RASHTRASANT TUKADOJI MAHARAJ NAGPUR UNIVERSITY, NAGPUR FOUR YEAR BACHELOR OF TECHNOLOGY (B. Tech..) DEGREE COURSE SEMESTER: VI (C.B.C.S.)

BRANCH: COMPUTER SCIENCE AND ENGINEERING

Examination Scheme and Syllabus

Sixth Semester:-

S. N.	Subjec t	Teaching Scheme			Evaluation Scheme			Credits	Category
S. IV.		L	T	P	CA	UE	Total	Credits Ca	Category
1	Compiler Design	4	-	-	30	70	100	4	PCC-CS
2	Compiler Design -Lab	-	-	2	25	25	50	1	PCC-CS
3	Elective-II	3	-	-	30	70	100	3	PEC-CS
4	Elective-III	3	-	-	30	70	100	3	PEC-CS
5	Open Elective-I	3	_	_	30	70	100	3	OEC
6	Professional Skills Lab II	-	-	2	25	25	50	1	PCC-CS
7	Hardware Lab	-	-	2	25	25	50	1	ESC
8	Mini Project	-	-	6	50	50	100	3	PROJ- CS
9	Economics of IT Industry	2	-	-	15	35	50	2	HSMC
	Intellectual Property Rights (AuditCourse)	2	-	-	50	-	-	Audi t	PCC
	Total	17	-	12			700	21	

Elective-II: - 1. Machine Learning 2. Internet of Things 3. Cluster and Cloud Computing

Elective-III: - 1. Data Science 2. Distributed Operating Systems 3. Human Computer Interaction

Open Elective 1:- 1. Linux Fundamentals 2. Android Application Development 3. Blockchain Technologies

RASHTRASANT TUKADOJI MAHARAJ NAGPUR UNIVERSITY, NAGPUR FOUR YEAR BACHELOR OF TECHNOLOGY (B. Tech..) DEGREE COURSE SEMESTER: VI (C.B.C.S.)

BRANCH: COMPUTER SCIENCE AND ENGINEERING

Subject: Elective 3: Distributed Operating
Systems
Subject Code: BTECH-CSE-603.2T

Load	Credits	College Assessment Marks	University Evaluation	Total Marks
36 Hrs.	3	30	70	100

Aim: A distributed operating system is a software over a collection of independent, networked, communicating and physically separate computational nodes. They handle jobs which are serviced by multiple CPUs. Each individual node holds a specific software subset of the global aggregate operating system.

Prerequisite(s): Distributed Operating systems holds concepts such as threads, processes, mutual exclusion, deadlock. It also works on Computer networking concepts such as Internet, protocols, sockets, network application programming.

Course Objectives:

1	To understand the principles and techniques behind the design of
	distributed systems, such as locking, concurrency, scheduling, and
	communication across networks.
2	To get knowledge in distributed architecture, naming,
	synchronization, consistency and replication, fault tolerance,
	security, and distributed file systems.

Course Outcomes:

At the end of this course Student will be able to:

1	Learn the principles, architectures, algorithms and programming models used in distributed systems.
2	Understand the core concepts of distributed systems.
3	Design and implement sample distributed systems, using different algorithm.
4	Understand the Distributed File System, Architecture, and Mechanism.
5	Analyze the Distributed Scheduling, Issues in Load Distributing, components of a Load Distributing Algorithm, Load Distributing Algorithms.

SYLLABUS:

Unit I:

Fundamentals: Introduction, Models and Features, Concept of Distributed Operating system, Issues in Design of a Distributed Operating System. Foundations of Distributed System: Limitations of Distributed Systems.

Unit II:

Broadcast Algorithm, Distributed Mutual Exclusion: Requirement of Mutual Exclusion Non Token Based Algorithms: Lamport's Algorithm, Ricard-Agrawala Maekawa's Algorithm.

Unit III:

Distributed Deadlock Detection: Introduction, Deadlock Handling strategies in Distributed System, Centralized and Distributed Deadlock Detection Algorithms.

Unit IV:

Distributed File system, Architecture, and Mechanism for Building Distributed File System. General Architecture of DSM systems, Algorithm for Implementing DSM, Memory coherence and Coherence Protocols.

Unit V:

Distributed Scheduling, Issues in Load Distributing, Load Distributing Algorithms, Sender-Initiated Algorithm, Receiver-Intiated algorithm, Symmetrically Initiated Algorithm, Adaptive Algorithm.

Text books:

- 1. Advanced Concepts in Operating Systems, Shivaratri, Tata McGraw Hill, 2001. Mukesh Singhal and Niranjan
- 2. Distributed Systems Concepts and Design, Coulouris, Dollimore and Kindberg, 5th Edition, Addison-Wesley, 2012.

Reference books:

1. Distributed Operating System, Andrew S. Tanenbaum, Pearson Education, 2003.