Tareas de primer parcial-Topología

Alumnos:

Arturo Rodriguez Contreras - 2132880 Jonathan Raymundo Torres Cardenas - 1949731 Praxedis Jimenes Ruvalcaba Erick Román Montemayor Treviño - 1957959 Alexis Noe Mora Leyva

22 de febrero de 2025

1 ¿Es la unión de topologías una topología?

Sea $X = \{a, b, c\}$, $\tau_1 = \{\emptyset, X, \{a\}\}$, $\tau_2 = \{\emptyset, X, \{b\}\}$ se tiene que τ_1 es topología ya que contiene al conjunto vacio, X, contiene las uniones arbitrarias $\{a\} \cup X = X \in \tau_1$, y tambien $\{a\} \cup \emptyset = \{a\} \in \tau_1$ y $\emptyset \cup X = X \in \tau_1$ y contiene a las intersecciones finitas de sus elementos, de igual forma se sigue que τ_2 es topología de X. La union de las dos topologías es $U = \tau_1 \cup \tau_2 = \{\emptyset, X, \{a\}, \{b\}\}$ lo cual no es topología, ya que $\{a\} \cup \{b\} = \{a, b\} \notin U$, por lo tanto, no necesariamente la unión de topologías es una topología.

2 Demostrar que $\tau_{\mathbb{N}}$ es topologia.

Se tiene por definicion que $\{\emptyset, X\} \subset \tau_{\mathbb{N}}$. Ahora, sea $\{U_a\}_{a \in J}$ una coleccion de elementos en $\tau_{\mathbb{N}}$, y $U = \bigcup_{a \in J} U_a$. Queremos ver que $U \in \tau_{\mathbb{N}}$, para esto observemos que $X - U = (\bigcup_{a \in J} U_a)^c$ por leyes de De Morgan es igual a $\bigcap_{a \in J} U_a^c$, sabemos por teorema que la intersección arbitraria de conjuntos contables es tambien contable, entonces $\bigcap_{a \in J} U_a^c \in \tau_{\mathbb{N}}$.

Luego, tomemos $\{U_a\}_{a\in J}$ una colección finita de elementos en $\tau_{\mathbb{N}}$, y sea $U=\bigcap_{a\in J}U_a$ entonces tenemos $X-U=(\bigcap_{a\in J}U_a)^c$ por leyes de DeMorgan es igual a $\bigcup_{a\in J}U_a^c$ y por teorema la union finita de conjuntos contables es tambien contable. Entonces X-U es contable, por lo cual se tiene que $U\in\tau_{\mathbb{N}}$ entonces $\tau_{\mathbb{N}}$ esta cerrado por intersección finita, como consequente es

una topología.

3 Verificar si τ_{∞} es topologia.

Sea $X=\mathbb{R}$, sea $U_1=(-\infty,0), U_2=(0,\infty)$, claramente $U_1,U_2\in\tau_{\mathbb{N}}$, pero $U=U_1\cup U_2=(\infty,0)\cup(0,\infty)\notin\tau_{\infty}$ ya que $\mathbb{R}-U=\{0\}$ no es infinito. Por lo tanto no cumple el axioma de uniones arbitrarias de topología. $\therefore \tau_{\infty}$ no es topología.

4 Demostrar que $(0,1) = \bigcup_{n \in \mathbb{N} - \{1\}} \left[\frac{1}{n}, 1\right)$.

Sea $x \in (0,1)$, esto es 0 < x < 1, por propiedad arquimediana existe $N \in \mathbb{N}$ $t.q \ \forall n \geq N \ 0 < \frac{1}{n} \leqslant x < 1$ entonces $x \in [\frac{1}{n},1)$ entonces $x \in \bigcup_{n \in \mathbb{N}-\{1\}} [\frac{1}{n},1)$

$$\therefore (0,1) \subset \bigcup_{n \in \mathbb{N} - \{1\}} \left[\frac{1}{n}, 1 \right)$$

 (\supset)

Sea $x \in \bigcup_{n \in \mathbb{N} - \{1\}} \left[\frac{1}{n}, 1 \right)$, entonces $0 < \frac{1}{n_0} \le x < 1$ para algun $n_0 \in \mathbb{N} - \{1\}$

$$x \in (0,1)$$

$$\therefore (0,1) \supset \bigcup_{n \in \mathbb{N} - \{1\}} \left[\frac{1}{n}, 1 \right)$$

- 5 Verificar que β_K satisface el teorema de creación de topologías.
- 6 Verificar que $B_S = \{(a, b] : a < b\}$ es base de algunas topologias
- 7 Verificar las comparaciones entre τ_S, τ_L y entre τ_S, τ_K
- 8 Demostrar si $\tau_{\mathbb{R}^2} = \tau_{\mathbb{R} \times \mathbb{R}}$
- 9 Terminar paso inductivo del teorema de las proyecciones

10 Demuestra que $(A \times B) \cap (C \times D) = (A \cap C) \times (B \cap D)$.

Sea $(x,y) \in (A \times B) \cap (C \times D)$. Por definición de intersección $(x,y) \in A \times B$ y $(x,y) \in C \times D$. Además, por definición de producto cruz $x \in A$ y $y \in B$, $x \in C$ y $y \in D$. Reescribiendo obtenemos $x \in A$ y $x \in C$, $y \in B$ y $y \in D$ i.e. $(x,y) \in (A \cap C) \times (B \cap D)$.

