Precept 5: Feedforward NNs, RNNs

COS 484

Tyler Zhu (figures adapted from Samyak Gupta)

Today's Plan

- 1. Feedforward Neural Networks for NLP
- 2. Recurrent Neural Networks
- 3. Q&A for Midterm?

Feedforward Networks

$$h_1^{(1)} = f(w_{1,1}^{(1)}x_1 + w_{1,2}^{(1)}x_2 + w_{1,3}^{(1)}x_3)$$

$$h_3^{(2)} = f(w_{3,1}^{(2)}h_1^{(1)} + w_{3,2}^{(2)}h_2^{(1)} + w_{3,3}^{(2)}h_3^{(1)} + w_{3,4}^{(2)}h_4^{(1)})$$

non-linearity f: σ, tanh or ReLU.

Using NNs for images vs. text

a sometimes tedious film i had to look away - this was god awful . a gorgeous, witty, seductive movie.

label = positive

- Images: fixed-size input, continuous values
- Text: variable-length input, discrete words
 - need to convert into vectors word embeddings!

 Key idea: Instead of estimating raw probabilities, let's use a neural network to fit the probabilistic distribution of language!

```
P(w \mid l \text{ am a good})
P(w \mid l \text{ am a great})
```

- Allows us to move past naive Markov assumptions with more powerful models!
- Helps to have good word embeddings so that e(good) ~ e(great) (similar contexts)
 - Otherwise the distribution to learn becomes very noisy and sparse!

• Feedforward neural language models approximate the probability based on the previous *m* (e.g., 5) words - *m* is a hyper-parameter!

$$P(x_1, x_2, ..., x_n) \approx \prod_{i=1}^n P(x_i \mid x_{i-m+1}, ..., x_{i-1})$$

P(mat | the cat sat on the) = ?

d: word embedding size

h: hidden size

It is a |V|-way classification problem!

P(mat | the cat sat on the) = ? d: word embedding size h: hidden size

- Input layer (m= 5): Q: why concat instead of taking the average? $\mathbf{x} = [e(\text{the}); e(\text{cat}); e(\text{sat}); e(\text{on}); e(\text{the})] \in \mathbb{R}^{md}$
- Hidden layer: $\mathbf{h} = \tanh(\mathbf{W}\mathbf{x} + \mathbf{b}) \in \mathbb{R}^h$
- Output layer

$$\mathbf{z} = \mathbf{Uh} \in \mathbb{R}^{|V|}$$

$$P(w = i \mid \text{the cat sat on the})$$

$$= \operatorname{softmax}_{i}(\mathbf{z}) = \frac{e^{z_{i}}}{\sum_{k} e^{z_{k}}}$$

What are the dimensions of W and U?

P(mat | the cat sat on the) = ? d: word embedding size h: hidden size

- Input layer (m= 5): Q: why concat instead of taking the average? $\mathbf{x} = [e(\text{the}); e(\text{cat}); e(\text{sat}); e(\text{on}); e(\text{the})] \in \mathbb{R}^{md}$
- Hidden layer: $\mathbf{h} = \tanh(\mathbf{W}\mathbf{x} + \mathbf{b}) \in \mathbb{R}^h$
- Output layer $\mathbf{z} = \mathbf{U}\mathbf{h} \in \mathbb{R}^{|V|}$

$$P(w = i \mid \text{the cat sat on the})$$

= $\operatorname{softmax}_{i}(\mathbf{z}) = \frac{e^{z_{i}}}{\sum_{k} e^{z_{k}}}$

What are the dimensions of **W** and **U**? $\mathbf{W} \in \mathbb{R}^{h \times 5d}$, $\mathbf{U} \in \mathbb{R}^{|V| \times h}$

Training FF Neural Language Models

 How to train this model? A: Use a lot of raw text to create training examples and run gradient-descent optimization!

