Cats or Dogs From Raw Data to Features and Labels Hypothesis Space Loss Function Optimization (=Training) Wrap Up

Machine Learning: Basic Principles How to Specify A Machine Learning Problem?

Salo, September 2018

Guiding Questions

- How to formulate your business as a ML Problem ?
- How to determine which algorithm to use for your problem?

Outline

- Cats or Dogs
- Prom Raw Data to Features and Labels
- Hypothesis Space
- **4** Loss Function
- **5** Optimization (=Training)
- **6** Wrap Up

A ML Application

- hard disk full of images
- for a few images it is known if they show a cat or a dog
- develop a software tool ("app") to label all images

Design Choices to be Made

- in which format represent the images ? (what features?)
- which algorithms should we use ? (which hypothesis space?)
- how to evaluate our labelling tool? (how to validate?)
- how to tune for best performance? (how to train?)

Main Components of a ML Problem

Outline

- Cats or Dogs
- 2 From Raw Data to Features and Labels
- 3 Hypothesis Space
- **4** Loss Function
- ⑤ Optimization (=Training)
- **6** Wrap Up

Raw Data

per se, the dataset is just a (huge) pile of bits

clever parsing of data might be most difficult part of ML problem!

From Raw Data to Vectors (Data Points)

- need to parse raw data into more manageable form
- break raw data into atomic pieces (data points)

- ullet ith data point encoded by vector $\mathbf{z}^{(i)} \in \mathbb{R}^d$
- ullet dataset amounts to a bunch of vectors $\{\mathbf{z}^{(i)}\}_{i=1}^{N}$

From Audio to Vectors

what are typical values of ΔT and $T_{\rm song}$ for rock song ?

From RGB Images to Vectors

Labeled Data

- ullet partition data point as $\mathbf{z} := (\mathbf{x}, y)$
- input "features" $\mathbf{x} \in \mathcal{X}$, "label" / "output" / "target" $y \in \mathcal{Y}$


```
data point \mathbf{z} = (\mathbf{x}, \text{``dog''})
image pixels \mathbf{x} \in \mathcal{X} = \mathbb{R}^d
label (ouput) y \in \mathcal{Y} = \{\text{``dog''}, \text{``cat''}\}
```

- ullet applications with discrete ${\cal Y}$ called classification problems
- lacksquare applications with continuous ${\cal Y}$ called regression problems

A Key Message

- in real-life applications its not obvious what part of data is label and what should be the features
- feature and label space \mathcal{X}, \mathcal{Y} are design choice! (we have to find the most useful choices for our application at hand!)
- HOWEVER, there are methods to automatically choose good features ("Feature Learning")

Labeled Data for Regression

data point $\mathbf{z}^{(i)}$ consists of pixels $\mathbf{x}^{(i)}$ (=features) and temperature $y^{(i)}$ (=label)

$$\mathbf{z}^{(1)} = (\mathbf{x}^{(1)}, y^{(1)} = 8)$$

$$\mathbf{z}^{(2)} = (\mathbf{x}^{(2)}, y^{(2)} = 8)$$

$$\mathbf{z}^{(3)} = (\mathbf{x}^{(3)}, y^{(3)} = 23)$$

Label Information is worth Gold!

- accurate label information is extremely precious
- ML most powerful with vast amounts of labeled data (=training data)
- HOWEVER, obtaining labels is typically costly
- "labelling" of data often requires human (expert) labour

Cats or Dogs From Raw Data to Features and Labels Hypothesis Space Loss Function Optimization (= Training) Wran Up

Aquiring Labels in Marine Biology

Cats or Dogs From Raw Data to Features and Labels Hypothesis Space Loss Function Optimization (=Training) Wan Un

Acquiring Labels in Particle Physics

Acquiring Labels in Pharmacology

doing a good job as ML scientist/engineer might save lives !!!

The Amazon Mechanical Turk

What can you build with Amazon Mechanical Turk?

Learn more about common use cases below

Image/Video Processing

MTurk is well-suited for processing images. While difficult for computers, it is a task that is extremely easy for people to do. In the past, companies have used MTurk to:

Tag objects found in an image to improve your search or advertising targeting

Review a set of images to select the best picture to represent a product

Audit user-uploaded images or videos to moderate content

Classify objects found in satellite imagery

ata Verification and Clean-up

you can hire human labelling workforce!

