(12)

EUROPEAN PATENT SPECIFICATION

- (45) Date of publication and mention of the grant of the patent: 10.09.2003 Bulletin 2003/37
- (21) Application number: 97930518.2
- (22) Date of filing: 11.07.1997

- (51) Int CI.7: **C07D 471/04**, A61K 31/505, C07D 209/08, C07D 231/56, C07D 401/06, C07D 235/08 // (C07D471/04, 239:00, 221:00)
- (86) International application number: PCT/EP97/03674
- (87) International publication number: WO 98/002438 (22.01.1998 Gazette 1998/03)

(54) BICYCLIC HETEROAROMATIC COMPOUNDS AS PROTEIN TYROSINE KINASE INHIBITORS

BICYCLISCHE HETEROAROMATIC VERBINDUNGEN ALS PROTEIN TYROSIN KINASE INHIBITOREN

COMPOSES HETEROAROMATIQUES BICYCLIQUES EN TANT QU'INHIBITEURS DE LA PROTEINE TYROSINE KINASE

(84) Designated Contracting States:

AT BE CH DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

Designated Extension States:

AL LT LV RO SI

- (30) Priority: **13.07.1996 GB 9614763 07.12.1996 GB 9625492**
- (43) Date of publication of application: 06.05.1999 Bulletin 1999/18
- (60) Divisional application: **02080417.5** / **1 304 110**
- (73) Proprietor: GLAXO GROUP LIMITED Greenford, Middlesex UB6 ONN (GB)
- (72) Inventors:
 - COCKERILL, George Stuart, Glaxo Wellcome plc Stevenage, Hertfordshire SG1 2NY (GB)
 - CARTER, Malcolm Clive, Glaxo Wellcome plc Stevenage, Hertfordshire SG1 2NY (GB)
 - GUNTRIP, Stephen Barry, Glaxo Wellcome plc Stevenage, Hertfordshire SG1 2NY (GB)

- SMITH, Kathryn Jane, Glaxo Wellcome plc Stevenage, Hertfordshire SG1 2NY (GB)
- (74) Representative: Reed, Michael Antony et al GlaxoSmithKline Corporate Intellectual Property (CN9.25.1) 980 Great West Road Brentford, Middlesex TW8 9GS (GB)
- (56) References cited:

WO-A-95/19774 WO-A-97/13771 WO-A-97/18212 FR-M- 5 600

 D.L. BOGER ET AL.: "Regiocontrolled nucleophilic addition to selectively activated p-quinone diimines: alternative preparation of a key intermediate employed in the preparation of the CC-1065 left-hand subunit" JOURNAL OF ORGANIC CHEMISTRY., vol. 55, no. 4, 1990, EASTON US, pages 1379-1390, XP002044433

Remarks:

The file contains technical information submitted after the application was filed and not included in this specification

Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).

Description

10

[0001] The present invention relates to a series of substituted heteroaromatic compounds, methods for their preparation, pharmaceutical compositions containing them and their use in medicine. In particular, the invention relates to bioisosteres of quinoline and quinazoline derivatives which exhibit protein tyrosine kinase inhibition.

[0002] Protein tyrosine kinases catalyse the phosphorylation of specific tyrosyl residues in various proteins involved in the regulation of cell growth and differentiation (A.F. Wilks, Progress in Growth Factor Research, 1990, 2, 97-111; S.A. Courtneidge, Dev. Supp.I, 1993, 57-64; J.A. Cooper, Semin. Cell Biol., 1994, 5(6), 377-387; R.F. Paulson, Semin. Immunol., 1995, 7(4), 267-277; A.C. Chan, Curr. Opin. Immunol., 1996, 8(3), 394-401). Protein tyrosine kinases can be broadly classified as receptor (e.g. EGFr, c-erbB-2, c-met, tie-2, PDGFr, FGFr) or non-receptor (e.g. c-src, Ick, Zap70) kinases. Inappropriate or uncontrolled activation of many of these kinase, i.e. aberrant protein tyrosine kinase activity, for example by over-expression or mutation, has been shown to result in uncontrolled cell growth.

[0003] Aberrant activity of protein tyrosine kinases, such as c-erbB-2, c-src, c-met, EGFr and PDGFr have been implicated in human malignancies. Elevated EGFr activity has, for example, been implicated in non-small cell lung, bladder and head and neck cancers, and increased c-erbB-2 activity in breast, ovarian, gastric and pancreatic cancers. Inhibition of protein tyrosine kinases should therefore provide a treatment for tumours such as those outlined above. [0004] Aberrant protein tyrosine kinase activity has also been implicated in a variety of other disorders: psoriasis, (Dvir et al, J.Cell.Biol; 1991, 113, 857-865), fibrosis, atherosclerosis, restenosis, (Buchdunger et al, Proc.Natl.Acad. Sci. USA; 1991, 92, 2258-2262), auto-immune disease, allergy, asthma, transplantation rejection (Klausner and Samelson, Cell; 1991, 64, 875-878), inflammation (Berkois, Blood; 1992, 79(9), 2446-2454), thrombosis (Salari et al, FEBS; 1990, 263(1), 104-108) and nervous system diseases (Ohmichi et al, Biochemistry, 1992, 31, 4034-4039). Inhibitors of the specific protein tyrosine kinases involved in these diseases eg PDGF-R in restenosis and EGF-R in psoriasis, should lead to novel therapies for such disorders. P56lck and zap 70 are indicated in disease conditions in which T cells are hyperactive e.g. rheumatoid arthritis, autoimmune disease, allergy, asthma and graft rejection. The process of angiogenesis has been associated with a number of disease states (e.g. tumourogenesis, psoriasis, rheumatoid arthritis) and this has been shown to be controlled through the action of a number of receptor tyrosine kinases (L.K. Shawver, DDT, 1997, 2(2), 50-63).

[0005] EP0635507 discloses a class of tricyclic quinazoline derivatives of the formula:

 $(R^3)_m$

40

45

30

35

wherein R¹ and R² together form specified optionally substituted groups containing at least one heteroatom so as to form a 5 or 6-membered ring, in which there is a N atom at the 6 position of the quinazoline ring; R³ includes independently hydrogen, hydroxy, halogeno, (1-4C)alkyl, (1-4C) alkoxy di-[(1-4C)alkyl]amino, or (2-4C)alkanoylamino. The above citation notes that receptor tyrosine kinases in general, which are important in the transmission of biochemical signals initiating cell replication, are frequently present at increased levels or with higher activities in common human cancers such as breast cancer (Sainsbury et al, Brit. J. Cancer, 1988, 58, 458). It is suggested that inhibitors of receptor tyrosine kinase should be of value as inhibitors of the growth of mammalian cancer cells (Yaish *et al.* Science, 1988, 242, 933). This citation therefore has the aim of providing quinazoline derivatives which inhibit receptor tyrosine kinases involved in controlling the tumourigenic phenotype.

[0006] WO 95/15758 discloses aryl and heteroaryl quinazoline derivatives of formula

55

$$R_5$$
 R_7 R_7

wherein X includes a bond, O, S, SO, SO₂, C \equiv C, C \equiv C, C \equiv C, CH₂ and NH; Ar includes phenyl, naphthyl, naphthyl, indolyl, pyridyl, piperidinyl, piperazinyl, dihydroquinolinyl, tetrahydroquinolinyl, thienyl, indanyl, pyrazolyl and 1,4-benzodioxanyl; and R₅, R₆ and R₇ independently include hydrogen, alkyl, alkylthio, cycloalkyl, hydroxy, alkoxy, aralkoxy, aryl, halo, haloalkyl, carboxy or carbalkoxy; as inhibitors of CSF-1R and/or p56lck receptor tyrosine kinase activity. **[0007]** WO 95/19774 discloses bicyclic derivatives of formula:

$$\begin{array}{c|c}
R_{5} & X & \\
R_{1} & Ar \\
R_{4} & D \\
R_{6} & N
\end{array}$$

$$\begin{array}{c|c}
R_{1} \\
N \\
N \\
R_{6}$$

[0008] in which A to E are nitrogen or carbon and at least one of A to E is nitrogen; or two adjacent atoms together are N, O or S; R_1 is H or alkyl and n is 0, 1 or 2; m is 0 to 3 and R_2 includes optionally substituted alkyl, alkoxy, cycloalkoxy, cycloalkoxy, or two R_2 groups together form a carbocycle or heterocycle. The compounds are said to inhibit epidermal growth factor receptor tyrosine kinase and suggested uses include the treatment of cancer, psoriasis, kidney disease, pancreatitis and contraception.

[0009] WO 96/07657 discloses pyrimido[5,4-d]pyrimidine derivatives of formula

wherein Ra includes hydrogen or alkyl; Rb includes optionally substituted phenyl; and Rc includes hydrogen, halo, alkyl, cycloalkyl, cycloalkylalkylaryl, aralkyl, OH, optionally substituted alkoxy, cycloalkoxy, aryloxy, aralkoxy, mercapto, optionally substituted alkyl- or arylsulfenyl, -sulfinyl, or -sulfonyl and substituted alkyleneimino; as EGF-R inhibitors.

[0010] WO 96/09294 discloses quinoline and quinazoline derivatives of formula

5

10

25

30

35

40

45

50

55

wherein X is N or CH; Y includes O, S, CH₂O and NH; R⁶ includes phenoxy, benzyloxy, benzylmercapto, benzylamino, benzyl, anilino, benzoyl, anilinocarbonyl, anilinomethyl, phenylethynyl, phenylethenyl, phenylethyl, phenylethyl, phenylethyl, phenylethyl, phenylethyl, thienylmethoxy, sulphonyl, benzylthio, benzylsulphonyl, phenylthiomethyl, phenylsulphonylmethyl, phenoxymethyl, thienylmethoxy, furanylmethoxy, cyclohexyl, and cyclohexylmethoxy; and R¹, R², R³ and R^{3'} include a range of possible substituents, predominantly not including heterocyclic ring systems; as protein receptor tyrosine kinase inhibitors, in particular as cebB-2 and/or p56lck inhibitors.

[0011] WO 96/15118 discloses quinazoline derivatives of formula

$$(R^{2})_{n}$$

$$(R^{1})_{m}$$

wherein X includes O, S, SO, SO₂, CH₂, OCH₂, CH₂O and CO; Q includes a phenyl or naphthyl group and various 5-or 6-membered heteroaryl moieties; n is 0, 1, 2 or 3 and each R² is independently halogeno, trifluoromethyl, hydroxy, amino, nitro, cyano, C_{1-4} alkyl, C_{1-4} alkoxy, C_{1-4} alkylamino, di C_{1-4} alkyl amino or C_{2-4} alkanoylamino; m is 1, 2 or 3 and R¹ includes a range of possible substituents, predominantly not including heterocyclic ring systems; as receptor tyrosine kinase inhibitors, in particular as EGF-R inhibitors.

[0012] WO 96/15128 discloses pyrido[2,3-d]pyrimidine and naphthyridine derivatives of formula

$$R_1$$
 N X N B

wherein X is CH or N; B is halo, hydroxy or NR $_3$ R $_4$; Ar includes unsubstituted and substituted phenyl or pyridyl; and R $_1$, R $_2$, R $_3$ and R $_4$ independently include hydrogen, amino, C $_{1-8}$ alkylamino, di-C $_{1-8}$ alkylamino, unsubstituted and substituted aromatic or heteroaromatic groups, and unsubstituted and substituted C $_{1-8}$ alkyl, C $_{2-8}$ alkenyl or C $_{2-8}$ alkynyl groups.

[0013] WO 96/16960 discloses quinazoline derivatives of formula

$$(R^2)$$

NH

 $(R^1)_m$

wherein m is 1 or 2; each R^1 independently includes hydrogen and C_{1-4} alkoxy; n is 1, 2 or 3; each R^2 independently includes hydrogen, halogeno and C_{1-4} alkyl, or R^2 is an aryl- or heteroaryl-containing group, including pyridylmethoxy and benzoyl; and Ar includes a substituted or unsubstituted 5- or 9-membered nitrogen-linked heteroaryl moiety containing up to four nitrogen atoms, in particular imidazol-1-yl, imidazolin-1-yl, benzimidazol-1-yl, pyrazol-1-yl and 1,2,4-triazol-1-yl; as receptor tyrosine kinase inhibitors, in particular as EGF-R inhibitors.

[0014] It is therefore a general object of the present invention to provide compounds suitable for the treatment of disorders mediated by protein tyrosine kinase activity, and in particular treatment of the above mentioned disorders.

[0015] In addition to the treatment of tumours, the present invention envisages that other disorders mediated by protein tyrosine kinase activity may be treated effectively by inhibition, including preferential inhibition, of the appropriate protein tyrosine kinase activity.

[0016] Broad spectrum inhibition of protein tyrosine kinase may not always provide optimal treatment of, for example tumours, and could in certain cases even be detrimental to subjects since protein tyrosine kinases provide an essential role in the normal regulation of cell growth.

[0017] It is another object of the present invention to provide compounds which preferentially inhibit protein tyrosine kinases, such as EGFr, c-erbB-2, c-erbB-4, c-met, tie-2, PDGFr, c-src, lck, Zap70, and fyn. There is also perceived to be a benefit in the preferential inhibition involving small groups of protein tyrosine kinases, for example c-erbB-2 and c-erbB-4 or c-erbB-2, c-erbB-4 and EGF-R.

[0018] A further object of the present invention is to provide compounds useful in the treatment of protein tyrosine kinase related diseases which minimise undesirable side-effects in the recipient.

[0019] The present invention relates to heterocyclic compounds which may be used to treat disorders mediated by protein tyrosine kinases and in particular have anti-cancer properties. More particularly, the compounds of the present invention are potent inhibitors of protein tyrosine kinases such as such as EGFr, c-erbB-2, c-erbB-4, c-met, tie-2, PDGFr, c-src, lck, Zap70, and fyn, thereby allowing clinical management of particular diseased tissues.

[0020] The present invention envisages, in particular, the treatment of human malignancies, for example breast, non-small cell lung, ovary, stomach, and pancreatic tumours, especially those driven by EGFr or erbB-2, using the compounds of the present invention. For example, the invention includes compounds which are highly active against the c-erbB-2 protein tyrosine kinase often in preference to the EGF receptor kinase hence allowing treatment of c-erbB-2 driven tumours. However, the invention also includes compounds which are highly active against both c-erbB-2 and EGF-R receptor kinases hence allowing treatment of a broader range of tumours.

[0021] More particularly, the present invention envisages that disorders mediated by protein tyrosine kinase activity may be treated effectively by inhibition of the appropriate protein tyrosine kinase activity in a relatively selective manner, thereby minimising potential side effects.

[0022] Accordingly, the present invention provides a compound of formula (I):

$$(R^{1}) p \qquad \qquad X \qquad (I)$$

$$(R^{2}) n \qquad \qquad (I)$$

or a salt thereof;

5

10

30

35

40

45

50

55

wherein

X is N or CH;

Y is a group W(CH₂), (CH₂)W, or W, in which W is O, S(O)_m wherein m is 0, 1 or 2, or NR^a wherein R^a is hydrogen or a C₁₋₈ alkyl group;

either

10

15

n is 1, p is 0 and R" is selected from the group comprising phenyl, furan, thiophene, pyridine, pyrimidine, pyrazine, pyrrole, oxazole, isoxazole, oxadiazole, thiazole, isothiazole, triazole, tetrazole and imidazole or a hydrogenated derivative of any of the aforementioned, the ring being optionally substituted by one or more R¹ groups; wherein R¹ is either

(a) selected from $M^1-M^2-M^3-M^4$, M^1-M^5 or $M^1-M^2-M^3'-M^6$; or

(b) selected from the group comprising amino, hydrogen, halogen, hydroxy, formyl, carboxy, cyano, nitro, C_{1-8} alkyl, C_{1-8} alkyl, C_{1-8} alkylsulphinyl, C_{1-8} alkylsulphinyl, C_{1-8} alkylsulphonyl, C_{1-4} alkylamino, C_{1-4} dialkylamino, dioxolanyl, hydroxy- C_{1-4} alkyl or hydroxy- C_{1-4} alkanoyl- $(C_{1-4}$ alkyl)-amino;

or

 \overline{n} is 0, p is 1 to 3 and each R^1 is selected from the group comprising amino, hydrogen, halogen, hydroxy, formyl, carboxy, cyano, nitro, C_{1-8} alkyl, C_{1-8} alkoxy, C_{1-8} alkylthio, C_{1-8} alkylsulphinyl, C_{1-8} alkylsulphonyl, C_{1-4} alkylamino, dioxolanyl, benzyloxy or hydroxy- C_{1-4} alkanoyl-(C_{1-4} alkyl)-amino; or when p is 2 or 3, two adjacent R^1 groups together form an optionally substituted methylenedioxy or ethylenedioxy

n is 0, p = 1, and R¹ is selected from M¹-M²-M³-M⁴, M¹-M⁵ or M¹-M²-M³'-M⁶; wherein

M¹ represents a C₁₋₄ alkyl group, wherein optionally a CH₂ group is replaced by a CO group;

 M^2 represents NR^{12} or $CR^{12}R^{13}$, in which R^{12} and R^{13} each independently represent H or C_{1-4} alkyl;

M³ represents a C₁₋₄ alkyl group;

M^{3'} represents a C₁₋₄ alkyl group or is absent;

 M^4 represents CN, $NR^{12}S(O)_mR^{13}$, $S(O)_mNR^{14}R^{15}$, $CONR^{14}R^{15}$, $S(O)_mR^{13}$ or CO_2R^{13} , in which R^{12} , R^{13} and m are as hereinbefore defined and R^{14} and R^{15} each independently represent H or C_{1-4} alkyl, or R^{14} and R^{15} together with the nitrogen atom to which they are attached represent a 5- or 6-membered ring optionally containing 1 or 2 additional heteroatoms selected from N, O or $S(O)_m$ in which ring any nitrogen atom present may optionally be substituted with a C_{1-4} alkyl group, and which ring may optionally bear one or two oxo or thioxo substituents; M^5 represents the group $NR^{14}R^{15}$, wherein R^{14} and R^{15} are as defined above, or M^5 represents the group

40

30

35

45

50

in which t represents 2 to 4 and R¹⁶ represents OH, OC₁₋₄ alkyl or NR¹⁴R¹⁵; and M⁶ represents a C₃₋₆ cycloalkyl group, the group NR¹⁴R¹⁵, wherein R¹⁴ and R¹⁵ are as defined above, or a 5- or 6-membered heterocyclic ring system containing 1 to 4 heteroatoms selected from N, O or S;

[0023] U represents an indolyl, isoindolyl, indolinyl, isoindolinyl, 1<u>H</u>-indazolyl, 2,3-dihydro-1<u>H</u>-indazolyl, 1<u>H</u>-benzimidazolyl, 2,3-dihydro-1<u>H</u>-benzimidazolyl or 1<u>H</u>-benzotriazolyl group, which is substituted by at least one independently selected R⁶ group and is optionally substituted by at least one independently selected R⁴ group;

55

each R^4 is independently hydrogen, hydroxy, halogen, C_{1-4} alkyl, C_{1-4} alkoxy, C_{1-4} alkylamino, di- $[C_{1-4}$ alkyl]amino, C_{1-4} alkylsulphinyl, C_{1-4} alkylsulphonyl, C_{1-4} alkylcarbonyl, C_{1-4} alkylcarbamoyl, di- $[C_{1-4}$ alkyl] carbamoyl, carbamyl, C_{1-4} alkoxycarbonyl, cyano, nitro or trifluoromethyl;

each R^6 is independently benzyl, halo-, dihalo- and trihalobenzyl, α -methylbenzyl, phenyl, halo-, dihalo- and trihalophenyl, pyridyl, pyridylmethyl, pyridylmethoxy, pyridylmethoxy, thienylmethoxy, dioxolanylmethoxy, cyclohexylmethoxy, phenoxy, halo-, dihalo- and trihalophenoxy, phenylthio, benzyloxy, halo-, dihalo- and trihalobenzyloxy, C_{1-4} alkoxybenzyloxy, phenyloxalyl or benzenesulphonyl;

and A represents

5

10

30

35

40

45

50

55

or N

[0024] Solvates of the compounds of formula (I) are also included within the scope of the present invention.

[0025] By halo is meant fluoro, chloro, bromo or iodo.

[0026] Alkyl groups containing three or more carbon atoms may be straight, branched or cyclised.

[0027] In an embodiment, X is N.

[0028] In a further embodiment, Y is NRa, NR a (CH $_{2}$), or (CH $_{2}$)NR a , preferably Y is NRa and Ra is preferably hydrogen or methyl.

[0029] In a preferred embodiment, n is 0, p is 1 and R¹ is selected from the group comprising amino, C₁₋₄ alkylamino, diC₁₋₄ alkylamino, especially diC₁₋₄ alkylamino, most especially dimethylamino or methylethylamino.

[0030] In a further embodiment the group M^2 - M^3 - M^4 represents an α -, β - or γ -amino carboxylic, sulphinic or sulphonic acid or a C_{1-4} alkyl ester, an amide or a C_{1-4} alkyl- or di-(C_{1-4} alkyl)-amide thereof.

[0031] Preferably M¹ represents CH₂, CO, CH₂CH₂ or CH₂CO, more preferably CH₂.

[0032] Preferably M² represents NR¹² in which R¹² is as defined above; more preferably R¹² represents H or methyl.

[0033] Preferably M³ represents CH₂, CH₂CH₂ or propyl.

[0034] Preferably M3'represents CH2, ethyl, propyl, isopropyl or is absent.

[0035] Preferably M⁴ represents SOR¹³, SO₂R¹³, NR¹²SO₂R¹³, CO₂R¹³ or CONR¹⁴R¹⁵ in which R¹² and R¹³ are defined above and R¹⁴ and R¹⁵ each independently represent H or C₁₋₄ alkyl; more preferably R¹², R¹³, R¹⁴ and R¹⁵ each independently represent H or methyl.

[0036] Preferably M^5 represents a group $NR^{14}R^{15}$ in which R^{14} and R^{15} together with the nitrogen atom to which they are attached represent a 6-membered ring optionally containing an additional heteroatom selected from N or O, in which ring any nitrogen atom present may optionally be substituted with a C_{1-4} alkyl group, preferably a methyl group; or M^5 represents a group

in which t represents 2 or 3 and R¹⁶ represents OH, NH₂, $N(C_{1-4} \text{ alkyI})_2$ or $OC_{1-4} \text{ alkyI}$; more preferably R¹⁶ represents NH₂ or $N(CH_3)_2$.

[0037] M^5 also preferably represents a group NR¹⁴R¹⁵ in which R¹⁴ and R¹⁵ each independently represent hydrogen or C₁₋₄ alkyl, more preferably hydrogen, methyl, ethyl or isopropyl.

[0038] Preferably M⁶ represents a group NR¹⁴R¹⁵ in which R¹⁴ and R¹⁵ each independently represent C₁₋₄ alkyl, more preferably methyl, or R¹⁴ and R¹⁵ together with the nitrogen atom to which they are attached represent a 5- or 6-membered ring optionally containing an additional heteroatom selected from N or O, in which ring any nitrogen atom present may optionally be substituted with a C₁₋₄ alkyl group, preferably a methyl group; or M⁶ represents a 5- or 6-membered heterocyclic ring system containing 1 or 2 heteroatoms selected from N or O.

[0039] In a further preferred embodiment M^2 - M^3 - M^4 represents an α -amino carboxylic acid or a methyl ester or amide thereof.

[0040] In a further preferred embodiment M^2 - M^3 - M^4 represents an α -, β - or γ -amino sulphinic or sulphonic acid, more preferably a β - or γ -amino sulphinic or sulphonic acid, most preferably a β -aminosulphonic acid, or a methyl ester

thereof.

10

20

25

35

40

45

50

55

[0041] In an especially preferred embodiment M²-M³-M⁴ represents a methylsulphonylethylamino, methylsulphinylethylamino, methylsulphinylpropylamino, methylsulphonamidoethylamino, sarcosinamide, glycine, glycinamide or glycine methyl ester group.

[0042] In a further especially preferred embodiment M⁵ represents a piperazinyl, methylpiperazinyl, piperidinyl, prolinamido or *N,N*-dimethylprolinamido group.

[0043] In a further especially preferred embodiment M⁵ represents an isopropylamino or N-morpholinyl group.

[0044] In a further especially preferred embodiment M¹-M⁵ represents an isopropylacetamido or N-morpholinoacetamido group.

[0045] In a further especially preferred embodiment M²-M³'-M⁶ represents a pyridylamino, cyclopropylamino, N-(piperidin-4-yl)-N-methylamino, N,N-dimethylaminoprop-2-ylamino, N-(2-dimethylaminoethyl)-N-ethylamino or tetrahydrofuranomethylamino group, preferably a pyridylamino group.

[0046] In a further preferred embodiment R" may be selected from the group comprising phenyl, furan, imidazole, tetrazole, triazole, pyrrolidine, piperazine, piperidine and oxadiazole.

[0047] In a further embodiment R⁴ is hydrogen, hydroxy, halogen, C₁₋₄ alkyl, C₁₋₄ alkoxy, di-[C₁₋₄ alkyl]amino, nitro or trifluoromethyl, preferably hydrogen, halogen or methyl, more preferably hydrogen.

[0048] In a further preferred embodiment R⁶ is benzyl, fluorobenzyl, benzyloxy, fluorobenzyloxy, pyridylmethyl, phenyl, benzenesulphonyl, phenoxy or fluorophenoxy.

[0049] In a further embodiment R⁶ is in the para position with respect to Y.

[0050] In a further preferred embodiment A represents

N

[0051] As indicated above, one or both of the rings comprising the bicyclic ring system U may be aromatic or non-aromatic. The R⁴ and R⁶ groups may be bound to the ring system by either a carbon atom or a heteroatom of the ring system. The ring system itself may be bound to the bridging group by a carbon atom or a heteroatom. The system, but these groups are preferably bound to the ring which is not bound to the bridging group Y in such a case.

[0052] In a further embodiment X represents N; p is 0; n is 1; and the group R" is in the 6-position of the pyridopyrimidine ring system.

[0053] In a further embodiment X represents N; n is 0; p is 1; and the group R¹ is in the 6-position of the pyridopyrimidine ring system.

[0054] In a preferred embodiment of the present invention there is provided a compound of formula (I) or a salt or solvate thereof wherein X represents N; Y represents NRa, wherein Ra is hydrogen or C_{1-4} alkyl; R" represents furan, thiophene, pyrrole, pyridine, pyrimidine, pyrazine, imidazole, oxazole, isoxazole, oxadiazole, tetrazole, triazole, dioxolane or a partially or fully hydrogenated derivative of any of these groups, optionally substituted by one or more R¹ groups selected from halo, C_{1-4} alkyl, carboxy, formyl, hydroxy- C_{1-4} alkyl, 1,3-dioxolan-2-yl, amino, C_{1-4} alkylamino, di(C_{1-4} alkyl)amino, hydroxy- C_{1-4} alkylomino, C_{1-4} alkylomino- C_{1-4} alkyl)amino- C_{1-4} alkyl)amino- C_{1-4} alkyl)amino- C_{1-4} alkyl; p is 0; R⁴ represents hydrogen or methyl; U represents indolyl, benzimidazolyl or indazolyl, more preferably indazolyl; and R⁶ represents phenyl, benzyl, α -methylbenzyl, fluorobenzyl, benzenesulphonyl, phenoxy, fluorophenoxy, benzyloxy or fluorobenzyloxy.

[0055] In further preferred embodiment of the present invention there is provided a compound of formula (I) or a salt or solvate thereof wherein X represents N; Y represents NRa, wherein Ra is hydrogen or C_{1-4} alkyl; R" represents furan, thiophene, pyrrole, pyridine, pyrimidine, pyrazine, imidazole, oxazole, isoxazole, oxadiazole, tetrazole, triazole, dioxolane or a partially or fully hydrogenated derivative of any of these groups, optionally substituted with an R¹ group selected from methylsulphonylethylaminomethyl, methylsulphonylethylamino-carbonyl, methylsulphinylethylaminomethyl, methylsulphinylethylamino-carbonyl, methylsulphonylpropylamino-methyl, methylsulphinylpropylamino-carbonyl, methylsulphonylpropylamino-carbonyl, methylsulphonylethyl-(methylamino)-methyl, methylsulphonylethyl-(methylamino)-methyl, methylsulphinylpropyl-(methylamino)-methyl, methylsulphinylpropyl-(methylamino)-methyl, methylsulphonylpropyl-(methylamino)-carbonyl, methylsulphinylpropyl-(methylamino)-carbonyl, methylsulphinylpropyl-(methylamino)-carbonyl, methylsulphinylpropyl-(methylamino)-carbonyl, methylsulphonamidoethylamino)-carbonyl, methylsulphonamidoethylamino-methyl, glycinylmethyl, glycinylmethyl methyl ester, acetylaminoethylaminomethyl, piperazinylmethyl, methylpiperazinylmethyl, methylpiperazinylmethyl

thyl, piperidinylmethyl, N-(prolinamido)methyl, (N,N-dimethyl-prolinamido)methyl, pyridylaminomethyl, cyclopropylaminomethyl, N-(piperidin-4-yl)-N-methylaminomethyl, N,N-dimethylaminoprop-2-ylaminomethyl, N-(2-dimethyl-aminoethyl)-N-ethylaminomethyl, isopropylacetamido, N-morpholinylacetamido or tetrahydrofuranomethylaminomethyl and optionally further substituted by one or more C_{1-4} alkyl groups; p is 0; R^4 represents hydrogen or methyl; U represents indolyl, benzimidazolyl or indazolyl, more preferably indazolyl; and R^6 represents phenyl, benzyl, α -methylbenzyl, fluorobenzyl, benzenesulphonyl, phenoxy, fluorophenoxy, benzyloxy or fluorobenzyloxy.

