SPH3U 8.4 Determining Wave Speed

1. The universal wave equation

Universal wave equation:	υ=Fλ.	$\left(\sqrt{\frac{2}{T}}, T = \frac{1}{F}\right)$

A harp string supports a wave with a wavelength of $2.3\ m$ and a frequency of $220.0\ Hz$. Calculate its wave speed.

A trumpet produces a sound wave that is observed travelling at $350 \, \text{m/s}$ with a frequency of $1046.50 \, \text{Hz}$. Calculate the wavelength of the sound wave.

$$v = f\lambda$$
. $\lambda = \frac{350}{1046.5} = 0.33 \dots$. $\lambda = \frac{v}{6}$

2. Factors that affect wave speed

Rigidity:	how rigid the modium is : more stiff = faster wave
Temperature:	(in gas) as the temperature 1, work speed ?
Linear density:	(in strings) mass per unit distance
equation	M= m, where m is linear density
Speed of a wave on a string:	V = (FT: tension force).

On your class wave machine, you have a string of mass 350 g and length 2.3 m. You would like to send a wave along this string at a speed of 50.0 m/s. What must the tension of the string be?

$$V = \int_{-\infty}^{E_{T}} \rightarrow V^{2} = \int_{-\infty}^{\infty} \rightarrow F_{T} = \int_{-\infty}^{\infty} F_{T} = \int_{-\infty}^{\infty} \frac{(0.35)(50)^{2}}{2.3} = \frac{380N}{2.3}$$

Homework: page 391: #1-3, 7