Bridging Medical Robotics and Electrical Bio-Impedance

Cheng Zhuoqi

Email: zch@mmmi.sdu.dk

Index

Sensing configurations

- → Monopolar
- → Bipolar
- → Tripolar
- → Tetrapolar

Electrical Bio-Impedance (EBI)

Handheld Robotic Device for Peripheral Intravenous Catheterization

Robot Assisted Electrical Impedance Sensing (RAEIS)

Electrical Bio-Impedance (EBI)

Cell composition and organization are different:

- among different tissue types;
- between normal and abnormal status.

Clinical study

586 data collected from 10 patients:

- →Muscle
- → Mucosa
- → Cartilage
- → Salivary Gland

Monopolar & Bipolar

Monopolar configuration

$$\rightarrow$$
 Current density: $J_{mono} = \frac{I}{2\pi r^2}$

$$ightharpoonup Z_{mono} = \int_{\Omega} \left(\frac{J_{mono}}{\widehat{\sigma}} \right) d\Omega = \frac{1}{2\pi \widehat{\sigma}} \left(\frac{1}{r_0} - \frac{1}{r} \right), \quad r \to \infty$$

Bipolar configuration

Electric field can be distorted!

Problems and solutions

$$\rightarrow Z_{mono} = \int_{\Omega} \left(\frac{J_{mono}}{\widehat{\sigma}} \right) d\Omega = \frac{1}{2\pi\widehat{\sigma}} \left(\frac{1}{r_0} \right)$$

- $\rightarrow r_0$: the electrode emersed depth matters!
- → Solution:
 - → (Robot) Control the electrode emersed depth
- → What if the electrode has an irregular shape:
 - → Calibration using standard saline solutions

Monopolar configuration as an example

Tripolar configuration

Current density at P: $J_p = \frac{I}{2\pi r^2}$

Electric potential at P:

$$V_p = \frac{I}{2\pi\sigma} \left(\frac{1}{r_0} - \frac{1}{r}\right)$$

We measure the electric potential at M & N:

$$V_{MN} = \frac{I}{2\pi\sigma} \left(\frac{1}{|AM|} - \frac{1}{|AN|} \right)$$

Apparent conductivity:

$$\sigma_a = \frac{I}{2\pi V_{MN}} \left(\frac{1}{|AM|} - \frac{1}{|AN|} \right)$$

Pseudo-tetrapolar configuration

$$Z_{tetra} = Z_{AM} - Z_{AN} - Z_{BM} + Z_{BN} = \frac{1}{2\pi\hat{\sigma}} \left(\frac{1}{|AM|} - \frac{1}{|AN|} - \frac{1}{|BM|} + \frac{1}{|BN|} \right)$$

Useful in robotic surgery due to the limited number of trocars!

Application Example 1: Robotic peripheral intravenous catheterization

Medical background

The success rates of Peripheral IntraVenous Catheterization (PIVC) are low:

Patient	1 attempt	2 attempts
Adults[11]	72%	
Pediatrics ^[12]	53%	67%

[•] Jacobson, et al. 'Variables influencing intravenous catheter insertion difficulty and failure: an analysis of 339 intravenous catheter insertions.'

Not suitable for pediatric patients!

Hand-held robotic device for PIVC on pediatric patients

Advantages:

- Keeping surgeons in control;
- Flexible insertion sites;
- High acceptance rate;
- Low cost and complexity.

Detect venipuncture using EBI

Bipolar configuration

 Z_{e1} and Z_{e2} : the impedance of the electrodes;

 Z_n : the electrical impedance due to the capacitance effect between the electrodes.

 Z_t : the electrical impedance of bio-tissue.

 Z_m : the measured electrical impedance of the equivalent circuit.

The electrical impedance values are interpreted in a format of a real part R (resistance) and an imaginary part X (reactance).

$$Z_t = R_t + jX_t$$

July 2021

Data processing and analysis

f (kHz)	10	20	30	40	50	60	70	80	90	100
DT	87.5%	98.3%	92.8%	95.1%	95.1%	100%	89.4%	97.7%	99.4%	100%
LD	74.5%	88.3%	83.8%	88.7%	88.5%	95.9%	78.7%	84.9%	98.2%	99.3%
SVM	74.7%	95.5%	88.2%	89.3%	89.6%	98.2%	82.8%	92.1%	98.6%	100%

DT: Decision tree; LD: Linear discriminant; SVM: Support Vector Machine.

July 2021

Handheld robotic devices

- Mechanism: simple -> complex
- The control and responsibility shared by the operator decrease.

