PROYECTO COMPILANDO CONOCIMIENTO

ALGEBRA LINEAL

Espacios Vectoriales

Espacios Vectoriales

AUTOR:

Rosas Hernandez Oscar Andres

1. Sistemas de Coordenadas

1.1. ¿Qué son?

Sea una $B = \{v_1, v_2, \dots, v_n\}$ una base de un Espacio Vectorial V. Sean $v \in V$. Sean $\alpha_1, \alpha_2, \dots, \alpha_n \in K$ tales que:

$$v = \sum_{i=1}^{n} \alpha_i v_i \tag{1}$$

Si esto pasa, entonces podemos decir que $\alpha_1, \alpha_2, \dots, \alpha_n$ son únicos.

1.2. Demostración

- Propon otros escalares que cumplen con generar al mismo vector
- Pero como son base, son linealmente independientes, por lo tanto ambos escalares deben ser iguales

1.3. Coordenadas

Sea una $B=\{v_1,v_2,\cdots,v_n\}$ una base de un Espacio Vectorial V. Sean $v\in V$. Sean $\alpha_1,\alpha_2,\cdots,\alpha_n\in K$ tales que $v=\sum_{i=1}^n\alpha_iv_i$.

Entonces podemos definir las coordenadas de nuestro pequeño e inocente v en la Base B como:

$$[v]_B = \begin{pmatrix} \alpha_1 \\ \alpha_2 \\ \dots \\ \alpha_n \end{pmatrix} \in K^n \tag{2}$$

1.3.1. Ejemplo:

Considerere a $B = \{(1+x), (1+x^2), (x+x^2)\}$ como una base de un Polinomio de $\mathbb{R}_2[x]$.

Sea
$$p(x) = 1 + 8x + 3x^2$$
.

Luego podemos ver que podemos escribirlo como: $3(1+x)+(-2)(1+x^2)+(5)(x+x^2)$

Es decir, podemos escribirlo como:
$$[p(x)]_B = \begin{pmatrix} 3 \\ -2 \\ 5 \end{pmatrix}$$

Para encontrarlos lo que tuvimos que hacer fue plantear el siguiente sistema de ecuaciones:

$$\alpha_1 + \alpha_2 = 1 \qquad \qquad \alpha_1 + \alpha_3 = 8 \qquad \qquad \alpha_2 + \alpha_3 = 3$$

1.4. Propiedades

Podemos ver entonces que estas coordenadas se comporta de manera muy muy bonita:

$$v_1 + v_2]_B = [v_1]_B + [v_2]_B$$

$$\bullet \ [\alpha v_1]_B = \alpha [v_1]_B$$

1.5. Cambio de Coordenadas

Sea
$$B_1 = \{v_1, v_2, \dots, v_n\}$$
 y sean $B_2 = \{u_1, u_2, \dots, u_n\}$.

Podemos cambiar de base usando la siguiente Matriz:

$$C_{B_1 \to B_2} = C_{B_1}^{B_2} = C_{\frac{B_2}{B_1}} = ([v_1]_{B_2} + [v_2]_{B_2} + \dots + [v_n]_{B_2})$$

Podemos ver entonces que:

$$[v]_{B_2} = C_{B_1 \to B_2}[v]_{B_1}$$

Para encontrarla lo mas útil de la vida será:

$$(Base2|Base1) \to_{Gauss-Jordan} (I_n|C_{B_1 \to B_2})$$
(3)

1.5.1. Propiedades

Podemos saber algunas cosas super interesantes como:

- Si tenemos ya una matriz de cambio de base podemos obtener el otro cambio simplemente sacando la inversa a la matriz: $C_{\frac{B_2}{B_1}}^{-1} = C_{\frac{B_1}{B_2}}$
- Podemos ver que existe algo que me tienta a llamar 'inversos' o que 'se cancela': $C_{\frac{B_3}{B_2}}C_{\frac{B_2}{B_1}}=C_{\frac{B_3}{B_1}}$

1.5.2. Ejemplo 1

Por ejemplo, sea:

$$B_1 = \left\{ \begin{pmatrix} 1\\1\\0 \end{pmatrix}, \begin{pmatrix} 1\\0\\1 \end{pmatrix}, \begin{pmatrix} 0\\1\\1 \end{pmatrix} \right\}$$

$$B_2 = \left\{ \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} \right\}$$

