Matrix Theory

Mike Desgrottes

August 2020

1

Theorem 1. Let V be a vector space and $\alpha \in End(V)$.

- (i) Prove that if V is dimensional, then α is injective if and only if α is also surjective.
- (ii) Provide an example that shows that this is not true if V had infinite dimension.

Proof. (i) Suppose that α is injective, then it implies that $ker(\alpha) = \{0\} \implies \dim(Ker\alpha) = 0$. The image of α can be written as the direct sum $ker(\alpha) + im(\alpha)$. Thus, $\dim(V) = \dim(ker(\alpha)) + \dim(im(\alpha)) = n \implies \dim(V) = \dim(im(\alpha))$. Therefore, α is surjective.

Suppose that α is surjective, then it implies that $\dim(V) = \dim(im(\alpha)) \implies \dim(ker(\alpha)) = 0$. Therefore, α is injective.

(ii) Let V = C[a, b], and $I(f) = \int_a^b f(x) dx$. This is a surjective linear operator that is not injective.

Theorem 2. Let $\alpha, \beta \in Hom(V, W)$ where $dim(V) < \infty$. Prove that

$$rk(\alpha + \beta) \le rk(\alpha) + rk(\beta)$$

.

Proof. $rk(\alpha + \beta) = rk(\alpha) + rk(\beta) - rk(Im(\alpha) \bigcap Im(\beta)) \implies rk(\alpha) + rk(\beta) + rk(Im(\alpha) \bigcap Im(\beta))$ which implies the result.

Theorem 3. Let $\alpha \in End(V)$ for a finite dimensional vector space V. Suppose that α is nilpotent of index k. Prove that I - A is an automorphism of v.

Theorem 4. Let V be a finite dimensional vector space over \mathbb{F} and α be a linear map from V to \mathbb{F} . Assume that α is not the zero map. Prove that there exists a vector $u \in V$ such that $\alpha(u) = 1$ and V is the direct sum of $Ker\alpha$ and $Span\{u\}$.

Proof. Since α is not the zero map, there exists a vector in V such that $\alpha(v) \neq 0$. $\alpha(v) = u \implies \alpha(v/u) = 1$. We know that $\mathbb{F} = \text{null}(\alpha) + \text{rk}(\alpha)$