# 無機化学

無機化学 1/22

# 目次

| 第I部   | 非金属元素・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・     | 6  |
|-------|-----------------------------------------------|----|
| 1 水素  | <u> </u>                                      | 6  |
| 1.1   | 性質 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・       | 6  |
| 1.2   | 同位体・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・       | 6  |
| 1.3   | 製法 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・       | 6  |
| 1.4   | 反応 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・       | 6  |
| 2 貴才  | ガス・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・        | 6  |
| 2.1   | 性質 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・       | 6  |
| 2.2   | 生成 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・       | 6  |
| 2.3   | ヘリウム・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・      | 6  |
| 2.4   | ネオン・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・       | 6  |
| 2.5   | アルゴン・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・      | 6  |
| 3 1   | コゲン ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・      | 7  |
| 3.1   | 単体 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・       | 7  |
| 3.1.1 | 性質・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・        | 7  |
| 3.1.2 | 製法・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・        | 7  |
| 3.1.3 | 反応・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・        | 7  |
| 3.1.4 | 塩素発生実験の装置・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・ | 8  |
| 3.1.5 | 塩素のオキソ酸・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・   | 8  |
| 3.2   | ハロゲン化水素 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・  | 8  |
| 3.2.1 | 性質・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・        | 8  |
| 3.2.2 | 製法・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・        | 8  |
| 3.2.3 | 反応・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・        | 8  |
| 3.3   | ハロゲン化銀・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・    | ç  |
| 3.3.1 | 性質・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・        | ç  |
| 3.3.2 | 製法・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・        | ç  |
| 3.4   | 次亜塩素酸塩・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・     | ç  |
| 3.4.1 | 性質・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・       | ç  |
| 3.4.2 | 製法・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・        | ç  |
| 3.5   | 水素酸カリウム ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・  | G  |
| 3.5.1 | 性質・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・       | ć  |
| 4 酸素  | E                                             | 10 |
| 4.1   | 酸素原子・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・      | 10 |
| 4.2   | 酸素 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・       | 10 |
| 4.2.1 | 性質・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・       | 10 |
| 4.2.2 | 製法・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・        | 10 |
| 4.2.3 | 反応・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・        | 10 |
| 4.3   | オゾン・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・       | 10 |
| 4.3.1 | 性質・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・        | 10 |
| 4.3.2 | 製法・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・        | 10 |
| 4.3.3 | 反応・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・        | 10 |

|   | 4.4   | 酸化物 • • • • • • • • • • • • • • • • • • •          | 11 |
|---|-------|----------------------------------------------------|----|
|   | 4.4.1 | 反応・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・             | 11 |
|   | 4.5   | 水・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・             | 11 |
|   | 4.5.1 | 性質・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・             | 11 |
|   | 4.5.2 | 反応・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・             | 11 |
| 5 | 硫黄    | 章 • • • • • • • • • • • • • • • • • • •            | 12 |
|   | 5.1   | 硫黄 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・            | 12 |
|   | 5.1.1 | 性質・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・             | 12 |
|   | 5.1.2 | 反応・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・             | 12 |
|   | 5.2   | 硫化水素・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・           | 12 |
|   | 5.2.1 | 性質・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・             | 12 |
|   | 5.2.2 | 製法・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・             | 12 |
|   | 5.2.3 | 反応・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・             | 12 |
|   | 5.3   | 二酸化硫黄(亜硫酸ガス)・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・   | 12 |
|   | 5.3.1 | 性質・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・             | 12 |
|   | 5.3.2 | 製法・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・             | 12 |
|   | 5.3.3 | 反応・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・             | 12 |
|   | 5.4   | 硫酸 • • • • • • • • • • • • • • • • • • •           | 13 |
|   | 5.4.1 | 性質・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・             | 13 |
|   | 5.4.2 | 製法・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・             | 13 |
|   | 5.4.3 | 反応・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・             | 13 |
|   | 5.5   | チオ硫酸ナトリウム(ハイポ)・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・ | 13 |
|   | 5.5.1 | 性質・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・             | 13 |
|   | 5.5.2 | 製法・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・             | 13 |
|   | 5.5.3 | 反応・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・             | 13 |
|   | 5.6   | 重金属の硫化物 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・       | 14 |
| 6 | 窒素    |                                                    | 14 |
|   | 6.1   | 窒素 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・            | 14 |
|   | 6.1.1 | 性質・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・             | 14 |
|   | 6.1.2 | 製法・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・             | 14 |
|   | 6.1.3 | 反応・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・             | 14 |
|   | 6.2   | アンモニア・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・           | 14 |
|   | 6.2.1 | 性質・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・             | 14 |
|   | 6.2.2 | 製法・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・             | 14 |
|   | 6.2.3 | 反応・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・             | 14 |
|   | 6.3   | 一酸化二窒素(笑気ガス)・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・   | 14 |
|   | 6.3.1 | 性質・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・             | 14 |
|   | 6.3.2 | 製法・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・             | 14 |
|   | 6.4   | 一酸化窒素・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・          | 14 |
|   | 6.4.1 | 性質・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・             | 14 |
|   | 6.4.2 | 製法・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・             | 15 |
|   | 6.4.3 | 反応・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・             | 15 |
|   | 6.5   | 二酸化窒素・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・          | 15 |

| 6.5.1  | 性質・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・                | 15 |
|--------|-------------------------------------------------------|----|
| 6.5.2  | 製法・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・                | 15 |
| 6.6    | 硝酸 • • • • • • • • • • • • • • • • • • •              | 15 |
| 6.6.1  | 性質・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・               | 15 |
| 6.6.2  | 製法・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・                | 15 |
| 6.6.3  | 反応・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・                | 15 |
| 7 Y :  | y                                                     | 16 |
| 7.1    | $y > \cdots$                                          | 16 |
| 7.1.1  | 性質・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・                | 16 |
| 7.1.2  | 製法・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・                | 16 |
| 7.2    | 十酸化四リン・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・            | 16 |
| 7.2.1  | 性質・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・               | 16 |
| 7.2.2  | 製法・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・                | 16 |
| 7.2.3  | 反応・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・                | 16 |
| 7.3    | リン酸・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・               | 16 |
| 7.3.1  | 性質・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・                | 16 |
| 7.3.2  | 反応・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・                | 16 |
| 8 炭素   | 素 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・                | 17 |
| 8.1    | 炭素 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・               | 17 |
| 8.1.1  | 性質・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・                | 17 |
| 8.2    | 一酸化炭素 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・            | 17 |
| 8.2.1  |                                                       | 17 |
| 8.2.2  | 製法・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・                | 17 |
| 8.2.3  | 反応・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・                | 17 |
| 8.3    | 二酸化炭素・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・             | 17 |
| 9 ケ/   | イ素・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・                | 17 |
| 9.1    | 二酸化ケイ素・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・            | 17 |
| 第II部   | 典型金属 • • • • • • • • • • • • • • • • • • •            | 18 |
| 10 アノ  | ルカリ金属・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・             | 18 |
| 10.1   | 単体 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・               | 18 |
| 10.1.1 |                                                       | 18 |
| 10.1.2 |                                                       | 18 |
| 10.1.3 | - · · -                                               | 18 |
| 10.2   | 水酸化ナトリウム(苛性ソーダ)・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・   | 18 |
| 10.2.1 |                                                       | 18 |
| 10.2.2 |                                                       | 19 |
| 10.2.3 |                                                       | 19 |
| 10.3   | 炭酸ナトリウム・炭酸水素ナトリウム・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・ | 19 |
| 10.3.1 |                                                       | 19 |
| 10.3.2 |                                                       | 20 |
| 10.3.3 |                                                       | 20 |
| 11 2 放 | 矢元素・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・               | 20 |
| 11.1   | 単体 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・               | 20 |