Device 1: sensor only device

SVEI: Smart Venous Entry Indicator

Device 2: Disengage device

SDOP: Smart Device for Over puncture Prevention

July 2021

Device 3: Motorized insertion

SAID: Semi-Autonomous Intravenous access Device

#sduc

Device 4: Handheld automation solution

CathBot

The user only needs to push the handle forwards.

The device:

- 1. Insert the catheter;
- 2. Stop the insertion after venipuncture;
- 3. Advance the catheter 1 mm further;
- 4. Advance the cannula but retract the needle.

Experimental results comparing 5 methods

Compare 5 devices:

- Evaluates the handheld device with the realistic baby arm phantom.
- 25 naïve subjects (no experiences of PIVC or needle insertion) were invited to the experiment.
- Each subject did 10 attempts on the phantom using one of the devices.

Device	Name	Ave. success rat	1st stick accuracy	Whole operation time	SUS score
	SVEI	86%±15%	5/5	23,9 s	77,8
	SDOP	78%±14,7%	2/5	18,8 s	81,5
	SAID	80%±17%	3/5	19 s	75,8
	CathBot	84%±8%	4/5	16,9 s	72,8
	Conventional	12%±16%	0/5	36,2 s	NA

Application Example 2: Robot Assisted Electrical Impedance Sensing (RAEIS)

Tissue recognition in Robot Assisted Minimally Invasive Surgery (RAMIS)

Higher level of perception & recognition for autonomous surgery tomorrow!

Constraints in RAMIS:

- Number of trocars
- Small workspace
- Robotic maneuverability
- Surgical workflow

Sensing system built upon the existing surgical robotic instruments & system

Robot-Assisted Electrical Impedance Sensing (RAEIS)

Mobile electrodes controlled by robots to multiple positions for impedance sensing.

Advantages:

- No external devices involved to the surgical site
- Flexible and autonomous sensing
- Fast and accurate tissue identification.

Monopolar configuration

- → The key is the electrode's pressing depth
- → Impedance:

$$Z_{mono} = \int_{\Omega} \left(\frac{J_{mono}}{\hat{\sigma}}\right) d\Omega = \frac{1}{2\pi\hat{\sigma}} \left(\frac{1}{r} - \frac{1}{r_0}\right)$$

ISTITUTO ITALIANO DI TECNOLOGIA

Bipolar configuration

→ Assuming that bipolar is achieved by 2 jaws: A and B

Tripolar sensing configuration

Advantages compared to mono/bipolar:

- Insensitive to electrode emersed depth
- Measured material conductivity accurately
- Detect subsurface region

System characterization

The system was tested using different saline solutions (0.1%, 0.2%, and 0.3%)

Emersed depths of electrodes (h=1mm and 2mm)

$$\sigma = \frac{1}{2\pi} \frac{Re_{MN}}{Re_{MN}^2 + Im_{MN}^2} \left(\frac{1}{AM} - \frac{1}{AN}\right)$$

$$\varepsilon_r = \frac{1}{4\pi^2 f \varepsilon_0} \frac{Im_{MN}}{Re_{MN}^2 + Im_{MN}^2} \left(\frac{1}{AM} - \frac{1}{AN}\right)$$

System characterization

Different ex vivo tissues:

- Porcine liver
- Porcine fat
- Porcine muscle
- Chicken muscle
- Bovine muscle

Cheng, Zhuoqi, et al. "Robot Assisted Electrical Impedance Scanning for tissue bioimpedance spectroscopy measurement." Measurement. 2022

Subsurface object detection

- Early stage cancer
- Lymph nodes
- Blood vessels
- Edema
- etc

If the object is constructed by 2 layers: ρ_1 and ρ_2

$$V_M^* = \frac{I}{2\pi\sigma_1} \left(\frac{1}{d} + 2\sum_{n=1}^{\infty} \frac{\kappa^n}{\sqrt{d^2 + (2nh)^2}} - \frac{1}{r_0} \right)$$

flow from A to M

reflected from the interface

Reflection coefficient κ : $\kappa = \frac{\sigma_1 - \sigma_2}{\sigma_1 + \sigma_2}$

Updated voltage calculation:

$$V_{MN}^* = \frac{I}{2\pi\sigma_1} \left(\frac{\Delta d}{d(d+\Delta d)} + 2\sum_{n=1}^{\infty} \left(\frac{k^n}{\sqrt{d^2 + (2nh)^2}} - \frac{k^n}{\sqrt{(d+\Delta d)^2 + (2nh)^2}} \right) \right)$$

Scanning area: (100mm*100mm)

Scanning resolution: 11*11

metal cylinder diameter: 40mm

Two conditions (Immersed depth of the metal object:

- 1) h=5mm
- 2) h=10mm

Parameter estimation

$$V_{MN}^* = \frac{I}{2\pi\sigma_1} \left(\frac{\Delta d}{d(d+\Delta d)} + 2\sum_{n=1}^{\infty} \left(\frac{k^n}{\sqrt{d^2 + (2nh)^2}} - \frac{k^n}{\sqrt{(d+\Delta d)^2 + (2nh)^2}} \right) \right)$$

$$\rho_a(d) = \rho_1 \left[1 + 2 \frac{d(d + \Delta d)}{\Delta d} \sum_{n=1}^{\infty} \left(\frac{k^n}{\sqrt{d^2 + (2nh)^2}} - \frac{k^n}{\sqrt{(d + \Delta d)^2 + (2nh)^2}} \right) \right] = \underline{\rho_1(1 + \alpha)}$$

Algorithm 1 Pool of candidates generation

```
if \rho_a(d_1)>\rho_a(d_0) then k^*=1 else k^*=-1 end if for k=0 to k^* do for \alpha=0 to 2k/(1-k) do \rho_1=\rho_a(d_0)/(1-\alpha) for h=0 to d_1 do for d=d_0 to d_1 do calculate \tilde{\rho}_a(d) using Eq. (8) end for end for end for end for
```

Search algorithm: Nearest Neighbour

Parameters estimation:

 ρ 1 = 10.99 Ω m, ρ 2 = 3.66 Ω m, h = 6mm. Fitting error Err=0.016 Ω m.

Active search =

The post processing time is 0.13s. For each vertex, it takes 8s for VME to scan. In total, it takes 16 min to complete the scanning of a 11*11 grid mesh.

The Maersk Mc-Kinney Moller Institute

Use Gaussian Process to estimate the conductivity distribution;

Use **Bayesian Optimization** to determine the next sensing point.

Gaussian process regression

Multivariate Gaussian distributions $N(\mu, \Sigma)$

Gaussian processes $GP(\mu(x), K(x, x_*))$

we observe a training set $\mathcal{D} = \{(\mathbf{x}_i, f_i), i = 1 : N\}$, where $f_i = f(\mathbf{x}_i)$

Given a test set X_* of size $N_* \times D$, we want to predict the function outputs f_* .

A Gaussian Process is a Gaussian distribution over functions:

Assumption:

$$\begin{bmatrix} f \\ f_* \end{bmatrix} \sim N\left(\begin{pmatrix} \mu \\ \mu_* \end{pmatrix}, \begin{bmatrix} K & K_* \\ K_*^T & K_{**} \end{bmatrix} \right)$$

Mean function: $\mu(x)$

Covariance function: K(x, x')

$$K(x, x') = \sigma_f^2 \exp(-\frac{1}{2\ell^2}(x - x')^2)$$

K(x, x') is the kernel.

The prediction of sampling location x_* using GP regression:

$$p(f_*|X, f, X_*) \sim N(f_*|\mu(X_*), \sigma(X_*))$$

where

$$\mu(X_*) = K(X_*, X) [K(X, X) + \sigma_{noise}^2 I]^{-1} f$$

$$\sigma(X_*) = K(X_*, X_*) - K(X_*, X) [K(X, X) + \sigma_{noise}^2 I]^{-1} K(X, X_*)$$

Subsurface object existence likelihood: f(x,y)

SDU &

July 2021

Bayesian Optimization

Query the next point by an **acquisition function**: trade-off between exploitation $\mu(x)$ and exploration $\sigma(x)$.

Acquisition function: **Expected Improvement**

$$EI(x) = \begin{cases} (\mu(x) - f(x^+) - \xi)\Phi(Z) + \sigma(x)\varphi(Z), & \text{if } \sigma(x) > 0\\ 0, & \text{if } \sigma(x) = 0 \end{cases}$$

where

$$Z = \begin{cases} \frac{\mu(x) - f(x^+) - \xi}{\sigma(x)}, & \text{if } \sigma(x) > 0\\ 0, & \text{if } \sigma(x) = 0 \end{cases}$$

• $\Phi(Z)$ and $\varphi(Z)$ are the cumulative density function and the probability density function respectively.

 ξ is a hyperparameter for tuning exploration and exploitation.

Active Search in Subsurface lymph node detection

- Compared to the grid scanning, the Active Search method has higher precision, and recall;
- The AS method takes about 4min to explore the area and localize the lymph node.

Sensing on curved tissue surface

RAEIS sensing on curved tissue surface

June 2022

Summary

Robot Assisted Electrical Impedance

Medical Robotics

Electrical Bioimpedance

- → Robot can improve the EBI sensing flexibility, efficiency and stability;
- → EBI sensing can be an important sensing modality in robotic system for robotic surgery.

Crack detection/ material homogeneity

Biomimetic robot

