Теория вероятностей

(Ещё не)алгебраист

13 июня 2025 г.

Предисловие

Эти записки созданы с целью аккуратно формализовать и заполнить пробелы в лекциях Елены Борисовны Яровой. В разделе 0 будут содержаться основные принятые в курсе обозначения, а также сведения и определения из разных разделов математики, которыми автор будет пользоваться. Поскольку автор считает полезным взгляд на всякий раздел математики с точки зрения теории категорий и её приложений, этот язык также будет упоминаться (тем не менее, не замещая собой прочие подходы).

Содержание

0	Пре	едвари	тельные сведения	3
	0.1	Обозн	ачения	3
			арительные сведения из действительного анализа	4
		0.2.1	Системы множеств и структуры на них	4
		0.2.2	Минимальное кольцо и минимальная алгебра	5
		0.2.3	Мера на полукольце и её продолжение на минимальное кольцо	6
		0.2.4	Лебеговское продолжение меры	8
		0.2.5	Единственность продолжения меры на минимальную σ -алгебру	9
		0.2.6	Непрерывность и полнота меры	11
		0.2.7	Мера Лебега-Стилтьеса	11
		0.2.8	Измеримые функции	12
		0.2.9	Интеграл Лебега	15
		0.2.10	Прямой образ меры (pushforward measure)	18
	0.3	Теория	я категорий и взгляд на измеримые пространства с её точки	
		зрения	I	19
		0.3.1	Категория измеримых пространств	19
	0.4	Произ	ведение и копроизведение к категории измеримых пространств	20
		0.4.1	Прямой образ σ -алгебры	20
		0.4.2	Обратный образ σ -алгебры	21

		0.4.3 Связь между минимальной σ-алгеброй, прямым и обратным	0.0				
		образами σ -алгебры	22				
	0.5	$0.4.4$ Функтор борелевской σ -алгебры	24				
	0.5	Предварительные сведения из анализа Фурье	25				
	0.6	Предварительные сведения из линейной алгебры	25				
		0.6.1 Билинейные функции и квадратичные формы	25				
		0.6.2 Полуторалинейные функции	26				
1	Эле	ментарная комбинаторика	27				
	1.1	Классические комбинаторные величины	27				
	1.2	Свойства комбинаторных величин	27				
2	Вер	оятностное пространство, случайные события	27				
3	Усл	Условные вероятности, формула Байеса, независимость событий					
	3.1	Условная вероятность	31				
	3.2	Формула полной вероятности и формула Байеса	32				
	3.3	Независимость событий	34				
	3.4	Произведение вероятностных пространств	36				
4	Слу	Случайные величины, их распределения, функции распределения					
	•		37				
5	Кла	ассические примеры распределений	41				
	5.1	Распределение константы	42				
	5.2	Распределение Бернулли	42				
	5.3	Дискретное равномерное распределение	42				
	5.4	Биномиальное распределение	43				
	5.5	Распределение Пуассона	43				
	5.6	Геометрическое распределение	43				
	5.7	Гипергеометрическое распределение	43				
	5.8	Отрицательное биномиальное распределение	43				
	5.9	Равномерное распределение	44				
	5.10	Экспоненциальное (показательное) распределение	44				
		Нормальное распределение (распределение Гаусса)	44				
	5.12	Распределение Коши	44				
6	Чис	сленные характеристики случайных величин	44				
		- · · · · · · · · · · · · · · · · · · ·					
	6.1	Математическое ожидание, моменты и абсолютные моменты	44				
	$6.1 \\ 6.2$		$\frac{44}{44}$				
		Математическое ожидание, моменты и абсолютные моменты					

7	Сходимости случайных величин					
	7.1 Сходимость почти наверное	44				
	7.2 Сходимость по вероятности	44				
	7.3 Пространство \mathcal{L}_p и сходимость в нём	44				
	7.4 Сходимость по распределению	44				
	7.5 Связь сходимостей	44				
8	Производящие функции	44				
9	Характеристические функции	45				
10	Предельные теоремы	45				
	10.1 Неравенства	45				
	10.2 Закон больших чисел	45				
	10.3 Теорема Муавра-Лапласа	45				
	10.4 Закон нуля или единицы	45				
	10.5 Закон повторного логарифма	$\frac{45}{45}$				
	10.6 Закон арксинуса	45				
	10.8 Центральная предельная теорема	46				
	Total Manipullar Reagand Teopena	10				
11	Совместные распределения случайных величин	46				
12	Свёртки случайных величин	46				
13	Указатель терминов	46				
14	Указатель теорем	46				
0	Предварительные сведения					
0.	1 Обозначения					
	\bullet Ω — пространство элементарных исходов;					
	\bullet ω — элементарный исход;					
	$ullet$ $\mathfrak{F}-\sigma$ -алгебра событий;					
	• Р — вероятностная мера;					
	$ullet$ ξ, η, ζ — случайные величины;					
	$ullet$ $\mathbf{E}\xi$ — математическое ожидание случайной величины ξ ;					
	• $\mathrm{D}\xi$ — дисперсия случайной величины ξ ;					

- $Cov(\xi, \eta)$ ковариация случайных величин ξ и η ;
- $\rho(\xi,\eta)$ корреляция случайных величин ξ и η ;

0.2 Предварительные сведения из действительного анализа

0.2.1 Системы множеств и структуры на них

Система множеств (следует понимать как синоним термина «семейство множеств») S называется полуцольком, если она удовлетворяет следующим аксиомам:

- $(1) \varnothing \in S;$
- $(2) \ \forall A, B \in S : A \cap B \in S;$

(3)
$$\forall A, B \in S, A \subset B \ \exists n \in \mathbb{N} \ \exists C_1, \dots, C_n \in S : A = B \sqcup \bigsqcup_{k=1}^n C_k.$$

Множество $\Omega \in U$ называется единицей системы множеств U, если всякий элемент $A \in U$ является подмножеством Ω .

Система множеств R называется кольцом, если она удовлетворяет следующим аксиомам:

- (1) $\forall A, B \in R : A \cap B \in R$;
- (2) $\forall A, B \in R : A \triangle B \in R$.

Следующее утверждение проверяется непосредственно, исходя из теоретикомножественных тождеств, но его доказательство приведено, например, в книге [2].

Предложение 0.1. Пусть R- кольцо. Тогда R является полукольцом. Кроме того, для любых элементов $A, B \in R$ в R также содержатся их объединение $A \cup B$ и разность $A \setminus B$.

Кольцо называется σ -кольцом, если для любого счётного набора его элементов $\{A_k\}_{k\in R}\subset R$ их объединение содержится в R ($\bigcup_{k\in \mathbb{N}}A_k\in R$) и δ -кольцом, если для любого счётного набора его элементов $\{A_k\}_{k\in R}\subset R$ их пересечение содержится в R.

Кольцо с единицей Ω называется алгеброй (подмножеств множества Ω).

В книгах по теории вероятностей понятие алгебры часто вводится с использование другого равносильного набора аксиом, что выражает следующее

Предложение 0.2 (Определение алгебры в традиции теории вероятностей). Система множеств R является алгеброй подмножеств множества Ω тогда и только тогда, когда R удовлетворяет следующим аксиомам

(1) $\Omega \in R$;

- $(2) \ \forall \ A, B \in R : A \cup B, A \cap B \in R;$
- $(3) \ \forall \ A \in R: \ \Omega \setminus A := \overline{A} \in R.$

Мы снова опускаем доказательство, сводящееся к тождествам теории множеств. Если алгебра является σ -кольцом или δ -кольцом, то её называют σ -алгеброй или δ -алгеброй, соответственно.

Предложение 0.3. Имеет место следующее:

- (1) Всякое σ -кольцо является δ -кольцом, обратное вообще говоря не верно.
- (2) Всякая σ -алгебра является δ -алгеброй и наоборот.

Пемма 0.4. Пусть $R - (\sigma -)$ кольцо и $A \in R$. Тогда множество

$$R \cap A := \{B \cap A | B \in R\}$$

является $(\sigma$ -)алгеброй подмножеств A. Также $R \cap A \subset R$.

Доказательство. По построению $\Omega \cap A = A$ содержится в $R \cap A$ и всякий элемент $R \cap A$ есть подмножество A. Так как кольцо замкнуто относительно пересечений, то $R \cap A \subset R$.

Пусть теперь $C_1 = B_1 \cap A, C_2 = B_2 \cap A \in R \cap A$ — два множества. Тогда $C_1 \cap C_2 = (B_1 \cap B_2) \cap A \in R \cap A$, так как $B_1 \cap B_2 \in R$. Далее, $C_1 \cup C_2 = (B_1 \cup B_2) \cap A \in R \cap A$, так как $B_1 \cup B_2 \in R$. Окончательно, $A \setminus C_1 = (A \setminus B_1) = (\Omega \setminus B_1) \cap A \in R \cap A$, поскольку $\Omega \setminus B_1 \in R$.

Предположим, что R являлось σ -алгеброй. Пусть $\{C_k\}$ — счётное семейство элементов $R\cap A$ и $C_k=B_k\cap A$. Тогда

$$\bigcup_{i=1}^{\infty} C_k = \bigcup_{i=1}^{\infty} (B_k \cap A) = \left(\bigcup_{i=1}^{\infty} B_k\right) \cap A \in R \cap A,$$

принадлежность справедлива в силу того, что $\bigcup_{i=1}^{\infty} B_k \in R$.

Можно показать, что кольцо множеств является кольцом в алгебраическом смысле этого слова с операциями сложения \triangle и умножения \cap , а алгебра множеств является булевой алгеброй (в частности, \mathbb{F}_2 -алгеброй).

0.2.2 Минимальное кольцо и минимальная алгебра

Следующее утверждение сводится к проверке аксиом кольца или алгебры, но его доказательство также можно прочитать в книге [2].

Предложение 0.5. Пусть $\{R_{\alpha}\}_{\alpha\in\mathcal{A}}$ — семейство $(\sigma$ -, δ -)колец множеств. Тогда система $R=\bigcap_{\alpha\in\mathcal{A}}R_{\alpha}$ является $(\sigma$ -, δ -)кольцом. Кроме того, если все кольца R_{α} являются $(\sigma$ -)алгебрами подмножеств множества Ω (то есть у них есть общая единица), то R также является $(\sigma$ -)алгеброй подмножеств множества Ω .

Теорема 0.6 (О минимальной (σ -)алгебре). Пусть U — система множеств. Тогда существует как минимум одно (σ -)кольцо, содержащее U. Пересечение всех таких (σ -)колец R(U) ($R_{\sigma}(U)$) само является (σ -)кольцом. Всякое (σ -)кольцо, содержащее U, содержит и R(U). Если $\Omega \in U$ — единица U, то R(U) ($R_{\sigma}(U)$) является (σ -)алгеброй подмножеств множества Ω .

 \mathcal{A} оказательство. В качестве (σ -)кольца, содержащего U можно взять булеан 2^{Σ} , где множество Σ определено как объединение $\bigcup_{A \in U} A$.

Пересечение всех таких $(\sigma$ -)колец существует, поскольку имеется хотя бы одно кольцо и по предложению 0.5 это пересечение само является $(\sigma$ -)кольцом.

Пусть (σ -)кольцо R' содержит множество U. Тогда по построению R(U) ($R_{\sigma}(U)$) содержится в пересечении $2^{\Sigma} \cap R'$, откуда $R(U) \subset R'$ ($R_{\sigma}(U) \subset R'$).

Если Ω — единица U, то по построению $\Sigma = \Omega$. Для всякого $(\sigma$ -)кольца R', содержащего U имеем $\Omega \in R$ и по лемме 0.4 система множеств $R' \cap \Omega \subset R'$ является $(\sigma$ -)алгеброй подмножеств Ω . Так как Ω являлось единицей U, то U содержится в $R' \cap \Omega$. Следовательно, достаточно рассматривать пересечение только $(\sigma$ -)алгебр подмножеств множества Ω , содержащих U. По предложению 0.5 их пересечение является $(\sigma$ -)алгеброй подмножеств Ω .

Опираясь на предложение 0.6 дадим определение. Для системы множеств U пересечение всех колец, содержащих U называется минимальным кольцом, порождённым U и обозначается R(U).

Предложение 0.7. Пусть S- полукольцо и R(S)- минимальное кольцо, порождённое S. Тогда R(S) допускает следующие описания

- $R(S) = \{ A_1 \cup ... \cup A_n | n \in \mathbb{N}, \{ A_i \}_{i=1}^n \subset S \};$
- $R(S) = \{ A_1 \sqcup ... \sqcup A_n | n \in \mathbb{N}, \{ A_i \}_{i=1}^n \subset S \}.$

Доказательство. НУЖНО: дописать доказательство или сослаться

0.2.3 Мера на полукольце и её продолжение на минимальное кольцо

Пусть S — некоторое полукольцо. Будем называть неотрицательную функцию $m: S \to \mathbb{R}$ мерой на полукольце S, если m удовлетворяет аксиоме аддитивности

$$\forall A, B \in S, A \cap B = \varnothing, A \cup B \in S : m(A \sqcup B) = m(A) + m(B).$$

Если дополнительно для любой последовательности попарно непересекающихся подмножеств $\{A_k\}_{k\in\mathbb{N}}$, объединение которых есть элемент из S (отметим, что это автоматически выполнено, если S является σ -кольцом) имеет место равенство

$$m\left(\bigsqcup_{k=1}^{\infty} A_k\right) = \sum_{k=1}^{\infty} m(A_k),$$

то мера m называется σ -аддитивной (аксиома σ -аддитивности). Подразумевается, что ряд в правой части сходится для любой последовательности попарно не пересекающихся $\{A_k\}$, объединение которых лежит в S. Можно показать, что из этой аксиомы следует, что $m(\varnothing)=0$ и поэтому из неё следует аксиома аддитивности.

Пользуясь предложением 0.7 введём функцию $\nu \colon R(S) \to \mathbb{R}$ по правилу $\nu(A_1 \sqcup \ldots \sqcup A_n) = \sum_{i=1}^n m(A_i)$, где $A_i \in S$. Следующее предложение позволяет назвать ν продолжением меры m с полукольца S на его минимальное кольцо.

Предложение 0.8. Справедливо следующее

- (1) функция ν определена корректно, то есть значение ν не зависит от выбора представления $A_1 \sqcup \ldots \sqcup A_n$;
- (2) функция ν является мерой на кольце R(S);
- (3) ограничение функции ν на полукольцо S совпадает c m;
- (4) если мера m была σ -аддитивной, то функция ν также является σ -аддитивной.

Доказательство. См. доказательство в $[2, \Gamma]$ лава 1, Теорема 2.2. □

Лемма 0.9. Пусть S- полукольцо $u\ m\colon S\to \mathbb{R}-$ мера на S. Тогда $m\ удовле-$ творяет следующим свойствам

- (1) если для $A, B \in S$ выполнено $A \subset B$, то $m(A) \leqslant m(B)$;
- (2) $ecnu A, A_1, \ldots, A_n \in S \ u A \subset \bigcup_{i=1}^n A_i, \ mo$

$$m(A) \leqslant \sum_{i=1}^{n} m(A_i);$$

(3) если $A_1, \ldots, A_n \subset S$ — попарно не пересекающиеся множества $u \bigsqcup_{i=1}^n A_i \subset A \in S,$ то

$$\sum_{i=1}^{n} m(A_i) \leqslant m(A);$$

(4) если $\{A_i\}_{i=1}^{+\infty} \subset S$ — попарно не пересекающиеся множества $u \bigsqcup_{i=1}^{+\infty} A_i \subset A \in S$,

$$\sum_{i=1}^{+\infty} m(A_i) \leqslant m(A).$$

П

Доказательство. НУЖНО: дописать доказательство или сослаться

Последнее свойство, доказанное в лемме, называют полуаддитивностью.

