重庆理工大学 2022-2023 学年第一学期期末试卷《理论力学》

一. 选择题(母	题 3 分。 隋符	合条的序号項人	人划线内)。		
1. 空间力值	揭矩是		•		
① 代数量;		② 滑动矢量;			
③ 定位矢量;		④ 自由矢量,			
2. 物块重 Q	,放在粗糙的	水平面上,其片	摩擦角φ _f = 20°	, 若力 <i>F</i>	作用于摩擦
角之外,并已知	$\exists \theta = 30^{\circ}, F =$	= P, 物体是否	能保持静		la.
11:0					\int_F
① 能;	② 不能;	③ 处于#	6界状态;		
④ P 与 F 的	值较小时能保	持静止, 否则	不能。		į
注:物块不	会翻倒				P
				111111	hillin
3. 已知点	沿 x 轴作直	线运动,某瞬	时速度为		
$v_{x} = \dot{x} = 2 \text{ (m/s)},$	瞬时加速度为	$b_x a_x = \ddot{x} = -2 \text{ (m)}$	/s²),则一秒种	以后的点	的速度的大
小	0				
① 等于零;		② 等于-2	(m/s);		
③ 等于-4(m/s);	④ 无法确定	o .		
4. 刚体作员	崖轴转动时, 图	间体上点的切向]加速度为		法向加速度
为。					
① $\vec{r} \times \vec{\alpha}$		$ \ \bar{\omega} \times \bar{v} \\$	$\textcircled{4} \ \bar{v} \times \bar{\omega}$		
5. 已知物体	的质量为 m ,	弹簧的刚度为 /	k, 原长为 L _o ,		11111111
静伸长为 δ_{ei} ,如	1以弹簧原长末	端为坐标原点	、轴 Ox 铅直	Ī,	≶ .
向下,则重物的	运动微分方程	为。		Lo	$\leq k$
	$-k\alpha$ ②			δ_a	60
	- KX 2	$mx = \kappa x$			Н.
	4	$m\ddot{x} = mg + kx$			
					x

二、填空题 (每题 5 分。请将简要答案填入划线内。)

1. 图示矩形板 (重量不计) 用六根直杆固定 的地面上(各杆重均不计); 杆端均为光滑球铰链。 在 *A* 点作用铅直力 *P* ,则其中内力为零的杆 是

如图所示,已知物块 B 按 s = a + b sin φ
运动、且 φ = ωt (其中 a、b、ω 均为常量),杆长 L。若取小球 A 为动点,物体 B 为动坐标,则牵连速度 v_c = ________,相对速度 v_r = ________(方向均须由图表示)。

3. 图示曲柄连杆相机构,已知曲柄 OA长L,重量不计,连杆AB长2L,重 P,受矩为M的力偶和水平力F的作用,在图示位置平衡。若用虚位移原理求解,则必要的虚位移之间的关系为(方向在图中画出),力F的大小为_____

三. 计算题 (本题 10 分)

在图示物块中,已知: \bar{P} 、 θ 接触面间的摩擦角 φ_{m} 。试问: ① β 等于多大时向上拉动物块最省力; ② 此时所需拉力 F 为多大。

四、计算题(本题10分)

杆 CD 可沿水平槽移动,并推动杆 AB 绕轴 A 转动,L 为常数。试用点的 合成运动方法求图示位置 $\theta=30^\circ$ 时杆 CD 的绝对速度 ν 。已知杆 AB 的角速 度为 ω 。

五、计算题(本题10分)

图示匀质细杆的端点 A、B 在固定圆环中沿壁运动。已知: 杆长为 L、重为 P,质心 C 的速度大小为 v_C (常数),圆环半径为 r。试求惯性力系向圆心 O 简化的结果。

六、计算题 (本题 10 分)

图示平面机构。已知:杆AD以 $v_A = 0.3$ m/s 匀速向上移动,AB = 0.2 m。试求: 当 $\theta = 30$ °时,滑块B沿水平导槽的速度和加速度。

七、计算题(本题15分)

图示结构由丁字梁与直梁铰接而成, 自重不计。已知: $P_1 = 2$ kN, q = 0.5 kN/m, M = 5 kN·m, L = 2 m。试求支座 C 及固 定端 A 的约束力。

八、计算题 (本题 15 分)

在图示机构中, 鼓轮质量 m=30 kg, 轮半径 R=30 cm, 轮轴半径 r=15 cm, 对中心轴 A 的回转半径 $\rho=20$ cm, 沿斜面作纯滚动, $\theta=30^\circ$, 定滑轮 O 质量不计, 绳的倾斜段与斜面平行。当物体 B 上升 2 m 时, 其速度由 1.5 m/s 增中到 4.5 m/s, 试求物体 B 的质量。

