This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

SEARCH

INDEX

DETAIL

1/1

PATENT ABSTRACTS OF JAPAN

(11)Publication number: 07086216

(43) Date of publication of application: 31.03.1995

(51)Int.CI.

H01L 21/304 B24B 1/00

(21)Application number: 05231283

(22)Date of filing: 17.09.1993

(71)Applicant:

(72)Inventor:

TOSHIBA CORP SASAKI YASUTAKA

WADA JUNICHI MATSUO MIE

HAYASAKA NOBUO

(54) MANUFACTURE OF SEMICONDUCTOR DEVICE

(57)Abstract:

PURPOSE: To provide a manufacturing method for a semiconductor device, which can polish a processed film without causing dishing, etc., and can flatten the film favorably and form a buried metallic wiring, etc., by lessening the quantity of polishing particles left behind polishing to the uttermost.

CONSTITUTION: This manufacture possesses a process of polishing a processed film, using globular particles 19, which have globular particles consisting of organic high polymer compounds or at least carbon for their main ingredients, as polishing particles. Especially, it is to be desired that the polishing particles 19 should be removed by burning them after polishing.

LEGAL STATUS

[Date of request for examination]

08.12.1998

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of rejection]

[Date of extinction of right]

Copyright (C); 1998 Japanese Patent Office

MENU SEARCH

INDEX

DETAIL

(19) 日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平7-86216

(43)公開日 平成7年(1995)3月31日

(51) Int.Cl.6

識別記号

FΙ

技術表示箇所

HO1L 21/304

321 P

Α

B 2 4 B 1/00

A 9325-3C

庁内整理番号

審査請求 未請求 請求項の数2 OL (全 7 頁)

(21)出願番号	特顧平5-231283	(71)出顧人	000003078
			株式会社東芝
(22)出顧日	平成5年(1993)9月17日		神奈川県川崎市幸区堀川町72番地
		(72)発明者	佐々木 泰孝
			神奈川県川崎市幸区小向東芝町1番地 株
			式会社東芝研究開発センター内
		(72)発明者	和田 純一
			神奈川県川崎市幸区小向東芝町1番地 株
			式会社東芝研究開発センター内
		(72)発明者	松尾美恵
			神奈川県川崎市幸区小向東芝町1番地 株
			式会社東芝研究開発センター内
		(74)代理人	弁理士 鈴江 武彦
			最終頁に続く

(54) 【発明の名称】 半導体装置の製造方法

(57)【要約】

【目的】本発明は、研磨後の研磨粒子の残存量を極力少なくし、ディッシング等を起こすことなく研磨することができ、良好に膜の平坦化、埋め込み金属配線形成等を行うことができる半導体装置の製造方法を提供することを目的とする。

【構成】有機高分子化合物からなる球形粒子または少なくとも炭素を主成分とする球形粒子19を研磨粒子として用いて被加工膜を研磨する工程を具備することを特徴としている。特に、研磨後に前記研磨粒子19を燃焼させることにより除去することが好ましい。

【特許請求の範囲】

【請求項1】 有機高分子化合物からなる粒子または少 なくとも炭素を主成分とする粒子を研磨粒子として用い て被加工膜を研磨する工程を具備することを特徴とする 半導体装置の製造方法。

1

【請求項2】 研磨後に前記研磨粒子を燃焼させること により除去する工程をさらに具備する請求項1記載の半 導体装置の製造方法。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は、超LSI等の半導体装 置を製造する方法に係わり、特に半導体装置の製造工程 における研磨方法に関する。

[0002]

【従来の技術】近年、LSIの髙集積化に伴い、様々な 微細加工技術が開発されている。バターンの最小加工寸 法は年々小さくなり、現在では既にサブミクロンのオー ダーとなっている。

【0003】そのような厳しい微細化の要求を満たすた めに開発されている技術の一つにCMP(ケミカルメカ 20 ニカルポリッシング) 技術がある。この技術は、半導体 装置の製造工程において、例えば層間絶縁膜の平坦化、 ブラグ形成、埋め込み金属配線形成、埋め込み素子分離 等を行う際に必須となる技術である。

