Name:	Exercise 7	Type (Cost):
J#:	In-Clas	s (1AP)
Date: 2017 July 06		
Standard: This student is able to		Mark:
C04: IntParts. Use integration by parts.		
Extra2	\star reattempt due on:	

Find $\int 2x^5 \ln(x) dx$.

Name:	Exercise T	Type (Cost):
J#:	In-Class	s (1AP)
Date: 2017 July 06		
Standard: This student is able to		Mark:
C10: Polar. Convert and sketch polar and Cartesian coord nates and equations.	1-	
$3/4$ \star reat	tempt due on:	

Find a Cartesian equation for the circle defined by the polar equation $r=6\sin\theta$. (Hint: Multiply both sides by r, convert to x and y, move all terms to the same side, add 9 to both sides of the equation, and then factor the y terms.) Then sketch the circle.

Name:	Exercise T	Type (Cost):
J#:	In-Class	s (1AP)
Date: 2017 July 06		
Standard: This student is able to S09: PolarAppl. Use polar coordinates to express an arclength or area as a definite integral.		Mark:
2/4 * reat	tempt due on:	

The arclength of the curve defined by the polar equation $r=r(\theta)$ where $\alpha \leq \theta \leq \beta$ is given by $\int_{\alpha}^{\beta} \sqrt{(r(\theta))^2 + (\frac{dr}{d\theta})^2} \, d\theta$. Give a definite integral equal to the circumference of the cardioid $r=3-3\sin\theta$.

Name:	Exercise Type (Cost):	
J#:	In-Class (1AP)	
Date: 2017 July 06		
Standard: This student is able to	Mark:	
S10: SeqForm. Define and use explicit and recursive formulas for sequences.	1-	

Complete the following proof by induction that the sequence $(3n^2 + 1)_{n=1}^{\infty}$ may be defined recursively by $a_1 = 4$ and $a_{n+1} = a_n + 6n + 3$.

 \star reattempt due on:

We first verify that the explicit formula $a_n = 3n^2 + 1$ satisfies the base case $a_1 = 4$:

1/3

Now, assuming that $a_n = 3n^2 + 1$ holds for n, we may use the recursive formula $a_{n+1} = a_n + 6n + 3$ to show that $a_{n+1} = 3(n+1)^2 + 1$: