第三章 非线性规划

第四节 无约束优化问题的解法

- ✓ 最速下降法
 - Newton法
 - 拟Newton法
 - 共轭梯度法

复习

最速下降法迭代原理:

$$\min_{X \in R^n} f(X)$$
 λ_0 —最优步长 λ_1 —最优步长

$$X^{0}, p^{0} = -\nabla f(X^{0}), \min_{\lambda \geq 0} f(X^{0} + \lambda p^{0}) = f(X^{0} + \lambda_{0} p^{0}), X^{1} = X^{0} + \lambda_{0} p^{0}$$

$$X^{1}, p^{1} = -\nabla f(X^{1}), \min_{\lambda \geq 0} f(X^{1} + \lambda p^{1}) = f(X^{1} + \lambda_{1} p^{1}), X^{2} = X^{1} + \lambda_{1} p^{1}$$

$$X^{k}, p^{k} = -\nabla f(X^{k}), \min_{\lambda \geq 0} f(X^{k} + \lambda p^{k}) = f(X^{k} + \lambda_{k} p^{k}), X^{k+1} = X^{k} + \lambda_{k} p^{k}$$

得到一个点列: X⁰, X¹, ··· , X^(k), ··· ,

可以证明:
$$f(X^{(k)})$$
严格 \downarrow , $\therefore X^{(k)} \xrightarrow[k \to \infty]{k \to \infty} X^*(Th3-10)$, 线性收敛 $(Th3-11)$

结论:最速下降法的任何两个相邻搜索方向正交: $p^{(k+1)^T}p^{(k)}=0$

复习

最速下降法迭代原理:

$$\min_{X \in \mathbb{R}^{n}} f(X) = x_{1}^{4} + x_{2}^{2} + 2$$

$$\nabla f(X) = (4x_{1}^{3}, 2x_{2})^{T}$$

$$X^{0}, p^{0} = -\nabla f(X^{0}), \min_{\lambda \geq 0} f(X^{0} + \lambda p^{0}) = f(X^{0} + \lambda_{0} p^{0}), X^{1} = X^{0} + \lambda_{0} p^{0}$$

$$X^{0} = (1,1)^{T}, p^{0} = -\nabla f(X^{0}) = -(4,2)^{T}$$

$$X^{0} + \lambda p^{0} = \begin{pmatrix} 1 \\ 1 \end{pmatrix} - \lambda \begin{pmatrix} 4 \\ 2 \end{pmatrix} = \begin{pmatrix} 1 - 4\lambda \\ 1 - 2\lambda \end{pmatrix}$$

$$f(X^0 + \lambda p^0) = (1 - 4\lambda)^4 + (1 - 2\lambda)^2 + 2 = F(\lambda)$$

$$\min_{\lambda\geq 0} f(X^0 + \lambda p^0) = F(\lambda)$$

λ	$F(\lambda)$
0	4
0.5	3
1	84

一维搜索找极小点 λ_0 : 1)确定[0,1],精度0.1

2)用0.618法得到 $\lambda_0 = 0.34375$

最速下降法迭代原理:

$$\min_{X \in \mathbb{R}^n} f(X) = x_1^4 + x_2^2 + 2$$

$$\nabla f(X) = (4x_1^3, 2x_2)^T$$

$$X^0$$
 X^1
 X^0

$$X^{0}, \quad p^{0} = -\nabla f(X^{0}), \quad \min_{\lambda \geq 0} f(X^{0} + \lambda p^{0}) = f(X^{0} + \lambda_{0} p^{0}), \quad X^{1} = X^{0} + \lambda_{0} p^{0}$$

$$X^{0} = (1,1)^{T}, \quad p^{0} = -\nabla f(X^{0}) = -(4,2)^{T}$$

$$X^{0} + \lambda p^{0} = \begin{pmatrix} 1 \\ 1 \end{pmatrix} - \lambda \begin{pmatrix} 4 \\ 2 \end{pmatrix} = \begin{pmatrix} 1 \\ 1 - 2\lambda \end{pmatrix}$$

$$f(X^{0} + \lambda p^{0}) = (1 - 4\lambda)^{4} + (1 - 2\lambda)^{2} + 2 = F(\lambda)$$

$$\min_{\lambda \geq 0} f(X^{0} + \lambda p^{0}) = F(\lambda) \quad \lambda_{0} = 0.34375$$

$$X^{1} = (1,1)^{T} - 0.34375(4,2)^{T} = (-0.375, 0.3125)^{T}$$

$$f(X_{1}) = 2.11743 < f(X_{0}) = 4$$

第三章 非线性规划

第四节 无约束优化问题的解法

- ✓ 最速下降法
- **Newton**法
 - 拟Newton法
 - 共轭梯度法

二. Newton法

$$(NP) \min_{X \in R^n} f(X)$$

- **Newton**法的迭代原理
 - Newton法的收敛结论
 - Newton法注释
 - Newton法的优缺点

1. Newton法的迭代原理

设 f(X)在上 R^n 具有连续的二阶偏导数,即 $G(X) = \nabla^2 f(X)$ 连续,且 $G(X^*)$ 正定。 在 X^* 的邻域内,G(X)也正定。

求解 $\min_{X \in \mathbb{R}^n} f(X)$ 的局部最优解 X^*

$$\nabla^{2} f(X) = \nabla(\nabla f(X)) = \nabla \begin{pmatrix} \frac{\partial f}{\partial x_{1}} \\ \frac{\partial f}{\partial x_{2}} \\ \vdots \\ \frac{\partial f}{\partial x_{n}} \end{pmatrix} = \begin{pmatrix} \frac{\partial^{2} f}{\partial x_{1}^{2}} & \frac{\partial^{2} f}{\partial x_{1} \partial x_{2}} & \cdots & \frac{\partial^{2} f}{\partial x_{1} \partial x_{n}} \\ \frac{\partial^{2} f}{\partial x_{2} \partial x_{1}} & \frac{\partial^{2} f}{\partial x_{2}^{2}} & \cdots & \frac{\partial^{2} f}{\partial x_{2} \partial x_{n}} \\ \vdots & \vdots & \vdots & \vdots \\ \frac{\partial f}{\partial x_{n} \partial x_{n}} & \frac{\partial^{2} f}{\partial x_{n} \partial x_{1}} & \frac{\partial^{2} f}{\partial x_{n} \partial x_{2}} & \cdots & \frac{\partial^{2} f}{\partial x_{n}^{2}} \end{pmatrix}$$

线性规划3-4

1. Newton法的迭代原理 $X^{(k)} \longrightarrow X^{(k+1)}$

在 $X^{(k)}$ 处用f(X)的正定二次函数来近似f(X):

一元函数泰勒公式:

$$f(x) = f(x_k) + f'(x_k)(x - x_k) + \frac{1}{2}f''(x_k)(x - x_k)^2 + o(x - x_k)^2$$

$$f(x) \cong f(x_k) + f'(x_k)(x - x_k) + \frac{1}{2}f''(x_k)(x - x_k)^2 = \varphi(x)$$

$$f(X) \cong f(X^{(k)}) + g(X^{(k)})^T (X - X^{(k)}) + \frac{1}{2}(X - X^{(k)})^T G(X^{(k)})(X - X^{(k)}) = \varphi(X)$$

$$g(X^{(k)}) = \nabla f(X^{(k)})$$
 $G(X^{(k)}) = \nabla^2 f(X^{(k)})$

1. Newton法的迭 $f(X) = \frac{1}{2}X^TQX + b^T$ 用 $\varphi(X)$ 近似 f(X)

在 $X^{(k)}$ 处用正定二次函数来近似f(X)用 $\phi(X)$ 的极小点 X^{k+1} $f(x) \cong f(x_k) + f'(x_k)(x - x_k) + \frac{1}{2}f''(x_k)(x$ 近似 f(X)的极小点 X^*

$$f(X) \cong f(X^{(k)}) + g(X^{(k)})^T (X - X^{(k)}) + \frac{1}{2} (X - X^{(k)})^T G(X^{(k)}) (X - X^{(k)}) = \varphi(X)$$

- $:: G(X^*)$ 正定,且G(X)连续:在 X^* 附近, $G(X^{(k)})$ 也正定.
- $\therefore \varphi(X)$ 为正定二次函数 $\cdot \ \ x \varphi(X)$ 的极小点:

$$\nabla \varphi(X) = G(X^{(k)})(X - X^{(k)}) + g(X^{(k)}) = 0$$

$$G(X^{(k)})(X - X^{(k)}) = -g(X^{(k)}) \longrightarrow X - X^{(k)} = -G(X^{(k)})^{-1}g(X^{(k)})$$
$$X = X^{(k)} - G(X^{(k)})^{-1}g(X^{(k)})$$

Newton迭代公式

$$X^{(k+1)} = X^{(k)} - G(X^{(k)})^{-1}g(X^{(k)})$$

线性规划3-4

二. Newton法

$$(NP) \min_{X \in R^n} f(X)$$

- **√**Newton法的迭代原理
- Newton法的收敛结论
 - Newton法注释
 - Newton法的优缺点

2. Newton法的收敛结论

$$g(X^{(k)}) = \nabla f(X^{(k)})$$

$$X^{(k+1)} = X^{(k)} - G(X^{(k)})^{-1}g(X^{(k)})$$

$$G(X^{(k)}) = \nabla^2 f(X^{(k)})$$

Newton法产生的点列: $X^{(0)}, X^{(1)}, X^{(2)}, \dots, X^{(k)}, \dots$

$$X^{(0)} X^{(1)} = X^{(0)} - G(X^{(0)})^{-1} g(X^{(0)})$$
$$X^{(2)} = X^{(1)} - G(X^{(1)})^{-1} g(X^{(1)})$$
$$X^{(3)} = X^{(2)} - G(X^{(2)})^{-1} g(X^{(2)})$$

收敛结论:

当
$$X^{(0)}$$
充分靠近 X^* 时, $X^{(k)} \xrightarrow[k \to \infty]{} X^*$

因此, Newton法往往与最速下降法结合使用, 前期使用最速下降法, 后期使用Newton法.

$$X^{(k+1)} = X^{(k)} - G(X^{(k)})^{-1}g(X^{(k)})$$

例3-10 用Newton法求 $f(X) = x_1^2 + 4x_2^2$ 的极小点, $X^{(0)} = (1,1)^T, \varepsilon = 10^{-4} \quad X^* = (0,0)^T$

解:

$$X^{(1)} = X^{(0)} - G(X^{(0)})^{-1}g(X^{(0)})$$

$$g(X) = \nabla f(X) = \begin{pmatrix} 2x_1 \\ 8x_2 \end{pmatrix}$$
 $G(X) = \nabla^2 f(X) = \begin{pmatrix} 2 & 0 \\ 0 & 8 \end{pmatrix}$

$$g(X^{(0)}) = \nabla f(X^{(0)}) = \begin{pmatrix} 2 \\ 8 \end{pmatrix} G(X^{(0)}) = \nabla^2 f(X^{(0)}) = \begin{pmatrix} 2 & 0 \\ 0 & 8 \end{pmatrix}$$

$$X^{(1)} = \begin{pmatrix} 1 \\ 1 \end{pmatrix} - \begin{pmatrix} 2 & 0 \\ 0 & 8 \end{pmatrix}^{-1} \begin{pmatrix} 2 \\ 8 \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \end{pmatrix} - \begin{pmatrix} 1/2 & 0 \\ 0 & 1/8 \end{pmatrix} \begin{pmatrix} 2 \\ 8 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} = X^*$$

二. Newton法

$$(NP) \min_{X \in R^n} f(X)$$

- ✓Newton法的迭代原理
- ✓Newton法的收敛结论
- Newton法注释
 - Newton法的优缺点

3. Newton法注释

$$X^{(k+1)} = X^{(k)} - G(X^{(k)})^{-1}g(X^{(k)})$$

10 由于Newton迭代公式中没有使用一组 $X^{(k+1)} = X^{(k)} + \lambda_k p^{(k)}$

$$\mathbb{E} X^{(k+1)} = X^{(k)} + p^{(k)}, \quad p^{(k)} = -G(X^{(k)})^{-1}g(X^{(k)})$$

即 $\lambda_k = 1$, : 不能保证{ $f(X^{(k)})$ }严格 \downarrow

二不能保证当 $X^{(0)}$ 远离极小点 X^* 时算法收敛。

复习: 要想保证{ $f(X^{(k)})$ }严格↓,需要保证两条:

- 1) $p^{(k)}$ 是 f(X)在 $X^{(k)}$ 处的下降方向, 即 $\nabla f(X^{(k)})^T p^{(k)} < 0$
- 2) $\min_{\lambda \ge 0} f(X^k + \lambda p^k) = f(X^k + \lambda_k p^k), \quad X^{k+1} = X^k + \lambda_k p^k \quad f(X^{k+1}) < f(X^k)$

 $p^{(k)} = -G(X^{(k)})^{-1}g(X^{(k)}) \stackrel{!}{=} f(X) \stackrel{!}{=} X^{(k)} \stackrel{!}{\le} h$

$$\nabla f(X^{(k)})^T p^{(k)} = -g(X^{(k)})^T G(X^{(k)})^{-1} g(X^{(k)}) < 0$$

 $:: G(X^*)$ 正定,且G(X)连续:在 X^* 附近, $G(X^{(k)})$ 也正定.

