计算机问题求解 - 论题3-16 - 群与拉格郎日定理

2014年12月29日

下面的话是什么意思?

It makes sense to write equations with group elements and group operations. If a and b are two elements in a group G, does there exist an element $x \in G$ such that ax = b? If such an x does exist, is it unique? The following proposition answers both of these questions positively.

问题1: 什么是一个algebraic structures?

Table 3.1. Multiplication table for \mathbb{Z}_8

				-					
•	0	1	2	3	4	5	6	7	
0	0	0	0	0	0	0	0	0	
1	0	1	2	3	0 4	5	6	7	
2	0	2	4	6	0	2	4	6	
3	0	3	6	1	4	7	2	5	
4	0	4	0	4	0	4	0	4	
5	0	5	2	7	4	1	6	3	
6	0	6	4	2	0	6	4	2	
7	0	7	6	5	4	3	2	1	

$$(Z_8, \bullet)$$

第二例:

Table 3.2. Symmetries of an equilateral triangle

_							
	0	id	ρ_1	ρ_2	μ_1	μ_2	μ_3
	id	id	ρ_1	ρ_2	μ_1 μ_3 μ_2 id ρ_2 ρ_1	μ_2	μ_3
	$ ho_1$	$ ho_1$	ρ_2	id	μ_3	μ_1	μ_2
	ρ_2	ρ_2	id	ρ_1	μ_2	μ_3	μ_1
	μ_1	μ_1	μ_2	μ_3	id	ρ_1	ρ_2
	μ_2	μ_2	μ_3	μ_1	ρ_2	id	ρ_1
	μ_3	μ_3	μ_1	μ_2	ρ_1	ρ_2	id

Figure 3.2. Symmetries of a triangle

$$id = \begin{pmatrix} A & B & C \\ A & B & C \end{pmatrix}$$

$$id = \begin{pmatrix} A & B & C \\ A & B & C \end{pmatrix}$$

$$id = \begin{pmatrix} A & B & C \\ A & B & C \end{pmatrix}$$

$$id = \begin{pmatrix} A & B & C \\ B & C & A \end{pmatrix}$$

$$id = \begin{pmatrix} A & B & C \\ B & C & A \end{pmatrix}$$

$$id = \begin{pmatrix} A & B & C \\ B & C & A \end{pmatrix}$$

$$id = \begin{pmatrix} A & B & C \\ B & C & A \end{pmatrix}$$

$$id = \begin{pmatrix} A & B & C \\ B & C & A \end{pmatrix}$$

$$id = \begin{pmatrix} A & B & C \\ B & C & A \end{pmatrix}$$

$$id = \begin{pmatrix} A & B & C \\ B & C & A \end{pmatrix}$$

$$id = \begin{pmatrix} A & B & C \\ C & A & B \end{pmatrix}$$

$$id = \begin{pmatrix} A & B & C \\ C & A & B \end{pmatrix}$$

$$id = \begin{pmatrix} A & B & C \\ C & A & B \end{pmatrix}$$

$$id = \begin{pmatrix} A & B & C \\ C & A & B \end{pmatrix}$$

$$id = \begin{pmatrix} A & B & C \\ C & A & B \end{pmatrix}$$

$$id = \begin{pmatrix} A & B & C \\ C & A & B \end{pmatrix}$$

$$id = \begin{pmatrix} A & B & C \\ A & C & B \end{pmatrix}$$

$$id = \begin{pmatrix} A & B & C \\ C & A & B \end{pmatrix}$$

$$id = \begin{pmatrix} A & B & C \\ C & A & B \end{pmatrix}$$

$$id = \begin{pmatrix} A & B & C \\ C & A & B \end{pmatrix}$$

$$id = \begin{pmatrix} A & B & C \\ C & A & B \end{pmatrix}$$

$$id = \begin{pmatrix} A & B & C \\ C & A & B \end{pmatrix}$$

$$id = \begin{pmatrix} A & B & C \\ C & A & B \end{pmatrix}$$

$$id = \begin{pmatrix} A & B & C \\ C & A & B \end{pmatrix}$$

$$id = \begin{pmatrix} A & B & C \\ C & A & B \end{pmatrix}$$

$$id = \begin{pmatrix} A & B & C \\ C & A & B \end{pmatrix}$$

$$id = \begin{pmatrix} A & B & C \\ C & A & B \end{pmatrix}$$

$$id = \begin{pmatrix} A & B & C \\ C & B & A \end{pmatrix}$$

$$id = \begin{pmatrix} A & B & C \\ C & B & A \end{pmatrix}$$

$$id = \begin{pmatrix} A & B & C \\ C & B & A \end{pmatrix}$$

$$id = \begin{pmatrix} A & B & C \\ C & B & A \end{pmatrix}$$

$$id = \begin{pmatrix} A & B & C \\ C & B & A \end{pmatrix}$$

$$id = \begin{pmatrix} A & B & C \\ C & B & A \end{pmatrix}$$

$$id = \begin{pmatrix} A & B & C \\ C & B & A \end{pmatrix}$$

$$id = \begin{pmatrix} A & B & C \\ C & B & A \end{pmatrix}$$

$$id = \begin{pmatrix} A & B & C \\ C & B & A \end{pmatrix}$$

$$id = \begin{pmatrix} A & B & C \\ C & B & A \end{pmatrix}$$

$$id = \begin{pmatrix} A & B & C \\ C & B & A \end{pmatrix}$$

Table 3.4. Multiplication table for U(8)

	1	3	5	7
1	1	3	5	7
3	3	1	7	5
5	5	7	1	3
7	7	5	3	1

一元一次方程的解

■ 什么情况下,ax=b有解?解是否唯一?解是什么 。

■ (R-{0},×)具有什么性质?

群 - 一种"公理化"的代数系统

The law of composition is associative. That is,

$$(a \circ b) \circ c = a \circ (b \circ c)$$

for $a, b, c \in G$.

• There exists an element $e \in G$, called the *identity element*, such that for any element $a \in G$

$$e \circ a = a \circ e = a$$
.

• For each element $a \in G$, there exists an *inverse element* in G, denoted by a^{-1} , such that

$$a \circ a^{-1} = a^{-1} \circ a = e$$
.

注意:对于the integers mod n, 加法一定构成群,乘法则未必。

你还熟悉哪些"运算性质",在群公理中没有提到?

群中有可能包含"0"吗?

谈到群,你会联想到程 序设计语言中"数据类型"的概念吗?

群方程

Proposition 3.6 Let G be a group and a and b be any two elements in G. Then the equations ax = b and xa = b have unique solutions in G.

PROOF. Suppose that ax = b. We must show that such an x exists. Multiplying both sides of ax = b by a^{-1} , we have $x = ex = a^{-1}ax = a^{-1}b$.

To show uniqueness, suppose that x_1 and x_2 are both solutions of ax = b; then $ax_1 = b = ax_2$. So $x_1 = a^{-1}ax_1 = a^{-1}ax_2 = x_2$. The proof for the existence and uniqueness of the solution of xa = b is similar.

问题8:

直觉上,你能说说群和对称性研究 有什么关联吗? 问题。

假如我们从一个至少两个元 素的群中取异于单位元的元 素,让它持续的乘自己,你 能描述一下情况会怎样吗?

什么是子群?

We define a $subgroup\ H$ of a group G to be a subset H of G such that when the group operation of G is restricted to H, H is a group in its own right.

乘积在哪里?

问题1: ab应该在哪儿?

子群的判定

Proposition 3.9 A subset H of G is a subgroup if and only if it satisfies the following conditions.

- 1. The identity e of G is in H.
- 2. If $h_1, h_2 \in H$, then $h_1h_2 \in H$.
- 3. If $h \in H$, then $h^{-1} \in H$.

子群的判定

Proposition 3.10 Let H be a subset of a group G. Then H is a subgroup of G if and only if $H \neq \emptyset$, and whenever $g, h \in H$ then gh^{-1} is in H.

