GRAPH THEORY BASIC TERMINOLOGY

CS 441

Basic Graph Definitions

- A data structure that consists of a set of nodes (*vertices*) and a set of edges that relate the nodes to each other
- The set of edges describes relationships among the vertices.
 Some Examples,
 - Car navigation system
 - Efficient database
 - Build a bot to retrieve info off WWW
 - Representing computational models

Applications

Formal Definition:

- A graph, G=(V, E), consists of two sets:
 - a finite non empty set of vertices(V), and
 - a finite set (E) of unordered pairs of distinct vertices called edges.
 - *V(G)* and *E(G)* represent the sets of vertices and edges of *G*, respectively.
- Vertex: In graph theory, a vertex (plural vertices) or node or points is the fundamental unit out of which graphs are formed.
- Edge or Arcs or Links: Gives the relationship between the Two vertices.

Vertex 1

Examples for Graph

$$V(G_1)=\{0,1,2,3\}$$

 $V(G_2)=\{0,1,2,3,4,5,6\}$
 $V(G_3)=\{0,1,2\}$

$$E(G_1)=\{(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)\}$$

$$E(G_2)=\{(0,1),(0,2),(1,3),(1,4),(2,5),(2,6)\}$$

$$E(G_3)=\{<0,1>,<1,0>,<1,2>\}$$

- Two vertices joined by an edge are called the end vertices or endpoints of the edge.
- If an edge is directed its first endpoint is called the origin and the other is called the destination.
- Two vertices are said to be adjacent if they are endpoints of the same edge.

- An edge is said to be incident on a vertex if the vertex is one of the edges endpoints.
- The outgoing edges of a vertex are the directed edges whose origin is that vertex.
- The incoming edges of a vertex are the directed edges whose destination is that vertex.

Adjacent, neighbors

- Two vertices are adjacent and are neighbors if they are the endpoints of an edge
- Example:
 - A and B are adjacent
 - A and D are not adjacent

Degree

Degree: Number of edges incident on a node

Degree (Directed Graphs)

- In degree: Number of edges entering a node
- Out degree: Number of edges leaving a node
- Degree = Indegree + Outdegree

Path

- A *path* is a sequence of vertices such that there is an edge from each vertex to its successor.
- A path is simple if each vertex is distinct.
- A *circuit* is a path in which the terminal vertex coincides with the initial vertex

Simple path: [1, 2, 4, 5]

Path: [1, 2, 4, 5, 4]

Circuit: [1, 2, 4, 5, 4, 1]

Cycle

- A path from a vertex to itself is called a *cycle*.
- A graph is called cyclic if it contains a cycle;
 - otherwise it is called *acyclic*

Types of Graph

Null graph, Trivial Graph

A graph G=(V,E) where E=0 is said to be Null or Empty graph

v1

 A graph with One vertex and no edge is called as a trivial graph.

v3

Connected and Disconnected

- Connected: There exists at least one path between two vertices
- *Disconnected*: Otherwise
- Example:
 - H₁ and H₂ are connected
 - *H*₃ is disconnected

Undirected Graph

- In an undirected graph, there is no distinction between (u, v) and (v, u).
- An edge (u, v) is said to be directed from u to v if the pair (u, v) is ordered with u preceding v.

E.g. A Flight Route

 An edge (u, v) is said to be undirected if the pair (u, v) is not ordered

E.g. Road Map

Undirected Graph

Here (u,v) and (v,u) both are possible.

Undirected Graph

- A graph whose definition makes reference to Unordered pairs of vertices as Edges is known as undirected graph.
- Thus an undirected edge (u,v) is equivalent to (v,u) where u and v are distinct vertices.
- In the case of undirected edge(u,v) in a graph, the vertices u,v are said to be adjacent or the edge(u,v) is said to be incident on vertices u,v.

Complete Graph

- Complete Graph: A simple graph in which every pair of vertices are adjacent
- If no of vertices = n, then there are n(n-1) edges

Complete Graph

- In a complete graph: Every node should be connected to all other nodes.
- The above means "Every node is adjacent to all other nodes in that graph".
- The degree of all the vertices must be same.
- K_n = Denotes a complete with n number of vertices.

Complete Undirected Graph

An undirected graph with 'n' number of vertices is said to be complete, iff each vertex

Complete Undirected Graph

• An n vertex undirected graph with exactly (n.(n-1))/2 edges is said to be complete.

Hence the graph has 6 number of edges and it is a Complete Undirected graph.

Directed Graph

 A directed graph is one in which every edge (u, v) has a direction, so that (u, v) is different from (v, u)

There are two possible situations that can arise in a directed graph between vertices u and v.

- i) only one of (u, v) and (v, u) is present.
- ii) both (u, v) and (v, u) are present.

Directed Graph

Here (u,v) is possible where as (v,u) is not possible

In a directed edge, u is said to be adjacent to v and v is said to be adjacent from u.

Directed Graph

- Directed Graphs are also called as **Digraph.**
- Directed graph or the digraph make reference to edges which are directed (i.e) edges which are Ordered pairs of vertices.
- The edge(uv) is referred to as <u,v> which is distinct from <v,u> where u,v are distinct vertices.