| 目次 |
|----|
|----|

| $\overline{}$ |       |
|---------------|-------|
| _             | 1 31/ |
|               |       |

| 11.1.1  | 性質・・・・・・・        |                                         | <br>• • • • • • • • • • • • • • • • • • • • | • • • • • • • • • • • • • • • • • • • • | • • 20 |
|---------|------------------|-----------------------------------------|---------------------------------------------|-----------------------------------------|--------|
| 11.1.2  | 製法・・・・・・・        | • • • • • • • • • • • • • • • • • • • • | <br>• • • • • • • • • • • • • • • • • • • • | • • • • • • • • • • • • • • • • • • • • | • • 21 |
| 11.1.3  | 反応・・・・・・・・       | • • • • • • • • • • • • • • • • • • • • | <br>• • • • • • • • • • • • • • • • • • • • | • • • • • • • • • • • • • • • • • • • • | • • 21 |
| 第 III 部 | APPENDIX · · · · | • • • • • • • • • • • • • • • • • • • • | <br>• • • • • • • • • • • • • • • • • • • • | • • • • • • • • • • • • • • • • • • • • | • • 22 |
| 12 気体の  | の乾燥剤・・・・・・・      | • • • • • • • • • • • • • • • • • • • • | <br>• • • • • • • • • • • • • • • • • • • • | • • • • • • • • • • • • • • • • • • • • | • • 22 |

# 第1部 非金属元素

### 1 水素

### 1.1 性質

- ①無色②無臭の③気体
- 最も 4 軽い
- 水に溶け(5)にくい

### 1.2 同位体

 $^{1}$ H 99%以上  $^{2}$ H (6D)0.015%  $^{3}$ H (7T) 微量

### 1.3 製法

- ナフサの電気分解 工業的製法
- <u>8赤熱したコークス</u>に <u>9水蒸気</u>を 吹 き 付 け る 工業的製法

$$C + H_2O \longrightarrow H_2 + CO$$

- 10水 (11水酸化ナトリウム水溶液 ) の電気分解 2  $H_2$  O  $\longrightarrow$  2  $H_2$  +  $O_2$
- [12] イオン化傾向 が [13] H<sub>2</sub> より大きい 金属と希薄強酸

$$\bigcirc$$
 Fe + 2 HCl  $\longrightarrow$  FeCl<sub>2</sub> + H<sub>2</sub>  $\uparrow$ 

$$\bigcirc \mathbb{N}$$
 Zn + 2 HCl  $\longrightarrow$  ZnCl<sub>2</sub> + H<sub>2</sub>  $\uparrow$ 

• 水酸化ナトリウムと水  $NaH + H_2O \longrightarrow NaOH + H_2$ 

### 1.4 反応

• 水素と酸素 (爆鳴気の燃焼)

$$2\,H_2 + O_2 \longrightarrow H_2O$$

• 加熱した酸化銅(Ⅱ)と水素

$$\mathrm{CuO} + \mathrm{H_2} \longrightarrow \mathrm{Cu} + \mathrm{H_2O}$$

### 2 貴ガス

14 He, 15 Ne, 16 Ar, 17 Kr, Xe, Rn

### 2.1 性質

- [18]無 色[19]無 臭
- 第 18 族元素であり、電子配置がオクテットを満たす ため反応性が低い
- イオン化エネルギーが極めて大きい
- 電子親和力が (20)極めて小さい
- 電気陰性度が (21) 定義されない

### 2.2 生成

<sup>40</sup>K の電子捕獲

 $^{40}\mathrm{K} + \mathrm{e}^{-} \longrightarrow ^{40}\mathrm{Ar}$ 

### 2.3 ヘリウム

化学式:He 浮揚ガス

### 2.4 ネオン

化学式:Ne ネオンサイン

### 2.5 アルゴン

化学式: Ar  $N_2$ ,  $O_2$  に次いで 3 番目に空気中での存在量が多い(約 1%)。

### 3 ハロゲン

### 3.1 単体

#### 3.1.1 性質

|                     |                 |                                             | -                         | · · · · · · · · · · · · · · · · · · · |
|---------------------|-----------------|---------------------------------------------|---------------------------|---------------------------------------|
| 化学式                 | $F_2$           | $\operatorname{Cl}_2$ $\operatorname{Br}_2$ |                           | $I_2$                                 |
| 分子量                 | 小               |                                             |                           | 大                                     |
| 分子間力                | 弱               |                                             |                           | 強                                     |
| 反応性                 | 強               |                                             |                           | 弱                                     |
| 沸点・融点               | 低               |                                             |                           | ————                                  |
| 常温での状態              | 22)気体           | 23]気体                                       | 24)液体                     | 25]固体                                 |
| 色                   | 26)淡黄 色         | <u>27)黄緑</u> 色                              | 28 赤褐 色                   | 29 <u>黒紫</u> 色                        |
| 特徴                  | 30 特異 臭         | 31 <u>刺激</u> 臭                              | 揮発性                       | 32]昇華 性                               |
| H <sub>2</sub> との反応 | 33 冷暗所 でも       | 34 <mark>常温</mark> でも35光で                   | <u>36加熱</u> して            | 高温で平衡状態                               |
|                     | 爆発的に反応          | 爆発的に反応                                      | <u>37)触媒</u> により反応        | 38加熱 して 39 触媒 により一部局                  |
| 水との反応               | 水を酸化して酸素と       | (41)一部とけて反応                                 | (42)一部とけて反応               | (43)反応しない                             |
| /N C 0/X//u         | <u>40激しく</u> 反応 | (+1) DIC () C IX IIU                        | (42) BICY/CIX/IU          | [44]Klaq には可溶                         |
| 用途                  | 保存が困難           | <u>45 CIO </u> による                          | $C=C \ \red{\mathcal{P}}$ | <b>47 ヨウ素デンプン</b> 反応で                 |
| 用处                  | Kr や Xe と反応     | (46) <mark>殺菌・漂白</mark> 作用                  | C≡C の検出                   | 48 青紫 色                               |

#### 3.1.2 製法

 フッ化水素ナトリウム KHF<sub>2</sub> のフッ化水素 HF 溶液 の電気分解 工業的製法

 $KHF_2 \longrightarrow KF + HF$ 

- $\boxed{49}$  塩化ナトリウム の電気分解 塩素 工業的製法  $2 \operatorname{NaCl} + 2 \operatorname{H}_2 \operatorname{O} \longrightarrow \operatorname{Cl}_2 + \operatorname{H}_2 + 2 \operatorname{NaOH}$
- [50]酸化マンガン (Ⅳ) に [51]濃硫酸 を加えて加熱 塩素

 $\mathrm{MnO_2} + 4\,\mathrm{HCl} \xrightarrow{\Delta} \mathrm{MnCl_2} + \mathrm{Cl_2} \uparrow + 2\,\mathrm{H_2O}$ 

- 52高度さらし粉 と 53 塩酸 塩素  $\operatorname{Ca(ClO)_2} \cdot 2\operatorname{H_2O} + 4\operatorname{HCl} \longrightarrow \operatorname{CaCl_2} + 2\operatorname{Cl_2}\uparrow + 4\operatorname{H_2O}$
- 54<u>さらし粉</u> と 55<u>塩酸</u> 塩素  $\operatorname{CaCl}(\operatorname{ClO}) \cdot \operatorname{H}_2\operatorname{O} \,+\, 2\operatorname{HCl} \,\longrightarrow\, \operatorname{CaCl}_2 \,+\, \operatorname{Cl}_2\uparrow \,+\, 2\operatorname{H}_2\operatorname{O}$
- 臭化マグネシウムと塩素 Q素 QMgBr $_2+Cl_2\longrightarrow MgCl_2+Br_2$
- ヨウ化カリウムと塩素 ョウ素  $2 \, \mathrm{KI} + \mathrm{Cl}_2 \longrightarrow 2 \, \mathrm{KCl} + \mathrm{I}_2$

