第五章 时间序列计量经济学模型

§ 5.1 序列相关性

Serial Correlation

- 一、序列相关性概念
- 二、实际经济问题中的序列相关性
- 三、序列相关性的后果
- 四、序列相关性的检验
- 五、具有序列相关性模型的估计
- 六、案例

一、序列相关性概念

对于模型

$$Y_{i} = \beta_{0} + \beta_{1} X_{1i} + \beta_{2} X_{2i} + ... + \beta_{k} X_{ki} + \mu_{i}$$
 $i = 1, 2, ..., n$

随机项互不相关的基本假设表现为

$$Cov(\mu_i, \mu_j) \neq 0$$
 $i \neq j, i, j=1,2, ...,n$

如果对于不同的样本点,随机误差项之间不再是不相关的,而是存在某种相关性,则认为出现了序列相关性。

在其他假设仍成立的条件下,序列相关即意味着

$$E(\mu_i \mu_j) \neq 0$$

或

$$Cov(\mathbf{\mu}) = E(\mathbf{\mu}\mathbf{\mu}') = \begin{pmatrix} \sigma^2 & \cdots & E(\mu_1\mu_n) \\ \vdots & \ddots & \vdots \\ E(\mu_n\mu_1) & \cdots & \sigma^2 \end{pmatrix}$$
$$= \begin{pmatrix} \sigma^2 & \cdots & \sigma_{1n} \\ \vdots & \ddots & \vdots \\ \sigma_{n1} & \cdots & \sigma^2 \end{pmatrix}$$

$$=\sigma^2\Omega \neq \sigma^2\mathbf{I}$$

如果仅存在

$$E(\mu_i \mu_{i-1}) \neq 0$$
 $i=1,2,...,n$

称为一阶列相关,或自相关(autocorrelation) 自相关往往可写成如下形式:

$$\mu_i = \rho \mu_{i-1} + \varepsilon_i$$
 $-1 < \rho < 1$

其中: ρ被称为自协方差系数(coefficient of autocovariance)或一阶自相关系数(first-order coefficient of autocorrelation)

 ε_i 是满足以下标准的OLS假定的随机干扰项:

$$E(\varepsilon_i) = 0$$
, $var(\varepsilon_i) = \sigma^2$, $cov(\varepsilon_i, \varepsilon_{i-s}) = 0$ $s \neq 0$

由于序列相关性经常出现在以时间序列为样本的模型中, 因此,本节将用下标*t*代表*i*。

二、实际经济问题中的序列相关性

1、经济变量固有的惯性

大多数经济时间数据都有一个明显的特点:惯性,表现在时间序列不同时间的前后关联上。

例如,绝对收入假设下居民总消费函数模型:

$$C_t = \beta_0 + \beta_1 Y_t + \mu_t$$
 $t=1,2,...,n$

由于消费习惯的影响被包含在随机误差项中,则可能出现序列相关性(往往是正相关)。

2、模型设定的偏误

所谓模型设定偏误(Specification error)是指 所设定的模型"不正确"。主要表现在模型中丢掉 了重要的解释变量或模型函数形式有偏误。

例如, 本来应该估计的模型为

$$Y_t = \beta_0 + \beta_1 X_{1t} + \beta_2 X_{2t} + \beta_3 X_{3t} + \mu_t$$

但在模型设定中做了下述回归:

$$Y_t = \beta_0 + \beta_1 X_{1t} + \beta_1 X_{2t} + v_t$$

因此, $v_t = \beta_3 X_{3t} + \mu_t$,如果 X_3 确实影响Y,则出现序列相关。

又如: 如果真实的边际成本回归模型应为:

$$Y_t = \beta_0 + \beta_1 X_t + \beta_2 X_t^2 + \mu_t$$

其中: Y=边际成本, X=产出,

但建模时设立了如下模型:

$$Y_t = \beta_0 + \beta_1 X_t + v_t$$

因此,由于 $v_t = \beta_2 X_t^2 + \mu_t$,包含了产出的平方对随机项的系统性影响,随机项也呈现序列相关性。

3、数据的"编造"