Labels are Costly!

Amazon Mechanical Turk Pricing

The price you (the Requester) pay for a Human Intelligence Task ("HIT") is comprised of two compone pay Mechanical Turk. The fee you pay Mechanical Turk is based on the amount you pay Workers. Add

Worker Reward	You decide how much to pay Workers for each a
Mechanical Turk Fee	20% fee on the reward and bonus amount (if any Workers. HITs with 10 or more assignments will additional 20% fee on the reward you pay Worke minimum fee is \$0.01 per assignment or bonus §
Additional Fee for using the Masters Qualification (What are Masters?)	5% of the reward you pay Workers.
Additional Fee per assignment for using Premium Qualifications (How do I use Premium Qualifications?)	Blogger \$0.25 Born 1918 to 1950 (Age \$5 or older): \$0.50 Born 1981 to 1991 (Age 45-55): \$0.50 Born 1972 to 1981 (Age 45-45): \$0.50 Born 1982 to 1988 (Age 30-45): \$0.50 Born 1982 to 1998 (Age 15-35): \$0.50 Born 1982 to 1998 (Age 16-25): \$0.50 Born 1982 to 1999 (Age 16-25): \$0.50 Born 1982 to 1999 (Age 16-25): \$0.50 Bornower-Auto Loans: \$0.40

Outline

- Cats or Dogs
- Prom Raw Data to Features and Labels
- 3 Hypothesis Space
- **4** Loss Function
- **6** Optimization (=Training)
- **6** Wrap Up

Hypothesis Maps Features to Labels

- ullet want to predict label $y \in \mathcal{Y}$ from features $\mathbf{x} \in \mathcal{X}$ of data point
- ullet consider hypothesis map $h(\cdot):\mathcal{X} o\mathcal{Y}$
- ullet hypothesis for discrete ${\mathcal Y}$ (e.g., ${\mathcal Y}=\{0,1\}$) called classifier
- ullet hypothesis for continuous ${\mathcal Y}$ (e.g., ${\mathcal Y}={\mathbb R}$) called predictor

How Good is A Predictor?

- ullet ML is about finding good predictor $h(\cdot):\mathcal{X} o\mathcal{Y}$
- we predict label y from features **x** by $\hat{y} = h(\mathbf{x})$
- choose predictor $h(\cdot)$ such that $h(\mathbf{x}) \approx y$
- two issues here:
 - ullet i1: set of maps $h(\cdot): \mathcal{X} \to \mathcal{Y}$ is typically LARGE (infinite)
 - i2: need a measure for quality of particular $h(\cdot)$

The Hypothesis Space

- GOAL of ML: find predictor $h(\cdot)$ such that $h(\mathbf{x}) \approx y$
- two issues here:
 - i1: set of maps $h(\cdot): \mathcal{X} \to \mathcal{Y}$ is typically LARGE
 - i2: how to measure approximation quality $h(\mathbf{x}) \approx y$
- ullet solve i1 by restricting $h(\cdot)$ to subset ${\mathcal H}$ of maps ${\mathcal X} o {\mathcal Y}$
- subset H referred to as hypothesis space

Cats or Dog From Raw Data to Features and Label Hypothesis Spac Loss Functio Optimization (= Training Wrap U

The Hypothesis Space Picture

Representing a Hypothesis/Predictor/Classifier

- ullet ML revolves around finding a good predictor $h(\cdot) \in \mathcal{H}$
- need efficient (computer-friendly) representation of H
- ullet e.g., binary classification $\mathcal{Y}=\{0,1\}$ with $|\mathcal{X}|=K$
- what would K be for 512×512 black/white bitmap?
- ullet how many numbers specify an arbitrary map $\mathcal{X} o \mathcal{Y}$?

