Дифракция света на УЗВ

Гончаров Марк

15 мая 2021 г.

1 Теория

При прохождении ультразвуковой волны через жидкость в ней возникают периодические оптические неоднородности, обусловленные разницей значений коэффициента преломления в областях сжатия и разрежения. В жикостях при небольших амплитудах показатель преломления меняется, как

$$n = n_0(1 + a\cos Kx),$$

где K - волновое число для У3-волны, a - глубина модуляции показателя преломления, определяемая интенсивностью ультразвуковой волны.

Тогда на задней поверзности жидкости фаза

$$\varphi = knL = \varphi_0(1 + a\cos Kx),$$

где L - тощна слоя жидкости в кювете.

Рис. 1: Экспериментальная установка

Как мы знаем, максимумы интерференции мы будем наблюдать на расстояниях

$$\Lambda = \frac{m\lambda}{\sin\psi_m}.$$

Мы работаем на установке с объективом, имеющим фокусное расстояния f, поэтому

$$l_m = mf\frac{\lambda}{\Lambda},$$

где l_m - измеренное на опыте линейное расстояние между m-ым и нулевым максимумами.

Для наблюдения оптических неоднородностей, создаваемых УЗ волнами в жидкости, будем использовать метод тёмного поля на установке ниже:

Достигать цели мы будем с помощью линзы O, которую расположем на оптической скамье за фокальной плоскостью объектива O_2 .

Метод тёмного поля же основан на устранении центрального дифракционного максимума с помощью специального экрана. Результирующее колебание будет только двух векторов $\vec{E_1}$ и $\vec{E_{-1}}$.

Рис. 2: Наблюдение оптических неоднородностей

2 Выполнение

Запишим показатели установки, на которой мы работали: $\lambda_{red}=640\pm20$ нм, фокусное растояние объектива F=30см.

Для возможных частот запишим показания. Перевод в мкм осуществлялся домножением на 4 количества делений.

	х_1, дел	х_1, мкм	х_2, дел	х_2, мкм	х_3, дел	х_3, мкм	х_4, дел	x_4, mkm
-3	-105	-420	-112	-448	-114	-456		
-2	-74	-296	-78	-312	-79	-316	-84	-336
-1	-35	-140	-36	-144	-38	-152	-40	-160
0	0	0	0	0	0	0	0	0
1	34	136	35	140	37	148	38	152
2	72	288	79	316	78	312	80	320
3	107	428	114	456	116	464		
ν, МГц	1,168		1,219		1,248		1,331	
tan	142		151		154		162	
Л, МКМ	1352	·	1272		1247		1185	
v, M/c	1579		1550		1556		1577	

Для нахождения скорости распространения волны в воде сначала определим длину ультразвуковой волны

$$\Lambda = \frac{m\lambda f}{l_m} = \frac{f\lambda}{\tan\alpha},$$

где $\tan \alpha$ будем определять по углу наклона прямой.

Итоговая скорость распространения волны:

$$v = \Lambda \nu$$

Основная погрешность набегает при измерении делений шкалы. Считаем её $\delta=0.02$, поэтому, учитывая погрешность по МНК имеем абсолютную погрешность измерения скорости $\sigma_v\approx 40 \text{м/c}$.

Теперь посчитаем скорость звука с помощью метода тёмного поля - устраним нулевой максимум в Фурье-плоскости тонкой проволкой.

Сначала нам следует определить цену деления окулярной шкалы микроскопа. Для этого мы приставили к задней стенке кюветы стеклянную пластинку с миллиметровыми делениями. Увидели, что в 6-ти делениях шкалы помещается 100 делений окулярной шкалы. Поэтому цена деления в нашем случае C=0.06мм.

ν, МГц	Тёмные п	Шкала <u>Ņ</u>	Λ, мм	v, м/c
1,22	15	150	1,29	1569
1,259	17	160	1,20	1511
1,271	18	175	1,24	1570

В методе тёмного поля получившаяся интенсивность

$$I(x) = m^2 \frac{1 + \cos^2(2\Omega x)}{2}.$$

Главный вывод отсюда - мы удвоили период дифракционной картины увеличив видность картины. Поэтому теперь у нас расстояние между тёмными полосами $\Lambda/2$. С другой стороны, между ними $C\frac{N}{n-1}$. Отсюда искомая длина волны

$$\Lambda = 2C \frac{N}{n-1}.$$

Саму скорость звука также считаем по формуле $v = \Lambda \nu$.

Здесь основная погрешность набегала из-за $\delta_N=0.03$, поэтому абсолютная погрешность измерения скорости звука $\sigma_v=50$ м/с. Если не учитывать непонятную кривость рук во втором эксперименте, то результаты получились очень неплохие.

В заключении проделали качественный небольшой эксперимент: мы убирали нить с центрального максимума, отодвигая его в сторону. Логично, что становится всё засвеченным, так как нулевой максимум гасит всех свой большой интенсивностью, тем самым сильно уменьшая видимость.

3 Вывод

Научились мы... Вроде всё и так знали)))