ENGG104 Tutorial 3 Class Questions

Team Name: ____

Question 1 [common exam question]

Determine V_1, V_2, V_3 and V'. [Voltage Divider]

b.
$$V_3$$
: $V_2 = 10$ kΩ:1 kΩ = **10:1**

$$V_3$$
: $V_1 = 10 \text{ k}\Omega:100 \Omega = 100:1$

c.
$$V_3 = \frac{R_3 E}{R_T} = \frac{(10 \text{ k}\Omega)(60 \text{ V})}{0.1 \text{ k}\Omega + 1 \text{ k}\Omega + 10 \text{ k}\Omega} = 54.05 \text{ V}$$

$$V_3: V_1 = 10 \text{ k}\Omega: 100 \Omega = 100:1$$
c.
$$V_3 = \frac{R_3 E}{R_T} = \frac{(10 \text{ k}\Omega)(60 \text{ V})}{0.1 \text{ k}\Omega + 1 \text{ k}\Omega + 10 \text{ k}\Omega} = 54.05 \text{ V}$$
d.
$$V = \frac{(R_2 + R_3)E}{R_T} = \frac{(1 \text{ k}\Omega + 10 \text{ k}\Omega)(60 \text{ V})}{11.1 \text{ k}\Omega} = 59.46 \text{ V}$$

V2 = 5.41V

Question 2 [common exam question]

Determine V_1 and V_2

$$\frac{100\Omega}{68\Omega} \to \frac{1000}{100} \times 68$$

$$2\Omega \to \frac{1000}{100} \times 2$$

$$\frac{1000 \text{ V}}{100 \Omega} = \frac{V_2}{68 \Omega}, V_2 = \frac{68 \Omega(1000 \text{ V})}{100 \Omega} = 680 \text{ V}$$

$$\frac{1000 \text{ V}}{100 \Omega} = \frac{V_1}{2 \Omega}, V_1 = \frac{2 \Omega(1000 \text{ V})}{100 \Omega} = 20 \text{ V}$$

$$E = V_1 + V_2 + 1000 \text{ V}$$

$$= 20 \text{ V} + 680 \text{ V} + 1000 \text{ V}$$

$$= 1700 \text{ V}$$

Question 3

Estimate the total resistance without any calculation:_____

 $\frac{2x4}{2+4} = 8 = 4$

Calculate the total resistance R_T and compare :

a.
$$1.2 \text{ k}\Omega$$

b. about
$$1 \text{ k}\Omega$$

c.
$$R_T = \frac{1}{\frac{1}{1.2 \text{ k}\Omega} + \frac{1}{22 \text{ k}\Omega} + \frac{1}{220 \text{ k}\Omega} + \frac{1}{2.2 \text{ M}\Omega}}$$

 $= \frac{1}{833.333 \times 10^{-6} \text{S} + 45.455 \times 10^{-6} \text{S} + 4.545 \times 10^{-6} \text{S} + 0.455 \times 10^{-6} \text{S}}$
 $= \frac{1}{883.788 \times 10^{-6} \text{S}} = 1.131 \text{ k}\Omega$

Question 4

What is the ohmmeter reading for each configuration in Fig. 77?

a.
$$R_T = \frac{1}{\frac{1}{4 \Omega} + \frac{1}{2 \Omega} + \frac{1}{10 \Omega}} = \frac{1}{0.25 \text{ S} + 0.50 \text{ S} + 0.10 \text{ S}} = \frac{1}{0.85 \text{ S}} = 1.18 \Omega$$

Question 5 [Typical exam question]

For the parallel network in Fig. 79:

- a. Find the total resistance.
- **b.** What is the voltage across each branch?
- c. Determine the source current and the current through
- d. Verify that the source current equals the sum of the branch currents.

FIG. 79

a.
$$R_T = \frac{(8 \Omega)(24 \Omega)}{8 \Omega + 24 \Omega} = 6 \Omega$$

b.
$$V_R = V_R = 36 \text{ V}$$

9. a.
$$R_T = \frac{(8 \Omega)(24 \Omega)}{8 \Omega + 24 \Omega} = 6 \Omega$$

b. $V_{R_1} = V_{R_2} = 36 \text{ V}$
c. $I_s = \frac{E}{R_T} = \frac{36 \text{ V}}{6 \Omega} = 6 \text{ A}$
 $I_1 = \frac{V_{R_1}}{R_1} = \frac{36 \text{ V}}{8 \Omega} = 4.5 \text{ A}$
 $I_2 = \frac{V_{R_2}}{R_2} = \frac{36 \text{ V}}{24 \Omega} = 1.5 \text{ A}$

d.
$$I_s = I_1 + I_2$$

6 A = 4.5 A + 1.5 A = 6 A (checks)

Question 6 [Past exam Question]

- 10. For the network of Fig. 80:
 - a. Find the current through each branch.
 - b. Find the total resistance.
 - c. Calculate I_s using the result of part (b).
 - d. Find the source current using the result of part (a).
 - e. Compare the results of parts (c) and (d).

