Chapitre 1

Les nombres complexes

1.1 Introduction

Durant votre scolarité, vous avez appris que l'équation x+5=2 n'a pas de solution dans l'ensemble des entiers naturels \mathbb{N} , mais elle a une solution dans un ensemble plus grand : \mathbb{Z} , l'ensemble des entiers relatifs.

Et, l'équation 5x = 2 n'a pas de solution dans \mathbb{Z} , mais elle en possède une dans un ensemble plus grand : \mathbb{Q} .

De même, l'équation $x^2=2$ n'admet pas de solution dans \mathbb{Q} , mais nous pouvons en trouver dans l'ensemble plus grand des nombres réels \mathbb{R} $(x=\pm\sqrt{2})$.

Quand une équation n'a pas de solution dans un ensemble donné, une démarche consiste donc à chercher/construire un ensemble plus grand dans lequel cette équation aura des solutions.

Comme l'équation $x^2=-1$ n'admet pas de solution dans \mathbb{R} , nous allons donc construire un ensemble plus grand, appelé ensemble des nombres complexes et noté \mathbb{C} dans lequel cette équation aura des solutions.

1.2 Définitions

Théorème

Il existe un ensemble de nombres noté C, appelé ensemble des nombres complexes tel que

- $lacksymbol{L}$ L'ensemble $\mathbb C$ contient l'ensemble des nombres réels $\mathbb R$.
- Il existe dans \mathbb{C} un élément noté i qui vérifie la relation : $i^2 = -1$.
- L'ensemble \mathbb{C} est muni d'une addition et d'une multiplication qui ont les mêmes propriétés que dans \mathbb{R} .

Définition

- Tout nombre complexe z s'écrit de manière unique z = x + iy avec $x \in \mathbb{R}$ et $y \in \mathbb{R}$.
- Cette écriture est appelée **forme algébrique** du nombre complexe z.
- Soit z = x + iy un nombre complexe. Le réel x est appelé <u>partie</u> réelle de z et le réel y est appelé partie imaginaire de z. On note

$$x = \mathcal{R}e(z)$$
 et $y = \mathcal{I}m(z)$.

Remarque

Attention, la partie imaginaire d'un nombre complexe est un nombre réel!

Exemples

- Le nombre complexe z = 3 2i est tel que $\Re(z) = 3$ et $\Im(z) = -2$.
- Le nombre complexe $z = \sqrt{3} + \sqrt{2}i$ est tel que $\Re(z) = \sqrt{3}$ et $\Im(z) = \sqrt{2}$.
- Le nombre complexe z = 3 est tel que $\Re e(z) = 3$ et $\mathcal{I}m(z) = 0$.
- Le nombre complexe z = 2i est tel que $\Re(z) = 0$ et $\Im(z) = 2$.

Remarque

Si la partie imaginaire de z est nulle i.e. $y = \mathcal{I}m(z) = 0$ alors z = x et z est un nombre réel.

Définition

Tout nombre complexe z dont la partie réelle est nulle et qui s'écrit donc z=iy $(y\in\mathbb{R})$ s'appelle un **imaginaire pur**. L'ensemble des imaginaires purs est noté $i\mathbb{R}$.

Théorème (égalité de deux nombres complexes)

■ Deux nombres complexes sont égaux si et seulement si leurs parties réelles sont égales et leurs parties imaginaires sont égales.

Autrement dit, si $z_1 = x_1 + iy_1$ et $z_2 = x_2 + iy_2$, alors

$$z_1 = z_2 \iff x_1 = x_2 \ et \ y_1 = y_2.$$

■ En particulier $z_1 = 0$ si et seulement si $x_1 = 0$ et $y_1 = 0$.

$\mathbf{E}\mathbf{xemple}$

Soit z = (2x - 1) + i(3 - y) avec $x \in \mathbb{R}$ et $y \in \mathbb{R}$ un nombre complexe.

Nous avons alors

$$z = 0 \Leftrightarrow 2x - 1 = 0 \text{ et } 3 - y = 0 \Leftrightarrow x = \frac{1}{2} \text{ et } y = 3.$$

1.3 Représentation géométrique des nombres complexes

On munit le plan \mathcal{P} d'un repère orthonormé direct $(O; \vec{u}; \vec{v})$

Définition

- À tout nombre complexe z = x + iy, nous pouvons associer le point M(x; y) du plan et réciproquement.
- Le point M(x;y) s'appelle **l'image** du nombre complexe z = x + iy.
- Le nombre complexe z = x + iy s'appelle l'affixe du point M(x; y).

Remarques

- Les réels sont représentés sur l'axe des abscisses.
- Les imaginaires purs sont représentés sur l'axe des ordonnées.

