

CSCI 3022, Intro to Data Science Spring 2019 Tony Wong

Lecture 1: Introduction

Introduction

What is *Data Science*?

Introduction

What is *Data Science*?

- → Making the invisible visible
- → Recovering insights/trends hiding within the data
- → Using data to answer interesting questions
- → Catch-all: using data to understand the world around us

Introduction

What is *Data Science*?

- → Making the invisible visible
- → Recovering insights/trends hiding within the data
- → Using data to answer interesting questions
- → Catch-all: using data to understand the world around us

WARNING LABEL: we will do a lot of the "science" side of "data science"

→ Probability! Statistics! Math!

We put the "science" in "data science"

We put the "science" in "data science"

We put the "science" in "data science"

Foundations

realms	topics		
probability	EDA, null models/hypotheses, Markov models		
statistical inference	averages, regression models, max. likelihood estimates		
optimization and calculus	model fitting, math shortcuts		
linear algebra	any time we have a matrix (or can make one!)		
computer science	data structures, rapid estimation, simulation		

Game plan

Week	Date	nb	txt	Topic	Slides	Hmwk
1	8.27			Course & Computing Introduction	isis	5
	8.29		16.1-3	EDA and Summary Statistics	A 2.	
	1.26		2	Course & Computing Introduction EDA and Summary Statistics Introduction 12 Possibility		
2	9.03		_4	MABOR DAY - NO CLASS		
	9.05		orat	EDA and Data Visualization		hw1 posted
	9.07	P		Data Wrangling		
3	9.10		2,3	How to Python		
	9.12		6	Axioms and Theorems of Probability		
	9.14		3	Stochastic Simulation		hw1 due
4	9.17		4	Bayes' Rule and Intro to PDFs		hw1 due hw2 ppsteO
	9.19		4,5	Discrete RVs, PMFs, CMFs	imi	Maria
	9.21			Discrete RVs Strike Back	1111	
5	9.24		5	Return of the Discrete R s		
	9.26			4 Continuous RVs Awaken, PDFs, CDFs		
	9.28	h	abil	The Last Continuous RVs		hw2 due
6	100	Oh	7	Return of the Dicce of S Continuous RVs Awaken, PDFs, CDFs The Last Continuous RVs Expectation Variance		hw3 posted
	10.03			Variance		
	10.05		5.5	More Expectation & Variance		
7	10.08			The Normal Distribution		
	10.10		14	MIDTERM EXAM REVIEW		
	10.10			The Central Limit Theorems		
	10.12			MIDTERM EXAM (PM)		hwa c lie
8	10.15		23,24	MIDTERM EXAM (PM) The Central Limit Theorem and You Inference and Cl Intro 3 Two-Salars 5	fer	nw4 posted
	10.17		23,24	Inference and CI Intro		
	10.19			Two-Salars GS High the Wild Hypothesis Testing Intro		
9	10.22		25.26	S the Wild		
	10.24	n	25.16	Hypothesis Testing Intro		
	0. 6	4		p-Values		hw4 due

10	10.29	27	Practical HT & p		hw5 posted	
	10.31		Small-sample HT			
	11.02		TBD			
11	11.05	18,23.3	Bootstrap Intro			
	11.07		Bootstrap and Small n HT			
	11.09	27	OLS/SLR Regression		hw5 due	
1001	11.12		Inference in SLR		hw6 posted	4
	11.14		Hands on inference in SLR		adic	l
	11.16		MLR	- 12	blee	
13 11.19 11.21 11.23	11.19		Inference in SLR Hands on inference in SLR MLR FALL BREAK - NO CLASS FALC BLAK - NO CLASS	10111		
	0.000000		FALL BREAK - NOCLAS			
	11.23		FAL BLEEN - NO CLASS			
14	11.26	IS 143	FALCE EMAND CLASS Inference in MLR More MLR and ANOVA I		practicum posted	
	MO	ISL Ch3	More MLR and ANOVA I			
	11.30	ISL Ch3	ANOVA II		hw6 due	
15	12.03		ANOVA + Inference in MLR			
	12.05		Logistic Regr. & Classification			
	12.07		Logistic Regr. & Classification			
16	12.10		Solution Techniques and SGD			
	12.12		FINAL EXAM REVIEW		practicum due	
×	12.XX		**FINAL EXAM **			

