solver=solvers, penalty=penalty, C=c_values)
cv = RepeatedStratifiedKFold(n_splits=5, n_repeats=2, random_state=0)
grid_search = GridSearchCV(estimator=model, param_grid=grid, n_jobs=-1, cv=cv, scoring='accuracy', error_score=0)
grid_result = grid_search.fit(X_train, y_train)
```

LR Tuning results

```
Best: 0.949094 using {'C': 100, 'penalty': 'l2', 'solver': 'newton-cg'}
0.949094 (0.000575) with: {'C': 100, 'penalty': 'l2', 'solver': 'newton-cg'}
0.939033 (0.000823) with: {'C': 100, 'penalty': 'l2', 'solver': 'lbfgs'}
0.861485 (0.000944) with: {'C': 100, 'penalty': 'l2', 'solver': 'liblinear'}
0.948137 (0.000556) with: {'C': 10, 'penalty': 'l2', 'solver': 'newton-cg'}
0.939424 (0.000589) with: {'C': 10, 'penalty': 'l2', 'solver': 'lbfgs'}
0.861044 (0.000934) with: {'C': 10, 'penalty': 'l2', 'solver': 'liblinear'}
0.942882 (0.000655) with: {'C': 1.0, 'penalty': 'l2', 'solver': 'newton-cg'}
0.938710 (0.000904) with: {'C': 1.0, 'penalty': 'l2', 'solver': 'lbfgs'}
0.860115 (0.000916) with: {'C': 1.0, 'penalty': 'l2', 'solver': 'liblinear'}
0.924212 (0.000812) with: {'C': 0.1, 'penalty': 'l2', 'solver': 'newton-cg'}
0.924397 (0.000806) with: {'C': 0.1, 'penalty': 'l2', 'solver': 'lbfgs'}
0.855685 (0.000952) with: {'C': 0.1, 'penalty': 'l2', 'solver': 'liblinear'}
0.889217 (0.000685) with: {'C': 0.01, 'penalty': 'l2', 'solver': 'newton-cg'}
0.889219 (0.000680) with: {'C': 0.01, 'penalty': 'l2', 'solver': 'lbfgs'}
0.843215 (0.001085) with: {'C': 0.01, 'penalty': 'l2', 'solver': 'liblinear'}
```

LR before & after Tuning

Accuracy: 0.8850023358248799

Error: 0.11499766417512014

Precision 0.8853531954603019

Recall 0.884499236387562

F1 0.882162449402084

Before Tuning

Accuracy: 0.9057411238654565

Error: 0.09425887613454353

Precision 0.9070117087196653

Recall 0.9053292926711437

F1 0.903831720532872

After Tuning

KNN Tuning

Tuned Parameters

```
n_neighbors = range(1, 5, 1)
weights = ['uniform', 'distance']
metric = ['euclidean', 'manhattan', 'minkowski']
```

Implementation

KNN Tuning results

