Convergencia de los métodos vistos:

Figure 2.11 (a) The horizontal convergence band for locating a solution to f(x) = 0.

Figure 2.11 (b) The vertical convergence band for locating a solution to $f(x) = \emptyset$.

Figure 2.12 (a) The rectangular region defined by $|x - p| < \delta$ AND $|y| < \epsilon$.

Figure 2.12 (b) The unbounded region defined by $|x - p| < \delta$ OR $|y| < \epsilon$.

$$|p_n - p_{n-1}| < \delta$$
 Error absoluto

$$\frac{2|p_n - p_{n-1}|}{|p_n| + |p_{n-1}|} < \delta$$
Error relativo

Funciones problemáticas

Raíces múltiples

Orden de una raíz:

Supongamos que f(x) y sus primeras M derivadas están definidas y son continuas en el intervalo centrado en el punto p. Diremos que f(x) = 0 tiene una raíz de orden M en x=p si

$$f(p) = 0$$
, $f'(p) = 0$, ..., $f^{(M-1)}(p) = 0$, and $f^{(M)}(p) \neq 0$.

Si M=1 son raíces simples.

Si M=2 son raíces dobles.

En general, si M>1 raíces múltiples.

Velocidad de convergencia.

• Se necesita este concepto para comparar la velocidad de convergencia de los métodos.

Definición. Orden de convergencia.

Supongamos que $\{p_n\}_{n=0}^{\infty}$ converge a **p** y sea $E_n = p - p_n$ para cada n>=0. Si existen dos constantes positivas A>0 y R>0 tales que

$$\lim_{n\to\infty} \frac{|p-p_{n+1}|}{|p-p_n|^R} = \lim_{n\to\infty} \frac{|E_{n+1}|}{|E_n|^R} = A,$$

entonces se dice que la sucesión converge a **p** con orden de convergencia R y el numero A se llama constante asintótica del error.

En otras palabras:

Si $|E_{n+1}|$ tiende a $A*|E_n|^R$ cuando n tiende a infinito, se dice que el método es de orden R.

En la práctica: Si R = 1 y el cociente anterior a partir de un cierto n se estabiliza en un valor 0 < A < 1, decimos que la convergencia es lineal.

Si R = 2 y el cociente anterior a partir de un cierto n se estabiliza en un valor A > 0, decimos que la convergencia es cuadrática.

<u>Ejercicio</u>: Buscar en INTERNET el orden de convergencia del método de Newton para raíces simples y para raíces dobles.

<u>Ejemplo</u>: $f(p) = p^3 - 3p + 2 = 0$, $p_0 = -2.4$, p = -2. ¿Cuál es el orden de esa raíz?

Ejercicio: $f(x) = x^3 - 3x + 2$, $p_0 = 1.2$, p = 1

Averiguar el orden de la raíz y confirmar si se cumple la definición de la velocidad.

Orden de la raiz p=1 es 2, raiz multiple, m. Newton tiene para ella convergencia lineal

p an ar a mar a a mar a garranar mara an							
n	Xn	En	$ E_{n} / E_{n-1} ^{1}$				
0	1.2	0.2	No hay				
1	1.103	0.103	0.5077				
2	1.0523	0.0523	0.4971				
3							
4							
5							
6							

A = 0.5

Teorema: Supongamos que el método de Newton-Raphson genera una sucesión $\{p_n\}_{n=0}^{\infty}$ que converge a un cero p de la función f(x). Si p es una raíz simple, entonces la convergencia es cuadrática:

$$|E_{N+1}| \approx \frac{|f''(p)|}{2|f'(p)|} |E_n|^2$$

para n suficientemente grandes.

Si p es una raíz múltiple de orden M>1, entonces la convergencia es lineal:

$$|E_{N+1}|\approx \frac{M-1}{M}|E_n|$$

para el n suficientemente grandes.

