Project1 Codebook

Yingxi Kong

2024-10-01

Table 1: Summary of Marathon Performance by Age Group and Sex

Age Group	Sex	N	Min Performance	Mean Performance	Median Performance	Max Performance
Lower Age	Female	1364	-1.816	29.310	23.870	211.095
Lower Age	Male	1602	-2.251	22.609	13.748	159.535
Lower-Mid Age	Female	1440	-1.419	20.070	19.973	60.567
Lower-Mid Age	Male	1536	-0.499	20.189	20.490	89.271
Upper-Mid Age	Female	1343	8.045	45.882	44.877	135.478
Upper-Mid Age	Male	1535	9.310	44.677	41.996	119.853
Highest Age	Female	1305	35.119	103.639	94.332	336.347
Highest Age	Male	1439	38.345	113.462	97.587	419.958

Marathon Performance by WBGT Categories and Sex

Impact of Dry Bulb Temperature (Tdc) on Marathon Performance by Age G

Impact of Wet Bulb Temperature (Twc) on Marathon Performance by Age G

Impact of Black Global Temperature (Tgc) on Marathon Performance by Ag

Appendix

```
knitr::opts_chunk$set(echo = FALSE, warning = FALSE, message = FALSE)
library(tidyverse)
library(ggplot2)
library(visdat)
library(gtsummary)
library(kableExtra)
library(ggpubr)
data <- read.csv("project1.csv")</pre>
course_record <- read.csv("course_record.csv")</pre>
aqi_values <- read.csv("aqi_values.csv")</pre>
marathon_dates <- read.csv("marathon_dates.csv")</pre>
colnames(data) <- c("race", "year", "sex", "flag", "age", "CR_pct", "Tdc", "Twc", "rh", "Tgc", "SRWm2",</pre>
data$flag <- case_when(data$flag == "" ~ NA, TRUE ~ data$flag)</pre>
data$flag <- as.factor(data$flag)</pre>
course_record$Race <- case_when(course_record$Race == "B" ~ 0,</pre>
                                  course record$Race == "C" ~ 1,
                                  course_record$Race == "NY" ~ 2,
                                  course_record$Race == "TC" ~ 3,
```

```
course_record$Race == "D" ~ 4,
                                TRUE ~ NA)
course_record$Gender <- case_when(course_record$Gender == "M" ~ 1,</pre>
                                  course record$Gender == "F" ~ 0,
                                  TRUE ~ NA)
data <- data %>%
 left join(course record, join by("sex" == "Gender", "race" == "Race", "year" == "Year"))
data$sex <- as.factor(data$sex)</pre>
data$race <- as.factor(data$race)</pre>
# Missing Pattern
# vis_dat(data)
# Classify each observation to age groups by gender's quantile value
data <- data %>%
  group_by(sex) %>%
 mutate(age_group = cut(age, breaks = quantile(age, probs = seq(0, 1, 0.25), na.rm = TRUE),
                                  include.lowest = TRUE,
                                  labels = c("Lower Age", "Lower-Mid Age",
                                              "Upper-Mid Age", "Highest Age")))
# Summary Table by Age group and Sex
summary table <- data %>%
  group_by(age_group, sex) %>%
  summarize(N = n(),
            min_performance = round(min(CR_pct, na.rm = TRUE), 3),
            mean performance = round(mean(CR pct, na.rm = TRUE), 3),
            median_performance = round(median(CR_pct, na.rm = TRUE), 3),
            max_performance = round(max(CR_pct, na.rm = TRUE), 3))
summary_table$sex <- ifelse(summary_table$sex == 1, "Male", "Female")</pre>
knitr::kable(summary_table,
             col.names = c("Age Group", "Sex", "N", "Min Performance",
                           "Mean Performance", "Median Performance", "Max Performance"),
             caption = "Summary of Marathon Performance by Age Group and Sex") %>%
  kable_styling(latex_options = "HOLD_position",
