Statistic

John Joy

April 2024

Contents

1	Probability Fundamentals		
	1.1	Set .	
		1.1.1	Definitions of Set
		1.1.2	Operations on sets
	1.2	Proba	bility
		1.2.1	Conditional probability
		1.2.2	Independent Event
		1.2.3	Expectation
		1.2.4	Variance
		1.2.5	Median
	1.3	Discre	ete variables
		1.3.1	The Binomial Distribution
		1.3.2	The Hypergeometric Distribution
		1.3.3	The Geometric Distribution
		1.3.4	The Poisson Distribution
		1.3.5	Independent random variables
	1.4	Conti	nuous Random Variables
		1.4.1	Uniform Distribution
		1.4.2	Normal Distribution
		1.4.3	Exponential Distribution
		1.4.4	Erlang Distribution
		1.4.5	Gamma Distribution
		1.4.6	χ^2 Distribution
		1.4.7	Beta Distribution
	1.5	The la	aw of large numbers and the central limit theorem 22
		1.5.1	Markov and Chebyshev's inequalities
		1.5.2	The law of large numbers

1 Probability Fundamentals

1.1 Set

1.1.1 Definitions of Set

Definition 1 (set). *Set* is a collection of some elements.

In this note, we will consider sets as events. Sets have some properties as follow:

- 1. Order of elements doesn't matter.
- 2. Repeated elements will be regarded as one single element.

For example, $\{1,2,3\} = \{2,3,1\}$, and $\{1,1,2,4\} = \{1,2,4\}$. We always denote a set with a pair of curly brackets($\{\}$) which contains some elements. Specially, if a set contains no elements, we also call it a set. And we denote it as \emptyset .

1.1.2 Operations on sets

Definition 2 (Cartesian product). Two sets A, B, we define their **Cartesian** product as

$$A \times B := \{(\omega_1, \omega_2) : \text{ for } \omega_1 \in A \text{ and } \omega_2 \in B\}$$

Theorem 1 (Product rule). If X_1, X_2, \ldots, X_k are finite sets, then

$$|X_1 \times X_2 \times \dots \times X_k| = \prod_{i=1}^k |X_i|$$

Example 1. For example, if $A = \{1, 2, 3\}$ and $B = \{4, 5, 6\}$, then

$$A \times B = \{(1,4), (1,5), (1,6), (2,4), (2,5), (2,6), (3,4), (3,5), (3,6)\}$$

Definition 3 (Disjoint or mutually exclusive). *If two sets* A, B, *they have no common element, which means* $A \cap B = \emptyset$.

Definition 4 (A measure of set). We denote the |A| or #A is the element number in the set.

Example 2. • If $A = \{1, 2, 3\}$, then #A = 3.

- If $A = \{1, 2, 2, 4\}$, then #A = 3.
- If $A = \emptyset$, then #A = 0.
- If A is an infinite set, then $\#A = \infty$

1.2 Probability

Definition 5 (experiment). Experiment is the trial that can produce uncertain outcomes.

Remark 1. If a trial have a certain outcome, it doesn't belong to experiment. Such as the sun will rise tomorrow.

Definition 6 (Sample space). All outcomes of an experiment compose a set. The set is called **Sample space**. Always denoted as Ω or S.

Example 3. Tossing a coin is a simple experiment. Here we can take the sample space $\Omega = \{H, T\}$, with the outcome H representing 'heads' and the outcome T representing 'tails'.

Definition 7 (Event). From the perspective of set, an event is a **subset** of the sample space. From the perspective of experiment, an event is some **outcomes** of the experiment.

Example 4. An experiment is to toss a coin three times. The outcome can be denoted as $(\omega_1, \omega_2, \omega_3)$, where $\omega_i \in \{H, T\}$ is the i-th coin toss. The sample space Ω is

$$\Omega = \{ (\omega_1, \omega_2, \omega_3) : \omega_i \in \{H, T\} \text{ for all } i = 1, 2, 3 \}$$
$$= \{H, T\} \times \{H, T\} \times \{H, T\} = \{H, T\}^3$$

some examples of event are following

- $A_1 = \{(T, T, T), (H, H, H)\}$ is the event that 'all three tosses land on the same side'.
- $A_2 = \{(T, T, H), (T, H, T), (H, T, T), (H, H, H)\}$ the event ' an odd number of heads appear'.

In many cases, we want to know how probably an event happen. We need to measure the probability of an event.

Definition 8 (Probability). The probability of an outcome is the proportion of times the outcome would occur if we observed the random process an infinite number of times.

Definition 9 (Probability distribution). A probability distribution or probability measure on a sample space Ω is a function $\mathbb{P}: A \to \mathbb{R}$, where $A \subseteq \Omega$, so that:

- 1. $\mathbb{P}(A) \in [0,1]$ for every event $A \subseteq \Omega$;
- 2. $\mathbb{P}(\emptyset) = 0$ and $\mathbb{P}(\Omega) = 1$;
- 3. (a) for every sequence of pairwise disjoint events $A_1, A_2, \ldots, A_k \subseteq \Omega$ we have

$$\mathbb{P}\left(\bigcup_{i=1}^{k} A_i\right) = \sum_{i=1}^{k} \mathbb{P}(A_i)$$

(b) Further more, for countable infinite sequence of pairwise disjoint events $A_1, A_2, \ldots, A_k \subseteq \Omega$ we have

$$\mathbb{P}\left(\bigcup_{i=1}^{\infty} A_i\right) = \sum_{i=1}^{\infty} \mathbb{P}(A_i)$$

Lemma 1. Suppose that Ω is a discrete sample space.

(a) If \mathbb{P} is a probability distribution on Ω then

$$\mathbb{P}(A) = \sum_{\omega \in A} \mathbb{P}(\{\omega\}), \text{ for all events } A \subseteq \Omega.$$

(b) Let $p_{\omega} \geq 0$ for all $\omega \in \Omega$ with $\sum_{\omega \in \Omega} p_{\omega} = 1$. Then the function \mathbb{P} defined by

$$\mathbb{P}(A) := \sum_{\omega \in A} p_{\omega}, \ \text{ for all events } A \subseteq \Omega,$$

is a probability distribution on Ω .

