Provided for non-commercial research and education use. Not for reproduction, distribution or commercial use.

	tomic Data	TSSS 0002-and
A Journal	ar Data Ta	ions of
David R. Schultz IN MEMORIAN S. Raman, Editor ASSOCIATE EMPTORS. S. M. Austin John W. Cooper Bernd Crasemann A. Dalgarno J. P. Desclaux Gordon W. F. Drake Walter Gibson Wick C. Haxton Hidestung Inegami Jouchim Jinecke Kartheinz Langanke E. Merzbucher Wilfried Scholz Stephen M. Shafroth	Transition probabilities and oscillator strengths of El transition probabilities and Fe XIV S.S. Teval Giant dipole resonance parameters with uncertainties for cross sections VA. Plajko, R. Capose, O.M. Govbachersko	
Stephen M. Sharroth Pertti Tikkanen P. J. Twin EDITOR EMERITA Angela Li-Scholz FOUNDING EDITOR.	Availabé	

This article appeared in a journal published by Elsevier. The attached copy is furnished to the author for internal non-commercial research and education use, including for instruction at the authors institution and sharing with colleagues.

Other uses, including reproduction and distribution, or selling or licensing copies, or posting to personal, institutional or third party websites are prohibited.

In most cases authors are permitted to post their version of the article (e.g. in Word or Tex form) to their personal website or institutional repository. Authors requiring further information regarding Elsevier's archiving and manuscript policies are encouraged to visit:

http://www.elsevier.com/copyright

Author's personal copy

Atomic Data and Nuclear Data Tables 97 (2011) 567-585

Contents lists available at ScienceDirect

Atomic Data and Nuclear Data Tables

journal homepage: www.elsevier.com/locate/adt

Giant dipole resonance parameters with uncertainties from photonuclear cross sections

V.A. Plujko a,b, R. Capote c,*, O.M. Gorbachenko a

- ^a Taras Shevchenko National University, Kyiv, Ukraine
- ^b Institute for Nuclear Research, Kyiv, Ukraine
- ^c NAPC-Nuclear Data Section, International Atomic Energy Agency, P.O. Box 100, A-1400, Vienna, Austria

ARTICLE INFO

Article history:
Received 22 February 2010
Received in revised form
1 September 2010
Available online 25 May 2011

Cumulative index scheme: 72a Nuclear resonance parameters

ABSTRACT

Updated values and corresponding uncertainties of isovector giant dipole resonance (IVGDR or GDR) model parameters are presented that are obtained by the least-squares fitting of theoretical photoabsorption cross sections to experimental data. The theoretical photoabsorption cross section is taken as a sum of the components corresponding to excitation of the GDR and quasideuteron contribution to the experimental photoabsorption cross section. The present compilation covers experimental data as of January 2010.

 $\hbox{@ 2011 Elsevier Inc. All rights reserved.}$

^{*} Corresponding author. Tel.: +43 1 2600 21713. E-mail address: R.CapoteNoy@iaea.org (R. Capote).

Contents

1.	Introduction	568
	Theoretical considerations	
3.	Data treatment	570
4.	Policy	570
	Acknowledgments	571
	References	571
	Explanation of Tables	572
	Table 1. Experimental values and uncertainties of GDR parameters within the standard Lorentzian (SLO) approach	572
	Table 2. Experimental values and uncertainties of GDR parameters within the modified Lorentzian (SMLO) approach	572
	Table 3. References to experimental and evaluated cross section data taken from EXFOR	

1. Introduction

Isovector giant dipole resonances (IVGDR or GDR) are strongly displayed in electric dipole (E1) gamma transitions in processes of photoabsorption and gamma-decay of the atomic nuclei [1–5]. The experimental values of the GDR parameters in cold atomic nuclei are most reliably deduced from photoabsorption data. An extensive compilation of the parameters of Lorentzian curves fitted to the total photoneutron cross section data for medium and heavy nuclei (A > 50) was prepared by Dietrich and Berman [6]. Additional analysis of experimental data was presented by Berman et al. [7]. The data from Ref. [6] and GDR parameters for the light nuclei ¹²C, ¹⁴N, ¹⁶O, ²⁷Al, and ²⁸Si nuclei were listed in the RIPL-1 database [4], as well as in the RIPL-3 [5] gdr-parametersexp-LOR.dat file. If the contribution of photoproton cross sections to the total photoabsorption cross section is small, then the Lorentzian parameters of the total photoneutron cross sections in spherical and axially deformed nuclei can be identified with the GDR parameters (see Section 2 for details).

Comprehensive databases of the photonuclear reaction parameters are also presented in Refs. [8,9]. The photoproton contribution was included there, but the parameters were obtained without the least-squares fitting to Lorentzian shape. Specifically, those databases listed full width at half maximum data for the largest peak in the photonuclear cross sections, that is, they do not contain explicit information on the GDR components of the damping widths in axially deformed nuclei.

Microscopic predictions of the GDR energies and widths for about 6000 nuclei from 14 \leq Z \leq 110 between the proton and the neutron drip lines are given in the RIPL-3 database [5]. These GDR parameters were provided by Goriely et al. [10, 11] and resulted from a fit of microscopic calculations of the Lorentzian functions. The calculations were performed on the basis of the quasi-particle random-phase approximation as well as the microscopic Hartree–Fock–Bogoliubov plus quasi-particle random-phase approximation model with a realistic Skyrme interaction.

For heated atomic nuclei, the GDR parameters are determined by gamma-decay data. Compilation and parametrization of the GDR resonances built on excited states are given in Refs. [12,13].

A comprehensive experimental database containing a proper estimate of the accuracy of the GDR parameters is very important in nuclear reaction codes for the reliable modeling of E1 gamma-ray cascades in highly excited nuclei as well as for the verification of different theoretical approaches used to describe GDR resonances. In this contribution, we present tables of updated values of the GDR parameters with estimations of their uncertainties (one-sigma standard deviation). The GDR parameters are treated as variables in the least-squares fitting of the calculated total photoabsorption cross sections to the experimental data retrieved from the EXFOR database [14]. The GDR component of the photoabsorption cross section is calculated within Lorentzian-like models described in more details in Section 2.

For experimental data, we use either the total photoabsorption cross sections (if they exist in the EXFOR database), or a combination of experimental partial cross sections best suited for approximation to the total photoabsorption cross section. Estimated data also include contributions from photoproton reactions, which are important for light nuclei. The evaluation of measured total photoabsorption data and their uncertainties is discussed in Section 3. The values and corresponding uncertainties of the Lorentzian-like model parameters are given in Tables 1 and 2. These values are derived from a fit of the theoretical photoabsorption cross sections to the experimental data for 132 isotopes from ¹⁰B to ²³⁹Pu nuclei (262 entries) and 9 elements of natural isotopic composition (14 entries). Theoretical photoabsorption cross sections are given by a standard Lorentzian (SLO) model (using parameters from Table 1) or by a simplified version of the modified Lorentzian (SMLO) approach (using parameters from Table 2; see also Ref. [5] for a detailed description). This compilation updates and extends the RIPL-3 database [5] contained in files gdr-parameters&errors-exp-SLO.dat and gdr-parameters&errors-exp-MLO.dat. References to experimental and evaluated cross section data taken from EXFOR are listed in Table 3.

2. Theoretical considerations

The theoretical photoabsorption cross section $\sigma_{abs}(\epsilon_{\gamma})$ as a function of gamma-ray energy ϵ_{γ} is taken as a sum of the terms

$$\sigma_{abs}(\epsilon_{\gamma}) = \sigma_{GDR}(\epsilon_{\gamma}) + \sigma_{qd}(\epsilon_{\gamma}), \tag{1}$$

where the component $\sigma_{\text{GDR}}(\epsilon_{\gamma})$ corresponds to the excitation of the GDR and $\sigma_{qd}(\epsilon_{\gamma})$ is a quasideuteron contribution (a photoabsorption by a neutron–proton pair), which is taken in accordance with the model proposed by Chadwick et al. [15] (see also Ref. [9]),

$$\sigma_{qd}(\epsilon_{\gamma}) = 6.5 \frac{NZ}{A} \sigma_d(\epsilon_{\gamma}) f(\epsilon_{\gamma}). \tag{2}$$

Here, $\sigma_d(\epsilon_\gamma)$ is the experimental photodisintegration cross section of the free deuteron,

$$\sigma_d(\epsilon_{\gamma}) = 61.2 \frac{(\epsilon_{\gamma} - 2.224)^{3/2}}{\epsilon_{\gamma}^3},\tag{3}$$

with ϵ_{γ} in MeV and σ_{d} in units of mb. The function $f(\epsilon_{\gamma})$ accounts for the Pauli blocking of the excited neutron–proton pair in the nuclear medium;

$$\begin{split} f(\epsilon_{\gamma} < 20 \,\text{MeV}) &= \exp(-73.3/\epsilon_{\gamma}), \\ f(20 < \epsilon_{\gamma} < 140 \,\text{MeV}) &= 8.3714 \times 10^{-2} \\ &- 9.8343 \times 10^{-3} \epsilon_{\gamma} + 4.1222 \times 10^{-4} \epsilon_{\gamma}^{2} \\ &- 3.4762 \times 10^{-6} \epsilon_{\gamma}^{3} + 9.3537 \times 10^{-9} \epsilon_{\gamma}^{4}. \end{split} \tag{4}$$

The GDR component $\sigma_{\text{GDR}}(\epsilon_{\gamma})$ of the total photoabsorption cross section is taken as given in Refs. [1–6,9] to be equal to the photoabsorption cross section of electric dipole gamma rays $\sigma_{\text{E1}}(\epsilon_{\gamma})$, which is proportional to the strength function $S_{\text{E1}}(\epsilon_{\gamma})$,

$$\sigma_{\rm E1}(\epsilon_{\gamma}) = \frac{8\pi\alpha}{3} \,\epsilon_{\gamma} S_{\rm E1}(\epsilon_{\gamma}) \tag{5}$$

with fine structure constant $\alpha = e^2/(\hbar c)^2$.

The strength function $S_{\rm E1}(\epsilon_{\gamma})$ is determined by the imaginary part $\chi''(\omega)$ of the response function of the atomic nucleus to the E1 field of frequency $\omega=\epsilon_{\gamma}/\hbar$. In the vicinity of an isolated resonance state, the strength function has Lorentzian-like shape

$$S_{\text{E1}}(\epsilon_{\gamma}) = -\frac{\pi}{2} \chi''(\omega) = \frac{2}{\pi} S_{\text{EWSR}} \frac{\epsilon_{\gamma} \Gamma(\epsilon_{\gamma})}{(\epsilon_{\gamma}^2 - E_r^2)^2 + (\Gamma(\epsilon_{\gamma}) \epsilon_{\gamma})^2}$$
 (6)

when the resonance state corresponds to the almost exhausted energy-weighted sum rule

$$S_{\text{EWSR}} \equiv \hbar^2 \int_0^\infty \omega \chi''(\omega) \, d\omega. \tag{7}$$

In Eq. (6), E_r and $\Gamma\left(\epsilon_\gamma\right)$ are the resonance energy and the energy-dependent scaling parameter of the shape ("width"), which is equal to the resonance width Γ_r at the resonance energy: $\Gamma\left(\epsilon_\gamma=E_r\right)=\Gamma_r$. In the presence of intrinsic excitations (heated nuclei), the widths $\Gamma\left(\epsilon_\gamma\right)$ and Γ_r are also dependent on the temperature. The resonance parameters E_r and Γ_r usually are named the GDR energy and width because the giant dipole excitation is the leading contribution to the energy-weighted sum rule. The Lorentzian shape of Eq. (6) stems from the random-phase approximation. It is also predicted by the extended hydrodynamic model of Steinwedel–Jensen for heated nuclei with friction between the proton and neutron fluids, and by a semiclassical Landau–Vlasov equation with a memory-dependent collision term [5,16].

Phenomenological models based on Eq. (6) with the GDR parameters as input quantities [4,5] have been successfully used for a description of the average probabilities of gamma-decay and photoabsorption for γ -ray energies below 30 MeV. These models differ mainly in the expressions for the shape parameter $\Gamma\left(\epsilon_{\gamma}\right)$, which is determined by complex mechanisms of nuclear dissipation and still remains under study [17-22]. In particular, the gamma-energy dependence of the width $\Gamma_c(\epsilon_{\nu})$ results from two-body nucleon-nucleon collisions with retardation effects [23, 24]. Redistribution of the γ -strength in a self-consistent mean field can be considered as a fragmentation component of the GDR width [17,25]. It arises from the nucleon collisions with a moving nuclear surface [26] (or one-body dissipation [27]), and is originally independent of the GDR energy [28,29]. Therefore, a fragmentation component of the width $\Gamma_c(\epsilon_\gamma)$ can be treated as independent of the gamma-ray energy. In accordance with Eqs. (5) and (6), the GDR component of the total photoabsorption cross section for gammaray energies in the neighborhood of the GDR peak has a Lorentzianlike shape. For axially deformed nuclei, the σ_{GDR} is a sum of two Lorentzian-like components corresponding to collective vibrations along and perpendicular to the axis of symmetry $(j_m = 2)$ (correspondingly in spherical nuclei $j_m = 1$), namely

$$\sigma_{\rm GDR}(\epsilon_{\gamma}) = \frac{2}{\pi} \sigma_{\rm TRK} \sum_{i=1}^{j_m} S_{r,j} \frac{\epsilon_{\gamma}^2 \Gamma_j(\epsilon_{\gamma})}{(\epsilon_{\gamma}^2 - E_{r,j}^2)^2 + (\epsilon_{\gamma} \Gamma_j(\epsilon_{\gamma}))^2}.$$
 (8)

Here, $E_{r,j}$ ($S_{r,j}$) is the energy (strength) of the corresponding mode of the giant dipole excitation. The strength is given in units of the Thomas–Reiche–Kuhn (TRK) sum rule σ_{TRK} [3,5]. An energy-dependent scaling parameter $\Gamma_j(\epsilon_\gamma)$ of the shape is equal to the

appropriate component of the GDR width $\Gamma_{r,j}$ at the GDR energy: $\Gamma_j\left(\epsilon_\gamma=E_{r,j}\right)=\Gamma_{r,j}$. The TRK sum rule for a nucleus with N neutrons, Z protons, and mass number A=N+Z is equal to

$$\sigma_{\text{TRK}} = 60 \frac{NZ}{A} = 15A(1 - I^2) \quad [\text{mb} \cdot \text{MeV}],$$

$$\sum_{i} S_{r,j} = 1 + \Delta, \quad \Delta \approx 0.2 \div 0.3,$$
(9)

where I=(N-Z)/A is the neutron–proton asymmetry and Δ is the contribution from interactions that do not commutate with the kinetic energy operator (velocity-dependent and exchange forces). In the approximation of equally probable excitation of different modes, the giant collective vibration, which is perpendicular to the axis of symmetry, is twofold degenerated and equal to

$$S_{r,2} = 2S_{r,1}(\beta > 0)$$
 and $S_{r,1} = 2S_{r,2}(\beta < 0)$, (10)

where β is a parameter of quadrupole deformation and the subindex 1(2) in $S_{r,1}$ ($S_{r,2}$) corresponds to a low (high) value component $E_{r,1}$ ($E_{r,2}$) of the GDR energy.

For the GDR component of the total photoabsorption cross section, we use the standard Lorentzian approach and a simplified version of the modified Lorentzian approach, which are based on different assumptions of the dependence of scaling parameter $\Gamma_j(\epsilon_\gamma)$ on gamma-ray energy [5]. In the SLO model, the width $\Gamma_j(\epsilon_\gamma)$ is taken as energy-independent and equal to the GDR width, that is, the absorption cross section (8) in axially deformed atomic nuclei is given by double-peak Lorentzian functions

$$\sigma_{\text{GDR}}(\epsilon_{\gamma}) = \sigma_{\text{E1,SLO}}(\epsilon_{\gamma})$$

$$= \frac{2}{\pi} \sigma_{\text{TRK}} \sum_{i} S_{r,j} \frac{\epsilon_{\gamma}^{2} \Gamma_{r,j}}{(\epsilon_{\gamma}^{2} - E_{r,i}^{2})^{2} + (\epsilon_{\gamma} \Gamma_{r,i})^{2}}.$$
(11)

The GDR strength $S_{r,j}$ is related to the peak value $\sigma_{r,j}$ of the cross section component of the Eq. (11) corresponding to the giant dipole vibration along the j-axis

$$\sigma_{r,j} = \frac{2}{\pi} \sigma_{\text{TRK}} \, S_{r,j} / \Gamma_{r,j}. \tag{12}$$

For the SLO model, the product of $\sigma_{r,j}$ and $\Gamma_{r,j}$ is proportional to the total integrated cross section

$$\sigma_{int,SLO} = \int_0^\infty \sigma_{E1,SLO}(\epsilon_\gamma) d\epsilon_\gamma = \frac{\pi}{2} \sum_i \sigma_{r,j} \Gamma_{r,j}.$$
 (13)

In the SMLO approach [5,30], the total photoabsorption cross section is given by Eq. (8) with the scaling width $\Gamma_j(\epsilon_\gamma)$ being proportional to the gamma-ray energy

$$\Gamma_i(\epsilon_{\gamma}) = a_i \, \epsilon_{\gamma}, \qquad \Gamma_{r,j} = a_i \, E_{r,j}.$$
 (14)

In the SLO model, the quantities $E_{r,j}$, $\Gamma_{r,j}$, and $S_{r,j}$ were used as variables in the fitting. The parameters $E_{r,j}$, a_j , and $S_{r,j}$ were derived by fitting with the SMLO model and the components of the GDR width were calculated by Eq. (14).

