#### Sebastiano Tronto

joint work with Davide Lombardo

2020-02-06





Let K be a number field; let  $\alpha \in K^{\times}$  not a root of unity.





Let K be a number field; let  $\alpha \in K^{\times}$  not a root of unity.

• Consider the splitting field L of  $X^n - \alpha$ 





Let K be a number field; let  $\alpha \in K^{\times}$  not a root of unity.

- Consider the splitting field L of  $X^n \alpha$
- L contains the *n*-th cyclotomic extension  $K(\zeta_n)$





Let K be a number field; let  $\alpha \in K^{\times}$  not a root of unity.

- Consider the splitting field L of  $X^n \alpha$
- L contains the *n*-th cyclotomic extension  $K(\zeta_n)$
- $L \mid K$  and  $L \mid K(\zeta_n)$  are Galois





The degree  $[L:K(\zeta_n)]$  is very close to n.





The degree  $[L:K(\zeta_n)]$  is very close to n.

For explicit computations:





The degree  $[L:K(\zeta_n)]$  is very close to n.

For explicit computations:

• Properties of  $K(\zeta_n) \mid K$  (does K intersect  $\mathbb{Q}(\zeta_n)$ ?)





The degree  $[L:K(\zeta_n)]$  is very close to n.

For explicit computations:

- Properties of  $K(\zeta_n) \mid K$  (does K intersect  $\mathbb{Q}(\zeta_n)$ ?)
- Divisibility properties of  $\alpha$  in K (is it an n-th power?)





The degree  $[L:K(\zeta_n)]$  is very close to n.

For explicit computations:

- Properties of  $K(\zeta_n) \mid K$  (does K intersect  $\mathbb{Q}(\zeta_n)$ ?)
- Divisibility properties of  $\alpha$  in K (is it an n-th power?)
- Relations between  $\sqrt[n]{\alpha}$  and  $\zeta_n$





*E* elliptic curve over a number field K; let  $P \in E(K)$  not torsion.





*E* elliptic curve over a number field K; let  $P \in E(K)$  not torsion.

• There are  $n^2$  points  $Q_1, \ldots, Q_{n^2} \in E(\overline{K})$  such that  $nQ_i = P$ 

$$n^{-1}P := \{Q_1, \ldots, Q_{n^2}\}$$





*E* elliptic curve over a number field K; let  $P \in E(K)$  not torsion.

• There are  $n^2$  points  $Q_1, \ldots, Q_{n^2} \in E(\overline{K})$  such that  $nQ_i = P$ 

$$n^{-1}P := \{Q_1, \ldots, Q_{n^2}\}$$

• Consider  $L := K(n^{-1}P)$ 





*E* elliptic curve over a number field K; let  $P \in E(K)$  not torsion.

• There are  $n^2$  points  $Q_1, \ldots, Q_{n^2} \in E(\overline{K})$  such that  $nQ_i = P$ 

$$n^{-1}P := \{Q_1, \ldots, Q_{n^2}\}$$

- Consider  $L := K(n^{-1}P)$
- L contains the *n*-th torsion field K(E[n])





*E* elliptic curve over a number field K; let  $P \in E(K)$  not torsion.

• There are  $n^2$  points  $Q_1, \ldots, Q_{n^2} \in E(\overline{K})$  such that  $nQ_i = P$ 

$$n^{-1}P := \{Q_1, \ldots, Q_{n^2}\}$$

- Consider  $L := K(n^{-1}P)$
- L contains the *n*-th torsion field K(E[n])
- $L \mid K$  and  $L \mid K(E[n])$  are Galois





### Kummer Theories - comparison

| Classical                                                   | Elliptic Curves                         |
|-------------------------------------------------------------|-----------------------------------------|
| $\mathbb{G}_m$                                              | Ε                                       |
| roots of unity $\zeta_n \in \mu_n$                          | torsion points $T \in E[n]$             |
| $K(\zeta_n)$                                                | K(E[n])                                 |
| $\alpha \in \mathcal{K}^{\times}$ not root of unity         | $P \in E(K)$ not torsion                |
| $\{\beta \in \overline{K}^{\times} \mid \beta^n = \alpha\}$ | $\{Q \in E(\overline{K}) \mid nQ = P\}$ |
| $K(\sqrt[n]{a},\zeta_n)$                                    | $K(n^{-1}P)$                            |
| $[K(\sqrt[n]{a},\zeta_n):K(\zeta_n)]\sim n$                 | $[K(n^{-1}P) : K(E[n])] \sim n^2$       |





#### Main result

#### **Theorem**

Assume that  $\operatorname{End}_K(E) = \mathbb{Z}$ . There is an explicit constant C, depending only on P and on the torsion Galois representations associated with E, such that

$$\frac{n^2}{[K(n^{-1}P):K(E[n])]} \qquad divides \qquad C$$

for all  $n \geq 1$ .





