

Adversarial Label Flips

Matthias Dellago & Maximilian Samsinger

A short recap

Adversarial attack

+ 6

=

Husky (42.82% confidence)

Noise (PGD-40) 50x amplified Handkerchief (99.999988% confidence)

Source: ctf.codes, circa 2021

What we want

Confusion Matrix

Adversarial Example of a

Categorised as

Dog	Cat	Plane
0.0	?	?
?	0.0	?
?	?	0.0

How many modified dogs get classified as cats vs as planes? etc.

Dog

Cat Plane

Some simple theory

We want similar images that are classified differently.
But what is "similar"?

Quantifying Difference (ϵ)

Two Different Approaches

Projected Gradient Decent

- Pick spot in epsilon ball around target
- 2 Iterate gradient decent
- If leaving ball, project back onto surface
- Repeat to convergence

Towards Deep Learning Models Resistant to Adversarial Attacks, Aleksander Madry et al., arXiv, 2019

Projected Gradient Decent

Know your enemy, Oscar Knagg, towardsdatascience.com, 2019

Carlini-Wagner-Attack

Original approach: minimise difference while always staying in "misclassification territory".

Problem: Non-linearity of constraint makes optimimisation difficult.

Towards Evaluating the Robustness of Neural Networks, Nicholas Carlini and David Wagner, IEEE, 2017

Carlini-Wagner-Attack

Solution: Pack constraint into the function that is optimised.

→ minimise: difference - "how misclassified is x?"* i.e. minimise difference while maximising misclassification.

Apply Adam optimisation.

*loss function

Towards Evaluating the Robustness of Neural Networks, Nicholas Carlini and David Wagner, IEEE, 2017

Code

Results

MNIST, L^{∞} -PGD

$$\epsilon = 0.2$$

$$\epsilon = 0.02$$

$$\epsilon = 0.5$$

$$\epsilon = 0.05$$

$$\epsilon=1$$

$$\epsilon = 0.1$$

MNIST, L²-Carlini-Wagner-Attack

CIFAR-10, L^{∞} -PGD

 $\epsilon = 0.02$

CIFAR-10, L⁰-Brendel-Bethge-Attack

Tentative Findings

Small $\epsilon \to \text{symmetric confusion matrix}$

Large $\epsilon \to \text{strong attractor classes}$ ("8" and "frog")

References I

lan J Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining and harnessing adversarial examples. arXiv preprint arXiv:1412.6572, 2014.

Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris Tsipras, and Adrian Vladu.

Towards deep learning models resistant to adversarial attacks. arXiv preprint arXiv:1706.06083, 2017.

References II

Jonas Rauber, Wieland Brendel, and Matthias Bethge. Foolbox: A python toolbox to benchmark the robustness of machine learning models.

arXiv preprint arXiv:1707.04131, 2017.

Li Deng.

The mnist database of handwritten digit images for machine learning research [best of the web].

IEEE Signal Processing Magazine, 29(6):141–142, 2012.

Han Xiao, Kashif Rasul, and Roland Vollgraf.

Fashion-mnist: a novel image dataset for benchmarking machine learning algorithms.

arXiv preprint arXiv:1708.07747, 2017.

References III

Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images. 2009.