අධායන Genera	ා පොදු සහතික al Certificate	පතු (උසස් පෙළ) විතා of Education (Adv.I	නය		
සංයුදු	ක්ත ගණිතය II bined Mathema			SS Inspire - 2025	
පැය සු	ඉනයි				
<u>උප</u> ෙදස්		පංතිය		විභාග අංකය	
*	මෙම පුශ්න පතු A කොටස (පුශ්	ය කොටස් දෙකකින් අ න 1 - 10) සහ B කෙ	සමන්විත හටස (පු	වේ. න්න 1 - 10)	
**	A කොටස සියලුම පුශ්නවල	_{දි} ට පිළිතුරු සපයන්න.	එක් එක්	පුශ්නය සඳහා ඔබේ පිළිතුරු සපය කඩදාසි භාවිත කළ හැකිය.	ා ඇති ඉවෙහි ලියන්න
₩ 5	ායමත කාලය ද	$lpha$ වසන් වූ පසු ${f A}$ කො $lpha$	iන. ඔබේ ටස, B ඉ	පිළිතුරු සපයා ඇති කඩදාසිවල ලි කාටසට උඩින් සිටින පරිදි කොටස	යන්න,
		- {		ාවෙන් පිටතට ගෙනයාමට ඔබට අ	
				්නය සඳහා පමණි.	4000
	(10) සං	යුක්ත ගණිතය I		•	
කොටෑ	ප පුශ්න අංකා	ය ලැබූ ලකුණු			
	1			9900 co T	
	2			I කලය	
	3		_	පතුය II	
A	4			එකතුව	
	5			අවසාන ලකුණු	
	6				
	7			අවසාන ලකු-	<u></u>
	8			ඉලක්කමෙන්	
	9			අකුරින්	
, , , , , , , , , , , , , , , , , , ,	10			•	
	11		<u> </u>	සංමක්ත අංක)
	12			උත්තර පතු පරීක්ෂක	
	13			පරීක්ෂා කළේ : 1	
В	14			2	
	15			අධීක්ෂණය	
	16				
	17				•
······································	එකතුව				

පුතිශතය

A කොටස

සුමට තිරස් තලයක් මත තබා ඇති A හා B නම් ස්කන්ධය m වන ගෝල 02 ක් සැහැල්ලු අවිතනා තන්තුවට දෙකෙළවරට සම්බන්ධ කර තන්තුව නොබුරුල්ව තබා f B ට f A ගෙන් ඉවතට තන්තු රේඛාව දිගේ 2f I ආවේගයක් දෙනු ලැබේ. තන්තුවේ ආවේගී ආතතිය I බව පෙන්වන්න. දැන් B ගෝලය ඊට ඉදිරියෙන් ඇති සිරස් බිත්තියක වදී. ඉන් පසු A හා B අතර ගැටුමෙන් අනතුරුව A ගෝලය බාධකය වෙතට චලිත වන්නේ නම් $e < \frac{1-e_0}{1+e_n}$ බව පෙන්වන්න. $({
m B}$ හා බාධක අතර පු.ස. - e , ගෝල දෙක අතර පු.ස. - ${
m e}_{_{
m O}})$

ළමයෙකු තිරසට 60° ආනතව h උසැති ස්ථානයට සිට බෝලයක් ආරම්භක u පුවේගයකින් පුක්ෂේපණය කරයි. රූපයේ පරිදි එකැන් සිට R දුරකින් පොළොව මත අරය r වූ වලක් සෑදී ඇත. බෝලය වල තුලට වැටීම සඳහා

 $R\sqrt{\frac{2g}{(\sqrt{3}R+h)}} < u < (R+2r)\sqrt{\frac{2g}{\sqrt{3}(R+2r)+h}}$

බව පෙන්වන්න.

(3) $m_1^{},\,m_2^{}$ හා M ස්කන්ධ සැහැල්ලු අවිතනා තන්තුවලින් සම්බන්ධ කොට සුමට කප්පි මතින් යවා ඇත. මේසය සුමට වන අතර $m_1^{} \geq m_2^{}$ වේ. පද්ධතිය නිදහසේ නිශ්චලතාවයෙන් මුදාහල විට ත්වරණය හා තන්තුවල ආතතිය නිර්ණය කිරීමට පුමාණවත් සමීකරණ ලියා දක්වන්න. පද්ධතියේ ත්වරණය සොයන්න.

