1. (a) Pour $n \in \mathbb{N}^*$,

$$v_{n+1} - v_n = \frac{1}{n+1} - \ln(n+1) + \ln(n) = \frac{1}{n+1} + \ln\left(\frac{n}{n+1}\right) = \frac{1}{n+1} + \ln\left(1 - \frac{1}{n+1}\right)$$

On a le DL usuel en $0: \ln(1-x) = -x - \frac{x^2}{2} + o(x^2)$ et $\frac{1}{n+1} \underset{n \to +\infty}{\longrightarrow} 0$ donc

$$v_{n+1} - v_n = 1 \atop n \to +\infty \frac{1}{n+1} - \frac{1}{n+1} - \frac{1}{2(n+1)^2} + o\left(\frac{1}{(n+1)^2}\right).$$

Donc
$$v_{n+1} - v_n \sim -\frac{1}{2(n+1)^2} \sim -\frac{1}{2n^2}$$
.

(b) $\sum \frac{1}{n^2}$ est une série de Riemann de paramètre 2 > 1 qui converge donc, par linéarité, $\sum \frac{-1}{2n^2}$ est une série à termes négatifs qui converge.

Par comparaison, la série $\sum (v_{n+1} - v_n)$ converge.

On télescope : pour $n \in \mathbb{N}^{+}$,

$$v_n = v_1 + \sum_{k=1}^{n-1} (v_{k+1} - v_k).$$

Puisqu'on a dans le membre de droite la somme partielle d'une série convergente, on a bien que v converge. La limite est notée γ (constante d'Euler).

- 2. Pour $n \in \mathbb{N}^*$, on pose $w_n = \sum_{k=1}^n \frac{\ln(k)}{k} \frac{(\ln(n))^2}{2}$.
 - (a) La fonction g est dérivable sur $]0, +\infty[$, comme quotient de fonctions dérivables sur \mathbb{R}_+^* :

$$\forall x \in]0, +\infty[\quad g'(x) = \frac{1 - \ln(x)}{x^2}.$$

x	$0 e +\infty$
u'(x)	+ 0 -
u	$1/e$ $-\infty$ 0

(b) Soit un entier $n \ge 3 > e$ fixé. Comme g est décroissante sur $[3, +\infty[$, on a :

$$\forall t \in [n, n+1]$$
 $g(n+1) \le g(t) \le g(n)$.

Par croissance de l'intégrale,

$$g(n+1)(n+1-n) \le \int_{n}^{n+1} g(t)dt \le g(n)(n+1-n)$$

et

(c) Pour tout entier $n \geq 3$, on a:

$$w_{n+1} - w_n = \frac{\ln(n+1)}{n+1} - \frac{[\ln(n+1)]^2}{2} + \frac{[\ln(n)]^2}{2} = \frac{\ln(n+1)}{n+1} - \int_n^{n+1} \frac{\ln(t)}{t} dt \le 0,$$

d'après (\star) . Donc la suite (w_n) est décroissante à partir du rang 3

(d) Soit un entier $n \geq 3$. Par sommation des inégalités (1) et la relation de Chasles,

$$\sum_{k=3}^{n} \frac{\ln(k)}{k} \ge \int_{3}^{n+1} \frac{\ln(t)}{t} dt = \frac{[\ln(n+1)]^{2}}{2} - \frac{[\ln(3)]^{2}}{2} \text{ et}$$

$$w_{n} \ge \underbrace{\frac{[\ln(n+1)]^{2}}{2} - \frac{[\ln(n)]^{2}}{2}}_{\ge 0} - \frac{[\ln(3)]^{2}}{2} + \frac{\ln(2)}{2} \ge - \frac{[\ln(3)]^{2}}{2} + \frac{\ln(2)}{2}.$$

Donc (w_n) est décroissante à partir du rang 3 et minorée. Par le théorème de la limite monotone, la suite (w_n) converge

- 3. (a) La suite de terme général $\frac{\ln(n)}{n}$ tend vers 0 en décroissant (à partir du rang 3) D'après le théorème des séries alternées, la série $\sum (-1)^n \frac{\ln(n)}{n}$ est convergente
- (b) On a pour $n \ge 3$, $|(-1)^n \frac{\ln(n)}{n}| = \frac{\ln(n)}{n} \ge \frac{1}{n}$. Or, $\sum \frac{1}{n}$ est une série de Riemann divergente (1 $\le 1...$)

 Par minoration, $\sum |(-1)^n \frac{\ln(n)}{n}|$ diverge, ce qui montre qui $\sum (-1)^n \frac{\ln(n)}{n}$ n'est pas absolument convergente.

