Adapting to Heat Extremes with Unequal Access to Cooling: Evidence from India

Filippo Pavanello^{1,2,3} Ian Sue Wing⁴

Preliminary Version. Please do not cite

¹Department of Economics, University of Bologna

²ECIP Division, Euro-Mediterranean Center on Climate Change (CMCC)

³Department of Economics, Ca' Foscari University of Venice

⁴Department of Earth & Environment, Boston of University

Introduction

· Global warming \Rightarrow more frequent and intense hot extremes

- · Global warming \Rightarrow more frequent and intense hot extremes
- · Large evidence about the welfare costs of extreme heat Literature

- Global warming ⇒ more frequent and intense hot extremes
- · Large evidence about the welfare costs of extreme heat Literature
- Agents shield themselves ⇒ air-conditioning

- Global warming ⇒ more frequent and intense hot extremes
- Large evidence about the welfare costs of extreme heat Literature
- Agents shield themselves ⇒ air-conditioning
- Evidence of the protective effects of air conditioners

- · Global warming \Rightarrow more frequent and intense hot extremes
- Large evidence about the welfare costs of extreme heat Literature
- Agents shield themselves ⇒ air-conditioning
- Evidence of the protective effects of air conditioners
- Problem: access to air conditioning is unequally distributed

(Davis et al. 2021, GEC; Pavanello et al. 2021, NC; Romitti et al. 2022, PNAS Nexus)

- ⇔ especially in developing economies
- $\hookrightarrow\,$ air conditioners are too $\text{expensive} \Rightarrow \text{high operational}$ and capital costs

Are there any alternative cooling appliances affordable for poorer households?

Air conditioner

Evaporative cooler

Air conditioner

Evaporative cooler

- Evaporative coolers \Rightarrow low upfront and operational costs

Air conditioner

Evaporative cooler

- Evaporative coolers ⇒ low upfront and operational costs
- · They reduce indoor temperature

Air conditioner

Evaporative cooler

- Evaporative coolers ⇒ low upfront and operational costs
- They reduce indoor temperature
- · Policymakers **promote** coolers as a sustainable and cheap option

Air conditioner

Evaporative cooler

- Evaporative coolers ⇒ low upfront and operational costs
- They reduce indoor temperature
- · Policymakers **promote** coolers as a sustainable and cheap option

 \hookrightarrow Trade-off (?) \Rightarrow cost and accessibility — health protection effectiveness

This Project

- Examine the differential technological responses to heat extremes of households
 - · Household (> 200k) panel data from India
 - Information on technology and electricity consumption

This Project

- Examine the differential technological responses to heat extremes of households
 - · Household (> 200k) panel data from India
 - · Information on technology and electricity consumption
- 2. Test whether the choice of the technology determines the level of protection from extreme heat
 - · District-level annual mortality data

This Project

- Examine the differential technological responses to heat extremes of households
 - · Household (> 200k) panel data from India
 - · Information on technology and electricity consumption
- 2. Test whether the choice of the technology determines the level of protection from extreme heat
 - · District-level annual mortality data
- 3. Determine the consequences of technological inequality in heat adaptation
 - · Number of prevented deaths
 - · Implications for policy

· Majority of households has no access to any form of cooling

- \cdot Majority of households has ${\color{red}\text{no}}$ access to any form of cooling
- · When they do:

- Majority of households has no access to any form of cooling
- · When they do:
 - → Poor and middle-income households ⇒ evaporative coolers

- Majority of households has no access to any form of cooling
- · When they do:
 - → Poor and middle-income households ⇒ evaporative coolers
 - \hookrightarrow High-income urban families \Rightarrow air conditioners

- Majority of households has no access to any form of cooling
- · When they do:
 - → Poor and middle-income households ⇒ evaporative coolers
- This implies large disparities in electricity consumption during hot days

