R Exercises

SJLin

2021/10/24

- 1 Vectors
 - 1.1 Exercises
 - 1.2 Answers
- · 2 Functions
 - 2.1 Exercises
 - 2.2 Answers

1 Vectors

1.1 Exercises

- 1. Create the vectors: (For parts e., f. and g. look at the help for the function rep.)
 - a. (1,2,3,...,19,20)
 - b. (20,19,...,2,1)
 - c. (1,2,3,...,19,20,19,18,...,2,1)
 - d. (4,6,3) and assign it to the name tmp.
 - e. (4,6,3,4,6,3,...,4,6,3) where there are 10 occurrences of 4.
 - f. (4,6,3,4,6,3,...,4,6,3,4) where there are 11 occurrences of 4, 10 occurrences of 6 and 10 occurrences of 3.
 - g. (4,4,...,4,6,6,...,6,3,3,...,3) where there are 10 occurrences of 4, 20 occurrences of 6 and 30 occurrences of 3.
- 2. Create a vector of the values of $e^x cos(x)$ at x = 3, 3.1, 3.2,..., 6.
- 3. Create the following vectors:

a.
$$(0.1^30.2^1, 0.1^60.2^4, ..., 0.1^{36}0.2^{34})$$
 b. $(2, \frac{2^2}{2}, \frac{2^3}{3}, ..., \frac{2^{25}}{25})$

4. Calculate the following:

c.
$$\sum_{i=10}^{100}(i^3+4i^2)$$

d. $\sum_{i=1}^{25}(rac{2^i}{i}+rac{3^i}{i^2})$

- 5. Use the function paste to create the following character vectors of length 30:
 - a. ("label 1", "label 2",, "label 30"). (Note that there is a single space between label and the number following.)
 - b. ("fn1", "fn2", ..., "fn30"). (In this case, there is no space between fn and the number following.)
- 6. Execute the following lines which create two vectors of random integers which are chosen with replacement from the integers 0, 1,..., 999. Both vectors have length 250.

```
set.seed(50)
xVec <- sample(0:999, 250, replace=T)
yVec <- sample(0:999, 250, replace=T)
```

Suppose $X=(x_1,x_2,\ldots,x_n)$ denotes the vector $\$ xVec $\$ and $Y=(y_1,y_2,\ldots,y_n)$ denotes the vector $\$ yVec $\$.

a. Create the vector $(y2-x1,\ldots,y_n-x_{n-1})$.

2021/10/24 下午7:34 R Exercises

- b. Create the vector $(\frac{\sin(y_1)}{\cos(x_2)}, \frac{\sin(y_2)}{\cos(x_3)}, \dots, \frac{\sin(y_{n-1})}{\cos(x_n)})$
- c. Create the vector $(x_1+2x_2-x_3,x_2+2x_3-x_4,\dots,x_{n-2}+2x_{n-1}-x_n)$.
- d. Calculate $\sum_{i=1}^{n-1} \frac{e^{-x_i+1}}{x_i+10}$
- 7. This question uses the vectors xVec and yVec created in the previous question and the functions sort, order, mean, sqrt, sum and abs.
 - a. Pick out the values in yVec which are greater than 600.
 - b. What are the index positions in yvec of the values which are greater than 600?
 - c. What are the values in xVec which correspond to the values in yVec which are > 600? (By correspond, we mean at the same index positions.)
 - d. Create the vector ($|x_1-\overline{x}|^{1/2}|, |x_2-\overline{x}|^{1/2}|, \ldots, |x_n-\overline{x}|^{1/2}$ where \overline{x} denotes the mean of the vector $X=(x_1,x_2,\ldots,x_n)$.
 - e. How many values in yvec are within 200 of the maximum value of the terms in yvec?
 - f. How many numbers in xVec are divisible by 2? (Note that the modulo operator is denoted %%.)
 - g. Sort the numbers in the vector xVec in the order of increasing values in yVec.
 - h. Pick out the elements in yvec at index positions 1, 4, 7, 10, 13,
- 8. By using the function cumprod or otherwise, calculate $1+\frac{2}{3}+\left(\frac{2}{3}\frac{4}{5}\right)+\left(\frac{2}{3}\frac{4}{5}\frac{6}{7}\right)+\ldots+\left(\frac{2}{3}\frac{4}{5}\ldots\frac{38}{39}\right)$

