CURS 2016-17 Q2- Teoria de Cues i Simulació. Grau Interuniversitari d'Estadística UB-UPC Convocatòria ordinària (avaluació CONTINUADA). Juny

PART 1.

Problema 1 (10 punts)

Un aparcament té capacitat per a 10 vehicles. les arribades (Poisson) es produeixen amb una taxa d'un vehicle cada cinc minuts. El temps de permanència a l'aparcament es distribueix de manera exponencial amb una mitjana de cinc minuts. Es requereix:

- a) [2p] Model de cues a utilitzar per modelar el nombre de vehicles a l'aparcament.
- b) [1,5p] Distribució de probabilitat d'estat estacionari.
- c) [1,5p] Nombre mig de vehicles presents a l'aparcament.

El 50% dels qui surten de l'aparcament accedeixen a una benzinera amb una única bomba en la que el temps per carregar el dipòsit és exponencialment distribuït i en mitjana és de 2 minuts. Calculeu:

- d) [1,5p] Model de cues i probabilitat de no trobar cap vehicle en la benzinera.
- e) [1p] Número mig de vehicles en la benzinera, temps mig de permanència en la benzinera i temps mig d'espera en cua fins poder començar a repostar.
- f) [1p] Retornant al primer aparcament amb capacitat per a 10 vehicles. En un instant determinat hi ha a l'aparcament 5 vehicles. Es demana: quina és la probabilitat de què no surti cap vehicle en els propers 45 segons?
- g) [1,5p] Un vehicle que ha passat pel aparcament de 10 places, també a anat a repostar a la benzinera. Quina és la distribució de probabilitats del temps total (pàrquing + benzinera) que ha esmerçat el vehicle? Quina és la probabilitat de que aquest temps superi els 7 minuts?

PART 2.

Problema 1 (5 punts)

En una línia de control de qualitat, els productes de dos tipus entren barrejats a una única cua que és atesa per dos inspectors. Els productes arriben seguint un procés poissonià amb temps entre arribades de 30 minuts. Hi ha un 15% de productes tipus A i un 85% de productes tipus B. El temps d'inspecció dels productes tipus A és de 25 minuts, mentre que els de tipus B tenen un temps d'inspecció de 30 minuts.

- a) [2p] Caracteritzeu el sistema d'espera que millor s'ajusta a la descripció donada i calculeu els seus paràmetres: coeficient de desviació del temps entre arribades i coeficient de desviació del temps de inspecció per al flux combinat de productes A i B.
- b) [2p] Utilitzant una fórmula d'aproximació calculeu: el temps mig d'espera en cua d'un producte qualsevol i l'ocupació mitjana de la cua.
- c) [1p] Calculeu el nº mig de productes en la línia i el seu temps mig de permanència

Problema 2 (5 punts)

En un restaurant de menjar per emportar arriben clients cada 10 min durant el temps que el restaurant serveix, aquests clients arriben en blocs de mitjana 5 persones seguint una distribució de Poisson, cada un, individualment, fa una comanda i triga en ser servit entre 2 i 6 minuts uniformement distribuït.

Es considera que un client quan rep la comanda se'n va, no espera a que la resta de grup rebin la seva comanda.

- a) [2.5p] Calculeu, utilitzant la següent taula de valors aleatoris, els temps que triguen en arribar els dos primers grups de gent i el seu temps que esperen en rebre la seva comanda. Accepteu els successos A=arribada i S=sortida del servei.
- b) [2.5p] Indiqueu una magnitud pel temps de permanència dels clients en el sistema i realitzeu la gràfica associada amb els 2 grups i els temps calculats del apartat a).

6134	231	4649	8716	9726	4581	3451	9641	2941	7166
5423	6532	5313	7231	6843	1563	3211	8168	9145	3546
3757	9135	7852	1915	5668	4868	3525	7243	1373	1002
1277	7857	9861	135	2432	8165	1434	7635	3215	6514

(1) producte A 1520, 25 minuts; producte 3.8520, 30 minuts E[x] = 015-21 + 0185-30 = 29/25 min Var[x] = (25-29:25)2015 + (30-29:25)2.0185 = 110406 cm Cx = 10406 = 1216.10-3 2) S'ura la formula d'agrazinació d'alle - ancer 19 = 19 1/11/2 (G2+Gx2) 1 bq = C(S,O) 1-9 $P = \frac{1}{300} = \frac{29^{12}\Gamma}{60} = \frac{0}{4875}, \quad \Theta = 59 = \frac{0}{575}$ $A = 1 + \Theta = \frac{1}{9}\Gamma, \quad B = \frac{9^{2}}{21 - 9} = \frac{0}{1025} = \frac{0}{9754}$ $C(59) = \frac{1}{4 + 13} = \frac{0}{3303} = \frac{0}{187}\Gamma = \frac{0}{3192}$ $L_{9} = \frac{1}{3182} = \frac{0}{3303} = \frac{0}{15739} = \frac{1}{49} = \frac{1}{199} = \frac{1}{$ W = Wg + E[x] = 4'H9+29'25 = 33'967 min L= W. A = 33'969 30 - 1'1323

Problema 2

a) GNA/RNG Uniforma U[0,1) = #taula/10000=u

Poisson de paràmetres α caracteritza el nombre d'ocurrències d'un succés en un període de temps t, té un valor mig per període de α i el temps entre 2 successos està distribuït segons una llei exponencial de paràmetre α .

Poisson(5,10) α = 5 clients (frequencia) t = 10 minuts (unitat de temps)

Per calcular la exponencial utilitzem el Mètode de la inversa $x = -\ln(u)/5$

Distribució de servei uniforma U[2,6] s = 2+(6-2)u

u1 = 0.6134	e1 = 0.098
u2 = 0.0231	e2 = 0.754
u3 = 0.4649	e3 = 0.153

sum(e1 e2) = 0.852 < 1 < sum(e1 e3) = 1.005

Poisson1 = 2

Arriben 2 clients en l'instant Tclk=0

Els seus temps de servei són :

u4 = 0.8716	s1 = 5.486
u5 = 0.9726	s2 = 5.89
u6 = 0.4581	e1 = 0.156
u7 = 0.3451	e2 = 0.213
u8 = 0.9641	e3 = 0.007
u9 = 0.2941	e4 = 0.245
u10 = 0.7166	e5 = 0.067
u11 = 0.5423	e6 = 0.122
u12 = 0.6532	e7 = 0.085
u13 = 0.5313	e8 = 0.126

sum(e1 e7) = 0.98 < 1 < sum(e1 e8) = 1.005

Poisson2 = 7

Els temps de servei

u14 = 0.7231	s3 = 2+4*0.7231 = 4.892
u15 = 0.6843	s4 = 4.737
u16 = 0.1563	s5 = 2.625
u17 = 0.3211	s6 = 3.284
u18 = 0.8165	s7 = 5.266
u19 = 0.	s8 = 5.658
u20 = 0.	s9 = 3.4184

b) Magnitud Ti = Temps d'estada al S.E. n = nombre de clients atesos Temps mig = sum(Ti)/n tai = Temps d'entrada al sistema del client i tsi = Temps de sortida al sistema del client i Ti = tsi-tai

