CORRIGÉ DU DS N°4

PROBLÈME I : ENDOMORPHISMES CYCLIQUES (d'après EPITA 2002)

PARTIE 1

- 1. a) On a $a(e_1) = e_2$, $a^2(e_1) = a(e_2) = e_3$. On a donc $E = Vect(e_1, a(e_1), a^2(e_1))$.
 - On a donc $E \subset Vect(a^k(e_1), k \in \mathbb{N})$. L'inclusion inverse étant évidente, on a $E = Vect(a^k(e_1), k \in \mathbb{N})$. a est donc cyclique.
 - Pour déterminer les valeurs propres on cherche les racines du polynôme caractéristique

$$\chi_{u}(\lambda) = \begin{vmatrix} -\lambda & 0 & 6 \\ 1 & -\lambda & -11 \\ 0 & 1 & 6 - \lambda \end{vmatrix}$$

ce qui donne $-\lambda^3+6\lambda^2-11\lambda+6=0$. $\lambda=1$ est racine évidente et $-\lambda^3+6\lambda^2-11\lambda+6=(1-\lambda)(\lambda^2-5\lambda+6)$. Les valeurs propres sont : 1,2 et 3.

— Pour $\lambda = 1$ on doit résoudre le système $a(v_1) = v_1$. Notons (x, y, z) les coordonnées de v_1 , et le sujet impose z = 1. Ce qui donne le système :

$$\begin{cases} 6 = x \\ x-11 = y \\ y+6 = 1 \end{cases}$$

la solution est évidente : $v_1 = \begin{pmatrix} 6 \\ -5 \\ 1 \end{pmatrix}$

— pour $\lambda = 2$:

$$\begin{cases} 6 &= 2x \\ x - 11 &= 2y \\ y + 6 &= 2 \end{cases}$$

donne
$$v_2 = \begin{pmatrix} 3 \\ -4 \\ 1 \end{pmatrix}$$

— pour $\lambda = 3$:

$$\begin{cases} 6 &= 3x \\ x - 11 &= 3y \\ y + 6 &= 3 \end{cases}$$

donne
$$v_2 = \begin{pmatrix} 2 \\ -3 \\ 1 \end{pmatrix}$$

— On a trois valeurs propres distinctes en dimension 3. L'endomorphisme est diagonalisable et (v_1, v_2, v_3) est une base de E . Dans cette base la matrice de a est $D = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 3 \end{pmatrix}$; A est donc semblable à D et la

matrice de passage est $P = \begin{pmatrix} 6 & 3 & 2 \\ -5 & -4 & -3 \\ 1 & 1 & 1 \end{pmatrix}$

On a alors $A = PDP^{-1}$ ou encore $D = P^{-1}AP$

- **b)** On trouve ici encore $b(e_1) = e_2$ et $b^2(e_1) = e_3$, donc, par le même raisonnement, h est cyclique. On trouve $\det(B \lambda Id) = -\lambda^3 \lambda^2 + \lambda + 1$ de racines 1 (simple) et -1 (double). Les vecteurs propres vérifient
 - soit b(v) = v ce qui donne $v \in Vect \begin{pmatrix} 1 \\ 2 \\ 1 \end{pmatrix}$
 - soit b(v) = -v ce qui donne $v \in Vect \begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix}$

La valeur propre −1 est double, or le sous espace propre associé est de dimension 1.

Donc b n'est pas diagonalisable.

PSI* 10-111

b) Soit une combinaison linéaire nulle des $c^k(x_0)$: $\sum_{k=0}^{n-1} a_k c_k(x_0) = 0$, soit $\sum_{k=0}^{n-1} a_k \sum_{i=1}^{n} \lambda_i^k x_i = 0$ ou $\sum_{i=1}^{n} \left(\sum_{k=0}^{n-1} a_k \lambda_i^k\right) x_i = 0$. Or la famille des (x_i) est libre (vecteurs propres associés à des valeurs propres différentes). On a donc

$$\forall i \in [1, n], \sum_{k=0}^{n-1} a_k \lambda_i^k = 0 (*)$$

On considère alors le polynôme $P = \sum_{k=0}^{n-1} a_k X^k$. Ce polynôme est de degré $\leq n-1$ et admet n racines distinctes (les λ_i). C'est donc le polynôme nul, et tous ses coefficients sont nuls.

Donc la famille
$$(c^k(x_0))_{0 \le k \le n-1}$$
 est libre.

Autre solution : On pouvait aussi remarquer que (*) donne un système linéaire homogène, dont le déterminant est un déterminant de VanDerMonde...

c) Comme la famille est une famille libre de bon cardinal , c'est une base de E : $E = Vect (c^k(x_0))_{0 \le k \le n-1}$.Par double inclusion comme au I.1, on en déduit $E = Vect (c^k(x_0))_{k \in \mathbb{N}}$.

Donc
$$c$$
 est cyclique.

