Generated on 2015-01-08 17:53:29 by gEcon version 0.8.3 (2015-01-08) Model name: rbc_ts

1 CONSUMER

1.1 Optimisation problem

$$\max_{K_t^s, C_t, L_t^s, I_t} U_t = \beta E_t [U_{t+1}] + (1 - \eta)^{-1} \left(C_t^{\mu} (1 - L_t^s)^{1 - \mu} \right)^{1 - \eta}$$
(1.1)

s t

$$C_t + p_t I_t = \pi_t^{\text{C}} + \pi_t^{\text{I}} + K_{t-1}^{\text{s}} r_t + L_t^{\text{s}} W_t \quad \left(\lambda_t^{\text{CONSUMER}^1}\right)$$
 (1.2)

$$K_t^{\mathrm{s}} = I_t + K_{t-1}^{\mathrm{s}} (1 - \delta) \quad \left(\lambda_t^{\mathrm{CONSUMER}^2}\right)$$
(1.3)

1.2 Identities

$$Y_t = C_t + p_t I_t \tag{1.4}$$

⊢ 1.3 First order conditions

$$-\lambda_t^{\text{CONSUMER}^2} + \beta \left((1 - \delta) E_t \left[\lambda_{t+1}^{\text{CONSUMER}^2} \right] + E_t \left[\lambda_{t+1}^{\text{CONSUMER}^1} r_{t+1} \right] \right) = 0 \quad (K_t^{\text{s}})$$

$$(1.5)$$

$$-\lambda_t^{\text{CONSUMER}^1} + \mu C_t^{-1+\mu} (1 - L_t^{\text{s}})^{1-\mu} \left(C_t^{\mu} (1 - L_t^{\text{s}})^{1-\mu} \right)^{-\eta} = 0 \quad (C_t)$$
 (1.6)

$$\lambda_t^{\text{CONSUMER}^1} W_t + (-1 + \mu) C_t^{\mu} (1 - L_t^{\text{s}})^{-\mu} \left(C_t^{\mu} (1 - L_t^{\text{s}})^{1-\mu} \right)^{-\eta} = 0 \quad (L_t^{\text{s}})$$
(1.7)

$$\lambda_t^{\text{CONSUMER}^2} - \lambda_t^{\text{CONSUMER}^1} p_t = 0 \quad (I_t)$$
 (1.8)

2 FIRM C

2.1 Optimisation problem

$$\max_{K_t^{\text{Cd}}, L_t^{\text{Cd}}, C_t^{\text{S}}} \pi_t^{\text{C}} = C_t^{\text{S}} - L_t^{\text{Cd}} W_t - r_t K_t^{\text{Cd}}$$
(2.1)

s.t.

$$C_t^{\rm s} = Z_t K_t^{{\rm C}^{\rm d}} {}^{\alpha} L_t^{{\rm C}^{\rm d}} \left(\lambda_t^{\rm FIRM} {}^{\rm C^1} \right) \tag{2.2}$$

2.2 First order conditions

$$-r_t + \alpha \lambda_t^{\text{FIRM}^{C^1}} Z_t K_t^{\text{C}^{d-1}+\alpha} L_t^{\text{C}^{d-1}-\alpha} = 0 \quad \left(K_t^{\text{C}^d}\right)$$

$$(2.3)$$

$$-W_t + \lambda_t^{\text{FIRM}^{C^1}} Z_t (1 - \alpha) K_t^{C^{d}} L_t^{C^{d}} = 0 \quad \left(L_t^{C^d} \right)$$

$$(2.4)$$

$$1 - \lambda_t^{\text{FIRM}^{C^1}} = 0 \quad (C_t^{\text{s}}) \tag{2.5}$$

2.3 First order conditions after reduction

$$-r_t + \alpha Z_t K_t^{\mathbf{C}^{\mathbf{d}}^{-1+\alpha}} L_t^{\mathbf{C}^{\mathbf{d}}^{1-\alpha}} = 0 \quad \left(K_t^{\mathbf{C}^{\mathbf{d}}}\right)$$

$$\tag{2.6}$$

$$-W_t + Z_t (1 - \alpha) K_t^{C^{d} \alpha} L_t^{C^{d-\alpha}} = 0 \quad \left(L_t^{C^d}\right)$$