```
Best: 0.999078 using {'weights': 'uniform', 'n_neighbors': 1, 'metric': 'manhattan'}
0.997673 (0.000135) with: {'weights': 'uniform', 'n_neighbors': 1, 'metric': 'euclidean'}
0.997673 (0.000135) with: {'weights': 'distance', 'n_neighbors': 1, 'metric': 'euclidean'}
0.995720 (0.000172) with: {'weights': 'uniform', 'n_neighbors': 2, 'metric': 'euclidean'}
0.997673 (0.000135) with: {'weights': 'distance', 'n_neighbors': 2, 'metric': 'euclidean'}
0.996045 (0.000200) with: {'weights': 'uniform', 'n_neighbors': 3, 'metric': 'euclidean'}
0.996637 (0.000171) with: {'weights': 'distance', 'n_neighbors': 3, 'metric': 'euclidean'}
0.994758 (0.000194) with: {'weights': 'uniform', 'n_neighbors': 4, 'metric': 'euclidean'}
0.996743 (0.000138) with: {'weights': 'distance', 'n_neighbors': 4, 'metric': 'euclidean'}
0.999078 (0.000081) with: {'weights': 'uniform', 'n_neighbors': 1, 'metric': 'manhattan'}
0.999078 (0.000081) with: {'weights': 'distance', 'n_neighbors': 1, 'metric': 'manhattan'}
0.998332 (0.000089) with: {'weights': 'uniform', 'n_neighbors': 2, 'metric': 'manhattan'}
0.999078 (0.000081) with: {'weights': 'distance', 'n_neighbors': 2, 'metric': 'manhattan'}
0.998529 (0.000099) with: {'weights': 'uniform', 'n_neighbors': 3, 'metric': 'manhattan'}
0.998742 (0.000087) with: {'weights': 'distance', 'n_neighbors': 3, 'metric': 'manhattan'}
0.997996 (0.000162) with: {'weights': 'uniform', 'n_neighbors': 4, 'metric': 'manhattan'}
0.998833 (0.000075) with: {'weights': 'distance', 'n_neighbors': 4, 'metric': 'manhattan'}
0.997673 (0.000135) with: {'weights': 'uniform', 'n_neighbors': 1, 'metric': 'minkowski'}
0.997673 (0.000135) with: {'weights': 'distance', 'n_neighbors': 1, 'metric': 'minkowski'}
0.995720 (0.000172) with: {'weights': 'uniform', 'n_neighbors': 2, 'metric': 'minkowski'}
0.997673 (0.000135) with: {'weights': 'distance', 'n_neighbors': 2, 'metric': 'minkowski'}
0.996045 (0.000200) with: {'weights': 'uniform', 'n_neighbors': 3, 'metric': 'minkowski'}
0.996637 (0.000171) with: {'weights': 'distance', 'n_neighbors': 3, 'metric': 'minkowski'}
0.994758 (0.000194) with: {'weights': 'uniform', 'n_neighbors': 4, 'metric': 'minkowski'}
0.996743 (0.000138) with: {'weights': 'distance', 'n_neighbors': 4, 'metric': 'minkowski'}
```

KNN before & after Tuning

```
Neighbor: 1
```

Accuracy: 0.9656049786438868

Error: 0.034395021356113165

Precision 0.9665117669265197

Recall 0.965389516957873

F1 0.9652469892138615

Before Tuning (neightbor = 1)

Accuracy: 0.9793613187399893 Error: 0.02063868126001067 Precision 0.9798089593507512 Recall 0.9791925482810931 F1 0.9791787788699856

After Tuning (neightbor = 1)

Random Forest Tuning

Tuned Parameters

```
n_estimators = [10, 100, 1000]
max_features = ['sqrt', 'log2']
```

Implementation

RF Tuning results

```
Best: 0.999632 using {'n_estimators': 100, 'max_features': 'log2'}
0.999632 (0.000051) with: {'n_estimators': 100, 'max_features': 'log2'}
```

```
classifiers = [LogisticRegression(penalty='12', C=100, solver='newton-cg', n_{jobs=-1}),
               KNeighborsClassifier(n_neighbors=1, metric='manhattan', weights='uniform', n_jobs=-1),
               RandomForestClassifier(n_estimators=20, n_jobs=-1)]
score_lst = []
for cls in classifiers:
   y_pred = cross_val_predict(cls, X_train, y_train, cv=5)
   accs = accuracy score(y train, y pred)
   mse_scores = cross_val_score(cls, X_train, y_train, scoring="neg_mean_squared_error", cv=2)
   mse = np.sqrt(-mse_scores)
   f1 = cross_val_score(cls, X_train, y_train, scoring="f1_macro", cv=2)
   score_lst.append([cls.__class__._name__, accs, mse.mean(), f1.mean()])
```

Cross-validation for Logistic regression, KNN & Random forest

	Classifier	Accuracy	MSE	F1
0	LogisticRegression	0.949109	0.998275	0.942381
1	KNeighborsClassifier	0.999078	0.278427	0.998286
2	Random Forest Classifier	0.999494	0.163299	0.998981

Result

Conclusion

- 1. Drop unimportant data (NaN values, ActivityID = 0, timestamp)
- 2. Select equal amount of data from each Activity ID
- 3. Model building serveral algorithms
- 4. Tunned high performed models

THANKYOU