- Majority of households has no access to any form of cooling
- · When they do:
 - → Poor and middle-income households ⇒ evaporative coolers
- This implies large disparities in electricity consumption during hot days
- An additional day \geq 35 °C \Rightarrow mortality rates \uparrow 1%

- Majority of households has no access to any form of cooling
- · When they do:
 - → Poor and middle-income households ⇒ evaporative coolers
- This implies large disparities in electricity consumption during hot days
- An additional day \geq 35 °C \Rightarrow mortality rates \uparrow 1%
 - \hookrightarrow larger effects for rural and poorer population

- Majority of households has no access to any form of cooling
- · When they do:
 - → Poor and middle-income households ⇒ evaporative coolers
- · This implies large disparities in electricity consumption during hot days
- An additional day \geq 35 °C \Rightarrow mortality rates \uparrow 1%
 - \hookrightarrow larger effects for rural and poorer population
- Coolers are 1.7 to 3.2 times less effective against extreme heat

- Majority of households has no access to any form of cooling
- · When they do:
 - → Poor and middle-income households ⇒ evaporative coolers
- · This implies large disparities in electricity consumption during hot days
- An additional day \geq 35 °C \Rightarrow mortality rates \uparrow 1%
 - \hookrightarrow larger effects for rural and poorer population
- · Coolers are 1.7 to 3.2 times less effective against extreme heat
 - \hookrightarrow **Evaporative coolers** prevented **21%** of heat-related deaths

- · Majority of households has no access to any form of cooling
- · When they do:
 - → Poor and middle-income households ⇒ evaporative coolers
- This implies large disparities in electricity consumption during hot days
- An additional day \geq 35 °C \Rightarrow mortality rates \uparrow 1%
 - \hookrightarrow larger effects for rural and poorer population
- Coolers are 1.7 to 3.2 times less effective against extreme heat
 - \hookrightarrow Evaporative coolers prevented 21% of heat-related deaths
 - → Air conditioners would have prevented 36% of heat-related deaths

1. Air-conditioning adoption, temperature and income

(Davis and Gertler 2015, PNAS; Davis et al. 2021, GEC; Pavanello 2021, NC; Randazzo et al. 2023, JEEM)

1. Air-conditioning adoption, temperature and income

(Davis and Gertler 2015, PNAS; Davis et al. 2021, GEC; Pavanello 2021, NC; Randazzo et al. 2023, JEEM)

2. Residential electricity consumption and temperature

(Deschenes and Greenstone 2011, AEJ; Davis and Gertler 2015, PNAS; Auffhammer 2022, JEEM)

1. Air-conditioning adoption, temperature and income

(Davis and Gertler 2015, PNAS; Davis et al. 2021, GEC; Pavanello 2021, NC; Randazzo et al. 2023, JEEM)

2. Residential electricity consumption and temperature

(Deschenes and Greenstone 2011, AEJ; Davis and Gertler 2015, PNAS; Auffhammer 2022, JEEM)

3. Mortality and extreme heat

(Deschenes and Greenstone 2011, AEJ; Burgess et al. 2017; Carleton et al. 2022, QJE)

1. Air-conditioning adoption, temperature and income

(Davis and Gertler 2015, PNAS: Davis et al. 2021, GEC: Payanello 2021, NC: Randazzo et al. 2023, IEEM)

2. Residential electricity consumption and temperature

(Deschenes and Greenstone 2011, AEJ; Davis and Gertler 2015, PNAS; Auffhammer 2022, JEEM)

3. Mortality and extreme heat

(Deschenes and Greenstone 2011, AEJ; Burgess et al. 2017; Carleton et al. 2022, QJE)

4. Mediator effect of cooling

(Barreca et al 2016, JPE; Park et al. 2020, AEJ; Somanathan et al. 2021, JPE; Hua et al. 2022, JPopE)

→ Main contribution: add the technological dimension

India

· Extreme heat:

- Between March and May 2022: temperature reached 51°C
- In a +2°C scenario: 2-20 times more likely and 0.5-1.5°C hotter relative to 2022 (Zachariah et al. 2022)

