# Introduction to ANOVA

#### **Dr Tom Ilvento**

Department of Food and Resource Economics



#### **ANOVA**

- ANOVA provides a strategy to compare two or more population means associated with various treatments
- It is used when we have
  - A Dependent Variable (called a Response Variable) which is measured continuously
  - One or more Factors levels of one or more categorical variables, thought of as Independent Variables
    - independent variables are thought to influence the dependent variable
    - E.g. treatment versus control; group membership; different levels of a treatment

#### **Overview**

- Our next set of lectures provides an introduction to ANOVA and Experimental Design
- This is a direct extension of the difference of means test we focused on earlier - ANOVA will do difference of means tests
- ANOVA is heavily used in Designed Experiements
- ANOVA will now allow us to compare multiple groups, not just two
- In order to do this, we have to be able to make some assumptions - equal variances and such
- This lecture will get us started with some terms and what is a designed experiment

2

#### **ANOVA**

- ANOVA is used heavily in experimental designs in the biological sciences
  - Treatment versus control groups
  - Levels of treatment of a drug
  - Levels of applications of fertilizers or pesticides
- It is possible to have both continuous and categorical independent variables
- Its origins were in agricultural studies, but it applications can now be found in biological and health related research; business; and economics

# Designed Experiment versus an Observational Study

#### Designed Experiment

- The researcher manipulates the treatments and randomly assigns subjects to the treatments
- The specification of the treatments and the way experimental units are assigned to treatments is under the control of the researcher

#### Observational Study

- The researcher observes the treatments and the response on a sample of experimental units
- In essence we sample from a population where the treatments are already present

5

7

## Elements of a Designed Experiment

- Response Variable: the variable of interest to be measured in the experiment. Also known as the dependent variable.
- Factors: variables which are thought to influence the response variable
  - Quantitative
  - Qualitative
- Factor Levels: the levels of the factor that are experimentally manipulated
- In a single factor experiment, the factor levels can also be called the treatments

6

# Elements of a Designed Experiment

- Treatments: when two or more factors are utilized, the treatments are the combinations of factor levels used in the experiment.
- Factor 1: fertilizer (low; medium; high)
- Factor 2: water (low; high)
- The Treatments are:
  - Treatment 1: low fertilizer, low water
  - Treatment 2: low fertilizer, high water
  - Treatment 3: medium fertilizer, low water
  - And so forth.....
- A special treatment that is used as a benchmark to compare the other treatments is called the control treatment.

# Elements of a Designed Experiment

- Experimental Unit: the physical entity to which each treatment is randomly assigned
- Measurement Unit: the physical entity from which a measurement is taken.
- Replications: it is best to repeat the treatment on more than one experimental unit to get a better measurement of an effect.
  - If there is only one unit per treatment it is a single replication
  - We generally prefer to randomly assign the treatment to several experimental units.

### **Completely Randomized Design**

- The treatments are randomly assigned to the experimental units
- Or independent random samples of experimental units are selected from target populations for each treatment
- Many texts refer to both designed and observational studies as being randomized designs
- Most think of the best use of ANOVA for designed experiments

9

# An example of a designed experiment: shrimp weight gain

- The treatments are (temperature, salinity):
  - (25, 10%) (25, 20%) (25, 30%) (25, 40%)
  - (30, 10%) (30, 20%) (30, 30%) (30, 40%)
  - (35, 10%) (35, 20%) (35, 30%) (35, 40%)
- Replications: 2 for each treatment

# An example of a designed experiment: shrimp weight gain

- A researcher is studying the conditions under which commercially raised shrimp reach maximum weight gain.
- Three water temperatures (25°, 30°, 35°) and four water salinity levels (10%, 20%, 30%, 40%) are examined
- While there are many other factors which influence shrimp growth, such as density of shrimp in a container, variety, and type of feeding these two are the focus of this research.
- A specific variety and size of shrimp are selected for the study.
- The a fixed density of shrimp (40 per container) are randomly assigned to the treatments in 24 experimental containers, one shrimp to a container
- After 6 weeks the individual shrimp are weighed

Taken from Statistical Methods and Data Analysis, 5th Edition, Ott and Longnecker, 2001 10

# An example of a designed experiment: shrimp weight gain

- Here is the experimental design
  - Response Variable: Weight of the shrimp in the container
  - Factors: 2 factors (temperature and salinity)
  - Treatments: 12
  - Replication: 2 per treatment
  - Experimental Unit: the container
  - Measurement Unit: the container
- Total sample size: 24
- This is an efficient design undertaken to estimate the effects of salinity and temperature on shrimp weight gain

10

П



#### Let's look at a simple problem

- I have a small data set of 5 observations for two variables.
- The difference between sample means is relatively small when compared to the variability within the sample observations
- We would say, "The effect is small relative to the variability within each sample."

| Obs     | Sample 1 | Sample 2 |  |  |
|---------|----------|----------|--|--|
| 1       | 6        | 8        |  |  |
| 2       | -1       | 1        |  |  |
| 3       | 0        | 3        |  |  |
| 4       | 4        | 7        |  |  |
| 5       | 1        | 6        |  |  |
| Sum     | 10.0     | 25.0     |  |  |
| Mean    | 2.0      | 5.0      |  |  |
| Var     | 8.5      | 8.5      |  |  |
| Std Dev | 2.9      | 2.9      |  |  |



14

### Look at the result of the Difference of Means test from Excel

- The means are different
- The variances are similar so we pool the variance
- But we have a hard time rejecting a Null Hypothesis that the two means are equal to each other
- The t\* = 1.627
- The p-value for a two-tailed test is .142
- We cannot reject Ho:  $\mu_2 \mu_1 = 0$

#### t-Test: Two-Sample Assuming Equal Variances

|                        | Sample 2 | Sample 1 |
|------------------------|----------|----------|
| Mean                   | 5.00     | 2.00     |
| Variance               | 8.50     | 8.50     |
| Observations           | 5        | 5        |
| Pooled Variance        | 8.5      |          |
| Hypothesized Mean Diff | 0        |          |
| df                     | 8        |          |
| t Stat                 | 1.627    |          |
| P(T<=t) one-tail       | 0.071    |          |
| t Critical one-tail    | 1.860    |          |
| P(T<=t) two-tail       | 0.142    |          |
| t Critical two-tail    | 2.306    |          |

15

### Compare those results to this data

- I have the same mean differences
- But the spread of the data are much different there is no overlapping of values
- The difference between sample means is relatively large when compared to the variability within the sample observations

| Obs     | Sample 3 | Sample 4 |  |
|---------|----------|----------|--|
| 1       | 2        | 5        |  |
| 2       | 3        | 5        |  |
| 3       | 2        | 5        |  |
| 4       | 2        | 4        |  |
| 5       | 1        | 6        |  |
| Sum     | 10.0     | 25.0     |  |
| Mean    | 2.0      | 5.0      |  |
| Var     | 0.5      | 0.5      |  |
| Std Dev | 0.7      | 0.7      |  |
|         |          |          |  |



16

### And when I do the difference of **Means test in Excel**

- Now it is easy to reject a Null Hypothesis that the two means are equal to each other
- The  $t^* = 6.708$
- The p-value for a two-tailed test is .000 or p < .001
- We can reject Ho:  $\mu_2 \mu_1 = 0$
- When the effect is large relative to the variances within each group, I will be better able to reject the Null Hypothesis

t-Test: Two-Sample Assuming Equal Variances

|                              | Sample 4 | Sample 3 |
|------------------------------|----------|----------|
| Mean                         | 5.00     | 2.00     |
| Variance                     | 0.50     | 0.50     |
| Observations                 | 5        | 5        |
| Pooled Variance              | 0.5      |          |
| Hypothesized Mean Difference | 0        |          |
| df                           | 8        |          |
| t Stat                       | 6.708    |          |
| P(T<=t) one-tail             | 0.000    |          |
| t Critical one-tail          | 1.860    |          |
| P(T<=t) two-tail             | 0.000    |          |
| t Critical two-tail          | 2.306    |          |

