. ELECTRONIC SYSTEMS AND INSTRUMENTS . COMPUTER MODULE

. PROPULSION . STRUCTURAL DYNAMICS

COPY	0F	
HARD COPY	\$.	
MICROFICHE	\$.	

Copy No. (5%) of (

REPRODUCTION IN WHOLE OR IN PART, OF THIS REPORT, IS PERMITTED FOR ANY PURPOSE OF THE UNITED STATES GOVERNMENT.

Extension of

Propeller Blade Stress

Program

GASL TECHNICAL REPORT 466

By

E. Lieberman & J. Hoffman

Prepared for

David Taylor Model Basin
Dept. of The Navy
Office of Naval Research
Washington, D.C.
Contract No. Nonr 4321(00)

Prepared by

General Applied Science Laboratories, Inc. Merrick and Stewart Avenues Westbury, L.I., New York

October, 1964

Approved by

Antonio Ferz

President

THE RESEARCH CONTAINED HEREIN WAS SPONSORED BY THE BUREAU OF SHIPS FUNDAMENTAL HYDRO-MECHANICS RESEARCH PROGRAM ADMINISTERED BY THE DAVID TAYLOR MODEL BASIN.

TABLE OF CONTENTS

Section	<u>Title</u>	Page
I	Introduction	1
II	Analysis	3
III	Results of Test Runs	6
IV	Conclusions	12
v	Input Format	13
	References	19

I INTRODUCTION

The existing IBM 7090 computer program to calculate static stress distributions of propeller blades (ref.2) has been revised to execute the full potential of the program, i.e. to generate 108 degrees of freedom. As noted in the conclusions of ref. 2, the round-off error accumulated in the process of solving a system of more than 90 equations had precluded the full exploitation of the existing program. The aforementioned revision consisted of developing a technique which would result in a solution for a system as high as 108 equations.

Two techniques were investigated. One was to utilize a "brute force" approach and invert the coefficient matrix in double precision, using a routine which ignored the fact that the matrix was positive-definite. The other approach was to partition the matrix into 9 sub-matrices (6 independent due to symmetry) and generate the solution vector; the inverse is not calculated. Either technique would then be followed by appropriate iteration schemes which would refine the solution vector to the required precision.

The direct inversion method enjoyed the advantage of always being able to generate a solution vector; past experience, however, indicated that direct inversion of such a large system invariably produced large round-off errors and a corresponding relatively inaccurate solution vector. It was necessary to determine whether the subsequent iteration schemes would filter out the "noise" in this solution within a reasonable amount of machine time.

The Gauss-Seidel iteration is unconditionally convergent for a positive-definite matrix; however, convergence can be extremely slow - perhaps prohibitively slow - if the trial solution vector is a very poor approximation of the true solution.

The partitioning method operates on a family of submatrices of size 36 x 36 at most, rather than a single
108 x 108 matrix. Three inversions are executed on these
smaller-sized matrices; the resulting round-off error using
double-precision arithmetic is virtually nill. However,
as shown in detail later, the subsequent operations include
subtractions of matrices of like terms; it is here that the
introduction of noise is likely to occur. Thus, while a
solution vector is always generated, its accuracy is subject to question.

This report should be viewed as a modification to ref.2.
All symbols are defined in ref. 2 and descriptive figures
are contained therein.

II ANALYSIS

A. Direct Inversion Method

Given the system Ax = f, the inverse of the coefficient matrix, A^{-1} is calculated leading to the solution vector, $x = A^{-1}$ f. The inverse actually generated is in error due to round-off error; call it \widetilde{A}^{-1} . Thus, the resulting solution $\widetilde{x} = \widetilde{A}^{-1}$ f is also in error. If we write $x = \widetilde{x} + \Delta x$ and define $\widetilde{f} = A\widetilde{x}$ and $f = \widetilde{f} + \Delta f$, then we may write the system as

A
$$(\tilde{x} + \Delta x) = (\tilde{f} + \Delta f)$$

which leads to A Δ x = Δ f, where Δ f = f - \tilde{f} may be calculated. If the inverse, \tilde{A}^{-1} is "sufficiently" accurate (ref.3), then we may set up an iterative scheme as follows:

$$\Delta x^{(n)} = \tilde{A}^{-1} \Delta f^{(n)}$$

$$x^{(n+1)} = x^{(n)} + \Delta x^{(n)}, f^{(n+1)} = Ax^{(n+1)}, \Delta f^{(n+1)} = f - f^{(n+1)}$$

Thus, if the iteration is convergent, Δx approaches zero and the desired precision of the solution vector is attained.