[0056] In a further preferred embodiment of the present invention there is provided a compound of formula (I) or a salt or solvate thereof, wherein X represents N; Y represents NRa wherein Ra is hydrogen or C₁₋₄ alkyl; n is 0; each R¹ group is selected from hydrogen, halo, C₁₋₄ alkyl, carboxy, formyl, hydroxy-C₁₋₄ alkyl, 1,3-dioxolan-2-yl, benzyloxy, amino, C_{1-4} alkylamino, $di(C_{1-4}$ alkyl)amino, hydroxy- C_{1-4} alkanoyl(C_{1-4} alkyl)amino, C_{1-4} alkylamino- C_{1-4} alkyl, $di(C_{1-4})$ alkyl alkyl)amino-C₁₋₄ alkyl, methylsulphonylethylaminomethyl, methylsulphonylethylamino-carbonyl, methylsulphinylethylamino-methyl, methylsulphinylethylamino-carbonyl, methylsulphonylpropylamino-methyl, methylsulphinylpropylamino-methyl, methylsulphonylpropylamino-carbonyl, methylsulphinylpropylamino-carbonyl, methylsulphonylethyl-(methylamino)-methyl, methylsulphonylethyl-(methylamino)-carbonyl, methylsulphinylethyl-(methylamino)-methyl, methylsulphinylethyl-(methylamino)-carbonyl, methylsulphonylpropyl-(methylamino)-methyl, methylsulphinylpropyl-(methylamino)-methyl, methylsulphonylpropyl-(methylamino)-carbonyl, methylsulphinylpropyl-(methylamino)-carbonyl, methylsulphonamidoethylamino-methyl, methylsulphonamidopropylamino-methyl, sarcosinamidomethyl, glycinylmethyl, glycinamidomethyl, glycinylmethyl methyl ester, acetylaminoethylaminomethyl, piperazinylmethyl, methylpiperazinylmethyl, piperidinylmethyl, N-(prolinamido)methyl, (N,N-dimethyl-prolinamido)methyl, pyridylaminomethyl, cyclopropylaminomethyl, N-(piperidin-4-yl)-N-methylaminomethyl, N,N-dimethylaminoprop-2-ylaminomethyl, N-(2-dimethylaminoethyl)-N-ethylaminomethyl, isopropylacetamido, N-morpholinylacetamido or tetrahydrofuranomethylaminomethyl; R4 represents hydrogen or methyl; U represents indolyl, benzimidazolyl or indazolyl, more preferably indazolyl; and R⁶ represents phenyl, benzyl, α-methylbenzyl, fluorobenzyl, benzenesulphonyl, phenoxy, fluorophenoxy, benzyloxy or fluorobenzyloxy.

[0057] In an especially preferred embodiment of the present invention there is provided a compound of formula (I) or a salt or solvate thereof wherein X represents N; Y represents NRa, wherein Ra is hydrogen or C_{1-4} alkyl; R" represents a furan, imidazole, triazole, oxadiazole, pyrrolidine, piperidine or piperazine ring, optionally substituted by one or more R1 groups selected from 1,3-dioxolan-2-yl, formyl, carboxy, C_{1-4} -alkyl, prolinamidomethyl, isopropylacetamido, N-morpholinylacetamido, methylsulphonylethylaminomethyl or methylsulphonylethylaminocarbonyl; p is 0; R4 represents hydrogen or methyl; U represents indazolyl, indolyl or benzimidazolyl, more preferably indazolyl; and R6 represents benzyl, fluorobenzyl, pyridylmethyl or benzenesulphonyl.

[0058] In a further especially preferred embodiment of the present invention there is provided a compound of formula (I) or a salt or solvate thereof wherein X represents N; Y represents NRa, wherein Ra is hydrogen or C_{1-4} alkyl; n is 0; each R¹ group is selected from hydrogen, halo, benzyloxy, amino, C_{1-4} alkylamino, di(C_{1-4} alkyl)amino or hydroxy- C_{1-4} alkanoyl(C_{1-4} alkyl)amino, more preferably dimethylamino; R⁴ represents hydrogen or methyl; U represents indazolyl, indolyl or benzimidazolyl, more preferably indazolyl; and R⁶ represents benzyl, fluorobenzyl, pyridylmethyl or benzenesulphonyl.

[0059] Preferred compounds of the present invention include:

10

30

35

```
(1-Benzyl-1H-indazol-5-yl)-(6-chlor-pyrido[3,4-d]pyrimidin-4-yl)-amine;
                                                                                            N4-(1-Benzyl-1H-indazol-5-yl)
          -N6,N6-dimethyl-pyrido[3,4-d]pyrimidine-4,6-diamine;
          (1-Benzyl-1H-indazol-5-yl)-(6-(N-(2-hydroxyethyl)-N-methylamino)-pyrido[3,4-d]pyrimidin-4-yl)-amine;
          (1-Benzyl-1H-indazol-5-yl)-(pyrido[3,4-d]pyrimidin-4-yl)-amine;
45
          (2-Benzyl-1 H-benzimidazol-5-yl)-(6-chloro-pyrido[3,4-d]pyrimidin-4-yl)-amine;
          N4-(1-Benzyl-1H-indol-5-yl)-N6,N6-dimethyl-pyrido[3,4-d]pyrimidine-4,6-diamine;
          N4-(2-Benzyl-1H-benzimidazol-5-yl)-N6,N6-dimethyl-pyrido[3,4-d]-pyrimidine-4,6-diamine;
          (1-Benzyl-1H-indazol-5-yl)-(6-(5-[1,3-dioxolan-2-yl]-furan-2-yl)-pyrido[3,4-d]-pyrimidin-4-yl)-amine;
          5-(4-(1-Benzyl-1H-indazol-5-ylamino)-pyrido[3,4-d]pyrimidin-6-yl)-furan-2-carbaldehyde;
          (2S)-1-(5-(4-(1-Benzyl-1H-indazol-5-ylamino)-6-pyrido[3,4-d]pyrimidin-6-yl)-furan-2-ylmethyl)-pyrrolidine-2-car-
50
          boxylic acid amide:
          (1-Benzyl-1H-indazol-5-yl)-(6-(3-methyl-3H-imidazol-4-yl)-pyrido[3,4-d]pyrimidin-4-yl)-amine;
          N6,N6-Dimethyl-N4-(1-pyridin-2-ylmethyl-1H-indazol-5-yl)-pyrido[3,4-d]pyrimidine-4,6-diamine;
          N6,N6-Dimethyl-N4-(1-pyridin-3-ylmethyl-1H-indazol-5-yl)-pyrido[3,4-d]pyrimidine-4,6-diamine;
55
          N4-(1-Benzyl-3-methyl-1 H-indazol-5-yl)-N6,N6-dimethyl-pyrido[3,4-d]pyrimidine-4,6-diamine;
          N4-(1-(2-Fluoro-benzyl)-1H-indazol-5-yl)-N6,N6-dimethyl-pyrido[3,4-d]pyrimidine-4,6-diamine;
          N4-(1-(3-Fluoro-benzyl)-1H-indazol-5-yl)-N6,N6-dimethyl-pyrido[3,4-d]pyrimidine-4,6-diamine;
          N4-(1-(4-Fluoro-benzyl)-1 H-indazol-5-yl)-N6,N6-dimethyf-pyrido[3,4-d]pyrimidine-4,6-diamine;
```

```
N4-(1-Benzene sulphonyl-1H-indol-5-yl)-N6, N6-dimethyl-pyrido [3,4-d] pyrimidine-4, 6-diamine;\\
          N4-(3-Benzenesulphonyl-1H-indol-5-yl)-N6,N6-dimethyl-pyrido[3,4-d]pyrimidine-4,6-diamine;
          (1-Benzyl-1H-indazol-5-yl)-(6-imidazol-1-yl-pyrido[3,4-d]pyrimidin-4-yl)-amine;
          (1-Benzyl-1H-indazol-5-yl)-(6-(1,2,4-triazol-1-yl)-pyrido[3,4-d]pyrimidin-4-yl)-amine;
5
          (1-Benzyl-1H-indazol-5-yl)-(6-(1,2,3-triazol-2-yl)-pyrido[3,4-d]pyrimidin-4-yl)-amine;
          (1-Benzyl-1 H-indazol-5-yl)-(6-(1,2,3-triazol-1-yl)-pyrido[3,4-d]pyrimidin-4-yl)-amine;
          (1-Benzyl-1H-indazol-5-yl)-(6-pyrrolidin-1-yl-pyrido[3,4-d]pyrimidin-4-yl)-amine;
          (1-Benzyl-1H-indazol-5-yl)-(6-piperidin-1-yl-pyrido[3,4-d]pyrimidin-4-yl)-amine;
          N4-(1-Benzyl-1H-indazol-5-yl)-N6-ethyl-N6-methyl-pyrido[3,4-d]pyrimidine-4,6-diamine;
10
          2-(4-(4-(1-Benzyl-1H-indazol-5-ylamino)-pyrido[3,4-d]pyrimidin-6-yl)-piperazin-1-yl)-N-isopropyl-acetamide;
          2-(4-(4-(1-Benzyl-1H-indazol-5-ylamino)-pyrido[3,4-d]pyrimidin-6-yl)-piperazin-1-yl)-1-morpholin-4-yl-ethanone;
          (1-Benzyl-1H-indazol-5-yl)-(6-(5-methyl-1,3,4-oxadiazol-2-yl)-pyrido[3,4-d]pyrimidin-4-yl)-amine;
          (1-(3-Fluoro-benzyl)-1H-indazol-5-yl)-(6-(5-methyl-1,3,4-oxadiazol-2-yl)-pyrido[3,4-d]pyrimidin-4-yl)-amine;
          (1-Benzyl-1H-indol-5-yl)-(6-chloro-pyrido[3,4-d]pyrimidin-4-yl)-amine;
15
          (1-Benzyl-1H-indazol-5-yl)-(6-(4-methyl-piperazin-1-yl)-pyrido[3,4-d]pyrimidin-4-yl)-amine;
          (1-Benzyl-1H-indazolyl-5-yl)-(6-benzyloxy-pyrido[3,4-d]pyrimidin-4-yl)-amine;
          (1-Benzyl-1H-indazol-5-yl)-(6-(5-((2-methanesuphonyl-ethylamino)-methyl)-furan-2-yl)-pyrido[3,4-d]pyrimidin-
          4-yl)-amine;
          5-[4-(1-Benzyl-1H-indazol-5-ylamino)-pyrido[3,4-d]pyrimidin-6-yl]-furan-2-carboxylic acid;
20
          5-[4-(1-benzyl-1H-indazol-5-ylamino)-pyrido[3,4-d]pyrimidin-6-yl]-furan-2-carboxylic acid 2-methanesulphonyl-
          N4-(1-Benzyl-1H-indazol-5-yl)-N6-methyl-pyrido[3,4-d]pyrimidine-4,6-diamine; N4-[1-(4-Hydroxybenzyl)-1H-in-
          dazol-5-yl)-N6,N6-dimethyl-pyrido[3,4-d]pyrimidine-4,6-diamine;
          and salts or solvates thereof, particularly pharmaceutically acceptable salts or solvates thereof.
25
```

[0060] Other preferred compounds of the present invention include:

30

50

```
N4-[1-(S,R-\alpha-Methylbenzyl)-1H-indazol-5-yl]-N6,N6-dimethyl-pyrido[3,4-d]pyrimidin-4,6-diamine;
N4-(3-Benzylsulphonyl-1H-indazol-6-yl)-N6,N6-dimethyl-pyrido[3,4-d]pyrimidine-4,6-diamine;
N4-(3-Benzyl-1H-indazol-6-yl)-N6,N6-dimethyl-pyrido[3,4-d]pyrimidine-4,6-diamine;
```

and salts or solvates thereof, particularly pharmaceutically acceptable salts or solvates thereof. [0061] Particularly preferred compounds of the present invention include:

```
35
          N4-(1-Benzyl-1H-indazol-5-yl)-N6,N6-dimethyl-pyrido[3,4-d]pyrimidine-4,6-diamine;
          N4-(1-(3-Fluoro-benzyl)-1H-indazol-5-yl)-N6,N6-dimethyl-pyrido[3,4-d]pyrimidine-4,6-diamine;
          N4-(1-Benzyl-1H-indazol-5-yl)-N6-ethyl-N6-methyl-pyrido[3,4-d]pyrimidine-4,6-diamine;
          (1-Benzyl-1H-indazol-5-yl)-(6-(5-((2-methanesuphonyl-ethylamino)-methyl)-furan-2-yl)-pyrido-[3,4-d]pyrimidin-
          4-yl)-amine;
40
          N4-(1-Benzyl-1H-indazol-5-yl)-N6-methyl-pyrido[3,4-d]pyrimidine-4,6-diamine;
```

and salts or solvates thereof, particularly pharmaceutically acceptable salts or solvates thereof.

[0062] Certain compounds of formula (I) may exist in stereoisomeric forms (e.g. they may contain one or more asymmetric carbon atoms or may exhibit cis-trans isomerism). The individual stereoisomers (enantiomers and diastereoisomers) and mixtures of these are included within the scope of the present invention. Likewise, it is understood that compounds of formula (I) may exist in tautomeric forms other than that shown in the formula and these are also included within the scope of the present invention.

[0063] Salts of the compounds of the present invention may comprise acid addition salts derived from a nitrogen in the compound of formula (I). The therapeutic activity resides in the moiety derived from the compound of the invention as defined herein and the identity of the other component is of less importance although for therapeutic and prophylactic purposes it is, preferably, pharmaceutically acceptable to the patient. Examples of pharmaceutically acceptable acid addition salts include those derived from mineral acids, such as hydrochloric, hydrobromic, phosphoric, metaphosphoric, nitric and sulphuric acids, and organic acids, such as tartaric, acetic, trifluoroacetic, citric, malic, lactic, fumaric, benzoic, glycolic, gluconic, succinic and methanesulphonic and arylsulphonic, for example p-toluenesulphonic, acids. [0064] According to a further aspect of the present invention there is provided a process for the preparation of a

compound of formula (I) as defined above which comprises the steps:

(a) the reaction of a compound of formula (II)

$$X = \begin{pmatrix} (L')_p \\ A \\ (L')_n \end{pmatrix}$$
(II)

5

10

30

35

wherein A, X, n and p are as defined above and L, L' and L" are suitable leaving groups, with a compound of formula (III)

wherein U and Y are as defined above, to prepare a compound of formula (IV)

and subsequently (b) where n is 1, reaction with an appropriate reagent to substitute the group R" onto the ring A by replacement of the leaving group L'; and (c) where p is other than 0, reaction with appropriate reagent(s) to substitute the group(s) R1 onto the ring A by replacement of the leaving group(s) L"; and, if desired, (d) subsequently converting the compound of formula (I) thereby obtained into another compound of formula (I) by means of appropriate reagents. [0065] Alternatively, the compound of formula (II) as defined above is reacted with the appropriate reagents to substitute the groups R" and R1 onto the ring A by replacement of the respective leaving groups and then the product thereby obtained (of formula (V) below) is reacted with the compound of formula (III) as defined above, followed, if desired, by conversion of the compound of formula (I) thereby obtained into another compound of formula (I).

[0066] In a variant of this alternative the compound of formula (V)

40
$$X = \begin{pmatrix} (R^{1})_{p} \\ X = \begin{pmatrix} (R^{1})_{n} \\ (R^{"})_{n} \end{pmatrix}$$
45

may be prepared by the reaction of a compound of formula (VI)

O
$$(L'')_p$$

HX A (VI)

(L') n

with appropriate reagents to substitute the group(s) R^1 and the group R" onto the ring A to prepare a compound of formula (VII)

5

10

15

30

35

40

45

50

55

and subsequent reaction to incorporate the leaving group L. For example, a chloro leaving group can be incorporated by reaction of a corresponding 3,4-dihydropyrimidone with carbon tetrachloride/triphenylphosphine in an appropriate solvent.

[0067] Simplified versions of these general processes will apply where either (i) p is 0 and n is 1 or (ii) where n is 0 and p is other than 0.

[0068] The group R" may, therefore, be substituted onto the ring A by replacement of a suitable leaving group. This is especially suitable for preparing compounds where R" is a substituted or unsubstituted phenyl or heterocyclic ring system; such compounds may, for example, be prepared by reaction of the corresponding aryl or heteroaryl stannane derivative with the corresponding compound of formula (IV) carrying the leaving group L' in the appropriate position on the ring.

[0069] The group(s) R^1 may, therefore, also be substituted onto the ring A by replacement of suitable leaving group (s). This is especially suitable for preparing compounds of formula (I) wherein an R^1 group is linked to the ring A by a nitrogen atom; such compounds may, for example, be obtained by reaction of the amine corresponding to the group R^1 with the corresponding compound carrying a halo substituent in the appropriate position on the ring A.

[0070] The reagents used to effect the substitution of the groups R" and R¹ onto the ring A may, in certain circumstances, include appropriate protecting group(s) well known to the person skilled in the art for particular functionalities. This may, for example, be suitable where either of the groups R" or R¹ contain a free amino functionality. Such protecting group(s) would be removed by standard methods after the substitution onto the ring A has been effected. For a description of protecting groups and their use see T.W. Greene and P.G.M. Wuts, "Protective Groups in Organic Synthesis", 2nd edn., John Wiley & Sons, New York, 1991.

[0071] According to a further aspect of the present invention there is provided a process for the preparation of a compound of formula (I) as defined above which comprises the steps:

(a) reacting a compound of formula (IV) as defined above with appropriate reagent(s) to prepare a compound wherein either the group L' (when n=1) or the group(s) L" (when p is other than 0) is(are) replaced with an appropriately functionalised group Z;

and (b) subsequently converting the group Z into the group R" where L' has been replaced or into the group R¹ where L" has been replaced by means of appropriate reagent(s); (c) reacting with appropriate reagents to substitute the other of R¹ and R" onto the ring A by replacement of the remaining leaving group L" and L' respectively, if present; and, if desired, (d) subsequently converting the compound of formula (I) thereby obtained into another compound of formula (I) by means of appropriate reagents.

[0072] Such processes are particularly suitable for the preparation of compounds of formula (I) wherein either R" carries or R¹ represents a substituent selected from M^1 - M^2 - M^3 - M^4 , M^1 - M^5 or M^1 - M^2 - M^3 - M^6 as defined above in which M^2 represents NR¹². In such cases preferably the group Z carries a terminal formyl group (CHO).

[0073] Such processes are especially suitable for the preparation of compounds of formula (I) wherein either (i) p is 0, n is 1 and R" carries a substituent selected from $M^1-M^2-M^3-M^4$, M^1-M^5 or $M^1-M^2-M^3-M^6$ as defined above in which M^2 represents NR¹², or (ii) p is 1, n is 0 and R¹ is selected from $M^1-M^2-M^3-M^4$, M^1-M^5 or $M^1-M^2-M^3-M^6$ as defined above in which M^2 represents NR¹².

[0074] Where Z carries a formyl group the compound may be suitably prepared from the corresponding dioxolanyl substituted compound, for example by acid hydrolysis. The dioxolanyl substituted compound may be prepared by reaction of a compound of formula (IV) with an appropriate reagent to substitute the relevant leaving group with the substituent carrying the dioxolanyl ring. This reagent could, for example, be an appropriate heteroaryl stannane derivative.

[0075] Where Z carries a terminal formyl group the compound could suitably be prepared by reaction of a compound

of formula (IV) with an appropriate heteroaryl stannane derivative. This derivative is either readily available or can be readily synthesised by those skilled in the art using conventional methods of organic synthesis. Suitable possibilities for preparation of compounds where R" carries the aforementioned substituents include the following schematic examples:-

10

OH

OH

$$(CH_2)_n$$
 $(CH_2)_n$
 $(CH_$

5

30

35

40

45

50

55

[0076] The resulting compounds would, for example, then be converted into the respective stannane derivative.

[0077] Analogous methods could be used for phenyl and other heterocyclic ring systems and also for the preparation of compounds where R¹ represents one of the aforementioned substituents.

[0078] Therefore a suitable process may comprise reaction of the compound in which the group Z carries a terminal formyl group (i.e. a -CHO or -(C_{1-3} alkylene)-CHO group) with a compound of formula HM²-M³-M⁴, a compound of formula HM²-M³-M⁶ or a compound of formula HM⁵, wherein M² represents NR¹². The reaction preferably involves a reductive amination by means of an appropriate reducing agent, for example sodium triacetoxyborohydride.

[0079] A similar process would be involved where in M¹ one CH₂ group was replaced with a CO group and M² was NR¹². If necessary, in certain circumstances, the ketone could be protected by standard methods to ensure that the reductive amination involved the aldehyde functionality.

[0080] For the preparation of those compounds wherein in M^1 the CH_2 group adjacent to M^2 is replaced with a CO group a suitable process would comprise reaction of a compound in which the group Z carries a -(C_{0-3} alkylene)- CO_2H group with a compound of formula $HM^2-M^3-M^4$, a compound of formula $HM^2-M^3-M^6$ or a compound of formula HM^5 , wherein M^2 represents NR^{12} .

[0081] Alternatively, an analogous scheme to those described above could be used wherein the substitution of the groups R" and R¹ onto the ring A occurs prior to the coupling reaction with the compound of formula (III).

[0082] According to a further alternative process the group Z is converted into the group R" by a *de novo* synthesis of a substituted or unsubstituted heterocyclic ring system using appropriate reagents. Such a process would involve standard synthetic methodology known to the person skilled in the art for building up the heterocyclic ring system.

[0083] For example, Z could suitably represent an alkyne group which when reacted with an appropriate nitrile oxide results in the formation of an isoxazole ring system; reaction with an azide would result in the formation of a triazole ring system. The group Z could also suitably represent an amidoxime group (derived from a cyano group) which when reacted with an activated carboxylic acid derivative (such as an acid chloride or an acid imidazolide) would result in the formation of a 1,2,4-oxadiazole ring system. The group Z could also suitably represent a bromomethylenecarbonyl group which would be reacted with an imidate to result in the formation of an oxazole ring system, with a guanidino group to result in the formation of an N-imidazole ring system or with an amidine group to result in the formation of a C-imidazole ring system. The group Z could also suitably represent an activated carboxylic acid group which would be reacted to form a hydrazinoketone which would subsequently be reacted with another activated carboxylic acid derivative to result in the preparation of a 1,3,4-oxadiazole ring system. Thus reaction of a compound carrying a relevant Z group with appropriate reagents carrying one of

-C=N=O, -NH-C(NH₂)=NH, -COX, -C(NH₂)=NOH, -C(OMe)=NH, or

-C(NH₂)=NH as a terminal group would result in the formation of the ring systems indicated above.

[0084] Alternatively, an analogous scheme to those described above could be used wherein the substitution of the group R" onto the ring A occurs prior to the coupling reaction with the compound of formula (III).

[0085] The following scheme outlines, for example, the synthesis of derivatives carrying a substituted 1,3,4-oxadia-zole ring as an R" substituent:

[0086] Such processes are particularly suitable for the preparation of the compounds of formula (I) wherein R" carries a substituent selected from M¹-M²-M³-M⁴, M¹-M⁵ or M¹-M²-M³'-M⁶ as defined above in which M² represents CR¹²R¹³, including those in which in M¹ one CH₂ group is replaced by a CO group.

[0087] Such processes are especially suitable for the preparation of compounds of formula (I) wherein either (i) p is 0, n is 1 and R" carries a substituent selected from M¹-M²-M³-M⁴, M¹-M⁵ or M¹-M²-M³'-M⁶ as defined above in which

M² represents CR¹²R¹³, or (ii) p is 1, n is 0 and R¹ is selected from M¹-M²-M³-M⁴, M¹-M⁵ or M¹-M²-M³'-M⁶ as defined above in which M² represents CR¹²R¹³.

[0088] Suitable leaving groups for L, L' and L" will be well known to those skilled in the art and include, for example, halo such as chloro and bromo; sulphonyloxy groups such as methanesulphonyloxy and toluene-p-sulphonyloxy; alkoxy groups; and triflate.

[0089] The coupling reaction referred to above with the compound of formula (III) is conveniently carried out in the presence of a suitable inert solvent, for example a C_{1-4} alkanol, such as isopropanol, a halogenated hydrocarbon, an ether, an aromatic hydrocarbon or a dipolar aprotic solvent such as acetone or acetonitrile at a non-extreme temperature, for example from 0 to 150°, suitably 10 to 100°C, preferably 50 to 100°C.

[0090] Optionally, the reaction is carried out in the presence of a base when Y = NH. Examples of suitable bases include an organic amine such as triethylamine, or an alkaline earth metal carbonate, hydride or hydroxide, such as sodium or potassium carbonate, hydride or hydroxide. When YH = OH or SH it is necessary to perform the reaction in the presence of a base, and in such a case the product is not obtained as the salt.

10

30

35

40

50

[0091] The compound of formula (I) in the case in which $Y = NR^b$ may be obtained from this process in the form of a salt with the acid HL, wherein L is as hereinbefore defined, or as the free base by treating the salt with a base as hereinbefore defined.

[0092] The compounds of formulae (II) and (III) as defined above, the reagents to substitute the group(s) R^1 and the group R^1 , and the reagent(s) to convert the group R^1 into the group R^1 or R^2 are either readily available or can be readily synthesised by those skilled in the art using conventional methods of organic synthesis.

[0093] As indicated above, the compound of formula (I) prepared may be converted to another compound of formula (I) by chemical transformation of the appropriate substituent or substituents using appropriate chemical methods (see for example, J.March "Advanced Organic Chemistry", Edition III, Wiley Interscience, 1985).

[0094] For example, a group R¹ may be substituted onto the ring A by replacement of another group R¹ which is a suitable leaving group. This is especially suitable for preparing compounds of formula (I) wherein an R¹ group is linked to the ring A by a nitrogen atom; such compounds may, for example, be obtained by reaction of the amine corresponding to the group R¹ with the corresponding compound of formula (I) carrying a halo substituent in the appropriate position on the ring A.

[0095] Similarly a group R" may be substituted onto the ring A by replacement of a group R¹ which is a suitable leaving group. This is especially suitable for preparing compounds where R" is a phenyl or heterocyclic ring system; such compounds may, for example, be prepared by reaction of the corresponding aryl or heteroaryl stannane derivative with the corresponding compound of formula (I) carrying a halo substituent in the appropriate position on the ring A.

[0096] For example, a compound containing an alkyl or aryl mercapto group may be oxidised to the corresponding sulphinyl or sulphonyl compound by use of an organic peroxide (e.g. benzoyl peroxide) or suitable inorganic oxidant (eg OXONE ®).

[0097] A compound containing a nitro substituent may be reduced to the corresponding amino-compound, e.g. by use of hydrogen and an appropriate catalyst (if there are no other susceptible groups) or by use of Raney Nickel and hydrazine hydrate.

[0098] Amino or hydroxy substituents may be acylated by use of an acid chloride or an anhydride under appropriate conditions. Equally an acetate or amide group may be cleaved to the hydroxy or amino compound respectively by treatment with, for example, dilute aqueous base.

[0099] In addition reaction of an amino substituent with triphosgene and another amine (eg aqueous ammonia, dimethylamine) gives the urea substituted product.

[0100] An amino substituent may also be converted to a dimethylamino substituent by reaction with formic acid and sodium cyanoborohydride.

[0101] A formyl substituent may be converted to a hydroxymethyl or a carboxy substituent by standard reduction or oxidation methods respectively.

[0102] All of the above-mentioned chemical transformations may also be used to convert one compound of formula (II) to a further compound of formula (II) prior to any subsequent reaction; or to convert one compound of formula (II) to a further compound of formula (III) prior to any subsequent reaction.

[0103] The compounds of formula (I) and salts thereof have anticancer activity as demonstrated hereinafter by their inhibition of the protein tyrosine kinase c-erbB-2, c-erbB-4 and/or EGF-r enzymes and their effect on selected cell lines whose growth is dependent on c-erbB-2 or EGF-r tyrosine kinase activity.

[0104] The present invention thus also provides compounds of formula (I) and pharmaceutically acceptable salts or solvates thereof for use in medical therapy, and particularly in the treatment of disorders mediated by protein tyrosine kinase activity such as human malignancies and the other disorders mentioned above. The compounds of the present invention are especially useful for the treatment of disorders caused by aberrant c-erbB-2 and/or EGF-r activity such as breast, ovarian, gastric, pancreatic, non-small cell lung, bladder, head and neck cancers, and psoriasis.

[0105] A further aspect of the present invention provides the use of a compound of formula (I), or a pharmaceutically

acceptable salt or solvate thereof, in therapy.

30

35

40

50

[0106] A further aspect of the present invention provides the use of a compound of formula (I), or a pharmaceutically acceptable salt or solvate thereof, in the preparation of a medicament for the treatment of cancer and malignant tumours.

[0107] A further aspect of the present invention provides the use of a compound of formula (I), or a pharmaceutically acceptable salt or solvate thereof, in the preparation of a medicament for the treatment of psoriasis.

[0108] Whilst it is possible for the compounds, salts or solvates of the present invention to be administered as the new chemical, it is preferred to present them in the form of a pharmaceutical formulation.

[0109] According to a further feature of the present invention there is provided a pharmaceutical formulation comprising at least one compound of formula (I), or a pharmaceutically acceptable salt or solvate thereof, together with one or more pharmaceutically acceptable carriers, diluents or excipients.

[0110] Pharmaceutical formulations may be presented in unit dose forms containing a predetermined amount of active ingredient per unit dose. Such a unit may contain for example 0.5mg to 1g, preferably 70mg to 700mg, more preferably 5mg to 100mg of a compound of the formula (I) depending on the condition being treated, the route of administration and the age, weight and condition of the patient.

[0111] Pharmaceutical formulations may be adapted for administration by any appropriate route, for example by the oral (including buccal or sublingual), rectal, nasal, topical (including buccal, sublingual or transdermal), vaginal or parenteral (including subcutaneous, intramuscular, intravenous or intradermal) route. Such formulations may be prepared by any method known in the art of pharmacy, for example by bringing into association the active ingredient with the carrier(s) or excipient(s).

