Potencias fraccionarias de un número complejo

Si

- $z \neq 0$ n° complejo
- $m, n \in \mathbb{Z}^+ = \{1, 2, 3, ...\}$
- $\frac{m}{n}$ es irreducible (m y n no tienen factores comunes)

Entonces

$$z^{\pm \frac{m}{n}} = \left[\underbrace{re^{i\left(\frac{\theta}{\theta + 2k\pi}\right)}}_{z}\right]^{\pm \frac{m}{n}} = r^{\pm \frac{m}{n}} e^{\pm i\left(\frac{m}{n}\theta + 2\frac{m}{n}k\pi\right)}$$

$$= r^{\pm \frac{m}{n}} \left[cos\left(\frac{m}{n}\theta + 2\frac{m}{n}k\pi\right) \pm i sen\left(\frac{m}{n}\theta + 2\frac{m}{n}k\pi\right)\right]$$

$$con k = 0,1,...,n-1$$

k (ya sea para caso del exponente + δ -) sólo debe tomar n valores enteros consecutivos: 0,1,...,n-1 ya que debido a la periodicidad de las funciones seno y coseno, no se obtienen valores adicionales. Esto es, ya que el módulo es siempre el mismo, por ej. para el caso del exponente +, si se hace k=n el argumento es:

$$\frac{m}{n} \Theta + 2 \frac{m}{n} \tilde{n} \pi = \underbrace{\frac{m}{n} \Theta}_{\text{otro valor válido del argumento}}^{\text{es tambi én un periodo de las funciones seno y coseno ya que m es un entero positivo}}_{\text{otro valor válido del argumento}}$$

Si n = 1 tenemos <u>potencias enteras</u>:

Y se tiene un sólo valor (un único valor si el exponente es + y un único valor si el exponente es -).

• Si m = 1, $n \ge 2$ y suponiendo que el exponente es positivo tenemos las <u>raíces</u> <u>n-ésimas</u> del número complejo z:

$$w_{k+1} = z^{\frac{1}{n}} = r^{\frac{1}{n}} e^{i\left(\frac{\Theta}{n} + 2\frac{k}{n}\pi\right)}$$
; $k = 0, 1, ..., n-1$

Geométricamente, las raíces están distribuidas en una circunferencia de radio $r^{\frac{1}{n}}$ centrada en el origen, formando los vértices de un polígono regular de n lados inscripto en esa circunferencia, y uniformemente espaciadas por una distancia angular de $\frac{2\pi}{n}$ radianes.

Ejercicios. (de la guía)

Empleando la forma polar, calcule:

34.
$$\left(-\sqrt{3}+i\right)^3$$
 Es una potencia entera (tiene un solo valor), $z^{\frac{m}{n}} con \ z=-\sqrt{3}+i, m=3, n=1$

$$z^m = r^m \angle m\Theta$$

$$r = \sqrt{\left(-\sqrt{3}\right)^2 + 1^2} = 2$$

$$\Theta = \pi - \alpha$$
 donde $\alpha = tg^{-1}\left(\frac{C.O}{C.A}\right) = tg^{-1}\left(\frac{1}{\sqrt{3}}\right) = \frac{\pi}{6}$

$$\Theta = \pi - \frac{\pi}{6} = \frac{5\pi}{6}$$
 argumento principal

$$\left(-\sqrt{3}+i\right)^3 = \left(2\angle\frac{5\pi}{6}\right)^3 = 2^3\angle 3(5\pi/6) = 8\angle 5\pi/2$$

$$Resp.: \left(-\sqrt{3}+i\right)^3 = 8 \angle \pi/2$$

$$8 \angle \frac{\pi}{2} = \underbrace{8 e^{i\frac{\pi}{2}}}_{f. \ polar} = \underbrace{8 \left(\cos\left(\frac{\pi}{2}\right) + isen\left(\frac{\pi}{2}\right)\right)}_{f. \ trigonom \ \'etrica} = 8(0 + i1) = \underbrace{0 + 8i}_{f. \ bin \ \'omica} = 8i$$

Halle todos los valores de:

Raíces cuartas de
$$-16$$
, $z^{\frac{m}{n}} con z = -16$, $m = 1$, $n = 4$ (4 valores)
$$\theta = \pi$$

$$w_{k+1}=z^{\frac{1}{n}}=r^{\frac{1}{n}}e^{i\left(\frac{\theta}{n}+2\frac{k}{n}\pi\right)}$$
 ; $k=0,1,\ldots,n-1$

$$w_{k+1} = 16^{\frac{1}{4}}e^{i\left(\frac{\pi}{4} + 2\frac{k}{4}\pi\right)} ; k = 0,1,2,3$$

$$w_{k+1} = 2e^{i\left(\frac{\pi}{4} + \frac{k}{2}\pi\right)} ; k = 0,1,2,3$$

$$k = 0 \implies w_1 = 2e^{i\frac{\pi}{4}} = 2\left(\cos\left(\frac{\pi}{4}\right) + isen\left(\frac{\pi}{4}\right)\right) = 2\left(\frac{\sqrt{2}}{2} + i\frac{\sqrt{2}}{2}\right) = \sqrt{2} + i\sqrt{2}$$

$$k = 1 \implies w_2 = 2e^{i\left(\frac{\pi}{4} + \frac{\pi}{2}\right)} = 2e^{i\left(\frac{3\pi}{4}\right)} = 2\left(\cos\left(\frac{3\pi}{4}\right) + isen\left(\frac{3\pi}{4}\right)\right) = -\sqrt{2} + i\sqrt{2}$$

$$k = 2 \implies w_3 = 2e^{i\left(\frac{\pi}{4} + \pi\right)} = 2e^{i\left(\frac{5\pi}{4}\right)} = 2\left(\cos\left(\frac{5\pi}{4}\right) + isen\left(\frac{5\pi}{4}\right)\right) = -\sqrt{2} - i\sqrt{2}$$

$$k = 3 \implies w_4 = 2e^{i\left(\frac{\pi}{4} + \frac{3\pi}{2}\right)} = 2e^{i\left(\frac{7\pi}{4}\right)} = 2\left(\cos\left(\frac{7\pi}{4}\right) + isen\left(\frac{7\pi}{4}\right)\right) = \sqrt{2} - i\sqrt{2}$$

Resp.:
$$\sqrt{2} + i\sqrt{2}$$
, $-\sqrt{2} + i\sqrt{2}$, $-\sqrt{2} - i\sqrt{2}$, $\sqrt{2} - i\sqrt{2}$

$$\begin{split} w_{k+1} &= \frac{\left(\sqrt{3}+i\right)^{1/2}}{(1+i)^2} = \frac{\left[2e^{i\frac{\pi}{6}+2k\pi}\right]^{\frac{1}{2}}}{\left[\sqrt{2}e^{i\frac{\pi}{4}}\right]^2} = \frac{\sqrt{2}}{2}e^{i\left(\frac{\pi}{12}+k\pi\right)} = \frac{\sqrt{2}}{2}e^{i\left(\frac{\pi}{12}+k\pi-\frac{\pi}{2}\right)} \; ; \; k = 0,1 \\ w_{k+1} &= \frac{\sqrt{2}}{2}e^{i\left(-\frac{5\pi}{12}+k\pi\right)} \; ; \; k = 0,1 \\ k &= 0 \; \Rightarrow \quad w_1 &= \frac{\sqrt{2}}{2}e^{-i\frac{5\pi}{12}} = \frac{\sqrt{2}}{2}\left[\cos\left(\frac{5\pi}{12}\right)-i\sin\left(\frac{5\pi}{12}\right)\right] \\ &= \frac{\sqrt{2}}{2}\left[\frac{\sqrt{2}}{4}\left(\sqrt{3}-1\right)-i\frac{\sqrt{2}}{4}\left(\sqrt{3}+1\right)\right] \\ &= \frac{\sqrt{3}-1}{4}-i\frac{\sqrt{3}+1}{4} \\ k &= 1 \; \Rightarrow \quad w_2 &= \frac{\sqrt{2}}{2}e^{i\frac{7\pi}{12}} = \frac{\sqrt{2}}{2}\left[\cos\left(\frac{7\pi}{12}\right)+i\sin\left(\frac{7\pi}{12}\right)\right] \\ &= \frac{\sqrt{2}}{2}\left[-\frac{\sqrt{2}}{4}\left(\sqrt{3}-1\right)+i\frac{\sqrt{2}}{4}\left(\sqrt{3}+1\right)\right] \\ &= -\frac{\sqrt{3}-1}{4}+i\frac{\sqrt{3}+1}{4} \\ \hline w_1 &= \frac{\sqrt{3}-1}{4}-i\frac{\sqrt{3}+1}{4} \; ; \quad w_2 &= -\frac{\sqrt{3}-1}{4}+i\frac{\sqrt{3}+1}{4} \end{split}$$

