

basic education

Department:
Basic Education
REPUBLIC OF SOUTH AFRICA

NATIONAL SENIOR CERTIFICATE NASIONALE SENIOR SERTIFIKAAT

GRADE/GRAAD 12

PHYSICAL SCIENCES: CHEMISTRY (P2)
FISIESE WETENSKAPPE: CHEMIE (V2)

NOVEMBER 2021

MARKING GUIDELINES/NASIENRIGLYNE

MARKS/PUNTE: 150

These marking guidelines consist of 21 pages. Hierdie nasienriglyne bestaan uit 21 bladsye.

QUESTION 1/VRAAG 1

1.1	D✓✓	(2)
1.2	$D\checkmark\checkmark$	(2)
1.3	A✓✓	(2)
1.4	B✓✓	(2)
1.5	D✓✓	(2)
1.6	D✓✓	(2)
1.7	C✓✓	(2)
1.8	B√√	(2)
1.9	A✓✓	(2)
1.10	B✓✓	(2) [20]

QUESTION 2/VRAAG 2

2.1 A compound that <u>contains a double bond/multiple bond/does NOT contain only single bonds</u> (between C atoms). ✓✓ (2 or 0)

'n Verbinding <u>wat dubbelbindings/meervoudige bindings/NIE net enkelbindings</u> (tussen C-atome) <u>bevat NIE.</u> (2 of 0)

(2)

2.2 2.2.1 B/E ✓ (1)

2.2.2 Carbonyl (group bonded to two C atoms) ✓ ACCEPT/AANVAAR

Karboniel(groep gebind aan twee C-atome)

ACCEPT/AANVAAR

Ketone/Ketoon (1)

 $2.2.3 \quad \mathsf{F} \checkmark \checkmark \tag{2}$

2.2.4 2,5-dichloro-3-methylhexane/2,5-dichloro-3-metielheksaan

Marking criteria:

- Correct stem i.e. <u>hexane</u>. ✓
- All substituents (dichloro and methyl) correctly identified. ✓
- IUPAC name completely correct including numbering, sequence, hyphens and commas. √

Nasienkriteria:

- Korrekte stam d.i. heksaan. √
- Alle substituente (dichloro en metiel) korrek geïdentifiseer. √
- IUPAC-naam heeltemal korrek insluitende nommering, volgorde, koppeltekens en kommas. ✓

(3)

2.2.5 $C_nH_{2n} \checkmark$ (1)

2.3 Compounds with the <u>same molecular formula</u>, \checkmark but <u>different functional groups/homologous series</u>. \checkmark Verbindings met <u>dieselfde molekulêre formule</u>, maar <u>verskillende funksionele groepe/homoloë reekse</u>.

(2)

2.42.4.1 Carboxylic acids/*Karboksielsure* √

(1)

2.4.2

2.5.2

Marking criteria/Nasienkriteria:

Whole structure correct/

Hele struktuur korrek:

2/2

 Only functional group correct/Slegs funksionele groep korrek: Max/Maks.:

IF/INDIEN

More than one functional group:

Meer as een funksionele groep: 0/2

IF/INDIEN

E√

- Molecular formula/*Molekulêre formule* $rac{0}{2}$
- Condensed structural formula /Gekondenseerde struktuurformule ½

(2)

(1)

2.5 2.5.1 Ethanol/*Etanol* ✓

- (1)
- 2.5.3 (Concentrated) sulphuric acid/H₂SO₄/(concentrated) phosphoric acid/H₃PO₄ ✓ (Gekonsentreerde) swawelsuur/ H₂SO₄/(gekonsentreerde) fosforsuur/ H₃PO₄

ACCEPT/AANVAAR: C₂H₄

(1) **[18]**

QUESTION 3/VRAAG 3

3.1 Marking criteria/Nasienkriteria:

If any one of the underlined key phrases in the **correct context** is omitted, deduct 1 mark./Indien enige van die onderstreepte frases in die **korrekte konteks** uitgelaat is, trek 1 punt af.

The <u>temperature</u> at which <u>solid and liquid</u> phases are <u>in equilibrium</u>. $\checkmark \checkmark$ Die <u>temperatuur</u> waarby die <u>vastestof- en vloeistoffases</u> van 'n stof <u>in ewewig</u> is.

(2)

3.2 Marking criteria

- Identification of independent variable. ✓
- Stating the relationship between dependent and independent variable. ✓

Nasienkriteria

- Identifikasie van onafhanklike veranderlike. √
- Stel verwantskap tussen afhanklike en onafhanklike veranderlikes. √
- As the chain length/number of C atoms/molecular mass/surface area/strength of the intermolecular forces ✓ increases, the melting points increase. ✓

OR

- As the chain length/ number of C atoms/molecular mass/surface area/strength of the intermolecular forces ✓ decreases, the melting points decrease. ✓
- Wanneer die kettinglengte/aantal C-atome/molekulêre massa/oppervlakarea/sterkte van intermolekulêre kragte ✓ toeneem, neem die smeltpunte toe.

OF

 Wanneer die kettinglengte/aantal C-atome/molekulêre massa/oppervlakarea/sterkte van intermolekulêre kragte afneem, neem die smeltpunte af.

(2)

3.3 London forces ✓ Londonkragte

ACCEPT/AANVAAR

Dispersion forces/induced dipole forces Dispersiekragte/geïnduseerde dipoolkragte

(1)

(1)

3.4

3.4.1 Liquid/Vloeistof ✓

3.4.2 Solid/Vaste stof ✓

(1)

3.5

3.5.1 Equal to/Gelyk aan ✓

Same molecular formula/Isomers/same number and types of atoms/same number of C and H atoms ✓

Dieselfde molekulêre formule/Isomere/dieselfde aantal en soort atome/ dieselfde aantal C- en H-atome

(2)

3.5.2 Lower than/Laer as ✓

(1)

3.5.3 Marking criteria:

- Compare structures. ✓
- Compare the strength of intermolecular forces.√
- Compare the energy required to overcome intermolecular forces. ✓

2,2-dimethylbutane:

Structure:

More branched/more compact/more spherical/smaller surface area (over which intermolecular forces act).

