Epidemiological exercises in R

Lucky Mehra 2019-08-02

Contents

P	rereq	uisites	5									
1	Exe	Exercise 4										
	1.1	Load packages	7									
	1.2	Import data	7									
	1.3	First mixed model	8									
	1.4	Second mixed model	13									
2	Exe	Exercise 9.4										
	2.1	Load packages	19									
	2.2	Data	19									
	2.3	Autocorrelation statistics	20									
	2.4	First variogram	23									
	2.5	Second variogram	24									
	2.6	Variogram model selection	26									
3	Exe	ercise 9.5	31									
	3.1	Load packages	31									
	3.2	Data	31									
	3.3	Autocorrelation statistics	32									
	3.4	First variogram	35									
	3.5	Second variogram	36									
	3 6	Variogram model selection	38									

4 CONTENTS

4	Yield loss					
	4.1	Load packages	43			
	4.2	Data	43			
	4.3	Mixed model for response variable DS $\ \ldots \ \ldots \ \ldots$.	44			
	4.4	Mixed model for response variable YIELD	51			
	4.5	Linear regression between YIELD and DS \hdots	58			
	4.6	Mixed model for RY2	61			
	4.7	Linear regression between RY2 and CDS	63			
\mathbf{A}	SAS	S code	65			
	A.1	Exercise 4	65			
	A.2	Exercise 9.4	68			
	A.3	Exercise 9.5	69			
	A.4	Yield loss	72			

Prerequisites

To run these exercises, you will need to install the latest version of R (https://cloud.r-project.org/) and RStudio (https://www.rstudio.com/products/rstudio/download/) on your computer. Please click on the above mentioned links to go to the download pages of R and RStudio.

These exercises are a work in progress, and are an attempt to translate SAS code written by Tim Todd into R.

6 CONTENTS

Chapter 1

Exercise 4

1.1 Load packages

Here is the R code to download the required packages for this exercise.

```
# install package manager 'pacman'
if (!require(pacman)){
  install.packages('pacman')
}
```

Loading required package: pacman

Load the packages needed for this exercise:

1.2 Import data

Our data is located in ex4.csv file, which can be found on my github repo. Import the data and create new variables using the code below.

Table 1.1: The first 6 rows of dataset *a*.											
plot	t	blk	trt	pctsev	У	ystar	wt				
101	0	1	2	9	0.09	-2.313635	0.0819				
102	0	1	1	6	0.06	-2.751535	0.0564				
103	0	1	3	2	0.02	-3.891820	0.0196				
201	0	2	2	7	0.07	-2.586689	0.0651				
202	0	2	3	5	0.05	-2.944439	0.0475				
203	0	2	1	3	0.03	-3.476099	0.0291				

```
# get a glimpse of data
glimpse(a)
```

```
## Observations: 72
## Variables: 8
## $ plot
            <dbl> 101, 102, 103, 201, 202, 203, 301, 302, 303, 401, 402, ...
## $ t
            <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 7, 7, 7, 7, 7, 7...
## $ blk
            <fct> 1, 1, 1, 2, 2, 2, 3, 3, 3, 4, 4, 4, 1, 1, 1, 2, 2, 2, 3...
            <fct> 2, 1, 3, 2, 3, 1, 3, 2, 1, 1, 2, 3, 2, 1, 3, 2, 3, 1, 3...
## $ trt
## $ pctsev <dbl> 9, 6, 2, 7, 5, 3, 4, 2, 6, 1, 1, 4, 4, 6, 10, 2, 5, 3, ...
## $ y
            <dbl> 0.09, 0.06, 0.02, 0.07, 0.05, 0.03, 0.04, 0.02, 0.06, 0...
## $ ystar <dbl> -2.313635, -2.751535, -3.891820, -2.586689, -2.944439, ...
            <dbl> 0.0819, 0.0564, 0.0196, 0.0651, 0.0475, 0.0291, 0.0384,...
## $ wt
```

1.3 First mixed model

1.3.1 Fit the model

Run the mixed model analysis using **nlme** package in R. The function used to fit the mixed model is called lme().

```
# fit the model
mm_1 <- lme(ystar ~ trt*t, # fixed effects
           data = a,
            random = list(blk = ~ 1, plot = ~ 1), # random effects
            correlation = corAR1(form = (plot = ~ 1)), # specify that observations within a plot
            contrasts = list(trt = "contr.SAS"), # specify this option to get parameter estimates
           weights = \sim I(1/wt))
# output the summary
summary(mm_1)
## Linear mixed-effects model fit by REML
## Data: a
##
         AIC
                  BIC
                         logLik
##
    210.5257 232.4222 -95.26285
##
## Random effects:
## Formula: ~1 | blk
          (Intercept)
## StdDev: 0.1887117
## Formula: ~1 | plot %in% blk
##
           (Intercept) Residual
## StdDev: 4.604287e-05 0.2519511
## Correlation Structure: AR(1)
## Formula: ~1 | blk/plot
## Parameter estimate(s):
##
         Phi
## 0.06205463
## Variance function:
## Structure: fixed weights
## Formula: ~I(1/wt)
## Fixed effects: ystar \sim trt * t
                   Value Std.Error DF t-value p-value
## (Intercept) -2.5689859 0.3629604 57 -7.077868 0.0000
## trt2
              -0.1948084 0.5193013 6 -0.375136 0.7205
              -0.5406041 0.5136249 6 -1.052527 0.3331
## trt1
## t
              0.0992675 0.0142177 57 6.981964 0.0000
              -0.0221696 0.0202998 57 -1.092109 0.2794
## trt2:t
               0.0437431 0.0212717 57 2.056398 0.0443
## trt1:t
## Correlation:
##
        (Intr) trt2 trt1 t
                                    trt2:t
## trt2 -0.652
```

```
## trt1 -0.658 0.459
## t
        -0.888 0.621 0.627
## trt2:t 0.623 -0.924 -0.439 -0.700
## trt1:t 0.592 -0.413 -0.913 -0.667 0.466
## Standardized Within-Group Residuals:
       Min Q1
                             Med
                                        QЗ
                                                 Max
## -2.1518915 -0.6900213 -0.4024653 0.4132408 2.7733450
##
## Number of Observations: 72
## Number of Groups:
           blk plot %in% blk
##
             4
                         12
\# extract covariance parameter estimates
VarCorr(mm_1)
##
             Variance
                        StdDev
## blk =
           pdLogChol(1)
## (Intercept) 3.561212e-02 1.887117e-01
## plot = pdLogChol(1)
## (Intercept) 2.119946e-09 4.604287e-05
## Residual 6.347936e-02 2.519511e-01
# extract type3 fixed effects anova
anova.lme(mm_1, type = 'marginal')
             numDF denDF F-value p-value
## (Intercept) 1 57 50.09622 <.0001
## trt
                 2
                     6 0.56135 0.5977
## t
                1 57 48.74782 <.0001
## trt:t
               2 57 4.80110 0.0118
```

1.3.2 Diagnostic plots

```
# pearson residuals vs. fitted values
plot(mm_1, resid(., type="pearson") ~ fitted(.), abline = 0)
```


standardaized residuals vs. fitted values
plot(mm_1, resid(., scaled=TRUE) ~ fitted(.), abline = 0)


```
# qq plot
qqnorm(residuals(mm_1))
qqline(residuals(mm_1))
```

Normal Q-Q Plot


```
#observed vs. fitted values
plot(mm_1, ystar ~ fitted(.), abline = c(0,1))
```


1.4 Second mixed model

1.4.1 Fit the model

Random effects:
Formula: ~1 | blk

Run the mixed model analysis using **nlme** package in R. The function used to fit the mixed model is called <code>lme()</code>. Here we will specify no intercept. We will also use **emmeans** package to get least squared means and contrasts.

```
# fit the model
#library(nlme)
mm_2 <- update(mm_1, fixed = ystar ~ - 1 + trt + trt:t) # update fixed effects in mm_1, -1 indice
# output the summary
summary(mm_2)

## Linear mixed-effects model fit by REML
## Data: a
## AIC BIC logLik
## 210.5257 232.4222 -95.26285
##</pre>
```

##

blk =

Variance

pdLogChol(1)

