_		 	 	 	
USN					

RV COLLEGE OF ENGINEERING®

(An Autonomous Institution affiliated to VTU)

I / II Semester B. E. Supplementary Examinations Oct-2023 ELEMENTS OF ELECTRICAL ENGINEERING

Time: 03 Hours

Maximum Marks: 100

Instructions to candidates:

- 1. Answer all questions from Part A. Part A questions should be answered in first three pages of the answer book only.
- 2. Answer FIVE full questions from Part B. In Part B question number 2 is compulsory. Choose any one full question from 3 or 4, 5 or 6, 7 or 8 and 9 or 10.

PART-A

1 1.1	Name two non-conventional source of energy that is used most in	
	India and why?	02
1.2	A $3 - phase$, 50Hz, 6 pole star connected alternator has 360 conductors	- 1
	per phase and flux per pole is 0.5Wb. Calculate the e.m.f generated if	l
	the winding factor is 0.97 and the coils are full pitched.	02
1.3	What are the components of a solar PV standalone system?	02
1.4	What is power factor? Why power factor improvement is required?	02
1.5	A balanced 3-phase start connected load draws power from 400V	ļ
	supply. The two wattmeter's read 3kW and 2kW. Calculate line	l
	current in the circuit.	02
1.6	What is the difference between MCB and ELCB?	02
1.7	A $50kVA$, $1000/200V$ transformer takes $4A$ at $0.2 p. f$ when the	
	secondary is open. Determine core loss and magnetizing component	
	of current.	02
1.8	What is slip of an induction motor? What is the value of the slip when	
]	the motor is at standstill?	02
1.9	Why a shunt motor should not be turned on with its field winding	
	open?	02
1.10	What are the advantages of BLDC motor over induction motors?	02

PART-B

2	а	With a neat sketch, explain the constructional features of smooth cylindrical rotor alternator?	05	
	b	Explain the following.		
		i) I-V and P-V characteristics of solar PV		l
		ii) Block diagram of smart grid.	08	ı
	С	A 12V battery of capacity $500Ah$ is connected to a solar panel. If		١
1		battery discharge duration is 10hours, then calculate the power of the		l
		battery and energy stored in the battery.	03	
				ļ
3	a	Derive an expression for the current drawn by a pure inductor.		
-		Explain with the help of a power diagram that the value of an average	1	l
		power drawn by the inductor during one cycle is zero.	05	

	b c	An alternating voltage is represented by the equation $v = 100 \sin 520t V$. Calculate its: i) rms value ii) average value iii) form factor iv) peak factor v) frequency vi) voltage when $t = 0.0015 sec$. With phasor representation and circuit diagram, derive an expression for measurement of power by two-wattmeter method.	06 05
4		Derive the necessary discipated in a series RC circuit and also draw the	
	a b	Derive the power dissipated in a series <i>RC</i> circuit and also draw the waveforms of voltage, current and power. Three identical coils are connected in a star to a 400 <i>V</i> , 3 – <i>phase</i> , 50 <i>Hz</i> supply and each coil takes 300 <i>W</i> . If the power factor is 0.8, calculate i) line current ii) impedance	05
	С	iii) resistance and inductance of each coil. Prove that in a balanced star connected system, the line voltage is 1.732 times of phase voltage and the line current is same as phase	06
		current.	05
5		A household uses the following electric appliances:	
	a b c	 i) refrigerator of rating 400W for 24hours each day ii) two electric fans of rating 80W each for 12hours each day iii) six electric bulbs of 18W for 6hours each day Calculate the electricity bill of the household for the month of April if the cost per unit of electric energy is Rs. 3.50. Explain the merits and demerits if conduit wiring. With a neat sketch, explain the process of plate earthing. 	05 05 06
		OR	
6	a b c	With the help of block diagram, explain the working of <i>UPS</i> . Define the term 'Fuse' and mention the requirements for a good fuse. Also explain how fuse is different from <i>MCB</i> . Estimate Total Daily Energy Requirement for the following loads and also compute the electricity bill for the month of July assuming average cost <i>Rs</i> . 4.50 per unit.	06 05
		Name of the Power Average daily No. of	
		appliances rating (W) usage (Hrs.) appliances CFL 25 7 4	
		FAN 50 6 2	
		TV 150 6 1	
		COMPUTER 200 5 1	
		GYSER 2000 1 1	05
7		Evaluin the working of conscitor start conscitor man 1 -hace	
	а 	Explain the working of capacitor start capacitor run 1-phase induction motor. Also, draw the phasor diagram.	06