【0004】図7(A)~(D) にCMP技術を用いた 埋め込み金属配線形成の一例を示す。まず、図7(A) に示すように、半導体基板1上に絶縁膜2を形成し、絶 縁膜2の表面を平坦化する。次いで、図7(B)に示す ように、通常のフォトリソグラフィー法およびエッチン グ法により、絶縁膜2に配線用の溝、あるいは接続配線 30 用の開口部3を形成する。次いで、図7(C)に示すよ うに、この絶縁膜2上に配線用金属膜4を形成する。こ の場合、絶縁膜2と配線用金属膜4との間の相互拡散あ るいは反応を防止するために、両者の間にバリアメタル 膜を形成することもある。

【0005】次いで、溝もしくは開口部のみに配線用金 属膜4を残存させるために、配線用金属膜4にアルミナ 粒子等を研磨粒子としてCMPを施す。この場合、配線 用金属膜4の下に耐研磨性膜として配線用金属膜4に対 して研磨速度選択比の大きな材質の膜を形成することも ある。なお、本出願人が先に出願している特願平5-6 7410号明細書に述べられているように、配線用金属 膜としてA1膜5を用い、図7(C)に示すように、ス パッタリングによりA1膜4を堆積し、真空中において

連続的にアニール処理を施して図7(D)に示すよう に、凹部内においてA 1を単結晶化させると共に、A 1 膜4を絶縁膜2の凸部に分離残存させ、その後CMPに より残存したAI膜を除去してもよい。このようにし て、図7(E)に示すように、絶縁膜2の表面と配線用 金属膜5の表面が同一平面となるようにする。

【0006】しかしながら、実際のCMPの工程では、 配線用金属膜4の被研磨面と研磨粒子との間あるいは被 研磨面と研磨剤を保持する定盤との間におけるメカニカ 10 ルな作用によって、配線用金属膜表面に傷がついて表面 が粗くなったり、配線用金属膜4に研磨粒子が埋め込ま れたり残留したりする。

【0007】また、図7(F)に示すように、溝や開口 部に埋め込まれた配線用金属膜4、特に幅が広い領域で は中心部の厚さが薄くなるディッシングという現象が生 じる。このディッシングの現象が生じると、そこに研磨 粒子が残留し易くなる。例えば、配線用金属膜4の材料 として、Al, Cuのような硬度が低く、延性のある金 属を用いる場合、それらの傾向が顕著に現れる。配線用 金属膜表面の傷やディッシングの発生、あるいは研磨粒 子の残留等は、得られる配線の抵抗を増加させたり、断 線を引き起として、信頼性の低下や製品歩留りの低下を 招く。

[0008]

【発明が解決しようとする課題】半導体装置の製造工程 においては、CMP後の研磨粒子の残留が大きな問題と なる。すなわち、残留した研磨粒子が半導体装置の不良 の原因となる。このため、CMP後の研磨粒子を完全に 除去する必要がある。

【0009】従来、CMP後の研磨粒子の除去には、純 水による水洗、スポンジスクラバーもしくはブラシスク ラバーを用いるスクラブ洗浄、超音波洗浄、または硫酸 - 過酸化水素水混合溶液を用いる化学的洗浄等が行われ る。しかしながら、これらの洗浄では充分に研磨粒子を 除去することはできない。ことで、酸化セリウム粒子を 研磨粒子として用い、これを純水に分散させた研磨剤 で、6インチSiウェハ上に形成したSiO,膜をCM Pした後、ブラシスクラバーを用いるスクラブ洗浄(洗 浄1)、またはスクラブ洗浄と硫酸過酸化水素水混合溶 液による化学的洗浄との組み合わせ洗浄(洗浄2)を行 ったときの粒径別の残留粒子数を測定した結果を下記表 1 に示す。

[0010]

【表1】

	残留粒子数(個)				
残留粒子	~0.3	0. 3	0. 5	1.0 ~	
粒径(μ=)		~0.5	~1.0		
CMP前	9	3	1	1	
CMP後	14997	14435	2020	40	
洗浄後1	1336	1319	14	4	
洗浄後2	468	442	10	3	

20

【0011】表1から明らかなように、いずれの粒径の残留粒子においても、CMP前の残留粒子数と比較すると、いずれも残留する研磨粒子量が多いことが分る。LSIの最小加工寸法は既にサブハーフミクロンの世代に入っており、要求されるダスト数のレベルもますます厳しくなってきていることを考えると、0.3μm以下の小さな残留粒子でさえも、製品の歩留りに大きく影響することは明らかである。したがって、従来の研磨粒子を用いた従来の研磨方法では、次世代のLSIの製造に対応することはできない。