0.2.4 Лебеговское продолжение меры

Далее будем рассматривать полукольцо S с единицей Ω и σ -аддитивной мерой m. Пусть $\nu\colon R(S)\to \mathbb{R}$ — продолжение этой меры на минимальное кольцо.

Введём функцию внешней меры $\mu^*: 2^{\Omega} \to \mathbb{R}$, заданную по правилу

$$\mu^*(A) := \inf_{A \subset \bigcup_{i=1}^{+\infty} B_i, B_i \in S} \sum_{i=1}^{+\infty} m(B_i).$$

Предложение 0.10. Для всякого $A \subset \Omega$ в определении внешней меры можно заменить дизовнитные объединения на произвольные:

$$\mu^*(A) = \inf_{\substack{A \subset \bigcup_{i=1}^{+\infty} B_i, B_i \in S}} \sum_{i=1}^{+\infty} m(B_i).$$

Доказательство. НУЖНО: дописать доказательство или сослаться

Множество $A \subset \Omega$ называется измеримым, если для любого $\varepsilon > 0$ найдётся множество $B \in R(S)$ такое, что $\mu^*(A \triangle B) < \varepsilon$. Если A измеримо, то его мерой называется значение $\mu(A) := \mu^*(A)$. Обозначим через $\mathcal M$ системы всех измеримых подмножеств единицы Ω .

Лемма 0.11. Пусть $\{A_i\}_{i=1}^{+\infty} \subset \mathcal{M}$ — последовательность множеств, $A \in M$ и $A \subset \bigcup_{i=1}^n A_i$. Тогда

$$\mu^*(A) \leqslant \sum_{i=1}^n \mu^*(A_i);$$

Доказательство. НУЖНО: дописать доказательство или сослаться

Теорема 0.12. Система измеримых множеств \mathcal{M} является алгеброй.

Доказательство. НУЖНО: дописать доказательство или сослаться

Теорема 0.13. Функция μ на алгебре множеств \mathcal{M} является мерой.

Доказательство. НУЖНО: дописать доказательство или сослаться	
Теорема 0.14. Алгебра измеримых множеств $\mathcal M$ является σ -алгеброй.	
Доказательство. НУЖНО: дописать доказательство или сослаться	
Теорема 0.15. Мера μ на σ -алгебре измеримых множеств $\mathcal M$ является σ -адд	итивной.
Доказательство. НУЖНО: дописать доказательство или сослаться	
Ограничение внешней меры μ^* на σ -алгебру измеримых подмножеств \mathcal{M} будем называть лебеговским продолжением меры m .	1 мы

0.2.5 Единственность продолжения меры на минимальную σ -алгебру

Прежде, чем приступить к доказательству теорема Каратеодори мы докажем лемму, характеризующую минимальную σ -алгебру, порождённую данной алгеброй.

Лемма 0.16. Пусть A — некоторая алгебра. Тогда существует наименьшая по включению система множеств Mon(A), удовлетворяющая свойствам

- (1) $\mathcal{A} \subset Mon(\mathcal{A})$;
- (2) если имеется последовательность множеств $\{A_i\} \subset Mon(\mathcal{A})$ и либо $A_1 \subset A_2 \subset \ldots$, либо $A_1 \supset A_2 \supset \ldots$, то либо $\bigcup_{i=1}^{+\infty} A_i \in Mon(\mathcal{A})$, либо $\bigcap_{i=1}^{+\infty} A_i \in Mon(\mathcal{A})$, соответственно (мы будем называть это свойство монотонностью).

Более того, система множеств $Mon(\mathcal{A})$ совпадает с минимальной σ -алгеброй $R_{\sigma}(\mathcal{A})$, порожедённой \mathcal{A} .

Доказательство. Из определения σ -алгебры следует, что $R_{\sigma}(\mathcal{A})$ удовлетворяет свойствам из условия. Кроме того, пересечение произвольного семейства систем множеств, удовлетворяющих данным условиям снова будет удовлетворять им. Поэтому взяв пересечение всех таких систем множеств, мы получим наименьшую по включению систему $Mon(\mathcal{A})$. Так как всегда можно ограничиться системами множеств с той же единицей, что была в \mathcal{A} , то $Mon(\mathcal{A})$ обладает единицей.

Из сказанного выше следует, что Mon(A) содержится в σ -алгебре $R_{\sigma}(A)$. Мы докажем, что система Mon(A) сама является σ -алгеброй. Отсюда по минимальности (теорему 0.6) будет следовать обратное включение.

Для множества $B \in Mon(A)$ обозначим через

$$L(B) = \{ A \in Mon(\mathcal{A}) | A \setminus B, B \setminus A, A \cup B \in Mon(\mathcal{A}) \}$$

систему множеств из Mon(A), разности и объединение которых с B снова лежат в Mon(A). По построению $A \in L(B)$ равносильно тому, что $B \in L(A)$.

Рассмотрим случай, когда система множеств L(B) непуста и в ней содержится вложенную последовательность $\{A_i\} \subset L(B)$ то есть либо $A_1 \subset A_2 \subset \ldots$, либо $A_1 \supset A_2 \supset \ldots$ Тогда из того, что $Mon(\mathcal{A})$ удовлетворяет свойству монотонности, то $\bigcup_{i=1}^{+\infty} A_i \in L(B)$, либо $\bigcap_{i=1}^{+\infty} A_i \in L(B)$, соответственно. Таким образом, система множеств L(B) тоже удовлетворяет свойству монотонности.

Пусть теперь $A \in \mathcal{A}$. Тогда $\mathcal{A} \subset L(A)$, то есть L(A) удовлетворяет обоим свойствам из условия. Отсюда по минимальности $Mon(\mathcal{A}) \subset L(A)$. Тогда для любого $B \in Mon(\mathcal{A})$ имеем $\mathcal{A} \subset L(B)$. Поэтому, аналогично, $Mon(\mathcal{A}) \subset L(B)$, то есть $Mon(\mathcal{A}) = L(B)$ для любого $B \in Mon(\mathcal{A})$. Таким образом, система множеств $Mon(\mathcal{A})$ является алгеброй.

Из монотонности следует, что $Mon(\mathcal{A})$ является σ -алгеброй. \square

Мы приведём доказательство теоремы Каратеодори для случая конечной меры, он отметим, что она остаётся верной и для σ -конечной меры.

Теорема 0.17 (Каратеодори). Пусть $\mathcal{A} - \sigma$ -алгебра подмножеств множества Ω и $\nu \colon \mathcal{A} \to \mathbb{R}$ — конечная мера на \mathcal{A} . Тогда существует единственная σ -аддитивная мера μ на минимальной σ -алгебре $R_{\sigma}(\mathcal{A})$, ограничение которой на \mathcal{A} совпадает с ν .

Доказательство. Для доказательства существования рассмотрим лебеговское продолжение меры ν на σ -алгебру измеримых подмножеств \mathcal{M} . По минимальности (теореме 0.6) имеем включение $R_{\sigma}(\mathcal{A}) \subset \mathcal{M}$. Тогда ограничение лебеговского продолжения на $R_{\sigma}(\mathcal{A})$ будет являться σ -аддитивной мерой.

Докажем единственность. Предположим, что μ_1 и μ_2 — два продолжения меры ν . Положим $\mathcal{A}_{=} = \{ B \in R_{\sigma}(\mathcal{A}) | \mu_1(B) = \mu_2(B) \} \subset R_{\sigma}(\mathcal{A})$ — система множеств, на которых меры μ_1 и μ_2 совпадают.

Промерим, что $\mathcal{A}_{=}$ удовлетворяет условиям леммы 0.16. По предположению о совпадении ограничений μ_1 и μ_2 на алгебре \mathcal{A} с мерой m имеем включение $\mathcal{A} \subset \mathcal{A}_{=}$. Остаётся проверить только второе условие.

Пусть имеется вложенная последовательность $\{A_i\} \subset \mathcal{A}_=$, то есть либо $A_1 \subset A_2 \subset \ldots$, либо $A_1 \supset A_2 \supset \ldots$ По непрерывности мер в обоих случаях имеем равенства

$$\mu_1\left(\bigcup_{i=1}^{+\infty} A_i\right) = \lim_{i \to +\infty} \mu_1(A_i) = \lim_{i \to +\infty} \mu_2(A_i) = \mu_2\left(\bigcup_{i=1}^{+\infty} A_i\right),$$

$$\mu_1\left(\bigcap_{i=1}^{+\infty} A_i\right) = \lim_{i \to +\infty} \mu_1(A_i) = \lim_{i \to +\infty} \mu_2(A_i) = \mu_2\left(\bigcap_{i=1}^{+\infty} A_i\right).$$

Таким образом, $\mathcal{A}_{=}$ удовлетворяет условию монотонности и по лемме 0.16 содержит (поскольку мы не проверили минимальность лемма даёт только такой результате) σ -алгебру $R_{\sigma}(\mathcal{A})$.

Из всего сказанного следует равенство $\mathcal{A}_{=}=R_{\sigma}(\mathcal{A}).$

0.2.6 Непрерывность и полнота меры

Мера μ на кольце R называется непрерывной, если для любой последовательности вложенных подмножеств $\{A_i\}_{i=1}^{+\infty} \subset R, A_1 \supset A_2 \supset A_3 \supset \ldots$, пересечения которых $A = \bigcap_{i=1}^{\infty} A_i$ лежит в R, имеет место равенство

$$\lim_{i \to +\infty} \mu(A_i) = \mu(A) = \mu\left(\bigcap_{i=1}^{\infty} A_i\right).$$

Предложение 0.18. Конечная мера μ на кольце R непрерывна тогда и только тогда, когда она σ -аддитивна.

Доказательство. НУЖНО: дописать доказательство

Следствие 0.19. Пусть задана мера μ на кольце R и последовательность вложенных подмножеств $\{A_i\}_{i=1}^{+\infty} \subset R,\ A_1 \supset A_2 \supset A_3 \supset \ldots,\ nepeceuenue$ которых $A = \bigcap_{i=1}^{\infty} A_i$ лежит в R и, кроме того, мера $\mu(A_1) < +\infty$. Тогда имеет место равенство

$$\lim_{i \to +\infty} \mu(A_i) = \mu(A) = \mu\left(\bigcap_{i=1}^{\infty} A_i\right).$$

Доказательство. НУЖНО: дописать доказательство

Предложение 0.20. Пусть задана конечная σ -аддитивная мера μ на кольце R. Тогда для любой последовательности вложенных подмножеств $\{A_i\}_{i=1}^{+\infty} \subset R$, $A_1 \subset A_2 \subset A_3 \subset \ldots$, объединение которых $A = \bigcup_{i=1}^{\infty} A_i$ лежит в R, имеет место равенство

$$\lim_{i \to +\infty} \mu(A_i) = \mu(A) = \mu\left(\bigcup_{i=1}^{\infty} A_i\right).$$

Доказательство. НУЖНО: дописать доказательство

Мера μ на кольце R называется полной, если для любого множества $A \in R$ из равенства нулю меры $\mu(A) = 0$ вытекает, что всякое подмножество $B \subset A$ лежит в R. Из свойств меры в этом случае $\mu(B) = 0$.

0.2.7 Мера Лебега-Стилтьеса

Пусть $f: \mathbb{R} \to \mathbb{R}$ — неубывающая ограниченная функция. Можно рассматривать и случай, когда функция не ограничена и для неё развить теорию, используя σ -конечную меры, но мы не будем сталкиваться с такими случаями в дальнейшем и поэтому остановимся на рассмотрении ограниченной функции f. Рассмотрим полукольцо S полуинтервалов вида (a,b] или $(a;+\infty), (-\infty;b]$ и введём на нём функцию m_f по правилу $m_f((a,b]) = f(b) - f(a), m_f((a;+\infty)) = \lim_{x\to +\infty} f(x) - f(a), m_f((-\infty;b]) = f(b) - \lim_{x\to -\infty} f(x)$ и $\mu_f(\mathbb{R}) = \lim_{x\to +\infty} f(x) - \lim_{x\to -\infty} f(x)$.

Предложение 0.21. Функция m_f является мерой на полукольце S. Функция f непрерывна справа тогда и только тогда, когда мера m_f является σ -аддитивной.

Доказательство. Докажем, что m_f удовлетворяет аксиоме аддитивности. Пусть $(a,b] = \bigsqcup_{i=1}^n (a_i,b_i]$. Можно считать, что $a = a_1 < b_1 = a_2 < b_2 < \ldots < b_n = b$. Тогда

$$m_F((a,b]) = f(b) - f(a) = \sum_{i=1}^n (f(b_i) - f(a_i)) = \sum_{i=1}^n m_F((a_i,b_i)).$$

Доказательство для бесконечных интервалов аналогично, нужно лишь заменить числа a или b на соответствующие пределы.

Предположим, что f непрерывна справа. Пусть $(a,b] = \bigsqcup_{i=1}^{+\infty} (a_i,b_i]$. По полуаддитивности

$$\sum_{i=1}^{+\infty} m_f((a_i, b_i]) \leqslant m_f((a, b]).$$

Фиксируем $\varepsilon > 0$. По непрерывности справа найдём такое $a' \in (a,b]$, что $F(a') - F(a) < \frac{\varepsilon}{2}$ и такие $b'_i > b_i$, чтобы $F(b'_i) - F(b_i) < \frac{\varepsilon}{2^{i+1}}$. Тогда имеем

$$[a',b] \subset (a,b] = \bigsqcup_{i=1}^{+\infty} (a_i,b_i] \subset \bigsqcup_{i=1}^{+\infty} (a_i,b_i').$$

Поскольку отрезок [a',b] компактен, то из его покрытия $\{(a_i,b_i')\}$ можно выбрать конечное подпокрытие $\{(a_{i_k},b_{i_k}')\}_{k=1}^n$. Тогда

$$m_f((a,b]) \leqslant m_f((a',b]) + \frac{\varepsilon}{2} \leqslant \sum_{k=1}^n m_f((a_{i_k},b'_{i_k}]) + \frac{\varepsilon}{2} \leqslant \sum_{i=1}^{+\infty} m_f((a_i,b'_i]) + \varepsilon.$$

Отсюда следует равенство $\sum_{i=1}^{+\infty} m_f((a_i, b_i]) = m_f((a, b]).$

Случай с бесконечными концами сводится к случаю конечного полуинтервала путём выбора точки c такой, что $F(c) - F(-\infty) < \varepsilon$ или $F(+\infty) - F(c) < \varepsilon$ и рассмотрения пересечения полуинтервалов разбиения с $(-\infty; c]$ или $(c; +\infty)$.

Мерой Лебега-Стилтьеса (порождённой функцией f) мы назовём лебеговское продолжение меры m_f и обозначим её через μ_f .

0.2.8 Измеримые функции

Пусть $\mathfrak{F} - \sigma$ -алгебра подмножеств Ω . Назовём отображение $f \colon \Omega \to \mathbb{R}$ измеримой функцией, если для любого борелевского множества $B \subset \mathbb{R}$ его прообраз является элементом \mathfrak{F} (то есть f является измеримым отображением $f \colon (\Omega, \mathfrak{F}) \to (\mathbb{R}, \mathcal{B})$). Можно показать (см. лемму 0.39), что данное требование равносильно тому, что

прообраз любого интервала или тому, что прообраз любого бесконечного полуинтервала $(-\infty, b]$ измерим. Будем говорить, что функция f, определённая на подмножестве $A \subset \Omega$, измерима на A, если также для любого борелевского множества B его прообраз $f^{-1}(B) \subset A$ лежит в \mathfrak{F} (это равносильно тому, что ограничение $f|_A$ является измеримым отображением $f|_A:(A,\mathfrak{F}\cap A)\to(\mathbb{R},\mathcal{B})$).

