Math 412. Cayley's Theorem Professors Jack Jeffries and Karen E. Smith

CAYLEY'S THEOREM: Every finite group G is isomorphic to a subgroup of the symmetric group S_n for some n.

TERMINOLOGY: If a group G is isomorphic to a subgroup of a group H, we say G **embeds in** H. In this case there is an embedding (another word for injective homomorphism) $G \hookrightarrow H$ which identifies G with its image in H. So Cayley's theorem says that every finite group embeds in a symmetric group.

A. WARM UP.

- (1) Explain how to see \mathbb{Z}_n as a subgroup of \mathcal{S}_n .
- (2) Explain how $\mathbb{Z}_d \times \mathbb{Z}_e$ embeds in \mathcal{S}_n , where n = d + e.
- (3) I claim that S_n has many subgroups but few quotient groups. What do I mean?
 - (1) The group $\langle (123\cdots n)\rangle$ is cyclic of order n, and hence isomorphic to \mathbb{Z}_n .
 - (2) The subgroup G of S_{d+e} generated by $\langle (123\cdots d), (d+1\ldots e)\rangle$ is isomorphic to $\mathbb{Z}_d\times\mathbb{Z}_e$. To see this, we map $\mathbb{Z}_d\times\mathbb{Z}_e\to G$ by sending $(a,b)\mapsto (123\cdots d)^a\circ (d+1\ldots e)^e$ and observe that this is a well-defined surjective homomorphism with trivial kernel. [Check it!]
 - (3) Every finite group embeds in S_n for appropriate n, but the only quotients of S_n are S_n (which is the quotient by the trivial group), $\{e\}$, which is the quotient by the whole group, and $S_n/A_n \cong \{\pm 1\}$, which is the quotient by the alternating group (plus one more quotient S_4/K of order 6 which is isomorphic to S_3 .) This is a far cry from "all groups."

B. Fix a group G.

- (1) Show that G acts on itself by left multiplication.
- (2) If G has order n, explain how (1) gives rise to a mapping

$$G \to \mathcal{S}_n$$
.

[Hint: What is another name for Bij(X) when X has n elements?]

- (3) What did you prove on Problem Set 9 about this mapping between two groups G and S_n ?
 - (1) We verify that $g \cdot x = gx$ is an action of G on itself. This is easy: $e \cdot x = x$ and $g \cdot (h \cdot x) = g(hx) = (gh)x$ by the associative axiom of a group.
 - (2) We take each $g \in G$ to the map $G \xrightarrow{g} G$ sending $x \mapsto gx$, which is a bijection of the n-element set G. This defines a map $G \to S_n$.
 - (3) We proved this map $G \to S_n$ is a group homomorphism! More generally, for any group action on a set X, there is a group homomorphism $G \to Bij(X)$.

C. THE PROOF OF CAYLEY'S THEOREM Prove Cayley's theorem by considering the action of G on itself by left multiplication.

Your proof actually proves a stronger statement than the above, in which the size of the needed symmetric group is predicted. State this stronger theorem.

When G acts on itself by left multiplication we get a group homomorphism $G \to S_n$, where n = |G|. We only need to show that this map is injective, then the first isomorphism theorem will imply that G is isomorphic to its image in S_n . To prove the map is injective, say that $g \in G$ is in the kernel. This means that multiplication by g gives the identity map in S_n . But then g = e. QED.

Note that we have actually proved that G embeds in S_n where n = |G|. So not just that there exists some n that works, but for this specific n = |G|, we know G is isomorphic to a subgroup of S_n .

- D. The proof of Cayley's Theorem shows that if G has n elements, then G is isomorphic to a subgroup of S_n .
 - (1) Explain why G can be viewed as a subgroup of S_m for all $m \ge |G|$.
 - (2) Show that the group \mathbb{Z}_p embeds in \mathcal{S}_n if and only if $n \geq p$, so that this result is sharp in general.
 - (3) For the group $G = D_4$, however, show that G embeds in a much smaller symmetric group (namely S_4).
 - (4) Show that if G acts faithfully on a set of d elements, then G embeds in S_d . [Recall that a **faithful** action is one satisfying the following: for each $g \in G$, there is an $x \in X$ such that $g \cdot x \neq x$.]
 - (5) What is the smallest symmetric group in which the dihedral group D_n embeds?
 - (1) We can embed G in $S_{|G|}$ and for any n and $m \geq n$, we can embed $\mathcal{S}_n \hookrightarrow \mathcal{S}_m$ just by extending any permutation of $\{1,2,\ldots,n\}$ to the "same" permutation on $\{1,2,\ldots,n,n+1,\ldots,m\}$ which fixes the elements $n+1,\ldots,m$. So the composition of embeddings $\mathcal{G} \hookrightarrow S_{|G|} \hookrightarrow S_m$ is an embedding.
 - (2) If we could embed \mathbb{Z}_p in \mathcal{S}_n , then \mathcal{S}_n would have to have an order p element. As a product of disjoint cycles, then, it could only be a p-cycle. But there are no p-cycles is p > n.
 - (3) The action of D_4 on the vertices of the square induces a group homomorphism $D_4 \to S_4$. It is injective, because if a symmetry fixes all four vertices, it must fix the whole square.
 - (4) In general, if G acts faithfully on X (cardinality n), then the map $G \to S_n$ is injective (you proved this on problem set 9).
 - (5) D_n embeds in S_n because it acts faithfully on the vertices of the regular n-gon. In general, this is the best we can do. For example, if p is prime, then D_p contains a p-cycle, so if we could embed D_p in S_n , then we could embed a cyclic group of order p as well (generated by the p-cycle). We already saw in (2) that this is impossible if n < p. So in general, we can embed D_n in S_n for all n, but we can not embed all D_n in smaller S_m .

(6)