3 Limite et convergence d'une suite

3.1 Bernard s'entraîne pour le saut en hauteur. Le premier jour, il ne saute que 1 mètre de haut. Le lendemain, il atteint 1 m 50; les jours suivants, il progresse chaque jour de la moitié du progrès de la veille.

Soit u_n la hauteur que Bernard réussit à sauter le n^e jour.

- 1) Définir par une relation de récurrence la suite $(u_n)_{n\in\mathbb{N}}$.
- 2) Trouver une formule explicite pour u_n et démontrer cette formule par récurrence.
- 3) Représenter graphiquement la suite $(u_n)_{n\in\mathbb{N}}$.
- 4) Démontrer que la suite $(u_n)_{n\in\mathbb{N}}$ est croissante et majorée.
- 5) Quand Bernard va-t-il battre le record du monde? Quelle est la hauteur maximale qu'il va atteindre?

3.2 Suite $(q^n)_{n\in\mathbb{N}}$ et tableur

1) Calcul des termes de la suite

(a) Ouvrir une feuille de calcul dans un tableur (par exemple *OpenOffice.org*) et la préparer comme sur la copie d'écran ci-contre.

	Α	В	
1	raison =	0.8	
2			
3	n	u(n)	
4	0		

- (b) i. Entrer en A5 : =A4+1. Valider.
 - ii. Sélectionner la cellule A5 et recopier vers le bas à l'aide de la poignée de recopie jusqu'en A104.
- (c) i. Entrer en B4 : =\$B\$1^A4 et valider.
 - ii. Recopier vers le bas jusqu'en B104 pour obtenir les premiers termes de la suite $(q^n)_{n\in\mathbb{N}}$ pour q=0,8.
- (d) Sélectionner la plage de cellules de A4 à B30. Dans le menu *Insertion*, choisir d'insérer un diagramme. Choisir le type *Diagramme XY*, *Uniquement symboles* (voir le pictogramme ci-contre).

2) Observation du comportement de la suite pour -1 < q < 1

- (a) Entrer en B1 différentes valeurs de q telles que -1 < q < 1. Quel semble être le comportement de q^n quand n prend de très grandes valeurs?
- (b) On cherche si tous les termes de la suite rentrent dans l'intervalle]-0,1;0,1[à partir d'un certain rang. On prend ici q=0,5 (à entrer en B1).
 - i. Justifier que $q^n \in]-0,1;0,1[$ si et seulement si $|q^n| < 0,1$.
 - ii. En E1, entrer: 0.1. En C3, entrer: test.
 - iii. En C4, entrer le test : =SI(ABS(B4)<\$E\$1; "oui"; "non").
 - iv. Recopier cette formule vers le bas jusqu'en C104.

- v. Expliquer les résultats ainsi affichés en colonne C.
- vi. Quel est le premier terme de la suite à être dans]-0,1;0,1[?] Pourquoi est-on sûr que les termes suivants sont aussi dans l'intervalle]-0,1;0,1[?]
- vii. En modifiant E1, déterminer l'indice n_0 à partir duquel tous les termes de la suite sont dans]-0.01;0.01[;]-0.001;0.001[;]-0.0001[]
- (c) Reprendre les questions (b) vi. et (b) vii. pour q=0.9; q=0.2 puis pour q=-0.9; q=-0.2. On pourra présenter les résultats dans un tableau.

Définition d'une suite convergente et de la limite d'une suite

Soit $(u_n)_{n\in\mathbb{N}}$ une suite.

Un nombre réel a est appelé **limite de la suite** $(u_n)_{n\in\mathbb{N}}$ si pour tout $\varepsilon > 0$ il existe $n_0 \in \mathbb{N}$ tel que pour tout $n \ge n_0$ on ait $|u_n - a| < \varepsilon$.

On note $\lim_{n\to+\infty} u_n = a$ et on dit que la suite $(u_n)_{n\in\mathbb{N}}$ **converge** vers le nombre a.

On dit d'une suite qui ne converge pas qu'elle diverge.

La valeur $|u_n - a|$ mesure la distance entre le terme u_n et la limite a.

Le nombre ε est un nombre réel strictement positif; il est arbitrairement petit.

L'entier n_0 indique un rang à partir duquel $(n \ge n_0)$ tous les termes de la suite sont « ε -proches » de a.

Cette définition formelle exprime que u_n est arbitrairement proche de a, dès que n est suffisamment grand.

Théorème Si une suite admet une limite, cette limite est unique. On parlera donc de **la** limite d'une suite.