Далее будем считать, что на σ -алгебре $\mathfrak F$ задана σ -аддитивная мера μ и элементы \mathfrak{F} мы будем называет измеримыми множествами.

Предложение 0.22. Пусть функция f измерима и g — непрерывная на ${\rm Im}\, f$ функция. Тогда композиция $q \circ f$ измерима.

Доказательство. Пусть U — открытое множество. Тогда $g^{-1}(U)$ открыто и, следовательно, $f^{-1}(q^{-1}(U))$ измеримо.

Предложение 0.23. Пусть f, g — измеримые функции. Тогда множество $A_{f \leqslant g} =$ $\{x \in \Omega | f(x) \leqslant g(x)\}$ измеримо. Функции $a+f, af, |f|, f^2, f+g$ и fg, где $a-\kappa$ онстанта, измеримы. Если функция g не принимает значения θ , то функции $\frac{1}{q}$ и $\frac{f}{g}$ измеримы.

Доказательство. Как было замечено в определении измеримой функции, для проверки измеримости функции h достаточно доказать, что для любой константы tмножество $A_{h \leqslant t}$ измеримо.

Первое утверждение следует из представления

$$A_{f \leqslant g} = \bigcup_{q \in \mathbb{Q}} \{ x \in \Omega | f(x) < q < g(x) \} = \bigcup_{q \in \mathbb{Q}} (\{ x \in \Omega | f(x) < q \} \cap \{ x \in \Omega | q < g(x) \}),$$

где все множества справа измеримы, так как измеримы функции f и g.

Измеримость функций $a+faf, |f|, f^2, \frac{1}{g}$ следует из предложения 0.22. По доказанному выше функция a-g измерима, Тогда также по доказанному выше множество $A_{f \leqslant a-g}$ измеримо и, поэтому измерима функция f+g.

Измеримость функции fg следует из представления $fg = \frac{1}{4}(f+g)^2 - \frac{1}{4}(f-g)^2$ и доказанного выше. Из этого следует измеримость функции $\frac{f}{a}$.

 Π ростой функцией мы будем называть измеримую функцию f такую, что множество значений f конечно и мера множества, на котором f принимает ненулевые значения конечна.

Обобщённой простой функцией мы будем называть произвольную измеримую функцию, принимающую не более чем счётное число значений. Всякая простая функция является обобщённой простой функцией.

Индикатором множества A мы будем называть функцию 1_A , заданную по правилу

$$\mathbb{1}_A(x) = \begin{cases} 1, & x \in A; \\ 0, & x \notin A. \end{cases}.$$

Предложение 0.24. Верно следующее.

- (1) Индикатор 1_A измеримого множества A является простой функцией.
- (2) Всякая (обобщённая) простая функция единственным образом может быть представления в виде конечной линейной комбинации (ряда) с попарно различными коэффициентами индикаторов попрано непересекающихся измеримых множеств, объединение которых равно Ω .
- (3) Всякая (обобщённая) простая функция единственным образом может быть npedcmasления в виde линейной комбинации (psda) с попарно различными ненулевыми коэффициентами индикаторов попрано непересекающихся измеримых множеств.
- (4) Всякая простая функция является обобщённой простой и её представления из пунктов выше как для простой и как для обобщённой простой функции совпадают.
- (5) Ряд из индикаторов с коэффициентами (не обязательно различными) попарно непересекающихся измеримых множеств является обобщённой простой функций.

Доказательство. Индикатор множества принимает всего два значения — 0 и 1. Так как A измеримо, то прообраз любого борелевского множества относительно индикатора есть одно из четырёх измеримых множеств: $\emptyset, A, \Omega \setminus A, \Omega$. Следовательно, $\mathbb{1}_A$ — простая функция. Пусть $\mathrm{Im}\, f=\{c_i\}_{i=1}^{n(+\infty)}$ — образ функции f. Множества $A_i=f^{-1}(\{c_i\})$ измери-

мы, так как f измерима, попарно не пересекаются и покрывают всё Ω . Тогда

$$f = \sum_{i=1}^{n(+\infty)} c_i \mathbb{1}_{A_i}.$$

Пусть имеется другое представление f в конечной суммы (ряда), удовлетворяющее условию пункта (2). Пусть множество B, индикатор которого входит в это представление не совпадает ни с одним из множеств A_i . Если B строго содержится в некотором A_i , то найдётся её одно множество C из второго разбиения, пересекающееся с A_i . Тогда функция f принимает на B и на C равные значения, что противоречит условию. Иначе В пересекается как минимум с двумя множествами A_i и функция f принимает на B не менее двух различных значений, что снова противоречит условию. Следовательно, данное представление единственно.

Чтобы получить представление для пункта (3) удалим из построенной суммы (ряда) слагаемое, соответствующее $c_i = 0$. Доказательство единственности аналогично.

Построенное выше представление для простой функции содержит только конечное число ненулевых слагаемых, поэтому выполнен пункт (4).

Функция, построенная в пункте (5) принимает счётное число различных значений, причём каждое конкретное значение — на измеримом множестве. Тогда прообраз всякого борелевского множества является объединением (не более, чем счётным) этих множеств (и, возможно, дополнения до их объединения) и поэтому измерим.

Предложение 0.25. Сумму двух (обобщённых) простых функций является (обобщённой) простой функцией. Функция, пропорциональная (обобщённой) простой функции, сама является таковой. Модуль (обобщённой) простой функции, является таковой функцией.

Доказательство. Сумма двух измеримых функций принимающих конечное (не более, чем счётное) число значений снова является измеримой функцией по предложению 0.23 и снова принимает конечное (не более, чем счётное) число значений.

Функция, пропорциональная измеримой, измерима и модуль измеримой функции измерим по предложению 0.23. Модуль функции, принимающей не более, чем счётное число значений и эта функция умноженная на константу также принимают не более, чем счётное число значений.

Предложение 0.26. Для всякой измеримой функции f существует последовательность обобщённых простых функций $\{f_n\}$, равномерно сходящаяся κ f.

Доказательство. Поскольку f измерима, то для всяких натурального n и целого k множество $A_{n,k}=f^{-1}([\frac{k}{2^n},\frac{k+1}{2^n}))$ измеримо и для фиксированного n и различных k эти множества образуют разбиение Ω . Положим

$$f_n(x) = \sum_{k \in \mathbb{Z}} \frac{k}{2^n} \mathbb{1}_{A_{n,k}}.$$

Тогда f_n удовлетворяет определению обобщённой простой функции. Кроме того, для всякого n и $x \in \Omega$ выполнены неравенства $0 \leqslant f(x) - f_n(x) \leqslant \frac{1}{2^n}$. Поэтому последовательность $\{f_n\}$ сходится к f равномерно.

0.2.9 Интеграл Лебега

Пусть $f = \sum_{i=1}^n c_i \mathbb{1}_{A_i}, c_i \neq 0$ — простая функция в представлении из предложения 0.24. Интегралом простой функции f на пространстве Ω по мере μ мы назовём сумму $\sum_{i=1}^n c_i \cdot \mu(A_i)$ и обозначим через $\int\limits_{\Omega} f \mathrm{d}\mu$.

Обобщённую простую функцию $f = \sum_{i=1}^{+\infty} c_i \mathbb{1}_{A_i}$ (в представлении из предложения 0.24) назовём интегрируемой по Лебегу на пространстве Ω по мере μ , если для $c_i \neq 0$ меры $\mu(A_i)$ конечны и ряд $\sum_{i=1}^{+\infty} c_i \cdot \mu(A_i)$ сходится абсолютно (предполагается, что $0 \cdot \mu(A) = 0$, даже если мера $\mu(A)$ бесконечна). В этом случае обозначим через

 $\int\limits_{\Omega} f \mathrm{d}\mu$ сумму ряда и назовём её интегралом обобщённой простой функции f на пространстве Ω по мере μ .

Из определения простой функции следует, что она является интегрируемой на пространстве Ω по мере μ обобщённой простой функцией.

Лемма 0.27. Пусть f, g — обобщённые простые функции. Тогда

(1) если f, g — интегрируемые на Ω по мере μ , то функция f+g интегрируема и имеет место формула

$$\int_{\Omega} f d\mu + \int_{\Omega} g d\mu = \int_{\Omega} (f+g) d\mu;$$

(2) интегрируемость функции f равносильна интегрируемости функции |f| и в случае интегрируемости справедливо неравенство

$$\left| \int_{\Omega} f \, \mathrm{d}\mu \right| \leqslant \int_{\Omega} |f| \, \mathrm{d}\mu;$$

(3) если $|f| \leq g$ и g интегрируема, то |f| интегрируема и выполнено неравенство

$$\int_{\Omega} |f| \mathrm{d}\mu \leqslant \int_{\Omega} g \mathrm{d}\mu.$$

Лемма 0.28. Пусть мера μ конечна на Ω . Тогда выполнены следующие утверждения.

- (1) Всякая ограниченная обобщённая простая функция интегрируема на Ω по μ .
- (2) Интеграл $\int\limits_{\Omega}\mathbb{1}_A\mathrm{d}\mu$ от индикатора $\mathbb{1}_A$ равен мере A.

Доказательство. Пусть константа C ограничивает функцию f. Так как мера Ω конечна, то функция $C \cdot 1_{\Omega}$ интегрируема, откуда по лемме 0.27 следует, что f интегрируема. Второе утверждение выполнено из построения интеграла обобщённой простой функции

Теорема 0.29. Пусть мера μ конечна на Ω . Пусть f — измеримая функция и существует последовательность интегрируемых обобщённых простых функций $\{f_n\}$, равномерно сходящаяся κ f. Тогда

- (1) cywecmbyem npeden $\int_{\Omega} f_n d\mu =: I;$
- (2) для любой другой последовательности интегрируемых обобщённых простых функций $\{g_n\}$, равномерно сходящихся к f предел $\int_{\Omega} g_n d\mu$ также равен I;
- (3) если f обобщённая простая функция, то f интегрируема и $\int\limits_{\Omega} f \mathrm{d}\mu = I.$

Доказательство. Фиксируем $\varepsilon > 0$. Так как функции f_n равномерно сходятся к f, то начиная с некоторого N для n, m > N и для любого $x \in \Omega$ выполнено неравенство $|f_n(x) - f_m(x)| < \varepsilon$. Тогда по леммам 0.28 и 0.28 имеем

$$\left| \int_{\Omega} f_n d\mu - \int_{\Omega} f_m d\mu \right| \leqslant \int_{\Omega} |f_n - f_m| d\mu \leqslant \varepsilon \mu(X).$$

По критерию Коши существует предел $\int_{\Omega} f_n d\mu =: I$.

Заметим, что если f=0, то для $n>N(\varepsilon)$ выполнено равенство

$$\left| \int_{\Omega} f_n \mathrm{d}\mu \right| < \varepsilon \mu(X).$$

Поэтому в данном случае I=0. Поскольку, если последовательности f_n и g_n сходятся равномерно к f, то последовательность f_n-g_n сходится равномерно к нулевой функции, то предел I будет одинаковым для обеих последовательностей.

Пусть f сама является обобщённой простой функцией. Найдётся индекс n такой, что для любого $x \in \Omega$ выполнено неравенство $|f(x) - f_n(x)| < 1$. По леммам 0.28 и 0.27 функция $f - f_n$ интегрируема. Так как f_n интегрируема, то снова по лемме 0.27 функция $f = (f - f_n) + f_n$ интегрируема. Теперь возьмём в качестве последовательности f_n постоянную последовательность из функции f. Тогда предел этой последовательности равен одновременно $\int_{\Omega} f \mathrm{d}\mu$ и I.

Измеримая функция f на Ω с $\mu(\Omega) < +\infty$ называется интегрируемой, если существует последовательность интегрируемых обобщённых простых функций $\{f_n\}$, равномерно сходящаяся к f. Интегралом (Лебега) f на Ω по мере μ называется предел $\int_{\Omega} f_n \mathrm{d}\mu$. В дальнейшем мы будем обозначать его через $\int_{\Omega} f \mathrm{d}\mu$.

Следствие 0.30. Путь мера μ конечна на Ω . Пусть измеримая функция f интегрируема на Ω по μ и существует последовательность обобщённых простых
функций $\{f_n\}$, равномерно сходящаяся κ f. Тогда начиная c некоторого номера Nвсе функции e этой последовательности интегрируемы.

Доказательство. Рассмотрим некоторую последовательность интегрируемых обобщённых простых функций $\{f_n\}$, равномерно сходящуюся к f. Тогда последовательность простых функций $\{f_n-g_n\}$ равомерно сходится к тождественно нулевой функции. Следовательно, начиная с некоторого индекса N для всех n>N и $x\in\Omega$ выполнено неравенство $|f_n(x)-g_n(x)|<1$. Тогда по леммам 0.24 и 0.27 функция g_n-f_n интегрируема. Тогда интегрируема и функция $g_n=(g_n-f_n)+f_n$.

0.2.10 Прямой образ меры (pushforward measure)

Пусть (X, \mathcal{A}_X) и (Y, \mathcal{A}_Y) — измеримые пространства, μ — мера на σ -алгебре \mathcal{A}_X и $f: (X, \mathcal{A}_X) \to (Y, \mathcal{A}_Y)$ — измеримое отображение. Тогда прямым образом меры μ при отображении f называется функция $f_*\mu$, заданная по правилу $f_*\mu(A) = \mu(f^{-1}(A))$ для любого $A \in \mathcal{A}_Y$.

Предложение 0.31. Прямой образ (σ -аддитивной) меры $f_*\mu$ является (σ -аддитивной) мерой на алгебре \mathcal{A}_Y .

Доказательство. Пусть $\{A_k\}$ — последовательность попрано не пересекающихся множеств из \mathcal{A}_Y . Тогда множества из последовательности $\{f^{-1}(A_k)\}$ также попарно не пересекаются. Из определения прямого образа меры $f_*\mu$ имеем цепочку равенств

$$f_*\mu\left(\bigsqcup_{k=1}^{+\infty} A_k\right) = \mu\left(f^{-1}\left(\bigsqcup_{k=1}^{+\infty} A_k\right)\right) = \mu\left(\bigsqcup_{k=1}^{+\infty} f^{-1}(A_k)\right) = \sum_{k=1}^{+\infty} \mu(f^{-1})(A_k) = \sum_{k=1}^{+\infty} f_*\mu(A_k).$$

Доказательство аддитивности проводится аналогично.

Теорема 0.32. Пусть мера μ конечна на X. Рассмотрим измеримую функцию $g:(Y,\mathcal{A}_Y)\to (\mathbb{R},\mathcal{B})$. Тогда g интегрируема на Y по прямому образу меры $f_*\mu$ тогда и только тогда, когда композиция $g\circ f$ интегрируема на X по мере μ . B случае интегрируемости равны интегралы

$$\int_{X} (g \circ f) d\mu = \int_{Y} g df_* \mu.$$

Доказательство. Из определения обобщённых простых функций g и $g \circ f$ одновременно являются или не являются простыми обобщёнными функциями.

Для обобщённой простой функции истинность утверждения следует из того, что интегралы $\int\limits_X (g \circ f) \mathrm{d}\mu$ и $\int\limits_Y g \mathrm{d}f_*\mu$ равны сумме одного и того же ряда (поскольку $f_*\mu(g^{-1}(\{a\})) = \mu(f^{-1}(g^{-1}(\{a\}))) = \mu((g \circ f)^{-1}(\{a\}))$ для $a \in \mathbb{R}$).