• Intermolecular forces:

Weaker/less intermolecular forces/Van der Waals forces/London forces/dispersion forces. ✓

• Energy:

Lesser energy needed to overcome or break intermolecular forces/Van der Waals forces. ✓

OR

<u>Hexane</u>

Structure:

<u>Longer chain length</u>/unbranched/less compact/less spherical/larger surface area (over which intermolecular forces act). ✓

• Intermolecular forces:

<u>Stronger/more intermolecular forces</u>/Van der Waals forces/London forces/dispersion forces. ✓

Energy:

More energy needed to overcome or break intermolecular forces/Van der Waals forces. ✓

Nasienkriteria:

- Vergelyk strukture ✓
- Vergelyk die sterkte van intermolekulêre kragte. √
- Vergelyk die energie benodig om intermolekulêre kragte te oorkom. ✓

2,2-dimetielbutaan:

• Struktuur:

<u>Meer vertak</u>/meer kompak/meer sferies/kleiner oppervlak (waaroor intermolekulêre kragte werk). ✓

• Intermolekulêre kragte:

<u>Swakker/minder intermolekulêre kragte</u>/Van der Waalskragte/London-kragte/dispersiekragte. ✓

Energie:

Minder energie benodig om intermolekulêre kragte/Van der Waalskragte/dispersiekragte/Londonkragte te oorkom/breek. ✓

OF

Heksaan

Struktuur:

<u>Langer kettinglengte</u>/onvertak/minder kompak/minder sferies/groter oppervlak (waaroor intermolekulêre kragte werk). ✓

Intermolekulêre kragte:

S<u>terker/meer intermolekulêre kragte</u>/Van der Waalskragte/Londonkragte/dispersiekragte. √

• Energie:

<u>Meer energie benodig om intermolekulêre kragte</u>/Van der Waalskragte/ dispersiekragte/Londonkragte te oorkom/breek. ✓

(3) **[13]**

QUESTION 4/VRAAG 4

4.1

- 4.1.1 Substitution/Hydrolysis ✓ Substitusie/Hidrolise (1)
- 4.1.2 Primary (alcohol) ✓

ANY ONE:

- The C atom of the functional group is the terminal C atom.
- The C-atom bonded to the hydroxyl/-OH is bonded to (only) one other Catom. ✓
- The hydroxyl/-OH is bonded to a C-atom which is bonded to two hydrogen atoms.
- The <u>hydroxyl/-OH</u> is bonded to <u>a primary C atom/terminal C atom/first C</u> atom.

Primêre (alkohol) ✓

ENIGE EEN:

- Die C-atoom van die funksionele groep is die terminale C-atoom.
- Die C-atoom wat aan die hidroksiel/-OH gebind is, is aan (slegs) een ander C-atoom gebind. ✓
- Die hidroksiel/-OH is gebind aan 'n C-atoom wat aan twee waterstofatome gebind is.
- Die <u>hidroksiel/-OH</u> is aan 'n <u>primêre C-atoom/</u>terminale C-atoom/eerste Catoom gebind.

4.1.3

Marking criteria:

- Four C atoms in longest chain. ✓
- One methyl substituent on C2. ✓
- Bromo substituent on C1. ✓

Nasienkriteria:

- Vier C-atome in langste ketting. ✓
- Een metielsubstituent op C2. ✓
- Broomsubstituent op C1. ✓

IF/INDIEN

Any error e.g. omission of H atoms, condensed or semi structural formula/Enige fout bv. weglating van H-atome, gekondenseerde of

semi-struktuurformule. Max/Maks.:

4.1.4 Elimination/dehydrohalogenation/dehydrobromination ✓ Eliminasie/dehidrohalogenering/dehidrohalogenasie/dehidrobrominasie/ dehidrobromonering

4.1.5 Alkenes/Alkene ✓ (1)

(1)

(3)

(2)

4.1.6 Addition/Addisie ✓ (1)

4.1.7 2-bromo-2-methyl ✓ butane ✓ 2-bromo-2-metiel ✓ butaan ✓

(2)

Copyright reserved/Kopiereg voorbehou

Please turn over/Blaai om assebief

4.2 **NOTE/LET WEL**:

- Penalise only once for the use of structural formulae or molecular formulae.
- Penaliseer slegs een keer vir die gebruik van struktuurformules of molekulêre formules.

4.2.1 Marking criteria:

- Correct condensed structure for but-2-ene. ✓
- React but-2-ene with H₂/H H. ✓
- Indicate the catalyst Pt/Ni/Pd on arrow/at the equation. ✓
- Correct condensed formula for butane as product. ✓

IF: Any additional products or reactants - minus 1 mark

Nasienkriteria:

- Korrekte gekondenseerde struktuur vir but-2-een. √
- Reageer but-2-een met H₂/H H. ✓
- Dui die katalisator Pt/Ni/Pd op die pyl/by die vergelyking aan. √
- Korrekte <u>gekondenseerde formule vir butaan</u> as produk. √

INDIEN: Enige addisionele reaktanse of produkte – minus 1 punt

ACCEPT/AANVAAR

As reactant/reaktans: $CH_3(CH)_2CH_3$ / $CH_3CH = CHCH_3$ / $CH_3 - CH = CH - CH_3$ As product/produk: $CH_3(CH_2)_2CH_3$ / $CH_3 - CH_2 - CH_2 - CH_3$ / $CH_3 - CH_3$ / $CH_3 - CH_3$

