

Факультет компьютерных наук

Causal models

Разберемся с терминами

Пассивное наблюдение - это то, как "объекты" следуют своему обычному поведению, "привычкам" и естественным склонностям. Мы не вмешиваемся в этот процесс, а просто наблюдаем.

Пример пассивного наблюдения

Чаще ли в ДТП попадают 16-ти летние водители, нежели 18-ти летние?

$$P(A \mid C) - P(B \mid C), C = A \cup B$$

A - 16 y/o
B - 18 y/o

Пример пассивного наблюдения

Уменьшится ли число смертельных ДТП, если мы повысим минимальный возраст вождения на два года?

Ограничения, с которыми мы сталкиваемся при наблюдении

Рассмотрим данные приемной комиссии аспирантуры Калифорнийского университета в Беркли в 1973 году.

Ограничения, с которыми мы сталкиваемся при наблюдении

Рассмотрим данные приемной комиссии аспирантуры Калифорнийского университета в Беркли в 1973 году.

Парадокс Симпсона

С точки зрения теории вероятности здесь нет ничего необычного:

1.
$$\mathbb{P}[Y|A] < \mathbb{P}[Y|\neg A]$$

2.
$$\mathbb{P}[Y|A,Z=z] > \mathbb{P}[Y|\neg A,Z=z], \ \forall z \in Z$$

Вернемся к примеру университета в Беркли

Admission

Men		Women		
Department	Applied	Admitted (%)	Applied	Admitted (%)
A	825	62	108	82
В	520	60	25	68
С	325	37	593	34
D	417	33	375	35
E	191	28	393	24
F	373	6	341	7

Структурная причинная модель (Structural causal model) -

- Программа для генерации совместного распределения из независимых "шумовых" переменных с помощью последовательности формальных инструкций.

Задается набором переменных с соответствующей формой:

$$X_i := f_i(P_i, U_i), \qquad i = 1, ..., d.$$

$$P_i \subseteq \{X_1,...,X_d\}$$
 - подмножество родительских переменных

 $U_1,...,U_d\,$ - случайные независимые переменные, которые мы называем шумом

Группа людей, у которых:

- Р(Регулярно тренируются) = 1/2
- Р(Склонность к избыточному весу) = 1/3

Пусть:

Х - индикатор регулярных физических упражнений

W - индикатор наличия избыточного веса

Н - индикатор наличия сердечного заболевания

- 1. Бернулиевские случайные величины: $U_1 \sim B(\frac{1}{2}),~U_2 \sim B(\frac{1}{3}),~U_3 \sim B(\frac{1}{3})$
- 2. $X := U_1$
- 3. W:= если X=1, тогда 0, иначе U_2
- 4. H := если X = 1, тогда 0, иначе U_3

\boldsymbol{X}	W	\boldsymbol{H}
0	1	1
1	0	0
1	1	1
1	1	0
0	1	0
•••	•••	•••

Означает ли это, что избыточный вес вызывает сердечные заболевания в нашей модели? Ответ - нет

Более формально, программа более эффективна. Мы могли бы, например, взять W:=1, что приведет к новому распределению. Получившаяся программа выглядит следующим образом:

- 2. $X := U_1$
- 3. W := 1
- 4. H:= если X=1, тогда 0, иначе U_3

Еще один пример

Замена W:=1 в этой модели приводит к увеличению вероятности физических нагрузок, следовательно, снижает вероятность сердечных заболеваний.

- 2. $W := U_2$
- 3. X := если W = 0, тогда 0, иначе U_1
- 4. H := если X = 1, тогда 0, иначе U_3 $\operatorname{do}(W := 1)$.

Структурные причинные модели

Структурные причинные модели дают нам формальное исчисление для рассуждений о последствиях гипотетических действий.

Do-operator

Графы

Приведем графики для двух гипотетических групп людей из нашего примера сердечные заболевания:

Графы

Приведем графики для двух гипотетических группы людей из нашего примера сердечные заболевания:

Графы - вилка

Эти два эффекта имеют общую причину. В данном случае узел Z является общей причиной X и Y.

Графы - посредники

В этой модели Z является посредником в том смысле, что он опосредует изменения, в результате чего он может иметь место в Y

Графы - collider

В коллайдерах несколько причин влияет на один результат.

Причинно-следственные связи - Смешивание (Confounding)

Расхождение между интервенционными утверждениями и условными утверждениями настолько важно, что оно имеет хорошо известное название: condounding.

Мы говорим, что X и Y смешиваются, когда причина действия X на Y не совпадает с соответствующей условной вероятностью.

Причинно-следственные связи - Смешивание (Confounding)

Формула корректировки

$$\mathbb{P}\{Y=y\mid \mathrm{do}(X:=x)\}=\sum_{z}\mathbb{P}\{Y=y\mid X=x,PA=z\}\mathbb{P}\{PA=z\}$$

Она дает нам один из способов оценки эффекта do-вмешательства в терминах условных вероятностей.

Критерий бэкдора (The backdoor criterion)

Две переменные смешиваются, если между ними существует так называемый бэкдорный путь.

Бэкдорный путь (backdoor path) от X до Y - это любой путь, начинающийся с X с входящим ("←") в X ребром, например:

$$X \leftarrow A \rightarrow B \leftarrow C \rightarrow Y$$

Интуитивно, бэкдорные пути позволяют передавать информацию из X в Y способом, который не является причинно-следственным.

