Einführung in Sage - Einheit 7 Funktionen, Grenzwerte, Funktionenfolgen, Grafiken

Jochen Schulz

Georg-August Universität Göttingen

- **1** Funktionen (mathematische)
- 2 Grenzwerte und Stetigkeit
- 3 Funktionenfolgen
- 4 Grafiken

- **1** Funktionen (mathematische)
- 2 Grenzwerte und Stetigkeit
- **3** Funktionenfolgen
- 4 Grafiken

Funktionen

(reelle) Funktion: Abbildung

$$f: D \subset \mathbb{R} \to \mathbb{R}$$
.

die jedem Element aus D eindeutig genau ein Element aus $\mathbb R$ zuordnet.

- Definitionsbereich: $D \subset \mathbb{R}$, $D \neq \emptyset$.
- Wertebereich: Die Menge f(D) aller rellen Zahlen, die als Werte der Funktion vorkommen.
- Graph einer Funktion: ist die Menge aller Punkte

$$\{(x, f(x)) \in \mathbb{R}^2 \mid x \in D\}.$$

Verknüpfungen

Seien f und g Funktionen mit einem gemeinsamen Definitionsbereich. Dann definiert man:

- Summe: (f+g)(x) := f(x) + g(x)
- Differenz: (f-g)(x) := f(x) g(x)
- Produkt: $(f \cdot g)(x) := f(x) \cdot g(x)$
- Quotient: $(\frac{f}{g})(x) := \frac{f(x)}{g(x)}$, falls $g(x) \neq 0$ für alle $x \in D$
- Komposition: Mit $f: D_f \to \mathbb{R}$ und $g: D_g \to \mathbb{R}$ mit $f(D_f) \subset D_g$

$$(g\circ f)(x):=g(f(x)).$$

Funktionen mehrerer Veränderlicher

Ist $D\subseteq\mathbb{R}^n$ und $f\colon D\Rightarrow\mathbb{R}$ dann spricht man von einer reellen Funktion in mehreren Veränderlichen. Das Studium dieser Funktionen ist einer der Hauptinhalte der Diff2-Vorlesung.

Weiterhin können Funktionen auch Wertebereiche außerhalb der reellen Zahlen haben. Z.B.

$$f: D \Rightarrow \mathbb{R}^m$$
.

Im physikalischen Umfeld spricht man für m=1 dann von skalarwertigen Funktionen und für m>1 von vektorwertigen Funktionen oder Vektorfeldern.

Sage

https://sage.math.uni-goettingen.de/home/pub/42/

- 1 Funktionen (mathematische)
- 2 Grenzwerte und Stetigkeit
- Funktionenfolgen
- 4 Grafiken

Grenzwerte von Funktionen

Grenzwert: Sei f eine Funktion mit Definitionsbereich D und $a \in D$. f strebt für $x \to a$ gegen $b \in \mathbb{R}$, wenn es zu jedem $\varepsilon > 0$ ein $\delta > 0$ gibt, so dass für alle $x \in D \setminus \{a\}$ mit $|x - a| < \delta$ gilt

$$|f(x)-b|<\varepsilon.$$

Der Grenzwert b ist eindeutig bestimmt und man schreibt

$$\lim_{x\to a} f(x) = b \text{ oder } f(x) \to b \text{ für } x \to a.$$

Die Aussage überträgt sich sinngemäß auf $a=\pm\infty$.

Bemerkungen

- Folgenkriterium: Es gilt $\lim_{x\to a} f(x) = b$ genau dann, wenn für jede Folge $a_n \in D$ mit $a_n \neq a$ und $a_n \to a$ gilt $\lim_{n\to\infty} f(a_n) = b$.
- Es gelten die üblichen Rechenregeln:

$$\lim_{x \to a} (f(x) + g(x)) = \lim_{x \to a} f(x) + \lim_{x \to a} g(x)$$
$$\lim_{x \to a} (f(x) \cdot g(x)) = \lim_{x \to a} f(x) \cdot \lim_{x \to a} g(x)$$

wenn $\lim_{x\to a} f(x)$ und $\lim_{x\to a} g(x)$ existieren.

• Gilt $\lim_{x\to a} f(x) = b$, $\lim_{x\to b} g(x) = c$ bei entsprechenden Definitionsgebieten für f und g, so folgt $\lim_{x\to a} g(f(x)) = c$.

Stetigkeit

Eine Funktion $f \colon D \to \mathbb{R}$ heißt stetig an der Stelle $x_0 \in D$, wenn es zu jedem $\varepsilon > 0$ ein $\delta > 0$ gibt, so dass für alle $x \in D$ mit $|x - x_0| < \delta$ gilt

$$|f(x)-f(x_0)|<\varepsilon.$$

Man sagt, dass f stetig ist, wenn f an jeder Stelle $x_0 \in D$ stetig ist. Sind f und g an x_0 stetig, so auch f+g, f-g, $f\cdot g$ und $\frac{f}{g}$ (falls $g(x_0)\neq 0$).

