

二次型的定义 含有n个变量 x_1, x_2, \dots, x_n 的二次齐次函数

$$f(x_1, x_2, \dots, x_n) = a_{11}x_1^2 + a_{22}x_2^2 + \dots + a_{nn}x_n^2 + 2a_{12}x_1x_2 + 2a_{13}x_1x_3 + \dots + 2a_{1n}x_1x_n + \dots + 2a_{n-1, n}x_{n-1}x_n$$
 称为 n 元二次型,记作 $f = \underline{x^T A x}$,其中 $x = (x_1, x_2, \dots, x_n)^T$, $\underline{A} = (a_{ij})$ 为实对称矩阵,称 \underline{A} 为二次型的矩阵,称 \underline{A} 的秩为二次型的秩,记作 $\underline{r}(f)$.

【评注】二次型与实对称矩阵一一对应,二次型的矩阵 A 的主对角线元素为平方项的系数,其余元素 $a_{ii}=a_{ij}$ 为交叉项 x_{ij} 系数的一半.

【例 6.1】(2004, 数三)二次型 $f(x_1, x_2, x_3) = (x_1 + x_2)^2 + (x_2 - x_3)^2 + (x_3 + x_1)^2$ 的秩为______.

【详解】

$$\int = 2x^{2} + 2x^{2} + 2x^{2} + 2x^{3} + 2x_{1}x_{2} + 2x_{1}x_{3} - 2x_{2}x_{3}$$

$$A = \begin{pmatrix} 2 & 1 & 1 & 1 & 2 \\ 1 & 2 & 1 & 1 & 2 \\ 1 & -1 & 2 & 1 & 0 & 3 & -3 \\ 1 & -1 & 2 & 1 & 0 & 0 & 0 \end{pmatrix},$$

$$M(A) = 2, \quad 4x_{2} + 2x_{3} + 2x_{1}x_{2} + 2x_{1}x_{3} + 2x_{1}x_{3} - 2x_{2}x_{3}$$

$$A = \begin{pmatrix} 2 & 1 & 1 & 1 & 2 \\ 1 & 2 & 1 & 1 & 2 \\ 1 & -1 & 2 & 1 & 0 & 0 & 0 \end{pmatrix},$$

$$M(A) = 2, \quad 4x_{2} + 2x_{3} + 2x_{1}x_{2} + 2x_{1}x_{3} + 2x_{1}x_{3} - 2x_{2}x_{3}$$

标准形的定义 只含平方项的二次型,即 $f = d_1 y_1^2 + d_2 y_2^2 + \dots + d_n y_n^2$,称为二次型的标准形.

可逆线性变换的定义 关系式

$$\begin{cases} x_1 = c_{11}y_1 + c_{12}y_2 + \dots + c_{1n}y_n \\ x_2 = c_{21}y_1 + c_{22}y_2 + \dots + c_{2n}y_n \\ \dots & \dots \\ x_n = c_{n1}y_1 + c_{n2}y_2 + \dots + c_{nn}y_n \end{cases}$$

即x = Cy, 其中

$$x = \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix}, \quad y = \begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{pmatrix}, \quad C = \begin{pmatrix} c_{11} & c_{12} & \cdots & c_{1n} \\ c_{21} & c_{22} & \cdots & c_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ c_{n1} & c_{n2} & \cdots & c_{nn} \end{pmatrix}$$

称为由变量 x_1, x_2, \dots, x_n 到 y_1, y_2, \dots, y_n 的线性变换. 若C 为可逆矩阵,则称x = Cy 为可逆线性变换.

正负惯性指数的定义 标准形中系数为正的个数称为二次型的正惯性指数,记作 $_{p}$,系数为负的个数称为二次型的负惯性指数,记作 $_{q}$.

规范形的定义 若标准形的系数为 1,-1或 0,即 $f = y_1^2 + y_2^2 + \dots + y_p^2 - y_{p+1}^2 - \dots - y_{p+q}^2$,称为二次型的规范形.

