北京郵電大學

信息与通信工程学院 场强仪实验报告

校园内建筑物对信号的穿透损耗

姓名	班级	学号	序号	
李昊	2015211107	2014210192	01	
凤雨婷	2015211107	2014210201	02	

目录

第	1 章	实验背景	1
	1.1	实验目的	1
	1.2	数据的选择与说明	1
	-	数据分析	1
	2.1	全局分析	1
	2.2	南北分析	1
	2.3	东西分析	3
\mathbf{A}	原始	数据	5

第1章 实验背景

1.1 实验目的

通过测量实际数据研究校园内建筑物的穿透损耗

1.2 数据的选择与说明

测量地点 教二,教一的南北两侧,各自西向东 100 个点,主楼前广场南北两侧各自西向东 50 个点,一共 500 个点

测量频率 我们选择中国之声 FM, 频率为 106.1MHz

测量方式 场强仪电线指向西边, 水平向上 45 度

测量步长 约为1米

测量状态 2018 年 4 月 24 日, 15:30-14:30, 大风, 晴

绘图工具 python+jupyter+matplotlib+pandas

源代码 上传到了我的 githubxxxxx

第 2 章 数据分析

2.1 全局分析

图2.1展示的是信号强度在二位地理位置上的分布. 图中的四个红色的框分别代表教一, 主楼, 广场, 教二. 通过右边的 colormap 可以直观的感受到信号在地理分布上的规律.

从中可以看到如下事实

- 1. 对于教二和教一来说, 南边的信号要比北边要强, 猜测信号源在学校的北边
- 2. 广场的信号分布相对均匀一些, 猜测是因为广场空间宽阔
- 3. 教一南到广场北和广场南到教二北有明显衰减, 猜测是因为广场周边的树造成的

2.2 南北分析

为了分析信号在南北方向的分布规律, 我们把所有点在东西方向去平均, 得到图2.2 图中"oneS"代表教一南, "squareN"代表广场北

从中可以看到如下事实

- 1. 对于一个实体 (广场, 教一, 教二), 南面信号比北面强, 猜测是因为信号源在学校南方
- 2. 教二北比广场南的信号要弱, 这是唯一一个违背南强北弱规律的, 暂时无法解释 求平均后的数据如表2.1

图 2.2 南北分析

	twoS	twoN	squareS	$\operatorname{squareN}$	oneS	oneN
数据	-58.732	-59.688	-57.94	-58.968	-59.746	-61.19

表 2.1 南北方向平均值

根据衰落计算公式

$$\Delta P = \frac{1}{N} \sum_{i=1}^{N} P_i^{outside} - \frac{1}{M} \sum_{j=1}^{M} P_j^{inside}$$

可以得到表2.2

	衰落损耗
twoS-twoN	0.965
tow N-square S	-1.748
${\it square S-square N}$	1.028
square N-one S	0.778
oneS-oneN	1.444

表 2.2 南北方向衰落损耗

2.3 东西分析

为了分析信号在东西方向的分布规律,我们把所有的点在南北方向上取平均,得到图2.3 图中 x 轴代表自西像东的第 x 个点

图 2.3 东西分析

计算其统计特性可以得到表2.3

 mean
 std

 result
 -59.601250
 2.126018

表 2.3 东西方向的统计特性

A 原始数据

下表为原始数据, 注意没有负号

	twoS	twoN	squareS	squareN	oneS	oneN
1	61.8	62.6	60.9	56.8	65.5	58
2	55.1	57.6	62.5	64.8	60.2	57.5
3	54.9	58.8	71.6	62.7	60.3	58.8
3 4	60.1	59.1	58.4	66.7	59.4	57.3
5	53.7	65.5	55.4	61.7	55.3	58.4
6	53.1	68.4	56.6	62.8	56.8	58.7
7	60.9	69.3	63.1	65.3	64.2	61
8	62.7	63.4	57.2	60.2	57.2	59.7
9	61.2	59.9	58.5	60.3	65.8	63.4
10	54.6	67.2	58.6	56.1	61.6	58.2
10	59.5	62.8	54.8	65.1	55.9	57.1
12	60.5	64.5	61.5	54.9	59.8	58.3
13	54.4	66.3	63	62.8	61.1	59.3
13 14	51.8	61.3	57	56.8	58.2	59.5 59.6
14 15	56.3	69.9	58.3	58.4	61.7	59.9
16	54.6	58.3	59.2	56.6	64.7	57.5
10 17	54.0 59	62.5	60.5	53.8	63.7	61
18	57.3	63.6	60.2	62.3	64.5	55.4
19	55.4	57	57.3	56	58.9	56.8
20	53.5	70.2	64.8	56.8	70.4	68.9
21	50.6	58.7	60.4	62.8	60.5	57.8
22	57.9	62.6 60.2	57.7	59.3	58.8	52 50.2
23	53.5		64.8	56.8	62.5 58.1	58.3
24	54.6	61.3	62.9	57.6		59.9
25	57	58.7	56.4	61.5	61.6	61.5
26	56.8	59.3	59.4	58.2	60.9	62.6
27	65.1	56	55.3	53.7	56.6	64.9
28	60.4		50.7	57	54.4	61.6
29	60.9		60.5	61.2	53.5	60.3
30	62.1	62.7	49.4	58.7	57.9	59.8
31	63.8	63.8		62.5	60.6	60.5
32	55.6	60.8	55.4	57.9	60.8	61.3
33	57.8	65.7	48.1	52.7	54.8	60.9
34	60.6	56.6	52.4	64.4	52.9	64.8
35	55.1	54.1	49	54.8	58.9	64.3
36	57.6			55.7	61.1	62.9
37	58.8	56.6	53.5	58.6	56.6	60.7

