Vietnam National University Ho Chi Minh City, University of Science Department of Information Technology

Topic 4: Data Encryption Standard và Advanced Encryption Standard

Assoc. Prof. Trần Minh Triết PhD. Trương Toàn Thịnh

KHOA CÔNG NGHỆ THÔNG TIN TRƯỜNG ĐẠI HỌC KHOA HỌC TỰ NHIÊN

Contents

- □ **D**ata **E**ncryption **S**tandard (DES)
- ☐ **A**dvanced **E**ncryption **S**tandard (AES)
 - ☐ Guidance of AES128

Product Cipher

☐ Encryption using only substitution or transposition is not safe
(due to the nature of the language)
Consecutive use of simple encryption operations creates a more
secure way of encrypting information
□ Substitution combined with Substitution is more secure than one
Substitution
☐ Transposition combined with Transposition is more secure than
one Transposition
□ Substitution combined with Transposition is much safer than
using only one type of operation (replace or swap)
☐ This is the prelude to modern encryption methods

Block-cipher

- ☐ Data Path: Usually, the encryption process consists of several consecutive encryption cycles (rounds); Each cycle consists of many encryption operations
- ☐ Key Schedule: From a secret-key, produce (with rule) key values to be used in each encryption cycle (round key)

Cipher architecture

Common architectures: ☐ Fiestel: for example, Blowfish, Camellia, CAST-128, DES, FEAL, KASUMI, LOKI97, Lucifer, MARS, MAGENTA, MISTY1, RC5, TEA, Triple DES, Twofish, and XTEA \square SPN: for example, Rijndael – AES, Anubis... ☐ Data Encryption Standard: block-cipher ☐ Ideas: product cipher with key-size 56 bits and block-size: 64 bits IBM developed from Lucifer and published in 1975 Chosen to be Federal Information Processing Standard-FIPS) in 1976 Encryption and decryption algorithm published Mathematical and cryptographic basis of DES design: secret information

Feistel architecture - encryption

$$L_{i} = R_{i-1}$$

 $R_{i} = L_{i-1} \oplus f(R_{i-1}, K_{i-1})$

Feistel architecture - decryption

$$R_{i-1} = L_i$$

$$L_{i-1} = R_i \oplus f(L_i, K_i)$$

The Encryption Process of the DES

Plaintext (64-bit) **Initial Permutation** Round 1 Round i . . . **Round 16** Final Permutation (R_{16}, L_{16}) Ciphertext (64-bit)

IP: Initial Permutation

FP: Final Permutation

 $\mathbf{FP} = \mathbf{IP}^{-1}$

Notes:

FP and IP have no cryptographic significance, only for loading data into and out of data blocks (in the mid-1970s hardware mechanism!!!)

Initial Permutation

			I	P			
58	50	42	34	26	18	10	2
60	52	44	36	28	20	12	4
62	54	46	38	30	22	14	6
64	56	48	40	32	24	16	8
57	49	41	33	25	17	9	1
59	51	43	35	27	19	11	3
61	53	45	37	29	21	13	5
63	55	47	39	31	23	15	7

Example: 58^{th} bit of x (input) becomes the 1^{st} bit of IP(x) (output)

 50^{th} bit of x (input) becomes the 2^{nd} bit of IP(x) (output)

Final Permutation

			FP =	IP -1			
40	8	48	16	56	24	64	32
39	7	47	15	55	23	63	31
38	6	46	14	54	22	62	30
37	5	45	13	53	21	61	29
36	4	44	12	52	20	60	28
35	3	43	11	51	19	59	27
34	2	42	10	50	18	58	26
33	1	41	9	49	17	57	25

Example: The 1st bit of x (input) becomes 58^{th} bit of IP-1(x) (output)

The 2nd bit of x (input) becomes 50^{th} bit of IP-1(x) (output)

Expansion

Table E: extend from 32 bits to 48 bits

		Table of cl	noosing bit		
32	1	2	3	4	5
4 4	5		7	8	9
8	9	10	11	12	13
12	13	14	15	16	17
16	17	18	19	20	21
20	21	22	23	24	25
24	25	26	27	28	29
28	29	30	31	32	1

Example: 32^{nd} bit of x (input) becomes the 1^{st} bit of E(x) (output)

Function *f* of DES

							S	21							
14	4	13	1	2	15	11	8	3	10	6	12	5	9	0	7
0	15	7	4	14	2	13	1	10	6	12	11	9	5	3	8
4	1	14	8	13	6	2	11	15	12	9	7	3	10	5	0
15	12	8	2	4	9	1	7	5	11	3	14	10	0	6	13

