

Physikalisches Institut der Universität Bayreuth PPD

Dünnfilmprozessierungstechniken und Filmhomogenität

Lehrstuhl Experimentalphysik VII Herzig Group – Dynamik und Strukturbildung

Autoren: Adrian Ebert, Christopher Greve

Version vom 8. April 2019

Inhaltsverzeichnis

1	Fragen	zur Vorbereitung	3
2	Labors	icherheitsquiz	4
3	Einführung		5
	3.1	Weißlichtreflektometrie	5
	3.2	Spincoating	6
	3.3	Der Aufbau	7
	3.4	Chauchy-Gleichung	9
4	Probenpräparation		10
	4.1	Substrate zuschneiden	10
	4.2	Substrate reinigen	10
	4.3	Lösung ansetzen	11
	4.4	Spincoating	11
5	Vermessung der Proben		13
	5.1	Reflexionsmessung	14
	5.2	Transmissionsmessung	15
6	Auswertung		16
	6.1	Einfluss der Messmethode (Reflexion/Transmission)	16
	6.2	Rotationsgeschwindigkeitsabhängigkeit von Schichtdicken	16
	6.3	Konzentrationsabhängigkeit von Schichtdicken	16
	6.4	Fazit	17
7	Literat	ur	18

1 Fragen zur Vorbereitung

Zeichnen Sie qualitativ den Real- und Imaginärteil des komplexen Brechungsindexes in ein Diagramm und erklären Sie daran normale und anormale Dispersion.

Zeigen Sie, dass für elektromagnetische Strahlung, die senkrecht von einem Medium auf einen dünnen Film auf einem Substrat trifft, folgende Bedingung für konstruktive Interferenz gilt:

$$\lambda = \frac{2nd}{m}, m\epsilon \mathbb{N} \tag{1}$$

 λ : Wellenlänge des einfallenden Lichts

n: Brechungsindex der dünnen Schicht

d: Dicke der dünnen Schicht

m: Beugungsordnung

Leiten Sie den Reflexionsgrad eines isotropen Materials für eine senkrecht einfallende Welle her. Betrachten Sie dazu eine in x-Richtung laufende Welle, die an einem Medium reflektiert wird, dessen Grenzfläche in der yz-Ebene liegt. Als Brechungsindex kann allgemein $\tilde{n}=n+i\kappa$ angesetzt werden. Die Stetigkeit der Tangentialkomponenten des E- und H-Feldes kann als bekannt vorausgesetzt werden. Stellen Sie die ebenen Wellen für das E- und H-Feld der einfallenden, reflektierten und eindringenden Wellen auf. Der Reflexionsgrad ist definiert als das Verhältnis von reflektierter zu einfallender Intensität. Es gilt:

$$R = \frac{(n-1)^2 + \kappa^2}{(n+1)^2 + \kappa^2} \tag{2}$$

Daraus ist direkt ersichtlich, dass die Reflexion mit steigender Absorption zunimmt. Nützliche Beziehungen:

$$\vec{E} = -\frac{\vec{k}}{k} \times \vec{H} \tag{3}$$

$$\vec{H} = -\frac{\vec{k}}{k} \times \vec{E} \tag{4}$$

$$k = \frac{\omega}{c} \sqrt{\mu \eta} = \frac{\omega}{c} \tilde{\mathbf{n}} \tag{5}$$

Im Medium gilt:

$$\vec{k} \times \vec{E} = \frac{\omega}{c} \mu \vec{H} \tag{6}$$

- Was sagt die Stokes Relation qualitativ aus? Welche Annahmen werden an das Material gestellt?
- Was ist ein Substrat? Aus welchen Materialien bestehen g\u00e4ngige Substrate organischer Halbleiter?
- In welchem Bereich absorbiert Glas, in welchem Silizium und wie schauen die jeweiligen Dispersionsverläufe aus? Was ist SiO_2 und was kann daraus durch thermische Behandlung hergestellt werden?
- Wie schauen die Spektren der verwendeten Lampen (siehe Aufbau, Kap. 3.4) im Spektrometer aus?
- Was ist ein Stepwafer und woraus besteht er?

2 Laborsicherheitsquiz

Welche Aussage(n) sind richtig? Verbessern Sie falsche Aussagen. Dieses Quiz dient Ihrer Sicherheit und muss deshalb <u>vor</u> Beginn des Praktikums durchgeführt werden.