PARTIE 2

3. a) On peut remarquer que $x_0 \neq 0$ car sinon $E = Vect(f^k(0)) = Vect(0) = \{0\}$, ce qui contredit l'hypothèse $\dim(E) \geq 2$.

La famille (x_0) est donc libre. L'ensemble des entiers k non nuls tels que la famille $\{x_0, f(x_0), \ldots, f^{k-1}(x_0)\}$ soit libre est donc une partie non vide de \mathbb{N}^* ; or elle est majorée par n+1 (car toute famille de n+1 éléments de E est liée); elle admet donc un plus grand élément m, qui vérifie par construction la propriété demandée.

On montre alors par récurrence que pour $k\in\mathbb{N}$, $f^{m+k}(x_0)\in \mathrm{Vect}\left(f^i(x_0)\right)_{0\leqslant i\leqslant m-1}$:

- si k=0: On sait que la famille $(f^i(x_0))_{0\leqslant i\leqslant m}$ est lié, et que la famille $(f^i(x_0))_{0\leqslant i\leqslant m-1}$ est libre. D'après un théorème du cours, $f^m(x_0)$ est combinaison linéaire des $(f^i(x_0))_{0\leqslant i\leqslant m-1}$, i.e pour k=0, $f^{m+0}(x_0)\in Vect\,(f^i(x_0))_{0\leqslant i\leqslant m-1}$
- On suppose $f^{m+k}(x_0) \in \text{Vect}(f^i(x_0))_{0 \le i \le m-1}$. Il existe donc des scalaires a_i tels que $f^{m+k}(x_0) = \sum_{i=0}^{m-1} a_i f^i(x_0)$. On a alors

$$f^{m+k+1}$$

$$f^{m+k+1}(x_0) = \sum_{i=0}^{m-1} a_i f^{i+1}(x_0) = \sum_{j=1}^{m-1} a_{j-1} f^j(x_0) + a_{m-1} f^m(x_0)$$

et donc
$$f^{m+k+1}(x_0) \in \operatorname{Vect} (f^i(x_0))_{0 \le i \le m-1}$$

- On a ainsi montré par récurrence : $\forall k \in \mathbb{N}, f^{m+k}(x_0) \in \text{Vect}(f^i(x_0))_{0 \le i \le m-1}$.
- **b)** Par définition de m, la famille est libre.

Elle est aussi génératrice car $E = \operatorname{Vect} \left(f^i(x_0) \right)_{i \in \mathbb{N}} = \operatorname{Vect} \left(f^i(x_0) \right)_{0 \leqslant i \leqslant m-1}$ d'après le **a**) (en effet, si on ôte à une famille génératrice un vecteur qui est combinaison linéaire des autres, la famille obtenue est encore génératrice.) La famille $(x_0, f(x_0), f^2(x_0), \ldots, f^{m-1}(x_0))$ est libre et génératrice. C'est donc une base de E. Elle est donc de cardinal n, d'où m = n.

4. a) Pour i < n-1, l'image du i-ème vecteur de base est le (i+1)-ème. La i-ème colonne de M est donc une colonne de 0 sauf ligne i+1 où il y a un 1. L'image du dernier vecteur de base est $f^m(x_0) = \sum_{i=0}^{n-1} p_i f^i(x_0)$. On a donc :

$$\mathbf{M} = \left(\begin{array}{ccccc} 0 & 0 & \cdots & 0 & p_0 \\ 1 & 0 & \cdots & 0 & p_1 \\ 0 & 1 & \ddots & \vdots & \vdots \\ \vdots & \ddots & \ddots & 0 & p_{n-2} \\ 0 & \cdots & 0 & 1 & p_{n-1} \end{array} \right)$$

b) On montre que $(f^k)_{0 \le k \le n-1}$ est une famille libre de $\mathcal{L}(E)$:

Soit $\sum_{i=0}^{n-1} a_i f^i = 0$ _{$\mathcal{L}(E)$}. Si on prend l'image de x_0 par cette relation, on trouve $\sum_{i=0}^{n-1} a_i f^i(x_0) = 0$. Et donc, comme $(f^i(x_0))_{0 \le i \le n-1}$ est une base de E, $a_i = 0$ pour tout i.

$$(f^k)_{0 \le k \le n-1}$$
 est une famille libre de $\mathcal{L}(E)$

Il n'existe pas de polynôme non nul de degré < n tel que Q(f) = 0. En effet si $Q = \sum_{k=0}^{n-1} q_k X^k$ existe, on a

 $\sum_{k=0}^{n-1}q_kf^k=0_{\mathscr{L}(\mathbf{E})}$. Comme la famille est libre, $q_k=0$ pour tout k , et donc $\mathbf{Q}=\mathbf{0}$

c) On a
$$P(f) = f^n - \sum_{i=0}^{n-1} p_i f^i$$
 donc $P(f)(x_0) = f^n(x_0) - \sum_{i=0}^{n-1} p_i f^i(x_0) = 0$, puis, pour tout k , $P(f)(f^k(x_0)) = f^{n+k}(x_0) - \sum_{i=0}^{n-1} p_i f^{i+k}(x_0) = 0$

Les applications P(f) et $0_{\mathcal{L}(E)}$ sont égales sur une base : elles sont égales P(f) = 0.