Proposition 1. Let \mathbb{P} be a probability distribution on sample space Ω . Then the following hold:

- 1. $\mathbb{P}(A^c) = 1 \mathbb{P}(A)$ for all $A \subseteq \Omega$.
- 2. $\mathbb{P}(B-A) = \mathbb{P}(B) \mathbb{P}(A \cap B)$ for all $A, B \subseteq \Omega$.
- 3. $\mathbb{P}(A) < \mathbb{P}(B)$ for all $A, B \subseteq \Omega$ with $A \subseteq B$.
- 4. $\mathbb{P}(A \cup B) = \mathbb{P}(A) + \mathbb{P}(B) \mathbb{P}(A \cap B)$ for all $A, B \subseteq \Omega$
- 5. $\mathbb{P}\left(\bigcup_{i=1}^k A_i\right) \leq \sum_{i=1}^k \mathbb{P}(A_i) \text{ for all } A_1, \dots, A_k \subseteq \Omega.$

Theorem 2 (Inclusion-exclusion principle). Suppose Ω is a sample space, and $A_1, A_2, \ldots, A_n \subseteq \Omega$, we have

$$\mathbb{P}\left(\bigcup_{i=1}^{n} A_i\right) = \sum_{\emptyset \neq J \subseteq \{1,\dots,n\}} (-1)^{|J|+1} \mathbb{P}\left(\bigcap_{j \in J} A_j\right)$$

1.2.1 Conditional probability

Definition 10 (Conditional probability). Let \mathbb{P} be a probability distribution on a sample space Ω and let $A, B \subseteq \Omega$ be events where $\mathbb{P}(B) > 0$. The **conditional probability** of A **given** B is defined by

$$\mathbb{P}(A|B) := \frac{\mathbb{P}(A \cap B)}{\mathbb{P}(B)}$$

For $\mathbb{P}(B) = 0$ then we set $\mathbb{P}(A|B) := 0$.

Remark 2. Show that if $\mathbb{P}(B) > 0$ then the map $A \to \mathbb{P}(A|B)$ is a probability distribution. This is often called the **conditional distribution** of \mathbb{P} **given** B

1. Since $\mathbb{P}(A \cap B) \geq 0$ and $\mathbb{P}(B) > 0$, then $\mathbb{P}(A|B) \geq 0$. And $A \cap B \subseteq B$, thus by Probability properties 1.3 we have $\mathbb{P}(A \cap B) \leq \mathbb{P}(B)$, therefore

$$\mathbb{P}(A|B) = \frac{\mathbb{P}(A \cap B)}{\mathbb{P}(B)} \le 1$$

$$2. \ \mathbb{P}(\emptyset|B) = \frac{\mathbb{P}(\emptyset \cap B)}{\mathbb{P}(B)} = \frac{\mathbb{P}(\emptyset)}{\mathbb{P}(B)} = 0$$

$$\mathbb{P}(\Omega|B) = \frac{\mathbb{P}(\Omega \cap B)}{\mathbb{P}(B)} = \frac{\mathbb{P}(B)}{\mathbb{P}(B)} = 1$$

3. For countable infinite sequence of pairwise disjoint events $A_1, A_2, \ldots, A_k, \ldots \subseteq \Omega$, we have

$$\mathbb{P}\left(\bigcup_{i=1}^{\infty} A_i \mid B\right) = \frac{\mathbb{P}\left(\bigcup_{i=1}^{\infty} A_i \cap B\right)}{\mathbb{P}(B)}$$

$$= \frac{\mathbb{P}\left(\bigcup_{i=1}^{\infty} (A_i \cap B)\right)}{\mathbb{P}(B)}$$

$$= \frac{\sum_{i=1}^{\infty} \mathbb{P}(A_i \cap B)}{\mathbb{P}(B)}$$

$$= \sum_{i=1}^{\infty} \frac{\mathbb{P}(A_i \cap B)}{\mathbb{P}(B)}$$

$$= \sum_{i=1}^{\infty} \mathbb{P}(A_i \mid B)$$

1.2.2 Independent Event

Definition 11 (Independent). If we know one event happened or not have no effect on the other event, the two events should be called **independent**. In math, suppose two event A, B, and $\mathbb{P}(B) \neq 0$, if A and B are **independent**, then

$$\mathbb{P}(A|B) = \mathbb{P}(A)$$

and more generally, $\mathbb{P}(A|B) = \frac{\mathbb{P}(A \cap B)}{\mathbb{P}(B)} = \mathbb{P}(A)$. Generally independent can be given as **any two events** A, B

$$\mathbb{P}(A \cap B) = \mathbb{P}(A)\mathbb{P}(B)$$

1.2.3 Expectation

Definition 12 (random variable). A random process or variable with a numerical outcome.

Definition 13 (Expected Value of A Discrete Random Variable). If X takes outcomes x_1, \ldots, x_k with probabilities $\mathbb{P}(X = x_1), \cdots, \mathbb{P}(X = x_k)$, the expected value of X is the sum of each outcome multiplied by its corresponding probability:

$$\mathbb{E}(X) = x_1 \cdot \mathbb{P}(X = x_1) + \dots + x_k \cdot \mathbb{P}(X = x_k) = \sum_{i=1}^k x_i \mathbb{P}(X = x_i)$$

The Greek letter μ may be used in place of the notation $\mathbb{E}(X)$. And if series $\sum_{i=1}^{k} |x_i| \mathbb{P}(X = x_i)$ is divergent, then the $\mathbb{E}(X)$ doesn't exist.

Definition 14 (Expected Value of A Continuous Random Variable). If X is a continuous random variable, and its probability density function is $f_X(x)$, then the expected value of X is:

$$\mathbb{E}(X) = \int_{-\infty}^{+\infty} x \cdot f_X(x) dx$$

If integral $\int_{-\infty}^{+\infty} |x| f_X(x) dx$ is divergent, then the $\mathbb{E}(X)$ doesn't exist.

In physics, the expectation holds the same meaning as the center of gravity.

