Vol. 4 2669 -2676, November 1998

Selection of Tumor Antigens as Targets for Immune Attack Using Immunohistochemistry: Protein Antigens^{1,2}

Shengle Zhang, Helen S. Zhang, Carlos Cordon-Cardo, Govindaswami Ragupathi, and Philip O. Livingston³

Departments of Medicine [S. Z., H. S. Z., G. R., P. O. L.] and Pathology [C. C. J., Memorial Sloan-Kettering Cancer Center, New York, New York 10021

ABSTRACT

The relative expression of mucin antigens MUC1, MUC2, MUC3, MUC4, MUC5AC, MUC5B, and MUC7 and glycoprotein antigens KSA, carcinoembryonic antigen, prostate-specific membrane antigen (PSMA), HER-2/neu, and human chorionic gonadotropin-\$\beta\$ on different cancers and normal tissues is difficult to determine from available reports. We have compared the distribution of these antigens by immunohistology on a broad range of malignant and normal tissues. MUC1 expression was most intense in cancers of breast, lung, ovarian, and endometrial origin; MUC2 was most intense in cancers of colon and prostate origin; and MUC5 ac was most intense in cancers of breast and gastric origin. MUC4 was intensely expressed in 50% of cancers of colon and pancreas origin, and MUC3, MUC5, and MUC7 were expressed in a variety of epithelial cancers, but not so intensely. KSA was intensely and uniformly expressed on all epithelial cancers; carcinoembryonic antigen was expressed in most cancers of breast, lung, colon, pancreas, and gastric origin; and PSMA was expressed only in cancers of prostate origin. Human chorionic gonadotropin-\u00e3 was expressed on the majority of sarcomas and cancers of breast, lung, and pancreas origin, although intense staining was not seen. Staining on normal tissues was restricted to one or many normal epithelial tissues ranging from MUC3, MUC4, and PSMA, which were expressed only on epithelia of pancreas, stomach, and prostate origin, respectively, to MUCI and KSA, which were expressed on most normal epithelia. Expression was restricted to the secretory borders of these epithelia while stroma and other normal tissues were completely negative. These results plus the results of the two previous papers (S. Zhang et al., Int. J. Cancer, 73: 42-49,

1997; S. Zhang et al., Int. J. Cancer, 73: 50-56, 1997) in this series provide the basis for selection of multiple cell surface antigens as targets for antihody-mediated attack against these cancers.

INTRODUCTION

This is our third and final immunohistochemistry study comparing the expression of a series of cell surface antigens (selected as potential targets for immunotherapy) on a range of normal and malignant tissues. The previous two studies (1, 2) focused on carbohydrate epitopes expressed in glycolipids, mucins, and other glycoproteins. Here, we focus on the poptide epitopes of seven mucins and five glycoproteins, each of which is available for vaccine construction as a consequence of simple peptide synthesis (MUC1-MUC7) or expression in Excherichia coli or baculovirus (3-7). Each of these antigens is either known to be expressed at the cell surface as a consequence of a demonstrated transmembrane domain (MUC1, KSA, CEA, PSMA, and HER-2/neu; Refs. 8-12) or is thought to be shed by tumor cells and be either adherent to or abundant in the vicinity of tumor cells (MUC2, MUC3, MUC4, MUC5AC, MUC5B, and MUC7 and BhCG: Refs. 13-19). Although the expression of each of these antigens on human tumors and normal tissues has been described, previous studies were limited in terms of number and types of tissues studied, involved mAbs against only one to three antigens without direct comparison to expression of other antigens, and used different immunostaining procedures (indirect immunofluorescence, indirect immunoperoxidase, or ABC immunoperoxidase: Refs. 13 and 19-29). Consequently, the comparative distribution of these antigens on cancers and normal tissues is difficult to determine from available reports, although this is precisely the information required for selecting farget antigens for immunotherapy. This is especially important with the recent development of conjugate vaccines capable of inducing antibodies in most patients against a variety of welldefined tumor antigens (30) and with the recent evidence that the induction of these antibodies correlates with a more favorable prognosis (30-32).

MATERIALS AND METHODS

Tissue Samples. Frozen specimens embedded in Tissue-Tek O.C.T. compound (Diagnostic Division, Elkhart, IN) were provided with pathological reports by the Tissue Procurement Service of Memorial Sloan-Kettering Cancer Center (New York, NY), with the exception of four frozen specimens of metastatic prostate cancer, which were kindly provided by Dr.

Received 6/12/98; revised 8/20/98; accepted 8/31/98.

The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked advertisement in accordance with 18 U.S.C. Section 1734 solely its indicate this fact.

This paper is the third in a series. See Rets. 1 and 2.

7 This work was supported by NIH Grants ROI CA 61422 and POLCA 35049 and the United States Army DAMD 17-97-1-7115.

³ To whom requests for reprints should be addressed, at Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, New York, NY 10021, Phone; (212) 639-7425; Fax: (212) 794-4352.

