Week 4: Hypothesis Testing for One/Two Samples

Or, (Theoretical) Populations VS (Actual) Samples

Scott Schwartz

Oct 3, 2022

Manually flip a coin 10 times and record the outcomes, or...

```
set.seed(130); for(i in 1:10){
  sample(c("H","T"), size=1)#cat(sample(c("H","T"), size=1));cat(" ")
}
```

H H H T H H T T H T

```
Or...
sample(c("H","T"), size=10, p=c(1/2,1/2), replace=TRUE)
```

```
## [1] "T" "H" "T" "H" "T" "T" "T" "T" "T"
```

- p defaults to "equal chances", so p=c(1/2,1/2) isn't strictly required
- Why is replace=TRUE critically important in conjunction with size=10?

Manually flip a coin 10 times and record the outcomes, or...

- p defaults to "equal chances", so p=c(1/2,1/2) isn't strictly required
- Why is replace=TRUE critically important in conjunction with size=10?

The \bar{x} Sample mean() statistic (lower case)

```
x
n < -4
set.seed(130)
                                               ## [1] "Heads" "Tails" "Tails" "Tails"
x <- sample(c("Heads", "Tails"), size=n,
                                               as.factor(x)
            p=c(1/2,1/2), replace=TRUE)
                                               ## [1] Heads Tails Tails Tails
                                               ## Levels: Heads Tails
xbar <- mean(x)
## Warning in mean.default(x): argument is not numeric or logical: returning NA
mean(as.numeric(factor(x)))
                                               as.numeric(as.factor(x))
## [1] 1.75
                                               ## [1] 1 2 2 2
xbar <- mean(as.numeric(factor(x))-1)</pre>
                                               as.numeric(as.factor(x))-1
xbar
## [1] 0.75
                                               ## [1] 0 1 1 1
```

The Sampling Distribution VS \bar{x} the Sample mean() statistic (lower case)

```
N <- 100#00000000000000?
n <- 10 # <- What's this?
simulated xbars <- 1:N # <- What's this?
set.seed(130) # <- What happens if this goes inside the for loop?</pre>
for(i in 1:N){
  simulated_x <- sample(c("Heads", "Tails"), size=n, p=c(1/2,1/2),</pre>
                         replace=TRUE)
  simulated xbar <- mean(2-as.numeric(as.factor(simulated x)))
                   # mean(as.numeric(as.factor(simulated x))-1) ?
  simulated xbars[i] <- simulated xbar</pre>
} # What do we have in `simulated xbars` once the for loop completes?
```

The Sampling Distribution VS \bar{x} the Sample mean() statistic (lower case)

```
n <- 50; N<-10000; simulated_xbars<-1:N
set.seed(42); for(i in 1:N){
  sim_x <- sample(c("Heads", "Tails"),</pre>
      size=n, p=c(1/2,1/2), replace=TRUE)
  sim x <- 2-as.numeric(as.factor(sim x))</pre>
  simulated_xbars[i] <- mean(sim_x)</pre>
tibble("xbar"=simulated xbars) %>%
  ggplot(aes(x=xbar)) +
  xlim(0,1) + geom_histogram(bins=51)
# IGNORE the warning "Removed 2 rows
# containing missing values (geom bar)."
```

```
# {r, fig.width=2.5, fig.height=1.5}
library(tidyverse)
    1200 -
     900 -
 count
     600 -
     300 -
       0 -
                0.25
                       0.50
                               0.75
         0.00
                                      1.00
                       xbar
```


The Sampling Distribution VS $\bar{x}_{n=50}$ the Sample mean() statistic (lower case)

The Sampling Distribution VS $\bar{x}_{n=250}$ the Sample mean() statistic (lower case)

The Sampling Distribution VS $\bar{x}_{n=25}$ the Sample mean() statistic (lower case)

Statistical Inference and Hypothesis Testing

Statistical Inference

Can we infer [some specific thing] from the data?

• We'll be doing Statistical Inference in a specific way called Hypothesis Testing

Hypothesis Testing

Could the observed data be plausibly generated under a given assumption?

• We'll do **Hypothesis Testing** in a specific way with an α -significance level test

α -Significance Level Hypothesis Testing

 $\boldsymbol{\alpha}$ is the probability we make a wrong decision about a chosen assumption.

The Sampling Distribution VS \bar{x} the Sample mean() statistic (lower case)

The NULL Hypothesis

The assumed value of the parameter H_0 : p = 0.5

implying a **sampling distribution** to be compared against the **observed test stat**

The ALTERNATIVE Hypothesis

$$H_1: p \neq 0.5$$
 or $H_A: p \neq 0.5$

or just H_1/H_A : H_0 is FALSE

What else do we need to know to make the sampling distribution?

p-value

The probability [which can be approximated] of observing a test statistic that is as or more extreme than the one we got if the NULL Hypothesis is actually TRUE

What else do we need to know to make the sampling distribution?

p-value

The probability [which can be approximated] of observing a test statistic that is as or more extreme than the one we got if the NULL Hypothesis is actually TRUE

Not a p-value: The probability of the Null Hypothesis is TRUE

That's not how Statistical Hypothesis Testing works...