#### Main result

#### **Theorem**

Assume that  $\operatorname{End}_K(E) = \mathbb{Z}$ . There is an explicit constant C, depending only on P and on the torsion Galois representations associated with E, such that

$$\frac{n^2}{[K(n^{-1}P):K(E[n])]} \qquad divides \qquad C$$

for all  $n \ge 1$ .

Previously known with a non-explicit constant.





Elementary field theory gives

$$\frac{n^2}{[K(n^{-1}P):K(E[n])]} =$$

$$= \prod_{\substack{\ell \mid n \\ \ell \text{ prime}}} \underbrace{\frac{\ell^{2e_\ell}}{[K(\ell^{-e_\ell}P):K(E[\ell^{e_\ell}])]}}_{A_\ell(n)} \cdot \underbrace{[K(\ell^{-e_\ell}P)\cap K(E[n]):K(E[\ell^{e_\ell}])]}_{B_\ell(n)}$$

where  $e_{\ell} = v_{\ell}(n)$ .





Elementary field theory gives

$$\frac{n^2}{[K(n^{-1}P):K(E[n])]} =$$

$$= \prod_{\substack{\ell \mid n \\ \ell \text{ prime}}} \underbrace{\frac{\ell^{2e_\ell}}{[K(\ell^{-e_\ell}P):K(E[\ell^{e_\ell}])]}}_{A_\ell(n)} \cdot \underbrace{[K(\ell^{-e_\ell}P)\cap K(E[n]):K(E[\ell^{e_\ell}])]}_{B_\ell(n)}$$

where  $e_{\ell} = v_{\ell}(n)$ .

We call  $A_{\ell}(n)$  the  $\ell$ -adic failure and  $B_{\ell}(n)$  the adelic failure.





#### Goals:

• Show that  $A_{\ell}(n)$  is bounded as a function of n





#### Goals:

- Show that  $A_{\ell}(n)$  is bounded as a function of n
- ullet  $A_\ell=1$  for almost all primes





#### Goals:

- Show that  $A_{\ell}(n)$  is bounded as a function of n
- $A_{\ell} = 1$  for almost all primes
- Same for  $B_\ell$





#### Goals:

- Show that  $A_{\ell}(n)$  is bounded as a function of n
- ullet  $A_\ell=1$  for almost all primes
- Same for  $B_\ell$
- Everything explicitly!





Assume that E has no CM and fix a prime  $\ell$ .





Assume that E has no CM and fix a prime  $\ell$ .

• Write  $P = \ell^{d_\ell} Q + T$  in E(K), with T torsion and  $d_\ell$  maximal





Assume that E has no CM and fix a prime  $\ell$ .

• Write  $P = \ell^{d_{\ell}}Q + T$  in E(K), with T torsion and  $d_{\ell}$  maximal

#### Theorem (Jones, Rouse (2007))

Assume  $\ell > 2$ . If  $d_{\ell} = 0$  and the  $\ell$ -adic Galois representation associated with E is surjective, then  $A_{\ell}(n) = 1$  for every n > 1.





Assume that E has no CM and fix a prime  $\ell$ .

• Write  $P = \ell^{d_\ell} Q + T$  in E(K), with T torsion and  $d_\ell$  maximal

### Theorem (Jones, Rouse (2007))

Assume  $\ell > 2$ . If  $d_{\ell} = 0$  and the  $\ell$ -adic Galois representation associated with E is surjective, then  $A_{\ell}(n) = 1$  for every n > 1.

ullet Serre's open image theorem  $\implies$  finitely many primes left





# Proof idea - ℓ-adic failure (an example)

Problem:  $d_{\ell}$  may increase when we work over  $K(E[\ell^e])$ 





### Proof idea - $\ell$ -adic failure (an example)

Problem:  $d_{\ell}$  may increase when we work over  $K(E[\ell^e])$ 

#### Example

The curve

$$E/\mathbb{Q}: \qquad y^2+y=x^3-216x-1861 \qquad \qquad \text{(Cremona 17739g1)}$$

has a point

$$P = \left(\frac{23769}{400}, \frac{3529853}{8000}\right) \in E(\mathbb{Q})$$

with  $d_3 = 0$ .

However, there is a point  $Q \in \mathbb{Q}(E[3])$  such that P = 3Q.