$$(2.7)$$

3 FIRM I

 $^{\circ}$

3.1 Optimisation problem

 $\max_{K_t^{\rm Id}, L_t^{\rm Id}, I_t^{\rm S}} \pi_t^{\rm I} = I_t^{\rm S} - L_t^{\rm Id} W_t - r_t K_t^{\rm Id}$ (3.1)

s.t.:

$$I_t^{\rm s} = Z_t K_t^{\rm I^{\rm d}} {}^{\sigma} L_t^{\rm I^{\rm d}} \left(\lambda_t^{\rm FIRM^{\rm I}} \right) \tag{3.2}$$

3.2 First order conditions

$$-r_t + \sigma \lambda_t^{\text{FIRM}^{\text{I}^1}} Z_t K_t^{\text{I}^{\text{d}}} L_t^{\text{I}^{\text{d}}} = 0 \quad \left(K_t^{\text{I}^{\text{d}}} \right)$$

$$(3.3)$$

$$-W_t + \lambda_t^{\text{FIRM}^{\text{I}^1}} Z_t (1 - \alpha) K_t^{\text{I}^{\text{d}} \sigma} L_t^{\text{I}^{\text{d}} - \alpha} = 0 \quad \left(L_t^{\text{I}^{\text{d}}} \right)$$
(3.4)

$$1 - \lambda_t^{\text{FIRM}^{\text{I}^1}} = 0 \quad (I_t^{\text{s}}) \tag{3.5}$$

3.3 First order conditions after reduction

$$-r_t + \sigma Z_t K_t^{\mathrm{I}^{\mathrm{d}}-1+\sigma} L_t^{\mathrm{I}^{\mathrm{d}}-\alpha} = 0 \quad \left(K_t^{\mathrm{I}^{\mathrm{d}}}\right)$$

$$\tag{3.6}$$

$$-W_t + Z_t (1 - \alpha) K_t^{\mathrm{I}^{\mathrm{d}} \sigma} L_t^{\mathrm{I}^{\mathrm{d}} - \alpha} = 0 \quad \left(L_t^{\mathrm{I}^{\mathrm{d}}} \right)$$

$$(3.7)$$

4 EQUILIBRIUM

4.1 Identities

$$K_t^{\text{I}^d} + K_t^{\text{C}^d} = K_{t-1}^{\text{s}}$$
 (4.1)

$$L_t^{\mathrm{I}^{\mathrm{d}}} + L_t^{\mathrm{C}^{\mathrm{d}}} = L_t^{\mathrm{s}} \tag{4.2}$$

$$C_t = C_t^{\mathbf{s}} \tag{4.3}$$

5 EXOG

5.1 Identities

$$Z_t = e^{\epsilon_t^Z + \phi \log Z_{t-1}} \tag{5.1}$$

6 Equilibrium relationships (after reduction)

$$-r_t + \alpha Z_t K_t^{\mathbf{C}^{\mathbf{d}}^{-1+\alpha}} L_t^{\mathbf{C}^{\mathbf{d}}^{1-\alpha}} = 0 \tag{6.1}$$

$$-r_t + \sigma Z_t \left(K_{t-1}^{s} - K_t^{C^d} \right)^{-1+\sigma} \left(L_t^{s} - L_t^{C^d} \right)^{1-\alpha} = 0$$
 (6.2)

$$-C_t + Z_t K_t^{C^{d}} L_t^{C^{d}} = 0 ag{6.3}$$

$$-I_t^{s} + Z_t \left(K_{t-1}^{s} - K_t^{C^{d}} \right)^{\sigma} \left(L_t^{s} - L_t^{C^{d}} \right)^{1-\alpha} = 0$$
(6.4)

$$-W_t + Z_t (1 - \alpha) K_t^{\mathbf{C}^{\mathbf{d}} \alpha} L_t^{\mathbf{C}^{\mathbf{d}} - \alpha} = 0$$

$$(6.5)$$

$$-W_t + Z_t (1 - \alpha) \left(K_{t-1}^{s} - K_t^{C^d} \right)^{\sigma} \left(L_t^{s} - L_t^{C^d} \right)^{-\alpha} = 0$$
 (6.6)

