

MINISTRY OF YOUTH EDUCATION AND SPORT INSTITUTE TECHNOLOGY OF CAMBODIA

ELECTRICAL AND ENERGY ENGINEERING

POWER SUPPLY OF FACTORY

TITLE: PROJECT OF POWER SUPPLY OF FACTORY

STUDENT: PHOR VICHEKA

SPECIALIST: ELECTRICAL AND ENERGY ENGINEERING

LECTURER: M. CHY CHEAPOK

SCHOOLAR: 2008-2009

MINISTERE DE L'EDUCATION DE LA JEUNESSE ET DES SPORTS INSTITUT DE TECHNOLOGIE DU CAMBODGE

Génie Electrique

DEPARTEMENT DE GENIE ELECTRIQUE ET ENERGETIQUE

ALIMENTATON D'USINE

TITRE: PROJET D'ALIMENTATION D'USINE

ETUDIANT: PHOR VICHEKA

SPECIALITE: GENIE ELECTRIQUE ET ENERGETIQUE

PROFESSEUR: M. CHY CHEAPOK

ANNEE SCOLAIRE: 2008-2009

MINISTERE DE L'EDUCATION DE LA JEUNESSE ET DES SPORTS

INSTITUT DE TECHNOLOGIE DU CAMBODGE

DEPARTEMENT DE GENIE ELECTRIQUE ET ENERGETIQUE

ALIMENTAION D'USINE

TITRE: PROJET D'ALIMENTATION D'USINE

ETUDIANT: PHOR VICHEKA

SPECIALITE: GENIE ELECTRIQUE ET ENERGETIQUE

PROFESSEUR: M. CHY CHEAPOK

ANNEE SCOLAIRE: 2008-2009

RÉSUMÉ

Pour la course l'alimentation l'usine, le professeur nous a donné un projet pour étudier, c'est le projet l'alimentation d'énergies électriques dans l'usine. Ce projet, il y a beaucoup des choses pour résoudre comme ci-dessous :

Chapitre 1 : Les Méthodologies Pour Calculer Les Demandes De La Puissance. Dans ce chapitre, on va travailler sur l'étape suivante :

- Détermination les demandes des puissances de chaque bâtiment
- Cartogramme de la charge
- Détermination les capacités des compensateurs de chaque bâtiment pour améliorer le facteur de puissance
- Détermination le capacité du transformateur et sont caractéristiques.

Chapitre 2 : Choix De La Sections Des Conducteurs Et Calculer La Chutes Des Tensions. Dans ce chapitre, on va travailler sur l'étape suivante :

- Détermination du courant d'emploi (I_B)
- Le choix de la section minimale du conducteur par la méthode de calcul du courant admissible et pour éviter le dommage des conducteurs
- Le calcul de la chute de tension pour éviter les pertes et pour vérifier la section des conducteurs si la chute de tension est supérieur à 5%.

Chapitre 3 : Sélection Des Disjoncteurs. Dans ce chapitre, on va travailler sur l'étape suivante :

- Connaître la méthodologie pour le choix de disjoncteurs
- Calcul le courant de court-circuit I_{cc} du chaque circuit
- Choix le disjoncteur suivre le catalogue.

Avant de commencer à faire ce projet, on doit savoir faire :

- Collection data
- Choix des méthodes calculé par l'ordinateur, les programmes...
- Entré data et écrire le rapport
- Evaluation de rapport et bien le corrigé.

Ce projet demande beaucoup d'efforts, patiences et de temps. En plus, on a besoin essentiellement l'aide de professeurs. Ce sont les raisons pour lesquelles ce projet peut être demandé encore la correction.

Je voudrais remercier vivement le professeur CHY Cheapok qui prend beaucoup de temps et d'efforts m'enseigne.

TABLE DES MATIERES

RÉSUMÉ

CHAPITRE 1 : LES METHODOLOGIES POUR CALCULER LES	
DEMANDES DE LA PUISSANCE	
I. Installation des équipements électriques à l'usine	1
	2
III. Ordre des calculs	2
	3
IV.1 Calcul des charges pour les prises de courant	3
IV.2 La puissance d'installée de chaque récepteur $(P_{installé, i})$ et de groupe des récepteurs $(P_{installé, \Sigma})$	
IV.3 La puissance active et réactive moyenne de chaque récepteur (P _{moy, i} , Q _{moy, i}) et de groupe de	4
récepteurs $(P_{\text{moy},\Sigma},Q_{\text{.moy},\Sigma})$	4
	5
IV.5 Le nombre effectif (n _{eff})	5
	6
IV.7 La puissance de l'éclairage (Pécla)	7
IV.8 La puissance active et réactive total $(P_{cal,\Sigma}, Q_{cal,\Sigma})$	8
IV.9 La puissance apparente $(S_{cal,\Sigma})$	8
IV.10 Cartogramme de la charge	8
IV.11 La puissance réactive du compensateur (Q _C)	11
V. Choix de nombres et de puissances des transformateurs (S_{Tr})	13
CHAPITRE 2 : CHOIX DE LA SECTIONS DES CONDUCTEURS ET CALCULER LA CHUTES DES TENSIONS I. Plan souterrain des canalisations électrique	14
II. Ordre de calcul	14
III. La section des conducteurs	15
III.1 Courant d'emploi	15
III.2 Courant admissible III.3 Détermination de la section des conducteurs	16
IV. La chute de tension	1′. 1′.
IV.1 Longueur simple de la canalisation	18
IV.2 Calcul de la chute de tension	19
IV.3 Calcul de la chute de tension relative	20
CHAPITRE 3 : SELECTION DES DISJONCTEURS	
II. Disjoncteurs	22
II.1 Définition	23
	23 23
II.2 Principe de choix	23 23 23
II.2 Principe de choix III.3 Fonctions assurées par le disjoncteur	23 23 23 23
II.2 Principe de choix	23 23 23

25
26
26
27
27
28

CONCLUTIONS

RÉFÉRENCE

ANNEXE 1

ANNEXE 2

ANNEXE 3

ANNEXE 4

ANNEXE 5

ANNEXE 6

ANNEXE 7

ANNEXE 8

ANNEXE 9

LISTE DES TABLEAUX

Tableau 1.1 : Liste des récepteurs et les puissances de chaque bâtiment	1
$\textbf{Tableau 1.2: liste des résultats des calculs } (P_{install\acute{e},i},P_{moy.i},Q_{moy.i},P_{install\acute{e},\Sigma},P_{moy,\Sigma},Q_{.moy,\Sigma}\text{et }K_u)$	5
Tableau 1.3 : liste des résultats des calculs (m, n, n _{eff} , K _{max} , K _{r, max} , P _{cal} , Q _{cal})	8
$\textbf{Tableau 1.4: liste des résultats des calculs} \ (F, \ K_e, \ P_{cal}, \ Q_{cal}, \ P_{\acute{e}cla}, \ P_{cal, \Sigma}, Q_{cal, \Sigma}, S_{cal, \Sigma}) \$	8
Tableau 1.5: $(X_i, Y_i, r_i, \theta_i, X_{o,a}, Y_{o,a}, X_{o,r}, Y_{o,r})$	10
$\textbf{Tableau 1.6:} (Q_{C}, Q_{\text{cal}, \Sigma}, P_{\text{cal}, \Sigma}, \ \cos \varphi_{\text{cal}}, \cos \varphi_{\text{désirée}}, \operatorname{tg} \varphi_{\text{désirée}}, S_{\text{cal}, \Sigma}, Q'_{\text{cal}, \Sigma}, S'_{\text{cal}, \Sigma}) \dots \dots$	12
Tableau 2.1 : Les résultats de courants d'emploi de chaque bâtiment	15
Tableau 2.2 : Les résultats du courant admissible	16
Tableau 2.3 : Les résultats de la section des conducteurs	17
Tableau 2.4 : Les résultats de la longueur simple de la canalisation réelle	18
Tableau 2.5 : La chute de tension par la formule générale	20
Tableau 2.6 : La chute de tension par l'aide de Tableau dans l'ANNEX.7	21
Tableau 3.1 : L'impédance du réseau amont (Z_a)	25
Tableau 3.2 : L'impédance du transformateur (Z_T)	26
Tableau 3.3 : Les résultats de l'impédance des câbles ($\mathbf{Z}_{\mathbb{C}}$)	28
Tableau 3.4 : Les résultats des valeurs des courants de court-circuit	29
Tableau 3.5 : Choix des disjoncteurs	30
LISTE DES FIGURES	
Figure. 1 : Plan général de l'usine (Échelle : 1 cm = 3.35 m)	2
Figure. 2	6

25

Figure. 4 : Plan souterrain des canalisations électrique (Échelle : 1 cm = 3.35 m)

Figure. 5 : Diagramme des réseaux d'alimentation d'usine

CHAPITRE 1:

Les Méthodologies Pour Calculer Les Demandes De La Puissance

Dans ce chapitre, on va travailler sur l'étape suivante :

- Détermination les demandes des puissances de chaque bâtiment
- Cartogramme de la charge
- Détermination les capacités des compensateurs de chaque bâtiment pour améliorer le facteur de puissance
- Détermination le capacité du transformateur et sont caractéristiques.

I. <u>Installation des équipements électriques à l'usine</u>

Puissance installée à l'usine est liste dans le Tableau 1.1 ci-dessous :

Tableau 1.1 : Liste des récepteurs et les puissances de chaque bâtiment

N.	Bâtiment	Groupe d'équipement	Nombre n _i	$\begin{array}{c} Puissance\\ nominale\\ P_{nom,i}\\ [KW] \end{array}$	Coefficient $K_{u, i}$	$Cos \phi_i$	$tg \; \phi_i$	Catégorie
		Four résistant	2	20	0.8	0.75	0.88	
1	Bâtiment 1	Machines outils	10	10	0.15	0.6	1.33	II
		Aspirateurs	5	4	0.6	0.8	0.75	
		Cran	6	10	0.1	0.5	1.73	
2	Bâtiment 2	Machines outils	5	4	0.15	0.6	1.33	
2	Datiment 2	Compresseurs	5	2	0.7	0.8	0.75	11
		Aspirateurs	10	1	0.6	0.8	0.75	
	Bâtiment 3	Machines outils	2	15	0.15	0.6	1.33	
3	Atelier de	Convoyeur	5	5	0.4	0.75	0.88	
3	production	Aspirateurs	4	4	0.6	0.8	0.75	111
	des câbles	Compresseurs	3	3	0.7	0.8	0.75	
	Bâtiment 4	Machines outils	5	4	0.15	0.6	1.33	
4	Atelier	Compresseurs	6	2.5	0.7	0.8	0.75	II
	Mécanique	Aspirateurs	5	1	0.6	0.8	0.75	
		Machines outils	5	2	0.15	0.6	1.33	
5	Bâtiment 5 Sous Atelier	Compresseurs	5	2	0.7	0.8	0.75	II
	Sous Attende	Aspirateurs	10	1	0.6	0.8	0.75	
6	Bâtiment 6 Station de	Machine pompage	6	5	0.7	0.8	0.75	II
	pompage	Aspirateurs	5	2	0.6	0.8	0.75	

7	Bâtiment 7 Magasin	Aspirateurs	4	2.5	0.6	0.8	0.75	III
8	Bâtiment 8 Magasin	Aspirateurs	5	2	0.6	0.8	0.75	III
9	Bâtiment 9	Machine outils	2	4	0.15	0.6	1.33	II
9	Garage	Compresseurs	1	4	0.7	0.8	0.75	11
10	Bâtiment 10	Four de résistance	2	4	0.8	0.75	0.88	
10	Direction, Cantine	Aspirateurs	4	1	0.6	0.8	0.75	II

II. Plan général de l'usine

Le plan général de l'usine se trouve dans le Figure. 1 : Plan général de l'usine (Échelle : 1 cm = 3.35 m).

