Minimum Spanning Trees (MST)

ETHAN BLASER (GRAD TA)

MODIFIED SLIDES FROM PROF. BRUNELLE

ARPANET

Problem

Find a
Minimum
Spanning Tree

We need to connect together all these places into a network We have feasible wires to run, plus the cost of each wire Find the cheapest set of wires to run to connect all places

Undirected Graphs

Definition: G = (V, E)Edges

w(e) = weight of edge e

Definition: Path

A sequence of nodes $(v_1, v_2, ..., v_k)$

Simple Path:

A path in which each node appears at most once

Cycle:

A path of > 2 nodes in which $v_1 = v_k$

Definition: Connected Graph

A Graph G = (V, E) s.t. for any pair of nodes $v_1, v_2 \in V$ there is a path from v_1 to v_2

Definition: Tree

A connected graph with no cycles

Note: A tree does not need a root, but they often do!

Definition: Tree

A connected graph with no cycles

Definition: Spanning Tree

A Tree $T = (V_T, E_T)$ which connects ("spans") all the nodes in a graph G = (V, E)

Any set of V-1 edges in the graph that doesn't have any cycles is guaranteed to be a spanning tree!

Any set of V-1 edges that connects all the nodes in the graph is guaranteed to be a spanning tree!

Definition: Minimum Spanning Tree

A Tree $T = (V_T, E_T)$ which connects ("spans") all the nodes in a graph G = (V, E), that has minimal cost

$$Cost(T) = \sum_{e \in E_T} w(e)$$

Greedy Algorithms

- Require Optimal Substructure
 - Solution to larger problem contains the solution to a smaller one
 - Only one subproblem to consider!
- Idea:
 - 1. Identify a greedy choice property
 - How to make a choice guaranteed to be included in some optimal solution
 - 2. Repeatedly apply the choice property until no subproblems remain

Definition: Cut

A Cut of graph G = (V, E) is a partition of the nodes into two sets, S and V - S

Edge $(v_1, v_2) \in E$ crosses a cut if $v_1 \in S$ and $v_2 \in V - S$ (or opposite), e.g. (A, C)

A set of edges R Respects a cut if no edges cross the cut e.g. $R = \{(A, B), (E, G), (F, G)\}$

Exchange argument

- Shows correctness of a greedy algorithm
- Idea:
 - Show exchanging an item from an arbitrary optimal solution with your greedy choice makes the new solution no worse
 - How to show my sandwich is at least as good as yours:
 - Show: "I can remove any item from your sandwich, and it would be no worse by replacing it with the same item from my sandwich"

If a set of edges A is a subset of a minimum spanning tree T, let (S, V - S) be any cut which A respects. Let e be the least-weight edge which crosses (S, V - S). $A \cup \{e\}$ is also a subset of a minimum spanning tree.

If a set of edges \overline{A} is a subset of a minimum spanning tree \overline{T} , let (S, V - S) be any cut which A respects. Let e be the least-weight edge which crosses (S, V - S). $A \cup \{e\}$ is also a subset of a minimum spanning tree.

If a set of edges A is a subset of a minimum spanning tree T, let (S, V - S) be any cut which A respects. Let e be the least-weight edge which crosses (S, V - S). $A \cup \{e\}$ is also a subset of a minimum spanning tree.

If a set of edges A is a subset of a minimum spanning tree T, let (S, V - S) be any cut which A respects. Let P be the least-weight edge which crosses (S, V - S). $A \cup \{e\}$ is also a subset of a minimum spanning tree.

If a set of edges A is a subset of a minimum spanning tree T, let (S, V - S) be any cut which A respects. Let e be the least-weight edge which crosses (S, V - S). $A \cup \{e\}$ is also a subset of a minimum spanning tree.

Claim: If A is a subset of a MST T, and e is the least-weight edge which crosses cut (S, V - S) (which A respects) then $A \cup \{e\}$ is also a subset of a MST.

Claim: If A is a subset of a MST T, and e is the least-weight edge which crosses cut (S, V - S) (which A respects) then $A \cup \{e\}$ is also a subset of a MST.

Consider some MST *T*, Case 2:

Consider if $e = (v_1, v_2) \notin T$

Since T is a MST, there is some path from v_1 to v_2 .

Let e' be the first edge on this path which crosses the cut

Build tree T' by exchanging e' for e

 We must show the following 2 things after building a new tree T':

- 1. The sum of the weights did not go up
 - $w(T') \le w(T)$
- 2. T' is still a spanning tree

Claim: If A is a subset of a MST T, and e is the least-weight edge which crosses cut (S, V - S) (which A respects) then $A \cup \{e\}$ is also a subset of a MST.

Consider some MST T,

Case 2:

Consider if $e = (v_1, v_2) \notin T$

T' = T with edge e instead of e'

We assumed $w(e) \leq w(e')$

$$w(T') = w(T) - w(e') + w(e)$$

$$w(T') \le w(T)$$

We have proven the cost of T' is less than or equal to T

- We must show the following 2 things after building a new tree T':
- 1. The sum of the weights did not go up

- We proved that $w(T') \leq w(T)$
- 2. T' is still a spanning tree. How do we prove this?