A least-squares fitting procedure was employed, in which the data points were weighted according to the inverse square of their uncertainties, that is, a minimum value was sought for χ^2 given by

$$\chi^{2} = \frac{1}{N_{f}} \sum_{i=1}^{N} \frac{\left(\sigma_{abs}\left(\epsilon_{i}\right) - \sigma_{\exp}\left(\epsilon_{i}\right)\right)^{2}}{\left(\Delta\sigma\left(\epsilon_{i}\right)\right)^{2}},\tag{15}$$

where $\sigma_{abs}(\epsilon_i)$ is the value for the theoretical curve fit to the cross section data at gamma-ray energy ϵ_i , $\sigma_{\rm exp}(\epsilon_i)$ is the measured value for the total photoabsorption cross section with uncertainty $\Delta\sigma(\epsilon_i)$ at that energy, and $N_f=N-N_{par}$ is the number of degrees of freedom for the data set fitted, which is equal

to the number N of data points within the fitting interval minus the number N_{par} of fitted parameters (3 parameters for each Lorentzian-like curve). For deformed nuclei, we adopted an approximation of axially deformed nuclei. However, following Ref. [6], some deformed nuclei were considered as spherical, if the one-component Lorentzian curve gives a better fit (i.e., a fit having a lower χ^2 per degree of freedom) to the experimental data than a two-component one. The minimization of the least-squares functional is undertaken by the CERN MINUIT package [31]. The standard deviation of the parameters was estimated using the MINOS procedure of this code. The calculation was defined by the following sequence of commands: SEEK 1000, MIGRAD 10000 0.000001, IMPROVE 100, HESSE 1, MINOS 1.

3. Data treatment

Photon-induced reaction data from the EXFOR library [14] were used as the required experimental database on photonuclear cross sections. The evaluated data compiled by Varlamov et al. [32,33] at the Center for Photonuclear Experiment Data at the Institute of Nuclear Physics of the Moscow State University (Moscow, Russia, online at http://cdfe.sinp.msu.ru) are also considered as experimental values. The total photoabsorption reaction cross section $\sigma(\gamma, abs)$ used in the fits should be equal to the sum of the total photoneutron cross section $\sigma(\gamma, sn)$, also denoted as $\sigma(\gamma, tot n)$, and the photo-charged-particle reaction cross section $\sigma(\gamma, cp)$, that is,

$$\sigma(\gamma, abs) = \sigma(\gamma, sn) + \sigma(\gamma, cp),
\sigma(\gamma, sn) = \sigma(\gamma, n) + \sigma(\gamma, np) + \sigma(\gamma, 2n) + \sigma(\gamma, 2np)
+ \sigma(\gamma, 3n) + \dots + \sigma(\gamma, F),
\sigma(\gamma, cp) = \sigma(\gamma, p) + \sigma(\gamma, 2p) + \dots + \sigma(\gamma, d)
+ \sigma(\gamma, dp) + \dots + \sigma(\gamma, \alpha) + \dots$$
(16)

When measured and evaluated data on the total photoabsorption cross section for a given nuclide were absent in the database, the total photoneutron cross section $\sigma(\gamma,sn)$ was taken instead of the photoabsorption cross section $\sigma(\gamma,abs)$. Such an approximation is valid if the contribution of the photo-charged-particle reaction cross sections is small. In the absence of experimental EXFOR data for the $\sigma(\gamma,sn)$, the total photoneutron cross section was evaluated as a combination of the available experimental cross sections on the inclusive photoneutron yield cross section $\sigma(\gamma,xn)$ and photoneutron cross sections with ejection of more than one neutron,

$$\sigma(\gamma, xn) = \sigma(\gamma, sn) + \sigma(\gamma, 2n) + \sigma(\gamma, 2np) + 2\sigma(\gamma, 3n) + \dots + (\bar{\nu} - 1)\sigma(\gamma, F), \tag{17}$$

where $\bar{\nu}$ is the average multiplicity of photofission neutrons.

There are situations where no uncertainties $\Delta\sigma(\epsilon_i)$ of the experimental cross sections $\sigma_{\rm exp}(\epsilon_i)$ are given in the EXFOR database. For such cases the relative uncertainties $\delta\sigma(\epsilon_i) \equiv \Delta\sigma(\epsilon_i)/\sigma_{\rm exp}(\epsilon_i)$ were taken either as a constant value of 10% (i.e., $\delta\sigma=0.1$), or as an energy-dependent quantity. The energy-dependent relative uncertainties were assumed to take minimal values near the GDR energies and maximal values on the GDR tails, that is, the triangular shape given below was accepted for spherical nuclei

$$\delta(\epsilon_i) = \delta_{\min} + b|E1 - \epsilon_i|, \tag{18}$$

and the trapezoidal shape was used in deformed nuclei

$$\delta(\epsilon_i) = \begin{cases} \delta_{\min} + b|E1 - \epsilon_i|, & \epsilon_i < E1, \\ \delta_{\min}, & E1 \le \epsilon_i \le E2, \\ \delta_{\min} + b|\epsilon_i - E2|, & \epsilon_i > E2, \end{cases}$$
(19)

where $b=(\delta_{\max}-\delta_{\min})/(E1-\epsilon_{in});$ $\delta_{\min}=0.1$ and $\delta_{\max}=0.5$ are the minimal and maximal values of the uncertainty; ϵ_{in} is the smallest value of γ -ray energy in the experimental database. The E1 and E2 are the peak energies for which the uncertainties are the smallest. The peak energies were obtained from the datafile gdr-parameters-exp-LOR.dat [4,5] if both the nucleus and the reference were present in the file. If the reference was different, the peak energies were taken from the first line of the database for this isotope. If the isotope is not listed, then the systematics [5] with parameters from Ref. [1] were used.

4. Policy

No attempt is made here to recommend the best data, that is, to choose between different sets of parameters for the same nucleus found by fit of measured photoabsorption cross sections, neither to set recommended intermediate values. Methods to resolve discrepancies between photoabsorption cross sections measured at different laboratories are discussed in Refs. [7,32–35]. It should be noted, however, that the overall agreement between derived GDR parameters is rather good within quoted uncertainties.

In fact, the energies $E_{r,i}$, widths $\Gamma_{r,i}$, and strengths $S_{r,i}$ presented in Tables 1 and 2 are the shape parameters of Lorentzian-like curves representing the best fit of experimental photoabsorption cross sections within the indicated fitting interval for the SLO and SMLO models, respectively. As mentioned above, the SLO and SMLO models are based on two opposite assumptions regarding the dissipation mechanism in atomic nuclei, namely, the one-body relaxation mechanism is assumed in the SLO model while the two-body relaxation mechanism is adopted in the SMLO model. Differences in the values of the derived shape parameters to describe the GDR component of the total theoretical photoabsorption cross section demonstrate the impact of such assumptions about the dissipation mechanism on the fit.

The accuracy of approximation of the GDR parameters by shape parameters depends on many factors. Besides well-known problems of the selection and verification of the experimental data and the estimation of the contributions of cross section with ejection of different particles to the total photoabsorption cross section, there are also ambiguities in the theoretical description of the dipole strength function $S_{E1}(\epsilon_{\gamma})$ given by Eq. (6). Namely, the approximation of S_{E1} by a one- or two-component Lorentzian-like curve near the beta-stability valley is appropriate for rather heavy $(A \gtrsim 50)$ spherical and axially deformed nuclei (155 $\lesssim A \lesssim 190$ or 225 $\lesssim A \lesssim 250$) for gamma-ray energies close to the GDR energy. In other situations, additional physical effects should be taken into account (e.g., the isospin splitting of the GDR, possible intermediate-structure effects, the neutron excess and the triaxial deformation [29,36]).

It is also important to remark that the present tables contain parameter uncertainties only. However, to obtain the total uncertainty of calculated photoabsorption cross sections we have to consider additionally the uncertainty of the theoretical model used in the fit. Such model uncertainty is rather difficult to estimate; a good guess of the model uncertainty could be the difference between results obtained using SLO and SMLO parameters of Tables 1 and 2, respectively. The biggest differences are located in the low-energy tail of the GDR peak because the SMLO model is asymmetric compared to the symmetric SLO model.

Uncertainty estimates of Lorentzian-like parameters as well as SLO and SMLO model uncertainties are needed in modern computer codes like EMPIRE [37] and TALYS [38] for a proper estimation of corresponding cross section uncertainties including both parameter and model uncertainties.

Note on references

When data from this compilation are cited, reference should also be made to the original publication.

Acknowledgments

The authors are very grateful to P. Obložinský, M. Herman, A.V. Ignatyuk, J. Kopecky, V.M. Kolomietz, A.G. Magner, V.I. Abrosimov, F.A. Ivanyuk, and V.V. Varlamov for valuable discussions and comments. We very much appreciate the help provided by Elyzaveta Kulich (Grabovska) and Vira Bondar in preparing the datafiles. This work is partially supported by the International Atomic Energy Agency.

References

- [1] B.L. Berman, S.C. Fultz, Rev. Modern Phys. 47 (1975) 713.
- [2] J. Speth, A. Van der Woude, Rep. Progr. Phys. 44 (1981) 719.
- [3] A. Van der Woude, in: J. Speth (Ed.), Electric and Magnetic Giant Resonances in Nuclei, World Scientific, 1991. Ch. II.
- in Nuclei, World Scientific, 1991, Ch. II.
 [4] J. Kopecky, Handbook for calculations of nuclear reaction data. Reference Input Parameter Library (RIPL), Tech. Rep. IAEA-TECDOC-1034, (International Atomic Energy Agency, Vienna, Austria, 1998); Chapter 6; see directory GAMMA on the RIPL-1 web site at: http://www-nds.iaea.org/ripl/.
- [5] R. Capote, M. Herman, P. Obložinský, P.G. Young, S. Goriely, T. Belgya, A.V. Ignatyuk, A.J. Koning, S. Hilaire, V.A. Plujko, M. Avrigeanu, O. Bersillon, M.B. Chadwick, T. Fukahori, Z. Ge, Y. Han, S. Kailas, J. Kopecky, V.M. Maslov, G. Reffo, M. Sin, E.Sh. Soukhovitskii, P. Talou, Nucl. Data Sheets 110 (2009) 3107. See RIPL-3 web site at: http://www-nds.iaea.org/RIPL-3/.
- [6] S.S. Dietrich, B.L. Berman, At. Data Nucl. Data Tables 38 (1988) 199.
- [7] B.L. Berman, R.G. Pywell, S.S. Dietrich, M.N. Thompson, K.O. McNeill, J.W. Jury, Phys. Rev. C 36 (1987) 1286.
- [8] A.V. Varlamov, V.V. Varlamov, D.S. Rudenko, M.E. Stepanov, Atlas of Giant Dipole Resonances. Parameters and Graphs of Photonuclear Reaction Cross Sections, Tech. Rep. INDC(NDS)-394, (International Atomic Energy Agency, Vienna, Austria, 1999); available online at: http://www-nds.iaea.org/reportsnew/indc-reports/indc-nds/indc-nds-0394.pdf.
- [9] M.B. Chadwick, P. Obložinský, A.I. Blokhin, T. Fukahori, Y. Han, Y.-O. Lee, M.N. Martins, S.F. Mughabghab, V.V. Varlamov, B. Yu, J. Zhang, Handbook on Photonuclear Data for Applications: Cross Sections and Spectra, Tech. Rep. IAEA-TECDOC-1178, (International Atomic Energy Agency, Vienna, Austria, 2000); available online at: http://www-nds.iaea.org/reports-new/tecdocs/iaea-tecdoc-1178.pdf.
- [10] S. Goriely, E. Khan, Nuclear Phys. A 706 (2002) 217.
- [11] S. Goriely, E. Khan, M. Samyn, Nuclear Phys. A 739 (2004) 331.

- [12] A. Schiller, M. Thoennessen, At. Data Nucl. Data Tables 93 (2007) 549.
- [13] D. Kusnezov, Y. Alhassid, K.A. Snover, W.E. Ormand, Nuclear Phys. A 687 (2001)
- [14] International Network of Nuclear Reaction Data Centres: EXFOR/CSISRS database, available online at: http://www-nds.iaea.org/exfor/.
- [15] M.B. Chadwick, P. Oblozinsky, P.E. Hodgson, G. Reffo, Phys. Rev. C 44 (1991) 814.
- [16] V.A. Plujko, O.M. Gorbachenko, E.V. Kulich, Int. J. Mod. Phys. E 18 (2009) 996.
- [17] V.M. Kolomietz, V.A. Plujko, S. Shlomo, Phys. Rev. C 54 (1996) 3014.
- [18] S.F. Mughabghab, C.L. Dunford, Phys. Lett. B 4 (87) (2000) 155.
- [19] V.M. Kolomietz, S. Shlomo, Phys. Rep. 690 (2004) 133.
- [20] S. Shlomo, V.M. Kolomietz, Rep. Progr. Phys. 68 (2005) 1
- [21] B.S. Ishkhanov, V.N. Orlin, Phys. Elem. Part. At. Nuclei 38 (2007) 460.
- [22] V.P. Aleshin, Nuclear Phys. A 828 (2009) 84.
- [23] S. Ayik, D. Boiley, Phys. Lett. B 276 (1992) 263; Phys. Lett. B 482E (1992).
- [24] V.A. Plujko, S.N. Ezhov, O.M. Gorbachenko, M.O. Kavatsyuk, J. Phys. Condens. Matter 14 (2002) 9473.
- [25] C. Yannouleas, Nuclear Phys. A 439 (1985) 336.
- [26] V.I. Abrosimov, J. Randrup, Nuclear Phys. A 449 (1986) 446.
- [27] J. Blocki, Y. Boneh, J.R. Nix, J. Randrup, M. Robel, A.J. Sierk, W.J. Swiatecki, Ann. Phys. 113 (1978) 330.
- [28] W.D. Myers, W.J. Swiatecki, T. Kodama, L.J. El-Jaick, E.R. Hilf, Phys. Rev. C 15 (1977) 2032.
- [29] B. Bush, Y. Alhassid, Nuclear Phys. A 531 (1991) 27.
- [30] V.A. Plujko, I.M. Kadenko, O.M. Gorbachenko, E.V. Kulich, Int. J. Mod. Phys. E 17 (2008) 240.
- [31] CERN Program Library, MINUIT (D506), Function Minimization and Error Analysis; code available online at: http://wwwasdoc.web.cern.ch/wwwasdoc/cernlib.html; user manual available online at: http://wwwasdoc.web.cern.ch/wwwasdoc/minuit/minmain.html.
- [32] V.V. Varlamov, B.S. Ishkhanov, Phys. Elem. Part. At. Nuclei 35 (2004) 858.
- [33] I.N. Boboshin, V.V. Chesnokov, S.Yu. Komarov, N.N. Peskov, M.E. Stepanov, V.V. Varlamov, in: Proc. Int. Conf. Current Problems Nucl. Phys. Atom. Energy, 9–15 June 2008, Kviv, Ukraine, Vol. II (2008) 618.
- [34] B.S. Ishkhanov, V.V. Varlamov, Phys. Atom. Nuclei 67 (2004) 1664.
- [35] V.V. Varlamov, B.S. Ishkhanov, D.S. Rudenko, M.E. Stepanov, Phys. Atomic Nuclei 67 (2004) 2107.
- [36] A.R. Junghans, G. Rusev, R. Schwengner, A. Wagner, E. Grosse, Phys. Lett. B 670 (2008) 200.
- [37] M. Herman, R. Capote, B.V. Carlson, P. Obložinský, M. Sin, A. Trkov, H. Wienke, V. Zerkin, Nucl. Data Sheets 108 (2007) 2655.
- [38] A.J. Koning, S. Hilaire, M.C. Duijvestijn, TALYS-1.0, in: O. Bersillon, F. Gunsing, E. Bauge, R. Jacqmin, S. Leray (Eds.), Proceedings of the International Conference on Nuclear Data for Science and Technology, April 22–27, 2007, Nice, France, EDP Sciences, 2008, pp. 211–214. See TALYS web-site at: www.talys.eu.

