Réalisation de fonctions arithmétiques et logiques

Polytech Nice Sophia Antipolis

Circuits intégrés

Les types de boîtiers

SOIC

B. Miramond - Polytech Nice

- DIP
- PGA
- Flatpack
- LCC
- QFP
- SOIC

LCC

Les types de boîtiers

QFP

- DIP
- BGA
- Flatpack
- LCC
- QFP
- SOIC

DIP

BGA

LCC

Densité d'intégration

- SSI Small Scale Integration (1960's)
 - 1 à 10 portes / circuit
 - Moins de 100 transistors
- MSI Medium Scale Integration
 - 10 à 100 portes / circuit
 - Plus de 3000 transistors
- LSI Large Scale Integration (1970's)
 - 100 à 10 000 portes / circuit
 - Plusieurs dizaines de milliers de transistors
- VLSI Very Large Scale Integration (1980's)
 - + de 10 000 portes / circuit
 - 1 million de transistors
- ULSI Ultra Large Scale Integration (2000's)

T3/11/2 de 100 000 porte / circulitand - Polytech Nice

Les circuits logiques combinatoires

Le multiplexeur

- Un multiplexeur dispose de 2ⁿ entrées, d'une sortie et de *n* lignes de sélection.
- Les sélecteurs permettent de choisir 1 entrée parmi les 2ⁿ et de la router vers la sortie
- MUX_1_2ⁿ, 1 parmi 2ⁿ
- Comment faire ce circuit ?

Le multiplexeur

On commence par quoi ? Dans l'ordre

- Le circuit 1.
- La table de vérité
 2.
- La forme algébrique
 3.
- La forme temporelle

Le multiplexeur

On commence par quoi?

- Le circuit
- La table de vérité
- La forme algébrique
- La forme temporelle

Dans l'ordre

- 1. La table de vérité
- 2. La forme algébrique
- 3. Le circuit
- 4. La forme temporelle

Le multiplexeur à deux entrées MUX_2_1

- Choix d'une topologie
 - -0 -> e0
 - -1 -> e1

sel	e_1	e_0	S
0	0	0	
0	1	0	
0	0	1	
0	1	1	
1	0	0	
1	1	0	
1	0	1	
1	1	1	

Le multiplexeur à deux entrées MUX 2 1

- Choix d'une topologie
 - -0 -> e0
 - -1 -> e1

$$s = \overline{sel}.e_0.\overline{e_1} + \overline{sel}.e_0.e_1 + \overline{sel}.\overline{e_0}.e_1 + \overline{sel}.e_0.e_1$$

$$s = \overline{sel}.e_0(\overline{e_1} + \overline{e_1}) + sel.e1(\overline{e_0} + \overline{e_0})$$

$$s = sel.e_0 + sel.e1$$

sel	e_1	e_0	S
0	0	0	0
0	1	1	0
0	0	0	1
0	1	1	1
1	0	0	0
1	1	1	1
1	0	0	0
1	1	1	1

Implantation matérielle de

 $s = sel.e_0 + sel.e1$ e0 e0 sel

Implantation matérielle de

 $s = sel.e_0 + sel.e1$

sel

Implantation matérielle de

 $s = sel.e_0 + sel.e1$

sel

Implantation matérielle

13/11/2017

Le multiplexeur à deux entrées MUX_2_1

sel	\mathbf{e}_0	$\mathbf{e_{l}}$	S
0	0	0	0
0	0	1	0
0	1	0	1
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	0
1	1	1	1

Le multiplexeur 8 vers 1

- 8 entrées = 2^3
- donc 3 sélecteurs

Le démultiplexeur

- Comme son nom l'indique, son comportement est inverse à celui du multiplexeur.
- Il autorise le routage d'un signal d'entrée vers une des sorties possibles du demux en fonction de la valeur du signal d'adresse, aussi appelé le sélecteur.

