Exercice 1. Une preuve du théorème de Darboux.

- 1. La fonction f est dérivable en a donc φ , taux d'accroissement de f en a, tend vers f'(a) en a. De même, ψ , taux d'accroissement de f en b, tend vers f'(b) en b. Les fonctions φ et ψ sont donc bien prolongeables par continuité sur [a,b]: il suffit de poser $\varphi(a) = f'(a)$ et $\varphi(b) = f'(b)$.
- 2. On suppose dans cette question que y est entre $\varphi(a)$ et $\varphi(b)$.
 - (a) La fonction φ est continue sur [a,b] et y est entre $\varphi(a)$ et $\varphi(b)$. Le théorème des valeurs intermédiaires garantit donc que y possède un antécédent dans [a,b]. On note γ un tel antécédent.
 - (b) Dans le cas où $\gamma=a$, on a $y=\varphi(a)=f'(a)$ et on a bien obtenu un antécédent c de y par f' dans [a,b]: ici c=a.
 - (c) Supposons $\gamma > a$. La fonction f est continue sur $[a,\gamma]$ car elle l'est sur [a,b], et elle est dérivable sur $]a,\gamma[$ car elle l'est sur]a,b[. D'après le théorème (égalité) des accroissements finis,

$$\exists c \in]a, b[\frac{f(\gamma) - f(a)}{\gamma - a} = f'(c).$$

Or, $y = \varphi(\gamma) = \frac{f(\gamma) - f(a)}{\gamma - a}$. On a donc bien démontré l'existence de $c \in [a, b]$ tel que y = f'(c).

3. On suppose dans cette question que y n'est pas entre $\varphi(a)$ et $\varphi(b)$, c'est-à-dire n'est pas entre f'(a) et $\frac{f(b)-f(a)}{b-a}$. On a $\varphi(b)=\frac{f(b)-f(a)}{b-a}=\psi(a)$. Or, y est entre $f'(a)=\varphi(a)$ et $f'(b)=\psi(b)$. Le nombre y est donc entre $\psi(a)$ et $\psi(b)$. On peut alors raisonner comme en question 2:y possède par le TVI un antécédent δ par la fonction φ dans [a,b]. Si $\delta=b$, alors y=f'(b) et c'est bien. Sinon, les accroissements finis entre δ et b apporteront l'antécédent cherché.

Exercice 2. Entropie de Shannon.

La fonction d'entropie H a été introduite en 1948 par Claude Shannon, ingénieur aux Laboratoires Bell et intervient en théorie de l'information. Elle est notamment utilisée dans l'étude de la compression de fichier sans perte et a un lien avec celle de la thermodynamique (point de vue statistique de Gibbs). On pourra consulter la page Wikipedia consacrée... qui sait si on n'y trouvera pas quelques pistes pour un sujet de TIPE?

- 0. (a) La fonction L est dérivable sur]0,1] et sa dérivée $L': x \mapsto 1 + \ln(x)$ est croissante sur]0,1]: la fonction L est bien convexe sur cet intervalle.
 - (b) Par croissances comparées, on a $L(x) \underset{x\to 0+}{\longrightarrow} 0$. La fonction L est donc prolongeable par continuité en 0, en posant L(0) = 0. Le taux d'accroissement de L en 0 vaut $\ln(x)$ qui tend vers $-\infty$ en 0 : L n'est pas dérivable en 0, le graphe de L y possède une demi-tangente verticale.
 - (c) Voici le graphe de L sur [0,1]:

- 1. (a) $H(1,0,0,\dots,0) = -L(1) (n-1)L(0) = 0$.
 - (b) $H(\frac{1}{n}, \dots, \frac{1}{n}) = -nL(\frac{1}{n}) = -n \cdot \frac{1}{n} \ln(\frac{1}{n}) = \ln(n)$.
- 2. (a) La fonction ln est concave sur \mathbb{R}_+^* : son graphe est en dessous de ses tangentes, notamment de celle en 1, qui a pour équation y = x 1.
 - (b) Soit $(q_1, \ldots, q_n) \in \Pi_n^*$. En utilisant l'inégalité précédente,

$$\sum_{i=1}^{n} p_i \ln \left(\frac{q_i}{p_i} \right) \le \sum_{i=1}^{n} p_i \left(\frac{q_i}{p_i} - 1 \right) = \sum_{i=1}^{n} (q_i - p_i) = \sum_{i=1}^{n} q_i - \sum_{i=1}^{n} p_i = 1 - 1 = 0$$