⁴ The abbreviations used are: CEA, carcinoembryonic antigen: βhCG, human chorioric genadotropin-β: mAb, monoclonal antibody; ABC, avidin-biotin complex: GI, gastrointestinal; PSMA, prostate-specific membrane antigen.

2670 Selection of Tumor Antigens for Immune Attack: Proteins

Table 1 Mouse mAbs used for immunohistology

· · · · · · · · · · · · · · · · · · ·		Antigen	Antigen structure	Ref.
mAb HMFG-2 LDQ10 M3.2 MUC4.275 CLH2 PANH2 PANH3 NCL-CEA Cyt351 GA733-2 FB12 NCL-CBE1	lg čluss lgGl lgM lgG2x lgGl lgGl lgGl lgGl lgGl lgGl lgGl lgG	MUC1 MUC2 MUC3 MUC4 MUC5 _{ac} MUC5 _n MUC7 CEA PSMA KSA βhCG HERv2/neu	VTSAPDTRPAPGSTAPPAHG repeating PTTTPISTTTTVTPTPTPTGTQT repeating HSTPSFTSSITTTETTS repeating TSSASTGHATPLPVTD repeating TTSTTSAP repeating (interrupted) No peptide repeats TTAAPPTPSATTPAPPSSAPPE repeating Glycoprotein (M 180,000) Glycoprotein (M 40,000) I45-amino acid glycoprotein Protein (M 185,000)	41, 42 37 20 43 27 44, 45 44, 45 Vector Laboratories 28, 46 47 48 8

Table 2 Proportion of cancer specimens with ≥50% positive cancer cells (≥2+ smining intensity) by immunohistology"

*						Antig	en (mAb)					
Cancer	MUC1 (HMFG-2)	MUC2	MUC3 (M3.2)	MUC4 (M4.275)	MUC5 _{AC}		MUC7 (PANH3)	KSA (GA733- 2)	PSMA (Cyt351)	CEA (NCL CEA)	BhCG (FB12)	HER-2/ner (NCL- CBE1)
~ ~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~			0/5	0/5	1/5	0/5	0/5	0/5	0/5	1/5	0/5	0/5
vicianoma	0/5	1/5	· · ·	0/	0	1/5	0	O	0	Q	3/5	0
arcoma	0/5	0	U.	.,	ő	0	n	0	Q	0	1/5	0
leuroblastoma	O	1/5	Ü	,,	6	. 0	ŏ	0	0	0	0	0
3-cell lymphoma	U/5	()	Ü	0	N 2028	0	ö	5/5"	0	3/5	175	0
small cell lung	1/5	0	0		U. 1	4/6	1/6	5/7"	0/7	47"	4/7	1/7
Breast	5 <i>1</i> 1"	3/7	177	1/1		4/6	0	5/5/-	3/5"	0	1/5	175
Metastatic prostate	3/5	4/5"	0	0 .	્રાક∦ 5 `	0	.0	5/5"	0	4/5"	3/5	1/5
ung	4/5"	0	1/5	4/5	જું, O	0		8/8"	Ô	6/8"	2/8	0/8
Colon	3/8	6/8"	4/8	4/8"	1/8	3/8	4/8		0	3/5*	4/5	0
Pancreas	2/5	2/5	. 0	3/55	2/5	1/5	0 ,	5/5"	0	5/S"	0	•
Jactric	1/5	0	3/5	2/5	4/5"	1/5	1/5	5/5"	0	2/S	2/5	()
Ovarian	5/5"	2/5	4/5	3/5	0	0	0	5/5"			2/5	n
Ovarian Endometrial	3/5"	n	2/5	0	1/5	2/5	0	5/5"		1/5	2/3	

[&]quot;All tumor tissues were stained by ABC immunoperoxidase methods.

G. Steven Bova (PELICAN Laboratory, Johns Hopkins University, Baltimore, MD). Cryostat sections were cut at 5 µm, dried in air, and fixed with neutral buffered 10% formalin solution (Sigma Co., St. Louis, MO) for 10 min before H&E or immunestaining.

mAb and Immunohistochemistry. The murine mAbs and the antigens they recognize are summarized in Table 1. mAb HMFG-2 was provided by J. Taylor-Papadimitriou (Imperial Cancer Research Fund, London, United Kingdom): LDQ10 was provided by F. X. Real (Institut Municipal d'Investigacio Medica, IMIM, Barcelona, Spain); M3.2 and MUC4.275 were provided by V. Apostolopoulos (Austin Research Institute, Victoria, Australia); CLH2, PANH2, and PANH3 were provided by H. Clausen (University of Copenhagen. Copenhagen, Denmark); Cyt351 was provided by W. Heston (Memorial Sloan-Kettering Cancer Center); FB12 was provided by D. Bellet (Institut Gustave-Roussy, Villejuil France); and GA733-2 was provided by D. Herlyn (The Wistag Institute, Philadelphia, PA), mAbs NCL-CEA and NCE-CBE1 were purchased from Vector Laboratories, Inc. (Burlingame, CA).