5. a) Par une récurrence classique on a
$$f^k(x) = \lambda^k x$$
. Donc $P(f)(x) = \sum_{i=0}^{n-1} p_i f^i(x) = \sum_{i=0}^{n-1} p_i \lambda^i x = P(\lambda) x$.

On $x \neq 0$, donc $P(\lambda) = 0$. il s'agit d'ailleurs d'un résultat du cours).

b) La matrice de $f - \lambda Id$ est $M - \lambda I_n$ soit

$$\mathbf{M} - \lambda \mathbf{I}_{n} = \begin{pmatrix} -\lambda & 0 & \cdots & 0 & p_{0} \\ 1 & -\lambda & \cdots & 0 & p_{1} \\ 0 & 1 & \ddots & \vdots & \vdots \\ \vdots & \ddots & \ddots & -\lambda & p_{n-2} \\ 0 & \cdots & 0 & 1 & p_{n-1} - \lambda \end{pmatrix}$$

- λ est valeur propre donc le rang est ≤ n-1.
- d'autre part la "diagonale" de 1 montre que le rang est $\ge n-1$
- Donc le rang de $M \lambda I_n$ est égal à n 1, d'où dim $Ker(f \lambda Id) = 1$.

Le sous espace propre est de dimension 1

- c) Si il existe n valeurs propres distinctes dans un espace de dimension n, l'endomorphisme est toujours diagonalisable (cf. cours).
 - Réciproque : Soit f cyclique, diagonalisable. Alors E est somme directe des sous-espaces propres , chacun d'entre eux étant de dimension 1. Il y a donc n sous-espaces propres , donc n valeurs propres distinctes.
- **6. a)** C(f) est un sous ensemble de $\mathcal{L}(E)$
 - C(f) contient Id
 - C(f) est stable par combinaison linéaire : si $g \circ f = f \circ g$ et $h \circ f = f \circ h$ alors pour tous scalaires λ, μ :

$$(\lambda g + \mu h) \circ f = \lambda(g \circ f) + \mu(h \circ f) = \lambda(f \circ g) + \mu(f \circ h)$$
$$= f \circ (\lambda g) + f \circ (\mu h) = f \circ (\lambda g + \mu h)$$

— C(f) est stable par la loi \circ : si $g \circ f = f \circ g$ et $h \circ f = f \circ h$:

$$(g \circ h) \circ f = g \circ (h \circ f) = g \circ (f \circ h) = (g \circ f) \circ h = (f \circ g) \circ h = f \circ (g \circ h)$$

- Ainsi : C(f) est une sous-algèbre de $(\mathcal{L}(E), +, \cdot, \circ)$
- **b)** On suppose $u \circ f = f \circ u$, $v \circ f = f \circ v$ et $u(x_0) = v(x_0)$. On montre par récurrence que u et v prennent les mêmes valeurs sur la base $(f^k(x_0))_{\leq k \leq n-1}$, ce qui prouvera que u = v.
 - pour k = 0 c'est la définition de u et v
 - pour k=1:

$$u(f(x_0)) = (u \circ f)(x_0) = (f \circ u)(x_0) = f(u(x_0)) = f(v(x_0)) = (f \circ v)(x_0) = (v \circ f)(x_0) = v(f(x_0))$$

- si $u(f^k(x_0)) = v(f^k(x_0))$

$$u(f^{k+1}(x_0)) = (u \circ f)(f^k(x_0)) = (f \circ u)(f^k(x_0)) = f(u(f^k(x_0)))$$

= $f(v(f^k(x_0))) = (f \circ v)(f^k(x_0)) = (v \circ f)(f^k(x_0)) = v(f^{k+1}(x_0))$

d'où l'égalité pour tout vecteur de la base.

c) Remarquons que les $(a_i)_{0 \le i \le n-1}$ existent : il s'agit des coordonnées de $g(x_0)$ dans une base.

On applique alors la question précédente avec u=g et $v=\sum_{k=0}^{n-1}a_kf^k$. On suppose que $u=g\in C(f)$, et, comme tout polynôme de l'endomorphisme f, on a $v\in C(f)$.

- Enfin on a supposé $u(x_0) = v(x_0)$. On a donc d'après le **a**) u = v donc $g = \sum_{k=0}^{n-1} a_k f^k$
- **d)** On vient de montrer que tout élément de C(f) est dans $Vect(f^k)_{0 \le k \le n-1}$, et tout élément de $Vect(f^k)_{0 \le k \le n-1}$ est dans C(f) (c'est un polynôme en f). Donc $C(f) = Vect(f^k)_{0 \le k \le n-1}$. De plus, d'après le **II.4.b**), cette famille est libre. C'est donc une base de C(f).