(c) Soit $(q_1, \ldots, q_n) \in \Pi_n^*$. On développe l'inégalité obtenue à la question précédente :

$$\sum_{i=1}^{n} p_i \ln(q_i) - \sum_{i=1}^{n} p_i \ln(p_i) \le 0 \quad \text{donc} \quad -\sum_{i=1}^{n} p_i \ln(p_i) \le -\sum_{i=1}^{n} p_i \ln(q_i).$$

(d) En écrivant l'inégalité précédente avec $(q_1, \ldots, q_n) = (\frac{1}{n}, \cdots, \frac{1}{n})$, on obtient

$$-\sum_{i=1}^{n} p_i \ln(p_i) \le -\ln\left(\frac{1}{n}\right) \underbrace{\sum_{i=1}^{n} p_i}_{-1} \quad \text{donc} \quad \boxed{H(p_1, \dots, p_n) \le \ln(n)}.$$

(e) Soit $(p_1, \ldots, p_n) \in \Pi_n \setminus \Pi_n^*$. Puisque les coordonnées de ce *n*-uplet sont positives et somment à 1, il existe un indice $j \in [1, n]$ tel que $p_j > 0$. Pour $k \in \mathbb{N}^*$, posons

$$q_j(k) := p_j - \frac{1}{k}$$
 et $\forall i \in [1, n] \setminus \{j\}$ $q_i(k) = p_i + \frac{1}{(n-1)k}$.

On a, pour tout entier $k \in \mathbb{N}^*$ fixé, $\sum_{i=1}^n q_i(k) = \sum_{i=1}^n p_i - (n-1) \cdot \frac{1}{(n-1)k} + \frac{1}{k} = 1.$

De plus, puisque $p_j > 0$, il existe un rang k_0 tel que $\forall k \geq k_0 \ p_j - \frac{1}{k} > 0$. Ainsi, $\forall k \geq k_0 \ (q_1(k), \dots, q_n(k)) \in \Pi_n^*$.

D'après la question (d), on a

$$\forall k \ge k_0 \quad H_n(q_1(k), \dots, q_n(k)) \le \ln(n) \quad \text{i.e.} \quad -\sum_{i=1}^n L(q_i(k)) \le \ln(n).$$

Pour tout $i \in [1, n]$, $q_i(k) \underset{k \to +\infty}{\longrightarrow} p_i \in [0, 1]$ et L est continue sur [0, 1] donc $L(q_i(k)) \underset{k \to +\infty}{\longrightarrow} L(p_i)$ pour tout i. Par somme et stabilité des inégalités larges,

$$-\sum_{i=1}^{n} L(p_i) \le \ln(n) \quad \text{soit} \quad \boxed{H(p_1, \dots, p_n) \le \ln(n)}.$$

3. Soit $(p_1, \ldots, p_n) \in \Pi_n$. La fonction L étant convexe sur [0,1], on a

$$L\left(\frac{1}{n}\sum_{i=1}^{n}p_{i}\right) \leq \frac{1}{n}\sum_{i=1}^{n}L(p_{i}).$$

Le membre de gauche vaut $L(\frac{1}{n} \cdot 1) = -\frac{1}{n} \ln(n)$ et le membre de droite vaut $-\frac{1}{n} H_n(p_1, \dots, p_n)$. On obtient donc

$$-\frac{1}{n}\ln(n) \le -\frac{1}{n}H_n(p_1,\ldots,p_n) \quad \text{soit} \quad \boxed{H_n(p_1,\ldots,p_n) \le \ln(n)}.$$

