# The general linear model and Statistical Parametric Mapping II: GLM for fMRI

Alexa Morcom Edinburgh SPM course, April 2010

Centre for Cognitive & Neural Systems/
Department of Psychology
University of Edinburgh





### Overview

- Introduction
  - Two GLMs in 2-stage procedure
- General linear model(s) for fMRI
  - Low frequency noise
  - Haemodynamic response
  - Temporal basis functions
  - Time series



# Modelling fMRI data

Why?

Make inferences about effects of interest

How?

- Decompose data into effects and error
- 2. Form statistic using estimates of effects and error

Model?

Use any available knowledge



### Overview of SPM



# Modelling in SPM



# 2-stage GLM

'Summary statistic' random effects method

Single subject

Each has an independently acquired set of data
These are modelled separately
Models account for within subjects variability
Parameter estimates apply to individual subjects

1<sup>st</sup> level

Single subject **contrasts of parameter estimates** taken forward to 2<sup>nd</sup> level as (spm\_con\*.img) 'con images'

Group/s of subjects To make population inferences, 2<sup>nd</sup> level models account for **between subjects variability**Parameter estimates apply to group effect/s

2<sup>nd</sup> level

Statistics compare contrasts of 2<sup>nd</sup> level parameter estimates to 2<sup>nd</sup> level error



# 2-stage GLM

Single subject

Each has an independently acquired set of data
These are modelled separately
Models account for within subjects variability
Parameter estimates apply to individual subjects





### Mass-univariate analysis: voxel-wise GLM



The design matrix embodies all available knowledge about experimentally controlled factors and potential confounds

# fMRI example

One session

Passive word listening versus rest

7 cycles of rest and listening

Each epoch 6 scans with 7 sec TR



Stimulus function/ time

Question: Is there a change in the BOLD response between listening and rest?

#### What are the problems?

- 1. The BOLD signal includes substantial amounts of low-frequency noise.
- 2. BOLD responses have a delayed and dispersed form ('sluggish')
- 3. The data are a timeseries, so are serially correlated (temporally autocorrelated; for TR < ~8s)
  - → Therefore they are not independent observations violates the assumptions of the GLM's noise model



#### What are the solutions?

- 1. The data can be filtered to remove low-frequency (1/f) noise
- 2. Effects are convolved with haemodynamic (BOLD) response function (HRF), to capture the sluggish nature of the response
- 3. The data are modelled as a timeseries, taking account of temporal autocorrelation



What are the solutions?

- 1. The data can be filtered to remove low-frequency (1/f) noise
- 2. Effects are convolved with haemodynamic (BOLD) response function (HRF), to capture the sluggish nature of the response
- 3. The data are modelled as a timeseries, taking account of temporal autocorrelation



# 1. Low frequency noise

Physical (scanner drifts)

Physiological (aliased)

- cardiac (~1 Hz)
- respiratory (~ 0.25 Hz)







# Regression model

Single subject



# Add high pass filter

Single subject



### High pass filtering: example





**blue** = data

black = mean + low-frequency drift

red = predicted response, NOT taking

into account low-frequency drift















# Regression model

Single subject





# Regression model

Single subject



What's wrong with this model?

- 1. Stimulus function is not expected BOLD response
- 2. Data are serially correlated

#### What are the solutions?

- 1. The data can be filtered to remove low-frequency (1/f) noise
- 2. Effects are convolved with haemodynamic (BOLD) response function (HRF), to capture the sluggish nature of the response
- 3. The data are modelled as a timeseries, taking account of temporal autocorrelation



### 2. The BOLD Haemodynamic Response

- Function of blood oxygenation, flow, volume (Buxton et al, 1998)
- Peak (max. oxygenation)
   4-6s post stimulus;
   baseline after 20-30s
- May observe an initial undershoot
- Similar across V1, A1, S1
- May differ across other regions
- Differs across individuals (Aguirre et al, 1998)



### 2. The BOLD Haemodynamic Response

- Particularly important for event-related fMRI
- Early studies used long Stimulus Onset Asynchrony (SOA) to allow BOLD to return to baseline
- But can accommodate overlap of successive responses at short SOAs if the BOLD response is explicitly modeled (esp. if responses assumed to combine linearly)



### The General Linear (Convolution) model

#### GLM for a single voxel:

$$y(t) = u(t) \otimes h(\tau) + \varepsilon(t)$$

u(t) = neural causes (stimulus train)

$$u(t) = \sum \delta (t - nT)$$

 $h(\tau)$  = hemodynamic (BOLD) response

$$h(\tau) = \sum \beta_i \ f_i(\tau)$$

 $f_i(\tau)$  = temporal basis functions

$$y(t) = \sum \sum \beta_i f_i(t - nT) + \varepsilon(t)$$

$$y = X\beta + \varepsilon$$



### Convolution with the HRF



### Convolution with the HRF



### The BOLD Haemodynamic Response

- May differ across regions
- Differs across individuals
- This matters in eventrelated fMRI
- Different possible shapes are modelled using multiple temporal basis functions
- Each is entered separately in the GLM and each is fitted separately (separate parameter estimates)





