I) Cours : transformateur idéal

II) Diffusion thermique et mammifères marins.

On considère un mammifère marin modélisé par une sphère de rayon R plongée dans l'eau. Ses cellules sont le siège de réactions exothermiques qui produisent une puissance volumique p_v . Ceci produit une puissance totale P qui maintient le mammifère à température constante. On note λ la conductivité thermique de l'eau, et T_0 la température dans l'eau, à l'infini.

- 1) Établir l'équation de diffusion thermique dans l'eau.
- 2) Trouver T(r) la température dans l'eau, à une distance r du centre du mammifère, en fonction de T_0 , λ , et P. Donner $T_R = T(R)$.
- 3) Exprimer la puissance dissipée dans l'eau en fonction de T_R , T_0 , λ et R.
- 4) Expliquer pourquoi il ne peut pas exister de petit mammifère marin dans l'eau. Ce raisonnement est-il valable sur Terre?

I) Cours : transformateur idéal

II) Diffusion thermique et mammifères marins.

On considère un mammifère marin modélisé par une sphère de rayon R plongée dans l'eau. Ses cellules sont le siège de réactions exothermiques qui produisent une puissance volumique p_v . Ceci produit une puissance totale P qui maintient le mammifère à température constante. On note λ la conductivité thermique de l'eau, et T_0 la température dans l'eau, à l'infini.

- 1) Établir l'équation de diffusion thermique dans l'eau.
- 2) Trouver T(r) la température dans l'eau, à une distance r du centre du mammifère, en fonction de T_0 , λ , et P. Donner $T_R = T(R)$.
- 3) Exprimer la puissance dissipée dans l'eau en fonction de $T_R,\,T_0,\,\lambda$ et R.
- 4) Expliquer pourquoi il ne peut pas exister de petit mammifère marin dans l'eau. Ce raisonnement est-il valable sur Terre?