# 채권의 이해와 분석 2

- Price, Sensitivity, and Zero-rate Curve

# <u>- 목 차 -</u>

1. 채권가격 분석 (계속)

2. 채권가격 분석: 일반화

3. Zero Rate Curve

# (1) YTM과 채권가격의 관계

# 1. 채권가격=P(수익률) 공식을 통한 수익률(YTM)과 채권가격의 관계 관찰

• (예) 액면(F)=100, 만기(T)=15, 이표율(c)=8.63%, 이표주기=6개월, 시장가격(P)=124.59, YTM=6.1%



## 2. 수익률과 채권가격의 관계

- 채권가격과 수익률은 역의 비선형 관계
- 수익률 하락 시 채권가격 상승 폭 > 수익률 상숭 시 채권가격 하락 폭 → 비대칭성
- 수익률이 낮은 상태에 있을수록 수익률 변화에 따른 채권가격 변화 "폭"과 "비대칭성"은 즁가

## (2) 듀레이션 (Duration)

# 1. 금액 듀레이션 (Cash Duration)

• 정의: CD = dP/dy. 단, P=채권가격 & y=YTM.

$$\begin{split} \bullet \text{ on pathon cd} \quad \bullet \text{ on pathon cd} \quad & \frac{dP(F,T,c,m,y)}{dy} = \sum_{t=1}^{mT} CF_t \times \frac{d(1+y/m)^{-t}}{dy} = \sum_{t=1}^{mT} CF_t \times (-t) \times (1+y/m)^{-t-1} \times (\frac{1}{m}) \\ & = \frac{-1}{(1+y/m)} \times \sum_{t=1}^{mT} (\frac{t}{m}) \times \frac{CF_t}{(1+y/m)^t} = \frac{-1}{(1+y/m)} \times \sum_{t=1}^{mT} (\frac{t}{m}) \times CF_t \times DF_t \end{split}$$

- ΔP = -CD×Δy → <u>해석: 수익률이 Δy 변할 때(상승 or 하락) 채권가격의 변화(하락 or 상승)</u>
- (예) F=10,000, T=5, c=5%, m=1인 기말불 이표채의 YTM이 10%라고 할 때, 금액 듀레이션을 계산하시오.

| t(첨자)  | CF <sub>t</sub> | DF <sub>t</sub> | $PV_t$ | (t/m)×PV <sub>t</sub> |
|--------|-----------------|-----------------|--------|-----------------------|
| 1      | 500             | 0.9524          | 476    | 476                   |
| 2      | 500             | 0.9070          | 454    | 907                   |
| 3      | 500             | 0.8638          | 432    | 1,296                 |
| 4      | 500             | 0.8227          | 411    | 1,645                 |
| 5      | 10,500          | 0.7835          | 8,227  | 41,135                |
|        | 45,460          |                 |        |                       |
| Cash D | -43,295         |                 |        |                       |

- 
$$CF_t = F \times (c/m)$$
 for  $t \neq m \times T$ ,  $F \times (1 + c/m)$  for  $t = m \times T$   
-  $DF_t = 1/(1 + y/m)^t$   
-  $PV_t = CF_t \times DF_t$ 

- YTM 25bp ↓ 시, CD를 이용한 채권가격 변화 계산: ΔP ≒ -CD×Δy = (-33,066)×(-0.0025) ≒ +83

#### (2) 듀레이션 (Duration)

# 2. 수정 듀레이션 (Modified Duration or Hicks Duration)

- 정의: MD = (dP/dy)/P = CD/P
- $0 \mid \pm t \mid \subseteq MD$ :  $\frac{dP}{dy} \times \frac{1}{P} = \frac{-1}{(1+y/m)} \times \sum_{t=1}^{mT} (\frac{t}{m}) \times \frac{CF_t \times DF_t}{P} = \frac{-1}{(1+y/m)} \frac{1}{P} \sum_{t=1}^{mT} (\frac{t}{m}) CF_t DF_t$ (\*\*Duration or Macaulay Duration)
- $\Delta P \Rightarrow P \times MD \times \Delta y$  →  $MD \times \Delta y$ 의 해석: 수익률이  $\Delta y$  변할 때(중가 or 감소) 채권가격의 변화(감소 or 중가)을
- (예) 앞의 Cash Duration 예제와 동일한 조건에서, MD 및 이를 이용한 ΔP를 계산하시오.

