Enrichment analyses and results contextualisation with Knowledge Graphs

Summer School Multi-omics Data Analysis and Integration

Enrichment analyses

• [Gene sets, pathways, metabolites] enrichment analyses

over-representation

Enrichment analyses

[Gene sets, pathways, metabolites] enrichment analyses
 over-representation

Give directions for results interpretation

Enrichment analyses

[Gene sets, pathways, metabolites] enrichment analyses
 over-representation

Give directions for results interpretation

- Families of approaches:
 - Over-Representation Analysis (ORA)
 - Functional Class Scoring (eg. GSEA)
 - Topology-based methods

ORA: Over-Representation Analysis

What does an ORA? it compare **overlap** between **sets**.

- Sets of genes, proteins, metabolites, organisms, etc.
 - o a Universe (size = N) or background set
 - a set of interest (size = n)
 - a reference set (size = **M**) (share a common biological theme)
 - o an overlap **k**

ORA: Over-Representation Analysis

What does an ORA? it compare **overlap** between **sets**.

- Sets of genes, proteins, metabolites, organisms, etc.
 - o a Universe (size = N) or background set
 - a set of interest (size = n)
 - o a reference set (size = **M**) (share a common biological theme)
 - an overlap k

- N genes measured in the assay
- o **n** genes differentially expressed
- M genes annotated to a GO term of interest
- o an overlap k

ORA: A practical example (1)

TCGA-BRCA: 5 Normal .vs. 5 Tumor samples → GDE analysis → 1068 DE genes

R packages for ORA:

Standard GO (Biological processes) Enrichment analysis

```
ego <- enrichGO(gene = DE.set,
    universe = universe,
    OrgDb = HS.annotation,
    ont = "BP",
    keyType = "SYMBOL",
    minGSSize = 1,
    maxGSSize = 100000,
    pAdjustMethod = "BH")</pre>
```

ORA: A practical example (1)

TCGA-BRCA: 5 Normal .vs. 5 Tumor samples → GDE analysis → 1068 DE genes

R packages for ORA:

Standard GO (Biological processes) Enrichment analysis

```
ego <- enrichGO(gene = DE.set,
    universe = universe,
    OrgDb = HS.annotation,
    ont = "BP",
    keyType = "SYMBOL",
    minGSSize = 1,
    maxGSSize = 100000,
    pAdjustMethod = "BH")</pre>
```

ORA: A practical example (1) - DAG view GO:0071840 to "Biological Processes" term cellular component organization biogenesis GeneRatio=375/945 BgRatio=6184/15568 gvalue=0.655 GO:0016043 cellular component organization GeneRatio=374/945 BgRatio=5994/15568 qvalue=0.47 GO:1903046 GO:1903047 GO:0006996 meiotic mitotic organelle cell cycle cell cycle organization process GeneRatio=40/945 process GeneRatio=209/945 GeneRatio=93/945 The Gene Ontology in a DAG (**Directed Acyclic** Graph) BgRatio=3402/15568 BgRatio=201/15568 BgRatio=737/15568 avalue=0.59 gvalue=1.23e-08 qvalue=6.87e-09 GO:0033043 GO:0048285 regulation organelle fission organelle organization GeneRatio=76/945 BgRatio=477/15568 GeneRatio=82/945 qvalue=1.88e-11 BgRatio=1132/15568 gvalue=0.246 isa-GO:0010639 GO:0010638 negative positive GO:0000280 regulation regulation nuclear division organelle organelle GeneRatio=74/945 organization organization BgRatio=431/1556 GeneRatio=30/945 GeneRatio=31/945 gvalue=1.45e-12 BgRatio=346/15568 BgRatio=496/15568 qvalue=0.19 qvalue=0.612 regulates GO:0051783 GO:0140013 GO:0140014 GO:0051337 regulation of nuclear meiotic mitotic amitosis nuclear nuclear q.value GeneRatio=NA division division division BgRatio=NA GeneRatio=30/945 GeneRatio=38/945 GeneRatio=51/945 BgRatio=139/15568 BgRatio=182/15568 BgRatio=281/15568 gvalue=NA gvalue=2.65e-07 qvalue=9.62e-09 qvalue=1.43e-09 negatively-regulates-GO:0051785 GO:0051784 1e-12 negative positive regulation regulation of nuclear of nuclear division division GeneRatio=19/945 GeneRatio=7/945 -positively-regulates-BgRatio=62/15568 BgRatio=55/15568 gvalue=5.85e-07 gvalue=0.241

ORA: A practical example (1) - a broader DAG view

ORA: A practical example (2)