Explanation of Tables

Table 1	Experimental v	values and uncertainties of GDR parameters within the standard Lorentzian (SLO) approach
	Nucl	The target studied (symbol); <i>nat</i> supra-index indicates a natural isotopic composition
	Id	Type of experimental data used in fitting:
		0 —experimental $\sigma(\gamma, abs)$ with experimental uncertainties;
		1a—experimental $\sigma(\gamma, abs)$ with constant uncertainties (10%);
		1b—experimental $\sigma(\gamma, abs)$ with energy-dependent uncertainties;
		2—evaluated $\sigma(\gamma, abs)$ with experimental uncertainties;
		3a—evaluated $\sigma(\gamma, abs)$ with constant uncertainties (10%);
		3b—evaluated $\sigma(\gamma, abs)$ with energy-dependent uncertainties;
		4-experimental $\sigma(\gamma, sn)$ with experimental uncertainties;
		5a—experimental $\sigma(\gamma, sn)$ with constant uncertainties (10%);
		5b—experimental $\sigma(\gamma, sn)$ with energy-dependent uncertainties;
		6–composed $\sigma(\gamma, sn)$ as a combination of selected experimental cross sections:
		$\sigma(\gamma, sn) = (\sigma(\gamma, sn) + \sigma(\gamma, sn))/2$ with absolute uncertainties:
		$\Delta\sigma(\gamma, sn) = \sqrt{\Delta\sigma^2(\gamma, xn) + \Delta\sigma^2(\gamma, 1n)/2};$
		7–composed $\sigma(\gamma, sn)$ as a combination of the experimental cross sections:
		$\sigma(\gamma, sn) = \sigma(\gamma, xn) - \sigma(\gamma, 2n)$ with absolute uncertainties:
		$\Delta\sigma(\gamma, sn) = \sqrt{\Delta\sigma^2(\gamma, xn) + \Delta\sigma^2(\gamma, 2n)};$
		8—composed $\sigma(\gamma, sn)$ as a combination of selected experimental cross sections:
		$\sigma(\gamma, sn) = \sigma(\gamma, 1n) + \sigma(\gamma, 2n) \text{ with absolute uncertainties:}$
		$\Delta\sigma(\gamma, sn) = \sqrt{\Delta\sigma^2(\gamma, ln) + \Delta\sigma^2(\gamma, ln)};$
		9-composed $\sigma(\gamma, sn)$ as a combination of selected experimental cross sections:
		$\sigma(\gamma, sn) = \sigma(\gamma, 1n) + \sigma(\gamma, 2n) + \sigma(\gamma, 3n) \text{ with absolute uncertainties:}$
		$\Delta\sigma(\gamma, sn) = \sqrt{\Delta\sigma^2(\gamma, ln) + \Delta\sigma^2(\gamma, ln) + \Delta\sigma^2(\gamma, ln)};$
		10—composed $\sigma(\gamma, sn)$ as a combination of selected experimental cross sections: $\sigma(\gamma, sn) = \sigma(\gamma, 1n) + \sigma(\gamma, 2n) + \sigma(\gamma, f)$ with absolute uncertainties:
		$\Delta\sigma(\gamma, sn) = \sigma(\gamma, In) + \sigma(\gamma, 2n) + \sigma(\gamma, f) \text{ with absolute direct differes}.$ $\Delta\sigma(\gamma, sn) = \sqrt{\Delta\sigma^2(\gamma, In) + \Delta\sigma^2(\gamma, 2n) + \Delta\sigma^2(\gamma, f)};$
		$\Delta\sigma(\gamma, sn) = \sqrt{\Delta\sigma^2(\gamma, ln) + \Delta\sigma^2(\gamma, ln) + \Delta\sigma^2(\gamma, ln)};$ 11—composed $\sigma(\gamma, sn)$ as a combination of selected experimental cross sections:
		$\sigma(\gamma, sn) = (\sigma(\gamma, sn) + \sigma(\gamma, 1n) + \sigma(\gamma, f))/2$ with absolute uncertainties:
		$\Delta\sigma(\gamma, sn) = (\sigma(\gamma, sn) + \sigma(\gamma, in) + \sigma(\gamma, jn))/2 \text{ with absolute differentiations}.$ $\Delta\sigma(\gamma, sn) = \sqrt{\Delta\sigma^2(\gamma, sn) + \Delta\sigma^2(\gamma, jn) + \Delta\sigma^2(\gamma, jn)}/2;$
		$\Delta b(\gamma, sh) = \sqrt{\Delta b}(\gamma, sh) + \Delta b(\gamma, h) + \Delta b(\gamma, h)/2,$ 12—experimental $\sigma(\gamma, h)$ with experimental uncertainties;
		13—experimental $\sigma(\gamma, m)$ with experimental uncertainties;
		13a—experimental $\sigma(\gamma, xn)$ with constant uncertainties (10%);
		13b—experimental $\sigma(\gamma, xn)$ with energy-dependent uncertainties
	$E_{r,i}, \Gamma_{r,i}, S_{r,i}$	parameters of energy, width, and strength of Lorentzian curves fitted to the corresponding photoabsorption cross
	.,,	sections within the indicated fitting interval. Notation 'spherical' $(i = 1)$ implies that a one-component
		Lorentzian curve gives a better fit to the data that a two-component one, and 'axially deformed' $(i = 1, 2)$ implies
		the opposite.
	$E_{r,1}$	energy of the first component of the GDR with uncertainty (one-sigma standard deviation), MeV.
	$\Gamma_{r,1}$	width of the first component of the GDR with uncertainty (one-sigma standard deviation), MeV.
	$S_{r,1}$	strength of the first component of the GDR (as a fraction of the TRK sum rule) with uncertainty (one-sigma
	F	standard deviation); the values of TRK sum rule for ⁹⁰ Zr and ²⁰⁸ Pb are used for ^{nat} Zr and ^{nat} Pb.
	$E_{r,2}$	energy of the second component of the GDR with uncertainty (one-sigma standard deviation), MeV. width of the second component of the GDR with uncertainty (one-sigma standard deviation), MeV.
	$\Gamma_{r,2}$	strength of the second component of the GDR (as a fraction of the TRK sum rule) with uncertainty (one-sigma
	$S_{r,2}$	strength of the second component of the GDK (as a fraction of the TRK sum rule) with uncertainty (one-signal standard deviation).
	S	sum of strengths of the first and second component of the GDR ($S = S_{r,1} + S_{r,2}$) with uncertainty (one-sigma
	3	standard deviation); the values of TRK sum rule for 90 Zr and 208 Pb are used for nat Zr and nat Pb.
	$\epsilon_{\min} \ (\epsilon_{\max})$	lower (upper) energy limit of fitting interval, MeV.
	Ref	Short references on the experimental data used in the fit.
Table 2	Experimental v	values and uncertainties of GDR parameters within the modified Lorentzian (SMLO) approach
	Same as for Tab	le 1.
Table 3	References to e	experimental and evaluated cross section data taken from EXFOR
	Nucl	The target studied (symbol); nat supra-index indicates a natural isotopic composition.
	Id	Type of experimental data used in fitting (with a letter indicating the method of uncertainty estimation
		employed). See the explanation for Table 1.

employed). See the explanation for Table 1.

Reaction Type of reaction.

Ref Short references on the experimental data. EXFOR EXFOR 8-digit entry and subentry number.

Table 1Experimental values and uncertainties of GDR parameters within the standard Lorentzian (SLO) approach.

Nucl	Id	$E_{r,1}$ (MeV)	$\Gamma_{r,1}$ (MeV)	$S_{r,1}$	$E_{r,2}$ (MeV)	$\Gamma_{r,2}$ (MeV)	$S_{r,2}$	S	$\epsilon_{ ext{min}} - \epsilon_{ ext{max}} \ (ext{MeV})$	Ref.
¹⁰ B	5a	21.72 10	9.08 16	0.4418				0.4418	8.5-24.9	1987Ahs
10 -	5b	22.54 32	10.81 63	0.518 26				0.518 26	8.5-24.9	1987Ahs
² C	0	22.79 7	3.62 28	0.494 27				0.494 27	14.0-24.9	1963Bur
	0	22.86 2	3.61 7 3.35 <i>2</i> 3	0.671 10				0.671 10	20.1–25.0	1969Bez
	1a	22.87 6		0.611 35				0.611 35	21.1-24.0	1975Ahr
	1b 3a	22.85 8 23.07 5	3.32 <i>2</i> 9 3.65 <i>2</i> 3	0.607 <i>4</i> 7 0.641 <i>25</i>				0.607 <i>4</i> 7 0.641 <i>25</i>	21.1–24.0 21.2–25.0	1975Ahr 2002Ish
	3b	23.05 8	3.65 30	0.640 38				0.640 38	21.2-25.0	2002Ish
	3a	22.71 3	3.21 9	0.579 10				0.579 10	20.1–25.0	20021311 2003Var
	3b	22.65 10	3.40 27	0.589 39				0.589 39	20.1-25.0	2003Var
³ C	3a	24.60 13	8.43 41	0.868 22				0.868 22	14.5-29.0	2003Vai 2002Ish
	3b	24.40 17	7.70 63	0.828 36				0.828 36	14.5-29.0	2002Ish
⁴ C	3a	15.41 26	5.82 90	0.333 47	26.13 15	7.78 92	0.483 46	0.816 66	14.5-30.0	2002Ish
	3b	16.68 57	3.10 67	0.177 23	25.87 17	6.84 84	0.490 46	0.667 51	9.0-30.0	2002Ish
⁴ N	0	23.05 3	6.95 13	1.193 16				1.193 16	18.2-28.0	1969Bez
	3a	23.39 8	4.83 17	0.729 15				0.729 15	15.0-28.0	2002Ish
	3b	23.13 18	4.83 35	0.725 47				0.725 47	15.0-28.0	2002Ish
⁵ N	1a	24.68 1	1.22 1	0.435 3				0.435 3	9.7-26.5	1989Bat
	1b	24.72 1	2.99 2	0.5542				0.5542	9.7-26.5	1989Bat
	3a	24.78 26	12.82 63	1.242 56				1.242 56	14.5-28.0	2002Ish
	3b	24.96 39	12.47 134	1.259 111				1.259 111	14.5-28.0	2002Ish
^{at} O	2	22.52 27	9.89 111	1.710 187				1.710 187	21.8-25.5	1985Ahr
⁶ O	0	23.37 4	5.54 14	0.957 19				0.957 19	18.5–26.0	1969Bez
	0	23.70 4	5.36 12	0.981 16				0.981 16	18.1–26.0	1975Ahr
	3a	23.717	3.98 12	0.762 17				0.762 17	18.2-26.0	2002Ish
⁷ O	3b	23.89 11	4.59 23	0.820 29				0.820 29	18.2–26.0	2002Ish
.0	3a 3b	23.40 10 23.38 13	5.48 31 5.57 49	0.739 24 0.740 36				0.739 24 0.740 36	18.5-26.5 18.5-26.5	2002Ish 2002Ish
⁸ O	3a	19.08 14	2.12 57	0.064 18	24.10 16	5.25 83	0.417 49	0.481 52	18.5–26.0	2002Ish
U	3b	16.61 65	7.82 204	0.263 64	24.07 20	4.71 111	0.337 71	0.600 96	11.5-26.0	2002Ish
⁹ F	3a	21.91 34	12.89 58	1.211 66	24.07 20	4.71 111	0.557 7 1	1.211 66	10.0-24.5	2002Ish
¹ Na	0	17.43 13	3.10 42	0.175 35	21.13 10	4.51 52	0.555 63	0.730 72	14.2-23.0	1981Ish
1144	3a	17.45 15	3.08 33	0.178 34	20.98 12	4.34 49	0.492 55	0.670 65	14.3–23.0	2002Ish
³ Na	3b	17.39 22	2.90 69	0.161 48	20.94 14	4.55 59	0.51971	0.680 86	14.3-23.0	2002Ish
⁴ Mg	3a	19.76 10	3.28 32	0.467 49	22.92 34	1.96 106	0.118 77	0.585 91	18.2-23.0	2002Ish
8	3b	19.75 9	3.41 35	0.484 49	22.90 29	1.80 90	0.105 63	0.589 80	18.2-23.0	2002Ish
	3a	19.74 5	2.45 15	0.310 24	24.51 12	6.34 66	0.554 57	0.864 62	16.3-26.0	2003Var
	3b	19.75 6	2.82 19	0.352 29	24.62 12	5.8475	0.500 63	0.852 69	16.3-26.0	2003Var
Mg	3a	22.06 10	6.09 15	0.894 20				0.894 20	9.0-24.2	2002Ish
	3b	22.09 16	6.30 30	0.902 34				0.902 34	9.0-24.2	2002Ish
⁶ Mg	3a	17.38 5	2.21 17	0.151 11	23.548	6.90 32	1.098 40	1.249 41	16.1-26.0	2003Var
	3b	17.37 12	1.74 30	0.119 17	23.509	7.41 38	1.174 50	1.293 53	16.1-26.0	2003Var
⁷ Al	1a	20.82 6	6.60 17	1.037 17				1.037 17	14.2-24.4	1975Ahr
	1b	20.84 9	6.73 30	1.044 32				1.044 32	14.2-24.4	1975Ahr
	3a	20.58 7	4.46 11	0.772 16				0.772 16	14.2-23.0	2002Ish
	2	20.78 7	7.88 30	1.180 32				1.180 32	16.3-25.4	1985Ahr
at Si	0	20.35 3	4.53 9	0.871 18	25.16 19	2.86 67	0.112 25	0.983 31	16.4–25.8	1975Ahr
8Si	3a	19.81 12	2.56 20	0.37173	21.81 16	3.15 36	0.474 89	0.845 115	16.7-23.0	2003Var
9.0.	3b	19.73 21	2.24 86	0.238 183	21.56 36	4.03 68	0.676 236	0.914 299	16.7-23.0	2003Var
⁹ Si	3a	20.70 8	5.60 17	0.810 19				0.810 19	14.2-23.0	2002Ish
⁰ Si	3b	20.73 12	5.76 34	0.821 32				0.821 32	14.2-23.0	2002Ish
°S1	3a	20.86 13	7.40 31	0.767 27				0.767 27	14.2-23.0 14.2-23.0	2002Ish
² S	3b	20.91 19	7.51 58	0.778 48				0.778 48		2002Ish
3	3a	21.17 9	5.08 12 5.67 30	0.967 25				0.967 25 1.082 50	14.4-23.0	2002Ish
⁴ S	3b	21.51 14		1.082 50					14.4-23.0	2002Ish
3	3a 3b	20.89 47 20.89 47	9.61 <i>77</i> 9.61 <i>77</i>	1.501 149 1.501 149				1.501 149 1.501 149	12.0-25.0 12.0-25.0	1986Ass 1986Ass
	3a	21.13 10	12.58 36	1.755 41				1.755 41	14.1-25.1	2003Var
	3b	21.57 19	11.07 63	1.652 82				1.652 82	12.3-25.1	2003Var
at S	13	20.31 10	5.48 37	0.858 44				0.858 44	17.2-23.6	1965Wyc
) Ar	3a	19.86 15	9.12 31	1.372 36				1.372 36	10.5-25.0	2002Ish
	3b	20.12 37	10.65 87	1.471 103				1.471 103	10.5-25.0	2002Ish
at Ar	1a	20.47 20	9.44 62	1.080 45				1.080 45	16.5-27.5	1960Fas
-	1b	20.53 62	10.55 209	1.144 190				1.144 190	16.5–27.5	1960Fas
^{at} K	4	21.12 2	6.89 8	0.418 4				0.418 4	16.0-25.9	1974Ve1
^{it} Ca	1a	20.23 2	5.03 6	1.225 10				1.225 10	13.5-25.9	1975Ahr
	1b	20.22 2	5.03 6	1.226 10				1.226 10	13.5-25.9	1975Ahr
	2	19.98 4	4.82 11	1.128 19				1.128 19	9.4-24.0	1985Ahr
⁰ Ca	3a	19.96 9	5.52 29	1.286 46				1.286 46	18.2-24.0	2003Er
	3b	19.92 14	5.51 46	1.286 85				1.286 85	18.2-24.0	2003Er
² Ca	3a	20.11 10	8.07 40	1.455 50				1.455 50	15.2–23.0	2003Er
	3b	20.23 16	7.63 68	1.426 101				1.426 101	15.2-23.0	2003Er

V.A. Plujko et al. / Atomic Data and Nuclear Data Tables 97 (2011) 567–585

Table 1 (continued)

