Temas de Geometría (tarea)

Eduardo León (梁遠光)

Mayo 2019

Problema 1.

- 1. Considere \mathbb{R}^{2n} con base $\{e_1 \dots e_n, f_1 \dots f_n\}$. Muestre que la 2-forma ω que satisface $\omega(e_i, e_j) = 0$, $\omega(f_i, f_j) = 0$ y $\omega(e_i, f_j) = \delta_{ij}$ define una estructura simpléctica en \mathbb{R}^{2n} .
- 2. Sea V un espacio vectorial de dimensión finita y V^* su respectivo espacio dual. Considere el espacio $E = V \oplus V^*$ y el mapa $\omega : E \to \mathbb{R}$ definido por $\omega(u \oplus \alpha, v \oplus \beta) = \beta(u) \alpha(v)$. Muestre que (E, ω) es un espacio vectorial simpléctico.
- 3. Sean $E = \mathbb{C}^n$ y $h: E \times E \to \mathbb{C}$ un producto hermitiano complejo positivo. Muestre que E, visto como el espacio vectorial real \mathbb{R}^{2n} y con la forma bilineal $\omega = \operatorname{im} \circ h$, es un espacio vectorial simpléctico.
- 4. Muestre de manera explícita que estos tres espacios son simplectomorfos.

Solución.

1. La matriz que representa a ω en esta base es nuestra matriz favorita

$$[\omega] = \begin{bmatrix} 0 & I_n \\ -I_n & 0 \end{bmatrix}$$

Por inspección directa, $[\omega]$ es una matriz antisimétrica y sus filas son linealmente independientes. Por ende, ω es una forma bilineal antisimétrica no degenerada.

- 2. Sea $\{v_1 \dots v_n\}$ una base de V y sea $\{v_1^{\star}, \dots v_n^{\star}\}$ la base dual correspondiente de V^{\star} . Consideremos la base $\{e_1 \dots e_n, f_1 \dots f_n\}$ de E definida por $e_i = v_i \oplus 0$ y $f_i = 0 \oplus v_i^{\star}$. En esta base, $\omega(e_i, e_j) = 0$, $\omega(f_i, f_j) = 0$ y $\omega(e_i, f_j) = \delta_{ij}$ Por ende ω es una forma simpléctica sobre E.
- 3. Existe una base ortonormal compleja $\{u_1 \dots u_n\}$ tal que $h(u_k, u_k) = a_k^2$ y $h(u_k, u_l) = 0$ para $k \neq l$. Por hipótesis, $a_k^2 \neq 0$. Para cada k, elijamos arbitrariamente una raíz cuadrada $a_k \neq 0$. Consideremos la base $\{e_1 \dots e_n, f_1 \dots f_n\}$ de E definida por $e_k = u_k/a_k$ y $f_k = iu_k/a_k$. En esta base, $\omega(e_k, e_l) = 0$, $\omega(f_k, f_l) = 0$ y $\omega(e_k, f_l) = \delta_{ij}$. Por ende ω es una forma simpléctica sobre E.
- 4. Identifiquemos de la manera obvia las bases simplécticas $\{e_1 \dots e_n, f_1 \dots f_n\}$ de los tres casos.

Problema 2. Sea (E,ω) un espacio vectorial simpléctico. Dado un subespacio vectorial $F\subseteq E$, considere

$$F^{\omega} = \{e \in E : \omega(e, f) = 0 \text{ para todo } f \in F\}$$

Se dice que F es isotrópico si $F \subseteq F^{\omega}$, coisotrópico si $F^{\omega} \subseteq F$ y lagrangiano si $F^{\omega} = F$.

- 1. Muestre que ω es no degenerado si y sólo si la aplicación lineal $\omega^b : E \to E^*$ definida por $\omega^b(v) : E \to \mathbb{R}$ con $\omega^b(v)(u) = \omega(v,u)$ es no degenerada.
- 2. Muestre que dim $F^{\omega} = \dim E \dim F$.
- 3. Muestre que $(F^{\omega})^{\omega} = F$.
- 4. Muestre que todo espacio vectorial simpléctico (E,ω) contiene un subespacio lagrangiano $L \subset E$.

Solución.

- 1. Para todo $v \in E$, decir que $\omega(v, E) = 0$ equivale a decir que $\omega^b(v) = 0$. Entonces, ω es no degenerado si sólo si ω^b es un isomorfismo.
- 2. Sea $\iota: F \to E$ la inclusión y sea $f = \iota^* \circ \omega^b$. Por el teorema de rango y nulidad,

$$\dim F^{\omega} = \dim \ker f = \dim E - \dim f(E) = \dim E - \dim F^{\star} = \dim E - \dim F$$

- 3. Por definición, $F^{\omega} \subseteq E$ es el subespacio maximal tal que $\omega(F^{\omega}, F) = \omega(F, F^{\omega}) = 0$. Por construcción, $F \subseteq (F^{\omega})^{\omega}$. Además, dim $F = \dim(F^{\omega})^{\omega}$. Entonces $F = (F^{\omega})^{\omega}$.
- 4. Dado un subespacio $F \subseteq E$ isotrópico pero no lagrangiano, tomemos una recta $L \subseteq F^{\omega}$ no contenida en F y pongamos $G = F \oplus L$. Por linealidad,

$$\omega(G,G) = \omega(F,F) + \omega(F,L) + \omega(L,F) + \omega(L,L) = 0$$

Entonces G también es isotrópico. Por construcción, la nueva brecha dimensional dim G^{ω} – dim G es más corta que la brecha original dim F^{ω} – dim F. Por inducción, todo subespacio isotrópico se puede incrustar en un subespacio lagrangiano. Subespacios isotrópicos no hacen falta, tomemos F = 0.

Problema 3. Sea (E, ω) un espacio vectorial simpléctico y sea $F \subseteq E$ un subespacio vectorial.

- 1. Muestre que $\ker(\omega|_F) = F \cap F^{\omega}$.
- 2. Considere el siguiente espacio "simpléctico":

$$E_F = \frac{F}{F \cap F^{\omega}}$$

A partir de ω , defina una 2-forma en E_F que haga de E_F un espacio cociente simpléctico.

Solución.

- 1. Sea $\iota: F \to E$ la inclusión. Entonces $(\iota^*\omega)^b = \iota^* \circ \omega^b \circ \iota$. Por definición, $F^\omega = \ker(\iota^* \circ \omega^b)$. Entonces $\ker(\iota^*\omega) = \ker(\iota^*\omega)^b$ es la preimagen de F^ω bajo la inclusión, es decir, $F \cap F^\omega$.
- 2. Definamos la 2-forma $\tau:E_F\times E_F\to \mathbb{R}$ por $\tau([u],[v])=\omega(u,v).$ Entonces:
 - τ está bien definida porque ω es constante en cada clase módulo $\ker \omega = F \cap F^{\omega}$.
 - τ es antisimétrica porque $\tau([v], [u]) = \omega(v, u) = -\omega(u, v) = \tau([u], [v])$.
 - τ es no degenerada porque $\tau^b([u]) = \tau^b([v])$ si y sólo si $u v \in \ker(\iota^*\omega)$, es decir, [u] = [v].

Problema 4. Sea M una variedad diferenciable y sea T^*M su fibrado cotangente. Muestre que la 1-forma tautológica $\theta \in \Omega^1(T^*M)$ es la única con la propiedad de que $\alpha^*\theta = \alpha$ para todo $\alpha \in \Omega^1(M)$.

Solución. Sea $\alpha = \sum_i \xi_i dx_i$. El diferencial de $\alpha: M \to T^*M$ es

$$\begin{split} d\alpha: TM &\longrightarrow T(T^{\star}M) \\ \frac{\partial}{\partial x_i} &\longmapsto \frac{\partial}{\partial x_i} + \sum_j \frac{\partial \xi_j}{\partial x_i} \frac{\partial}{\partial \xi_j} \end{split}$$

Sea $\theta = \sum_{i} u_i dx_i + \sum_{j} v_j d\xi_j$. Entonces,

$$(\alpha^* \theta)_x = \theta_p \circ d\alpha_x = \sum_i \left[u_i + \sum_j v_j \frac{\partial \xi_j}{\partial x_i} \right] dx_i$$

Supongamos que $\alpha^*\theta = \alpha$. Puesto que $dx_1 \dots dx_n$ son linealmente independientes,

$$\xi_i = u_i + \sum_j v_j \frac{\partial \xi_j}{\partial x_i}$$

Supongamos que α es genérica. Entonces no existe ninguna relación no trivial entre ξ_i y sus derivadas direccionales. Por ende $u_i = \xi_i$ y $v_j = 0$, es decir, θ es necesariamente la 1-forma tautológica.

Problema 5. Sea M una variedad diferenciable. Sea $\tau: \Omega^1(M) \to \Omega^1(M)$ la traslación por $\alpha \in \Omega^1(M)$.

- 1. Sea $\theta \in \Omega^1(T^*M)$ la 1-forma tautológica y sea $\pi: T^*M \to M$ la proyección del fibrado a su espacio base. Muestre que $\tau^*\theta \theta = \pi^*\alpha$.
- 2. Muestre que τ es un simplectomorfismo si y sólo si $d\alpha = 0$.

Solución. Abreviemos $p = (x, \beta_x)$ y $q = (x, \beta_x + \alpha_x)$ por conveniencia.

1. Por definición, $\theta_p = (d\pi_p)^*(\beta)$. Además, $\pi \circ \tau = \pi$. Entonces,

$$(\tau^*\theta)_p = (d\tau_p)^*(d\pi_q)^*(\beta + \alpha)_x = (d\pi_p)^*(\beta_x + \alpha_x) = \theta_p + (\pi^*\alpha)_p$$

2. La forma simpléctica de T^*M es $\omega = -d\theta$. Entonces $\tau^*\omega = \omega - \pi^*d\alpha$. Como π es una sumersión, el pullback π^* es inyectivo, por ende $\pi^*d\alpha = 0$ si y sólo si $d\alpha = 0$.

Problema 6. Sea (M, ω) una variedad simpléctica de dimensión 2n + 2. Sea $X \in \mathfrak{X}^{\infty}(M)$ un campo de Liouville, i.e., tal que $\mathcal{L}_X \omega = \omega$.

- 1. Muestre que la 1-forma $\alpha = \iota_X \omega$ es de contacto en cualquier hipersuperficie de M transversa a X.
- 2. Sea $M=\mathbb{R}^{2n+2}$ con la forma simpléctica estándar. Considere el campo vectorial

$$X = \frac{1}{2} \sum_{i} \left(x_i \frac{\partial}{\partial x_i} + y_i \frac{\partial}{\partial y_i} \right)$$

Exhiba la estructura de contacto sobre la hipersuperficie transversa a X. ¿Es ésta la esfera S^{2n+1} con su estructura de contacto estándar?

Solución.

1. Por definición, $d\omega = 0$. Por la fórmula de Cartan, la hipótesis sobre X se reduce a

$$\mathcal{L}_X \omega = \iota_X (d\omega) + d(\iota_X \omega) = d(\iota_X \omega) = \omega$$

Puesto que ω es de grado par,

$$\alpha \wedge (d\alpha)^n = \iota_X \omega \wedge \omega^n = \frac{1}{n+1} \iota_X(\omega^{n+1})$$

Esta forma es no degenerada en cualquier subfibrado de TM transverso a X. En particular, si N es una hipersuperficie de M transversa a X, entonces la forma dada es no degenerada en TN.

2. No es correcto hablar de la hipersuperficie transversa a X, porque existen varias. Por supuesto, una de ellas es la esfera unitaria centrada en el origen. Otra de ellas es el hiperplano $x_0 = 1$.

La forma de contacto inducida sobre las hipersuperficies transversas es

$$\alpha = \iota_X \omega = \frac{1}{2} \sum_i (x_i \, dy_i - y_i dx_i)$$

Si la hipersuperficie en cuestión es la esfera S^{2n+1} , entonces α es, salvo el fastidioso factor de escala, la forma de contacto estándar.

Problema 7. Sea (M, η) una variedad de contacto y sea $\pi : M \times \mathbb{R} \to M$ la proyección sobre M. Pruebe que $\omega = d(e^t \pi^* \eta)$ es una forma simpléctica sobre $M \times \mathbb{R}$.

Solución. Por definición, ω es exacta, por ende ω es cerrada. Sólo falta verificar que ω es no degenerada y automáticamente ω será simpléctica. Pongamos $z=e^t$ para facilitar los cálculos. Entonces,

$$\omega = d(z \, \pi^* \eta) = dz \wedge \pi^* \eta + z \, \pi^* d\eta$$

Puesto que ω es de grado par, sus sumandos conmutan. Por la fórmula binomial de Newton,

$$\omega^n = \sum_{k=0}^n \binom{n}{k} \left(dz \wedge \pi^* \eta \right)^k \wedge (z \, \pi^* d\eta)^{n-k}$$

Los términos con $k \ge 2$ se anulan, porque $dz^2 = 0$. Si tomamos dim M = 2n - 1, el término con k = 0 también se anula, porque $(d\eta)^n$ es una 2n-forma sobre una variedad de dimensión 2n - 1. Entonces,

$$\omega^n = dy \wedge \pi^* \varphi, \qquad y = z^n, \qquad \varphi = \eta \wedge (d\eta)^{n-1}$$

Tanto dy como φ son formas de volumen sobre sus respectivos factores en $M \times \mathbb{R}$. Entonces ω^n es una forma de volumen sobre $M \times \mathbb{R}$, por ende ω es no degenerada, por ende ω es simpléctica.