III. Ordre des calculs

- \triangleright Détermination de la puissance d'installée de chaque récepteur ($P_{installé, i}$) et de groupe des récepteurs ($P_{installé, \Sigma}$):
 - Nombre de récepteur (n_i)
 - Puissance nominale de récepteur (P_{nom, i})
- $\begin{tabular}{l} \begin{tabular}{l} \begin{tab$
 - Facteur d'utilisation (K_{u, i})
 - Nombre de récepteur (n_i)
 - Puissance nominale de chaque récepteur (P_{nom. i})
 - Facteur de puissance Cos φ_i
- \triangleright Détermination du facteur d'utilisation (K_u):
 - Puissance moyenne de groupe des récepteurs ($P_{mov \Sigma}$)
 - Puissance d'installée ($P_{installé, \Sigma}$)
- ➤ Détermination du nombre effectif (n_{eff}):
 - Puissance moyenne du chaque récepteur (Pmoy, i)
 - Nombre de récepteur (n_i)
 - Le facteur m

Figure. 1 : Plan général de l'usine (Échelle : 1 cm = 3.35 m)

- \triangleright Détermination de la puissance active et réactive maximale (P_{max}/P_{cal} , Q_{max}/Q_{cal}):
 - Puissance active et réactive moyenne de groupe des récepteurs $(P_{mov,\Sigma}, Q_{mov,\Sigma})$
 - $K_{\text{max}} = f(n_{\text{eff}}, K_{\text{u}})$
- ➤ Détermination de la puissance de l'éclairage (P_{écla}):
 - Densité lumineuse (K_e)
 - Surface de l'éclairage (F)
- ➤ Construction de Cartogramme de la charge:
 - Puissance active et réactive total $(P_{cal \Sigma}, Q_{cal \Sigma})$
 - Coordonné de chaque bâtiment

- Cos φ
- tg c
- Puissance active et réactive total ($P_{cal,\Sigma}$, $Q_{cal,\Sigma}$)

- Puissance apparente $(S_{cal,\Sigma})$, Puissance apparente après la compensateur dans le bâtiment $S'_{cal,\Sigma}$
- Coefficient de surcharge du transformateur
- N nombre de transformateur

IV. Méthodologies des calculs

La détermination des demandes puissance doit appliquer comme des étapes suivantes :

IV.1 Calcul des charges pour les prises de courant

<u>Remarque</u>: On prend un circuit de 2 prises de courant d'intensité $I_p=13$ A, $U_{nom}=220$ V dans chaque bâtiment. On estime que les récepteurs fonctionnent avec : $K_u=0.3$ et $K_e=1$.

➤ Le courant d'emploi :

$$I_b = I_n \cdot K_u \cdot K_s \cdot K_e$$

Où K_u: Coefficient d'utilisation

$$K_s = 0.1 + \frac{0.8 \rightarrow 0.9}{n}$$
: Coefficient de simultanéité

K_e: Coefficient d'extension

 $I_n = K_s.I_t$: Intensité du courant nominal $I_t = n.I_p$: Intensité du prise de courant total

I_p: Intensité du courant pour le socle

n : Nombre de prises

Pour chaque bâtiment, on a donc:

- Coefficient de simultanéité : $K_s = 0.1 + \frac{0.9}{2} = 0.55$
- Intensité du prise de courrant total : I_t = $n.I_p = 2 \times 13 = 26$ A
- Intensité du courant nominal : $I_n = K_s$. $I_t = 0.55 \times 26 = 14.3$ A
- Intensité du courant d'emploi : $I_b = I_n \cdot K_u \cdot K_s \cdot K_e = 14.3 \times 0.3 \times 0.55 \times 1 = 2.36 \text{ A}$
- Puissance utilisée : $P_b = U_{nom} \cdot I_b = 220 \times 2.36 = 519.2 \text{ W}$
- Puissance installé pour les prises du courant : $P_p = U_{nom} \cdot I_n = 220 \times 14.3 = 3146 \, W$
- Puissance demandée : $P_{dem.} = K_s \cdot P_p = 0.55 \times 3146 = 1730.3 \, \text{W} \approx 0.2 \, \text{KW}$

<u>Donc</u>: Pour chaque bâtiment, on prend puissance de pries du courant $P_{dem.} \approx 0.2 \, KW$ avec le facteur d'utilisation K_u =0.8, $Cos\phi_i$ =0.8 et $tg\phi_i$ =0.75. Pour le nombre de circuits de pries du courant, on choisit par la demande de puissance des récepteurs dans chaque bâtiment.

IV.2 <u>La puissance d'installée de chaque récepteur</u> $(P_{installé, i})$ <u>et de groupe des récepteurs</u> $(P_{installé, \Sigma})$

➤ La puissance installée de chaque récepteur (P_{installé}, i) est obtenue sous la forme:

$$P_{\text{installé, i}} = n_i \cdot P_{\text{nom, i}}$$
 (1.1)

Où n_i : Nombre de chaque récepteur dans le bâtiment

P_{nom, i} : Puissance active nominale de chaque récepteur dans le bâtiment [KW]

 \triangleright La puissance installée de groupe des récepteurs ($P_{installé, \Sigma}$) est obtenue sous la forme:

$$P_{\text{installé}, \Sigma} = \sum_{i=1}^{n} n_i \cdot P_{\text{nom}, i} = \sum_{i=1}^{n} P_{\text{installé}, i}$$
(1.2)

$\begin{tabular}{ll} \textbf{IV.3} & \underline{\textbf{La puissance active et réactive moyenne de chaque récepteur}} & (P_{moy, .i}, Q_{moy, i}) & \underline{\textbf{et de groupe des récepteurs}} & (P_{moy, \Sigma}, Q_{.moy, \Sigma}) \\ \hline \end{tabular}$

La puissance active et réactive moyenne de chaque récepteur $(P_{moy, .i}, Q_{moy, i})$ dans le bâtiment est obtenue sous la forme:

$$P_{\text{moy},i} = K_{u,i} \cdot n_i \cdot P_{\text{nom},i}$$

$$Q_{\text{moy},i} = P_{\text{moy},i} \cdot \text{tg } \varphi_i$$
(1.3)

Où K_{u, i} : Facteur d'utilisation de chaque récepteur dans le bâtiment

n_i: Nombre de chaque récepteur dans le bâtiment

 $P_{nom, i}$: Puissance active nominale de chaque récepteur dans le bâtiment [KW] $Q_{nom, i}$: Puissance réactive nominale de chaque récepteur dans le bâtiment [KVar]

$$tg\,\varphi_{i} = \sqrt{\frac{1 - \cos^{2}\varphi_{i}}{\cos^{2}\varphi_{i}}}$$

La puissance active et réactive moyenne de groupe des récepteurs ($P_{\text{moy},\Sigma}$, $Q_{\text{.moy},\Sigma}$) est obtenue sous la forme:

$$P_{\text{moy},\Sigma} = \sum_{i=1}^{n} K_{u,i} \cdot n_{i} \cdot P_{\text{nom},i} = \sum_{i=1}^{n} P_{\text{moy},i}$$

$$Q_{\text{moy},\Sigma} = \sum_{i=1}^{n} P_{\text{moy},i} \cdot \text{tg } \varphi_{i} = \sum_{i=1}^{n} Q_{\text{moy},i}$$
(1.4)

IV.4 Le facteur d'utilisation (Ku)

Toutes les charges individuelles ne fonctionnent pas nécessairement à la puissance nominale évaluée complète, ni nécessairement en même temps. Dans les conditions d'utilisation normales, à cause de la durée d'utilisation ou de fonctionnement de chaque appareillage ou équipement, la consommation d'une charge est quelque fois moins que cela indiqué comme son estimation de la puissance nominale.

La puissance utilisée est donc dépend de facteur d'utilisation (K_u) qui dépend de la durée d'utilisation ou de fonctionnement de chaque appareillage ou équipement. Le facteur d'utilisation (K_u) peut varie entre 0.3 et 0.9. Pour l'éclairage $K_u = 0.75$ à 0.8 est adapté. En même temps, on peut calculer le facteur d'utilisation suivre la formule ci-dessous :

$$K_{u} = \frac{\sum_{i=1}^{n} K_{u,i} \cdot n_{i} \cdot P_{\text{nom},i}}{\sum_{i=1}^{n} n_{i} \cdot P_{\text{nom},i}} = \frac{P_{\text{moy},\Sigma}}{P_{\text{installé},\Sigma}}$$
(1.5)

En utilisant l'équation (1.1), (1.2), (1.3), (1.4) et (1.5), on a les résultats des calculs dans le **Tableau 1.2**.

IV.5 Le nombre effectif (neff)

En générale, le nombre effectif est déterminé par la formule :

$$n_{eff} = \frac{\left(\sum_{i=1}^{n} n_{i} \cdot P_{nom,i}\right)^{2}}{\sum_{i=1}^{n} n_{i} \cdot (P_{nom,i})^{2}} = \frac{\left(\sum_{i=1}^{n} P_{install\acute{e},i}\right)^{2}}{\sum_{i=1}^{n} n_{i} \cdot (P_{nom,i})^{2}} = \frac{\left(P_{install\acute{e},\Sigma}\right)^{2}}{\sum_{i=1}^{n} n_{i} \cdot (P_{nom,i})^{2}}$$
(1.6)

$\lambda_{\text{moy},\Sigma}$ K_{u} [KVar]		0.71					26.52 0.2					29.11 0.4					16.515 0.4			14 145	0.5			21.45 0.7		20		90 25			6.096 0.5			9.832 0.8	
																																_		3.6	
$\begin{array}{c c} \mathbf{P}_{\text{moy},\Sigma} \\ [\text{KW}] \end{array}$		63.6	0.5.0				25.2					33.6				-	19.7			-	1/./			28.6		7 1	0.7	91	0.7		7.2			12	_
$\begin{array}{c c} P_{\text{installé},\Sigma} \\ [KW] \end{array}$		166	001				104					84				,	4			5	, ,			42		,	7	C1	71		16			16	_
Q _{moy.i} [KVar]	28.16	19.95	6	3.6	10.38	3.99	5.25	4.5	2.4	5.985	8.8	7.2	4.725	2.4	3.99	7.875	2.25	2.4	1.995	5.25	4.5	2.4	15.75	4.5	1.2	4.5	1.2	4.5	1.2	1.596	2.1	2.4	5.632	1.8	
P _{moy.i} [KW]	32	15	12	4.8	9	3	7	9	3.2	4.5	10	9.6	6.3	3.2	3	10.5	3	3.2	1.5	7	9	3.2	21	9	1.6	9	1.6	9	1.6	1.2	2.8	3.2	6.4	2.4	_
$P_{install\acute{e},i}\\ [KW]$	40	100	20	9	09	20	01	10	4	30	25	91	6	4	20	15	5	4	10	10	10	4	98	10	2	01	2	10	2	8	4	4	8	4	
tgφ _i	0.88	1.33	0.75	0.75	1.73	1.33	0.75	0.75	0.75	1.33	0.88	0.75	0.75	0.75	1.33	0.75	0.75	0.75	1.33	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	1.33	0.75	0.75	88.0	0.75	
Cosq _i	0.75	9.0	8.0	8.0	0.5	9.0	8.0	8.0	8.0	9.0	0.75	8.0	8.0	8.0	9.0	8.0	8.0	8.0	9.0	8.0	8.0	8.0	8.0	8.0	8.0	8.0	8.0	8.0	8.0	9.0	8.0	8.0	0.75	8.0	
$K_{u,\;i}$	8.0	0.15	9.0	8.0	0.1	0.15	0.7	9.0	8.0	0.15	0.4	9.0	0.7	8.0	0.15	0.7	9.0	8.0	0.15	0.7	9.0	8.0	0.7	9.0	8.0	9.0	8.0	9.0	8.0	0.15	0.7	8.0	8.0	9.0	
P _{nom,i} [KW]	20	10	4	0.2	10	4	2	1	0.2	15	5	4	3	0.2	4	2.5	1	0.2	2	2	1	0.2	5	2	0.2	2.5	0.2	2	0.2	4	4	0.2	4	1	
n _i	2	10	5	30	9	5	5	10	20	2	5	4	3	20	5	9	5	20	5	5	10	20	9	5	10	4	10	5	10	2	1	20	2	4	
Groupe d'équipement	Four résistant	Machines outils	Aspirateurs	Pris de courant	Cran	Machines outils	Compresseurs	Aspirateurs	Pris de courant	Machines outils	Convoyer	Aspirateurs	Compresseurs	Pris de courant	Machines outils	Compresseurs	Aspirateurs	Pris de courant	Machines outils	Compresseurs	Aspirateurs	Pris de courant	Machine pompage	Aspirateurs	Pris de courant	Aspirateurs	Pris de courant	Aspirateurs	Pris de courant	Machine outils	Compresseurs	Pris de courant	Four de résistance	Aspirateurs	
Bâtiment		Dôtimont 1	Daument 1				Bâtiment 2				Battment 3	Atellel de production	production des câbles	des carres	D	Batiment 4	Atelier	Mecanique		Bâtiment 5	Sous Atelier		Bâtiment 6	Station de	pompage	Bâtiment 7	Magasin	Bâtiment 8	Magasin		Baument 9	Oalage	Bâtiment 10	Direction,	
Ż.		-	-				2					3				,	4			ų	n			9		ľ	`	٥	0		6			10	

Le facteur de la puissance nominale maximale entre la puissance nominale minimum des récepteurs dans les groupes est déterminé par m :

$$m = \frac{P_{\text{nom.max}}}{P_{\text{nom.min}}}$$
 (1.7)

En cas particulier:

Si m<3 et n>4
$$\Rightarrow$$
 $n_{eff} = n = \sum_{i=1}^{n} n_i$ (1.8)

