STAT5010 Advanced Statistical Inference

Fall 2023

Lecture 3: UMVUE

Lecturer: Tony Sit Scribe: Muhammad DANISH and Junyou LI

Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications. They may be distributed outside this class only with the permission of the Instructor.

3.1 Minimal Sufficiency, Ancillarity and Completeness

Theorem 3.1 (TSH 4.3.1) $(T_1,..,T_s)$ is complete for any s-dimensional full rank exponential family (See P.117 of TSH)

Theorem 3.2 (Basu's Theorem) If T is complete and sufficient for $P = \{P_{\theta} : \theta \in \Theta\}$ and V is ancillary, then $T(X) \perp V(X)$.

Proof: Define $G_A(t) = P_{\theta}(V \in A|T=t)$ or $g_A(t) = P_{\theta}(V \in A|T)$ and $p_A = P_{\theta}(V \in A)$. Then by sufficiency and acillarity, neither p_A nor g_A depends upon θ . By Smoothing (tower expectation), $p_A = P_{\theta}(V \in A) = E_{\theta}(P_{\theta}(V \in A)|T) = E_{\theta}(g_A(T))$, and by completeness, we have $g_A(T) = p_A$.

Again by smoothing: $P_{\theta}(T \in V, V \in A) = E_{\theta}(1_B(T), 1_A(V)) = E_{\theta}(E_{\theta}(1_B(T)1_A(V)|T)) = E_{\theta}(1_B(T)E_{\theta}(1_A(V)|T)) = E_{\theta}(1_B(T)g_A(T)) = E_{\theta}(1_B(T).p_A) = E_{\theta}(1_B(T)).p_A = P_{\theta}(T \in B)P_{\theta}(V \in A).$ Hence T and V are independent as A and B are arbitrary Borel sets.

Example: Let $X_1,..,X_n \overset{i.i.d}{\sim} N(\mu,\sigma^2)$ where both μ,σ^2 are unknown. Then, $\bar{X}_n \perp n^{-1} \sum_{i=1}^n (X_i - \bar{X}_n)^2$ where $\bar{X}_n = n^{-1} \sum_{i=1}^N X_i$

Fix any $\sigma > 0$ and consider sub-model $P_{\sigma} = \{N(\mu, \sigma^2)\}$. In each sub-model, \bar{X}_n is complete and sufficient, and $n^{-1} \sum_{i=1}^{n} (X_i - \bar{X}_n)^2$ is ancillary. By Basu's theorem, $\bar{X}_n \perp \sum_{i=1}^{n} (X_i - \bar{X}_n)^2$ under $N(\mu, \sigma^2)$ for any $\mu \in \mathbb{R}$. Since σ is arbitrary, the conclusion holds for the full model $P = \{N(\mu, \sigma^2) : \mu \in \mathbb{R}, \sigma > 0\}$.

3.2 Optimal Inference

Definition: A function $f: \Theta \to \mathbb{R}$ where Θ is a convex function space and $\gamma \in (0,1)$ is called convex if $f(\gamma x + (1-\gamma)y) \le \gamma f(x) + (1-\gamma)f(y)$. The function is strictly convex if the inequality holds strictly.

Example: For any $\theta \in \Theta$, the function $\tilde{f}(d) = |d - \theta|$ is convex but not strictly convex while $\tilde{f}(d) = (d - \theta)^2$ is strictly convex.

Theorem 3.3 (Jensen's Inequality) If a function $f: \Omega \to \mathbb{R}$ is convex on an open set Ω and $P(X \in \Omega) = 1$ and E(X) exists, then $f(E(X)) \leq E(f(X))$. If f is strictly convex then the inequality holds strictly.

Theorem 3.4 (Rao-Blackwell Theorem) Suppose T is sufficient for $P = \{P_{\theta} : \theta \in \Theta\}$ such that $\delta(X)$ is an estimator for $g(\theta)$ for which $E(\delta(X))$ exists and that $R(\theta, \delta) = E_{\theta}(L(\theta, \delta) < \infty$. If, in particular, $L(\theta, .)$ is convex, then $R(\theta, \eta) \leq R(\theta, \delta)$ for any $\eta(T(X)) = E(\delta(X)|T(X))$.