India

- · Extreme heat:
 - Between March and May 2022: temperature reached 51°C
 - In a +2°C scenario: 2-20 times more likely and 0.5-1.5°C hotter relative to 2022 (Zachariah et al. 2022)
- · Consequences of extreme heat:
 - · Historical: about 4-6 deaths per 100k people per year
 - <u>Future</u>: 10-60 deaths per 100k people per year by 2100 (Carleton et al. 2022, QJE)

India

· Extreme heat:

- Between March and May 2022: temperature reached 51°C
- In a +2°C scenario: 2-20 times more likely and 0.5-1.5°C hotter relative to 2022 (Zachariah et al. 2022)

· Consequences of extreme heat:

- · Historical: about 4-6 deaths per 100k people per year
- <u>Future</u>: 10-60 deaths per 100k people per year by 2100 (Carleton et al. 2022, QJE)

Cooling adaptation:

- Rising incomes and temperatures ⇒ boost in cooling demand (IEA, 2018)
- Demand for cooler raising even in remote areas
- Air-conditioning spread is still low (9%, in 2019)
 (Davis et al. 2021: Pavanello et al. 2021. NC)
- · One of the first countries to develop a Cooling Action Plan (2019)

Theoretical Framework

Set-up

A representative household maximises its utility function:

$$\max_{q_S,q_N,k,x} u = D[T, a, q_S, k] \cdot z[q_N, x] \quad \text{s.t. } y \ge p[q_S + q_N] + rk + x$$

- \hookrightarrow Assumption: (1) $\partial u/\partial D < 0$ (2) $\partial u/\partial z > 0$
 - T = ambient temperature
 - q_S = electricity for cooling
 - k = space conditioning capital (total capacity)
 - p = electricity price, r = discounted capital cost
 - y = income, $q_N = \text{electricity}$ for other uses, x = numeraire good
 - a = loss of effectiveness

Solution

Solve the model:

· Closed-form solution for electricity consumption and cooling capital

$$q_S^*, \overline{k}, q_S^* = k^* \propto \sqrt{T} \sqrt{Y}$$

- → diminishing returns to adaptation
- Income inequality ⇒ how much a household can adapt
- · Current assumption: no technological differences

Technology

- · Assume that there exists two type of technologies $\theta \Rightarrow$ conditional utility
- The two technologies only differ in loss of effectiveness a and cost r
- The optimal disutility due to temperature becomes:

$$D_{\theta}^* \propto \sqrt{r_{\theta}}, \sqrt{a_{\theta}}$$

- Coolers are cheaper than air conditioners ($r_C < r_{AC}$)
- If coolers are less effective at bringing thermal comfort ($a_{AC} < a_C$)

Moving to Empirical Analysis

Our empirical analysis:

- 1. Identify how Indian households are adapting and through which technology

- 2. Estimate the marginal disutility $\partial D/\partial T$
 - → mortality—temperature relationship

- 3. Determine differences at reducing thermal discomfort a_{θ}
 - → mortality—(temperature × technology)

Cooling Adaptation

Data

- · Household panel data: Consumer Pyramid Dx survey (2014-2019):
 - · Four-month air-conditioning and coolers ownership
 - · Monthly electricity expenditure
 - · Households' socio-economic and demographic characteristics

- Actualised electricity prices: 2011 National Socio-Economic Survey
 - · Aggregated at the district-urban/rural level
- Population-weighted climate data from ERA5 (0.25 $^{\circ}$ × 0.25 $^{\circ}$ cells):
 - · Daily average temperature
 - · Daily total precipitation

The Choice of the Heat Adaptation Technology

- Our data feature allows to look at both ownership and adoption of cooling appliances
- The investment decision is a slow adjustment process ⇒ long lifetimes of cooling appliances
- Households invest based on expectations about climatic conditions \Rightarrow average weather over long periods