4. Soit $(p_1, \ldots, p_n) \in \Pi_n$. Supposons que $\sum_{i=1}^n p_i^2 = 0$. Tous les termes de cette somme nulle de termes positifs sont donc nuls, ce qui contredit le fait que les p_i somment à 1. Ceci démontre que $\sum_{i=1}^n p_i^2 > 0$. Sous l'hypothèse supplémentaire que $(p_1, \ldots, p_n) \in \Pi_n^*$, on peut écrire

$$H_n(p_1, \dots, p_n) = \sum_{i=1}^n p_i(-\ln(p_i)).$$

Les p_i sont positifs et somment à 1, $-\ln$ est convexe, l'inégalité de Jensen s'écrit :

$$\sum_{i=1}^{n} p_i(-\ln(p_i)) \ge -\ln\left(\sum_{i=1}^{n} p_i^2\right) \quad \text{soit} \quad \left| H_n(p_1, \dots, p_n) \ge -\ln\left(\sum_{i=1}^{n} p_i^2\right) \right|$$

Comme en 2-(e), on peut prouver que l'inégalité demeure vraie lorsque le n-uplet (p_1, \ldots, p_n) appartient à $\Pi_n \setminus \Pi_n^*$.

Problème. Une fonction et une suite de polynômes.

- 1. (a) Puisque par croissances comparées $y^2e^{-y} \underset{y \to +\infty}{\longrightarrow} 0$, on a $f(x) \underset{x \to 0+}{\longrightarrow} 0 = f(0)$, ce qui établit la continuité de f en 0.
 - (b) La fonction f est dérivable sur \mathbb{R}_+^* , et $\forall x \in \mathbb{R}_+^*$ $f'(x) = \frac{1-2x}{x^4} \exp\left(-\frac{1}{x}\right)$. Par croissances comparées, on obtient que $f'(x) \underset{x \to 0+}{\longrightarrow} 0$ (limite finie pour la dérivée). De surcroît, f est continue en 0. Les hypothèses du théorème de la limite de la dérivée sont donc réunies : on peut conclure que

$$f$$
 est dérivable en 0 et $f'(0) = 0$.

(c) Le calcul de la dérivée de f permet de donner

- 2. (a) La fonction $x \mapsto \frac{1}{x}$ est de classe \mathcal{C}^{∞} sur \mathbb{R}_+^* et stabilise cet intervalle. Par produit et composition avec exp qui est de classe \mathcal{C}^{∞} sur \mathbb{R}_+^* , on en déduit que f est de classe \mathcal{C}^{∞} sur \mathbb{R}_+^* .
 - (b) Pour $n \in \mathbb{N}$, on note \mathcal{P}_n l'assertion affirmant l'existence d'un polynôme P_n adéquat.
 - · La proposition \mathcal{P}_0 est vraie : il suffit de poser $P_0 = 1$.
 - · Soit $n \in \mathbb{N}$. Supposons que \mathcal{P}_n est vraie. Il existe donc un polynôme P_n dans $\mathbb{R}[X]$ tel que

$$\forall x \in]0, +\infty[f^{(n)}(x) = P_n(x) \times x^{-(2n+2)} \times e^{-\frac{1}{x}}.$$

En dérivant, pour $x \in]0, +\infty[$,

$$f^{(n+1)}(x) = \left(P'_n(x)x^{-(2n+2)} + P_n(x) \times (-(2n+2))x^{-(2n+3)} + P_n(x)x^{-(2n+2)}x^{-2}\right)e^{-\frac{1}{x}}$$

$$= \frac{x^2P'_n(x) + (1 - 2(n+1)x)P_n(x)}{x^{2n+4}} \times e^{-\frac{1}{x}}.$$

Posons $P_{n+1} = X^2 P'_n + (1 - 2(n+1)X)P_n$: il s'agit d'un polynôme de $\mathbb{R}[X]$ puisque P_n en est un. On a alors

$$\forall x \in]0, +\infty[f^{(n+1)}(x) = \frac{P_{n+1}(x)}{x^{2n+4}} \times \exp\left(-\frac{1}{x}\right),$$

ce qui démontre \mathcal{P}_{n+1} .

- · D'après le principe de récurrence, l'existence d'un polynôme P_n adéquat est établie pour tout entier naturel n.
- (c) Soit $n \in \mathbb{N}$. Considérons deux polynômes P_n et Q_n dans $\mathbb{R}[X]$ tels que

$$\forall x \in]0, +\infty[\quad f^{(n)}(x) = \frac{P_n(x)}{x^{2n+2}} \times \exp\left(-\frac{1}{x}\right) = \frac{Q_n(x)}{x^{2n+2}} \times \exp\left(-\frac{1}{x}\right).$$

Pour x > 0, puisque $x^{-(2n+2)} \exp\left(-\frac{1}{x}\right)$ est non nul, on obtient $P_n(x) = Q_n(x)$. Le polynôme $P_n - Q_n$ a donc une infinité de racines (tous les réels strictement positifs) : il est nul, ce qui donne $P_n = Q_n$.