C(f) est un sous espace vectoriel de dimension n

PROBLÈME II : UTILISATIONS DES MATRICES COMPAGNON (d'après CCP MP 2001)

I. Propriétés générales

- 1. Par développement par rapport à la première ligne, on obtient $\det C_P = (-1)^{n+1}(-a_0) = (-1)^n a_0 = (-1)^n P(0)$. Donc C_P est inversible si et seulement si $P(0) \neq 0$.
- 2. En développant par rapport à la dernière colonne, on obtient :

$$\chi_{C_{P}} = \begin{vmatrix}
-X & 0 & \cdots & 0 & -a_{0} \\
1 & -X & \ddots & \vdots & -a_{1} \\
0 & \ddots & \ddots & 0 & \vdots \\
\vdots & \ddots & 1 & -X & -a_{n-2} \\
0 & \cdots & 0 & 1 & -X - a_{n-1}
\end{vmatrix}$$

$$= (-X - a_{n-1}) \begin{vmatrix} -X & 0 & \cdots & 0 \\ 1 & -X & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ 0 & \cdots & 1 & -X \end{vmatrix} + \cdots + (-1)^{n+k+1} (-a_k) \begin{vmatrix} -X & 0 & \cdots & 0 & 0 & \cdots & \cdots & 0 \\ 1 & -X & \ddots & \vdots & \vdots & & & \vdots \\ \vdots & \ddots & \ddots & 0 & \vdots & & & \vdots \\ 0 & \cdots & 1 & -X & 0 & \cdots & \cdots & 0 \\ 0 & \cdots & \cdots & 0 & 1 & -X & \cdots & 0 \\ \vdots & & & \vdots & \vdots & \ddots & 1 & -X \\ 0 & \cdots & \cdots & 0 & 0 & \cdots & 0 & 1 \end{vmatrix} \right)^{k}$$

$$+ \cdots + (-1)^{n+1} (-a_0) \begin{vmatrix} 1 & -X & \cdots & 0 \\ 0 & \ddots & \ddots & \vdots \\ \vdots & \ddots & 1 & -X \\ 0 & \cdots & 0 & 1 \end{vmatrix}$$

$$= (-X - a_{n-1})(-X)^{n-1} + \dots + (-1)^{n+k+1}(-a_k)(-X)^k + \dots + (-1)^{n+1}(-a_0)$$

= $(-1)^n \left[X^n + a_{n-1}X^{n-1} + \dots + a_kX^k + \dots + a_0 \right]$

soit
$$\chi_{C_P} = (-1)^n P$$
.

Rem: on a vu en exercice une autre façon de calculer ce déterminant...

3. Si $Q = \chi_A$ alors $\deg Q = n$ et son coefficient dominant est $(-1)^n$. Réciproquement, si $\deg Q = n$ et son coefficient dominant est $(-1)^n$, posons $P = (-1)^n Q$: on a alors $Q = \chi_{C_P}$ d'après la question précédente.

Il existe $A \in \mathcal{M}_n(\mathbb{K})$ telle que $Q = \chi_A$ si et seulement si Q a pour terme de plus haut degré $(-1)^n X^n$.

4. a) $\chi_{^tC_P} = \chi_{C_P}$ donne $Sp(^tC_P) = Sp(C_P)$.

b)

$$X = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} \in \text{Ker}(^t C_P - \lambda I_n) \iff \begin{pmatrix} 0 & 1 & & 0 \\ \vdots & \ddots & \ddots & \\ 0 & \cdots & 0 & 1 \\ -a_0 & \cdots & -a_{n-2} & -a_{n-1} \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix} = \lambda \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}$$

$$\iff \begin{pmatrix} \lambda x_1 & = & x_2 \\ \lambda x_2 & = & x_3 \\ & \vdots \\ \lambda x_{n-1} & = & x_n \\ \lambda x_n & = & -a_0 x_1 - \cdots - a_{n-2} x_{n-1} - a_{n-1} x_n \end{pmatrix}$$

$$\iff \begin{pmatrix} x_2 & = & \lambda x_1 \\ x_3 & = & \lambda^2 x_1 \\ \vdots \\ x_n & = & \lambda^{n-1} x_1 \\ 0 & = & P(\lambda) x_1 \end{pmatrix}$$

et on a
$$P(\lambda) = 0$$
 donc $\operatorname{Ker}({}^{t}C_{P} - \lambda I_{n}) = \mathbb{K}.\begin{pmatrix} 1 \\ \lambda \\ \vdots \\ \lambda^{n-1} \end{pmatrix}.$

c) Si P est scindé à racines simples alors $\chi_{\iota_{C_P}}$ aussi et donc ι_{C_P} est diagonalisable (car $\chi_{\iota_{C_P}}$ est annulateur de C_p d'après le th. de Cayley-Hamilton).