RAÍCES DE LA ECUACIÓN CUADRÁTICA

Para obtener las raíces de la ecuación de segundo grado:

$$az^2 + bz + c = 0$$

donde

- a, b, c son constantes complejas
- $a \neq 0$

usamos la fórmula resolvente:

$$z = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

Halle todas las raíces de:

15.
$$z^2 + iz - 1 = 0$$

$$a=1$$
, $b=i$, $c=-1$

$$z = \frac{-i \pm \sqrt{i^2 - 4(1)(-1)}}{2(1)} = \frac{-i \pm \sqrt{-1 + 4}}{2} = -\frac{1}{2}i \pm \frac{\sqrt{3}}{2}$$

$$z_1 = \frac{\sqrt{3}}{2} - \frac{1}{2}i$$
 , $z_2 = -\frac{\sqrt{3}}{2} - \frac{1}{2}i$

REGIONES EN EL PLANO Z

Entorno (o disco abierto) de un punto z₀

Sean

$$z_o \in \mathbb{C}$$

•
$$z_o \in \mathbb{C}$$

• $r \in \mathbb{R}$, $r > 0$

$$D_r(z_o) = \{ z \in \mathbb{C} \mid |z - z_o| < r \}$$

Interpretación geométrica

$$|x - x_0 + i(y - y_0)| < r$$

$$\sqrt{(x - x_0)^2 + (y - y_0)^2} < r$$

$$(x - x_0)^2 + (y - y_0)^2 < r^2$$

Describa geométricamente los siguientes conjuntos, y diga cuáles de ellos constituyen un dominio:

46.
$$Re(z) = 3Im(z)$$

$$x = 3y \Rightarrow \boxed{y = \frac{1}{3}x}$$

$$y = \frac{1}{3}x$$

No es un dominio

47.
$$-\pi < arg(z) < \pi$$
, $|z| = 2$

$$|z| = 2 \Rightarrow \sqrt{x^2 + y^2} = 2 \Rightarrow x^2 + y^2 = 2^2$$

No es un dominio

48.
$$Im(z^2) > 0$$

$$Im((x+iy)^2) > 0$$

$$Im(x^2 + 2xiy + (iy)^2) > 0$$

$$Im(x^2 - y^2 + i2xy) > 0 \Rightarrow 2xy > 0 \Rightarrow \boxed{xy > 0}$$

No es un dominio

49. 3 < |z + 1 + i| < 4

$$3 < |x + iy + 1 + i| < 4$$

$$3 < |x + 1 + i(y + 1)| < 4$$

$$3 < \sqrt{(x+1)^2 + (y+1)^2} < 4$$

$$3^{2} < (x - (-1))^{2} + (y - (-1))^{2} < 4^{2}$$

Es un dominio

FUNCIÓN COMPLEJA Y SU DERIVADA

Exprese w = f(z) en forma binómica, es decir como w = u(x, y) + iv(x, y):

61.
$$w = (z - i)^2$$

$$w = \left(x + iy - i\right)^2 = \left(x + i(y - 1)\right)^2 = x^2 + 2xi(y - 1) + \left(i(y - 1)\right)^2$$

$$= x^2 + i2x(y - 1) + \tilde{i}^2(y - 1)^2$$

$$w = x^2 - (y - 1)^2 + i \cdot 2x(y - 1)$$

$$u(x,y)$$

62.
$$w = |z|^2 + i$$

$$w = \left| \underbrace{x + iy}^{z} \right|^2 + i = \left(\sqrt{x^2 + y^2} \right)^2 + i$$

$$w = \underbrace{(\bar{z})^{-2} + i}_{u(x,y)} + i = \left(\frac{1}{\bar{z}} \underbrace{z} \right)^2 + i ; \qquad \bar{z}z = (x - iy)(x + iy) = x^2 + y^2 = |z|^2$$

$$= \left(\underbrace{\frac{z}{x + iy}}_{x^2 + y^2} \right)^2 + i = \underbrace{\frac{z^2 + 2xiy + i^2y^2}{(x^2 + y^2)^2}}_{zz = |z|^2} + i$$

$$w = \underbrace{\frac{x^2 - y^2}{(x^2 + y^2)^2} + i \underbrace{\left(\frac{2xy}{(x^2 + y^2)^2} + 1\right)}_{v(x,y)}$$