$$Z_t - e^{\epsilon_t^Z + \phi \log Z_{t-1}} = 0 \tag{6.7}$$

$$\beta \left(\mu \mathcal{E}_{t} \left[r_{t+1} C_{t+1}^{-1+\mu} \left(1 - L_{t+1}^{s} \right)^{1-\mu} \left(C_{t+1}^{\mu} \left(1 - L_{t+1}^{s} \right)^{1-\mu} \right)^{-\eta} \right] + \mu \left(1 - \delta \right) \mathcal{E}_{t} \left[p_{t+1} C_{t+1}^{-1+\mu} \left(1 - L_{t+1}^{s} \right)^{1-\mu} \left(C_{t+1}^{\mu} \left(1 - L_{t+1}^{s} \right)^{1-\mu} \right)^{-\eta} \right] \right) - \mu p_{t} C_{t}^{-1+\mu} \left(1 - L_{t+1}^{s} \right)^{1-\mu} \left(C_{t}^{\mu} \left(1 - L_{t+1}^{s} \right)^{1-\mu} \left(C_{t+1}^{\mu} \left(1 - L_{t+1}^{s} \right)^{1-\mu} \right)^{-\eta} \right) \right)$$

$$(6.8)$$

ಬ

$$(-1+\mu)C_t^{\mu}(1-L_t^s)^{-\mu}\left(C_t^{\mu}(1-L_t^s)^{1-\mu}\right)^{-\eta} + \mu W_t C_t^{-1+\mu}(1-L_t^s)^{1-\mu}\left(C_t^{\mu}(1-L_t^s)^{1-\mu}\right)^{-\eta} = 0$$

$$(6.9)$$

$$-C_t + Y_t - p_t I_t = 0 (6.10)$$

$$I_t - K_t^{s} + K_{t-1}^{s} (1 - \delta) = 0 (6.11)$$

$$U_t - \beta E_t \left[U_{t+1} \right] - (1 - \eta)^{-1} \left(C_t^{\mu} (1 - L_t^s)^{1 - \mu} \right)^{1 - \eta} = 0$$
(6.12)

$$I_t^{s} + K_{t-1}^{s} r_t - p_t I_t - r_t K_t^{C^d} - r_t \left(K_{t-1}^{s} - K_t^{C^d} \right) + L_t^{s} W_t - L_t^{C^d} W_t - W_t \left(L_t^{s} - L_t^{C^d} \right) = 0$$

$$(6.13)$$

7 Steady state relationships (after reduction)

$$-r_{\rm ss} + \alpha Z_{\rm ss} L_{\rm ss}^{\rm C^{\rm d}^{1-\alpha}} K_{\rm ss}^{\rm C^{\rm d}^{-1+\alpha}} = 0 \tag{7.1}$$

$$-r_{\rm ss} + \sigma Z_{\rm ss} \left(K_{\rm ss}^{\rm s} - K_{\rm ss}^{\rm C^{\rm d}} \right)^{-1+\sigma} \left(L_{\rm ss}^{\rm s} - L_{\rm ss}^{\rm C^{\rm d}} \right)^{1-\alpha} = 0$$
 (7.2)

$$-C_{\rm ss} + Z_{\rm ss} K_{\rm ss}^{{\rm C}^{\rm d} \alpha} L_{\rm ss}^{{\rm C}^{\rm d}^{1-\alpha}} = 0 \tag{7.3}$$

$$-I_{\rm ss}^{\rm s} + Z_{\rm ss} \left(K_{\rm ss}^{\rm s} - K_{\rm ss}^{\rm C^{\rm d}} \right)^{\sigma} \left(L_{\rm ss}^{\rm s} - L_{\rm ss}^{\rm C^{\rm d}} \right)^{1-\alpha} = 0 \tag{7.4}$$

$$-W_{\rm ss} + Z_{\rm ss} (1 - \alpha) K_{\rm ss}^{\rm C^{\rm d}} L_{\rm ss}^{\rm C^{\rm d}} = 0$$
 (7.5)