TCGA-BRCA: 5 Normal .vs. 5 Tumor samples → GDE analysis → 1068 DE genes

GeneRatio

Standard KEGG (Pathway) Enrichment analysis


```
ekegg <- enrichKEGG(gene = DE.set2,
    organism = "hsa",
    keyType = "ncbi-geneid",
    pAdjustMethod = "BH",
    universe = universe2,
    use_internal_data = FALSE)</pre>
```

clusterProfiler	ID	Description	GeneRatio	BgRatio	p.value	p.adjust	q.value
1,1,	-	neurotransmitter					
	GO:0006836	transport	22/945	191/15568	0.002881322	0.04909408	0.04278198

2 equivalent ways of representing and computing

clusterProfiler	ID	Description	GeneRatio	BgRatio	p.value	p.adjust	q.value
1, 1,	-	neurotransmitter					
	GO:0006836	transport	22/945	191/15568	0.002881322	0.04909408	0.04278198

2 equivalent ways of representing and computing

Hypergeometric distribution

$$Pigg(X \geq kigg) = 1 - \sum_{i=0}^{k-1} rac{inom{M}{i}inom{N-M}{n-i}}{inom{N}{n}}$$

clusterProfiler	ID	Description	GeneRatio	BgRatio	p.value	p.adjust	q.value
>		neurotransmitter					
	GO:0006836	transport	22/945	191/15568	0.002881322	0.04909408	0.04278198

2 equivalent ways of representing and computing

Hypergeometric distribution

$$Pigg(X \geq kigg) = 1 - \sum_{i=0}^{k-1} rac{inom{M}{i}inom{N-M}{n-i}}{inom{N}{n}}$$

	in BP set	not in BP set
in Gene set	k = 22	923
not in Gene set	169	14454

clusterProfiler	ID	Description	GeneRatio	BgRatio	p.value	p.adjust	q.value
1.i		neurotransmitter					
	GO:0006836	transport	22/945	191/15568	0.002881322	0.04909408	0.04278198

2 equivalent ways of representing and computing

Hypergeometric distribution

$$P\!\left(X \geq k
ight) = 1 - \sum_{i=0}^{k-1} rac{inom{M}{i}inom{N-M}{n-i}}{inom{N}{n}}$$

	in BP set		not in BP se	et
in Gene set	k =	22	923	
not in Gene set		169	14454	
			V.	
			N	

clusterProfiler	ID	Description	GeneRatio	BgRatio	p.value	p.adjust	q.value
→		neurotransmitter					
	GO:0006836	transport	22/945	191/15568	0.002881322	0.04909408	0.04278198

2 equivalent ways of representing and computing

Hypergeometric distribution

$$Pigg(X \geq kigg) = 1 - \sum_{i=0}^{k-1} rac{inom{M}{i}inom{N-M}{n-i}}{inom{N}{n}}$$

	in BP set			not in BP set		
in Gene set	k =	22		923		
not in Gene set		169		14454		
	•	V		,		
		M	,	v V		

clusterProfiler	ID	Description	GeneRatio	BgRatio	p.value	p.adjust	q.value
1.i		neurotransmitter					
	GO:0006836	transport	22/945	191/15568	0.002881322	0.04909408	0.04278198

2 equivalent ways of representing and computing

Hypergeometric distribution

$$P\!\left(X \geq k
ight) = 1 - \sum_{i=0}^{k-1} rac{inom{M}{i}inom{N-M}{n-i}}{inom{N}{n}}$$

	in BP set			not in BP set		
in Gene set	k =	22		923	-	
not in Gene set		169		14454		
		₩ M		,		

clusterProfiler	ID	Description	GeneRatio	BgRatio	p.value	p.adjust	q.value
1,	•	neurotransmitter					
	GO:0006836	transport	22/945	191/15568	0.002881322	0.04909408	0.04278198

2 equivalent ways of representing and computing

Hypergeometric distribution

$$Pigg(X \geq kigg) = 1 - \sum_{i=0}^{k-1} rac{inom{M}{i}inom{N-M}{n-i}}{inom{N}{n}}$$

Contingency table

Right-tailed fisher exact test

= Testing Independence

clusterProfiler	ID	Description	GeneRatio	BgRatio	p.value	p.adjust	q.value
1.i		neurotransmitter					
	GO:0006836	transport	22/945	191/15568	0.002881322	0.04909408	0.04278198

2 equivalent ways of representing and computing

clusterProfiler	ID	Description	GeneRatio	BgRatio	p.value	p.adjust	q.value
1, ; ,	-	neurotransmitter					
	GO:0006836	transport	22/945	191/15568	0.002881322	0.04909408	0.04278198

