گروه آموزشی : **ریاضی** تاریخ : ۱۳۹۱/۲/۵ ورنی شرور درنی شین شرور دانشکده ریاضی

نام و نام خانوادگی : . . . . . . . . . . . . . . .

وقت: ۷۰ دقیقه

امتحان میان ترم درس: ریاضی۲-فنی ( ۱۱ گروه هماهنگ ) نیمسال ( گول / دوم ) ۱۳۹۱- ۱۳۹۰

## توجه: مطالب صفحه اول پاسخنامه را به دقت مطالعه نمایید.

سوال ۱ - بیضی 
$$a$$
 داده شده است. ماکزیمم انحنای آن را بدست آورید.  $\frac{x^{\mathsf{Y}}}{a^{\mathsf{Y}}} + \frac{y^{\mathsf{Y}}}{b^{\mathsf{Y}}} = \mathsf{Y}$  داده شده است. ماکزیمم انحنای آن را بدست آورید.

سوال ۲ – رویه 
$$y = \sqrt{x^{\Upsilon} + z^{\Upsilon} - 1}$$
 را رسم کرده و معادله صفحه مماس و خط قائم بر آن در نقطه (۱,۱,۱) را بنویسید.

سوال 
$$T$$
 مخروط  $T$  قطع می کنند.  $Tx-y+Tz=1$  و صفحه  $T$  و صفحه  $T$  و صفحه  $T$  یکدیگر را در منحنی  $T$  قطع می کنند. 
$$P=(T,T,\Delta) \quad \text{ (i. } f(x,y,z)=\ln(x^\intercal+y^\intercal+z^\intercal) \quad \text{ (i. } f(x,y,z)=1 \text{$$

سوال ۴ – نقاط بحرانی تابع 
$$f(x,y) = \frac{1}{y} - \frac{1}{x} - 4x + y$$
 را بدست آورده و نوع آنها را مشخص کنید.

