Logic

Problem 1

Let F be the set of well-formed formulas with propositional variables from Prop. Define a relation, $R \subseteq F \times F$ by $(\varphi, \psi) \in R$ if $\varphi \models \psi$. Prove or give a counter-example to disprove:

- (a) *R* is a partial order.
- (b) $R \cup R^{\leftarrow}$ is an equivalence relation.
- (c) $R \cap R^{\leftarrow}$ is an equivalence relation.

- 1. R is **not** a partial order: it does not satisfy anti-symmetry. Take, for example $\varphi = p$ and $\psi = p \wedge p$. Then $(\varphi, \psi), (\psi, \varphi) \in R$, but $\varphi \neq \psi$.
- 2. $R \cup R^{\leftarrow}$ is **not** a partial order: it does not satisfy transitivity. Take, for example, $\varphi = p \land q$, $\psi = p$, and $\theta = p \land r$. Then

$$\varphi \models \psi$$
 and $\theta \models \psi$,

so we have $(\varphi, \psi), (\theta, \psi) \in R$. However

$$\varphi \not\models \theta$$
 and $\theta \not\models \varphi$

as there are truth assignments that make one formula true and the other false. So $(\varphi, \theta), (\theta, \varphi) \notin R$. Therefore, we have

$$(\varphi, \psi), (\psi, \theta) \in R \cup R^{\leftarrow}$$
, but $(\varphi, \theta) \notin R \cup R^{\leftarrow}$.

3. $R \cap R^{\leftarrow}$ is an equivalence relation. We show that $R \cap R^{\leftarrow}$ satisfies Reflexivity (R), Symmetry (S), and Transitivity (T) as follows:

Reflexivity. For any formula $\varphi \in F$, we have $\varphi \models \varphi$, so $(\varphi, \varphi) \in R$ and (trivially) $(\varphi, \varphi) \in R^{\leftarrow}$. So $(\varphi, \varphi) \in R \cap R^{\leftarrow}$ and hence it is reflexive.

Symmetry. Suppose $(\varphi, \psi) \in R \cap R^{\leftarrow}$. Then because (φ, ψ) is in R we have $(\psi, \varphi) \in R^{\leftarrow}$. Also, because (φ, ψ) is in R^{\leftarrow} we have $(\psi, \varphi) \in R$. Therefore $(\psi, \varphi) \in R \cap R^{\leftarrow}$, and so $R \cap R^{\leftarrow}$ is symmetric.

Transitivity. Supopse $(\varphi, \psi), (\psi, \theta) \in R \cap R^{\leftarrow}$. Then

$$\varphi \models \psi \quad \psi \models \theta \quad \psi \models \varphi \quad \theta \models \psi.$$

That is, every valuation that makes φ true will also make ψ true and vice-versa. And every valuation that makes ψ true, will also make θ true and vice-versa. It follows that $\varphi \models \theta$ and $\theta \models \varphi$, so $(\varphi, \theta) \in R \cap R^{\leftarrow}$. So $R \cap R^{\leftarrow}$ is transitive.

Alternatively, If $(\varphi, \psi) \in R \cap R^{\leftarrow}$, then $\varphi \models \psi$ and $\psi \models \varphi$. So φ and ψ are logically equivalent. Conversely, if φ and ψ are logically equivalent then $\varphi \models \psi$ and $\psi \models \varphi$ and so $(\varphi, \psi) \in R \cap R^{\leftarrow}$. Therefore $R \cap R^{\leftarrow}$ is the logical equivalence relation, which, from the lectures, is an equivalence relation.

Problem 2

Prove that $\neg N$ follows logically from $H \land \neg R$ and $(H \land N) \rightarrow R$.

