SREE VIDYANIKETHAN ENGINEERING COLLEGE

(An Autonomous Institution, Affiliated to JNTUA, Ananthapuramu)

I B.Tech II Semester (SVEC-16) Regular/Supplementary Examinations June - 2018 TRANSFORMATION TECHNIQUES AND PARTIAL DIFFERENTIAL EQUATIONS

[Civil Engineering, Electrical and Electronics Engineering, Mechanical Engineering, Electronics and Communication Engineering, Computer Science and Engineering, Electronics and Instrumentation Engineering, Information Technology,

Computer Science and Systems Engineering

Computer Science and Systems Engineering Time: 3 hours Max. Marks: 70 Answer One Question from each Unit. All questions carry equal marks. UNIT-I 1 Obtain half range cosine series for $f(x) = x \sin x$ in $(0, \pi)$. 14 Marks (OR) 2 Expand $f(x) = 2x - x^2$ in a Fourier cosine series in the interval 0 < x < 4. 14 Marks UNIT-II Find the Fourier cosine and sine transform of $f(x) = \begin{cases} 1; & 0 < x < a \\ 0; & x \ge a \end{cases}$. 3 14 Marks If the finite Fourier sine transform of f(x) is $\frac{16(-1)^{n-1}}{n^3}$, then find f(x) in $(0, \pi)$. 4 8 Marks a) If the finite Fourier cosine transform of f(x) is $\frac{1-\cos n\pi}{n^2\pi^2}$, then find f(x) in $[0,\pi]$. 6 Marks b) UNIT-III 5 14 Marks i) $L^{-1}\left\{\ln\left(1+\frac{1}{s}\right)\right\}$. ii) $L^{-1}\left\{\frac{1}{s^3(s^2+1)}\right\}$. Evaluate: Solve $y''+4y'+3y=e^t$ with y(0)=0, y'(0)=2 by transform method. 6 14 Marks a) Define z – transform of f(n) and from the definition, find the Z-transform of 7 7 Marks $\left(\frac{1}{2}\right)^n + \left(\frac{1}{3}\right)^n$. Show that $Z(\sin h \, n\theta) = \frac{z \sin h\theta}{z^2 - 2z \cos h\theta + 1}$. 7 Marks 8 Using Z-transform, solve $u_{n+2} - 3u_{n+1} + 2u_n = 0$, with u(0) = 0 and u(1)=1. 14 Marks Solve the linear differential equation $(x^2 - yz) p + (y^2 - zx) q = z^2 - xv$. 9 7 Marks Solve the equation $x^2 \frac{\partial u}{\partial x} + y^2 \frac{\partial u}{\partial y} = 0$ by applying method of separation of 7 Marks variables. (OR)

A string is stretched and fastened to two points l apart. Motion is started by displacing the string into the form $y = k(lx - x^2)$ from which it is released at time t = 0. Find the displacement of any point on the string at a distance of x from one end at a time t.