17

### **ANOVA Strategy**

- In ANOVA, we will decompose the variance of our dependent variable
  - Part due to the treatments or independent variables this part is thought to be "explained" by our model.
  - Part that is "unexplained" or random "error"
- I will adjust these variances from different sources by dividing by degrees of freedom to get an average deviation
- We will decompose the Total Sum of Squares =
  - Sum of Squares for Treatment
  - Sum of Squares for Error

$$SS(Total) = \sum_{i=1}^{n} (y_i - \overline{Y})^2$$

19

### **Example of Contrasts of Two Samples**

- One way to determine whether a difference exists between the population means is to examine the difference between the sample means and compare it to a measure of variability within the samples.
- This is what we do in a Difference of Means Test the variability is accounted for in the standard error
  - The difference of the two means is only part of the story.
  - The other part is the variability and separation of the two samples
- ANOVA uses this strategy to compare and test the difference between two or more means
  - In essence it compares the variability across group
  - To the variability within each group

18

#### **ANOVA Model**

- This is one way to look at the ANOVA model with i observations and j factor
  - levels
- Fach observation is a function of:
  - A Grand Mean
  - · The deviations of each Factor Level Mean from the Grand Mean
  - Some random error

 $Y_{ij} = \mu + \tau_{\bullet j} + \varepsilon_{ij}$ 

### **Another viewpoint**

The difference of an individual value from the Grand Mean is a function of:

$$Y_{ij} - \overline{Y} =$$

The difference of the **Factor Level Mean** from the Grand Mean **Variability Variability** between within Factor **Factor Levels Levels** 

The difference between the value and its Factor Level Mean

We want the variability between Factor Levels to be large relative to the variability within Factor Levels

21

#### **Another Data Example**

- This is some data comparing the cholesterol level of 40 males to 40 females
- We can see that the level for males is higher
- Since this a sample. I need a statistical tests to see if there is a difference
- We can do a difference of means test from JMP
  - t\* = 2.8169
  - p < .01 for a 2-tailed test
  - We can conclude there is a difference in cholesterol levels between males and females



22

24

### I can do the same analysis using **ANOVA**

**Excel: ANOVA, Single Factor** 

 ANOVA - randomized design for an observational study

size for each group Anova: Single Factor

- Response Variable: cholesterol level
- Factor: gender
  - Females
  - Males
- Experimental Units: people
- We conduct an F-test with ANOVA

Mean, variance, and sample SUMMARY



ANOVA Table with Sums of Squares breakdown

23

#### **ANOVA**

ANOVA Table with Sums of Squares breakdown

• SS Treatment 1,393.425 Between Groups

SS Error **41,846.879** Within Groups

SS Total 43,240.304

F-test Anova: Single Factor

| SUMMARY |       |           |         |           |  |  |
|---------|-------|-----------|---------|-----------|--|--|
| Groups  | Count | Sum       | Average | Variance  |  |  |
| Females | 40    | 9635.000  | 240.875 | 34589.446 |  |  |
| Males   | 40    | 15809 000 | 395 225 | 85504 640 |  |  |

| ANOVA               |             |    |            |       |         |        |
|---------------------|-------------|----|------------|-------|---------|--------|
| Source of Variation | SS          | df | MS         | F     | P-value | F crit |
| Between Groups      | 476478.450  | 1  | 476478.450 | 7.935 | 0.006   | 3.963  |
| Within Groups       | 4683669.350 | 78 | 60047.043  |       |         |        |
| Total               | 5160147.8   | 79 |            |       |         |        |

### **Summary**

- This is just an introduction to ANOVA. We will spend several lectures on the approach and some more complex models
- ANOVA comes with its own terms and jargon!
- There is a connection between the difference of means test and ANOVA - ANOVA will generate the same conclusion.
- But ANOVA will allow us to extend this to many means, not just two
- The next steps are looking at the F-distribution and the logic of the hypothesis test in ANOVA

25

#### **Extra Problem**

- An experiment is designed to examine protective coatings on frying pans.
- Four different coatings are being examined.
- Five frying pans are randomly assigned to each of the four coatings.
- A measure of abrasive resistance of the coatings is taken at three locations on each of the 20 pans.
- Identify the following for this study:
  - Response variable
  - Treatments
  - Replications
  - Experimental Unit
  - Measurement Unit
  - Total sample size

26