Katinka Wolter Simon Schmitt Inst. für Informatik Freie Universität Berlin

Distributed Systems Lecture - Discussion 02.07.2015

We will have a look at leader election again and at the snapshot problem.

Assignment 1. Leader Election again

Consider the Peterson Leader election algorithm in a ring with n=16 nodes, in which the UIDs for processes P_1, \ldots, P_{16} are 25, 3, 6, 15, 19, 8, 7, 14, 4, 22, 21, 18, 24, 1, 10, 23. Which process is elected as leader?

Assignment 2. Leader Election Algorithms

Please study the YO-YO Algorithm:

http://www.iaushab.ac.ir/uploads/DESIGN%20AND%20ANALYSIS%20of%20Distributed%20_383.pdf, p. 199.

- 1. How does this algorithm work? What are the assumptions?
- 2. Into which class of algorithms does this one belong?
- 3. What are its advantages/disadvantages compared with other election algorithms?

Assignment 3. Snapshot Algorithms

Please study and explain at least one snapshot algorithm e.g. the Chandy-Lamport Snapshot Algorithm from K. Mani Chandy and Leslie Lamport:

http://research.microsoft.com/en-us/um/people/lamport/pubs/chandy.pdf or an algorithm from

http://www.ics.uci.edu/~cs237/reading/files/An%20introduction%20to% 20snapshot%20algorithms%20in%20distributed%20computing.pdf

- 1. What assumptions do these algorithms make?
- 2. Give an example of a situation where it could be necessary to take a snapshot?

Distributed Systems Seminar - Discussion 09.07.2015

Assignment 1. FUcoin - Advanced Algorithms

Participate in the following poll and choose one of the tasks below: http://doodle.com/6nswgwbw9b93psz2. Choose the task that has the least entries so far. The tasks are:

- Snapshot We will have to implement a snapshot algorithm and collect the distributed states in order to get a truly consistent view of the whole network.
- Distributed Commit We will have to implement a distributed commit scheme in order to have a consistent network at any time (atomic transactions).
- Leader Election To perform certain actions (e.g. distributed commit), we will have to define a temporary leader.

Your task is:

- 1. to pick an appropriate algorithm for your problem,
- 2. to specify/adapt the interface, and
- 3. to present pseudo code of your algorithm.

You do not need to implement the algorithm yet!