FISEVIER

Contents lists available at ScienceDirect

European Journal of Operational Research

journal homepage: www.elsevier.com/locate/ejor

Discrete Optimization

Iterated maxima search for the maximally diverse grouping problem

Xiangjing Lai^a, Jin-Kao Hao^{a,b,*}

- ^a LERIA, Université d'Angers, 2 Bd Lavoisier, Angers 49045, France
- ^b Institut Universitaire de France, Paris, France

ARTICLE INFO

Article history: Received 10 May 2015 Accepted 10 May 2016 Available online 18 May 2016

Keywords:
Graph grouping and clustering problems
Iterated search
Heuristics

ABSTRACT

The maximally diverse grouping problem (MDGP) is to partition the vertices of an edge-weighted and undirected complete graph into m groups such that the total weight of the groups is maximized subject to some group size constraints. MDGP is a NP-hard combinatorial problem with a number of relevant applications. In this paper, we present an innovative heuristic algorithm called iterated maxima search (IMS) algorithm for solving MDGP. The proposed approach employs a maxima search procedure that integrates organically an efficient local optimization method and a weak perturbation operator to reinforce the intensification of the search and a strong perturbation operator to diversify the search. Extensive experiments on five sets of 500 MDGP benchmark instances of the literature show that IMS competes favorably with the state-of-the-art algorithms. We provide additional experiments to shed light on the rationality of the proposed algorithm and investigate the role of the key ingredients.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Given an edge-weighted and undirected complete graph G = (V, E, D), where $V = \{1, 2, \ldots, n\}$ is the set of n vertices, $E = \{\{i, j\}: i, j \in V, i \neq j\}$ is the set of $n \times (n-1)/2$ edges, and $D = \{d_{ij} \geq 0: \{i, j\} \in E\}$ represents the set of non-negative edge weights, the maximally diverse grouping problem (MDGP for short) is to partition the vertex set V into m disjoint subsets or groups such that the size of each group g lies in a given interval $[a_g, b_g]$ $(g = 1, 2, \ldots, m)$ while maximizing the sum of the edge weights of the m groups. Here, a vertex $v \in V$ is usually called an element, an edge weight $d_{ij} \in D$ is called the diversity between elements i and j, while a_g and b_g are respectively called the lower and upper limits (or bounds) of the size of group g.

MDGP can be expressed as a quadratic integer program with binary variables x_{ig} that take the value of 1 if element i is in group g and 0 otherwise (Gallego, Laguna, Martí, & Duarte, 2013; Rodriguez, Lozano, García-Martínez, & González-Barrera, 2013).

Maximize
$$\sum_{g=1}^{m} \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} d_{ij} x_{ig} x_{jg}$$
 (1)

Subject to
$$\sum_{g=1}^{m} x_{ig} = 1, i = 1, 2, ..., n$$
 (2)

$$a_g \le \sum_{i=1}^n x_{ig} \le b_g, g = 1, 2, \dots, m$$
 (3)

$$x_{ig} \in \{0, 1\}, i = 1, 2, \dots, n; g = 1, 2, \dots, m$$
 (4)

where the set of constraints (2) guarantees that each element is located in exactly one group and the set of constraints (3) forces the size of group g is at least a_g and at most b_g .

MDGP belongs to the category of vertex-capacitated clustering problems which are a type of extensively studied combinatorial search problems and can further be divided into the max-clustering problem and min-clustering problem (Ferreira, Martin, Souza, Weismantel, & Wolsey, 1996, 1998; Johnson, Mehrotra, & Nemhauser, 1993; Özsoy & Labbé, 2010; Wang, Alidaee, Glover, & Kochenberger, 2006). In short, the max-clustering (min-clustering) problem is to partition the vertices of an undirect graph G = (V, E) with edge and vertex weights into m mutually disjoint subsets (groups or clusters) such that the sum of the vertex weights of the subsets is bounded from below by a and from above by b while maximizing (minimizing) the sum of the weights of the edges inside the subsets (Johnson et al., 1993).

In addition to its theoretical signification as a typical NP-hard problem, MDGP has a variety of real-world applications, like assignment of students to groups (Johnes, 2015; Krass & Ovchinnikov, 2010; Yeoh & Nor, 2011), creation of peer review groups

^{*} Corresponding author at: LERIA, Université d'Angers, 2 Bd Lavoisier, 49045 Angers, France. Tel.: +33241735076; fax: +33241735073.

E-mail addresses: laixiangjing@gmail.com (X. Lai), hao@info.univ-angers.fr, jin-kao.hao@univ-angers.fr (J.-K. Hao).

(Chen, Fan, Ma, & Zeng, 2011), VLSI design (Weitz & Lakshminarayan, 1997), storage allocation of large programs onto paged memory, and creation of diverse groups in companies so that people from different backgrounds work together (Bhadury, Mighty, & Damar, 2000). For a review of possible applications of MDGP, the readers are referred to recent papers like Gallego et al. (2013), Palubeckis, Ostreika, and Rubliauskas (2015), Rodriguez et al. (2013), Urošević (2014).

Given the practical importance and high computational complexity of MDGP, a number of exact and heuristic algorithms have been proposed in the literature. One of the most representative exact algorithm for MDGP is the column generation approach presented in Johnson et al. (1993). Nevertheless, local search or evolutionary heuristics remain the dominant approach in the literature to find high-quality sub-optimal solutions for large graphs. Examples of local search heuristics includes multistart algorithm (Arani & Lofti, 1989), Weitz-Jelassi (WJ) algorithm (Weitz & Jelassi, 1992), Lotfi-Cerveny-Weitz (LCW) algorithm (Weitz & Lakshminarayan, 1998), T-LCW method based on LCW and tabu search (Gallego et al., 2013), tabu search with strategic oscillation (TS-SO) (Gallego et al., 2013), multistart simulated annealing (MSA) (Palubeckis, Karčiauskas, & Riškus, 2011), variable neighborhood search (VNS) (Palubeckis et al., 2011), general variable neighborhood search (GVNS) (Urošević, 2014), skewed general variable neighborhood search (SGVNS) (Brimberg, Mladenović, & Urošević, 2015), iterated tabu search (ITS) (Palubeckis et al., 2015) and several graph theoretical heuristics (Feo & Khellaf, 1990). The population-based evolutionary approach includes hybrid genetic algorithm (LSGA) (Fan, Chen, Ma, & Zeng, 2010), hybrid grouping genetic algorithm (Chen et al., 2011), hybrid steady-state genetic algorithm (HGA) (Palubeckis et al., 2011), artificial bee colony (ABC) algorithm (Rodriguez et al., 2013), and constructive genetic algorithm (Lorena & Antonio, 2001). According to the computational results reported on the MDGP benchmarks, the heuristics T-LCW, TS-SO, HGA, MSA, VNS, ABC, GVNS, ITS, and SGVNS achieved high performances at the time they were published.

In this paper, we propose an effective heuristic called the iterated maxima search (IMS) algorithm for solving MDGP. IMS follows and extends the iterated local search framework (Lourenco, Martin, & Stützle, 2003). Though IMS shares ideas from breakout local search (Benlic & Hao, 2013a; 2013b) and three-phase local search (Fu & Hao, 2015), it distinguishes itself from these approaches by three specific features: its local search procedure (to improve the incumbent solution), the maxima search scheme (to locate other local optima within a limited region of the search space) and its perturbation operator (to modify greatly the incumbent solution). In addition, IMS employs a randomized procedure for initial solution generation. When the proposed algorithm was assessed on five sets of 500 benchmark instances (120 $\leq n \leq$ 3000) commonly used in the literature, the computational results showed that the algorithm achieves highly competitive results compared to the state-of-the-art algorithms especially on the large-sized in-

In Section 2, we describe the components of the proposed algorithm. Section 3 is dedicated to extensive computational assessments based on the commonly used benchmarks with respect to the top performing algorithms from the literature. In Section 4, the important components of the proposed algorithm are analyzed and discussed. Conclusions are provided in the last Section.

2. Iterated maxima search algorithm for MDGP

The proposed iterated maxima search (IMS) algorithm can be considered as an extended iterated local search algorithm (Lourenco et al., 2003) and shares ideas from breakout local search (Benlic & Hao, 2013a; 2013b) and three-phase local search

Algorithm 1: Main framework of iterated maxima search method for MDGP.

Input: Instance I, the depth of maxima search (α) , the

strength of strong perturbation (η_s), the cutoff time **Output:** The best solution s^* found 1 begin 2 $s \leftarrow InitialSolution(I)$ /* Sections 2.3 and 2.4 */ 3 $s^* \leftarrow s$ **while** $Time() \le t_{max}$ **do** 4 $s \leftarrow MaximaSearch(s, \alpha)$ /* Section 2.5 */ 5 6 if $f(s) > f(s^*)$ then $s^* \leftarrow s$ 7 end $s \leftarrow StrongPerturbation(s, \eta_s)$ /* Section 2.6 */ end 10 return s* 11 12 end

(Fu & Hao, 2015) (see Section 2.7 for more discussions). IMS is composed of four basic procedures: solution initialization, local search, weak perturbation, and strong perturbation. The basic idea of the IMS algorithm is to provide the search algorithm with a desirable tradeoff between intensification and diversification. This is achieved by iterating the maxima search procedure (local search combined with weak perturbation to explore a limited region around a locally optimal solution) followed by the strong perturbation procedure (to displace the search to a distant region by changing strongly the attained local optimum).

2.1. General procedure

The IMS algorithm (Algorithm 1) starts from a feasible initial solution (Section 2.2) that is obtained with a randomized construction procedure (Section 2.3). Then it repeats a number of iterations until a cutoff time is reached. At each iteration, the incumbent solution s is improved by the maxima search procedure (Sections 2.4 and 2.5) and then perturbed by the strong perturbation procedure (Sections 2.6). The best solution found (s*) is updated whenever it is needed and finally returned as the output at the end of the IMS algorithm. In the rest of this section, we describe the different components of the proposed algorithm.

2.2. Search space, fitness function and solution representation

For a given MDGP instance G = (V, E) with its edge diversity matrix $D = [d_{ij}]_{n \times n}$ and the number m of groups, the search space Ω explored by the IMS algorithm contains all partitions of the elements of V into m groups such that the size of each group lies between its lower and upper limits. In other words, our IMS algorithm visits only feasible solutions.

Formally, let $P:V \to \{1,\ldots,m\}$ be a partition function of the n elements of V to m groups. For each group $g \in \{1,\ldots,m\}$ with lower and upper limits a_g and b_g , let $P_g = \{i \in V : P(i) = g\}$ (i.e., P_g is the set of elements of group g). Then the search space is given by:

$$\Omega = \{P : \forall g \in \{1, ..., m\}, a_g \le |P_g| \le b_g\}.$$

For any candidate solution $s = \{P_1, P_2, \dots, P_m\}$ of Ω , its quality or fitness is given by the objective value f(s):

$$f(s) = \sum_{g=1}^{m} \sum_{i,j \in P_g, i < j} d_{ij}$$
 (5)

Given a candidate solution $s = \{P_1, P_2, \ldots, P_m\}$, we use a n-dimensional vector y (element coordinate vector) to indicate the group of each element. In other words, if element i belongs to group P_g , then y[i] = g ($i \in \{1, \ldots, n\}$). Additionally, we use a m-dimensional vector z (group size vector) to indicate the size of each group in solution s, i.e., $z[g] = |P_g|$ ($g \in \{1, \ldots, m\}$). It should be clear that any solution $s \in \Omega$ can be fully characterized by its associated y and z vectors. For this reason, we use the notation $s = \langle y, z \rangle$ to represent a solution in the rest of this section whenever this is appropriate.

2.3. Initial solution

In the IMS algorithm, the initial solution is generated as follows. First, we construct β feasible solutions, each solution being generated in two stages. First, we pick an empty group g ($g \in \{1, \ldots, m\}$), randomly select a_g elements among the unassigned elements, assign them to group g, and repeat this process until all groups reach their lower bound a_g in size. Second, the remaining elements are assigned to a random group g whose size is less than b_g in an one-by-one way. Finally, for each constructed solution, the local search procedure (see Section 2.4) is applied to improve its quality. The best one among those β solutions is chosen as the initial solution of our IMS algorithm. This initialization procedure is an adaptation of previous approaches used in Brimberg et al. (2015), Gallego et al. (2013), Urošević (2014).

2.4. Local search method

For local optimization, the IMS algorithm employs a double-neighborhood local search method described in Algorithm 2 (also see Sections 2.4.1 and 2.4.2 for details), where γ and Δ_f are defined in Section 2.4.2. Starting with an input solution, the local search method examines in a deterministic order two complementary neighborhoods N_1 and N_2 (see Section 2.4.1 for the definition of these neighborhoods), and updates the incumbent solution each time an improving neighbor solution is detected. This process terminates when the incumbent solution s cannot be further improved by any neighbor solution in both $N_1(s)$ and $N_2(s)$.

Specifically, the local search method examines the neighborhoods N_1 and N_2 in a token-ring way $(N_1 \rightarrow N_2 \rightarrow N_1 \rightarrow N_2 \rightarrow N_2$. When examining a given neighborhood order (Algorithm 2, lines 7–21 for N_1 and lines 23–35 for N_2). Each time an improving neighbor solution is found, it becomes the new incumbent solution (first improvement strategy) and the search continues from this point to explore neighbor solutions within the neighborhood of the new incumbent solution (Algorithm 2, lines 12–16 for N_1 and lines 28–30 for N_2). According to the algorithm, the search switches from N_1 to N_2 after examining at most $n \times m$ neighbor solutions and from N_2 to N_1 after considering at most $\frac{n \times (n-1)}{2}$ solutions. Note that the 'if' tests in lines 9 and 25 aim at excluding solutions that do not belong to the neighborhoods N_1 and N_2 .

The whole local search method stops when no better solution can be found in both N_1 and N_2 and returns the best solution encountered which is a locally optimal solution with respect to N_1 and N_2 .