3. Newton法注释

$$X^{(k+1)} = X^{(k)} - G(X^{(k)})^{-1}g(X^{(k)})$$

10 由于Newton迭代公式中没有使用一组 $X^{(k+1)} = X^{(k)} + \lambda_k p^{(k)}$

$$\mathbb{E} X^{(k+1)} = X^{(k)} + p^{(k)}, \quad p^{(k)} = -G(X^{(k)})^{-1}g(X^{(k)})$$

即 $\lambda_k = 1$, : 不能保证{ $f(X^{(k)})$ }严格 \downarrow

- \therefore 不能保证当 $X^{(0)}$ 远离极小点 X^* 时算法收敛。
- 2^{0} 为了保证在 $X^{(0)}$ 远离极小点的地方算法的收敛性,

取
$$p^{(k)} = -G(X^{(k)})^{-1}g(X^{(k)})$$
 为搜索方向,

作一维搜索:
$$\min_{\lambda \geq 0} f(X^{(k)} + \lambda p^{(k)}) = f(X^{(k)} + \lambda_k p^{(k)}),$$

$$X^{(k+1)} = X^{(k)} + \lambda_k p^{(k)}$$

这样得到的算法称为阻尼Newton法.(P158)

3. Newton法注释

- **3º** *Newton*法的搜索方向: $p^{(k)} = -G(X^{(k)})^{-1}g(X^{(k)})$, 最速下降法的搜索方向: $p^{(k)} = -g(X^{(k)})$ *Newton*法的搜索方向与最速下降法相比较,不仅利用了梯度的信息,还利用了*Hesse*矩阵的信息,从而提高了收敛速度(二阶收敛)。
- 4⁰对于正定二次目标函数,使用Newton法只需迭代一次就可求出它的极小点。所以Newton法具有
 - 二次终止性。

$$X^{(k+1)} = X^{(k)} - G(X^{(k)})^{-1}g(X^{(k)})$$

例3-10 用Newton法求 $f(X) = x_1^2 + 4x_2^2$ 的极小点, $X^{(0)} = (1,1)^T, \varepsilon = 10^{-4} \quad X^* = (0,0)^T$

解:

$$X^{(1)} = X^{(0)} - G(X^{(0)})^{-1}g(X^{(0)})$$

$$g(X) = \nabla f(X) = \begin{pmatrix} 2x_1 \\ 8x_2 \end{pmatrix} \quad G(X) = \nabla^2 f(X) = \begin{pmatrix} 2 & 0 \\ 0 & 8 \end{pmatrix}$$

$$g(X^{(0)}) = \nabla f(X^{(0)}) = \begin{pmatrix} 2 \\ 8 \end{pmatrix} G(X^{(0)}) = \nabla^2 f(X^{(0)}) = \begin{pmatrix} 2 & 0 \\ 0 & 8 \end{pmatrix}$$

$$X^{(1)} = \begin{pmatrix} 1 \\ 1 \end{pmatrix} - \begin{pmatrix} 2 & 0 \\ 0 & 8 \end{pmatrix}^{-1} \begin{pmatrix} 2 \\ 8 \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \end{pmatrix} - \begin{pmatrix} 1/2 & 0 \\ 0 & 1/8 \end{pmatrix} \begin{pmatrix} 2 \\ 8 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} = X^*$$

1. Newton法的迭代原理 $X^{(k)} \longrightarrow X^{(k+1)}$

在 $X^{(k)}$ 处用正定二次函数来近似f(X):

$$f(x) \cong f(x_k) + f'(x_k)(x - x_k) + \frac{1}{2}f''(x_k)(x - x_k)^2 = \varphi(x)$$

$$f(X) \cong f(X^{(k)}) + g(X^{(k)})^T (X - X^{(k)}) + \frac{1}{2}(X - X^{(k)})^T G(X^{(k)})(X - X^{(k)}) = \varphi(X)$$

- $:: G(X^*)$ 正定,且G(X)连续:在 X^* 附近, $G(X^{(k)})$ 也正定.
- $\therefore \varphi(X)$ 为正定二次函数 . 求 $\varphi(X)$ 的极小点:

$$\nabla \varphi(X) = G(X^{(k)})(X - X^{(k)}) + g(X^{(k)}) = 0$$

$$G(X^{(k)})(X - X^{(k)}) = -g(X^{(k)}) \longrightarrow X - X^{(k)} = -G(X^{(k)})^{-1}g(X^{(k)})$$
$$X = X^{(k)} - G(X^{(k)})^{-1}g(X^{(k)})$$

Newton迭代公式

$$X^{(k+1)} = X^{(k)} - G(X^{(k)})^{-1}g(X^{(k)})$$

线性规划3-4

二. Newton法

$$(NP) \min_{X \in R^n} f(X)$$

- ✓Newton法的迭代原理
- ✓Newton法的收敛结论
- ✓Newton法注释
- Newton法的优缺点

4. Newton法的优缺点

$$X^{(k+1)} = X^{(k)} - G(X^{(k)})^{-1}g(X^{(k)})$$

优点: $X^{(k)} \xrightarrow{\sum_{k \to \infty}} X^*$

Newton 法最突出的优点是收敛速度快.

缺点: 每次迭代都要计算目标函数的Hesse阵的逆阵,当维数n较大时,计算量迅速增加,这就抵消了Newton法的优点.

二. Newton法

$$(NP) \min_{X \in R^n} f(X)$$

- **✓**Newton法的迭代原理
- ✓Newton法的收敛结论
- ✓Newton法注释
- ✓Newton法的优缺点

第三章 非线性规划

第四节 无约束优化问题的解法

- ✓ 最速下降法
- **✓** Newton法
- 拟Newton法
 - 共轭梯度法

三. 拟Newton法

Newton迭代公式:

$$X^{(k+1)} = X^{(k)} - G(X^{(k)})^{-1}g(X^{(k)})$$

Newton法搜索方向:

$$p^{(k)} = -G(X^{(k)})^{-1}g(X^{(k)})$$

拟Newton法搜索方向:

$$p^{(k)} = -H^{(k)}g(X^{(k)})$$

 $H^{(k)}$ 是 $G(X^{(k)})^{-1}$ 的近似

拟Newton法是一大类算法的总称,其中使用最多的是DFP方法和BFGS方法.

