15 네트워크

Section 1. 네트워크 기본

1. 네트워크

(1) 네트워크 개념

- Net + Work 의 합성어
- 컴퓨터와 같은 노드들이 통신 기술을 이용하여 그물망처럼 연결된 통신 이용 형태
- 2대 이상의 컴퓨터들을 연결하고 서로 통신할 수 있는 환경

(2) 네트워크의 장/단점

- 장점
- 네트워크의 데이터 통신을 통해 많은 정보를 서로서로 공유할 수 있음
- 단점
- 바이러스나 악성코드, 원치 않는 정보를 받게 될 수 있음
- 해킹으로 인한 개인 정보 유출 등 네트워크가 다양하고 많은 단말기와 접속함으로 인해서 보안상의 문제점이 점점 커지고 있음
- 데이터의 변조 가능

(3) 거리 기반 네트워크

- PAN(Personal Area Network)
- 5m 전후의 인접 통신
- LAN(Local Area Network)
- 근거리 네트워크로 사무실과 같은 소규모 공간 내의 고속 통신 회선
- MAN(Metropolitan Area Network)
- LAN과 WAN의 중간 형태
- WAN(Wide Area Network)
- 광대역 네트워크망으로 유관한 LAN간의 연결

2. 네트워크 토폴리지(Network Topology)

(1) 계층형(Tree)

장점 - 네트워크 관리가 쉽고, 새로운 장치를 추가하기 쉬움 - 네트워크의 신뢰도가 높음	
단점	- 트래픽 집중에 따른 속도 저하현상(병목현상)이 발생하기 쉬움 - 상위 노드 고장시 상위 네트워크와의 통신이 불가능

(2) 버스형(Bus)

장점	- 설치비용이 적고, 신뢰성 우수 - 구조가 간단하고, 새로운 노드 추가가 쉬움
단점	- 네트워크 병목현상 발생이 쉬움 - 장애 발생시 전체 네트워크 마비

(3) 성형(Star)

상점	- 고속 네트워크에 적합 - 노드 추가가 쉬움 - 개별 링크 장애시에도 네트워크에 영향이 없음
단점	- 중앙 노드 장애시 전체 네트워크 불통 - 노드 증가에 따라 네트워크의 복잡도 증가함

(4) 링형(Ring)

장점	- 저렴한 네트워크 구성이 가능함 - 충돌 현상이 발생하지 않음
단점	- 네트워크의 구성을 변경하기 힘듦 - 링크 장애시 전체 네트워크 불통

(5) 망형(Mesh)

장점	- 완벽하게 이중화 되어 있으므로 장애에 강함 - 많은 양의 데이터 처리에도 문제 없음 - 회선수 : n(n-1) / 2 - 각 장치당 포트 수 : n-1
단점	- 구축과 운영 비용이 고가

3. 데이터 전송

(1) 아날로그/디지털 전송

① 아날로그 전송

- 전송 매체를 통해 전달되는 신호가 아날로그 형태인 것
- 신호 감쇠 현상이 심하고, 오류의 확률이 높음

② 디지털 전송

- 전송 매체를 통해 전달되는 신호가 디지털 형태인 것
- 제한된 거리에서의 감쇄 현상은 없으나 전송거리의 제한을 극복하기 위해 리피터(Repeater) 사용
- 신호 왜곡이 적기 때문에 정확한 데이터 전송이 가능
- 리피터에 의해 잡음을 제외한 원래의 신호만 복원 가능
- 장거리 전송이 가능

(2) 방향에 따른 구분

① 단방향 통신(Simplex)

• 일방적으로 'A \rightarrow B' 의 통신만 가능한 전송 방식(ex. 라디오, TV)

② 반이중 통신(Half Duplex)

• 서로 데이터를 전송할 수 있지만, 하나의 회선을 사용하기 때문에 동시에 전송은 불가능(ex. 무전기)

③ 전이중 통신(Full Duplex)

• 서로 언제나 필요한 데이터를 동시에 송수신 할 수 있는 전송(ex. 전화)

(3) 직렬전송/병렬전송

① 직렬전송(Serial Transmission)

- 한 번에 한 비트씩 순서대로 전송
- 데이터 전송 속도 느림
- 구축이 쉽고 경제적

② 병렬전송(Parallel Transmission)

- 문자 단위 등 여러 비트를 동시에 전송하는 방식
- 데이터 전송 속도 빠름
- 흐름제어 필요

(4) 동기 전송/비동기 전송

① 동기식 전송 방식(Synchronous Transmission)

- 한 문자단위가 아니라 여러 문자를 수용하는 데이타블럭 단위로서 전송하는 방식
- 양측에 설치된 모뎀이나 다중화기 등과 같은 기기에 의해 타이밍 조정
- 동기문자나 플래그 등을 사용하여 송수신측간의 데이타블럭을 수신해야 하기 때문에 터미널에는 버퍼장치가 요구됨
- 전송 효율이 높아 대부분의 통신 프로토콜에서 이용
- 문자 동기 방식과 비트 동기 방식이 있음
- 문자 동기 방식
- SYN : 동기 맞춤 문자
- STX(Start of Text) : 실제 전송할 데이터의 시작
- ETX(End of Text) : 데이터의 종료

• 비트 동기 방식

② 비동기식 전송 방식(Asynchronous Transmission)

- 작은 비트블럭의 앞뒤에 각각 start bit와 stop bit를 삽입하여 동기화하는 방식
- start-stop 전송이라고 불리기도 한다.
- 각 문자와 문자의 전송사이에는 휴지기간이 존재하여, 스톱비트를 계속 전송
- 단순하고 저렴하지만 전송 효율이 낮다.
- 300bps ~ 1200bps 정도의 저속 전송에 사용

③ 동기/비동기 비교

구분	동기식 건송 방식	비동기식 전송 방식	
통신 속도	고속	거속	
회로 복잡도	복잡	단순	
구축 비용	고가	저 가	
동기 제어 방식	클럭 동기	Start bit, Stop bit	
전송 단위	블록 단위 전송	문자 단위 전송	
적용 예	전화 교환망, ATM, 데이터 통신망	RS-232C	

Section 2. 근거리 통신망(LAN, Local Area Network)

1. LAN

(1) LAN의 개념

- 여러 대의 컴퓨터와 주변장치 등이 통신 네트워크를 구성하여 통신하는 망
- 학교, 건물, 사무실 등과 같이 비교적 가까운 거리에 한정되어 있는 망

(2) LAN의 특징

- 제한된 지역 안에서 다양한 장치들 사이에서의 통신
- 빠른 전송속도 및 높은 신뢰도
- 네트워크 구성의 최소 단위
- 다양한 통신장치와의 연결
- 네트워크 확장 및 재배치 용이

(3) LAN의 구성요소

- NIC(Network Interface Card)
- LAN CARD라고 불림
- 컴퓨터를 전송매체에 연결해주는 장치
- 리피터(Repeater)
- 거리가 길어질수록 감쇄되는 신호를 재생시키는 증폭기
- 허브(Hub)
- 네트워크 케이블 집중 장치
- 브리지(Bridge)
- LAN과 LAN을 연결하여 신호를 교환해주는 역할
- 라우터(Router)
- 다른 망을 연결하기 위한 장치
- 원거리의 연결(LAN, MAN, WAN) 가능
- 라우팅 테이블을 만들어서 데이터 이동
- 게이트웨이(Gateway)
- 다른 종류의 통신망 사이에 메시지를 전달할 수 있도록 해주는 장치