1.4 Addition de nombres complexes

1.4.1 Addition

Par construction, l'ensemble \mathbb{C} est muni d'une addition et d'une multiplication qui ont les mêmes propriétés que dans \mathbb{R} .

Définition

Soient $z_1 = x_1 + iy_1$ et $z_2 = x_2 + iy_2$ deux nombres complexes. Alors

$$z_1 + z_2 = (x_1 + iy_1) + (x_2 + iy_2) = (x_1 + x_2) + i(y_1 + y_2).$$

Ainsi

Proposition

Soient z_1 et z_2 deux nombres complexes. Nous avons alors

- $\blacksquare \mathcal{R}e(z_1+z_2) = \mathcal{R}e(z_1) + \mathcal{R}e(z_2)$
- $\blacksquare \mathcal{I}m(z_1+z_2) = \mathcal{I}m(z_1) + \mathcal{I}m(z_2)$

Exemples

- (3-2i) + (5+4i) = 8+2i
- (3-2i) + (5+2i) = 8
- \blacksquare (3-2i)+(-3+4i)=2i

1.4.2 Opposé d'un nombre complexe, soustraction de nombres complexes

Définition

- $L'\underline{oppos\acute{e}}$ du nombre complexe z=x+iy est le le nombre complexe, noté -z défini par: -z=(-x)+(-y)i=-x-iy.
- $Si z_1 = x_1 + iy_1 \ et z_2 = x_2 + iy_2 \ alors$

$$z_1 - z_2 = z_1 + (-z_2) = (x_1 - x_2) + i(y_1 - y_2).$$

Ainsi

Proposition

Soient z_1 et z_2 deux nombres complexes. Nous avons alors

- $\blacksquare \mathcal{R}e(z_1 z_2) = \mathcal{R}e(z_1) \mathcal{R}e(z_2)$
- $\blacksquare \mathcal{I}m(z_1-z_2) = \mathcal{I}m(z_1) \mathcal{I}m(z_2)$

1.5 Multiplication de nombres complexes

1.5.1 Multiplication

Définition

Soient $z_1 = x_1 + iy_1$ et $z_2 = x_2 + iy_2$ deux nombres complexes. Alors

$$z_1 \times z_2 = (x_1 + iy_1) \times (x_2 + iy_2) = (x_1 \times x_2 - y_1 \times y_2) + i(x_1y_2 + x_2y_1).$$

Ainsi

Proposition

Soient z_1 et z_2 deux nombres complexes. Nous avons alors

- $\blacksquare \mathcal{R}e(z_1 \times z_2) = \mathcal{R}e(z_1) \times \mathcal{R}e(z_2) \mathcal{I}m(z_1) \times \mathcal{I}m(z_2)$
- $\blacksquare \mathcal{I}m(z_1 \times z_2) = \mathcal{R}e(z_1) \times \mathcal{I}m(z_2) + \mathcal{R}e(z_2) \times \mathcal{I}m(z_1)$

Exemples

- $(3-2i) \times (5+4i) = 3 \times 5 + 3 \times 4i 2i \times 5 2i \times 4i = 15 + 12i 10i 8i^2 = 15 + 12i 10i + 8 = 23 + 2i.$
- $(3-2i) \times (5+2i) = 3 \times 5 + 3 \times 2i 2i \times 5 2i \times 2i = 15 + 6i 10i + 4 = 19 4i.$

On retiendra

Les règles de calcul dans $\mathbb C$ sont donc les mêmes que dans $\mathbb R$ en remplaçant i^2 par -1.

1.5.2 Conjugué d'un nombre complexe

Définition

Soit z = x + iy un nombre complexe. On appelle <u>conjugué</u> de z et on note \bar{z} le nombre complexe $\bar{z} = x - iy$.

Exemples

- Si z = 3 + 4i alors $\bar{z} = 3 4i$.
- Si z = 2 i alors $\bar{z} = 2 + i$.
- Si z = 5i alors $\bar{z} = -5i$.
 - \blacksquare Si z=2 alors $\bar{z}=2$.

Proposition

Soit z un nombre complexe.

- $z + \bar{z} = 2 \mathcal{R}e(z).$
- $z \bar{z} = 2i \mathcal{I} m(z).$

Propriétés

- $z \in \mathbb{R} \Longleftrightarrow z = \bar{z}.$
- $z \in i\mathbb{R} \Longleftrightarrow z = -\bar{z}.$

Théorème

 \blacksquare Pour z = x + iy, nous avons

$$z\bar{z} = x^2 + y^2.$$

Démonstration

$$z\bar{z} = (x+iy)(x-iy) = x^2 + y^2.$$

1.5.3 Inverse d'un nombre complexe non nul

Théorème

- Pour tout nombre complexe z non nul, il existe un unique nombre complexe z' tel que zz' = 1.
- Ce nombre s'appelle <u>l'inverse</u> de z et il est noté $\frac{1}{z}$.