StdDev

```
##
          (Intercept)
## StdDev: 0.1887117
##
## Formula: ~1 | plot %in% blk
          (Intercept) Residual
## StdDev: 4.603147e-05 0.2519511
##
## Correlation Structure: AR(1)
## Formula: ~1 | blk/plot
## Parameter estimate(s):
##
         Phi
## 0.06205463
## Variance function:
## Structure: fixed weights
## Formula: ~I(1/wt)
## Fixed effects: ystar ~ trt + trt:t - 1
##
              Value Std.Error DF t-value p-value
## trt2
         -2.7637943 0.3944803 6 -7.006165 4e-04
## trt1
         -3.1095900 0.3877657 6 -8.019250
                                             2e-04
## trt3 -2.5689859 0.3629604 6 -7.077868
                                            4e-04
## trt2:t 0.0770979 0.0144893 58 5.321034
                                             0e+00
## trt1:t 0.1430106 0.0158560 58 9.019328
                                           0e+00
## trt3:t 0.0992675 0.0142177 58 6.981964
                                             0e+00
## Correlation:
##
         trt2 trt1
                      trt3 trt2:t trt1:t
## trt1
          0.057
          0.062 0.065
## trt3
## trt2:t -0.901 0.001 0.001
## trt1:t 0.001 -0.881 -0.002 -0.001
## trt3:t 0.000 -0.002 -0.888 0.000 0.002
##
## Standardized Within-Group Residuals:
         Min
                     Q1
                               Med
                                           QЗ
                                                     Max
## -2.1518915 -0.6900213 -0.4024653 0.4132408 2.7733450
##
## Number of Observations: 72
## Number of Groups:
##
            blk plot %in% blk
##
              4
                           12
# extract covariance parameter estimates
VarCorr(mm_2)
```

```
## (Intercept) 3.561212e-02 1.887117e-01
              pdLogChol(1)
## plot =
## (Intercept) 2.118896e-09 4.603147e-05
            6.347936e-02 2.519511e-01
## Residual
# extract type3 fixed effects anova
anova.lme(mm_2, type = 'marginal')
        numDF denDF F-value p-value
##
## trt
                 6 48.57698 1e-04
            3
## trt:t
            3
                 58 52.74601 <.0001
# compare the slopes for different treatments
#library(emmeans)
emtrends(mm_2, pairwise ~ trt, var="t", adjust = "none")
## $emtrends
## trt t.trend
                   SE df lower.CL upper.CL
        0.0771 0.0145 58
                         0.0481
                                   0.106
## 1
        0.1430 0.0159 58
                          0.1113
                                    0.175
## 3
        0.0993 0.0142 58
                         0.0708
                                    0.128
##
## d.f. method: containment
## Confidence level used: 0.95
##
## $contrasts
## contrast estimate
                        SE df t.ratio p.value
## 2 - 1 -0.0659 0.0215 58 -3.067 0.0033
## 2 - 3
            -0.0222 0.0203 58 -1.092 0.2793
## 1 - 3
            0.0437 0.0213 58 2.056 0.0443
# get the treatment difference at various time points
emmeans(mm_2, pairwise ~ trt t, nesting = NULL, at = list(t = c(0, 7, 14, 21, 28, 35)), adjust =
## $emmeans
## t = 0:
## trt emmean
                 SE df lower.CL upper.CL
## 2 -2.7638 0.394 6 -3.729 -1.7985
       -3.1096 0.388 6
                         -4.058 -2.1608
## 1
       -2.5690 0.363 6
## 3
                        -3.457 -1.6809
##
## t = 7:
## trt emmean SE df lower.CL upper.CL
```

```
## 2 -2.2241 0.306 6 -2.974 -1.4746
      -2.1085 0.295 6
                      -2.830 -1.3873
## 1
## 3 -1.8741 0.278 6 -2.555 -1.1931
## t = 14:
## trt emmean
                 SE df lower.CL upper.CL
## 2 -1.6844 0.229 6 -2.246 -1.1232
## 1 -1.1074 0.219 6 -1.644 -0.5712
## 3 -1.1792 0.207 6 -1.687 -0.6719
##
## t = 21:
## trt emmean SE df lower.CL upper.CL
      -1.1447 0.179 6 -1.582 -0.7072
## 2
                      -0.556 0.3437
## 1
     -0.1064 0.184 6
## 3 -0.4844 0.168 6
                      -0.896 -0.0726
##
## t = 28:
                 SE df lower.CL upper.CL
## trt emmean
     -0.6051 0.179 6
                       -1.042 -0.1680
      0.8947 0.210 6
                        0.380
                               1.4095
## 1
## 3
       0.2105 0.183 6
                       -0.237
                                0.6581
##
## t = 35:
## trt emmean
                SE df lower.CL upper.CL
## 2 -0.0654 0.229 6
                      -0.626 0.4948
## 1 1.8958 0.282 6
                        1.207 2.5850
## 3 0.9054 0.242 6
                        0.314 1.4968
##
## d.f. method: containment
## Confidence level used: 0.95
##
## $contrasts
## t = 0:
## contrast estimate
                      SE df t.ratio p.value
## 2 - 1 0.3458 0.537 6 0.644 0.5435
## 2 - 3
         -0.1948 0.519 6 -0.375 0.7205
## 1 - 3
           -0.5406 0.514 6 -1.053 0.3331
##
## t = 7:
## contrast estimate
                      SE df t.ratio p.value
## 2 - 1 -0.1156 0.404 6 -0.286 0.7843
## 2 - 3
            -0.3500 0.392 6 -0.893 0.4062
## 1 - 3
            -0.2344 0.383 6 -0.613 0.5625
##
## t = 14:
## contrast estimate SE df t.ratio p.value
```

```
## 2 - 1
           -0.5770 0.288 6 -2.004 0.0919
           -0.5052 0.279 6 -1.811 0.1201
## 2 - 3
## 1 - 3
            0.0718 0.271 6 0.265 0.7996
## t = 21:
## contrast estimate
                       SE df t.ratio p.value
## 2 - 1 -1.0384 0.219 6 -4.739 0.0032
## 2 - 3 -0.6604 0.206 6 -3.204 0.0185
## 1 - 3 0.3780 0.211 6 1.794 0.1229
##
## t = 28:
## contrast estimate
                      SE df t.ratio p.value
## 2 - 1 -1.4998 0.242 6 -6.204 0.0008
## 2 - 3
         -0.8156 0.218 6 -3.741 0.0096
## 1 - 3
            0.6842 0.245 6 2.795 0.0314
##
## t = 35:
## contrast estimate
                       SE df t.ratio p.value
## 2 - 1 -1.9611 0.338 6 -5.806 0.0011
         -0.9707 0.305 6 -3.184 0.0190
0.9904 0.346 6 2.861 0.0288
## 2 - 3
## 1 - 3
```

1.4.2 Plot observed versus predicted model values

```
# add fitted and residuals in to a new dataset called b
b = cbind(a, resid = resid(mm_2), fitted = fitted(mm_2))

# fit linear regression
b.lm <- lm(ystar ~ fitted, data=b)

# plot using ggplot2 package
ggplot(b, aes(x=fitted, y = ystar)) +
geom_point(color="blue", size = 3) +
geom_smooth(method = lm, color = "lightgrey")</pre>
```


Chapter 2

Exercise 9.4

2.1 Load packages

Here is the R code to download the required packages for this exercise.

```
# install package manager 'pacman'
if (!require(pacman)){
  install.packages('pacman')
}
```

Loading required package: pacman

2.2 Data

This is equivalent to data step in SAS. Here, the data is entered inside a function called tibble.

```
## # A tibble: 16 x 4
          YI East North
##
      Ι
##
    <int> <dbl> <dbl> <int>
## 1
      1
          41
              1
## 2
      2
          60
        81
                   3
## 3
      3
               1
        22
## 4
      4
               1
                   4
                   5
## 5 5 8
## 6
     6 20
## 7
     7
        28
             1
                  7
## 8
    8
        2
                  8
## 9
     9 0
## 10 10 2
              1 10
## 11
     11
          2
              1 11
## 12
    12 8
              1 12
## 13 13 0
              1 13
## 14
    14
        43
              1 14
            1 15
1 16
## 15
    15
        61
## 16 16 50
```

2.3 Autocorrelation statistics

```
# visualize the data
ggplot(data = a) +
geom_point(mapping = aes(x = East, y = North, size = YI, color = YI)) +
ggtitle("Spatial Distribution of YI Observation") +
theme(plot.title = element_text(hjust = 0.5))
```