The ABC immunoperoxidase method was performed as

described previously (33). Briefly, the sections were quenched with 0.1% H₂O₂ in PBS for 15 min, blocked with avidin and biotin reagents (Vector Laboratories) for 10 min each, incubated in 10% scrum of horse or goat from which the second antibody was raised, and incubated with various mAbs for 1 h at optimal concentration. The optimal mAb concentration was selected based on the strongest reactivity against the known positive target cells with little or no background against stroma. The concentrations of mAbs used were: FB12, 0.5 µg/ml; Cyt351 and GA733-2, 2 µg/ml; HMFG-2, M3.2, MUC4,275, CLH2. PANH2, and PANH3 (supernatants), between 1:3 and 1:6: LDQ10 and NCL-CBEI (ascites), 1:15; and NCL-CEA, 1:50. The sections were subsequently incubated with 1:600 biotinylated horse untimouse IgG or 1:300 goat antimouse IgM antibodies (Vector Laboratories) for 40 min and then incubated in 1:50 ABC reagent (Vector Laboratories) for 30 min. Reactions were developed with 0.02% H2O2 and 0.1% diaminobenziding tetrahydrochloride (Sigma) for 2-5 min. Slides were then counterstained with Harris modified hematoxylin (Fisher Scientific. Pair Lawn, NJ) for 1-3 min. The immunoreactivities were graded based on the percentage of positive cells and staining intensity above that seen on the negative control: 1+ (weak)

⁶ Median staining intensity was 4+ for ≥80% of cells.

Fig. 1 Expression of protein antigens on breast cancer (A and D), prostate cancer (B and E), and ovarian cancer (C and F). The pattern of staining of cell membrane bound antigens MUC1 (A) and KSA (B and C) is indistinguishable from secreted antigens MUC5_{AC} (D), MUC2 (E), and MUC4 (F). Staining intensity in these sections is graded as follows: A, 2-3+, 80% of tumor cells positive: B, 4+, 100%; C, 4+, 100%; D, 3+, 80%; E, 3+, 80%. Magnification, $\times 70$.

2+ (moderate), 3+ (strong), and 4+ (very strong or intense). Staining intensities of 2+ or stronger were considered positive (Table 2 and Fig. 1). Known positive and negative control slides were used in each experiment. Results with the several IgM, IgG3, and IgG2 mAbs included in the panel of antibodies tested ruled out nonspecific adherence of particular subclasses of antibodies.

An indirect immunoperoxidase assay was performed as described previously (34) on normal liver, kidney, and stomach samples because these tissues reacted strongly with ABC reactions gent directly, producing high background. Briefly, the sections were quenched with 0.1% H₂O₂ in PBS for 15 min, blocked with 10% serum, and incubated with mAbs for 1 h at the optimal concentration. The sections were incubated with 1:100 rabbit antimouse immunoglobulin labeled with peroxidase (DAKO Corp., Carpinteria, CA) for 1 h and developed as described for the ABC method.

RESULTS

Reactivity of mAbs with Tumor Tissues. Table 2 summarizes the staining on tumor tissue samples observed with the panel of mAbs. Eighty-two neoplastic tissue specimens representing 13 tumor types were analyzed with each of the 12 HER-2/neu was a consequence of low levels of antigen antibodies. None of these mAbs reacted consistently with mela expression, inactive antibody, or problems with the assay anoma, neuroblastoma, or B-cell lymphoma specimens, and a 1:15 dilution. Consequently, in the available ascites at a 1:15 dilution. Consequently, in the available ascites at a 1:15 dilution. Consequently, in the available ascites at a 1:15 dilution. Consequently, in the available ascites at a 1:15 dilution. Consequently, in the available ascites at a 1:15 dilution. Consequently, in the available ascites at a 1:15 dilution. Consequently, in the available ascites at a 1:15 dilution. Consequently, in the available ascites at a 1:15 dilution. Consequently, in the available ascites at a 1:15 dilution. Consequently, in the available ascites at a 1:15 dilution. Consequently, in the available ascites at a 1:15 dilution. Consequently, in the available ascites at a 1:15 dilution.

only FB12 against BhCG reacted moderately (2+) with some sarcomus. KSA was very strongly expressed (median 4+) on small cell lung cancer and all or most specimens of all of the epithelial cancers. At the other extreme was PSMA, expressed only on primary and metastatic prostate cancer (median, 3+-4+). BhCG was expressed moderately (median, 2+) on some samples of most tumor types, but strong expression (3+) on occusional specimens, such as three of five lung cancer specimens, was also seen. CEA, MUC1, MUC2, and MUC4 were strongly expressed on the majority of some epithelial cancers (median, 3+-4+) but not expressed at all on others. MUC3, MUC5_p, and MUC7 were moderately expressed on the majority of several cancers (median, 2+). MUC5AC was strongly expressed on only breast and gastric cancers. Confidence in all of these results was holstered by the very strong expression (4+) seen on some specimens with each of these mAbs and complete lack of staining on other specimens. Strong (3+) HER-2/neu expression was only seen on one prostate cancer specimen, and the other two positive specimens were 2+, despite using the available ascites at a 1:15 dilution. Consequently, in the absence of a clear positive control, it is not clear whether the lack of staining of more specimens with NCL-CBEI against HER-2/neu was a consequence of low levels of antigen expression, inactive antibody, or problems with the assay.