在实际经济问题中,有些数据是通过已知数据生成的。

因此,新生成的数据与原数据间就有了内在的联系,表现出序列相关性。

二、序列相关性的后果

计量经济学模型一旦出现序列相关性,如果仍 采用OLS法估计模型参数,会产生下列不良后果:

1、参数估计量非有效

因为, 在有效性证明中利用了

$$E(\mathbf{u}\mathbf{u}')=\sigma^2\mathbf{I}$$

即同方差性和互相独立性条件。

2、变量的显著性检验失去意义

如果存在序列相关,估计的参数方差 $s_{\hat{\beta}_i}$ 出现偏误(偏大或偏小),t检验就失去意义。

其他检验也是如此。

3、模型的预测失效

区间预测与参数估计量的方差有关,在 方差有偏误的情况下,使得预测估计不准 确,预测精度降低。

所以, 当模型出现序列相关性时, 它的 预测功能失效。

三、序列相关性的检验

三、序列相关性的检验

基本思路:

序列相关性检验方法有多种,但基本思路相同:

首先,采用 OLS 法估计模型,以求得随机误差项的"近似估计量",用 ē,表示:

$$\widetilde{e}_i = Y_i - (\hat{Y}_i)_{0ls}$$

然后,通过分析这些"近似估计量"之间的相关性,以判断随机误差项是否具有序列相关性。

1、图示法

用产的变化图形来判断µi的序列相关性:

2、回归检验法

以 \tilde{e}_t 为被解释变量,以各种可能的相关量,诸如以 \tilde{e}_{t-1} 、 \tilde{e}_{t-2} 、 \tilde{e}_t^2 等为解释变量,建立各种方程:

$$\widetilde{e}_{t} = \rho \widetilde{e}_{t-1} + \varepsilon_{t}$$

$$\widetilde{e}_{t} = \rho_{1} \widetilde{e}_{t-1} + \rho_{2} \widetilde{e}_{t-2} + \varepsilon_{t}$$

如果存在某一种函数形式,使得方程显著成立,则说明原模型存在序列相关性。

回归检验法的优点是: (1) 能够确定序列相关的形式, (2) 适用于任何类型序列相关性问题的检验。

3、杜宾-瓦森(Durbin-Watson)检验法

- **D-W** 检 验 是 杜 宾 (**J.Durbin**) 和 瓦 森 (G. S. Watson)于1951年提出的一种检验序列自相关的方法,该方法的假定条件是:
 - (1)解释变量X非随机;
 - (2) 随机误差项µ;为一阶自回归形式:

$$\mu_i = \rho \mu_{i-1} + \epsilon_i$$

(3)回归模型中不应含有滞后应变量作为解释变量,即不应出现下列形式:

$$Y_i = \beta_0 + \beta_1 X_{1i} + ... + \beta_k X_{ki} + \gamma Y_{i-1} + \mu_i$$

(4) 回归含有截距项

D.W. 统计量:

杜宾和瓦森针对原**假设**: H_0 : $\rho=0$, 即不存在一阶自回归,构如下造统计量:

$$D.W. = \frac{\sum_{t=2}^{n} (\widetilde{e}_t - \widetilde{e}_{t-1})^2}{\sum_{t=1}^{n} \widetilde{e}_t^2}$$

该统计量精确的分布很难得到。

但是,他们成功地导出了临界值的下限 d_L 和上限 d_U ,且这些上下限只与样本的容量n和解释变量的个数k有关,而与解释变量X的取值无关。

D.W检验步骤:

- (1) 计算DW值
- (2) 给定 α ,由n和k的大小查DW分布表,得临界值 d_{L} 和 d_{LL}
- (3) 比较、判断

若 0<D.W.<d_L 存在正自相关

不能确定 $d_{I} < D.W. < d_{II}$

 d_{U} < D.W. < 4 一 d_{U} 无自相关

4-d_U <D.W.<4-d_L 不能确定

4-**d**_I <**D**.W.<**4** 存在负自相关

特殊情况:

展开D.W.统计量:

里:
$$D.W. = \frac{\sum_{t=2}^{n} (\widetilde{e}_t - \widetilde{e}_{t-1})^2}{\sum_{t=1}^{n} \widetilde{e}_t^2}$$

$$D.W. = \frac{\sum_{t=2}^{n} \widetilde{e}_{t}^{2} + \sum_{t=2}^{n} \widetilde{e}_{t-1}^{2} - 2\sum_{t=2}^{n} \widetilde{e}_{t} \widetilde{e}_{t-1}}{\sum_{t=1}^{n} \widetilde{e}_{t}^{2}}$$

$$(*)$$

当 n 较大时, $\sum_{t=2}^{n} \tilde{e}_{t}^{2}$, $\sum_{t=2}^{n} \tilde{e}_{t-1}^{2}$, $\sum_{t=1}^{n} \tilde{e}_{t}^{2}$ 大致相等, 则 (*) 可以简化为:

$$D.W. \approx 2(1 - \frac{\sum_{t=2}^{n} \widetilde{e}_{t} \widetilde{e}_{t-1}}{\sum_{t=1}^{n} \widetilde{e}_{t}^{2}}) \approx 2(1 - \rho)$$

$$D.W. \approx 2(1 - \frac{\sum_{t=2}^{n} \widetilde{e}_{t} \widetilde{e}_{t-1}}{\sum_{t=1}^{n} \widetilde{e}_{t}^{2}}) \approx 2(1 - \rho)$$

这里,

$$\sum_{t=2}^{n} \widetilde{e}_{t} \widetilde{e}_{t-1} / \sum_{t=1}^{n} \widetilde{e}_{t}^{2} \approx \sum_{t=2}^{n} \widetilde{e}_{t} \widetilde{e}_{t-1} / \sum_{t=2}^{n} \widetilde{e}_{t}^{2} = \rho$$

为一阶自回归模型

$$\mu_i = \rho \mu_{i-1} + \varepsilon_i$$

的参数估计。

如果存在完全一阶正相关,即 ρ =1,则 D.W.≈ 0 完全一阶负相关,即 ρ = -1,则 D.W.≈ 4 完全不相关, 即 ρ =0,则 D.W.≈2

4、拉格朗日乘数(Lagrange multiplier)检验

拉格朗日乘数检验克服了DW检验的缺陷,适合于高阶序列相关以及模型中存在滞后被解释变量的情形。

它是由布劳殊(Breusch)与戈弗雷(Godfrey)于1978年提出的,也被称为GB检验。

对于模型

$$Y_{i} = \beta_{0} + \beta_{1}X_{1i} + \beta_{2}X_{2i} + \dots + \beta_{k}X_{ki} + \mu_{i}$$

如果怀疑随机扰动项存在p阶序列相关:

$$\mu_{t} = \rho_{1}\mu_{t-1} + \rho_{2}\mu_{t-2} \cdots + \rho_{p}\mu_{t-p} + \varepsilon_{t}$$

作辅助回归:

$$\widetilde{e}_t = \beta_0 + \beta_1 X_{1t} + \dots + \beta_k X_{kt} + \widetilde{e}_1 \mu_{t-1} + \dots + \rho_p \widetilde{e}_{t-p} + \varepsilon_t$$

计算:

$$LM = nR^2 \sim \chi^2$$

其中, n、R²为辅助回归的样本容量、可决系数:

给定 α ,查临界值 $\chi_{\alpha}^{2}(p)$,与LM值比较,做出判断,实际检验中,可从1阶、2阶、...逐次向更高阶检验。

四、序列相关的补救

如果模型被检验证明存在序列相关性,则需要发展新的方法估计模型。

最常用的方法是广义最小二乘法(GLS: Generalized least squares)和广义差分法 (Generalized Difference)。

1、广义最小二乘法

对于模型

$$Y=X\beta+\mu$$

如果存在序列相关,同时存在异方差,即有

$$\operatorname{Cov}(\mu, \mu') = E(\mu, \mu') = \begin{bmatrix} \sigma_1^2 & \sigma_{12} & \cdots & \sigma_{1n} \\ \sigma_{21} & \sigma_2^2 & \cdots & \sigma_{2n} \\ \cdots & \cdots & \cdots & \cdots \\ \sigma_{n1} & \sigma_{n2} & \cdots & \sigma_n^2 \end{bmatrix} = \sigma^2 \Omega$$

