

Lecture #18: Greedy Algorithm

School of Computer Science and Engineering
Kyungpook National University (KNU)

Woo-Jeoung Nam

문자코드화 문제

- Coding problem
- Coding: assignment of bit strings to alphabet characters
- Codewords: bit strings assigned for characters of alphabet
- Two types of codes:
- fixed-length encoding (e.g., ASCII)
- variable-length encoding (e.g., Morse code)
- 압축할 데이터의 특성에 따라 20~90%까지 절약 가능하다

!"#\$%&'()*+,/	Decimal	Hex	Char			
0123456789:;<=>?	64	40	@			
	65	41	Α			
@ABCDEFGHIJKLMNO	66	42	В			
PQRSTUVWXYZ[\]^	67	43	C			
	68	44	D			
`abcdefghijklmno	69	45	E			
pqrstuvwxyz{ }~	70	46	F			
pqistaviixyztj	71	47	G			
	72	48	H			
< ASCII code >						

문자코드화 문제

- **■** Example: Character-coding problem for representing 6 characters
- **100,000**개의 문자를 가진 데이터 파일 존재
- Fixed-length code: 300,000 bits (Fixed-length, codeword)
- Variable-length code: bits (a savings of approximately 25%)
- 가변길이를 통해 224,000비트로 코드화 가능
- (15*1+13*3+12*3+16*3+9*4+5*4)*1000 = 224000비트

20

	a	b	С	d	е	f
Frequency (in thousands)	45	13	12	16	9	5 -785-7
Fixed-length codeword	000	001	010	011	100	101
Variable-length codeword	0	101	100	111	1101	1100

■ 알파벳의 빈도수의 분포를 확인해보자.

- 알파벳의 빈도수의 분포를 확인해보자.
 - ➤ 좀더 효율적으로 나타내보자

- 방법 #0 (ASCII 코드와 비슷한 접근법)
 - ➤ 모든 알파벳들을 3자리 비트로 표현
 - ➤ 문제점:
 - 110과 111은 아예 할당이 되지도 않았음

■ 방법 #1

- ➤ 모든 글자들을 **0~2**자리 비트의 이진 문자열로 할당
- ➤ 자주 나타나는 글자들은 더 짧은 길이를 갖도록 함
- ➤ 문제: 000이 AAA를 나타내는지, 아니면 BA나 AB를 나타내는지 불확실

Prefix codes (접두사코드)

Prefix codes (Prefix-free codes)

- ➤ 어떤 문자열의 코드가 다른 문자열의 코드의 접두사(prefix)가 되지 않는 유형의 코드
- ➤ 다시 말해, 어떤 코드도 다른 코드의 시작 부분이 되지 않습니다.

■ 예시

- > A: 0, B: 10, C: 110, D: 111
- ➤ 'A'의 코드인 '0'는 'B', 'C', 'D'의 코드의 시작 부분이 아니다
- ➤ 'B'의 코드인 '10'은 'C' 또는 'D'의 코드의 시작 부분이 아니다
- ➤ ABCD을 인코딩하면? 010110111
- ➤ 해독시 ABCD를 얻을 수 있다

111011010

- ➤ 명확히 해독할 수 없다

A.B C.D

Convenient Representation for the Prefix Code

■ Prefix codes (Prefix-free codes)

- > 해독과정에서 원래 코드단어를 쉽게 뽑아내기 위해 프리픽스 코드에 대한 편리한 표현방법이 필요
- >> 이진 트리로 쉽게 표현 (이진검색트리 x)
- ▶ 0: 왼쪽 자식으로 가라
- ▶ 1: 오른쪽 자식으로 가라

$$ightharpoonup \operatorname{Cost} B(t) = \sum_{c} c \cdot freq * d_t(c)$$

 \rightarrow $d_{\mathbf{c}}(\mathbf{c})$ 는 트리안에 있는 \mathbf{c} 의 리프노드 깊이

	a	b	С	d	е	f
Frequency (in thousands)	45	13	12	16	9	5
Fixed-length codeword	000	001	010	011	100	101
Variable-length codeword	0	101	100	111	1101	1100

cost:
$$B(t) = \int_{C} \frac{d_{+}(c)}{d_{+}(c)} \times c \cdot f_{n}(c)$$

■ 압축하고자 하는 문자열 : ABBCCCDDDDEEEEEFFFFFF

■ 고정 길이 코드: A ~F. 6개의 문자를 구분하기 위해 3bit 필요

■ 가변 길이 코드: 허프만 코드를 이용해서 나온 값.