	b c	A 50kVA transformer has an efficiency of 98% at full load, 0.8p. f and an efficiency of 96.9% at one fourth of full load, 0.8p. f. Determine i) The iron loss and full load copper loss ii) Losses at maximum efficiency iii) Fraction of full load corresponding to maximum efficiency. The slots on the rotor of an induction motor are usually skewed. Justify.	06 04
		OR	
8	a b	With a neat sketch, explain the constructional features of 1-phase shell type transformer. A 3 - phase, 50Hz induction motor runs at 965 RPM at full load. Calculate	06
		i) The number of motor poles ii) The slip and frequency of the rotor currents iii) The speed of the stator field with respect to rotor and with	
		respect to the rotor field.	06
	С	Core type transformer is used for high voltage application. Justify.	04
9	a	Explain the constructional features, working principle and applications of <i>DC</i> motor.	09
	b	With a neat circuit, explain construction and working principle of stepper motor.	07
		OR	
10	a	Explain the characteristics T_a/I_a and N/I_a of DC series and shunt motor. Justify the nature of the curves.	09
	b 	With a neat circuit, explain the construction and working principle of <i>BLDC</i> motor.	07

COURSE CODE: 21 EE 23 COURSE: ELEMENTS OF ELECTRICAL ENGG. UG

*	DESTRUCTION OF CHAMPE CHAP, -	
Question No	PART-A	Marks
1.1	Solar and wind as both are available in abundance, and easy to havees.	-(2M)
1.2	E= 53 Epn = \$3x2.221 pm = pn kp kd -	CM
l•3	PV panel, battery, charge controller, - MPPT, inverter	(21)
104	Power factor is measure of how effective incomery power is used in electrical s/m. 31 is radio of Real power to apparant power. By improving power factor, powered loss a power cost can be reduced.	(M)
1.5	$\phi = 4 \text{cm}^{-1} \left(\sqrt{3} \frac{(w_1 - w_2)}{w_1 + w_2} \right) = 19.1^{\circ}$ $T_1 = \frac{P}{\sqrt{3} \sqrt{100}} = \frac{5 \text{ kw}}{\sqrt{3} \sqrt{100} \sqrt{100} (19.1)} = 7.63 \text{ A}$	(IM)
1.6	MCB i's commonly used at seridential properties to seme abnormal conditions like swort cels & overload. Where as, EZCB is a vItz operated device that is used for the delection of current _(leakage.	

COURSE CODE:

COURSE:

Question No		Marks
1.7	T. T Amd	
* 4		(IN1)
	Iu = To Sindo = 4 x0,979 = 3,916A -	(IM)
1.00		
1,8	Différence between the synchronous speed	
	(Ns) & the speed of the Robor (N) is deplied	
	as slip of cun I.M. 9th expressed as a feaction of Ns. S= Ms-N Ns.	
	leaction of No. S= Ns-N	(TM9
6		
	At standshill, $S = N_s - 0 = 1$	CIM
	Ns	
	E a field	
1.9	In shoul- motor NX Eb, gy field,	
	The shew of the practice, well in practice, well in practice, well in practice, the flux is not zero. Due to, residual flux motornum at danger our high speed & may destroy.	
	the fless is not zero. Due to rich speed	(2M)
	flux motorruns al-dangerous	
	¿ may destroy.	
Lin	The BLDC motors requires less energy & it is 65% more energy without as	
[* (0	il is constant as especial as	
	The BLDC motors requires less efficient as it is 65% more energy efficient as these motors have less static friction— and heat loss.	5m)
	these proof ones	14.1-
	PART-B neat skelch of smooth cylindrical whor - (2)	6 m
9.0	the cultivativation -	2-5/9
24.	near skelch of smooth cythere & Brown - 12	19
	Explanation () Premue	
	Charactershies - 2M Imp	
b.	Character (112)	
	Characterches - 2M Jup. Voc	