Spatial Distribution of YI Observation


```
# calculate Moran's I
Coords <- a %>%
 dplyr::select(East, North)
mI <- moransI(Coords, Bandwidth = 1, a$YI)
# print Moran's I table
moran.table <- tribble(</pre>
 ~`Moran's I`, ~`Expected I`, ~`Z randomization`, ~`P value randomization`,
 mI$Morans.I, mI$Expected.I, mI$z.randomization, mI$p.value.randomization
moran.table
## # A tibble: 1 x 4
    `Moran's I` `Expected I` `Z randomization` `P value randomization`
##
                                     <dbl>
         <dbl>
                    <dbl>
                                                          <dbl>
## 1
         0.625
                   -0.0667
                                     2.81
                                                        0.00499
```

```
# create Moran's I scatter plot
1.moran <- 1.moransI(Coords, Bandwidth = 1, a$YI)</pre>
```

Geary C statistic

0.37085605

##

Moran's I Scatter Plot


```
# calculate geary's c
Coords_num <- coordinates(Coords)</pre>
# create an object of class 'nb' so that it can be used with function from packege `sp
Coords_nb <- knn2nb(knearneigh(Coords_num))</pre>
# create a 'listw' object for use in the function `geary.test`
coords_listw <- nb2listw(Coords_nb)</pre>
gearyC <- geary.test(a$YI, coords_listw, alternative = "two.sided")</pre>
gearyC
##
##
    Geary C test under randomisation
##
## data: a$YI
## weights: coords_listw
##
## Geary C statistic standard deviate = 2.5826, p-value = 0.009806
## alternative hypothesis: two.sided
## sample estimates:
```

Variance

0.05934473

Expectation

1.00000000

stack two plots

2.4 First variogram

We will use the package geoR to construct empricial variogram, and then draw them using package ggplot2.

```
v1 <- variog(coords = Coords_num, data = a$YI, breaks = seq(0.5, 15.5),
            \max. dist = 11)
## variog: computing omnidirectional variogram
# extract data from object v1 for plotting
v1_plot_data <- cbind(v1$u, v1$v, v1$n) %>%
 as.data.frame() %>%
 dplyr::rename(Distance = V1,
               Semivariance = V2,
               Pair count = V3)
# in the table below, gamma is semivariance
v1_plot_data
##
     Distance Semivariance Pair_count
## 1
           1
                 258.8333
                                  15
## 2
            2
                 533.0000
                                   14
## 3
           3 576.6154
                                  13
## 4
           4 580.1667
                                  12
           5 754.0000
6 958.2000
## 5
                                   11
## 6
          6
                                   10
          7 1020.4444
## 7
                                  9
## 8
          8
                966.7500
                                  8
           9 1006.2857
                                   7
## 9
## 10
          10 1244.6667
                                   6
## 11
           11
                 941.8000
# plot variogram
v1_plot_vario <- ggplot(data = v1_plot_data) +</pre>
 geom_point(mapping = aes(x = Distance, y = Semivariance)) +
 ggtitle("Empirical Semivariogram of YI") +
 theme(plot.title = element_text(hjust = 0.5))
# plot pair counts
v1_plot_pair_count <- ggplot(data = v1_plot_data) +</pre>
 geom_col(mapping = aes(x = Distance, y = Pair_count), width = 0.01, color = "blue")
```


2.5 Second variogram

Plot robust and classical variogram together.

variog: computing omnidirectional variogram

```
v1_robust_vario <- ggplot(data = v1_robust_data) +
  geom_point(mapping = aes(x = Distance, y = Semivariance)) +
  ggtitle("Empirical Semivariogram of YI - Robust estimation") +
  theme(plot.title = element_text(hjust = 0.5))</pre>
v1_robust_vario
```

Empirical Semivariogram of YI - Robust estimation


```
# combine robust and classical variogram
var_comb <- v1_robust_data %>%

# combine robust and classical variogram datasets
dplyr::rename(Semivariance_robust = Semivariance) %>%
bind_cols(dplyr::select(v1_plot_data, Semivariance)) %>%
gather(key = "Semivariance_type", value = "Semivariance", -c(Distance, Pair_count)) %>%

# plot
ggplot() +
geom_point(mapping = aes(x = Distance, y = Semivariance, color = Semivariance_type)) +
ggtitle("Empirical Semivariogram for YI") +
theme(plot.title = element_text(hjust = 0.5))
```


2.6 Variogram model selection

We will use the package gstat and automap for variogram model selection

```
# specify coordinates in the dataset
coordinates(a) = ~East+North
# select the best model out of exponential, spherical, and gaussian
autofitVariogram(YI ~ East + North, a, model = c("Sph", "Exp", "Gau"))
## $exp_var
     np dist
                gamma dir.hor dir.ver
                                         id
## 1 15
           1 258.8333
                            0
                                     0 var1
## 2 14
                            0
           2 533.0000
                                     0 var1
## 3 13
           3 576.6154
                                     0 var1
## 4 12
           4 580.1667
                            0
                                     0 var1
## 5 11
           5 754.0000
                                     0 var1
##
## $var_model
##
     model
              psill
                       range
## 1
       Nug
             0.0000 0.000000
## 2
       Exp 854.3133 2.575499
##
```

```
## $sserr
## [1] 28783.32
##
## attr(,"class")
## [1] "autofitVariogram" "list"
# fit empirical variogram
v_emp <- variogram(YI ~ East + North, data = a, cutoff = 11)</pre>
v_emp
##
                  gamma dir.hor dir.ver
      np dist
                                            id
## 1
               258.8333
                               0
      15
            1
                                       0 var1
## 2
      14
            2
               533.0000
                               0
                                       0 var1
## 3
      13
            3 576.6154
                               0
                                       0 var1
## 4
      12
            4 580.1667
                               0
                                       0 var1
## 5
            5 754.0000
      11
                               0
                                       0 var1
## 6
      10
            6 958.2000
                               0
                                       0 var1
## 7
            7 1020.4444
                               0
                                       0 var1
## 8
       8
            8 966.7500
                               0
                                       0 var1
## 9
       7
            9 1006.2857
                               0
                                       0 var1
## 10
           10 1244.6667
       6
                               0
                                       0 var1
## 11
      5
           11 941.8000
                               0
                                        0 var1
```



```
# fit exponential variogram
v_exp <- fit.variogram(v_emp, vgm("Exp"))
v_exp</pre>
```

```
## model psill range
## 1 Nug 0.000 0.00000
## 2 Exp 1062.461 3.47171
```

```
# fit spherical and gaussian
v sph <- fit.variogram(v emp, vgm("Sph"))</pre>
v_gau <- fit.variogram(v_emp, vgm("Gau"))</pre>
# extract plotting data from fitted variograms
v_exp_line <- variogramLine(v_exp, maxdist = 11)</pre>
v_sph_line <- variogramLine(v_sph, maxdist = 11)</pre>
v_gau_line <- variogramLine(v_gau, maxdist = 11)</pre>
# plot emprical and fitted variograms together
# specify color for legends
legend_color <- c("Empirical" = "blue", "Exponential" = "blue",</pre>
                  "Spherical" = "orange", "Gaussian" = "green")
ggplot(data = v emp) +
 geom_point(mapping = aes(x = dist, y = gamma, fill = "Empirical"), color = "blue") +
 geom_line(data = v_exp_line, mapping = aes(x = dist, y = gamma, color = "Exponential")
 geom_line(data = v_sph_line, mapping = aes(x = dist, y = gamma, color = "Spherical")
 geom_line(data = v_gau_line, mapping = aes(x = dist, y = gamma, color = "Gaussian"))
 scale_color_manual(name = "", values = legend_color) +
 scale_fill_manual(name = "", values = legend_color) +
 labs(x = "Distance",
       y = "Semivariance")
```


Chapter 3

Exercise 9.5

3.1 Load packages

Here is the R code to download the required packages for this exercise.

```
# install package manager 'pacman'
if (!require(pacman)){
  install.packages('pacman')
}
```

Loading required package: pacman

3.2 Data

This is equivalent to data step in SAS. Here, the data is imported from a file data.csv using the function read_csv. This function will download the file directly from here.

```
# Import data
a <- read_csv("https://raw.githubusercontent.com/luckymehra/epidem-exercises/master/da
## Parsed with column specification:
## cols(
##
    COL = col_double(),
## ROW = col_double(),
##
   YI = col_double()
## )
# print the data
## # A tibble: 144 x 3
      COL ROW
##
               ΥI
##
    <dbl> <dbl> <dbl>
## 1
       1
          1
## 2
       2
            1
## 3
       3
            1
                  0
          1
## 4
       4
                  3
## 5 5
           1
## 6
       6
           1
           1
## 7
       7
                 1
## 8 8 1
                 5
## 9
      9 1
                 22
## 10 10 1 13
## # ... with 134 more rows
```