IV.6 La puissance active et réactive maximale (Pmax/Pcal, Qmax/Qcal)

Après la formule, on a :

$$P_{\text{max}} = P_{\text{cal}} = K_{\text{max}} \cdot P_{\text{moy}, \Sigma}$$

$$Q_{\text{max}} = Q_{\text{cal}} = K_{\text{r, max}} \cdot Q_{\text{moy}, \Sigma}$$
(1.9)

Où

 P_{max}/P_{cal} : Puissance active maximale ou la puissance active calcul dans le bâtiment [KW] Q_{max}/Q_{cal} : Puissance réactive maximale ou la puissance réactive calcul dans le bâtiment

[KVar]

 $P_{\text{moy},\Sigma}$: Puissance active moyenne totale dans le bâtiment [KW]

 $Q_{.moy,\Sigma}$: Puissance réactive moyenne totale dans le bâtiment [KVar]

$$K_{\text{max}} = f(n_{\text{eff}}, K_u)$$

$$K_{_{r,\,max}} = \begin{cases} 1 & \text{Si } n_{_{eff}} > 10 \\ 1.1 & \text{Si } n_{_{eff}} \leq 10 \end{cases} \label{eq:Krmax}$$

Remarque: On détermine la valeur $K_{max} = f(n_{eff}, K_u)$ par le **Tableau** dans **ANNEXE.1.**

ightharpoonup La formule pour calculer la valeur $K_{max} = f(n_{eff}, K_u)$

Figure. 2

Après la figure. 1, On peut calculer X_A par :

$$\frac{X_A - X_1}{Y_A - Y_1} = \frac{X_2 - X_1}{Y_2 - Y_1}$$

$$(X_A - X_1) \cdot (Y_2 - Y_1) = (X_2 - X_1) \cdot (Y_A - Y_1)$$

$$X_A Y_2 - X_A Y_1 - X_1 Y_2 + X_1 Y_1 = X_2 Y_A - X_2 Y_1 - X_1 Y_A + X_1 Y_1$$

$$X_A Y_2 - X_A Y_1 - X_1 Y_2 = X_2 Y_A - X_2 Y_1 - X_1 Y_A$$

$$X_A (Y_2 - Y_1) = X_2 (Y_A - Y_1) + X_1 (Y_2 - Y_A)$$

$$\Rightarrow X_A = \frac{X_1 (Y_2 - Y_A) + X_2 (Y_A - Y_1)}{(Y_2 - Y_1)}$$

Exemple:

Pour le bâtiment 1, On a n_{eff} =14 et K_u =0.4. Après le **Tableau** dans **ANNEXE.1** pour la valeur $K_{max} = f(n_{eff}, K_u)$, on a 12< n_{eff} <16.

$n_{\rm eff}$ $K_{\rm u}$	0.4
$Y_1 = 12$	$X_1 = 1.36$
Y _A =15	$X_A=?$
Y ₂ =16	$X_2=1.28$

$$\Rightarrow X_A = K_{max} = \frac{X_1(Y_2 - Y_A) + X_2(Y_A - Y_1)}{(Y_2 - Y_1)} = \frac{1.36(16 - 15) + 1.28(15 - 12)}{16 - 12} = 1.3$$

Donc:

$$n_{eff} = 14 \Rightarrow K_{max} = 1.3$$

IV.7 <u>La puissance de l'éclairage</u> (P_{écla})

Pour le projet d'alimentation de l'usine de l'entreprise industrielle, la charge pour l'éclairage peut-être calculée par la formule :

$$P_{\text{\'ecla}} = K_{\text{\'e}} \cdot F \tag{1.10}$$

Où K_e: Densité lumineuse dans le bâtiment [W/m²], varie entre 5 à 20 W/m²

F : Surface de l'éclairage dans le bâtiment [m²]

P_{écla} : Puissance de l'éclairage dans le bâtiment

Nom: PHOR Vicheka Professeur: CHY Cheapok Groupe: I4-GEE - 7 - Session: Alimentation d'usine

IV.8 <u>La puissance active et réactive total</u> $(P_{cal,\Sigma}, Q_{cal,\Sigma})$

La puissance totale, c'est un somme entre la puissance maximale et la puissance de l'éclairage. Donc, on peut écrire comme suivant :

$$P_{cal,\Sigma} = P_{cal} + P_{écla}$$

$$Q_{cal,\Sigma} = Q_{cal}$$
(1.11)

Où P_{cal} : Puissance active maximale ou la puissance active calcul dans le bâtiment [KW]

Pécla : Puissance éclairage dans le bâtiment [KW]

Q_{cal}: Puissance réactive maximale dans le bâtiment [KVar]

IV.9 La puissance apparente $(S_{cal \Sigma})$

La puissance appelée peut déterminer par la formule :

$$S_{cal,\Sigma} = \sqrt{(P_{cal,\Sigma})^2 + (Q_{cal,\Sigma})^2}$$
(1.12)

Où $S_{cal \Sigma}$: Puissance apparente dans le bâtiment [KVA]

 $P_{cal \Sigma}$: Puissance active total dans le bâtiment [KW]

Q_{cal \(\Sigma\)}: Puissance réactive total dans le bâtiment [KVar]

Remarque: La puissance totale dans l'usine est la somme de la puissance dans chaque bâtiment.

En utilisant l'équation (1.6), (1.7), (1.8), (1.9), (1.10), (1.11) et (1.12), on a les résultats des calculs dans le **Tableau 1.3** et **Tableau 1.4**.

IV.10 Cartogramme de la charge

Le cartogramme s'utilise pour trouver les coordonnées de l'endroit où on peut installer la poste de transformation par la norme technico-économique. En plus, le cartogramme montre le potentiel de besoin de charges d'éclairage dans chaque bâtiment ou atelier de l'usine.

Le cartogramme doit être tracé dans le plan de mass avec l'échelle bien précise. Il faut bien indiquer les coordonnées du centre de gravité de chacun des bâtiments de l'usine. Les coordonnées du centre de charges électriques de l'usine dans lequel on placera le ou les transformateurs et les compensateurs (condensateurs) peuvent être calculées par les formules :

_
0
0
-
Š
Д
•
2
-
\mathbf{Z}
26.
7
₩.
٦
Ξ.
լ. n. n _{eff} .
;
Ę
70
Ť
2
$\vec{=}$
<u> </u>
~
تة
D
S
=
تن
Ξ
2
٠,e
S
Ď
٥
ž
Ĕ
3: L
~
_
=
ಷ
Į
4
_c2

