ECE552 Lab Assignment 2: Dynamic Branch Prediction

Justin Sabatini & Viet Minh Nguyen

1. Microbenchmark Statistical Validation ("gcc mb.c -o mb" - no optimization)

The benchmark has an outer loop (1000000), and an inner loop (10). Inside the inner loop, we utilize the branch condition (i+j) % 3 == 0. As i changes with every iteration, it produces a varying branch pattern. Overall branch outcome: 1000000*(T(part1)(part2)(part3)) + (part 1) + N

We have 6 history bits that should recognize the entire branching pattern (e.g TTTNTN); all branch instruction PCs are only either (outer loop), (inner loop), or (if), so a PAp should predict very well (matching very low MPKI = 0.076). Also, there should be at least 3,000,000 conditional branches (correct - the rest may come from printf statement or main() function).

```
int main() {
    int result = 0;

// Loop a significant number of times to stress-test the predictor.

// The expected branch outcome would be:

// T - (then inner outcomes) * (1000000 / 3) - N

for (int i = 0; i < 1000000; i++) {

    // Nested loops can create more complex branch patterns.

    // The expected branch outcome is (inner outcomes)(for-if outcome pairs):

    // Part 1) i % 3 == 0: TT TN TN TT TN TN TT TN TN TN TN

    // Part 2) i % 3 == 1: TN TN TT TN TN TT TN TN TN TN

    // Part 3) i % 3 == 2: TN TT TN TN TT TN TN TT TN NN

    for (int j = 0; j < 10; j++) {

        if ((i+j) % 3 == 0) {

            result += j;

        }

        printf("Result: %d\n", result); // To avoid optimization out.

        return 0;
}</pre>
```

```
ug169:~/ece552/cbp4-assign2% predictor branchtrace.gz

NUM_INSTRUCTIONS : 25724851
NUM_CONDITIONAL_BR : 3022232

2bitsat: NUM_MISPREDICTIONS : 394994
2bitsat: MISPRED_PER_1K_INST : 15.355
2level: NUM_MISPREDICTIONS : 1949
2level: MISPRED_PER_1K_INST : 0.076
openend: NUM_MISPREDICTIONS : 1643
openend: MISPRED_PER_1K_INST : 0.064
```

2. Mispredictions Table

2. Wild bi editerons Tubic			
	2-bit sat counter	PAp with 2-bit sat counter	open-ended predictor
astar	Mispredicted: 3695923	Mispredicted: 1785582	Mispredicted: 604539
	MPKI: 24.639	MPKI: 11.904	MPKI: 4.030
bwaves	Mispredicted: 1181950	Mispredicted: 1072046	Mispredicted: 560515
	MPKI: 7.880	MPKI: 7.147	MPKI: 3.737
bzip2	Mispredicted: 1224989	Mispredicted: 1297738	Mispredicted: 1264983
	MPKI: 8.167	MPKI: 8.652	MPKI: 8.433
gcc	Mispredicted: 3161205	Mispredicted: 2223775	Mispredicted: 447941
	MPKI: 21.075	MPKI: 14.825	MPKI: 2.986
gromacs	Mispredicted: 1361054	Mispredicted: 1122653	Mispredicted: 1048521
	MPKI: 9.074	MPKI: 7.484	MPKI: 6.990
hmmer	Mispredicted: 2035059	Mispredicted: 2230922	Mispredicted: 2118689
	MPKI: 13.567	MPKI: 14.873	MPKI: 14.125
mcf	Mispredicted: 3657995	Mispredicted: 2024355	Mispredicted: 1755410
	MPKI: 24.387	MPKI: 13.496	MPKI: 11.703
soplex	Mispredicted: 1066132	Mispredicted: 1023018	Mispredicted: 710770
	MPKI: 7.108	MPKI: 6.820	MPKI: 4.738

3. Open-ended Branch Predictor: Based on A PPM-like, tag-based branch predictor

- Global history register: 40 bits
- Base predictor (index = PC & 0xFFF): 4096 * 4 bits
- 4 Bank predictors (index = hash(PC, varying # global history bits)): 4 * 1024 * 12 bits
 - Tag is calculated separately from index.
 - The chosen prediction is the highest table with a tag match
 - If no tag match, base predictor is used
- Total: $40 + 16k + 4 \times 12k = 64K$ bits << 128K

4. Predictor Characteristics using CACTI:

Predictor	Two-Level	Open-Ended	
Parameter changed	2 tables -> 2 files based on cache.cfg - 2level-bpred-1 (BHT) - size = 512, block size = 1 - RW port = 1 - 2level-bpred-2 (PHT) - size = 512, block size = 1 - RW port = 2	 open-ended-bpred-1 (Base) Based on cache.cfg (no tags) size = 4096, block size = 1 open-ended-bpred-2 (Banks 1-4) Based on pureRAM.cfg (NOTE) size = 1024, block size = 1 Tag size = 8 	
Area	$0.001 \text{ mm}^2 + 0.00236 \text{ mm}^2 = \mathbf{0.00336mm}^2$	$0.0068 \text{ mm}^2 + 0.0038 \text{mm}^2 * 4 = 0.022 \text{mm}^2$	
Access Latency	$0.163585 \text{ ns} + 0.175571 \text{ ns} = \mathbf{0.339ns}$	max(0.21062 ns, 0.334774 ns) = 0.334774 ns (all banks are accessed in parallel)	
Leakage Power	$0.195 \text{ mW} + 0.245847 \text{ mW} = \mathbf{0.4408mW}$	1.523 mW + 0.7747 mW * 4 = 4.622 mW	

NOTE: chose pureRAM.cfg to take into consideration the tag matching comparators that are used in our design. However, the bank entries should be accessed in this order: index - get tag

5. Work Distribution:

Justin Sabatini: Designed the microbenchmark, 2-bit saturating counter predictor, report.pdf Viet Minh Nguyen: 2-level PAp, open-ended, CACTI, report.pdf