4.14 (4) (3)
$$F_1: (\forall x)(P(x) \to (\forall y)(Q(y) \to \neg L(x, y)))$$

$$F_2: (\exists x)(P(x) \land (\forall y)(R(y) \rightarrow L(x, y)))$$

$$G: (\forall x)(R(x) \rightarrow \neg Q(x))$$

解: 首先将 F_1 , F_2 和 $\neg G$ 化为子句集:

①
$$\neg P(x) \lor \neg Q(y) \lor \neg L(x, y)$$

 F_2 :

- 2 P(a)
- $\neg G$:
- 4 R(b)
- $\bigcirc Q(b)$

然后进行归结:

⑥
$$\neg Q(y) \lor \neg L(a, y)$$

①② $\{a/x\}$

$$\bigcirc$$
 $L(a,b)$

 $34 \{b/z\}$

$$\otimes$$
 $\neg L(a,b)$

 $56 \{b/y\}$

78 所以, $G \in F_1$ 和 F_2 的逻辑结论。

4.15(1) $\{a / x, b / y\}$

- (2) $\{f(x) / y, b / z\}$
- (3) P(f(x), y), P(y, f(b))

解:
$$\diamondsuit \sigma_0 = \varepsilon, S_0 = \{P(f(x), y), P(y, f(b))\}$$
。

① 差异集为 $\{f(x), y\}$, 做替换 $\{f(x)/y\}$, 则

$$\sigma_1 = \sigma_0 \circ \{f(x)/y\} = \{f(x)/y\}$$

$$S_1 = S_0 \sigma_1 = \{ P(f(x), f(x)), P(f(x), f(b)) \}$$

② 差异集为 $\{x,b\}$, 做替换 $\{b/x\}$, 则

$$\sigma_2 = \sigma_1 \circ \{b/x\} = \{f(b)/y, b/x\}$$

$$S_2 = S_1 \sigma_2 = \{ P(f(b), f(b)) \}$$

已经是单元集,所以原子句集可合一,且最一般合一为: $\{f(b)/y,b/x\}$ 。

(4) P(f(y), y, x), P(x, f(a), f(b))

解:
$$\diamondsuit \sigma_0 = \varepsilon$$
, $S_0 = \{P(f(y), y, x), P(x, f(a); f(b))\}$.

① 差异集为 $\{f(y),x\}$, 做替换 $\{f(y)/x\}$, 则

$$\sigma_1 = \sigma_0 \circ \{f(y)/x\} = \{f(y)/x\}$$

$$S_1 = S_0 \sigma_1 = \{ P(f(y), y, f(y)), P(f(y), f(a), f(b)) \}$$

② 差异集为 $\{y, f(a)\}$, 做替换 $\{f(a)/y\}$, 则

$$\sigma_2 = \sigma_1 \circ \{f(a)/y\} = \{f(f(a))/x, f(a)/y\}$$

$$S_2 = S_1 \sigma_2 = \{P(f(f(a)), f(a), f(f(a))), P(f(f(a)), f(a), f(b))\}$$

- ③ 差异集为 $\{f(a),b\}$ 。由于其中不存在变量,所以原子句集不可合一。
- (5) P(x, y), P(y, x)

解:
$$\diamondsuit \sigma_0 = \varepsilon, S_0 = \{P(x, y), P(y, x)\}$$
。

① 差异集为 $\{x,y\}$, 做替换 $\{y/x\}$, 则

$$\sigma_1 = \sigma_0 \circ \{y/x\} = \{y/x\}$$

$$S_1 = S_0 \sigma_1 = \{ P(y, y) \}$$

已经是单元集,所以原子句集可合一,且最一般合一为: $\{y/x\}$ 。