- The **NULL Hypothesis** *IS* either TRUE or *IS* FALSE (not both)
- The NULL Hypothesis can't be sometimes TRUE and sometimes FALSE
- The NULL Hypothesis can't be TRUE for me and FALSE for you

Saying "I put a x% chance on the Null Hypothesis being TRUE/FALSE" is

- \longrightarrow using probability to express *belief* rather than random chance.
 - If you want to use probability to express **belief** then you'll need to be *Bayesian*...

p-value

The probability [which can be approximated] of observing a test statistic that is as or more extreme than the one we got if the NULL Hypothesis is actually TRUE

Not a p-value: The probability parameter is the NULL hypothesis value

That's not how Statistical Hypothesis Testing works...

- The NULL Hypothesis parameter isn't a "random event"
- The **NULL Hypothesis parameter** doesn't change values at different times
- The NULL Hypothesis parameter isn't drawn from some "distribution"

Except if you're Bayesian, in which case you model belief about parameters

- \longrightarrow as distributions, and then do make probability statements about parameters
 - but this is a different statistical paradigm than Hypothesis Testing

The Sampling Distribution VS \bar{x} the Sample mean() statistic (lower case)

```
n <- 50; N<-10000; simulated_xbars<-1:N</pre>
p <- 0.5 # <- This isn't "sometimes 0.5"
# The NULL Hypothesis and n are "fixed"
set.seed(42); for(i in 1:N){
  # Each flip is where there's p "chance"
  x <- sample(c("Heads", "Tails"), size=n,
              p=c(p,1-p), replace=TRUE)
  simulated x<-2-as.numeric(as.factor(x))</pre>
  simulated xbars[i] <- mean(simulated x)</pre>
} # what are the following two values?
mean(abs(simulated xbars-p)>=abs(0.65-p))
## [1] 0.0294
mean(abs(simulated xbars-p)>=abs(0.68-p))
## [1] 0.0088
```

{r, fig.width=3.25, fig.height=2.5}

Simulated Sampling Distribution if the NULL Hypothesis is TRUE

Kissing the "Right" Way

← Rodin's sculpture The Kiss

- Güntürkün (2003) recorded how kissing couples tilt their heads.
- 80 out of 124 couples, or 64.5% tilted their heads to the right.
- Would we reject a NULL hypothesis
 H₀ that the population of humans
 don't have left or right head tilt
 tendencies when kissing?

[Formal] Hypothesis Testing [the only kind]

- **1** State the **NULL Hypothesis** $H_0: p = 0.5$ for the *population* [which is?]
 - Assume the value of the parameter of the NULL Hypothesis is TRUE
 - The ALTERNATIVE Hypothesis is just that the NULL Hypothesis is FALSE
- 2 Set an α -significance level [$\alpha = 0.05$?] which specifies a " H_0 rejection rule"
 - You will "Reject H_0 at the α -significance level" for **p-values** less than α
 - This is also the probability of a Type I error of "rejecting a true H₀ [Why?]
- **3** For the sample size *n* of the observed **test statistic**
 - Simulate the Sampling Distribution assuming the NULL Hypothesis is TRUE
- ① Compute the p-value of the observed test statistic
 The probability [which can be approximated] of observing a test statistic that is as or more extreme than the one we got if the NULL Hypothesis is actually TRUE
- **6** "Reject H_0 at the α -significance level" if the p-value is less than α
 - Otherwise, "Fail to reject H_0 at the α -significance level"

	Innocent	Guilty
Convicted	× Oops! Type I	✓ Gotcha! Justice!
Acquitted	✓ Justice! Freedom!	imes Oops! Type II

This is weird, but...

this is how I remember the difference between Type I and Type II Errors. . .

- WW I wrongly rejected H_0 : peace when it shouldn't have \rightarrow **Type I Error**
- WW II appearsement failed to reject H_0 when it should have \rightarrow **Type II Error**

What's the NULL hypothesis in a Covid Test?

- You don't have Covid? You probably have Covid?
- What are the corresponding Type I and II Errors?

Do people know the difference between covid-19 vs sars-cov 2?

- What test statistic could we use?
- What NULL hypothesis parameter could we use?

Two Sample Hypothesis Testing

Can we follow the above steps for the following H_0 ?

$$H_0: p_1 = p_2 \implies H_{1/A}: p_1 \neq p_2$$

• What kind of example problems could this represent? Treatment/Control?