							S	2							
15	1	8	14	6	11	3	4	9	7	2	13	12	0	5	10
3	13	4	7	15	2	8	14	12	0	1	10	6	9	11	5
0	14	7	11	10	4	13	1	5	8	12	6	9	3	2	15
13	8	10	1	3	15	4	2	11	6	7	12	0	5	14	9

Example: $B_j = b_1 b_2 b_3 b_4 b_5 b_6$ then $S_j(B_i) = S_j[b_1 b_6][b_2 b_3 b_4 b_5]$

							S	3							
10	0	9	14	6	3	15	5	1	13	12	7	11	4	2	8
13	7	0	9	3	4	6	10	2	8	5	14	12	11	15	1
13	6	4	9	8	15	3	0	11	1	2	12	5	10	14	7
1	10	13	0	6	9	8	7	4	15	14	3	11	5	2	12

							S	34							
7	13	14	3	0	6	9	10	1	2	8	5	11	12	4	15
13	8	11	5	6	15	0	3	4	7	2	12	1	10	14	9
10	6	9	0	12	11	7	13	15	1	3	14	5	2	8	4
3	15	0	6	10	1	13	8	9	4	5	11	12	7	2	14

							S	5							
2	12	4	1	7	10	11	6	8	5	3	15	13	0	14	9
14	11	2	12	4	7	13	1	15	0	15	10	3	9	8	6
4	2	1	11	10	13	7	8	15	9	12	5	6	3	0	14
11	8	12	7	1	14	2	13	6	15	0	9	10	4	5	3

							S	6							
12	1	10	15	9	2	6	8	0	13	3	4	14	7	5	11
10	15	4	2	7	12	9	5	6	1	13	14	0	11	3	8
9	14	15	5	2	8	12	3	7	0	4	10	1	13	11	6
4	3	2	12	9	5	15	10	11	14	1	7	6	0	8	13

							S	7							
4	11	2	14	15	0	8	13	3	12	9	7	5	10	6	1
13	0	11	7	4	9	1	10	14	3	5	12	2	15	8	6
1	4	11	13	12	3	7	14	10	15	6	8	0	5	9	2
6	11	13	8	1	4	10	7	9	5	0	15	14	2	3	12

							S	8							
13	2	8	4	6	15	11	1	10	9	3	14	5	0	12	7
1	15	13	8	10	3	7	4	12	5	6	11	0	14	9	2
7	11	4	1	9	12	14	2	0	6	10	13	15	3	5	8
2	1	14	7	4	10	8	13	15	12	9	0	3	5	6	11

Permutation table

P				
16	7	20	21	
29	12	28	17	
1	15	23	26	
5	18	31	10	
2	8	24	14	
32	27	3	9	
19	13	30	6	
22	11	4	25	

Notes:

- Input of 32 bits (includes 8 S-box, each S-box has 4 bits)
- Output 32 bits are permuted
- Example: the 1st bit of P(x) (output) is 16th bit of x (input)

Key Schedule

- ☐ Bit rotation operation
 - \square <<<: Rotate to the left
 - □ >>>: Rotate to the right
- \square With subkey in $\{1, 2, 9, 16\}$: rotate to the left one position
- \square With remaining subkey: rotate to the left two positions

Permutations in Key Schedule

	PC-1					
57	49	41	33	25	17	9
1	58	50	42	34	26	18
10	2	59	51	43	35	27
19	11	3	60	52	44	36
63	55	47	39	31	23	15
7	62	54	46	38	30	22
14	6	61	53	45	37	29
21	13	5	28	20	12	4

PC-2					
14	17	11	24	1	5
3	28	15	6	21	10
23	19	12	4	26	8
16	7	27	20	13	2
41	52	31	37	47	55
30	40	51	45	33	48
44	49	39	56	34	53
46	42	50	36	29	32

Choose 56 bits

(leave 8, 16, 24, 32, 40, 48, 56, 64)

Choose 48 bits

(leave 9, 18, 22, 25, 35, 38, 43, 54)

Example: 50^{th} bit of x (input) becomes the 1^{st} bit of PC-1(x) (output)

Explain: $57 = 8 \times 7 + 1 \rightarrow 50 = 57 - 7$

Comments

- ☐ 4 weak keys:
 - □ All bits 0
 - □ All bits 1
 - \square ½ are bit 0 (consecutive), ½ are bit 1 (consecutive)
- □ 12 semi-weak keys
 - \square Property: Encrypt_k(P) = P
 - □ Form of such key: 7 bit 0 (consecutive), 7 bit 1 (consecutive)
- ☐ Complement key
 - $\Box \operatorname{Encrypt}_{k}(P) = C \to \operatorname{Encrypt}_{k*}(P^{*}) = C^{*}$
 - \square x^* is formed by reversing bits of x

