

UPDATE 2017-06-01

L. Di Stasio^{1,2}, Z. Ayadi¹, J. Varna²

¹EEIGM, Université de Lorraine, Nancy, France ²Division of Materials Science, Luleâ University of Technology, Luleâ, Sweden

June 1, 2017

Outline

Symbols, Models, Equations & Reference Data

Developments & Work Realised

Symbols Reference Models Angular discretization Material properties Evaluation of G_0 VCC

SYMBOLS, MODELS, EQUATIONS & REFERENCE DATA

Symbols, Models, Equations & Reference Data Developments & Work Realised Symbols Reference Models Angular discretization Material properties Evaluation of G_0 VI

Description

Symbols

Symbol

Unit

θ	[°]	Debond angular position with respect to the center of the arc defined by the debond itself
$\Delta \theta$	[°]	Debond semi-angular aperture
δ	[°]	Angle subtended by a single element at the fiber/matrix interface
VF_f	[-]	Fiber volume fraction
I	[µ m]	Ply's half-length, equal to RVE's half-length (square element)
и	$[\mu m]$	Displacement along x
W	$[\mu m]$	Displacement along z

Symbols Reference Models Angular discretization Material properties Evaluation of G₀ VCCT

Symbols

Symbol	Unit	Description
Γ ₁	[-]	Bonded part of fiber surface
Γ_2	[-]	Free (debonded) part of fiber surface
Γ_3	[-]	Bonded part of matrix surface
Γ_4	[-]	Free (debonded) part of matrix surface

Reference Models Angular discretization Material properties Evaluation of G₀ VCCT

Reference Models

Simple RVE, BC: free.

Reference Models $\,$ Angular discretization $\,$ Material properties $\,$ Evaluation of $\,$ G $_{0}$

Reference Models

Simple RVE, BC: fixed vertical displacement.

ymbols Reference Models Angular discretization Material properties Evaluation of G_0 VCC

Reference Models

Simple RVE, BC: fixed vertical and homogeneous horizontal displacement.

Symbols Reference Models Angular discretization Material properties Evaluation of G₀ VCC

Angular discretization

Angular discretization at fiber/matrix interface: $\delta = \frac{360^{\circ}}{4N_{\odot}}$.

Symbols, Models, Equations & Reference Data Developments & Work Realised Symbols Reference Models Angular discretization Material properties Evaluation of G_0 V

Material properties

Material	E [GPa]	G [GPa]	$\nu\left[- ight]$
Glass fiber	70,0	29,2	0,2
Ероху	3,5	1,25	0,4

Symbols, Models, Equations & Reference Data Developments & Work Realised
Symbols Reference Models Angular discretization Material properties Evaluation of G_n VC

Evaluation of G_0

$$G_0 = \pi R_f \sigma_0^2 \frac{1 + k_m}{8G_m} \tag{1}$$

$$k_m = 3 - 4\nu_m \tag{2}$$

$$\sigma_0 = \frac{E_m}{1 - \nu_m^2} \varepsilon_{xx} \tag{3}$$

Symbols, Models, Equations & Reference Data Developments &

Reference Models Angular discretization Material properties Evaluation of G₀ VCCT

VCCT in Forces

$$\Delta u = \left(x_1^{\textit{fiber},\textit{def}} - x_1^{\textit{fiber},\textit{undef}} - x_1^{\textit{fiber},\textit{undef}}\right) - \left(x_1^{\textit{matrix},\textit{def}} - x_1^{\textit{matrix},\textit{undef}}\right) - \left(x_1^{\textit{matrix},\textit{undef}} - x_1^{\textit{matrix},\textit{undef}}\right) - \left(x_1^{\textit{matrix},\textit{undef}}\right) - \left(x_1^{\textit{matrix},$$

$$\Delta w = \left(z_{1}^{\textit{fiber}, \textit{def}} - z_{1}^{\textit{fiber}, \textit{undef}} - z_{1}^{\textit{fiber}, \textit{undef}}\right) - \left(z_{1}^{\textit{matrix}, \textit{def}} - z_{1}^{\textit{matrix}, \textit{undef}} - z_{1}^{\textit{matrix}, \textit{undef}}\right)$$
(5)

$$\beta = \arctan \begin{pmatrix} \frac{Z_{\text{crack tip}}^{\text{matrix, olef}}}{Z_{\text{crack tip}}^{\text{matrix, olef}}} \end{pmatrix}$$
(6)

$$\Delta_{f} = \cos(\beta)\Delta u + \sin(\beta)\Delta w \qquad \Delta_{\theta} = -\sin(\beta)\Delta u + \cos(\beta)\Delta w \tag{7}$$

$$F_r = \cos(\beta)F_x^{reaction} + \sin(\beta)F_z^{reaction}$$
 $F_\theta = -\sin(\beta)F_x^{reaction} + \cos(\beta)F_z^{reaction}$ (8)

$$G_{I} = \frac{1}{2} \frac{F_{r} \Delta_{r}}{R_{f} \delta} \qquad G_{II} = \frac{1}{2} \frac{F_{\theta} \Delta_{\theta}}{R_{f} \delta} \qquad b = 1.0 \leftrightarrow \Delta A = bR_{f} \delta$$
 (9)