Если существует последовательность интегрируемых обобщённых простых функций $\{g_n\}$ на Y, равномерно сходящаяся к g, то последовательность $\{g_n \circ f\}$ будет являться последовательностю интегрируемых обобщённых простых функций на

X, равномерно сходящейся к $g \circ f$. Следовательно, из интегрируемости g следует интегрируемость $g \circ f$.

Обратно, пусть $g \circ f$ интегрируема. По предложению 0.26 существует последовательность обобщённых простых функций $\{g_n\}$ на Y, равномерно сходящаяся к g. Тогда последовательность обобщённых простых функций $\{g_n \circ f\}$ равномерно сходится к $g \circ f$. По следствию 0.30 начиная с некоторого номера N функции $g_n \circ f$ являются интегрируемыми. По доказанному выше, это означает, что для всех n > N функции g_n интегрируемы, поэтому g интегрируема.

Пусть теперь g и $g \circ f$ интегрируемы. Фиксируем последовательность интегрируемых обобщённых простых функций $\{g_n\}$ на Y, равномерно сходящуюся к g. Имеем цепочку равенств

$$\int\limits_X (g \circ f) \mathrm{d}\mu = \lim_{n \to +\infty} \int\limits_X (g_n \circ f) \mathrm{d}\mu = \lim_{n \to +\infty} \int\limits_Y g_n \mathrm{d}f_*\mu = \lim_{n \to +\infty} \int\limits_Y g \mathrm{d}f_*\mu.$$

0.3 Теория категорий и взгляд на измеримые пространства с её точки зрения

Теория категорий в её лучшем проявлении выражает собой формализацию понятия «математическая конструкция» через понятия объектов, морфизмов, функторов, естественных преобразований, а также формализует интуицию в виде универсальных свойств, сопряжённости функторов, эквивалентности категорий и так далее.

В этом подразделе будет предполагаться, что вы знакомы с определением категории (например, основанном на теории множеств) и знакомы с понятиями объекта, морфизма между объектами и функтором из одной категории в другую. Остальные определения по возможности будут приведены здесь.

0.3.1 Категория измеримых пространств

Пусть $\mathcal{A}_X - \sigma$ -алгебра подмножеств множества X. Пара (X, \mathcal{A}_X) называется измеримым пространством.

Пусть (X, \mathcal{A}_X) и (Y, \mathcal{A}_Y) — пара измеримых пространств. Морфизмом измеримых пространств (измеримым отображением) $f: (X, \mathcal{A}_X) \to (Y, \mathcal{A}_Y)$ называется отображение множеств $f: X \to Y$ такое, что для любого $U \in \mathcal{A}_Y$ выполнено $f^{-1}(U) \in \mathcal{A}_X$, где f^{-1} — это полный прообраз.

В категории измеримых пространств \mathfrak{Meas} объектами являются измеримые пространства, а морфизмами — морфизмы измеримых пространств.

0.4 Произведение и копроизведение к категории измеримых пространств

Пусть (X, \mathcal{A}_X) и (Y, \mathcal{A}_Y) — измеримые пространства. Построим по ним новые измеримые пространства следующим образом.

Произведением измеримых пространств (X, \mathcal{A}_X) и (Y, \mathcal{A}_Y) мы назовём измеримое пространство $(X \times Y, \mathcal{A}_X \otimes \mathcal{A}_Y)$, где $\mathcal{A}_X \otimes \mathcal{A}_Y$ есть минимальная σ -алгебра, порождённая полукольцом всех возможных декартовых произведений $A_X \times A_Y$, где $A_X \in \mathcal{A}_X$ и $A_Y \in \mathcal{A}_Y$.

Предложение 0.33. Пусть (X, \mathcal{A}_X) и (Y, \mathcal{A}_Y) — измеримые пространства, $(X \times Y, \mathcal{A}_X \otimes \mathcal{A}_Y)$ — их произведение. Тогда

- (1) отображения проекций $\operatorname{pr}_X\colon X\times Y\to X$ и $\operatorname{pr}_Y\colon X\times Y\to Y$ являются морфизмами измеримых пространств.
- (2) пространство $(X \times Y, \mathcal{A}_X \otimes \mathcal{A}_Y)$ удовлетворяет универсальному свойству произведения, то есть для всякого измеримого пространства (Z, \mathcal{A}_Z) и всяких двух морфизмов $f: (Z, \mathcal{A}_Z) \to (X, \mathcal{A}_X), g: (Z, \mathcal{A}_Z) \to (Y, \mathcal{A}_Y)$ существует единственный морфизм $f \times g: (Z, \mathcal{A}_Z) \to (X \times Y, \mathcal{A}_X \otimes \mathcal{A}_Y),$ удовлетворяющий условию $\operatorname{pr}_X \circ (f \times g) = f$ и $\operatorname{pr}_Y \circ (f \times g) = g$.

0.4.1 Прямой образ σ -алгебры

Пусть (X, \mathcal{A}_X) — измеримое пространство и $f \colon X \to Y$ — отображение множеств. Существует способ естественным образом построить σ -алгебру подмножеств Y.

Положим $f_*(\mathcal{A}_X) = \{B \subset Y | f^{-1}(B) \in \mathcal{A}_X\}$ — все подмножества Y, полный прообраз которых лежит в \mathcal{A}_X .

Предложение 0.34. Конструкция f_* обладает следующими свойствами.

- (1) Система множеств $f_*(\mathcal{A}_X)$ является σ -алгеброй подмножеств множества Y.
- (2) Отображение f является морфизмом измеримых пространств $f:(X, \mathcal{A}_X) \to (Y, f_*(\mathcal{A}_X)).$

- (3) Если $A_Y \sigma$ -алгебра подмножеств Y, то отображение f является морфизмом измеримых пространств $f: (X, A_X) \to (Y, A_Y)$ тогда и только тогда, когда $A_Y \subset f_*(A_X)$.
- (4) Пусть имеются отображения множеств $f: X \to Y, g: X \to Z$ и $h: Y \to Z$ такие, что $h \circ f = g$, то h является морфизмом измеримых пространств $h: (Y, f_*(\mathcal{A}_X)) \to (Z, g_*(\mathcal{A}_X)).$

Доказательство. Первый пункт проверяется непосредственно и следует из теоретикомножественных тождеств. Второй пункт — из построения $f_*(\mathcal{A}_X)$, третий — из определения морфизма измеримых пространств.

Докажем четвёртый пункт. Пусть $U \in g_*(\mathcal{A}_X)$. Тогда $g^{-1}(U) = f^{-1}(h^{-1}(U)) \in \mathcal{A}_X$. По определению прямого образа $f_*(\mathcal{A}_X)$ множество $h^{-1}(U)$ содержится в нём. Следовательно, h является морфизмом измеримых пространств.

0.4.2 Обратный образ σ -алгебры

Пусть (Y, \mathcal{A}_Y) — измеримое пространство и $f: X \to Y$ — отображение множеств. Существует способ естественным образом построить σ -алгебру подмножеств X.

Положим $f^*(\mathcal{A}_Y) = \{ f^{-1}(B) | B \in \mathcal{A}_Y \}$ — полные прообразы всех элементов σ -алгебры \mathcal{A}_Y .

Предложение 0.35. Конструкция f^* обладает следующими свойствами.

- (1) Система множеств $f^*(\mathcal{A}_Y)$ является σ -алгеброй подмножеств множества X.
- (2) Отображение f является морфизмом измеримых пространств $f:(X, f^*(\mathcal{A}_Y)) \to (Y, \mathcal{A}_Y)$.
- (3) Если $A_X \sigma$ -алгебра подмножеств X, то отображение f является морфизмом измеримых пространств $f: (X, A_X) \to (Y, A_Y)$ тогда и только тогда, когда $f^*(A_Y) \subset A_X$.
- (4) Пусть имеются отображения множеств $f: X \to Y, g: Z \to Y$ и $h: X \to Z$ такие, что $g \circ h = f$, то h является морфизмом измеримых пространств $h: (X, f^*(\mathcal{A}_Y)) \to (Z, g^*(\mathcal{A}_Y)).$

 \mathcal{A} оказательство. Первый пункт проверяется непосредственно и следует из теоретикомножественных тождеств. Второй пункт — из построения $f^*(\mathcal{A}_X)$, третий — из определения морфизма измеримых пространств.

Докажем четвёртый пункт. Пусть $U \in g^*(\mathcal{A}_Y)$. Тогда для некоторого $V \in \mathcal{A}_Y$ выполнено $g^{-1}(V) = U$. Далее, $h^{-1}(U) = h^{-1}(g^{-1}(V)) = f^{-1}(V)$. По определению обратного образа $f^*(\mathcal{A}_X)$ множество $h^{-1}(U)$ содержится в нём. Следовательно, h является морфизмом измеримых пространств.

0.4.3 Связь между минимальной σ -алгеброй, прямым и обратным образами σ -алгебры

Лемма 0.36. Пусть X, Y — множества, $f: X \to Y$ — отображение множеств. Если \mathcal{A}_X — σ -алгебра подмножеств X, то $f^*(f_*(\mathcal{A}_X)) \subset \mathcal{A}_X$. Если \mathcal{A}_Y — σ -алгебра подмножество Y, то $\mathcal{A}_Y \subset f_*(f^*(\mathcal{A}_Y))$.

Доказательство. По предложению 0.34 отображение f является морфизмом измеримых пространств $f: (X, \mathcal{A}_X) \to (Y, f_*(\mathcal{A}_X))$. Тогда по предложению 0.35 имеем включение $f^*(f_*(\mathcal{A}_X)) \subset \mathcal{A}_X$.

Теперь По предложению 0.35 отображение f является морфизмом измеримых пространств $f: (X, f^*(\mathcal{A}_Y)) \to (Y, \mathcal{A}_Y)$. Тогда по предложению 0.34 имеем включение $\mathcal{A}_Y \subset f_*(f^*(\mathcal{A}_Y))$.

Рассмотрим категорию σ - \mathfrak{Alg}_X всех σ -алгебр с единицей X, в которой объектами выступают σ -алгебры подмножеств X, а единственный существующий морфизм из σ -алгебры \mathcal{A} идёт в σ -алгебру \mathcal{A}' , если $\mathcal{A} \subset \mathcal{A}'$. Построенные нами для отображения множеств $f \colon X \to Y$ конструкции f_* и f^* являются функторами между категориями σ - \mathfrak{Alg}_X и σ - \mathfrak{Alg}_Y и, более того, что эти функторы сопряжены.

Теорема 0.37. Пусть $f: X \to Y$ — отображение множеств. Тогда $f_*: \sigma$ - $\mathfrak{Alg}_X \to \sigma$ - \mathfrak{Alg}_Y u $f^*: \sigma$ - $\mathfrak{Alg}_Y \to \sigma$ - $\mathfrak{Alg}_X \to \sigma$

Доказательство. Из построения f_* и f^* сохраняют отношения включения и равенства (и, следовательно, композицию включений), поэтому они функториальны.

Теперь по предложению 0.35 имеет место включение $f^*(\mathcal{A}_Y) \subset \mathcal{A}_X$ тогда и только тогда, когда $f:(X,\mathcal{A}_X) \to (Y,\mathcal{A}_Y)$ является измеримым отображением. По предложению 0.34 последнее равносильно включению $\mathcal{A}_X \subset f_*(\mathcal{A}_Y)$. Таким образом, множества $\operatorname{Hom}(f^*(\mathcal{A}_Y),\mathcal{A}_X))$ и $\operatorname{Hom}(\mathcal{A}_Y,f_*(\mathcal{A}_X))$ одновременно либо пусты, либо состоят из одного элемента. Тогда пусть данный изоморфизм будет пустым в первом случае и сопоставляет единственный элемент единственному элементу во втором случае.

Если имеются включения $\mathcal{A}_{X1} \subset \mathcal{A}_{X2}$ и $\mathcal{A}_{Y1} \subset \mathcal{A}_{Y2}$, то возникает коммутативная диаграмма, индуцированная этими включениями, выражающая естественность изоморфизма

Лемма 0.38. Пусть X, Y — множества, T — система подмножеств $Y, Y \in T$. Пусть $f: X \to Y$ — отображение множеств. Обозначим через $f^{-1}(T)$ систему множеств $\{f^{-1}(U)|U\in T\}$. Тогда $R_{\sigma}(f^{-1}(T))=f^*(R_{\sigma}(T))$.

Доказательство. Так как $T \subset R_{\sigma}(T)$, то по построению f^* имеем включение $f^{-1}(T) \subset f^*(R_{\sigma}(T))$. По предложению 0.35 система множеств $f^*(R_{\sigma}(T))$ является σ -алгеброй. Тогда по минимальности (теореме 0.6) имеем включение $R_{\sigma}(f^{-1}(T)) \subset f^*(R_{\sigma}(T))$.

Далее, система множеств $f_*(R_\sigma(f^{-1}(T)))$ является σ -алгеброй по предложению 0.34. По построению f_* имеем включение $T \subset f_*(R_\sigma(f^{-1}(T)))$. Снова по минимальности (теореме 0.6) имеем включение $R_\sigma(T) \subset f_*(R_\sigma(f^{-1}(T)))$.

По лемме 0.36 имеем включение $f^*(f_*(R_\sigma(f^{-1}(T))) \subset R_\sigma(f^{-1}(T))$. Собирая вместе все включения и пользуясь тем, что $f^*(A) \subset f^*(B)$ для $A \subset B$ получаем

$$f^*(R_{\sigma}(T)) \subset f^*(f_*(R_{\sigma}(f^{-1}(T))) \subset R_{\sigma}(f^{-1}(T)) \subset f^*(R_{\sigma}(T)),$$

откуда следует требуемое.

0.4.4 Функтор борелевской σ -алгебры

Пусть (X, τ) — топологическое пространство. Минимальная σ -алгебра, порождённая системой открытых множеств τ называется борелевской σ -алгеброй, а её элементы называются борелевскими множествами. Мы будем обозначать её через $\mathcal{B}(\tau)$, а соответствующее измеримое пространство через $\mathrm{Bor}((X,\tau)) = (X,\mathcal{B}(\tau))$. Мы докажем, что конструкция $\mathrm{Bor}\colon\mathfrak{Top}\to\mathfrak{Meas}$, сопоставляющая топологическому пространству (X,τ) измеримое пространство $(X,\mathcal{B}(\tau))$, а непрерывному отображению f его же как отображение множеств, функториальна.

Лемма 0.39. Пусть $f: X \to Y$ — отображение множеств, θ — топология Y, \mathcal{A}_X — σ -алгебра подмножеств X. Пусть также S — база топологии θ такая, что всякое открытое подмножество представляется в виде не более, чем счётного объединения элементов базы, и T — предбаза топологии θ такая, что всякое открытое множество представляется в виде не более, чем счётного объединения конечных пересечений элементов T. Тогда следующие утверждения равносильны

- (1) прообраз всякого элемента борелевской σ -алгебры $\mathcal{B}(\theta)$ лежит в \mathcal{A}_X ;
- (2) прообраз всякого открытого множества лежит в A_X ;
- (3) прообраз всякого элемента базы S лежит в A_X ;
- (4) прообраз всякого элемента предбазы T лежит в A_X .

Доказательство. Все пункты являются частным случаем пункта (1), а пункты (3) и (4) — пункта (2). Так как база топологии (с данным дополнительным условие) является частным случаем предбазы топологии (с дополнительным условием), то достаточно вывести из пункта (4) пункт (1).