【0012】本発明はかかる点に鑑みてなされたものであり、研磨後の研磨粒子の残存量を極力少なくし、ディッシング等を起こすことなく研磨することができ、良好に膜の平坦化、埋め込み金属配線形成等を行うことができる半導体装置の製造方法を提供することを目的とする。

[0013]

【課題を解決するための手段】本発明者らは、上記問題点を解決すべく鋭意研究を重ねた結果、従来半導体装置の製造工程において使用されていなかった有機高分子化 30 合物からなる粒子または少なくとも炭素を主成分とする粒子を研磨粒子として用いることにより、研磨後の研磨粒子の残存量を極力少なくし、ディッシング等を起こすことなく研磨することができることを見出だし本発明をするに至った。

【0014】すなわち、本発明は、有機高分子化合物からなる粒子または少なくとも炭素を主成分とする粒子を研磨粒子として用いて被加工膜を研磨する工程を具備することを特徴とする半導体装置の製造方法を提供する。【0015】本発明においては、研磨後に前記研磨粒子を燃焼させることにより除去する工程をさらに具備するとが好ましい。ここで、有機高分子化合物としては、PMMA等のメタクリル樹脂、これと同等の硬度を有するフェノール樹脂、ユリア樹脂、メラミン樹脂、ポリカーボネート樹脂等を用いることができる。また、少なくとも炭素を主成分とする材料としては、非晶質炭素、金剛砂、一層または数層のグラファイト構造を単位とし、それらがランダムに結合してなるカーボンブラックを用いることができる。

【0016】上記研磨粒子は球形のものを使用すると良い。球形とは、鋭角部のない略球形のものを含む意味である。これは、研磨の際にメカニカル作用を抑制して被加工膜表面に傷が付いたり、粗くなることを防止するためである。

【0017】研磨粒子の平均粒径は、 $0.01\sim0.1$ μ mであることが好ましい。これは、研磨粒子の平均粒径が 0.01μ m未満であると粒子が凝集し易いために表面粗さが増大し、また研磨速度も不安定となり、 0.1μ mを超えると表面粗さが増大し、また、ディッシング量も粒径に比例して増大するからである。

【0018】研磨後の研磨粒子を燃焼させる方法としては、酸素プラズマ中に晒したり、酸素ラジカルをダウンフローで供給すること等のプラズマによる灰化処理、酸素雰囲気中での高温処理等を用いることができる。これらの方法により上記研磨粒子を容易に除去することができる。

【0019】被加工膜としては、純A1膜や、A1SiCu合金、A1Cu合金等のA1を主成分とする合金からなる膜、シリコン酸化膜、シリコン窒化膜、アモルファスシリコン膜、多結晶シリコン膜、単結晶シリコン膜等が挙げられる。

【0020】上記被加工膜、研磨粒子、研磨粒子を分散させる溶液は、硬度や化学的エッチング作用等を考慮して相対的に適宜選択する必要がある。例えば、研磨粒子を分散させる溶液がアルカリ性であることが好ましい場合は、被加工膜に純Al、Al-Si-Cu合金、Al-Cu合金等からなる膜を用い、研磨粒子に有機高分子化合物粒子あるいはカーボンブラック粒子を用いる場合であり、酸性であることが好ましい場合は、被加工膜にCuを主成分とする膜を用い、研磨粒子に有機高分子化合物粒子等を用いる場合である。

[0021]

【作用】本発明の半導体装置の製造方法は、有機高分子 化合物からなる球形粒子または少なくとも炭素を主成分 とする粒子を研磨粒子として用いて被加工膜を研磨する 工程を具備することを特徴としている。

【0022】上記の研磨粒子は球形であるので、メカニカル作用が小さく、CMPの際に被加工膜の表面に傷を50付けたり、ディッシングを発生させることがない。ま

た、これらの研磨粒子は、燃焼することにより被加工膜 上から完全に除去することができるので、研磨粒子の残 留による信頼性の低下や製品歩留りの低下等の半導体装 置の不良を引き起こすことがない。

[0023]