Réciproquement, si tC_P est diagonalisable alors $\chi_{{}^tC_P}$ est scindé donc P aussi et, pour tout λ racine de P, on a $\lambda \in Sp({}^tC_P)$ et la multiplicité de λ est égale à $dim\Big(Ker({}^tC_P-\lambda I_n)\Big)$. Or, on a vu au \mathbf{b}) que $dim\Big(Ker({}^tC_P-\lambda I_n)\Big)=1$. Donc P est scindé à racines simples.

Ainsi tC_P est diagonalisable si et seulement si P est scindé à racines simples.

d) \diamond Puisque deg P = n, si P a n racines deux à deux distinctes alors P est scindé à racines simples et donc **c**) donne tC_P est diagonalisable.

$$\diamond \text{ La famille } \left(\begin{pmatrix} 1 \\ \lambda_1 \\ \vdots \\ \lambda_1^{n-1} \end{pmatrix}, \dots, \begin{pmatrix} 1 \\ \lambda_n \\ \vdots \\ \lambda_n^{n-1} \end{pmatrix} \right) \text{ est formée de vecteurs propres associés à des valeurs propres distinctes.}$$

Elle est donc libre et donc on a bien : $\begin{vmatrix} 1 & 1 & \cdots & 1 \\ \lambda_1 & \lambda_2 & \cdots & \lambda_n \\ \vdots & \vdots & & \vdots \\ \lambda_1^{n-1} & \lambda_2^{n-1} & \cdots & \lambda_n^{n-1} \end{vmatrix} \neq 0$

5. a) Prenons n = 2002, $P = X^{2002} - X^{2001} - X^{2000} - 1999$ et $A = C_P$. On a $\chi_A = P$ et le théorème de Cayley-Hamilton donne P(A) = O.

Remarque: Comme P(0) < 0 et $\lim_{t \to +\infty} P(t) = +\infty$, P a au moins une racine α dans \mathbb{R} donc dans \mathbb{K} et, pour tout n, la matrice $A = \alpha I_n$ vérifie l'équation (*tout simplement!*).

b) Puisque $f^{n-1} \neq 0$, on a Ker $f^{n-1} \neq E$ et on peut choisir $e \in E \setminus \text{Ker } f^{n-1}$ puis poser, pour $k \in [1, n]$, $e_k = f^{k-1}(e)$. Montrons que (e_1, \dots, e_n) est une base de E: si il existe $(\lambda_1, \dots, \lambda_n) \in \mathbb{K}^n$ et $(\lambda_1, \dots, \lambda_n) \neq (0, \dots, 0)$ tel que $\sum_{k=1}^{n} \lambda_k e_k = 0$, posons $k \in [1, n]$, $k \in [1, n]$,

$$0 = f^{n-r} \left(\sum_{k=1}^{n} \lambda_k e_k \right) = f^{n-r} \left(\sum_{k=r}^{n} \lambda_k e_k \right) = \sum_{k=r}^{n} \lambda_k f^{n-r+k-1}(e)$$
$$= \lambda_r f^{n-1}(e) + f^n \left(\sum_{k=r+1}^{n} \lambda_k f^{k-r}(e) \right) = \lambda_r f^{n-1}(e)$$

donc, puisque $f^{n-1}(e) \neq 0$, $\lambda_r = 0$ ce qui contredit la définition de r. Donc (e_1, \ldots, e_n) est une famille libre de E donc une base de E et, pour $k \in [1, n-1]$, $f(e_k) = f^k(e) = e_{k+1}$ et $f(e_n) = f^n(e) = 0$.

Donc il existe une base \mathscr{B} de E telle que Mat $(f,\mathscr{B}) = \begin{pmatrix} 0 & & 0 \\ 1 & 0 & & 0 \\ & \ddots & \ddots & \vdots \\ & & 1 & 0 \end{pmatrix} = C_{X^n}$.

II. Localisation des racines d'un polynôme

6. On a $\lambda X = AX$ donc $\forall i \in [1, n]$, $\lambda x_i = \sum_{k=1}^n a_{ik} x_k$ donc $\left| \lambda x_i \right| = \left| \sum_{k=1}^n a_{ik} x_k \right| \leqslant \sum_{k=1}^n \left| a_{ik} \right| \left| x_k \right| \leqslant \sum_{k=1}^n \left| a_{ik} \right| \|X\|_{\infty}$ donc $\forall i \in [1, n], \quad \left| \lambda x_i \right| \leqslant r_i \|X\|_{\infty}$.

7. Appliquons le résultat de 6) à i_0 tel que $\left|x_{i_0}\right| = \left\|\mathbf{X}\right\|_{\infty}$: on obtient $\left|\lambda\right| \left\|\mathbf{X}\right\|_{\infty} \leqslant r_{i_0} \left\|\mathbf{X}\right\|_{\infty}$ donc, puisque $\mathbf{X} \neq \mathbf{0}$, $\left|\lambda\right| \leqslant r_{i_0}$ donc $\lambda \in \mathbf{D}_{i_0}$.