(Cohen et al. 2017)

- Adoption in short period of time ⇒ driven only by economic development but conditional on climatic conditions (Trend) (State)
- How we model unobserved heterogeneity determines the dimension of study

Empirical Framework

Estimating the impact of temperature and income on the ownership and adoption of the cooling appliances:

$$C_{\text{ciw}} = \gamma_0 + \beta_1 \overline{\text{CDD}}_{\text{d(i)w}} + \beta_2 I_{\text{iw}} + \gamma_2 g(P_{\text{d(i)w}}) + \lambda X_{\text{iw}} + \mu_k + \delta_w + \theta_{\text{s(i)}} y + \theta_{\text{s(i)}}^2 y^2 + \zeta_{\text{iw}}$$

- C_{ciw} : dummy if household i in wave w has a cooling appliance c
- \cdot $\overline{CDD}_{d(i)w}$: 10-year moving average of quarterly CDD in the previous decade
- \cdot I_{iw} : natural logarithm of quarterly income of household i
- · Controls: second-degree polynomial of precipitation and household characteristics
- · μ_k : unobserved heterogeneity (state or household FE)
- · Additional fixed-effects: wave FE, quadratic state-year trend
- \cdot All regressions are weighted using survey weights that also correct for attrition

Ownership

Evaporative coolers are climate sensitive, air conditioners respond only to income

-	Both Appliances	Air Conditioner	Evaporative Cooler
	(1)	(2)	(3)
CDD (100s)	0.0146***	0.0000542	0.0145***
	(0.002)	(0.001)	(0.003)
Log(Income)	0.0861***	0.0607***	0.0597***
	(0.007)	(0.006)	(0.010)
Precipitations Controls	Yes	Yes	Yes
Household Controls	Yes	Yes	Yes
State FE, Wave FE	Yes	Yes	Yes
Quadratic State \times Year Trend	Yes	Yes	Yes
R^2	0.51	0.21	0.51
Observations	2442730	2442730	2442730

Notes: (1)-(3) clustered standard errors at district level in parentheses. * p < 0.10, ** p < 0.05, *** p < 0.01. All regressions are conducted using survey weights.

Additional Drivers

Air conditioners:

- · Living in an urban area (介介)
- Hours of power availability during the day and ownership of generators (1)
- Education level (介介), female head (以), house materials (介), head age (以)

Coolers:

- · Hours of power availability during the day and ownership of generators (介介)
- Education level (介), female head (Џ), house materials (介), head age (介)

Adoption

Adoption is a matter of economic development

	Both Appliances	Air-conditioning	Evaporative Cooler
	(1)	(2)	(3)
CDD (100s)	-0.000666	0.000216	-0.000764*
	(0.000)	(0.000)	(0.000)
Log(Income)	0.0410***	0.0135***	0.0344***
	(0.003)	(0.001)	(0.003)
Precipitations Controls	Yes	Yes	Yes
Household Controls	Yes	Yes	Yes
Household FE, Wave FE	Yes	Yes	Yes
Quadratic Trend \times State	Yes	Yes	Yes
R^2	0.05	0.02	0.06
Observations	2432366	2432366	2432366

Notes: (1)-(6) clustered standard errors at district level in parentheses. * p < 0.10, ** p < 0.05, *** p < 0.01. All regressions are conducted using survey weights..

Robustness

Our results remain robust to alternative specifications:

- · Alternative time and time-invarying fixed-effects
- · Clustering standard errors at state level
- Changing CDD thresholds
- Specifying temperature up to degree 3 polynomials
- · GLDAS rather than ERA5 climate data

Electricity Consumption

- · Consumption electricity in response to temperature is a short-term decision
- Technology modulates household response
- Using the monthly information we observe the causal effect of short-term response to temperature
- Heterogeneity in the response should be confirmatory of the distribution of the technologies