38	55.4	54.8	51.2	55.2	62.3	60.2
39	59.9	59.9	60.5	57.6	60.6	67.8
40	72.4	59.2	52.8	64.5	55.9	65.8
41	53.7	63.4	54.4	63.6	60.9	60.7
42	52.7	70.3	64.2	56.8	62.7	60.2
43	56.3	66.6	55.5	56.8	56.8	60.5
44	59.5	67.1	57.2	62.5	55.8	62.2
45	50.2	65.1	67.1	56.9	68.8	56.1
46	48.7	65.8	55.7	51.5	64.4	59.7
47	61.5	65.1	57.3	52.8	60.6	45.2
48	55.5	60.8	62.1	60.1	60.9	60.4
49	51.1	57.5	69.2	60.4	56.5	58.5
50	59.7	69.3	54.2	55.4	59.4	65.4
51	56.1	63.4	0	0	65.1	60.6
52	57.1	65.2	0	0	60.2	59.3
53	64.3	60.8	0	0	55.4	62.8
54	59.5	61.3	0	0	57.7	62.5
55	56.7	60.8	0	0	60.7	60
56	60.5	60.1	0	0	68.5	58.8
57	52.7	57.8	0	0	58.8	60.4
58	53.7	50.7	0	0	53.5	59.1
59	56.4	55.1	0	0	55.9	65.5
60	52.9	57.7	0	0	64.1	66.4
61	60.3	58.9	0	0	60.5	60.4
62	59.3	51.9	0	0	59.9	58.6
63	55.5	52.4	0	0	62.2	65.9
64	50.2	52.8	0	0	62.7	66.1
65	47.4	52.9	0	0	62.5	64.5
66	49.3	58.7	0	0	66.4	69.6
67	54.1	64.5	0	0	61.9	69.5
68	71.1	57.9	0	0	62.7	61.7
69	64.1	50.4	0	0	61.1	60.8
70	67.1	54.6	0	0	61	62.1
71	60.3	51	0	0	60.5	60.4
72	58	52	0	0	60.4	68.6
73	59.7	55.5	0	0	61.2	57.4
74	53.1	51.3	0	0	55.1	59.8
75	51.4	52.1	0	0	54.9	67.8
76	62.2	54.3	0	0	55.6	64.7
77	59.6	52.6	0	0	53.3	66
78	71.3	63.1	0	0	52.7	56.8

79	65	56.4	0	0	54.2	61.9
80	61.8	56.8	0	0	57.5	56.8
81	58.8	55	0	0	62.9	58
82	71.9	53.6	0	0	61.7	63.6
83	65.3	59.7	0	0	59.8	60.5
84	61.2	50.8	0	0	56.6	56.2
85	58.9	51.5	0	0	54.7	64
86	71.3	55.5	0	0	54.6	58.7
87	62.4	55.9	0	0	55.7	58
88	57.1	55.6	0	0	56.7	62.5
89	58.5	58.8	0	0	57.5	61.8
90	59.9	65.7	0	0	53.9	58.7
91	61.5	67.1	0	0	57.9	61.5
92	65	62.7	0	0	58.2	61.9
93	62.4	63.2	0	0	75.6	71.9
94	70.4	55.6	0	0	58.9	65.5
95	60.6	53.7	0	0	57.9	61.5
96	60.1	56.8	0	0	60.2	60.4
97	67.6	62.7	0	0	57.6	62.2
98	63.8	63.1	0	0	57.4	64.8
99	63	59.3	0	0	67.2	63.5
100	57.6	61.5	0	0	62.1	67.4