WHAT IS CLAIMED IS:

1	1. A	process for rendering a manufactured article identifiable,	
2	comprising adding to sai	d article during its manufacture or coating upon said article,	
3	a quantity of at least	one taggant selected from the group consisting of up-	
4	converting, down-conv	verting, and up- and down-converting metal oxide	
5	nanoparticles having an	average size of less than 500 nm, said quantity sufficient	
6	upon illumination by an exciting energy source to generate an emission detectable		
7	against a background, said emission having a wavelength different from the		
8	wavelength absorbed by the taggant.		
1	2. T	he process of claim 1, wherein said metal oxide	
2		metal oxide nanoparticles.	
	r		
1	3. T	he process of claim 1, wherein said nanoparticles have an	
2	average size of less than	n 200 nm.	
1	4. T	he process of claim 1, wherein said nanoparticles have an	
2	average size of less than	n 100 nm.	
1	5. T	he process of claim 2, wherein said mixed metal oxide	
2		plurality of phases of metal oxide of differing composition.	
2	nanoparticles comprise a	i plaratity of phases of metal oxide of differing composition.	
1	6. T	he process of claim 1, wherein said nanoparticles contain	
2	luminescent centers con	mprising at least one transition metal or rare earth metal	
3	dopant in a metal oxide	matrix.	
1	7. T	he process of claim 2, wherein said nanoparticles contain	
2		mprising at least one transition metal or rare earth metal	
3	dopant in a metal oxide		
	-		

1	8.	The process of claim 6, wherein at least one of said dopants	
2	is one selected from	m the group consisting of Yb, Eu, Er, Tm, Gd, U, Pr, Ce, Mn,	
3	Zn, Ru, Fe, Co, a	nd Cr.	
1	9.	The process of claim 1, wherein at least a portion of said	
2	nanoparticles comp	orise yttria doped with one or more transition or rare earth dopant	
3	metals.		
1	10.	The process of claim 1, wherein at least two different	
2	populations of nano	oparticles are employed, each population containing nanoparticles	
3	exhibiting a different	ent emission than at least one other population of nanoparticles.	
1	11.	An article prepared by the process of claim 1.	
1	12.	An article prepared by the process of claim 2.	
1	13.	An article prepared by the process of claim 4.	
1	14.	An article prepared by the process of claim 6.	
1	15.	An article prepared by the process of claim 10.	
1	16.	The article of claim 10 which is a metal or metal alloy.	
_			
l '	17.	The article of claim 10 which comprises a glass or ceramic	
2	material.		
	10		
l	18.	The article of claim 10 which comprises a polymer.	
_	40		
l -	19.	A process for identifying a taggant-laden article, comprising	
2	-	osing an article prepared by the process of claim 1 with an energy	
3		by said nanoparticles and causing said nanoparticles to emit light	
4	energy as a result of said exposing:		

5	detecting one or more wavelengths of emission of said nanoparticles,		
6	and comparing detected emission to emission expected of an article containing said		
7	nanoparticles.		
1	20. The process of claim 19, wherein said nanoparticles have an		
2	average particle size of less than 100 nm, and comprise at least one metal oxide		
3	containing transition or rare earth metal doped luminescent centers.		
1	21. The process of claim 20, wherein said nanoparticles are		
2	multiphase nanoparticles containing at least two phases of metal oxides of different		
3	compositions.		
1	22. The process of claim 19, wherein said nanoparticles comprise		
2	at least two different populations of nanoparticles are employed, each population		
3	containing nanoparticles exhibiting a different emission than at least one other		
4	population of nanoparticles.		
1	23. The process of claim 19, wherein said energy source		
2	comprises infrared light, ultraviolet light, or both infrared and ultraviolet light, and		
3	said nanoparticles emit visible light.		
1	24. The process of claim 23, wherein said energy source		
2	comprises one or more lasers		