

basic education

Department:
Basic Education
REPUBLIC OF SOUTH AFRICA

NATIONAL SENIOR CERTIFICATE

GRADE 12

MATHEMATICS P1

FEBRUARY/MARCH 2013

MEMORANDUM

MARKS: 150

This memorandum consists of 19 pages.

1.1.1	$(x^{2}-9)(2x+1) = 0$ $(x-3)(x+3)(2x+1) = 0$ $x = \pm 3 \text{or} x = -\frac{1}{2}$	$\checkmark (x-3)(x+3)$ $\checkmark \pm 3$ $\checkmark -\frac{1}{2}$
	OR	(3)
	$(x^2 - 9)(2x + 1) = 0$ $x = \pm 3$ or $x = -\frac{1}{2}$	$\begin{array}{c} \checkmark - 3 \\ \checkmark 3 \\ -\frac{1}{2} \end{array}$
	2	$\sqrt{\frac{1}{2}}$
		(3)
1.1.2	$x^2 + x - 13 = 0$	
	$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$	
	$=\frac{-1\pm\sqrt{1-4(1)(-13)}}{2}$	✓ subs into formula
	$=\frac{-1\pm\sqrt{53}}{2}$	$\checkmark \sqrt{53}$
	$\begin{cases} 2 \\ x = 3,14 \end{cases}$ or $x = -4,14$	
	x = 3,14	✓ answer ✓ answer
		(4)
1.1.3	$2 \cdot 3^x = 81 - 3^x$	$\checkmark 2 \cdot 3^x + 3^x = 81$
	$2 \cdot 3^x + 3^x = 81$	$\checkmark 3^x$ as common factor
	$3^{x}(2+1)=81$	
	$3^x = 27$	✓ simplification
	$3^x = 3^3$	✓ answer
	x = 3	(4)
	OR	
	$2.3^x = 81 - 3^x$	✓ $2 \cdot 3^x + 3^x = 81$ ✓ 3^x as common factor
	$2.3^x + 3^x = 81$	
	$3^{x}(2+1)=81$	$\checkmark 3^{x+1} = 3^4$
	$3^{x+1} = 3^4$	✓ answer
	x+1=4	(4)
	x = 3	

-1 < x < 4	
OR $(x+1)(4-x) > 0$ $\frac{-0 + 01}{-1}$ -1 $\frac{-1}{4}$ Find the method \checkmark both critical values \checkmark correct inequality signs.	n (3)
$2^{x}(1+2^{2}) = -5y + 20$ $\checkmark 2^{x} \text{ common factor}$	
$2^x = \frac{-5y+20}{5}$	
OR ✓ answer	(2)
$2^x = -y + 4$	
1.2.2 If $y = -4$,	
$2^{x} + 2^{x+2} = -5y + 20$ $2^{x} + 2^{x+2} = 40$	
$2^{x} + 2^{x} = 40$ $2^{x} (1 + 2^{2}) = 40$	
$2^x = 8$	
$2^x = 2^3$ \checkmark answer	
x = 3	(2)
1.2.3 $-y+4>0$ $\checkmark -y+4>0$	
$2^x = -3 + 4$	
$2^{x} = 1$ $\checkmark x = 0$	
x = 0	(3) [21]

2.1.1	$r = -\frac{32}{64} = -\frac{1}{2}$	$\checkmark -\frac{1}{2}$
	$p = 256\left(-\frac{1}{2}\right)$	✓ substitution
	p = -128	✓ answer (3)
	OR	
	$\frac{p}{256} = \frac{64}{p}$	n 64
	$p^2 = 16384$	$\checkmark \frac{p}{256} = \frac{64}{p}$ $\checkmark p = \pm 128$
	$p = \pm 128$	$p = \pm 128$ \checkmark answer
	p = -128	(3)
	OR	$\checkmark \frac{p}{256} = \frac{-32}{64}$
	$\frac{p}{256} = \frac{-32}{64}$	✓ simplification
	64p = 8192	✓ answer (3)
	p = -128	
	OR	
	$\frac{1}{r} = \frac{64}{-32} = -2$	$\checkmark \frac{1}{r} = \frac{64}{-32} = -2$
	$p = -2 \times 64$	✓ simplification ✓ answer
2.1.2	p = -128	(3)
2.1.2	$S_n = \frac{a[1 - r^n]}{1 - r}$	✓ formula
	$S_8 = \frac{256 \left[1 - \left(-\frac{1}{2} \right)^8 \right]}{1 + \frac{1}{2}}$	✓ substitution
	$S_8 = \frac{ \left[\begin{array}{c} 2 \\ 1 \end{array} \right]}{1}$	
		✓ answer
	$=\frac{512}{3}\left(\frac{255}{256}\right)$	(3)
	=170	
	OR	
	1	1

