CHAPTER 22

FARADAY'S LAW

MAXWELL'S EQUATIONS

Equation	Name	Explanation
$\oint \overrightarrow{E} \cdot \hat{n} dA = \frac{1}{\epsilon_0} \sum_{\text{inside}} q_{\text{inside}}$	Gauss's Law for Electricity	 How charges produce electric fields Used to derive Coulomb's Law
$\oint \overrightarrow{B} \cdot \hat{n} dA = 0$	Gauss's Law for Magnetism	 No magnetic monopoles Constrains shape of magnetic field ("curly")
$\oint \overrightarrow{E} \cdot d\overrightarrow{l} = 0$	Faraday's Law	 Constrains shape of electric field (radially outward, cannot be "curly")
$\oint \overrightarrow{B} \cdot d\overrightarrow{l} = \mu_0 \sum I_{\text{inside}}$	Ampere's Law	 How currents produce magnetic fields Used to derive Biot-Savart Law

Equation	Name	Explanation
$\oint \overrightarrow{E} \cdot \hat{n} dA = \frac{1}{\epsilon_0} \sum_{\text{inside}} q_{\text{inside}}$	Gauss's Law for Electricity	 How charges produce electric fields Used to derive Coulomb's Law
$\oint \overrightarrow{B} \cdot \hat{n} dA = 0$	Gauss's Law for Magnetism	 No magnetic monopoles Constrains shape of magnetic field ("curly")
$\oint \overrightarrow{E} \cdot d\overrightarrow{l} = 0$	Faraday's Law	 Constrains shape of electric field (radially outward)
$\oint \overrightarrow{B} \cdot d\overrightarrow{l} = \mu_0 \sum I_{\text{inside}}$	Ampere's Law	 How currents produce magnetic fields Used to derive Biot-Savart Law

Equation	Name	Explanation
$\oint \overrightarrow{E} \cdot \widehat{n} dA = \frac{1}{\epsilon_0} \sum q_{\text{inside}}$	Gauss's Law for Electricity	 How charges produce electric fields Used to derive Coulomb's Law
$\oint \overrightarrow{B} \cdot \hat{n} dA = 0$	Gauss's Law for Magnetism	 No magnetic monopoles Constrains shape of magnetic field ("curly")
$\oint \overrightarrow{E} \cdot d\overrightarrow{l} = 0$	Faraday's Law	Constrains Chapter 22 eld (railly our
$\oint \overrightarrow{B} \cdot d\overrightarrow{l} = \mu_0 \sum I_{\text{inside}}$	Ampere's Law	How curre Chapter 23 Used to de Chapter 23

FARADAY'S LAW

- Recall from chapter 20: motion relative to a magnetic field produces an emf
 - Motional emf
 - $\epsilon = BLv$

QUESTION

▶ How do electric charges respond to a *changing* magnetic field?

1. A changing magnetic field causes a current!

- 1. A changing magnetic field causes a current!
- 2. Unchanging magnetic field -> no current

- 1. A changing magnetic field causes a current!
- 2. Unchanging magnetic field -> no current
- 3. Faster motion causes a larger current

1. A changing magnetic field causes a current!

- 2. Unchanging magnetic field -> no current
- 3. Faster motion causes a larger current
- 4. Direction of current depends on direction of motion of magnet (and orientation!)

INDUCED EMF

- Current is caused by an emf in the wire
- Emf is caused by changing magnetic field

WHAT CAUSES THE EMF?

- Magnetic field cannot do work
- What is causing the charges in the wire to accelerate?

WHAT CAUSES THE EMF?

- Magnetic field cannot do work
- What is causing the charges in the wire to accelerate?
 - It must be an electric field

CONCLUSION

A changing magnetic field creates an electric field!

QUANTIFYING THE RELATIONSHIP

- Changing magnetic field produces a curly electric field
- $lackbox{ }$ Curly electric field drives an emf arepsilon in a loop of wire
- How is ε related to $\frac{dB}{dt}$?

Magnitude of induced emf in loop depends on:

Magnitude of induced emf in loop depends on:

1. Rate of change of magnetic field (higher $\frac{dB}{dt} \rightarrow \text{higher } \varepsilon$)

Magnitude of induced emf in loop depends on:

- 1. Rate of change of magnetic field (higher $\frac{dB}{dt} \rightarrow \text{higher } \varepsilon$)
- 2. Area of loop (larger area \rightarrow larger ε)

Magnitude of induced emf in loop depends on:

- 1. Rate of change of magnetic field (higher $\frac{dB}{dt} \rightarrow \text{higher } \varepsilon$)
- 2. Area of loop (larger area \rightarrow larger ε)
- 3. Angle of magnetic field through loop ($\varepsilon \propto \cos \theta$)

MAGNETIC FLUX

$$\phi_B = \sum \overrightarrow{B} \cdot \hat{n} \Delta A \rightarrow \int \overrightarrow{B} \cdot \hat{n} dA$$

FARADAY'S LAW

$$\varepsilon = -\frac{d\phi_B}{dt}$$

THE SIGN (POLARITY) OF THE EMF

How to determine the polarity of the induced emf?

FARADAY'S LAW (FORMAL VERSION)

$$\oint \overrightarrow{E} \cdot d\overrightarrow{l} = -\frac{d}{dt} \int \overrightarrow{B} \cdot \hat{n} dA$$

Equation	Name	Explanation
$\oint \overrightarrow{E} \cdot \hat{n} dA = \frac{1}{\epsilon_0} \sum_{\text{inside}} q_{\text{inside}}$	Gauss's Law for Electricity	 How charges produce electric fields Used to derive Coulomb's Law
$\oint \overrightarrow{B} \cdot \hat{n} dA = 0$	Gauss's Law for Magnetism	 No magnetic monopoles Constrains shape of magnetic field ("curly")
$\oint \overrightarrow{E} \cdot d\overrightarrow{l} = 0$	Faraday's Law	 Constrains shape of electric field (radially outward)
$\oint \overrightarrow{B} \cdot d\overrightarrow{l} = \mu_0 \sum I_{\text{inside}}$	Ampere's Law	 How currents produce magnetic fields Used to derive Biot-Savart Law

Equation	Name	Explanation
$\oint \overrightarrow{E} \cdot \hat{n} dA = \frac{1}{\epsilon_0} \sum_{\text{inside}} q_{\text{inside}}$	Gauss's Law for Electricity	 How charges produce electric fields Used to derive Coulomb's Law
$\oint \overrightarrow{B} \cdot \hat{n} dA = 0$	Gauss's Law for Magnetism	 No magnetic monopoles Constrains shape of magnetic field ("curly")
$\oint \overrightarrow{E} \cdot d\overrightarrow{l} = -\int \overrightarrow{B} \cdot \hat{n} dA$	Faraday's Law	 Curly electric field produced by time-varying magnetic field
$\oint \overrightarrow{B} \cdot d\overrightarrow{l} = \mu_0 \sum I_{\text{inside}}$	Ampere's Law	 How currents produce magnetic fields Used to derive Biot-Savart Law

FARADAY'S LAW AND MOTIONAL EMF

Recall:
 conducting
 bar sliding in
 presence of
 magnetic
 field

 $\varepsilon = BLv$

FARADAY'S LAW AND MOTIONAL EMF

Recall:
 conducting
 bar sliding in
 presence of
 magnetic field

 $\epsilon = BLv$

Can derivewith Faraday'sLaw

EXAMPLE

- Rotating loop of wire in presence of steady magnetic field
- Notating at constant angular speed $\omega = \frac{d\theta}{dt}$

GENERATORS

GENERATORS