【実施例】以下、本発明の実施例を図面を参照して具体 的に説明する。

実施例1

まず、図1に示すように、Si基板11上にSiO、膜 12を形成し、通常のフォトリソグラフィー法およびエ 10 ッチング法により、幅0. 4~10μm、深さ0. 4μ mの配線用溝13を形成した。次いで、圧力10⁻⁴Torr のAr雰囲気中で直流マグネトロンスパッタリング法に より全面に非加熱の状態で厚さ4500オングストロー ムのA1膜14を形成した。このようにして試料20を 作製した。このときの試料20表面に残存する研磨粒子 の数をダストカウンターを用いて測定した。その結果を 下記表2に示す。

【0024】次に、この試料20に図2に示す装置を用 いてСMPを施した。この装置は、回転可能な研磨プレ 20 ート21と、研磨プレート21上に貼付されたポリッシ ングパッド22と、研磨プレート21の上方に配置され ており、回転可能な試料ホルダー23と、研磨液タンク に接続され、吐出部がポリッシングパッド22近傍まで 延出した研磨液供給用配管24とから構成されている。 試料20は、ポリッシングバッド22に被加工面が対向 するように試料ホルダー23に真空チャックされる。ま た、研磨液供給用配管24は、研磨液の供給量を制御す る手段を備えている。なお、ポリッシングパッド22に*

*は、発泡ポリウレタン製のポリッシングパッドを用い た。

【0025】CMPにおいて、研磨剤としては、平均粒 径1000オングストロームのPMMA (ポリメチルメ タクリレート) 粒子を、p H 1 0 程度のアルカリ性水溶 液に10.0重量%の割合で分散させたスラリーを用い た。分散剤としては、ポリカルボン酸アンモニウム塩を 用いた。また、研磨条件は、研磨圧力300af/cml、 定盤および試料ホルダーの回転数100rpm とした。そ の結果、図1中の配線用溝13内に、ほぼ完全にA1を 残すことができた。また、Al配線の表面には傷はほと んど見られなかった。なお、この研磨剤によるAIの研 磨速度は、VAI=150オングストローム/分であっ た。また、CMP後に試料表面に残存する研磨粒子の数 を上記と同様にして測定した。その結果を下記表2に併 記する。

【0026】次いで、CMP後の試料にスポンジを用い て純水で洗浄処理を施し、乾燥した。このときの試料表 面に残存する研磨粒子の数を上記と同様にして測定し た。その結果を下記表2に併記する。さらに、試料に、 プラズマ出力500W、O₂ 分圧0.9 Torrの条件下で 酸素ブラズマによる灰化処理を施し、残留している研磨 粒子を除去した。このときの試料表面に残存する研磨粒 子の数を上記と同様にして測定した。その結果を下記表 2に併記する。表2中の値はすべてウェハ1枚当たりの 平均値である。

[0027] 【表2】

	残留粒子数 (個)			
残留粒子	~0.3	0. 3	0. 5	1. 0 ~
粒径 (gm)		~0.5	~1.0	
CMP前	8	5	1	1
CMP後	14610	14487	2148	44
スまンジ洗浄後	222	104	12	6
灰化処理後	19	12	2	1

【0028】表2から明らかなように、灰化処理まで行 40 った試料の表面に残存する研磨粒子はほぼ完全に除去で きたことが分る。なお、灰化処理後の試料の表面でカウ ントされているもののほとんどは、研磨粒子以外のダス トや試料表面の凹凸等を検出したものと思われる。-

【0029】CCで、PMMA粒子をpH7の純水に分 散してなるスラリーを用いてCMPを行ったところ、A 1は全く研磨されなかった。すなわち、純水にPMMA 粒子を分散した研磨剤のA1の研磨速度は、研磨圧力1 0~1000gf/cm において、VA1=0A/分であっ た。との結果から、PMMA粒子をAlの研磨に用いる 50 0 'TorrのAr雰囲気中で直流マグネトロンスパッタリ

場合、研磨剤溶液を酸性あるいはアルカリ性にして、化 学的エッチング作用が進行する条件にすることが必要で あることが分かった。化学的エッチング作用を加えるこ とにより、実用的な研磨速度を得ることができる。特 に、化学的エッチング作用を加えて研磨速度を上げると 同時にAl表面に傷を付けないという観点から、分散さ せる溶液はアルカリ性であることが望ましい。