#### 3.1.3 反応

・フッ素と水素  $H_2+F_2 \xrightarrow{\mathring{\pi} \mathbb{A} \sigma / \mathbb{A} \mathcal{F}} 2 \, \mathrm{HF}$ 

• 塩素と水素  $m H_2 + Cl_2 \xrightarrow{\it K E ext{ + Cl}_2} 
m {\it K E ext{ + Cl}_2 ext{ <math>\it K E ext{ + Cl}_2 ext{ }} 
m 2\,HCl}$ 

• 臭素と水素  $H_2 + \mathrm{Br}_2 \xrightarrow{\bar{\mathrm{Ala}}^{\mathrm{C}ar{\mathrm{C}}\bar{\mathrm{C}}\bar{\mathrm{C}}}} 2\,\mathrm{HBr}$ 

• ヨウ素と水素 $\mathrm{H}_2 + \mathrm{I}_2 \stackrel{\overline{\mathrm{Bal}} \tau \mathrm{ Y} \mathrm{ M}}{\longleftarrow} 2\,\mathrm{HI}$ 

• フッ素と水  $2\,F_2 + 2\,H_2O \longrightarrow 4\,HF + O_2$ 

塩素と水 Cl<sub>2</sub> + H<sub>2</sub>O ⇒ HCl + HClO

ヨウ素の固体がヨウ化物イオン存在下で三ヨウ化物 イオンを形成して溶解する反応

 $I_2 + I^- \longrightarrow I_3^-$ 

無機化学

3.2 ハロゲン化水素 3 ハロゲン

#### 3.1.4 塩素発生実験の装置

 $\mathrm{MnO_2} + 4\,\mathrm{HCl} \xrightarrow{\Delta} \mathrm{MnCl_2} + \mathrm{Cl_2} \uparrow + 2\,\mathrm{H_2O}\,\,\mathrm{Cl_2,HCl,H_2O}$ ↓ <u>56</u> <u>水</u> に通す (HCl の除去)  $Cl_2,H_2O$ 

↓ [57] <mark>濃硫酸</mark> に通す (H<sub>2</sub>O の除去)

 $Cl_2$ 

#### 3.1.5 塩素のオキソ酸

オキソ酸・・・ [58]酸素を含む酸性物質

| +VII | 59)HCIO <sub>4</sub> | 60 過塩素酸       | O   H - O - Cl - O   O |
|------|----------------------|---------------|------------------------|
|      |                      |               | O                      |
| +V   | 61 HCIO <sub>3</sub> | <b>62 塩素酸</b> | H - O - Cl - O         |
| +III | 63 HCIO <sub>2</sub> | 64            | H-O-Cl-O               |
| + I  | 65 HCIO              | 66)次亜塩素酸      | H-O-Cl                 |

### 3.2 ハロゲン化水素

#### 3.2.1 性質

| 化学式   | HF               | HCl                | HBr                        | HI        |
|-------|------------------|--------------------|----------------------------|-----------|
| 色・臭い  |                  | 67 <u>無</u> 色68刺激  | <u>b</u> 臭                 |           |
| 沸点    | 20°C             | −85°C              | −67°C                      | −35°C     |
| 水との反応 |                  | )<br>)             |                            |           |
| 水溶液   | 70フッ化水素酸         | 71)塩酸              | 72 臭化水素酸                   | 73 ヨウ化水素酸 |
| (強弱)  | 74]弱酸            | 度 ≪ 75強酸 < 76      | <u> 5 強酸</u> < 77 <u>3</u> | <u> </u>  |
| 用途    | <u>78ガラス</u> と反応 | <u>79アンモニア</u> の検出 | 半導体加工                      | インジウムスズ   |
| 加处    | ⇒ ポリエチレン瓶        | 各種工業               | 一一一一一一一                    | 酸化物の加工    |

#### 3.2.2 製法

• <u>80 ホタル石</u> に <u>81 濃硫酸</u> を加えて加熱(<u>82 弱酸遊離</u>) フッ化水素

 $CaF_2 + H_2SO_4 \xrightarrow{\quad \ \ } CaSO_4 + 2\,HF \uparrow$ 

83水素 と 84塩素 塩化水素 工業的製法

 $H_2 + Cl_2 \longrightarrow 2 HCl \uparrow$ 

• 85<u>塩化ナトリウム</u> に 86濃硫酸 に加えて加熱 <u>塩化水素</u> (87弱 酸・88<mark>揮発性</mark> 酸の追い出し)  $NaCl + H_2SO_4 \xrightarrow{\Lambda} NaHSO_4 + HCl \uparrow$ 

#### 3.2.3 反応

• 気体のフッ化水素がガラスを侵食する反応

$$SiO_2 + 4HF(g) \longrightarrow SiF_4 \uparrow + 2H_2O$$

• フッ化水素酸(水溶液)がガラスを侵食する反応

$$SiO_2 + 6 HF (aq) \longrightarrow H_2 SiF_6 \uparrow + 2 H_2 O$$

無機化学 8/22 3.3 ハロゲン化銀 3 ハロゲン

• 89<u>塩化水素</u> による 90アンモニア の検出  $HCl + NH_3 \longrightarrow NH_4Cl$ 

### 3.3 ハロゲン化銀

### 3.3.1 性質

| 化学式   | AgF     | AgCl                 | AgBr    | AgI        |
|-------|---------|----------------------|---------|------------|
| 固体の色  | 91)黄褐 色 | 92白色                 | 93 淡黄 色 | 94黄色       |
| 水との反応 | 95よく溶ける | 96)                  | ほとんど溶けな | <i>(1)</i> |
| 光との反応 | 97]感光   | 感光性(→ <u>98</u> Ag_) |         | <u>g</u> ) |

#### 3.3.2 製法

•酸化銀(Ⅰ)にフッ化水素酸を加えて蒸発圧縮

$$Ag_2O + 2HF \longrightarrow 2AgF + H_2O$$

• ハロゲン化水素イオンを含む水溶液と 99 硝酸銀水溶液

$$Ag^+ + X^- \longrightarrow AgX \downarrow$$

### 3.4 次亜塩素酸塩

#### 3.4.1 性質

[100]酸化 剤として反応([101]殺菌 ・ [102]漂白 作用)  $ClO^- + 2H^+ + 2e^- \longrightarrow Cl^- + H_2O$ 

#### 3.4.2 製法

- 水酸化ナトリウム水溶液と塩素
  - $2\,NaOH + Cl_2 \longrightarrow NaCl + NaClO + H_2O$
- 水酸化カルシウムと塩素

 $Ca(OH)_2 + Cl_2 \longrightarrow CaCl(ClO) \cdot H_2O$ 

### 3.5 水素酸カリウム

化学式: [103]KCIO<sub>3</sub>

#### 3.5.1 性質

無機化学 9/22

### 4 酸素

### 4.1 酸素原子

同106位 体:酸素 $(O_2)$ ,107オゾン $(O_3)$ 

地球の地殻に 108 最も多く 存在

・地球の地殻における元素の存在率 -



### 4.2 酸素

化学式:O2

#### 4.2.1 性質

- 121無 色 122無 臭の 123気体
- 沸点 −183°C

### 4.2.2 製法

- 124 液体空気の分留 工業的製法
- (125)水 (126)水酸化ナトリウム水溶液 )の(127)電気分解
- $2 H_2 O \longrightarrow 2 H_2 \uparrow + O_2 \uparrow$
- 128 過酸化水素水 (129 オキシドール )の分解  $2 \, \mathrm{H_2O_2} \xrightarrow{\mathrm{MnO_2}} \mathrm{O_2} \uparrow + 2 \, \mathrm{H_2O}$
- 130 塩素酸カリウム の熱分解  $2 \, \mathrm{KClO}_3 \xrightarrow{\mathrm{MnO}_2} 2 \, \mathrm{KClO} + 3 \, \mathrm{O}_2 \, \uparrow$