(4) LAN의 전송방식

① 베이스밴드(Base Band)

- 컴퓨터나 통신장치의 디지털 신호를 변조하지 않고 전송로를 이용하여 그대로 전송하는 방식
- 송수신 장치가 간단하고, 비용이 저렴
- 1~2Km 정도로 거리가 제한되어 있고, 그 이상 거리는 리피터를 사용
- 전송매체는 트위스트 페어 케이블, 동축 케이블을 많이 사용함

② 브로드 밴드(Broad Band)

- 디지털 데이터를 모뎀을 이용하여 아날로그 데이터로 변조하여 전송하는 방식
- 주파수 분할 다중화(FDM) 방식을 이용
- 동시에 여러 정보 전송 가능

(5) LAN의 프로토콜

- LLC(Logical Link Control)
- OSI에서 데이터 링크 계층 기능 담당 (흐름제어, 오류처리 등)
- MAC(Medium Access Control)
- 물리적 전송 선로의 특징과 매체 간 연결 방식 제어
- CSMA/CD, 토큰 링, 토큰 버스

2. LAN의 표준 802.X 시리즈

표준	설명			
802.1	- 전체의 구성, OSI 참조 모델과의 관계, 표준 규약			
802.2	논리링크제어(LLC)에 관한 규약			
802.3	CSMA/CD에 관한 규약			
802.4	- 토큰 버스에 관한 규약			
802.5	- 토큰 링에 관한 규약			
802.11	- 무선 LAN에 관한 규약			
802.15	- 블루투스에 관한 규약			

(1) CSMA/CD(Carrier Sense Multiple Access with Collision Detection)

① CSMA/CD 개념

- IEEE 802.3 이더넷 LAN에서 사용되는 매체접근방식
- 유선 네트워크에서 충돌을 확인할 수 있는 방식

② 용어의 의미

- CS(Carrier Sense Multiple Access)
- 채널 사용 전 다른 이용자가 있는지 확인하는 방식
- MA(Multiple Access)
- 누구든 동시에 접근할 수 있는 방식
- CD(Collision Detection)
- 충돌을 검사하여 제어하는 통신 방식

③ 주요 절차

- 네트워크를 사용하려는 컴퓨터는 현재 네트워크 상에 통신이 일어나고 있는지 확인한다.
- 현재 다른 데이터가 전송 중이면 사용할 수 있을 때까지 기다리고, 아니면 전송을 시작한다.
- 여러 컴퓨터에서 동시에 전송을 시작해 충돌이 발생하면 잼 신호를 브로드 캐스트 한다.
- 충돌 발생시 임의 시간 동안 기다린 뒤 다시 신호를 감지하고, 재전송한다.

④ 이더넷(Ethernet) 시스템 규격

- 10 BASE 2 : 얇은 동축 케이블을 이용하며, 2는 세그먼트의 최장거리가 200m
- 10 BASE 5 : 굵은 동축 케이블을 이용하며, 5는 세그먼트의 최장거리가 500m
- 10 BASE F : 광섬유 케이블을 이용하는 이더넷
- 10 BASE T: 10MBps의 전송 속도, 베이스 밴드 방식, Twisted Pair Wire 케이블 사용
- 고속 이더넷(Fast Ethernet): 100 Base T 라고 불리는 이더넷의 고속 버전
- 기가비트 이더넷(Gigabit Ethernet) : 1GBps 의 전송속도를 지원

(2) CSMA/CA(Carrier Sense Multiple Access with Collision Avoidance)

① CSMA/CA 개념

- IEEE 802.11 무선 LAN에서 사용되는 매체접근방식
- 무선 네트워크에서 충돌을 감지하기 힘들기 때문에 CSMA/CD대신 CSMA/CA 사용
- CSMA 방식에 충돌 회피 기능 추가
- 다른 컴퓨터가 네트워크를 사용중인지 판단하여, 사용중이라면 일정시간 동안 대기한다.

② 용어의 의미

- CS(Carrier Sense Multiple Access)
- 채널 사용 전 다른 이용자가 있는지 확인하는 방식
- MA(Multiple Access)
- 누구든 동시에 접근할 수 있는 방식
- CA(Collision Avoidance)
- 충돌을 검사하여 피하는 통신 방식

③ 802.11의 버전

버전	내용			
802.11a	- 5GHz 대역에서, 802.11의 속도를 최대 54 Mbps까지 동작하는 확장 표준			
802.11b	· 2.4GHz 대역에서 최대 11Mbps의 데이터 전송 속도를 지원			
802.11e	- 무선 LAN 표준에 QoS 및 트래픽관리 기능을 추가			
802.11g	- 802.11b의 뒤를 잇는 후속 표준 - 2.4GHz 대역에서 54Mbps 속도를 지원한다.			
802.11n	- 2.4GHz와 5GHz 두 주파수를 지원하며 최대 속도는 600Mbps			

(3) 토큰 버스(Token Bus)

- 버스형(Bus) LAN에서 사용하는 방식으로, 토큰이 논리적으로 형성된 링(Ring)을 따라 각 노드들을 차례로 옮겨 다니는 방식
- 토큰은 논리적인 링을 따라 순서대로 전달되며, 토큰을 점유한 노드는 정보를 전송할 수 있고, 전송을 끝낸 후 토큰을 다음 노드로 전달
- 각 노드가 공평한 송신 권한을 가지며, 전송 시간을 가변적으로 조절할 수 있다.
- 전송량이 많을 때에도 안정적이고 액세스 시간이 일정하다.
- CSMA/CD방식보다 장치가 복잡하고 평균 대기 시간이 길다.
- 일부 노드나 통신 회선에 장애가 발생하면 전체적인 장애 발생

(4) 토큰 링(Token Ring)

- 링형(Ring) LAN에서 사용하는 방식으로, 물리적으로 연결된 링(Ring)을 따라 순환하는 토큰(Token)을 이용하여 송신 권리를 제어
- 토큰 상태

- 프리 토큰(Free Token) : 회선을 사용할 수 있는 상태 - 비지 토큰(Busy Token) : 회선이 데이터 전송에 사용 중

(5) 블루투스 규약(802.15)

버전	내용			
802.15.1	- 'Bluetooth'를 기반으로한 WPAN(Wireless Personal Area Network) 규격			
802.15.2	WPAN 및 WLAN을 동시에 사용, 상호 간섭 해소 등 공존			
802.15.3	- 20Mbps 이상의 고속의 WPAN 규격			
802.15.4	- 저속의,저건력,저가형 WPAN 규격			
802.15.5	- WPAN에 의한 `Mesh Network` 구성			
802.15.6	- Body Area Network (체온, 심전도, 맥박, 삼축 가속도 등의 측정 기능)			
802.15.7	- 가시광선 통신 (Visible Light Communication)			

Section 3. 데이터 교환 방식과 다중화

1. 데이터 교환 방식

(1) 회선망의 종류

① 전용회선

- 통신회선이 항상 고정되어 있는 방식
- 송수신 측을 일대일로 연결
- 전송 속도가 빠르고 전송 오류가 적다.
- 전송 데이터, 사용 시간이 많을 때 효율적
- 고장 발생 시 유지보수가 유리함
- 고가의 비용이 발생

② 교환회선

- 교환기에 의해 송/수신 상호간이 연결되는 방식
- 전용회선에 비해 전송 속도가 느림
- 정보 보안을 위해 기밀성, 무결성을 고려해야 함
- 통신 장치와 회선 비용을 줄일 수 있다.

