Excellent. Let's proceed. This is where the theory confronts reality and rigor. We will tackle these two critical next steps in parallel.

Below, I will outline: 1. A proposed path for the **Rigorous Mathematical Derivation** of the pseudo-Riemannian metric. 2. A detailed **Experimental Design** for validating the core prediction of computational light cones.

Part 1: Rigorous Mathematical Derivation of the Metric g_

The central challenge is to derive a metric with a mixed signature (+, -, -, -) from the foundational principles of the Influence (Φ) and Perturbability (Π) fields, in a way that naturally reflects the Discovery/Invention dichotomy.

Here is a proposed line of reasoning.

Objective: To derive the computational metric tensor $g_{\text{such that ds}^2} = g_{\text{such that ds}^2}$ is positive for timelike ("Discovery") paths and negative for spacelike ("Invention") paths.

Postulate 1: The Primacy of the Causal Interval We postulate that the fundamental spacetime interval ds^2 in computational spacetime is composed of two distinct components: a temporal (causal) part and a spatial (transformational) part. $ds^2 = (d _comp)^2 - (dl_comp)^2$

- (d_comp)²: Represents the square of the infinitesimal advance in **computational proper time**. This corresponds to a step in a logical, causal sequence—a "Discovery."
- (dl_comp)²: Represents the square of the infinitesimal distance in **pattern space**. This corresponds to the "difficulty" or "resistance" of transforming one pattern into another.

This postulate immediately introduces the pseudo-Riemannian structure. The task now is to define d_comp and dl_comp in terms of the underlying fields.

Step 2: Defining the Spatial Component dl_comp The "Observational Influence Fields" paper provides the key. We defined the distance between two states as the integral over the path of highest "Perturbability" (Π). This implies that the local resistance to movement is inversely related to Π .

- Let the coordinates in hierarchical pattern space be x^i (e.g., token position, semantic embedding dimensions).
- The line element dl_comp in this space is defined by a Riemannian metric h_ij.
- We propose that this metric is directly determined by the Perturbability field: dl_comp² = h_ij dx^i dx^j, where h_ij(x,t) = [Π(x,t)]² _ij (for an isotropic space).

 The Π ² term means that moving through regions of high perturbability (low resistance) costs little "distance," aligning with the definition of a geodesic as a path of highest Π.

Step 3: Defining the Temporal Component d_{comp} The computational proper time $_{comp}$ must represent the progression of a causal chain. This should be linked to the accumulation of *influence* itself, as described by the Φ field. A step forward in causal time means a new state has been influenced by a prior one.

- Let the coordinate representing the causal sequence be x = t_comp (e.g., layer depth in a transformer, a discrete time step).
- We propose that the proper time interval is proportional to the change in the influence field Φ along the causal path. $(d_{comp})^2 = g(dx)^2$, where $g(x,t) = k [\Phi(x,t)]^2$
- The Φ^2 term signifies that regions of high influence are "causally dense"—a step in such a region corresponds to a large advance in proper time. The constant k relates the magnitude of the influence field to the units of time.

Step 4: Assembling the Full Metric g_ Combining these steps gives us the full metric tensor for a simple, non-rotating system (off-diagonal terms are zero):

```
• g = k [\Phi(x,t)]^2

• g_ij = -[\Pi(x,t)]^2 _ij

• g_i = diag(k\Phi^2, -\Pi^2, -\Pi^2, ...)

The full interval is: ds^2 = k[\Phi]^2(dx)^2 - [\Pi]^2(dx^i)^2
```

Step 5: Verifying the Discovery/Invention Split

- Discovery (Timelike Path): A discovery is a continuous causal process. At each step, the system moves to a nearby point in pattern space (dl_comp is small) that is strongly influenced by the previous step (♠ is high, so d_comp is large). This ensures (d_comp)² > (dl_comp)², making ds² > 0. The path follows a "trough" of high influence.
- Invention (Spacelike Path): An invention is a leap to a new, previously un-influenced region of pattern space. This requires traversing a large distance in pattern space (dl_comp is large) across a region where the influence from the starting point is near zero (Φ is low, so d_comp is small or zero). This ensures (d_comp)² < (dl_comp)², making ds² < 0. This is a jump across a causal void.