Ainsi $\forall \lambda \in \operatorname{Sp}(A), \exists i_0 \in [1, n] \text{ tq } \lambda \in D_{i_0} \text{ donc } Sp(A) \subset \bigcup_{k=1}^n D_k.$

- 8. On a vu au 2) que les racines de P sont les valeurs propres de C_P et on peut appliquer 7) à $A = C_p$ avec $r_1 = \left|a_0\right|$ et pour $i \in [2, n]$, $r_i = 1 + \left|a_{i-1}\right|$. Or, $\bigcup_{k=1}^n \mathbf{D}_k$ est le disque fermé de centre 0 et de rayon $\max_{1 \le i \le n} r_i$ donc toutes les racines de P appartiennent à $B_f(0,R)$ où $R = \max\{|a_0|, 1+|a_1|, ..., 1+|a_{n-1}|\}$.
- 9. Pour fixer les idées, supposons que $a = \max\{a, b, c, d\}$. Si $n \in \mathbb{N}$ est solution de l'équation proposée, il est racine de $P = X^a + X^b - X^c - X^d \in \mathbb{C}_a[X]$ donc, avec les notations de 8), on a $|n| \leq R$ avec R = 2 car $|a_0| = 0$ et $1+\left|a_{k}\right|=\begin{cases}2 & \text{si } k\in\{b,c,d\}\\1 & \text{sinon}\end{cases}. \text{ Mais, si 2 \'etait solution, on aurait, en supposant, par exemple, } c>d\text{ , } 2^{b}\left(2^{a-b}+1\right)=2^{d}\left(2^{c-d}+1\right)$ donc, par unicité de la décomposition en produit de nombres premiers, b=d ce qui est exclu. 0 et 1 étant clairement solutions, on peut conclure que:

les seules solutions $n \in \mathbb{N}$ de $n^a + n^b = n^c + n^d$ sont 0 et 1.

III. Suites récurrentes linéaires

- **10.** Si $\forall n, \ u(n) = \lambda^n \text{ alors } \forall n, \ u(n+p) + a_{p-1}u(n+p-1) + \dots + a_0u(n) = \lambda^n \left(\lambda^p + a_{p-1}\lambda^{p-1} + \dots + a_0\right) = \lambda^n P(\lambda). \text{ Donce } \lambda^n P(\lambda) = \lambda^n$ la suite $n \mapsto \lambda^n$ appartient à F si et seulement si λ est racine de P.
- 11. $\diamond \varphi$ est clairement linéaire et si $\alpha = (\alpha_0, \dots, \alpha_{p-1}) \in \mathbb{C}^p$, il existe une et une seule suite $u \in F$ telle que $\varphi(u) = \alpha$: c'est la suite définie par $u(0) = \alpha_0, \dots u(p-1) = \alpha_{p-1}$ et, pour $n \ge p$, $u(n) = -a_{p-1}u(n-1) - \dots - a_0u(n-p)$. Donc φ est bijective et donc $| \varphi |$ est un isomorphisme de F sur \mathbb{C}^p .
 - \diamond On a donc dim $F = \dim \mathbb{C}^p$ soit $\dim F = p$
- a) $e_i(p) = -a_{p-1}e_i(p-1) \dots a_ie_i(1) \dots a_0e_i(0)$ donc $e_i(p) = -a_i$. 12.
 - **b**) Notons $(\varepsilon_1, \dots, \varepsilon_p)$ la base canonique de \mathbb{C}^p . On a $e_i = \varphi^{-1}(\varepsilon_{i+1})$ donc la famille (e_0, \dots, e_{p-1}) est l'image par l'isomorphisme φ^{-1} de la base $(\varepsilon_1,\ldots,\varepsilon_p)$. Ainsi $|(e_0,\ldots,e_{p-1})|$ est une base de F .
 - c) $\forall u \in F$, $u = \varphi^{-1}[\varphi(u)] = \varphi^{-1}\left[\sum_{i=0}^{p-1} u(i)\varepsilon_{i+1}\right] = \sum_{i=0}^{p-1} u(i)\varphi^{-1}(\varepsilon_{i+1}) \text{ donc } \forall u \in F$, $u = \sum_{i=0}^{p-1} u(i)e_i$.
- **13.** $f \in \mathcal{L}(E)$ est évident et si $u \in F$, $\forall n$, $u(n+1+p) = -a_{p-1}u(n+1+p-1) \cdots a_0u(n+1)$ soit $f(u)(n+p) = -a_{p-1}f(u)(n+p-1) \cdots a_0u(n+1)$ donc $f(u) \in F$ ce qui montre que |F| est stable par f

