		wobei "gebgew" das Geburtsgewicht [in Kilogramm], "zig" die Anzahl der während der Schwangerschaft gerauchten Zigaretten pro Tag und "mae" das Geschlecht des Neugeborenen (= 1, wenn das Kind männlich ist, = 0 sonst) angibt. Eine gewöhnliche Kleinstquadratschätzung des Modells ergibt:											
Schwangerschaft gerauchten Zigaretten pro Tag und "mae" das Geschlecht des Neugeborenen (= 1, wenn das Kind männlich ist, = 0 sonst) angibt. Eine gewöhnliche Kleinstquadratschätzung des Modells ergibt: . regress gebgew zig mae Source SS df MS Number of obs = 1191 F(2, 1188) = 21.46 Prob > F = 0.00000 Residual 374.467779 1188 .315208568 R-squared = 0.0332 Total 387.994369 1190 .326045689 Root MSE = .56143 gebgew Coef. Std. Err. t P> t [95% Conf. Interval] zig 0172915 7 -5.67 0.000 0232698 0113131 mae .1007862 .0325758 3.09 0.002 .0368736 .1646987 _cons 3.366963 .0241895 139.19 0.000 3.319504 ? b1) Geben Sie mit Hilfe des oben aufgeführten Outputs folgende Größen an und tragen Sie diese in die entsprechenden Lösungsfelder ein: Stichprobenumfang (n): Geschätzte Varianz der Störterme ($\hat{\sigma}^2$): Geschätzte Varianz des Koeffizienten b_2 :													
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$													
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$													
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				df		MS		Number of obs	= 1	.191			
$\frac{\text{gebgew} \mid \text{Coef.} \text{Std. Err.} \text{t} \text{P> t } \text{[95\% Conf. Interval]}}{\text{2 ig} \mid 0172915} ? -5.67 0.000 0232698 0113131 \\ \text{mae} \mid .1007862 .0325758 3.09 0.002 .0368736 .1646987 \\ \text{_cons} \mid 3.366963 .0241895 139.19 0.000 3.319504 \qquad ? \\ \\ \text{b1) Geben Sie mit Hilfe des oben aufgeführten Outputs folgende Größen an und tragen Sie diese in die entsprechenden Lösungsfelder ein:} \\ \text{Stichprobenumfang (n):} \\ \text{Geschätzte Varianz der Störterme ($\hat{\sigma}^2$):} \\ \text{Geschätzte Varianz des Koeffizienten b_2:} \\ \\ \text{Geschätzten b_2:} \\ \\$		Model	13.5265904	2	6.7	5329521		F(2, 1188) Prob > F	= 21 = 0.0	.46			
b1) Geben Sie mit Hilfe des oben aufgeführten Outputs folgende Größen an und tragen Sie diese in die entsprechenden Lösungsfelder ein: Stichprobenumfang (n): Geschätzte Varianz der Störterme ($\hat{\sigma}^2$): Geschätzte Varianz des Koeffizienten b_2 :		Total	387.994369	1190	.32	5045689		Adj R-squared Root MSE	= 0.0	332 3143			
b1) Geben Sie mit Hilfe des oben aufgeführten Outputs folgende Größen an und tragen Sie diese in die entsprechenden Lösungsfelder ein: Stichprobenumfang (n): Geschätzte Varianz der Störterme ($\hat{\sigma}^2$): Geschätzte Varianz des Koeffizienten b_2 :		gebgew	Coef.	Std.	Err.	t	P> t	[95% Conf.	Interv	ral]			
b1) Geben Sie mit Hilfe des oben aufgeführten Outputs folgende Größen an und tragen Sie diese in die entsprechenden Lösungsfelder ein: Stichprobenumfang (n): Geschätzte Varianz der Störterme ($\hat{\sigma}^2$): Geschätzte Varianz des Koeffizienten b_2 :		zig mae cons	0172915 .1007862	.0325	? 5758 1895	-5.67 3.09 139.19	0.000 0.002 0.000	0232698 .0368736 3.319504	0113 .1646	131 1987 ?			
		Geschätzt	e Varianz des	s Koef	fizie	nten b_2 :	ür β ₁ :						

b2) U	Unterscheidet sich der Koeffizient β_2 signifikant von null? (Begründung!)	
b3) B	Berechnen und interpretieren Sie das empirische Bestimmtheitsmaß.	