WHAT IS CLAIMED IS:

- 1. A high thermal conductive aluminum nitride sintered body having: a thermal conductivity of 220 W/m \cdot K or more; and a three point bending strength of 250 MPa or more; wherein a ratio ($I_{Al_2Y_4O_9}/I_{AlN}$) of X-ray diffraction intensity ($I_{Al_2Y_4O_9}$) of Al₂Y₄O₉ (201 plane) with respect to X-ray diffraction intensity (I_{AlN}) of aluminum nitride (101 plane) is 0.002 to 0.03.
- 2. A high thermal conductive aluminum nitride sintered body according to Claim 1, wherein a ratio ($I_{Y_2O_3}/I_{AIN}$) of X-ray diffraction intensity ($I_{Y_2O_3}$) of Y_2O_3 (222 plane) with respect to X-ray diffraction intensity (I_{AIN}) of AIN (101 plane) is 0.002 to 0.06.
- 3. A high thermal conductive aluminum nitride sintered body having: a thermal conductivity of 200 W/m · K or more; and a three point bending strength of 250 MPa or more; wherein a ratio ($I_{Al_2Y_4O_9}/I_{AlN}$) of X-ray diffraction intensity ($I_{Al_2Y_4O_9}$) of $Al_2Y_4O_9$ aluminum nitride (201 plane) with respect to X-ray diffraction intensity (I_{AlN}) of AlN (101 plane) is 0.002 to 0.06, and a ratio ($I_{Y_2O_3}/I_{AlN}$) of X-ray diffraction intensity ($I_{Y_2O_3}$) of Y_2O_3 (222 plane) with respect to X-ray diffraction intensity (I_{AlN}) of AlN (101 plane) is 0.008 to 0.06.
- 4. A high thermal conductive aluminum nitride sintered body according to Claim 1, wherein said aluminum nitride sintered body contains 0.14-1.5 mass% of Y element and 0.05-0.5 mass% of oxygen, a mass ratio (O/Y) of oxygen (O) with respect to Y element is 0.5 or less, an average diameter of aluminum nitride crystal grains is 4 μ m or more, a number of crystal grains existing in arbitrary crystal structure area of $100 \, \mu$ m $\times 100 \, \mu$ m is 200 or less, a

maximum diameter of grain boundary phase is 0.5 $\,\mu$ m or less.

5. A high thermal conductive aluminum nitride sintered body according to Claim 1, wherein said aluminum nitride sintered body contains 0.14 – 1.5 mass% of Y element and 0.05 – 0.5 mass% of oxygen, a mass ratio (O/Y) of oxygen (O) with respect to Y element is 0.6 or less, an average diameter of aluminum nitride crystal grains is 4 μ m or more, a number of crystal grains existing in arbitrary crystal structure area of 100 μ m × 100 μ m is 150 or less, a maximum diameter of grain boundary phase is 0.5 μ m or less.