PROOF. Let H be a nonempty subset of G. Then H contains some element g. So $gg^{-1}=e$ is in H. If $g\in H$, then $eg^{-1}=g^{-1}$ is also in H. Finally, let $g,h\in H$. We must show that their product is also in H. However, $g(h^{-1})^{-1}=gh\in H$. Hence, H is indeed a subgroup of G. Conversely, if g and h are in H, we want to show that $gh^{-1}\in H$. Since h is in H, its inverse h^{-1} must also be in H. Because of the closure of the group operation, $gh^{-1}\in H$.

问题:

群中某个元素的所有整数次幂为什么一 定构成子群?如果这个子集包含原来群 中所有元素,这意味着什么?

子群的判定 - 有限子群

- G是群,H是G的非空有限子集。H是G的子群当且仅当:
 - $\neg \forall a,b \in H, ab \in H$
- 证明
 - □ 必要性显然
 - □ 充分性: 只须证明逆元素性
 - 若H中只含G的单位元,H显然是子群。否则,任取H中异于单位元的元素a,考虑序列

$$a, a^2, a^3, ...$$

注意:该序列中各项均为有限集合H中的元素,因此,必有正整数i,j(j>i),满足:aⁱ=a^j,因此:

$$a^{-1} = a^{j-i-1} \in H$$

现在回头再看看 Symmetries of a Triangle

问题:

将Symmetries of a Triangle看作群,元素究竟是什么?

问题。

为什么一个有限集合上 所有一对应的函数一 定能构成一个群?

置换群

子群的陪集

Let G be a group and H a subgroup of G. Define a *left coset* of H with $representative g \in G$ to be the set

$$gH = \{gh : h \in H\}.$$

Right cosets can be defined similarly by

$$Hg = \{hg : h \in H\}.$$

Example 1. Let H be the subgroup of \mathbb{Z}_6 consisting of the elements 0 and 3. The cosets are

$$0 + H = 3 + H = \{0, 3\}$$
$$1 + H = 4 + H = \{1, 4\}$$
$$2 + H = 5 + H = \{2, 5\}.$$

子群的陪集

问题:

H和gH是否肯定"一样大"?

问题。

谐g川中会不会有相同元素? 有相同元素 意味着什么?

问题:

什么样的元素,它们的陪集是相同的?

陪集划分一个群

Theorem 6.2 Let H be a subgroup of a group G. Then the left cosets of H in G partition G. That is, the group G is the disjoint union of the left cosets of H in G.

PROOF. Let g_1H and g_2H be two cosets of H in G. We must show that either $g_1H \cap g_2H = \emptyset$ or $g_1H = g_2H$. Suppose that $g_1H \cap g_2H \neq \emptyset$ and $a \in g_1H \cap g_2H$. Then by the definition of a left coset, $a = g_1h_1 = g_2h_2$ for some elements h_1 and h_2 in H. Hence, $g_1 = g_2h_2h_1^{-1}$ or $g_1 \in g_2H$. By Lemma 6.1, $g_1H = g_2H$.

问题17:

如果G是有限群,你能得出什么结论吗?

拉格郎日定理

Theorem 6.5 (Lagrange) Let G be a finite group and let H be a subgroup of G. Then |G|/|H| = [G:H] is the number of distinct left cosets of H in G. In particular, the number of elements in H must divide the number of elements in G.

问题:

为什么元素个数是质数的群一定是循环群?

问题。

为什么不可能有比Symmetries of a Triangle元素个数更少的非交换群?

家庭作业

- TJ pp.51-: 3, 6, 7, 17, 28, 36, 38, 41, 48, 52
- TJ pp.100-: 8, 11, 12, 16, 21

$$271^{321} \equiv 271^{2^{0}+2^{6}+2^{8}} \pmod{481}$$

$$\equiv 271^{2^{0}} \cdot 271^{2^{6}} \cdot 271^{2^{8}} \pmod{481}$$

$$\equiv 271 \cdot 419 \cdot 16 \pmod{481}$$

$$\equiv 1,816,784 \pmod{481}$$

$$\equiv 47 \pmod{481}.$$

你能说说这个计算背后的理 论根据吗?

如果我们并不关心集合中究竟是什么东西,那么所谓"结构"中最关键的是什么?

二元运算及其性质

你能理解为什么"结构"由运算确定吗?