Calcolo Scientifico e Metodi Numerici

Corso di Laurea in Informatica, A.A. 2014-2015

Domande di ripasso

Idee di base e richiami

1. Qual è lo scopo della Matematica Numerica?

• La risoluzione numerica (al calcolatore) e l'analisi della soluzione trovata.

2. Attraverso quali fasi si passa nel risolvere un problema reale?

- 1 definizione del problema reale (Quanto impiego a raggiungere X?)
- 2 costruzione del modello (Distanza = tot, velocità media = tot2)
- 3 formulazione del problema matematico (formula $s = v \cdot t$)
- 4 risoluzione (al calcolatore) del problema matematico (solve t = s / v)
- 5 analisi della soluzione trovata (errori, approssimazioni, conversioni)
- 6 verifica che la soluzione trovata risolva il problema reale

3. Dove si colloca la Matematica Numerica nel processo di risoluzione di un problema reale?

- (4) risoluzione del problema al calcolatore
- (5) analisi della soluzione trovata

4. Cosa è uno spazio lineare, detto anche spazio vettoriale?

- Uno spazio lineare è un insieme dotato delle seguenti proprietà:
 - chiusura rispetto all'addizione: v1 + v2 = v3, con v1, v2, $v3 \in V$, con V spazio lineare;
 - chiusura rispetto al prodotto per uno scalare: $a{\in}\pmb{K}$, campo di scalari, $a{\cdot}v1=v2$, con $v1,\ v2{\in}\pmb{V}$
 - commutatività dell'addizione
 - associatività dell'addizione
 - associatività del prodotto per uno scalare: $a \cdot (b \cdot v) = (a \cdot b) \cdot v$
 - proprietà distributiva del prodotto per uno scalare rispetto alla somma di vettori: $a\cdot(v1+v2)=a\cdot v1+a\cdot v2$
 - proprietà distributiva del prodotto per uno scalare rispetto alla somma di scalari: $(a + b) \cdot v = a \cdot v + b \cdot v$

- esistenza dello zero come elemento neutro dell'addizione
- esistenza dell'1 come elemento neutro del prodotto per uno scalare
- esistenza dell'opposto: $\forall v \in V \exists -v$
- 5. Dai tre esempi di spazio lineare.
 - \bullet Vettori di dimensione n
 - \bullet Matrici di dimensione $m \times n$
 - Funzioni continue in un intervallo [a, b] che ammettono derivata n-esima
 - Polinomi di grado massimo n
- 6. Dimostra che l'insieme C[a,b] di tutte le funzioni continue nell'intervallo [a,b] è uno spazio lineare sull'insieme dei numeri reali \mathbb{R} .
 - N.B. sono dimostrate solo alcune proprietà a scopo esplicativo
 - Sia **F** l'insieme delle funzioni continue in [a,b] e siano f() e $g() \in \mathbf{F}$, (f + g)(x) = f(x) + g(x) quindi $(f + g)() \in \mathbf{F}$
 - Sia **K** un campo di scalari e $a \in K$, $a \cdot f(x) = af(x)$ quindi $af(x) \in F$
- 7. Dimostra che l'insieme P^n di tutti i polinomi di grado minore o uguale a n è uno spazio lineare sull'insieme dei numeri reali \mathbb{R} .
 - N.B. sono dimostrate solo alcune proprietà a scopo esplicativo

•

- 8. Quando n elementi x 1 , x 2 , . . . ,
x n di uno spazio lineare su $\mathbb R$ si dicono linearmente indipendenti.
 - N elementi si dicono linearmente indipendenti se la loro combinazione lineare è θ solo se tutti i coefficienti sono θ .
- 9. Dai un esempio di tre elementi nello spazio lineare \mathbb{R}^2 linearmente dipendenti.
 - \mathbb{R}^2 ha dimensione 2, quindi presi tre elementi questi saranno sempre dipendenti: (0, 1), (1, 0), (1, 1)
- 10. Dai un esempio di tre elementi nello spazio lineare \mathbb{R}^3 linearmente dipendenti.
 - $v_1=(1, 0, 0), v_2=(0, 1, 1), v_3=(6, 4, 4)$ perchè $6v_1 + 4v_2 = v_3$.

11. Dai un esempio di tre elementi linearmente indipendenti nello spazio lineare C[a,b] di tutte le funzioni continue in [a,b].

•
$$f()=\sin(x), g()=\cos(x), h()=x^2$$

12. Le tre funzioni $y_1(x) = cos(x)$, $y_2(x) = -sen(x)$ e $y_3(x) = 2cos(x) + 4sen(x)$ sono linearmente indipendenti? Giustifica la risposta.

• No, poichè
$$2y_1 + (-4y_2) = y_3$$
.

13. Le tre funzioni $y_1(x)=e^x$, $y_2(x)=3x^2$ e $y_3(x)=x-3ln(x)$ sono linearmente indipendenti? Giustifica la risposta.

• Si, poiché nessuna di esse può essere espressa come combinazione lineare delle altre.

14. Che cosa è una base di uno spazio lineare?

• Sia **S** uno spazio lineare (vettoriale) di dimensione *n*, si dice base di **S** l'insieme di n elementi di **S** che siano generatori e linearmente indipendenti.

15. Cosa significa dire che uno spazio lineare ha dimensione finita.

 $\bullet \; \exists$ un n tale che presin+1elementi, questi saranno necessariamente linearmente dipendenti.

16. Dai tre esempi di spazi lineari di dimensione 3.

- Vettori su \mathbb{R}^3
- Polinomi di grado al più 3
- ???

17. L'insieme di tutti i polinomi di grado < 4 è uno spazio lineare di dimensione finita? Se sì, fornisci una sua base.

• Si,
$$a_0 + a_1 x + a_2 x^2 + a_3 x^3$$

18. L'insieme di tutti le matrici 2X2 è uno spazio lineare di dimensione finita? Se sì, fornisci una sua base.

$$\bullet \left(\begin{array}{cc} 1 & 0 \\ 0 & 0 \end{array}\right)$$

- $\bullet \, \left(\begin{array}{cc} 0 & 1 \\ 0 & 0 \end{array} \right)$
- $\bullet \, \left(\begin{array}{cc} 0 & 0 \\ 1 & 0 \end{array} \right)$
- $\bullet \left(\begin{array}{cc} 0 & 0 \\ 0 & 1 \end{array}\right)$

19. I vettori (1, 2) e (2, 0) costituiscono una base per lo spazio vettoriale \mathbb{R}^2 , ovvero con una combinazione lineare di (1, 2) e (2, 0)puoi formare una qualsiasi coppia di numeri reali?

- Proviamo ad ottenere la base canonica (0, 1), (1, 0).

- $\frac{1}{2}v_1 \frac{1}{4}v_2 = (0, 1)$. $0v_1 \frac{1}{2}v_2 = (1, 0)$ Quindi è una base per \mathbb{R}^2 .

20. Cosa è l'autovalore di una matrice.

ullet Dato uno spazio lineare V ed un'applicazione lineare (endomorfismo) $F: V \to V$ esistono particolari vettori tali che $F(v) = \lambda v$. Chiamiamo λ autovalore e v autovettore associato a tale autovalore. Si definisce autospazio relativo all'autovalore l'insieme dei vettori generati generati da tale autovalore.