Theorem 3 (Linear Combination). If X and Y are random variables, then a linear combination of the random variables is given by

$$aX + bY$$

where $a, b \in \mathbb{R}$. Then the expectation of the combination is

$$\mathbb{E}(aX + bY) = a\mathbb{E}(X) + b\mathbb{E}(Y)$$

Theorem 4. If random varianles X and Y are independent, then

$$\mathbb{E}(XY) = \mathbb{E}(X)\mathbb{E}(Y)$$

Proposition 2. The expectation of a function g applied on a random variable X is

$$\mu = \mathbb{E}(g(X)) = \begin{cases} \sum_{k \in S_X} g(k) \cdot \mathbb{P}(X = k), & \text{if } X \text{ is discrete;} \\ \int_{-\infty}^{\infty} g(t) f_X(t) dt, & \text{if } X \text{ is continuous with } p.d.f f_X \end{cases}$$

1.2.4 Variance

Definition 15 (Variance). If X takes outcomes x_1, \ldots, x_k with probabilities $\mathbb{P}(X = x_1), \ldots, \mathbb{P}(X = x_k)$ and expected value $\mu = \mathbb{E}(X)$, then the **variance** of X, denoted by \mathbb{V} ar(X) or the symbol σ^2 , is

$$\sigma^2 = (x_1 - \mu)^2 \mathbb{P}(X = x_1) + \dots + (x_k - \mu)^2 \mathbb{P}(X = x_k) = \sum_{j=1}^k (x_j - \mu)^2 \mathbb{P}(X = x_j)$$

The standard deviation of X, labeled σ , is the square root of the variance. And variance can also be defined by expectation:

$$\mathbb{V}ar(X) := \mathbb{E}(X - \mathbb{E}(X))^2$$

Proposition 3. If X is a random variable, and it has expectation $\mathbb{E}(X)$ and variance $\mathbb{V}ar(X)$, then

$$\mathbb{V}$$
ar $(X) = \mathbb{E}(X^2) - (\mathbb{E}(X))^2$

Proof.

$$Var(X) = \mathbb{E}(X - \mathbb{E}(X))^2$$

$$= \mathbb{E}(X^2 - 2X\mathbb{E}(X) + (\mathbb{E}(X))^2)$$

$$= \mathbb{E}(X^2) - 2\mathbb{E}(X)\mathbb{E}(X) + (\mathbb{E}(X))^2$$

$$= \mathbb{E}(X^2) - (\mathbb{E}(X))^2$$

Theorem 5. Let X_1, \ldots, X_n be discrete or continuous random variables with well-defined expectations and variances. If X_1, \ldots, X_n are **independent**, then

$$\mathbb{V}\operatorname{ar}(X_1 + \dots + X_n) = \sum_{k=1}^n \mathbb{V}\operatorname{ar}(X_k)$$

1.2.5 Median

Definition 16 (Median). Let X be a discrete or continuous random variable. A value $m \in \mathbb{R}$ is called a median of X if $\mathbb{P}(X \ge m) \ge 1/2$ and $\mathbb{P}(X \le m) \le 1/2$.

1.3 Discrete variables

Definition 17 (Discrete random variable). Let Ω be a discrete sample space. A function $X : \Omega \to \mathbb{R}$ is called a **discrete random variable**. The image of X is denoted by S_x .

Let \mathbb{P} be a probability distribution on a discrete sample space Ω and let $X:\Omega\to\mathbb{R}$ be a discrete random variable with image S_X . Then the function $p_X:S_X\to[0,1]$ defined by $p_X(x):=\mathbb{P}(X=x)$ is a discrete probability distribution on S_X .

Definition 18 (Probability mass function and cumulative distribution function). Let $X : \Omega \to \mathbb{R}$ be a discrete random variable. The (probability) mass function (p.d.f) of X is the map $p_X : S_X \to [0,1]$ given by

$$p_X(x) := \mathbb{P}(X = x).$$

The (cumulative) distribution function (c.d.f) of X is the map $F_X : \mathbb{R} \to [0,1]$ given for all $t \in \mathbb{R}$ by

$$F_X(t) := \mathbb{P}(X \le t) = \sum_{x \in S_X, x \le t} \mathbb{P}(X = x).$$

Proposition 4. Let X be a discrete random variable. For its distribution function F_X , we have

- 1. F_X is monotonically increasing.
- 2. $\lim_{t\to-\infty} F_X(t) = 0$
- 3. $\lim_{t\to\infty} F_X(t) = 1$.

1.3.1 The Binomial Distribution

Definition 19 (binomial distribution). The **binomial distribution** with parameters n and p, where $n \in \mathbb{N}$ and $p \in [0,1]$, is the probability distribution on $\{0,1,\ldots,n\}$ given by

$$bin_{n,p}(k) = \binom{n}{k} p^k (1-p)^{n-k}, \text{ for } k \in \{0,\dots,n\}.$$

A random variable X is said to follow the binomial distribution with parameters n and p if $\mathbb{P}(X = k) = \min_{n,p}(k)$ for $k \in S_X = \{0, 1, 2, ..., n\}$. We denote this by writing $X \sim \min_{n,p}$.

Proposition 5. A random variable $X \sim \min_{n,p}$, then

$$\mathbb{E}(X) = np$$
$$\mathbb{V}ar(X) = np(1-p)$$

Proof.

$$\mathbb{E}(X) = \sum_{k=0}^{n} k \cdot \sin_{n,p}(k)$$

$$= \sum_{k=0}^{n} k \binom{n}{k} p^{k} (1-p)^{n-k}$$

$$= \sum_{k=0}^{n} k \frac{n!}{k!(n-k)!} p^{k} (1-p)^{n-k}$$

$$= \sum_{k=1}^{n} \frac{n!}{(k-1)!(n-k)!} p^{k} (1-p)^{n-k}$$

$$= np \sum_{k=1}^{n} \frac{(n-1)!}{(k-1)!(n-k)!} p^{k-1} (1-p)^{n-k}$$

$$= np \sum_{k=0}^{n-1} \frac{(n-1)!}{k!(n-k-1)!} p^{k} (1-p)^{n-k-1}$$

$$= np (p+(1-p))^{n-1}$$

$$= np$$

By formular

$$\mathbb{V}$$
ar $(X) = \mathbb{E}(X^2) - (\mathbb{E}(X))^2$

we just need to calculate $\mathbb{E}(X^2)$.