Pseudocode DES

- □ Encryption(K, M) // |K| = 56 and |M| = 64
 - \square $(K_1, ..., K_{16}) \leftarrow CreateSubKey(K) // |K_i| = 48$
 - \square $M \leftarrow \mathbf{IP}(M)$
 - $\square M \rightarrow L_0 \parallel R_0$
 - \square Loop r = 1, ..., 16
 - \square $C \leftarrow \mathbf{FP}(L_{16} \parallel R_{16})$
 - \square Return C

- \square CreateSubKey(K) // |K| = 56 bits
 - \square $K \leftarrow \mathbf{PC-1}(K)$
 - $\square K \rightarrow C_0 \parallel D_0$
 - \square Loop r = 1, ..., 16
 - If r ∈ {1, 2, 9, 16} then j ← 1, else j ← 2
 - $C_r \leftarrow C_{r-1} <<< j; D_r \leftarrow D_{r-1} <<< j$
 - $K_r \leftarrow \mathbf{PC-2}(C_r \parallel D_r)$
 - \square Return ($K_1, ..., K_{16}$)

Rijndael method

- Rijndael method proposed by Vincent Rijmen and Joan Daeman
- ☐ The National Institute of Standards and Technology (NIST) has adopted it as the Advanced Encryption Standard since October 2, 2000.
- ☐ The block cipher method has a flexible block size and key cipher with values of 128, 192 or 256 bits.
- ☐ This method is suitable for applications on a variety of systems from smart cards to personal computers.

Some Math Concepts

- Unit of information processed in Rijnthad algorithmiss the byte
- Each byte is treated as an element of the field Galois (28) equipped with addition (denote (29) and multiplication (denote)
- Each byte is represented in different ways:
 - \square Binary: $\{b_1b_3b_4b_3b_4b_5b_4b_6\}$ and hexadecimal: $\{h_1h_0\}$
 - \square Polynomial with binary coefficients: $\sum_{i=0}^{7} b_i x^i$
- \square Addition in $GF(2^8) = \{0, 1, ..., 255\}$
- □ Multiplication in *GF*(2⁸):

Some Math Concepts

- □ Example of multiplication of {53} = 01010011 & {CA} = 11001010
 - \square $(x^6 + x^4 + x + 1) \bullet (x^7 + x^6 + x^3 + x)$

 - $\square = 1$
 - $\Box = \{01\}$
- \square Example of addition of $\{53\} = 01010011 \& \{CA\} = 11001010$
 - \Box $(x^6 + x^4 + x + 1) \oplus (x^7 + x^6 + x^3 + x)$
 - $\Box = x^7 + x^4 + x^3 + 1$
 - $\Box = \{99\}$

Polynomials with coefficients in $GF(2^8)$

Addition of two polynomials:

$$\frac{1}{2}q(x) = \sum_{i=0}^{a} a_{i} x^{i} \pm a_{i} x^{2} \pm a_{i} x^{3} + a$$

Multiplication of 2 polynomials: $c(x) = a(x) \otimes b(x) = a(x) \cdot b(x)$ mod $x^4 + 1$

$$\begin{bmatrix} \mathcal{C}_{0_0} \\ \mathcal{C}_{1_1} \\ \mathcal{C}_{2_2} \\ \mathcal{C}_{3_3} \end{bmatrix} = \begin{bmatrix} \mathcal{A}_{0_0} & \mathcal{C}_{0_{3_3}} & \mathcal{C}_{0_{2_2}} & \mathcal{C}_{0_1} \\ \mathcal{A}_{1_1} & \mathcal{C}_{0_0} & \mathcal{C}_{0_{3_3}} & \mathcal{C}_{0_2} \\ \mathcal{A}_{1_1} & \mathcal{C}_{0_0} & \mathcal{C}_{0_{3_3}} & \mathcal{C}_{0_2} \\ \mathcal{A}_{3_3} & \mathcal{C}_{1_2} & \mathcal{C}_{0_1} & \mathcal{C}_{0_1} \\ \mathcal{A}_{3_3} & \mathcal{C}_{1_2} & \mathcal{C}_{0_1} & \mathcal{C}_{0_1} \\ \mathcal{A}_{3_3} & \mathcal{C}_{1_2} & \mathcal{C}_{0_1} & \mathcal{C}_{0_1} \\ \mathcal{C}_{1_1} & \mathcal{C}_{1_1} & \mathcal{C}_{0_1} \\ \mathcal{C}_{1_1} & \mathcal{C}_{1_1} & \mathcal{C}_{0_1} \\ \mathcal{C}_{1_1} & \mathcal{C}_{1_1} & \mathcal{C}_{1_1} \\ \mathcal{C}_{1_1} & \mathcal{C}_{1$$