The Fat Cat Sat on the Mat is a 1996 children's book by Nurit Karlin. Published by Harper Collins as part of the reading readiness program, the book stresses the ability to read words of specific structure, such as -at.

the fat cat sat on \rightarrow the fat cat sat on the \rightarrow mat cat sat on the mat \rightarrow is sat on the mat is \rightarrow a

- Limitations?
 - W linearly scales with the context size m
 - The models learns separate patterns for different positions!
- Better solutions: recurrent NNs, Transformers...

the fat cat sat on \rightarrow the fat cat sat on the \rightarrow mat cat sat on the mat \rightarrow is "sat on" corresponds to different parameters in W

Example through Code

- Walk through a programmatic example with window size 3 (m=3)
- See how the data is created as well

- Input layer (m= 5): $\mathbf{x} = [e(\text{the}); e(\text{cat}); e(\text{sat}); e(\text{on}); e(\text{the})] \in \mathbb{R}^{md}$
- Hidden layer: $\mathbf{h} = \tanh(\mathbf{W}\mathbf{x} + \mathbf{b}) \in \mathbb{R}^h$
- Output layer $\mathbf{z} = \mathbf{U}\mathbf{h} \in \mathbb{R}^{|V|}$ $P(w=i \mid \text{the cat sat on the})$ $= \operatorname{softmax}_i(\mathbf{z}) = \frac{e^{z_i}}{\sum_k e^{z_k}}$

First step: The data

- Take the same input sentence as before "The fat cat sat on the mat."
- We use simple 1-hot vectors to embed
- To create training data, we make
 (word 1, word 2, word 3) -> (next word)
 examples which make our labeled pairs

```
text = ["the", "fat", "cat", "sat", "on", "the", "mat"]

embed = {
    "the": [1, 0, 0, 0, 0, 0],
    "fat": [0, 1, 0, 0, 0, 0],
    "cat": [0, 0, 1, 0, 0, 0],
    "sat": [0, 0, 0, 1, 0, 0],
    "on": [0, 0, 0, 0, 1, 0],
    "mat": [0, 0, 0, 0, 0, 1]
}
```

Part 2: Initializing Weights

- We need to initialize our weights
- Dimensions are $\mathbf{W} \in \mathbb{R}^{h \times 3d}$, $\mathbf{U} \in \mathbf{R}^{|V| \times h}$

```
# Initialize W to [h x 3d], b to [h], U to [|V| x h]
W = np.random.randn(4, 3*6)
b = np.random.randn(4, 1)
U = np.random.randn(6, 4)
```

- Input layer (m= 5): $\mathbf{x} = [e(\text{the}); e(\text{cat}); e(\text{sat}); e(\text{on}); e(\text{the})] \in \mathbb{R}^{md}$
- Hidden layer: $\mathbf{h} = \tanh(\mathbf{W}\mathbf{x} + \mathbf{b}) \in \mathbb{R}^h$
- Output layer

$$\mathbf{z} = \mathbf{Uh} \in \mathbb{R}^{|V|}$$

$$P(w = i \mid \text{the cat sat on the})$$

$$= \operatorname{softmax}_{i}(\mathbf{z}) = \frac{e^{z_{i}}}{\sum_{k} e^{z_{k}}}$$

- Forward pass is what you expect:
 - Embed each word into a vector first with our embedding lookup
 - Concatenate all of the embeddings
 - "Neural Network": $h = \tanh(\mathbf{W}\mathbf{x} + \mathbf{b})$
 - Final logistic regression for a prediction

```
for i, (x_words, y) in enumerate(training_examples):
    print(f"Training example {i}: {x_words} -> {y}")
    x = np.array([embed[word] for word in x_words])
    x = x.reshape(-1, 1)

    h = np.tanh(W @ x + b)
    z = U @ h
    y_hat = np.argmax(softmax(z))
```

```
Training example 0: ['the', 'fat', 'cat'] -> sat
x: [1 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0]
h = tanh(Wx + b): [-0.91 1. -0.6 -0.79]
z = U @ h: [-2.04 0.73 0.79 -1.41 -2.1 0.77]
y_hat = argmax softmax(z): 2 (cat)
y = sat
```

- Forward pass is what you expect:
 - Embed each word into a vector first with our embedding lookup
 - Concatenate all of the embeddings
 - "Neural Network": $h = \tanh(\mathbf{W}\mathbf{x} + \mathbf{b})$
 - Final logistic regression for a prediction

```
for i, (x_words, y) in enumerate(training_examples):
    print(f"Training example {i}: {x_words} -> {y}")
    x = np.array([embed[word] for word in x_words])
    x = x.reshape(-1, 1)

    h = np.tanh(W @ x + b)
    z = U @ h
    y_hat = np.argmax(softmax(z))
```

