Stochastic Processes Assignment 4, due 2022-02-18

Note: Start each problem on a new page. (Multiple pages for a single problem are fine if needed.)

Problem 1. Is it possible for a branching process to be reversible? What can be said about ξ in that case (The number of children of each individual is an independent copy of ξ .)

Problem 2. Find the probability generating function $G(s) = \mathbb{E}s^X$ for the following distributions:

- (a) X = Bernoulli(p): here P(X = 1) = p and P(X = 0) = 1 p.
- (b) X = Bin(n, p).
- (c) $X = Poi(\lambda)$.
- (d) X = Geom(p), so $P(X = n) = p(1 p)^{n-1}$ for n = 1, 2, ...

Problem 3. Find the probability generating function $G(s) = \mathbb{E}s^X$ for the following distributions:

- (a) X = A + B where A = Bin(n, p) and B = Geom(p) are independent.
- (b) Let $N = \text{Poi}(\lambda)$ and Y_1, Y_2, \ldots be Geom(p) for some p, λ and all are independent. Let $X = Y_1 + \cdots + Y_N$.
- (c) Let N = Geom(q) and Y_1, Y_2, \ldots be Geom(p) for some p, q and all are independent. Let $X = Y_1 + \cdots + Y_N$.

Problem 4. Consider a branching process with offspring distribution ξ with

$$P(\xi = 0) = \alpha$$
 $P(\xi = 1) = \beta$ $P(\xi = 2) = 0$ $P(\xi = 3) = 1 - \alpha - \beta$.

- (a) If $\alpha = \beta = 1/3$, find the probability the process becomes extinct.
- (b) If we start with 4 individuals instead of 1, find the probability the process becomes extinct.
- (c) If α, β are such that $\mathbb{E}(\xi) = 2$, what α and β minimize the probability of extinction (starting with 1 individual)? What α, β maximize that probability?

Problem 5. Find transition probabilities on $S = \{0, 1, 2, ...\}$ so that the stationary distribution is $Poi(\lambda)$ and the only transitions that can hove non-zero probability are $P_{n,n-1}, P_{n,n+1}$, and $P_{n,n}$ for all n.

Extra practice problems Do not hand these in. (Feel free to ask for hints is stuck.) Ross, chapter 4: problems 64,66,71,72,73,74.

Read ahead We will start Chapter 5 next week.