4.2.2 Elimination/Cracking ✓

Eliminasie/Kraking (1)

4.2.3 Propene/1-propene/prop-1-ene ✓ ✓ *Propeen/1-propeen/prop-1-een*

(2)

(4)

4.2.4 Marking criteria:

- Correct condensed formula for propene as reactant. ✓
- React (propene) with Br₂/Br Br ✓
- Correct <u>condensed formula for 1,2-dibromopropane</u> as product. ✓

IF: Any additional products or reactants - minus 1 mark

Nasienkriteria:

- Korrekte gekondenseerde formule vir propeen as reaktans. ✓
- <u>Reageer</u> (propeen) met <u>Br₂/Br</u> <u>Br</u>. ✓
- Korrekte <u>gekondenseerde formule vir 1,2-dibromopropaan</u> as produk. ✓

INDIEN: Enige addisionele reaktanse of produkte – minus 1 punt

$$CH_3CHCH_2 \checkmark + Br_2 \checkmark \longrightarrow CH_3CHBrCH_2Br \checkmark$$

ACCEPT/AANVAAR:

As reactant/reaktans: $CH_3CH = CH_2 / CH_2 = CHCH_3$ As product/produk: $CH_3CHBrCH_2Br / CH_3 - CH - CH_2 /$

l I Br E

(3) **[21]**

QUESTION 5/VRAAG 5

5.1 **NOTE/LET WEL**

Give the mark for <u>per unit time</u> only if in context of reaction rate. Gee die punt vir per eenheidtyd slegs indien in konteks van reaksietempo.

ANY ONE

- Change in concentration ✓ of products/reactants per (unit) time. ✓
- <u>Change in amount/number of moles/volume/mass</u> of products or reactants per (unit) time.
- Amount/number of moles/volume/mass of products formed/reactants used per (unit) time.
- Rate of change in concentration/amount of moles/number of moles/volume/ mass. ✓✓ (2 or 0)

ENIGE EEN

- <u>Verandering in konsentrasie</u> ✓ van produkte/reaktanse <u>per (eenheid) tyd</u>. ✓
- <u>Verandering in hoeveelheid/getal mol/volume/massa</u> van produkte of reaktanse per (eenheid) tyd.
- <u>Hoeveelheid/getal mol/volume/massa van produkte gevorm/reaktanse gebruik per (eenheid) tyd.</u>
- Tempo van verandering in konsentrasie/ hoeveelheid mol/getal mol/ volume/ massa. √√ (2 of 0)

 (2)
- Reaction rate decreases./Concentration of HC ℓ decreases./Concentration of reactant decreases./Reactants are used up/Mass of CaCO $_3$ decreases or is used up. \checkmark

Reaksietempo neem af./Konsentrasie van HCl neem af./Konsentrasie van reaktans neem af./Reaktanse word opgebruik./Massa van CaCO₃ neem af of word opgebruik. ✓

5.3.1 Exothermic/Eksotermies √

5.3

5.3.2 • Gradient increases/becomes steeper. / Curve becomes steeper. ✓

- Reaction rate increases/More (or larger volume) of CO₂ is produced per unit time. ✓
- Temperature increases./Energy is released/Average kinetic energy of the molecules increases. √
- Gradiënt neem toe/word steiler. / Kurwe word steiler. √
- Reaksietempo neem toe./<u>Meer (of groter volume) CO₂ word produseer per</u> eenheidtyd. √
- Temperatuur neem toe./Energie word vrygestel./Gemiddelde kinetiese energie van molekule neem toe. ✓

(3)

(1)

(1)

5.4 Marking criteria

- m(pure CaCO₃) = $\frac{82,5}{100}$ x 15 \checkmark / V(CO₂) = $\frac{82,5}{100}$ x V(CO₂) from/uit 15 g CaCO₃
- Divide by 100 g·mol⁻¹. ✓
- Use mol ratio: n(CO₂) = n(CaCO₃). √
- Multiply n(CO₂) by 24 000 cm³/24 dm³. ✓
- Final answer: 2 976 cm³ √
- Range: 2880 to 2970 cm³ / 2,88 to 2,97 dm³

Nasienkriteria

- $m(suiwer\ CaCO_3) = \frac{82.5}{100} \times 15 \checkmark / V(CO_2) = \frac{82.5}{100} \times V(CO_2) \ uit\ 15\ g\ CaCO_3$
- Deel deur 100 g·mol⁻¹. ✓
- Gebruik molverhouding: n(CO₂) = n(CaCO₃). ✓
- Vermenigvuldig n(CO₂) met 24 000 cm³/24 dm³. √
- Finale antwoord: 2 976 cm³ √

Gebied: 2880 tot 2970 cm³ / 2,88 tot 2,97 dm³

OPTION 1/OPSIE 1

m(pure/suiwer CaCO₃) =
$$\frac{82,5}{100}$$
 x 15 \checkmark = 12,375 g

n(pure/suiwer CaCO₃) = $\frac{m}{M}$ $= \frac{12,375}{100}$ = 0,124 mol

$$n(CO_2) = n(CaCO_3)$$

= 0,124 mol \checkmark
 $V(CO_2) = 0,124 \times 24000$
= 2 976 cm³ \checkmark

$$V(CO_2) = 0.124 \times 24$$

= 2.98 dm³ \(\sqrt{}

OPTION 2/OPSIE 2

IF 15 g PURE CaCO₃ reacts:

INDIEN 15 g SUIWER CaCO₃ reageer:

$$n(CaCO_3) = \frac{m}{M}$$

$$= \frac{15}{100} \checkmark$$

$$= 0,15 \text{ mol}$$

$$n(CO_2) = n(CaCO_3) \checkmark$$

$$= 0,15 \text{ mol}$$

$$n(CO_2) = \frac{V}{V_M}$$

$$0,15 = \frac{V}{24 \ 000} \checkmark / 0,15 = \frac{V}{24}$$

$$V = 3 \ 600 \ \text{cm}^3 / V = 3,6 \ \text{dm}^3$$

Actual CO₂ formed:

Werklike
$$CO_2$$
 gevorm:

$$V(CO_2) = \frac{82,5}{100} \times 3600 / 3,6 \checkmark$$

$$= 2.976 \text{ cm}^3 / 2,976 \text{ dm}^3 \checkmark$$

(5)

OPTION 3/OPSIE 3 IF 15 g PURE CaCO₃ reacts:/INDIEN 15 g SUIWER CaCO₃ reageer: $n(CaCO_3) = \frac{m}{M}$ $=\frac{15}{100}\checkmark$ = 0,15 mol $n(CO_2) = n(CaCO_3) \checkmark$ = 0.15 mol $n(CO_2) = \frac{m}{M}$ $m(CO_2) = 0.15 \times 44$ = 6.6 g $82.5 = \frac{\text{m}_{\text{actual/werklik}}}{\text{x}} \times 100$ $m_{(actual/werklik)} = 5,445 g$ $n(CO_2) = \frac{m}{2}$ $=\frac{5,445}{44}$ = 0,12375 mol $n(CO_2) = \frac{1}{V}$ $0.12375 = \frac{V}{24\ 000} \checkmark / 0.12375 = \frac{V}{24}$ $V = 2.976 \text{ cm}^3 / 2,976 \text{ dm}^3 \checkmark$

5.5 Increases/*Toeneem* ✓

(1)

(5)

- More (CaCO₃) particles with correct orientation/exposed./ Greater (exposed) surface area. ✓
 - More effective collisions per unit time./Higher frequency of effective collisions. ✓
 - <u>Meer (CaCO₃)-deeltjies</u> met korrekte oriëntasie/blootgestel./ <u>Groter</u> (blootgestelde) <u>reaksieoppervlakte</u>. √
 - Meer effektiewe botsings per eenheid tyd./Hoër frekwensie van effektiewe botsings.√

NOTE/LET WEL

- If explanation in terms of CONCENTRATION: No mark for bullet 1.

 Indien verduideliking in terme van KONSENTRASIE: Geen punt vir kolpunt 1.
- Bullets are marked independently./Kolpunte word onafhanklik nagesien.

(2)

[15]

(2)

QUESTION 6/VRAAG 6

6.1 (The stage in a chemical reaction when the) <u>rate of forward reaction equals</u> the rate of reverse reaction. ✓✓ (2 or 0)

OR

(The stage in a chemical reaction when the) <u>concentrations of reactants and products remain constant</u>. **(2 or 0)**

(Die stadium in 'n chemiese reaksie wanneer die) <u>tempo van die voorwaartse</u> <u>reaksie gelyk is aan die tempo van die terugwaartse reaksie</u>. **(2 of 0) OF**

(Die stadium in 'n chemiese reaksie wanneer die) konsentrasies van reaktanse en produkte konstant bly. (2 of 0)

- 6.2 6.2.1 Negative/Negatief ✓ (1)
- 6.2.2 Increase in temperature favours an endothermic reaction.
 Accept: Decrease in temperature favours an exothermic. ✓
 - Reverse reaction is favoured./Concentration of reactants increases./
 Concentration of products decreases. √
 - (Forward) reaction is exothermic.
 Accept: Reverse reaction is endothermic. ✓
 - Toename in temperatuur bevoordeel 'n endotermiese reaksie. ✓
 Aanvaar: Afname in temperatuur bevoordeel die eksotermiese reaksie.
 - Terugwaartse reaksie word bevoordeel./Konsentrasie van reaktanse neem toe./Konsentrasie van produkte neem af. ✓
 - (Voorwaartse) reaksie is eksotermies.
 Aanvaar: Terugwaartse reaksie is endotermies. √ (3)

6.2.3 CALCULATIONS USING NUMBER OF MOLES BEREKENINGE WAT GETAL MOL GEBRUIK

Marking criteria:

- a) Initial n(P) and $n(Q_2)$ and n(PQ) from table. \checkmark
- b) Change in n(P) = equilibrium n(P) initial n(P).
- c) **USING** ratio: P : Q_2 : PQ = 2 : 1 : 2 \checkmark
- d) Equilibrium $n(Q_2)$ = initial $n(Q_2)$ + change in $n(Q_2)$ Equilibrium n(PQ) = initial n(PQ) change in n(PQ)
- e) Divide **equilibrium** amounts of P and Q_2 and PQ by 2 dm³. \checkmark
- f) Correct K_c expression (<u>formulae in square brackets</u>). ✓
- g) Substitution of equilibrium concentrations into K_c expression. ✓
- h) Final answer: 10,889 ✓

Nasienkriteria:

- a) Aanvanklike n(P) en $n(Q_2)$ en n(PQ) uit tabel.
- b) Verandering in n(P) = ewewigs n(P) aanvanklike n(P). \checkmark
- c) **GEBRUIK** verhouding: P: Q_2 : PQ = 2:1:2 \checkmark
- d) Ewewig $n(Q_2)$ = aanvanklike $n(Q_2)$ + verandering in $n(Q_2)$ Ewewig n(PQ) = aanvanklike n(PQ) - verandering in n(PQ)
- e) Deel **ewewigs**hoeveelhede van P en Q₂ en PQ deur 2 dm³. ✓
- f) Korrekte K_c-uitdrukking (<u>formules in vierkanthakies</u>). ✓
- g) Vervanging van ewewigskonsentrasies in K_c -uitdrukking.
- h) Finale antwoord: 10,89 / 10,889 ✓