- 4. Dans cette question, pour $n \in \mathbb{N}^*$, on note $S_n = \sum_{k=1}^n (-1)^k \frac{\ln(k)}{k}$.
 - (a) On note pour $k \ge 1$, $u_k = (-1)^k \frac{\ln(k)}{k}$. Par découpage et linéarité, on a :

$$S_{2n} = \sum_{1 \le 2k \le 2n} u_{2k} + \sum_{1 \le 2k+1 \le 2n} u_{2k+1}$$

$$= \sum_{1 \le 2k \le 2n} \frac{\ln(2k)}{2k} - \sum_{1 \le 2k+1 \le 2n} \frac{\ln(2k+1)}{2k+1}$$

$$= \sum_{k=1}^{n} \frac{\ln(2k)}{2k} - \left(\sum_{k=1}^{2n} \frac{\ln(k)}{k} - \sum_{1 \le 2k \le 2n} \frac{\ln(2k)}{2k}\right)$$

Donc pour tout entier $n \ge 1$, $S_{2n} = 2\sum_{k=1}^{n} \frac{\ln(2k)}{2k} - \sum_{k=1}^{2n} \frac{\ln(k)}{k}$

(b) On en déduit que pour tout entier $n \geq 1$,

$$S_{2n} = 2\sum_{k=1}^{n} \frac{\ln(2) + \ln(k)}{2k} - \sum_{k=1}^{2n} \frac{\ln(k)}{k}$$

$$\stackrel{=}{\underset{\text{linéarité}}{=}} \ln(2) \sum_{k=1}^{n} \frac{1}{k} + \sum_{k=1}^{n} \frac{\ln(k)}{k} - \sum_{k=1}^{2n} \frac{\ln(k)}{k}$$

$$= \ln(2) \sum_{k=1}^{n} \frac{1}{k} + w_n - w_{2n} + \frac{[\ln(n)]^2}{2} - \frac{[\ln(2n)]^2}{2}$$

$$\text{Comme } \frac{[\ln(2n)]^2}{2} = \frac{[\ln(2) + \ln(n)]^2}{2} = \frac{[\ln(2)]^2}{2} + 2\frac{\ln(2)\ln(n)}{2} + \frac{[\ln(n)]^2}{2},$$

$$S_{2n} = \ln(2) \sum_{k=1}^{n} \frac{1}{k} + w_n - w_{2n} - \frac{[\ln(2)]^2}{2} - \ln(2)\ln(n).$$

Ainsi, pour tout entier $n \ge 1$, $S_{2n} = \ln(2)v_n + w_n - w_{2n} - \frac{[\ln(2)]^2}{2}$. On sait que $v_n \to \gamma$ et que w possède une certaine limite $\ell \in \mathbb{R}$. On a donc

$$S_{2n} \longrightarrow \ln(2)\gamma + \ell - \ell - \frac{[\ln(2)]^2}{2}.$$

Or, nous savons que la série $\sum (-1)^n \frac{\ln(n)}{n}$ converge. La suite (S_n) admet donc une limite, qui est celle de la suite extraite (S_{2n}) . On en conclut que

$$\sum_{n=1}^{+\infty} (-1)^n \frac{\ln(n)}{n} = \ln(2)\gamma - \frac{[\ln(2)]^2}{2}$$

(c) Notons $R_{1000} = \sum_{k=1}^{+\infty} (-1)^k \frac{\ln(k)}{k}$. D'après le théorème des séries alternées,

$$\left| \sum_{n=1}^{+\infty} (-1)^n \frac{\ln(n)}{n} - \sum_{k=1}^{999} (-1)^k \frac{\ln(k)}{k} \right| = |R_{1000}| \le \frac{\ln(1000)}{1000}.$$

Or, $\ln(10^3) = 3\ln(10)$ et $\ln(10) \approx 2, 3$ donc $\ln(10^3) \le 10$, soit $|R_{1000}| \le 10^{-2}$