$$\mathbb{E}(X^{2}) = \sum_{k=0}^{n} k^{2} \cdot \operatorname{bin}_{n,p}(k)$$

$$= \sum_{k=1}^{n} k^{2} \binom{n}{k} p^{k} (1-p)^{n-k}$$

$$= np \sum_{k=1}^{n} k \frac{(n-1)!}{(k-1)!(n-k)!} p^{k-1} (1-p)^{n-k}$$

$$= np \left(\sum_{k=1}^{n} (k-1) \frac{(n-1)!}{(k-1)!(n-k)!} p^{k-1} (1-p)^{n-k} \right)$$

$$+ \sum_{k=1}^{n} \frac{(n-1)!}{(k-1)!(n-k)!} p^{k-1} (1-p)^{n-k} \right)$$

$$= np \left(\sum_{k=1}^{n} (k-1) \frac{(n-1)!}{(k-1)!(n-k)!} p^{k-1} (1-p)^{n-k} + 1 \right)$$

$$= np \left(\sum_{k=0}^{n-1} k \frac{(n-1)!}{k!(n-k)!} p^{k} (1-p)^{n-k-1} + 1 \right)$$

$$= np \left(\mathbb{E}(\operatorname{bin}_{n-1,p}) \right)$$

$$= np((n-1)p+1)$$

$$= (np)^{2} + np(1-p)$$

Therefore the variance of X is

$$Var(X) = \mathbb{E}(X^2) - (\mathbb{E}(X))^2 = (np)^2 + np(1-p) - (np)^2 = np(1-p)$$

Proposition 6. Let X, Y be independent random variables. If $X \sim \text{bin}_{n,p}$ and $Y \sim \text{bin}_{m,p}$ for $n, m \ge 1$ and $0 \le p \le 1$, then $X + Y \sim \text{bin}_{n+m,p}$.

Proof.

$$\mathbb{P}(X+Y=k) = \sum_{i=0}^{m} \mathbb{P}(Y=i)\mathbb{P}(X=k-i)$$

$$= \sum_{i=0}^{m} \binom{m}{i} p^{i} (1-p)^{m-i} \binom{n}{k-i} p^{k-i} (1-p)^{n-k+i}$$

$$= p^{k} (1-p)^{m+n-k} \sum_{i=0}^{m} \binom{m}{i} \binom{n}{k-i}$$

Since hypergeometric distribution is a probability distribution, we have

$$\sum_{i=0}^{m} \frac{\binom{m}{i} \binom{n}{k-i}}{\binom{m+n}{k}} = 1$$

Thus

$$\sum_{i=0}^{m} \binom{m}{i} \binom{n}{k-i} = \binom{m+n}{k}$$

Therefore

$$\mathbb{P}(X+Y=k) = p^k (1-p)^{m+n-k} \sum_{i=0}^m \binom{m}{i} \binom{n}{k-i} = p^k (1-p)^{m+n-k} \binom{m+n}{k}$$

which is equivalent to $X + Y \sim bin_{m+n,p}$.

1.3.2 The Hypergeometric Distribution

Definition 20 (Hypergeometric distribution). The hypergeometric distribution with parameters $n, r, t \ge 1$ with $n, r \le t$ is the probability distribution on $\{0, 1, \ldots, n\}$ given by

$$hyp_{n,r,t}(k) = \frac{\binom{r}{k} \binom{t-r}{n-k}}{\binom{t}{n}}, \text{ for } k \in \{0, 1, \dots, n\}$$

A random variable X is said to follow the hypergeometric distribution with parameters n, r, t if $\mathbb{P}(X = k) = \text{hyp}_{n,r,t}(k)$ for $k \in S_X = \{0, 1, ..., n\}$. In this case we will write $X \sim \text{hyp}_{n,r,t}$

Proposition 7. If random variable $X \sim \text{hyp}_{n,r,t}$, then

$$\mathbb{E}(X) = np$$

where $p = \frac{r}{t}$

$$Var(X) = np(1-p)\frac{t-n}{t-1}$$

1.3.3 The Geometric Distribution

The geometric distribution is the probability which represents the time taken until the first success.

Definition 21 (Geometric distribution). The geometric distribution with parameter p, with $p \in (0,1)$, is the probability distribution on $\{1,2,\ldots\}$ given by

$$geo_p(k) = p(1-p)^{k-1}$$
, for $k \in \{1, 2, ...\}$

A random variable X follows this distribution if $S_X = \{1, 2, \ldots\}$ and $\mathbb{P}(X = k) = \text{geo}_p(k)$ for $k \in S_X = \{1, 2, \ldots\}$. We then write $X \sim \text{geo}_p$

Proposition 8. The p.m.f of Geometric distribution geo_p is

$$p(k) = p(1-p)^{k-1}$$

The cumulative function of geometric distribution is

$$F_X(k) = \mathbb{P}(X \le k) = \sum_{i=1}^k p(1-p)^{i-1} = 1 - (1-p)^k$$

Proposition 9. If random variable $X \sim \text{geo}_p$, then

$$\mathbb{E}(X) = \frac{1}{p}$$

$$\mathbb{V}ar(X) = \frac{1-p}{p^2}$$

Proof.

$$\mathbb{E}(X) = \sum_{k=1}^{\infty} k \cdot \text{geo}_p(k)$$

$$= \sum_{k=1}^{\infty} kp(1-p)^{k-1}$$

$$= p \sum_{k=1}^{\infty} k(1-p)^{k-1}$$

$$= p \cdot \frac{1}{p^2}$$

$$= \frac{1}{p}$$

$$\mathbb{E}(X^2) = \sum_{k=1}^{\infty} k^2 \cdot \text{geo}_p(k)$$

$$= \sum_{k=1}^{\infty} k^2 p (1-p)^{k-1}$$

$$= p \sum_{k=1}^{\infty} k^2 (1-p)^{k-1}$$

$$= p \left(\frac{2}{p^3} - \frac{1}{p^2}\right)$$

$$= \frac{2}{p^2} - \frac{1}{p}$$

Therefore

$$\mathbb{V}ar(X) = \mathbb{E}(X^2) - (\mathbb{E}(X))^2 = \frac{2}{p^2} - \frac{1}{p} - \frac{1}{p^2} = \frac{1-p}{p^2}$$

Remark 3. The above proof used some conclusions of the series $\sum_{n=0}^{\infty} x^n$.

$$\sum_{k=1}^{\infty} kx^{k-1} = \frac{1}{(1-x)^2}$$

$$\sum_{k=1}^{\infty} k^2 x^{k-1} = -\frac{1}{(1-x)^2} + \frac{2}{(1-x)^3}$$

for all $x \in (-1, 1)$.