[0112] Pharmaceutical formulations adapted for oral administration may be presented as discrete units such as capsules or tablets; powders or granules; solutions or suspensions in aqueous or non-aqueous liquids; edible foams or whips; or oil-in-water liquid emulsions or water-in-oil liquid emulsions.

[0113] Pharmaceutical formulations adapted for transdermal administration may be presented as discrete patches intended to remain in intimate contact with the epidermis of the recipient for a prolonged period of time. For example, the active ingredient may be delivered from the patch by iontophoresis as generally described in Pharmaceutical Research, 3(6), 318 (1986).

[0114] Pharmaceutical formulations adapted for topical administration may be formulated as ointments, creams, suspensions, lotions, powders, solutions, pastes, gels, sprays, aerosols or oils.

[0115] For treatments of the eye or other external tissues, for example mouth and skin, the formulations are preferably applied as a topical ointment or cream. When formulated in an ointment, the active ingredient may be employed with either a paraffinic or a water-miscible ointment base. Alternatively, the active ingredient may be formulated in a cream with an oil-in-water cream base or a water-in-oil base.

[0116] Pharmaceutical formulations adapted for topical administrations to the eye include eye drops wherein the active ingredient is dissolved or suspended in a suitable carrier, especially an aqueous solvent.

[0117] Pharmaceutical formulations adapted for topical administration in the mouth include lozenges, pastilles and mouth washes.

[0118] Pharmaceutical formulations adapted for rectal administration may be presented as suppositories or as enemas.

[0119] Pharmaceutical formulations adapted for nasal administration wherein the carrier is a solid include a coarse powder having a particle size for example in the range 20 to 500 microns which is administered in the manner in which snuff is taken, i.e. by rapid inhalation through the nasal passage from a container of the powder held close up to the nose. Suitable formulations wherein the carrier is a liquid, for administration as a nasal spray or as nasal drops, include aqueous or oil solutions of the active ingredient.

⁴⁵ **[0120]** Pharmaceutical formulations adapted for administration by inhalation include fine particle dusts or mists which may be generated by means of various types of metered dose pressurised aerosols, nebulizers or insufflators.

[0121] Pharmaceutical formulations adapted for vaginal administration may be presented as pessaries, tampons, creams, gels, pastes, foams or spray formulations.

[0122] Pharmaceutical formulations adapted for parenteral administration include aqueous and non-aqueous sterile injection solutions which may contain anti-oxidants, buffers, bacteriostats and solutes which render the formulation isotonic with the blood of the intended recipient; and aqueous and non-aqueous sterile suspensions which may include suspending agents and thickening agents. The formulations may be presented in unit-dose or multi-dose containers, for example sealed ampoules and vials, and may be stored in a freeze-dried (lyophilized) condition requiring only the addition of the sterile liquid carrier, for example water for injections, immediately prior to use. Extemporaneous injection solutions and suspensions may be prepared from sterile powders, granules and tablets.

[0123] Preferred unit dosage formulations are those containing a daily dose or sub-dose, as herein above recited, or an appropriate fraction thereof, of an active ingredient.

[0124] It should be understood that in addition to the ingredients particularly mentioned above, the formulations may

include other agents conventional in the art having regard to the type of formulation in question, for example those suitable for oral administration may include flavouring agents.

[0125] The animal requiring treatment with a compound, salt or solvate of the present invention is usually a mammal, such as a human being.

[0126] A therapeutically effective amount of a compound, salt or solvate of the present invention will depend upon a number of factors including, for example, the age and weight of the animal, the precise condition requiring treatment and its severity, the nature of the formulation, and the route of administration, and will ultimately be at the discretion of the attendant physician or veterinarian. However, an effective amount of a compound of the present invention for the treatment of neoplastic growth, for example colon or breast carcinoma will generally be in the range of 0.1 to 100 mg/kg body weight of recipient (mammal) per day and more usually in the range of 1 to 10 mg/kg body weight per day. Thus, for a 70kg adult mammal, the actual amount per day would usually be from 70 to 700 mg and this amount may be given in a single dose per day or more usually in a number (such as two, three, four, five or six) of sub-doses per day such that the total daily dose is the same. An effective amount of a salt or solvate of the present invention may be determined as a proportion of the effective amount of the compound per se.

[0127] The compounds of the present invention and their salts and solvates may be employed alone or in combination with other therapeutic agents for the treatment of the above-mentioned conditions. In particular, in anti-cancer therapy, combination with other chemotherapeutic, hormonal or antibody agents is envisaged. Combination therapies according to the present invention thus comprise the administration of at least one compound of formula (I) or a pharmaceutically acceptable salt or solvate thereof and at least one other pharmaceutically active agent. The compound(s) of formula (I) and the other pharmaceutically active agent(s) may be administered together or separately and, when administered separately this may occur simultaneously or sequentially in any order. The amounts of the compound(s) of formula (I) and the other pharmaceutically active agent(s) and the relative timings of administration will be selected in order to achieve the desired combined therapeutic effect.

[0128] Certain embodiments of the present invention will now be illustrated by way of example only. The physical data given for the compounds exemplified is consistent with the assigned structure of those compounds.

[0129] ¹H NMR spectra were obtained at 500MHz on a Bruker AMX500 spectrophotometer, on a Bruker spectrophotometer at 300Mz, or on a Bruker AC250 or Bruker AM250 spectrophotometer at 250MHz. J values are given in Hz. Mass spectra were obtained on one of the following machines: VG Micromass Platform (electrospray positive or negative), HP5989A Engine (thermospray positive) or Finnigan-MAT LCQ (ion trap) mass spectrometer. Analytical thin layer chromatography (tlc) was used to verify the purity of some intermediates which could not be isolated or which were too unstable for full characterisation, and to follow the progess of reactions. Unless otherwise stated, this was done using silica gel (Merck Silica Gel 60 F254). Unless otherwise stated, column chromatography for the purification of some compounds used Merck Silica gel 60 (Art. 1.09385, 230-400 mesh), and the stated solvent system under pressure.

Petrol refers to petroleum ether, either the fraction boiling at 40-60°C, or at 60-80°C. Ether refers to diethylether.

DMAP refers to 4-dimethylaminopyridine.

DMF refers to dimethylformamide.

DMSO refers to dimethylsulphoxide.

THF refers to tetrahydrofuran.

10

30

35

45

50

TMEDA refers to N, N, N, N-tetramethylethylenediamine.

TFA refers to trifluoroacetic acid.

HPLC refers to high pressure liquid chromatography.

RT refers to retention time.

[0130] Useful preparative techniques are described in WO96/09294, WO97/03069 and WO97/13771; also described in these publications are appropriate intermediate compounds other than those detailed below.

General Procedures

(A) Reaction of an amine with a bicyclic species containing a 4-chloropyrimidine ring

[0131] The optionally substituted bicyclic species and the specified amine were mixed in an appropriate solvent (acetonitrile unless otherwise specified), and heated to reflux. When the reaction was complete (as judged by tic), the reaction mixture was allowed to cool. The resulting suspension was diluted, *e.g.* with acetone, and the solid collected by filtration, washing *e.g.* with excess acetone, and dried at 60°C *in vacuo*, giving the product as the hydrochloride salt. If the free base was required (*e.g.* for further reaction), this was obtained by treatment with a base *e.g.* triethylamine; purification by chromatography was then performed, if required.

(B) Reaction of a product from Procedure (A) with a heteroaryl tin reagent

[0132] A stirred mixture of the product from Procedure (A), (containing a suitable leaving group such as chloro, bromo, iodo or triflate), a heteroaryl stannane and a suitable palladium catalyst, such as bis-(triphenylphosphine)palladium (II) chloride or 1,4-bis(diphenylphosphino)-butane palladium (II) chloride (prepared as described in C.E. House-croft et. al., Inorg. Chem., (1991), 30(1), 125-130), together with other appropriate additives, were heated at reflux in dry dioxane or another suitable solvent under nitrogen until the reaction was complete. The resulting mixture was generally purified by chromatography on silica.

(C) Reaction of the product from Procedure (A) with a second amine

[0133] The product of Procedure (A) (containing a suitable leaving group such as chloro) was dissolved in an excess of the desired amine (or a solution thereof) and heated in a pressure vessel (e.g. at 130°C for 17hr). The cooled mixture was generally purified by chromatography on silica.

Preparation Of Intermediates

1-Benzyl-5-nitro-1H-indole

10

15

20

30

35

40

50

55

[0134] Dry dimethylsulphoxide (20 ml) was added to potassium hydroxide (4.2 g, 0.074 mol) (crushed pellets) and the mixture was stirred under nitrogen for 5 mins. 5-Nitroindole (commercially available) (3.0 g, 0.019 mol) was then added and the red mixture stirred for 30 min at room temperature. The mixture was then cooled to -10 °C, benzyl bromide (4.4 ml, 0.037 mol) was slowly added and the mixture stirred and allowed to warm to room temperature over a period of 40 mins. Water (50 ml) was then added and the mixture was extracted with diethyl ether (2 x 200 ml). The extracts were washed with water (4 x 50 ml), dried over sodium sulphate and evaporated to leave an oily solid. The excess benzyl bromide was removed by dissolving the whole in diethyl ether (50 ml), diluting this solution with 40-60 petrol (50 ml) and then gradually removing the diethyl ether *in vacuo* to leave a yellow solid suspended in the petrol. The solid was filtered, washed with copious amounts of 40-60 petrol and dried to give 1-benzyl-5-nitroindole (2.4 g, 51%) as a yellow solid, m.p. 102-104 °C; δH [²H_e]-DMSO 8.53 (1H, s, 4-H), 8.00 (1H, d, J 9, 6-H), 7.78 (1H, s, 2-H), 7.68 (1H, d, J 9, 7-H), 7.36-7.20 (5H, m, 2'-H, 3'-H, 4'-H, 5'-H, 6'-H), 6.81 (1H, s, 3-H), 5.52 (2H, s, CH2).

5-Amino-1-benzyl-1H-indole

[0135] A solution of 1-benzyl-5-nitroindole (0.51 g, 0.02 mol) in a mixture of ethyl acetate (25 ml) and methanol (25 ml) was carefully added to 10% palladium on charcoal (45 mg). The resulting suspension was stirred at room temperature under an atmosphere of hydrogen. When the reaction was complete (indicated by tlc or calculated uptake of hydrogen) the suspension was filtered through a pad of HyfloTM, and the filtrate evaporated to dryness to give 5-amino-1-benzylindole (0.40 g, 91%) as an off-white solid; m.p. 66-68 °C; δ H [2 H₆]-DMSO 7.30-7.12 (6H, m, 2-H, 2"-H, 3"-H, 4"-H, 5"-H, 6"-H), 7.08 (1H,-d, J 8, 7-H), 6.70 (1H, s, 4-H), 6.49 (1H, d, J 8, 6-H), 6.18 (1H, s, 3-H), 5.28 (2H, s, CH2), 4.38 (2H, br s, NH₂).

2-Benzyl-5-nitro-1H-benzimidazole

[0136] A mixture of 4-nitro-o-phenylene diamine (1.54g) and phenylacetic acid (2.04g) in 5N aqueous HCI (16ml) were heated at 110 °C under nitrogen for 22 hours. The mixture was cooled to room temperature and the accumulated black solid collected by filtration. This crude residue was then adsorbed onto silica and chromatographed to give the title compound (0.84g) as a purple foam; δH CDCl₃ 9.70 (1H, bs), 8.15 (1H, d), 7.30 (7H, m), 4.30 (2H,s); m/z (M + 1)+ 254.

5-Amino-2-benzyl-1H-benzimidazole

[0137] The title compound was prepared from 5-nitro-2-benzylbenzimidazole by an analogous reduction method to that described above for 5-amino-1-benzyl-1H-indole; m/z (M + 1)+224. Also note the published method (J. Het. Chem., 23, 1109-13, (1986)).

1-N-Benzyl-5-nitro-1H-indazole and 2-N-Benzyl-5-nitro-1H-indazole

[0138] A stirred mixture of 5-nitroindazole (50g), potassium carbonate (46.6g, 1.1 equiv.) and benzyl bromide (57.6g,

1.1 equiv) in *N*,*N*-dimethylformamide (500 ml) was heated at 75°C for a period of 4 hours. The reaction was then cooled and water (500ml) was gradually added to precipitate the product which was filtered off and washed with water (50ml) and dried in the air at ambient temperature. The weight of pale yellow solid thus obtained was 72.3g (93%), m.pt. 95-97°C; HPLC (Partisil 5, dichloromethane, 4ml/min, 250nm) gave an isomer ratio (1-*N*-benzyl: 2-*N*-benzyl) of 63:37 (RT-1*N* 3.4min, RT-2N 6.6min). To a filtered solution of the mixed regioisomers (100g) in acetone (470ml) at room temperature was added, gradually with stirring, water (156ml) and the mixture was stirred for one hour. The resultant yellow crystalline solid was filtered off and dried in the air at ambient temperature to give 36.4g (34%) of material; m. pt.124-126°C; HPLC showed an isomer ratio (1-*N*-benzyl: 2-N-benzyl) of 96:4; δH (CDCl₃) 5.58 (2H,s,CH₂), 7.12-7.15 (2H) & 7.22-7.29(3H)-(phenyl), 7.33(1H,dt, J=1Hz & 9Hz, H-7), 8.15(1H,dd, J=2Hz & 9Hz,H-6), 8.19(1 H,d,J=1Hz,H-3), 8.67 (1H,dd,J=1Hz & 2Hz, H-4).

[0139] Also note the published method in FR 5600, 8 January 1968.

5-Amino-1-N-benzyl-1H-indazole

10

30

35

40

45

50

55

[0140] 1-Benzyl-5-nitroindazole (400g) was suspended in ethanol (5 litre) and hydrogenated in the presence of 5% platinum on carbon catalyst (20g) operating at 1 bar pressure and 50-60°C. When hydrogen uptake was complete the reactor contents were heated to 70°C, discharged and filtered while still hot and the filtrate concentrated to ~4 litre which caused some crystallisation. Water (4 litre) was then gradually added with stirring and the mixture was stirred at 5°C overnight. The resultant crystals were filtered off and air-dried at ambient temperature to give 305g (86%) of material, m.pt.150-152°C; HPLC (Supelcosil ABZ +, gradient 0.05% trifluoroacetic acid in water/0.05% trifluoroacetic acid in acetonitrile, 1.5ml/min, 220nm) showed <1% of the corresponding 2-N-isomer (RT-1*N* 6.03min, RT-2N 5.29min); δH (CDCl₃) 3.3-3.8(2H,broad s,NH₂), 5.47 (2H,s,CH₂), 6.74(1H,dd,J=2Hz & 9Hz,H-6), 6.87(1 H,dd,J=1 Hz & 2Hz,H-4), 7.06-7.11(3H) & 7.17-7.25(3H)-(phenyl & H-7), 7.77(1H,d,J=1Hz,H-3).

[0141] Also note the published method in FR 5600, 8 January 1968.

1-Benzyl-3-methyl-5-nitro-1H-indazole

[0142] 2-Fluoro-5-nitroacetophenone (H. Sato et al, Bioorganic and Medicinal Chemistry Letters, 5(3), 233-236, 1995) (0.24g) was treated with triethylamine (0.73ml)and benzyl hydrazine dihydrochloride (0.255g) in ethanol (20ml) at reflux under N_2 for 8 days. The mixture was cooled and the solid 1-benzyl-3-methyl-5-nitroindazole (0.16g) was collected by filtration; m/z (M+1)+ 268.

1-Benzyl-3-methyl-1H-indazol-5-ylamine

[0143] 1-Benzyl-3-methyl-5-nitroindazole (0.15g) in THF (15ml) was treated with platinum on carbon (0.05g, 5%) under an atmosphere of hydrogen at room temperature. When hydrogen uptake was complete, the mixture was filtered and concentrated *in vacuo* to give the title compound; m/z (M+1)+ 268.

Further amino-indazole intermediates

[0144] The relevant nitro-substituted 1H-indazole was treated with a base such as potassium carbonate or sodium hydroxide in a suitable solvent, such as acetone or acetonitrile. The appropriate aryl halide or heteroaryl halide was added and the reaction mixture heated or stirred at room temperature overnight. Subsequent concentration *in vacuo* and chromatography on silica gave the desired 1-substituted nitro-1H-indazoles. Hydrogenation was carried out by analogy with the preparation of 5-amino-1-benzyl-1H-indole described above.

[0145] Amines prepared by such methods and specifically used in the preparation of the later Examples include: -

```
5-Amino-1-benzyl-1 H-indazole; m/z (M+1)+ 224
```

5-Amino-1-(2-fluorobenzyl)-1 H-indazole; m/z (M+1)+ 242

5-Amino-1-(3-fluorobenzyl)-1H-indazole;m/z (M+1)+ 242

5-Amino-1-(4-fluorobenzyl)-1 H-indazole; m/z (M+1)+ 242

5-Amino-1-(2-pyridylmethyl)-1 H-indazole; m/z (M+1)+ 225

5-Amino-1-(3-pyridylmethyl)-1 H-indazole; m/z (M+1)+ 225

5-Amino-1-(2,3-difluorobenzyl)-1H-indazole; m/z (M+1)+ 260

5-Amino-1-(3,5-difluorobenzyl)-1 H-indazole; m/z (M+1)+ 260.

[0146] Other amines prepared by such methods include:

5-Amino-1-(4-pyridylmethyl)-1H-indazole; m/z (M+1)+ 225.

[0147] 1-Benzenesulphonylindol-5-yl-amine was prepared according to the published method (J. Org. Chem., 55, 1379-90, (1990)).

3-Benzenesulphonylindol-6-yl-amine

10

30

35

50

55

[0148] 3-Benzenesulphonyl-6-nitroindole (K. Wojciechowski and M Makosza, Tet. Lett., $\underline{25}$ (42), p4793, 1984) was hydrogenated by analogy with the procedures above to give the title compound; δ H [2 H₆]DMSO 11.64 (1H,s), 7.94 (2H, m), 7.81 (1H,s), 7.57 (3H,m), 7.49(1H,d), 6.60(1H,s), 6.55 (1H,dd), 5.40 (2H,s).

N-5-[N-tert-Butoxycarbonyl)amino]-2-chloropyridine

[0149] A stirred solution of 6-chloronicotinic acid (47.3g), diphenylphosphoryl azide (89.6g) and triethylamine (46ml) in t-butanol (240ml) were heated under reflux under nitrogen for 2.5 hours. The solution was cooled and concentrated *in vacuo*. The syrupy residue was poured into 3 litres of a rapidly stirred solution of 0.33N aqueous sodium carbonate. The precipitate was stirred for one hour and filtered. The solid was washed with water and dried *in vacuo* at 70°C to give the title compound (62g) as a pale brown solid; m.p. 144-146°C; δH [²H₆]-DMSO 8.25(1H,d), 7.95 (1H, bd), 7.25 (1H, d), 6.65(1H, bs), 1.51 (9H,s); m/z (M + 1)+ 229.

[0150] This material may subsequently be carried forward to the appropriately substituted pyridopyrimidine intermediate according to the procedures as described in WO95/19774, J. Med. Chem., 1996, 39, pp 1823-1835, and J. Chem. Soc., Perkin Trans. 1, 1996, pp 2221-2226. Specific compounds made by such procedures include 6-chloro-pyrido [3,4-d]pyrimidin-one and 4,6-dichloro-pyrido[3,4-d]pyrimidine.

25 <u>2-N,N-Dimethylamino-4-nitropyridine</u>

[0151] 2-Chloro-4-nitropyridine (0.64g) was treated with aqueous dimethylamine (10ml, 25%) at reflux for 30 minutes. The mixture was diluted with water and filtered. The solid was washed with water and dried *in vacuo* to give the title compound (0.67g); δH [2H_6]DMSO 9.05 (1H,d), 8.30(1H,dd), 6.84(1H,d), 3.28 (6H,s).

2-N,N-Dimethylamino-4-aminopyridine

[0152] 2-N,N-Dimethylamino-4-nitropyridine (0.67g) in ethanol (50ml) was added to 10% palladium on charcoal and stirred under an atmosphere of hydrogen. When the reaction was complete, the suspension was filtered through a pad of HyfloTM and the filtrate concentrated *in vacuo* to give the title compound (0.49g); δH [2H_6]DMSO 7.57 (1H,d), 6.88 (1H,dd), 6.41(1H,d), 4.39(2H,bs), 3.80 (6H,s); m/z (M+1+) 138.

N-(4-N', N'-Dimethylaminopyrid-3-yl)-2,2-dimethylpropionamide

40 [0153] 2-N,N-Dimethylamino-4-aminopyridine (1.37g) in methylene chloride (20ml) under N₂ was treated with triethylamine (1.53ml) and pivaloyl chloride (1.32g) over 5 minutes. After 16 hours at room temperature, the mixture was diluted with methylene chloride, washed with water, dried and concentrated to give the title compound (2.2g); δH [²H₆] DMSO 9.20(1H,s), 8.22 (1H,d), 7.70(1H,dd), 6.60(1H,d), 2.98(6H,s), 1.20 (9H,s); m/z (M+1+) 222.

45 2-(N,N-Dimethylamino)-5-(2,2-dimethylpropionamido)-pyridine-4-carboxylic acid

[0154] *N*-(4-*N'*,*N'*-Dimethylaminopyrid-3-yl)-2,2-dimethylpropionamide (1.1g) in dry THF under $\rm N_2$ at -70°C was treated with TMEDA (1.45g) and butyl lithium (1.6M, 8ml). The mixture was warmed to 0°C for three hours before being recooled to -70°C. Carbon dioxide was bubbled through the solution for 1 hour and the resulting solution was warmed to room temperature under a carbon dioxide atmosphere and stirred there for 16 hours. The resulting mixture was concentrated *in* vacuo and partitioned between ether and water. The aqueous layer was concentrated *in* vacuo to give the title compound (1.0g); $\delta \rm H~[^2H_6]DMSO~13.50(1~H,s),~9.22(1~H,s),~7.26(1~H,s),~2.95(6H,s),~1.20~(9H,s);~m/z~(M+1+)~266.$

5-Amino-2-(N,N-dimethylamino)-pyridine-4-carboxylic acid

[0155] 2-(N,N-Dimethylamino)-5-(2,2-dimethylpropionamido)-pyridine-4-carboxylic acid (0.8g) was treated with 5N HCl at reflux for 5 hours. The mixture was allowed to cool and evaporated to dryness to give the title compound (0.54g);

 δH [${}^{2}H_{6}$]DMSO 8.15(1H,s), 7.35(2H,bs), 6.70(1H,s), 3.10(6H,s); m/z (M+1+) 182.

6-(N,N-Dimethylamino)-pyrido[3,4-d]pyrimidin-4-one

5 [0156] 5-Amino-2-(*N*,*N*-dimethylamino)-pyridine-4-carboxylic acid (0.54g) was treated with formamidine acetate (3.12g) in glacial acetic acid (20ml) and heated at reflux for 16 hours. The mixture was cooled, evaporated to dryness *in vacuo* and partitioned between ethyl acetate and water. The organic phase was separated, dried over magnesium sulphate and concentrated *in vacuo* to give, after chromatography on silica, the title compound (0.25g); δH CDCl₃ 9.10 (1H,d), 8.80(1H,s), 8.31(1H,s), 7.07(1H,s), 3.20(6H,s); m/z (M+1+) 191.

[0157] Alternatively, 6-chloro-pyrido[3,4-d]pyrimidin-4-one (26.14g) was treated with 2N dimethylamine in ethanol (200ml) and heated at 130°C in a Parr bomb for 3 days. The cooled mixture was filtered and triturated from isopropanol to give the title compound (16.61g) as a yellow solid; m/z (M+1+) 191.

4-Chloro-6-(N, N-dimethylamino)-pyrido[3,4-d]pyrimidine

[0158] 6-(N,N-Dimethylamino)-pyrido[3,4-d]pyrimidin-4-one (12g) was carefully treated with phosphorus oxychloride (42ml) and triethylamine (18ml) at room temperature under N₂. After 1 hour at room temperature and 1 hour at 50°C, the mixture was concentrated *in vacuo*, azeotroping with toluene, then taken up in ethyl acetate, washed with sodium bicarbonate solution, dried and concentrated *in vacuo* to give the title compound (10.34g); δ H CDCl₃ 9.13(1H,s), 8.74 (1H,s), 6.69(1H,s), 3.25(6H,s).

6-Cyano-pyrido[3,4-d]pyrimidin-4-one

15

35

50

[0159] 6-Chloro-pyrido[3,4-d]pyrimidin-4-one (10g) in 1-methyl-2-pyrrolidinone (100ml) was treated with copper (I) iodide (10.52g) and potassium cyanide (7.10g) at 215°c for 72 hours under N_2 . Further potassium cyanide was added (3.58g) and heating continued at 230°C for 70 hours. The 1-methyl-2-pyrrolidinone was removed by distillation at reduced pressure and the residue absorbed onto silica. Chromatography gave the title compound (2.4g) as a beige solid; δH [2H_6]DMSO 13.0(1H,bs), 9.25 (1H,s), 8.55 (1H,s), 8.50 (1H,s); m/z (M-1+) 171.

30 6-(1,2,3,4-Tetrazol-5-yl)-pyrido[3,4-d]pyrimidin-4-one

[0160] 6-Cyano-pyrido[3,4-d]pyrimidin-4-one (0.3g) in diglyme (2ml) was treated with tributyl tin azide (0.49g) at reflux under N_2 for 15 hours. The cooled mixture was partitioned between ethyl acetate and water and the aqueous phase extracted further with ethyl acetate. The aqueous phase was concentrated *in vacuo*, the residue taken up in methanol and inorganics removed by filtration. Subsequent concentration gave the title compound (1.4g) as a beige solid; δH [2H_6]DMSO 8.96 (1H,s), 8.50 (1H,s), 8.27 (1H,s); m/z (M+1+) 216.

6-(5-Methyl-1,3,4-oxadiazol-2-yl)-pyrido[3,4-d]pyrimidin-4-one

[0161] 6-(1,2,3,4-Tetrazol-5-yl)-pyrido[3,4-d]pyrimidin-4-one (1.4g) in acetic anhydride (10ml) was heated at reflux under N_2 for 2.5 hours. The cooled mixture was absorbed onto silica and purified by chromatography to give the title compound (0.14g) as a beige solid; δH [2H_6]DMSO 13.0(1H,bs), 9.30 (1H,s), 8.66 (1H,s), 8.47 (1H,s) 2.75 (3H,s); m/z (M+1+) 230.

45 4-Chloro-6-(5-methyl-1,3,4-oxadiazol-2-yl)-pyrido[3,4-d]pyrimidine

[0162] 6-(5-Methyl-1,3,4-oxadiazol-2-yl)-pyrido[3,4-d]pyrimidin-4-one (0.5g) was treated with phosphorus oxychloride at room temperature under N_2 . After 1 hour at room temperature and 1 hour at 50°C, the mixture was concentrated *in vacuo*, azeotroping with toluene, then taken up in ethyl acetate, washed with sodium bicarbonate solution, dried and concentrated *in vacuo* to give the title compound (0.17g) as an orange solid; δ H CDCl₃ 9.68 (1H,s), 9.30 (1H,s), 8.96 (1H,s), 2.75 (3H,s); m/z (M+1+) 248.

6-Benzyloxy-4-hydroxy-pyrido[3,4-d]pyrimidine

[0163] Sodium hydride (8.14g of 60% dispersion with mineral oil, 203.5mmol) was suspended in benzyl alcohol (200ml) under a nitrogen atmosphere. 6-Chloropyrido[3,4-d]pyrimidine (9.081g, 50.0mmol) was added and the mixture was heated at 150°C for 18 hours. When cool, the mixture was partitioned between water (200ml) and ether (200ml), the layers were separated, and the aqueous layer was washed with further ether. The aqueous solution was then

acidified to pH1 by the addition of dilute HCl causing the precipitation of the title compound as a cream solid (7.885g, 31.1mmol, 62%); δH [2H_6]OMSO 8.71(1H,s), 7.89(1H,s), 7.25-7.48 (6H,m), 5.40 (2H,s); m/z (M+1+) 254.

6-Benzyloxy-4-chloro-pyrido[3,4-d]pyrimidine

[0164] 6-Benzyloxy-4-hydroxy-pyrido[3,4-d]pyrimidine (1.033g, 4.1mmol) was suspended in thionyl chloride (10ml) under a nitogen atmosphere. DMF (3 drops) was added and the mixture was heated to reflux with stirring for 5.5 hours to give a dark solution, and then left to stand under nitrogen overnight. The mixture was concentrated *in vacuo*, azeotroping twice with toluene to remove all traces of thionyl cloride and acidic by-products. The material was further dried for two hours *in vacuo* to give the title compound as a brown solid, used without further purification; δH [2H_6]DMSO 8.77(1H,s), 8.13(1H,s), 7.30-7.52 (6H_8 ,m), 5.45 (2H_8).

(3-Methyl-3-oxetane)methyl 2-furoate

[0165] 2-Furoic acid (9.0g, 80.3mmol) was added to a solution of 3-methyl-3-oxetanemethanol (16.5g, 161.6mmol), 1,3-dicyclohexylcarbodiimide (25.0g, 121.1mmol) and DMAP (0.50g, 4.1mmol) in dichloromethane (250ml), and the mixture was stirred under a nitrogen atmosphere overnight. The mixture was filtered, and the filtrate was concentrated *in vacuo* to give an oil. Crystallisation from ethanol/water gave a white solid collected by filtration, which was shown by NMR to be 2-furoic acid. The filtrate was concentrated *in vacuo* to remove the ethanol, and the resulting aqueous solution was extracted with dichloromethane (x2). The combined dichloromethane extracts were dried (MgSO₄) and concentrated to give the title compound as a colourless oil (11.8g, 60.1mmol, 75%); δH [²H₆]DMSO 8.00 (1H,s), 7.34 (1H,d), 7.71 (1H, dd), 4.44 (2H,d), 4.35 (2H,s), 4.28 (2H,d), 1.31 (3H,s).

