Waves and Oscillations

Bell Labs Wave Machine

REFLECTION

MIT Department of Physics Technical Services Group

Oscillations to Waves: How are they Related?

Vibrating or Oscillating objects are sources of waves, that travels through space-time.

It can be a pulse or continuous.

Can be compared to motion of large number of coupled oscillator.

If wave propagation is parallel to the oscillation: Longitudinal. If it is perpendicular to the oscillation: Transverse Waves.

A wave does not move mass in the direction of propagation; it only transfers energy.

Travelling waves

- >Travelling waves transport energy
- Study of a single wave pulse shows that, it becomes with a vibration and is transmitted through the medium

<u>Derivation of 1D-Wave Equations</u>

Approximations:

- The string is homogeneous (mass per unit length is constant)
- The string is elastic and doesn't offer resistance to bend
- Every particle shows small transverse motion (strictly vertical)
- Deflection and slope are small

Derivation of 1D-Wave Equations

$$F_y = -T\sin\theta_1 + T\sin\theta_2$$

Considering the angles to be small, we have

$$F_{y} = -T\theta_{1} + T\theta_{2} = T(\theta_{2} - \theta_{1}) = T\Delta\theta$$

$$F_y = (dm)\ddot{y} = T\Delta\theta$$

$$(\mu \Delta x)\ddot{y} = T\Delta\theta$$

We II only consider the motion of the string in y-direction for the section " Δx ". Applying Newton's law,

Lets consider;
$$\tan \theta = \frac{\partial y}{\partial x}$$

Taking the derivatives, we have

$$\frac{1}{\cos^2 \theta} \frac{\partial \theta}{\partial x} = \frac{\partial^2 y}{\partial x^2}$$

Derivation of 1D-Wave Equations

For small angle approximation cosine =1,

$$\frac{\partial \theta}{\partial x} = \frac{\partial^2 y}{\partial x^2}$$

$$\frac{\partial \theta}{\partial x} = \frac{\partial^2 y}{\partial x^2} \qquad \partial \theta = \frac{\partial^2 y}{\partial x^2} \partial x$$

Putting these values in the parent equation

$$(\mu \Delta x)\ddot{y} = T\Delta\theta$$

$$\mu \Delta x \frac{\partial^2 y}{\partial t^2} = T \frac{\partial^2 y}{\partial x^2} \partial x$$

$$\frac{\boldsymbol{\mu}}{\boldsymbol{T}}\frac{\partial^2 \boldsymbol{y}}{\partial \boldsymbol{t}^2} = \frac{\partial^2 \boldsymbol{y}}{\partial \boldsymbol{x}^2}$$

$$\frac{1}{\boldsymbol{v_p}^2} \frac{\partial^2 \boldsymbol{y}(\boldsymbol{x}, \boldsymbol{t})}{\partial \boldsymbol{t}^2} = \frac{\partial^2 \boldsymbol{y}(\boldsymbol{x}, \boldsymbol{t})}{\partial \boldsymbol{x}^2}$$

$$v_p = \sqrt{\frac{T}{\mu}}$$

Trial solutions of the Wave Equations

$$\frac{1}{v_p^2} \frac{\partial^2 y(x,t)}{\partial t^2} = \frac{\partial^2 y(x,t)}{\partial x^2}$$

$$y(x,t) = A\sin(kx \pm \omega t)$$

Trial solutions of the Wave Equations

We get an infinite number of coupled equations of motion, What are the normal modes;

$$\frac{1}{v_p^2} \frac{\partial^2 y(x,t)}{\partial t^2} = \frac{\partial^2 y(x,t)}{\partial x^2}$$

$$y(x,t) = A(x)B(t)$$

The wave equation becomes;

$$\frac{1}{v_p^2} A(x) \frac{\partial^2 B(t)}{\partial t^2} = B(t) \frac{\partial^2 A(x)}{\partial x^2}$$

$$\frac{1}{v_p^2 B(t)} \frac{\partial^2 B(t)}{\partial t^2} = \frac{1}{A(x)} \frac{\partial A(x)}{\partial x^2}$$