We will show this using truth tables:

	Н	R	N	$H \wedge N$	$(H \wedge N) \to R$	$H \wedge \neg R$	$\neg N$
$\overline{v_1}$	T	Т	T	T	T	F	F
v_2	T	T	F	F	T	F	T
v_3	T	F	T	T	F	T	F
v_4	T	F	F	F	T	T	T
v_5	F	T	T	F	T	F	F
v_6	F	T	F	F	T	F	T
v_7	F	F	T	F	T	F	F
v_8	F	F	F	F	T	F	T

From the above table, we see that there is exactly one valuation, v_4 , that makes both $(H \land N) \to R$ and $H \land \neg R$ evaluate to true. That valuation makes $\neg N$ true, so

$$(H \land N) \rightarrow R, H \land \neg R \models \neg N$$

as required.

Problem 3

Consider the formulae $\phi_1=(r\to p)$ and $\phi_2=(p\to (q\vee \neg r))$. Transform the formula $\phi=(\neg q\to (\phi_1\wedge\phi_2))$ into

- (a) DNF, and
- (b) **CNF**.

Simplify the result as much as possible.

Let us first consider the truth table of ϕ .

p	q	r	ϕ_1	$ q \vee \neg r $	ϕ_2	φ
T	T	T	T	T	T	T
T	T	F	T	T	T	T
T	F	T	T	F	F	F
T	F	F	T	T	T	T
F	T	T	F	T	T	T
F	T	F	T	T	T	T
F	F	T	F	F	T	F
F	F	F	T	T	T	T

So the canonical DNF for ϕ is

$$pqr + pq\bar{r} + p\bar{q}\bar{r} + \bar{p}qr + \bar{p}q\bar{r} + \bar{p}\bar{q}\bar{r}$$
.

Examining the Karnaugh map:

We observe that the +'s can be covered by a 2 \times 2 rectangle (blue) and a 1 \times 4 rectangle (orange). So the minimal DNF for ϕ is:

$$\phi = q \vee \neg r$$
.

We note that this is also in CNF; and it is straightforward to check that the CNF obtained by finding a minimal DNF for $\neg \phi$ is identical.

Problem 4

Let $(T, \land, \lor, ', 0, 1)$ be a Boolean Algebra. Define $\oplus : T \times T \to T$ as follows:

$$x \oplus y = (x \wedge y') \vee (x' \wedge y)$$

- (a) Prove using the laws of Boolean Algebra that for all $x \in T$, $x \oplus 1 = x'$.
- (b) Prove using the laws of Boolean Algebra that $x \land (y \oplus z) = (x \land y) \oplus (x \land z)$.
- (c) Find a Boolean Algebra (and x, y, z) which demonstrates that $x \oplus (y \land z) \neq (x \oplus y) \land (x \oplus z)$

Outside of the lecture material, we need the law of idempotence:

$$x = x \land 1$$
 (Identity)
= $x \land (x \lor x')$ (Complement)
= $(x \land x) \lor (x \land x')$ (Distributivity)
= $(x \land x) \lor 0$ (Complement)
= $x \land x$ (Identity);

the law of annihilation:

$$x \wedge 0 = x \wedge (x \wedge x')$$
 (Complement)
= $(x \wedge x) \wedge x'$ (Associativity)
= $x \wedge x'$ (Idempotence)
= 0 (Identity);

and their duals (which follow from the Principle of Duality). We also observe that 1'=0 which follows directly from the uniqueness of complement (as $1 \wedge 0 = 0$ and $1 \vee 0 = 1$). For simplicity we will make extensive use of associativity and commutativity to minimize parentheses and manipulate terms.