	NSC – Memorandum			
	$S_n = \frac{a[1-r^n]}{1-r}$	✓ formula		
	$S_8 = \frac{2^8 \left[1 - \left(-\frac{1}{2} \right)^8 \right]}{1 + \frac{1}{2}}$	✓ substitution		
	$= \frac{2^9}{3} \left(\frac{255}{2^8} \right)$ = 170	✓ answer		
		(3)		
2.1.3	-1 < <i>r</i> < 1	✓ answer		
	OR	(1)		
	The common ratio is $-\frac{1}{2}$ which is between – 1 and 1.	✓ answer (1)		
	OR 1			
	$-1 < -\frac{1}{2} < 1$	✓ answer (1)		
2.1.4	$S_{\infty} = \frac{a}{1 - r}$	✓ formula		
	$=\frac{256}{1-\left(-\frac{1}{2}\right)}$	✓ substitution		
	$= \frac{512}{3} \\ = 170,67$	✓ answer (3)		

O
NSC - Memorandum

2.2.1	16	✓ answer (1)
2.2.2	$T_n = -8 + 6(n-1)$ $148 = 6n - 14$ $6n = 162$ $n = 27$	✓ substitution into equation $\checkmark T_n = 148$ \checkmark answer (3)
2.2.3	$S_n = \frac{n}{2} [2a + (n-1)d]$ $\frac{n}{2} [2(-8) + (n-1)(6)] > 10 140$ $3n^2 - 11n > 10 140$ $3n^2 - 11n - 10 140 > 0$ $(3n + 169)(n - 60) > 0$ When $n = 60$, $S_n = 10 140$ Smallest $n = 61$	$ √ \frac{n}{2} [2(-8) + (n-1)(6)] $ √ $3n^2 - 11n > 10140$ ✓ factors √ $n = 60$ ✓ answer
2.3	$\sum_{k=1}^{30} (3k+5)$ $a = 8 n = 30 d = 3$ $\sum_{k=1}^{30} (3k+5) = \frac{30}{2} [2(8) + 29(3)]$ $= 15(103)$ $= 1545$	(5) ✓ n = 30 ✓ substitution into correct formula ✓ answer (3) [22]

Mathematics/P1 DBE/Feb.-Mar. 2013

QUESTION 3

3.1	Jacob calculated that the sequence is geometric or	✓ Jacob (geometric/exponential)
	exponential. Vusi calculated that the sequence is quadratic.	✓ Vusi (quadratic) (2)
	vusi carculated that the sequence is quadratic.	(2)
	OR	
	Jacob has multiplied each term by 3 to get the next term. Vusi sees it as a sequence with a constant second difference.	✓ Jacob (multiplied each term by 3) ✓ Vusi (constant second difference) (2)
	OR Jacob calculated that the sequence is geometric or exponential.	✓ Jacob (geometric/exponential)
	Vusi calculated that the sequence can be seen as a combination of exponential and cubic sequences.	✓ Vusi (exponential and cubic combined) (2)
2.2.1		
3.2.1	$T_n = 3^n$	✓answer (1)
	OR	
	$T_n = 3.3^{n-1}$	✓answer
3.2.2		(1)
	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
	2a = 12 $3a + b = 6$ $a + b + c = 3$	$\checkmark a = 6$
	a = 6 $18 + b = 6$ $6 - 12 + c = 3$	✓ method
	b = -12 $c = 9$	$\checkmark b = -12$ $\checkmark c = 9$
	$T_n = 6n^2 - 12n + 9$	(4)
	OR	
	2a = 12	
	a=6	
	$T_0 = c = 9$	$\checkmark a = 6$ $\checkmark c = 9$
	$T_n = an^2 + bn + 9$	
	$3 = 6(1)^2 + b(1) + 9$	✓ method
	b = -12	(1 12
	$T_n = 6n^2 - 12n + 9$	$\checkmark b = -12 \tag{4}$
	OR	

