第3节 诱导公式(★★)

内容提要

- 1. 诱导公式主要用于化掉 $\sin(\frac{k\pi}{2}\pm\alpha)$ 、 $\cos(\frac{k\pi}{2}\pm\alpha)$ 、 $\tan(\frac{k\pi}{2}\pm\alpha)$ 这类三角代数式中的 $\frac{k\pi}{2}$ 这个部分.
- 2. 诱导公式的口诀: 奇变偶不变, 符号看象限; 需要注意两点:
- ①奇变偶不变指要化掉的若是 $\frac{\pi}{2}$ 的奇数倍,则函数名正弦变余弦,余弦变正弦;偶数倍则不变;
- ②符号看象限,是看原来的三角函数名在对应象限的符号,例如,对 $\cos(\frac{\pi}{2}+\alpha)$ 化简时,符号看象限,看的是 $\frac{\pi}{2}+\alpha$ 这个第二象限的角的余弦值的符号,显然为负,所以添负号,得到 $\cos(\frac{\pi}{2}+\alpha)=-\sin\alpha$.

典型例题

【例 1】 sin 600°=.

答案:
$$-\frac{\sqrt{3}}{2}$$

解法 1: sin 600° = sin(540° + 60°),接下来用诱导公式化掉 540°,

首先,"奇变偶不变", 540° 是 90° 的6倍,属偶数倍,所以"偶不变",化去 540° 后函数名仍为" \sin ";其次,"符号看象限",将 60° 看成锐角, 540° +锐角在第三象限,正弦为负,所以添个负号,

故
$$\sin 600^\circ = -\sin 60^\circ = -\frac{\sqrt{3}}{2}$$
.

解法 2: 也可在 600° 上先减 720°, 再用 $\sin(-\alpha) = -\sin \alpha$ 求值,

$$\sin 600^\circ = \sin(600^\circ - 720^\circ) = \sin(-120^\circ) = -\sin 120^\circ = -\frac{\sqrt{3}}{2}$$
.

【变式 1】设
$$\cos 29^{\circ} = m$$
,则 $\sin 241^{\circ} \tan 151^{\circ} = ($

(A)
$$\sqrt{1+m^2}$$
 (B) $\sqrt{1-m^2}$ (C) $-\sqrt{1+m^2}$ (D) $-\sqrt{1-m^2}$

答案: B

解析: 已知的是 cos 29°, 所以把 241°和151°用诱导公式向 29°转化, 241°=270°-29°, 151°=180°-29°,

$$\sin 241^{\circ} \tan 151^{\circ} = \sin(270^{\circ} - 29^{\circ}) \tan(180^{\circ} - 29^{\circ}) = -\cos 29^{\circ} (-\tan 29^{\circ}) = \sin 29^{\circ} = \sqrt{1 - \cos^{2} 29^{\circ}} = \sqrt{1 - m^{2}}.$$

【变式 2】已知
$$f(x) = \frac{\sin(2\pi - x)\cos(\frac{3\pi}{2} + x)}{\cos(3\pi - x)\sin(\frac{11\pi}{2} - x)}$$
,则 $f(-\frac{21\pi}{4}) = .$

答案: -1

解析: 所给解析式中 2π 、 $\frac{3\pi}{2}$ 、 3π 、 $\frac{11\pi}{2}$ 均为 $\frac{\pi}{2}$ 的整数倍,可用诱导公式将其化简,再求值,

曲题意,
$$f(x) = \frac{\sin(2\pi - x)\cos(\frac{3\pi}{2} + x)}{\cos(3\pi - x)\sin(\frac{11\pi}{2} - x)} = \frac{-\sin x \sin x}{-\cos x(-\cos x)} = -\tan^2 x$$
,

$$\overline{\text{III}} \tan(-\frac{21\pi}{4}) = \tan(-5\pi - \frac{\pi}{4}) = \tan(-\frac{\pi}{4}) = -\tan\frac{\pi}{4} = -1 \text{, } \text{ III } f(-\frac{21\pi}{4}) = -\tan^2(-\frac{21\pi}{4}) = -(-1)^2 = -1 \text{.}$$

【变式 3】已知 $A = \frac{\sin(k\pi + \alpha)}{\sin \alpha} + \frac{\cos(k\pi + \alpha)}{\cos \alpha} (k \in \mathbb{Z})$,则 A 的值构成的集合是.

