测试样题 (测量不确定度的评定)

题目:

现有一金属圆柱体,用千分尺测量其直径 D,用游标卡尺测量其高 H,用物理天平称量其质量 m,测量数据见表 1。圆柱体的密度 ρ 可表示为: $\rho = \frac{4m}{\pi D^2 H}$,请计算该金属圆柱体密度 ρ 及其在置信概率 P=0.95 时的不确定度 u_{ρ} 。

已知千分尺的仪器允差为 0.004 mm,属于正态分布;游标卡尺的仪器允差 为 0.02 mm,属于均匀分布;物理天平的仪器允差为 0.04 g,属于正态分布。

D/mm	10.502	10.488	10.516	10.480	10.495	10.470			
H/mm	20.00	20.02	19.98	20.00	20.00	20.02			
m/g	14.00	14.02	13.98						

表 1. 金属圆柱体的直径 D、高 H 和质量 m。

表 2	$t_{\rm n}$	与测量次数	n	的关系
-----	-------------	-------	---	-----

秋 2. 時 马枫重八级 n 时八小										
$P/t_{p}/n$	3	4	5	6	7	8	9	10	8	
0.68	1.32	1.20	1.14	1.11	1.09	1.08	1.07	1.06	1	
0.90	2.92	2.35	2.13	2.02	1.94	1.86	1.83	1.76	1.65	
0.95	4.30	3.18	2.78	2.57	2.46	2.37	2.31	2.26	1.96	
0.99	9.93	5.84	4.60	4.03	3.71	3.50	3.36	3.25	2.58	

表 3. 几种常见仪器的误差分布与置信系数

仪器	米尺	游标卡尺	千分尺	物理天平	秒表
误差分布	正态	均匀	正态	正态	正态
置信系数 C	3	$\sqrt{3}$	3	3	3

表 4. 三种分布下置信因子 k_p 下与置信概率 P 的关系

Р	0.500	0.577	0.650	0.683	0.950	0.997
kp(正态分布)	0.675			1.000	1.960	3.000
kp(均匀分布)	0.866	1.000		1.183	1.645	1.727
k _P (三角分布)	0.717	0.862	1.000	1.064	1.901	2.315

解答:

1. 求直径的不确定度

直径的平均值 $\bar{D}=10.4918~mm$,标准差 $\sigma_D=0.016~mm$

$$u_D = \sqrt{\left(t_P \frac{\sigma_D}{\sqrt{n}}\right)^2 + \left(k_P \frac{\Delta_B}{C}\right)^2} = \sqrt{\left(2.57 \times \frac{0.016}{\sqrt{6}}\right)^2 + \left(1.96 \times \frac{0.004}{3}\right)^2} = 0.017 \text{ mm}$$

$$D = \overline{D} \pm u_D = (10.492 \pm 0.017)mm \quad (P = 0.95)$$

2. 求高的不确定度

高的平均值 $\overline{H}=20.003~mm$,标准差 $\sigma_{H}=0.015~mm$

$$u_H = \sqrt{\left(t_P \frac{\sigma_H}{\sqrt{n}}\right)^2 + \left(k_P \frac{\Delta_B}{C}\right)^2} = \sqrt{\left(2.57 \times \frac{0.015}{\sqrt{6}}\right)^2 + \left(1.645 \times \frac{0.02}{\sqrt{3}}\right)^2} = 0.025 \text{ mm}$$

$$H = \overline{H} \pm u_H = (20.003 \pm 0.025)mm \quad (P = 0.95)$$

3. 求质量的不确定度

质量的平均值 $\bar{m}=14.00\,\mathrm{g}$,标准差 $\sigma_m=0.02\,\mathrm{g}$

$$u_m = \sqrt{\left(t_P \frac{\sigma_m}{\sqrt{n}}\right)^2 + \left(k_P \frac{\Delta_B}{c}\right)^2} = \sqrt{\left(4.3 \times \frac{0.02}{\sqrt{3}}\right)^2 + \left(1.96 \times \frac{0.04}{3}\right)^2} = 0.06 \text{ g}$$

$$m = \overline{m} \pm u_m = (14.00 \pm 0.06)mm \quad (P = 0.95)$$

4. 求不确定度传递公式。

$$\rho = \frac{4m}{\pi D^2 H}$$

即对数

$$\ln \rho = \ln \frac{4}{\pi} + \ln m - 2 \ln D - \ln H$$

求微分

$$\frac{d\rho}{\rho} = \frac{dm}{m} - 2\frac{dD}{D} - \frac{dH}{H}$$

系数取绝对值、把微分符号改成不确定度符号,再写成平方和的形式

$$\frac{u_{\rho}}{\rho} = \sqrt{\left(\frac{u_m}{m}\right)^2 + \left(2\frac{u_D}{D}\right)^2 + \left(\frac{u_H}{H}\right)^2}$$

5. 求金属圆柱体的密度及不确定度。

$$\begin{split} \rho &= \frac{4m}{\pi D^2 H} = \frac{4 \times 14.00}{3.1416 \times 10.492^2 \times 20.003} g/mm^3 = 8.095 \times 10^{-3} g/mm^3 \\ &= 8.095 g/cm^3 \end{split}$$

$$\frac{u_{\rho}}{\rho} = \sqrt{\left(\frac{u_m}{m}\right)^2 + \left(2\frac{u_D}{D}\right)^2 + \left(\frac{u_H}{H}\right)^2}$$
$$= \sqrt{\left(\frac{0.06}{14.00}\right)^2 + \left(2 \times \frac{0.017}{10.492}\right)^2 + \left(\frac{0.025}{20.003}\right)^2}$$

$$u_{\rho} = 8.095 \times 0.0055 \; g/cm^3 = 0.044 \; g/cm^3$$

$$\rho = (8.095 \pm 0.044) \ g/cm^3 \ (P = 0.95)$$