Nucl	Id	$E_{r,1}$ (MeV)	$\Gamma_{r,1}$ (MeV)	$S_{r,1}$	$E_{r,2}$ (MeV)	$\Gamma_{r,2}$ (MeV)	$S_{r,2}$	S	$\epsilon_{\min} - \epsilon_{\max} \ (\text{MeV})$	Ref.
¹⁴ Ca	3a	19.60 18	11.33 76	1.732 78		<u> </u>		1.732 78	15.5-26.0	2003Er
	3b	19.95 33	10.39 97	1.603 123				1.603 123	12.5-26.0	2003Er
¹⁸ Ca	0	19.70 14	6.23 90	1.474 180				1.474 180	17.9-21.6	19870'k
	3a	19.75 13	7.11 55	1.353 66				1.353 66	15.5-23.0	2003Er
	3b	19.62 22	6.60 85	1.293 128				1.293 128	15.5-23.0	2003Er
⁶ Ti	3a	19.96 8	6.92 19	1.246 22				1.246 22	13.2-25.0	2002Ish
	3b	19.79 20	7.54 52	1.282 73				1.282 73	13.2-25.0	2002Ish
⁸ Ti	3a	19.78 17	8.42 53	1.179 56				1.179 56	14.5-23.0	2002Ish
	3b	19.90 38	9.21 124	1.248 150				1.248 150	14.5-23.0	2002Ish
¹ V	3a	17.71 13	3.46 114	0.279 179	22.03 59	11.41 185	1.739 392	2.018 431	15.2-25.0	2003Va
	3b	17.76 23	4.08 152	0.447 349	22.37 60	8.83 <i>4</i> 73	1.292 827	1.739 898	15.2-25.0	2003Va
	4	17.906	4.55 14	0.569 36	21.26 13	4.37 76	0.239 52	0.808 63	14.1-22.9	1962Fu
² Cr	3a	19.167	6.19 20	1.020 22				1.020 22	14.3-23.0	2002Ish
	3b	19.24 18	6.88 51	1.068 66				1.068 66	14.3-23.0	2002Ish
⁵ Mn	4	16.43 6	2.95 32	0.153 31	19.77 17	8.61 43	0.860 59	1.013 67	14.0-23.0	1979Al2
^{at} Fe	0	11.89 14	1.01 66	0.161 49	17.46 <i>4</i> 6	6.93 149	1.053 175	1.214 182	10.0-24.0	1969Dol
	13a	17.76 <i>4</i>	6.03 12	0.711 12				0.711 12	13.2-24.0	1967Cos
	13b	17.596	7.07 22	0.817 23				0.817 23	13.2-24.0	1967Cos
⁴ Fe	0	19.35 8	5.50 28	1.570 <i>4</i> 9				1.570 <i>4</i> 9	16.0-23.0	1978No
⁹ Co	1a	16.68 18	0.59 114	0.024 21	18.88 31	7.92 85	1.195 97	1.219 99	14.5-21.0	1965Wy
	1b	16.67 29	0.60 171	0.023 31	18.78 51	7.62 128	1.157 179	1.180 182	14.5-21.0	1965Wy
	8	16.43 7	2.73 37	0.138 39	18.64 20	7.31 31	0.747 52	0.885 65	14.0-20.9	1979Al2
⁸ Ni	3a	18.98 10	6.50 32	0.987 32				0.987 32	14.4-22.0	2002Ish
	3b	18.74 20	6.18 63	0.945 78				0.945 78	14.4-22.0	2002Ish
	3a	18.78 5	5.57 15	0.885 14				0.885 14	14.1-22.0	2003Va
	3b	18.66 10	5.50 30	0.873 38				0.873 38	14.1-22.0	2003Va
	4	18.26 6	6.95 17	0.2946				0.2946	12.2-21.8	1974Fu3
⁰ Ni	3a	16.99 15	2.88 31	0.196 51	19.19 16	4.21 25	0.523 60	0.71979	12.2-21.0	2003Var
	3b	16.78 7	0.91 29	0.039 14	18.75 13	4.85 22	0.729 33	0.768 36	12.2-21.0	2003Var
	4	16.30 9	2.45 70	0.147 85	18.49 39	6.26 48	0.592 120	0.739 147	14.0-20.9	1974Fu3
	4	16.39 2	0.41 4	0.019 2	18.35 3	6.55 9	0.768 8	0.787 8	14.1-22.0	1970Go
³ Cu	3a	16.43 28	4.8472	0.646 213	20.15 34	5.52 289	0.456 333	1.102 395	14.0-21.0	2003Vai
	3b	16.35 64	4.59 257	0.566 742	20.12 101	6.75 1042	0.602 1362	1.168 1551	14.0-21.0	2003Vai
	6	16.72 10	4.17 16	0.460 42	19.08 15	3.43 40	0.166 41	0.626 59	14.0-21.0	1968Su1
	4	16.25 10	4.64 31	0.469 53	19.62 19	4.47 120	0.19169	0.660 87	14.2-20.7	1964Fu1
⁵ Cu	3a	16.92 7	8.09 38	1.139 37				1.139 37	14.2-21.0	2003Var
	3b	16.85 26	7.46 119	1.079 154				1.079 154	14.2-21.0	2003Var
	4	16.68 6	6.78 27	0.822 27				0.822 27	14.2-19.9	1964Fu1
⁴ Zn	8	16.23 13	3.25 48	0.22074	19.16 25	5.91 89	0.533 119	0.753 140	14.0-20.8	1976Ca1
⁵⁵ Zn	1a	16.17 11	3.06 44	0.173 47	19.04 21	6.50 34	0.585 62	0.758 78	12.0-21.0	2003Roc
	1b	16.21 22	3.32 97	0.208 127	19.16 45	6.12 126	0.529 188	0.737 227	12.0-21.0	2003Roc
⁰ Ge	0	15.16 18	5.92 45	1.432 81				1.432 81	10.0-20.0	1975Mc
	8	16.76 8	7.55 34	1.006 35				1.006 35	13.1-20.8	1976Ca1
^{'2} Ge	0	17.88 16	5.71 39	1.409 70				1.409 70	10.0-24.0	1975Mc
	8	16.63 6	7.48 25	1.173 30				1.173 30	13.1-20.8	1976Ca1
′ ⁴ Ge	8	14.51 11	2.01 81	0.074 55	17.03 27	7.97 49	1.158 108	1,232 121	13.1-20.8	1976Ca1
' ⁶ Ge	0	16.40 16	7.04 43	1.140 108	24.63 107	10.86 346	0.748 296	1.888 315	10.0-24.0	1975Mc
	8	15.48 38	4,37 211	0.381 462	18.87 228	10.99 242	1.104 595	1.485 753	13.1-20.8	1976Ca1
⁵ As	4	14.98 13	3.66 53	0.217 82	17.59 28	7.12 39	0.760 109	0.977 136	13.1-20.9	1969Be
713	8	15.19 29	4.43 102	0.419 273	18.12 80	7.66 126	0.819 353	1.238 446	13.1–20.8	1976Ca1
⁶ Se	0	15.67 8	6.33 32	1.337 50	10.12 00	7,00 120	0.010 505	1.337 50	13.1–19.7	1978Gu
50	8	16.69 8	9.38 40	1.398 48				1.398 48	13.1–20.8	1976Ca1
8Se	8	14.97 16	3.91 61	0.376 113	18.42 28	6.19 100	0.671 161	1.047 197	13.1-20.8	1976Ca1
⁰ Se	8	16.16 11	5.51 36	1.004 63	10.72 20	0.13 100	0.071101	1.004 63	13.1–20.8	1976Ca1
² Se	0	16.16 11	5.68 21	1.308 35				1.308 35	13.1–17.0	1976Ca 1
36	0 8	16.00 5	5.80 17	1.308 35				1.125 24	13.1–19.9 13.1–20.8	1978Gui 1976Cai
⁹ Y	3a	16.80 6	4.49 28	1.253 55				1.253 55	15.3–19.0	2003Vai
I	3b		4.49 28					1.255 255	15.3–19.0	
	30 4	16.80 22		1.255 <i>2</i> 55 1.135 7						2003Vai 1971Le1
	4	16.74 1	4.23 3					1.135 7 0.861 3	14.0-19.0	
		16.78 1	3.92 2	0.8613					14.0-18.9	1967Be
⁰ Zr	12 3a	16.83 3 16.82 5	3.68 8 3.99 23	0.893 <i>16</i> 1.192 <i>4</i> 7				0.893 <i>16</i> 1.192 <i>4</i> 7	14.0-18.1	1972Yo
LI									14.9-18.5	2003Vai
	3b	16.79 15	3.85 62	1.164 164				1.164 164	14.9–18.5	2003Vai
	4	16.84 1	3.99 3	0.8615				0.8615	14.0-18.9	1967Be2
11-	8	16.73 1	4.14 3	1.025 6				1.025 6	14.0-19.0	1971Le1
¹ Zr	4	16.58 2	4.17 7	0.892 10				0.892 10	14.0–18.9	1967Be2
² Zr	4	16.26 2	4.64 9	0.885 12				0.885 12	14.0–18.9	1967Be
⁴ Zr	4	16.21 2	5.25 11	0.956 15				0.956 15	14.0–18.9	1967Be
^{at} Zr	8	16.51 3	4.37 15	0.890 23				0.890 23	14.9-19.0	1987Be
³ Nb	8	16.58 1	4.95 6	1.132 10				1.132 10	14.0-19.0	1971Le
² Mo	3a	17.16 6	4.68 22	1.287 42				1.287 42	14.4-19.0	2003Va
	3b	17.10 <i>14</i>	4.34 55	1.227 135				1.227 135	14.4-19.0	2003Va
² Mo		16.82 1	4.11 4	0.756 5				0.756 5	14.0-18.9	1974Be

V.A. Plujko et al. / Atomic Data and Nuclear Data Tables 97 (2011) 567–585

Table 1 (continued)

lucl	Id	$E_{r, 1}$ (MeV)	$\Gamma_{r,1}$ (MeV)	$S_{r,1}$	$E_{r,2}$ (MeV)	$\Gamma_{r,2}$ (MeV)	$S_{r,2}$	S	$\epsilon_{\min} - \epsilon_{\max} \ (\text{MeV})$	Ref.
⁴ Mo	4	16.53 2	5.12 5	1.113 8				1.1138	9.6-18.9	1974B
⁵ Mo	4	16.11 <i>4</i>	5.64 15	1.155 29				1.155 29	13.2-17.0	1974B
⁸ Mo	4	15.79 3	5.90 16	1.211 24				1.211 24	13.2-18.9	1974B
⁰⁰ Mo	9	15.72 3	7.68 14	1.404 19				1.404 19	12.1-20.0	1974B
⁰³ Rh	3a	16.247	7.49 39	1.486 57				1.486 57	13.1-19.0	2003V
	3b	16.23 17	7.60 81	1.500 138				1.500 138	13.1-19.0	2003V
	4	16.14 3	7.22 17	1.414 26				1.414 26	13.2-18.9	1974Le
⁰⁷ Ag	4	15.83 <i>4</i>	6.49 12	1.193 17				1.193 17	9.5-19.0	1969Is
	4	15.89 4	6.65 18	0.986 23				0.986 23	13.1-18.7	1969B
⁰⁹ Ag	4	13.54 19	3.49 167	0.275 165	16.62 18	4.41 46	0.490 124	0.765 206	13.1-19.0	1969Is
¹⁵ In	4	15.63 1	5.22 5	1.285 10				1.285 10	13.1-17.8	1969Fı
	4	15.72 1	5.57 6	1.273 10				1.273 10	13.2-17.8	1974Le
⁶ Sn	4	15.55 1	5.06 6	1.254 11				1.254 11	13.1-17.9	1974L
	4	15.67 2	4.17 7	1.017 11				1.017 11	13.0–18.0	1969F
⁷ Sn	4	15.64 2	5.02 9	1.181 17				1.181 17	13.2–17.8	1974L
511	4	15.65 1	5.00 6	1.153 9				1.153 9	13.1–17.9	1969F
⁸ Sn	4	15.43 1	4.846	1.221 11				1.221 11	13.1–17.9	1974L
511	4	15.59 1	4.75 4	1.097 7				1.097 7	13.1–17.9	1969F
9Sn	4	15.53 2	4.78 6	1.085 11				1.085 11	13.0–17.9	1969F
^D Sn	4	15.37 1	5.08 6	1.295 12				1.295 12	13.1–17.9	19091 1974L
311	4	15.40 1	4.86 4	1.293 12				1.219 8	13.1–17.9	1974L 1969F
⁴ Sn										
311	3a 3b	15.31 5	4.94 22	1.173 34				1.173 34	13.1–18.0	2003V
		15.29 8	4.86 36	1.162 66				1.162 66	13.1–18.0	2003V
	4	15.27 <i>2</i>	4.77 8	1.150 14				1.150 14	13.2–17.8	1974L
1	4	15.18 2	4.79 7	1.183 14				1.183 14	13.1–17.8	1969F
⁴ Te	6	15.23 2	5.50 8	1.337 15				1.337 15	12.0–18.9	1976L
Te	6	15.15 <i>2</i>	5.36 7	1.358 13				1.358 13	12.0-18.9	1976L
³ Te	6	15.12 <i>2</i>	5.30 8	1.367 14				1.367 14	12.0-18.9	1976L
Te	6	15.11 <i>2</i>	4.98 7	1.334 13				1.334 13	12.0-18.9	1976L
I	4	14.59 30	4.12 58	0.856 358	16.7478	4.73 121	0.445 377	1.301 520	12.1-19.8	1969E
	4	13.91 9	1.10 63	0.052 38	15.20 10	4.73 10	1.088 49	1.140 62	12.2-20.0	1989R
	4	14.25 15	3.28 39	0.340 122	16.30 30	5.15 34	0.632 142	0.972 187	12.1-19.9	1966E
	8	14.61 20	2.62 104	0.163 196	15.72 50	6.19 115	1.012 142	1.175 243	12.1-16.9	1987E
³ Cs	4	15.33 1	5.28 2	1.351 <i>4</i>				1.351 <i>4</i>	12.0-19.0	1974L
	4	15.24 2	4.97 8	1.155 12				1.155 12	12.1-18.7	1969E
³ Ba	4	15.25 1	4.58 5	1.176 9				1.176 9	12.1-18.7	1970E
9 La	4	15.11 <i>1</i>	3.96 4	1.045 7				1.045 7	12.0-18.9	1971E
⁰ Ce	6	15.03 1	4.39 4	1.292 9				1.292 9	12.0-18.9	1976L
² Ce	6	14.85 2	5.08 8	1.284 15				1.284 15	12.0–18.9	1976L
¹ Pr	4	15.14 2	4.40 6	1.083 10				1.083 10	12.1–18.7	1966B
11	4	15.39 2	3.80 6	1.039 12				1.039 12	12.0-18.9	1972E
	4	15.19 <i>1</i>	4.23 8	1.106 18				1.106 18	12.1–16.9	1987E
	12	15.23 1	3.98 <i>4</i>	1.0317				1.0317	12.1–10.5	1970S
	12	15.04 1	4.47 3	1.179 5				1.179 5	12.0-16.9	1971E
	12	15.35 2	4.05 4	1.0218				1.0218	12.0-10.9	1971E
² Nd	3a	14.93 3								
Nu	3b		4.54 12	1.229 17				1.229 17	12.0-19.0	2003\
		14.94 11	4.52 35	1.227 76				1.227 76	12.0-19.0	2003\
³Nd	4	14.94 1	4.413	1.195 7				1.195 7	12.0-18.9	19710
¹Nd ¹Nd	4	15.00 <i>2</i>	4.73 8	1.236 14				1.236 14	12.0-19.0	19710
™a Nd	4	15.04 2	5.25 7	1.239 12				1.239 12	12.0-18.9	19710
	4	14.94 4	6.27 18	1.378 28				1.378 28	12.0-18.9	19710
⁵ Nd	4	14.73 2	5.74 10	1.314 17		= oc		1.314 17	12.0-18.9	19710
⁸ Nd	4	12.78 26	4.03 69	0.326 126	15.49 19	5.22 39	0.827 143	1.153 191	10.8–18.6	19710
Nd	4	12.30 6	3.38 <i>2</i> 6	0.432 46	16.03 9	5.12 31	0.821 62	1.253 77	10.8-18.6	19710
⁴ Sm	4	15.31 2	4.42 7	1.251 13				1.251 13	12.1-18.9	19740
8Sm	4	14.82 1	5.06 5	1.242 9				1.242 9	12.1-18.9	19740
⁰ Sm	4	14.59 3	5.92 11	1.324 18				1.324 18	12.1-18.9	19740
² Sm	4	12.39 3	2.99 12	0.377 21	15.73 <i>4</i>	5.15 13	0.853 28	1.230 35	10.9-18.8	19740
⁴ Sm	0	12.17 20	2.80 95	0.360 187	15.63 49	5.89 151	0.873 286	1.233 342	10.9-18.6	19810
	4	12.27 3	2.97 15	0.381 26	15.946	5.62 20	0.845 37	1.226 45	11.0-18.6	19740
³ Eu	4	12.33 <i>4</i>	2.77 17	0.305 27	15.78 7	5.76 19	0.892 40	1.197 48	10.9-18.7	1969E
Gd	0	12.46 19	3.1474	0.501 162	15.79 32	4.56 100	0.683 201	1.184 258	10.9–18.7	19810
Gd	3a	12.28 10	3.33 42	0.532 83	16.06 15	5.12 42	0.863 97	1.395 128	10.9–18.8	2003V
	3b	12.26 12	3.27 60	0.513 123	16.03 20	5.32 79	0.897 167	1.410 207	10.9–18.8	2003V
	4	12.23 5	2.78 23	0.409 38	15.95 8	5.23 26	0.822 50	1.231 63	10.9–18.7	1969E
9Tb	4	12.42 4	2.78 23	0.317 28	15.86 6	5.98 20	1.205 46	1.522 54	11.1–19.0	19760
טו	4	12.42 4	2.65 17					1.058 53		
	4		2.65 17 2.97 25	0.327 <i>28</i> 0.397 <i>40</i>	15.66 7 15.87 7	4.91 28 5.06 27	0.731 <i>4</i> 5 0.848 53	1.058 53	10.8-18.7 11.0-18.7	1964E
⁵ Ho		12.08 5				5.06 27				1968E
H0	0	12.38 11	2.59 56	0.376 94	15.48 <i>21</i>	4.05 70	0.604 122	0.980 154	11.1–18.7	19810
	4	12.28 2	2.58 9	0.365 16	15.78 3	4.94 13	0.793 23	1.158 28	10.9–18.7	1969B
	4 0	12.01 3	2.50 17	0.394 34	15.58 7	5.08 22	0.968 47	1.362 58	11.0-18.7	1968B
⁸ Er		12.09 <i>2</i> 5	3.66 129	0.562 242	15.54 <i>2</i> 7	3.99 85	0.652 221	1.214 328	10.9-18.8	19810

Table 1 (continued)