Mathement Compression Mathematical Compression Mathematical Mathemati					\ \ \	,,CII,IIIaA,	1, max; - car	, can)												
Bătiment I Neutrosisam 2 40 800 15 95 40 60 15 95 40 15 95 15 95 15 95 15 <td>ż</td> <td>Bâtiment</td> <td>Groupe d'équipement</td> <td>$n_{\rm i}$</td> <td>$\begin{array}{c c} P_{\text{nom,i}} \\ [KW] \end{array}$</td> <td>$P_{install\ell,\ i} \\ [KW]$</td> <td>$\mathbf{n_i} \cdot \left(\mathbf{P_{nomj}}\right)^2$[KW]</td> <td></td> <td></td> <td>$P_{\text{installé},\Sigma} \\ [KW]$</td> <td>$P_{\rm moy, \Sigma} \\ [\rm KW]$</td> <td>$Q_{.moy,\Sigma} \\ [KVar]$</td> <td>$\mathbf{K}_{\mathrm{u}}$</td> <td>ш</td> <td>n</td> <td></td> <td></td> <td>Kr, max</td> <td>\Pr_{cal} [KW]</td> <td>${\rm Q_{cal}} \\ {\rm [KVar]}$</td>	ż	Bâtiment	Groupe d'équipement	$n_{\rm i}$	$\begin{array}{c c} P_{\text{nom,i}} \\ [KW] \end{array}$	$P_{install\ell,\ i} \\ [KW]$	$\mathbf{n_i} \cdot \left(\mathbf{P_{nomj}}\right)^2$ [KW]			$P_{\text{installé},\Sigma} \\ [KW]$	$P_{\rm moy, \Sigma} \\ [\rm KW]$	$Q_{.moy,\Sigma} \\ [KVar]$	\mathbf{K}_{u}	ш	n			Kr, max	\Pr_{cal} [KW]	${\rm Q_{cal}} \\ {\rm [KVar]}$
Bățiment 1 Machines ounis 10 100 100 100 112 1993 106 638 631 60 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 48 36 10 60 10 60 60 60 10 80 80 10 80 80 10 80 10 80 80 10 80 80 10 80 80 10 80 80 10 80 80 10 80 80 80 10 80 80 10 10 80 80 10 80 80 10 10 80 80 10 10 80 10 80 10 80 10 80 10 10 10 10 10 10 80 10 80 10 80 10 10			Four résistant	2	20	40	800	32	28.16											
Bittiment Aspirateurs S 4 2 2 2 2 4 2 2 4 2 4 2 4 4	-	Dôtimont 1	Machines outils	10	10	100	1000	15	19.95	166	8 2 8	60.71	7	2	77	7	7		62 04	17.09
Bainnent 2	٦	Datiment 1	Aspirateurs	5	4	20	80	12	6	901	0.5.0	17.00	†	3	÷	CI		٦	92.74	00.71
Bâtiment 2 Cram Occuprescents 6 10 60 60 60 60 60 60 80 60 60 80 60 60 80 60			Pris de courant	30	0.2	9	1.2	4.8	3.6											
Bitiment Compression Statement Compression Statement Compression Statement Compression Statement Compression Statement Stateme			Cran	9	10	09	009	9	10.38											
Bătiment 2 Compresseurs soils 2 1			Machines outils	5	4	20	80	3	3.99											
Batiment Acomposeure	2	Bâtiment 2	Compresseurs	5	2	10	20	7	5.25	104	25.2	26.52	0.2	20	46		.645	_	41.45	26.52
Priside courant 20 0.2 4 0.8 3.2 2.4 Priside courant 20 0.2 4.5 6.4 9.6 1.2			Aspirateurs	10	1	10	10	9	4.5											
Băţinent 4 Machines outiks 2 i 15 30 450 450 45 5988 458 5988 45 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5			Pris de courant	20	0.2	4	8.0	3.2	2.4											
Abelian Lational Assignment A Action counted Compresseurs State Counted			Machines outils	2	15	30	450	4.5	5.985											
Architer of des cables Aspirateurs 4 4 16 64 96 723 84 336 29.11 04 75 34 11 1395 1 46.87 des cables Compressents 3 3 9 27 6.2 4.725 4.725 44 19.7 16.515 9.4 1 1.395 1 46.8 Bâtiment Acenimes outlis 5 4 2.5 15 3.59 44 19.7 16.515 9.4 20 8 3.99 49.5 1.85 44 19.7 16.515 9 16 1.2 1.85 44 19.7 16.515 9 16 1.2 1.85 44 19.7 16.515 9 16 1.2 1.8 1.7 14.145 9 16 1.2 1.8 4.5 1.7 14.145 9 16 1.2 1.8 4.5 1.8 1.7 14.145 9 16 1.2 1.8 <t< td=""><td></td><td>Bâtiment 3</td><td>Convoyeur</td><td>5</td><td>5</td><td>25</td><td>125</td><td>10</td><td>8.8</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>		Bâtiment 3	Convoyeur	5	5	25	125	10	8.8											
Production Pro	3	Ateller de	Aspirateurs	4	4	16	64	9.6	7.2	84	33.6	29.11	0.4	75	34		395	П	46.87	29.11
Bătiment 4 Machine courant 1 Machine courant 1 20 4 0.8 3.2 2.4 19.7 16.515 6.4 10 1 1 2.5 1 2.5 1.8 3.89 3.89 4 19.7 16.515 6.4 1.6 1.8 1 2.5 1 2.5 1.8 3.89		des câbles	Compresseurs	3	3	6	27	6.3	4.725											
Bâtiment 4 Archiver courists Machines outils 5 4 20 80 3 3.99 44 19.7 16.515 0.4 20 36 16 1.28 1 25.22 Accanique Aspiracurs 6 2.5 15 37.5 10.5 2.25 34 19.7 16.515 0.4 20 37.5 10.5 2.25 4 0.8 3.2 2.25 4 0.8 3.2 2.25 34 17.7 14.145 0.9 36 1.0 20 1.5 1.995 34 17.7 14.145 0.5 1.0 20 1.2 2.24 3.2 3.4 17.7 14.145 0.5 1.0 2.0 1.0 20 1.2 1.0 20 1.2 2.4 3.2 3.4 1.7 14.145 0.5 1.0 2.0 1.2 1.0 2.0 2.2 2.0 1.0 2.0 2.2 3.0 1.15 3.2 3.2 3.2			Pris de courant	20	0.2	4	8.0	3.2	2.4											
Mecanique Aspirateurs 6 2.5 15 37.5 10.5 37.5 44 19.7 16.515 9.4 20 36 10.5 10.5 37.5 3.5			Machines outils	5	4	20	80	3	3.99											
Mécanique Aspiraleurs 5 1 5 3 2.25 7 7.77 7 <td>_</td> <td>Batiment 4</td> <td>Compresseurs</td> <td>9</td> <td>2.5</td> <td>15</td> <td>37.5</td> <td>10.5</td> <td>7.875</td> <td>7</td> <td>10.7</td> <td>16.515</td> <td>7</td> <td>00</td> <td>36</td> <td></td> <td>ò</td> <td>-</td> <td>CC 30</td> <td>16.50</td>	_	Batiment 4	Compresseurs	9	2.5	15	37.5	10.5	7.875	7	10.7	16.515	7	00	36		ò	-	CC 30	16.50
Bâtiment 5 courant Trongerous courant of compresseurs 5 2 4 0.8 3.2 2.4 9	+	Atellel Mécanique	Aspirateurs	5	1	5	5	3	2.25	†	13.7	010.01	†.	07	00		07:	-	77.67	10.32
Bâtiment 5 Compresseurs of Compresseurs 5 2 10 20 1.5 3.53 34 17.7 14.145 0.5 10 40 23 1.182 1 20.92 Sous Atelier Pris de courant 10 1 10 10 20 4 0.8 3.2 2.4 4 5.25 3.4 17.7 14.145 0.5 10 20 1 20 2.4 4 0.8 3.2 2.4 4 5.25 3.4 17.7 14.145 0.5 1.0 1.0 1 1 1 1 1 1 1 1 1 1 1 1 2.4 4 5.2 1 1 1 2 2 1		an Luccanud ac	Pris de courant	20	0.2	4	8.0	3.2	2.4											
Bâtiment 5 Compresseurs 5 2 10 20 7 5.25 34 17.7 14.145 0.5 10 40 23 1.182 1 20.92 Sous Aetleir Aspirateurs 10 1 10 10 6 4.5 4 6<			Machines outils	5	2	10	20	1.5	1.995											
Sous Atelier Aspirateurs 10 1 10 10 10 10 10 10 10 10 4.5 7.7 17.1.7 17.1.7 17.1.0 10 10 10 10 10 10 10 10 10 10 10 10 10 150 2.1 15.7 12.7 <td>v</td> <td>Bâtiment 5</td> <td>Compresseurs</td> <td>5</td> <td>2</td> <td>10</td> <td>20</td> <td>7</td> <td>5.25</td> <td>7</td> <td>7.7.1</td> <td>77171</td> <td>2</td> <td>1</td> <td>9</td> <td></td> <td>182</td> <td>-</td> <td>00 00</td> <td>14 15</td>	v	Bâtiment 5	Compresseurs	5	2	10	20	7	5.25	7	7.7.1	77171	2	1	9		182	-	00 00	14 15
Bâtiment 6 Machine pompage Aspirateurs 6 Courant 5 30 150 2.4 4.5 2.8 21.45	C	Sous Atelier	Aspirateurs	10	1	10	10	9	4.5	, 1	1/./	14.143	C.O	21			701:	-	26.07	14.13
Bâtiment 6 Machine pompage Aspirateurs 5 30 150 20 4.5 4.5 4.5 28.6 21.45 0.7 25 21 10 1.1 33.18 Station de Pompage Aspirateurs 5 2 10 20 6 4.5 1.2 7.6 5.7 0.6 1.2 1.2 1.6 1.2 7.6 5.7 0.6 1.2 <td></td> <td></td> <td>Pris de courant</td> <td>20</td> <td>0.2</td> <td>4</td> <td>8.0</td> <td>3.2</td> <td>2.4</td> <td></td>			Pris de courant	20	0.2	4	8.0	3.2	2.4											
Station de pompage Aspirateurs 5 2 10 20 6 4.5 4.5 4.5 21.45 2.5 21 2 21.45 2.5 21 1 1 1 33.18 Bâtiment 7 Aspirateurs 4 2.5 10 2.5 6.45 4.5 12 7.6 5.7 0.6 1.2 1		Bâtiment 6	Machine pompage	9	5	30	150	21	15.75											
Bâtiment 7 Aspirateurs Augasin 4 2.5 0.4 1.6 1.2 1.6 1.2 7.6 5.7 0.6 1.2.5 1.4 6 1.37 1.1 10.41 Bâtiment 7 Aspirateurs 4 2.5 10 2.5 6.4 1.2 1.5 1.2 1.5 1.2 1.2 1.5 1.2 1.2 1.5 1.2 1.3 1.1 1.0.1 1.1 1.2 1.5 1.2 1.5 1.5 1.5 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1	9	Station de	Aspirateurs	5	2	10	20	6	4.5	42	28.6	21.45	0.7	25	21		1.16	1:1	33.18	23.60
Bâtiment 7 Magasin Aspirateurs Pris de courant 4 2.5 10 2.5 6 4.5 1.2 7.6 5.7 0.6 12.5 14 6 1.37 1.1 10.41 Bâtiment 8 Magasin Aspirateurs 5 2 10 2.0 6 4.5 1.2 1.5 1.2 1.6 1.2 1.6 1.2 1.6 1.7 6.096 0.5 1.0 1.3 1.1 10.41 Bâtiment 9 Compresseurs Compresseurs 1 4 4 1.6 2.8 2.1 1.6 7.2 6.096 0.5 2 1.1 11.30 Bâtiment 10 Compresseurs 1 4 4 1.6 2.8 2.1 1.6 7.2 6.096 0.5 2 1.1 11.30 Bâtiment 10 Four de résistance 2 4 8 3.2 2.4 1.6 1.8 2.4 1.8 1.8 1.9 1.1 1.1 1.1 1.0 1.0 1.		pompage	Pris de courant	10	0.2	2	0.4	1.6	1.2											
Magasin Pris de courant 10 0.2 2 0.4 1.5 1.2 1.5 1.5 1.2 1.4 0 1.2 1.4 0 1.2 1.5 <t< td=""><td>1</td><td>Bâtiment 7</td><td>Aspirateurs</td><td>4</td><td>2.5</td><td>10</td><td>25</td><td>9</td><td>4.5</td><td>,</td><td>2 1</td><td>7</td><td>90</td><td>7 C1</td><td>7</td><td></td><td>27</td><td>1 1</td><td>10 41</td><td>LC 3</td></t<>	1	Bâtiment 7	Aspirateurs	4	2.5	10	25	9	4.5	,	2 1	7	90	7 C1	7		27	1 1	10 41	LC 3
Bâtiment 8 Magasin Aspirateurs outils Garage 5 2 10 20 6 4.5 12 7.6 5.7 0.6 10 15 7 1.33 1.1 10.11 Magasin Pris de courant 10 0.2 2 0.4 1.6 1.2 1.596 1.2 1.59 2.1 1.6 7.2 6.096 0.5 20 23 5 1.57 1.1 11.30 Bâtiment 10 Garage Pris de courant 2 4 4 4 6.4 5.632 6.4 5.632 6.4 5.632 6.4 5.632 6.4 5.632 0.8 16 17 1.8 16 17 1.8 16 17 1.8 16 1.2 9.832 0.8 20 20 20 1.1 4 4 4 4 2.4 1.8 16 1.2 9.832 0.8 20 26 7 1.09 1.1 13.0 Direction,	,	Magasin	Pris de courant	10	0.2	2	0.4	1.6	1.2	17	0.7	7.7	0.0	C:71	<u>+</u>		/6.1	1:1	10.41	0.77
Magasin Pris de courant 10 0.2 2 4 8 32 1.2 1.596 12 7.0 5.0 10 10 1.5 1.1 11.30 Bâtiment 9 Garage Pris de courant Compresseurs 1 4 4 16 2.8 2.1 16 7.2 6.096 0.5 20 23 5 1.57 1.1 11.30 Bâtiment 10 Four de résistance 2 4 8 32 6.4 5.632 6.4 5.632 6.4 5.632 0.8 20 26 7 1.09 1.1 13.08 Direction, Aspirateurs 4 1 4 4 2.4 1.8 16 12 9.832 0.8 20 26 7 1.09 1.1 13.08	٥	Bâtiment 8	Aspirateurs	5	2	10	20	9	4.5	,	21	1	90	10	7		22	1 1	10 11	LC 3
Bâtiment 9 Garage Machine outils 2 4 8 32 1.2 1.596 16 7.2 6.096 0.5 20 23 5 1.57 1.1 11.30 Bâtiment 10 Poin de résistance 2 4 8 32 6.4 5.632 6.4 5.632 6.4 5.632 16 12 9.832 0.8 20 26 7 1.09 1.1 13.08 Cantine Pris de courant 20 0.2 4 0.8 3.2 2.4 1.8 16 12 9.832 0.8 20 26 7 1.09 1.1 13.08	0	Magasin	Pris de courant	10	0.2	2	0.4	1.6	1.2	71	0.,	7.7	0.0	10	CI			1:1	10.11	0.27
Battment 9 Garage Compresseurs 1 4 4 4 4 4 4 4 4 4 4 4 4 6.08 7.2 6.096 0.5 20 2.3 5 1.57 1.1 11.30 Bâtiment 10 Four de résistance 2 4 8 32 6.4 5.632 6.4 5.632 6.4 5.632 6.4		D \$45.000+0	Machine outils	2	4	8	32	1.2	1.596											
Bâtiment 10 Four de résistance on, and le courant 20 4 8 32 6.4 5.632 6.4 5.632 6.4 16 12 9.832 0.8 20 20 7 1.09 1.1 13.08 Cantine Pris de courant 20 0.2 4 0.8 3.2 2.4 1 4 1 1 4 1 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4 4 1 4 4 1 4	6	Garaga	Compresseurs	1	4	4	16	2.8	2.1	16	7.2	960'9	0.5	20	23		.57	1.1	11.30	6.71
Bâtiment 10 Four de résistance 2 4 8 32 6.4 5.632 16 12 9.832 0.8 20 26 7 1.09 1.1 13.08 Direction, Cantine Pris de courant 20 0.2 4 0.8 3.2 2.4 1 4 1.1 13.08 1.1 13.08		Oarage	Pris de courant	20	0.2	4	8.0	3.2	2.4											
Direction, Aspirateurs 4 1 4 4 2.4 1.8 16 12 9.832 0.8 20 26 7 1.09 1.1 13.08 Cantine Pris de courant 20 0.2 4 0.8 3.2 2.4		Bâtiment 10	Four de résistance	2	4	8	32	6.4	5.632											
Pris de courant 20 0.2 4 0.8 3.2	10	Direction,	Aspirateurs	4	1	4	4	2.4	1.8	16	12	9.832	8.0	20	26		60.1	1:1	13.08	10.82
		Cantine	Pris de courant	20	0.2	4	8.0	3.2	2.4											

-	
S	
٠	
7	
Õ	
,	
<u>1</u>	
Ъ	
•	
Scla	
Ъ	
Ę	
\sim	
٠,	
_ ES	
Д	
i i	
F, K	
H	
S	
ul	
lc	
CS	
S	
þ	
ts.	
ta	
ul	
ésı	
Sr	
es	
q	
te	
lis	
$\overline{}$	
4	
1.	
m	
ea	
bl	
Γ a	

