Python

Grafische Ausgaben mit Matplotlib und Plotly

Aufgabe 1

Mit Hilfe von Matplotlib können wir sehr einfach den Graphen einer reellen Funktion y = f(x) grafisch darstellen.

- a) Erstellen Sie grafische Ausgaben der Funktione $f(x) = \sin(x)$.
- b) Erstellen Sie ein Template für diese Aufgabe so, dass Sie die dargestellte Funktion möglichst einfach austauschen können!
- c) Erstellen Sie grafische Ausgaben der Funktionen $f(x)=x^2$, $f(x)=x^3$, $f(x)=\sin{(x)}$ und $f(x)=e^x$.
- d) Erstellen Sie eine grafische Ausgabe des Polynoms $p(x) = x^3 2 \cdot x^2 + 3$.

Tipp:

Es ist sinnvoll NumPy zu verwenden, unter anderem gibt es dort für Polynome das Modul numpy.polynomial, mit dem wir Polynome definieren und auswerten können.

Aufgabe 2

Mit Hilfe von plotly können wir sehr einfach den Graphen einer reellen Funktion y = f(x) grafisch darstellen.

- a) Erstellen Sie grafische Ausgaben der Funktion $f(x) = \sin(x)$.
- b) Erstellen Sie ein Template für diese Aufgabe so, dass Sie die dargestellte Funktion möglichst einfach austauschen können!
- c) Erstellen Sie grafische Ausgaben der Funktionen $f(x) = x^2$, $f(x) = x^3$ und $f(x) = e^x$.
- d) Erstellen Sie eine grafische Ausgabe des Polynoms $p(x) = x^3 2 \cdot x^2 + 3$.

Aufgabe 3

Erstellen Sie eine grafische Darstellung der Funktion

$$h(x) = \frac{1}{\sqrt{2\pi}} \cdot e^{-\frac{1}{2}x^2}$$

im Intervall [-4, 4].