Note that though our local search method uses the same neighborhoods as the variable neighborhood descent (VND) method in Brimberg et al. (2015), our way of exploring the two neighborhoods is quite different. The standard VND method starts with the first neighborhood N_1 and makes a complete exploitation of this neighborhood. It switches to the next neighborhood N_2 when a local optimum is attained with respec to N_1 . Moreover, VND

Algorithm 2: Local search procedure.

```
1 Function LocalSearch(s = \langle y, z \rangle)
   Input: Element coordinate vector y[1:n], group size vector
           z[1:m]
   Output: The local optimum solution (denoted by \langle y, z \rangle)
2 Initialize f, move value matrix \gamma[n,m] /* Section 2.4.2 */
3 Improve ← true
4 while Improve=true do
       Improve \leftarrow false
5
       /* Examine the neighborhood N_1 in a lexicographical
6
       order
       for v \leftarrow 1 to n do
7
          for g \leftarrow 1 to m do
8
9
              if (y[v] \neq g) \land (z[y[v]] > a_{y[v]}) \land (z[g] < b_g) then
                  \Delta_f \leftarrow \gamma[v][g] - \gamma[v][y[v]]
10
                                                      /* Calculate the
                  move value */
                  if \Delta_f > 0 then
11
                      z[y[v]] \leftarrow z[y[v]] - 1
12
                      z[g] \leftarrow z[g] + 1
13
                      y[v] \leftarrow g
                                             /* Update the incumbent
14
                      solution */
                      f \leftarrow f + \Delta_f
15
                      Update matrix \gamma
                                                   /* Section 2.4.2 */
16
                      Improve ← true
17
18
                  end
19
              end
          end
20
       end
21
22
       /* Examine the neighborhood N_2 in a lexicographical
       order
       for v \leftarrow 1 to n-1 do
23
          for u \leftarrow v + 1 to n do
24
              if y[v] \neq y[u] then
25
                  \Delta_f \leftarrow (\gamma[v][y[u]] - \gamma[v][y[v]]) + (\gamma[u][y[v]] -
26
                  \gamma[u][y[u]]) - 2d_{vu}
                  if \Delta_f > 0 then
27
                      Swap(y, v, u)
                                             /* Update the incumbent
                      solution */
                      f \leftarrow f + \Delta_f
                      Update matrix \gamma
30
                                                   /* Section 2.4.2 */
                      Improve ← true
31
                  end
32
33
              end
          end
      end
35
36 end
37 return <y, z>
```

switches immediately to the first neighborhood N_1 as soon as an improving solution is encountered in N_2 . VND stops when the search process reaches the end of neighborhood N_2 , i.e., when no improving solution can be found in N_2 .

In the following subsections, we describe in detail the neighborhood structures and the streamlining technique for a fast neighborhood evaluation which is useful to accelerate the local search procedure.

2.4.1. Neighborhood structures

We now define the two neighborhoods explored by the local search procedure, called the constrained one-move neighborhood (denoted by N_1) and swap neighborhood (N_2) respectively. For MDGP, N_1 and N_2 are two popular neighborhoods that were

used in several previous studies (Brimberg et al., 2015; Gallego et al., 2013; Palubeckis et al., 2011; Palubeckis et al., 2015; Rodriguez et al., 2013; Urošević, 2014).

The constrained *OneMove* neighborhood N_1 is defined as follows. Given a solution (or partition) $s = \{P_1, P_2, \ldots, P_m\}$, the *OneMove* operator transfers a vertex v from its current group P_i to another group P_j such that $|P_i| > a_i$ and $|P_j| < b_j$, where a_i and b_j denote respectively the lower limit of $|P_i|$ and the upper limit of $|P_j|$. Let $< v, P_i, P_j >$ designate such a move and $s \oplus < v, P_i, P_j >$ be the resulting neighboring solution when applying the move to s. Then the neighborhood N_1 of s is composed of all possible solutions that can be obtained by applying the constrained *OneMove* operator to s. i.e.,

$$N_1(s) = \{s \oplus \langle v, P_i, P_i \rangle : v \in P_i, i \neq j, |P_i| > a_i, |P_i| < b_i\}$$

One notices that this neighborhood is not applicable if $a_i = b_i$ holds for all the groups. Clearly N_1 is bounded by O(nm) in size.

The *SwapMove* neighborhood N_2 is defined as follows. Given two vertices v and u which are located in two different groups of solution s, the SwapMove(v,u) move exchanges their groups to produce a neighboring solution. Thus, the neighborhood N_2 of a solution s is composed of all possible neighboring solutions that can be obtained by applying SwapMove to s, i.e.,

$$N_2(s) = \{s \in SwapMove(v, u) : v \in P_i, u \in P_j, 1 \le i < j \le m\}$$

Clearly the size of N_2 is bounded by $O(n^2)$ and is usually much larger than that of N_1 since often n > m holds.

2.4.2. Fast neighborhood evaluation technique

Like Brimberg et al. (2015), Palubeckis et al. (2011, 2015), Rodriguez et al. (2013), Urošević (2014), we adopt an incremental technique for fast evaluation of the considered neighborhood. We maintain a $n \times m$ matrix γ to effectively calculate the move value (i.e., the change of objective value) of each candidate move, where the entry $\gamma[v][g]$ represents the sum of weights between the vertex v and vertices in the group g for the current solution.

Given the current solution s, if a OneMove move, $\langle v, P_i, P_j \rangle$, is performed, the move value can be easily determined as $\Delta_f(\langle v, P_i, P_j \rangle) = \gamma[v][j] - \gamma[v][i]$, and then the matrix γ is updated accordingly. Specifically, the ith and jth columns of matrix γ are updated as follows: $\gamma[u][i] = \gamma[u][i] - d_{vu}$, $\gamma[u][j] = \gamma[u][j] + d_{vu}$, $\forall u \in V, u \neq v$, where d_{vu} is the diversity between vertices v and u. On the other hand, if a SwapMove(v, u) operation, which is composed of two OneMove operations, is performed, its move value can be calculated as $\Delta_f(SwapMove(v, u)) = (\gamma[v][y[u]] - \gamma[v][y[v]]) + (\gamma[u][y[v]]) - \gamma[u][y[u]]) - 2d_{vu}$, where y[v] and y[u] are the group of vertex v and u in the current solution $s = \langle y, z \rangle$ (see Section 2.2).

The matrix γ is initialized at the beginning of each neighborhood search, and is updated after each move, which can respectively be achieved in $O(n^2)$ and O(n) for *OneMove* and *SwapMove*.

2.5. Maxima search procedure with weak perturbation

The maxima search (MS) procedure, as described in Algorithm 3, aims to detect other locally optimal solutions of better quality within a limited search region around a given input local optimum. For this purpose, it alternates between the local search procedure described in Section 2.4 and a weak perturbation procedure explained below. Specifically, starting with the input solution, MS first applies the local search procedure to obtain a local optimum which becomes the incumbent solution (Algorithm 3, line 4). Then, it performs the weak perturbation procedure (Algorithm 3, line 7) to change slightly the incumbent

Algorithm 3: Maxima search procedure for MDGP.

```
1 Function MaximaSearch(s_0, \alpha)
   Input: Initial solution s_0, the depth of maxima search \alpha
   Output: The best solution s_b found
2 begin
3
      s \leftarrow s_0
      s_b \leftarrow LocalSearch(s)
4
                                                        /* Section 2.4 */
       counter \leftarrow 0
5
       while counter < \alpha do
6
7
          s \leftarrow WeakPerturbation(s_h)
                                                        /* Section 2.5 */
           s \leftarrow LocalSearch(s)
8
                                                        /* Section 2.4 */
9
           if f(s) > f(s_b) then
10
              s_b \leftarrow s
11
              counter \leftarrow 0
           else
12
              counter \leftarrow counter + 1
13
          end
14
      end
15
      return s<sub>b</sub>
16
17 end
```

Algorithm 4: Weak perturbation operator.

```
1 Function WeakPerturbation(s_0)
   Input: Input solution s_0, neighborhoods N_1 - N_2 defined
           inSection 2.4.1, strength of weak perturbation \eta_w
   Output: The perturbed solution s_p
2 begin
3
      s_p \leftarrow s_0
      for L \leftarrow 1 to \eta_w do
4
          Randomly pick a neighbor solution s \in N_1(s_p) \cup N_2(s_p)
5
6
          for l \leftarrow 1 to |V| do
7
              Randomly pick a neighbor solution
              s' \in N_1(s_p) \cup N_2(s_p)
              if f(s') > f(s) then
               s \leftarrow s'
9
              end
10
          end
11
12
          s_p \leftarrow s
      end
      return sp
15 end
```

solution. This is followed by a new round of the local search procedure (Algorithm 3, line 8) to reach a new local optimum from the perturbed solution. These two procedures are repeated until the incumbent solution cannot be improved for α consecutive perturbations (α is called the depth of the MS procedure). Finally, the best solution found is returned as the result of the maxima search procedure.

Within the above maxima search procedure, the weak perturbation operator aims to jump out of the current local optimum trap by accepting some deteriorating solutions. As shown in Algorithm 4, it realizes η_w controlled *OneMove* or *SwapMove* steps (Section 2.4.1) where η_w (a parameter) is called the strength of weak perturbation. Specifically, for each weak perturbation step (i.e., each iteration of the outer 'for' loop of Algorithm 4, line 4), we first identify the best solution among randomly sampled |V|+1 neighbor solutions of the current solution s_p (Algorithm 4, lines 5–11) and then use this best solution to replace the current solution s_p (Algorithm 4, line 12), which serves as the starting point for the next perturbation step. The generated solution following these

 η_W weak perturbation steps is returned as the incumbent solution of the next round of the local search procedure. Note that large samples deteriorate less the current solution and we use the problem size |V| to adjust the sample size.

2.6. Strong perturbation

The maxima search procedure equipped with its weak perturbation procedure helps to discover new and better local optima around an input optimum. However, the search can be trapped into deep local optima and weak perturbations are no more sufficient for the algorithm to continue its search. Hence, our IMS algorithm employs a strong perturbation procedure to jump out of such deep local optimum traps. The strong perturbation procedure consecutively performs η_s randomly selected *OneMove* or *SwapMove* moves regardless of the move value of each performed move, where η_s is called the strength of strong perturbation. In this study, η_s is empirically set as $\eta_s = \theta \times \frac{n}{m}$, where θ is a parameter that is used to control the strong perturbation strength, n is the size of problem instance, and m is the number of groups. The pseudo-code of the strong perturbation operator is shown in Algorithm 5.

Algorithm 5: Strong perturbation.

```
1 Function StrongPerturbation(s_0, \eta_s)
  Input: Input solution s_0, neighborhoods N_1 - N_2 defined
          inSection 2.4.1, strength of perturbation \eta_s
  Output: The perturbed solution s_p
2 begin
      s_p \leftarrow s_0
3
      for L \leftarrow 1 to \eta_s do
4
          Randomly pick a neighbor solution s \in N_1(s_p) \cup N_2(s_p)
5
6
7
      end
8
      return sp
9 end
```

2.7. Motivations and related search frameworks

Like most heuristic approaches in the literature, the proposed IMS algorithm lacks a strict theoretical basis. On the other hand, the design of the IMS algorithm relies on the well-known basic principle that an efficient algorithm must ensure a suitable tradeoff between intensification and diversification of its search process. To achieve this goal, the proposed algorithm employs the maxima search procedure (Section 2.5 and Algorithm 3) to perform an intensified search around a limited search region (i.e., locate the best possible solution within the nearby region around a discovered local optimum). When the maxima search procedure is trapped in a deep local optimum, the IMS algorithm switches to the strong perturbation procedure (Section 2.6) to jump out of the trap and displace the search to a more distant region. The analysis on spatial distribution of high-quality local optima shown in Section 4.3 provides additional evidences about the rationality of the proposed IMS algorithm.

From the perspective of algorithm design, the proposed IMS algorithm shares the same framework as the three-phase search (TPS) method Fu and Hao (2015) which also uses a weak (or strong) perturbation procedure to explore nearby (or distant) local optima. On the other hand, unlike TPS which applies a directed perturbation procedure based on a tabu list, IMS relies on the best neighbor strategy based on a random sample. IMS also shares ideas with the breakout local search (BLS) method (Benlic & Hao, 2013a; 2013b) where both the perturbation type and perturbation

strength are determined in an adaptive manner. BLS has a strong emphasis on an adaptive mechanism to control the application of three well-separated perturbation operators (directed perturbation, random perturbation, and frequency-based perturbation). Unlike BLS, IMS follows a simpler scheme and invokes its weak perturbation procedure (embedded inside the maxima search) and strong perturbation procedure deterministically.

As shown in the next section, the IMS algorithm equipped with its particular features proves to perform very well on many MDGP benchmark instances.

3. Experimental results and comparisons

Following the practice of the literature, we assess the performance of our IMS algorithm by presenting computational results on a large number of benchmark instances, and making comparisons with the state-of-the-art MDGP algorithms in the literature.

3.1. Benchmark instances

Our computational assessments are based on four sets of 460 benchmarks which are extensively used in the literature¹ and a new set of 40 large scale benchmarks which are adapted from the related maximum diversity problem (MDP)². The details of the benchmark instances are described as follows.

- **RanReal set**: This set consists of 40 instances with equal group sizes (EGS) and 40 instances with different group sizes (DGS), where the distances (or diversities) between elements are a real number uniformly and randomly generated in (0, 100). The number of elements n varies from 120 to 960, the number of groups m is between 10 and 24, and the minimum and maximum group sizes a_g and b_g are in the range of $\{2, 3, \ldots, 48\}$. Moreover, for the EGS instances, both a_g and b_g are given by |n/m|.
- **RanInt set**: This set has the same structure as the RanReal set and consists of 40 EGS instances and 40 DGS instances. The distances between elements are an integer uniformly and randomly generated in the interval [0, 100].
- **Geo set**: As the previous two sets of benchmarks, this set contains 40 EGS instances and 40 DGS instances, but the distances are Euclidean distances between pairs of points with random coordinates from [0, 10], and the number of coordinates for each point is generated randomly in [2, 21].
- MDG-a set: This set is composed of 11 subsets adapted from graphs of the related maximum diversity problem (Duarte & Martí, 2007), where each subset contains 20 instances with n = 2000. For the first subset, the number of groups m is set to 50, the lower and upper limits of the group sizes a_g and b_g are respectively fixed to 32 and 48. This subset was first adapted in Palubeckis et al. (2011) for MDGP, and then used in Brimberg et al. (2015). The characteristics of the remaining 10 subsets are given in Table 1. These 10 subsets were first adapted in Rodriguez et al. (2013) for MDGP and then used in Brimberg et al. (2015) under the name "Type1_22". For all these 220 instances, the distances between elements are randomly generated between 0 to 10 using an uniform distribution.
- **MDG-c set**: This new set, introduced in this paper, consists of 20 DGS instances and 20 EGS instances with n=3000 and m=50, which are adapted from graphs of the maximum diversity problem. The lower and upper limits a_g and b_g of group sizes for these instances are respectively fixed to $\lfloor 0.8n/m \rfloor$ and $\lfloor 1.2n/m \rfloor$ for the DGS instances. For the EGS instances, both a_g

¹ Available from http://www.optsicom.es/mdgp/mdgplib.zip.

² Available from http://www.optsicom.es/mdp/#instances.

Table 1The number of groups, lower and upper group limits for the instances in the set MDG-a.

n	m	DGS		EGS
		$\overline{a_g}$	b_g	$a_g = b_g$
2000	50	32	48	-
2000	10	173	227	200
2000	25	51	109	80
2000	50	26	54	40
2000	100	13	27	20
2000	200	6	14	10

Table 2 Setting of parameters.