 NSC = I	viemorandum	1
1 ()	3 = 6+b+c $9 = 24+2b+c$ $6 = 18+b$ $b = -12$	✓ $a = 6$ ✓ method
$T_n = 6n^2 - 12n + 9$ \mathbf{OR}	c = 9	$\checkmark b = -12$ $\checkmark c = 9$ (4)
$T_{n} = 3^{n} + k(n-1)(n-2)(n-3)$ $57 = 3^{4} + k(3)(2)(1)$ $6k = -24$ $k = -4$ $T_{n} = 3^{n} - 4(n-1)(n-2)(n-3)$		✓✓ $T_n = 3^n + k(n-1)(n-2)(n-3)$ ✓ substitution ✓ answer (4) [7]

4.1	$\mathbf{R} \mathbf{OR} \ (-\infty; \infty)$	✓answer	
1.0			1)
4.2	y = 0	$\checkmark y = 0$	
4.2		·	1)
4.3	$x = \left(\frac{1}{3}\right)^y$	$\checkmark x = \left(\frac{1}{3}\right)^y$	
	$y = \log_{\frac{1}{3}} x$	$\checkmark x = \left(\frac{1}{3}\right)^y$ $\checkmark y = \log_{\frac{1}{3}} x$	
	OR		2)
	$x = \left(\frac{1}{3}\right)^{y}$	$\checkmark x = \left(\frac{1}{3}\right)^y$	
	$x = 3^{-y}$		
	$-y = \log_3 x$	$\checkmark y = -\log_3 x$	
	$y = -\log_3 x$		2)
4.4	Ţy	✓ shape	<u>-)</u>
		✓intercept at (1;0)	
		✓ any other correct point	
		(3	3)
		,	Í
	x x		
	(3;-1)		
	→ ·		
4.5	x = -2	$\checkmark \checkmark x = -2$	
4.6		(2	2)
4.0	LHS = $[f(x)]^2 - [f(-x)]^2$		
	$= \left[\left(\frac{1}{3} \right)^x \right]^2 - \left[\left(\frac{1}{3} \right)^{-x} \right]^2$	$\left[\left(1 \right)^{x} \right]^{2} \left[\left(1 \right)^{-x} \right]$	
	$= \left \left(\frac{1}{3} \right) \right - \left \left(\frac{1}{3} \right) \right $	$\checkmark \left[\left(\frac{1}{3} \right)^x \right]^2 - \left[\left(\frac{1}{3} \right)^{-x} \right]$	
	$=3^{-2x}-3^{2x}$		
	RHS = f(2x) - f(-2x)	$\checkmark 3^{-2x} - 3^{2x}$	
	$=\left(\frac{1}{3}\right)^{2x} - \left(\frac{1}{3}\right)^{-2x}$		
	$=\left(\frac{1}{3}\right)^{2}-\left(\frac{1}{3}\right)^{2}$	$\checkmark \left(\frac{1}{3}\right)^{2x} - \left(\frac{1}{3}\right)^{-2x}$	
	$=3^{-2x}-3^{2x}$	(3) (3)	
	·· LHS = RHS		
	$[f(x)]^{2} - [f(-x)]^{2} = f(2x) - f(-2x)$	(3	3)
		[12	-

		l i Ψ		
5.1	$g(x) = \frac{a}{x-2} + 6$		$ \checkmark p = 2 $ $ \checkmark q = 6 $	
	$0 = \frac{a}{2,5-2} + 6$		\checkmark substitute B(2,5;0)	
	0 = 2a + 6		$\checkmark a = -3$	
	a = -3			(4)
	$g(x) = \frac{-3}{x-2} + 6$			
5.2	$x_f = 2 - \frac{1}{2}$			
	$x_f = \frac{3}{2}$ $y_f = 6 + 6$ $y_f = 12$			
	$y_f = 6 + 6$			
	$y_f = 12$			
	-(3)		11 1	
	$F\left(\frac{3}{2};12\right)$		✓ <i>x</i> -coordinate ✓ <i>y</i> -coordinate	
			y-coordinate	(2)
				(2) [6]
				r _o 1

11

QUESTION 6

$$f(x) = ax^2 + bx + c$$
$$g(x) = -2x + 8$$

	·	
6.1	0 = -2x + 8	$\checkmark y = 0$
	2x = 8	
	x = 4	$\checkmark x = 4$
	T (4;0)	(2)
6.2	By symmetry, P(-2; 0)	
	f(x) = a(x+2)(x-4)	f(x) = a(x+2)(x-4)
	18 = a(1+2)(1-4)	✓ substitutes S(1; 18)
	a = -2	
	f(x) = -2(x+2)(x-4)	$\checkmark a = -2$
	$=-2(x^2-2x-8)$	✓ multiplies out correctly to get
	$=-2x^2+4x+16$	$-2x^2 + 4x + 16$
	= 2x + 1x + 10	
	OR	
	$f(x) = a(x-1)^2 + 18$	$f(x) = a(x-1)^2 + 18$
	$0 = a(4-1)^2 + 18$	✓ substitutes T(4;0)
	/	
	a = -2	$\checkmark a = -2$
	$f(x) = -2(x-1)^2 + 18$	
	$= -2(x^2 - 2x + 1) + 18$	
	$=-2x^2+4x+16$	✓ multiplies out correctly to get $-2x^2 + 4x + 16$
		$\begin{vmatrix} -2x^2 + 4x + 16 \end{vmatrix}$ (4)
L		(4)

Copyright reserved

Please turn over

	NSC – Memorandum	1	-
6.3	$-2x + 8 = -2x^2 + 4x + 16$	$\checkmark -2x + 8 = -2x^2 + 4x + 16$	
	$2x^2 - 6x - 8 = 0$	$\checkmark 2x^2 - 6x - 8 = 0$	
	$x^2 - 3x - 4 = 0$		
	(x-4)(x+1)=0	$\checkmark x = -1$	
	x = 4 or $x = -1$	✓ X1	
	at R, $y = -2(-1) + 8 = 10$	$\checkmark y = 10$	
	i.e. R(-1; 10)		(4)
6.4.1	$-1 \le x \le 4$	$\checkmark -1 \le x$	
		$\checkmark x \le 4$	
			(2)
6.4.2	$-2x^2 + 4x - 2 < 0$		
	$-2x^2 + 4x - 2 + 18 < 18$	$\checkmark -2x^2 + 4x - 2 + 18 < 18$	
	$-2x^2 + 4x + 16 < 18$	$\sqrt{-2x^2+4x+16} < 18$	
	f(x) < 18	$\checkmark f(x) < 18$	
	$(-\infty;1)\cup(1;\infty)$	\checkmark $(-\infty;1) \cup (1;\infty)$	
			(4)
	OR		
	$-2x^2 + 4x - 2 < 0$	$\checkmark -2x^2 + 4x - 2 + 18 < 18$	
	$-2x^2 + 4x - 2 + 18 < 18$	$\sqrt{-2x^2+4x+16} < 18$	
	$-2x^2 + 4x + 16 < 18$	$\sqrt{f(x)} < 18$	
	f(x) < 18	$\checkmark x \in \mathbf{R} ; x \neq 1$	
	$x \in \mathbf{R} \; ; \; x \neq 1$,	(4)
			[16]

7.1	$F = P(1+i)^n$	✓ formula
	$=4000000(1+0.06)^3$	✓ substitution
	` '	✓ answer
	= R4 764 064	(3)
7.2.1	$4000000 = \frac{30000 \left[1 - \left(1 + \frac{0,06}{12}\right)^{-n}\right]}{0,06}$	✓ formula $ \checkmark i = \frac{0.06}{12} $
	12	✓ substitution into correct formula
	$\frac{4000000 \times \left(\frac{0,06}{12}\right)}{30000} = 1 - \left(1 + \frac{0,06}{12}\right)^{-n}$	$\checkmark \frac{1}{3} = \left(1 + \frac{0,06}{12}\right)^{-n}$
	$\frac{1}{3} = \left(1 + \frac{0.06}{12}\right)^{-n}$	✓ correct use of logs
	3 (11 12)	✓answer of 220 withdrawals
	$\log_{\left(1+\frac{0,06}{12}\right)}\frac{1}{3} = -n$	(6)
	n = 220,27	
	Therefore she will make 220 withdrawals of R30 000.	
	OR	✓ formula
	$4000000 = \frac{30000 \left[1 - \left(1 + \frac{0,06}{12}\right)^{-n}\right]}{40000000}$	$\checkmark i = \frac{0.06}{12}$