De forma análoga, sea $(x,y) \in (A \cap C) \times (B \times D)$ luego $x \in A$ y $y \in B$, $x \in C$ y $y \in D$ y $(x,y) \in (A \times B) \cap (C \times D)$.

- 11 Verificar que la topologia del orden $\tau(\beta_O)$ es topología.
- 12 Verificar si en \mathbb{N} , $\tau_O = \tau_d$.

Veamos que las topologías coinciden.

Sea $U \in \tau_O$, observe que $U = \bigcup_{x \in U} \{x\}$ es una unión de básicos de τ_d *i.e.* $\tau_O \subset \tau_d$.

De forma análoga, sea $U \in \tau_d$, y $I_x = (x - 1, x + 1)$ si $x \neq 1$, $I_1 = [1, 2)$. Note que $U = \bigcup_{x \in U} I_x$ es una unión de basicos de τ_O y por tanto $\tau_d \subset \tau_O$. Esto demuestra que, en \mathbb{N} , $\tau_O = \tau_d$.

- 13 Verificar que el orden lexicografico genera un orden en \mathbb{R} .
- 14 Verificar las comparaciones entre τ_O y $\tau_{d\times d}$ en \mathbb{R}
- **15** Demuestre que $\overline{A \cap B} \subset \overline{A} \cap \overline{B}$.

Sabemos que $A \subset \overline{A}$ y $B \subset \overline{B}$. Luego $A \cap B \subset \overline{A} \cap \overline{B}$. La cerradura de un conjunto es siempre cerrado y la intersección de cerrados es cerrada, por lo que $A \cap B$ está contenido en un cerrado y la cerradura es el cerrado más pequeño que contiene al conjunto. Por lo tanto $\overline{A \cap B} \subset \overline{A} \cap \overline{B}$.

16 Verificar si
$$\overline{\bigcup_{\alpha \in J} A_{\alpha}} = \bigcup_{\alpha \in J} \overline{A_{\alpha}}$$
 El resultado es en general falso. Sea $X = \mathbb{R}$ y $A_n = [1/n, 1)$. Luego $[0, 1] = \overline{\bigcup_{\alpha \in J} A_{\alpha}} \neq \bigcup_{\alpha \in J} \overline{A_{\alpha}} = (0, 1]$.

17 Verificar si $X - \overline{A} = \overline{X - A}$

El resultado es en general, falso. Se
a $X=\mathbb{R}$ y $A=\{0\}$ bajo la topología usual. Luego
 $\mathbb{R}-\{0\}=X-\overline{A}\neq\overline{X-A}=\mathbb{R}$

18 Considere $([0,1])^2$ bajo $\tau_{\mathbb{R}_L \times \mathbb{R}_S}$ hallar $Int([0,1]^2)$

19 Verificar si $Int(A \cap B) = Int(A) \cap Int(B)$

Es un hecho conocido que $\operatorname{Int}(A) = \overline{A^c}^c$ y que $\overline{A \cup B} = \overline{AB}$. Aplicando estas propiedades tenemos que

$$\operatorname{Int}(A \cap B) = \overline{(A \cap B)^c}^c$$

$$= (\overline{A^c \cup B^c})^c$$

$$= (\overline{A^c} \cup \overline{B^c})^c$$

$$= \overline{A^c}^c \cap \overline{B^c}^c$$

$$= \operatorname{Int}(A) \cap \operatorname{Int}(B).$$

20 Verificar que si D_1, D_2 son densos y abiertos en X, entonces $D_1 \cap D_2$ es denso en X

Sea U un abierto arbitrario de X, tenemos que por asociatividad de la intersección $U\cap (D_1\cap D_2)=(U\cap D_1)\cap D_2$, y $(U\cap D_1)$ es abierto por la segunda axioma de topología. Ahora bien, tenemos que la intersección de cualquier abierto con D_2 es no vacio ya que D_2 es denso, entonces $(U\cap D_1)\cap D_2\neq\varnothing$. Juntando todo lo que tenemos, $U\cap (D_1\cap D_2)=(U\cap D_1)\cap D_2\neq\varnothing$, por teorema se tiene que $D_1\cap D_2$ es denso.