Representing a Hypothesis via Decision Boundary

ullet binary classification with $\mathcal{Y} = \{0,1\}$ and $\mathcal{X} = \mathbb{R}^2$

$$\mathcal{Y} = \{0,1\}$$
 "decision boundary"
$$h(\mathbf{x}) = 1$$

$$h(\mathbf{x}) = 0$$

$$\mathcal{X}_1 \quad \mathcal{X} = \{\mathbf{x} = (x_1, x_2) \in \mathbb{R}^2\}$$

- ullet map $h(\cdot): \mathcal{X} \rightarrow \{0,1\}$ characterized by decision boundary (DB)
- hypothesis space defined by allowed shapes of DB
- ullet e.g., $\mathcal{H} = \{$ classifiers with DB consisting of 4 line segments $\}$

A Regression Problem

ullet ith snapshot represented by feature vector $\mathbf{x}^{(i)} \in \mathcal{X} = \mathbb{R}^d$

- what is d for snapshots being 512×512 RGB bitmap?
- ullet we label ith snapshot by local temperature $y^{(i)} \in \mathcal{Y} = \mathbb{R}$

Representing a Hypothesis for Regression $(\mathcal{Y} = \mathbb{R})$

- ullet 512 imes 512 RGB webcam snapshot $\mathbf{x}^{(i)} \! \in \! \mathcal{X} \subseteq \mathbb{R}^d$
- ullet snapshot labeled with temperature $y^{(i)}\!\in\!\mathcal{Y}=\mathbb{R}$
- ullet hypothesis space ${\cal H}$ of linear regression:

$$\mathcal{H} = \{h^{(\mathbf{w})}(\mathbf{x}) = \mathbf{w}^T \mathbf{x}, \text{ with some } \mathbf{w} \in \mathbb{R}^d\}$$

- ullet is ${\mathcal H}$ a proper subset of the set of all maps ${\mathbb R}^d o {\mathbb R}$?
- choose **w** such that $y \approx h^{(\mathbf{w})}(\mathbf{x})$

Cats or Dogs From Raw Data to Features and Labels Hypothesis Space Loss Function Optimization (= Training) Wran U

Parametrizing the Hypothesis Space of Linear Regression

Representing a Hypothesis via Code

• $h^{(\mathbf{w})}(\mathbf{x}) := \mathbf{w}^T \mathbf{x} \in \mathbb{R}$ predicts temperature for snapshot \mathbf{x}

```
function temp=WhatIsTheTemperature (image,weight)

temp = weight'*image;
end
```

- think of hypothesis as a (Python/Matlab/...) subroutine
- hypothesis space could be, e.g.,

 $\mathcal{H} = \{$ all python routines with runtime less than 10 sec. and having as input an image and a tuning parameter and output a temperature $\}$

Representing a Hypothesis via DecisionTrees

$$\mathcal{R}_1 = \{ \mathbf{x} : x_g \ge w, \ x_r < w \} \ \mathcal{R}_3 = \{ \mathbf{x} : x_g < w \}$$
$$\mathcal{R}_2 = \{ \mathbf{x} : x_g > w, \ x_r > w \}$$

- fast evaluation of h(x) by walking down the tree
- ullet e.g., $\mathcal{H} = \{$ decision trees of depth less than six $\}$

Representing a Hypothesis via a "Neural Network"

- network representation enables efficient computations !!!
- ullet e.g., $\mathcal{H}=\{$ NN with three hidden layers each having 10 units $\}$

Representing Hypothesis via Feature Maps

- ullet consider original input vector $\mathbf{x} \in \mathcal{X} \subseteq \mathbb{R}^d$
- ullet define feature map $\phi(\cdot): \mathcal{X} \to \mathcal{F} \subseteq \mathbb{R}^n$ with $d \ll n$
- ullet high-dimensional feature space ${\cal F}$
- ullet construct non-linear classifiers $h^{(\mathbf{w})}(\mathbf{x}) := \mathcal{I}(\mathbf{w}^T \phi(\mathbf{x}) > \mathbf{0})$
- ullet e.g., d=2 and $\phi(\mathbf{x})=(x_1,x_2,x_1^2+x_2^2,1)^T\in\mathbb{R}^4\;(n=4)$
- what is decision boundary of $h^{(\mathbf{w})}(\mathbf{x})$ for $\mathbf{w} = (0, 0, 1, -1)^T$?
- feature maps used in kernel methods (see course CS-E4830)

Linear Classifiers

- ullet binary classification $\mathcal{Y}=\{0,1\}$ with feature space $\mathcal{X}=\mathbb{R}^d$
- ullet classifier $h(\cdot):\mathcal{X} o \mathcal{Y}$ represented by decision boundary
- how many different decision boundaries are there?
- ullet restrict $h(\cdot)$ to manageable subset ${\mathcal H}$ (hypothesis space)
- linear classifiers are particular hypothesis space
 - $\mathcal{H} := \{h(\cdot) \text{ with decision boundary being hyperplane } \}$

Linear Binary Classifiers for $\mathcal{X} = \mathbb{R}^2$

decision boundaries are straight lines

how many linear classifiers do exist for $\mathcal{X} = \mathbb{R}^2$?