This equation must be satisfied for all x and t, so both sides must be a constant

$$\frac{1}{v_p^2 B(t)} \frac{\partial^2 B(t)}{\partial t^2} = \frac{1}{A(x)} \frac{\partial A(x)}{\partial x^2} = -k_m^2$$

Let's find out A(x) and B(t)

$$\frac{1}{v_p^2 B(t)} \frac{\partial^2 B(t)}{\partial t^2} = \frac{1}{A(x)} \frac{\partial A(x)}{\partial x^2} = -k_m^2$$

$$\frac{1}{v_p^2 B(t)} \frac{\partial^2 B(t)}{\partial t^2} = -k_m^2$$

$$\frac{\partial^2}{\partial t^2}B(t) = -k_m^2 v_p^2 B(t)$$

$$B(t) = B_m \sin(\omega_m t + \beta_m)$$

$$\omega_m = k_m v_p$$

$$\frac{1}{A(x)} \frac{\partial^2 A(x)}{\partial x^2} = -k_m^2$$

$$\frac{\partial^2}{\partial x^2} A(x) = -k_m^2 A(x)$$

$$A(x) = C_m \sin(k_m x + \alpha_m)$$

$$y(x,t) = A(x)B(t) = A_m \sin(\omega_m t + \beta_m) \sin(k_m x + \alpha_M)$$

Superposition and Standing Waves

Forward moving wave,

$$y_1(x,t) = A \sin(kx - \omega t)$$
The moving backward $k = \frac{2\pi}{\lambda}, \omega = kv$

Wave moving backward,

$$y_2(x,t) = A\sin(kx + \omega t)$$

The superposition of the two waves will lead to

$$y = y_1 + y_2 = 2 A \sin(kx) \cos(\omega t)$$

Caution: If the string is fixed at both ends, then y becomes 0 for x = 0 and x=L

Boundary Condition and Standing Waves

$$y = y_1 + y_2 = 2 A \sin(kx) \cos(\omega t)$$

Let's analyse the values of y, the boundary conditions restricts that, y must vanish at x=0 and x=1. Now y can also be zero for condition $k_n = \frac{n\pi}{l}$, n =1, 2... This leads to formation of nodes in the string.

$$\lambda_n = \frac{2\pi}{k_n} = \frac{2L}{n} \qquad \omega_n = k_n \nu = \frac{n\pi}{L} \nu$$

Most generalized solution will be

$$y = \sum_{n} y_n(x, t) = A_n \sin\left(\frac{n\pi x}{L}\right) \cos(\omega_n t)$$

12-04-2020

First overtone or second harmonic, $f_2 = 2f_1$

Standing waves

Bell Labs Wave Machine

STANDING WAVES

MIT Department of Physics Technical Services Group

Summary of superposition and standing waves

Superposition and Fourier Theorems

Boundary condition at the Interface of two medium

Boundary conditions:

At x = 0, $y_1 = y_2$ (otherwise the string will break)

Differentials at the boundary must be continuous

$$\frac{\partial y_1}{\partial x} = \frac{\partial y_2}{\partial x}$$

The frequency remains same across the boundary

$$\omega = v_1 k_1 = v_2 k_2$$

If there is no loss of energy at the boundary $A_i = A_r + A_t$

Lets assume part of the incident wave is transmitted and part is reflected

$$y_i = A_i \sin(k_1 x - \omega t)$$

$$y_t = A_t \sin(k_2 x - \omega t)$$

$$\sum_{12} y_{r-2} = A_r \sin(k_1 x + \omega t)$$

Reflectance and Transmittance

$$r = \frac{A_r}{A_i} = \frac{v_2 - v_1}{v_1 + v_2}$$

$$t = \frac{A_t}{A_i} = \frac{2v_2}{v_1 + v_2}$$

(a) Fixed wall/end, $v_2 = 0$,

$$t = 0$$
 and $r = -1$

A wave hitting a fixed point will be reflected, and the amplitude will be inverted

A mountain will be a valley and a valley will be a mountain