$$-W_{\rm ss} + Z_{\rm ss} (1 - \alpha) \left(K_{\rm ss}^{\rm s} - K_{\rm ss}^{\rm C^d} \right)^{\sigma} \left(L_{\rm ss}^{\rm s} - L_{\rm ss}^{\rm C^d} \right)^{-\alpha} = 0$$
 (7.6)

$$Z_{\rm ss} - e^{\phi \log Z_{\rm ss}} = 0 \tag{7.7}$$

$$\beta \left(\mu r_{\rm ss} C_{\rm ss}^{-1+\mu} (1 - L_{\rm ss}^{\rm s})^{1-\mu} \left(C_{\rm ss}^{\mu} (1 - L_{\rm ss}^{\rm s})^{1-\mu}\right)^{-\eta} + \mu p_{\rm ss} (1 - \delta) C_{\rm ss}^{-1+\mu} (1 - L_{\rm ss}^{\rm s})^{1-\mu} \left(C_{\rm ss}^{\mu} (1 - L_{\rm ss}^{\rm s})^{1-\mu}\right)^{-\eta}\right) - \mu p_{\rm ss} C_{\rm ss}^{-1+\mu} (1 - L_{\rm ss}^{\rm s})^{1-\mu} \left(C_{\rm ss}^{\mu} (1 - L_{\rm ss}^{\rm s})^{1-\mu}\right)^{-\eta} = 0$$

$$(7.8)$$

$$(-1+\mu)C_{\rm ss}^{\mu}(1-L_{\rm ss}^{\rm s})^{-\mu}\left(C_{\rm ss}^{\mu}(1-L_{\rm ss}^{\rm s})^{1-\mu}\right)^{-\eta} + \mu W_{\rm ss}C_{\rm ss}^{-1+\mu}(1-L_{\rm ss}^{\rm s})^{1-\mu}\left(C_{\rm ss}^{\mu}(1-L_{\rm ss}^{\rm s})^{1-\mu}\right)^{-\eta} = 0 \tag{7.9}$$

4

$$-C_{\rm ss} + Y_{\rm ss} - p_{\rm ss}I_{\rm ss} = 0 (7.10)$$

$$I_{\rm ss} - K_{\rm ss}^{\rm s} + K_{\rm ss}^{\rm s} (1 - \delta) = 0 \tag{7.11}$$

$$U_{\rm ss} - \beta U_{\rm ss} - (1 - \eta)^{-1} \left(C_{\rm ss}^{\ \mu} (1 - L_{\rm ss}^{\rm s})^{1 - \mu} \right)^{1 - \eta} = 0 \tag{7.12}$$

$$I_{\rm ss}^{\rm s} - p_{\rm ss}I_{\rm ss} + r_{\rm ss}K_{\rm ss}^{\rm s} - r_{\rm ss}K_{\rm ss}^{\rm C^{\rm d}} - r_{\rm ss}\left(K_{\rm ss}^{\rm s} - K_{\rm ss}^{\rm C^{\rm d}}\right) + L_{\rm ss}^{\rm s}W_{\rm ss} - L_{\rm ss}^{\rm C^{\rm d}}W_{\rm ss} - W_{\rm ss}\left(L_{\rm ss}^{\rm s} - L_{\rm ss}^{\rm C^{\rm d}}\right) = 0$$

$$(7.13)$$

8 Parameter settings

$$\alpha = 0.2 \tag{8.1}$$

$$\beta = 0.99 \tag{8.2}$$

$$\delta = 0.025 \tag{8.3}$$

$$\eta = 2 \tag{8.4}$$

$$\mu = 0.3 \tag{8.5}$$

$$\phi = 0.95 \tag{8.6}$$

$$\sigma = 0.4 \tag{8.7}$$

೮

9 Steady-state values

	Steady-state values
p	1.5318
r	0.0538
C	0.3374
I	0.0439
I^{s}	0.0672
K^{s}	1.7551
$K^{\mathrm{C^d}}$	1.2551
$L^{\rm s}$	0.2914
$L^{C^{d}}$	0.243
U	-176.3002
W	1.111
Y	0.4046
Z	1