3.3 Autocorrelation statistics

```
# visualize the data
ggplot(data = a) +
  geom_point(mapping = aes(x = COL, y = ROW, size = YI, color = YI)) +
  ggtitle("Spatial Distribution of YI Observation") +
  theme(plot.title = element_text(hjust = 0.5))
```



```
# calculate Moran's I
Coords <- a %>%
 dplyr::select(COL, ROW)
mI <- moransI(Coords, Bandwidth = 1, a$YI)
# print Moran's I table
moran.table <- tribble(</pre>
 ~`Moran's I`, ~`Expected I`, ~`Z randomization`, ~`P value randomization`,
 mI$Morans.I, mI$Expected.I, mI$z.randomization, mI$p.value.randomization
moran.table
## # A tibble: 1 x 4
    `Moran's I` `Expected I` `Z randomization` `P value randomization`
##
                                     <dbl>
         <dbl>
                     <dbl>
                                                          <dbl>
## 1
         0.782
                  -0.00699
                                      13.0
                                                        1.28e-38
# create Moran's I scatter plot
```

1.moran <- 1.moransI(Coords, Bandwidth = 1, a\$YI)</pre>

Geary C statistic

##

0.235058006

Moran's I Scatter Plot


```
# calculate geary's c
Coords_num <- coordinates(Coords)</pre>
# create an object of class 'nb' so that it can be used with function from packege `sp
Coords_nb <- knn2nb(knearneigh(Coords_num))</pre>
# create a 'listw' object for use in the function `geary.test`
coords_listw <- nb2listw(Coords_nb)</pre>
gearyC <- geary.test(a$YI, coords_listw, alternative = "two.sided")</pre>
gearyC
##
##
    Geary C test under randomisation
##
## data: a$YI
## weights: coords_listw
##
## Geary C statistic standard deviate = 8.8657, p-value < 2.2e-16
## alternative hypothesis: two.sided
## sample estimates:
```

Variance

0.007444457

Expectation

1.000000000

3.4 First variogram

We will use the package geoR to construct empricial variogram, and then draw them using package ggplot2.

```
##
    Distance Semivariance Pair_count
## 1
       1 311.7154 506
        2 636.2074
## 2
                         680
## 3
        3 818.7044
                         812
        4 901.3218
                        1386
## 4
## 5
        5 910.2773
                        1044
## 6
        6 942.3219
                        1252
                        1046
## 7
        7
            998.2290
        8 1131.2105
## 8
                         1012
## 9
        9 1261.6817
                        1076
## 10
      10 1219.6067
                         614
## 11
        11 1166.5541
                         508
## 12
        12
            910.6250
                          80
```

```
# plot variogram
v1_plot_vario <- ggplot(data = v1_plot_data) +
    geom_point(mapping = aes(x = Distance, y = Semivariance)) +
    ggtitle("Empirical Semivariogram of YI") +
    theme(plot.title = element_text(hjust = 0.5))

# plot pair counts
v1_plot_pair_count <- ggplot(data = v1_plot_data) +
    geom_col(mapping = aes(x = Distance, y = Pair_count), width = 0.01, color = "blue")</pre>
```


3.5 Second variogram

Plot robust and classical variogram together.

```
# plot robust variogram
v1_robust_vario <- ggplot(data = v1_robust_data) +
  geom_point(mapping = aes(x = Distance, y = Semivariance)) +
  ggtitle("Empirical Semivariogram of YI - Robust estimation") +
  theme(plot.title = element_text(hjust = 0.5))
v1_robust_vario</pre>
```

Empirical Semivariogram of YI – Robust estimation


```
# combine robust and classical variogram
var_comb <- v1_robust_data %>%

# combine robust and classical variogram datasets
dplyr::rename(Semivariance_robust = Semivariance) %>%
bind_cols(dplyr::select(v1_plot_data, Semivariance)) %>%
gather(key = "Semivariance_type", value = "Semivariance", -c(Distance, Pair_count)) %>%

# plot
ggplot() +
geom_point(mapping = aes(x = Distance, y = Semivariance, color = Semivariance_type)) +
ggtitle("Empirical Semivariogram for YI") +
theme(plot.title = element_text(hjust = 0.5))
```


3.6 Variogram model selection

We will use the package gstat and automap for variogram model selection

```
# specify coordinates in the dataset
coordinates(a) = ~COL+ROW
# select the best model out of exponential, spherical, and gaussian
autofitVariogram(YI ~ COL + ROW, a, model = c("Sph", "Exp", "Gau"), cutoff = 12)
## $exp_var
##
              dist
                      gamma dir.hor dir.ver
       np
      264 1.000000 233.2400
                                   0
                                           0 var1
                                   0
      242 1.414214 388.5222
                                           0 var1
     680 2.152750 612.6985
                                   0
                                           0 var1
## 4 812 3.036881 756.8971
                                   0
                                           0 var1
## 5 1066 3.944315 783.1461
                                   0
                                           0 var1
## 6 1364 4.977586 742.6252
                                           0 var1
##
## $var_model
##
     model
              psill
                       range
             0.0000 0.000000
## 1
## 2
      Sph 782.9935 4.019145
```

```
##
## $sserr
## [1] 1247749
##
## attr(,"class")
## [1] "autofitVariogram" "list"
```

```
# fit empirical variogram
v_emp <- variogram(YI ~ COL + ROW, data = a, cutoff = 12)
v_emp</pre>
```

```
##
      np
             dist
                     gamma dir.hor dir.ver
## 1
      506 1.198102 307.5054 0
                                      0 var1
## 2
                              0
      680 2.152750 612.6985
                                      0 var1
## 3 812 3.036881 756.8971
                              0
                                      0 var1
## 4 552 3.742751 784.3027
                              0
                                      0 var1
## 5
    834 4.280245 782.1560
                               0
                                      0 var1
## 6 1044 5.132514 730.3844
                             0
                                      0 var1
## 7 1028 6.012860 693.9058
                             0
                                     0 var1
                             0
                                     0 var1
## 8
     878 6.801676 675.9157
## 9
      836 7.525735 703.4337
                              0
                                    0 var1
## 10 852 8.302717 728.0099
                              0
                                     0 var1
## 11 792 9.194510 712.3311
                               0
                                     0 var1
                               0 0 var1
0 0 var1
0 0 var1
## 12 542 10.047104 621.2100
## 13 452 10.826377 554.3985
## 14 208 11.494850 599.2237
```

```
plot(v_emp)
```



```
# fit exponential variogram
v_exp <- fit.variogram(v_emp, vgm("Exp"))</pre>
# fit spherical and gaussian
v_sph <- fit.variogram(v_emp, vgm("Sph"))</pre>
v_sph
##
     model
              psill
                        range
              0.0000 0.000000
## 1
       Nug
       Sph 745.8602 3.765221
v_gau <- fit.variogram(v_emp, vgm("Gau"))</pre>
## Warning in fit.variogram(v_emp, vgm("Gau")): No convergence after 200
## iterations: try different initial values?
# extract plotting data from fitted variograms
v_exp_line <- variogramLine(v_exp, maxdist = 12)</pre>
v_sph_line <- variogramLine(v_sph, maxdist = 12)</pre>
# v_gau_line <- variogramLine(v_gau, maxdist = 12)</pre>
# plot emprical and fitted variograms together
# specify color for legends
```


Chapter 4

Yield loss

4.1 Load packages

Here is the R code to download the required packages for this exercise.

```
# install package manager 'pacman'
if (!require(pacman)){
  install.packages('pacman')
}
```