(2) 데이터 교환 방식

① 회선 교환 방식

- 두 지점을 교환기를 이용하여 물리적으로 접속시키는 방식
- 접속이 이루어지면 접속을 해제할 때까지 전용선처럼 사용 가능
- 고정 대역폭을 사용하고 동일한 전송 속도 유지

② 메시지 교환 방식

- 축적 교환 방식으로 논리적 단위인 메시지를 교환하는 방식
- 교환기가 메시지를 모두 받고 저장하고 있다가 메시지와 주소를 확인 후 전송해주는 방식
- 응답시간이 빨라야 하는 데이터 전송에는 부적합한 방식

③ 데이터그램 교환 방식

- 데이터를 전송하기 전에 논리적 연결이 설정되지 않으며, 패킷이 독립적으로 전송된다.
- 각각의 패킷을 순서에 무관하게 독립적으로 전송
- 짧은 메세지의 패킷들을 전송할 때 효과적이고, 재정렬이 필요하다.

④ 가상회선 교환 방식

- 회선교환 방식과 데이터그램 방식의 장점을 결합한 기술
- 패킷을 전송하기 전에 논리적인 연결을 먼저 수행한다.
- 경로가 고정되면 다른 패킷을 나누어 전송한다.
- 데이터그램 보다 빠르고 안정적으로 통신할 수 있지만, 많은 사용자가 동시에 사용하기에는 하계가 있다.

2. 다중화(Multiplexing)

(1) 다중화의 개념

- 하나의 통신 회선을 여러 가입자들이 동시에 사용하도록 하는 기능
- 하나의 통신 회선에 다수의 터미널이 공유할 수 있도록 하는 기능
- 선로의 공동 이용이 가능하므로 전송 효율이 높아진다.

(2) 다중화기(MUX, MultipleXer)

• 여러 개의 터미널 신호를 하나의 통신 회선을 통해 전송할 수 있도록 하는 장치

(3) 다중화기 종류

① 주파수 분할 다중화기 (FDM, Frequency Division Multiplexer)

- 하나의 물리적 통신 채널을 여러 주파수 채널로 나누어 사용하는 다중화 방식
- 저속의 데이터를 각기 다른 주파수로 변조하여 통신 선로에 내보내는 방식
- 주파수 분할 다중화 자체가 변복조의 역할을 하므로 별도의 변복조기가 필요없음
- 저속도(1,200bps 이하) 아날로그 전송에 적합하며, 비동기 전송에 이용
- 각 채널 간의 완충 지역으로 Guard Band를 주어야 하므로 대역폭의 낭비가 발생
- 시분할 다중화기TDM)에 비해 비교적 구조가 간단하고 가격이 저렴
- 라디오나 TV 방송, CATV 등에서와 같이 여러 채널들을 동시에 전송하는 곳에서 활용된다.

② 시분할 다중화기 (TDM, Time Division Multiplexer)

- 한 전송로의 데이터 전송 시간을 일정한 시간 폭으로 나누어 차례로 분배하는 방식
- 디지털 전송에 적합(아날로그 신호를 디지털 신호로 변환할 때 PCM 방식 사용)
- 각 채널이 고속 채널을 점유하고 있는 것으로 보이나 실제로는 배정된 시간만 사용
- 고속 전송이 가능하며 포인트 투 포인트 방식에 주로 이용
- 다중화 방식

동기식 시분할 다중화	- 실제 송신할 데이터의 존재 유무에 관계없이 타임슬롯을 할당하여 전송
(Synchronous TDM)	- 전송할 데이터가 없는 장치도 타임슬롯이 할당되므로 효율성이 떨어진다.
비동기식 시분할 다중화 (Asynchronous TDM)	- 실제로 전송할 데이터가 있는 장치에만 타임슬롯을 할당 - 동기식 다중화에 비해 전송 효율이 높다. - 통계적 시분할 다중화 방식, 지능형 다중화 방식이라고도 한다.

③ 코드 분할 다중화 (Code Division Multiplexer, CDM)

- 고유의 코드를 이용한 다중화 방식
- 공통 주파수 대역을 통한 동시 전송을 위해 여러 데이터 신호를 결합하는 네트워킹 기술
- 여러 사용자가 단일 통신 채널을 공유 할 수 있는 경우, 이 기술을 코드 분할 다중 액세스(CDMA)라고 한다.
- 2차 세계 대전에서 개발 된 기술인 확산 스펙트럼을 사용하여 전송을 가로채거나 방해하지 않도록 한다.

④ 파장 분할 다중화 (Wavelength Division Multiplexing, WDM)

- 여러 파장대역을 통해, 동시에 전송하는 광 다중화 방식
- 레이저 빛의 다른 파장(다른 색)을 사용하여 여러 반송파 신호를 단일 광섬유에 적용하는 기술
- FDM 방식의 일종인 파장 다중화 방식
- 중장거리 통신에 주로 활용

⑤ 공간 분할 다중화 (Space-Division Multiplexing, SDM)

• 시간(TDM) 또는 주파수(FDM)가 아닌 공간 차원(SDM)에서 다중화하는 기술

(4) 역다중화기와 집중화기

① 역다중화기 (Inverse MUX)

- 하나의 고속회선으로부터 데이터를 받아 여러 개의 저속회원으로 쪼개어 전송하는 것
- 여러 개의 저속회선을 사용해 광대역의 전송속도를 얻을 수 있고, 하나의 채널에 장애가 발생해도 다른 채널로 계속 전송이 가능하다.

② 집중화기(Concentrator)

- 여러 개의 저속회선으로부터 전송된 데이터를 버퍼에 축적한 후 이를 모아서 고속회선으로 전송하는 것
- 여러 개의 저속회선을 고속회선을 사용하여 전송하고자 할 때 사용한다.

Section 4. 인터넷

1. 인터넷

(1) 인터넷(Internet)의 개념

- TCP/IP 프로토콜을 기반으로 하여 전 세계 수많은 컴퓨터와 네트워크들이 연결된 광범위한 컴퓨터 통신망
- 인터넷은 1960년대 미국 국방성에서 군사적인 목적으로 구축한 알파넷(ARPANET)으로부터 시작되었다.
- 특징
- 서로 동시에 참여할 수 있는 쌍방향 통신 제공
- 인터넷은 유닉스 운영체제를 기반으로 한다.
- 통신망과 컴퓨터만 있으면 시간과 장소에 관계없이 정보를 교환할 수 있다.
- 인터넷에 연결된 모든 컴퓨터는 고유한 IP를 가진다.