	Α	В	С	D	E	F
고정 길이 코드	000	001	010	011	100	101
가변 길이 코드	1000	1001	101	00	01	11

■ 압축결과

➤ 고정 길이 코

➤ 알파벳 별 빈도수

A:1 B:2 C:3 D:4 E:5 F:6

- 규칙
 - > Characters in leaves
 - Codeword is path from root to leaf
- 빈도수를 비교하여 가장 작은 빈도수를 가진 노드와 두 번째로 작은 빈도수를 가진 것을 찾 아서 두 개의 빈도수를 합친 수로 노드를 하나 만들어 줌
- 만들어준 노드의 왼쪽 자식에는 가장 작은 빈도 수의 노드를 연결하고 오른쪽 자식에는 두 번째로 작은 빈도수를 가진 노드를 연결 ③

- //
- 빈도수를 비교하여 가장 작은 빈도수를 가진 노드와 두 번째로 작은 빈도수를 가진 것을 찾 아서 두 개의 빈도수를 합친 수로 노드를 하나 만들어 줌
- 만들어준 노드의 왼쪽 자식에는 가장 작은 빈도 수의 노드를 연결하고 오른쪽 자식에는 두 번째로 작은 빈도수를 가진 노드를 연결

■ 알파벳 별 빈도수

A:1 B:2 C:3 D:4 E:5 F:6

- 왼쪽 간선에는 0, 오른쪽 간선에는 1 가중치
- 트리들의 단 노드가 압축하고자 하는 문자가 되며 그 문자들을 루트로부터 탐색했을 때 지난 간선들의 가중치들의 합이 허프만 코드(가변 길이 코드)가 됨.
- EX) A: 1-0-0-0 / E: 0-1

Constructing Huffman Code(교재)

Constructing Huffman Code(교재)

■ Huffman's algorithm

21

■ 적용 전략: 그리디 메소드를 통해서 트리를 만들되, 적은 빈도로 등장하는 문자부터 먼저 트리로 엮

2023-05-14

최단 경로 꾸하기

■ Shortest path network

- 7.8.2.,6,1,3.,5,4.
- ➤ 유향 그래프(directed graph) G = (V, E)를 대상 🗡 🗴
 - $l_e = (length \ of \ edge \ e)$

• 시작점: s ~ 도착점: t

- 최단 경로 문제 (Shortest path problem)
 - > s부터 t에 이르는 최단 경로 구하기 d[next] > w[correct][next] + d[correct]
 - 경로 상에 있는 모든 edge들의 cost(length)의 합이 최소화 되는 경로

■ 다익스트라 알고리즘 (Dijkstra's Algorithm) 🕬 🖠

Dijkstra's algorithm.

- Maintain a set of explored nodes S for which we have determined the shortest path distance d(u) from s to u.
- Initialize $S = \{s\}, d(s) = 0$.
- Repeatedly choose unexplored node v which minimizes

$$\pi(v) = \min_{e = (u,v) : u \in S} d(u) + \ell_e,$$
 add v to S, and set d(v) = $\pi(v)$. shortest path to some u in explored part, followed by a single edge (u, v)

Invariant. For each node $u \in S$, d(u) is the length of the shortest s-u path.

Pf. (by induction on |S|)

Base case: |S| = 1 is trivial.

Inductive hypothesis: Assume true for $|S| = k \ge 1$.