$$\frac{4000000 \times \left(\frac{0,06}{12}\right)}{30000} = 1 - \left(1 + \frac{0,06}{12}\right)^{-n}$$

$$\frac{1}{3} = \left(1 + \frac{0,06}{12}\right)^{-n}$$

$$\log \frac{1}{3} = -n \log \left(1 + \frac{0,06}{12} \right)$$

0,06

Therefore she will make 220 withdrawals of R30 000.

n = 220,27

✓ substitution into correct formula

$$\checkmark \frac{1}{3} = \left(1 + \frac{0.06}{12}\right)^{-n}$$

✓ correct use of logs

✓answer of 220 withdrawals

(6)

$$0 = \left(1 + \frac{0,06}{12}\right)^{-n}$$

She can make as many withdrawals as she pleases.

$$4000000 = \frac{20000 \left[1 - \left(1 + \frac{0,06}{12}\right)^{-n}\right]}{\frac{0,06}{12}}$$

$$\checkmark 0 = \left(1 + \frac{0.06}{12}\right)^{-n}$$

✓ conclusion

(3) **[12]**

QUESTION 8

$$\left(1 + \frac{0.08}{12}\right)^{12} = \left(1 + \frac{r}{2}\right)^{2}$$

$$\frac{r}{2} = 0.040672622$$

$$r = 8.13452446\%$$

$$r = 8.13\%$$

$$\left(1 + \frac{0.08}{12}\right)^{12}$$

$$\left(1 + \frac{i}{2}\right)^{2}$$

$$\checkmark \text{ answer}$$
[3]

