$$= (x \times x)^{-1} \times (x + 2)$$

E[2 | X] =0

$$X = \begin{bmatrix} 1 & 1 \\ \vdots & \vdots \\ 1 & 1 \end{bmatrix} \qquad \mathcal{E} = \begin{bmatrix} \mathcal{E}_{2} \\ \mathcal{E}_{3} \\ \vdots \\ \mathcal{E}_{T} \end{bmatrix}$$

$$h = \phi_0 + \phi_1 h \Rightarrow h = \frac{\phi_0}{1 - \phi_1}$$

$$\Rightarrow h = \frac{\phi_0}{1-\phi_1}$$

$$h = \frac{\phi_0}{1-\phi_1} \implies \phi_0 = h(1-\phi_1)$$

Gu(
$$\Gamma_{kH}$$
, Γ_{k}) = $E[(\Gamma_{kH}-\mu)(\Gamma_{k}-\mu)]$
= $E[(\phi_{i}(\Gamma_{k}-\mu)+\Sigma_{kH})(\Gamma_{k}-\mu)]$
= $E[\phi_{i}(\Gamma_{k}-\mu)+\Sigma_{kH}(\Gamma_{k}-\mu)]$
= ϕ_{i} δ_{0} + $E[E_{k}(\Sigma_{kH}(\Gamma_{k}-\mu))]$
 $E_{k}[\Sigma_{kH}]=0$

$$P_1 = \frac{y_1}{y_0} = \frac{\phi_1 y_0}{y_0} = \phi_1$$

PK = O, K

Ttx1

17/

$$E_{t}(\Gamma_{t+1}) = E_{t}(\phi_{0} + \phi_{1}\Gamma_{4} + \Sigma_{P+1})$$

$$= \phi_{0} + \phi_{1}\Gamma_{4} + E_{2}[\Sigma_{t+1}]$$

$$\frac{E_{t}(\Gamma_{t+1}-\mu)}{E_{t}(\Gamma_{t+1}-\mu)} = E_{t}(\Phi_{t}(\Gamma_{t}-\mu) + \Sigma_{t+1})$$

$$= \phi_{t}(\Gamma_{t}-\mu)$$

$$E_{t}(\Gamma_{t+1}) = \mu + \phi_{t}(\Gamma_{t}-\mu)$$

=
$$E_{t}$$
 (ϕ_{i} (r_{t} - h) + Σ_{HI}) + Σ_{HI})

Ex[[+k] = h+ +, (1+-4)

0, 50.5

Moan reversion

5

regarthe auto correlation

Et [[ttt-W]

$$= \phi_{i}^{t}.(\Gamma_{t}-\mu) = \frac{1}{2}(\Gamma_{t}-\mu)$$