65.
$$w = z^3$$

$$w = (x + iy)^3 = x^3 + 3x^2iy + 3x(iy)^2 + (iy)^3 = x^3 + i3x^2y - 3xy^2 - iy^3$$

$$w = \underbrace{x^3 - 3xy^2 + i\underbrace{(3x^2y - y^3)}_{v(x,y)}}_{v(x,y)}$$

66.
$$w = \frac{1}{z} + 1$$

$$w = \frac{1}{z} \frac{\bar{z}}{\bar{z}} + 1 = \frac{x - iy}{x^2 + y^2} + 1$$

$$w = \underbrace{\frac{x}{x^2 + y^2} + 1}_{u(x,y)} + i \underbrace{\left(\frac{-y}{x^2 + y^2}\right)}_{v(x,y)}$$

Exprese f(z) como función de z, \bar{z} y constantes:

67.
$$f(z) = -3y + i(x^2 + y^2)$$

$$f(z) = -3\underbrace{\left(\frac{z-\bar{z}}{2i}\right)}_{y} + i\underbrace{z\bar{z}}_{x^2+y^2} = -3\left(\frac{z-\bar{z}}{2i}\right)\frac{i}{i} + iz\bar{z}$$

$$f(z) = f^*(z, \bar{z}) = \left[\frac{3}{2}(z - \bar{z}) + z\bar{z}\right]i$$

68.
$$f(z) = -2xy + i(x^2 + y^2)$$

$$f(z) = -2\underbrace{\left(\frac{z+\bar{z}}{2}\right)}_{x}\underbrace{\left(\frac{z-\bar{z}}{2i}\right)}_{y}\underbrace{\left(\frac{i}{i}\right)}_{z} + i\underbrace{z\bar{z}}_{x^2+y^2} = \frac{(z+\bar{z})(z-\bar{z})}{2}i + iz\bar{z}$$

$$f(z) = f^*(z, \bar{z}) = \left(\frac{z^2 - \bar{z}^2}{2} + z\bar{z}\right)i$$

69.
$$f(z) = x^2 + iy^2$$

$$f(z) = \left(\frac{z + \bar{z}}{\underbrace{2}_{x}}\right)^{2} + i\left(\frac{z - \bar{z}}{\underbrace{2i}_{y}}\right)^{2}$$

$$f(z) = f^*(z, \bar{z}) = \frac{1}{4} [(z + \bar{z})^2 - i (z - \bar{z})^2]$$

70.
$$f(z) = x^2 + y^2$$

$$f(z) = f^*(z, \bar{z}) = z\bar{z}$$

Dé el dominio de definición de f(z):

71.
$$f(z) = |z|$$

$$f(z) = \sqrt{x^2 + y^2} \; ; \qquad \boxed{D_f = \mathbb{C}}$$

$$D_f = \mathbb{C}$$

$$72. f(z) = \frac{1}{|z|}$$

$$f(z) = \frac{1}{\sqrt{x^2 + y^2}} \; ;$$

$$D_f = \mathbb{C} - \{0\}$$

73.
$$f(z) = z - 1 + i$$

$$D_f = \mathbb{C}$$

74.
$$f(z) = x^2 - y^2 + i2xy$$

$$D_f=\mathbb{C}$$

$$75. f(z) = \frac{z}{z - \bar{z}}$$

El denominador se anula cuando:

$$z - \bar{z} = x + iy - (x - iy) = i2y = 0 \quad \Rightarrow \quad y = 0 \quad \Rightarrow \quad \boxed{D_f = \{z \in \mathbb{C} \mid Im(z) \neq 0\}}$$

76.
$$f(z) = \frac{1}{z^2+1}$$

El denominador se anula cuando:

$$z^{2} + 1 = 0 \Rightarrow z^{2} = -1 \Rightarrow z = (-1)^{\frac{1}{2}} \Rightarrow z = \pm i \Rightarrow D_{f} = \mathbb{C} - \{i, -i\}$$