Proposition 10 (memoryless property). Let $X \sim \text{geo}_p$ with $p \in (0,1)$. Then

$$\mathbb{P}(X > n + m | X > n) = \mathbb{P}(X > m) \text{ for all } n \ge 1, m \ge 0.$$

Proof. Because $m \geq 0$, we have

$${X > n + m} \subseteq {X > n}$$

Thus

$${X > n + m} \cap {X > n} = {X > n + m}$$

Therefore

$$\mathbb{P}(X > n + m | X > n) = \frac{\mathbb{P}(\{X > n + m\} \cap \{X > n\})}{\mathbb{P}(X > n)}$$

$$= \frac{\mathbb{P}(X > n + m)}{\mathbb{P}(X > n)}$$

$$= \frac{(1 - p)^{n+m}}{(1 - p)^n}$$

$$= (1 - p)^m$$

$$= \mathbb{P}(X > m)$$

1.3.4 The Poisson Distribution

The poisson distribution can be seen as an approximation of binomial distribution with parameters n and p if $p \approx \lambda/n$ for some $\lambda > 0$ and n is large.

Theorem 6 (Law of small numbers). Let $p_n, n \in \mathbb{N}$ be a sequence of real numbers with $0 \le p_n \le 1$ for all $n \in \mathbb{N}$ and $n \cdot p_n \to \lambda > 0$ as $n \to \infty$, Then, for all $k \in \{0, 1, \ldots\}$

$$\lim_{n \to \infty} \sin_{n, p_n}(k) = e^{-k} \frac{\lambda^k}{k!}$$

Proof.

Definition 22 (Poisson distribution). Let $\lambda > 0$. The **Poisson distribution** with parameter $\lambda > 0$ is the probability distribution on $\{0, 1, 2, \ldots\}$. given by

$$Poi_{\lambda}(k) = e^{-k} \frac{\lambda^k}{k!}$$

A random variable X is said to follow the Poisson distribution with parameter λ if $\mathbb{P}(X=k)=\operatorname{Poi}_{\lambda}(k)$ for $k\in S_X=\{0,1,2,\ldots\}$. In this case we will write $X\sim\operatorname{Poi}_{\lambda}$ or $X\sim\operatorname{Poi}_{\lambda}$).

Remark 4. The value λ then corresponds to the average value of the quantity under investigation.

Proposition 11. Let X, Y be independent discrete random variables with $X \sim Pois(\lambda)$ and $Y \sim Pois(\mu)$ where $\lambda, \mu > 0$, then

$$X + Y \sim Pois(\lambda + \mu)$$

Proof. Since $X \sim Pois(\lambda), Y \sim Pois(\mu)$, so we have

$$\mathbb{P}(X=k) = \frac{\lambda^k}{k!} e^{-\lambda}$$

and

$$\mathbb{P}(Y=k) = \frac{\mu^k}{k!} e^{-\mu}$$

we note

$$\{X+Y=k\} = \bigcup_{i=0}^k \{X=i \land Y=k-i\} = \bigcup_{i=0}^k \{X=i\} \cap \{Y=k-i\}$$

Because X and Y are independent, so

$$\mathbb{P}(X+Y=k) = \mathbb{P}\left(\bigcup_{i=0}^{k} \{X=i\} \cap \{Y=k-i\}\right)$$

$$= \sum_{i=0}^{k} \mathbb{P}\left(\{X=i\} \cap \{Y=k-i\}\right)$$

$$= \sum_{i=0}^{k} \mathbb{P}\left(\{X=i\}\right) \mathbb{P}\left(\{Y=k-i\}\right)$$

$$= \sum_{i=0}^{k} \frac{\lambda^{i}}{i!} e^{-\lambda} \cdot \frac{\mu^{k-i}}{(k-i)!} e^{-\mu}$$

$$= e^{-(\lambda+\mu)} \sum_{i=0}^{k} \frac{\lambda^{i} \mu^{k-i}}{i!(k-i)!}$$

$$= \frac{e^{-(\lambda+\mu)}}{k!} \sum_{i=0}^{k} \frac{k!}{i!(k-i)!} \lambda^{i} \mu^{k-i}$$

$$= \frac{e^{-(\lambda+\mu)}}{k!} \sum_{i=0}^{k} \binom{k}{i} \lambda^{i} \mu^{k-i}$$

$$= \frac{e^{-(\lambda+\mu)}}{k!} (\lambda+\mu)^{k}$$

Therefore X + Y meet the distribution $Pois(\lambda + \mu)$

Proposition 12. If a random variable $X \sim Poi_{\lambda}$, then

$$\mathbb{E}(X) = \lambda$$
$$\mathbb{V}ar(X) = \lambda$$

Proof.

$$\mathbb{E}(X) = \sum_{k=0}^{\infty} k \cdot \mathbb{P}(X = k)$$

$$= \sum_{k=0}^{\infty} k \cdot \frac{\lambda^k}{k!} e^{-\lambda}$$

$$= \lambda \sum_{k=1}^{\infty} \frac{\lambda^{k-1}}{(k-1)!} e^{-\lambda}$$

$$= \lambda \sum_{k=0}^{\infty} \frac{\lambda^k}{k!} e^{-\lambda}$$

$$= \lambda$$

$$\mathbb{E}(X^2) = \sum_{k=0}^{\infty} k^2 \cdot \mathbb{P}(X = k)$$

$$= \sum_{k=1}^{\infty} k \frac{\lambda^k}{(k-1)!} e^{-\lambda}$$

$$= \sum_{k=2}^{\infty} \frac{\lambda^k}{(k-2)!} e^{-\lambda} + \sum_{k=1}^{\infty} \frac{\lambda^k}{(k-1)!} e^{-\lambda}$$

$$= \lambda^2 \sum_{k=0}^{\infty} \frac{\lambda^k}{k!} e^{-\lambda} + \lambda \sum_{k=0}^{\infty} \frac{\lambda^k}{k!} e^{-\lambda}$$

$$= \lambda^2 + \lambda$$

Therefore

$$\mathbb{V}\mathrm{ar}(X) = \mathbb{E}(X^2) - (\mathbb{E}(X))^2 = \lambda^2 + \lambda - \lambda^2 = \lambda$$

