ECE447 - Homework 4

Chase Lotito - SIUC Undergraduate

A. Thought Experiment

Three orthogonal and degenerate energy valleys in bulk silicon have one electron each. The electric field is applied along the y-direction to which all three electrons respond giving rise to a current I_1 . Now, some amount of tensile strain is applied in the material causing all three electrons located in the transverse valleys and producing a current flow of I_2 . Given that $I \propto 1/m^*$ and $m_l^* \propto 4m_t^*$ what will be the ratio of I_2/I_1 ?

Solution

For the first current I_1 , in the presence of the electric field $\vec{E} = \hat{y}E$, we will get the k_y electron along the semimajor axis of its energy valley, and the k_x and k_z electrons will move along the semiminor axis of their respective energy valleys. This tells us to use m_l^* for k_y , and m_t^* for k_x and k_z . We can then find the average effective mass m_1^* :

$$m_1^* = \frac{1}{3}(m_l^* + 2m_t^*)$$
$$= \frac{1}{3}(4m_t^* + 2m_t^*)$$
$$= 2m_t^*$$

Then we can do the same, finding the average effective mass, for when all of the electrons are located in transverse valleys.

$$m_2^* = \frac{1}{3}(3m_t^*) = m_t^*$$

Using the inverse relationship between current and effective mass:

$$\boxed{\frac{I_2}{I_1} \propto \frac{1/m_t^*}{1/2m_t^*} = 2}$$

So, from adding tensile strain and forcing our electrons into their transverse valleys, we can effectively **double** the current.

Problem 3.12

Plot
$$E_g = E_g(0) - \frac{\alpha T^2}{(\beta + T)}$$

Solution

I implemented the following plot for $E_{\sigma}(T)$ using python's library matplotlib.pyplot.

```
import matplotlib.pyplot as plt
import numpy as np
import math
# IMPORTANT CONSTANTS
Eg0 = 1.17  # Si bandgap at T=0K [eV] alpha = 4.73e-4  # [eV/K]
beta = 636
                   # [K]
# define Eg(T) function
def bandgapTemp(T):
    Calculate Si bandgap energy for a given temperature in K.
    Parameters:
    T = temp in K.
    Eg = Eg0 - ( (alpha * T**2) / (beta + T) )
    return Eg
## Plotting ##
# Set up x-vals and input into Eg(T)
x = np.linspace(0, 600, 6000)
y = bandgapTemp(x)
markers_on = [3000]
# Create plot of Eg(T)
plt.plot(x, y, '-go', markevery=markers_on, label = "Eg(T)")
EgROOM = bandgapTemp(300)
plt.text((300 + 20), EgROOM, "(300, %.4f)" % EgROOM, fontsize = 12)
# Labels and Titles
plt.xlabel('Temperature (K)')
plt.ylabel('Bandgap Energy (eV)')
plt.title('Si Bandgap Energy v. Temperature')
# Axis Formatting
```

```
plt.xlim(0,600)

# Show plot
plt.legend()
plt.show()
```


Figure 1: E_G versus T

For T=300K, we see that the bangap energy of Silicon is 1.1245 eV, which is the textbook bandgap for Silicon at room temperature.