Bâtiment 1 224.45 16 82.94 60.71 3.59 86.53 60.71 105.	F Ke Pcal [W/m²] [KW] 224.45 16 82.94	Ke P _{cal} [W/m²] [KW] 16 82.94	P _{cal} [KW] 82.94	Qcal [KVar] 60.71	Pécla [KW] 3.59	P _{cal,Σ} , [KW] 86.53	Q _{cal, Σ} , Θ _{cal, Σ} [KVar]	S _{cal.\(\Sigma\)} [KVA]
Bâtiment 2 157.12 16 41.45	16 41.45	41.45		26.52	2.51	43.97	26.52	51.35
Bâtiment 3 Atelier de production des câbles	16		46.87	29.11	2.15	49.03	29.11	57.02
Bâtiment 4 Atelier 168.34 16 25.22 Mécanique 16 25.22	16		25.22	16.52	2.69	27.91	16.515	32.43
Bâtiment 5 175.07 16 20.92 Sous Atelier 20.92	16		20.92	14.15	2.80	23.72	14.145	27.62
Bâtiment 6 Station de 67.34 10 33.18 pompage	10		33.18	23.60	0.67	33.85	21.45	40.07
Bâtiment 7	14		10.41	6.27	1.26	11.67	5.7	12.99
Bâtiment 8 Magasin 89.78 14 10.11	14		10.11	6.27	1.26	11.36	5.7	12.71
Bâtiment 9	16		11.30	6.71	1.80	13.10	960.9	14.45
Bâtiment 10 134.67 16 13.08 Cantine 134.67 16 13.08	134.67 16		13.08	10.82	2.15	15.23	9.832	18.13
Total (Puissance dans l'usine) 295.48			295.48	200.66	20.89	316.38	195.78	372.47

$$\begin{split} P_{install \ell,\ i} &= n_i \cdot P_{nom,i} \\ P_{install \ell,\ \Sigma} &= \sum_{i=1}^n n_i \cdot P_{nom,i} \\ P_{moy,i} &= K_{u,i} \cdot n_i \cdot P_{nom,i} \\ Q_{moy,i} &= K_{u,i} \cdot n_i \cdot P_{nom,i} \\ Q_{moy,i} &= \sum_{i=1}^n K_{u,i} \cdot n_i \cdot P_{nom,i} \\ P_{moy,i} &= \sum_{i=1}^n K_{u,i} \cdot n_i \cdot P_{nom,i} \\ P_{moy,i} &= \sum_{i=1}^n P_{moy,i} \cdot tg \, \varphi_i \\ &= \sum_{i=1}^n P_{iom,i} \cdot P_{nom,i} \\ &= \sum_{i=1}^n P_{iom,i} \cdot P_{nom,i} \\ &= \sum_{i=1}^n P_{iom,i} \cdot P_{nom,i} \cdot P_{iom,i} \cdot \varphi_i \\ &= \sum_{i=1}^n P_{iom,i} \cdot P_{nom,i} \cdot P_{nom,i}$$

 $S_{\mathrm{cal},\Sigma} = \sqrt{\left(P_{\mathrm{cal},\Sigma}\right)^2 + \left(Q_{\mathrm{cal},\Sigma}\right)^2}$

$$X_{o,a} = \frac{\sum_{i=1}^{n} P_{i} \cdot X_{i}}{\sum_{i=1}^{n} P_{i}}$$

$$Y_{o,a} = \frac{\sum_{i=1}^{n} P_{i} \cdot Y_{i}}{\sum_{i=1}^{n} P_{i}}$$
Les coordonnées pour la poste des transformateurs (1.13)

$$X_{o,r} = \frac{\sum_{i=1}^{n} Q_{i} \cdot X_{i}}{\sum_{i=1}^{n} Q_{i}}$$

$$Y_{o,r} = \frac{\sum_{i=1}^{n} Q_{i} \cdot Y_{i}}{\sum_{i=1}^{n} Q_{i}}$$
Les coordonnées pour la poste des compensateurs (1.14)

Où X_i;Y_i: Les coordonnées du centre de gravité de chaque bâtiment

 P_i : La puissance active totale de chaque bâtiment $P_{cal, \Sigma, i}$

 Q_i : La puissance réactive totale de chaque bâtiment $Q_{cal, \Sigma, i}$

Les rayons des cercles sont donnés par la formule :

$$r_{i} = \sqrt{\frac{P_{\text{cal},\Sigma,i}}{\pi \cdot M}}$$
 (1.15)

Où $M=0.5~KW/m^2$: Coefficient de l'échelle que l'on peut choisir arbitrairement $P_{cal,\Sigma,i}$: La puissance active totale de chaque bâtiment

 \triangleright L'angle θ_i pour le besoin d'énergie d'éclairage est donné par la formule :

$$\theta_{i} = \frac{P_{\text{\'ecla},i}}{P_{\text{cal},\Sigma,i}} \cdot 360^{\circ}$$
 (1.16)

Où Pécla, i : La puissance de l'éclairage de chaque bâtiment

En utilisant l'équation (1.13), (1.14), (1.15), et (1.16), on a les résultats des calculs dans le **Tableau 1.5** ci-dessous.

Tableau 1.5: $(X_i, Y_i, r_i, \theta_i, X_{o,a}, Y_{o,a}, X_{o,r}, Y_{o,r})$

N.	Bâtiment		Charges	T	Coord de ch	lonnés naque ment	-	on (r_i) et le (θ_i)	Coord de po transfoi	ste de	Coord de po compe	ste de
		P _{écla} [KW]	$\begin{array}{c} P_{cal,\Sigma} \\ [KW] \end{array}$	$\begin{array}{c} Q_{cal,\Sigma} \\ [KVar] \end{array}$	X_{i}	Yi	r _i (m)	$\theta_{i}(\mathring{\ })$	X _{o, a}	Y _{o, a}	$X_{o,r}$	$Y_{o,r}$
1	Bâtiment 1	3.59	86.53	60.71	3.5	11	7.42	14.94				
2	Bâtiment 2	2.51	43.97	26.52	7.5	10.5	5.29	20.58				
3	Bâtiment 3 Atelier de production des câbles	2.15	49.03	29.11	10	3.5	5.59	15.82				
4	Bâtiment 4 Atelier Mécanique	2.69	27.91	16.515	20.5	11.5	4.22	34.74				
5	Bâtiment 5 Sous Atelier	2.80	23.72	14.145	11.5	11.5	3.89	42.51	9.24	7.69	8.92	7.89
6	Bâtiment 6 Station de pompage	0.67	33.85	21.45	4.5	1	4.64	7.16				
7	Bâtiment 7 Magasin	1.26	11.67	5.7	3	5	2.73	38.78				
8	Bâtiment 8 Magasin	1.26	11.36	5.7	16	5	2.69	39.81				
9	Bâtiment 9 Garage	1.80	13.10	6.096	17.5	1	2.89	49.35				
10	Bâtiment 10 Direction, Cantine	2.15	15.23	9.832	23.5	6	3.11	50.92				

Les coordonnées de la poste des transformateurs et des compensateurs doivent décaler sa place à côté de bâtiment où se trouve le plus proche de ces coordonnées, pour facilité de construction la poste et gagner l'espace dans l'usine. Donc, la poste des transformateurs et des compensateurs doit se trouver à côté de bâtiment 2 et de bâtiment 5, dans la Figure. 3 : Cartogramme de la charge (Échelle : 1 cm =3.35m).

Figure. 3 : Cartogramme de la charge (Échelle : 1 cm = 3.35 m)

IV.11 La puissance réactive du compensateur (Q_C)

Pour avoir le facteur de la puissance désirée dans l'usine, on doit déterminer la puissance réactive du compensateur par la formule :

$$Q_{C} = Q_{cal.\Sigma} - Q_{désirée}$$
 (1.17)

•
$$\frac{Q_{cal,\Sigma}}{P_{cal,\Sigma}} = tg \, \varphi_{cal} \qquad \Rightarrow Q_{cal,\Sigma} = P_{cal,\Sigma} \cdot tg \, \varphi_{cal}$$
 (1.18)

•
$$\frac{Q_{\text{désirée}}}{P_{\text{cal},\Sigma}} = tg \, \varphi_{\text{désirée}} \qquad \Rightarrow Q_{\text{désirée}} = P_{\text{cal},\Sigma} \cdot tg \, \varphi_{\text{désirée}}$$
 (1.19)

$$\Rightarrow \qquad Q_{\rm C} = P_{\rm cal, \Sigma} \cdot \operatorname{tg} \varphi_{\rm cal} - P_{\rm cal, \Sigma} \cdot \operatorname{tg} \varphi_{\rm désirée} = P_{\rm cal, \Sigma} \left(\operatorname{tg} \varphi_{\rm cal} - \operatorname{tg} \varphi_{\rm désirée} \right)$$
 (1.20)

Où Q_C : Puissance réactive du compensateur [KVar]

 $Q_{\text{cal},\Sigma}$: Puissance réactive totale dans le bâtiment [KVar]

 $P_{cal \Sigma}$: Puissance active totale dans le bâtiment [KW]

 $\varphi_{\rm cal}$: Déphasage calculé [dégrée]

$$\cos \varphi_{\text{cal}} = \frac{P_{\text{cal}, \Sigma}}{S_{\text{cal}, \Sigma}}$$
 (1.21)

$$\operatorname{tg} \varphi_{\operatorname{cal}} = \sqrt{\frac{1 - (\cos \varphi_{\operatorname{cal}})^2}{(\cos \varphi_{\operatorname{cal}})^2}}$$
 (1.22)

 $\varphi_{
m désirée}$: Déphasage désirée [dégrée]

 $S_{\text{cal},\Sigma}$: Puissance apparente dans le bâtiment [KVA]

➤ Puissance réactive totale après le compensateur dans le bâtiment [KVar] :

$$Q'_{cal,\Sigma} = P_{cal,\Sigma} \cdot tg \, \varphi_{d\acute{e}sir\acute{e}} \tag{1.23}$$

➤ Puissance apparente avec compensateur dans le bâtiment [KVA] :

$$S'_{cal,\Sigma} = \sqrt{(P_{cal,\Sigma})^2 + (Q'_{cal,\Sigma})^2} = \sqrt{(P_{cal,\Sigma})^2 + (Q_{cal,\Sigma} - Q_C)^2}$$
(1.24)

On a besoin :
$$\cos \varphi_{\text{désirée}} = 0.95$$
 \Rightarrow $\operatorname{tg} \varphi_{\text{désirée}} = \sqrt{\frac{1 - (\cos \varphi_{\text{désirée}})^2}{(\cos \varphi_{\text{désirée}})^2}} = 0.33$

En utilisant l'équation (1.17), (1.18), (1.19), (1.20), (1.21), (1.22), (1.23) et (1.24), on a les résultats des calculs dans le **Tableau 1.6** ci-dessous.

 $\underline{\textbf{Tableau 1.6}}: (Q_C, Q_{cal, \Sigma}, P_{cal, \Sigma}, Cos \varphi_{cal}, Cos \varphi_{d\acute{e}sir\acute{e}}, tg \varphi_{d\acute{e}sir\acute{e}}, S_{cal, \Sigma}, Q'_{cal, \Sigma}, S'_{cal, \Sigma})$

			cai, Z	, car -	, desir		desiree , ~ cal, ≥ ,	- cai,∠ - c	αι, <u>_</u> -		1
N.	Bâtiment	$\begin{array}{c} P_{cal,\Sigma} \\ [KW] \end{array}$	$\begin{array}{c} Q_{cal,\Sigma} \\ [KVar] \end{array}$	$S_{\text{cal},\Sigma} \\ [\text{KVA}]$	$\cos \varphi_{ m cal}$	$ ext{tg} arphi_{ ext{cal}}$	$\cos arphi_{ ext{désirée}}$	$ ext{tg} arphi_{ ext{désirée}}$	Q _C [KVar]	$Q'_{cal,\Sigma}$ [KVar]	$S'_{cal,\Sigma}$ [KVA]
1	Bâtiment 1	86.53	60.71	105.70	0.82	0.70			32.15	28.55	91.12
2	Bâtiment 2	43.97	26.52	51.35	0.86	0.60			12.01	14.51	46.30
3	Bâtiment 3 Atelier de production des câbles	49.03	29.11	57.02	0.86	0.59			12.93	16.18	51.63
4	Bâtiment 4 Atelier Mécanique	27.91	16.515	32.43	0.86	0.59			7.30	9.21	29.39
5	Bâtiment 5 Sous Atelier	23.72	14.145	27.62	0.86	0.59	0.95	0.33	6.32	7.83	24.98
6	Bâtiment 6 Station de pompage	33.85	21.45	40.07	0.84	0.63			10.27	11.17	35.65
7	Bâtiment 7 Magasin	11.67	5.7	12.99	0.90	0.49			1.85	3.85	12.29
8	Bâtiment 8 Magasin	11.36	5.7	12.71	0.89	0.50			1.95	3.75	11.96
9	Bâtiment 9 Garage	13.10	6.096	14.45	0.91	0.47			1.78	4.32	13.79
10	Bâtiment 10 Direction, Cantine	15.23	9.832	18.13	0.84	0.65			4.81	5.03	16.04
	Totale:	316.38	195.78	372.47					91.38	104.40	333.15

Après Le tableau dans l'ANNEXE.2, on peut donc choisir le compensateur en type MPP95/480D6BK3 (Q=95 KVar) > $(Q_c=91.38 \text{ KVar})$.

V. Choix de nombres et de puissances des transformateurs (S_{Tr})

Les nombres et les puissances des transformateurs doivent être choisis selon la catégorie des charges électriques utilisées dans l'usine. Les charges électriques sont classées en 3 catégories :

- 1. <u>Catégorie I</u>: Pour cette catégorie, la coupure da courant électrique provoque au risque mortel des personnes, à la grande catastrophe (mauvais qualité de production, la destruction de technologie modern de production, etc.). L'absence de tension peut se faire seulement pendant la durée de fonctionnement de l'appareil d'enclenchement automatique.
- 2. <u>Catégorie II</u>: Pour cette catégorie, la coupure de courant, peut provoquer la perte moyenne de production industrielle, la discontinuité de la chaîne de production, etc. La durée de coupure d'électricité se fait pendant que le technicien ou l'opérateur rebranche le courant au réseau.
- **3.** <u>Catégorie III</u>: Ces sont des charges électriques qui ne sont pas classes dans les deux 1 ères catégories en haut. La coupure de courant peut se prolonge jusqu'à 45h.