(d) En utilisant la relation de récurrence obtenue en question (b), et le fait que $P_0 = 1$, on obtient

$$P_1 = 1 - 2X$$
, $P_2 = 1 - 6X + 6X^2$, $P_3 = 1 - 12X + 36X^2 - 24X^3$.

(e) Pour tout $n \in \mathbb{N}$, on pose

$$\mathcal{P}_n$$
: « le degré de P_n vaut n , son coefficient dominant $(-1)^n(n+1)!$ et son coefficient constant vaut 1 . »

L'assertion \mathcal{P}_0 est vraie. Supposons vraie \mathcal{P}_n pour un certain entier naturel n. On a $P_{n+1} = X^2 P'_n + (1-2(n+1)X)P_n$. Écrivons le polynôme P_n sous la forme $P_n = (-1)^n (n+1)! X^n + Q_n$, où Q_n est un polynôme de degré strictement inférieur à n. On a donc

$$\begin{split} P_{n+1} &= X^2 \left((-1)^n (n+1)! X^n + Q_n \right)' + (1 - 2(n+1)X) ((-1)^n (n+1)! X^n + Q_n) \\ &= X^2 \left((-1)^n (n+1)! n X^{n-1} + Q_n' \right) + (1 - 2(n+1)X) ((-1)^n (n+1)! X^n + Q_n) \\ &= (-1)^n (n+1)! \left(n - 2(n+1) \right) X^{n+1} \\ &+ \underbrace{X^2 Q_n' + ((-1)^n (n+1)! X^n + Q_n) - 2(n+1) Q_n}_{\text{degré strictement inférieur à } n}. \end{split}$$

On obtient donc un degré n+1 pour P_{n+1} , et un coefficient dominant qui vaut $(-1)^n(n+1)! \times (-(n+2)) = (-1)^{n+1}(n+2)!$

Pour accéder au coefficient constant, il suffit d'évaluer en 0 :

$$P_{n+1}(0) = 0^2 \times P'_n(0) + (1 - 2(n+1) \times 0)P_n(0) = P_n(0).$$

D'après \mathcal{P}_n , on a $P_n(0) = 1$, et donc $P_{n+1}(0) = 1$. Ceri achève de prouver \mathcal{P}_{n+1} . Le principe de récurrence démontre

Ceci achève de prouver \mathcal{P}_{n+1} . Le principe de récurrence démontre alors que \mathcal{P}_n est vraie pour tout entier naturel n.

- (f) Soit $n \in \mathbb{N}$. On a $P_n(x) \underset{x \to 0}{\to} 1$ (coefficient constant). De plus, $\frac{1}{x^{2n+2}} e^{-\frac{1}{x}} \underset{x \to 0}{\to} 0$ par croissances comparées. Ainsi, $f^{(n)}(x) \underset{x \to 0}{\to} 0$.
- 3. (a) Pour $x \in]0, +\infty[$, on calcule

$$g'(x) = 2xf(x) + x^2f'(x) = 2x \cdot \frac{1}{x^2}e^{-\frac{1}{x}} + x^2 \cdot \frac{1 - 2x}{x^4}e^{-\frac{1}{x}} = \frac{1}{x^2}e^{-\frac{1}{x}}.$$

Ceci donne que g' = f.