Subsequently, a Sidelian iteration is performed to further refine the solution. During the course of each sweep thru the system, the elements of the solution vector are calculated in terms of the "most recent" values:

$$x_1 = \frac{1}{a_{i,i}} \left\{ f_i - \sum_{j=1}^{N_1} a_{i,j} x_j \right\}, i = 1,2,3, \dots, N$$

In the above discussion,

A is the matrix of coefficients (strain energy matrix, ref. 1)

x is the (unknown) solution vector

f is the forcing vector which is calculated previously by the program, utilizing the pressure loading input data.

N is the size of the system ≤108

 Δx , Δf are error vectors

B. Partitioning Method

The system Ax = f may be partitioned into sub-matrices, a_{ij} , and vectors, x_i and f_i as follows:

$$\begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} f_1 \\ f_2 \\ f_3 \end{bmatrix}$$

These partitioned elements may be operated upon by a Gauss-Jordan reduction scheme to yield an upper triangular system:

where
$$b_{22} = a_{22} - a_{21} a_{11} a_{12}$$

$$b_{23} = a_{23} - a_{21} a_{11} a_{13} ; b_{32} = b_{23}$$

$$b_{33} = a_{33} - a_{31} a_{11} a_{13}$$

$$c_{33} = b_{33} - b_{32} b_{22} b_{23}$$

$$g_{2} = f_{2} - a_{21} a_{11} f_{1}$$

$$g_{3} = f_{3} - a_{31} a_{11} f_{1} - b_{32} b_{22} f_{22}$$

Then utilizing "back substitution",

$$x_3 = c_{33}^{-1} g_3$$
 $x_2 = b_{22}^{-1} [g_2 - b_{23} x_3]$
 $x_1 = a_{11}^{-1} [-a_{12} x_2 - a_{13}x_3 + f_1]$

Note that since the coefficient matrix, A, is symmetric, a_{ii} is symmetric and $a_{ji} = a_{ij}^T$. There are 3 inversions performed - submatrices, a_{11} , b_{22} , c_{33} - but the inverse A^{-1} is not generated.

After the solution vector is calculated the program utilizes the Sidelian iteration scheme to refine the results, as described previously.

III RESULTS OF TEST RUNS

Two program decks were formed and were tested in parallel. Using the DD828 propeller blade configuration as the test vehicle, these programs were run on the DTMB IBM 7090 computer. To study the influence of error growth as the size of the system was increased, the programs utilized 30, 45, 63 then 84 degrees of freedom, in that sequence. The results of the two versions were compared, and these in turn were compared with the results obtained with the previous version of the program.

All results were in excellent agreement with the tone exception of the partitioning version at 84 degrees of freedom. The two new programs were then run at 75 degrees of freedom, and it was found that several elements of the solution vectors of the two new versions, differed significantly. Further examination indicated conclusively that the partitioning version was not reliable beyond 63 degrees of freedom.

The direct inversion program was then run at full capacity - 108 degrees of freedom - and the results compared favorably with those of 84 degrees of freedom. To est the accuracy of solution, the number of iterations utilized by the Sidelian technique was doubled. This final run indicated that doubling the number of iterations did not alter the solution.

These results have been plotted and appear on the following pages.