14. Pour $u \in F$, $f(u) \in F$ donc 12.c donne $f(u) = \sum_{k=0}^{p-1} f(u)(k) e_k = \sum_{k=0}^{p-1} u(k+1) e_k = \sum_{k=0}^{p-2} u(k+1) e_k + u(p) e_{p-1} = u(1) e_0 + \sum_{k=1}^{p-1} u(k) e_{k-1} + u(p) e_{p-1} = u(1) e_0 + \sum_{k=1}^{p-1} u(k) e_{k-1} + u(p) e_{p-1} = u(1) e_0 + \sum_{k=1}^{p-1} u(k) e_{k-1} + u(p) e_0 = \sum_{k=0}^{p-1} u(k+1) e_k + u(p) e_0 = \sum_{k=0}^{p-1} u(k) e_0 = \sum_{k=0}^$

a) D'après 4.d., une base de vecteurs propres pour tC_P est $\left(\begin{pmatrix} 1\\ \lambda_1\\ \vdots\\ \lambda_n^{n-1} \end{pmatrix}, \dots, \begin{pmatrix} 1\\ \lambda_n\\ \vdots\\ \lambda_n^{n-1} \end{pmatrix}\right)$ donc une base de vecteurs 15.

propres pour g est $(v_0,...,v_{p-1})$ avec $v_i = \sum_{k=0}^{p-1} \lambda_i^k e_k$. Mais la suite $w_i : n \mapsto \lambda_i^n$ appartient à F d'après 10. et s'écrit $w_i = \sum_{k=1}^{p-1} \lambda_i^k e_k$ d'après **12.**. Donc $v_i = w_i$

et une base de vecteurs propres pour g est $(v_0, ..., v_{p-1})$ avec $\forall n, v_i(n) = \lambda_i^n$.

- **b)** Donc $\forall u \in F, \exists (k_0, ..., k_{p-1}) \in \mathbb{C}^p, \ u = \sum_{i=0}^{p-1} k_i v_i \text{ soit}$ $\exists (k_0, ..., k_{p-1}) \in \mathbb{C}^p, \ \forall n \in \mathbb{N}, \ u(n) = \sum_{i=0}^{p-1} k_i \lambda_i^n$.
- **16.** Ici, $P = X^3 (a+b+c)X^2 + (ab+ac+bc)X abc = (X-a)(X-b)(X-c)$ avec a,b,c distincts donc **15.** donne : une base de F est $((a^n)_{n\in\mathbb{N}},(b^n)_{n\in\mathbb{N}},(c^n)_{n\in\mathbb{N}})$.

IV. Matrices vérifiant : rg(U-V) = 1

- 17. Non! (si $n \ge 2$) car $\operatorname{rg}(C_A) \ge n-1$ donc si $\operatorname{rg}(A) < n-1$ alors A ne saurait être semblable à C_A (si n=1, $A=C_A$). On peut aussi, selon **4.c.**, prendre A diagonalisable mais avec une valeur propre au moins double.
- **18.** Si on a (**) alors $U-V=P^{-1}(C_U-C_V)P$. Or, les (n-1) premières colonnes de C_U-C_V sont nulles donc $\operatorname{rg}(C_U-C_V)\leqslant 1$ et si on avait $\operatorname{rg}(C_U-C_V)=0$ alors $C_U-C_V=0$ donc U-V=0 ce qui est exclu (U et V distinctes) donc $\operatorname{rg}(C_U-C_V)=1$. Donc $\operatorname{rg}(U-V)=1$. On a donc montré que $(**)\Longrightarrow(*)$.
- 19. $U = I_2$, $V = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$ vérifient (*) mais pas (**) :

On a bien rg(U-V)=1 et, d'autre part $\chi_U=\chi_V$ donc $C_U=C_V$ et, si on avait (**), on aurait U=V ce qui n'est pas.

- **20.** rg(u-v) = rg(U-V) = 1 et le théorème du rang donne dim(Ker(u-v)) = n-1: H est un hyperplan de E.
- **21. a)** Si on avait $F \subset H$ alors $\forall x \in F$, (u v)(x) = 0 donc $\forall x \in F$, u(x) = v(x) c'est-à-dire que $u_F = v_F$. On a donc $\chi_{u_F} = \chi_{v_F}$. Posons $P = \chi_{u_F} = \chi_{v_F}$, on a deg $P = \dim F \geqslant 1$ et P divise χu et χv ce qui contredit le fait que χ_u et χ_v sont premiers entre eux. Donc $F \not\subset H$.
 - **b)** \diamond On a donc $F \neq F \cap H$ donc $\dim F > \dim(F \cap H)$ et donc $\dim(F + H) = \dim H + \dim F \dim(F \cap H) > \dim H = n 1$ donc $\dim(F + H) = n$ et F + H = E.
 - ♦ Notons $p = \dim F$. Soit $\mathscr{B}_F = (u_1, ..., u_p)$ une base de F, $\mathscr{B}_H = (v_1, ..., v_{n-1})$ une base de F. Tout élément de F s'écrit f = $\sum_{i=1}^p \lambda_i u_i + \sum_{j=1}^{n-1} \mu_j v_j$ donc $(u_1, ..., u_p, v_1, ..., v_{n-1})$ est génératrice de F et $(u_1, ..., u_p)$ est libre donc le théorème de la base incomplète montre que

on peut compléter \mathscr{B}_F par des vecteurs de H en une base \mathscr{B}' de E .