Parameters	Section	Description	Values
β	2.3	Number of initial solutions	10
η_w	2.6	Strength of weak perturbation	3
α	2.5	Depth of maxima search procedure	{3,5}
θ	2.6	Coefficient for the strength of	{1.0,1.5}
		strong perturbation	

and b_g are given by $\lfloor n/m \rfloor$. The distances between elements are randomly generated in [0,1000].

3.2. Parameter setting and experimental protocol

Before presenting our computational results, we first provide some basic information about our experiments, including the parameter settings used by our IMS algorithm, the reference algorithms, the experimental platform, and the termination conditions of algorithms.

First, Table 2 shows the parameter setting of the IMS algorithm which was achieved by a preliminary experiment. Notice that the parameter α (depth of maxima search) takes 5 for the instances with $n \leq 400$ or $n/m \leq 10$, and 3 for the remaining instances. For the parameter θ , which is used to control the strength of strong perturbation, we also use two values, (i.e., $\theta \in \{1.0, 1.5\}$), where θ is set to 1.0 for small instances with $n \leq 400$ and 1.5 for the remaining instances. These parameter values are used for all the following experiments even though a fine tuning of some parameters would lead to better results.

According to the computational results reported in two most recent papers (Brimberg et al., 2015; Palubeckis et al., 2015), the ITS and SGVNS algorithms can be considered as the state-of-the-art algorithms for MDGP. Specifically, the ITS algorithm dramatically outperformed its reference algorithms, including MSA, HGA, VNS of Palubeckis et al. (2011) and TS-SO, T-LCW of Gallego et al. (2013), and the SGVNS algorithm significantly outperformed its reference algorithms, including HGA, TS-SO, ABC of Rodriguez et al. (2013), and GVNS of Urošević (2014). Consequently, in this study we use the ITS and SGVNS algorithms as the reference algorithms to assess the performance of our IMS algorithm.

It is worth noting that in this study all the experiments were based on the same computing platform, which makes it possible to perform a rather fair comparison between our IMS algorithm and the two reference algorithms ITS and SGVNS. The source code of the ITS algorithm was kindly provided by the authors and is available at http://www.proin.ktu.lt/~gintaras/mdgp.html, and the executable code of the SGVNS algorithm was kindly provided by the corresponding author of Brimberg et al. (2015). The IMS and ITS codes were compiled using g++ compiler³, and all experiments were carried out on a computing platform with an Intel Xeon

E5440 processor (2.83 GigaHertz CPU and 2Gigabyte RAM), running the Linux operating system. Following the DIMACS machine benchmark procedure, our machine requires respectively 0.23, 1.42, and 5.42 seconds for the graphs r300.5, r400.5, r500.5⁴.

For all algorithms considered in this study, the stopping condition is a fixed cutoff time limit t_{max} which depends on the size of the instances. Specifically, t_{max} is set as follows: $t_{max} = 3$ seconds for n = 120, 20 seconds for n = 240, 120 seconds for n = 480 seconds, 600 seconds for n = 960, 1200 seconds for n = 2000, and 3000 seconds for n = 3000. Finally, due to the stochastic nature of the compared algorithms, each instance was independently solved 20 times by each algorithm.

3.3. Computational results and comparison on the medium sized instances

The RanInt, RanReal and Geo benchmarks have been widely tested to assess the performance of MDGP algorithms in the literature. The computational results of our IMS algorithm and the reference algorithms ITS and SGVNS are summarized in Tables 3-8. Column 1 of the tables gives the names of instances (Instance). Columns 2–4 report the best objective values (f_{best}) obtained over 20 independent runs of the compared algorithms. Columns 5–7 show the average objective values (f_{avg}). The best values among the results of the competing algorithms are indicated in bold. The row '#Best' indicates the number of instances for which an algorithm performs the best among the compared algorithms. To verify whether there exists a significant difference between IMS and the reference algorithms in terms of the best and average objective values, the p-values from the non-parametric Friedman tests are reported in the last row of each table. A p-value smaller than 0.05 indicates a significant difference between two sets of compared results.

Tables 3 and 4 show that for the RanInt instances, IMS outperforms the reference algorithms. For the 40 instances with different group sizes, IMS yields the best outcomes for 29 and 36 instances in terms of the best and average objective values. For the 40 instances with equal group sizes, IMS performs the best on 32 and 26 instances in terms of the best and average objective values. Furthermore, the small *p*-values confirm the significance of the differences between the results of the IMS algorithm and those of two reference algorithms.

Tables 5 and 6 on the RanReal instances indicate that the IMS algorithm also outperforms the ITS and SGVNS algorithms on this set of benchmarks. For the 40 instances with different group sizes, IMS yields the 25 and 37 best outcomes in term of the best and average values. For the 40 instances with equal group sizes, IMS obtains the largest 'best' and 'average' values for 29 and 26 instances. The Friedman tests (with *p*-values smaller than 0.05) confirm the statistical significance of the observed differences.

Tables 7 and 8 show that for the Geo instances, IMS performs significantly better than SGVNS, but performs worse than ITS. For the instances with different group sizes, IMS obtains better results than SGVNS for all instances in terms of both the best and average objective values. However, compared to the ITS algorithm, IMS yields a better and worse result respectively for 16 and 24 instances in terms of the best objective value. Concerning the average objective value, IMS obtains a better and worse result respectively for 26 and 14 instances compared to ITS. The *p*-values (> 0.05) in terms of the best and average objective values do not reveal a significant difference between IMS and ITS. However, for the instances with equal group sizes, ITS clearly dominates IMS and SGVNS.

³ Our code will be available at http://www.info.univ-angers.fr/pub/hao/mdgp.html

⁴ The benchmark program (dmclique.c) and the rxxx.5 graphs are available at ftp: //dimacs.rutgers.edu/pub/challenge/graph/solvers/.

Table 3

Comparison of the IMS algorithm with two state-of-the-art algorithms (i.e., ITS (Palubeckis et al., 2015) and SGVNS (Brimberg et al., 2015)) on the RanInt instances with different group sizes.

	f_{best}			f_{avg}		
Instance	ITS Palubeckis et al. (2015)	SGVNS Brimberg et al. (2015)	IMS	ITS Palubeckis et al. (2015)	SGVNS Brimberg et al. (2015)	IMS
RanInt_n120_ds_01	51,161	51,097	51,125	51003.45	50855.75	50920.6
RanInt_n120_ds_02	51,400	51,380	51,366	51252.10	51204.55	51259.9
RanInt_n120_ds_03	50,245	50,248	50,233	50144.25	50108.80	50150.5
RanInt_n120_ds_04	50,394	50,387	50,400	50123.15	50323.30	50340.3
RanInt_n120_ds_05	49,884	49,996	49,928	49447.30	49804.00	49803.5
RanInt_n120_ds_06	49,734	49,678	49,701	49532.40	49496.50	49583.9
RanInt_n120_ds_07	50,184	50,282	50,316	49743.90	50160.05	50212.9
RanInt_n120_ds_08	50,459	50,351	50,345	50269.20	50262.05	50272.2
RanInt_n120_ds_09	50,499	50,429	50,445	50345.05	50259.80	50322.1
RanInt_n120_ds_10	50,337	50,364	50,327	50217.25	50256.30	50232.4
RanInt_n240_ds_01	160,390	160,460	160,498	159964.70	160203.20	160308.5
RanInt_n240_ds_02	160,019	160,154	160,095	159638.25	159679.50	159812.3
RanInt_n240_ds_03	160,235	160,211	160,338	159756.60	159877.35	160071.5
RanInt_n240_ds_04	162,728	162,340	162,473	161894.35	162001.85	162280.3
RanInt_n240_ds_05	160,423	160,648	160,653	160177.40	160186.95	160378.5
RanInt_n240_ds_06	160,944	161,049	161,145	160580.00	160739.70	160810.4
RanInt_n240_ds_07	159,770	159,950	160,156	159362.70	159506.10	159734.0
RanInt_n240_ds_08	158,161	157,953	158,087	157748.30	157666.85	157879.2
RanInt_n240_ds_09	160,463	160,409	160,551	160060.30	160119.85	160322.0
RanInt_n240_ds_10	159,924	160,009	160,278	159537.75	159659.00	159934.7
RanInt_n480_ds_01	389,602	390,304	390,687	388476.85	389181.00	389623.9
RanInt_n480_ds_02	387,757	388,585	388,972	386995.15	387679.55	388277.7
RanInt_n480_ds_03	387,751	387,691	388,054	386584.75	386844.00	387213.7
RanInt_n480_ds_04	391,604	391,231	392,298	390641.05	390461.90	391689.1
RanInt_n480_ds_05	388,757	388,818	389,107	387718.15	387679.15	388374.3
RanInt_n480_ds_06	388,764	389,422	390,029	387961.70	388465.45	389168.8
RanInt_n480_ds_07	388,513	389,171	389,350	387879.15	388096.00	388474.7
RanInt_n480_ds_08	390,230	390,473	391,128	389552.45	389621.65	390463.6
RanInt_n480_ds_09	388,128	388,388	388704	387012.65	387309.75	388001.9
RanInt_n480_ds_10	392,870	393,025	393198	390827.85	391957.00	392508.3
RanInt_n960_ds_01	1238,944	1239,019	1243609	1236212.25	1236760.85	1241662.8
RanInt_n960_ds_02	1236221	1236536	1240503	1233795.30	1234449.25	1239303.0
RanInt_n960_ds_03	1236516	1238062	1241375	1234214.00	1235002.35	1239435.0
RanInt_n960_ds_04	1237219	1238364	1241400	1235456.15	1236642.60	1239878.1
RanInt_n960_ds_05	1239017	1236447	1239833	1235692.80	1234464.35	1238354.1
RanInt_n960_ds_06	1234678	1234548	1237280	1233006.60	1232092.50	1235741.0
RanInt_n960_ds_07	1238255	1237651	1241459	1235368.65	1235281.30	1240246.5
RanInt_n960_ds_08	1234648	1234856	1238195	1232458.30	1232390.75	1236536.8
RanInt_n960_ds_09	1235323	1234310	1240169	1233074.55	1232668.80	1237532.0
RanInt_n960_ds_10	1237697	1237662	1240515	1235317.70	1236135.80	1239079.3
#Best	7	4	29	2	2	36
p-value	5.04e-4	9.55e-6		1.26e-8	1.26e-8	

3.4. Computational results and comparison on the large scale instances

To assess the performance of our IMS algorithm on large-sized instances, we carried out the second experiment based on the MDG-a and MDG-c benchmarks which include 11 MDG-a subsets and 2 MDG-c subsets, where each subset contains 20 instances with n=2000 or 3000. In this experiment, each instance was independently solved 20 times using the IMS, ITS, and SGVNS algorithms respectively. A summary of the results on these 13 benchmark subsets are shwon in Table 9, and the detailed computational results for each subset are provided in Tables A.1–A.13 of the appendix.

In Table 9, the first five columns indicate the characteristics of instances for each subset of benchmarks: the set name (Set), the number of groups (m), the lower and upper limits of group sizes $(a_g \text{ and } b_g)$, and the type of instances (Type). Each row of Table 9 corresponds to one of the 13 tested benchmark subsets and the shown results are based on the averages over all instances of each benchmark set. The row 'Average' indicates the average results of each algorithm over all subsets in terms of the best and average objective values. Once again, the non-parametric Friedman

tests were used to verify the statistical significance between our IMS algorithm and the reference algorithms.

Table 9 discloses that for all 13 subsets of large instances, IMS outperforms the reference algorithms ITS and SGVNS. IMS yields better results (indicated in bold) for all subsets in terms of the best and average objective values. Moreover, the p-values (all < 0.05) confirm the significance of the differences between the results of IMS and those of the reference algorithms. This experiment indicates that IMS is very competitive when it is applied to large-sized instances compared to the state-of-the-art algorithms in the literature.

4. Analysis and discussions

In this section, we investigate some important ingredients of the IMS algorithm to get useful insight into the behavior of the proposed algorithm. This study is based on the first subset of the MDG-a benchmark which is composed of 20 DGS instances with n = 2000, m = 50, $a_g = 32$, and $b_g = 48$. We also study the spatial distribution of high-quality solutions visited by IMS to shed light on the rationality of the proposed algorithm.

Table 4

Comparison of the IMS algorithm with two state-of-the-art algorithms (i.e., ITS (Palubeckis et al., 2015) and SGVNS (Brimberg et al., 2015)) on the RanInt instances with equal group sizes.

	f_{best}			f_{avg}		
Instance	ITS Palubeckis et al. (2015)	SGVNS Brimberg et al. (2015)	IMS	ITS Palubeckis et al. (2015)	SGVNS Brimberg et al. (2015)	IMS
RanInt_n120_ss_01	47,909	47,909	47,909	47898.35	47893.25	47884.0
RanInt_n120_ss_02	47,826	47,826	47,826	47818.60	47793.90	47794.8
RanInt_n120_ss_03	47,552	47,552	47,552	47490.20	47475.25	47449.0
RanInt_n120_ss_04	47,611	47,556	47,611	47538.85	47488.50	47514.4
RanInt_n120_ss_05	47,148	47,191	47,191	47122.70	47106.65	47089.4
RanInt_n120_ss_06	46,647	46,641	46,622	46592.05	46579.35	46556.0
RanInt_n120_ss_07	47,142	47142	47,142	47111.45	47085.65	47063.7
RanInt_n120_ss_08	47,390	47,356	47,390	47369.45	47323.85	47325.2
RanInt_n120_ss_09	47,660	47,660	47,660	47636.10	47628.15	47613.3
RanInt_n120_ss_10	47,807	47,807	47,807	47801.75	47780.55	47778.2
RanInt_n240_ss_01	155,566	155,538	155,474	155232.15	155369.20	155352.5
RanInt_n240_ss_02	155,219	155,325	155,252	155088.50	155114.20	155120.5
RanInt_n240_ss_03	156,325	156,387	156,415	156121.35	156226.85	156308.3
RanInt_n240_ss_04	156,559	156,643	156,588	156381.25	156408.60	156430.4
RanInt_n240_ss_05	156,499	156,562	156,479	156171.75	156185.85	156305.3
RanInt_n240_ss_06	155,465	155,516	155,536	155149.25	155314.85	155265.9
RanInt_n240_ss_07	155,770	155,729	155,697	155463.15	155551.10	155529.0
RanInt_n240_ss_08	155,247	155,398	155,398	154965.05	155095.15	155068.6
RanInt_n240_ss_09	156,013	155,967	156,012	155944.15	155800.35	155991.9
RanInt_n240_ss_10	1558,77	155,947	155,971	155670.60	155781.20	155803.0
RanInt_n480_ss_01	379,455	379,879	380,157	378592.85	379264.40	379678.0
RanInt_n480_ss_02	379,597	379,628	379,992	378531.60	379026.70	379482.5
RanInt_n480_ss_03	378,511	379,025	379,067	377643.95	378490.25	378634.7
RanInt_n480_ss_04	378,395	378,936	379,067	377815.00	378551.90	378759.8
RanInt_n480_ss_05	379,627	379,833	380,147	378457.50	378946.45	379316.4
RanInt_n480_ss_06	379,161	379,304	379,681	378067.85	378601.25	379013.2
RanInt_n480_ss_07	379,325	379,544	380,022	378358.75	379068.55	379297.2
RanInt_n480_ss_08	379,218	380,115	380,088	378435.25	379222.70	379466.8
RanInt_n480_ss_09	378,383	378,610	379,147	377686.75	378111.20	378526.7
RanInt_n480_ss_10	379,409	380,291	380,615	378905.25	379606.65	379791.6
RanInt_n960_ss_01	1217,365	1217,792	1220,724	1215311.10	1215593.80	1219004.5
RanInt_n960_ss_02	1216,579	1216,227	1220,169	1214601.85	1215048.10	1218219.0
RanInt_n960_ss_03	1217,448	1217,651	1220,210	1215203.50	1215957.35	1218739.8
RanInt_n960_ss_04	1216,950	1217,392	1220,242	1215775.35	1215559.60	1218289.9
RanInt_n960_ss_05	1217,487	1217,823	1218,916	1214914.15	1215602.55	1218060.1
RanInt_n960_ss_06	1217,904	1218,274	1220,803	1215522.80	1216142.75	1218880.7
RanInt_n960_ss_07	1218,376	1217,927	1220,234	1215830.85	1216009.85	1219180.9
RanInt_n960_ss_08	1216,778	1217,721	1220,555	1215293.95	1215895.80	1219391.0
RanInt_n960_ss_09	1215,583	1216,735	1218,576	1213553.35	1214226.35	1217497.
RanInt_n960_ss_10	1214,982	1216,755	1219,384	1213743.10	1214343.60	1217076.4
#Best	11	13	32	10	4	26
p-value	1.01e-4	1.46e-3	32	1.57e-3	4.43e-3	20

4.1. Influence of the weak perturbation strength

The IMS algorithm uses a weak perturbation procedure in its maxima search (Section 2.5). We carried out an experiment to analyze the influence of this component on the performance of IMS. For this study, we varied the strength (η_w) of weak perturbation within a reasonable range while keeping other parameters with their default values (as shown in Table 2). The box and whisker plots of the computational results are shown in Fig. 1, where the X-axis of Fig. 1(a) indicates the η_w values and the Y-axis indicates the objective values. As a supplement, we also plot the average objective values over the tested instances in Fig. 1(b), where the Xaxis and the Y-axis respectively indicate the η_W values and the average objective values over the benchmark instances. All indicated results were based on the average over 20 independent runs with the cutoff time given in Section 3.2. Fig. 1 discloses that the performance of the IMS algorithm is not sensitive to η_w . For all the values of η_W in the interval [1, 6], the algorithm obtains a similar performance. This explain why we used $\eta_w = 3$ as its default value for our experiments.

4.2. Influence of the strong perturbations strength

We turn now to study the influence of the strength (η_s) of strong perturbation on the IMS algorithm (Section 2.6). Since η_s is proportional to the parameter θ (recall that $\eta_s = \theta \times \frac{n}{m}$), we tested the parameter θ within a reasonable range while keeping other parameters with their default values. The computational results are shown in Fig. 2. In Fig. 2(a), the X-axis and the Y-axis respectively indicate the θ values and the objective values obtained. In Fig. 2(b), the X-axis and the Y-axis respectively indicate the θ values and the average objective values over the benchmark instances. Like in Section 4.1, these results were also based on the average over 20 independent runs.

One observes from Fig. 2 that the performance of the IMS algorithm is significantly influenced by the setting of θ . First, small (large) θ values corresponding to a small (large) perturbation lead generally to a bad (high) performance. Furthermore, when θ reaches 1.5 which corresponds to a strength of $\eta_S=60$ for the tested instances, the IMS algorithm reaches its best performance. As θ further increases, the performance of the algorithm decreases

Table 5
Comparison of the IMS algorithm with two state-of-the-art algorithms (i.e., ITS (Palubeckis et al., 2015) and SGVNS (Brimberg et al., 2015)) on the RanReal instances with different group sizes.

	f_{best}			f_{avg}		
Instance	ITS Palubeckis	SGVNS Brimberg	IMS	ITS Palubeckis	SGVNS Brimberg	IMS
	et al. (2015)	et al. (2015)		et al. (2015)	et al. (2015)	
RanReal_n120_ds_01	50601.64	50511.77	50471.07	50405.97	50233.42	50347.79
RanReal_n120_ds_02	50904.03	50926.60	50860.95	50691.85	50653.16	50710.78
RanReal_n120_ds_03	49935.33	50053.22	49961.99	49818.63	49769.97	49858.20
RanReal_n120_ds_04	50349.01	50362.19	50382.69	50164.48	50244.15	50269.68
RanReal_n120_ds_05	49414.58	49576.69	49642.54	49035.99	49389.44	49426.52
RanReal_n120_ds_06	50287.42	50189.78	50211.93	50120.37	50084.36	50126.83
RanReal_n120_ds_07	50074.29	50300.67	50107.47	49647.02	50033.27	50003.56
RanReal_n120_ds_08	50421.78	50471.62	50409.32	50351.31	50335.02	50323.86
RanReal_n120_ds_09	50415.22	50303.82	50339.42	50256.73	50135.17	50268.61
RanReal_n120_ds_10	49726.63	49738.82	49718.01	49552.19	49623.88	49637.11
RanReal_n240_ds_01	160122.83	160100.60	160020.56	159605.36	159658.09	159838.57
RanReal_n240_ds_02	160502.19	160195.86	160431.14	160056.73	159931.98	160238.93
RanReal_n240_ds_03	159389.94	159489.46	159404.12	159098.54	159194.52	159267.93
RanReal_n240_ds_04	161225.03	161268.00	161398.07	160540.42	160725.95	161021.04
RanReal_n240_ds_05	159474.95	159082.26	159249.91	158702.29	158863.94	158897.28
RanReal_n240_ds_06	161293.41	161149.24	160935.00	160554.40	160694.18	160817.23
RanReal_n240_ds_07	159940.05	159993.01	159919.07	159260.64	159256.38	159689.35
RanReal_n240_ds_08	158630.55	158455.65	158472.42	158194.33	158163.63	158300.69
RanReal_n240_ds_09	159707.67	159798.05	159815.04	159265.00	159426.01	159572.93
RanReal_n240_ds_10	159889.53	160116.32	160145.72	159586.36	159674.02	159897.95
RanReal_n480_ds_01	387444.56	388123.55	388632.12	386581.10	386880.96	387893.38
RanReal_n480_ds_02	386295.34	386545.55	386668.04	385302.04	385605.13	386224.71
RanReal_n480_ds_03	387474.69	387037.52	388278.66	386405.68	386385.61	387672.35
RanReal_n480_ds_04	389719.77	390468.63	390477.24	388910.57	389223.09	390126.22
RanReal_n480_ds_05	387556.78	387579.13	387778.95	386325.62	386550.27	387336.34
RanReal_n480_ds_06	388327.14	388955.10	389390.05	387713.26	388062.43	388652.59
RanReal_n480_ds_07	387953.20	388220.53	389460.58	387364.25	387277.33	387956.27
RanReal_n480_ds_08	389271.97	388704.19	389316.71	387671.57	387682.22	388606.65
RanReal_n480_ds_09	386976.68	386937.27	387387.51	385622.96	385829.80	386709.00
RanReal_n480_ds_10	391432.16	392583.25	392665.57	390233.98	391528.94	391616.68
RanReal_n960_ds_01	1237439.17	1236147.11	1239969.65	1233118.83	1233890.11	1238909.72
RanReal_n960_ds_02	1234310.30	1235681.38	1240510.37	1232084.77	1234143.93	1238715.63
RanReal_n960_ds_03	1234380.99	1235680.62	1238336.81	1232468.76	1232674.97	1236951.56
RanReal_n960_ds_04	1234687.12	1236117.09	1240460.96	1232447.56	1234544.61	1238715.10
RanReal_n960_ds_05	1232616.47	1232701.17	1237177.90	1231403.10	1231062.44	1235398.21
RanReal_n960_ds_06	1230272.69	1229937.27	1234363.75	1228455.18	1228663.53	1232633.30
RanReal_n960_ds_07	1233947.58	1235410.78	1238781.36	1232238.16	1231707.94	1237068.09
RanReal_n960_ds_08	1229287.84	1228957.27	1233177.59	1227839.29	1227748.55	1231635.91
RanReal_n960_ds_09	1234655.22	1235415.73	1239566.10	1232440.67	1233119.91	1236338.30
RanReal_n960_ds_10	1236743.27	1237850.16	1240641.54	1234957.71	1236045.50	1239307.80
#Best	8	7	25	2	1	37
<i>p</i> -value	1.14e-2	1.57e-3		1.26e-8	1.26e-8	

Fig. 1. Influence of the strength of the weak perturbation procedure.

Table 6
Comparison of the IMS algorithm with two state-of-the-art algorithms (i.e., ITS (Palubeckis et al., 2015) and SGVNS (Brimberg et al., 2015)) on the RanReal instances with equal group sizes.

	f_{best}			f_{avg}		
Instance	ITS Palubeckis et al. (2015)	SGVNS Brimberg et al. (2015)	IMS	ITS Palubeckis et al. (2015)	SGVNS Brimberg et al. (2015)	IMS
RanReal_n120_ss_01	47363.21	47363.21	47351.97	47320.20	47290.96	47278.2
RanReal_n120_ss_02	47243.16	47243.16	47243.16	47201.87	47174.17	47169.16
RanReal_n120_ss_03	47313.71	47313.71	47313.71	47269.91	47252.58	47270.5
RanReal_n120_ss_04	47546.81	47520.66	47546.81	47500.66	47460.04	47487.3
RanReal_n120_ss_05	46930.19	46896.02	46922.95	46862.90	46840.55	46836.6
RanReal_n120_ss_06	47253.47	47218.03	47227.14	47201.03	47159.19	47155.1
RanReal_n120_ss_07	47085.87	47085.87	47085.87	47048.75	47013.89	47016.8
RanReal_n120_ss_08	47460.13	47460.13	47460.13	47456.74	47443.28	47447.1
RanReal_n120_ss_09	47686.34	47686.34	47686.34	47651.17	47647.16	47623.6
RanReal_n120_ss_10	47415.35	47415.35	47415.35	47364.78	47370.57	47383.5
RanReal_n240_ss_01	155219.12	155213.84	155214.55	154883.12	154945.19	155014.4
RanReal_n240_ss_02	155474.95	155530.68	155503.11	155298.19	155364.94	155335.9
RanReal_n240_ss_03	155546.38	155669.29	155633.92	155285.92	155423.50	155458.4
RanReal_n240_ss_04	155275.08	155335.86	155364.27	155007.57	155194.75	155101.9
RanReal_n240_ss_05	154794.27	154978.13	154924.97	154624.80	154758.73	154751.9
RanReal_n240_ss_06	155571.81	155498.40	155671.23	155244.62	155344.28	155305.5
RanReal_n240_ss_07	155585.37	155689.23	155689.23	155388.71	155386.65	155476.7
RanReal_n240_ss_08	155578.35	155604.41	155545.42	155427.17	155432.26	155451.7
RanReal_n240_ss_09	155089.50	155084.04	155090.44	154725.08	154851.60	154828.3
RanReal_n240_ss_10	155831.39	155927.91	155880.48	155640.99	155715.16	155720.8
RanReal_n480_ss_01	377254.93	378091.43	378207.04	376577.67	377257.45	377541.4
RanReal_n480_ss_02	377084.52	377704.68	377864.04	376360.69	376868.37	377261.0
RanReal_n480_ss_03	378407.16	378727.11	379053.79	377642.01	378210.72	378523.0
RanReal_n480_ss_04	377512.67	377859.37	377964.66	376680.91	377236.63	377436.0
RanReal_n480_ss_05	377637.09	378315.79	378634.46	376933.62	377639.49	378035.7
RanReal_n480_ss_06	378561.19	379391.76	379274.93	377684.89	378435.81	378634.8
RanReal_n480_ss_07	378527.49	378960.02	379542.61	377868.64	378356.28	378830.4
RanReal_n480_ss_08	377521.79	377855.12	378204.40	376841.61	377458.17	377480.9
RanReal_n480_ss_09	377007.39	377933.93	378220.84	376381.06	377123.57	377425.7
RanReal_n480_ss_10	379490.57	379588.71	379495.84	378242.95	378988.96	378904.4
RanReal_n960_ss_01	1213571.81	1214889.59	1217164.60	1211655.10	1212393.84	1215127.6
RanReal_n960_ss_02	1215220.12	1215624.91	1218155.24	1213054.14	1213697.16	1217047.2
RanReal_n960_ss_02	1213220.12	1215262.94	1217349.78	1213049.09	1213298.63	1217647.2
RanReal_n960_ss_04	1214437.10	1215137.53	1218053.67	1213221.74	1213708.91	1217062.3
RanReal_n960_ss_05	1213355.93	1213137.53	1216203.18	1211601.14	1213708.91	1214833.1
RanReal_n960_ss_06	1213779,37	1214390.66	1217570.66	1211601.14	1211610.82	1215622.8
Rankeal_n960_ss_06	12153779.37	1214390.66	1217445.63	1211893.78	1212821.07	1215022.8
RanReal_n960_ss_08	1213216.15	1213071.85 1215097.64	1216067.45 1217955.76	1211196.00	1211740.28	1214937.6
RanReal_n960_ss_09 RanReal_n960_ss_10	1214408.56 1216148.98	1215828.57	1217955.76	1212479.70 1213816.44	1213411.80 1214373.54	1216443.4 1217314.6
	1210146.56		29	8	6	26
#Best	11 6.23e–05	15	29		6 4.43e–3	26
p-value	o.23e-05	3.08e-3		1.48e-4	4.43e-3	

Fig. 2. Influence of the strength of the strong perturbation procedure.