答案: {2,-2}

解析:表达式中的 $k\pi$ 可用诱导公式化掉,若 k 为偶数,则 $k\pi$ 是 2π 的整数倍,可直接去掉;若 k 为奇数,则可以通过加上 2π 的整数倍,将 $k\pi$ 变成 π ,这两种情况化出的结果不同,故分奇偶讨论,

当
$$k$$
 为偶数时,设 $k = 2m(m \in \mathbb{Z})$,则 $A = \frac{\sin(2m\pi + \alpha)}{\sin \alpha} + \frac{\cos(2m\pi + \alpha)}{\cos \alpha} = \frac{\sin \alpha}{\sin \alpha} + \frac{\cos \alpha}{\cos \alpha} = 2$;

当
$$k$$
 为奇数时,设 $k=2n+1(n\in \mathbf{Z})$,则 $A=\frac{\sin[(2n+1)\pi+\alpha]}{\sin\alpha}+\frac{\cos[(2n+1)\pi+\alpha]}{\cos\alpha}$

$$=\frac{\sin(2n\pi+\pi+\alpha)}{\sin\alpha}+\frac{\cos(2n\pi+\pi+\alpha)}{\cos\alpha}=\frac{\sin(\pi+\alpha)}{\sin\alpha}+\frac{\cos(\pi+\alpha)}{\cos\alpha}=\frac{-\sin\alpha}{\sin\alpha}+\frac{-\cos\alpha}{\cos\alpha}=-2;$$

综上所述,A 的值构成的集合是 $\{2,-2\}$

【反思】从上面的求解过程可以总结出 $\sin(k\pi + \alpha) = (-1)^k \sin \alpha$, $\cos(k\pi + \alpha) = (-1)^k \cos \alpha$, 其中 $k \in \mathbb{Z}$

【变式 4】 $\cos 1^{\circ} + \cos 2^{\circ} + \cos 3^{\circ} + \cdots + \cos 180^{\circ} = .$

答案: -1

解析: 所给的表达式中,像 $\cos 1^\circ$, $\cos 2^\circ$ 这些项都无法单独求出,只能考虑与其它项结合计算,注意到 $\cos 1^\circ + \cos 179^\circ = \cos 1^\circ + \cos (180^\circ - 1^\circ) = \cos 1^\circ + (-\cos 1^\circ) = 0$,同理, $\cos 2^\circ + \cos 178^\circ = 0$, $\cos 3^\circ + \cos 177^\circ = 0$ 等 等,所以采取两两组合的方法计算,为了更清晰地呈现计算过程,我们用倒序相加法,

 $i \exists S = \cos 1^{\circ} + \cos 2^{\circ} + \cos 3^{\circ} + \dots + \cos 179^{\circ}$, 则 $S = \cos 179^{\circ} + \cos 178^{\circ} + \cos 177^{\circ} + \dots + \cos 1^{\circ}$,

两式相加可得 $2S = (\cos 1^\circ + \cos 179^\circ) + (\cos 2^\circ + \cos 178^\circ) + (\cos 3^\circ + \cos 177^\circ) + \dots + (\cos 179^\circ + \cos 1^\circ) = 0$,

所以 S = 0,故 $\cos 1^{\circ} + \cos 2^{\circ} + \cos 3^{\circ} + \dots + \cos 180^{\circ} = S + \cos 180^{\circ} = \cos 180^{\circ} = -1$.