#### 4.2.3 反応

[131]酸化 剤としての反応

 $O_2 + 4 H^+ + 4 e^- \longrightarrow 2 H_2 O$ 

#### 4.3 オゾン

化学式: [132]O<sub>3</sub>

#### 4.3.1 性質

- 133ニンニク 臭(134)特異 臭)を持つ(135)淡青 色の(136)気体 (常温)
- 水に[137]少し溶ける
- <u>138</u> 発菌 ・ <u>139</u> 脱臭 作用

オゾンにおける酸素原子の運動 -

$$\cdot_{O} \cdot_{O} \cdot_{O$$

#### 4.3.2 製法

酸素中で $\boxed{146}$ 無声放電 /強い $\boxed{147}$ 紫外線 を当てる  $3O_2 \longrightarrow 2O_3$ 

#### 4.3.3 反応

- 148酸化 剤としての反応  $O_3 + 2 H^+ + 2 e^- \longrightarrow O_2 + H_2O$
- 湿らせた (149) ヨウ化カリウムでんぷん紙 を (150) 青色に変色

 $O_3 + 2 KI + H_2O \longrightarrow I_2 + O_2 + 2 KOH$ 

4.4 酸化物 4 酸素

### 4.4 酸化物

|                            | 塩基性酸化物     | 両性酸化物           | 酸性酸化物             |  |
|----------------------------|------------|-----------------|-------------------|--|
| 元素 <u>[151]陽性の大きい金属</u> 元素 |            | 152 陽性の小さい金属 元素 | 153 非金属 元素        |  |
| 水との反応                      | [154]塩基性   | [155]ほとんど溶けない   | 156酸性 (157)オキソ酸 ) |  |
| 中和                         | [158]酸_と反応 | [159]酸・塩基 と反応   | <u>160 塩基</u> と反応 |  |

両性酸化物  $\cdots$  (161) アルミニウム (162) AI ) 、(163) 亜鉛 (164) Zn ) 、(165) スズ (166) Sn ) 、(167) 鉛 (168) Pb ) 1)

 $\bigcirc \text{PCO}_2 + \text{H}_2\text{O} \longrightarrow \text{H}_2\text{CO}_3$ 

 $\PSO_2 + H_2O \longrightarrow H_2SO_3$ 

例 $3 \text{ NO}_2 + \text{H}_2\text{O} \longrightarrow 2 \text{ HNO}_3 + \text{NO}$ 

#### 4.4.1 反応

酸化銅(Ⅱ)と塩化水素

 $CuO + 2HCl \longrightarrow CuCl_2 + H_2O$ 

• 酸化アルミニウムと硫酸

 $Al_2O_3 + 3H_2SO_4 \longrightarrow Al_2(SO_4)_3 + 3H_2O$ 

•酸化アルミニウムと水酸化ナトリウム水溶液  $Al_2O_3 + 2 \operatorname{NaOH} \longrightarrow 3 \operatorname{H}_2O + 2 \operatorname{Na}[\operatorname{Al}(\operatorname{OH})^+]$ 

#### 4.5 水

#### 4.5.1 性質

- 169 <u>極性</u> 分子
- 周りの4つの分子と 170 水素 結合
- 異常に 171 高い 沸点
- 172 隙間の多い 結晶構造(密度:固体 173 < 液体)</li>
- 特異な[174]融解曲線

#### 4.5.2 反応

•酸化カルシウムと水

 $CaO + H_2O \longrightarrow Ca(OH)_2$ 

• 二酸化窒素と水

 $3\,\mathrm{NO_2} + \mathrm{H_2O} \longrightarrow 2\,\mathrm{HNO_3} + \mathrm{NO}$ 

無機化学 11/22

<sup>1)</sup> 覚え方:ああすんなり

### 5 硫黄

### 5.1 硫黄

#### 5.1.1 性質

| 5.2.3 | 风 | νÙ |
|-------|---|----|
|       |   |    |

• 硫化水素とヨウ素

$$H_2S + I_2 \longrightarrow S + 2HI$$

・酢酸鉛(Ⅱ)水溶液と硫化水素(200)H2Sの検出)

| 7.1.1 江貝             |                                         |                                |                | (0                                      | H GOO) DI THICH TO GOOD TO DICE                                 |
|----------------------|-----------------------------------------|--------------------------------|----------------|-----------------------------------------|-----------------------------------------------------------------|
| 名称                   | <u>175</u> 斜方 硫黄                        | <u>[176]単斜</u> 硫黄              | [177] <u> </u> | <u>状</u> 硫黄                             | $H_3COO)_2Pb + H_2S \longrightarrow 2CH_3COOH + PbS \downarrow$ |
| 化学式                  | 178 <mark>S<sub>8</sub></mark>          | 179 <mark>S<sub>8</sub></mark> | [180           | ) <mark>S</mark> 5.3 =                  | 酸化硫黄(亜硫酸ガス)                                                     |
| 色                    | <u>[181]黄</u> 色                         | 〔182〕 <mark>黄</mark> 色         |                | 黄_色                                     |                                                                 |
| 構造                   | 184) 塊状 結晶                              | 185 針状 結晶                      | [186]不足        | ETE I I I I I I I I I I I I I I I I I I | [201]SO <sub>2</sub> 電子式: : O: : : S:: O                        |
| 融点                   | 113°C                                   | 119°C                          | 不              | 定                                       | <u> </u>                                                        |
| 構造                   | SSS                                     | S S S                          | S              | /                                       | 生質<br>2 <u>無</u> 色、〔203〕刺激 臭の〔204〕気体<br><sup>2</sup> 〔205〕溶けやすい |
| CS <sub>2</sub> との反応 | 〔187〕溶ける                                | 〔188〕溶ける                       | [189]溶         | 14+-15                                  | (205) <u>容けやすい</u><br>16) <u>弱酸</u> 性                           |
| aa fort. H           | F T L T T T L T T L T L T L T L T L T L | ( a a ) ( - 1 - 11             |                | _                                       | /                                                               |

CS<sub>2</sub>··· 無色・芳香性・揮発性 ⇒ 190 無極性 触媒

### 5.1.2 反応

- 高温で多くの金属(Au、Pt を除く)との反応  $\mathrm{Fe} + \mathrm{S} \longrightarrow \mathrm{Fe} \mathrm{S}$
- 空気中で 191 青 色の炎を上げて燃焼  $S+O_2 \longrightarrow SO_2$

### 5.2 硫化水素

化学式: [192]H<sub>2</sub>S

#### 5.2.1 性質

- [193]無 色[194]腐卵 臭
- 195 <u>GRE 1888</u>  $\fill \label{eq:195} \fill \f$
- <u>198 還元</u> 剤としての反応 H<sub>2</sub>S →→ S + 2 H<sup>+</sup> + 2 e<sup>-</sup>
- 重金属イオン  ${
  m M_2}^+$  と  $\overline{
  m 1999}$  難容性の塩</u> を生成  ${
  m M_2}^+ + {
  m S}^{2-} \Longrightarrow {
  m MS}$   $\downarrow$