(4) දිග a වූ අවිතනා තන්තුවක එහි එක් කෙළවරක් නිශ්චලව සිවිලිමකට සවිකර ඇති අතර අනෙක් කෙළවර අංශුවක් සම්බන්ධ කර නිදහසේ එල්ලා ඇත. එවිට අංශුවට u තිරස් පුවේගයක් ලබා දෙන ලදි. අංශුවේ පුවේගය $\left(\frac{u}{2}\right)$ වන විට තන්තුව $\sin\left(\frac{\theta}{2}\right) = \frac{u}{4}\sqrt{\frac{3}{ga}}$ මගින් දෙන කෝණයෙන් සිරසට ආනත බව පෙන්වන්න.

(5) ති්රස් රළු පාරක ඒකාකාර පුවේගයෙන් චලින වන ලොරියක පුවේගය v_0 විට එහි මුළු පුතිරෝධය $\left(2\alpha + \frac{v_0^2}{\beta}\right)$ වේ. (α,β) නියත වේ.) එය v^1 නියත වේගයෙන් චලිත වන විට එහි ක්ෂමතාවය වොට් 2H ද $2v^1$ නියත වේගයෙන් චලිත වන විට එහි ක්ෂමතාවය වොට් $\frac{8H}{5}$ ද වේ. $\alpha = \frac{6H}{5v^1}$ බව පෙනවන්න.

(6) බර W වූ ඒකාකාර සණ ගෝලයක් ති්රසට ආනතිය α වූ ද, ඝර්ෂණ සංගුණකය μ වූ ද, ආනත තලයක තබා ඇත්තේ ති්රස් තන්තුවක් මගින් ගෝලයේ ඉහළම ලක්ෂයත් ආනත තලයක් සම්බන්ධ කිරීම මගිනි. $\alpha \leq 2 \, \tan^{-1} \, \mu$ බව පෙන්වන්න. තන්තුවේ ඇතිවිය හැකි උපරිම ආතතිය සොයන්න.

(7) O මූලයක් අනුබද්ධයෙන් \overrightarrow{OX} , \overrightarrow{OY} අක්ෂ ඔස්සේ ඒකක දෙශික \underline{i} හා \underline{j} විට T කාලයේදී Q ලක්ෂායේ පිහිටුම් දෙශිකය $\underline{q} = \overrightarrow{OQ} = (2+5T^2)$ 8 \underline{i} $+(-2T^2+8T+7)$ 9 \underline{j} මගින් දී ඇත. ආරම්භක පුවේග දෙශිකය හා ත්වරණ දෙශිකය සොයන්න. $T=T_0$ කාලයේදී අංශුවේ චලිත දිශාව ආරම්භක චලිත දිශාවට ලම්භක නම් $T_0=2$ බව අපෝහනනය කරන්න.

(8) එක එකක බර W ද දිග a ද වන AB, AC සමාන ඒකාකාර දඩු 2 ක් A හි දී සුමට ලෙස එකට සවි කර ඇත. අක්ෂය තිරස්වන සේ අචල ලෙස සවිකළ අරය r ඇති සුමට වෘත්ත සිලින්ඩරයකින් උඩින් මේ දඩු දෙක සමමිනික ලෙස නිශ්චලතාවයෙන් තබා ඇත. එක් එක් දණ්ඩේ තිරසට ආනතිය θ නම් $a\cos^3\theta. cosec\theta = 2r$ බව පෙන්වන්න. A සන්ධියේ පුනිකිුයාව සොයන්න.

(9) එක්තරා පෙට්ටි දෙකක නිල් හා රතු වශයෙන් රතු බෝල 2 ක් හා නිල් බෝල 1 ක් බැගින්ද දෙවන පෙට්ටියේ නිල් බෝල 2 ක් හා රතු බෝල 1 ක් බැගින් ද ඇත. මිනිසෙක්ට අහඹු ලෙස එක් පෙට්ටියකින් බෝලයක් තෝරා ගැනීමට ඉඩ ලැබේ. (අවසර ලැබේ) ඔහු බෝලය ගත් එම පෙට්ටියෙන් ඔහුට රතු බෝලයක් ලැබුනේ නම් ඔහු නැවත අනෙක් පෙට්ටියෙන් බෝලයක් තෝරා නොගනී. ඔහු විසින් පළමු පෙට්ටිය තෝරා ගැනීමේ සම්භාවිතාව සොයන්න.