三. 拟Newton法----DFP法(Davidon-Fletcher-Powll)

$$(NP) \min_{X \in R^n} f(X)$$

- DFP法的搜索方向
 - DFP法的迭代步骤
 - DFP法举例
 - DFP法的性质
 - DFP法的收敛结论

$$f(X) \cong f(X^{(k)}) + g(X^{(k)})^T (X - X^{(k)}) + \frac{1}{2} (X - X^{(k)})^T G(X^{(k)}) (X - X^{(k)}) = \varphi(X)$$

问题:如何确定 $H^{(k)}$?

$$H^{(k)} \rightarrow H^{(k+1)}$$
?

 $H^{(k)}$ 是 $G(X^{(k)})^{-1}$ 的近似 $H^{(k+1)}$ 是 $G(X^{(k+1)})^{-1}$ 的近似

$$f(X) \cong f(X^{(k+1)}) + g(X^{(k+1)})^T (X - X^{(k+1)}) + \frac{1}{2} (X - X^{(k+1)})^T G(X^{(k+1)}) (X - X^{(k+1)})$$

$$\nabla f(X) \cong g(X^{(k+1)}) + G(X^{(k+1)})(X - X^{(k+1)})$$

$$\nabla f(X) \cong g(X^{(k+1)}) + G(X^{(k+1)})(X - X^{(k+1)})$$

$$\nabla f(X^{(k)}) \cong g(X^{(k+1)}) + G(X^{(k+1)})(X^{(k)} - X^{(k+1)})$$

$$g^{(k)} \cong g^{(k+1)} + G^{(k+1)}(X^{(k)} - X^{(k+1)})$$

$$\therefore E(X^*)$$

$$g^{(k+1)} - g^{(k)} \cong G^{(k+1)}(X^{(k+1)} - X^{(k)}) \quad (G^{(k+1)} \to \mathbb{Z})$$

$$G^{(k+1)^{-1}}(\underline{g^{(k+1)}} - \underline{g^{(k)}}) \cong \underline{X^{(k+1)}} - \underline{X^{(k)}}$$

$$Y^{(k)} \qquad S^{(k)}$$

$$G^{(k+1)^{-1}}Y^{(k)} \approx S^{(k)}$$

$$H^{(k+1)}Y^{(k)} = S^{(k)}$$

 $G^{(k+1)^{-1}}Y^{(k)} \approx S^{(k)}$ $H^{(k+1)}Y^{(k)} = S^{(k)}$ (3-35) 称为拟Newton方程

线性规划3-4

问题:如何确定 $H^{(k)}$?

$$H^{(k)} \rightarrow H^{(k+1)}$$
?

 2^{0} 为使搜索方向 $p^{(k)} = -H^{(k)}g^{(k)}$ 是下降方向,要求 $H^{(k)}$ 对称正定。

结论: 当 $\nabla f(X^{(k)})^T p^{(k)} < 0$ 时, $p^{(k)} \in f(X)$ 在 $X^{(k)}$ 处的下降方向。

证明: 当 $H^{(k)}$ 对称正定时, $g^{(k)^T}p^{(k)} = -g^{(k)^T}H^{(k)}g^{(k)} < 0$, 所以 $p^{(k)}$ 是f(X)在 $X^{(k)}$ 处的下降方向。

三. 拟Newton法

复习

迭代原理:

Newton迭代公式:
Newton法搜索方向:
拟Newton法搜索方向:

$$S^{(k-1)} = X^{(k)} - X^{(k-1)}$$
$$Y^{(k-1)} = g^{(k)} - g^{(k-1)}$$

$$p^{(k)} = -G(X^{(k)})^{-1}g(X^{(k)})$$
 $p^{(k)} = -H^{(k)}g(X^{(k)})$
 $H^{(k)}$ 是 $G(X^{(k)})^{-1}$ 的近似
 $H^{(k)}Y^{(k-1)} = S^{(k-1)}$

 $X^{(k+1)} = X^{(k)} - G(X^{(k)})^{-1}g(X^{(k)})$

要求:

 $1^0H^{(k)}$ 满足拟Newton方程; (保证算法收敛快 - 超线性收敛)

 $2^{0}H^{(k)}$ 对称正定; $g^{(k)^{T}}p^{(k)} = -g^{(k)^{T}}H^{(k)}g^{(k)} < 0$,

(保证搜索方向 $p^{(k)}$ 是下降方向 $\rightarrow f(X^{(k)}) \downarrow \rightarrow X^{(k)} \rightarrow X^*$)

结论: $\exists \nabla f(X^{(k)})^T p^{(k)} < 0$ 时, $p^{(k)} \neq f(X)$ 在 $X^{(k)}$ 处的下降方向

线性规划3-4

问题:如何确定 $H^{(k)}$?

$$H^{(k)} \rightarrow H^{(k+1)}$$
?

$$p^{(k)} = -H^{(k)}g^{(k)}$$
 $H^{(k)}$ 是 $G(X^{(k)})^{-1}$ 的近似
 $H^{(k+1)}$ 是 $G(X^{(k+1)})^{-1}$ 的近似
 $H^{(k+1)}Y^{(k)} = S^{(k)}$

- **10** *H*^(k+1)满足拟*Newton*方程
- 2^{0} 为使搜索方向 $p^{(k)} = -H^{(k)}g^{(k)}$ 是下降方向,要求 $H^{(k)}$ 对称正定。
- 3^{0} 要求 $H^{(k+1)} H^{(k)} = \Delta H^{(k)}$ 越简单越好,即秩越小越好。