■ Nous avons alors

$$\frac{1}{z} = \frac{\bar{z}}{z \times \bar{z}}.$$

■ Si z = x + iy alors la forme algébrique de $\frac{1}{z}$ est

$$\frac{1}{z} = \frac{1}{x+iy} = \frac{x-iy}{(x+iy)(x-iy)} = \frac{x}{x^2+y^2} + i\frac{-y}{x^2+y^2}.$$

Exemples

■ Soit z = 2 - 3i. Alors $\frac{1}{z} = \frac{1}{2 - 3i} = \frac{2 + 3i}{(2 - 3i) \times (2 + 3i)} = \frac{2 + 3i}{13} = \frac{2}{13} + \frac{3}{13}i$. ■ Soit z = 1 + i. Alors $\frac{1}{z} = \frac{1}{1 + i} = \frac{1 - i}{(1 + i) \times (1 - i)} = \frac{1 - i}{2} = \frac{1}{2} - \frac{1}{2}i$.

1.5.4 Division de nombres complexes

Définition

Soit $z_1 = x_1 + iy_1$ un nombre complexe et soit $z_2 = x_2 + iy_2$ un nombre complexe non nul. Nous avons alors

$$\frac{z_1}{z_2} = z_1 \times \frac{1}{z_2} = (x_1 + iy_1) \times \frac{(x_2 - iy_2)}{(x_2 + iy_2)(x_2 - iy_2)} = \frac{(x_1x_2 + y_1y_2) + i(x_2y_1 - x_1y_2)}{(x_2^2 + y_2^2)}.$$

Exemples

$$\frac{2+i}{2-3i} = \frac{(2+i)\times(2+3i)}{(2-3i)\times(2+3i)} = \frac{1+8i}{13} = \frac{1}{13} + \frac{8}{13}i.$$

$$\frac{4+3i}{1+i} = \frac{(4+3i)\times(1-i)}{(1+i)\times(1-i)} = \frac{7-i}{2} = \frac{7}{2} - \frac{1}{2}i.$$

$$\frac{4+3i}{1+i} = \frac{(4+3i)\times(1-i)}{(1+i)\times(1-i)} = \frac{7-i}{2} = \frac{7}{2} - \frac{1}{2}i.$$

$$\frac{1+i}{1-i} = \frac{(1+i) \times (1-i)}{(1-i) \times (1+i)} = \frac{2i}{2} = i.$$

$$\frac{1}{4+3i} = \frac{(4-3i)}{(4+3i)\times(4-3i)} = \frac{4-3i}{25} = \frac{4}{25} - \frac{3}{25}i.$$

On retiendra

Pour écrire sous forme algébrique l'inverse d'un nombre complexe ou le quotient de deux nombres complexes, il faut multiplier numérateur et dénominateur par le conjugué du dénominateur.

7

Opérations avec les conjugués 1.6

Théorème

Soient z_1 et z_2 deux nombres complexes. Nous avons alors

$$\overline{z_1+z_2}=\bar{z}_1+\bar{z}_2.$$

$$\blacksquare \ \overline{\left(\frac{z_1}{z_2}\right)} = \frac{\bar{z}_1}{\bar{z}_2}.$$

Module d'un nombre complexe 1.7

Définition

On appelle <u>module</u> d'un nombre complexe z = x + iy la quantité positive

$$|z| = \sqrt{x^2 + y^2}.$$

Propriété

Si le nombre complexe z est l'affixe du point M, alors |z| = OM.

Exemples

$$|3+4i| = \sqrt{3^2+4^2} = \sqrt{25} = 5.$$

$$|8 - 6i| = \sqrt{8^2 + 6^2} = 10.$$

$$|5| = 5.$$

$$| -5 | = 5.$$

$$|5i| = 5.$$

$$| -5i | = 5.$$

Proposition (Proriétés du module)

Soient z et z' deux nombres complexes et soit λ un nombre réel. Nous avons

$$\bullet |\bar{z}| = |z|.$$

$$|zz'| = |z||z'|.$$

$$\bullet \ |\lambda z| = |\lambda||z| \ (et \ en \ particulier \ |-z| = |z|).$$

$$|z^n| = |z|^n \ (n \in \mathbb{N}).$$

•
$$si \ z \neq 0 \ alors \ \left| \frac{1}{z} \right| = \frac{1}{|z|}.$$

• $si \ z \neq 0 \ alors \ \left| \frac{z'}{z} \right| = \frac{|z'|}{|z|}.$

•
$$si \ z \neq 0 \ alors \left| \frac{z'}{z} \right| = \frac{|z'|}{|z|}$$

■ Inégalité triangulaire :
$$|z + z'| \le |z| + |z'|$$
.