 Ω 是一对称正定矩阵,存在一可逆矩阵D,使得

$$\Omega = DD'$$

变换原模型:

$$\mathbf{D}^{-1}\mathbf{Y} = \mathbf{D}^{-1}\mathbf{X} \boldsymbol{\beta} + \mathbf{D}^{-1}\boldsymbol{\mu}$$

$$\mathbf{Y}_{*} = \mathbf{X}_{*}\boldsymbol{\beta} + \boldsymbol{\mu}_{*} \tag{*}$$

(*)式的OLS估计:

$$\hat{\boldsymbol{\beta}}_{*} = (\mathbf{X}_{*}'\mathbf{X}_{*})^{-1}\mathbf{X}_{*}'\mathbf{Y}_{*}$$

$$= (\mathbf{X}_{*}'\mathbf{D}_{*}^{-1}\mathbf{D}_{*}^{-1}\mathbf{X})^{-1}\mathbf{X}_{*}'\mathbf{D}_{*}^{-1}\mathbf{D}_{*}^{-1}\mathbf{Y}$$

$$= (\mathbf{X}_{*}'\mathbf{\Omega}_{*}^{-1}\mathbf{X})^{-1}\mathbf{X}_{*}'\mathbf{\Omega}_{*}^{-1}\mathbf{Y}$$

这就是原模型的广义最小二乘估计量(GLS estimators), 是无偏的、有效的估计量。

如何得到矩阵 Ω ?

对Ω的形式进行特殊设定后,才可得到其估计值。 如设定随机扰动项为一阶序列相关形式

$$\mu_i = \rho \mu_{i-1} + \varepsilon_i$$

则

$$Cov(\mu, \mu') = \frac{\sigma_{\varepsilon}^{2}}{1 - \rho^{2}} \begin{pmatrix} 1 & \rho & \cdots & \rho^{n-1} \\ \rho & 1 & \cdots & \rho^{n-2} \\ \cdots & \cdots & \cdots & \cdots \\ \rho^{n-1} & \rho^{n-2} & \cdots & 1 \end{pmatrix} = \sigma^{2} \Omega$$

$$\Omega^{-1} = \frac{1}{1 - \rho^2} \begin{pmatrix} 1 & -\rho & 0 & \cdots & 0 & 0 & 0 \\ -\rho & 1 + \rho^2 & -\rho & \cdots & 0 & 0 & 0 \\ 0 & -\rho & 1 + \rho^2 & \cdots & 0 & 0 & 0 \\ \vdots & \vdots & \vdots & & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & 1 + \rho^2 & -\rho & 0 \\ 0 & 0 & 0 & \cdots & -\rho & 1 + \rho^2 & -\rho \\ 0 & 0 & 0 & \cdots & 0 & -\rho & 1 \end{pmatrix}$$

$$\mathbf{D}^{-1} = \begin{pmatrix} \sqrt{1-\rho^2} & 0 & 0 & \cdots & 0 & 0 & 0 \\ -\rho & 1 & 0 & \cdots & 0 & 0 & 0 \\ 0 & -\rho & 1 & \cdots & 0 & 0 & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & -\rho & 1 & 0 \\ 0 & 0 & 0 & \cdots & 0 & -\rho & 1 \end{pmatrix}$$

2、广义差分法

广义差分法是将原模型变换为满足OLS法的差分模型,再进行OLS估计。

如果原模型

$$Y_{i} = \beta_{0} + \beta_{1}X_{1i} + \beta_{2}X_{2i} + \dots + \beta_{k}X_{ki} + \mu_{i}$$