- Forward pass is what you expect:
 - Embed each word into a vector first with our embedding lookup
 - Concatenate all of the embeddings
 - "Neural Network": $h = \tanh(\mathbf{W}\mathbf{x} + \mathbf{b})$
 - Final logistic regression for a prediction

```
for i, (x_words, y) in enumerate(training_examples):
    print(f"Training example {i}: {x_words} -> {y}")
    x = np.array([embed[word] for word in x_words])
    x = x.reshape(-1, 1)

    h = np.tanh(W @ x + b)
    z = U @ h
    y_hat = np.argmax(softmax(z))
```

```
Training example 0: ['the', 'fat', 'cat'] -> sat
x: [1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0]
h = tanh(Wx + b): [-0.91 1. -0.6 -0.79]
z = U @ h: [-2.04  0.73  0.79  -1.41  -2.1  0.77]
y_hat = argmax softmax(z): 2 (cat)
y = sat
Training example 1: ['fat', 'cat', 'sat'] -> on
x: [0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0]
h = tanh(Wx + b):[1. 0.53 -0.72 -0.91]
z = U @ h: [ 1.88 -1.43 -2.15 -4.35   1.95 -1.38]
y_hat = argmax softmax(z): 4 (on)
y = on
Training example 2: ['cat', 'sat', 'on'] -> the
x: [0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0]
h = tanh(Wx + b):[0.95 1. -0.94 -0.99]
z = U @ h: [ 1.68 -1.14 -2.04 -4.82  1.42 -1.24]
y_hat = argmax softmax(z): 0 (the)
y = the
```

- Forward pass is what you expect:
 - Embed each word into a vector first with our embedding lookup
 - Concatenate all of the embeddings
 - "Neural Network": $h = \tanh(\mathbf{W}\mathbf{x} + \mathbf{b})$
 - Final logistic regression for a prediction

```
for i, (x_words, y) in enumerate(training_examples):
    print(f"Training example {i}: {x_words} -> {y}")
    x = np.array([embed[word] for word in x_words])
    x = x.reshape(-1, 1)

    h = np.tanh(W @ x + b)
    z = U @ h
    y_hat = np.argmax(softmax(z))
```

```
Training example 0: ['the', 'fat', 'cat'] -> sat
x: [1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0]
h = tanh(Wx + b): [-0.91 1. -0.6 -0.79]
z = U @ h: [-2.04  0.73  0.79  -1.41  -2.1  0.77]
y_hat = argmax softmax(z): 2 (cat)
y = sat
Training example 1: ['fat', 'cat', 'sat'] -> on
x: [0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0]
h = tanh(Wx + b):[1. 0.53 -0.72 -0.91]
z = U @ h: [ 1.88 -1.43 -2.15 -4.35   1.95 -1.38]
y_hat = argmax softmax(z): 4 (on)
y = on
Training example 2: ['cat', 'sat', 'on'] -> the
x: [0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0]
h = tanh(Wx + b):[0.95 1. -0.94 -0.99]
z = U @ h: [ 1.68 -1.14 -2.04 -4.82  1.42 -1.24]
y_hat = argmax softmax(z): 0 (the)
y = the
Training example 3: ['sat', 'on', 'the'] -> mat
x: [0 0 0 1 0 0 0 0 0 0 1 0 1 0 0 0 0 0]
h = tanh(Wx + b):[0.47 0.95 0.96 -1.]
z = U @ h: [ 2.78 -0.25  0.88 -4.52 -1.24 -0.39]
y_hat = argmax softmax(z): 0 (the)
y = mat
```

Part 4: Training the Model

Actually... this is your homework! :-)

Recurrent Neural Networks

- A family of neural networks that can handle variable length inputs
- Crucially, can learn the same pattern for different positions (efficient!)

