Домашнє завдання №5 (від 14.10.2020)

Виконав: Микола Трохимович

Заняття 5-6. Ігри та їх класифікація. Дилема в'язнів. Моделі стратегічної взаємодії і концепція рівноваги Неша. Моделі індустріальної організації: модель Стакелберга і модель Курно.

Завдання 1 (5 балів). Розглянемо абстрактну гру, зображену у вигляді

Стратегія І/ІІ	Left	Middle	Right
Up	1;1	2;3	0;2
Down	0;3	3;1	2;4

Знайдіть рівновагу у цій грі шляхом відкидання строго домінованих стратегій, тобто потрібно почергово відкидати стратегії для кожного з гравців, для яких є відповідно кращі альтернативи. Шляхом відкидання ми отримаємо набір з двох стратегій, по одній для кожного з гравців, які формують рівновагу.

Розв'язок:

Маємо таку платіжну матрицю:

Стратегія І/ІІ	Left	Middle	Right
Up	1;1	2;3	0;2
Down	0;3	3;1	2;4

1) Як можемо бачити з даної нам матриці стратегія Right строго домінує над стратегією Left для другого гравця. Це означає, що яку б з стратегій Up чи Down не обрав перший гравець, другому не має сенсу грати стратегію Left, так як там менший виграш. Тому ми можемо її відкинути, таким чином зменшивши ігрову матрицю.

Стратегія I/II	Left	Middle	Right
Up	1; <mark>1</mark>	2;3	0; <mark>2</mark>
Down	0; <mark>3</mark>	3;1	2; <mark>4</mark>

2) Як результат отримаємо:

Стратегія I/II	Middle	Right
Up	2;3	0;2
Down	3 ;1	2;4

Як бачимо, тепер у першого гравця є строго домінуюча стратегія Down. Так як яку б з стратегій Middle чи Right не обрав гравеці 2, гравцю 1 немає сенсу грати стратегію Up, так як він там отримую менший виграш. Тому можемо відкинути стратегію Up.

3) Отримуємо таку матрицю гри тепер:

Стратегія I/II	Middle	Right
Down	3;1	2;4

Тепер в гравця 1 залишилася одна стратегія, а гравець 2 очевидно повинен обрати стратегію Right, так як у такому випадку він отримає більший виграш. Тобто Right є строго домінуюча над Middle у цьому випадку.

Отже відкинувши строго доміновані стратегії отримуємо такий резільтат:

Стратегія I/II	Right
Down	2;4

Відповідь: Отримали набір стратегій (Down, Right) які формують рівновагу.

Завдання 2 (5 балів). Дві Голлівудські компанії *Columbia Pictures* та *New Line Cinema* роздумують щодо гонорарів кінозіркам. Вони приходять до такої матриці виплат (прибутків) у мільйонах доларів:

	New Line Cinema		
	Гонорар \$20 Гонорар \$25		
Columbia	Гонорар \$20	\$100; \$100	\$50; \$150
Pictures	Гонорар \$25	\$150; \$50	\$85; \$85

Яку стратегію оплати кінозіркам виберуть провідні кінопродюсери?

Відповідь поясніть, знайшовши рівновагу Неша.

Нагадаємо, що рівновагою Неша називається такий набір стратегій по одній для кожного з гравців, при якому жоден з гравців не має стимулу відхилитись від обраної стратегії, якщо інші не відхиляються.

Розв'язок:

Маємо таку платіжну матрицю:

CP/NLC	Гонорар \$20	Гонорар \$25
Гонорар \$20	100;100	50;150
Гонорар \$25	150;50	85;85

- 1) В платіжній матриці помітимо зеленим кольором для кожної стратегії гравця New Line Cinema найкращі відповіді Columbia Pictures
- 2) В платіжній матриці помітимо червоним кольором для кожної стратегії гравця Columbia Pictures найкращі відповіді New Line Cinema
- 3) Профілі помічені двома кольорами і рівновагою Неша.