Empirical Framework

Estimating the impact of temperature on electricity quantity:

$$Q_{imy} = \alpha + \sum_{j=1}^{k} \theta_j T_{d(i)my}^j + \beta_2 f(P_{d(i)my}) + \beta_3 I_{imy} + \mu_i + \delta_{my} + \epsilon_{imy}$$

- Q_{imy} : natural logarithm of electricity quantity of household i in month m and year y
- $T_{d(i)my}$: 3°C bins of daily average temperature in district d (17-20 as reference category)
- Controls: second-degree polynomial of total precipitation and natural logarithm of monthly income
- \cdot Fixed-effects: household FE (μ_i) and month-year FE (δ_{my})
- · All regressions are weighted using survey weights that also correct for attrition

Temperature-electricity

An additional day \geq 35 °C (wrt 17 - 20) increases electricity consumption by 0.46%

Heterogeneity

We test the heterogeneity of the response across different sub-samples

		Rural		Urban			
	Poor (1)	Middle (2)	Rich (3)	Poor (4)	Middle (5)	Rich (6)	
≥ 35	0.00345*** (0.001)	0.00271*** (0.001)	0.00422*** (0.001)	0.00566*** (0.001)	0.00748*** (0.001)	0.00779*** (0.002)	
Controls Household FE Month-Year FE R ²	Yes Yes Yes	Yes Yes Yes	Yes Yes Yes	Yes Yes Yes	Yes Yes Yes	Yes Yes Yes	
Observations Avg. kWh Δ (kWh)	791899 69.35 +0.24	1293061 103.86 +0.28	236447 171.59 +0.72	854902 83.37 +0.47	2698269 117.99 +0.88	1297719 195.08 +1.51	

Notes: (1) to (6) clustered standard errors at district level in parentheses. * p < 0.10, *** p < 0.05, *** p < 0.01. All regressions are conducted using survey weights.

Robustness

Our results remain robust to alternative specifications:

- · Alternative time and time-invarying fixed-effects
- · Electricity quantity in levels
- · Clustering standard errors at state level
- Specifying temperature as 5-degree bins, up to degree 3 polynomials, as Cooling Degree Days (CDD)
- · CRU rather than ERA5 climate data

Health and Extreme Heat

Data

- District-level annual mortality data: Civil Registration System (2009-2019)
 - · Digitalise the reports
 - All-age and all-causes
 - · Distinction between total, urban and rural deaths

- District-level data on heat adaptation: Consumer Pyramid Dx survey (2014-2019)
 - District and state-level penetration rates of air conditioners and evaporative coolers

- Population-weighted climate data from ERA5 (0.25 $^{\circ}$ × 0.25 $^{\circ}$ cells):
 - · Daily average temperature
 - · Daily total precipitation
 - Daily specific humidity

Empirical Framework

Estimating the impact of temperature on mortality:

$$M_{dt} = \alpha_0 + \sum_{i=1}^{8} \theta_i T_{dt} + \sum_r \delta_r \{ P_{dt} \in tercile \, r \} + \mu_d + \rho_t + \lambda_{r(d)} t + \lambda_{r(d)}^2 t^2 + \epsilon_{dt}$$

- M_{dt}: natural logarithm of mortality rate in district d and year y
- $T_{d(i)my}$: 5°C bins of daily average temperature in district d (15-20 as reference category)
- Fixed-effects: district FE (μ_d), year FE (ρ_t)
- Trend: climatic region \times quadratic trend $(\lambda_{s(d)}t + \lambda_{s(d)}^2t^2)$
- Square root of district population used as weight for the regression
 (Barreca et al. 2016, JPE; Burgess et al. 2017)
- \cdot Additional regressions: (1) bins of humidity, (2) interaction warmest \times most humid bin