#### Fourier Set

Windowed sines & cosines
Any shape (up to frequency limit)
Inference via F-test





Finite Impulse
 Response (FIR)

Mini "timebins" (selective averaging)
Any shape (up to bin-width)
Inference via F-test





#### Fourier Set/ FIR

Any shape (up to frequency limit / bin width)
Inference via F-test

#### Gamma Functions

Bounded, asymmetrical (like BOLD)
Set of different lags
Inference via F-test









#### Fourier Set / FIR

Any shape (up to frequency limit / bin width)
Inference via F-test

### Gamma Functions

Bounded, asymmetrical (like BOLD)
Set of different lags
Inference via F-test

'Informed Basis Set'

Best guess of canonical BOLD response
Variability captured by Taylor expansion
'Magnitude' inference via t-test...?











#### 'Informed' Basis Set (Friston et al. 1998)

 Canonical HRF (2 gamma functions)



# 'Informed' Basis Set

(Friston et al. 1998)

 Canonical HRF (2 gamma functions)

*plus* Multivariate Taylor expansion in:

time (Temporal Derivative)

### Temporal basis functions



#### 'Informed' Basis Set (Friston et al. 1998)

 Canonical HRF (2 gamma functions)

*plus* Multivariate Taylor expansion in:

time (*Temporal Derivative*) width (*Dispersion Derivative*)

### Temporal basis functions



#### 'Informed' Basis Set (Friston et al. 1998)

 Canonical HRF (2 gamma functions)

*plus* Multivariate Taylor expansion in:

time (*Temporal Derivative*) width (*Dispersion Derivative*)

 Magnitude' inference via t-test on canonical parameters (provided canonical is a reasonable fit)

### Temporal basis functions



#### 'Informed' Basis Set (Friston et al. 1998)

 Canonical HRF (2 gamma functions)

*plus* Multivariate Taylor expansion in:

- time (*Temporal Derivative*) width (*Dispersion Derivative*)
- Magnitude' inference via t-test on canonical parameters (provided canonical is a reasonable fit)
- 'Latency' inference via tests on ratio of derivative : canonical parameters

# The GLM applied to fMRI

#### What are the solutions?

- 1. The data can be filtered to remove low-frequency (1/f) noise
- 2. Effects are convolved with haemodynamic (BOLD) response function (HRF), to capture the sluggish nature of the response
- 3. The data are modelled as a timeseries, taking account of temporal autocorrelation



### 3. Serial correlations

$$e_t = ae_{t-1} + \varepsilon_t \text{ with } \varepsilon_t \sim N(0, \sigma^2)$$

1<sup>st</sup> order autoregressive process: AR(1)

Each observation is related to adjacent observations



### 3. Serial correlations

- Why are they a problem?
- If we have fewer independent observations than we think, this affects degrees of freedom and statistical inference (see RFX lecture)
- But this is a single subject model and our inference will likely be at group level
- ...we still want to optimise parameter estimation in 2-stage procedure (see also RFX, Covariance Components lectures)



# Parameter estimation (OLS)





## Assumes Gaussian 'spherical' (i.i.d.) errors

sphericity = i.i.d. error covariance is a multiple of the identity matrix:  $Cov(e) = \sigma^2I$ 



$$Cov(e) = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

#### **Examples of non-sphericity:**





# Dealing with serial correlations

#### **Pre-whitening**

Use an enhanced noise model with multiple error covariance components

i.e. 
$$e \sim N(0, \sigma^2 V)$$
 instead of  $e \sim N(0, \sigma^2 I)$ 

V is modelled using an AR (1) + white noise model estimated across all active voxels

 Use the estimated V to specify a filter matrix W for whitening the data – 'undoing' the serial correlations

$$We \sim N(0, \sigma^2 W^2 V)$$

$$\Rightarrow W^2 V = I$$

$$\Rightarrow W = V^{-1/2}$$

$$Wy = WX\beta + We$$



# Dealing with serial correlations

- Once data are 'pre-whitened', estimation can proceed using Ordinary Least Squares
- The parameter estimates are again maximum likelihood
- This is Weighted Least Squares (WLS)
- (see Covariance Components lecture)
- The parameter estimates are ready to be used for statistical inference



# Summary: GLM for fMRI

- Mass-univariate approach: same GLM for each voxel
- 2-stage procedure: single subject then group level
- GLM includes all known experimental effects and confounds
- High-pass filter to account for low-frequency noise
- Convolution with an HRF
  - → both have design implications: later lectures
- Prewhiten the data to account for serial correlations
  - → Covariance component estimation: later lecture





### Which temporal basis set?

In this example (rapid motor response to faces; Henson et al, 2001)



Canonical + 2 derivatives appear sufficient to capture most activity

For more complex trials (e.g. stimulus-prolonged delay (>~2 s)-response)

better modelled with separate *neural* components (i.e., activity no longer delta function) + constrained HRF (Zarahn, 1999)