Part 19: Effect of Negative Feedback on Amplifier Bandwidth

Bandwidth of transistor amplifiers is determined by **CAPACITORS:**

What happens when we apply feedback? How is bandwidth affected?

We can see what happens by considering frequency dependence of the loop gain T

Now |T| in dB =
$$20\log_{10}\left|A_{ol}\beta_{v}\right|$$

$$20\log_{10}\left|A_{ol}\right| + 20\log_{10}\left|\beta_{v}\right|$$
 This is 1^{st} graph

Since $0 < |\beta_{\nu}| < 1$, then $20 \log_{10} |\beta_{\nu}|$ is **negative**; eg. if $|\beta_{\nu}| = 0.1$, then $20 \log_{10} |\beta_{\nu}| = -20 dB$

So we can construct $\left|T\right|$ vs. frequency curve by **shifting down** $\left|A_{ol}\right|$ curve: **Note points where**

$$|T| = 0dB \rightarrow f_1, f_2$$

The new amplifier having feedback has a gain (closed loop gain)

$$\left|A_{fv}\right| = \frac{1}{\left|\beta_{v}\right|} \left|\frac{T}{1+T}\right|$$

and as usual, if |T| >> 1 that is,

$$\left|T\right| >> 0dB$$
 then $\left|A_{fv}\right| \approx \frac{1}{\left|\beta_{v}\right|}$ INDEPENDENT of $\left|A_{ol}\right|$

So we can sketch $|A_{fv}|$ in dB as:

OLD Bandwidth

$$=$$
 $f_{Hi} - f_{Lo}$

NEW Bandwidth

$$f_2 - f_1$$
 which is $> f_{Hi} - f_{Lo}$

NEG Feedback has increased bandwidth by trading-off open loop gain.

How much bigger is the bandwidth?

Need to have an analytic expression or a measurement of $\left|A_{ol}\right|$ to decide this

Particular Example

For this NON-INVERTING AMP,

$$\beta_V = \frac{R_2}{R_1 + R_2} = \frac{1k}{1k + 9k} = \frac{1}{10}$$

So that ideally
$$\frac{v_o}{v_g} = A_{fv} = \frac{1}{\beta_v} = 10$$

What is bandwidth?

Manufacturer specification sheet gives open loop gain magnitude vs. Frequency (Fig. below)

ie.
$$\left|A_{ol}\right|=2\times10^5=106\mathrm{dB}$$
 at 5 Hz and below but = 1 = 0dB at $1MH_z$

Let us plot, on the same graph, the variation of $\frac{1}{|\beta_v|}$ with frequency.

Let us plot, on the same graph, the variation of $\frac{1}{|\beta_y|}$ with frequency.

Since
$$\left| \frac{1}{\beta_{\nu}} \right| = 10$$
, $\left| \frac{1}{\beta_{\nu}} \right| in dB = 20 \log_{10} 10$
= 20dB

Independent of frequency- so $\frac{1}{\beta_{\nu}}$ vs freq is a horizontal straight line!

Now notice that the vertical distance between $\left|A_{ol}\right|$ and $\frac{1}{\left|\beta_{v}\right|}$ curves is the value of $\left|T\right|$ in dB at that frequency.

To see this:
$$20\log_{10} |A_{ol}| - 20\log_{10} \frac{1}{|\beta_{v}|} = \text{vertical separation}$$
$$= 20\log_{10} |A_{ol}| \beta_{v} = |T| \text{ in dB}$$

At point where
$$|A_{ol}|$$
 and $\left|\frac{1}{\beta_{v}}\right|$ cross, $|T| = 0 dB = 1x$

So from previous argument
$$\left|A_{fv}\right| = \frac{1}{\left|\beta_{v}\right|}$$
 below $100 \, kHz$ where $\left|T\right| >> 1$

and above $100kH_z$ we have to use the more accurate expression:

$$\left|A_{fv}\right| = \frac{1}{\left|\beta_{v}\right|} \left|\frac{T}{1+T}\right| = \left|\frac{A_{ol}}{1+A_{ol}\beta}\right| \rightarrow \left|A_{ol}\right| \text{ when } \left|T\right| << 1$$

The conclusion is that $\left|A_{f\nu}\right|$ follows $\frac{1}{\left|\beta_{\nu}\right|}$ curve up to 100kHz and then follows $\left|A_{ol}\right|$ curve.

Clearly bandwidth is now 100 kHz

So original gain =
$$2 \times 10^5 x$$

new gain =
$$10x$$

Gain reduction is by 2×10^4 times

Bandwidth increase is by
$$\frac{100kHz}{5Hz} = 2 \times 10^4 \text{ times}$$

In fact **product** of gain and bandwidth is a *constant* for this type of non-inverting amplifier; product = "gain-bandwidth product" – **GBW**

Op-Amp has
$$2\times10^5\times5$$
Hz = 1MHz GBW The same !

Op-Amp **circuit** has 10×100 kHz = 1MHz GBW

Why is it that all non-inverting op-amp circuits built with a given op-amp have same GBW?

Because of SHAPE of $|A_{ol}|$ curve

A slope of -20dB/decade
$$\left|A_{ol}\right| \alpha \frac{1}{f}$$
 that is $A_{ol} \times f = \text{Const}$

 \therefore All points on the slope have $|A_{ol}| \times f = Const = GBW$

So wherever
$$\frac{1}{|\beta_{v}|}$$
 intersects $|A_{ol}|$, the frequency at the intersection $\times \frac{1}{\beta_{v}} (= \text{gain}) = \text{GBW}$