# 3. PBVP (Price Value of a Basis Point)

• PVBP = CD×(0.0001) or P×MD×(0.0001) → YTM 1bp 변화에 따른 채권가격(가치) 변화

#### 4. 듀레이션의 성질

- YTM 수준이 높을수록 듀레이션은 감소
- 다른 모든 조건이 일정할 때, 만기가 길 수록 듀레이션은 체감적으로 즁가
- 다른 모든 조건이 일정할 때, Coupon Rate이 높을수록 듀레이션은 감소

# (3) 볼록도 (Convexity)

# 1. 듀레이션 민감도의 한계

- 수익률 변화(Δy)가 작은 경우에만 정확
  - 채권가격 함수는 비선형인 반면, 듀레이션 민감도(CD, MD)는 접선의 기울기(dP/dy)에 기반하여 정의되므로, 수익률 변화(Δy)가 클 수록 듀레이션을 통해 계산한 채권가격 변화(ΔP)의 오차 중가
- (예) 실제  $\Delta P$  vs. 듀레이션을 이용한  $\Delta P$  추정치 : F=10,000, T=5, c=5%, m=1, YTM=10%인 이표채

| YTM | ΔΥΤΜ | Р      | Actual ΔP | ΔP using Dur. | Error |
|-----|------|--------|-----------|---------------|-------|
| 1%  | -9%  | 11,941 | 3,837     | 2,976         | 861   |
| 4%  | -6%  | 10,445 | 2,341     | 1,984         | 357   |
| 7%  | -3%  | 9,180  | 1,075     | 992           | 83    |
| 10% | 0%   | 8,105  | 0         | 0             | 0     |
| 13% | 3%   | 7,186  | -918      | -992          | 74    |
| 16% | 6%   | 6,398  | -1,706    | -1,984        | 278   |
| 19% | 9%   | 5,719  | -2,385    | -2,976        | 591   |

- → ① ΔYTM의 크기가 클 수록 Error의 크기도 증가
  - ② Error = Actual ΔP Duration based ΔP > 0 :Duration은 ΔP 폭을 항상 과소하게 측정

# (3) 볼록도 (Convexity)

# 2. 볼록도 (Convexity)

- Motivation: 듀레이션의 한계점 보완
- Taylor Expansion:

$$- f(x) - f(x_0) = \sum_{n=1}^{\infty} \frac{f^{(n)}(x_0)}{n!} (x - x_0)^n, \ f^{(n)} = \frac{d^n f}{dx^n}$$
$$\approx f^{'}(x_0)(x - x_0) + \frac{1}{2} f^{''}(x_0)(x - x_0)^2$$

$$\Rightarrow P(y + \Delta y) - P(y) \approx P'(y)\Delta y + \frac{1}{2}P''(y)(\Delta y)^2$$

$$\Rightarrow \frac{P(y + \Delta y) - P(y)}{P(y)} \approx \frac{P'(y)}{P(y)} \Delta y + \frac{1}{2} \frac{P''(y)}{P(y)} (\Delta y)^2$$

- 정의: C = (d<sup>2</sup>P/dy<sup>2</sup>)/P
- Convexity에 의한 ΔP ≒ ½×P×C×(Δy)²
  - → ½×Convexity×(Δy)² 의 해석: <u>수익률이 Δy 변화(증가 or 감소)할 때 Convexity에 의한 채권가격 변화(증가)율</u>



# (3) 볼록도 (Convexity)

# 2. 볼록도 (Convexity, 계속)

• 
$$0$$
  $|$   $\pm$   $|$   $|$  Convexity:  $\frac{d^2P}{dy^2} \times \frac{1}{P} = \frac{1}{(1+y/m)^2} \times \sum_{t=1}^{mT} \frac{t}{m} \times \frac{t+1}{m} \times \frac{CF_t \times DF_t}{P} = \frac{1}{(1+y/m)^2} \frac{1}{P} \sum_{t=1}^{mT} \frac{t}{m} \frac{(t+1)}{m} CF_t DF_t$ 