2-(4-Methyl-2,6,7-trioxabicyclo[2.2.2]oct-1-yl)furan

[0166] (3-Methyl-3-oxetane)methyl 2-furoate (11.8g, 60.1mmol) was dissolved in dichloromethane (250ml) and the solution was cooled to 0° C. Boron trifluoride-etherate (10 drops) was added and the mixture stirred at room temperature, and then left to stand for two months. Triethylamine (0.5ml, 0.36g, 3.6mmol) was added and the mixture concentrated to give a sticky white solid. Trituration with ether/acetone gave the title compound as a white solid (2.2g, 11.2mmol, 19%); δ H [2 H₆]DMSO 8.00 (1H,s), 7.34 (1H,d), 7.71 (1H, dd), 4.44 (2H,d), 4.35 (2H,s), 4.28 (2H,d), 1.31 (3H,s).

5-(4-Methyl-2,6,7-trioxabicyclo[2.2.2]oct-1-yl)-2-[tri(n-butyl)stannyl]furan

[0167] 2-(4-Methyl-2,6,7-trioxabicyclo[2.2.2]oct-1-yl)furan (2.0g, 10.2mmol) was dissolved in THF (20ml) and the solution was cooled to -78°C. n-BuLi (1.6M solution in hexanes, 7.7ml, 12.32mmol) was added and the mixture stirred at -78°C for 30min, allowed to warm to 0°C for 20 min. and then recooled to

-78°C. The tributyltin chloride (3.5ml, 4.68g, 14.4mmol) was added and stirring was continued at -78°C for 15min. The mixture was allowed to warm gradually to room temperature and stirring continued for three days. The reaction was quenched by the addition of water, and extracted with ethyl acetate. This solution was washed with water, dried (MgSO₄), and concentrated *in vacuo* to give the title compound as a yellow oil (4.7g, 9.7mmol, 95%); δ H [2 H₆]DMSO 6.52 (1H,d), 6.38 (1H, d), 3.96 (6H,s), 0.77-1.63 (30H,m).

(1-Benzyl-1H-indazol-5-yl)-(6-[5-(4-methyl-2,6,7-trioxa-bicyclo[2.2.2]oct-1-yl)-furan-2-yl]-pyrido-[3,4-d]pyrimidin-4-yl)-amine

[0168] (1-Benzyl-1H-indazol-5-yl)-(6-chloro-pyrido-[3,4-d]pyrimidin-4-yl)-amine (0.425g, 1.10mmol), 5-(4-methyl-2,6,7-trioxa-bicyclo[2.2.2]oct-1 -yl)-2-[tri(n-butyl)stannyl]furan (1.95g, 4.0mmol) and 1,4-bis(diphenylphosphino)butane palladium (II) chloride (0.068g, 0.11mmol) were reacted in dry dioxane (15ml) according to Procedure B. Purification by silica gel chromatography, eluting with 50-100% ethyl acetate/*i*-hexane, gave the title compound as a yellow solid (0.451g, 0.929mmol, 86%); δ H [2 H $_6$]DMSO 10.58 (1H,s), 9.14 (1H,s), 8.71 (1H,s), 8.61 (1H,s), 8.16-8.21 (2H,m), 7.68-7.79 (2H,m), 7.22-7.36 (5H,m), 7.13 (1H,d), 6.68 (1H,d), 5.69 (2H,s), 4.06 (6H,s), 0.86 (3H,s); m/z (M+1+) 547.

55

10

25

30

35

40

45

Examples

Example 1

5 (1-Benzyl-1H-indazol-5-yl)-(6-chloro-pyrido[3,4-d]pyrimidin-4-yl)-amine hydrochloride

[0169] Prepared according to Procedure A from 1-benzyl-1H-indazol-5-ylamine and 4,6-dichloro-pyrido[3,4-d]pyrimidine; δ H [2 H₆]-DMSO 9.08 (1H,s), 8.92 (1H,s), 8.82 (1H,s), 8.23 (1H,d), 8.19 (1H,s), 7.80 (1H,d), 7.70 (1H,dd), 7.38-7.22 (5H,m), 5.69 (2H,s); m/z (M + 1)+ 387.

Example 2

10

N4-(1-Benzyl-1H-indazol-5-yl)-N6,N6-dimethyl-pyrido[3,4-d]pyrimidine-4,6-diamine

- [0170] A stirred solution of (1-benzyl-1H-indazol-5-yl)-(6-chloro-pyrido[3,4-d]pyrimidin-4-yl)-amine (0.5g) in 33% aqueous dimethylamine (5ml) was heated at 130°C in a reacti-vial for 17 hr. The cooled mixture was dissolved in chloroform, absorbed onto silica and chromatographed to give the title compound (Procedure C) as a yellow solid; δH [2H₆]-DMSO 9.00(1H,s), 8.51(1H,s), 8.09(2H,d), 7.55(1H,dd), 7.25(7H,m), 6.39(1H,m), 5.60(2H,s) 3.20 (6H,s); m/z (M + 1)+ 396.
- [0171] Alternatively, 4-chloro-6-(N,N-dimethylamino)-pyrido[3,4-d]pyrimidine and 5-amino-1-benzyl-1H-indazole were reacted according to Procedure A to give the title compound as the hydrochloride salt; δH [2 H₆]DMSO 11.82(1H, s), 8.95(1H,s), 8.63(1H,s), 8.25(1H,s), 8.15(1H,s), 7.87(1H,d), 7.78(1H,s), 7.70(1H,dd), 7.30(5H,m), 5.79(2H,s), 3.23 (6H,s); $C_{23}H_{22}N_7CI$ requires C 63.96%, H 5.13%, N 22.70%; found C 63.44%, H 4.99%, N 22.74%.
 - [0172] The hydrochloride salt was partitioned between dichloromethane and 2N sodium carbonate. Extraction of the aqueous layer with dichloromethane was followed by drying of the organic phase and concentration *in vacuo* to give the free base.

Example 3

30 (1-Benzyl-1H-indazol-5-yl)-(6-(N-(2-hydroxyethyl)-N-methylamino)-pyrido[3,4-d]pyrimidin-4-yl)-amine

[0173] A stirred solution of (1-Benzyl-1H-indazol-5-yl)-(6-chloro-pyrido[3,4-d]pyrimidin-4-yl)-amine (0.2g) in 2-methylaminoethanol (4ml) was heated at 130°C in a reabtivial for 96 hr (Procedure C). The cooled mixture was partitioned between ethyl acetate and water. The aqueous phases were extracted with ethyl acetate. The dried extracts were concentrated *in vacuo* and the residue purified by flash chromatography to give the title compound as a yellow solid; δ H [2 H₆]-DMSO/CDCl₃ 9.00(1H,s), 8.85(1H,s), 8.45(1H,s), 8.10(2H,d), 7.64(1H,dd), 7.30(7H,m), 7.08(1H,s),5.60(2H,s), 3.85(4H,m), 3.25 (3H,s); m/z (M + 1)+ 426.

Example 4

35

40

50

55

(1-Benzyl-1H-indazol-5-yl)-(pyrido[3,4-d]pyrimidin-4-yl)-amine

[0174] A stirred solution of (1-Benzyl-1H-indazol-5-yl)-(6-chloro-pyrido[3,4-d]pyrimidin-4-yl)-amine (0.165g), 2-(trin-butylstannyl)furan (0.139g) and bis-(triphenylphosphine)palladium (II) chloride (30mg) in dioxane (10ml) was heated at reflux under nitrogen for 65 hr (Procedure B). The cooled mixture was absorbed onto silica and chromatographed to give the title compound as an orange solid; δ H CDCl₃ 9.34(1H,s), 8.82(1H,s), 8.70(1H,d), 8.15(1H,d), 8.10(1H,s), 7.65(1H,d), 7.60(1H,s), 7.53(1H,dd), 7.40(1H,d), 7.25(6H,m), 5.60(2H,s); m/z (M + 1)+353.

Example 5

(2-Benzyl-1H-benzimidazol-5-yl-(6-chloro-pyrido[3,4-d]pyrimidin-4-yl)-amine

[0175] Prepared according to Procedure A from 5-amino-2-benzyl-1 H-benzimidazole and 4,6-dichloro-pyrido[3,4-d] pyrimidine; δ H [2 H₆]-DMSO 9.13(1H,s), 8.93(1H,s), 8.84(1H,s), 8.60(1H,s), 8.05(1H,dd), 7.88(2H,d), 7.50(6H, m), 4.61 (2H,s); m/z (M + 1)+ 387.

Example 6

N4-(1-Benzyl-1H-indol-5-yl)-N6,N6-dimethyl-pyrido[3,4-d]pyrimidine-4,6-diamine

[0176] The title compound was prepared from (1-benzyl-1H-indol-5-yl)-(6-chloro-pyrido[3,4-d]pyrimidin-4-yl)-amine by an analogous method to Example 2 (Procedure C) as a yellow solid; δH CDCl₃ 8.98(1H,s), 8.50(1H,s), 7.30(5H,m), 7.15(2H,m), 6.60(1H,d), 6.38(1H,s), 5.35(2H,s), 3.20(6H,s); m/z (M + 1)+ 395.

Example 7

10

N4-(2-Benzyl-1H-benzimidazol-5-yl)-N6,N6-dimethyl-pyrido[3,4-d]-pyrimidine-4,6-diamine

[0177] The title compound was prepared from (2-benzyl-1 H-benzimidazol-5-yl)-(6-chloropyrido[3,4-d]pyrimidin-4-yl)-amine by an analogous method to Example 2 (Procedure C) as a yellow solid; δ H [2 H₆]-DMSO 9.75(1 H,s), 8.80 (1 H,s), 8.32(1H,s), 8.08(1H,bs), 7.50(2H,m), 7.30(5H,m), 4.20(2H,s); m/z (M + 1)+ 396.

Example 8

(1-Benzyl-1H-indazol-5-yl)-(6-(5-[1,3-dioxolan-2-yl]-furan-2-yl)-pyrido[3,4-d]-pyrimidin-4-yl)-amine

[0178] (1-Benzyl-1 H-indazol-5-yl)-(6-chloro-pyrido[3,4-d]pyrimidin-4-yl)-amine (4.28g), 2-(tributylstannyl)-5-(1,3-dioxolan-2-ylmethyl)-furan (J. Chem Soc., Chem. Commun., (1988), p560) (10g) and 1,4-bis(diphenylphosphino)butane palladium (II) chloride (1g) were heated at reflux in dioxane (150ml) for 24 hr (Procedure B). The solvent was removed in vacuo and the residue chromatographed on silica. Subsequent trituration gave the title compound as a yellow solid; δ H [2 H₆] -DMSO 10.46 (1H, s), 9.17 (1H, s), 8.74 (1H, s), 8.52 (1H, s), 8.23 (1H, s), 8.18 (1H, s), 7.80-7.68 (2H, m), 7.41-7.22 (5H, m), 7.17 (1H, d), 6.80 (1H, d), 6.06 (1H, s), 5.71 (2H, s), 4.20-3.96 (4H, m).

Example 9

30 5-(4-(1-Benzyl-1H-indazol-5-ylamino)-pyrido[3,4-d]pyrimidin-6-yl)-furan-2-carbaldehyde

[0179] (1-Benzyl-1H-indazol-5-yl)-(6-(5-[1,3-dioxolanyl]-furan-2-yl)-pyrido[3,4-d]-pyrimidin-4-yl)-amine (3.03g) and 2N HCI (50ml) were stirred in THF (50ml) for 16 hr. The resulting precipitate was filtered and washed with water to give thehydrochloride salt of the product; δ H [2 H₆]DMSO 11.70(1H,s), 9.74 (1H,s) 9.30 (1H,s), 9.27 (1H,s), 8.85 (1H, s), 8.23 (1H,s), 8.18 (1H,s), 7.68-7.87 (3H,m), 7.55 (1H,d), 7.22-7.38 (5H,m), 5.71 (2H,s). Subsequent neutralisation with triethylamine in ethanol/water gave the title compound; δ H [2 H₆] -DMSO 9.64(1H,s), 9.19 (1H,s), 9.09(1H,s), 8.72 (1H,s), 8.12(2H,m), 7.71(2H,m), 7.63(1H,dd), 7.43(1H,d), 7.20(5H,m), 5.62(2H,s).

Example 10

40

55

(2S)-1-(5-(4-(1-Benzyl-1H-indazol-5-ylamino)-6-pyrido[3,4-d]pyrimidin-6-yl)-furan-2-ylmethyl)-pyrrolidine-2-carboxylic acid amide hydrochloride

[0180] 5-(4-(1 -Benzyl- 1H-indazol-5-ylamino)-pyrido[3,4-d]pyrimidin-6-yl)-furan-2-carbaldehyde (800mg) and L-prolinamide (1.0g) were mixed in dichloromethane (8ml) at 25°C for 1 hr. The solution was cooled to 0°C and sodium triacetoxyborohydride (2.0g) was added. After 4 hr at 25°C the reaction mixture was subjected to flash chromatography directly on silica using 3% methanol in chloroform, to give the free base as a yellow solid; δ H [2 H₆]DMSO 10.33 (1H, s), 9.13(1H,s) 8.65 (1H,s), 8.61 (1H,s), 8.26 (1H,s), 8.16 (1H,s), 7.75 (2H,m), 7.12-7.33 (7H,m), 7.09 (1H,d), 6.56 (1H, d), 5.69 (2H,s), 3.84 (2H,s), 3.31-3.39 (1H, obscured by water), 3.09-3.14 (2H,m), 1.70-2.20 (4H,m); m/z (M+1+) 545. Treatment with saturated HCl in ethyl acetate gave the title compound; δ H [2 H₆] -DMSO 12.25 (1H, s), 9.52(1 H, s), 9.27 (1H, s), 8.80(1H, s), 8.53(1H, s), 8.27(1H, s), 8.21(1H, s), 7.83(2H, m), 7.72(1 H, s), 7.30(6H, m), 6.93(1H, d), 5.72(2H, s), 4.88(1H, m), 4.60(2H, s), 3.20(2H, s), 1.90(4H, m); m/z (M + 1)+ 545.

Example 11

(1-Benzyl-1 H-indazol-5-yl)-(6-(3-methyl-3H-imidazol-4-yl)-pyrido[3,4-d]pyrimidin-4-yl)-amine

[0181] (1-Benzyl-1H-indazol-5-yl)-(6-chloro-pyrido[3,4-d]pyrimidin-4-yl)-amine(0.70g, 1.81mmol), 1-methyl-5-[tri(n-

butyl)stannyl]imidazole (prepared according to the published method: K. Gaare et. al., Acta Chem. Scand., (1993), 47 (1), p57-62) (2.2g, 6mmol), 1,4-bis(diphenylphosphino)-butane palladium (II) chloride (0.41g, 0.7mmol) and silver oxide (0.224g, 1.8mmol) were reacted in dry dioxane according to Procedure B. Purification by silica gel chromatography, eluting with 10%MeOH/EtOAc, gave the product as a pale brown solid (0.16g, 0.37mmol, 20%); δ H CDCl₃ 10.62 (1H, s), 9.25 (1H,s), 8.75 (1H,s), 8.60 (1H,s), 8.13 (1H,s), 8.03 (1H,s), 7.20-7.78 (9H,m), 5.61 (2H,s), 3.96 (3H,s); m/z (M+1+) 433.

Example 12

10 N6,N6-Dimethyl-N4-(1-pyridin-2-ylmethyl-1H-indazol-5-yl)-pyrido[3,4-d]pyrimidine-4,6-diamine hydrochloride

[0182] Prepared according to Procedure A from 1-(2-Pyridylmethyl)indazol-5-ylamine and 4-chloro-6-(N,N-dimethylamino)-pyrido[3,4-d]pyrimidine; δH [2H_6]DMSO 11.75(1H,s), 9.92(1H,s), 8.62(1H,s), 8.55(1H,d), 8.24(1H,s), 8.14(1H,s), 7.75(4H,m), 7.33(1H,m), 7.08(1H,d), 5.82(2H,s), 3.20(6H,s); m/z (M+1+) 397.

Example 13

15

25

30

35

N6,N6-Dimethyl-N4-(1-pyridin-3-ylmethyl-1H-indazol-5-yl)-pyrido[3,4-d]pyrimidine-4,6-diamine hydrochloride

20 **[0183]** Prepared according to Procedure A from 1-(3-Pyridylmethyl)-1H-indazol-5-ylamine and 4-chloro-6-(N,N-dimethylamino)-pyrido[3,4-d]pyrimidine; δH [²H₆]DMSO 11.50(1H,s), 9.90(1H,s), 8.65(1H,d), 8.60(2H,m), 8.25(1H,s), 8.14(1H,s), 7.91(1H,d), 7.75(2H,m), 7.70(1H,s), 7.50(1 H,m), 5.80(2H,s), 3.20(6H,s); m/z (M+1+) 397.

Example 14

N4-(1-Benzyl-3-methyl-1H-indazol-5-yl)-N6,N6-dimethyl-pyrido[3,4-d]pyrimidine-4,6-diamine

[0184] Prepared according to Procedure A from 1-Benzyl-3-methyl-1 H-indazol-5-ylamine and 4-chloro-6-(N,N-dimethylamino)-pyrido[3,4-d]pyrimidine; δ H [2 H $_6$]DMSO 11.75(1H,s), 8.90(1H,s), 8.62(1H,s), 8.02(1H,s), 7.70(3H,m), 7.30(5H,m), 5.62(2H,s), 3.30(6H,s) 2.50(3H,s); m/z (M+1+) 410.

Example 15

N4-(1-(2-Fluoro-benzyl)-1H-indazol-5-yl)-N6,N6-dimethyl-pyrido[3,4-d]pyrimidine-4,6-diamine hydrochloride

[0185] Prepared according to Procedure A from 1-(2-Fluoro-benzyl)-1H-indazol-5-ylamine and 4-chloro-6-(N,N-dimethylamino)-pyrido[3,4-d]pyrimidine; δ H [2 H $_6$]DMSO 11.45(1H,s), 8.90(1H,s), 8.63(1H,s), 8.24(1H,s), 8.13(1H,s), 7.87(1H,d), 7.70(1H,d), 7.62(1H,s), 7.36(1H,m), 7.20 (3H,m), 5.75(2H,s), 3.22(6H,s); m/z (M+) 413.

40 <u>Example 16</u>

N4-(1-(3-Fluoro-benzyl)-1H-indazol-5-yl)-N6,N6-dimethyl-pyrido[3,4-d]pyrimidine-4,6-diamine hydrochloride

[0186] Prepared according to Procedure A from 1-(3-Fluoro-benzyl)-1H-indazol-5-ylamine and 4-chloro-6-(N,N-dimethylamino)-pyrido[3,4-d]pyrimidine; δH [²H₆]DMSO 11.52(1H,s), 8.90(1H,s), 8.60(1H,s), 8.24(1H,s), 8.14(1H,s), 7.85(2H,m), 7.70(1H,d), 7.49(1H,m), 7.10 (3H,m), 5.72(2H,s), 3.19(6H,s); m/z (M+1+) 414.

Example 17

N4-(1-(4-Fluoro-benzyl)-1H-indazol-5-yl)-N6,N6-dimethyl-pyrido[3,4-d]pyrimidine-4,6-diamine hydrochloride

[0187] Prepared according to Procedure A from 1-(4-Fluoro-benzyl)-1H-indazol-5-ylamine and 4-chloro-6-(N,N-dimethylamino)-pyrido[3,4-d]pyrimidine; δ H [2 H $_6$]DMSO 11.42(1H,s), 8.90(1H,s), 8.60(1H,s), 8.22(1H,s), 8.14(1H,s), 7.86(1H,d), 7.65(1H,d), 7.61(1H,s), 7.32(2H,dd), 7.17 (2H,dd), 5.70(2H,s), 3.23(6H,s); m/z (M+) 414.

Example 18

N4-(1-Benzenesulphonyl-1H-indol-5-yl)-N6,N6-dimethyl-pyrido[3,4-d]pyrimidine-4,6-diamine hydrochloride

[0188] Prepared according to Procedure A from 1-benzenesulphonyl-1H-indol-5-ylamine and 4-chloro-6-(N,N-dimethylamino)-pyrido[3,4-d]pyrimidine; δH [²H₆]DMSO 11.64(1H,s), 8.90(1H,s), 8.60(1 H,s), 8.05(4H,m), 7.90(1H,d), 7.65(5H,m), 6.92(1H,d), 3.20(6H,s); m/z (M⁺) 445.

Example 19

10

20

30

50

N4-(3-Benzenesulphonyl-1H-indol-5-yl)-N6,N6-dimethyl-pyrido[3,4-d]pyrimidine-4,6-diamine hydrochloride

[0189] Prepared according to Procedure A from 3-benzenesulphonyl-1 H-indol-6-ylamine and 4-chloro-6-(N,N-dimethylamino)-pyrido[3,4-d]pyrimidine; δH [2H_6]DMSO 11.55(1H,s), 11.50(1H,s). 8.90(1H,s), 8.60(1H,s), 8.79(1H,d), 8.00(3H,m), 7.86(1H,d), 7.60(5H,m), 3.20(6H,s); m/z (M+) 445.

Example 20

(1-Benzyl-1H-indazol-5-yl)-(6-imidazol-1-yl-pyrido[3,4-d]pyrimidin-4-yl)-amine

[0190] Imidazole (0.8g) in dry DMSO was treated with sodium hydride (60%, 0.47g) and (1-Benzyl-1H-indazol-5-yl) -(6-chloro-pyrido[3,4-d]pyrimidin-4-yl)-amine in a reacti-vial and heated at 120°C. After 7 days, the mixture was poured onto water and extracted with ethyl acetate. Purification using a Bond Elute TM cartridge gave the title compound as a brown solid after trituration from water; δH [$^{2}H_{6}$]DMSO 10.28(1H,s), 9.25(1H,s), 8.90(1H,s), 8.78(1H,s), 8.67(1H,s), 8.40(1H,s), 8.30(1H,s), 8.10(1H,s), 7.88(2H,m), 7.40(5H,m), 5.70(2H,s); m/z (M+) 419.

Example 21

(1-Benzyl-1H-indazol-5-yl)-(6-(1,2,4-triazol-1-yl)-pyrido[3,4-d]pyrimidin-4-yl)-amine

[0191] 1,2,4-triazole was reacted with (1-Benzyl-1 H-indazol-5-yl)-(6-chtoro-pyrido[3,4-d]pyrimidin-4-yl)-amine as in Example 20 to give the title compound; δH [2H_6]DMSO 10.53(1H,s), 9.46(1H,s), 9.14(1H,s), 9.01(1H,s), 8.65(1H,s), 8.40(1H,s), 8.25(1H,s), 8.15(1H,s), 7.75(2H,s), 7.25(5H,m), 5.65(2H,s); m/z (M+) 418.

35 <u>Example 22</u>

(1-Benzyl-1H-indazol-5-yl)-(6-(1,2,3-triazol-2-yl)-pyrido[3,4-d]pyrimidin-4-yl)-amine

[0192] 1,2,3-triazole was reacted with (1-Benzyl-1H-indazol-5-yl)-(6-chloro-pyrido[3,4-d]pyrimidin-4-yl)-amine as in Example 21 to give the title compound; δ H [2 H $_6$]DMSO 10.62(1H,s), 9.24(2H,s), 8.73(1H,s), 8.33(3H,s), 8.21(1H,s), 7.80(1H,s), 7.33(5H,m), 5.73(2H,s); m/z (M+) 420.

Example 23

45 (1-Benzyl-1H-indazol-5-yl)-(6-(1,2,3-triazol-1-yl)-pyrido[3,4-d]pyrimidin-4-yl)-amine

[0193] 1,2,3-triazole was reacted with (1-Benzyl-1H-indazol-5-yl)-(6-chloro-pyrido[3,4-d]pyrimidin-4-yl)-amine as in Example 21 to give the title compound; δH [2H_6]DMSO 10.53(1H,s), 9.28(1H,s), 9.13(1H,s), 8.89(1H,s), 8.64(1H,s), 8.23(1H,s), 8.10(1H,s), 8.00(1H,s), 7.69(2H,s), 7.23(5H,m), 5.62(2H,s); m/z (M+) 420.

Example 24

(1-Benzyl-1H-indazol-5-yl)-(6-pyrrolidin-1-yl-pyrido[3,4-d]pyrimidin-4-yl)-amine

[0194] Pyrrolidine (2ml) was reacted with (1-Benzyl-1H-indazol-5-yl)-(6-chlor-pyrido[3,4-d]pyrimidin-4-yl)-amine (0.4g) in a reacti-vial at 100°C (Procedure C). After 18 hours, the cooled mixture was poured onto water and the precipitate washed with hot ether and crystallised from acetone to give the title compound; δH [²H₆]DMSO 10.53(1H, s), 9.75(1H,s), 8.79(1H,s), 8.30(1H,s), 8.23(1H,s), 8.14(1H,s), 7.70(2H,m), 7.28(5H,m), 7.14(1H,s), 5.68(2H,s) 3.50

(4H,m), 2.02(4H,m); m/z (M+) 422.

Example 25

(1-Benzyl-1H-indazol-5-yl)-(6-piperidin-1-yl-pyrido[3,4-d]pyrimidin-4-yl)-amine

[0195] Piperidine was reacted with(1-Benzyl-1H-indazol-5-yl)-(6-chloro-pyrido[3,4-d]pyrimidin-4-yl)-amine as in Example 24 to give the title compound (Procedure C); δ H [2 H₆]DMSO 9.80(1H,s), 8.80(1H,s), 8.33(1H,s), 8.22(1H,s), 8.15(1H,s), 7.70(2H,m), 7.50(1H,s), 7.28(5H,m), 5.68(2H,s) 3.65(4H,m), 1.65(6H,m); m/z (M+) 436.

Example 26

10

30

35

45

50

N4-(1-Benzyl-1H-indazol-5-yl)-N6-ethyl-N6-methyl-pyrido[3,4-d]pyrimidine-4,6-diamine

[0196] Ethylmethylamine was reacted with (1-Benzyl-1 H-indazol-5-yl)-(6-chloro-pyrido[3,4-d]pyrimidin-4-yl)-amine as in Example 2 to give the title compound (Procedure C); δH [²H₆]DMSO 9.87(1H,s), 8.86(1H,s), 8.37(1H,s), 8.25 (1H,s), 8.20(1H,s), 7.76(2H,m), 7.35(5H,m), 5.75(2H,s) 3.79(2H,q), 3.18(3H,s), 1.19(3H,t); m/z (M+) 410. 7.76(2H,m), 7.35(5H,m), 5.75(2H,s) 3.79(2H,q), 3.18(3H,s), 1.19(3H,t); m/z (M+) 410.

20 Example 27

2-(4-(4-(1-Benzyl-1H-indazol-5-ylamino)-pyrido[3,4-d]pyrimidin-6-yl)-piperazin-1-yl)-N-isopropyl-acetamide

[0197] 4-Isopropylacetamido-1,4-piperazine (Aldrich) was reacted with (1-Benzyl-1H-indazol-5-yl)-(6-chloro-pyrido [3,4-d]pyrimidin-4-yl)-amine as in Example 24 to give the title compound (Procedure C); δ H [2 H₆]DMSO 8.85(1H,s), 8.35(1H,s), 8.20(2H,d), 7.72(2H,m), 7.55(1H,s), 7.30(5H,m), 5.70(2H,s) 3.95(1H,m), 3.68(4H,bs), 3.00(2H,s), 2.60(4H,bs), 1.10(6H,d); m/z (M+) 535.

Example 28

2-(4-(4-(1-Benzyl-1H-indazol-5-ylamino)-pyrido[3,4-d]pyrimidin-6-yl)-piperazin-1-yl)-1-morpholin-4-yl-ethanone

[0198] N-Morpholinylacetamido-1,4-piperazine (Emkachem) was reacted with (1-Benzyl-1H-indazol-5-yl)-(6-chloropyrido[3,4-d]pyrimidin-4-yl)-amine as in Example 24 to give the title compound (Procedure C); δH [2H_6]DMSO 9.80(1 H,s), 8.83(1H,s), 8.38(1H,s), 8.22(1H,s), 8.15(1H,s), 7.75(1H,d), 7.66(1H,dd), 7.55(1H,s), 7.28(5H,m), 5.70(2H,s) 3.60 (10H,m), 3.50(2H,m), 3.28(3H,s), 2.62(4H,bs); m/z (M+) 564.

Example 29

40 (1-Benzyl-1H-indazol-5-yl)-(6-(5-methyl-1,3,4-oxadiazol-2-yl)-pyrido[3,4-d]pyrimidin-4-yl)-amine hydrochloride

[0199] 4-Chloro-6-(5-methyl-1,3,4-oxadiazol-2-yl) pyrido[3,4-d]pyrimidine (0.02g) was reacted with 1-benzylindazol-5-ylamine according to Procedure A to give the title compound as a yellow solid; δ H [2 H $_6$]DMSO 11.50(1H,s), 9.55(1H,s), 9.43 (1H,s), 8.95(1H,s), 8.34(2H,m), 7.91(1H,d), 7.83(1H,dd), 7.40(5H,m), 5.80 (2H,s), 2.75 (3H,s); m/z (M+1+) 435.

Example 30

(1-(3-Fluoro-benzyl)-1H-indazol-5-yl)-(6-(5-methyl-1,3,4-oxadiazol-2-yl)-pyrido[3,4-d]pyrimidin-4-yl)-amine hydrochloride

[0200] Prepared according to Procedure A from 1-(3-Fluoro-benzyl)-1H-indazol-5-ylamine and 4-chloro-6-(5-methyl-1,3,4-oxadiazol-2-yl)-pyrido[3,4-d]pyrimidine; δ H [2 H $_6$]DMSO 11.50(1H,s), 9.53(1H,s), 9.41(1H,s), 8.94(1H,s), 8.30 (2H,s), 7.90(1H,d), 7.80(1H,d), 7.45(1H,d), 7.25(3H,m), 5.80(2H,s), 2.75 (3H,s); m/z (M+1+) 453.