Game plan

Goal: Fluency in the theoretical and computational aspects of data analysis

At the end of this course you'll be able to

- 1) Clean, munge, and wrangle data in Python and perform Exploratory Data Analysis
- 2) Draw insight from data by computing and interpreting classic summary statistics
- 3) Know the ins-and-outs of probability and how to use it to solve real-world problems
- problems

Construct and analyze sin

- 5) Perform statistical tests to
- 6) Tell compelling stories ab

ire real or due to chance

tion and presentation tools

Game plan

Goal: Fluency in the theoretical and computational aspects of data analysis

At the end of this course you'll be able to

- 1) Clean, munge, and wrangle data in Python and perform Exploratory Data Analysis
- 2) Draw insight from data by computing and interpreting classic summary statistics
- 3) Know the ins-and-outs of probability and how to use it to solve real-world problems
- 4) Construct and analyze simple models to make predictions and inferences about data
- 5) Perform statistical tests to
- 6) Tell compelling stories al

re real or due to chance ion and presentation tools

MY HOBBY: EXTRAPOLATING

Game plan

Goal: Fluency in the t

At the end of this cour

- 1) Clean, munge, a
- 2) Draw insight from
- 3) Know the ins-and

lysis

ry Data Analysis
mary statistics
I-world problems

- 4) Construct and analyze simple models to make predictions and inferences about data
- 5) Perform statistical tests to determine if your conclusions are real or due to chance
- 6) Tell compelling stories about data using modern visualization and presentation tools

Computing

- We will use Python 3 and in particular Numpy and Pandas
- Lot's of great data science libraries and decent plotting
- We'll exclusively work in Jupyter Notebooks
- Jupyter is ubiquitous DS collaboration and communication tool.
 Easiest way to get both is Anaconda Python 3.6
- We strongly recommend you install local copy
- If not, you can use **Microsoft Azure** or **Google Colab** notebooks
- Often work on problems in groups in class
- Bring a laptop or have a buddy with a laptop

Computing

 Homework assignments will be done through Jupyter Notebooks and submitted through Canvas

Install Jupyter Notebook on your computer

- Jupyter Notebook
- Anaconda Python (includes Jupyter)

- Back your work up!
 - Github, Google Drive, SOMEthing
 - Make the repo **private** (collaboration policy)

Laptops

"Results showed that students who used laptops in class spent considerable time multitasking and that the laptop use posed a significant distraction to both users and fellow students. Most importantly, the level of laptop use was negatively related to several measures of student learning, including self-reported understanding of course material and overall course performance."

http://www.sciencedirect.com/science/article/pii/S0360131506001436

Also: http://journals.sagepub.com/doi/pdf/10.1177/0956797616677314

And: http://www.sciencedirect.com/science/article/pii/S0272775716303454 (... and others...)

Laptops

"Results showed that students who used laptops in class spent considerable time multitasking and that the laptop use posed a significant distraction to both users and fellow students. Most importantly, the level of laptop use was negatively related to several measures of student learning, including self-reported understanding of course material and overall course performance."

If you are going to use a laptop (aside from the Jupyter notebook times) ...

- 1) Sit in the back
- 2) Try to stay focused...

Some logistics

Workload:

- (35%) Homework assignments (~every 2 weeks, lowest dropped, late days)
- (20%) Midterm exam
- (20%) Final exam (cumulative)
- (10%) Practicum 1 (~midterm)
- (10%) Practicum 2 (~final)
- (5%) Quizlets (Canvas)

≥ 55% exam average required to earn a C- or higher in the class

Let me know about any special needs in a timely manner

Read the syllabus! More details can be found there regarding course policies

Some logistics

Workload:

- (35%) Homework assignments (~ever
- (20%) Midterm exam
- (20%) Final exam (cumulative)
- (10%) Practicum 1 (~midterm)
- (10%) Practicum 2 (~final)
 - (5%) Quizlets (Canvas)

≥ 55% exam average required to earn a (

Let me know about any special needs in a

Quizlets:

- 5-15 minutes
- Build off of examples, concepts from class
- I'll announce them in class or on Canvas some days...
- ... and they'll be due by noon on the next class meeting day
- I'll also add to the course calendar once assigned (your responsibility to check it)
- Like a pop quiz that you can do in your pajamas over the course of two days

Read the syllabus! More details can be found there regarding course policies

Late days

(from the syllabus)

You are allotted three late days that may be used for homework over the entire semester. Submitting an assignment between 1 second and exactly 24 hours late constitutes 1 late day; 24 hours and 1 second late is 2 late days. After you have expended your allotted late days late homework will not be accepted or graded. Your lowest homework score will be dropped.