CP/NLC	Гонорар \$20	Гонорар \$25
Гонорар \$20	100;100	50;150
Гонорар \$25	150;50	85; <mark>85</mark>

Як бачимо, яку б стратегію не обрав гравець Columbia Pictures гравцю New Line Cinema вигідно обрати стратегію Гонорар \$25, і аналогічно навпаки, так як гра дзеркальна. Отже маємо <u>відповідь</u> провідні кінопродюсери оберуть стратегію Гонорар \$25, так як набір (Гонорар \$25, Гонорар \$25) становить рівновагу Неша

Завдання 3. (5 балів) Дві компанії А та В конкурують на локальному ринку. Доходи населення значно впали і вони роздумують над стратегією випуску своєї продукції на наступний рік: використовувати дорогу (EXPENSIVE) чи дешеву (CHEAP) сировину для випуску продукції.

У результаті аналізу топ-менеджери обох компаній прийшли до наступної платіжної матриці:

Компанія А/В	EXPENSIVE	CHEAP
EXPENSIVE	6;10	7;4
CHEAP	11;9	9;8

До « ; » ми показуємо прибуток компанії А (зелений стовпчик), а після « ; » - прибуток компанії В (голубий рядок).

Знайдіть рівновагу Неша у цій грі. Відповідь обґрунтуйте.

Розв'язання:

Використаємо алгоритм аналогічний попередній задачі

- 1) В платіжній матриці помітимо зеленим кольором для кожної стратегії гравця В найкращі відповіді А
- 2) В платіжній матриці помітимо червоним кольором для кожної стратегії гравця А найкращі відповіді В
- 3) Профілі помічені двома кольорами і рівновагою Неша.

Компанія А/В	EXPENSIVE	CHEAP
EXPENSIVE	6; <mark>10</mark>	7;4
CHEAP	11; <mark>9</mark>	9;8

Відповідно рівновага Неша буде набір стратегій (CHEAP; EXPENSIVE). Бо в такому випадку жоден з гравців не має стимулу відхилятися, якщо інший не відхоляється. Тобто, якщо гравець А не відхиляється від CHEAP, то гравцю В немає сенсу відхилянися на CHEAP. Аналогічно якщо В не відхиляється від EXPENSIVE, то гравцю А не має сенсу обирати EXPENSIVE, там у нього менший виграш. Інші ж набори стратегій не володіють такою властивістю. Наприклад набір (EXPENSIVE; EXPENSIVE): Зафіксувавши стратегію для гравця В, гравцю А є сенс відхилитися на CHEAP, відповідно це не є рівновагою

<u>Відповідь</u>: Рівновагою Неша буде набір стратегій (CHEAP; EXPENSIVE). Відповідь обгрунтував вище.

Завдання 4. (10 балів) Поясніть з точки зору теорії ігор, чому супермаркети у європейських країнах здебільшого не працюють в неділю.

Побудуйте відповідну платіжну матрицю і знайдіть рівновагу Неша.

Додатковий день роботи супермаркета приносить додатковий прибуток, проте він і несе додаткові операційні витрати, наприклад на зарплату персоналу.

Проте попит на товари у людей є завжди, відповідно якщо вони не купили їх в неділю більшу частину задуманого вони куплять їх в інший день.

Якщо якийсь із супермаркетів буде відкритий у неділю а інші будуть закриті, то недільний попит з великою ймовірністю буде реалізований там, відповідно він отримає більший прибуток на противагу закритому.

Тому складемо платіжну матрицю для гри між супермаркетами А та В, де виграш зазначимо в якихось умовних одиницях, і для кожного є по дві стратегії - працювати або не працювати у неділю. При цьому виграш це загальний прибуток (виручка - витрати)

Супермаркети А/В	Працювати	Не працювати
Працювати	100;100	120;90
Не працювати	90;120	110;110

Пояснення виграшів:

Для набору (Працювати; Працювати) обидва супермаркети отримують рівний дохід по 100 у.о.

Якщо обидва не працюють (Не працювати; Не працювати) тоді обидва отримують дещо більший дохід 110, так як зменшуються операційні витрати, а виручка залишається однаковою, або не суттєво зменшується.