• (예) F=10,000, T=3, c=8%, m=1인 기말불 이표채의 YTM이 10%라고 할 때, Convexity를 계산하시오.

| t(첨자)                                    | t/m | (t+1)/m | CF <sub>t</sub> | DF <sub>t</sub> | $PV_t$ | (t/m)×PV <sub>t</sub> | $(t/m)\times(t+1)/m\times PV_t$ |
|------------------------------------------|-----|---------|-----------------|-----------------|--------|-----------------------|---------------------------------|
| 1                                        | 1   | 2       | 800             | 0.9091          | 727    | 727                   | 1,455                           |
| 2                                        | 2   | 3       | 800             | 0.8264          | 661    | 1,322                 | 3,967                           |
| 3                                        | 3   | 4       | 10,800          | 0.7513          | 8,114  | 24,343                | 97,370                          |
| Sum 9,503 26,392                         |     |         |                 |                 |        |                       | 102,792                         |
| Convexity (=Sum÷(1+y/m) <sup>2</sup> ÷P) |     |         |                 |                 |        |                       | 8.94                            |

→ 이 과정을 일반화하여 Convexity를 계산하는 R 함수를 작성하시오.

## 3. 볼록도의 성질

- 수익률이 하락할수록 채권의 볼록성은 증가
- 다른 모든 조건이 일정할 때, 이표율이 낮을수록 채권의 볼록성은 증가

# (3) 볼록도 (Convexity)

# 4. 듀레이션과 Convexity를 이용한 채권가격 변화 예측

- $\Delta y$  만큼의 YTM 변화에 따른 채권가격 변화율:  $\frac{\Delta P}{P} \approx MD \cdot \Delta y + \frac{1}{2} \cdot C \cdot (\Delta y)^2$
- (예) 앞 쪽 예제에서 YTM 1% 하락/즁가 시, 듀레이션과 Convexity를 모두 이용하여  $\Delta P$ 를 예측하시오.

# 5. 유효 듀레이션 (Effective Duration), 유효 볼록성 (Effective Convexity)

• ED = 
$$\frac{\text{ED}^+ + \text{ED}^-}{2}$$
, where ED<sup>+</sup> =  $\frac{P(y + \Delta y) - P(y)}{\Delta y} \frac{1}{P(y)}$  and ED<sup>-</sup> =  $\frac{P(y) - P(y - \Delta y)}{\Delta y} \frac{1}{P(y)}$ 

• EC = 
$$\frac{P(y + \Delta y) - 2P(y) + P(y - \Delta y)}{(\Delta y)^2} \frac{1}{P(y)}$$

- 필요성:
  - 상당히 큰 Δy에 대한 채권가격 변화를 분석하는 경우
  - 옵션부채권, 구조화채권 등 채권가격을 공식이 아닌 복잡한 방법을 통해야만 얻을 수 있는 경우
- (예) 앞 쪽 예제에서 YTM 1% 하락/중가 시, 유효 듀레이션을 계산하시오.

## (1) 경과물 채권의 가격 분석

## 1. 경과이자 (Accrued Interest)

- •정의: 현재 이자부리 기간 중 이미 경과된 기간에 대한 이자
- (예) F=10,000, c=4%, T=3, 연1회 이자지급, YTM=5%. 발행 후 9개월 경과한 상태.



- Q1> 현재 시점에 채권을 매도한다고 할 때, 경과이자는 누구의 것인지? → 매도자
- Q2> 현재 시점에 채권가격 계산 시, 경과이자를 포함해야 하는지? → 가격의 정의에 따라 다르다.
  - ① Dirty(or Full) Price: 경과이자 포함 YES (한국)
  - ② Clean Price: 경과이자 포함 NO (미국)

Dirty Price = Clean Price + 경과이자

• Q3> 현재 시점에 채권가격 계산 시, Short period의 할인(discounting)은 어떻게 하는지? → 단리 할인

## (1) 경과물 채권의 가격 분석

# 2. 경과이자를 고려한 채권가격, 민감도 계산

• 경과물 이표채의 Time Line:



• Dirty Price:

• Clean Price:

- (예) 발행일=2017.08.09, 만기=3년, 원금=10,000, 이표율=10%(Quarterly 후급)인 이표채가 2017.08.14에 거래되었다. YTM=12.36%라고 할 때, 거래가격을 Dirty Price로 각각 계산하시오. (소수점 이하 반올림)
  - → 답: 9,431 (※경과이자 = 10,000×10%/4×5/92 = 14)

#### (2) 채권가격의 금리 민감도

#### 1. Malkiel의 채권가격 정리 (B.G. Malkiel)

- 옵션 조항이 없는 고정이자 이표채 or 무이표채의 가격과 수익률 사이에는 아래의 관계가 성립
  - ① 채권가격은 수익률과 반대 방향으로 움직인다.
  - ② 채권의 잔존기간이 길수록 동일할 수익률 변동에 대한 가격 변동 폭은 커진다.
  - ③ 채권수익률 변동에 의한 채권가격 변동은 만기가 길어질수록 즁가하나, 그 즁가율은 체감한다.
  - ④ 채권수익률 하락으로 인한 가격 상승은 동일한 폭의 채권수익률 상승에 의한 가격 하락 보다 크다.
  - ⑤ 이표율이 높을수록, 이자지급 주기가 짧을수록 동일 수익률 변동에 대한 가격 변화율은 작아진다.

## 2. 포트폴리오 Duration, Convexity

 $\bullet CD(A+B) = CD(A) + CD(B)$ 

- PVBP(A+B) = PVBP(A) + PVBP(B)
- MD(A+B) =  $W_A$ ·MD(A) +  $W_B$ ·MD(B), where  $W_A$  = P(A)/P(A+B) and  $W_A$  = P(A)/P(A+B)
- $C(A+B) = W_A \cdot C(A) + W_B \cdot C(B)$ , where  $W_A = P(A)/P(A+B)$  and  $W_A = P(A)/P(A+B)$

# (3) 채권 투자수익 분석

## 1. 채권 투자 수익률의 분해

• 채권 투자수익 = 자본수익(Capital Gain) + 이자수익(Interest Gain) + 재투자 수익 (Reinvestment Gain)

( 주식 투자수익 = 자본수익(Capital Gain) + 배당수익(Dividend Gain) + 재투자 수익 Reinvestment Gain) )

#### 2. YTM 계산 근사 공식

• YTM  $\approx \frac{(F-P)/T+F\cdot c}{(F+P)/2}$ , where F = Notional Amount, P = Markt Price,

T = Time to Maturity in years,

c = Coupon Rate (annualized).

- 해석:
  - ① (F + P)/2: 현재부터 만기까지의 채권의 평균 가격
  - ② (F P)/T: 만기까지 보유 시 얻게되는 연평균 자본수익
  - ③ F·c: 연간 이자수익

# (1) Zero (or Zero Rate) Curve

# 1. YTM의 한계점

- 모든 만기의 YTM이 동일하다고 가정 (Flat Yield Curve)
- 금리 변동 시 모든 만기의 YTM이 동일하게 움직인다고 가정 (Parallel Shift of Yield Curve)
- 채권의 중간 이자에 대한 재투자 수익률로 해당 채권의 YTM을 가정

#### 2. Zero Rate (or Zero-coupon Rate)

- 정의: 중간 현금흐름이 없는 채권(무이표채) or 단일 현금흐름을 할인하는데 적용되는 할인율
- 할인계수(Discount Factor): 미래 현금흐름을 현재가치로 환산할 때 곱해지는 계수

$$- DF_{T} = \frac{1}{(1 + R_{T} \cdot T)}$$

$$= \frac{1}{(1 + R_{T}^{'} / m)^{m \cdot T}}$$

$$= e^{-r_{T} \cdot T}$$

- ← 단리(Simple Add-on) 이자율: V(T) = V(0)×(1 + R<sub>T</sub>T)
- - ← 연속복리(Continuous Compounding) 이자율: V(T) = V(0)×e<sup>r,T</sup>

