Probabilidades y Estadística (C) – 2019

La última – repasando algunas cositas

🕩 música maestro

La empírica

valores	156.67	162.37	165.03	167.84	172.47
puntual	1/5	1/5	1/5	1/5	1/5

Distribución Empírica

- X_1, \ldots, X_n iid, $X_i \sim F$. $X \sim F$.
- Acumulada F. $F(t) = \mathbb{P}(X \leq t).$
- Estimación de la acumulada:

$$\widehat{F}_n(t) = \frac{1}{n} \sum_{i=1}^n I_{X_i \le t}$$

- \widehat{F}_n ES una función de distribución acumulada (de discreta).
- \widehat{F}_n asigna peso 1/n a cada valor X_1, \ldots, X_n .

valores	X_1				X_n
puntual	1/n	1/n	1/n	1/n	1/n

Atenti a los repetidos!

Medidas de resumén - Posición - Mongo muestral

- Media
- Mediana
- Percentil
- Cuartiles:
- Media α podada

Medidas de resumén - Dispersión

$$\widehat{\sigma^2} = \frac{1}{n} \sum_{i=1}^n (X_i - \overline{X})^2$$
$$S^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i - \overline{X})^2$$

- Distancia intercuartil. $Q_3 Q_1$
- MAD: medianda $\{|x_i \widetilde{x}|\}$

Histogramas- Media & Mediana

Boxplot - en R boxplot(datos)

Estadística

$POBLACION \leftrightarrow F$	MUESTRA $X_1, \ldots X_n$ i.i.d. $X_i \sim F$	
Parámetro: Valor asociado de F	Estimador:estadístico para estimar $ heta$	
$\theta = \theta(F)$	$\widehat{\theta}_n = \widehat{\theta}_n(X_1, \dots, X_n)$	
heta: valor poblacional	$\widehat{ heta}_n$ nueva variable aleatoria	

Muestra - Datos (Observaciones)

Muestra (aleatoria simple):

$$X_1, \ldots, X_n$$
 Variables aleatorias iid.

• Datos - Observaciones - Valores observados

 x_1, \ldots, x_n Números.

Parámetro, estimador, estimación – Estimación Puntual

Un parámetro es un número FIJO (somos frecuentistias) que describe algun aspecto de "la población": F.

- Parámetro: $\theta = \theta(F)$
- Muestra: X_1, \ldots, X_n iid, $X_i, \sim F$.
- Estimador:

$$\widehat{\theta}_n = \widehat{\theta}_n(X_1, \dots, X_n)$$

• Estimación:

$$\widehat{\theta}_{n,\mathsf{obs}} = \widehat{\theta}_n(x_1,\ldots,x_n)$$

Sampling distribution

- ullet $\widehat{\theta}_n$ es una variable aleatoria.
- $\widehat{\theta}_n$ tiene distribución (siempre)
- ullet $\widehat{ heta}_n$ tiene (en general) esperanza: $\mathbb{E}(\widehat{ heta}_n)$
- ullet $\widehat{ heta}_n$ tiene (en general) varianza: $\mathbb{V}(\widehat{ heta}_n)$

Histogramas de $\widehat{\theta}_n=2\overline{X}_n$ y de $\widetilde{\theta}_n=\max\{X_1,\ldots,X_n\}$

 $X_i \sim \mathcal{U}(0,\theta)$

Métodos de estimación

- Momentos

Propiedades

Consistencia

$$\widehat{\theta}_n(X_1,\ldots,X_n) o^{\mathcal{P}} \theta(F)$$
 , cuando $X_i \sim F$, $\forall F \in \mathcal{M}$ abreviado: $\widehat{\theta}_n o \theta$, $\forall \theta$