	Table 3 A	niigen expir	ssion on	ssi bimor	ses defined	Table 3 Antigen expression on normal tissues defined by immunohistology"	histology"					
						Antigen	Antigen (ntAb)					
Normal tissue (inc.)"	MUCI MUC2 MUC3 MUC4 (HMFG-2) (LDQ10) (NO.2) (NA.275)	MUC2 (LDQ10)	MUC3 (NU.2)	MUC4 (N14.275)	MUCS _{AC} (CLH2)	MUC5 ₆ (PANH2)	MUC7 (P.ANH3)	MUCS ₆ MUC7 KSA PSMA (PANH2) (PANH3) (GA733-2) (CyJSI)		CEA (NCL: CEA)	βьсс (FВ 12)	рьсс нев-2 <i>men</i> (FB12) (NCL-CBB1)
Spleen (2) White pulp Red pulp Striated muscle (2)	1 1	1 1 1	111	i t i	1 1	į (t	1 1 1	a, t t	111	1 + 1	1 1 ±	i i i
Enithelia Lung (2) Brassi (2) Color (2) Stonnach (2) Pankeas (2) Uterus (2) Ovary (2) Liver (2) Kidney (2) Testis (2) Trissues negative for all 12 antigens Brain (3) France (2) Testis (3) Testis (3) Testis (3) Testis (4) Testis (4) Testis (5) Testis (5)	* + + + + + + + + + + + + + + + + + + +	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1111171111	(1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	1 1 +	1 1 1 2 1 1 1 1 1 1 1 2	1 1 1 ± 1 ± 1 1 1 1 1	++++++++++++++++++++++++++++++++++++++	ant # 1 and a late	+ + + + + + + + + + + + + + + + + + +	t + t + t + t + t + t + t + t + t + t +	+ 4 + 2 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1
Lymph nodes (2)												

"All tissues were stained by ABC immunaperoxidase method, except stomsch, liver, and kidney, which were stained by the indirect immunuperoxidase method.

"The numbers in parentheses indicate the number of different specimens tested.

"Histocytes in the red pulp were predominantly stained.

"Seminiferous tubules were stained.

PAGE.05

Ħ. ۲.

ħ !!

Smooth muscle (2)

colon, stomach, paneteas, utents, ovary, liver, and Connective tissue (2 each): lung, breast, prostate,

Fig. 2 Expression of protein antigens on normal tissues. Epithelial cells at secretory borders were stained in kidney (A) with mAb HMFG2 against MUC1 (2+); in stomach (B) with mAb CLH2 against MUC5_{AC} (3+); in lung (C), overy (E), and testis (F) with mAb GA733-2 against KSA (4+, 2+, and 3+, respectively) and in colon (D) with mAb LDQ10 against MUC2 (3+). Magnification, ×70.

of percentage positive tumor cells and staining intensity are shown in Fig. 1. Staining of stroma with all 12 of these mAbs was uniformly negative.

Reactivity of mAbs with Normal Tissues. Table 3 summarizes the immunoreactivity on normal tissue samples observed with the panel of mAbs. MUCI was weakly distributed on the epithelia of all of the tested organs, except liver. MUC2 was observed on the epithelia of prostate, colon, and pancreas. MUC3 was only detected on epithelia of pancreas. MUC4 was expressed on epithelia of colon and prostate (weakly). MUC5 of was very strongly expressed in stomach epithelium, MUC7 and HER-2/neu were not expressed on any normal tissues, and MUC5_B was only detected on normal colon epithelium and weakly in the testis. BhCG was detected in epithelia of prostate, stomach, and pancreas and weakly in colon and lung, and it was detected in the testis. PSMA was only detected on prostate epithelia. KSA was strongly expressed on the epithelia of all of the tested organs except stomach and liver and moderately expressed on seminiferous tubules of testis. CEA was strongly expressed in the epithelia of prostate and colon and weakly in lung, uterus and breast. The pattern of expression of each of these antigens on normal epithelia was mainly luminal, with evident polarity. Luminal cells stained most intensively at luminal borders. In addition, CEA was detected in histocytes in a the red pulp of the spicen, an expected consequence not of CEA

expression but of the mAb used, NCL-CEA, which cross-reacts with nonspecific cross-reacting antigen on histocytes (35). Examples of the staining patterns on normal tissues with these mAbs are shown in Fig. 2. Once again, staining of stroma was uniformly negative.

