

Министерство науки и высшего образования Российской Федерации

Федеральное государственное бюджетное образовательное учреждение

высшего образования

«Московский государственный технический университет имени Н.Э. Баумана

(национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ <u>«Информатика и системы управления»</u> КАФЕДРА <u>«Программное обеспечение ЭВМ и информационные технологии»</u>

Лабораторная работа №17

По предмету: «Функциональное и логическое программирование»

Студент: Лаврова А. А.,

Группа: ИУ7-65Б

Преподаватель: Толпинская Н. Б.

Строганов Ю. В.

Задание

В одной программе написать правила, позволяющие найти

- Максимум из двух чисел а) без использования отсечения,
 в) с использованием отсечения;
- 2. Максимум из трех чисел а) без использования отсечения,в) с использованием отсечения;

Листинг:

```
domains
```

num = integer.

predicates

```
max_of_2_a(num, num, num).
max_of_2_b(num, num, num, num).
max_of_3_a(num, num, num, num, num).
max_of_3_b(num, num, num, num, num).
```

clauses

$$\max_{0} -2_{b}(A, B, A) :- A > B,!.$$

 $\max_{0} -2_{b}(B, B).$

$$\max_{0} a(A, B, C, A) = B, A >= C.$$

 $\max_{0} a(A, B, C, B) = A, B >= C.$

$$\max_{0} a(A, B, C, C) - C >= B, C >= A.$$

goal

```
%max_of_2_a(10, 20, X).

%max_of_2_b(10, 20, X).

%max_of_3_a(100, 20, 30, X).

max_of_3_b(100, 20, 30, X).
```

Результат работы программы:

Задание №1 (а)

Задание №1 (б)

Задание №2 (а)

Задание №2 (б)

Объяснение задания №2 (пункт «а»):

- 1) max_of_3_a(A, B, C, A):- A >= B, A >= C. Если A самое большое число из всех 3-х. Также они все могут быть равны, либо A = B, либо A = C.
- 2) max_of_3_a(A, B, C, B):- B >= A, B >= C. Если B — самое большое число. Также B может быть равен C.
- 3) $\max_{G} 3_a(A, B, C, C):-C>=B, C>=A.$ Если C- самое большое число.

Объяснение задания №2 (пункт «б»):

$$1) \max_{A \to B} (A, B, C, A):-A >= B, A >= C, !.$$
 Если $A - больше или равно B или C.$

- $2) \max_{b \in B} (B, C, B) :- B >= C, !.$ Если B больше C, но также может B может быть равен A.
- 3) max_of_3_b(_, _, C, C). Оставшиеся случаи.

Таблица для задания №2 (пункт «а»):

max_of_3_a(100, 20, 30, X).

№ шага	Состояние резольвенты, и вывод: дальнейшие действия (почему?) max_of_3_a(100, 20, 30, X)	Для каких термов запускается алгоритм унификации: T1=T2 и каков результат (и подстановка) T1 = max_of_3_a(100, 20, 30, X) T2 = max_of_3_a(A, B, C, A)	Дальнейшие действия: прямой ход или откат (почему и к чему приводит?) Прямой ход
		Произошла унификация	
2	100 >= 20	100 >= 20	Прямой ход
	100 >= 30		
	(A = 100)	Верное утверждение	
	B = 20		
	C = 30		
3	100 >= 30	100 >= 30	Прямой ход
	(A = 100)		
	$\mathbf{B} = 20$	Верное утверждение	
	C = 30		
4	(A = 100		Стек пуст. Вывод
	B = 20		результата. Прямой ход.
	C = 30)		

5	max_of_3_a(100,	$T1 = max_of_3_a(100, 20,$	Прямой ход
	20, 30, X)	30, X)	
		$T2 = \max_of_3_a(A, B, C,$	
		B)	
		Произошла унификация	
6	20 >= 100	20 >= 100	Прямой ход.
	20 >= 30		
	(A = 100)	Неверное утверждение	
	B = 20		
	C = 30)		
7	max_of_3_a(100,	$T1 = max_of_3_a(100, 20,$	Прямой ход
	20, 30, X)	30, X)	
		$T2 = \max_of_3_a(A, B, C,$	
		(C)	
		Произошла унификация	
8	30 >= 100	30 >= 100	Прямой ход.
	30 >=20		
	(A = 100)	Неверное утверждение	
	B = 20		
	C = 30)		
			Конец БЗ. Завершение
			программы.

Таблица для задания №2 (пункт «б»):

max_of_3_b(100, 20, 30, X).

№	Состояние	Для каких термов	Дальнейшие действия:
шага	резольвенты, и	запускается алгоритм	прямой ход или откат
	вывод: дальнейшие	унификации: T1=T2 и	(почему и к чему
	действия (почему?)	каков результат (и	приводит?)
		подстановка)	
1	max_of_3_a(100,	$T1 = max_of_3_a(100, 20,$	Прямой ход
	20, 30, X)	30, X)	

		$T2 = max_of_3_a(A, B, C,$	
		A)	
		Произошла унификация	
2	100 >= 20	100 >= 20	Прямой ход
	100 >= 30		
	(A = 100)	Верное утверждение	
	B = 20		
	C = 30		
3	100 >= 30	100 >= 30	Прямой ход
	(A = 100)		
	$\mathbf{B} = 20$	Верное утверждение	
	C = 30		
4	(A = 100)		Стек пуст. Вывод
	B = 20		результата.
	C = 30		Отсечение!
5			Завершение работы
			программы.

Вывод: с помощью отсечения можно достигнуть увеличения эффективности работы программы, так не выполняются лишние действия.

Теоретическая часть

- 1) Какое первое состояние резольвенты? Первое состояние это вопрос, который задается программе.
- 2) В каком случае система запускает алгоритм унификации? (т.е. Как эту необходимость на формальном уровне распознает система?)

Унификация запускается для того, чтобы доказать какое-либо утверждение. В этом случае резольвента не пуста.

3) Каково назначение использования алгоритма унификации? Унификация позволяет формализовать процесс логического вывода.

Назначение - поиск знания, которое является ответом на конкретный вопрос.

- 4) Каков результат работы алгоритма унификации? Ответ «да» или «нет»
- 5) В каких пределах программы переменные уникальны? Именованные переменные уникальны в переделах предложения. Анонимные переменные уникальны в любом месте программы.
- 6) Как применяется подстановка, полученная с помощью алгоритма унификации? Применение подстановки {X1=T1, ..., Xn=Tn} заключается в замене каждого вхождения переменной Xi на соответствующий терм Ti.
- 7) Как изменяется резольвента? Резольвента меняется по принципу стека (т. е. берется верхняя подцель) во время доказательства утверждения. В ходе доказательства заполняется новая резольвента. Резольвента оказывается пустой при успешном завершении работы программы.
- 8) В каких случаях запускается механизм отката? Откат происходит в случае тупиковой ситуации или в случае, если резольвента пуста.