Exercise 8.1 Define

$$f(x) = \begin{cases} e^{-1/x^2} & (x \neq 0), \\ 0 & (x = 0). \end{cases}$$

Prove that f has derivatives of all orders at x=0 and that $f^{(n)}(0)=0$ for $n=1,2,3,\ldots$

Solution. We have $\lim_{x\to 0} x^k e^{-1/x^2} = 0$ for all $k = 0, \pm 1, \pm 2, \ldots$ by L'Hospital's rule. It is easily shown by induction that there is a polynomial p_n such that $f^{(n)}(x) = p_n(\frac{1}{x})e^{-1/x^2}$ for $x \neq 0$. Assuming (by induction) that $f^{(n)}(0) = 0$, we then have $f^{(n+1)}(0) = \lim_{x\to 0} q_n(\frac{1}{x})e^{-1/x^2} = 0$, where $q_n(x) = xp_n(x)$.