3-2 Lecture 3: UMVUE

Proof: By Jensen's inequality, $E_{\theta}(L(g(\theta), \delta(X))|T) \geq L(g(\theta), E_{\theta}\delta(X)|T) = L(g(\theta), \eta(T))$. Taking another expectations, $E_{\theta}(L(g(\theta), \delta)) \geq E_{\theta}(L(g(\theta), \eta))$ which is equivalent to $R(g(\theta), \delta) \geq R(g(\theta), \eta)$. Note: Suppose $E_{\theta}(L(g(\theta), \delta)) = E_{\theta}(L(g(\theta), \eta))$, then $E_{\theta}(L(g(\theta), \delta)|T) = L(g(\theta), \eta)$ almost surely. Let $A = \{t : E(L(g(\theta), \delta(X))|T = t) = L(g(\theta), \eta(t))\}$, then $P_{\theta}(T \in A) = 1$. For $t \in A$, $\delta(X)$ is a constant random variable and so there exists g(t) such that $P_{\theta}(\delta(X) = g(t)|T = t) = 1$ almost surely, which implies $P_{\theta}(\delta(X) = g(t)) = 1$.

3.3 Unbiased Estimation

Definition: An estimator is said to be unbiased if $E_{\theta}(\delta(X)) = g(\theta)$ for all $\theta \in \Theta$

We can find an unbiased estimator with uniformly minimum risk, when $L(\theta, d) = (\theta - d)^2$, then UMRUE becomes UMVUE because $E_{\theta}((g(\theta) - \delta(X))^2) = (E_{\theta}(\delta(X)) - g(\theta))^2 + E_{\theta}((\delta(X) - E_{\theta}(\delta(X)))^2)$ where the first term, the bias, is zero.

Definition: If an unbiased estimator exists, then g(.) is called U-estimate.

Example: Suppose $X \sim U(0,\theta)$. Then δ is unbiased if $E_{\theta}(\delta(X)) = \int_0^{\theta} \delta(X)\theta^{-1}dx = g(\theta)$ or if $E_{\theta}(\delta(X)) = \int_0^{\theta} \delta(X)dx = \theta g(\theta)$ for any $\theta > 0$. So, g cannot be a U-estimate unless $\theta g(\theta) \to 0$ as $\theta \downarrow 0$. If g' exists, then by fundamental theorem of calculus, we have $\delta(X) = \partial/\partial X(xg(x)) = g(x) + xg'(x)$, then for $g(\theta) = \theta$, $\delta(X) = X + X(1) = 2X$.

Example: Suppose $X \sim Bin(n, \theta)$. If $g(\theta) = sin(\theta)$, then θ will be unbiased if $\sum_{k=0}^{n} \delta(k) \binom{n}{k} \theta^k (1-\theta)^{n-k} = sin(\theta)$, hence $g(\theta)$ is not U-estimable.

Definition: An unbiased estimator δ is UMVU if $Var_{\theta}(\delta) \leq Var(\delta')$ for all $\theta \in \Theta$ and δ' is any other competing unbiased estimator.

Theorem 3.5 (Lehmann-Scheffé Theorem) If T is a complete and sufficient statistic, and $\mathbb{E}_{\theta}[h(T(X))] = g(\theta)$, i.e. h(T(X)) is unbiased for $g(\theta)$, then h(T(X)) is

- 1) the only function of T(X) that is unbiased for $g(\theta)$
- 2) an UMRUE under any convex loss function
- 3) the unique UMRUE (hence UMVUE), up to a P-null set, under any strictly convex loss function.

Proof:

1) Suppose $\mathbb{E}_{\theta}\{\tilde{h}(T(X))\}=g(\theta)$, then

$$\mathbb{E}_{\theta}[\tilde{h}(T(X)) - h(T(X))] = 0, \quad \forall \theta \in \Theta$$

Thus, $\tilde{h}(T(X)) = h(T(X))$ a.s. for all $\theta \in \Theta$ by completeness.

- 2) Consider any unbiased $\delta(X)$, and let $\tilde{h}(T(X)) = \mathbb{E}_{\theta}[\delta(X) \mid T(X)]$. Then $\mathbb{E}_{\theta}[\tilde{h}(T(X))] = \mathbb{E}_{\theta}[\delta(X)] = g(\theta)$ by the tower property of conditional expectation. And by 1), $\tilde{h}(T(X)) = h(T(X))$ a.s., and by the Rao-Blackwell Theorem $R(\theta, h(T(X))) = R(\theta, \tilde{h}(T(X))) \leq R(\theta, \delta)$, for all $\theta \in \Theta$, if the loss function is convex. Therefore, h(T(X)) is an UMRUE under any convex loss function.
- 3) If the loss function is strictly convex, $R(\theta, h(T(X))) < R(\theta, \delta)$ unless $\delta(X) = h(T(X))$ a.s. Thus, h(T(X)) is the unique UMRUE (resp. UMVUE if the loss function adopted is the squared loss function).

