La paradoja EPR y la desigualdad de Bell

Rubí Esmeralda, Ramírez Milián, 201804565¹ y Jorge Alejandro, Rodríguez Aldana, 201804766¹

¹ ECFM, Departamento de Física, Universidad de San Carlos,

Edificio T1, Ciudad Universitaria, Zona 12, Guatemala.

I. INTRODUCCIÓN

II. MÉTRICA MINKOWSKI

El espacio-tiempo de Minkowski es un conjunto de cuatro dimensiones, con elementos etiquetados por tres dimensiones espaciales y una temporal. Un punto individual en el espacio tiempo es llamado un evento. La trayectoria de una partícula es una curva a través del espacio-tiempo.

EL intervalo entre dos eventos en el espacio tiempo está descrito:

$$(\Delta s)^{2} = -(c\Delta t)^{2} + (\Delta x)^{2} + (\Delta y)^{2} + (\Delta z)^{2}$$

donde c es la velocidad de la luz en el vacío. Lo inportante en está definición de intervalo del espacio-tiempo entre dos eventos es que es invariante bajo trnasformaciones de coordenadas inerciales. No existe una noción absoluta de .eventos simultáneos"; es decir si dos cosas ocurren al mismo tiempo depende de las coordenadas utilizadas.

El espacio-tiempo tiene un tensor métrico asociado que puede escribirse en forma matricial como

$$(\eta_{\alpha\beta}) := \begin{pmatrix} -1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

Ahora el intervalo del espacio tiempo entre dos eventos escrito en forma tensorial:

$$(\Delta s)^2 = -\eta_{\mu\nu} \Delta x^{\mu} \Delta x^{\nu}$$

Una herramienta muy útil para comprender el espaciotiempo es la estructura del cono de luz que están dividos en futuro y pasado. Todos los punto dentro del cono de luz futuro y pasado de un evento «O» en el espacio tiempo, son llamados puntos timelike con $(\Delta s)^2 > 0$. Y los puntos de los conos son light-like o nulos $(\Delta s)^2 = 0$. Si se supone que todos los procesos causales se propagan a la velocidad de la luz o a una velocidad menor, se concluye que estos son todos los eventos que se pueden afectar causalmente a partir de O.

Los puntos que están fuera del cono de luz del evento O están separado en forma space-like con $(\Delta s)^2 < 0$. Si se asume que ningún proceso causal se propaga más rápido que la luz, estos eventos están causalmente desconectados de O.

III. PARADOJA DE EPR

Si tenemos dos partículas entrelazadas, sabemos que al medir una de ellas, se definirá en un estado, y por tanto, la otra también lo hará. El problema con esto, es que, aparentemente, tenemos dos eventos directamente relacionados, ocurriendo al mismo tiempo, lo que parece una contradicción a la Relatividad.

Figura 1: Diagrama de Minkowski

Veamos este planteamiento con más rigurosidad matemática:

Sean $\mathbf{x_1}$ y $\mathbf{x_2}$, dos partículas observadas por un mismo observador en un sistema inercial, que se entrelazan en t=0 y luego se alejan a velocidades $\mathbf{v_1}$ y $\mathbf{v_2}$ respectivamente. Entonces tenemos:

$$\begin{aligned} \mathbf{x_1} &= \left(x_1^0, x_1^1, x_1^2, x_1^3\right) \\ \mathbf{x_2} &= \left(x_2^0, x_2^1, x_2^2, x_2^3\right) \end{aligned}$$

Pero, al ser observados por un mismo observador, partiendo de un mismo evento, entonces: $x_1^0 = x_2^0 = t$:

$$\mathbf{x_1} = (t, x_1^1, x_1^2, x_1^3)$$
$$\mathbf{x_2} = (t, x_2^1, x_2^2, x_2^3)$$

Y suponiendo una velocidad constante, entonces $x_n^i = tv_n^i$:

$$\mathbf{x_1} = \left(t, tv_1^1, tv_1^2, tv_1^3\right) \tag{1}$$

$$\mathbf{x_2} = (t, tv_2^1, tv_2^2, tv_2^3) \tag{2}$$

$$\begin{split} \Delta x^{\alpha} &:= (x_2^{\alpha} - x_1^{\alpha}) \\ \Delta x^0 &= (t - t) = 0 \\ \Delta x^i &= (x_2^i - x_1^i) \\ &= (tv_2^i - tv_1^i) \\ &= t \left(v_2^i - v_1^i\right) \\ &= t \Delta v^i \end{split}$$

Calculemos ahora Δs^2

$$\Delta s^{2} := -\eta_{\alpha\beta} \Delta x^{\alpha} \Delta x^{\beta}$$

$$= -\eta_{00} \left(\Delta x^{0} \right)^{2} - \eta_{ij}^{\delta_{ij}} \left(\Delta x^{i} \Delta x^{j} \right)$$

$$= 0 - \delta_{ij} \left(\Delta x^{i} \Delta x^{j} \right)$$

$$= \sum_{i=1}^{3} - \left(\Delta x^{i} \right)^{2}$$

$$= -t^{2} \sum_{i=1}^{3} \left(\Delta v^{i} \right)^{2}$$

$$= -t^{2} \left[\left(\Delta v^{1} \right)^{2} + \left(\Delta v^{2} \right)^{2} + \left(\Delta v^{3} \right)^{2} \right]$$

$$< 0$$

El caso de la igualdad solo se da en t=0 o si las velocidades de ambas partículas son las mismas, de modo que $\Delta v^i=0 \ \ \forall \ i\in [1,3]$

Y por tanto, en el caso que las velocidades sean distintas, la métrica de Minkowski es menor a cero, es decir, los eventos x_1 y x_2 no tienen una relación causal. Y al estar correlacionados, esto es una aparente violación de la teoría de la Relatividad.

IV. CONCLUSIÓN

Calculemos entonces Δx^{α}

[1] "Spacetime," Jul 2020, [Online; accessed 8. May 2021].
[Online]. Available: https://www.pitt.edu/jdnorton/teaching/HPS0410/chapters/spacetime/index.html