Polynomials with coefficients in $GF(2^8)$

- Two polynomials: $a(x) = \{3\}x^3 + \{1\}x^2 + \{1\}x + \{2\}$ and $b(x) = \{1\}x^2 + \{8\}x + \{1\}$
- Example of addition:
 - $\Box a(x) + b(x) = \{3\}x^3 + \{9\}x + \{3\}$
- Example of multiplication:
 - $\square \ a(x) \otimes b(x) = a(x) \bullet b(x) \bmod x^4 + 1$
 - Consider multiplication step:
 - $\Box a(x) \bullet b(x) = (\{3\}x^3 + \{1\}x^2 + \{1\}x + \{2\}) \bullet (\{1\}x^2 + \{8\}x + \{1\})$
 - $\Box = (\{3\} \bullet \{1\}) x^5 + (\{3\} \bullet \{8\}) x^4 + (\{3\} \bullet \{1\}) x^3 + (\{1\} \bullet \{1\}) x^4 + (\{1\} \bullet \{8\}) x^3 + (\{1\} \bullet \{1\}) x^2 + (\{1\} \bullet \{1\}) x^3 + (\{1\} \bullet \{8\}) x^2 + (\{1\} \bullet \{1\}) x + (\{2\} \bullet \{1\}) x^3 + (\{2\} \bullet \{1\}) x^4 + (\{2\} \bullet \{1\}) x^4 + (\{2\} \bullet \{1\}) x^3 + (\{2\} \bullet \{1\}) x^4 + (\{2\} \bullet \{1\}) x^4 + (\{2\} \bullet \{1\}) x^3 + (\{2\} \bullet \{1\}) x^4 + (\{2\} \bullet \{1\}) x^3 + (\{2\} \bullet \{1\}) x^4 + (\{2\} \bullet \{1\}) x^3 + (\{2\} \bullet \{1\}) x^4 + (\{2\} \bullet \{1\}) x^3 + (\{2\} \bullet \{$
 - $\Box = (\{3\} \bullet \{1\})x^5 + (\{3\} \bullet \{8\} \oplus \{1\} \bullet \{1\})x^4 + (\{3\} \bullet \{1\} \oplus \{1\} \bullet \{8\} \oplus \{1\} \bullet \{1\})x^3 + (\{1\} \bullet \{1\} \oplus \{1\} \bullet \{8\} \oplus \{2\} \bullet \{1\})x^2 + (\{1\} \bullet \{1\} \oplus \{2\} \bullet \{8\})x + (\{2\} \bullet \{1\})$

Polynomials with coefficients in $GF(2^8)$

- - $\Box c(x) \bmod x^4 + 1 = (\{3\} \bullet \{1\} \oplus \{1\} \bullet \{8\} \oplus \{1\} \bullet \{1\}) x^3 + (\{1\} \bullet \{1\} \oplus \{1\} \bullet \{8\} \oplus \{2\} \bullet \{1\}) x^2 + (\{3\} \bullet \{1\} \oplus \{1\} \bullet \{1\} \oplus \{2\} \bullet \{8\}) x + (\{3\} \bullet \{8\} \oplus \{1\} \bullet \{1\} \oplus \{2\} \bullet \{1\})$

Data block representation and key code

- ☐ Intermediate result between the transformation steps is called state.
- \square A state is represented as a matrix of 4-rows and *Nb*-columns with Nb = block-size/32
- □ Cipher-key is represented as a matrix of 4-rows and Nk-columns with Nk = key-size/32
- \square Number of cycles $Nr = max\{Nb, Nk\} + 6$

Normal cycles

Shift Rows

Add Round Key

Mix Columns

Sub **Bytes**

Shift **Rows**

Substitution-Permutation Network architecture

Rijndael algorithm encryption

```
Cipher(byte in [4 * Nb], byte out [4 * Nb], word w [Nb*(Nr + 1)])
begin
        state[4,Nb]
   byte
   state = in
   AddRoundKey(state, w)
   for round = 1 to Nr - 1
       SubBytes(state)
       ShiftRows(state)
       MixColumns(state)
       AddRoundKey(state, w + round * Nb)
   end for
   SubBytes(state)
   ShiftRows(state)
   AddRoundKey(state, w + Nr * Nb)
   out = state
end
```