Мы можем записать два потенциальных результата (с лечением и без) в виде математического уравнения, введя булеву переменную Т, которая равна 1, если человек получает лечение, и 0 в противном случае. В этом случае получим:

$$Y = TA + (1 - T)B.$$

Мы можем записать это в виде формулы шансы на лечение:

$$rac{ar{A}}{1-ar{A}}\cdotrac{1-ar{B}}{ar{B}}\cdot$$

Это измеряет уменьшение (или увеличение!) вероятности наступления неблагоприятного события при применении лечения.

В рандомизированном контролируемом исследовании группа испытуемых случайным образом разделяется на контрольную группу и группу лечения. При чем, ни испытуемые, ни врачи не знают, к какой группе кто относится

Предположим, что мы независимо и идентично отбираем подгруппу людей размера n. Мы случайным образом назначаем переменную лечения Т_ii каждому человеку. Тогда получаем:

$$\mu_A^{(n)} = rac{2}{n} \sum_{j=1}^n T_j A_j$$
 M $\mu_B^{(n)} = rac{2}{n} \sum_{j=1}^n (1-T_j) B_j$

Таким образом, делать выводы о причинах сложно даже тогда, когда мы можем проводить тщательные и аккуратные эксперименты.

Теперь мы перейдем к осознанию того, как выяснение причины из наблюдения чревато осложнениями.

Гипотетические ситуации

Гипотетические ситуации

Пример:

Вы едете в машине и попадаете в пробку

Вопрос:

Попали ли бы вы в пробку, если бы выбрали другую дорогу?

Добавим конкретику в ситуацию с дорогой:

- $X \in \{0, 1\}$ номер дороги
- U ∈ {0, 1} хороший день или плохой
- $U_0 \in \{0, 1\}$ наличие ДТП на 0 дороге
- $U_1 \in \{0, 1\}$ наличие ДТП на 1 дороге
- $U_0, U_1, U, X \sim Bern(0.5)$ и независимы

Введем случайную величину $Y \in \{0,1\}$ — наблюдаем пробку или нет

$$Y = X \cdot \max(U_1, U) + (1 - X) \cdot \max(U_0, U)$$

Введем случайную величину $Y \in \{0,1\}$ — наблюдаем пробку или нет

$$Y = X \cdot \max(U_1, U) + (1 - X) \cdot \max(U_0, U)$$

Наблюдение: X = 1, Y = 1

Что делать? Может, вот так?

- do(X := 0)
- Вычислить P(Y = 0)

Что делать? Может, вот так?

- do(X := 0)
- Вычислить P(Y = 0)

Получаем: $P(U = 0) \cdot P(U_0 = 0) = 0.5 \cdot 0.5 = 0.25$

Возможные значения переменных шума

До наблюдения

\boldsymbol{U}	U_1	
0	1	
1	1	
1	0	
0	0	

После наблюдения

\boldsymbol{U}	U_1	
0	1	
1	1	
1	0	

Совместное распределение изменилось!

Порядок действий

- Посчитать новое распределение
- do(X := 0)
- Вычислить $P_1(Y=0)$

Порядок действий

- Посчитать новое распределение
- do(X := 0)
- Вычислить $P_1(Y=0)$

Получаем: $P_1(U=0) \cdot P_1(U_0=0) = 1/3 \cdot 1/2 = 1/6$

Структура потенциальных результатов

Структура потенциальных результатов

Идея:

ввести случайные величины, отвечающие результатам гипотетических ситуаций

Структура потенциальных результатов

Идея:

ввести случайные величины, отвечающие результатам гипотетических ситуаций

Чуть более конкретнее:

- $W \in \{0, 1\}$ индикатор воздействия
- Y_0 результат при W = 0
- Y_1 результат при X=1

В качестве результата обычно хотим получить оценку АТЕ:

$$\tau = E[Y_1] - E[Y_2]$$

 ${\it Y}_i$ — это индекс качества воздуха для i-го дня

 ${\it W}\,$ – это ограничение на вождение, чтобы уменьшить трафик

$Y_i(0)$	$Y_i(1)$	$ au_i$
154.68	153.49	-1.20
135.67	120.40	-15.27
103.46	117.68	14.23
117.62	95.08	-22.54
161.11	146.73	-14.39
117.89	105.05	-12.84
84.00	75.59	-8.41
73.32	65.68	-7.63
100.07	93.80	-6.28
103.81	82.30	-21.51
111.68	101.47	-10.21

 Y_i — это индекс качества воздуха для i-го дня

W – это ограничение на вождение, чтобы уменьшить трафик

$Y_i(0)$	$Y_i(1)$	τ_i
154.68	_	_
135.67		_
	117.68	_
_	95.08	_
	146.73	_
117.89	_	_
	75.59	_
_	65.68	_
100.07	_	_
_	82.30	_
110.59	100.52	_

На практике для каждого объекта мы наблюдаем лишь один результат

Оцениваем $\hat{\tau} = 100.52 - 110.59 = -10.07$

Усложняем пример

Для каждого объекта i вводится вектор X_i — набор признаков

Хочется уметь оценивать САТЕ = $\tau(X) = E[Y_i(1) - Y_i(0) | X]$

Вопрос: Зачем?

Заключение

Рассмотрим преимущества и недостатки каждого подхода

Структурная каузальная модель

- Кодирует больше предположений о переменных
- Дает больше информации
- Сложнее в построении

Модель потенциальных результатов

- Проще в построении
- Широкий набор статистических подходов к данным
- Требует аккуратности в использовании

www.text