Example 31

(1-Benzyl-1H-indol-5-yl)-(6-chloro-pyrido[3,4-d]pyrimidin-4-yl)-amine hydrochloride

[0201] Prepared according to Procedure A from 1-benzyl-1H-indol-5-ylamine and 4,6-dichloro-pyrido[3,4-d]pyrimidine; δH[²H₆]DMSO 11.45(1H,s), 9.08(1H,s), 8.95(1H,s), 8.80(1H,s), 7.98(1H,d), 7.60(2H,m), 7.30(6H,m), 6.60(1H,d), 5.48(2H,s); m/z (M+1+) 386.

Example 32

10

30

45

50

55

(1-Benzyl-1H-indazol-5-yl)-(6-(4-methyl-piperazin-1-yl)-pyrido[3,4-d]pyrimidin-4-yl)-amine

[0202] 4-Methylpiperazine was reacted with (1-Benzyl-1H-indazol-5-yl)-(6-chloro-pyrido[3,4-d]pyrimidin-4-yl)-amine as in Example 24 to give the title compound (Procedure C); δ H[2 H $_6$]DMSO 9.80(1H,s), 8.82(1H,s), 8.47(1H,s), 8.23 (1H,s), 8.15(1H,s), 7.75(1H,d), 7.67(1H,d), 7.54 (1H,s), 7.28(5H,m), 5.68(2H,s) 3.64(4H,m), 3.34(4H,m), 2.27(3H,s); m/z (M+) 451.

Example 33

20 (1-Benzyl-1H-indazolyl-5-yl)-(6-benzyloxy-pyrido[3,4-d]pyrimidin-4-yl)-amine hydrochloride

[0203] 6-Benzyloxy-4-chloro-pyrido[3,4-d]pyrimidine (0.54g, ca.2mmol) and 5-amino-1-benzyl-1H-indazole (0.458g, 2.05mmol) were reacted according to Procedure A to give the title compound as a yellow solid (0.740g, 1.50mmol, 75%); δH [2H_6]DMSO 11.50 (1H,s), 9.00 (1H,s), 8.77 (1H,s), 8.16-8.33 (3H,m), 7.83 (1H,d), 7.71 (1H,dd), 7.13-7.58 (10H,m), 5.69 (2H,s), 5.55 (2H,s); m/z (M+1+) 459.

Example 34

(1-Benzyl-1H-indazol-5-yl)-(6-(5-((2-methanesuphonyl-ethylamino)-methyl)-furan-2-yl)-pyrido[3,4-d]pyrimidin-4-yl)-amine hydrochloride

[0204] 5-(4-(1-Benzyl-1H-indazol-5-ylamino)-pyrido[3,4-d]pyrimidin-6-yl)-furan-2-carbaldehyde (0.70g, 1.81mmol), 2-(methanesulphonyl)ethylamine hydrochloride (1.30g, 8.14mmol) and triethylamine (0.65ml, 0.47g, 4.7mmol) were stirred in dichloromethane (7ml) at room temperature for 1 hour forming a precipitate. The mixture was cooled to 0°C and sodium triacetoxyborohydride (1.60g, 7.5mmol) was added. The temperature was maintained at 0°C for 15min and then stirring was continued at room temperature overnight. The reaction mixture was diluted with water, and the resulting pale yellow precipitate was collected and washed with water and acetone. This was resuspended in a mixture of acetone and methanol and acidified with ethereal HCl. The solvents were removed *in vacuo* and the residue suspended in acetone and collected by filtration. This was dried at 60°C *in vacuo* to give the product as an orange-yellow solid (0.40g, 0.64mmol, 35%); δ H [2 H₆]DMSO 11.40 (1H,s), 9.88 (1H,br s), 9.52 (1H,s), 9.22 (1H,s), 8.80 (1H,s), 8.31 (1H,s), 8.19 (1H,s), 7.77-7.90 (2H,m), 7.21-7.37 (6H,m), 6.98 (1H,d), 5.70 (2H,s),4.47 (2H,d), 3.42-3.80 (4H,m, obscured by water), 3.14 (3H,s); m/z (M+1+) 554.

Example 35

5-[4-(1-Benzyl-1H-indazol-5-ylamino)-pyrido-[3,4-d]pyrimidin-6-yl]-furan-2-carboxylic acid hydrochloride

[0205] (1-Benzylindazol-5-yl)-(6-[5-(4-methyl-2,6,7-trioxa-bicydo[2.2.2]oct-1-yl)-furan-2-yl]-pyrido[3,4-d]pyrimidin-4-yl)-amine (0.445g, 0.81mmol) was suspended in a mixture of THF (15ml) and dilute HCl (15ml) and stirred at room temperature for 18 hours. The mixture was diluted with water to preciptate the intermediate (partial hydrolysis) which was collected by filtration and washed with water. This solid was suspended in a mixture of THF (10ml) and NaOH (1M, 10ml) and stirred at room tmperature for 18 hours. The THF was removed *in vacuo* and the residue was acidified to pH1 with dilute HCl to give the product as an orange solid, which was collected by filtration (0.322g, 0.645mmol, 79%); δ H [2 H $_6$]DMSO 10.63 (1H,s), 9.19 (1H,s), 8.89 (1H,s), 8.64 (1H,s), 8.17-8.22 (2H,m), 7.67-7.80 (2H,m), 7.46 (1H,s), 7.23-7.39 (6H,m), 5.70 (2H,s); m/z (M+1+) 463.

Example 36

10

20

30

35

40

45

50

55

5-[4-(1-benzyl-1H-indazol-5-ylamino)-pyrido[3,4-d]pyrimidin-6-yl]-furan-2-carboxylic acid 2-methanesulphonylethylamide hydrochloride

[0206] 5-[4-(1-Benzyl-1H-indazol-5-ylamino)-pyrido-[3,4-d]pyrimidin-6-yl]-furan-2-carboxylic acid hydrochloride (0.125g, 0.25mmol) and carbonyl diimidazole (0.052g, 0.33mmol) were suspended in dry THF (3ml) under a nitrogen atmosphere and stirred at room temperature for 7 hours. 2-(Methanesulphonyl)ethylamine hydrochloride (0.080g, 0.50mmol) and triethylamine (0.15ml, 0.11g, 1.08mmol) were added, together with further THF (2ml), and the resulting mixture was stirred at room temperature for 18 hours. The mixture was adsorbed onto silica gel and purified by column chromatography, eluting with 2-10% MeOH/DCM. Concentration of the relevant fractions gave a pale yellow solid. This was resuspended in methanol and treated with ethanolic HCI to give the product as an orange solid, which was collected by filtration, washed with methanol, acetone and ether, and dried *in vacuo* (0.093g, 0.154mmol, 61%); δ H [2 H₆]DMSO 12.00 (1H,s), 9.76 (1H,s), 9.19-9.29 (2H,m), 8.75 (1H,s), 8.28 (1H,s), 8.22 (1H,s), 7.78-7.90 (2H,m), 7.23-7.38 (7H, m), 5.71 (2H,s), 3.50-3.90 (2H obscured by water signal), 3.48 (2H,t), 3.07 (3H,s); m/z(M+1+) 568.

Examples 37 and 38

N4-(1-Benzyl-1H-indazol-5-yl)-N6-methyl-pyrido[3,4-d]pyrimidine-4,6-diamine; N4-[1-(4-Hydroxybenzyl)-1H-indazol-5-yl)-N6,N6-dimethyl-pyrido[3,4-d]pyrimidine-4,6-diamine

[0207] Prepared by incubation of N4-(1-Benzyl-1H-indazol-5-yl)-N6,N6-dimethyl-pyrido[3,4-d]pyrimidine-4,6-diamine with *Streptomyces rimosus subsp. paromomycinus* (NRRL 2455). The micro-organism was stored frozen (-80°C) on porous beads in cryovials containing cryopreservative (Microbank™ beads, Richmond Hill, Ontario, Canada). A single bead was used to inoculate each of 2 x 50ml aliquots of culture medium (SB1) dispensed in 250ml Erlenmeyer flasks.

The microorganism was grown in SB1 medium at a temperature of 28°C. Flasks were shaken at 250rpm. The SB1 culture medium consisted of Arkasoy (25g; British Arcady Company), Bacto yeast extract (5g; Difco Laboratories) and KH₂PO₄ (5g) in distilled water (900ml). The pH of the culture medium was adjusted to 7.2 using conc. NaOH prior to autoclaving (15min./121°C). 100ml of a 20% (w/v) solution of glucose (filter sterilised) was added post sterilisation. [0209] N4-(1-Benzyl-1H-indazol-5-yl)-N6,N6-dimethyl-pyrido[3,4-d]pyrimidine-4,6-diamine (12.5mg) in methanol (1.0ml) was added to each culture flask after 72 hours growth. Cultures were harvested 7 days after compound addition. [0210] Isolation: The culture broth (2 x 50ml) was mixed with an equal volume of methanol (containing 0.6% (v/v) TFA), centrifuged (4000rpm, 4.C, 30min) and the supernatant concentrated under a stream of nitrogen gas. The resulting concentrated aqueous extract was adsorbed onto a water-equilibrated C18 SPE cartridge (2g; Varian Ltd., Walton-on Thames, UK) which was washed with water (5 volumes), then eluted with 3 x 5ml methanol (containing 0.3% (v/v) TFA). The eluent was then diluted (mobile phase A, 10ml) and filtered (0.2mm PTFE filter) prior to preparative HPLC using the following system: - Spherisorb SB5 C6 15cm x 20mm, flow rate 20ml/min, detection wavelength 232nm; mobile phase A: 50mM ammonium acetate containing 3ml/l TFA; mobile phase B: 50% acetonitrile, 50mM ammonium acetate containing 3ml/I TFA; gradient: 0 to 30 min, 100%A - 100%B; 30 to 35 min, 100%B; 35 to 37 min, 100%B -100%A; 37 to 40 min, 100%A. Appropriate fractions were adsorbed onto water-equilibrated C18 SPE cartridges (200mg; Varian Ltd., Walton-on-Thames, UK), which were washed with water (5 volumes) then eluted with 2 x 1 ml methanol (containing 0.3% (v/v) TFA). The solvent was removed in vacuo to yield the title compounds. From the incubation was obtained:

N4-(1-Benzyl-1H-indazol-5-yl)-N6-methyl-pyrido[3,4-d]pyrimidine-4,6-diamine (0.9mg); δ H [2 H $_6$]DMSO 10.95 (1H, s), 8.79 (1H,s), 8.63 (1H,s), 8.21 (1H,s), 8.15 (1H,s),7.82 (1H,d), 7.67 (1H,d), 7.20-7.38 (6H,m), 5.71 (2H,s), 2.91 (3H,s); and

N4-[1-(4-Hydroxybenzyl)-1H-indazol-5-yl)-N6, N6-dimethyl-pyrido[3,4-d]pyrimidine-4,6-diamine (1.5mg); δ H [2 H $_6$] DMSO 11.30 (1H,s), 9.55 (1H,br s), 8.89 (1H,s), 8.73 (1H,s), 8.20 (1H,s), 8.09 (1H,s),7.84 (1H,d), 7.64 (1H,d), 7.50 (1H,s), 7.17 (2H,d), 6.71 (2H,d), 5.58 (2H,s), 3.20 (6H,s).

Examples 39 to 41

[0211] The following compounds (and their hydrochlorides, if appropriate) are prepared by analogous techniques using the appropriate starting materials:

N4-[1-(S,R- α -Methylbenzyl)-1H-indazol-5-yl]-N6,N6-dimethyl-pyrido[3,4-d]pyrimidin-4,6-diamine;

N4-(3-Benzylsulphonyl-1H-indazol-6-yl)-*N*6, *N*6-dimethyl-pyrido[3,4-d]pyrimidine-4,6-diamine; N4-(3-Benzyl-1H-indazol-6-yl)-*N*6, *N*6-dimethyl-pyrido[3,4-d]pyrimidine-4,6-diamine.

Biological Data

[0212] Compounds of the present invention were tested for protein tyrosine kinase inhibitory activity in substrate phosphorylation assays and cell proliferation assays.

[0213] The substrate phosphorylation assays use baculovirus expressed, recombinant constructs of the intracellular domains of c-erbB-2 and c-erbB-4 that are constitutively active and EGFr isolated from solubilised A431 cell membranes. The method measures the ability of the isolated enzymes to catalyse the transfer of the γ -phosphate from ATP onto tyrosine residues in a biotinylated synthetic peptide (Biotin-GluGluGluGluTyrPheGluLeuVal). The enzyme is incubated for 30 minutes, at room temperature, with 10mM MnCl₂, ATP and peptide at Km concentrations, and test compound (diluted from a 5mM stock in DMSO, final DMSO concentration is 2%) in 40mM HEPES buffer, pH 7.4. The reaction is stopped by the addition of EDTA (final concentration 0.15mM) and a sample is transferred to a streptavidin-coated 96-well plate. The plate is washed and level of phosphotyrosine on the peptide is determined using a Europium-labelled antiphosphotyrosine antibody and quantified with a time-resolved fluorescence technique. The results are shown in Table 1 as the IC₅₀ values in nM.

[0214] The cell proliferation assay uses an immortalised human breast epithelial cell line (HB4a) which has been transformed by over-expression of c-erbB-2. Growth of these cells in low serum is dependent upon the c-erbB-2 tyrosine kinase activity. The specificity of the effect of the test compounds on tyrosine kinase dependent growth over general toxicity is assessed by comparison to an HB4a cell line which has been transfected with ras. Cells are plated at 3000/well in 96-well plates in 0.1 ml medium and allowed to attach overnight, test compound is added in 0.1 ml medium, with a final concentration of 0.5% DMSO, and the plates incubated for 4 days at 37°C. The cells are then examined microscopically for evidence of morphological detransformation and cell mass is estimated by staining with methylene blue and measuring the absorbance at 620nm. The results are shown in Table 1 below as the IC_{50} values in nM. Activity against a range of naturally occurring EGFr or c-erbB-2 over-expressing human tumour cell lines (BT474-breast, HN5-head and neck, N87-gastric and Calu3-lung) is assessed with selected compounds by the same methodology. The results are also shown in Table 1 below as the IC_{50} values in nM.

Cell Proliferation	HN5		300			320		130	1400					81		440						006
	Calu3		380	1800			8000	160	1200					180	7000							
	N87		240					2	370					120						-		
	BT474		140				610	2	1400					_	550							460
	HB4a ras		17000	33000	13000		19000	21000	3800	32000	28000	7900	14000	11000	7600	19000	33000	14000	18000	18000	22000	50000
	HB4a erbB-2		110	140	3900		1900	71	1400	170	240	950	4	44	490	21	1200	470	200	1700	250	810
phorylation	erbB-4	48	20	23	1300	150	21	10	55	က	2400	1500	4	96		1700	130					140
Substrate Phospho	erbB-2	22	19	7	120	11	7	9	6	ļ	20	430	7	6	250	86	9	33				20
Substra	EGFr		1						15	22	370	830				290	540	4	54	22	31	
Example		1	2	3	4	9	7	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24

			_											
HN5								4200		190			2000	
Calu3								8200		1300			3700	
V87		940				10000		909		190			2200	
BT474		270				11000		1000		2			1100	
HB4a ras		>50000	8900	21000	28000	29000	26000	8800	20000	17000	>50000	>50000	17000	50000
HB4a	erbB-2	480	150	380	590	5200	2900	100	>50000	70	27000	3100	520	9000
erbB-4		570		190	170	2200	0096	140	2700	230			180	1900
erbB-2		09	29	2	4	2	2	55	140	15			65	330
EGFr		380	54			2	2		1900		1600	1600	30	930
		25	26	27	28	29	30	32	33	34	35	36	37	38
	erbB-2 erbB-4 HB4a HB4a ras BT474 N87 Calu3	erbB-2 erbB-4 HB4a HB4a ras BT474 N87 Calu3	EGFr erbB-2 HB4a HB4a ras BT474 N87 Calu3 380 60 570 480 >50000 270 940	EGFr erbB-2 HB4a HB4a ras BT474 N87 Calu3 380 60 570 480 >50000 270 940 ' 54 29 150 8900	EGFr erbB-2 HB4a HB4a ras BT474 N87 Calu3 380 60 570 480 >50000 270 940 ' 54 29 150 8900 21000 380 21000	EGFr erbB-2 HB4a HB4a ras BT474 N87 Calu3 380 60 570 480 >50000 270 940° 8900 54 29 150 8900 21000 21000 8900 8900 4 170 590 28000 8900	EGFr erbB-2 HB4a HB4a ras BT474 N87 Calu3 380 60 570 480 >50000 270 940 ' 840 54 29 150 8900 21000 270 940 ' 840 4 170 380 21000 21000 21000 21000 21000 2 4 170 590 28000 11000 10000 10000	EGFr erbB-2 HB4a HB4a ras BT474 N87 Calu3 380 60 570 480 >50000 270 940° 8 54 29 150 8900 21000 270 940° 8 4 170 380 21000 21000 11000 10000 8 2 2 5500 5200 28000 11000 10000 10000 2 2 9600 2900 26000 11000 10000 8	EGFr erbB-2 HB4a HB4a ras BT474 N87 Calu3 380 60 570 480 >50000 270 940° — 54 29 150 8900 — — — — 6 2 190 380 21000 — — — — 7 4 170 590 28000 11000 10000 — — 2 2 5500 5200 29000 26000 11000 600 8200 2 140 100 8800 1000 600 8200	EGFr erbB-2 HB4a HB4a ras BT474 N87 Calu3 380 60 570 480 >50000 270 940' 8 54 29 150 8900 21000 270 940' 8 2 190 380 21000 28000 11000 10000 8 2 2 5500 5200 28000 11000 10000 1000 8 2 2 9600 2900 26000 1000 600 8200 10 1900 140 2700 >50000 5000 1000 600 8200	EGFr erbB-2 HB4a HB4a ras BT474 N87 Calu3 380 60 570 480 >50000 270 940° Calu3 54 29 150 8900 21000 2700 940° Calu3 2 190 380 21000 11000 10000 10000 2 2 5500 5200 29000 26000 1000 8200 2 2 9600 2900 26000 1000 600 8200 1900 140 2700 >50000 50000 1000 8200 1900 140 2700 >50000 50000 2 190 1300	EGFr erbB-2 HB4a HB4a ras HB4a ras BT474 N87 Calu3 380 60 570 480 >50000 270 940° Calu3 54 29 150 380 21000 0 940° Calu3 2 190 380 21000 11000 1000 1000 2 2 5500 5200 29000 29000 11000 600 8200 2 2 9600 2900 26000 1000 600 8200 1900 140 2700 >50000 50000 2 1300 1600 15 230 70 17000 2 190 1300 1600 1600 2700 27000 >50000 2 190 1300	EGFr erbB-2 HB4a HB4a ras BT474 N87 Calu3 380 60 570 480 >50000 270 940° Calu3 54 29 150 8900 2700 940° Calu3 2 190 380 21000 11000 10000 1000 2 2 550 5200 28000 11000 10000 1000 2 2 9600 2900 26000 1000 600 8200 1900 140 2700 >50000 50000 1000 600 8200 1600 15 230 70 17000 2 190 1300 1600 1600 27000 >50000 >50000 2 190 1300 1600 1600 27000 >50000 27000 >50000 1300 1300	EGFr erbB-2 erbB-2 HB4a HB4a ras BT474 N87 Calu3 380 60 570 480 >50000 270 940° Calu3 54 29 150 8900 270 940° Calu3 2 190 380 21000 28000 11000 10000 10000 2 2 5500 5200 2900 26000 11000 600 8200 1900 140 2700 >50000 50000 1000 600 8200 1600 140 2700 >50000 50000 2 190 1300 1600 1600 5700 >50000 50000 2 190 1300 1600 65 180 5200 17000 1100 8200 1300

Claims

1. A compound of formula (I):

5

10

 $(R^{1})_{p}$ X (I)

15

or a salt thereof; wherein

20

X is N or CH;

Y is a group $W(CH_2)$, $(CH_2)W$, or W, in which W is O, $S(O)_m$ wherein m is 0, 1 or 2, or NRa wherein Ra is hydrogen or a C_{1-8} alkyl group;

eithe

n is 1, p is 0 and R" is selected from the group comprising phenyl, furan, thiophene, pyridine, pyrimidine, pyrazine, pyrrole, oxazole, isoxazole, oxadiazole, thiazole, isothiazole, triazole, tetrazole and imidazole or a hydrogenated derivative of the aforementioned the ring being optionally substituted by one or more R¹ groups; wherein R¹ is either

30

25

(a) selected from $M^1-M^2-M^3-M^4$, M^1-M^5 or $M^1-M^2-M^3'-M^6$; or (b) selected from the group comprising amino, hydrogen, halogen, hydroxy, hydroxy- C_{1-4} alkyl, formyl, carboxy, cyano, nitro, C_{1-8} alkyl, C_{1-8} alkylthio, C_{1-8} alkylsulphinyl, C_{1-8} alkylsulphonyl, C_{1-4} alkylamino, C_{1-4} dialkylamino, dioxolanyl, or hydroxy- C_{1-4} alkanoyl- $(C_{1-4}$ alkyl)-amino;

35

 $\frac{\text{or}}{\text{n}}$ is 0, p is 1 to 3 and each R¹ is selected from the group comprising amino, hydrogen, halogen, hydroxy, hydroxy- C_{1-4} alkyl, formyl, carboxy, cyano, nitro, C_{1-8} alkyl, C_{1-8} alkoxy, C_{1-8} alkylthio, C_{1-8} alkylsulphinyl, C_{1-8} alkylsulphinyl, C_{1-4} alkylamino, C_{1-4} dialkylamino, dioxolanyl, benzyloxy or hydroxy- C_{1-4} alkanoyl- $(C_{1-4}$ alkyl)-amino; or when p is 2 or 3, two adjacent R¹ groups together form an optionally substituted methylenedioxy or ethylenedioxy group;

or

 $_{\rm n}$ is 0, p is 1 and R¹ is selected from M¹-M²-M³-M⁴, M¹-M⁵ or M¹-M²-M³'-M⁶; wherein

45

40

 M^1 represents a C_{1-4} alkyl group, wherein optionally a CH_2 group is replaced by a CO group; M^2 represents NR^{12} or $CR^{12}R^{13}$, in which R^{12} and R^{13} each independently represent H or C_{1-4} alkyl; M^3 represents a C_{1-4} alkyl group;

M^{3'} represents a C₁₋₄ alkyl group or is absent;

50

 $m M^4$ represents CN, $m NR^{12}S(O)_mR^{13}$, $m S(O)_mNR^{14}R^{15}$, $m CONR^{14}R^{15}$, $m S(O)_mR^{13}$ or $m CO_2R^{13}$, in which $m R^{12}$, $m R^{13}$ and m are as hereinbefore defined and $m R^{14}$ and $m R^{15}$ each independently represent H or $m C_{1-4}$ alkyl, or $m R^{14}$ and $m R^{15}$ together with the nitrogen atom to which they are attached represent a 5-or 6-membered ring optionally containing 1 or 2 additional heteroatoms selected from N, O or $m S(O)_m$ in which ring any nitrogen atom present may optionally be substituted with a $m C_{1-4}$ alkyl group; $m M^5$ represents the group $m NR^{14}R^{15}$ or the group

10

5

in which t represents 2 to 4 and R^{16} represents OH, OC_{1-4} alkyl or $NR^{14}R^{15}$; and M^6 represents a C_{3-6} cycloalkyl group, the group $NR^{14}R^{15}$ or a 5- or 6-membered heterocyclic ring system containing 1 to 4 heteroatoms selected from N, O or S;

15

U represents an indolyl, isoindolyl, indolinyl, isoindolinyl, $1\underline{H}$ -indazolyl, 2,3-dihydro- $1\underline{H}$ -indazolyl, $1\underline{H}$ -benzimidazolyl, 2,3-dihydro- $1\underline{H}$ -benzimidazolyl or $1\underline{H}$ -benzotriazolyl group which is substituted by at least one independently selected R⁶ group and is optionally substituted by at least one independently selected R⁴ group; each R⁴ is independently hydrogen, hydroxy, halogen, C_{1-4} alkyl, C_{1-4} alkyl, C_{1-4} alkylamino, di-[C_{1-4} alkyl]amino,

20

 C_{1-4} alkylthio, C_{1-4} alkylsulphinyl, C_{1-4} alkylsulphonyl, C_{1-4} alkylcarbonyl, C_{1-4} alkylcarbamoyl, di-[C_{1-4} alkyl] carbamoyl, carbamyl, C_{1-4} alkoxycarbonyl, cyano, nitro or trifluoromethyl; each R^6 is independently benzyl, halo-, dihalo- and trihalobenzyl, α -methylbenzyl, phenyl, halo-, dihalo- and trihalophenyl, pyridylmethyl, pyridylmethoxy, pyridylmethoxy, dioxolanylmethoxy, cyclohexylmethoxy, phenoxy, halo-, dihalo- and trihalophenoxy, phenylthio, benzyloxy, halo-, dihalo- and trihalobenzyloxy,

C₁₋₄ alkoxybenzyloxy, phenyloxalyl or benzenesulphonyl; and A represents

30

35

2. A solvate of a compound as claimed in claim 1.

3. A compound as claimed in claim 1 or claim 2 wherein A represents

40

4. A compound as claimed in any one of claims 1 to 3 wherein X is N.

45

5. A compound as claimed in any one of claims 1 to 4 wherein Y is NRa, wherein Ra is hydrogen or methyl.

50

6. A compound as claimed in any one of claims 1 to 5 wherein M¹ represents CH₂, CO, CH₂CH₂ or CH₂CO; M² represents NR¹² in which R¹² is as defined in claim 1; M³ represents CH₂, CH₂CH₂ or propyl; M³ represents CH₂, ethyl, propyl, isopropyl or is absent; M⁴ represents SOR¹³, SO₂R¹³, NR¹²SO₂R¹³, CO₂R¹³ or CONR¹⁴R¹⁵ in which R¹² and R¹³ are defined in claim 1 and R¹⁴ and R¹⁵ each independently represent H or C₁-4 alkyl; M⁵ represents a group NR¹⁴R¹⁵ in which R¹⁴ and R¹⁵ together with the nitrogen atom to which they are attached represent a 6-membered ring optionally containing an additional heteroatom selected from N or O, in which ring any nitrogen atom present may optionally be substituted with a C₁-4 alkyl group; or M⁵ represents a group

in which t represents 2 or 3 and R¹⁶ represents OH, NH₂, N(C₁₋₄ alkyl)₂ or OC₁₋₄ alkyl; more preferably R¹⁶ represents NH₂ or N(CH₃)₂; or M⁵ represents a group NR¹⁴R¹⁵ in which R¹⁴ and R¹⁵ each independently represent hydrogen or C₁₋₄ alkyl, more preferably hydrogen, methyl, ethyl or isopropyl; and M⁶ represents a group NR¹⁴R¹⁵ in which R¹⁴ and R¹⁵ each independently represent C₁₋₄ alkyl, more preferably methyl, or R¹⁴ and R¹⁵ together with the nitrogen atom to which they are attached represent a 5- or 6-membered ring optionally containing an additional heteroatom selected from N or O, in which ring any nitrogen atom present may optionally be substituted with a C₁₋₄ alkyl group, preferably a methyl group; or M⁶ represents a 5- or 6-membered heterocyclic ring system containing 1 or 2 heteroatoms selected from N or O.

5

25

30

35

40

45

50

- 7. A compound as claimed in any one of claims 1 to 6 wherein M²-M³-M⁴ represents an α-amino carboxylic acid or a methyl ester or amide thereof; or M²-M3-M4 represents a β- or γ-amino sulphinic or sulphonic acid or a methyl ester thereof.
 - 8. A compound as claimed in any one of claims 1 to 5 or 7 wherein M²-M³-M⁴ represents a methylsulphonylethylamino, methylsulphinylpropylamino, methylsulphinylpropylamino, methylsulphonamidoethylamino, sarcosinamide, glycine, glycinamide, or glycine methyl ester group.
 - 9. A compound as claimed in any one of claims 1 to 6 wherein M¹-M⁵ represents a piperazinyl-methyl, methylpiper-azinyl-methyl, piperidinyl-methyl, prolinamidomethyl, N,N-dimethylprolinamido-methyl, isopropylacetamido or N-morpholinoacetamido group.
 - **10.** A compound as claimed in any one of claims 1 to 9 wherein R" is selected from the group comprising phenyl, furan, imidazole, triazole, tetrazole, pyrrolidine, piperazine, piperidine and oxadiazole.
 - **11.** A compound as claimed in any one of claims 1 to 10 wherein R⁶ is benzyl, fluorobenzyl, benzyloxy, fluorobenzyloxy, pyridylmethyl, phenyl, benzenesulphonyl, phenoxy or fluorophenoxy.
 - **12.** A compound as claimed in any one of claims 1 to 5 wherein X represents N; and either (a) p is 0; n is 1; and the group R" is in the 6-position of the pyridopyrimidine ring system or (b) n is 0; p is 1; and the group R¹ is in the 6-position of the pyridopyrimidine ring system.
 - 13. A compound of formula (I) or a salt or solvate thereof as claimed in any one of claims 1 to 5 or 12 wherein X represents N; Y represents NRa, wherein Ra is hydrogen or C₁₋₄ alkyl; R" is as defined in claim 1 optionally substituted by one or more R¹ groups selected from halo, C₁₋₄ alkyl, carboxy, formyl, hydroxy-C₁₋₄ alkyl, 1,3-dioxolan-2-yl, amino, C₁₋₄ alkylamino, di(C₁₋₄ alkyl)amino, hydroxy-C₁₋₄ alkanoyl(C₁₋₄ alkyl)amino, C₁₋₄ alkylamino-C₁₋₄ alkylor di(C₁₋₄ alkyl)amino-C₁₋₄ alkyl; p is 0; R⁴ represents hydrogen or methyl; U represents indolyl, benzimidazolyl or indazolyl; and R⁶ represents phenyl, benzyl, a-methylbenzyl, fluorobenzyl, benzenesulphonyl, phenoxy, fluorophenoxy, benzyloxy or fluorobenzyloxy.
 - 14. A compound of formula (I) or a salt or solvate thereof as claimed in any one of claims 1 to 5, or 12 wherein X represents N; Y represents NR^a, wherein R^a is hydrogen or C₁₋₄ alkyl; R" is as defined in claim 1 optionally substituted with an R¹ group selected from methylsulphonylethylaminomethyl, methylsulphonylethylamino-carbonyl, methylsulphinylethylamino-methyl, methylsulphinylethylamino-carbonyl, methylsulphinylpropylamino-methyl, methylsulphinylpropylamino-carbonyl, methylsulphinylpropylamino-carbonyl, methylsulphonylethyl-(methylamino)-carbonyl, methylsulphinylethyl-(methylamino)-methyl, methylsulphinylethyl-(methylamino)-methyl, methylsulphinylpropyl-(methylamino)-carbonyl, methylsulphonylpropyl-(methylamino)-carbonyl, methylsulphonamidoethylamino-methyl, methylsulphonamidopropylamino-methyl, sarcosinamidomethyl, glycinylmethyl, glycinamidomethyl, glycinylmethyl methyl ester, acetylaminoethyl-

aminomethyl, piperazinylmethyl, methylpiperazinylmethyl, piperidinylmethyl, N-(prolinamido)methyl, (N,N-dimethyl-protinamido)methyl, pyridylaminomethyl, cyclopropylaminomethyl, N-(piperidin-4-yl)-N-methylaminomethyl, N,N-dimethylaminoprop-2-ylaminomethyl, N-(2-dimethylaminoethyl)-N-ethylaminomethyl, isopropylacetamido, N-morpholinylacetamido or tetrahydrofuranomethylaminomethyl and optionally further substituted by one or more C_{1-4} alkyl groups; p is 0; R^4 represents hydrogen or methyl; U represents indolyl, benzimidazolyl or indazolyl; and R^6 represents phenyl, benzyl, α -methylbenzyl, fluorobenzyl, benzenesulphonyl, phenoxy, fluorophenoxy, benzyloxy or fluorobenzyloxy.