【0030】本実施例においては、試料は図1に示す構 造を有するものを用いているが、図3に示すように、S i 基板1上にSiO、膜12を形成し、その上に圧力1 ング法により厚さ500オングストロームの耐研磨性膜である炭素膜15を形成し、通常のフォトリソグラフィー法およびエッチング法により図1と同様の大きさの配線用溝13を形成した後、試料を500℃に加熱しながら圧力10⁻⁴TorrのAr雰囲気中で直流マグネトロンスパッタリング法で膜厚4000オングストロームのAI膜14を形成してなる構造を有する試料においても、同様な効果が得られることが分かった。すなわち、本発明の方法によれば、耐研磨性膜の有無に拘らず、また、被加工膜の表面形状に拘らず、研磨粒子をほぼ完全に除去10できることが分かった。なお、研磨粒子を実施例1と同様の酸素プラズマによる灰化処理で除去する際、炭素膜15を同時に除去するとができる。

実施例2

図4に示すように、Si基板11上にSiO、膜12を形成し、通常のフォトリソグラフィー法およびエッチング法により図1と同様の大きさの配線用溝13を形成した。次いで、圧力10-1TorrのAr雰囲気中で直流マグネトロンスパッタリング法により全面に厚さ500オングストロームのNb膜16を形成し、その全面に圧力10-1TorrのArおよびO、の混合ガス雰囲気中で反応性スパッタリング法により、厚さ約4000オングストロームのCuOx(x=0~0.5)膜17を形成した。このようにして試料を作製した。

【0031】との試料に実施例1と同様な研磨条件でCMPを行った。ただし、研磨剤としては、平均粒径1000オングストロームのPMMA粒子をpH3程度の酸性水溶液に10.0重量%の割合で分散させたものを用いた。その結果、定盤および試料ホルダーの回転数100rpm、研磨圧力300gf/cm²におけるCuOx膜17の研磨速度は200~250オングストローム/分であり、A1の場合よりやや速かった。

【0032】CMP後に試料をスポンジ洗浄処理した 後、実施例1と同様の条件で酸素プラズマによる灰化処 理を行ったところ、試料表面に残留した研磨粒子は完全 に除去された。

【0033】本実施例より、研磨剤としてPMMA粒子を用いてCuOx膜を研磨する場合、化学的エッチング作用を加えて研磨速度を上げるという観点から、分散させる溶液には、アンモニウム塩を含む、例えばpH3程度の酸性水溶液、あるいは銅と共に錯イオンもしくはキレート化合物を作るようなイオンを含む溶液が好ましい。

実施例3

図5に示すように、Si基板11上にSiO,膜12を 膜厚5000オングストロームで形成し、その上にAi 膜14を膜厚4000オングストロームで形成し、およ び炭素膜15を膜厚500オングストロームで形成し、 通常のフォトリソグラフィー法およびエッチング法によ 50

り上面にのみ炭素膜15を残したAI配線を形成した 後、プラズマCVD法によりSiO、膜12を膜厚45 00オングストロームで形成した。このようにしてAI 配線がSiO、膜12中に埋設された構造を有する試料 を作製した。

【0034】この試料に実施例1と同様な研磨条件でCMPを行った。ただし、研磨剤としては、平均粒径0.5μmの非晶質炭素粒子を純水に1.0重量%の割合で分散させたものを用いた。このとき、分散剤としては、ポリカルボン酸アンモニウム塩を用いた。

【0035】その結果、A1配線間にSiO、膜12が残り、炭素膜15上のSiO、膜12は全て除去することができた。なお、定盤および試料ホルダーの回転数100rpm、研磨圧力300gf/cm²におけるSiO、膜12の研磨速度はほぼ2000オングストローム/分であった。

【0036】CMP後に試料をスポンジ洗浄処理した後、酸素プラズマによる灰化処理を行ったところ、試料表面に残留した研磨粒子は完全に除去された。なお、プラズマ出力は500W、O2分圧は0.9 Torrとした。この酸素プラズマによる灰化処理において、A1配線14上の炭素膜は同時に除去することができ、工程数を削減することができる。

【0037】本実施例より、研磨剤として平均粒径0. 5μmの非晶質炭素粒子を用いてSiO、膜を研磨する場合、化学的エッチング作用を加えて研磨速度を上げるという観点から、分散させる溶液には、水酸化アルカリ水溶液が好ましい。