У випадку якщо один працює, а інший ні (Працювати; Не працювати) або (Не працювати; Працювати), тоді той хто працює отримує більший загальний дохід, інший отримує менший, проте не набагато, так як він хоч і недоотримує покупців але й економить на операційних витратах.

Знайдемо рівновагу Неша в даній грі:

Супермаркети А/В	Працювати	Не працювати
Працювати	100; <mark>100</mark>	120;90
Не працювати	90;120	110;110

Відповідно, якщо не важливо чи працює чи не працює інший, іншому вигідно працювати. Але хоч така стратегія і рівноважна, проте, вона не оптимальна. А в Європі здебільшого магазини не працюють, так як це оптимальна стратегія, хоча і не рівноважна. Але існують певні правила (домовленості) і тому це так працює.

Завдання 5. (30 балів) Функція попиту на продукт ABC описується формулою $Q = 1000 - 30 \times P$, де Q – ринковий обсяг продаж, а P - ринкова ціна.

5.1 (10 балів). Фірма М є монополістом на ринку, що виробляє продукт АВС. Знайдіть оптимальну ціну та оптимальні обсяги продаж для компанії М, тобто такі значення Q та P, що максимізують прибуток компанії, при умові, що функція загальних витрат описується формулою

$$TCM(Q) = 10 + 8 \times Q + 0.1 \times Q^2$$
.

Знайдіть також максимальний прибуток компанії М.

5.2 (15 балів) Модель Стакелберга. Припустимо, що тепер, крім компанії М, на ринку з'явилась компанія F, що також виробляє такий самий продукт ABC. Проте лідером ринку залишається компанія M, а компанія F оптимально реагує на дії лідера, максимізуючи свій прибуток.

Нехай функція загальних витрат компанії F описується формулою

$$TCF(Q) = 5 + 10 \times Q + 0.2 \times Q^{2}$$
.

Знайдіть рівновагу Неша на цьому ринку, тобто рівноважні обсяги продаж компаній М та F, а також рівноважну ціну і прибутки компаній М та F. Які загальні обсяги продаж компаній М та F у рівновазі?

5.3 (5 балів) Порівняйте результат **5.2** з результатом, отриманим у пункті **5.1**. Зробіть висновки.

<u>Розв'язання:</u>

5.1 Фактично у цьому випадку нам потрібно максимізувати прибуток, що буде рівний виручці мінус витрати. Запишемо функцію яку треба максимізувати:

$$Profit = Rev - TCF = P \times (1000 - 30 \times P) - (10 + 8 \times Q + 0, 1 \times Q^2) = P \times (1000 - 30 \times P) - (10 + 8 \times (1000 - 30 \times P) + 0, 1 \times (1000 - 30 \times P)^2)$$

Запрограмуємо це і отримаємо такий результат:

Оптимальна ціна $P^* = 30.17$, $Q = 1000 - 30 \times P = 95$, M = 1193.33

Кожна з фірм знає, як рівноважна ціна на ринку залежить від загальних обсягів виробництва. Нехай P(Y) - обернена функція попиту, і $Y=y_1+y_2$. Найпростішим прикладом оберненої функції попиту є лінійна залежність між обсягами виробництва та ціною у нашому випадку $P=\frac{1000-Q}{30}$ так як $Q=1000-30\times P$. Тут P- ціна, а Q- обсяги виробництва.

Опишем проблему послідовника F. Він максимізує

$$max_{y_2}[p(y_1 + y_2)y_2 - c_2(y_2)]$$

Тут, $c_2(y)$ - функція витрат на виробництво у одиниць продукції. Зрозуміло, що оптимальний обсяг виробництва для послідовника залежить від відповідного вибору для лідера. Ми запишемо цю відповідність у вигляді функції

$$y_2 = f_2(y_1)$$
,

яка ще називається функцією реакції.

Функція попиту буде мати вигляд: $P(y_1 + y_2) = \frac{1000 - (y_1 + y_2)}{30}$

Тоді прибуток фірми F (послідовника):

$$\pi_2(y_1; y_2) = \frac{1000 - (y_1 + y_2)}{30} \times y_2 - (5 + 10 \times y_2 + 0.2 \times y_2^2)$$

Тоді граничний дохід:

$$MR_2(y_1; y_2) = \frac{1000 - y_1 - 2y_2}{30} - 10 - 0.4y_2 = 23.33 - \frac{y_1}{30} - 0.4666y_2$$

Звідси отримуємо, що $y_2 = (-\frac{y_1}{30} + 23.33)/0.4666 = -0.071y_1 + 50$

Тепер ми можемо перейти до проблеми лідера. Як ми вже зауважували, лідер припускає, що послідовник є раціональним, а тому він знає, як його вибір вплине на вибір послідовника. Оптимізація прибутку лідера М запишеться у вигляді $\max_{y_1}[p(y_1+y_2)y_1-c_1(y_1)]$, при чому $y_2=-0.071y_1+50$

Тоді прибуток можна записати так:

$$\pi_1(y_1; y_2) = \frac{1000 - (y_1 + y_2)}{30} \times y_1 - (10 + 8 \times y_1 + 0.1 \times y_1^2)$$

Спростивши цей вираз, ми отримаємо

$$\pi_1(y_1; y_2) = \frac{950 - 0.929y_1}{30} \times y_1 - (10 + 8y_1 + 0.1y_1^2)$$

і граничний прибуток

$$MR_1 = 31.667 - 0.0619y_1 - 8 - 0.2y_1 = 23.67 - 0.2619y_1$$

$$y_1^* = 90.38$$

Для того щоб знайти оптимальні обсяги виробництва послідовника, підставимо це значення в функцію реакції:

$$y_2^* = -0.071y_1 + 50 = -90.38 * 0.071 + 50 = 43.58$$

Тобто маємо таку рівновагу Неша: $y_1^* = 90.38$ та $y_2^* = 43.58$

При цьому рівноважна ціна буде становити:

$$p^* = \frac{1000 - (y_1^* + y_2^*)}{30} = \frac{1000 - (90.38 + 43.58)}{30} = 28.868,$$

Загальні обсяги продажів у рівновазі $y_1^* + y_2^* = 133.96$

Прибутки компанії М:

$$Profit_M = 28.868 * 90.38 - (10 + 8 \times 90.38 + 0.1 \times 90.38^2) = 1059.2$$

Прибутки компанії F:

$$Profit_M = 28.868 * 43.58 - (5 + 10 \times 43.58 + 0.2 \times 43.58^2) = 437.42$$

5.3. Як бачимо при появі ще одного гравця на ринку ціна дещо знизилася, бо з'явилася конкуренція. Прибутки лідера також скоротилися як і обсяги виробництва. Проте в загальному ринок виріс, так як зросли загальні обсяги виробництва.

Завдання 6 (20 балів). Модель Курно. Припустимо, що тепер компанії М та F конкурують на ринку, виробляючи такий самий продукт ABC, як у завданні 5. Вони тепер приймають рішення одночасно.

Нехай функції загальних витрат компанії М та F описуються формулами:

$$TCM(Q) = 10 + 8 \times Q + 0.1 \times Q^{2}$$

 $TCF(Q) = 5 + 10 \times Q + 0.2 \times Q^{2}$.

- 6.1 **(10 балів)** Знайдіть рівновагу Курно на цьому ринку, тобто рівноважні обсяги продаж компаній М та F, а також рівноважну ціну і прибутки компаній М та F. Які загальні обсяги продаж компаній М та F у рівновазі?
- 6.2 (10 балів) Нехай функція попиту на продукт АВС внаслідок маркетингової активності компаній на ринку тепер формулою $Q=1200-35\times P$, де Q—ринковий обсяг продаж, а P- ринкова ціна. Здійсніть усі пункти розв'язку завдання 6.1.

Розв'язання:

6.1 З умови попередньої задачі маємо $P = \frac{1000-Q}{30}$

Запишемо функції, що визначають прибутки для кожної з фірм:

$$\pi_2(y_1; y_2) = \frac{\frac{1000 - (y_1 + y_2)}{30}}{\frac{30}{30}} \times y_2 - (5 + 10 \times y_2 + 0.2 \times y_2^2)$$

$$\pi_1(y_1; y_2) = \frac{\frac{1000 - (y_1 + y_2)}{30}}{30} \times y_1 - (10 + 8 \times y_1 + 0.1 \times y_1^2)$$

Згідно до означення рівноваги Неша, $(s_i^{\ *},s_j^{\ *})$, $s_i^{\ *}$ повинно бути розв'язком задачі

$$\max_{s_i \in S_i} u_i(s_i, s_j^*),$$

тобто

де u – функція прибутку, а s – вибрана відповідна стратегія

Візьмемо відповідні похідні:

$$0 = 33.33 - y_1/30 - y_2/15 - 10 - 0.4y_2$$
 => $y_2^* = -0.071y_1^* + 50$
 $0 = 33.33 - y_2/30 - y_1/15 - 8 - 0.2y_1$ => $y_1^* = -0.124y_2^* + 95$

Розвязавши систему з допомогою Wolfram отримуємо такий розв`язок: $y_1^* = 89.59, \ y_2^* = 43.64$. - Рівновага Курно на цьому ринку

При цьому Загальні продажі будуть становити: $y_1^* + y_2^* = 89.59 + 43.64 = 133.23$ Рівноважна ціна $p^* = \frac{1000 - (y_1^* + y_2^*)}{30} = \frac{1000 - (89.59 + 43.64)}{30} = 28.89$,

Прибутки компанії М:

$$Profit_M = 28.89 * 89.59 - (10 + 8 \times 89.59 + 0.1 \times 89.59^2) = 1058.9$$

Прибутки компанії F:

$$Profit_M = 28.89 * 43.64 - (5 + 10 \times 43.64 + 0.2 \times 43.64^2) = 438.47$$

6.2 Тепер маємо таку залежність $P = \frac{1200-Q}{35}$

Запишемо функції, що визначають прибутки для кожної з фірм:

$$\pi_2(y_1; y_2) = \frac{1200 - (y_1 + y_2)}{35} \times y_2 - (5 + 10 \times y_2 + 0.2 \times y_2^2)$$

$$\pi_1(y_1; y_2) = \frac{1200 - (y_1 + y_2)}{35} \times y_1 - (10 + 8 \times y_1 + 0.1 \times y_1^2)$$

Згідно до означення рівноваги Неша, $(s_i^{\ *},s_j^{\ *})$, $s_i^{\ *}$ повинно бути розв'язком задачі

$$\max_{s_i \in S_i} u_i(s_i, s_i^*),$$

тобто

де $u - \phi$ ункція прибутку, а $s - \beta$ вибрана відповідна стратегія

Візьмемо відповідні похідні:

$$0 = 34.29 - y_1/35 - 2y_2/35 - 10 - 0.4y_2$$
 => $y_2^* = 53.1344 - 0.0625 y_1^*$ $0 = 34.29 - y_2/35 - 2y_1/35 - 8 - 0.2y_1$ => $y_1^* = 102.239 - 0.1111111y_2^*$

Розвязавши систему з допомогою Wolfram отримуємо такий розв`язок: $y_1^* = 97,\ y_2^* = 47.07$. - Рівновага Курно на цьому ринку

При цьому Загальні продажі будуть становити: $y_1^* + y_2^* = 97 + 47.07 = 144.07$ Рівноважна ціна $p^* = \frac{1200 - (y_1^* + y_2^*)}{35} = \frac{1200 - (97 + 47.07)}{35} = 30.17$,

Прибутки компанії М:

$$Profit_M = 30.17 * 97 - (10 + 8 \times 97 + 0.1 \times 97^2) = 1199.5$$

Прибутки компанії F:

$$Profit_M = 30.17 * 47.07 - (5 + 10 \times 47.07 + 0.2 \times 47.07^2) = 501.28$$