- 15. A compound of formula (I) or a salt or solvate thereof as claimed in any one of claims 1 to 5 or 12 wherein X represents N; Y represents NRa wherein Ra is hydrogen or C₁₋₄ alkyl; n is 0; each R1 group is selected from hydrogen, halo, C₁₋₄ alkyl, carboxy, formyl, hydroxy-C₁₋₄ alkyl, 1,3-dioxolan-2-yl, benzyloxy, amino, C₁₋₄ alkylamino, di(C_{1-4} alkyl)amino, hydroxy- C_{1-4} alkanoyl(C_{1-4} alkyl)amino, C_{1-4} alkylamino- C_{1-4} alkyl)amino- C_{1-4} alkyl, methylsulphonylethylaminomethyl, methylsulphonylethylamino-carbonyl, methylsulphinylethylamino-methyl, methylsulphinylethylamino-carbonyl, methylsulphonylpropylamino-methyl, methylsulphinylpropylamino-methyl, methylsulphonylpropylamino-carbonyl, methylsulphinylpropylamino-carbonyl, methylsulphonylethyl-(methylamino)-methyl, methylsulphonylethyl-(methylamino)-carbonyl, methylsulphinylethyl-(methylamino)-methyl, methylsulphinylethyl-(methylamino)-carbonyl, methylsulphonylpropyl-(methylamino)-methyl, methylsulphinylpropyl-(methylamino)-methyl, methylsulphonylpropyl-(methylamino)-carbonyl, methylsulphinylpropylmethylsulphonamidopropylamino-methyl, sarcosinamidomethyl, glycinylmethyl, glycinamidomethyl, glycinylmethyl methyl ester, acetylaminoethylaminomethyl, piperazinylmethyl, methylpiperazinylmethyl, piperidinylmethyl, N-(prolinamido)methyl, (N,N-dimethyl-prolinamido)methyl, pyridylaminomethyl, cyclopropylaminomethyl, N-(piperidin-4-yl)-Nmethylaminomethyl, N,N-dimethylaminoprop-2-ylaminomethyl, N-(2-dimethylaminoethyl)-N-ethylaminomethyl, isopropylacetamido, N-morpholinylacetamido or tetrahydrofuranomethylaminomethyl; R4 represents hydrogen or methyl; U represents indolyl, benzimidazolyl or indazolyl; and R^6 represents phenyl, benzyl, α -methylbenzyl, fluorobenzyl, benzenesulphonyl, phenoxy, fluorophenoxy, benzyloxy or fluorobenzyloxy.
- 16. A compound as claimed in claim 13 or claim 14 wherein X represents N; Y represents NRa, wherein Ra is hydrogen or C₁₋₄ alkyl; R" represents a furan, imidazole, triazole, oxadiazole, pyrrolidine, piperidine or piperazine ring, optionally substituted by one or more R¹ groups selected from 1,3-dioxolan-2-yl, formyl, carboxy, C₁₋₄-alkyl, prolinamidomethyl, isopropylacetamido, N-morpholinylacetamido, methylsulphonylethylaminomethyl or methylsulphonylethylaminocarbonyl; p is 0; R⁴ represents hydrogen or methyl; U represents indazolyl, indolyl or benzimidazolyl; and R⁶ represents benzyl, fluorobenzyl, pyridylmethyl or benzenesulphonyl.
- 17. A compound as claimed in claim 16 wherein X represents N; Y represents NRa, wherein Ra is hydrogen or C₁₋₄ alkyl; n is 0; each R¹ group is selected from hydrogen, halo, benzyloxy, amino, C₁₋₄ alkylamino, di(C₁₋₄ alkyl)amino or hydroxy-C₁₋₄ alkanoyl-(C₁₋₄ alkyl)-amino, more preferably dimethylamino; R⁴ represents hydrogen or methyl; U represents indazolyl, indolyl or benzimidazolyl; and R⁶ represents benzyl, fluorobenzyl, pyridylmethyl or benzenesulphonyl.
- 40 18. A compound as claimed in any one of claims 13 to 17 wherein U represents indazolyl.
 - **19.** A compound as claimed in claim 1 or claim 2 selected from:

5

10

15

20

25

30

35

45

50

55

```
(1-Benzyl-1 H-indazol-5-yl)-(6-chloro-pyrido[3,4-d]pyrimidin-4-yl)-amine;
```

(1-Benzyl-1H-indazol-5-yl)-(6-chloro-pyrido[3,4-d]pyrimidin-4-yl)-amine;

N4-(1-Benzyl-1H-indazol-5-yl)-N6,N6-dimethyl-pyrido[3,4-d]pyrimidine-4,6-diamine;

(1-Benzyl-1H-indazol-5-yl)-(6-(N-(2-hydroxyethyl)-N-methylamino)-pyrido[3,4-d]pyrimidin-4-yl)-amine;

(1-Benzyl-1H-indazol-5-yl)-(pyrido[3,4-d]pyrimidin-4-yl)-amine;

(2-Benzyl-1H-benzimidazol-5-yl)-(6-chloro-pyrido[3,4-d]pyrimidin-4-yl)-amine;

N4-(1-Benzyl-1H-indol-5-yl)-N6,N6-dimethyl-pyrido[3,4-d]pyrimidine-4,6-diamine;

N4-(2-Benryl-1H-benzimidazol-5-yl)-N6,N6-dimethyl-pyrido[3,4-d]-pyrimidine-4,6-diamine;

(1-Benzyl-1H-indazol-5-yl)-(6-(5-[1,3-dioxolan-2-yl]-furan-2-yl)-pyrido[3,4-d]-pyrimidin-4-yl)-amine;

5-(4-(1-Benzyl-1H-indazol-5-ylamino)-pyrido[3,4-d]pyrimidin-6-yl)-furan-2-carbaldehyde;

(2S)-1-(5-(4-(1-Benzyl-1H-indazol-5-ylamino)-6-pyrido[3,4-d]pyrimidin-6-yl)-furan-2-ylmethyl)-pyrrolidine-2-carboxylic add amide;

(1-Benzyl-1H-indazol-5-yl)-(6-(3-methyl-3H-imidazol-4-yl)-pyrido[3,4-d]pyrimidin-4-yl)-amine;

N6,N6-Dimethyl-N4-(1-pyridin-2-ylmethyl-1H-indazol-5-yl)-pyrido[3,4-d]pyrimidine-4,6-diamine;

N6,N6-Dimethyl-N4-(1-pyridin-3-ylmethyl-1H-indazol-5-yl)-pyrido[3,4-d]pyrimidine-4,6-diamine;

```
N4-(1-Benzyl-3-methyl-1H-indazol-5-yl)-N6, N6-dimethyl-pyrido \cite{A}, 4-d\cite{A} pyrimidine-4, 6-diamine;
              N4-(1-(2-Fluoro-benzyl)-1H-indazol-5-yl)-N6,N6-dimethyl-pyrido[3,4-d]pyrimidine-4,6-diamine;
              N4-(1-(3-Fluoro-benzyl)-1H-indazol-5-yl)-N6,N6-dimethyl-pyrido[3,4-d]pyrimidine-4,6-diamine;
              N4-(1-(4-Fluor-benzyl)-1H-indazol-5-yl)-N6,N6-dimethyl-pyrido[3,4-d]pyrimidine-4,6-diamine;
5
              N4-(1-Benzenesulphonyl-1H-indol-5-yl)-N6,N6-dimethyl-pyrido[3,4-d]pyrimidine-4,6-diamine;
              N4-(3-Benzenesulphonyl-1H-indol-5-yl)-N6,N6-dimethyl-pyrido[3,4-d]pyrimidine-4,6-diamine;
              (1-Benzyl-1H-indazol-5-yl)-(6-imidazol-1 -yl-pyrido[3,4-d]pyrimidin-4-yl)-amine;
              (1-Benzyl-1H-indazol-5-yl)-(6-(1,2,4-triazol-1-yl)-pyrido[3,4-d]pyrimidin-4-yl)-amine;
              (1-Benzyl-1H-indazol-5-yl)-(6-(1,2,3-triazol-2-yl)-pyrido[3,4-d]pyrimidin-4-yl)-amine;
10
              (1-Benzyl-1H-indazol-5-yl)-(6-(1,2,3-triazol-1-yl)-pyrido[3,4-d]pyrimidin-4-yl)-amine;
              (1-Benzyl-1H-indazol-5-yl)-(6-pyrrolidin-1 -yl-pyrido[3,4-d]pyrimidin-4-yl)-amine;
              (1-Benzyl-1H-indazol-5-yl)-(6-piperidin-1-yl-pyrido[3,4-d]pyrimidin-4-yl)-amine;
              N4-(1-Benzyl-1H-indazol-5-yl)-N6-ethyl-N6-methyl-pyrido[3,4-d]pyrimidine-4,6-diamine;
              2-(4-(4-(1-Benzyl-1H-indazol-5-ylamino)-pyrido[3,4-d]pyrimidin-6-yl)-piperazin-1-yl)-N-isopropyl-acetamide;
15
              2-(4-(4-(1-Benzyl-1H-indazol-5-ylamino)-pyrido[3,4-d]pyrimidin-6-yl)-piperazin-1-yl)-1-morpholin-4-yl-eth-
              anone:
              (1-Benzyl-1H-indazol-5-yl)-(6-(5-methyl-1,3,4-oxadiazol-2-yl)-pyrido[3,4-d]pyrimidin-4-yl)-amine;
              (1-(3-Fluoro-benzyl)-1H-indazol-5-yl)-(6-(5-methyl-1,3,4-oxadiazol-2-yl)-pyrido[3,4-d]pyrimidin-4-yl)-amine;
              (1-Benzyl-1H-indol-5-yl)-(6-chloro-pyrido[3,4-d]pyrimidin-4-yl)-amine;
20
              (1-Benzyl-1H-indazol-5-yl)-(6-(4-methyl-piperazin-1-yl)-pyrido[3,4-d]pyrimidin-4-yl)-amine;
              (1-Benzyl-1H-indazolyl-5-yl)-(6-benzyloxy-pyrido[3,4-d]pyrimidin-4-yl)-amine;
              (1-Benzyl-1H-indazol-5-yl)-(6-(5-((2-methanesuphonyl-ethylamino)-methyl)-furan-2-yl)-pyrido[3,4-d]pyrimi-
              din-4-yl)-amine;
              5-[4-(1-Benzyl-1H-indazol-5-ylamino)-pyrido[3,4-d]pyrimidin-6-yl]-furan-2-carboxylic acid;
25
              5-[4-(1-Benzyl-1H-indazol-5-ylamino)-pyrido[3,4-d]pyrimidin-6-yl]-furan-2-carboxylic acid 2-methanesulpho-
              nyl-ethylamide;
              N4-(1-Benzyl-1H-indazol-5-yl)-N6-methyl-pyrido[3,4-d]pyrimidine-4,6-diamine;
              N4-(1-(4-Hydroxybenzyt)-1 H-indazol-5-yl)-N6,N6-dimethyl-pyrido[3,4-d]pyrimidine-4,6-diamine;
30
          and salts or solvates thereof, particularly pharmaceutically acceptable salts or solvates thereof.
```

20. A compound as claimed in claim 19 selected from:

35

40

45

50

- N4-(1-Benzyl-1H-indazol-5-yl)-N6, N6-dimethyl-pyrido[3,4-d]pyrimidine-4,6-diamine;
- N4-(1-(3-Fluoro-benzyl)-1H-indazol-5-yl)-N6,N6-dimethyl-pyrido[3,4-d]pyrimidine-4,6-diamine;
- N4-(1-Benzyl-1H-indazol-5-yl)-N6-ethyl-N6-methyl-pyrido[3,4-d]pyrimidine-4,6-diamine;
- (1-Benzyl-1H-indazol-5-yl)-(6-(5-((2-methanesuphonyl-ethylamino)-methyl)-furan-2-yl)-pyrido[3,4-d]pyrimidin-4-yl)-amine;
- N4-(1-Benzyl-1H-indazol-5-yl)-N6-methyl-pyrido[3,4-d]pyrimidine-4,6-diamine;
- and salts or solvates thereof, particularly pharmaceutically acceptable salts or solvates thereof.
- 21. A pharmaceutical formulation comprising at least one compound as claimed in any one of claims 1 to 20, together with one or more pharmaceutically acceptable carriers, diluents or excipients.
- 22. A pharmaceutical formulation as claimed in claim 21 in unit dosage form and containing a compound as claimed in any one of claims 1 to 21 in an amount of from 70 to 700mg.
- 23. A compound as claimed in any one of claims 1 to 20 for use in therapy.
- **24.** The use of a compound as claimed in any one of claims 1 to 20, in the preparation of a medicament for the treatment of disorders mediated by protein tyrosine kinase activity.
- 25. The use as claimed in claim 24 wherein the disorder is mediated by c-erbB-2 and/or EGF-r tyrosine kinase activity.
- 26. The use as claimed in claim 24 wherein the disorder is mediated by c-erbB-2, c-erbB-4 and/or EGF-r tyrosine kinase activity.

- 27. The use of a compound as claimed in any one of claims 1 to 20, in the preparation of a medicament for the treatment of cancer and malignant tumours.
- 28. The use of a compound as claimed in any one of claims 1 to 20, in the preparation of a medicament for the treatment of psoriasis.
- 29. A process for the preparation of a compound of formula (I) as defined in claim 1 or claim 2 which comprises the steps:
 - (a) the reaction of a compound of formula (II)

10

25

30

35

40

45

50

55

wherein A, X, n and p are as defined in claim 1 and L, L' and L" are suitable leaving groups, with a compound of formula (III)

wherein U and Y are as defined above, to prepare a compound of formula (IV)

$$X \downarrow V \downarrow (L'')_p \\ X \downarrow A \qquad (IV)$$

and subsequently (b) where n is 1, reaction with an appropriate reagent to substitute the group R" onto the ring A by replacement of the leaving group L'; and (c) where p is other than 0, reaction with appropriate reagent(s) to substitute the group(s) R¹ onto the ring A by replacement of the leaving group(s) L"; and, if desired, (d) subsequently converting the compound of formula (I) thereby obtained into another compound of formula (I) by means of appropriate reagents.

30. A process for the preparation of a compound of formula (I) as defined in claim 1 or claim 2 in which the compound of formula (II) as defined in claim 29 is reacted with the appropriate reagents to substitute the groups R" and R¹ onto the ring A by replacement of the respective leaving groups and then the product thereby obtained of formula (V)

$$\begin{array}{ccc}
L & (R^1)_p \\
X & A & (V) \\
(R'')_n & \end{array}$$

is reacted with the compound of formula (III) as defined in claim 29, followed, if desired, by conversion of the compound of formula (I) thereby obtained into another compound of formula (I).

31. A process as claimed in claim 30 wherein the compound of formula (V)

$$X = \begin{pmatrix} (R^1)_p \\ A \\ (R'')_n \end{pmatrix}$$

is prepared by the reaction of a compound of formula (VI)

5

10

15

20

25

30

35

45

50

55

with appropriate reagents to substitute the group(s) R¹ and the group R" onto the ring A to prepare a compound of formula (VII)

$$\begin{array}{c|c}
O & (R^1)_p \\
A & (VII) \\
\hline
(R'')_n
\end{array}$$

- and subsequent reaction to incorporate the leaving group L.
 - **32.** A process for the preparation of a compound of formula (I) as defined in claim 1 or claim 2 which comprises the steps:
 - (a) reacting a compound of formula (IV) as defined in claim 29 with appropriate reagent(s) to prepare a compound wherein either the group L' (when n=1) or the group(s) L" (when p is other than 0) is(are) replaced with an appropriately functionalised group Z; and (b) subsequently converting the group Z into the group R" where L' has been replaced or into the group R¹ where L" has been replaced by means of appropriate reagent(s); (c) reacting with appropriate reagents to substitute the other of R¹ and R" onto the ring A by replacement of the remaining leaving group L" and L' respectively, if present; and, if desired, (d) subsequently converting the compound of formula (I) thereby ob-
 - **33.** A process for the preparation of a compound of formula (I) as defined in claim 1 or claim 2 which comprises the steps:

tained into another compound of formula (I) by means of appropriate reagents.

(a) reacting a compound of formula (II) as defined in claim 29 with appropriate reagent(s) to prepare a compound wherein either the group L' (when n=1) or the group(s) L" (when p is other than 0) is(are) replaced with

an appropriately functionalised group Z;

and (b) subsequently converting the group Z into the group R" where L' has been replaced or into the group R¹ where L" has been replaced by means of appropriate reagent(s); (c) reacting with appropriate reagents to substitute the other of R¹ and R" onto the ring A by replacement of the remaining leaving group L" and L' respectively, if present; (d) the product thereby obtained is reacted with the compound of formula (III) as defined in claim 29; and, if desired, (e) subsequently converting the compound of formula (I) thereby obtained into another compound of formula (I) by means of appropriate reagents.

10 Patentansprüche

1. Verbindung der Formel (I)

15

5

20

$$(R^{1})_{p}$$

$$X$$

$$(R)_{n}$$

$$(I)$$

25 oder ein Salz davon;

wobei X die Bedeutung N oder CH hat;

Y ein Rest $W(CH_2)$, $(CH_2)W$ oder W ist, wobei W die Bedeutung O, $S(O)_m$, hat, wobei m gleich 0, 1 oder 2 ist, oder NRa ist, wobei Ra ein Wasserstoffatom oder ein C_{1-8} -Alkylrest ist; entweder

n gleich 1 ist, p gleich 0 ist und R" ausgewählt ist aus einem Phenyl-, Furan-, Thiophen-, Pyridin-, Pyrazin-, Pyrrol-, Oxazol-, Isoxazol-, Oxadiazol-, Thiazol-, Isothiazol-, Triazol-, Tetrazol- und Imidazolrest oder einem hydrierten Derivat der vorstehend genannten Reste, wobei der Ring gegebenenfalls mit einem oder mehreren Resten R¹ substituiert ist, wobei R¹ entweder

35

30

- (a) ausgewählt ist aus M¹-M²-M³-M⁴, M¹-M⁵ oder M¹-M²-M³'-M⁶, oder
- (b) ausgewählt ist aus einer Aminogruppe, einem Wasserstoff-, Halogenatom, einer Hydroxygruppe, einem Hydroxy- C_{1-4} -alkylrest, einer Formyl-, Carboxy-, Cyano-, Nitrogruppe, einem C_{1-8} -Alkyl-, C_{1-8} -Alkylsulfinyl-, C_{1-8} -Alkylsulfinyl-, C_{1-4} -Alkylsulfino-, C_{1-4} -Dialkylamino-, Dioxolanyl- oder Hydroxy- C_{1-4} -alkanoyl-(C_{1-4} -alkyl)-aminorest;

40

45

50

55

oder

n gleich 0 ist, p gleich 1 bis 3 ist und R¹ jeweils ausgewählt ist aus einer Aminogruppe, einem Wasserstoff-, Halogenatom, einer Hydroxygruppe, einem Hydroxy- C_{1-4} alkylrest, einer Formyl-, Carboxy-, Cyano-, Nitrogruppe, einem C_{1-8} -Alkyl-, C_{1-8} -Alkyl

oder

n gleich 0 ist, p gleich 1 ist und R¹ ausgewählt ist aus M¹-M²-M³-M⁴, M¹-M⁵ oder M¹-M²-M³'-M⁶, wobei

 $\rm M^1$ einen $\rm C_{1-4}$ -Alkylrest darstellt, wobei gegebenenfalls eine $\rm CH_2$ -Gruppe durch eine Gruppe CO ersetzt ist; $\rm M^2$ ein Rest NR¹² oder CR¹²R¹³ ist, wobei R¹² und R¹³ jeweils unabhängig voneinander H oder einen $\rm C_{1-4}$ -Alkylrest darstellen;

M³ einen C₁₋₄-Alkylrest darstellt;

M³ einen C₁₋₄-Alkylrest darstellt oder nicht vorhanden ist;

 ${
m M}^4$ ein Rest CN, ${
m NR}^{12}{
m S(O)}_{
m m}{
m R}^{13}$, ${
m S(O)}_{
m m}{
m NR}^{14}{
m R}^{15}$, ${
m CONR}^{14}{
m R}^{15}$, ${
m S(O)}_{
m m}{
m R}^{13}$ oder ${
m CO}_2{
m R}^{13}$ ist, wobei ${
m R}^{12}$, ${
m R}^{13}$ und m wie vorstehend definiert sind und ${
m R}^{14}$ und ${
m R}^{15}$ jeweils unabhängig H oder einen ${
m C}_{1-4}$ -Alkylrest darstellen

oder R^{14} und R^{15} , zusammen mit dem Stickstoffatom, an das sie gebunden sind, einen 5- oder 6-gliedrigen Ring darstellen, der gegebenenfalls 1 oder 2 zusätzliche, aus N, O oder $S(O)_m$ ausgewählte Heteroatome enthält, wobei jedes in dem Ring vorhandene Stickstoffatom gegebenenfalls mit einem C_{1-4} -Alkylrest substituiert sein kann;

M5 den Rest NR14R15 oder den Rest

(CH₂)_t

15

5

10

darstellt, wobei t gleich 2 bis 4 ist und R¹⁶ eine Gruppe OH, ein OC₁₋₄-Alkylrest oder ein Rest NR¹⁴R¹⁵ ist; und M⁶ einen C₃₋₆-Cycloalkylrest, den Rest NR¹⁴R¹⁵ oder ein 5- oder 6-gliedriges heterocyclisches Ringsystem, welches 1 bis 4 aus N, O oder S ausgewählte Heteroatome enthält, darstellt;

20

U einen Indolyl-, Isoindolyl-, Indolinyl-, Isoindolinyl-, 1H-Indazolyl-, 2,3-Dihydro-1H-indazolyl-, 1H-Benzimidazolyl-, 2,3-Dihydro-IH-benzimidazolyl- oder 1H-Benzotriazolylrest darstellt, der mit mindestens einem unabhängig ausgewählten Rest R⁶ substituiert ist und gegebenenfalls mit mindestens einem unabhängig ausgewählten Rest R⁴ substituiert ist,

25

 R^4 jeweils unabhängig ein Wasserstoffatom, eine Hydroxygruppe, ein Halogenatom, ein C_{1-4} -Alkyl-, C_{1-4} -Alkoxycarbonyl-, eine Cyano-, Nitro- oder Trifluormethylgruppe ist;

30

 R^6 jeweils unabhängig eine Benzylgruppe, ein Halogenatom, ein Dihalogenbenzylund Trihalogenbenzylrest, eine α -Methylbenzyl-, Phenylgruppe, ein Halogenphenyl-, Dihalogenphenyl- und Trihalogenphenylrest, eine Pyridylgruppe, ein Pyridylmethyl-, Pyridyloxy-, Pyridylmethoxy-, Thienylmethoxy-, Dioxolanylmethoxy-, Cyclohexylmethoxy-, Phenoxy-, Halogenphenoxy-, Dihalogenphenoxy- und Trihalogenphenoxy-, Phenylthio-, Benzyloxy-, Halogenbenzyloxy-, Dihalogenbenzyloxy- und Trihalogenbenzyloxy-, C₁₋₄-Alkoxybenzyloxy-, Phenyloxalyl- oder Benzolsulfonylrest ist;

35 und A

40

45 darstellt.

- 2. Solvat einer Verbindung nach Anspruch 1.
- 3. Verbindung nach Anspruch 1 oder 2, wobei A

55

50

darstellt.

4. Verbindung nach einem der Ansprüche 1 bis 3, wobei X gleich N ist.

5

10

15

20

25

30

35

40

- 5. Verbindung nach einem der Ansprüche 1 bis 4, wobei Y gleich NRa ist, wobei Ra ein Wasserstoffatom oder eine Methylgruppe ist.
- 6. Verbindung nach einem der Ansprüche 1 bis 5, wobei M¹ gleich CH₂, CO, CH₂CH₂ oder CH₂CO ist, M² gleich NR¹² ist, wobei R¹² wie in Anspruch 1 definiert ist; M³ gleich CH₂, CH₂CH₂ oder eine Propylgruppe ist; M³ gleich CH₂, eine Ethyl-, Propyl-, Isopropylgruppe ist oder nicht vorhanden ist; M⁴ ein Rest SOR¹³, SO₂R¹³, NR¹²SO₂R¹³, CO₂R¹³ oder CONR¹⁴R¹⁵ ist, wobei R¹² und R¹³ wie in Anspruch 1 definiert sind und R¹⁴ und R¹⁵ jeweils unabhängig H oder einen C₁-₄-Alkylrest darstellen, M⁵ einen Rest NR¹⁴R¹⁵ darstellt, wobei R¹⁴ und R¹⁵, zusammen mit dem Stickstoffatom, an das sie gebunden sind, einen 6-gliedrigen Ring darstellen, der gegebenenfalls ein zusätzliches, aus N oder O ausgewähltes Heteroatom enthält, wobei jedes in dem Ring vorhandene Stickstoffatom gegebenenfalls mit einem C₁-₄-Alkylrest substituiert sein kann; oder M⁵ einen Rest

- darstellt, wobei t gleich 2 oder 3 ist, und R¹⁶ eine Gruppe OH, NH₂, ein Rest N(C₁₋₄-Alkyl)₂ oder ein OC₁₋₄-Alkylrest ist; stärker bevorzugt R¹⁶ eine Gruppe NH₂ oder N(CH₃)₂ ist; oder M⁵ einen Rest NR¹⁴R¹⁵ darstellt, wobei R¹⁴ und R¹⁵ jeweils unabhängig voneinander ein Wasserstoffatom oder einen C₁₋₄-Alkylrest, stärker bevorzugt ein Wasserstoffatom, eine Methyl-, Ethyl- oder Isopropylgruppe, darstellen; und M⁶ einen Rest NR¹⁴R¹⁵ darstellt, wobei R¹⁴ und R¹⁵ jeweils unabhängig voneinander einen C₁₋₄-Alkylrest, stärker bevorzugt eine Methylgruppe, darstellen, oder R¹⁴ und R¹⁵, zusammen mit dem Stickstoffatom, an das sie gebunden sind, einen 5- oder 6-gliedrigen Ring darstellen, der gegebenenfalls ein zusätzliches, aus N oder O ausgewähltes Heteroatom enthält, wobei jedes in dem Ring vorhandene Stickstoffatom gegebenenfalls mit einem C₁₋₄-Alkylrest, bevorzugt einer Methylgruppe substituiert sein kann; oder M⁶ ein 5- oder 6-gliedriges heterocyclisches Ringsystem, welches 1 oder 2 aus N oder O ausgewählte Heteroatome enthält, darstellt.
- 7. Verbindung nach einem der Ansprüche 1 bis 6, wobei M^2 - M^3 - M^4 eine α -Aminocarbonsäure oder einen Methylester oder ein Amid davon darstellt oder M^2 - M^3 - M^4 eine β oder γ -Aminosulfin- oder -sulfonsäure oder einen Methylester davon darstellt.
- 8. Verbindung nach einem der Ansprüche 1 bis 5 oder 7, wobei M²-M³-M⁴ eine Methylsulfonylethylamino-, Methylsulfinylethylamino-, Methylsulfinylpropylamino-, Methylsulfinylpropylamino-, Methylsulfonamidoethylamino-, Sarcosinamid-, Glycin-, Glycinamid- oder Glycinmethylestergruppe darstellt.
- 9. Verbindung nach einem der Ansprüche 1 bis 6, wobei M¹-M⁵ eine Piperazinylmethyl-, Methylpiperazinylmethyl-, Piperidinylmethyl-, Prolinamidomethyl-, N,N-Dimethylprolinamidomethyl-, Isopropylacetamido- oder N-Morpholinoacetamidogruppe darstellt.
 - 10. Verbindung nach einem der Ansprüche 1 bis 9, wobei R" ausgewählt ist aus einer Phenyl-, Furan-, Imidazol-, Triazol-, Tetrazol-, Pyrrolidin-, Piperazin-, Piperidin- und Oxadiazolgruppe.
 - **11.** Verbindung nach einem der Ansprüche 1 bis 10, wobei R⁶ eine Benzyl-, Fluorbenzyl-, Benzyloxy-, Fluorbenzyloxy-, Pyridylmethyl-, Phenyl-, Benzolsulfonyl-, Phenoxy-, oder Fluorphenoxygruppe ist.
- 12. Verbindung nach einem der Ansprüche 1 bis 5, wobei X die Bedeutung N hat; und entweder (a) p gleich 0 ist; n gleich 1 ist; und sich der Rest R" in 6-Position des Pyridopyrimidinringsystems befindet oder (b) n gleich 0 ist; p gleich 1 ist; und sich der Rest R¹ in 6-Position des Pyridopyrimidinringsystems befindet.