<u>CONDICIONES NECESARIAS Y SUFICIENTES PARA LA DERIVABILIDAD DE UNA FUNCIÓN COMPLEJA</u>

$$f(z) = u(x, y) + iv(x, y)$$
 es derivable en $z_0 = (x_0, y_0)$

u y v son diferenciables en ese punto y se cumplen en él las ecuaciones de Cauchy-Riemann:

$$C - R \begin{cases} u_x(x_0, y_0) = v_y(x_0, y_0) \\ u_y(x_0, y_0) = -v_x(x_0, y_0) \end{cases} \leftarrow \text{(condiciones necesarias para la derivabilidad de } f)$$

Si
$$f$$
 es derivable en $z_0 = (x_0, y_0)$, $f'(z_0) = u_x(x_0, y_0) + iv_x(x_0, y_0)$

FUNCIONES ANALÍTICAS

Una función compleja f es analítica u holomorfa en un punto z_0 si y sólo si es derivable en todos los puntos de un entorno de z_0 .

Como consecuencia de la definición, si f es analítica en z_0 entonces es analítica en todo punto de un entorno de z_0 .

f es analítica en un dominio D si es analítica en todos los puntos de D.

FUNCIONES ENTERAS

Una función entera es una función que es analítica en todos los puntos del plano complejo.

Para las siguientes funciones determine los puntos del plano z donde son derivables, obtenga la expresión de f'(z), y diga cuáles de ellas son analíticas en algún dominio:

$$80. f(z) = e^{|z-1|^{2}}$$

$$f(z) = e^{\left|\frac{z}{x+iy}-1\right|^{2}} = e^{\left(\sqrt{(x-1)^{2}+y^{2}}\right)^{2}} = \underbrace{e^{(x-1)^{2}+y^{2}}}_{u(x,y)} + i \underbrace{0}_{v(x,y)}$$

$$C - R: \begin{cases} u_{x} = v_{y} \\ u_{y} = -v_{x} \end{cases} \Rightarrow \begin{cases} \underbrace{2(x-1)e^{(x-1)^{2}+y^{2}}}_{u_{y}} = \underbrace{0}_{-v_{x}} \\ \underbrace{2ye^{(x-1)^{2}+y^{2}}}_{u_{y}} = \underbrace{0}_{-v_{x}} \end{cases} \Rightarrow \begin{cases} x - 1 = 0 \\ y = 0 \end{cases}$$

Se cumplen las condiciones de Cauchy-Riemann sólo en (1,0).

 u_x , u_y , v_x , v_y son funciones continuas en $\mathbb{R}^2 \Rightarrow u\ y\ v$ son diferenciables en \mathbb{R}^2 .

Por lo tanto se cumplen las condiciones necesarias y suficientes para la diferenciabilidad de f sólo en el punto (1,0).

f es derivable sólo en z = 1.

$$f'(z) = u_x + iv_x = 2(x-1)e^{(x-1)^2+y^2} + i \ 0 \ (v \text{\'a} lida \ s \text{\'o} lo \ para \ z = 1 + i 0 = 1).$$

$$f'(1) = 0.$$

f no es analítica en ningún dominio ni en punto alguno del plano z.

82.
$$f(z) = \frac{1}{z}$$

$$f(z) = \frac{1}{z} \left(\frac{\bar{z}}{\bar{z}}\right) = \frac{\bar{z}}{|z|^2} = \underbrace{\frac{x}{x^2 + y^2}}_{u(x,y)} + i \underbrace{\left(\frac{-y}{x^2 + y^2}\right)}_{v(x,y)}$$

$$C - R: \begin{cases} u_x = v_y \\ u_y = -v_x \end{cases} \Rightarrow \begin{cases} \frac{u_x}{(x^2 + y^2)^2} = \frac{v_y}{(x^2 + y^2)^2} \\ \frac{-2xy}{(x^2 + y^2)^2} = \frac{-2xy}{(x^2 + y^2)^2} \\ \frac{v_y}{(x^2 + y^2)^2} = \frac{v_y}{(x^2 + y^2)^2} \end{cases}$$

Se cumplen las condiciones de Cauchy-Riemann en $\mathbb{R}^2 - \{(0,0)\}$.

 u_x , u_y , v_x , v_y son funciones continuas en $\mathbb{R}^2 - \{(0,0)\} \Rightarrow u \ y \ v$ son diferenciables en $\mathbb{R}^2 - \{(0,0)\}.$

Por lo tanto se cumplen las condiciones necesarias y suficientes para la diferenciabilidad de f en $\mathbb{R}^2 - \{(0,0)\}$.

f es derivable en: $\{z \in \mathbb{C} \mid z \neq 0\}$.

$$f'(z) = u_x + iv_x = \frac{y^2 - x^2}{(x^2 + y^2)^2} + i\frac{2xy}{(x^2 + y^2)^2}$$
 (válida para $\forall z \neq 0$).

f es analítica en el dominio: $\{z \in \mathbb{C} \mid z \neq 0\}$.

