

Министерство образования и науки Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н.Э. Баумана

(национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ_	Информатика и системы управления (ИУ)
КАФЕЛРА	Программное обеспечение ЭВМ и информационные технологии (ИУ7)

ОТЧЕТ ПО ЛАБОРАТОРНОЙ РАБОТЕ №7 «Граф»

Студент, группа **ИУ7-33Б**

Рядинский К.В.,

Описание условия задачи

Обработать графовую структуру в соответствии с указанным вариантом задания. Обосновать выбор необходимого алгоритма и выбор структуры для представления графов. Ввод данных – на усмотрение программиста. Результат выдать в графической форме.

В графе найти максимальное расстояние между всеми парами его вершин

Техническое задание

Входные данные:

1. Имя файла

Выходные данные

- 1. Таблица, содержащая максимальное расстояние между і и і вершинами
- 2. Графическое изображение графа

Функции программы

- 1. Поиск максимального расстояния между между всеми парами вершин графа
- 2. Графическое изображение графа

Обращение к программе

Запускается из терминала

Аварийные ситуации

- 1. Ввод несуществующего файла
- 2. Ввод пустого или содержащего некорректные данные (буквы, вещественные числа) файла
- 3. Ввод дуги с нулевой меткой
- 4. Превышение заданного кол-ва вершин

Структуры данных

Структура программы

```
void graph_add_edge(graph_t *graph, int u, int v, int weight); — добавление дуги void topological_sort(graph_t *graph, int v, bool *visited, arr_stack_t *stack); — обход графа по спискам смежности void longest_path(graph_t *graph, int s, vector_t *map); — Поиск длиннейших путей void graph_to_jpeg(const graph_t *graph, const char *name, FILE *f, vector_t *map); — экспорт графа для графического представления int input_graph(graph_t **__graph, vector_t **__map, FILE *f); — ввод графа
```

Визуализация

Алгоритм

Пользователем вводится путь к файлу с нужными данными для построения графа (начало и конец дуги, метка дуги). Далее проводится обход графа с поиском длиннейших путей по всем парам вершин. После этого пользователю выводится таблица стоимостей и время обработки с требуемой (затраченной) памятью.

Тесты

	Тест	Ввод	Вывод
1	Несуществующий файл	test.test	Ошибка, неправильное имя файл
2	Пустой файл	empty.empty	Ошибка, пустой файл
3	Файл содержит не только целые числа	badfile.txt	Ошибка чтения из файла.
4	Файл содержит метку, равную нулю	120	Ошибка, нулевая метка

Оценка эффективности

Кол-во вершин	Время обработки нс
5	37000
10	46000
15	98000

Кол-во вершин	Затраченная память нс
5	128
10	152
15	264

Контрольные вопросы

1. Что такое граф?

Граф – конечное множество вершин и соединяющих их ребер; $\mathbf{G} = \langle \mathbf{V}, \mathbf{E} \rangle$. Если пары \mathbf{E} (ребра) имеют направление, то граф называется ориентированным; если ребро имеет вес, то граф называется взвешенным.

2. Как представляются графы в памяти?

С помощью матрицы смежности или списков смежности.

3. Какие операции возможны над графами?

Обход вершин, поиск различных путей, исключение и включение вершин.

4. Какие способы обхода графов существуют?

Обход в ширину (BFS – Breadth First Search), обход в глубину (DFS – Depth First Search).

5. Где используются графовые структуры?

Графовые структуры могут использоваться в задачах, в которых между элементами могут быть установлены произвольные связи, необязательно иерархические.

6. Какие пути в графе Вы знаете?

Эйлеров путь, простой путь, сложный путь, гамильтонов путь.

7. Что такое каркасы графа?

Каркас графа – дерево, в которое входят все вершины графа, и некоторые (необязательно все) его рёбра.

Вывод

В данном алгоритме используется способ хранения графа в виде списка связностей. Используется поиск в глубину и полный перебор вершин и ребер. Тогда, если \mathbf{V} — вершины, а \mathbf{E} — ребра, то асимптотическая сложность алгоритма будет $\mathbf{O}(\mathbf{E} + \mathbf{V})$.

Был выбран алгоритм обхода дерева в глубину, так как нам нужно обойти все вершины, а этот алгоритм реализуется достаточно просто с использованием списка смежностей, использование других структур данных будет не столь удобным.