(2) 인터넷 서비스

- WWW (Wold Wide Web)
- 텍스트, 그림, 동영상, 음성 등 인터넷에 존재하는 다양한 정보를 거미줄처럼 연결해 놓은 종합 정보 서비스를 말하며 HTTP프로토콜을 사용하는 하이퍼텍스트 기반으로 되어있다.
- WWW를 효과적으로 검색할 수 있도록 도와주는 프로그램을 웹브라우저라고 한다.
- 전자우편 (E-MAIL)
- 인터넷을 통해 다른 사람과 편지뿐만 아니라 그림, 동영상 등 다양한 형식의 데이터들을 주고받을 수 있도록 해주는 서비스
- SMTP, POP3, MIME 프로토콜을 사용
- 텔넷 (Telnet)
- 멀리 떨어져 있는 컴퓨터에 접속하여 자신의 컴퓨터처럼 사용할 수 있도록 해주는 서비스
- HTTP (Hyper Text Transfer Protocol)
- 하이퍼 텍스트 문서를 전송하기 위해 사용되는 프로토콜
- FTP (File Transfer Protocol)
- 파일 전송 프로토콜
- 아키 (Archie)
- 익명의 FTP 사이트에 있는 FTP 서버와 그 안의 파일 정보를 데이터베이스에 저장해 두었다가 FTP서버의 리스트와 파일을 제공함으로써 정보를 쉽게 검색할 수 있도록 하는 서비스
- 고퍼 (Gopher)
- 메뉴 방식을 이용해 손쉽게 정보 검색을 할 수 있도록 하는 서비스
- 유즈넷(USENET)
- 분야별로 공통의 관심사를 가진 인터넷 사용자들이 서로의 의견을 주고받을 수 있게 하는 서비스

2. IP

(1) IP(Internet Protocol address) 주소

① IP의 개념

- 인터넷에서 컴퓨터를 식별할 수 있는 고유한 번호
- IPv4, IPv6 방식으로 나누어져 있고, 우리가 보통 사용하는 IP는 IPv4를 의미한다.
- 8비트씩 4부분, 총 32비트로 구성되어 있다.
- 패킷 크기는 64킬로바이트로 제한
- 네트워크 부분과 호스트 부분을 구분하기 위해 서브넷 마스크(Subnet Mask)를 사용한다.
- IPv4는 Class A ~ E, 5개 클래스로 분류하며 용도가 다르다.
- IPv4는 공인주소(Public Address)와 사설주소(Private Address)가 있다.

② 표시형식

IPv4 주소 (점으로 구분된 십진수 표기)

③ 주소분류

- 유니캐스트(Unicast)
- 단일 송신자와 단일 수신자 간의 통신
- 멀티캐스트(Multicast)
- 단일 송신자와 다중 수신자 간의 통신
- 브로드캐스트(Anycast)
- 같은 네트워크에 있는 모든 장비들에게 보내는 통신

④ IP 주소 클래스

클래스	옥텟 IP	최상비트	호스트 수	네트워크 수	용도
A Class	0 ~ 127	0	16,777,216	128	국가/대형 통신망
B Class	128 ~ 191	10	65,536	16,384	중대형 통신망
C Class	192 ~ 223	110	256	2,097,152	소규모 통신망
D Class	224 ~ 239	1110			멀티캐스트용
E Class	240 ~ 255	1111			실험용

(2) IPv6

① IPv6의 개념

• IPv4의 주소 고갈 문제를 해결하기 위하여 기존의 IPv4주소 체계를 128비트 크기로 확장한 차세대 인터넷 프로토콜 주소

② 특징

- 헤더의 내용을 확인하는 데 소요되는 오버헤드를 최소화하도록 설계
- 주소를 128비트로 표현한 확장된 주소 공간
- 계층적 주소 할당 체계
- 자동화된 주소 설정
- 기본으로 제공되는 보안기능
- 개선된 QoS 지원
- 헤더를 추가할 수 있는 확장성
- 패킷 크기 확장

③ 표시형식

- 16비트씩 8부분, 128비트로 구성되며, 콜론(:)으로 구분한다.
- EX) 2001:0DB8:1000:0000:0000:0000:1111:2222

④ IPv6 헤더

- IPv6 기본 헤더
- 확장 헤더를 포함하지 않은 경우의 기본 헤더(40 바이트)
- IPv6 확장 헤더
- 기본 고정 헤더 뒤 페이로드 내에 선택적인 확장 헤더들이 뒤따라옴

⑤ 주소분류

- 유니캐스트(Unicast)
- 단일 송신자와 단일 수신자 간의 통신
- 멀티캐스트(Multicast)
- 단일 송신자와 다중 수신자 간의 통신
- 애니캐스트(Anycast)
- 그룹 내 가장 가까운 수신자에게 전달

⑥ IPv4/IPv6 전환기술

- 듀얼 스택(Dual Stack)
- 장비들이 IPv4 및 IPv6 모두 지원, 동시 처리 가능
- 터널링(Tunneling)
- IPv6 패킷을 IPv4 패킷 속에 캡슐화하여 사용하는 기술
- 주소 변환(Address Translation)
- IPv6 시스템이 IPv4 수신자가 이해할 수 있는, 또는 그 반대로 헤더 변환하는 기술

(3) IPv4 와 IPv6 비교

구분	IPv4	IPv6	
주소길이	32비트	128비트	
표시방법	8비트씩 4부분, 10진수로 표시	16비트씩 8부분, 16진수로 표시	
주소개수	약 43억개	43억 * 43억 * 43억 * 43억	
주소할당	비 순차적 할당	순차적 할당	
품질제어	지원 수단 없음	품질보장이 용이	
보안기능	IPSec 프로토콜 별도 설치	확장기능에서 기본으로 제공	
플로그앤플레이	지원 수단 없음	지원 수단 있음	
모바일 IP	곤란	용이	
주소 유형	유니캐스트, 멀티캐스트, 브로드캐스트	유니캐스트, 멀티캐스트, 애니캐스트	

3. 서브넷

(1) 서브넷, 서브넷 마스크

① 서브넷(Subnet)

• 하나의 네트워크가 분할되어 나눠진 작은 네트워크

② 서브네팅(Subnetting)

• 네트워크 성능 보장, 자원을 효율적으로 분배하기 위해 네트워크 영역과 호스트 영역을 쪼개는 작업

③ 서브넷 마스크(Subnet Mask)

- IP 주소에 대한 네트워크 아이디와 호스트 아이디를 구분하기 위해서 사용
- Mask 연산(AND 연산)을 활용하여 구분

(2) 서브네팅 예

① 200.1.1.0 / 24 를 7개의 subnet 으로 나눌 경우

번호	구분	범위	네트워크 주소	브로드캐스트 주소
1	000	200.1.1.0~200.1.1.31	200.1.1.0	200.1.1.31
2	001	200.1.1.32~200.1.1.63	200.1.1.32	200.1.1.63
3	010	200.1.1.64~200.1.1.95	200.1.1.64	200.1.1.95
4	011	200.1.1.96~200.1.1.127	200.1.1.96	200.1.1.127
5	100	200.1.1.128~200.1.1.159	200.1.1.128	200.1.1.159
6	101	200.1.1.160~200.1.1.191	200.1.1.160	200.1.1.191
7	110	200.1.1.192~200.1.1.223	200.1.1.192	200.1.1.223
8	111	200.1.1.224~200.1.1.255	200.1.1.224	200.1.1.255