Entonces, podemos encontrar la Matriz de Cambio de Coordenadas de B_2 al B_1 como:

$$\begin{pmatrix} 1 & 1 & 1 & 1 & 1 & 0 \\ 0 & 1 & 1 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 & 1 & 1 \end{pmatrix} = \begin{pmatrix} 0 & 1 & -1 \\ I_3 & 1 & -1 & 0 \\ 0 & 1 & 1 \end{pmatrix}$$

Entonces ya al final podemos decir que:

$$C_{B_2 \to B_1} = \begin{pmatrix} 0 & 1 & -1 \\ 1 & -1 & 0 \\ 0 & 1 & 1 \end{pmatrix}$$

1.5.3. Ejemplo 2

Si queremos encontrar la matriz de cambio de base entre:

$$B_1 = \langle (1+x), (1+x^2), (x+x^2) \rangle$$

$$B_2 = <(1), (1+x), (1+x+x^2)>$$

Entonces podemos tener esta Matriz de Cambio de Base:

$$\begin{pmatrix} 1 & 1 & 1 & 1 & 1 & 0 \\ 0 & 1 & 1 & 1 & 0 & 1 \\ 0 & 0 & 1 & 0 & 1 & 1 \end{pmatrix} \rightarrow_{Gauss-Jordan} \begin{pmatrix} 1 & 0 & 0 & 0 & 1 & -1 \\ 0 & 1 & 0 & 1 & -1 & 0 \\ 0 & 0 & 1 & 0 & 1 & 1 \end{pmatrix}$$

Por lo tanto podemos concordar que:

$$C_{\frac{B_2}{B_1}} \begin{pmatrix} 0 & 1 & -1 \\ 1 & -1 & 0 \\ 0 & 1 & 1 \end{pmatrix}$$

1.5.4. Ejemplo 3

Por ejemplo, sea:

$$B_1 = \left\{ \begin{pmatrix} \bar{1} & \bar{2} \\ \bar{4} & \bar{0} \end{pmatrix}, \begin{pmatrix} \bar{0} & \bar{1} \\ \bar{0} & \bar{1} \end{pmatrix}, \begin{pmatrix} \bar{1} & \bar{1} \\ \bar{3} & \bar{0} \end{pmatrix}, \begin{pmatrix} \bar{1} & \bar{0} \\ \bar{0} & \bar{0} \end{pmatrix}, \right\}$$

Y la canonica:

$$B_2 = \left\{ \begin{pmatrix} \bar{1} & \bar{0} \\ \bar{0} & \bar{0} \end{pmatrix}, \begin{pmatrix} \bar{0} & \bar{1} \\ \bar{0} & \bar{0} \end{pmatrix}, \begin{pmatrix} \bar{0} & \bar{0} \\ \bar{1} & \bar{0} \end{pmatrix}, \begin{pmatrix} \bar{0} & \bar{0} \\ \bar{0} & \bar{1} \end{pmatrix}, \right\}$$

Entonces, podemos encontrar la Matriz de Cambio de Coordenadas de B_2 al B_1 como:

$$\begin{pmatrix} \bar{1} & \bar{0} & \bar{0} & \bar{0} | & \bar{1} & \bar{0} & \bar{1} & \bar{1} \\ \bar{0} & \bar{1} & \bar{0} & \bar{0} | & \bar{2} & \bar{1} & \bar{1} & \bar{0} \\ \bar{0} & \bar{0} & \bar{1} & \bar{0} | & \bar{4} & \bar{0} & \bar{3} & \bar{0} \\ \bar{0} & \bar{0} & \bar{0} & \bar{1} | & \bar{0} & \bar{1} & \bar{0} & \bar{0} \end{pmatrix}$$

Por lo tanto podemos concordar que:

$$C_{\frac{B_2}{B_1}} = \begin{pmatrix} \bar{1} & \bar{0} & \bar{1} & \bar{1} \\ \bar{2} & \bar{1} & \bar{1} & \bar{0} \\ \bar{4} & \bar{0} & \bar{3} & \bar{0} \\ \bar{0} & \bar{1} & \bar{0} & \bar{0} \end{pmatrix}$$

2. Espacios Euclideanos y Producto Interno

2.1. ¿Qué son?