FIG. 80 Problem 10.

10. a.
$$I_1 = \frac{V_{R_1}}{R_1} = \frac{18 \text{ V}}{3 \Omega} = 6 \text{ A}, I_2 = \frac{V_{R_2}}{R_2} = \frac{18 \text{ V}}{9 \Omega} = 2 \text{ A}, I_3 = \frac{V_{R_3}}{R_3} = \frac{18 \text{ V}}{36 \Omega} = 0.5 \text{ A}$$

 \subset

b.
$$R_T = \frac{1}{\frac{1}{3\Omega} + \frac{1}{9\Omega} + \frac{1}{36\Omega}} = \frac{1}{0.333 \text{ S} + 0.111 \text{ S} + 0.028 \text{ S}}$$

$$= \frac{1}{472 \times 10^{-3} \text{ S}} = 2.12 \Omega$$

c.
$$I_s = \frac{E}{R_T} = \frac{18 \text{ V}}{2.12 \Omega} = 8.5 \text{ A}$$

Q

Question 7 [current divider]

- **31. a.** Determine one of the unknown currents of Fig. 100 using the current divider rule.
 - Determine the other current using Kirchhoff's current law

FIG. 100 Problem 31.

31. a.
$$I_1 = \frac{8 \text{ k}\Omega(20 \text{ mA})}{2 \text{ k}\Omega + 8 \text{ k}\Omega} = 16 \text{ mA}$$

$$I_2 = 20 \text{ mA} - 16 \text{ mA} = 4 \text{ mA}$$

b.
$$I_{2.4k\Omega} = 2.5 \text{ A} = \frac{1 \text{ k}\Omega(I_T)}{1 \text{ k}\Omega + 2.4 \text{ k}\Omega} = \frac{1 \text{ k}\Omega(I_T)}{3.4 \text{ k}\Omega}$$

and $I_T = \frac{3.4 \text{ k}\Omega(2.5 \text{ A})}{1 \text{ k}\Omega} = 8.5 \text{ A}$
 $I_1 = I_T - 2.5 \text{ A} = 8.5 \text{ A} - 2.5 \text{ A} = 6 \text{ A}$

Question 8 [typical exam question]

32. For each network of Fig. 101, determine the unknown currents.

32. a.
$$R_T = \frac{1}{\frac{1}{4\Omega} + \frac{1}{8\Omega} + \frac{1}{12\Omega}} = \frac{1}{250 \times 10^{-3} \text{S} + 125 \times 10^{-3} \text{S} + 83.333 \times 10^{-3} \text{S}}$$

$$= \frac{1}{458.333 \times 10^{-3}} = 2.18 \Omega$$

$$I_x = \frac{R_T}{R_x} I, \quad I_1 = \frac{2.18 \Omega}{4 \Omega} (6 \text{ A}) = 3.27 \text{ A}$$

$$I_2 = \frac{2.18 \Omega}{8 \Omega} (6 \text{ A}) = 1.64 \text{ A}$$

$$I_3 = \frac{2.18 \Omega}{12 \Omega} (6 \text{ A}) = 1.09 \text{ A}$$

$$I_4 = 6 \text{ A}$$

Question 9 [Past exam question]

Will the breaker trip??

FIG. 91

a.
$$5 \times 60 \text{ W} = 300 \text{ W}$$

$$I_{\text{bulbs}} = \frac{300 \text{ W}}{120 \text{ V}} = 2.5 \text{ A}$$

$$I_{\text{micro}} = \frac{1200 \text{ W}}{120 \text{ V}} = 10 \text{ A}$$

$$I_{\text{TV}} = \frac{320 \text{ W}}{120 \text{ V}} = 2.67 \text{ A}$$

$$I_{\rm DVD} = \frac{25 \text{ W}}{120 \text{ V}} = 208.33 \text{ mA}$$

b.
$$I_s = \sum I = 2.5 \text{ A} + 10 \text{ A} + 2.67 \text{ A} + 208.33 \text{ mA} = 15.38 \text{ A}$$

No

_