Weighted Graph

Weighted graph is a graph for which each edge has an associated *weight*, usually given by a *weight function* $w: E \rightarrow \mathbb{R}$.

Planar Graph

• Can be drawn on a plane such that no two edges intersect

Sub Graph

- A graph whose vertices and edges are subsets of another graph.
- A subgraph G'=(V',E') of a graph G=(V,E) such that $V'\subseteq V$ and $E'\subseteq E$, Then G is a supergraph for G'.

..Sub Graph

Spanning Subgraph

• A *spanning subgraph* is a subgraph that contains all the vertices of the original graph.

Induced-Subgraph

- Vertex-Induced Subgraph:
 - A *vertex-induced subgraph* is one that consists of some of the vertices of the original graph and all of the edges that connect them in the original.

Induced-Subgraph

- Edge-Induced Subgraph:
 - An *edge-induced subgraph* consists of some of the edges of the original graph and the vertices that are at their endpoints.

Minimum Spanning Tree

Minimum Spanning Tree

What is MST?

Kruskal's Algorithm

Prim's Algorithm

Spanning Trees

A spanning tree of a graph is just a subgraph that contains all the vertices and is a tree.

A graph may have many spanning trees.

Complete Graph

All 16 of its Spanning Trees

Minimum Spanning Trees

The Minimum Spanning Tree for a given graph is the Spanning Tree of minimum cost for that graph.

Complete Graph

Minimum Spanning Tree

GRAPH REPRESENTATION

- Adjacency Matrix
- Incidence Matrix
- Adjacency List

Adjacency, Incidence, and Degree

- Assume e_i is an edge whose endpoints are (v_i, v_k)
- The vertices v_i and v_k are said to be *adjacent*
- The edge e_i is said to be *incident upon* v_i
- **Degree** of a vertex v_k is the number of edges incident upon v_k . It is denoted as $d(v_k)$

Adjacency Matrix

- Let G = (V, E), |V| = n and |E| = m
- The *adjacency matrix* of G written A(G), is the $|V| \times |V|$ matrix in which entry $a_{i,j}$ is the number of edges in G with endpoints $\{v_i, v_i\}$.

$$\begin{array}{c|ccccc}
w & x & y & z \\
w & 0 & 1 & 1 & 0 \\
x & 1 & 0 & 2 & 0 \\
y & 1 & 2 & 0 & 1 \\
z & 0 & 0 & 1 & 0
\end{array}$$

Adjacency Matrix

- Let G = (V, E), |V| = n and |E| = m
- The *adjacency matrix* of G written A(G), is the $|V| \times |V|$ matrix in which entry $a_{i,j}$ is 1 if an edge exists otherwise it is 0

	1	2	3	4	5	
1	0	1	0	0	1	
2	1			1	1	
3	0		0		0	
4	0	1	1	0	1	
5	1	1	0	1	0	

Adjacency Matrix (Weighted Graph)

- Let G = (V, E), |V| = n and |E| = m
- The *adjacency matrix* of G written A(G), is the $|V| \times |V|$ matrix in which entry $a_{i,j}$ is weight of the edge if it exists otherwise it is 0

	1	2	3	4	5	
1	0	5	0	0	1	
2	5	0	4	6	3	
3	0	4	0	2	0	
4	0	6	2	0	7	
5	1	3	0	7	0	

Incidence Matrix

- Let G = (V, E), |V| = n and |E| = m
- The *incidence matrix* M(G) is the $|V| \times |E|$ matrix in which entry $m_{i,j}$ is 1 if v_i is an endpoint of e_i and otherwise is 0.

Adjacency List Representation

- Adjacency-list representation
 - an array of |V| elements, one for each vertex in V
 - For each $u \in V$, ADJ [u] points to all its adjacent vertices.

Adjacency List Representation for a Digraph

Adjacency lists

Advantage:

- Saves space for sparse graphs. Most graphs are sparse.
- Traverse all the edges that start at v, in $\theta(\text{degree}(v))$

Disadvantage:

- Check for existence of an edge (v, u) in worst case time θ (degree(v))

Adjacency List

- Storage
 - For a directed graph the number of items are

$$\sum_{v \in V} (\text{out-degree } (v)) = |E|$$
So we need $\Theta(V + E)$

For undirected graph the number of items are

$$\sum_{v \in V} (\text{degree } (v)) = 2 \mid E \mid$$
Also $\Theta(V + E)$

Easy to modify to handle weighted graphs. How?

55

Adjacency Matrix Representation

Advantage:

- Saves space for:
 - Dense graphs.
 - Small unweighted graphs using 1 bit per edge.
- Check for existence of an edge in $\theta(1)$
- Disadvantage:
 - Traverse all the edges that start at v, in $\theta(|V|)$

Adjacency Matrix Representation

- Storage
 - $-\Theta(|V|^2)$ (We usually just write, $\Theta(|V|^2)$)
 - For undirected graphs you can save storage (only 1/2(V²)) by noticing the adjacency matrix of an undirected graph is symmetric. How?
- Easy to handle weighted graphs. How?