Table 7
Comparison of the IMS algorithm with two state-of-the-art algorithms (i.e., ITS (Palubeckis et al., 2015) and SGVNS (Brimberg et al., 2015)) on the Geo instances with different group sizes.

	f_{best}			f_{avg}		
Instance	ITS Palubeckis et al. (2015)	SGVNS Brimberg et al. (2015)	IMS	ITS Palubeckis et al. (2015)	SGVNS Brimberg et al. (2015)	IMS
Geo_n120_ds_01	111939.28	111873.75	111902.37	111911.48	111098.29	111884.6
Geo_n120_ds_02	61916.95	61890.78	61909.56	61903.64	61338.46	61902.3
Geo_n120_ds_03	52083.72	52061.00	52078.00	52073.1 7	51412.27	52069.8
Geo_n120_ds_04	80789.19	80759.66	80776.60	80775.83	80459.69	80764.2
Geo_n120_ds_05	121777.06	121679.46	121739.99	121735.46	120417.06	121698.3
Geo_n120_ds_06	136860.93	136815.05	136839.56	136712.49	136371.37	136817.9
Geo_n120_ds_07	108557.01	108489.35	108547.97	108466.72	107518.94	108511.2
Geo_n120_ds_08	88225.79	88172.62	88187.00	88206.58	88148.69	88178.0
Geo_n120_ds_09	95508.40	95410.84	95466.84	95474.05	94879.69	95445.7
Geo_n120_ds_10	65560.54	65521.62	65549.22	65538.04	65356.49	65531.1
Geo_n240_ds_01	200357.13	200307.82	200336.96	200303.94	199319.63	200327.3
Geo_n240_ds_02	348512.21	348406.58	348479.43	347585.05	346206.86	348465.6
Geo_n240_ds_03	217159.11	217105.66	217178.64	217124.09	214955.90	217155.7
Geo_n240_ds_04	263859.76	263765.00	263835.63	263538.75	261655.07	263587.6
Geo_n240_ds_05	313402.77	313290.69	313360.73	313377.51	312007.31	313336.3
Geo_n240_ds_06	358632.56	358456.36	358590.94	358605.22	357441.51	358550.9
Geo_n240_ds_07	341992.17	341172.78	341980.32	340415.53	339181.31	341592.8
Geo_n240_ds_08	131024.86	131024.78	131026.39	131020.88	130676.72	131021.
Geo_n240_ds_09	410563.19	410379.34	410521.01	409945.98	408441.93	410464.
Geo_n240_ds_10	355254.36	353823.23	355198.61	355017.34	352252.56	355184.
Geo_n480_ds_01	580921.73	581315.05	582479.04	580805.52	576850.95	582123.0
Geo_n480_ds_02	1089043.66	1089409.66	1090000.26	1088977.03	1084763.97	1089716.
Geo_n480_ds_03	662588.72	662622.55	664319.28	661944.19	658367.03	663591.4
Geo_n480_ds_04	836597.00	835376.73	836397.62	836532.13	831310.73	836358.8
Geo_n480_ds_05	988491.52	986287.96	988328.45	986678.57	979722.93	987742.1
Geo_n480_ds_06	1012562.54	1010237.14	1012489.37	1011750.26	1006038.94	1012037.
Geo_n480_ds_07	864919.59	864225.44	864771.60	864710.73	860095.40	864281.4
Geo_n480_ds_08	587651.95	587419.70	587805.09	587283.15	584076.35	587506.1
Geo_n480_ds_09	666297.20	667220.91	667420.39	666229.66	663568.54	667309.4
Geo_n480_ds_10	932726.34	936532.52	937476.35	929792.10	930420.08	936650.
Geo_n960_ds_01	3361972.63	3357246.28	3364976.99	3349073.54	3343507.03	3362203.
Geo_n960_ds_02	1719714.70	1720538.84	1722789.69	1716091.63	1714377.84	1721443.
Geo_n960_ds_03	3347799.90	3345716.22	3351291.12	3347722.82	3335941.16	3348867.
Geo_n960_ds_04	3614983.35	3620711.81	3623347.13	3604535.13	3605566.68	3621476.0
Geo_n960_ds_05	2342436.81	2341962.44	2342220.13	2342276.35	2330534.53	2341420.3
Geo_n960_ds_06	3153302.03	3148820.77	3152992.29	3151552.96	3141553.49	3151442.9
Geo_n960_ds_07	1301825.26	1298267.73	1301844.91	1298534.13	1292837.36	1300216.9
Geo_n960_ds_08	1721921.20	1720719.54	1723602.17	1720286.62	1716296.69	1723335.8
Geo_n960_ds_09	1894753.44	1896003.92	1897535.27	1891513.59	1889095.78	1896214.
Geo_n960_ds_10	2617039.54	2615485.60	2618015.72	2615978.35	2607823.21	2617741.
#Best	24	0	16	14	0	26
p-value	2.06e-01	2.54e-10		5.78e-2	2.54e-10	

gradually. This experiment shows that the IMS algorithm is sensitive to the parameter θ , and a large value is more appropriate for the large-sized instances. Therefore, in this study the default value of θ was set to 1.5 for the instances with n > 400, and 1.0 for other instances.

4.3. Spatial distribution of high-quality solutions

To shed insight on the rationality of the proposed IMS algorithm, we carried out an experimental study on spatial distribution of high-quality local optimum solutions. This study, inspired by Porumbel, Hao, and Kuntz (2010), helps to understand why altering between maxima search and strong perturbation during the IMS process is meaningful. This study was based on 6 representative RanInt, RanReal, and Geo instances with n=120. In this experiment, each instance was solved one time by running our IMS algorithm with a cutoff time of 1 minute, and the distinct high-quality local optimum solutions encountered during the run were recorded. For the 2 RanInt and 2 RanReal instances, the local optimum solutions with an objective value of $f \ge 0.99 \times f_B$ are considered as high-quality, where f_B represents the best objective value found in this work for the given instance. As for two 2 Geo in-

stances, the local optimum solutions with an objective value of $f \ge 0.999 \times f_B$ are considered as high-quality.

Following Porumbel et al. (2010), to obtain an intuitive image of the spatial distribution of high-quality local optimum solutions, we employ the multidimensional scaling (MDS) procedure to generate the distribution in Euclidean R^3 space, where the MDS procedure is composed of the following two steps.

• Step 1: We first construct the distance matrix $D_{p \times p}$ in the real search space Ω (a n-dimensional space), where the entry $d_{ab} \in D_{p \times p}$ represents the distance between solutions s_a and s_b , and p represents the total number of the local optimum solutions sampled. Given two solutions $s_a = (y^a[1], y^a[2], \dots, y^a[n])$ and $s_b = (y^b[1], y^b[2], \dots, y^b[n])$, we adopt the distance function given in Brimberg et al. (2015) to calculate their distance, which is defined as follows:

$$d_{ab} = \frac{|\{(i,j): ((y^a[i] = y^a[j] \land y^b[i] \neq y^b[j]) \lor (y^a[i] \neq y^a[j] \land y^b[i] = y^b[j]))\}|}{n^2/m}$$

As shown in Brimberg et al. (2015), d_{ab} estimates the "fraction" of pairs belonging to the same group in one solution, but not to the same group in another solution, and it is suitable to represent the distance between two partitions.

Table 8
Comparison of the IMS algorithm with two state-of-the-art algorithms (i.e., ITS (Palubeckis et al., 2015) and SGVNS (Brimberg et al., 2015)) on the Geo instances with equal group sizes.

	f_{best}			f_{avg}		
Instance	ITS Palubeckis et al. (2015)	SGVNS Brimberg et al. (2015)	IMS	ITS Palubeckis et al. (2015)	SGVNS Brimberg et al. (2015)	IMS
Geo_n120_ss_01	101625.34	101582.46	101611.27	101610.59	101563.00	101595.23
Geo_n120_ss_02	54852.92	54831.10	54840.03	54846.70	54822.33	54835.58
Geo_n120_ss_03	47631.33	47615.71	47621.57	47626.08	47610.72	47616.99
Geo_n120_ss_04	73513.57	73466.35	73491.50	73498.55	73453.53	73483.01
Geo_n120_ss_05	112657.57	112621.83	112641.17	112631.14	112573.83	112613.01
Geo_n120_ss_06	125424.91	125375.10	125399.82	125404.69	125345.95	125380.47
Geo_n120_ss_07	98499.68	98448,17	98493.37	98483.28	98429.09	98466.30
Geo_n120_ss_08	79982.16	79925.82	79962.64	79963.75	79910.80	79947.93
Geo_n120_ss_09	87281.56	87217.23	87263.07	87260.55	87206.68	87243.30
Geo_n120_ss_10	60258.25	60223.82	60249.31	60248.61	60214.08	60233.23
Geo_n240_ss_01	188872.18	188820,43	188848.74	188854.87	188811.27	188833.16
Geo_n240_ss_02	330349.92	330221.98	330285.51	330303.80	330194.62	330261.0
Geo_n240_ss_03	207066.88	207004.15	207040.96	207055.28	206994.19	207028.70
Geo_n240_ss_04	246387.08	246293.80	246350.15	246364.23	246285.18	246333.52
Geo_n240_ss_05	298773.97	298663.11	298729.45	298738.96	298631.63	298700.2
Geo_n240_ss_06	338596.95	338485.52	338562.44	338566.51	338455.23	338526.4
Geo_n240_ss_07	326061.15	325947.58	326039.00	326036.28	325925.53	325995.2
Geo_n240_ss_08	126911.48	126899.34	126903.24	126908.32	126897.58	126898.6
Geo_n240_ss_09	391469.54	391315.30	391383.98	391413.51	391299.48	391365.4
Geo_n240_ss_10	339533.45	339426.07	339488.03	339506.87	339395.17	339468.43
Geo_n480_ss_01	552175.76	552029.26	552104.49	552155.33	552012.56	552078.3
Geo_n480_ss_02	1047450.18	1047180.27	1047314.11	1047387.49	1047128.56	1047241.7
Geo_n480_ss_03	633760.55	633556.01	633647.36	633729.27	633531.02	633623.0
Geo_n480_ss_04	789817.46	789565.85	789709.97	789778.49	789536.82	789659.9
Geo_n480_ss_05	945933.15	945715.47	945800.11	945887.14	945642.66	945743.4
Geo_n480_ss_06	966654.45	966380.61	966478.82	966585.10	966325.97	966431.6
Geo_n480_ss_07	827713.64	827460.21	827558.35	827658.89	827399.66	827527.3
Geo_n480_ss_08	556651.12	556507.04	556565.16	556632.18	556478.77	556538.13
Geo_n480_ss_09	636342.86	636150.41	636253.75	636319.08	636131.25	636224.4
Geo_n480_ss_10	883411.86	883126.77	883313.08	883359.36	883097.22	883232.13
Geo_n960_ss_01	3254400.00	3253897.94	3254071.56	3254283.99	3253844.76	3254022.12
Geo_n960_ss_02	1663655.10	1663453.87	1663496.02	1663632.19	1663430.65	1663471.3
Geo_n960_ss_03	3251592.49	3251133.28	3251368.68	3251534.31	3251076.91	3251289.5
Geo_n960_ss_04	3514369.69	3513845.78	3513995.60	3514217.91	3513760.67	3513948.5
Geo_n960_ss_05	2264719.61	2264438.13	2264551.72	2264687.79	2264388.84	2264524.2
Geo_n960_ss_06	3069667.72	3069224.57	3069457.37	3069579.72	3069155.74	3069358.54
Geo_n960_ss_07	1257746.77	1257645.60	1257632.82	1257733.35	1257629.61	1257624.3
Geo_n960_ss_08	1674028.54	1673798.98	1673846.57	1673989.19	1673778.03	1673825.8
Geo_n960_ss_09	1835473.14	1835246.63	1835324.69	1835440.88	1835216.53	1835289.4
Geo_n960_ss_10	2528974.50	2528612.67	2528822.78	2528919.65	2528571.34	2528761.9
#Best	40	0	0	40	0	0
			U			U
p-value	2.54e-10	1.87e-9		2.54e-10	1.87e-9	

Table 9 Summary comparison of the IMS algorithm with two state-of-the-art algorithms (ITS (Palubeckis et al., 2015) and SGVNS (Brimberg et al., 2015)) on the large instances with n = 2000 (220 MDG-a instances) and n = 3000 (40 MDG-c instances). The best results among the compared algorithms are indicated in bold.

Instance s	set				f_{best}			f_{avg}		
Set	m	a_g	b_g	Туре	ITS Palubeckis et al. (2015)	SGVNS Brimberg et al. (2015)	IMS	ITS Palubeckis et al. (2015)	SGVNS Brimberg et al. (2015)	IMS
MDG-a	10	173	227	DGS	1133961.05	1132509.35	1135634.25	1133249.54	1131536.17	1135113.69
MDG-a	10	200	200	EGS	1115340.65	1113709.60	1116975.90	1114591.49	1112901.98	1116489.20
MDG-a	25	51	109	DGS	539418.00	539519.80	541147.35	538864.09	538965.23	540692.18
MDG-a	25	80	80	EGS	485946.35	485936.70	487501.50	485315.72	485465.81	487151.50
MDG-a	50	32	48	DGS	272656.00	273440.75	274262.10	272184.14	273105.67	273929.08
MDG-a	50	26	54	DGS	291116.55	291739.10	292585.85	290577.75	291347.52	292231.91
MDG-a	50	40	40	EGS	263767.03	264564.90	265342.55	263266.11	264211.53	265009.32
MDG-a	100	13	27	DGS	158970.90	159544.05	159905.80	158552.62	159223.94	159638.19
MDG-a	100	20	20	EGS	144118.80	144614.35	144918.35	143684.40	144325.44	144667.81
MDG-a	200	6	14	DGS	88435.70	88535.80	88721.50	88099.37	88262.95	88549.32
MDG-a	200	10	10	EGS	77208.50	76587.30	77242.80	76907.49	76459.62	77098.39
MDG-c	50	48	72	DGS	57908059.10	58034797.30	58195733.30	57830101.16	57979531.87	58149757.61
MDG-c	50	60	60	EGS	55958533.45	56087667.95	56245400.90	55877999.10	56031642.09	56201493.19
Average <i>p</i> -value					9110579.39 3.12e-4	9130243.61 3.12e-4	9155797.86	9097953.31 3.12e-4	9121306.14 3.12e-4	9148601.65

Fig. 3. Distribution of high-quality solutions produced by the IMS algorithm on the representative instances.

• Step 2: According to the distance matrix $D_{p \times p}$, we then generate p coordinate points in the Euclidean space R^3 by the classic *cmdscale* algorithm implemented in the R language, where each coordinate point corresponds to one of p solutions. The goal of the *cmdscale* algorithm is to map the points in n-dimensional space into Euclidean space R^3 while minimizing the distance distortion. Thus, the distance between two points in R^3 approximately equals to that in the original n-dimensional space. Finally, we plot a scatter graph of the obtained points in R^3 .

The 3D scatter graph of the high-quality local optimum solutions produced in the experiment is plotted in Fig. 3 for each instance. Interestingly, Fig. 3 discloses that high-quality local optimum solutions tend to be grouped in clusters, which has two relevant implications. On the one hand, the distances between high-quality local optimum solutions within the same cluster are in general small, which implies that it is very helpful for the search algorithm to reinforce its exploitation ability to detect other high-quality local optima in the current region of the search space. On the other hand, the local optimum solutions locating in different clusters are in general separated by a large distance. To continue the search effectively, it is useful for a heuristic algorithm to be able to "jump" from one cluster to another cluster (i.e., to escape from local optimum traps).

