Bayesian Logistic Regression with Polya-Gamma latent variables

Kaspar Märtens Sherman Ip

23rd October 2015

Classical logistic regression

• Modelling association between binary outcome y_i and feature vector x_i

$$y_i | (x_i, \beta) \sim \text{Bernoulli}(p_i)$$

$$p_i = \frac{1}{1 + e^{-x_i^T \beta}}$$

Bayesian logistic regression

• Parameter vector β can be treated as a random variable

• Prior $\beta \sim N(b, B)$

Bayesian logistic regression

• Parameter vector β can be treated as a random variable

• Prior $\beta \sim N(b, B)$

• However, no closed form for the posterior $p(\beta|y)$

Prior

Prior, likelihood

Prior, likelihood, posterior

Informative prior, likelihood

Informatave prior, likelihood, posterior

Data augmentation scheme

- Introduce latent variable ω such that
 - prior $p(\beta)$
 - posterior $p(\beta|y,\omega)$

would be conjugate distributions

Data augmentation scheme

- Introduce latent variable ω such that
 - prior $p(\beta)$
 - posterior $p(\beta|y,\omega)$

would be conjugate distributions

It turns out that Polya-Gamma is a suitable distribution

$$\omega_i | \beta \sim PG(1, x_i^T \beta)$$
 $i = 1, ..., N$

Polya-Gamma distribution PG(1, z)

$$\sum_{k=1}^{\infty} \frac{g_k}{(k-0.5)^2 + \frac{z^2}{4\pi^2}} \quad \text{where } g_k \sim \Gamma(1,1)$$

Polya-Gamma distribution PG(1, z)

$$\sum_{k=1}^{\infty} \frac{g_k}{(k-0.5)^2 + \frac{z^2}{4\pi^2}}$$

where $g_k \sim \Gamma(1, 1)$

Proposed PG(1,1) sampler

Density 0.0 0.5 1.0 1.5 2.0 X

Proposed PG(1,10) sampler

Gibbs sampling scheme

- 1. $\omega_i | \beta \sim PG(1, x_i^T \beta)$ 2. $\beta | y, \omega \sim N(m_\omega, V_\omega)$

Gibbs sampling scheme

1. $\omega_i | \beta \sim \text{PG}(1, x_i^T \beta)$ from this distribution β . $\beta | y, \omega \sim \text{N}(m_\omega, V_\omega)$

How to sample distribution?

$$f(x) = \sum_{n=0}^{\infty} (-1)^n a_n(x)$$

$$\begin{cases} \frac{2}{1000} & \frac{2}{$$

Χ

$$f(x) = \sum_{n=0}^{\infty} (-1)^n a_n(x) \qquad S_k(x) = \sum_{n=0}^k (-1)^n a_n(x)$$

$$S_k(x) = \sum_{n=0}^k (-1)^n a_n(x)$$

$$f(x) = \sum_{n=0}^{\infty} (-1)^n a_n(x) \qquad S_k(x) = \sum_{n=0}^k (-1)^n a_n(x)$$

$$S_k(x) = \sum_{n=0}^k (-1)^n a_n(x)$$

$$f(x) = \sum_{n=0}^{\infty} (-1)^n a_n(x) \qquad S_k(x) = \sum_{n=0}^k (-1)^n a_n(x)$$

$$|S_k(x)| = \sum_{n=0}^k (-1)^n a_n(x)$$

$$f(x) = \sum_{n=0}^{\infty} (-1)^n a_n(x) \qquad S_k(x) = \sum_{n=0}^k (-1)^n a_n(x)$$

$$S_k(x) = \sum_{n=0}^k (-1)^n a_n(x)$$

Our implementation

GitHub, Inc. [US] https://github.com/kasparmartens/PolyaGamma

PolyaGamma

An R package for Bayesian logistic regression. The posterior distribution of the parameters is obtained via Gibbs sampling using Polya-Gamma latent variables (see paper "Bayesian Inference for Logistic Models Using Pólya-Gamma Latent Variables" for details).

This package can be installed as follows:

```
devtools::install_github("kasparmartens/PolyaGamma")
```

Our implementation

GitHub, Inc. [US] https://github.com/kasparmartens/PolyaGamma

PolyaGamma

An R package for Bayesian logistic regression. The posterior distribution of the parameters is obtained via Gibbs sampling using Polya-Gamma latent variables (see paper "Bayesian Inference for Logistic Models Using Pólya-Gamma Latent Variables" for details).

This package can be installed as follows:

```
devtools::install_github("kasparmartens/PolyaGamma")
```

Gibbs sampling

1.
$$\omega_i | \beta \sim PG(1, x_i^T \beta)$$

2.
$$\beta | y, \omega \sim N(m_{\omega}, V_{\omega})$$

Tests on simulated data

• Generated data with $\beta = (1,1)^T$

Tests on simulated data

• Generated data with $\beta = (1,1)^T$

Tests on real data

• We set prior $\beta \sim N\left(0, \frac{1}{\lambda} I\right)$ and varied prior precision λ

 Test error is comparable to classical logistic regression