DFP方法如何确定 $\Lambda H^{(k)}$:

$$H^{(k+1)} - H^{(k)} = \Delta H^{(k)} = \alpha_k U^{(k)} U^{(k)T} + \beta_k V^{(k)} V^{(k)T}$$

$$H^{(k+1)} = H^{(k)} + \alpha_k U^{(k)} U^{(k)T} + \beta_k V^{(k)} V^{(k)T}$$

其中 $U^{(k)}$, $V^{(k)}$ 是n维待定列向量, α_k , β_k 是待定常数。

可以证明: $\Delta H^{(k)}$ 是一个秩2对称矩阵。

(线性规划3-4

 $H^{(k+1)}Y^{(k)} = S^{(k)}$

DFP方法如何确定 $\Delta H^{(k)}$:

$$Y^{(k)} = g^{(k+1)} - g^{(k)}$$

$$\boldsymbol{H}^{(k+1)} = \boldsymbol{H}^{(k)} + \alpha_k \boldsymbol{U}^{(k)} \boldsymbol{U}^{(k)T} + \beta_k \boldsymbol{V}^{(k)} \boldsymbol{V}^{(k)T}$$

$$\boldsymbol{S}^{(k)} = \boldsymbol{X}^{(k+1)} - \boldsymbol{X}^{(k)}$$

$$S^{(k)} = X^{(k+1)} - X^{(k)}$$

$$\begin{split} \boldsymbol{H}^{(k+1)}\boldsymbol{Y}^{(k)} &= \boldsymbol{H}^{(k)}\boldsymbol{Y}^{(k)} + \boldsymbol{\alpha}_{k}\boldsymbol{U}^{(k)}\boldsymbol{U}^{(k)T}\boldsymbol{Y}^{(k)} + \boldsymbol{\beta}_{k}\boldsymbol{V}^{(k)}\boldsymbol{Y}^{(k)T}\boldsymbol{Y}^{(k)} \\ &= \boldsymbol{H}^{(k)}\boldsymbol{Y}^{(k)} + \boldsymbol{\alpha}_{k}(\boldsymbol{U}^{(k)T}\boldsymbol{Y}^{(k)})\boldsymbol{U}^{(k)} + \boldsymbol{\beta}_{k}(\boldsymbol{V}^{(k)T}\boldsymbol{Y}^{(k)})\boldsymbol{V}^{(k)} \\ & \boldsymbol{S}^{(k)} & \boldsymbol{H}^{(k)}\boldsymbol{Y}^{(k)} \end{split}$$

$$\alpha_k = \frac{1}{U^{(k)T}Y^{(k)}} = \frac{1}{S^{(k)T}Y^{(k)}} \qquad \beta_k = -\frac{1}{V^{(k)T}Y^{(k)}} = -\frac{1}{Y^{(k)T}H^{(k)}Y^{(k)}}$$

$$H^{(k+1)} = H^{(k)} - \frac{H^{(k)}Y^{(k)}Y^{(k)}Y^{(k)}^TH^{(k)}}{Y^{(k)}^TH^{(k)}Y^{(k)}} + \frac{S^{(k)}S^{(k)}^T}{S^{(k)}^TY^{(k)}} (3-38)$$

$$DFP \triangle \exists$$

$$\boldsymbol{p}^{(k)} = -\boldsymbol{H}^{(k)} \boldsymbol{g}^{(k)}$$

$$H^{(k+1)} = H^{(k)} - \frac{H^{(k)}Y^{(k)}Y^{(k)}^TH^{(k)}}{Y^{(k)}^TH^{(k)}Y^{(k)}} + \frac{S^{(k)}S^{(k)}^T}{S^{(k)}^TY^{(k)}} (3-38)$$

$$DFP$$

$$X^{(0)}, H^{(0)} = E \quad p^{(0)} = -H^{(0)}g^{(0)} = -g^{(0)}$$
 一维搜索得 $X^{(1)}$

$$X^{(1)}$$
, $p^{(1)} = -H^{(1)}g^{(1)}$ 一维搜索得 $X^{(2)}$

$$S^{(0)} = X^{(1)} - X^{(0)} \quad Y^{(0)} = g^{(1)} - g^{(0)}$$

$$H^{(1)} = H^{(0)} - \frac{H^{(0)}Y^{(0)}Y^{(0)}^TH^{(0)}}{Y^{(0)}^TH^{(0)}Y^{(0)}} + \frac{S^{(0)}S^{(0)}^T}{S^{(0)}^TY^{(0)}}$$

$$H^{(k+1)} = H^{(k)} - \frac{H^{(k)}Y^{(k)}Y^{(k)}^TH^{(k)}}{Y^{(k)}^TH^{(k)}Y^{(k)}} + \frac{S^{(k)}S^{(k)}^T}{S^{(k)}^TY^{(k)}} (3-38)$$

$$DFP$$

$$X^{(0)}, H^{(0)} = E \quad p^{(0)} = -H^{(0)}g^{(0)} = -g^{(0)}$$
 一维搜索得 $X^{(1)}$

$$X^{(1)}, \qquad p^{(1)} = -H^{(1)}g^{(1)} \qquad -维搜索得X^{(2)}$$

$$X^{(2)}, \qquad p^{(2)} = -H^{(2)}g^{(2)} \qquad -维搜索得X^{(3)}$$

$$S^{(1)} = X^{(2)} - X^{(1)}$$
 $Y^{(1)} = g^{(2)} - g^{(1)}$

$$\boldsymbol{H}^{(2)} = \boldsymbol{H}^{(1)} - \frac{\boldsymbol{H}^{(1)}\boldsymbol{Y}^{(1)}\boldsymbol{Y}^{(1)}\boldsymbol{H}^{(1)}}{\boldsymbol{Y}^{(1)}\boldsymbol{H}^{(1)}\boldsymbol{Y}^{(1)}} + \frac{\boldsymbol{S}^{(1)}\boldsymbol{S}^{(1)}^{T}}{\boldsymbol{S}^{(1)}\boldsymbol{Y}^{(1)}}$$

(线性规划3-4

三. 拟Newton法 ---- DFP法

$$(NP) \min_{X \in R^n} f(X)$$

- ✓DFP法的搜索方向
- DFP法的迭代步骤
 - DFP法举例
 - *DFP*法的性质
 - DFP法的收敛结论

2. DFP法的迭代步骤:

 1^0 给定初始点 $X^{(1)}$,容许误差 $\varepsilon > 0$;

 2^{0} 检验 $\|g(X^{(1)})\| < \varepsilon$?若满足,则迭代终止,取 $X^* = X^{(1)}$,否则转 3^{0}

$$3^{0}$$
 $\mathbb{R}H^{(1)} = E, \diamondsuit k = 1$ $4^{0} \diamondsuit p^{(k)} = -H^{(k)}g^{(k)}$

$$5^{0}$$
一维搜索: $\min_{\lambda \geq 0} f(X^{(k)} + \lambda p^{(k)}) = f(X^{(k)} + \lambda_k p^{(k)})$

$$6^{0} \diamondsuit X^{(k+1)} = X^{(k)} + \lambda_{k} p^{(k)}$$

$$||g(X^{(k+1)})|| < \varepsilon$$
?若满足,则迭代终止,取 $X^* = X^{(k+1)}$,

否则若
$$k = n, \diamondsuit X^{(1)} := X^{(k+1)}, ٰ 转3^0$$

若
$$k < n$$
, 令 $Y^{(k)} = g^{(k+1)} - g^{(k)}$, $S^{(k)} = X^{(k+1)} - X^{(k)}$,