Based on the above analysis, the rationality of the proposed IMS algorithm can be explained as follows. On the one hand, the maxima search procedure uses its weak perturbation procedure to visit other (hopefully better) local optima in the nearby areas of an attained local optimum (i.e., corresponding to a cluster). On the other hand, the strong perturbation procedure of the IMS algorithm helps the search to move from one attraction area (corresponding to a cluster) to another one. As a result, the combined use of the maxima search procedure and the strong perturbation procedure ensures a kind of balance between intensification and diversification of its search process, which help to locate high quality solutions.

Finally, one notices that the cluster characteristic of high-quality local optimum solutions was previously observed for other well-known problems like TSP (Boese, Kahng, & Muddu, 1994) and graph coloring (Porumbel et al., 2010).

5. Conclusions

This paper introduced an iterated maxima search (IMS) algorithm for solving the maximally diverse grouping problem (MDGP). IMS effectively integrates a fast local search, a weak perturbation procedure, and a strong perturbation procedure to ensure a suitable trade-off between intensification and diversification of its search process. The performance of the proposed algorithm was evaluated on five sets of 500 benchmark instances with various characteristics. The experimental results showed that IMS is very competitive compared to existing top performing algorithms in the literature and performs particularly well on large-sized instances. To provide some insight about the proposed algorithm, we studied the influence of the weak and strong perturbation procedures. We also investigated the spatial distribution of high-quality local optima with the purpose of shedding light on the rationality of the proposed algorithm.

In addition to the updated best results achieved by the proposed algorithm which are useful to assess new MDGP algorithms, the key ideas of this work could help to design effective heuristics for other related grouping or clustering problems involving dense graphs. Finally, like for most heuristic and metaheuristic algorithms, our current knowledge does not allow us to explain theoretically why the proposed algorithm works. More effort on such fundamental aspects of heuristic search is needed in the long term with the purpose of achieving a better understanding of heuristic algorithms.

Acknowledgments

We are grateful to the reviewers for their insightful comments which helped us to improve the paper. We thank Dr. D. Urošević for providing us with the executable code of their SGVNS algorithm as well as his kind help, Dr. G. Palubeckis for providing the source code of their ITS algorithm, and Dr. F.J. Rodriguez for his help on an early version of this study. The work is partially supported by the LigeRo project (2009–2013, No. 0012, Pays de la Loire region, France), the PGMO project (2014–0024H, Jacques Hadamard Mathematical Foundation) and a post-doc grant from the Pays de la Loire region (France).

Table A1Comparison of the IMS algorithm with two state-of-the-art algorithms on the large DGS instances with n = 2000, m = 50.

Instance				f_{best}			f_{avg}		
Graph	m	a_g	b_g	ITS Palubeckis et al. (2015)	SGVNS Brimberg et al. (2015)	IMS	ITS Palubeckis et al. (2015)	SGVNS Brimberg et al. (2015)	IMS
MDG-a_21	50	32	48	272,874	273,432	274,075	272431.05	273124.65	273762.25
MDG-a_22	50	32	48	272,699	273,419	274,335	272136.20	273107.15	274045.85
MDG-a_23	50	32	48	272,689	273,431	274,181	272176.50	272987.45	273948.35
MDG-a_24	50	32	48	272,757	273,416	274,075	272066.20	273069.55	273762.55
MDG-a_25	50	32	48	272,579	273,463	274,069	272234.85	273155.00	273740.40
MDG-a_26	50	32	48	272,769	273,263	274,466	272205.45	272991.45	273929.85
MDG-a_27	50	32	48	272,205	273,258	274,133	272136.60	272949.10	273835.35
MDG-a_28	50	32	48	272,472	273,452	274,228	272046.55	273076.60	273859.65
MDG-a_29	50	32	48	272,811	273,434	274,396	272122.60	273148.55	273999.85
MDG-a_30	50	32	48	272,730	273,430	274,316	272016.35	273107.30	273897.95
MDG-a_31	50	32	48	272,900	273,459	274,342	272532.40	273137.00	274117.25
MDG-a_32	50	32	48	272,794	273,374	274,303	272326.35	273080.45	273946.25
MDG-a_33	50	32	48	272,692	273,542	274,389	272232.50	273083.35	274055.00
MDG-a_34	50	32	48	272,517	273,438	274,379	272218.70	273177.00	273990.30
MDG-a_35	50	32	48	272,486	273,419	274,097	272068.70	273028.50	273794.45
MDG-a_36	50	32	48	272,758	273,616	274,172	272264.55	273068.90	273889.90
MDG-a_37	50	32	48	272,280	273,434	274,457	271995.35	273163.80	274039.20
MDG-a_38	50	32	48	272,520	273,494	274,382	272037.40	273228.30	274033.40
MDG-a_39	50	32	48	272,815	273,470	274,131	272182.85	273204.25	273883.20
MDG-a_40	50	32	48	272,773	273,571	274,316	272251.65	273225.00	274050.65
Average				272656.00	273440.75	274262.10	272184.14	273105.67	273929.08
#Best				0	0	20	0	0	20
p-value				7.74e-6	7.74e-6		7.74e-6	7.74e-6	

Table A2 Comparison of the IMS algorithm with two state-of-the-art algorithms on the large DGS instances with n=2000 and m=10.

Instance				f_{best}			f_{avg}		
Graph	m	a_g	b_g	ITS Palubeckis et al. (2015)	SGVNS Brimberg et al. (2015)	IMS	ITS Palubeckis et al. (2015)	SGVNS Brimberg et al. (2015)	IMS
MDG-a_21	10	173	227	1133,850	1132,437	1135,700	1133239.35	1131666.00	1135310.55
MDG-a_22	10	173	227	1133,890	1132,473	1135,376	1133254,25	1131503.85	1134892.80
MDG-a_23	10	173	227	1133,188	1131,686	1135,286	1132744.00	1130977.10	1134627.75
MDG-a_24	10	173	227	1133,867	1132,812	1135,485	1133123.65	1131430.65	1134975.20
MDG-a_25	10	173	227	1133,850	1133,050	1135,776	1133239.35	1131881.80	1135299.70
MDG-a_26	10	173	227	1133,733	1132,438	1135,324	1133191.00	1131474.25	1135010.75
MDG-a_27	10	173	227	1134,059	1131,955	1135,265	1133104.75	1130955.80	1134649.75
MDG-a_28	10	173	227	1133,960	1132,356	1135,603	1133145.65	1131478.80	1134980.25
MDG-a_29	10	173	227	1133,549	1132,086	1135,868	1132988.25	1131568.75	1135284.35
MDG-a_30	10	173	227	1133,825	1132,401	1135,651	1133127.05	1131391.45	1135014.90
MDG-a_31	10	173	227	1134,218	1132,994	1136,036	1133398.80	1132106.35	1135617.95
MDG-a_32	10	173	227	1133,740	1132,278	1135,917	1133256.50	1131462.05	1135175.85
MDG-a_33	10	173	227	1134,011	1132,321	1135,506	1133326.30	1131428.45	1134925.35
MDG-a_34	10	173	227	1134,178	1132,913	1135,563	1133426.75	1131840.65	1135234.95
MDG-a_35	10	173	227	1133,862	1132,279	1135,279	1132919.85	1131109.90	1134789.20
MDG-a_36	10	173	227	1134,185	1132,075	1135,563	1133431.80	1131271.55	1135156.10
MDG-a_37	10	173	227	1134,087	1133,144	1136,267	1133442.25	1132128.65	1135542.65
MDG-a_38	10	173	227	1134,872	1133,027	1135,697	1133763.00	1131655.55	1135199.35
MDG-a_39	10	173	227	1133,856	1132,120	1135,375	1133350.10	1131170.55	1134822.95
MDG-a_40	10	173	227	1134,441	1133,342	1136,148	1133518.15	1132221.20	1135763.35
Average				1133961.05	1132509.35	1135634.25	1133249.54	1131536.17	1135113.69
#Best				0	0	20	0	0	20
p-value				7.74e-6	7.74e-6		7.74e-6	7.74e-6	

Table A3 Comparison of the IMS algorithm with two state-of-the-art algorithms on the large EGS instances with n=2000 and m=10.

Instance				f_{best}			f_{avg}		
Graph	m	a_g	b_g	ITS Palubeckis et al. (2015)	SGVNS Brimberg et al. (2015)	IMS	ITS Palubeckis et al. (2015)	SGVNS Brimberg et al. (2015)	IMS
MDG-a_21	10	200	200	1115,022	1114,270	1117,343	1114442.75	1113004.65	1116684.40
MDG-a_22	10	200	200	1114,794	1113,468	1117,097	1114409.70	1112711.05	1116442.00
MDG-a_23	10	200	200	1114,892	1112,976	1116,331	1113981.75	1112453.60	1115880.90
MDG-a_24	10	200	200	1115,312	1113,919	1116,863	1114676.95	1112947.40	1116410.05
MDG-a_25	10	200	200	1115,809	1114,269	1117,108	1114749.00	1113427.15	1116743.85
MDG-a_26	10	200	200	1115,590	1113,571	1116,942	1114765.90	1112838.80	1116368.10
MDG-a_27	10	200	200	1115,132	1113,272	1116,468	1114553.75	1112405.70	1115947.35
MDG-a_28	10	200	200	1115,335	1113,925	1116,740	1114421.70	1112842.45	1116460.90
MDG-a_29	10	200	200	1116,073	1113,747	1117,064	1114900.85	1112835.30	1116585.35
MDG-a_30	10	200	200	1114,993	1113,583	1116,748	1114373.75	1112662.90	1116396.95
MDG-a_31	10	200	200	1116,037	1114,170	1117,636	1115106.35	1113322.30	1117179.15
MDG-a_32	10	200	200	1115,944	1113,406	1116,908	1114746.20	1112626.25	1116441.30
MDG-a_33	10	200	200	1114,739	1113,326	1116,815	1114292.15	1112568.10	1116290.25
MDG-a_34	10	200	200	1115,094	1113,611	1117,125	1114697.30	1113039.85	1116608.10
MDG-a_35	10	200	200	1114,836	1114,084	1116,561	1114283.50	1112689.40	1116093.60
MDG-a_36	10	200	200	1114,858	1113,480	1116,789	1114249.55	1112746.90	1116379.10
MDG-a_37	10	200	200	1115,425	1113,931	1117,783	1114776.40	1113387.60	1117045.70
MDG-a_38	10	200	200	1115,548	1113,837	1117,110	1114912.15	1113541.35	1116615.75
MDG-a_39	10	200	200	1114,931	1113,255	1116,610	1113943.30	1112574.00	1116142.15
MDG-a_40	10	200	200	1116,449	1114,092	1117,477	1115546.75	1113414.85	1117069.00
Average				1115340.65	1113709.60	1116975.90	1114591.49	1112901.98	1116489.20
#Best				0	0	20	0	0	20
p-value				7.74e-6	7.74e-6		7.74e-6	7.74e-6	

Appendix

This appendix complements the presentation of Section 3.4 and contains the detailed results of the IMS algorithm on the large instances with n=2000 (220 MDG-a instances) and n=3000 (40 MDG-c instances) in comparison with two state-of-the-art algorithms (ITS (Palubeckis et al., 2015) and SGVNS (Brimberg et al., 2015)). Tables A.1–A.13 present respectively the results of the compared algorithms on each of the 11 MDG-a subsets and 2 MDG-c

subsets (20 instances per group) in terms of the best and average objective values (based on 20 independent runs per instance, see Section 3.2 for the experimental protocol). The row 'Average' shows the averaged value for each subset of instances. The row '#Best' indicates the number of instances for which an algorithm performs the best among the compared algorithms. The row 'p-value' indicates the outcomes of the non-parametric Friedman tests between a set of results of IMS and those of a reference algorithm. The best results among the compared algorithms are indicated in bold.

Table A4 Comparison of the IMS algorithm with two state-of-the-art algorithms on the large DGS instances with n=2000 and m = 25.

Instance				f_{best}			f_{avg}		
Graph	m	a_g	b_g	ITS Palubeckis et al. (2015)	SGVNS Brimberg et al. (2015)	IMS	ITS Palubeckis et al. (2015)	SGVNS Brimberg et al. (2015)	IMS
MDG-a_21	25	51	109	539,304	539,616	541,130	538762.40	539050.10	540694.30
MDG-a_22	25	51	109	539,732	539,554	541,013	539199.75	538882.55	540636.20
MDG-a_23	25	51	109	539,571	539,030	541,352	538867.15	538663.70	540553.45
MDG-a_24	25	51	109	539,549	539,238	540,794	538784.55	538911.85	540574.50
MDG-a_25	25	51	109	539,481	539,872	541,283	538876.90	539156.75	540781.90
MDG-a_26	25	51	109	539,321	539,696	541,099	538978.25	538840.85	540601.95
MDG-a_27	25	51	109	539,028	539,365	541,084	538475.60	538794.80	540623.70
MDG-a_28	25	51	109	539,560	539,458	541,179	539090.75	538852.30	540636.25
MDG-a_29	25	51	109	539,356	539,458	541,492	539043.55	539005.30	540881.65
MDG-a_30	25	51	109	539,467	539,482	541,224	538600.30	538898.80	540769.85
MDG-a_31	25	51	109	539,592	539,808	541,215	539220.20	539184.65	540829.25
MDG-a_32	25	51	109	539,738	539,484	540,939	539135.95	538982.75	540533.85
MDG-a_33	25	51	109	539,268	539,719	540,958	538685.75	539054.15	540656.25
MDG-a_34	25	51	109	539,567	539,726	541,136	538968.95	538980.60	540707.70
MDG-a_35	25	51	109	539,225	539,294	541,054	538632.90	538743.00	540568.35
MDG-a_36	25	51	109	539,375	539416	541,469	538797.05	538920.90	540742.60
MDG-a_37	25	51	109	539,576	539,492	541,183	538805.95	539108.85	540742.45
MDG-a_38	25	51	109	539,367	539,363	541,150	538962.70	539168.40	540801.00
MDG-a_39	25	51	109	539,075	539,423	540,920	538523.20	538810.10	540524.70
MDG-a_40	25	51	109	539,208	539,902	541,273	538869.90	539294.25	540983.60
Average				539418.00	539519.80	541147.35	538864.09	538965.23	540692.18
#Best				0	0	20	0	0	20
<i>p</i> -value				7.74e-6	7.74e-6		7.74e-6	7.74e-6	

Table A5 Comparison of the IMS algorithm with two state-of-the-art algorithms on the large EGS instances with n=2000 and m = 25.