9.1
$$f(x) = 2x^{3}$$

$$f(x+h) = 2(x+h)^{3}$$

$$= 2(x^{3} + 3x^{2}h + 3xh^{2} + h^{3})$$

$$= 2x^{3} + 6x^{3}h + 6xh^{2} + 2h^{3}$$

$$f(x+h) - f(x) = 2x^{3} + 6x^{3}h + 6xh^{2} + 2h^{3}$$

$$= \lim_{x \to 0} \frac{6x^{2}h + 6xh^{2} + 2h^{3}}{h}$$

$$= \lim_{x \to 0} \frac{h(6x^{2} + 6xh + 2h^{2})}{h}$$

$$= \lim_{x \to 0} (6x^{2} + 6xh + 2h^{2})$$

$$f'(x) = 6x^{2}$$

OR
$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

$$= \lim_{h \to 0} \frac{2(x+h)^{3} - 2x^{3}}{h}$$

$$= \lim_{h \to 0} \frac{2(x+h)^{3} - 2x^{3}}{h}$$

$$= \lim_{h \to 0} \frac{2(x+h)^{3} - 2x^{3}}{h}$$

$$= \lim_{h \to 0} \frac{2(x^{3} + 3x^{2}h + 3xh^{2} + h^{3}) - 2x^{3}}{h}$$

$$= \lim_{h \to 0} \frac{6x^{2}h + 6xh^{2} + 2h^{3}}{h}$$

$$= \lim_{h \to 0} \frac{6x^{2}h + 6xh^{2} + 2h^{3}}{h}$$

$$= \lim_{h \to 0} \frac{6x^{2}h + 6xh^{2} + 2h^{3}}{h}$$

$$= \lim_{h \to 0} \frac{6x^{2}h + 6xh^{2} + 2h^{3}}{h}$$

$$= \lim_{h \to 0} \frac{6x^{2}h + 6xh^{2} + 2h^{3}}{h}$$

$$= \lim_{h \to 0} \frac{6x^{2}h + 6xh^{2} + 2h^{3}}{h}$$

$$= \lim_{h \to 0} \frac{6x^{2}h + 6xh^{2} + 2h^{3}}{h}$$

$$= \lim_{h \to 0} \frac{6x^{2}h + 6xh^{2} + 2h^{3}}{h}$$

$$= \lim_{h \to 0} \frac{6x^{2}h + 6xh^{2} + 2h^{3}}{h}$$

$$= \lim_{h \to 0} \frac{6x^{2}h + 6xh^{2} + 2h^{3}}{h}$$

$$= \lim_{h \to 0} \frac{6x^{2}h + 6xh^{2} + 2h^{3}}{h}$$

$$= \lim_{h \to 0} \frac{6x^{2}h + 6xh^{2} + 2h^{3}}{h}$$

$$= \lim_{h \to 0} \frac{6x^{2}h + 6xh^{2} + 2h^{3}}{h}$$

$$= \lim_{h \to 0} \frac{6x^{2}h + 6xh^{2} + 2h^{3}}{h}$$

$$= \lim_{h \to 0} \frac{6x^{2}h + 6xh^{2} + 2h^{3}}{h}$$

$$= \lim_{h \to 0} \frac{6x^{2}h + 6xh^{2} + 2h^{3}}{h}$$

$$= \lim_{h \to 0} \frac{6x^{2}h + 6xh^{2} + 2h^{3}}{h}$$

$$= \lim_{h \to 0} \frac{6x^{2}h + 6xh^{2} + 2h^{3}}{h}$$

$$= \lim_{h \to 0} \frac{6x^{2}h + 6xh^{2} + 2h^{3}}{h}$$

$$= \lim_{h \to 0} \frac{6x^{2}h + 6xh^{2} + 2h^{3}}{h}$$

$$= \lim_{h \to 0} \frac{6x^{2}h + 6xh^{2} + 2h^{3}}{h}$$

$$= \lim_{h \to 0} \frac{6x^{2}h + 6xh^{2} + 2h^{3}}{h}$$

$$= \lim_{h \to 0} \frac{6x^{2}h + 6xh^{2} + 2h^{3}}{h}$$

$$= \lim_{h \to 0} \frac{6x^{2}h + 6xh^{2} + 2h^{3}}{h}$$

$$= \lim_{h \to 0} \frac{6x^{2}h + 6xh^{2} + 2h^{3}}{h}$$

$$= \lim_{h \to 0} \frac{6x^{2}h + 6xh^{2} + 2h^{3}}{h}$$

$$= \lim_{h \to 0} \frac{6x^{2}h + 6xh^{2} + 2h^{3}}{h}$$

$$= \lim_{h \to 0} \frac{6x^{2}h + 6xh^{2} + 2h^{3}}{h}$$

$$= \lim_{h \to 0} \frac{6x^{2}h + 6xh^{2} + 2h^{3}}{h}$$

$$= 2$$

9.3	f'(-1) = -7	
	f'(x) = 2ax + b	$\checkmark f'(x) = 2ax + b$
	-7 = -2a + b	✓ substitution of $x = -1$ ✓ $-7 = -2a + b$
	f(-1) = -7(-1) + 3	
	= 10	$\checkmark f(-1) = 10$
	$\therefore a-b+5=10$	
	a - b = 5[1]	
	-2a+b=-7[2]	
	-a = -2[1] + [2]	
	a = 2	$\checkmark a=2$
	b = -3	$\begin{array}{c} \checkmark & a = 2 \\ \checkmark & b = -3 \end{array}$
		(6)
		[15]

