THE UNIVERSITY OF NEW ENGLAND

UNIT NAME: MATH 101/101A Algebra and Differential Calculus PAPER TITLE: First and Only **PAPER NUMBER:** Wednesday 15th November 2006 TIME: 2:00PM TO 5:00PM DATE: TIME ALLOWED: Three (3) hours plus fifteen minutes reading time. NUMBER OF PAGES IN PAPER: SEVEN (7) NUMBER OF QUESTIONS ON PAPER: TWELVE (12) NUMBER OF QUESTIONS TO BE ANSWERED: TEN (10) X 6 LEAF A4 BOOKS STATIONERY PER CANDIDATE: X 12 LEAF A4 BOOKS 1 X ROUGH WORK BOOKS

GRAPH PAPER:

NIL

(NUMBER OF SHEETS)

POCKET CALCULATORS PERMITTED:

YES

(SILENT TYPE)

OTHER AIDS REQUIRED:

NIL

INSTRUCTIONS FOR CANDIDATES:

- Candidates may make notes on this paper during the fifteen minutes reading time
- Questions are of equal value
- SECTION A: Answer all questions
- SECTION B: Only answer TWO (2) questions
- Candidates may retain their copy of this examination question paper

TEXTBOOKS OR NOTES PERMITTED: FIVE A4 sheets (10 pages if written on both sides) of HANDWRITTEN notes. No photocopies, no printed notes permitted.

THE UNIVERSITY CONSIDERS IMPROPER CONDUCT IN EXAMINATIONS TO BE A SERIOUS OFFENCE. PENALTIES FOR CHEATING ARE EXCLUSION FROM THE UNIVERSITY FOR ONE YEAR AND/OR CANCELLATION OF ANY CREDIT RECEIVED IN THE EXAMINATION FOR THAT UNIT.

SECTION A

You should attempt all questions in this section.

Question 1

(a) Find, if they exist, the supremum and infinum of the following sets. In each case state whether or not the supremum (infinum) is an element of the set.

(i)
$$\left\{ x \in \mathbb{R} : \frac{1}{4 - x^2} > 0 \right\}$$

(i)
$$\left\{ x \in \mathbb{R} : \frac{1}{4 - x^2} > 0 \right\}$$
 (ii) $\left\{ \frac{1}{n^3} : n = 1, 2, 3, \dots \right\}$.

[3 marks]

(b) Prove by mathematical induction that for any counting number n > 3

$$\left(\frac{3}{2}\right)^n > n.$$

[3 marks]

(c) Let a be a positive real number and a > 3. Give a proof by contradiction of the following statement,

$$a^2 - a > 6.$$

[4 marks]

Question 2

(a) For z = -1 - i express each of the following complex numbers in the form x + iy, with x and y real.

- (i) 3i + 3z
- (ii) $\frac{z-i}{z-1}$ (iii) $\overline{z-3i}$
- (iv) $\left|\frac{z+2-i}{z}\right|$ (v) $\overline{z^2}$.

[7 marks]

(b) Find, over \mathbb{C} , all solutions of the equation $z^3 = -i$, i.e. find (over the complex numbers) all possible values of $(-i)^{\frac{1}{3}}$. [3 marks]

Question 3 is on page 3.

(a) For each of the following real valued functions find the natural domain and range

(i) $f(x) = \frac{-x}{x^2 + 2}$

(ii) $g(x) = \frac{1}{\sqrt{x^2 - 1}}$.

[4 marks]

- (b) Is g(x) (of part (a), above) injective, surjective or bijective on its natural domain and range? Give brief reasons. What are (if they exist) $\sup g$ and $\inf g$? [4 marks]
- (c) What value of k makes the following function continuous at x = 1?

 $f(x) = \begin{cases} 2 + \cos(\pi x), & x < 1\\ 3x + k, & x \ge 1. \end{cases}$

[2 marks]

Question 4

(a) State which of the following sequences are monotone. Are they increasing or decreasing? Discuss the behaviour of each of the sequences as $n \longrightarrow \infty$.

(i) $\left(\frac{3}{4}\right)^n$ (ii) $\frac{\sin(n)}{n}$ (iii) $\frac{1+n}{n^2}$.

[4 marks]

(b) Determine if the following infinite series are convergent or divergent.

(i) $\sum_{n=1}^{\infty} \frac{1}{\sqrt{n^2 + 2}}$ (ii) $\sum_{n=1}^{\infty} \frac{2^n}{(n+1)!}$ (iii) $\sum_{n=1}^{\infty} \sqrt{\frac{n+1}{n^3}}$.

[6 marks]

Question 5 is on page 4.

(a) Differentiate the following functions, state clearly where each function is differentiable. If any of the functions is not differentiable at a point, explain (briefly) why it is not differentiable.