A simple RNN

A function: $\mathbf{y} = \mathsf{RNN}(\mathbf{x}_1, \mathbf{x}_2, ..., \mathbf{x}_n) \in \mathbb{R}^h$ where $\mathbf{x}_1, ..., \mathbf{x}_n \in \mathbb{R}^d$

 $\mathbf{h}_0 \in \mathbb{R}^h$ is an initial state

$$\mathbf{h}_t = f(\mathbf{h}_{t-1}, \mathbf{x}_t) \in \mathbb{R}^h$$

 \mathbf{h}_t : hidden states which store information from \mathbf{x}_1 to \mathbf{x}_t

Simple RNNs:

$$\mathbf{h}_t = g(\mathbf{W}\mathbf{h}_{t-1} + \mathbf{U}\mathbf{x}_t + \mathbf{b}) \in \mathbb{R}^h$$

g: nonlinearity (e.g. tanh, ReLU),

$$\mathbf{W} \in \mathbb{R}^{h \times h}, \mathbf{U} \in \mathbb{R}^{h \times d}, \mathbf{b} \in \mathbb{R}^h$$

This model contains $h \times (h + d + 1)$ parameters, and optionally h for \mathbf{h}_0 (a common way is just to set \mathbf{h}_0 as $\mathbf{0}$)

A simple RNN

$$\mathbf{h}_t = g(\mathbf{W}\mathbf{h}_{t-1} + \mathbf{U}\mathbf{x}_t + \mathbf{b}) \in \mathbb{R}^h$$

Key idea: apply the same weights W, U, b repeatedly

Backpropagation through Time

Since W is used to compute at each timestep, we must "unroll" the loss through time

$$\mathbf{h}_1 = g(\mathbf{W}\mathbf{h}_0 + \mathbf{U}\mathbf{x}_1 + \mathbf{b})$$

$$\mathbf{h}_2 = g(\mathbf{W}\mathbf{h}_1 + \mathbf{U}\mathbf{x}_2 + \mathbf{b})$$

$$\mathbf{h}_3 = g(\mathbf{W}\mathbf{h}_2 + \mathbf{U}\mathbf{x}_3 + \mathbf{b}) \qquad \hat{\mathbf{y}}_3 = \text{softmax}(\mathbf{W}_o\mathbf{h}_3)$$

$$L_3 = -\log \hat{\mathbf{y}}_3(w_4)$$

First, compute gradient with respect to hidden vector of last time step: $\frac{\partial L_3}{\partial \mathbf{h}_3}$

$$\frac{\partial L_3}{\partial \mathbf{W}} = \frac{\partial L_3}{\partial \mathbf{h}_3} \frac{\partial \mathbf{h}_3}{\partial \mathbf{W}} + \frac{\partial L_3}{\partial \mathbf{h}_3} \frac{\partial \mathbf{h}_3}{\partial \mathbf{h}_2} \frac{\partial \mathbf{h}_2}{\partial \mathbf{W}} + \frac{\partial L_3}{\partial \mathbf{h}_3} \frac{\partial \mathbf{h}_3}{\partial \mathbf{h}_2} \frac{\partial \mathbf{h}_3}{\partial \mathbf{h}_1} \frac{\partial \mathbf{h}_2}{\partial \mathbf{W}}$$

More generally,
$$\frac{\partial L}{\partial \mathbf{W}} = -\frac{1}{n} \sum_{t=1}^{n} \sum_{k=1}^{t} \frac{\partial L_{t}}{\partial \mathbf{h}_{t}} \left(\prod_{j=k+1}^{t} \frac{\partial \mathbf{h}_{j}}{\partial \mathbf{h}_{j-1}} \right) \frac{\partial \mathbf{h}_{k}}{\partial \mathbf{W}}$$

If *k* and *t* are far away, the gradients can grow/shrink exponentially (called the gradient exploding or gradient vanishing problem)

Truncated Backpropagation through Time

Backpropagation is very expensive if you handle long sequences

- Run forward and backward through chunks of the sequence instead of whole sequence
- Carry hidden states forward in time forever, but only back-propagate for some smaller number of steps

RNN Tradeoffs

- Can handle arbitrary length inputs
- Reuse weights to reduce total model parameters (esp. w/ weight tying)
- Suffers from vanishing/exploding gradients
- Not very hardware friendly to train/deploy

Two common reasons for why gradient issues arise:

- 1. The choice of activation function
- 2. Weight initialization

Two common reasons for why gradient issues arise:

- 1. The choice of activation function
- 2. Weight initialization

What happens to the overall gradient signal for sigmoid?

