SQL SERVER2005

数据库系统概论

参考: 第一章 绪论 P12-P30

本讲内容

- ●第一节 数据库系统概述
- ●第二节 数据模型
- ●第三节 数据库系统结构
- ●第四节 数据库系统的组成

本节主要教学目标

❖掌握

- ■数据模型三要素
- 概念模型基本概念:实体、属性、联系等,重点掌握实体间的联系
- 关系模型基本概念: 关系、元组、码等;

❖了解

■ 层次模型、网状模型的数据结构、操作与完整性约束、存储 结构以及优缺点。

❖ 重点

■概念模型

❖难点

■ 实体间的联系

第二节 数据模型

- ❖数据模型
 - 两类模型
 - ■数据模型组成要素
- ❖概念模型
- ❖常用的数据模型

现实世界

机器世界

学生

课程

数据库

数据模型-两大类模型

- ❖在数据库中用数据模型这个工具来抽象、表示和 处理现实世界中的数据和信息。
- ❖通俗地讲数据模型就是现实世界的模拟。
- ❖数据模型应满足三方面要求
 - ■能比较真实地模拟现实世界
 - 容易为人所理解
 - 便于在计算机上实现

两大类模型

- ❖数据模型分为两类 (分属两个不同的层次)
 - 概念模型 也称信息模型,它是按用户的观点来对数据和信息建模,用于数据库设计。
 - ■逻辑模型和物理模型
 - 逻辑模型主要包括网状模型、层次模型、关系模型、面向对象模型等,按计算机系统的观点对数据建模,用于DBMS实现。
 - 物理模型是对数据最底层的抽象,描述数据在系统内部的表示 方式和存取方法,在磁盘或磁带上的存储方式和存取方法。

两大类模型 (续)

- ❖客观对象的抽象过程---两步抽象
 - 现实世界中的客观对象抽象为概念模型;

■把概念模型转换为某一DBMS支持的数据模型。

现实世界
現实世界
信息世界
根念模型
机器世界

DBMS支持的数据模型

现实世界 概念模型 数据库设计人员完成

概念模型 逻辑模型 数据库设计人员完成

逻辑模型 物理模型 由DBMS完成

现实世界中客观对象的抽象过程

学生-课程概念模型

数据库逻辑模型

机器世界

数据模型一组成要素

- ❖数据结构
- ❖数据操作
- ❖数据的约束条件

要素一、数据结构

- ♦什么是数据结构
 - 描述数据库的组成对象,以及对象之间的联系
- ❖描述的内容
 - ■与数据类型、内容、性质有关的对象
 - ■与数据之间联系有关的对象
- ❖数据结构是对系统静态特性的描述

要素一、数据结构(cont.)

- ❖根据数据结构的类型来命名数据模型
 - ■非关系模型
 - 层次模型(Hierarchical Model)
 - 网状模型(Network Model)
 - 关系模型(Relational Model)
 - 数据结构:关系
 - 面向对象模型(Object Oriented Model)
 - 数据结构:对象

要素二、数据操作

❖数据操作

对数据库中各种对象(型)的实例(值)允许执行的操作及 有关的操作规则

❖数据操作的类型

- ■查询
- 更新(包括插入、删除、修改)
- ❖数据操作是对系统动态特性的描述。

要素三、数据的约束条件

❖数据的完整性约束条件

- ■一组完整性规则的集合。
- 完整性规则: 给定的数据模型中数据及其联系所具有 的制约和储存规则
- 用以限定符合数据模型的数据库状态以及状态的变化, 以保证数据的正确、有效、相容。

数据的完整性约束条件(续)

❖数据模型对完整性约束条件的定义

- 反映和规定本数据模型必须遵守的基本的通用的完整性约束条件。例如在关系模型中,任何关系必须满足实体完整性和参照完整性两个条件。
- 提供定义完整性约束条件的机制,以反映**具体应用**所 涉及的数据必须遵守的特定的语义约束条件。

第二节 数据模型

- ◆数据模型
- ◇概念模型
 - ■信息世界的基本概念
 - ■两个实体型之间的联系
 - ■两个以上实体型之间的联系
 - ■单个实体型内的联系
 - ■概念模型的一种表示方法
- ❖常用的数据模型

概念模型

❖概念模型的用途

- ■概念模型用于信息世界的建模
- ■是现实世界到机器世界的一个中间层次
- ■是数据库设计的有力工具
- ■数据库设计人员和用户之间进行交流的语言

❖对概念模型的基本要求

- 较强的语义表达能力,能够方便、直接地表达 应用中的各种语义知识
- ■简单、清晰、易于用户理解。

一、信息世界中的基本概念

❖(1)实体 (Entity)

- 客观存在并可相互区别的事物称为实体。
- 可以是具体的人、事、物或抽象的概念。

❖(2)属性 (Attribute)

- 实体所具有的某一特性称为属性。
- 一个实体可以由若干个属性来刻画。 例如: (李明, 男, 1972, 江苏, 计算机系, 1990)

❖(3)码 (Key)

■ 唯一标识实体的属性集称为码。

信息世界中的基本概念(续)

- ❖ (4)域 (Domain)
 - 属性的取值范围称为该属性的域。
- ❖ (5)实体型 (Entity Type)
 - 用实体名及其属性名集合来抽象和刻画同类实体称为实体型 例如,一个具体的学生如下:

(20071001, 李明, 男, 1988, 江苏, 计算机系, 2007)

学生这种类型实体型如下:

学生(学号,姓名,性别,出生年份,籍贯,所属系,入学年份)

- ❖ (6)实体集 (Entity Set)
 - 同一类型实体的集合称为实体集

信息世界中的基本概念(续)