Wichtige Sätze I

• Sei f auf einem offenen Intervall I definiert. f ist an $x_0 \in I$ genau dann stetig, wenn gilt

$$\lim_{x \to x_0} f(x) = f(x_0).$$

- Für $f: I \to \mathbb{R}$ und $g: J \to \mathbb{R}$ gelte $f(I) \subset J$ und es seien f an $x_0 \in I$ und g an $y_0 = f(x_0)$ stetig. Dann ist $g \circ f$ an x_0 stetig.
- Eine Funktion $f: D \to \mathbb{R}$ ist linksstetig bzw. rechtsstetig, wenn $f|_{D\cap (-\infty,x_0)}$ bzw $f|_{D\cap (x_0,\infty)}$ an x_0 stetig ist. Eine Funktion f ist dann an x_0 stetig, genau dann wenn f links- und rechtsstetig an x_0 ist.

Wichtige Sätze II

- Eine stetige Funktion auf einem abgeschlossenen Intervall I = [a, b] besitzt ein Maximum und ein Minimum.
- Eine stetige Funktion f auf einem abgeschlossenen Intervall [a, b] nimmt in I jeden Wert zwischen f(a) und f(b) an.
- Potenzreihen $f(x) = \sum_{n=0}^{\infty} a_n (x x_0)^n$ sind stetig innerhalb ihres Konvergenzintervalls.

Gleichmäßige Stetigkeit

 $f\colon D\to\mathbb{R}$ heißt gleichmäßig stetig auf D, wenn es zu jedem $\varepsilon>0$ ein $\delta>0$ gibt, so dass für alle Paare $x,x_0\in D$ mit $|x-x_0|<\delta$ gilt

$$|f(x)-f(x_0)|<\varepsilon.$$

- Die Exponentialfunktion ist auf jedem kompakten Intervall gleichmäßig stetig (aber nicht auf ganz \mathbb{R}).
- ullet log : $(0,1) \to \mathbb{R}$ ist stetig aber nicht gleichmäßig stetig.

Sage

https://sage.math.uni-goettingen.de/home/pub/43/

- 1 Funktionen (mathematische)
- 2 Grenzwerte und Stetigkeit
- 3 Funktionenfolgen
- 4 Grafiken

Funktionenfolgen

Seien $f_n: D \to \mathbb{R}$, $n \in \mathbb{N}$ rellwertige Funktionen auf $D \subset \mathbb{R}$.

- $(f_n)_n$ heißt Funktionenfolge.
- Ist für jedes $x \in D$ die Folge $(f_n(x))_n$ konvergent, so wird durch

$$f(x) := \lim_{n \to \infty} f_n(x), \quad x \in D$$

die Grenzfunktion $f: D \to \mathbb{R}$ definiert.

- Man sagt f_n strebe punktweise auf D gegen f.
- Durch $\sum_{i=1}^{\infty} f_i$ definierte Funktionenreihen sind spezielle Funktionenfolgen.

Beispiele: Grenzübergänge

- $x^n \to 0$ auf dem Intervall (-1,1).
- $(1+\frac{x}{n})^n \to \exp(x)$ auf \mathbb{R} .
- Potenzreihen konvergieren innerhalb ihres Konvergenzradius.
- Warnung zum Vertauschen der Grenzprozesse für $x \in (0,1)$:

$$\lim_{x\to 1}\lim_{n\to\infty}x^n=0\neq 1=\lim_{n\to\infty}\lim_{x\to 1}x^n.$$

Gleichmäßige Konvergenz

Definition

 $(f_n)_n$ konvergiert gleichmäßig auf D gegen f, wenn es zu jedem $\varepsilon > 0$ ein $n_0 \in \mathbb{N}$ gibt, so dass für alle $x \in D$ und $n \ge n_0$ gilt:

$$|f_n(x) - f(x)| < \varepsilon.$$

Satz

Konvergiert $(f_n)_n$ gleichmäßig auf D und existiert $\lim_{x\to a} f_n(x)$ für $a\in D$, so gilt:

$$\lim_{x\to a}\lim_{n\to\infty}f_n(x)=\lim_{n\to\infty}\lim_{x\to a}f_n(x).$$

Bemerkungen

- Die Grenzfunktion einer gleichmäßig konvergenten Folge stetiger Funktionen ist stetig.
- Funktionenreihen: Ist f_1, f_2, \ldots , eine Folge von Funktionen auf $D \subseteq \mathbb{R}$ dann definiert

$$s:=\sum_{n=1}^{\infty}f_n$$

eine Funktionenreihe.

Alle Aussagen übertragen sich analog; ebenso die Aussagen über die Folge der Partialsummen

$$s_k := \sum_{n=1}^k f_n.$$

- Funktionen (mathematische)
- 2 Grenzwerte und Stetigkeit
- 3 Funktionenfolgen
- 4 Grafiken

Sage

https://sage.math.uni-goettingen.de/home/pub/44/