Working of

Neural Networks

Number of weights

Math of Neural Networks

Requirement Data

x ₁	\mathbf{x}_2	y
1	2	3

Let's understand how Model will use input features (x_1, x_2) and learn to predict y

Using a simple neural network with 1 hidden layer

Let's calculate output for 1st Neuron in hidden layer

Initializing each weight with random numbers and bias with 1 (can be any number)

Apply activation (sigmoid) to Neuron's output

Repeat calculations for 2nd neuron...

...and 3rd Neuron

Initialize weights and bias for output layer and calculate output

What's next?

Calculate Loss

Forward Propagation *i.e* starting with Input features, calculate Loss

How do we update weights?

Minimizing Loss using Gradient Descent

Gradient Descent

$$w_{new} = w_{old} - \eta \frac{d}{dw} J(w_{old})$$

We start with Weights nearest to Output Layer e.g. W_{211}

$\frac{d Loss}{dw_{211}}$

How is Loss related to W_{211} ?

Loss is dependent on Output, Output is dependent on W₂₁₁

$$Loss = f(output)$$

 $output = g(w_{311})$

$$Loss(w_{211}) = f(g(w_{211}))$$

Chain rule
$$\rightarrow \frac{df(g(x))}{dx} = \frac{df}{dg} * \frac{dg}{dx}$$

$$\frac{d Loss}{dw_{211}} = \frac{d Loss}{d Output} * \frac{d Output}{dw_{211}}$$

d Loss d Output

$$Loss = (Actual - Output)^2/2$$

$$\frac{d Loss}{d Output} = 2 * (Actual - Output) * -1/2$$

$$\frac{d Loss}{d Output} = 2 * (3 - 1.106) * -1/2 = -1.894$$

$$\frac{d\ Output}{dw_{211}}$$

$$Output = w_{211} * o_{11} + w_{212} * o_{12} + w_{213} * o_{13} + b_{21}$$

$$\frac{d \, Output}{dw_{211}} = o_{11} + 0 + 0 + 0$$

$$\frac{d Output}{dw_{211}} = 0.89$$

$$\frac{d Loss}{dw_{211}} = \frac{d Loss}{d Output} * \frac{d Output}{dw_{211}}$$

What will be new value of w_{211} ?

$$w_{211new} = w_{211old} - \eta * \frac{dLoss}{dw_{211old}}$$
Learning rate (assume 0.01 here)

$$= -0.213$$

 w_{212} ?

 w_{213} ?

Updating weight for hidden layer e.g W₁₁₁

$\frac{d Loss}{dw_{111}}$

How is Loss related to w_{111} ?

 $W_{111} \rightarrow h_{11} \rightarrow o_{11} \rightarrow Output \rightarrow Loss$

$$Loss = f_1(Output)$$

 $Output = f_2(o_{11})$

 $o_{11} = f_3(h_{11})$

 $h_{11} = f_4(w_{111})$

Using Chain Rule

$$\frac{dLoss}{dw_{111}} = \frac{dLoss}{dOutput} * \frac{dOutput}{do_{11}} * \frac{do_{11}}{dh_{11}} * \frac{dh_{11}}{dw_{11}}$$

Already calculated while calculating Gradient for Weights in Output Layer

$$\frac{d\ Output}{do_{11}}$$

$$Output = w_{211} * o_{11} + w_{212} * o_{12} + w_{213} * o_{13} + b_{21}$$

$$\frac{d Output}{do_{11}} = w_{211} + 0 + 0 + 0$$

Gradient in Hidden Layer is dependent on Weights in Next Layers

-0.23

$$\frac{do_{11}}{dh_{11}}$$

$$o_{11} = \frac{1}{(1+e^{-h_{11}})}$$
 \leftarrow Activation (Sigmoid) function

$$\frac{do_{11}}{dh_{11}} = o_{11}(1 - o_{11})$$

NOTE!

Activation function should be Differentiable *i.e* it should be possible to calculate partial derivative of Activation function

$$\frac{dh_{11}}{dw_{111}}$$

$$h_{11} = w_{111} * ip1 + w_{112} * ip2 + b_{11}$$

 $\frac{dh_{11}}{dw_{111}} = ip1 + 0 + 0$

$$\frac{d Loss}{dw_{111}} = \frac{d Loss}{d Output} * \frac{d Output}{do_{11}} * \frac{do_{11}}{dh_{11}} * \frac{dh_{11}}{dw_{111}}$$

New value of W_{111}

$$= 0.499$$

Backpropagation

Propagating Loss or Error to all the layers in the network, starting with Output Layer