La puissance du transformateur peut calculer par la formule :

$$S_{Tr} = \frac{S'}{K_{OL} \cdot N}$$
 (1.25)

S_{Tr} : Puissance du transformateur [KVA]

S' : Puissance apparente après la compensateur dans l'usine [KVA]

K_{OL} : Coefficient de surcharge du transformateur

N : Nombre de transformateur

Dans ce projet, on choisit le nombre du transformateur : N=2.

Après le Tableau 1.6, on a :
$$S' = \sum_{i=1}^{n} S_{cal, \Sigma, i} = 333.15 \text{ KVA}$$
.

 $K_{OL} = 0.7$ pour le nombre du transformateur : N=2.

(1.25):
$$\Rightarrow$$
 $S_{Tr} = \frac{333.15}{0.7 \times 2} = 237.96 \text{ KVA}$

$$\overline{S_{Tr}} = 237.96 \text{ KVA}$$

Où

La puissance nominale du transformateur $S_{Tr, nom} > S_{Tr}$ soit $S_{Tr, nom} > 215.9$ KVA, donc on peut choisir 2 transformateur de puissance nominale $S_{Tr, nom} = 250$ KVA chacun. Après le Tableau dans ANNEXE.3, on peut choisit la caractéristique du transformateur est le Transformateur Triphasé Standard (Type: TTP-TTN Transformateur Triphasé Protégé Nu de puissance 250 KVA, ou Type: TTE Transformateur Triphasé Étanche de puissance 250 KVA). On peut aussi choisit la caractéristique du transformateur est l'Autotransformateur Triphasé (Type: OTN Autotransformateur Triphasé Nu de puissance 250 KVA, ou Type: OTP Autotransformateur Triphasé Protégé de puissance 250 KVA).

CHAPITRE 2:

Choix De La Sections Des Conducteurs Et Calculer La Chutes Des Tensions

Dans ce chapitre, on va travailler sur l'étape suivante :

- Détermination du courant d'emploi (I_B)
- Le choix de la section minimales du conducteur par la méthode de calcul du courant admissible et pour éviter le dommage des conducteurs
- Le calcul de la chute de tension pour éviter les pertes et pour vérifier la section des conducteurs si la chute de tension est supérieure à 5%.

I. Plan souterrain des canalisations électrique

Le plan général de l'usine se trouve dans le Figure. 4 : Plan souterrain des canalisations électrique (Échelle : 1 cm = 3.35 m).

II. Ordre de calcul

- Détermination du courant d'emploi (I_B):
 - Puissance apparente dans le bâtiment $(S_{cal \Sigma})$
 - Tension composée (U)
 - Puissance active totale dans le bâtiment ($P_{cal.\Sigma}$); $Cos \varphi$
- ➤ Détermination du courant admissible (I_Z) :
 - Méthode de référence
 - Courant d'emploi (I_B)
 - Facteur de correction globale (F) : Facteur de température (F₁) et Facteur pose jointive (F₂)
- Détermination de la section des conducteurs (S) :
 - Courant admissible (I_z)
 - Indice d'isolation thermique
- ➤ Détermination de la chute de tension pour éviter les pertes et pour vérifier la section des conducteurs si la chute de tension est supérieure à 5% :
 - La chute de tension (u)
 - Courant d'emploi (I_B)
 - Longueur de ligne (L)
 - Chute de tension relative ($\Delta u \%$)

Arrête

Figure. 4 : Plan souterrain des canalisations électrique (Échelle : 1 cm = 3.35 m)

III. La section des conducteurs

Pour déterminer des sections des conducteurs, on doit savoir le courant d'emploi, le courant admissible et l'indice d'isolation thermique. Cette section des conducteurs qu'on a déterminé, n'est pas encore suffisamment correcte. Il faut que l'on les vérifier par la chute de tension.

III.1 Courant d'emploi

La valeur de courant d'emploi I_B dépend essentiellement des récepteurs à alimenter en énergie électrique. Le courant d'emploi I_B peut calculer par la formule :

$$I_{B} = \frac{P}{\sqrt{3} \cdot U \cdot \cos \varphi} = \frac{S_{cal, \Sigma}}{\sqrt{3} \cdot U}$$
 (2.1)

Où U : Tension composée [V]

I_B : Courant d'emploi en triphasé [A]

 $P=P_{cal \Sigma}$: Puissance active totale dans le bâtiment [KW]

 $\boldsymbol{S}_{\text{cal},\boldsymbol{\Sigma}}$: Puissance apparente dans le bâtiment [KVA]

En utilisant l'équation (2.1), ses résultats de calcul sont listez dans la Tableau 2.1.

Tableau 2.1: Les résultats de courants d'emploi de chaque bâtiment

N.	Bâtiment	$S_{cal,\Sigma}$ [KVA]	U [V]	I _B [A]
1	Bâtiment 1	105.70		152.56
2	Bâtiment 2	51.35		74.12
3	Bâtiment 3 Atelier de production des câbles	57.02		82.30
4	Bâtiment 4 Atelier Mécanique	32.43		46.81
5	Bâtiment 5 Sous Atelier	27.62	400	39.87
6	Bâtiment 6 Station de pompage	40.07	- 400	57.84
7	Bâtiment 7 Magasin	12.99		18.75
8	Bâtiment 8 Magasin	12.71		18.35
9	Bâtiment 9 Garage	14.45		20.86
10	Bâtiment 10 Direction, Cantine	18.13		26.17

III.2 Courant admissible

Le courant admissible est la valeur constante de l'intensité qu'on peut supporter, dans les conditions donné, un conducteur sans que sa température soit supérieure à la valeur spécifiée. On peut déterminer la valeur du courant admissible qui est spécifique de la canalisation par la formule :

$$I_Z = \frac{I_B}{F}$$
 (2.2)

Où I_Z : Courant admissible [A]

I_B : Courant d'emploi en triphasé [A]

F : Facteur de correction global

➤ Le facteur de correction global, tient compte de la température ambiante et du groupement des conducteurs.

$$F = F_1 \times F_2 \tag{2.3}$$

Où F₁ : Facteur de correction de température (Tableau dans l'ANNEX.4) F₂ : Facteur de correction de pose jointive (Tableau dans l'ANNEX.4)

F : Facteur de correction global

Pour chaque bâtiment, on prend la mode de pose 3 câbles vertical jointifs PVC (Caoutchouc Polychlorure de vinyle) sur le chemin de câble. Température ambiante est $30\,^{\circ}$ C. On peut avoir le Facteur de correction de température (F1=1) et Facteur de correction de pose jointive (F2=0.73) par Tableau dans l'ANNEXE.4.

En utilisant l'équation (2.2) et (2.3), ses résultats de calcul sont listés dans la **Tableau 2.2** cidessous.

Tableau 2.2 : Les résultats du courant admissible

N.	Bâtiment	I _B [A]	F_1	F ₂	I _Z [A]
1	Bâtiment 1	152.56			208.99
2	Bâtiment 2	74.12			101.53
3	Bâtiment 3 Atelier de production des câbles	82.30			112.74
4	Bâtiment 4 Atelier Mécanique	46.81			64.12
5	5 Bâtiment 5 Sous Atelier				54.61
6	Bâtiment 6 Station de pompage	57.84	1	0.73	79.23
7	Bâtiment 7 Magasin	18.75			25.68
8	Bâtiment 8 Magasin	18.35			25.13
9	9 Bâtiment 9 Garage				28.57
10	Bâtiment 10 Direction, Cantine	26.17			35.85
	Totale :	537.61			736.46

III.3 Détermination de la section des conducteurs

Pour chaque bâtiment, on prend un circuit triphasé de 3 conducteurs (PVC) type H 07V-U sous conduit apparent. On a donc, après le tableau dans l'ANNEXE.5, l'indice d'isolation thermique est égal à 2.

Après le tableau dans **l'ANNEXE.6**, les résultats de la section des conducteurs sont listés dans la **Tableau 2.3** ci-dessous.

Tableau 2.3 : Les résultats de la section des conducteurs

N.	Bâtiment	L'indice d'isolation	I_Z	Section des conducteurs S [mm²]		
		thermique [A]		En cuivre	En Aluminium	
1	Bâtiment 1		208.99	120		
2	Bâtiment 2		101.53	35	70	
3	Bâtiment 3 Atelier de production des câbles		112.74	50	70	
4	Bâtiment 4 Atelier Mécanique		64.12	16	25	
5	Bâtiment 5 Sous Atelier	2	54.61	16	25	
6	Bâtiment 6 Station de pompage		79.23	25	35	
7	Bâtiment 7 Magasin		25.68	4	10	
8	Bâtiment 8 Magasin		25.13	4	10	
9	Bâtiment 9 Garage		28.57	6	10	
10	Bâtiment 10 Direction, Cantine		35.85	6	10	
	Totale :		736.46	1000		

IV. La chute de tension

À cause de la résistance des conducteurs, il se produit une chute de tension lorsqu'il y a le passage du courant. La chute de tension entre l'origine d'une installation et tout point d'utilisation ne doit pas être supérieure aux valeurs du tableau ci-dessous :

Installations alimentées à partir	Éclairage	Autres usages
A- d'un réseau basse tension	3%	5%
B- d'un poste de transformation d'abonné*	6%	8%

^{*} Dans la mesure du possible, les chutes de tension dans les circuits terminaux ne doivent pas être supérieurs aux valeurs indiquées en A.

IV.1 Longueur simple de la canalisation

Après le plan général de l'usine se trouve dans le **Figure. 4,** on peut calculer la longueur simple de la canalisation dans le plan échelle (1cm=3.35 m) ci-dessous :

Pour le Bâtiment 1 : $L_{\text{MDB-DB1}} \approx L_1 + L_2 \approx 3.5 + 3 \approx 6.5 \text{ cm}$

Pour le Bâtiment 2 : $L_{MB2-DB2} \approx L_1 \approx 3.5$ cm

Pour le Bâtiment 3 : $L_{MDB-DB3} \approx L_3 + L_4 + L_8 \approx 3.5 + 1 + 1.5 \approx 6$ cm

Pour le Bâtiment 4 : $L_{MDB-DB4} \approx L_{10} \approx 9$ cm

Pour le Bâtiment 5 : L_{MDB-DB5} ≈ 1 cm

Pour le Bâtiment 6 : $L_{\text{MDB-DB6}} \approx L_3 + L_4 + L_5 + L_7 \approx 3.5 + 1 + 2.5 + 4.5 \approx 11.5 \text{ cm}$

Pour le Bâtiment 7 : $L_{\text{MDB-DB7}} \approx L_3 + L_4 + L_5 + L_6 \approx 3.5 + 1 + 2.5 + 1.5 \approx 8.5 \text{ cm}$

Pour le Bâtiment 8 : $L_{\text{MDB-DB8}} \approx L_3 + L_9 \approx 3.5 + 5.5 \approx 9 \text{ cm}$

Pour le Bâtiment 9 : $L_{MDB-DB9} \approx L_{10} + L_{11} + L_{12} \approx 9 + 1.6 + 8.2 \approx 18.8 \text{ cm}$

Pour le Bâtiment 10 : $L_{MDB-DB10} \approx L_{10} + L_{11} + L_{13} + L_{14} \approx 9 + 1.6 + 2.4 + 2 \approx 15$ cm

Donc, La longueur simple de la canalisation réelle est listée dans le Tableau 2.4 ci-dessous.

Tableau 2.4 : Les résultats de la longueur simple de la canalisation réelle

N.	Bâtiment	l [cm] dans le plan	l [m] Réelle
1	Bâtiment 1	6.5	21.78
2	Bâtiment 2	3.5	11.73
3	Bâtiment 3 Atelier de production des câbles	6	20.10
4	Bâtiment 4 Atelier Mécanique	9	30.15
5	Bâtiment 5 Sous Atelier	1	3.35
6	Bâtiment 6 Station de pompage	11.5	38.53
7	Bâtiment 7 Magasin	8.5	28.48
8	Bâtiment 8 Magasin	9	30.15
9	Bâtiment 9 Garage	18.8	62.98
10	Bâtiment 10 Direction, Cantine	15	50.25

IV.2 Calcul de la chute de tension

 $\begin{array}{lll} U_d & : Tension \ d\'epart & U_r & : Chute \ de \ tension \ r\'esistive \\ U_a & : Tension \ arriv\'e & U_i & : Chute \ de \ tension \ inductive \end{array}$

U_z : Chute de tension

On peut calculer la chute de tension en utilisant la formule générale :

$$\mathbf{u} = \mathbf{b} \cdot \left(\rho \cdot \frac{1}{\mathbf{S}} \cdot \mathbf{Cos} \, \varphi + \lambda \cdot \mathbf{l} \cdot \mathbf{Sin} \, \varphi \right) \cdot \mathbf{I}_{\mathbf{B}}$$
 (2.4)

Où u : Chute de tension [V]

b=2 : Coefficient en monophasé ou en courant continu

b=1 : Coefficient en triphasé et on prendra tension simple

 $b=\sqrt{3}$: Coefficient en triphasé et on prendra tension composée

 ρ : Résistivité où $\rho_{Cu}=0.0225\,\Omega\cdot\text{mm}^2/\text{m}$ et $\rho_{Al}=0.036\,\Omega\cdot\text{mm}^2/\text{m}$

1 : Longueur simple de la canalisation en m.