The Role of Cooling

Estimate an augmented regression model:

$$\begin{split} M_{dt} &= \alpha_0 + \sum_{j=1}^8 \theta_j T_{dt} + \sum_{j=1}^8 \sum_{l=1}^2 \gamma_j T_{dt} \times \frac{C_{dtl}}{L} + \sum_{l=1}^2 \phi_l C_{dtl} + \\ &+ \sum_r \delta_r \{ P_{dt} \in tercile\, r \} + \mu_d + \rho_t + \lambda_{r(d)} t + \lambda_{r(d)}^2 t^2 + \epsilon_{dt} \end{split}$$

- C_{dtl} : penetration rate in district d of technology l
- Additional regressions: interactions with (1) bins of humidity, (2) warmest × most humid bin
- · Drawback: no quasi-experimental design
 - \hookrightarrow the two shares do not have to correlate with other drivers of mortality

Temperature-mortality

An additional day \geq 35 °C (wrt 15 - 20) increases mortality rates by 1%

Controlling for Humidity

FE (1)	FE	FE	FE
(1)			
(±)	(2)	(3)	(4)
0.00943***		0.00996***	0.000320
(0.002)		(0.002)	(0.003)
	0.000660	-0.000505	-0.000102
	(0.003)	(0.003)	(0.003)
	-0.000102	0.000756	0.000110
	(0.001)	(0.001)	(0.001)
			0.000123***
			(0.000)
Yes	Yes	Yes	Yes
Yes	Yes	Yes	Yes
Yes	Yes	Yes	Yes
0.03	0.02	0.03	0.04
3908	3908	3908	3908
	0.00943*** (0.002) Yes Yes Yes Yes 0.03	0.00943*** (0.002) 0.000660 (0.003) -0.000102 (0.001) Yes Yes Yes Yes Yes Yes Yes O.03 0.02	0.00943*** (0.002) 0.000660 0.000505 (0.003) 0.000102 0.000756 (0.001) Yes Yes Yes Yes Yes Yes Yes Yes Yes Ye

Notes: (1)-(4) clustered standard errors at district level in parentheses. * p < 0.10, ** p < 0.05, *** p < 0.01. All regressions are weighted by the square root of district population.

Heterogeneity I

Heat-related deaths mostly occur in rural areas

	Rı	ural	Urban		
	(1)	(1) (2)		(4)	
T (≥ 35)	0.00909**	-0.00191	0.00549*	0.00229	
	(0.004)	(0.005)	(0.003)	(0.004)	
$T (\geq 35) \times H (\geq 18)$		0.000153**		0.0000533	
		(0.000)		(0.000)	
District FE	Yes	Yes	Yes	Yes	
Year FE	Yes	Yes	Yes	Yes	
Quadratic Trend \times Region	Yes	Yes	Yes	Yes	
R^2	0.03	0.04	0.02	0.02	
Observations	2520	2520	1549	1549	

Notes: (1)-(4) clustered standard errors at district level in parentheses. * p < 0.10, ** p < 0.05, *** p < 0.01. All regressions are weighted by the square root of district rural and urban population.

Heterogeneity II

Heat-related deaths mostly occur in district with a **higher share of poor individuals**

	Below	Median	Above Median		
	(1)	(2)	(3)	(4)	
T (≥ 35)	0.00430*	0.00410	0.0173***	0.00147	
	(0.003)	(0.003)	(0.004)	(0.006)	
$T (\geq 35) \times H (\geq 18)$		0.0000199		0.000168**	
		(0.000)		(0.000)	
District FE	Yes	Yes	Yes	Yes	
Year FE	Yes	Yes	Yes	Yes	
Quadratic Trend \times Region	Yes	Yes	Yes	Yes	
R^2	0.04	0.04	0.06	0.07	
Observations	1369	1369	1384	1384	

Notes: (1)-(4) clustered standard errors at district level in parentheses. * p < 0.10, ** p < 0.05, *** p < 0.01. All regressions are weighted by the square root of district population.

