Fibonacci and the The Perfect Microbes

The perfect microbe is very-young for 1 second, young for the next, and old for the next and subsequent seconds. Each old microbe produces a new microbe, i.e. 2 seconds after the creation of a microbe, the microbe produces a new microbe and another new microbe for subsequent years.

Assume we start one just one microbe.

Second	#Microbes		
1	1		
2	1		
3	2		
4	3		
5	5		
6	8		
•••	•••		

Tree Growing Branches

Each branch grows during the 1st year and the end

of each subsequent year, it grows a new branch.

After Yr	1	tree has	1	branch
"	2	"	1	"
"	3	"	2	"
"	4	"	3	"
"	5	"	5	"
"	6	"	8	"
66	7	"	13	66

Fibonacci Sequence

Inductive/Recursive Definition

$$f(0) = 0$$

 $f(1) = 1$
 $f(n+2) = f(n+1) + f(n)$, if $n \ge 0$

Golden Ratio, f

line
$$L = |-----|$$
 ϕ

$$\phi \text{ is Golden Ratio } \equiv \frac{1}{\phi} = \frac{\phi}{1+\phi}$$

$$\equiv \phi^2 - \phi - 1 = 0$$

$$\equiv \phi = \frac{1+\sqrt{5}}{2} \qquad (= 1.618)$$

other root is

$$\hat{\phi} = \frac{1 - \sqrt{5}}{2} \ (= \ -0.618)$$

Golden Rectangle

A rectangle is said to be 'Golden' if it sides are in Golden Ratio

Consider a reactangle with width 1 and length ϕ . If the unit square is removed, the rectangle left is still a Golden Rectangle.

Lemma:

$$\phi^{n} = \phi^{n-1} + \phi^{n-2}(also \hat{\phi}^{n} = \hat{\phi}^{n-1} + \hat{\phi}^{n-2})$$

Pf:

Given
$$\phi^2 = \phi + 1$$

tf.
$$\phi^n = \phi^2 \phi^{n-2}$$

 $= (\phi+1)\phi^{n-2}$
 $= \phi^{n-1} + \phi^{n-2}$

end.

Thm.
$$f(n) = \frac{\phi^n - \hat{\phi}^n}{\sqrt{5}}$$

Pf: (by induction)

Base Cases:

n=0

$$f(0) = 0 = \frac{\phi^0 - \hat{\phi}^0}{\sqrt{5}}$$

n=1

$$f(1) = 1 \text{ and}$$

$$\frac{\phi^1 - \hat{\phi}^1}{\sqrt{5}} = \frac{1 + \sqrt{5} - 1 + \sqrt{5}}{2\sqrt{5}}$$

$$= 1$$

Induction Step:

$$f(n) = f(n-1) + f(n-2)$$

$$= \frac{\phi^{n-1} - \hat{\phi}^{n-1}}{\sqrt{5}} + \frac{\phi^{n-2} - \hat{\phi}^{n-2}}{\sqrt{5}}$$

$$= \frac{\phi^{n-1} + \phi^{n-2} - (\hat{\phi}^{n-1} + \phi^{n-2})}{\sqrt{5}}$$

$$= \{ by Lemma \}$$

$$= \frac{\phi^{n} - \hat{\phi}^{n}}{\sqrt{5}}$$

End.

Other Properties:

•
$$\lim_{n\to\infty} \frac{f(n+1)}{f(n)} = \phi$$
, the Golden Ratio.

•
$$f(2n+1) = f(n) * f(n) + f(n+1) * f(n+1)$$

 $f(2n) = (2f(n+1) - f(n)) * f(n)$

• A regular pentagon with sides 1, has a 'diagonal' of length ϕ . $| \text{Diag} | = 2 \text{ Cos } \frac{\pi}{5} = \phi$


```
fib (k: INTEGER): INTEGER is
--recursive version of fibonnaci
require
    pre_fib: k >= 0

do

if k = 0 then
    Result := 0
elseif k = 1 then
    Result := 1
else
    Result := fib (k - 2) + fib (k - 1)
end
end;
```

```
fib1 (k: INTEGER): INTEGER is
     require
          pre_fib: k > 0
     local
          i, p, c, n: INTEGER
     do
          from
                p := 0;
                c := 1;
                i := 1
          until
                i = k
          loop
                n := p + c;
               p := c;
                c := n;
                i := i + 1
          end;
          Result := c
     end;
```

```
fib2 (k: INTEGER): INTEGER is
     require
          pre_fib: k > 0
     local
          i, c, n: INTEGER
     do
          from
               c := 0;
               n := 1;
               i := 1
          until
               i = k
          loop
               n := n + c;
               c := n - c;
               i := i + 1
          end;
          Result := n
     end;
```