(10) නිඛිල සංඛාහ පහකින් සැදි වාහප්තියක පරාසය 6 ක් වන අතර වහාප්තියෙහි වැඩිතම අගය 8 කි. තවද එහිදී එක් සංඛාහවක් තෙවරක් දකිය හැක. එහි මධානාහය 8 වේ නම් වහාප්තිය නිර්ණය කරන්න. මෙම වහාප්තියෙහි මධාාස්ථයද සොයන්න.

2, x, y, z, 8

අධායන පොදු සහතික පතු (උසස් පෙළ) විභාගය General Certificate of Education (Adv.Level) Examinat	ion
සංයුක්ත ගණිතය I Combined Mathematics I	10 S II

B කොටස

- (11) (a) සෝපානයක් නිශ්චලතාවයේ සිට f නියත ත්වරණයකින් ඉහළ නැගීමට පටන් ගෙන කිසියම් කාලයකට පසු නියත චේගයකින් චලනය වී අනතුරුව 2f මන්දනයකින් නිශ්චලතාවයට පත් වේ. චලනය වූ මුළු දුර d සහ ගමනට ගත වූ මුළු කාලය T නම් නියත චේගයෙන් සෝපානය චලිත වූ කාලය $\left(T^2 \frac{3d}{f}\right)^{1/2}$ බව පෙන්වන්න. එනයින් $\frac{T^2f}{d} > 3$ බව අපෝහණය කරන්න.
 - (b) A ගුවන් තොටුපොලක සිට d දුරක් නැගෙනහිර දෙසින් B ගුවන් තොටුපොලක් පිහිටා ඇත. \overline{AB} දිශාවට θ සුළු කෝණයක් ආනතව u පුවේගයෙන් සුළඟක් හමා යයි. නිසල වාතයේදී ගුවන් යානයේ පුවේගය v ; $(usin\theta < v < u)$ වෙයි. යානයට A සිට B දක්වා සරල රේඛීයව චලිත වීම සඳහා ගමන් කළ හැකි දිශා දෙකක් ඇති බව පෙන්වන්න. ඉන් එක් දිශාවක් ඔස්සේ යාමට ගත වන කාලය අනෙක් දිශාව ඔස්සේ යාමට ගත වන කාලය මෙන් තුන් ගුණයකි. $Sin\theta = \frac{1}{u}\sqrt{\frac{4v^2-u^2}{3}}$ බව පෙන්වන්න.
- (12) (a) රූපයේ දක්වෙන පරිදි සැහැල්ලු අවිතනා තන්තුවක් සුමට කප්පියක් මතින් යවා ඇති අතර එහි එක් කෙළවරක් ස්කන්ධය 2M වූ කුඤ්ඤයකටද අනෙක් කෙළවර ස්කන්ධය M වූ අංශුවකට ඈඳා තිබේ. M ස්කන්ධය සිරස්ව පහළට එල්ලා ඇති අතර, 2M කුඤ්ඤය තිරස් සුමට මේසයක් මත තබා ඇත. ස්කන්ධය m වන අංශුවක් කුඤ්ඤය මත තබා ඇත්තේ තිරසට ආනතිය α වන බෑවුම මතය. තන්තුව හා m අංශුව එකම තිරස් තලයක වේ. කුඤ්ඤයට සාපේක්ෂව m ස්කන්ධයේ ත්වරණය $g \frac{[M(3\sin\alpha+\cos\alpha)+m\sin\alpha]}{(3M+m\sin^2\alpha)}$ බව පෙන්වන්න. කුඤ්ඤයේ ත්වරණය ගණනය කිරීමකින් තොරව m ස්කන්ධය මගින් කුඤ්ඤය මත යොදන බලය සොයන්න.

