

UNIVERSIDADE FEDERAL DE RORAIMA CENTRO DE CIÊNCIA E TECNOLOGIA DEPARTAMENTO DE CIÊNCIA DA COMPUTAÇÃO

DCC405 - ESTRUTURA DE DADOS II

Aula 15 – Introdução a Algoritmos de Ordenação

• Um tipo de algoritmo muito usado na resolução de problemas computacionais são os algoritmos de ordenação, que servem para ordenar/organizar uma lista de números ou palavras de acordo com a sua necessidade. As linguagens de programação já possuem métodos de ordenação, mas é bom saber como funcionam os algoritmos, pois há casos de problemas em que o algoritmo de ordenação genérico não resolve, às vezes é necessário modificá-lo.

Ordem crescente de classificação

https://www.hoteis.com/

Outros exemplos de coisas ordenadas

Dicionário

	Rank				Score		
Apr 2021	Mar 2021	Apr 2020	DBMS	Database Model	Apr 2021	Mar 2021	Apr 2020
1.	1.	1.	Oracle 😷	Relational, Multi-model 🚺	1274.92	-46.82	-70.51
2.	2.	2.	MySQL #	Relational, Multi-model 🚺	1220.69	-34.14	-47.66
3.	3.	3.	Microsoft SQL Server 😷	Relational, Multi-model 📆	1007.97	-7.33	-75.46
4.	4.	4.	PostgreSQL 😷	Relational, Multi-model 📆	553.52	+4.23	+43.66
5.	5.	5.	MongoDB 😷	Document, Multi-model 🚺	469.97	+7.58	+31.54
6.	6.	6.	IBM Db2 ☐	Relational, Multi-model 👔	157.78	+1.77	-7.85
7.	7.	1 8.	Redis 🕕	Key-value, Multi-model 👔	155.89	+1.74	+11.08
8.	8.	4 7.	Elasticsearch 🚹	Search engine, Multi-model 👔	152.18	-0.16	+3.27
9.	9.	9.	SQLite [+	Relational	125.06	+2.42	+2.87
10.	10.	10.	Microsoft Access	Relational	116.72	-1.41	-5.19

https://db-engines.com/en/ranking

370 systems in ranking April 2021

 Ordenar é a ação de reorganizar elementos em uma lista ou coleção de maneira crescente ou decrescente baseado por uma propriedade.

```
Entrada: 2, 3, 9, 4, 6
```

- → 2, 3, 4, 6, 9 : ordenação crescente
- → 9, 6, 4, 3, 2 : ordenação decrescente
- → 2, 3, 9, 4, 6 : ordenação por número de fatores

 Ordenar é a ação de reorganizar elementos em uma lista ou coleção de maneira crescente ou decrescente baseado por uma propriedade.

```
Entrada: "garfo", "faca", "rato", "foice", "chave"

"chave", "faca", "foice", "garfo", "rato",
```

Lista desordenada: Busca Sequencial

size =
$$n \rightarrow n$$
 comparações $n = 2^{64} \rightarrow 2^{64}$ ms (milissegundos)

Lista ordenada: Busca binária

size = $n \rightarrow log_2 n$ comparações $n = 2^{64} \rightarrow 64$ ms (milissegundos)

Algoritmos de Ordenação:

- Selection Sort
- Insertion Sort
- Bubble Sort
- Merge Sort
- Quick Sort
- Heap Sort
- Counting Sort
- Radix Sort
- Existem outros...

Classificação desses algoritmos:

- 1) Complexidade de Tempo
- 2) Complexidade de Espaço ou Uso de Memória
 - → In-place, Constant memory
 - → Uso da memória cresce com o tamanho da entrada

Classificação desses algoritmos:

3) Estabilidade (Importante!)
Um algoritmo pode ser estável ou não.

"Um algoritmo de ordenação diz-se estável se preserva a ordem de registros de chaves iguais. Isto é, se tais registros aparecem na sequência ordenada na mesma ordem em que estão na sequência inicial.

Esta propriedade é útil apenas quando há dados associados às chaves de ordenação."

Classificação desses algoritmos:

3) Estabilidade Exemplo:

Classificação desses algoritmos:

3) Estabilidade Exemplo:

Classificação desses algoritmos:

3) Estabilidade Exemplo:

Ordenação não-estável

Classificação desses algoritmos:

3) Estabilidade Exemplo:

Classificação desses algoritmos:

4) Ordenação Interna ou Ordenação Externa

Todos os registros estão armazenados na memória principal ou RAM Registros estão no disco ou alguma (memória secundária)

Classificação desses algoritmos:

