

2017 Year 12 PHYSICS ATAR

Semester 1

Task 6: Test 1

TASK TYPE: Test

CONTENT: Vectors, Forces and Projectile Motion – 5%

	Possible Marks	Your Mark
Total	45	
Percentage	100%	

Student Name:	
Date:	

Teacher: J. Wijaya

Instruction:

- 1) Answer all questions.
- 2) All numeric answers are to be corrected to three significant figures unless specified.
- 1) The air rifles for the "duck shooting" at a fun fair fire the pellets at 30.0 ms⁻¹. A girl fires the rifle at a duck 5.00 m away. She aims horizontally (at point (0,0), origin) at the "duck" which moves sideways at 0.500 ms⁻¹. Ignore air resistance.
 - a) How long does the pellet take to reach the duck?[2]

∆nswer•			

b) How far *below origin* will the girl's pellet hit? Show your calculations. [4]

Answer: _____

c) Calculate the horizontal distance from the origin that this girl's will hit. Write the answer in the space provided. [3]

		Answer:	Left / Right (circle the correct answer) to the origin.	
2)	Ма	rvin takes 15.0 minu	tes to paddle his canoe 500 m (West to the opposite of the bank) in still water.	
	a)	Calculate Marvin's	velocity.	[2]
		Answer:	Direction:	
			vin returns to the opposite direction with the same speed. This time, due to the bws at 3.00 m s ⁻¹ to the south.	;
	b)	Draw a vector diagi	am to show the motion of going back, showing the net velocity. Give appropria	<u>te</u>
				[2]
	c)	Calculate the net ve	elocity.	[3]
				[ب]

pact
ar.

		Answer:	Direction:	
4)	The	e diagram beld	ow shows a ball is rolling down a hill and accelerates. Ignore friction.	
	a)	On the diagra	am below , with the reference to the ball, show all forces including the net force.	[2]
				[3]
	b)	If the mass of acting on the	f the ball is 60.0 kg and the incline is 15.0°, calculate magnitude the net force ball.	

Answer: _____

c) Explain if this motion relates to the Newton's first law of motion.

[2]

[3]

- 5) A cannon is projected at 37.0° at 65.0 m s^{-1} at the 125 m cliff. On the diagram below, it shows the position of the cannon at a certain time.
 - a) On the diagram,
 - i) Use letter ${\bf W}$ to show the net force of the cannon.
 - ii) Use letter **V** to show the instantaneous velocity of the cannon.

b) Use the information to calculate the horizontal distance that the cannon can reach.

Answer:			
AHSWEL.			

6)

a) A skateboarder at a skate park rides along the path shown in the diagram below. If the speed of the skateboarder at point A is 1.30 m s⁻¹, what is her speed at point B? Assume that friction is negligible.

[4]

[Reference https://www.physicsforums.com/threads/find-final-speed-using-mechanical-energy-formula.893415]

Answer:		

b) If the skater rides from the top of the path (with the height of h metres) from rest, prove that the speed at the bottom of the path is:
[3]

$$v_{bottom} = \sqrt{2 gh}$$

_		~	~
⊢m	ımanııel	Catholic	

End of the Test