SubBytes

- □ Nonlinear byte substitution via substitution table (S-box)
- ☐ Acts independently on each byte in the current state

SubBytes

- \square Process of replacing byte *x* in **SubBytes**:
 - Determine the inverse element x^{-1} (Binary form is $\{x_7x_6x_5x_4x_3x_2x_1x_0\}$), with $\{00\}^{-1} = \{00\}$
 - □ Affine: $y_i = x_i \oplus x_{(i+4) \mod 8} \oplus x_{(i+5) \mod 8} \oplus x_{(i+6) \mod 8} \oplus x_{(i+7) \mod 8} \oplus c_i$

InvSubBytes

- \square Process of replacing byte *y* in **InvSubBytes**:
- ☐ Affine:
- Determine the inverse element $x^{-1} \in GF(2^8)$ of $x (\{00\}^{-1} = \{00\})$

ShiftRows

shift(r, Nb)		r		
		1	2	3
Nb	4	1	2	3
	6	1	2	3
	8	1	3	4

- Each line of the current state is rotated by a number of places
- □ Byte $s_{r,c}$ at row r column c changes to column (c + shift(r, Nb)) mod Nb
- □ **InvShiftRows**: Byte $s_{r,c}$ at row r column c changes to column $(c-shift(r, Nb)) \mod Nb$

ShiftRows

AddRoundKey

Each byte of the status will XOR with corresponding byte in key-cipher of the current cycle: $s'_{r,c} = k_{r,c} \oplus s_{r,c}$, $0 \le r < 4$, $0 \le c < Nb$

Inverse transformation of Counter transfor

l = round*Nb

MixColumns

MixColumns

- \square Each column of the current state is represented as a polynomial s(x) with coefficients in $GF(2^8)$.
- \square Perform multiplication: $s'(x) = a(x) \otimes s(x)$
- □ With: $a(x) = \{03\}x^3 + \{01\}x^2 + \{01\}x + \{02\}$

$$\begin{bmatrix} \hat{\mathbf{S}}_{0,c,c}^{'} \\ \hat{\mathbf{S}}_{1,c,c}^{'} \\ \hat{\mathbf{S}}_{2,c,c}^{'} \end{bmatrix} = \begin{bmatrix} \mathbf{0} \mathbf{2} & \mathbf{0} \mathbf{3} & \mathbf{0} \mathbf{1} & \mathbf{0} \mathbf{0} \mathbf{1} & \mathbf{0} \mathbf{0} \mathbf{1} & \mathbf{0} \mathbf{0} \mathbf{1} \\ \mathbf{0} \mathbf{1} & \mathbf{0} \mathbf{0} \mathbf{1} & \mathbf{0} \mathbf{0} \mathbf{2} & \mathbf{0} \mathbf{3} \mathbf{3} & \mathbf{0} \mathbf{0} \mathbf{1} \\ \mathbf{0} \mathbf{1} & \mathbf{0} \mathbf{0} \mathbf{1} & \mathbf{0} \mathbf{0} \mathbf{2} & \mathbf{0} \mathbf{0} \mathbf{3} & \mathbf{0} \mathbf{0} \mathbf{3} \\ \hat{\mathbf{S}}_{2,c,c}^{'} \\ \hat{\mathbf{S}}_{3,c,c}^{'} \end{bmatrix} = \begin{bmatrix} \mathbf{0} \mathbf{2} & \mathbf{0} \mathbf{3} & \mathbf{0} \mathbf{0} \mathbf{1} & \mathbf{0} \mathbf{0} \mathbf{1} & \mathbf{0} \mathbf{0} \mathbf{1} & \mathbf{0} \mathbf{0} \mathbf{1} \\ \mathbf{0} \mathbf{1} & \mathbf{0} \mathbf{0} \mathbf{1} & \mathbf{0} \mathbf{0} \mathbf{2} & \mathbf{0} \mathbf{0} \mathbf{3} \\ \mathbf{0} \mathbf{3} & \mathbf{0} \mathbf{0} \mathbf{1} & \mathbf{0} \mathbf{0} \mathbf{1} & \mathbf{0} \mathbf{0} \mathbf{2} \end{bmatrix} \begin{bmatrix} \hat{\mathbf{S}}_{0,c,c} \\ \hat{\mathbf{S}}_{1,c,c} \\ \hat{\mathbf{S}}_{2,c,c} \\ \hat{\mathbf{S}}_{3,c,c} \end{bmatrix}$$