2 equivalent ways of representing and computing

ORA: Intuition via random sampling

ORA: The Impact of the *universe* definition

ORA: The Impact of the *universe* definition

ORA: Impact of the database and gene set thresholds choices

ORA: Impact of the database and gene set thresholds choices

ORA: Impact of the database and gene set thresholds choices

How many significantly enriched Biological Processes ? (q.value < 0.01)

		GO BP 2013	GO BP 2021	GO BP 2023
2736 genes	q.value < 0.1	8	37	30
1068 genes	q.value < 0.01	4	44	40

Thresholds and database choices also have an impact of the number of enriched terms

ORA: Several biases

- All parameters are important
 - a universe set (size = N)
 - o a set of interest (size = n)
 - a reference set (size = M)

Unspecific background set can create false positives

Selection thresholds are important:

- Too large = noisy detection
- Too small = low detection

Reference database and versions can an impact of results

ORA: Several biases

- All parameters are important
 - o a universe (size = N)
 - a set of interest (size = n)
 - o a reference set (size = M)

Unspecific universe (background set) can create false positives

Selection thresholds are important:

- Too large = noisy detection
- Too small = low detection

Reference database and versions can an impact of results

Always specify the background set, the applied thresholds and the database version

Good results = **Reproducible** results

ORA: It can be any gene sets - WGCNA example

ORA: It can be any gene sets - WGCNA example mapping on DAG

Recall of the impact of the threshold (q.value & logFC) on the ORA results

→ GSEA

All genes are not equivalent: sign and intensity of variation

• Recall of the impact of the threshold (q.value & logFC) on the ORA results

→ GSEA

All genes are not equivalent: sign and intensity of variation

Recall of the impact of the threshold (q.value & logFC) on the ORA results

→ GSEA

All genes are not equivalent: sign and intensity of variation

Compute the Enrichment Score (ES)

Subramanian, A. et al., 2005. Gene set enrichment analysis: A knowledge-based approach for interpreting genome-wide expression profiles.

James H Joly et al., 2019, Differential Gene Set Enrichment Analysis: a statistical approach to quantify the relative enrichment of two gene sets, *Bioinformatics*.

Recall of the impact of the threshold (q.value & logFC) on the ORA results

→ GSEA

All genes are not equivalent: sign and intensity of variation

Compute the **E**nrichment **S**core (ES)

Subramanian, A. et al., 2005. Gene set enrichment analysis: A knowledge-based approach for interpreting genome-wide expression profiles.

James H Joly et al., 2019, Differential Gene Set Enrichment Analysis: a statistical approach to quantify the relative enrichment of two gene sets, *Bioinformatics*.

- Recall of the impact of the threshold (q.value & logFC) on the ORA results
- All genes are not equivalent: sign and intensity of variation

Compute the Enrichment Score (ES)

GSEA

Subramanian, A. et al., 2005. Gene set enrichment analysis: A knowledge-based approach for interpreting genome-wide expression profiles.

James H Joly et al., 2019, Differential Gene Set Enrichment Analysis: a statistical approach to quantify the relative enrichment of two gene sets, *Bioinformatics*.

Is ES(S) significant?

• in unweighted settings (first version of GSEA): exact p-value estimation with KS-test

GSEA: A Function scoring method (2)

Is ES(S) significant?

- in unweighted settings (first version of GSEA): exact p-value estimation with KS-test
- in weighted settings (common): empirical estimation via permutation test (simulations Π)

Phenotype permutation (better if enough sample)

GSEA: A Function scoring method (2)

Is ES(S) significant?

- in unweighted settings (first version of GSEA): exact p-value estimation with KS-test
- in weighted settings (common): empirical estimation via permutation test (simulations Π)

Phenotype permutation (better if enough sample)

Gene set Permutation (most common but less efficient)

GSEA: A Function scoring method (2)

Is ES(S) significant?

- in unweighted settings (first version of GSEA): exact p-value estimation with KS-test
- in weighted settings (common): empirical estimation via permutation test (simulations Π)

GSEA: A Function scoring method (3)

How to account for Gene set size differences ?

NES (Normalised Enrichment Score)

$$NES(S) = \frac{ES(S)}{E[ES(S,\Pi)]}$$
 Gives the direction of regulation + correct for gene set size + signed

Multiple-test correction: FDR estimation

GSEA: A Function scoring method - example

- No need of a cutoff on qvalue or LogFC, just a ranking metric!
- Results are separated between over and under expression BP
- Leading Edge subset can help to identify key actors
- However, same biases apply for database choices!