Schutzhandschuhe...

- sind teuer und sollten daher nur sparsam verwendet und selten gewechselt werden, was gleichzeitig die Reproduzierbarkeit der durchgeführten Arbeitsschritte erhöht.
- schützen vor allen Chemikalien.
- müssen nicht gewechselt werden, wenn sie mit Chemikalien in Berührung kommen, immerhin sind es Schutzhandschuhe.

Schutzbrillen...

- müssen prinzipiell nicht von Brillenträgern getragen werden.
- müssen im Labor nur getragen werden, wenn gerade mit Chemikalien hantiert wird.
- sollten vor jeder Benutzung gründlich mit Ethanol und anschließend mit Seife ausgewaschen werden.

Laborkittel...

- sind nicht zwingend nötig, schützen die Kleidung aber vor Flecken.
- sollten möglichst eng sein, damit keine Chemikalien oder Gegenstände in den Kragen fallen können.
- schützen umfangreich vor allen Chemikalien, wodurch etwaige Spritzer oder Verunreinigungen egal sind.

Bei Arbeiten unter dem Abzug ist zu beachten, dass...

- die Scheibe immer möglichst weit offen stehen sollte, um die Sicht nicht zu versperren und die Bewegungsfreiheit nicht zu behindern.
- alle anfallenden Abfälle immer sofort in den Papiermüll geworfen werden sollten um den Arbeitsbereich nicht zu verunreinigen.
- Chemikalien niemals unter dem Abzug umgefüllt werden dürfen, da der Arbeitsplatz sonst verunreinigt werden könnte.

Generell gilt im Labor...

- alle Chemikalien dürfen im Abfluss entsorgt werden, da die Universität Bayreuth extra hierfür ein Klärwerk unterhält.
- bei Unsicherheiten im Arbeitsablauf darf prinzipiell erst selbst rumprobiert werden.
- alle in diesem Versuch verwendeten Chemikalien sind absolut ungefährlich.
- Fragen zur Laborsicherheit muss man immer vor Start des Experiments abklären.

3 Einführung

3.1 Weißlichtreflektometrie

Weißlichtreflektometrie nutzt Interferenzeffekte um optische Eigenschaften von lichtdurchlässigen Materialien zu untersuchen. Die Dicke dieser sog. dünnen Filme reicht dabei von einigen Nano- bis Mikrometern. Mit Weißlichtreflektometrie lassen sich typischerweise der Brechungsindex, die Filmdicke und die Oberflächenbeschaffenheit bestimmen. Die vergleichsweise simple, nicht destruktive Art der Messung und der geringe Aufwand der Probenpräparation machen die Weißlichtreflektometrie für Laboranwendungen besonders attraktiv.

Eine elektromagnetische Welle, die durch ein absorbierendes Material propagiert kann beschrieben werden durch:

$$\Psi(x) = A \cdot \cos(\frac{2\pi nx}{\lambda}) \cdot \exp(\frac{-2\pi kx}{\lambda}) \tag{7}$$

A: Amplitude

n: Brechungsindex des Materials

 λ : Wellenlänge

x: Ort

k: Extinktionskoeffizient

Auf Grund der Dispersion muss die Wellenlängenabhängigkeit des Brechungsindexes berücksichtigt werden ($n \to n(\lambda)$). Da die Messungen im Versuch mit breitbandigem weißem Licht durchgeführt werden, kann der Reflexionsgrad in Abhängigkeit der Wellenlänge angegeben werden. Dadurch ist es möglich den wellenlängenabhängigen Brechungsindex zu bestimmen. Ist die Dispersionsrelation $n(\lambda)$ des Materials bereits bekannt, so kann durch den Reflexionsgrad die Schichtdicke berechnet werden.

Auftretende Interferenzeffekte führen nach Gl. 1 zu einem oszillatorischen Verlauf der Reflektivität in Abhängigkeit der Wellenlänge. Ist m eine ganze Zahl, so handelt es sich um konstruktive Interferenz. Die Formel für destruktive Interferenz erhält man bei den Hälften der ganzen Zahlen. Abb.1 zeigt die Reflektivität für unterschiedlich dicke Filme. Es ist ersichtlich, dass die Anzahl und Position der Extrema direkt von der Schicktdicke abhängt. Für 500 nm Filmdicke ist zusätzlich die reflektierte Intensität der ersten beiden Durchgänge durch den Film aufgetragen. Die Orte der Extrema bleiben für eine höhere Anzahl an Brechungen gleich, jedoch verstärkt sich die Intensität.

Abbildung 1: Reflektivität in Abhängigkeit der Wellenlänge für verschiedene Schichtdicken. In orange gezeigt: Reflektivität beruhend auf den ersten beiden reflektierten Wellen in der Dünnschicht. In blau gezeigt: Reflektivität nach mehrmaliger Reflektion in Dünnschicht. Wie ersichtlich verstärkt jeder Reflexionsvorgang den Effekt positiver, wie auch destruktiver, Interferenz. ²

3.2 Spincoating

Beim Spincoating wird eine Lösung mit einer Pipette auf ein sich drehendes Substrat aufgetragen. Man unterscheidet hierbei zwischen dynamischem und statischem Spincoaten. Beim statischen Spincoaten wird das Material aufgebracht und die Rotation des Substrats anschließend durchgeführt. Beim dynamischen Spincoating hingegen wird das Material während der Rotation aufgetragen. In diesen Versuch wird ausschließlich statisches Spincoating durchgeführt.

 $^{^2} https://de.wikipedia.org/w/index.php?title=Reflektometrische_D\%C3\%BCnnschichtmessung\&oldid=179351082$

Eine bekannte Relation zur Beschreibung der Schichtdicke einer gespincoateten Polymerprobe ist die Schubert Gleichung (vgl. Ruderer et al., 2009):

$$d = A \cdot \left(\frac{1950 \frac{1}{min}}{\omega}\right)^{\frac{1}{2}} \left(\frac{c_0}{20 \frac{g}{l}}\right) \left(\frac{M_W}{100 \frac{kg}{mol}}\right)^{\frac{1}{4}} \tag{8}$$

Diese beschreibt die Abhängigkeit der Schichtdicke d eines Polymerfilms beim Spincoaten von der Rotationsgeschwindigkeit ω , der Polymerkonzentration c_0 der Ausgangslösung und des Molekulargewichts M_W . Der Skalierungsfaktor A ist abhängig von Umweltparametern wie Temperatur und Luftfeuchtigkeit. Personenbedingte Änderungen (z.B. beim Aufbringen der Polymerlösung) beeinflussen ebenso die Konstante A.

3.3 Der Aufbau

In diesem Aufbau werden Lichtleiter verwendet. Bedenken Sie, dass Glasfasern einen kritischen Krümmungsradius besitzen und brechen können!

Zur Messung wird ein integrierter Messaufbau aus Lampen und Spektrometer verwendet. Der Hauptschalter des Geräts befindet sich auf der Rückseite, der Shutter und die Schalter zum Zünden der Lampen auf der Vorderseite. Zum Messen wird ein UV-Vis-Spektrometer verwendet, welches sich am Ende des Lichtleiters befindet. Um einen möglichst großen spektralen Bereich betrachten zu können, werden als Weißlichtquelle eine Halogen- und eine Deuteriumlampe verwendet, die unabhängig voneinander ein und ausgeschaltet werden können. Beide Lampen sollten mindestens 20 Minuten aufwärmen um stabil zu laufen. Obwohl das Gerät meist als Reflektometer bezeichnet wird, kann es sowohl zur Reflexionsmessung als auch zur Transmissionsmessung verwendet werden. Im Versuch werden beide Messgeometrien verwendet.

Die Deuteriumlampe erzeugt Licht im UV-Bereich. Blicken Sie nicht direkt in den Lichtstrahl oder auf die Reflexion. Öffnen Sie den Shutter der Lampe nur, wenn es nötig ist.