10 The solution of the perturbation

10.1 P

$$\begin{array}{ccc}
K_{t-1}^{s} & Z_{t-1} \\
K^{s} & 0.9522 & -0.0054 \\
Z & 0 & 0.95
\end{array}$$

10.2 Q

$$\begin{array}{c} \epsilon^{\rm Z} \\ K^{\rm s} \left(\begin{array}{c} -0.0056 \\ 1 \end{array} \right) \end{array}$$

10.3 R

$$\begin{array}{c} K_{t-1}^{\mathrm{s}} & Z_{t-1} \\ p \\ r \\ C \\ C \\ I \\ I^{\mathrm{s}} \\ -0.1506 & 1.1645 \\ -1.0646 & 0.95 \\ 0.3338 & 0.95 \\ -0.9139 & -0.2145 \\ -1.0646 & 0.95 \\ K^{\mathrm{C}^{\mathrm{d}}} \\ L^{\mathrm{s}} \\ L^{\mathrm{s}} \\ U \\ -0.1646 & 0 \\ 0.0677 & 0 \\ U \\ -0.0257 & -0.0456 \\ 0.2661 & 0.95 \\ Y \\ \end{array}$$

10.4 S

$$\begin{array}{c|c} & \epsilon^{\rm Z} \\ p & 1.2258 \\ r & 1 \\ C & 1 \\ I & -0.2258 \\ I^{\rm s} & 1 \\ K^{\rm C^{\rm d}} & 0 \\ L^{\rm s} & 0 \\ L^{\rm C^{\rm d}} & 0 \\ U & -0.048 \\ W & 1 \\ Y & 1 \\ \end{array}$$

11 Statistics of the model

11.1 Moments

	Steady-state value	Std. dev.	Variance	Loglinear
p	1.5318	0.113	0.0128	Y
r	0.0538	0.0922	0.0085	Y
C	0.3374	0.0922	0.0085	Y
I	0.0439	0.0208	0.0004	Y
I^{s}	0.0672	0.0922	0.0085	Y
K^{s}	1.7551	0.0018	0	Y
L^{s}	0.2914	0.0003	0	Y
U	-176.3002	0.0044	0	Y
\overline{W}	1.111	0.0922	0.0085	Y
Y	0.4046	0.0922	0.0085	Y

11.2 Correlation matrix

	p	r	C	I	I^{s}	K^{s}	$L^{\rm s}$	U	W	Y
p	1	0.9998	1	-0.9966	0.9998	-0.3088	0.0262	-0.9999	1	1
r	0.9998	1	0.9996	-0.9948	1	-0.3265	0.0449	-0.9995	0.9997	0.9997
C	1	0.9996	1	-0.9973	0.9996	-0.3001	0.0172	-1	1	1
I	-0.9966	-0.9948	-0.9973	1	-0.9948	0.229	0.0566	0.9976	-0.9972	-0.9969
I^{s}	0.9998	1	0.9996	-0.9948	1	-0.3265	0.0449	-0.9995	0.9997	0.9997
K^{s}	-0.3088	-0.3265	-0.3001	0.229	-0.3265	1	-0.9589	0.2963	-0.3014	-0.3045
$K^{\mathrm{C^d}}$	-0.0262	-0.0449	-0.0172	-0.0566	-0.0449	0.9589	-1	0.0131	-0.0185	-0.0218
L^{s}	0.0262	0.0449	0.0172	0.0566	0.0449	-0.9589	1	-0.0131	0.0185	0.0218
$L^{C^{d}}$	-0.0262	-0.0449	-0.0172	-0.0566	-0.0449	0.9589	-1	0.0131	-0.0185	-0.0218
U	-0.9999	-0.9995	-1	0.9976	-0.9995	0.2963	-0.0131	1	-1	-1
W	1	0.9997	1	-0.9972	0.9997	-0.3014	0.0185	-1	1	1
Y	1	0.9997	1	-0.9969	0.9997	-0.3045	0.0218	-1	1	1
Z	1	0.9998	1	-0.9968	0.9998	-0.3065	0.0238	-0.9999	1	1

