

Blockchain Principles and Applications

Amir Mahdi Sadeghzadeh, PhD

Data and Network Security Lab (DNSL) Trustworthy and Secure AI Lab (TSAIL)

Recap

Networking Requirements

No centralized server (single point of failure, censorship)

Key Primitive

Broadcast blocks and transactions to all nodes

Robustness

some nodes go offline new nodes join

Types of Network Architecture

Client server

Server stores most of the data

Peer to Peer

Each node acts as a client and a server

BitTorrent, Napster

Peer discovery

- DNS seed nodes (Hard coded in the codebase)
- Easy to be compromised, do not trust one seed node exclusively
- Hardcoded peers (fallback)
- Ask connected peers for additional peers

Gathering additional peers

Addr: contains list of up to 1000

nodes

Bitcoin network

TCP connection with peers

At most 8 outbound TCP connections

- May accept up to 117 inbound TCP connections
- Maintains a large list of nodes (IP, port) on the bitcoin network

Establishes connection to a subset of the stored nodes

Peer-2-Peer Networking (Continue)

Efficient Networking

Trusted networks

- Privacy
 - Can link transaction source to IP address

- Security
 - Plausible deniability for forking
 - Eclipse attacks

Trusted Networks

• FRN (Fast relay network): Hub and spoke model, trusted servers, servers are fast

Trusted Networks: Falcon

Cut through routing for servers, only verify headers before forwarding

How can users be deanonymized?

What about the peer-to-peer network?

Public Key ← IP Address

Dandelion

Deanonymization Analysis

Pr(detection)

Redesign for Anonymity

Dandelion

Attacks on the Network Layer

What can go wrong?

Flooding Protocols

Trickle (pre-2015)

Diffusion (post-2015)

d-regular trees

Fraction of spies p = 0

Arbitrary number of connections θ

Anonymity Metric

What are we looking for?

What can we control?

Given a graph, how do we spread content?

What is the underlying graph topology?

How often does the graph change?

Spreading Protocol: Dandelion

Dandelion Network Policy

Given a graph, how do we spread content? What is the anonymity graph topology?

How often does the graph change?

Dynamic

Static

Alternative solutions

Connect through Tor

I2P Integration (e.g. Monero)

Transactions

Bitcoin blockchain: a sequence of block headers, 80 bytes each

Bitcoin blockchain: a sequence of block headers, 80 bytes each

time: time miner assembled the block. Self reported. (block rejected if too far in past or future)

bits: proof of work difficultynonce: proof of work solution

for choosing a proposer

Merkle tree: payer can give a short proof that Tx is in the block

new block every ≈10 minutes.

An example

			Tx data	
Height	Mined	Miner	Size	<u>#Tx</u>
648494	17 minutes	Unknown	1,308,663 bytes	1855
648493	20 minutes	SlushPool	1,317,436 bytes	2826
648492	59 minutes	Unknown	1,186,609 bytes	1128
648491	1 hour	Unknown	1,310,554 bytes	2774
648490	1 hour	Unknown	1,145,491 bytes	2075
648489	1 hour	Poolin	1,359,224 bytes	2622

Block 648493

Timestamp	2020-09-15 17:25
Height	648493
Miner	SlushPool (from coinbase Tx)
Number of Transactions	2,826
Difficulty (D)	17,345,997,805,929.09 (adjusts every two weeks)
Merkle root	350cbb917c918774c93e945b960a2b3ac1c8d448c2e67839223bbcf595baff89
Transaction Volume	11256.14250596 BTC
Block Reward	6.25000000 BTC
Fee Reward	0.89047154 BTC (Tx fees given to miner in coinbase Tx)

This lecture

View the blockchain as a sequence of Tx (append-only)

Tx structure (non-coinbase)

Example

Example

Validating Tx2

Miners check (for each input):

program from funding Tx: under what conditions can UTXO be spent

1. The program ScriptSig | ScriptPK returns true

2. TxID | index is in the current UTXO set

sum input values ≥ sum output values

After Tx2 is posted, miners remove UTXO₂ from UTXO set

Resources

- ECE/COS 470, Pramod Viswanath, Princeton 2024
- CS251, Dan Boneh, Stanford 2023