存在

$$\mu_{t} = \rho_{1}\mu_{t-1} + \rho_{2}\mu_{t-2} + \dots + \rho_{l}\mu_{t-l} + \varepsilon_{t}$$

可以将原模型变换为:

$$Y_{t} - \rho_{1}Y_{t-1} - \dots - \rho_{l}Y_{t-l} = \beta_{0}(1 - \rho_{1} - \dots - \rho_{l}) + \beta_{1}(X_{1t} - \rho_{1}X_{1t-1} - \dots - \rho_{l}X_{1t-l}) + \dots + \beta_{k}(X_{kt} - \rho_{1}X_{kt-1} - \dots - \rho_{l}X_{kt-l}) + \varepsilon_{t}$$

该模型为广义差分模型,不存在序列相关问题。 可进行**OLS**估计。

注意:

• 广义差分法就是上述广义最小二乘法,但是却损失了部分样本观测值。

如:一阶序列相关的情况下,广义差分是估计

$$Y_{t} - \rho Y_{t-1} = \beta_{0}(1 - \rho) + \beta_{1}(X_{1t} - \rho X_{1t-1}) + \dots + \beta_{k}(X_{kt} - \rho X_{kt-1}) + \varepsilon_{t}$$
$$t = 2, 3, \dots, n$$

这相当于
$$\mathbf{D}^{-1} = \begin{pmatrix} \sqrt{1-\rho^2} & 0 & 0 & \cdots & 0 & 0 & 0 \\ -\rho & 1 & 0 & \cdots & 0 & 0 & 0 \\ 0 & -\rho & 1 & \cdots & 0 & 0 & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & -\rho & 1 & 0 \\ 0 & 0 & 0 & \cdots & 0 & -\rho & 1 \end{pmatrix}$$

去掉第一行后左乘原模型 $Y=X\beta+\mu$ 。即运用了GLS法,但第一次观测值被排除了。

3、随机误差项相关系数的估计

应用广义最小二乘法或广义差分法,必须已知随机误差项的相关系数p₁, p₂, ..., p_L。

实际上,人们并不知道它们的具体数值,所以必须首先对它们进行估计。

常用的估计方法有:

- 科克伦-奥科特(Cochrane-Orcutt) 迭代法。
- 杜宾(durbin)两步法

(1) 科克伦-奥科特迭代法。

以一元线性模型为例:

首先,采用OLS法估计原模型

$$Y_i = \beta_0 + \beta_1 X_i + \mu_i$$

得到的μ的"近似估计值",并以之作为观测值使用OLS法估计下式

$$\mu_{i} = \rho_{1} \mu_{i-1} + \rho_{2} \mu_{i-2} + \dots \rho_{L} \mu_{i-L} + \varepsilon_{i}$$

得到 $\hat{\rho}_1,\hat{\rho}_2,...,\hat{\rho}_l$,作为随机误差项的相关系数 $\rho_1,\rho_2,...,\rho_l$ 的第一次估计值。

其次,将 $\hat{\rho}_1$, $\hat{\rho}_2$,..., $\hat{\rho}_L$ 代入广义差分模型

$$Y_{i} - \rho_{1}Y_{i-1} - \dots - \rho_{l}Y_{i-l} = \beta_{0}(1 - \hat{\rho}_{1} - \dots - \hat{\rho}_{l}) + \beta_{1}(X_{i} - \hat{\rho}_{1}X_{i-1} - \dots - \hat{\rho}_{l}X_{i-l}) + \varepsilon_{i}$$

$$i = 1 + l, 2 + l, \dots, n$$

进行OLS估计,得到 $\widehat{\beta_0}$, $\widehat{\beta_1}$

再次,将 $\hat{\beta_0}$, $\hat{\beta_1}$ 代回原模型 $Y_i = \beta_0 + \beta_1 X_i + \mu_i$ 求出 μ_i 新的"近拟估计值",并以之作为样本观测值,再次估计

$$\mu_{i} = \rho_{1} \mu_{i-1} + \rho_{2} \mu_{i-2} + \dots \rho_{L} \mu_{i-L} + \varepsilon_{i}$$