DISCUSSION

. One of the striking features of our two previous reports was the clear separation between the carbohydrate antigens expressed by tumors of neurocctodermal origin and the carbohydrate untigens expressed by tumors of epithelial origin (1. 2). This is also the case for the protein antigens studied here. None of the seven mucins were expressed on more than one of the specimens of the five nonepithelial origin cancers, but these mucins were widely and densely expressed on a variety of epithelial cancers. The same applies for the other glycoproteins, except that all small cell lung cancers expressed KSA very strongly and some expressed CEA, and some sarcomas expressed moderate amounts of BhCG. On this basis, melanomas, sarcomas, neuroblastomas, and B-cell lymphomas are quite distinct from the eight epithelial cancers tested. Small cell lung cancer, not surprisingly, is intermediary, with some characteristics of each group.

This study differs from previous reports on the distribution

2674 Selection of Tumor Antigens for Immune Attack; Proteins

of these antigens in several ways. Our focus was entirely on potential targets for immunotherupy and, especially, on antibody-mediated immunotherapy. We have compared the expression of 12 antigens rather than 1 to 3 and explored a wide variety of malignant and normal tissues rather than a few. On the other hand, we tested only five to eight specimens in most cases, and because this was part of a larger study looking at expression of glycolipid antigens as well, specimens were fixed with 10% formalin, which may not be ideal for some protein antigens. However, to the extent that others have studied the expression of these antigens on these cancers, our study is largely in agreement. MUC1 has long been known to be expressed by many normal epithelial tissues and by many or most cancers of breast. ovary, pancreas, prostate, and colon origin (21-23, 26). We concur and add to this list endometrial and non-small cell lung cancer. MUC2 has been previously identified in most colon cancers as well as cancers of the stomach, pancreas, breast, and recently, prostate (22, 24, 36). We concur, except that we found no evidence of MUC2 in the five gastric cancer specimens we tested. The previously described more restricted expression of MUC2 than MUC1 on normal tissues (22, 24, 36, 37), with MUC2 detected in the GI tract and, recently, the prostate (36) but not most other sites, was also our finding. MUC3 was previously detected on the majority of colon, ovarian, and gastric cancers (20, 24), in agreement with our findings, but also in the GI tract but not the pancreas, which is the reverse of our findings. MUC5 AC has previously been detected in the majority of gastric cancers and in normal stomach, as we found, and we add to this strong expression in most breast cancers (22, 27). MUC5n has been described to be strongly expressed on some colorectal carcinomas and normal colon (22), as we found. We add to this moderate expression of MUC5, on the majority of breast cancers. Our study breaks little new ground on the distribution of KSA (38) and PSMA (4, 28, 36), except that we were not prepared for the intensity and uniformity of KSA expression on all epithelial cancers tested (and normal epithelial tissues), and we have extended the number of different normal tissues and nonprostate cancers that are negative for PSMA by immunohistology. Likewise, we confirm the strong expression of CEA on most breast, lung, and GI malignancies and the corresponding normal tissues as described previously (35, 39, 40). BhCG mRNA has been described to be strongly expressed in 61% of bladder cancers (which we did not test) and to be moderately expressed in 46% of breast cancers and 20% of prostate cancers (19), which agrees with our findings. We add to this moderate expression in a small proportion of several-other cancers and the majority of sarcomas and cancers of the lung and pancreas, as well as a variety of normal tissueses

A benefit of testing many different types of cancers with a broad range of mAbs is that it permits selection of the several antigens most suitable as targets for immune attack against each cancer. Expression on normal tissues is, of course, a consideration in this selection, but expression at the secretory border of epithelial tissues does not appear to be a problem (as discussed at greater length in part I of this series; Ref. 1). Antigens expressed at epithelial secretory borders induce neither immunological tolerance nor detectable autoimmunity once antibodies are administered or induced against them. Consequently, if strong expression on \$280% of tumor cells of 60% or more of

Table 4 Protein targets for antibody-mediated immunotherapy

Cancer	Antigens ^h
Melanoma Sarcoma Neuroblastoma B-cell lymphoma Small cell lung cancer Breast Prostate Lung Colon Pancreas Gastric Ovarian Endometrial	None (BhCG) None None KSA MUC1, MUC5 _{AC} , (KSA), (CEA) MUC2, KSA, (PSMA) MUC1, CFA, KSA, (MUC4), (BhCG) MUC2, CEA, KSA, (MUC4) KSA, (MUC4), (CEA), (BhCG) MUC5 _{AC} , CEA, KSA, (MUC3) MUC1, KSA, (MUC3) KSA, (MUC1)

"Turgets selected from the 12 antigens tested in this study.

the cancer specimens tested but not on immune accessible tissues are used as selection criteria, the antigens selected as targets for each cancer are shown in Table 4. The results summarized in Table 4 for protein antigens plus the corresponding tables for ganglioside and carbohydrate untigens in parts I and II of this series (1, 2) provide the basis for selection of multiple antigens as targets for antibody-mediated immune attack against these cancers.

