

What is claimed is:

1 1. A method of repositioning display spacers using
2 inductive attraction, comprising:

3 providing spacers susceptible to inductive
4 attraction;

5 providing an inductive chuck to attract the
6 spacers;

7 providing a substrate;

8 using the inductive chuck to position the spacers
9 in desired positions on the substrate.

1 2. The method as claimed in claim 1, wherein the
2 spacers are spacers of a field emission display.

1 3. The method as claimed in claim 1, wherein the
2 inductive attraction comprises non-contact forces (force
3 at a distance).

1 4. The method as claimed in claim 1, wherein the
2 inductive attraction comprises magnetic forces.

1 5. The method as claimed in claim 4, wherein the
2 magnetic forces generate magnetic forces through natural
3 magnets, artificial magnets, electromagnetic systems, or
4 a combination thereof.

1 6. The method as claimed in claim 4, wherein the
2 spacers are made of magnetic materials.

1 7. The method as claimed in claim 4, wherein the
2 spacers have magnetic materials deposited thereon.

1 8. The method as claimed in claim 4, wherein the
2 spacers have magnetic materials attached thereto.

1 9. The method as claimed in claim 5, wherein the
2 spacers have two or more layers, at least one of which is
3 made of magnetic materials.

1 10. The method as claimed in claim 1, wherein the
2 inductive attraction comprises electrostatic forces.

1 11. The method as claimed in claim 10, wherein the
2 spacers are made of electrostatic materials.

1 12. The method as claimed in claim 10, wherein the
2 spacers have electrostatic materials attached thereto.

1 13. The method as claimed in claim 10, wherein the
2 spacers have two or more layers, at least one of which is
3 made of electrostatic materials.

1 14. The method as claimed in claim 10, wherein the
2 spacers are made of metal, alloy, dielectric, ceramic, or
3 glass materials, or a combination thereof.

1 15. The method as claimed in claim 1, wherein the
2 spacers are cylindrical, X-, I-, L-, or bar-shaped or a
3 combination thereof.

1 16. The method as claimed in claim 1, wherein the
2 shapes of spacers have two or more cross points,

3 comprising comb, lattice, grid, or zig-zag shapes or a
4 combination thereof.

1 17. The method as claimed in claim 1, wherein the
2 substrate is the anode plate of a flat panel display.

1 18. The method as claimed in claim 1, wherein the
2 substrate is the anode plate of a field emission display.

1 19. The method as claimed in claim 1, wherein the
2 substrate is the cathode plate of a flat panel display.

1 20. The method as claimed in claim 1, wherein the
2 substrate is the cathode plate of a field emission
3 display.

1 21. The method as claimed in claim 1, further
2 comprising using an alignment step when locating the
3 spacer onto a desired position on the substrate.

1 22. The method as claimed in claim 21, wherein the
2 alignment step comprises use of Charge-Coupled Device
3 (CCD) and alignment marks.