Using Galois cohomology, we bound  $A_{\ell}$  in terms of:

- ullet the divisibility parameter  $d_\ell$
- "how much"  $\rho_{\ell^\infty}$  is not surjective





Using Galois cohomology, we bound  $A_{\ell}$  in terms of:

- ullet the divisibility parameter  $d_\ell$
- "how much"  $\rho_{\ell^{\infty}}$  is not surjective

#### Proposition

There is an explicit integer  $c_{\ell}$ , depending only on the  $\ell$ -adic Galois representation associated with E, such that  $A_{\ell}(n)$  divides  $\ell^{4c_{\ell}+2d_{\ell}}$  for every n>1.





Let 
$$e_{\ell} = v_{\ell}(n)$$
 and  $r = n/\ell^{e_{\ell}}$ .





Let 
$$e_\ell=v_\ell(n)$$
 and  $r=n/\ell^{e_\ell}$ . 
$$B_\ell(n)=[K(\ell^{-e_\ell}P)\cap K(E[n]):K(E[\ell^{e_\ell}])]$$





Let 
$$e_\ell=v_\ell(n)$$
 and  $r=n/\ell^{e_\ell}.$  
$$B_\ell(n)=[K(\ell^{-e_\ell}P)\cap K(E[n]):K(E[\ell^{e_\ell}])]$$

One can show that

$$B_{\ell}(n) = \underbrace{\left[K(\ell^{-e_{\ell}}P) \cap K(E[r])\right]}_{F} : \underbrace{K(E[\ell^{e_{\ell}}]) \cap K(E[r])}_{M}$$





Let 
$$e_\ell=v_\ell(n)$$
 and  $r=n/\ell^{e_\ell}.$  
$$B_\ell(n)=[K(\ell^{-e_\ell}P)\cap K(E[n]):K(E[\ell^{e_\ell}])]$$

One can show that

$$B_{\ell}(n) = \underbrace{\left[K(\ell^{-e_{\ell}}P) \cap K(E[r])}_{F} : \underbrace{K(E[\ell^{e_{\ell}}]) \cap K(E[r])}_{M}\right]$$

• If M = K then  $B_{\ell}(n) = 1$ 





$$M := K(E[\ell^{e_\ell}]) \cap K(E[r])$$

### Theorem (Campagna, Stevenhagen (2019))

There is a finite and explicit set of primes S, depending only on E, such that if  $\ell \notin S$ , then M = K.





$$M := K(E[\ell^{e_\ell}]) \cap K(E[r])$$

### Theorem (Campagna, Stevenhagen (2019))

There is a finite and explicit set of primes S, depending only on E, such that if  $\ell \notin S$ , then M = K.

For the other primes:





$$M := K(E[\ell^{e_\ell}]) \cap K(E[r])$$

### Theorem (Campagna, Stevenhagen (2019))

There is a finite and explicit set of primes S, depending only on E, such that if  $\ell \notin S$ , then M = K.

#### For the other primes:

• There is a finite extension  $\tilde{K} \mid K$ , depending only on S, such that working over  $\tilde{K}$  we have  $\tilde{M} = \tilde{K}$ 





$$M := K(E[\ell^{e_\ell}]) \cap K(E[r])$$

### Theorem (Campagna, Stevenhagen (2019))

There is a finite and explicit set of primes S, depending only on E, such that if  $\ell \notin S$ , then M = K.

#### For the other primes:

- There is a finite extension  $\tilde{K} \mid K$ , depending only on S, such that working over  $\tilde{K}$  we have  $\tilde{M} = \tilde{K}$
- We have the bound

$$B_{\ell}(\mathbf{n}) \mid \ell^{2c_{\ell}+3v_{\ell}([\tilde{K}:K])}$$





# Proof idea - summary

Split the "failure of maximality" in ℓ-adic and adelic failures





### Proof idea - summary

- Split the "failure of maximality" in ℓ-adic and adelic failures
- ② For most primes things are nice and  $A_{\ell}=B_{\ell}=1$  (direct application of older results)





### Proof idea - summary

- Split the "failure of maximality" in ℓ-adic and adelic failures
- ② For most primes things are nice and  $A_{\ell}=B_{\ell}=1$  (direct application of older results)
- For the other primes, things don't go too bad (some extra work to do)





#### Main result

#### $\mathsf{Theorem}$

Assume that  $\operatorname{End}_K(E)=\mathbb{Z}$ . There is an explicit constant C, depending only on P and on the torsion Galois representations associated with E such that

$$\frac{n^2}{[K(n^{-1}P):K(E[n])]} \qquad divides \qquad C$$

for all n > 1.





# Thank you for your attention!