1.8 Équations du second degré à coefficients réels

1.8.1 Un cas particulier

Considérons tout d'abord le cas particulier de l'équation, d'inconnue $x \in \mathbb{R}$,

$$x^2 = a$$

où a est un nombre réel.

Nous savons déjà que :

- \blacksquare si a=0 alors cette équation possède une unique solution à savoir x=0.
- si $a \in \mathbb{R}^{+*}$ alors cette équation possède deux solutions dans \mathbb{R} à savoir $x = \sqrt{a}$ et $x = -\sqrt{a}$.
- si $a \in \mathbb{R}^{-*}$ alors cette équation ne possède pas de solution réelle.

Avec l'introduction des nombres complexes, nous pouvons maintenant montrer que dans le cas $a \in \mathbb{R}^{-*}$, l'équation $z^2 = a$ possède toutefois des solutions dans \mathbb{C} .

Proposition

 $\overline{Soit \ a \in \mathbb{R}^{-*}}$. L'équation $z^2 = a$ possède deux solutions dans \mathbb{C} :

$$z = i\sqrt{-a}$$
 et $z = -i\sqrt{-a}$.

Démonstration

$$z^2 = a \Leftrightarrow z^2 = i^2(-a) \Leftrightarrow z^2 = i^2(\sqrt{-a})^2 \Leftrightarrow z^2 - i^2(\sqrt{-a})^2 = 0 \Leftrightarrow (z - i\sqrt{a})(z + i\sqrt{a}) = 0.$$

D'où le résultat.

Ainsi, nous savons maintenant résoudre cette équation dans $\mathbb C$:

Théorème

Soit $a \in \mathbb{R}$ et considérons dans \mathbb{C} l'équation $z^2 = a$.

- lacksquare si a=0, alors cette équation possède une unique solution à savoir z=0.
- si $a \in \mathbb{R}^{+*}$, alors cette équation possède deux solutions à savoir $z = \sqrt{a}$ et $z = -\sqrt{a}$ qui sont réelles.
- si $a \in \mathbb{R}^{-*}$, alors cette équation possède deux solutions à savoir $z = i\sqrt{-a}$ et $z = -i\sqrt{-a}$ qui sont imaginaires purs.

1.8.2 Le cas général

Nous pouvons maintenant considérer le cas général des équations du second degré à coefficients réels :

$$ax^2 + bx + c = 0$$

avec $a \in \mathbb{R}^*, b \in \mathbb{R}, c \in \mathbb{R}$.

Nous avons

$$ax^{2} + bx + c = a \left[x^{2} + \frac{b}{a}x + \frac{c}{a} \right]$$

$$= a \left[\left(x^{2} + \frac{b}{a}x + \frac{b^{2}}{4a^{2}} \right) - \frac{b^{2}}{4a^{2}} + \frac{c}{a} \right]$$

$$= a \left[\left(x + \frac{b}{2a} \right)^{2} - \frac{(b^{2} - 4ac)}{4a^{2}} \right]$$

Ainsi, notre équation devient en posant $\Delta = b^2 - 4ac$:

$$ax^2 + bx + c = 0 \Longleftrightarrow \left(x + \frac{b}{2a}\right)^2 = \frac{\Delta}{4a^2}$$

Nous sommes alors ramenés au cas particulier précédent et nous obtenons le résultat suivant :

Théorème

On considère dans \mathbb{C} l'équation

$$ax^2 + bx + c = 0$$

avec $a \in \mathbb{R}^*$, $b \in \mathbb{R}$, $c \in \mathbb{R}$.

On associe à cette équation la quantité réelle Δ , appelée <u>discriminant</u> de l'équation, définie par

$$\Delta = b^2 - 4ac.$$

lacksquare si $\Delta=0$, alors l'équation possède une unique solution réelle :

$$x = -\frac{b}{2a}.$$

 \blacksquare si $\Delta > 0$, alors l'équation possède deux solutions réelles :

$$x_1 = \frac{-b + \sqrt{\Delta}}{2a}$$
 et $x_2 = \frac{-b - \sqrt{\Delta}}{2a}$.

lacksquare si $\Delta < 0$, alors l'équation possède deux solutions complexes conjuguées :

$$z_1 = \frac{-b + i\sqrt{-\Delta}}{2a}$$
 et $z_2 = \frac{-b - i\sqrt{-\Delta}}{2a}$.