OPTION 1/OPSIE 1

	Р	Q_2	PQ	
Initial quantity (mol) Aanvangshoeveelheid (mol)	0,8	0,8	3,2	√(a)
Change (mol) Verandering (mol)	0,4 \(\sqrt(b)	0,2	0,4	√(c)
Quantity at equilibrium (mol)/ Hoeveelheid by ewewig (mol)	1,2	1,0	2,8	√(d)
Equilibrium concentration (mol·dm ⁻³) Ewewigskonsentrasie (mol·dm ⁻³)	0,6	0,5	1,4	√(e)

$$K_{c} = \frac{[PQ]^{2}}{[Q_{2}][P]^{2}} \checkmark (f)$$

$$= \frac{1,4^{2}}{(0,5)(0,6)^{2}} \checkmark (g)$$

$$= 10,89 \checkmark (h)$$

No K_c expression, correct substitution/Geen K_c uitdrukking, korrekte substitusie: Max./Maks. $\frac{7}{8}$

Wrong K_c expression/Verkeerde K_c -uitdrukking: Max./Maks. $\frac{5}{8}$

(3)

OPTION 2/OPSIE 2

	PQ	Р	Q_2	
Initial quantity (mol) Aanvangshoeveelheid (mol)	3,2	0,8	0,8	(a)
Change (mol) Verandering (mol)	0,4	0,4 \(\sqrt(b)\)	0,2 🗸	c)
Quantity at equilibrium (mol)/ Hoeveelheid by ewewig (mol)	2,8	1,2	^(d) 1,0	
Equilibrium concentration (mol·dm ⁻³) Ewewigskonsentrasie (mol·dm ⁻³)	1,4	0,6	0,5	/(e)

Reverse reaction

Terugwaartse reaksie:

$$K_c = \frac{[P]^2[Q_2]}{[PQ]^2} \checkmark (f)$$

$$=\frac{(0.6)^2(0.5)}{(1.4)^2}\checkmark(g)$$

No K_c expression, correct substitution/Geen K_c uitdrukking, korrekte substitusie: Max./Maks. $\frac{7}{8}$

Wrong K_c expression/Verkeerde K_c -uitdrukking: Max./Maks. $\frac{5}{8}$

$$K_c = 0.09$$

Forward reaction/Voorwaartse reaksie:

$$K_c = \frac{1}{0.09}$$

= 10.89 \checkmark (h)

CALCULATIONS USING NUMBER OF MOLES BEREKENINGE WAT GETAL MOL GEBRUIK

Marking criteria:

- a) Initial n(P) = 4 mol and $n(Q_2) = 2.4$ mol and n(PQ) = 0
- b) Change in n(P) = equilibrium n(P) initial n(P) = 2,8 mol. \checkmark
- c) USING ratio: P : Q_2 : PQ = 2 : 1 : 2 \checkmark
- d) Equilibrium $n(Q_2)$ = initial $n(Q_2)$ + change in $n(Q_2)$ Equilibrium n(PQ) = initial n(PQ) change in n(PQ)
- e) Divide equilibrium amounts of P and Q2 and PQ by 2 dm³. ✓
- f) Correct Kc expression (formulae in square brackets). ✓
- g) Substitution of equilibrium concentrations into K_c expression. ✓
- h) Final answer: 10,89 / 10,889 ✓

Nasienkriteria:

- a) Aanvanklike n(P) = 4 mol en $n(Q_2) = 2,4$ mol en $n(PQ) = 0.\checkmark$
- b) Verandering in n(P) = ewewigs n(P) aanvanklike n(P) = 2,8 mol. \checkmark
- c) GEBRUIK verhouding: $P: Q_2: PQ = 2:1:2 \checkmark$
- d) Ewewig $n(Q_2)$ = aanvanklike $n(Q_2)$ + verandering in $n(Q_2)$ | Ewewig n(PQ) = aanvanklike n(PQ) verandering in n(PQ)
- e) Deel ewewigshoeveelhede van P en Q₂ en PQ deur 2 dm³. ✓
- f) Korrekte K_c-uitdrukking (formules in vierkanthakies). ✓
- g) Vervanging van ewewigskonsentrasies in K_c-uitdrukking. ✓
- h) Finale antwoord: 10,89 / 10,889 √

OPTION 3/OPSIE 3

	Р	Q_2	PQ	
Initial quantity (mol) Aanvangshoeveelheid (mol)	4	2,4	0	√(a)
Change (mol) Verandering (mol)	2,8 \(\sqrt(b)\)	1,4	2,8	√(c)
Quantity at equilibrium (mol)/ Hoeveelheid by ewewig (mol)	1,2	1,0	2,8	√(d)
Equilibrium concentration (mol·dm ⁻³) Ewewigskonsentrasie (mol·dm ⁻³)	0,6	0,5	1,4	√(e)

$$K_{c} = \frac{[PQ]^{2}}{[Q_{2}][P]^{2}} \checkmark (f)$$

$$= \frac{1,4^{2}}{(0,5)(0,6)^{2}} \checkmark (g)$$

$$= 10,89 \checkmark (h)$$

No K_c expression, correct substitution/Geen K_c uitdrukking, korrekte substitusie: Max./Maks. $\frac{7}{8}$

Wrong K_c expression/Verkeerde K_c -uitdrukking: Max./Maks. $\frac{5}{8}$

CALCULATIONS USING CONCENTRATION BEREKENINGE WAT KONSENTRASIE GEBRUIK

Marking criteria:

- a) Initial c(P) and $c(Q_2)$ and c(PQ) from table. \checkmark
- b) Change in c(P) = equilibrium c(P) initial c(P). \checkmark
- c) **USING** ratio: P : Q₂ : PQ = 2 : 1 : 2 \checkmark
- d) Equilibrium $c(Q_2)$ = initial $c(Q_2)$ + change in $c(Q_2)$ Equilibrium c(PQ) = initial c(PQ) change in c(PQ)
- e) Divide initial amounts of P and Q₂ and PQ by 2 dm³. ✓
- f) Correct K_c expression (<u>formulae in square brackets</u>). ✓
- g) Substitution of equilibrium concentrations into K_c expression. ✓
- h) Final answer: 10,89 / 10,889 ✓