【例 2】已知
$$\cos(\frac{\pi}{2} + \alpha) = \frac{3}{5}$$
, $\alpha \in (\frac{\pi}{2}, \frac{3\pi}{2})$,则 $\tan \alpha = ($

(A)
$$\frac{4}{3}$$
 (B) $\frac{3}{4}$ (C) $-\frac{3}{4}$ (D) $\pm \frac{3}{4}$

答案: B

解析: 看到
$$\frac{\pi}{2}$$
+ α , 先用诱导公式把 $\frac{\pi}{2}$ 化掉, $\cos(\frac{\pi}{2}+\alpha) = -\sin\alpha = \frac{3}{5} \Rightarrow \sin\alpha = -\frac{3}{5}$

又
$$\alpha \in (\frac{\pi}{2}, \frac{3\pi}{2})$$
,所以 $\cos \alpha < 0$,从而 $\cos \alpha = -\sqrt{1-\sin^2 \alpha} = -\frac{4}{5}$,故 $\tan \alpha = \frac{\sin \alpha}{\cos \alpha} = \frac{3}{4}$

【变式 1】已知
$$\cos(\frac{\pi}{6} - \alpha) = \frac{2}{3}$$
,则 $\sin(\alpha - \frac{2\pi}{3}) = .$

答案: $-\frac{2}{2}$

解析:给值求值问题,应先寻找已知角和求值角的联系,可将已知的角换元成t,代入求值的角来看,

设
$$t = \frac{\pi}{6} - \alpha$$
,则 $\alpha = \frac{\pi}{6} - t$,且 $\cos t = \frac{2}{3}$,所以 $\sin(\alpha - \frac{2\pi}{3}) = \sin(\frac{\pi}{6} - t - \frac{2\pi}{3}) = \sin(-\frac{\pi}{2} - t) = -\cos t = -\frac{2}{3}$.

【反思】给值求值问题,不要盲目地将已知条件展开,可将已知的角换元,将求值的角用新元来表示,可 迅速发现求值的角与已知角的关系.

【变式 2】已知
$$\sin(\frac{\pi}{6} + \alpha) = \frac{1}{3}$$
,且 $\alpha \in (\frac{\pi}{2}, \pi)$,则 $\sin(\frac{2\pi}{3} + \alpha) = .$

答案:
$$-\frac{2\sqrt{2}}{3}$$

解析: 先将已知的角
$$\frac{\pi}{6}$$
+ α 换元,设 $t=\frac{\pi}{6}+\alpha$,则 $\alpha=t-\frac{\pi}{6}$,且 $\sin t=\frac{1}{3}$

所以
$$\sin(\frac{2\pi}{3}+\alpha) = \sin(\frac{2\pi}{3}+t-\frac{\pi}{6}) = \sin(\frac{\pi}{2}+t) = \cos t$$

已知 $\sin t$ 或 $\cos t$,得研究 t 的范围,才能确定开平方该取正还是取负,

因为
$$\alpha \in (\frac{\pi}{2}, \pi)$$
,所以 $t \in (\frac{2\pi}{3}, \frac{7\pi}{6})$,从而 $\cos t < 0$,故 $\cos t = -\sqrt{1-\sin^2 t} = -\frac{2\sqrt{2}}{3}$,即 $\sin(\frac{2\pi}{3} + \alpha) = -\frac{2\sqrt{2}}{3}$

强化训练

1. (2022・北京东城区模拟・★★) 若 α 为任意角,则满足 $\cos(\alpha + k \cdot \frac{\pi}{4}) = -\cos\alpha$ 的一个 k 的值为 ()

答案: B

解析: A 项, 当 k=2 时, $\cos(\alpha+k\cdot\frac{\pi}{4})=\cos(\alpha+2\times\frac{\pi}{4})=\cos(\alpha+\frac{\pi}{2})=-\sin\alpha$, 故 A 项错误;

B 项, 当
$$k=4$$
 时, $\cos(\alpha+k\cdot\frac{\pi}{4})=\cos(\alpha+4\times\frac{\pi}{4})=\cos(\alpha+\pi)=-\cos\alpha$, 故 B 项正确;

C 项, 当
$$k=6$$
 时, $\cos(\alpha+k\cdot\frac{\pi}{4})=\cos(\alpha+6\times\frac{\pi}{4})=\cos(\alpha+\frac{3\pi}{2})=\sin\alpha$, 故 C 项错误;

D 项, 当
$$k=8$$
 时, $\cos(\alpha+k\cdot\frac{\pi}{4})=\cos(\alpha+8\times\frac{\pi}{4})=\cos(\alpha+2\pi)=\cos\alpha$, 故 D 项错误.