Loading required package: pacman

4.2 Data

This is equivalent to the data step in SAS. Here, the data is imported from a file yield_loss.csv using the function read_csv. This function will download the data file directly from here.

```
# Import data
a <- read_csv("https://raw.githubusercontent.com/luckymehra/epidem-exercises/master/data/yield_lockymehra/epidem-exercises/master/data/yield_lockymehra/epidem-exercises/master/data/yield_lockymehra/epidem-exercises/master/data/yield_lockymehra/epidem-exercises/master/data/yield_lockymehra/epidem-exercises/master/data/yield_lockymehra/epidem-exercises/master/data/yield_lockymehra/epidem-exercises/master/data/yield_lockymehra/epidem-exercises/master/data/yield_lockymehra/epidem-exercises/master/data/yield_lockymehra/epidem-exercises/master/data/yield_lockymehra/epidem-exercises/master/data/yield_lockymehra/epidem-exercises/master/data/yield_lockymehra/epidem-exercises/master/data/yield_lockymehra/epidem-exercises/master/data/yield_lockymehra/epidem-exercises/master/data/yield_lockymehra/epidem-exercises/master/data/yield_lockymehra/epidem-exercises/master/data/yield_lockymehra/epidem-exercises/master/data/yield_lockymehra/epidem-exercises/master/data/yield_lockymehra/epidem-exercises/master/data/yield_lockymehra/epidem-exercises/master/data/yield_lockymehra/epidem-exercises/master/data/yield_lockymehra/epidem-exercises/master/data/yield_lockymehra/epidem-exercises/master/data/yield_lockymehra/epidem-exercises/master/data/yield_lockymehra/epidem-exercises/master/data/yield_lockymehra/epidem-exercises/master/data/yield_lockymehra/epidem-exercises/master/data/yield_lockymehra/epidem-exercises/master/data/yield_lockymehra/epidem-exercises/master/data/yield_lockymehra/epidem-exercises/master/data/yield_lockymehra/epidem-exercises/master/data/yield_lockymehra/epidem-exercises/master/data/yield_lockymehra/epidem-exercises/master/data/yield_lockymehra/epidem-exercises/master/data/yield_lockymehra/epidem-exercises/master/data/yield_lockymehra/epidem-exercises/master/data/yield_lockymehra/epidem-exercises/master/data/yield_lockymehra/epidem-exercises/master/data/yield_lockymehra/epidem-exercises/master/data/yield_lockymehra/epidem-exercises/master/data/yield_lockymehra/epidem-exercises/master/data/yield_
```

```
## Parsed with column specification:
## cols(
   WP = col_double(),
   SP = col_character(),
## BLK = col_double(),
   TRT = col_double(),
## FUNG = col_double(),
   DS = col_double(),
##
    YIELD = col_double()
## )
# print the data
## # A tibble: 24 x 7
##
       WP SP BLK
                     TRT FUNG
                                 DS YIELD
##
     <dbl> <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 101 A 1
                      1
                            0
                                 43
                                     205
## 2 101 B
                 1
                       1
                             1
                                  1
                                     399
## 3 102 A
                 1 2
                           1
                                  2
                                     426
## 4 102 B
                 1 2 0
                                 92
                                     102
## 5 103 A
                 1 3 1
                                     385
                 1 3 0 7
2 2 1 4
## 6 103 B
                                     355
## 7 201 A
                                     412
## 8 201 B
                 2 2 0 75
                                     224
## 9 202 A
                 2
                      3
                                     425
                            1
                                 3
## 10 202 B
                       3
                                 10
                                     352
## # ... with 14 more rows
# specify that FUNG, TRT, and BLK are factors
a$FUNG <- as.ordered(as.factor(a$FUNG))
a$TRT <- as.ordered(as.factor(a$TRT))
a$BLK <- as.ordered(as.factor(a$BLK))
```

4.3 Mixed model for response variable DS

TRT

2

6 30.32757 7e-04

```
## Linear mixed-effects model fit by REML
## Data: a
##
         AIC
                 BIC
                        logLik
    156.1691 164.1825 -69.08456
##
## Random effects:
## Formula: ~1 | BLK
          (Intercept)
## StdDev: 0.0009561632
##
## Formula: ~1 | TRT %in% BLK
## (Intercept) Residual
## StdDev: 0.001007113 7.918859
##
## Fixed effects: DS ~ TRT * FUNG
##
                   Value Std.Error DF t-value p-value
## (Intercept) 20.708333 1.616430 9 12.811150 0.0000
## TRT.L
               -9.457553 2.799740 6 -3.378012 0.0149
## TRT.Q
              -19.646949 2.799740 6 -7.017420 0.0004
## FUNG.L
              -26.457579 2.285978 9 -11.573857 0.0000
## TRT.L:FUNG.L 13.625000 3.959430 9
                                        3.441152 0.0074
## TRT.Q:FUNG.L 26.485944 3.959430 9
                                        6.689333 0.0001
## Correlation:
##
               (Intr) TRT.L TRT.Q FUNG.L TRT.L:
## TRT.L
               0
## TRT.Q
               0
## FUNG.L
               0
                     0
                           0
## TRT.L:FUNG.L O
                     0
                           0
## TRT.Q:FUNG.L O
                     0
                                        0
## Standardized Within-Group Residuals:
                          Q1
                                       Med
## -2.241484e+00 -9.471064e-02 -1.590814e-08 1.736361e-01 2.683467e+00
## Number of Observations: 24
## Number of Groups:
##
         BLK TRT %in% BLK
##
             4
# type 3 tests of fixed effects
anova(mm_1)
             numDF denDF F-value p-value
## (Intercept) 1 9 164.12557 <.0001
```

##

mm_1

fixed_model

```
## FUNG 1 9 133.95416 <.0001
## TRT:FUNG 2 9 28.29435 1e-04
```

```
# visualize interaction
emmip(mm_1, TRT ~ FUNG)
```



```
# we can use `gls()` function in `nlme` to fit the fixed effects model
fixed_model <- gls(DS ~ TRT * FUNG,</pre>
                              data = a)
# test the random effects in the model
anova(mm_1, fixed_model)
##
            Model df
                       AIC
                              BIC
                                    logLik
                                           Test
                                                   L.Ratio
## mm_1
               1 9 156.1691 164.1825 -69.08456
               2 7 152.1691 158.4017 -69.08456 1 vs 2 1.250038e-08
## fixed_model
```

```
# least square means
test(emmeans(mm_1, "TRT"))
```

p-value

```
## NOTE: Results may be misleading due to involvement in interactions
## TRT emmean SE df t.ratio p.value
## 1
        19.4 2.8 3 6.920 0.0062
         36.8 2.8 3 13.126 0.0010
## 3
         6.0 2.8 3 2.143 0.1215
## Results are averaged over the levels of: FUNG
## d.f. method: containment
test(emmeans(mm_1, "FUNG"))
## NOTE: Results may be misleading due to involvement in interactions
## FUNG emmean
               SE df t.ratio p.value
          39.4 2.29 3 17.243 0.0004
## 1
           2.0 2.29 3 0.875 0.4460
##
## Results are averaged over the levels of: TRT
## d.f. method: containment
# pairwise difference
test(emmeans(mm_1, pairwise ~ TRT), adjust = "none")
## NOTE: Results may be misleading due to involvement in interactions
## $emmeans
## TRT emmean SE df t.ratio p.value
## 1
       19.4 2.8 3 6.920 0.0062
## 2
        36.8 2.8 3 13.126 0.0010
## 3
         6.0 2.8 3 2.143 0.1215
##
## Results are averaged over the levels of: FUNG
## d.f. method: containment
##
## $contrasts
## contrast estimate
                      SE df t.ratio p.value
## 1 - 2 -17.4 3.96 6 -4.388 0.0046
## 1 - 3
               13.4 3.96 6 3.378 0.0149
## 2 - 3
               30.8 3.96 6 7.766 0.0002
##
## Results are averaged over the levels of: FUNG
```

```
test(emmeans(mm_1, pairwise ~ FUNG))
## NOTE: Results may be misleading due to involvement in interactions
## $emmeans
## FUNG emmean SE df t.ratio p.value
## 0
         39.4 2.29 3 17.243 0.0004
## 1
         2.0 2.29 3 0.875 0.4460
##
## Results are averaged over the levels of: TRT
## d.f. method: containment
##
## $contrasts
## contrast estimate SE df t.ratio p.value
## 0 - 1
           37.4 3.23 9 11.574 <.0001
##
## Results are averaged over the levels of: TRT
test(emmeans(mm_1, pairwise ~ TRT*FUNG), adjust = "none")
## $emmeans
## TRT FUNG emmean SE df t.ratio p.value
            37.25 3.96 3 9.408 0.0025
## 1
       0
            70.75 3.96 3 17.869 0.0004
## 2
       0
## 3 0
           10.25 3.96 3 2.589 0.0812
            1.50 3.96 3 0.379 0.7300
## 1
     1
## 2 1
             2.75 3.96 3 0.695 0.5373
             1.75 3.96 3 0.442 0.6884
## 3 1
##
## d.f. method: containment
##
## $contrasts
## contrast estimate SE df t.ratio p.value
## 1,0 - 2,0 -33.50 5.6 6 -5.983 0.0010
## 1,0 - 3,0
             27.00 5.6 6 4.822 0.0029
## 1,0 - 1,1 35.75 5.6 9 6.385 0.0001
## 1,0 - 2,1
             34.50 5.6 6 6.161 0.0008
## 1,0 - 3,1
               35.50 5.6 6 6.340 0.0007
## 2,0 - 3,0 60.50 5.6 6 10.805 <.0001
## 2,0 - 1,1 69.25 5.6 6 12.367 <.0001
             68.00 5.6 9 12.144 <.0001
## 2,0 - 2,1
## 2,0 - 3,1 69.00 5.6 6 12.323 <.0001
## 3,0 - 1,1 8.75 5.6 6 1.563 0.1692
## 3,0 - 2,1 7.50 5.6 6 1.339 0.2289
```

```
## 3,0 - 3,1 8.50 5.6 9 1.518 0.1633

## 1,1 - 2,1 -1.25 5.6 6 -0.223 0.8308

## 1,1 - 3,1 -0.25 5.6 6 -0.045 0.9658

## 2,1 - 3,1 1.00 5.6 6 0.179 0.8641
```