- Error cuadratico medio: $\mathsf{ECM} = \mathbb{E}\{(\widehat{\theta}_n \theta)^2\}$
- Lema: Si $\mathbb{E}\{(\widehat{\theta}_n \theta)^2\} \to 0$, entonces $\widehat{\theta}_n \to \mathcal{P}$
- Sesgo: $\mathbb{E}(\widehat{\theta}_n) \theta$.
- Estimador insesgado: Sesgo=0: $\mathbb{E}(\widehat{\theta}_n) \theta$
- Lema: $\mathbb{E}\left\{(\widehat{\theta}_n \theta)^2\right\} = \mathbb{V}(\widehat{\theta}_n) + \left\{\mathbb{E}(\widehat{\theta}_n) \theta\right\}^2$
- ullet Si $\mathbb{V}(\widehat{ heta}_n) o 0$ y $\mathbb{E}(\widehat{ heta}_n) o heta$, entonces

$$\mathbb{E}\{(\widehat{\theta}_n - \theta)^2\} \to 0$$

Exactitud (sesgo) - Precisión (varianza)

Sobre la distribución del estimador

- Distribución exacta (distribución de la suma, etc (proba))
- Distribución aproximada (TCL)
- Aproximación Bootstrap. Necesitas una compu.

Esquema Bootstrap

Error de Estimación

"Toda estimación relevante conlleva un error" - Walter Sosa

Definición: llamamos error de una estimación a la estimación del desvío (exacto o aproximado) del estimador con el cual estimamos.

- \bullet Estimador: $\widehat{\theta}_n$, estimación: $\widehat{\theta}_{n, \mathsf{obs}}$
- se := $\sqrt{V(\widehat{\theta}_n)}$ o se : $\approx \sqrt{V(\widehat{\theta}_n)}$. Sea sê un estimador de se. Error de estimación: sêobs

Ejemplo: Si $\widehat{\mu}_n = \overline{X}_n$, tenemos que

$$\widehat{\operatorname{se}} := \sqrt{\frac{\widehat{V(X)}}{n}}$$

Intervalos de confianza – Estimación por intervalos

- Intervalo de confianza: rango de valores plausibles para el parámetro de interés.
- Los intervalos se contruyen usando un método que que tiene una probabilidad predeterminada de capturar el verdadero parámetro.

Muchos intervalos y la verdad

Muchos intervalos

Mi intervalo y yo, buena suerte! (confianza)

	1	
0		

Intervalos – Jerga

- Modelo y parámetro de interés
- Nivel (de cubrimiento) (1α)
- \bullet El Pivot y su distribución Proba. Normales, χ^2 , t- Student, etc...
- Mundo Asintótico (TCL + Slutzky)

Test de hipótesis

Determinar si los datos obtenidos resulta suficientemente convincentes para sacar alguna conclusión algo sobre el parámetro de interés.

Hipótesis nula y alternativa

- Hipótesis alternativa H_1 : Escenario para el cual buscamos evidencia significativa.
- La hipótesis alternativa (H_1) se establece mediante la observación de evidencia (en los datos) que contradice la hipótesis nula y apoya la hipótesis alternativa.
- Los datos son raros bajo la hipótesis nula (H_0) , y ADEMAS sugieren que sea rechazada en favor de la hipótesis alternativa.

Significatividad Estadísica

Cuando los resultados son poco probables suponiendo que la hipótesis nula H_0 es cierta, indicando además evidencias en favor de H_1 , decimos que los resultados son estadísticamente significativos.

Si nuestra muestra es estadísticamente significativa, tenemos evidencia convincente contra H_0 y en favor de H_1 .

Hay evicencia significativa? \equiv Puede rechazar H_0 en favor de H_1 ?

Test de Hipótesis – Jerga

- Modelo y parámetro de interés
- H_0 , H_1 y \mathcal{R} , la región de rechazo de H_0 en favor de H_1 .
- Función de Potencia
- Error Tipo I y Error Tipo II y sus probabilidades.
- Nivel de significación (α)
- El estadístico del Test y su distribución (cuando?)
- p- valor
- Mundo Asintórtico

Relación entre Test e Intervalos

Si el valor del parámetro bajo la hipótesis nula $(H_0: \theta=\theta_0)$ queda fuera del intervalo de confianza observado, rechazamos H_0 en favor de $H_1: \theta \neq \theta_0$.

Por otro lado, si el valor del parámetro bajo la hipótesis nulas (θ_0) cae dentro del intervalo de confianza, entendemos que θ_0 es un valor plausible y por lo tanto no tenemos evidencia para rechazar la hipótesis nula.