- **2** [\checkmark] Choose **significance level** $\alpha = 0.05$
- **3** [\checkmark] Use **observed test statistic** $\bar{x}_1 \bar{x}_2$ based on n_1 and n_2 samples
 - [?] Simulate the Sampling Distribution assumming the NULL Hypothesis is TRUE
- [√] Compute p-value
- **5** $[\checkmark]$ Reject / Fail to reject H_0

Two Sample Hypothesis Testing

```
set.seed(13)
n1 <- 30; n2 <- 40; ns <- paste("n1=", n1, " and n2=", n2, sep="")
x1 \leftarrow sample(c(0,1), size=n1, replace=TRUE)
x2 \leftarrow sample(c(0,1), size=n2, p=c(1/3,2/3), replace=TRUE)
observed test statistic <- mean(x1)-mean(x2); observed test statistic
## [1] -0.2083333
N <- 10000: permutation test statistics <- 1:N
set.seed(130); for(i in 1:N){
  shuffled_xs <- sample(c(x1,x2), size=n1+n2, replace=FALSE)</pre>
  tmp <- mean(shuffled_xs[1:n1])-mean(shuffled_xs[(n1+1):(n1+n2)])</pre>
  permutation test statistics[i] <- tmp</pre>
} # What does `permutation test statistics` assume about H O?
mean(abs(permutation test statistics)>=abs(observed test statistic))
## [1] 0.0701
```

Two Sample Hypothesis Testing

Sampling Distribution of $\overline{x}_1 - \overline{x}_2$ for n1=30 and n2=40 if H₀: $p_1 = p_2$ is TRUE

More General Hypothesis Testing

$$\bar{x} = \frac{1}{n} \sum x_i$$
 VS $\hat{p} = \frac{1}{n} \sum x_i$ (don't confuse with p (don't confuse with p -value)

- We've considered $\frac{1}{p} \sum x_i$ when x_i is 0 or 1 with probability p and 1-p, respectively
 - In this case, we often write \hat{p} instead of \bar{x} since \hat{p} , the observed proportion of x_i that are 1, estimates p, **NULL hypothesis parameter** chance that $x_i = 1$

$$x_i \sim f(E[x_i] = \mu, \; \theta)$$
, $E[x_i] = \mu$, and $H_0: \mu = m_0$ and $H_0: \mu_1 - \mu_2 = 0$

- Everything we did also works if x_i has a different distribution of possible values
 - Not just when x_i can only be 0 or 1
 - A Gaussian distribution is a common example: $x_i \sim N(E[x_i] = \mu, SD[x_i] = \sigma)$

mean() VS median(), var(), etc.

 H_0 : $Median=m_0$ and H_0 : $Median_1=Median_2$ and H_0 : $\sigma^2=s_0^2$ and H_0 : $\sigma^2_1=\sigma^2_2$

$$H_0: \mu = m_0 \mid x_i \sim N(\mu, \sigma) \mid H_0: \mu_1 = \mu_2$$

```
n1 <- 10; N<-10000; simulated_xbars<-1:N
set.seed(130); x1 <- rnorm(mean=1, n=n1)
set.seed(42); for(i in 1:N){
    simulated_x <- rnorm(mean=0, n=n1)#H_0
    # sample(c(0,1), size=n, replace=TRUE)
    simulated_xbars[i] <- mean(simulated_x)
}; mean(x1)</pre>
```

[1] 0.7785339 Sampling Distribution of \overline{x} , for n 1 = 10 if H₀: μ = 0 is TRUE

[1] 0.703317

Sampling Distribution of $\overline{x}_1 - \overline{x}_2$ for n1=10 and n2=15 if H₀: $\mu_0 = \mu_1$ is TRUE

H_0 : Median= m_0

50th %tile

H_0 : Median₁=Median₂

```
n1 <- 10: N<-10000: simulated xmeds<-1:N
set.seed(130); x1 <- rnorm(mean=1, n=n1)
set.seed(42): for(i in 1:N){
  simulated x <- rnorm(mean=0, n=n1)#H 0
  # sample(c(0,1), size=n, replace=TRUE)
  simulated_xmeds[i] <- median(simulated_x)</pre>
}: median(x1)
   [1] 0.6916658
     Sampling Distribution of Median(x1) for n1 = 10
     if H 0: Median=0 is TRUE
  1000 -
   750 -
xount
   500 -
   250 -
                   -05
                                0,5
```

0.0

xmed

1.0

-1.5

_i o

```
n2 <- 15; permutation_test_statistics<-1:N
set.seed(131); x2 <- rnorm(mean=0. n=n2)
set.seed(43); for(i in 1:N){
  shuffled xs <- sample(c(x1,x2),
                  size=n1+n2,replace=FALSE)
  tmp <- median(shuffled_xs[1:n1]) -</pre>
         median(shuffled xs[(n1+1):(n1+n2)])
  permutation_test_statistics[i] <- tmp</pre>
}; median(x1)-median(x2)
       0.6336835
```

Sampling Distribution of Median(x1) - Median(2) for n1=10 and n2=15 if H 0: Median 1=Median 2 is TRUE

$$H_0: \sigma^2 = s_0^2 \mid s^2 = \frac{\sum (x_i - \bar{x})^2}{n-1} \mid H_0: \sigma_1^2 = \sigma_2^2$$

[1] 1.910233

}; var(x1)-var(x2) ## [1] 0.8407229