Nasienriglyne:

- a) Aanvanklike c(P) en $c(Q_2)$ en c(PQ) uit tabel.
- b) Verandering in c(P) = ewewigs c(P) aanvanklike c(P).
- c) **GEBRUIK** verhouding: P: Q_2 : PQ = 2:1:2 \checkmark
- d) Ewewig $c(Q_2)$ = aanvanklike $c(Q_2)$ + verandering in $c(Q_2)$ | Ewewig c(PQ) = aanvanklike c(PQ) - verandering in c(PQ)
- e) Deel aanvangshoeveelhede van P en Q₂ en PQ deur 2 dm³. ✓
- f) Korrekte K_c-uitdrukking (<u>formules in vierkanthakies</u>). ✓
- g) Vervanging van ewewigskonsentrasies in K_c -uitdrukking.
- h) Finale antwoord: 10,89 / 10,889 ✓

OPTION 4/OPSIE 4

	Р	Q_2	PQ, _	
Initial concentration (mol·dm ⁻³) Aanvangskonsentrasie (mol·dm ⁻³)	0,4	0,4	1,6	√(e)
Change in concentration (mol·dm ⁻³) Verandering in konsentrasie (mol·dm ⁻³)	0,2 √(b)	0,1	0,2	√(c)
Equilibrium concentration (mol·dm ⁻³) Ewewigskonsentrasie (mol·dm ⁻³)	0,6	0,5	1,4	√ (d)

$$K_{c} = \frac{[PQ]^{2} \checkmark (f)}{[Q_{2}][P]^{2}} (f)$$

$$= \frac{1.4^{2}}{(0.5)(0.6)^{2}} \checkmark (g)$$

$$= 10.89 \checkmark (h)$$

No K_c expression, correct substitution/Geen K_c uitdrukking, korrekte substitusie: Max./Maks. $\frac{7}{8}$

Wrong K_c expression/Verkeerde K_c -uitdrukking: Max./Maks. $\frac{5}{8}$

6.2.4 Remains the same/Bly dieselfde √

Only temperature can change K_c./Temperature remains constant. ✓ Slegs temperatuur kan K_c verander./Temperatuur bly konstant.

(2)

(8)

6.3

6.3.1 Increases/*Toeneem* ✓ (1)

6.3.2 Decreases/Afneem √ (1)

[18]

QUESTION 7/VRAAG 7

7.1

7.1.1 (It is a) proton/ H_3O^+ (ion)/ H^+ (ion) donor. $\checkmark \checkmark$ (Dit is 'n) proton/ H_3O^+ -(ioon)/ H^+ -(ioon)skenker.

(2)

7.1.2 HSO₄/hydrogen sulphate ion/waterstofsulfaatioon ✓

ANY ONE:

- It acts as base in reaction I and as acid in reaction II. ✓
- Acts as acid and base.

ENIGE EEN:

- Dit reageer as basis in reaksie I en as suur in reaksie II.
- Reageer as suur en basis.

(2)

7.1.3 HSO₄/Reaction (solution) II/Reaksie (oplossing) II ✓

Smaller K_a value/weaker acid ✓

Lower ion concentration/Incompletely ionised. ✓

Kleiner K_a-waarde/swakker suur √

Laer ioonkonsentrasie/Onvolledig geïoniseer. ✓

(3)

(3)

7.2

7.2.1 **OPTION 1/OPSIE 1**

pH = $-\log[H_3O^+] \checkmark$ 1,02 \checkmark = $-\log[H_3O^+]$

 $[H_3O^+] = 0.0955 \text{ mol·dm}^{-3} \checkmark$

Therefore/Dus

 $[HC\ell] = 0.0955 \text{ mol·dm}^{-3}$ (0.096/0.1 mol·dm⁻³)

OPTION 2/OPSIE 2

 $pH = -log[H_3O^+]$ Any one/Enige = $10^{-1.02}$ \checkmark

 $= 0.0955 \text{ mol} \cdot \text{dm}^{-3} \checkmark$

Therefore/Dus

 $[HC\ell] = 0.0955 \text{ mol} \cdot \text{dm}^{-3}$

(0,096/0,1 mol·dm⁻³)

7.2.2 POSITIVE MARKING FROM 7.2.1/POSITIEWE NASIEN VAN VRAAG 7.2.1

Marking citeria:

- Formula: $c = \frac{n}{V} / \frac{c_a V_a}{c_b V_b} = \frac{n_a}{n_b} \checkmark$
- Calculate n(Na₂CO₃): 0,075 x 0,025 √
- Calculate n(HCℓ): 0,0955 x 0,05 / 0,096 x 0,05 √
- Use ratios: n(HCℓ) = 2n(Na₂CO₃) √
- $n(HC\ell)_{excess} = n(HC\ell)_{initial} n(HC\ell)_{used} = 0.00475 0.0038 \checkmark \checkmark$
- Substitute 0,075 dm³ in $c = \frac{n}{V} \checkmark$
- Final answer: 0,013 mol·dm⁻³ ✓ (1,3 x 10⁻² mol·dm⁻³)
 Range: 0,01 to 0,02 mol·dm⁻³

Nasienkriteria:

- Formule: $c = \frac{n}{V} / \frac{c_a V_a}{c_b V_b} = \frac{n_a}{n_b}$
- Bereken n(Na₂CO₃): 0,075 x 0,025 √
- Bereken n(HCℓ): 0,0955 x 0,05 / 0,096 x 0,05 √
- Gebruik molverhouding: n(HCl) = 2n(Na₂CO₃) √
- $n(HC\ell)_{oormaat} = n(HC\ell)_{aanvanklik} n(HC\ell)_{gebruik} = 0,00475 0,0038 \checkmark \checkmark$
- Vervang 0,075 dm³ in $c = \frac{n}{V} \checkmark$
- Finale antwoord: 0,013 mol·dm⁻³ ✓ (1,3 x 10⁻² mol·dm⁻³)
 Gebied: 0,01 tot 0,02 mol·dm⁻³

OPTION 1/OPSIE 1

$$\begin{array}{l} \hline n(\text{Na}_2\text{CO}_3) = \text{cV} \checkmark \\ &= 0,075 \times 0,025 \checkmark \\ &= 0,001875 \text{ mol} \\ n(\text{HC}\ell)_{\text{initial/aanvanklik}} = \text{cV} \\ &= 0,096 \times 0,05 \checkmark \\ &= 0,00475 \text{ mol} \\ n(\text{HC}\ell)_{\text{used/gebruik}} = 2n(\text{Na}_2\text{CO}_3) \checkmark \\ &= 2(0,001875) \\ &= 0,0038 \text{ mol} \\ n(\text{HC}\ell)_{\text{excess/oormaat}} = 0,00475 - 0,0038 \checkmark \checkmark \\ &= 0,00095 \text{mol} \\ c(\text{HC}\ell) = \frac{n}{V} \\ &= \frac{0,00095}{0,075} \checkmark \\ &= 0,013 \text{ mol·dm}^{-3} \checkmark \qquad (1,3 \times 10^{-2} \text{ mol·dm}^{-3}) \end{array}$$

(8) **[18]**

(4)

$$\frac{c_{a}V_{a}}{c_{b}V_{b}} = \frac{n_{a}}{n_{b}} \checkmark$$

$$\frac{c_{a}(50)\checkmark}{(0,075)(25)\checkmark} = \frac{2}{1}\checkmark$$

$$c(HC\ell)_{rea} = 0,075 \text{ mol·dm}^{-3}$$

$$c(HC\ell)_{excess/oormaat} = 0,0955 - 0,075 \checkmark\checkmark$$

$$= 0,0205 \text{ mol·dm}^{-3}$$

$$c_{1}V_{1} = c_{2}V_{2}$$

$$(0,0205)(50) = c_{2}(75) \checkmark$$

$$c_{2} = 0,014 \text{ mol·dm}^{-3} \checkmark$$

QUESTION 8/VRAAG 8

8.1 Chemical (energy) to electrical (energy) ✓
Chemiese (energie) na elektriese (energie) (1)

8.2 Marking criteria:

- Any formula: $c = \frac{m}{MV}/c = \frac{n}{V}/n = \frac{m}{M}$
- Substitute 1 mol·dm⁻³.√
- <u>Substitute 170 g·mol⁻¹</u> [or 108 + 14 + 3(16)] <u>and 0,15 dm³</u> in correct formulae. ✓
- Final answer: 25,50 g √

Nasienkriteria:

- Enige formule: $c = \frac{m}{MV}/c = \frac{n}{V}/n = \frac{m}{M}$
- Vervang 1 mol·dm⁻³.√
- <u>Vervang 170 g·mol⁻¹</u> [of 108 + 14 + 3(16)] <u>en 0,15 dm³</u> in korrekte formules. ✓
- Finale antwoord: 25,50 g ✓

OPTION 1/OPSIE 1

$$c = \frac{m}{MV}$$
 $1 = \frac{m}{170 \times 0.15}$
 $m = 25,50 \text{ g}$

OPTION 2/OPSIE 2

 $n = cV \checkmark$
 $= 1 \checkmark \times 0.15$
 $= 0.15 \text{ mol}$
 $m = nM$
 $= (0.15)(\underline{170})$
 $= 25,50 \text{ g}$

Copyright reserved/Kopiereg voorbehou

Please turn over/Blaai om assebief

8.3 **ANY ONE:**

- A substance that loses/donates electrons. ✓√
- A substance that is oxidised.
- A substance whose oxidation number increases.

ENIGE EEN:

- 'n Stof wat elektrone verloor/skenk. √√
- 'n Stof wat geoksideer word.
- 'n Stof wat waarvan die oksidasiegetal toeneem.

(2)

8.4

8.4.1 Copper/Cu/Koper √

(1)

8.4.2 Marking criteria/Nasienkriteria:

- Reactants ✓ Products ✓ Balancing ✓
 Reaktanse Produkte Balansering
- Ignore double arrows./Ignoreer dubbelpyle.
- Ignore phases/Ignoreer fases.
- Marking rule 6.3.10./Nasienreël 6.3.10.

Cu(s) +
$$2Ag^{+}(aq) \checkmark \rightarrow Cu^{2+}(aq) + 2Ag(s) \checkmark Bal \checkmark$$

ACCEPT/AANVAAR:

Cu(s) + $2AgNO_3(aq) \checkmark \rightarrow Cu(NO_3)_2(aq) + 2Ag(s) \checkmark Bal \checkmark$

NOTE/LET WEL

- IF electrons are not cancelled minus 1 mark
- INDIEN elektrone nie gekanselleer is nie minus 1 punt

(3)

8.5

OPTION 1/OPSIE 1

$$E_{cell}^{\theta} = E_{reduction}^{\theta} - E_{oxidation}^{\theta} \checkmark$$

$$= 0.80 \checkmark - (0.34) \checkmark$$

$$= 0.46 V \checkmark$$

Notes/Aantekeninge

- Accept any other correct formula from the data sheet./Aanvaar enige ander korrekte formule vanaf gegewensblad.
- Any other formula using unconventional abbreviations, e.g. E°_{cell} = E°_{OA} E°_{RA} followed by correct substitutions:/Enige ander formule wat onkonvensionele afkortings gebruik bv. E°_{sel} =

 E°_{OM} - E°_{RM} gevolg deur korrekte vervangings: $\frac{3}{4}$

OPTION 2/OPSIE 2

(4)

8.6 Decreases/Afneem ✓

(1) **[16]**

(2)

(2)

QUESTION 9/VRAAG 9

9.1 **ANY ONE**: (2 or 0)

- A substance whose <u>(aqueous) solution contains ions</u>. ✓✓
- Substance that <u>dissolves in water to give a solution that conducts</u> electricity.
- A substance that forms ions in water / when melted.
- A solution that conducts electricity through the movement of ions.