1.2 Answers

- 1. a. 1:20
 - b. 20:1
 - c. c(1:20,19:1)
 - d. tmp <- c(4,6,3). Note: it is good style to use <- for assignment and to leave a space on both sides of the assignment operator <-.
 - e. rep(tmp,10)
 - f. rep(tmp,length.out=31) or c(rep(tmp,10),4)
 - g. rep(tmp,times=c(10,20,30))
- 2. tmp <- seq(3,6,by=0.1); exp(tmp) * cos(tmp)
- 3. a. $(0.1^{seg(3,36,by=3)})^{*}(0.2^{seg(1,34,by=3)})$
 - b. (2^(1:25))/(1:25)
- 4. a. tmp <- 10:100; $sum(tmp^3 + 4 * tmp^2)$
 - b. tmp <- 1:25; $sum((2^tmp) / tmp + (3^tmp) / tmp^2)$
- 5. a. paste("label", 1:30), or paste("label", 1:30, sep=" "). Note: there is a space in sep=" ".
 - b. paste("fn", 1:30,sep=""), Note: there is no space in sep="".
- 6. a. yVec[-1] xVec[-length(xVec)]
 - b. sin(yVec[-length(yVec)]) / cos(xVec[-1])
 - c. xVec[-c(249,250)] + 2*xVec[-c(1,250)]-xVec[-c(1,2)], or, for an answer which works whatever the length of xVec,
 - xVecLen <- length(xVec); xVec[-c(xVecLen-1,xVecLen)] + 2*xVec[-c(1,xVecLen)] xVec[-c(1,2)]</pre>
 - d. sum(exp(-xVec[-1])/(xVec[-length(xVec)]+10))
- 7. a. yVec[yVec>600]
 - b. (1:length(yVec))[yVec>600] or which(yVec>600)
 - c. xVec[yVec>600]
 - d. sqrt(abs(xVec-mean(xVec)))
 - e. sum(yVec>max(yVec)-200)
 - f. sum(xVec%%2==0)
 - g. xVec[order(yVec)]
 - h. yVec[seq(1, 250, by=3)], or yVec[c(T,F,F)]
- 8. 1+sum(cumprod(seq(2,38,b=2)/seq(3,39,b=2)))

2021/10/24 下午7:34 R Exercises

2 Functions

2.1 Exercises

1. 丟3 顆公平的骰子,其和為dice.sum, dice.sum <- sum(sample(1:6, 3, replace = TRUE)),試寫一R函式,印出總和dice.sum 並做如下判別: 如果和大於13 點,則印出「Good!!」,反之印出「Try Again」。

2. 設
$$a_n=\frac{n+3}{n+8}$$
, $b_n=\frac{2n^2+3}{2n^22+8n}$, $c_n=\frac{\sqrt(n)}{2+\sqrt(n)}$, 依定義可得 $lim_{n\to\infty}a_n=lim_{n\to\infty}b_n=lim_{n\to\infty}c_n=1$,請列出下表。

cn	bn	an	n
0.3333333	0.5000000	0.444444	1
0.6125741	0.7250000	0.7222222	10
0.6909830	0.8364583	0.8214286	20
0.7325211	0.8838235	0.8684211	30
0.7597469	0.9099432	0.8958333	40
0.7795188	0.9264815	0.9137931	50
0.7947869	0.9378906	0.9264706	60
0.8070727	0.9462355	0.9358974	70
0.8172560	0.9526042	0.9431818	80
0.8258876	0.9576241	0.9489796	90
0.8333333	0.9616827	0.9537037	100
0.9803922	0.9996002	0.9995004	10000

3. 有一函數為

$$f(x) = \left| x^2 + x \right|, ext{ if } x < 0; ext{ sin}(x), ext{if } 0 \leq x < 3; ext{ and } 3e^x ext{ if } x \geq 3.$$

計算並列出下列表格:

fx	n
20.0000000	-5
12.0000000	-4
6.0000000	-3
2.0000000	-2
0.0000000	-1
0.0000000	0
0.8414710	1
0.9092974	2
60.2566108	3

2021/10/24 下午7:34 R Exercises

fx	n
163.7944501	4
445.2394773	5

2.2 Answers

```
    a.f <- function (){
        dice.sum <- sum(sample(1:6, 3, replace = TRUE))
        cat("The dice you rolled is:", dice.sum, "")
        ifelse(dice.sum > 13, "good!", "Try Again!")
    }
```

```
3. fx <- function(x) {
    ifelse(x<0, abs(x^2 + x), ifelse(x<3, sin(x), 3 * exp(x)))
    }
    x<- -5:5
    knitr::kable(cbind(x, fx(x=x)), col.names = c("n", "fx"))
```