InvMixColumns

- \square Each column of the current state is represented as a polynomial s(x) with coefficients in $GF(2^8)$.
- □ Perform multiplication: $s'(x) = a^{-1}(x) \otimes s(x)$
- □ With: $a^{-1}(x) = \{0b\}x^3 + \{0d\}x^2 + \{09\}x + \{0e\}$

$$\begin{bmatrix} \hat{\mathbf{S}}_{0}' c_{c} \\ \hat{\mathbf{S}}_{1}' c_{c} \\ \hat{\mathbf{S}}_{2}' c_{c} \\ \hat{\mathbf{S}}_{3}' c_{e} \end{bmatrix} = \begin{bmatrix} \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & \mathbf{0} \\ \mathbf$$

Generate a key-cipher for each cycle

- ☐ The extended key table is a 1-dimensional array of words (4 bytes in length).
- \Box Function that generates the extended key cipher table depends on the value Nk, that is, on the length of the primary key

Extended key cipher table and how to determine key of the period (Nb = 6 (192-bit data), Nk = 4 (128-bit key))

Generate a key-cipher for each cycle

```
KeyExpansion(byte key[4 * Nk], word w[Nb * (Nr + 1)], Nk)
begin
   i=0
   while (i \le Nk)
        w[i] = word[key[4*i], key[4*i+1], key[4*i+2], key[4*i+3]]
        i = i + 1
   end while
   i = Nk
   while (i < Nb * (Nr + 1))
        word temp = w[i - 1]
        if (i \mod Nk = 0) then
             temp = SubWord(RotWord(temp)) xor Rcon[i / Nk]
        else
             if (Nk = 8) and (i \mod Nk = 4) then temp = SubWord(temp)
        end if
        w[i] = w[i - Nk] xor temp
        i = i + 1
   end while
end
```

Generate a key-cipher for each cycle

```
☐ The set of constants is generated according to the following rule
   \square Rcon[i] = (RC[i], {00}, {00}, {00}) với RC[i] \in GF(28)
   \square RC[i] = {02} • RC[i - 1] = x^{(i-1)}
   Example
       \squareRcon[1] = (x^0 = {01}, {00}, {00}, {00})
       \squareRcon[2] = (x^1 = {02}, {00}, {00}, {00})
       \squareRcon[3] = (x^2 = {04}, {00}, {00}, {00})
       \squareRcon[8] = (x^7 = {80}, {00}, {00}, {00})
       \squareRcon[9] = (x^8 = {1B}, {00}, {00}, {00})
           Explain: x^8 = \{100000000\} \mod x^8 + x^4 + x^3 + x + 1 = \{100011011\} = \{1B\}
       \squareRcon[10] = (x^9 = {36}, {00}, {00}, {00})
           \square Explain: x^9 = \{10000000000\} \mod x^8 + x^4 + x^3 + x + 1 = \{100011011\} = \{36\}
```


S-box

S	box								J	/							
		0	1	2	3	4	5	6	7	8	9	a	b	С	d	e	f
	0	63	7c	77	7b	f2	6b	6f	c5	30	01	67	2b	fe	d7	ab	76
	1	ca	82	с9	7d	fa	59	47	f0	ad	d4	a2	af	9c	a4	72	c0
	2	b7	fd	93	26	36	3f	f7	CC	34	a5	e5	f1	71	d8	31	15
	3	04	c7	23	с3	18	96	05	9a	07	12	80	e2	eb	27	b2	75
	4	09	83	2c	1a	1b	6e	5a	a0	52	3b	d6	b3	29	e3	2f	84
	5	53	d1	00	ed	20	fc	b1	5b	6a	cb	be	39	4a	4c	58	cf
	6	d0	ef	aa	fb	43	4d	33	85	45	f9	02	7f	50	3с	9f	a8
	7	51	a3	40	8f	92	9d	38	f5	bc	b6	da	21	10	ff	f3	d2
X	8	cd	0c	13	ec	5f	97	44	17	c4	a7	7e	3d	64	5d	19	73
	9	60	81	4f	dc	22	2a	90	88	46	ee	Ъ8	14	de	5e	0b	db
	a	e0	32	3a	0a	49	06	24	5c	c2	d3	ac	62	91	95	e4	79
	b	e7	с8	37	6d	8d	d5	4e	a9	6c	56	f4	ea	65	7a	ae	08
	С	ba	78	25	2e	1c	a6	b4	с6	e8	dd	74	1f	4b	bd	8b	8a
	d	70	3e	B5	66	48	03	f6	0e	61	35	57	Ъ9	86	c1	1d	9e
	e	e1	f8	98	11	69	d9	8e	94	9b	1e	87	e9	ce	55	28	df
	f	8c	a1	89	0d	Bf	e6	42	68	41	99	2d	0f	b0	54	bb	16