4.3.1 Diagnostic plots

```
# pearson residuals vs. fitted values
plot(mm_1, resid(., type="pearson") ~ fitted(.), abline = 0)
```



```
# standardaized residuals vs. fitted values
plot(mm_1, resid(., scaled=TRUE) ~ fitted(.), abline = 0)
```



```
# qq plot
qqnorm(residuals(mm_1))
qqline(residuals(mm_1))
```

Normal Q-Q Plot


```
#observed vs. fitted values
plot(mm_1, DS ~ fitted(.), abline = c(0,1))
```


4.4 Mixed model for response variable YIELD

```
# fit the model
mm_2 <- lme(YIELD ~ TRT*FUNG, # fixed effects</pre>
            data = a,
            random = ~1|BLK/TRT) # read mm_2 as mixed model 2
# summary output
summary(mm_2)
## Linear mixed-effects model fit by REML
## Data: a
##
          AIC
                   BIC
                         logLik
##
     209.9214 217.9348 -95.9607
##
## Random effects:
## Formula: ~1 | BLK
           (Intercept)
##
```

```
## StdDev: 11.99815
##
## Formula: ~1 | TRT %in% BLK
   (Intercept) Residual
## StdDev: 0.001914579 33.61779
## Fixed effects: YIELD ~ TRT * FUNG
              Value Std.Error DF t-value p-value
## (Intercept) 335.1667 9.114752 9 36.77189 0.0000
## TRT.L 21.3016 11.885682 6 1.79221 0.1233
## TRT.Q
             54.5522 11.885682 6 4.58974 0.0037
## FUNG.L
             93.9274 9.704619 9 9.67862 0.0000
## TRT.L:FUNG.L -31.8750 16.808893 9 -1.89632 0.0904
## TRT.Q:FUNG.L -75.2720 16.808893 9 -4.47811 0.0015
## Correlation:
              (Intr) TRT.L TRT.Q FUNG.L TRT.L:
##
## TRT.L
## TRT.Q
             0
                    0
## FUNG.L
             0
                    0
## TRT.L:FUNG.L O
                    0
                          0
                               0
## TRT.Q:FUNG.L O
                    0
                          0
                               0
##
## Standardized Within-Group Residuals:
## Min Q1 Med
                                           QЗ
                                                     Max
## -2.04399017 -0.33265713 0.07191314 0.49972251 1.20545632
##
## Number of Observations: 24
## Number of Groups:
##
          BLK TRT %in% BLK
##
            4
# type 3 tests of fixed effects
anova(mm_2)
            numDF denDF F-value p-value
## (Intercept) 1 9 1352.1720 <.0001
## TRT
                 2
                      6 12.1389 0.0078
## FUNG
                      9 93.6757 <.0001
                 1
## TRT:FUNG
               2
                      9
                         11.8247 0.0030
# visualize interaction
```

emmip(mm_2, TRT ~ FUNG)


```
# to do anova for random effects, we need to compare mm_1 with a model that only has fixed effect
# we can use `gls()` function in `nlme` to fit the fixed effects model
fixed_model_YIELD <- gls(YIELD ~ TRT * FUNG,</pre>
                                     data = a)
# test the random effects in the model
anova(mm_2, fixed_model_YIELD)
##
                     Model df
                                   AIC
                                            BIC
                                                   logLik
                                                            Test
                                                                   L.Ratio
                         1 9 209.9214 217.9348 -95.96070
## mm 2
## fixed_model_YIELD
                         2 7 206.3763 212.6089 -96.18815 1 vs 2 0.4548877
##
                     p-value
## mm_2
## fixed_model_YIELD 0.7966
# least square means
test(emmeans(mm_2, "TRT"))
## NOTE: Results may be misleading due to involvement in interactions
## TRT emmean
                SE df t.ratio p.value
           342 13.3 3 25.716 0.0001
## 1
```

291 13.3 3 21.829 0.0002

2

```
## 3
          372 13.3 3 27.978 0.0001
## Results are averaged over the levels of: FUNG
## d.f. method: containment
test(emmeans(mm_2, "FUNG"))
## NOTE: Results may be misleading due to involvement in interactions
  FUNG emmean
                 SE df t.ratio p.value
##
           269 11.4 3 23.556 0.0002
           402 11.4 3 35.198 0.0001
## 1
## Results are averaged over the levels of: TRT
## d.f. method: containment
# pairwise difference
test(emmeans(mm_2, pairwise ~ TRT), adjust = "none")
## NOTE: Results may be misleading due to involvement in interactions
## $emmeans
## TRT emmean
              SE df t.ratio p.value
## 1
          342 13.3 3 25.716 0.0001
## 2
          291 13.3 3 21.829 0.0002
## 3
          372 13.3 3 27.978 0.0001
## Results are averaged over the levels of: FUNG
## d.f. method: containment
##
## $contrasts
## contrast estimate
                     SE df t.ratio p.value
## 1 - 2
              51.8 16.8 6 3.079 0.0217
## 1 - 3
               -30.1 16.8 6 -1.792 0.1233
## 2 - 3
               -81.9 16.8 6 -4.871 0.0028
##
## Results are averaged over the levels of: FUNG
test(emmeans(mm_2, pairwise ~ FUNG))
```

NOTE: Results may be misleading due to involvement in interactions

```
## $emmeans
## FUNG emmean
              SE df t.ratio p.value
        269 11.4 3 23.556 0.0002
          402 11.4 3 35.198 0.0001
## 1
##
## Results are averaged over the levels of: TRT
## d.f. method: containment
##
## $contrasts
## contrast estimate SE df t.ratio p.value
## 0 - 1 -133 13.7 9 -9.679 <.0001
##
## Results are averaged over the levels of: TRT
test(emmeans(mm_2, pairwise ~ TRT*FUNG), adjust = "none")
## $emmeans
## TRT FUNG emmean SE df t.ratio p.value
## 1
       0
            282 17.8 3 15.787 0.0006
## 2 0
             181 17.8 3 10.128 0.0021
             344 17.8 3 19.261 0.0003
## 3 0
## 1
             403 17.8 3 22.580 0.0002
      1
## 2 1
             400 17.8 3 22.440 0.0002
## 3 1
              401 17.8 3 22.482 0.0002
##
## d.f. method: containment
##
## $contrasts
## contrast estimate
                     SE df t.ratio p.value
   1,0 - 2,0 101.00 23.8 6 4.249 0.0054
## 1,0 - 3,0 -62.00 23.8 6 -2.608 0.0402
## 1,0 - 1,1 -121.25 23.8 9 -5.101 0.0006
## 1,0 - 2,1 -118.75 23.8 6 -4.996 0.0025
   1,0 - 3,1 -119.50 23.8 6 -5.027 0.0024
## 2,0 - 3,0 -163.00 23.8 6 -6.857 0.0005
## 2,0 - 1,1 -222.25 23.8 6 -9.349 0.0001
## 2,0 - 2,1 -219.75 23.8 9 -9.244 <.0001
## 2,0 - 3,1 -220.50 23.8 6 -9.276 0.0001
## 3,0 - 1,1 -59.25 23.8 6 -2.492 0.0470
## 3,0 - 2,1 -56.75 23.8 6 -2.387 0.0542
## 3,0 - 3,1 -57.50 23.8 9 -2.419 0.0387
## 1,1 - 2,1 2.50 23.8 6 0.105 0.9197
## 1,1 - 3,1 1.75 23.8 6 0.074 0.9437
## 2,1 - 3,1 -0.75 23.8 6 -0.032 0.9759
```

4.4.1 Diagnostic plots

```
# pearson residuals vs. fitted values
plot(mm_2, resid(., type="pearson") ~ fitted(.), abline = 0)
```



```
# standardaized residuals vs. fitted values
plot(mm_2, resid(., scaled=TRUE) ~ fitted(.), abline = 0)
```



```
# qq plot
qqnorm(residuals(mm_2))
qqline(residuals(mm_2))
```

