CS100 Introduction to Programming

Lecture[0]

Course Introduction

What is programming?

Computer **programming** is the process of writing instructions that get executed by computers. The instructions, also known as code, are written in a **programming language** which the computer can understand and use to perform a task or solve a problem.

Steve Jobs: "**Everybody** in this country **should learn** to program a computer, because it teaches you how to **think**"

- Analytical engine
 - Charles Babbage
 - Designed in 1837
 - Branching & Looping!
 - Turing-complete!

- In early devices such as "Analytical Engine"
 - Program is communicated via punched cards
 - Akin to modern day assembler language

- Ada Lovelace (1815-1852)
 - Considered to be the first "computer programmer"
 - Envisioned programs
 that would run on
 Charles Babbage's
 Analytical Machine
 and do more than
 mere number crunching

Modern coding languages

Modern coding languages

- Syntactically rich
- Better abstraction ability

What is programming?

Why Learning Programming in C?

- Why C?
 - Popular, early language
 - Permits implementation of sequential programs
 - "Standard" syntax
- Why C++?
 - Popular, higher-level language (Object-oriented)
 - Efficient programs
- Note:

C and C++ are now considered low-level languages because they have no automatic memory management. The definition of low level has changed quite a bit since the inception of computer science.

Learning goals

- Cognitive competence:
 - Learn C and C++ features including later standards
 - Learn how to write programs in C/C++, know the syntax
 - Understand various ways of programming such as sequential, objectoriented, recursive, and functional programming
 - Learn about polymorphism and the standard template library
 - Learn about concurrency
 - Learn about cross-compilation, profiling, debugging, and interfacing
 - Get to know a few useful C++ libraries
- Comprehensive qualities:
 - Gain skills in problem solving and modular thinking
 - Valuable practical engineering skills for the efficient solution of realworld problems
 - Know how to analyze simple problems, and design solutions/programs

Lecturers

C

Xu Lan

Tel: (021)20684857

Office: SIST 1C-303D

Email:

xulan1@shanghaitech.edu.cn

C++

Laurent Kneip

Tel: (021)20685359

Office: SIST 1C-303E

Email:

<u>Ikneip@shanghaitech.edu.cn</u>

Course Structure

- 15.5 weeks teaching (net)
 - 1 block C (~7 weeks, 14 lectures)
 - 1 block C++ (~9 weeks, 17 lectures)
 - 1 mid-term exam
- 2 lectures / week
 - Monday 8:15-9:55
 - Wednesday 8:15-9:55
 - Room: Teaching Centre 201
- 1 weekly recitation
 - 16 groups of ~20 students

Course Page & Material

- Main course page:
 - https://piazza.com/shanghaitech.edu.cn/spring20
 22/cs100/resources
 - Will contain
 - Lecture slides (including these slides)
 - Recitation material
 - Announcements
 - Homework
 - Q&A forum
 - Please enroll by yourself if not already enrolled!

Tentative curriculum

Chapter	Teaching Contents	Week	Contact Hours	Teaching Modes
Introduction	C syntax, development environment	1	4	Lecture, forum, recitation, homework, quiz, mid-term
Basics	Flow Control, types, arrays, operations	2	4	Lecture, forum, recitation, homework, quiz, mid-term
Code structuring	Procedural abstraction, functions	3	4	Lecture, forum, recitation, homework, quiz, mid-term
Pointers	Pointers, Pointer arithmetic	4	4	Lecture, forum, recitation, homework, quiz, mid-term
Algorithms	Sorting	5	4	Lecture, forum, recitation, homework, quiz, mid-term
ı/o	Console I/O, debugging	6	4	Lecture, forum, recitation, homework, quiz, mid-term
Recursion	Recursive programming	7	4	Lecture, forum, recitation, homework, quiz, mid-term

Tentative curriculum

Chapter	Teaching Contents	Week	Contact Hours	Teaching Modes
	Object-Oriented language,			Lecture, forum, recitation,
OO Programming	Composition/Aggregation/ Inheritance, virtualization	8	4	homework, quiz, mid-term
	VII tualization			
Polymorphism	Polymorphism, templates	9	4	Lecture, forum, recitation,
				homework, quiz, mid-term
Data structures	STL, vector, list, map	10	4	Lecture, forum, recitation, homework, quiz, mid-term
Concurrency	Dracesses threads human threading	11	4	
	Processes, threads, hyper-threading,			Lecture, forum, recitation,
	thread synchronization			homework, quiz, mid-term