Symbols, Models, Equations & Reference Data Developments

Reference Models Angular discretization Material properties Evaluation of G₀ VCCT

VCCT in Stresses

$$\Delta u = \left(x_{1}^{\textit{fiber},\textit{def}} - x_{1}^{\textit{fiber},\textit{undef}} - x_{1}^{\textit{element before crack tip}} - x_{1}^{\textit{fiber},\textit{undef}} - x_{1}^{\textit{matrix},\textit{undef}} - x_$$

$$\Delta w = \left(z_{1 \text{ element before crack tip}}^{\textit{fiber, def}} - z_{1 \text{ element before crack tip}}^{\textit{fiber, undef}}\right) - \left(z_{1 \text{ element before crack tip}}^{\textit{matrix, def}} - z_{1 \text{ element before crack tip}}^{\textit{matrix, undef}}\right)$$
(11)

$$\Delta_r = \cos{(\beta)}\Delta u + \sin{(\beta)}\Delta w \quad \Delta_\theta = -\sin{(\beta)}\Delta u + \cos{(\beta)}\Delta w \qquad \text{with} \quad \beta = \arctan\left(\frac{z_{\text{crack tip}}^{\text{matrix, def}}}{x_{\text{crack tip}}^{\text{matrix, def}}}\right) \quad \text{(12)}$$

$$\sigma_{(\cdot,\cdot)} = \frac{1}{2} \left(\sigma_{\text{crack tip},(\cdot,\cdot)}^{\text{element before crack tip}} + \sigma_{\text{crack tip},(\cdot,\cdot)}^{\text{element before crack tip}} \right) \tag{13}$$

$$\sigma_{II} = \cos^2(\beta)\sigma_{XX} + 2\sin(\beta)\cos(\beta)\tau_{XZ} + \sin^2(\beta)\sigma_{ZZ}$$
(14)

$$\tau_{r\theta} = (\sigma_{xx} + \sigma_{zz})\sin(\beta)\cos(\beta) + \tau_{xz}\left(\cos^2(\beta) - \sin^2(\beta)\right) \tag{15}$$

$$G_{I} = \frac{1}{2} \sigma_{I} \Delta_{I} \qquad G_{II} = \frac{1}{2} \tau_{I} \Delta_{\theta} \qquad (b = 1.0)$$

$$\tag{16}$$

DEVELOPMENTS & WORK REALISED

Summary of previous results

- √ Correct global elastic response
- ✓ Symmetric results for symmetric model
- √ Correct order of magnitude of energy release rate
- \checkmark Correct trends in mode ratio: $G_l \uparrow \Delta \theta \downarrow$, $G_{ll} \uparrow \Delta \theta \uparrow$
- \checkmark For $VF_f \rightarrow 0$ boundary conditions do not have effect on the result
- ✓ Interface formulation is effectively frictionless
- No agreement with BEM results
 - → Overestimated energy release rate
 - \rightarrow Shifts of maxima of $\sim 10^{\circ}$

Summary of objectives

- Change interface formulation
- □ To test new formulations, create model of debond between two infinite half-planes of different isotropic materials

Notation

□ Planned/proposed action

▼ Task completed

▼ Task in progress

- ☐ Interface formulations (2/9)
 - → (Old formulation) 2 surfaces: fibre surface = Γ₁ + Γ₂ et matrix surface = Γ₃ + Γ₄
 with interaction * CONTACT and * DEBOND, SMALL-SLIDING with SURFACE TO
 SURFACE DEFINITION (with * DEBOND in Abaqus/Standard crack surfaces are
 rigidly bonded when uncracked)
 - 4 surfaces: Γ_1 WITHOUT crack tip, Γ_2 WITH crack tip, Γ_3 WITHOUT crack tip and Γ_4 WITH crack tip, interaction *TIE between Γ_1 and Γ_3 , interaction *CONTACT and *DEBOND between Γ_2 and Γ_4 , SMALL-SLIDING with SURFACE TO SURFACE DEFINITION
 - Development of preprocessor
 - FEM model creation
 - Parametric simulation
 - ✓ Analysis of results