Il n'y a plus qu'à dériver n fois cette égalité pour obtenir $g^{(n+1)} = f^{(n)}$

(b) La fonction g est le produit de $u: x \mapsto x^2$ et de f, toutes les deux de classe \mathcal{C}^{∞} sur \mathbb{R}_+ . Soit x un élément de cet intervalle. La formule de Leibniz donne

$$g^{(n+1)}(x) = \sum_{k=0}^{n+1} \binom{n+1}{k} u^{(k)}(x) f^{(n-k)}(x).$$

On a $u(x) = x^2$, u'(x) = 2x, u''(x) = 2 et pour tout $k \ge 3$, $u^{(k)}(x) = 0$. Ainsi,

$$g^{(n+1)}(x) = \binom{n+1}{0} \cdot x^2 \cdot f^{(n+1)}(x) + \binom{n+1}{1} \cdot 2x \cdot f^{(n)}(x) + \binom{n+1}{2} \cdot 2 \cdot f^{(n-1)}(x)$$

$$= x^2 \cdot \frac{P_{n+1}(x)}{x^{2n+4}} e^{-\frac{1}{x}} + 2(n+1)x \cdot \frac{P_n(x)}{x^{2n+2}} e^{-\frac{1}{x}} + (n+1)n \cdot \frac{P_{n-1}(x)}{x^{2n}} e^{-\frac{1}{x}}$$

$$= \frac{P_{n+1}(x) + 2(n+1)P_n(x) + (n+1)nx^2 P_{n-1}(x)}{x^{2n+2}} e^{-\frac{1}{x}}$$

D'après la question 3-(a), on a aussi $g^{(n+1)}(x) = f^{(n)}(x) = \frac{P_n(x)}{x^{2n+2}}e^{-\frac{1}{x}}$. Puisque $\frac{1}{-2n+2}e^{-\frac{1}{x}} \neq 0$, on obtient donc

$$P_n(x) = P_{n+1}(x) + 2(n+1)xP_n(x) + (n+1)nx^2P_{n-1}(x)$$
soit
$$P_{n+1}(x) = (1 - 2(n+1)x)P_n(x) - n(n+1)x^2P_{n-1}(x)$$

(c) Soit $x \in]0, +\infty[$. En égalant l'expression de $P_{n+1}(x)$ qui vient d'être obtenue, et celle écrite à la question 2-(b), on trouve

$$(1 - 2(n+1)x)P_n(x) - n(n+1)x^2P_{n-1}(x) = x^2P'_n(x) + (1 - 2(n+1)x)P_n(x).$$

Il reste
$$x^2 P'_n(x) = -n(n+1)x^2 P_{n-1}(x)$$
 puis $P'_n(x) = -n(n+1)P_{n-1}(x)$

- (d) La question précédente donne que le polynôme $P'_n + n(n+1)P_{n-1}$ possède une infinité de racines (tous les réels de $]0, +\infty[$). C'est donc le polynôme nul, ce qui donne bien $P'_n = -n(n+1)P_{n-1}$.
- 4. (a) Pour $n \in \mathbb{N}^*$, on note

$$\mathcal{P}_n$$
: $\forall x \in]0, +\infty[$ $p_n(x) \neq 0$ ou $p_{n-1}(x) \neq 0$ ».

L'assertion \mathcal{P}_1 est trivialement vrai, la fonction p_0 ne s'annulant jamais (elle est constante égale à 1).

Soit $n \in \mathbb{N}^*$. Supposons que \mathcal{P}_n est vraie et considérons $x \in]0, +\infty[$. Montrons \mathcal{P}_{n+1} par l'absurde en supposant que $p_{n+1}(x)$ et $p_n(x)$ sont nuls. Alors, l'égalité obtenue en 2-(b) donne $n(n+1)x^2p_{n-1}(x) = 0$, puis $p_{n-1}(x) = 0$, ce qui contredit \mathcal{P}_n . On a donc prouvé \mathcal{P}_{n+1} .

On conclut en appliquant le principe de récurrence : $\forall n \in \mathbb{N}^* \mathcal{P}_n$.

- (b) Soit $n \in \mathbb{N}$ et $x \in]0, +\infty[$. Supposons que p_n s'annule en x. Alors d'après la question précédente, $p_{n-1}(x) \neq 0$, puis en utilisant que $p'_n(x) = -n(n+1)p_{n-1}(x)$, on obtient que $p'_n(x) \neq 0$. Supposons que $p'_n(x) > 0$. Puisque p'_n est continue (car polynomiale), elle est strictement positive au voisinage de x: la fonction p_n , strictement croissante au voisinage de x, y change de signe. Si $p'_n(x) < 0$, il y a stricte décroissance au voisinage de x, et on conclut de même
- (c) Les zéros de p_n sont les racines réelles du polynôme non nul P_n . Or, nous savons que leur nombre est majoré par n, le degré de P_n : l'ensemble des zéros de p_n est bien fini.
- (d) i. Sur chacun de ces intervalles ouverts, le signe de p_n est constant. En effet, s'il y avait changement de signe, il y aurait annulation pour la fonction continue p_n (TVI), ce qui contredirait que x_1, \ldots, x_k sont les seuls zéros de p_n . Puisque $p_n(0) = 1$ (cf question 2 -(e)), p_n est positive sur $[0, x_1[$. Puisqu'il y a changement de signe en x_1, p_n est négative sur $]x_1, x_2[$. Puisqu'il y a changement de signe en chacun des x_i , en notant $x_0 = 0$,

