FINM 34500/STAT 39000 Final Exam, Winter 2023

You have an hour and twenty minutes (80 minutes) to complete the exam. There are 8 problems/questions, each with multiple parts, for a total of 100 points. For all multi-part problems each part is worth the same amount, 5 points. You may use the one (double sided) sheet that you prepared for the test, but you may not use any other books, notes, or electronic devices.

Problem 1 (10). Suppose $X_t, t \ge 0$ is a process with $X_0 = 0$.

- 1. Define what it means for $\{X_t\}$ to be a Brownian motion.
- 2. Define what it means for $\{X_t\}$ to be a Lévy process.

Problem 2 (15). Suppose a process X_t satisfies

$$dX_t = -4X_t dt + dB_t, \quad X_0 = 1,$$

where B_t is a standard Brownian motion. Let T be the first time t that $X_t = 3$ or $X_t = 0$. Suppose F is a C^2 function with F(0) = 0, F(x) > 0 for x > 0, and such that $F(X_{t \wedge T})$ is a martingale.

- 1. Find the second order ordinary differential equation that F satisfies.
- 2. Find one such function F. (You may leave your answer in terms of a definite integral.)
- 3. Find the probability that $X_T = 3$. You can write the answer in terms of the function F.

Problem 3 (10). Let B_t be a standard Brownian motion and let

$$Z_t = \int_0^t \frac{1}{(1-s)^{\alpha}} dB_s, \quad 0 \le t < 1.$$

- 1. For which values of $\alpha > 0$ is it the case that $Z_t, 0 \le t < 1$ is a square integrable martingale?
- 2. For which values of $\alpha > 0$ is it true that there exists $C = C_{\alpha} < \infty$ such that $Var(Z_t) \leq C$ for all t < 1?

Problem 4 (10). Suppose B_t is a standard Brownian motion with respect to probability P and X_t satisfies the following. State whether or not there is an equivalent (mutually absolutely continuous) measure Q such that with respect to Q, X_t is a standard Brownian motion, Give reasons.

- 1. $dX_t = dt + 2 dB_t$.
- 2. $dX_t = 2 dt + dB_t$

Problem 5 (10). Suppose X_t is a compound Poisson process with $\lambda = 4$, and measure $\mu^{\#}$ is given by a uniform continuous random variable on [0, 2]. In other words, the process jumps when a Poisson process of rate 4 jumps and when it jumps it chooses a jump size uniformly on [0, 2].

- 1. Find the function f so that the Lévy measure μ can be written as $d\mu = f(x) dx$.
- 2. Find $Var[X_t]$

Problem 6 (20). Let B_t be a standard Brownian motion with $B_0 = 1$. Let $T = \min\{t : B_t = 0\}$, and let $X_t = B_t^3$.

1. Find a function q such that

$$M_t := X_t \exp\left\{ \int_0^t g(B_s) \, ds \right\}$$

is a local martingale for t < T. (Do not worry about what happens after time T.)

- 2. What SDE does M_t satisfy?
- 3. Let Q be the probability measure obtained by tilting by M_t . Find the SDE for B_t in terms of a Q-Brownian motion.
- 4. Is the local martingale in part 1 actually a martingale? Give reasons.

Problem 7 (15). Suppose that a stock price S_t satisfies the SDE

$$dS_t = S_t \left[2 dt + 3 dB_t \right]$$

and its value at time 0 is $S_0 > 0$. Suppose that the interest rate is r, that is, one can obtain a bond worth $R_t = e^{rt} R_0$.

- 1. Give the SDE satisfied by the discounted stock price $\tilde{S}_t = e^{-rt} S_t$ (with respect to B_t).
- 2. Suppose we wish to find a probability measure Q and a standard Brownian motion with respect to Q such that the discounted stock price is a martingale with respect to Q. This will require tilting by a martingale M_t . Give the SDE that M_t satisfies (with respect to B_t).
- 3. Give the SDE that \tilde{S}_t satisfies with respect to W_t , a standard Brownian motion with respect to Q.

Problem 8 (10). Suppose X, Y are independent random variables; X is a standard normal and Y has a Poisson distribution with parameter (mean) 3. Let Z = XY. Let μ_X, μ_Y and μ_Z be the probability distributions for X, Y, and Z respectively. For the following statements say whether it is true or false and give reasons.

- 1. $\mu_X \perp \mu_Y$.
- 2. $\mu_Z \ll \mu_X$.