Preuve Soit une suite $(u_n)_{n\in\mathbb{N}}$ qui converge vers a. Supposons qu'elle converge aussi vers b avec $a\neq b$.

Choisissons $\varepsilon > 0$ tel que $]a - \varepsilon; a + \varepsilon [\cap]b - \varepsilon; b + \varepsilon [= \varnothing.$ (Il suffit pour cela de choisir $\varepsilon < \frac{1}{2}|b-a|$.)

Puisque la suite $(u_n)_{n\in\mathbb{N}}$ converge vers a, il existe $n_0\in\mathbb{N}$ tel que pour tout $n\geqslant n_0$ on ait $|u_n-a|<\varepsilon$, c'est-à-dire $u_n\in]$ $a-\varepsilon$; $a+\varepsilon$ [.

De même, comme la suite $(u_n)_{n\in\mathbb{N}}$ converge vers b, il existe $n_1\in\mathbb{N}$ tel que pour tout $n\geqslant n_1$ on ait $|u_n-b|<\varepsilon$, c'est-à-dire $u_n\in]b-\varepsilon$; $b+\varepsilon[$.

Soit $n \in \mathbb{N}$ tel que $n \ge n_0$ et $n \ge n_1$. Alors $n \in]a - \varepsilon; a + \varepsilon[\cap]b - \varepsilon; b + \varepsilon[$ contredisant l'hypothèse que cette intersection est vide. On conclut qu'il est impossible que la suite $(u_n)_{n \in \mathbb{N}}$ admette deux limites distinctes a et b.

- **3.3** Prouver que la suite $(u_n)_{n\in\mathbb{N}}$ donnée par $u_n = \frac{2n-1}{n}$ converge vers 2.
- **3.4** Prouver que la suite $(u_n)_{n\in\mathbb{N}}$ donnée par $u_n = \frac{1}{\sqrt{n}}$ converge vers 0.
- 3.5 Prouver que la suite $(u_n)_{n\in\mathbb{N}}$ donnée par $u_n=1+\frac{1}{10^n}$ converge vers 1.
- Justifier que si une suite $(u_n)_{n\in\mathbb{N}}$ a pour limite 1, tous ses termes sont positifs à partir d'un certain rang.
- 3.7 Prouver que la suite $(u_n)_{n\in\mathbb{N}}$ donnée par $u_n=(-1)^n$ diverge.
- 3.8 Soit $(u_n)_{n\in\mathbb{N}}$ une suite qui converge vers a.
 - 1) Justifier qu'il n'y a qu'un nombre fini de termes en dehors de l'intervalle] a-1 ; a+1 [.
 - 2) Donner un réel m et un réel M tels que $m \leq u_n \leq M$ pour tout $n \in \mathbb{N}$.
 - 3) Quelle propriété a-t-on ainsi démontrée?
- 3.9 Est-il vrai que toute suite bornée est convergente?
- **3.10** Prouver que la suite $(u_n)_{n\in\mathbb{N}}$ donnée par $u_n=2\,n+1$ diverge.

Théorème Toute suite croissante et majorée converge.

Preuve Soit $(u_n)_{n\in\mathbb{N}}$ une suite croissante et majorée. Désignons par M sa borne supérieure, c'est-à-dire son plus petit majorant.

Soit $\varepsilon > 0$.

Il existe $n_0 \in \mathbb{N}$ tel que $M - \varepsilon < u_{n_0}$:

dans le cas contraire, $M - \varepsilon \geqslant u_n$ pour tout $n \in \mathbb{N}$, ce qui signifie que $M - \varepsilon$ est un majorant de la suite, qui est plus petit que M, contredisant la définition de la borne supérieure.

Étant donné que la suite est croissante, on a $M - \varepsilon < u_{n_0} \le u_n \le M$ pour tout $n \ge n_0$. En d'autres termes, pour tout $n \ge n_0$, on a $|u_n - M| < \varepsilon$.

On a ainsi montré qu'une suite croissante et majorée converge vers sa borne supérieure.

3.11 Prouver le théorème suivant :

Théorème Toute suite décroissante et minorée converge.