GSEA: Visualisation - example

ORA vs GSEA: A visual comparison on the GO DAG graph

What is a Graph?
A graph is defined by a set of **nodes** and **edges**

Different questions, different visualisation, different methods

What is a Graph?
A graph is defined by a set of **nodes** and **edges**

Different questions, different visualisation, different methods

What is a Biomedical Knowledge Graph?

It's a graph describing biomedical entities and their relations

- Different Model: RDF (in Semantic Web) and LPG (Labeled Property Graph)
- Relations are stored at the individual record level
- Efficient for complex information extraction
- Examples: Hetionet, Wikidata, PharmKG, FORUM, etc.

Example of Hetionet

How to request a Knowledge Graph (in Neo4J)

neo4j Cypher

3 main clauses:

- MATCH: Specify the graph pattern
- WHERE: Add restrictions to the nodes or edges properties
- RETURN: Define what is included in the results

How to request a Knowledge Graph (in Neo4J)

neo4j Cypher

3 main clauses:

- MATCH: Specify the graph pattern
- WHERE: Add restrictions to the nodes or edges properties
- RETURN: Define what is included in the results

How to write:

How to request a Knowledge Graph (in Neo4J)

neo4j Cypher

3 main clauses:

- MATCH: Specify the graph pattern
- WHERE: Add restrictions to the nodes or edges properties
- RETURN: Define what is included in the results

How to write:


```
MATCH (c:Compound)-[r1:DOWNREGULATES_CdG]->(g:Gene)<-[r2:UPREGULATES_DuG]-(d:Disease) WHERE g.name IN [ "BRCA1", "BRCA2", … ] RETURN c, r1, g, r2, d
```


A more complex path

By selecting only the up-regulated genes (LogFC > 5)

Use a Biomedical Knowledge Graph to build a Enrichment custom background set

What class of drugs in enriched for their relation with the set of genes of interest? (ORA)

Contextualisation of results: Conclusion

- Enrichment analyses (ORA or GSEA) are a powerful tool to suggest direction of interpretation and hypotheses
- ORA are simples and universals, but results can be affected by several biased: threshold, databases, universe.
- GSEA is not affected by thresholding are give more weight to the most discriminant genes

Topological

methods

- Several biases remain:
 - Internal structure of pathway / interconnection between entities in a pathway
 Overlap / interconnections between pathway
 - Overlap / interconnections between pathway
 - What about gene variants?
- Biomedical KG can help to explore new connections between entities and with other entities
- They can also be used for building a custom background set.
 - Build your own Biomedical KG ! Use **BioCypher**

The End

Ressources

Enrichment analysis

- Biblio & Resources
 - Wieder, C. et al. Pathway analysis in metabolomics: Recommendations for the use of over-representation analysis. PLoS Comput Biol 17
 - https://colab.research.google.com/drive/18pLzc_pv7Fpclotx4byYh9qMDjtnyG_u?usp=sharing
 - García-Campos, M.A. et al. 2015. Pathway Analysis: State of the Art. Front Physiol
 - Subramanian, A. et al., 2005. Gene set enrichment analysis: A knowledge-based approach for interpreting genome-wide expression profiles.
 - James H Joly et al., 2019, Differential Gene Set Enrichment Analysis: a statistical approach to quantify the relative enrichment of two gene sets, Bioinformatics.
 - https://www.pathwaycommons.org/guide/primers/data_analysis/gsea/
- Biomedical KG & Co.
 - o LPG
 - Hetionet: https://het.io/about
 - Drug Repurposing Knowledge Graph (DRKG): https://github.com/gnn4dr/DRKG
 - BioKG: https://github.com/dsi-bdi/biokg
 - PharmKG: https://academic.oup.com/bib/article/22/4/bbaa344/6042240
 - Web-Semantic
 - MetaNetX: https://www.metanetx.org/
 - Wikidata: https://www.wikidata.org/wiki/Wikidata:Main Page
 - DisGeNeT: https://www.disgenet.org/
 - Rhea: https://www.rhea-db.org/
 - UniProt: https://www.uniprot.org/help/uniprotkb
 - Other resources
 - Cypher Cheat Sheet: https://neo4i.com/docs/cypher-cheat-sheet/5/auradb-enterprise/
 - BioCypher: https://biocypher.org/
 - Web-semantic MOOC: https://www.fun-mooc.fr/fr/cours/web-semantique-et-web-de-donnees/
 - Neo4J: https://www.youtube.com/channel/UCvze3hU6OZBkB1vkhH2lH9Q