Θέματα

Θέμα Α (3)

- Α1. [Μονάδες 3] Πότε η ευθεία $x=x_0$ λέγεται κατακόρυφη ασύμπτωτη της γραφικής παράστασης μιας συνάρτησης f.
- Α2. [Μονάδες 8] Έστω συνάρτηση f συνεχής σε ένα διάστημα Δ . Αν f'(x)>0 σε κάθε εσωτερικό σημείο x του Δ , να δείξετε ότι η f είναι γνησίως αύξουσα.
- Α3. [Μονάδες 4] Θεωρήστε τον παρακάτω ισχυρισμό:

"Για κάθε συνάρτηση f η οποία είναι δύο φορές παραγωγίσιμη και κυρτή στο $\mathbb R$ ισχύει f''(x)>0 για κάθε $\in \mathbb R$."

- (α΄) Να χαρακτηρίσετε τον παραπάνω ισχυρισμό με Α (αληθής) ή Ψ (ψευδής) (Moνάδα 1)
- (β΄) Να αιτιολογήσετε την απάντησή σας στο ερώτημα α (Μονάδες 3)
- Α4. [Μονάδες 10] Να χαρακτηρίσετε τις προτάσεις που ακολουθούν, γράφοντας στο τετράδιό σας, δίπλα στο γράμμα που αντιστοιχεί σε κάθε πρόταση, τη λέξη Σωστό, αν η πρόταση είναι σωστή, ή Λάθος, αν η πρόταση είναι λανθασμένη.
 - (α΄) Κάθε "1-1" συνάρτηση είναι γνησίως μονότονη
 - (β') Για κάθε $x \in \mathbb{R}$ ισχύει $|\eta \mu x| > |x|$.
 - (γ΄) Αν η συνάρτηση f δεν είναι συνεχής στο x_0 , τότε δεν είναι παραγωγίσιμη στο x_0 .
 - (δ΄) Αν μια συνάρτηση f είναι κοίλη σ΄ ένα διάστημα Δ , τότε η εφαπτομένη της γραφικής παράστασης της f σε κάθε σημείο του Δ βρίσκτεται κάτω από τη γραφική της παράσταση.
 - (ε΄) Αν C είναι η γραιφκή παράσταση μιας συνάρτησης f, τότε το πεδίο ορισμού της f είναι το σύνολο των τεταγμένων των σημείων της C.

Θέμα Β (39)

Δίνονται οι συναρτήσεις $f(x)=e^{2x}-2e^x$, $x\geq 0$ και $g(x)=\ln x$.

- B1. [Μονάδες 3] Να βρείτε τη συνάρτηση $f\circ g$. Δίνεται ότι $\varphi(x)=x^2-2x, x\geq 1$.
- Β2. [Μονάδες 8] Να αποδείξετε ότι η φ είναι "1-1" και να βρείτε την αντίστροφη φ^{-1} της φ .
- B3. [Μονάδες 5] Να βρείτε τα κοινά σημεία της φ^{-1} με την ευθεία y=x.
- Β4. [Μονάδες 7] Να σχεδιάσετε στο ίδιο σύστημα συντεταγμένων, τις γραφικές παραστάσεις των φ και φ^{-1} .

Θέμα Γ (10)

Έστω η συνάρτηση $f:\mathbb{R}\to\mathbb{R}$ με $f(x)=ax+e^{-x},$ $a\in\mathbb{R}$. Αν ισχύει $ax+e^{-x}\geq 1$ με $a\neq 0$ για κάθε $x\in\mathbb{R}$ τότε:

- Γ1. [Μονάδες 6] Να αποδείξετε ότι $f(x) = x + e^{-x}$.
- Γ2. [Μονάδες 6] Να μελετήσετε την f ως προς την μονοτονία και τα ακρότατα και να αποδείξετε ότι δεν υπάρχει οριζόνται ευθεία y=k με $k\neq 1$ η οποία να τέμνει την γραφική παράσταση της f σε ακριβώς ένα σημείο.
- Γ3. [Μονάδες 5] Να δείξετε ότι υπάρχει μοναδικό x_0 στο οποίο η εφαπτομένη της C_f διέρχεται από την αρχή των αξόνων, την οποία και να την υπολογίσετε.
- Γ4. [Μονάδες 8] Ένα σημείο κινείται στη γραφική παράσταση της f και η τετμημένη του αυξάνεται με ρυθμό 1cm/s. Τη χρονική στιγμή κατά την οποία η εφαπτόμενη της f διέρχεται από την αρχή των αξόνων, να βρείτε το ρυθμό μεταβολής της γωνίας που σχηματίζει η εφαπτομένη με τον άξονα x'x

Θέμα Δ (10)

Δίνεται η παραγωγίσιμη συνάρτηση $f:\mathbb{R} \to \mathbb{R}$ για την οποία ισχύουν:

- $f^2(x)(x^4+1) = \left(4e^{x^2-1} \sqrt{2}xf(x)\right)\left(4e^{x^2-1} + \sqrt{2}xf(x)\right)$
- $e^x + x \ge f(1)x + 1$ για κάθε $x \in \mathbb{R}$
- Δ1. [Μονάδες 4] Να αποδείξετε ότι $f(x) \neq 0$ για κάθε $x \in \mathbb{R}$ και $f(x) = \frac{4e^{x^2-1}}{x^2+1}$.
- Δ2. [Μονάδες 6] Να μελετήσετε την f ως προς την μονοτονία και τα ακρότατα.
- Δ3. [Μονάδες 4] Να βρείτε τις εξισώσεις των εφαπτομένων της C_f που διέρχονται από την αρχή των αξόνων.
- Δ 4. [Μονάδες 5] Να λύσετε την ανίσωση $x^2 + \ln(x+1) > x + \ln(x^2+1), x > 0.$
- Δ5. [Μονάδες 6] Να δείξετε ότι η f δεν είναι "1-1" καθώς και να δείξετε:

$$\lim_{x \to -x_0} \left[\frac{f(0)}{x_0 + x} \cdot \left(\frac{4e^{x^2 - 1}}{x^2 + 1} - \frac{4e^{x_0^2 - 1}}{x_0^2 + 1} \right) \right] = -\frac{4}{e} f'(x_0)$$