3.12 Démontrer que la suite $(u_n)_{n\in\mathbb{N}}$ définie par $u_n = \frac{2n+3}{n+1}$ converge.

3.13 Démontrer que la suite $(u_n)_{n\in\mathbb{N}}$ définie par $u_n = \frac{n^2 - 1}{(n+2)(n+3)}$ converge.

Théorème $Si(u_n)_{n\in\mathbb{N}}$ et $(v_n)_{n\in\mathbb{N}}$ sont deux suites qui convergent respectivement vers a et b, et si λ est un nombre réel, alors :

- 1) la suite de terme général $u_n + v_n$ converge vers a + b;
- 2) la suite de terme général λu_n converge vers λa ;
- 3) la suite de terme général $u_n v_n$ converge vers a b;
- 4) la suite de terme général $\frac{u_n}{v_n}$ converge vers $\frac{a}{b}$, si $b \neq 0$ et $v_n \neq 0$ pour tout $n \in \mathbb{N}$.

Preuve

1) Soit $\varepsilon > 0$.

Comme la suite $(u_n)_{n\in\mathbb{N}}$ converge vers a, il existe $n_0\in\mathbb{N}$ tel que pour tout $n\geqslant n_0$, on ait $|u_n-a|<\frac{\varepsilon}{2}$.

De même, puisque la suite $(v_n)_{n\in\mathbb{N}}$ converge vers b, il existe $n_1\in\mathbb{N}$ tel que pour tout $n\geqslant n_1$, on ait $|v_n-b|<\frac{\varepsilon}{2}$.

Posons $n_2 = \max(n_0; n_1)$. Alors pour tout $n \ge n_2$, on a: $|(u_n + v_n) - (a + b)| = |u_n - a + v_n - b| \le |u_n - a| + |v_n - b| < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon$.

2) Soit $\varepsilon > 0$.

(a) Supposons $\lambda = 0$.

Pour tout $n \in \mathbb{N}$, on a $|\lambda u_n - \lambda a| = |0 \cdot u_n - 0 \cdot a| = 0 < \varepsilon$.

(b) Supposons $\lambda \neq 0$.

Vu que la suite $(u_n)_{n\in\mathbb{N}}$ converge vers a, il existe $n_0\in\mathbb{N}$ tel que pour tout $n\geqslant n_0$, on ait $|u_n-a|<\frac{\varepsilon}{|\lambda|}$.

Pour tout $n \ge n_0$ on a:

$$|\lambda u_n - \lambda a| = |\lambda (u_n - a)| = |\lambda| |u_n - a| < |\lambda| \frac{\varepsilon}{|\lambda|} = \varepsilon.$$

3) Soit $\varepsilon > 0$.

D'après l'exercice 3.8, toute suite convergente est bornée. Il existe donc M>0 tel que $|u_n|< M$ pour tout $n\in\mathbb{N}$.

Il existe $n_0 \in \mathbb{N}$ tel que $|u_n - a| < \frac{\varepsilon}{2|b|}$ pour tout $n \geqslant n_0$.

Il existe $n_1 \in \mathbb{N}$ tel que $|v_n - b| < \frac{\varepsilon}{2 \, \mathrm{M}}$ pour tout $n \geqslant n_1$.

Posons $n_2 = \max(n_0; n_1)$. Alors pour tout $n \ge n_2$, on a:

$$|u_n v_n - a b| = |u_n v_n - u_n b + u_n b - a b| \le |u_n v_n - u_n b| + |u_n b - a b| = |u_n| |v_n - b| + |b| |u_n - a| < M \frac{\varepsilon}{2M} + |b| \frac{\varepsilon}{2|b|} = \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon.$$

4) Au vu de la précédente propriété, il suffit de prouver que la suite de terme général $\frac{1}{v_n}$ converge vers $\frac{1}{b}$.

Il existe $n_0 \in \mathbb{N}$ tel que $|v_n - b| < \frac{1}{2}b^2\varepsilon$ pour tout $n \ge n_0$.

Il existe $n_1 \in \mathbb{N}$ tel que $|v_n - b| < \frac{1}{2}|b|$ pour tout $n \ge n_1$. Par conséquent, $|b| = |b - v_n + v_n| \le |b - v_n| + |v_n| = |v_n - b| + |v_n| < \frac{1}{2}|b| + |v_n|$ c'est-àdire $|v_n| > \frac{1}{2}|b|$ pour tout $n \ge n_1$. Il en résulte que $\frac{1}{|v_n|} < \frac{2}{|b|}$ pour tout $n \ge n_1$.

