1

Assignment 11

Priya Bhatia

Abstract—This document demonstrate how to find the dimension of the subspace.

Download latex-tikz from

https://github.com/priya6971/ matrix_theory_EE5609/tree/master/ Assignment11

1 Problem

Let F be a subfield of the complex numbers. We define n linear functionals on $F^n(n \ge 2)$ by

$$f_k(x_1,, x_n) = \sum_{j=1}^n (k - j)x_j, 1 \le k \le n.$$
 (1.0.1)

What is the dimension of the subspace annihilated by $f_1, f_2, ..., f_n$?

2 Solution

Given	F be a subfield of the complex numbers
	Definition of n linear functionals on $F^n(n \ge 2)$ by $f_k(x_1,, x_n)$
To prove	ϵ_i is standard basis vector $\epsilon_i \notin \bigcup_{j=1}^{n-1} N_{f_i}$ $\dim \bigcap_{j=1}^i N_{f_i} = n - i$
Basis vector	Let ϵ be the standard basis vector
	N_{f_k} is the subspace annihilated by f_k

Proof	The dimension of N_{f_k} is given by $\dim N_{f_k} = n-1$
	The standard basis vector ϵ_2 is in N_{f_2} but is not in N_{f_1}
	$\implies N_{f_1}, N_{f_2}$ are distinct hyperspaces Thus, the intersection of N_{f_1} and N_{f_2} dimension is given by $\dim N_{f_1} \cap N_{f_2} = \text{n-2}$
	The standard basis vector ϵ_3 is in N_{f_3} but is not in N_{f_1}, N_{f_2}
	$\implies N_{f_1}, N_{f_2}, N_{f_3}$ are distinct hyperspaces Thus, the intersection of $N_{f_1}, N_{f_2}, N_{f_3}$ dimension is given by $\dim N_{f_1} \cap N_{f_2} \cap N_{f_3} = \text{n-3}$
	Hence using above results, it can be concluded that $\epsilon_i \notin \bigcup_{j=1}^{n-1} N_{f_i}$ $\dim \bigcap_{j=1}^{i} N_{f_i} = n - i$ Hence, proved
Find	The dimension of the subspace annihilated by $f_1, f_2,, f_n$ Here, the value of $i = n$, using above proof we can easily determine the dimension
	$\dim \bigcap_{j=1}^n N_{f_i} = n - n = 0$
	Hence, according to the definition of n linear functionals on $F^n (n \ge 2)$ the dimension of the subspace annihiliated by $f_1, f_2,, f_n = 0$