Отчёт по лабораторной работе №23 Изучение электропроводности и определение удельного сопротивления полупроводников

Богатова Е.

17 сентября 2023 г.

1. Экспериментальная установка

Рис. 1: Схема экспериментальной установки

Для измерения сопротивления используется двухзондовый метод. На торцевые части полупроводникового образца наносятся металлические контакты, и образец в торцевых частях зажимается между двумя электродами. Затем к шлифованной боковой поверхности образца прижимают два зонда на расстоянии L один от другого. Один зонд неподвижен, другой двигается и его координата определяется с помощью микрометрического винта.

При прохождении постоянного тока через образец на участке 5-5* происходит падение напряжение, которое измеряется. При помощи амперметра измеряется величина постоянного тока, при помощи гальванометра измеряется ток (вернее, его отсутствие) в цепи с зондами. Таким образом, исключается влияние переходного сопротивления контактов на точность измерения удельного сопротивления.

Измерение удельного сопротивления полупроводника двухзондовым методом дает некоторое среднее значение удельного сопротивления. Образцы с неоднородностью распределения примесей вдоль их длины имеют неоднородное электрическое сопротивление. Для определения электрической однородности полупроводника надо найти распределение падения напряжения вдоль длины образца.

Напряжение на участке образца зависит от длины l участка и удельного сопротивления при постоянных значениях тока через образец и сечения образца:

$$V_x = IR_x = I\rho l/S \tag{1}$$

Если график $V_x(l)$ - прямая линия, то образец считается однородным, иначе - неоднородный.

2. Результаты эксперимента и обработка данных

Параметры установки:

- \bullet $I=0.075~{
 m A}$ ток, который протекал через установку в течение эксперимента
- \bullet d=6 мм диаметр образца

Измерим зависимость падения напряжения на участке образца от длины участка (см. таблицу 1):

Построим соответствующий график (см. рис.2):

U, мВ	Δl , mm
11,1	0
10,4	0,25
12,3	0,5
9,6	0,75
10,7	1
10	1,25
9	1,5
8,7	1,75
8,1	2
7,7	2,25
7,4	2,5
7,2	2,75
7	3
6,8	3,25
6,5	3,5
5,9	3,75
5,6	4
5,4	4,25
5,4	4,5
5,1	4,75

Таблица 1: Результаты измерения зависимости $U(\Delta l)$

Рис. 2: Зависимость падения напряжения от расстояния между зондами

Из графика найдем коэффициент наклона аппроксимирующей прямой с помощью MHK :

$$k = (-1.29 \pm 0.07) \frac{MB}{MM}$$

Получим значение удельного сопротивления:

$$\rho = \frac{kS}{I} = (484 \pm 25) \cdot 10^{-3} \text{ Om} \cdot \text{mm}$$

На графике явно виден участок неоднородности, который может быть объяснен наличием примеси. Возможные причины неоднородности:

- концентрация примеси в выбивающихся точках сильно больше, чем концентрация примеси в остальном полупроводнике
- образование собственных точечных дефектов при пластических деформациях

Таким образом, приходим к выводу что полупроводник легирован не однородно и/или его кто-то деформировал

3. Вывод

В данной работе был изучен двухзондовый метод измерения сопротивления и применен для измерения удельного сопротивления образца, а также найдено удельное сопротивление образца. $\rho = (482 \pm 25) \cdot 10^{-3} \; \text{Ом} \cdot \text{мм}$. На основании построенного графика зависимости падения напряжения на участке образца от длины участка был сделан вывод, что образец неоднороден и предложены возможные причины неоднородности: неравномерное распределение концентрации примеси, возможно, пластические деформации.