Nucl	Id	E _{r,1} (MeV)	$\Gamma_{r,1}$ (MeV)	$S_{r,1}$	E _{r,2} (MeV)	$\Gamma_{r,2}$ (MeV)	$S_{r,2}$	S	$\epsilon_{\min} - \epsilon_{\max} \ (\text{MeV})$	Ref.
¹⁷⁴ Yb	0	12.50 19	3.41 65	0.724 189	15.68 25	3.7472	0.683 196	1.407 272	10.9-18.7	1981Gur
¹⁷⁵ Lu	4	12.32 6	2.59 28	0.351 50	15.47 10	4.64 31	0.820 68	1.171 84	11.0-18.7	1969Be6
¹⁷⁶ Hf	4	12.34 3	2.77 13	0.476 28	15.67 6	4.72 17	0.799 38	1.275 47	10.9-17.9	1977Gor
¹⁷⁸ Hf	0	12.42 21	4.89 76	1.086 208	15.70 19	3.13 61	0.449 150	1.535 256	10.8-18.6	1981Gur
	4	12.44 4	2.89 15	0.534 34	15.78 6	4.05 18	0.683 40	1.217 52	11.0-17.9	1977Gor
¹⁸⁰ Hf	0	12.55 30	4.71 100	1.004 281	15.61 23	3.27 80	0.482 217	1.486 355	10.8-18.7	1981Gur
	4	12.46 3	2.68 11	0.498 23	15.75 <i>4</i>	3.78 13	0.654 26	1.152 35	11.0-17.9	1977Gor
¹⁸¹ Ta	0	12.19 29	2.93 113	0.462 297	14.99 53	5.13 88	0.979 347	1.441 457	10.8-18.6	1981Gur
	3a	12.30 8	2.44 22	0.372 52	15.20 12	4.51 23	0.918 66	1.290 84	10.0-18.8	2003Var
	3b	12.32 13	2.56 48	0.388 110	15.23 20	4.54 66	0.907 165	1.295 198	10.0-18.8	2003Var
	4	12.31 5	2.50 20	0.392 42	15.247	4.41 20	0.892 53	1.284 68	11.0-18.7	1968Be5
	4	12.54 5	1.75 23	0.156 36	14.89 14	5.03 34	0.839 67	0.995 76	10.8-18.7	1963Br1
¹⁸² W	0	11.98 37	3.91 199	0.662 515	14.94 61	5.16 136	0.798 497	1.460 716	11.0-18.8	1981Gui
	4	12.64 <i>4</i>	2.60 11	0.446 31	15.45 7	4.66 13	0.916 41	1.362 51	10.8-18.6	1978Goi
¹⁸⁴ W	0	11.92 27	4.52 167	0.930 432	15.05 29	3.87 110	0.534 319	1.464 537	11.0-17.6	1981Gui
	4	12.48 <i>4</i>	2.38 14	0.363 35	15.17 7	4.80 12	1.023 45	1.386 57	10.8-18.6	1978Goi
¹⁸⁶ W	0	13.04 30	6.60 56	1.591 202	14.89 41	2.12 202	0.086 134	1.677 242	10.9-18.7	1981Gu
	4	12.59 3	2.32 14	0.292 34	14.89 8	5.10 14	0.989 48	1.281 59	10.9-18.7	1969Be8
	4	12.58 5	2.53 16	0.379 42	15.07 8	4.72 15	0.988 55	1.367 69	11.0-17.8	1978Goı
¹⁸⁶ Os	7	13.04 11	3.14 28	0.570 91	15.27 12	3.33 27	0.575 93	1.145 130	11.1-18.7	1979Be4
¹⁸⁸ Os	9	12.816	2.77 15	0.419 55	14.88 8	4.15 15	0.929 67	1.348 87	10.8-18.7	1979Be4
¹⁸⁹ Os	9	12.64 6	2.60 14	0.373 48	14.63 7	3.78 14	0.884 60	1.257 77	10.8–18.7	1979Be4
¹⁹⁰ Os	9	12.64 9	2.53 25	0.283 76	14.36 11	4.17 13	0.981 90	1.264 118	10.8–18.7	1979Be
¹⁹² Os	9	12.64 9	2.53 25	0.28176	14.36 11	4.17 13	0.974 89	1.255 117	10.8–18.7	1979Be
¹⁹¹ Ir	4	12.72 10	2.08 73	0.217 167	14.21 32	5.27 27	1.148 208	1.365 267	11.0–16.8	1978Go:
¹⁹³ Ir	4	12.86 6	1.90 37	0.247 92	14.30 22	5.62 29	1.132 110	1.379 143	11.0-16.8	1978Go:
¹⁹⁴ Pt	4	13.42 7	3.61 20	0.918 128	15.97 63	6.16 95	0.386 159	1.304 204	11.0-10.8	1978Go
¹⁹⁵ Pt	4	12.99 15	2.92 49	0.584 286	14.90 66	4.85 91	0.689 355	1.273 456	11.0-17.8	1978Go
¹⁹⁶ Pt	4	13.28 4	3.10 27	0.597 126	14.81 40	7.51 42	0.808 143	1.405 191	11.0-17.8	1978Go:
¹⁹⁸ Pt			3.88 6							
¹⁹⁷ Au	4	13.31 4		1.141 27	16.12 10	2.77 35	0.152 <i>2</i> 7	1.293 38	8.0–17.8	1978Go
Au	0	13.58 7	5.32 28	1.539 61				1.539 61	11.1–17.0	1981Gu
	4	13.71 2	4.517	1.354 16				1.354 16	11.0-16.8	1970Ve
	4 8	13.83 3	3.84 8	1.170 19				1.170 19	11.1–16.8	1962Fu2
²⁰⁶ Pb		13.71 3	4.88 14	1.345 32				1.345 32	12.1–16.9	1987Ber
²⁰⁷ Pb	4	13.58 1	3.83 5	1.041 8				1.041 8	10.0-17.0	1964Ha
²⁰⁸ Pb	4	13.55 2	3.95 5	1.002 8				1.002 8	10.0-17.0	1964Ha
PD	3a	13.37 3	3.93 8	1.337 16				1.337 16	10.9–18.8	2003Vai
	3b	13.41 7	3.97 19	1.342 45				1.342 45	10.9–18.8	2003Vai
	4	13.42 2	4.14 4	1.368 11				1.368 11	10.2-16.8	1970Ve
	4	13.45 1	3.89 4	1.0047				1.0047	10.0-17.0	1964Ha
^{nat} Pb	12	13.63 2	3.93 5	1.334 13				1.334 13	10.0-14.9	1972Yo
²⁰⁹ Bi	8	13.57 2	3.78 9	1.227 24				1.227 24	12.1–16.9	1987Ber
₂₀₂ Bi	0	13.79 8	5.02 29	1.546 64				1.546 64	10.9-18.3	1976Gui
	4	13.44 1	3.96 4	1.077 6				1.077 6	10.0-17.0	1964Ha2
²³² Th	12	13.56 1	3.72 4	1.259 10	42.75.24	4.66.05	0.004.454	1.259 10	10.0-14.8	1972Yo
232 I N	0	10.37 209	3.57 430	0.470 905	13.75 34	4.66 95	0.804 454	1.274 1012	11.0-18.3	1976Gui
	4	11.27 36	4.34 106	0.588 252	14.18 28	4.43 98	0.636 264	1.224 365	9.2–16.3	1973Ve
233**	10	11.04 2	2.717	0.394 23	13.87 4	4.73 15	1.005 37	1.399 44	9.4–17.8	1980Ca
²³³ U	11	11.10 2	1.78 7	0.263 17	13.97 3	5.26 6	2.370 29	2.633 34	9.4–17.8	1986Be
²³⁴ U	11	11.08 5	2.20 19	0.530 59	14.23 5	4.43 19	1.775 79	2.305 99	9.4–17.8	1986Be
²³⁵ U	0	11.11 13	1.12 53	0.128 72	13.41 20	4.98 45	0.992 103	1.120 126	11.0–18.4	1976Gu
²³⁶ U	10	10.93 3	2.58 11	0.335 24	13.80 6	4.78 14	0.915 35	1.250 42	9.4–17.8	1980Ca
²³⁸ U	0	11.21 22	1.99 93	0.249 140	14.13 22	4.97 50	0.871 130	1.120 191	11.1-18.8	1976Gu
	4	10.94 4	2.64 14	0.364 28	13.99 6	4.56 18	0.803 40	1.167 49	9.1-17.8	1973Ve
²³⁷ Np	10	11.01 25	2.92 89	0.343 170	14.10 32	4.76 112	0.863 252	1.206 304	9.2-16.6	1973Ve
	10	10.98 5	2.17 16	0.312 38	14.06 9	4.64 27	1.160 65	1.472 75	9.4-17.8	1986Be
²³⁹ Pu	0	10.60 131	4.18 518	0.502 893	14.00 58	5.44 127	0.842 612	1.344 1083	11.0-18.7	1976Gu
	10	11.31 10	2.48 21	0.385 76	13.90 22	4.36 43	0.766 105	1.151 130	9.1-17.8	1986Be2

Table 2Experimental values and uncertainties of GDR parameters within the modified Lorentzian (SMLO) approach.

Nucl	Id	<i>E</i> _{r, 1} (MeV)	$\Gamma_{r,1} \ ({\sf MeV})$	$S_{r,1}$	$E_{r,2}$ (MeV)	$\Gamma_{r,2}$ (MeV)	$S_{r,2}$	S	$\epsilon_{ ext{min}} - \epsilon_{ ext{max}} \ (ext{MeV})$	Ref.
⁰ B	5a	23.31 22	17.51 <i>44</i>	0.755 25				0.755 25	8.5-24.9	1987Ahs
2	5b	24.96 92	22.20 233	0.967 122				0.967 122	8.5-24.9	1987Ahs
² C	0	22.82 7	3.71 31	0.504 29				0.504 29	14.0-24.9	1963Bur
	0	22.90 2	3.69 7	0.683 11				0.683 11	20.1-25.0	1969Bez
	1a	22.917	3.44 24	0.625 38				0.625 38	21.1-24.0	1975Ahr
	1b	22.90 9	3.41 30	0.622 50				0.622 50	21.1–24.0	1975Ahr
	3a	23.10 6	3.69 23	0.646 26				0.646 26	21.2–25.0	2002Ish
	3b 3a	23.09 8 22.70 3	3.69 31 3.27 10	0.647 39 0.588 10				0.647 39 0.588 10	21.2-25.0	2002Ish 2003Var
	3b	22.70 3 22.67 10	3.46 28	0.588 10				0.598 41	20.1–25.0 20.1–25.0	2003Var
¹³ C	3a	25.02 21	10.72 64	1.012 40				1.012 40	14.5-29.0	2003vai 2002Ish
C	3b	24.54 21	8.63 82	0.901 49				0.901 49	14.5-29.0	2002Ish
¹⁴ C	3a	15.69 22	6.51 114	0.381 55	26.27 16	7.11 104	0.420 53	0.80176	14.5-30.0	2002Ish
C	3b	16.17 40	3.80 62	0.251 27	26.07 19	7.11 104	0.420 55	0.726 67	9.0-30.0	2002Ish
¹⁴ N	0	23.19 3	7.09 14	1.217 18	20.07 13	7.05 117	0.47501	1.217 18	18.2-28.0	1969Bez
14	3a	23.36 9	5.68 20	0.808 18				0.808 18	15.0–28.0	2002Ish
	3b	23.29 21	5.88 45	0.809 58				0.809 58	15.0-28.0	2002Ish
¹⁵ N	1a	24.58 1	1.96 2	0.5142				0.514 2	9.7-26.5	1989Bat
14	1b	25.04 1	5.14 4	0.718 4				0.718 4	9.7-26.5	1989Bat
	3a	26.29 57	19.45 144	1.752 149				1.752 149	14.5-28.0	2002Ish
	3b	26.35 90	18.54 287	1.756 277				1.756 277	14.5-28.0	2002Ish
at O	2	23.03 17	10.03 122	1.717 191				1.717 191	21.8-25.5	1985Ahr
¹⁶ 0	0	23.45 5	5.72 15	0.983 22				0.983 22	18.5–26.0	1969Bez
O	0	23.78 4	5.67 13	1.028 19				1.028 19	18.1–26.0	1975Ahr
	3a	23.72 8	4.36 14	0.822 20				0.822 20	18.2-26.0	2002Ish
	3b	23.91 13	4.98 26	0.882 35				0.882 35	18.2-26.0	2002Ish
¹⁷ O	3a	23.46 11	5.95 37	0.783 29				0.783 29	18.5–26.5	2002Ish
O	3b	23.42 15	5.87 55	0.774 42				0.774 42	18.5–26.5	2002Ish
¹⁸ O	3a	19.12 13	2.31 61	0.075 20	24.19 18	5.24 87	0.413 54	0.488 58	18.5–26.0	2002Ish
O	3b	17.44 125	10.80 389	0.372 136	24.08 21	4.12 114	0.278 76	0.650 156	11.5-26.0	2002Ish
¹⁹ F	3a	24.63 90	26.14 226	2.202 268	24.00 21	4,12 114	0.27670	2.202 268	10.0-24.5	2002Ish
³ Na	0	17.57 <i>17</i>	3.75 45	0.233 41	21.26 10	4.35 54	0.505 66	0.738 78	14.2-23.0	1981Ish
INd	3a	17.61 20	3.83 35	0.241 42	21.11 11	4.18 57	0.440 62	0.68175	14.3-23.0	2002Ish
	3b	17.51 29	3.58 77	0.241 42	21.08 13	4.33 63	0.466 77	0.685 97	14.3-23.0	2002Ish
²⁴ Mg	3a	19.80 10	3.36 32	0.482 46	22.93 34	1.84 98	0.101 67	0.583 81	18.2-23.0	2002Ish
ivig	3b	19.81 10	3.48 35	0.482 40	22.91 30	1.70 84	0.091 55	0.588 72	18.2-23.0	2002Ish
	3a	19.68 7	2.47 26	0.301 45	24.97 24	8.68 179	0.713 158	1.014 164	16.3–26.0	20021311 2003Var
	3b	19.77 7	3.00 20	0.386 30	24.82 14	5.86 87	0.47472	0.860 78	16.3–26.0	2003Var
²⁵ Mg	3a	22.73 17	8.44 26	1.170 40	24.02 14	3.00 07	0.47472	1.170 40	9.0-24.2	2003Vai 2002Ish
ivig	3b	22.41 23	7.90 45	1.092 59				1.092 59	9.0-24.2	2002Ish
²⁶ Mg	3a	17.40 5	2.41 18	0.177 12	23.73 10	7.23 36	1.128 49	1.305 50	16.1–26.0	20021311 2003Var
ivig	3b	17.37 11	1.93 31	0.177 12	23.73 10	7.84 45	1.219 62	1.361 65	16.1–26.0	2003Var
²⁷ Al	1a	20.97 8	7.80 23	1.169 24	23.73 11	7.04 43	1.21902	1.169 24	14.2-24.4	1975Ahr
Ai	1b	20.94 10	7.80 23 7.47 39	1.137 41				1.137 41	14.2-24.4	1975Alli 1975Ahr
	3a	20.62 8	5.32 14	0.876 21				0.876 21	14.2-23.0	2002Ish
	2	21.00 9	8.56 36	1.253 41				1.253 41	16.3-25.4	1985Ahr
^{nat} Si	0	20.45 3	4.85 10	0.929 17	25.24 19	2.10 59	0.063 17	0.992 24	16.4-25.8	1975Ahr
²⁸ Si	3a	19.88 16	2.91 22	0.418 104	21.84 20	3.39 54	0.464 128	0.882 165	16.7-23.0	2003Var
JI	3b	19.78 36	2.68 97	0.305 280	21.68 45	4.12 113	0.630 358	0.882 163	16.7-23.0	2003Var
²⁹ Si	3a	20.97 11	6.88 25	0.941 29	21,0043	7,12 113	0.000000	0.941 29	14.2–23.0	2003vai 2002Ish
JI	3b	20.91 16	6.69 46	0.941 29				0.923 47	14.2-23.0	2002Ish
³⁰ Si	3a	21.32 21	9.16 48	0.916 48				0.916 48	14.2-23.0	2002Ish
J 1	3b	21.32 21	9.16 48 8.88 82	0.89975				0.89975	14.2-23.0 14.2-23.0	2002Ish
³² S								0.899 75 1.098 36		
3	3a	21.21 12	6.08 16	1.098 36					14.4-23.0	2002Ish
¹⁴ S	3b	21.77 20	7.04 41	1.288 78				1.288 78	14.4-23.0	2002Ish
-5	3a	21.66 76	13.43 148	1.963 299				1.963 299	12.0-25.0	1986Ass
	3b	21.66 76	13.43 148	1.963 299				1.963 299	12.0-25.0	1986Ass
	3a	22.32 22	17.94 75	2.333 98				2.333 98	14.1-25.1	2003Var
atc	3b	22.78 41	16.62 136	2.318 198				2.318 198	12.3-25.1	2003Var
at S	13	20.42 11	5.74 40	0.887 50				0.887 50	17.2-23.6	1965Wy
0Ar	3a	19.91 21	11.50 51	1.648 62				1.648 62	10.5-25.0	2002Ish
nat ø	3b	20.54 59	13.98 160	1.857 204				1.857 204	10.5-25.0	2002Ish
^{nat} Ar	1a	20.60 19	9.58 72	1.087 50				1.087 50	16.5–27.5	1960Fas
natur	1b	20.91 65	11.27 261	1.199 240				1.199 240	16.5-27.5	1960Fas
nat K	4	21.28 3	7.40 10	0.443 5				0.443 5	16.0-25.9	1974Ve1
^{nat} Ca	1a	20.24 2	5.23 7	1.268 11				1.268 11	13.5-25.9	1975Ahr
	1b	20.23 2	5.22 7	1.267 12				1.267 12	13.5-25.9	1975Ahr
10	2	20.02 4	5.04 13	1.171 22				1.171 22	9.4-24.0	1985Ahr
⁴⁰ Ca	3a	20.06 7	5.30 28	1.249 42				1.249 42	18.2-24.0	2003Er
40	3b	20.04 12	5.34 46	1.255 81				1.255 81	18.2-24.0	2003Er
⁴² Ca	3a	20.53 16	9.75 58	1.678 83				1.678 83	15.2-23.0	2003Er
	3b	20.59 24	8.95 95	1.622 151				1.622 151	15.2-23.0	2003Er

V.A. Plujko et al. / Atomic Data and Nuclear Data Tables 97 (2011) 567–585

Table 2 (continued)

