Exercises 3.1.3 — Problem 9

Problem. Can there exist a sequence whose set of limit points is exactly 1, 1/2, 1/3, ...?

Proof. There is no sequence whose set of limit points is exactly 1, 1/2, 1/3, We prove this with contradiction. Suppose $x_1, x_2, x_3, ...$ is a sequence whose limit points are exactly 1, 1/2, 1/3, A limit point y of $x_1, x_2, ...$ must satisfy the following: for all 1/n and m there must exist some $j \ge m$ such that $|y - x_j| < 1/n$. For the sake of contradiction, we assumed that any 1/a (for $a \in \mathbb{N}$) is a limit point of $x_1, x_2, ...$. Then there must exist an infinite number of terms less than 1/a for any a, which is equivalent to saying that 0 is a limit point of $x_1, x_2, ...$. But this is a contradiction for we assumed that the limit points were 1, 1/2, 1/3, ..., thus there can be no sequence whose limit points are exactly 1, 1/2, 1/3, ...