#### 5.2.2 製法

酸化鉄(Ⅱ)と希塩酸

$$FeS + 2 HCl \longrightarrow FeCl_2 + H_2S \uparrow$$

酸化鉄(Ⅱ)と希硫酸

$$FeS + H_2SO_4 \longrightarrow FeSO_4 + H_2S \uparrow$$

 $\boxed{207}$ SO<sub>2</sub> + H<sub>2</sub>O  $\Longrightarrow$  H<sup>+</sup> + HSO<sub>3</sub><sup>-</sup>  $K_1 = 1.4 \times 10^{-2} \text{ mol/L}$ 

• [208]還元 剤 ([209]漂白 作用)

$$SO_2 + 2 H_2 O \longrightarrow SO_4^{2-} + 4 H^+ + 2 e^-$$

• 210酸化 剤(211H<sub>2</sub>S などの強い還元剤に対して)  $SO_2 + 4H^+ + 4e^- \longrightarrow S + 2H_2O$ 

#### 5.3.2 製法

硫黄や硫化物の (212)燃焼 工業的製法

$$2 H_2 S + 3 O_2 \longrightarrow 2 SO_2 + 2 H_2 O$$

• 213 亜硫酸ナトリウム と希硫酸

$$Na_2SO_3 + H_2SO_4 \xrightarrow{\Lambda} NaHSO_4 + SO_2 \uparrow + H_2O$$

• 214]銅\_と 215]熱濃硫酸\_

$$Cu + 2H_2SO_4 \longrightarrow CuSO_4 + SO_2 \uparrow + 2H_2O$$

#### 5.3.3 反応

• 二酸化硫黄の水への溶解

$$SO_2 + H_2O \longrightarrow H_2SO_3$$

• 二酸化硫黄と硫化水素

$$SO_2 + 2H_2S \longrightarrow 3S + 3H_2O$$

• 硫酸酸性で過マンガン酸カリウムと二酸化硫黄

5.4 硫酸 5 硫黄

#### 5.4 硫酸

#### 5.4.1 性質

- 216無 色 (217)無 臭の (218)液体
- 水に (219) 非常によく溶ける
- 溶解熱が (220) 非常に大きい
- [221]水に濃硫酸 を加えて希釈
- ②222<u>不揮発</u>性で密度が<u>②223</u>大き く、<u>②224</u>粘度 が大きい <u>濃硫酸</u>
- [225] <mark>吸湿</mark> 性・[226] 脱水 作用 濃硫酸
- [227]強酸性 希硫酸

 $\left(\begin{array}{ccc} 228 \text{H}_2\text{SO}_4 & \longrightarrow \text{H}^+ + \text{HSO}_4^- & K_1 > 10^8 \text{mol/L} \end{array}\right)$ 

- (229)弱酸性 濃硫酸 ((230)水が少なく 、(231)H<sub>3</sub>O<sup>+</sup>
   の濃度が小さい)
- [232]酸化 剤として働く 熱濃硫酸

233  $H_2SO_4 + 2H^+ + 2e^- \longrightarrow SO_4 + 2H_2O$ 

②34)アルカリ性土類金属 (②35)Ca , ②36)Be )、②37)Pb と難容性の塩を生成 希硫酸

#### 5.4.2 製法

#### 238 接触 法 工業的製法

1. 黄鉄鉱 FeS<sub>2</sub> の燃焼

$$4 \operatorname{FeS}_2 + 11 \operatorname{O}_2 \longrightarrow 2 \operatorname{Fe}_2 \operatorname{O}_3 + 8 \operatorname{SO}_2$$

$$(S + \operatorname{O}_2 \longrightarrow \operatorname{SO}_2)$$

- 2. 239酸化バナジウム 触媒で酸化  $2SO_2 + O_2 \xrightarrow{V_2O_5} 2SO_3$
- 3. ②40 <u>濃硫酸</u> に吸収させて ②41 <u>発煙硫酸</u> とした 後、希硫酸を加えて希釈

$$SO_3 + H_2O \longrightarrow H_2SO_4$$

#### 5.4.3 反応

• 硝酸カリウムに濃硫酸を加えて加熱

$$KNO_3 + H_2SO_4 \longrightarrow HNO_3 + KHSO_4$$

スクロースと濃硫酸

$$C_{12}H_{22}O_{11} \xrightarrow{H_2SO_4} 12C + 11H_2O$$

• 水酸化ナトリウムと希硫酸

$$H_2SO_4 + 2 NaOH \longrightarrow Na_2SO_4 + 2 H_2O$$

• 銀と熱濃硫酸

$$2 \text{ Ag} + 2 \text{ H}_2 \text{SO}_4 \longrightarrow \text{Ag}_2 \text{SO}_4 + \text{SO}_2 + 2 \text{ H}_2 \text{O}$$

• 塩化バリウム水溶液と希硫酸

$$BaCl_2 + H_2SO_4 \longrightarrow BaSO_4 \downarrow + 2HCl$$

### 5.5 チオ硫酸ナトリウム(ハイポ)

化学式:[242]Na<sub>2</sub>S<sub>2</sub>O<sub>3</sub>

#### 5.5.1 性質

- •無色透明の結晶(5水和物)で、水に溶けやすい。
- 245 還元 剤として反応

例水道水の脱塩素剤 (カルキ抜き)

$$246)2S_2O_3^{2-} \longrightarrow S_4O_6 + 2e^-$$

$$\begin{array}{c} : \overset{\circ}{\mathrm{O}} : & : \overset{\circ}{\mathrm{O}} : \\ \vdots \overset{\circ}{\mathrm{O}} : \overset{\circ}{\mathrm{S}} : \overset{\circ}{\mathrm{S}} : \overset{\circ}{\mathrm{S}} : \overset{\circ}{\mathrm{S}} : \overset{\circ}{\mathrm{O}} : \\ \vdots \overset{\circ}{\mathrm{O}} : & : \overset{\circ}{\mathrm{O}} : & \vdots \overset{\circ}{\mathrm{O}} : \\ & & \vdots \overset{\circ}{\mathrm{O}} : \overset{\circ}{\mathrm{S}} : \overset{\circ}{\mathrm{S}} : \overset{\circ}{\mathrm{S}} : \overset{\circ}{\mathrm{S}} : \overset{\circ}{\mathrm{O}} : + 2\,\mathrm{e}^{-} \\ & \vdots \overset{\circ}{\mathrm{O}} : & \vdots \overset{\circ}{\mathrm{O}} : \end{array}$$

#### 5.5.2 製法

亜硫酸ナトリウム水溶液に硫黄を加えて加熱

$$Na_2SO_4 + S_n \longrightarrow Na_2S_2O_3$$

#### 5.5.3 反応

ヨウ素とチオ硫酸ナトリウム

$$I_2 + 2 \operatorname{Na_2S_2O_3} \longrightarrow 2 \operatorname{NaI} + \operatorname{Na_2S_4O_6}$$

### 5.6 重金属の硫化物

|         | 中性          | ・塩基性で沈 | 澱(酸性では | は溶解)                 |        |       |        |         |          |
|---------|-------------|--------|--------|----------------------|--------|-------|--------|---------|----------|
| $Ag_2S$ | $_{ m HgS}$ | CuS    | PbS    | $\operatorname{SnS}$ | CdS    | NiS   | FeS    | ZnS     | MnS      |
| 247黒 色  | 248黒 色      | 249黒 色 | 250黒 色 | 251 褐 色              | 252黒 色 | 253黒色 | 254 黑色 | 255 白 色 | 256)淡赤 色 |

(257)低

イオン化傾向

[258]高

[259]<mark>極小</mark> 塩の溶解度積 (K<sub>sp</sub>) (260)/J\

### 6 窒素

### 6.1 窒素

化学式:N2

#### 6.1.1 性質

- [261]無 色[262]無 臭の[263]気体
- 空気の 78% を占める
- 水に溶け [264] にくい (265<u>無極性</u>分子)
- ・常温で(266)不活性 (食品などの(267)酸化防止)
- 高エネルギー状態([268]高温 ・[269]放電 )では反応