Some useful strategies ("educated guesses") for finding UMVUE

1. Rao-Blackwellisation.

Lecture 3: UMVUE 3-3

- 2. Solve for the (unique) δ satisfying $\mathbb{E}_{\theta}[\delta(T(X))] = g(\theta)$ for all $\theta \in \Theta$.
- 3. Guess (the right form of unbiased function of T(X))

Example (Rao-Blackwellisation) Suppose $X_1, \dots, X_n \overset{\text{i.i.d.}}{\sim}$ Bernoulli (θ). We know that $T(X) = \sum_{i=1}^n X_i$ is a complete sufficient statistic, we also know that $n^{-1}T(X)$ is an unbiased estimator for θ , i.e.

$$\mathbb{E}_{\theta}\left(\frac{T(X)}{n}\right) = \frac{1}{n}\mathbb{E}_{\theta}\left(\sum_{i=1}^{n} X_{i}\right) = \frac{n\theta}{n} = \theta.$$

So $n^{-1}T(X)$ is an UMRUE for θ under any convex loss function. Suppose we want to estimate θ^2 , let's examine: $\delta(X) = \mathbb{I}\{X_1 = X_2 = 1\} = X_1 \cdot X_2$. Then we have

$$\mathbb{E}_{\theta}[\delta(X)] = \mathbb{E}_{\theta}[\mathbb{I}\left\{X_1 = X_2 = 1\right\}] = \mathbb{E}_{\theta}\left(X_1 \cdot X_2\right) \stackrel{\text{i.i.d.}}{=} [\mathbb{E}_{\theta}\left(X_1\right)]^2 = \theta^2.$$

By conditioning on T(X), we can find the UMRUE via

$$\begin{split} \mathbb{E}_{\theta}[\delta(X) \mid T(X) = t] &= \mathbb{P}_{\theta} \left(X_1 = X_2 = 1 \mid T(X) = t \right) \\ &= \frac{\mathbb{P}_{\theta} \left(X_1 = X_2 = 1, \sum_{i=1}^{n} X_i = t - 2 \right)}{\mathbb{P}_{\theta}(T(X) = t)} \\ &= \frac{\theta^2 \left(\begin{array}{c} n - 2 \\ t - 2 \end{array} \right) \theta^{t-2} (1 - \theta)^{n-t} \mathbb{I}\{t \geq 2\}}{\left(\begin{array}{c} n \\ t \end{array} \right) \theta^2 (1 - \theta)^{n-t}} \\ &= \frac{t(t - 1) \mathbb{I}\{t \geq 2\}}{n(n - 1)}. \end{split}$$

Note that in this case $\mathbb{I}\{t \geq 2\}$ is redundant as for t=0 or 1, the term t(t-1)=0. Hence, we conclude that the UMRUE for θ^2 is

$$\frac{T(X)(T(X)-1)}{n(n-1)}.$$

Example (Rao-Blackwellisation) Suppose $X_1, \dots, X_n \overset{\text{i.i.d.}}{\sim} U(0, \theta)$. In this case, $T(X) = X_{(n)}$ is a complete and sufficient statistic, and $\delta(X) = 2X$ is an unbiased estimator for θ , i.e. $\mathbb{E}_{\theta}(2X) = 2 \times \frac{\theta}{2} = \theta$.