ACKNOWLEDGMENTS

We thank Drs. I. Taylor-Papadimitriou (mAb HMFG-2), F, X. Real (mAb LDQ10), V. Apostolopoulos (mAbs M3.2 and MUC4.275), H. Clausen (mAbs CLH2, PANH2, and PANH3), W. Heston (mAb Cyt351), D. Bellet (mAb FB12), and D. Herlyn (mAb GA733-2) for providing the indicated mAbs and Dr. G. S. Bova for providing metastatic prostate cancer specimens.

REFERENCES

- Zhang, S., Cordon-Cardo, C., Zhang, H. S., Reuter, V. E., Adluri, S., Hamilton, W. B., Lloyd, K. O., and Livingston, P. O. Selection of tumor antigens as targets for immune attack using immunohistochemistry. I. Focus on gangliosides. Int. J. Cancer. 73: 42-49, 1997.
- Zhang, S., Zhang, H. S., Cordon-Cardo, C., Reuter, V. E., Singhal, A. K., Lloyd, K. O., and Livingston, P. O. Selection of tumor antigens as turgets for immune attack using immunohistochemistry. II. Blood group-related antigens, Int. J. Canene, 73: 50-56, 1997.
- 3. Robbins-Roth, C. Cancer vaccines; are we finally on the right track? Bioventure View, 12: 2-10, 1997.
- 4. Pair, W. R., Ismeli, R. S., and Heston, W. D. W. Prostate-specific membrane antigen. Prostate, 32: 140-148, 1997.
- Melaughlin, J. P., Schlom, L. Kantur, J. A., and Greiner, J. W. Improved Immunotherapy of a recombinant carcinoembryonic antigen vaccinin vaccine when given in combination with interleukin-2. Cancer Res., 56: 2361-2367, 1996.
- Talwar, G. P., Singh, O., Pal, R., and Chatterjee, N. Vaccines for control of fertility and hormone dependent cancers. Int. J. Immunopharmacol., 13: 511–514, 1992.
- 7. Disis, M. L., Shiota, F. M., and Cheever, M. A. Human Her-Yneu protein immunization circumvents tolerance to rat neu; a vaccine strategy for "self" tumour antigens. Immunulogy, 93, 192-199, 1998.

h Antigens expressed intensely (4+) on ≥80% of tumor cells in ≥70% of specimens. Antigens in parentheses were expressed on ≥80% of tumor cells strongly (3+) on at least 50% or moderately (2+) on at least 60% of specimens.

UnoGenesys

- 8. Coussens, L., Yang-Feng, T. L., Chen, Y. L. E., Gray, A., Megrath, J., Seeburg, P. H., Liberman, T. A., Schlessinger, J., Francke, U., Levinson, A., and Ullrich, A. Tyrosine kinase receptor with extensive homology to egf receptor shares chromosomal location with neu oncogene. Science (Washington DC), 230: 1132–1139, 1985.
- 9. Israeli, R. S., Powell, C. T., Fair, W. R., and Heston, W. D. W. Molecular cloning of a complementary DNA encoding a prostate-se-specific membrane antigen. Cancer Res., 53: 227–230, 1993.
- Gendler, S., Lancaster, C., Taylor-Papadimitriou, L., Duhig, T.,
 Peat, N., Burchell, J., Pemberton, L., Lulani, E-N., and Wilson, D.
 Molecular cloning and expression of human tumor-associated polymorphic epithelial mucin, J. Biol. Chem., 265: 15286-15293, 1990.
- 11. Jessup, J. M., and Thomas, P. Careinoembryonic antigen: function in metastasis by human colorectal carcinoma, Cancer Metastasis Rev., 8: 263-280, 1989.
- 12. Perez, M. S., and Walker, L. E. Isolation and characterization of a cDNA encoding the KS1/4 epithelial carcinoma marker 1, J. Immunol., 142: 3662-3667, 1989.
- 13. Bohck, L. A., Tsai, H., Biesbrock, A. R., and Levine, M. J. Molecular cluning, sequence, and specificity of expression of the gene encoding the low molecular weight human salivary mucin (MUC7). J. Biol. Chem. 286: 20563–20569, 1993.
- 14. Dufosse, J., Porchet, N., Audie, J-P., Duperat, V. G., Laine, A., Vañ-Seuningen, L., Marrakchi, S., Degand, P., and Aubert, J-P. Degenerate 87-base-pair tandem repeats create hydrophilic/hydrophobic alternating domains in human peptides mapped to 11p15. J. Biochem., 293: 329-337, 1993.
- 15. Duperat, V. G., Audie, J-P., Debailleul, V., Laine, A., Buisine, M-P., Galiegue-Zouitina, S., Pigny, P., Degand, P., Aubert, J-P., and Porchet, N. Biochemical characterization of the human mucin gene *MUC5AC*: a consensus cysteine-rich domain for 11p15 mucin genes. Biochem. J., 305: 211-219, 1995.
- 16. Gum, J. R., Byrd, J. C., Hicks, J. W., Toribara, N. W., Lamport, D. T. A., and Kim, Y-S. Molecular cloning of human intestinal mucin cDNAs: sequence analysis and evidence for genetic polymorphism. J. Biol. Chem., 264: 6480-6487, 1989.
- 17. Gum, J. R., Hicks, J. W., Swallow, D. W., Legace, R. L., Byrd, J., Lamport, D. T., Siddiqui, B., and Kim, Y-S. Molecular cloning of cDNAs derived from a novel human intestinal mucin gene. Biochem. Biochem. 171: 407-415, 1990.
- 18. Porchet, N., Nguyen, V. C., Dufosse, J., Audie, J. P., Guyonnet-Duperat, V., Gross, M. S., Denis, C., Degand, P., Bernheim, A., and Aubert, J. P. Molecular cloning and chromosomal localization of a novel human tracheo-bronchial mucin cDNA containing tandemly repeated sequences of 48 base pairs. Biochem. Biophys. Res. Commun., 175: 414-422, 1991.
- 19. Bellet, D., Lazar, V., Bieche, I., Paradis, V., Giovangrandi, Y., Paterlini, P., Lidereau, R., Bedossa, P., Bidart, J-M., and Vidaud, M. Malignant transformation of nontrophoblastic cells is associated with the expression of chorionic gonadotropin B genes normally transcribed in trophoblastic cells. Cancer Res., 57: 516-523, 1997.
- 20. Apostolopoulos, V., Xing, P-X., and Mckenzie, I. P. C. Antipeptide monoclonal antibodies to intestinal mucin 3. J. Gastrol. Hepatol., 10: 555-561, 1995.
- 21. Byrd, J. C., Ho, J. J. L., Lamport, D. T. A., Ho, S. B., Siddiki, B., Huang, J., Yan, and Kim, Y. S. Relationship of pancreatic cancer appropriate to marnmary and intestinal appropriates. Cancer Res., 51: 1026-1033, 1991.
- 27. Carrato, C., Bulague, C., De Bolos, C., Gonzalez, E., Gambus, G., Plana, J., Perini, J. M., Andreu, D., and Reul, F. X. Differential apomucin expression in normal and neoplastic human gastrointestinal tissues. Gustroenterology, 107: 160-172, 1994.
- 23. Dienhart, D. G., Schmelrer, R. F., Lear, J. L., Miller, G. J., Glenn, S. D., Bloedow, D. C., Kasliwal, R., Moran, P., Seligman, P., Murphy, J. R., Kortright, K., and Bunn, P. A., Jr. Imaging of non-small cell long cancers with a monoclonal antibody. KC-4G3, which recognizes a human milk fat globule antigen. Cancer Res., 50: 7068-7076, 1990.

