Detecting individual-level deviations in brain morphology with Layerwise Relevance Propagation

Esten Høyland Leonardsen June 14, 2022

Overview¹

- Build a pipeline for producing phenotype-specific, individual-level deviation-maps from structural MRIs using a CNN and LRP
- 2. Validate the methodology in dementia patients
- 3. Application (Schizophrenia?)

Layerwise Relevance Propagation recap

Dataset	Controls	Patients	
AddNeuroMed	MMSE ≥ 24	MMSE < 19	
ADNI	Group = CN	Group = AD	
AIBL	Group = DXNORM	Group ∈ {DXAD, DXOTHDEM}	
CADDementia	?	?	
Demgen	-	$\mathrm{DX} \in \{\mathrm{AD,OtherDem,UnspecDem,VaD}\}$	
MIRIAD	Group = Control	Group = AD	
OASIS3	NORMCOG = 1	NORMCOG = 0 & DEMENTED = 1	
StrokeMRI	Group = Control	-	
ТОР	diagnosis = CTRL	-	

Binary SFCN

Parameterization

Augmentation	Light augmenter	Heavy augmenter	
Flip	0.5,0.0,0.0 ⁽¹⁾	0.5,0.0,0.0 ⁽¹⁾	
Shift	[-5,5] ⁽²⁾	[-5,5] ⁽²⁾	
Zoom	-	[-0.05,0.05] ⁽²⁾	
Rotation	-	[-5,5] ⁽²⁾	
Noise	-	[0, 0.1] ⁽²⁾	
Intensity	-	[0, 0.2] ⁽²⁾	
Blur	-	3 ⁽³⁾ (0.2) ⁽²⁾	
Contrast	-	?	
Crop box (size)	[0, 50] ⁽²⁾	[0, 50] ⁽²⁾	

⁽¹⁾ Probability of occuring per image per epoch

⁽²⁾ Parameter drawn from range per image per epoch (3) Fixed kernel size

Dementia: Predictive performance

Accuracy: 83.88%

Dementia: Predictive performance

Site	Size	AUC	Accuracy
OASIS3 3.0T	430	0.841	76.9
ADNI 1.5T	300	0.915	87.0
ADNI 3.0T	266	0.951	88.3
Oslo GE750	210	0.915	82.8
AIBL Site 1	90	0.920	87.7
ANM GE	72	0.853	81.9
MIRIAD	32	1.00	100
AIBL Site 2	22	0.892	86.3
ANM Picker	10	0.840	80.0
OASIS3 1.5T	8	0.812	75.0

LRP-0:
$$R_{j}^{l} = \sum_{k} \frac{a_{j}w_{jk}}{\sum_{0,j} a_{j}w_{jk}} R_{k}^{(l+1)}$$
LRP- ϵ :
$$R_{j}^{l} = \sum_{k} \frac{a_{j}w_{jk}}{\sum_{0,j} a_{j}w_{jk} + sign(a_{j}w_{jk}) * \epsilon} R_{k}^{(l+1)}$$
LRP- $\alpha\beta$:
$$R_{j}^{l} = \sum_{k} \alpha \frac{a_{j}w_{jk}^{+}}{\sum_{0,j} a_{j}w_{jk}} - \beta \frac{a_{j}w_{jk}^{-}}{\sum_{0,j} a_{j}w_{jk}} R_{k}^{(l+1)}$$

Layer	LRP Strategy	
Input	-	
Conv3D	{flat: True}	
MaxPooling3D	-	
Conv3D	{flat: True}	
MaxPooling3D	-	
Conv3D	{α: 1, β: 0}	
MaxPooling3D	-	
Conv3D	{α: 1, β: 0}	
MaxPooling3D	-	
Conv3D	{α: 1, β: 0}	
MaxPooling3D	-	
Conv3D	{α: 1, β: 0}	
GlobalAveragePooling3D	-	
Dropout	-	
Dense	{ε: 0.25}	

Average

Standard deviation

Dementia model

Sex model

Dementia model with randomized images

Model with randomized weights

Neuroquery

NeuroQuery

Relevance

Randomized images

Relevance

Relevance

Randomized weights

Relevance

Iteration 0

Dementia model

Iteration 0

Iteration 0

Dementia model

0.93

Iteration 0

Dementia model

0.93

0.93 0.87

35

Predictive accuracy as a function of iterative masking

Botherations

- 4 validations:
 - 1. Spatial correlation: Seems qualitatively better then what is quantitatively shown.
 - 2. Region-wise correlation: Lacks a good ground truth, not quantitative.
 - 3. Individual-level specificity: ???
 - 4. Iterative predictions: Seems solid, but circular.
- How does the predictive performance affect the trust in the relevance maps?