计算
$$H^{(k+1)} = H^{(k)} - \frac{H^{(k)}Y^{(k)}Y^{(k)}^TH^{(k)}}{Y^{(k)}^TH^{(k)}Y^{(k)}} + \frac{S^{(k)}S^{(k)}^T}{S^{(k)}^TY^{(k)}}, 转8^0$$

$$8^{\circ} \diamondsuit k := k+1, 5 \overline{4^{\circ}}$$

$$egin{align*} n = 3 \ X^{(1)}, & H^{(1)} = E & k \coloneqq 1 & p^{(1)} = -H^{(1)}g^{(1)} = -g^{(1)} & X^{(2)} = X^{(1)} + \lambda_1 p^{(1)} \ X^{(2)}, & k = 1 < n = 3 & p^{(2)} = -H^{(2)}g^{(2)} & X^{(3)} = X^{(2)} + \lambda_2 p^{(2)} \ X^{(3)} = X^{(2)} + \lambda_2 p^{(2)} \ X^{(1)} = g^{(2)} - g^{(1)} & H^{(2)} = H^{(1)} - \frac{H^{(1)}Y^{(1)}Y^{(1)^T}H^{(1)}}{Y^{(1)^T}H^{(1)}Y^{(1)}} + \frac{S^{(1)}S^{(1)^T}}{S^{(1)^T}Y^{(1)}} \ X^{(3)}, & k = 2 < n = 3 & p^{(3)} = -H^{(3)}g^{(3)} & X^{(4)} = X^{(3)} + \lambda_3 p^{(3)} \ X^{(4)} = X^{(3)} + \lambda_3 p^{(3)} \ Y^{(2)} = g^{(3)} - g^{(2)} & H^{(3)} = H^{(2)} - \frac{H^{(2)}Y^{(2)}Y^{(2)^T}H^{(2)}}{Y^{(2)^T}H^{(2)}Y^{(2)}} + \frac{S^{(2)}S^{(2)^T}}{S^{(2)^T}Y^{(2)}} \ k \coloneqq k + 1 = 3 \quad \not{\!{4}}4^0 \ X^{(4)}, & k = 3 = n = 3 & X^{(1)} \coloneqq X^{(4)} \not\not\!{\!{4}}3^0 & k \coloneqq 1 & p^{(1)} = -H^{(1)}g^{(1)} = -g^{(1)} \ \end{array}$$

$$2^{0} \|g(X^{(1)})\| < \varepsilon ?$$
 若是, $X^{*} = X^{(1)}$,否则转 3^{0} $3^{0}H^{(1)} = E, k = 1$ 4^{0} $p^{(k)} = -H^{(k)}g^{(k)}$ $5^{0} \min_{\lambda \geq 0} f(X^{(k)} + \lambda p^{(k)}) = f(X^{(k)} + \lambda_{k} p^{(k)})$ 6^{0} $X^{(k+1)} = X^{(k)} + \lambda_{k} p^{(k)}$ $7^{0} \|g(X^{(k+1)})\| < \varepsilon ?$ 若是, $X^{*} = X^{(k+1)}$,否则若 $k = n$,令 $X^{(1)} \coloneqq X^{(k+1)}$,转 3^{0} 若 $k < n$,令 $Y^{(k)} = g^{(k+1)} - g^{(k)}$, $S^{(k)} = X^{(k+1)} - X^{(k)}$, $H^{(k+1)} = H^{(k)} - \frac{H^{(k)}Y^{(k)}Y^{(k)}H^{(k)}}{Y^{(k)}H^{(k)}Y^{(k)}} + \frac{S^{(k)}S^{(k)T}}{S^{(k)T}Y^{(k)}}$,转 8^{0} 令 $k \coloneqq k+1$,转 4^{0}

(线性规划3-4

2. DFP法的迭代步骤:

$$3^{0}$$
取 $H^{(1)} = E, \diamondsuit k = 1$ $4^{0} \diamondsuit p^{(k)} = -H^{(k)} g^{(k)}$ 5^{0} 一维搜索 $\min_{\lambda \geq 0} f(X^{(k)} + \lambda p^{(k)}) = f(X^{(k)} + \lambda_{k} p^{(k)})$ $n = 3$ $6^{0} \diamondsuit X^{(k+1)} = X^{(k)} + \lambda_{k} p^{(k)}$ $X^{(1)}, p^{(1)} = -H^{(1)} g^{(1)} = -g^{(1)}$ $X^{(2)}, p^{(2)} = -H^{(2)} g^{(2)}$ $X^{(3)}, p^{(3)} = -H^{(3)} g^{(3)}$ $X^{(4)}, p^{(4)} = -H^{(4)} g^{(4)} = -g^{(4)}$ $X^{(5)}, p^{(5)} = -H^{(5)} g^{(5)}$ $X^{(6)}, p^{(6)} = -H^{(6)} g^{(6)}$

每n次迭代中的第一步取负梯度方向为其搜索方向,这种做法简称为"n步重新开始"。这是为了减少舍入误差的影响(舍入误差可能导致某个H^(k)不可逆或不正定)

线性规划3-4

三. 拟Newton法 ---- DFP法

$$(NP) \min_{X \in R^n} f(X)$$

- ✓DFP法的搜索方向
- ✓DFP法的迭代步骤
- **DFP**法举例
 - DFP法的性质
 - DFP法的收敛结论

3. DFP法举例

n=2

例3-13 用DFP方法求解 $\min f(X) = x_1^2 + 4x_2^2 = \frac{1}{2}X^TQX$,取 $X^{(1)} = (1,1)^T$ 为初始点, $\varepsilon = 0.01$