(i)
$$f(x) = \frac{1-x^3}{1+x^3}$$

(ii)
$$f(x) = \tan(x)\sqrt{x+1}$$
.

[5 marks]

(b) Find $\frac{dy}{dx}$ for the following implicitly defined function,

$$x\ln(x^2 + y^2) + e^x + y = 0.$$

[5 marks]

Question 6

Consider the function, $f: \mathbb{R} \longrightarrow \mathbb{R}$

$$f(x) = 2x^3 + 9x^2 - 24x + 1.$$

- (a) Determine the intervals on which f is (i) increasing or decreasing and (ii) concave up or concave down.

 [4 marks]
- (b) Find all relative maxima and minima of the function f. What are the absolute maxima and minima for f on the interval [-5,1]?

 [3 marks]
- (c) Sketch the graph of f on the interval [-5, 1].

[3 marks]

(a) Solve the following linear system,

$$x + y + z = 1$$

 $2x + 3y - 5z = -7$
 $x - 2y + 4z = 10$.

[4 marks]

(b) For

$$A = \begin{pmatrix} 0 & 1 & 1 \\ 1 & 0 & -1 \\ 1 & -1 & 1 \end{pmatrix}, \ B = \begin{pmatrix} 1 & -2 & 0 \\ 4 & 3 & 1 \end{pmatrix}, \ C = \begin{pmatrix} 2 & 0 & 1 \\ -1 & 1 & 1 \\ 0 & 2 & -1 \end{pmatrix}$$

state whether the following products and (or) sums are defined; calculate those which are defined.

- (i) AB
- (ii) A + 3C
- (iii) BC.

[3 marks]

(c) Find the eigenvalues of the matrix A, below

$$A = \left(\begin{array}{ccc} 1 & 1 & 0 \\ 1 & 1 & 1 \\ 0 & 0 & 1 \end{array}\right).$$

[3 marks]

Question 8 is on page 6.

Let P_1 , P_2 , P_3 and P_4 be the following four points in \mathbb{R}^3 , $P_1(0, 0, -1)$, $P_2(0, 1, 0)$, $P_3(1, 1, 0)$ and $P_4(0, 0, 1)$.

- (a) Write down the vectors $\overrightarrow{P_1P_2}$ and $\overrightarrow{P_1P_3}$ in terms of the standard unit vectors i, j and k.
- (b) Find the orthogonal projection of $\overrightarrow{P_1P_2}$ onto $\overrightarrow{P_1P_3}$.

[3 marks]

(c) Find the area of the triangle formed by P_1, P_2 and P_3 .

[3 marks]

(d) Find the volume of the parallelepiped with sides given by the three vectors $\overrightarrow{P_1P_2}$, $\overrightarrow{P_1P_3}$ and $\overrightarrow{P_1P_4}$.

SECTION B.

You are to answer only TWO of the four questions in this section.

Question 9

- (a) Prove formally that $f(x) = \frac{1}{x-1}$ is continuous on $\{x \in \mathbb{R} : x > 1\}$. [4 marks]
- (b) Suppose that f is a function $\mathbb{R} \longrightarrow \mathbb{R}$ and that at all points $x_1, x_2 \in \mathbb{R}$ we have

$$|f(x_1) - f(x_2)| \le |x_1 - x_2|.$$

Prove formally that f is continuous on its natural domain.

[6 marks]

(a) Show that $f(x) = \sin(x)$ satisfies the conditions of the Mean Value Theorem on an interval [0, b], with $b < \infty$. Apply the Mean Value Theorem to f on the interval $[0, x], x < \infty$, to show that

$$-x \le \sin(x) \le x$$
.

[6 marks]

(b) Suppose $f(x) = \frac{x^2-1}{x}$ on [-1,1]. Show that there is no $c \in (-1,1)$ such that f'(c) = 0 even though f(-1) = f(1) = 0. Explain why Rolle's Theorem fails in this case.

[4 marks]

Question 11

A wire of length 10 cm can be bent into a circle, bent into a square, or cut into two pieces to make both a circle and a square. How much wire should be used for the circle if the total area enclosed by the figure(s) is to be a

- (i) maximum?
- (ii) minimum?

[10 marks]

Question 12

Consider the following Leslie matrix,

$$P = \left(\begin{array}{ccc} 0 & 1 & 2\\ \frac{1}{2} & 0 & 0\\ 0 & \frac{1}{2} & 0 \end{array}\right).$$

- (a) Verify that the eigenvalues of P are $1, \frac{1}{2}(-1+i)$ and $\frac{1}{2}(-1-i)$ and show that 1 is the dominant eigenvalue. [4 marks]
- (b) Find the asymptotic fractional population vector and hence the (long time) fraction of the population in each of the three age groups.

 [6 marks]