1.3.5 Independent random variables

Definition 23 (Independence of random variables). Let X_1, \ldots, X_n be discrete random variables with $X_i : \Omega \to \mathbb{R}$ for $i \in \{1, \ldots, n\}$. We say that X_1, \ldots, X_n are independent if for any elements $x_1 \in S_{X_1}, x_2 \in S_{X_2}, \ldots, x_n \in S_{X_n}$ we have

$$\mathbb{P}(X_1 = x_1, \dots, X_n = x_n) = \prod_{i=1}^n \mathbb{P}(X_i = x_i)$$

Proposition 13. Let $X_1, ..., X_n$ be independent random variables. Then given $A_i \subseteq S_X$, for i = 1, ..., n, we have

$$\mathbb{P}(X_1 \in A_1, \dots, X_n \in A_n) = \prod_{i=1}^n \mathbb{P}(X_i \in A_i)$$

Proposition 14. Let X_1, \ldots, X_n be independent random variables and

$$f_1,\ldots,f_n:\mathbb{R}\to\mathbb{R}$$

be arbitrary functions. Then the random variables $f_1 \circ X_1, \ldots, f_n \circ X_n$ are independent.

Proof. Let
$$y_1, y_2, \dots, y_n \in \mathbb{R}$$
. Set $A_i = \{x \in \mathbb{R} : f(x) = y_i\}$. Then
$$\mathbb{P}(f_1 \circ X_1 = y_1, \dots, f_n \circ X_n = y_n) = \mathbb{P}(X_1 \in A_1, \dots, X_n \in A_n)$$
$$= \prod_{i=1}^n \mathbb{P}(X_i \in A_i)$$
$$= \prod_{i=1}^n \mathbb{P}(f_i \circ X_i = y_i)$$

Proposition 15. Let X,Y be independent discrete random variables and Z=X+Y. Then, $S_z=\{x+y:x\in S_X,y\in S_Y\}$. For all $z\in S_Z$, we have

$$\mathbb{P}(X+Y=z) = \sum_{x \in S_X} \mathbb{P}(X=x)\mathbb{P}(Y=z-x)$$

1.4 Continuous Random Variables

Definition 24 (Densities). A function $f: \mathbb{R} \to \mathbb{R}$ is called a (probability) density function if

- 1. $f(x) \ge 0$ for all $x \in \mathbb{R}$, and
- 2. $\int_{-\infty}^{\infty} f(x)dx = 1.$

If X is a random variable, and a function f_X is a probability of X, the $f_X(x)$ is called a PDF(p.d.f.) of X.

Definition 25 (Continuous random variables). A function $X : \Omega \to \mathbb{R}$ is called a **continuous random variable** if there is a p.d.f f_X with

$$\mathbb{P}(X \in [a, b]) = \int_{a}^{b} f_X(x) dx, -\infty \le a < b \le \infty$$

Definition 26 (Cumulative Distribution function). The cumulative distribution function (c.d.f) of a continuous random variable X with p.d.f f_X is the map $F_X : \mathbb{R} \to [0,1]$ defined for all $t \in \mathbb{R}$ by

$$F_X(t) := \mathbb{P}(X \le t) = \int_{-\infty}^t f_X(x) dx$$

The $F_X : \mathbb{R} \to [0,1]$ is called a **c.d.f** of X.

Proposition 16. The **c.d.f** of continuous variable has the following properties:

- 1. F_X is non-decreasing.
- 2. $\lim_{t \to +\infty} F_X(t) = 1$
- 3. $\lim_{t\to -\infty} F_X(t) = 0$

Theorem 7. If X is a continuous random variable, then $\mathbb{P}(X = x) = 0$ for any real number x.

1.4.1 Uniform Distribution

Definition 27 (Uniform Distribution). X is uniformly distributed on an interval (a,b) if it has the density function

$$f(x) = \begin{cases} \frac{1}{b-a} & if \ a < x < b \\ 0 & otherwise \end{cases}$$

the notation of **Uniform Distribution** is $X \sim U(a,b)$ or $X \sim \text{unif}_{[a,b]}$. In this case, the distribution function F_X is given by

$$F_X(t) = \begin{cases} 0 & \text{if } t < a, \\ \frac{t-a}{b-1} & \text{if } a \le t \le b, \\ 1 & \text{if } t > b. \end{cases}$$

1.4.2 Normal Distribution

Definition 28 (Error function). The (Gauss) error function Φ is the map $\Phi : \mathbb{R} \to [0,1]$ given by

$$\Phi(t) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{t} e^{x^2/2} dx, \text{ for } t \in \mathbb{R}.$$

Proposition 17. The error function $\Phi(t)$ meets

- $\Phi(-t) = 1 \Phi(t)$, for $t \in \mathbb{R}$
- $\Phi(0) = 0.5$

Definition 29 (Normal Distribution). The **p.d.f** of normal distribution with parameters μ and σ is

$$f_X(x) = \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^2}$$

where $\mu \in \mathbb{R}$ and $\sigma > 0$. We write $X \sim N(\mu, \sigma^2)$. The distribution function F_X is then

$$F_X(t) = \Phi(\frac{t-\mu}{\sigma})$$

When $\mu=0$ and $\sigma=1$, this distribution is called **the standard normal** distribution.

Proposition 18. Let $\mathcal{N} \sim N(0,1)$ and let $\mu \in \mathbb{R}$ and $\sigma > 0$. Then

$$\mu + \sigma \mathcal{N} \sim N(\mu, \sigma^2)$$

Proposition 19. 1. If $X \sim N(\mu, \sigma)$, then $aX + b \sim N(a\mu + b, a^2\sigma^2)$. Hence,

$$(X-\mu)/\sigma \sim N(0,1)$$

- 2. If $X \sim N(\mu, \sigma^2)$, then $-X \sim N(-\mu, \sigma^2)$
- 3. If $X \sim N(\mu, \sigma^2)$ and $Y \sim N(\nu, \tau^2)$ are independent, then $X+Y \sim N(\mu+\nu, \sigma^2+\tau^2)$
- 4. $\Phi(-z) = 1 \Phi(z)$
- 5. $\varphi(-z) = \varphi(z)$

Example 5. $X \sim N(5,16)$ and $Y \sim N(-5,9)$, X and Y are independent. What is the probability $\mathbb{P}(X - Y > 15)$?