Evaporative Cooler vs Air conditioner

Evaporative coolers are 1.7 to 3.2 times less effective than air conditioners

	Temperature		Humidity			Temperature × Humidity			
	Air conditioner	Cooler (2)	Both (3)	Air conditioner (4)	Cooler (5)	Both (6)	Air conditioner	Cooler (8)	Both (9)
$AC \times T (\geq 35)$	-0.0272** (0.011)		-0.0214* (0.011)						
Cooler \times T (\geq 35)		-0.0137** (0.005)	-0.0127** (0.005)						
$AC \times H (\geq 18)$				-0.00131 (0.002)		-0.00110 (0.002)			
Cooler × H (≥ 18)					-0.000499 (0.001)	-0.000466 (0.001)			
$AC \times T (\ge 35) \times H (\ge 18)$							-0.000436*** (0.000)		-0.000368*** (0.000)
Cooler \times T (\geq 35) \times H (\geq 18)								-0.000131** (0.000)	-0.000113** (0.000)
District FE	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Year FE	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Quadratic Trend X Region	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
\mathbb{R}^2	0.05	0.06	0.06	0.03	0.03	0.04	0.06	0.06	0.06
Observations	2753	2753	2753	2753	2753	2753	2753	2753	2753

Notes: (1)-(9) clustered standard errors at district level in parentheses. * p < 0.10, ** p < 0.05, *** p < 0.01. All regressions are weighted by the square root of district population.

Discussion

Let's make an example:

Let's make an example:

· Delhi:

Let's make an example:

· Delhi:

 \hookrightarrow increase by 30% p.p. in air-conditioning penetration rate (25% to 55%)

Let's make an example:

- · Delhi:

 - $\hookrightarrow\,$ heat-related mortality from extreme heat reduced by 36%

Let's make an example:

- · Delhi:

 - → heat-related mortality from extreme heat reduced by 36%
- · Uttar Pradesh:

Let's make an example:

· Delhi

- → heat-related mortality from extreme heat reduced by 36%

· Uttar Pradesh:

Let's make an example:

· Delhi

- → heat-related mortality from extreme heat reduced by 36%

Uttar Pradesh:

- → heat-related mortality from extreme heat reduced by 19%

Avoided Deaths

Without adaptation \Rightarrow 1.05 million people excess deaths due to extreme heat

Avoided Deaths

Without adaptation \Rightarrow 1.05 million people excess deaths due to extreme heat

• Percentage of avoided deaths in the period 2014-2019:

Avoided Deaths

Without adaptation \Rightarrow 1.05 million people excess deaths due to extreme heat

• Percentage of avoided deaths in the period 2014-2019:

 \hookrightarrow with heat adaptation \Rightarrow 27%

Avoided Deaths

Without adaptation ⇒ 1.05 million people excess deaths due to extreme heat

- Percentage of avoided deaths in the period 2014-2019:
 - \hookrightarrow with heat adaptation \Rightarrow 27%
- Gross welfare gains from heat adaptation in the period 2014-2019
 - \hookrightarrow 1.05 \times 27% \times VSL \Rightarrow 4.25 trillion rupees (51 billion \$)
 - \hookrightarrow yearly: 709 billion rupees (8 billion \$) \Rightarrow 0.34% of the annual GDP

Avoided Deaths

Without adaptation ⇒ 1.05 million people excess deaths due to extreme heat

- Percentage of avoided deaths in the period 2014-2019:
 - \hookrightarrow with heat adaptation \Rightarrow 27%
- Gross welfare gains from heat adaptation in the period 2014-2019
 - \hookrightarrow 1.05 \times 27% \times VSL \Rightarrow 4.25 trillion rupees (51 billion \$)
 - \hookrightarrow yearly: 709 billion rupees (8 billion \$) \Rightarrow 0.34% of the annual GDP
- · What would have happened if air conditioners were as spread as evaporative cooler?
 - air-conditioning alone \Rightarrow 36%
 - \hookrightarrow gross welfare gains \Rightarrow 945 billion rupees (11 billion \$) \Rightarrow 0.46% of the annual GDP