Die Glasfasern besitzen einen kritischen Krümmungsradius. Wird dieser unterschritten, können sie trotz Metallmantel brechen! Für die Reflexionsmessung wird eine Faser verwendet, welche auf einer Seite drei Enden (Eingang Lampen, Ausgang UV-Vis Spektrometer, Ausgang NIR-Spektrometer) und auf der anderen Seite eine Kombination aus Ein- und Auskopplung besitzt. Das Einzelende wird im Probenhalter positioniert (s. Abb. 2). Der Abstand zwischen dem Probenhalter und der Probe verändert die Intensität und soll etwa einen Zentimeter betragen. Der Abstand sollte während der Messungen nicht variiert werden. Sie können die detektierte Intensität durch die Integrationszeit innerhalb der Software anpassen. Stecken Sie nun die drei Einzelenden an. Das unmarkierte Ende wird mit der Weißlichtquelle verbunden, das rot markierte Ende mit dem UV-Vis-Spektrometer und das blau markierte Ende mit dem NIR-Spektrometer (s. Abb. 3). Für die Transmissionsmessung werden zwei gleiche Fasern mit jeweils zwei Enden verwendet. Davon wird je ein Ende an der Weißlichtquelle angeschlossen und führt zum Transmissions-Probenhalter (s. Abb. 2), während die andere Faser vom Probenhalter zum verwendeten UV-VIS Spektrometer führt.

Abbildung 2: Die Abbildung zeigt den Transmissions- und Reflektionsprobenhalter. Der grüne Transmissionsprobenhalter kann mittels einer Kappe (orange) vor Umgebungslicht abgeschirmt werden.

Abbildung 3: Die Abbildung zeigt die Front des Messgeräts. Markiert ist der Eingang zum NIR-Spektrometer, der Ausgang für Halogen- und Deuteriumlampe, sowie die zugehörigen Schalter inkl. Shutter.

Vor der eigentlichen Messung muss ein Dunkel- und ein Referenzspektrum aufgenommen werden. Die Reflektivität errechnet sich durch:

$$R = \frac{Meas - D}{Ref - D} \cdot R_{substrate} \tag{9}$$

Meas: Gemessenes Spektrum Ref: Referenzspektrum D: Dunkelspektrum

 $R_{substrate}$: Reflektivität des unbehandelten Substrats.

Wird aus dem im Messprogramm geladenen Dispersionsverlauf berechnet.

3.4 Chauchy-Gleichung

Der Brechungsindex kann mit Hilfe der Cauchy-Gleichung als Reihendarstellung angegeben werden:

$$n(\lambda) = B_0 + \sum_{j=1}^{i} \frac{B_j}{\lambda^{2j}} \tag{10}$$

 $B_j, j \in [0, i]$: Cauchy-koeffizienten λ : Wellenlänge

Meistens werden zur Berechnung der Wellenlänge nur die ersten zwei Glieder herangezogen. Somit lautet die Gleichung:

$$n(\lambda) = A + \frac{B}{\lambda^2} + \frac{C}{\lambda^4} \tag{11}$$

Mit Hilfe dieses Modells kann der Brechungsindex eines unbekannten Materials gefittet werden. Diese Gleichung gilt in der Form allerdings nur für idealisierte, das heißt isotrope und transparente Materialien, was nicht für alle Polymerfilme der Fall ist.

4 Probenpräparation

Sie werden in diesem Praktikumsversuch die zu vermessenden Proben selbst präparieren. Dies macht einen wesentlichen Teil des Versuchs aus und soll Ihnen die Möglichkeit geben Erfahrungen im Chemielabor zu sammeln. Generell beinhaltet die Probenpräparation viele Arbeitsschritte, wie sie standardmäßig in der Arbeitsgruppe durchgeführt werden.

Substrate sollten immer nur am Rand und auf gar keinen Fall ohne Handschuhe berührt werden. Verwenden Sie soweit möglich eine Plastikpinzette. Gelangt Fett von der Haut auf das Substrat, wird dieses verunreinigt, selbst wenn es nur am Rand oder auf der Rückseite berührt wird (Fett "kriecht").

4.1 Substrate zuschneiden

Die Substrate müssen zunächst in quadratische Stücke zugeschnitten werden. Dabei sind folgende Schritte durchzuführen:

- Präparieren Sie den Arbeitsplatz mit einer Metallplatte und legen sie ein sauberes Blatt Papier darauf. Die Metallkante dient im Folgenden als Bruchkante.
- Die Substrate sollen in quadratische Stücke zugeschnitten werden. Dazu wird ein Glassubstrat als Abstandshalter und Lineal verwendet. Benutzen Sie immer das gleiche Substrat als Abstandshalter und Lineal, da Sie dieses direkt berühren müssen.
- Ritzen Sie das Substrat mit einem Glasschneider an. Hierzu ist kaum Druck nötig.
- Legen Sie den angeritzten Bereich des Substrat auf die Kante der Metallplatte. Schlagen Sie mit der Rückseite des Glasschneiders und wenig Kraftaufwand auf das überstehende Stück des Substrats.
- Bearbeitete Substratstücke werden in die vorbereiteten Substratboxen gelegt.