Two common reasons for why gradient issues arise:

- 1. The choice of activation function
- 2. Weight initialization

What happens to the overall gradient signal for sigmoid?

- 1. Easily dies outside of small support ([-2,2])
- 2. Norm always decreases! $\sigma(0) = 0.25$, so gradient magnitude decreases vastly for early layers. Hence they learn slower...

Two common reasons for why gradient issues arise:

1. The choice of activation function

$$\mathbf{h}_t = g(\mathbf{W}\mathbf{h}_{t-1} + \mathbf{U}\mathbf{x}_t + \mathbf{b}) \in \mathbb{R}^h$$

2. Weight initialization

For simplicity, say \mathbf{x} , $\mathbf{b} = 0$ and g is identity, so $h_t = \mathbf{W} h_{t-1}$.

- 1. What is h_t in terms of h_0 ?
- 2. What is $\frac{\partial h_t}{\partial h_0}$? When is this an issue?

Two common reasons for why gradient issues arise:

1. The choice of activation function

$$\mathbf{h}_t = g(\mathbf{W}\mathbf{h}_{t-1} + \mathbf{U}\mathbf{x}_t + \mathbf{b}) \in \mathbb{R}^h$$

2. Weight initialization

For simplicity, say \mathbf{x} , $\mathbf{b} = 0$ and g is identity, so $h_t = \mathbf{W} h_{t-1}$.

- 1. What is h_t in terms of h_0 ? $h_t = \mathbf{W}^t h_0$
- 2. What is $\frac{\partial h_t}{\partial h_0}$? When is this an issue?

Two common reasons for why gradient issues arise:

1. The choice of activation function

$$\mathbf{h}_t = g(\mathbf{W}\mathbf{h}_{t-1} + \mathbf{U}\mathbf{x}_t + \mathbf{b}) \in \mathbb{R}^h$$

2. Weight initialization

For simplicity, say \mathbf{x} , $\mathbf{b} = 0$ and g is identity, so $h_t = \mathbf{W} h_{t-1}$.

- 1. What is h_t in terms of h_0 ? $h_t = \mathbf{W}^t h_0$
- 2. What is $\frac{\partial h_t}{\partial h_0}$? When is this an issue? \mathbf{W}^t , which grows unbounded when $\lambda_{\max} > 1$ and to 0 when $\lambda_{\max} < 1$

RNN Code Example: Data

$$\mathbf{h}_t = g(\mathbf{W}\mathbf{h}_{t-1} + \mathbf{U}\mathbf{x}_t + \mathbf{b}) \in \mathbb{R}^h$$

- Same training text as before
- Unlike before now, our data pairs form one example together, not multiple ones.
 - We predict on all output possibilities at once ("teacher forcing", more later)

```
text = ["the", "fat", "cat", "sat", "on", "the", "mat"]

embed = {
    "the": [1, 0, 0, 0, 0, 0],
    "fat": [0, 1, 0, 0, 0, 0],
    "cat": [0, 0, 1, 0, 0, 0],
    "sat": [0, 0, 0, 1, 0, 0],
    "on": [0, 0, 0, 0, 1, 0],
    "mat": [0, 0, 0, 0, 0, 1]
}
```

RNN Code Example: Weights

$$\mathbf{h}_t = g(\mathbf{W}\mathbf{h}_{t-1} + \mathbf{U}\mathbf{x}_t + \mathbf{b}) \in \mathbb{R}^h$$

- Main matrices: $\mathbf{W} \in \mathbb{R}^{h \times h}$, $\mathbf{U} \in \mathbb{R}^{h \times d}$
- \mathbf{W}_o as an "un-embedding" to project back to vocabulary space.

```
# Initialize W to [h x h], U to [h x d], b to [h], and h0 to [h]
W = np.random.randn(4, 4)
U = np.random.randn(4, 6)
b = np.random.randn(4, 1)
Wo = np.random.randn(6, 4)
h0 = np.zeros((4, 1))
```