13. Verbindung der Formel (I) oder ein Salz oder Solvat davon nach einem der Ansprüche 1 bis 5 oder 12, wobei X die Bedeutung N hat; Y die Bedeutung NRa hat, wobei Ra ein Wasserstoffatom oder einen C₁₋₄-Alkylrest darstellt, R" wie in Anspruch 1 definiert ist und gegebenenfalls mit einem oder mehreren Resten R¹ substituiert ist, die ausgewählt sind aus einem Halogenatom, einem C₁₋₄-Alkylrest, einer Carboxy-, Formylgruppe, einem Hydroxy-C₁₋₄-alkyl-, 1,3-Dioxolan-2-ylrest, einer Aminogruppe, einem C₁₋₄-Alkylamino-, Di(C₁₋₄-alkyl)amino-, Hydroxy-C₁₋₄-alkanoyl(C₁₋₄-alkyl)amino-, C₁₋₄-Alkylamino-C₁₋₄-alkyl- oder Di(C₁₋₄-Alkyl)amino-C₁₋₄-alkylrest; p gleich 0 ist, R⁴ ein Wasserstoffatom oder eine Methylgruppe darstellt, U eine Indolyl-, Benzimidazolyloder Indazolylgruppe darstellt und R⁶ eine Phenyl-, Benzyl-, α-Methylbenzyl-, Fluorbenzyl-, Benzolsulfonyl-, Phenoxy-, Fluorphenoxy-, Benzyloxy- oder Fluorbenzyloxygruppe darstellt.

5

10

15

20

- 14. Verbindung der Formel (I) oder ein Salz oder Solvat davon nach einem der Ansprüche 1 bis 5 oder 12, wobei X die Bedeutung N hat; Y die Bedeutung NRa hat, wobei Ra ein Wasserstoffatom oder ein C₁₋₄-Alkylrest ist, R" wie in Anspruch 1 definiert ist und gegebenenfalls mit einem Rest R1 substituiert ist, der ausgewählt ist aus einem Methylsulfonylethylaminomethyl-, Methylsulfonylethylaminocarbonyl-, Methylsulfinylethylaminomethyl-, Methylsulfonylethylaminomethyl-, Methylsulfonylethyl-, Methylsulfonylethyl-, Methylsulfonylethyl-, Methylsulfonylethyl-, Methylsulfonylethyl-, Methylsulfonylethyl-, Methylsulfonylethyl-, Methylsul sulfinylethylaminocarbonyl-, Methylsulfonylpropylaminomethyl-, Methylsulfinylpropylaminomethyl-, Methylsulfonylpropylaminocarbonyl-, Methylsulfinylpropylaminocarbonyl-, Methylsulfonylethyl-(methylamino)-methyl-, Methylsulfonylethyl-(methylamino)-carbonyl-, Methylsulfinylethyl-(methylamino)-methyl-, Methylsulfinylethyl-(methylamino)-carbonyl-, Methylsulfonylpropyl-(methylamino)-methyl-, Methylsulfinylpropyl-(methylamino)-methyl-, Methylsulfonylpropyl-(methylamino)-carbonyl-, Methylsulfinylpropyl-(methylamino)-carbonyl-, Methylsulfonamidoethylaminomethyl-, Methylsulfonamidopropylaminomethyl-, Sarcosinamidomethyl-, Glycinylmethyl-, Glycinamidomethyl-, Glycinylmethylmethylester-, Acetylaminoethylaminomethyl-, Piperazinylmethyl-, Methylpiperazinylmethyl-, Piperidinylmethyl-, N-(Prolinamido)methyl-, (N,N-Dimethyl-prolinamido)methyl-, Pyridylaminomethyl-, Cyclo-N-(Piperidin-4-yl)-N-methylaminomethyl-, N,N-Dimethylaminoprop-2-ylaminomethyl-, N-(2-dimethylaminoethyl)-N-ethylaminomethyl-, Isopropylacetamido-, N-Morpholinylacetamido- oder Tetrahydrofuranmethylaminomethylrest und gegebenenfalls ferner substituiert ist mit einem oder mehreren C₁₋₄-Alkylresten; p gleich 0 ist; R4 ein Wasserstoffatom oder eine Methylgruppe darstellt; U eine Indolyl-, Benzimidazolyl- oder Indazolylgruppe darstellt; und R^6 eine Phenyl-, Benzyl-, α -Methylbenzyl-, Fluorbenzyl-, Benzolsulfonyl-, Phenoxy-, Fluorphenoxy-, Benzyloxyoder Fluorbenzyloxygruppe darstellt.
- 30 15. Verbindung der Formel (I) oder ein Salz oder Solvat davon nach einem der Ansprüche 1 bis 5 oder 12, wobei X die Bedeutung N hat; Y die Bedeutung NRa hat, wobei Ra ein Wasserstoffatom oder ein C_{1.4}-Alkylrest ist; n gleich 0 ist; der Rest R¹ jeweils ausgewählt ist aus einem Wasserstoff-, Halogenatom, einem C₁₋₄-Alkyl-, Carboxy-, Formyl-, Hydroxy-C₁₋₄-alkyl-, 1,3-Dioxolan-2-yl-, Benzyloxy-, Amino-, C₁₋₄-Alkylamino-, Di(C₁₋₄-alkyl)amino-, Hydro $xy-C_{1-4}-alkanoyl(C_{1-4}-alkyl)amino-,\ C_{1-4}-Alkylamino-C_{1-4}-alkyl-,\ Di(C_{1-4}-alkyl)amino-C_{1-4}-alkyl-,\ Methylsulfonyle-law (C_{1-4}-alkyl)amino-C_{1-4}-alkyl-,\ Di(C_{1-4}-alkyl)amino-C_{1-4}-alkyl-,\ Di(C_{1-4}-alkyl-alky$ 35 thylaminomethyl-, Methylsulfonylethylaminocarbonyl-, Methylsulfinylethylaminomethyl-, Methylsulfinylethylaminocarbonyl-, Methylsulfonylpropylaminomethyl-, Methylsulfinylpropylaminomethyl-, Methylsulfonylpropylaminocarbonyl-, Methylsulfinylpropylaminocarbonyl-, Methylsulfonylethyl-(methylamino)-methyl-, Methylsulfonylethyl-(methylamino)-carbonyl-, Methylsulfinylethyl-(methylamino)-methyl-, Methylsulfinylethyl-(methylamino)-carbonyl-, Methylsulfonylpropyl-(methylamino)-methyl-, Methylsulfinylpropyl-(methylamino)-methyl-, Methylsulfonylpro-40 pyl-(methylamino)-carbonyl-, Methylsulfinylpropyl-(methylamino)-carbonyl-, Methylsulfonamidoethylaminomethyl-, Methylsulfonamidopropylaminomethyl-, Sarcosinamidomethyl-, Glycinylmethyl-, Glycinamidomethyl-, Glycinylmethylmethylester-, Acetylaminoethylaminomethyl-, Piperazinylmethyl-, Methylpiperazinylmethyl-, Piperidinylmethyl-, N-(Prolinamido)methyl-, (N,N-Dimethyl-prolinamido)methyl-, Pyridylaminomethyl-, Cyclopropylaminomethyl-, N-(Piperidin-4-yl)-N-methylaminomethyl-, N,N-Dimethylaminoprop-2-ylaminomethyl-, N-(2-dimethylaminoe-45 thyl)-N-ethylaminomethyl-, Isopropylacetamido-, N-Morpholinylacetamido- oder Tetrahydrofuranmethylaminomethylrest; R⁴ ein Wasserstoffatom oder eine Methylgruppe darstellt; U eine Indolyl-, Benzimidazolyloder Indazolylgruppe darstellt; und R^6 eine Phenyl-, Benzyl-, α -Methylbenzyl-, Fluorbenzyl-, Benzolsulfonyl-, Phenoxy-, Fluorphenoxy-, Benzyloxy- oder Fluorbenzyloxygruppe darstellt.
- 16. Verbindung nach Anspruch 13 oder Anspruch 14, wobei X die Bedeutung N hat; Y die Bedeutung NR^a hat, wobei R^a ein Wasserstoffatom oder ein C₁₋₄-Alkylrest ist; R" einen Furan-, Imidazol-, Triazol-, Oxadiazol-, Pyrrolidin-, Piperidin- oder Piperazinring darstellt, der gegebenenfalls substituiert ist mit einem oder mehreren Resten R¹, die ausgewählt sind aus einem 1,3-Dioxolan-2-yl-, Formyl-, Carboxy-, C₁₋₄-Alkyl-, Prolinamidomethyl-, Isopropylace-tamido-, N-Morpholinylacetamido-, Methylsulfonylethylaminomethyl- oder Methylsulfonylethylaminocarbonylrest; p gleich 0 ist; R⁴ ein Wasserstoffatom oder eine Methylgruppe darstellt; U eine Indazolyl-, Indolyl- oder Benzimidazolylgruppe darstellt; und R⁶ eine Benzyl-, Fluorbenzyl-, Pyridylmethyl- oder Benzolsulfonylgruppe darstellt.
 - 17. Verbindung nach Anspruch 16, wobei X die Bedeutung N hat; Y die Bedeutung NRa hat, wobei R8 ein Wasser-

stoffatom oder ein C_{1-4} -Alkylrest ist; n gleich 0 ist; der Rest R^1 jeweils ausgewählt ist aus einem Wasserstoff-, Halogenatom, einem Benzyloxy-, Amino-, C_{1-4} -Alkylamino-, Di(C_{1-4} -alkyl)amino- oder Hydroxy- C_{1-4} -alkanoyl (C_{1-4} alkyl)aminorest, stärker bevorzugt aus einem Dimethylaminorest; R^4 ein Wasserstoffatom oder eine Methylgruppe darstellt; U eine Indazolyl-, Indolyl- oder Benzimidazolylgruppe darstellt; und R^6 eine Benzyl-, Fluorbenzyl-, Pyridylmethyloder Benzolsulfonylgruppe darstellt.

- 18. Verbindung nach einem der Ansprüche 13 bis 17, wobei U eine Indazolylgruppe darstellt.
- 19. Verbindung nach Anspruch 1 oder Anspruch 2, welche ausgewählt ist aus:

5

10

55

```
(1-Benzyl-1H-indazol-5-yl)-(6-chlor-pyrido[3,4-d]pyrimidin-4-yl)-amin,
                                                                                             N4-(1-Benzyl-1H-indazol-5-yl)
              -N6,N6-dimethyl-pyrido[3,4-d]pyrimidin-4,6-diamin,
              (1-Benzyl-1H-indazol-5-yl) -(6-(N-(2-hydroxyethyl)-N-methylamino)-pyrido[3,4-d]pyrimidin-4-yl)-amin,
              (1-Benzyl-1H-indazol-5-yl)-(pyrido[3,4-d]pyrimidin-4-yl)-amin,
15
              (2-Benzyl-1H-benzimidazol-5-yl)-(6-chlor-pyrido[3,4-d]pyrimidin-4-yl)-amin,
              N4-(1-Benzyl-1H-indol-5-yl)-N6,N6-dimethyl-pyrido[3,4-d]pyrimidin-4,6-diamin,
              N4-(2-Benzyl-1H-benzimidazol-5-yl)-N6,N6-dimethyl-pyrido[3,4-d]pyrimidin-4,6-diamin,
              (1-Benzyl-1H-indazol-5-yl)-(6-(5-[1,3-dioxolan-2-yl]-furan-2-yl)-pyrido[3,4-d] pyrimidin-4-yl)-amin,
              5-(4-(1-Benzyl-1H-indazol-5-ylamino)-pyrido[3,4-d]pyrimidin-6-yl)-furan-2-carbaldehyd,
20
              (2S)-1-(5-(4-(1-Benzyl-1H-indazol-5-ylamino)-6-pyrido[3,4-d]pyrimidin-6-yl)-furan-2-ylmethyl)-pyrrolidin-
              2-carbonsäureamid,
              (1-Benzyl-1H-indazol-5-yl)-(6-(3-methyl-3H-imidazol-4-yl)-pyrido[3,4-d]pyrimidin-4-yl)-amin,
              N6,N6-Dimethyl-N4-(1-pyridin-2-ylmethyl-1H-indazol-5-yl)-pyrido[3,4-d]pyrimidin-4,6-diamin,
              N6,N6-Dimethyl-N4-(1-pyridin-3-ylmethyl-1H-indazol-5-yl)-pyrido[3,4-d]pyrimidin-4,6-diamin,
25
              N4-(1-Benzyl-3-methyl-1H-indazol-5-yl)-N6,N6-dimethyl-pyrido[3,4-d]pyrimidin-4,6-diamin,
              N4-(1-(2-Fluorbenzyl)-1H-indazol-5-yl)-N6,N6-dimethyl-pyrido[3,4-d]pyrimidin-4,6-diamin,
              N4-(1-(3-Fluorbenzyl)-1H-indazol-5-yl)-N6,N6-dimethyl-pyrido[3,4-d]pyrimidin-4,6-diamin,
              N4-(1-(4-Fluorbenzyl)-1H-indazol-5-yl)-N6,N6-dimethyl-pyrido[3,4-d]pyrimidin-4,6-diamin,
              N4-(1-Benzolsulfonyl-1H-indol-5-yl)-N6,N6-dimethyl-pyrido[3,4-d]pyrimidin-4,6-diamin,
30
              N4-(3-Benzolsulfonyl-1H-indol-5-yl)-N6,N6-dimethyl-pyrido[3,4-d]pyrimidin-4,6-diamin,
              (1-Benzyl-1H-indazol-5-yl)-(6-imidazol-1-yl-pyrido[3,4-d]pyrimidin-4-yl)-amin,
              (1-Benzyl-1H-indazol-5-yl)-(6-(1,2,4-triazol-1-yl)-pyrido[3,4-d]pyrimidin-4-yl)-amin,
              (1-Benzyl-1H-indazol-5-yl)-(6-(1,2,3-triazol-2-yl)-pyrido[3,4-d]pyrimidin-4-yl)-amin,
              (1-Benzyl-1H-indazol-5-yl)-(6-(1,2,3-triazol-1-yl)-pyrido[3,4-d]pyrimidin-4-yl)-amin,
35
              (1-Benzyl-1H-indazol-5-yl)-(6-pyrrolidin-1-yl-pyrido[3,4-d]pyrimidin-4-yl)-amin,
              (1-Benzyl-1H-indazol-5-yl)-(6-piperidin-1-yl-pyrido[3,4-d]pyrimidin-4-yl)-amin,
              N4-(1-Benzyl-1H-indazol-5-yl)-N6-ethyl-N6-methyl-pyrido[3,4-d]pyrimidin-4,6-diamin,
              2-(4-(4-(1-Benzyl-1H-indazol-5-ylamino)-pyrido[3,4-d]pyrimidin-6-yl)-piperazin-1-yl)-N-isopropyl-acetamid,
              2-(4-(4-(1-Benzyl-1H-indazol-5-ylamino)-pyrido[3,4-d]pyrimidin-6-yl)-piperazin-1-yl)-1-morpholin-4-yl-etha-
40
              (1-Benzyl-1H-indazol-5-yl)-(6-(5-methyl-1,3,4-oxadiazol-2-yl)-pyrido[3,4-d]pyrimidin-4-yl)-amin,
              (1-(3-Fluorbenzyl)-1H-indazol-5-yl)-(6-(5-methyl-1,3,4-oxadiazol-2-yl)-pyrido[3,4-d]pyrimidin-4-yl)-amin,
              (1-Benzyl-1H-indol-5-yl)-(6-chlor-pyrido[3,4-d]pyrimidin-4-yl)-amin,
              (1-Benzyl-1H-indazol-5-yl)-(6-(4-methyl-piperazin-1-yl)-pyrido[3,4-d]pyrimidin-4-yl)-amin,
45
              (1-Benzyl-1H-indazol-5-yl)-(6-benzyloxy-pyrido[3,4-d]pyrimidin-4-yl)-amin,
              (1-Benzyl-1H-indazol-5-yl)-(6-(5-((2-methansulfonyl-ethylamino)-methyl)-furan-2-yl)-pyrido[3,4-d]pyrimidin-
              4-yl)-amin,
              5-[4-(1-Benzyl-1H-indazol-5-ylamino)-pyrido[3,4-d]pyrimidin-6-yl)-furan-2-carbonsäure,
              5-[4-(1-Benzyl-1H-indazol-5-ylamino)-pyrido[3,4-d]pyrimidin-6-yl]-furan-2-carbonsäure-2-methansulfonyl-
50
              ethylamid,
              N4-(1-Benzyl-1H-indazol-5-yl)-N6-methyl-pyrido[3,4-d]pyrimidin-4,6-diamin,
              N4-[1-(4-Hydroxybenzyl)-1H-indazol-5-yl)-N6,N6-dimethyl-pyrido[3,4-d]pyrimidin-4,6-diamin
```

und Salzen oder Solvaten davon, inbesondere pharmazeutisch verträglichen Salzen oder Solvaten davon.

20. Verbindung nach Anspruch 19, welche ausgewählt ist aus:

N4-(1-Benzyl-1H-indazol-5-yl)-N6,N6-dimethyl-pyrido[3,4-d]pyrimidin-4,6-diamin,

N4-(1-(3-Fluor-benzyl)-1H-indazol-5-yl)-N6,N6-dimethyl-pyrido[3,4-d]pyrimidin-4,6-diamin,

N4-(1-Benzyl-1H-indazol-5-yl)-N6-ethyl-N6-methyl-pyrido[3,4-d]pyrimidin-4,6-diamin,

(1-Benzyl-1H-indazol-5-yl)-(6-(5-((2-methansulfonyl-ethylamino)-methyl)-furan-2-yl)-pyrido[3,4-d]pyrimidin-4-yl)-amin.

N4-(1-Benzyl-1H-indazol-5-yl)-N6-methyl-pyrido[3,4-d]pyrimidin-4,6-diamin,

und Salzen oder Solvaten davon, insbesondere pharmazeutisch verträglichen Salzen oder Solvaten davon.

- 21. Arzneimittelformulierung, welche mindestens eine Verbindung nach einem der Ansprüche 1 bis 20, zusammen mit einem oder mehreren pharmazeutisch verträglichen Trägern, Verdünnungsmitteln oder Exzipienten, umfasst.
 - 22. Arzneimittelformulierung nach Anspruch 21, die in Form einer Dosierungseinheit vorliegt und eine Verbindung nach einem der Ansprüche 1 bis 21 in einer Menge von 70 bis 700 mg enthält.
- 15 23. Verbindung nach einem der Ansprüche 1 bis 20 zur Verwendung in der Therapie.

5

10

25

30

35

40

45

55

- 24. Verwendung einer Verbindung nach einem der Ansprüche 1 bis 20 bei der Herstellung eines Medikaments zur Behandlung von durch Proteintyrosinkinaseaktivität hervorgerufenen Störungen.
- 26. Verwendung nach Anspruch 24, wobei die Störung durch c-erbB-2- und/oder EGF-r-Tyrosinkinaseaktivität hervorgerufen wird.
 - **26.** Verwendung nach Anspruch 24, wobei die Störung durch c-erbB-2-, c-erbB-4-und/oder EGF-r-Tyrosinkinaseaktivität hervorgerufen wird.
 - **27.** Verwendung einer Verbindung nach einem der Ansprüche 1 bis 20 bei der Herstellung eines Medikaments zur Behandlung von Krebs und malignen Tumoren.
 - 28. Verwendung einer Verbindung nach einem der Ansprüche 1 bis 20 bei der Herstellung eines Medikaments zur Behandlung von Psoriasis.
 - 29. Verfahren zur Herstellung einer Verbindung der Formel (I) wie in Anspruch 1 oder Anspruch 2 definiert, welches folgende Schritte umfasst:
 - (a) Umsetzen einer Verbindung der Formel (II)

$$X \xrightarrow{L} (L'')_{p}$$

$$(L')_{n} \qquad (II)$$

wobei A, X, n und p wie in Anspruch 1 definiert sind und L, L' und L" geeignete Abgangsgruppen sind, mit einer Verbindung der Formel (III)

50 UYH (III)

wobei U und Y wie vorstehend definiert sind, um eine Verbindung der Formel (IV)

$$X \longrightarrow A \qquad (IV)$$

$$(L')_n$$

herzustellen, und nachfolgend (b), falls n gleich 1 ist, Umsetzen mit einem geeigneten Reagenz, um den Rest R" am Ring A durch Ersetzen der Abgangsgruppe L' durch Substitution einzuführen; und (c), falls p von 0 verschieden ist, Umsetzen mit einem geeigneten Reagenz/geeigneten Reagenzien, um den Rest/die Reste R¹ am Ring A durch Ersetzen der Abgangsgrupp(en) L" durch Substitution einzuführen; und, wenn erwünscht, (d) nachfolgend Umwandeln der dadurch erhaltenen Verbindung der Formel (I) in eine andere Verbindung der Formel (I) durch geeignete Reagenzien.

30. Verfahren zur Herstellung einer Verbindung der Formel (I) wie in Anspruch 1 oder Anspruch 2 definiert, wobei die Verbindung der Formel (II) wie in Anspruch 29 definiert mit den geeigneten Reagenzien umgesetzt wird, um die Reste R" und R¹ am Ring A durch Ersetzen der jeweiligen Abgangsgruppen durch Substitution einzuführen und dann das dadurch erhaltene Produkt der Formel (V)

$$X = (R^1)_p$$

$$(R^1)_n$$

$$(R^1)_n$$

mit der Verbindung der Formel (III) wie in Anspruch 29 definiert umgesetzt wird, falls erwünscht, gefolgt von der Umwandlung der dadurch erhaltenen Formel (I) in eine andere Verbindung der Formel (I).

31. Verfahren nach Anspruch 30, wobei die Verbindung der Formel (V)

hergestellt wird durch Umsetzen einer Verbindung der Formel (VI)

$$\begin{array}{c|c}
O & (L'')_p \\
\hline
 & (L')_n
\end{array}$$

mit geeigneten Reagenzien, um den Rest/die Reste R¹ und den Rest R" am Ring A durch Substitution einzuführen, um eine Verbindung der Formel (VII)

$$\begin{array}{c|c}
O & (R^1)_p \\
A & (VII)
\end{array}$$

herzustellen, und nachfolgend Umsetzen, um die Abgangsgruppe L einzuführen.

- **32.** Verfahren zur Herstellung einer Verbindung der Formel (I), wie in Anspruch 1 oder Anspruch 2 definiert, welches die folgenden Schritte umfasst:
 - (a) Umsetzen einer Verbindung der Formel (IV) wie in Anspruch 29 definiert mit einem geeigneten Reagenz/ geeigneten Reagenzien, um eine Verbindung herzustellen, wobei entweder der Rest L' (falls n=1) oder der Rest/die Reste L" (falls p von 0 verschieden ist) durch einen geeignet funktionalisierten Rest Z ersetzt wird (werden); und
 - (b) nachfolgendes Umwandeln des Restes Z in den Rest R", falls L' durch ein geeignetes Reagenz/geeignete Reagenzien ersetzt worden ist, oder in den Rest R', falls L" durch ein geeignetes Reagenz/geeignete Reagenzien ersetzt worden ist,
 - (c) Umsetzen mit geeigneten Reagenzien, um die anderen Reste aus R¹ und R" am Ring A durch Ersetzen der verbliebenen Abgangsgruppe L" bzw. L', falls vorhanden, durch Substitution einzuführen und, falls erwünscht;
 - (d) nachfolgend Umwandeln der dadurch erhaltenen Verbindung der Formel (I) in eine andere Verbindung der Formel (I) durch geeignete Reagenzien.
- **33.** Verfahren zur Herstellung einer Verbindung der Formel (1), wie in Anspruch 1 oder Anspruch 2 definiert, welches die folgenden Schritte umfasst:
 - (a) Umsetzen einer Verbindung der Formel (II) wie in Anspruch 29 definiert mit einem geeigneten Reagenz/ geeigneten Reagenzien, um eine Verbindung herzustellen, wobei entweder der Rest L' (falls n = 1) oder der Rest/die Reste L" (falls p von 0 verschieden ist) durch einen geeignet funktionalisierten Rest Z ersetzt wird (werden); und
 - (b) nachfolgend Umwandeln des Restes Z in den Rest R", falls L' durch ein geeignetes Reagenz/geeignete Reagenzien ersetzt worden ist, oder in den Rest R', falls L" durch ein geeignetes Reagenz/geeignete Reagenzien ersetzt worden ist;
 - (c) Umsetzen mit geeigneten Reagenzien, um die anderen Reste aus R¹ und R" am Ring A durch Ersetzen der verbliebenen Abgangsgruppe L" bzw. L', falls vorhanden, durch Substitution einzuführen;
 - (d) Umsetzen des dadurch erhaltenen Produkts mit der Verbindung der Formel (III), wie in Anspruch 29 definiert,und, falls erwünscht;
 - (e) nachfolgend Umwandeln der dadurch erhaltenen Verbindung der Formel (I) in eine andere Verbindung der Formel (I) durch geeignete Reagenzien.

Revendications

1. Composé de formule (I):

55

5

10

15

20

25

30

35

40

45

$$(R^{1})_{p}$$

$$X$$

$$(R)_{n}$$

$$(R)_{n}$$

$$(I)$$

15

20

25

30

35

5

ou un de ses sels;

formule dans laquelle X représente N ou un groupe CH;

Y représente un groupe $W(CH_2)$, $(CH_2)W$, ou W, dans laquelle W représente O, un groupe $S(O)_m$ dans lequel m est égal à 0, 1 ou 2, ou un groupe NR^a dans lequel R^a représente un atome d'hydrogène ou un groupe alkyle en C_1 à C_8 ;

soit

n est égal à 1, p est égal à 0 et R" est choisi dans le groupe comprenant des groupes phényle, furanne, thiophène, pyridine, pyrimidine, pyrazine, pyrrole, oxazole, isoxazole, oxadiazole, thiazole, isothiazole, triazole, tétrazole et imidazole ou un dérivé hydrogéné de n'importe lequel des groupes précités, le noyau étant facultativement substitué avec un ou plusieurs groupes R¹; R¹ étant soit

(a) choisi entre M1-M2-M3-M4, M1-M5 et M1-M2-M3'-M6; soit

(b) choisi dans le groupe comprenant un groupe amino, un atome d'hydrogène, un atome d'halogène, des groupes hydroxy, hydroxy(alkyle en C_1 à C_4), formyle, carboxy, cyano, nitro, alkyle en C_1 à C_8 , alkylsulfinyle en C_1 à C_8 , alkylsulfinyle en C_1 à C_8 , alkylsulfonyle en C_1 à C_8 , alkylsulfonyle en C_1 à C_8 , alkylamino en C_1 à C_8 , alkylamino, dioxolanyle et hydroxy(alcanoyle en C_1 à C_4) (alkyle en C_1 à C_4) amino;

soit

n est égal à 0, p a une valeur de 1 à 3 et chaque groupe R^1 est choisi dans le groupe comprenant un groupe amino, un atome d'hydrogène, un atome d'halogène, un groupe hydroxy, hydroxy(alkyle en C_1 à C_4), formyle, carboxy, cyano, nitro, alkyle en C_1 à C_8 , alkoxy en C_1 à C_8 , alkylthio en C_1 à C_8 , alkylsulfinyle en C_1 à C_8 , alkylamino en C_1 à C_8 , di(alkyle en C_1 à C_8) (alkyle en C_1 à

ou, lorsque p est égal à 2 ou 3, deux groupes R¹ adjacents, forment conjointement un groupe méthylènedioxy ou éthylènedioxy facultativement substitué ;

<u>soit</u>

n est égal à 0, p est égal à 1 et R^1 est choisi entre M^1 - M^2 - M^3 - M^4 , M^1 - M^5 ou M^1 - M^2 - M^3 '- M^6 ; dans lesquels

40

45

50

M¹ représente un groupe alkyle en C₁ à C₄, dans lequel facultativement un groupe CH₂ est remplacé par un groupe CO:

 M^2 représente un groupe NR^{12} ou $CR^{12}R^{13}$, dans lesquels R^{12} et R^{13} représentent chacun indépendamment H ou un groupe alkyle en C_1 à C_4 ;

M³ représente un groupe alkyle en C₁ à C₄;

 $M^{3'}$ représente un groupe alkyle en C_1 à C_4 ou bien est absent ;

 $m M^4$ représente un groupe CN, NR12S(O) $_m$ R13, S(O) $_m$ NR14R15, CONR14R15, S(O) $_m$ R13 ou CO $_2$ R13, dans lequel R12, R13 et m répondent aux définitions précitées et R14 et R15 représentent chacun indépendamment H ou un groupe alkyle en C1 à C4, ou bien R14 et R15, conjointement avec l'atome d'azote auquel ils sont fixés, représentent un noyau penta-ou hexagonal contenant facultativement 1 ou 2 hétéroatomes supplémentaires choisis entre N, O et S(O) $_m$, noyau dans lequel n'importe quel atome d'azote présent peut être facultativement substitué avec un groupe alkyle en C1 à C4 M5 représente le groupe NR14R15 ou le groupe

5

dans lequel t a une valeur de 2 à 4 et R^{16} représente un groupe OH, O(alkyle en C_1 à C_4) ou $NR^{14}R^{15}$; et M^6 représente un groupe cycloalkyle en C_3 à C_6 , le groupe $NR^{14}R^{15}$, ou un système de noyau hétérocyclique penta- ou hexagonal contenant 1 à 4 hétéroatomes choisis entre N, O et S;

15

U représente un groupe indolyle, isoindolyle, indolinyle, isoindolinyle, <u>1H</u>-indazolyle, 2,3-dihydro-<u>1H</u>-indazolyle, <u>1H</u>-benzimidazolyle, 2,3-dihydro-<u>1H</u>-benzimidazolyle ou <u>1H</u> -benzotriazolyle, qui est substitué avec au moins un groupe R⁶ choisi indépendamment et qui est facultativement substitué avec au moins un groupe R⁴ choisi indépendamment;

20

chaque groupe R^4 représente indépendamment un atome d'hydrogène, un groupe hydroxy, un atome d'halogène, un groupe alkyle en C_1 à C_4 , alkoxy en C_1 à C_4 , alkylamino en C_1 à C_4 , di(alkyle en C_1 à C_4) amino, alkylthio en C_1 à C_4 , alkylsulfinyle en C_1 à C_4 , alkylsulfonyle en C_1 à C_4 , (alkyle en C_1 à C_4) carbonyle, (alkyle en C_1 à C_4) carbonyle, carbamoyle, (alkoxy en C_1 à C_4) carbonyle, cyano, nitro ou trifluorométhyle;

25

chaque groupe R^6 représente indépendamment un groupe benzyle, halogéno-, dihalogéno- ou trihalogéno-benzyle, α -méthylbenzyle, phényle, halogéno-, dihalogéno- ou trihalogéno-phényle, pyridylméthyle, pyridyloxy, pyridylméthoxy, thiénylméthoxy, dioxolanylméthoxy, cyclohexylméthoxy, phénoxy, halogéno-, dihalogéno- ou trihalogéno-phénoxy, phénylthio, benzyloxy, halogéno-, dihalogéno- ou trihalogéno-benzyloxy, (alkoxy en C_1 à C_4) benzyloxy, phényloxalyle ou benzènesulfonyle ; et A représente un groupe

30

35

- 2. Produit de solvatation d'un composé suivant la revendication 1.
- 40 3. Composé suivant la revendication 1 ou la revendication 2, dans lequel A représente un groupe

45

1. Composé suivant l'une quelconque des revendications 1 à 3, dans lequel X représente N.

50

5. Composé suivant l'une quelconque des revendications 1 à 4, dans lequel Y représente un groupe NR^a, dans lequel R^a représente un atome d'hydrogène ou un groupe méthyle.