Nucl	Id	$E_{r,1}$ (MeV)	$\Gamma_{r,1}$ (MeV)	$S_{r,1}$	$E_{r,2}$ (MeV)	$\Gamma_{r,2}$ (MeV)	$S_{r,2}$	S	$\epsilon_{\min} - \epsilon_{\max} \ (\text{MeV})$	Ref.
¹⁴ Ca	3a	20.08 19	12.45 102	1.858 110				1.858 110	15.5-26.0	2003Er
	3b	20.38 47	12.76 154	1.892 207				1.892 207	12.5-26.0	2003Er
⁸ Ca	0	19.90 18	6.42 96	1.512 199				1.512 199	17.9-21.6	19870'
	3a	19.95 18	7.82 67	1.461 90				1.461 90	15.5-23.0	2003Er
	3b	19.80 28	7.11 100	1.375 160				1.375 160	15.5-23.0	2003Er
⁶ Ti	3a	19.95 9	7.99 24	1.393 30				1.393 30	13.2-25.0	2002Isl
••	3b	19.98 25	8.77 70	1.451 103				1.451 103	13.2-25.0	2002Isl
⁸ Ti										
11	3a	20.13 25	9.98 75	1.352 88				1.352 88	14.5-23.0	2002Isl
	3b	20.43 59	11.23 187	1.472 246				1.472 246	14.5-23.0	2002Is
¹ V	3a	17.67 16	3.08 135	0.191 150	22.71 57	16.27 236	2.443 452	2.634 476	15.2-25.0	2003Va
	3b	17.96 36	4.91 123	0.646 288	22.87 65	8.20 396	1.053 638	1.699 700	15.2-25.0	2003Va
	4	18.18 6	5.29 14	0.701 28	21.37 15	3.36 63	0.127 30	0.828 41	14.1-22.9	1962Ft
Cr	3a	19.168	6.70 24	1.075 <i>2</i> 7				1.075 27	14.3-23.0	2002Is
	3b	19.36 22	7.52 63	1.146 84				1.146 84	14.3-23.0	2002Is
Mn	4	16.43 8	2.91 47	0.122 37	20.13 23	11.28 60	1.107 79	1.229 87	14.0-23.0	1979Al
^{it} Fe	0	11.89 14	1.06 62	0.178 51		6.88 157	1.046 188	1.224 195		1969D
ге					17.58 <i>4</i> 8	0.00 137	1.040 100		10.0-24.0	
	13a	17.88 5	6.50 14	0.756 15				0.756 15	13.2-24.0	1967C
	13b	17.82 6	7.15 25	0.820 <i>2</i> 5				0.820 25	13.2-24.0	1967C
Fe	0	19.39 8	5.69 30	1.606 54				1.606 54	16.0-23.0	1978N
Co	8	16.44 9	2.42 37	0.087 28	18.68 22	8.63 46	0.922 35	1.009 45	14.0-20.9	1979Al
Ni	3a	19.14 13	7.22 38	1.078 44				1.078 44	14.4-22.0	2002Is
	3b	18.92 25	6.77 75	1.022 100				1.022 100	14.4-22.0	2002Is
	3a	18.87 6	6.16 17	0.958 19				0.958 19	14.1–22.0	2002IS
	3b	18.78 12	6.03 36	0.942 47				0.942 47	14.1-22.0	2003V
	4	18.53 7	7.97 22	0.330 9				0.330 9	12.2–21.8	1974Fı
Ni	3a	16.77 8	0.71 27	0.0249	18.76 9	5.53 15	0.821 15	0.845 17	12.2-21.0	2003V
	3b	16.798	0.67 23	0.0249	18.87 15	5.80 28	0.854 42	0.878 43	12.2-21.0	2003V
	4	16.237	1.83 56	0.072 35	18.25 18	7.09 24	0.746 48	0.818 59	14.0-20.9	1974Fı
	4	16.38 2	0.35 4	0.015 2	18.46 3	7.06 10	0.822 9	0.837 9	14.1-22.0	1970G
Cu	3a	16.79 31	5.76 68	0.844 175	20.37 32	4.56 243	0.274 211	1.118 274	14.0-21.0	2003V
Cu										
	3b	16.67 74	5.44 197	0.766 510	20.43 108	5.62 776	0.377 774	1.143 927	14.0-21.0	2003V
	6	17.01 10	4.80 15	0.575 37	19.16 11	2.55 49	0.078 28	0.653 46	14.0-21.0	19685
	4	16.51 <i>12</i>	5.26 33	0.557 49	19.72 21	3.81 112	0.117 49	0.674 69	14.2-20.7	1964F
Cu	3a	17.23 8	8.38 43	1.176 <i>4</i> 5				1.176 45	14.2-21.0	2003V
	3b	17.16 29	7.87 138	1.126 183				1.126 183	14.2-21.0	2003V
	4	16.92 6	7.04 31	0.847 31				0.847 31	14.2-19.9	1964Fı
Zn	8	16.37 19	3.84 46	0.303 86	19.49 19	5.82 120	0.457 139	0.760 163	14.0-20.8	1976C
Zn	1a	16.06 12	2.26 42	0.077 23	18.87 19	8.62 31	0.842 26	0.919 35	12.0-21.0	2003R
LII	1b	16.66 28	4.86 53	0.416 96	19.70 19	5.03 115	0.306 117			2003R
10					19.70 19	3.03 113	0.300 117	0.722 151	12.0-21.0	
Ge	0	15.31 23	7.19 60	1.642 117				1.642 117	10.0-20.0	1975M
	8	17.03 10	8.19 41	1.076 46				1.076 46	13.1-20.8	1976C
Ge	0	17.85 16	6.22 54	1.461 84				1.461 84	10.0-24.0	1975N
	8	16.907	8.03 30	1.244 38				1.244 38	13.1-20.8	1976C
Ge	0	13.06 10	0.07 14	1.596 3225	17.10 33	7.61 149	1.478 237	3.074 3234	12.0-24.0	1975N
	8	14.42 16	2.46 83	0.115 84	17.47 29	8.37 85	1.159 166	1.274 186	13.1–20.8	1976C
Ge	8	15.42 72	3.62 383	0.197 504	18.69 297	13.81 541	1.604 354	1.801 616		1976C
									13.1–20.8	
As	4	15.25 24	4.73 52	0.401 118	18.16 25	6.73 71	0.563 142	0.964 185	13.1–20.9	1969B
	8	15.30 77	4.91 173	0.494 543	18.40 115	8.18 281	0.791 706	1.285 891	13.1–20.8	1976C
Se	0	15.867	6.50 35	1.365 56				1.365 56	13.1-19.7	1978G
	8	17.21 12	10.66 55	1.555 72				1.555 72	13.1-20.8	1976C
Se	8	15.23 23	4.67 64	0.527 123	18.76 19	5.68 107	0.512 150	1.039 194	13.1-20.8	1976C
Se	8	16.48 17	6.43 48	1.152 94				1.152 94	13.1–17.0	1976C
Se	0	16.13 5	5.81 23	1.339 39				1.339 39	13.1–17.0	1978G
oe.										
	8	16.75 5	6.08 20	1.168 29				1.168 29	13.1-20.8	1976C
Y	3a	16.89 5	4.50 29	1.255 <i>5</i> 7				1.255 57	15.3-19.0	1903V
	3b	16.91 22	4.57 106	1.268 268				1.268 268	15.3-19.0	2003V
	4	16.82 1	4.42 4	1.175 8				1.175 8	14.0-19.0	1971L
	4	16.84 1	4.14 3	0.896 4				0.896 4	14.0-18.9	1967B
	12	16.93 3	4.019	0.956 20				0.956 20	14.0–18.1	1972Y
Zr	3a	16.90 5	4.13 25	1.226 53				1.226 53	14.9–18.5	2003V
-1										
	3b	16.87 16	3.97 67	1.193 179				1.193 179	14.9–18.5	2003V
	4	16.91 1	4.18 3	0.8936				0.8936	14.0–18.9	1967B
	8	16.81 1	4.31 4	1.057 7				1.057 7	14.0-19.0	1971L
Zr	4	16.64 2	4.32 7	0.917 11				0.917 11	14.0-18.9	1967B
Zr	4	16.34 2	4.70 10	0.898 13				0.898 13	14.0-18.9	1967B
Zr	4	16.35 3	5.52 12	0.991 17				0.991 17	14.0–18.9	1967B
Zr	8	16.61 3	4.45 15	0.903 25				0.903 25	14.9–19.0	1987B
Nb	8	16.70 2	5.18 6	1.175 12				1.175 12	14.0-19.0	1971Le
Mo	3a	17.28 7	5.05 25	1.368 52				1.368 52	14.4-19.0	2003V
	3b	17.21 17	4.62 62	1.293 160				1.293 160	14.4-19.0	2003V
	4	16.89 1	4.28 4	0.7816				0.7816	14.0-18.9	1974B
Mo	4	16.73 2	6.046	1.268 12				1.268 12	9.6–18.9	1974B
				1.315 43				1.315 43	13.2–17.0	1974B
Mo	4	16.42 7	6.52 20							

V.A. Plujko et al. / Atomic Data and Nuclear Data Tables 97 (2011) 567–585

Table 2 (continued)

lucl	Id	E _{r, 1} (MeV)	$\Gamma_{r,1}$ (MeV)	$S_{r,1}$	E _{r,2} (MeV)	$\Gamma_{r,2}$ (MeV)	$S_{r,2}$	S	$\epsilon_{\min} - \epsilon_{\max} \ (\text{MeV})$	Ref.
⁸ Mo	4	15.96 4	6.17 18	1.257 28				1.257 28	13.2-18.9	1974Be3
⁰⁰ Mo	9	16.02 <i>4</i>	8.44 18	1.515 26				1.515 <i>2</i> 6	12.1-20.0	1974Be3
⁰³ Rh	3a	16.59 11	8.44 51	1.638 82				1.638 82	13.1-19.0	2003Var
	3b	16.62 25	8.56 107	1.658 193				1.658 193	13.1-19.0	2003Var
	4	16.47 5	8.02 21	1.543 35				1.543 35	13.2-18.9	1974Le1
⁰⁷ Ag	4	16.05 5	7.51 17	1.338 26				1.338 <i>2</i> 6	9.5-19.0	1969Ish
	4	16.145	7.18 22	1.053 29				1.053 29	13.1-18.7	1969Be1
⁰⁹ Ag	4	13.74 22	3.81 154	0.337 167	16.76 12	4.17 53	0.423 125	0.760 209	13.1-19.0	1969Ish
¹⁵ In	4	15.79 1	5.58 6	1.357 12				1.357 12	13.1-17.8	1969Fu1
	4	15.91 2	6.007	1.353 13				1.353 13	13.2-17.8	1974Le1
¹⁶ Sn	4	15.69 1	5.296	1.302 12				1.302 12	13.1-17.9	1974Le1
	4	15.74 2	4.34 8	1.049 13				1.049 13	13.0-18.0	1969Fu1
¹⁷ Sn	4	15.77 2	5.29 11	1.232 20				1.232 20	13.2-17.8	1974Le1
	4	15.77 2	5.317	1.208 11				1.208 11	13.1-17.9	1969Fu1
¹⁸ Sn	4	15.55 1	5.02 6	1.259 12				1.259 12	13.1-17.9	1974Le1
5	4	15.70 1	5.02 5	1.148 8				1.148 8	13.1–17.9	1969Fu1
¹⁹ Sn	4	15.65 2	5.097	1.144 14				1.144 14	13.0–17.9	1969Fu1
²⁰ Sn	4	15.50 1	5.26 7	1.334 13				1.334 13	13.1–17.9	1974Le1
511	4	15.53 1	5.03 4	1.256 9				1.256 9	13.1–17.9	1969Fu1
²⁴ Sn										
SII	3a 3b	15.41 5 15.40 9	5.06 24	1.198 37				1.198 37 1.189 73	13.1-18.0	2003Var
	3D 4		5.00 39	1.189 73					13.1-18.0	2003Var
		15.39 <i>2</i>	4.90 9	1.174 16				1.174 16	13.2-17.8	1974Le1
²⁴ Te	4	15.30 2	4.98 8	1.222 16				1.222 16	13.1–17.8	1969Fu1
²⁴Te ²6Te	6	15.36 <i>2</i>	5.81 9	1.394 18				1.394 18	12.0–18.9	1976Le2
~ 1e	6	15.27 2	5.62 8	1.407 15				1.407 15	12.0-18.9	1976Le2
⁸ Te	6	15.23 <i>2</i>	5.55 8	1.414 16				1.414 16	12.0-18.9	1976Le2
³⁰ Te	6	15.21 <i>2</i>	5.198	1.377 15				1.377 15	12.0-18.9	1976Le2
²⁷ I	4	14.98 20	4.93 27	1.228 158	17.03 35	2.65 169	0.106 125	1.334 201	8.8-19.8	1969Be6
	4	14.64 22	4.00 27	0.860 179	16.51 39	3.21 91	0.215 166	1.075 244	12.2-20.0	1989Ras
	4	14.65 18	4.34 26	0.650 117	16.80 22	4.24 64	0.311 119	0.961 167	12.1-19.9	1966Br1
	8	14.72 <i>2</i> 6	2.33 157	0.098 205	15.81 65	6.91 195	1.206 80	1.304 220	12.1-16.9	1987Bei
³ Cs	4	15.44 1	5.50 2	1.397 5				1.397 5	12.0-19.0	1974Le1
	4	15.32 <i>2</i>	5.118	1.186 14				1.186 14	12.1-18.7	1969Be1
³⁸ Ba	4	15.31 2	4.766	1.208 10				1.208 10	12.1-18.7	1970Be8
³⁹ La	4	15.15 1	4.09 4	1.068 8				1.068 8	12.0-18.9	1971Be4
⁴⁰ Ce	6	15.09 1	4.515	1.317 10				1.317 10	12.0-18.9	1976Le2
⁴² Ce	6	14.95 2	5.249	1.313 16				1.313 16	12.0-18.9	1976Le2
⁴¹ Pr	4	15.20 2	4.63 6	1.127 11				1.127 11	12.1–18.7	1966Br1
••	4	15.43 2	4.02 7	1.081 13				1.081 13	12.0–18.9	1972De
	4	15.33 2	4.49 9	1.165 21				1.165 21	12.1–16.9	1987Ber
	12	15.26 1	4.09 4	1.049 8				1.049 8	12.1–19.0	1970Su
	12	15.17 1	4.88 3	1.262 6				1.262 6	12.0–16.9	1971Be
	12	15.42 2	4.39 5	1.081 10				1.081 10	12.0-18.1	1972Yo
⁴² Nd	3a	14.93 3	4.54 12	1.228 18				1.228 18	12.0-19.0	2003Vai
Nu	3b	15.00 11	4.59 37	1.241 81				1.241 81	12.0-19.0	2003Vai
	4	15.00 11	4.56 4	1.226 7				1.226 7	12.0-13.0	1971Ca
¹³ Nd	4	15.08 <i>2</i>	4.99 9	1.281 16				1.281 16	12.0-19.0	1971Ca
¹⁴ Nd										
¹⁵ Nd	4	15.17 2	5.56 7	1.295 14				1.295 14	12.0-18.9	1971Ca
¹¹6Nd	4	15.14 5	6.75 22	1.456 36				1.456 36	12.0-18.9	1971Ca
	4	14.88 3	6.04 11	1.361 20				1.361 20	12.0-18.9	1971Ca
⁸ Nd	4	13.34 38	5.41 70	0.623 184	15.79 11	4.57 56	0.552 165	1.175 247	10.8–18.6	1971Ca
⁰ Nd	4	12.49 9	3.93 29	0.556 55	16.23 7	4.85 34	0.696 65	1.252 85	10.8-18.6	1971Ca
¹⁴ Sm	4	15.37 <i>2</i>	4.537	1.274 15				1.274 15	12.1-18.9	1974Ca
^{l8} Sm	4	14.91 1	5.15 6	1.260 10				1.260 10	12.1-18.9	1974Ca
⁰ Sm	4	14.76 3	6.01 12	1.340 20				1.340 20	12.1-18.9	1974Ca
⁵² Sm	4	12.56 <i>4</i>	3.53 13	0.511 25	15.97 3	4.77 14	0.704 30	1.215 39	10.9-18.8	1974Ca
⁵⁴ Sm	0	12.31 29	3.27 104	0.483 217	15.95 36	5.53 176	0.729 305	1.212 374	10.9-18.6	1981Gu
	4	12.42 4	3.43 16	0.495 30	16.20 4	5.29 22	0.716 39	1.211 49	11.0-18.6	1974Ca
³ Eu	4	12.47 5	3.26 18	0.416 31	16.07 5	5.48 21	0.769 42	1.185 52	10.9–18.7	1969Be
⁶ Gd	0	12.63 24	3.61 80	0.632 177	15.97 23	4.10 105	0.537 191	1.169 260	10.9–18.7	1981Gı
⁰ Gd	3a	12.47 14	3.85 49	0.678 101	16.26 11	4.69 48	0.700 104	1.378 145	10.9–18.8	2003Va
Gu	3b	12.47 14	3.71 67	0.638 142	16.25 16	5.07 88	0.764 177	1.402 227	10.9–18.8	2003Va 2003Va
	3D 4	12.42 16	3.13 24	0.502 43	16.16 6	4.99 29	0.744 177	1.219 69	10.9–18.7	1969Be
⁹ Tb										
ΙŊ	4	12.55 5	3.23 15	0.452 33	16.16 5	5.74 22	1.059 50	1.511 60	11.1–19.0	1976Go
	4	12.33 5	3.04 18	0.414 31	15.85 6	4.60 29	0.631 46	1.045 55	10.8-18.7	1964Br
5	4	12.22 6	3.37 28	0.497 48	16.05 6	4.79 29	0.737 57	1.234 75	11.0–18.7	1968Be
⁵ Ho	0	12.47 13	2.84 59	0.445 100	15.59 18	3.78 72	0.520 120	0.965 156	11.1–18.7	1981Gı
	4	12.38 2	2.92 9	0.453 17	15.98 3	4.66 14	0.692 23	1.145 29	10.9–18.7	1969Be
	4	12.11 <i>4</i>	2.81 19	0.489 38	15.78 <i>5</i>	4.83 24	0.856 50	1.345 63	11.0-18.7	1968Be
	0	12.33 36	4.18 140	0.698 281	15.65 20	3.58 96	0.516 225	1.214 360	10.9-18.8	1981Gu
⁵⁸ Er	U									
⁸ Er ⁴ Yb ⁵ Lu	0	12.73 25	3.95 69	0.909 211	15.80 18	3.18 81	0.496 186	1.405 281	10.9-18.7	1981Gu

