Gruppo vacanze (vacanze)

Descrizione del problema

Alessandro ha vinto alla lotteria un pacchetto *all-inclusive* per una vacanza a Budapest per quattro persone! Sfortunatamente, i suoi numerosi impegni non gli permettono di andare in vacanza. Per questo ha deciso di individuare, fra i suoi conoscenti, un gruppo di quattro persone a cui regalare la vacanza.

Figure 1: "Veduta aerea di Budapest con il Danubio"

Alessandro ha N conoscenti, numerati da 0 a N-1. Alcuni di essi sono amici fra loro. In particolare, fra i conoscenti di Alessandro esistono M coppie di amici (l'amicizia è sempre reciproca: se A è amico di B, anche B è amico di A e viceversa).

Secondo Alessandro, un gruppo di 4 persone è un gruppo vacanza perfetto se ognuno di loro ha già due amici nel gruppo, ma anche una persona nuova con cui fare amicizia (in altre parole, se ciascuno dei quattro membri è amico di **esattamente due** degli altri tre).

Aiutalo a contare quanti sono tutti i gruppi vacanza perfetti possibili fra i suoi conoscenti.

Dati di input

La prima riga del file di input contiene un intero T, il numero di casi di test. Seguono T casi di test, numerati da 1 a T. Ogni caso di test è preceduto da una riga vuota.

Ogni caso di test è composto da M+1 righe:

- la prima riga contiene gli interi $N \in M$;
- la *i*-esima $(0 \le i < M)$ delle successive M righe contiene due interi A_i e B_i , a significare che le persone A_i e B_i sono amici.

Dati di output

Il file di output deve contenere la risposta ai casi di test che sei riuscito a risolvere. Per ogni caso di test che hai risolto, il file di output deve contenere una riga con la dicitura:

Case #t: g

dove t è il numero del caso di test (a partire da 1) e il valore g è il numero di gruppi vacanza perfetti possibili.

Assunzioni

- T=19, nei file di input che scaricherai saranno presenti esattamente 19 casi di test.
- $4 \le N \le 1500$.
- $0 \le M \le 3000$.
- $0 \le A_i, B_i < N \text{ per } i = 0, \dots, M 1.$
- $A_i \neq B_i$ per i = 0, ..., M-1 (nessuna persona è amica di se stessa).
- Le M coppie di amici sono tutte distinte.

Nei primi 8 casi di test valgono le seguenti assunzioni aggiuntive:

- N < 50.
- $M \le 1000$.

Note

3 5

• Due gruppi vacanza contano come diversi se c'è almeno una persona che appartiene al primo gruppo ma non al secondo. Cioè, l'ordine delle persone all'interno di un gruppo non è importante.

Esempi di input/output

Input:		
3		
_		
5	6	
	0	
	4	
	2	
	4	
	2	
0	2	
4	6	
0	1	
0	2	
0	3	
	2	
	3	
	3	
7	15	
	3	
	0	
	4	
	6	

5 2 6 4 2 0 2 1 4 1 4 5 0 5 6 1 5 6 3 0 **Output:**

Case #1: 3 Case #2: 0 Case #3: 4

Spiegazione

Nel **primo caso d'esempio**, le M=6 relazioni di amicizia tra gli N=5 conoscenti di Alessandro sono mostrate in figura (a), dove le persone sono indicate da un cerchio e le amicizie da linee.

Figure 2: "Figura 1a"

Ci sono 3 possibili gruppi vacanza perfetti: $\{0,\,2,\,3,\,4\},\,\{0,\,1,\,2,\,4\}$ e $\{1,\,2,\,3,\,4\},$ mostrati rispettivamente nelle figure (b), (c) e (d).

Nel **secondo caso d'esempio**, ci sono N=4 persone e sono tutte amiche tra loro. Pertanto, è impossibile selezionare un gruppo di quattro persone come richiesto, perché ciascuno sarebbe amico di tutti e tre gli altri membri del gruppo.

Figure 3: "Figura 2"

Nel terzo caso d'esempio, ci sono N=7 persone e M=15 relazioni di amicizia. In totale ci sono 4 possibili gruppi vacanza perfetti.