Posons $n_2 = \max(n_0; n_1)$. Alors pour tout $n \ge n_2$, on a :

$$\left| \frac{1}{v_n} - \frac{1}{b} \right| = \left| \frac{b - v_n}{v_n b} \right| = |v_n - b| \frac{1}{|v_n|} \frac{1}{|b|} < \frac{b^2 \varepsilon}{2} \frac{2}{|b|} \frac{1}{|b|} = \varepsilon.$$

Remarque Les opérations sur les limites permettent de calculer les limites directement :

$$\lim_{n \to +\infty} \frac{2n^2 - 2n + 3}{5n^2 - 7} = \lim_{n \to +\infty} \frac{n^2 \left(2 - \frac{2}{n} + \frac{3}{n^2}\right)}{n^2 \left(5 - \frac{7}{n^2}\right)} = \lim_{n \to +\infty} \frac{2 - \frac{2}{n} + \frac{3}{n^2}}{5 - \frac{7}{n^2}} = \frac{2}{5}$$

3.14 Calculer les limites suivantes et justifier :

$$1) \lim_{n \to +\infty} \frac{3n+1}{n}$$

1)
$$\lim_{n \to +\infty} \frac{3n+1}{n}$$
 2) $\lim_{n \to +\infty} \frac{2n-3}{7n}$ 3) $\lim_{n \to +\infty} \frac{2n+3}{n+1}$ 4) $\lim_{n \to +\infty} \frac{1}{n^2+n}$ 5) $\lim_{n \to +\infty} \frac{n^2-3n}{3n^2+4}$ 6) $\lim_{n \to +\infty} \frac{-3n+2}{n^2+1}$

$$3) \lim_{n \to +\infty} \frac{2n+3}{n+1}$$

4)
$$\lim_{n \to +\infty} \frac{1}{n^2 + n}$$

5)
$$\lim_{n \to +\infty} \frac{n^2 - 3n}{3n^2 + 4}$$

6)
$$\lim_{n \to +\infty} \frac{-3n+2}{n^2+1}$$

Théorème des gendarmes Si pour tout $n \in \mathbb{N}$, $u_n \leqslant v_n \leqslant w_n$ et si les suites $(u_n)_{n\in\mathbb{N}}$ et $(w_n)_{n\in\mathbb{N}}$ convergent vers la même limite a, alors la suite $(v_n)_{n\in\mathbb{N}}$ converge elle aussi vers a.

Preuve Soit $\varepsilon > 0$.

Comme la suite $(u_n)_{n\in\mathbb{N}}$ converge vers a, il existe $n_0\in\mathbb{N}$ tel que pour tout $n \ge n_0$ on ait $|u_n - a| < \varepsilon$, c'est-à-dire $u_n \in a - \varepsilon$; $a + \varepsilon$.

De même, puisque la suite $(w_n)_{n\in\mathbb{N}}$ converge vers a, il existe $n_1\in\mathbb{N}$ tel que pour tout $n \ge n_1$ on ait $|w_n - a| < \varepsilon$, c'est-à-dire $w_n \in]a - \varepsilon; a + \varepsilon[$.

Posons $n_2 = \max(n_0; n_1)$. Alors pour tout $n \ge n_2$ on a $u_n \in [a - \varepsilon; a + \varepsilon]$, $w_n \in]a - \varepsilon; a + \varepsilon[$ et aussi $u_n \leqslant v_n \leqslant w_n$, de sorte que $v_n \in]a - \varepsilon; a + \varepsilon[$, c'est-à-dire $|v_n - a| < \varepsilon$.

- Établir la convergence de la suite $(u_n)_{n\in\mathbb{N}}$ définie par $u_n = \frac{\sin(n)}{n}$. 3.15
- Déterminer la limite de la suite $(u_n)_{n\in\mathbb{N}}$ donnée par $u_n=\left(\frac{1}{n+1}\right)^n$. 3.16 Indication: montrer que $0 < u_n \leqslant \frac{1}{2^n}$.
- Déterminer la limite de la suite $(u_n)_{n\in\mathbb{N}}$ donnée par $u_n = \frac{\sqrt{n^2+1}}{n}$. 3.17
- 1) Montrer que pour tout $n \in \mathbb{N}$ on a $\sqrt{n+1} \sqrt{n} = \frac{1}{\sqrt{n+1} + \sqrt{n}}$. 3.18

- 2) En déduire que $0 < \sqrt{n+1} \sqrt{n} < \frac{1}{2\sqrt{n}}$.
- 3) Déterminer $\lim_{n \to +\infty} \sqrt{n+1} \sqrt{n}$.
- **3.19** On considère la fonction $f(x) = -\frac{1}{4}x^2 + 2x + 2$.

On définit la suite $(u_n)_{n\in\mathbb{N}}$ par $\begin{cases} u_1 = -\frac{1}{2} \\ u_{n+1} = f(u_n), n \geqslant 1 \end{cases}$.