- (b) A, B හා C ගෝලවල ස්කන්ධයන් පිළිවෙලින් 2m, m, 3m වේ. රූපයේ පරිදි A හා C ගෝල සුමට තිරස් මේසයේ දාරයන් අසල තබා ඇත. A, B හා B, C ගෝල එකිනෙක දිග 2a වූ තන්තු දෙකකින් සම්බන්ධ කර ඇති අතර ආරම්භක අවස්ථාවේදී AB දුර =BC දුර =a වේ. දන් A හා C ගෝල නිදහසේ පහළට වැටෙන පරිදි නිශ්චලතාවයෙන් මුදා හරිනු ලැබේ.
 - (i) තන්තු ඇදී ගිය පසු සියළුම ස්කන්ධ $\sqrt{\frac{ga}{18}}$ ක පුවේගයෙන් චලනය වන බව පෙන්වන්න.

- (ii) B ගෝලය මේසයේ දාරයට ළඟා වූ විට එහි $\mbox{geD} \mbox{0.5} \mbox{0.5}$
- (13) ස්වාභාවික දිග a වූ සැහැල්ලු පුතාාස්ථ තන්තුවක එක් කෙළවරක් අචල 0 ලක්ෂායකට ගැට ගසා අනෙක් කෙළවරට ස්කන්ධය m වූ P අංශුවක් අමුණා ඇත. P අංශුව O හි තබා සීරුවෙන් මුදා හරිනු ලැබේ. P අංශුව එළැඹෙන වැඩිතම ගැඹුර $(2+\sqrt{3}\)$ a නම් තන්තුවේ පුතාස්ථනා මාපාංකය mg වන බව පෙන්වන්න. දන් අංශුව O හි අල්ලා තබා v පුවේගයෙන් සිරස්ව පහළට පුක්ෂේප කරනු ලැබේ. O සිට a දුරක් ගැඹුරින් වූ A ලක්ෂායේදී අංශුවේ වේගය සොයන්න. එවිට අංශුව එළැඹෙන වැඩිතම ගැඹුර a+l නම් l හි අගය සොයන්න. අංශුව A ලක්ෂාය පසුකර පහළට ගමන් කරන විට, තන්තුවේ විතතිය x ($0 \le x \le l$) සඳහා අංශුවේ චලිත සමීකරණය $\ddot{x} + \frac{g}{a}(x-a) = 0$ මගින් දෙනු ලබන බව පෙන්වන්න.

y=x - a යැයි ගෙන ඉහන චලිත සමීකරණය - $a\leq y\leq l$ - a) සඳහා $\ddot{y}+\omega^2y=0$ ආකාරයෙන් නැවත ලියන්න. මෙහි $\omega=\sqrt{\frac{g}{a}}$ වේ.

ඉහත සරල අනුවර්තී චලිතයේ කේන්දුය සොයා $\dot{y}^2=\omega^2(c^2-y^2)$ සූතුය භාවිතයෙන්, විස්නාරය c සොයන්න. අංශුව O වලින් පුක්ෂේප කළ මොහොතේ සිට උපරිම විතතිය ඇති වීමට ගතවන කාලය

$$\sqrt{\frac{a}{g}} \left(\pi - \cos^{-1} \left(\frac{a}{\textit{/}-a} \right) - \frac{v}{\sqrt{ag}} + \sqrt{\frac{v^2}{ag} + 2} \right)$$
 බව පෙන්වන්න.

(14) (a) OACB සමාන්තරාසුයේ AC පාදයේ මධා ලක්ෂා D වේ. O අනුබද්ධයෙන් A හා B ලක්ෂා වල පිහිටුම් දෙශික $2\underline{a}$ හා $3\underline{b}$ වේ. $\overrightarrow{OD} = \frac{4\underline{a} + 3\underline{b}}{2}$ බව පෙන්වන්න.

BC පාදය මත G ලක්ෂාය පිහිටා ඇත්තේ BG:GC=2:k වන පරිදිය. $\overrightarrow{OG}=3\underline{b}+\frac{4\underline{a}}{k+2}$, $\overrightarrow{DG}=\frac{3\underline{b}}{2}-\frac{2\underline{a}k}{k+2}$ බව පෙන්වන්න.

$$\overrightarrow{OD}$$
 හා \overrightarrow{DG} ඉදෙශික එකිනෙක ලම්භ වේ නම් $\dfrac{6\underline{a}\cdot\underline{b}}{k+2}=\dfrac{4\,|\,\underline{a}\,|^2\,k}{(k+2)}-\dfrac{9\,|\,\underline{b}\,|^2}{4}$ බව පෙන්වන්න.