② 200.1.1.65/27의 서브넷 마스크

• 호스트 주소 중 3비트를 네트워크 아이디로 사용하여, 255.255.255.224 이 서브넷 마스크가 됨

③ 같은 네트워크 영역인지 확인

0

1

0

AND

범위	128	64	32	16	8	4	2	1
65	0	1	0	0	0	0	0	1
224	1	1	1	0	0	0	0	0
AND	0	1	0	0	0	0	0	0
범위	128	64	32	16	8	4	2	1
94	0	1	0	1	1	1	1	0
224	1	1	1	0	0	0	0	0

범위	128	64	32	16	8	4	2	1
97	0	1	1	0	0	0	0	1
224	1	1	1	0	0	0	0	0
AND	0	1	1	0	0	0	0	0

0

0

0

0

0

4. IP 기타기술

(1) NAT(Network Address Translation)

① NAT의 개념

- 외부서 알려진 공인 IP 주소와 사설 IP 주소를 사용하는 내부 네트워크에서 IP 주소를 변환
- 제한된 수의 인터넷 IPv4 주소 문제를 해결하기 위해 개발

② 사용목적

- 인터넷의 공인 IP 주소를 절약할 수 있다.
- 사용자들의 고유한 사설망을 침입자들로부터 보호할 수 있다.

③ 주소 할당 방식에 따른 NAT 종류

- Static NAT
- 공인 IP주소와 사설 IP주소가 1:1로 매칭되는 방식
- Dynamic NAT
- 여러 개의 공인 IP 주소 대비 사설 IP 개수가 많을 경우 사용하는 방식
- PAT(Port Address Translation)
- 공인 IP 주소 1개에 사설 IP 주소 여러 개가 매칭되는 방식

(2) DNS(Domain Name System)

- Domain Name을 IP Address로 바꾸어 주거나, 그 반대의 작업을 처리하는 시스템
- DNS 서버는 도메인 이름과 이에 대응하는 IP 주소에 관한 데이터베이스를 유지하고 있다가 원하는 컴퓨터에게 제공한다.

Section 5. 프로토콜

1. 프로토콜

(1) 프로토콜의 개념

- 컴퓨터나 통신장비들 사이에서 원활한 데이터 교환을 수행하기 위해 표준화한 통신 규약
- 통신을 제어하기 위한 표준 규칙과 절차의 집합으로 하드웨어와 소프트웨어, 문서를 모두 규정한다.

(2) 통신 프로토콜의 기본요소

- 구문(Syntax)
- 전송하고자 하는 데이터의 형식, 부호화, 신호 레벨 등을 규정
- 의미(Semantics)
- 두 기기 간의 효율적이고 정확한 정보 전송을 위한 협조 사항과 오류 관리를 위한 제어 정보를 규정
- 타이밍(Timing)
- 두 기기 간의 통신 속도, 메시지의 순서 제어 등을 규정

(3) 프로토콜의 기능

- 단편화와 재결합
- 단편화(Fragmentation) : 송신 측에서 전송할 데이터를 전송에 알맞은 일정 크기의 작은 블록으로 자르는 작업
- 재결합(Reassembly) : 수신 측에서 단편화된 블록을 원래의 데이터로 모으는 작업
- 캡슐화(Encapsulation)
- 단편화된 데이터에 송/수신지 주소, 오류 검출 코드, 프로토콜 제어 정보 등의 정보를 부가하는 작업
- 데이터를 오류 없이 정확하게 전송하기 위해 캡슐화를 수행한다.
- 흐름제어(Flow Control)
- 수신 측의 처리 능력에 따라 송신 측에서 송신하는 데이터의 전송량이나 전송 속도를 조절하는 기능
- 오류제어(Error Control)
- 전송중에 발생하는 오류를 검출하고 정정하여 데이터나 제어 정보의 파손에 대비하는 기능
- 혼갑제어(Congestion Control)
- 네트워크의 혼잡을 피하기 위해 송신측에서 보내는 데이터의 전송속도를 강제로 줄이는 기능
- 동기화(Synchronization)
- 송, 수신 측이 같은 상태를 유지하도록 타이밍(Timing)을 맞추는 기능
- 순서 제어(Sequencing)
- 전송되는 데이터 블록(PDU)에 전송 순서를 부여하는 기능
- 연결 위주의 데이터 전송 방식에만 사용
- 주소 지정(Addressing)
- 데이터가 목적지까지 정확하게 전송될 수 있도록 목적지 이름, 주소, 경로를 부여하는 기능
- 다중화(Multiplexing)
- 한 개의 통신 회선을 여러 가입자들이 동시에 사용하도록 하는 기능
- 경로 제어(Routing)
- 송/수신 측간의 송신 경로 중에서 최적의 패킷 교환 경로를 설정하는 기능

2. 흐름제어와 오류제어

(1) 흐름제어

① 흐름제어의 개념

- 수신 측의 처리 능력에 따라 송신 측에서 송신하는 데이터의 전송량이나 전송 속도를 조절하는 기능
- 송신측과 수신측의 데이터 처리 속도 차이를 해결하기 위한 기법
- Stop and Wait 방식, Sliding Window 방식

② Stop and Wait 방식

- 매번 패킷을 보낼 때마다, 확인을 한 후, 다음 패킷을 전송하는 방법
- 오버플로우가 일어날 수 없지만, 너무 느리다는 단점이 있다.
- Stop and Wait는 거의 사용되고 있지 않다.

③ Sliding Window 방식

- 수신측에서 설정한 윈도우 크기만큼 송신측에서 확인응답없이 세그먼트를 전송할 수 있게 하여 데이터 흐름을 동적으로 조절하는 제어기법
- 윈도우에 포함되는 모든 패킷을 전송하고, 전송이 확인되는 대로 윈도우를 옆으로 옮겨(slide) 다음 패킷들을 전송하는 방식
- Sliding Window 처리 방식(5개 윈도우 설정시)
- ⊙ 송신측에서 1~5까지의 프레임 전송 가능

© 데이터 1과 2를 전송하고, 3~5 데이터는 전송하지 않은 상태

© 전송된 데이터에 대한 ACK 프레임 수신 후, ACK된 프레임만큼 윈도우 이동

④ 피기배킹(piggybacking)

- 양방향으로 동시에 정보 프레임과 응답 프레임을 교차하여 전송하는 경우를 사용하는 방식
- 정보 프레임을 전송하면서 응답 기능까지 동시에 수행하도록 프레임 구조를 변형시킨 것
- 응답 프레임의 전송 횟수를 줄이는 효과가 있어 전송 효율을 높일 수 있다.

(2) 오류제어

① 오류제어의 개념

- 전송중에 발생하는 오류를 검출하고 정정하여 데이터나 제어 정보의 파손에 대비하는 기능
- TCP는 기본적으로 ARQ(Automatic Repeat Request), 재전송 기반 오류 제어를 사용한다.
- Stop and Wait 방식, Go Back N 방식, Selective Repeat, Adaptive ARQ 방식

2 Stop and Wait ARQ

• 한 번 데이터를 보내면 제대로 받았다라는 응답이 올 때까지 대기하고 있다가 다음 데이터를 보내는 방식

3 Go Back N ARQ

- 오류가 난 지점부터 전송한 지점까지 모두 재전송하는 기법
- 데이터에서 에러가 발생했음을 감지하면 NACK 신호를 보내고, 오류 발생 이후 데이터를 모두 폐기한다.
- 중복전송의 단점이 있다.