Tentative curriculum

Chapter	Teaching Contents	Week	Contact Hours	Teaching Modes
Standards	Coding standards, Coding patterns	12	4	Lecture, forum, recitation, homework, quiz, mid-term
Code management	CMake, Documentation, Profiling, Debugging	13	4	Lecture, forum, recitation, homework, quiz, mid-term
New standards	R-value references, C++11, C++14, C++17	14	4	Lecture, forum, recitation, homework, quiz, mid-term
Math in C++	Eigen, Ceres	15	4	Lecture, forum, recitation, homework, quiz, mid-term
Interfacing	Interfacing with Matlab and Python	16	4	Lecture, forum, recitation, homework, quiz, mid-term

Recommended Literature

- C
 - The C Programming Language (2nd Edition), by Brian W. Kernighan and Dennis M. Ritchie, Prentice Hall, 2014 (available in the library)

Recommended Literature

• C++

- The C++ Programming Language, 4th Edition, Bjarne Stroutrup,
 Pearson, 2013
- Effective C++, 3rd Edition, Scott Meyers, Addison-Wesley, 2005
- C++ Primer, Josée Lajoie and Stanley B. Lippman

Recommended Literature

General note:

- You are not required to buy those books
- They are only suggestions in case you feel like buying a book, and some copies should be available in the library
- Our material aims at being self-contained, and note furthermore that the internet is generally full of valuable resources

Some good addresses

- https://en.cppreference.com/w/
- https://www.cplusplus.com/reference/
- https://stackoverflow.com/

Recitations

- ~14 Units
- 2 Hr/week
- Individual groups of ~20 students, each having a fixed TA throughout the semester
- Recitations are held on a weekly basis, and there will be 16 different groups @ different times
- Enrolment (use wechat to login, vote only once, choose 3!): https://www.wenjuan.com/s/UZBZJvEjfde/
- Enrolment information will also be posted on Piazza https://piazza.com/shanghaitech.edu.cn/spring2022/cs100 /home
- Attendance mandatory!

Recitations

Recitation content

- A mix of:
 - Revision of the course material
 - Provision of extra examples
 - Introduction of some new material & examples
 - Interactive examples:
 - Students are asked to solve some problems in class
 - Assistance/Answers provided by TAs during recitation
 - Introduction of homework
 - Clarification of general questions related to homework
 - Introduction of homework solutions
- Additional material (i.e. slides) will be posted on Piazza
- Recitations will be starting from 2nd week (21st of February)

Recitation times

- Eight possible times (start/end +/- 10 minutes):
 - Monday: 18h, 19h
 - Tuesday: 18h, 19h
 - Wednesday: 18h, 19h
 - Thursday: 18h, 19h

Homeworks and assessment

Homework assignments

- 8 homeworks:
 - 4 shorter homeworks primarily on C at the beginning
 - 4 longer homeworks towards and after mid-term exam
 - Homeworks are at least bi-weekly
- Makes up for large part of your grade!
- Will be released during lectures
- Solution maybe reviewed during recitations
- Strict deadline (usually ~7-14 days later, 23:59 on the day)!
- Simple late submission policy:
 - 50% penalty if submitted before 23:59 on the day following the deadline
 - 100% penalty if no submission by 23:59 on the day following the deadline

Homework submissions

- Through Online Judge
 - Use of simple OJ, access will be provided in time
 - A git based OJ may be used later if required
 - Introduction to git in first recitation
- We will check the code manually as well!

Quizzes

- 2 quizzes
- During regular class, probing class attendance
- Time will not be announced in advance!
- Sickness policy:
 - Requires medical certificate
 - Requires attendance to make-up session (last chance!)

Attendance check of recitations

- We will also probe the attendance of the recitations by collecting signatures.
- We reserve the right to randomly probe recitations to verify that the number of attendees and the number of collected signatures is consistent!

Assessment

A mix of

– Regular homeworks:
4x7%+4*11%

=28%+44%

=72%

– Mid-term exam:

– In-class quizzes:

Recitation attendance checks: 2%

No final Exam!

Communication

- Your primary point of contact
 - Your TA!
 - For all course material/recitation related matters
- Use the Piazza forum!
 - However, no code sharing of homeworks!
 - You may post general questions about language features and behavior or course content
 - We encourage you to first Google yourself, then use either forum or talk to TAs

Communication

- Teacher's contact
 - Prof Xu Lan:
 - Email: xulan1@shanghaitech.edu.cn
 - Office hours: TBD
 - Prof Laurent Kneip:
 - Email: lkneip@shanghaitech.edu.cn
 - Office hours: Mondays, 10 am-12 noon, SIST 1C-303E

Academic Integrity

- Unless explicitly noted, work turned in should reflect your own/independent capabilities
- No cheating
 - Do not share your homework repo/OJ PW under any circumstances! Always protect your homework!
 - No "fake solutions" (we will check!)
 - No plagiarism (copying of part/complete solution from somewhere else) (we will check!)
 - Serious consequences, including the possibility of being expelled!