Chapitre

Séries numériques

3. Séries et sommes partielles

3.1. Vocabulaire

Définition 1.1 : Série

On appelle série de terme général u_k la suite S_n définie par $S_n = \sum_{k=0} u_k$. On appelle aussi S_n la somme partielle de la série.

π Définition 1.2 : Somme

On dit que la série est convergente si sa somme partielle est une suite convergente. Dans ce cas, on appelle somme de la série la limite de S_n . On le note $\sum_{k=0}^{+\infty}$.

Convergence

La convergence d'une série ne dépend pas de ses premiers termes. Si on prend 2 séries qui différent d'un nombre fini de terme, elles auront la même nature. Autrement dit, àa convergen si et seulement si cela converge à partir d'un certain rang.

Si une série ne converge pas, elle est divergente.

π Définition 1.3 : reste

On note le reste d'une série convergente $R_n = \sum_{k=n+1}^{+\infty}$. On a $S = S_n + R_n$. C'est ce qui manque pour que S_n soit égale à la limite de la série, S. C'est en quelque sorte le "complémentaire" de la série.

Proposition 1.1

Si une série est convergente, alors $\lim_{+\infty}\,R_n=0$

Exemple

Une série géométrique est convergente si |q| < 1.

Série harmonique

On a $\frac{1}{k}\geq\frac{1}{t}$ si $t\in[k,k+1]$. Donc $\frac{1}{k}\geq\int_{k}^{k+1}\frac{1}{t}\mathrm{d}t$ d'où $\sum_{k=1}^{n}\frac{1}{k}\geq\sum_{k=1}^{n}\int_{k}^{k+1}\frac{1}{t}\mathrm{d}t=\int_{1}^{n+1}=\frac{1}{t}\mathrm{d}t$ par la relation de Chasles. D'où $H_{n}=\sum_{k=1}^{n}\frac{1}{k}\geq\ln(n+1)\to+\infty$.

3.1. Premières propriétés

Proposition 1.2: Somme telescopique

C'est une série de la forme $\sum_{k\geq 0}(a_{k+1}-a_k)$. Si la limite l de a_k existe, la somme de la série vaut $l-a_0$.

Exemple

$$S_n = \sum_{k=0}^n \frac{1}{(k+1)(k+2)} = \sum_{k=0}^n (\frac{1}{k+1} - \frac{1}{k+2}) = 1 - \frac{1}{n+2} \to 1$$

Proposition 1.3

Si $\sum u_k$ est convergent, alors $U_k \to 0$.

Convergence

Une série dont le terme général ne tend pas vers o ne peut converger et est dite grossièrement divergente. La réciproque est fausse (série harmonique).

Proposition 1.4

Toute combinaison linéaire de série convergente est une série convergente.

3.1. Critère de Cauchy

Proposition 1.5

Une série converge $\iff \forall \varepsilon > 0, \exists n_0 \in \mathbb{N}, \forall m, n \geq n_0, |u_n + \dots + u_m| < \varepsilon$

3. Série à termes positifs

Proposition 2.1

Une série à termes positifs converge si et seulement si la suite des sommes partielles est majorée.

Théorème 2.1: Théorème de comparaison

Pour 2 séries à termes postifs, $u_k \leq v_k$, alors si $\sum v_k$ converge, $\sum v_k$ converge. Inversement, si $\sum u_k$ diverge, $\sum v_k$ diverge.

Théorème 2.2 : Théorème des équivalents

Soient 2 suites à termes strictement positifs. Si $u_k \sim v_k$, alors les séries associées sont de même nature.

3.2 Séries de référence

Proposition 2.2 : Séries de Riemann

Si a>1, alors la série $\sum_{k=1}^n \frac{1}{k^a}$ converge. Si $0< a\leq 1$, elle diverge.

Proposition 2.3 : Série de Bertrand

Soit la série $\sum_{k=2}^n \frac{1}{k^a(\ln(k))^b}$. Si 0 < a < 1, elle diverge, si a > 1 elle converge et si a = 1, avec b > 1, elle converge, avec $b \le 1$, elle diverge.

3.2. Règles

Théorème 2.3 : Règle du quotient de D'Alembert

Soient une série à termes strictement positifs telle que $\frac{u_{k+1}}{u_k} \to l$. Si l < 1, la série converge, si l > 1, la série diverge.

Théorème 2.4 : Règle des racines de Cauchy

Soient une série à termes strictement positifs. Si il existe, on note $l=\lim \sqrt[n]{u_n}$. Si l<1, la série converge, si l>1, la série diverge.