7400 Integrated Circuits

- On retrouve par exemple ce type de fonctions logiques dans les circuits de série 7400 de Texas Instrument.
- Circuits TTL : Transistor-Transistor Logic
- Exemples :
 - -74138 = demux 1:8
 - -74151A = mux 8:1

Notre bibliothèque de portes

- Il traduit l'information binaire en entrée pour rendre active la sortie dont le numéro correspond
- Par exemple un circuit mémoire utilise un décodeur pour aller chercher l'information présente à l'adresse n parmi ses 2ⁿ emplacements

Mémoire de 8 Moctets

- composée de 8 circuits mémoires
- Chaque circuit contient 1 Moctet
- On veut accéder à un octet particulier

Mémoire de 8 Moctets

- composée de 8 circuits mémoires
- Chaque circuit contient 1 Moctet

- Entrée = code 101
- Sortie = activer la sortie 5

Mettre les autres sorties à 0

e_2	e_1	e_0	S_0	 S ₇
e ₂ 0	e ₁ 0	0	1	0
1	0	0	0	0
0	1	0	0	0
1	1	0	0	0
0	0	1	0	0
1	0	1	0	0
0	1	1	0	0
1	1	1	0	1

$$\begin{aligned}
 s_0 &= e_2 e_1 e_0 \\
 s_1 &= e_2 e_1 e_0 \\
 s_2 &= e_2 e_1 e_0 \\
 &\dots
 \end{aligned}$$

$$s_7 = e_2 e_1 e_0$$

 D_0 D_1 D_2 D_3 D_4 В D_5 D_6 D_7

• • •

Notre bibliothèque de portes

Le comparateur

 Il effectue la comparaison de 2 mots de n bits A et B

- -1 si A = B
- 0 sinon

$$s = a_0 \oplus b_0 + a_1 \oplus b_1 + a_2 \oplus b_2 + a_3 \oplus b_3$$

Notre bibliothèque de portes

Les circuits arithmétiques

Addition & demi-additionneur (Half-Adder)

- sans retenue entrante
- $s(omme) = a \oplus b$
- r(etenue) = a.b

al	Ъ	S	r
0	0	0	0
0	1	1	0
1	0	1	0
1	1	0	1

Additionneur complet

$$s = \overline{ab}R_e + \overline{ab}R_e + a\overline{b}\overline{R_e} + abR_e$$

$$s = a \oplus b \oplus R_e$$

$$R_s = \overline{ab}R_e + a\overline{b}R_e + ab\overline{R_e} + abR_e$$

$$R_s = R_e(a \oplus b) + ab$$

			_	
દ્ય	Ъ	Re	S	Rs
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

Full Adder (1 bit)

Full Adder 4 bits additionneur à propagation de retenue

Temps de propagation très long

Notre bibliothèque de portes

Décaleur

 Le circuits dispose d'une entrée de donnée sur 8 bits et d'une ligne de commande 'c' sur 1 bit

• Le circuit fournit en sortie, l'entrée décalée d'une place à gauche (\overline{c}) ou à droite en

fonction de (c)

Décaleur

 Donner l'équation de chaque bit de sortie du décaleur 8 bits

 Dessiner ensuite le schéma en portes du décaleur d'une position à gauche ou à droite

Décaleur

 Donner l'équation de chaque bit de sortie du décaleur 8 bits

$$S_0 = e_1.c$$

$$S_7 = e_6.\overline{c}$$

$$S_i = e_{i+1}.c + e_{i-1}.\overline{c}, i \in [1,6]$$

 Dessiner ensuite le schéma en portes du décaleur d'une position à gauche ou à droite

Décaleur

Notre bibliothèque de portes

Unité de calcul du processeur

- Un processeur doit pouvoir réaliser toute fonction logique et arithmétique
- L'unité matérielle responsable de ces calculs est appellée Unité Arithmétique et Logique
 - UAL
 - ou ALU
- Elle dispose de deux entrées dont la taille dépend de l'architecture du processeur
- Elle fournie en sortie le résultat de l'opération choisie par la troisième entrée

Réalisation structurelle d'une ALU

Cahier des charges :

- Opérandes d'1 bit (A et B)
- Pouvant réaliser au choix les opérations
 - -A or B
 - A and B
 - not B
 - -A+B

Quels besoins?

Interface?

Interface?

Cin

Vue structurelle

Vue structurelle

Vue structurelle

ALU_8bits

Notre bibliothèque de portes

Architecture générale de P-ARM

