עיבוד שפה טבעית ש4: סיווג מסמכים (המשך)

SLP 5, Eisenstein 2-4 :פרקים

-	+	אמיתי /// חזוי
20 FN	60 TP	+
TN 10	FP 10	-

Precision = $TP/(TP+FP) \leftarrow$ כמה המודל פוגע Recall = $TP/(TP+FN) \leftarrow$ כמה המודל תופס

?מה הערך המאזן

?R איך מחזקים את

רענון - F מטריקת

- R-ס ממוצע הרמוני בין P ל- ■
- "פרמטר β קובע כמה כל חלק β פרמטר •
- יותר תפיסה זה חשוב, אבל פגיעה הרבה יותר ○
- (לא נל"פ) איתור וירוס קורונה בבדיקה מהירה תפיסה יותרחשובה
 - כמעט תמיד נשתמש במטריקה המאוזנת בכל-זאת. ○

הנוסחה:

$$F_{\beta} = \frac{\left(\beta^2 + 1\right)PR}{\beta^2 P + R}$$

β ועל F אינטואיציה על

- (format: $F_{\beta}(P,R)$)
- $F_1(0.5,0.5) = 0.5$
- $F_1(0.6,0.4) = 0.48$
- $F_1(0.8,0.2) = 0.32$
- $F_{0.5}(0.8,0.2) = 0.5$
- $F_{0.5}(0.2,0.8) = 0.24$
- $F_{0.5}(0.4,0.6) = 0.43$
- $F_2(0.2,0.8) = 0.5$

יותר β ישפיע יותר, ניקח precision-לסיכום - אם אנחנו רוצים שה

?מה קורה כשיש יותר משני תגים

NIL	λ	ב	Ж	/// חזוי אמיתי ///
5	5	20	120	Ж
20	30	60	60	ے
20	5	0	5	ړ
10	10	10	10	NIL

NIL	λ	1	א	/// חזוי אמיתי ///
5	5	20	120	א
20	30	60	60	ב
20	5	0	5	λ
10	10	10	10	NIL

הערכת סיווג מרובה-תגים

- P, R, F עבור כל תג אפשר לחשב בנפרד
- אנחנו רוצים לדווח **מספר אחד** למערכת שלנו
 - בין התגים F אפשרות א': למצע ●
- י מיצוע מאקרו (macro-averaging) אי³ א איי א איי א איי א א איי א איי א איי א איי א איי א אייני. ∘ א מייניו א נותן יותר משקל?
 - אחד F, אחשב P, R אחד
 - ין איף א אלין (micro-averaging) מיצוע מיקרו (o
 - מי מקבל כאן יותר משקל?

לימוד מכונה מפוקח: מרכיבי מסווג הסתברותי

- אופן ייצוג הקלט (פיצ'רים)●
- פונקציית סיווג (לחישוב ההסתברות של כל קלאס בהינתן הדוגמא)
- פונקציית מטרה (objective function), לפעמים תוגדר בצורה הפוכה כפונקציית הפסד (loss), שנרצה להביא למקסימום/מינימום על-פני כל הנתונים
 - אלגוריתם למידה (למעבר על דאטא האימון ושיפור פונקציית המטרה) •

(linear regression) דוגמה ללימוד מכונה מפוקח: מציאת קו מגמה

(linear regression) דוגמה ללימוד מכונה מפוקח: מציאת קו

https://playground.tensorflow.org/

Training loss 0.079

Training loss 0.538

מודל "חלש" מדי Underfitting

Training loss 0.012

מודל "חזק" מדי Overfitting

תכונה של מרחב ההשערה Hypothesis class

(features) פיצ׳רים

- הדוגמאות (i) מגיעות מאיזשהו עולם, וצריך לייצג אותן בדרך ש״מדברת״ עם אלגוריתם חישובי
 - $\mathbf{x}^{(i)}_{2}$ ו $\mathbf{x}^{(i)}_{1}$ ווי שתי קואורדינטות, $\mathbf{x}^{(i)}_{1}$ ווי במקרים הבסיסיים המצב ברור: כל נקודה נתונה ע"י
- eatures ברוב המקרים, ובטח בשפה, צריך לחלץ ייצוגים כאלה, ולדברים שחילצנו נקרא
 - לדוגמא, בטקסט ביקורת סרט, פיצ׳ר יכול להיות מספר הפעמים בהם הופיעה בטקסט המילה *טוב*.
 - (כמה פיצ׳רים מהסוג הזה צריך?) ■
 - לדוגמא, בזיהוי ישויות, פיצ׳ר יכול להיות ״האם המילה נגמרת ב-*ברג?״*
 - (כמה פיצ׳רים צפויים כאן?) ■
 - (כמה ערכים יש לכל פיצ׳ר?) ■
 - (אחרת הוא מיותר) כל פיצ׳ר יצטרך התייחסות מהפרמטרים (θ) במודל
 - (feature vector) לכן נגדיר אותם תמיד כוקטור

פיצ'רים לדוגמא במערכת סיווג

- (Bag of words) ספירת מילים
 - (Lexicons) לקסיקונים
- רשימות מילים מקוטלגות כבעלות "אופי" או "תכונה" ניתן לספור הופעות ⊙
 - (surface features) "צורת המסמך"
 - מספר מילים 🌣
 - types ספר o
 - סימני פיסוק \circ
 - \circ מבנים תחביריים
 - פיצ'רים חוץ-טקסטואליים •
 - ס (לביקורות) שם המשתמש
 - ס זמן הפרסום

(Gradient Descent, GD) ירידה בגרדיאנט

- רוב משפחות הפונקציות שניתקל בהן אינו פתירות באופן סגור ●
- עבור פונקציית מטרה קעורה וקצב "מתאים", **מובטחת התכנסות למינימום**.
- מעבר על הדאטא דוגמא-דוגמא Stochastic GD, SGD ירידה סטוכאסטית

רגרסיה לוגיסטית - לוח

הישום ישיר ל ההסתברות (אוצ) שו ההסתברות הישום

$$S(z) = \frac{1}{1 + e^{-z}}$$

$$S(z) = \frac{1}{1 + e^{-z}}$$

$$S(-z) = 1 - S(z)$$

$$= > S(z) + S(-z) = 1$$

$$\hat{y} = \sigma(\vec{F} \cdot \vec{\Theta} + 6) \qquad : \mathcal{N} \cdot \vec{\delta} \cdot \vec{\gamma} \cdot \vec{\gamma} \cdot \vec{\gamma} \cdot \vec{\delta} \cdot \vec{\gamma} \cdot \vec{\delta} \cdot \vec{\gamma} \cdot \vec{\gamma} \cdot \vec{\delta} \cdot \vec{\gamma} \cdot \vec{\gamma} \cdot \vec{\delta} \cdot \vec{\gamma} \cdot \vec{\delta} \cdot \vec{\gamma} \cdot \vec{\delta} \cdot \vec{\gamma} \cdot \vec{\gamma} \cdot \vec{\delta} \cdot \vec{\delta} \cdot \vec{\gamma} \cdot \vec{\delta} \cdot \vec{\delta}$$