МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ федеральное государственное автономное образовательное учреждение высшего образования «САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ АЭРОКОСМИЧЕСКОГО ПРИБОРОСТРОЕНИЯ»

КАФЕДРА № 2

OTHET				
ОТЧЕТ ЗАЩИЩЕН С О ПРЕПОДАВАТЕ				
Доце			С.Л. Козенко	
должность, уч	. Степень, звание	подпись, дата	инициалы, фамилия	
	ОТЧЕ	Т О ПРАКТИЧЕСКОЙ	Í РАБОТЕ №4	
	чі	1СЛЕННОЕ ИНТЕГРИ	ІРОВАНИЕ	
	по кур	осу: ВЫЧИСЛИТЕЛЬНАЯ	І МАТЕМАТИКА	
РАБОТУ ВЫПО	лнил	4		
		BHL		
СТУДЕНТ ГР.	4136		Бобрович Н. С.	

подпись, дата

инициалы, фамилия

Цель работы:

- а) освоение методов численного интегрирования;
- б) совершенствование навыков по алгоритмизации и программированию вычислительных задач.

Задание:

$3 \int_{a}^{b} \frac{tg(x^{2})dx}{x+1}$	Средних прямоугольников	a = 0.5; b = 1.2; n = 8
--	----------------------------	-------------------------

Математическая часть:

2.2. Метод прямоугольников

Разделим отрезок [a,b] на n равных частей, т.е. на nэлементарных отрезков. Длина каждого элементарного отрезка h=(b-a)/n. Точки деления будут: $x_0=a$, $x_1=a+h$, $x_2=a+2h$, ..., $x_{n-1}=a+(n-1)$ 1)h, $x_n = b$. Эти числа будем называть узлами. Вычислим значения функции f(x) в узлах, обозначим их y_0 , y_1 , y_2 , ..., y_n . Стало быть, $y_0 = f(a)$, $y_1=f(x_1), ..., y_n=f(b)$. Числа $y_0, y_1, y_2, ..., y_n$ суть ординаты точек графика функции, соответствующих абсциссам x_0 , x_1 , x_2 , ..., x_n (рис.2.2). Из криволинейной рис.2.2 следует, что площадь трапеции приближенно заменяется площадью многоугольника, составленного из n прямоугольников. Таким образом вычисление определенного интеграла сводится к нахождению суммы *n* элементарных прямоугольников.

Геометрическая иллюстрация метода средних прямоугольников.

$$S\approx h \sum y(x_i+h/2)$$

– формула средних прямоугольников.

Аналитические расчёты:

Метод сре	дних прямоугол	ьников численного интегрирования
tg(x^2)/(x+1)		
0.5	1.2	
8		
Решение	-Примеры - ∨	
Расчетное зна	чение	
0.47942411643	396851	
Применяемая	формула	
$\int_{0.5}^{1.2} \frac{\tan(x^2)}{1+x} dx \approx$	$0.0875 \sum_{n=0}^{7} \frac{11.4286 \text{ta}}{}$	$\frac{n(0.00765625(6.21429+n)^2)}{17.6429+n}$
	$\sum_{n=0}^{7} f(0.5 + h(\frac{1}{2} + n))$	
where $f(x) = \frac{tx}{x}$	$\frac{\ln(x^2)}{x+1}$	
	1.2 - 0.5)/8 = 0.0875	

Графическая интерпретация

Точное значение интеграла

0.494359

Зависимость погрешности от числа разбиений отрезка

Схема алгоритма:

Class newton:

f:

main:

Листинг кода программы:

#include <iostream>

#include <cmath>

using namespace std;

```
double f(double x)
  return (\tan(pow(x, 2)))/(x + 1);
}
int main()
  double a, b, h;
  int n;
  double INTGRL = 0.0;
  cout << "Vvedite a= ";</pre>
  cin >> a;
  cout << "Vvedite b= ";</pre>
  cin >> b;
  cout << "Vvedite n= ";</pre>
  cin >> n;
  h = ((b - a) / n);
  for (double x = a; x < b; x += h)
     INTGRL += f(x + h / 2);
  INTGRL *= h;
  cout << "Shag = " << h << endl;
  cout << endl;
  cout << "S = " << INTGRL;
  return 0;
}
```

Результаты программных расчетов:

Сравнение результатов программных и аналитических расчетов:

Исходя из результатов мы видим, что результаты сходятся с допустимой разницей.

Вывод

В ходе выполнения практической работы №4 было освоено численное интегрирование методом средних прямоугольников. Также были улучшены навыки по программированию задачи на языке C++ в программе Microsoft Visual Studio.