 $\sigma(1,1)$ Front Face x 10^{-4}

 σ (1,1) Back Face x 10^{-4}

PROPELLER BLADE

 σ (2,2) Front Face x 10^{-4}

 σ (2,2) Back Face x 10^{-4}

IV CONCLUSIONS

The computer program now has the capability of utilizing 108 degrees of freedom in the process of generating stress distributions for propeller blades. The results of such a test run have been plotted and may be compared with similar plots of results which were generated using 84 degrees of freedom (see ref. 2)

These comparisons indicate that no radical change in stress contours occurs as a result of increasing the number of degrees of freedom from 84 to 108; indeed, there is a marked similarity between the two sets of plots. This similarity indicates that the solution has "settled down" and that 108 degrees of freedom are adequate for the purpose of depicting the variation of displacement components over the planform of propeller blades. Thus, increased confidence is warranted in the capability of the subject computer program to generate accurate stress distributions for static, distributed loadings on propeller blades.

V INPUT FORMAT

Card	Input Information
1	Identification
2	Blank
3	Poisson's Ratio, Blade Root Geometry
4, 7, 10,	Section Properties
5, 8, 11,	Offsets to Back Face Along Section
6, 9, 12,	Offsets to Front Face Along Section
T - 1	Properties of Blade Tip
Т	Code Card
T+1, T+3, T+5,	Pressure-jumps at points on sections
	corresponding respectively to those
	sections of input cards 3, 6, 9,
	These points are from leading edge
	to 25% of chord.
T+2, T+4, T+6,	Pressure-jumps at points on sections
	corresponding respectively to those
	sections of input cards 3, 6, 9,
	These points are from 30% of chord
	to trailing edge.
С	Control Card

Next set of inputs, if any.

Card No. 1:

Any identification statement of 71 characters or less will be accepted. The statement must be punched in columns 2-72 of a card. The digit, "1" should be punched in column 1 for convenience of output.

Card No. 2:

Blank

Card No. 3

Data	Columns	Format
ν	1 - 5	XXXX.X
W_{R}	7 - 12	xx.xxx
$W_{\mathbf{L}}$	14 - 19	xx.xxx
R_{R}	21 - 26	xx.xxx
$^{ m R}{}_{ m L}$	28 - 33	xx.xxx
N	37 - 38	xx

The first word, ν , is Poisson's Ratio. The next 4 words, W_R , W_L , R_R , R_L , are indicated in Fig. 2 (ref. 2). The number of degrees of freedom for each displacement component is N. Thus for 63 degrees of freedom, N is 21. If a full-scale problem is being run (108 degrees of freedom), N may be left blank.

Card No. 4

<u>Data</u>	Columns	Format
% Radius	1 - 2	XX
Radius	4 - 9	XX.XXX or XXX.XX
Span	11 - 16	XX.XXX or XXX.XX
Pitch	18 - 24	txx.xxx or txxx.xx
Rake	26 - 32	±x.xxxx
Skew	34 - 40	±x.xxxx

Card No. 5

Data	Columns	Format
A	1 - 6	<u>+</u> X.XXX or <u>+</u> XX.XX
E	7 - 12	
F	13 - 18	
G	19 - 24	
H	25 - 30	•
J	31 - 36	ı
к	37 - 42	
L	43 - 48	
M	49 - 54	
N	55 - 60	
P	61 - 66	

Card No. 6

Identical in format to Card No. 5.

Card T-1

Card T-1		
Data	Columns	Format
ve	1 - 2	Must be blank
Radius	4 - 9	XX.XXX or XXX.XX
Thickness	11 - 16	XX.XXX
Pitch	18 - 24	XXX.XXX
Rake	26 - 32	<u>+</u> x.xxxx
Skew	34 - 40	<u>+</u> x.xxxx
Card T		
Data	Column	Format
Code	1	\mathbf{x}

Card T + 1

Data	Columns	Format
P_{O}	1 - 7	XXX.XXX
P1.25	9 - 15	
P _{2.5}	17 - 23	
P _{5.0}	25 - 31	
P7.5	33 - 39	
P ₁₀	41 - 47	
P ₁₅	49 - 55	
P ₂₀	57 - 63	
P ₂₅	65 - 71	

Card T + 2

Data	Columns	Format
P30	1 - 7	XXX.XXX
P ₄₀	9 - 15	
P ₅₀	17 - 23	
P ₆₀	25 - 31	
P ₇₀	33 - 39	
P ₈₀	41 - 47	
P ₉₀	49 - 55	
P ₉₅	57 - 63	
P ₁₀₀	65 - 71	<u> </u>

Card C

Data
CodeColumn
1Format
x

The program can accept a maximum of 12 sections corresponding to a total of 66 input cards per set.