# (1) Zero (or Zero Rate) Curve

## 3. Zero Curv 붓스트랩 (Bootstrap)

- 개념: 채권 시장가격(or Yield Curve)으로부터, 단기→장기 순서로 만기별 Zero Rate(or DF)을 역산하는 과정 ※비단 채권 뿐 아니라. 주식(배당). 스왑. 옵션 등 다른 금융상품에도 적용 가능한 일반적인 절차임.
- (예) 채권 Yield Curve로 부터 Zero Curve를 Bootstrap

<**만기별 채권가격**(※액면=100, 연2회 이자 지급 가정)>

|               | 시장 정보       | Bootstrap 결과 |        |           |
|---------------|-------------|--------------|--------|-----------|
| <b>만기</b> (년) | 채권 가격 연간 쿠폰 |              | DF     | Zero Rate |
| 0.5           | 94.9        | 0            | 0.9490 | 10.4693%  |
| 1.0           | 90.0        | 0            | 0.9000 | 10.5361%  |
| 1.5           | 96.0        | 8            | 0.8520 | 10.6809%  |
| 2.0           | 101.6       | 12           | 0.8056 | 10.8080%  |

<만기별 DF 및 Zero Rate(※r. 연속복리 Yield Convention)>

① T = 0.5Y: 
$$DF_{0.5Y} = \frac{94.9}{100} = 0.9490 = e^{-r_{0.5Y} \times 0.5}$$
.  $\rightarrow r_{0.5Y} = 10.4693\%$ .

② T = 1Y: 
$$DF_{1Y} = \frac{90.0}{100} = 0.9000 = e^{-r_{1Y} \times 1.0}$$
.  $\rightarrow r_{1Y} = 10.5361\%$ .

(※Zero Rate의 Yield Convention 선택은 자유롭게 할 수 있으나, 계산의 편의성 때문에 연속복리 방식이 가장 널리 사용됨.)

③ T = 1.5Y:

| 평가일(= O/N) | 3M | 6M                    | 9M | 1Y                 | 1Y3M | 1Y6M                            |
|------------|----|-----------------------|----|--------------------|------|---------------------------------|
| •          | '  | 4                     | '  | 4                  |      | 4+100                           |
| (96.0      | =  | 4×DF <sub>0.5</sub> Y | +  | 4×DF <sub>1Y</sub> | +    | 104× <u>DF<sub>1.5Y</sub></u> ) |

→ 
$$DF_{1.5Y} = \frac{96.0 - (4 \times DF_{0.5Y} + 4 \times DF_{1Y})}{(4 + 100)} = 0.8520 = e^{-r_{1.5Y} \times 1.5}.$$

→  $r_{1.5Y} = 10.6890\%.$ 

4 T = 2Y:

| 평가일(= O/N) | 3M | 6M                    | 9M | 1Y                 | 1Y3M | 1Y6M                 | 1Y9M | 2Y<br>                        |
|------------|----|-----------------------|----|--------------------|------|----------------------|------|-------------------------------|
|            |    | 6                     | •  | 6                  | •    | 6                    | '    | 6+100                         |
| (101.6     | =  | 6×DF <sub>0.5</sub> Y | +  | 6×DF <sub>1Y</sub> | +    | 6×DF <sub>1.5Y</sub> | +    | 106× <u>DF<sub>2Y</sub></u> ) |

→ 
$$DF_{2Y} = \frac{101.6 - (6 \times DF_{0.5Y} + 6 \times DF_{1Y} + 106 \times DF_{1.5Y})}{(6 + 100)} = 0.8056$$
  
=  $e^{-r_{2Y} \times 2.0}$ . →  $r_{2Y} = 10.8080\%$ .

(§) T = 1.3Y: 
$$r_{1.3Y} = \frac{(1.5-1.3)}{(1.5-1)} \times r_{1Y} + \frac{(1.3-1)}{(1.5-1)} \times r_{1.5Y} = 10.6230\%$$
.  $\Rightarrow DF_{1.3Y} = e^{-r_{1.3Y} \times 1.3} = 0.8710$ .  $(**\frac{Q/\text{Mod} \text{pt} \text{Pt/O} \text{Zero Rates} \text{\text{LZP}}}{2.5^{\text{Pt/O}}})$