## موفق باشيد



## پاسخ سوالات امتحان میان ترم درس ریاضی۲-فنی ( ۱۱ گروه هماهنگ ) نیمسال دوم ۹۱-۱۳۹۰



: داریم $a \le x \le a$  اگر  $k(x) = \frac{|y''|}{(\sqrt{1+(v')^{\top}})^{\top}}$  : عمد انحنا برای یک منحنی در صفحه ایران  $k(x) = \frac{|y''|}{(\sqrt{1+(v')^{\top}})^{\top}}$  $y = \pm \frac{b}{a} \sqrt{a^{r} - x^{r}} \rightarrow y' = \mp \frac{b}{a} \frac{x}{\sqrt{a^{r} - x^{r}}} \rightarrow 1 + (y')^{r} = \frac{a^{r} + (b^{r} - a^{r})x^{r}}{a^{r}(a^{r} - x^{r})}, y'' = \mp \frac{ab}{(\sqrt{a^{r} - x^{r}})^{r}}$  $k(x) = \frac{|y''|}{(\sqrt{1 + (y')^{\top}})^{\top}} = \frac{ab/(\sqrt{a^{\top} - x^{\top}})^{\top}}{(\sqrt{a^{\top} + (b^{\top} - a^{\top})x^{\top}})^{\top}/(a\sqrt{a^{\top} - x^{\top}})^{\top}} = \frac{a^{\top}b}{(\sqrt{a^{\top} + (b^{\top} - a^{\top})x^{\top}})^{\top}}$  $k'(x) = \frac{-\Upsilon a^{\mathsf{T}} b(b^{\mathsf{T}} - a^{\mathsf{T}}) x}{(\sqrt{a^{\mathsf{T}} + (b^{\mathsf{T}} - a^{\mathsf{T}}) x^{\mathsf{T}}})^{\delta}}, \quad k'(x) = \mathsf{T} \to x = \mathsf{T} \to k(\mathsf{T}) = \frac{b}{a^{\mathsf{T}}}$  $k(a)=rac{a}{b^{\gamma}}$  است و انحنا در نقاط گوشه ای دامنه یعنی  $(\pm a\ ,\ .)$  برابر است با این انحنا مربوط به نقاط .  $\max k = k(\cdot) = \frac{b}{a^{\tau}}$  ,  $\min k = k(a) = \frac{a}{b^{\tau}}$  بنابر این b > a ، طبق فرض مساله ، روش دوم : می توانیم بنویسیم  $f(t) = (a\cos t\,, b\sin t\,)\;,\; \cdot \leq t \leq$ ۲۳ که نمودار آن همان بیضی داده شده است.  $f'(t) = (-a\sin t, b\cos t), \ f''(t) = (-a\cos t, -b\sin t) \rightarrow f' \times f'' = (\cdot, \cdot, ab), \ |f'| = \sqrt{a^{\tau} + (b^{\tau} - a^{\tau})\cos^{\tau} t}$  $k(t) = \frac{|f' \times f''|}{|f'|^r} = \frac{ab}{(\sqrt{a^r + (b^r - a^r)\cos^r t})^r} \rightarrow \max k = k(\frac{\pi}{r}) = \frac{b}{a^r}, \min k = k(\cdot) = \frac{a}{b^r}$  $\nabla f = (\frac{x}{\sqrt{x^{'}+z^{'}-1}}, -1, \frac{z}{\sqrt{x^{'}+z^{'}-1}})$ : اکنون داریم  $f(x, y, z) = -y + \sqrt{x^{'}+z^{'}-1}$ : الف) قرار می دهیم: N = (1, -1, 1) : برابر است با برابر است با فائم در نقطه وردار نرمال صفحه مماس و بردار هادی خط قائم در نقطه  $x-1=\frac{y-1}{x}=z-1$  : معادله صفحه مماس : x-y+z=1جواب سوال T : قرار می دهیم  $f_{\gamma}(x,y,z)=x^{\gamma}+y^{\gamma}-z^{\gamma}$  و صفحه  $f_{\gamma}(x,y,z)=x^{\gamma}+y^{\gamma}-z^{\gamma}$  بردار مماس بر منحنی  $f_{\scriptscriptstyle Y}$  و  $f_{\scriptscriptstyle Y}$  و ورویه مماس است یعنی بر بردار گرادیان توابع C عمود است.  $\nabla f_{\mathbf{y}}(P) = (\mathbf{x}, \mathbf{y}, -\mathbf{y}), \nabla f_{\mathbf{y}}(P) = (\mathbf{y}, -\mathbf{y}), \nabla f_{\mathbf{y}}(P) = (\mathbf{y},$  $\vec{u} = \frac{\pm 1}{\sqrt{N}}(11, -15, -14)$ : بردار یکه مماس بر منحنی برابر است با با  $\nabla f_{\tau}(P) \times \nabla f_{\tau}(P) = (77, -77, -74)$  $\nabla f(x, y, z) = \frac{\Upsilon}{\Upsilon' + \gamma' + \gamma'} (x, y, z) \rightarrow \nabla f(P) = \frac{\Upsilon}{\Upsilon'} (\Upsilon, \Upsilon, \Delta)$  $\rightarrow D_{\vec{u}} f(P) = \frac{\mathsf{Y}}{\mathsf{YA}} (\mathsf{Y}, \mathsf{Y}, \Delta) \cdot \frac{\pm \mathsf{Y}}{\sqrt{\mathsf{YAA}}} (\mathsf{YY}, -\mathsf{YP}, -\mathsf{YP}) \\ \rightarrow D_{\vec{u}} f(P) = \frac{\pm \mathsf{Y} \times (-\mathsf{YP})}{\mathsf{YA}} = \mp \frac{\mathsf{YP}}{\mathsf{YA}} \frac{\mathsf{YAA}}{\sqrt{\mathsf{YAA}}} = \pm \frac{\mathsf{YP}}{\mathsf{YAA}} \frac{\mathsf{YAA}}{\sqrt{\mathsf{YAA}}} = \pm \frac{\mathsf{YAA}}{\mathsf{YAA}} = \pm \frac{\mathsf{YAA}}{\mathsf{YAA}} + \frac{\mathsf{YAA}}{\mathsf{YAA}} = \pm \frac{\mathsf{YAA}}{\mathsf{YAA}} + \frac{\mathsf{YAA}}{\mathsf$  $f_x = \frac{1}{y^{\tau}} - Y$ ,  $f_y = -\frac{1}{y^{\tau}} + 1$ ,  $f_x = \cdot \rightarrow x = \frac{\pm 1}{Y}$ ,  $f_y = \cdot \rightarrow y = \pm 1$ نقاط بحرانی تابع چهار نقطه  $A = (\frac{1}{2}, 1, -1)$  ,  $B = (-\frac{1}{2}, 1, 8)$  ,  $C = (\frac{1}{2}, -1, -8)$  ,  $D = (-\frac{1}{2}, -1, 1)$  هستند.  $f_{xx}=rac{-7}{r^7}$  ,  $f_{yy}=rac{7}{r^7}$  : برای بررسی وضعیت نقاط ، مشتقات دوم را محاسبه می کنیم