Identifying Linchpin Vertices that Cause Large Dependence Clusters

Dave Binkley

Loyola University Maryland

Mark Harman

Crest Centre, Kings College London

What's Coming

- Dependence Defined
- Dependence Clusters
- Financial Motivation
- The MSG
- Finding Dependence Cluster Causes

Dependence

I'll go if you go

Dependence Cluster

Dependence

```
    main()

     a = 42;
                       Data Dependence (definition – use)
     if a > 10
                            Control Dependence
         b = a / 2;
```

Dependence Cluster

```
    main()

     while I < 10
```

Dependence Cluster

For statement 's' of program 'P'

Cluster(s) =
$$\{ t \in P \mid slice(t) = slice(s) \}$$

slice(t) approximated using sizeof(slice(t))

approximation is 99% accurate

The Approximation Yields an Interesting Visualisation the MSG

(the Monotone Slice-size Graph)

An MSG

"Programs Resist Transformation" -Mike

Impact of Dependence Clusters

Consider making a change to Line, 42

Program Without Cluster

One example does make a problem!

Alas, programs with clusters larger than Threshold

Tolerance for Slightly Different Sizes

OK They exist (and They are bad) but, Can Causes be Identified?

- Yes!
 - By Hand bit tedious
 - (Semi) Automatically
 - Vertices and Edges (Statements and Dependences)
 - Global Variables

The Automated Vertex Technique

Ignore the dependences associated with each SDG *vertex* then rebuild MSG

a very small change to the "program"

Consider MSG area reduction

Measuring Effect of a Single Vertex (or edge)

modified bc

Ignoring Vertex Dependence

slices	program	reduc- tion	vertex type	source
4686	copia	89.96%	control-point	switch (a)
1044	time-1.7	51.23%	control-point	switch (*++fmt)
1077	conversion	27.04%	control-point	switch (pick_op)
747	driver	26.45%	control-point	switch(choice)
585	sudoku	22.87%	control-point	while(!check_completed())
11277	space	7.90%	control-point	if (error != 0)
9556	gnubg-0.0	7.32%	indirect-call	pc->pf()
3909	barcode	5.95%	indirect-call	cptr->encode()
12492	EPWIC-1	5.79%	control-point	while(state != DONE)
10151	byacc	1.54%	expression	k = keyword()

Key Vertices?

MSGs for Copia's Top 3

Function "Next-state" from Copia

```
void seleziona(int a)
  switch (a) {
    case 0: grid(); break;
    case 1: hex(); break;

    Original ——switch(a) ——if (geocircol .
```

Sample MSGs for Replace

— Original — if in_set_2 — pat[lj] ain — m = amatch()

Ignoring of "m = amatch(...)"

```
while ((lin[i] != ENDSTR))
{
    m = lamatch(lin, i, pat, 0);
    if ((m >= 0) && (lastm != m))
        putsub(lin, i, m, sub);
        lastm = m;
    }
    if ((m == -1) || (m == i)) {
        fputc(lin[i], stdout);
        i = i + 1;
    } else
        i = m;
}
```

Ignoring of "if" and actual "pat[lj]"

```
== CLOSURE) && (i > start))
else if ((zrg[i]
          lastj;
        (in set_2(<u>pat[lj]</u>))
         done = true;
    else
         stclose(pat, &j, lastj);
else
```

"Future work" - Globals

Summary

- Dependence Clusters Exist
- They impact all (dependence based) static analysis
- Features as small as an individual vertex (even an edge) can play a key role in holding a cluster together

Thanks!

Questions?

ACluB Web Page www.dcs.kcl.ac.uk/staff/mark/aclub

Controversy

You talk way to fast You need to consider the impact of dependence clusters in your work.