- 1) En prenant pour unité graphique 2 cm, représenter très soigneusement le graphe de la fonction f sur l'intervalle [-1;9] ainsi que la droite d d'équation y=x.
- 2) (a) Placer u_1 sur l'axe des abscisses.
 - (b) Sachant que $u_2 = f(u_1)$, placer u_2 sur l'axe des ordonnées par construction graphique.
 - (c) Soit A_2 le point de la droite d d'ordonnée u_2 . Quelle est son abscisse? Placer u_2 sur l'axe des abscisses.
- 3) Sachant que $u_3 = f(u_2)$, expliquer comment placer u_3 sur l'axe des abscisses. Effectuer la construction.
- 4) Expliquer comment placer u_4 sur l'axe des abscisses.
- 5) Effectuer de même la construction pas à pas des termes u_5, u_6, \ldots, u_{10} sur l'axe des abscisses.
- 6) Quelle conjecture peut-on faire sur la suite $(u_n)_{n\in\mathbb{N}}$ à l'aide de cette représentation graphique?
- 3.20 L'exercice précédent a conduit à ce constat : soit $(u_n)_{n\in\mathbb{N}}$ une suite définie par une relation de récurrence du type $u_{n+1}=f(u_n)$; si cette suite converge, alors sa limite vérifie l'équation f(a)=a.

Intéressons-nous à la réciproque de cette propriété en considérant la suite définie par $\begin{cases} u_1=k\\u_{n+1}=(u_n)^2\;,n\geqslant 1 \end{cases}.$

- 1) En admettant que la suite $(u_n)_{n\in\mathbb{N}}$ converge, quelle pourra être sa limite?
- 2) Déterminer la convergence de la suite lorsque $k = \frac{1}{2}$, k = 1 et k = 2.
- 3) Que doit-on en conclure?
- **3.21** Une suite $(u_n)_{n\in\mathbb{N}}$ est suggérée par

 $\sqrt{1}$; $\sqrt{1+\sqrt{1}}$; $\sqrt{1+\sqrt{1+\sqrt{1}}}$; $\sqrt{1+\sqrt{1+\sqrt{1}+\sqrt{1}}}$; ...

- 1) Définir cette suite par une relation de récurrence.
- 2) Montrer que cette suite est convergente.
- 3) Calculer la limite de cette suite.

3.22 Justifier l'algorithme d'Héron d'Alexandrie (savant grec du I^{er} siècle après J.-C.) qui permet de s'approcher de la racine carrée d'un nombre réel positif p à partir d'une valeur initiale positive u_0 en itérant la formule récursive :

$$u_{n+1} = \frac{1}{2} \left(u_n + \frac{p}{u_n} \right)$$

Réponses

3.1 1)
$$\begin{cases} u_1 = 1 \\ u_2 = 1,50 = \frac{3}{2} \\ u_{n+1} = u_n + \frac{1}{2} (u_n - u_{n-1}), n \ge 2 \end{cases}$$
 2) $u_n = 2 - \frac{1}{2^{n-1}}$

3.8 3) Toute suite convergente est bornée.

3.14 1) 3

2) $\frac{2}{7}$

3) 2

4) 0

5) $\frac{1}{3}$

6) 0

$$3.15 \qquad \lim_{n \to +\infty} \frac{\sin(n)}{n} = 0$$

$$3.16 \qquad \lim_{n \to +\infty} \left(\frac{1}{n+1}\right)^n = 0$$

3.17
$$\lim_{n \to +\infty} \frac{\sqrt{n^2 + 1}}{n} = 1$$

- **3.18** 3) 0
- 3.19 6) $\lim_{n \to +\infty} (u_n)_{n \in \mathbb{N}} = 2 + 2\sqrt{3} \approx 5{,}464$
- **3.20** 1) 0 ou 1
 - 2) $k = \frac{1}{2}$: la suite converge vers 0; k = 1: la suite converge vers 1; k = 2: la suite diverge.
 - 3) L'existence de solutions de l'équation f(a) = a n'implique pas la convergence de la suite.

3.21 1)
$$\begin{cases} u_1 = \sqrt{1} \\ u_{n+1} = \sqrt{1 + u_n}, n \geqslant 1 \end{cases}$$

- 2) Cette suite est croissante et majorée.
- 3) $\lim_{n \to +\infty} u_n = \frac{1+\sqrt{5}}{2} = \Phi$ (le nombre d'or)