- 24. Ho, H. B., Nichans, G. A., Lyftogt, C., Yan, P. S., Cherwitz, D. L., Gum, E. T., Dahiya, R., and Kim, Y. S. Heterogeneity of mucin gene expression in normal and neoplastic tissues. Cancer Res., 53: 641-651, 1993.
- 25. Hollingsworth, M. A., Strawhecker, J. M., Caffrey, T. C., and Mack, D. R. Expression of muc1, muc2, muc3 AND muc4 mucin mRNAs in human panereatic and intestinal tumor cell lines. Int. J. Cancer, 57: 198-203, 1994.
- 26. Ichige, K., Perey, L., Vogel, C. A., Buchegger, F., and Kufe, D. Expression of the DF3-P epitope in human ovarian careinomas. Clin. Cancer Res., 1: 565-571, 1995.
- 27. Reis, C. A., David, L., Nielsen, P. A., Clausen, H., Mirgorodskaya, K., Roepstprff, P., and Sobrinho-Simoes, M. Immunohistochemical study of MUCSAC expression in human gastric carcinomas using a novel monoclonal antibody. Int. J. Cancer, 74: 112-121, 1997.
- 28. Silver, D. A., Pellicer, L. Fair, W. R., Heston, W. D. W., and Cordon-Cardo, C. Prostate specific membrane antigen expression in normal and malignant human tissues. Clin. Cancer Res., 3: 81-85, 1997.
- 29. Yu, C-J., Yang, P-C., Shun, C-T., Lee, Y-C., Kuo, S-H., and Luh, K-T. Overexpression of MUCS genes is associated with early post-operative metastasis in non-small-cell lung cancer. Int. J. Cancer. 69: 457-465, 1996.
- 30. Tivingston, P. O., and Ragupathi, G. Carbuhydrate vaccines that induce antibodies against cancer. Part II: Previous experience and future plans. Cancer Immunol. Immunother., 45: 10-19, 1997.
- 31. Livingston, P. O., Wong, G. Y. C., Adluri, S., Tao, Y., Padavan, M., Parente, R., Hanlon, C., M. J., Helling, F., Ritter, G., Oettgen, H. F., and Old, L. J. Improved survival in AJCC stage III melanoma patients with GM2 antibodies: a randomized trial of adjuvant vaccination with GM2 ganglioside, J. Clin. Oncol., 12, 1036–1044, 1994.
- 32. MacLean, G. D., Reddish, M. A., Koganty, R. R., and Longenecker, B. M. Antibodies against mucin-associated sialyl-Tn epitopes correlate with survival of metastatic adenocarcinoma patients undergoing active specific immunotherapy with synthetic sTn vaccine. J. Immunol., 19: 59-68, 1996.
- 33. Hsu, S. M., Rain, L., and Panger, H. Use of avidin-biotin-peroxidase complex (ABC) in immunoperoxidase techniques: a comparison between ABC and unlabeled antibody (PAP) procedures. J. Histochem. Cytochem., 29: 577-580, 1981.
- 34. Dippold, W. G., Lloyd, K. O., Li, L. T., Ikeda, H., Octtgen, H. F., and Old, L. J. Cell-surface antigens of human malignant melanoma: definition of six antigenic systems with monoclonal antibodies. Proc. Natl. Acad. Sci. USA. 77: 6114-6118, 1980.
- 35. Thompson, J. A., Grunert, F., and Zimmerman, W. Carcinoembryonic antigen gene family: molecular biology and clinical perspectives, J. Clin. Lab. Anal., 5: 344-366, 1991.
- 36. Zhang, S., Zhang, H. S., Reuter, V. E., Lloyd, K. O., Scher, H., and Livingston, P. O. Expression of potential target antigens for immunotherapy on primury and metastatic prostate cancers. Clin. Cancer Res., 4: 295-302, 1998.
- 37. Gambus, G., Bolos, C. D., Andreu, D., Franci, C., Egea, G., and Real, F. X. Detection of the MUC2 apomucin tandem repeat with a mouse monoclonal antibody. Gastroenterology. 104: 93-102, 1993.
- 38: Gottlinger, H. G., Funke, L. Johnson, J. P., Gokel, J. M. M., and Riethmuller, G. The epithelial cell surface antigen 17-1A, a target for antibody-mediated tumor therapy: its biochemical nature, tissue distribution and recognition by different monuclonal untibodies. Int. J. Cancer, 38: 47-53, 1986.
- 39. Hayes, D. F., Zurawski, V. R., and Kufe, D. W. Comparison of circulating CA15- and carcinoembryonic antigen levels in patients with breast cancer. J. Clin. Oncol., 4: 1542–1550, 1986.
- 40. Shimada, S., Ogawa, M., Schlom, J., and Greiner, J. W. Identification of a novel tumor-associated M_r, 110.000 gene product in human gastric carcinoma cells that is immunologically related to carcinoembryonic antigen. Cancer Res., 51: 5694-5703, 1991.
- 41. Taylor-Papadimitriou, J., Peterson, J. A., Arklie, J., Burchell, J., Ceriani, R., and Bodnier, W. F. Monoclonal antibodies to epithelium