83.
$$f(z) = x^3 - i(y-1)^3$$

$$u(x,y) = x^{3} ; v(x,y) = -(y-1)^{3}$$

$$C - R: \begin{cases} u_{x} = v_{y} \\ u_{y} = -v_{x} \end{cases} \Rightarrow \begin{cases} \underbrace{\underbrace{\begin{cases} u_{x} = v_{y} \\ 3x^{2} = -3(y-1)^{2} \\ 0 = 0 \\ u_{y} = -v_{x} \end{cases}}}_{u_{y} = -v_{x}} \Rightarrow \begin{cases} x^{2} + (y-1)^{2} = 0 \\ 0 = 0 \end{cases}$$

Se cumplen las condiciones de Cauchy-Riemann sólo en (0,1).

 u_x , u_y , v_x , v_y son funciones continuas en $\mathbb{R}^2 \Rightarrow u \ y \ v$ son diferenciables en \mathbb{R}^2 .

Por lo tanto se cumplen las condiciones necesarias y suficientes para la diferenciabilidad de f sólo en el punto (0,1).

f es derivable sólo en z = i.

$$f'(z) = u_x + iv_x = 3x^2 + i \ 0 \ (v\'alida\ s\'olo\ para\ z = i); \qquad f'(i) = 0.$$

no es analítica en ningún dominio ni en punto alguno del plano z.

84.
$$f(z) = x^2 + iy^2$$

$$u(x,y) = x^2$$
; $v(x,y) = y^2$

$$u(x,y) = x^{2} ; v(x,y) = y^{2}$$

$$C - R: \begin{cases} u_{x} = v_{y} \\ u_{y} = -v_{x} \end{cases} \Rightarrow \begin{cases} \underbrace{2x}^{u_{x}} & \underbrace{v_{y}} \\ \underbrace{2x} & = \underbrace{2y} \\ \underbrace{0} & = \underbrace{0} \\ \underbrace{u_{y}} & -v_{x} \end{cases}$$

Se cumplen las condiciones de Cauchy-Riemann en $\{(x,y) \in \mathbb{R}^2 \mid y=x\}$.

 u_x , u_y , v_x , v_y son funciones continuas en $\mathbb{R}^2 \Rightarrow u \ y \ v$ son diferenciables en \mathbb{R}^2 .

Por lo tanto se cumplen las condiciones necesarias y suficientes para la diferenciabilidad de f en $\{(x,y) \in \mathbb{R}^2 \mid y=x\}$ (no es un dominio).

f es derivable en $\{z \in \mathbb{C} \mid Re(z) = Im(z)\}.$

$$f^{'}(z) = u_x + iv_x = 2x + i \ 0 \ (v\'alida\ s\'olo\ para\ \{z \in \mathbb{C} \mid Re(z) = Im(z)\ \}).$$

f no es analítica en ningún dominio ni en punto alguno del plano z.

85.
$$f(z) = e^x cos(y) + ie^x sen(y)$$

$$u(x,y) = e^x cos(y)$$
; $v(x,y) = e^x sen(y)$

$$C - R: \begin{cases} u_x = v_y \\ u_y = -v_x \end{cases} \Rightarrow \begin{cases} \underbrace{e^x \cos(y)}_{u_y} = \underbrace{e^x \cos(y)}_{v_y} \\ \underbrace{-e^x \operatorname{sen}(y)}_{u_y} = \underbrace{-e^x \operatorname{sen}(y)}_{-v_x} \end{cases}$$

Se cumplen las condiciones de Cauchy-Riemann en \mathbb{R}^2 .

 u_x , u_y , v_x , v_y son funciones continuas en $\mathbb{R}^2 \Rightarrow u \ y \ v$ son diferenciables en \mathbb{R}^2 .