තවද,
$$\frac{\left|\underline{a}\right|^2}{\left|\underline{b}\right|^2} = \frac{9(k+2)}{16k}$$
 නම් OACB සෘජුකෝණාසුයක් බව පෙන්වන්න.

- (b) ABCDEF යනු පාදයක දිග b වූ සවිධි ෂඩාසුයකි. විශාලත්වය 8P, 2P, 4P, 5P, 5P, P වූ බල පිළිවෙලින් \overrightarrow{AB} , \overrightarrow{BC} , \overrightarrow{DC} , \overrightarrow{DE} , \overrightarrow{EF} , \overrightarrow{AF} පාද දිගේ පිළිවෙළට එම අතට කියා කරයි. බල පද්ධතියේ සම්පුයුක්ත බලය, දිශාව හා එහි කියා රේඛාවට ෂඩාසුයේ O කේන්දුයේ සිට දුර සොයන්න. මෙම පද්ධතියටම AD හරහා එම දිශාවටම Q බලයක් දුන් විට නව සම්පුයුක්ත බලය තිරස සමඟ $tan^{-1}\left(\frac{5\sqrt{3}}{9}\right)$ කෝණයක් සාදයි නම් Q හි අගය සොයන්න.
- (15) (a) එක එකක බර w වූ නමුත් දිග වෙනස් වූ AB , BC හා CD හා DA ඒකාකාර දඩු හතරක් ඒවායේ කෙළවරවලදී සුමට ලෙස සන්ධි කර ABCD සෘජුකෝණාසුයක් සැදෙන පරිදි තබා ඇත්තේ A හා C යා කරන සැහැල්ලු දණ්ඩක් මගිනි. AB = CD = 4a හා AD = BC = 3a වේ. A ශීර්ෂය අවල ලක්ෂායකට සුමට ලෙස අසව් කර ඇත්තේ සෘජුකෝණාසුයට සිරස් කලයක නිදහසේ භුමණය වීමට හැකි වන පරිදිය. සෘජුකෝණාසුයේ කලයෙහි, CD ඔස්සේ C හි දී යෙදූ P බලයකින් සෘජුකෝණාසුය AC තිරස්ව හා AC ට පහළින් B තිබෙන පරිදි, අල්ලා තබා ඇත. $P = \frac{10w}{3}$ බව පෙන්වා සන්ධියේ පුතිකියාවේ AD හා CD ඔස්සේ සංරචක සොයන්න. AC සැහැල්ලු දණ්ඩෙහි තෙරපුමද සොයන්න.

(b) සැහැල්ලු දඩු 7 ක් නිදහස් ලෙස සන්ධි කිරීමෙන් රූපයේ දක්වෙන රාමු සැකිල්ල සාදා ඇත. රාමු සැකිල්ල සිරස් තලයක සමතුලිතතාවයේ තබා ඇත්තේ A අවල ලක්ෂායකට නිදහස් ලෙස අසව් කිරීමෙන් හා P හි දී යෙදූ තිරස් බලයක් මගිනි. AB=a වන අතර BC=3a වේ. තවද BC ඒක රේඛීය (BG හා GC ඒකරේඛීය) වන අතර DG, BG දණ්ඩට ලම්බක වේ. තවද AD දණ්ඩ තිරස් වේ. මීට අමතරව BD හා DC දඩු එක සමාන දිගකින් යුතු වේ.