2.
$$(2022 \cdot 成都模拟 \cdot \star \star)$$
 已知 $\tan \theta = 2$,则 $\frac{\sin(\frac{\pi}{2} + \theta) - \cos(\pi - \theta)}{\sin(\frac{\pi}{2} - \theta) - \sin(\pi - \theta)} = .$

答案: -2

解析:
$$\frac{\sin(\frac{\pi}{2}+\theta)-\cos(\pi-\theta)}{\sin(\frac{\pi}{2}-\theta)-\sin(\pi-\theta)} = \frac{\cos\theta-(-\cos\theta)}{\cos\theta-\sin\theta} = \frac{2\cos\theta}{\cos\theta-\sin\theta} = \frac{2}{1-\tan\theta} = -2.$$

3. (2022 • 襄阳模拟 •★★) 已知函数 $f(x) = a\sin(\pi x + \alpha) + b\cos(\pi x + \beta)$,且 f(3) = 3 ,则 f(2022) 的值为 ()

$$(A) -1 \qquad (B) 1 \qquad (C) 3 \qquad (D) -3$$

答案:D

解析: 本题无法求出 a、b、 α 、 β , 故先看看由 f(3)=3 能得到什么,和 f(2022) 又有什么关系,

由题意,
$$f(3) = a\sin(3\pi + \alpha) + b\cos(3\pi + \beta) = -a\sin\alpha - b\cos\alpha = 3$$
,所以 $a\sin\alpha + b\cos\beta = -3$,

故
$$f(2022) = a\sin(2022\pi + \alpha) + b\cos(2022\pi + \beta) = a\sin\alpha + b\cos\beta = -3$$
.

4. $(2021 \cdot 北京卷 \cdot \star \star \star)$ 若点 $A(\cos\theta, \sin\theta)$ 关于 y 轴的对称点为 $B(\cos(\theta + \frac{\pi}{6}), \sin(\theta + \frac{\pi}{6}))$,则 θ 的一个取值为.

答案: $\frac{5\pi}{12}$ (答案不唯一,详见解析)

解法 1: $A \setminus B$ 两点关于 y 轴对称,它们的坐标是有关系的,先把这个关系翻译出来,

由题意,
$$\begin{cases} \cos\theta = -\cos(\theta + \frac{\pi}{6}) \\ \sin\theta = \sin(\theta + \frac{\pi}{6}) \end{cases}$$
, 由诱导公式,
$$\begin{cases} \cos\alpha = -\cos(\pi - \alpha) \\ \sin\alpha = \sin(\pi - \alpha) \end{cases}$$
,

对比上面的两组关系发现可令 $\begin{cases} \theta = \alpha \\ \theta + \frac{\pi}{6} = \pi - \alpha \end{cases}, \quad \text{解得:} \quad \theta = \frac{5\pi}{12} \, .$

解法 2: 得到 $\begin{cases} \cos\theta = -\cos(\theta + \frac{\pi}{6}) \\ \text{这一组关系式后,解法 1 其实并没有求出所有满足题意的} \theta , 若想进一步 \\ \sin\theta = \sin(\theta + \frac{\pi}{6}) \end{cases}$

求出所有的 θ ,可将这两个式子的右侧展开来分析,

因为
$$\cos \theta = -\cos(\theta + \frac{\pi}{6})$$
,所以 $\cos \theta = -(\frac{\sqrt{3}}{2}\cos \theta - \frac{1}{2}\sin \theta)$,整理得: $\tan \theta = 2 + \sqrt{3}$,

