Сочетания

- 1. Найдите количество способов выбрать k предметов из n предметов. (Обозначают это число через C_n^k .)
- 2. Пусть $n \ge k \in \mathbb{N}$. Докажите, что (a) $C_n^k = C_n^{n-k}$; (b) $C_n^k = C_{n-1}^{k-1} + C_{n-1}^k$.
- 3. Дана клетчатая доска $n \times m$. Найдите число всех кратчайших путей по линиям сетки, ведущих из левого нижнего угла в правый верхний угол доски.
- 4. Пусть $n \in \mathbb{N}$ и $x, y \in \mathbb{R}$. Докажите, что
 (a) $(x+y)^n = C_n^0 x^n + C_n^1 x^{n-1} y + \ldots + C_n^n y^n;$ (b) $\sum_{k=0}^n C_n^k = 2^n;$ (c) $\sum_{k=0}^n (-1)^n C_n^k = 0.$
- 5. Сколькими способами можно выбрать k предметов из n предметов, стоящих (a) в ряд; (b) по кругу, если запрещено выбирать соседние предметы?
- 6. Пусть $n \in \mathbb{N}$. Докажите, что $\sum_{k=0}^n k \cdot C_n^k = n \cdot 2^{n-1}$.
- 7. Пусть $a, b, c \in \mathbb{N}$ и $a \ge c, b \ge \overline{c}$. Докажите, что $C_a^0 \cdot C_b^c + C_a^1 \cdot C_b^{c-1} + C_a^2 \cdot C_b^{c-2} + \ldots + C_a^c \cdot C_b^0 = C_{a+b}^c$.
- 8. Пусть $n \in \mathbb{N}$. Вычислите $C_n^0 + \frac{1}{2}C_n^1 + \ldots + \frac{1}{n+1}C_n^n$.
- 9. Найдите количество способов выбрать k предметов n различных типов, если предметы одного типа не различаются и могут повторяться. (Обозначают это число через \overline{C}_n^k .)
- 10. Найдите количество упорядоченных троек $(x,y,z) \in \mathbb{N}^3$ таких, что $x \geq 1, y \geq 2, z \geq 3$ и x+y+z=100.
- 11. Имеется n предметов k различных типов: n_1 предметов первого типа, n_2 предметов второго типа, ..., n_k предметов k-го типа, $n=n_1+n_2+\ldots+n_k$. Найдите количество различных перестановок этих предметов. (Обозначают это число через $P(n_1,n_2,\ldots,n_k)$.)