标准形的求法

- (一) 拉格朗日配方法(以三元二次型为例)
- (1) 若二次型含有平方项,不妨设含有 x_1^2 ,先将含有 x_1 的项配方,再将含有 x_2 的项配方,换元得标准形 $f=d_1y_1^2+d_2y_2^2+\cdots+d_ny_n^2$ 及所用的可逆线性变换 x=Cy;
 - (2) 若二次型不含平方项,不妨设含有 x_1x_2 ,令 $\begin{cases} x_1 = y_1 + y_2 \\ x_2 = y_1 y_2 \\ x_3 = y_3 \end{cases}$

(二) 正交变换法 (3大步)

- (1) 求二次型的矩阵 A 的 n 个特征值 $\lambda_1, \dots, \lambda_n$;
- (2) 求 A 的 n 个线性无关的特征向量 $\alpha_1, \dots, \alpha_n$;
- (3) 将不同特征值的特征向量分别 Schmidt 正交化,得 $\gamma_1, \dots, \gamma_n$,得到正交矩阵 $Q = (\gamma_1, \dots, \gamma_n)$.

经过正交变换x = Qy,二次型化为标准形 $f = \lambda_1 y_1^2 + \lambda_2 y_2^2 + \cdots + \lambda_n y_n^2$.

 $PY: \int = X^T A X \stackrel{\text{def}}{=} (QY)^T A (QY)$ $= Y^T Q^T A Q Y = Y^T \Delta Y$

$$= (y, y_n) \begin{pmatrix} \lambda_1 \\ \lambda_2 \end{pmatrix} \begin{pmatrix} y_1 \\ y_n \end{pmatrix} \begin{pmatrix} y$$

→ 专题二 合同矩阵 (人)

合同的定义 设 A,B 为 n 阶 实对称矩阵,若存在 n 阶 可逆矩阵 C ,使得 $B=C^TAC$,则称 A 与 B 合同.

合同的充要条件

n 阶实对称矩阵 A 与 B 合同

 \Leftrightarrow 二次型 $x^T Ax$ 与 $x^T Bx$ 有相同的正、负惯性指数 () とす。

 \Leftrightarrow A, B 有相同的正、负特征值的个数

【例 6.2】设 A 为 n 阶实对称矩阵,则下列矩阵与 A 合同的是【

(A)
$$A-E$$

(B)
$$A+E$$

(C)
$$A^3 - A$$

(C)
$$A^3 - A$$
 (D) $A^3 + A$

→ 专题三 正定二次型与正定矩阵 (文义)

正定的定义 设n 元二次型 $f = x^T A x$,若对任意的 $x \neq 0$,有 $x^T A x > 0$,则称f 为正定二次型,称 实对称矩阵A 为正定矩阵.

正定的充要条件

n 元二次型 $f = x^T Ax$ 正定

 \Leftrightarrow f 的正惯性指数为n f x: $f = x_1 + \dots + x_n - x_n = -1$ $(0, x_n)$

 $\Leftrightarrow A = E = C$,即存在可逆矩阵C,使得 $C^TAC = E$ 》(是有证人))

 \Leftrightarrow A 的特征值均大于零

 \Leftrightarrow A 的顺序主子式均大于零

起题性极力

【例 6.3】设二次型 $f(x_1, x_2, x_3) = ax_1^2 + 4x_2^2 + ax_3^2 + 6x_1x_2 + 2x_2x_3$ 正定,则 a 的取值范围是______