                font_size = 8)
ggplot(data) +
  geom_point(aes(x = age, y = CR_pct, color = sex), alpha = 0.1) +
  geom_smooth(aes(x = age, y = CR_pct, color = sex), method = "loess", se = FALSE, size = 1.2) +
  ggtitle("Change in Marathon Performance through Age by Gender") +
 theme minimal() +
 labs(color = "Sex")
# male summary
male_summary <- data %>%
 filter(sex == 1) %>%
  group_by(age) %>%
  summarise(mean_CR = mean(CR_pct, na.rm = TRUE),
            se_CR = sd(CR_pct, na.rm = TRUE))
```

```
# create the plot
ageplot_male <- ggplot(male_summary, aes(x = age, y = mean_CR)) +</pre>
  geom_point(color = "grey", size = 1) +
  geom_errorbar(aes(ymin = mean_CR - se_CR, ymax = mean_CR + se_CR), width = 1, color = "grey") +
  geom_smooth(se = FALSE, color = "black", size = 1, method = "loess", linetype = 2) +
  labs(title = "Men", x = "Age (yrs)", y = "Best Time (%CR)") +
 ylim(0, 400) +
  theme_minimal(base_size = 15) +
  theme(plot.title = element text(hjust = 0.5))
# women summary
women_summary <- data %>%
  filter(sex == 0) %>%
  group_by(age) %>%
  summarise(mean_CR = mean(CR_pct, na.rm = TRUE),
            se_CR = sd(CR_pct, na.rm = TRUE))
# create the plot
ageplot_female <- ggplot(women_summary, aes(x = age, y = mean_CR)) +</pre>
  geom_point(color = "grey", size = 1) +
  geom_errorbar(aes(ymin = mean_CR - se_CR, ymax = mean_CR + se_CR), width = 1, color = "grey") +
  geom_smooth(se = FALSE, color = "black", size = 1, method = "loess", linetype = 2) +
  labs(title = "Women", x = "Age (yrs)", y = "Best Time (%CR)") +
  ylim(0, 400) +
  theme_minimal(base_size = 15) +
 theme(plot.title = element_text(hjust = 0.5))
# merge the two plots together
ggarrange(ageplot_male, ageplot_female)
data$flag <- factor( data$flag, levels = c("White", "Green", "Yellow", "Red", "Black", NA))</pre>
data$sex <- ifelse(data$sex == 0, "Female", "Male")</pre>
ggplot(data, aes(x = sex, y = CR_pct, fill = flag)) +
  geom boxplot() +
  ggtitle("Marathon Performance by WBGT Categories and Sex") +
  theme minimal() +
  labs(x = "Sex", y = "Marathon Performance (CR_pct)", fill = "Risk of Heat Illness") +
  theme(legend.position = "bottom")
ggplot(data, aes(x = Tdc, y = CR_pct, color = sex)) +
  geom_point(alpha = 0.2, size = 0.8) +
  geom_smooth(method = "lm", se = FALSE, size = 0.8) +
  facet_wrap(~ age_group, scales = "free") +
  ggtitle("Impact of Dry Bulb Temperature (Tdc) on Marathon Performance by Age Group and Sex") +
  theme_minimal() +
  labs(x = "Dry Bulb Temperature (°C)", y = "Marathon Performance (CR_pct)", color = "Sex")
ggplot(data, aes(x = Twc, y = CR_pct, color = sex)) +
  geom_point(alpha = 0.2, size = 0.8) +
  geom_smooth(method = "lm", se = FALSE, size = 0.8) +
  facet_wrap(~ age_group, scales = "free") +
  ggtitle("Impact of Wet Bulb Temperature (Twc) on Marathon Performance by Age Group and Sex") +
  theme_minimal() +
  labs(x = "Wet Bulb Temperature (°C)", y = "Marathon Performance (CR_pct)", color = "Sex")
```

```
ggplot(data, aes(x = Tgc, y = CR_pct, color = sex)) +
  geom_point(alpha = 0.2, size = 0.8) +
  geom_smooth(method = "lm", se = FALSE, size = 0.8) +
  facet_wrap(~ age_group, scales = "free") +
  ggtitle("Impact of Black Global Temperature (Tgc) on Marathon Performance by Age Group and Sex") +
  theme_minimal() +
  labs(x = "Black Global Temperature (°C)", y = "Marathon Performance (CR_pct)", color = "Sex")
```