109516

2676 Selection of Tumor Antigens for Immune Attack: Proteins

specific components of the milk fat globule membrane: production and reactions with cells in culture. Int. J. Cancer, 28: 17-21, 1981.

- 42. Gendler, S. J., Spicer, A. P., Lalani, E-N., Duhig, T., Pent, N., Burchell, J., Pemberton, L., Boshell, M., and Taylor-Papadimitriou, J. Structure and biology of a carcinoma associated mucin, MUC1, Am. Rev. Respir. Dis., 144 (Suppl.): 442-547, 1991.
- 43. Xing, P. X., Prenzoska, J., Apostolopoulos, V., Karkaloutsos, J., and McKenzie, I. F. C. Monoclonal antibodies to MUC4 peptide react with lung cancer. Int. J. Oncol., 11: 289-295, 1997.
- 44. Nielsen, P. A., Mandel, U., Therkildsen, M. H., and Clausen, H. Differential expression of human high molecular weight salivary mucin (MGI) and low molecular weight salivary mucin (MG2). J. Dental Res., 75: 1820-1826, 1996.
- 45. Nielsen, P. A., Bennett, E. P., Wandall, H. H., Therkildsen, M., Hannibal, J., and Clausen, H. Identification of a major human high

molecular weight salivary mucin (MG1) as trachcobronchial mucin MUCSB, Glycobiology, 7: 413-419, 1997.

- 46. Heston, D. W. Biologic implications for prostatic function following identification of prostate-specific membrane antigen as a novel folate hydrolase/neurocarboxypeptidase. *In:* R. K. Naz (ed.), Prostate: Basic and Clinical Aspects, pp. 267-294. New York: CRC Press, 1997.
- 47. Hertyn, D., Hertyn, M., Ross, A. H., Ernst, C., Atkinson, B., and Koprowski, H. Efficient selection of human tumor growth-inhibiting munoclonal antibodies. J. Immunol. Methods, 73: 157-167, 1984.
- 48. Bellet, D. H., Ozturk, M. Bidart, J. M., Bouhuen, C. J., and Wands, J. R. Sensitive and specific assay for human chorionic gonadotropin (hCG) based on anti-peptide and anti-hCG monoclonal antibodies: construction and clinical implications. J. Clin. Endocrinol. Metab., 63: 1319-1326, 1986.

PAGE.09