- (i) P බලය සොයන්න.
- (ii) A අසව්වේ පුතිකිුයාවේ සිරස් හා ති්රස් සංරචක සොයන්න.
- (iii) රාමු සැකිල්ල සඳහා පුතාහබල රූපසටහනක් බෝ අංකනය භාවිතයෙන් අඳින්න. එනයින් දඩු සියල්ලේම පුතාහබල ආතති හා තෙරපුම් දක්වමින් නිර්ණය කරන්න.
- (16) අරය a සහ ඒකක වර්ගඵලයක ස්කන්ධය σ වූ ඒකාකාර කුහර අර්ධ ගෝලයක් එහි වෘත්තාකාර ගැටියෙහි තලයට සමාන්තර වූ, O කේන්දුයේ සිට $\frac{a}{\sqrt{2}}$ දුරකින් වූ තලයකින් කැපූ විට ලැබෙන බඳුන R ලෙස ගනිමු. අනුකලනය භාවිතයෙන් R හි ස්කන්ධය $\sqrt{2}\pi a^2\sigma$ බව පෙන්වා එහි ගුරුත්ව කේන්දුය එහි සමමිතික අක්ෂය මත O හි සිට $\frac{a}{2\sqrt{2}}$ දුරකින් පිහිටන බව පෙන්වන්න.

එම පෘෂ්ඨික ඝනත්වයම සහිත අරය $\frac{a}{\sqrt{2}}$ හා උස $2\sqrt{2}a$ වූ දෙකෙළවර වසන ලද P ඒකාකාර සෘජු කුහර සිලින්ඩරයක් ඉහත R ට සම්බන්ධ කර පහත රූපයේ පරිදි සංයුක්ත වස්තුවක් සාදා ඇත. මෙම සංයුක්ත වස්තුවේ ගුරුත්ව කේන්දුය සමමිතික අක්ෂයේ O සිට $\left(\frac{1+15\sqrt{2}}{5+\sqrt{2}}\right)\frac{a}{2}$ දුරකින් පිහිටන බව පෙන්වන්න.

දන් මෙම සංයුක්ත වස්තුව තිරසට lpha කෝණයක් ආනත, ඝර්ෂණ සංගුණකය μ වන රළු අවල ආනත තලයක සමතුලිතව තබා ඇත්තේ R හි ගැටිය, තලය හා ස්පර්ශ වන පරිදිය. (රූපයේ පරිදි) $\mu < rac{2}{k}$ හා $\mu \ge an lpha$ බව

(17) (a) ජංගම දුරකතන නිෂ්පාදන ආයතනයක එම එක් එක් දුරකථනයට A, B හෝ C ලෙස ගුණාත්මක ලකුණු ලබා දෙයි.

සාමානාගෙන් දුරකතන වලින් 75% කට ගුණාත්මක A ලකුණු ලබා දී ඇත. එමෙන්ම 15% කට ගුණාත්මක B ලකුණුද, 10% කට ගුණාත්මක C ලකුණුද ලැබේ. එසේම A ගුණාත්මක ලකුණු ලබා දුන් දුරකථනවලින් 2% ක් අවසානයේ අසාර්ථක වූ බව සොයා ගන්නා අතර, B හා C සඳහා මෙම අගයන් පිළිවෙලින් 10% ක් හා 18% ක් විය. මුළු සම්භාවිතා පුමේයය හා බේස් පුමේයය භාවිතයෙන් කිසියම් දුරකතනයක් අසාර්ථක වීමේ සම්භාවිතාව සොයන්න.

දුරකතනයක් අසාර්ථක වුවහොත් එයට C හි ගුණාත්මක ලකුණු ලැබී තිබීමේ සම්භාවිතාවයද සොයන්න.

(b) එක්තරා කුඩා පාසලක සිසුන් 184 දෙනෙකු සිටින අතර ඔවුන්ගේ බර පිළිබඳව කරන ලද අධාායනයකදී පහත තොරතුරු සොයාගෙන ඇත.

බර (kg)	සිසුන් ගණන	
10 - 19	15	
20 - 29	46	
30 - 39	49	
40 - 49	32	
50 - 59	28	
60 - 69	14	

- (i) මෙම දක්ත වසාප්තියේ මාතය, මධාසේථය හා මධානයය සොයන්න.
- (ii) සම්මත අපගමනය හා කුටිකතා සංගුණකය ගණනය කරන්න.
- (iii) වනාප්තියේ හැඩය විස්තර කරන්න.

Corrections

- 10) ggn zun 6
- 15) a) ... p = 10 w බව වෙනවා 🗇 🕏 වෙරගේ පුිනිසූග වේ ...
- බෝ a) ... බහ දිශාව මෙඟ සුව හෝ කෙන් නැදිගි හාම A ලඹ්ටා රෙල් බැස්ඵාංදා ද ···