S-Box⁻¹

		y															
Sbo	Sbox ⁻¹		1	2	3	4	5	6	7	8	9	a	b	С	d	e	f
	0	52	09	6a	d5	30	36	a5	38	bf	40	a3	9e	81	f3	d7	fb
	1	7c	e3	39	82	9b	2f	ff	87	34	8e	43	44	c4	de	e9	cb
	2	54	7b	94	32	a6	c2	23	3d	ee	4c	95	0b	42	fa	c3	4e
	3	08	2e	a1	66	28	d9	24	b2	76	5b	a2	49	6d	8b	d1	25
	4	72	f8	f6	64	86	68	98	16	d4	a4	5c	СС	5d	65	b6	92
	5	6c	70	48	50	fd	ed	b9	da	5e	15	46	57	a7	8d	9d	84
	6	90	d8	ab	00	8c	bc	d3	0a	f7	e4	58	05	b8	b3	45	06
	7	d0	2c	1e	8f	ca	3f	0f	02	c1	af	bd	03	01	13	8a	6b
X	8	За	91	11	41	4f	67	dc	ea	97	f2	cf	ce	f0	b4	e6	73
	9	96	ac	74	22	e7	ad	35	85	e2	f9	37	e8	1c	75	df	6e
	a	47	f1	1a	71	1d	29	c5	89	6f	b7	62	0e	aa	18	be	1b
	b	fc	56	3e	4b	c6	d2	79	20	9a	db	c0	fe	78	cd	5a	f4
	С	1f	dd	a8	33	88	07	c 7	31	b1	12	10	59	27	80	ec	5f
	d	60	51	7f	a9	19	b5	4a	0d	2d	e5	7a	9f	93	с9	9c	ef
	e	a0	e0	3b	4d	ae	2a	f5	b0	c8	eb	bb	3c	83	53	99	61
	f	17	2b	04	7e	ba	77	d6	26	e1	69	14	63	55	21	0c	7d

Guidance of AES128

```
AES128(M, K) // |K| = |M| = 128 bits
```

- \square $(K_0, K_1, ..., K_{10}) \leftarrow \operatorname{expand}(K) // K_0 \leftarrow K$
- \square $s \leftarrow M \oplus K_0$
- \square Loop $r = 1 \rightarrow 10$
 - \square $s \leftarrow s\text{-box}(s)$
 - \square $s \leftarrow \text{shift-rows}(s)$
 - □ If $r \le 9$ then $s \leftarrow \text{mix-cols}(s)$
 - $\square s \leftarrow s \oplus K_{r}$
- \square Return s

- \square expand(K) // |K| = 128 bits
 - $\square K_0 \leftarrow K$
 - \square Loop $i = 1 \rightarrow 10$
 - $\square K_{i}[0] \leftarrow K_{i-1}[0] \oplus s\text{-box}(K_{i-1}[3] <<< 8) \oplus C_{i}$
 - $\square K_{\mathbf{i}}[1] \leftarrow K_{\mathbf{i}-1}[1] \oplus K_{\mathbf{i}}[0]$
 - $\square K_{\mathbf{i}}[2] \leftarrow K_{\mathbf{i}-1}[2] \oplus K_{\mathbf{i}}[1]$
 - $\square K_{i}[3] \leftarrow K_{i-1}[3] \oplus K_{i}[2]$
 - \square Return ($K_0, K_1, ..., K_{10}$)

Guidance of AES128 (expand)

```
\square expand(K) // |K| = 128 bits
    \square K_0 \leftarrow K
    \square Loop i = 1 \rightarrow 10
         \square K_{i}[0] \leftarrow K_{i-1}[0] \oplus \text{s-box}(K_{i-1}[3] <<< 8) \oplus C_{i}
         \square K_{i}[1] \leftarrow K_{i-1}[1] \oplus K_{i}[0]
         \square K_{i}[2] \leftarrow K_{i-1}[2] \oplus K_{i}[1]
         \square K_{i}[3] \leftarrow K_{i-1}[3] \oplus K_{i}[2]
    \square Return (K_0, K_1, ..., K_{10})
└ Notes:
    ☐ The input is usually a 16-byte key sequence, ví dụ "Thats my Kung Fu"
    ☐ The algorithm deals with integers, each subkey consists of 4 integers
         Each integer 4 bytes
           Use type int
```

Guidance of AES128 (expand)

