WHAT IS CLAIMED IS:

	AATIV	110 02222
1	1.	A reel-deployable printed circuit board comprising:
2		an elongated, flexible base board having opposite edges and a slit formed into
3		it, the slit having an inner periphery defining a unit board within the flexible base
4		board; and,
5		a connection bar connecting the unit board to the base board such that the unit
6_	7	board is pivotable on the connection bar relative to the base board.
Sup.		
# (b)	2	The circuit board of Claim 1, further comprising:
2	\bigcirc	a bonding pad on a top surface of the unit board;
1 2 2 C 2 C 3		a contact on a bottom surface of the unit board; and,
4		a via hole through the unit board electrically connecting the bonding pad to the
¶ 5 €		contact.
II 1	3.	The circuit hoard of Claim 2, wherein the contact comprises a layer of copper plated
<u> </u>	with	a gold.
1	4.	The circuit board of Claim 1, further comprising a dam inside the inner periphery of
2	the	slit.
1	5.	The circuit board of Claim 1, wherein the base board is made of a glass-epoxy mate-
2	2 rial	
	1 6.	The circuit board of Claim 1, wherein the base board includes a sprocket hole along at
	2 lea	st one of the edges thereof.

	1	7.	The circuit board of Claim 1, wherein the base board includes a position hole along
	2	one of	the edges thereof.
	1	8.	The circuit board of Claim 2, further comprising:
	2		a semiconductor chip attached to an upper surface of the unit board, the chip
	3		having a connection pad on an upper surface thereof; and,
	4		a conductive wire having opposite ends, each bonded to a respective one of the
	5		bonding pad on the unit board and the connection pad on the chip.
==+t	1	9.	The circuit board of Claim 8, further comprising an encapsulant formed on the top
of the first had that the	2	surfac	e of the unit board and encapsulating a region including the chip, the conductive wire,
	3	the bo	onding pad, and the connection pad.
	1	10.	A method for manufacturing a semiconductor package using a reel-deployable printed
S	2	circui	t board, comprising:
	3		forming a printed circuit board comprising an elongated, flexible base board hav-
	4	ing o	pposite edges and a slit cut through it, the slit defining a unit board within the flexible
	5	base	board that is connected to the base board and pivotable relative to it by means of a con-
	6	necti	on bar extending between the two boards in a direction perpendicular to the long direc-
	7		of the base beard the unit board having top and bottom surfaces, a bonding pad on the
	8	top s	urface, a contact on the bottom surface, and a via hole electrically connecting the contact
	9	with	the bonding pad;
	10		(B) attaching a semiconductor chip to the top surface of the unit board;
	11		(C) electrically connecting the semiconductor chip to the bonding pad; and,
	12		(D) encapsulating the top surface of the unit board with an encapsulant in a region in-
	13	clud	ing the semiconductor chip and the bonding pad.

3

The method of claim 10, wherein a plurality of semiconductor packages are simulta-1 neously manufactured on the printed circuit board, and further comprising: separating the en-2 capaulated unit boards from the flexible base board by cutting the connection bars. 3 The method of Claim 10, further comprising: 12. 1 winding the printed circuit board onto a cylindrical reel to store the board and 2 to transport the board from one manufacturing station to another manufacturing sta-3 tion; and, 4 unwinding the printed circuit board from the reel to perform a manufacturing 5 operation on the board. 6 The method of claim 10, further comprising forming a dam on the top surface of the 13. 1 unit board to preven runoff of a liquid encapsulant. 2 The method of clarm 10, wherein the flexible base board is formed from a glass-epoxy 14. 1 2 material. The method of claim 10, further comprising forming a sprocket hole along at least one 15. 1 of the edges of the flexible base board. 2 The method of claim 10, further comprising forming a position hole along an edge of 16. 1 the flexible base board. 2 The method of claim 10, wherein encapsulating the unit board further comprises: 1 17. dispensing a liquid encapsulant into the region; and, 2 curing the liquid encapsulant.

	1	\1 8.	The method of claim 10, wherein encapsulating the unit board further comprises:
	2		disposing a mold over the unit board;
	3		transferring a molten encapsulant into the mold; and,
	4		solidifying the encapsulant.
	1	19.	The method of claim 10, wherein electrically connecting the semiconductor chip to
	2	the_bo	anding pad further comprises bonding a wire having opposite ends to respective ones of
	3	the bo	onding pad and the chip.
SISA.	1	20.	The method of thaim 10, wherein electrically connecting the semiconductor chip to
ā M	2	the bo	onding pad further comprises:
	3		forming a ball of conductive metal on the bonding pad or on a connection pad
	4		formed on a surface of the chip;
			orienting the chip with respect to the unit board such that the bonding pad and
	5		
	6		the connecting pad are opposed to each other, with the conductive metal ball inter-
u	7		posed therebetween; and,
	8		melting the ball such that it electrically connects the pads to each other.