Por lo tanto se cumplen las condiciones necesarias y suficientes para la diferenciabilidad de f en \mathbb{R}^2 (es un dominio).

f es derivable en C.

$$f'(z) = u_x + iv_x = e^x \cos(y) + i e^x \sin(y)$$
 (válida $\forall z$).

f es entera (anlítica en todo el plano z).

$$f(z) = e^{x}\cos(y) + ie^{x}\sin(y) = e^{x}\left(\underbrace{\cos(y) + i\sin(y)}\right) = e^{x}\underbrace{e^{iy}}_{} = e^{x+iy} = e^{z}$$

90.
$$f(z) = 2x + ixy^2$$

$$u(x,y) = 2x ; \quad v(x,y) = xy^{2}$$

$$C - R: \begin{cases} u_{x} = v_{y} \\ u_{y} = -v_{x} \end{cases} \Rightarrow \begin{cases} \frac{u_{x}}{2} = 2xy \\ 0 = -y^{2} \end{cases} \Rightarrow \begin{cases} 1 = xy \\ y = 0 \end{cases}$$

No se cumplen las condiciones de Cauchy-Riemann en punto alguno del plano.

f no es derivable en punto alguno del plano z.

f no es analítica en ningún dominio ni en punto alguno del plano z.

93.
$$f(z) = z^3$$

$$f(z) = z^3 = (x + iy)^3 = x^3 + 3x^2iy + 3x(iy)^2 + (iy)^3 = \underbrace{x^3 - 3xy^2}_{u(x,y)} + i\underbrace{(3x^2y - y^3)}_{v(x,y)}$$

$$C - R: \begin{cases} u_x = v_y \\ u_y = v_x \end{cases} \Rightarrow \begin{cases} \underbrace{3x^2 - 3y^2}_{u_y} = \underbrace{3x^2 - 3y^2}_{v_x} \\ -6xy = \underbrace{-6xy}_{v_x} \end{cases}$$

Se cumplen las condiciones de Cauchy-Riemann en \mathbb{R}^2 .

 u_x , u_y , v_x , v_y son funciones continuas en $\mathbb{R}^2 \Rightarrow u\ y\ v$ son diferenciables en \mathbb{R}^2

Por lo tanto se cumplen las condiciones necesarias y suficientes para la diferenciabilidad de f en \mathbb{R}^2 (es un dominio).

f es derivable en C.

$$f'(z) = u_x + iv_x = 3x^2 - 3y^2 + i 6xy = 3(x^2 - y^2 + i2xy) = 3z^2$$
 (válida $\forall z$).

f es entera (anlítica en todo el plano z).

97.
$$f(z) = x^3 - 3y^2 + 2x + i(3x^2y - y^3 + 2y)$$

$$u(x,y) = x^3 - 3y^2 + 2x \; ; \quad v(x,y) = 3x^2y - y^3 + 2y$$

$$C - R: \begin{cases} u_x = v_y \\ u_y = -v_x \end{cases} \Rightarrow \begin{cases} \underbrace{3x^2 + 2}_{u_y} = \underbrace{3x^2 - 3y^2 + 2}_{v_x} \\ \underbrace{-6y}_{u_y} = \underbrace{-6xy}_{v_x} \end{cases} \Rightarrow \begin{cases} 0x^2 + 3y^2 = 0 \\ 6y(1-x) = 0 \end{cases}$$

Se cumplen las condiciones de Cauchy-Riemann en $\{(x,y) \in \mathbb{R}^2 \mid y=0\}$.

 u_x , u_y , v_x , v_y son funciones continuas en $\mathbb{R}^2 \Rightarrow u\ y\ v$ son diferenciables en \mathbb{R}^2 .

Por lo tanto se cumplen las condiciones necesarias y suficientes para la diferenciabilidad de f en $\{(x,y) \in \mathbb{R}^2 \mid y=0\}$ (no es un dominio).

f es derivable en $\{z \in \mathbb{C} \mid Im(z) = 0\}$.

$$f'(z) = u_x + iv_x = 3x^2 + 2 + i 6xy \ (v\'alida\ s\'olo\ para\ \{z \in \mathbb{C} \mid Im(z) = 0\ \}).$$

$$f'(x+i0) = 3x^2 + 2.$$

f no es analítica en ningún dominio ni en punto alguno del plano z.