Завдання 7 (25 балів). (Рівновага Неша в моделі Стакелберга). Ринковий попит на диференційовану продукцію фірм А і В становить

$$Q_A = 100 - p_A + 0.5 \times p_B$$

 $Q_B = 100 - p_B + 0.5 \times p_A$

де p_A — ціна компанії A, а p_B — ціна компанії A. Функції витрат фірм A і B складають:

A:
$$c(Q_A) = 600 + 10 \times Q_A + 0.25 \times Q_A^2$$

B:
$$c(Q_B) = 25 \times Q_B + 0.5 \times Q_B^2$$

- 7.1 Знайдіть рівновагу Стакелберга, тобто рівноважні ціни та рівноважні обсяги виробництва для фірм A та B, коли ціновим лідером є компанія B.
- 7.2 Побудуйте графік оптимальної реакції компанії А на цінову політику В.
- 7.3 Знайдіть прибутки компаній А та В у точці рівноваги.

Розв'язання:

Запишемо функцію прибуток фірми А (послідовника):

$$\pi_{A} = p_{A} \times Q_{A} - (600 + 10 \times Q_{A} + 0.25 \times Q_{A}^{2}) = |p_{A} = 100 - Q_{A} + 0.5 \times p_{B}| = (100 - Q_{A} + 0.5 \times p_{B}) \times Q_{A} - (600 + 10 \times Q_{A} + 0.25 \times Q_{A}^{2})$$

Візьмемо похідну:

$$(100 - 2Q_A + 0.5 \times p_B) - (10 + 0.5 \times Q_A) = 0 \implies 90 - 2.5Q_A + 0.5 \times p_B = 0 \implies Q_A = 0.2p_B + 36$$

 $p_A = 100 - Q_A + 0.5 \times p_B = 100 - (0.2p_B + 36) + 0.5 \times p_B = 64 + 0.3p_B$

Тепер ми можемо перейти до проблеми лідера. Як ми вже зауважували, лідер припускає, що послідовник є раціональним, а тому він знає, як його вибір вплине на вибір послідовника.

$$\pi_B = p_B \times Q_B - (25 \times Q_B + 0.5 \times Q_B^2) = |p_B = 100 - Q_B + 0.5 \times p_A| = (100 - Q_B + 0.5 \times p_A) \times Q_B - (25 \times Q_B + 0.5 \times Q_B^2)$$

Аналогічно візьмемо похідну:

$$(100-2Q_B+0.5\times p_A)-(25+Q_B)=0 \implies -3Q_B+75+0.5p_A=0 \implies Q_B=25+0.16p_A$$
 3 іншої сторони маємо $Q_B=100-p_B+0.5p_A=25+0.16p_A=>p_B=75+0.34p_A$ з функції реакції маємо, що $p_A=64+0.3p_B=>$

Рівноважні ціни та обсяги:

$$\begin{aligned} p_B &= 75 + 0.34(64 + 0.3p_B) = 96.76 + 0.102p_B => p^*_B = 96.76/0.898 = 107.75 \\ p^*_A &= 64 + 0.3p_B = 64 + 0.3 \times 107.75 = 96.33 \\ Q^*_A &= 100 - p_A + 0.5 \times p_B = 100 - 96.33 + 0.5 * 107.75 = 57.55 \\ Q^*_B &= 100 - p_B + 0.5 \times p_A = 100 - 107.75 + 0.5 * 96.33 = 40.42 \end{aligned}$$

7.2 Побудуйте графік оптимальної реакції компанії А на цінову політику В.

Оптимальна реакція компанії виражається функцією $p_{A}=64+0.3p_{B}$, що показує те, яку ціну встановить компанія A у відповідь на ціну компанії B.

7.3 Знайдіть прибутки компаній А та В у точці рівноваги.

$$\pi_A = p_A \times Q_A - (600 + 10 \times Q_A + 0.25 \times {Q_A}^2) =$$

= 96.33 * 57.55 - (600 + 10 * 57.55 + 0.25 * 57.55^2) = 3540.29

$$\pi_B = p_B \times Q_B - (25 \times Q_B + 0.5 \times Q_B^2) = 107.75 * 40.42 - (25 * 40.42 + 0.5 * 40.42^2) = 2527.87$$