#### 6.1.2 製法

- 270 液体窒素の分留 工業的製法
- 271 亜硝酸アンモニウム の 272 熱分解  $NH_4NO_2 \longrightarrow N_2 + 2H_2O$

#### 6.1.3 反応

• 窒素と酸素

$$N_2 + 2 O_2 \longrightarrow 2 NO_2$$
  $\begin{cases} N_2 + O_2 \longrightarrow 2 NO \\ 2 NO + O_2 \longrightarrow 2 NO_2 \end{cases}$ 

窒素とマグネシウム

 $3 \,\mathrm{Mg} + \mathrm{N}_2 \longrightarrow \mathrm{Mg}_3 \mathrm{N}_2$ 

#### 6.2 アンモニア

化学式: [273] NH<sub>3</sub>

#### 6.2.1 性質

- 274 無 色 275 刺激 臭の 276 気体
- [277] **水素** 結合
- 水に(278)非常によく溶ける ((279)上方 置換)
- [280]塩基 性

$$\begin{array}{c} \hline \\ \hline (281)\text{NH}_3 + \text{H}_2\text{O} & \Longrightarrow \text{NH}_4^+ + \text{OH}^- \\ \hline \\ K_1 = 1.7 \times 10^{-5} \text{ mol/L} \\ \hline \end{array}$$

- 282 塩素 の検出
- 高温・高圧で二酸化炭素と反応して、 283 尿素 を 生成

#### 6.2.2 製法

(284)ハーバーボッシュ法 工業的製法

[285]低温 [286]高圧で、 [287]四酸化三鉄 ( [288]Fe<sub>3</sub>O<sub>4</sub>\_) 触媒

 $N_2 + 3 H_2 \Longrightarrow 2 NH_3$ 

• [289]塩化アンモニウム と [290]水酸化カルシウム を混 ぜて加熱

 $2 \text{ NH}_4 \text{Cl} + \text{Ca}(\text{OH})_2 \longrightarrow 2 \text{ NH}_3 \uparrow + \text{Ca}(\text{Cl}_2 + 2 \text{ H}_2\text{O})$ 

#### 6.2.3 反応

• 硫酸とアンモニア

 $2 NH_3 + H_2SO_4 \longrightarrow (NH_4)_2SO_4$ 

塩素の検出

 $NH_3 + HCl \longrightarrow NH_4Cl \downarrow$ 

• アンモニアと二酸化炭素

 $2 \text{ NH}_3 + \text{CO}_2 \longrightarrow (\text{NH}_2)_2 \text{CO} + \text{H}_2 \text{O}$ 

### 6.3 一酸化二窒素(笑気ガス)

化学式: (291) N<sub>2</sub>O

#### 6.3.1 性質

- 無色、少し甘味のある気体
- 水に少し溶ける
- 常温では反応性が低い
- 292 麻酔 効果

#### 6.3.2 製法

[293]硝酸アンモニウム の熱分解

 $NH_4NO_2 \xrightarrow{\Delta} N_2O + 2H_2O$ 

#### 6.4 一酸化窒素

化学式: 294 NO

### 6.4.1 性質

- [295]無 色[296]無 臭の[297]気体
- 中性で水に溶けにくい
- 空気中では[298]酸素 とすぐに反応

6.5 二酸化窒素 6 窒素

血管拡張作用・神経伝達物質

#### 6.4.2 製法

299銅 と 300 希硝酸

 $3 \,\mathrm{Cu} + 8 \,\mathrm{HNO}_3 \longrightarrow 3 \,\mathrm{Cu}(\mathrm{NO}_3)_2 + 2 \,\mathrm{NO} + 4 \,\mathrm{H}_2\mathrm{O}$ 

#### 6.4.3 反応

酸素と反応

 $2 \, \mathrm{NO} + \mathrm{O}_2 \longrightarrow 2 \, \mathrm{NO}_2$ 

### 6.5 二酸化窒素

化学式: [301]NO<sub>2</sub>

#### 6.5.1 性質

- [302]赤褐 色[303]刺激 臭の[304]気体
- 水と反応して 305 強酸 性(306)酸性雨 の原因)
- 常温では (307)四酸化二窒素 (308)無色)と(309)平衡状態
- $2 \text{ NO}_2 \Longrightarrow \text{N}_2 \text{O}_4$
- 140°C 以上で熱分解  $2 \text{ NO}_2 \longrightarrow 2 \text{ NO} + \text{ O}_2$

### 6.5.2 製法

(310)銅 と (311)濃硝酸

 $Cu + 4 HNO_3 \longrightarrow Cu(NO_3)_2 + 2 NO_2 + 2 H_2O$ 

### 6.6 硝酸

化学式: (312) HNO₃

#### 6.6.1 性質

- [313]無 色[314]刺激 臭で[315]揮発 性の[316]液体
- 水に(317)よく溶ける
- [318]強酸 性

 $(319) \text{HNO}_3 \Longrightarrow \text{H}^+ + \text{NO}_3^- \qquad K_1 = 6.3 \times 10^1 \text{mol/L}$ 

- (320)褐色瓶 に保存((321)光分解)
- 322)酸化 剤としての反応 希硝酸

 $HNO_3 + H^+ + e^- \longrightarrow NO_2 + H_2O$ 

323酸化 剤としての反応 濃硝酸
 HNO<sub>3</sub> + 3 H<sup>+</sup> + 3 e<sup>-</sup> → NO + 2 H<sub>2</sub>O

イオン化傾向が小さい Cu、Hg、Ag も溶解

- <u>324 Al</u>, <u>325 Cr</u>, <u>326 Fe</u>, <u>327 Co</u>, <u>328 Ni</u> は <u>329 酸化皮膜</u> が生じて不溶 <u>濃硝酸</u>
  - = (330)不動態

- 331<u>王水</u> (332<u>濃塩酸</u>:1333<u>濃硝酸</u>=3:1)は、Pt,Au
   お溶解
- $NO_3$  は (334) 沈殿を作らない  $\Rightarrow$  (335) 褐輪反応 で検出

#### 6.6.2 製法

336 オストワルト法

$$NH_3 + 2O_2 \longrightarrow HNO_3 + H_2O$$

- 1. (337) 白金 触媒で(338) アンモニア を(339) 酸化  $4 \, \mathrm{NH_3} + 5 \, \mathrm{O_2} \longrightarrow 4 \, \mathrm{NO} + 6 \, \mathrm{H_2O}$
- 2. 340空気酸化  $2 \text{ NO} + \text{O}_2 \longrightarrow 2 \text{ NO}_2$
- 3. 341水 と反応  $3 \text{ NO}_2 + \text{H}_2\text{O} \longrightarrow 2 \text{ HNO}_3 + \text{NO}$
- 342 硝酸塩 (343) 濃硫酸 を加えて加熱  $NaNO_3 + H_2SO_4 \longrightarrow NaHSO_4 + HNO_3 \uparrow$

#### 6.6.3 反応

- アンモニアと硝酸
  - $NH_3 + HNO_3 \longrightarrow NH_4NO_3$
- 硝酸の光分解

$$4 \text{HNO}_3 \xrightarrow{\mathcal{H}} 4 \text{NO}_2 + 2 \text{H}_2 \text{O} + \text{O}_2$$