Рассмотрим систему множеств $T_X = f^{-1}(T) \cup \{X\} := \{f^{-1}(U) | U \in T\} \cup \{X\}$. По условию $T_X \subset \mathcal{A}_X$. Пусть $R_{\sigma}(T_X)$ — минимальная σ -алгебра, содержащая T_X . Так как \mathcal{A}_X является σ -алгеброй, то $R_{\sigma}(T_X) \subset \mathcal{A}_X$. Из построения f_* имеем $f_*(R_{\sigma}(T_X)) \subset f_*(\mathcal{A}_X)$. Так же из построения f_* имеем включение $T \subset f_*(R_{\sigma}(T_X))$. Из условия наложенного на T следует, что минимальная σ -алгебра, порождённая T совпадает с $\mathcal{B}(\theta)$. Тогда по минимальности (теореме 0.6) имеем включение $\mathcal{B}(\theta) \subset f_*(R_{\sigma}(T_X))$. Следовательно, $\mathcal{B}(\theta) \subset f_*(\mathcal{A}_X)$ и по предложению 0.34 f является морфизмом измеримых пространств $f: (X, \mathcal{A}_X) \to (Y, \mathcal{B}(\theta))$, что и утверждается в пункте (1).

Теорема 0.40. Пусть $(X, \tau), (Y, \theta)$ — топологические пространства, $f: (X, \tau) \to (Y, \theta)$ — непрерывное отображение. Тогда отображение f является морфизмом измеримых пространств $f: (X, \mathcal{B}(\tau)) \to (Y, \mathcal{B}(\theta))$.

Доказательство. Следует из эквивалентности пунктов (1) и (2) леммы 0.39 для случая, когда $\mathcal{A}_X = \mathcal{B}(\tau)$.

0.5 Предварительные сведения из анализа Фурье

0.6 Предварительные сведения из линейной алгебры

0.6.1 Билинейные функции и квадратичные формы

Пусть k — некоторое поле (в нашем случае будут рассматриваться только поля вещественных чисел \mathbb{R}) и V — векторное пространство над k.

Отображение $B\colon V\times V\to \Bbbk$ называется билинейной функцией, если выполнены следующие аксиомы

- (1) $\forall v, u, w \in V \ B(u+v, w) = B(u, w) + B(v, w);$
- (2) $\forall v, u \in V, \lambda \in \mathbb{k} \ B(\lambda u, v) = \lambda B(u, v);$
- (3) $\forall v, u, w \in V \ B(u, v + w) = B(u, w) + B(u, v);$
- (4) $\forall v, u \in V, \lambda \in \mathbb{k} \ B(u, \lambda v) = \lambda B(u, v).$

Билинейная функция называется симметрической, если дополнительно для любых $u, v \in V$ выполнено B(u, v) = B(v, u).

Пример. Пусть $V = \mathbb{k}$ и $B(a,b) = a \cdot b$, где · — умножение в поле \mathbb{k} . Тогда B — симметрическая билинейная функция.

Пример. Пусть в векторном пространстве V фиксирован базис e_1,\ldots,e_n . Тогда если $B(x,y)=\sum_{i=1}^n x_iy_i$, где $x=\sum_{i=1}^n x_ie_i$ и $y=\sum_{i=1}^n y_ie_i$, то B — также билинейная симметрическая форма.

Квадратичной формой называется отображение $Q\colon V\to \Bbbk$ такое, что для некоторой билинейной формы и любой вектора $v\in V$ имеет место равенство Q(v)=B(v,v). Если B — билинейная функция, то квадратичная формой Q(v)=B(v,v) называется квадратичной формой соответствующей билинейной функции B. Пусть $\Bbbk=\mathbb{R}, Q$ — квадратичная форма и для любого ненулевого вектора $v\in V$ выполнено неравенство Q(v)>0. Тогда форма Q называется положительно определённой. Если для любого $v\in V$ выполнено неравенство $Q(v)\geqslant 0$, то форма Q называется неотрицательно определённой.

Симметрическую билинейную форму с положительно определённой соответствующей квадратичной формой называют скалярным произведением. Вместо B(u,v) часто пишут (u,v) или $\langle u,v \rangle$.

Примеры. Квадратичные формы, соответствующие билинейным функциям из примеров выше являются положительно определёнными.

Теорема 0.41 (Коши, Буняковский, Шварц). Пусть V — векторное пространство над полем \mathbb{R} и B — скалярное произведение на V. Тогда дл любых двух векторов $u, v \in V$ выполнено равенство

$$B(u,v)^2 \leqslant B(u,u)B(v,v),$$

причём равенство достигается тогда и только тогда, когда и и v коллинеарны.

Доказательство. Рассмотрим вектор u+tv, где $t\in\mathbb{R}$ и значение квадратичной формы на нём. По билинейности, симметричности и положительной определённости имеем

$$B(u+tv, u+tv) = B(u, u) + tB(u, v) + tB(v, u) + t^2B(v, v) = B(u, u) + 2tB(u, v) + t^2B(v, v) \geqslant 0,$$

причём последнее равенство достигается тогда и только тогда, когда u + tv = 0.

Многочлен второй степени принимает только неотрицательные (положительные) значения тогда и только тогда, когда его дискриминант меньше или равен 0 (меньше 0). Итого

$$D = 4B(u,v)^2 - 4B(u,u)B(v,v) \leqslant 0 \Leftrightarrow B(u,v)^2 \leqslant B(u,u)B(v,v)$$

и $D = 0 \Leftrightarrow B(u, v)^2 = B(u, u)B(v, v)$. Последнее равносильно тому, что многочлен имеет корень t и u + tv = 0, то есть u и v пропорциональны.

Заметьте, что доказательство этого неравенства в случае поля комплексных чисел требует добавления дополнительной «поправки» λ .

0.6.2 Полуторалинейные функции

В этом подразделе будем рассматривать только векторные пространства над полем комплексных чисел.

Отображение $S: V \times V \to \mathbb{R}$ называется полуторалинейной функцией (по второму аргументу), если выполнены следующие аксиомы

- (1) $\forall v, u, w \in V \ S(u+v, w) = S(u, w) + S(v, w);$
- (2) $\forall v, u \in V, \lambda \in \mathbb{k} \ S(\lambda u, v) = \lambda S(u, v);$
- (3) $\forall v, u, w \in V \ S(u, v + w) = S(u, w) + S(u, v);$
- (4) $\forall v,u\in V,\lambda\in \mathbb{k}\ S(u,\lambda v)=\overline{\lambda}S(u,v)$, где надчёркивание означает комплексное сопряжение.

Полуторалинейная функция называется эрмитовой, если для любых векторов u и v дополнительно выполнено равенство $S(u,v) = \overline{S(v,u)}$.

Эрмитова функция называется скалярным произведением, если для любого ненулевого вектора v выполнено неравенство S(v,v)>0.

Теорема 0.42 (Коши, Буняковский, Шварц). Пусть V — векторное пространство над полем \mathbb{C} и S — скалярное произведение на V. Тогда для любых двух векторов $u, v \in V$ выполнено равенство

$$S(u,v)\overline{S(u,v)} \leqslant S(u,u)S(v,v),$$

причём равенство достигается тогда и только тогда, когда и и v коллинеарны.

Доказательство. Если S(u,v) = 0, то неравенство выполнено. При таком условии u и v пропорциональны тогда и только тогда, когда один из этих векторов равен 0. Последнее в свою очередь равносильно тому, что правая часть неравенства обращается в нуль. Далее будем считать, что $S(u,v) \neq 0$.

Рассмотрим вектор $u + t\lambda v$, где $t \in \mathbb{R}$ и $\lambda = S(u, v)$. Поскольку S — скалярное произведение и из условий наложенных на λ , то

$$S(u+t\lambda v, u+t\lambda v) = S(u,u) + t\overline{\lambda}S(u,v) + t\lambda S(v,u) + t^2\lambda\overline{\lambda}S(v,v) =$$

$$= S(u,u) + 2tS(u,v)S(v,u) + t^2S(u,v)S(v,u)S(v,v) \leqslant 0$$

причём последнее равенство достигается тогда и только тогда, когда $u + t\lambda v = 0$.

Многочлен второй степени принимает только неотрицательные (положительные) значения тогда и только тогда, когда его дискриминант меньше или равен 0 (меньше 0). Итого

$$D=4S(u,v)^2S(v,u)^2-4S(u,u)S(v,v)S(u,v)S(v,u)\leqslant 0 \Leftrightarrow S(u,v)S(v,u)\leqslant S(u,u)S(v,v)$$

и $D = 0 \Leftrightarrow S(u,v)^2 = S(u,u)S(v,v)$. Последнее равносильно тому, что многочлен имеет корень t_0 и $u + t_0S(u,v)v = 0$, то есть u и v пропорциональны.

1 Элементарная комбинаторика

1.1 Классические комбинаторные величины

1.2 Свойства комбинаторных величин

2 Вероятностное пространство, случайные события

Пусть Ω — некоторое множество, \mathfrak{F} — σ -алгебра с единицей Ω и P — σ -аддитивная мера на \mathfrak{F} , удовлетворяющая свойству $P(\Omega)=1$. Тогда тройка (Ω,\mathfrak{F},P) называется вероятностным пространством. Множество Ω называется пространством элементарных событий (исходов), элементы σ -алгебры \mathfrak{F} называются событиями, а мера P вероятностной мерой.

Иногда мы будем называть вероятностное пространство «экспериментом» или «испытанием» или говорить, что «эксперименту» или «испытанию» соответствует вероятностное пространство, выражая таким образом физический смысл этого понятия: проходит эксперимент (испытание), у которого есть различные элементарные исходы. Эти исходы могут в результате этого эксперимента в разных комбинациях возникнуть с разной вероятностью.

Вероятностное пространство называется дискретным, если множество Ω не более, чем счётно.

Для кратности, если множество $\{\omega\}$ является событием, вместо $P(\omega)$ будем писать $P(\omega)$.

Пример. Пусть $\Omega = [0,1]$ и $\mathfrak{F} = M - \sigma$ -алгебра измеримых относительно меры Лебега подмножеств отрезка [0,1], $P = \mu - \kappa$ лассическая мера Лебега. Тогда $P((\frac{1}{2},\frac{3}{4})) = \frac{1}{4}$, $P(\frac{2}{9}) = 0$ и $P((0,\frac{1}{2}) \cup (\frac{2}{3},1)) = \frac{5}{6}$.

Пример. Пусть теперь $\Omega = [0,2]$ и $\mathfrak{F} = M - \sigma$ -алгебра измеримых относительно меры Лебега подмножеств отрезка [0,2], $P = \frac{1}{2}\mu$ — мера, пропорциональная мере Лебега (мы выбрали имеено такую меру, чтобы удовлетворить условию $P(\Omega) = 1$). Тогда $P((0,1)) = \frac{1}{2}$, $P(\frac{4}{5}) = 0$ и $P((0,\frac{1}{2}) \cup (1,\frac{4}{3})) = \frac{5}{12}$.

Пример. Пусть $\Omega = \{1,2,3,4,5,6\}$ — числа, возникающие при броске игральной кости. Будем считать, что все элементарные исходы равновероятны, то есть $P(1) = P(2) = P(3) = P(4) = P(5) = P(6) = \frac{1}{6}$. Тогда вероятность события $A = \{2,4,6\}$ — «выпало чётное число» равна $P(A) = P(2) + P(4) + P(6) = \frac{1}{6} + \frac{1}{6} + \frac{1}{6} = \frac{1}{2}$.

Рассмотренный пример мотивирует нас ввести параллельные определения для дискретного пространства. Дискретным вероятностным пространством мы будем называть пару (Ω, P) , где $\Omega = \{\omega_k\}_{k \in \mathbb{N}}$ — не более чем счётное множество (также называемое пространством элементарных исходов), а $P \colon \Omega \to \mathbb{R}$ — неотрицательная функция, удовлетворяющая свойству $\sum_{k \in \mathbb{N}} P(\omega_k) = 1$. Говорят, что в этом случае

на Ω заданы вероятности элементарных событий и что функция P задаёт на Ω распределение вероятностей. Событиями называются подмножества Ω . Вероятностью события $A\subset \Omega$ называется величина

$$P(A) = \sum_{\omega \in A} P(\omega),$$

которую мы также будем обозначать буквой Р. Последнее данное определение корректно, поскольку ряд в правой части сходится абсолютно.

Предложение 2.1. Пусть $(\Omega, P) - \partial u$ скретное вероятностное пространство в смысле последнего определения. Пусть $P \colon 2^{\Omega} \to \mathbb{R} - \phi$ ункция, сопоставляющая событию его вероятность. Тогда тройка $(\Omega, 2^{\Omega}, P)$ является вероятностным пространством в смысле исходного определения.

 \mathcal{A} оказательство. Множество 2^{Ω} является σ -алгеброй, поэтому достаточно проверить, что функция Р удовлетворяет аксиомам вероятностной меры.

Из определения Р имеем

$$P(\Omega) = \sum_{i=1}^{+\infty} P(\omega_i) = 1.$$

Пусть $A, B \subset \Omega$ и $A \cap B = \emptyset$. Положим $A = \{\omega_i\}_{i \in I_A}$, $B = \{\omega_i\}_{i \in I_B}$ и $A \sqcup B = \{\omega_i\}_{i \in I_{A \sqcup B}}$. Поскольку A и B не пересекаются, то $I_A \sqcup I_B = I_{A \sqcup B}$. Тогда, так как ряды в формуле ниже сходятся абсолютно, имеем

$$P(A \sqcup B) = \sum_{i \in I_{A \sqcup B}} \omega_i = \sum_{i \in I_A} \omega_i + \sum_{i \in I_B} \omega_i = P(A) + P(B).$$

Пусть теперь $\{A_k\}_{k\in\mathbb{N}}$ — счётное семейство непересекающихся подмножеств множества Ω . Положим $A_k=\{\omega_i\}_{i\in I_k},\ A=\bigsqcup_{k\in I}A_k$. Снова, поскольку A_k попарно не пересекаются, то $I=\bigsqcup_{k\in\mathbb{N}}I_k$. Поскольку все ряды ниже сходятся абсолютно, то выполнены равенства

$$P(A) = \sum_{i \in I} P(\omega_i) = \sum_{k \in \mathbb{N}} \sum_{i \in I_k} P(\omega_i) = \sum_{k \in \mathbb{N}} P(A_k).$$

Пусть $A, B \in \mathfrak{F}$ — события. Введём основные операции над событиями и приведём их классические наименования и обозначения в теории вероятностей.

Событие $\Omega \setminus A$ называется дополнением к событию A и обозначается \overline{A} («событие A не произошло»).

Событие $A \cup B$ называется суммой событий A и B и обозначается A + B («произошло событие A или B»). В курсе лекций это обозначение использовалось для случаев, когда $A \cap B = \emptyset$.

Событие $A \cap B$ называется произведением событий A и B и обозначается AB («произошло и событие A и событие B»).

События Ω и \varnothing называются достоверным и невозможным, соответственно.

Если $AB = \emptyset$, то события A и B называются несовместными. («события A и B не происходят одновременно»).

Предложение 2.2 (Начальные свойства вероятностной меры). Пусть $A, B, A_k \in \mathfrak{F}$ — события. Тогда имеет место следующее:

- (1) $P(\overline{A}) = 1 P(A);$
- (2) ecau $A \subset B$, mo $P(B \setminus A) = P(B) P(A)$;
- (3) $ecnu\ A \subset B$, mo $P(A) \leqslant P(B)$;
- (4) $P(A \cup B) = P(A) + P(B) P(AB);$
- (5) $P(A \cup B) \leq P(A) + P(B);$

(6)
$$P(\bigcup_{k=1}^{n} A_k) = \sum_{k=1}^{n} \left(\sum_{i_1 < i_2 < \dots < i_k} (-1)^{k-1} P(A_{i_1} \dots A_{i_k}) \right);$$

(7)
$$P\left(\bigcup_{k=1}^{+\infty} A_k\right) \leqslant \sum_{k=1}^{+\infty} P(A_k)$$
 (это свойство называется субаддитивностью).

Доказательство. Равенство (1) следует из цепочки

$$1 = P(\Omega) = P(A \sqcup \overline{A}) = P(A) + P(\overline{A}).$$

Равенство (2) — из цепочки

$$P(B) = P(A \cup (B \setminus A)) = P(A) + P(B \setminus A).$$

Неравенство (3) следует из этого равенства и неотрицательности вероятности.

Равенство (4) — из цепочки

$$P(A \cup B) = P((A \setminus B) \sqcup (A \cap B) \sqcup (B \setminus A)) =$$

$$= P(A \setminus B) + P(A \cap B) + P(B \setminus A) + P(A \cap B) - P(A \cap B) =$$

$$= P((A \setminus B) \sqcup (A \cap B)) + P((B \setminus A) \sqcup (A \cap B)) - P(A \cap B) =$$

$$= P(A) + P(B) - P(A \cap B).$$

Неравенство (5) немедленно следует из равенства (4).

Докажем (6) по индукции.

База n=2 была доказана в пункте 3.

Докажем шаг. Положим $B = \bigcup_{k=1}^{n-1} A_k$. По базе индукции

$$P(B \cup A_n) = P(B) + P(A_n) - P(BA_n).$$

Далее, положим $B_k = A_k A_n$. Тогда $BA_n = \bigcup_{k=1}^{n-1} B_k$. По индукционному предположению вероятность $P(B \cup A_n)$ равна

$$\sum_{k=1}^{n-1} \left(\sum_{i_1 < i_2 < \dots < i_k} (-1)^{k-1} P(A_{i_1} \dots A_{i_k}) \right) + P(A_n) - \sum_{k=1}^{n-1} \left(\sum_{i_1 < i_2 < \dots < i_k} (-1)^{k-1} P(A_{i_1} \dots A_{i_k} A_n) \right) =$$

$$= \sum_{k=1}^{n} \left(\sum_{i_1 < i_2 < \dots < i_k} (-1)^{k-1} P(A_{i_1} \dots A_{i_k}) \right).$$

Докажем неравенство (7). Положим $B_k = A_k \setminus \bigcup_{i=1}^{k-1} A_i$. Тогда $\bigcup_{k=1}^{+\infty} B_k = \bigcup_{k=1}^{+\infty} A_k$, причём B_k попарно не пересекаются и $\mathrm{P}(B_k) \leqslant \mathrm{P}(A_k)$ по (2). Тогда по σ -аддитивности имеем

$$\bigcup_{k=1}^{+\infty} A_k = \bigcup_{k=1}^{+\infty} B_k = \sum_{k=1}^{+\infty} P(B_k) \leqslant \sum_{k=1}^{+\infty} P(A_k).$$

3 Условные вероятности, формула Байеса, независимость событий

3.1 Условная вероятность

В задачах бывает полезно рассмотреть вероятность того, что произойдёт некоторое событие B при условии, что произойдёт событие A. Пусть P(A) > 0. Тогда вероятность $P(B \mid A) = \frac{P(AB)}{P(A)}$ называется условной вероятностью события B при условии того, что событие A произойдёт с вероятностью P(A) > 0. Вероятность P(B) также иногда называется априорной вероятностью события B.

Предложение 3.1. Пусть $(\Omega, \mathfrak{F}, P)$ — вероятностное пространство. Пусть $A \in \mathfrak{F}$ — событие, удовлетворяющее условию P(A) > 0. Тогда тройка

$$(\Omega, \mathfrak{F}, \left.\mathbf{P}\right|_A),$$

 $\operatorname{\it e}\partial\operatorname{\it e} \left.\operatorname{P}\right|_{A}(B):=\operatorname{P}(B\mid A)=rac{\operatorname{P}(AB)}{\operatorname{P}(A)},$ является вероятностным пространством.

Доказательство. Достаточно проверить аксиомы вероятностной меры (аксиомы σ -аддитивной меры и равенство $P|_A(\Omega)=1$).

Так как обе величины P(AB) и P(A) неотрицательны (а последняя и вовсе положительна), то $P(B \mid A) \leq 0$.

Справедливость упомянутого равенства выводится из определения условной вероятности:

$$P|_{A}(\Omega) = \frac{P(A\Omega)}{P(A)} = \frac{P(A)}{P(A)} = 1.$$

Пусть $\{B_k\}_{k\in\mathbb{N}}$ — счётная последовательность попарно не пересекающихся элементов алгебры \mathfrak{F} . Тогда элементы последовательности $\{B_k\cap A\}_{k\in\mathbb{N}}$ также попарно не пересекаются. Тогда

$$P|_{A}\left(\bigsqcup_{k=1}^{+\infty}B_{k}\right) = \frac{1}{P(A)}P\left(A\cap\bigsqcup_{k=1}^{+\infty}B_{k}\right) = \frac{1}{P(A)}P\left(\bigsqcup_{k=1}^{+\infty}AB_{k}\right) = \sum_{k=1}^{+\infty}\frac{P(AB_{k})}{P(A)} = \sum_{k=1}^{+\infty}P|_{A}\left(B_{k}\right).$$

Следствие 3.2. Пусть $A \in \mathfrak{F}$ — событие, вероятность которого больше 0, $B_1, B_2 \in \mathfrak{F}$. Тогда справедливы следующие свойства

(1) $ecnu B_1 \supset A, mo P(B_1 | A) = 1;$

(2) $P(B_1 \cup B_2 \mid A) = P(B_1 \mid A) + P(B_2 \mid A) - P(B_1B_2 \mid A);$

(3) если B_1 и B_2 несовместны, то $P(B_1 + B_2 \mid A) = P(B_1 \mid A) + P(B_2 \mid A)$.

3.2 Формула полной вероятности и формула Байеса

Теперь мы покажем, как связаны условные вероятности с вероятностями произведений событий, как можно вычислять вероятность события, зная его условные вероятности для несовместных событий (формула полной вероятности) и как можно вычислить условную вероятность «с переставленными причиной и следствием» (формула Байеса).

Лемма 3.3. Пусть $A, B \in \mathfrak{F}$ — события и P(A), P(B) > 0. Тогда имеют место равенства

$$P(AB) = P(A \mid B) P(B) = P(B \mid A) P(A),$$

$$P(A \mid B) = \frac{P(B \mid A) P(A)}{P(B)}.$$

Доказательство. Первое равенство немедленно следует из определения условной вероятности, второе – немедленно из первого и предположения, что P(B) > 0.

Второе равенство, доказанное в лемме иногда (особенно в школьных программах), называют формулой Байеса. Ниже, пользуясь этим простым свойством, мы докажем более общую формулу и в дальнейшем будем называть формулой Байеса её.

Теорема 3.4 (Формула произведения вероятностей). Пусть $A_1, \ldots, A_n \in \mathfrak{F}$ — события. Если вероятности событий $A_2A_3\ldots A_n, \ldots, A_{n-1}A_n, A_n$ не равны нулю, то имеет место формула

$$P(A_1 A_2 ... A_n) = P(A_1 | A_2 ... A_n) P(A_2 | A_3 ... A_n) ... P(A_{n-1} | A_n) P(A_n).$$

Если вероятности событий $A_1A_2...A_n, A_1A_2...A_{n-1},...,A_1$ не равны нулю, то имеет место формула

$$P(A_1 A_2 ... A_n) = P(A_n \mid A_1 ... A_{n-1}) P(A_{n-1} \mid A_1 ... A_{n-2}) ... P(A_2 \mid A_1) P(A_1).$$

Доказательство. Докажем первое утверждение индукцией по n, второе получается из первого перестановкой индексов в обратном порядке.

База: n=2 есть определение условной вероятности.

Докажем шаг индукции. Пусть для n-1 утверждение выполнено. Положим $B=A_2A_3\ldots A_n$. Тогда по базе индукции (здесь мы пользуемся тем, что P(B)>0) и затем по индукционному предположению (а здесь всеми остальными условиями) имеем

$$P(A_1B) = P(A_1 \mid B) P(B) = P(A_1 \mid A_2A_3...A_n) P(A_2 \mid A_3...A_n) ... P(A_{n-1} \mid A_n) P(A_n).$$

Набор событий $A_1, \ldots, A_n \in \mathfrak{F}$ называется разбиением пространства Ω (или просто «разбиение Ω »), если $P(A_i) > 0$ для каждого i, A_i попарно несовместны $(A_i A_j = \varnothing \text{ при } i \neq j)$ и $A_1 + A_2 + \ldots + A_n = \Omega$.

Теорема 3.5 (Формула полной вероятности). Пусть $A_1, \ldots, A_n \in \mathfrak{F}$ — разбиение Ω . Тогда для всякого события B имеет место равенство формула полной вероятности

$$P(B) = \sum_{i=k}^{n} P(B \mid A_k) P(A_k).$$

Доказательство. Так как события A_k попарно несовместны, то события A_kB также попарно несовместны. Имеем цепочку равенств

$$P(B) = P(B\Omega) = P(B(A_1 + \ldots + A_n)) = P(BA_1 + \ldots + BA_n) \stackrel{\text{несовместность}}{=} \sum_{k=1}^{n} P(BA_k) = \sum_{k=1}^{n} P(B \mid A_k) P(A_k).$$

Формула полной вероятности остаётся справедливой, если отказаться от требования $A_1 + A_2 + \ldots + A_n = \Omega$ и заменить его на условие $B \subset A_1 + \ldots + A_n$ (сохраняя требования попарной несовместности событий A_i и $P(A_i) > 0$).

Теорема 3.6 (Формула Байеса). Пусть события $A_1, \ldots, A_n \in \mathfrak{F}$ образуют разбиение Ω , пусть $B \in \mathfrak{F}$ — ещё одно событие и P(B) > 0. Тогда справедлива формула Байеса

$$P(A_i \mid B) = \frac{P(B|A_i) P(A_i)}{\sum\limits_{k=1}^{n} P(B|A_k) P(A_k)}.$$

Доказательство. По лемме 3.3 («простейшая формула Байеса») имеем равенство

$$P(A_i \mid B) = \frac{P(B|A_i)P(B)}{P(B)}.$$

По формуле полной вероятности имеем

$$P(B) = \sum_{i=k}^{n} P(B \mid A_k) P(A_k),$$

откуда следует искомая формула.

Пример. Приведём стандартный пример на применение простейшего вида формулы Байеса. Пусть в популяции заболевание встречается с вероятностью P(B) = 0.1. ПЦР-тест на выявление заболевания устроен так, что:

- При наличии заболевания он даёт положительный результат с вероятностью $P(+ \mid B) = 0.9$,
- При отсутствии заболевания он даёт ложноположительный результат с вероятностью $P(+\mid 3)=0.2$.

Найдём вероятность того, что человек действительно болен, если результат теста оказался положительным. По формуле Байеса:

$$P(B \mid +) = \frac{P(+ \mid B) \cdot P(B)}{P(+ \mid B) \cdot P(B) + P(+ \mid 3) \cdot P(3)}.$$

Подставим известные значения:

$$P(B \mid +) = \frac{0.99 \cdot 0.01}{0.99 \cdot 0.01 + 0.05 \cdot 0.99} = \frac{0.0099}{0.0099 + 0.0495} = \frac{0.0099}{0.0594} \approx 0.1667.$$

Формально мы рассматривали дискретное вероятностное пространство Ω = {+B, -3, +3, -B} с четырьмя элементарными исходами, выражающими все возможные комбинации результата тестирования и реального состояния тестируемого человека. Здесь событие Б «болен» являлось объединением {+B, -B}, событие «пцр-тест дал положительный результат» — объединением {+B, +3} и так далее.

3.3 Независимость событий

Интуиция говорит нам, что события A и B «независимы», когда от того с какой вероятностью произойдёт событие A не зависит вероятность того, что произойдёт событие B и наоборот. Математически это выражается формулами $P(B \mid A) = P(B)$ и $P(A \mid B) = P(A)$. Чтобы не ограничиваться случаями, когда вероятности событий больше 0, мы определим независимость следствием формул выше. События A и B называются независимыми, если справедливо равенство P(AB) = P(A) P(B).

Предложение 3.7 (Свойства независимости). *Имеют место следующие утвер- ждения:*

- (1) если P(B) > 0, то независимость A и B равносильна равенству $P(A \mid B) = P(A)$;
- (2) если A и B независимы, то \overline{A} и B независимы;
- (3) если события B_1 и B_2 несовместны, A и B_1 независимы, а также A и B_2 независимы, то A и B_1+B_2 независимы.

Доказательство. Проверим (1). Если P(B) > 0, то по независимости имеем

$$P(A \mid B) = \frac{P(AB)}{P(B)} = \frac{P(A)P(B)}{P(B)} = P(A).$$

Обратно, если $P(A \mid B) = P(A)$, то $\frac{P(AB)}{P(B)} = P(A)$, откуда P(AB) = P(A) P(B). Для доказательства (2) выпишем цепочку равенств

$$P(\overline{A}B) = P((\Omega \setminus A)B) = P(B \setminus AB) = P(B) - P(AB) \stackrel{\text{независимость}}{=}$$

$$\stackrel{\text{независимость}}{=} P(B) - P(A) P(B) = P(B)(1 - P(A)) = P(B) P(\overline{A}).$$

Наконец, для доказательства (3) заметим, что события B_1A и B_2A несовместны. Тогда

$$P((B_1 + B_2)A) = P(B_1A + B_2A) = P(B_1A) + P(B_2A) = P(B_1)P(A) + P(B_2)P(A) =$$

$$= (P(B_1) + P(B_2))P(A) = P(B_1 + B_2)P(A).$$

Теперь определим независимость для набора событий. Пусть $B_1, \ldots, B_n \in \mathfrak{F}$ — события. Будем говорить, что они попарно независимы, если для всяких двух индексов $i \neq j$ выполнено равенство $P(B_iB_j) = P(B_i) P(B_j)$ (то есть B_i и B_j независимы). Будем называть эти события независимыми, если для всякого набора индексов $i_1 < \ldots < i_k$ (здесь $2 \leqslant k \leqslant n$) имеет место равенство

$$P\left(\bigcap_{s=1}^k B_{i_s}\right) = \prod_{s=1}^k P(B_{i_s}).$$

Предложение 3.8. *Если события* B_1, \ldots, B_n *независимы, то они попарно независимы.*

Пример. Вообще говоря из попарной независимости не следует независимость, что демонстрируется следующим примером. Рассмотрим тетраэдр, три грани которого покрашены в красный, зелёный и синий цвета, соответственно, а последняя разбита на три треугольника, покрашенных в те же цвета. Пусть вероятности выпадения граней равны $\frac{1}{4}$. покажем, что события «выпала грань с цветом A», где A — цвет попарно независимы, но не являются таковыми в совокупности. Формально ситуация выглядит следующим образом $\Omega = \{\omega_R, \omega_G, \omega_B, \omega_{RGB}\}$ — элементарное событие — выпала грань с данной раскраской. По условию $P(\omega_R) = P(\omega_G) = P(\omega_B) = P(\omega_{RGB}) = \frac{1}{4}$. Обозначим через $R = \{\omega_R, \omega_{RGB}\}$ ($G = \{\omega_G, \omega_{RGB}\}$, $B = \{\omega_B, \omega_{RGB}\}$) события «выпала грань с красным (зелёным, синим) цветом», соответственно. Тогда $P(R) = P(G) = P(B) = \frac{1}{2}$, $P(RG) = P(GB) = P(B) = \frac{1}{4} = P(R) P(G) = P(G) = P(G) = P(B) = \frac{1}{8}$.