55

6. Composé suivant l'une quelconque des revendications 1 à 5, dans lequel M¹ représente un groupe CH₂, CO, CH₂CH₂ ou CH₂CO; M² représente un groupe NR¹² dans lequel R¹² répond à la définition figurant dans la revendication 1; M³ représente un groupe CH₂, CH₂CH₂ ou propyle; M³ représente un groupe CH₂, éthyle, propyle, isopropyle ou est absent; M⁴ représente un groupe SOR¹³, SO₂R¹³, NR¹²SO₂R¹³, CO₂R¹³ ou CONR¹⁴R¹⁵ dans lequel R¹² et R¹³ répondent aux définitions figurant dans la revendication 1 et R¹⁴ et R¹⁵ représentent chacun

5

10

40

45

50

55

indépendamment H ou un groupe alkyle en C_1 à C_4 ; M^5 représente un groupe $NR^{14}R^{15}$ dans lequel R^{14} et R^{15} , conjointement avec l'atome d'azote auquel ils sont fixés, représentent un noyau hexagonal contenant facultativement un hétéroatome supplémentaire choisi entre N et O, noyau dans lequel n'importe quel atome d'azote présent peut être facultativement substitué avec un groupe alkyle en C_1 à C_4 ; ou bien M^5 représente un groupe

(CH₂)_t

- dans lequel t est égal à 2 ou 3 et R¹6 représente un groupe OH, NH₂, N(alkyle en C₁ à C₄)₂ ou O(alkyle en C₁ à C₄); plus avantageusement, R¹6 représente un groupe NH₂ ou N(CH₃)₂; ou bien M⁵ représente un groupe NR¹4R¹5 dans lequel R¹4 et R¹5 représentent chacun indépendamment un atome d'hydrogène ou un groupe alkyle en C₁ à C₄, plus avantageusement un atome d'hydrogène, un groupe méthyle, éthyle ou isopropyle; et M⁶ représente un groupe NR¹⁴R¹5 dans lequel R¹⁴ et R¹5 représentent chacun indépendamment un groupe alkyle en C₁ à C₄, plus avantageusement un groupe méthyle, ou bien R¹⁴ et R¹⁵, conjointement avec l'atome d'azote auquel ils sont fixés, représentent un noyau penta- ou hexagonal contenant facultativement un hétéroatome supplémentaire choisi entre N et O, noyau dans lequel n'importe quel atome d'azote présent peut être facultativement substitué avec un groupe alkyle en C₁ à C₄, de préférence un groupe méthyle; ou bien M⁶ représente un système de noyau hétérocyclique penta- ou hexagonal contenant 1 ou 2 hétéroatomes choisis entre N et O.
 - 7. Composé suivant l'une quelconque des revendications 1 à 6, dans lequel M²-M³-M⁴ représente un acide α-aminocarboxylique ou un de ses esters méthyliques ou amides ; ou bien M²-M³-M⁴ représente un acide β- ou γ-aminosulfinique ou -sulfonique ou un de ses esters méthyliques.
- 30 8. Composé suivant l'une quelconque des revendications 1 à 5 ou 7, dans lequel M²-M³-M⁴ représente un groupe méthylsulfonyléthylamino, méthylsulfinyléthylamino, méthylsulfonylpropylamino, méthylsulfinylpropylamino, méthylsulfonamidoéthylamino, sarcosinamide, glycine, glycinamide ou ester méthylique de glycine.
- 9. Composé suivant l'une quelconque des revendications 1 à 6, dans lequel M¹-M⁵ représente un groupe pipérazinylméthyle, méthylpipérazinylméthyle, pipéridinylméthyle, prolinamidométhyle, N,N-diméthylprolinamidométhyle, isopropylacétamido ou N-morpholinoacétamido.
 - 10. Composé suivant l'une quelconque des revendications 1 à 9, dans lequel R" est choisi dans le groupe comprenant des groupes phényle, furanne, imidazole, triazole, tétrazole, pyrrolidine, pipérazine, pipéridine et oxadiazole.
 - **11.** Composé suivant l'une quelconque des revendications 1 à 10, dans lequel R⁶ représente un groupe benzyle, fluorobenzyle, benzyloxy, fluorobenzyloxy, pyridylméthyle, phényle, benzènesulfonyle, phénoxy ou fluorophénoxy.
 - 12. Composé suivant l'une quelconque des revendications 1 à 5, dans lequel X représente N; et soit (a) p est égal à 0; n est égal à 1 et le groupe R" est en position 6 du système de noyau pyridopyrimidine; soit (b) n est égal à 0; p est égal à 1 et le groupe R¹ est en position 6 du système de noyau pyridopyrimidine.
 - 13. Composé de formule (I) ou un de ses sels ou produits de solvatation suivant l'une quelconque des revendications 1 à 5 ou 12, dans lequel X représente N; Y représente un groupe NRª dans lequel Rª représente un atome d'hydrogène ou un groupe alkyle en C₁ à C₄; R" répond à la définition figurant dans la revendication 1 et est facultativement substitué avec un ou plusieurs groupes R¹ choisis entre des groupes halogéno, alkyle en C₁ à C₄, carboxy, formyle, hydroxyalkyle en C₁ à C₄, 1,3-dioxolane-2-yle, amino, alkylamino en C₁ à C₄, di(alkyle en C₁ à C₄) amino, hydroxy(alcanoyle en C₁ à C₄) (alkyle en C₁ à C₄) amino, (alkyle en C₁ à C₄) amino(alkyle en C₁ à C₄) et di(alkyle en C₁ à C₄)amino(alkyle en C₁ à C₄); p est égal à 0; R⁴ représente un atome d'hydrogène ou un groupe méthyle; U représente un groupe indolyle, benzimidazolyle ou indazolyle; et R⁶ représente un groupe phényle, benzyle, α-méthylbenzyle, fluorobenzyle, benzènesulfonyle, phénoxy, fluorophénoxy, benzyloxy ou fluorobenzyloxy.

14. Composé de formule (I) ou un de ses sels ou produits de solvatation suivant l'une quelconque des revendications 1 à 5 ou 12, dans lequel X représente N; Y représente un groupe NRª dans lequel Rª représente un atome d'hydrogène ou un groupe alkyle en C1 à C4; R" répond à la définition figurant dans la revendication 1 et est facultativement substitué avec un groupe R1 choisi entre des groupes méthylsulfonyléthylaminométhyle, méthylsulfonyl-éthylaminocarbonyle, méthylsulfinyléthylaminométhyle, méthylsulfinyléthylaminocarbonyle, méthylsulfonylpropylaminométhyle, méthylsulfinylpropylaminométhyle, méthylsulfonylpropylaminocarbonyle, méthylsulfinylpropylaminocarbonyle, méthylsulfonyléthyl-(méthylamino)-méthyle, méthylsulfonyléthyl-(méthylamino)-carbonyle, méthylsulfinyléthyl-(méthylamino)-méthyle, méthylsulfinyléthyl-(méthylamino)-carbonyle, méthylsulfonylpropyl-(méthylamino)-méthyle, méthylsulfinylpropyl-(méthylamino)-méthyle, méthylsulfonylpropyl-(méthylamino)carbonyle, méthylsulfinylpropyl- (méthylamino)-carbonyle, méthylsulfonamidoéthylaminométhyle, méthylsulfonamidopropylaminométhyle, sarcosinamidométhyle, glycinylméthyle, glycinamidométhyle, ester méthylique de glycinylméthyle, acétylaminoéthylaminométhyle, pipérazinylméthyle, méthylpipérazinylméthyle, pipéridinylméthyle, N-(prolinamido)méthyle, (N,N-diméthyl-prolinamido)méthyle, pyridylaminométhyle, cyclopropylaminométhyle, N-(pipéridine-4-yl)-N-méthylaminométhyle, N,N-diméthylaminoprop-2-ylaminométhyle, N-(2-diméthylaminoéthyl) -N-éthylaminométhyle, isopropylacétamido, N-morpholinylacétamido et tétrahydrofurannométhylaminométhyle, et est facultativement substitué en outre avec un ou plusieurs groupes alkyle en C₁ à C₄; p est égal à 0; R⁴ représente un atome d'hydrogène ou un groupe méthyle ; U représente un groupe indolyle, benzimidazolyle ou indazolyle ; et R^6 représente un groupe phényle, benzyle, α -méthylbenzyle, fluorobenzyle, benzènesulfonyle, phénoxy, fluorophénoxy, benzyloxy ou fluorobenzyloxy.

5

10

15

20

25

30

35

40

45

50

- 15. Composé de formule (I) ou un de ses sels ou produits de solvatation suivant l'une quelconque des revendications 1 à 5 ou 12, dans lequel X représente N; Y représente un groupe NRa dans lequel Ra représente un atome d'hydrogène ou un groupe alkyle en C_1 à C_4 ; n est égal à 0; chaque groupe R^1 est choisi entre un atome d'hydrogène, des groupes halogéno, alkyle en C_1 à C_4 , carboxy, formyle, hydroxyalkyle en C_1 à C_4 , 1,3-dioxolane-2-yle, benzyloxy, amino, alkylamino en C_1 à C_4 , di(alkyle en C_1 à C_4)amino, hydroxy(alcanoyle en C_1 à C_4) (alkyle en C_1 à C_4)amino, (alkyle en C_1 à C_4)amino(alkyle en C_1 à C_4), di(alkyle en C_1 à C_4)amino(alkyle en C_1 à C_4) méthylsulfonyléthylaminométhyle, méthylsulfonyléthylaminocarbonyle, méthylsulfinyléthylaminométhyle, méthylsulfonyléthylaminométhyle, méthylsulfonyléthylaminométhylaminométhyle, méthylsulfonyléthyla sulfinyléthylaminocarbonyle, méthylsulfonylpropylaminométhyle, méthylsulfinylpropylaminométhyle, méthylsulfonylpropylaminocarbonyle, méthylsulfinylpropylaminocarbonyle, méthylsulfonyléthyl-(méthylamino)-méthyle, méthylsulfonyléthyl-(méthylamino)-carbonyle, méthylsulfinyléthyl-(méthylamino)-méthyle, méthylsulfinyléthyl-(méthylamino)-carbonyle, méthylsulfonylpropyl-(méthylamino)-méthyle, méthylsulfinylpropyl-(méthylamino)-méthyle, méthylsulfonylpropyl-(méthylamino)-carbonyle, méthylsulfinylpropyl-(méthylamino)-carbonyle, méthylsulfonamidoéthylaminométhyle, méthylsulfonamidopropylaminométhyle, sarcosinamidométhyle, glycinylméthyle, glycinamidométhyle, ester méthylique de glycinylméthyle, acétylaminoéthylaminométhyle, pipérazinylméthyle, méthylpipérazinylméthyle, pipéridinylméthyle, N-(prolinamido)-méthyle, (N,N-diméthyl-prolinamido)méthyle, pyridylaminométhyle, cyclopropylaminométhyle, N-(pipéridine-4-yl)-N-méthylaminométhyle, N,N-diméthylaminoprop-2-ylaminométhyle, N-(2-diméthylaminoéthyl)-N-éthylaminométhyle, isopropylacétamido, N-morpholinylacétamido et tétrahydrofurannométhylaminométhyle : R⁴ représente un atome d'hydrogène ou un groupe méthyle : U représente un groupe indolyle, benzimidazolyle ou indazolyle ; R^6 représente un groupe phényle, benzyle, α -méthylbenzyle, fluorobenzyle, benzènesulfonyle, phénoxy, fluorophénoxy, benzyloxy ou fluorobenzyloxy.
- 16. Composé suivant la revendication 13 ou la revendication 14, dans lequel X représente N; Y représente un groupe NRª dans lequel Rª représente un atome d'hydrogène ou un groupe alkyle en C₁ à C₄; R" représente un noyau furanne, imidazole, triazole, oxadiazole, pyrrolidine, pipéridine ou pipérazine, facultativement substitué avec un ou plusieurs groupes R¹ choisis entre des groupes 1,3-dioxolane-2-yle, formyle, carboxy, alkyle en C₁ à C₄, prolinamidométhyle, isopropylacétamido, N-morpholinylacétamido, méthylsulfonyléthylaminométhyle et méthylsulfonyléthylaminocarbonyle; p est égal à 0; R⁴ représente l'hydrogène ou un groupe méthyle; U représente un groupe indazolyle, indolyle ou benzimidazolyle; et R⁶ représente un groupe benzyle, fluorobenzyle, pyridylméthyle ou benzènesulfonyle.
- 17. Composé suivant la revendication 16, dans lequel X représente N; Y représente un groupe NRª dans lequel Rª représente un atome d'hydrogène ou un groupe alkyle en C₁ à C₄; n est égal à 0; chaque groupe R¹ est choisi entre un atome d'hydrogène, les groupes halogéno, benzyloxy, amino, alkylamino en C₁ à C₄, di(alkyle en C₁ à C₄)amino et hydroxy(alcanoyle en C₁ à C₄) (alkyle en C₁ à C₄)amino, plus avantageusement un groupe diméthylamino; R⁴ représente un atome d'hydrogène ou un groupe méthyle; U représente un groupe indazolyle, indolyle ou benzimidazolyle; et R⁶ représente un groupe benzyle, fluorobenzyle, pyridylméthyle ou benzènesulfonyle.

- 18. Composé suivant l'une quelconque des revendications 13 à 17, dans lequel U représente un groupe indazolyle.
- 19. Composé suivant la revendication 1 ou la revendication 2, choisi entre les suivants :

```
(1-benzyl-1H-indazole-5-yl)-(6-chloro-pyrido[3,4-d] pyrimidine-4-yl)-amine;
              N4-(1-benzyl-1H-indazole-5-yl)-N6,N6-diméthyl-pyrido [3,4-d]pyrimidine-4,6-diamine;
              (1-benzyl-1H-indazole-5-yl)-(6-(N-(2-hydroxyéthyl)-N-méthylamino)-pyrido[3,4-d]pyrimidine-4-yl)-amine;
              (1-benzyl-1H-indazole-5-yl)-(pyrido[3,4-d]pyrimidine-4-yl)-amine;
              (2-benzyl-IH-benzimidazole-5-yl)-(6-chloro-pyrido[3,4-d] pyrimidine-4-yl)-amine;
10
              N4-(1-benzyl-1H-indole-5-yl)-N6,N6-diméthyl-pyrido[3,4-d] pyrimidine-4,6-diamine;
              N4-(2-benzyl-1H-benzimidazole-5-yl)-N6,N6-diméthyl-pyrido [3,4-d]pyrimidine-4,6-diamine;
              (I-benzyl-1H-indazole-5-yl)-(6-(5-[1,3-dioxolane-2-yl]-furanne-2-yl)-pyrido[3,4-d]pyrimidine-4-yl)-amine;
              5-(4-(1-benzyl-1H-indazole-5-ylamino)-pyrido[3,4-d]-pyrimidine-6-yl)-furanne-2-carbaldéhyde;
              amide d'acide (2S)-1-(5-(4-(1-benzyl-1H-indazole-5-ylamino)-6-pyrido[3,4-d]pyrimidine-6-yl)-furanne-2-ylmé-
15
              thyl)-pyrrolidine-2-carboxylique;
              (1-benzyl-1H-indazole-5-yl)-(6-(3-méthyl-3H-imidazole-4-yl)-pyrido[3,4-d]pyrimidine-4-yl)-aminé;
              N6,N6-diméthyl-N4-(1-pyridine-2-ylméthyl-IH-indazole-5-yl)-pyrido[3,4-d]pyrimidine-4,6-diamine;
              N6,N6-diméthyl-N4-(1-pyridine-3-ylméthyl-IH-indazole-5-yl)-pyrido[3,4-d]pyrimidine-4,6-diamine;
              N4-(1-benzyl-3-méthyl-1H-indazole-5-yl)-N6,N6-diméthylpyrido[3,4-d]pyrimidine-4,6-diamine;
20
              N4-(1-(2-fluoro-benzyl)-1H-indazole-5-yl)-N6,N6-diméthylpyrido[3,4-d]pyrimidine-4,6-diamine;
              N4-(1-(3-fluoro-benzyl)-1H-indazole-5-yl)-N6, N6-diméthylpyrido [3,4-d] pyrimidine-4, 6-diamine;\\
              N4-(1-(4-fluoro-benzyl)-1H-indazole-5-yl)-N6,N6-diméthylpyrido[3,4-d]pyrimidine-4,6-diamine;
              N4-(1-benzènesulfonyl-1H-indole-5-yl) -N6,N6-diméthylpyrido[3,4-d]pyrimidine-4,6-diamine;
              N4-(3-benzènesulfonyl-1H-indole-5-yl)-N6,N6-diméthylpyrido[3,4-d]pyrimidine-4,6-diamine;
25
              (1-benzyl-1H-indazole-5-yl)-(6-imidazole-1-yl-pyrido [3,4-d]pyrimidine-4-yl)-amine;
              (1-benzyl-1H-indazole-5-yl)-(6-(1,2,4-triazole-1-yl)-pyrido[3,4-d]pyrimidine-4-yl)-amine;
              (1-benzyl-1H-indazole-5-yl)-(6-(1,2,3-triazole-2-yl)-pyrido[3,4-d]pyrimidine-4-yl)-aminé;
              (1-benzyl-1H-indazole-5-yl)-(6-(1,2,3-triazole-1-yl)-pyrido[3,4-d]pyrimidine-4-yl)-aminé;
              (1-benzyl-1H-indazole-5-yl)-(6-pyrrolidine-1-yl-pyrido [3,4-d]pyrimidine-4-yl)-aminé;
30
              (1-benzyl-1H-indazole-5-yl)-(6-pipéridine-1-yl)- pyrido [3,4-d]pyrimidine-4-yl)-aminé;
              N4-(1-benzyl-1H-indazole-5-yl)-N6-éthyl-N6-méthyl-pyrido [3,4-d]pyrimidine-4,6-diamine;
              2-(4-(4-(1-benzyl-1H-indazole-5-ylamino)-pyrido[3,4-d]
                                                                             pyrimidine-6-yl)-pipérazine-1-yl)-N-isopropyl-
              acétamide ;
              2-(4-(4-(1-benzyl-1H-indazole-5-ylamino)-pyrido[3,4-d] pyrimidine-6-yl)-pipérazine-1-yl)-1-morpholine-4-yl-
35
              éthanone;
              (1-benzyl-1H-indazole-5-yl)-(6-(5-méthyl-1,3,4-oxadiazole-2-yl)-pyrido[3,4-d]pyrimidine-4-yl)-aminé;
              (1-(3-fluoro-benzyl)-1H-indazole-5-yl)-(6-(5-méthyl-1,3,4-oxadiazole-2-yl)-pyrido[3,4-d]pyrimidine-4-yl)-
              (1-benzyl-1H-indole-5-yl)-(6-chloro-pyrido[3,4-d] pyrimidine-4-yl)-amine;
              (1-benzyl-1H-indazole-5-yl)-(6-(4-méthyl-pipérazine-1-yl)-pyrido[3,4-d]pyrimidine-4-yl)-amine;
40
              (1-benzyl-1H-indazolyl-5-yl)-(6-benzyloxy-pyrido[3,4-d] pyrimidine-4-yl)-amine;
              (1-benzyl-1H-indazole-5-yl)-(6-(5-((2-méthanesulfonyléthylamino)-méthyl)-furanne-2-yl)-pyrido[3,4-d]pyrimi-
              dine-4-yl)-amine;
              acide 5-[4-(1-benzyl-1H-indazole-5-ylamino)-pyrido[3,4-d] pyrimidine-6-yl]-furanne-2-carboxylique;
45
              2-méthanesulfonyl-éthylamide d'acide 5-[4-(1-benzyl-1H-indazole-5-ylamino)-pyrido[3,4-d]pyrimidine-6-yl]-
              furanne-2-carboxylique;
              N4-(1-benzyl-1H-indazole-5-yl)-N6-méthyl-pyrido[3,4-d] pyrimidine-4,6-diamine;
              N4-[1-(4-hydroxybenzyl)-1H-indazole-5-yl)-N6,N6-diméthylpyrido[3,4-d]pyrimidine-4,6-diamine;
```

- 50 et ses sels et produits de solvatation, en particulier ses sels ou produits de solvatation pharmaceutiquement acceptables.
 - 20. Composé suivant la revendication 19, choisi entre les suivants :

```
55
              N4-(1-benzyl)-1H-indazole-5-yl]-N6,N6-diméthyl-pyrido [3,4-d]pyrimidine-4,6-diamine;
              N4-(1-(3-fluorobenzyl)-1H-indazole-5-yl)-N6,N6-diméthylpyrido[3,4-d]pyrimidine-4,6-diamine;
              N4-(1-benzyl-1H-indazole-5-yl)-N6-éthyl-N6-méthyl-pyrido [3,4-d]pyrimidine-4,6-diamine;
              (1-benzyl-1H-indazole-5-yl)-(6-(5-((2-méthanesulfonyléthylamino)-méthyl)-furanne-2-yl)-pyrido[3,4-d]pyrimi-
```

dine-4-yl)-aminé;

5

20

35

40

45

55

N4-(1-benzyl-1H-indazole-5-yl)-N6-méthyl-pyrido[3,4-d] pyrimidine-4,6-diamine;

et ses sels ou produits de solvatation, en particulier ses sels ou produits de solvatation pharmaceutiquement acceptables.

- 21. Formulation pharmaceutique comprenant au moins un composé suivant l'une quelconque des revendications 1 à 20, conjointement avec un ou plusieurs supports, diluants ou excipients pharmaceutiquement acceptables.
- 22. Formulation pharmaceutique suivant la revendication 21, sous une forme posologique unitaire et contenant un composé suivant l'une quelconque des revendications 1 à 21 en une quantité de 70 à 700 mg.
 - 23. Composé suivant l'une quelconque des revendications 1 à 20, destiné à être utilisé en thérapeutique.
- 24. Utilisation d'un composé suivant l'une quelconque des revendications 1 à 20, dans la préparation d'un médicament destiné au traitement d'affections à médiation pour une activité de protéine-tyrosine-kinase.
 - **25.** Utilisation suivant la revendication 24, dans laquelle l'affection est soumise à une médiation par une activité de tyrosine-kinase c-erbB-2 et/ou EGF-r.
 - **26.** Utilisation suivant la revendication 24, dans laquelle l'affection est soumise à une médiation par une activité de tyrosine-kinase c-erbB-2, c-erbB-4 et/ou EGF-r.
- **27.** Utilisation d'un composé suivant l'une quelconque des revendications 1 à 20 dans la préparation d'un médicament destiné au traitement du cancer et de tumeurs malignes.
 - 28. Utilisation d'un composé suivant l'une quelconque des revendications 1 à 20 dans la préparation d'un médicament destiné au traitement du psoriasis.
- 29. Procédé pour la préparation d'un composé de formule (I) répondant à la définition suivant la revendication 1 ou la revendication 2, qui comprend les étapes suivantes :
 - (a) réaction d'un composé de formule (II)

 $X \downarrow N \downarrow A \downarrow (L')_n \qquad (II)$

dans laquelle A, X, n et p répondent aux définitions figurant dans la revendication 1 et L, L' et L' représentent des groupes partants convenables, avec un composé de formule (III)

50 UYH (III)

dans laquelle U et Y répondent aux définitions précitées, pour préparer un composé de formule (IV)

$$X = A \qquad (IV)$$

$$(L')_n$$

10

15

20

25

30

35

45

et ensuite (b) lorsque n est égal à 1, réaction avec un réactif approprié pour substituer le groupe R" sur le noyau A par remplacement du groupe partant L'; et (c) lorsque p n'est pas égal à 0, réaction avec le ou les réactif(s) approprié(s) pour substituer le ou les groupe(s) R¹ sur le noyau A par remplacement du ou des groupe(s) partant (s) L"; et, si cela est désiré, (d) ensuite conversion du composé de formule (I) ainsi obtenu en un autre composé de formule (I) au moyen de réactifs appropriés.

30. Procédé pour la préparation d'un composé de formule (I), répondant à la définition figurant dans la revendication 1 ou la revendication 2, dans lequel le composé de formule (II), répondant à la définition figurant dans la revendication 29, est amené à réagir avec les réactifs appropriés pour substituer les groupes R" et R¹ sur le noyau A par remplacement des groupes partants respectifs, le produit ainsi obtenu de formule (V)

$$X \xrightarrow{L} (R^1)_p$$

$$(R')_n$$

est ensuite amené à réagir avec le composé de formule (III) répondant à la définition figurant dans la revendication 29, puis, si cela est désiré, le composé de formule (I) ainsi obtenu étant converti en un autre composé de formule (I).

31. Procédé suivant la revendication 30, dans lequel le composé de formule (V)

$$X = \begin{pmatrix} \begin{pmatrix} \begin{pmatrix} R^1 \end{pmatrix}_p \\ \begin{pmatrix} R^n \end{pmatrix}_p \end{pmatrix} \end{pmatrix}$$

$$(R^n)_p$$

est préparé par réaction d'un composé de formule (VI)

avec des réactifs appropriés pour substituer le ou les groupe(s) R1 et le groupe R" sur le noyau A pour préparer

un composé de formule (VII)

5

20

25

30

35

40

45

50

55

(VII) 10

avec ensuite une réaction pour incorporer le groupe partant L.

- 15 32. Procédé pour la préparation d'un composé de formule (I) répondant à la définition suivant la revendication 1 ou la revendication 2, qui comprend les étapes suivantes :
 - (a) réaction d'un composé de formule (IV) répondant à la définition figurant dans la revendication 29 avec un ou plusieurs réactif(s) approprié(s) pour préparer un composé
 - dans lequel le groupe L' (lorsque n est égal à 1) ou le ou les groupe(s) L" (lorsque p n'est pas égal à 0) sont remplacés par un groupe Z fonctionnalisé de manière appropriée ;
 - et (b) ensuite conversion du groupe Z en le groupe R" lorsque L' a été remplacé ou en le groupe R1 lorsque L" a été remplacé au moyen d'un ou plusieurs réactif(s) approprié(s) ; (c) réaction avec des réactifs appropriés pour substituer l'autre des groupes R1 et R" sur le noyau A par remplacement du groupe partant L" ou L' restant, respectivement, s'il est présent ; et, si cela est désiré, (d) ensuite conversion du composé de formule (I) ainsi obtenu en un autre composé de formule (I) au moyen de réactifs appropriés.
 - 33. Procédé pour la préparation d'un composé de formule (I) répondant à la définition suivant la revendication 1 ou la revendication 2, qui comprend les étapes suivantes :
 - (a) réaction d'un composé de formule (II) répondant à la définition figurant dans la revendication 29 avec un ou plusieurs réactif(s) approprié(s) pour préparer un composé dans lequel le groupe L' (lorsque n est égal à 1) ou le ou les groupe(s) L'' (lorsque p n'est pas égal à 0) sont remplacés par un groupe Z fonctionnalisé de manière appropriée;
 - et (b) ensuite conversion du groupe Z en le groupe R" lorsque L' a été remplacé ou en le groupe R1 lorsque L" a été remplacé au moyen d'un ou plusieurs réactif(s) approprié(s); (c) réaction avec des réactifs appropriés pour substituer l'autre des groupes R1 et R" sur le noyau A par remplacement du groupe partant L" ou L' restant, respectivement, s'il est présent ; (d) réaction du produit ainsi obtenu avec le composé de formule (III) répondant à la définition figurant dans la revendication 29 ; et, si cela est désiré, (e) ensuite conversion du composé de formule (I) ainsi obtenu en un autre composé de formule (I) au moyen de réactifs appropriés.