

推数、基与坐标

定义:设有线性空间V,如果存在n个向量 $a_1,a_2,...,a_n$ 满足

- (i) a₁, a₂, ..., a_n 线性无关;
- (ii) V 中任意一个向量都能由 $a_1, a_2, ..., a_n$ 线性表示;那么称向量组 $a_1, a_2, ..., a_n$ 是线性空间 V 的一个基,n称为线性空间 V 的维数,

只含一个零向量的线性空间没有基,规定它的维数为 0.

维数为n的线性空间称为n维线性空间,记作 V_n .

例如,线性空间

$$V = \{x = (0, x_2, \dots, x_n)^T \mid x_2, \dots, x_n \in R\},\$$

$$e_2 = \begin{pmatrix} 0 \\ 1 \\ \vdots \\ 0 \end{pmatrix}, \dots, e_n = \begin{pmatrix} 0 \\ 0 \\ \vdots \\ 1 \end{pmatrix} \qquad \begin{array}{c} \mathcal{E}V \text{的一个基,} \\ V \text{的维数是} n-1. \end{array}$$

对于 n 维线性空间 V_n , 若 $\alpha_1, \alpha_2, \dots, \alpha_n$ 为 V_n 的一个基,

则V,可表示为

$$V_n = \left\{ \alpha = x_1 \alpha_1 + x_2 \alpha_2 + \dots + x_n \alpha_n \middle| x_1, x_2, \dots, x_n \in R \right\},\,$$

即 V_n 是基所生成的线性空间。

若 $\alpha_1,\alpha_2,\cdots,\alpha_n$ 为 V_n 的一个基, $\forall \alpha \in V_n$, 存在惟一的一组

有序数 x_1, x_2, \dots, x_n , $\alpha = x_1\alpha_1 + x_2\alpha_2 + \dots + x_n\alpha_n$.

反之,任给一组有序数 x_1,x_2,\dots,x_n ,总有惟一的向量

$$\alpha = x_1 \alpha_1 + x_2 \alpha_2 + \dots + x_n \alpha_n \in V_n.$$

定义 设 $\alpha_1, \alpha_2, \dots, \alpha_n$ 是线性空间 V_n 的一个基. $\forall \alpha \in V_n$, 总有且仅有一组有序数 x_1, x_2, \dots, x_n 使 $\alpha = x_1 \alpha_1 + x_2 \alpha_2 + \cdots + x_n \alpha_n$ x_1, x_2, \dots, x_n 这组有序数就称为向量 α 在这个基中的坐标, 并记作 $\alpha = (x_1, \dots, x_n)^T$.

例 在线性空间 $P[x]_4$ 中,

$$p_1 = 1, p_2 = x, p_3 = x^2, p_4 = x^3, p_5 = x^4$$

就是它的一个基. 任一不超过 4 次的多项式

$$p = a_4 x^4 + a_3 x^3 + a_2 x^2 + a_1 x + a_0$$

都可表示为 $p = a_0 p_1 + a_1 p_2 + a_2 p_3 + a_3 p_4 + a_4 p_5$,

因此p在这个基中的坐标为 $(a_0,a_1,a_2,a_3,a_4)'$.

若另取一个基 $q_1 = 1, q_2 = 1 + x, q_3 = 2x^2, q_4 = x^3, q_5 = x^4,$

$$p = a_0 + a_1 x + a_2 x^2 + a_3 x^3 + a_4 x^4$$

$$= (a_0 - a_1) + a_1 (1 + x) + \frac{a_2}{2} 2x^2 + a_3 x^3 + a_4 x^4$$

$$= (a_0 - a_1)q_1 + a_1q_2 + \frac{a_2}{2}q_3 + a_3q_4 + a_4q_5,$$

因此 p 在这个基中的坐标为 $\left(a_0-a_1,a_1,\frac{a_2}{2},a_3,a_4\right)^{r}$.

设在n 维线性空间 V_n 中取定一个基 $\alpha_1, \dots, \alpha_n$,则 $\forall \alpha \in V_n$, $\alpha \leftrightarrow (x_1, \dots, x_n)^T$ 这个一一对应关系满足性质:

设
$$\alpha \leftrightarrow (x_1, \dots, x_n)^T$$
, $\beta \leftrightarrow (y_1, \dots, y_n)^T$,则

(i)
$$\alpha + \beta \leftrightarrow (x_1, \dots, x_n)^T + (y_1, \dots, y_n)^T$$
; 保持线性组合
(ii) $\lambda \alpha \leftrightarrow \lambda (x_1, \dots, x_n)^T$, 的对应,

(ii)
$$\lambda \alpha \leftrightarrow \lambda (x_1, \dots, x_n)^T$$
,

称 V_n 与 \mathbb{R}^n 同构,记作 $V_n \cong \mathbb{R}^n$.

定义 设U与V是两个线性空间,如果它们的向量之间

有一一对应关系,且这个对应关系保持线性组合的对应,

就说线性空间U与V同构。

任何n维线性空间都与 R^n 同构,即维数相等的线性空间都同构.

线性空间的结构完全被它的维数所决定.

销销