KIRCHHOFFIS CURRENT AND VOLTAGE LAW BASIC CIRCUIT ANALYSIS METHOD

TOPIC OUTLINE

Circuit Convention

Kirchhoff's Current Law (KCL)

Kirchhoff's Voltage Law (KVL)

CIRCUIT CONVENTION

CONVENTION

A <u>convention</u> is a widely accepted practice, method, or behavior that is followed by common <u>agreement</u> or tradition, rather than by formal rules.

<u>example</u>

Color coding in Offices

red – urgent documents blue – general files green – financial records

This is a common practice but not formally regulated.

STANDARD

A <u>standard</u> is a formal, established guideline, rule, or specification that is often <u>mandatory</u> and enforced by an authoritative body or organization.

<u>example</u>

IEC 60062 Resistor Color Code

black - 0

brown – 1

red - 2

.

•

white -9

Resistors have colored bands that represent specific digits, multipliers, and tolerance values.

LABELING VARIABLES

Steps in Labeling Variables

1. <u>Label the Reference Node</u> (ground)

Select a reference node with the most connections or the negative (-) terminal of a voltage source.

2. <u>Label Node Voltages</u>

Mark higher potentials as positive (+) relative to the reference node.

3. Label Currents

Entering the positive (+) terminal of a component.

4. Create a voltage loop

Follow the defined current directions.

CIRCUIT CONVENTION

Current Flow Convention

- Current <u>entering</u> a node is negative (-)
- Current <u>leaving</u> a node is positive (+)

CIRCUIT CONVENTION

Voltage Loop Convention

The <u>"sign"</u> of voltage of the element is the <u>first sign</u> the loop encounters.

$$\begin{array}{ccc}
\underline{@L_1} & \underline{@L_2} \\
-v_o & -v_2 \\
+v_1 & +v_3 \\
+v_2
\end{array}$$

KIRCHHOFFIS CURRENT AND VOLTAGE LAW

KIRCHHOFF'S CURRENT LAW

<u>Kirchhoff's current law</u> states that summation of currents going-in and going-out a node is zero.

$$\sum i_j = 0$$

$$-i_1+i_2+i_3=0$$

$$i_o + i_1 = 0$$

KIRCHHOFF'S VOLTAGE LAW

<u>Kirchhoff's voltage law</u> states that the summation of voltages in a closed-loop is zero.

$$\sum v_j = 0$$

$$-v_o+v_1+v_2=0$$

$$-v_2+v_3=0$$

EXERCISE

Analyze the given circuit to determine both the current through and the voltage drop across each resistor.

Solution

EXERCISE

Determine the voltage drop across the load resistor and the current flowing through it.

Solution

LABORATORY