1.4.3 Exponential Distribution

Definition 30 (Exponential Distribution). If a function meet the format

$$f_X(x) = \lambda e^{-\lambda x} \text{ (when } x \ge 0)$$

then X meet the **exponential distribution**, note as $X \sim \text{Exp}(\lambda)$, or $X \sim \exp_{\lambda}$. The distribution function F_X is given by

$$F_X(t) = \mathbb{P}(X \le t) = \begin{cases} 0, & \text{if } t < 0 \\ 1 - e^{-\lambda t} & \text{if } t \ge 0 \end{cases}$$

Proposition 20 (Memory-less property). Let $X \sim \exp_{\lambda}$ with $\lambda > 0$. Then for $t, s \geq 0$, we have

$$\mathbb{P}(X \ge t + s | X \ge t) = \mathbb{P}(X \ge s)$$

Proof. For given $t \ge 0$, we have $\mathbb{P}(X \ge t) = 1 - F_X(t) = e^{-\lambda t}$. Thus

$$\mathbb{P}(X \ge t + s | X \ge t) = \frac{\mathbb{P}(X \ge t + s)}{\mathbb{P}(X \ge t)} = \frac{\mathrm{e}^{-\lambda(t + s)}}{\mathrm{e}^{-\lambda t}} = \mathrm{e}^{-\lambda s} = \mathbb{P}(X \ge s)$$

Proposition 21. If $X \sim \exp_{\lambda}$, then

$$\mathbb{E}(X) = \frac{1}{\lambda}$$

$$\mathbb{V}\mathrm{ar}(X) = \frac{1}{\lambda^2}$$

1.4.4 Erlang Distribution

Suppose we want to model the time to complete k operation requires an exponential period of time to complete.

Definition 31 (Erlang Distribution). An Erlang distribution has the density function as

$$f(x) = \frac{\lambda^k x^{k-1} e^{-\lambda x}}{(k-1)!}$$

We call λ is the **rate parameter** and k is the **shape parameter**. We denote it as $X \sim \text{Erlang}(\lambda, k)$.

Theorem 8. Let X_1, X_2, \ldots, X_k are independent and $X_i \sim \exp_{\lambda}$, then the sum of them $X = \sum_{i=1}^k X_i \sim \operatorname{Erlang}(\lambda, k)$.

Example 6. Suppose you join a queue with three people ahead of you. One is being served and two are waiting. Their service times S1, S2, S3 are independent exponential random variables with common mean 2 minutes. What is the probability of that you wait more than 5 minutes in the queue?

1.4.5 Gamma Distribution

Definition 32 (Gamma Distribution). The p.m.f. of Gamma distribution is

$$f(x) = \frac{\lambda^k x^{k-1} e^{-\lambda x}}{\Gamma(k)}$$

Proposition 22. If $X \sim \text{Gamma}(\lambda, k)$, then

$$\mathbb{E}(X) = \frac{k}{\lambda}$$

$$Var(X) = \frac{k}{\lambda^2}$$

1.4.6 χ^2 Distribution

The χ^2 distribution is a special situation of Gamma distribution.

Definition 33 (χ^2 Distribution). The Gamma(1/2, 1/2) distribution is called the χ^2 distribution with 1 degree of freedom. Its notation is χ_1^2 .

Definition 34. Let X_1, X_2, \ldots, X_n are independent variables and $X_i \sim \chi_1^2$ for $i = 1, 2, \ldots, n$, then

$$\chi_n^2 := \sum_{i=1}^n X_i$$

Therefore Gamma(1/2, n/2) can be writted as χ_n^2 .

1.4.7 Beta Distribution

Definition 35 (Beta Function). Beta function is given by

$$B(a,b) = \int_0^1 cx^{a-1} (1-x)^{b-1} dx$$

where a, b > 0 and $x \in (0, 1)$.

Remark 5. Beta function and Gamma function have the relationship

$$B(a,b) = \frac{\Gamma(a)\Gamma(b)}{\Gamma(a+b)}$$

Definition 36 (Beta Distribution). A random variable has a beta distribution with parameters a and b if its p.d.f. is

$$f(x) = \frac{1}{B(a,b)} x^{a-1} (1-x)^{b-1} \mathbb{I}_{\{0 < x < 1\}}$$

and we denote it $X \sim \text{Beta}(a, b)$.

Proposition 23. If $X \sim \text{Beta}(a, b)$, Then

•
$$\mathbb{E}(X) = \frac{a}{a+b}$$

•
$$\operatorname{Var}(X) = \frac{ab}{(a+b)^2(a+b+1)}$$

1.5 The law of large numbers and the central limit theorem

1.5.1 Markov and Chebyshev's inequalities

Definition 37 (indicator variable). Let $A \subseteq \Omega$ be an event. The **indicator** variable of the event A is the random variable $\mathbb{I}_A : \Omega \to \mathbb{R}$ defined for all $\omega \in \Omega$ by

$$\mathbb{I}_A(\omega) \begin{cases} 1, & \text{if } \omega \in A, \\ 0, & \text{if } \omega \notin A. \end{cases}$$

Theorem 9 (Markov's inequality). Let $X : \Omega \to \mathbb{R}$ be a non-negtive random variable with well-defined expectation. Then, given any t > 0, we have

$$\mathbb{P}(X \ge t) \le \frac{\mathbb{E}(X)}{t}.$$

Proof.