4.2 Substrate reinigen

Bevor die Polymerlösungen auf die Substrate aufgebracht werden, müssen diese gereinigt werden. Dies dient der Entfernung von Staub, sowie hydrophilen und hydrophoben Verunreinigungen. Die Reinigung besteht dabei aus verschiedenen Bädern im Ultraschallbad. Verwenden Sie jeweils die gekennzeichneten Bechergläser für die jeweiligen Reinigungslösungen!

- Für den ersten Reinigungsschritt wird eine Alconox-Lösung aus 500 ml VE-Wasser und 8 mg stark alkalischem Reinigungsmittel (Alconox) angesetzt.
- Die Substrate werden in einem Probenhalter plaziert, welcher in das Becherglas mit der Reinigungslösung gestellt wird.
- Das Becherglas mit den Substraten wird für 10 Minuten in ein Ultraschallbad gestellt.
- Der Probenhalter wird dem Becherglas entnommen und durch ein Gefäß mit VE-Wasser geschwenkt.
- Anschließend werden die Substrate im Probenhalter gründlich von beiden Seiten mit VE-Wasser abgespült. Verwenden Sie hierzu ein kleineres mit VE-Wasser gefülltes Becherglas. Beachten Sie, dass die Substrate verunreinigt werden, wenn sie diese mit etwas anderem als dem Reinigungsmedium berühren.

■ Wiederholen Sie vorherige Reinigunsschritte mit Ultraschallbädern in VE-Wasser und anschließend in Isopropanol. Achten Sie beim Abspülen darauf, die Flüssigkeit immer mit dem dafür vorgesehenen und beschrifteten Gefäß aufzufangen. So sollten niemals Spuren der Alconoxlösung in das Gefäß mit Isopropanol gelangen und das Isopropanol wiederum nicht in das VE-Wasserbad.

■ Zum Trocknen werden die Substrate mit Stickstoff abgeblasen, da Druckluft durch Maschinenöl verunreinigt ist. Am einfachsten ist es die Kante des Substrats auf ein Tuch zu legen und die Flüssigkeit von oben in das Tuch zu blasen. Halten Sie die Substrate am unteren Rand mit einer Pinzette fest, sodass möglicher Dreck auf der Pinzette nicht über das gesamte Substrat gespült wird.

4.3 Lösung ansetzen

Im nächsten Schritt setzen wir die Polymerlösung (Polystyrol PS, in Chlorbenzol CB), mit der die Proben beschichtet werden, an. Schätzen Sie zunächst ab wie viel Volumen Sie benötigen. Zur Benetzung eines einzelnen Substrats können Sie ein Volumen von 150 µl annehmen. Bedenken Sie, dass Sie etwas mehr Volumen als nötig ansetzen, um etwaige Fehler ausgleichen zu können.

- Das PS-Granulat wird mit einem zuvor gereinigten Plastikspatel entnommen und mit der Feinwaage in ein Probenfläschchen abgewogen.
- Die Zielkonzentration von PS zu CB beträgt 24mg/ml.
- Das CB wird unter dem Abzug mit einer Pipette direkt in das Probenglas gefüllt.
- Das PS sollte sich selbstständig lösen. Gelegentliches Schütteln beschleunigt den Vorgang. Achten Sie darauf, dass die Polymerlösung nicht den Deckel benetzt!

Bei einigen Lösungsmitteln ist es empfehlenswert die Pipette zuerst zu benetzen, da das Lösungsmittel ansonsten nicht gehalten werden kann. Dazu wird das Lösungsmittel vor dem eigentlichen Pipettieren aufgenommen und wieder heraus gedrückt.

Beachten Sie, dass diese Pipetten zwei Druckpunkte besitzen. Zum Aufnehmen wird üblicherweise nur bis zum Ersten gedrückt, zum Abgeben bis zum Zweiten.

4.4 Spincoating

Die gereinigten Substrate werden nun durch statisches Spincoaten mit der eben erstellten Polymerlösung beschichtet.