- ☐ Interface formulations (3/9)
 - 2 surfaces: Γ_2 WITH crack tip and Γ_4 WITH crack tip, interaction * *CONTACT* et * *DEBOND* between Γ_2 and Γ_4 , interaction * *MPC TIE* between *nodes* of Γ_1 and Γ_3 , SMALL-SLIDING with SURFACE TO SURFACE DEFINITION
 - Development of preprocessor
 - FEM model creation
 - Parametric simulation
 - Analysis of results

- ☐ Interface formulations (4/9)
 - 4 surfaces: Γ_1 WITH crack tip, Γ_2 WITHOUT crack tip, Γ_3 WITH crack tip and Γ_4 WITHOUT crack tip, interaction * *TIE* between Γ_1 and Γ_3 , interaction * *CONTACT* between Γ_2 and Γ_4
 - Development of preprocessor
 - FEM model creation
 - Parametric simulation
 - ✓ Implementation of VCCT (in stresses) procedure in the postprocessor
 - Analysis of results

- ☐ Interface formulations (5/9)
 - ² 2 surfaces: Γ_2 WITHOUT crack tip and Γ_4 WITHOUT crack tip, interaction * CONTACT between Γ_2 and Γ_4 , interaction * MPC TIE between nodes of Γ_1 and Γ_3
 - ✓ Development of preprocessor
 - FEM model creation
 - Parametric simulation
 - Implementation of VCCT (in stresses) procedure in the postprocessor
 - Analysis of results

- ☐ Interface formulations (6/9)
 - 2 surfaces: Γ₂ WITHOUT crack tip and Γ₄ WITHOUT crack tip, interaction * CONTACT between Γ₂ and Γ₄, interaction * EQUATION between nodes of Γ₁ and Γ₃ with dummy node to measure reaction force
 - Development of preprocessor
 - FEM model creation
 - Parametric simulation
 - Implementation of VCCT (in forces) procedure in the postprocessor
 - Analysis of results

- ☐ Interface formulations (7/9)
 - 2 surfaces: Γ₂WITHOUT crack tip and Γ₄ WITHOUT crack tip, interaction *CONTACT between Γ₂ and Γ₄, interaction *CONN2D2 TIE between nodes of Γ₁ and Γ₃
 - Development of preprocessor
 - FEM model creation
 - Parametric simulation
 - Implementation of VCCT (in forces) procedure in the postprocessor
 - Analysis of results

- ☐ Interface formulations (8/9)
 - 2 surfaces: fibre surface = $\Gamma_1 + \Gamma_2$ et matrix surface = $\Gamma_3 + \Gamma_4$ with interaction * CONTACT and * DEBOND, FINITE SLIDING with NODE TO SURFACE DEFINITION (with * DEBOND in Abaqus/Standard crack surfaces are rigidly bonded when uncracked)
 - Development of preprocessor
 - FEM model creation
 - Parametric simulation
 - □ Analysis of results

Inte	erface	e formulations (9/9)		
	2 surfaces: fibre surface = $\Gamma_1 + \Gamma_2$ et matrix surface = $\Gamma_3 + \Gamma_4$ with interaction * CONTACT and * DEBOND, SMALL SLIDING with NODE TO SURFACE DEFINITION (with * DEBOND in Abaqus/Standard crack surfaces are rigidly bonded when uncracked)			
		Development of preprocessor		
		FEM model creation		
		Parametric simulation		
		Analysis of results		

Work realised & Follow-Up Actions

☐ To test new formulations, create model of debond between two infinite half-planes of different isotropic materials

Full mode

Development of preprocessor

FEM model creation and verification

Parametric simulation

Implementation of VCCT procedure in the postprocessor

Analysis of results

Work realised & Follow-Up Actions

To test new formulations, create model of debond between two infinite half-planes of different isotropic materials		
Syr	Symmetric model	
	Development of preprocessor	
	FEM model creation and verification	
	Parametric simulation	
	Implementation of VCCT procedure in the postprocessor	

Analysis of results

Results

Interface formulation 2/9, in blue.

Results

Interface formulation 3/9, in green.

Results

Interface formulations 2/9 and 3/9, respectively in green and blue.

Results

Interface formulation 6/9, in green.

Results

Interface formulation 7/9, in green.

Results

Interface formulations 6/9 and 7/9, respectively in blue and green.

June 1, 2017

Results

Crack tip in deformed configuration, surface contact pair with fracture interaction based on VCCT, $\Delta\theta=40^\circ$.

Results

Crack tip in deformed configuration, local enforcement of continuity of displacements at the interface (connector elements in the present case), $\Delta\theta=40^{\circ}$.

Results

FEM model of central debond between two infinite half-planes of different isotropic materials.