pour tout
$$i \in [1, k]$$
, le signe de p_n sur $]x_{i-1}, x_i[$ est celui de $(-1)^{i-1}$.

ii. En x_1 , p_n change de signe du positif vers le négatif. On a vu que p_n est strictement monotone au voisinage de x_1 : forcément strictement décroissante, donc. Ainsi: $p'_n(x_1) < 0$.

En itérant, on obtient bien que

pour tout
$$i \in [1, k]$$
, le signe de $p'_n(x_i)$ est celui de $(-1)^i$.

Montrer que $p'_n(x_i)$ est du signe de $(-1)^i$.

iii. Pour $i \in [1, k]$, d'après 3-(b),

$$p_{n+1}(x_i) = (1 - 2(n+1)x_i) \underbrace{p_n(x_i)}_{=0} - n(n+1)x_i^2 p_{n-1}(x_i) = x_i^2 p'_n(x_i),$$

la dernière égalité étant obtenue en utilisant 3-(c). On obtient donc que $p_{n+1}(x_i)$ est du signe de $(-1)^i$ en utilisant la question précédente. A noter, cela reste vrai lorsque i=0 puisque $p_{n+1}(x_0)=1$.

iv. D'après la question 2-(e), P_{n+1} s'écrit sous la forme

$$P_{n+1} = (-1)^{n+1}(n+2)!X^{n+2} + Q_{n+1},$$

où $\deg(Q_{n+1}) < n+1$. En factorisant par x^{n+2} , on montre donc que $p_{n+1}(x) \to \pm \infty$ ($+\infty$ si n est impair, $-\infty$ si n est pair).

v. Le travail fait en ii donne que pour tout $i \in [1, n]$, les nombres $p_{n+1}(x_{i-1})$ et $p_{n+1}(x_i)$ sont (strictement) de signes opposés. Puisque p_{n+1} est une fonction continue, elle admet un 0 sur $]x_{i-1}, x_i[$, notons-le y_i . On vient d'obtenir n racines $y_1 < \ldots < y_n$ pour p_{n+1} .

Puisque $p_{n+1}(x_n)$ est du signe de $(-1)^n$ et que la limite de p_n en $+\infty$ est du signe de $(-1)^{n+1}$, on obtient un autre changement de signe (et donc une autre racine $y_{n+1} \in]x_n, +\infty[$).

On a bien prouvé que p_{n+1} s'annule au moins n+1 fois.

(e) On va établir par récurrence que pour tout $n \in \mathbb{N}^*$.

C'est vrai pour n=1 car $P_1=1-2X$ a une racine dans $]0,+\infty[$: elle vaut $\frac{1}{2}$. C'est aussi vrai pour n=2 puisque $P_2=1-6X+6X^2$ a un discriminant strictement négatif.

Supposons que la propriété est vraie pour un entier $n \geq 2$. Alors, le polynôme P_n a au moins n racines dans $]0, +\infty[$ et puisque $n \geq 2$, on peut appliquer la question (d) et obtenir que p_{n+1} possède au moins n+1 racines : l'hérédité est établie.

D'après le principe de récurrence, \mathcal{P}_n est vraie pour tout entier $n \in \mathbb{N}^*$.

(f) Soit $n \in \mathbb{N}^*$. La question précédente a établi que le polynôme P_n possède au moins n racines dans $]0, +\infty[$. Or, nous savons aussi que le nombre de racines de P_n est majoré par son degré, à savoir n. Le polynôme P_n possède donc exactement n racines réelles distinctes. Étant de degré n, $[P_n]$ est scindé sur \mathbb{R} .