得到 $\rho_1, \rho_2, ..., \rho_L$ 的第二次估计值 $\hat{\rho}_1, \hat{\rho}_2, ..., \hat{\rho}_L$

类似地,可进行第三次、第四次迭代。

关于迭代的次数,可根据具体的问题来定。

一般是事先给出一个精度,当相邻两次 ρ_1, ρ_2 , ..., ρ_L 的估计值之差小于这一精度时,迭代终止。

实践中,有时只要迭代两次,就可得到较满意的结果。两次迭代过程也被称为科克伦-奥科特两步法。

注意:

- 如果能够找到一种方法,求得Ω或各序列相关系数ρ_j的估计量,使得GLS能够实现,则称为可行的广义最小二乘法(FGLS, Feasible Generalized Least Squares)。
- FGLS估计量,也称为可行的广义最小二乘估计量(feasible general least squares estimators)
- 可行的广义最小二乘估计量不再是无偏的,但却是一致的,而且在科克伦-奥科特迭代法下,估计量也具有渐近有效性。
- 前面提出的方法,就是FGLS

五、案例:中国商品进口模型

我们主要研究中国商品进口与国内生产总值的关系。(下表)。

表 4.2.1 1978~2001年中国商品进口与国内生产总值

	77	I		2 · · · • · · · · · · · · · · · · · · ·	
	国内生产总值	商品进口		国内生产总值	商品进口
	GDP	M		GDP	M
	(亿元)	(亿美元)		(亿元)	(亿美元)
1978	3624. 1	108.9	1990	18547. 9	533. 5
1979	4038. 2	156.7	1991	21617.8	637.9
1980	4517.8	200.2	1992	26638. 1	805.9
1981	4862.4	220.2	1993	34634. 4	1039.6
1982	5294. 7	192.9	1994	46759. 4	1156. 1
1983	5934. 5	213.9	1995	58478. 1	1320.8
1984	7171.0	274. 1	1996	67884.6	1388.3
1985	8964.4	422.5	1997	74462. 6	1423.7
1986	10202.2	429.1	1998	78345. 2	1402.4
1987	11962.5	432.1	1999	82067.46	1657
1988	14928.3	552.7	2000	89442. 2	2250.9
1989	16909.2	591.4	2001	95933. 3	2436.1

资料来源:《中国统计年鉴》(1995、2000、2002)。

1. 通过OLS法建立如下中国商品进口方程:

$$\hat{M}_t = 152.91 + 0.02 GDP_t$$
 (2. 32) (20. 12)
$$R^2 = 0.948 \quad \overline{R}^2 = 0.946 \quad \text{SE} = 154.9 \quad \text{DW} = 0.628$$

2. 进行序列相关性检验。

• DW检验

取 $\alpha=5\%$,由于n=24,k=2(包含常数项),查表得:

$$d_l = 1.27, d_u = 1.45$$

由于 $DW=0.628 < d_l$, 故:存在正自相关。

• 拉格朗日乘数检验

2阶滞后:
$$\widetilde{e}_{t} = 6.593 - 0.0003GDP_{t} + 1.094\widetilde{e}_{t-1} - 0.786\widetilde{e}_{t-2}$$
 (0.23) (-0.50) (6.23) (-3.69) $\mathbb{R}^{2}=0.6614$

于是,LM=22×0.6614=13.89

取 $\alpha=5\%$, χ^2 分布的临界值 $\chi^2_{0.05}(2)=5.991$

$$LM > \chi^2_{0.05}(2)$$
 故:存在自相关

3阶滞后:

$$\widetilde{e}_{t} = 6.692 - 0.0003GDP + 1.108\widetilde{e}_{t-1} - 0.819\widetilde{e}_{t-2} + 0.032\widetilde{e}_{t-3}$$

