MATEMÁTICA DISCRETA

Relaciones en Recurrencia

Definición

Una sucesión de números reales es una función $f: \mathbb{N} \longrightarrow \mathbb{R}$. Usualmente se escribe $f(n) = x_n$ para indicar el término n-ésimo de la sucesión y $\{x_n\} = x_0, x_1, \ldots, x_n, \ldots$ para indicar la secuencia de términos.

Una sucesión se puede definir de distintas maneras:

- Mediante una *fórmula explícita*, donde el término n-ésimo viene dado directamente como función de n. Ejemplo: $x_n = n! + n^2$.
- Mediante una *recurrencia*. En este caso, el término *n*-ésimo viene expresado en función de algunos de los términos anteriores. Ejemplo: $x_n = x_{n-1} + x_{n-2}$, donde $n \ge 3$ y $x_1 = x_2 = 1$.

Definición

- Una ecuación $x_n = f(x_{n-1}, x_{n-2}, \dots, x_{n-k}, n)$, n > k, se denomina recurrencia de orden k.
- Llamaremos **recurrencias lineales homogéneas** de orden k con coeficientes constantes a las recurrencias de la forma $x_n = a_1 x_{n-1} + a_2 x_{n-2} + \cdots + a_k x_{n-k}$, donde $a_1, \ldots a_k \in \mathbb{R}$ y $a_k \neq 0$.
- Llamaremos **recurrencias lineales no homogéneas** de orden k con coeficientes constantes a las recurrencias de la forma $\mathbf{x}_n = a_1 \mathbf{x}_{n-1} + a_2 \mathbf{x}_{n-2} + \cdots + a_k \mathbf{x}_{n-k} + \mathbf{R}_n$, donde $a_1, \dots a_k \in \mathbb{R}$, $a_k \neq 0$ y $\mathbf{R}_n \neq 0$.

Dos problemas clásicos relacionados con las recurrencias son:

- ① Plantear una *recurrencia* que nos ayude a resolver un problema combinatorio en el que, por ejemplo, sea necesario contar algo que dependa de un número $n \in \mathbb{N}$.
- 2 Encontrar la *forma explícita* de una sucesión dada en forma recurrente.

Sea X un conjunto de cardinalidad n. Para $k \le n$, calcular el número de subconjuntos de X de cardinalidad k.

Solución:

- Sea $X = \{x_1, ..., x_n\}$ y sea P_k el conjunto formado por los subconjuntos de X de cardinalidad k.
- Llamemos $C(n,k) = |P_k|$. Observa que C(n,1) = n y C(n,n) = 1.
- Asumamos que k < n. Sea $P_k^1 = \{ S \in P_k : x_1 \in S \}$.
- $|P_k^1| = C(n-1,k-1)$ (cada elemento S de P_k^1 se puede formar tomando k-1 elementos de los n-1 elementos de $X \setminus \{x_1\}$)
- $|P_k \setminus P_k^1| = C(n-1,k)$ (cada elemento S de $P_k \setminus P_k^1$ se puede formar tomando k elementos de los n-1 elementos de $X \setminus \{x_1\}$)
- $C(n,k) = |P_k| = |P_k^1| + |P_k \setminus P_k^1| = C(n-1,k-1) + C(n-1,k)$.

Tenemos que subir una escalera de $n \ge 1$ peldaños. Decidimos, en cada paso, subir un peldaño o bien subir dos. Bajo estas condiciones, calcula de cuántas maneras diferentes podemos subir la escalera.

Solución:

Sea x_n la cantidad de maneras de subir una escalera de $n \ge 1$ peldaños. Observa que podemos descomponer el conteo en dos subtotales:

- Calcular la cantidad de maneras de subir hasta el peldaño n-1 y luego subir el último peldaño en un paso. $\to x_{n-1}$
- Calcular la cantidad de maneras de subir hasta el peldaño n-2 y luego subir hasta el último peldaño dando un paso de dos peldaños. $\rightarrow x_{n-2}$

Por tanto, si $n \ge 3$, entonces $x_n = x_{n-1} + x_{n-2}$, donde $x_1 = 1$, $x_2 = 2$.

Dos problemas clásicos relacionados con las recurrencias son:

- ① Plantear una *recurrencia* que nos ayude a resolver un problema combinatorio en el que, por ejemplo, sea necesario contar algo que dependa de un número $n \in \mathbb{N}$.
- ② Encontrar la forma explícita de una sucesión dada en forma recurrente.