将 $\sin\theta = \sin(\theta + \frac{\pi}{6})$ 的右侧展开,最终也得到 $\tan\theta = 2 + \sqrt{3}$,所以满足 $\tan\theta = 2 + \sqrt{3}$ 的 θ 都符合题意,

事实上,
$$\tan \frac{5\pi}{12} = \tan(\frac{\pi}{6} + \frac{\pi}{4}) = \frac{\tan \frac{\pi}{6} + \tan \frac{\pi}{4}}{1 - \tan \frac{\pi}{6} \tan \frac{\pi}{4}} = 2 + \sqrt{3}$$
,所以 θ 可取 $\frac{5\pi}{12}$,

再结合 $\tan(k\pi + \theta) = \tan \theta (k \in \mathbb{Z})$ 可得 $\theta = k\pi + \frac{5\pi}{12}$.

解法 3: 由三角函数定义,点 A 和 B 就是 θ 和 $\theta + \frac{\pi}{6}$ 与单位圆的交点,故也可直接画图分析,

因为A、B 两点关于y 轴对称,所以 θ 和 $\theta + \frac{\pi}{6}$ 的终边也关于y 轴对称,

如图,在 $[0,2\pi)$ 这个范围内, θ 可取 $\frac{5\pi}{12}$ 或 $\frac{17\pi}{12}$,

在这两个值上加 2π 的整数倍,不改变终边的位置,所以 $\theta = \frac{5\pi}{12} + 2k\pi$ 或 $\frac{17\pi}{12} + 2k\pi$,

注意到 $\frac{17\pi}{12} = \frac{5\pi}{12} + \pi$, 所以这两种结果也可以统一写成 $\theta = \frac{5\pi}{12} + k\pi (k \in \mathbb{Z})$.

5. (★★) 计算:

(1)
$$\sin^2 1^\circ + \sin^2 2^\circ + \sin^2 3^\circ + \dots + \sin^2 89^\circ = ;$$
 (2) $\frac{\lg(\tan 1^\circ) + \lg(\tan 2^\circ) + \dots + \lg(\tan 89^\circ)}{\sin^2 1^\circ + \sin^2 2^\circ + \dots + \sin^2 89^\circ} = .$

答案: (1)
$$\frac{89}{2}$$
; (2) 0

解析: (1) $\sin^2 1^\circ$, $\sin^2 2^\circ$ 等无法直接计算,考虑组合计算,注意到 $\sin^2 1^\circ + \sin^2 89^\circ = \sin^2 1^\circ + \cos^2 1^\circ = 1$,类似的, $\sin^2 2^\circ + \sin^2 88^\circ = \sin^2 2^\circ + \cos^2 2^\circ = 1$, …,计算的方法就出来了,

因为 $\sin 1^\circ = \sin(90^\circ - 89^\circ) = \cos 89^\circ$, $\sin 2^\circ = \sin(90^\circ - 88^\circ) = \cos 88^\circ$, …, $\sin 89^\circ = \sin(90^\circ - 1^\circ) = \cos 1^\circ$,

代入式①得: $S = \cos^2 89^\circ + \cos^2 88^\circ + \cos^2 87^\circ + \dots + \cos^2 1^\circ = \cos^2 1^\circ + \cos^2 2^\circ + \cos^2 3^\circ + \dots + \cos^2 89^\circ$ ②,

所以①+②可得: $2S = (\sin^2 1^\circ + \cos^2 1^\circ) + (\sin^2 2^\circ + \cos^2 2^\circ) + \dots + (\sin^2 89^\circ + \cos^2 89^\circ) = 89$, 故 $S = \frac{89}{2}$.