11.3 Autocorrelations

	t-1	t-2	t-3	t-4	t-5
p	0.7135	0.4715	0.2715	0.1102	-0.016
r	0.7152	0.4742	0.2746	0.1134	-0.0131
C	0.7127	0.4703	0.2701	0.1088	-0.0173
I	0.708	0.4629	0.2615	0.1001	-0.0252
I^{s}	0.7152	0.4742	0.2746	0.1134	-0.0131
K^{s}	0.9589	0.8598	0.7228	0.5647	0.3987
$L^{\rm s}$	0.9589	0.8598	0.7228	0.5647	0.3987
U	0.7124	0.4698	0.2695	0.1082	-0.0178
\overline{W}	0.7128	0.4704	0.2703	0.109	-0.0171
Y	0.7131	0.4709	0.2708	0.1095	-0.0166

12 Statistics of the model

12.1 Moments relative to moments of the reference variable

	Steady-state value relative to Y	Std. dev. relative to Y	Variance relative to Y	Loglinear
p	3.7858	1.226	1.503	Y
r	0.1329	1.0008	1.0015	Y
C	0.8339	0.9999	0.9998	Y
I	0.1084	0.2261	0.0511	Y
I^{s}	0.1661	1.0008	1.0015	Y
K^{s}	4.3375	0.0199	0.0004	Y
$K^{C^{d}}$	3.1018	0.0278	0.0008	Y
L^{s}	0.7201	0.0033	0	Y
$L^{C^{d}}$	0.6005	0.0013	0	Y
U	-435.7117	0.048	0.0023	Y
\overline{W}	2.7457	0.9999	0.9999	Y
Y	1	1	1	Y
Z	2.4714	1	1.0001	Y

12.2 Correlations with the reference variable

	Y_{t-5}	Y_{t-4}	Y_{t-3}	Y_{t-2}	Y_{t-1}	Y_t	Y_{t+1}	Y_{t+2}	Y_{t+3}	Y_{t+4}	Y_{t+5}
						1 t		·	·	· ·	
p	-0.0189	0.1073	0.2688	0.4693	0.7122	1	0.7144	0.473	0.2734	0.1124	-0.0137
r	-0.0284	0.098	0.2604	0.4626	0.7082	0.9997	0.7196	0.4819	0.2845	0.1245	-0.0015
C	-0.0143	0.1118	0.2728	0.4725	0.714	1	0.7118	0.4686	0.268	0.1065	-0.0196
I	-0.0234	-0.1479	-0.3046	-0.4968	-0.727	-0.9969	-0.6883	-0.4316	-0.2231	-0.0583	0.0677
I^{s}	-0.0284	0.098	0.2604	0.4626	0.7082	0.9997	0.7196	0.4819	0.2845	0.1245	-0.0015
K^{s}	0.491	0.4367	0.3392	0.1896	-0.0218	-0.3045	-0.4925	-0.6029	-0.6512	-0.6515	-0.616
$K^{C^{d}}$	0.5104	0.491	0.4367	0.3392	0.1896	-0.0218	-0.3045	-0.4925	-0.6029	-0.6512	-0.6515
L^{s}	-0.5104	-0.491	-0.4367	-0.3392	-0.1896	0.0218	0.3045	0.4925	0.6029	0.6512	0.6515
$L^{C^{d}}$	0.5104	0.491	0.4367	0.3392	0.1896	-0.0218	-0.3045	-0.4925	-0.6029	-0.6512	-0.6515
U	0.0122	-0.1138	-0.2746	-0.4739	-0.7148	-1	-0.7106	-0.4667	-0.2656	-0.1039	0.0223
W	-0.0149	0.1111	0.2722	0.472	0.7138	1	0.7121	0.4693	0.2688	0.1074	-0.0188
Y	-0.0166	0.1095	0.2708	0.4709	0.7131	1	0.7131	0.4709	0.2708	0.1095	-0.0166
Z	-0.0177	0.1085	0.2699	0.4702	0.7127	1	0.7137	0.4718	0.272	0.1108	-0.0153

13 Impulse response functions

13.1 Shock ϵ^{Z}

Figure 1: Impulse response function for $\epsilon^{\mathbf{Z}}$ shock

Figure 2: Impulse response function for $\epsilon^{\mathbf{Z}}$ shock