$$(0.22) \quad (-0.497) \qquad (4.541) \qquad (-1.842) \qquad (0.087)$$

$$R^{2} = 0.6615$$

于是,LM=21×0.6615=14.55

取 α =5%, χ^2 分布的临界值 $\chi^2_{0.05}(3)$ =7.815 LM > $\chi^2_{0.05}(3)$

表明:存在正自相关;但ě_{t-3}的参数不显著,说明不存在3阶序列相关性。

3、运用广义差分法进行自相关的处理

第一步,估计p

$$\rho_1 = 0.938$$
 $\rho_2 = -0$

第二步,作差分变换:

$$M_t^* = M_t - (0.938M_{t-1} - 0.469M_{t-2})$$

$$GDP_t^* = GDP_t - (0.938GDP_{t-1} - 0.469GDP_{t-2})$$

则M*关于GDP*的OLS估计结果为:

$$\hat{M}_{t}^{*} = 86.18 + 0.020GDP_{t}^{*}$$

$$(2.76) \quad (16.46)$$
 $R^{2} = 0.9313 \quad \overline{R}^{2} = 0.9279 \quad \text{D.W.=1.583}$

取 $\alpha=5\%$,DW> $d_u=1.43$ (样本容量24-2=22)

表明: 己不存在自相关

为了与OLS估计结果对比, 计算 β :

$$\hat{\beta}_0 = \hat{\beta}_0^* / (1 - \hat{\rho}_1 - \hat{\rho}_2) = 86.18 / (1 - 0.938 + 0.469) = 162.30$$

于是原模型为:

$$\hat{M}_{t} = 162.30 + 0.020 GDP_{t}$$

与OLS估计结果的差别只在截距项: $\hat{M}_t = 152.91 + 0.02GDP_t$

例1. 请判断下列各陈述是否正确:

- (1) 当存在自相关时,普通最小二乘法估计1 (biased) 且失去有效性(inefficient)。
- (2) 在自回归模型中,由于某些解释变量是被解后变量(lagged),如:

$$y_t = \beta_1 + \beta_2 x_t + \beta_3 y_{t-1} + u_t$$

那么杜宾—沃森d法不适用。

- (3) 在杜宾—沃森 d 检验法中,我们假定误差项方差(homoscedastic)。
- (4) 在用一阶差分法消除自相关时,我们假定自为-1

例2 $\hat{y}_{t} = 1.3 + 9.23x_{1t} + 1.8x_{2t} - 4.8x_{3t} + 11.9x_{4t}$

写出 D-W 检验的的步骤,并根据给出的数值,判断

例3 5. 为研究劳动力在制造业中所占比率的变1得到以下两种回归推导(利用美国 1949—1964 年度数模型 $A:\hat{Y}_t=0.4529-0.0041t$ $R^2=0.5484$

(-3.9608)

模型 B: $\hat{Y}_t = 0.4786 - 0.00127t + 0.0005t^2$

(-3.2724) (2.7777)

 $R^2 = 0.6629$, d = 1.82

其中,Y代表劳动力比率,t代表(财间)5)

请回答以下问题:

- (1)模型 A 或 B 中存在自相关吗?
- (2) 加果植型 4 中存在自相关, 而植型 R 中不存;

例4 6. 对模型

$$Y = X\beta + U$$

已进行了最小二乘估计,其中X为 $(n\times k)$ 矩阵,n=2已知

$$\hat{\rho} = \frac{\sum \hat{u}_{t} \hat{u}_{t-1}}{\sum \hat{u}_{t-1}^{2}} = 0.5$$

$$\hat{D}' \hat{D} = 40 . \quad \hat{u}_{t-1}^{2} = 1 . \quad \hat{u}_{t-1}^{2} = 4$$

例5 _0. 已知模型 $y_t = \alpha + \beta x_t + \epsilon_t$, 一阶自相关 $\epsilon_t = 0$. 6,样本数据 t = 0.

$$y_t = 4, 8, 6, 2, 9$$

 $y_t = 4, 8, 6, 3, 9$ $t = 1, 2, 3, 4, 5$.
 $x_t = 2, 5, 2, 1, 10$ $t = 1, 2, 3, 4, 5$.