解:
$$Q = \begin{pmatrix} 2 & 0 \\ 0 & 8 \end{pmatrix}$$
 $g(X) = \begin{pmatrix} 2x_1 \\ 8x_2 \end{pmatrix}$ $g^{(1)} = \begin{pmatrix} 2 \\ 8 \end{pmatrix}$ $\|g^{(1)}\| = \sqrt{68}$ ξ

$$2^{0} \|g(X^{(1)})\| < \varepsilon ?$$
若是, $X^{*} = X^{(1)}$,否则转 3^{0} $3^{0}H^{(1)} = E, k = 1$ $4^{0}p^{(k)} = -H^{(k)}g^{(k)}$ $X^{(1)} = (1,1)^{T}$ $5^{0} \min_{\lambda \geq 0} f(X^{(k)} + \lambda p^{(k)}) = f(X^{(k)} + \lambda_{k}p^{(k)})$ $6^{0}X^{(k+1)} = X^{(k)} + \lambda_{k}p^{(k)}$ $7^{0} \|g(X^{(k+1)})\| < \varepsilon ?$ 若是, $X^{*} = X^{(k+1)}$,否则若 $k = n$,令 $X^{(1)} := X^{(k+1)}$,转 3^{0} 若 $k < n$,令 $Y^{(k)} = g^{(k+1)} - g^{(k)}$, $S^{(k)} = X^{(k+1)} - X^{(k)}$, $H^{(k+1)} = H^{(k)} - \frac{H^{(k)}Y^{(k)}Y^{(k)}T}{Y^{(k)}T}H^{(k)}Y^{(k)}} + \frac{S^{(k)}S^{(k)T}}{S^{(k)T}Y^{(k)}}$,转 8^{0} 令 $k := k+1$,转 4^{0}

解:
$$Q = \begin{pmatrix} 2 & 0 \\ 0 & 8 \end{pmatrix}$$
 $g(X) = \begin{pmatrix} 2x_1 \\ 8x_2 \end{pmatrix}$ $g^{(1)} = \begin{pmatrix} 2 \\ 8 \end{pmatrix}$ $\|g^{(1)}\| = \sqrt{68}$ \mathcal{E}

$$k = 1 \quad H^{(1)} = E, \quad p^{(1)} = -H^{(1)}g^{(1)} = -g^{(1)} = -\begin{pmatrix} 2 \\ 8 \end{pmatrix}$$

所以DFP方法与最速下降法具有相同的第一个迭代点。

$$X^{(2)} = \begin{pmatrix} 0.73846 \\ -0.04616 \end{pmatrix} g^{(2)} = \begin{pmatrix} 1.47692 \\ -0.36923 \end{pmatrix} \|g^{(2)}\| = 1.52237 \ \mathcal{E}$$

$$\therefore k = 1 < n = 2 \therefore \text{ if } \text{ if } H^{(2)} : S^{(1)} = X^{(2)} - X^{(1)} = \begin{pmatrix} -0.26154 \\ -1.04616 \end{pmatrix}$$

$$S^{(1)}S^{(1)^{T}} = \begin{pmatrix} 0.06840 & 0.27361 \\ 0.27361 & 1.09445 \end{pmatrix} \qquad Y^{(1)} = g^{(2)} - g^{(1)} = \begin{pmatrix} -0.52308 \\ -8.36923 \end{pmatrix}$$

$$S^{(1)^{T}}Y^{(1)} = 8.89236$$

(线性规划3-4

$$2^{0} \|g(X^{(1)})\| < \varepsilon ?$$
若是, $X^{*} = X^{(1)}$,否则转 3^{0} $3^{0}H^{(1)} = E, k = 1$ $4^{0}p^{(k)} = -H^{(k)}g^{(k)}$ $X^{(1)} = (1,1)^{T}$ $5^{0} \min_{\lambda \geq 0} f(X^{(k)} + \lambda p^{(k)}) = f(X^{(k)} + \lambda_{k}p^{(k)})$ $6^{0}X^{(k+1)} = X^{(k)} + \lambda_{k}p^{(k)}$ $7^{0} \|g(X^{(k+1)})\| < \varepsilon ?$ 若是, $X^{*} = X^{(k+1)}$,否则若 $k = n$,令 $X^{(1)} := X^{(k+1)}$,转 3^{0} 若 $k < n$,令 $Y^{(k)} = g^{(k+1)} - g^{(k)}$, $S^{(k)} = X^{(k+1)} - X^{(k)}$, $H^{(k+1)} = H^{(k)} - \frac{H^{(k)}Y^{(k)}Y^{(k)T}H^{(k)}}{Y^{(k)T}H^{(k)}Y^{(k)}} + \frac{S^{(k)}S^{(k)T}}{S^{(k)T}Y^{(k)}}$,转 8^{0} 令 $k := k+1$,转 4^{0}

解:
$$Q = \begin{pmatrix} 2 & 0 \\ 0 & 8 \end{pmatrix}$$
 $g(X) = \begin{pmatrix} 2x_1 \\ 8x_2 \end{pmatrix}$ $g^{(1)} = \begin{pmatrix} 2 \\ 8 \end{pmatrix}$ $\|g^{(1)}\| = \sqrt{68}$ $\checkmark \varepsilon$

$$k=1$$
 : $k=1 < n=2$: 计算 $H^{(2)}$:

$$S^{(1)}S^{(1)^T} = \begin{pmatrix} 0.06840 & 0.27361 \\ 0.27361 & 1.09445 \end{pmatrix} S^{(1)^T}Y^{(1)} = 8.89236 \quad Y^{(1)} = g^{(2)} - g^{(1)} = \begin{pmatrix} -0.52308 \\ -8.36923 \end{pmatrix}$$

$$H^{(1)}Y^{(1)}Y^{(1)T}H^{(1)} = Y^{(1)}Y^{(1)T} = \begin{pmatrix} 0.27361 & 4.37778 \\ 4.37778 & 70.4401 \end{pmatrix}$$

$$Y^{(1)T}H^{(1)}Y^{(1)} = Y^{(1)T}Y^{(1)} = 70.31762$$

$$H^{(2)} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} - \frac{1}{70.31} \begin{pmatrix} 0.27 & 4.37 \\ 4.37 & 70.4 \end{pmatrix} + \frac{1}{8.89} \begin{pmatrix} 0.06 & 0.27 \\ 0.27 & 1.09 \end{pmatrix} = \begin{pmatrix} 1.00 & -0.03 \\ -0.03 & 0.12 \end{pmatrix}$$

线性规划3-4

解:
$$Q = \begin{pmatrix} 2 & 0 \\ 0 & 8 \end{pmatrix}$$
 $g(X) = \begin{pmatrix} 2x_1 \\ 8x_2 \end{pmatrix}$ $g^{(1)} = \begin{pmatrix} 2 \\ 8 \end{pmatrix}$ $\|g^{(1)}\| = \sqrt{68}$ \mathcal{E}

$$k = 2 \quad X^{(2)} = \begin{pmatrix} 0.73846 \\ -0.04616 \end{pmatrix} \quad g^{(2)} = \begin{pmatrix} 1.47692 \\ -0.36923 \end{pmatrix} \quad H^{(2)} = \begin{pmatrix} 1.00 & -0.03 \\ -0.03 & 0.12 \end{pmatrix}$$

$$p^{(2)} = -H^{(2)}g^{(2)} = \begin{pmatrix} -1.49 \\ 0.09 \end{pmatrix} \quad \lambda_2 = -\frac{g^{(2)^T}p^{(2)}}{p^{(2)^T}Qp^{(2)}} \quad (3-13)P_{155}$$

$$X^{(3)} = X^{(2)} + \lambda_2 p^{(2)} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \quad g^{(3)} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \quad \|g^{(3)}\| = 0 < \varepsilon \therefore X^* = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

