Math 164 Homework 3

Jiaping Zeng

2/15/2021

- 1. Show each of the following set is convex.
 - (a) Hyperplane: $\{x: a^Tx = b\}$ with $a \neq 0 \in \mathbb{R}^n$ and $b \in \mathbb{R}$. **Answer**: Take $x, y \in \Omega \implies a^Tx = a^Ty = b$, for $\alpha \in [0, 1]$, we have $\alpha b + (1 - \alpha)b = b \implies \alpha a^Tx + (1 - \alpha)a^Ty = b \implies a^T(\alpha x + (1 - \alpha)y) = b$, so $\alpha x + (1 - \alpha)y \in \Omega$ and therefore Ω is a
 - (b) Halfspace: $\{x: a^Tx \leq b\}$ with $a \neq 0 \in \mathbb{R}^n$ and $b \in \mathbb{R}$. **Answer**: Take $x, y \in \Omega \implies a^Tx \leq b, b^Tx \leq b$, for $\alpha \in [0, 1]$, we have $\alpha a^Tx \leq \alpha b, (1 - \alpha)a^Ty \leq (1 - \alpha)b \implies \alpha a^Tx + (1 - \alpha)a^Ty \leq \alpha b + (1 - \alpha)b \implies a^T(\alpha x + (1 - \alpha)y) \leq b$, so $\alpha x + (1 - \alpha)y \in \Omega$ and therefore Ω is a convex set.
 - (c) Norm Ball: $\{x: \|x-x_c\| \le r\}$ with > 0 and $x_c \in \mathbb{R}^n$. **Answer**: Take $x, y \in \Omega \implies \|x-x_c\| \le r, \|y-y_c\| \le r$, for $\alpha \in [0, 1]$, we have $((1-\alpha)\|x-x_c\| + \alpha\|y-y_c\|)$
 - (d) Polyhedron: $\{x: Ax \leq b, Cx = d\}$ with $A^{m \times n}, C \in \mathbb{R}^{p \times n}$ and $b \in \mathbb{R}^m, d \in \mathbb{R}^p$.
 - (e) Nonnegative Orthant: $\mathbb{R}^n_+ = \{x : x \ge 0\}.$

Answer:

convex set.

(f) Positive semidefinite cone: $S^n_+ = \{X \in \mathbb{R}^{n \times n} : X = X^T, X \succeq 0\}$

Answer:

- 2. For each of the following functions, determine whether it is convex or concave or neither or both. Please explain the rationale for your answer.
 - (a) $f(x_1, x_2) = x_1^2 + x_2^4$.

Answer:

(b) $f(x_1, x_2) = e^{ax_1} + e^{bx_2}$ with $a, b \in \mathbb{R}$.

Answer

(c) $f(x_1, x_2) = x_1 \log(x_1) + x_2 \log(x_2)$ on \mathbb{R}^2_{++} .

Answer:

(d) $f(x_1, x_2) = x_1 x_2$ on \mathbb{R}^2_{++} .

Answer:

(e) $f(x_1, x_2) = 1/(x_1 x_2)$ on \mathbb{R}^2_{++} .

Answer:

(f) $f(x_1, x_2) = x_1^2/x_2$ on $\mathbb{R} \times \mathbb{R}_{++}$.

Answer:

3. Suppose $f: \mathbb{R}^n \to \mathbb{R}$ is a convex function. Show that the set of the global minimizers of $\min_x f(x)$ is a convex.

Answer: Let Ω be the set of the global minimizers of $\min_x f(x)$; take $x, y \in \Omega$ and $\alpha \in [0, 1]$, by the definition of global minimizer we have $f(x) = f(y) = \min_x f(x)$. Then $\alpha f(x) + (1 - \alpha)f(y) = \alpha \min_x f(x) + (1 - \alpha) \min_x f(x) = \min_x f(x)$. Them, since f is a convex function, we have $f(\alpha x + (1 - \alpha)y) \leq \alpha f(x) + (1 - \alpha)f(y) = \min_x f(x)$. Therefore $\alpha x + (1 - \alpha)y$ must also be a global minimizer, i.e. $\alpha x + (1 - \alpha)y \in \Omega$, so Ω is convex.

4. Suppose $f: \mathbb{R}^n \to \mathbb{R}$ is a continuously differentiable and convex function. Show that $\nabla f(x^*) = 0$ if and only if x^* is a global minimizer of $\min_x f(x)$.

Answer:

 \Rightarrow : Take any $y \in \text{dom}(f)$, since f is continuously differentiable and convex, we have $f(y) \ge f(x^*) + \nabla f(x^*)^T (y-x) = f(x^*)$ (since $\nabla f(x^*) = 0$). Since y is arbitrary, $f(x^*)$ is a global minimizer by definition.

 \Leftarrow : Since x^* is a global minimizer, then $f(y) \leq f(x^*)$ for any $y \in \text{dom}(f)$.