- ❖(7)联系 (Relationship)
 - 现实世界中事物内部以及事物之间的联系在信息世界中 反映为实体内部的联系和实体之间的联系。
 - 根据联系涉及的实体数量可分为:
 - 一个实体型
 - 多个实体型

■ 两个实体型 一对多联系(1:n)

二、两个实体型之间的联系

❖一对一联系 (1:1)

■ 定义:

如果对于实体集A中的每一个实体,实体集B中至多有一个(也可以没有)实体与之联系,反之亦然,则称实体集A与实体集B具有一对一联系,记为1:1

■ 实例

- 一个班级只有一个正班长
- 一个班长只在一个班中任职

1: 1联系

两个实体型之间的联系 (续)

❖一对多联系 (1: n)

■ 定义:

如果对于实体集A中的每一个实体, 实体集B中有n个实体(n≥0)与 之联系,反之,对于实体集B中 的每一个实体,实体集A中至多 只有一个实体与之联系,则称实 体集A与实体集B有一对多联系, 记为1:n

■实例

一个班级中有若干名学生, 每个学生只在一个班级中学习

两个实体型之间的联系(续)

❖多对多联系 (m:n)

■ 定义:

如果对于实体集A中的每一个实体, 实体集B中有n个实体(n≥0)与之联 系,反之,对于实体集B中的每一个 实体,实体集A中也有m个实体 (m≥0)与之联系,则称实体集A与 实体B具有多对多联系,记为m:n

■ 实例

- 一门课程同时有若干个学生选修
- 一个学生可以同时选修多门课程

第二节 数据模型

- ❖数据模型
- ❖概念模型
- ❖常用的数据模型
 - 关系模型

关系模型

- ❖一、关系数据模型的数据结构
- ❖二、关系数据模型的操纵和完整性约束
- ❖三、关系数据模型的存储结构
- ❖四、关系数据模型的优缺点
- ❖五、典型的关系数据库系统

关系模型

- ❖ 关系数据库系统采用关系模型作为数据的组织方式
- ❖ 1970年美国IBM公司San Jose研究室的研究员 E.F.Codd首次提出了数据库系统的关系模型
- ❖ 计算机厂商新推出的数据库管理系统几乎都支持关系模型
- http://baike.baidu.com/view/68348.htm

一、关系数据模型的数据结构

◆在用户观点下,关系模型中数据的逻辑结构是一张二维表,它由行和列组成。

	属性				元组 7 <i>/</i>	
学号	姓名	年 龄	性别	系名	年级	
2005004	王小明	19	女	社会学	2003	
2005006	黄大鹏	20	男	商品学	2005	
2005008	张文斌	18	女	法律	2005	
	•••	•••	• • •	•••		

学生登记表

关系数据模型的数据结构 (续)

- ❖关系 (Relation)
 - 一个关系对应通常说的一张表
- ❖元组 (Tuple)
 - 表中的一行即为一个元组
- ❖属性 (Attribute)
 - 表中的一列即为一个属性,给每一个属性起一个名称 即属性名

❖主码

■ 表中的某个属性组,它可以唯一确定一个元组。

■ 候选码: 当关系中有多个属性组都能唯一确定一个元组,则这些属性组称为候选码,可以从候选码中选择一个做主码。

主码

SC

	学 号	课程号	成绩
	Sno	Cno	Grade
200215121		1	90
200215121		2	80
200215121		3	80
2	200215122	2	90
200215122		3	80

练习

- ❖请分析下面学生关系, 指出:
 - 候选码、主码

学 号	姓 名	年 龄	性别	身份证号
2005004	王小明	19	女	320586198205185423
2005006	黄大鹏	20	男	511381198301010280
2005008	张文斌	18	女	130104198502281225
2005010	王小明	19	男	120106199611043053

❖域 (Domain)

属性的取值范围。

❖分量

元组中的一个属性值。

❖ 关系模式

对关系的描述

关系名(属性1,属性2,...,属性n)

学生(学号,姓名,年龄,性别,系,年级)

❖ 关系必须是规范化的, 满足一定的规范条件

- 最基本的规范条件:关系的每一个分量必须是一个不可分的数据项。
- 不允许表中还有表

职工号 姓名	州夕	かり HD 4分	工资		扣除		☆ 4 <u>}</u>	
	职称	基本	津贴	职务	房租	水电	实 发	
86051	陈平	讲师	1305	1200	50	160	112	2283

图1.27 一个工资表(表中有表)实例

术语对比

关系术语	一般表格的术语
关系名	表名
关系模式	表头 (表格的描述)
关系	(一张) 二维表
元组	记录或行
属性	列
属性名	列名
属性值	列值
分量	一条记录中的一个列值
非规范关系	表中有表 (大表中嵌有小表)

请分析概念模型中的术语与关系模型中的术语之间的对应关系:

概念模型	关系模型 ————————————————————————————————————
,	\/ 7.
实体	关系
属性	关系模式
码	元组
域	属性
实体型	域
实体集	码
联系	

二、关系数据模型的操纵和完整性约束

- ◆数据操作是集合操作,操作对象和操作结果都是 关系
 - ■查询
 - 插入
 - ■删除
 - 更新
- ❖数据操作是集合操作,操作对象和操作结果都是 关系,即若干元组的集合
- ❖存取路径对用户隐蔽,用户只要指出"干什么", 不必详细说明"怎么干"

❖关系的完整性约束条件

- ■实体完整性
- ■参照完整性
- ■用户定义的完整性

❖模型

■三要素、两种层次

❖概念模型

■ 七要素(重点实体、实体型、属性、码、联系), ER 图

◆ 关系模型

关系、属性、码、域、关系模式、元组、分量

休息…

为知之, 海女知之乎、知之 不知笱不知

是知也。另私为不