Nucl	Id	$E_{r,1}$ (MeV)	$\Gamma_{r,1}$ (MeV)	$S_{r,1}$	$E_{r,2}$ (MeV)	$\Gamma_{r,2}$ (MeV)	$S_{r,2}$	S	$\epsilon_{\min} - \epsilon_{\max} \ (\text{MeV})$	Ref.
¹⁷⁶ Hf	4	12.46 <i>4</i>	3.13 13	0.585 31	15.86 5	4.44 18	0.677 38	1.262 49	10.9-17.9	1977Gor
¹⁷⁸ Hf	0	12.59 22	4.95 68	1.126 190	15.65 16	3.00 61	0.401 128	1.527 229	10.8-18.6	1981Gur
	4	12.57 5	3.26 17	0.643 39	15.91 5	3.71 19	0.564 40	1.207 56	11.0-17.9	1977Gor
¹⁸⁰ Hf	0	12.74 31	4.93 88	1.089 256	15.59 18	3.04 79	0.407 177	1.496 311	10.8–18.7	1981Gur
	4	12.56 4	2.96 12	0.584 26	15.86 3	3.51 13	0.558 27	1.142 37	11.0-17.9	1977Gor
¹⁸¹ Ta	0	12.36 39	3.41 110	0.638 331	15.26 40	4.71 111	0.774 356	1.412 486	10.8-18.6	1981Gur
	3a	12.52 11	3.23 23	0.582 62	15.47 10	3.89 27	0.680 67	1.262 91	10.0-18.8	2003Var
	3b	12.45 17	3.08 50	0.536 124	15.43 16	4.17 71	0.742 165	1.278 206	10.0-18.8	2003Var
	4	12.43 6	2.90 22	0.518 50	15.42 6	4.03 21	0.743 56	1.261 75	11.0-18.7	1968Be5
	4	12.52 8	1.90 41	0.164 69	15.06 20	5.8372	0.917 140	1.081 156	10.8-18.7	1963Br1
¹⁸² W	0	13.08 34	7.29 100	1.655 268	15.20 21	1.53 123	0.091 90	1.746 283	11.0-18.8	1981Gur
	4	12.80 5	3.17 12	0.629 35	15.715	4.14 14	0.704 39	1.333 52	10.8-18.6	1978Gor
¹⁸⁴ W	0	12.27 45	5.17 188	1.144 513	15.10 17	3.15 143	0.347 301	1.491 595	11.0-17.6	1981Gur
¹⁸⁶ W	0	13.01 48	6.25 93	1.400 392	14.81 30	2.84 186	0.205 255	1.605 468	10.9-18.7	1981Gur
	4	12.74 5	2.94 12	0.484 38	15.25 6	4.61 17	0.755 47	1.239 60	10.9–18.7	1969Be8
	4	12.737	3.06 16	0.557 51	15.346	4.33 17	0.785 58	1.342 77	11.0-17.8	1978Gor
¹⁸⁶ Os	7	13.27 13	3.65 26	0.756 95	15.39 8	2.80 31	0.394 83	1.150 126	11.1–18.7	1979Be4
¹⁸⁸ Os	9	13.12 7	3.61 12	0.739 59	15.17 6	3.55 19	0.597 61	1.336 85	10.8–18.7	1979Be4
¹⁸⁹ Os	9	12.93 7	3.39 12	0.657 53	14.86 5	3.19 16	0.582 55	1.239 76	10.8–18.7	1979Be4
¹⁹⁰ Os	9	13.04 10	3.62 14	0.694 85	14.75 8	3.51 20	0.549 85	1.243 120	10.8–18.7	1979Be4
¹⁹² Os	9	13.04 10	3.62 14	0.690 85	14.75 8	3.51 20	0.545 84	1.235 120	10.8–18.7	1979Be4
¹⁹¹ Ir	4	13.16 15	3.75 25	0.894 155	15.24 22	3.69 97	0.359 171	1.253 231	11.0-16.8	1978Gor
¹⁹³ Ir	4	12.85 8	1.64 37	0.149 64	14.18 16	5.94 37	1.322 65	1.471 91	11.0-16.8	1978Gor
¹⁹⁴ Pt	4	13.66 7	4.29 13	1.203 69	16.70 42	4.55 264	0.088 81	1.291 106	11.0-17.8	1978Gor
¹⁹⁵ Pt	4	13.28 12	3.71 22	0.964 126	15.44 24	3.56 96	0.273 132	1.237 183	11.0-17.8	1978Gor
¹⁹⁶ Pt	4	13.38 7	2.87 39	0.376 149	14.18 19	6.9471	1.067 130	1.443 198	11.0-17.8	1978Gor
¹⁹⁷ Au	0	13.72 7	5.43 30	1.570 69	14.16 19	0.9471	1.007 130	1.570 69	11.1–17.0	1978G01 1981Gur
Au	4	13.81 2	4.79 8	1.410 19				1.410 19	11.0–16.8	1970Ve1
	4	13.88 3	4.09 9	1.231 22				1.231 22	11.1–16.8	1962Fu2
	8	13.86 3	4.94 15	1.354 34				1.354 34	12.1–16.9	1987Ber
²⁰⁶ Pb	4	13.61 1	4.01 5	1.072 9				1.072 9	10.0–17.0	1964Ha2
²⁰⁷ Pb	4	13.57 2	4.22 6	1.042 10				1.042 10	10.0–17.0	1964Ha2
²⁰⁸ Pb	4 3a	13.34 3	3.64 8	1.270 15				1.270 15	10.9–17.0	2003Var
PD	3b	13.43 7	3.83 18	1.301 44				1.301 44	10.9–18.8	2003Var
	4	13.52 2	4.67 5	1.473 14				1.473 14	10.2–16.8	1970Ve1
	4	13.50 <i>1</i>	4.15 5	1.048 9				1.048 9	10.2-10.8	1964Ha2
	12	13.79 2	4.496	1.488 19				1.488 19	10.0-17.0	190411a2
^{nat} Pb	8	13.64 2	3.749	1.209 24				1.209 24	12.1–16.9	1987Ber
²⁰⁹ Bi	0	13.87 8	5.04 31	1.559 70				1.559 70	10.9–18.3	1976Gur
DI	4	13.49 1	4.28 5	1.132 8				1.132 8	10.9–18.3	1964Ha2
	12	13.66 2	4.17 5	1.387 13				1.387 13	10.0–17.0	190411a2
²³² Th	0	11.00 51	3.42 223	0.469 387	13.94 21	4.26 82	0.690 291	1.159 484	11.0–18.3	1976Gur
111	4	12.61 67	7.84 152	1.429 434	14.30 16	1.90 153	0.114 146	1.543 458	9.2–16.3	1973Ve1
	10	11.23 3	3.36 7	0.586 25	14.12 3	4.35 17	0.799 37	1.385 45	9.4–17.8	1980Ca1
²³³ U	11		2.517					2.644 52		
²³⁴ U	11	11.14 3 11.18 6	2.60 21	0.472 28 0.713 74	14.20 3 14.39 <i>4</i>	5.17 9 4.20 <i>22</i>	2.172 44 1.575 92	2.044 52 2.288 118	9.4-17.8 9.4-17.8	1986Be2
²³⁵ U	0		2.60 <i>21</i> 1.34 68		14.39 4 13.64 18	4.20 <i>22</i> 4.67 49	0.900 122			1986Be2
²³⁶ U	0 10	11.11 14		0.184 108				1.084 163	11.0-18.4	1976Gur
238 [J		11.11 4	3.20 11	0.499 29	14.06 5	4.34 16	0.727 37	1.226 47	9.4–17.8	1980Ca1
U	0	11.28 18	2.26 103	0.326 169	14.34 19	4.60 56	0.761 152	1.087 227	11.1–18.8	1976Gui
237	4	11.10 5	3.20 15	0.503 33	14.20 5	4.15 20	0.647 40	1.150 52	9.1–17.8	1973Ve1
²³⁷ Np	10	11.21 37	3.59 98	0.494 209	14.32 26	4.46 125	0.710 265	1.204 337	9.2–16.6	1973Ve1
220 5	10	11.09 7	2.68 16	0.452 45	14.26 8	4.32 30	1.000 70	1.452 83	9.4–17.8	1986Be2
²³⁹ Pu	0	11.12 56	3.72 283	0.489 494	14.22 33	5.13 117	0.754 417	1.243 646	11.0–18.7	1976Gui
	10	11.41 16	3.05 24	0.515 111	14.05 24	4.23 72	0.641 150	1.156 187	9.1-17.8	1986Be

Table 3References to experimental and evaluated cross section data taken from EXFOR.

lucl	Id	Reaction	Ref.	EXFOR
⁰ B	5	γ, sn	1987Ahs	M0207002
² C	0	γ, abs	1963Bur	M0160002
	0	γ , abs	1969Bez	L0064002
				M0372004
	1	γ, abs	1975Ahr	
	3	γ , abs	2002Ish	M0648002
	3	γ, abs	2003Var	M0656002
C	3	γ, abs	2002Ish	M0648003
C	3	γ , abs	2002Ish	M0648004
N	0	γ , abs	1969Bez	L0064003
	3	γ, abs	2002Ish	M0648005
N	1	γ, abs	1989Bat	M0264003
	3	γ , abs	2002Ish	M0648006
0	2	γ , abs	1985Ahr	M0188006
0		•		
J	0	γ , abs	1969Bez	L0064004
	0	γ, abs	1975Ahr	M0372005
	3	γ, abs	2002Ish	M0648007
)	3	γ , abs	2002Ish	M0648008
)				
	3	γ , abs	2002Ish	M0648009
F	3	γ, abs	2002Ish	M0648010
Na	0	γ, abs	1981Ish	M0043025
	3	γ , abs	2002Ish	M0648011
Mg				
vig	3	γ, abs	2002Ish	M0648012
	3	γ , abs	2003Var	M0656003
Иg	3	γ, asb	2002Ish	M0648013
Иg	3	γ, abs	2003Var	M0656004
Al	1		1975Ahr	M0372006
и		γ , abs		
	3	γ, abs	2002Ish	M0648015
	2	γ, abs	1985Ahr	M0188007
Si	0	γ, abs	1975Ahr	M0372007
Si	3	γ , abs	2003Var	M0656005
Si	3		2002Ish	
		γ, abs		M0648017
Si	3	γ , abs	2002Ish	M0648018
5	3	γ, abs	2002Ish	M0648019
5	3	γ , abs	1986Ass	M0510006
-	3	γ , abs	2003Var	M0656006
S		•		
	13	γ , xn	1965Wyc	L0122009
Ar	3	γ, abs	2002Ish	M0648021
Ar	1	γ, abs	1960Fas	M0214004
K	4	γ, sn	1974Ve1	L0039036
Ca	1	γ , abs	1975Ahr	M0372008
Ca	2			
		γ, abs	1985Ahr	M0188017
Ca	3	γ , abs	2003Er	M0653002
Ca	3	γ, abs	2003Er	M0653003
Ca	3	γ, abs	2003Er	M0653004
Ca				
∟d	0	γ, abs	1987O'k	M0636010
	3	γ , abs	2003Er	M0653005
Гі	3	γ, abs	2002Ish	M0648026
Гі	3	γ, abs	2002Ish	M0648027
/	3	γ , abs	2003Var	M0656007
v				
	4	γ, sn	1962Fu1	L0001008
Cr	3	γ , abs	2002Ish	M0648028
Мn	4	γ, sn	1979Al2	L0028011
Fe	0	γ, abs	1969Dob	M0540002
	13		1967Cos	L0114003
_		γ, xn		
Fe	0	γ, abs	1978Nor	M0507004
Со	1	γ, abs	1965Wyc	L0122011
	8	γ, sn	1979Al2	L0028008, L0028009
Ni	3	γ, abs	2002Ish	M0648029
**1		•	2003Var	
	3	γ , abs		M0656008
	4	γ , sn	1974Fu3	L0034002
Ni	3	γ, abs	2003Var	M0656009
	4	γ , sn	1974Fu3	L0034008
	4		1970Gor	M0597003
		γ , sn		
Cu	3	γ , abs	2003Var	M0656010
	6	γ, sn	1968Su1	L0013002, L0013003
	4	γ, sn	1964Fu1	L0006012
Cu				
_u	3	γ , abs	2003Var	M0656011
	4	γ , sn	1964Fu1	L0006013
Zn	8	γ , sn	1976Ca1	L0043002, L0043003
Zn	1	γ , abs	2003Rod	M0652007
		•		
Ge	0	γ , abs	1975Mcc	M0496004
Ge	8	γ, sn	1976Ca1	L0043008, L0043009

Table 3 (continued)

Nucl	Id	Reaction	Ref.	EXFOR
	8	γ, sn	1976Ca1	L0043011, L0043012
⁷⁴ Ge	0	γ, abs	1975Mcc	M0496013
	8	γ, sn	1976Ca1	L0043014, L0043015
⁶ Ge	0	γ , abs	1975Mcc	M0496007
ac .	8	γ , and γ , sn	1976Ca1	L0043017, L0043018
^{'5} As	4	γ , sn	1969Be1	L0014012
715	8	γ , sn	1976Ca1	L0043020, L0043021
⁷⁶ Se	0	γ , abs	1978Gur	M0023002
50	8	γ, and γ, sn	1976Ca1	L0043023, L0043024
⁷⁸ Se	8	γ , sn	1976Ca1	L0043026, L0043027
⁸⁰ Se	8	γ , sn	1976Ca1	L0043029, L0043027 L0043029, L0043030
⁸² Se	0		1976Ca1 1978Gur	M0023003
36	8	γ, abs	1976Gui 1976Ca1	L0043032, L0043033
³⁹ Y	3	γ, sn		M0656012
1		γ, abs	2003Var	
	4	γ, sn	1971Le1	L0027019
	4	γ, sn	1967Be2	L0011018
⁹⁰ Zr	12	γ, 1n	1972Yo	L0059002
Zr	3	γ , abs	2003Var	M0656013
	4	γ, sn	1967Be2	L0011019
01-	8	γ , sn	1971Le1	L0027012, L0027013
⁹¹ Zr	4	γ , sn	1967Be2	L0011020
⁹² Zr	4	γ , sn	1967Be2	L0011021
⁹⁴ Zr	4	γ , sn	1967Be2	L0011022
^{nat} Zr	8	γ , sn	1987Ber	L0057002, L0057003
⁹³ Nb	8	γ , sn	1971Le1	L0027015, L0027016
⁹² Mo	3	γ , abs	2003Var	M0656014
	4	γ , sn	1974Be3	L0032020
⁹⁴ Mo	4	γ, sn	1974Be3	L0032005
⁹⁶ Mo	4	γ, sn	1974Be3	L0032022
⁹⁸ Mo	4	γ, sn	1974Be3	L0032023
¹⁰⁰ Mo	9	γ , sn	1974Be3	L0032017, L0032018, L0032019
¹⁰³ Rh	3	γ , abs	2003Var	M0656015
KII	4		1974Le1	L0035041
¹⁰⁷ Ag	4	γ, sn	1969Ish	M0524002
Ag	4	γ, sn	1969Be1	L0014013
¹⁰⁹ Ag		γ , sn		
115.	4	γ, sn	1969Ish	M0524003
¹¹⁵ In	4	γ , sn	1969Fu1	L0017029
116 -	4	γ , sn	1974Le1	L0035045
¹¹⁶ Sn	4	γ , sn	1974Le1	L0035046
117 -	4	γ , sn	1969Fu1	L0017030
¹¹⁷ Sn	4	γ, sn	1974Le1	L0035047
	4	γ , sn	1969Fu1	L0017031
¹¹⁸ Sn	4	γ, sn	1974Le1	L0035048
¹¹⁸ Sn	4	γ, sn	1969Fu1	L0017032
¹¹⁹ Sn	4	γ , sn	1969Fu1	L0017033
¹²⁰ Sn	4	γ, sn	1974Le1	L0035049
	4	γ, sn	1969Fu1	L0017034
¹²⁴ Sn	3	γ, abs	2003Var	M0656016
	4	γ , sn	1974Le1	L0035050
	4	γ , sn	1969Fu1	L0017035
¹²⁴ Te	6	γ , sn	1976Le2	L0042004, L0042002
¹²⁶ Te	6	γ , sn	1976Le2	L0042007, L0042005
¹²⁸ Te	6	γ, sn	1976Le2	L0042007, L0042003 L0042010, L0042008
¹³⁰ Te	6		1976Le2	L0042010, L0042008 L0042013, L0042011
¹²⁷ I		γ, sn		L0042013, L0042011 L0015022
1	4	γ, sn	1969Be6	
	4	γ, sn	1989Ras	M0511002
	4	γ , sn	1966Br1	L0009009
122 -	8	γ , sn	1987Ber	L0057005, L0057006
¹³³ Cs	4	γ , sn	1974Le1	L0035053
120	4	γ , sn	1969Be1	L0014014
¹³⁸ Ba	4	γ , sn	1970Be8	L0019008
¹³⁹ La	4	γ, sn	1971Be4	L0024017
¹⁴⁰ Ce	6	γ , sn	1976Le2	L0042016, L0042014
¹⁴² Ce	6	γ, sn	1976Le2	L0042019, L0042017
¹⁴¹ Pr	4	γ , sn	1966Br1	L0009010
· -	4	γ , sn	1972De1	M0398002
	4	γ, sn	1987Ber	L0057015
	12		1987Bei 1970Su1	L0037013 L0020002
		γ, 1n		
	12	γ, 1n	1971Be4	L0024011
142 5 7 1	12	γ, 1n	1972Yo	L0059003
¹⁴² Nd	3	γ , abs	2003Var	M0656017
	4	γ, sn	1971Ca1	L0025023
¹⁴³ Nd	4	, , -	1971Ca1	L0025024