ENIGE EEN: (2 of 0)

- 'n Stof waarvan die oplossing ione bevat. √√
- 'n Stof wat in water oplos om 'n oplossing te vorm wat elektrisiteit gelei.
- 'n Stof wat ione in water vorm/ wanneer dit gesmelt word.
- 'n <u>Oplossing wat elektrisiteit gelei</u> deur die beweging van ione.

9.2 ← Anode ✓

Chromium is oxidised./Oxidation takes place (at the anode)./Chromium (it) loses electrons./Mass decreases./Cr → Cr³⁺ + 3e⁻ ✓ Chroom word geoksideer./Oksidasie vind (by die anode) plaas./Chroom (dit) verloor elektrone./Massa neem af./Cr → Cr³⁺ + 3e⁻

NOTE/LET WEL:

If half-reaction is used, it must be correct/Indien halfreaksie gebruik word, moet dit korrek wees: Cr → Cr³⁺ + 3e⁻

9.3 $Cr^{3+}(aq) + 3e^{-} \rightarrow Cr(s) \checkmark \checkmark$

Ignore phases./Ignoreer fases.

Marking guidelines/Nasienkriteria

• $\operatorname{Cr}^{3+} + 3e^{-} \rightleftharpoons \operatorname{Cr}$ $\frac{1}{2}$ $\operatorname{Cr} \rightleftharpoons \operatorname{Cr}^{3+} + 3e^{-}$ $\frac{0}{2}$ $\operatorname{Cr} \leftarrow \operatorname{Cr}^{3+} + 3e^{-}$ $\frac{2}{2}$ $\operatorname{Cr} \rightarrow \operatorname{Cr}^{3+} + 3e^{-}$ $\frac{0}{2}$

- Ignore if charge omitted on electron./Ignoreer indien lading weggelaat op elektron.
- If charge (+) omitted on $Cr^{3+}/Indien\ lading\ (+)\ weggelaat\ op\ Cr^{3+}$: Max./Maks: $\frac{1}{2}$

Example/Voorbeeld: $Cr^3 + 3e^- \rightarrow Cr \checkmark$ (2)

9.4 Marking criteria:

- Substitute 52 g·mol⁻¹ in $n = \frac{m}{M}$ /ratio \checkmark
- Use mol ratio: n(electrons): n(Cr) = 3 : 1. √
- Number of electrons = n x 6,02 x 10^{23} /No of Cr atoms = n x 6,02 x 10^{23} /ratio. \checkmark
- Total charge = number of electrons x 1,6 x 10⁻¹⁹/ratio. ✓
- Final answer: 11 113,85 C ✓ Range: 11 076,8 to 11 580 C

Nasienkriteria:

- Vervang 52 g·mol⁻¹ in $n = \frac{m}{M}$ /verhouding \checkmark
- Gebruik molverhouding: n(elektrone) : $n(Cr^{3+}) = 3$: 1. \checkmark
- Aantal elektrone = n x 6,02 x 10²³/Aantal Cr-atome = n x 6,02 x 10²³/verhouding.√
- Totale lading = aantal elektrone x 1,6 x 10^{-19} /verhouding. \checkmark
- Finale antwoord: 11 113,85 C √
 Gebied: 11 076,8 tot 11 580 C

OPTION 1/OPSIE 1

$$n = \frac{m}{M}$$

$$= \frac{2}{52}$$

$$= 0,038 \text{ mol} \qquad (0,04 \text{ mol})$$

$$n(e^{-}) = 3n(Cr) \checkmark$$

$$= 3(0,038)$$

$$= 0,115 \text{ mol} \quad (0,12 \text{ mol})$$

$$Number (e^{-}) = 0,115 \times 6,02 \times 10^{23} \checkmark$$

$$= 6,946 \times 10^{22}$$

$$Q = 6.95 \times 10^{22} \times 1.6 \times 10^{-19} \checkmark$$

OPTION 2/OPSIE 2

$$n = \frac{m}{M}$$

= $\frac{2}{52}$
= 0,038 mol (0,04 mol)

Number Cr atoms
=
$$0.038 \times 6.02 \times 10^{23} \checkmark$$

= 2.315×10^{22}
Number (e⁻) = $3N(Cr) \checkmark$
= $3(2.315 \times 10^{22})$
= 6.946×10^{22}

Q =
$$6.95 \times 10^{22} \times 1.6 \times 10^{-19} \checkmark$$

= 11 113,85 C \checkmark

OPTION 3/OPSIE 3

= 11 113,85 C ✓

$$n = \frac{m}{M}$$

$$= \frac{2}{52}$$

$$= 0.038 \text{ mol}$$

$$n(e^{-}) = 3n(Cr) \checkmark$$

$$= 3(0.038)$$

$$= 0.115 \text{ mol}$$

$$1 \text{ mol} \qquad 96 500 \text{ C} \checkmark$$

$$0.115 \text{ mol} \qquad 11 134,62 \text{ C} \checkmark \checkmark$$

(5) **[11]**

TOTAL/TOTAAL: 150