- \square expand(K) // |K| = 128 bits
 - $\square K_0 \leftarrow K$
 - \square Loop $i = 1 \rightarrow 10$
 - $\square K_{i}[0] \leftarrow K_{i-1}[0] \oplus \text{s-box}(K_{i-1}[3] <<< 8) \oplus C_{i}$
 - $\square K_{\mathbf{i}}[1] \leftarrow K_{\mathbf{i}-1}[1] \oplus K_{\mathbf{i}}[0]$
 - $\square K_{i}[2] \leftarrow K_{i-1}[2] \oplus K_{i}[1]$
 - $\square K_{i}[3] \leftarrow K_{i-1}[3] \oplus K_{i}[2]$
 - \square Return ($K_0, K_1, ..., K_{10}$)
- \square Table of constants C:

	i	Values
	C_0	0x00000000
	C_1	0x01000000
Ī	C_2	0x02000000
Ī	C_3	0x04000000
	C_4	0x08000000

C_5	0x10000000
C_6	0x20000000
C_7	0x40000000
C_8	0x80000000
C_9	0x1b000000
C_{10}	0x36000000

Guidance of AES128 (expand)

- ☐ Some notes
 - Convert from 4 bytes to 1 int: char s[] = "abcd" \rightarrow int $a = 0 \times 61626364$
 - \square Convert from 1 int to 4 bytes: int $a = 0x61626364 \rightarrow \text{char } s[] = "abcd"$
 - \square Same for transferring 16 bytes \rightarrow 4 ints and 4 ints \rightarrow 16 bytes
- Example to test expand:

Keys	Values
K_0	54 68 61 74 73 20 6d 79 20 4b 75 6e 67 20 46 75
K_1	e2 32 fc f1 91 12 91 88 b1 59 e4 e6 d6 79 a2 93
K_2	56 08 20 07 c7 1a b1 8f 76 43 55 69 a0 3a f7 fa
K_3	d2 60 0d e7 15 7a bc 68 63 39 e9 01 c3 03 1e fb
K_4	a1 12 02 c9 b4 68 be a1 d7 51 57 a0 14 52 49 5b
K_5	b1 29 3b 33 05 41 85 92 d2 10 d2 32 c6 42 9b 69
K_6	bd 3d c2 87 b8 7c 47 15 6a 6c 95 27 ac 2e 0e 4e
K_7	cc 96 ed 16 74 ea aa 03 1e 86 3f 24 b2 a8 31 6a
K_8	8e 51 ef 21 fa bb 45 22 e4 3d 7a 06 56 95 4b 6c
K_9	bf e2 bf 90 45 59 fa b2 a1 64 80 b4 f7 f1 cb d8
K_{10}	28 fd de f8 6d a4 24 4a cc c0 a4 fe 3b 31 6f 26

Thats my Kung Fu

Guidance of AES128 (AES128)

```
AES128(M, K) // |K| = |M| = 128 bits
    \square (K_0, K_1, ..., K_{10}) \leftarrow \text{expand}(K) // K_0 \leftarrow K
    \square s \leftarrow M \oplus K_0
    \square Loop r = 1 \rightarrow 10
         \square_S \leftarrow s\text{-box}(s)
          \square_S \leftarrow \text{shift-rows}(s)
          \Box if r ≤ 9 then s ← mix-cols(s)
          \square s \leftarrow s \oplus K_r
     \square Return s
□ Notes:
     \square Value s: s_0 s_1 s_2 s_3 s_4 s_5 s_6 s_7 s_8 s_9 s_{10} s_{11} s_{12} s_{13} s_{14} s_{15} stands for a 16-byte string
         (s = M \oplus K_0)
     \square Function s-box: [0, 255] \rightarrow [0, 255] follows S-box table
```

Guidance of AES128 (AES128)

```
AES128(M, K) // |K| = |M| = 128 bits
 \square (K_0, K_1, ..., K_{10}) \leftarrow \text{expand}(K) // K_0 \leftarrow K
 \square s \leftarrow M \oplus K_0
\square Loop r = 1 \rightarrow 10
       \square_S \leftarrow \text{s-box}(s)
       \square_S \leftarrow \text{shift-rows}(s)
       \Box if r ≤ 9 then s ← mix-cols(s)
       \square s \leftarrow s \oplus K_r
 \square Return s
Notes:
 □ shift-rows
        \square \text{Input: } s_0 s_1 s_2 s_3 s_4 s_5 s_6 s_7 s_8 s_9 s_{10} s_{11} s_{12} s_{13} s_{14} s_{15} 
       Output: s_0 s_5 s_{10} s_{15} s_4 s_9 s_{14} s_3 s_8 s_{13} s_2 s_7 s_{12} s_1 s_6 s_{11}
```


Guidance of AES128 (AES128)