V.A. Plujko et al. / Atomic Data and Nuclear Data Tables 97 (2011) 567–585

Table 3 (continued)

Nucl	Id	Reaction	Ref.	EXFOR
¹⁴⁴ Nd	4	γ , sn	1971Ca1	L0025025
⁴⁵ Nd	4	γ, sn	1971Ca1	L0025026
¹⁴⁶ Nd	4	γ, sn	1971Ca1	L0025027
⁴⁸ Nd	4	γ , sn	1971Ca1	L0025028
⁵⁰ Nd	4	γ , sn	1971Ca1	L0025029
¹⁴ Sm	4	γ , sn	1974Ca5	L0033017
⁴⁸ Sm	4		1974Ca5	L0033018
⁵⁰ Sm	4	γ, sn	1974Ca5	L0033019
52 Sm		γ, sn		L0033019 L0033020
54Sm	4 0	γ, sn	1974Ca5	
3111		γ, abs	1981Gur	M0073002
⁵³ Eu	4	γ, sn	1974Ca5	L0033021
⁵⁶ Gd	4	γ , sn	1969Be8	L0016018
⁵⁰ Gd	0	γ , abs	1981Gur	M0073003
™Gd	3	γ, abs	2003Var	M0656018
19 2 1	4	γ , sn	1969Be8	L0016019
⁵⁹ Tb	4	γ , sn	1976Gor	M0057002
	4	γ , sn	1964Br1	L0005006
	4	γ , sn	1968Be5	L0012019
-	12	γ, 1n	1968Be5	L0012007
⁶⁵ Ho	0	γ , abs	1981Gur	M0073004
	4	γ , sn	1969Be8	L0016020
•	4	γ , sn	1968Be5	L0012020
⁸ Er	0	γ , abs	1981Gur	M0073005
⁴ Yb	0	γ , abs	1981Gur	M0073006
⁵ Lu	4	γ, sn	1969Be6	L0015026
⁶ Hf	4	γ, sn	1977Gor	M0007002
8Hf	0	γ, abs	1981Gur	M0073007
	4	γ , sn	1977Gor	M0007003
^D Hf	0	γ, abs	1981Gur	M0073008
	4	γ , sn	1977Gor	M0007004
Ta	0	γ , abs	1981Gur	M0073009
	3	γ , abs	2003Var	M0656019
	4	γ , an	1968Be5	L0012021
	4	γ , sn	1963Br1	L0003005
² W	0	γ , abs	1981Gur	M0073010
VV	4	γ, abs γ, sn	1978Gor	M0025002
⁴ W	0		1981Gur	M0073011
VV	4	γ, abs	1981Gui 1978Gor	M0025003
⁶ W		γ, sn		
VV	0	γ, abs	1981Gur 1969Be8	M0073012 L0016021
	4 4	γ, sn	1909Be8 1978Gor	M0025004
⁶ Os		γ, sn		
⁸ Os	7	γ, sn	1979Be4	L0046004, L0046002
OS	9	γ , sn	1979Be4	L0046005, L0046006, L00460
Os	9	γ , sn	1979Be4	L0046009, L0046010, L00460
⁰ Os	9	γ , sn	1979Be4	L0046013, L0046014, L00460
² Os	9	γ , sn	1979Be4	L0046017, L0046018, L00460
^l Ir	4	γ , sn	1978Gor	M0008002
Ir	4	γ , sn	1978Gor	M0008003
¹ Pt	4	γ, sn	1978Gor	M0008004
Pt	4	γ, sn	1978Gor	M0008005
ⁱ Pt	4	γ, sn	1978Gor	M0008006
³Pt	4	γ, sn	1978Gor	M0008007
Au	0	γ, abs	1981Gur	M0073013
	4	γ , sn	1970Ve1	L0021010
	4	γ , sn	1962Fu2	L0002005
	8	γ , sn	1987Ber	L0057009, L0057010
Pb	4	γ , sn	1964Ha2	L0007014
Pb	4	γ , sn	1964Ha2	L0007015
Pb	3	γ , abs	2003Var	M0656020
10	4		1970Ve1	L0021011
	4	γ, SN	1970Ve1 1964Ha2	L0021011 L0007016
	12	γ, sn γ, 1n	1904na2 1972Yo	L0057016 L0059004
Pb	8		197210 1987Ber	L0057012, L0057013
Bi	0	γ, sn γ, abs		
DΙ		γ, abs	1976Gur	M0056008
	4	γ, sn	1964Ha2	L0007017
277	12	γ, 1n	1972Yo	L0059005
² Th	0	γ, abs	1976Gur	M0090002
	4	γ , sn	1973Ve1	L0031014
	10	γ , sn	1980Ca1	L0050002, L0050003, L00500
U	11	γ , sn	1986Be2	L0058004, L0058003, L00580
¹ U	11	γ , sn	1986Be2	L0058007, L0058006, L00580
ū	0	γ, abs	1976Gur	M0090003
'n	10	γ, sn	1980Ca1	L0050010, L0050011, L00500
		• •		(continued on next

Table 3 (continued)

584

V.A. Plujko et al. / Atomic Data and Nuclear Data Tables 97 (2011) 567–585

Nucl	Id	Reaction	Ref.	EXFOR
²³⁸ U	0	γ , abs	1976Gur	M0090004
	4	γ , sn	1973Ve1	L0031015
²³⁷ Np	10	γ, sn	1973Ve1	L0031007, L0031008, L0031009

4 γ, sn 1973Ve1 L0031015

237Np 10 γ, sn 1973Ve1 L0031007, L0031008, L0031009
 10 γ, sn 1986Be2 L0058008, L0058009, L0058010

239 Pu 0 γ, abs 1976Gur M0090005
 10 γ, sn 1986Be2 L0058012, L0058013, L0058014

V.A. Pluiko et al. / Atomic Data and Nuclear Data Tables 97 (2011) 567-585

References used in the Tables

```
[1960Fas] R.W. Fast, P.A. Flournoy, R.S. Tickle, W.D. Whitehead, Phys. Rev. 118(2) (1960) 535.
[1962Fu1] S.C. Fultz, R.L. Bramblett, J.T. Caldwell, N.E. Hansen, C.P. Jupiter, Phys. Rev. 128 (1962) 2345.
[1962Fu2] S.C. Fultz, R.L. Bramblett, J.T. Caldwell, N.A. Kerr, Phys. Rev. 127 (1962) 1273.
[1963Br1] R.L. Bramblett, J.T. Caldwell, G.F. Auchampaugh, S.C. Fultz, Phys. Rev. 129 (1963) 2723.
 1963Bur] N.A. Burgov, G.V. Danilyan, B.S. Dolbilkin, L.E. Lazareva, F.A. Nikolaev, Zh. Eksp. Teor. Fiz. 45(6) (1963) 1694.
[1964Br1] R.L. Bramblett, J.T. Caldwell, R.R. Harvey, S.C. Fultz, Phys. Rev. 133 (1964) B869.
[1964Fu1] S.C. Fultz, R.L. Bramblett, J.T. Caldwell, R.R. Harvey, Phys. Rev. 133 (1964) B1149.
 1964Ha2] R.R. Harvey, J.T. Caldwell, R.L. Bramblett, S.C. Fultz, Phys. Rev. 136 (1964) B126.
[1965Wyc] J.M. Wyckoff, B. Ziegler, H.W. Koch, R. Uhlig, Phys. Rev. 137 (1965) B576.
 1966Br1] R.L. Bramblett, J.T. Caldwell, B.L. Berman, R.R. Harvey, S.C. Fultz, Phys. Rev. 148 (1966) 1198.
[1967Be2] B.L. Berman, J.T. Caldwell, R.R. Harvey, M.A. Kelly, R.L. Bramblett, S.C. Fultz, Phys. Rev. 162 (1967) 1098.
[1967Cos] S. Costa, F. Ferrero, C. Manfredotti, L. Pasqualini, G. Piragino, H. Arenhovel, Nuovo. Cimento. B51 (1967) 199.
[1968Be5] R. Bergere, R. Beil, A. Veyssiere, Nuclear Phys. A121 (1968) 463.
 1968Su1] R.E. Sund, M.P. Baker, L.A. Kull, R.B. Walton, Phys. Rev. 176 (1968) 1366.
[1969Be1] B.L. Berman, R.L. Bramblett, J.T. Caldwell, H.S. Davis, M.A. Kelly, S.C. Fultz, Phys. Rev. 177 (1969) 1745.
 1969Be6] R. Bergere, H. Beil, P. Carlos, A. Veyssiere, Nuclear Phys. A133 (1969) 417.
[1969Be8] B.L. Berman, M.A. Kelly, R.L. Bramblett, J.T. Caldwell, H.S. Davis, S.C. Fultz, Phys. Rev. 185 (1969) 1576.
 1969Dob] B.S. Dolbilkin, A.I. Isakov, V.I. Korin, L.E. Lazareva, N.V. Linkova, B.A. Tulupov, Yad. Fiz. 9 (1969) 675.
[1969Fu1] S.C. Fultz, B.L. Berman, J.T. Caldwell, R.L. Bramblett, M.A. Kelly, Phys. Rev. 186 (1969) 1255.
 1969Bez] N. Bezic, D. Brajnik, D. Jamnik, G. Kernel, Nuclear Phys. A128 (1969) 426.
[1970Be8] B.L. Berman, S.C. Fultz, J.T. Caldwell, M.A. Kelly, S.S. Dietrich, Phys. Rev. C2 (1970) 2318.
[1970Gor] B.I. Goryachev, B.S. Ishkhanov, I.M. Kapitonov, I.M. Piskarev, V.G. Shevchenko, O.P. Shevchenko; Yad. Fiz. 11 (1970) 252.
[1970Su1] R.E. Sund, V.V. Verbinski, H. Weber, L.A. Kull; Phys. Rev. C2 (1970) 1129.
 1970Ve1] A. Veyssiere, H. Beil, R. Bergere, P. Carlos, A. Lepretre, Nuclear Phys. A159 (1970) 561.
 [1971Be4] H. Beil, R. Bergere, P. Carlos, A. Lepretre, A. Veyssiere, A. Parlag, Nuclear Phys. A172 (1971) 426.
[1971Ca1] P. Carlos, H. Beil, R. Bergere, A. Lepretre, A. Veyssiere, Nuclear Phys. A172 (1971) 437.
 [1971Le1] A. Lepretre, H. Beil, R. Bergere, P. Carlos, A. Veyssiere, M. Sugawara, Nuclear Phys. A175 (1971) 609.
[1972De1] T.K. Deague, R. J. Stewart, Nuclear Phys. A91 (1972) 305.
 1972Yo] L.M. Young, Ph.D. Thesis, University of Illinois (1972), unpublished.
[1973Ve1] A. Veyssiere, H. Reil, R. Bergere, P. Carlos, A. Lepretre, K. Kernbach, Nuclear Phys. A199 (1973) 45.
 1974Be3] H. Beil, R. Bergere, P. Carlos, A. Lepretre, A. De Miniac, A. Veyssiere, Nuclear Phys. A227 (1974) 427.
[1974Ca5] P. Carlos, H. Beil, R. Bergere, A. Lepretre, A. De Miniac, A. Veyssiere, Nuclear Phys. A225 (1974) 171.
[1974Fu3] S.C. Fultz, R.A. Alvarez, B.L. Berman, P. Meyer, Phys. Rev. C10 (1974) 608.
[1974Le1] A. Lepretre, H. Beil, R. Bergere, P. Carlos, A. De Miniac, A. Veyssiere, K. Kernbach, Nuclear Phys. A219 (1974) 39.
[1974Ve1] A. Veyssiere, H. Beil, R. Bergere, P. Carlos, A. Lepretre, A. De Miniac, Nuclear Phys. A227 (1974) 513.
[1975Ahr] J. Ahrens, H. Borchert, K.H. Czock, H.B. Eppler, H. Gimm, H. Gundrum, M. Kroning, P. Riehn, G. Sita Ram, A. Zieger, B. Ziegler, Nuclear Phys. A251 (1975)
          479.
[1975Mcc] J.J. McCarthy, R.C. Morrison, H.J. Vander-Molen, Phys. Rev. C11 (1975) 772.
[1976Ca1] P. Carlos, H. Beil, R. Bergere, J. Fagot, A. Lepretre, A. Veyssiere, G.V. Solodukhov, Nuclear Phys. A258 (1976) 365.
[1976Le2] A. Lepretre, H. Beil, R. Bergere, P. Carlos, J. Fagot, A. De Miniac, A. Veyssiere, H. Miyase, Nuclear Phys. A258 (1976) 350.
[1976Gor] B.I. Goryachev, Y.V. Kuznetsov, V.N. Orlin, N.A. Pozhidaeva, V.G. Shevchenko, Yad. Fiz. 23 (1976) 1145.
[1976Gur] G.M. Gurevich, L.E. Lazareva, V.M. Mazur, G.V. Solodukhov, B.A. Tulupov, Nuclear Phys. A273 (1976) 326.
[1977Gor] A.M. Goryachev, G.N. Zalesnyi, Yad. Fiz. 26 (1977) 465.
[1978Gur] G.M. Gurevich, L.E. Lazareva, V.M. Mazur, G.V. Solodukhov, Prob. Yad. Fiz. Kosm. Luch. 8 (1978) 106.
[1978Nor] J.W. Norbury, M.N. Thompson, K. Shoda, H. Tsubota, Aust. J. Phys. 31 (1978) 471.
 [1979Al2] R.A. Alvarez, B.L. Berman, D.D. Faul, F.H. Lewis, Jr., P. Meyer, Phys. Rev. C20 (1979) 128.
[1979Be4] B.L. Berman, D.D. Faul, R.A. Alvarez, P. Meyer, D.L. Olson, Phys. Rev. C19 (1979) 1205.
 1980Ca1] J.T. Caldwell, E.J. Dowdy, B.L. Berman, R.A. Avarez, P. Meyer, Phys. Rev. C21 (1980) 1215.
[1981Gur] G.M. Gurevich, L.E. Lazareva, V.M. Mazur, S.Yu. Merkulov, G.V. Solodukhov, V.A. Tyutin, Nuclear Phys. A351 (1981) 257.
 1981Ish] B.S. Ishkhanov, I.M. Kapitonov, V.I. Shvedunov, A.I. Gutii, A.M. Parlag, Yad. Fiz. 22 (1981) 581.
[1985Ahr] J. Ahrens, Nuclear Phys. A446 (1985) 229.
 1986Be1] B.L. Berman, R.E. Pywell, M.N. Thompson, K.G. Mcneill, J.W. Jury, J.G. Woodworth, Bull. Amer. Phys. Soc. 31 (1986) 855.
[1986Ass] Y.I. Assafiri, M.N. Thompson, Nuclear Phys. A460 (1986) 455.
 1986Be2] B.L. Berman, J.T. Caldwell, E.J. Dowdy, S.S. Dietrich, P. Meyer, R.A. Alvarez, Phys. Rev. C34 (1986) 2201.
[1987Ahs] M.H. Ahsan, S.A. Siddiqui, H.H. Thies, Nuclear Phys. A469 (1987) 381.
 1987Ber] B.L. Berman, R.G. Pywell, S.S. Dietrich, M.N. Thompson, K.O. McNeill, J.W. Jury, Phys. Rev. C36 (1987) 1286.
[1987O'k] G.J. O'Keefe, M.N. Thompson, Y.I. Assafiri, R.E. Pywel, Nuclear Phys. A469 (1987) 239.
[1989Bat] A.D. Bates, R.P. Rassool, E.A. Milne, M.N. Thompson, K.G. Mcneil, Phys. Rev. C40 (1989) 506.
[1989Ras] R.P. Rassool, M.N. Thompson, Phys. Rev. C39 (1989) 1631; Phys. Rev. C40 (1989) 506.
[2002Ish] B.S. Ishkhanov, I.M. Kapitonov, E.I. Lileeva, E.V. Shirokov, V.A. Erokhova, M.A. Elkin, A.V. Izotova, Mosc. State Univ. Inst. Nuclear Phys. Report No. 2002
         27/711 (2002).
[2003Er] V.A. Erokhova, M.A. Elkin, A.V. Izotova, B.S. Ishkhanov, I.M. Kapitonov, E.I. Lilieva, E.V. Shirokov, Izv. Ross. Akad. Nauk, Ser. Fiz. 67 (2003) 1479.
[2003Rod] T.E. Rodrigues, J.D.T. Arruda-Neto, Z. Carvaheiro, J. Mesa, Phys. Rev. C68 (2003) 68.
[2003Var] V.V. Varlamov, M.E. Stepanov, V.V. Chesnokov, Izv. Ross. Akad. Nauk, Ser. Fiz. 67 (2003) 656.
```