【详解】

$$A = \begin{pmatrix} 0 & 3 & 0 \\ 3 & 4 & 1 \\ 0 & 1 & 0 \end{pmatrix}$$

$$A = \begin{pmatrix} 0 & 3 & 1 \\ 3 & 4 & 1 \\ 4 & 1 & 1 \end{pmatrix}$$

$$A = \begin{pmatrix} 0 & 3 & 1 \\ 3 & 4 & 1 \\ 4 & 1 & 1 \end{pmatrix}$$

$$A = \begin{pmatrix} 0 & 3 & 1 \\ 3 & 4 & 1 \\ 4 & 1 & 1 \end{pmatrix}$$

$$A = \begin{pmatrix} 0 & 3 & 1 \\ 3 & 4 & 1 \\ 4 & 1 & 1 \end{pmatrix}$$

$$A = \begin{pmatrix} 0 & 3 & 1 \\ 3 & 4 & 1 \\ 4 & 1 & 1 \end{pmatrix}$$

$$A = \begin{pmatrix} 0 & 3 & 1 \\ 3 & 4 & 1 \\ 4 & 1 & 1 \end{pmatrix}$$

$$A = \begin{pmatrix} 0 & 3 & 1 \\ 3 & 4 & 1 \\ 4 & 1 & 1 \end{pmatrix}$$

$$A = \begin{pmatrix} 0 & 3 & 1 \\ 3 & 4 & 1 \\ 4 & 1 & 1 \end{pmatrix}$$

$$A = \begin{pmatrix} 0 & 3 & 1 \\ 3 & 4 & 1 \\ 4 & 1 & 1 \end{pmatrix}$$

$$A = \begin{pmatrix} 0 & 3 & 1 \\ 3 & 4 & 1 \\ 4 & 1 & 1 \end{pmatrix}$$

$$A = \begin{pmatrix} 0 & 3 & 1 \\ 3 & 4 & 1 \\ 4 & 1 & 1 \end{pmatrix}$$

$$A = \begin{pmatrix} 0 & 3 & 1 \\ 3 & 4 & 1 \\ 4 & 1 & 1 \end{pmatrix}$$

$$A = \begin{pmatrix} 0 & 3 & 1 \\ 3 & 4 & 1 \\ 4 & 1 & 1 \end{pmatrix}$$

$$A = \begin{pmatrix} 0 & 3 & 1 \\ 3 & 4 & 1 \\ 4 & 1 & 1 \end{pmatrix}$$

$$A = \begin{pmatrix} 0 & 3 & 1 \\ 3 & 4 & 1 \\ 4 & 1 & 1 \\ 4 & 1 & 1 \end{pmatrix}$$

$$A = \begin{pmatrix} 0 & 3 & 1 \\ 3 & 4 & 1 \\ 4 & 1 & 1 \\ 4 & 1 & 1 \end{pmatrix}$$

$$A = \begin{pmatrix} 0 & 3 & 1 \\ 3 & 4 & 1 \\ 4 & 1 & 1 \\ 4 & 1 & 1 \end{pmatrix}$$

$$A = \begin{pmatrix} 0 & 3 & 1 \\ 3 & 4 & 1 \\ 4 & 1 & 1 \\ 4 & 1 & 1 \end{pmatrix}$$

$$A = \begin{pmatrix} 0 & 3 & 1 \\ 3 & 4 & 1 \\ 4 & 1 & 1 \\ 4 & 1 & 1 \end{pmatrix}$$

$$A = \begin{pmatrix} 0 & 3 & 1 \\ 3 & 4 & 1 \\ 4 & 1 & 1 \\ 4 & 1 & 1 \end{pmatrix}$$

$$A = \begin{pmatrix} 0 & 3 & 1 \\ 3 & 4 & 1 \\ 4 & 1 & 1 \\ 4 & 1 & 1 \\ 4 & 1 & 1 \end{pmatrix}$$

$$A = \begin{pmatrix} 0 & 3 & 1 \\ 3 & 4 & 1 \\ 4 & 1 & 1 \\ 4$$

例 6.4】证明: (I) 若 A, B 为 n 阶正定矩阵,则 A+B 正定;

(II) 若 A 为 n 阶正定矩阵,则 kA(k>0), $A^{m}(m$ 为正整数), A^{T} , A^{-1} , A^{*} 均正定.

【详解】

发证口场为到现从AHB为国 (AHB)T二人T+BT二人+B, 数AHB为到板 (1) BRZX. YX40.75 XT (AHB) X =XTAX+XTBX)0, KABBE 3. 安静风·新风。 $A = \begin{pmatrix} 1 & 2 \\ 2 & 3 \end{pmatrix}, B = \begin{pmatrix} 3 \\ 2 \\ 1 \end{pmatrix}, A + B = \begin{pmatrix} 4 \\ 4 \end{pmatrix}$

(2) 4/4 /R/A 发入68个组上的为人,同人20. kA(ko), Am, AT, AT, AT 20 00 校一节建 OZIA: AZZ DI 2A+3A+4AZZ