TL/DR:

- 3 late days
- Use em whenever you want for the HW
- Can't use them for the Practicum or Quizlets
- Canvas automatically flags late HW submissions.
 After a due date, we will record any late day usage.

Course attendance

final scores

Some logistics

We'll use **Canvas** to manage course content

https://canvas.colorado.edu/courses/24706

Assignments, solutions, and other resources will be posted here

Piazza: Ask questions in Q & A forum (and answer other students' questions!)

- Discuss work, but do not post solutions/vital code
- Send private messages to faculty instead of email (keeps things organized)

https://piazza.com/colorado/spring2019/csci3022

Canvas landing page:

- 1) Link to lecture schedule, including slides, in-class notebooks, and assignments
- 2) Link to course syllabus
- 3) Lots of cheatsheets and tutorials
- 4) Office hours spreadsheet

Some logistics

We'll use **Canvas** to manage course-related communication and content

https://canvas.colorado.edu/courses/24706

Assignments, solutions, and other resources will be posted here

Piazza: Ask questions in Q & A forum (and answer other students' questions!)

- Discuss work, but do not post solutions/vital code
- Send private messages to faculty instead of email (keeps things organized)

https://piazza.com/colorado/spring2019/csci3022

Canvas landing page:

- 1) Link to lecture schedule, including slides, in-class notebooks, and assignments
- 2) Link to course syllabus
- 3) Lots of cheatsheets and tutorials
- 4) Office hours spreadsheet

Remember when I said "You must be willing to struggle a little"?

When you're asking for help, be sure to explain...

- what you're trying to do
- what you think should happen
- what you get instead (copy/pastes or screenshots work well)
- what all you have tried
 - if you haven't tried anything, try something first

Academic Integrity

See the <u>CU Academic Integrity Policy</u> for more details. Here are some highlights.

- "Examples of cheating include: copying the work of another student during an examination or other academic exercise (includes computer programming)"
- "Examples of plagiarism include: [...] copying information from computer-based sources"

Academic Integrity

Example 1: For an assignment, Chris searches the internet for relevant codes and copy-pastes them into his Jupyter Notebook. He properly cites the source of the codes.

Example 2: For an assignment, Maciej and Felix work together to figure out how to implement the codes, but each works on their own computer and develops their own software.

Example 3: For an assignment, Rhonda has a plan for how to implement an algorithm, but isn't sure how to manipulate a Python list in a particular way that she needs to. She searches the internet, finds a fix, and implements it in her code **without copying it**.

Course Reading

A Modern Introduction to Probability and Statistics (MIPS) by Dekking (et al.)

- International, old and PDF editions are okay
- Just be sure to match sections

Free PDF edition through CU (CU network, or VPN):

→ https://www.springer.com/us/book/9781852338961

Additional reading will be linked to the course calendar as needed

Additional Reading

2 Springer 2)

An Introduction

to Statistical

Learning

with Applications in R

Springer Texts in Statistics

Gareth James

Daniela Witten Trevor Hastie Robert Tibshirani

Think Stats by Downey ("TS") 1)

PDF: here!

Introduction to Statistical Learning ("ISL")

PDF: here! 27

Hi! I'm Tony.

- Call me Tony. Or Dr. Wong if you're more comfortable with that. I don't care.
- Second year teaching in CS
- Before this: Postdoc at Penn State. And taught Earth Science
 Grad student in Applied Math. And taught Calc/Diff Eq
- Research interests:
 - Computational: Uncertainty quant., Markov chains, (Bayesian) model calibration
 - Applications: Storm surge/sea-level projections, coastal flood risk
- Office: ECOT 623
- Office hours: M/W/Th 11-12

Now...

Let's get to work!

Get out your laptop, or -- better yet -- partner up with someone with a laptop and work together!

- 1) Numpy and Pandas tutorial
- 2) nb01 notebook

Before next class:

- 1) Make sure you can access the Canvas page and read the syll!
- 2) Set up **some way** to back up your work
- 3) Install Anaconda (or other reliable Jupyter notebook method)
- 4) Review and complete Numpy/Pandas tutorial
- 5) Explore nb01