♦ On a donc $\mathscr{B}' = (u_1, ..., u_p, u_{p+1}, ..., u_n)$ avec $u_k \in H$ pour $k \ge p+1$. Or, si $x \in H$, u(x) = v(x) et F est stable par u et par v donc on a

$$\operatorname{Mat} (u, \mathscr{B}') = \begin{bmatrix} A_1 & B \\ O & C \end{bmatrix} \qquad \operatorname{Mat} (v, \mathscr{B}') = \begin{bmatrix} A_2 & B \\ O & C \end{bmatrix} \qquad \operatorname{avec} A_i \in \mathscr{M}_p(\mathbb{K}).$$

Donc $\chi_C \mid \chi_U$, $\chi_C \mid \chi_V$ et deg $(\chi_C) = n - p \ge 1$ puisque $F \ne E$, ce qui contredit le fait que χ_u et χ_v sont premiers entre eux. Donc F = E.

- c) {0} et E sont stables par u et par v et on vient de montrer que si F est stable par u et par v et F \neq {0} alors F = E. Donc les seuls sous-espaces stables par u et par v sont E et {0}.
- 22. a) Par définition, $G_j = (u^j)^{-1}(H)$ et $U \in GL_n(\mathbb{K})$ donc $u \in GL(E)$ et donc $u^j \in GL(E)$ donc dim $G_j = \dim H$. Ainsi, pour tout $j \in \mathbb{N}$, G_j est un hyperplan de E.
 - **b)** On a donc $G_j = \operatorname{Ker} \varphi_j$ où φ_j est une forme linéaire non nulle sur E. On a alors $\dim \left(\bigcap_{j=0}^{n-2} G_j\right) = \dim \left(\bigcap_{j=0}^{n-2} \operatorname{Ker} \varphi_j\right) = n \operatorname{rg}(\varphi_0, \mathbb{C})$ Donc $\bigcap_{j=0}^{n-2} G_j \neq \{0\}$.
 - c) Supposons le résultat faux, i.e (e_0, \dots, e_{n-1}) liée, et considérons comme le suggère l'énoncé, $F = \text{Vect}\{y, u(y), \dots, u^{p-1}(y)\}$ où p est le plus grand entier naturel non nul pour lequel la famille $(y, u(y), \dots, u^{p-1}(y))$ est libre (p est bien défini car $\{k \ge 1 \text{ tq}(y, u(y), \dots, u^{k-1}(y)) \text{ est libre}\}$ est non vide car (y) est libre, et majoré par n-1). Par définition de p, $(y, u(y), \dots, u^{p-1}(y))$ est libre et $(y, u(y), \dots, u^{p-1}(y), u^p(y))$ est liée donc $\exists (\alpha_0, \dots, \alpha_{p-1}) \in \mathbb{K}^p$ tel que $u^p(y) = \sum_{i=1}^{p-1} \alpha_k u^k(y)$. Ceci montre que $u^p(y) \in F$ et donc $u(F) = \text{Vect}\{u(y), u^2(y), \dots, u^p(y)\} \subset F$.

D'autre part, $\forall k \in [0, n-2], y \in G_k$ donc $u^k(y) \in H$ et et donc $v(u^k(y)) = u(u^k(y))$ donc, puisque $p-1 \le n-2$, $v(F) = \text{Vect}\{u(y), u^2(y), \dots, u^p(y)\} = u(F) \subset F$. On a donc F stable par u et par v avec $1 \le \dim F \le n-1$ ce qui impossible d'après **21.** Donc \mathscr{B}'' est une base de E.

d) On a $u(e_k) = e_{k+1}$ pour $k \in [0, n-2]$ donc Mat $(u, \mathcal{B}'') = C_P$ où $P = X^n - \sum_{k=0}^{n-1} e_k^* (u(e_{n-1})) X^k$. Mais alors, d'après **2.**, $P = (-1)^n \chi_u$ donc $C_P = C_U$. D'autre part, comme vu au (**c**), $\forall k \in [0, n-2]$, $v(e_k) = u(e_k) = e_{k+1}$ donc Mat (v, \mathcal{B}'') est aussi une matrice compagnon et, de même que ci-dessus, c'est C_V .

On a donc $\operatorname{Mat}(u, \mathcal{B}'') = C_{U}$ et $\operatorname{Mat}(v, \mathcal{B}'') = C_{V}$.

e) En notant P la matrice de passage de \mathscr{B}'' à \mathscr{B} , on a donc $U = P^{-1}C_UP$ et $V = P^{-1}C_VP$. On peut donc conclure que : $\forall (U,V) \in (GL_n(\mathbb{K}))^2$, (*) et χ_u, χ_v premiers entre eux $\Longrightarrow (**)$.

* * * * * * * * *