S : Section des conducteurs en mm²

 λ : Réactance linéique des conducteurs dont son valeur moyenne = 0.08×10^{-3} Ω· m

I_B : Courant d'emploi en triphasé [A]

On peut déterminer la chute de tension à l'aide de Tableau dans l'ANNEXE.7. Les constructeurs de câble fournissent des Tableaux évitant les calcules et donnant directement la chute de tension en volt par ampère et par Km. Les câbles étant chargés à leur intensité admissible en régime permanant à la température 70°C, on obtient la chute de tension en appliquant la relation :

$$\mathbf{u} = \mathbf{K} \times \mathbf{I}_{\mathbf{B}} \times \mathbf{L} \tag{2.5}$$

Où K : Chute de tension en volt par ampère par Km [V/A/Km]

I_B : Intensité d'emploi [A]

L : Longueur simple de la canalisation en [Km]

IV.3 Calcul de la chute de tension relative

La chute de tension relative s'exprime en pourcentage de la tension nominale.

$$\Delta u\% = \frac{u}{U_0} \times 100\%$$
 (2.6)

Où u : Chute de tension [V]

 U_0 : Tension entre phase et neutre [V] car b=1

Tension composée [V] car b= $\sqrt{3}$

On prend $b=\sqrt{3}$ pour tension composée U=400 V. En utilisant l'équation (2.4) et (2.6), ses résultats de calcul sont listés dans le **Tableau 2.5** ci-dessous.

Tableau 2.5: La chute de tension par la formule générale

N	N. Bâtiment		$\sin \varphi$	1	I_{B}	S [n	nm ²]	u [[V]	Δu% [%]	
IN.	Datiment	$\cos \varphi$	$\sin \varphi$	[m]	[A]	En Cu	En Al	En Cu	En Al	En Cu	En Al
1	Bâtiment 1	0.82	0.57	21.78	152.56	120	\times	1.68		0.42	\times
2	Bâtiment 2	0.86	0.51	11.73	74.12	35	70	1.39	2.69	0.35	0.67
3	Bâtiment 3 Atelier de production des câbles	0.86	0.51	20.10	82.30	50	70	1.89	0.73	0.47	0.18
4	Bâtiment 4 Atelier Mécanique	0.86	0.51	30.15	46.81	16	25	4.83	3.67	1.21	0.92
5	Bâtiment 5 Sous Atelier	0.86	0.51	3.35	39.87	16	25	0.46	3.13	0.11	0.78
6	Bâtiment 6 Station de pompage	0.84	0.54	38.53	57.84	25	35	4.84	0.21	1.21	0.05
7	Bâtiment 7 Magasin	0.9	0.44	28.48	18.75	4	10	7.52	11.84	1.88	2.96
8	Bâtiment 8 Magasin	0.89	0.46	30.15	18.35	4	10	7.71	3.03	1.93	0.76
9	Bâtiment 9 Garage	0.91	0.41	62.98	20.86	6	10	12.50	3.10	3.12	0.78
10	Bâtiment 10 Direction, Cantine	0.84	0.54	50.25	26.17	6	10	11.58	7.53	2.89	1.88

Après le tableau dans l'ANNEXE.7, on prend la valeur K, chute de tension en [V/A/Km], selon la section des conducteurs et pour le nombre des conducteurs 3 de $\cos \varphi \approx 0.8$. En utilisant l'équation (2.5) et (2.6), ses résultats de calcul sont listés dans le **Tableau 2.6** ci-dessous.

Tableau 2.6: La chute de tension par l'aide de Tableau dans l'ANNEX.7

N.	Dâtimant	$\cos \varphi$	1	1	S [n	nm ²]	K [V/	A/Km]] u [V]		Δu % [%]	
IN.	Bâtiment	Cosφ	[m]	[A]	En Cu	En Al	En Cu	En Al	En Cu	En Al	En Cu	En Al
1	Bâtiment 1	0.82	21.78	152.56	120		0.34		1.13		0.28	
2	Bâtiment 2	0.86	11.73	74.12	35	70	0.98	1.61	0.85	1.40	0.21	0.35
3	Bâtiment 3 Atelier de production des câbles	0.86	20.10	82.30	50	70	0.74	1.22	1.22	2.02	0.31	0.50
4	Bâtiment 4 Atelier Mécanique	0.86	30.15	46.81	16	25	2.08	3.46	2.94	4.88	0.73	1.22
5	Bâtiment 5 Sous Atelier	0.86	3.35	39.87	16	25	2.08	3.46	0.28	0.46	0.07	0.12
6	Bâtiment 6 Station de pompage	0.84	38.53	57.84	25	35	1.33	2.18	2.96	4.86	0.74	1.21
7	Bâtiment 7 Magasin	0.9	28.48	18.75	4	10	8.04	13.3	4.29	7.10	1.07	1.78
8	Bâtiment 8 Magasin	0.89	30.15	18.35	4	10	8.04	13.3	4.45	7.36	1.11	1.84
9	Bâtiment 9 Garage	0.91	62.98	20.86	6	10	5.45	9.07	7.16	11.91	1.79	2.98
10	Bâtiment 10 Direction, Cantine	0.84	50.25	26.17	6	10	5.45	9.07	7.17	11.93	1.79	2.98

D'après les résultats dans le Tableau 2.5 et le Tableau 2.6, les valeurs des chutes de tension de chaque bâtiment sont inférieures à 5%, donc on peut accepter ces sections des conductions.

CHAPITRE 3:

Sélection Des Disjoncteurs

Dans ce chapitre, on va travailler sur l'étape suivante :

- Connaître la méthodologie pour le choix de disjoncteurs
- Calcul le courant de court-circuit I_{cc} du chaque circuit
- Choix le disjoncteur suivre le catalogue

I. Ordre de calcul

II. Disjoncteurs

II.1 Définition

Un disjoncteur est un appareil mécanique de connexion capable d'établir, de supporter et d'interrompre des courants dans les conditions normales du circuit, ainsi que d'établir, de supporter pendant une durée spécifiée et d'interrompre des courants dans les conditions anormales spécifiées telle que celles du court-circuit.

Symbole:

II.2 Principe de choix

Un disjoncteur est choisi d'après :

- Les caractéristiques électriques de l'installation sur qu'il est installé
- L'environnement dans qu'il est trouvé, température ambiante, installation à l'intérieur d'une clôture, conditions climatiques.
- Les opérant exigences : discrimination, besoin possible de fonctions de secours tel que télécommande, manche rotatif, contacts de secours, MN ou MX publie, insertion dans un réseau de la communication local ou de surveillance, etc.
- L'installation gouverne, en particulier pour la protection de personnes.
- Caractéristiques des charges, tel que moteurs, éclairage fluorescent, transformateur BT/BT, etc.
- Le pouvoir de coupure du disjoncteur doit être au moins égale au courant de court-circuit triphasé susceptible de se produire à l'endroit où il est installé. Si le courant de court-circuit présumé est limité par un appareil de protection se trouvant en amont, le pouvoir de coupure du disjoncteur peut être réduit dans un certain rapport.

III.3 Fonctions assurées par le disjoncteur

- 1. <u>Protection contre les surcharges</u>: C'est le rôle des déclencheurs thermiques qui peuvent détecter de faibles surcharges. Le principe de fonctionnement est analogue à celui du relais thermique.
- 2. <u>Protection contre le court-circuit</u>: C'est le rôle des déclencheurs électromagnétiques. Ceuxci interviennent au-delà des courants de surcharge et jusqu'à l'intensité maximale du courant de court-circuit.
- 3. <u>Commande du circuit</u>: La coupure du circuit doit être exécutée même en cas de court-circuit. Le pouvoir de coupure du disjoncteur doit être supérieur au courant du court-circuit pouvant prendre naissance dans le circuit à protéger. Le pouvoir de coupure s'exprime pour une tension donnée en KA. Les disjoncteurs peuvent également effectuer tous les manœuvres de commande d'ouvertures de fermeture des circuits.

<u>Remarque</u>: Le disjoncteur peut être muni de déclencheurs à courant résiduel de défaut ou de baisse de tension, ces système pouvant être temporisés ou non.

III.4 Caractéristique d'un disjoncteur

- a. Courant nominal. Calibre normalisé, ce sont les mêmes valeurs que pour les interrupteurs
- b. Tension nominale. De 220V à 660V pour la basse tension
- c. Nombre de pôles. 1 à 4 selon les applications
- d. Pouvoir de coupure. Exprimé en KA pour une tension déterminée
- e. Type de déclencheurs utilisés. Thermiques, magnétiques, magnétothermiques, temporisés ou non, protection différentielle
- f. Courbe de déclenchement. C'est l'association de la courbe de déclenchement du relais thermique et de la courbe de déclenchement du relais magnétique.

IV. Calcul le courant de court-circuit

Dans cette usine, il y a 11 boîtes des distributions importantes :

- 1. La boîte de distribution principale (MDB) se trouve à côté du bâtiment 2.
- 2. La boîte de distribution (DB1) utilise dans le **bâtiment 1**.
- 3. La boîte de distribution (DB2) utilise dans le **bâtiment 2**.
- 4. La boîte de distribution (DB3) utilise dans le **bâtiment 3**.
- 5. La boîte de distribution (DB4) utilise dans le **bâtiment 4**.
- 6. La boîte de distribution (DB5) utilise dans le **bâtiment 5**.
- 7. La boîte de distribution (DB6) utilise dans le **bâtiment 6**.
- 8. La boîte de distribution (DB7) utilise dans le **bâtiment 7**.
- 9. La boîte de distribution (DB8) utilise dans le **bâtiment 8**.
- 10. La boîte de distribution (DB9) utilise dans le **bâtiment 9**.
- 11. La boîte de distribution (DB10) utilise dans le bâtiment 10.

IV.1 Distribution en peigne

<u>Avantage</u>: Dans le cas d'un défaut, autre que celui du disjoncteur général, seul le circuit en défaut est coupe.

<u>Inconvénient</u>: On se trouve devant un grand nombre de circuit séparé, donc de grandes longueurs de lignes et une surabondance de cuivre.

Figure. 5 : Diagramme des réseaux d'alimentation d'usine

La valeur de l'intensité de court-circuit est tirée de la relation générale :

$$I_{cc} = \frac{U_0}{Z} = \frac{U_0}{\sqrt{\sum R^2 + \sum X^2}}$$
 (3.1)

$$Z = Z_{a} + Z_{T} + Z_{D} + Z_{J} + Z_{C}$$
 (3.2)

Où I_{cc} : Courant de court-circuit [KA]

 $\begin{array}{ll} U_0 & : \text{Tension simple à vide [V]}, \quad \text{On prend } U_0 = 230 \text{ V} \\ \sum R & : \text{Résistance totale de boucle en défaut [} m\Omega \text{]} \\ \sum X & : \text{Réactance totale de boucle en défaut [} m\Omega \text{]} \end{array}$

 $\begin{array}{ll} Z_a & : Imp\'edance \ du \ r\'eseaux \ amont \ [\ m\Omega\] \\ Z_T & : Imp\'edance \ du \ transformateur \ [\ m\Omega\] \\ Z_D & : Imp\'edance \ du \ disjoncteur \ [\ m\Omega\] \\ Z_J & : Imp\'edance \ du \ jeu \ de \ barres \ [\ m\Omega\] \\ \end{array}$

 Z_C : Impédance du câble [$m\Omega$]

IV.2 L'impédance du réseau amont (Za)

Les composants de l'impédance d'un réseau haute tension ramenés coté basse tension en 230/400V (420V à vide) est donnée par **le Tableau 3.1** au-dessous :

<u>Tableau 3.1</u>: L'impédance du réseau amont (Z_a)

P _{cc} [MVA]	$R_a[m\Omega]$	$X_a [m\Omega]$	Z_a [$m\Omega$]
125	0.2	1.4	1.41
250	0.1	0.7	0.71
500	0.015	0.35	0.35

On utilise Transformateur HT/BT alimenté par un réseau 500 MVA, tension de sortie 380V, donc on a l'impédance du réseau amont Z_a =0.35 m Ω .