UG

COURSI	CODE: COURSE:	UG
Question No	·	Marks
2b.	Block déagrain - Exploration -	2M 2M
2 C.	Discharge current = 500 Ah = 50 A - 10h = 50 A -	(M)
	E = 12 V X 520 Ah = 6 kWh	(IM
3a.	Expression pro P=0 Power diagram	(In
b .	$\frac{1}{2}\sqrt{3} = \frac{1}{2} = $	- Gr
	i)Poron factor = Vm/V = 1.11 i)Peron factor = Vm/V = 1.11 iv)Peale factor = V/Vaw = 1.414	- (in
	v)2nf = $\frac{100}{2\pi} = \frac{520}{2\pi} = 82.8 \text{H}_2$ vi) voltex al- 0.0015=100 sin 520 x 0.0015=70.3	- 01
3c.	Py = 3 Vpn 3pn Word = 3 Vpn 2000 = 3 (VL/3) 0.	
	$\frac{1}{2ph} = \frac{\sqrt{2} \cos \phi}{2ph} - \frac{2ph}{2ph}$	
	Same load in A, Po = 3Vrn² cory here, Vpn²VL	
	$\frac{2pn}{2pn} = \frac{2pn^2 \cos \theta}{2pn} = eqn(ii)$	_

116

COURSE:

SEPT/OCT -2023 -UG

Question No	•	Marks
	Compare egn. (i) & (ii), we get. [Po = 3 Py]	(m)
4a.	Power in RC CKT = VILORO dervn - Waveyeron V, I & P	(3×9) (2×1)
Ь.	Eph = EL/13 = 231V=Vph	
C .	Ph = VPh IphCos & = 300 W. Tph = IL = 300 = 1.623A Zph = VPh = 142.55 Rph = 2ph cos & = 1145 Xph = 2ph Sind = 85.5 - or 2ph = 0.2724 Xph = 2ph Sind = 85.5 - or 2ph = 0.2724 You = 2ph Sind = 4 II = Iph for Y connected s/m. Ciruil- connection	(2M) (1M) (1M) (1M) (1M) (1M) (1M)
Sa.	Daily Energy Consumption: = 400 x 24 + 2x80 x 12 + 6 x 18 x 6 = 12,168 whe = 12.168 kWh. Flectricity will for the month of June = 12.168 x 30 x 3.5= Ps 1095 + 12 fr 1277.64/-	(3M) (2M)

COURSE CODE:

COURSE:

UG

· COULDE		
Question No		Marks
5b.	AdVI/Ments:	
	i No rish of fine & good protection 2) Aesthetic in appearance 3> Shock-proof with proper earthy & bonding 4> Waltrproof & troubleshooting is easy. 5) Earthy & Continuity is assured.	
	Demerits: 1) Erypensine 2) Need good skill workmenship. 3) Risk of Shoot del- under wel-cond? Any 3 Merits + Demerits	(SM)
sc	Sketch of plate carthy -	(3M)
6er.	Block diagram of UPS _ (3M) (2M)
66.	Difference in fort	(1M) (2M) (2M)
6C	Daily Energy Consumption = 5.2 kwhs.	(3M)
	Monthy Energy Consumption for the month of July = S.2 × 31 × 4.5 = Rs 725.04/_	_

COURSE CODE:

COURSE:

UG

Question No		Marks
79.	Working principale -	(4m)
	Working principale phases diagram	(2M)
	i) For full load x=1, n=0.98, cord=0.8	
	WitWa = 816.33W	(m)
	Box x = 1, 0 &pf, 7 = 0.969	
	Wi+ Wu = 319.92	(IM)
	42°= 286,826 W	642
	$w_{\text{cu}} = 529.5 \text{ W}$	(2M)
	(11) al-man n; to; = Wou = 286.826400.	
	iii) 2 = 50 \ \frac{10i}{way} = 36.8 KVA.	(IM)
7C.	byn status & rotor and to reduce mage helic helin. The spewed stor stats i'ncrease the length of the cubar there by increa- ing the subjectance of the cotor bars hence	10 M
	the starting torque & starting current—drawn can be improved.	(4m)
8a.	Sketch of 1¢ shell type transformer -	3M)
8b.	As N= 965 rp.m, if P= 4 then No= 1500 rpm	n
	P=6 Then Ns = 1000 8'p	n -(210)
	Hence P=6 is correct as it is nearer to 965	npm

COURSE	CODE: COURSE:	UG
Question No		Marks
	(ii) Slip = 0.035 fr=sf = 1.75Hz } iii) relative speed b/n stator & rotor field.	(em)
		(219)
80.	At high voltage, heavy insulation is required in core type winding, putting insulation is equired. The placement of LV wodg. near to the core reduces the need of insulating material required. The major advantage is that it is easier to dismantle for repair	
	& maintanence. Also, the natural cooling is very efficient in core type tops.	
9 a.	Construction + Explanation = 4M + 3M	172M
Ь.	Construction + Explanation + E	
109.	3 charder of each (3x2=6)+3M for Justification.	Han
Ъ.	Sketch + Wooding Principle 3M+47).