Пример. Пользуясь примером выше, можно показать, что условие несовместности в пункте (3) предложения 3.7 нельзя опустить. Положим A=R и $B_1=G$ и $B_2=B$. Тогда $P((B_1\cup B_2)A)=P(\omega_{RGB})=\frac{1}{4}$, но $P(A)=\frac{1}{2}$, $P(B_1+B_2)=\frac{3}{4}$ и $\frac{1}{2}\cdot\frac{3}{4}\neq\frac{1}{4}$. Таким образом, события B_1+B_2 и A не являются независимыми.

Пример. Покажем, что из условия независимости нельзя удалить ни одно из равенств. Более того, мы докажем, что для всякого натурального n и семейства наборов индексов $S_J = \{(i_{1,j}, \ldots, i_{k_j,j})\}_{j \in J}$ можно построить пример вероятностного пространства $(\Omega, \mathfrak{F}, P)$ и событий $A_1, \ldots, A_n \in \mathfrak{F}$ для которых множество наборов, на которых выполнены равенства

$$P\left(\bigcap_{s=1}^{k} A_{i_s}\right) = \prod_{s=1}^{k} P(A_{i_s})$$

в точности совпадает с J.

Построим пример для дискретного вероятностного пространства. Положим $\Omega = \{(\varepsilon_1, \ldots, \varepsilon_n) | \varepsilon_i \in \{0, 1\}\}$ — множество всех кортежей из нулей и единиц длины n, $P((\varepsilon_1, \ldots, \varepsilon_n)) = p_{(\varepsilon_1, \ldots, \varepsilon_n)}$ — будущее распределение вероятностей. Также положим $A_k = \{(\varepsilon_1, \ldots, \varepsilon_n) | \varepsilon_i \in \{0, 1\}, \varepsilon_k = 1\}$. Рассмотрим отображение $\varphi \colon \mathbb{R}^{2^n} \to \mathbb{R}^{2^n}$, заданное в некоторых фиксированных базисах этих пространств по правилу

$$\varphi \colon \begin{pmatrix} \dots \\ p_{(\varepsilon_1, \dots, \varepsilon_n)} \end{pmatrix} \mapsto \begin{pmatrix} \dots \\ P(A_{i_1} \dots A_{i_k}) \end{pmatrix},$$

где для k=0 предполагается, что в матрице стоит $\mathrm{P}(\Omega)$. Поскольку $\mathrm{P}(A_{i_1}\dots A_{i_k})=\mathrm{P}(\{(\varepsilon_1,\dots,\varepsilon_n)|\,\varepsilon_i\in\{0,1\},\varepsilon_{i_s}=1,1\leqslant s\leqslant k\})=\sum_{\varepsilon_{i_s}=1,1\leqslant s\leqslant k}p_{(\varepsilon_1,\dots,\varepsilon_n)},$ то φ — линейное

отображение. Можно показать, что φ сюръективно (проверьте с помощью элементарных преобразований, что его матрица имеет ранг 2^n) и, следовательно, биективно. Таким образом, достаточно подобрать значения вероятностей все возможных произведений A_i так, чтобы вероятности $p_{(\varepsilon_1,\ldots,\varepsilon_n)}$ были неотрицательны, в сумме давали 1 ($P(\Omega)=1$) и при этом выполнялись в точности все желаемые равенства на вероятности произведений событий A_i . Положим $P(A_i)=\frac{1}{2^{2n}}$, $P(\Omega)=1$. Если $(i_1,\ldots,i_k)\in S_J$, то положим $P(A_{i_1}\ldots A_{i_k})=\frac{1}{2^{2kn+1}}$. Иначе положим $P(A_{i_1}\ldots A_{i_k})=\frac{1}{2^{2kn+1}}$. Проверим, что имеют место неравенство $\frac{1}{2^{2kn+2}}\leqslant p_{(\varepsilon_1,\ldots,\varepsilon_n)}\leqslant \frac{1}{2^{2kn}}$, для кортежей с k>0 числом единиц. Для кортежа $(1,\ldots,1)$ неравенство выполнено по построению. Докажем неравенства для оставшихся кортежей с данным условием индукцией по числу нулей в кортеже. Пусть в текущем кортеже $(\varepsilon_1,\ldots,\varepsilon_n)$ присутствует $n-k\geqslant 1$ нулей. Прибавим к $p_{(\varepsilon_1,\ldots,\varepsilon_n)}$ все остальные значения вероятностей элементарных исходов — кортежей, в которых некоторые нули из данного кортежа заменены на единицы. Тогда $p_{(\varepsilon_1,\ldots,\varepsilon_n)}\leqslant \frac{1}{2^{2kn}}$, так как по предположению индукции все остальные слагаемые положительны, а сумма не превосходит $\frac{1}{2^{2kn}}$. С другой стороны, $p_{(\varepsilon_1,\ldots,\varepsilon_n)}\geqslant \frac{1}{2^{2kn+1}}-\frac{2^{k-1}}{2^{2(k+1)n}}=\frac{1}{2^{2kn+1}}-\frac{1}{2^{2kn+2(2n-k-2)}}$. Так как $n-k-1\leqslant 0$ и $n-1\leqslant 0$, то последнее слагаемое по модулю не превосходит $\frac{1}{2^{2kn+2}}$. Тогда $p_{(\varepsilon_1,\ldots,\varepsilon_n)}$ не меньше $\frac{1}{2^{2kn+2}}$. Остаётся убедиться в том, что $p_{(\varepsilon_1,\ldots,\varepsilon_n)}\ne 0$ ($\varepsilon_1,\ldots,\varepsilon_n$) не меньше $\varepsilon_1,\ldots,\varepsilon_n$ 0 остаётся убедиться в том, что $\varepsilon_1,\ldots,\varepsilon_n$ 1 не меньше $\varepsilon_1,\ldots,\varepsilon_n$ 2 остаётся убедиться в том, что $\varepsilon_1,\ldots,\varepsilon_n$ 3 не меньше $\varepsilon_1,\ldots,\varepsilon_n$ 4 остаётся убедиться в том, что $\varepsilon_1,\ldots,\varepsilon_n$ 4 не меньше $\varepsilon_1,\ldots,\varepsilon_n$ 5 остаётся убедиться в том, что $\varepsilon_1,\ldots,\varepsilon_n$ 5 не меньше $\varepsilon_1,\ldots,\varepsilon_n$ 6 остаётся убедиться в том, что $\varepsilon_1,\ldots,\varepsilon_n$ 6 не меньше $\varepsilon_1,\ldots,\varepsilon_n$ 6 остаётся убедиться в том, что $\varepsilon_1,\ldots,\varepsilon_n$ 6 не меньше $\varepsilon_1,\ldots,\varepsilon_n$ 6 остаётся убед

Предложение 3.9. Пусть событие A независимо c самим собой тогда u только тогда, когда P(A) = 0 или P(A) = 1.

Доказательство. По определению независимости P(AA) = P(A)P(A), откуда $P(A)^2 - P(A) = 0$ и либо P(A) = 0, либо P(A) = 1. Обратно, если одно из этих равенств выполнено, то P(A)P(A) = P(A) = P(A).

3.4 Произведение вероятностных пространств

Если считать, что каждый исход получен в результате отдельного испытания, то мы обнаружим, что любое событие, относящееся к фиксированному испытанию

будет независимым от любого события, относящегося к другим испытаниям. В таких случаях говорят о последовательности независимых испытаний.

Формализуем данную ситуацию. Рассмотрим два вероятностных пространства $(\Omega_1,\mathfrak{F}_1,\mathrm{P}_1)$ и $(\Omega_2,\mathfrak{F}_2,\mathrm{P}_2)$. Их произведением мы будем называть вероятностное пространство $(\Omega,\mathfrak{F},\mathrm{P})$, где $\Omega=\Omega_1\times\Omega_2$ — декартово произведение, $\mathfrak{F}=\mathfrak{F}_1\otimes\mathfrak{F}_2$ — σ -алгебра, порождённая всеми возможными произведениями $A_1\times A_2$, где $A_1\in\mathfrak{F}_1,A_2\in\mathfrak{F}_2$ — события в исходных вероятностных пространствах (заметьте, что сами по себе таким произведения образуют полукольцо, но вообще говоря не образуют даже кольца), а мера P определяется как продолжение меры m с полукольца произведений, заданной по правилу $m(A_1\times A_2):=\mathrm{P}_1(A_1)\cdot\mathrm{P}_2(A_2)$.

Пусть теперь $(\Omega, \mathfrak{F}, \tilde{P})$ — вероятностное пространство с теми же Ω и \mathfrak{F} , то возможно другой вероятностной мерой. Это можно представлять себе так: происходят два испытания и результаты одного могу «повлиять» на результаты другого. Неформальное «повлиять» выражается понятием независимости испытаний. Мы будем говорить, что испытания, которым соответствуют вероятностные пространства $(\Omega_1, \mathfrak{F}_1, P_1)$ и $(\Omega_2, \mathfrak{F}_2, P_2)$, а составному эксперименту, состоящему из двух этих испытаний, независимы, если для любых двух событий $A_1 \in \mathfrak{F}_1$ и $A_2 \in \mathfrak{F}_2$ выполнено равенство

$$\tilde{\mathbf{P}}(A_1 \times A_2) = \mathbf{P}_1(A_1) \, \mathbf{P}_2(A_2) = \tilde{\mathbf{P}}(A_1 \times \Omega_2) \tilde{\mathbf{P}}(\Omega_2 \times A_2).$$

4 Случайные величины, их распределения, функции распределения и плотности

Пусть $(\Omega, \mathfrak{F}, P)$ — вероятностной пространство. Функция $\xi \colon \Omega \to \mathbb{R}$ называется случайной величиной, если прообраз любого борелевского множества $B \in \mathcal{B}$ при отображении f лежит в \mathfrak{F} . Соотнося это из определениями из действительного анализа, мы можем сказать, что ξ является измеримой функцией. Также, вспомним, что мы получим эквивалентное определение, если вместо всех борелевских множеств будем рассматривать все интервалы, все отрезки, все интервалы одного из двух видов $(-\infty, b)$ и $(a, +\infty)$ или все полуинтервалы одного из двух видов $(-\infty, b]$ и $[a, +\infty)$.

Таким образом, случайные величины удовлетворяют всем тем стандартным свойствам, которым удовлетворяют измеримые функции:

Предложение 4.1. Пусть ξ — случайная величины и g — непрерывная на $\operatorname{Im} \xi$ функция. Тогда композиция $g(\xi)$ является случайной величиной.

 \mathcal{A} оказательство. Переформулировка предложения 0.22.

Предложение 4.2. Пусть ξ, η — случайные величины. Тогда множество $A_{\xi \leqslant \eta} = \{\omega \in \Omega | \, \xi(\omega) \leqslant \eta(\omega) \}$ измеримо. Функции $a + \xi, a\xi, |\xi|, \xi^2, \xi + \eta$ и $\xi\eta$, где a — константа, являются случайными величинами. Если случайная величина η не принимает значения θ , то функции $\frac{1}{\eta}$ и $\frac{\xi}{\eta}$ также являются случайными величинами.

Случайная величина называется дискретной, если она принимает не более, чем счётное число различных значений. Случайные величины на дискретном вероятностном пространстве всегда дискретны.

Пример. Пусть $\Omega = \{\Gamma\Gamma, \Gamma P, P\Gamma, PP\}$ — все возможные результаты выпадения на двух монетках с гербом (Γ) на одной стороне и решкой (P) на другой. Будем считать, что вероятности всех элементарных событий равны $\frac{1}{4}$. Пусть $\xi \colon \Omega \to \{0,1\}$ сопоставляет элементам $\Gamma\Gamma$, ΓP и $P\Gamma$ единицу, а PP — ноль. Тогда ξ — дискретная случайная величина. Мы можем интерпретировать 0 как «неудачу» в эксперименте «бросить две монетки и получить хотя бы один герб» и 1 — «успех». В нашем случае ξ принимает значение 1 с вероятностью $P(\xi^{-1}(\{1\})) = P(\{\Gamma\Gamma, \Gamma P, P\Gamma\}) = \frac{3}{4}$ и значение 0 с вероятностью $P(\xi^{-1}(\{0\})) = P(\{PP\}) = \frac{1}{4}$.

Вместо $P(\xi^{-1}(\{a\}))$ мы будем пользоваться записью $P(\xi=a)$, отражающей смысл этого выражения — «вероятность случайной величины ξ принять значение a». Также вместо громоздких выражений $P(\xi^{-1}((-\infty;b))), P(\xi^{-1}((a;+\infty))), P(\xi^{-1}((a;b)))$ и им подобных мы будем писать $P(\xi \leq b), P(\xi \geq a)$ и $P(a \leq \xi \leq b)$.

Пример. В примере выше $P(\xi = 1) = \frac{3}{4}$ и $P(\xi = 0) = \frac{1}{4}$.

Пример. Дискретная случайная величчина может быть задана и не на дискретном вероятностном пространстве. Пусть $\Omega = [-1;1]$ — отрезок, $\mathfrak{F} = \mathcal{B}$ — сигма алгебра его борелевских подмножеств, а вероятностная мера — это умноженная на $\frac{1}{2}$ классическая мера Лебега μ . Тогда случайная величина $\xi(\omega) = sgn(\omega)$, заданная функцией знак, является дискретной случайной величиной.

Пример. Вернёмся одному из первых рассмотренных примеров. Пусть $\Omega=[0,2]$ и $\mathfrak{F}=M-\sigma$ -алгебра измеримых относительно меры Лебега подмножеств отрезка [0,2], $P=\frac{1}{2}\mu$ — мера, пропорциональная мере Лебега. Пусть $\xi(\omega)=\omega^2$. Эта функция непрерывна, поэтому является случайной величиной (измеримой функцией). Найдём $P(\frac{1}{4}\leqslant \xi<\frac{16}{9})$. Так как неравенства $\frac{1}{4}\leqslant \xi(\omega)<\frac{16}{9}$ выполнены тогда и только тогда, когда $\frac{1}{2}\leqslant \omega<\frac{4}{3}$. Тогда $P(\frac{1}{4}\leqslant \xi<\frac{16}{9})=\frac{1}{2}(\frac{4}{3}-\frac{1}{2})=\frac{5}{12}$.

Введём некоторые объекты, характеризующие случайную величину ξ через её вероятность принять некоторые значения. Функцией распределения случайной величины ξ будем называть функцию $F_{\xi} : \mathbb{R} \to \mathbb{R}$, заданную по правилу $F_{\xi}(x) = P(\xi \leqslant x)$. Заметим, что построенная функция F_{ξ} корректно определена на всей числовой прямой, так как ξ — случайная величина и прообраз бесконечного получинтервала относительно ξ является событием (измерим).

Выделим некоторые свойства этой функции.