4 Selective Repeat ARQ

- 여러 프레임을 연속적으로 전송하고, 수신측에서 NACK을 보내면 송신측에서는 오류가 난 부분의 프레임만 재전송
- 별도의 데이터 재정렬을 수행해야 하며, 별도의 버퍼를 필요로 한다.

⑤ Adaptive ARQ

- 전송 효율을 최대로 하기위해 데이터 프레임의 길이를 동적으로 변경
- 전송 효율이 제일 좋으나, 제어 회로가 복잡하고 비용이 많이 든다.

(3) 오류 발생 원인

① 감쇠(Attenuation)

- 전송 신호가 전송 매체를 통과하는 과정에서 거리에 따라 점차 약해지는 현상
- 주파수가 높을수록 감쇠 현상이 심해진다.
- 중계기를 이용하여 감쇠현상을 해결한다.

② 지연 왜곡(Delay Distortion)

- 주로 유선 전송 매체에서 발생
- 하나의 전송 매체를 통해 여러 신호를 전달했을 경우 주파수에 따라서 속도가 틀려져 생기는 오류

③ 상호 변조 잡음(Intermodulation Noise)

• 서로 다른 주파수들이 하나의 전송 매체를 공유할 때 주파수 간의 합이나 차로 새로운 주파수가 생성된다.

④ 충격 잡음(Impluse Noise)

- 순간적으로 높은 진폭이 발생하는 잡음
- 번개와 같이 외부적인 충격이나 기계적인 통신 시스템에서의 결함이 원인이다.

(4) 전송 오류 제어 방식

① 전진 오류 수정(Forward Error Correction, FEC)

- 재전송 요구 없이 수신 측에서 스스로 오류 검출 및 수정하는 방식
- 에러 발생할 경우 송신측에 통보하지 않음
- 오류정정을 위한 제어비트가 추가되어 효율이 떨어짐
- 해밍코드, 상승코드 방식

② 후진 오류 수정(Backward Error Correction, BEC)

- 송신 측에 재전송을 요구하는 방식
- 패리티 검사, CRC, 블록 합 방식으로 오류를 검출하고, 오류 제어는 ARQ에 의해 이루어진다.

(5) 오류 검출

① 패리티(Parity) 검사

- 데이터 한 블록 끝에 1비트의 검사 비트인 패리티 비트를 추가하여 전송 에러를 검출하는 방식
- 홀수 개의 오류만 검출할 수 있고, 짝수 개의 오류는 검출하지 못하는 문제점이 발생
- 이를 해결하기 위해 Two-dimensional Parity Check(2차원 패리티 검사)가 있다.

② 순환 중복 검사(Cyclic Redundancy Chcek, CRC)

- 데이터에 오류가 발생했는지 확인하는 코드를 데이터 뒤에 확장 데이터를 덧붙여 보내는 방식
- 프레임 단위로 오류 검출을 위한 코드를 계산하여 프레임 끝에 FCS(Frame Check Sequence)를 추가
- 집단적으로 발생하는 오류에 대해 신뢰성 있는 오류검출

③ 체크섬(Checksum)

- 간단하게 에러검출을 하는 방법
- 간단한 방식이기는 하나, 워드의 순서가 바꾸어지는 오류에 대한 검출은 하지 못함

④ 해밍코드(Hamming code)

- 수신측에서 직접 자기 정정 부호의 하나로 오류를 검출하고 수정까지 함
- 1Bit 의 오류만 수정가능
- 검출 가능한 최대 오류의 수 : 해밍거리 1
- 정정 가능한 최대 오류의 수 : (해밍거리 1) / 2

⑤ 상승코드

- 순차적 디코딩과 한계값 디코딩을 사용하여 오류수정
- 해밍코드처럼 검출과 정정 가능
- 여러 비트의 오류도 수정 가능

Section 6. OSI 7계층

1. OSI (Open System Interconnection) 7계층

(1) OSI 7계층 개념

- 네트워크 프로토콜 디자인, 통신을 7개의 계층으로 나누어 설명한 모델
- 국제표준화기구(ISO)에 의해 정립되었다.
- 통신이 일어나는 과정이 단계별로 파악할 수 있다.

(2) OSI 7계층 구조

2. 계층별 특징

(1) 물리계층(Physical Layer)

- 전기적, 기계적, 기능적인 특성을 이용해서 통신 케이블로 데이터를 전송
- 통신 단위는 비트이며 이것은 1과 0으로 나타내어지는, 즉 전기적으로 On, Off 상태이다.
- 데이터를 전달할 뿐, 데이터가 무엇인지 어떤 에러가 있는지 신경쓰지 않는다.
- 장비 : 통신 케이블, 리피터, 허브

(2) 데이터 링크계층(DataLink Laver)

- 포인트 투 포인트(Point to Point) 간 신뢰성 있는 전송을 보장하기 위한 계층
- CRC 기반의 오류 제어와 흐름 제어가 필요
- 물리 계층에서 발생할 수 있는 오류를 찿아내고, 수정하는 데 필요한 기능적, 절차적 수단을 제공
- 물리주소인 MAC주소가 이 계층에 해당한다.
- 장비 : 스위치, 브리지

(3) 네트워크 계층(Network Layer)

- 데이터를 목적지까지 가장 안전하고 빠르게 전달하는 기능(라우팅)
- 여러 개의 노드를 거칠 때마다 경로를 찾아주는 역할을 하는 계층
- 주소부여(IP), 경로설정(Route)
- 장비 : 라우터, L3 스위치

(4) 전송 계층(Transport Layer)

- 양 종단간(End to end)의 사용자들이 신뢰성있는 데이터를 주고받을 수 있도록 해준다.
- 시퀀스 넘버 기반의 오류 제어 방식을 사용
- TCP, UDP 프로토콜이 있는 계층
- 패킷들의 전송이 유효한지 확인하고 전송 실패한 패킷들을 다시 전송한다.
- 오류검출 및 복구와 흐름제어, 중복검사 등을 수행한다.

(5) 세션 계층(Session Layer)

- 양 끝단의 응용 프로세스가 통신을 관리하기 위한 방법을 제공
- 이 계층은 TCP/IP 세션을 만들고 없애는 책임을 진다.

(6) 표현 계층(Presentation Layer)

- 데이터 표현이 상이한 응용 프로세스의 독립성을 제공하고, 암호화 한다.
- MIME 인코딩이나 암호화 등의 동작이 이 계층에서 이루어진다.

(7) 응용 계층(Application Layer)

- 데이터의 최종 목적지로서 HTTP, FTP, SMTP, POP3, IMAP, Telnet 등과 같은 프로토콜이 있다.
- 브라우저나, 메일 프로그램은 프로토콜을 보다 쉽게 사용하게 해주는 응용프로그램이다.

