

Business Analytics & Machine Learning Tutorial sheet 11: Convex Optimization – Solution

Prof. Dr. Martin Bichler, Prof. Dr. Jalal Etesami Julius Durmann, Markus Ewert, Johannes Knörr, Yutong Chao January 3, 2024

Exercise T11.1 Convex function

You are given the following function:

$$f(x,y) = a \exp(3x) + \frac{b}{2}xy + y^2$$

Determine all parameters $a, b \in \mathbb{R}$ such that f is convex.

Solution

We determine the gradient and the Hessian of f.

$$\nabla f(x,y) = \begin{pmatrix} 3a \exp(3x) + \frac{b}{2}y\\ \frac{b}{2}x + 2y \end{pmatrix}$$

$$\nabla^2 f(x,y) = \begin{pmatrix} 9a \exp(3x) & \frac{b}{2} \\ \frac{b}{2} & 2 \end{pmatrix}$$

f is convex iff $\nabla^2 f(x,y)$ is positive semidefinite for all $x,y\in\mathbb{R}$. This is the case iff all principal minors are non-negative.

- The first principal minor is $H_1(x,y) = 9a \exp(3x)$. $H_1 \ge 0$ is equivalent to $a \ge 0$.
- The second principal minor is $H_2(x,y)=2\geq 0$.
- The third principal minor is $H_3(x,y)=18a\exp(3x)-\frac{1}{4}b^2$. $H_3(x,y)\geq 0$ for $a\geq 0$ and for all x,y iff b=0. For $b\neq 0$, we can always find a sufficiently small x<0 such that $18a\exp(3x)<\frac{1}{4}b^2$ and thus $H_3(x,y)<0$.

Thus, f is convex for $a \ge 0, b = 0$.

Exercise T11.2 Operations preserve convexity

You are given the following convex functions $g_1(x), g_2(x)$. Prove that the following functions are also convex functions:

- $h_1(x) = g_1(Ax + b)$ where A is a matrix and b is a vector.
- $h_2(x) = C_1g_1(x) + C_2g_2(x)$, where C_1 and C_2 are nonnegative constant.
- $h_3(x) = \max\{g_1(x), g_2(x)\}.$

Solution

We prove the convexity from its definition:

$$h_{1}(\lambda x + (1 - \lambda)y) = g_{1}(A(\lambda x + (1 - \lambda)y) + b),$$

$$= g_{1}(\lambda(Ax + b) + (1 - \lambda)(Ay + b)),$$

$$\leq \lambda g_{1}(Ax + b) + (1 - \lambda)g_{1}(Ay + b),$$

$$= \lambda h_{1}(x) + (1 - \lambda)h_{1}(y).$$

$$h_{2}(\lambda x + (1 - \lambda)y) = C_{1}g_{1}(\lambda x + (1 - \lambda)y) + C_{2}g_{2}(\lambda x + (1 - \lambda)y),$$

$$\leq C_{1}(\lambda g_{1}(x) + (1 - \lambda)g_{1}(y)) + C_{2}(\lambda g_{2}(x) + (1 - \lambda)g_{2}(y)),$$

$$= \lambda (C_{1}g_{1}(x) + C_{2}g_{2}(x)) + (1 - \lambda)(C_{1}g_{1}(y) + C_{2}g_{2}(y)),$$

$$= \lambda h_{2}(x) + (1 - \lambda)h_{2}(y).$$

$$h_{3}(\lambda x + (1 - \lambda)y) = \max\{g_{1}(\lambda x + (1 - \lambda)y), g_{2}(\lambda x + (1 - \lambda)y)\},$$

$$\leq \max\{\lambda g_{1}(x) + (1 - \lambda)g_{1}(y), \lambda g_{2}(x) + (1 - \lambda)g_{2}(y)\},$$

$$\leq \max\{\lambda h_{3}(x) + (1 - \lambda)h_{3}(y), \lambda h_{3}(x) + (1 - \lambda)h_{3}(y)\},$$

$$= \lambda h_{3}(x) + (1 - \lambda)h_{3}(y).$$

Exercise T11.3 Gradient descent

You are given the following function:

$$f(x,y) = 2x^2 + 0.5y^2 - 3x - y - 2xy + 5$$

With starting point $z^{(1)}=(0,0)$, conduct two steps of the gradient descent algorithm. Choose the step size α using line search.

Solution

We determine the gradient of f.

$$\nabla f(x,y) = \begin{pmatrix} 4x - 3 - 2y \\ y - 1 - 2x \end{pmatrix}$$

Step 1:

We start at $z^{(1)}=(0,0)$ with $f(z^{(1)})=5$ and $\nabla f(z^{(1)})=\begin{pmatrix} -3\\-1 \end{pmatrix}$.

Using line search, we select α to be $\alpha = \arg\min f(z^{(1)} - \alpha \nabla f(z^{(1)})) = \arg\min f(3\alpha, \alpha) = \arg\min 12.5\alpha^2 - 10\alpha + 5$. Using the first-order condition $25\alpha - 10 = 0$, we obtain $\alpha^* = 0.4$ (which is a minimum by the second-order condition).

We conduct the first step of gradient descent:

$$z^{(2)} = z^{(1)} - \alpha^* \nabla f(z^{(1)}) = \begin{pmatrix} 0 \\ 0 \end{pmatrix} - 0.4 \begin{pmatrix} -3 \\ -1 \end{pmatrix} = \begin{pmatrix} 1.2 \\ 0.4 \end{pmatrix}$$

Step 2:

Now $f(z^{(2)})=3$ and $\nabla f(z^{(2)})=\begin{pmatrix} 1 \\ -3 \end{pmatrix}$.

Using line search, we select α to be $\alpha = \arg\min f(z^{(2)} - \alpha \nabla f(z^{(2)})) = \arg\min f(1.2 - \alpha, 0.4 + 3\alpha) = \arg\min 12.5\alpha^2 - 10\alpha + 3$. Using the first-order condition $25\alpha - 10 = 0$, we obtain $\alpha^* = 0.4$ (which is a minimum by the second-order condition).

We conduct the second step of gradient descent:

$$z^{(3)} = z^{(2)} - \alpha^* \nabla f(z^{(2)}) = \begin{pmatrix} 1.2 \\ 0.4 \end{pmatrix} - 0.4 \begin{pmatrix} 1 \\ -3 \end{pmatrix} = \begin{pmatrix} 0.8 \\ 1.6 \end{pmatrix}$$