Cards 5 and 6 specify the thickness offsets along a section at equal chord increments, from leading-edge to trailing-edge. The offset of A is the offset near the leading edge, the offset of E is at one-tenth the chord distance from the leading edge, etc. The offset of P refers to trailing edge.

Card T specifies the type of peaked loading if any. The code is "1" for a "peaked" load and a fully wetted blade, and blank for any load which is not "peaked".

Cards T+1 and T+2 specify the complete pressure-jump loading acting on that section described on cards 4, 5 and 6. The subscripts of the p's are the percentages of chord, counting from leading edge to trailing edge. For example, P_0 is the pressure-jump loading acting at the leading edge of the section under consideration; P_{20} acts at 20% of chord, or one-fifth the distance from the leading edge. Of course, P_{100} is the pressure-jump loading at the trailing edge (invariably, zero). Cards T+3 and T+4 specify the pressure-jump loading on that section described on cards 7, 8, and 9; cards T+5 and T+6 pertain to cards 10, 11, and 12, etc.

The control card dictates the action of the program after a "run" has been completed. If no more inputs follow, the control card may be blank. If it is desired to conduct an additional analysis on the same blade using a different loading, the control card must have a "2" punched in Column 1, and be followed immediately by cards specifying the loading, as described above (cards T through C). Should it be desired to conduct an analysis on another blade (no matter what the loading may be), a "1" must be punched in Column 1, followed by cards describing the new geometry and corresponding pressure-jump loading (cards 1, 2, 3..., C).

The formats indicated are representative. The decimal points may be shifted in either direction, so long as the input "word" is confined within the columns specified.

The program assumes that the tip of the blade is a point (span equal to zero) as is the case of a propeller blade. If the section at the blade tip has some span, such as the flat plates it will be necessary to input two sections extremely close to the tip. In general, both sections should be within the outer 1% of the total blade span.

REFERENCES

- 1. Lieberman, Edward, "Propeller Blade Static Stress
 Analysis", GASL Technical Report No. 225, February 1961.
- Lieberman, Edward, "Propeller Blade Vibration and Stress Analysis", GASL Technical Report No. 283, November 1963.
- 3. Bodewig, E., "Matrix Calculus", Interscience Publishers, 1956.