RNN Code Example: Forward Pass

- Forward pass is similar to FFNN:
 - Embed each new single word into a vector first with our embedding lookup
 - Encode with U and add to hidden state
 - Get an output prediction w/ ReLU
 - Final logistic regression for a prediction

```
h = h0
for i, current_word in enumerate(text[:-1]):
    print(f"Training example 1.{i}: {text[0:i+1]} -> {text[i+1]}")
    x = np.array([embed[current_word]])
    x = x.reshape(-1, 1)

h = np.maximum(W @ h + U @ x + b, 0)
    z = Wo @ h
    y_hat = np.argmax(softmax(z))
```

```
\mathbf{h}_t = g(\mathbf{W}\mathbf{h}_{t-1} + \mathbf{U}\mathbf{x}_t + \mathbf{b}) \in \mathbb{R}^h
```

```
Training example 1.0: ['the'] -> fat
x: [1 0 0 0 0 0]
h = relu(Wh + Ux + b): [0.09 0.26 0. 0. ]
z = Wo @ h: [-0.36 0.1 0.48 0.32 -0.59 0.42]
y_hat = argmax softmax(z): 2 (cat)
y = fat
```

RNN Code Example: Forward Pass

- Forward pass is similar to FFNN:
 - Embed each new single word into a vector first with our embedding lookup
 - Encode with U and add to hidden state
 - Get an output prediction w/ ReLU
 - Final logistic regression for a prediction

```
h = h0
for i, current_word in enumerate(text[:-1]):
    print(f"Training example 1.{i}: {text[0:i+1]} -> {text[i+1]}")
    x = np.array([embed[current_word]])
    x = x.reshape(-1, 1)

h = np.maximum(W @ h + U @ x + b, 0)
    z = Wo @ h
    y_hat = np.argmax(softmax(z))
```

```
\mathbf{h}_t = g(\mathbf{W}\mathbf{h}_{t-1} + \mathbf{U}\mathbf{x}_t + \mathbf{b}) \in \mathbb{R}^h
```

RNN Code Example: Forward Pass

- Forward pass is similar to FFNN:
 - Embed each new single word into a vector first with our embedding lookup
 - Encode with U and add to hidden state
 - Get an output prediction w/ ReLU
 - Final logistic regression for a prediction

```
h = h0
for i, current_word in enumerate(text[:-1]):
    print(f"Training example 1.{i}: {text[0:i+1]} -> {text[i+1]}")
    x = np.array([embed[current_word]])
    x = x.reshape(-1, 1)

h = np.maximum(W @ h + U @ x + b, 0)
    z = Wo @ h
    y_hat = np.argmax(softmax(z))
```

```
\mathbf{h}_t = g(\mathbf{W}\mathbf{h}_{t-1} + \mathbf{U}\mathbf{x}_t + \mathbf{b}) \in \mathbb{R}^h
```

```
Training example 1.0: ['the'] -> fat
x: [1 0 0 0 0 0]
h = relu(Wh + Ux + b):[0.09 0.26 0. 0.]
z = Wo @ h:[-0.36 0.1 0.48 0.32 -0.59 0.42]
y_hat = argmax softmax(z): 2 (cat)
v = fat
Training example 1.1: ['the', 'fat'] -> cat
x: [0 1 0 0 0 0]
h = relu(Wh + Ux + b):[0.81 1.6 1.85 0.02]
z = Wo @ h: [-2.73  1.03  2.68  1.05  -1.2  3.28]
y_hat = argmax softmax(z): 5 (mat)
v = cat
Training example 1.2: ['the', 'fat', 'cat'] -> sat
x: [0 0 1 0 0 0]
h = relu(Wh + Ux + b):[5.47 3.62 0.94 0.]
z = Wo @ h:[-4.83 0.17 6.38 10.45 -6.84 5.24]
y_hat = argmax softmax(z): 3 (sat)
v = sat
Training example 1.3: ['the', 'fat', 'cat', 'sat'] -> on
x: [0 0 0 1 0 0]
h = relu(Wh + Ux + b):[6.19 0. 1.82 2.13]
z = Wo @ h: [-1.34 -0.35 -2.73 9.59 4.39 -2.99]
y_hat = argmax softmax(z): 3 (sat)
y = on
Training example 1.4: ['the', 'fat', 'cat', 'sat', 'on'] -> the
x: [0 0 0 0 1 0]
h = relu(Wh + Ux + b):[0.46 0. 0.22 2.04]
z = Wo @ h:[-1.41  1.13  -2.23  1.67  2.05  -2.22]
y_hat = argmax softmax(z): 4 (on)
y = the
```