Given $X_{(n)}$, X_1 is equal to $X_{(n)}$ with probability 1/n and follows uniform $(0, X_{(n)})$ with probability 1 - 1/n. Hence,

$$\mathbb{P}_{\theta}\left(X_{1} = x_{1} \mid T(X)\right) = \frac{1}{n} \times \mathbb{I}\left\{T(X) = x_{1}\right\} + \left(1 - \frac{1}{n}\right) \times \frac{1}{T(X)}\mathbb{I}\left\{0 < x_{1} < T(X)\right\}$$

To find the UMVUE, we calculate

$$\mathbb{E}_{\theta}[\delta(X) \mid T(X)] = 2\mathbb{E}_{\theta}[X_n \mid T(X)] = 2\left\{\frac{1}{n}T(X) + \left(1 - \frac{1}{n}\right)\int_0^{T(X)} \frac{x_1}{T(X)}dx_1\right\}$$
$$= 2\left\{\frac{T(X)}{n} + \left(1 - \frac{1}{n}\right)\frac{T(X)}{2}\right\}$$
$$= \frac{n+1}{n}T(X).$$

3-4Lecture 3: UMVUE

Example (Solve for unique δ) Let $X \sim \text{Poisson}(\theta).X$ is a complete and sufficient statistic, X is also unbiased, and therefore, UMVU for θ . Suppose we are interested in estimating $g(\theta) = e^{-a\theta}$ for $a \in \mathbb{R}$, known instead. We need to find an estimator δ such that $\mathbb{E}_{\theta}[\delta(X)] = g(\theta)$ for all $\theta > 0$

$$\mathbb{E}_{\theta}[\delta(X)] = \sum_{x=0}^{\infty} \delta(x) \frac{e^{-\theta} \theta^x}{x!} = e^{-a\theta}, \quad \forall \theta > 0$$

$$\Leftrightarrow \sum_{x=0}^{\infty} \frac{\delta(x) \theta^x}{x!} = e^{(1-a)\theta} = \sum_{x=0}^{\infty} \frac{(1-a)^x \theta^x}{x!}, \quad \forall \theta > 0$$

$$\Rightarrow \delta(X) = (1-a)^X \text{ is the UMVUE for } g(\theta)$$

Note that the estimator is not ideal in the sense that if a=2, the estimator $\delta(X)=(-1)^X$ will change sign according to X's "evenness" even though the estimand $e^{-a\theta}$ is non-negative. The estimator is hence inadmissible when a > 1 and dominated by $\max\{\delta(X), 0\}$.

Example (Guess) Let $X_1, \dots, X_n \stackrel{\text{i.i.d.}}{\sim} N\left(\mu, \sigma^2\right)$. Consider the case where $\theta = \left(\mu, \sigma^2\right)$ is unknown.

- 1) The UMVUE for σ^2 is $\frac{1}{n-1}\sum_{i=1}^n \left(X_i \bar{X}_n\right)^2 = S^2$ 2) How about the UMVUE for σ ?
- 3) What is the UMVUE for μ^2 ?

For 2), Observe that

$$X_i - \bar{X}_n \sim N\left(0, \frac{n-1}{n}\sigma^2\right) \quad \Rightarrow \quad \mathbb{E}\left\{\left|X_i - \bar{X}_n\right|\right\} = \sigma\sqrt{\frac{2}{\pi}} \times \sqrt{\frac{n-1}{n}}$$

This implies

$$\delta' = \frac{\sqrt{\pi n}}{\sqrt{2(n-1)}} \left| X_i - \bar{X}_n \right|$$

is unbiased for σ . While the Rao-Blackwellisation is very tedious. Instead, we can observe another fact that

$$S_*^2 = \sum_{i=1}^n (X_i - \bar{X}_n)^2 = (n-1)S^2$$

And $S_*^2 \sim \sigma^2 \chi_{n-1}^2$. Hence, $\mathbb{E}(S_*) = \sigma \mathbb{E}(\chi_{n-1})$, which implies that

$$\frac{\mathbb{E}\left(S_{*}\right)}{\mathbb{E}\left(\chi_{n-1}\right)} = \sigma$$

meaning that $\frac{S_*}{\mathbb{E}(\chi_{n-1})}$ is unbiased for σ and hence UMVU.

For 3), Taking the expectation of the UMVUE for μ and squaring it, we obtain

$$\mathbb{E}\left(\bar{X}_n^2\right) = \mu^2 + \frac{\sigma^2}{n}$$

So

$$\delta_n(X) = \bar{X}_n^2 - \frac{S_*^2}{n(n-1)}$$

is the UMVUE. However, $\delta_n(X)$ can be negative even though the estimand is a non-negative quantity. The estimator is in fact inadmissible and dominated by the biased estimator max $(0, \delta_n(X))$ since

$$\mathbb{E}[\max(0, \delta_n(X))] \neq \max{\{\mathbb{E}(\delta(X)), 0\}}.$$