El segundo problema lo abordaremos para los siguientes casos de <u>recurrencias lineales</u> con coeficientes constantes:

- de orden 1 $(x_n = \alpha x_{n-1} + R_n)$
- homogéneas de orden 2 $(x_n = a_1x_{n-1} + a_2x_{n-2})$

¿Cómo se resuelve la recurrencia $x_n = \alpha x_{n-1} + R_n, \quad n \ge 1$?

$$x_{1} = \alpha x_{0} + R_{1}$$

$$x_{2} = \alpha x_{1} + R_{2}$$

$$= \alpha(\alpha x_{0} + R_{1}) + R_{2}$$

$$= \alpha^{2} x_{0} + \alpha R_{1} + R_{2}$$

$$x_{3} = \alpha x_{2} + R_{3}$$

$$= \alpha(\alpha^{2} x_{0} + \alpha R_{1} + R_{2}) + R_{3}$$

$$= \alpha^{3} x_{0} + \alpha^{2} R_{1} + \alpha R_{2} + R_{3}$$
...
$$x_{n} = \alpha^{n} x_{0} + \sum_{i=1}^{n} \alpha^{n-i} R_{i}.$$

Encuentra una fórmula explícita para la siguiente recurrencia:

$$x_n = x_{n-1} + 2n$$
 $\forall n \ge 1$, donde $x_0 = 3$.

Solución:

- $\bullet x_n = \alpha^n x_0 + \sum_{j=1}^n \alpha^{n-j} R_j.$
- En nuestro caso, $\alpha = 1$ y $R_n = 2n$. Por tanto, la solución es

$$x_n = 3 + \sum_{j=1}^{n} 2j = 3 + 2\sum_{j=1}^{n} j = 3 + n(n+1).$$

¿Cómo se resuelve la recurrencia $x_n = a_1 x_{n-1} + a_2 x_{n-2}, n \ge 3$?

Definición

Dada la recurrencia $x_n = ax_{n-1} + bx_{n-2}$, la ecuación $t^2 - at - b = 0$ se denomina **ecuación característica** de dicha recurrencia.

Teorema

Dada la recurrencia $x_n = ax_{n-1} + bx_{n-2}$, sean λ_1 y λ_2 las soluciones de la ecuación característica $t^2 - at - b = 0$.

- Si $\lambda_1 \neq \lambda_2$ entonces, para toda solución $\{y_n\}$ de la recurrencia, existen $\alpha, \beta \in \mathbb{R}$, tales que $y_n = \alpha \lambda_1^n + \beta \lambda_2^n$.
- Si $\lambda_1 = \lambda_2 = \lambda$ entonces, para toda solución $\{y_n\}$ de la recurrencia, existen $\alpha, \beta \in \mathbb{R}$, tales que $y_n = \alpha \lambda^n + \beta n \lambda^{n-1}$.

Resuelve la recurrencia $x_n = x_{n-1} + 6x_{n-2}$ $(n \ge 2)$ con las condiciones iniciales $x_0 = 0, x_1 = 1$.

Solución:

- La solución general es $x_n = \alpha(-2)^n + \beta \cdot 3^n$.
- Como $x_0 = 0$ y $x_1 = 1$, obtenemos,

$$0 = x_0 = \alpha(-2)^0 + \beta \cdot 3^0 = \alpha + \beta$$

$$1 = x_1 = \alpha(-2)^1 + \beta \cdot 3^1 = -2\alpha + 3\beta$$

- Se obtiene que $\alpha = -\frac{1}{5}$, $\beta = \frac{1}{5}$.
- Por tanto, $x_n = -\frac{1}{5}(-2)^n + \frac{1}{5}3^n$.

Resuelve la recurrencia $x_n = 2x_{n-1} - x_{n-2}$ $(n \ge 2)$ con las condiciones iniciales $x_0 = 1, x_1 = 2$.

Solución:

- La solución general es $x_n = \alpha \cdot 1^n + \beta \cdot n \cdot 1^{n-1}$.
- Como $x_0 = 1$ y $x_1 = 2$, obtenemos,

$$1 = x_0 = \alpha \cdot 1 + \beta \cdot 0 = \alpha$$

$$2 = x_1 = \alpha \cdot 1 + \beta \cdot 1 = \alpha + \beta$$

• Se obtiene que $\alpha = \beta = 1$. Por tanto, $x_n = 1 + n$.