• 亜鉛と希硝酸

$$Zn + 2 HNO_3 \longrightarrow Zn(NO_3)_2 + H_2 \uparrow$$

• 銀と濃硝酸

$$Ag + 2HNO_3 \longrightarrow AgNO_3 + H_2O + NO_2 \uparrow$$

### 7リン

### 7.1 リン

化学式: (344)P<sub>4</sub>O<sub>10</sub>

#### 7.1.1 性質

三種類の同 345 素 体がある

| _ EXX > 1 3 (G : G)  | <u> </u>                |                        |                       |
|----------------------|-------------------------|------------------------|-----------------------|
| 名称                   | 346黄 リン                 | <u>347</u> リン          | 黒リン                   |
| 化学式                  | 348)P <sub>4</sub>      | (349)P <sub>x</sub>    | P <sub>4</sub>        |
| 融点                   | 44°C                    | 590°C <sup>2)</sup>    | 610°C                 |
| 発火点                  | 35°C                    | 260°C                  |                       |
| 光八点                  | 350 <mark>水中</mark> に保存 | 351マッチの側薬              | -                     |
| 密度                   | $1.8 \mathrm{g/cm^3}$   | $2.16 \mathrm{g/cm^3}$ | $2.7 \mathrm{g/cm^3}$ |
| 毒性                   | (352)猛毒                 | (353)微毒                | 354)微毒                |
| 構造                   | P                       | P = P $P = P$ $P = P$  | 略                     |
| CS <sub>2</sub> への溶解 | (355) <mark>溶ける</mark>  | (356)溶けない              | 357 溶けない              |

#### 7.1.2 製法

- リン鉱石にケイ砂とコークスを混ぜて強熱し、蒸気を水で冷却 黄リン 工業的製法
- ・空気を遮断して黄リンを 250°C で加熱 赤リン
- 空気を遮断して黄リンを 200°C、1.2 × 10<sup>9</sup>Pa で加熱 黒リン

### 7.2 十酸化四リン

化学式: (358)P<sub>4</sub>O<sub>10</sub>

#### 7.2.1 性質

- 白色で昇華性のある固体
- 359 潮解性 (水との親和性が 360 非常に高い)
- 乾燥剤
- 水を加えて加熱すると反応(361)加水分解

#### 7.2.2 製法

362 リンの燃焼

#### 7.2.3 反応

水を加えて加熱

#### 7.3 リン酸

化学式: 363 H<sub>3</sub>PO<sub>4</sub>

### 7.3.1 性質

(364)中酸性

 $\left(\begin{array}{ccc} 365 & \text{H}_3 & \text{PO}_4 & \longrightarrow & \text{H}^+ + \text{H}_2 & \text{PO}_4 & \end{array}\right)$   $K_1 = 7.5 \times 10^{-3} \text{ mol/L}$ 

#### 7.3.2 反応

- リン酸カルシウムとリン酸が反応して重過リン酸石 灰が生成
- リン酸カルシウムと硫酸が反応して過リン酸石灰が 生成

### 8 炭素

## 8.1 炭素

#### 8.1.1 性質

炭素の同(366)素 体は、(367)ダイアモンド 、(368)黒鉛 ((369)グラファイト ) etc...

| 名称    | 370ダイアモンド                              | [371] <mark>黒鉛</mark> |  |  |
|-------|----------------------------------------|-----------------------|--|--|
| 特徴    | [372]無 色 [373] 透明 で屈折率が大きい固体           | 374 黒 色で 375 光沢 がある固体 |  |  |
| 密度    | $3.5\mathrm{g/cm^3}$                   | $2.3 \mathrm{g/cm^3}$ |  |  |
| 構造    | 376 <u>正四面体</u> 方向の <u>377 共有結合</u> 結晶 | 378 ズレた層状 構造          |  |  |
| 電気伝導性 | <u>379なし</u>                           | <u>380あり</u>          |  |  |
| 用途    | 宝石・カッターの刃・研磨剤                          | 鉛筆・電極                 |  |  |

### 8.2 一酸化炭素

化学式: 381 CO

#### 8.2.1 性質

- [382]無 色[383]無 臭で[384]有毒 な気体
- 赤血球のヘモグロビンの 385 Fe<sup>2+</sup> に対して強い 386 酸化結合
- 387中 性で水に溶け 388 にくい。(389 水上 置換)
- 390 可燃 性、高温で (391) 還元 性 ((392)鉄 との親和性が非常に高い)

#### 8.2.2 製法

393)赤熱したコークス に 394)水蒸気 を吹き付ける 工業的製法

 $C + H_2O \longrightarrow CO + H_2$ 

・炭素の 395 不完全燃焼

$$2\,\mathrm{C} + \mathrm{O}_2 \longrightarrow 2\,\mathrm{CO}$$

396 ギ酸 に 397 濃硫酸 を加えて加熱

$$\text{HCOOH} \xrightarrow{\text{H}_2\text{SO}_4} \text{CO} \uparrow + \text{H}_2\text{O}$$

• 398 シュウ酸 に 399 濃硫酸 を加えて加熱

$$(COOH)_2 \longrightarrow CO + CO_2 + H_2O$$

#### 8.2.3 反応

燃焼

$$CO + O_2 \longrightarrow 2CO_2$$

• 鉄の精錬

$$Fe_2O_3 + 3CO \longrightarrow 2Fe + 3CO_2 \begin{cases} Fe_2O_3 + CO \longrightarrow 2FeO + CO_2 \\ 2 \times FeO + CO \longrightarrow Fe + CO_2 \end{cases}$$

### 8.3 二酸化炭素

### 9ケイ素

### 9.1 二酸化ケイ素

無機化学 17/22

# 第 || 部 典型金属

### 10 アルカリ金属

### 10.1 単体

#### 10.1.1 性質

- 銀白色で 400 柔らかい 金属
- •全体的に反応性が高く、401 灯油 中に保存
- 原子一個粗利の自由電子が (402)1 個 ((403)弱 い (404)金属 結合)
- 還元剤として反応

 $M \longrightarrow M^+ + e^-$ 

| 化学式       | Li                      | Na                  | K                              | Rb       | Cs                     |  |  |
|-----------|-------------------------|---------------------|--------------------------------|----------|------------------------|--|--|
| 融点        | 181°C                   | 98°C                | 64°C                           | 39°C     | 28°C                   |  |  |
| 密度        | 0.53                    | 0.97                | 0.86                           | 1.53     | 1.87                   |  |  |
| 構造        | (405)体心立方 格子((406)軽金属 ) |                     |                                |          |                        |  |  |
| イオン化エネルギー | 大                       |                     |                                |          |                        |  |  |
| 反応力       | 小 大                     |                     |                                |          |                        |  |  |
| 炎色反応      | 407 赤 色                 | (408) <u>黄</u> 色    | <u>[409]赤紫</u> 色               | 410 深赤 色 | 411]青紫_色               |  |  |
| 用途        | リチウムイオン<br>電池の負極        | トンネル照明<br>高速増殖炉の冷却材 | 磁気センサー<br>肥料 (K <sup>+</sup> ) | 光電池 年代測定 | 光電管<br>電子時計<br>(一秒の基準) |  |  |

#### 10.1.2 製法

水酸化物や塩化物の[412]溶融塩電解 ([413]ダウンズ 法) 工業的製法

414]CaCl<sub>2</sub> 添加(415]凝固点降下)

 $2\,\mathrm{NaCl} \longrightarrow 2\,\mathrm{Na} + \mathrm{Cl}_2\,\!\uparrow$ 

#### 10.1.3 反応

• ナトリウムと酸素

 $4 \operatorname{Na} + \operatorname{O}_2 \longrightarrow 2 \operatorname{Na}_2 \operatorname{O}$ 

ナトリウムと塩素

 $2\,\mathrm{Na} + \mathrm{Cl}_2 \longrightarrow 2\,\mathrm{NaCl}$ 

ナトリウムと水

 $2\,\mathrm{Na} + 2\,\mathrm{H}_2\mathrm{O} \longrightarrow 2\,\mathrm{NaOH} + \mathrm{H}_2 \,\uparrow$ 

