



# Supervised Machine Learning?

prediction, overfitting, cross validation, hyperparameter tuning

#### Kenneth Chu

Enquêtes spéciales, transport, technologie et assurance de la qualité, DMEE Special Surveys, Transportation, Technology and Quality Assurance, BSMD

October 4, 2017

### What is Supervised Machine Learning?



Icon made by Linear Household Elements from www.flaticon.com

How to build such a **prediction machine**?

"Training" it by "fitting" it to observed (past) data:

$$(x_1, y_1)$$
 $(x_2, y_2)$ 
 $\vdots$ 
 $(x_n, y_n)$ 

Want:
Error(new data)
to be "small"

#### Generic Supervised Machine Learning workflow

## Goal: To produce a prediction machine with small Error(new data)

- 1. Visualize data. Exploratory Data Analysis.
- Randomly split available data into training, validation, and testing subsets.
- 3. Preprocess training + validation data. (Standardize, E&I, transform, etc.)
- 4. Choose model. Train model on training set.
  - Hyperparameter tuning if applicable
  - Evaluate/compare models<sup>†</sup> based on Error(validation set).
  - *k*-fold cross validation if deemed appropriate
  - Retrain model on training + validation data, using chosen hyperparameter values → final "trained machine"
- 5. Evaluate final trained machine based on Error(testing set).

 $<sup>\</sup>uparrow$ . more precisely, the constituent data-generation mechanisms in the chosen model

#### What is training?

Want : a machine to make prediction  $\widehat{Y}$  of unknown Y based on observed X

Training data:  $(x_1, y_1), (x_2, y_2), (x_3, y_3), \dots, (x_n, y_n)$ 

**Assume:** True underlying *random* data-generation mechanism belongs to a chosen class (the **model**) of similar mechanisms.



Icon made by Linear Household Elements from www.flaticon.com

**Training:** Find the member in model that "best" fits training data.

Need to solve the associated **optimization** problem.

(Choose **cost function** defined on model. Minimize cost function.)



#### Sounds familiar? Recall Simple Linear Regression



Cost function : Root Mean Squared Error  $f(\beta_0, \beta_1) = \sqrt{\frac{1}{n} \sum_{i=1}^{n} (y_i - \beta_0 - \beta_1 x_i)^2}$ 

Model 
$$\begin{pmatrix} \text{class of admissible underlying } \\ \text{data-generation mechanisms} \end{pmatrix}$$
:  $Y = \beta_0 + \beta_1 x + \text{noise}$   $E[Y | x] = \beta_0 + \beta_1 x$ , where  $(\beta_0, \beta_1) \in \mathbb{R}^2 =: \Theta$ .

Model is parametrized by  $\Theta := \mathbb{R}^2$ . Model is 2-dimensional.

$$\mathsf{Model} \, \sim \, \left\{ \begin{matrix} \mathsf{all \, straight} \\ \mathsf{lines \, in \,} \mathbb{R}^2 \end{matrix} \right\} \, \sim \, \left\{ \begin{matrix} \mathsf{all \, affine} \\ \mathsf{functions \, of \,} x \end{matrix} \right\}$$

Best fit : Least Squares (trained prediction machine)



#### But, not every phenomenon is linear ...



Linear (all affine functions in x):

$$Y = \beta_0 + \beta_1 x + \text{noise}$$
  
 $E[Y | x] = \beta_0 + \beta_1 x$ 

where 
$$(\beta_0, \beta_1) \in \mathbb{R}^2 =: \Theta$$
.

Quadratic (all quadratic functions in *x*) :

$$Y = \beta_0 + \beta_1 x + \beta_2 x^2 + \text{noise}$$

$$E[Y | X] = \beta_0 + \beta_1 x + \beta_2 x^2$$
where  $(\beta_0, \beta_1, \beta_2) \in \mathbb{R}^3 =: \Theta$ .

Model needs to be sufficiently complex in order to have a chance to well approximate the true underlying data-generation mechanism.

Insufficient model complexity  $\sim$  underfitting

#### **Common Supervised Machine Learning Techniques**

- logistic regression
- nearest neighbour (an imputation technique)
- decision trees (used to form homogeneous response groups)
- random forest
- support vector machines
- artificial neural networks

Many supervised machine learning techniques have high model complexity, or a high-dimensional parameter space.

i.e., #(observations) ≯ #(model parameters)

**Warning**: They may be *too* complex!

Excessive model complexity  $\sim$  **overfitting** 

#### What is overfitting?



$$\mathsf{Model} \sim \left\{ \begin{array}{l} \mathsf{all} & \mathsf{affine} & \mathsf{polynomial} \\ \mathsf{functions} & \mathsf{of} & x \end{array} \right\}$$

$$\mathsf{Cost} & \mathsf{function} : \mathsf{RMSE}$$

$$RMSE \left( \begin{array}{c} new \\ data \end{array} \right) \, > \, 0 \, = \, RMSE \left( \begin{array}{c} training \\ data \end{array} \right)$$

Generally, overfitting leads to

$$RMSE \left( \begin{array}{c} new \\ data \end{array} \right) \gg RMSE \left( \begin{array}{c} training \\ data \end{array} \right)$$

- Overfitted machines give poor predictions on new values of *x*.
- You won't even know it is happening (remember : *Y* will be unknown).