- Der Spincoater wird ausschließlich unter dem Abzug verwendet.
- Kleiden Sie zur Erleichterung der späteren Reinigung den Bereich um die Drehscheibe mit Alu-Folie aus. Achten Sie darauf, dass die Folie auf keinen Fall am Drehteller schleift.
- Platzieren Sie ein Substrat mittig auf dem Drehteller. Zur Anpassung der Position stehen Ihnen steckbare Metallbolzen zur Verfügung. Stellen Sie mit diesen sicher, dass der Mittelpunkt des Substrats mit der Rotationsachse des Spincoaters übereinstimmt.
- Mit einer Pipette werden 150 μl der Polymerlösung auf das Substrat (direkt im noch

ausgeschaltetem Spincoater) aufgebracht. Versuchen Sie das gesamte Substrat mit einer Bewegung zu benetzen ohne es direkt zu berühren. Hetzen Sie sich dabei nicht, aber versuchen Sie einen gewissen Rhythmus zu entwickeln und ihn für alle Proben beizubehalten.

- Beim Spincoater kann die Drehzahl (rpm: rotations per minute), sowie die Dauer eingestellt werden.
- Entfernen Sie Polymerrückstände, falls die Rückseite während der Rotation verunreinigt wurde.
- Beschriften Sie nach der Präparation ihre Proben auf der Substratrückseite. Denken Sie daran, dass die Proben auch in Transmission vermessen werden sollen.
- Der dünne Film ist meist kaum erkennbar. Unter Umständen kann die Homogenität jedoch überprüft werden, wenn die Probe gegen das Licht gehalten wird.
- Serie 1: Präparieren Sie Filme mit einer Konzentration von 24mg/ml bei 500rpm, 750rpm, 1000rpm, 2000rpm, 3000rpm, 4000rpm, 5000rpm und 6000rpm. Starten Sie mit den hohen Umdrehungszahlen und einer Rotationszeit von 30s. Für kleine Umdrehungszahlen muss die Trocknungszeit auf mehrere Minuten erhöht werden.
- Serie 2: Präparieren Sie eine Reihe Filme bei 2000rpm und verringern Sie sukzessive die Konzentration der verwendeten Lösung. Starten Sie bei 24mg/ml und enden Sie bei 1mg/ml. Wählen Sie eine ausreichende Anzahl an Schritten (min. 8). Die Konzentrationsabstände müssen nicht exakt äquidistant gewählt werden.

5 Vermessung der Proben

Nach der Präparation Ihrer Proben, werden Sie diese via Weißlichtreflektometrie vermessen. Dazu wird Nanocalc als Software verwendet. Berühren Sie während den Messungen ihre Proben niemals direkt, sondern nur mit einer passenden Pinzette und unter Verwendung von Handschuhen. Notieren Sie sich nach Messung die Schichtdicken, sowie die zugehörige Fitgüte Ihrer Proben. Speichern Sie ihre Messungen grundsätzlich ab. Sie benötigen die Rohdaten und Fitwerte für Ihre Auswertung.

Abbildung 4: Screenshot der Nanocalc Software, Hauptansicht.

Abbildung 5: Screenshot der Nanocalc Software, edit layer structure submenu.