(2) 先用对数的运算性质将分子合并, lg(tan 1°)+lg(tan 2°)+···+lg(tan 89°) = lg(tan 1° tan 2°··· tan 89°),

因为 $\tan 1^{\circ} \tan 2^{\circ} \cdots \tan 89^{\circ} = \frac{\sin 1^{\circ}}{\cos 1^{\circ}} \cdot \frac{\sin 2^{\circ}}{\cos 2^{\circ}} \cdots \frac{\sin 89^{\circ}}{\cos 89^{\circ}} = \frac{\sin 1^{\circ}}{\sin 89^{\circ}} \cdot \frac{\sin 2^{\circ}}{\sin 89^{\circ}} \cdots \frac{\sin 89^{\circ}}{\sin 1^{\circ}} = 1$,

所以 $\lg(\tan 1^{\circ} \tan 2^{\circ} \cdots \tan 89^{\circ}) = \lg 1 = 0$,故原式 = 0.

6. (2022・自贡期末・★★) 已知 $\sin(\frac{\pi}{5}-x) = \frac{3}{5}$,则 $\cos(\frac{7\pi}{10}-x) = .$

答案: $-\frac{3}{5}$

解析: 给值求值问题, 先将已知的角换元, 设 $t = \frac{\pi}{5} - x$, 则 $x = \frac{\pi}{5} - t$, 且 $\sin t = \frac{3}{5}$,

所以 $\cos(\frac{7\pi}{10} - x) = \cos[\frac{7\pi}{10} - (\frac{\pi}{5} - t)] = \cos(\frac{\pi}{2} + t) = -\sin t = -\frac{3}{5}$.

7. $(2022 \cdot 湖南模拟 \cdot ★★)$ 已知 $\cos(\frac{5\pi}{12} + \alpha) = \frac{1}{3}$,且 $-\pi < \alpha < -\frac{\pi}{2}$,则 $\cos(\frac{\pi}{12} - \alpha) = ($

(A)
$$\frac{2\sqrt{2}}{3}$$
 (B) $\frac{1}{3}$ (C) $-\frac{1}{3}$ (D) $-\frac{2\sqrt{2}}{3}$

答案: D

解析: 设 $t = \frac{5\pi}{12} + \alpha$, 则 $\alpha = t - \frac{5\pi}{12}$, 且 $\cos t = \frac{1}{3}$, 所以 $\cos(\frac{\pi}{12} - \alpha) = \cos[\frac{\pi}{12} - (t - \frac{5\pi}{12})] = \cos(\frac{\pi}{2} - t) = \sin t$,

已知 $\cos t$ 求 $\sin t$,得研究 t 的范围,才能确定开平方该取正还是取负,

因为
$$-\pi < \alpha < -\frac{\pi}{2}$$
,所以 $-\frac{7\pi}{12} < t = \frac{5\pi}{12} + \alpha < -\frac{\pi}{12}$,故 $\sin t < 0$,

所以
$$\sin t = -\sqrt{1-\cos^2 t} = -\frac{2\sqrt{2}}{3}$$
,故 $\cos(\frac{\pi}{12} - \alpha) = -\frac{2\sqrt{2}}{3}$.

8. (2022・山西二模・ \bigstar ★)若 $\sin 10^\circ = a \sin 100^\circ$,则 $\sin 20^\circ =$ ()

(A)
$$\frac{a}{a^2+1}$$

(B)
$$-\frac{a}{a^2+1}$$

(C)
$$\frac{2a}{a^2+1}$$

(A)
$$\frac{a}{a^2+1}$$
 (B) $-\frac{a}{a^2+1}$ (C) $\frac{2a}{a^2+1}$ (D) $-\frac{2a}{a^2+1}$

解析: 注意到求值的角 $20^{\circ} = 2 \times 10^{\circ}$, 所以将已知等式中的 100° 转换成 10° ,

由题意, $\sin 10^\circ = a \sin 100^\circ = a \sin (90^\circ + 10^\circ) = a \cos 10^\circ$,所以 $\tan 10^\circ = a$,

故
$$\sin 20^\circ = 2 \sin 10^\circ \cos 10^\circ = \frac{2 \sin 10^\circ \cos 10^\circ}{\sin^2 10^\circ + \cos^2 10^\circ} = \frac{2 \tan 10^\circ}{\tan^2 10^\circ + 1} = \frac{2a}{a^2 + 1}$$
.