3. 네트워크 장비

- Lan 카드
- PC 혹은 네트워크에서 전달되어 오는 정보를 상호 교환할 수 있도록 만들어준다.
- 랜 카드에 맥 주소(MAC Address)가 들어가는데, 랜 카드에 할당된 48비트 물리적 주소이다.
- 허브(Hub)
- 집중화 장비라고도 하며, 단순히 노드들을 연결시켜주는 역할
- 네트워크에 붙어 있는 PC들을 한곳으로 모아주는 역할
- 리피터(Repeter)
- 디지털 신호를 증폭시켜주는 역할
- 신호가 약해지지 않고, 컴퓨터로 수신되도록 하는 장비
- 브리지(Bridge)
- 두 개의 근거리 통신망을 서로 연결해주는 장치
- 스위칭허브
- 스위치 기능을 가진 허브
- 라우터(Router)
- 패킷의 위치를 추출하여, 그 위치에 대한 최적의 경로 지정
- 원하는 목적지까지 지정된 데이터가 안전하게 전달되도록 하는 역할
- 게이트웨이
- 프로토콜을 서로 다른 통신망에 접속할 수 있게 해주는 장치

4. 백본(BackBone)

(1) 백본 네트워크

- 기간망으로 불리는 대규모 패킷 통신망이다.
- 빠르게 전송할 수 있는 대규모 전송회선
- 보통의 백본은 Internet Backbone Network 를 의미한다.

(2) 백본 스위치

- 네트워크 중심에 위치하며 모든 패킷이 지나가는 역할
- 많은 트래픽을 처리해야 하므로 기가급 장비를 사용한다.

(3) 스위치의 종류

① L2 스위치

- 데이터 링크 계층에서 운용되는 스위치
- Mac 주소를 기반으로 스위칭한다.

② L3 스위치

- 인터넷 계층에서 운용되는 스위치
- IP 주소 기반으로 스위칭 한다.
- 라우팅 기능이 탑재되어 있다.

③ L4 스위치

- 전송 계층에서 운용되는 스위치
- QoS 설정 등 다양한 기능을 가지고 있어 효율적인 네트워크를 구성할 수 있다.
- 서버나 네트워크의 트래픽을 로드밸런싱 한다.

④ L7 스위치

- 응용 계층까지 운용되는 스위치
- 응용 계층 패킷까지 분석하여 보안 장비에 주로 사용된다.

(4) 네트워크 구성

Section 7. TCP/IP

1. TCP/IP(Transmission Control Protocol / Internet Protocol)

(1) TCP/IP 개념

- 현재 인터넷에서 사용되는 프로토콜로 시스템간 네트워크 연결과, 데이터를 전송하는데 사용하는 모델
- 현재 대부분의 통신 프로토콜이 TCP/IP 가 사용되고 있다.
- TCP/IP는 단순히 인터넷 통신을 위한 표준 프로토콜, 모델을 가리키는 용어

(2) TCP/IP 4계층 구조

OSI 7계층	TCP/IP 4계층	프로토콜	
응용계층			
표현계층	응용 계층	HTTP, FTP, SMTP, DNS, RIP, SNMP, DHCP	
세션계층		DIVS, KIII, SIVIVIII, DITCI	
전송계층	전송 계층	TCP, UDP	
네트워크 계층	인터넷 계층	IP, ICMP, IGMP, ARP, RARP	
데이터 링크 계층	네트이그 에비스 게츠	Ethernet, X.25, RS-232C	
물리 계층	네트워크 엑세스 계층		

2. 계층별 특징

(1) 네트워크 액세스 계층(Network Access Layer)

- OSI 7계층의 물리계층과 데이터 링크 계층에 해당함
- 물리적인 주소로 MAC을 사용한다.
- 프로토콜

프로토콜	설명
Ethernet	- 물리 계층과 데이터 링크 계층의 통신 회선의 접근 제어를 정의하는 IEEE 표준
X.25	- DTE와 DCE간의 인터페이스를 제공, 패킷 교환망을 통해 패킷을 원활히 전달하기 위한 통신 프로토콜 - TCP/IP보다 느리지만 안정성과 보안성은 더 뛰어나다.
RS-232C	- 공중전화 교환망(PSTN)을 통한 DTE/DCE 접속 규격

(2) 인터넷 계층(Internet Layer)

- OSI 7계층의 네트워크 계층에 해당함
- 여러 개의 패킷 교환망들의 상호 연결을 위한 비연결성 프로토콜
- 통신 노드 간의 IP패킷을 전송하는 기능과 라우팅 기능을 담당한다.
- 프로토콜

프로토콜	설명
IP	- 여러 개의 패킷 교환망들의 상호 연결을 위한 비연결성 프로토콜
ICMP	- 인터넷 제어 메시지 프로토콜 - IP 패킷 전송 중 에러 발생 시, 에러 발생 원인을 알려주거나 네트워크 상태를 진단해주는 기능 제공
IGMP	- 호스트가 멀티캐스트 그룹 구성원을 인접한 라우터에게 알리는 프로토콜
ARP	- IP 주소를 MAC 주소로 변환한다. - 네트워크 상에서 IP주소를 물리적 네트워크 주소(MAC)로 대응시키기 위해 사용되는 프로토콜
RARP	- 호스트의 물리적 주소로부터 IP 주소를 구할 수 있도록 하는 프로토콜

(3) 전송 계층(Transport Layer)

- OSI 7계층의 전송 계층에 해당함
- 통신 노드 간의 연결을 제어하고, 신뢰성 있는 데이터 전송을 담당한다.
- 프로토콜

프로토콜	설명
TCP	- 클라이언트와 서버가 연결된 상태에서 데이터를 주고받는 프로토콜 - TCP는 데이터를 정확하고 안정적으로 전달할 수 있다 데이터의 전송 순서를 보장한다 연결의 설정 (3-way handshaking) - 연결의 해제 (4-way handshaking) - UDP 보다 전송 속도가 느리다 헤더정보 : 송수신자의 포트번호, 시퀀스 번호, 응답번호, 데이터 오프셋, 예약필드, 제어비트, 윈도우 크기, 체크섬, 긴급위치
UDP	- 데이터를 주고받을 때 연결 절차를 거치지 않고 발신자가 일방적으로 데이터를 발신하는 프로토콜 - TCP보다는 빠른 전송을 할 수 있지만 데이터 전달의 신뢰성은 떨어진다. - 중간에 패킷이 유실이나 변조가 되어도 재전송을 하지 않는다. - 헤더정보 : 송수신자의 포트번호, 데이터의 길이, 체크섬

(4) 응용 계층(Application Layer)

- 사용자와 가장 가까운 계층으로 사용자가 소프트웨어 application과 소통할 수 있게 해준다.
- 응용프로그램(application)들이 데이터를 교환하기 위해 사용되는 프로토콜
- 프로토콜

프로토콜		설명
	НТТР	- 서버와 클라이언트 간에 하이퍼텍스트 문서를 송수신하는 프로토콜 - 80 포트 사용
TCP 프로토콜	FTP	- 인터넷에서 파일을 전송하는 기본 프로토콜 - Data 전달 시 : 20 포트, 제어정보 전달 시 : 21 포트
	SMTP	- 이메일 전송에 사용되는 네트워크 프로토콜 - 25 포트 사용
UDP 프로토콜	DNS	- 호스트의 도메인 이름을 네트워크 주소로 바꿔주는 프로토콜 - 53 포트 사용
	SNMP	- 네트워크에 있는 장비들을 관리하기 위한 프로토콜
	DHCP	- IP 자동 할당과 분배 기능

3. TCP/IP 헤더

(1) IP(Internet Protocol)