Outline

- Cats or Dogs
- From Raw Data to Features and Labels
- 3 Hypothesis Space
- **4** Loss Function
- Optimization (=Training)
- **6** Wrap Up

The Quality of a Hypothesis

- GOAL of ML: choose hypothesis $h(\cdot)$ such that $h(\mathbf{x}) \approx y$
- two issues here:
 - i1: set of maps $h(\cdot): \mathcal{X} \to \mathcal{Y}$ is typically LARGE
 - i2: how to measure approximation quality $h(\mathbf{x}) \approx y$
- ullet i2 requires measure for loss/error incurred by predictor $h(\mathbf{x})$
- define loss function $L(\mathbf{z}, h(\cdot))$ incurred by $h(\cdot)$ for data point \mathbf{z}
- most reasonable loss functions share structural similarities http://web.mit.edu/lrosasco/www/publications/ loss.pdf

The Squared-Error Loss

- ullet consider labeled data $\mathbb{X} = \{\mathbf{x}^{(i)}, y^{(i)}\}_{i=1}^N$
- continuous labels $y^{(i)} \in \mathbb{R}$ (regression problem)
- we predict label $y^{(i)}$ using predictor $h(\mathbf{x}^{(i)})$
- natural choice is squared error $L((\mathbf{x}, y), h(\cdot)) := (y h(\mathbf{x}))^2$

The 0/1 Loss

- consider labeled data $\mathbb{X} = \{\mathbf{x}^{(i)}, y^{(i)}\}_{i=1}^{N}$
- binary labels $y^{(i)} \in \{-1,1\}$ (classification problem)
- we predict label $y^{(i)}$ using predictor $h(\mathbf{x}^{(i)})$
- natural choice is 0/1-loss $L((\mathbf{x}, y), h(\cdot)) := \mathcal{I}(yh(\mathbf{x}) > 0)$

The Empirical Risk

- ullet consider a particular loss function $L(\mathbf{z}, h(\cdot))$
- ullet evaluate loss for data points in the dataset ${\mathbb X}$
- empirical/training loss/risk/error

$$\mathcal{E}(h(\cdot)|\mathbb{X}) := (1/N) \sum_{i=1}^{N} L((\mathbf{x}^{(i)}, y^{(i)}), h(\cdot))$$

- \bullet $\mathcal{E}(h(\cdot)|\mathbb{X})$ is mean squared error for squared error loss
- ullet $\mathcal{E}(h(\cdot)|\mathbb{X})$ is misclassification rate for 0/1 loss

Mean Squared Error

$$\mathbf{z}^{(1)} = (\mathbf{x}^{(1)}, y^{(1)} = 8)$$

 $h(\mathbf{x}^{(1)}; \mathbf{w}) = 10$

$$\mathbf{z}^{(2)} = (\mathbf{x}^{(2)}, y^{(2)} = 8)$$

 $h(\mathbf{x}^{(2)}; \mathbf{w}) = 7$

$$\mathbf{x}^{(3)}$$
 $\mathbf{z}^{(3)}$

$$\mathbf{z}^{(3)} = (\mathbf{x}^{(3)}, y^{(3)} = 23)$$
$$h(\mathbf{x}^{(3)}; \mathbf{w}) = 20$$
$$)_{y^{(3)}}$$

$$\mathcal{E}(h|\mathbb{X}) = (1/N) \sum_{i=1}^{N} (h(\mathbf{x}^{(i)}) - y^{(i)})^2 = (1/3)(2^2 + 1^2 + 3^2) = 14/3$$

Multitask Learning

- might have to solve different tasks using same dataset
- consider, e.g., dataset of webcam snapshots
- Task 1: predict local temperature y using pixels x
- Task 2: classify img into winter/summer using pixels x
- individual loss function for each task: $\mathcal{E}_1(h(\cdot)|\mathbb{X})$, $\mathcal{E}_2(h(\cdot)|\mathbb{X})$
- ullet choose $h(\cdot)$ to balance optimally between these two