Normal Q-Q Plot


```
#observed vs. fitted values
plot(mm_2, YIELD ~ fitted(.), abline = c(0,1))
```


4.5 Linear regression between YIELD and DS

```
# fit `lm` model
lm_1 \leftarrow lm(YIELD \sim DS, data = a)
summary(lm_1)
##
## lm(formula = YIELD ~ DS, data = a)
##
## Residuals:
##
      Min
                1Q Median
                                ЗQ
                                       Max
## -61.196 -18.565 0.856 22.676 56.812
## Coefficients:
              Estimate Std. Error t value Pr(>|t|)
## (Intercept) 399.2384 8.0711 49.47 < 2e-16 ***
## DS
                            0.2399 -12.90 9.81e-12 ***
                -3.0940
```

```
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 31.17 on 22 degrees of freedom
## Multiple R-squared: 0.8832, Adjusted R-squared: 0.8779
## F-statistic: 166.4 on 1 and 22 DF, p-value: 9.809e-12
anova(lm_1)
## Analysis of Variance Table
##
## Response: YIELD
            Df Sum Sq Mean Sq F value
## DS
             1 161600 161600 166.38 9.809e-12 ***
## Residuals 22 21368
                         971
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
# diagnostic plots
residplot(lm_1)
```

4.5.1 Linear regression between RY1 and DS

```
b <- a %>%
   mutate(RY1 = YIELD/399.23843)
# fit linear regression model
lm_2 \leftarrow lm(RY1 \sim DS, data = b)
summary(lm_2)
##
## lm(formula = RY1 ~ DS, data = b)
##
## Residuals:
        Min
                  1Q
                       Median
                                    3Q
                                            Max
## -0.153282 -0.046502 0.002143 0.056798 0.142301
## Coefficients:
               Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.0000000 0.0202162 49.47 < 2e-16 ***
## DS
```

```
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 0.07806 on 22 degrees of freedom
## Multiple R-squared: 0.8832, Adjusted R-squared: 0.8779
## F-statistic: 166.4 on 1 and 22 DF, p-value: 9.809e-12
anova(lm_2)
## Analysis of Variance Table
##
## Response: RY1
##
            Df Sum Sq Mean Sq F value
                                          Pr(>F)
## DS
             1 1.01385 1.01385 166.38 9.809e-12 ***
## Residuals 22 0.13406 0.00609
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
# diagnostic plots
residplot(lm_2)
```

4.5.2 Transform dataset a

```
a_yield <- a %>%
    dplyr::select(BLK, TRT, YIELD) %>%
    arrange(BLK, TRT, YIELD) %>%
    group_by(BLK, TRT) %>%
    summarise(RY2 = YIELD[1]/YIELD[2]) %>%
    ungroup()
a_ds <- a %>%
    dplyr::select(BLK, TRT, DS) %>%
    arrange(BLK, TRT, DS) %>%
   group_by(BLK, TRT) %>%
    summarise(CDS = DS[2]) %>%
    ungroup()
a_new <- a_yield %>%
    inner_join(a_ds) %>%
   ungroup() %>%
   mutate(BLK = parse_factor(as.character(BLK)),
                 TRT = parse_factor(as.character(TRT)))
```

```
## Joining, by = c("BLK", "TRT")
# print the data
a_new
## # A tibble: 12 x 4
     BLK TRT
               RY2
                      CDS
     <fct> <fct> <dbl> <dbl>
## 1 1
        1
              0.514
                       43
## 2 1
         2
              0.239
                       92
## 3 1
        3
             0.922
                       7
         1 0.88
## 4 2
                       27
## 5 2 2 0.544
                      75
       3
## 6 2
             0.828
                      10
## 7 3
         1 0.721
                      47
## 8 3
        2 0.565
## 9 3 3 0.866
## 10 4 1 0.691
## 11 4 2 0.472
                     12
                       32
                       53
## 12 4 3 0.815
                     12
```

4.6 Mixed model for RY2

```
# fit the model
mm_3 <- lme(RY2 ~ TRT, # fixed effects
           data = a_new,
           random = ~1 | BLK) # read mm_3 as mixed model 3
# summary output
summary(mm_3)
## Linear mixed-effects model fit by REML
## Data: a_new
        AIC
                 BIC logLik
##
     2.04077 3.026893 3.979615
## Random effects:
## Formula: ~1 | BLK
          (Intercept) Residual
## StdDev: 0.05297273 0.1134963
##
## Fixed effects: RY2 ~ TRT
```

```
##
                   Value Std.Error DF t-value p-value
## (Intercept) 0.7016501 0.06262490 6 11.204012 0.0000
## TRT2 -0.2467228 0.08025398 6 -3.074274 0.0218
              0.1561339 0.08025398 6 1.945497 0.0997
## TRT3
## Correlation:
##
      (Intr) TRT2
## TRT2 -0.641
## TRT3 -0.641 0.500
## Standardized Within-Group Residuals:
                       Q1
                                  Med
## -1.50508335 -0.38516867 -0.01698779 0.58195830 1.29565814
## Number of Observations: 12
## Number of Groups: 4
# type 3 tests of fixed effects
anova(mm_3)
##
              numDF denDF F-value p-value
## (Intercept)
                1
                        6 254.00333 <.0001
## TRT
                  2
                        6 12.81141 0.0068
# to do anova for random effects, we need to compare mm_1 with a model that only has f
# we can use `gls()` function in `nlme` to fit the fixed effects model
fixed_model_RY2 <- gls(RY2 ~ TRT,</pre>
                                    data = a_new)
# test the random effects in the model
anova(mm_3, fixed_model_RY2)
##
                  Model df
                                AIC
                                          BIC
                                              logLik
                                                        Test L.Ratio
## mm_3
                      1 5 2.0407705 3.026893 3.979615
                      2 4 0.3057644 1.094663 3.847118 1 vs 2 0.2649939
## fixed model RY2
##
                  p-value
## mm 3
## fixed_model_RY2 0.6067
# pairwise difference
test(emmeans(mm_3, pairwise ~ TRT), adjust = "none")
## $emmeans
## TRT emmean
                  SE df t.ratio p.value
## 1 0.702 0.0626 3 11.204 0.0015
```

```
## 2
        0.455 0.0626 3 7.264 0.0054
## 3
       0.858 0.0626 3 13.697 0.0008
##
## d.f. method: containment
##
## $contrasts
## contrast estimate
                       SE df t.ratio p.value
## 1 - 2 0.247 0.0803 6 3.074 0.0218
## 1 - 3 -0.156 0.0803 6 -1.945 0.0997
## 2 - 3
            -0.403 0.0803 6 -5.020 0.0024
# diagnostic plots
residplot(mm_3)
```

4.7 Linear regression between RY2 and CDS

```
# fit linear regression model
lm_3 \leftarrow lm(RY2 \sim CDS, data = a_new)
summary(lm_3)
##
## lm(formula = RY2 ~ CDS, data = a_new)
##
## Residuals:
                1Q Median
                                 30
       Min
                                        Max
## -0.13338 -0.05085 -0.01090 0.06530 0.12439
## Coefficients:
               Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.9386111 0.0467991 20.056 2.09e-09 ***
## CDS
             ## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 0.09061 on 10 degrees of freedom
## Multiple R-squared: 0.8258, Adjusted R-squared: 0.8083
## F-statistic: 47.39 on 1 and 10 DF, p-value: 4.275e-05
anova(lm_3)
```

Analysis of Variance Table

Appendix A

SAS code

A.1 Exercise 4

Copy and paste the below code into a SAS editor, and hit run to see the output.

```
DATA A;
INPUT PLOT AN T BLK TRT PCTSEV;
Y=PCTSEV/100;
YSTAR=LOG(Y/(1-Y));
WT=Y*(1-Y);
DROP AN;
CARDS;
101 1 0
        1
            2
               9
102 1
      0 1
            1
               6
103 1
      0 1
               2
     0 2
               7
201 1
202 1 0 2 3
               5
      0 2 1
203 1
301 1
      0 3 3
               4
      0 3
302 1
               2
303 1
      0 3 1
               6
401 1
402 1
      0 4
            2
               1
403 1
      0
            3
101 2 7 1
102 2 7 1 1
               6
103 2
     7 1 3
               10
201 2 7 2 2
               2
202 2 7 2 3
               5
203 2 7 2 1
               3
```

