PI

(a) For p-region

Dopant type: acceptor, group III atoms

Dopant concentration: Na = Po = 8×1014 tm3

For n-region

Dopant type: donor, group I atoms

Dopant concentration: Nd = No = 2x1015 cm3

potential barrier

- potential barrier decreases
 electrons moving from n-region to p-region
 holes moving from p-region to n-region
 diffusion current
- potential barrier increases
 holes moving from n-region to p-region
 electrons moving from p-region to n-region
 drift current

PZ

KCL
$$I_I = I_{D_1} + I_{D_2}$$
 4 equations
KVL $V_D = V_{D_2} + RI_{D_2} + V$ for 4 unknowns
diode-1 $I_{D_1} = I_{S_1} \left(e^{V_{D_1}/V_T} - 1 \right)$ ($I_{D_1}, I_{D_2}, V_{D_1}, V_{D_2}$)
diode-2 $I_{D_2} = I_{S_2} \left(e^{V_{D_2}/V_T} - 1 \right)$

Since diode full models are used, there are no requirements on minimum Vt, V, II.

P3

- ① $V_s > V_{83} + V_{84}$, D3 and D4 on, D; and D2 off $V_0(t) = -[V_s(t) V_{83} V_{84}] = -V_s(t) + 2V_g$ $V_0(peak) = -10 + 1.4 = -8.6 V$
- ② $V_s < -(V_{S_1} + V_{S_2})$, D_i and D_z on, D_s and D_4 off $V_0(t) = -[-V_{S_1}t) V_{S_1} V_{S_2}] = V_S(t) + 2V_S$ $V_0(peak) = -10 + 1.4 = -8.6 \text{ V}$ $PIN > V_s(peak) V_S = 9.3 \text{ V}$

P4

- (a) (1) $U_I > V_{S_1} + V_{Z_1}$, D. on, D_{Z_1} reverse break down, D_Z off $V_0(t) = V_{S_1} + V_{Z_1}$
 - (a) $U_{I} < -(V_{y_2} + V_{z_2})$, D_z on, D_{z_2} reverse break down, D_z off $V_0(t) = -(V_{y_2} + V_{z_2})$
 - (3) $-(V_{8z}+V_{2z}) < V_{I} < V_{g_1}+V_{Z_1}$, D, and Dz off $V_{c}(t) = V_{I}(t)$
- (b) $V_0(max) = V_{y_1} + V_{z_1} = 0.7 + 10 = 10.7 V$ $V_0(min) = -(V_{y_2} + V_{z_2}) = -(0.7 + 20) = -20.7 V$

It is a double clipper circuit.

$$V_c(max) = V_I(max) - V_y + V_B$$

In the Steady state

$$V_0(t) = V_1(t) - V_0$$

= $V_1(t) - V_1(max) + V_y - V_B$

Diode voltage

(b)
$$V_c(max) = V_r(max) - V_y + V_B$$

= 30-0.7+5 = 34.3 V
 $V_c(t) = V_r(t) - 34.3 \text{ V}$

It is a clamper circuit.

P6

$$V_D = V_S + V_f I_D$$

$$V_D = V_S + r_f I_D$$

$$\frac{V_L - V_I}{R_i} + \frac{V_L - (-V_S)}{r_f} + \frac{V_L}{R_L} = 0$$

$$\frac{V_L}{R_i}$$

$$\frac{V_L + 5}{100} + \frac{V_L + 0.7}{5} + \frac{V_L}{200} = 0$$

$$I_D = \frac{V_D - V_S}{r_f} = \frac{0.884 - 0.7}{5} = 0.037 A$$