Son un espacio vectorial, en nuestro caso lo vamos a considerar sobre los reales, la principal caracteristica de estos espacios es que cumplen con que tienen un producto interno:

2.2. Producto Interno

Un producto interno será aquella función <,> tal que reciba 2 vectores y te regrese un vector: $\vec{v} \times \vec{v} \to \mathbb{R}$ tal que para todo 3 vectores cuales quiera $v, w, u \in V$ y para todo $\alpha, \beta \in \mathbb{R}$ tenemos que:

- \bullet $< \alpha v + \beta w, u > = \alpha < v, u > + \beta < w, u >$
- < u, v > = < v, u >
- $\mathbf{v} < v, v >> 0$ y < v, v >= 0 $\leftrightarrow v = 0$

En el caso de que tenga un producto interno que cumpla estas caracteristicas podemos decir que nuestro espacio vectorial es Euclidiano.

2.2.1. Producto Internos Comunes

Por ejemplo para vectores en \mathbb{R}^n como:

- Matrices: $\langle A, B \rangle = traza(transpuesta(A)B)$ Es decir, es la suma de todos los elementos de la diagonal principal de la matriz resultante de la multiplicación de la transpuesta de A con B.
- \mathbb{R}^n : $\langle v, u \rangle = v_x u_x + v_y u_y \cdots$ Es decir, lo que conocemos como el producto punto.

2.2.2. Propiedades

Podemos saber que:

- $\langle v, 0_v \rangle = 0$
- Si $< u, v > = < v, u > y \ \forall n \in V$, entonces $v = 0_v$

2.3. Norma de un Vector

Podemos definir una norma de un vector $v \in V$ como:

$$||v|| = \sqrt{\langle v, v \rangle} \tag{4}$$

2.3.1. Ejemplo

$$||\begin{pmatrix} 3 & -2 \\ 0 & 6 \end{pmatrix}|| = \sqrt{\left\langle \begin{pmatrix} 3 & -2 \\ 0 & 6 \end{pmatrix}, \begin{pmatrix} 3 & -2 \\ 0 & 6 \end{pmatrix} \right\rangle} = \sqrt{traza\begin{pmatrix} 13 & -12 \\ -12 & 36 \end{pmatrix}} = \sqrt{13 + 36} = 7$$

2.3.2. Propiedades

- $||v|| \ge 0$ y también ||v|| = 0 ssi $v = 0_v$
- $\bullet ||\alpha v|| = |\alpha|||v||$
- $\bullet \ || < v, u > || \le ||u|| ||v||$ Esta es conocida como Desigualdad de Cauchy-Shuartz
- $\bullet \ ||v+u|| \leq ||u|| + ||v||$ Esta es conocida como Desigualdad del Triangulo

2.4. Conjuntos Octogonales

Decimos que el conjunto $S = \{v_1, v_2, \cdots, v_n\}$ de vectores de un espacio euclidiano es:

- i) Ortogonal: Si $\forall i, j \in \{1, \cdots, n\} \ (i \neq j) \rightarrow < v_i, v_j >= 0$
- i) Ortonormal: Si ademas de Ortogonal tenemos que $||v_i||=1 \ \forall i \in \{1,\cdots,n\}$

2.4.1. Ejemplo

Este conjunto no es ni Ortogonal ni Ortonormal:

$$S_1 = \left\langle \begin{bmatrix} 1\\1\\0 \end{bmatrix}, \begin{bmatrix} 1\\0\\1 \end{bmatrix}, \begin{bmatrix} 0\\1\\1 \end{bmatrix} \right\rangle$$

Este conjunto es Ortogonal pero no Ortonormal:

$$S_1 = \left\langle \begin{bmatrix} 1\\0\\1 \end{bmatrix}, \begin{bmatrix} 0\\-3\\0 \end{bmatrix}, \begin{bmatrix} 2\\0\\-2 \end{bmatrix} \right\rangle$$

2.4.2. Propiedades

Sea
$$S = \{v_1, v_2, \cdots, v_n\} \subseteq V$$

- Si S es Ortogonal y $v_i \neq 0_v \ \forall i \in \{1, \cdots, n\}$ entonces podemos concluir que S es Linealmente independiente.
- Si S es Ortonormal, entonce el vector de la forma: $w=v-< v, v_1>v_1-< v, v_2>v_2-\cdots-< v, v_n>v_n$ O visto mas bonito $w=v-\sum_{i=1}^n< v, v_i>v_i$ es ortogonal a S $\forall v\in V$

REFERENCIAS REFERENCIAS

Referencias

[1] ProbRob Youtube.com