Logika i teoria mnogości

Ćwiczenia 15

Relacje porządkujące

Definicja. Relację $R \subset A^2$ nazywamy relacją porządkującą na zbiorze A, jeżeli jest zwrotna (na A), antysymetryczna i przechodnia. Wtedy parę (A, R) nazywamy zbiorem uporządkowanym.

Definicja. Relację $R \subset A^2$ nazywamy relacją liniowo porządkującą na zbiorze A, jeżeli jest porządkująca i spójna (na A). Wtedy parę (A,R) nazywamy zbiorem liniowo uporządkowanym.

Przykłady

- 1. Relacja I_A jest relacja porządkującą. Jest to najmniejsza (w sensie za wierania) relacja porządkująca na zbiorze A, tzn. relacja I_A jest zawarta w każdej relacji porządkującej na A.
- 2. Relacja inkluzji na $\mathcal{P}(A)$, tj
, $\{< X, Y> \in \mathcal{P}(A)^2 : X \subset Y\}$, jest relacją porzadkującą.
- 3. Relacja podzielności na zbiorze $\mathbb N$ określona wzorem: $m|n \Leftrightarrow \exists_{k \in \mathbb N} (k \cdot m = n) \text{ dla } m, n \in \mathbb N$ jest relacją porządkującą.
- 4. Relacja \leq na zbiorze $\mathbb N$ jest relacją liniowo porządkującą. Podobnie \leq na $\mathbb Z, \mathbb Q, \mathbb R.$

Definicja. Niech (A,R) będzie zbiorem uporządkowanym. Zbiór $X\subset A$ nazywamy łańcuchem w (A,R), jeżeli $(X,R\cap X^2)$ jest zbiorem liniowo uporządkowanym.

Zauważmy, że zbiór $X\subset A$ jest łańcuchem w (A,R) wtedy i tylko wtedy, gdy $\forall_{x,y\in X}(xRy\vee yRx)$.

Przykłady

1. Rozważmy zbiór $\mathcal{P}(\{a,b\})$ uporządkowany przez ograniczenie inkluzji do tego zbioru. Ta relacja nie jest liniowym porządkiem, ponieważ ani $\{a\} \subset \{b\}$, ani $\{b\} \subset \{a\}$ nie zachodzi. Zbiory:

$$\{\emptyset, \{a\}, \{a, b\}\}\$$
i $\{\emptyset, \{b\}, \{a, b\}\}$

są łańcuchami w $\mathcal{P}(\{a,b\})$.

2. Rozważmy zbiór $\{1,2,3,4\}$ z relacją podzielności ograniczoną do tego zbioru. Zbiory $\{1,2,4\},\{1,3\},\{1,4\}$ są łańcuchami.

Diagramy Hassego skończonych zbiorów uporządkowanych

Niech \leq będzie porządkiem na A. Ostry porządek < wyznaczony przez \leq określamy tak:

$$x < y \Leftrightarrow x \le y \land x \ne y$$

Niech (A, \leq) będzie zbiorem uporządkowanym. Element $y \in A$ nazywamy następnikiem elementu $x \in A$, jeżeli x < y, lecz nie istnieje $z \in A$ takie, że x < z i z < y.

W diagramie Hassego przedstawiamy elementy zbioru jako wierzchołki i prowadzimy krawędzie od każdego wierzchołka do wszystkich następników tego wierzchołka, umieszczonych wyżej.

Mamy: $x \leq y$ wtedy i tylko wtedy, gdy w diagramie istnieje droga, idąca w górę, od x do y (dowolnej długości $n \geq 0$).

Droga jest to trasa, która nie przechodzi dwukrotnie przez żaden wierzchołek. Długość drogi: liczba krawędzi, przez które przechodzi ta droga.

Zadanie 1. Przedstawić diagram Hassego dla zbioru $A = \{0, 1, 2, 3, 4, 5, 6\}$:

- 1. z relacją podzielności ograniczoną do tego zbioru (jest to relacja częściowo porządkująca),
- 2. z naturalnym porządkiem \leq ograniczonym do tego zbioru (jest to relacja liniowo porządkująca).

Zadanie 2. Przedstawić diagram Hassego:

- 1. dla relacji \leq_P na \mathbb{N}^2 ograniczonej do $\{0,1\}^2$
- 2. dla relacji \leq_P na \mathbb{N}^2 ograniczonej do $\{0,1,2\}^2$

$$< x_1, y_1 > \le_P < x_2, y_2 > \Leftrightarrow x_1 \le x_2 \land y_1 \le y_2$$

Definicja Niech (A, \leq) będzie zbiorem uporządkowanym. Niech $X \subset A$. Element $a \in A$ nazywamy:

- elementem najmniejszym w zbiorze X, jeżeli $a \in X$ i $\forall_{x \in X} (a \le x)$,
- elementem największym w zbiorze X, jeżeli $a \in X$ i $\forall_{x \in X} (x \leq a)$,
- elementem minimalnym w zbiorze X, jeżeli $a \in X$ i $\neg \exists_{x \in X} (x < a)$,
- elementem maksymalnym w zbiorze X, jeżeli $a \in X$ i $\neg \exists_{x \in X} (a < x)$,
- ograniczeniem dolnym zbioru X, jeżeli $\forall_{x \in X} (a \leq x)$,
- ograniczeniem górnym zbioru X, jeżeli $\forall_{x \in X} (x \leq a)$,

- \bullet kresem dolnym zbioru X,jeżeli ajest największym ograniczeniem dolnym zbioru X,
- kresem górnym zbioru X, jeżeli a jest najmniejszym ograniczeniem górnym zbioru X.

Zadanie 3. Niech X będzie zbiorem wszystkich podzbiorów zbioru liczb rzeczywistych i niech będzie dana relacja $R = \{ < A, B >: A \subseteq B \}$. Uzasadnić, że relacja R jest relacją częściowego porządku w zbiorze X. Wyznaczyć elementy: minimalny, maksymalny, największy, najmniejszy.

Zadanie 4. Narysować diagram Hassego dla $(\mathcal{P}(\{a,b,c\}),\subset)$. Niech X będzie rodziną wszystkich niepustych podzbiorów zbioru $\{a,b,c\}$. Oczywiście $X\subset\mathcal{P}(\{a,b,c\})$. Wyznaczyć elementy: minimalny, maksymalny, największy, najmniejszy.

Zadanie 5. Dany jest zbiór X i relacja podzielności w tym zbiorze. Narysować diagram Hassego tej relacji i wyznaczyć elementy: minimalny, maksymalny, największy, najmniejszy.

- a) $X = \{3, 5, 6, 10, 12\}$
- b) $X = \{1, 2, 3, 4, 6, 8, 9\}$
- c) $X = \{2, 3, 5, 6\}$
- d) $X = \{2, 3, 4, 9, 36\}$