5.1 Reflexionsmessung

- Schalten Sie das Reflektometer über den Hauptschalter auf der Rückseite ein.
- Stecken Sie falls nötig die Kabel zur Reflexionsmessung an die zuvor benannten Anschlüsse.
- Zünden Sie die beiden Lampen und beachten Sie die Aufwärmphase. Achten Sie darauf, dass der Shutter geschlossen ist.
- Öffnen Sie die Nanocalc Software.
- Gehen Sie auf edit structure (Abb. 5) und passen Sie die Struktur an. D.h. wählen Sie das passende Material für Ihr Substrat, die Probe und die Referenz. Dadurch werden die Richtigen Dispersionsverläufe geladen, aus denen der Reflexionsgrad bestimmt wird. Zusätzlich kann die geschätzte Schichtdicke mit Toleranzbereich angegeben werden. Genaueres über verwendete Substrate und Materialien innerhalb der Software wird vom Betreuer erläutert.
- Vor jeder Messung wird ein Dunkelspektrum (*Darkspectrum*) aufgenommen. Klicken Sie dazu bei geschlossenem Shutter auf die *Dark* Schaltfläche.
- Anschließend wird eine Referenzprobe vermessen. Platzieren Sie die Referenz mit einer schwarzen Unterlage auf dem Probentisch und öffnen Sie den Shutter. Klicken sie auf die conti (wie continous) Schaltfläche und anschließend auf reference. Das Spektrometer misst nun durchgehend. Passen Sie die Integrationszeit an, sodass das Signal zwischen 70% und 90% Vollauslastung liegt. Ein Übersteuern wird durch Data Overflow angezeigt. Klicken Sie erneut auf conti und schließen Sie den Shutter.
- Platzieren Sie Ihre Probe auf dem Probentisch. Öffnen Sie den Shutter und klicken Sie auf measure. Der Reflexionsgrad wird direkt in rot angezeigt. Schließen Sie den Shutter. Der zur Berechnung der Schichtdicke betrachtete Bereich kann mit dem schwarzen Balken über dem Graphen angepasst werden. Im Praktikum wird ausschließlich im Bereich von 300-800 nm gemessen.
- Mit der *simulate* Schaltfläche wird der Reflexionsgrad für die angegebene Schichtdicke unabhängig von den Messdaten simuliert. Die geschätzte Schichtdicke kann mit einem Schieberegler angepasst und somit der simulierte Verlauf (schwarz) über den tatsächlichen (rot) geschoben werden. Dies dient der Verifizierung der gemessen Verläufe.
- Durch einen Klick auf *analyze* wird die Schichtdicke berechnet.
- Die gemessenen Daten werden nicht automatisch gespeichert. Zum Speichern klicken Sie auf File und speichern Sie sowohl das Referenz- als auch das Dunkelspektrum, Ihre Rohdaten (Export Raw Data) und die Nanocalc Datei (Save as File). Nur in der Nanocalc Datei wird festgehalten, welche Integrationszeiten und welche Struktur Sie gewählt haben. Die Nanocalc Datei kann mittels Nanocalc geöffnet werden.

Probenmessungen

Vermessen Sie Ihre gespincoateten Proben mittels Reflexion an jeweils sechs Positionen.

Schätzen Sie die Größe des Strahls ab. Mit welcher Funktion würden Sie den Querschnitt beschreiben? Wie gut lässt sich die Messposition definieren?

5.2 Transmissionsmessung

Die Transmissionsmessung verläuft analog zur Reflexionsmessung, weshalb die Anleitung hier verkürzt wurde. Ihnen stehen die selben Funktionen zur Verfügung, jedoch wird der oben beschriebene Transmissionsprobenhalter (s. Abb. 2) verwendet.

- Stecken Sie den Lichtleiter für die Reflexionsmessung ab und die Lichtleiter für die Transmissionsmessung an.
- Stellen Sie durch Strg.+ T auf Transmissionsmessung um. Wenn Sie eine Fehlermeldung erhalten, gehen Sie auf edit structure, und erstellen Sie einen thick layer. Versuchen Sie erneut auf den Transmissionsmodus umzustellen. Anschließend kann der thick layer wieder entfernt werden. Dies ist eine Eigenart der Software.
- Nehmen Sie ein Dunkel- und Referenzspektrum auf. Passen Sie die Integrationszeit für die veränderte Messgeometrie an.
- Vermessen Sie Ihre Probe wie zuvor und speichern Sie die Daten ab.

Probenmessungen

Vermessen Sie Ihre gespincoateten Proben mit Transmission an jeweils sechs Positionen. Sie können hierzu den Probenhalter in kleinen Schritten zwischen den Messungen bewegen. Achten Sie darauf, dass der Strahlengang durch den Probenhalter oder die Beschriftung der Proben nicht verändert wird! Um eine Veränderung der einfallenden Intensität auszuschließen, sollte die Zeit zwischen Refernz und Messung minimal gehalten werden. Achten Sie zudem darauf, die Glasfasern nicht zu berühren. Dies verändert den Strahlengang und somit die detektierten Intensitäten.

6 Auswertung

6.1 Einfluss der Messmethode (Reflexion/Transmission)

Stellen Sie zunächst die gemessenen Transmissions- und Reflexionsverläufe graphisch dar und diskutieren Sie wie Rotationsgeschwindigkeit und Polymerkonzentration diese beeinflussen.