301	2	7	3	3	11
302	2	7	3	2	6
		' -			
303	2	7 7 7	3	1	4
401	2	7	4	1	8
402	2	7	4	2	3
403	2	7	4	3	6
	3		1	2	8
101		14			
102	3	14	1	1	20
103	3	14	1	3	15
201	3	14	2	2	13
202	3	14	2	3	12
203	3	14	2	1	14
301	3	14	3	3	15
302	3	14	3	2	8
303	3	14	3	1	25
401	3	14	4	1	17
402	3	14	4	2	1/
					14
403	3	14	4	3	49
101	4	21	1	2	24
102	4	21	1	1	38
103	4	21	1	3	61
201	4	21	2	2	31
202	4	21	2	3	42
203	4	21	2	1	79
301	4	21	3	3	48
302	4	21	3	2	23
303	4	21	3	1	86
			4	1	
401	4	21			52
402	4	21	4	2	45
403	4	21	4	3	56
101	5	28	1	2	28
102	5	28	1	1	89
103	5	28	1	3	44
201	5	28	2	2	41
202	5	28	2	3	49
203	5	28	2	1	79
301	5	28	3	3	45
302	5	28	3	2	47
303	5	28	3	1	63
401	5	28	4	1	94
402	5	28	4	2	52
403	5	28	4	3	64
101	6	35	1	2	36
102	6	35	1	1	77
				3	
103	6	35	1		88
201	6	35	2	2	42

RUN;

```
202 6 35 2 3 69
203 6 35 2 1 71
301 6 35 3 3 43
302 6 35 3 2 39
303 6 35 3 1 84
401 6 35 4 1 97
402 6 35 4 2 47
403 6 35 4 3 76
PROC MIXED DATA=A COVTEST;
CLASS BLK TRT;
MODEL YSTAR=TRT|T/ SOLUTION DDFM=bw RESIDUAL;
RANDOM BLK;
WEIGHT WT;
REPEATED/SUBJECT=BLK*TRT TYPE=AR(1) R RCORR;
quit;
PROC MIXED DATA=A;
CLASS BLK TRT;
MODEL YSTAR=TRT TRT*T/NOINT SOLUTION DDFM=bw OUTPM=B;
RANDOM BLK;
WEIGHT WT;
REPEATED/SUBJECT=BLK*TRT TYPE=AR(1);
LSMEANS TRT/DIFF AT T=0;
LSMEANS TRT/DIFF AT T=7;
LSMEANS TRT/DIFF AT T=14;
LSMEANS TRT/DIFF AT T=21;
LSMEANS TRT/DIFF AT T=28;
LSMEANS TRT/DIFF AT T=35;
ESTIMATE 'TRT1 S VS TRT2 S' TRT*T 1 -1 0;
ESTIMATE 'TRT1 S VS TRT3 S' TRT*T 1 0 -1;
ESTIMATE 'TRT2 S VS TRT3 S' TRT*T 0 1 -1;
quit;
PROC PRINT DATA=B;
PROC REG DATA=B;
MODEL YSTAR=PRED;
```

A.2 Exercise 9.4

Copy and paste the below code into a SAS editor, and hit run to see the output.

```
DATA A;
INPUT I YI;
EAST=1;
NORTH=I;
CARDS;
    41
2
    60
3
    81
4
    22
    8
6
    20
7
    28
8
    2
9
    0
10 2
11 2
12 8
13 0
14 43
15 61
16 50
PROC VARIOGRAM PLOTS=MORAN OUTVAR=B;
COMPUTE LAGD=1 MAXLAG=11 AUTOCORR(ASSUM=RANDOM);
COORDINATES XC=EAST YC=NORTH;
VAR YI;
PROC PRINT;
run;
PROC VARIOGRAM DATA=A PLOTS=FIT;
COMPUTE LAGD=1 MAXLAG=11 CL ROBUST;
COORDINATES XC=EAST YC=NORTH;
MODEL FORM=AUTO(MLIST=(SPH EXP GAU) NEST=1);
VAR YI;
RUN;
```

A.3 Exercise 9.5

Copy and paste the below code into a SAS editor, and hit run to see the output.

```
DATA A;
INPUT COL ROW YI;
CARDS;
        2
2
    1
        2
3
    1
        0
4
        3
5
6
        1
7
        1
8
        5
9
    1
        22
10
   1
        13
11
   1
        14
12
   1
        6
1
    2
        2
2
    2
        0
3
    2
        0
    2
4
        3
5
    2
        0
6
    2
        2
7
    2
        7
    2
8
        54
9
    2
        57
   2
10
        49
    2
        42
11
    2
12
    3
1
        3
2
    3
        1
3
    3
        0
4
    3
        1
5
    3
        0
        9
7
    3
        6
8
    3
        62
9
    3
        94
10
   3
        75
   3
        7
11
12 3
        2
    4
        33
```

8 7 7 9 7 12 10 7

11 7

12 7

13

11

2

- 10 8
- 11 8
- 12 8

- 10 9
- 11 9
- 12 9
- 10 11
- 10 24
- 10 78
- 10 100
- 10 99
- 10 68
- 10 52
- 10 45 10 74
- 10 10 98
- 11 10 99
- 12 10
- 11 7
- 11 29
- 11 79 11 97
- 11 92
- 11 95
- 11 100
- 11 89
- 11 53
- 10 11 46

```
11 11
       50
12
   11
       16
   12 7
1
2
   12 22
3
   12 31
4
   12 50
5
   12 56
6
   12 79
7
   12 100
8
   12 61
9
   12 53
10 12 36
11 12 33
12 12 2
PROC VARIOGRAM DATA=A PLOTS=MORAN OUTVAR=B;
COMPUTE LAGD=1 MAXLAG=12 AUTOCORR(ASSUM=RANDOM);
COORDINATES XC=COL YC=ROW;
VAR YI;
PROC PRINT;
PROC VARIOGRAM DATA=A PLOTS=FIT;
COMPUTE LAGD=1 MAXLAG=12 CL ROBUST;
COORDINATES XC=COL YC=ROW;
MODEL FORM=AUTO(MLIST=(SPH EXP GAU) NEST=1);
VAR YI;
RUN;
```

A.4 Yield loss

Copy and paste the below code into a SAS editor, and hit run to see the output.

```
DATA A;
INPUT WP SP $ BLK TRT FUNG DS YIELD;
CARDS;
101 A
      1
          1
             0
                43 205
101 B 1 1
            1
                1
                    399
          2
                    426
102 A
     1
             1
                2
     1 2 0
102 B
                92 102
103 A 1 3 1
                2
                    385
103 B 1 3 0
                7
                    355
```

```
201 A 2 2 1 4 412
201 B 2 2 0 75 224
202 A 2 3 1 3 425
202 B 2 3 0 10 352
203 A 2 1 0 27 330
203 B 2 1 1 2
                   375
301 A 3 1 1 2
                   420
301 B 3 1 0 47 303
302 A 3 3 0 12 342
302 B 3 3 1 1
                   395
303 A 3 2 0 63 222
303 B 3 2 1 3 393
401 A 4 3 0 12 326
401 B 4 3 1 1
                   400
402 A 4 1 0 32 289
402 B 4 1 1 1 418
403 A 4 2 1
                    371
403 B 4 2 0 53 175
PROC MIXED COVTEST METHOD=TYPE3;
CLASS BLK TRT FUNG;
MODEL DS=TRT|FUNG/RESIDUAL;
RANDOM BLK BLK*TRT;
LSMEANS TRT|FUNG/DIFF;
run;
PROC MIXED COVTEST METHOD=TYPE3;
CLASS BLK TRT FUNG;
MODEL YIELD=TRT|FUNG/RESIDUAL;
RANDOM BLK BLK*TRT;
LSMEANS TRT|FUNG/DIFF;
PROC REG;
MODEL YIELD=DS;
DATA B;
SET A;
RY1=YIELD/399.23843;
PROC REG;
MODEL RY1=DS;
PROC SORT DATA=A; BY BLK TRT FUNG;
PROC TRANSPOSE DATA=A OUT=T1A; BY BLK TRT;
VAR YIELD;
```

```
run;
DATA T2A;
SET T1A;
RY2=COL1/COL2;
DROP _NAME_ COL1 COL2;
run;
PROC TRANSPOSE DATA=A OUT=T1B; BY BLK TRT;
VAR DS;
run;
DATA T2B;
SET T1B;
CDS=COL1;
DROP _NAME_ COL1 COL2;
run;
DATA T3;
MERGE T2A T2B;
BY BLK TRT;
PROC PRINT;
run;
PROC MIXED COVTEST;
CLASS BLK TRT;
MODEL RY2=TRT/RESIDUAL;
RANDOM BLK;
LSMEANS TRT/DIFF;
PROC REG;
MODEL RY2=CDS;
RUN;
```