请回答以下问题:

(1) 计算变换后的 Y^* 和 X^* ($Y^* = BY, X^* =$

$$\begin{pmatrix} \hat{\alpha} \\ \hat{\beta} \end{pmatrix} = (X^* / X^*)^{-1} X^* / Y^*$$

$$(X^* / X^*)^{-1} = \begin{bmatrix} 1.07 & -0.6 \\ -0.06 & 0.05 \end{bmatrix}$$

$$\hat{\alpha} = 2.26 \qquad \hat{\beta} = 0.8$$

作业: _. 下表是某地区年消费(y)和可支配

年份	У	\boldsymbol{x}	年份	у
1(1985)	12.3	12.6	7	21.1
2	14.0	14.3	8	22.4
3	16.3	16.8	9	23.8
4	17.9	19.0	10	25.2
5	18.8	20.3	11	26.3
6	19.9	21.2	12	28.0

应用 OLS 法得如下结果:

$$\hat{y} = 1.09 + 0.89x$$

$$R^2 = 0.998$$

请回答以下问题:

7.24. 答:

(1) 残差
$$\hat{u}_t = -0.004$$
 0.183 0.258 -0.1 -0.3 -0.015 -0.139 -0.163 -0.098 0

$$d = \frac{\sum_{t=2}^{12} (\hat{u}_t - \hat{u}_{t-1})^2}{\sum_{t=2}^{12} \hat{u}_t^2} = \frac{0.445967}{0.411722} = 1.083175$$

0. $971 = d_L < d = 1.083175 < d_u = 1.331$

不能确定是否具有自相关性。

(2)作变换

利用杜宾两步法:

$$\hat{y}_t = 0.39787 + 0.820919x_t + 0.490834y_{t-1} - 0.$$

则 $\hat{\rho} = 0.490834$ 。作差分

$$y_{t}^{*} = y_{t} - 0.490834y_{t-1}$$

 $x_{t}^{*} = x_{t-1} - 0.490834x_{t-1}$

对变换后的数据应用 OLS 法,估计模型 $y_t^* = \alpha^*$ 得回归方程:

$$\hat{y}_{t}^{*} = 0.738392 + 0.868463x_{t}^{*}$$
 $R^{2} = 0.996$

$$\alpha^{*} = \frac{\alpha}{1 - \rho} = \frac{0.738392}{1 - 0.490834} = 1.450198$$

校正后的回归方程:

9. 26. 设模型为

$$y_t = \beta_0 + \beta_1 x_t + u_t$$

 u_t 具有一阶线性自相关: $u_t=0.8u_{t-1}+v_t$,其中 v_t 满足本假定.变量的观测值如下表所示.

t	1	2	3	4	5
y_t	10	14	15	20	22
x_t	6	8	10	14	16

9.26. 答:作差分:

$$y_t - 0.8y_{t-1} = 0.2\beta_0 + \beta_1(x_t - 0.8x_{t-1}) + (u_t - y_t^* = y_t - 0.8y_{t-1}) + (u_t - y_t^* = y_t - 0.8y_{t-1}) + (u_t - y_t^* = x_t - y_t^* = x_t^* + y_t^*$$

则 $y_t^* = \alpha + \beta_1 x_t^* + y_t^*$ 对此模型应用($\hat{y}_t^* = 1.275 + 1.061x_t^*$ $R^2 = 0.889$ (0.881) (0.216) $D - W = 2.5$

课堂练习

5 在对英国如何按要素成本对最终产品定价的一项研究中,根据 19: 度数据,得到如下结果:

$$\widehat{PF_t} = 2.033 + 0.273W_t - 0.521X_t + 0.256M_t + 0.028M_{t-1} + 0.1$$

 $se=(0.992) \quad (0.127) \quad (0.099) \quad (0.024) \quad (0.039) \quad (0.127)$
 $R^2 = 0.984 \quad d = 0.0000$

其中 PF=按要素成本定价的最终产品价格,W = 每个雇员的工薪,X = 每个就值,M=进口价格, $M_{\leftarrow 1}$ = 滞后一年的进口价格,以及 $PF_{\leftarrow 1}$ = 前一年按要素成价格。①