Outline

- Cats or Dogs
- Prom Raw Data to Features and Labels
- Hypothesis Space
- **4** Loss Function
- **5** Optimization (=Training)
- **6** Wrap Up

Finding Optimal Hypothesis

ML amounts to finding best predictor/classifier, i.e.,

$$\hat{h} = \operatorname*{argmin}_{h(\cdot) \in \mathcal{H}} \mathcal{E}(h|\mathbb{X})$$

- solution of this empirical risk minimization yields two things:
 - "best" classifier/predictor $\hat{h}(\cdot)$ out of ${\cal H}$
 - ullet minimum empirical error $\mathcal{E}(\hat{h}|\mathbb{X})$ achievable for \mathcal{H}
- ullet if $\mathcal{E}(\hat{h}|\mathbb{X})$ is too high then we might enlarge \mathcal{H}
- $\mathcal{E}(\hat{h}|\mathbb{X})$ is indicator for accuracy of predicting y from \mathbf{x} using $\hat{h}(\mathbf{x})$ for a "new" data point (with unknown label y)

Optimal Linear Regression

- ullet regression problem $\mathcal{X} = \mathbb{R}^d$, $\mathcal{Y} = \mathbb{R}$ with squared error loss
- ullet predict label y from features ${\bf x}$ using predictors

$$\mathcal{H} = \{h^{(\mathbf{w})}(\mathbf{x}) = \mathbf{w}^T \mathbf{x} \text{ with } \mathbf{w} \in \mathbb{R}^d\}$$

- ullet optimal predictor $\hat{h} = \operatorname{argmin}_{h(\cdot) \in \mathcal{H}} \mathcal{E}(h|\mathbb{X})$
- equivalent to find optimum weight vector w₀, i.e.,

$$\mathbf{w}_0 = \operatorname*{argmin}_{\mathbf{w} \in \mathbb{R}^d} f(\mathbf{w}) := \mathcal{E}(h^{(\mathbf{w})} | \mathbb{X})$$

optimum w₀ characterized by zero-gradient condition

$$\nabla f(\mathbf{w}_0) = \mathbf{0}$$

Zero Gradient is Necessary for Optimum

Gradient Descent

ullet best predictor $h^{(\mathbf{w}_0)}$ obtained for optimal weight

$$\mathbf{w}_0 = \underset{\mathbf{w}}{\operatorname{argmin}} f(\mathbf{w}) \text{ with } f(\mathbf{w}) = \mathcal{E}(h^{(\mathbf{w})}|\mathbb{X})$$

- ullet for convex $f(\mathbf{w})$, minimum \mathbf{w}_0 characterized by $abla f(\mathbf{w}) = \mathbf{0}$
- ullet this is equivalent to fixed-point equation $\mathcal{T}\mathbf{w}=\mathbf{w}$
- here, $T\mathbf{w} = \mathbf{w} \alpha \nabla f(\mathbf{w})$ with step-size (learning rate) $\alpha > 0$
- find fixed-point w₀ by fixed-point iterations

$$\mathbf{w}^{(k+1)} = \mathcal{T}\mathbf{w}^{(k)} = \mathbf{w}^{(k)} - \alpha \nabla f(\mathbf{w}^{(k)})$$

known as gradient descent (GD)

Gradient Descent Picture

Outline

- Cats or Dogs
- Prom Raw Data to Features and Labels
- Hypothesis Space
- **4** Loss Function
- Optimization (=Training)
- **6** Wrap Up

To Sum Up

- break raw data into atomic "data points"
- representing data points using features and labels
- various representations of predictor/classifier (decision boundaries, decision trees, neural networks, ...)
- concept of loss functions and empirical risk
- choosing optimal predictor by empirical risk minimization

The Nitty-Gritty Details

- how to efficiently solve ERM ?
- how to validate a predictor/classifier ?
- ullet how to choose hypothesis space ${\mathcal H}$?
- what to do if we do not have any labels?

Design Choices

- loss function and hypothesis space are design choices
- squared error loss + linear hyp. space results in convex opt. problem
- choices guided by computational infrastructure
- if all you have is a spreadsheet app, then deep neural nets might not be the right choice for hypothesis space