① IP의 특징

- 호스트간의 통신만을 담당
- 송신 호스트와 수신 호스트가 패킷 교환 네트워크에서 정보를 주고받는 데 사용하는 정보 위주의 규약
- 비신뢰성(unreliability)과 비연결성(connectionlessness)
- 흐름제어, 오류 복구 기능은 없음

② IP 헤더

- 버전(Version)
- IP 프로토콜의 버전
- 헤더길이(Header Length)
- IP 헤더의 길이
- 헤더의 길이 20Byte ~ 60Byte
- 서비스 유형(Type of Service, TOS)
- 요구되는 서비스 품질
- 전체길이(Total Packet Length)
- IP 헤더 및 데이터를 포함한 IP 패킷 전체의 길이를 바이트 단위로 길이를 표시
- 식별자(Identifier)
- 각 데이터 그램을 식별한다.
- 데이터그램이 단편화되었을 때 단편화된 데이터그램이 원래 어떤 데이터그램에 속해 있는지를 확인한다.
- 플래그(Flags)
- IP 데이터그램이 단편화됬는지를 나타내는 필드
- 단편 오프셋(Fragmentation offset)
- 단편화된 데이터그램의 순서
- 수명(Time to live)
- 패킷이 라우터를 최대 몇 번 거쳐서까지 살아 남을 것인지를 나타내는 필드
- 패킷이 라우터를 거칠 때마다 이 필드의 값이 1씩 감소되며 0이 되면 버려진다.
- 프로토콜(Protocol)
- IP 데이터그램의 데이터(페이로드)에 담겨져 있는 상위 계층의 프로토콜을 알려준다.
- ICMP가 1번, IGMP가 2번, TCP가 6번, UDP가 17번
- 체크섬(Header checksum)
- Header 필드의 오류를 검출할 수 있는 정보가 담긴 필드
- 발신지 주소(Source IP address)
- 패킷을 보낸 노드의 IP 주소
- 목적지 주소(Destination IP address)
- 패킷이 도착해야하는 목적지의 IP 주소

(2) TCP(Transmission Control Protocol)

① TCP의 특징

- 연결형 서비스를 지원하는 전송 계층 프로토콜
- 양 종단간 신뢰성 있는 데이터 전달과 흐름제어를 한다.
- 인터넷상에서 데이터를 메시지의 형태로 보내기 위해 IP와 함께 사용하는 프로토콜
- IP가 데이터의 배달을 처리한다면, TCP는 패킷을 추적 및 관리한다.

② TCP 헤더

- 송신지 포트(Source Port)
- 출발지 포트
- 수신지 포트(Destination Port)
- 수신지 포트
- 순서 번호(Sequence Number)
- 바이트 단위로 순서화되는 번호
- 이것을 통해 신뢰성(3-Way Handshake) 및 흐름제어(sliding Window) 기능 제공
- 확인 응답 번호(Acknowledgment Number)
- 수신하기를 기대하는 다음 byte 번호 (마지막으로 수신에 성공한 번호의 +1)
- 헤더 길이(Header length)
- TCP 헤더 길이
- 예약된 필드(Reserved)
- 예약된 필드, 현재 사용되지 않음
- 윈도우 크기(Window)
- 자신의 수신 버퍼 여유용량
- 검사합(Checksum)
- 긴급포인터(Urgent Pointer)
- 어디서부터 긴급 값인지 알려주는 플래그(TCP Flags의 U와 세트)
- TCP Flags
- U (Urgent) : 긴급 비트, 내가 지금 보내는 데이터가 우선순위가 높음. Urgnet Pointer와 세트
- A (Ack) : 승인 비트, 물어본 것에 대한 응답을 해줄 때 사용됨
- P (Push) : 밀어넣기 비트, 데이터를 계속 밀어 넣겠다.
- R (Reset) : 초기화 비트, 연결 상태를 리셋하게 됨
- S (Syn) : 동기화 비트, 상대방과 연결을 시작할 때 무조건 사용되는 플레그
- F (Fin) : 종료 비트

Section 8. 라우팅 프로토콜

1. 라우팅 프로토콜

(1) 라우터(Router)

- Path Determination(경로설정)과 Switching(스위칭)을 하는 장비
- 데이터 패킷이 목적지까지 이동할 때 최적의 경로를 판단하는 장비

(2) 라우팅 프로토콜

- 패킷이 목적지까지 가는 방법을 결정해주는 프로토콜
- RIP, OSPF, IGRP, BGP 등이 있다.

2. 라우팅 프로토콜의 종류

(1) 라우팅 경로 고정 여부

① 정적 라우팅 프로토콜(Static Routing Protocol)

- 관리자가 경로를 직접 지정하는 수동형 방식
- 라우터 부하경감
- 고속 라우팅 가능
- 관리자의 관리부담 증가
- 정해진 경로 문제 발생시 라우팅 불가능

② 동적 라우팅 프로토콜(Dynamic Routing Protocol)

- 라우터가 스스로 라우팅 경로를 동적으로 결정
- 종류 : RIP, IGRP, OSPF, EIGRP

(2) 내/외부 라우팅

① IGP(Interior Gateway Protocol)

- AS(Autonomous System) 내에서의 라우팅을 담당하는 라우팅 프로토콜
- 종류 : RIP, IGRP, OSPF, EIGRP

② EGP(Exterior Gateway Protocol)

- 서로 다른 AS 사이에서 사용되는 라우팅 프로토콜
- 종류 : BGP, EGP

(3) 라우팅 테이블 관리

① 거리 벡터 알고리즘(Distance Vector Algorithm)

- 라우팅 Table에 목적지까지 가는데 필요한 거리와 방향만을 기록(인접 라우터)
- 종류 : RIP, IGRP

② 링크 상태 알고리즘(Link State Algorithm)

- 라우터가 목적지까지 가는 경로를 SPF(Shortest Path First) 알고리즘을 통해 모든 라우팅 테이블에 기록해 두는 것 (모든 라우터)
- 종류 : OSPF

3. 주요 라우팅 프로토콜

(1) RIP(Routing Information Protocol)

- 벨만 포드 거리벡터 알고리즘을 사용한 HOP 수 기반 라우팅 프로토콜
- 최대 15홉을 지원하며, 소규모망에 적합
- 30초마다 라우팅 테이블을 이웃 라우터들과 공유
- 네트워크 속도나 안정성을 고려하지 않고, HOP 수만을 고려하여 설계

(2) OSPF(Open Shortest Path First)

- 다익스트라 알고리즘기반 방식
- 최적 경로 선택을 위해 홉수, 대역폭, 지연시간 등을 고려
- 링크상태 변화시에만 라우팅정보전송

(3) BGP(Border Gateway Protocol)

• RIP나 OSPF 등의 라우팅 방식에 비해 규모가 큰 망을 지원할 수 있는 Path Vector기반 라우팅 프로토콜

이 자료는 대한민국 저작권법의 보호를 받습니다.

작성된 모든 내용의 권리는 작성자에게 있으며, 작성자의 동의 없는 사용이 금지됩니다. 본 자료의 일부 혹은 전체 내용을 무단으로 복제/배포하거나 2차적 저작물로 재편집하는 경우, 5년 이하의 징역 또는 5천만 원 이하의 벌금과 민사상 손해배상을 청구합니다.