IV.3 L'impédance du transformateur (Z_T)

L'impédance Z_T d'un transformateur vue du secondaire est donnée par la relation :

$$Z_{T} = \sqrt{R_{T}^{2} + X_{T}^{2}} = \frac{U^{2} \times e}{P \times 100}$$
 (3.3)

$$R_{T} = W \cdot \frac{U^{2}}{P^{2}}$$
 (3.4)

Où R_T : Résistance par phase $[\Omega]$

U : Tension nominale secondaire entre phases du transformateur à vide [V]

P : Puissance nominale du transformateur [KVA]

W : Pertes du transformateur [W]

e : Tension de court-circuit du transformateur [%]

Note:

- En l'absence d'indications une valeur de 6% pour e et une valeur de 0.3 pour $\cos \varphi_{\rm T}$ sont admises.
- Pour déterminer les valeurs des R_T et X_T , on peut utiliser l'Abaques (Fig. 25) pour le Source ou le Transformateur et l'Abaques (Fig. 26) dans le Tableau ANNEXE.8.
- La résistance se calcule à partir des pertes cuivre dans le transformateur :

$$W = 3 \cdot I_n^2 \cdot R_T \qquad \Rightarrow \qquad R_T = \frac{W}{3 \cdot I_n^2}$$
 (3.5)

- La réactance se déduit de la relation :

$$X_{T} = \sqrt{Z_{T}^{2} - R_{T}^{2}}$$
 (3.6)

En utilisant (3.6), (3.5), (3.4), (3.3), (3.2), et (3.1), les résultats exposent dans le Tableau 3.2.

Tableau 3.2: Transformateur HT/BT alimenté par un réseau 500 MVA, tension de sortie 380V

Puissance [KVA]	I _n [A]	e [%]	$R_{T}[m\Omega]$	X_{T} [$m\Omega$]	Z_{T} [$m\Omega$]	Icc [KA]
25	36	4	179	183	256	0.9
50	72	4	70.3	107	128	1.8
100	145	4	28	57.5	64	3.59
160	232	4	14.7	37.2	40	5.72
200	290	4	11.4	29.9	32	7.14
250	360	4	8.3	24.2	25.6	8.9
400	580	4	4.6	15.3	16	14.15
500	720	4	3.52	12.3	12.8	17.96
630	910	4	2.62	9.82	10.16	22.1
800	1155	4.5	2.55	8.63	9	24.8
1000	1445	5	1.94	7.76	8	27.8
1250	1805	5	1.54	6.87	7.04	31.4
1600	2300	6	1.13	5.89	6	36.6
2000	2890	7	0.9	5.53	5.6	39.1

Le transformateur que l'on l'utilise est de puissance 250 KVA. Alors, on a l'impédance de 2 transformateurs $\mathbf{Z_T}$ = 25.6 × 2 = 51.2 m Ω .

IV.4 L'impédance des disjoncteurs (Z_D)

On prend la résistance est négligeable $R_D \!\!=\!\! 0$ m Ω et la réactance est prise égale à $X_D \!\!=\!\! 0.15$ m Ω . On a :

$$Z_{\rm D} = \sqrt{{R_{\rm D}}^2 + {X_{\rm D}}^2} = 0.15 \,\mathrm{m}\Omega$$

L'impédance d'un disjoncteur ne doit être prise en compte que pour les appareils en amont de celui qui doit ouvrir sur le court-circuit envisagé.

IV.5 L'impédance du jeu de barres Cu (Z_J)

Avec le choix du jeu de barres de longueur L=15 m, on a la résistance R_J =0 m Ω est négligeable et la réactance X_J =1.5 m Ω se lit sur la courbe 6mm² (Prendre un rapport 10 pour plus de précision) par le **Tableau.2 Abaques (Fig.26)** dans **l'ANNEXE.8.** Donc,

$$Z_{J} = \sqrt{R_{J}^{2} + X_{J}^{2}} = 1.5 \,\mathrm{m}\Omega$$

IV.6 L'impédance des Câbles (Z_C)

L'impédance des Câbles (Z_C) peut déterminer par la formule :

$$Z_{\rm C} = \sqrt{{\rm R_{\rm C}}^2 + {\rm X_{\rm C}}^2}$$
 (3.7)

$$O\grave{u} \qquad R_C = \rho \frac{L}{S} \qquad , \quad X_C = 0.15 \times 10^{-3} \times L$$

 $\rho : \text{R\'esistivit\'e des C\^ables} \quad (\rho_{\text{Cu}} = 1.724 \times 10^{-8} \; \Omega \, \text{m}, \; \rho_{\text{Al}} = 2.65 \times 10^{-8} \; \Omega \, \text{m})$

En utilisant (3.7), les résultats de l'impédance des câbles (Z_C) exposent dans le Tableau 3.3.

Tableau 3.3 : Les résultats de l'impédance des câbles (Z_C)

I abic	<u>au 5.5 : Les resultats de l'impédan</u>	ce des ear	oics (ZC)	1			1
N.	Bâtiment	1 [m]	S_{Cu} [mm ²]	$ ho_{Cu} \ [\Omegam]$	R_{C} $[m\Omega]$	X_{C} $[m\Omega]$	Z_{C} [m Ω]
1	Bâtiment 1 (Câble C4)	21.78	120		3.13	3.27	4.52
2	Bâtiment 2 (Câble C5)	11.73	35		5.78	1.76	6.04
3	Bâtiment 3 Atelier de production des câbles (Câble C6)	20.10	50		6.93	3.02	7.56
4	Bâtiment 4 Atelier Mécanique (Câble C7)	30.15	16		32.49	4.52	32.80
5	Bâtiment 5 Sous Atelier (Câble C8)	3.35	16		3.61	0.50	3.64
6	Bâtiment 6 Station de pompage (Câble C9)	38.53	25		26.57	5.78	27.19
7	Bâtiment 7 Magasin (Câble C10)	28.48	4	1.724× 10 ⁻⁸	122.73	4.27	122.80
8	Bâtiment 8 Magasin (Câble C11)	30.15	4		129.95	4.52	130.03
9	Bâtiment 9 Garage (Câble C12)	62.98	6		180.96	9.45	181.21
10	Bâtiment 10 Direction, Cantine (Câble C13)	50.25	6		144.39	7.54	144.58
	Câble C1	4	1000		0.07	0.60	0.60
	Câble C2	4	1000		0.07	0.60	0.60
	Câble C3	4	1000		0.07	0.60	0.60

En utilisant (3.1) et (3.2), les résultats des valeurs des courants de court-circuit de chaque boîte exposent dans le Tableau 3.4.

Tableau 3.4: Les résultats des valeurs des courants de court-circuit

Tableau 5.4	Les resultats des	valeurs des coura	nts de court-c			
	-	L'impédance Z _C	I _{CC}			
Nom de DB	Description	$[m\Omega]$	[KA]			
	Réseau amont	0.35				
	Transformateur	51.20				
	Câble C1	0.60				
	Disjoncteur Q1	0.15				
MDB	Câble C2	0.6	4.16			
MIDB	Disjoncteur Q2	0.15	4.16			
	Câble C3	0.6				
	Disjoncteur Q3	0.15				
	Jeu de barres	1.5				
	Totale	55.3				
	Réseau amont	55.3				
	Câble C4	4.52				
DB1	Disjoncteur Q1	0.15	3.74			
	Jeu de barres	1.5				
	Totale	61.47				
	Réseau amont	55.3				
	Câble C5	6.04				
DB2	Disjoncteur Q2	0.15	3.65			
552	Jeu de barres	1.5	0.00			
	Totale	62.99				
	Réseau amont	55.3				
	Câble C6	7.56				
DB3	Disjoncteur Q3	0.15	3.57			
DD 3	Jeu de barres	1.5	5.57			
	Totale	64.51				
	Réseau amont	55.3				
	Câble C7	32.8				
DB4	Disjoncteur Q4	0.15	2.56			
DD4	Jeu de barres	1.5	2.50			
		89.75				
	Totale	55.3				
	Réseau amont					
DB5	Câble C8	3.64	3.80			
DB3	Disjoncteur Q5	0.15	3.00			
	Jeu de barres	1.5				
	Totale	60.59				
	Réseau amont	55.3				
DDC	Câble C9	27.19	0.70			
DB6	Disjoncteur Q6	0.15	2.73			
	Jeu de barres	1.5				
	Totale	84.14				
	Réseau amont	55.3				
DD7	Câble C10	122.8	1.00			
DB7	Disjoncteur Q7	0.15	1.28			
	Jeu de barres	1.5				
	Totale	179.75				
	Réseau amont	55.3				
DDC	Câble C11	130.03	1 22			
DB8	Disjoncteur Q8	0.15	1.23			
	Jeu de barres	1.5				
1	Totale	186.98				

	Réseau amont	55.3		
	Câble C12	181.21		
DB9	Disjoncteur Q9	0.15	0.97	
	Jeu de barres	1.5		
	Totale	238.16		
DB10	Réseau amont	55.3		
	Câble C13	144.58		
	Disjoncteur Q10	0.15	1.14	
	Jeu de barres	1.5		
	Totale	201.53		

D'après les résultats de calcul dans la **Tableau 3.4**, on peut choisir les disjoncteurs dans le **Tableau 3.5** par **l'ANNEXE.9** ci-dessous :

<u>Tableau 3.5</u>: Choix des disjoncteurs

N. J. D.D.	La théorie		Le standard		
Nom de DB	I _B [A]	I _{CC} [KA]	Nombre de Pole	I _n [A]	I _{CC} [KA]
MDB	537.61	4.16	3P	630	50
DB1	152.56	3.74	3P	160	36
DB2	74.12	3.65	3P	75	10
DB3	82.30	3.57	3P	100	10
DB4	46.81	2.56	3P	50	7.5
DB5	39.87	3.80	3P	40	7.5
DB6	57.84	2.73	3P	60	7.5
DB7	18.75	1.28	3P	20	7.5
DB8	18.35	1.23	3P	20	7.5
DB9	20.86	0.97	3P	25	7.5
DB10	26.17	1.14	3P	30	7.5

CONCLUSIONS

Je trouve que ce projet l'alimentation d'énergies électriques dans l'usine nous donne beaucoup de connaissances pour le travail professionnel. Bien qu'il y ait beaucoup de choses à faire et de difficultés, il est intéressant quand même. En plus, ce projet nous permet de savoir le concept de l'installation équipements électriques dans l'usine à partir les demandes de puissances, le cartogramme de la charge, le choix de la section des conducteurs, et le choix la protection électrique. D'autres, ce projet demande beaucoup d'efforts, patiences et de temps. En plus, on a besoin essentiellement l'aide de professeurs. Ce sont les raisons pour lesquelles ce projet peut être demandé encore la correction. Et si nous avons plus de temps pour ce projet, je crois que ce projet nous rend une grande et clarté connaissance.

Pour tout dire, ce projet est absolument important pour les étudiants. J'espère que j'ai la chance pour m'enrichir ma connaissance en plus dans cette spécialité, l'alimentation d'énergies électriques dans l'usine.

En fin, je voudrais remercier vivement le professeur CHY Cheapok qui prend beaucoup de temps et d'efforts m'enseigne.

REFERENCE

- [1]. René BOURGEOIS et Denis COGNIEL, « Mémotech Électrotechnique », 4^e édition, 1991 [2]. Henri NEY, « Electrotechnique et Normalisation », éditions Fernand Nathan, 1985.

ANNEXE.1 : (page 6)

Tableau $K_{max}=(K_u,n_{eff})$ (M. give or In report of brother I5)

ANNEXE.2 : (page 12)

Tableau de capacitor banks (M. give)

<u>ANNEXE.3</u>: (page 13)

Tableau de tranformateur (In Mémotech book or ...)

ANNEXE.4: (page 16)

Tableau de F₁ et F₂ (In Schéma 1 électricité book)

ANNEXE.6: (page 17)

Tableau des courants admissibles

ANNEXE.7: (page 21)

Tableau de conducteur pour la valeur K[V/A/Km](In report I5 ou In schéma 1 électricité book)

ANNEXE.8: (page 27)

L'impédance du jeu de barres Cu lit sur la courbe 6mm² (In Mémotech book or ...)

ANNEXE.9: (page 30)

Tableau de choix des disjoncteurs

MANQUE:

Tableau 1.2(page.5) (In File Word)

Tableau 1.3 et 1.4 (page.8) (In File Word)

Figure.1(page.2) (In File Word)

Figure.3(page.10) (In File Word)

Figure.4(page.14) (In File Word)