実施例4

本実施例は、埋め込み素子分離の工程に本発明の方法を応用したものである。まず、図6(A)に示すように、Si基板11に通常のフォトリソグラフィー法およびエッチング法により深さ0.8μm、幅0.35μmの埋め込み素子分離用の溝18を形成し、TEOSガスとO、ガスを用いたCVD法によりSiOx膜12を膜厚0.8μmで形成して溝18を埋め込んだ。このようにして試料を作製した。

【0038】次に、図6(B)に示すように、実施例3と同様にして試料にCMPを行った。次いで、図6(C)に示すように、試料に酸素雰囲気中、大気圧下1000℃で30分間の加熱処理を施して研磨粒子19を完全に除去した。

実施例5

本実施例は、研磨粒子として有機高分子化合物粒子と他の研磨粒子とを併用したものである。試料としては図3に示すものを用いた。この試料にCMPを行った。研磨剤としては、平均粒径350オングストロームのシリカ粒子をpH11のアルカリ性水溶液に分散させたものを用いた。このとき、研磨剤のA1の研磨速度は、定盤および試料ホルダーの回転数100 rpm、研磨圧力300

R

gf/cmの条件でVA1=900オングストローム/分であった。

【0039】次いで、試料を研磨すると同時に、試料表面に残留したシリカ粒子を除去する目的で、研磨した定盤と別の定盤にて、平均粒径1000オングストロームのPMMA粒子をpH3のアルカリ性水溶液に分散させた研磨剤を用いて、研磨圧力100gf/cm²、定盤および試料ホルダーの回転数100rpm、研磨時間1分で研磨した。

【0040】その後、実施例1と同様の条件で試料に酸 10 素プラズマによる灰化処理を施して、シリカ粒子および PMMA粒子が残留しないA1配線を形成することができた。なお、この酸素プラズマによる灰化処理の際、炭素膜15も同時に除去できる。このように、通常の研磨剤を併用することにより、実用的な研磨速度を得ることができ、しかも残留する研磨粒子を容易に除去できる。比較例

研磨粒子として平均粒径 0.5μmのダイヤモンド粒子を用いること以外は実施例 3と同様にしてCMPを行ったところ、CMP後のスポンジ洗浄および酸素雰囲気中 20の熱処理により研磨粒子を除去することができたが、試料のSiO,膜の表面に無数の傷が入り、表面粗さRaが2600オングストローム程度となり非常に表面が粗くなった。これは、ダイヤモンド粒子の修正モース硬度が15であり、SiO,膜の修正モース硬度8に比べて硬いことと、粒子形状が均質でなく球形でないことが原因であると考えられる。このように、表面粗さおよび表面の傷の発生という観点から、ダイアモンド粒子は不適*

* 当であることが分る。

[0041]

【発明の効果】以上説明した如く本発明の半導体装置の 製造方法は、有機高分子化合物からなる球形粒子または 少なくとも炭素を主成分とする粒子を研磨粒子として用 いて被加工膜を研磨するので、研磨後の研磨粒子の残存 量を極力少なくし、ディッシング等を起こすことなく研 磨することができ、膜の平坦化、埋め込み金属配線形成 等を信頼性高く、しかも歩留り良く行うことができる。

10

【図面の簡単な説明】

【図1】実施例1において使用する試料の一例を示す断 面図

【図2】研磨処理に使用される装置を示す概略図。

【図3】実施例1において使用する試料の他の例を示す 断面図。

【図4】実施例2において使用する試料を示す断面図。

【図5】実施例3において使用する試料を示す断面図。

【図6】(A)~(C)は実施例4を説明するための断面図。

・【図7】(A)~(F)は従来の研磨方法を説明するための断面図。

【符号の説明】

11…Si基板、12…SiO。膜、13…配線用溝、14…A1膜、15…炭素膜、16…Nb膜、17…CuOx膜、18…溝、19…研磨粒子、20…試料、21…研磨プレート、22…ポリッシングパッド、23…試料ホルダー、24…研磨液供給用配管。

26

【図4】

【図5】

フロントページの続き

(72)発明者 早坂 伸夫

神奈川県川崎市幸区小向東芝町1番地 株 式会社東芝研究開発センター内