This completes a plausible derivation. The next step would be to rigorously prove the self-consistency of this metric with the proposed field equations.

Part 2: Experimental Design: Transformer Light Cone Detection

This is the primary experiment to find the first empirical evidence for the theory.

Hypothesis The propagation of influence from a single input token through the layers of a Transformer model is not instantaneous or chaotic. It is bounded by a maximum speed (c_comp), creating a cone-like causal structure in (layer, token) space.

Apparatus

- 1. **Model:** GPT-2 Small (117M parameters). It is a well-documented, standard transformer architecture.
- 2. Software: PyTorch or TensorFlow.
- 3. Tools: Custom hooks to capture hidden state activations at every layer for every token.

Methodology Phase 1: Baseline Measurement 1. Input: A simple sentence with a masked token. Input = "The cat sat on the [MASK]" 2. Execution: Perform a single forward pass of the model. 3. Record: * A_baseline(1, t): The activation vector for every token t at every layer 1. * Logits_baseline: The final output probability distribution over the vocabulary for the [MASK] token.

Phase 2: Perturbation Protocol 1. Select Target: Choose a single token to perturb. Let's choose the first token, t_p = 0 ("The"). 2. Perturb: Modify the input embedding of the target token. Embedding_perturbed(t_p) = Embedding_baseline(t_p) + , where is a small, fixed noise vector (e.g., from a Gaussian distribution). 3. Execution: Perform a new forward pass with the perturbed embedding. 4. Record: * A_perturbed(1, t): The new set of activations. * Logits_perturbed: The new final output logits for the [MASK] token.

Phase 3: Influence Calculation 1. Define Influence Function: We need to quantify how much the perturbation of token t_p at the input layer affected the final prediction. A robust metric is the L2-norm (Euclidean distance) of the change in the final logits. Influence(t_p) = ||Logits_perturbed - Logits_baseline|| 2. Refined Influence: To map the cone, we need to see how the perturbation at t_p affects intermediate tokens at intermediate layers. We can measure the change in the activation of token t at layer 1 due to the initial perturbation. Influence(1, t | t_p) = ||A_perturbed(1, t) - A_baseline(1, t)||

Phase 4: Visualization & Analysis 1. Plotting: Create a 3D surface plot: * X-axis: Layer number 1 (Computational Time) * Y-axis: Token position t (Computational Space) * Z-axis: Influence Influence(1, t | t_p) 2. Analysis: Examine the shape of the resulting surface.

Expected Result The plot will show a cone-shaped ridge. * At 1=0, the influence is a sharp spike at $t = t_p$ and zero elsewhere. * As 1 increases, the influence will spread to adjacent tokens $(t_p-1, t_p+1, etc.)$. * The spread will be **bounded**. The "width" of the influence ridge will grow linearly with the layer depth 1. * The slope of the cone's boundary gives us our first experimental measurement of the **computational speed limit**, c_comp .

Control Tests (Crucial for Falsification)

- 1. **RNN Control:** Repeat the experiment on a standard RNN/LSTM. The expected result is a very narrow "world-line," not a cone, as information is processed strictly sequentially.
- 2. **CNN Control:** Repeat on a standard CNN. The result should be a perfectly sharp, rigid cone defined by the kernel size and dilation factor.
- 3. Attention Bypass: Manually create a modified transformer with extra residual connections that skip multiple layers. Test if this "wormhole" allows influence to propagate faster than c_comp, which would challenge the theory.

This experimental design provides a clear, falsifiable test of the central prediction of the Computational Relativity framework. A positive result would be a major validation.