#### Validation: mimicking model evaluation on new data ...

- Randomly divide non-testing data set into training and validation subsets.
- Train on the training subset.
- Evaluate the trained machine on the validation subset.





#### k-fold Cross Validation

- Results of validation may be unstable.
   Put another way, one wonders how "representative" Error(validation data) is based on just one way of splitting the non-testing data set into training and validation subsets.
- To partially mitigate for this, "repeat" validation *k* times.
- More precisely :
  - Randomly divide the non-testing data set into *k* "folds" (subsets) of roughly equal sizes.
  - Perform validation k times, each time using a different fold as validation subset, and the rest of the k-1 folds as training subset.

Error 
$$\binom{k\text{-fold cross}}{\text{validation}} := \binom{\text{average of the } k \text{ resulting }}{\text{validation errors}}$$

#### What is hyperparameter tuning?

- For many models, there are no well established optimization methods that can optimize on the full set of model parameters.
- For example, the cost function of Ridge Regression can be written as :

$$C(\beta_0, \beta_1, \ldots, \beta_{p-1}, \lambda) := \frac{1}{n} \cdot \sum_{i=1}^{n} \left( y_i - \beta_0 - \sum_{k=1}^{p-1} x_{ik} \beta_k \right)^2 + \lambda \cdot \sum_{k=1}^{p-1} |\beta_i|^2,$$

where  $(\beta_0, \beta_1, \dots, \beta_{p-1}, \lambda) \in \mathbb{R}^p \times [0, \infty) =: \Theta$ .

 $\bullet\;$  For each fixed  $\lambda\in[0,\infty),$  convex programming (on the primal problem) yields :

$$\widehat{\beta}(\lambda) = \underset{\beta \in \mathbb{R}^p}{\operatorname{argmin}} C(\beta, \lambda)$$

- But, we really want :  $\underset{(\beta,\lambda) \in \mathbb{R}^p \times [0,\infty)}{\operatorname{argmin}} C(\beta,\lambda)$
- Here, λ is the hyperparameter.
   To optimize on λ, one can perform a "grid search" (or other similar approaches).
   This is hyperparameter tuning.



#### What is hyperparameter tuning?



|      | RMSE     | RMSE       |
|------|----------|------------|
| λ    | training | validation |
| 0    | 0.000    | 1.217      |
| 1e-6 | 0.500    | 0.696      |
| 1e-5 | 0.501    | 0.696      |
| 1e-4 | 0.501    | 0.694      |
| 1e-3 | 0.503    | 0.689      |
| 0.01 | 0.509    | 0.682      |
| 0.1  | 0.537    | 0.663      |
| 0.2  | 0.570    | 0.648      |
| 0.3  | 0.601    | 0.635      |
| 0.4  | 0.630    | 0.629      |
| 0.5  | 0.655    | 0.628      |
| 0.55 | 0.667    | 0.628      |
| 0.6  | 0.677    | 0.628      |
| 0.7  | 0.698    | 0.631      |
| 0.8  | 0.716    | 0.634      |
| 0.9  | 0.733    | 0.638      |
| 1.0  | 0.750    | 0.643      |

#### Generic Supervised Machine Learning workflow

### Goal: To produce a prediction machine with small Error(new data)

- 1. Visualize data. Exploratory Data Analysis.
- Randomly split available data into training, validation, and testing subsets.
- 3. Preprocess training + validation data. (Standardize, E&I, transform, etc.)
- 4. Choose model. Train model on training set.
  - Hyperparameter tuning if applicable
  - Evaluate/compare models<sup>†</sup> based on Error(validation set).
  - *k*-fold cross validation if deemed appropriate
  - Retrain model on training + validation data, using chosen hyperparameter values → final "trained machine"
- 5. Evaluate final trained machine based on Error(testing set).

 $<sup>\</sup>uparrow$ . more precisely, the constituent data-generation mechanisms in the chosen model

# Merci!!

#### Kenneth Chu

kenneth.chu@canada.ca

Enquêtes spéciales, transport, technologie et assurance de la qualité, DMEE Special Surveys, Transportation, Technology and Quality Assurance, BSMD



#### Discussion

- Possible ML techniques to showcase in demo pipelines :
  - Classification: support vector machines, decision trees, random forests, nearest neighbour, neural networks
  - Regression: support vector machines, random forests, regularized regression
  - Unsupervised learning: clustering, PCA, dimension reduction, etc.
- Contents of demo pipelines :
  - Master program (philosophy : one "click" makes all)
  - README file: how to run the master program, refer user to blog post on Confluence page for associated blog.
  - Documentation in code
  - $\bullet \quad \text{Optional}: \text{PDF version of associated blog post to explain the ML technique of the demo pipeline} \\$
- Outreach activities
  - Publish blog posts on Confluence page about demo pipelines.
  - Share demo pipelines as ZIP files through the associated blog posts.
  - Give branch-level seminars probably a series of two back-to-back seminars
  - Optional: use Jupyter Notebook to give a live demo during seminars
  - Optional: share demo pipelines through StatCan's (Team Foundation Service) Git repository on Network A.
- Proposed timeframe (subject to adjustment) :
  - Demo pipeline (choose ML technique, learn the technique, choose language, build demo pipeline):
  - Blog posts :
  - Seminars : Early February, 2018
- Keywords:
  - bagging, boosting, ensemble methods, deep learning
  - sensitivity, specificity, precision, recall, confusion matrix, ROC Curve