Instance				f_{best}			f_{avg}		
Graph	m	a_g	b_g	ITS Palubeckis et al. (2015)	SGVNS Brimberg et al. (2015)	IMS	ITS Palubeckis et al. (2015)	SGVNS Brimberg et al. (2015)	IMS
MDG-a_21	25	80	80	486,046	485,997	487,776	485271.85	485574.30	487360.10
MDG-a_22	25	80	80	486,509	486,171	487,472	485676.00	485437.50	487041.00
MDG-a_23	25	80	80	485,690	485,669	487,391	485125.40	485310.00	487078.55
MDG-a_24	25	80	80	485,848	485,853	487,382	485157.20	485532.90	487086.95
MDG-a_25	25	80	80	485,819	486,062	487,700	485355.85	485639.90	487270.35
MDG-a_26	25	80	80	485,712	486,000	487,443	485164.55	485368.25	487191.90
MDG-a_27	25	80	80	485,532	485,688	487,186	484994.95	485327.50	486913.65
MDG-a_28	25	80	80	485,922	485,600	487,340	485424.50	485336.40	487079.05
MDG-a_29	25	80	80	486,329	485,907	487,624	485606.05	485550.20	487346.40
MDG-a_30	25	80	80	485,702	486,040	487,319	484916.00	485510.60	486990.20
MDG-a_31	25	80	80	486,403	486,147	487,883	485924.95	485516.45	487432.55
MDG-a_32	25	80	80	486,174	485,956	487,254	485169.60	485478.00	486995.40
MDG-a_33	25	80	80	485,676	486,056	487,442	485156.65	485369.50	487050.05
MDG-a_34	25	80	80	486,631	486,017	487,620	485533.65	485594.65	487131.35
MDG-a_35	25	80	80	485,440	485,647	487,339	485035.05	485394.20	487024.85
MDG-a_36	25	80	80	485,524	485,988	487,417	485159.30	485475.20	487090.90
MDG-a_37	25	80	80	486,137	486,084	487,675	485567.85	485676.05	487307.95
MDG-a_38	25	80	80	485,976	485,928	487,711	485153.10	485225.10	487341.50
MDG-a_39	25	80	80	486,005	485,898	487,422	485529.45	485325.75	486955.75
MDG-a_40	25	80	80	485,852	486,026	487,634	485392.50	485673.65	487341.45
Average				485946.35	485936.70	487501.50	485315.72	485465.81	487151.50
#Best				0	0	20	0	0	20
p-value				7.74e-6	7.74e-6		7.74e-6	7.74e-6	

Table A6 Comparison of the IMS algorithm with two state-of-the-art algorithms on the large DGS instances with n = 2000, m = 50, $a_g = 26$, and $b_g = 54$.

Instance				f_{best}			f_{avg}		
Graph	m	a_g	b_g	ITS Palubeckis et al. (2015)	SGVNS Brimberg et al. (2015)	IMS	ITS Palubeckis et al. (2015)	SGVNS Brimberg et al. (2015)	IMS
MDG-a_21	50	26	54	291,149	291,749	292,702	290802.40	291384.75	292343.30
MDG-a_22	50	26	54	291,098	291,457	292,564	290700.10	291219.20	292104.55
MDG-a_23	50	26	54	290,579	291553	292,344	290236.45	291259.25	292023.75
MDG-a_24	50	26	54	290,934	291,709	292,651	290386.75	291378.35	292271.05
MDG-a_25	50	26	54	29,1081	291,826	292,727	290633.45	291337.60	292415.10
MDG-a_26	50	26	54	291,348	291,812	292,723	290380.70	291344.05	292289.20
MDG-a_27	50	26	54	291,009	291,530	292,139	290506.30	291211.70	291842.00
MDG-a_28	50	26	54	290,997	291,685	292,574	290511.25	291320.40	292159.20
MDG-a_29	50	26	54	291,008	291,731	292,634	290484.05	291384.20	292220.40
MDG-a_30	50	26	54	291,069	291,838	292,654	290428.00	291415.45	292283.10
MDG-a_31	50	26	54	291,321	292,093	292,507	291090.65	291607.55	292273.25
MDG-a_32	50	26	54	291,478	291,753	292,651	290647.00	291344.35	292303.15
MDG-a_33	50	26	54	291,093	291,682	292,480	290618.00	291273.10	292194.45
MDG-a_34	50	26	54	290,986	291,702	292,813	290638.25	291283.35	292401.75
MDG-a_35	50	26	54	290,840	291,689	292,619	290427.75	291301.15	292252.05
MDG-a_36	50	26	54	291,476	291,714	292,401	290579.15	291351.00	292250.85
MDG-a_37	50	26	54	291,160	291,781	292,815	290639.15	291413.00	292425.85
MDG-a_38	50	26	54	291,271	291,840	292,445	290676.85	291380.40	292148.60
MDG-a_39	50	26	54	291,199	291,642	292,390	290479.05	291247.05	291960.90
MDG-a_40	50	26	54	291,235	291,996	292,884	290689.75	291494.40	292475.75
Average				291116.55	291739.10	292585.85	290577.75	291347.52	292231.91
#Best				0	0	20	0	0	20
p-value				7.74e-6	7.74e-6		7.74e-6	7.74e-6	

Table A7 Comparison of the IMS algorithm with two state-of-the-art algorithms on the large EGS instances with n=2000 and m = 50.

Instance				f_{best}			f_{avg}		
Graph	m	a_g	b_g	ITS Palubeckis et al. (2015)	SGVNS Brimberg et al. (2015)	IMS	ITS Palubeckis et al. (2015)	SGVNS Brimberg et al. (2015)	IMS
MDG-a_21	50	40	40	263,680	264,582	265,422	263184.70	264259.00	265155.60
MDG-a_22	50	40	40	263,929	264,461	265,250	263296.00	264121.60	264885.10
MDG-a_23	50	40	40	263,731	264,489	265,146	263221.95	264092.20	264789.15
MDG-a_24	50	40	40	263,675	264,567	265,455	263126.30	264177.40	265122.20
MDG-a_25	50	40	40	263,844	264,571	265,363	263152.10	264225.30	265101.95
MDG-a_26	50	40	40	263,837	264,639	265,341	263340.45	264216.75	265106.80
MDG-a_27	50	40	40	263,641	264,387	265,383	262982.40	264095.05	265016.35
MDG-a_28	50	40	40	263,628	264,419	265,406	263210.05	264165.35	264907.00
MDG-a_29	50	40	40	264,015	264,763	265,375	263270.45	264246,25	264950.80
MDG-a_30	50	40	40	263,457	264,536	265,564	263067.10	264236.85	264933.00
MDG-a_31	50	40	40	264,085	264,713	265,452	263577.85	264323.10	265262.35
MDG-a_32	50	40	40	263,893	264,570	265,235	263488.65	264267.60	264884.90
MDG-a_33	50	40	40	263,682	264,569	265,285	263253.50	264215.00	264863.10
MDG-a_34	50	40	40	263,564	264,622	265,372	263158.95	264227.50	265022.75
MDG-a_35	50	40	40	263,876	264,572	265,304	263456.40	264149.25	265031.40
MDG-a_36	50	40	40	263,674	264,575	265,385	263147.05	264213.35	265109.45
MDG-a_37	50	40	40	263,798	264,585	265,378	263196.25	264324.05	265171.30
MDG-a_38	50	40	40	263,879	264,514	265,100	263337.00	264213.25	264816.35
MDG-a_39	50	40	40	263,612	264,561	265,133	263347.35	264136.90	264831.90
MDG-a_40	50	40	40	263,841	264,603	265,502	263507.70	264324.90	265224.95
Average				263767.03	264564.90	265342.55	263266.11	264211.53	265009.32
#Best				0	0	20	0	0	20
p-value				7.74e-6	7.74e-6		7.74e-6	7.74e-6	

Table A8Comparison of the IMS algorithm with two state-of-the-art algorithms on the large DGS instances with n=2000 and m=100.

Instance				f_{best}			f_{avg}			
Graph	m	a_g	b_g	ITS Palubeckis et al. (2015)	SGVNS Brimberg et al. (2015)	IMS	ITS Palubeckis et al. (2015)	SGVNS Brimberg et al. (2015)	IMS	
MDG-a_21	100	13	27	159,084	159,614	160,129	158583.45	159143.20	159840.15	
MDG-a_22	100	13	27	159,062	159,462	159,845	158669.95	159200.50	159630.75	
MDG-a_23	100	13	27	158,786	159,406	159,829	158413.80	159200.10	159558.05	
MDG-a_24	100	13	27	158,850	159,477	159,882	158440.15	159212.50	159671.90	
MDG-a_25	100	13	27	158,750	159,474	159,835	158437.20	159197.60	159606.05	
MDG-a_26	100	13	27	158,994	159,538	160,219	158759.90	159258.60	159795.30	
MDG-a_27	100	13	27	158,825	159,459	160,040	158487.05	159169.60	159759.30	
MDG-a_28	100	13	27	159,165	159,442	159,789	158548.45	159141.65	159448.45	
MDG-a_29	100	13	27	159,165	159,720	159,790	158570.55	159222.65	159466.30	
MDG-a_30	100	13	27	158,787	159,446	159,739	158435.35	159222.60	159468.30	
MDG-a_31	100	13	27	158,881	159,837	159,810	158514.30	159368.00	159516.70	
MDG-a_32	100	13	27	159,017	159,525	160,096	158499.25	159257.10	159815.00	
MDG-a_33	100	13	27	158,840	159,503	159,619	158470.70	159236.40	159426.20	
MDG-a_34	100	13	27	158,993	159,680	159,608	158558.45	159195.85	159405.05	
MDG-a_35	100	13	27	159,101	159,623	159,875	158625.55	159200.50	159625.15	
MDG-a_36	100	13	27	159,063	159,445	159,869	158705.10	159211.50	159627.75	
MDG-a_37	100	13	27	158,899	159,564	160,054	158554.15	159249.80	159790.70	
MDG-a_38	100	13	27	158,748	159,456	160,130	158357.90	159251.15	159828.85	
MDG-a_39	100	13	27	159,343	159,610	159,999	158802.65	159228.55	159777.65	
MDG-a_40	100	13	27	159,065	159,600	159,959	158618.50	159310.90	159706.25	
Average				158970.90	159544.05	159905.80	158552.62	159223.94	159638.19	
#Best				0	2	18	0	0	20	
p-value				7.74e-6	3.47e-6		7.74e-6	7.74e-6		

 Table A9

 Comparison of the IMS algorithm with two state-of-the-art algorithms on the large EGS instances with n=2000 and m = 100.

Instance				f_{best}			$f_{a u g}$		
Graph	m	a_g	b_g	ITS Palubeckis et al. (2015)	SGVNS Brimberg et al. (2015)	IMS	ITS Palubeckis et al. (2015)	SGVNS Brimberg et al. (2015)	IMS
MDG-a_21	100	20	20	144,020	144,879	144,918	143619.25	144426.40	144592.80
MDG-a_22	100	20	20	143,938	144,536	144,756	143554.95	144288.90	144549.90
MDG-a_23	100	20	20	143,915	144,577	144,927	143505.35	144342.90	144696.95
MDG-a_24	100	20	20	144,071	144,794	144,962	143690.95	144304.35	144707.35
MDG-a_25	100	20	20	144,341	144,648	145,043	143635.05	144299.65	144766.50
MDG-a_26	100	20	20	144,148	144,601	145,032	143691.65	144331.80	144626.60
MDG-a_27	100	20	20	143,928	144,458	144,935	143617.35	144231.30	144747.70
MDG-a_28	100	20	20	144,140	144,557	144,848	143765.70	144265.15	144644.90
MDG-a_29	100	20	20	144,099	144567	144,937	143831.25	144255.30	144636.80
MDG-a_30	100	20	20	144,263	144,628	144,784	143744.45	144354.60	144500.70
MDG-a_31	100	20	20	144,184	144,655	144,881	143852.55	144385.10	144666.35
MDG-a_32	100	20	20	143,846	144,693	144,934	143641.50	144315.35	144701.00
MDG-a_33	100	20	20	144,071	144,532	144,611	143667.75	144321.20	144447.00
MDG-a_34	100	20	20	144,511	144,573	144,803	143799.00	144383.80	144576.65
MDG-a_35	100	20	20	144,022	144,627	144,999	143682.45	144357.50	144763.65
MDG-a_36	100	20	20	143,829	144,543	144,998	143369.80	144311.30	144788.15
MDG-a_37	100	20	20	144,332	144,632	144,803	143779.55	144371.25	144645.50
MDG-a_38	100	20	20	144,051	144,585	144,958	143701.05	144314.35	144656.15
MDG-a_39	100	20	20	144,344	144,579	145,009	143794.55	144253.20	144797.55
MDG-a_40	100	20	20	144,323	144,623	145,229	143743.75	144395.45	144843.90
Average				144118.80	144614.35	144918.35	143684.40	144325.44	144667.81
#Best				0	0	20	0	0	20
p-value				7.74e-6	7.74e-6		7.74e-6	7.74e-6	

Table A10 Comparison of the IMS algorithm with two state-of-the-art algorithms on the large DGS instances with n=2000 and m = 200.

Instance				f_{best}			f_{avg}		
Graph	m	a_g	b_g	ITS Palubeckis et al. (2015)	SGVNS Brimberg et al. (2015)	IMS	ITS Palubeckis et al. (2015)	SGVNS Brimberg et al. (2015)	IMS
MDG-a_21	200	6	14	88,464	88,548	88,949	88139.95	88276.40	88718.70
MDG-a_22	200	6	14	88,243	88,536	88,459	87968.15	88223.90	88318.15
MDG-a_23	200	6	14	88,131	88,483	88,973	87800.10	88200.25	88796.70
MDG-a_24	200	6	14	88,343	88,464	88,760	87915.65	88202.35	88597.55
MDG-a_25	200	6	14	88,435	88,571	89,031	88030.90	88276.05	88814.00
MDG-a_26	200	6	14	88,538	88,642	88,476	88324.75	88312.55	88322.00
MDG-a_27	200	6	14	88,644	88,469	88,522	88126.45	88221.35	88272.05
MDG-a_28	200	6	14	88,565	88,454	88,794	88060.65	88296.80	88656.85
MDG-a_29	200	6	14	88,361	88,532	89,005	88001.85	88259.90	88839.35
MDG-a_30	200	6	14	88,543	88,560	89,017	88270.80	88287.55	88811.00
MDG-a_31	200	6	14	88,623	88,439	88,601	88363.20	88260.65	88459.75
MDG-a_32	200	6	14	88,445	88,502	88,639	88269.85	88262.40	88456.90
MDG-a_33	200	6	14	88,424	88,775	88,486	88147.25	88306.55	88341.10
MDG-a_34	200	6	14	88,368	88,490	88,961	88063.85	88264.40	88790.35
MDG-a_35	200	6	14	88,426	88,572	88,437	88070.35	88228.15	88273.80
MDG-a_36	200	6	14	88,542	88,590	88,492	88129.15	88296.75	88340.65
MDG-a_37	200	6	14	88,457	88,439	88,558	87943.10	88191.85	88395.35
MDG-a_38	200	6	14	88,544	88,442	88,520	88304.75	88266.35	88325.40
MDG-a_39	200	6	14	88,038	88,643	88,947	87750.55	88326.45	88831.10
MDG-a_40	200	6	14	88,580	88,565	88,803	88306.05	88298.30	88625.65
Average				88435.70	88535.80	88721.50	88099.37	88262.95	88549.32
#Best				3	5	12	1	0	19
p-value				2.54e-2	2.54e-2		5.70e-5	7.74e-6	

Table A11 Comparison of the IMS algorithm with two state-of-the-art algorithms on the large EGS instances with n=2000 and m = 200.