### 10.2 水酸化ナトリウム (苛性ソーダ)

化学式: (416) NaOH

#### 10.2.1 性質

417 白 色の固体

無機化学 18/22

- 418 潮解 性
- 水によくとける (水との親和性が [419] 非常に高い )
- 420 乾燥 剤
- 強塩基性

$$(421)$$
NaOH  $\longrightarrow$  Na<sup>+</sup> + OH<sup>-</sup>  $K_1 = 1.0 \times 10^{-1}$ mol/L

• 空気中の $\boxed{422}$  <u>二酸化炭素</u> と反応して、純度が不明 酸の標準溶液( $\boxed{423}$  <u>シュウ酸</u> )を用いた中和滴定で濃度決定  $\boxed{(COOH)_2 + 2 NaOH \longrightarrow (COONa)_2 + 2 H_2O}$ 

#### 10.2.2 製法

#### 10.2.3 反応

• 塩酸と水酸化ナトリウム 
$$\label{eq:hcl} \begin{split} & \text{HCl} + NaOH \longrightarrow NaCl + H_2O \end{split}$$

• 塩素と水酸化ナトリウム

 $2 \operatorname{NaOH} + \operatorname{Cl}_2 \longrightarrow \operatorname{NaCl} + \operatorname{NaClO} + \operatorname{H}_2\operatorname{O}$ 

• 二酸化硫黄と水酸化ナトリウム

 $SO_2 + 2 NaOH \longrightarrow Na_2SO_3 + H_2O$ 

• 酸化亜鉛と水酸化ナトリウム水溶液

 $ZnO + 2 NaOH + H_2O \longrightarrow Na_2[Zn(OH)_4]$ 

• 二酸化炭素と水酸化ナトリウム

 $2\,\mathrm{NaOH} + \mathrm{CO}_2 \longrightarrow \mathrm{Na}_2\mathrm{CO}_3 + \mathrm{H}_2\mathrm{O}$ 

### 10.3 炭酸ナトリウム・炭酸水素ナトリウム

#### 10.3.1 性質

| 名称  | 炭酸ナトリウム                             | 炭酸水素ナトリウム              |
|-----|-------------------------------------|------------------------|
| 化学式 | 426 Na <sub>2</sub> CO <sub>3</sub> | 427 NaHCO <sub>3</sub> |
| 色   | 428 白 色                             | 429                    |
| 融点  | 850°C                               | [430]熱分解               |
| 液性  | (431)塩基 性                           | 432]弱塩基 性              |
| 用途  | [433]ガラス や石鹸の原料                     | 胃腸薬・ふくらし粉              |

無機化学 19/22

#### 10.3.2 製法



#### 10.3.3 反応

• Na<sub>2</sub>CO<sub>3</sub> 
$$\boxed{457}_{\text{CO}_3}^{2^-} + \text{H}_2\text{O} \Longrightarrow \text{HCO}_3^- + \text{OH}^-}$$
  $K_1 = 1.8 \times 10^{-4}$   
• NaHCO<sub>3</sub>  $\begin{cases} \boxed{458}_{\text{HCO}_3}^{-} + \text{H}^+ \Longrightarrow \text{CO}_3^{2^-} \\ \boxed{459}_{\text{HCO}_3}^{-} + \text{H}_2\text{O} \Longrightarrow \text{CO}_2 + \text{OH}^- + \text{H}_2\text{O}} \end{cases}$   $K_2 = 2.3 \times 10^{-8}$ 

### 112 族元素

#### 11.1 単体

#### 11.1.1 性質

| 化学式                     | 460 <mark>Be</mark>                                              | (461)Mg                   | (462)Ca               | (463) <mark>Sr</mark> | 464)Ba      |  |
|-------------------------|------------------------------------------------------------------|---------------------------|-----------------------|-----------------------|-------------|--|
| 融点                      | 1282°C                                                           | 649°C                     | 839°C                 | 769°C                 | 729°C       |  |
| 密度 (g/cm³)              | 1.85                                                             | 1.74                      | 1.55                  | 2.54                  | 3.59        |  |
| 465 還元 力                |                                                                  | 小 ——                      | 大                     |                       |             |  |
| 水との反応                   | (466) 反応しない                                                      | (467) <mark>熱水</mark> と反応 | <u>(468)冷水</u> と反応    | <u>(469)冷水</u> と反応    | [470]冷水 と反応 |  |
| M(OH) <sub>2</sub> の水溶性 | (471) <mark>難溶</mark> 性(                                         | 472 弱塩基 性)                | [473]可溶_性([474]強塩基_性) |                       |             |  |
| 難溶性の塩                   | 性の塩 475 MCO <sub>3</sub> 476 MCO <sub>3</sub> , MSO <sub>4</sub> |                           |                       |                       |             |  |
| 炎色反応                    | (477)示さない                                                        | (478)示さない                 | 479)橙赤                | 480 <u>紅</u>          | [481]黄緑     |  |
| 用途                      | X 線通過窓                                                           | フラッシュ                     | 精錬の還元剤                | 発煙筒                   | ゲッター        |  |

無機化学 20/22

11.1 単体 11 2族元素

### 11.1.2 製法

塩化物の 482 溶融塩電解 工業的製法

### 11.1.3 反応

• マグネシウムの燃焼

$$2 \,\mathrm{Mg} + \mathrm{O}_2 \longrightarrow 2 \,\mathrm{MgO}$$

• マグネシウムと二酸化炭素

$$2\,\mathrm{Mg} + \mathrm{CO}_2 \longrightarrow 2\,\mathrm{MgO} + \mathrm{C}$$

カルシウムと水

$$Ca + 2 H_2O \longrightarrow Ca(OH)_2 + H_2 \uparrow$$

無機化学 21/22

# 第 III 部 APPENDIX

# 12 気体の乾燥剤

固体の乾燥剤は「483」U字管につめて、液体の乾燥剤は「484」洗気瓶に入れて使用。

| ICH PT VO | Elips Flow Miss (105) of Elips Flow Miss (101) Miss (10 |                                            |         |                                                                                                                 |  |  |  |
|-----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|---------|-----------------------------------------------------------------------------------------------------------------|--|--|--|
| 性質        | 乾燥剤                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 化学式                                        | 対象      | 対象外(不適)                                                                                                         |  |  |  |
| 酸性        | (485)十酸化四リン                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $[486]P_4O_{10}$                           | 酸性・中性   | 塩基性の気体([487]NH <sub>3</sub> _)                                                                                  |  |  |  |
| 段注        | 488 濃硫酸                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $[489]H_2SO_4$                             | 段任。中任   | + [490]H <sub>2</sub> S_ ([491]還元剤_)                                                                            |  |  |  |
| 中性        | [492]塩化カルシウム                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 493 CaCl <sub>2</sub>                      | ほとんど全て  | (494)NH <sub>3</sub>                                                                                            |  |  |  |
| 丁庄        | (495) <mark>シリカゲル</mark>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 496SiO <sub>2</sub> · $n$ H <sub>2</sub> O | はこんと主て  | 特になし                                                                                                            |  |  |  |
| 塩基性       | (497)酸化カルシウム                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 498 CaO                                    | 中性・塩基性  | 酸性の気体                                                                                                           |  |  |  |
| 塩基注       | 499ソーダ石灰                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 500 CaO と NaOH                             | 7 年:塩基住 | [501]Cl <sub>2</sub> , (502]HCl , (503]H <sub>2</sub> S , (504]SO <sub>2</sub> , (505]CO <sub>2</sub> , (506]NC |  |  |  |

無機化学 22/22