04/07

Warm up

Exercise: Using the exercise 1.27 of the book (muscle mass) and the 6 observations:

 Observation
 1
 2
 3
 4
 5
 6

 Xi
 43
 39
 41
 86
 72
 76

 Yi
 106
 106
 97
 60
 70
 80

- a. Obtain a Table in order to compute the least square estimates. Similar to Table 1.1 (Tocula company example) page 19.
- b. Compute bo and b1 using the equations (1.10a) and (1.10b).
- c. Consider and explain a, b and c in 2.27 (Book) for this exercise.

Figure 1: Midterm bonus problem.

d. Given $X_h = 40$, compute the point estimator of the mean response $E[Y_h]$ and the corresponding 95% confidence interval.

i	X_i	Y_i	$X_i - \bar{X}$	$Y_i - \bar{Y}$	$(X_i - \bar{X})(Y_i - \bar{Y})$	$(X_i - \bar{X})^2$	$(Y_i - \bar{Y})^2$
1	43	106	-16.5	19.5			
2	39	106	-20.5	19.5			
3	41	97	-18.5	10.5			
4	86	60	26.5	-26.5			
5	72	70	12.5	-16.5			
6	76	80	16.5	-6.5			
Total	357	519					
Mean	59.5	86.5					

a
$$b_1 = \frac{\sum_{i=1}^n (X_i - \bar{X})(Y_i - \bar{Y})}{\sum_{i=1}^n (X_i - \bar{X})^2}$$

$$b_0 = \bar{Y} - b_1 \bar{X}$$

b

 \mathbf{c}

d

$$\hat{Y}_h = b_0 + b_1 X_h$$

$$(\hat{Y}_h - t(1 - \alpha/2; n - 2) * s(\hat{Y}_h), \hat{Y}_h + t(1 - \alpha/2; n - 2) * s(\hat{Y}_h))$$

1.2

Y = 2X + 300. Functional relation.

1.8

Yes. Not necessarily

$$E[Y] = \beta_0 + \beta_1 * X$$

1.12

- a
- b
- $^{\mathrm{c}}$
- d

1.27

- a
- b

1.30

04/14

Warm up

Given $X_h = 40$, compute the 90% prediction interval for the mean of the m = 3 new Y observations. See Page 60 in the textbook.

$$\hat{Y}_h \pm t(1 - \alpha/2; n - 2)s\{\text{predmean}\},\$$

where

$$s^{2}\{\text{predmean}\} = \frac{MSE}{m} + s^{2}(\hat{Y}_{h}) = MSE\left[\frac{1}{m} + \frac{1}{n} + \frac{(X_{h} - \bar{X})^{2}}{\sum_{i=1}^{n} (X_{i} - \bar{X})^{2}}\right].$$

In the example provided by the textbook (Page 61), we have $b_0 = 62.37$, $b_1 = 3.5702$, $\bar{X} = 70$, $\sum (X_i - \bar{X})^2 = 19800$, and MSE = 2384. Thus

$$\hat{Y}_h = b_0 + b_1 X_h = 62.37 + 3.5702 \times 40 = 205.2$$

and

$$s^{2}(\hat{Y}_{h}) = 2384 \left[\frac{1}{25} + \frac{(40 - 70)^{2}}{19800} \right] = 203.72.$$

Therefore

$$s^{2}$$
{predmean} = $\frac{2384}{3} + 203.72 = 998.4.$

Note that t(0.95; 23) = 1.714. We obtain

$$205.2 - 1.714 \times 31.60 \le \bar{Y}_{h(\text{new})} \le 205.2 + 1.714 \times 31.60$$

 $151.0 \le \bar{Y}_{h(\text{new})} \le 259.4.$

2.9

Formula (2.30). $s(\hat{Y}_h)$ depends on X_h , which needs to be specified.

2.10

- (a)
- (b)
- (c)

2.12

(a) (2.37)

$$\sigma^{2}\{\text{pred}\} = \sigma^{2}\{Y_{h(\text{new})} - \hat{Y}_{h}\} = \sigma^{2}\{Y_{h(\text{new})}\} + \sigma^{2}(\hat{Y}_{h}) = \sigma^{2} + \sigma^{2}(\hat{Y}_{h}),$$
where $\hat{Y}_{h} = b_{0} + b_{1}X_{h}$.

(b) (2.29b)

$$\sigma^{2}(\hat{Y}_{h}) = \sigma^{2} \left[\frac{1}{n} + \frac{(X_{h} - \bar{X})^{2}}{\sum_{i=1}^{n} (X_{i} - \bar{X})^{2}} \right].$$

2.27

(a)

$$H_0: \beta_1 \ge 0$$
 vs $H_a: \beta_1 < 0$.

$$t^* < t(\alpha; n-2).$$

$$p(T < t^*) < \alpha,$$

where T is a random variable which is t distributed with degrees of freedom n-2.

(b)

$$b_0 + b_1 X; b_0 + b_1 (X + 1)$$

 $b_1 \pm t(0.975; 58) s(b_1)$