- Let v be next node added to S, and let u-v be the chosen edge.
- The shortest s-u path plus (u, v) is an s-v path of length $\pi(v)$.
- Consider any s-v path P. We'll see that it's no shorter than $\pi(v)$.
- Let x-y be the first edge in P that leaves S, and let P' be the subpath to x.
- P is already too long as soon as it leaves S.

$$\ell\left(P\right) \geq \ell\left(P'\right) + \ell\left(x,y\right) \geq d(x) + \ell\left(x,y\right) \geq \pi(y) \geq \pi(v)$$

$$\uparrow \qquad \uparrow \qquad \uparrow \qquad \uparrow$$

$$\text{nonnegative inductive defin of } \pi(y) \qquad \text{Dijkstra chose v instead of y}$$

- 다익스트라 알고리즘 (Dijkstra's Algorithm)
 - ➤ 매 주어진 상황에서 가장 좋은 경로를 선택함으로써 만들어가는 탐색 방법

■ 동작 과정

acroment.][i].Thest/ newDick=. distance+ "second"

➤ 먼저 가장 처음 각각의 노드에서 이동할 수 있는 비용은 모두 Infinity로 설정

■ 동작 과정

> 3번 노드에서 이동 가능한 2번노드와 4번노드의 비용을 각각 현재 배열에 저장된 값과 비교하여 최솟값을 선택

노드	1	2	3)/	4
비용	Infinity	12	0	5

■ 동작 과정

- ➤ 2번노드와 4번노드 중 최소 비용이 걸리는 4번노드로 이동 후 같은 작업을 반복
- ➤ min(arr[1],arr[4]+1)과 min(arr[2],arr[4]+7)을 통해 배열을 수정

노트	1	2	3	4
비용	6	1,2	0	5
		٩		

■ 동작 과정

- ➤ 2번 노드로 이동하는 비용은 12로 같기 때문에 변화가 없고 1번노드로 가는 비용은 무한대보다 6이 더 최솟값이기 때문에 위 배열 값을 수정
- ➤ 1번노드로 이동 후 작업을 반복. min(arr[1]+3,arr[2])를 비교

노트	1	2	3	4
비용	6	9	0	5

■ 동작 과정

- ▶ 2번노드에서 이동할 수 없는 화살표가 없기 때문에 작업이 일어나지 않는다.
- ▶ 모든 노드를 방문하면 다익스트라 알고리즘이 끝나기 때문에 위 정리된 최소비용배열을 구함 으로써 다익스트라 알고리즘이 종료

노드	1	2	3	4
비용	6	9	0	5

다익스트라 time complexity

- 먼저 최악의 경우 N개의 노드가 있을 때 첫 번 째 노드에서 N-1번의 연산이 일어나고 2 번째 노드에서도 N-1번의 연산이 일어납니다.(화살표가 양방향으로 있는 경우 고려),
 - 즉 결과적으로 N*(N-1)의 연산이 일어나고 최악의 경우 (N^2) 및 효율성을 가지게 됩니다.
 (N^2) 및 효율성을 가지게 됩니다.
- 우선순위 큐를 이용했다면 효율성을 조금 더 높일 수 있음
 - ▶ 다익스트라 알고리즘의 경우 매 순간 최솟값을 비교를 통해 구하고 최솟값을 바탕으로 갱신하면 진행되기 때문에 우선순위 큐를 이용하여 구현하게 되면
 - ➤ 최솟값을 선택하는 비용이 상수 비용이 되기 때문에 효율성을 높일 수 있습니다.

다익스트라 time complexity

■ 결과적으로 노드가 N개 있고 간선의 갯수가 E개 있다면 우선순위 큐 높이가 logN이 되고 이 때 우선순위큐에 새로운 데이터를 삽입 및 삭제하는 과정은 최악의 경우 E개수 만큼진행되므로 O(ElogN)의 효율성을 가지게 됩니다. ♣ 횟

마지막으로 다익스트라의 가장 큰 단점은 비용이 양수가 아닌 음수의 경우 무한 루프에 빠지는 등 결과 값을 제대로 구할 수 없는 치명적인 단점