3. DFP法举例

n=2

例3-13 用DFP方法求解 $\min f(X) = x_1^2 + 4x_2^2 = \frac{1}{2}X^TQX$,取 $X^{(1)} = (1,1)^T$ 为初始点, $\varepsilon = 0.01$

注释:

f(X)是二维正定二次函数,两次迭代就求出了极小点,这不是偶然。是因为DFP方法具有二次终止性。对于n维正定二次函数,最多经过n次迭代就可以求到极小点。

三. 拟Newton法 ---- DFP法

$$(NP) \min_{X \in R^n} f(X)$$

- ✓DFP法的搜索方向
- ✓DFP法的迭代步骤
- **✓**DFP法举例
- DFP法的性质
 - DFP法的收敛结论

4. DFP法的性质

$$\boldsymbol{p}^{(k)} = -\boldsymbol{H}^{(k)} \boldsymbol{g}^{(k)}$$

$$\boldsymbol{H}^{(k+1)} = \boldsymbol{H}^{(k)} - \frac{\boldsymbol{H}^{(k)} \boldsymbol{Y}^{(k)} \boldsymbol{Y}^{(k)}^T \boldsymbol{H}^{(k)}}{\boldsymbol{Y}^{(k)}^T \boldsymbol{H}^{(k)} \boldsymbol{Y}^{(k)}} + \frac{\boldsymbol{S}^{(k)} \boldsymbol{S}^{(k)}^T}{\boldsymbol{S}^{(k)}^T \boldsymbol{Y}^{(k)}}$$

性质1: 若 $H^{(k)}$ 对称正定,则 $H^{(k+1)}$ 也对称正定。

性质2: 对于正定二次函数 $f(X) = \frac{1}{2}X^TQX + b^TX + c$ 当 $H^{(1)} = E$ 时,则

(1) DFP方法产生的搜索方向 $p^{(1)}, p^{(2)}, \dots, p^{(m)}$ 是 互相 Q 共轭的。

因此DFP方法是一种共轭方向法,具有二次终止性。对于n维正定二次函数,最多经过n次迭代就可以求到极小点。

4. DFP法的性质

$$\boldsymbol{p}^{(k)} = -\boldsymbol{H}^{(k)} \boldsymbol{g}^{(k)}$$

$$\boldsymbol{H}^{(k+1)} = \boldsymbol{H}^{(k)} - \frac{\boldsymbol{H}^{(k)} \boldsymbol{Y}^{(k)} \boldsymbol{Y}^{(k)}^T \boldsymbol{H}^{(k)}}{\boldsymbol{Y}^{(k)}^T \boldsymbol{H}^{(k)} \boldsymbol{Y}^{(k)}} + \frac{\boldsymbol{S}^{(k)} \boldsymbol{S}^{(k)}^T}{\boldsymbol{S}^{(k)}^T \boldsymbol{Y}^{(k)}}$$

性质1: 若 $H^{(k)}$ 对称正定,则 $H^{(k+1)}$ 也对称正定。

性质2: 对于正定二次函数 $f(X) = \frac{1}{2}X^TQX + b^TX + c$ 当 $H^{(1)} = E$ 时,则

- (1) DFP方法产生的搜索方向 $p^{(1)}, p^{(2)}, \dots, p^{(m)}$ 是 互相 Q 共轭的。
- (2) 若经过n次迭代才求到极小点,则有: $H^{(n+1)} = Q^{-1}$. $(H^{(k)} \neq G^{-1}(X^{(k)}) = Q^{-1}$ 的近似)

三. 拟Newton法 ---- DFP法

$$(NP) \min_{X \in R^n} f(X)$$

- $\checkmark DFP$ 法的搜索方向
- ✓DFP法的迭代步骤
- **√**DFP法举例
- \checkmark DFP法的性质
- DFP法的收敛结论

5. DFP法的收敛结论

结论1:由于DFP方法是一种共轭方向法,因此是一种

收敛算法。即 $X^{(k)} \longrightarrow_{k \to \infty} X^*$

结论2:由于 $p^{(k)} = -H^{(k)}g^{(k)}$, $H^{(k)} \in G^{-1}(X^{(k)})$ 的近似,

$$\therefore X^{(k)} \xrightarrow{\text{Bight}} X^*$$

优点: 计算方便,收敛速度快.被中小型问题广泛使用。

缺点:由于舍入误差可能导致某个 $H^{(k)}$ 奇异或不正定,

这时可以重置 $H^{(k)} = E$

三. 拟Newton法 ---- DFP法

$$(NP) \min_{X \in R^n} f(X)$$

- ✓DFP法的搜索方向
- ✓DFP法的迭代步骤
- **✓**DFP法举例
- \checkmark DFP法的性质
- ✓DFP法的收敛结论

三. 拟Newton法 ---- BFGS方法

拟Newton法中比DFP法更好的算法是BFGS算法。一般认为BFGS算法是目前最有效的算法,不仅对于精确的一维搜索,就是对于满足一定条件的不精确的一维搜索,也具有超线性收敛性。

BFGS算法中 $H^{(k)}$ 的迭代公式是:

$$H^{(k+1)} = H^{(k)} + \left[\left(1 + \frac{Y^{(k)^T} H^{(k)} Y^{(k)}}{S^{(k)^T} Y^{(k)}} \right) S^{(k)} S^{(k)^T} - S^{(k)} Y^{(k)^T} H^{(k)} + H^{(k)} Y^{(k)} S^{(k)^T} \right] \frac{1}{S^{(k)^T} Y^{(k)}} - P_{176}$$

只要在DFP算法中将 $H^{(k)}$ 的计算用上式代替就构成了BFGS算法。因为用上式计算, $H^{(k)}$ 不易变为奇异或不正定,所以BFGS算法比DFP算法具有更好的数值稳定性。

线性规划2-4

第三章 非线性规划

第四节 无约束优化问题的解法

- ✓ 最速下降法
- **✓** Newton法
- ✓ 拟Newton法
 - 共轭梯度法

作业: P245 15(1) 18(1)

作业: P155 15(1) 18(1)