

ΠΟΛΥΤΕΧΝΕΙΟ ΚΡΗΤΗΣ

Σχολή Ηλεκτρολόγων Μηχανικών & Μηχανικών Υπολογιστών

«ΑΝΑΝΕΩΣΙΜΕΣ ΠΗΓΕΣ ΕΝΕΡΓΕΙΑΣ»

Διδάσκων: Γ. Σταυρακάκης Ασκήσεις: Γ. Κατσίγιαννης

ΘΕΜΑ: Εκτίμηση αιολικού δυναμικού και επιλογή της κατάλληληλης ανεμογεννήτριας

Στον Πίνακα 1 της επόμενης σελίδας δίνεται η κατανομή της ταχύτητας του ανέμου για μια περιοχή του Ν. Χανίων. Επιπλέον, στην επόμενη σελίδα περιγράφεται η μεθοδολογία επιλογής αρχείου δεδομένων που περιλαμβάνει τις καμπύλες ισχύος ανεμογεννητριών (αντίστοιχης ισχύος και διαφορετικής διαμέτρου).

Ζητούνται:

- 1. Η εκτίμηση της μέσης τιμής και της τυπικής απόκλισης του δείγματος ταχύτητας ανέμου στο ύψος τοποθέτησης της ανεμογεννήτριας.
- 2. Η προσαρμογή της καμπύλης Weibull στο ίδιο δείγμα.
- 3. Η καμπύλη αθροιστικής πιθανότητας της ετήσιας έντασης του ανέμου.
- 4. Η ετήσια καμπύλη διάρκειας του ανέμου.
- 5. Η εκτίμηση της ετήσιας θεωρητικής αιολικής ισχύος στην περιοχή του σταθμού.
- 6. Η επιλογή της κατάλληλης ανεμογεννήτριας για να τοποθετηθεί στην περιοχή του σταθμού, με κριτήριο τη μέγιστη παραγωγή ενέργειας.

Παραδοχές:

- 1. Το ύψος τοποθέτησης των ανεμομέτρων είναι (2***ΑΓΟ**)m
- 2. Το ύψος τοποθέτησης των ανεμογεννητριών είναι (40+4*ΑΓΕ)m
- 3. Η τραγύτητα του εδάφους είναι (0.1+0.1*AM)m

Επεξήγηση συντμήσεων:

ΑΓΟ: Αριθμός Γραμμάτων Ονόματος (όπως αναγράφεται στη λίστα του μαθήματος)

ΑΓΕ: Αριθμός Γραμμάτων Επωνύμου

ΑΜ: Τελευταίο Ψηφίο ΑΜ

Πίνακας 1: Ανεμολογικά Στοιχεία, Χανιά

Διάστημα ταχύτητας	f% διαστήματος	Διάστημα ταχύτητας	f% διαστήματος
0 ÷ 1	13.71	13 ÷ 14	1.78
1 ÷ 2	5.73	14 ÷ 15	1.28
2 ÷ 3	6.94	15 ÷ 16	0.99
3 ÷ 4	9.10	16 ÷ 17	0.75
4 ÷ 5	9.67	17 ÷ 18	0.59
5 ÷ 6	9.11	18 ÷ 19	0.53
6 ÷ 7	8.58	19 ÷ 20	0.33
7 ÷ 8	7.09	20 ÷ 21	0.32
8 ÷ 9	6.31	21 ÷ 22	0.24
9 ÷ 10	5.83	22 ÷ 23	0.11
10 ÷ 11	4.57	23 ÷ 24	0.06
11 ÷ 12	3.48	24 ÷ 25	0.07
12 ÷ 13	2.74	25 ÷ 26	0.08

Επιλογή αρχείων καμπυλών ισχύος:

Για κάθε φοιτητή υπολογίζεται η παράμετρος CODE που είναι ίση με:

$$CODE = \mathbf{MOD} \left(\frac{29 \cdot \mathbf{A}\Gamma O + 32 \cdot \mathbf{A}\Gamma E - 9 \cdot \mathbf{AM}}{16} \right),$$

όπου \mathbf{MOD} είναι η συνάρτηση υπολοίπου διαίρεσης (π.χ., $\mathbf{MOD}(11/4)=3$). Οι χρονοσειρές που αντιστοιχούν στην τιμή της παραμέτρου CODE δίνονται στον πίνακα που ακολουθεί.

Παράμετρος <i>CODE</i>	Επιλογή αρχείου	
0	Enercon_800kW	
1	Enercon_2300kW	
2	Enercon_3000kW	
3	Sinovel_1500kW	
4	Sinovel_3000kW	
5	Suzlon_1000kW	
6	Various_225kW	
7	Various_500kW	
8	Various_600kW	
9	Various_750kW	
10	Various_1000kW	
11	Various_1500kW	
12	Various_2000kW	
13	Various_3000kW	
14	Vestas_600kW	
15	Vestas_3000kW	