Предложение 4.3. Пусть ξ — случайная величина и F_{ξ} — её функция распределения. Тогда выполнены следующие свойства

- (1) ϕ ункция F_{ξ} неубывает;
- (2) функция F_{ξ} непрерывна справа;
- (3) $F_{\xi}(+\infty) := \lim_{x \to +\infty} F_{\xi}(x) = 1;$

(4)
$$F_{\xi}(-\infty) := \lim_{x \to -\infty} F_{\xi}(x) = 0.$$

Доказательство. Для доказательства неубывания (1) воспользуемся свойствами вероятностной меры. Пусть x < y. Тогда

$$F_{\xi}(y) = P(\xi \leqslant y) = P(\xi \leqslant x) + P(x < \xi \leqslant y) \geqslant P(\xi \leqslant x) = F_{\xi}(x).$$

Проверим непрерывность справа (2). Пусть последовательность $\{x_n\}$ сходится к x_0 справа (можно считать, что последовательность возрастает). Тогда $\bigcap_{n=1}^{+\infty} (-\infty; x_n] = (-\infty; x_0]$ и по непрерывности вероятностной меры

$$\lim_{x \to x_0 + 0} F_{\xi}(x) = \lim_{n \to +\infty} F_{\xi}(x_n) = \lim_{n \to +\infty} P(\xi \leqslant x_n) = P(\xi \leqslant x_0) = F_{\xi}(x_0).$$

Свойства (3) и (4) также следуют из непрерывности

$$\lim_{x \to +\infty} F_{\xi}(x) = \lim_{n \to +\infty} F_{\xi}(x_n) = \lim_{n \to +\infty} P(\xi \leqslant x_n) = P(\xi \in \mathbb{R}) = 1;$$

$$\lim_{x \to -\infty} F_{\xi}(x) = \lim_{n \to +\infty} F_{\xi}(x_n) = \lim_{n \to +\infty} P(\xi \leqslant x_n) = P(\xi \in \emptyset) = 0.$$

Здесь в первом случае
$$\bigcup_{n=1}^{+\infty} (-\infty; x_n] = (-\infty; +\infty) = \mathbb{R}$$
, а во втором $\bigcap_{n=1}^{+\infty} (-\infty; x_n] = (-\infty; -\infty] = \emptyset$.

Будем обозначать через $F_{\xi}(x-)$ или $F_{\xi}(x-0)$ левосторонний предел функции F_{ξ} в точке x. Тогда $P(\xi=x)=F_{\xi}(x)-F_{\xi}(x-)$.

Случайная величина ξ называется непрерывной, если её функция распределения F_{ξ} непрерывна на \mathbb{R} .

Предложение 4.4. Случайная величина ξ непрерывна тогда и только тогда, когда для любого числа $a \in \mathbb{R}$ вероятность того, что ξ примет значение а равна нулю: $P(\xi = a) = 0$.

Доказательство. Функция F_{ξ} монотонна и поэтому у неё существуют левые пределы во всех точках. Так как F_{ξ} ещё и непрерывна справа, то непрерывность в точке a для неё равносильна равенству $F_{\xi}(a) = F_{\xi}(a-)$, что в свою очередь равносильно равенству $P(\xi = a) = F_{\xi}(a) - F_{\xi}(a-) = 0$.

Теорема 4.5. Пусть функция F удовлетворяет свойствам из предложения 4.3. Тогда существует единственная вероятностная мера P_F на борелевской σ -алгебре $\mathcal B$ подмножеств $\mathbb R$ такая, что функция F является функцией распределения случайной величины $\mathrm{id}: (\mathbb R, \mathcal B, P_F) \to (\mathbb R, \mathcal B)$.

Доказательство. Существование следует из конструкции меры Лебега-Стилтьеса μ_F для функции F. Для неё функцией распределения тождественного отображения автоматически становится функция F (так как буквально теми же формулами определяется эта мера по полуинтервалах).

Пусть теперь P — некоторая вероятностная мера и функция F оказывается функцией распределения для тождественного отображения $id: x \mapsto x$ (далее мы будем также обозначать его через x). Тогда имеем

$$P((a,b]) = P(a < x \le b) = P(x \le b) - P(x \le a) = F(b) - F(a);$$

$$P((-\infty,b]) = P(x \le b) - 0 = F(b) - F(-\infty);$$

$$P((a,+\infty)) = P(x > a) = 1 - P(x \le a) = 1 - F(a) = F(+\infty) - F(a).$$

Мы показали, что меры P и μ_F совпадают на полуинтервалах, следовательно, они совпадают на минимальной алгебре \mathcal{A} , порождённой ими. Так как борелевская σ -алгебра \mathcal{B} является минимальной σ -алгеброй, содержащей \mathcal{A} , то по теореме Каратеодори 0.17 меры P и μ_F совпадают на ней.

Следующая теорема не формулируется в основном курсе, но даёт ещё одно описание для меры P_F .

Прямой образ меры ξ_* P (напомним, что он определяется правилом ξ_* P(B) = $P(\xi^{-1}(B)) = P(\xi \in B)$) на борелевской σ -алгебре $\mathcal B$ подмножеств $\mathbb R$ называется распределением (вероятностей) случайной величины ξ .

Теорема 4.6. Пусть ξ — случайная величина и F_{ξ} её функция распределения. Пусть μ_{ξ} — мера Лебега-Стилтьеса на подмножествах \mathbb{R} , порождённая функцией F_{ξ} . На борелевской σ -алгебре с мера μ_{ξ} совпадает с распределением ξ_* P вероятностной меры P.

Доказательство. Достаточно проверить, что эти меры совпадают на минимальном кольце, порождённом всеми полуинтвералами вида $(a,b], (-\infty;b]$ и $(a;+\infty)$. Тогда равенство на борелевской σ -алгебре будет следовать из теоремы Каратеодори 0.17.

Поскольку мера на минимальном кольце, порождённом данным полукольцом, однозначной определяется по мере на этом полукольце, то достаточно проверить равенства на самих полуинтервалах.

Все равенства немедленно следуют из определений функции распределения, меры Лебега-Стилтьеса и прямого образа меры, а также свойств меры и функции распределения:

$$\mu_f((a,b]) = F_{\xi}(b) - F_{\xi}(a) = P(\xi \leqslant b) - P(\xi \leqslant a) = P(a < \xi \leqslant b) = P(\xi^{-1}((a,b])) = \xi_* P((a,b]);$$

$$\mu_f((a,+\infty)) = F_{\xi}(+\infty) - F_{\xi}(a) = 1 - P(\xi \leqslant a) = P(\xi > a) = P(\xi^{-1}((a,+\infty))) = \xi_* P((a,+\infty));$$

$$\mu_f((-\infty;b]) = F_{\xi}(b) - F_{\xi}(-\infty) = P(\xi \leqslant b) - 0 = P(\xi \leqslant b) = P(\xi^{-1}((-\infty;b])) = \xi_* P((-\infty;b]).$$

В условиях последних двух теорем $\mu_F = \xi_* \, \mathrm{P}_F.$

Распределение дискретной случайной величины ξ называется дискретным. Если случайная величина ξ может принимать только значения x_1, x_2, \ldots с вероятностями $p_i = P(\xi = x_i)$ (при этом мы будем считать, что вероятности $P(\xi = x_i)$ положительны, чтобы не рассматривать вырожденные случаи), то можно удобно изобразить это с помощью таблицы

Поскольку $\sum_{i=1}^{+\infty} p_i = \sum_{i=1}^{+\infty} \mathrm{P}(\xi = x_i) = \mathrm{P}(\Omega) = 1$, то дискретное распределение $\{p_i\}$ можно задать на дискретном вероятностном пространстве.

Распределение случайной величины ξ и она сама называются абсолютно непрерывными, если существует функция $p \colon \mathbb{R} \to \mathbb{R}$ такая, что для любого борелевского множества $B \in \mathcal{B}$ выполнено равенство

$$P(\xi \in B) = \xi_* P(B) = \int_B f d\mu,$$

где μ — классическая мера Лебега. С точки зрения теории меры и интеграла Лебега это определение эквивалентно тому, что мера ξ_* Р абсолютно непрерывна относительно классической меры Лебега μ на прямой (это значит, что случайная величина ξ попадает в множество меры нуль с вероятностью нуль). Теорема Радона-Никодима даёт формулу для ξ_* Р, принятую нами за определение.

В силу доказанных выше теорем мы можем дать эквивалентное определение в терминах функции распределения. Будем говорить, что распределение случайной величины ξ и она сама называются абсолютно непрерывными, если функция распределения F_{ξ} может быть выражена как интеграл

$$F_{\xi}(x) = \int_{(-\infty;x]} p \mathrm{d}\mu.$$

В действительном анализе такая функция F_{ξ} называется абсолютно непрерывной, почти всюду существует производная F'_{ξ} , которая почти всюду совпадает с p(x), а также имеет место аналог формулы Ньютона-Лейбница: $F_{\xi}(b) - F_{\xi}(a) = \int\limits_a^b p \mathrm{d}\mu$. Можно доказать, что функция абсолютно непрерывна тогда и только тогда, когда она непрерывна, имеет ограниченную вариацию и переводим множества меры нуль по Лебегу в множества меры нуль.

5 Классические примеры распределений

В этом разделе мы рассмотрим классические примеры распределений, повсеместно встречающихся в теории вероятностей и в её приложениях.

НУЖНО: вписать описания для всех классических распределений Дискретные распределения.

5.1 Распределение константы

Пусть случайная величина ξ принимает значение C с вероятность 1: $P(\xi = C) = 1$. Тогда распределение такой случайной величины называется распределением константы или вырожденным распределением. Используя табличку можем записать

$$\xi \sim \frac{C}{1}$$
.

5.2 Распределение Бернулли

Пусть случайная величина ξ принимает значения 1 и 0 с вероятностями, соответственно p и q ($p+q=1,\ p,q\geqslant 0$). Её распределение называется распределением Бернулли. И снова в виде таблицы

$$\xi \sim \begin{array}{cc} 0 & 1 \\ q & p \end{array}.$$

Пример. Рассмотрим дискретное вероятностное пространство $\Omega = \{1, 2, 3, 4, 5, 6\}$ результатов броска игральной кости. Будем считать, что наша игральная кость «иделальная», то есть вероятности всех элементарных событий равны $\frac{1}{6}$. Пусть $\xi \colon \Omega \to \mathbb{R}$ — случайная величина, принимающая значение 1 на числах множестве $\{1,3\}$ и 0 иначе и выражающая смысл «выпала степень тройки». Тогда ξ обладает биномиальным распределением и

$$\xi \sim \begin{array}{cc} 0 & 1 \\ \frac{2}{3} & \frac{1}{3} \end{array}$$
.

5.3 Дискретное равномерное распределение

Рассмотрим случайную величину ξ принимающую каждое значение из набора x_1, x_2, \ldots, x_n с вероятностью $\frac{1}{n}$. Распределение случайной величины ξ называется дискретным распределением. В виде таблицы:

$$\xi \sim \begin{array}{ccc} x_1 & \dots & x_n \\ \frac{1}{n} & \dots & \frac{1}{n} \end{array}.$$

Пример. В качестве примера случайной величины с равномерным распределением можно взять случайную величину ξ на дискретном пространстве $\Omega = \{1, 2, 3, 4, 5, 6\}$ (вероятности всех элементарных событий снова равны $\frac{1}{6}$), сопоставляющую числу из Ω его же само.

5.4 Биномиальное распределение

Представим, что происходит n последовательных независимых испытаний, в каждом из которых с вероятностью 0 происходит «успех», а с вероятностью <math>q = 1 - p «неудача». Формально, имеется пространство элементарных исходов $\Omega = \{0,1\}^n$ с заданным на нём распределением вероятностей, полученное как произведение вероятностных пространств $(\{0,1\},2^{\{0,1\}},P)$, где P(1)=p,P(0)=q. Из построения получаем вероятность элементарного исхода $(\varepsilon_1,\ldots,\varepsilon_n)$ равной p^kq^{n-k} , где k — это число единиц в кортеже $(\varepsilon_1,\ldots,\varepsilon_n)$.

Рассмотрим случайную величину ξ принимающую на Ω значения, равные «числу успехов» (сумме единиц в кортеже). Существует ровно $\frac{n!}{k!(n-k)!}=:C_n^k$ кортежей длины n, содержащих ровно k единиц («можно расставить эти k единицы на данные n позиций ровно $\frac{n!}{k!(n-k)!}=:C_n^k$ способами»). Действительно, выстроим данные нам k единицы и n-k нулей в ряд и переставим его члены. Имеется всего n! перестановок всех членов. При этом, дополнительные перестановки внутри набора из единиц и внутри набора из нулей не изменяют их конечной расстановки. Это значит, что все n! перестановок разбиваются на k!(n-k)! групп одинаковых, а общее их количество равно $\frac{n!}{(n-k)!k!}$.

Из сказанного выше следует, что ξ принимает значения от 0 до n, причём значение k принимается ей с вероятностью $C_n^k p^k q^{n-k}$. Распределение такой случайной величины ξ называется биномиальным распределением. В виде таблицы:

- 5.5 Распределение Пуассона
- 5.6 Геометрическое распределение
- 5.7 Гипергеометрическое распределение
- 5.8 Отрицательное биномиальное распределение

Абсолютно непрерывные случайные величины

- 5.9 Равномерное распределение
- 5.10 Экспоненциальное (показательное) распределение
- 5.11 Нормальное распределение (распределение Гаусса)
- 5.12 Распределение Коши
- 6 Численные характеристики случайных величин
- 6.1 Математическое ожидание, моменты и абсолютные моменты
- 6.2 Ковариация, дисперсия и корреляция
- 6.3 Мода, медиана
- 6.4 Квантили, асимметрия и эксцесс

НУЖНО: записать определения и свойства, описать ковариацию как скалярное произведение

НУЖНО: доказать формулы для вычисленя матожидания через интегралы Лебега, Лебега-Стилтьеса и интеграл Римана для абсолютно непрерывной случайно величины

7 Сходимости случайных величин

- 7.1 Сходимость почти наверное
- 7.2 Сходимость по вероятности
- 7.3 Пространство \mathcal{L}_n и сходимость в нём
- 7.4 Сходимость по распределению
- 7.5 Связь сходимостей

НУЖНО: записать определения всех сходимостей и вывод одних сходимостей из других

8 Производящие функции

НУЖНО: записать определение

9 Характеристические функции

Теорема 9.1 (Бохнер, Хинчин).

10 Предельные теоремы

НУЖНО: дописать ниже доказательства теорем

10.1 Неравенства

10.2 Закон больших чисел

Теорема 10.1 (Закон больших чисел в форме Бернулли).

Теорема 10.2 (Закон больших чисел в форме Чебышёва).

Теорема 10.3 (Усиленный закон больших чисел).

Теорема 10.4 (Закон больших чисел в форме Хинчина). content

10.3 Теорема Муавра-Лапласа

Теорема 10.5 (Теорема Пуассона).

Теорема 10.6 (Формула Стирлинга).

Теорема 10.7 (Муавр, Лапласа).

10.4 Закон нуля или единицы

Лемма 10.8 (Борель, Кантелли).

Лемма 10.9 (Борель, Кантелли).

Теорема 10.10 (Закон нуля или единицы Колмогорова).

10.5 Закон повторного логарифма

Теорема 10.11 (Закон повторного логарифма).

10.6 Закон арксинуса

Теорема 10.12 (Закон арксинуса).

10.7 Правило трёх сигм

Teopeмa 10.13 (Правило трёх сигм).

10.8 Центральная предельная теорема

Теорема 10.14 (Центральная предельная теорема).

Теорема 10.15 (Оценка Берри-Эссена).

11 Совместные распределения случайных величин

d

12 Свёртки случайных величин

d

13 Указатель терминов

d

14 Указатель теорем

d

Список литературы

- [1] Колмогоров А. Н., Фомин С. В. Элементы теории функций и функционального анализа, Физматлит, 2004, 572с.
- [2] Дьяченко М. И., Ульянов П. Л. Мера и интеграл, Факториал, 1998, 160с.
- [3] Боровков А. А. Теория вероятностей, Физматлит, 1986, 432с.