Ejercicio:

Para la siguiente función hallar su constante asintótica para su raíz respectiva:

$$f(x) = xe^{-x}, \quad p = 0$$

<u>Ejemplo.</u> Nos ofrecen un crédito de 6000 euros a devolver en 50 mensualidades de 150 euros. Llamando *C* al importe del préstamo,

n al número de pagos, *a* al importe del plazo y *i* al tipo de interés por periodo, se cumple la siguiente ecuación:

$$Cr^n = a \frac{r^n}{r - 1}$$

donde r = i+1.

Utilice el método de Newton para obtener el interés del crédito partiendo de la estimación inicial r = 1.1 hasta alcanzar una precisión del orden de 10^{-6} (para el valor absoluto de la función).

Solución (completar donde es necesario). Para aplicar el método de Newton, se sugiere escribir la ecuación de la forma:

$$f(r) = Cr^n(r-1) - \cdots = 0$$
 (completar) con lo que la derivada queda

$$f'(r) = \cdots \dots (completar)$$

Usando 4 iteraciones obtenemos resultado: r = _____.

Veremos una modificación del método de Newton que converge más rápido en raíces no simples.

Iteración de Newton acelerada.

Supongamos que el algoritmo de Newton produce una sucesión que converge linealmente a una raíz x=p de orden M>1. Entonces la formula de iteración de Newton acelerada

$$p_k = p_{k-1} - \frac{Mf(p_{k-1})}{f'(p_{k-1})}$$

genera una sucesión $\{p_k\}_{k=0}^{\infty}$ que converge cuadráticamente a p.

Ej. Hacer una tabla para ver la velocidad de convergencia del método de Newton acelerado para

$$f(x) = x^3 - 3x + 2$$
, $p_0 = 1.2$, $p = 1$

k	p_k	$p_{k+1}-p_k$	$E_k = p - p_k$	$ E_{k+1} $	$ f(p_k) $
				${ E_k ^2}$	
0	1.2	-0.1939	-0.2	0.1525	0.1280
1					
2					
3					

TAREA:

1. Escriba un pequeño programa en C++ que resuelva la ecuación

 $x^3 + 3x = 5x^2 + 7$ con el método de Newton. Efectuar máximo 100 iteraciones comenzando en x=5 y utilizando algún criterio de parada visto.

- 2. Buscar el método de la secante, hacer un resumen en el cuaderno, averiguar la velocidad de convergencia del método.
- 3. Resolver con el método de la secante, hacer 5 iteraciones $x^3 + 3x = 5x^2 + 7$

Cuando no hay decrecimiento monótono de $|f(x_n)|$ se puede hacer cálculos con el Método Modificado de Newton:

```
x_{n+1}=x_n-\alpha_n[f'(x_n)]^{-1}f(x_n), n=0, 1, 2...
y coeficientes \alpha_n (0< \alpha_n<=1) elegir que se cumpliera: |f(x_{n+1})| < |f(x_n)|
```

Ejercicio:

```
Calcular la raíz de la ecuación f(x)=x^3-x-1=0 con la
exactitud \varepsilon = 10^{-2}, empezando con x_0 = 0.7.
Guia de ejercicio: llenar lo que falta:
                      (como lo han obtenido?)
X_1 = 3.5872
f(x_0) = -1.357 f(x_1) = 41.56
     como la condición |f(x_{n+1})| < |f(x_n)|
no se cumple, tomamos \alpha_n=1/2 y aplicamos la formula de
método modificado. Encontramos nuevo valor de
x_1 = 2.14 y f(x_1) = 6.706. No nos sirve.
Tomamos nuevo \alpha_n = 0.25
x_1 = 1.4218 y f(x_1) = 0.452
se cumple |f(x_{n+1})| < |f(x_n)|, entonces
X_1=1.4218
x_2 = 1.3324 f(x_2) = 0.0333 no es menor que \varepsilon = 10^{-2 \text{ por su valor}}
X_3 = 1.3247 f (X_3) = -7.657977700015195e-005
```

Respuesta: $x_3=1.3247$.

Casa: comparar el proceso si hubieran usado el método clásico de Newton. Cuantas iteraciones se necesitarían para alcanzar la exactitud deseada. Hacer la conclusión.