	Copy No.		Jopy No.
Technical Asst to Ch of Burea (Code 106) Chief, Bureau of Ships	ıu	Res. & Propeller Branch (Code 5 Commanding Officer & Director David Taylor Model Basin	17
Department of the Navy	1	Washington 7, D.C.	• •
Washington 25, D.C.	1		
Information Branch (Code 335 Chief, Bureau of Ships	5)	Stability & Control Divn (Code 53 Commanding Officer & Director David Taylor Model Basin	0)
Department of the Navy	2-4	Washington 7, D.C.	18
Washington 25, D.C.	2-4	washington i, b.c.	
Preliminary Design (Code 42) Chief, Bureau of Ships	0)	Seaworthiness & Fluid Dyn. Divn (Code 580) Commanding Officer & Director	
Department of the Navy	5	David Taylor Model Basin	
Washington 25, D.C.	5-6	Washington 7, D.C.	19
Hull Design (Code 440)		washington i, b.o.	- /
Hull Design (Code 440) Chief, Bureau of Ships		Fluid Dynamics Branch (Code 58	9)
Department of the Navy		Commanding Officer & Director	•
Washington 25, D.C.	7-9	David Taylor Model Basin	
washington 25, D.C.	1-7	Washington 7, D.C.	20
Consultant (Code 108)		, admington v, avai	
Commanding Officer & Direct	tor	Tech. Dir, Structural Mech Lab	
David Taylor Model Basin		(Code 700)	
Washington 7, D.C.	10	Commanding Officer & Director	
washington 1, D.G.	20	David Taylor Model Basin	
Library Branch (Code 142)		Washington 7, D.C.	21
Commanding Officer & Direct	tor		
David Taylor Model Basin		Chief of Naval Research	
Washington 7, D.C.	11-12	Fluid Dyn Branch, (Code 438) Department of the Navy	
Tech Director, Hydromechan	ics	Washington 25, D.C.	22-23
Lab. (Code 500)	• • •	Chief, Bureau of Naval Weapons	
Commanding Officer & Direc	tor	Dyn Section (Code RAAD-222)	
David Taylor Model Basin	13	Attention: Mr. D. Michel	
Washington 7, D.C.	13	Washington'25, D.C.	24
Contract Res. Admin. (Code	5121	Who hang ton bo, bio.	
Commanding Officer & Direc	¥	Commander	
David Taylor Model Basin	.0.	U.S. Naval Ordnance Lab	
Washington 7, D.C.	14-15	White Oak, Maryland	25
magnington (, D, C,	****	and warry around yourse	
Ship Powering Divn (Code 52)	0)	Commander	
Commanding Officer & Direc	•	U.S. Naval Ordnance Test Static	
David Taylor Model Basin		China Lake, California	26
Washington 7. D.C.	16		

Co	py No.		Copy .
Officer-in-charge		Commander	
Pasadena Annex		Air Res & Development Comma	nd
U.S. Naval Ordnance Test Sta	tion	Attention: Mechanics Branch	
Oceanic Research (Code P-50		AFOSR	
3202 E. Foothill Blvd.	•,	14th and Constitution	
Pasadena 8, Calif	27-29	Washington 25, D.C.	47
rasadena o, Cam	61-67	washington 23, D.C.	
Dr. G.B. Schubauer, Chief		Commander	
Fluid Mechanics Section		Wright Air Development Divn	
National Bureau of Standards		Attn: Mr. W. Mykytow, Dyn Bra	nch
Washington 25, D.C.	30	Wright-Patterson AFB, Ohio	48
Dr. J.M. Franklin, Consultan	•	Dr. F.H. Todd	
National Bureau of Standards	.6	Superintendent, Ship Divn.	
	21	•	
Washington 25, D.C.	31	National Physical Lab.	40
Mr. I.E. Garrick - Director		Teddington, Middlesex, Eng.	49
		Hand Asyndemomics Division	
Langley Research Center	32	Head Aerodynamics Division	
Langley Field, Virginia	32	National Physical Lab.	50
M. D. T. March		Teddington, Middlesex, Eng.	50
Mr. D.J. Marten - Director		3.60 A 613 01 05	
Langley Research Center	••	Mr. A. Silverleaf	
Langley Field, Virginia	33	National Physical Lab.	
		Teddington, Middlesex, Eng.	51
Natl Research Council of Can.	•		
Hydromechanics Lab		Head, Aerodynamics Dept.	
Ottawa 2, Canada	34	Royal Aircraft Establishment	
		Mr. M.O.W. Wolfe	
Mr. R.P. Godwin, Acting Ch.	· ·	Farnborough, Hants, Eng.	52-53
Office of Res. & Development			
Maritime Administration		Boeing Airplane Company	
441 G. Street, N.W.		Seattle Division	
Washington 25, D.C.	35	Mr. M.J. Turner	
		Seattle, Washington	54
Commander		•	
Armed Svc Tech Inf Agency		Dr. M.S. Plesset	
Attention: TIPDR		Calif Institute of Technology	
Arlington Hall Station		Pasadena, California	55
Arlington 12, Virginia	36-45		
The same of the same	50-25	Dr. T.Y. Wu	
Office of Technical Services		Calif. Institute of Technology	
OTS, Dept of Commerce		Pasadena, California	56
Washington 25, D.C.	46		
Traditing to it by D. O.	70	Dr. A.J. Acosta	
		Calif. Institute of Technology	
			57
		Pasadena, California	51