17

QUESTION 10

$$f(x) = -x^3 - x^2 + x + 10$$

10.1	(0.10)	()
10.1	(0;10)	$\checkmark (0;10) $ (1)
10.2	$0 = -x^3 - x^2 + x + 10$	(1)
	$0 = -(x-2)(x^2 + 3x + 5)$	$\checkmark (x-2)$
	$x-2=0$ or $x^2+3x+5=0$	$\checkmark (x^2 + 3x + 5)$
	x = 2 $x + 3x + 3 = 0$	
	$x = \frac{-3 \pm \sqrt{3^2 - 4(1)(5)}}{2(1)}$	$\checkmark x = \frac{-3 \pm \sqrt{-11}}{2}$
		2
	$=\frac{-3\pm\sqrt{-11}}{2}$	
	\mathcal{L}	✓ no solution
	which has no solution Therefore the only <i>x</i> -intercept of f is $(2;0)$	(4)
10.3	$f'(x) = -3x^2 - 2x + 1$	√
	$0 = -3x^2 - 2x + 1$	$f'(x) = -3x^2 - 2x + 1$
	0 = (3x - 1)(x + 1)	f'(x) = 0
		✓ factors
	$x = \frac{1}{3}$ or $x = -1$	✓ x-values
	$y = -\left(\frac{1}{3}\right)^3 - \left(\frac{1}{3}\right)^2 + \left(\frac{1}{3}\right) + 10$ or $y = -(-1)^3 - (-1)^2 + (-1) + 10$	x-values
	$=\frac{275}{27}$ = 9	(1 5)
	2.	\checkmark $\left(\frac{1}{3};10\frac{5}{27}\right)$
	$\left(\frac{1}{3};10\frac{5}{27}\right) \tag{-1;9}$	✓ (-1;9)
	(3 27)	
10.4	h	(6)
	(0,33; 10,19) Turning point	
	(-1; 9) Turning Point	
		✓ shape
		✓ intercepts ✓ turning points
		S Pomis
	2 *	(3)
	0 2	[14]
	,	

18

QUESTION 11

11.1	Length of box = $3x$	✓ length of box = $3x$	
	Volume = $l \times b \times h$		
	$9 = 3x \cdot x \cdot h$	$\checkmark 9 = 3x \cdot x \cdot h$	
	$9 = 3x^2h$	3	
	, 3	$\checkmark h = \frac{3}{x^2}$	
	$h = \frac{3}{x^2}$		(3)
11.2	$C = (2(3xh) + 2xh) \times 50 + (2 \times 3x^{2}) \times 100$	$\checkmark (2(3xh) + 2xh) \times 50$	
		$\checkmark (2 \times 3x^2) \times 100$	
	$=8x\left(\frac{3}{x^2}\right)\times 50 + 600x^2$, ,	
		✓ substitution of $h = \frac{3}{r^2}$	
	$= \frac{1200}{1200} + 600x^2$	X	(3)
	\mathbf{OR}		(3)
	$C = (h \times 8x) \times 50 + (2 \times 3x^2) \times 100$	$\checkmark (h \times 8x) \times 50$	
	,	$\checkmark (2 \times 3x^2) \times 100$	
	$=8x\left(\frac{3}{x^2}\right)\times 50 + 600x^2$	\checkmark substitution of $h = \frac{3}{r^2}$	
	$=\frac{1200}{x}+600x^2$	X	(3)
11.3	$C = 1200x^{-1} + 600x^2$	$\checkmark \frac{dC}{dx} = -1200x^{-2} + 1200x$	
	$\frac{dC}{dx} = -1200x^{-2} + 1200x$		
		$\sqrt{\frac{dC}{dx}} = 0$	
	$0 = -1200x^{-2} + 1200x$	$\checkmark ax$	
	$1200x^3 = 1200$	$\checkmark x^3 = 1$	
	$x^3 = 1$	$\checkmark x = 1$ $\checkmark x = 1$	
	x = 1		
	Therefore the width of the box is 1 metre.		(4)
			[10]

12.1	у у	✓✓ region ABIJ shaded
	A B C	(2)
		NOTE:
		If region BCEFGI is shaded:
	40	award ONE mark
	25 1	If one other region is shaded.
	30	If any other region is shaded: award 0 marks
	29	awara o marks
	E E	
	10	
	H G F T T T T T T T T T T T T T T T T T T	
12.2	$x \le 40$	✓ <i>x</i> ≤ 40
	$x + y \le 60$	$\checkmark x + y \le 60$
	$y \ge 0$	$\checkmark y \ge 0$
		(3)
12.3	x = 25	✓answer
12.4	A+ I/25 - 10) B 4/25) - 10 110	(1)
12.4	At I(25; 10), $P = 4(25) + 10 = 110$ Maximum value of P is 110 when $x = 25$ and $y = 10$	$\checkmark x = 25$
	With the first the when $x = 23$ and $y = 10$	$\checkmark y = 10$
		✓ substitution ✓ maximum value of <i>P</i> is 110
		(4)
12.5	C = kx + y	
	y = -kx + C	$\checkmark y = -kx + C$
	-k < -1	✓ k > 1
	k > 1	NOTE: (2)
		Answer only: award TWO marks
		[12]

TOTAL: 150