Any set of V-1 edges that connects all the nodes in the graph is guaranteed to be a spanning tree!

Any set of V-1 edges in the graph that doesn't have any cycles is guaranteed to be a spanning tree!

- We must show the following 2 things after building a new tree T':
- 1. The sum of the weights did not go up

- We proved that $w(T') \leq w(T)$
- 2. T' is still a spanning tree
 - T' has V-1 edges
 - T' connects all the nodes in the graph

Claim: If A is a subset of a MST T, and e is the least-weight edge which crosses cut (S, V - S) (which A respects) then $A \cup \{e\}$ is also a subset of a MST.

Consider some MST T,

Case 2:

Consider if $e = (v_1, v_2) \notin T$ T' = T with edge e instead of e'We know T has V-1 edges

> We did a 1 for 1 edge swap so it must be the case that T' also has V-1 edges

- We must show the following 2 things after building a new tree T':
- 1. The sum of the weights did not go up

- We proved that $w(T') \leq w(T)$
- 2. T' is still a spanning tree
 - − T' has V-1 edges ✓
 - T' connects all the nodes in the graph

Claim: If A is a subset of a MST T, and e is the least-weight edge which crosses cut (S, V - S) (which A respects) then $A \cup \{e\}$ is also a subset of a MST.

Consider some MST T,

Consider if $e = (v_1, v_2) \notin T$

T' = T with edge e instead of e'Show that we didn't disconnect the end points of e' which we will call (A, B):

There was some path in T from v_1 to v_2 that uses e'. So, there must be a path from v_1 to A and B to v_2 .

We have connected v_1 and v_2 with e, so we're good!

- We must show the following 2 things after building a new tree T':
- 1. The sum of the weights did not go up

- We proved that $w(T') \leq w(T)$
- 2. T' is still a spanning tree

- T' has V-1 edges
- T' connects all the nodes in the graph

Therefore T' is also a MST on G

Proof of Kruskal's Algorithm

Start with an empty tree ARepeat V-1 times:

Add the min-weight edge that doesn't cause a cycle

Proof: Suppose we have some arbitrary set of edges A that Kruskal's has already selected to include in the MST. e = (F, G) is the edge Kruskal's selects to add next

We know that there cannot exist a path from F to G using only edges in A because e does not cause a cycle

We can cut the graph therefore into 2 disjoint sets:

- nodes reachable from G using edges in A
- $oldsymbol{P}$ nodes reachable from F using edges in A

e is the minimum cost edge that crosses this cut, so by the Cut Theorem, Kruskal's is optimal!

Kruskal's Algorithm Runtime

Start with an empty tree ARepeat V-1 times:

Add the min-weight edge that doesn't cause a cycle

Keep edges in a Disjoint-set data structure (very fancy) $O(E \log V)$

General MST Algorithm

Start with an empty tree ARepeat V-1 times:

Pick a cut (S, V - S) which A respects

Add the min-weight edge which crosses (S, V - S)

Start with an empty tree A

Repeat V-1 times:

Pick a cut (S, V - S) which A respects

Add the min-weight edge which crosses (S, V - S)

- *S* is all endpoint of edges in *A*
- e is the min-weight edge that grows the tree

Start with an empty tree A

Pick a start node

Repeat V-1 times:

Start with an empty tree A

Pick a start node

Repeat V-1 times:

Start with an empty tree A

Pick a start node

Repeat V-1 times:

Start with an empty tree A

Pick a start node

Repeat V-1 times:

Start with an empty tree APick a start node Repeat V-1 times:

Keep edges in a Heap $O(E \log V)$

Dijkstra's Algorithm

Given some start node sStart with an empty tree ARepeat V-1 times:

Add the "nearest" node to s not yet in A

Dijkstra's Algorithm

Given some start node sStart with an empty tree ARepeat V-1 times:

VERY similar to Prim's!

Add the "nearest" node to s not yet in A

Dijkstra's Algorithm

Initialize $d_v = \infty$ for each node vKeep a priority queue PQ of nodes, using d_v as key Pick a start node s, set $d_s = 0$ While PQ is not empty: v = PQ.extractmin()for each $u \in V$ s.t. $(v, u) \in E$:

 $PQ.decreaseKey(u, min(d_u, d_v + w(v, u)))$

Initialize $d_v = \infty$ for each node v

Keep a priority queue PQ of nodes, using d_v as key

Pick a start node s, set $d_s = 0$

While PQ is not empty:

v = PQ.extractmin()

for each $u \in V$ s.t. $(v, u) \in E$:

Can use min heap dataset to make each decreaseKey() operation faster!

 $PQ.decreaseKey(u, min(d_u, w(v, u)))$

Summary of MST results

- Fredman-Tarjan '84: $\Theta(E + V \log V)$
- Gabow et al '86: $\Theta(E \log \log^* V)$
- Chazelle '00: $\Theta(E\alpha(V))$
- Pettie-Ramachandran '02:Θ(?)(optimal)
- Karger-Klein-Tarjan '95: $\Theta(E)$ (randomized)