Berechnen Sie den Mittelwert und die Standardabweichung der Schichtdicken d jeder einzelnen Probe und vergleichen Sie anschließend graphisch wie diese mit den aufgezeichneten Fitgüten χ skaliert. Wie beurteilen Sie die Homogenität der Proben? Verwenden Sie als Maß dafür die Heterogenität h:

$$h = \frac{\langle d \rangle}{std(d)} \tag{12}$$

Dabei bezeichnet < d > den Mittelwert der ermittelten Schichtdicke d und std(d) die Standardabweichung der Schichtdicke d. Vergleichen Sie Transmissions- und Reflexionsmessungen für geringe Schichtdicken d. Diskutieren Sie welche Messgeometrie die besseren Ergebnisse liefert.

6.2 Rotationsgeschwindigkeitsabhängigkeit von Schichtdicken

Stellen Sie die Schichtdicken d ihrer Proben mit konstanter Konzentration (24mg/ml) für die Transmissions- und Reflexionsmessungen in Abhängigkeit der Rotationsgeschwindigkeit des Spincoaters dar und diskutieren Sie die Ergebnisse (Fit mittels Schubert-Gleichung!). Extrapolieren Sie ihre Ergebnisse für kleinere und größere Rotationsfrequenzen. Was für Grenzwerte sind zu erwarten und wodurch ergeben sich diese? Welcher Präparationsmethode entspricht das Limit für Rotationsgeschwindigkeiten gegen Null? Wird für dieses Limit eine bessere oder schlechtere Filmhomogenität erwartet?

6.3 Konzentrationsabhängigkeit von Schichtdicken

Stellen Sie die Schichtdicken d ihrer Proben mit konstanter Rotationsgeschwindigkeit (2000rpm) für die Transmissions- und Reflexionsmessungen in Abhängigkeit der Konzentration der Polymerlösung dar und diskutieren Sie die Ergebnisse. Berechnen Sie mittels zweier linearer Fits die kritische Überlapp-Konzentration c_0 der verwendeten Polystyrollösung.

Berechnen Sie ausgehend vom charakteristischen Flory Verhältnis von $C_{\infty}=9.5$ für Polystyrol (vgl. J. Mark, 2007) die *root-mean-square end-to-end distance* R_{rms} über folgende Relation:

$$R_{rms} = \sqrt{C_{\infty} n l^2} \tag{13}$$

Dabei bezeichnet n die Anzahl an Bindungen im Polymerrückgrat und l die Länge der Rückgratbindung. Nehmen Sie diese mit $l=1.54\,\mathrm{\AA}$ an.

Berechnen Sie außerdem ausgehend von Daum et al. (1969) die root-mean-square end-to-end distance für ihre Polystyrollösung. Verwenden Sie dazu die von Ihnen ermittelte kritische Überlappkonzentration c_0 . Wodurch können sich Differenzen ergeben?

Berechnen Sie nun für die bekannten Polymer Modelle *random coil, wormlike chain* und *rod-like* (Angabe siehe Q.Ying, B. Chu, 1987) die jeweils charakteristischen Größen der Modelle. Welches Modell passt mit ihren Daten am besten überein? Diskutieren Sie woher mögliche Unterschiede stammen und inwiefern sich die jeweiligen Modelle unterscheiden.

6.4 Fazit

Welche Messsmethode liefert reproduzierbare Ergebnisse? Welche Fehler haben Sie womöglich während des Praktikums gemacht und wie hätten diese vermieden werden können?

7 Literatur

Die zur Auswertung benötigten Referenzen sind beim Betreuer erhältlich. Bei den genannten Büchern handelt es sich um weiterführende Literatur, die in der Universitätsbibliothek ausgeliehen werden kann.

- M. A. Ruderer, E. Metwalli, W. Wang, G. Kaune, S.V.Roth, P. Müller-Buschbaum, "Thin Films of Photoactive Polymer Blends". ChemPhysChem 2009, vol. 10, pp. 664 671
- D. W. Schubert and T. Dunkel, "Spin coating from a molecular point of view: Its concentration regimes, influence of molar mass and distribution". Materials Research Innovations, vol. 7, no. 5, pp. 314–321, 2003.
- U. Daum, J. L. S. Wales, "Critical Concentrations in Polystyrene Solutions". Polymer Letters, 1969, vol. 7, pp. 459-462
- Q. Ying, B. Chu, "Overlap Concentrations of Macromolecules in Solution". Macromolecules, 1987, vol. 20, pp. 362-366
- Theoretische Physik Band 3: Klassische Elektrodynamik, W. Greiner, 1978
- Physical Properties of Polymers Handbook, J. E. Mark, 2007, p. 445-452