Сору	No.	_	Copy No
Mr. A.D. MacLellan		Mr. E. Bower	
Systems Dynamics Group		Grumman Aircraft Engrg Corp	
Convair		Bethpage, LI, New York	68
P.O. Box 1950			
San Diego 12, California	58	Grumman Aircraft Engrg Corp	
		Dyn Developments Division	
Mr. H. T. Brooke		Babylon, New York	69
Hydrodynamics Group		•	
Convair		President, Hydronautics, Inc.	
P.O. Box 1950		200 Monroe Street	
San Diego 12, California	59	Rockville, Maryland	70-71
Mr. W. Targoff		Lockheed Aircraft Corp	
Cornell Aeronautical Lab		Missiles & Space Divn	
4455 Genesee Street		Attn: R.W. Kermeen	
Buffalo, New York	60	Palo Alto, California	72
Mr. R. White		Prof. H. Ashley	
Cornell Aeronautical Lab		Mass Institute of Technology	
4455 Genesee Street		Fluid Dyn Research Lab	
Buffalo, New York	61	Cambridge 39, Mass	73
Mr. C.J. Henry		Prof. M. Landahl	
Director, Davidson Lab		Mass Institute of Technology	
Stevens Institute of Technology		Fluid Dyn Research Lab	
Hoboken, New Jersey	62-63	Cambridge 39, Mass	74
Mr. S. Tsakonas		Prof. J. Dugundji	
Director, Davidson Lab		Mass Institute of Technology	
Stevens Institute of Technology		Fluid Dyn Research Lab	
Hoboken, New Jersey	64	Cambridge 39, Mass	75
Electric Boat Division		Midwest Research Institute	
General Dynamics Corp		Attn: Mr. Zeydel	
Attn: Mr. Robert McCandliss		425 Volker Boulevard	
Groton, Connecticut	65	Kansas City 10, Missouri	7 6
Gibbs and Cox, Inc.		Ordnance Research Laboratory	
21 West Street		Pennsylvania State University	
New York, New York	66	Dr. M. Sevik	
		University Pk, Pennsylvania	77
Mr. E. Baird			
Grumman Aircraft Engrg Corp			
Bethpage, LI, New York	67		

Copy No.		Copy No	
Dr. H.N. Abramson - Director Dept of Mechanical Sciences Southwest Research Institute 8500 Celebra Road	or	University of California Dept of Engrg Institute of Engrg Res Attn: Dr. J.V. Wehausen	
San Antonio 6, Texas	78	Berkeley, California	87
Mr. G. Ransleben - Director		Prof H.A. Schade, Head	
Dept of Mechanical Sciences		Dept of Naval Architecture	
Southwest Research Institute		University of California	
8500 Celebra Road		Berkeley, California	88
San Antonio 6, Texas	79		
		Prof. B. Silberman	
Editor, Applied Mech Review		St. Anthony Falls Hydraulic Lat	
Dir - Dept of Mechanical Sci		University of Minnesota	
Southwest Research Institute		Minneapolis, Minn	89
8500 Celebra Road			
San Antonio 6, Texas	80	Mr. J.N. Wetzel	
		ot. Anthony Falls Hydraulic Lat	
Dr. B. Perry		University of Minnesota	
Stanford University		Minneapolis, Minn.	90
Department of Mathematics			
Stanford, California	81		
Dr. E.Y. Hsu			
Stanford University			
Department of Mathematics			
Stanford, California	82		
State University of Iowa			
Iowa Institute of Hydraulic Res			
Prot. L. Landweber			
Iowa City, Iowa	83		
Technical Research Group, Inc Attn: Dr. P. Kaplan 2 Aerial Way	;		
•	84-85	•	
The Rand Corporation			
Attn: Dr. B. Parkin			
1700 Main Street			
Santa Monica, Calif	86		
weens the state of the state of	24		