Instance				f_{best}			$f_{a u g}$		
Graph	m	a_g	b_g	ITS Palubeckis et al. (2015)	SGVNS Brimberg et al. (2015)	IMS	ITS Palubeckis et al. (2015)	SGVNS Brimberg et al. (2015)	IMS
MDG-a_21	200	10	10	77,249	76,543	77,175	76842.90	76438.70	76994.40
MDG-a_22	200	10	10	77,214	76,546	77,214	76895.75	76449.15	77107.05
MDG-a_23	200	10	10	77,033	76,564	77,234	76824.15	76464.70	77022.85
MDG-a_24	200	10	10	77,092	76,535	77,197	76873.65	76463.75	77058.50
MDG-a_25	200	10	10	77,198	76,578	77,229	76962.55	76461.45	77121.40
MDG-a_26	200	10	10	77,234	76,567	77,121	76822.05	76467.90	77008.70
MDG-a_27	200	10	10	76,875	76,521	77,131	76608.15	76441.75	77001.80
MDG-a_28	200	10	10	77,216	76,633	77,249	76940.85	76465.05	77122.85
MDG-a_29	200	10	10	77,171	76,627	77,339	76870.25	76463.50	77137.85
MDG-a_30	200	10	10	77,470	76,592	77,214	77011.35	76490.35	77121.60
MDG-a_31	200	10	10	77,245	76,600	77,302	76924.15	76452.55	77146.90
MDG-a_32	200	10	10	77,168	76,638	77,198	76935.05	76464.00	77123.30
MDG-a_33	200	10	10	77,352	76,621	77,396	76975.65	76478.70	77148.10
MDG-a_34	200	10	10	77,316	76,615	77,366	76960.65	76456.60	77154.80
MDG-a_35	200	10	10	77,233	76,685	77,236	76908.75	76470.25	77146.05
MDG-a_36	200	10	10	77,150	76,553	77,270	76918.05	76458.15	77148.45
MDG-a_37	200	10	10	77,196	76,586	77,302	76980.40	76452.00	77154.85
MDG-a_38	200	10	10	77,226	76,523	77,145	76914.30	76431.70	77010.85
MDG-a_39	200	10	10	77,311	76,618	77,261	77000.70	76441.60	77142.25
MDG-a_40	200	10	10	77,221	76,601	77,277	76980.45	76480.55	77095.15
Average				77208.50	76587.30	77242.80	76907.49	76459.62	77098.39
#Best				6	0	15	0	0	20
p-value				3.90e-2	7.74e-6		7.74e-6	7.74e-6	

Table A12 Comparison of the IMS algorithm with two state-of-the-art algorithms on the large DGS instances with n=3000 and m=50.

Instance				f_{best}			f_{avg}		
Graph	m	a_g	b_g	ITS Palubeckis et al. (2015)	SGVNS Brimberg et al. (2015)	IMS	ITS Palubeckis et al. (2015)	SGVNS Brimberg et al. (2015)	IMS
MDG-c_1	50	48	72	57945,495	58002,162	58256,069	57866205.40	57969360.45	58206836.25
MDG-c_2	50	48	72	57941,604	58058,009	58222,189	57847954.50	57978365.60	58176353.85
MDG-c_3	50	48	72	57934,848	58042,369	58183,020	57853662.10	57981548.00	58139867.15
MDG-c_4	50	48	72	57927,582	58040,996	58203,033	57856933.15	57986655.35	58160671.30
MDG-c_5	50	48	72	57923,652	58026,970	58195,892	57837851.55	57973993.50	58138551.15
MDG-c_6	50	48	72	57912,572	58051,277	58170,930	57835981.70	57995787.85	58115476.40
MDG-c_7	50	48	72	57920,362	58006,501	58184,196	57832628.50	57965788.60	58145525.85
MDG-c_8	50	48	72	57917,641	58018,105	58175,358	57828244.60	57958586.70	58137072.20
MDG-c_9	50	48	72	57852,060	58053,174	58148,355	57804909.10	57996436.85	58108503.85
MDG-c_10	50	48	72	57855,618	58032,526	58177,707	57807867.05	57988658.75	58126674.90
MDG-c_11	50	48	72	57927,899	58057,511	58202,140	57823896.80	57996449.35	58166369.45
MDG-c_12	50	48	72	57879,753	58043,186	58211,896	57810309.90	58009313.20	58171859.25
MDG-c_13	50	48	72	57899,195	58033,030	58231,541	57820288.55	57981936.95	58173176.70
MDG-c_14	50	48	72	57893,447	58050,347	58170,717	57819670.60	58000079.35	58128947.60
MDG-c_15	50	48	72	57936,099	58006,905	58219,534	57842744.00	57971202.50	58181767.65
MDG-c_16	50	48	72	57899,782	58017,384	58213,319	57841066.40	57977613.10	58153544.70
MDG-c_17	50	48	72	57912,576	58080,720	58192,484	57822019.25	57983021.95	58146759.40
MDG-c_18	50	48	72	57884,836	58033,798	58152,922	57824357.45	57968806.20	58112703.35
MDG-c_19	50	48	72	57918,318	58018,351	58212,035	57831674.95	57956907.60	58163660.60
MDG-c_20	50	48	72	57877,843	58022,625	58191,329	57793757.60	57950125.50	58140830.60
Average				57908059.10	58034797.30	58195733.30	57830101.16	57979531.87	58149757.61
#Best				0	0	20	0	0	20
p-value				7.74e-6	7.74e-6		7.74e-6	7.74e-6	

Table A13 Comparison of the IMS algorithm with two state-of-the-art algorithms on the large EGS instances with n=3000 and m=50.

Instance				f_{best}			f_{avg}		
Graph	m	a_g	b_g	ITS Palubeckis et al. (2015)	SGVNS Brimberg et al. (2015)	IMS	ITS Palubeckis et al. (2015)	SGVNS Brimberg et al. (2015)	IMS
MDG-c_1	50	60	60	55977,693	56095,305	56253,625	55910079.05	56056762.55	56218194.70
MDG-c_2	50	60	60	55969,792	56090,550	56272,017	55890036.80	56045634.60	56226594.65
MDG-c_3	50	60	60	55997,944	56130,490	56262,455	55867986.95	56042121.65	56208888.85
MDG-c_4	50	60	60	55959,548	56076,697	56257,907	55901255.80	56045542.35	56219344.25
MDG-c_5	50	60	60	55966,544	56082,421	56234,604	55866485.35	56028107.75	56200190.95
MDG-c_6	50	60	60	55942,210	56117,081	56243,850	55881502.00	56028119.45	56202899.40
MDG-c_7	50	60	60	55944,042	56086,355	56236,720	55872630.10	56026724.60	56183765.50
MDG-c_8	50	60	60	55935,072	56055,008	56249,049	55884553.95	56024573.75	56218073.10
MDG-c_9	50	60	60	55906,493	56057,439	56235,250	55851227.75	55997916.45	56188505.85
MDG-c_10	50	60	60	55920,804	56107,377	56179,602	55812256.00	56025439.20	56157919.35
MDG-c_11	50	60	60	56010,877	56095,642	56238,432	55875876.35	56030011.90	56197694.85
MDG-c_12	50	60	60	55952,824	56067,675	56267,216	55872773.75	56021610.00	56196066.80
MDG-c_13	50	60	60	55954,309	56068,977	56273,597	55868322.80	56030276.70	56201739.90
MDG-c_14	50	60	60	55990,777	56097,074	56270,275	55892913.50	56038050.25	56211709.95
MDG-c_15	50	60	60	55945,742	56076,707	56252,183	55891242.55	56032771.00	56215053.55
MDG-c_16	50	60	60	55960,705	56140,977	56249,512	55877242.10	56060959.00	56215024.25
MDG-c_17	50	60	60	55958,700	56079,252	56226,673	55891889.30	56021554.10	56181329.00
MDG-c_18	50	60	60	55947,581	56061,668	56240,125	55879358.00	56004267.15	56175311.65
MDG-c_19	50	60	60	55949,205	56063,226	56225,414	55875167.65	56037554.50	56204567.35
MDG-c_20	50	60	60	55979,807	56103,438	56239,512	55897182.15	56034844.75	56206989.95
Average				55958533.45	56087667.95	56245400.90	55877999.10	56031642.09	56201493.19
#Best				0	0	20	0	0	20
p-value				7.74e-6	7.74e-6		7.74e-6	7.74e-6	

References

Arani, T., & Lofti, V. (1989). A three phased approach to final exam scheduling. *IIE Transactions*, 21(1), 86–96.

Benlic, U., & Hao, J. K. (2013a). Breakout local search for the vertex separator problem. In F. Rossi (Ed.), Proceedings of the 23th international joint conference on artificial intelligence (IJCAI-13), IJCAI/AAAI press, pages 461-467, beijing, china.

Benlic, U., & Hao, J. K. (2013b). Breakout local search for the max-cut problem. Engineering Applications of Artificial Intelligence, 26(3), 1162-1173.

Bhadury, J., Mighty, E., & Damar, H. (2000). Maximizing workforce diversity in project teams: a network flow approach. *Omega*, 28(2), 143–153.

Boese, K. D., Kahng, A. B., & Muddu, S. (1994). A new adaptive multi-start technique for combinatorial global optimizations. *Operations Research Letters*, 16, 101–113.

Rrimberg L. Mladenović, N. & Urošević, D. (2015). Solving the maximally diverse.

Brimberg, J., Mladenović, N., & Urošević, D. (2015). Solving the maximally diverse grouping problem by skewed general variable neighborhood search. *Information Sciences*, 295, 650–675.

Chen, Y., Fan, Z. P., Ma, J., & Zeng, S. (2011). A hybrid grouping genetic algorithm for reviewier group construction problem. *Expert Systems with Applications*, 38(3), 2401–2411.

Duarte, A., & Martí, R. (2007). Tabu search and grasp for the maximum diversity problem. *European Journal of Operational Research*, 178(1), 71–84.

Fan, Z. P., Chen, Y., Ma, J., & Zeng, S. (2010). A hybrid genetic algorithmic approach to the maximally diverse grouping problem. *Journal of the Operational Research Society*, 62, 92-99.

Feo, T., & Khellaf, M. (1990). A class of bounded approximation algorithms for graph partitioning. *Networks*, 20(2), 181–195.

Ferreira, C. E., Martin, A., Souza, C. C., Weismantel, R., & Wolsey, L. A. (1996). Formulations and valid inequalities for the node capacitated graph partitioning problem. *Mathematical Programming*, 74(3), 247–266.
Ferreira, C. E., Martin, A., Souza, C. C., Weismantel, R., & Wolsey, L. A. (1998). The

Ferreira, C. E., Martin, A., Souza, C. C., Weismantel, R., & Wolsey, L. A. (1998). The node capacitated graph partitioning problem: a computational study. *Mathematical Programming*, 81(2), 229–256.

- Fu, Z. H., & Hao, J. K. (2015). A three-phase search approach for the quadratic minimum spanning tree problem. *Engineering Applications of Artificial Intelligence*, 46, 113–130.
- Gallego, M., Laguna, M., Martí, R., & Duarte, A. (2013). Tabu search with strategic oscillation for the maximally diverse grouping problem. *Journal of the Operational Research Society*, 64, 724–734.
- Johnes, J. (2015). Operational research in education. European Journal of Operational Research, 243(3), 683–696.
- Johnson, E. L., Mehrotra, A., & Nemhauser, G. L. (1993). Min-cut clustering. *Mathematical Programming*, 62(1-3), 133–151.Krass, D., & Ovchinnikov, A. (2010). Constrained group balancing: why does it work.
- European Journal of Operational Research, 206(1), 144–154.
- Lorena, N., & Antonio, L. (2001). Constructive genetic algorithm for clustering problems. Evolutionary Computation, 9(3), 309–327.
- Lourenco, H. R., Martin, O., & Stützle, T. (2003). Iterated local search. In F. Glover, & G. Kochenberger (Eds.), *Handbook of metaheuristics*. Kluwer.
- Özsoy, F. A., & Labbé, M. (2010). Size-constrained graph partitioning polytopes. *Discrete Mathematics*, 310(24), 3473–3493.
- Palubeckis, G., Karčiauskas, E., & Riškus, A. (2011). Comparative performance of three metaheuristic approaches for the maximally diverse grouping problem. *Information Technology and Control*, 40(4), 277–285.
- Palubeckis, G., Ostreika, A., & Rubliauskas, D. (2015). Maximally diverse grouping: an iterated tabu search approach. *Journal of the Operational Research Society*, 66(4), 579–592.

- Porumbel, D. C., Hao, J. K., & Kuntz, P. (2010). A search space cartography for guiding graph coloring heuristics. *Computers & Operations Research*, 37(4), 769–778.
- Rodriguez, F. J., Lozano, M., García-Martínez, C., & González-Barrera, J. D. (2013). An artificial bee colony algorithm for the maximally diverse grouping problem. *Information Sciences*, 230(1), 183–196.
- Urošević, D. (2014). Variable neighborhood search for maximum diverse grouping problem. *Yugoslav Journal of Operations Research*, 24(1), 21–33. Wang, H., Alidaee, B., Glover, F., & Kochenberger, G. (2006). Solving group technol-
- Wang, H., Alidaee, B., Glover, F., & Kochenberger, G. (2006). Solving group technology problems via clique partitioning. *International Journal of Flexible Manufacturing Systems*, 18(2), 77–98.
- turing Systems, 18(2), 77–98.

 Weitz, R., & Jelassi, M. T. (1992). Assigning students to groups: a multi-criteria decision support system approach. *Decision Sciences*, 23(3), 746–757.
- Weitz, R., & Lakshminarayan, S. (1997). An empirical comparison of heuristic and graph theoretic methods for creating maximally diverse groups, VLSI design, and exam scheduling. *Omega*, 25(4), 473–482.
- Weitz, R., & Lakshminarayan, S. (1998). An empirical comparison of heuristic methods for creating maximally diverse groups. *Journal of the Operational Research Society*, 49, 635–646.
- Yeoh, H. K., & Nor, M. I. M. (2011). An algorithm to form balanced and diverse groups of students. Computer Applications in Engineering Education, 19(3), 582–590.