$$\mathbb{E}(X) = \int_{-\infty}^{\infty} t \cdot f(t)dt = \int_{0}^{\infty} t \cdot f(t)dt$$

$$= \int_{0}^{x} t \cdot f(t)dt + \int_{x}^{\infty} t \cdot f(t)dt$$

$$\geq \int_{x}^{\infty} t \cdot f(t)dt$$

$$\geq \int_{x}^{\infty} x \cdot f(t)dt$$

$$= x \int_{x}^{\infty} f(t)dt$$

$$= x \cdot \mathbb{P}(X \geq x)$$

so

$$\mathbb{P}(X \ge x) \le \frac{\mathbb{E}(X)}{x}$$

Theorem 10 (Chebyshev's inequality). Let X be a random variable with well-defined expeactation and variance. Then, for all $\varepsilon > 0$, we have

$$\mathbb{P}(|X - \mathbb{E}(X)| \ge \varepsilon) \le \frac{\mathbb{V}\mathrm{ar}(X)}{\varepsilon^2}.$$

Proof. Consider the random variable $Y = (X - \mathbb{E}(X))^2$. Then $|X - \mathbb{E}(X)| \ge x$ if and only if $Y \ge x^2$ and moreover Y is non-negtive. Thus, according to Markov's inequality, we obtain

$$\mathbb{P}(|X - \mathbb{E}(X)| \ge x) = \mathbb{P}(Y \ge x^2) \le \frac{\mathbb{E}(Y)}{x^2}$$
$$= \frac{\mathbb{V}ar(X)}{x^2}$$

1.5.2 The law of large numbers

An infinite collection of random variables X_1, X_2, \ldots are independent and identically distribution if:

- $X_1 \cdots , X_n$ are independent for all $n \in \mathbb{N}$, and
- all X_i follow the same distribution, that is $F_{X_i}(t) = F_{X_j}(t)$ for all $i, j \in \mathbb{N}$ and $t \in \mathbb{R}$.

Theorem 11 (The Law of Large Numbers). Let $X_1, X_2, ...$ be independent random variables with $\mathbb{E}(X_i) = \mu \in \mathbb{R}$ and $\mathbb{V}\mathrm{ar}(X_i) = \sigma^2 > 0$ for $i = 1, 2, \cdots$. For $n \in \mathbb{N}$, let

$$\overline{X}_n := \frac{1}{n} \sum_{i=1}^n X_i$$

denote the average of the first n random variables. Then for all $\varepsilon > 0$, we have that

$$\lim_{n \to \infty} \mathbb{P}(|\overline{X}_n - \mu| < \varepsilon) = 1.$$

Proof. By definition of \overline{X}_n , we have

$$\mathbb{E}(\overline{X}_n) = \mathbb{E}\left(\frac{\sum_{k=1}^n X_k}{n}\right)$$
$$= \frac{1}{n} \sum_{k=1}^n \mathbb{E}(X_k)$$
$$= \mu$$

and

$$\mathbb{V}\operatorname{ar}(\overline{X}_n) = \mathbb{V}\operatorname{ar}\left(\frac{\sum_{k=1}^n X_k}{n}\right)$$
$$= \frac{1}{n^2} \mathbb{V}\operatorname{ar}\left(\sum_{k=1}^n X_k\right)$$
$$= \frac{1}{n^2} \sum_{k=1}^n \mathbb{V}\operatorname{ar}(X_k)$$
$$= \frac{\sigma}{n}$$

According to Chebyshev's inequality, we have

$$\mathbb{P}(|\overline{X}_n - \mu| \ge \varepsilon) \le \frac{\mathbb{V}\mathrm{ar}(\overline{X}_n)}{\varepsilon^2} = \frac{1}{n} \cdot \frac{\sigma}{\varepsilon^2}$$

Thus

$$\lim_{n \to \infty} \mathbb{P}(|\overline{X}_n - \mu| < \varepsilon) = \lim_{n \to \infty} \left(1 - \mathbb{P}(|\overline{X}_n - \mu| \ge \varepsilon)\right) \ge 1 - \lim_{n \to \infty} \frac{\sigma}{n\varepsilon^2} = 1$$

Because $\mathbb{P}(|\overline{X}_n - \mu| < \varepsilon) \le 1$, therefore

$$\lim_{n \to \infty} \mathbb{P}(|\overline{X}_n - \mu| < \varepsilon) = 1$$

Theorem 12 (Central Limit Theorem). Let $X_1, X_2, ...$ be independent random variables with $\mathbb{E}(X_i) = \mu \in \mathbb{R}$ and $\mathbb{V}\mathrm{ar}(X_i) = \sigma^2 > 0$ for $i = 1, 2, \cdots$ For $n \in \mathbb{N}$, let $\bar{X}_n := \frac{1}{n} \sum_{i=1}^n X_i$ denote the average of the first n random variables. Then, \bar{X}_n is approximately $N(\mu, \frac{\sigma^2}{n})$ in the following sense:

$$\lim_{n\to\infty}\mathbb{P}(\frac{\overline{X}_n-\mu}{\sqrt{\sigma^2/n}}\leq z)=\Phi(z)\ \ for\ all\ z\in\mathbb{R}$$

Remark 6. For discrete random variables $X_1, \dots, X_n, X = X_1 + \dots + X_n$ with sample space $S_X \subseteq \mathbb{Z}$, we obtain the approximate formulas

$$\begin{split} \mathbb{P}(X=k) &\approx \Phi\left(\frac{k-n\mu+0.5}{\sqrt{n\sigma^2}}\right) - \Phi\left(\frac{k-n\mu-0.5}{\sqrt{n\sigma^2}}\right) \\ \mathbb{P}(k \leq X \leq m) &\approx \Phi\left(\frac{m-n\mu+0.5}{\sqrt{n\sigma^2}}\right) - \Phi\left(\frac{k-n\mu-0.5}{\sqrt{n\sigma^2}}\right) \\ \mathbb{P}(X \leq m) &\approx \Phi\left(\frac{m-n\mu+0.5}{\sqrt{n\sigma^2}}\right) \\ \mathbb{P}(X \geq k) &\approx 1 - \Phi\left(\frac{k-n\mu-0.5}{\sqrt{n\sigma^2}}\right) \end{split}$$

Lemma 2. If X_1, X_2, \ldots are independent **normal** random variables with $\mathbb{E}(X_i) = \mu \in \mathbb{R}$ and \mathbb{V} ar $(X_i) = \sigma^2 > 0$ for $i = 1, 2, \ldots$, then

$$X := \sum_{i=1}^{n} X_i \sim N(n\mu, n\sigma^2)$$

exactly.