(a)
$$x \oplus 1 = (x \wedge 1') \vee (x' \wedge 1) \\ = (x \wedge 0) \vee x' \qquad (1' = 0 \text{ and Identity}) \\ = 0 \vee x' \qquad (Annihilation) \\ = x' \qquad (Identity).$$

(b)

$$x \wedge (y \oplus z) = x \wedge ((y \wedge z') \vee (y' \wedge z))$$
 (Distributivity)
$$= (x \wedge y \wedge z') \vee (x \wedge y' \wedge z)$$
 (Distributivity)
$$= (0 \vee (x \wedge y \wedge z')) \vee (0 \vee (x \wedge y' \wedge z))$$
 (Identity)
$$= ((x \wedge y \wedge x') \vee (x \wedge y \wedge z')) \vee ((x' \wedge x \wedge z) \vee (y' \wedge x \wedge z))$$
 (Complement, Commutativity)
$$= ((x \wedge y) \wedge (x' \vee z')) \vee ((x' \vee y') \wedge (x \wedge z))$$
 Distributivity
$$= ((x \wedge y) \wedge (x \wedge z)') \vee ((x \wedge y)' \wedge (x \wedge z))$$
 De Morgan's laws
$$= (x \wedge y) \oplus (x \wedge z).$$

(c) Consider \mathbb{B} with x = z = 1 and y = 0. We have:

$$x \oplus (y \land z) = 1 \oplus (0 \land 1)$$

= $1 \oplus 0$ (Identity)
= $0'$ (from (a))
= 1.

On the other hand we have:

$$(x \oplus y) \land (x \oplus z) = (1 \oplus 0) \land (1 \oplus 1)$$
$$= 0' \land 1' \text{ (from (a))}$$
$$= 1 \land 0$$
$$= 0 \text{ (Identity)}.$$

Problem 5

- (a) How many well-formed formulas can be constructed from one \vee ; one \wedge ; two parenthesis pairs (,); and the three literals p, $\neg p$, and q?
- (b) Under the equivalence relation defined by **logical equivalence**, how many equivalence classes do the formulas in part (a) form?

Solution

- (a) We will count the number of well-formed formulas that use all symbols exactly once. We note that the parentheses are tied to the operations \wedge and \vee and there are two "shapes" of formula: $(l_1op_1(l_2op_2l_3))$ and $((l_2op_2l_3)op_1l_1)$. There are $2 \times 1 = 2$ choices for op_1, op_2 . There are $3 \times 2 \times 1 = 6$ choices for l_1, l_2, l_3 . Therefore, there are 2.2.6 = 24 formulas in total.
- (b) We note that since $(\varphi \lor \psi)$ is logically equivalent to $(\psi \lor \varphi)$ and $(\varphi \land \psi)$ is logically equivalent to $(\psi \land \varphi)$ we can reduce the 24 formulas from above to the following six (possibly not distinct) classes:

$$\begin{array}{c|cccc} I. & (p \lor (\neg p \land q)) & II. & (\neg p \lor (p \land q)) & III. & (q \lor (p \land \neg p)) \\ \hline IV. & (p \land (\neg p \lor q)) & V. & (\neg p \land (p \lor q)) & VI. & (q \land (p \lor \neg p)) \\ \end{array}$$

Since

$$(q \lor (p \land \neg p)) \equiv (q \lor \bot) \equiv q \equiv (q \land \top) \equiv (q \land (p \lor \neg p))$$

we see that III and VI are the same class.

For the other cases we have:

I
$$(p \lor (\neg p \land q)) \equiv ((p \lor \neg p) \land (p \lor q)) \equiv (\top \land (p \lor q)) \equiv (p \lor q)$$

II $(\neg p \lor (p \land q)) \equiv ((\neg p \lor p) \land (\neg p \lor q)) \equiv (\top \land (\neg p \lor q)) \equiv (\neg p \lor q)$
III $(p \land (\neg p \lor q)) \equiv ((p \land \neg p) \lor (p \land q)) \equiv (\bot \lor (p \land q)) \equiv (p \land q)$
IV $(\neg p \land (p \lor q)) \equiv ((\neg p \land p) \lor (\neg p \land q)) \equiv (\bot \lor (\neg p \land q)) \equiv (\neg p \land q)$

Each of these classes are distinct, as can be seen from the truth table:

So there are five equivalence classes.