Implications for Policy

- · Subsidise air conditioners may be a very expensive policy

 - \hookrightarrow 100% subsidy for having same rate of coolers \Rightarrow 252 billion rupees (3 billion \$)
- Evaporative coolers seems a **stop-gap** solution
 - \hookrightarrow better an evaporative cooler than no cooling
- Air conditioners are likely the solution in the long-term
 - \hookrightarrow extreme heat will become more intense and frequent
 - → income is expected to largely increase in the next years
 - → need for investment in innovation United States

Conclusion

Conclusion

- There exists a trade-off between accessibility to cooling and health protection
- Technology layer in the heat adaptation inequality for low- and middle-income households
- · Only rich urban households adopt and use the most effective technology
- · Trade-off also for policy makers
- · Future research agenda:
 - \hookrightarrow projections \Rightarrow how will the situation evolve in the next 30 years?
 - \hookrightarrow is there a trade-off between adaptation and mitigation?
 - → is the technological gap specific of India?

Thank you for your attention! Any questions?

Welfare Costs of Extreme Heat

Examples of evidence about the welfare costs of extreme heat:

Mortality and morbidity

(Deschenes and Greenstone 2011, AE); Barreca et al. 2016, JPE; Burgess et al. 2017; Heutel et al. 2021, RESTAT; Carleton et al. 2022, QJE)

· Learning

(Park et al. 2020, AEJ; Zivin et al. 2020, JEEM; Park 2022, JHR)

· Mental health and mood

(Noelke et al. 2016, ER; Baylis 2020, JPubE; Hua et al. 2022, JPopE)

· Labour productivity

(Dasgupta et al. 2021, Lancet; Somanathan et al. 2021, JPE)

 $\boldsymbol{\cdot}$ Aggressive behaviour and crime

(Ranson et al. 2015, JEEM; Baysan et al. 2019; JEBO; Blakeslee et al. 2021; JEBO)

Mediating Effects of Air-conditioning

(Barreca et al. 2016, JPE)

Further evidence: learning achievements, labour productivity and mental health

(Park et al. 2020, AEJ; Somanathan et al. 2021, JPE; Hua et al. 2022, JPopE)

Damage Function

The damage function is defined as follows:

• Higher-than-optimal indoor temperatures T^* incur a linear utility penalty D with marginal disutility coefficient δ

$$D = 1 - \delta \left(\frac{1}{A \left[q_S, k \right]} T - T^* \right)$$

where we assume that $A^{(-1)}T \ge T^*$

· For simplicity, let A being a **Leontieff** function

$$A = a^{(-1)} \min \left[q_{S}, k \right]$$

Trends in Ownership Rates by Income and Climate

Trends in Ownership Rates by States

Zooming In

United States (1900-2004)

Delhi (2014-2019)

Electricity - Heterogeneity II

Heterogeneity based on technology

	Air Conditioner (1)	Evaporative Cooler (2)
≥ 35	0.00726*** (0.002)	0.00429*** (0.001)
Precipitations Controls	Yes	Yes
Household FE	Yes	Yes
Month-Year FE	Yes	Yes
R ²	0.04	0.01
Observations	724127	3648335

Notes: (1) and (2) clustered standard errors at district level in parentheses. * p < 0.10, *** p < 0.05, *** p < 0.01. All regressions are conducted using survey weights.

Electricity - Heterogeneity III

Focusing on high-income families

	Air Conditioner (1)	Evaporative Cooler (2)
≥ 35	0.00939*** (0.002)	0.00677*** (0.001)
Precipitations Controls	Yes	Yes
Household FE	Yes	Yes
Month-Year FE	Yes	Yes
Within R ²	0.05	0.02
Observations	490613	995301

Notes: (1) and (2) clustered standard errors at district level in parentheses. * p < 0.10, *** p < 0.05, *** p < 0.01. All regressions are conducted using survey weights.

Innovation in the United States

Rapson (2014, JEEM)

